Máster Universitario en Computación Paralela y Distribuida Algoritmos Paralelos en Procesamiento de la Señal

Tema 5.
La Descomposición en Valores Singulares.

Curso 2015-2016

Bibliografía para el Tema 4:

"Matrix Computations". G.Golub & C.Van Loan Capítulos 2 y 7

Lecturas recomendadas para la SVD:

"Matrix Computations". G.Golub & C.Van Loan

Capítulo 2. Punto 2.5 y Capítulo 5. Punto 5.5

Capítulo 8. Punto 8.3

V.Klema, A.Laub "The Singular Value Decomposition: Its computation and some applications". IEEE Trans. On Automatic Control. Vol. Ac-25. No. 2. April (1980)

La Descomposición en Valores Singulares (SVD)

Proposición

Sea la matriz real A, mxn, de rango r y sea p = min(m, n)

Existen matrices ortogonales U, mxm, y V, nxn, tales que $A = U\Sigma V^T$ donde

$$\Sigma = \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix} y S = \operatorname{diag}(\sigma_1, \sigma_2, ..., \sigma_r), \text{ con } \sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > \sigma_{r+1} = \sigma_{r+2} = ... = \sigma_p = 0$$

Los elementos $\sigma_1, \sigma_2, ..., \sigma_r, \sigma_{r+1}, \sigma_{r+2}, ..., \sigma_p$ se denominan valores singulares de A

Las columnas de *U* son los vectores singulares por la izquierda de *A*

Las columnas de V son los vectores singulares por la derecha de A

La Descomposición en Valores Singulares

Demostración

• Dado que A tiene rango r, A^TA es una matriz simétrica semidefinida positiva, que tiene r valores propios reales positivos y el resto nulos, y sus vectores propios, v_i , son ortonormales

$$(A^{T}A)v_{i} = \sigma_{i}^{2}v_{i}, i = 1, 2, ..., r \text{ con } \sigma_{1} \ge \sigma_{2} \ge ... \ge \sigma_{r} > 0$$
$$(A^{T}A)v_{i} = \sigma_{i}v_{i}, i = r + 1, r + 2, ..., n \text{ con } \sigma_{i} = 0$$

En forma matricial

$$(A^{T}A)V_{1} = V_{1} \begin{bmatrix} \sigma_{1}^{2} \\ \sigma_{2}^{2} \\ \vdots \\ \sigma_{r}^{2} \end{bmatrix} = V_{1}S^{2} \Rightarrow V_{1}^{T}A^{T}AV_{1} = S^{2} \text{ con } S = diag(\sigma_{1}, \sigma_{2}, ..., \sigma_{r})$$

$$\vdots$$

Y por tanto

$$(S^{-1}V_1^T A^T A V_1 S^{-1}) = I \Rightarrow (AV_1 S^{-1})^T (AV_1 S^{-1}) = I$$

$$con V_1 = [v_1, v_2, ..., v_r]$$

Además
$$\begin{pmatrix} A^TA \end{pmatrix} V_2 = V_2 \begin{bmatrix} 0 & & & \\ & 0 & & \\ & & \ddots & \\ & & & 0 \end{bmatrix} \Rightarrow V_2^TA^TAV_2 = 0 \Rightarrow (AV_2)^T(AV_2) = 0 \Rightarrow AV_2 = 0$$
 efinimos
$$con V_2 = [v_{r+1}, v_{r+2}, ..., v_n]$$

Definimos

$$U_1 = AV_1S^{-1} \in \Re^{mxr}$$
, con $(U_1)^T(U_1) = I \text{ y } U_1S = AV_1$

Elegimos

$$U_2 = [u_{r+1}, u_{r+2}, ..., u_m] \in \Re^{mx(m-r)}, \operatorname{con}(U_2)^T (U_2) = I \operatorname{y}(U_2)^T (U_1) = 0$$

