Ph202

Chapitre 3 : Dynamique

E. Riedinger Département des Sciences Physiques

Février - Mars 2020

E. Riedinger

- 1.1 Première loi
- 1.3 Troisième

- 1. Lois de Newton
- 1.1 Première loi

Principe d'inertie

Un mobile isolé (ou pseudo-isolé) est au repos ou en mouvement rectiligne uniforme.

Inertie : traduit la difficulté à mettre en mouvement (ou modifier un mouvement libre càd rectiligne uniforme).

Première loi

Il existe des référentiels appelés référentiels galiléens dans lesquels le principe d'inertie est vérifié.

Conséquence : un référentiel galiléen ne peut être qu'en translation rectiligne et uniforme par rapport à un autre référentiel galiléen.

• Référentiels usuels : sont-ils galiléens ?

1.2 Deuxième loi

Quantité de mouvement (ou impulsion) d'un point matériel

$$\overrightarrow{p} = m\overrightarrow{v}$$

<u>De</u>uxième loi

Par rapport à tout référentiel galiléen, le mouvement d'un point matériel soumis à plusieurs forces extérieures dont la somme est $\sum \overrightarrow{F_{\rm ext}}$ vérifie $\frac{d\overrightarrow{p}}{dt} = \sum \overrightarrow{F_{\rm ext}}$

NB : si la masse du système est constante $\frac{d\overrightarrow{p}}{dt}=m\frac{d\overrightarrow{v}}{dt}=m\overrightarrow{a}$ Notion de forces : elles correspondent aux efforts produisant les mouvements forcés càd s'écartant d'un mouvement rectiligne uniforme.

Force ⇒ Vecteur lié càd vecteur + point d'application

1.1 Première loi 1.2 Deuxième loi

1.2 Deuxième loi

Masse inerte et masse pesante

Grandeurs distinctes en mécanique classique :

masse inerte : $\sum \overrightarrow{F}_{\text{ext}} = \overrightarrow{m}_{\text{inerte}} \overrightarrow{a}$

masse pesante (ou masse grave a) : $\overrightarrow{F}_{pesante} = m_{pesante} \overrightarrow{g}$

a. Différence "légère" entre poids et attraction gravitationnelle due à la rotation de la Terre

Propriété essentielle

 $m_{ ext{inerte}} = m_{ ext{pesante}}$

Vérification expérimentale

Chute libre : on constate que le mouvement ne dépend pas de la masse $\overrightarrow{a} = \overrightarrow{g}$

(aussi sur la Lune : mission Apollo 15)

E. Riedinger

1.1 Première loi 1.2 Deuxième loi

1.2 Deuxième loi

$$3D: \overrightarrow{ma} = \sum \overrightarrow{F_{\rm ext}}$$
 revient à poser 3 éq. différentielles du $2^{
m ème}$ ordre

Résolution mathématique : deux constantes vectorielles

Résolution complète : besoin de connaître les conditions initiales (position $\overrightarrow{OM_0}$ et vitesse $\overrightarrow{v_0}$)

Déterminisme

les mêmes causes produisent les mêmes effets

Mouvement d'une particule (1 corps) : prévisible quel que soit t Remarques :

- problème à 3 corps : pas de solution analytique
- problèmes généraux : variables couplées
 - → grande sensibilité aux conditions initiales
 - → phénomènes chaotiques

1.1 Premiere loi 1.2 Deuxième loi 1.3 Troisième loi

1.3 Troisième loi

Troisième loi

Étant donnés deux points matériels A et B en interaction, la force que A exerce sur B est l'opposé de la force que B exerce sur A.

$$\overrightarrow{F_{A \to B}} = -\overrightarrow{F_{B \to A}}$$

Aussi appelée principe des actions réciproques

Exemple 1

Montrer qu'un objet posé sur une table exerce sur celle-ci une force égale au poids de cet objet.

Bilan des forces sur objet : poids \overrightarrow{P} et force exercée table $\overrightarrow{F_{T \to O}}$. Équilibre : accélération nulle : $\overrightarrow{P} + \overrightarrow{F_{T \to O}} = \overrightarrow{0}$. Troisième loi $\overrightarrow{F_{O \to T}} = -\overrightarrow{F_{T \to O}}$. Donc $\overrightarrow{F_{O \to T}} = \overrightarrow{P}$.

