## Correction DM2

Exercice 1. On cherche à résoudre l'équation (E) suivante, d'inconnue réelle x:

$$\left\lfloor \sqrt{x} \right\rfloor = \left\lfloor \frac{x}{2} \right\rfloor$$

- 1. Donner le domaine de définition de l'équation (E).
- 2. Ecrire un programme python qui demande à l'utilisateur un flottant x et qui renvoie True si le réel ets solution de l'équation (E) et False sinon.
- 3. Montrer que toute solution x de (E) est solution du système (S) suivant :

$$\left\{ \begin{array}{ccc} \sqrt{x} & < & \frac{x}{2} + 1 \\ \frac{x}{2} - 1 & < & \sqrt{x} \end{array} \right.$$

- 4. Résoudre le système (S).
- 5. Soit  $\alpha = 2(2 + \sqrt{3})$  Calculer la partie entière de  $\alpha$ .
- 6. Pour tout  $k \in [0, 7]$  déterminer si les réels de l'intervalle [k, k+1] sont solutions de (E).
- 7. Conclure.

## Correction 1.

- 1. (E) est bien défini pour  $x \ge 0$
- 21 x=float(input('donnez une valeur de x'))
- <sub>2</sub> if floor  $(\operatorname{sqrt}(x)) = \operatorname{floor}(x/2)$ :
- з print (True)
- 4 else:
- 5 print (false)
- 3. Rappelons l'inégalité vraie pour tout  $y \in \mathbb{R}$ :

$$y - 1 < |y| \le y < |y| + 1$$

Soit x une solution de (E) on a d'une part :

$$\left\lfloor \sqrt{x} \right\rfloor = \left\lfloor \frac{x}{2} \right\rfloor \le \frac{x}{2}$$

 $\operatorname{et}$ 

$$\sqrt{x} - 1 < \lfloor \sqrt{x} \rfloor$$

Donc

$$\sqrt{x} < \frac{x}{2} + 1$$

D'autre part on a :

$$\left\lfloor \frac{x}{2} \right\rfloor = \left\lfloor \sqrt{x} \right\rfloor \le \sqrt{x}$$

et

$$\frac{x}{2} - 1 < \left| \frac{x}{2} \right|$$

donc

$$\boxed{\frac{x}{2} - 1 < \sqrt{x}.}$$

4. — Résolvons la première inégalité :  $\sqrt{x} < \frac{x}{2} + 1$ 

• Cas  $1 \frac{x}{2} + 1 \ge 0$  c'est-à-dire  $x \ge -2$ . Rappelons que l'ensemble de définion de l'équation est  $x \ge 0$ , on se concentre donc sur les réels positifs.

On peut alors mettre l'équation au carré qui devient

$$x < \frac{x^2}{4} + x + 1.$$

D'où  $x^2 > -4$  ce qui est toujours vrai.

Les solutions de cette première inéquation sont  $x \geq 0$ 

- Cas  $2\frac{x}{2}+1<0$ . Ce cas ne se produit pas car  $x\geq 0$  pour que l'équation soit bien définie.
- Résolvons la seconde inégalité :  $\frac{x}{2} 1 < \sqrt{x}$ 
  - Cas  $1 \frac{x}{2} 1 \ge 0$  c'est-à-dire  $x \ge 2$ .

On peut alors mettre l'équation au carré qui devient

$$\frac{x^2}{4} - x + 1 < x$$

D'où l'on obtient  $\frac{x^2}{4} - 2x + 1 < 0$ . Le discrimant vaut  $\Delta = 4 - 1 = 3 > 0$  et on obtient 2 racines

$$r_1 = \frac{2 + \sqrt{3}}{\frac{1}{2}}$$
 et  $r_2 = \frac{2 - \sqrt{3}}{\frac{1}{2}}$ 

soit en simplifiant

$$r_1 = 2(2 + \sqrt{3})$$
 et  $r_2 = 2(2 - \sqrt{3})$ .

Le polynôme est strictement négatif entre les racines c'est-à-dire sur  $]2(2-\sqrt{3}), 2(2+\sqrt{3})[$ . On doit maintenant prendre l'intersection avec l'ensemble de définition :  $x \ge 0$  et l'hypothèse  $x \ge 2$  On obtient

$$x \in [2, 2(2+\sqrt{3})[$$

• Cas  $2\frac{x}{2}-1<0$  c'est-à-dire x<2. Ici tous les réels sont solutions car la racine est toujours positive.

