LEY DE COULOMB

INTENSIDAD DE CAMPO ELECTRICO

CAMPO ELECTRICO

LEY (TEOREMA) DE GAUSS

ENERGIA POTENCIAL ELECTRICA

Antes de hablar de Potencial eléctrico y diferencia de potencial eléctrico, debemos hablar de:

Fuerza conservativa y energía potencial

- √ ¿Cuándo es conservativa una fuerza?
- Cuando el trabajo W que realiza sobre una partícula para trasladarla de una posición 1 a la posición 2 es independiente de la trayectoria.
- Solo depende de la posición inicial y final de la partícula.
- Cuando el trabajo realizado a través de una trayectoria cerrada es cero.
- √ ¿Cuáles son las fuerzas conservativas?
- La fuerza de gravedad, la fuerza elástica de un resorte, la fuerza eléctrica.

ANALOGIAS DE MOVIMIENTOS ENTRE PARTICULAS DE MASA m y CARGA ELECTRICA q

Movimiento de una carga eléctrica q en un campo eléctrico E

ANALOGIAS DE MOVIMIENTOS ENTRE PARTICULAS DE MASA m y CARGA ELECTRICA Q

 m aumenta su Ek en la misma dirección del campo gravitacional g, y disminuye su Ep

 La carga positiva +q aumenta su Ek en la misma dirección del campo y disminuye su Ep

 La carga negativa -q aumenta su Ek en dirección contraria del campo y disminuye su Ep

- La carga positiva +q disminuye su Ek y aumenta su Ep
- Hay un agente externo moviendo la carga +q

++++++++++

- La carga negativa -q disminuye su Ek y aumenta su Ep
- Hay un agente externo moviendo la carga -q

ANALOGIAS DE MOVIMIENTOS ENTRE PARTICULAS DE MASA m y CARGA ELECTRICA q

 $E_{K, ext{max}}$

- Cuando una partícula (m) se encuentra dentro de un campo gravitacional (g) se genera una fuerza gravitacional (P) que conocemos como el peso P=m.g
- La Energía potencial gravitatoria es: $m{U} = m{m}.\,m{g}.\,m{h}$
- El potencial gravitacional se define como la energía o trabajo que se realiza sobre la partícula de masa "m" en un punto:

$$V_g = \frac{U}{m}$$
 $U = V_g * m$

• El trabajo realizado por la partícula para trasladara de un punto a otro es:

$$W = -\Delta U = -(Uf - Ui)$$

- Cuando una carga de prueba (q) se coloca dentro de un campo electrostático (E) se genera una fuerza eléctrica conservativa (F) tal que $\mathbf{F} = q$. \mathbf{E}
- El potencial eléctrico se define como la energía o trabajo para que se realiza sobre la carga eléctrica "q" en un punto:

$$V_e = \frac{U}{a}$$
 $U = V_e * a$

Partiendo del trabajo para trasladar la carga entre dos puntos:

$$W = -\Delta U = -(Uf - Ui)$$

Se genera la diferencia de potencial eléctrico que se define como el trabajo que se realiza para transportar o llevar una carga de prueba q_0 entre dos puntos, es decir, del punto A al punto B en presencia de un campo eléctrico E, se representa por la letra W_{AB} .

La diferencia de potencial entre A y B está definida por la ecuación:

$$V_B - V_A = \frac{W_{AB}}{q_0}$$
 $\left[Voltio = \frac{Joule}{coulomb} \right]$

La unidad de potencial eléctrico en el sistema M.K.S es el $voltio \equiv {}^{Joule}/{}_{Coulomb}$ también se puede escribir como: $1V = 1\frac{J}{C}$

$$Si V_B - V_A = \frac{W_{AB}}{q_0}$$

 $W_{AB} = \vec{F} \cdot \vec{d} \rightarrow Definición de trabajo$ (fuerza por desplazamiento)

Ésta fuerza es eléctrica por la presencia de campo eléctrico sobre la carga de prueba q_0 .

Partiendo de diferenciales (en este caso partiendo del diferencial de longitud, desplazamiento o de línea), el trabajo que se efectúa para llevar una carga de prueba q_0 del punto A al punto B de la figura 1 es:

$$W_{AB} = \int_{A}^{B} \vec{F} \cdot d\vec{l}$$
 (integral de linea)

Es un diferencial de línea.