Obsérvese que

$$U = [U_1 \ U_2] \in \Re^{mxm}; V = [V_1 \ V_2] \in \Re^{nxn}$$

son matrices ortogonales y

$$U^{T}AV = \begin{bmatrix} U_{1}^{T} \\ U_{2}^{T} \end{bmatrix} A[V_{1}V_{2}] = \begin{bmatrix} U_{1}^{T}AV_{1} & U_{1}^{T}AV_{2} \\ U_{2}^{T}AV_{1} & U_{2}^{T}AV_{2} \end{bmatrix} = \begin{bmatrix} S & 0 \\ U_{2}^{T}U_{1}S & 0 \end{bmatrix} = \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix}$$

o bien
$$A = U \begin{vmatrix} S & 0 \\ 0 & 0 \end{vmatrix} V^T$$

Ejemplos

A =

>> svd(A)

ans =

11.0990

3.2575

2.2805

U =

-0.41770.2038-0.88470.0364-0.48520.21510.31110.7884-0.70480.14070.3402-0.6064-0.3056-0.9447-0.06940.0970

S =

V =

Ejemplos

A =

2 1 4 6 3 5 -1 2 4 1 5 8

>> svd(A)

ans =

13.07555.5117

0.8068

U =

-0.5704 0.1778 0.8019 -0.2482 -0.9680 0.0380 -0.7830 0.1774 -0.5962

S =

V =

-0.3837 -0.3336 -0.8267 -0.2408 -0.1984 -0.8136 0.4905 -0.2408 -0.4549 0.4655 0.2336 -0.7223 -0.7787 0.0998 0.1459 0.6019

Invariancia de la SVD frente a transformaciones ortogonales

Los valores singulares de una matriz son invariantes frente a transformaciones ortogonales

Si $A = U \sum V^T$ y P y Q son matrices ortogonale s $(P^T = P^{-1}, Q^T = Q^{-1})$ de tamaño adecuado :

- lacktriangle Si σ es un valor singular de A entonces σ es un valor singular de PAQ^T
- Si u es un vector singular por la izquierda de A entonces Pu es un vector singular por la izquierda de PAQ^T
- Si v es un vector singular por la derecha de A entonces Qv es un vector singular por la derecha de PAQ^T

$$\|A\|_2 = \sigma_{\text{max}}$$

$$\|A\|_{F} = \sqrt{\sigma_{1}^{2} + \sigma_{2}^{2} + ... + \sigma_{p}^{2}}, \text{ con } p = \min(m, n).$$

Si A es invertible,
$$\|A^{-1}\|_2 = 1/\sigma_{\min}$$

$$\kappa_2(A) = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}$$

Si
$$A = U\Sigma V^T$$
, con $A \in \Re^{n \times n}$, entonces $|\det(A)| = \sigma_1 * \sigma_2 * ... * \sigma_n$

Pseudoinversa de Moore-Penrose de $A \in \Re^{m \times n}$

$$A^{+} = \arg\min_{X \in \mathfrak{R}^{n \times m}} \|AX - I_{m}\|_{2}$$

Si
$$A = U\Sigma V^T$$
, con $rank(A) = r$, $A^+ = V\Sigma^+U^T$, con $\Sigma^+ = diag(\sigma_1^{-1}, \sigma_2^{-1}, ..., \sigma_r^{-1}) \in \Re^{n \times m}$

Si
$$A = U\Sigma V^T$$
, con $rank(A) = n$, (A es de rango completo), $A^+ = (A^T A)^{-1} A^T$

Si A es invertible, $A^+ = A^{-1}$

Producto matriz-vector Ax

Los valores singulares de A son las longitudes de

los semiejes del hiperelipsode definido por $E = \{Ax : ||x||_2 = 1\}$

Subespacios de $A \in \Re^{m \times n}$ con rank(A) = r, p = min(m, n)

Si
$$A = U\Sigma V^T$$
, con $rank(A) = r$, $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > \sigma_{r+1} = ... = \sigma_p = 0$

$$null(A) = span\{v_{r+1}, v_{r+2}, ..., v_n\}$$

$$range(A) = span\{u_1, u_2, ..., u_r\}$$

$$A = U_r \Sigma_r V_r^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

Expansión de una matriz mediante la SVD

Si $A = U \sum V^T$, con $A \in \Re^{m \times n}$ y rank(A) = r, entonces $A = \sum_{i=1}^r \sigma_i u_i v_i^T$

Resolución del Problema Lineal de Mínimos Cuadrados mediante la SVD : $\min_{x \in \mathbb{R}^n} ||Ax - b||_2$

$$||Ax - b||_{2}^{2} = ||U^{T}AVV^{T}x - U^{T}b||_{2}^{2} = ||\Sigma y - U^{T}b||_{2}^{2} \operatorname{con} y = V^{T}x$$

$$||Ax - b||_{2}^{2} = \sum_{i=1}^{r} (\sigma_{i}y_{i} - u_{i}^{T}b)^{2} + \sum_{i=r+1}^{m} (u_{i}^{T}b)^{2}$$

