Muziekaanbeveling op basis van luistergeschiedenis en akoestische modellen

Erik Vandeputte

Promotor: prof. dr. ir. Benjamin Schrauwen Begeleiders: Sander Dieleman, Philémon Brakel

Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Elektronica en Informatiesystemen Voorzitter: prof. dr. ir. Jan Van Campenhout Faculteit Ingenieurswetenschappen en Architectuur Academiejaar 2012-2013

Muziekaanbeveling op basis van luistergeschiedenis en akoestische modellen

Erik Vandeputte

Promotor: prof. dr. ir. Benjamin Schrauwen Begeleiders: Sander Dieleman, Philémon Brakel

Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Elektronica en Informatiesystemen Voorzitter: prof. dr. ir. Jan Van Campenhout Faculteit Ingenieurswetenschappen en Architectuur Academiejaar 2012-2013

Voorwoord

Muziek en computers zijn altijd 2 grote passies van mij geweest. Vandaar dat ik tijdens het beschikbaar komen van de lijst met thesisonderwerpen begonnen ben met zoeken op het trefwoord 'muziek'. Ongeveer een jaar later kan ik zeggen dat de combinatie van computerwetenschappen en muziek voor mij een leuke en verrassende uitdaging is gebleken.

Ik wil eerst en vooral mijn promotor prof. dr. ir. Benjamin Schrauwen bedanken. Daarnaast wil ik in het bijzonder ook mijn begeleiders Philemon Brakel, Sander Dieleman, Pieter-Jan Kindermans en Aäron van den Oord bedanken voor hun advies en feedback.

Ten slotte wil ik ook mijn ouders bedanken voor hun steun en vertrouwen.

Toelating tot bruikleen

De auteur geeft de toelating deze masterproef voor consultatie beschikbaar te stellen en delen van de masterproef te kopieren voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting de bron uitdrukkelijk te vermelden bij het aanhalen van resultaten uit deze masterproef.

Erik Vandeputte, mei 2013

Music recommendation based on listening history and acoustic models

Erik Vandeputte

Supervisor(s): prof. dr. ir. Benjamin Schrauwen, ir. Sander Dieleman, Philémon Brakel

Abstract—In this article, we try to develop a successful solution to the cold start problem by building a hybrid recommender system that combines the benefits of social and content-based recommendation algorithms.

 ${\it Keywords} {\color{red}\textbf{--}} \textbf{Music Recommendation, Collaborative Filtering, Cold start problem}$

I. INTRODUCTION

CHIFTING from physical sales to digital sales during recent years, the online music industry is booming. Users are virtually overwhelmed with the available music content. Both from the perspective of the users, who want to discover relevant new music, as from the perspective of the content providers, who want to match their content with the right consumer group, the interest in recommendation engines has risen. Social-based recommendation algorithms, also known as collaborative filtering techniques (CF), are based on analyzing a large amount of information on user behavior such as rating information or listening/viewing history. Based on this information they are able to learn new relations between users and items so that they are able to predict what users will like based on their similarity to other users or items they've liked. CF is known to suffer from the cold start problem, where a system cannot recommend items for which it doesn't have any ratings for. Content-based techniques attempt to overcome this problem by extracting features out of the actual content and matching them with known user preferences for those features. We attempt to build a hybrid music recommender system that performs well on songs for which we have a lot of information, but is also able to recommend new relevant songs to users.

A. Dataset

The dataset consists of a subset of the Million Song Dataset [1] containing listening information for 20.000 users and 10.000 songs. This means that the input for the recommender system is a form of implicit feedback. We can represent this data in an user-item matrix R. One dimension corresponds to a user u while the other dimension corresponds to the song i. A rating r_{ui} represents the number of times user u has listened to song i. Additionally, there is a 30s audio file available for each song that will be used for extracting features from the audio.

II. COLLABORATIVE FILTERING

Our CF approach is based on a latent factor model that takes implicit feedback into account. Latent factor models try to discover latent features that explain the observed ratings. Our model tries to decompose an user-item matrix R into a product of an user-factormatrix X and a song-factormatrix Y. If we choose the number of latent features to be k, then the observed

score r_{ui} in the user-item matrix is approximated by an inner-product between a user-factor vector $x_u \in \mathbb{R}^k$ and a song-factor vector $y_i \in \mathbb{R}^k$ i.e., $r_{ui} \approxeq x_u^T y_i$. The main difference between recommender systems based on explicit feedback datasets and those based on implicit feedback datasets is that a score of 0 in an implicit feedback dataset doesn't mean that the user dislikes the item. In our case it just means that he hasn't listened to that song before. A suitable loss function for our recommender system can look like this:

$$\min_{x*,y*} = \sum_{u,i} c_{ui} (p_{ui} - x_u^T * y_i)^2 + \lambda \left(\sum_u ||x_u||^2 + \sum_i ||y_i||^2 \right)$$
(1)

 c_{ui} is a confidence parameter for a certain rating that is 1 when user u hasn't listened to item i but that increases lineary or logarithmically with the number of play counts. p_{ui} is a binarized form of the user-item matrix where $p_{ui}=1$ means that user u has listened to item i. λ is used for regularizing the model. Because the user-item matrix cannot be considered sparse, Alternating Least Squares (ALS) optimization is used for equation 1. We alternate between re-computing the user-factors and the song-factors by considering the former as fixed and solve for the latter and vice versa. In each step we are guaranteed to lower the value for the cost function. [2] describes an efficient implementation of this process, scaling lineary in the size of the dataset.

A. Results

The results were compared to two trivial recommendation algorithms and one neighborhood-based model. A first baseline algorithm, called *popularity*, recommends each song in descending order of its popularity, regardless of the user's preferences. The *same artist* algorithm recommends songs in descending order of popularity as well, taking into account only the artists that the user has played before. The neighborhood-based model is based on [3].

The evaluation metrics used are the mean average precision (mAP) and the recall when 50 recommendations are made (see table I)

As expected, the neighborhood-based model and the latent factor model outperform the trivial recommender systems. An important advantage of the latent factor model is that we obtain a representation of each song in k factors.

Recommender system	mAP@50	Rec@50
Popularity	0.01295	0.02739
Same artist	0.03063	0.04723
Neighborhood-based model	0.12405	0.25469
Latent factor model	0.12830	0.27362

TABLE I

THE EVALUATION FOR DIFFERENT RECOMMENDER SYSTEMS EVALUATED ON THE SUBSET OF THE MSD

III. CONTENT-BASED FILTERING

Motivated by the idea that some of the song factors correlate with various acoustical attributes of the song, an alternative approach is to predict the song factors for songs for which we don't have any listening information. Predicting the song factors directly out of the raw audio files will not work. We present an alternative approach based on the clustering of Mel Frequency Ceptral Coefficients.

A. Feature Learning

MFCCs [4] originated in the context of speech recognition, but have already successfully been used in the field of music data mining, f.e. in genre recognition. MFCCs present a compact representation of how humans percieve sound. Each raw audio file was converted to a sequence of 2905 MFCC-vectors. As input for a feature learning algorithm, each sequence of l MFCC-vectors was grouped into one frame. Motivated by [5], k-means clustering was chosen as feature learning algorithm, operating directly on all the frames. K-means is extremely fast, has no hyper-parameters to tune other than the number of clusters and is very easy to implement. After learning a number of centroids $c^{(k)}$, we consider two choices for the feature mapping function f. The standard formula for cluster assignment is *hard clustering*:

$$f_k(x) = \begin{cases} 1 \text{ if } k = argmin_j \|c^{(j)} - x\|_2^2 \\ 0 \text{ else} \end{cases}$$
 (2)

An alternative approach is to assign each frame to multiple centroids:

$$f_k(x) = \max\{0, \mu(z) - z_k\}$$
 (3)

Where $z_k = \|x - c^{(k)}\|_2$ and $\mu(z)$ is the mean of the elements of z. The latter we will refer to as *soft clustering*.

B. Predicting Song Factors

After performing the feature learning algorithm, we can now represent a song by its clustered MFCC-representation. To be able to predict the song factors out of this representation, we make use of regression analysis. First we split the song-factormatrix into a 80/20 training- and testset. By using ridge regression we estimated the song factors, based on the training data. The hyperparameter λ is obtained through 10-fold cross-validation. The evaluation on the testset for different frame sizes l, different number of centroids and for *hard* and *soft clustering* is shown in figure 1.

Fig. 1. Evolution of the number of centroids on the MSE between the predicted and the true song factors for different types of clustering methods and frame sizes

The goal is to estimate the predicted song factors for new songs or songs that still have very few listeners. These song factors can then be plugged into the song-factormatrix. To test whether this content-based approach is feasible, different experiments were conducted.

IV. EXPERIMENTS

In the first experiment we compare the latent-factor model to the prediction of song factors with a lineair model in case of a cold start.

Starting from the original user-item matrix, the dataset is divided into two parts as described in figure 2. A latent factor model is trained on X_{train} , resulting in a song-factormatrix V_{train} and a user-factormatrix U. The song-factormatrix V_{train} serves as a trainingset to train a linear model that estimates song factors based on the clustered MFCC-representation described in III-A. This model is now used to predict the song factors for the songs in X_{test} . We will refer to those song factors as $V_{test_{audio}}$.

Fig. 2. Initial splitting of the dataset.

To simulate an actual cold start problem, we now remove listening information for the songs in X_{test} . Concretely, we split the matrix X_{test} randomly into 2 disjunct collections. The first collection is called X_{test_A} and contains the removed listening information. This matrix will serve as our new testset. The second collection X_{test_B} contains the remaining listening information and will be used to calculate a new song-factormatrix $V_{test_{mf}}$. This song-factormatrix is calculated using the userfactormatrix U and one iteration out of the latent factor model described in III where we take the user factors U to be constant and solve for the song factors. The parameter α is used to determine the percentage listening information that is removed for

each song. The matrix X_{test} consisted of 264.767 nonzero entries. When $\alpha=0.5$, both matrices X_{test_A} and X_{test_B} contain about 132.000 nonzero entries.

For different values of α , we can generate the prediction scores for the two types of recommender systems as follows:

$$pred_{audio} = U(V_{test_{audio}})^T$$
 (4)

$$pred_{mf} = U(V_{test_{mf}})^T \tag{5}$$

Furthermore, the content-based technique (4) and the social-based technique (5) could easily be combined into a hybrid recommender system:

$$pred_{hybrid} = pred_{audio} + pred_{mf}$$
 (6)

The recommender system recommends songs based on the ordered list of the prediction scores. The results of this experiment for multiple values of α are presented in tables II and III.

				α			
	0.5	0.8	0.9	0.95	0.99	0.995	0.999
$pred_{mf}$	0.8580	0.8354	0.8129	0.7844	0.7022	0.6669	0.6451
$pred_{audio}$	0.6630	0.6629	0.6628	0.6625	0.6626	0.6625	0.6580
$pred_{hybrid}$	0.8520	0.8259	0.7987	0.7668	0.7019	0.6877	0.6808

TABLE II

AUC FOR DIFFERENT RECOMMENDER SYSTEMS AND DIFFERENT VALUES OF α

				α			
	0.5	0.8	0.9	0.95	0.99	0.995	0.999
$pred_{mf}$	0.1367	0.1446	0.1353	0.1174	0.0572	0.0368	0.0228
$pred_{audio}$	0.0174	0.0203	0.0214	0.0219	0.0224	0.0224	0.0226
$pred_{hybrid}$	0.1278	0.1292	0.1091	0.0792	0.0365	0.0302	0.0277

TABLE III

map@500 for different recommender systems and different values of α

In a second experiment, we can tune the importance of each technique in the hybrid approach using an extra parameter β . Equation 6 then becomes:

$$pred_{hybrid} = (1 - \beta)pred_{audio} + (\beta)pred_{mf} \quad \beta \in [0, 1]$$
 (7)

 $\beta=1$ means that we only take the social-based recommender system into account. We now can search for the optimal value of β for different values of α (see Figures 3 and 4).

We can clearly see that for different values of α , the optimal mAP and AUC values are obtained when β lies between 0.8 and 0.9, but then decrease when we only take the social-based system into account. We can conclude that in the tuned hybrid recommender system the social-based technique has a significantly bigger contribution than our own content-based technique, but that the correct combination of both can lead to an improved recommender system in the case of a cold start.

Fig. 3. AUC for different values of β

Fig. 4. mAP for different values of β

V. CONCLUSION & FUTURE WORK

In this paper, a solution to the cold start problem in music recommendation is proposed by using a latent factor model that allows to predict song factors based on MFCC-vectors when none or few listening history is available. If no listening information is available for certain songs, this approach works better than randomly recommend those songs, but the latent factor model tends to be superior even when little listening information is available. The main reason why the prediction of the song factors is poor is that not all song factors can be predicted out of MFCCs because they can correlate to other non-acoustical features such as home country of the artist. A possible solution to this problem is to incorporate more, non-acoustical attributes while predicting song factors. Furthermore, a hybrid recommendation system that correctly combines the social-based and content-based technique outperforms the latent factor model when few listening information is available.

REFERENCES

- Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere, "The million song dataset," in *Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011)*, 2011.
- [2] Yifan Hu, Yehuda Koren, and Chris Volinsky, "Collaborative filtering for implicit feedback datasets," in *Proceedings of the 2008 Eighth IEEE International Conference on Data Mining*, Washington, DC, USA, 2008, ICDM '08, pp. 263–272, IEEE Computer Society.
- [3] Fabio Aiolli, "A preliminary study on a recommender system for the million songs dataset challenge," 2012.
- [4] S. Davis and P. Mermelstein, "Experiments in syllable-based recognition of continuous speech," *IEEE Trans. Acoust., Speech, Signal Processing*, vol. 28, pp. 357 – 366, Aug. 1980.
- [5] Adam Coates, Andrew Y. Ng, and Honglak Lee, "An analysis of single-layer networks in unsupervised feature learning," *Journal of Machine Learning Research Proceedings Track*, vol. 15, pp. 215–223, 2011.

Inhoudsopgave

V	oorw	oord	
To	oelati	ing tot bruikleen	i
Li	jst n	net afkortingen	vii
1	Inle	eiding	1
	1.1	Wat is een aanbevelingssysteem?	1
		1.1.1 Verschillende soorten aanbevelingssystemen	2
		1.1.1.1 Inhouds-gebaseerde aanbevelingssystemen	3
		1.1.1.2 Sociaal-gebaseerde aanbevelingssystemen	3
		1.1.1.3 Hybride aanbevelingssystemen	4
	1.2	De lange staart	4
	1.3	Evaluatie van een aanbevelingssysteem	5
		1.3.1 mean Average Precision	6
		Precisie (P) \dots	6
		Gemiddelde Precisie (AP)	7
		Gemiddelde Precisie uitgemiddeld over alle gebruikers (mAP)	7
		1.3.2 Recall	7
		1.3.3 Area Under Curve	8
		1.3.4 Novelty	10
	1.4	Datasets	11
		1.4.1 Million Song dataset (MSD)	11
		1.4.2 MusiXmatch dataset	12
		1.4.3 Last.fm dataset	12
2	Col	laboratieve Filtertechnieken	13
	2.1	Buurgebaseerde modellen	13
		2.1.1 Algoritme	14
	2.2	Verborgen Factormodellen	14
		2.2.1 Algoritme	16
	2.3	Resultaten	17
3	Het	voorspellen van emotie in muziek	21
	3.1	Data voorverwerking en feature extractie	21
		3.1.1 Echonest features	23
		3.1.2 Songtekst features	26
	3.2	Classificatie en Experimenten	27

r 1 1	••
Inhoudsopgave	Vll
Tittoaasopyaoc	V 11

		3.2.1 3.2.2		atie	-
4	Het	voors	pellen va	an muziekfactoren	31
	4.1	Mel F	requency	Cepstral Coefficients (MFCCs)	31
	4.2	Featur	re Learnin	ıg	34
		4.2.1	Feature	encodering	34
	4.3	Voors	pellen van	muziekfactoren	38
		4.3.1	Ridge-re	gression	38
		4.3.2	Resultat	en	39
	4.4	Het ge	enereren v	ran aanbevelingen	40
		4.4.1	Resultat	en	41
			4.4.1.1	Experiment 1	41
			4.4.1.2	Experiment 2	43
			4.4.1.3	Experiment 3	46
			4.4.1.4	Experiment 4	48
5	Bes	luit			51
Li	st of	Figure	es		55
Li	${f st}$ of	Table	\mathbf{s}		58

Lijst met afkortingen

ALS Alternating Least Squares, alternerende kleinste kwadratenmethode

AUC Area Under the Curve, de oppervlakte onder een curve

API Application Programming Interface

CF Collaboratieve Filtertechnieken

DFT Discrete Fouriertransformatie

DCT Discrete Cosinustransformatie

FPR False Positive Rate, vals positief ratio

MSD Million Song Dataset

mAP mean Average Precision, gemiddelde precisie

MFCC Mel Frequency Ceptral Coefficients

MSE Mean Squared Error, gemiddelde kwadratische fout

PCA Principal Component Analysis

RSS Residual Sum of Squares

SVD Singular Value Decomposition, singuliere waarden decompositie

TPR True Positive Rate, echt positief ratio

Hoofdstuk 1

Inleiding

In dit hoofdstuk wordt het begrip 'aanbevelingssysteem' uitgelegd waarna de verschillende klassen van aanbevelingssystemen kort toegelicht worden. Vervolgens worden de problemen van hedendaagse aanbevelingssystemen aangekaart en de aanpak die deze masterproef voorstelt om deze te verhelpen. Daarna worden enkele populaire metrieken aangehaald die doorheen de masterproef gebruikt werden om verschillende aanbevelingssystemen te gaan evalueren. Ten slotte worden de verschillende datasets besproken die voorkomen in deze masterproef.

