

Optimisation en nombres entiers

Recherche Opérationnelle GC-SIE

Branch & bound

Algorithmes

On distingue 3 types d'algorithmes

1. Algorithmes exacts

- Ils trouvent la solution optimale
- Ils peuvent prendre un nombre exponentiel d'itérations

2. Algorithmes d'approximation

- Ils produisent une solution sous-optimale.
- Ils produisent une mesure de qualité de la solution.
- Ils ne prennent pas un nombre exponentiel d'itérations.

Branch & bound Michel Bierlaire -3

Algorithmes

3. Algorithmes heuristiques

- Ils produisent une solution sous-optimale.
- Ils ne produisent pas de mesure de qualité de la solution.
- En général, ils ne prennent pas un nombre exponentiel d'itérations.
- On observe empiriquement qu'ils trouvent une bonne solution rapidement.

Branch & bound - Michel Bierlaire

Relaxation

 Soit un programme linéaire mixte en nombres entiers

$$min c^Tx + d^Ty + e^Tz$$

S.C.

$$Ax + By + Cz = b$$
$$x,y,z \ge 0$$

y entier

$$z \in \{0,1\}$$

Branch & bound

Michel Bierlaire

-5

Relaxation

• Le programme linéaire

$$min c^Tx + d^Ty + e^Tz$$

S.C.

$$Ax + By + Cz = b$$
$$x,y \ge 0$$

$$0 \le z \le 1$$

est appelé sa relaxation linéaire.

Branch & bound

Michel Bierlaire

Idées:

- Diviser pour conquérir
- Utilisation de bornes sur le coût optimal pour éviter d'explorer certaines parties de l'ensemble des solutions admissibles.

Branch & bound Michel Bierlaire

Branch & Bound

Branch

• Soit F l'ensemble des solutions admissibles d'un problème

min c^Tx s.c. $x \in F$

- On partitionne F en un une collection finie de sousensembles F₁,...,F_k.
- On résout séparément les problèmes

min c^Tx s.c. $x \in F_i$

Par abus de langage, ce problème sera appelé F_i également.

Branch & bound – Michel Bierlaire –8

- A priori, les sous-problèmes peuvent être aussi difficiles que le problème original.
- Dans ce cas, on applique le même système.
- On partitionne le/les sous-problèmes.

Branch & bound - Michel Bierlaire -10

Bound:

On suppose que pour chaque sous-problème
 min c^Tx s.c. x ∈ F_i
 on peut calculer efficacement une borne inférieure
 b(F_i) sur le coût optimal, i.e.

$$b(F_i) \leq min_{x \in F_i} c^T x$$

 Typiquement, on utilise la relaxation linéaire pour obtenir cette borne

-Branch & bound -Michel Bierlaire -12

Algorithme général:

- A chaque instant, on maintient
 - une liste de sous-problèmes actifs,
 - le coût U de la meilleure solution obtenue jusqu'alors.
 - Valeur initiale de U : soit ∞ , soit c^Tx pour un x admissible connu.

Branch & bound - Michel Bierlaire -13

Branch & Bound

Algorithme général (suite):

- Une étape typique est :
- Sélectionner un sous-problème actif F_i
- Si F_i est non admissible, le supprimer. Sinon, calculer b(F_i).
- 3. Si $b(F_i) \ge U$, supprimer F_i .
- Si b(F_i) < U, soit résoudre F_i directement, soit créer de nouveaux sous-problèmes et les ajouter à la liste des sous-problèmes actifs.

Branch & bound – Michel Bierlaire –14

• Soit le problème F en forme canonique

$$\min x_1 - 2x_2$$

s.c. $-4x_1 + 6x_2 \le 9$

 $x_1 + x_2 \le 4$

 $x_1, x_2 \ge 0$

x₁, x₂ entiers

-Branch & bound -Michel Bierlaire -15

Branch & Bound

- b(F_i) sera le coût optimal de la relaxation linéaire.
- Si la solution de la relaxation est entière, pas besoin de partitionner le sous-problème.
- Sinon, on choisit un x*_i non entier, et on crée deux sous-problèmes en ajoutant les contraintes :

$$x_i \leq \lfloor x^*_i \rfloor$$
 et $x_i \geq \lceil x^*_i \rceil$

• Ces contraintes sont violées par x*.

