$\begin{array}{c} {\rm UMC~202} \\ {\rm PROBLEM~SET~8} \end{array}$

(1) Apply the Linear Shooting technique with ${\cal N}=10$ to the boundary value problem

$$y'' = \frac{-2}{x}y' + \frac{2}{x^2}y + \frac{\sin(\ln x)}{x^2}, \text{ for } 1 \le x \le 2,$$

with $y(1) = 1$ and $y(2) = 2$,

and compare the results to those of the exact solution

$$y = c_1 x + \frac{c_2}{x^2} - \frac{3}{10} \sin(\ln x) - \frac{1}{10} \cos(\ln x),$$

where $c_1 = 1.13921$ and $c_2 = -0.03921$.

(2) Apply the shooting method with Newton's method to the boundary value problem

$$y'' = \frac{1}{8}(32 + 2x^3 - yy')$$
, for $1 \le x \le 3$,
with $y(1) = 17$ and $y(3) = \frac{43}{3}$.

Use $N=20,\,M=10$ and $TOL=10^{-5},\,$ and compare the results with the exact solution $y(x)=x^2+\frac{16}{x}.$

(3) Use the linear finite difference algorithm with N=9 to approximate the solution to problem 1 and compare the results obtained in the linear shooting method.