泛函分析2020-2021春季学期期中试题

任课教师:周斌

- 1. (10分) 叙述Schauder不动点定理。
- 2. (10分) 设 $\{a_n\}_{n=1}^{+\infty}$ 中的有界序列,定义映射 $T: l^p \to l^p$ 如下: $(x_1, \dots, x_n, \dots) \mapsto (a_1x_1, \dots, a_nx_n, \dots)$. 求 ||T||.
- 3. (10分) 考虑区间 [0,1] 的一个分化 $0 = t_0 < t_1 < \dots < t_{n-1} < t_n = 1$. 对 A_0, A_1, \dots , $A_{n-1}, A_n \in \mathbb{R}$, 定义C[0,1] 上的泛函 $f: x(t) \mapsto \sum_{k=0}^n A_k x(t_k)$, 证明f 连续并求 $\|f\|$.
- 4. (10分) 设 $\mathscr X$ 为Banach空间, T 是 $\mathscr X$ 到自身的线性算子。令 $M_n = \{x \in \mathscr X | \|Tx\| \le n\|x\|\}$. 证明:存在 n_0 使得 M_{n_0} 在 $\mathscr X$ 中稠密。
- 5. (20分) 二元函数 $K(x,y) \in C([0,1] \times [0,1])$. A 是 C[0,1] 中的一个有界集,记 $M = \{F(x) = \int_0^1 K(x,y)f(y) \, dy | f \in A\}$. 证明 M 是 C[0,1] 中的列紧集。
- 6. (10分) 证明:集合 $E \subset l^p(p \ge 1)$ 列紧当且仅当它满足: (1) 存在 M > 0, $\forall x = (x_1, \dots, x_n, \dots) \in l^p$, $\sum_{n=1}^{\infty} |x_n|^p < \infty$. (2) $\forall \varepsilon > 0$, $\exists N_{\varepsilon}$, 当 $n > N_{\varepsilon}$ 时,有 $\sum_{k=n}^{\infty} |x_k|^p < \varepsilon$.
- 7. (10分) 设H是复Hilbert空间。 A_1, A_2 为H到自身的有界线性算子,且满足 $\langle x, A_1 x \rangle = \langle x, A_2 x \rangle$, $\forall x \in H$. 证明: $A_1 = A_2$.
- 8. (20分) 若 $f \in C[0,1]$, K(x,t) 是二元函数且在三角形区域 $D = \{(x,t)|x \in [0,1], 0 \le t \le x\}$ 上连续,证明:对任意实数 a, 积分方程

$$u(x) - a \int_0^x K(x, t)u(t) dt = f(x)$$

在 C[0,1] 上存在唯一解。