Branch & bound - Michel Bierlaire -16

- U = +∞
- Liste des sous-problèmes actifs : {F}
- Solution de la relax. de F : x* = (1.5,2.5)
- b(F) = -3.5
- Création des sous-problèmes en rajoutant les contraintes

$$x_2 \le \lfloor x^*_2 \rfloor = 2$$
$$x_2 \ge \lceil x^*_2 \rceil = 3$$

Branch & bound

Michel Bierlaire

-17

Branch & Bound

	F ₁		F ₂
	min x ₁ – 2x ₂		min x ₁ – 2x ₂
s.c.	$-4x_1 + 6x_2 \le 9$	s.c.	$-4x_1 + 6x_2 \le 9$
	$x_1 + x_2 \le 4$		$x_1 + x_2 \le 4$
	$x_1, x_2 \ge 0$		$x_1, x_2 \ge 0$
	$x_2 \ge 3$		$x_2 \le 2$
	x ₁ , x ₂ entiers		x ₁ , x ₂ entiers

Liste des sous-problèmes actifs : {F,F₁,F₂}

Branch & bound

Michel Bierlaire

- U = +∞
- Liste des sous-problèmes actifs : {F,F₂}
- Solution de la relax. de F_2 : $x^* = (0.75,2)$
- $b(F_2) = -3.25$
- Création des sous-problèmes en rajoutant les contraintes

$$x_1 \le \lfloor x_1^* \rfloor = 0$$
$$x_1 \ge \lceil x_1^* \rceil = 1$$

Branch & bound

Michel Bierlaire

Branch & bound			
F ₂₁	F ₂₂		
$min x_1 - 2x_2$	min x ₁ – 2x ₂		
s.c. $-4x_1 + 6x_2 \le 9$	s.c. $-4x_1 + 6x_2 \le 9$		
$x_1 + x_2 \le 4$	$x_1 + x_2 \le 4$		
$\mathbf{x_1},\mathbf{x_2} \geq 0$	$x_1, x_2 \ge 0$		
$\mathbf{x_2} \leq 2$	x ₂ ≤ 2		
x ₁ ≥ 1	$x_1 \le 0$		
x ₁ , x ₂ entiers	x ₁ , x ₂ entiers		
-Branch & bound	-Michel Bierlaire	-21	

- U = +∞
- Liste des sous-problèmes actifs : {F,F2, F21, F22}
- Solution de la relax. de F₂₁ : x* = (1,2)
- (1,2) est solution de F₂₁
- $b(F_{21}) = -3$
- U = -3

Branch & bound

Michel Bierlaire

-23

Branch & Bound

- U = -3
- Liste des sous-problèmes actifs : {F, F₂, F₂₂}
- Solution de la relax. de F₂₂ : x* = (0,1.5)
- $b(F_{22}) = -3 \ge U$
- Liste des sous-problèmes actifs : {F, F₂}
- Solution de F₂ = (1,2)
- Solution de F = (1,2).

Branch & bound

Michel Bierlaire

Branch & Bound

Problème binaire du sac à dos

- Deux simplifications
- 1. Les variables sont binaires.
- 2. La relaxation linéaire peut être résolue efficacement par un algorithme glouton: prendre d'abord les articles à meilleur rendement, jusqu'à atteindre la capacité.