Al moverse la carga lentamente del punto A al punto B, se tiene que el campo \vec{E} ejerce una fuerza $\vec{F}=q_0\vec{E}$ sobre la carga de prueba, y el trabajo es:

$$W_{AB} = \int_A^B \vec{F} \cdot d\vec{l}$$
 $\vec{E} = \frac{\vec{F}}{q_0}$ $q_0 \vec{E} = \vec{F}$ $W_{AB} = \int_A^B q_0 \vec{E} \cdot d\vec{l}$

$$W_{AB} = \int_{A}^{B} \vec{F} \cdot d\vec{l}$$

$$W_{AB} = \int_{A}^{B} q_{0} \vec{E} \cdot d\vec{l}$$

Para evitar que la carga de prueba q_0 se acelere, hay que aplicar una fuerza \vec{F}' exactamente igual $\vec{F}' = -q_0 E$ figura 2, con lo anterior queda entonces:

$$W_{AB} = \int_{A}^{B} -q_0 \vec{E} \cdot d\vec{l}$$

$$W_{AB} = -q_0 \int_{A}^{B} \vec{E} \cdot d\vec{l}$$

$$\frac{W_{AB}}{q_0} = -\int_{A}^{B} \vec{E} \cdot d\vec{l}$$

Si
$$V_B - V_A = \frac{W_{AB}}{q_0} \longrightarrow V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{l}$$

Diferencia de potencial eléctrico

$$V_B - V_A = -\int_A^B \overrightarrow{E} \cdot d\overrightarrow{l}$$

Si se considera el punto A en el infinito, cuyo potencial vale cero,

$$A \rightarrow \infty$$
; $V_A = 0$

se obtiene el valor del potencial en el punto B, dado por:

$$V = -\int_{\infty}^{B} \vec{E} \cdot d\vec{l}$$

Esta expresión permite determinar el potencial a partir del campo eléctrico, y por ende el potencial para una carga puntual en un punto.

POTENCIAL ELECTRICO DE UNA CARGA PUNTUAL

Si
$$V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{l}$$
 y $\vec{E} = K \cdot \frac{q}{r^2} \hat{r}$

$$V_B - V_A = -\int_{r_A}^{r_B} \vec{E} d\vec{l} = -\int_{r_A}^{r_B} K \cdot \frac{q}{r^2} \hat{r} d\vec{l}$$

$$V_B - V_A = -K \cdot q \int_{r_A}^{r_B} \frac{\hat{r}}{r^2} d\vec{l} \rightarrow En \ forma \ vectorial$$

$$V_B - V_A = -K. q \int_{rA}^{rB} \frac{dl}{r^2}$$
; $\rightarrow En forma escalar$
 $pero dl. cos \theta = dr$
 $V_B - V_A = -K. q \int_{rA}^{rB} \frac{dr}{r^2} = -K. q \int_{rA}^{rB} \frac{dr}{r^2}$
 $V_B - V_A = -K. q \int_{rA}^{rB} r^{-2} dr$
 $V_B - V_A = -K. q \cdot \frac{r^{-2+1}}{-2+1} \Big|_{rA}^{rB}$
 $V_B - V_A = -K. q \cdot \frac{1}{r} \Big|_{rA}^{rB} = K. q \cdot \frac{1}{r_B} - \frac{1}{r_A} \Big|_{rA}$

POTENCIAL ELECTRICO DE UNA CARGA PUNTUAL

$$V_B - V_A = -K. q. \frac{1}{r} \Big|_{rA}^{rB} = K. q \left[\frac{1}{r_B} - \frac{1}{r_A} \right]$$

$$V_B - V_A = K. q \left[\frac{1}{r_B} - \frac{1}{r_A} \right]$$
 entre 2 puntos.

 $Si r_A \rightarrow \infty$; punto A en el infinito $\rightarrow V_A = 0$

$$V_B = K. q \left[\frac{1}{r_B} \right] = \frac{K. q}{r}$$

función potencial de una carga puntual.

$$V_B = K. q \left[\frac{1}{r_B} \right] = \frac{K. q}{r}$$

$$V_B = \frac{K.q}{r}$$

ENERGIA POTENCIAL ELECTRICA

Teniendo presente que el potencial eléctrico de una carga puntual es:

$$V = \frac{K \cdot q}{r}$$

Y que ese potencial es la energía o trabajo que se realiza sobre la carga eléctrica de prueba "q0" ubicada en un punto P:

$$V_e = \frac{U}{q_0}$$

Despejando de la expresión anterior obtenemos la energía potencial eléctrica o trabajo U

$$U = V_e * q_0 \qquad \qquad U = \frac{K \cdot q}{r} * q_0$$

$$U = \frac{K.\,q.\,q_0}{r}$$

$$U = \frac{K \cdot q \cdot q_0}{r}$$

Representa el trabajo que tiene que hacer el campo y carga q para llevar la carga de prueba q_0 desde r hasta el ∞ , pero también el que tendría que hacer el agente externo contra el campo para traer a q_0 desde el ∞ hasta r.

