Analiza numeryczna

Stanisław Lewanowicz

Październik 2007 r.

Równania nieliniowe

DEFINICJE, TWIERDZENIA, ALGORYTMY

1 Metoda bisekcji (połowienia przedziału)

Załóżmy, że funkcja f jest ciągła w przedziale $[a_0, b_0]$ i że $f(a_0)f(b_0) < 0$ (ściślej, że $f(a_0) < 0$, $f(b_0) > 0$). Oczywiście $\alpha \in [a_0, b_0]$. W następujący sposób rekurencyjny konstruujemy taki ciąg przedziałów

$$I_k := [a_k, b_k]$$
 $(k = 0, 1, ...),$

że $I_0\supset I_1\supset\ldots\supset I_k\supset I_{k+1}\supset\ldots$ i że $\alpha\in I_k$ dla każdego $k=0,1,\ldots$:

• wyznaczamy środek przedziału I_k:

$$m_k := \frac{1}{2}(a_k + b_k);$$

 \bullet jeśli $f(\mathfrak{m}_k)=0,$ to $\alpha=\mathfrak{m}_k;$ w przeciwnym razie przyjmujemy, że

$$I_{k+1} = [a_{k+1}, b_{k+1}] := \left\{ \begin{array}{ll} [m_k, b_k] & (f(m_k) < 0), \\ [a_k, m_k] & (f(m_k) > 0). \end{array} \right.$$

W n-tym kroku metody bisekcji otrzymujemy przedział $[a_n, b_n]$, zawierający pierwiastek α , o długości $2^{-n}(b_0-a_0)$. Zauważmy, że zbieżność metody bisekcji jest wolna (jedna cyfra dwójkowa na krok) i nie zależy od f!

Przykład 1.1 Dla $f(x) = x^2/4 - \sin x$ i $I_0 = [1.8, 2]$ otrzymujemy wyniki podane w tabelce.

k	\mathfrak{a}_{k}	b_k	m_k	$f(m_k)$
0	1.8	2	1.9	< 0
1	1.9	2	1.95	> 0
2	1.9	1.95	1.925	< 0
2	1.925	1.95	1.9375	> 0
3	1.925	1.9375	1.93125	< 0
4	1.93125	1.9375	1.934375	> 0

Dla porównania – $\alpha=1.933753\,762827\ldots$, więc $|\alpha-m_4|=0.00060\ldots$

2 Metoda Newtona (metoda stycznych)

W metodzie Newtona tworzymy dla danego x_0 ciąg przybliżeń x_0, x_1, \ldots zbieżny do α w sposób następujący: dla $n=0,1,\ldots$ określamy x_{n+1} jako odciętą punktu przecięcia stycznej do wykresu y=f(x) w punkcie $(x_n,f(x_n))$, tj. prostej $y=f(x_n)+(x-x_n)f'(x_n)$ z osią x:

(1)
$$x_{n+1} = x_n + h_n, \qquad h_n := -\frac{f(x_n)}{f'(x_n)} \qquad (n = 0, 1, \dots).$$

W praktyce poprzestajemy na $\mathfrak{n}_{\varepsilon}$ -tym przybliżeniu, gdzie $\mathfrak{n}_{\varepsilon}$ jest najmniejszą liczbą naturalną \mathfrak{n} , spełniającą nierówność $|\mathfrak{h}_{\mathfrak{n}}| < \varepsilon$.

Przykład 2.1 Dla $f(x) = \sin x - x^2/4$, $x_0 = 1.8$ i $\epsilon = 5 \cdot 10^{-9}$ otrzymujemy:

n	χ_n	$f(x_n)$	$f'(x_n)$	h_n
0	1.8	-0.163847 630878	1.127202 094693	0.145357 812631
1	1.9 45357 812631	0.015436 106659	1.338543 359427	-0.011532018406
2	1.933 825 794225	0.000095 223283	1.322020778469	-0.000072028582
3	1.933753 76 5643	0.000000 003722	1.321917429113	-0.000000002816
4	1.933753762827			

Zauważmy, że liczba cyfr dokładnych (wytłuszczone w drugiej kolumnie) podwaja się w każdym kroku iteracyjnym. Pomimo kiepskiego przybliżenia początkowego już x_4 ma 12 cyfr dokładnych!

