Testing Linear Restrictions on Parameters via *F***-tests**

Simon Jackman
Department of Political Science
Stanford University

January 31, 2007

References

- ALR3, §5.4
- Ruud, Paul A. 2000. *An Introduction to Classical Econometric Theory*. New York: Oxford University Press.
- Seber, George A.F. and Alan J. Lee. 2003. *Linear Regression Analysis*, 2nd edition. Hoboken, New Jersey: Wiley.

We use the t-test for simple hypothesis tests; e.g.,

$$H_0: \beta_1 = 0$$

• *t*-test can also be used for testing hypotheses involving more than one parameter: e.g.,

$$H_0: \beta_2 - \beta_1 = 0$$

which we would test by forming the test statistic

$$t = \frac{\hat{\beta}_2 - \hat{\beta}_1}{\sqrt{var(\hat{\beta}_2 - \hat{\beta}_1)}}$$

$$= \frac{\hat{\beta}_2 - \hat{\beta}_1}{\sqrt{var(\hat{\beta}_2) + var(\hat{\beta}_1) - 2cov(\hat{\beta}_2, \hat{\beta}_1)}}$$

Testing Joint Hypotheses (Sets of Linear Restrictions on Parameters)

We use the *F*-test for testing *joint* or *compound* hypotheses: e.g, all slope coefficients are zero.

$$H_0: \beta_2 = 0 \text{ AND } \beta_3 = 0 \dots \text{ AND } \beta_k = 0$$

which can also be written as

$$H_0: \beta_2 = \beta_3 = \ldots = \beta_k = 0$$

For this case the test statistic

$$F = \frac{r^2/(k-1)}{(1-r^2)/(n-k)} = \frac{\text{RegSS}/(k-1)}{\text{RSS}/(n-k)}$$

where RegSS = "regression sum of squares" and RSS = "residual sum of squares". This statistic follows the F distribution with k and n - k degrees of freedom.

Some Theory: the *F* **distribution**

Proposition 1. The ratio of two independent chi-square variables, each divided by its degrees of freedom, follows an F-distribution. That is, if

$$s_1^2 \sim \chi_v^2, \ s_2^2 \sim \chi_w^2$$

where $p(s_1, s_2) = p(s_1)p(s_2)$, then

$$rac{s_1^2/v}{s_2^2/w}\sim F_{v,w}$$

- We use this result for statistical tests of differences in *sums of squared residuals*. from an *unrestricted* model and a *restricted* model, testing whether the difference in these two sums of squared residuals is statistically significant.
- This comparison amounts to a test of the null hypothesis that the restrictions are true, against the alternative of the unrestricted model.

Restricted Models

We define a "restricted model" as a model with linear restrictions on the elements of β relative to an unrestricted model, $y = X\beta + \varepsilon$. All linear restrictions are of the form:

where **R** is a q by k matrix and **r** is a q by 1 vector embodying the restrictions on β , i.e., a system of q linear restrictions over the k parameters.

Linear Restrictions on β

For instance, consider the following model

$$y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i$$

and the joint null hypothesis

$$H_0: \beta_2 = \beta_3 = 0$$

Then for H_0 : $\mathbf{R}\boldsymbol{\beta} = \mathbf{r}$,

$$\mathbf{R} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{r} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Linear Restrictions on **B**

Other examples:

$$y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \varepsilon_{i}$$

$$H_{0}: \quad \beta_{1} + \beta_{2} = 2$$

$$\beta_{2} - 3\beta_{3} = 7$$

Then for H_0 : $\mathbf{R}\boldsymbol{\beta} = \mathbf{r}$,

$$\mathbf{R} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -3 \end{bmatrix} \quad \mathbf{r} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$$

Linear Restrictions on **B**

$$y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \varepsilon_{i}$$
$$H_{0}: \beta_{2} + \beta_{3} = 0$$

Then for H_0 : $\mathbf{R}\boldsymbol{\beta} = \mathbf{r}$,

$$\mathbf{R} = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}, \mathbf{r} = 0$$

which is **not** a joint hypothesis and could be tested using a *t*-test

n.b., t tests are special cases of the F test.

t-tests test just one linear restriction on $\hat{\beta}$.

Linear Restrictions on β

The "omnibus" F test that all k - 1 slope coefficients are zero is obtained with

$$\mathbf{R} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

$$(k-1 \times k)$$

and $\mathbf{r} = \mathbf{0}$ (a k - 1 null vector).

F tests for comparing models

- The *F*-test is a device for testing differences in the sum of the squared residuals obtained by estimating a restricted model and an unrestricted model.
- RSS: residual sum of squares from unrestricted model.
- RSS_r: residual sum of squares from model with q linear restrictions on $\hat{\beta}$.
- We consider each in turn, showing how the F-test statistic actually follows the F
 distribution.

