From PyTorch to TensorFlow

EE-559 Deep Learning, EPFL, 5/23/18
Andreas Steiner, Guest Lecture
https://fleuret.org/dlc

Agenda Today Intro Low-Level TF ML to App @ZRH TF Goodness TF vs. PyTorch ?

Pathology: Tumor Detection

- Inception v3 network, sliding window
- 242 slides 10⁷ 299x299 patches
- 82.7% sensitivity (@7 FP/slide) vs. 73.2% pathologist

(Liu 2017)

Pathology: Augmented Reality Semi transparent mirror Camera to Capture FoV Display Display Display

(Po-Hsuan 2018)

Medical Records

- Predictive modeling from EHR
- Deep learning from raw FHIR data
- 216k patients 46,864M datapoints
- Outperforms state-of-the-art in all predictions

(Rajkomar 2018)

Datasets

Youtube 8M

https://research.google.com/youtube8m/index.html
7M videos, 4716 classes

Youtube BB

https://research.google.com/youtube-bb/

240k videos, 11M human annotations

Atomic Visual Actions

https://research.google.com/ava/

58k segments, 210k action labels, 80 actions

AudioSet

https://research.google.com/audioset/

2.1M human-labeled 10s sound clips, 632 classes

Speech Commands

https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html

65k utterances, 30 words

OpenImages V4

https://storage.googleapis.com/openimages/web/

9.2M images, 30M human-verified labels, 20k classes 1.9M images, 15M bounding boxes, 600 classes

Figure derived from Chan, et al. 2015

https://distill.pub/2016/augmented-rnns/
(Olah 2016)

https://distill.pub/2018/building-blocks/

(Olah 2018)

AI Residency

Ad g.co/airesidency

- 12-month research training role
- For whom?
 Candidates with BSc/MSc/PhD in STEM field
 ... or any background with passion for ML.
- Applications for 2019 will open in Fall 2018
 g.co/airesidencysignup

Agenda

Music Detector

- 6 convolutional layers (stride=2) prediction every 0.64s
- 8k parameters 10k memory footprint (quantization!)
- Trained on AudioSet data

(Agüera y Arcas 2017)

Music Recognizer

Neural Network Fingerprinter

- Same input as Music Detector
- Triplet loss, 96-dim embeddings

Reduced size by:

- Separable convolutions
- FC : divide-and-conquer
- Quantization

Now Playing (on Pixel 2)

10k songs, <1% daily battery.

- On-device ML, private, always on.
- Requires tricks for reducing memory / power (cascading models, optimized models, hardware)

Agenda

TensorFlow Lite

- Lightweight
- Low latency
- Operators (float/quantized) tuned for mobile performance
- Convert existing models to .tflite format

TensorFlow.js

- Supports 90+ Ops, 32+ layers
- Train / run in browser
- Import SavedModel/Keras models
- ~1.5-2x slower than Python/AVX

Try it out:

https://js.tensorflow.org

TensorFlow-Hub

```
import tensorflow_hub as hub
embed = hub.Module("https://tfhub.dev/google/"
    "universal-sentence-encoder/1")
embedding = embed([
    "The quick brown fox jumps over the lazy dog."])
                                                        (Cer 2018)
```

- Module: self-contained piece of TF graph including weights and assets.
- Canonical URLs for versioned modules.
- For direct application, transfer learning, ...
- **Beware** of model bias!

Many more models under github.com/tensorflow/models

Tensor Processing Units (TPUs)

180 TFLOPS, 64 GB HBM memory, 2400 GB/s BW - g.co/tpusignup

Distributed TensorFlow

Parameter Servers

store/update variables

Workers

do computation

- Lot of flexibility.
- Communication within process / over network.
- Graph can be split or replicated.
- Easy to use with higher level API.

Today Intro ML research ML to App @ZRH TF Goodness Today Low-Level TF Putting It Together TF vs. PyTorch ?

