Estimation of Jump Variation in a Bayesian Model of High-Frequency Asset Returns

Brian Donhauser

Department of Economics University of Washington

June 14, 2012

Outline

Motivation and Previous Work

The Bayesian Model

Jump Variation in the Bayesian Model

Empirical Results

Simulation Results

Outline

Motivation and Previous Work

The Bayesian Model

Jump Variation in the Bayesian Model

Empirical Results

Simulation Results

Emergence of High-Frequency Financial Data

In the early 1990's, developments in

- the storage and vending of high-frequency financial data and
- computing power

laid the groundwork for research in high-frequency finance (Wood, 2000).

What to Do With High-Frequency Financial Data?

- financial economics: test theoretical market microstructure models
- financial econometrics: model high-frequency prices, volumes, and durations
- estimate lower-frequency quantities (e.g., conditional daily return variance)

WMT Jan 02, 2008

Simple Returns vs. Log Returns

If S_t is the spot price of an asset at minute t, then the *simple return* over the interval [t-1,t] is

$$R_t = \frac{S_t - S_{t-1}}{S_{t-1}}$$

and the logarithmic return is

$$r_t = \log(S_t) - \log(S_{t-1})$$
$$= \log(1 + R_t)$$
$$\approx R_t, \quad \text{for small } R_t$$

We prefer the latter because of additivity and infinite support.

A Mathematical Model for an Asset X

$$X \equiv (X_t)_{t \in [0,\infty)}$$

- an adapted, càdlàg stochastic process
- on a filtered complete probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, satisfying the usual hypothesis
- will represent an asset with log-price X_t at time t.

Toward a Simple Jump-Diffusion Model for X

Under mild regularity conditions:

$$r_t \equiv X_t - X_0 = \int_0^t a_u du + \int_0^t \sigma_u dW_u + J_t, \qquad 0 \le t < \infty$$

- ullet r_t is the *log-return* over the trading time interval [0,t]
- $W \in \mathcal{BM}$
- $a, \sigma \in \mathcal{PRE}$ are the spot drift and spot volatility of returns
- $J_t = \sum_{i=1}^{N_t} C_i$ is the cumulative jump process
- ullet N_t is a simple counting process of the number of jumps in the time interval [0,t]
- C_i is the size of the *i*th jump.

Revisiting the Motivating Question

Q: What is the return variance for WMT on January 2nd, 2008?

Q:

$$\operatorname{Var}\{r_t \mid \mathcal{F}_t\} = ?$$

where

$$\mathcal{F}_t \equiv \mathcal{F}\{a_u, \sigma_u\}_{u \in [0, t]}$$

$\operatorname{Var}\{r \mid \mathcal{F}\} = IV$

From Andersen et al. (2003, Thm. 2), if $(a, \sigma) \perp W$ and $J \equiv 0$,

$$r_t \mid \mathcal{F}_t \sim \mathcal{N}\left(\int_0^t a_u \, \mathrm{d}u, \int_0^t \sigma_u^2 \, \mathrm{d}u\right)$$

SO

$$E\{r_t \mid \mathcal{F}_t\} = \int_0^t a_u \, du$$
$$Var\{r_t \mid \mathcal{F}_t\} = IV_t$$

where

$$IV_t \equiv \int_0^t \sigma_u^2 \, \mathrm{d}t$$

Realized Variance: RV

For

- an asset X
- ullet on a time interval [0,t]
- with (n+1)-element partition

$$\mathcal{P}_n \equiv \{\tau_0, \tau_1, \dots, \tau_n\}, \qquad 0 = \tau_0 \le \tau_1 \le \dots \le \tau_n = t < \infty,$$

the realized variance

$$RV_t^{(n)} \equiv \sum_{i=1}^n r_i^2, \qquad 0 \le t < \infty$$

where

$$r_i \equiv X_{\tau_i} - X_{\tau_{i-1}}, \qquad i = 1, \dots, n$$

is the *i*-th log-return on \mathcal{P}_n .

$RV \rightarrow IV$

From Andersen et al. (2003); Barndorff-Nielsen and Shephard (2002),

$$RV_t^{(n)} \to IV_t$$

- ullet convergence ucp on [0,t]
- limit taken over all \mathcal{P}_n with $\lim_{n\to\infty} \|\mathcal{P}_n\| = 0$.