- 1.3 Troisième loi

1.3 Troisième loi

Exemple 2 (hydrostatique \rightarrow Ph201)

Eau à l'équilibre dans un verre. Pression atmosphérique P_0 . Comparer la force de l'eau sur la paroi du fond à la force de la paroi du fond sur l'eau.

Paroi : bilan des forces sur l'eau :

- poids $\overrightarrow{mg} = -\rho Shg\overrightarrow{u_z}$ force pression air $\overrightarrow{F_{air}} = -P_0S\overrightarrow{u_z}$
- force exercée par paroi du fond $\overrightarrow{F_{\text{fond sur eau}}}$

Équilibre :
$$-\rho Shg\overrightarrow{u_z} - P_0S\overrightarrow{u_z} + \overrightarrow{F_{\text{fond sur eau}}} = \overrightarrow{0}$$

Donc $\overrightarrow{F_{\text{fond sur eau}}} = S(P_0 + \rho gh)\overrightarrow{u_z}$

Eau : hydrostatique : pression au fond $P = P_0 + \rho gh$. Force de pression de l'eau sur fond : $\overrightarrow{F}_{\text{eau sur fond}} = -S(P_0 + \rho gh) \overrightarrow{u_z}$

Conclusion (3ème loi)
$$\overrightarrow{F}_{\text{paroi fond sur eau}} = -\overrightarrow{F}_{\text{eau sur paroi fond}}$$
 ("réaction")

2.1 Exemples

2.1.a Gravitation universelle

Force d'attraction gravitationnelle

(exercée sur corps de masse m_2 à distance r par attracteur de masse m_1) $\overrightarrow{F} = -\frac{\mathcal{G} m_1 m_2}{r^2} \overrightarrow{u_r}$

Base polaire, origine sur attracteur

Attractive

G constante de gravitation universelle Isaac Newton (1642-1727) 'Principia' (1687) Voir complément "Gravitation". $\mathcal{G} \simeq 6,67 \cdot 10^{-11} \, \mathsf{SI}$

2.1.b Tension d'un fil

Hypothèse fil inextensible souple : tension tangente au fil

Tension d'un fil (ou d'une corde) \overrightarrow{T}

 $\overrightarrow{T_A}$ force que la partie A du fil exerce sur la partie B T est la même de part et d'autre d'un fil souple de masse négligeable

3ème loi
$$\overrightarrow{T_A} = -\overrightarrow{T_B}$$

partie A

partie B

 $\overrightarrow{T_A}$
 $\overrightarrow{T_A}$

Si masse du fil importante

- à l'horizontale forme réelle chaînette ou caténaire
- tension n'a pas la même valeur le long du fil

2.1.b Tension d'un fil

Exemple

Deux points matériels liés (m_1, m_2) tirés horizontalement par force \overrightarrow{F} , sans frottement. Tension? **—

Fil tendu : mouvement identique (
$$\overrightarrow{a}$$
 identique)

Système $\{m_1 + fil + m_2\}$: $(m_1 + m_2)\overrightarrow{a} = \overrightarrow{F} + \overrightarrow{P_{12}} + \overrightarrow{R_{12}}$

Système $\{m_1 + fil\}$: $m_1\overrightarrow{a} = \overrightarrow{T_2} + \overrightarrow{P_1} + \overrightarrow{R_1}$

Système $\{m_1\}$: $m_1\overrightarrow{a} = \overrightarrow{T_1} + \overrightarrow{P_1} + \overrightarrow{R_1}$

Sur Ox : $(m_1 + m_2)a_x = F_x$ $m_1a_x = T_{2x}$ $m_1a_x = T_{1x}$

Donc $\overrightarrow{T_2} = \overrightarrow{T_1} = \frac{m_1}{m_1 + m_2}\overrightarrow{F}$

Frottement ou adhérence : rôle fondamental!

Exemple: roulement

Le frottement s'oppose au mouvement.

Sans adhérence la roue tourne sur elle même (cf démarrage d'un véhicule).

Adhérence $F_{\text{sol} \rightarrow \text{roue}}$ permet à la roue d'avancer!