-Branch & bound -Michel Bierlaire -26

- Une société dispose de 1 400 000 F à investir.
- Les experts proposent 4 investissements possibles

	Coût	Bénéfice	Rendement
Inv. 1	500 000	1 600 000	3.20
Inv. 2	700 000	2 200 000	3.14
Inv. 3	400 000	1 200 000	3.00
Inv. 4	300 000	800 000	2.67

Branch & bound

Michel Bierlaire

27

Branch & Bound

• Relaxation de F (U=-∞) :

_		Coût	Bénéfice	Rendement
1	Inv. 1	500 000	1 600 000	3.20
1	Inv. 2	700 000	2 200 000	3.14
0.5	Inv. 3	400 000	1 200 000	3.00
	Inv. 4	300 000	800 000	2.67

- Relaxation de F : x*=(1,1,0.5,0)
- b(F) = 4 400 000 > U (! On maximise)
- $F_1: x_3 = 1$ $F_2: x_3 = 0$

Branch & bound

Michel Bierlaire

• Relaxation de F₁ (U=-∞) :

		Coût	Bénéfice	Rendement
1	Inv. 1	500 000	1 600 000	3.20
5/7	Inv. 2	700 000	2 200 000	3.14
<u>1</u>	Inv. 3	<u>400 000</u>	1 200 000	3.00
0	Inv. 4	300 000	800 000	2.67

- Relaxation de F₁: x*=(1,5/7,1,0)
- b(F₁) = 4 371 429 > U
- $F_{11}: x_2 = 0$ $F_{12}: x_2 = 1$

Branch & bound

Michel Bierlaire

• Relaxation de F_{11} (U=- ∞):

		Coût	Bénéfice	Rendement
1	Inv. 1	500 000	1 600 000	3.20
<u>0</u>	Inv. 2	<u>700 000</u>	2 200 000	3.14
<u>1</u>	Inv. 3	<u>400 000</u>	1 200 000	3.00
1	Inv. 4	300 000	800 000	2.67

- Relaxation de F₁₁ : x*=(1,0,1,1)
- $b(F_{11}) = 3600000 > U$
- U = 3 600 000

-Branch & bound -Michel Bierlaire

• Relaxation de F₁₂ (U₁₁=3 600 000) :

_		Coût	Bénéfice	Rendement
3/5	Inv. 1	500 000	1 600 000	3.20
<u>1</u>	Inv. 2	<u>700 000</u>	2 200 000	3.14
<u>1</u>	Inv. 3	<u>400 000</u>	1 200 000	3.00
0	Inv. 4	300 000	800 000	2.67

- Relaxation de F₁₂: x*=(3/5,1,1,0)
- b(F₁₂) = 4 360 000 > U
- $F_{121}: x_1 = 0$ $F_{122}: x_1 = 1$

Branch & bound

Michel Bierlaire

• Relaxation de F₁₂₁ (U₁₁=3 600 000) :

		Coût	Bénéfice	Rendement
<u>0</u>	Inv. 1	<u>500 000</u>	1 600 000	3.20
<u>1</u>	Inv. 2	<u>700 000</u>	2 200 000	3.14
<u>1</u>	Inv. 3	<u>400 000</u>	1 200 000	3.00
1	Inv. 4	300 000	800 000	2.67

- Relaxation de F_{121} : $x^*=(0,1,1,1)$ b(F_{121}) = 4 200 000 > U
- U = 4200000

Branch & bound Michel Bierlaire

• Relaxation de F₁₂₂ (U₁₂₁=4 200 000) :

		Coût	Bénéfice	Rendement
<u>1</u>	Inv. 1	<u>500 000</u>	1 600 000	3.20
<u>1</u>	Inv. 2	<u>700 000</u>	2 200 000	3.14
<u>1</u>	Inv. 3	<u>400 000</u>	1 200 000	3.00
?	Inv. 4	300 000	800 000	2.67

- Relaxation de F₁₂₂ : non admissible
- Supprimer F₁₂₂

Branch & bound Michel Bierlaire

• Relaxation de F₂ (U₁₂₁=4 200 000) :