1.1 Wat is een aanbevelingssysteem?

Mede door de explosie aan beschikbare informatie hebben aanbevelingssystemen de laatste jaren enorm aan populariteit gewonnen op het internet. Deze systemen gaan mensen helpen door gepersonaliseerde informatie te tonen waar de gebruiker in eerste instantie nog niet noodzakelijk aan heeft gedacht. Contentleveranciers proberen vaak een zo groot mogelijk publiek te bereiken zodat de eindgebruiker vaak overspoeld wordt door een enorme hoeveelheid aan informatie. In plaats van de gebruiker zelf te laten zoeken wat hij precies nodig heeft uit die informatie, filtert het systeem de informatie en presenteert het enkel de informatie waarvan vermoed wordt dat die van belang kan zijn voor de gebruiker. Aanbevelingssystemen vormen dus eigenlijk een brug tussen contentleveranciers en eindgebruikers en zijn interessant voor beide partijen. Enerzijds moet de eindgebruiker niet meer op zoek gaan naar de juiste informatie en de aanbieder kan automatisch de juiste doelgroep bereiken. De lijst van aanbevolen video's op Youtube, een webshop zoals Amazon die steeds relevante producten probeert te promoten of de online

streaming videodienst Netflix die relevante films en series aanraadt zijn allemaal voorbeelden van aanbevelingssystemen.

Terwijl vroeger nog naar de platenzaak werd gegaan om een CD is het tegenwoordig mogelijk om met enkele klikken een enorme hoeveelheid aan muziek terug te vinden en te beluisteren via het internet. Ook hier is er nog steeds met een kloof tussen de eindgebruiker met zijn specifieke voorkeuren en de muziekindustrie die natuurlijk zoveel mogelijk van zijn muziek wil verkopen. Wat een muziekaanbevelingssysteem doet is het voorzien van de juiste muziek voor de juiste mensen op het juiste moment. Één van de bekenste online muziekaanbevelingssystemen werd ontwikkeld door de communitywebsite Last.fm. Gebruikers kunnen telkens wanneer ze een muzieknummer op hun computer of mobiel toestel beluisterd hebben deze informatie 'scrobblen' naar een server. Dit betekent dat het nummer wordt toegevoegd aan het muziekprofiel van de gebruiker. Uit al deze informatie kan Last.fm o.a. gepersonaliseerde aanbevelingen maken of de gebruiker in contact brengen met mensen die een een gemeenschappelijke muzieksmaak hebben.

Aanbevelingssystemen kunnen dus pas gebouwd worden wanneer er reeds een hoeveelheid invoerdata voorhanden is. Deze informatie wordt typisch voorgesteld in een gebruiker-item matrix waar één dimensie correspondeert met de gebruikers en de andere dimensie met de verschillende items. Een item kan bijvoorbeeld een film of een muzieknummer zijn. Wanneer een gebruiker een score heeft toegekend aan een bepaald item, spreken we van een systeem met expliciete feedback. Enkele voorbeelden van expliciete feedback zijn de scores die een gebruiker toekent aan een bepaalde film op Netflix of de "ik vind dit leuk" en "ik vind dit niet leuk" knoppen van Youtube. Een gebruiker heeft typisch slechts een klein percentage van alle items beoordeeld, wat resulteert in een vrij ijle gebruiker-item matrix.

Wanneer er geen expliciete scores voorhanden zijn kan de invoerdata bestaan uit de zoekgeschiedenis, luistergeschiedenis, zoekopdrachten,... . Dit zijn allemaal vormen van impliciete feedback. Wanneer de invoerdata bestaat uit de luistergeschiedenis van verschillende gebruikers, kan elke positie in de gebruiker-item matrix corresponderen met het aantal keer dat een gebruiker een bepaald nummer heeft afgespeeld.

1.1.1 Verschillende soorten aanbevelingssystemen

In het algemeen kunnen we 3 grote klassen van aanbevelingssystemen onderscheiden, namelijk inhouds-gebaseerde, sociaal-gebaseerde en hybride systemen [1].

1.1.1.1 Inhouds-gebaseerde aanbevelingssystemen

Inhouds-gebaseerde aanbevelingssystemen vormen de meest intiutïeve klasse. Hierbij wordt geprobeerd een bepaald profiel van de eindgebruiker en het item samen te stellen aan de hand van externe informatie. Een profiel van een gebruiker kan bestaan uit verschillende attributen zoals leeftijd, woonplaats, voorkeur voor een bepaald muziekgenre,...Wanneer men muzieknummers wil aanbevelen kan men attributen verzamelen zoals artiest, tempo, emotie, muziekgenre,... Het aanbevelingsproces bestaat er dan in om beide profielen op elkaar af te stemmen. De internetradio Pandora is een commerciële toepassing van dit type aanbevelingssystemen die voortgevloeid is uit het Music Genome Project. In dit project heeft men geprobeerd om elk muzieknummer voor te stellen als een gen. Een gen kan op zijn beurt worden voorgesteld als een vector met ongeveer 400 componenten die corresponderen met o.a. het geslacht van de artiest, toonbereik van het refrein.... De luisteraar kan specifieke voorkeuren opgeven waarna beide profielen op elkaar afgestemd worden. Deze informatie hoeft niet noodzakelijk manueel ingevoerd te worden. Bij een inhouds-gebaseerd aanbevelingssysteem voor muziek kan bijvoorbeeld door akoestische analyse van het muzieknummer automatisch een goeie schatting gemaakt worden van attributen zoals tempo, genre of emotie. Een voorbeeld van deze automatische detectie wordt besproken in hoofdstuk 2.

1.1.1.2 Sociaal-gebaseerde aanbevelingssystemen

In de praktijk moeten bedrijven zoals Amazon, IMDB en Last.fm het echter vaak stellen met een bepaald gedrag dat de gebruikers vertonen op hun website zoals bijvoorbeeld zoekgeschiedenis of luistergeschiedenis. Dit brengt ons bij de sociaal-gebaseerde aanbevelingssystemen. Het basisidee van sociaal-gebaseerde aanbevelingssystemen of collaboratieve filtertechnieken (CF) is vrij eenvoudig. Wanneer een gebruiker de items A,B,C en D goed vond en er veel gebruikers zijn die items A,B,C,D en E goed vonden dan kan met vrij hoge zekerheid gesteld worden dat die gebruiker item E ook goed zal vinden. De relaties tussen gebruikers en items worden geanalyseerd om nieuwe relaties te leren tussen gebruikers en items. De ontwikkeling van sociaal-gebaseerde aanbevelingssystemen kende een sterke groei onder invloed van 'The Netflix prize' [2]. Dit was een wedstrijd die het bedrijf Netflix heeft uitgeschreven in 2006 met als doel om de score te voorspellen die een bepaalde gebruiker zal toekennen aan een film. Er werd een prijs van 1 miljoen dollar uitgereikt aan het team dat als eerste een techniek ontwikkelde die een verbetering van

10% opleverde ten opzichte van het eigen aanbevelingssysteem van Netflix. Een overzicht van de belangrijkste collaboratieve filtertechnieken wordt gegeven in [3].

Een belangrijk voordeel dat collaboratieve filtertechnieken hebben ten opzichte van inhoudsgebaseerde technieken is dat ze domeinvrij zijn. Dit betekent dat dezelfde technieken kunnen worden gebruikt om verschillende soorten items aan te bevelen. Daar tegenover staat dan wel dat deze technieken onderhevig zijn aan problemen zoals het koude startprobleem, waarbij een aanbevelingssysteem er niet in slaagt om items aan te bevelen waarvoor nog geen gebruikersinformatie beschikbaar is. Indien er in het bovenstaande voorbeeld geen enkele gebruiker item E reeds geconsumeerd heeft, dan kan het aanbevelingssysteem onmogelijk weten of dat item van nut zal zijn voor een bepaalde gebruiker. Een ander probleem waarmee collaboratieve filtertechnieken te maken hebben is dat ze de voorkeur geven om globaal populaire items aan te bevelen ten koste van niche-items (zie 1.2).

1.1.1.3 Hybride aanbevelingssystemen

In een poging om de beste eigenschappen van de eerste twee klassen te gaan benutten kan ook worden geprobeerd om inhouds-gebaseerde en sociaal-gebaseerde systemen te gaan combineren. In dit geval spreken we van een hybride aanbevelingssysteem. Een voorbeeld van een hybride aanbevelingssysteem dat films aanraadt kan deels gebaseerd zijn op het zoekgedrag van gelijkaardige gebruikers (sociaal-gebaseerd), maar ook films aanraden die gemeenschappelijke karakteristieken (genre, regisseur,...) bevatten met films waarvoor een gebruiker reeds een hoge score heeft toegekend (inhouds-gebaseerd).

1.2 De lange staart

Door de populariteit van het internet is ook de manier waarop mensen muziek consumeren sterk veranderd. Technologische vooruitgang in netwerken, opslagcapaciteit en afspeelmedia zorgt ervoor dat mensen nu vaak een grotere muziekcollectie dan vroeger bezitten. Dit leidt echter niet noodzakelijk tot het feit dat mensen meer verschillende muzieknummers gaan beluisteren. Dit verschijnsel heet de lange staart [4]. Huidige aanbevelingssystemen focussen zich voornamelijk op een hoge graad van nauwkeurigheid. Dit leidt vaak tot het probleem dat deze systemen de voorkeur geven aan populaire items, terwijl items die zich in de lange staart bevinden misschien

meer nut hebben voor de gebruiker. Een goed aanbevelingssysteem moet hiermee rekening houden en moet gepersonaliseerde aanbevelingen genereren die de gebruikers helpen om nieuwe, relevante nummers te ontdekken. Een bekend probleem bij sociaal-gebaseerde aanbevelingssystemen is dat deze moeite hebben om items aan te bevelen die zich in de lange staart bevinden [5].

In deze masterproef zullen we proberen om een oplossing voor dit probleem te bedenken. Concreet gaan we kijken of een hybride aanpak op basis van een sociaal-gebaseerde en een inhoudsgebaseerde methode het koude start- en lange staartprobleem kan verhelpen.

FIGUUR 1.1: Een voorbeelddistributie van de populariteit van nummers in een muziekcollectie

1.3 Evaluatie van een aanbevelingssysteem

Vooraleer men aan muziekaanbeveling kan doen is het belangrijk om een geschikte manier te vinden om de aanbevelingen te evalueren. Voor een aanbevelingssysteem dat werkt met expliciete feedback is het mogelijk om de gemiddelde kwadratische fout (MSE) te bepalen tussen de score die het systeem voorspelt en de effectieve score die een gebruiker gaf:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (p_i - a_i)^2$$
 (1.1)

Waarbij n het aantal voorspelde scores bedraagt, p_i de voorspelde score voor de gebruiker op item i, en a_i de effectieve score die de gebruiker toekende aan item i.

In deze masterproef werd echter met impliciete feedback gewerkt, namelijk het aantal keer dat een gebruiker een muzieknummer heeft afgespeeld (zie 1.4.1). Het aantal afspeelbeurten correspondeert niet noodzakelijk met de score die een gebruiker zou geven aan het muzieknummer. Dit zorgt ervoor dat andere evaluatiemetrieken dienen te worden gebruikt.

Een dataset wordt in een eerste fase altijd opgesplitst in een trainingset en een testset. De trainingset bestaat uit de informatie die gebruikt wordt om de CF-modellen te bouwen waarna deze in staat moeten zijn om aanbevelingen voor elke gebruiker te genereren. Een goed aanbevelingssysteem zal erin slagen om aanbevelingen te genereren die effectief in de testset voorkomen. Het systeem zal als het ware de testset moeten voorspellen hoewel het enkel de informatie uit de trainingset te verwerken kreeg.

Allereerst kan worden opgemerkt dat een goede evaluatiemaat voor een aanbevelingssysteem met impliciete feedback de volgende principes in acht moet nemen:

- Een realistisch aanbevelingssysteem zal maximum x items aanbevelen.
- Bij het genereren van aanbevelingen zullen ook telkens x items worden aanbevolen aangezien foute aanbevelingen typisch niet worden afgestraft, ze beperken enkel het aantal 'goede' aanbevelingen die kunnen voorkomen in de lijst van x items.
- De volgorde van aanbevelingen is van belang, dus het systeem zal eerst de items aanbevelen waar het het meest zeker van is.

1.3.1 mean Average Precision

Een eerste evaluatiemaat waarvan gebruikt gemaakt werd in deze masterproef is de gemiddelde precisie (mAP). De mAP is een metriek die de nadruk legt op de eerste items die aanbevolen worden. Er kan bovendien een drempelwaarde opgegeven worden voor het maximum aantal aanbevelingen dat voor elke gebruiker gegenereerd mag worden zodat we kunnen spreken van een afgeknotte mAP. We veronderstellen dat de drempelwaarde $\tau = 50$.

Precisie (P) Om tot de mAP te komen wordt vertrokken vanuit formule 1.2. De matrix $M \in \{0,1\}^{m \times n}$ is een binaire gebruiker-item matrix, waarbij $M_{u,i} = 1$ betekent dat de gebruiker u naar item i geluisterd heeft. De lijst van aanbevelingen wordt voorgesteld door y waarbij y(j) = i betekent dat item i voorkomt op positie j in de lijst. Verder veronderstellen we dat er

in een lijst y_u voor een gebruiker u geen nummers voorkomen die hij reeds beluisterd heeft. We willen immers nieuwe nummers aanbevelen voor elke gebruiker.

$$P_k(u,y) = \frac{1}{k} \sum_{j=1}^{k} M_{u,y(j)}$$
(1.2)

In bovenstaande formule wordt de precisie op positie k voor een gebruiker u en een lijst van aanbevelingen y berekend. Dit kan gezien worden als de proportie van juist voorspelde items binnen de top-k van de aanbevelingen.

