١	<u>'</u>	/ロ・エ	
160/	= /	ユュル	
M1X		保证	

本人知晓我校考场规则和违纪处分条例	间的有关规定,保证遵守考场规则,诉	奺实
做人。	本人签字:	

编号	•	
700 .1	•	

西北工业大学考试试题(卷)

2016-2017年第 1 学期

开设	果学院	航	空学院	课	程	概	率论与数:	理统计	学时	† <u>48</u>
考证	式日期_	20	17.01.09	考	试时间	<u></u>	_小时	考试形	/式(闭)	(A)卷
	题号	1	1 1	三	<u>D</u>	Ц	五	六	七	总分
	得分									
	生班级		11.	学		piyyê kuk a		姓名	3	
→ ,	、填空	(每空25	分 ,共 22	2分)请	 将填空	题答	案与在答	题 纸上		
1.	己知随	机事件 A	和 B, P	(A)=0.5, H	P(B A)=	=0.4,	P(A B)=0	.6,则P(E	$B \mid A \cup \overline{B})$	=o
2.	将3只	球随机放	(入4个村	怀中,则:	杯中球	的最	大个数为	12的概率	区为	0
3.	离散型	!随机变量	X的分	布律为						
				X	-1	1	3			
				p	1/4	1/	2 1/4			
	则 P 1	$\leq X < 2.$	5 =		°					
4.	设袋中	有5只白	球,6月	红球,从	袋中任	取 n	次,每次	从袋中任	取一只作	放回抽样,
	以 Y 表示取到白球的次数,则 $E(Y)=$ 。									
5.	总体X	的均值为	財μ,方差	É为σ²,	X_1, X_2	,,	7,为总体	X的一个	·样本, \bar{X}	为样本均
	值,根	提据切比雪	夫不等	式可知,	$P\{ ar{X}$	$-\mu$	$< 2\sigma$ } \geq		o	

- 注: 1. 命题纸上一般不留答题位置,试题请用小四、宋体打印且不出框。
 - 2. 命题教师和审题教师姓名应在试卷存档时填写。

西北工业大学命题专用纸

6.	已知随机变量 X 和 Y ,	方差 D(X)=16,	方差 D(Y)=4,	相关系数 $\rho_{XY} = -0$.	5,则
	D(3X-2Y+5)=	o			

7. 已知离散型总体 X 的分布律为

$$\begin{array}{c|ccccc} X & 1 & 2 & 3 \\ \hline p & \theta & \theta & 1-2\theta \end{array}$$

 $\theta > 0$ 未知参数,已知总体的一个样本值为 1, 1, 2, 3, 1, 3,则参数 θ 的矩估计值为______。

- 8. 正态总体 $X \sim N(\mu, \sigma^2)$, $X_1, X_2, ..., X_n$ 为总体 X 的一个样本, \bar{X} 为样本均值, S^2 为样本方差,则 $E(\bar{XS}^4)=$ _______。
- 9. 己知随机变量 $X \sim b$ (80000,1/2),则P {39800 $\leq X \leq$ 40200} \approx ______。 ($\Phi(\sqrt{2}) = 0.9214$)

教务处印制 共 4 页 第 2 页

二、(8分)设有5个独立工作的电子元件1,2,3,4,5,它们的可靠度均为0.80,按 照如下图形式进行连接(称为桥连系统),用**全概率公式**求解此系统的可靠度。((请保 留小数点后至少三位有效数字)

三、(14分)设随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} 0 & x < 0 \\ 1/2 & 0 \le x < 1 \\ A/x^2 & x \ge 1 \end{cases}$$

试求 1) 常数 A:

2) X的累积分布函数 F(x):

3)概率
$$P\left\{\frac{1}{2} \le X \le \frac{5}{2}\right\}$$
;

4) $Y = (X - 1)^2$ 的概率密度函数。

四、(18分)设随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y \\ 0 & 其它 \end{cases}$$

试求 1) 边缘概率密度 $f_X(x), f_Y(y)$;

- 2) 条件概率密度 $f_{XY}(x|y), f_{Y|X}(y|x)$;
- 3) X与Y是否独立,并说明原因;
- 4) X与 Y的相关系数;
- 5) Z = 3X + 2Y 的概率密度函数。

西北工业大学命题专用纸

五、 $(20\, f)$ 设总体 X 为 $[0,\, \theta]$ 的均匀分布, $\theta>0$ 为未知参数,已知来自总体 X 的一个样本 $X_1,X_2,...,X_n$,试求

- 1) θ 的矩估计 $\hat{\theta}_{M}$ 和最大似然估计 $\hat{\theta}_{MLE}$;
- 2) 判断矩估计 $\hat{\theta}_{M}$ 是否是 θ 的无偏估计? 是否是相合估计?
- 3) 判断最大似然估计 $\hat{\theta}_{\text{\tiny MLE}}$ 是否是 θ 的无偏估计?是否是相合估计?
- 4) 函数 e^{θ} 的矩估计和最大似然估计。

六、(18 分)在酿造啤酒过程中,在麦芽干燥时会产生致癌物质 NDMA(亚硝基二甲胺),下表中给出了新旧两种工艺中 NDMA 的含量(10 亿份中的份数)

