MATH 217 - Advanced Honors Calculus I: Logan's Notes

Logan Gallagher

September 2025

Chapter 1

Topology in \mathbb{R}^N

1.1 Justification of \mathbb{R}

1.1.1 Definition: Justification

x with property P(x) is justified $\iff \vdash \exists x P(x)$

1.1.2 The Top Down Approach (Axioms of R)

 $\exists \mathbb{R} = (R, +, \cdot, <) \text{ which is formed from}$

- \bullet A set R with at least two elements
- Two functions +, \cdot of the form $+: R \times R \to R, \cdot: R \times R \to R$
- A strict order relation < on \mathbb{R}

Which satisfy the following

1. Field Axioms:

- (a) a + b = b + a (commutativity of +)
- (b) a + (b + c) = (a + b) + c (associativity of +)
- (c) $\exists 0 : a + 0 = a$ (additive identity)
- (d) $\forall a, \exists -a : a + (-a) = 0$ (additive inverse)
- (e) $a \cdot b = b \cdot a$ (commutativity of ·)
- (f) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associativity of ·)
- (g) $\exists 1 \neq 0 : a \cdot 1 = a$ (multiplicative identity)
- (h) $\forall a \neq 0, \exists a^{-1} : a \cdot a^{-1} = 1$ (multiplicative inverse)
- (i) $a \cdot (b+c) = a \cdot b + a \cdot c$ (distributivity)

2. Order Axioms:

- (a) $a \le b$ or $b \le a$ (totality)
- (b) $a \le b$ and $b \le c \implies a \le c$ (transitivity)
- (c) $a \le b \implies a + c \le b + c$ (addition compatible)
- (d) $0 \le a, 0 \le b \implies 0 \le a \cdot b$ (multiplication compatible)
- 3. Completeness: Every nonempty subset of \mathbb{R} bounded above has a least upper bound.

1.1.3 The Bottom Up Approach

Definition of \mathcal{N}

We define a set \mathcal{N} and a function $S: \mathcal{N} \to \mathcal{N}$ satisfying:

- 1. $0 \in \mathcal{N}$.
- 2. $S: \mathcal{N} \to \mathcal{N}$.
- 3. $\forall n, m \in \mathcal{N}, \ S(n) = S(m) \implies n = m$ (injectivity).
- 4. $\nexists n \in \mathcal{N}$ such that S(n) = 0.
- 5. (Axiom of Induction). For any set K, if
 - (a) $0 \in K$, and
 - (b) $\forall n \in \mathcal{N}, n \in K \implies S(n) \in K$,

then $\mathcal{N} \subseteq K$.

Justification of \mathbb{N}_0

The set \mathcal{N} can be identified with \mathbb{N}_0 through use of the successor function where

- 1. $0_{\mathbb{N}_0} := \text{the object } 0 = 0_{\mathcal{N}}$
- 2. $1_{\mathbb{N}_0} := S(0_{\mathcal{N}}) = S(0_{\mathbb{N}_0})$
- 3. $2_{\mathbb{N}_0} := S(S(0_{\mathcal{N}})) = S(1_{\mathbb{N}_0}) \dots$

Funcions of \mathbb{N}_0 $\exists + : \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0 \ \exists + : \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0 \ \text{satisfying}$

- 1. Neutral element of addition and multiplication
- 2. Commutativity over addition and multiplication
- 3. Associativity over addition and multiplication
- 4. Distributivity of multiplication over addition

1.1.4 Binary Relation

 \mathbb{N}_0 can be ordered with a total order