Perseptron

Seperti yang telah saya jabarkan pada bagian sebelumnya, pada dasarnya perseptron merupakan sel saraf tunggal tiruan yang merupakan bangunan dasar dari algoritma ANN. Proses kerja perseptron cukup sederhana, yakni menerima *input*, kemudian melakukan komputasi terhadap *input* numerik tersebut dengan menggunakan fungsi aktifasi (linier, *symetric-saturating linear*, log sigmoid, tangen sigmoid, atau *radial basis* (Araghinejad, 2014)), kemudian menghasilkan satu *output* yang dapat diteruskan ke perseptron pada lapisan selanjutnya sebagai *input*.

Pada bagian ini kita hanya akan membahas cara kerja perseptron tunggal menggunakan NeuroLab. Untuk mengawalinya kita harus mengimpor beberapa pustaka sebagai berikut:

```
import numpy as np
import matplotlib.pyplot as plt
import neurolab as nl
plt.xkcd() # biar lucu
plt.style.use('ggplot') # karena saya pengguna R juga biar bagus, Bro plotnya!
%matplotlib inline
```

Kemudian kita mendefinisikan dataset sederhana dalam bentuk ndarray dengan 2 fitur dan 1 label:

Lakukan pemisahan fitur dan label dengan menggunakan perintah sebagai berikut:

```
fitur = dataset[:,:2]
label = dataset[:,2].reshape(dataset.shape[0],1) # konversi ke vektor kolom
```

Untuk melihat input dari dataset sederhana ini, baiknya kita tampilkan secara visual:

```
plt.scatter(fitur[:,0], fitur[:,1]);
plt.xlabel('Fitur 1');
plt.ylabel('Fitur 2');
plt.title('Data input');
```


Kemudian kita mulai kegiatan pra-pemrosesan data dengan mengatur nilai fitur minimum dan maksimum:

```
fit1_min, fit1_maks, fit2_min, fit2_maks = 0, 1, 0, 1
fit1 = [fit1_min, fit1_maks]
fit2 = [fit2_min, fit2_maks]
```

Lalu kita definisikan *output* yang kita inginkan, yakni hanya berupa perseptron tunggal:

```
output = label.shape[1]
output
```

```
1
```

Kemudian kita definisikan model perseptron tunggal dengan menggunakan fungsi newp:

```
perseptron = nl.net.newp([fit1,fit2], output)
```

Untuk meminimalkan galat, kita perlu melakukan training pada model ini untuk mencapai learning rate 0,01:

```
progres_galat = perseptron.train(fitur, label, epochs=100, show=20, lr=.01)
```

```
The goal of learning is reached
```

Kemudian kita visualisasikan hasil training-nya:

```
plt.plot(progres_galat);
plt.xlabel('Jumlah epochs');
plt.ylabel('Galat training');
plt.title('Progres training galat');
```


Proses *training* hanya berlangsung dalam lima *epochs* karena jumlah data yang sedikit. Karena model ini sudah *mantap*, maka saatnya kita membuat prediksi:

```
# fitur 1 = 0,8; fitur 2 = 0,2
perseptron.sim([[.8,.2]])
```

```
array([[1.]])
```

```
# fitur 1 = 0,3; fitur 2 = 0,4
perseptron.sim([[.2,.4]])
```

```
array([[0.]])
```

Patut kita ingat di sini saya tidak melakukan penilaian performa seperti yang umum dilakukan ketika kita hendak menerapkan model pemelajaran mesin seperti: *train-test splitting*, *scaling* fitur, *cross-validation*, dll karena jumlah data yang sangat kecil.