Frottement solide (frottement de glissement)

Lois de Coulomb : forces de contact subies par système (solide) dues à autre solide

 \overrightarrow{R} réaction normale s'oppose à l'enfoncement (pas d'élasticité ou déformation) α \overrightarrow{F} réaction tangentielle (= force de frottement) s'oppose au glissement

Statique	Dynamique
$F \leq \mu_s R$	$F = \mu_d R$

 μ_{s} et μ_{d} coefficients de frottement statique et dynamique Souvent **approximation** $\mu \simeq \mu_{d} \simeq \mu_{s}$ Valeur de μ dépend des surfaces en contact.

Le sens de \overrightarrow{F} est connu (opposé au glissement)!

Analyse

Équilibre possible? *

Équilibre $\overrightarrow{R} + \overrightarrow{P} + \overrightarrow{F} = \overrightarrow{0}$ (impossible sans frottement!): $\tan \alpha = \frac{F}{R}$ Statique : condition $F \leq \mu_S R$ (loi Coulomb) càd $\tan \alpha \leq \mu_S$.

Interprétation : \overrightarrow{R} compense la composante du poids \bot à la pente (sur Oy) : $R=P\cos\alpha$, et \overrightarrow{F} compense la composante du poids (\overrightarrow{F} s'oppose au glissement) le long de la pente (sur Ox) $F=P\sin\alpha$ tant que $F\le\mu_S R$ est vérifié. Donc statique possible (sinon glissement = dynamique) si $P\sin\alpha\le\mu_S P\cos\alpha$ càd $\tan\alpha\le\mu_S$

Exemple 1

 \mathcal{R} sol (galiléen). Point matériel (m=2 kg) subissant force \overrightarrow{T} horizontale (1. T=0 N, 2. T=3 N, 3. T=5 N). Coefficient frottement statique $\mu_S=0,2$. Équilibre? **—

$$\overrightarrow{R} + \overrightarrow{P} + \overrightarrow{F} + \overrightarrow{T} = \overrightarrow{0}$$
 donc $F = T$ et $R = P = mg = 20 \text{ N}$
Coulomb: $F < \mu_S R$ càd $F < 4 \text{ N}$, conclusion:

- Équilibre possible sans frottement
- ② Équilibre possible avec frottement \overrightarrow{F} vérifiant $F = T = 3 \,\text{N}$
- **3** Équilibre impossible donc glissement (accél. $a_{x} = \frac{T \mu_{d}R}{m}$)

Exemple 2

Véhicule (= point matériel m=1t) décrit mouvement circulaire uniforme horizontal $v=72\,\mathrm{km}\cdot\mathrm{h}^{-1}$ rayon $\rho=50\,\mathrm{m}$. Référentiel $\mathcal R$ sol (galiléen), repère polaire. Dérapage latéral? **—

 $\sum \overrightarrow{F} = m\overrightarrow{a} \text{ donc } \overrightarrow{F} \text{ nécessaire dans sens de } \overrightarrow{a} \text{ : adhérence latérale}$ Pas de mouvement dans direction $\overrightarrow{u_r}$ donc loi statique $F \leq \mu_S R$ Rappel (polaires) $\overrightarrow{v} = \rho \dot{\theta} \overrightarrow{u_\theta}$ et $\overrightarrow{a} = -\rho \dot{\theta}^2 \overrightarrow{u_r}$ Donc $F = ma = m\rho \dot{\theta}^2 = \frac{mv^2}{\rho} = \frac{10^3 \times 20^2}{50} = 4 \cdot 10^3 \text{ N doit vérifier}$

 $F < \mu_S mg \ (F < 10^4 \mu_S)$: risqué!

De plus phénomènes individuels sur chaque roue (AV/AR) Limitation du risque : vélodrome \rightarrow pente, route \rightarrow dévers

2.1.d Force de rappel élastique

Force de rappel élastique

Ressort de raideur k fixe d'un côté, dirigé suivant $\overrightarrow{u_x}$, x position extrémité mobile $(x_v \text{ à vide})$, exerce force $\overrightarrow{F} = -k(x - x_v)\overrightarrow{u_x}$

Exemple : point matériel attaché à l'extrémité d'un ressort vertical

Position d'équilibre? Équation du mouvement? *

E. Riedinger Ph

2.1.d Force de rappel élastique

Ressort horizontal

Avec frottement solide négligeable

Forces verticales : poids et réaction.

