Probability Spaces	$F_X(x)$ is <u>right-continuous</u> => for any <u>decreasing</u> (x_n) .	least number satisfying $P(X \le Q_X(\alpha)) = \alpha$	Discrete =>	For any pair (i, j) there exist some sample path where,		
Sample Space Ω ⇒ set of all outcomes (mutually exclusive) of random experiment	$\overline{\lim_{n\to\infty} x_n} = x_L \implies \lim_{n\to\infty} F_X(x_n) = F_X(x_L)$ To check that function is valid CDF, must obey:	i.e. $Q_X(\alpha) = F_X^{-1}(\alpha)$	$E_{\mathbf{X}}[g(\mathbf{X})] = \sum_{x_n} \cdots \sum_{x_1} g(x_1, \dots, x_n) p_{\mathbf{X}}(x_1, \dots, x_n)$	starting in state i, the DTMC eventually reaches state i		
Event E ⊆ Ω => any subset of sample space	Monotonicity $\forall x_1, x_2 \in \mathbb{R}, x_1 < x_2 \implies F_X(x_1) \le F_X(x_2)$	Q(1/2) is <u>median</u> & k-th percentile is Q(k/100)	- <u>Continuous</u> ⇒ E _X [g(X)] =	Periodic DTMC => time to return to a state is an integer multiple of a fixed period; otherwise it's aperiodic DTMC		
Extreme Events => null event Ø] & universal event S Elementary Event => singleton subsets of S	$F_{\chi}(-\infty) = 0, F_{\chi}(\infty) = 1$ F_{χ} is right-continuous	Uniform(A,b) ⇒ TODO: HEREEE!!!!! Exp(A) ⇒ TODO: HEREEE!!!!	$\int_{x_n=-\infty}^{\infty} \cdots \int_{x_1=-\infty}^{\infty} g(x_1,\dots,x_n) f_{\mathbf{X}}(x_1,\dots,x_n) dx_1 \cdots dx_n$	Common Long-Term Behaviours Of DTMC: Steady-State/Stationary Distribution ⇒ row-vector		
-If <u>s ∈ E</u> Jis <u>experiment outcome</u> , then <u>E</u> Joccurred <u>Null event</u> Ø <u> never</u> & <u>universal event</u> S <u>Jalways</u> -occurs	Simple Properties $0 \le F_X(x) \le 1, \forall x \in \mathbb{R}$	Normal(M, Σ2) => TODO: HEREEE!!!!! Lognormal => TODO: HEREEE!!!!!	$\frac{x_n = -\infty x_1 = -\infty}{\text{Sum} \Rightarrow E[\sum_i g_i(X_i)] = \sum_i E_{X_i}[g_i(X_i)]!}$	π_{∞}^* thats invariant under RJ		
For events E ₁ , E ₂ ,	$\frac{ \nabla F_X(a) }{ \nabla F_X(a) } = \nabla F_X(a) \text{ for finite intervals } (a, b] \subseteq \mathbb{R}$	Joint Random Variables	Independent Product $\Rightarrow E[\prod_i g_i(X_i)] = \prod_i E_{X_i}[g_i(X_i)]$	i.e. $P(X_n = j) = (\pi_{\infty}^*)_j$ for all $n \ge 0, j \in J$ Limiting Distribution => row-vector π_{∞} such that		
$E_1 \underline{or} E_2 \underline{or} \Rightarrow \bigcup_i E_i$	Moments of RRVs	Product Probability Space $(\prod_i \Omega_i, \bigotimes_i \mathcal{F}_i, \bigotimes_i P_i)$ $ \text{Let}(\Omega_1, \mathcal{F}_1, P_1),, (\Omega_n, \mathcal{F}_n, P_n) $ be probability spaces	Covariance =>	$\pi_{\infty} = \lim_{n \to +\infty} \pi_0 R^n$		