Gemiddelde Precisie (AP) Voor elke gebruiker wordt nu de gemiddelde precisie berekend:

$$AP(u,y) = \frac{1}{n_u} \sum_{k=1}^{\tau} P_k(u,y) \cdot M_{u,y(j)}$$
 (1.3)

Hierbij stelt n_u het minimum voor van het aantal aangeraden muzieknummers en het aantal nummers voor die gebruiker die in de testset voorkomen. $M_{u,y(j)}$ is opnieuw een binaire matrix die waarde 1 bevat als gebruiker u geluisterd heeft naar het item dat zich bevindt in de aanbevelingslijst op positie k. Een voorbeeld van de berekening van de gemiddelde precisie wordt weergegeven in tabel 1.1.

Gemiddelde Precisie uitgemiddeld over alle gebruikers (mAP) In een laatste stap wordt dan uitgemiddeld over alle m gebruikers om de mAP te bekomen:

$$mAP = \frac{1}{m} \sum_{u} AP(u, y_u) \tag{1.4}$$

1.3.2 Recall

Een tweede metriek die van pas komt bij aanbevelingssystemen is de recall. Recall is de verhouding tussen het aantal relevante aangeraden items en het totaal aantal relevante items voor die gebruiker. Wanneer we voor iedere gebruiker telkens τ aanbevelingen genereren kunnen we de recall als volgt formuleren:

	Gebruiker u				
j	relevant?	$P_k(u,y)$			
1	$_{ m ja}$	1.00			
2	nee	0.5			
3	nee	0.33			
4	nee	0.25			
5	ja	0.40			
6	nee	0.33			
7	nee	0.29			
8	nee	0.25			
9	ja	0.33			
10	nee	0.30			
AP	$(u,y) = \frac{1.00}{}$	$\frac{0+0.40+0.33}{3} = 0.58$			

TABEL 1.1: Berekening van de gemiddelde precisie voor een bepaalde gebruiker wanneer $\tau = 10$ nummers worden aangeraden en 3 nummers in de testset zitten.

$$Rec = \frac{1}{m} \sum_{u} \frac{1}{r} \sum_{j=1}^{\tau} M_{u,y(j)}$$
 (1.5)

Hierin is r het aantal nummers voor gebruiker u die in de testset voorkomen.

1.3.3 Area Under Curve

Een alternatieve manier om aanbevelingen te evalueren is om niet te kijken naar de $\tau=50$ beste aanbevelingen alleen, maar de volgorde van aanbevelingen te gaan bestuderen. In deze masterproef werd gebruik gemaakt van de Receiver Operating Characteristic curve (ROC-curve). De ROC-curve vergelijkt de true positive rate (TPR) met de false positive rate (FPR) bij verschillende drempelwaarden. Om een ROC-curve op te bouwen wordt vertrokken van een confusiematrix. Een confusiematrix is een tabel met 2 rijen en 2 kolommen die het aantal echt positieve, vals positieve, echt negatieve en vals negatieve gevallen meet tijdens testfase.

	echte waarde				
voorspelling	_ \ /	Vals positief (FP)			
	Vals negatief (FN)	Echt negatief (TN)			

Tabel 1.2: Een confusiematrix

Ook de evaluatie van een lijst met aanbevelingen kan worden opgedeeld in 4 disjuncte gevallen:

1 .	1
echte	waarde

voorspelling	aanbevelen + in testset	aanbevelen + niet in testset
	niet aanbevelen + in testset	niet aanbevelen + niet in testset

Tabel 1.3: Een confusiematrix toegepast op een aanbevelingssysteem

De true positive rate en false positive rate worden bekomen aan de hand van volgende formules:

$$TPR = \frac{TP}{TP + FN} \tag{1.6}$$

$$FPR = \frac{FP}{FP + TN} \tag{1.7}$$

Bij evaluatie van het aanbevelingssysteem worden nu alle aanbevelingen in beschouwing genomen. Er wordt gestart met de hoogste score als drempelwaarde te zetten waarna men stap voor stap de drempelwaarde verlaagt tot uiteindelijk alle nummers aangeraden worden. In elke stap worden de TPR en FPR berekend en tegenover elkaar uitgezet. Wanneer men deze punten nu met elkaar verbindt, bekomt men een ROC-curve. Een ROC-curve begint altijd in het punt (0,0) en eindigt in het punt (1,1). Een goed aanbevelingssysteem zal snel een hoge TPR bereiken in verhouding tot de FPR. Vandaar dat de oppervlakte onder de curve (AUC) een goede manier is om een aanbevelingssysteem te evalueren. De AUC kan dus bepaald worden door de ROC-curve te integreren en kan een maximale waarde van 1.0 aannemen. Wanneer alle nummers in een willekeurige volgorde worden aanbevolen is de verwachte AUC = 0.5.

FIGUUR 1.2: Een voorbeeld van een ROC-curve

1.3.4 Novelty

Men kan zich de vraag stellen of metrieken enkel gebaseerd op relevantie de beste metrieken zijn. Als het nieuwste album van een zeer bekende popgroep op Amazon wordt opgezocht dan bevatten de aanbevelingen op de resultatenpagina ook vaak de andere albums van diezelfde popgroep. Voor een webwinkel zoals Amazon zal dit wellicht zijn nut hebben maar de kans is echter vrij groot dat de gebruiker reeds weet heeft van deze albums. Bij het luisteren van muziek is men echter ook vaak op zoek naar nieuwe muziek. Een zelf ontworpen metriek geeft de nieuwheid van de aanbevelingen weer:

$$Nov = \frac{1}{m} \sum_{u} \sum_{i \in y(i)} \frac{\tau}{\log(c_i)}$$
(1.8)

 c_i geeft het totaal aantal afspeelbeurten van een nummer i terug, berekend over de volledige dataset.

Een metriek die gebaseerd is op gebruikerstevredenheid is uiteraard de beste optie. Het nadeel van deze soort metrieken is echter dat deze vrij omslachtig zijn aangezien een eindgebruiker telkens de aanbevelingen moet evalueren.

1.4 Datasets

1.4.1 Million Song dataset (MSD)

In deze masterproef werd vertrokken van een subset van een dataset die toegankelijk werd gesteld in het kader van de Million Song Dataset Challenge [6]. Deze subset bestaat uit 10.000 muzieknummers en 20.000 gebruikers die al dan niet geluisterd hebben naar een muzieknummer. Een record uit de dataset bestaat uit een gebruikers-id, een muzieknummer-id en een getal dat correspondeert met het aantal afspeelbeurten. Elk muzieknummer-id kan gelinkt kan worden aan offline metadata die beschikbaar werd gesteld door The Echo Nest [7]. Deze metadata bestond o.a. uit titel, nationaliteit van de artiest, akoestische informatie zoals toonaard en pitch informatie en een verwijzing naar een kort audiofragment van het nummer. Verder kan elk muzieknummer-id gekoppeld worden aan één of meerdere track-ids. Een track-id komt overeen met een bepaalde uitvoering van een muzieknummer. Deze track-ids worden gebruikt in de MusiXmatch dataset (zie 1.4.2) en de Last.fm dataset (zie 1.4.3).

10cbcd627472477dfbec90fb75017f8df6ce84ec	S0GPLBE12A58A80442	1
10cbcd627472477dfbec90fb75017f8df6ce84ec	SOBWSGV12AB018B5E0	1
10cbcd627472477dfbec90fb75017f8df6ce84ec	SOWINIH12AB018CC51	1
10cbcd627472477dfbec90fb75017f8df6ce84ec	SOXHVRT12A81C2320D	1
e9dc6b4c2b22aa6dc8260e1963021567728055b2	S0UIGCD12AB0186713	1
e9dc6b4c2b22aa6dc8260e1963021567728055b2	S0Y0MRA12A6D4F9975	11
e9dc6b4c2b22aa6dc8260e1963021567728055b2	S0LMIUU12A58A79C99	3
e9dc6b4c2b22aa6dc8260e1963021567728055b2	S0M0BBZ12A8C144831	8
e9dc6b4c2b22aa6dc8260e1963021567728055b2	SOPXKYD12A6D4FA876	6
30e4a688e6fc9c8bfe55998af3996a909ae34449	S0TQBKC12A8C13E961	1
30e4a688e6fc9c8bfe55998af3996a909ae34449	SOAIBYI12AB0185C5B	1
30e4a688e6fc9c8bfe55998af3996a909ae34449	S0SM0NK12A8C139059	1
30e4a688e6fc9c8bfe55998af3996a909ae34449	S0MYDVM12A6D4F7935	1
30e4a688e6fc9c8bfe55998af3996a909ae34449	S0HXBKV12A6D4F820D	2
30e4a688e6fc9c8bfe55998af3996a909ae34449	SODZOER12A8C1360FB	1
30e4a688e6fc9c8bfe55998af3996a909ae34449	S0QGYDJ12A6310F359	1
18ce1da0e1017e31baaa5f80afa64ee3c7fab379	SOKWSEA12A8C141C9D	1
18ce1da0e1017e31baaa5f80afa64ee3c7fab379	SOPGCXT12A8C138AD1	5
18ce1da0e1017e31baaa5f80afa64ee3c7fab379	S0DDDWP12AB0188D17	1
18ce1da0e1017e31baaa5f80afa64ee3c7fab379	SOTVJCB12A8C136E46	1
18ce1da0e1017e31baaa5f80afa64ee3c7fab379	S0UFTBI12AB0183F65	6
18ce1da0e1017e31baaa5f80afa64ee3c7fab379	S0SXLTC12AF72A7F54	9
18ce1da0e1017e31baaa5f80afa64ee3c7fab379	SOSNJIT12A8159E8DB	2
18ce1da0e1017e31baaa5f80afa64ee3c7fab379	SOKENKR12AB01828F7	7
0b254c684efb08fd04933add2d1e4191d2a87bac	S00PUTL12A8C143381	1
0b254c684efb08fd04933add2d1e4191d2a87bac	SOPOANU12A8AE48C9B	2
0b254c684efb08fd04933add2d1e4191d2a87bac	SOUDEUC12A6D4F95A7	1
0b254c684efb08fd04933add2d1e4191d2a87bac	S0EB0WM12AB017F279	1

FIGUUR 1.3: Een voorbeeldfragment uit de MSD. Links bevindt zich het gebruikers-id, in het midden het muzieknummer-id en rechts het aantal afspeelbeurten.

1.4.2 MusiXmatch dataset

De musiXmatch dataset is een verzameling van songteksten in bag-of-words formaat waarbij enkel gekeken werd naar de 5000 populairste woorden, die we topwoorden noemen. De eerste regel bevat deze topwoorden in dalende volgorde van populariteit. Elke daaropvolgende regel uit de dataset bestaat uit een track-id, een id van musiXmatch en een lijst koppels van de vorm $\langle idx : cnt \rangle$. Dit correspondeert met het aantal voorkomens cnt van het woord met index idx in de lijst van topwoorden. Deze dataset is gelinkt aan de MSD via het track-id.

```
TRAAEDY12903CBBFA7, 4193161, 1:5, 23:11, 24:4, 42:6, 72:1, 90:7, 156:1, 190:1, 229:1, 243:4, 251:1, 474:7, 482:12, 530:1, 544:2, 553:1, 603:1, 632: 15, 650:15, 695:1, 710:8, 826:2, 978:12, 1022:1, 1246:2, 1276:1, 1328:2, 1349:6, 1380:1, 1452:30, 1641:10, 1673:1, 2105:1, 2414:19, 2533:1, 2700:2, 2747:12, 2806:2, 2825:1, 2843:4, 3055:1, 3178:1, 3271:1, 3359:2, 3665:1, 3989:5, 4189:2, 4199:1, 4213:1, 4502:2, 4633:2, 4684:5, 4815:2  
TRAAEEH0128F9344FD3, 5967283, 1:5, 2:7, 5:3, 6:2, 8:3, 10:2, 11:5, 12:8, 13:1, 18:1, 19:2, 22:1, 23:2, 24:6, 28:1, 30:2, 32:1, 39:2, 40:1, 43:6, 51:1, 5:3, 67:1, 75:6, 82:1, 87:1, 95:6, 125:1, 133:1, 146:2, 163:1, 180:1, 195:1, 283:1, 291:1, 337:1, 338:1, 403:1, 455:1, 491:1, 497:1, 503:2, 535:1, 548:1, 506:6, 584:1, 596:2, 676:1, 753:1, 784:1, 877:1, 1035:1, 1097:1, 1114:1, 1223:1, 1525:1, 1888:1, 2069:1, 2614:1, 2774:1, 3175:6, 4089:1, 4525:1  
TRAAEJH128E0785566, 1018402, 13:9, 2:12, 32:2, 43:3, 51:1, 73:1, 9:1, 21:18, 16:1, 17:4, 20:4, 21:1, 25:2, 26:1, 29:1, 30:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1, 31:1
```

FIGUUR 1.4: Een voorbeeldfragment uit de musiXmatch dataset.

1.4.3 Last.fm dataset

De Last.fm dataset is een dataset die tag-informatie van muzieknummers en similariteit tussen verschillende muzieknummers bevat. Deze informatie kan ook online opgevraagd worden met behulp van de Last.fm API¹ wanneer de methoden 'Track.getTopTags' en 'Track.getSimilar' gebruikt worden. De dataset bestaat uit een verzameling van json-gecodeerde tekstbestanden. Elk muzieknummer correspondeert met 1 bestand. Ook deze dataset is gelinkt aan de MSD via het attribuut 'track_id'.

```
{"artist": "The Bar-Kays",
  "timestamp": "2011-08-03 15:26:43.246805",
  "similars": [],
  "tags": [["soul", "100"], ["funk", "40"], ["60s", "20"], ["Rhytm and Blues","20"], ["Saturday Night",
  "20"], ["REAL soul music", "20"], ["rock top", "20"], ["rock top funky soul", "20"], ["title is a full
  sentence", "20"], ["groove", "0"], ["you cant sit down lp version", "0"]],
  "track_id": "TRTOKHS128F147ED44", "title": "You Can't Sit Down (LP Version)"}
```

FIGUUR 1.5: Een voorbeeldbestand uit de Last.fm dataset.

Alle aanbevelingssystemen werden gebouwd op basis van de luistergeschiedenisdata die zich in de MSD bevindt. In hoofdstuk 3 wordt gebruik gemaakt van de Last.fm dataset en de MusiXmatch dataset.

¹www.last.fm/api

Hoofdstuk 2

Collaboratieve Filtertechnieken

In dit hoofdstuk wordt de klasse van collaboratieve filtertechnieken uitvoeriger besproken. We bespreken de buurgebaseerde modellen en de verborgen factormodellen. Vervolgens wordt een voorbeeld van beide modellen samen met twee eenvoudige aanbevelingsalgoritmes vergeleken tijdens het genereren van aanbevelingen wanneer een deel van de Million Song dataset (zie 1.4.1) gebruikt wordt als invoerdata. Het overige deel vormt dan de testset.

2.1 Buurgebaseerde modellen

Een eerste soort van collaboratieve filtertechnieken zijn de buurgebaseerde modellen. De voorspelde score voor een bepaalde gebruiker en een bepaald item wordt bepaald op basis van de score van de buren. Deze buren kunnen zowel items als gebruikers zijn. In het eerste geval spreekt men van een gebruikers-georiënteerd model. In deze masterproef werd echter een item-georiënteerd model geïmplementeerd. Dit houdt in dat voor een bepaalde gebruiker items worden aanbevolen die als goede buren beschouwd kunnen worden van eerder positief bevonden items. Dit vereist natuurlijk dat men a priori voor elk item zijn belangrijkste buren kan definiëren. Dit gebeurt door eerst tussen alle items de similariteit te meten op basis van de beschikbare invoerdata met behulp van een similariteitsmaat. Wanneer de invoerdata bestaat uit impliciete feedback zoals bijvoorbeeld luistergeschiedenis, kan gebruik gemaakt worden van verschillende gekende similariteitsmaaten zoals de Pearson correlatie of de cosinus similariteit. Het zoeken naar een geschikte similariteitsmaat is een belangrijk probleem op zich. Wanneer nu voor een bepaalde gebruiker voorspellingen dienen te worden gemaakt wordt gekeken naar de similariteit tusen nieuwe items

en de items waarvoor de gebruiker reeds een rating heeft toegekend. Dit wordt omschreven als de scorefunctie h_{ui} . Ook hier bestaan opnieuw vele varianten. Een voorbeeld van een scorefunctie voor een gebruiker u en een item i kan bestaan uit de gemiddelde score van de 5 beste buren. Wanneer de voorspelling gebaseerd is op alle reeds beoordeelde items, kan een hoger gewicht worden toegekend aan de belangrijkste buren.