WMT Jan 02, 2008

RV for WMT on Jan 2, 2008

	100√.	$100\sqrt{252}\sqrt{\cdot}$
\overline{RV}	1.5	24.1

WMT Jan 02, 2008 - Mar 31, 2008

Estimating $Var\{r_t \mid \mathcal{F}_t\}$: Other Methods

- The realized quantity r_t^2
- GARCH (Bollerslev, 1986)
- Stochastic volatility (Melino and Turnbull, 1990; Taylor, 1994; Harvey et al., 1994; Jacquier et al., 1994)

$RV \rightarrow IV + JV$

Relaxing $J \equiv 0$, from Barndorff-Nielsen and Shephard (2004),

$$RV_t^{(n)} \to IV_t + JV_t \approx \text{Var}\{r_t \mid \mathcal{F}_t\}$$

where

$$JV_t \equiv \sum_{i=1}^{N_t} C_i^2.$$

Realized Bipower Variation: RBPV

For

- ullet an asset X
- ullet on a time interval [0,t]
- with (n+1)-element partition \mathcal{P}_n ,

the realized bipower variation

$$RBPV_t^{(n)} \equiv \sum_{i=2}^n |r_i| |r_{i-1}|, \qquad 0 \le t < \infty.$$

From Barndorff-Nielsen and Shephard (2004), under mild regularity conditions

$$\begin{split} \widehat{IV}_{\text{BNS04},t}^{(n)} &\equiv \frac{\pi}{2} RBPV_t^{(n)} \rightarrow IV_t \\ \widehat{JV}_{\text{BNS04},t}^{(n)} &\equiv RV_t^{(n)} - \widehat{IV}_{\text{BNS04},t}^{(n)} \rightarrow JV_t. \end{split}$$

WMT Jan 02, 2008

$\widehat{IV}_{\mathrm{BNS04}}, \widehat{JV}_{\mathrm{BNS04}}$ for WMT on Jan 2, 2008

	100√.	$100\sqrt{252}\sqrt{\cdot}$	%RV
\overline{RV}	1.5	24.1	100.0
$\widehat{JV}_{\mathrm{BNS04}}$	-0.1	-1.0	-0.2
$\widehat{IV}_{\mathrm{BNS04}}$	1.5	24.1	100.2

WMT Jan 02, 2008 - Mar 31, 2008

Summary of \widehat{JV}_{BNS04}

WMT: Jan 2, 2008 - Mar 31, 2008

	$100 * \left(\frac{\widehat{JV}_{\text{BNS04}}}{RV}\right)$
Min.	-3.5
1st Qu.	1.2
Median	3.6
Mean	4.8
3rd Qu.	8.1
Max.	20.0

Simulation Results for $\widehat{\mathit{JV}}_{\mathrm{BNS04}}$: MPE and MAPE

	# Jumps				
Est.	0	3	10	30	
$\overline{\widehat{JV}_{\mathrm{BNS04}}}$	0.3	-4.5	-12.7	-26.6	
$\widehat{IV}_{\mathrm{BNS04}}$	-0.4	4.1	12.7	26.4	

	# J	# Jumps		
Est.	0	3	10	30
$\overline{\widehat{JV}_{\mathrm{BNS04}}}$	3.3	5.4	12.7	26.6
$\widehat{IV}_{\mathrm{BNS04}}$	6.7	7.3	12.9	26.4

Estimating Jump Locations: LM Stat

Extending Barndorff-Nielsen and Shephard, Lee and Mykland (2008) define their jump statistic

$$LM_{l,\tau_i} \equiv \frac{r_i}{\widehat{\sigma_i}},$$

where

$$\widehat{\sigma_i}^2 \equiv \frac{1}{n} \widehat{IV}_{\text{BNS04},t}$$

and show that jumps are identified with perfect classification accuracy asymptotically.

Naïve Shrinkage Estimators: $\widehat{JV}_{\mathrm{NS}}, \widehat{IV}_{\mathrm{NS}}$

In previous work, I extended Lee and Mykland (2008) and defined naïve shrinkage estimators of JV, IV:

$$\widehat{JV}_{\mathrm{NS},t}^{(n)} \equiv \sum_{i=1}^{n} \left[F_{\xi}(LM_{g,\tau_{i}}) r_{i} \right]^{2}$$
$$\widehat{IV}_{\mathrm{NS},t}^{(n)} \equiv RV_{t}^{(n)} - \widehat{JV}_{\mathrm{NS},t}.$$

and showed their consistency.