E_1 and E_2 and E_3 are Mutually Exclusive E_1 , E_2 , are Mutually Exclusive E_1 , E_2 , are Mutually Exclusive E_3 and E_4 are Mutually Exclusive E_4 and E_5 are E_5 and E_6 are E_7 and E_8 are E_8 and E_8 are E_8 and E_8 are E_8 are E_8 are E_8 are E_8 and E_8 are E_8 are E_8 are E_8 and E_8 are E_8 are E_8 are E_8 are E_8 and E_8 are E_8 and E_8 are E_8 are E_8 are E_8 are E_8 and E_8 are E_8 are E_8 are E_8 and E_8 are E_8 are E_8 are E_8 and E_8 are E_8 are E_8 are E_8 are E_8 are E_8 are E_8 and E_8 are E_8 are E_8 are E_8 and E_8 are E_8 are E_8 are E_8 are E_8 are E_8 and E_8 are E_8 are E_8 are E_8 are E_8 are E_8 and E_8 are E_8 are E_8 are E_8 are E_8 are E_8 and E_8 are E_8 and E_8 are E_8 are E_8 are E_8 are E_8 and E_8 are E_8 are E_8 and E_8 are E_8 are E_8 are E_8 are E_8 are E_8 and E_8	Expectation $E[X] \Rightarrow$ the mean μ_X of distribution of X Discrete \Rightarrow $E_X[g(X)] = \sum_X g(X)p_X(X)$	$\Pi_i \Omega_i$ is <u>n-ary Cartesian product</u> of $\Omega_1,, \Omega_n$	$\sigma_{XY} = \text{Cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$			
they're <u>pairwise-disjoint</u> E ₁ , E ₂ , are <u>Independent Events</u> =>	$\frac{Continuous}{\text{Linearity}} \Rightarrow \mathbb{E}_{X}[g(X)] = \int_{-\infty}^{\infty} g(x)f_{X}(x)dx$ $\text{Linearity} \Rightarrow \mathbb{E}[\alpha g(X) + h(X) + \beta] = \alpha \mathbb{E}[g(X)] + \mathbb{E}[h(X)] + \beta$	$\bigotimes_i \mathcal{F}_i$ is product σ -algebra of $\mathcal{F}_1, \dots, \mathcal{F}_n$	For independent RVs $E[XY] = E_X[X]E_Y[Y]$ so $\sigma_{XY} = 0$	Uniqueness and existence:		
$P(\bigcap_{j=1}^{n} E_{i_{j}}) = \prod_{j=1}^{n} P(E_{i_{j}})$ for any finite subset	Sum \Rightarrow for any $X_1,, X_n$	$\bigotimes_{i} \mathcal{F}_{i} \triangleq \sigma(\{\prod_{i=1}^{n} E_{i} \mid E_{1} \in \mathcal{F}_{1},, E_{n} \in \mathcal{F}_{n}\})$ where $\sigma(\cdot)$ is the generated σ -algebra	$\frac{Correlation}{Correlation} \Rightarrow \rho_{XY} = Cor(X, Y) = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}} = \frac{Cov(X, Y)}{sd(X)sd(Y)}$	The two above are not unique in general If irreducible and aperiodic DTMC:		
$\{\varepsilon_{i_1}, \varepsilon_{i_2},, \varepsilon_{i_n}\}$	$\frac{\mathbb{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbb{E}[X_i]}{\mathbb{E}[\overline{X}] = \mathbb{E}\left[\frac{\sum_{i=1}^{n} X_i}{n}\right] = \frac{\sum_{i=1}^{n} \mathbb{E}[X_i]}{n}}$	X _i P _i is <u>unique measure</u> such that	Correlation is invariant to the scale of the X, Y	Limiting & steady-state distributions both exist => unique and identical to each other		
If events A, B are <u>independent</u> , then A, B are <u>also</u>	Independent Product \Rightarrow $E[\prod_{i=1}^{n} X_i] = \prod_{i=1}^{n} E[X_i]$	$(\overline{(\times_i P_i)})(E_1, \dots, E_n) = P_1(E_1) \cdots P_n(E_n)$	NOTE: Var(X) = Cov(X, X)	Elements of π _∞ all <u>strictly positive</u>		
independent	Independent and Identically Distributed (i.i.d.) \Rightarrow $E(\overline{X}) = \mu_{\overline{X}}$	for every $\underline{E_1 \in \mathcal{F}_1, \dots, E_n \in \mathcal{F}_n}$	For independent RVs $\sigma_{XY} = \rho_{XY} = 0$	$[\pi_{\infty}]$ is solution of $[\pi_{\infty}R = \pi_{\infty}]$ subject to $[\Sigma_j(\pi_{\infty})_j = 1]$ i.e. left-eigenvector with left-eigenvalue $[\lambda = 1]$		
