Problem 7.3.1

A relation \mathcal{R} is antisymmetric if $((x,y) \in \mathcal{R}) \land ((y,x) \in \mathcal{R}) \Rightarrow x = y$. Give examples of relations \mathcal{R} on $A = \{1,2,3\}$ having the stated property.

- (a) \mathcal{R} is both symmetric and antisymmetric.
- (b) R is neither symmetric nor antisymmetric.

Solution

Part A Part B

$\mathcal{R} = \{(1,1)\}$	$\mathcal{R} = \{(1,2), (2,3), (2,1)\}$
$\mathcal{R} = \{(3,3)\}$	$\mathcal{R} = \{(1,3), (1,2), (3,1)\}$
$\mathcal{R} = \{(1,1), (2,2), (3,3)\}.$	$\mathcal{R} = \{(1,2), (3,1), (1,3)\}.$

Problem 7.3.4

- (a) Let \sim be the relation defined on \mathbb{Z} by $a \sim b \iff a + b$ is even. Show that \sim is an equivalence relation and determine the distinct equivalence classes.
- (b) Suppose that 'even' is replaced by 'odd' in part (a). Which of the properties reflexive, symmetric, transitive does ~ posses?

Solution

Part A

Proof. Proceed to show that \sim is an equivalence relation on \mathbb{Z} .

(Reflexivity) Let $a \in \mathbb{Z}$. Then a + a = 2a, which by definition is even. Therefore since a + a is even it follows that $a \sim a$, hence \sim is reflexive.

(Symmetry) Let $a, b \in \mathbb{Z}$ and assume $a \sim b$. Therefore a + b is even. Since a + b = b + a, it follows that b + a is also even and therefore $b \sim a$. Hence \sim is symmetric.

(Transitivity) Let $a, b, c \in \mathbb{Z}$ and assume that $a \sim b$ and $b \sim c$. Therefore a+b and b+c are both even, meaning $\exists m, n \in \mathbb{Z}$ such that a+b=2m and b+c=2n. Then

$$(a+b) + (b+c) = 2m + 2n$$

$$a+2b+c = 2m + 2n$$

$$a+c = 2m + 2n - 2b$$

$$a+c = 2(m+n-b).$$

Since $m+n-b \in \mathbb{Z}$, a+c is even and therefore $a \sim c$. Hence \sim is transitive.

Since ~ is reflexive, symmetric, and transitive it is an equivalence relation.

The two possible equivalence classes are $2\mathbb{Z}$ and $\mathbb{Z} \setminus 2\mathbb{Z}$. Note that if x is an odd integer, then

$$[a] = \{b : a + b \text{ is odd}\}.$$

Since a is odd, then b has to also be odd for a + b to be even, meaning the equivalence class of an odd integer is the odd integers. If a is an even integer, then

$$[a] = \{b : a + b \text{ is even}\}.$$

Since a is now an even integer, b must also be an even integer for a + b to be even, meaning the equivalence class of an even integer is the even integers.

Part B

If *even* is replaced with odd, then \sim will be symmetric but not reflexive or transitive. Consider reflexivity. Let a=1 and note that a+a=2 which is not odd, hence \sim would not be reflexive. Consider transitivity. Note $1\sim 2$ and $2\sim 3$ since 1+2=3 and 2+3=5, but $1\not\sim 3$ because 1+3=4 which is even. Consider symmetry. Let $a,b\in\mathbb{Z}$ and assume $a\sim b$. Then $\exists n\in\mathbb{N}$ such that a+b=2n+1. Equivalently b+a=2n+1, therefore $b\sim a$. Hence \sim would be symmetric.

Problem 7.3.6

For the purposes of this question, we call a real number x small if $|x| \le 1$. Let \mathcal{R} be the relation on the set of real numbers defined by

$$x\mathcal{R}y \iff x - y \text{ is small.}$$

Prove or disprove: \mathcal{R} is an equivalence relation on \mathbb{R} .

Solution

Proof. Proof that \mathcal{R} is not an equivalence relation on \mathbb{R} . Let a=1,b=2,c=3. Note that $|a-b|=1\leq 1$ and $|b-c|=1\leq 1$, therefore $a\mathcal{R}b$ and $b\mathcal{R}c$. However $|a-c|=2\nleq 1$, meaning a does not relate c. Therefore \mathcal{R} is not transitive and hence not an equivalence relation.

