1

Random Vector Assignment

Aman Kumar EE22BTECH11006

Consider a triangle with vertices,

$$\mathbf{A} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \tag{1}$$

I. Vectors

Parameter	Value	Description
m _{AB}	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	Direction vec of AB
m _{BC}	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	Direction vec of BC
m _{CA}	$\begin{pmatrix} 2 \\ -4 \end{pmatrix}$	Direction vec of CA
$ \mathbf{A} - \mathbf{B} $	-	Lenght of AB
$ \mathbf{B} - \mathbf{C} $	5	Lenght of BC
$\ \mathbf{C} - \mathbf{A}\ $] -	Lenght of CA
$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ A & B & C \end{pmatrix}$	3	non-collinear
n _{AB}	$\begin{pmatrix} 1 \\ -2 \end{pmatrix}$	Normal vec of AB
c _{AB}	2	Constant in AB
n _{BC}	$\begin{pmatrix} 3 \\ 4 \end{pmatrix}$	Normal vec of BC
c_{BC}	16	Constant in BC
n _{CA}	$\begin{pmatrix} -4 \\ -2 \end{pmatrix}$	Normal vec of CA
c _{CA}	-8	Constant in CA
Area	5	Area of △ABC
cos(A)	0	cosine of ∠A
cos(B)	0.447	cosine of ∠B
cos(C)	0.894	cosine of ∠C

TABLE I Triangle

Fig. I. Triangle generated using python

II. MEDIAN

Parameter	Value	Description
D	$\begin{pmatrix} 2.0 \\ 2.5 \end{pmatrix}$	Midpoint AB
E	$\begin{pmatrix} 1.0 \\ 2.0 \end{pmatrix}$	Midpoint BC
F	$\begin{pmatrix} 3.0 \\ 0.5 \end{pmatrix}$	Midpoint CA
n _{AD}	$\begin{pmatrix} 2.5 \\ 0.0 \end{pmatrix}$	Normal vec of AD
c_{AD}	5	Constant of AD
n _{BE}	$\begin{pmatrix} 1.0 \\ 3.0 \end{pmatrix}$	Normal vec of BE
c_{BE}	7	Constant of BE
n _{CF}	$\begin{pmatrix} -3.5 \\ -3.0 \end{pmatrix}$	Normal vec of CF
c _{CF}	-12	Constant of CF
G	$\begin{pmatrix} 2.0 \\ 1.667 \end{pmatrix}$	Centroid
$\frac{BG}{GE}$		Ratio of BG and GE
CG GF	2	Ratio of CG and GF
CG GF]	Ratio of CG and GF
$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ A & D & G \end{pmatrix}$	2	A, D, G collinear
A - F	(-1.0)	Direction vec of AF
$\mathbf{E} - \mathbf{D}$	(-0.5)	Direction vec of ED

Fig. II. Medians generated using python

III. ALTITUDE

Parameter	Value	Description
$\mathbf{D_1}$	$\begin{pmatrix} 3.2 \\ 1.6 \end{pmatrix}$	altitude foot from A
E ₁	$\begin{pmatrix} 2.0 \\ 0 \end{pmatrix}$	altitude foot from B
$\mathbf{F_1}$	$\begin{pmatrix} 2.0 \\ 0 \end{pmatrix}$	altitude foot from C
$n_{\mathrm{AD_1}}$	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	Normal vec of AD_1
c_{AD_1}	-8	Constant of AD ₁
n_{BE_1}	$\begin{pmatrix} 2 \\ -4 \end{pmatrix}$	Normal vec of BE_1
c_{BE_1}	4	Constant of BE_1
n_{CF_1}	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	Normal vec of CF_1
$\mathbf{c}_{\mathrm{CF}_1}$	4	Constant of CF_1
Н	$\begin{pmatrix} 2.0 \\ 2.5 \end{pmatrix}$	Orthocenter

TABLE III ORTHOCENTER

Fig. III. Altitudes generated using python

IV. PERPENDICULAR BISECTOR

Parameter	Value	Description
n _{OA}	$\begin{pmatrix} 0 \\ -2.5 \end{pmatrix}$	Direction vec of OA
n _{OB}	$\begin{pmatrix} 2.0 \\ -1.5 \end{pmatrix}$	Direction vec of OB
n _{OC}	$\begin{pmatrix} -2.0\\1.5 \end{pmatrix}$	Direction vec of OC
0	$\begin{pmatrix} 2 \\ 2.5 \end{pmatrix}$	Circumcenter
n _{OD}	$\begin{pmatrix} -2 \\ -1 \end{pmatrix}$	Normal vec of OD
c _{OD}	-6.5	Constant of OD
n _{OE}	$\begin{pmatrix} 4 \\ -3 \end{pmatrix}$	Normal vec of <i>OE</i>
c _{OE}	0.5	Constant of OE
n _{OF}	$\begin{pmatrix} -2\\4 \end{pmatrix}$	Normal vec of OF
c _{OF}	6.0	Constant of OF
$ \mathbf{A} - \mathbf{O} $		Norm of OA
$ \mathbf{B} - \mathbf{O} $		Norm of OB
$\ \mathbf{C} - \mathbf{O}\ $	2.5	Norm of OC
R		Circumradius
∠BAC	90.0°	Angle ∠BAC
∠BOC	179.99° TABLE IV	Angle ∠BOC

V. ANGULAR BISECTOR

Parameter	Value	Description
n _{IA}	$\begin{pmatrix} 1.341 \\ -0.447 \end{pmatrix}$	Normal vec of IA
c_{IA}	2.683	Constant vec of IA
n _{IB}	$\begin{pmatrix} -0.152 \\ -1.694 \end{pmatrix}$	Normal vec of IB
c_{IB}	-2.305	Constant vec of IB
n _{IC}	(1.494) 1.247)	Normal vec of IC
c_{IC}	4.988	Constant vec of IC
I	(2.382) 1.146)	Incenter
\mathbf{D}_3	$\binom{2.894}{1.829}$	POC with AB
\mathbf{E}_3	$\begin{pmatrix} 1.618 \\ 0.763 \end{pmatrix}$	POC with BC
F ₃	$ \begin{pmatrix} 2.764 \\ 0.382 \end{pmatrix} $	POC with CA
$\ \mathbf{D_3} - \mathbf{O}\ $		Norm of <i>OD</i> ₃
$\ E_3-O\ $		Norm of OE_3
$\ F_3 - O\ $	0.854	Norm of OF_3
r		Inradius
∠BAI		Angle ∠BAI
∠CAI	45°	Angle ∠CAI

TABLE IV TABLE V
CIRCUMCENTER INCIRCLE

Fig. V. Incircle generated using python