Solución de mínimos cuadrados : $y_i = \frac{u_i^T b}{\sigma_i}$, i = 1, 2, ..., r

Solución de norma mínima : $y_i = 0$, i = r + 1, r + 2,..., n

$$x_{LS} = Vy = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i$$

Aproximación de matrices

Si
$$A = U \sum V^T$$
, con $A \in \Re^{m \times n}$ y $rank(A) = r$, entonces $A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$

Si
$$B = \sum_{i=1}^{t} \sigma_i u_i v_i^T$$
, con $t < r$, entonces $B = \arg\min_{rank(X)=t} ||A - X||_2$

Aproximación de matrices

$$A \in \Re^{32 \times 32}$$
, con $A_{ij} \in \{0,1,...,255\}$, $rank(A) = 32$;

$$A = \sum_{i=1}^{t} \sigma_i u_i v_i^T$$
, con $t = 3, 5, 10, 15, 32$

Matrices con rango deficiente y aproximación de matrices

Si
$$A = U \sum V^T$$
, con $A \in \Re^{m \times n}$ y $rank(A) = r$, entonces $A = \sum_{i=1}^r \sigma_i u_i v_i^T$

Si
$$A = U\Sigma V^T$$
, con $rank(A) = r$, y $k < r$, entonces $\min_{rank(B) = k} ||A - B||_2 = \sigma_{k+1}$

El valor singular más pequeño de *A* es la distancia (medida como 2-norma) de *A* al conjunto de matrices de rango deficiente

Rango numérico de una matriz

Si $A = U \sum V^T$, $\delta > 0$ una cierta tolerancia, y $\sigma_1 \ge \sigma_2 \ge \ge \sigma_r > \delta \ge \sigma_{r+1} \ge \sigma_{r+2} \ge ... \ge \sigma_n$ decimos que el rango numérico de A es r

Relevancia de la SVD

- En algunos problemas los valores propios o el determinante no proporciona información útil sobre ciertas propiedades de las matrices.
- Esto es especialmente cierto cuando se trata de propiedades relacionadas con el rango de la matriz.
- Ejemplo:

$$A = \begin{bmatrix} -1 & 1 & \dots & 1 \\ & -1 & \dots & 1 \\ & & \dots & \dots \\ & & & -1 \end{bmatrix}$$

$$B = A + be_1^T; \ rank(B) = n - 1; \det(B) = 0;$$

$$b = \begin{bmatrix} 2^{1-n} \\ 2^{1-n} \\ \dots \\ 2^{1-n} \end{bmatrix}$$

$$B = A + be_1^T$$
; $rank(B) = n - 1$; $det(B) = 0$;

$$\det(A) = (-1)^n$$
 $\lambda(A) = -1$ $\sigma_{\min}(A) = 2^{-n}$

$$\lambda(A) = -1$$

$$\sigma_{min}(A)=2^{-n}$$

Ejemplos

```
A =
                          A =
      3
                            1.0000
                                    0.5000
                                            0.3333
                                                     0.2500
                                                             0.2000
         1
                                                                     0.1667
      6
         1
                            0.5000
                                    0.3333
                                             0.2500
                                                     0.2000
                                                             0.1667
                                                                     0.1429
  8
      9
         1
                            0.3333
                                    0.2500
                                            0.2000
                                                     0.1667
                                                             0.1429
                                                                     0.1250
  2
      1 -1
                            0.2500
                                    0.2000
                                            0.1667
                                                     0.1429
                                                             0.1250
                                                                     0.1111
                                    0.1667
                            0.2000
                                            0.1429
                                                     0.1250
                                                             0.1111
                                                                     0.1000
>> svd(A)
                            0.1667
                                    0.1429
                                            0.1250
                                                     0.1111
                                                             0.1000
                                                                     0.0909
ans =
                               >> svd(A)
 15.0027
                               ans =
  1.7085
  0.0000
                                 1.618899858924339
                                 0.242360870575210
                                 0.016321521319876
                                 0.000615748354183
                                 0.000012570757123
                                 0.00000108279948
```

