STAR ROUTING: Entre Ruteo de Vehículos y Vertex Cover

Guido Tagliavini Ponce

2 de agosto de $2017\,$

C	c		
С		C	
		C	
	С	С	

Modelado del problema

Modelado del problema

Modelado del problema

STAR ROUTING

INSTANCIA: G = (V, E) un grafo simple y no dirigido, y

 $X\subseteq E. \\$

SALIDA: Un camino de G, que cubra X, de longitud mínima.

Convenciones:

STAR ROUTING

INSTANCIA: G = (V, E) un grafo simple y no dirigido, y

 $X\subseteq E. \\$

SALIDA: Un camino de G, que cubra X, de longitud mínima.

Convenciones:

Abreviamos SR a STAR ROUTING.

STAR ROUTING

INSTANCIA: G = (V, E) un grafo simple y no dirigido, y $X \subseteq E$.

SALIDA: Un camino de G, que cubra X, de longitud mínima.

Convenciones:

- Abreviamos SR a STAR ROUTING.
- A las aristas de X las llamamos clientes.

STAR ROUTING

INSTANCIA: G = (V, E) un grafo simple y no dirigido, y $X \subseteq E$.

SALIDA: Un camino de G, que cubra X, de longitud mínima.

Convenciones:

- Abreviamos SR a STAR ROUTING.
- A las aristas de X las llamamos *clientes*.
- Decimos que un vértice u *cubre* a una arista *e*, si u es un extremo de *e*. Este concepto se extiende a conjuntos de vértices, caminos, y conjuntos de aristas.

STAR ROUTING

INSTANCIA: G = (V, E) un grafo simple y no dirigido, y

 $X \subseteq E$.

SALIDA: Un camino de G, que cubra X, de longitud mínima.

STAR ROUTING

INSTANCIA: G = (V, E) un grafo simple y no dirigido, y

 $X \subseteq E$.

SALIDA: Un camino de G, que cubra X, de longitud mínima.

Observaciones:

• G es cualquier grafo, no necesariamente una grilla.

STAR ROUTING

INSTANCIA: G = (V, E) un grafo simple y no dirigido, y $X \subset E$.

SALIDA: Un camino de G, que cubra X, de longitud mínima.

- G es cualquier grafo, no necesariamente una grilla.
- G no tiene pesos. Buscamos optimizar la *cantidad* de aristas que usa el camino.

STAR ROUTING

INSTANCIA: G = (V, E) un grafo simple y no dirigido, y $X \subset E$.

SALIDA: Un camino de G, que cubra X, de longitud mínima.

- G es cualquier grafo, no necesariamente una grilla.
- G no tiene pesos. Buscamos optimizar la *cantidad* de aristas que usa el camino.
- La respuesta del problema es un camino. No nos interesa conocer las esquinas donde debemos detenernos.

STAR ROUTING

INSTANCIA: G = (V, E) un grafo simple y no dirigido, y $X \subset E$.

SALIDA: Un camino de G, que cubra X, de longitud mínima.

- G es cualquier grafo, no necesariamente una grilla.
- G no tiene pesos. Buscamos optimizar la *cantidad* de aristas que usa el camino.
- La respuesta del problema es un camino. No nos interesa conocer las esquinas donde debemos detenernos.
- La versión de decisión asociada al problema es la obvia.

Ejemplos

- (a) y (b) son soluciones óptimas.
- (c) es una solución factible pero no óptima.

Parte 1: Estudio de la complejidad de SR, restringiendo G a distintas clases de grafos.

Parte 1: Estudio de la complejidad de SR, restringiendo G a distintas clases de grafos.

Parte 2: Algoritmos exactos para SR, para G arbitrario.

Parte 1: Estudio de la complejidad de SR, restringiendo G a distintas clases de grafos.

Parte 2: Algoritmos exactos para SR, para G arbitrario.

Parte 3: Algoritmos aproximados para SR, para distintas restricciones de G.

Parte 1: Complejidad de SR

Teorema SR sobre grafos completos es NP-c.

Teorema SR sobre grafos completos es NP-c.

Idea de la demo: reducción desde VERTEX COVER.