WMT Jan 02, 2008

$\widehat{\mathit{IV}}_{\mathrm{NS}}, \widehat{\mathit{JV}}_{\mathrm{NS}}$ for WMT on Jan 2, 2008

	100√.	$100\sqrt{252}\sqrt{\cdot}$	%RV
RV	1.5	24.1	100.0
$\widehat{JV}_{ m NS}$ $\widehat{JV}_{ m BNS04}$	$0.2 \\ -0.1$	3.2 -1.0	1.7 - 0.2
$\widehat{IV}_{ m NS}$ $\widehat{IV}_{ m BNS04}$	1.5 1.5	23.8 24.1	98.3 100.2

WMT Jan 02, 2008 - Mar 31, 2008

WMT Jan 02, 2008 - Mar 31, 2008

Summary of $\widehat{JV}_{\rm NS}$

WMT: Jan 2, 2008 - Mar 31, 2008

	$100 * \left(\frac{\widehat{JV}_{\text{BNS04}}}{RV}\right)$	$100 * \left(\frac{\widehat{JV}_{\rm NS}}{RV}\right)$
Min.	-3.5	0.4
1st Qu.	1.2	8.9
Median	3.6	15.6
Mean	4.8	16.1
3rd Qu.	8.1	21.9
Max.	20.0	47.1

Simulation Results for $\widehat{\mathit{JV}}_{\mathrm{NS}}$: MPE and MAPE

	# Jumps				
Est.	0	3	10	30	
$ \overline{\widehat{JV}_{\rm NS}} $ $ \widehat{JV}_{\rm BNS04} $	1.3 0.3	-0.0 -4.5	-2.1 -12.7	-10.3 -26.6	
$\widehat{IV}_{\rm NS}$ $\widehat{IV}_{\rm BNS04}$	-1.4 -0.4	-0.4 4.1	2.1 12.7	10.0 26.4	

	# Jumps				
Est.	0	3	10	30	
$ \overline{\widehat{JV}_{\rm NS}} $ $ \widehat{JV}_{\rm BNS04} $	1.3	2.7	4.4	10.6	
	3.3	5.4	12.7	26.6	
	5.9	5.3	4.7	10.1	
	6.7	7.3	12.9	26.4	

Conclusion: Naïve Shrinkage Estimators

- ullet Simulations demonstrate superiority over $\widehat{JV}_{\mathrm{BNS04}}$:)
- Bounded above zero and below RV:)
- Non-model-based :(

Outline

Motivation and Previous Work

The Bayesian Model

Jump Variation in the Bayesian Model

Empirical Results

Simulation Results

Continuous → Discrete: The Reduced Model

Under assumptions and definitions to follow, the continuous jump-diffusion model reduces to a discrete model where we observe $r_i = \sigma_i x_i$, with

$$x_i = \mu_i + \epsilon_i, \qquad i = 1, \dots, n,$$

and

$$\epsilon_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$$
 with pdf ϕ

where μ_i and σ_i are unspecified jump and stochastic volatility processes.

Continuous → Discrete: Assumptions and Definitions

Assume,

- (i) (Zero Drift). $a_u = 0, \forall u \in [0, t],$
- (ii) (Homogenous Sampling). An (n+1)-element homogenous sampling of X_u over the time interval [0,t], $\{X_0,X_\delta,X_{2\delta},\ldots,X_{(n-1)\delta},X_t\}$, where $\delta=t/n$ is the width of the sampling interval,

and define for $i = 1, \ldots, n$,

- (i) (Interval Volatility). $\sigma_i \equiv \sigma_{[\delta(i-1), \delta i]}$.
- (ii) (Scaled Interval Jump). $\mu_i \equiv \frac{1}{\sigma_i} (J_{\delta i} J_{\delta(i-1)})$.
- (iii) (Log-Returns). $r_i \equiv X_{\delta i} X_{\delta(i-1)}$.
- (iv) (Scaled Log-Returns). $x_i \equiv \frac{1}{\sigma_i} r_i$.

JV and IV in the Discrete, Reduced Model

$$JV \approx \sum_{i=1}^{n} \sigma_i^2 \mu_i^2$$

$$IV \approx \sum_{i=1}^{n} \sigma_i^2$$

$$QV \approx \sum_{i=1}^{n} \sigma_i^2 + \sum_{i=1}^{n} \sigma_i^2 \mu_i^2.$$

We take these to define JV and IV in the discrete model.

The Discrete Bayesian Model

From Johnstone and Silverman (2004, 2005),

 σ_i, w, a

$$r_i = \sigma_i x_i \qquad i = 1, \dots, n, \qquad \text{(Observations)}$$

$$\mathcal{L}(x_i \mid \mu_i, \sigma_i) = \phi(x_i - \mu_i) \qquad i = 1, \dots, n, \qquad \text{(Likelihood)}$$

$$\pi(\mu_i) = \begin{cases} 1 - w & \text{for } \mu_i = 0 \\ w\gamma(\mu_i) & \text{for } \mu_i \neq 0, \end{cases} \qquad i = 1, \dots, n, \qquad \text{(Prior Jump Density)}$$

$$w = \pi \left\{ \mu \neq 0 \right\}, \qquad \text{(Prior Jump Probability)}$$

$$\gamma(\mu) = \frac{1}{2} a \exp(-a|\mu|), \qquad \text{(Prior Density of } \mu \mid \{\mu \neq 0\})$$