2.1.1 Algoritme

De implementatie die in deze masterproef werd gebruikt steunt grotendeels op de winnende oplossing van de Million Song Dataset Challenge [8]. Stel als gegeven een set U van m gebruikers en een set I van n items. De waarden van de gebruikers-item matrix $R = \{r_{ui}\} \in \mathbb{R}^{n \times m}$ worden voor de eenvoud voorgesteld door een binaire waarde waarvoor geldt dat $r_{ui} = 1$ als gebruiker u reeds geluisterd heeft naar nummer i. De scorefunctie h_{ui} ziet er als volgt uit:

$$h_{ui} = \sum_{j \in I(u)} f(w_{ij}) \tag{2.1}$$

De scorefunctie is dus proportioneel met de similarteiten w_{ij} van het item i en de items die eerder al beluisterd werden door de gebruiker u $(j \in I(u))$.

Om verschillende items met elkaar te vergelijken werd gekozen voor de cosinus similariteitsfunctie. De cosinus similariteit is symmetrisch en door het feit dat enkel binaire waarden in de gebruikers-item matrix voorkomen kan deze dus bovendien snel berekend worden als volgt:

$$w_{ij} = \frac{|U(i) \cap U(j)|}{|U(i)|^{\frac{1}{2}} |U(j)|^{\frac{1}{2}}}$$
(2.2)

Voor elke gebruiker wordt nu voor de nummers die hij nog niet beluisterd heeft een score bepaald met behulp van vergelijking 2.1. Deze scores worden in dalende volgorde gesorteerd waarna de nummers met de hoogste scores eerst worden aangeraden.

2.2 Verborgen Factormodellen

Een alternatieve aanpak ten opzichte van buurgebaseerde modellen is gebruik te maken van factormodellen. Bij deze wordt geprobeerd de scores tussen gebruikers en items te modelleren

door verborgen variabelen bloot te leggen die deze scores verklaren. Binnen deze klasse bestaan verschillende technieken, maar in deze masterproef werd de focus gelegd op modellen die een matrixfactorisatie uitvoeren op de gebruiker-item matrix. Een eerste eenvoudige aanpak kan bestaan uit het genereren van een singuliere waarden decompositie (SVD) uit de gebruikersitem matrix. Standaard SVD-technieken werken echter in op een matrix waarvan alle waarden gekend zijn. In een realistische dataset zijn er echter veel ontbrekende waarden aangezien de gebruikers niet elk item beoordeeld hebben. Dit zorgt ervoor dat er enige aanpassingen nodig zijn. Bovendien zou een SVD-oplossing erg te leiden hebben onder overfitting. Overfitting is een gekend probleem binnen het domein van machinaal leren en statistiek. Bij overfitting gaat het model relaties leren die specifiek zijn voor de trainingsdata maar die zich niet veralgemenen over alle data. Een typisch verschijnsel dat optreedt bij overfitting is dat het model zeer goed presteert op de trainingsdata. Wanneer hetzelfde model echter geëvalueerd wordt op nieuwe data zal de prestatie plots veel slechter zijn.

Een alternatieve methode vertrekt ook vanuit de gebruiker-item matrix R die wordt nu wordt benaderd als het product van 2 andere matrices X en Y die respectievelijk de gebruikersfactormatrix en de item- of muziekfactormatrix worden genoemd. Indien de gebruikers-item matrix dimensie $M \times N$ heeft, dan komen de dimensies van X en Y overeen met $M \times K$ en $K \times N$, waarbij K dus vrij te bepalen is. De waarde van K correspondeert met het aantal verborgen variabelen of factoren dat gebruikt zal worden om de observeerbare scores te verklaren.

$$r_{ui} = \sum_{k} x_{uk} y_{ik}$$

2.2.1 Algoritme

Een score is telkens gebaseerd op een inwendig product van gebruikersfactoren en muziekfactoren. Wanneer de gebruikersfactoren van een gebruiker u als x_u worden voorgesteld en de muziekfactoren van een een muzieknummer y als y_i worden voorgesteld, dan bedraagt de voorspelde score $x_u^T y_i$.

Indien met expliciete scores wordt gewerkt, bijvoorbeeld een systeem waar de gebruiker zelf een score toekent aan een muzieknummer, dan kan de kostfunctie als volgt worden neergeschreven:

$$\min_{x^*,y^*} = \sum_{r_{ui} \text{is known}} (r_{ui} - x_u^T y_i)^2 + \lambda(||x_u||^2 + ||y_i||^2)$$
(2.3)

Deze kostfunctie minimaliseert het verschil tussen de voorspelde scores en de geobserveerde scores. De parameter λ is de regularisatieparameter en voorkomt dat het model overfit op de trainingdata. Deze kostfunctie neemt dus enkel maar de observeerbare scores in beschouwing en kan geoptimaliseerd worden met behulp van een stapgebaseerde methode zoals bijvoorbeeld stochastic gradient descent.

Vertrekkend vanuit deze kostfunctie kan nu een kostfunctie worden afgeleid die overweg kan met een dataset waar enkel impliciete feedback aanwezig is.

Allereerst observeren we dat een waarde $r_{ui} = 0$ nu niet overeenkomt met een zeer slechte score, maar gewoon met het feit dat de gebruiker het betreffende nummer nog niet beluisterd heeft. Indien een gebruiker een nummer nog niet heeft afgespeeld, kunnen we maar moeilijk bepalen of de gebruiker het nummer goed zal vinden. Hier zijn verschillende redenen voor. De gebruiker kan nog nooit gehoord hebben van het muzieknummer of hij kan het nummer bijvoorbeeld onmogelijk afspelen. Bovendien is het slechts enkele malen afspelen van een muzieknummer geen sterke indicatie dat de gebruiker het een goed nummer vindt. We weten wel dat naarmate de gebruiker het nummer meerdere keren heeft afgespeeld, we met grotere zekerheid kunnen stellen dat hij het een goed nummer vindt.

De kostfunctie wordt nu uitgebreid met een nieuwe variabele c_{ij} die het vertrouwen in een bepaalde score modelleert. Deze zal laag zijn wanneer het nummer nog niet werd afgespeeld door de gebruiker maar zal lineair of logaritmisch stijgen volgens het aantal afspeelbeurten. r_{ui} zelf wordt dan vervangen door de variabele p_{ui} die 0 of 1 zal aannemen alnaargelang de gebruiker het item al dan niet heeft afgespeeld. Dit brengt ons uiteindelijk tot de volgende kostfunctie:

$$\min_{x*,y*} = \sum_{u,i} c_{ui} (p_{ui} - x_u^T * y_i)^2 + \lambda \left(\sum_u ||x_u||^2 + \sum_i ||y_i||^2 \right)$$
(2.4)

Een belangrijk verschil van deze kostfunctie ten opzichte van vergelijking 2.3 is dat onze nieuwe kostfunctie nu $M \times N$ termen heeft wat in een typische dataset problemen kan geven m.b.t. de schaalbaarheid van ons model.

Vergelijking 2.4 kan men opnieuw proberen te optimaliseren met stochastic gradient descent, maar dit zal veel te traag convergeren naar een optimum. Een alternatieve oplossingsmethode is om gebruik te maken van Alternating Least Squares (ALS). Wanneer we bijvoorbeeld de gebruikersfactoren berekend hebben, dan wordt de kostfunctie kwadratisch in functie van de muziekfactoren zodat we het globale optimum snel kunnen berekenen. Wat we in één iteratie van het ALS-algoritme doen is 1 van beide types factoren als constant beschouwen en telkens het andere type optimaliseren in functie van die constante en vice versa. In elke stap zullen we immers een lagere totale kostfunctie verkrijgen.

In [9] wordt er een efficiënte manier voorgesteld om dit probleem op te lossen waarbij het optimalisatieproces lineair schaalt in functie van de grootte van de dataset.

Het product van de muziekfactormatrix en de gebruikersfactormatrix vormt een benadering voor de originele gebruikers-item matrix R. We kunnen deze benadering R' nu gebruiken om relevante aanbevelingen te genereren. Concreet zullen we voor elke gebruiker i de nummers aanbevelen met de hoogste score in R' voor die gebruiker, op voorwaarde dat hij dat nummer nog niet eerder heeft afgespeeld.

2.3 Resultaten

In een eerste fase werden enkele eenvoudige aanbevelingssystemen gebouwd. Het eerste aanbevelingssysteem was gebaseerd op de globale populariteit van alle nummers. Het gaat voor elke gebruiker de nummers aanraden die het meest afgespeeld werden over de volledige dataset op voorwaarde uiteraard dat de gebruiker nog niet naar dat nummer geluisterd heeft. Een iets geavanceerder aanbevelingssysteem gaat eerst gaan kijken welke artiesten een gebruiker reeds beluisterd heeft, en zal enkel de globaal meest populaire nummers aanraden waarvoor de gebruiker minstens al 1 nummer van die artiest eerder heeft beluisterd.

FIGUUR 2.2: De mAP op de testset voor de verschillende aanbevelingssystemen wanneer 50 aanbevelingen werden gegenereerd

Zoals weergegeven wordt in figuren 2.1 en 2.2, presteerden de geavanceerde aanbevelingssystemen duidelijk beter.

Aanbevelingssysteem	mAP@50	Rec@50	Nov
Globaal populariteitsmodel	0.01295	0.02739	3.90522
Globaal populariteitsmodel per artiest	0.03063	0.04723	4.28761
Buurgebaseerd model	0.12405	0.25469	4.36076
Verborgen Factormodel	0.12830	0.27362	4.37244

Tabel 2.1: De evaluatie van de verschillende aanbevelingssystemen

Het grote voordeel van het verborgen factormodel is dat we, vertrekkend vanuit de gebruiker-item matrix, nu een abstracte voorstelling hebben van elk muzieknummer en elke gebruiker in enkele factoren. Deze muziekfactoren kunnen we zien als een soort automatisch gegenereerd profiel gelijkaardig aan wat wordt bekomen bij een inhoudsgebaseerde aanpak. Een bepaalde dimensie of factor kan bijvoorbeeld corresponderen met de geografische locatie van de artiest, de luidheid van een bepaald nummer, dansbaarheid van het nummer,... . De gebruikersfactoren geven aan wat de precieze voorkeuren voor die dimensies zijn. Om dit te verifiëren kan met behulp van regressie-analyse worden nagaan of de muziekfactoren te voorspellen zijn uit externe informatie, bijvoorbeeld uit de akoestische informatie die meegeleverd werd met de initiële dataset (zie 1.4.1). Een verdere besprekening hiervan volgt in hoofdstuk 4. Eenvoudige lineaire regressie waarbij de te voorspellen muziekfactoren uit die beschikbare akoestische kenmerken werden geschat, leerde ons reeds heel wat. Het viel op dat de kenmerken of features die de muziek het meest verklaren, zoals timbre-features en pitch-informatie, de grootste coëfficienten bevatten in absolute waarde na toepassing van lineaire regressie.

Om nog een betere indicatie van die muziekfactoren te krijgen werden de nummers met de meest extreme waarden voor een factor bepaald waarna bijhorende tag informatie werd opgehaald uit een Last.fm dataset (zie 1.4.3). Enkele factoren kunnen duidelijk gelinkt worden aan een bepaald kenmerk van het muzieknummer zoals genre of tijdsgeest. Het resultaat hiervan is gevisualiseerd in figuur 2.3. In figuur 2.4 werden de waarden voor deze 2 factoren ten opzichte van elkaar uitgezet. Een belangrijke opmerking is dat de muziekfactoren niet absoluut maar relatief moeten geïnterpreteerd worden. Wanneer een muzieknummer A bijvoorbeeld een grotere waarde bezit voor factor x dan muzieknummer B, dan kan verwacht worden dat nummer A recenter werd uitgebracht dan nummer B. Om een exact tijdsverschil tussen beide nummers te bepalen is de factor echter te onnauwkeurig.

FIGUUR 2.3: Taginformatie van muzieknummers die een sterk negatieve waarde versus een sterk positieve waarde hadden voor 2 factoren x en y. Factor x geeft een indicatie van hoe recent het muzieknummer is terwijl factor y kan geïnterpreteerd worden als een maat voor dansbaarheid van het nummer.

FIGUUR 2.4: Weergave van enkele datapunten uit de muziekfactormatrix in functie van 2 factoren.

Factor x: Hoe recent is het nummer?

Hoofdstuk 3

Het voorspellen van emotie in muziek

Muziek en emotie zitten dicht bij elkaar. Mensen luisteren vaak naar verschillende muziekstijlen op basis van hun stemming. Automatische detectie van emotie van een bepaald nummer kan dus een belangrijke component in muziekaanbeveling zijn. Naast de traditionele collaboratieve filtertechnieken kan de herkenning van emotie in muziek een oplossing bieden voor het koude startprobleem. Emotieherkenning van muziek kan gebaseerd zijn op akoestische features, songteksten of metadata zoals taginformatie van een bepaald nummer. In dit hoofdstuk wordt onderzocht of het mogelijk is om aan de hand van akoestische features en songtekstinformatie emotie te kunnen herkennen in muziek. Er wordt vertrokken van een gelabelde dataset. Dit is een dataset met al deze informatie over de muzieknummers en telkens de aanduiding van de stemming. Uit deze dataset gaat het algoritme emoties leren herkennen. Het resultaat is dat het algoritme in staat is om emotie te herkennen in nieuwe muzieknummers.

3.1 Data voorverwerking en feature extractie

Een eerste overweging die werd gemaakt is hoeveel emoties er in rekening gebracht moeten worden. Er bestaan vele soorten emoties, de ene al gemakkelijker te herkennen dan de andere. Hoe meer emoties we in rekening brengen, hoe geavanceerder het algoritme zal moeten zijn om het onderscheid te kunnen maken. Daarnaast is het aantal emoties ook een belangrijk aspect tijdens het opstellen van de gelabelde dataset. Het is eenvoudig om het verschil te herkennen

tussen blijdschap en verdriet, maar het verschil tussen verdriet en woede is vaak veel subjectiever en dus moeilijker om te classificeren. In een eerste fase werd enkel onderscheid gemaakt tussen een positieve emotie en een negatieve emotie. In een later stadium werd een negatieve emotie nog opgesplitst tussen verdriet en woede.

Aangezien het manueel annoteren van emotie bij elk nummer tijdsrovend en subjectief kan zijn en in diverse papers [10–12] aangetoond wordt dat sociale taginformatie een goede semantische descriptor is van het muzieknummer werden de datasets gelabeld aan de hand van taginformatie. Concreet werd taginformatie van de Last.fm dataset gebruikt (zie 1.4.3). Enkel de muzieknummers waarvan de taginformatie woorden bevatte die corresponderen met een positieve of negatieve emotie werden geselecteerd.

De 1e dataset werd bekomen door de 10.000 muzieknummers uit de subset van de MSD (zie 1.4.1) te linken aan de Last.fm dataset. De 2e dataset werd gevormd door een ander deel (~ 50.000 muzieknummers) uit de volledige MSD te koppelen aan de Last.fm dataset. Veel van deze muzieknummers kenden echter geen emotiegevoelige taginformatie. Daardoor telden de 2 verschillende datasets uiteindelijk respectievelijk 783 nummers en 5142 nummers. Er waren ongeveer evenveel positief als negatief gelabelde nummers in elke dataset aanwezig. Songtekstinformatie werd verkregen uit de MusiXmatch dataset (zie 1.4.2).

