Table 1 Database of trace element concentration in the dissolved load (<0.2 μm) of rivers. All concentrations in ppb (μg L^{-1}) except for Ra (fg L^{-1}) and Os (pg L^{-1}). DOC, TSS, TDS are Dissolved Organic Carbon (mg L^{-1}), total suspended solid (mg L^{-1}), and total dissolved solutes (mg L^{-1}). Water discharge and surface are in m³ s⁻¹ and 10³Km², respectively.

Element	References	ρН	DOC	TSS	TDS	Discharge	Surface area	Ag	Α	As
Africa										
Oubangui	1	6.81		30	36.1	3,500	475		12	
Zaire	1	5.98		31	48.68	17,000	1,660		46	
Kasai	1	6.35		17		11,000	900		51	
Congo at Brazzaville	1, 2, 3	6.4		21		39,100	3,500		76	
Niger	2,4	7.00	1.5	43	44	907	141		76	
Douna	2,4									
Nyong	5	5.60	23	5	22	340	29		215	
Sanaga	6	7.43	3.82				133		29	0.17
Nyong	6	5.88	14.1			340	29		159	0.11
Mengong	6	4.62	24						480	0.11
Europe										
Seine at Paris, Fr.	7			40	400	260	44		16	2.71
Garonne River Fr.	8, 9			128	400	540	55			
Rhine in Alsace, Fr.	10	8.01	1.95						< 50	
Vosges Stream, Fr.	10	7.10	2.03						76	
Harz Mountains, Ger.	11	5.10							1,080	0.37
Kalix River, Sweden, 1991	12, 45	6.95	3.4			296	24		27	
Kalix River, 1977 May	12					296	24			
Idel river	13	6.85	12.3			2	1		44	0.21
N. America										
St. Lawrence	2, 14, 15, 16, 46	8.00		11	183	10,700	1,020		15	0.91
SLRS 4	17								53	0.70
Ottawa	14								67	0.45
Mistassini, Can.	14	5.50	26	5		195	10		174	0.12
Mackenzie	2, 14, 18, 19	8.10	5.8	300	226	9,000	1,680		18	0.50
Peel, Can.	14	8.10	12.9	250	167	690	71		22	0.35
Indin River, Can.	14	6.70			12	8	2		28	0.14
Beatton, Can.	14	7.20		810	68				91	0.80
Upper Yukon, Can.	2, 14	7.70							25	0.62
Skeena, Can.	14	7.50	4.48	60	53	962	42		33	0.21
Fraser River, Can.	19, 20	7.34	3.39	175	93	3630	238		19	0.52
Columbia River	8, 19	7.85		64	115	5941	670			
Californian Streams	21									
Connecticut	22		3.16		70	540	25			
Hudson River	22, 23, 46	7.00			126	621	35	0.004		
Upper Mississippi	24	7.70		462						
Missouri	24, 25			2,332						
Ohio	25	7.70		177						
Illinois	25	8.20		102						
Mississippi at Mouth	3, 15, 19, 22, 25, 46	7.80		860	280	18,400	2,980			

(Continued)

Table 1 (Continued)