Teorema SR sobre grafos completos es NP-c.

Idea de la demo: reducción desde VERTEX COVER.

VC

INSTANCIA: G = (V, E) un grafo y $k \in \mathbb{Z}_{\geq 0}$.

SALIDA: ¿Existe un subconjunto de V que cubra E, de cardinal menor o igual a k?

Teorema SR sobre grafos completos es NP-c.

Calcular un vertex cover mínimo

$$G = K(V)$$
 $X = E$

Cubrir aristas azules con un camino

Teorema SR sobre grafos completos es NP-c.

Calcular un vertex cover mínimo

$$G = K(V)$$
 $X = E$

Cubrir aristas azules con un camino

Teorema SR sobre grafos completos es NP-c.

Calcular un vertex cover mínimo

$$G = K(V)$$
 $X = E$

Cubrir aristas azules con un camino

Corolario SR general es NP-c.

Teorema SR sobre árboles está en P. Más aún, hay un algoritmo de tiempo lineal que lo resuelve.

Teorema SR sobre árboles está en **P**. Más aún, hay un algoritmo de tiempo lineal que lo resuelve.

Idea de la demo:

Teorema SR sobre árboles está en **P**. Más aún, hay un algoritmo de tiempo lineal que lo resuelve.

Idea de la demo:

• Mirar el árbol como un árbol enraizado.

Complejidad de SR sobre árboles

Teorema SR sobre árboles está en P. Más aún, hay un algoritmo de tiempo lineal que lo resuelve.

Idea de la demo:

- Mirar el árbol como un árbol enraizado.
- Algoritmo: PD bottom-up, desde las hojas hacia la raíz, calculando varios valores auxiliares, a partir de los cuales calculamos el resultado final.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

¿Qué es una representación implícita?

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

uuQué es una representación implícita? Es una forma de representación física de la entrada (el grafo G y el subconjunto de aristas X).

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

uuQué es una representación implícita? Es una forma de representación física de la entrada (el grafo G y el subconjunto de aristas X).

Representación tradicional Espacio $\sim |V| + |E| + |X|$

Representación implícita

Espacio
$$\sim 1 + |X|$$

Teorema SR sobre grafos grilla, usando una *representación implícita*, es **NP-c**.

Observaciones:

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Observaciones:

• No es polinomialmente equivalente a una representación tradicional.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Observaciones:

- No es polinomialmente equivalente a una representación tradicional.
- Tiene sentido para la clase de grafos grilla, que tienen una topología regular.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Idea de la demo: reducción desde PATH TSP rectilíneo.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Idea de la demo: reducción desde PATH TSP rectilíneo.

PTSP

INSTANCIA: G = (V, E) un grafo completo, $c : E \to \mathbb{Z}_{\geq 0}$ los pesos de G y $k \in \mathbb{Z}_{\geq 0}$.

SALIDA: ¿Existe un camino hamiltoniano de G, de peso menor o igual a k?

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Idea de la demo: reducción desde PATH TSP rectilíneo.

PTSP

INSTANCIA: G = (V, E) un grafo completo, $c : E \to \mathbb{Z}_{\geq 0}$ los pesos de G y $k \in \mathbb{Z}_{\geq 0}$.

SALIDA: ¿Existe un camino hamiltoniano de G, de peso menor o igual a k?

Si además los vértices de V son puntos del plano, de coordenadas enteras, y c es la distancia Manhattan entre ellos, entonces el problema se llama PTSP rectilíneo. Este problema es NP-c.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Idea de la demo: reducción desde PATH TSP rectilíneo.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Problema: un recorrido que cubre los clientes de SR podría ser más corto que uno que visita los vértices de PTSP.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Problema: un recorrido que cubre los clientes de SR podría ser más corto que uno que visita los vértices de PTSP.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Teorema SR sobre grafos grilla, usando una representación implícita, es **NP-c**.

Teorema SR sobre grafos grilla, usando una representación implícita, es **NP-c**.

