Programmation linéaire : dualité

Quentin Fortier

November 7, 2021

$$\mathbf{z} = \max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\mathrm{T}} \mathbf{x}$$
 $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq \mathbf{0}$

Pour obtenir un minorant de \mathbf{z} , il suffit de trouver une solution admissible.

$$\mathbf{z} = \max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
$$\mathbf{A} \mathbf{x} \le \mathbf{b}$$
$$\mathbf{x} \ge \mathbf{0}$$

Pour obtenir un minorant de \mathbf{z} , il suffit de trouver une solution admissible. Comment obtenir un majorant ?

$$z = \max_{x,y \in \mathbb{R}} 4x_1 + 5y$$
$$2x_1 + y \le 8$$
$$x + 2y \le 7$$
$$y \le 3$$
$$x, y \ge 0$$

Comment majorer z ?

$$z = \max_{x,y \in \mathbb{R}} 4x_1 + 5y$$
$$2x_1 + y \le 8$$
$$x + 2y \le 7 \quad (*)$$
$$y \le 3$$
$$x, y \ge 0$$

Comment majorer z ?

$$4x_1 + 5y \le 5 \times (2x_1 + y) \le 5 \times 8 = 40$$

$$z = \max_{x,y \in \mathbb{R}} 4x_1 + 5y$$
$$2x_1 + y \le 8 \quad (*)$$
$$x + 2y \le 7 \quad (*)$$
$$y \le 3$$
$$x, y \ge 0$$

Comment majorer z ?

$$4x_1 + 5y \le 5 \times (2x_1 + y) \le 5 \times 8 = 40$$

$$4x_1 + 5y = (2x_1 + y) + 2(x + 2y) \le 8 + 2 \times 7 = 22$$

Ceci prouve que (x, y) = (3, 2), qui donne $4x_1 + 5y = 22$, est une solution optimale.

Primal

 $\max_{x \in \mathbb{R}^n} c^T x$

 $\textbf{A}\textbf{x} \leq \mathbf{b}$

 $\boldsymbol{x} \geq \boldsymbol{0}$

Dual

 $\min_{\mathbf{y} \in \mathbb{R}^p} \mathbf{b^T} \mathbf{y}$

 $\begin{array}{ccc} A^T y \ \geq \ c \\ \\ y \geq 0 \end{array}$

$$\max_{x_1, x_2 \in \mathbb{R}} x_1 + x_2$$

$$x_1 + 3x_2 \le 3$$

$$2x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

$$\begin{array}{ll} \min_{y_1,y_2\in\mathbb{R}} & 3y_1+2y_2 \\ & y_1+2y_2 & \geq 1 \\ & 3y_1+y_2 & \geq 1 \\ & y_1,y_2 & \geq 0 \end{array}$$

Théorème de dualité

Primal

 $\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c^T} \mathbf{x}$

 $\mathbf{A}\mathbf{x} \leq \mathbf{b} \ (1)$

 $\boldsymbol{x} \geq \boldsymbol{0}$

Dual

 $\min_{\mathbf{y} \in \mathbb{R}^p} \mathbf{b^T y}$

 $\mathbf{A^Ty} \geq \mathbf{c} (2)$

 $\mathbf{y} \geq \mathbf{0}$

Théorème de dualité faible

Soit ${\bf x}$ une solution admissible d'un PL primal et ${\bf y}$ une solution admissible du PL dual. Alors :

$$\mathbf{c}^{\mathbf{T}}\mathbf{x} \leq \mathbf{b}^{\mathbf{T}}\mathbf{y}$$

Théorème de dualité

 $\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\mathbf{T}} \mathbf{x}$

 $\mathbf{A}\mathbf{x} \leq \mathbf{b} \ (1)$

 $x \geq \mathbf{0}$

Dual

 $\min_{\mathbf{y} \in \mathbb{R}^p} \mathbf{b^T y}$

 $\mathbf{A^Ty} \geq \mathbf{c} (2)$

 $\mathbf{y} \geq \mathbf{0}$

Théorème de dualité faible

Soit ${\bf x}$ une solution admissible d'un PL primal et ${\bf y}$ une solution admissible du PL dual. Alors :

$$\mathbf{c}^T\mathbf{x} \leq \mathbf{b}^T\mathbf{y}$$

Preuve:

$$\mathbf{c}^T\mathbf{x}\overset{(2)}{\leq}(\mathbf{A}^T\mathbf{y})^T\mathbf{x}=\mathbf{y}^T\mathbf{A}\mathbf{x}\overset{(1)}{\leq}\mathbf{y}^T\mathbf{b}=\mathbf{b}^T\mathbf{y}$$