Element		References	;		рН	D	OC	TSS	TDS	Discharge	Surfac	e area	Ag		Α	As
S. America Amazon, mean value		3, 15, 26,	27, 28, 29	, 46, 48	6.89			182	44	205,000	6,100				9.4	
Amazon $<$ 0.2 μ m		19,30			7.10	5	.05	182	44	205,000	6,100				6.2	
Amazon <100 kDa		30				2	.96								8.0	
Amazon <5 kDa		30				1	.11								0.5	
Negro $<$ 0.2 μm		26			4.85										113.9	
Negro $<$ 0.2 μm		30			5.87	7	.17								97.0	
Solimoes $<$ 0.2 μm		26			7.10										171.4	
Solimoes $<$ 0.2 μm		30			7.66	2	.76								5.8	
Madeira $<$ 0.2 μ m		26			6.73										2.6	
Madeira < 0.2 μm		30			7.54	1	1.1								4.3	
Trompetas < 0.2 μm		26			6.10										39.2	
Trompetas < 0.2 μm		30			6.54	1	.85								7.9	
Tapajos < 0.2 μm		26			6.68										15.2	
Tapajos $<$ 0.2 μ m		30			7.45	1	.48								4.0	
Rio Beni at Riberalta		31								8,262	243					
Mamore		31								8,392	599					
Rio Beni at Rurrenabaque		31								2,025	68					
Orinoco < 0.2 μm		19, 27, 29,	30, 46, 48	}	6.51	5	.42	132	25	35,900	1100				61.8	
Orinoco < 10 kDa		27, 30				4	.3								5.6	
Caroni at Cuidad Bolivar		19, 27, 29,	30, 32		5.58		.71								16.1	
Asia																
Ob		33				7	.4-9.95	40	126	13,500	2,990					
Yenisei		33				4		23	112	19,800	2,500					
Lena		2, 19, 34			7.60			30	112	19,100	1,200					0.15
Changjiang		2, 3, 9, 19,	27, 35, 36	37.3	7.80			520	221	29,400	1,808					0.83
Huanghe		2, 15, 38, 3		,, 0., 0	8.30			27,000	460	1300	752					2.00
Xijiang		2, 15, 47	30, 10, 11		7.70			190	161	11,500	437					2.00
Ganges		19, 29, 41,	42, 43, 46	6 47 4	7.70			1,100	182	15,600	1,050					
Mekong		2, 15, 47	, .,, .,	,, .	7.80			321	263	14,800	795					
Brahmaputra		9, 19, 41, 4	12 46 47	48	7.40			1,060	101	16,100	580					
Indus		9, 41, 44,		10	7.80			2,780	302	2880	960					
Shinano, Jpn.		44, 47			7.11			2,700	002	475	11					
		,									••					
World average															32	0.62
Riverine flux (kt y ⁻¹)															1,200	23
Element	В	Ве	Ва	Cd		Се	Со	Cr	Cs	Си	Dy	Er	Eu	Fe	Ga	
Africa																
Oubangui			17			0.4920	0.077	0.533	0.008		0.043	0.029	0.0160	60		
Zaire			24.8			0.6610	0.075	0.386	0.0026		0.053	0.033	0.0220	202		
Kasai						0.4520	0.0580	0.4	0.009		0.038	0.025	0.0140	108		
Congo at Brazzaville	3.1		20			0.6890	0.0594	0.501	0.016		0.006	0.033	0.0170	179		