39 / 75

(Hyperparemeters)

Bayesian Model Estimation: Initial Steps

- Set a = 0.5 a priori
- ② Assume σ_i = σ a constant and take σ = $1.48\,\mathrm{MAD}\{r_1,\ldots,r_n\}$
- **3** Calculate $x_i = \frac{r_i}{\sigma}$ for $i = 1, \ldots, n$
- **4** Calculate w by marginal maximum likelihood of $\mathcal{L}(\check{w})$. I.e., take

$$w = \operatorname*{argmax}_{0 \leq \check{w} \leq 1} \sum_{i=1}^{n} \log \left\{ (1 - \check{w}) \phi(x_i) + \check{w} g(x_i) \right\}$$

where

$$g(x) \equiv (\phi * \gamma)(x) \equiv \int \phi(x - \mu)\gamma(\mu) d\mu$$

is interpreted as the *marginal density of* $x \mid \{\mu \neq 0\}$

5 For i = 1, ..., n, solve for the posterior density of $\mu_i \mid x_i ...$

Posterior Density of $\mu \mid x$

$$\pi(\mu \mid x)$$

After much algebra, we can write the posterior density of $\mu \mid x$ as

$$\pi(\mu \mid x) = \begin{cases} 1 - w(x) & \text{for } \mu = 0 \\ w(x)\gamma(\mu \mid x) & \text{for } \mu \neq 0, \end{cases}$$

where $\gamma(\mu \mid x)$ is the posterior density of $\mu \mid \{x, \mu \neq 0\}$ and $w(x) \equiv \pi(\mu \neq 0 \mid x)$ is the posterior non-zero jump probability

Posterior Density of $\mu \mid \{x, \mu \neq 0\}$ for Laplace prior $\gamma(\mu \mid x)$

For the Laplace prior,

$$\gamma(\mu \mid x) = \begin{cases} \frac{e^{-ax}}{D} \phi(\mu - x + a) & \text{for } \mu > 0 \\ \frac{e^{ax}}{D} \phi(\mu - x - a) & \text{for } \mu \le 0, \end{cases}$$

where
$$D = e^{-ax}\Phi(x-a) + e^{ax}\tilde{\Phi}(x+a)$$
.

Posterior Density Illustration

From Johnstone (2011):

Posterior Mean of $\mu \mid x$ for Laplace Prior

 $\hat{\mu}_{\pi}(x)$

Recall the posterior density of $\mu \mid x$ is given by

$$\pi(\mu \mid x) = \begin{cases} 1 - w(x) & \text{for } \mu = 0 \\ w(x)\gamma(\mu \mid x) & \text{for } \mu \neq 0. \end{cases}$$

Then the posterior mean of $\mu \mid x$ is

$$\hat{\mu}_{\pi}(x) = w(x)\hat{\mu}_{\gamma}(x)$$

$$= \underbrace{w(x)}_{\rightarrow 1} \underbrace{\left(x - a \frac{\{e^{-ax}\Phi(x-a) - e^{ax}\tilde{\Phi}(x+a)\}}{e^{-ax}\Phi(x-a) + e^{ax}\tilde{\Phi}(x+a)}\right)}_{\rightarrow (x-a)}$$

 $\rightarrow x - a$ for large x

in the case of Laplace prior density $\gamma(\mu)$

Outline

Motivation and Previous Work

The Bayesian Model

Jump Variation in the Bayesian Model

Empirical Results

Simulation Results

Posterior Mean of $JV \mid \mathbf{x}$: Naïve Approach

$$\widehat{JV}_{\mathrm{NEB},\ell_2}(\mathbf{x})$$

Recall that

$$JV \equiv \sum_{i=1}^{n} \sigma_i^2 \mu_i^2.$$

Then, a naïve estimation approach gives

$$\widehat{JV}_{\text{NEB},\ell_2}(\mathbf{x}) \equiv \sum_{i=1}^n \sigma_i^2 \hat{\mu}_{\pi,i}(x_i)^2.$$

From Jensen's inequality we expect this to under-represent the actual posterior mean of JV: $\widehat{JV}_{EB,\ell_2}(\mathbf{x})$. But, very easy to calculate!