Teorema SR sobre grafos grilla, usando una representación implícita, es **NP-c**.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Idea clave de la demo:

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Idea clave de la demo:

 Cuanto más refinamos, más se parecen los caminos que cubren los clientes de SR a los caminos que visitan los vértices de PTSP.

Teorema SR sobre grafos grilla, usando una representación implícita, es NP-c.

Idea clave de la demo:

- Cuanto más refinamos, más se parecen los caminos que cubren los clientes de SR a los caminos que visitan los vértices de PTSP.
- Para una cantidad suficientemente grande de refinamientos, mirar una solución de SR (en el grafo transformado) es "muy similar" a mirar una solución de PTSP (en el grafo original).

Parte 2: Algoritmos exactos para SR

Algoritmo 1: backtracking

Algoritmo 1: backtracking

• Idea: cada solución factible de SR para (G, X) se puede pensar como el orden en que cubrimos los clientes de X.

Algoritmo 1: backtracking

- Idea: cada solución factible de SR para (G, X) se puede pensar como el orden en que cubrimos los clientes de X.
- Algoritmo: backtracking que genera todas las permutaciones de X y para cada una determina el mínimo costo de recorrerlos en ese orden.

Algoritmo 1: backtracking

- Idea: cada solución factible de SR para (G, X) se puede pensar como el orden en que cubrimos los clientes de X.
- Algoritmo: backtracking que genera todas las permutaciones de X y para cada una determina el mínimo costo de recorrerlos en ese orden.
- Otros backtrackings típicos, por ejemplo para la generación de caminos simples, no funcionan.

- Idea:
 - Supongamos que llevamos construido un camino parcial P₁, que termina en un vértice u, y le resta cubrir un subconjunto de clientes F.

- Idea:
 - Supongamos que llevamos construido un camino parcial P₁, que termina en un vértice u, y le resta cubrir un subconjunto de clientes F.
 - Ahora supongamos que tenemos otro camino parcial P_2 en las mismas condiciones.

- Idea:
 - Supongamos que llevamos construido un camino parcial P₁, que termina en un vértice u, y le resta cubrir un subconjunto de clientes F.
 - Ahora supongamos que tenemos otro camino parcial P_2 en las mismas condiciones.
 - Los dos caminos pueden completarse a una solución factible, en forma óptima, del mismo modo.

Algoritmo 2: programación dinámica

- Idea:
 - Supongamos que llevamos construido un camino parcial P₁, que termina en un vértice u, y le resta cubrir un subconjunto de clientes F.
 - Ahora supongamos que tenemos otro camino parcial P₂ en las mismas condiciones.
 - Los dos caminos pueden completarse a una solución factible, en forma óptima, del mismo modo.
- Definimos

 $J(\mathfrak{u}, \mathsf{F}) = \min$ nima longitud de un camino que empieza en \mathfrak{u} y cubre F

Algoritmo 2: programación dinámica

- Idea:
 - Supongamos que llevamos construido un camino parcial P₁, que termina en un vértice u, y le resta cubrir un subconjunto de clientes F.
 - Ahora supongamos que tenemos otro camino parcial P₂ en las mismas condiciones.
 - Los dos caminos pueden completarse a una solución factible, en forma óptima, del mismo modo.
- Definimos

$$J(u, F) = m$$
ínima longitud de un camino que empieza en u y cubre F

• Algoritmo: PD para calcular J. Buscamos $\mathsf{SR}^*(\mathsf{G},\mathsf{X}) = \min_{e \in \mathsf{X}} \left(\min\{J(e_1,\mathsf{X}-\{e\}),J(e_2,\mathsf{X}-\{e\})\}\right).$

• Optimizamos los algoritmos mediante funciones de acotación.

- Optimizamos los algoritmos mediante funciones de acotación.
- Idea:
 - Supongamos que llevamos construido un camino parcial P, que termina en $\mathfrak u$ y le falta cubrir F. Llamemos $L_{\rm parcial}$ a su longitud.

- Optimizamos los algoritmos mediante funciones de acotación.
- Idea:
 - Supongamos que llevamos construido un camino parcial P, que termina en $\mathfrak u$ y le falta cubrir F. Llamemos $L_{\rm parcial}$ a su longitud.
 - Supongamos que para completar P a una solución factible, necesitamos longitud al menos $L_{\rm resto}$.