Claim 1: distribution of unrestricted residual sum of squares

- RSS = residual sum of squares = $\hat{\epsilon}'\hat{\epsilon}$. We want to know its distribution.
- Start by assuming $\varepsilon_i \sim N$, and recalling that by assumption, $E(\varepsilon_i) = 0$ and $cov(\varepsilon_i, \varepsilon_j) = 0$, $\forall i \neq j$.
- Then $z_i = \varepsilon_i/\sigma \sim N(0, 1)$ and $\varepsilon' \varepsilon/\sigma = \sum_{i=1}^n z_i^2 \sim \chi_n^2$
- Now recall that $\hat{\mathbf{\epsilon}} = \mathbf{M}\mathbf{y}$, where $\mathbf{M} = \mathbf{I}_n \mathbf{H}$, and $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$.
- Hence, $var(\hat{\boldsymbol{\varepsilon}}|\mathbf{X}) = var(\mathbf{M}\mathbf{y}|\mathbf{X}) = \mathbf{M}\sigma^2\mathbf{I}_n\mathbf{M} = \sigma^2\mathbf{M}$ (i.e., \mathbf{M} is a symmetric idempotent matrix). But \mathbf{M} is not a diagonal matrix, and so $cov(\hat{\boldsymbol{\varepsilon}}_i\hat{\boldsymbol{\varepsilon}}_i|\mathbf{X}) \neq 0$.
- So, even though $\hat{\epsilon}_i | \mathbf{X} \sim N(0, \sigma^2)$, we can't assert that $\hat{\mathbf{\epsilon}}' \hat{\mathbf{\epsilon}} / \sigma = \sum_{i=1}^n \hat{\epsilon}_i^2 / \sigma \sim \chi_n^2$ (i.e., we need mutual independence of the z_i for the claim $\sum_{i=1}^n z_i^2 \sim \chi_n^2$ to be true).

Claim 1: distribution of unrestricted residual sum of squares

- We note that $\hat{\mathbf{\epsilon}}'\hat{\mathbf{\epsilon}} = \mathbf{\epsilon}'\mathbf{M}\mathbf{\epsilon}$, where $\mathbf{M} = \mathbf{I}_n$ H, and $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$, M and H both symmetric, idempotent, n-by-n matrices.
- Note that M is not full rank, but has rank n k. Proof to come later; see Theorem 6
 and the discussion.
- We use the following useful result on the distribution of a *quadratic form*:
- Theorem 1. [Seber and Lee (2003), Theorem 2.7] If $z \sim N(0, I_n)$, and A is a symmetric n-by-n matrix, then $z'Az \sim \chi_p^2$ if and only if A is idempotent with rank p.
- $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ and so $\mathbf{z} = \varepsilon/\sigma \sim N(\mathbf{0}, \mathbf{I}_n)$ and by Theorem 1, $\varepsilon' M \varepsilon/\sigma^2 = \mathbf{z}' M \mathbf{z} \sim \chi^2_{n-k}$.
- In turn, since RSS = $\hat{\mathbf{\epsilon}}'\hat{\mathbf{\epsilon}} = \mathbf{\epsilon}'\mathbf{M}\mathbf{\epsilon}$, we have RSS/ $\sigma^2 \sim \chi^2_{n-k}$.

Claim 2: distribution of RSS_r - RSS

We begin by stating (without proof):

$$\hat{\boldsymbol{\beta}}_r = \hat{\boldsymbol{\beta}} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}' \left[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}' \right]^{-1} (\mathbf{r} - \mathbf{R}\hat{\boldsymbol{\beta}})$$

The proof requires solving the constrained optimization problem

$$\min_{\hat{\boldsymbol{\beta}}} ||\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}||^2$$

subject to

$$R\hat{\beta} = r.$$

See an advanced text for details...

Seber and Lee, Linear Regression Analysis p60

3.8.1 Method of Lagrange Multipliers

Let $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where \mathbf{X} is $n \times p$ of full rank p. Suppose that we wish to find the minimum of $\boldsymbol{\varepsilon}'\boldsymbol{\varepsilon}$ subject to the linear restrictions $\mathbf{A}\boldsymbol{\beta} = \mathbf{c}$, where \mathbf{A} is a known $q \times p$ matrix of rank q and \mathbf{c} is a known $q \times 1$ vector. One method of solving this problem is to use Lagrange multipliers, one for each linear constraint $\mathbf{a}_i'\boldsymbol{\beta} = c_i$ $(i = 1, 2, \ldots, q)$, where \mathbf{a}_i' is the *i*th row of \mathbf{A} . As a first step we note that

$$\sum_{i=1}^{q} \lambda_i (\mathbf{a}_i' \boldsymbol{\beta} - c_i) = \lambda' (\mathbf{A} \boldsymbol{\beta} - \mathbf{c})$$
$$= (\boldsymbol{\beta}' \mathbf{A}' - \mathbf{c}') \lambda$$