TensorFlow Versions

Semantic Versioning: MAJOR.MINOR.PATCH

https://github.com/tensorflow/tensorflow/releases

https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md

The Graph*

Ops - Nodes in the graph. Perform computation on Tensors
Tensors - Edges in the graph. Input/output of Ops

* always present, but might be invisible

The Graph

Ops - Nodes in the graph. Perform computation on Tensors
Tensors - Edges in the graph. Input/output of Ops

Naming, Placement, Scope

Conversion, Overloading, Broadcasting

```
a = tf.constant([1, 1]) \\ c = a + 2 
Conversion \\ 2 \rightarrow tf.constant(2)
0verloading \\ a + 2 \rightarrow tf.add(a, 2)
a = tf.constant([1, 1]) \\ c = tf.add(a, tf.constant([2, 2]))
```


The Session - Makes the Tensors Flow

The Session executes the Graph, similar to the JVM running Java bytecode.

build graph...

```
x = tf.constant(1.0, name="x")
add = tf.add(x, 2.0, name="add")
mul = tf.multiply(add, 3.0, name="mul")
```

...run graph

```
with tf.Session() as sess:
  mul_, = sess.run([mul])
  print(mul_)
```

(Default) Graph, (Interactive) Session

```
tf.reset_default_graph()
                                                 Start with a clean slate.
x = tf.constant(3.1415)
sess = tf.InteractiveSession()
                                                 x.eval() is shortcut for sess.run([x])
print(x.eval())
graph = tf.Graph()
with graph.as_default():
                                                 New Ops always attached to default graph.
  x = tf.constant(2.718)
with tf.Session(graph=graph) as sess:
                                                 Provide graph as argument.
  print(x.eval())
with tf.Graph().as_default(),\
     tf.Session() as sess):
  x = tf.constant(1.414)
                                                 Slides often only show this code.
  print(sess.run([x]))
```

```
Placeholders, Feeding

x = tf.placeholder(tf.float32, shape=[2], name="x")
norm = tf.norm(x)

norm.eval(feed_dict={x: [3, 4]})

5.0

sess.run([x, norm], feed_dict={"x:0": [3, 4]})

[array([3., 4.], dtype=float32), 5.0]

sess.run([x, norm])
```

InvalidArgumentError ... must feed a value ... tensor 'x'

[array([3., 4.], dtype=float32), array(0., dtype=float32)]

sess.run([x, norm], feed_dict= $\{x: [3, 4], norm: 0\}$)

```
Graph/Session Quiz
with tf.Graph().as_default() as graph:
  x = tf.constant(1)
  x2 = tf.multiply(x, x)
with tf.Session() as sess:
  print(sess.run(x2))
  ValueError: Tensor ... is not an element of this graph.
                                                with tf.Graph().as_default():
with tf.Graph().as_default() as graph:
                                                  x = tf.constant(1)
  x = tf.constant(1)
                                                  x2 = tf.multiply(x, x)
  x2 = tf.multiply(x, x)
                                                  with tf.Session() as sess:
with tf.Session(graph=graph) as sess:
                                                    print(sess.run(x2))
  print(sess.run(x2))
```

Providing Functions, Not Tensors

```
inputs = get_inputs_tensor()
labels = get_labels_tensor()

model.train(inputs, labels)

def input_fn():
    inputs = get_inputs_tensor()
    labels = get_labels_tensor()
    return inputs_labels

model.train(input_fn)

These tensors are already
    attached to a graph.

model.train() can decide which
    graph tensors are attached to.
```

The Shapes*

```
scalar
                                 x = tf.random_normal(shape=(2, 2))
                                 x.shape
               rank=0,
               shape=()
                                    TensorShape([Dimension(2), Dimension(2)])
               vector
  [1, 2]
                                 x.shape.as_list()
               rank=1
                                    [2, 2]
               shape=(2,)
 [[1, 2, 3],
                                 tf.reshape(x, (1, -1)).shape
               matrix
 [2, 4, 6]
               rank=2
                                    TensorShape([Dimension(1), Dimension(4)])
               shape=(2, 3)
[[[1, 2],
               tensor
  [3, 4]],
               rank=3
 [[5, 6],
  [7, 8]]]
               shape=(2, 2, 2)
                                    * the cause of, and solution to, all TensorFlow crashes!
```

Partially Known Shapes

- Dimension will only be fully defined at runtime. (Often used for batch dimension.)
- □ The shape information can be accessed as a Tensor.