- Optimizamos los algoritmos mediante funciones de acotación.
- Idea:
 - Supongamos que llevamos construido un camino parcial P, que termina en $\mathfrak u$ y le falta cubrir F. Llamemos $L_{\rm parcial}$ a su longitud.
 - Supongamos que para completar P a una solución factible, necesitamos longitud al menos $L_{\rm resto}$.
 - Sea L_{opt} la longitud de la mejor solución encontrada hasta el momento.

 Optimizamos los algoritmos mediante funciones de acotación.

• Idea:

- Supongamos que llevamos construido un camino parcial P, que termina en $\mathfrak u$ y le falta cubrir F. Llamemos $L_{\rm parcial}$ a su longitud.
- Supongamos que para completar P a una solución factible, necesitamos longitud al menos $L_{\rm resto}$.
- Sea L_{opt} la longitud de la mejor solución encontrada hasta el momento.
- Entonces, si $L_{\rm parcial} + L_{\rm resto} > L_{\rm opt}$, podemos abortar el cómputo de P.

 Optimizamos los algoritmos mediante funciones de acotación.

• Idea:

- Supongamos que llevamos construido un camino parcial P, que termina en $\mathfrak u$ y le falta cubrir F. Llamemos $L_{\rm parcial}$ a su longitud.
- Supongamos que para completar P a una solución factible, necesitamos longitud al menos $L_{\rm resto}$.
- Sea L_{opt} la longitud de la mejor solución encontrada hasta el momento.
- Entonces, si $L_{\rm parcial} + L_{\rm resto} > L_{\rm opt}$, podemos abortar el cómputo de P.

- Optimizamos los algoritmos mediante funciones de acotación.
- Idea:
 - Supongamos que llevamos construido un camino parcial P, que termina en $\mathfrak u$ y le falta cubrir F. Llamemos $L_{\rm parcial}$ a su longitud.
 - Supongamos que para completar P a una solución factible, necesitamos longitud al menos $L_{\rm resto}$.
 - Sea L_{opt} la longitud de la mejor solución encontrada hasta el momento.
 - Entonces, si $L_{\rm parcial} + L_{\rm resto} > L_{\rm opt}$, podemos abortar el cómputo de P.
- L_{resto} depende de u y F.

Una función de acotación es una función B tal que B(u, F)
es una cota inferior de la mínima longitud necesaria para
completar un (cualquier) camino parcial que termina en u
y que le resta cubrir F.

- Una función de acotación es una función B tal que B(u, F)
 es una cota inferior de la mínima longitud necesaria para
 completar un (cualquier) camino parcial que termina en u
 y que le resta cubrir F.
- Uso: si $L_{\rm parcial} + B(u,F) > L_{\rm opt}$, abortamos la construcción del camino actual.

- Una función de acotación es una función B tal que B(u, F)
 es una cota inferior de la mínima longitud necesaria para
 completar un (cualquier) camino parcial que termina en u
 y que le resta cubrir F.
- Uso: si $L_{\rm parcial} + B(\mathfrak{u},F) > L_{\rm opt},$ abortamos la construcción del camino actual.
- Ejemplos:

- Una función de acotación es una función B tal que B(u, F) es una cota inferior de la mínima longitud necesaria para completar un (cualquier) camino parcial que termina en u y que le resta cubrir F.
- Uso: si $L_{\rm parcial} + B(u,F) > L_{\rm opt}$, abortamos la construcción del camino actual.
- Ejemplos:
 - B(u, F) = 0. Al menos necesitamos 0 aristas más.

- Una función de acotación es una función B tal que B(u, F) es una cota inferior de la mínima longitud necesaria para completar un (cualquier) camino parcial que termina en u y que le resta cubrir F.
- Uso: si $L_{\rm parcial} + B(u,F) > L_{\rm opt}$, abortamos la construcción del camino actual.
- Ejemplos:
 - B(u, F) = 0. Al menos necesitamos 0 aristas más.
 - $B(u, F) = \tau(G[F]) 1$. Si falta cubrir F, el camino restante debe contener un vertex cover de G[F].