(since the transpose of a 1×1 matrix is itself). To apply the method of Lagrange multipliers, we consider the expression $r = \varepsilon' \varepsilon + (\beta' \mathbf{A}' - \mathbf{c}') \lambda$ and solve the equations

$$\mathbf{A}\boldsymbol{\beta} = \mathbf{c} \tag{3.35}$$

and $\partial r/\partial \beta = 0$; that is (from A.8),

$$-2X'Y + 2X'X\beta + A'\lambda = 0. (3.36)$$

For future reference we denote the solutions of these two equations by $\hat{\beta}_H$ and $\hat{\lambda}_H$. Then, from (3.36),

$$\hat{\boldsymbol{\beta}}_{H} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} - \frac{1}{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{A}'\hat{\boldsymbol{\lambda}}_{H}$$

$$= \hat{\boldsymbol{\beta}} - \frac{1}{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{A}'\hat{\boldsymbol{\lambda}}_{H}, \qquad (3.37)$$

and from (3.35),

$$\mathbf{c} = \mathbf{A}\hat{\boldsymbol{\beta}}_{H}$$
$$= \mathbf{A}\hat{\boldsymbol{\beta}} - \frac{1}{2}\mathbf{A}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{A}'\hat{\boldsymbol{\lambda}}_{H}.$$

Since $(\mathbf{X}'\mathbf{X})^{-1}$ is positive-definite, being the inverse of a positive-definite matrix, $\mathbf{A}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{A}'$ is also positive-definite (A.4.5) and therefore nonsingular. Hence

$$-\frac{1}{2}\hat{\lambda}_{H} = \left[\mathbf{A}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{A}'\right]^{-1}(\mathbf{c} - \mathbf{A}\hat{\boldsymbol{\beta}})$$

and substituting in (3.37), we have

$$\hat{\boldsymbol{\beta}}_{H} = \hat{\boldsymbol{\beta}} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{A}' \left[\mathbf{A}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{A}' \right]^{-1} (\mathbf{c} - \mathbf{A}\hat{\boldsymbol{\beta}}). \tag{3.38}$$

Linear Transformations of Normals

The following theorem will prove handy:

Theorem 2. Let

$$z \sim N(\mu, \Sigma), z \in \mathbb{R}^n$$
.

Let **A** be a m by n matrix, and **b** be a m by 1 vector. Then

$$Az + b \sim N(A\mu + b, A \Sigma A').$$

Claim 2: distribution of RSS_r - RSS

So if

$$\hat{\boldsymbol{\beta}}_r = \hat{\boldsymbol{\beta}} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}' \left[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}' \right]^{-1} (\mathbf{r} - \mathbf{R}\hat{\boldsymbol{\beta}})$$

then

RSS_r - RSS =
$$(\mathbf{y} - \hat{\mathbf{y}}_r)'(\mathbf{y} - \hat{\mathbf{y}}_r) - (\mathbf{y} - \hat{\mathbf{y}})'(\mathbf{y} - \hat{\mathbf{y}})$$

= $(\hat{\mathbf{y}} - \hat{\mathbf{y}}_r)'(\hat{\mathbf{y}} - \hat{\mathbf{y}}_r)$
= $(\hat{\mathbf{\beta}} - \hat{\mathbf{\beta}}_r)' \mathbf{X}' \mathbf{X} (\hat{\mathbf{\beta}} - \hat{\mathbf{\beta}}_r)$
= $(\mathbf{R}\hat{\mathbf{\beta}} - \mathbf{r})' \left[\mathbf{R} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{R}' \right]^{-1} (\mathbf{R}\hat{\mathbf{\beta}} - \mathbf{r})$

Ordinarily, $\hat{\boldsymbol{\beta}}|\sigma^2 \sim N(\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1})$. But when H_0 is true (i.e., the restrictions are true), Theorem 2 tell us that $\mathbf{R}\hat{\boldsymbol{\beta}}|\sigma^2 \sim N(\mathbf{r}, \sigma^2\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}')$, i.e., $\operatorname{var}(\mathbf{R}\hat{\boldsymbol{\beta}}) = \sigma^2\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'$. Thus

$$\frac{RSS_r - RSS}{\sigma^2} = (\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r})' \left[var(\mathbf{R}\hat{\boldsymbol{\beta}}) \right]^{-1} (\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r})$$

Claim 2: distribution of RSS_r - **RSS**

We have

$$\frac{RSS_r - RSS}{\sigma^2} = (\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r})' \left[var(\mathbf{R}\hat{\boldsymbol{\beta}}) \right]^{-1} (\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r})$$

