Basis Representation Theorem - Alternate Proof

James Philip Rowell January 3, 2019 (v01)

Basis Representation Theorem

Let b be a positive integer greater than 1.

For every positive integer n there is a unique sequence of integers $d_0, d_1, d_2, \ldots, d_k$ such that:

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0,$$

where $0 \le d_i < b$ for all i in $\{0, 1, 2, \dots, k\}$ and $d_k \ne 0$.

Definition: n is represented in base-b by the string of base-b-digits $(d_k d_{k-1} \cdots d_2 d_1 d_0)_b$

The paper "Counting" proves the "Basis Representation Theorem" by induction but suggests that it could also be proven by generalizing the technique used in exercise 2-iii; that proof follows.

Lemma

Let b be an integer where $b \neq 0$ and $c_0, c_1, c_2, \ldots, c_n$ be a sequence of integers, then:

$$(((\ldots((c_0)b+c_1)b+c_2)b+\ldots c_{n-2})b+c_{n-1})b+c_n)=c_0b^n+c_1b^{n-1}+c_2b^{n-2}+\ldots+c_{n-2}b^2+c_{n-1}b^1+c_nb^0)$$

Proof of Lemma by Induction

Base case:

When n = 1 we have $(c_0)b + c_1 = c_0b^1 + c_1b^0$, and also note that the lemma holds for n = 0 since $(c_0) = c_0b^0$.

Induction step:

Assume the lemma is true for n = k and prove it true for n = k + 1.

$$((((...(((c_0)b + c_1)b + c_2)b + ...c_{k-2})b + c_{k-1})b + c_k)b + c_{k+1})$$

$$= ((c_0b^k + c_1b^{k-1} + c_2b^{k-2} + ... + c_{k-2}b^2 + c_{k-1}b^1 + c_kb^0)b + c_{k+1})$$

$$= c_0b^{k+1} + c_1b^k + c_2b^{k-1} + ... + c_{k-2}b^3 + c_{k-1}b^2 + c_kb^1 + c_{k+1}b^0$$

QED

As a reminder, a statement of the "Euclidean Division Theorem" follows,

Euclidean Division Theorem

For all integers a and b such that b > 0, there exist unique integers q and r such that*:

$$a = qb + r$$
 such that $0 \le r < b$

Definition: In the above equation:

```
a is the dividend ("the number being divided")
b is the divisor ("the number doing the dividing")
q is the quotient ("the result of the division")
r is the remainder ("the leftover")
```

Proof of Basis Representation Theorem

Let b be a positive integer greater than 1 and let n be a positive integer.

Dividing n by b we get integers q_1 and d_0 such that,

$$n = q_1 b + d_0$$
; where, $0 \le d_0 < b$.

If $q_1 \neq 0$ we continue this process by dividing b into q_1 to get integers q_2 and d_1 such that,

$$q_1 = q_2b + d_1$$
; where, $0 \le d_1 < b$,

As long as the new quotient (eg. q_2 above) is non-zero, we continue this process until we get a quotient, say $q_{k+1} = 0$, as follows,

$$\begin{aligned} q_2 &= q_3 b + d_2; \text{ where, } 0 \leq d_2 < b \\ q_3 &= q_4 b + d_3; \text{ where, } 0 \leq d_3 < b \\ & \dots \\ q_{k-1} &= q_k b + d_{k-1}; \text{ where, } 0 \leq d_{k-1} < b \\ q_k &= q_{k+1} b + d_k; \text{ where, } 0 \leq d_k < b \end{aligned}$$

We know that there must be an integer k for which $q_{k+1} = 0$ because,

^{*}Aside: Actually the theorem is stronger than we have stated here. Specifically, it only requires that $b \neq 0$, however, to keep the remainder positive, the restriction on r would have to be stated like this $0 \leq r < |b|$ to deal with the possibility that b might be negative.