Relación entre la SVD y los valores propios

Si A=U ΣV^T , A, nxn, Σ =diag(σ_1 , σ_2 ,..., σ_n)

$$(A^{T}A)V_{i} = \sigma_{i}^{2}V_{i}, i = 1, 2, ..., n$$

$$(AA^{T})U_{i} = \sigma_{i}^{2}U_{i}, i = 1, 2, ..., n$$

Cálculo de la SVD

Se podría calcular a partir de:

$$(A^{T}A)V_{i} = \sigma_{i}^{2}V_{i}, i = 1, 2, ..., n$$
 $(AA^{T})U_{i} = \sigma_{i}^{2}U_{i}, i = 1, 2, ..., n$

No es buena idea calcular A^TA o AA^T debido a la pérdida de información que produce esta operación:

Si
$$A = \begin{bmatrix} 1 & 1 \\ 0 & \mu \\ \mu & 0 \end{bmatrix}$$
 con $fl(1 + \mu^2) = 1 \Rightarrow (A^T A) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Algoritmos más utilizados:

- Reducir la matriz A a una forma condensada utilizando transformaciones ortogonales, P y Q: B=PAQ^T
- 2. Calcular la SVD de B mediante un proceso iterativo

Algoritmo de Golub & Reinsch

Mejor algoritmo secuencial para calcular la SVD

1. Bidiagonalizar A usando transformaciones ortogonales

2. Aplicar el algoritmo iterativo QR a la matriz B^TB para diagonalizarla, pero sin formar explícitamente B^TB

Algoritmos "Raíz Cuadrada" para el cálculo de la SVD

Muchos algoritmos para calcular valores propios funcionan de forma similar. Ejemplos:

Algoritmo Iterativo QR Algoritmo de Jacobi
$$Z_1 = Z$$
 $Z_1 = Z$ Para $i = 1, 2, ..., \infty$ Para $i = 1, 2, ..., \infty$ Elegir un par (r, s) $Z_{i+1} = R_i * Q_i$ Calcular Q_i tal que $(Q_i^T Z_i Q_i)_{rs} = 0$; Finpara $Z_{i+1} = Q_i^T Z_i Q_i$ Finpara

Puesto que existe una relación entre la SVD de A y la descomposición en Valores Propios de A^TA , podría aprovecharse para establecer una relación entre la sucesión $\{Z_i\}$ y una hipotética sucesión de $\{A_i\}$ de forma que se mantuviera en cada caso la igualdad $Z_i = A_i^TA_i$

Idea básica de los algoritmos "raíz cuadrada" para calcular la SVD de A

Construimos las sucesiones

Sea
$$A_0 = A$$
 y $Z_0 = A_0^T A_0$

Supongamos que A_0 puede expresarse como $A_0 = f(M_0)$ donde f representa una cierta transformación ortogonal aplicada sobre A_0 y además se verifica que $Z_0 = M_0 M_0^T$

Valores propios SVD $M_0 M_0^T$ Z_0 $M_1 M_1^T$ Algoritmo "Raíz Cuadrada" $M_{i}M_{i}^{T}$ $M_{i+1}M_{i+1}^{T}$

Algoritmo "Raíz Cuadrada" para el cálculo de la SVD de A basado en el algoritmo iterativo QR

Sea $A = Q_0 R_0$ la descomposición QR de A y

$$Z_0 = A^T A = R_0^T Q_0^T Q_0 R_0 = R_0^T R_0$$

Procedamos por inducción. Supongamos que en la etapa i del Algoritmo iterativo QR se tiene

$$Z_i = R_i^T R_i$$

Si se calcula la descomposición QR de

$$R_i^T = Q_{0i}R_{0i}$$
 se tiene $Z_i = R_i^T R_i = Q_{0i}R_{0i}R_i = Q_{0i}R_{0ii}$ es decir $Z_i = Q_{0i}R_{0ii}$ descomposición QR de Z_i

$$Z_i = Q_{0i} R_{0ii}$$

En la etapa i+1 del Algoritmo iterativo QR se tiene

$$Z_{i+1} = R_{0ii}Q_{0i} = R_{0i}R_{i}Q_{0i} = R_{0i}R_{0i}^{T}Q_{0i}^{T}Q_{0i}$$

Es decir, se tiene

$$Z_{i+1} = R_{0i}R_{0i}^{T}$$
Si calculamos $R_{0i}^{T} = Q_{1i}R_{1i}$ se tiene

Es decir
$$Z_{i+1} = R_{1i}^{T} Q_{1i}^{T} Q_{1i} R_{1i} = R_{1i}^{T} R_{1i}$$

$$Z_{i+1} = R_{1i}^T R_{1i}$$

Es decir

Con R_{i+1} calculado como :

- 1. Calcular la descomposición QR de $R_i^T = Q_{0i}R_{0i}$
- 2. Calcular la descomposición QR de $R_{0i}^{T} = Q_{1i}R_{i+1}$

Algoritmo SVD "Raíz Cuadrada"

1. Calcular la descomposición QR de $A = Q_0 R_0$

Para i = 0,1,2,...