Niger	3.2		30		0.1710	0.0400	0.450	0.0100	0.630				105	
Ngon Douna Nyong Sanaga Nyong Mengong	0.2		18 27 19 24		1.3200 0.1780 0.8060 0.8274	0.3637 0.0590 0.2530 0.4307	0.100	0.0100	0.952 2.030 1.397	0.119 0.015 0.086 0.059	0.071 0.016 0.055 0.027	0.0255	241 31 174 614	0.0220 0.1087
Europe Seine at Paris, Fr. Garonne River Fr. Rhine in Alsace, Fr. Vosges Stream, Fr. Harz Mountains, Ger. Kalix River, Sweden, 1991 Kalix River, 1977 May	25.0	0.61	32 13	0.0600	0.0600 0.0810 0.0096 0.0930	0.1800	11.46		3.53 0.820	0.002 0.020	0.004 0.001 0.012	0.0016 0.0003 0.0087	302 525	
Idel river	39.0		5	0.0200	0.2430	0.0840	1.07	0.0112	0.456	0.013	0.008	0.0039	666	0.0088
N. America St. Lawrence SLRS 4 Ottawa Mistassini, Can. Mackenzie Peel, Can. Indin River, Can. Beatton, Can. Upper Yukon, Can. Skeena, Can. Fraser River, Can. Columbia River Californian Streams Connecticut Hudson River Upper Mississippi Missouri Ohio Illinois Mississippi at Mouth	24.8 6.0 3.3 11.8	0.008	23 13 15 8 56 62 3 47 50 13 15	0.0114 0.0140 0.0207 0.0873 0.1838 0.0347 0.1206 0.0906 0.0194	0.0600 0.3600 0.5599 1.1771 0.0266 0.0310 0.1305 0.4750 0.0311 0.0637 0.0600 0.0583 0.0258 0.0621	0.0632 0.0480 0.0746 0.1221 0.0682 0.1426 0.0158 0.1515 0.0616 0.0794 0.0800	0.37 0.375 0.294 0.741 0.241 2.1	0.0052 0.0090 0.0061 0.0070 0.0066 0.0037 0.0028 0.0049 0.0006	0.936 1.930 1.144 1.578 1.609 1.043 0.841 2.594 1.306 1.077 1.040 1.850 2.010 1.741 1.984 1.60-2.24	0.005 0.024 0.040 0.036 0.003 0.001 0.072 0.009 0.009	0.004 0.013 0.023 0.022 0.003 0.056	0.0030 0.0080 0.0112 0.0120 0.0023 0.0019 0.00290 0.0010 0.0030 0.0016 0.0009 0.0026	111 108 112 170 119 152 50 739 102 52 47	0.0119 0.0083 0.001–0.006
S. America Amazon, mean value Amazon <0.2 Amazon <0.00 kDa	6.1	0.0095	21 28 26	0.1781	0.2180 0.0680 0.0200	0.1766	0.717		1.463	0.033 0.011 0.004	0.018 0.006 0.002	0.0104 0.0027 0.0007	43 23	0.0174 0.0217
Amazon < 5 kDa Negro < 0.2 µm			17 6		0.0067 0.4150	0.1241			0.399	0.000 0.023	0.000 0.015	0.0088	13	0.0050
Negro $<$ 0.2 μ m Solimoes $<$ 0.2 μ m	3.8		7 28		0.5853 0.3630	0.1643			1.542	0.030	0.018 0.028	0.0078 0.0150	117 351	0.0390
Solimoes < 0.2 μm Madeira < 0.2 μm	3.4		29 18		0.0528 0.1380	0.0176			0.863	0.007 0.024	0.004 0.013	0.0019 0.0083	53 18	0.0025

(Continued)

Table 1 (Continued)

Element	В	Ве	Ва	Cd	Се	Со		Cr	Cs		Си		Dy	Er	Eu	Fe	Ga
Madeira < 0.2 μm Trompetas < 0.2 μm Trompetas < 0.2 μm	1.5		32 14 15		0.0074 0.9080 0.1300	0.1274					0.269		0.001 0.044 0.007	0.001 0.028 0.005	0.0105 0.0017	26 87 30	0.0169 0.0059
Tapajos < 0.2 μm Tapajos < 0.2 μm Rio Beni at Riberaita Mamore Rio Beni at			21 18 30 4 23	0.0081 0.0091 0.0011	0.1150 0.0277	0.0195					0.227 1.517 1.997 0.710		0.012 0.003	0.008 0.002	0.0033 0.0007	11	0.0033 0.0178
Rurrenabaque Orinoco < 0.2 μm Orinoco < 10 kDa		0.009	8		0.5207 0.1703				0.007-0	.013			0.056 0.020	0.031 0.012	0.0140 0.0047	142 15	0.1176 0.1143
Caroni at Cuidad Bolivar	2.4	0.0135	7		0.1443				0.006				0.012	0.006	0.0032	16	0.1027
Asia Ob Yenisei				0.0006-0.0008 0.0012-0.0018							1.8–2.4 1.39–1					24–36 14–	
Lena Changjiang Huanghe Xijiang Ganges Mekong	4.7 12.5 150.0 6.0 17.8 15.0	0.00056		0.0089 0.0033 0.0011-0.0059	0.1150	0.0059-	0.0295				0.755 1.66 0.96–1	.6			0.0050	17.8 24.3 31 1.4–25	
Brahmaputra Indus Shinano, Jpn.	20.9				0.0024 0.0834								0.001 0.012	0.001 0.007	0.0002 0.003		
World average Riverine flux (kt yr ⁻¹)	10.2 380	0.0089 0.33	23 860.2	0.08 3	0.2620 9.8	0.148 5.5		0.7 26	0.011 0.4		1.48 55		0.03 1.1	0.02 0.75	0.0098 0.37	66 2470	0.03 1.1
Element	Gd	Ge	Hf	Но	La	Li	Lu	/	I n	Мо		Nb	1	Vd	Ni	Os (pg	1 L ⁻¹) P
Africa Oubangui Zaire Kasai Congo at Brazzaville Niger Douna	0.051 0.063 0.047 0.066	30 70 60 0.006	0.0 0.0 6 0.0	0.0090 0.0090 0.0090 0.0080 0.0080 0.0080 0.0120 0.0120	0.249 0.349 0.189 0.319 0.091		0.0040 0.0040 0.0030 0.0045)) ;	0.50				(((0.277 0.360 0.241 0.350 0.085	1.15 1.02 0.41 0.934 0.29	6.7 5.3	
Nyong Sanaga Nyong Mengong	0.134 0.024 0.094 0.055	10 10 0.006		0.0199 0.0165 0.0116	0.538 0.09 0.349 0.348		0.0080 0.0105 0.0053	j	29.72 0.44 22.61 20.02				(0.690 0.084 0.505 0.416	0.70 1.18 5.04		

