Piecewise linear functions - odhad chýb

Funkciu fsi rozložíme na linearizáciu f^l a chybu $f^\varepsilon.$

$$f(x) = f^{l}(x) + f^{\varepsilon}(x)$$

1 Prvotná chyba

Nech $f \in C^2$, $\delta = \sup |f''|$

$$\sup |f^{\epsilon}| \le \eta^2 \sup |f''|$$

1.1 Silnejší odhad

(závislosť od vzdialenosti k uzlovému bodu, ktorý (predpokladáme) je presný. Pre f konkávne na oblasti.

$$|\chi(x)| \le \left| (x-a) \left[f'(a) + \frac{1}{2} (x-a) \sup |f''| \right] \right|$$

2 Operácie

Nech sup $|f^{\varepsilon}| \leq \varepsilon_1$, sup $|f^{\varepsilon}| \leq \varepsilon_2$

2.1 Súčet

Nech h = f + g

$$\sup |h^{\varepsilon}| \le \varepsilon_1 + \varepsilon_2$$

2.2 Súčin

Nech $h = f \cdot g$

$$\sup |h^{\varepsilon}| \le \varepsilon_1 \sup |g| + \varepsilon_2 \sup |f| + \varepsilon_1 \varepsilon_2$$

2.3 Podiel

Nech $h=\frac{1}{f},\quad f\geq 0,\quad \alpha:=\inf f,\quad \gamma:=\sup |f'|,\quad \eta$ je norma delenia. Na úseku je $f^l(x)=A+(x-a)\frac{B-A}{b-a}$

$$\sup |h^{\varepsilon}| = \sup \left| \frac{1}{f} - \frac{1}{f^{l}} + \frac{1}{f^{l}} - h \right| = \left| -\frac{f^{\varepsilon}}{f^{l}(f^{l} + f^{\varepsilon})} - \frac{(A - B)^{2}}{AB(\sqrt{A} + \sqrt{B})^{2}} \right| \le \frac{\varepsilon}{\alpha(\alpha - \varepsilon)} + \frac{\gamma^{2}\eta^{2}}{4\alpha^{3}}$$

2.4 Integrál

Nech $h = \int_a^b f(x) dx$

$$h \le \varepsilon |b - a| + \frac{1}{8} \gamma \eta^2$$

1