Posterior Mean of $JV \mid \mathbf{x}$: Naïve Relation

 $\widehat{JV}_{\mathrm{EB},\ell_2}(\mathbf{x})$

$$\widehat{JV}_{\mathrm{EB},\ell_{2}}(\mathbf{x}) \equiv \mathrm{E}\left[JV \mid \mathbf{x}\right]$$

$$= \mathrm{E}\left[\sum_{i=1}^{n} \sigma_{i}^{2} \mu_{i}^{2} \mid \mathbf{x}\right]$$

$$= \sum_{i=1}^{n} \sigma_{i}^{2} \mathrm{E}\left[\mu_{i}^{2} \mid x_{i}\right]$$

$$= \sum_{i=1}^{n} \sigma_{i}^{2} \hat{\mu}_{\pi,i}(x_{i})^{2} + \sigma_{i}^{2} \mathrm{Var}[\mu_{i} \mid x_{i}]$$

$$= \widehat{JV}_{\mathrm{NEB},\ell_{2}}(\mathbf{x}) + \sum_{i=1}^{n} \sigma_{i}^{2} \mathrm{Var}[\mu_{i} \mid x_{i}].$$

Posterior Mean of $JV \mid \mathbf{x}$ for Laplace Prior

$$\widehat{JV}_{\mathrm{EB},\ell_2}(\mathbf{x})$$

So then,

$$\widehat{JV}_{\mathrm{EB},\ell_2}(\mathbf{x}) = \sum_{i=1}^n \sigma_i^2 \widehat{\mu_{\pi,i}^2}(x_i)$$

where, after skipping a large amount of algebra,

$$\widehat{\mu_{\pi}^2}(x) = w(x)\widehat{\mu_{\gamma}^2}(x)$$

$$= w(x)\left(x^2 + a^2 + 1 - 2ax\left\{\frac{e^{-ax}\Phi(x-a) - e^{ax}\tilde{\Phi}(x+a)}{D}\right\}\right)$$

$$-2a\left\{\frac{e^{-ax}\phi(x-a)}{D}\right\}\right)$$

$$\to (x-a)^2 + 1 \quad \text{for large } x$$

$$= \widehat{\mu}_{\pi}(x)^2 + 1 \quad \text{for large } x$$

for the Laplace prior. Closed form!

Posterior Median of $JV \mid \mathbf{x}$ for Laplace Prior

 $\widehat{JV}_{\mathrm{EB},\ell_1}(\mathbf{x})$

No simple closed form result. Can still get a numerical result via the following procedure:

- Simulate one value $\mu_{i,1}$ from each of the n posterior jump densities $\pi_i(\mu_i \mid x_i)$
- 2 Calculate $JV_1 = \sum_{i=1}^n \sigma_i^2 \mu_{i,1}^2$
- **3** Repeat steps 1-2 k-times, returning $\{JV_1, \ldots, JV_k\}$
- Then, for large k, $\widehat{JV}_{\mathrm{EB},\ell_1}(\mathbf{x}) \approx \mathrm{Median}\{JV_1,\ldots,JV_k\}$

Outline

Motivation and Previous Work

The Bayesian Model

Jump Variation in the Bayesian Model

Empirical Results

Simulation Results

WMT Jan 02, 2008

$\widehat{\mathit{JV}}_{EB,\ell_2}$ for WMT on Jan 2, 2008

	Window	100√.	$100\sqrt{252}\sqrt{\cdot}$	%RV
$\overline{\widehat{JV}_{\mathrm{EB},\ell_2}}$	full	0.8	12.1	25.4
	60min	0.7	11.7	23.8
	30min	0.6	8.7	13.2
	15min	0.5	8.4	12.1
	10min	0.6	9.4	15.3
	05min	0.7	11.6	23.3
$\overline{\widehat{IV}_{\mathrm{EB},\ell_2}}$	full	1.3	20.8	74.6
	60min	1.3	21.0	76.2
	30min	1.4	22.4	86.8
	15min	1.4	22.6	87.9
	10min	1.4	22.1	84.7
	05min	1.3	21.1	76.7

$\widehat{\mathit{IV}}_{EB}, \widehat{\mathit{JV}}_{EB}$ for WMT on Jan 2, 2008

	100√.	$100\sqrt{252}\sqrt{\cdot}$	%RV
\overline{RV}	1.5	24.1	100.0
$\widehat{JV}_{\mathrm{EB},\ell_1}$	0.5	8.5	12.5
$\widehat{\mathit{JV}}_{\mathrm{EB},\ell_2}$	0.6	8.7	13.2
$\widehat{JV}_{ m NS}$	0.2	3.2	1.7
$\widehat{JV}_{\mathrm{BNS04}}$	-0.1	-1.0	-0.2
$\widehat{IV}_{\mathrm{EB},\ell_1}$	1.4	22.5	87.5
$\widehat{IV}_{\mathrm{EB},\ell_2}$	1.4	22.4	86.8
$\widehat{IV}_{ m NS}$	1.5	23.8	98.3
$\widehat{IV}_{\mathrm{BNS04}}$	1.5	24.1	100.2