Europe														
Seine at Paris, Fr.					0.030			3.76			0.030	5.06	41.8	
Garonne River Fr.	0.0088			0.0016	0.047		0.0006				0.038			
Rhine in Alsace, Fr.	0.0025			0.0004	0.005		0.0004				0.005			
Vosges Stream, Fr.	0.0037			0.0041	0.153		0.0014				0.245			
Harz Mountains, Ger.					0.480	2.00		48.00				0.92		
Kalix River, Sweden, 1991					0.155			9.40						
Kalix River, 1977 May														
Idel river														
	0.0190	0.0082		0.0027	0.151	0.80	0.0015	22.80	0.112		0.141	0.35		2.67
N. America														
St. Lawrence	0.0059	0.0031	0.0031	0.0013	0.029		0.0006	6.28	1.292	0.0021	0.038	1.33	22.8	
SLRS 4	0.0342	0.0100		0.0047	0.287	0.54	1.9000	3.37	0.210		0.269	0.82		
Ottawa	0.0593	0.0086	0.0034	0.0078	0.411		0.0037	14.86	0.199	0.0045	0.411	0.83		
Mistassini. Can.	0.0618	0.0058	0.0070	0.0071	0.635		0.0025	11.31	0.039	0.0107	0.547	0.47		
Mackenzie	0.0019	0.0000	0.00.0	0.0005	0.002	4.60	0.0020	1.28	1.067	0.0012	0.019	1.83	25.5	
Peel, Can.	0.0116			0.0020	0.002		0.0024	4.54	1.078	0.0019	0.004	2.68	20.0	
Indin River, Can.	0.0110			0.0020	0.099	0.91	0.0021	1.89	1.070	0.0010	0.091	0.64		1.82
Beaton, Can.	0.1599	0.0049	0.1106	0.0101	0.090	0.01		2.98	0.301	0.0069	0.042	5.14		1.02
Upper Yukon, Can.	0.0136	0.0196	0.1100	0.0010	0.001	0.64	0.0006	2.29	1.055	0.0019	0.007	10.39	24.7	
Skeena, Can.	0.0100	0.0014		0.0010	0.051	0.35	0.0000	5.37	0.418	0.0013	0.081	0.91	۲.1	
Fraser River, Can.	0.0110	0.0014			< 0.05	1.05		5.40	1.330		0.044	1.86		
Columbia River	0.0065	0.0138		0.0009	0.030	1.46	0.0007	0.40	1.000		0.023	1.00		
Californian Streams	0.0000	0.0100		0.0000	0.000	1.40	0.0007				0.020			
Connecticut	0.0047				0.021		0.0008				0.020			
Hudson River	0.0047				0.021		0.0007				0.020			
Upper Mississippi	0.0130						0.0007	0.41	1.114		0.000	1.66		
Missouri								0.44	1.613			1.53		
Ohio								0.46	1.258			1.12		
Illinois								0.40	2.314			2.92		
								0.7	2.314			2.92		
Mississippi at Mouth	0.0042	0.0219			0.008	10	0.0006	0.66-1.82	1.63-2.69		0.011	1.12–1.77		
S. America	0.0042	0.0219			0.006	10	0.0000	0.00-1.02	1.03-2.09		0.011	1.12-1.77		
	0.0356	0.0048		0.0064	0.106	0.91	0.0020	50.73	0.175		0.136	0.74	4.6	
Amazon, mean value Amazon $<$ 0.2 μ m	0.0330	0.0046		0.0004	0.100	2.46	0.0020	3.31	0.173		0.130	0.74	4.0	
						2.40								
Amazon <100 kDa	0.0043	0.0076		0.0007	0.010		0.0003	2.90			0.013			
Amazon < 5 kDa	0.0007	0.0061		0.0001	0.006		0.0010	2.00			0.003	0.01		
Negro <0.2 μm	0.0350	0.0040		0.0050	0.151		0.0016	8.24			0.172	0.21		44.45
Negro <0.2 μm	0.0432	0.0046		0.0061	0.208	1.02	0.0023	7.35			0.211	0.00		14.45
Solimoes <0.2 μm	0.0490	0.0000		0.0093	0.166	1.02	0.0037	14.56			0.226	0.92		
Solimoes <0.2 μm	0.0089	0.0093		0.0017	0.050	4.40	0.0006	6.54			0.032	0.57		
Madeira < 0.2 μm	0.0260	0.0044		0.0053	0.054	1.18	0.0014	0.00			0.100	0.57		
Madeira <0.2 μm	0.0018	0.0041		0.0003	0.005	0.44	0.0001	3.29			0.005	0.40		
Trompetas <0.2 μm	0.0485	0.0040		0.0093	0.266	0.41	0.0037	8.62			0.309	0.12		0.57
Trompetas < 0.2 μm	0.0102	0.0049		0.0016	0.044		0.0008	1.36			0.053	0.00		2.57
Tapajos <0.2 μm	0.0114	0.0050		0.0020	0.228		0.0009	1.34			0.072	0.22		
Tapajos <0.2 μm	0.0037	0.0053		0.0007	0.016		0.0004	0.46	0.000		0.018	0.01		
Rio Beni at Riberaita								4.13	0.380			0.91		