Problem 7.3.10

Let $A = \{2m : m \in \mathbb{Z}\}$. A relation \sim is defined on the set \mathbb{Q}^+ of positive rational numbers by

$$a \sim b \Longleftrightarrow \frac{a}{b} \in A.$$

- (a) Show that \sim is an equivalence relation.
- (b) Describe the elements in the equivalence class [3].

Solution

Part A

Proof. Proceed to show that \sim is an equivalence relation on \mathbb{Q}^+ .

(Reflexivity) Let $a \in \mathbb{Q}^+$. Note that $\frac{a}{a} = 1 = 2^0$. Since $2^0 \in A$, $\frac{a}{a} \in A$ meaning $a \sim a$. Therefore \sim is reflexive.

(Symmetry) Let $a,b\in\mathbb{Q}^+$ and assume that $a\sim b$. Therefore $\frac{a}{b}\in A$, meaning $\exists m\in\mathbb{Z}$ such that $\frac{a}{b}=2^m$. Note that $\frac{b}{a}=2^{-m}$. Since $2^{-m}\in A$, $\frac{b}{a}\in A$ meaning $b\sim a$. Therefore \sim is symmetric.

(Transitivity) Let $a,b,c\in\mathbb{Q}^+$ and assume that $a\sim b$ and $b\sim c$. Therefore $\frac{a}{b}\in A$ and $\frac{b}{c}\in A$, meaning $\exists m,n\in\mathbb{Z}$ such that $\frac{a}{b}=2^m$ and $\frac{b}{c}=2^n$. Then it follows that

$$\frac{a}{b} \cdot \frac{b}{c} = 2^m \cdot 2^n$$
$$\frac{a}{c} = 2^{m+n}.$$

Since $m + n \in \mathbb{Z}$, then $\frac{a}{c} \in A$. Therefore $a \sim c$ meaning \sim is transitive.

Since \sim is reflexive, symmetric, and transitive it is an equivalence relation.

Part B

The equivalence class of 3 can be described as

$$[3] = \{y : 3 \sim y\}$$

$$= \{y : y \sim 3\}$$

$$= \left\{y : \frac{y}{3} = 2^{m}, \forall m \in \mathbb{Z}\right\}$$

$$= \{y : y = 3 \cdot 2^{m}, \forall m \in \mathbb{Z}\}$$

$$= \left\{3, \frac{3}{2}, 6, \frac{3}{4}, 12, \ldots\right\}.$$

Problem 7.4.3

Let $X = \{1, 2, 3\}$. Define a relation $\mathcal{R} = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3)\}$ on X.

- (a) Which of the properties reflexive, symmetric, transitive are satisfied by R?
- (b) Compute A_1, A_2, A_3 where $A_n = \{x \in X : x \mathcal{R} n\}$. Show that $\{A_1, A_2, A_3\}$ do not form a partition of X.
- (c) Repeat parts (a) and (b) for the relations S and T on X, where

$$S = \{(1,1), (1,3), (3,1), (3,3)\}$$

$$\mathcal{T} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,3)\}.$$

Solution

Part A

R is reflexive and symmetric but not transitive.

Part B

$$A_1 = \{1, 2, 3\}$$

 $A_2 = \{1, 2\}$
 $A_3 = \{1, 3\}.$

Since $A_1 \cap A_2 \neq \emptyset$, A_1, A_2, A_3 do not form a partition of X.

Part C

Relation ${\cal S}$

 ${\cal S}$ is symmetric but not transitive or reflexive.

$$A_1 = \{1, 3\}$$

 $A_2 = \emptyset$
 $A_3 = \{1, 3\}.$

These sets do not form a partition of X since $A_1 \cup A_2 \cup A_3 = \{1,3\} \neq X$.

Relation \mathcal{T}

 $\boldsymbol{\mathcal{T}}$ is reflexive but not transitive or symmetric

$$A_1 = \{1, 2\}$$

 $A_2 = \{1, 2\}$
 $A_3 = \{1, 2, 3\}$.

Since $A_1 \cap A_2 \neq \emptyset$, A_1, A_2, A_3 do not form a partition of X.