# MÉTODOS DE PROVA – PARTE 2 LÓGICA PROPOSITIONAL CLÁSSICA

#### Marcelo Finger

Departamento de Ciência da Computação Instituto de Matemática e Estatística Universidade de São Paulo

2022

## Tópicos

Tableaux Analíticos

2 Correção e Completude

# Próximo Tópico

1 Tableaux Analíticos

OCORREÇÃO E COMPLETUDE

## TABLEAUX ANALÍTICOS

- Também chamado de Tableaux Semânticos, apesar de ser um método sintático
- Proposto inicialmente por Raymond Smullyan [1968]
- Baseado no Cálciulo de Sequentes de Gentzen (livre de corte)

$$\underbrace{\varphi_1, \dots, \varphi_k}_{\text{antecedente}} \vdash \underbrace{\psi_1, \dots, \psi_m}_{\text{sucedente}}$$

- Interpretação: Quando todos  $\varphi_i$  são verdadeiros, ao menos um  $\psi_i$  é verdadeiro
- É um método de refutação: tenta forçar todos os  $\varphi_i$  verdadeiro, e todos  $\psi_i$  falsos

# Prova por Refutação

- Para provar  $\varphi_1, \ldots, \varphi_k \vdash \psi_1, \ldots, \psi_m$
- Construir uma árvore de refutação
- Prova: expandir a árvore por meio de regras de expansão
  - Regras- $\alpha$ : expansão linear de ramo
  - Regras-β: bifurcação
- Ramo fechado: contém contradição
- Ramo aberto saturado: contraexemplo (sequente refutado)
- Tableaux são um método de decisão (C.f. Tabelas da Verdade)

## FÓRMULAS MARCADAS

- Nossa versão dos tableaux utilizam formas marcadas por  ${\cal T}$  ou  ${\cal F}$
- A refutação de  $\varphi_1, \ldots, \varphi_k \vdash \psi_1, \ldots, \psi_m$  gera a árvore inicial (parcial)

$$\varphi_{1}, \dots, \varphi_{k} \vdash \psi_{1}, \dots, \psi_{m}$$

$$T\varphi_{1}$$

$$\vdots$$

$$T\varphi_{k}$$

$$F\psi_{1}$$

$$\vdots$$

#### Exemplo 1

- Um único ramo, fechado
- Todos os ramos da árvore fechados-
- Refutação falho: sequente provado

#### Regras $\alpha$

$$\frac{\alpha}{\alpha_1}$$
  $\alpha_2$ 

| $\alpha$   | $T\alpha_1 \wedge \alpha_2$ | $F\alpha_1 \vee \alpha_2$ | $F\alpha_1 \rightarrow \alpha_2$ | $T \neg \alpha_1$ | $F \neg \alpha_1$ |
|------------|-----------------------------|---------------------------|----------------------------------|-------------------|-------------------|
| $\alpha_1$ | $T\alpha_1$                 | $Flpha_1$                 | $T\alpha_1$                      | $F\alpha_1$       | $F\alpha_1$       |
| $\alpha_2$ | $T\alpha_2$                 | $F\alpha_2$               | $F\alpha_2$                      |                   |                   |

# Regras $\beta$



| 1 | 3         | $F\beta_1 \wedge \beta_2$ | $T\beta_1 \vee \beta_2$ | $T\beta_1 \rightarrow \beta_2$ |
|---|-----------|---------------------------|-------------------------|--------------------------------|
| ß | $\beta_1$ | $m{F}eta_1$               | $T\beta_1$              | $Feta_1$                       |
| E | 32        | $F\beta_2$                | $T\beta_2$              | $T\beta_2$                     |

#### Exemplo 2

#### Exemplo 3

$$p \land q \rightarrow r, p \vdash \neg q$$
(1)  $Tp \land q \rightarrow r$  Hipótese
(2)  $Tp$  Hipótese
(3)  $F \neg q$  Hipótese
(4)  $Tq$   $\alpha$  (3)
(5)  $Fp \land q$   $Tr$   $\beta$  (1)
(6) ? aberto  $p(T)$   $q(T)$   $r(T)$ 
(7)  $Fp$   $Fq$   $\beta$  (5)

 $\times$   $\times$ 
2,8 6,8

11 / 18

## Exercícios

Verificar a validade dos seguintes sequentes pelo método TA, e apresentar uma valoração contra-exemplo caso seja inválido.

$$\bigcirc \neg (\neg p \land q) \dashv \vdash p \rightarrow q$$

$$\bigcirc \neg (\neg p \land q) \dashv \vdash q \rightarrow p$$

$$\bigcirc \neg (p \land q) \dashv \vdash \neg p \lor \neg q$$

$$\bigcirc \vdash ((p \rightarrow q) \rightarrow p) \rightarrow p$$

## Ρκόχιμο Τόριςο

TABLEAUX ANALÍTICOS

2 Correção e Completude

# Correção de um método de provas

### DEFINIÇÃO: CORREÇÃO

Um método de prova ( $\vdash$ ) da LPC é **correto** em relação à semântica de valorações booleanas se, para toda fórmula  $\varphi$ :

$$\vdash \varphi \implies \models \varphi$$

Um sistema de inferência é correto se "todo teorema é válido"

# Completude de um método de provas

#### DEFINIÇÃO: COMPLETUDE

Um método de prova ( $\vdash$ ) da LPC é **completo** em relação à semântica de valorações booleanas se, para toda fórmula  $\varphi$ :

$$\models \varphi \implies \vdash \varphi$$

Um sistema de inferência é completo se "toda tautologia é teorema"

# Como provar a correção e completude do método TA

- Definir um ramo como **aberto** se existe uma valoração v tal que para cada fórmula marcada  $S \varphi$  do rama,  $v(\varphi) = S$
- $oldsymbol{\bigcirc}$  Provar que: ramo aberto permanece aberto após uma expansão lpha
- O Provar que: ao menos um dos ramos gerados por uma expansão  $\beta$  de um ramo aberto é aberto
- Provar que: Se um tableau fecha por uma escolha de expansões, ele fecha com todas as possíveis expansões

# Como provar a correção

- $\bigcirc \hspace{0.1cm} \varphi \text{ \'e um teorema se um tableau para } F \hspace{0.1cm} \varphi \hspace{0.1cm} \text{fecham}$
- Output
  <
- **o** Não há valoração  $v(\varphi) = F$
- igotimes arphi é tautologia

#### Como provar a completude

- $\bigcirc \mathsf{Completude} \colon \vDash \varphi \implies \vdash \varphi$
- $\bigcirc \mathsf{Contrapositiva} \colon \not\vdash \varphi \implies \not\models \varphi$
- $\bigcirc$  Se  $ot\vdash \varphi$  então tableau é aberto
- Ramo aberto só pode vir da expansão de ramo aberto
- **o** Valoração obtida de ramo aberto fornece v tal que  $v(\varphi) = F$
- $\bigcirc$   $\not\models \varphi$