Figuur 3.1 toont een overzicht van dit proces.

FIGUUR 3.1: Opbouw van beide datasets en verdere verwerking vooraleer men aan emotieherkenning kan doen. De akoestische features waren bij de eerste dataset afkomstig van de eigen subset van de MSD. In de tweede dataset werd een groter deel van de MSD opgenomen.

3.1.1 Echonest features

De akoestische features zijn afkomstig van de MSD (zie 1.4.1). In het kader van de MSD-challenge¹ was heel wat informatie reeds offline beschikbaar. Tijdens het bestuderen van deze informatie werd vastgesteld dat bepaalde features zoals danceability en energy ontbrekende waarden bevatten. Aangezien deze features wellicht ook enige correlatie vertonen met de emotie van een muzieknummer, werd besloten om deze features nog eens afzonderlijk op te halen m.b.v. de Echonest API. Dit is een webservice die toegang geeft tot een enorme hoeveelheid aan akoestische informatie over muzieknummers. Helaas waren er nog steeds verschillende ontbrekende waarden voor deze features. Een eenvoudige oplossing kan erin bestaan om deze nummers gewoon te verwijderen uit de dataset. De ontbrekende waarden vervangen door de gemiddelde waarde voor de feature bleek echter een beter alternatief.

Echonest deelt een muzieknummer op in verschillende segmenten. Een segment is een verzameling van opeenvolgende geluiden die uniform zijn in timbre en harmonie. De duur van een segment ligt typisch onder 1 seconde. Aan elk segment zijn vervolgens verschillende features gekoppeld. De segment pitches en segments timbre features worden door Echonest beschreven als toongebaseerde en MFCC-gebaseerde features (zie 4.1). Een segment pitch feature bestaat uit een 12-dimensionele vector waarvan de verschillende componenten waarden bevatten tussen 0 en 1. Deze beschrijven de intensiteit van een bepaalde grondtoon in een bepaald segment van het nummer, er wordt dus geen onderscheid gemaakt tussen de verschillende harmonischen van deze grondtoon. De exacte implementatie van de segment timbre feature is onbekend, de enige informatie die gevonden kon worden is dat deze feature correspondeert met een projectie van het spectro-temporele oppervlak op een lagere deelruimte van 12 dimensies. De verschillende basisfuncties van deze projectie worden weergegeven in figuur 3.2. De horizontale as correspondeert met het tijdsverloop terwijl de verticale as overeenstemt met het frequentieverloop. De kleuren variëren van zwart tot wit en corresponderen met de amplitude. Het is moeilijk om de exacte relatie tussen de basisfunctie en het waargenomen geluid te bevatten, maar we kunnen bijvoorbeeld de eerste component van de timbre vector omschrijven als de gemiddelde luidheid over het volledige segment. De vierde component van de vector zal een grote waarde bevatten wanneer de segmenten een snellere aanzet hebben. De aanzet of attack van een toon is de wijze waarop een hoorbaar geluid begint en zijn maximale luidheid bereikt. Geluiden met een snelle aanzet zijn bijvoorbeeld geweerschoten of het toeslaan van een deur terwijl het traag openen van

¹http://www.kaggle.com/c/msdchallenge

een piepende deur dan weer overeenkomt met een trage aanzet. Bij wijze van voorbeeld is in figuur 3.3 de 1e dataset gevisualiseerd in functie van de gemiddelde eerste en vierde component van elk nummer. We kunnen duidelijk zien dat muzieknummers met een positieve emotie eerder een luider volume en een snellere aanzet zullen hebben dan muzieknummers met een negatieve emotie.

FIGUUR 3.2: De 12 basis functies van de timbre vector

FIGUUR 3.3: De relatie tussen de gemiddelde luidheid en de snelheid van aanzet voor nummers met een positieve en negatieve emotie.

Verschillende muzieknummers hebben typisch een verschillende duur. Het aantal segmenten is dus verschillend per nummer. Om de verschillende features om te zetten naar een tijds-invariante representatie werd beslist om verschillende statistische metrieken van de segments timbre en segment pitches features op te nemen. In de praktijk bleken het gemiddelde, de variantie, de mediaan en de minimale en maximale waarden het beste resultaat op te leveren.

Van de toonaard en het tempo van een muzieknummer zou men ook kunnen verwachten dat ze in sterke mate de emotie van het nummer beïnvloeden. Het correct bepalen van de toonaard van een muzieknummer is echter geen eenvoudige taak, en er werd al snel vastgesteld dat vele waarden niet klopten. Er werden ook verschillende features die te maken hadden met de luidheidsverdeling doorheen een muzieknummer in rekening gebracht.

Vooraleer er verschillende combinaties van features werden uitgetest leek het interessant om in een eerste fase een idee te krijgen welke features het belangrijkst zijn bij emotieherkenning van muziek. Daarvoor werd gebruik gemaakt van de mutuele informatie. De mutuele informatie is de reductie in onzekerheid over een bepaalde variabele X, of de verwachte reductie in het aantal ja-nee vragen die gesteld moeten worden om de variabele X te bepalen na het observeren van Y. In dit geval kan de variabele X gelinkt worden aan de emotie van het nummer en de variabele Y komt dan overeen met de feature.

Features die een hoge mutuele informatie hebben m.b.t. de emotie zullen dus leiden tot een betere classificatie.

FIGUUR 3.4: Overzicht van de mutuele informatie tussen verschillende features en de emotielabels.

Zoals in bovenstaande figuur zichtbaar is, bestaat de kans dat het incorporeren van de toonaard en de toonsoort (mode) wellicht niet zal leiden tot een betere classificatie. Dit bleek na controle ook te kloppen. Tabel 3.1 bevat de kleinst mogelijke combinatie van features die resulteerden in de beste nauwkeurigheid. Het uitbreiden van deze combinatie met extra features ([7]) ging gepaard met extra rekentijd en resulteerde bovendien niet in een hogere nauwkeurigheid.

Tenslotte werd gebruik gemaakt van principale-componentenanalyse (PCA) om de hoogdimensionele feature vector te kunnen visualiseren. PCA is een dimensionaliteitsreductietechniek die toelaat om een hoeveelheid gegevens te beschrijven met een kleiner aantal relevante features. Dit zorgt ervoor dat een muzieknummer met 125 features voorgesteld kan worden door 2 nieuwe features, die we nu principale componenten noemen, zodat het visueel geïnterpreteerd kan worden. Het resultaat is te zien in onderstaande figuur, waarbij reeds kan worden afgeleid dat het bouwen van een classifier die emoties kan onderscheiden een complex probleem is.

No.	feature
0-11,	Gemiddelde van elke timbre component
12-23	Variantie van elke timbre component
24-35	Mediaan van elke timbre component
36-47	Minimum van elke timbre component
48-59	Maximum van elke timbre component
60-71,	Gemiddelde van elke pitch component
72-83	Variantie van elke pitch component
84-95	Mediaan van elke pitch component
96-107	Minimum van elke pitch component
108-119	Maximum van elke pitch component
120	Tempo
121	gemiddelde luidheid
122	variantie luidheid
123	hoogste-laagste luidheid
124	Energy

TABEL 3.1: De verzameling van akoestische features die gebruikt werd bij classificatie.

FIGUUR 3.5: De visualisatie van de 1e dataset met behulp van PCA.

3.1.2 Songtekst features

Het specifieke formaat van de songtekst dataset staat beschreven in 1.4.2. De songteksten werden voorgesteld in een bag-of-words formaat: elk nummer werd beschreven aan de hand van het aantal keer dat een topwoord voorkwam. Een woord is een topwoord indien het tot de 5000 populairste woorden behoort, berekend over alle songteksten. Helaas waren de meeste topwoorden niet significant ('the, and, we, I') wanneer we aan emotieherkenning willen doen. Daarom werd

een subset gevormd van deze topwoorden. Deze subset ontstond uit de doorsnede van de topwoorden met verschillende gevoelswoorddatasets zoals General Inquirer [13] en AFINN [14]. Dit zorgde ervoor dat er slechts 2049 topwoorden overbleven. Daarna werd geëxperimenteerd met verschillende feature representaties zoals binair (komt een gevoelswoord voor in de songtekst?) of een term frequency-inverse document frequency (tf-idf) representatie [15]. Deze waarde bepaalt hoe belangrijk het voorkomen van elk woord is in de dataset. De tf-idf waarde stijgt proportioneel volgens het aantal keer dat het topwoord voorkomt in 1 songtekst, maar is begrensd door de frequentie van het topwoord over de volledige dataset.

De beste resultaten werden echter verkregen wanneer er gewoon met de frequentie van elk topwoord in het muzieknummer werd gewerkt.

3.2 Classificatie en Experimenten

3.2.1 Classificatie

Voor muziekclassificatietaken worden vaak k-nearest neighbours (K-NN) en support vector machines (SVM) gebruikt [16]. Mede door hun recent toenemende populariteit werd gekeken of emotieherkenning aan de hand van Random Forests ook goeie resultaten opleverde. De implementatie van de verschillende classifiers is afkomstig uit scikit-learn 0.12.1 [17], een bibliotheek die verschillende machine-learning algoritmes bevat voor de Python programmeertaal. Er werd telkens gebruik gemaakt van 10-fold kruisvalidatie in combinatie met grid search om de hyperparameters voor de verschillende classifiers te bepalen. K-fold kruisvalidatie houdt in dat de data wordt opgesplitst in K verschillende gelijke delen waarna er vervolgens telkens 1 deel afgesplitst wordt om de classifier op te testen, terwijl de overige K-1 delen gebruikt worden tijdens het trainen. Dit proces wordt K keer herhaald waarna de uiteindelijke nauwkeurigheid wordt bepaald door het gemiddelde te nemen van de K nauwkeurigheden op de testsets. Grid search is een manier om de hyperparameters van een classifier te bepalen. Bij grid search wordt gewoon exhaustief gezocht in een subset van de hyperparameterruimte. Tabel 3.2 bevat een overzicht van de verschillende hyperparameters en hun waarden voor de classifiers die enkel gebruik maken van akoestische features en de classifiers die enkel gebruik maken van songtekstinformatie.

1	. 1 1	1 .	1 1 6	. •						
hyperparameters bij classificatie op basis van akoestische informatie										
classifier	hyperparameters	dat	taset 1	dataset 2						
K-Nearest Neighbors (KNN)	Aantal buren	k = 6		k = 8						
Support Vector Machines (poly)	Straf van de foutterm	C = 100		C = 10						
Support vector Machines (poly)	graad van de polynoom	graad = 3		graad = 1						
Support Vector Machines (RBF)	Straf van de foutterm	C = 1		C = 10						
Support vector Machines (RDF)	kernel coëfficient	$\gamma = 0.0001$		$\gamma = 0.001$						
Random Forest	Aantal bomen	n = 400		n = 500						
hyp	erparameters bij classificat	tie op basis van	songtekstinforma	tie						
	hyperparameters	alle woorden	gevoelswoorden	alle woorden	gevoelswoorden					
Lineair SVM	Straf van de foutterm	C = 0.00001	C=1.5	C = 0.001	C = 0.5					
Naive Bayes Smoothing parameter		$\alpha = 0.01$	$\alpha = 5$	$\alpha = 1.5$	$\alpha = 5$					

Tabel 3.2: De hyperparameters van de verschillende classifiers

3.2.2 Experimenten

In een eerste experiment werd de nauwkeurigheid van de verschillende classifiers geëvalueerd. De nauwkeurigheid is gedefiniëerd als het percentage juist voorspelde emoties, gegeven de features van elk nummer. In eerdere studies zoals [18] werd aangetoond dat SVMs de beste resultaten opleveren m.b.t. emotieherkenning in muziek. Na het uitvoeren van het experiment bleek dat Random Forests erin slagen om een gelijkaardige nauwkeurigheid te realiseren. In onderstaande tabel is een overzicht terug te vinden van de resultaten van de verschillende classifiers die bekomen werden na 10-fold kruisvalidatie op beide datasets.

classifier	nauwkeurigheid op dataset 1	nauwkeurigheid op dataset 2
K-Nearest Neighbors (KNN)	0.7842	0.8213
Support Vector Machines (poly)	0.7906	0.8394
Support Vector Machines (RBF)	0.7970	0.8431
Random Forest	0.7906	0.8454

TABEL 3.3: De nauwkeurigheid van verschillende classifiers bij akoestische classificatie.

In een volgende experiment werd onderzocht hoe sterk de nauwkeurigheid zou afnemen indien er een extra emotie werd toegevoegd. Er werd vertrokken vanuit de eerste dataset waarbij een negatieve emotie verder werd opgesplitst in woede en verdriet. Zoals verwacht is er een sterke reductie in nauwkeurigheid.

classification	nauwkeurigheid
2 klassen	0.7906
3 klassen	0.6926

TABEL 3.4: Binomiale en multiklasse classificatie met behulp van Random Forests.

Om een verklaring te vinden voor deze sterke afname werd er onderzocht wat de voorspelling was voor elk muzieknummer. Bij dit experiment werd gebruik gemaakt van de Random Forest

classifier. De tabellen geven het percentage voorspelde emoties terug in vergelijking met de echte emoties die gekoppeld zijn aan de muzieknummers.

		Voorspe	lde emotie	
		postief	negatief	
Echte emotie	postief	0.8111	0.1889	Echte emotie
Edite emotie	negatief	0.1684	0.8316	Edite emotie

Tabel 3.5: De voorspelde en echte emoties bij binomiale classificatie

	Voorspelde emotie									
	postief	droevig	woede							
postief	0.6045	0.2773	0.1182							
droevig	0.1676	0.8113	0.0211							
woede	0.3633	0.1490	0.4878							

Tabel 3.6: De voorspelde en echte emoties bij multiklasse classificatie

Op basis van deze resultaten blijkt dat het moeilijker is om muziektracks gekoppeld aan een positieve emotie te onderscheiden dan muziektracks gekoppeld aan een woede emotie dan om het onderscheid te maken tussen een droevige en een woede emotie. Dit lijkt op het eerste gezicht een verrassend resultaat, maar als rekening gehouden wordt met het feit dat de voorspelling enkel gebeurde op basis van akoestische informatie is dit verklaarbaar. Droevige muziek is vaak sereen terwijl nummers die een positief gevoel of woede opwekken vaak veel meer actie bevatten. Verder onderzoek van de gelabelde dataset leidde tot de vaststelling dat muzieknummers die het woedelabel opgeplakt kregen vaak gerelateerd waren aan elektronische muziek of het metal genre.

Als laatste experiment werd onderzocht of emotieherkenning op basis van songtekstinformatie mogelijk is en of de combinatie van akoestische en songtekstinformatie tot een betere classifier kan leiden. Helaas werd er niet voor elk nummer een bijhorende songtekst gevonden wat ervoor zorgde dat de dataset 1 gereduceerd werd van 783 naar 537 nummers, en dataset 2 van 5142 naar 2886 nummers.

methode	aantal woorden	classifier	nauwkeurigheid op	nauwkeurigheid op
			dataset 1	dataset 2
alle woorden	5000	Naive Bayes	0.6115	0.7278
ane woorden	5000	Linear SVM	0.589	0.7174
marra alarra andan	2039	Naive Bayes	0.6723	0.7211
gevoelswoorden	20 3 9	Linear SVM	0.6462	0.6393

Tabel 3.7: De nauwkeurigheid van verschillende classifiers bij classificatie op basis van songtekstinformatie.

Deze resultaten tonen duidelijk aan dat muziekclassificatie op basis van akoestische features veel beter werkt dan op basis van songteksten. Enkel gevoelswoorden in beschouwing nemen lijkt alleen voordelig te zijn bij een kleinere dataset. Het classificeren van een nummer enkel op basis van zijn songtekst blijkt in de praktijk ook vaak moeilijk te zijn. Allereerst kan een nummer meerdere emoties bevatten, denk maar aan muzieknummers die droevig beginnen maar eindigen met een positieve noot. Bovendien kunnen songteksten vaak vrij poëtisch zijn waarbij een gevoel of emotie beschreven wordt zonder expliciet gebruik van gevoelswoorden. Een laatste reden die aangewend kan worden is het feit dat in sommige nummers de melodie en songtekst tegenstrijdig met elkaar zijn. Een nummer over liefdesverdriet kan gekoppeld zijn aan een oppeppende melodie.

