

Digital Technologies and Value Creation

Dr. Philippe Blaettchen
Bayes Business School (formerly Cass)

Learning objectives of today

Goals: Recap the main tools in descriptive analytics

- Descriptive statistics
- Hypothesis testing

How will we do this?

- We consider a simple use case in people analytics, including a comprehensive (cleaned) dataset
- We will walk through some of the core descriptive tools theoretically
- We will then see how to implement these tools in Python

Descriptive, predictive, or prescriptive – where is the value?

Descriptive (business) analytics

Using data to understand what's currently going on in or around the organization

- 1. Description (descriptive statistics)
- 2. Testing hunches, a.k.a. "Hypothesis testing" (bivariate and multi-variate associations)

Our use-case

- It has about **18,000** employees
- The attrition rate of employees is quite high (~14% compared to industry average of 8-9%).
 - \rightarrow How to fix it?
 - They have gathered data for calendar year 2020
 - Can you design a strategy to lower attrition?

Descriptive statistics

1. Descriptive statistics

- Mean, Min, Max, Median, Std. Dev
- Helps understand
 - what the data is about
 - plausibility of data
 - missing data issues
 - how much variation there is in the data
- Remember to ask yourself: what data are you NOT seeing in this sample?

Let's try it out

Hypothesis testing

2. Hypothesis testing

General idea: Does this association exist in the data?

We have a hunch (hypothesis) about an explanation

• Null Hypothesis Significance Testing: Tells us the probability (across many samplings) of observing the association we see merely by chance, even if the true association in the population is zero.

2A. Bivariate association

- t-tests helps to understand association between a binary and a continuous/binary variable
 - E.g., is average salary (continuous variable) higher for those who exited vs. those who stayed (binary variable)?
 - Small p value says difference observed is unlikely to have arisen just by chance if the true difference was zero
- Correlations (-1,1) help to understand association between any two variables
 - E.g., is there a positive or negative correlation between age and salary? Between gender and exit? Between exit and age?
 - Small p value says correlation observed is unlikely to have arisen just by chance if the true correlation was zero.

Let's try it out

Correct interpretation of p (and confidence intervals)

The p-value is **NOT**

- the probability of unconditional replication
- the probability of null OR alternate hypotheses
- the probability of Type I error (i.e., probability of rejecting true null hypothesis)

Correct interpretation of p=x%:

Assuming there is no true effect, we would still obtain the observed difference or larger in x % of studies due to random sampling error.

"The probability of observing your data if the null is true."

Correct interpretation of 95% confidence interval CI[a,b]:

If the true population parameter was equal to your sample parameter, in 95% of studies we conduct, the sample parameter would lie between a and b.

"The amount of uncertainty in your estimate"

Correlation coefficients

Multivariate association – OLS

2B. Multivariate association – OLS

- Ordinary Least Squares (OLS) helps to understand association between a dependent variable and several independent variables, simultaneously
 - E.g., is average salary higher for more educated employees, correcting for differences in age?
 - Small p value says coefficient observed is unlikely to have arisen just by chance if the true difference was zero.
 - A.k.a. "*regression model*" in data science jargon

OLS "linear regression" model

Y = dependent variable

X_i = independent / explanatory variables

OLS "linear regression" model

How do we add this line/plane/hyperplane?

Input: datapoints (x_i, y_i)

Goal: find numbers $(\beta_0 = intercept, \beta_j = slope)$ such that sum of residuals squared

$$(y_1 - \beta_0 - \beta_1 \cdot x_{11} - \beta_2 \cdot x_{12} - \cdots)^2 + \cdots + (y_n - \beta_0 - \beta_1 \cdot x_{n1} - \beta_2 \cdot x_{n2} - \cdots)^2$$
 is as small as possible

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

Linear regression in Python

- Two methods: statsmodels (stats viewpoint) and scikit (ML viewpoints)
- Statsmodels and scikit both have pros and cons: need to know how to modify examples given to you

```
X = df[['age','education']]
Y = df[['salary']]
X = sm.add_constant(X)
lm = sm.OLS(Y, X).fit()
print(lm.summary())
```

- Define your dependent variables in X, your independent variable in Y
- With statsmodels, you have to add the constant manually
- Define your model, linear regression here
- Fit the linear regression
- Print properties of the model (R² and coefficients)

Linear regression in Python

Covariance Type:

• In general, how to read a summary of a regression? (via statsmodels here)

