# A Review of Descriptive Statistics, OLS and an Introduction to Stata

#### Andy Grogan-Kaylor

4 Jun 2020

Simulated Clients

3 Jun 2020 15:14

## Social Service Agency Data

Simulated data on social service clients

. use clients.dta, clear // use (get) the data (Simulated Clients)

. describe

variable name

age

Contains data from clients.dta

obs: 521 vars: 8 size: 29,176

storage

type double

double

variable label

ID

age
gender

gender long %9.0g gender program%9.0g long program program mental\_health\_1 double %9.0g  $mental_health_T1$ mental\_health\_2 double %9.0g mental\_health\_T2 %9.0g latitude double latitude longitude double %9.0g longitude

value

label

display

format

%9.0g

Sorted by:

#### One Line Stata

do\_something to\_variable(s), options

Quite often the default options are so well chosen that you do not need to specify any options.

use mydata.dta

summarize // descriptive statistics

keep x1 x2 x3 // keep only selected variables

list x1 x2 x3 in 1/10 // list cases for selected variables

browse look at data

lookfor [word] look for variables with a particular word

#### The Stata Interface



Figure 1: The Stata Interface

# Measures of Central Tendency

- What are mean and median. Why are they different?
- Where is standard deviation?
- Subsets of variables?
- Finding variables?

| . summarize             |     |           |           |           |           |  |  |
|-------------------------|-----|-----------|-----------|-----------|-----------|--|--|
| Variable                | Obs | Mean      | Std. Dev. | Min       | Max       |  |  |
| ID                      | 521 | 2965.449  | 1158.32   | 1005      | 4989      |  |  |
| age                     | 521 | 28.0438   | 7.047373  | 18.05584  | 45.45653  |  |  |
| gender                  | 521 | 1.821497  | .7549825  | 1         | 3         |  |  |
| program                 | 521 | 2.197697  | .7973963  | 1         | 4         |  |  |
| mental_hea_1            | 521 | 95.11707  | 5.161698  | 80.93709  | 108.5736  |  |  |
| mental_hea_2            | 521 | 98.87066  | 7.423767  | 79.57518  | 118.2272  |  |  |
| latitude                | 521 | 42.25321  | .1027698  | 41.99847  | 42.6237   |  |  |
| longitude               | 521 | -83.74921 | .0987047  | -84.04328 | -83.42666 |  |  |
| . summarize age, detail |     |           |           |           |           |  |  |
|                         |     | age       |           |           |           |  |  |

|     | Percentiles | Smallest |             |     |
|-----|-------------|----------|-------------|-----|
| 1%  | 18.17739    | 18.05584 |             |     |
| 5%  | 18.72159    | 18.05992 |             |     |
| 10% | 19.54324    | 18.10945 | Obs         | 521 |
| 25% | 22.37428    | 18.13374 | Sum of Wgt. | 521 |

| 50% | 26.61352 |          | Mean      | 28.0438  |
|-----|----------|----------|-----------|----------|
|     |          | Largest  | Std. Dev. | 7.047373 |
| 75% | 32.88188 | 44.35607 |           |          |
| 90% | 38.46387 | 44.78399 | Variance  | 49.66547 |
| 95% | 41.26977 | 45.30344 | Skewness  | .5501433 |
| 99% | 44.16425 | 45.45653 | Kurtosis  | 2.317297 |

### Measures of Variation

Some programs, e.g. R make you search for standard deviation. With Stata, sd is easily accessible with summarize.

- . histogram mental\_health\_T1, normal scheme(burd) (bin=22, start=80.937087, width=1.2562034)
- . graph export myhistogram.png, width(500) replace (file myhistogram.png written in PNG format)



Figure 2: histogram of mental health

# Comparing Continuous and Continuous Variables

- . twoway scatter mental\_health\_T1 age, msymbol(o) scheme(burd)
- . graph export myscatter.png, width(500) replace (file myscatter.png written in PNG format)

#### Correlation

. pwcorr mental\_health\_T1 age, sig



Figure 3: scatterplot of age and mental health

|              | mental_1          | age    |
|--------------|-------------------|--------|
| mental_hea_1 | 1.0000            |        |
| age          | -0.0093<br>0.8329 | 1.0000 |

# Comparing Continuous Variables Across Categorical Variables

```
. graph bar mental_health_T2, over(program) scheme(burd)
```

#### t-test

- . preserve // preserve data set  $% \left( 1\right) =\left( 1\right) \left( 1\right)$
- . keep if program == 1  $\mid$  program == 2 // only keep 2 programs for now (201 observations deleted)
- . ttest mental\_health\_T2, by(program)

Two-sample t test with equal variances

| Group   | Obs | Mean     | Std. Err. | Std. Dev. | [95% Conf. | . Interval] |
|---------|-----|----------|-----------|-----------|------------|-------------|
| Program | 111 | 94.7963  | .4969934  | 5.23615   | 93.81138   | 95.78123    |
| Program | 209 | 105.3512 | .3562424  | 5.150136  | 104.6489   | 106.0535    |

<sup>.</sup> graph export mybargraph.png, width(500) replace (file mybargraph.png written in PNG format)



Figure 4: bar graph of mental health at time 2

| combined | 320                   | 101.69    | .4033737              | 7.215767            | 100.8964  | 102.4836                |
|----------|-----------------------|-----------|-----------------------|---------------------|-----------|-------------------------|
| diff     |                       | -10.55491 | .6083793              |                     | -11.75187 | -9.357953               |
| diff :   | = mean(Prog<br>= 0    | degrees   | t<br>s of freedom     | = -17.3492<br>= 318 |           |                         |
|          | iff < 0<br>) = 0.0000 | Pr(       | Ha: diff<br>T  >  t ) | -                   |           | diff > 0<br>t) = 1.0000 |