Een classifier die zowel gebruik maakte van de songteksten en akoestische features haalde een nauwkeurigheid van 82.29% op dataset 2. Dit is dus lager dan een classifier enkel gebaseerd op akoestische features. In [16] wordt echter aangetoond dat deze hybride aanpak wel tot een betere classificatie kan leiden.

Hoofdstuk 4

Het voorspellen van muziekfactoren

In dit hoofdstuk wordt de methode beschreven die de muziekfactoren van een verborgen factormodel (zie hoofdstuk 2) nu rechtstreeks uit het muzieknummer zelf voorspelt. Dit gebeurt door elk muzieknummer eerst naar een compacte voorstelling om te zetten waarna de muziekfactoren voorspeld worden uit die voorstelling. De voorspelde muziekfactoren worden in verschillende experimenten vergeleken met de muziekfactoren die berekend werden met het verborgen factormodel en er wordt nagegaan of deze aanpak het koude startprobleem en het lange staartprobleem kan verhelpen.

4.1 Mel Frequency Cepstral Coefficients (MFCCs)

Geluid is een akoestische golf die correspondeert met drukveranderingen die zich in de lucht voortplanten. Wanneer geluid wordt opgenomen met behulp van een microfoon, dan bekomt men een elektrisch signaal dat kan worden beschreven in functie van de tijd. Men noemt deze functie ook vaak het akoestisch signaal. Dit signaal vertoont op bepaalde ogenblikken een quasiperiodiek en op andere ogenblikken een grillig verloop. Wanneer het signaal periodiek is komt de frequentie ruwweg overeen met de waargenomen toonhoogte. Hoe hoger de frequentie, hoe hoger de toon. Een computer kan echter geen continue functie voorstellen en zal dus dit akoestisch signaal gaan benaderen als een serie van gequantiseerde waarden. Een digitale CD heeft bijvoorbeeld een sampling rate van 44,100 Hz en een bereik van 16 bits. Dit betekent dat elke seconde geluid voorgesteld kan worden door 44,100 getallen of samples die elk voorgesteld kunnen worden door 16 bits. Rechtstreeks muziekfactoren gaan voorspellen op basis van deze getallen is

uiteraard onbegonnen werk. Vandaar dat eerst geprobeerd werd om deze getallen om te zetten naar een compactere representatie.

MFCCs [19] kennen hun oorsprong in spraakverwerking, maar zijn in het verleden reeds succesvol toegepast bij het modelleren van muziekfragmenten [20]. Een MFCC-decompositie probeert een voorstelling te maken van het geluid m.b.t. hoe het menselijk gehoor dit geluid ervaart. Om over te gaan van een digitaal audiosignaal naar een MFCC-voorstelling zijn verschillende stappen nodig.

Eerst wordt het akoestisch signaal x(t) opgesplitst in verschillende overlappende vensters die elk afzonderlijk zullen worden geanalyseerd. In deze masterproef werd de lengte van een venster T_V vastgelegd op 25 ms en de verschuivingstijd T_S bedroeg 10ms.

FIGUUR 4.1: Opsplitsing van het akoestisch signaal in vensters

Daarna kan het signaal door een eenvoudige hoogdoorlaatfilter gestuurd worden. Deze filter modelleert het feit dat het gehoor lage tonen minder goed waarneemt dan hogere tonen. Elk venster wordt vervolgens omgezet vanuit het tijdsdomein naar het frequentiedomein via een discrete fouriertransformatie (DFT). We bezitten nu voor het signaal de intensiteitwaarden bij verschillende frequenties, maar dit komt niet overeen met de intensiteit die mensen waarnemen. Mensen kunnen o.a. een klein verschil in frequentie of toonhoogte beter waarnemen bij lage frequenties dan bij hoge frequenties. Om dit probleem op te lossen wordt de output van de DFT geconverteerd naar de mel schaal. De mel schaal relateert de frequentie van een zuivere toon

aan de frequentie waargenomen door het menselijk gehoor. Een populaire methode om van het frequentiedomein over te gaan naar de mel schaal is:

$$mel_{freq} = 2595 * log_{10} \left[1 + \frac{f}{700} \right]$$
 (4.1)

FIGUUR 4.2: de mel schaal

Een andere belangrijke eigenschap van het gehoor is dat het eerder gevoelig is voor relatieve dan absolute verschillen in intensiteit. Om het waargenomen volume van een geluid te verdubbelen moeten we de geluidsbron van 8 keer zoveel meer energie voorzien. Om dit te modelleren in de MFCC-decompositie is het aangewezen om het logaritme van de intensiteiten te nemen. Op die manier kan men ook bij het vergelijken van 2 MFCC-vectoren gebruik maken van Euclidische afstanden.

Om uiteindelijk een discrete voorstelling te verkrijgen in een beperkt aantal coëfficiënten wordt in de laatste stap een discrete cosinustransformatie (DCT) uitgevoerd. Door de specifieke eigenschappen van de DCT zullen de eerste coëfficiënten de belangrijkste frequentie-eigenschappen van het signaal bevatten en de hogere coëfficiënten eerder de details van het spectrum. In deze masterproef werden enkel de eerste 12 coëfficienten overgehouden om het log-mel-spectrum voor te stellen en vormen ze een MFCC-vector $C = \langle c_0, c_1, ... c_{11} \rangle$.

Net zoals de opeenvolgende samples waarvan vertrokken werd vaak met elkaar gecorreleerd zijn, zijn ook opeenvolgende MFCC-vectoren met elkaar gecorreleerd. Omdat we in een later stadium enkel MFCC's afzonderlijk gaan behandelen dreigt deze correlatie verloren te gaan. Een mogelijke oplossing bestaat erin om een MFCC van een venster n uit te breiden met informatie

over de MFCC's van zijn omliggende vensters. Dit wordt gemodelleerd door de eerste-orde differenties $\Delta C_{nk}, k=0,...,11$:

$$\Delta C_{nk} = \frac{\sum_{m=1}^{m=2} m(X_{n+m,k} - X_{n-m,k})}{\sum_{m=1}^{m=2} m^2}$$
(4.2)

Elke MFCC-vector bestaat nu uit 24 componenten. In deze masterproef werd gebruik gemaakt van de bibliotheek TuneR [21] om de MFCC-vectoren voor verschillende audiosignalen te verkrijgen.

4.2 Feature Learning

Rechtstreekse voorspelling van de muziekfactoren op basis van de MFCC's zal niet goed werken omdat deze voorstelling nog steeds te ruw is om verbanden uit te leren. Daarom werd gekeken om MFCC's op een hoger niveau te gaan beschrijven. Dit is een typische voorbeeldtoepassing van feature learning, een verzameling van technieken binnen machinaal leren waarbij de features eerst omgezet worden naar een nieuwe ruimte die beter geschikt is voor een gesuperviseerde taak zoals bijvoorbeeld lineaire regressie.

Na het lezen van [22] werd besloten om het K-means algoritme te gebruiken als feature learning algoritme. [22] toont namelijk aan dat de manier van encodering, samen met andere factoren zoals whitening van de data en het aantal nieuwe features, een grotere impact hebben op de prestatie van de gesuperviseerde taak dan de complexiteit van het feature learning algoritme zelf. Een bijkomend voordeel van K-means ten opzichte van andere feature learning algoritmes is dat het zeer snel is, enkel het aantal clusters heeft als hyperparameter en dat het eenvoudig te implementeren is.

4.2.1 Feature encodering

Vertrekkende vanuit een verzameling MFCC-vectoren wordt nu geprobeerd om een meer compacte voorstelling van elk muzieknummer te verkrijgen. Elk muzieknummer wordt voorgesteld door een sequentie van 2905 MFCC-vectoren met elk dimensie 24. Een allereerste stap in een machinaal leren algoritme is vaak dat er normalisatie van de invoerdata plaats vindt. Dit betekent dat elke component in de MFCC-vector vervangen wordt door de gemiddelde waarde

van die component,berekend over de volledige invoerdata, af te trekken van de originele waarde en vervolgens te delen door de standaardafwijking op deze component. Op die manier heeft elke feature een gemiddelde waarde 0 en bedraagt de standaardafwijking van elke feature 1. Vergelijking 4.3 toont een voorbeeld van input normalisatie:

$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & -1, 22... & 1, 33... \\ 1, 22... & 0 & -0, 26... \\ -1, 22... & 1, 22... & -1, 06... \end{bmatrix}$$

$$(4.3)$$

Verder wordt in [22] ook aangetoond dat whitening van de data resulteert in betere resultaten. Een whitening transformatie transformeert een set van variabelen met correlatiematrix M in een set van nieuwe variabelen waarvan de correlatiematrix de eenheidsmatrix is, zodat alle variabelen ongecorreleerd zijn en allemaal variantie 1 hebben.

Een populaire methode om de geobserveerde data te whitenen is om gebruik te maken van de eigenwaardedecompositie van de correlatiematrix van X [23].

$$\Sigma = XX^T = VDV^T \tag{4.4}$$

D is een diagonaalmatrix die de eigenwaarden van de correlatie bevat en V is een orthogonale matrix met de eigenvectoren. Whitening gebeurt vervolgens aan de hand van de volgende formule:

$$X_w = VD^{-\frac{1}{2}}V^TX \tag{4.5}$$

Dat de correlatiematrix van X_w gelijk is aan 1 kan als volgt aangetoond worden [23]:

$$\Sigma = X_w X_w^T$$

$$= (V D^{-\frac{1}{2}} V^T X) (V D^{-\frac{1}{2}} V^T X)^T \qquad \text{(zie 4.5)}$$

$$= (V D^{-\frac{1}{2}} V^T) (X X^T) (V D^{-\frac{1}{2}} V^T)^T$$

$$= (V D^{-\frac{1}{2}} V^T) (V D V^T) (V D^{-\frac{1}{2}} V^T)^T \qquad \text{(zie 4.4)}$$

$$= I$$

In de laatste stap werd gebruik gemaakt van het feit dat V een orthogonale matrix is zodat $VV^T=V^TV=I$ en $D^{-\frac{1}{2}}DD^{-\frac{1}{2}}=I$.

Nadat deze voorverwerkingsstappen uitgevoerd werden, was het tijd om nieuwe, geschiktere features te leren die de muziekfactoren kunnen voorspellen. Het K-means clusteralgoritme deelt de invoerdata op in verschillende clusters. Elke cluster bezit 1 centrum. Dit centrum correspondeert met de gemiddelde waarde berekend over alle elementen die in de cluster aanwezig zijn. Het algoritme wordt gebruikt om centra te leren uit de invoerdata waarna elke MFCC-vector toegewezen wordt aan een of meerdere centra. Deze toewijzingen kunnen nu worden gebruikt als nieuwe voorstelling. De enige parameter van het algoritme is het aantal clusters K dat gebruikt wordt om de dataset te clusteren.

De trainingsfase van het K-means algoritme werkt als volgt:

- 1. Initialiseer K verschillende clustercentra μ_k door bijvoorbeeld K willekeurige inputvectoren te kiezen.
- 2. Ken elke inputvector x_n toe aan het dichtstbijzijnde clustercentrum volgens deze formule:

$$r_{nk} = \begin{cases} 1 \text{ als } k = argmin_j \|c^{(j)} - x_n\|_2^2 \\ 0 \text{ anders} \end{cases}$$
 (4.7)

 r_{nk} is 1 enkel indien input vector x_n werd toegekend aan cluster k met gemiddelde μ_k

3. Update de clustercentra:

$$\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}} \tag{4.8}$$

4. Indien er geen wijzigingen meer waren in stap 3 of aan een andere stopvoorwaarde voldaan is, stop. In het andere geval wordt teruggekeerd naar stap 2.

In de praktijk bleek het algoritme snel te convergeren in de eerste iteraties waarna convergentie veel trager verliep zoals werd aangetoond in [24]. 10 iteraties bleek voldoende te zijn om reeds een goede clustering te verkrijgen. Er was dus aan de stopvoorwaarde uit stap 4 voldaan indien het algoritme 10 iteraties had uitgevoerd.

Wanneer de verschillende centra bepaald zijn, kunnen we de MFCC-vectoren nu toekennen aan de centra. Dit kunnen we op meerdere manieren doen. Enerzijds is er de eenvoudige *harde*

toekenning, waarbij we elke vector toekennen aan juist 1 clustercentrum:

$$f_{hard_k}(x) = \begin{cases} 1 \text{ als } k = argmin_j \left\| c^{(j)} - x \right\|_2^2 \\ 0 \text{ anders} \end{cases}$$

$$(4.9)$$

De functie $f_{hard}(x)$ bevat dus k-1 nulwaarden.

Een andere mapping die in [22] voorgesteld werd, is een zachte clustering:

$$f_{zacht_k}(x) = \max\{0, \mu(z) - z_k\}$$
 (4.10)

waarbij $z_k = ||x - c^{(k)}||_2$ en $\mu(z)$ het gemiddelde is van de elementen van z. Zachte clustering laat ons toe om iets meer informatie op te slaan dan enkel de dichtsbijzijnde cluster.

Bij zachte clustering is het dus zo dat, afhankelijk van het aantal clustercentra dat gekozen wordt, de dimensie van de geclusterde MFCC-vector kan toenemen terwijl bij harde clustering de geclusterde MFCC-vector telkens kan worden voorgesteld door 1 getal, namelijk de dichtst-bijzijnde cluster. Om niet te veel data te genereren bij zachte clustering werd vaak een sequentie van l opeenvolgende MFCC-vectoren eerst samengebracht in een venster alvorens deze aan te bieden aan het clusteralgoritme. Indien nodig wordt de laatste MFCC-vector van elk nummer één of meerdere keren herhaald om een veelvoud van l te bekomen (zie figuur 4.3). Wanneer er bijvoorbeeld telkens 3 MFCC-vectoren samen genomen worden, dan daalt het aantal vensters per muzieknummer van 2905 naar 969.

FIGUUR 4.3: Het samennemen van MFCC-vectoren in vensters.

4.3 Voorspellen van muziekfactoren

4.3.1 Ridge-regression

Vertrekkende vanuit onze geclusterde MFCC-vectoren werd onderzocht of het mogelijk is om de muziekfactoren te voorspellen. Dit werd gedaan aan de hand van regressie-analyse. Regressieanalyse bestudeert of er een verband bestaat tussen een onafhankelijke variabele en een afhankelijke variabele, waarna de waarde van de onafhankelijke variabele gebruikt kan worden om de afhankelijke variabele te voorspellen:

$$Y = f(X) + U \tag{4.11}$$

X vormt de onafhankelijke variabele en Y de afhankelijke variabele. U stelt de storingsterm voor, die onafhankelijk van X is. De functie f is onbekend, maar na toepassing van regressie-analyse op een verzameling trainingsvoorbeelden $\{(x_i, y_i); i = 1, ..., n\}$ is het mogelijk om f te karakteriseren aan de hand van enkele parameters. X zelf kan ook uit meerdere variabelen bestaan. In het bijzonder geval van lineaire regressie kan de functie f als volgt voorgesteld worden:

$$f(X) = \beta_0 + \sum_{j=1}^{d} \beta_j X_j$$
 (4.12)

De onafhankelijke variabelen zijn nu $X_1, ..., X_d$. De onbekende parameter vector $\beta = (\beta_0, ..., \beta_d)$ moet geschat worden uit de trainingsvoorbeelden $\{(x_i, y_i); i = 1, ..., n\}$. Een populaire methode maakt gebruik van de kleinste kwadratenmethode, die ervoor zorgt dat de waarden van β bepaald worden door een foutterm te minimaliseren. In het geval van de kleinste kwadratenmethode wordt deze foutterm de residual sum of squares (RSS) genoemd:

$$RSS(\beta) = \sum_{i=1}^{n} ||y_i - f(x_i)||_2^2$$
 (4.13)

Deze regressiecoëfficiënten zijn optimaal voor de trainingsdata, maar het uiteindelijke doel is om aan de hand van deze regressiecoëfficiënten nieuwe voorspellingen te genereren. Om het probleem van overfitting op de trainingsdata te vermijden kunnen we gebruik maken van verschillende regularisatiemethoden. Ridge regression is een van de bekendste regularisatiemethoden waarbij de regressiecoëfficiënten worden geregulariseerd door een strafterm toe te kennen die gerelateerd

is aan de grootte van de coëfficiënten. In het geval van ridge regression wordt een straf opgelegd aan de kwadratensom van de regressiecoëfficiënten (L_2 -straf). De objectieffunctie kan er nu als volgt uitzien:

$$\beta_{ridge} = \arg\min_{\beta} \frac{1}{2} \sum_{i=1}^{n} ||y_i - f(x_i)||_2^2 + \frac{\lambda}{2} ||\beta||_2^2$$
 (4.14)

De regularisatie
parameter λ wordt bepaald aan de hand van kruisvalidatie.