- Una función de acotación es una función B tal que B(u, F) es una cota inferior de la mínima longitud necesaria para completar un (cualquier) camino parcial que termina en u y que le resta cubrir F.
- Uso: si $L_{\rm parcial} + B(\mathfrak{u},F) > L_{\rm opt},$ abortamos la construcción del camino actual.
- Ejemplos:
 - B(u, F) = 0. Al menos necesitamos 0 aristas más.
 - $B(u, F) = \tau(G[F]) 1$. Si falta cubrir F, el camino restante debe contener un vertex cover de G[F].
 - B(u, F) = ||F|/3| 1.

Implementación:

Implementación:

• Ambos algoritmos son exponenciales.

Implementación:

- Ambos algoritmos son exponenciales.
- Se implementaron las funciones de acotación para podar ramas (Branch & Bound).

Implementación:

- Ambos algoritmos son exponenciales.
- Se implementaron las funciones de acotación para podar ramas (Branch & Bound).
- Se implementaron los dos algoritmos, con y sin funciones de acotación.

Implementación:

- Ambos algoritmos son exponenciales.
- Se implementaron las funciones de acotación para podar ramas (Branch & Bound).
- Se implementaron los dos algoritmos, con y sin funciones de acotación.

Resultados experimentales:

Implementación:

- Ambos algoritmos son exponenciales.
- Se implementaron las funciones de acotación para podar ramas (Branch & Bound).
- Se implementaron los dos algoritmos, con y sin funciones de acotación.

Resultados experimentales:

• Las funciones de acotación acortan el tiempo de cómputo varios órdenes de magnitud.

Implementación:

- Ambos algoritmos son exponenciales.
- Se implementaron las funciones de acotación para podar ramas (Branch & Bound).
- Se implementaron los dos algoritmos, con y sin funciones de acotación.

Resultados experimentales:

- Las funciones de acotación acortan el tiempo de cómputo varios órdenes de magnitud.
- Los algoritmos no logran correr instancias de más de 25 clientes en menos de 1h.

Parte 3: Algoritmos aproximados para SR

• Un algoritmo α -aproximado \mathcal{A} para un problema de optimización Π es un algoritmo polinomial, que cumple que para toda instancia I de Π ,

- Un algoritmo α -aproximado \mathcal{A} para un problema de optimización Π es un algoritmo polinomial, que cumple que para toda instancia I de Π ,
 - 1. A(I) es una solución factible (no necesariamente exacta).

- Un algoritmo α -aproximado \mathcal{A} para un problema de optimización Π es un algoritmo polinomial, que cumple que para toda instancia I de Π ,
 - 1. $\mathcal{A}(I)$ es una solución factible (no necesariamente exacta).
 - $2. \ \operatorname{val}(\mathcal{A}(I)) \leq \alpha \ \mathsf{OPT}(I)$

- Un algoritmo α -aproximado \mathcal{A} para un problema de optimización Π es un algoritmo polinomial, que cumple que para toda instancia I de Π ,
 - 1. A(I) es una solución factible (no necesariamente exacta).
 - 2. $val(\mathcal{A}(I)) \le \alpha OPT(I)$
- Una estrategia frecuente para construir algoritmos aproximados para un problema Π_1 consiste en tomar un algoritmo aproximado \mathcal{A} para otro problema Π_2 , y usarlo como caja negra dentro de un algoritmo aproximado para Π_1 .

Teorema Sea \mathcal{A} un algoritmo α-aproximado para PTSP rectilíneo. Existe un algoritmo 3α -aproximado para SR sobre grillas, que usa a \mathcal{A} como caja negra.

Teorema Sea \mathcal{A} un algoritmo α-aproximado para PTSP rectilíneo. Existe un algoritmo 3α -aproximado para SR sobre grillas, que usa a \mathcal{A} como caja negra.

Como se conoce un algoritmo (3/2)-aproximado para PTSP $m\acute{e}trico...$

Teorema Sea \mathcal{A} un algoritmo α-aproximado para PTSP rectilíneo. Existe un algoritmo 3α -aproximado para SR sobre grillas, que usa a \mathcal{A} como caja negra.