Sparse Tensors

sparse = tf.SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]) sparse.eval()

tf.sparse_tensor_to_dense(sparse).eval()

```
array([[1, 0, 0, 0], 0], 0, 0], [0, 0, 0, 0], dtype=int32)
```

- □ Efficient encoding of "mostly zero" tensors (one-hot, linear models)
- ⇒ Variable-length features

Naming, Sharing

```
v1 1
                                                 ν1
                                                                        v3
v1 = tf.Variable(0, name="v1")
v2 = tf.get_variable("v2", initializer=0)
v3 = tf.get_variable("v3", shape=(3, 3), initializer=tf.random_normal_initializer())
v1 = tf.Variable(0, name="v1")
v2 = tf.get_variable("v2", initializer=0)
  ValueError: Variable v2 already exists
with tf.variable_scope("vars"):
                                                                vars
  x = tf.get_variable("x", initializer=0.)
with tf.variable_scope("vars", reuse=True):
  x = tf.get_variable("x", initializer=0.)
```

Sharing Example

```
def component(x, n, initializer=tf.random_normal_initializer):
  with tf.variable_scope("component", reuse=tf.AUTO_REUSE):
    weights = tf.get_variable("weights", shape=(n, n), initializer=initializer)
    biases = tf.get_variable("biases", shape=(n,), initializer=initializer)
    return tf.matmul(weights, x) + biases
                                                               add
with tf.name_scope("tower0"):
    x = tf.random_normal([5, 1])
                                           tower0
   y0 = component(x, n=5)
                                                                     tower1
with tf.name_scope("tower1"):
                                               component
                                                                         component
    x = tf.random_normal([5, 1])
   y1 = component(x, n=5)
                                                  component
y = y0 + y1
                                                                     biases
                                                        weights
```

Save / Restore State Checkpoint with tf.Graph().as_default() as graph, tf.Session() as sess: v = tf.get_variable("v", initializer=0.) /tmp/model.ckpt.data-* saver = tf.train.Saver() /tmp/model.ckpt.index save_path = saver.save(sess, "/tmp/model.ckpt") _____ /tmp/model.ckpt.meta with tf.Session(graph=graph) as sess: saver.restore(sess, "/tmp/model.ckpt") <</pre> print(v.eval()) from tensorflow.python.tools import inspect_checkpoint as chkp chkp.print_tensors_in_checkpoint_file("/tmp/model.ckpt", tensor_name='', all_tensors=True, all_tensor_names=True) tensor_name: v

Agenda

Imports, ...

```
import tensorflow as tf
print(tf.__version__)
from tensorflow.python.client import device_lib
device_lib.list_local_devices()
```

```
1.7.0
[name: "/device:CPU:0"
  device_type: "CPU"
    ...
  name: "/device:GPU:0"
  device_type: "GPU"
    ...
  physical_device_desc: "device: 0, name: Tesla K80, ..."]
    ...
```

..., Data, ...

..., Defining the Model, ...

```
graph = tf.Graph()
with graph.as_default():
    x = tf.placeholder(tf.float32, [None, 784])
    y_ = tf.placeholder(tf.float32, [None, 10])

W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

logits = tf.matmul(x, W) + b
    y = tf.nn.softmax(logits)

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), axis=1))
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.5)
    train_step = optimizer.minimize(cross_entropy)
```

..., Train + Evaluate

with tf.Session(graph=graph) as sess:

```
..., defining the model, ...

x = tf.placeholder(...)
y_ = tf.placeholder(...)
...
y = tf.nn.softmax(logits)
```

```
sess.run(tf.global_variables_initializer())

# train
for _ in range(1100):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

# evaluate
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

0.9183
```

Agenda

TensorFlow vs. PyTorch?

	TensorFlow	PyTorch
Adoption	Huge	Rapidly growing
Graph	static, separate	dynamic, pythonic
Visualization	TensorBoard	Matplotlib etc
Deployment	TensorFlow Serving TensorFlow Lite, tensorflow.js	Caffe2
Parallelization	Distributed training device placement, variable scope	torch.nn.DataParallel
Abstractions	tf.keras, tf.layers, tf.estimator, tf.slim,	torch.nn.Module

BIG NEW

tf.keras

TensorFlow Eager

- No Session No Graph.
- All tensors are executed "eager"ly.
- tf.GradientTape records gradients for tf.eager.Variable

Develop?

- ✓ Experimentation.
- ✓ Debugging, introspection.
- ✓ Natural control-flow.
- ✓ Very similar to PyTorch.

Deploy?

- X Not mature yet.
- ✗ No graph-based optimization.
- ✗ No graph-based distribution / replication.