Seule force horizontale : force de rappel élastique

x = 0 position de repos du ressort

 $m\ddot{x} = -kx$

Conclusion

Même équation du mouvement pour ressort vertical et horizontal. Le poids ne modifie que la position d'équilibre du ressort vertical.

2.1.e Exemples de forces électromagnétiques (pour illustration)

Force de Lorentz

Force subie dans un champ électromagnétique $(\overrightarrow{E}, \overrightarrow{B})$ par une particule chargée (q) ayant la vitesse \overrightarrow{V} :

$$\overrightarrow{F} = q \left(\overrightarrow{E} + \overrightarrow{V} \wedge \overrightarrow{B} \right)$$

Force électrostatique (force de Coulomb)

$$\overrightarrow{F}_{1\rightarrow 2} = \frac{1}{4\pi\epsilon_0} \times \frac{q_1q_2}{r^2} \overrightarrow{u_r} \qquad \qquad \text{(figure avec charges de signe opposé)}$$

 $\frac{1}{4\pi\epsilon_0} \simeq 9 \cdot 10^9 \, \text{SI}$ Attractive ou répulsive

Force de Laplace

Force électromagnétique qu'exerce un champ magnétique \overrightarrow{B} sur un élément de conducteur orienté d parcouru par un courant I. $\overrightarrow{F} = Id$ $\overrightarrow{\ell} \land \overrightarrow{B}$

E. Riedinger

2.2 Méthode générale

Étude d'un problème de mécanique

- Définir le système + choisir le référentiel (repère et coordonnées adaptés)
- Effectuer le bilan des forces extérieures
- Mise en équation : déterminer l'éq. du mouvement (ou éq. énergétique)
- Résoudre l'équation pour obtenir l'équation horaire

Exemple 1

Dans champ uniforme $\overrightarrow{E} = E_0 \overrightarrow{u_x}$, particule masse m, charge q soumise à force $\overrightarrow{F} = q \overrightarrow{E}$ (poids négligeable) initialement immobile en O. Déterminer l'accélération. *

Système : particule, réf. terrestre (galiléen), repère (1D) $(O, \overrightarrow{u_x})$. Seule force \overrightarrow{F} : PFD $\overrightarrow{F} = m\overrightarrow{a}$. Sur Ox : $F_x = qE_0 = ma_x$ $a_x = \frac{qE_0}{r}$ $v_x = \frac{qE_0}{r}t$ $x(t) = \frac{1}{2}\frac{qE_0}{r}t^2$

2.2 Méthode générale

Exemple 2

**— Deux blocs de masses $m_1 = 4 \, \text{kg}$ et $m_2 = 8 \, \text{kg}$ reliés par fil (masse négligeable), tirés vers le haut par force constante \overrightarrow{F} (norme $F = 180 \, \text{N}$). Déterminer \overrightarrow{a} avec $g = 10 \, \text{m} \cdot \text{s}^{-2}$. CI : $z(0) = 0 \, \text{et}$ $\dot{z}(0) = v_z(0) = 0$.

- Référentiel R terrestre (galiléen), axe Oz vers le haut.
 Système : les 2 blocs.
- Forces (ext) : poids et \overrightarrow{F}
- 2ème loi : $(m_1 + m_2)\overrightarrow{g} + \overrightarrow{F} = (m_1 + m_2)\overrightarrow{a}$

Projection sur
$$Oz: -(m_1 + m_2)g + F = (m_1 + m_2)a_z$$

donc $a_z = -g + \frac{F}{m_1 + m_2} = -10 + \frac{180}{4 + 8} = +5 \,\mathrm{m}\cdot\mathrm{s}^{-2}$
 a_z constante donc avec CI: $v_z(t) = a_z t$ et $z(t) = \frac{1}{2}a_z t^2$

NB : si système = bloc du bas? du haut?

- 3.1 Définitions et théorème
 - .3 Application : cas des forces centrales

- 3. Moments
- 3.1 Définitions et théorème

Dans cette partie : système = point matériel de masse m en M. $\mathcal R$ Référentiel galiléen muni d'un repère.