Como se conoce un algoritmo (3/2)-aproximado para PTSP $m\'{e}trico...$

Corolario Existe un algoritmo (9/2)-aproximado para SR sobre grillas.

Teorema Sea \mathcal{A} un algoritmo α-aproximado para PTSP rectilíneo. Existe un algoritmo 3α-aproximado para SR sobre grillas, que usa a \mathcal{A} como caja negra.

Instancia de SR

Teorema Sea \mathcal{A} un algoritmo α-aproximado para PTSP rectilíneo. Existe un algoritmo 3α -aproximado para SR sobre grillas, que usa a \mathcal{A} como caja negra.

Vertex cover mínimo de G[X]

Teorema Sea \mathcal{A} un algoritmo α -aproximado para PTSP rectilíneo. Existe un algoritmo 3α -aproximado para SR sobre grillas, que usa a \mathcal{A} como caja negra.

Instancia de PTSP rectilíneo

Teorema Sea \mathcal{A} un algoritmo α-aproximado para PTSP rectilíneo. Existe un algoritmo 3α -aproximado para SR sobre grillas, que usa a \mathcal{A} como caja negra.

Solución factible de PTSP rectilíneo

Teorema Sea \mathcal{A} un algoritmo α-aproximado para PTSP rectilíneo. Existe un algoritmo 3α -aproximado para SR sobre grillas, que usa a \mathcal{A} como caja negra.

La miramos sobre la instancia de SR

Algoritmo aproximado para SR sobre grillas

Teorema Sea \mathcal{A} un algoritmo α-aproximado para PTSP rectilíneo. Existe un algoritmo 3α -aproximado para SR sobre grillas, que usa a \mathcal{A} como caja negra.

Solución factible de SR sobre grillas

• En el algoritmo anterior nos basamos en que G es bipartito para calcular un vertex cover mínimo en tiempo polinomial.

- En el algoritmo anterior nos basamos en que G es bipartito para calcular un vertex cover mínimo en tiempo polinomial.
- No podemos hacer esto si G es cualquier grafo.

- En el algoritmo anterior nos basamos en que G es bipartito para calcular un vertex cover mínimo en tiempo polinomial.
- No podemos hacer esto si G es cualquier grafo.
- Idea: aproximar el vertex cover utilizado.

- En el algoritmo anterior nos basamos en que G es bipartito para calcular un vertex cover mínimo en tiempo polinomial.
- No podemos hacer esto si G es cualquier grafo.
- Idea: aproximar el vertex cover utilizado.

Teorema Sea \mathcal{A} un algoritmo α-aproximado para PTSP métrico. Sea \mathcal{B} un algoritmo β-aproximado para VC. Existe un algoritmo aproximado \mathcal{C} para SR, que usa a \mathcal{A} y \mathcal{B} como cajas negras, tal que

$$C(G, X) \le \alpha(1 + 2\beta)OPT + 2\alpha(\beta - 1)$$

• Motivación: nuestra empresa de repartos es muy exitosa, y tenemos clientes en casi todos los puntos de la ciudad.

- Motivación: nuestra empresa de repartos es muy exitosa, y tenemos clientes en casi todos los puntos de la ciudad.
- Formalmente, supongamos que la cantidad de aristas que no son clientes es O(1).

- Motivación: nuestra empresa de repartos es muy exitosa, y tenemos clientes en casi todos los puntos de la ciudad.
- Formalmente, supongamos que la cantidad de aristas que no son clientes es O(1).
- Idea: en este caso, devolver un camino que cubra todas las aristas no debería ser tan malo.