WMT Jan 02, 2008 - Mar 31, 2008

WMT Jan 02, 2008 - Mar 31, 2008

WMT Jan 02, 2008 - Mar 31, 2008

Summary of $\widehat{JV}_{\mathrm{EB},\ell_2}$

WMT: Jan 2, 2008 - Mar 31, 2008

	$100 * \left(\frac{\widehat{JV}_{\text{BNS04}}}{RV}\right)$	$100 * \left(\frac{\widehat{JV}_{NS}}{RV}\right)$	$100 * \left(\frac{\widehat{JV}_{\mathrm{EB},\ell_2}}{RV}\right)$
Min.	-3.5	0.4	0.0
1st Qu.	1.2	8.9	19.4
Median	3.6	15.6	25.6
Mean	4.8	16.1	26.3
3rd Qu.	8.1	21.9	33.0
Max.	20.0	47.1	52.7

Outline

Motivation and Previous Work

The Bayesian Model

Jump Variation in the Bayesian Model

Empirical Results

Simulation Results

Simulation Model

(Number of Observations). n = 390.

(**Observations**). For $i = 1, \ldots, n$,

$$r_i = \sigma_i x_i$$
,

where

$$x_i = \mu_i + \epsilon_i, \qquad \epsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1).$$

(Interval Volatility). $\sigma_i = \sigma = 0.000638 \approx 0.20 / \sqrt{252 * 390}$.

(**Scaled Jumps**). $\mu_i \mid \mu_i \neq 0 \sim \mathcal{U}(-s, s)$, with s deterministically set equal to 4, 7, 10, and 15.

(**Number of Jumps**). Deterministically set equal to 0, 3, 10, and 30.

(**Jump Locations**). Each uniformly chosen from i = 1, ..., n (**Number of Simulations**). m = 5000

Estimator Evaluation Criteria: MPE, MAPE

We define the mean percentage error and mean absolute percentage error for an estimator \widehat{JV} of JV as

$$MPE(\widehat{JV}) = 100 * E\left[\frac{\widehat{JV} - JV}{QV}\right]$$
$$MAPE(\widehat{JV}) = 100 * E\left[\frac{|\widehat{JV} - JV|}{QV}\right]$$

and similarly for an estimator \widehat{IV} of IV

$$MPE(\widehat{IV}) = 100 * E \left[\frac{\widehat{IV} - IV}{QV} \right]$$
$$MAPE(\widehat{IV}) = 100 * E \left[\frac{|\widehat{IV} - IV|}{QV} \right]$$

Estimator Evaluation Criteria: Sample MPE and MAPE

We approximate MPE and MAPE by their sample counterparts

$$\begin{aligned} & \text{MPE}(\widehat{JV}) \approx \frac{100}{m} \sum_{j=1}^{m} \frac{\overline{JV_j} - JV_j}{QV_j} \\ & \text{MAPE}(\widehat{JV}) \approx \frac{100}{m} \sum_{j=1}^{m} \frac{|\widehat{JV_j} - JV_j|}{QV_j} \\ & \text{MPE}(\widehat{IV}) \approx \frac{100}{m} \sum_{j=1}^{m} \frac{\widehat{IV_j} - IV_j}{QV_j} \\ & \text{MAPE}(\widehat{IV}) \approx \frac{100}{m} \sum_{j=1}^{m} \frac{|\widehat{IV_j} - IV_j|}{QV_j} \end{aligned}$$

MPE for s = 4

# Jumps							
Est.	0	3	10	30			
$\overline{\widehat{JV}_{\mathrm{NEB},\ell_2}}$	0.3	-2.1	-6.5	-15.5			
$\widehat{JV}_{\mathrm{EB},\ell_2}$	0.8	-0.4	-2.1	-6.3			
$\widehat{JV}_{ m NS}$	1.3	-0.5	-4.0	-15.1			
$\widehat{JV}_{\mathrm{BNS04}}$	0.2	-2.0	-7.3	-19.1			
$\overline{\widehat{IV}_{\mathrm{NEB},\ell_2}}$	-0.2	2.0	6.9	15.6			
$\widehat{IV}_{\mathrm{EB},\ell_2}$	-0.7	0.3	2.5	6.4			
$\widehat{IV}_{ m NS}$	-1.4	0.1	3.9	14.8			
$\widehat{IV}_{\mathrm{BNS04}}$	-0.1	1.9	7.7	19.1			

