Universität Konstanz

Julian Beisch

Konstanz, 07.06.2024

Magnete sind Überall (nicht nur am Kühlschrank):

- In jedem elektrischen Motor.
 - Lautsprecher
- Medizin
 - MRI
- Digitaler Speicher
 - HDD
 - Skyrmions?
- Computing Spintronics Magnonen?
- Forschung (Nowak, Gönnenwein, Bossini....)

Wikipedia

Magnete sind Überall (nicht nur am Kühlschrank):

- In jedem elektrischen Motor.
 - Lautsprecher
- Medizin
 - MRI
- Digitaler Speicher
 - HDD
 - Skyrmions?
- Computing Spintronics Magnonen?
- Forschung (Nowak, Gönnenwein, Bossini....)

Alles aber keine Neuheiten

- IK2
- Festkörperphysik

Alles aber keine Neuheiten

- IK2
- Festkörperphysik

Alles aber keine Neuheiten

- IK2
- Festkörperphysik

Wechselwirkender Magnetismus

- Quantenmechanischer Ursprung von Spins nicht relevant
- Vorstellung von Ørsted (Uhlenbeck-Goudsmith)
 - e⁻ rotieren um eigene Achse
 - Begründet magnetisches Moment
- Noch einfacheres Bild, jeder Spin ein Stabmagnet mit dem magnetischen Moment µ_{Bohr}

Gebundende e

Quasi-freie e

a Diamag

Lamor Diamagnetismus

Landau Diamagnetismus

Para

Langevin
Paramagnetismus

Pauli Paramagnetismus

WWM

Kooperativer Magnetismus

Ferromagnetismus

Aufgabe

Wie groß müsste ein magnetisches Feld sein um einen Spin bei Raumtemperatur auszurichten?

Aufgabe

Wie groß müsste ein magnetisches Feld sein um einen Spin bei Raumtemperatur auszurichten?

− Ergebnis: ~10³ T

Würdigung: Sehr groß und nicht physikalisch!

- "Beweis": Simulation

Weiss-Model eines Ferromagneten

$$\mathbf{Modell} \quad B_{\mathrm{Mf}} = g \cdot \lambda \cdot M$$

NI 80.000.000 Gauß = 8000 T

Kritik

10

"Das Feld [der Atome] ist jedoch mehr als tausendmal schwächer als das Molekularfeld [...]. Diese Interpretationsschwierigkeit [soll] weniger als Einwand denn als Hinweis für die Suche nach neuen Hypothesen [...] angesehen werden [...]."

- Model war dennoch auf den Prinzipien der statistischen Physik begründet und "formal befriedigend". (Heisenberg)
- Model war erfolgreich, nur die großen Felder sorgten für Unmut.

Heisenbergs Lösung

Etwa 30 Jahre später konnte Heisenberg die Probleme mit Hilfe der Austauschwechselwirkung lösen

Diese wollen wir nun in Teilen herleiten

Heisenbergs Lösung

Etwa 30 Jahre später konnte Heisenberg die Probleme mit Hilfe der Austauschwechselwirkung lösen

- Diese wollen wir nun in Teilen herleiten.
- Betrachten wir zwei Elektronen (eines Atoms)
- Wir definieren $\,q_i=ec{r}_i,s_i\,$ mit $\,i\in 1,2\,$

Heisenbergs Lösung

- Aufteilen der Wellenfunktion in einen Orts-teil und einen Spin-teil
 - $\varPsi(q_1,q_2) = \phi(\vec{r}_1,\vec{r}_2) \cdot \chi(s_1,s_2)$
- Dies ist noch kein physikalischer Zustand
 - Muss noch symmetrisiert werden.
 - Elektronen => Antisymmetrisierung