- 2.1 Trasponer (R_i, X) $(*X = R_{0i}^T *)$
- 2.2 Calcular la descomposición QR de $X = Q_i R_{i+1}$
- 2.3 Trasponer (R_{i+1}, X) $(*X = R_{i+1}^{T} *)$
- 2.4 Calcular la descomposición QR de $X = Q_{i+1}R_{i+1}$

Extensiones de la SVD: La Descomposición URV

Proposición:

Supongamos que rank(A)=k en el sentido de que

$$\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_k > \sigma_{k+1} \geq ... \geq \sigma_n$$

Existen matrices ortogonales U, V tales que

$$A = U \begin{bmatrix} R & F \\ 0 & G \end{bmatrix} V^T$$

con R, G triangulares superiores, $R \in \mathbb{R}^{k \times k}, U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$

$$\sigma_{\min}(R) = \sigma_k$$

$$\sqrt{\|F\|_F^2 + \|G\|_F^2} \approx \sqrt{\sigma_{k+1}^2 + \dots + \sigma_n^2}$$

Proposición:

Las transformaciones ortogonales conservan la Descomposición URV

Ventajas frente a la SVD

Coste computacional más pequeño que la SVD

Permite conocer el rango de A y los subespacios asociados con V

Es más fácil de actualizar (updating) que la SVD

Cálculo de la URV

La masa de la matriz tiende a concentrarse en la diagonal

La masa de la matriz tiende a concentrarse en la diagonal

Algoritmo para el cálculo de la URV

1. Calcular la descomposición QR de $A = Q_0 R_0$

Para i = 0,1,2,...

- 2.1 Trasponer (R_i, X) $(*X = R_i^T *)$
- 2.2 Calcular la descomposición QR de $X = Q_i R_{i+1}$

WATEL			
MATRIZ INICIAL 2.000000000	2 000000000		
3.000000000	3.000000000	4.000000000	5.0000000000
4.000000000	5.000000000	6.000000000	6.0000000000
5.000000000	6.000000000	7.000000000	7.0000000000
-*-*-*-*-*-*-		7.000000000	8.000000000
Numero de iteracione		- *	
-2.0954237474E1	9.4531899334E-2	1.8834346660E-10	2.3187629717E-10
2.9103830457E-11	9.5446088288E-1	-1.7740005414E-11	-2.1137647837E-11
-2.6469779602E-22	0.000000000	-9.1500898891E-12	5.1813526433E-13
4.5494933690E-24	0.000000000	7,2791893905E-23	7.4855080673E-13
-*-*-*-*-*-	*-*-*-*-*-*-*	7,2791093905E-23	7.4655060673E-13
-*-*-*-*-*-	*-*-*-*-*-*-*	- x ¥	
Numero de iteracione	s: 2		
-2.0954451148E1	1.9612712235E-4	-2.5410987881E-21	-3.1763734851E-21
5.6843418861E-14	9.5445115015E-1	5,2216228621E-25	6.5270285965E-25
2.3111159333E-33	0.000000000	-9.1648458849E-12	3.4509990292E-15
4.8148248610E-35	0.000000000	5.1698788285E-25	7.4734559140E-13
	--*-*-*-*	-*	7.4734339140E-13
-*-*-*-	*-*-*-*-*	~ *	
Numero de iteracione	s: 3		
-2.0954451149E1	4.0690448972E-7	3.3896367021E-32	4.3140830754E-32
1.2490009027E-16	9.5445115011E-1		-1.8391929055E-38
0.000000000	0.000000000	-9.1648465387E-12	2.2947604916E-17
0.000000000	0.000000000	4.0389678347E-27	7.4734553807E-13
- * - * - * - * - * - * - * - * - * -	*-*-*-*-*-*-*-*	-*	
- * - * - * - * - * - * - * - * -	*-*-*-*-*-*-*	- *	
Numero de iteracione	s: 4		
-2.0954451148E1	8.4420380826E-10	0.000000000	0.000000000
2.4394548881E-19	9.5445115011E-1	0.000000000	0.000000000
0.000000000	0.000000000	-9.1648465385E-12	1.5259133045E-19
0.000000000	0.000000000	2.5243548967E-29	7.4734553807E-13
-*-*-*-	*-*-*-*-*-*-*	- *	
- * - * - * - * - * - * - * - * -	*-*-*-*	- ★	
Numero de iteracione	s: 5		
-2.0954451147E1	1.7514676995E-12	0.000000000	0.000000000
5.2939559203E-22	9.5445115011E-1	0.000000000	0.000000000
0.000000000	0.000000000	-9.1648465383E-12	1.0146642496E-21
0.000000000	0.000000000	1.6023737137E-31	7.4734553807E-13
-*-*-*-	*-*-*-*-*-*-*	- *	
			1