## ANOVA

- . restore // restore old version of data  $% \left( 1\right) =\left( 1\right) \left( 1\right$
- . oneway  $mental\_health\_T2$  program, tabulate // oneway analysis of variance

|               | Summary o      | of mental_l |              |          |            |
|---------------|----------------|-------------|--------------|----------|------------|
| program       | Mean           | Std. Dev    | . Freq.      |          |            |
| Program A     | 94.796305      | 5.236150    | 2 111        |          |            |
| Program B     | 105.35121      | 5.150136    | 2 209        |          |            |
| Program C     | 94.299149      | 5.200225    | 188          |          |            |
| Program D     | 95.582917      | 5.619914    | 3 13         |          |            |
| Total         | 98.870656      | 7.423767    | 3 521        |          |            |
| ·             | Ana            | alysis of ' | /ariance     |          |            |
| Source        | SS             | d:          | f MS         | F        | Prob > F   |
| Between group | s 14689.6      | 3155        | 3 4896.53849 | 181.23   | 0.0000     |
| Within group  | s 13968        | .791 51     | 7 27.0189382 |          |            |
| Total         | 28658.4        | 1065 520    | 55.1123202   |          |            |
| Bartlettís te | st for equal t | zariances.  | chi2(3) = 0  | 1991 Pro | h>chi2 = 0 |

Importantly, ,tabulate gives us a table of results.

# Regression

- What is the equation?
- What do the results mean?
- What is substantively or statistically significant?

|   | regress | mental  | health    | T2    | mental  | health   | Т1    | i.program |
|---|---------|---------|-----------|-------|---------|----------|-------|-----------|
| • | Tegress | mentar. | _mear on_ | _ 1 2 | mentar. | _mear on | _ + + | i.program |

| Source                                 |        | SS                             | df                      |      | MS                     | Number of               | obs                      | =     | 521                             |
|----------------------------------------|--------|--------------------------------|-------------------------|------|------------------------|-------------------------|--------------------------|-------|---------------------------------|
| Model<br>Residual                      |        | 1704.3725<br>13954.034         | 4<br>516                |      |                        | 0427015 R-squared       |                          | =     | 135.94<br>0.0000<br>0.5131      |
| Total                                  | 28     | 3658.4065                      | 520                     | 55.1 | 1123202                | Adj R-squ<br>Root MSE   | ared                     |       | 0.5093<br>5.2003                |
| mental_health_                         | _T2    | Coef.                          | Std.                    | Err. | t                      | P> t                    | [95%                     | Conf. | Interval]                       |
| mental_health_                         | _T1    | 0327405                        | .044                    | 1321 | -0.74                  | 0.460                   | 1198                     | 3123  | .0543314                        |
| progr<br>Program<br>Program<br>Program | B<br>C | 10.57171<br>494409<br>.7226213 | .6111<br>.6224<br>1.526 | 1837 | 17.30<br>-0.79<br>0.47 | 0.000<br>0.427<br>0.636 | 9.373<br>-1.713<br>-2.23 | 7323  | 11.77241<br>.728505<br>3.722272 |

23.11 0.000

89.58195

106.2267

# What if We Want to Allow For Different Slopes?

4.236239

Instructor will draw this out.

\_cons

| regress | mental | health | T2 | c.mental | health | T1##i | program |
|---------|--------|--------|----|----------|--------|-------|---------|
|         |        |        |    |          |        |       |         |

97.90435

| Source   | SS         | df  | MS         | Number of obs | = | 521    |
|----------|------------|-----|------------|---------------|---|--------|
|          |            |     |            | F(7, 513)     | = | 77.65  |
| Model    | 14743.6327 | 7   | 2106.23324 | Prob > F      | = | 0.0000 |
| Residual | 13914.7738 | 513 | 27.1243155 | R-squared     | = | 0.5145 |
|          |            |     |            | Adj R-squared | = | 0.5078 |
| Total    | 28658.4065 | 520 | 55.1123202 | Root MSE      | = | 5.2081 |
| <u>'</u> |            |     |            |               |   |        |

| mental_health_T2   | Coef.    | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|--------------------|----------|-----------|-------|-------|------------|-----------|
| mental_health_T1   | .0038108 | .0940124  | 0.04  | 0.968 | 1808858    | .1885074  |
| program            |          |           |       |       |            |           |
| Program B          | 14.13882 | 11.07298  | 1.28  | 0.202 | -7.615155  | 35.89279  |
| Program C          | 2.227825 | 11.6862   | 0.19  | 0.849 | -20.73087  | 25.18653  |
| Program D          | 27.30439 | 22.3002   | 1.22  | 0.221 | -16.50657  | 71.11535  |
| program#           |          |           |       |       |            |           |
| c.mental_health_T1 |          |           |       |       |            |           |
| Program B          | 0375708  | .1162481  | -0.32 | 0.747 | 2659517    | .1908101  |
| Program C          | 0286832  | .1228833  | -0.23 | 0.816 | 2700997    | .2127332  |
| Program D          | 2851331  | .2385022  | -1.20 | 0.232 | 7536944    | .1834281  |
| _cons              | 94.43455 | 8.938253  | 10.57 | 0.000 | 76.87446   | 111.9946  |

# Regression Assumptions and the Issue of "Normality"

# Questions?