- Note that under H_0 , $\mathbf{R}\hat{\boldsymbol{\beta}}$ $\mathbf{r} \sim N(\mathbf{0}, \boldsymbol{\Sigma}_r)$, where $\boldsymbol{\Sigma}_r = \text{var}(\mathbf{R}\hat{\boldsymbol{\beta}})$.
- Let $\Sigma_r^{1/2}$ be the q-by-q, positive-definite "square-root" matrix such that $\Sigma_r^{1/2}\Sigma_r^{1/2'} = \Sigma_r$, and similarly $\Sigma_r^{-1/2}\Sigma_r^{-1/2'} = \Sigma_r^{-1}$.
- By Theorem 2, $\mathbf{z} = \mathbf{\Sigma}_r^{-1/2}(\mathbf{R}\hat{\mathbf{\beta}} \mathbf{r}) \sim N(\mathbf{0}, \mathbf{I}_q)$, since $\mathbf{\Sigma}_r^{-1/2}\mathbf{\Sigma}_r\mathbf{\Sigma}_r^{-1/2'} = \mathbf{I}_q$.
- Thus, by Theorem 1,

$$\frac{\mathsf{RSS}_r - \mathsf{RSS}}{\sigma^2} = (\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r})' \left[\mathsf{var}(\mathbf{R}\hat{\boldsymbol{\beta}}) \right]^{-1} (\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r})$$
$$= \mathbf{z}' \mathbf{I}_q \mathbf{z} \sim \chi_q^2$$

Claim 3: Conditional Independence of RSS and RSS_r - RSS

- RSS_r RSS is a function of $\hat{\beta}$; see previous slides.
- RSS is a function of $\hat{\epsilon}$, i.e., RSS = $\hat{\epsilon}'\hat{\epsilon}$.
- We now show that $\hat{\beta}$ and $\hat{\epsilon}$ are independent, by showing
 - 1. $cov(\hat{\beta}, \hat{\epsilon} \mid X) = 0$. (a necessary condition for conditional independence)
 - 2. Since both $\hat{\beta}$ and $\hat{\epsilon}$ have normal distributions, zero conditional covariance between $\hat{\beta}$ and $\hat{\epsilon}$ implies conditional independence of $\hat{\beta}$ and $\hat{\epsilon}$.
- And thus our main claim is true: conditional on X, RSS and RSS_r RSS are independent.
- I state some theorems to help us prove these assertions.

Zero Covariance Implies Independence for Normals

Theorem 3. *Suppose*

$$\left[egin{array}{c} oldsymbol{z}_1 \ oldsymbol{z}_2 \end{array}
ight]\sim extstyle N\left(\left[egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight], \left[egin{array}{ccc} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{12}' & oldsymbol{\Sigma}_{22} \end{array}
ight]
ight)$$
 ,

then \mathbf{z}_1 and \mathbf{z}_2 are independent if and only if $\mathbf{\Sigma}_{12} = \mathbf{0}$.

Corollary: If z_1 and z_2 follow normal distributions, then a necessary and sufficient condition for the independence of z_1 and z_2 is to show that their covariance is zero.

Independence of Linear Transforms of Normals

Theorem 4. If $z \sim N(\mu, \Sigma)$ and U = Az and V = Bz. Then U and V are independent if and only if $cov(U, V) = A\Sigma B' = 0$.

Proof: e.g., Seber and Lee p25. By Theorem 2,

$$\mathbf{W} = \left[\begin{array}{c} \mathbf{U} \\ \mathbf{V} \end{array} \right] = \left[\begin{array}{c} \mathbf{A} \\ \mathbf{B} \end{array} \right] \mathbf{z} \, \sim \, \mathcal{N} \left(\left[\begin{array}{c} \mathbf{A} \boldsymbol{\mu} \\ \mathbf{B} \boldsymbol{\mu} \end{array} \right], \, \left[\begin{array}{c} \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}' & \mathbf{A} \boldsymbol{\Sigma} \mathbf{B}' \\ \mathbf{B} \boldsymbol{\Sigma} \mathbf{A}' & \mathbf{B} \boldsymbol{\Sigma} \mathbf{B}' \end{array} \right] \right)$$

and by Theorem 3, **U** and **V** are independent if and only if $\mathbf{A}\Sigma\mathbf{B}'=\mathbf{0}$.

- We use the theorem by setting $\mathbf{z} = \mathbf{y}$, $\mathbf{\Sigma} = \sigma^2 \mathbf{I}_n$, $\mathbf{U} = \hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ and $\mathbf{V} = \hat{\boldsymbol{\epsilon}} = \mathbf{M}\mathbf{y}$, so $\mathbf{A} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ and $\mathbf{B} = \mathbf{M} = \mathbf{I}_n \mathbf{H}$.
- Thus, $\mathbf{A}\mathbf{\Sigma}\mathbf{B}' = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^2\mathbf{I}_n(\mathbf{I}_n \mathbf{H})' = \sigma^2[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'] = \mathbf{0}.$
- And so $\hat{\beta}$ and $\hat{\epsilon}$ are independent.

Claim 3: Conditional Independence of RSS and RSS_r - RSS

- Since $\hat{\beta}$ and $\hat{\epsilon}$ are independent, so too are $\hat{\beta}$ and RSS = $\hat{\epsilon}'\hat{\epsilon}$.
- Finally, since $\hat{\beta}$ and RSS are independent, so too are RSS RSS_r (a continuous function of $\hat{\beta}$) and RSS.