2.1 Zbieżność metody Newtona

Definicja 2.2 Niech ciąg x_n będzie zbieżny do α i niech $e_n := x_n - \alpha$ $(n \ge 0)$. Jeśli istnieją takie liczby rzeczywiste p i C (C > 0), że

$$\lim_{n\to\infty}\frac{|e_{n+1}|}{|e_n|^p}=C,$$

to p nazywamy wykładnikiem zbieżności ciągu, a C – stałą asymptotyczną błędu. Dla p = 1 oraz 0 < C < 1 zbieżność jest liniowa, dla p = 2 – kwadratowa, dla p = 3 – sześcienna.

Załóżmy, że $f \in C^2[a, b], \ \alpha \in (a, b), \ f'(\alpha) \neq 0$ oraz $f'(x) \neq 0$ dla każdego $x \in (a, b)$. Wprowadźmy oznaczenie

(2)
$$e_n := x_n - \alpha \quad (n = 0, 1, ...).$$

Można wykazać, że

$$e_{n+1} = \frac{1}{2} e_n^2 \frac{f''(\xi_n)}{f'(x_n)},$$

gdzie $\xi_n \in \text{interv}(x_n, \alpha)$. Dla $x_n \to \alpha$ wynika stąd, że

$$\frac{e_{n+1}}{e_n^2} \to \frac{1}{2} \frac{f''(\alpha)}{f'(\alpha)}.$$

Zatem $e_{n+1}\approx Ce_n^2,$ tj. błąd e_{n+1} jest propocjonalny do $e_n^2.$

Załóżmy, że ciąg określony wzorem (1) jest zbieżny do pierwiastka α. Wówczas, jak wiemy,

$$\lim_{n\to\infty}\frac{|e_{n+1}|}{e_n^2}=C, \qquad C:=\frac{1}{2}\frac{|f''(\alpha)|}{|f'(\alpha)|}.$$

Oczywiście $C \neq 0$, jeśli f $''(\alpha) \neq 0$. Metoda Newtona jest zatem na ogół zbieżna kwadratowo.

Twierdzenie 2.3 Załóżmy, że I jest takim otoczeniem pierwiastka α , że dla pewnej stałej m>0 jest

$$\frac{1}{2}\frac{|f''(y)|}{|f'(x)|} \le m \quad \mathit{dla dowolnych} \ x, \ y \in I.$$

Jeśli przybliżenie x_0 jest dostatecznie bliskie pierwiastka α :

$$|me_0| = m|x_0 - \alpha| < 1,$$

to metoda Newtona jest zbieżna do α .

W praktyce trudno sprawdzić warunek (3). Bardziej przydatne są następujące twierdzenia.

Twierdzenie 2.4 Niech dla danego x_0 ciąg $\{x_n\}$ bedzie określony wzorem (1). Niech I_0 będzie przedziałem o końcach x_0 i x_0+2h_0 , ponadto niech $M:=\max_{x\in I_0}|f''(x)|$. Jeśli zachodzi nierówność $2|h_0|M\leq |f'(x_0)|$, to $x_n\in I_0$ dla każdego $n\in \mathbf{N}$ oraz $\lim_{n\to\infty}x_n=\alpha$, gdzie α jest jedynym pierwiastkiem równania f(x)=0 w przedziałe I_0 .

Twierdzenie 2.5 Załóżmy, że $f'(x) \neq 0$ i f''(x) > 0 (lub < 0) dla dowolnego $x \in [a, b]$ i że f(a)f(b) < 0. Jeśli

$$|f(a)/f'(a)| < b-a$$
, $|f(b)/f'(b)| < b-a$,

to metoda Newtona jest zbieżna dla dowolnego $x_0 \in [a, b]$.