TensorFlow Eager - Putting it Together

```
W = tf.contrib.eager.Variable(tf.zeros([784, 10]))
b = tf.contrib.eager.Variable(tf.zeros([10]))
                                                         Define model
def get_preds(x):
  return tf.nn.softmax(tf.matmul(x, W) + b)
for _ in range(1100):
                                                                   Train
  batch_xs, batch_ys = mnist.train.next_batch(100)
  with tf.contrib.eager.GradientTape() as tape:
    preds = get_preds(batch_xs)
    loss = tf.reduce_mean(-tf.reduce_sum(batch_ys * tf.log(preds), axis=1))
  dW, db = tape.gradient(loss, [W, b])
  W.assign\_sub(dW * 0.5)
  b.assign\_sub(db * 0.5)
                                                                   Evaluate
accuracy = lambda x,y: (x.argmax(axis=1) == y.argmax(axis=1)).mean()
accuracy(get_preds(mnist.test.images).numpy(), mnist.test.labels)
```

Practical Session, Colab

IPython ... Jupyter ... Colab

- TOC, folding
- Popover help
- Forms
- Revision history
- Document comments
- Snippets

Finding Documentation

1. Colab auto-completion

method name=t

builder.add_meta_graph_and_variables(

tf.saved model.si strip_default_attrs=False) inputs={'x':
outputs={'y': Adds the current meta graph to the SavedModel and

- 2. https://tensorflow.org
 - Programmer's guide
 - Tutorials b.
 - c. API docs
- 3. Internet search: Stack Overflow, ...
- 4. Github codesearch : Search for usage patterns.

https://goo.gl/aSLGAA

References 1/3

(Agüera y Arcas 2017) Now Playing: Continuous low-power music recognition https://arxiv.org/abs/1711.10958

(Bello 2017) Neural Optimizer Search with Reinforcement Learning https://arxiv.org/abs/1709.07417

(Cer 2018) Universal Sentence Encoder https://arxiv.org/abs/1803.11175

(Chiu 2016) Speech recognition for medical conversations https://arxiv.org/abs/1711.07274

(Chan 2015) Listen, Attend and Spell https://arxiv.org/abs/1508.01211

(Gulshan 2016) Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

https://jamanetwork.com/journals/jama/fullarticle/2588763

References 2/3

(Jouppi 2017) In-Datacenter Performance Analysis of a Tensor Processing Unit https://arxiv.org/abs/1704.04760

(Liu 2017) Detecting Cancer Metastases on Gigapixel Pathology Images https://arxiv.org/abs/1703.02442

(Po-Hsuan 2018) An Augmented Reality Microscope for Real-time Automated Detection of Cancer Under Review

(Poplin 2016) Creating a universal SNP and small indel variant caller with deep neural networks https://www.biorxiv.org/content/early/2016/12/21/092890

(Rajkomar 2018) Scalable and accurate deep learning for electronic health records https://arxiv.org/abs/1801.07860

(Ramachandran 2017) Searching for Activation Functions https://arxiv.org/abs/1710.05941

References 3/3

(Shen 2017) Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions https://arxiv.org/abs/1712.05884

(Van den Oord 2016) WaveNet: A Generative Model for Raw Audio https://arxiv.org/abs/1609.03499

(Zoph 2016) Neural Architecture Search with Reinforcement Learning https://arxiv.org/abs/1611.01578

(Zoph 2017) Learning Transferable Architectures for Scalable Image Recognition https://arxiv.org/abs/1707.07012

Links 1/2

Introduction to TensorFlow Lite

https://www.tensorflow.org/mobile/tflite/

Machine Learning in JavaScript (TensorFlow Dev Summit 2018)

https://youtu.be/YB-kfeNIPCE

ImageNet is the new MNIST

 $\underline{https://supercomputers ford 12017.github.io/Presentations/ImageNetNewMNIST.pdf}$

Distributed TensorFlow

https://www.tensorflow.org/deploy/distributed

Distributed TensorFlow (TensorFlow Dev Summit 2017)

https://youtu.be/la M6bCV91M

Graphs and Sessions

https://www.tensorflow.org/programmers_guide/graphs

Links 2/2

Sparse Tensors

https://www.tensorflow.org/versions/master/api_guides/python/sparse_ops

TensorFlow Linear Model Tutorial

https://www.tensorflow.org/versions/master/tutorials/wide

Variables

https://www.tensorflow.org/programmers_guide/variables

Variable Ops

https://www.tensorflow.org/versions/master/api_guides/python/state_ops#Variables

Sharing Variables

https://www.tensorflow.org/versions/master/programmers_guide/variable_scope

Eager Execution

https://www.tensorflow.org/programmers_guide/eager