The *F* test statistic

We have established that

1. RSS/
$$\sigma^2 \sim \chi^2_{n-k}$$

2.
$$(RSS_r - RSS)/\sigma^2 \sim \chi_q^2$$

3. RSS_r - RSS and RSS are independent.

Accordingly,

$$\frac{(RSS_r - RSS)/q}{RSS/(n - k)} = \frac{(RSS_r - RSS)/q}{\hat{\sigma}^2} \sim F_{q,n-k}$$

remembering that q is the number of linear restrictions being tested.

A More Compact Proof, using Properties of Orthogonal Projections

- Seber and Lee, Theorem 4.1(iv), or more generally, Theorem 4.3; some definitions of these terms appear at the end of these slides.
- Regression is an *orthogonal decomposition* of **y**. That is, we have $\mathbf{y} = \hat{\mathbf{y}} + \hat{\mathbf{\epsilon}} = \mathbf{X}\hat{\mathbf{\beta}} + \hat{\mathbf{\epsilon}}$. But $\hat{\mathbf{y}} \perp \hat{\mathbf{\epsilon}}$, where the symbol " \perp " means "orthogonal to". How so?
- We know that $\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{\beta}} = \mathbf{H}\mathbf{y}$, where $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$. And $\hat{\mathbf{\varepsilon}} = \mathbf{M}\mathbf{y}$. We also know that $\hat{\mathbf{y}}$ and $\hat{\mathbf{\varepsilon}}$ are orthogonal: $(\mathbf{H}\mathbf{y})'(\mathbf{I}_n \mathbf{H})\mathbf{y} = \mathbf{0}$.
- Hence, **H** is an *orthogonal projector*, decomposing **y** into two orthogonal components; or, more formally, decomposing $\mathbf{y} \in \mathbb{R}^n$ into two vectors that lie in orthogonal subspaces of \mathbb{R}^n .
- That is, $\hat{\mathbf{y}} = \mathbf{H}\mathbf{y} \in \mathcal{C}(\mathbf{X})$, the *column space* of \mathbf{X} . $\hat{\mathbf{\varepsilon}} = \mathbf{y} \cdot \hat{\mathbf{y}} = \mathbf{M}\mathbf{y} = (\mathbf{I}_n \cdot \mathbf{H})\mathbf{y} \in \mathcal{C}(\mathbf{X})^{\perp}$, the *orthogonal complement* of $\mathcal{C}(\mathbf{X})$.

A More Compact Proof, using Properties of Orthogonal Projections

- An unrestricted model has the "hat matrix" **H** projecting $\mathbf{y} \in \mathbb{R}^n$ to $\hat{\mathbf{y}} = \mathbf{H}\mathbf{y} \in \mathcal{C}(\mathbf{X})$.
- And $\mathbf{M} = \mathbf{I}_n$ \mathbf{H} projects $\mathbf{y} \in \mathbb{R}^n$ into the orthogonal complement \mathbb{S}^{\perp} .
- A restricted model imposes q linear restrictions on $\hat{\beta}$ relative to the unrestricted model such that the "restricted hat matrix", \mathbf{H}_r , projects from \mathbb{R}^n into $\mathbb{S}_r \subset \mathbb{S}$.
- Example: the simplest case is where the restricted model drops a predictor from the unrestricted model (i.e., imposes the constraint the corresponding element of $\hat{\beta}$ is 0). The restrictive model is thus projecting y into a column space $\mathcal{C}(X_r) \subset \mathcal{C}(X)$.
- And $\mathbf{M}_r = \mathbf{I}_n \mathbf{H}_r$ projects from \mathbb{S}_r^{\perp} , the orthogonal complement of \mathbb{S}_r .

A More Compact Proof, using Properties of Orthogonal Projections

We also state the following properties of orthogonal projections:

- 1. Orthogonal projection matrices are symmetric and idempotent. For example, $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = \mathbf{H}\mathbf{H} = \mathbf{H}'\mathbf{H} = \mathbf{H}'$.
- 2. Orthogonal projection matrices project from their image into their image (a consequence of idempotency). For example, $\mathbf{H}\mathbf{x} = \mathbf{x}, \forall \mathbf{x} \in \mathcal{C}(\mathbf{X})$.
- 3. Suppose **H** and \mathbf{H}_r are both orthogonal projectors such that $\mathbf{H}: \mathbb{R}^n \to \mathbb{S}$ and $\mathbf{H}_r: \mathbb{R}^n \to \mathbb{S}_r$, with $\mathbb{S}_r \subset \mathbb{S}$. Then $\mathbf{H}\mathbf{H}_r = \mathbf{H}_r\mathbf{H} = \mathbf{H}_r$. The intuition here is that since image(\mathbf{H}_r) = $\mathbb{S}_r \subset \text{image}(\mathbf{H}) = \mathbb{S}$, applying both projections always puts us in the "smaller" of the two spaces, \mathbb{S}_r , and the order in which we apply the projections doesn't matter.