-*-*-*-*-*-*-**	s: 6	-*	
-2.0954451147E1	3.6337660085E-15	0.000000000	0.000000000
1.1373733423E-24	9.5445115011E-1	0.000000000	0.000000000
0.000000000	0.000000000	-9.1648465381E-12	6.7470644367E-24
0.000000000	0.000000000	1.1555579666E-33	7.4734553807E-13
- * - * - * - * - * - * - * - * - * - *	*- * -*-*- * -*- * -*	- ¥	
- * - * - * - * - * - * - * - * - * - *	*-*-*-*-	- *	
Numero de iteraciones	s : 7		
-2.0954451146E1	7.5389659769E-18	0.000000000	0.000000000
2.2214323091E-27	9.5445115011E-1	0.000000000	0.000000000
0.00000000	0.000000000	-9.1648465379E-12	4.4864967457E-26
0.000000000	0.000000000	6.7708474607E-36	7.4734553807E-13
- * - * - * - * - * - * - * - * - * - *	* - * - * - * - * - * - * - * - * - *		
~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ *	*-*-*-*-	- *	
lumero de iteracione:	s: 8		•
-2.0954451146E1	1.5641075379E-20	0.000000000	0.000000000
4.7331654313E-30	9.5445115011E-1	0.000000000	0.000000000
0.000000000	0.000000000	-9.1648465376E-12	6.5827683646E-37
0.000000000	0.000000000	4.7019774033E-38	7.4734553807E-13
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*	×-×-×-×-×-×-×-×-	- ¥	
- * - * - * - * - * - * - * - * - * - *	*-*-*-*-	- ★	
Numero de iteraciones	s: 9		
-2.0954451145E1	3.2450503112E-23	0.000000000	0.000000000
1.0014835711E-32	9.5445115011E-1	0.000000000	0.000000000
0.000000000	0.000000000	-9.1648465374E-12	0.000000000
0.00000000	0.000000000	0.000000000	7.4734553807E-13
-*-*-*-*-*-*-	*-*-*-*-*-*-*-*	 ★	
- X - X - X - X - X - X - X - X X -	*-*-*-*-*-	- ×	
Numero de iteraciones	5: 10	,	
-2.0954451144E1	6.7324984187E-26	0.000000000	0.000000000
1.9560225998E-35	9.5445115011E-1	0.000000000	0.000000000
0.000000000	0.000000000	-9.1648465372E-12	0.000000000
0.000000000	0.000000000	0.000000000	7.4734553807E-13
-*-*-*	*-*-* - *-*-*-*-*	★	