g -algebra $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ \Rightarrow family of subsets of Ω s.t. nonempty: $\Omega \in \mathcal{F}$	<u>n-th Raw Moment</u> $\mu'_{R} E[X^{R}] = $ i.e. <u>about zero</u>	Multivariate Random Variable \Rightarrow X : $\Omega \rightarrow \mathbb{R}^n$ Consider $RRVs_{X_1,,X_n}$: $\Omega \rightarrow \mathbb{R}$	Multivariate Normal Distribution => TODO: HEREEE!!!!! Conditional Distributions	If irreducible but not aperiodic DTMC:		
-closed under <u>complements</u> : $\underline{E} \in \mathcal{F} \Longrightarrow \overline{E} \in \mathcal{F}$ -closed under <u>countable union</u> :	$\frac{n-\text{th Central Moment}}{n} \mu_n = E[(X - E[X])^n]$	NOTE: take product space if their sample spaces differ	Conditional Distribution $P_{Y X}(B_Y B_X) = \frac{P_{XY}(B_X,B_Y)}{P_{X}(B_X)}$	limiting distribution π_{∞} no longer exists Steady-state distribution π_{∞}^* still exists \Rightarrow		
$E_1, E_2, \dots \in \mathcal{F} \Longrightarrow \bigcup_i E_i \in \mathcal{F}$	Variance $\sigma_X^2 = Var(X) = E[(X - E(X))^2]$	$X = (X_1,, X_n) : \Omega \to \mathbb{R}^n$ is a Random Vector $[X(s)]_i = X_i(s) \Rightarrow$ it's a random variable	for any $B_X, B_Y \in \mathbb{R}$ Probability of Y falling inside B_Y given that we know	Steady-state distribution π_{∞}^* still exists \Rightarrow its the <u>unique positive solution</u> of $\pi_{\infty}^* R = \pi_{\infty}^*$ subject		
Immediate Basic Results: ∅ ∈ 𝓕	$\frac{ Var(X) = E[X^2] - (E[X])^2}{ Var(aX + b) = a^2 Var(X) }$	$from(\Omega, \mathcal{F}, P)$ to $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$	X fell inside BX	$to \Sigma_j(\pi_{\infty}^*)_j = 1$ Classification of DTMCs		
closed under <u>countable intersection</u> : $E_1, E_2, \dots \in \mathcal{F} \Longrightarrow \bigcap_i E_i \in \mathcal{F}$	$Sum \Rightarrow \text{for } \underline{independent} X_1, \dots, X_n$	$\mathcal{B}(\mathbb{R}^n)$ is Borel σ -algebra on \mathbb{R}^n i.e. requirement that each X_i is <u>also an RV</u>	Conditional CDF $F_{Y X}(y x) = P(Y \le y X = x)$	When can we guarantee existence and uniqueness?		
-[Ø,Ω] is smallest & P(Ω) is largest -σ-algebras	$\frac{\operatorname{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{Var}(X_i)}{\sum_{i=1}^{n} \operatorname{Var}(X_i)}$	Induced Probability =>	$\frac{Discrete}{Discrete} \Rightarrow P(Y \le y \mid X = x) = \sum_{u=-\infty}^{y} p_{Y \mid X}(u \mid x)$	1 1 1 0 1 0	1 1 1	
Generated σ -algebras: $ \sigma(G) \Rightarrow \text{for } \underline{\text{family of subsets }} G \subseteq \mathcal{P}(\Omega)$, its $\underline{\text{smallest}}$	$-\operatorname{Var}(\overline{X}) = \operatorname{Var}\left(\frac{\sum_{i=1}^{n} X_{i}}{n^{2}}\right) = \frac{\sum_{i=1}^{n} \operatorname{Var}(X_{i})}{n}$	$P_{\mathbf{X}}(X_1 \leq x_1, \dots, X_n \leq x_n)$ $= P(\{s \in \Omega \mid X_1(s) \leq x_1 \land \dots \land X_n(s) \leq x_n\})$	$\frac{Continuous}{Continuous} \Rightarrow P(Y \le y \mid X = x) = \int_{u=-\infty}^{y} f_{Y \mid X}(u \mid x) du$ Interval Probabilities \Rightarrow	$R_1 = \begin{pmatrix} \frac{3}{4} & \frac{3}{4} & 0 \end{pmatrix}$ $R_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$) $R_3 = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$	
