UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2022

HINTS TO/SKETCHES OF SOLUTIONS TO MID-SEMESTER PROBLEMS

Instructor: GAUTAM BHARALI March 1, 10:00 to 11:30 a.m.

Instructions: PLEASE READ CAREFULLY

- a) Please note that **Problems 1–4 are compulsory**, and you are required to solve **any one out of Problems 5 & 6.**
- b) You may freely use without proof:
 - any result, related to the topics **in the syllabus** for this exam, of which a precise statement whether proven or not was given in the lectures.
 - any standard property of an ordered field (which you can use tacitly: i.e., without naming said property).
 - any result stated as a homework problem **except**, **of course**, if a problem below itself was previously given in an assignment!

PLEASE NOTE: In no case, except Problem 3, are complete solutions provided below! What follows are **hints** for solving a problem (or, at best, **sketches** of the solutions meant to help you through the difficult parts). The hints/sketches are meant to encourage you to **think.**

- 1. Let S be a non-empty subset of \mathbb{Z} that is bounded above.
 - (a) (1 mark: easy!) Why does $\sup S$ exist in \mathbb{R} ?
 - (b) (3 marks) Prove, with justifications, that sup $S \in \mathbb{Z}$.

Remark. It might help to rely on a result stated in homework, although that is not the only approach to a solution.

Preliminaries. Several solutions to part (b) attempted in the exam used the assertion that, given $n \in \mathbb{Z}$, there exists no integer q satisfying n < q < (n+1). Strictly speaking, this requires a proof because, while \leq on \mathbb{N} is intuitive and a precise statement of its relationship with Peano arithmetic was stated in the lectures, the same was **not** the case with \mathbb{Z} . (Similar remarks apply to invoking the Well-Ordering Principle.) It is for these reasons that the **Remark** above was made. This will inform the hints below.

Hints to the solution of part (b): First establish the following:

A set of integers has no limit point in \mathbb{R} .

By Problem 1 in Assignment 6, $\sup S \in \overline{S}$. As S is a set of integers, by the above fact $\sup S$ cannot be a limit point of S. Thus, $\sup S \in S \subset \mathbb{Z}$.

2. (5 marks) Let X be a metric space and let d denote the metric on it. Let Y be a non-empty proper subset of X. Recall that we can view Y itself as a new metric space with the metric $d_Y := d|_{Y \times Y}$. Let $A \subseteq Y$. Let \overline{A}^Y denote the closure of A relative to Y: i.e., the closure of A viewing it as a subset of the metric space (Y, d_Y) . Prove that $\overline{A}^Y = Y \cap \overline{A}$ (where \overline{A} denotes the closure of A in the original metric space).

Hints to the solution: By definition, $\overline{A}^Y = A \cup (A')^Y$, where $(A')^Y$ is the set of all limit points of A with respect to the metric d_Y . Using the fact that $B_Y(a,r) = B(a,r) \cap Y$ for $a \in Y$ and r > 0, show that

$$A \cup (A')^Y \subseteq Y \cap \overline{A}. \tag{1}$$

Next, suppose $x \in Y \cap \overline{A}$. If $x \notin A$, then for each r > 0, there exists $a_r \in A$ such that $a_r \in A \cap B(x,r)$ and $a_r \neq x$. Since $A \subseteq Y$,

$$a_r \in A \cap B(x,r) = A \cap (Y \cap B(x,r)) = A \cap B_Y(x,r),$$

and $a_r \neq x$. Thus, $x \in (A')^Y$. Since this is true for any $x \in Y \cap \overline{A}$, $x \notin A$, show that this gives

$$A \cup (A')^Y \supseteq Y \cap \overline{A}. \tag{2}$$

From (1) and (2), the result follows.

3. (5 marks) Let $\{a_n\}$ and $\{b_n\}$ be sequences in \mathbb{R} . Suppose $a_n \leq b_n$ for $n = 1, 2, 3, \ldots$. Prove that

$$\liminf_{n\to\infty} a_n \le \liminf_{n\to\infty} b_n.$$

Remark. If you wish to use the conclusions of a problem in Assignment 7, then recall that you can do so without proof, but please give a **clear** statement of what you are using.

Solution: Let us write $A := \liminf_{n \to \infty} a_n$ and $B := \liminf_{n \to \infty} b_n$. If $B = +\infty$ or $A = -\infty$, then there is nothing to prove. Thus, it suffices to assume that $B < +\infty$ and $A > -\infty$.

We need the analogue of part (a) Theorem 3.17 in "Baby" Rudin describing the lower limit of $\{b_n\}$, which is that B itself is a subsequential limit. Thus, there exists a subsequence $\{b_{n_j}\} \subset \{b_n\}$ such that $\lim_{j\to\infty} b_{n_j} = B$.