OLS Regression Results

Dep. Variable:	salary	R-squared:	0.119			
Model:	OLS	Adj. R-squared:	0.118			
Method:	Least Squares	F-statistic:	1219.			
Date:	Tue, 12 Oct 2021	Prob (F-statistic):	0.00			
Time:	16:06:19	Log-Likelihood:	-59814.			
No. Observations:	18132	AIC:	1.196e+05			
Df Residuals:	18129	BIC:	1.197e+05			
Df Model:	2					

Multiple R-squared: the closer to 1 the better the fit

Adjusted R-squared: takes into consideration number of vars

const 19.9791 0.406 49.260 0.000 1			
age 0.5058 0.010 49.339 0.000 education -0.1110 0.074 -1.506 0.132	0.010 49	0.000	0.486 0.526

Coefficients are the				
coefficients of your line/plane:				
$salary = \beta_0 + \beta_1 \cdot age$				
$+\beta_2 \cdot education$				

Omnibus:	3594.862	Durbin-Watson:	2.013
Prob(Omnibus):	0.000	Jarque-Bera (JB):	11932.879
Skew:	0.998	<pre>Prob(JB):</pre>	0.00
Kurtosis:	6.437	Cond. No.	319.

Let's try it out

Multivariate association – logistic regression

2B. Multivariate association – logistic regression

- Sometimes, linear regression is **not good enough** e.g., when the dependent variable is whether an employee leaves or not (binary)
- Logistic regressions help to understand association between a binary dependent variable and several independent variables, simultaneously
 - E.g., Is exit more likely for older AND better paid employees?
 - Small p value says correlation observed is unlikely to have arisen just by chance if the true correlation was zero.
 - A.k.a. "classification model" in data science jargon

Input: datapoints (x_i, y_i) Here; $y_i = 1$ (leaves) or 0 (doesn't leave)

$$\ln\left(\frac{P(Y)}{1-P(Y)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

The "log-odds" of belonging to a class

$$\frac{P(Y)}{1-P(Y)}=e^{\beta_0+\beta_1X_1+\beta_2X_2+\varepsilon}$$

Advantage:

$$\frac{e^{\beta_0 + \beta_1 \cdot x_{i1} + \beta_2 \cdot x_{i2} + \cdots}}{1 + e^{\beta_0 + \beta_1 \cdot x_{i1} + \beta_2 \cdot x_{i2} + \cdots}}$$

is a number between 0 and 1 (why?)

$$P(Y) = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon}}$$

Goal: Find numbers (β_0, β_j) such that $\frac{e^{\beta_0 + \beta_1 \cdot x_{i1} + \beta_2 \cdot x_{i2} + \cdots}}{1 + e^{\beta_0 + \beta_1 \cdot x_{i1} + \beta_2 \cdot x_{i2} + \cdots}}$ is as close as possible to y_i for all 1000 observations

$$P(Y) = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon}}$$

Logistic regression in Python

- As before: statsmodels (stats viewpoint) and scikit (ML viewpoints)
- For now: statsmodels

```
X = df.loc[:, df.columns != 'exit']
Y = df[["exit"]]
X = sm.add_constant(X)
lm = sm.OLS(Y,X).fit()
print (lm.summary())
```

The process is essentially the same as before:

- Define your dependent variables in X, your independent variable in Y
- With statsmodels, you have to add the constant manually
- Define your model, linear regression here
- Fit the linear regression
- Print properties of the model (R² and coefficients)

Let's try it out

Risks and limitations

Do storks deliver babies? The "hidden" variable effect

Warning about overfitting

- You have a hunch, test the association and get a low p-value
 - Great! Your hypothesis is supported! It is a good basis for guessing what might happen in the future.
- You hunt for associations with low p-values, treat these associations as results that can be useful to guess what might happen in the future
 - Problem! You might have found things that are only true in your sample, not in the population (remember, p values only indicate something about "average" samples)
 - A.k.a. "p-hacking" or "HARKING hypothesizing after the results are known"

Summary

Summary

Statistical tools

- Descriptive statistics
- Hypothesis testing
 - Bi-variate associations
 - o t-tests
 - o correlations
 - Multi-variate associations
 - Regression (OLS)
 - Classification (Logistic)

Limitations

- Aggregate level, "on average" trends
- Correlation ≠ Causation
- Simple (linear) relationships
- Danger of misuse (overfitting)

Helping Chimera

Answer the following questions, using the tools from descriptive analytics:

- 1. What is the economic impact of attrition on Chimera?
- 2. What do you think are some predictors of exit?
- 3. How would we test your hunches in the data? Try to implement your hypothesis tests, based on the video notebook