σ-algebra to contain G (exists & unique)	Independent and Identically Distributed (i.i.d.) =>	RECALL: this <u>pushforward measure</u> is also called	$P(a < X \le b \mid Y = y) = F_{X Y}(b \mid y) - F_{X Y}(a \mid y)$	0 0 1 1 0 0	$\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$	
$\frac{\sigma(f)}{\sigma(f)} \Rightarrow \text{for } \underline{f} : \Omega \to \underline{E} \text{ where } (\underline{E}, \underline{\mathcal{E}}) \text{ is } \underline{measurable space},$ $\sigma(f) = \{f^{-1}[F] \mid F \in \underline{\mathcal{E}}\} \text{ i.e. } \underline{\text{all pre-images}}$	$Var(\overline{X}) = \frac{\sigma_{\overline{X}}^2}{n}$	probability distribution of X => this measure on Borel a-algebras is also called the	- Law of Total Probability CDF => $F_{\chi}(x) = \int_{\gamma = -\infty}^{\infty} F_{\chi \gamma}(x y) f_{\gamma}(y) dy$	Uniqueness and evistance condi		
trace σ -algebra of $B \in \mathcal{F}$ $\Rightarrow \mathcal{F}_B = \{B \cap A \mid A \in \mathcal{F}\}$	Standard Deviation $\sigma_X = sd(X) = \sqrt{Var(X)}$	Joint Probability Distribution	Conditional PMF $p_{Y X}(y x) = \frac{p_{XY}(x,y)}{p_{X}(x)}$ if $p_{X}(x) > 0$	Uniqueness and existence condi- if a DTMC is irreducible and aperiodic, then:		
Probability Measure $P: \mathcal{F} \rightarrow [0,1]$ on (Ω,\mathcal{F})	<u>n-th Standardized Moment</u> $\tilde{\mu}_n = \frac{\mu_n}{\sigma^n} = \frac{E[(X - E[X])^n]}{\sqrt{Var(X)}^n}$	Joint CDF $F_X(x_1,,x_n) = P_X(X_1 \le x_1,,X_n \le x_n)$	$p_{Y X}(y x)p_X(x)$	Without aperiodicity, an irreducible DTMC has .		
$\forall E \in \mathcal{F}, 0 \le P(E) \le 1$ i.e. between 0 Jand 1 J $P(\Omega) = 1$ i.e. <u>universal event S Jalways</u> occurs	Skewness $\gamma_1 = \tilde{\mu}_3 = \frac{E[(X-\mu)^3]}{\sigma^3}$ measures asymmetry	Recover Marginal CDFs for each X_i with $FX_i(x_i) = \lim_{\substack{j \neq i, x_j \to \infty}} FX(x_1,, x_n)$	Bayes Theorem PMF $\Rightarrow p_{X Y}(x y) = \frac{p_{Y X}(y x)p_{X}(x)}{p_{Y}(y)}$	However, the also in this case and it is the .		
σ -additive (countably additive) $\Rightarrow P(\bigcup_i E_i) = \sum_i P(E_i)$	positive skew => distribution <u>leans left</u>	$ f(x) = f(x,y) = f(x,y) $ e.g. for $RV \le X, Y = F(X,y) = F(x,\infty)$ and $F_{Y}(y) = F(\infty,y)$	Law of Total Probability PMF => $p_X(x) = \sum_{V} p_{X Y}(x y)p_Y(y)$			
for <u>pairwise-disjoint</u> events $E_1, E_2, \dots \in \mathcal{F}$ -Immediate Basic Results:	negative skew => distribution <u>leans right</u>	To check that function is valid CDE, must obey:	Conditional PDF $f_{Y X}(y x) = \frac{f_{XY}(x,y)}{f_{X}(x)}$ if $\underline{p_{X}(x)} > 0$			
$P(\overline{E}) = 1 - P(E)$	Moment Generating Function (MGF) $M_X(t) = E[e^{tX}]$	Monotonicity: For every <u>i</u> hold fixed all-but-the <u>i</u> th component	Pauce Theorem PDE $\rightarrow f_{Y X}(y x)f_X(x)$			