We do not know, in general, whether $\{a_{n_j}\}$ converges! But $E[\{a_{n_j}\}] \neq \emptyset$. Thus, pick a convergent subsequence $\{a_{n_{j_i}}\}$ (**note:** this is the key trick in this solution). By our "it suffices" assumption, $\lim_{i\to\infty} a_{n_{j_i}} \in \mathbb{R}$. Thus, by the theorem on termwise algebraic combinations of two real sequences, we have

$$0 \le \lim_{i \to \infty} (b_{n_{j_i}} - a_{n_{j_i}}) = \lim_{i \to \infty} b_{n_{j_i}} - \lim_{i \to \infty} a_{n_{j_i}} = B - \lim_{i \to \infty} a_{n_{j_i}}.$$

Thus, $\lim_{i\to\infty} a_{n_{i}} \leq B$. By definition of B, we have $B \leq A$.

Remark. It is also possible to appeal to Problem 6 in Assignment 7 to solve this problem, but it results in a more wordy solution.

4. Let X = the set of all sequences in \mathbb{R} and write

$$d(\{x_n\}, \{y_n\}) := \sup \{\min\{1, |x_n - y_n|\} : n \in \mathbb{Z}^+\}.$$

- (a) (3 marks) It turns out that d is a metric on X. Prove the triangle inequality for d.
- (b) (3 marks) Define $E := \{ \{x_n\} : x_n \in [-1,1] \text{ for each } n \in \mathbb{Z}^+ \}$. Determine whether or not E is a compact subset of X. Give **justifications** for your answer.

Hints to the solution: The **cleanest** way to solve part (a) is to first show

$$\rho(x,y) := \min\{1, |x-y|\}, \ x, y \in \mathbb{R}, \quad \text{is a metric on } \mathbb{R}. \tag{3}$$

Now, consider three sequences $A = \{a_n\}$, $B := \{b_n\}$, $C := \{c_n\} \in X$. Fix some $m \in \mathbb{Z}^+$. Then, there exists an $n_0 \equiv n_0(m) \in \mathbb{Z}^+$ such that

$$d(A,C) - (1/m) = \sup \{ \rho(a_n, c_n) : n \in \mathbb{Z}^+ \} - (1/m) \le \rho(a_{n_0} c_{n_0}).$$

By (3), the triangle inequality for ρ gives us $\rho(a_{n_0}, c_{n_0}) \leq \rho(a_{n_0}, b_{n_0}) + \rho(b_{n_0}, c_{n_0})$. By definition, $\rho(a_{n_0}, b_{n_0}) \leq d(A, B)$ and $\rho(b_{n_0}, c_{n_0}) \leq d(B, C)$. From these three inequalities:

$$d(A, C) - (1/m) \le d(A, B) + d(B, C),$$

and this holds true for any arbitrary $m \in \mathbb{Z}^+$. Thus, the triangle inequality follows.

Preliminary comment on part (b). It helps to guess what the answer must be. Also, be aware that it gets extremely messy to show that E is not compact from first principles; this in **not** the approach to take!

To respond to part (b), we must show that E is **not** compact. It is easiest to rely on the fact that if E were compact, then any infinite set $S \subseteq E$ would have a limit point in E. Take $S = \{\{a_{m,n}\}: n = 1, 2, 3, \dots\} \subseteq E$, where

$$a_{m,n} := \begin{cases} 1, & \text{if } n = m, \\ 0, & \text{otherwise,} \end{cases}$$

for each $m = 1, 2, 3, \ldots$, and show that E has no limit points in E.

SOLVE ANY ONE OUT OF THE NEXT TWO PROBLEMS.

THE NEXT TWO PROBLEMS WILL BE ASSIGNED FOR HOMEWORK (WITH SUITABLE HINTS).

5. (5 marks) Let $\{a_n\}$ be a real sequence, and define

$$\Delta_n := a_{n+1} - a_n,$$

$$\mu_n := \frac{a_1 + \dots + a_n}{n}, \quad n = 1, 2, 3, \dots.$$

Assume that the sequences $\{\mu_n\}$ and $\{n\Delta_n\}$ are convergent. Is $\{a_n\}$ convergent? Give a proof if this is true, else provide a $\{a_n\}$ with the stated properties that is not convergent.

6. (5 marks) Let G be a non-empty bounded open subset of \mathbb{R} . Prove that G is the union of an at most countable collection of **disjoint** non-empty open intervals.

Tip + **remark.** You may use freely **without proof** the fact that \mathbb{R} (equipped with the usual metric) is a separable metric space. The above result is true without the assumption of boundedness of G; the latter assumption just eliminates certain cases to be considered and shortens the proof.