Independence of Quadratic Forms

Another useful theorem:

Theorem 5. [Example 2.12, Seber and Lee (2003)] Suppose $z \sim N(0, I_n)$ and A and B are symmetric, idempotent matrices, such that $z'Az \sim \chi^2$ and $z'Bz \sim \chi^2$ (see Theorem 1). Then z'Az and z'Bz are independent if and only if AB = 0.

Proof: Since **A** and **B** are symmetric and idempotent, $\mathbf{z}'\mathbf{A}\mathbf{z} = \mathbf{z}'\mathbf{A}'\mathbf{A}\mathbf{z}$ and similarly for $\mathbf{z}'\mathbf{B}\mathbf{z}$. By Theorem 2,

$$\left[\begin{array}{c} \mathbf{A} \\ \mathbf{B} \end{array}\right]\mathbf{z} \sim \mathcal{N}\left(\left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \left[\begin{array}{cc} \mathbf{A'A} & \mathbf{A'B} \\ \mathbf{B'A} & \mathbf{B'B} \end{array}\right]\right).$$

Thus, by Theorem 4, Az and Bz are independent if and only if A'B = AB = 0.

and finally...

- RSS = $\varepsilon'(I_n H)\varepsilon$, RSS/ $\sigma^2 \sim \chi^2_{n-k}$.
- RSS_r RSS = $\varepsilon' M_r \varepsilon \varepsilon' M \varepsilon = \varepsilon' (M_r M) \varepsilon$. By the rank nullity theorem (Theorem 6), $M_r M$ has rank (n k) (n k q) = q. In addition, $M_r M$ is an orthogonal projector and so is symmetric and idempotent, and hence by Theorem 1, $(RSS_r RSS)/\sigma^2 \sim \chi_q^2$.
- By Theorem 5, RSS and RSS_r RSS are independent if and only if $(I_n H)(H H_r) = 0$. Checking this, we have $(I_n H)(H H_r) = H H_r HH + HH_r = 0$, because $HH_r = H_r$ (which we showed a few slides earlier).
- All this means that (again) we can state that

$$\frac{(\mathsf{RSS}_r - \mathsf{RSS})/q}{\mathsf{RSS}/(n-k)} = \frac{(\mathsf{RSS}_r - \mathsf{RSS})/q}{\hat{\sigma}^2} \sim F_{q,n-k}$$

remembering that q is the number of linear restrictions being tested.

Interpreting *F* test statistics

- Under H_0 , the restrictions are true, and the two models are the same.
- Thus, under H_0 : RSS_r = RSS and the numerator of the F test is zero.
- To the extent the restricted and unrestricted models diverge, $RSS_r > RSS$ and the numerator of the F test is positive.
- The further away F is from zero, the less plausible is H_0 .
- We reject H_0 is favor of the unrestricted model when F crosses a (pre-specified) critical value, the 1 α quantile of the $F_{q,n-k}$ distribution.
- In this sense, a lot like a χ^2 test, and indeed, if σ^2 was known, (RSS_r RSS)/ $\sigma^2 \sim \chi_q^2$.

Usually the linear restrictions we seek to test are simple exclusion restrictions: e.g.,

- that *all* **X** variables don't belong in the model (i.e., their coefficients are all jointly zero)
- that a particular *subset* of the parameters are zero or, in other words, that a subset of the independent variables don't belong in the model.
- that a single parameter is zero (n.b., the t test is a special case of the F test)

$$\frac{(RSS_r - RSS)/q}{RSS/(n-k)} = \frac{(RSS_r - RSS)/q}{\hat{\sigma}^2} \sim F_{q,n-k}$$

- A large value of the *F* statistic means that the **change** in the goodness-of-fit between the two specifications is statistically significant.
- Note that RSS_r \geq RSS; by corollary, $r_r^2 \leq r^2$ (i.e., we never fit any worse by adding variables, and we never fit any better by dropping variables).
- RSS and RSS_r are random quantities (they vary in repeated sampling)
- *Intuition*: the *F*-distribution is how we assess whether the improved fit of the unrestricted model over the restricted model is statistically significant.

The F test statistic can also be computed using the r^2 of the restricted (r) and unrestricted models (ur):

$$F = \frac{(r_{ur}^2 - r_r^2)/(df_r - df_{ur})}{(1 - r_{ur}^2)/df_{ur}}$$

Typical example: Testing for conditioning effects in a regression: e.g., is the relationship between age and salary different for men and women

Restricted: salary_i = $\alpha_0 + \beta_0 age_i + \varepsilon_i$

Unrestricted: salary_i = $\alpha_0 + \alpha_1 D_i + \beta_0 age_i + \beta_1 [D_i \times age_i] + \varepsilon_i$

 D_i : 1 if *i*th observation is female, 0 otherwise

 H_0 : $\alpha_1 = 0 \text{ AND } \beta_1 = 0$

Note that $H_0: \alpha_1 = 0$ can be tested with a t-statistic, as can $H_0: \beta_1 = 0$. i.e., the possibility that there is merely a different intercept or a difference slope for females can be tested with a t-statistic, but we need the F-test to examine whether **both** are simultaneously true.

