Subject: PRF192 - PFC

Workshop 01

Name: your_name

Student ID: your_student_ID

Objectives:

- 1. Reviewing for number systems.
- 2. Exploring memory of a C program.

Recommendations:

Part 1: Students do exercises using notebooks.

Part 2: Students develop programs, run them, write down their memory

structure to notebooks.

Part 1: Number systems:

Exercise 1 (2 marks): Convert decimal numbers to binary ones.

Decimal	4-bit Binary	Decimal	8-bit Binary	Decimal	16-bit Binary
9	1001	7	0000 0111	255	0000 0000 1111 1111
7	0111	34	0010 0010	192	0000 0000 1100 0000
2	0010	125	0111 1101	188	0000 0000 1011 1100
15	1111	157	1001 1101	312	0000 0001 0011 1000
12	1100	162	1010 0010	517	0000 0010 0000 0101
11	1011	37	0010 0101	264	0000 0001 0000 1000
6	0110	66	0100 0010	543	0000 0010 0001 1111
5	0101	77	0100 1101	819	0000 0011 0011 0011
8	1000	88	0101 1000	1027	0000 0100 0000 0011
13	1101	99	0110 0011	2055	0000 1000 0000 0111
14	1110	109	0110 1101	63	0000 0000 0011 1111

Exercise 2 (2 marks): Convert decimal numbers to binary and hexadecimal ones.

Decimal	Binary	Hexa.	Decimal	16-bit Binary	Hexadecimal
9	1001	09	255	0000 0000 1111 1111	00FF
127	0111 1111	7F	192	0000 0000 1100 0000	00C0
125	0111 1101	7 D	188	0000 0000 1011 1100	00BC
157	1001 1101	9D	312	0000 0001 0011 1000	0138
162	1010 0010	A2	517	0000 0010 0000 0101	0205
37	0010 0101	25	264	0000 0001 0000 1000	0108
66	0100 0010	42	543	0000 0010 0001 1111	021F
77	0100 1101	4D	819	0000 0011 0011 0011	0333
88	0101 1000	58	1027	0000 0100 0000 0011	0403
99	0110 0011	63	2055	0000 1000 0000 0111	0807
109	0110 1101	6D	63	0000 0000 0011 1111	003F

```
Exercise 3 (2 marks): Compute.
(b: binary, q: octal, h: hexadecimal, d: decimal)
3 245 q + 247 q = ?q = ?b
3 245 q + 247 q = 3 514 q = 0111 0100 1100 b
1A7B h + 26FE7 h = ?h = ?b
1A7B h + 26FE7 h = 2 8A62 h = 0010 1000 1010 0110 0010 b
1101101101 b - 10110111 b = ?b
1101101101 b - 10110111 b = 0010 1011 0110 b
3654 q - 337 q = ?q = ?b
3654 q - 337 q = 3 315 q = 0110 1100 1101 b
3AB7 h - 1FA h = ?h = ?b
3AB7 h - 1FA h = 38BD h = 0011 1000 1011 1101 b
36A h - 576 q = ?h = ?b
576 q = 17E h
36A h - 576 q = 36A h - 17E h = 1EC h = 0001 1110 1100 b
64AE h - 1001101 b = ?q
1001101 b = 4D h
64AE h - 1001101 b = 64AE h - 4D h = 6461 h = 62 141 q
    1 0110 1111 b
 + 1 0011 1011 b
    1 1011 0001 b
    1 1000 1101 b
= 0101 1110 1000 b
```

```
1011010 b * 1011 b
     01011010 b
 x 1011 b
     01011010 b
    01011010 b
   00000000 b
  <u>01011010</u> b
= 01111011110 b = 0011 1101 1110 b
1101000 b + 2AB h + 345 q = ?h = ?q
1101000 b = 68 h
345 q = E5 h
1101000 b + 2AB h + 345 q = 68 h + 2AB h + E5 h = 3F8 h
3F8 h = 0011 1111 1000 b
3AF h / 1C h = ?b = ?d
3AF h = 943 d
1C h = 28 d
3AF h / 1C h = 943 d / 28 d = 33 d = 0010 0001 b
3AC h - 562 q = ?b = ?d
3AC h = 940 d
562 q = 370 d
3AC h - 562 q = 940 d - 370 d = 570 d = 9010 9011 1010 b
3FFA h / 327 q = ?b = ?d
3FFA h = 16378 d
327 q = 215 d
3FFA h / 327 q = 16378 d / 215 d = 76 d = 0100 1100 b
```

```
Exercise 4 (2 marks):
```

```
1. Show binary formats of 1-byte unsigned numbers: 251, 163, 117.
   251_{10} = 1111 \ 1101_{2}
   163_{10} = 1010 \ 0011_2
   117_{10} = 0111 \ 0101_2
2. Show binary formats of 2-byte unsigned numbers: 551, 160,
   443.
   551_{10} = 0000 0010 0010 0111_{2}
   160_{10} = 0000 0000 1010 0000_{2}
   443_{10} = 0000 0001 1011 1011_2
3. Show binary formats of 1-byte signed numbers: -51 , -163,
   -117, 320.
   -51_{10} = 1100 \ 1101_{2}
   -163_{10} = 0101 \ 1101_2
   -117_{10} = 1000 \ 1011_{2}
   320<sub>10</sub> = overflow 8-bit, cannot storaged by binary formats of
   1-byte.
4. Show the decimal values of 1-byte unsigned representations:
   01100011 b , 10001111 b , 11001010 b , 01001100 b
   0110 \ 0011 \ b = 99 \ d
   1000 \ 1111 \ b = 143 \ d
   1100 1010 b = 202 d
   0100 \ 1100 \ b = 76 \ d
```