$\frac{P(\emptyset) = 0}{P(A \cup B) = P(A) + P(B) - P(A \cap B)}$	$E[X^n] = \frac{d^n M_X}{dt^n} \Big _{t=0} \text{ if } \underbrace{open interval}_{0} \text{ around } \underbrace{t=0}_{0} \text{ exists}$	Then for every x _{i1} , x _{i2} we have	Law of Total Probability PDF =>			
Measurable Space (Ω, \mathcal{F}) => sample space Ω with	because $e^{tX} = 1 + tX + \frac{t^2 X^2}{2!} + \frac{t^3 X^3}{3!} + \dots + \frac{t^n X^n}{n!} + \dots$	$x_{i_1} < x_{i_2} \Longrightarrow \overline{F_{\mathbf{X}}(\dots, x_{i_1}, \dots)} \in F_{\mathbf{X}}(\dots, x_{i_2}, \dots)$	$f_X(x) = \int_{y=-\infty}^{\infty} f_{X Y}(x y) f_Y(y) dy$			
<u>σ-algebra</u> F on it	so $M_X(t) = E[e^{tX}] = 1 + tE[X] + \frac{t^2 E[X^2]}{2!} + \dots + \frac{t^n E[X^n]}{n!} + \dots$	$\frac{0 \le F_{\mathbf{X}}(x_1, \dots, x_n) \le 1}{F_{\mathbf{X}}(\dots, -\infty, \dots) = 0, F_{\mathbf{X}}(\infty, \dots, \infty) = 1}$	Conditional Expectation E _{Y X} [Y X=x]			
Probability Space (Ω, \mathcal{F}, P) => measurable space (Ω, \mathcal{F}) with probability measure P on it		Interval Probabilities for <u>bi-variate</u> case Z = (X, Y)	$\frac{Discrete}{\sum_{Y \mid X} [Y \mid X = x]} = \sum_{Y} y p_{Y \mid X} (y \mid x)$			
Conditional Probability	Sum \Rightarrow for independent $X_1,, X_n$ let $X = \sum_{i=1}^{n} X_i$ \Rightarrow $M_X(t) = \prod_{i=1}^{n} M_{X_i}(t)$	$P_Z(x_1 < X \le x_2, Y \le y) = F(x_2, y) - F(x_1, y)$ hence	$\frac{Continuous}{V} \Rightarrow E_{Y X}[Y X=x] = \int_{y=-\infty}^{\infty} y f_{Y X}(y x) dy$			
Conditional Probability => $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ where $A, B \subseteq \Omega \mid \text{and } P(B) \neq 0 \mid$	Discrete Random Variables	$P_Z(x_1 < X \le x_2, y_1 < Y \le y_2)$ = $F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) * F(x_1, y_1)$	NOTE: $E_{Y X}[Y X=\cdot]$ is a function of \underline{x}_J Law of Total Expectation:			
The conditional probability space is $(B, \mathcal{F}_B, P(\cdot \mid B))$	Discrete RRV iff countable supp(X) Let supp(X) = $\{x_1, x_2,\}$ be ordered s.t. $x_1 < x_2 <$	Joint PMF $p(x_1,,x_n) = P_{\mathbf{X}}(X_1 = x_1,,X_n = x_n)$	Define $E_{Y X}[Y X](s) = E_{Y X}[Y X=X(s)]$			
$Sample space B \subseteq \Omega$ $Trace \sigma$ -algebra $\mathcal{F}_B = \{B \cap A \mid A \in \mathcal{F}\}$	CDE FX will be monotonic increasing step function,	Recover Marginal PMFs for each X; with	Now $E_{Y X}[Y X]: \Omega \to \mathbb{R}$ is <u>function of RRV X</u>] Then we have $E_{Y}[Y]=E_{X}[E_{Y X}[Y X]]$			
Probability measure P(- B)	i.e. $P_X(x_{i-1}) = P_X(x_{i-1}) = P_X(x_{i-1})$	$p_{X_i}(x_i) = \sum_{x_n} \cdots \sum_{x_{i+1}} \sum_{x_{i-1}} \cdots \sum_{x_1} p_{\mathbf{X}}(x_1, \dots, x_n)$	$\int_{X} \int_{Y} y f_{Y X}(y x) f_{X}(x) dy dx$			
If A, B are independent then P(A B) = P(A) A ₁ , A ₂ are Conditionally Independent given B iff	Probability Mass Function (PMF) $p(x) = P_X(X = x)$	e.g. for $\underline{RV} \le \underline{X}, \underline{Y} = p_{\underline{X}}(x) = \sum_{y} p(x, y)$ & $\underline{p_{\underline{Y}}(y)} = \sum_{x} p(x, y)$	e.g. in continuous case $\Rightarrow = \int_{V} \int_{X} yf(x,y) dxdy$			