iumero de iteracione	s: 11		
-2.0954451144E1	1.3967898990E-28	0.000000000	0.000000000
4.1142302279E-38	9.5445115011E-1	0.000000000	0.000000000
0.000000000	0.000000000	-9.1648465370E-12	0.000000000
0.000000000	0.000000000	0.000000000	7.4734553807E-13
- * - * - * - * - * - * - * - * -	*-*-*-*-*-*-*-*	• *	•
		- *	
Numero de iteracione		•	
-2.095445114 3E 1	2.8979168115E-31	0.000000000	0.000000000
0.000000000	9.5445115011E-1	0.000000000	0.000000000
0.000000000	0.000000000	-9.1648465368E-12	0.000000000
0.000000000	0.000000000	0.000000000	7.4734553807E-13
- * - * - * - * - * - * - * - * -	*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-	- X	
·· * - * - * - * - * - * - * - * - * - *		- *	·
Numero de iteracione			
-2.0954451143E1	6.0123014255E-34	0.000000000	0.000000000
0.000000000	9.5445115011E-1	0.000000000	0.000000000
0.000000000	0.000000000	-9.1648465366E-12	0.000000000
0.000000000	0.000000000	0.000000000	7.4734553807E-13
- * - * - * - * - * - * - * - * - * - *			
- * - * - * - * - * - * - * - * - * - *		- ★	
Numero de iteracione		0.000000000	0.000000000
-2.0954451142E1	1.2473708110E-36	0.000000000	0.000000000
0.000000000	9.5445115011E-1 0.000000000	-9.1648465364E-12	0.0000000000
0.000000000	0.000000000	0.000000000	7.4734553807E-13
-*-*-*-	,	· ·	7.4754555007E-15
- * - * - * - * - * - * - * - * - * - *	•		
Numero de iteracione			
-2.0954451142E1	0.000000000	0.000000000	0.000000000
0.000000000	9.5445115011E-1	0.000000000	0.000000000
0.000000000	0.000000000	-9.1648465362E-12	0.000000000
0.000000000	0.000000000	0.000000000	. 7.4734553807E-13
-*-*-*-*-*-*-			
-2.0954451142E1	0.000000000	0.000000000	0.000000000
0.000000000	9.5445115011E-1	0.000000000	0.000000000
0.000000000	0.000000000	-9.1648465362E-12	0.000000000
0.000000000	0.000000000	0.000000000	7.4734553807E-13

Cálculo de la SVD en el LAPACK y ScaLAPACK

http://www.netlib.org/lapack/double/

http://www.netlib.org/scalapack/double/

Ejercicios propuestos

- 1. Escribe una función Matlab que haga ceros en las componentes de un vector utilizando transformaciones ortogonales: [y,Q]=Anula(x), con y=Qx=ke₁,Q^T=Q⁻¹
- 2. Escribe una función Matlab que bidiagonalice una matriz utilizando transformaciones ortogonales: B=Bidiag(A), con B=PAQ^T, P^T=P⁻¹,Q^T=Q⁻¹
- 3. Escribe una función Matlab que devuelva los valores singulares de A, s=ValSin(A).
- 4. Escribe una función Matlab que tome como entrada la diagonal y superdiagonal de una matriz bidiagonal superior B y devuelva los valores singulares de B, s=ValBid(d,e).

function [y,Q] = Anula(x)

```
function [ y,Q ] = Anula(x)
%Hace ceros en las componentes de un vector.
%Usa Householder
n=size(x,1);
ro=sign(x(1))*norm(x);
v=x+ro*eye(n,1);
beta=ro*(x(1)+ro);
gama=v'*x/beta;
y=x-gama*v;
Q=eye(n)-(v*v')/beta;
end
```

function B = Bidiagonal(A);

```
function B = Bidiagonal(A);
%Bidiagonaliza una matriz usando
transformaciones ortogonales
[m,n]=size(A);
if n>m disp('OJO DIMENSIONES');
end
B=A;
for i=1:min(n,m-1)
  [B(i:m,i),Q]=Anula(B(i:m,i));
  for j=i+1:n
    B(i:m,j)=Q*B(i:m,j);
  end
  if i<n-1
    [z,P]=Anula(B(i,i+1:n)');
    B(i,i+1:n)=z';
    for j=i+1:m
      B(j,i+1:n)=B(j,i+1:n)*P';
    end
  end
end
```

function s = ValSin(A);

```
function s = ValSin(A);
%Calcula los valores singurares de A
B=Bidiagonal(A);
itermax=100;
for i=1:itermax
  X=B';
  [Q,B]=qr(X);
end
s=abs(diag(B));
end
```

```
function s=ValBid(d,e);
n=size(d,1);m=size(e,1);
maxiter=100;
if n-1==m
  for cont=1:maxiter
    for i=1:n-1
      if abs(e(i))<abs(d(i))</pre>
         t=e(i)/d(i);c=1/sqrt(1+t^2);s=c*t;
       else
         t=d(i)/e(i);s=1/sqrt(1+t^2);c=s*t;
       end
      d(i)=sqrt(d(i)^2+e(i)^2);
      e(i)=s*d(i+1);
      d(i+1)=c*d(i+1);
    end
    s=d;
  end
else
  disp('OJO DIMENSIONES');
end
```

function s=ValBid(d,e);