Linear Regression & Analysis

Formulas from chapter 12.1:

$$E[a \times +b] = aE[\times] + b$$

$$Var[aX+b] = a^2 Var[X]$$

Chapter 12.2:

The least squares estimate of the slope coefficient β_1 of the true

$$b_1 = \hat{\beta}_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}},$$

where

regression line is

$$S_{xy} = \sum x_i y_i - \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n}, \quad S_{xx} = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}.$$

The least squares estimate of the slope coefficient eta_0 of the true regression line is

$$b_0 = \hat{\beta}_0 = \frac{\sum y_i - \hat{\beta}_1 \sum x_i}{x_i} = \overline{y} - \hat{\beta}_1 \overline{x}.$$

SSE

The error sum of squares (equivalently, residual sum of squares), denoted by SSE, is $0.55E = 5_{vv} - \hat{\beta}, 5_{xv}$

and the estimate of σ^2 is

$$\hat{\sigma}^2 = s^2 = \frac{\text{SSE}}{n-2} = \frac{\sum (y_i - \hat{y}_i)^2}{n-2}.$$

We can calculate SSE as

SSE =
$$\sum y_i^2 - \hat{\beta}_0 \sum y_i - \hat{\beta}_1 \sum x_i y_i = S_{yy} - \hat{\beta}_1 S_{xy}$$
.

12.2 Continued ... Chapter

The coefficient of determination, denoted by r^2 , is given by

$$r^2 = 1 - \frac{\text{SSE}}{\text{SST}}.$$

It is interpreted as the proportion of observed γ variation that can be explained by the simple linear regression model.

A quantitative measure of the total amount of variation in observed ν values is given by the total sum of squares, denoted by SST is

SST =
$$S_{yy} = \sum (y_i - \overline{y})^2 = \sum y_i^2 - \frac{(\sum y_i)^2}{n}$$

Residual standard error: 2.564 on 12 degrees of freedom Multiple R-squared: 0.7908, Adjusted R-squared: 0.7733 F-statistic: 45.35 on 1 and 12 DF, p-value: 2.091e-05

$$SSR = \sum (\hat{y}_i - \overline{y})^2 = SST-SSE$$

Regression sum of squares is interpreted as the amount of total variation that is explained by the model.

$$r^2 = 1 - \frac{\text{SSE}}{\text{SST}} = \frac{(\text{SST} - \text{SSE})}{\text{SST}} = \frac{\text{SSR}}{\text{SST}}$$

Chapter 12.3:

- The mean value of $\hat{\beta}_1$ is $E[\hat{\beta}_1] = \beta_1$, so $\hat{\beta}_1$ is an unbiased estimator for β_1 is (the distribution of β_1 is always centered at the value of β_1).
- ② The variance and standard deviation of $\hat{\beta}_1$ are

$$\operatorname{Var}(\hat{\beta}_1) = \sigma_{\hat{\beta}_1}^2 = \frac{\sigma^2}{S_{xx}}, \quad \sigma_{\hat{\beta}_1} = \frac{\sigma}{\sqrt{S_{xx}}}.$$

Replacing σ by its estimate s gives an estimate for σ_R . (the estimated standard deviation, i.e., estimated standard error, of $\hat{\beta}_1$):

$$s_{\hat{\beta}_1} = \frac{s}{\sqrt{S_{xx}}}$$
.

- \odot The estimator $\hat{\beta}_1$ has a normal distribution.
- $T = \frac{\hat{\beta}_1 \beta_1}{S_{\hat{\beta}_1}} = \frac{\hat{\beta}_1 \beta_1}{S/\sqrt{S_{rx}}} \text{ has a } t \text{ distribution with } (n-2) \text{ df.}$