Table 1 (Continued)

Element	Gd	Ge	Hf	Но	La	Li	Lu	Mn	Мо	Nb	Nd	Ni	Os	$(pg L^{-1})$	Р
Mamore Rio Beni at Rurrenabaque Orinoco <0.2 µm Orinoco <10 kDa Caroni at Cuidad Boliver	0.0737 0.0256 0.0147			0.0107 0.0040 0.0021	0.177 0.049 0.067	0.32 0.16	0.0043 0.0018 0.0009	113.52 2.37 6.82 5.24 5.57	0.240 0.218		0.289 0.094 0.078	1.11 0.79	3.	3	11.09 6.10 6.61
Asia Ob Yenisei Lena Changjiang Huanghe Xijiang Ganges Mekong Brahmaputra Indus Shinano, Jpn.		0.0122	0.0050	0.0074	0.005 0.003 0.037	1.33 3.44 3.47 2.61	0.0020 0.0002 0.0016	1.00 0.55–2.2		0.0047	0.070 0.003 0.050	1.24–1.42 0.52–0.55 0.38 0.15 0.30–0.59	8. 13. 9. 42. 8. 32. 17. 9.	9 1 3 0 2 9 2	
World average Riverine flux (kt yr ⁻¹)	0.04 1.5	0.0068 0.25	0.0059 0.22	0.0071 0.27	0.12 4.5	1.84 69	0.0024 0.09	34 1270	0.42 16	0.0017 0.063	0.152 5.7	0.801 30	9.0 0.) 33.10–3	
Element	Pb	Pd	Pr	Ra (f	$g(L^{-1})$ Re	e <i>l</i>	Rb a	Sb Sc	Se	Sm	Sr	Та	Tb	Th	Ti
Africa Oubangui Zaire Kasai Congo at Brazzaville Niger Douna Nyong Sanaga Nyong Mengong	0.039		0.069 0.093 0.052 0.089 0.179 0.024 0.114 0.096				2.7 3.9 2.7 3.1 3.86 4.18 6.16 3.68 0.73	0.05; 0.06; 0.06; 0.08;	7 <u>2</u>	0.0600 0.0820 0.0470 0.0620 0.1362 0.1210 0.0780	15.0 21.0 10.5 11.5 26.4 9.7 30.3 12.4 17.9		0.0070 0.0100 0.0060 0.0097	0.042 0.056 0.023 0.065 0.013 0.121 0.012 0.111 0.137	0.231 0.199 5.808
Europe Seine at Paris, Fr. Garonne River Fr. Rhine in Alsace, Fr. Vosges Stream, Fr. Harz Mountains, Ger. Kalix River, Sweden, 1991	0.220 3.800		0.005 0.001 0.049				1.40	1.340 0.190)	0.0082 0.0012 0.0500	227.0		0.0012 0.0003 0.0046	0.010	
Kalix River, 1977 May Idel river	0.119		0.037				0.96	0.027		0.0240	16.8		0.0025	0.022	1.070