MAPE for s = 4

# Jumps							
Est.	0	3	10	30			
$\overline{\widehat{JV}_{\mathrm{NEB},\ell_2}}$	0.3	2.7	6.8	15.5			
$\widehat{JV}_{\mathrm{EB},\ell_2}$	0.8	3.3	5.6	8.5			
$\widehat{JV}_{ m NS}$	1.3	2.1	4.8	15.1			
$\widehat{JV}_{\mathrm{BNS04}}$	3.3	3.7	7.6	19.1			
$\overline{\widehat{IV}_{\mathrm{NEB},\ell_2}}$	5.8	5.9	7.9	15.7			
$\widehat{IV}_{\mathrm{EB},\ell_2}$	6.0	6.2	6.7	8.5			
$\widehat{IV}_{ m NS}$	5.9	5.7	6.4	14.9			
$\widehat{IV}_{\mathrm{BNS04}}$	6.7	6.4	8.7	19.2			

MPE for s = 7

	# Jumps						
Est.	0	3	10	30			
$\overline{\widehat{JV}_{\mathrm{NEB},\ell_2}}$	0.3	-2.1	-5.6	-11.4			
$\widehat{JV}_{\mathrm{EB},\ell_2}$	0.8	1.4	1.2	-1.7			
$\widehat{JV}_{ m NS}$	1.3	-0.0	-2.1	-10.3			
$\widehat{JV}_{\mathrm{BNS04}}$	0.2	-4.3	-12.6	-26.1			
$\widehat{IV}_{\mathrm{NEB},\ell_2}$	-0.2	2.2	5.4	11.5			
$\widehat{IV}_{\mathrm{EB},\ell_2}$	-0.7	-1.3	-1.4	1.8			
$\widehat{IV}_{ ext{NS}}$	-1.4	-0.4	2.1	10.0			
$\widehat{IV}_{ ext{BNS04}}$	-0.1	4.4	12.3	26.2			

MAPE for s = 7

# Jumps						
Est.	0	3	10	30		
$\overline{\widehat{JV}_{\mathrm{NEB},\ell_2}}$	0.3	3.3	6.3	11.4		
$\widehat{JV}_{\mathrm{EB},\ell_2}$	0.8	3.9	4.8	4.7		
$\widehat{JV}_{ m NS}$	1.3	2.7	4.4	10.6		
$\widehat{JV}_{\mathrm{BNS04}}$	3.3	5.3	12.6	26.1		
$\overline{\widehat{IV}_{\mathrm{NEB},\ell_2}}$	5.8	5.8	6.5	11.5		
$\widehat{IV}_{\mathrm{EB},\ell_2}$	6.0	6.1	5.1	3.7		
$\widehat{IV}_{ m NS}$	5.9	5.3	4.7	10.1		
$\widehat{IV}_{\mathrm{BNS04}}$	6.7	7.3	12.6	26.2		

MPE for s = 10

	# Jumps						
Est.	0	3	10	30			
$\overline{\widehat{JV}_{\mathrm{NEB},\ell_2}}$	0.3	-2.3	-6.0	-9.6			
$\widehat{JV}_{\mathrm{EB},\ell_2}$	0.8	1.4	-0.1	-2.7			
$\widehat{JV}_{ m NS}$	1.3	0.2	-1.0	-6.4			
$\widehat{JV}_{\mathrm{BNS04}}$	0.2	-6.3	-15.6	-27.4			
$\widehat{IV}_{\mathrm{NEB},\ell_2}$	-0.2	2.3	6.0	9.8			
$\widehat{IV}_{\mathrm{EB},\ell_2}$	-0.7	-1.4	0.1	2.9			
$\widehat{IV}_{ m NS}$	-1.4	-0.6	1.0	6.1			
$\widehat{IV}_{\mathrm{BNS04}}$	-0.1	6.3	15.5	27.7			

MAPE for s = 10

# Jumps							
Est.	0	3	10	30			
$\overline{\widehat{JV}_{\mathrm{NEB},\ell_2}}$	0.3	3.9	6.5	9.7			
$\widehat{JV}_{\mathrm{EB},\ell_2}$	0.8	4.0	4.2	4.3			
$\widehat{JV}_{ m NS}$	1.3	3.1	4.2	6.9			
$\widehat{JV}_{ ext{BNS04}}$	3.3	7.1	15.6	27.4			
$\overline{\widehat{IV}_{\mathrm{NEB},\ell_2}}$	5.8	5.0	6.3	9.8			
$\widehat{IV}_{\mathrm{EB},\ell_2}$	6.0	5.1	3.6	3.3			
$\widehat{IV}_{ m NS}$	5.9	4.8	3.5	6.2			
$\widehat{IV}_{\mathrm{BNS04}}$	6.7	7.8	15.6	27.7			