On obtient donc  $x \in [0, 2]$ 

En conclusion, les solutions de cette deuxième équation sont

$$[0,2(2+\sqrt{3})[$$

Les solutions du système correspondent à l'intersection des deux enembles trouvés précédemment : c'est donc

$$[0, 2(2+\sqrt{3})[$$

5. 1 < 3 < 4 donc  $1 < \sqrt{3} < 2$  et donc  $3 < 2 + \sqrt{3} < 4$  et finalement  $\alpha \in ]6, 8[$ . Ainsi  $\lfloor \alpha \rfloor$  vaut 6 ou 7. Vérifions que  $\alpha > 7$ , pour cela regardons l'inégalité

$$\begin{array}{ccc}
2(2+\sqrt{3}) & > 7 \\
\iff & (2+\sqrt{3}) & > \frac{7}{2} \\
\iff & \sqrt{3} & > \frac{3}{2} \\
\iff & 3 & > \frac{9}{4} \\
\iff & 12 & > 9
\end{array}$$

La dernière inégalité étant vraie, comme nous avons procédé par équivalence, on a bien  $\alpha > 7$ . Ainsi

$$\lfloor \alpha \rfloor = 7$$

6. — Cas k = 0 Soit  $x \in [0, 1[$ . On a alors  $0 \le \sqrt{x} < 1$  et donc  $\lfloor x \rfloor = 0$  et  $0 \le \frac{x}{2} < \frac{1}{2} < 1$  donc  $\lfloor \frac{x}{2} \rfloor = 0$ . D'où

$$\forall x \in [0, 1[ \quad \lfloor \sqrt{x} \rfloor = \lfloor \frac{x}{2} \rfloor]$$

— Cas k=1 Soit  $x\in[1,2[$ . On a alors  $1\leq\sqrt{x}<\sqrt{2}<2$  et donc  $\lfloor x\rfloor=1$  et  $0\leq\frac{1}{2}\leq\frac{x}{2}<1$  donc  $\lfloor\frac{x}{2}\rfloor=0$ . D'où

$$\forall x \in [1, 2[ \quad \lfloor \sqrt{x} \rfloor \neq \lfloor \frac{x}{2} \rfloor]$$

— <u>Cas k=2</u> Soit  $x\in[2,3[$ . On a alors  $1\leq\sqrt{2}\leq\sqrt{x}<\sqrt{3}<2$  et donc  $\lfloor x\rfloor=1$  et  $1\leq\frac{x}{2}<\frac{3}{2}<2$  donc  $\lfloor\frac{x}{2}\rfloor=1$ . D'où

$$\forall x \in [2, 3[ \quad \lfloor \sqrt{x} \rfloor = \lfloor \frac{x}{2} \rfloor]$$

- Cas k = 3

Soit  $x \in [3,4[$ . On a alors  $1 \le \sqrt{3} \le \sqrt{x} < \sqrt{4} = 2$  et donc  $\lfloor x \rfloor = 1$  et  $1 \le \frac{3}{2} \le \frac{x}{2} < 2$  donc  $\lfloor \frac{x}{2} \rfloor = 1$ . D'où

$$\forall x \in [3, 4[ \quad \lfloor \sqrt{x} \rfloor = \lfloor \frac{x}{2} \rfloor]$$

— <u>Cas k=4</u> Soit  $x\in[4,5[$ . On a alors  $2\leq\sqrt{x}<\sqrt{5}<3$  et donc  $\lfloor x\rfloor=2$  et  $2\leq\frac{x}{2}<\frac{5}{2}<3$  donc  $\lfloor\frac{x}{2}\rfloor=2$ . D'où

$$\forall x \in [4, 5[ \quad \lfloor \sqrt{x} \rfloor = \lfloor \frac{x}{2} \rfloor]$$

— <u>Cas k=5</u> Soit  $x\in[5,6[$ . On a alors  $2\leq\sqrt{x}<\sqrt{5}<3$  et donc  $\lfloor x\rfloor=2$  et  $2\leq\frac{x}{2}<\frac{5}{2}<3$  donc  $\lfloor\frac{x}{2}\rfloor=2$ . D'où

$$\forall x \in [5, 6[ \quad \lfloor \sqrt{x} \rfloor = \lfloor \frac{x}{2} \rfloor]$$

— Cas k=6 Soit  $x\in [6,7[$ . On a alors  $2\leq \sqrt{6}\leq \sqrt{x}<\sqrt{7}<3$  et donc  $\lfloor x\rfloor=2$  et  $3\leq \frac{x}{2}<\frac{7}{2}<4$  donc  $\lfloor \frac{x}{2}\rfloor=3$ . D'où

$$\forall x \in [6, 7[ \quad \lfloor \sqrt{x} \rfloor \neq \lfloor \frac{x}{2} \rfloor]$$

— Cas k = 7 Soit  $x \in [7, 8[$ . On a alors  $2 \le \sqrt{7} \le \sqrt{x} < \sqrt{8} < 3$  et donc  $\lfloor x \rfloor = 2$  et  $3 \le \frac{7}{2} \le \frac{x}{2} < \frac{8}{2} = 4$  donc  $\lfloor \frac{x}{2} \rfloor = 3$ . D'où

$$\forall x \in [7, 8[ \quad \lfloor \sqrt{x} \rfloor \neq \lfloor \frac{x}{2} \rfloor]$$

7. On a vu à la question 4 que si x était solution de  $\lfloor x \rfloor = \lfloor \frac{x}{2} \rfloor$  alors  $x \in [0, \alpha] \subset [0, 8[$ . Réciproquement, la question précédente permet de voir que x est solution si  $x \in [0, 1[\cup[2, 3[\cup[4, 5[\cup[5, 6[=[0, 1[\cup[2, 6[$  et n'était pas solution pour  $x \in [1, 2[\cup[6, 7[\cup[7, 8[$ .