Théorème de dualité

 $\begin{array}{c|c} \textbf{Primal} & \textbf{Dual} \\ \max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x} & \min_{\mathbf{y} \in \mathbb{R}^p} \mathbf{b}^T \mathbf{y} \\ \textbf{Ax} \leq \mathbf{b} & \mathbf{A}^T \mathbf{y} \, \geq \, \mathbf{c} \\ \mathbf{x} \geq \mathbf{0} & \mathbf{y} \geq \mathbf{0} \end{array}$

Théorème de dualité forte

Soient x solution admissible du primal et y du dual vérifiant $\mathbf{c}^T x = \mathbf{b}^T y$. Alors :

- x est une solution optimale du primal
- y est une solution optimale du dual

 $\underline{\mathsf{Preuve}}$: similaire au théorème max flow — min cut.

Complementary slackness

Si x et y sont des solutions optimales du primal et dual : $\mathbf{c^T} x = \mathbf{b^T} y$. Donc les inégalités suivantes sont des égalités :

$$\mathbf{c}^{\mathbf{T}}\mathbf{x} \leq (\mathbf{A}^{\mathbf{T}}\mathbf{y})^{\mathbf{T}}\mathbf{x} = \mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{x} \leq \mathbf{y}^{\mathbf{T}}\mathbf{b} = \mathbf{b}^{\mathbf{T}}\mathbf{y}$$
$$\mathbf{c}^{\mathbf{T}}\mathbf{x} = \sum_{i} c_{i}x_{i}$$
$$(\mathbf{A}^{\mathbf{T}}\mathbf{y})^{\mathbf{T}}\mathbf{x} = \sum_{i} (\sum_{j} A_{i,j}y_{j})x_{i}$$

Complementary slackness

Si x et y sont des solutions optimales du primal et dual : $\mathbf{c}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}$. Donc les inégalités suivantes sont des égalités :

$$\mathbf{c}^{\mathbf{T}}\mathbf{x} \leq (\mathbf{A}^{\mathbf{T}}\mathbf{y})^{\mathbf{T}}\mathbf{x} = \mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{x} \leq \mathbf{y}^{\mathbf{T}}\mathbf{b} = \mathbf{b}^{\mathbf{T}}\mathbf{y}$$
$$\mathbf{c}^{\mathbf{T}}\mathbf{x} = \sum_{i} c_{i}x_{i}$$
$$(\mathbf{A}^{\mathbf{T}}\mathbf{y})^{\mathbf{T}}\mathbf{x} = \sum_{i} (\sum_{j} A_{i,j}y_{j})x_{i}$$

Donc, pour tout i:

$$\boxed{x_i=0}$$
 ou $c_i=\sum_j A_{i,j}y_j$

Complementary slackness

Théorème des écarts complémentaires (Complementary slackness)

Si $\mathbf{x} \in \mathbb{R}^n$ et $\mathbf{y} \in \mathbb{R}^p$ sont des solutions optimales du primal et dual alors :

- $\forall 1 \leq i \leq n, x_i = 0$ ou la *i*ème contrainte du dual est *tight*
- $\forall 1 \leq j \leq p$, $y_j = 0$ ou la jème contrainte du primal est tight

Complementary slackness: application

Si on a une solution optimale du primal, on peut en déduire une solution optimale du dual en utilisant les écarts complémentaires (sans avoir besoin de réutiliser l'algorithme du simplexe).

Exercice

Trouver le dual du PL suivant et en donner une solution optimale sachant que $(x_1,x_2)=(3,2)$ est une solution optimale du primal :

$$\max_{x_1, x_2 \in \mathbb{R}} \quad 4x_1 + 5x_2$$

$$2x_1 + x_2 \le 8$$

$$x_1 + 2x_2 \le 7$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$