Heisenbergs Lösung

- Aufteilen der Wellenfunktion in einen Orts-teil und einen Spin-teil
 - $\varPsi(q_1,q_2) = \phi(\vec{r}_1,\vec{r}_2) \cdot \chi(s_1,s_2)$
- Dies ist noch kein physikalischer Zustand
 - Muss noch symmetrisiert werden.
 - Elektronen => Antisymmetrisierung
 - Daraus folgen zwei Fälle
- $\label{eq:phi} \vec{\phi}(\vec{r}_1,\vec{r}_2) = \phi(\vec{r}_2,\vec{r}_1) \Leftrightarrow \chi(s_1,s_2) = -\chi(s_2,s_1)$
- $\phi(\vec{r}_1,\vec{r}_2) = -\phi(\vec{r}_2,\vec{r}_1) \Leftrightarrow \chi(s_1,s_2) = \chi(s_2,s_1)$

Heisenbergs Lösung

$$- \quad \varPsi(q_1,q_2) = \phi(\vec{r}_1,\vec{r}_2) \cdot \chi(s_1,s_2)$$

- Dies ist noch kein physikalischer Zustand
 - Muss noch symmetrisiert werden.
 - Elektronen => Antisymmetrisierung
 - Daraus folgen zwei Fälle

07.06.2024

$$\begin{split} \Psi_{\rm S} &= \frac{1}{\sqrt{2}} \left[\phi(\vec{r}_1, \vec{r}_2) + \phi(\vec{r}_2, \vec{r}_1) \right] \cdot \chi_S \\ \Psi_{\rm T} &= \frac{1}{\sqrt{2}} \left[\phi(\vec{r}_1, \vec{r}_2) - \phi(\vec{r}_2, \vec{r}_1) \right] \cdot \chi_T \end{split}$$

$$\varPsi_{\mathrm{T}} = \frac{1}{\sqrt{2}} \left[\phi(\vec{r}_1, \vec{r}_2) - \phi(\vec{r}_2, \vec{r}_1) \right] \cdot \chi_T$$

(sym.)

Heisenbergs Lösung

Hamiltonian

$$\overline{} \mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \mathcal{H}_{12} + \mathcal{H}_{\text{Mag}}$$

- $\mathcal{H}_{12} \propto rac{e^2}{ec{r}_{12}}$ "nur" eine Coulomb Wechselwirkung
- Gesamtenergie $U=\int \Psi^\star \mathcal{H} \Psi \mathrm{d}V$

Heisenbergs Lösung

Hamiltonian

$$\overline{} \mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \mathcal{H}_{12} + \mathcal{H}_{\text{Mag}}$$

–
$$\mathcal{H}_{12} \propto \frac{e^2}{\vec{r}_{12}}$$
 "nur" eine Coulomb Wechselwirkung

- Gesamtenergie
$$U=\int \Psi^\star \mathcal{H} \Psi \mathrm{d}V$$

-
$$U_S = I_1 + I_2 + K_{12} + J_{12}$$

$$U_T = I_1 + I_2 + K_{12} - J_{12}$$

$$\begin{split} U &= \frac{1}{2} \iint [\varphi_1^*(r_1) \varphi_2^*(r_2) \pm \varphi_2^*(r_1) \varphi_1^*(r_2)] (\mathcal{X}_1 + \mathcal{X}_2 + \mathcal{X}_{12}) \\ &\times [\varphi_1(r_1) \varphi_2(r_2) \pm \varphi_2(r_1) \varphi_1(r_2)] \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &= \frac{1}{2} \left\{ \int \varphi_1^*(r_1) \mathcal{X}_1 \varphi_1(r_1) \, \mathrm{d}V_1 + \int \varphi_2^*(r_1) \mathcal{X}_1 \varphi_2(r_1) \, \mathrm{d}V_1 \right. \\ &+ \int \varphi_1^*(r_2) \mathcal{X}_2 \varphi_1(r_2) \, \mathrm{d}V_2 + \int \varphi_2^*(r_2) \mathcal{X}_2 \varphi_2(r_2) \, \mathrm{d}V_2 \\ &+ \iint \varphi_1^*(r_1) \varphi_2^*(r_2) \mathcal{X}_{12} \varphi_1(r_1) \varphi_2(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &+ \iint \varphi_2^*(r_1) \varphi_1^*(r_2) \mathcal{X}_{12} \varphi_2(r_1) \varphi_1(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &\pm \iint \varphi_1^*(r_1) \varphi_2^*(r_2) \mathcal{X}_{12} \varphi_2(r_1) \varphi_1(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &\pm \iint \varphi_2^*(r_1) \varphi_1^*(r_2) \mathcal{X}_{12} \varphi_2(r_1) \varphi_1(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &\pm \iint \varphi_2^*(r_1) \varphi_1^*(r_2) \mathcal{X}_{12} \varphi_1(r_1) \varphi_2(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &\pm \iint \varphi_2^*(r_1) \varphi_1^*(r_2) \mathcal{X}_{12} \varphi_1(r_1) \varphi_2(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &= I_1 + I_2 + K_{12} \pm J_{12}, \end{split}$$

