

주차장 규칙

- 경차, 승용차, 트럭 세 가지 종류의 차를 주차할 수 있다
- 각각 차 종류에 맞는 주차 자리가 있다
- 경차는 경차 자리에,
- 승용차는 승용차 자리에,
- 트럭은 트럭 자리에 주차를 해야 한다

전통적인 프로그래밍 방식

머신러닝을 이용한 프로그래밍 방식

데이터의 중요성

garbage in, garbage out

인공지능(AI)

머신러닝

딥러닝

기계가 인간처럼 지능적으로 작동하게 하는 기술

데이터로부터 학습하여 예측을 수행하는 AI의 한 방법

머신러닝의 한 기술로, 복잡한 문제를 해결하기 위해 **깊은 신경망**을 사용

알고리즘

머신러닝에서 알고리즘은 데이터에서 패턴을 학습하는 방법

레시피에 따라 요리를 하는 것처럼, 알고리즘은 데이터를 사용해 특정 작업(예: 이메일이 스팸인지 아닌지 판별하기)을 수행하는 방법을 컴퓨터에 알려줍니다.

모델(Model)

머신러닝 모델은 알고리즘을 통해 데이터로부터 학습된 지식의 집합입니다.

데이터를 분석한 후, 알고리즘이 추출한 패턴을 기억하는데, 이렇게 학습된 정보를 모델이라고 합니다.

이 모델을 사용하여 새로운 데이터에 대한 예측을 할 수 있습니다.

모델은 머신러닝에서 뇌와 같은 역할을 합니다.

훈련(Training)

훈련은 모델이 데이터로부터 학습하는 과정을 말합니다.

학교에서 공부하여 시험을 치르는 것처럼, 머신러닝 모델도 대량의 데이터를 '공부'하여 어떤 패턴이 있는지를 '학습'합니다.

이 과정에서 모델은 데이터 속 숨어 있는 규칙이나 관계를 찾아내어 이를 기억합니다.

예측(Prediction)

예측은 모델이 새로운 데이터에 대해 결론을 내리는 것을 말합니다.

훈련을 통해 충분히 학습한 모델은 이전에 본 적 없는 새로운 데이터에 대해서도 학습한 지식을 바탕으로 무엇인지를 '예측'할 수 있습니다.

예를 들어, 과거의 집값 데이터를 통해 학습한 모델은 새로운 집에 대한 가격을 예측할 수 있습니다.

데이터 세트 (Dataset)

데이터 세트는 머신러닝 알고리즘이 학습하는 데 사용되는 데이터의 집합입니다.

마치 시험 공부를 위한 교과서처럼, 데이터 세트는 모델이 학습하는 데 필요한 예제와 정보를 담고 있습니다.

특성 (Feature)

특성은 데이터의 개별적인 관측치나 측정치를 말합니다.

예를 들어, 집을 설명할 때 방의 개수나 위치, 면적 등이 특성이 됩니다.

머신러닝에서는 이러한 특성들을 사용하여 패턴을 학습합니다.

레이블 (Label)

지도 학습에서, 레이블은 각 데이터 포인트에 대한 정답 또는 결과값을 말합니다.

예를 들어, 사진이 고양이인지 개인지를 나타내는 태그와 같습니다.

지도 학습 (Supervised Learning)

지도 학습은 레이블이 있는 데이터를 사용하여 모델을 훈련시키는 방식입니다.

여기서 '지도'는 교사가 정답을 가르쳐 주는 것처럼, 모델에게 올바른 예측을 '가르치는' 과정을 의미합니다.

비지도 학습 (Unsupervised Learning)

비지도 학습은 레이블이 없는 데이터를 사용하여 모델을 훈련시키는 방식입니다.

이 경우, 모델은 데이터 내 숨겨진 구조나 패턴을 스스로 찾아내야 합니다.

과적합 (Overfitting)

과적합은 모델이 훈련 데이터에 너무 잘 맞춰져서 새로운 데이터에는 잘 작동하지 않는 상태를 말합니다.

학생이 시험문제만 잘 푸는 것과 비슷하며, 이는 모델이 일반화되지 못했음을 의미합니다.

하이퍼파라미터 (Hyperparameter)

하이퍼파라미터는 모델의 학습 과정을 제어하는 외부 설정값입니다.

이는 모델의 구조와 훈련 방식에 영향을 주며, 튜닝을 통해 모델의 성능을 개선할 수 있습니다.

"주차장 프로젝트에 필요한 더 이 터 는?"

데이터 수집

데이터 수집

데이터 전처리

데이터 라벨링

데이터 전처리

데이터 전처리

car_dataset

01_car.png

02_car.png

03_car.png

04_car.png

05_car.png

. . .

100_car.png

데이터 분리

100장의 자동차 사진

모델 과적합

모델 과적합

모델 훈련과 평가

1. 모델 훈련

- a. 마치 요리를 배우는 과정과 비슷합니다.
- b. 요리사(모델)가 다양한 재료(데이터)를 사용하여 요리(예측)하는 방법을 배웁니다.

2. 모델 평가

- a. 요리사가 만든 요리를 시식하여 맛(성능)을 평가하는 과정과 비슷합나다
- b. 요리의 맛을 여러 기준(성능 지표)으로 평가합니다.

성능지표

- 1. 정확도(Accuracy)
- 2. 정밀도(Precision)
- 3. 재현율(Recall)

모델 평가 지표

혼동 행렬 (Confusion Matrix)

혼동 행렬은 모델의 예측값과 실제값을 비교하여 다음과 같은 네 가지 결과를 도출하는 표입니다:

- True Positive (TP): 실제 Positive이고 예측도 Positive인 경우
- False Positive (FP): 실제 Negative인데 예측은 Positive인 경우
- False Negative (FN): 실제 Positive인데 예측은 Negative인 경우
- True Negative (TN): 실제 Negative이고 예측도 Negative인 경우

실제값

예측값

	Positive	Negative
Positive	True Positive	False Positive
Negative	False Negative	True Negative

모델 평가 지표

정밀도 (Precision)

정밀도는 모델이 Positive로 예측한 것 중에서 실제로 True인 비율을 나타냅니다.

공식: Precision = TP / TP + FP

재현율 (Recall)

재현율은 실제로 True인 것 중에서 모델이 Positive로 예측한 비율을 나타냅니다.

공식: Recall = TP / TP + FN

실제값

예측값

	경차	승용차	트럭
경차	100%	0	0
승용차	0	100%	0
트럭	0	0	100%

실제값

예측값

	경차	승용차	트럭
경차	100%	0	0
승용차	100%	0%	0
트럭	0	50%	50%

모델 작업 절차