Moment cinétique par rapport au point O (O fixe dans \mathcal{R})

$$\overrightarrow{\sigma_{\rm O}} = \overrightarrow{OM} \wedge m\overrightarrow{V}$$

Soit \overrightarrow{F} force s'exerçant sur le système en M

Moment de la force \overrightarrow{F} par rapport au point O

$$\overrightarrow{\mathcal{M}_{O}}\left(\overrightarrow{F}\right) = \overrightarrow{\mathit{OM}} \wedge \overrightarrow{F}$$

E. Riedinger

- 3.1 Définitions et théorème
- 3.2 Montents par rapport a un axe 3.3 Application : cas des forces centrales

Interprétation

le moment par rapport à O caractérise la manière dont la grandeur vectorielle en M fait tourner le mobile par rapport à O

- 3.1 Définitions et théorème
- 3.2 Monication : cas des forces centrales

$$\left\| \overrightarrow{\mathcal{M}_O} \left(\overrightarrow{F} \right) \right\| = \left\| \overrightarrow{OM} \wedge \overrightarrow{F} \right\| = OM \times F \times \left| \sin \left(\overrightarrow{OM}, \overrightarrow{F} \right) \right|$$

$$d \text{ distance entre } O \text{ et la droite support de la force } \overrightarrow{F}$$

 $d = OM \left| \sin \alpha \right|$

Calcul

$$\left\| \overrightarrow{\mathcal{M}_O} \left(\overrightarrow{F} \right) \right\| = Fd$$

Unité : le Nm

Bras de levier

En valeur absolue, pour F donnée le moment $\left\|\overrightarrow{\mathcal{M}_O}\left(\overrightarrow{F}\right)\right\|$ augmente si d augmente.

On a d_{max} (= OM) lorsque $\overrightarrow{F} \perp \overrightarrow{OM} \longrightarrow$ Nombreuses applications!

- 3.1 Définitions et théorème
- 3.2 Montication : cas des forces centrales

Exemple 1

En cartésiennes point matériel M(0, y, z) de masse m(M dans plan vertical contenant Oy). Calculer le moment du poids par rapport à O. *

$$\overrightarrow{\mathcal{M}_O}\left(\overrightarrow{P}\right) = \overrightarrow{OM} \wedge \overrightarrow{P} = \begin{vmatrix} 0 & 0 & 0 \\ y & \wedge & 0 \\ z & -mg \end{vmatrix} = \begin{vmatrix} -mgy \\ 0 & = -mgy\overrightarrow{u_x} \end{vmatrix}$$

E. Riedinger

- 3.1 Définitions et théorème
 - 3 Application : cas des forces centrales

Exemple 2

En cylindriques calculer le moment cinétique par rapport à O d'un point matériel m en M dont position et vitesse sont dans le plan des polaires. *

$$\overrightarrow{\sigma_O}(M) = \overrightarrow{OM} \wedge m\overrightarrow{V} = \begin{vmatrix} r & r & \dot{r} \\ 0 & \wedge m & r\dot{\theta} \\ 0 & 0 & mr^2\dot{\theta} \end{vmatrix} = \frac{0}{mr^2\dot{\theta}\overrightarrow{u_z}}$$

- 3.1 Définitions et théorème
- 3.3 Application : cas des forces centrales

Exemple 3

Force \overrightarrow{F} $(F=80\,\mathrm{N})$ exercée (vers le haut ou \perp) au bout d'une tige de masse négligeable de longueur $L=50\,\mathrm{cm}$ inclinée de $\alpha=\frac{\pi}{3}$ /horizontale, autre bout fixe en O. Masse $m=30\,\mathrm{kg}$ au milieu de la tige . Calculer la norme des moments /O de \overrightarrow{F} et \overrightarrow{P} . **—

$$\begin{aligned} \left\| \overrightarrow{\mathcal{M}_{0}} \left(\overrightarrow{F_{1}} \right) \right\| &= FL = 40 \, \text{Nm} \\ \left\| \overrightarrow{\mathcal{M}_{0}} \left(\overrightarrow{F_{2}} \right) \right\| &= FD = FL \cos \alpha = 20 \, \text{Nm} \\ \left\| \overrightarrow{\mathcal{M}_{0}} \left(\overrightarrow{P} \right) \right\| &= mg \frac{D}{2} = 37, 5 \, \text{Nm} \end{aligned}$$