_		Coût	Bénéfice	Rendement
1	Inv. 1	500 000	1 600 000	3.20
1	Inv. 2	700 000	2 200 000	3.14
<u>0</u>	Inv. 3	<u>400 000</u>	1 200 000	3.00
2/3	Inv. 4	300 000	800 000	2.67

- Relaxation de F₂: x*=(1,1,0,2/3)
 b(F₂) = 4 333 333 > U
- $F_{21}: x_4 = 0$ $F_{22}: x_4 = 1$

Branch & bound

Michel Bierlaire

• Relaxation de F₂₁ (U₁₂₁=4 200 000) :

		Coût	Bénéfice	Rendement
1	Inv. 1	500 000	1 600 000	3.20
1	Inv. 2	700 000	2 200 000	3.14
<u>0</u>	Inv. 3	<u>400 000</u>	1 200 000	3.00
0	Inv. 4	300 000	800 000	2.67

- Relaxation de F₂₁: x*=(1,1,0,0)
 b(F₂₁) = 3 800 000 ≤ U
- Supprimer F₂₁

Branch & bound Michel Bierlaire

• Relaxation de F₂₂ (U₁₂₁=4 200 000) :

_		Coût	Bénéfice	Rendement
1	Inv. 1	500 000	1 600 000	3.20
6/7	Inv. 2	700 000	2 200 000	3.14
<u>0</u>	Inv. 3	<u>400 000</u>	1 200 000	3.00
1	Inv. 4	300 000	800 000	2.67

Relaxation de F₂₂: x*=(1,6/7,0,1)
 b(F₂₂) = 4 285 714 > U

 $F_{221}: x_2 = 0$ $F_{222}: x_2 = 1$

Branch & bound

Michel Bierlaire

• Relaxation de F₂₂₁ (U₁₂₁=4 200 000) :

_		Coût	Bénéfice	Rendement
1	Inv. 1	500 000	1 600 000	3.20
<u>0</u>	Inv. 2	<u>700 000</u>	2 200 000	3.14
<u>0</u>	Inv. 3	<u>400 000</u>	1 200 000	3.00
<u>1</u>	Inv. 4	<u>300 000</u>	800 000	2.67

- Relaxation de F₂₂₁: x*=(1,0,0,1)
 b(F₂₂₁) = 2 400 000 ≤ U
- Supprimer F₂₂₁

Branch & bound Michel Bierlaire 46

• Relaxation de F₂₂₂ (U₁₂₁=4 200 000) :

		Coût	Bénéfice	Rendement
4/5	Inv. 1	500 000	1 600 000	3.20
<u>1</u>	Inv. 2	<u>700 000</u>	2 200 000	3.14
<u>0</u>	Inv. 3	<u>400 000</u>	1 200 000	3.00
<u>1</u>	Inv. 4	<u>300 000</u>	800 000	2.67

Relaxation de F₂₂₂: x*=(4/5,1,0,1)

 $b(F_{222}) = 4 \ 280 \ 000 > U$ $F_{2221} : x_1 = 0$ $F_{2222} : x_1 = 1$

Branch & bound

Michel Bierlaire

• Relaxation de F₂₂₂ (U₁₂₁=4 200 000) :

		Coût	Bénéfice	Rendement
?	Inv. 1	500 000	1 600 000	3.20
<u>1</u>	Inv. 2	<u>700 000</u>	2 200 000	3.14
<u>0</u>	Inv. 3	<u>400 000</u>	1 200 000	3.00
<u>1</u>	Inv. 4	300 000	800 000	2.67

- Relaxation de F_{2221} : $x^*=(0,1,0,1)$ b(F_{2221}) = 3 000 000 \leq U
- F₂₂₂₂ non admissible

Branch & bound

Michel Bierlaire

Notes:

- Seuls 7 combinaisons ont été considérées (F₁₁,F₁₂₁,F₁₂₂,F₂₁,F₂₂₁,F₂₂₂₁,F₂₂₂₂)
- Une énumération complète aurait considéré 2⁴=16 combinaisons

-Branch & bound Michel Bierlaire -5