Soshin Chikazumi 2019

Heisenbergs Lösung

Ergebnis und Interpretation

$$- U_S - U_T = 2 \cdot J_{12} = 2 \cdot \int \int \phi_1^{\star}(\vec{r}_1) \phi_2^{\star}(\vec{r}_2) \mathcal{H}_{12} \phi_1(\vec{r}_2) \phi_2(\vec{r}_1) \, \mathrm{d}V_1 \, \mathrm{d}V_2$$

- Gibt eine Energiedifferenz zwischen dem Singlett und dem Triplett Zustand basierend auf der Coulombenergie und der asymmetrischen Wellenfunktion.
- Abhängig vom Überlapp der Wellenfunktionen
 - Eisen/Nickel-Salz Lösungen sind nicht ferromagnetisch
- Je nach Situation ist also der Triplett oder der Singlett Zustand energetisch günstiger

Heisenbergs Lösung

- Ergebnis und Interpretation
 - $U_S U_T = 2 \cdot J_{12}$
- Konstruktion eines "effeketiven Hamiltonian":
 - Zur Unterscheidung von T u. S geht sowohl S² und S₁S₂

-
$$S^2 = (S_1 + S_2)^2 = \underbrace{S_1^2 + S_2^2}_{= \text{const.}} + 2S_1 \cdot S_2$$

-
$$\mathcal{H}_{\text{eff.}}\left(S_1\cdot S_2=-rac{3}{4}
ight)=U_S$$

$$\mathcal{H}_{ ext{eff.}}\left(S_1\cdot S_2=rac{1}{4}
ight)=U_T$$

Heisenbergs Lösung

Ergebnis und Interpretation

-
$$U_S - U_T = 2 \cdot J_{12}$$

– Konstruktion eines "effeketiven Hamiltonian":

-
$$\mathcal{H}_{\text{eff.}} = \frac{1}{4} \left(U_S + 3 \cdot U_T \right) - \left(U_S - U_T \right) \cdot S_1 \cdot S_2$$

Heisenbergs Lösung

Ergebnis und Interpretation

-
$$U_S - U_T = 2 \cdot J_{12}$$

– Konstruktion eines "effektiven Hamiltonian":

-
$$\mathcal{H}_{\text{eff.}} = \underbrace{\frac{1}{4} \left(U_S + 3 \cdot U_T \right)}_{=\text{const.}} - \underbrace{\left(U_S - U_T \right)}_{=2 \cdot J_{12}} \cdot S_1 \cdot S_2$$

Heisenbergs Lösung

- Ergebnis und Interpretation
 - $U_S U_T = 2 \cdot J_{12}$
- Konstruktion eines "effektiven Hamiltonian":

-
$$\mathcal{H}_{\text{eff.}} = -2J_{12} \cdot S_1 \cdot S_2$$

- Obacht mit dem Vorzeichen und der 2
- $^ J > 0 \Leftrightarrow U_S > U_T \Leftrightarrow FM$ Grundzustand
- $J < 0 \Leftrightarrow U_S < U_T \Leftrightarrow AFM$ Grundzustand

Heisenbergs Erweiterung

-
$$\mathcal{H}_{\mathrm{Heisenberg}} = -\sum_{\langle i,j \rangle} J_{ij} \cdot S_i \cdot S_j$$

"Beweis durch Simulation"

Erfolge

 Luis Neél verwendete das Heisenberg Modell zur Entdeckung/Beschreibung von Antiferro-und Ferrimagnetismus.

$$\overrightarrow{\delta} = \lambda \overrightarrow{\delta}_{\alpha} + \mu \overrightarrow{\delta}_{\delta}, \qquad (9)$$
 en désignant par λ et μ les proportions des ions magnétiques réparties sur chacun des deux groupes de sites.