MPE for s = 15

	# Jumps						
Est.	0	3	10	30			
$\widehat{JV}_{\mathrm{NEB},\ell_2}$	0.3	-2.7	-5.4	-7.9			
$\widehat{JV}_{\mathrm{EB},\ell_2}$	0.8	0.6	-1.3	-4.0			
$\widehat{JV}_{ m NS}$	1.3	0.2	-0.4	-3.7			
$\widehat{JV}_{\mathrm{BNS04}}$	0.2	-7.8	-16.0	-25.0			
$\widehat{IV}_{\mathrm{NEB},\ell_2}$	-0.2	2.7	5.4	7.9			
$\widehat{IV}_{\mathrm{EB},\ell_2}$	-0.7	-0.6	1.3	4.0			
$\widehat{IV}_{ m NS}$	-1.4	-0.6	0.4	3.5			
$\widehat{IV}_{\mathrm{BNS04}}$	-0.1	7.8	16.0	25.0			

MAPE for s = 15

# Jumps						
Est.	0	3	10	30		
$\overline{\widehat{JV}_{\mathrm{NEB},\ell_2}}$	0.3	4.3	6.0	7.9		
$\widehat{JV}_{\mathrm{EB},\ell_2}$	0.8	4.1	4.0	4.5		
$\widehat{JV}_{ m NS}$	1.3	3.6	3.8	4.5		
$\widehat{JV}_{\mathrm{BNS04}}$	3.3	8.4	16.0	25.0		
$\widehat{IV}_{\mathrm{NEB},\ell_2}$	5.8	4.5	5.5	7.9		
$\widehat{IV}_{\mathrm{EB},\ell_2}$	6.0	4.1	2.6	4.0		
$\widehat{IV}_{ m NS}$	5.9	3.9	2.2	3.6		
$\widehat{IV}_{\mathrm{BNS04}}$	6.7	8.8	16.0	25.0		

Conclusion: Empirical Bayesian Estimators

- Simulations demonstrate superiority over $\widehat{JV}_{\rm BNS04}$ and $\widehat{JV}_{\rm NS}$:)
- Model-based :)
- Bounded above zero :)
- Not necessarily bounded below RV:(
- May depend on window of volatility estimation :(

Bibliography I

- Andersen, T., T. Bollerslev, F. Diebold, and P. Labys (2003). Modeling and forecasting realized volatility. *Econometrica* 71(2), 579–625.
- Barndorff-Nielsen, O. and N. Shephard (2002). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. *Journal of the Royal Statistical Society. Series B (Statistical Methodology) 64*(2), 253–280.
- Barndorff-Nielsen, O. E. and N. Shephard (2004). Power and bipower variation with stochastic volatility and jumps. *Journal of Financial Econometrics* 2(1), 1–37.
- Barndorff-Nielsen, O. E. and N. Shephard (2006). Econometrics of testing for jumps in financial economics using bipower variation. *Journal of Financial Econometrics* 4(1), 1–30.
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. *Journal of econometrics* 31(3), 307–327.

Bibliography II

- Harvey, A., E. Ruiz, and N. Shephard (1994). Multivariate stochastic variance models. *The Review of Economic Studies* 61(2), 247–264.
- Jacquier, E., N. Polson, and P. Rossi (1994). Bayesian analysis of stochastic volatility models. *Journal of Business & Economic* Statistics 12(4), 371–389.
- Johnstone, I. and B. Silverman (2005). Ebayesthresh: R programs for empirical bayes thresholding. *Journal of Statistical Software* 12(8), 1–38.
- Johnstone, I. M. (2011). Gaussian estimation: Sequence and multiresolution models.
- Johnstone, I. M. and B. W. Silverman (2004). Needles and straw in haystacks: Empirical bayes estimates of possibly sparse sequences. *The Annals of Statistics* 32(4), 1594–1649.

Bibliography III

- Lee, S. S. and P. A. Mykland (2008). Jumps in financial markets: A new nonparametric test and jump dynamics. *Review of Financial studies* 21(6), 2535–2563.
- Melino, A. and S. Turnbull (1990). Pricing foreign currency options with stochastic volatility. *Journal of Econometrics* 45(1-2), 239–265.
- Taylor, S. (1994). Modeling stochastic volatility: A review and comparative study. *Mathematical finance* 4(2), 183–204.
- Wood, R. (2000). Market microstructure research databases: History and projections. *Journal of Business & Economic Statistics*, 140–145.