Implementation

- anova() function in R
- linear.hypothesis function in library(car)
- ellipse function in library(car); fun teaching tool, but not very practical.

Examples

- "default" F-test produced by summary. 1m in R; i.e., H_0 : all slopes zero.
- faculty salary example, see homework 2 from 2004

"Odd" Examples

- It is possible to run a regression and have the slope coefficients be *individually* statistically significant, but to fail to reject the joint null hypothesis that the coefficients are jointly zero.
- Likewise, the converse: slope coefficients not statistically significant *individually*, but the *F* test lets us reject the null hypothesis that the coefficients are jointly zero.

Joint Confidence Regions for β̂; ALR3 §5.5

A joint confidence region for $\hat{\beta}$ with confidence level α is a hyper-ellipsoid in \mathbb{R}^k with surface

$$\hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{X} \hat{\boldsymbol{\beta}} = k \, \hat{\sigma}^2 \, F_{k,n-k}^{\alpha}$$

where

- $\hat{\beta}$ is the k-by-1 vector of least squares estimates of β
- $F_{k,n-k}^{\alpha}$ is the α critical values of the F distribution with k and n k degrees of freedom (i.e., the 1 α quantile of the $F_{k,n-k}$ distribution).
- $\hat{\beta}$ lies at the center of the confidence region
- Not very practical (i.e., almost never reported in published research); but help illuminate some important conceptual issues. I.e., about the only time you'll ever see a joint confidence region for $\hat{\beta}$ is in a statistics class.

Joint Confidence Regions for β̂; ALR3 §5.5

Consider the simple case of k=2 (so we can visualize the confidence ellispe); see ALR3 Figure 5.3 (p109). With $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2)'$, we have

$$\begin{split} \hat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{X}\hat{\boldsymbol{\beta}} &= \left[\hat{\boldsymbol{\beta}}_{1}\,\hat{\boldsymbol{\beta}}_{2}\right] \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1} \\ \hat{\boldsymbol{\beta}}_{2} \end{bmatrix} \\ & \text{ (i.e., denoting }\boldsymbol{X}'\boldsymbol{X} \text{ as }\boldsymbol{L}) \\ &= \left[\hat{\boldsymbol{\beta}}_{1}L_{11} + \hat{\boldsymbol{\beta}}_{2}L_{21} & \hat{\boldsymbol{\beta}}_{1}L_{12} + \hat{\boldsymbol{\beta}}_{2}L_{22} \right] \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1} \\ \hat{\boldsymbol{\beta}}_{2} \end{bmatrix} \\ &= \left(\hat{\boldsymbol{\beta}}_{1}^{2}L_{11} + \hat{\boldsymbol{\beta}}_{1}\hat{\boldsymbol{\beta}}_{2}L_{21} + \hat{\boldsymbol{\beta}}_{1}\hat{\boldsymbol{\beta}}_{2}L_{12} + \hat{\boldsymbol{\beta}}_{2}^{2}L_{22} \right) \\ &= \hat{\boldsymbol{\beta}}_{1}^{2}L_{11} + \hat{\boldsymbol{\beta}}_{2}^{2}L_{22} + 2L_{12}\hat{\boldsymbol{\beta}}_{1}\hat{\boldsymbol{\beta}}_{2} \\ &\text{ (exploiting the fact that }\boldsymbol{X}'\boldsymbol{X} \text{ is a symmetric matrix and so } L_{12} = L_{21}). \end{split}$$

Joint Confidence Regions for $\hat{\beta}$

Then the boundary of the α -level confidence ellipse for $\hat{\beta}$ is

$$\hat{\beta}_{1}^{2}L_{11} + \hat{\beta}_{2}^{2}L_{22} + 2L_{12}\hat{\beta}_{1}\hat{\beta}_{2} = 2\hat{\sigma}^{2}F_{2,n-k}^{\alpha}.$$

- The quadratic form in $\hat{\beta}_1$ and $\hat{\beta}_2$ are why we get an ellipse: recall high school geometry definition of an ellipse as $ax^2 + by^2 + cxy = d$.
- Shape and orientation of a joint confidence ellipse depends on X'X (sum of squares and cross-products for X).

Joint Confidence Regions for $\hat{\beta}$

- Positively correlated X imply negatively correlated $\hat{\beta}$ and a joint confidence ellipse for $\hat{\beta}$ that "points down" (the principal axis of the ellipse has a negative slope); negatively correlated $\hat{\beta}$ and a joint confidence ellipse for $\hat{\beta}$ that "points up" (the principal axis of the ellipse has a positive slope).
- Projections of a k-dimensional confidence hyper-ellipsoid onto the j-th reference axis will not equal the confidence interval for $\hat{\beta}_i$. See text.