N. America															
St. Lawrence	0.233		0.009	2		1.04	0.205			0.0067	177.2		0.0010	0.004	0.509
SLRS 4	0.084	0.021	0.069	_		1.53	0.270		0.230	0.0574	28.2		4.3000	0.001	1.460
Ottawa	0.105	0.021	0.104			1.55	0.057		0.200	0.0705	50.7		0.0073	0.027	1.854
Mistassini, Can.	0.113		0.149	48		1.14	0.023			0.0783	11.4		0.0075	0.041	2.278
Mackenzie	0.771		0.012	-10		0.66	0.121			0.0055	237.8	0.0009	0.0000	0.634	0.423
Peel, Can.	1.129		0.012			0.36	0.121			0.0149	154	0.0003	0.0025	0.588	0.574
Indin River, Can.	1.123	0.001	0.012			1.77	0.005			0.0143	10.5	0.0023	0.0020	0.000	0.112
Beatton, Can.	0.269	0.001	0.023			0.30	0.102			0.0132	62.7	0.1484	0.0289	1.054	1.200
Upper Yukon, Can.	0.818		0.132			0.90	0.102			0.1043	162.2	0.1404	0.0203	0.988	0.768
Skeena. Can.	0.010	0.028	0.000			0.20	0.044			0.0230	78.4		0.0010	0.500	0.372
Fraser River, Can.	0.078	0.020	0.013			0.20	0.053	0.141		0.0230	108.0				0.680
Columbia River	0.070		0.011			0.51	0.000	0.141		0.0110	100.0		0.0012		0.000
Californian Streams			0.01							0.0400			0.0012		
Connecticut										0.0042					
Hudson River				4–31						0.0042					
Upper Mississippi	0.008			7 01		1.24				0.0110					
Missouri	0.006					0.93									
Ohio	0.007					0.87									
Illinois	0.035					0.94									
Mississippi at Mouth	0.011-0.016		5-30			1.17				0.003					
• • • • • • • • • • • • • • • • • • • •	0.011 0.010		3 00			1.17				0.000					
S. America Amazon, mean value	0.064		0.031	9–31	0.00020	1.49	0.061		0.051	0.0349	25.8		0.0043		
Amazon, mean value	0.004		0.009	9-31	0.00020	1.49	0.001	1.540	0.001	0.0349	25.6 51.2		0.0043	0.006	
Amazon <100 kDa			0.003			1.79		1.580		0.0100	47.2		0.0017	0.000	
Amazon < 5 kDa			0.003			1.79		1.550		0.0041	31.3		0.0007		
Negro < 0.2 μm	0.170		0.001			1.23		1.550		0.0380	3.6		0.0040		
Negro < 0.2 μm	0.170		0.047			1.73		0.900		0.0390	4.2		0.0040	0.053	
Solimoes < 0.2 μm	0.151		0.052			1.73		0.900		0.0520	4.2		0.0030	0.033	
Solimoes < 0.2 μm	0.131		0.002			1.69		1.770		0.0320	61.5		0.0007	0.010	
<i>Madeira</i> < 0.2 μm	0.005		0.007			1.03		1.770		0.0002	19.2		0.0014	0.002	
Madeira < 0.2 μm	0.003		0.022			1.94		1.510		0.0014	55.5		0.0048	0.001	
Trompetas < 0.2 μm	0.052		0.001			2.95		1.510		0.0014	6.7		0.0002	0.001	
Trompetas < 0.2 μm	0.032		0.000			4.04		1.260		0.0094	9.6		0.0007	0.727	
<i>Tapajos</i> < 0.2 μm	0.061		0.013			2.75		1.200		0.0094	9.0 9.9		0.0012	0.010	
<i>Tapajos</i> < 0.2 μm	0.001		0.017			2.73		1.410		0.0161	6.5		0.0075	0.002	
Rio Beni at Riberaita			0.004			1.01		1.410		0.0040	42.9		0.0003	0.002	
Mamore						1.44					31.4				
Rio Beni at Rurrenabaque						0.90					48.3				
Orinoco < 0.2 µm			0.062	12–17	0.00083	1.50		0.560	0.032-0.050	0.0682	40.3 8.0		0.0098	0.073	
Orinoco < 10 kDa			0.002	14-11	0.00003	1.43		0.620	0.002-0.000	0.0082	7.5		0.0098	0.073	
Caroni at Cuidad Bolivar			0.020			1.13		0.530	0.019-0.020	0.0254	2.9		0.0033	0.020	
Asia															
Ob	0.011-0.017														
Yenisei	0.005-0.006														
Lena	0.019														
- 															