旧: 6 4 5 5 6 5 5 6 4 6 7 4

新: 2 1 2 2 1 0 3 2 1 0 1 3

设上述两样本分别来自相互独立的正态总体:旧工艺 $X \sim N(\mu_1, \sigma_1^2)$,新工艺

 $Y \sim N(\mu_2, \sigma_2^2)$, 其中参数 $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2$ 均未知, 试求

1) 假设检验(显著性水平 $\alpha = 0.05$)

$$H_0: \sigma_1^2 = \sigma_2^2$$
 $H_1: \sigma_1^2 \neq \sigma_2^2$

2) 两总体均值差 $\mu_1 - \mu_2$ 的置信度为 0.95 的置信区间。

(请保留小数点后至少3位有效数字)

$$t_{0.025}(22) = 2.074, \ t_{0.025}(23) = 2.069, \ t_{0.025}(24) = 2.064$$

$$z_{0.025} = 1.960, F_{0.025}(11,11) = 3.474, F_{0.025}(12,12) = 3.277$$

答案

一、填空

3.
$$\emptyset P \ 1 \leq X < 2.5 = 1/2 0.5$$

4.
$$E(Y) = 5n/11 0.4545n$$

5.
$$P\{|\bar{X}-\mu|<2\sigma\}\geq 1-1/4n$$
.

6.
$$D(3X-2Y+5)=$$
 208 °

7. 参数
$$\theta$$
 的矩估计值为**0.389 7/18**, 最大似然估计值为**1/3**。

8.
$$E(\overline{XS}^4) = \mu \left(\frac{2\sigma^4}{n-1} + \sigma^4\right) = \mu \sigma^4 \left(\frac{n+1}{n-1}\right)$$

9.
$$P\{39800 \le X \le 40200\} \approx \underline{0.8428}$$

10. 拒绝域为
$$\chi^2 = \sum_{i=1}^k \frac{(f_i - np_i)^2}{np_i} \ge \chi_\alpha^2(k-3)$$
 或 $\chi^2 = \sum_{i=1}^k \frac{f_i^2}{np_i} - n \ge \chi_\alpha^2(k-3)$.

二、0.91136

4)
$$f_{Y}(y) = \frac{1}{2\sqrt{y}} \left(f_{X}(1+\sqrt{y}) + f_{X}(1-\sqrt{y}) \right) = \begin{cases} 0 & y < 0 \\ \frac{1}{4\sqrt{y}} \left(\frac{1}{(1+\sqrt{y})^{2}} + 1 \right) & 0 \le y < 1 \\ \frac{1}{4\sqrt{y}(1+\sqrt{y})^{2}} & y > 1 \end{cases}$$

2)
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{1}{y}, & 0 < x < y \\ 0, & else \end{cases}$$
 $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} e^{x-y}, & y > x > 0 \\ 0, & else \end{cases}$

3)因为 $f_X(x) \times f_Y(y) \neq f(x,y)$,所以 X 与 Y

4)
$$\rho_{xy} = \sqrt{2}/2 = 0.717$$

5)
$$f_Z(z) = \begin{cases} \frac{1}{3} \left(e^{-\frac{z}{5}} - e^{-\frac{z}{2}} \right), & z > 0 \\ 0, & else \end{cases}$$

$$\pm$$
. 1) $\hat{\theta}_{M} = 2\bar{X}$, $\hat{\theta}_{MLE} = \max(X_{1}, X_{2}, ..., X_{n}) = X_{(n)}$

2) $\hat{\theta}_{M}$ 是无偏估计, $\hat{\theta}_{M}$ 为 θ 的相合估计。

3)
$$\hat{\theta}_{MLE}$$
 $\text{ fix PDF } \text{ for } f_{X_{(n)}}(x) = n \left[F(x)\right]^{n-1} f(x) = \begin{cases} \frac{nx^{n-1}}{\theta^n} & 0 \le x \le \theta \\ 0 & else \end{cases}$

$$E(\hat{\theta}_{MF}) \neq \theta$$
 有偏

$$\lim_{n\to+\infty} E\left(\hat{\theta}_{MLE}\right) = \theta, \ \lim_{n\to+\infty} D\left(\hat{\theta}_{MLE}\right) = 0 \qquad 故 \, \hat{\theta}_{MLE} \, 为 \, \theta \, 的相合估计$$

4) e^{θ} 的矩估计是 $e^{\hat{\theta}_M} = e^{2\bar{X}}$

因为 e^{θ} 具有单值反函数,所以其最大似然估计为 $e^{\hat{ heta}_{MLE}}=e^{X_{(n)}}$

六、检验统计量 $Z = S_1^2/S_2^2 \sim F(n_1 - 1, n_2 - 1)$

接受 H₀,认为两者的方差相等。

1) 求解均值差
$$\mu_1 - \mu_2$$
的置信区间为 $\left((\bar{X} - \bar{Y}) \mp t_{\alpha/2} (n_1 + n_2 - 2) S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right)$

(2.9179, 4.5821)。 μ_1 - μ_2 置信区间下限大于 0, 我们认为 μ_1 比 μ_2 大