Teorema Existe un algoritmo aproximado \mathcal{A} para SR sobre grillas, tal que

$$\operatorname{length}(\mathcal{A}(G,X)) \leq 2 \ \mathsf{OPT} + \mathsf{O}(1)$$

Teorema Existe un algoritmo aproximado \mathcal{A} para SR sobre grillas, tal que

$$\operatorname{length}(\mathcal{A}(G,X)) \leq 2 \ \mathsf{OPT} + \mathsf{O}(1)$$

Teorema Existe un algoritmo aproximado \mathcal{A} para SR sobre grillas, tal que si G es una grilla de n filas y m columnas, con n, m > 1, entonces

$$\operatorname{length}(\mathcal{A}(G,X)) \leq (1,\!5 + C(\mathfrak{n},\mathfrak{m}))\mathsf{OPT} + O(1)$$

donde $C(n, m) \le 0.5$, y C(n, m) tiende a 0 cuando n y m tienden a infinito simultaneamente.

Teorema Existe un algoritmo aproximado \mathcal{A} para SR sobre grillas, tal que si G es una grilla de n filas y m columnas, con n, m > 1, entonces

$$\operatorname{length}(\mathcal{A}(G,X)) \leq (1,\!5 + C(\mathfrak{n},\mathfrak{m}))\mathsf{OPT} + O(1)$$

donde $C(n, m) \le 0.5$, y C(n, m) tiende a 0 cuando n y m tienden a infinito simultaneamente.

Algoritmo aproximado para SR sobre grafos completos

Algoritmo aproximado para SR sobre grafos completos

Teorema Sea \mathcal{A} un algoritmo α -aproximado para VC, con α una constante. Para cada $\epsilon > 0$ existe un algoritmo $(\alpha + \epsilon)$ -aproximado para SR sobre completos.

Algoritmo aproximado para SR sobre grafos completos

Teorema Sea \mathcal{A} un algoritmo α -aproximado para VC, con α una constante. Para cada $\epsilon > 0$ existe un algoritmo $(\alpha + \epsilon)$ -aproximado para SR sobre completos.

El algoritmo toma tiempo $\Omega(|X|^{\text{cte}/\epsilon})$. Cuanto más chico elijamos $\epsilon>0$, más preciso es el algoritmo, pero el polinomio tiene un exponente mayor.

Conclusiones

Conclusiones

Complejidad y aproximación

Problema	Complejidad	Factor de aproximación
SR general	NP-c	$\alpha(1+2\gamma)$ OPT $+2\alpha(\gamma-1)$
SR sobre grillas	NP-c (*)	3βОРТ
		(1,5 + C(n,m))OPT + O(1)
SR sobre completos	NP-c	$(\gamma + \varepsilon)OPT$
SR sobre árboles	P	-

^{*:} asumiendo una representación implícita de la entrada.

Factores de aproximación: α es PTSP métrico, β es PTSP rectilíneo y γ es VC.

Conclusiones

Algoritmos exactos

Los algoritmos combinatorios propuestos no logran resolver instancias de tamaño real.

• Proponer e implementar algoritmos exactos basados en técnicas de programación matemática.

- Proponer e implementar algoritmos exactos basados en técnicas de programación matemática.
- Demostrar, si fuera cierto, que SR general es NP-c, asumiendo una representación tradicional del input.

- Proponer e implementar algoritmos exactos basados en técnicas de programación matemática.
- Demostrar, si fuera cierto, que SR general es NP-c, asumiendo una representación tradicional del input.
- Conjeturamos que el camino que construye el algoritmo
 (1,5 + C(n, m))OPT + O(1) (o una variante muy similar de
 ese camino) encuentra la solución óptima de SR para (G, E)
 (es decir, cuando queremos cubrir todas las aristas).
 Demostrarlo, si fuera cierto.

- Proponer e implementar algoritmos exactos basados en técnicas de programación matemática.
- Demostrar, si fuera cierto, que SR general es NP-c, asumiendo una representación tradicional del input.
- Conjeturamos que el camino que construye el algoritmo
 (1,5 + C(n, m))OPT + O(1) (o una variante muy similar de
 ese camino) encuentra la solución óptima de SR para (G, E)
 (es decir, cuando queremos cubrir todas las aristas).
 Demostrarlo, si fuera cierto.
- Una de las cotas en la demo del algoritmo 3α-aproximado usa una cota que es del peor caso. Es posible que sea mejorable usando argumentos probabilísticos. Investigar este camino.

Fin

Agradecimientos

Gracias a todos!