Investigación de Operaciones

Universidad Católica del Maule Martín Mancilla V. - Claudio Durán N. 19.386.399-k - 19.215.697-1

Trabajo Final

Resolución de Problemas de Optimización

1 Primer Problema

- 1.1 Formule el modelo que permita obtener el portafolio de inversión que optimice el retorno esperado de la corporación y simultáneamente no viole su política de inversión
- 1.1.1 Variable de Decisión

$$N = \{1, 2, 3, 4, 5\}$$

 $X_i = \text{Cantidad invertida en categoría } i$ de la inversión. $\forall i \in N$

1 = Acciones comunes, 2 = Cuotas de fondos mutuos, 3 = Bonos de Oferta Pública,

4 = Bonos de Gobierno, 5 = Cuentas de Ahorro

1.1.2 Constantes

RAE = [0.15, 0.12, 0.10, 0.05, 0.08]

FR = [1.6, 1.0, 0.5, 0.0, 0.1]

 RAE_i = Retorno Anual Esperado para la categoría i de la inversión $\forall i \in N$.

 FR_i = Factor de riesgo para la categoría i de la inversión $\forall i \in N$.

1.1.3 Función Objetivo

$$maxZ = \sum_{i=1}^{i} X_i \times RAE_i$$

1.1.4 Restricciones

1. La inversión en acciones y en cuotas de fondos mutuos no debe ser mayor que un 30% del total de las inversiones.

$$x_1 + x_2 \le 0.3 \times \sum_{i=1}^{i} x_i$$

2. La inversión en bonos de gobierno no debe ser inferior a la inversión en cuentas de ahorro.

$$x_4 \ge x_5$$

3. La inversión en debentures y bonos de gobierno no debe exceder el 50% del total de las inversiones.

$$x_3 + x_4 \le 0.5 \times \sum_{i=1}^{i} x_i$$

4. La inversión en bonos de gobierno debe superar el 25% del total de las inversiones.

$$x_4 \ge 0.25 \times \sum_{i=1}^{i} x_i$$

5. La corporación Gamma requiere invertir la suma de US\$ 1.000.000 en el próximo año fiscal.

$$\sum_{i=1}^{i} x_i \le 1,000,000$$

6. La corporación no permite que el portafolio de valores escogidos tenga un factor de riesgo ponderado mayor que 1.0.

$$\sum_{i=1}^{i} x_i \times FR_i \le \sum_{i=1}^{i} x_i$$

7. No negatividad.

$$x_i > 0 \ \forall i \in N$$

2 Segundo Problema

2.1 Dibuje el grafo que represente el problema.

2.2 Formule el modelo que le permite resolver este problema

2.2.1 Nodos y Aristas

$$N = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$A = \{(1, 2)(1, 3)(1, 4)(2, 3)(2, 5)(2, 7)(3, 4)(3, 5)(4, 6)$$

$$(4, 9)(5, 6)(5, 8)(6, 8)(6, 9)(7, 10)(8, 10)(9, 10)\}$$

2.2.2 Variable de Decisión

 X_{ij} = Cantidad de mensajes transmitidos de nodo i a nodo j ($\forall (i,j) \in A$) v = Flujo máximo de los nodos

2.2.3 Función Objetivo

$$maxZ = v$$

2.2.4 Restricciones

• Oferta

$$(1) X_{12} + X_{13} + X_{14} = v$$

• Demanda

$$(10) - X_{71} - X_{810} - X910 = -v$$

Transición

$$(2)X_{23} + X_{25} + X_{27} - X_{12} = 0$$

$$(3)X_{34} + X_{35} - X_{13} - X_{23} = 0$$

$$(4)X_{46} + X_{49} - X_{14} - X_{34} = 0$$

$$(5)X_{56} + X_{57} + X_{58} - X_{25} - X_{35} = 0$$

$$(6)X_{68} + X_{69} - X_{46} - X_{56} = 0$$

$$(7)X_{710} - X_{27} - X_{57} = 0$$

$$(8)X_{810} - X_{58} - X_{68} = 0$$

$$(9)X_{910} - X_{49} - X_{69} = 0$$

• Capacidad de aristas

$$X_{12} \le 30 \qquad X_{34} \le 10 \qquad X_{58} \le 10$$

$$X_{13} \le 18 \qquad X_{35} \le 12 \qquad X_{68} \le 7$$

$$X_{14} \le 19 \qquad X_{46} \le 16 \qquad X_{69} \le 11$$

$$X_{23} \le 9 \qquad X_{49} \le 8 \qquad X_{710} \le 28$$

$$X_{25} \le 7 \qquad X_{56} \le 8 \qquad X_{810} \le 17$$

$$X_{27} \le 16 \qquad X_{57} \le 12 \qquad X_{910} \le 19$$

$$X_{ij} \ge 0 \ \forall (i,j) \in A$$

3 Tercer Problema

- 3.1 Formule el modelo que permita construir las plantas de tratamiento de aguas servidas al mínimo costo asumiendo que cada sitio tiene capacidad ilimitada para recibir aguas servidas y que cada área de recolección debe ser atendida únicamente por una planta
- 3.1.1 Variables de Decisión

$$X_j = 1$$
; Si se utiliza sitio j
 $X_j = 0$; En otro caso

 $Y_{ij} = 1$; área i es atendida por sitio j $Y_{ij} = 0$; en otro caso

3.1.2 Función Objetivo

$$minZ = \sum_{j=1}^{7} X_j \times CostoFijo[j] + \sum_{i=1}^{10} MArea[i] \sum_{j=1}^{7} Costo[i][j] \times Y_{ij}$$
$$+ \sum_{j=1}^{7} CostoOP[j] \sum_{i=1}^{10} Y_{ij} \times MArea[i]$$

Restricciones 3.1.3

$$(1)\sum_{i=1}^{7} Y_{ij} = 1 \quad \forall i \in \{1, \dots, 10\}$$

(1)
$$\sum_{j=1}^{7} Y_{ij} = 1 \quad \forall i \in \{1, \dots, 10\}$$
(2)
$$\sum_{i=1}^{10} Y_{ij} \le 10 \quad \forall j \in \{1, \dots, 7\}$$