$P(A_1 \cap A_2 \mid B) = P(A_1 \mid B)P(A_2 \mid B)$	$0 \le p(x) \le 1, \forall x \in \mathbb{R}$ $\sum_{x \in \text{supp}(X)} p(x) = 1$	To check that function is valid PMF, must obey:	$= \int_{Y} y f_{Y}(y) dy$			
Law Of Total Probability \Rightarrow for any events $\{B_1, B_2,\}$	$p(x_i) = F(x_i) - F(x_{i-1})$	$\frac{0 \le p_{\mathbf{X}}(x_1, \dots, x_n) \le 1}{x_1} \& \underbrace{\sum_{x_1} \dots \sum_{x_n} p_{\mathbf{X}}(x_n, \dots, x_1) = 1}_{\mathbf{X}}$	Markov Chains Discrete Time Markov Chains (DTMC) => generalization			
which $\underline{partition} \Omega_i P(A) = \sum_i P(A \mid B_i)P(B_i) = \overline{\sum_i} P(A \cap B_i)$ Special Case =>	$F(x_i) = \sum_{j=1}^{i} p(x_j)$	Multinomial Distribution => TODO: HEREEE!!!!!	of <u>sequences of i.i.d. RVs</u> to support <u>arbitrary (and</u>			
$P(A) = P(A \cap B) + P(A \cap \overline{B}) = P(A \mid B)P(B) + P(A \mid \overline{B})P(\overline{B})$		$X_1,,X_n$ are <u>Jointly Continuous</u> if $\exists f_X : \mathbb{R}^n \to \mathbb{R}$ such	possibly dependent) RVs State Space J ⇒ elements j ∈ J are <u>states</u>			
$\frac{\text{Bayes Theorem}}{\text{P(A B)}} \Rightarrow P(A B) = \frac{P(B A)P(A)}{P(B)}$	Binomial(N,p) => TODO: HEREEE!!!!! Poisson(P) => TODO: HEREEE!!!!!	$F_{\mathbf{X}}(x_1,,x_n) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(t_1,,t_n) dt_1 \cdots dt_n$	$X_n, n \ge 0$ \implies takes values in $J \ge 0$ models state at time n_1 Realization of $X_0, X_1,$ is called Sample Path			
General Random Variables Random Variable \Rightarrow measurable function $X : \Omega \rightarrow E$	Poisson(A) ⇒ TODO: HEREEE!!!!! Uniform(U) ⇒ TODO: HEREEE!!!!!	$t_n = -\infty$ $t_1 = -\infty$ f_X called Joint PDF of $X = (X_1,, X_n)$	GOAL => calculate $P(X_n = j)$			
(Ω, \mathcal{F}, P) is a <u>probability space</u> , (E, \mathcal{E}) is a <u>measurable</u>		$f_{\mathbf{X}}(x_1,,x_n) = \frac{\partial^n}{\partial x_1 \cdots \partial x_n} f_{\mathbf{X}}(x_1,,x_n)$	i.e. probability that at time n system reaches state j Markov property =>			
space For every $B ∈ E$ the pre-image of B junder X jis in F .	HEREEE!!!!! Poisson Binomial Distribution => TODO: HEREEE!!!!!	To check that function is valid PMF, must obey:	$P(X_{n+1} = j_{n+1} \mid X_n = j_n,, X_1 = j_1, X_0 = j_0)$			
i.e. $X^{-1}[B] = \{s \in \Omega \mid X(s) \in B\} \in \mathcal{F}$ i.e. $\sigma(X) \subseteq \mathcal{F}$ where $\sigma(X)$ is generated by function X	Continuous Random Variables	$\frac{ f_{\mathbf{X}}(x_1, \dots, x_n) \ge 0 }{\infty} \&$	$= P(X_{n+1} = j_{n+1} \mid X_n = j_n)$ i.e. choice of the <u>next state</u> depends on the <u>current</u>			
$g(X)(s) = (g \circ X)(s)$ is also random variable, for	\underline{X} is (Absolutely) Continuous RRV if $\exists f_{\chi} : \mathbb{R} \to \mathbb{R}$ such that $F_{\chi}(x) = \int_{u=-\infty}^{X} f_{\chi}(u) du$	$\int_{t_n=-\infty}^{\infty} \cdots \int_{t_1=-\infty}^{\infty} f_{\mathbf{X}}(t_1, \dots, t_n) dt_1 \cdots dt_n = 1$	state only			