Contrived, Unusual Case

```
Call:
lm(formula = y ~ x, x = T, y = T)
Residuals:
   Min 1Q Median 3Q Max
-1.9362 -0.5938  0.0459  0.4798  2.3378
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1777 0.2011 0.884 0.3847
x1 1.1363 0.5219 2.177 0.0384 *
x2 1.1066 0.5219 2.120 0.0433 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.102 on 27 degrees of freedom
Multiple R-Squared: 0.1517, Adjusted R-squared: 0.0889
F-statistic: 2.415 on 2 and 27 DF, p-value: 0.1084
```


Joint Confidence Ellipses and Multicollinearity: a connection

Highly correlated **X** variables produce

- at least in two dimensions, confidence ellispes that are quite elongated and tilted either up or down
- regression results that tend not to be informative about the coefficients on correlated
 X variables (i.e., large estimated standard errors)
- regression results that tend to be informative about the effects of a linear combinations of correlated X variables
- In the previous graph, x_1 and x_2 are highly negatively correlated (at -.92). These data are much more informative about β_1 β_2 than it is about β_1 , β_2 or β_1 + β_2 .

Joint Confidence Ellipses and Multicollinearity: a connection

n.b., the large covariance term between $\hat{\beta}_2$ and $\hat{\beta}_3$

Some Definitions

Definition 1. [Vector Space] A vector space is a nonempty set V of vectors closed under addition and scalar multiplication.

Definition 2. [Span] Suppose $\mathbf{x}_1, \dots, \mathbf{x}_k$ are vectors in \mathbb{R}^n . The span of $\mathbf{x}_1, \dots, \mathbf{x}_k$ is the set of linear combinations of these vectors:

$$span(\mathbf{x}_1,\ldots,\mathbf{x}_n)=\{\mathbf{y}\in\mathbb{R}^n:\mathbf{y}=\sum_i\alpha_i\mathbf{x}_i\}.$$

Definition 3. [Linear Dependence] A set of vectors $\mathbf{x}_1, \dots, \mathbf{x}_k$ is said to be linearly dependent if there exists a non-zero linear combination

$$\alpha_1 \mathbf{x}_1 + \cdots + \alpha_k \mathbf{x}_k = \mathbf{0}.$$

If a set of vectors is not linearly dependent, it is said to be linearly independent.

Some Definitions

Definition 4. [Basis of a Vector Space] A basis for a vector space V is a set of linearly independent vectors that span V.

Definition 5. [Dimension of a Vector Space] The dimension of V, denoted dim(V), is the number of vectors in any basis for V.

Definition 6. [Column Space] The column space of a matrix X, C(X), is the vector space spanned by the columns of X.

Definition 7. [Rank of a Matrix] The rank of a matrix X is the dimension of its column space, C(X)

Definition 8. [Orthogonal Complement] If **X** is a n×p matrix, the set

$$\mathbf{X}^{\perp} = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{X}'\mathbf{y} = \mathbf{0} \}$$

is the orthogonal complement of X.

Some Definitions

Definition 9. [Null Space] The null space of a matrix **A** is the set of vectors

$$\mathcal{N}(\mathbf{A}) = \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{0}\}$$

Definition 10. [Nullity] The nullity of a matrix **A** is the dimension of $\mathcal{N}(\mathbf{A})$.

Rank Nullity Theorem

Theorem 6. [Rank Nullity] If A is a m-by-n matrix with rank r and nullity s then r + s = n.

Corollory: If \mathbf{A}^{\perp} is the null space of \mathbf{A} , and \mathbf{A} has rank p and n columns, then $\dim(\mathbf{A}^{\perp}) = n - p$.

Example: $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ projects from $\mathcal{C}(\mathbf{X})$ to $\mathcal{C}(\mathbf{X})$ and so $\mathcal{C}(\mathbf{H}) = \mathcal{C}(\mathbf{X})$, implying that rank(\mathbf{H}) = rank(\mathbf{X}) = k. Conversely, $\mathbf{M} = \mathbf{I} - \mathbf{H}$ projects to $\mathcal{C}(\mathbf{X})^{\perp} = \mathcal{C}(\mathbf{H})^{\perp} = \mathcal{N}(\mathbf{H}')$ (Seber and Lee, Proposition B.2.1), but since $\mathbf{H}' = \mathbf{H}$, we have $\mathcal{C}(\mathbf{X})^{\perp} = \mathcal{N}(\mathbf{H})$. Theorem 6 says that the dimension of the null space of \mathbf{H} is n - k; since (by definition) \mathbf{M} projects from $\mathcal{C}(\mathbf{X})^{\perp}$ to $\mathcal{C}(\mathbf{X})^{\perp}$, $\mathcal{C}(\mathbf{M}) = \mathcal{N}(\mathbf{H})$, and so we deduce that the rank of \mathbf{M} is n - k.