Table 1 (Continued)

Element	Pb	Pd	Pr	$Ra\ (fg\ L^{-1})$	Re	Rb	Sb	Sc	Se	Sm	Sr	Та	Tb	Th	Ti
Changjiang Huanghe Xijiang Ganges Mekong Brahmaputra Indus Shinano, Jpn.	0.054 0.010–4.1			50 45–90 31	0.00170 0.00011				0.22-0.	0.000 0.000 0.011	1140 110 90 298 59 7 324				
World average Riverine flux (kt yr ⁻¹)	0.079 3	0.028 1.05	0.04 1.5	24 0.9.10–6	0.0004 0.015	1.63 60.962	0.07 2.6	1.2 45	0.07 2.6	0.036 1.3	60.0 2240	0.0011 0.04	0.0055 0.2	0.041 1.5	0.489 18
Element	TI		Tm	U		V		W		Υ	Yb		Zn		Zr
Africa Oubangui Zaire Kasai Congo at Brazzaville Niger Douna Nyong Sanaga Nyong Mengong			0.0040 0.0050 0.0030 0.0035 0.0085 0.0085 0.0051	0.055 0.071 0.027 0.049 0.020 0.029 0.028 0.022 0.022		0.590 0.645				0.0870 0.4610 0.2821	0.0240 0.0270 0.0190 0.0290 0.0597 0.0530 0.0311		0.89 1.02 1.81 3.12		0.120 0.395 0.038 0.355 0.592
Europe Seine at Paris, Fr. Garonne River Fr. Rhine in Alsace, Fr. Vosges Stream, Fr. Harz Mountains, Ger. Kalix River, Sweden, 1991 Kalix River, 1977 May Idel river	0.040	0	0.0006	0.820 0.750 0.060 0.090 0.038		2.850 0.400 0.442				0.0500 1.4000 0.0920	0.0036 0.0018 0.0120 0.0079		4.98 27.00 6.30		0.130
N. America St. Lawrence SLRS 4 Ottawa Mistassini, Can. Mackenzie Peel, Can. Indin River, Can.	0.007	6	0.0006 0.0002 0.0035 0.0025 0.0016 0.0011	0.373 0.050 0.072 0.022 0.730		0.439 0.350 0.341 0.324 0.253 0.236 0.009				0.0320 0.1460 0.2173 0.2033 0.0313 0.0574 0.0533	0.0029 0.0120 0.0201 0.0191 0.0073		2.58 1.24 3.53 3.79 0.50 0.88 1.52		0.022 0.120 0.086 0.047 0.054 0.038 0.037