FIGUUR 4.4: Overzicht van het trainingsproces van een model dat de muziekfactoren voorspelt uit de geclusterde MFCC-voorstelling

In figuur 4.4 wordt nog eens een overzicht gegeven van het volledige proces dat gepaard gaat met het trainen van een model dat muziekfactoren kan voorspellen uit MFCC-vectoren. De geclusterde MFCC-vectoren van 1 muzieknummer worden via een somfunctie ingevoegd in een designmatrix X.

4.3.2 Resultaten

De resultaten op de testset werden geëvalueerd aan de hand van de gemiddelde kwadratische fout (MSE). Als \hat{y}_i de voorspelde muziekfactoren van nummer i zijn en y_i de corresponderende echte muziekfactoren, dan wordt de MSE gegeven door:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} ||\hat{y}_i - y_i||_2^2$$
 (4.15)

De echte muziekfactoren werden bekomen door het verborgen factormodel te trainen op de initiële dataset waarbij het aantal gebruikers en muziekfactoren K=50 bedroeg. In figuur 4.5 wordt de invloed van het aantal clustercentra weergegeven in functie van de bekomen MSE voor harde en zachte clustering bij verschillende venstergroottes. De MSE die bekomen werd door de verschillende echonestfeatures uit tabel 3.1 te gebruiken werd als referentiewaarde genomen. We kunnen duidelijk zien dat de nauwkeurigheid van onze voorspellingen stijgt indien we kleinere vensters gebruiken en meer clustercentra. Er werd ook gekeken of het combineren van verschillende venstergroottes in een model tot een betere benadering zou leiden. De kleine reductie in MSE woog echter niet op tegen de extra rekenkracht die gepaard ging met het trainen van dit model.

Figuur 4.5: De invloed van het aantal clustercentra op de MSE voor verschillende venstergroottes

4.4 Het genereren van aanbevelingen

Het uiteindelijke doel van het voorspellen van de muziekfactoren is dat ze nauwkeurig genoeg moeten zijn om ook relevante aanbevelingen te maken. Concreet is het de bedoeling om voor nummers waarvoor geen luistergeschiedenis voorhanden is de muziekfactoren te laten voorspellen uit de geclusterde MFCC-vectoren. Om dit te testen werden de voorspelde muziekfactoren achteraf opnieuw ingevoegd in de originele muziekfactormatrix en werden opnieuw aanbevelingen gegenereerd. Om aanbevelingen te genereren nemen we nog steeds het product van de gebruikersfactormatrix en de muziekfactormatrix. De matrix R' ontstaan uit dit product correspondeert met een benadering voor de originele gebruikers-item matrix R. Voor elke gebruiker i worden vervolgens de nummers aangeraden volgens dalende score in R', op voorwaarde dat de gebruiker nog niet eerder geluisterd heeft naar dat nummer. Bij het genereren van deze aanbevelingen werd steeds vertrokken vanuit zachte clustering van de MFCC-vectoren met 700 clustercentra en een verborgen factormodel met 50 factoren. De resultaten met deels voorspelde muziekfactoren werden vergeleken met de originele matrixfactorisatiemethode en een geval met willekeurige muziekfactoren. Om goede referentiewaarden te hebben bij willekeurige muziekfactoren worden deze gevormd door de voorspelde muziekfactoren te gaan permuteren. Op die manier hebben de willekeurige muziekfactoren vrij realistische waarden.

FIGUUR 4.6: Het aanbevelingsproces met voorspelde muziekfactoren.

4.4.1 Resultaten

4.4.1.1 Experiment 1

In het eerste experiment werd de prestatie van een aanbevelingssysteem gebaseerd op een volledig verborgen factormodel vergeleken met hetzelfde systeem waar een deel (25%) van de factoren voorspeld werden uit de audio en met een semi-willekeurig systeem waar de voorspelde factoren eerst nog een willekeurige permutatie ondergingen alvorens ze in de muziekfactormatrix werden ingevoegd.

Eerst werden de resultaten geëvalueerd volgens de mAP (zie 1.3). Er werden telkens 50 aanbevelingen gegenereerd waarna de mAP berekend werd over alle gebruikers. Er werd vastgesteld dat de mAP gevoelig daalde in het geval de muziekfactoren volledig of zelfs deels voorspeld werden.

Verder bleken deze resultaten niet significant beter te zijn dan in het geval van willekeurige aanbevelingen. Na verder onderzoek werd het duidelijk dat de nummers waarvoor de muziekfactoren voorspeld werden veel minder voorkwamen in de top 50 aanbevelingen in vergelijking met het originele aanbevelingsproces.

	mAP@50	aantal voorkomens in de top 50
verborgen factormodel	0.11706	246305
voorspeld uit de audio	0.08016	3532
willekeurig voorspeld	0.08002	0

TABEL 4.1: Een eerste vergelijking van de prestatie van het verborgen factormodel met hetzelfde model waar 25% van de factoren voorspeld werden uit de audio en een semi-willekeurig geval.

Het vermoeden waarom dit zo is ligt bij het feit dat een regressietechniek elke waarde even goed gaat proberen te benaderen. Muzieknummers waarvan de muziekfactoren veel extreme waarden bevatten hebben een grotere kans om snel aanbevolen te worden. Indien een bepaalde component van de muziekfactor dus een extreme waarde bevat, is het veel belangrijker om die correct te kunnen voorspellen dan het geval waar die waarde rond de gemiddelde waarde voor die component schommelt.

Een alternatieve metriek die werd voorgesteld in hoofdstuk 1 is de ROC-curve en de bijhorende AUC. In figuren 4.7 en 4.8 worden de ROC-curves weergegeven voor de 3 gevallen wanneer alle nummers in de testset in beschouwing worden genomen en wanneer enkel gekeken wordt naar de nummers waarvan de muziekfactoren voorspeld werden en zich in de testset bevonden.

FIGUUR 4.7: ROC-curves voor alle nummers in de testset voor een bepaalde gebruiker.

FIGUUR 4.8: ROC-curves voor enkel de voorspelde nummers in de testset voor een bepaalde gebruiker.

Wanneer we de AUC berekenen voor elke gebruiker en vervolgens uitmiddelen over alle gebruikers bekomen we de gemiddelde AUC voor het totale aanbevelingsproces. We kunnen ook bestuderen

wat er gebeurt met de gemiddelde AUC indien we de 25% meest populaire nummers of de 25% minst populaire nummers voorspellen uit de audio. Zoals in figuren 4.9 en 4.10 te zien is, daalt de gemiddelde AUC sterk in alle gevallen wanneer we een deel van de muziekfactoren gaan voorspellen. De voorspelling is echter in alle mogelijke gevallen nog steeds beter dan indien de factoren achterna willekeurig gepermuteerd worden (het semi-willekeurig geval) en is bovendien nog steeds hoger dan 0.5, de verwachte waarde wanneer de nummers in totaal willekeurige volgorde aangeraden zouden worden.

FIGUUR 4.9: Gemiddelde AUC waarden voor alle nummers.

Uit figuren 4.9 en 4.10 kan dus worden afgeleid dat onze voorspellingsmethode voor de muziekfactoren wel degelijk zijn nut kan hebben indien er absoluut geen luistergeschiedenis voorhanden is.

4.4.1.2 Experiment 2

In dit experiment werd onderzocht of er een punt is voor de hoeveelheid luistergeschiedenis waar het voorspellen van de muziekfactoren uit de audio tot betere aanbevelingen zal leiden dan wanneer aanbevelingen worden gegenereerd enkel op basis van een collaboratieve filtertechniek.

FIGUUR 4.10: Gemiddelde AUC waarden voor voorspelde nummers.

Er werd opnieuw vertrokken van de initiële dataset (zie figuur 4.11) die wordt opgesplitst in een training en testset. De trainingset bevat informatie over de luistergeschiedenis van 8000 nummers terwijl de luistergeschiedenis van de overige 2000 nummers zich in de testset bevinden. Daarna werd een verborgen factormodel getraind op de trainingset X_{train} zoals beschreven staat in hoofdstuk 2. Dit resulteert in een muziekfactormatrix V_{train} en een gebruikerfactormatrix U (zie figuur 4.12). Deze gebruikerfactormatrix bleef steeds dezelfde gedurende het vervolg van het experiment.

FIGUUR 4.11: Opdeling van de data in training en testset.

De muziekfactormatrix V_{train} werd dan gebruikt om aan de hand van de geclusterde voorstelling van de MFCC-vectoren een lineair model te trainen dat in staat is om de muziekfactoren te

FIGUUR 4.12: Opdeling van de data in training en testset.

voorspellen voor de muzieknummers die zich in de testset X_{test} bevinden. De uit de audio voorspelde muziekfactoren noemen we $V_{test_{audio}}$.

Nu vertrekken we vanuit X_{test} en gaan we telkens informatie over de luistergeschiedenis verwijderen. Voor elk nummer wordt een percentage van de gebruikers die naar het nummer geluisterd hebben verwijderd. Dit percentage wordt bepaald door de parameter α . Concreet betekent dit dat in de gebruiker-item matrix X_{test} het aantal luisterbeurten op 0 gezet wordt. Dit zorgt ervoor dat de gebruiker-item matrix opnieuw in een nieuwe training- en testset opgesplitst wordt (zie figuur 4.13). Het deel van de informatie dat wordt verwijderd noemen we X_{test_A} en is de nieuwe testset. Deze matrix wordt omgezet naar een binaire gebruikers-item matrix omdat enkel zal gekeken worden of de voorspellingen effectief ooit al eens beluisterd werden door de gebruiker. Het aantal luisterbeurten doet er niet echt toe. Het andere deel X_{test_B} zal opnieuw gebruikt worden om een nieuwe muziekfactormatrix $V_{test_{mf}}$ te bouwen met behulp van de gebruikerfactormatrix U en 1 iteratie uit het verborgen factormodel. In deze iteratie worden de gebruikersfactoren constant beschouwd en zullen de muziekfactoren geoptimaliseerd worden in functie van de gebruikersfactoren en de scores (zie vgl 2.4). Doordat deze matrixfactorisatie voor grote waarden van α zeer weinig informatie heeft, wordt verwacht dat de resulterende muziekfactoren vrij slecht zullen zijn. Wanneer dan voorspellingen gegenereerd worden en deze geëvalueerd worden op X_{test_A} moeten de resultaten vrij slecht zijn en wordt er hopelijk een waarde voor α gevonden waarbij het beter is om de muziekfactoren te laten voorspellen uit de audio, dan op basis van de beperkte luistergeschiedenis. De oorspronkelijke matrix X_{test} bevatte 264.767 niet-nulwaarden. Wanneer $\alpha = 0.5$ dan bevat X_{test_R} dus ongeveer 132.000 niet-nulwaarden. De nieuwe scores waaruit dan aanbevelingen worden gegenereerd worden opnieuw als volgt bekomen:

$$pred_{audio} = UV_{test_{audio}}^{T} (4.16)$$

$$pred_{mf} = UV_{test_{mf}}^{T} (4.17)$$

Γ	0	0	6	0	5	1	0	0	0	07		Γ0	0	6	0	5	0	0	0	0	0		Γ0	0	0	0	0	1	0	0	0	[0
	4	0	40	0	13	0	1	11	3	6		4	0	0	0	0	0	0	0	3	0		0	0	1	0	1	0	1	1	0	1
	0	0	0	0	4	1	0	0	0	1		0	0	0	0	0	1	0	0	0	0		0	0	0	0	1	0	0	0	0	1
	0	1	0	0	0	1	0	0	10	0		0	1	0	0	0	0	0	0	0	0		0	0	0	0	0	1	0	0	1	0
	1	2	0	3	5	20	0	0	0	0		0	0	0	3	5	20	0	0	0	0		1	1	0	0	0	0	0	0	0	0
	2	1	2	0	0	1	0	6	0	5	\rightarrow	2	1	2	0	0	1	0	6	0	5	+	0	0	0	0	0	0	0	0	0	0
	0	3	1	0	1	0	1	3	6	0		0	0	0	0	1	0	1	3	6	0		0	1	1	0	0	0	0	0	0	0
	0	0	0	6	2	1	0	0	3	0		0	0	0	6	0	0	0	0	0	0		0	0	0	0	1	1	0	0	1	0
	1	0	6	7	0	2	9	0	0	7		0	0	6	0	0	2	0	0	0	7		1	0	0	1	0	0	1	0	0	0
L	10	5	0	0	0	0	0	4	0	0		10	0	0	0	0	0	0	0	0	0		0	1	0	0	0	0	0	1	0	0

FIGUUR 4.13: Een voorbeeld van hoe de dataset X_{test} wordt opgesplitst in X_{test_A} en X_{test_B} wanneer $\alpha = 0.5$. Waarden in het **vet** worden verwijderd uit X_{test} .

De resultaten kan men terugvinden in tabel 4.2 en 4.3. Deze werden bekomen door dit experiment 3 maal uit te voeren met telkens een verschillende X_{test_A} en X_{test_B} en vervolgens de resultaten uit te middelen.

4.4.1.3 Experiment 3

Een andere vraag die gesteld kan worden stellen is of een combinatie van een sociaal-gebaseerde techniek en een inhouds-gebaseerde techniek in bepaalde situaties kan leiden tot een beter aanbevelingssysteem. Een eenvoudige manier om dit na te gaan bestaat erin om de scores uit 4.16 en 4.17 op te tellen en vervolgens de resulterende scores te gebruiken om aanbevelingen te genereren. Deze techniek zal in het bijzonder goed werken indien de 2 aanbevelingstechnieken complementair zijn. Dit betekent dat de inhouds-gebaseerde techniek erin slaagt om voorspellingen te maken die de sociaalgebaseerde techniek niet doet en vice versa:

$$pred_{hybrid} = pred_{audio} + pred_{mf} (4.18)$$

				α			
	0.5	0.8	0.9	0.95	0.99	0.995	0.999
$pred_{audio}$	0.6630	0.6629	0.6628	0.6625	0.6626	0.6625	0.6580
$pred_{mf}$	0.8580	0.8354	0.8129	0.7844	0.7022	0.6669	0.6451
$pred_{hybrid}$	0.8520	0.8259	0.7987	0.7668	0.7019	0.6877	0.6808

TABEL 4.2: AUC voor de verschillende technieken ontwikkeld in experiment 2 en 3.