 $\overrightarrow{\mathcal{M}_{\mathsf{O}}}\left(\overrightarrow{F}\right)$ vers l'avant, $\overrightarrow{\mathcal{M}_{\mathsf{O}}}\left(\overrightarrow{P}\right)$ vers l'arrière

E. Riedinger

- 3.1 Définitions et théorème 3.2 Moments par rapport à un
- 3.3 Application : cas des forces centrales

Dans référentiel $\mathcal R$ galiléen, point matériel soumis à forces $\overrightarrow{F_{ext}}$:

Théorème du moment cinétique

$$\frac{d\overrightarrow{\sigma_0}}{dt} = \sum \overrightarrow{\mathcal{M}_O} \left(\overrightarrow{F_{ext}} \right)$$

NB : moments calculés par rapport au même point Équivalent à RFD pour rotation.

Démonstration *

$$\begin{array}{l} \frac{d\overrightarrow{\sigma_O}}{dt} = \frac{d}{dt} \left(\overrightarrow{OM} \wedge \overrightarrow{m} \overrightarrow{V} \right) = \frac{d\overrightarrow{OM}}{dt} \wedge \overrightarrow{m} \overrightarrow{V} + \overrightarrow{OM} \wedge \overrightarrow{m} \frac{d\overrightarrow{V}}{dt} \\ \frac{d\overrightarrow{\sigma_O}}{dt} = \overrightarrow{O} + \overrightarrow{OM} \wedge \sum \overrightarrow{F_{ext}} = \sum \overrightarrow{\mathcal{M}_O} \left(\overrightarrow{F_{ext}} \right) \end{array}$$

- 3.1 Définitions et théorème 3.2 Moments par rapport à un a
 - 3 Application : cas des forces centrales

Exemple

Ballon masse m (gonflé à l'hélium) accroché à une corde tendue longueur L (masse négligeable) accrochée au sol en O. Soumis à poussée d'Archimède \overrightarrow{A} . Sans frottements. Mouvement dans un plan vertical (= figure \rightarrow polaires/cyl.). Écrire le TMC. *

Moments:
$$\overrightarrow{\mathcal{M}_O}\left(\overrightarrow{T}\right) = \overrightarrow{OM} \wedge \overrightarrow{T} = \overrightarrow{0}$$

$$\overrightarrow{\mathcal{M}_O}\left(\overrightarrow{A}\right) = \overrightarrow{OM} \wedge \overrightarrow{A} = -LA\sin\theta\overrightarrow{u_\Delta}$$

$$\overrightarrow{\mathcal{M}_O}\left(\overrightarrow{P}\right) = \overrightarrow{OM} \wedge \overrightarrow{P} = LP\sin\theta\overrightarrow{u_\Delta}$$

$$\overrightarrow{\sigma_O} = \overrightarrow{OM} \wedge m\overrightarrow{V} = mL^2\dot{\theta}\overrightarrow{u_\Delta}.$$
Th. du moment cinétique $\frac{d\overrightarrow{\sigma_O}}{dt} = \sum \overrightarrow{\mathcal{M}_O}\left(\overrightarrow{F_{\text{ext}}}\right)$
Ici $mL^2\ddot{\theta}\overrightarrow{u_\Delta} = LP\sin\theta\overrightarrow{u_\Delta} - LA\sin\theta\overrightarrow{u_\Delta}$
Projection sur $\overrightarrow{u_\Delta}$: $\ddot{\theta} + \frac{F_A - P}{mL}\sin\theta = 0$ (éq. mvt.)