Neel 1948

- Simulationen/Berechnungen von Magnonen/Dispersionen
 - Aktuelle Forschung zu (gequetschten) Magnonen
 - Forschungsgebiet der Spintronik
- Nicht nur direkte Wechselwirkung

Weitere Arten von magnetischer **Ordnung**

- Ferrimagnete (1936)
 - Antiferromagnete mit unterschiedlicher Magnetisierung für verschiedene Untergitter

Helimagnetismus (1959)

Nature 11,1601(2020)

- Spin Glässer
 - Zufällige aber kooperatives einfrieren von Spins
- Frustrierter Magnetismus (1950-77)
 - Kollinear und Nicht-kollinear

MPI 30_Frustrated-Spins

Wikipedia

Obacht

Pfeildarstellung der Spins ist semi-klassisch. Stets beachten dass es sich um quantenmechansiche Magnetisierungsdichten handelt.

NEWSFLASH

TECHNOLOGY

INTERNATIONAL BUSINESS TIMES"

Revolutionary 'Magic Magnet' Altermagnetism Paves the Way for Advanced Electronic Devices

20.02.24

Experimental Evidence for a New Type of Magnetism

January 18, 2024 • Physics 17, s10

Physik

Süddeutsche Zeitung

Eine neue Art von Magnetismus

28.02.24

ALTERMAGNETISMUS

Neue Art von Magnetismus entdeckt Spektrum

22.02.24

Hall Effekt mit B-Feld

Mit B-Feld bereits bekannt

Hall Effekt mit B-Feld

Mit B-Feld bereits bekannt

Hall Effekt mit B-Feld

Mit B-Feld bereits bekannt

Anormaler Hall Effekt

Kein externes Feld B = 0

- FM: $M \neq 0$ $U_{\text{Hall}} \neq 0$

Hall Effekt mit B-Feld

Mit B-Feld bereits bekannt

Anormaler Hall Effekt

Kein externes Feld B = 0

- FM:
$$M \neq 0$$
 $U_{\rm Hall} \neq 0$

- AFM:
$$M=0$$
 $U_{\mathrm{Hall}}=0$

Hall Effekt mit B-Feld

Mit B-Feld bereits bekannt

Anormaler Hall Effekt

Kein externes Feld B = 0

- FM:
$$M \neq 0$$
 $U_{\rm Hall} \neq 0$

- AFM:
$$M=0$$
 $U_{\rm Hall}=0$

- ??:
$$M = 0$$
 $U_{\text{Hall}} \neq 0$

(in manchen Richtungen)

Symmetrien

Zeitumkehroperator

- Gegeben durch den Operator $\,\,{\mathcal T}:t o\,-t\,$
- Angewandt auf ein paar bekannte Größen

$$\mathcal{T}: v \to \frac{\mathrm{d}x}{-\,\mathrm{d}t} = -v$$

$$\mathcal{T}: j \to \frac{\mathrm{d}q}{-\,\mathrm{d}t} = -j$$

$$\mathcal{T}: B \to -B$$

$$\mathcal{T}: S \to -S$$

Symmetrien

Zeitumkehroperator

- Gegeben durch den Operator $\mathcal{T}:t \to -t$
- Angewandt auf ein paar bekannte Größen

$$\mathcal{T}: v \to \frac{\mathrm{d}x}{-\,\mathrm{d}t} = -v$$

$$\mathcal{T}: j \to \frac{\mathrm{d}q}{-\,\mathrm{d}t} = -j$$

$$\mathcal{T}: B \to -B$$

$$\mathcal{T}: S \to -S$$

Anschauung

- Vorstellung von Ørsted (Uhlenbeck-Goudsmith)
 - e- haben eine Ausdehnung
 - e rotieren um eigene Achse
 - Daraus folgt magnetisches Moment(Spin)