Matrixfactorisatie blijkt superieur te zijn ten opzichte van voorspelling van de muziekfactoren op basis van de MFCC-vectoren. Enkel wanneer zeer weinig luisterinformatie beschikbaar is, presteert het inhouds-gebaseerde aanbevelingssysteem op basis van MFCC-vectoren beter. Er werd

FIGUUR 4.14: AUC van de aanbevelingen voor verschillende waarden van α bij experiment 2 en 3

FIGUUR 4.15: mAP van de aanbevelingen voor verschillende waarden van α bij experiment 2 en 3

				α			
	0.5	0.8	0.9	0.95	0.99	0.995	0.999
$pred_{audio}$	0.0174	0.0203	0.0214	0.0219	0.0224	0.0224	0.0226
$pred_{mf}$	0.1367	0.1446	0.1353	0.1174	0.0572	0.0368	0.0228
$pred_{hybrid}$	0.1278	0.1292	0.1091	0.0792	0.0365	0.0302	0.0277

TABEL 4.3: mAP voor de verschillende technieken ontwikkeld in experiment 2 en 3.

een evenwichtspunt gevonden wanneer $\alpha=0.999$ was. In deze situatie bevatte de trainingset nog slechts een kleine 2000 niet-nulwaarden. Het gebruik van een hybride aanbevelingssysteem blijkt echter sneller de prestatie van de sociaalgebaseerde techniek te evenaren en zelfs te verbeteren wanneer weinig luistergeschiedenis voorhanden is.

4.4.1.4 Experiment 4

Uit experiment 3 konden we afleiden dat de sociaalgebaseerde techniek op basis van een verborgen factor model beter is. Een vraag die we kunnen stellen is of we door beide technieken correct te combineren in een hybride aanbevelingssysteem, toch nog een betere prestatie kunnen realiseren. We kunnen het belang van elke techniek in het hybride aanbevelingssysteem wijzigen door een extra parameter β in te voeren. Vergelijking 4.18 wordt dan uitgebreid tot:

$$pred_{hybrid} = (1 - \beta)pred_{audio} + (\beta)pred_{mf} \qquad \beta \in [0, 1]$$
 (4.19)

 $\beta=0$ betekent dat we enkel de inhouds-gebaseerde techniek in beschouwing nemen terwijl $\beta=1$ enkel rekening houdt met de sociaalgebaseerde techniek. We kunnen nu opnieuw voor elke waarde van α kijken wat de optimale waarde is voor β .

Opnieuw werd dit experiment meerdere malen uitgevoerd op een verschillende training- en testset. De resultaten zijn gevisualiseerd in figuren 4.16 en 4.17.

FIGUUR 4.16: mAP voor verschillende waarden van β .

FIGUUR 4.17: AUC voor verschillende waarden van β .

We kunnen vaststellen dat voor verschillende waarden van α het optimum β_{opt} rond 0.8-0.9 ligt. Dit zorgt ervoor dat bij het aanbevelingssysteem de sociaalgebaseerde techniek op basis van matrixfactorisatie zwaar doorweegt, maar dat men door in mindere mate de inhouds-gebaseerde scores mee te nemen in de uiteindelijke predictie tot een beter aanbevelingssysteem kan komen. In tabellen 4.4 en 4.5 worden de resultaten van het optimale hybride aanbevelingssysteem weergegeven samen met de sociaal-gebaseerde en inhoudsgebaseerde techniek. Deze resultaten werden opnieuw bekomen door dit experiment 3 maal uit te voeren met telkens een verschillende X_{test_A} en X_{test_B} en vervolgens de resultaten uit te middelen.

		α										
	0.9	0.95	0.99	0.995	0.999							
$pred_{audio}(\beta=0)$	0.6620	0.6622	0.6626	0.6626	0.6626							
$pred_{mf}(\beta=1)$	0.8126	0.7853	0.7004	0.6680	0.6456							
$pred_{hybrid}(\beta_{opt})$	0.8183	0.796	0.7331	0.7131	0.6993							

TABEL 4.4: AUC voor de sociaal-gebaseerde techniek, inhouds-gebaseerde techniek en optimale combinatie van beide.

	α				
	0.9	0.95	0.99	0.995	0.999
$pred_{audio}(\beta=0)$	0.0214	0.0220	0.0402	0.0224	0.0246
	0.1356				
$pred_{hybrid}(\beta_{opt})$	0.1366	0.1208	0.0642	0.0446	0.0330

 $\begin{tabular}{ll} TABEL 4.5: mAP voor de sociaal-gebaseerde techniek, inhouds-gebaseerde techniek en optimale combinatie van beide. \end{tabular}$

Hoofdstuk 5

Besluit

In deze masterproef werd onderzocht of het mogelijk is om het koude startprobleem deels te verhelpen door een hybride aanbevelingssysteem te ontwikkelen. Dit systeem is gebaseerd op een collaboratieve filtertechniek die toelaat om data deels te voorspellen op basis van akoestische informatie in de plaats van luistergeschiedenis. Met behulp van verborgen factormodellen kan een score voor een gebruiker en een muzieknummer geschreven worden als het product van de afgeleide muziekfactoren en gebruikersfactoren. Voor nieuwe nummers zijn de muziekfactoren nog onbekend en kunnen deze aan de hand van geclusterde MFCC-vectoren met behulp van regressie-analyse geschat worden. De resultaten toonden aan dat deze aanpak beter werkt dan willekeurige muziekfactoren, maar deze benaderingen scoorden beduidend slechter dan wanneer de correcte muziekfactoren gebruikt worden. Wanneer deze inhoudsgebaseerde techniek echter correct gecombineerd wordt met de sociaalgebaseerde techniek kan het aanbevelingssysteem in vele gevallen reeds betere aanbevelingen genereren.

Een mogelijke oplossing zou zijn om naast MFCC-vectoren die enkel akoestische informatie opnemen, heel wat externe informatie over het nummer ook in beschouwing te nemen. Meta-informatie zoals de tijdsgeest van het nummer of de taal waarin gezongen wordt draagt wellicht ook in belangrijke mate bij tot vorming van de verschillende muziekfactoren. Bij nieuwe muzieknummers is deze informatie echter zelden beschikbaar. Ook een verdere akoestische analyse waarbij zaken zoals ritme en tempo ook in beschouwing worden genomen kan de voorspelling nauwkeuriger maken.

Hoofdstuk 5. Besluit 52

Verder kan ook worden nagegaan of het mogelijk is om de muziekfactoren beter te voorspellen met andere technieken dan lineaire regressie. De kostfunctie zou ook aangepast kunnen worden zodat de nadruk meer ligt op het correct voorspellen van extreme waarden voor muziekfactoren.

We kunnen besluiten dat het voorspellen van muziekfactoren een complex probleem is en dat deze voorspelling nuttig kan zijn wanneer absoluut geen luisterinformatie voorhanden is, maar dat collaboratieve filtertechnieken op basis van matrixfactorisatie al snel superieur zijn indien er een beperkte luistergeschiedenis beschikbaar is.

Bibliografie

- [1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. *IEEE Trans. on Knowl. and Data Eng.*, 17(6):734–749, June 2005. ISSN 1041-4347. doi: 10.1109/TKDE.2005.99. URL http://dx.doi.org/10.1109/TKDE.2005.99.
- [2] James Bennett, Stan Lanning, and Netflix. The netflix prize. In *In KDD Cup and Workshop in conjunction with KDD*, 2007.
- [3] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering techniques. Adv. in Artif. Intell., 2009:4:2–4:2, January 2009. ISSN 1687-7470. doi: 10.1155/2009/421425.
 URL http://dx.doi.org/10.1155/2009/421425.
- [4] Chris Anderson. The Long Tail: Why the Future of Business Is Selling Less of More. Hyperion, 2006. ISBN 1401302378.
- [5] O. Celma and P. Cano. From hits to niches? or how popular artists can bias music recommendation and discovery. In 2nd Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition (ACM KDD), Las Vegas, USA, 24/08/2008 2008. URL http://mtg.upf.edu/files/publications/Celma-ACM-Netflix-KDD2008.pdf.
- [6] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song dataset. In Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011), 2011.
- [7] Million Song Dataset. Example track description, 2013 (accessed May 18, 2013). URL http://labrosa.ee.columbia.edu/millionsong/pages/example-track-description.
- [8] Fabio Aiolli. A preliminary study on a recommender system for the million songs dataset challenge. 2012.

Bibliography 54

[9] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback datasets. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM '08, pages 263–272, Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3502-9. doi: 10.1109/ICDM.2008.22. URL http://dx.doi.org/10.1109/ICDM.2008.22.

- [10] Gijs Geleijnse, Markus Schedl, and Peter Knees. The Quest for Ground Truth in Musical Artist Tagging in the Social Web Era. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR '07), pages 525–530, Vienna, Austria, September 2007.
- [11] Mark Levy and Mark Sandler. A semantic space for music derived from social tags. In ISMIR, pages 411–416, 2007.
- [12] Ling Chen, Phillip Wright, and Wolfgang Nejdl. Improving music genre classification using collaborative tagging data. In Proceedings of the Second ACM International Conference on Web Search and Data Mining, WSDM '09, pages 84–93, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-390-7. doi: 10.1145/1498759.1498812. URL http://doi.acm.org/10.1145/1498759.1498812.
- [13] Philip J. Stone, Dexter C. Dunphy, Marshall S. Smith, and Daniel M. Ogilvie. The General Inquirer: A Computer Approach to Content Analysis. MIT Press, 1966. URL http://www. webuse.umd.edu:9090/.
- [14] F. A. Nielsen. Afinn, mar 2011. URL http://www2.imm.dtu.dk/pubdb/p.php?6010.
- [15] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986. ISBN 0070544840.
- [16] C. Laurier. Automatic Classification of Musical Mood by Content-Based Analysis. PhD thesis, Universitat Pompeu Fabra, 10/2011 2011. URL files/publications/PhD_Cyril_Laurier_2011_Music_Mood_Classification.pdf.
- [17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

List of Figures 55

[18] Kerstin Bischoff, Claudiu S. Firan, Raluca Paiu, Wolfgang Nejdl, Cyril Laurier, and Mohamed Sordo. Music mood and theme classification - a hybrid approach. In *ISMIR*, pages 657–662, 2009.

- [19] S. Davis and P. Mermelstein. Experiments in syllable-based recognition of continuous speech. IEEE Trans. Acoust., Speech, Signal Processing, 28:357 – 366, Aug. 1980.
- [20] Oscar Celma. Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer Publishing Company, Incorporated, 1st edition, 2010. ISBN 3642132863, 9783642132865.
- [21] Uwe Ligges. tuneR: Analysis of music, 2011. URL http://r-forge.r-project.org/projects/tuner/.
- [22] Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature learning. Journal of Machine Learning Research - Proceedings Track, 15:215-223, 2011. URL http://dblp.uni-trier.de/db/journals/jmlr/jmlrp15.html# CoatesNL11.
- [23] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications. Neural Netw., 13(4-5):411-430, May 2000. ISSN 0893-6080. doi: 10.1016/S0893-6080(00) 00026-5. URL http://dx.doi.org/10.1016/S0893-6080(00)00026-5.
- [24] Adam Coates and Andrew Y. Ng. Learning Feature Representations with K-means. In Grégoire Montavon, Geneviève Orr, and Klaus-Robert Müller, editors, Neural Networks: Tricks of the Trade, chapter 22. Springer, 2nd edition, 2012.

Lijst van figuren

1.1	Een voorbeelddistributie van de populariteit van nummers in een muziekcollectie	5
1.2	Een voorbeeld van een ROC-curve	10
1.3	Een voorbeeldfragment uit de MSD. Links bevindt zich het gebruikers-id, in het	
	midden het muzieknummer-id en rechts het aantal afspeelbeurten	11
1.4	Een voorbeeldfragment uit de musiXmatch dataset	12
1.5	Een voorbeeldbestand uit de Last.fm dataset	12
2.1	De recall op de testset voor de verschillende aanbevelingssystemen wanneer 50	10
0.0	aanbevelingen werden gegenereerd	18
2.2	De mAP op de testset voor de verschillende aanbevelingssystemen wanneer 50	10
2.3	aanbevelingen werden gegenereerd	18
۷.۵	positieve waarde hadden voor 2 factoren x en y. Factor x geeft een indicatie van	
	hoe recent het muzieknummer is terwijl factor y kan geïnterpreteerd worden als	1.0
2.4	een maat voor dansbaarheid van het nummer	19
2.4	Weergave van enkele datapunten uit de muziekfactormatrix in functie van 2 factoren.	20
3.1	Opbouw van beide datasets en verdere verwerking vooraleer men aan emotieher-	
	kenning kan doen. De akoestische features waren bij de eerste dataset afkomstig	
	van de eigen subset van de MSD. In de tweede dataset werd een groter deel van	
	de MSD opgenomen.	22
3.2	De 12 basis functies van de timbre vector	24
3.3	De relatie tussen de gemiddelde luidheid en de snelheid van aanzet voor nummers	0.4
	met een positieve en negatieve emotie.	24
3.4	Overzicht van de mutuele informatie tussen verschillende features en de emotielabels.	
3.5	De visualisatie van de 1e dataset met behulp van PCA	26
4.1	Opsplitsing van het akoestisch signaal in vensters	32
4.2	de mel schaal	33
4.3	Het samennemen van MFCC-vectoren in vensters	37
4.4	Overzicht van het trainingsproces van een model dat de muziekfactoren voorspelt	
	uit de geclusterde MFCC-voorstelling	36
4.5	De invloed van het aantal clustercentra op de MSE voor verschillende venster-	
	groottes	40
4.6	Het aanbevelingsproces met voorspelde muziekfactoren	41
4.7	ROC-curves voor alle nummers in de testset voor een bepaalde gebruiker	42
4.8	ROC-curves voor enkel de voorspelde nummers in de testset voor een bepaalde	
	gebruiker	42
4.9	Gemiddelde AUC waarden voor alle nummers.	43

List of Figures 57

4.10	Gemiddelde AUC waarden voor voorspelde nummers	44
4.11	Opdeling van de data in training en testset	44
4.12	Opdeling van de data in training en testset	45
4.13	Een voorbeeld van hoe de dataset X_{test} wordt opgesplitst in X_{test_A} en X_{test_B}	
	wanneer $\alpha = 0.5$. Waarden in het vet worden verwijderd uit X_{test}	46
4.14	AUC van de aanbevelingen voor verschillende waarden van α bij experiment 2 en 3	47
4.15	m AP van de aanbevelingen voor verschillende waarden van α bij experiment 2 en 3	47
4.16	mAP voor verschillende waarden van β	49
4.17	AUC voor verschillende waarden van β	49

Lijst van tabellen

1.1	Berekening van de gemiddelde precisie voor een bepaalde gebruiker wanneer $\tau =$	
	10 nummers worden aangeraden en 3 nummers in de testset zitten	8
1.2	Een confusiematrix	8
1.3	Een confusiematrix toegepast op een aanbevelingssysteem	9
2.1	De evaluatie van de verschillende aanbevelingssystemen	18
3.1	De verzameling van akoestische features die gebruikt werd bij classificatie	26
3.2	De hyperparameters van de verschillende classifiers	28
3.3	De nauwkeurigheid van verschillende classifiers bij akoestische classificatie	28
3.4	Binomiale en multiklasse classificatie met behulp van Random Forests	28
3.5	De voorspelde en echte emoties bij binomiale classificatie	29
3.6	De voorspelde en echte emoties bij multiklasse classificatie	29
3.7	De nauwkeurigheid van verschillende classifiers bij classificatie op basis van song-	
	tekstinformatie	29
4.1	Een eerste vergelijking van de prestatie van het verborgen factormodel met hetzelfde model waar 25% van de factoren voorspeld werden uit de audio en een	
	semi-willekeurig geval	42
4.2	AUC voor de verschillende technieken ontwikkeld in experiment 2 en 3	46
4.3	mAP voor de verschillende technieken ontwikkeld in experiment 2 en 3	48
4.4	AUC voor de sociaal-gebaseerde techniek, inhouds-gebaseerde techniek en opti-	
	male combinatie van beide	50
4.5	mAP voor de sociaal-gebaseerde techniek, inhouds-gebaseerde techniek en opti-	
	male combinatie van beide	50