E. Riedinger

- 3.1 Définitions et théorème 3.2 Moments par rapport <u>à un axe</u>
 - .2 Moments par rapport a un axe.3 Application : cas des forces centrales

3.2 Moments par rapport à un axe

Situation fréquente : mouvement plan (contient \overrightarrow{OM} , \overrightarrow{V} , forces \overrightarrow{F})
Alors $\overrightarrow{\sigma_0}$ et $\overrightarrow{\mathcal{M}_O}$ (\overrightarrow{F}) selon normale au plan ($\longrightarrow z$)

Moments par rapport à l'axe z

On pose
$$\sigma_z = \overrightarrow{\sigma_0} \cdot \overrightarrow{u_z}$$
 et $\mathcal{M}_z\left(\overrightarrow{F}\right) = \overrightarrow{\mathcal{M}_O}\left(\overrightarrow{F}\right) \cdot \overrightarrow{u_z}$

Conséquences

TMC :
$$\frac{d\sigma_z}{dt} = \sum \mathcal{M}_z \left(\overrightarrow{F_{\text{ext}}} \right)$$

Comme $\overrightarrow{u_z} \perp \text{plan}$, $\mathcal{M}_z\left(\overrightarrow{F}\right) = \pm Fd$ avec signe + si rotation dans le sens >0 (trigonométrique) et signe - si rotation dans le sens <0

Généralisation: pour tout axe Δ (utile si Δ = axe de rotation) orienté par $\overrightarrow{u_{\Delta}}$ passant par $O: \frac{d\sigma_{\Delta}}{dt} = \sum \mathcal{M}_{\Delta} \left(\overrightarrow{F_{ext}}\right)$

E. Riedinger

- 1 Définitions et théorème
- 3.2 Moments par rapport à un axe

3.2 Moments par rapport à un axe

Conséquence

Statique (équilibre en rotation) : $\sum \mathcal{M}_{\Delta} \left(\overrightarrow{F_{ext}} \right) = 0$

Exemple 1 (solide indéformable)

Contrepoids nécessaire pour équilibre barrière ? Système : barrière (m_1) + contrepoids (m_2) *—

Équilibre en translation (la barrière ne tombe pas) $\overrightarrow{P_1} + \overrightarrow{P_2} + \overrightarrow{R} = \overrightarrow{0}$ Équilibre en rotation (Δ) $\mathcal{M}_{\Delta}\left(\overrightarrow{P_1}\right) + \mathcal{M}_{\Delta}\left(\overrightarrow{P_2}\right) + \mathcal{M}_{\Delta}\left(\overrightarrow{R}\right) = 0$ $-m_1g\frac{3L}{8} + m_2g\frac{L}{8} + 0 = 0 \text{ donc}$ $m_2 = 3m_1 \text{ (balance même principe)}$

- 3.1 Définitions et théorème
 3.2 Moments par rapport à un axe
- 3.3 Application : cas des forces centrales

3.2 Moments par rapport à un axe

Exemple 2

Point matériel (m) glissant sans frotter sur demi-sphère rayon ρ . Équation du mouvement? (cf TD) *

Rappel (ex.1 du 3.1) : en cylindriques $\overrightarrow{\sigma_0} = mr^2 \dot{\theta} \overrightarrow{u_z}$

(axe z orthogonal à la figure passant par O) lci $\sigma_z = m\rho^2\dot{\theta}$

Moments forces
$$(/\text{axe }z):\mathcal{M}_z\left(\overrightarrow{P}\right)=+mg\rho\sin\theta$$

$$\mathcal{M}_z\left(\overrightarrow{R}\right)=0$$

TMC
$$\frac{d\sigma_z}{dt} = \mathcal{M}_z \left(\overrightarrow{P} \right) + \mathcal{M}_z \left(\overrightarrow{R} \right)$$

$$m\rho^2\ddot{\theta} = mg\rho\sin\theta$$
 donc $\ddot{\theta} = \frac{g}{\rho}\sin\theta$

- .1 Définitions et théorème
- 3.3 Application: cas des forces centrales

3.3 Application : cas des forces centrales

Forces du type $\overrightarrow{f} = \phi \overrightarrow{OM}$ (ϕ variable). Système dans $\mathcal R$ galiléen soumis à cette seule force.

Théorème du moment cinétique :

TMC : $\frac{d\overrightarrow{\sigma_0}}{dt} = \overrightarrow{OM} \wedge \overrightarrow{f} = \overrightarrow{0}$

donc $\overrightarrow{\sigma_0} = \overrightarrow{\text{constant}}$: conservation du moment cinétique

Or $\overrightarrow{\sigma_0} = \overrightarrow{OM} \wedge \overrightarrow{m} \overrightarrow{v}$ donc $\overrightarrow{\sigma_0}$ ayant une direction constante est aussi toujours \bot à \overrightarrow{OM} et \overrightarrow{v} .