3 Metoda siecznych

Zastępując we wzorze (1) pochodną $f'(x_n)$ ilorazem różnicowym

$$f[x_{n-1}, x_n] := \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

otrzymujemy metodę siecznych:

$$(4) \hspace{1cm} x_{n+1} := x_n + h_n, \quad h_n := -f_n \frac{x_n - x_{n-1}}{f_n - f_{n-1}} \hspace{0.5cm} (n = 1, 2, \dots),$$

gdzie $f_n := f(x_n)$, $f_n \neq f_{n-1}$, a x_0 i x_1 są dane. Geometryczna interpretacja metody siecznych jest następująca: x_{n+1} jest odciętą punktu przecięcia siecznej krzywej y = f(x), przechodzącej przez punkty (x_{n-1}, f_{n-1}) , (x_n, f_n) z osią x-ów.

Przykład 3.1 Dla funkcji $f(x) = x^2/4 - \sin x$ i dla $x_0 = 1.5$, $x_1 := 2$ otrzymujemy następujące wyniki.

n	x_n	$f(x_n)$	h_n
0	1.5	-0.434994 986604	
1	2.0	0.090702573174	-0.086268778965
2	1.9 13731 221035	-0.026180060742	0.019322 989205
3	1.933054 210240	-0.000924399645	0.000707 253882
4	1.9337 61 464122	0.000010 180519	-0.000007704220
5	1.933753 759902	-0.000000003867	0.000000 002975
6	1.933753762827		

Metoda siecznych jest w tym przykładzie niemal tak szybko zbieżna jak metoda Newtona: x_5 ma osiem cyfr dokładnych, a x_6 — dwanaście. Dobry rezultat zawdzięczamy bliskości x_1 i α .

Jeśli metoda siecznych jest zbieżna $(e_n \to 0)$, to dla dużych wartości n jest $\xi_n \approx \alpha, \, \eta_n \approx \alpha$ i

(5)
$$|e_{n+1}| \approx C|e_n||e_{n-1}|,$$

gdzie $C := \frac{1}{2} |f''(\alpha)| / |f'(\alpha)|$. Stąd można wywnioskować, że

$$\lim_{n\to\infty}\frac{|e_{n+1}|}{|e_n|^{\frac{1}{2}(1+\sqrt{5})}}=\left|\frac{f''(\alpha)}{2f'(\alpha)}\right|^{\frac{1}{2}(\sqrt{5}-1)}$$

Oznacza to, że rząd metody wynosi $\frac{1}{2}(1+\sqrt{5})\approx 1.618$.

4 Metoda regula falsi

Regula falsi jest wariantem metody siecznych, w którym – inaczej niż w tamtej metodzie – prowadzi się sieczną przez punkty (x_n, f_n) i $(x_{n'}, f_{n'})$, gdzie n' jest takim największym wskaźnikiem mniejszym od n, że $f_{n'}f_n < 0$. Początkowe przybliżenia x_0 i x_1 trzeba oczywiście wybrać tak, żeby $f_0f_1 < 0$. Zaletą metody regula falsi jest to, ze jest ona zawsze zbieżna dla ciągłej funkcji f. Natomiast wadą jest to, że w przeciwieństwie do metody siecznych ma ona na ogół wykładnik zbieżności równy 1! Łatwo się przekonać, że tak jest w wypadku, gdy f jest wypukła na odcinku $[x_0, x_1]$. Wszystkie kolejne sieczne przechodzą wówczas przez (x_0, f_0) , tj. ten punkt jest używany w każdym przybliżeniu i wobec tego związek (5) przybiera postać

$$|e_{n+1}| \approx C|e_n||e_0|$$

skąd

$$\lim_{n}\frac{|e_{n+1}|}{|e_n|}=C|e_0|=C',$$

co oznacza zbieżność liniową.

Przykład 4.1 Dla funkcji $f(x) = x^2/4 - \sin x$ i dla $x_0 = 1.5, x_1 := 2$ otrzymujemy następujące wyniki.

n	χ_n	$f(x_n)$	h_n
0	1.5	-0.434994 986604	
1	2.0	0.090702573174	-0.086268778965
2	1.913731 221035	-0.026180060742	0.019322 989205
3	1.933 054 210240	-0.000924399645	0.000707 253882
4	1.9337 29 608132	-0.000031930094	0.000023 321005
5	1.933752 929137	-0.000001102069	0.000000 804916
6	1.933753 734053		

Zauważmy, że x_2 i x_3 są takie same jak w metodzie siecznych. W każdym następnym kroku użyto punktu $x_1=2$, co spowolniło zbieżność do liniowej.