measurable function $g: E \to E$	fX called Probability Density Function (PDF) of X	Recover Marginal PDFs for each X _i with	How to specify DTMCs: Initial Probability Vector => row -vector $row^T \in \mathbb{R}^n$			
$\frac{\text{Induced Probability}}{\text{takes on value in } \underline{B \in \mathcal{E}} = \text{probability that } \underline{X}$	$\frac{P_X(a < X \le b) = P_X(X \le b) - P_X(X \le a)}{P_X(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx}$	$f_{X_i}(x_i) = \int_{x_n = -\infty}^{\infty} \cdots \int_{x_{i+1} = -\infty}^{\infty}$	where $(\pi_0)_i = P(X_0 = i)$			
$P_X(X \in B) = P(X^{-1}[B]) = P(\{s \in \Omega \mid X(s) \in B\})$ Also called Pushforward Measure of <u>P</u> Jonto (E, \mathcal{E})	$P_X(X=x) = P_X(\{x\}) = 0$ and	$ \begin{array}{c} x_n = -\infty & x_{i+1} = -\infty \\ \int_{X_{i-1} = -\infty}^{\infty} \cdots \int_{X_{i-1} = -\infty}^{\infty} f_{\mathbf{X}}(x_1, \dots, x_n) \ dx_1 \cdots dx_n \end{array} $	Transition Probability Matrix $\Rightarrow R \in \mathbb{R}^{n \times n}$ where $R_{ij} = P(X_{n+1} = j \mid X_n = i)$			
induced by $XJ \Rightarrow (E, \mathcal{E}, P_X)$ is a <u>probability space</u>	$P_X(X \in \{x_1, x_2, \dots\}) = P_X(X = x_1) + P_X(X = x_2) + \dots $ for countable sets	x _{j-1} =-∞ x ₁ =-∞ /X (¬1,,¬η) (¬1,,¬η)				
Also called the Probability Distribution of X Real Random Variables	Properties of PDFs:	e.g. for $R \lor x$, $Y J \Rightarrow f_X(x) = \int_{y=-\infty}^{\infty} f(x,y)dy$ and	time n Self-loops are allowed => e.g. R _{ii} = 1 means DTMC can			
Real Random Variable is RV who's co-domain is $E = \mathbb{R}$ Support supp (X) \Rightarrow is range of X i.e. supp $(X) = X[\Omega]$		$f_{Y}(y) = \int_{X=-\infty}^{\infty} f(x,y) dx$	never leave state i](e.g. a permanent fault)			
Simple RRV iff finite supp(X)	$\frac{\int_{X}(x) \ge 0}{\int_{X}(x) \cdot h} \approx P_{X}(X \in [x, x+h))$	<u>"</u>	RJis a <u>non-nonegative matrix</u> who's <u>rows sum to 1</u>]. Also called stochastic matrix			
Discrete RRV iff countable supp(X) Continuous RRV => uncountable supp(X)	Quantiles and Percentiles:	X, Y are Independent RRVs if-and-only-if $ General \Rightarrow F(x, y) = F_X(x)F_Y(y) $	$\left \underbrace{P(X_n = j \mid X_0 = i) = (R^n)_{ij}} \right \Longrightarrow \underbrace{P(X_n = j) = (\pi_0 R^n)_j}$			
Induced Probability => $P_X(X \le x) = P(\{s \in \Omega \mid X(s) \le x\})$	The lower and upper quartiles and median of <u>sample</u> of <u>data</u> are the points $(\frac{1}{4}, \frac{3}{4}, \frac{1}{2})$ -way through the	$\underline{Discrete} \Rightarrow \overline{p(x,y)} = p_X(x)p_Y(y)$	Classification Of DTMCs: Irreducible DTMC ⇒ <u>directed graph</u> associated to <u>R</u>] is			
Cumulative Distribution Func. (CDF) $F_X(x) = P_X(X \le x)$	ordered dataset, respectively	$\frac{Continuous}{Continuous} \Rightarrow f(x, y) = f_X(x)f_Y(y)$ Loint Expectation E[Y] = E[Y, y]	strongly connected:			
	$\underline{\alpha}$ -quantile $\underline{Q_X(\alpha)}$ => for continuous \underline{X} J and $\underline{0 \le \alpha \le 1}$, the	Some Expectation C[A] = C[A],, And				