Le mouvement est donc plan

Le plan du mouvement est celui défini par $\overrightarrow{OM_0}$ et $\overrightarrow{v_0}$ (CI).

Utiliser cylindriques avec le plan du mouvement coïncidant avec le plan des polaires

E. Riedinger

- .1 Définitions et théorème
- 3.3 Application: cas des forces centrales

3.3 Application : cas des forces centrales

Rappel en cylindriques $\sigma_z = mr^2\dot{\theta}$ donc ici σ_z constante

Interprétation

Aire du triangle balayé par le vecteur position $dS = \left|\frac{1}{2}r^2d\theta\right|$ donc vitesse aréolaire $\frac{dS}{dt} = \left|\frac{1}{2}r^2\dot{\theta}\right| = \frac{|\sigma_z|}{2m}$ constante.

On pose
$$\mathcal{C} = \frac{\sigma_z}{m} = r^2 \dot{\theta}$$
 constante des aires

- 1 Définitions et théorème
- 3.3 Application: cas des forces centrales

4. Complémént

Système : N particules de masse m_i aux points M_i en réf. galiléen

$$G$$
 centre de masse défini par $\sum_i m_i \overrightarrow{GM}_i = \overrightarrow{0}$

Autre écriture
$$\sum_{i} m_{i} \left(\overrightarrow{GO} + \overrightarrow{OM_{i}}\right) = \overrightarrow{O}$$
 soit $\overrightarrow{OG} = \frac{\sum_{i} m_{i} \overrightarrow{OM_{i}}}{\sum_{i} m_{i}}$

Conséquence :
$$\frac{d\overrightarrow{OG}}{dt} = \frac{\sum_{i} m_{i} \frac{d\overrightarrow{OM}_{i}}{dt}}{\sum_{i} m_{i}}$$

\overrightarrow{p} Quantité de mouvement du système

$$\overrightarrow{p} = \sum_{i} \overrightarrow{p_{i}} = \sum_{i} m_{i} \overrightarrow{v_{i}} = \sum_{i} m_{i} \times \frac{d\overrightarrow{OG}}{dt}$$

$$\overrightarrow{p} = m_{totale} \overrightarrow{v_G}$$

→ Mouvement d'ensemble

E. Riedinger

Lois de Newton
 Forces : exemples, méthodes
 Moments

.1 Définitions et théorème

3.3 Application : cas des forces centrales

4. Complément

Point matériel m_i soumis à $\overrightarrow{f_i}$ résultante des forces extérieures sur m_i et à $\sum_j \overrightarrow{f_{ij}}$ forces intérieures (exercées par masses m_j sur m_i) vérifiant $\overrightarrow{f_{ji}} = -\overrightarrow{f_{ij}}$ (3ème loi Newton) $\frac{d\overrightarrow{p}}{dt} = \sum_i m_i \frac{d\overrightarrow{v_i}}{dt} = \sum_i \left(\overrightarrow{f_i} + \sum_j \overrightarrow{f_{ji}}\right) = \sum_i \overrightarrow{f_i} + \overrightarrow{0} = \overrightarrow{f_{ext}}$ (les $\overrightarrow{f_{ii}}$ s'annulent 2 à 2)

Théorème du centre de masse

 $\frac{d\overrightarrow{p}}{dt} = \overrightarrow{f_{ext}}$ càd $\overrightarrow{f_{ext}} = m_{totale} \overrightarrow{a_G}$ donc mouvement de G connu Centre de masse = centre d'inertie!

Autre formulation (puissante et générale) possible :

Lois de conservation

En référentiel galiléen :

Quantité de mouvement $\frac{d\overrightarrow{p}}{dt} = \overrightarrow{f_{ext}}$ donc $\overrightarrow{p} = \overrightarrow{cste}$ si système isolé Moment cinétique $\frac{d\overrightarrow{\sigma_0}}{dt} = \sum \overrightarrow{\mathcal{M}_O} \left(\overrightarrow{F_{ext}} \right)$ donc $\overrightarrow{\sigma_0} = \overrightarrow{cste}$ si syst. isolé

E. Riedinger