Part 2: Explore memory structure of programs:

Sample

```
'A'
                                                       c:2293623
                                                       i:2293616
                                                                       1000
                                                      1:2293612
     Vars_demo.c
                                                                        0.5
                                                      f:2293608
/* Variables Demo - Operator &: address of */
#include <stdio.h>
                                                                      12.809
#include <comio.h>
int main() {
                                                      d:2293600
   char c='A'; int i=1; long l=1000;
   float f=0.5f; double d=12.809;
  printf("Variable c: at addr: %u, value: %c, size: %d\n", &c, c, sizeof(c));
  printf("Variable i: at addr: %u, value: %d, size: %d\n", &i, i, sizeof(i));
  printf("Variable 1: at addr: %u, value: %ld, size: %d\n", &l, 1, sizeof(1));
   printf("Variable f: at addr: %u, value: %f, size: %d\n", &f, f, sizeof(f));
   printf("Variable d: at addr: %u, value: %lf, size: %d\n", &d, d, sizeof(d));
   getch();
```

Complete the code of following program then draw it's memory structure. (2 marks)

```
1 #include <stdio.h>
 3 int n = 1;
 4 double x = 1.0;
 5 char c1 = 'B';
 7 int main()
 8 ₽ {
 9
         int m = 2;
10
         short s = 3;
11
        long L = 4;
12
        float y = 5.f;
13
14
        printf("Code of main: %u\n", &main);
15
        printf("Variable n, add: %u, memory size: %d\n", &n, sizeof(n));
        printf("Variable x, add: %u, memory size: %d\n", &x, sizeof(x));
16
        printf("Variable c1, add: %u, memory size: %d\n", &c1, sizeof(c1));
17
        printf("Variable m, add: %u, memory size: %d\n", &m, sizeof(m));
printf("Variable s, add: %u, memory size: %d\n", &s, sizeof(s));
18
19
20
        printf("Variable L, add: %u, memory size: %d\n", &L, sizeof(L));
21
        printf("Variable y, add: %u, memory size: %d\n", &y, sizeof(y));
22
23
        return 0;
24 <sup>[</sup>]
```


n: 4206608	1
x: 4206616	1.0
c1: 4206624	'B'
m: 6684188	2
s: 6684186	3
L: 6684180	4
y: 6684176	5.f