Nirma University

Institute of Technology
Semester End Examination (RPR), July 2022
B. Tech. CSE Semester- V
2CS501, MACHINE LEARNING

Roll / Exam No.		Supervisor's initial with date	
Time: 3 H			Max. Marks: 100
Tille, 5 I	louis		Tidal Fidino 100
Instructio	 Figures to right indicate Draw neat sketches whe Make suitable assumption 	rever necessary. ons wherever necessary.	
- 1		SECTION I	[16]
Q.1	Answer the following questi		[16]
A.	Explain the following made	thine learning methods w	ith suitable [10]
CO2	examples:	1 Ti District	A - alreaia
	a. Deep Learning	b. Linear Discriminant	, p=0
-	c. Principle Component Analy		
В.	Given the set of values $X = 0$		9, 11, 4, 31. [00]
CO3	Evaluate the linear regression	coefficients.	
			[16]
Q.2	Answer the following questi		[16]
A	Consider a cricket game bet		
CO3	B. Suppose Team A wins 9		
	remaining matches. Among		
	them come from playing on 7	P. and abtained while playing	g at home If
	70% of the victories for Team		
	Team B is to host the next m		, which team
D	will most likely emerge as the		zing of self- [06]
B.	Define Competitive Neural		ding of self- [oo]
CO1,2	organizing map-based learning	ig with a suitable example.	
0.2	Answer the following quest	ions	[18]
Q.3	Consider the given data for		
A.			or car or air [12]
CO3	Automobile Company for 6 co	onsecutive years.	
	V 0012 001	4 0015 0016 0017	2018

- Year
 2013
 2014
 2015
 2016
 2017
 2018

 Sales
 120
 100
 250
 275
 230
 300
- a. Determine a linear regression model equation to represent this data.
- b. Plot the equation.
- c. Based on the above data, predict the sales for next four consecutive years.

Consider the two groups of data points (circles and squares) as shown [12] Α. CO3 in Figure below. Use non-linear SVM, using the transformation function Φ , to find hyper plane equation.

Classify the point $(x_1, x_2)=(2, 3)$, based on the above model.

B. What do you understand by reinforcement learning? Explain the [06] CO₂ working of Q-learning.

SECTION II

0.4 Answer the following questions: A.

[18] [12]

CO3

Consider the following set of training examples:

Instance	A1	A2	Classification	
1	1	1	1	
2	1	1	1	
3	1	0	0	
4	0	0	1	
5	0	1	0	
6	0	1	0	

- i. What is the entropy of this collection of training examples with respect to the target function classification?
- ii. What is the information gain of A2 relative to these training examples?

OR

A. Show the final result of hierarchical clustering with single linkage by [12] CO₃ drawing a dendrogram. The value in the matrix represents the Euclidean distance between the points.

	Α	В	C	D	\mathbf{E}	\mathbf{F}
A	O					
В	.12	O				
C	.51	.25	0			
D	.84	.16	.14	0		
\mathbf{E}	.28	.77	.70	.45	0	
F	.34	.61	.93	.20	.67	O

B. For the following data tuples compute the values for the True Positive [06] CO3 Rate (TPR) and False Positive Rate (FPR) for different cut off values.

Tuple No.	Class	Probability	
1	P	0.995	
2	P	0.980	
3	P	0.847	

4	N	0.763
5	N	0.622
6	P	0.506
7	N	0.471
8	N	0.337
9	P	0.218
10	N	0.048

Q.5 Answer the following questions:

[16]

A. Discuss various factors on which classification/prediction methods [06] can be compared.

B. Consider the training data in the following table where Play is a class [06]

CO3 attribute

ute.				
Day	Outlook	Humidity	Wind	Play
1	Sunny	High	Weak	No
2	Sunny	High	Strong	No
3	Overcast	High	Weak	Yes
4	Rain	High	Weak	Yes
5	Rain	Normal	Weak	Yes
6	Rain	Normal	Strong	No
7	Overcast	Normal	Strong	Yes
8	Sunny	High	Weak	No
9	Sunny	Normal	Weak	Yes
10	Rain	Normal	Weak	Yes
11	Sunny	Normal	Strong	Yes
12	Overcast	High	Strong	Yes
13	Overcast	Normal	Weak	Yes
14	Rain	High	Strong	No

What is class label for the following day (Outlook= Rain, Humidity= High, Wind= Weak), according to naïve Bayesian classification?

C. Differentiate between bagging, boosting and voting in ensemble [04] CO2 methods.

Q.6 Answer the following questions:

[16]

A. Distinguish between overfitting and underfitting. How it can affect

[06]

CO2 model generalization?

B. A patient takes a lab test and the result comes back positive. It is [06]

known that the test returns a correct positive result in only 98% of the cases and a correct negative result in only 97% of the cases. Furthermore, only 0.008 of the entire population has this disease.

- 1. What is the probability that this patient has cancer?
- 2. What is the probability that he does not have cancer?

3. What is the diagnosis?

C. With suitable equations, explain any two types of activation functions [04]

CO2 used in neural networks.