	0.330 1.285 1.142 0.333 1.404 0.62–1.3	0.390 2.055 0.638 0.581 1.770 0.82–1.84	0.1–180	0.0690	0.0045 0.0047 0.0091	0.21 0.12 0.17 0.98 0.18–0.35	0.048
0.0033 0.0009 0.0003 0.0024 0.0025 0.0045 0.0006 0.0025 0.0001	0.052 0.055 0.022 0.004 0.019 0.034 0.040 0.050 0.023 0.026	0.703			0.0159 0.0051 0.0016 0.0100 0.0169 0.0214 0.0037 0.0092 0.0007	0.45 0.76 0.80 1.80 1.21 2.35 3.01 0.67 0.67	0.027 0.004 0.068 0.008 0.001
<i>0.0041</i> 0.0006	<i>0.044</i> 0.024				0.0264 0.0043	<i>1.15</i> 1.16	0.026
0.0013 0.0003 0.0043 0.0018 0.0009	0.019 0.015 0.033 0.042 0.060 0.049 0.023 0.012				0.0055 0.0019	1.02 0.75 0.46 0.27 0.40 1.75 2.42 1.53	0.003 0.105 0.029 0.070
	1.100 7.500				0.0080	0.36 0.039–0.078 0.065–0.32	
	0.0009 0.0003 0.0024 0.0025 0.0045 0.0006 0.0025 0.0001 0.0041 0.0006 0.0013 0.0003	1.142 0.333 1.404 0.62–1.3 0.0033 0.052 0.0009 0.055 0.0003 0.022 0.004 0.0024 0.019 0.0025 0.034 0.0045 0.0060 0.0025 0.0021 0.0061 0.0061 0.0064 0.0013 0.0014 0.0013 0.0015 0.0033 0.015 0.0033 0.042 0.0003 0.0043 0.042 0.0008 0.0043 0.0049 0.0018 0.023 0.0009 0.012	1.142	1.285	1.285	0.1-180 1.285	0.1-180 0.0047 0.0091 1.285

(Continued)

Table 1 (Continued)

Element	TI	Тт	U	V	W	Υ	Yb	Zn	Zr
Mekong Brahmaputra Indus Shinano, Jpn.			1.000 4.940			0.0009 0.0071			
World average Riverine flux (kt yr ⁻¹)		0.0033 0.12	0.372 14	0.71 27	0.1 3.7	0.0400 1.5	0.0170 0.6	0.60 23	0.039 1.5

(1) Dupré et al. (1996), (2) Levasseur et al. (1999), (3) Froelich et al. (2001), (4) Picouet et al. (2001), (5) Viers et al. (2000), (6) Viers et al. (1997), (7) Roy (1996), (8) Keasler and Loveland (1982), (9) Chabaux et al. (2001), (10) Tricca et al. (1999), (11) Frei et al. (1998), (12) Ingri et al. (2000), (13) Pokrovski and Schot (2002), (14) Gaillardet et al. (2003), (15) Lemarchand et al. (2000), (16) Andrae and Froeclich (1985), (17) Yeghicheyan et al. (2000), (18) Vigier et al. (2001), (19) Huh et al. (1998), (20) Cameron et al. (1995), (21) Johannesson et al. (1999), (22) Sholkovitz (1995), (23) Benoit (1995), (24) Shiller (1997), (25) Shiller and Mao (2000), (26) Gaillardet et al. (1997), (27) Yee et al. (1987), (28) Seyler and Boaventura (2002), (29) Brown et al. (1992a), (30) Deberdt et al. (2002), (31) Elbaz-Poulichet et al. (1999), (32) Edmond et al. (1995), (33) Dai and Martin (1995), (34) Martin et al. (1993), (35) Zhang et al. (1998), (36) Shiller and Boyle (1985), (37) Edmond et al. (1988), (39) Zhang (1994), (40) Zhang et al. (1993), (41) Sharma et al. (1999), (42) Sarin et al. (1990), (43) Dalai et al. (2001), (44) Goldstein and Jacobsen (1988), (45) Porcelli et al. (1997), (46) Chabaux et al. (2003), (47) Gaillardet et al. (1999a), (48) Colodner et al. (1993).