$$\mathcal{S} = [0, 1[\cup[2, 6[$$

**Exercice 2.** On cherche les racines réelles du polynôme  $P(x) = x^3 - 6x - 9$ .

- 1. Donner en fonction du paramètre x réel, le nombre de solutions réelles de l'équation  $x=y+\frac{2}{y}$  d'inconnue  $y\in\mathbb{R}^*$ .
- 2. Soit  $x \in \mathbb{R}$  vérifiant  $|x| \geq 2\sqrt{2}$ . Montrer en posant le changement de variable  $x = y + \frac{2}{y}$  que :

$$P(x) = 0 \Longleftrightarrow y^6 - 9y^3 + 8 = 0$$

- 3. Résoudre l'équation  $z^2 9z + 8 = 0$  d'inconnue  $z \in \mathbb{R}$ .
- 4. En déduire une racine du polynôme P.
- 5. Donner toutes les racines réelles du polynôme P.

## Correction 2.

1. Résolvons l'équation proposée en fonction du paramètre x. On a

$$\begin{array}{rcl} y+\frac{2}{y}&=x\\ \Longleftrightarrow &y^2+2&=yx\\ \Longleftrightarrow &y^2-xy+2&=0 \end{array}$$

On calcule le discriminant de ce polynome de degré 2 on obtient

$$\Delta = x^2 - 8$$

Donc:

- si  $x^2 8 > 0$  c'est-à-dire si  $|x| > 2\sqrt{2}$ , l'équation admet 2 solutions.
- si  $x^2 8 = 0$  c'est-à-dire si  $x = 2\sqrt{2}$  ou  $x = -2\sqrt{2}$  l'équation admet 1 seule solution.
- si  $x^2-8<0$  c'est-à-dire si  $x\in]-2\sqrt{2},22\sqrt{2}[$  l'équation admet 0 solution.
- 2. Soit  $x = y + \frac{2}{y}$ , on a :

$$P(x) = 0$$

$$\iff \left(y + \frac{2}{y}\right)^3 - 6\left(y + \frac{2}{y}\right) - 9 = 0$$

Développons à part  $\left(y+\frac{2}{y}\right)^3$ . On obtient tout calcul fait

$$\left(y + \frac{2}{y}\right)^3 = y^3 + 6y + \frac{12}{y} + \frac{8}{y^3}$$

Donc

où la dernière équivalence s'obtient en multipliant par  $y^3$  non nul.

3. On résout  $z^2-9z+8=0$  à l'aide du discriminant du polynôme  $z^2-9z+8$  qui vaut  $\delta=81-32=49=7^2$ . On a donc deux solutions

$$z_1 = \frac{9+7}{2} = 8$$
 et  $z_2 = \frac{9-7}{2} = 1$ 

4. La question d'avant montre que  $\sqrt[3]{1} = 1$  est solution de l'équation  $y^6 - 9y^3 + 8 = 0$  (on peut le vérifier à la main si on veut, mais c'était le but de la question précédente.)

Comme on a effectué le changement de variable  $x=y+\frac{2}{y}$  et à l'aide de la question 2, on voit que  $x=1+\frac{2}{1}=3$  est solution de l'équation P(x)=0 c'est-à-dire que

$$3$$
 est une racine de  $P$ .

(de nouveau on pourrait le revérifier en faisant le calcul, mais ceci n'est psa nécéssaire)

5. Comme 3 est racine de P, on peut écrire P(x) sous la forme  $(x-3)(ax^2+bx+c)$ , avec  $(a,b,c) \in \mathbb{R}^3$ . En développant on obtient  $P(x) = ax^3 + (-3a+b)x^2 + (c-3b)x - 3c$ . Maintenant par identification on obtient

$$\begin{cases} a = 1 \\ -3a + b = 0 \\ c - 3b = -6 \\ -3c = -9 \end{cases}$$

Ce qui donne

$$\begin{cases} a = 1 \\ b = 3 \\ c = 3 \\ c = 3 \end{cases}$$

Et finalement

$$P(x) = (x-3)(x^2 + 3x + 3)$$

Il nous reste plus qu'à trouver les racines de  $x^2+3x+3$  que l'on fait grâce à son discriminant qui vaut  $\Delta=9-12<-3$ .

## L'unique racine réelle de P est 3

Je rajoute le graphique de la courbe représentative de P avec le programme Python qui permet de le tracer.

 $\begin{array}{lll} \text{1 import matplotlib.pyplot as plt} \\ \text{2 import numpy as np} \\ \text{3 def } P(x): \\ \text{4} & \text{return}(x**3-6*x+9) \\ \text{5 } X &= \text{np.linspace}(-5,5,100) \\ \text{6 } Y &= P(X) \\ \text{7 } Z &= \text{np.zeros}(100) \\ \text{8 plt.plot}(X,Y) \\ \text{9 plt.plot}(X,Z) \\ \text{10 plt.show}() \end{array}$ 

