Recovery from Security Intrusions in Cloud Computing

Shuttle: Intrusion Recovery in PaaS

Dissertation to obtain the Master Degree in Telecommunications and Informatics Engineering

Dário Nascimento

68210 - MERC Instituto Superior Técnico Universidade de Lisboa

Supervisor:

Prof. Miguel Pupo Correia

Agenda

1 Motivation

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Motivation

Number of critical applications in Cloud is increasing

Number of **Intrusions** in Cloud is **increasing**

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Motivation

Reasons:

- Sofware Flaws (e.g. Shellshock)
- Configuration and usage mistakes (malicious or accidental)
- Corrupted legitimate requests (e.g. SQL-Injection)

Compromise:

- Integrity
- Availability
- Confidentiality

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Intrusions happen in cloud applications!

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Recover the application's integrity when intrusions happen

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Related Work

- Operating Systems: Taser, Retro
- **Databases:** ITDB, Phoenix
- Web-Services: Goel et. al, Warp, Aire, Undo for Operators

Issues:

- All require setup and configuration
- Limited to 1 application servers and 1 database instance
- Cause application downtime during the recovery process

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Challenges

Develop an Intrusion Recovery system for Cloud Computing

- Remove the intrusion effects
- Support applications deployed in various instances
- Available without setup
- Avoid application downtime
- Cost efficient
- Recover timely

Architecture

1 Motivation

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Software as a Service (Saas)

Applications

Platform as a Service (Paas)

Application Containers/Servers, Software Stacks

Infrastructure as a Service (laas)

Storage, Network, Servers

Architecture

1 Motivation

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Normal Execution

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Architecture

Replay Process

- Identify the intrusion actions
- 2. Create new application and database instances
- Load a snapshot previous to intrusion instant (create a new branch)
- 4. Order requests by their start instant during first execution
- 5. Replay requests
 - Database operations shall replay in same order as original
- 6. Block the incoming requests
- Replay the requests retrieved during the replay process
- 8. Change branch

Architecture

1 Motivation

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

	Full-Replay Selective-Replay	
1 Cluster (Serial)	✓	✓
Clustered	✓	X

Full-Replay: Replay every operation after snapshot

Selective-Replay: Replay only affected (tainted) operations

Serial: Consider all dependency graph as a cluster

Clustered: Independent clusters can be replayed concurrently

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Evaluation

Accuracy: Intrusion Scenarios:

- 1. Malicious requests
- 2. Software vulnerabilities
- 3. External Channels

	# Intrusion	# tainted	# Selective Replay	# Full Replay
1 a	106	0	< 605	> 38 620
1 b	58	14	< 379	> 38 620
1 c	48	52	< 253	> 38 620
2 a	4 338	0	-	> 38 620
2b	18 286	1 278	-	> 38 620
3	> 2 000	-	-	> 38 620

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Evaluation Performance

Application deployed in Amazon Web Services

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Evaluation Performance

Restrain Duration

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Evaluation Performance

Scalability

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Conclusions

- New intrusion recovery service integrated in PaaS
- Supports applications running in various instances backed by distributed databases;
- Order the replayed user requests considering their accesses to databases;

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Conclusions

- Accomplishing intrusion recovery without service downtime using a branching mechanism;
- Leveraging the resource elasticity and pay-per-use model to reduce the recovery time and costs;

Globally transaction-consistent snapshot of for NoSQL databases;

Remove intrusions by redeploy the applications;

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Future Work

Eleger as mais importantes (com o professor)

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Publications

Published in my computer

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

References

[Taser] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara, "The taser intrusion recovery system," in SOSP. ACM, 2005.

[Retro] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek, "Intrusion recovery using selective re-execution." USENIX, 2010.

[ITDB] P.Liu, J.Jing, P.Luenam and Y.Wang, "The design and implementation of a self healing database system," Journal of Intelligent Information Systems, vol. 23, no. 3, Nov. 2004.

[Goel] I. Akkus and A. Goel, "Data recovery for web applications," in DSN. IEEE, Jun. 2010, pp. 81–90

[Warp] R. Chandra, T. Kim, and M. Shah, "Intrusion recovery for database-backed web applications," in SOSP. ACM, 2011.

[Aire] R.Chandra, T.Kim and N.Zeldovich, "Asynchronous intrusion recovery for interconnected web services," in SOSP. ACM, 2013.

[UndoForOperators] A. B. Brown and D. A. Patterson, "Undo for operators: Building an undoable e-mail store," in USENIX ATC, 2003.

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

Evaluation Schedule Conclusion

Thank you for your attention

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion

2 Related Work

3 Proposed Solution

Goals Architecture

4 Conclusion