Threaded Mandelbrot

Extend your first Mandelbrot program to use multiple threads to speed up computation. Use at least two different strategies for dividing the work.

Include a short (2-3 paragraph) written report about your findings. The report must include a description of your strategies for dividing work and your hypothesis for which will be superior and why. The report must also include your results and speed up calculations for both of your strategies.

Testing the difference in processing times for the creation of a threaded mandelbrot against that of a serial mandelbrot

Method 1

Create a thread for groups of rows. Where a group = total rows / number of threads

Macbook Pro

Threads	1	2	3	4	5	10	15	20
	974	469	556	366	368	201	172	154
	945	458	554	368	379	209	164	148
	924	456	551	363	377	211	164	151
	911	455	558	364	375	243	160	146
	912	450	566	361	380	204	163	155
	918	456	563	364	376	211	164	152
	916	453	561	367	372	207	160	156
	914	452	581	364	369	200	166	159
	925	455	596	363	365	204	164	150
	930	457	561	365	361	199	167	148
Average	926	456	564	364	372	208	164	151
Standard Deviation	18	4	13	1	5	12	3	3

Raspberry Pi

Threads	1	2	3	4	5	10	15	20
	3899	2009	2368	1598	1567	1065	1028	1035
	3899	1973	2325	1627	1634	1123	1085	1045
	3898	1970	2336	1627	1609	1190	1096	1017
	3898	1976	2365	1598	1590	1127	1025	1056
	3896	1971	2376	1616	1599	1143	1091	1059
	3916	1978	2323	1626	1633	1194	1036	1047
	3916	1969	2345	1617	1568	1202	1045	1051
	3917	2013	2347	1601	1551	1176	1061	1007
	3919	1993	2321	1626	1574	1102	1055	1036
	3915	1973	2325	1623	1593	1131	1037	1025
Average	3907	1982	2343	1615	1591	1145	1055	1037
Standard Deviation	9	15	19	11	26	42	25	16

Method 2

Method 2 is very similar to method 1 just flipping rows to columns.

Threads	1	2	3	4	5	10	15	20
	930	680	407	408	357	228	186	169
	934	648	406	413	346	197	179	162
	952	662	406	400	347	197	175	156
	952	652	412	400	345	201	170	161
	943	652	404	395	347	206	176	154
	927	663	402	398	342	199	180	160
	950	664	398	410	347	197	184	156
	921	647	403	408	347	194	174	162
	942	663	410	415	339	201	174	155
	994	656	399	430	336	196	177	157
Average	944	658	404	407	345	201	177	159
Standard Deviation	19	9	4	9	5	9	4	4

Raspberry Pi

Threads	1	2	3	4	5	10	15	20
	3913	2761	1739	1708	1580	1111	1058	1038
	3915	2748	1749	1745	1563	1146	1085	1033
	3914	2791	1775	1718	1542	1105	1049	1077
	3915	2762	1779	1745	1450	1117	1121	1055
	3905	2789	1765	1765	1471	1081	1114	1048
	3913	2761	1769	1769	1523	1102	1158	1020
	3911	2772	1740	1762	1489	1068	1083	1057
	3910	2785	1754	1762	1473	1085	1060	1079
	3912	2769	1755	1749	1446	1073	1101	1081
	3905	2773	1744	1745	1519	1197	1132	1037
Average	3911	2771	1756	1746	1505	1108	1096	1052
Standard Deviation	3	13	13	19	44	36	33	20

Conclusion

After looking over the results of both methods, it's pretty clear to see that they're almost identical. It's also interesting to see how the number of threads play a role. On the macbook, it would appear that it keeps on improving until about 20 threads, which is where it starts to level out.

Speed Up	Macbook Pro	Pi
Method I	6.1	3.7
Method II	5.9	3.7