Algorithmen und Wahrscheinlichkeit

Woche 1

Heute

- Motivation
- Organisatorisches
- Zusammenhang

Motivation

- Student perspective:
- Leichter Bonus
 - 2p. code expert
 - 2p. minitest
 - 2p. serie / peergrading
 - 80% insgesamt für 0.25
 - Aktive Mitarbeit = 50-75% der Prüfung

Prüfung

- 50% multiple choice / short answers
- 25% schriftlich
- 25% code expert

Motivation

- Student perspective:
 - Ana, PProg, DDCA -> man kann nicht wirklich was skippen
 - AnW: 3 Teile, man kann "neu" in das Fach einsteigen Rest im Sommer nachholen
 - Eine Woche frei im April, Feiertage im Mai, 2.5 Monate Zeit bis zu den Prüfungen -> entspannteres Semester, mehr Zeit zum lernen

Motivation

- Inhalt perspective:
 - Einfache und coole Algorithmen
 - Gut und verständlich geschriebenes Skript

Maximum traffic from S to T?

The Internet is today's critical infrastructure!

Organisatorisches

- Jede Woche:
 - Code Expert ab 18 Uhr am Do. -> Abgabe bis n\u00e4chsten Do um 10
- Alle 2 Wochen alternierend:
 - Minitest in der ÜS, nach der ÜS Serie Abgabe bis nächsten Do um 10
 - PeerGrading ab 18 Uhr am Do. -> Abgabe bis So -> Korrektur bis Do
- Erster Minitest und Serie nächsten Do, den 29. Februar

Organisatorisches

- Abgaben auf Moodle, Korrekturen auch
- Fragen: imaier@ethz.ch
- Webseite: <u>ilyamaier.github.io</u>

Theorie Recap

k-Zusammenhang

Ein Graph G = (V, E) ist zusammenhängend $\iff \forall u, v \in V, u \neq v : \exists u, v$ -Pfad in G

Knoten

 $X \subseteq V$

Kanten

 $X \subseteq E$

k-zusammenhängend

1) $|V| \ge k + 1$

2) $\forall X \subseteq V : |X| < k \Longrightarrow G[V \backslash X]$ zusammenhängend

k-kanten-zusammenhängend

 $\forall X \subseteq E : |X| < k \Longrightarrow (V, E \backslash X)$ zusammenhängend

Satz von Menger

Gk-zusammenhängend

 $\iff \forall u, v \in V, u \neq v : \exists k \text{ intern-knotendisjunkte } u, v \text{-Pfade}$

Satz von Menger

G k-kanten-zusammenhängend

 $\iff \forall u, v \in V, u \neq v : \exists k \text{ intern-kantendisjunkte } u, v \text{-Pfade}$

 $\exists v \in V : \deg(v) < k \Longrightarrow G$ ist nicht k-zusammenhängend

Knotenzusammenhang \leq Kantenzusammenhang \leq minimaler Grad

2-Zusammenhang

Für einen <u>zusammenhängenden</u> Graphen G = (V, E):

Knoten

 $v \in V$ ist ein Artikulationsknoten (AK)

 $\iff G - v \text{ ist nicht zusammenhängend}$

Kanten

 $e \in E$ ist eine **Brücke**

 $\iff G - e$ ist nicht zusammenhängend

$$deg(u) = 1 oder u ist ein AK$$

$$\forall u, v \in V : \{u, v\}$$
 ist eine **Brücke** \Longrightarrow

und

deg(v) = 1 oder v ist ein **AK**

Umkehrung gilt nicht!

Artikulationsknoten

Blöcke

Äquivalenzrelation auf Kanten

$$e \sim f \iff \begin{cases} e = f \text{ oder} \\ \exists \text{ Kreis durch } e \text{ und } f \end{cases}$$

Lemma: Zwei Blöcke scheiden sich in einem AK

Depth First Search

Artikulationsknoten / Brücken finden

low[v]: kleinste **dfs**-Nummer, die man von *v* aus durch einen gerichteten Pfad aus beliebig vielen Baumkanten und maximal einer Restkante erreichen kann

 \rightarrow Berechenbar in O(|V| + |E|) mithilfe DP

$$low[v] = min \left(dfs[v], \min_{(v,w) \in E} \begin{cases} dfs[w], & falls (v,w) \text{ Restkante} \\ low[w], & falls (v,w) \text{ Baumkante} \end{cases} \right)$$

AK finden

If 1) $v = \mathbf{root}$ und v hat mind. 2 Kinder in DFS

2) $v \neq \text{root}$ und v hat ein Kind w in DFS s.t. $low[w] \geq dfs[v]$

Brücke finden

Eine Baumkante e = (v, w) ist eine Brücke $\iff low[w] > dfs[v]$

Eine Restkante ist nie eine Brücke