- Zeitumkehr bedeutet nun dass die Rotationsrichtung umgekehrt wird
 - Folglich auch das magnetische Moment(Spin)

Symmetrien

Zeitumkehroperator

- Gegeben durch den Operator $\mathcal{T}:t o -t$
- Angewandt auf ein paar bekannte Größen

$$\mathcal{T}: v \to \frac{\mathrm{d}x}{-\,\mathrm{d}t} = -v$$

$$\mathcal{T}: j \to \frac{\mathrm{d}q}{-\mathrm{d}t} = -j$$

$$\mathcal{T}: B \to -B$$

$$\mathcal{T}: S \to -S$$

Spin-Gruppen

- Eine Symmetrie stellen wir da durch
 - Spin-Raum $[T_s || T_g]$ Gitter-Raum

 Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Ferromagnetismus

Starke Magnetisierung

07.06.2024

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Ferromagnetismus: Nein

Starke Magnetisierung

Keine Zeitumkehrsymmetrie

Folge: Bandaufteilung

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Antiferromagnetismus

Keine Magnetisierung

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Folge: Bandentartung

Symmetrien: Zeitumkehr + Translation $[C_2||\mathbf{t}]$

Zeitumkehr + Inversion $[C_2||\bar{E}|]$

(Zeitumkehr)

 $\mathbf{R}_s^{\mathrm{II}}$

M=0

Antiferromagnetismus:Ja

Keine Magnetisierung

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Altermagnetismus

Keine Magnetisierung

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Antiferromagnetismus: Ja

Keine Magnetisierung

Folge: Bandentartung?

Symmetrien: Zeitumkehr + Rotation $[C_2||A|]$

Keine Zeitumkehr

 $\mathbf{R}_{s}^{\mathrm{III}}$ M=0

Symmetrie Beschreibung der Phasen

Ferromagnetismus

- Spin-Gruppe: $[E||\mathbf{G}|]$

Antiferromagnetismus

Spin-Gruppe:

$$[E||\mathbf{G}] + [C_2||\mathbf{G}]$$

Altermagnetismus

Spin-Gruppe:

$$[E||\mathbf{H}] + [C_2||\mathbf{AH}]$$

Symmetrie Beschreibung der Phasen

Ferromagnetismus

- Spin-Gruppe: $[E||\mathbf{G}]$
- Magnetisierung
- Isotrope aufgeteilte Energiebänder

Antiferromagnetismus

- Spin-Gruppe:

$$[E||\mathbf{G}] + [C_2||\mathbf{G}]$$

- Keine Magnetisierung
- Isotrope entartete Energiebänder
 - (Im nichtrelativistischen Limit)

Altermagnetismus

Spin-Gruppe:

$$[E||\mathbf{H}] + [C_2||\mathbf{AH}]$$

- Keine Magnetisierung
- Alternierende Spin-Polarisation
 - Im k- und r-Raum
- Gleichbesetze und aufgeteilte Up u. Down Bänder
 - (Im nichtrelativistischen Limit)

<u>Altermagnetismus</u>

Erkennungsmerkmale

Regeln zur Identifizierung

- 1. gerade Anzahl magn. Atome in EZ
- 2. keine Inversionssym. zwischen den magn. Atome der Untergitter
- 3. Untergitter durch kristallographische Rotationstrafo. verbunden

<u>Altermagnetismus</u>

Vorteile/Einfluss

- Anomaler Hall Effekt/GMR/TMR
- Robust, weil keine Magnetisierung
 - keine Streumagentisierung (aufwendiges SAFS(GMR-Stacks) im Moment)
 - Und deutlich besser!
- Spinwellen im THz bereich
- Spin Dynamik im ps-Bereich (FM µs-Bereich)
- "einfache" Symmetrie Klassifizierung erlaubt Folgerung der beobachteten Eigenschaften
 - Relativistische Effekt nicht nötig aber addierbar.