Hypothesis Testing for β_1 Null hypothesis: $H_0: \beta_1 = \beta_{10}$

Test statistic: $T = \frac{\hat{\beta}_1 - \beta_{10}}{\hat{S}_{\hat{\beta}_1}}$ $\hat{S}_{\hat{\beta}_1} = \frac{\hat{S}_1 - \hat{S}_2}{\hat{S}_2 - \hat{S}_2}$ $\hat{S} = \frac{\hat{S}_2 \hat{S}_2}{\hat{S}_2 - \hat{S}_2}$

lest statistic value: $t=rac{\hat{eta}_1-eta_{10}}{s_{\hat{eta}_1}}$	$2^{xx} = \sum_{i} x^{i} - \frac{\sum_{i} x^{i}}{\left(\sum_{i} x^{i}\right)_{i}}$
Alternative Hypothesis	P-value Determination
$H_a: \beta_1 > \beta_{10}$	Area under the t_{n-2} curve to the right of t
$H_a: \beta_1 < \beta_{10}$	Area under the t_{n-2} curve to the left
$H_a: \beta_1 \neq \beta_{10}$	of t 2(area under the t_{n-2} curve to the
	right of $ t $)

A CI for the slope β_1 of the true regression line with a confidence level of $100(1-\alpha)\%$ is

$$\hat{\beta}_1 \pm t_{\frac{\alpha}{2}, n-2} s_{\hat{\beta}_1},$$

where — gives the lower limit and + the upper limit of the interval. An upper or lower confidence bound can also be obtained by retaining the appropriate sign (+ or -) and replacing $\frac{a}{a}$ by α .

Residual standard error: 2.564 on 12 degrees of freedom Multiple R-squared: 0.7908. Adjusted R-squared: 0.7733 F-statistic: 45.35 on 1 and 12 DF, p-value: 2.091e-05

Chapter 12.4

Let $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x^*$, where x^* is some fixed value of x.

- The mean value of \hat{Y} is $E[\hat{Y}] = E[\hat{\beta}_0 + \hat{\beta}_1 x^*] = \beta_0 + \beta_1 x^*$. Thus, $\hat{\beta}_0 + \hat{\beta}_1 x^*$ is an unbiased estimator for $\beta_0 + \beta_1 x^*$ (i.e., for $\mu_{Y|x^*}$).
- $\beta_0 + \beta_1 x^*$ is an unbiased estimator for $\beta_0 + \beta_1 x^*$ (i.e., for \hat{Y}). The variance of \hat{Y} is

$$\operatorname{Var}(\hat{Y}) = \sigma_{\hat{Y}}^2 = \sigma^2 \left[\frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}} \right],$$

The estimated standard deviation of \hat{Y} , denoted by $S_{\hat{Y}}$, is:

$$s_{\hat{Y}} = s_{\hat{\beta}_0 + \hat{\beta}_1 x^*} = s \left| \frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}} \right|.$$

- lacktriangledown The estimator \hat{Y} has a normal distribution.
- $T = \frac{\hat{\beta}_0 + \hat{\beta}_1 x^* (\beta_0 + \beta_1 x^*)}{S_{\hat{\beta}_0 + \hat{\beta}_1 x^*}} = \frac{\hat{Y} (\beta_0 + \beta_1 x^*)}{S_{\hat{Y}}} \text{ has a } t \text{ distribution with } (n-2) \text{ df.}$

A CI for $\mu_{Y|x^*}$, the expected value of Y when $x=x^*$, with a confidence level of $100(1-\alpha)\%$ is

$$\hat{\beta}_0 + \hat{\beta}_1 x^* \pm t_{\frac{\alpha}{2}, n-2} s_{\hat{\beta}_0 + \hat{\beta}_1 x^*} = \hat{y} \pm t_{\frac{\alpha}{2}, n-2} s_{\hat{Y}},$$

where - gives the lower limit and + the upper limit of the interval. An upper or lower confidence bound can also be obtained by retaining the appropriate sign (+ or -) and replacing $\frac{\alpha}{2}$ by α .

A PI for a future Y observation to be made when $x=x^*$, with a confidence level of $100(1-\alpha)\%$ is

$$\hat{\beta}_0 + \hat{\beta}_1 x^* \pm t_{\frac{\alpha}{2}, n-2} s \sqrt{1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{\chi\chi}}}$$

$$= \hat{\beta}_0 + \hat{\beta}_1 x^* \pm t_{\frac{\alpha}{2}, n-2} \sqrt{s^2 + s_{\hat{\beta}_0 + \hat{\beta}_1 x^*}^2}$$

$$= \hat{y} \pm t_{\frac{\alpha}{2}, n-2} \sqrt{s^2 + s_{\hat{\gamma}}^2}.$$