|--|

Calculatrice autorisée

Modéliser : Calculer : Communiquer : Chercher :

Exercice 1 (8 points)

Résoudre les inéquations suivantes :

1.
$$5x - 2 > 8x + 31$$

2.
$$(2x+1)(3x-2) \ge 0$$

3.
$$\frac{-5x-2}{-7x+8} \geqslant 0$$

Exercice 2 (8 points)

- 1. Donner sans justifier les équations des droites (d_1) et (d_2) .
- 2. On considère f_1 et f_2 les fonctions représentées par (d_1) et (d_2) . Résoudre graphiquement $f_1(x)=f_2(x)$.

3. On considère la fonction affine f telle que f(1)=6 et f(7)=1. Déterminer par le calcul une expression algébrique de f.

4. Le point $K\left(-10\;;\;65\right)$ appartient-il à (d), la droite représentative de f ?

Exercice 3 (8 points)

1. Démontrer que, pour tout
$$x$$
 réel différent de 5,
$$\frac{x}{2x-10}-2=\frac{-3x+20}{2x-10}.$$
 En déduire les solutions de
$$\frac{x}{2x-10}\geqslant 2.$$

2. Résoudre l'inéquation
$$\frac{1-4x}{x-3} < 4$$
.

Exercice 4 (2 points + 4 points bonus)

Soit f une fonction affine définie pour tout $x \in \mathbf{R}$ par f(x) = mx + p. On appelle f^2 la fonction définie pour tout $x \in \mathbf{R}$ par $f^2(x) = f(f(x))$. On généralise cette notation pour $n \in \mathbf{N}$: pour tout $x \in \mathbf{R}$, $f^{n+1}(x) = f(f^n(x))$ et $f^0(x) = x$.

- **1.** Vérifier que pour n = 1, n = 2 et n = 3, les fonctions f^n sont affines.
- 2. Quelle conjecture peut-on faire sur le taux d'accroissement et l'ordonnée à l'origine de f^n pour $n \in \mathbb{N}^*$?
- 3. Déterminer une fonction affine f vérifiant la propriété suivante : « Il existe un entier n>1 tel que $f^n(x)=2048x-2047$.