Para varias cargas puntuales q_1 , q_2 , q_3 actuando sobre q_0 la energía potencial total es:

$$U = K \cdot q_0 \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} + \frac{q_4}{r_4} \dots + \frac{q_n}{r_n} \right) \quad U = \sum_{i=1}^n \frac{K \cdot q_i \cdot q_0}{r_i}$$

ENERGIA POTENCIAL ELECTRICA

Para una carga actuando Sobre q_0 :

$$U = \frac{K.q.q_0}{r}$$

Para varias cargas actuando Sobre q_0 :

$$U = \sum_{i=1}^{n} \frac{K. q_i. q_0}{r_i.}$$

ENERGIA POTENCIAL ELECTRICAPara dos cargas de diferentes signos

ENERGIA POTENCIAL ELECTRICAPara dos cargas de igual signo

POTENCIAL ELECTRICO DE UNA DISTRIBUCION DISCRETA DE CARGAS

Para un grupo de cargas puntuales q_i , se puede establecer que el potencial eléctrico total en el punto P es:

$$V = \sum_{i=1}^{n} V_i = \sum_{i=1}^{n} k \frac{q_i}{r_i}$$

Donde:

- $\sum_{i=1}^{n} k \frac{q_i}{r_i}$ es una suma algebraica de escalares, no es una suma de vectores (al valor de la carga q_i se debe introducir con su respectivo signo).
- r_i es la distancia desde la carga q_i al punto P donde se quiere calcular el potencial.
- K: es la constante de proporcionalidad de newton, cuyo valor es $K = 9x10^9 \frac{N.m^2}{Coul^2}$

POTENCIAL ELECTRICO DE UNA DISTRIBUCION CONTINUA DE CARGAS

Para una distribución de cargas continuas (lineal, superficial, volumétrica) el potencial en un punto P debido a dicha distribución es:

$$V = \int K \cdot \frac{dq}{r}$$

Donde:

dq: es el elemento infinitesimal de carga (dependerá de la densidad de carga y cómo está distribuida uniforme o no uniforme).

 $m{r}$: es la distancia desde el elemento infinitesimal de carga dq al punto P.

K: es la constante de proporcionalidad de newton, cuyo valor es

$$K = 9x10^9 \frac{N.m^2}{Coul^2}$$

DENSIDAD DE CARGA

carga lineal

carga superficial

carga volumétrica

POTENCIAL ELECTRICO DE UNA DISTRIBUCION **CONTINUA DE CARGAS**

✓ El potencial eléctrico en un punto P debido a la distribución continua de cargas se obtiene integrando, es decir, sumando la contribución de todos los elementos infinitesimales dq de la distribución, de la siguiente manera:

$$V = \int K \cdot \frac{dq}{r}$$

- \checkmark dq dependerá de la distribución de las cargas (si es uniforme o no uniforme) y de la densidad de carga (lineal, superficial, volumétrica).
- ✓ El potencial eléctrico obtenido es una magnitud escalar.

DENSIDAD DE CARGA

LINEAL λ

UNIFORME

NO UNIFORME

$$\lambda = \frac{dq}{dl}$$

$$\lambda(l) = \frac{dq}{dl}$$

$$dq = \lambda . dl$$

$$dq = \lambda(l) . dl$$

SUPERFICIAL σ

$$\sigma = \frac{dq}{dA}$$

$$\sigma = \frac{dq}{dA} \qquad \qquad \sigma(r) = \frac{dq}{dA}$$

$$dq = \sigma . dA$$

$$dq = \sigma(r) . dA$$

VOLUMETRICA ρ

$$\rho = \frac{dq}{dV}$$

$$\rho(r) = \frac{aq}{dV}$$

$$dq = \rho . dV$$

$$dq = \rho . dV$$
 $dq = \rho(r) . dV$

CAMPO ELECTRICO A PARTIR DEL POTENCIAL ELECTRICO

$$E_x = -\frac{\partial V}{\partial x}$$

$$E_y = -\frac{\partial V}{\partial y}$$

$$E_z = -\frac{\partial V}{\partial z}$$

Derivada parcial = Derivada total respecto a x manteniendo las otras variables constantes

'GRADIENTE de V'

$$\vec{E} = -\left(\vec{\mathbf{i}}\,\frac{\partial V}{\partial x} + \vec{\mathbf{j}}\,\frac{\partial V}{\partial y} + \vec{\mathbf{k}}\,\frac{\partial V}{\partial z}\right)$$

Operador nabla: $\vec{\nabla}$

$$\vec{\nabla} \equiv \left(\vec{\mathbf{i}} \frac{\partial}{\partial x} + \vec{\mathbf{j}} \frac{\partial}{\partial y} + \vec{\mathbf{k}} \frac{\partial}{\partial z} \right)$$

✓ El campo eléctrico E podemos expresarlo matemáticamente en términos del potencial eléctrico, utilizando un operador matemático denominado nabla $\vec{\nabla}$, que es el gradiente del potencial eléctrico V, de la siguiente manera:

$$\vec{E} = -\vec{\nabla}V = -\left(\vec{i}\frac{\partial V}{\partial x} + \vec{j}\frac{\partial V}{\partial y} + \vec{k}\frac{\partial V}{\partial z}\right)$$

Donde, el operador nabla es:

$$\vec{\nabla} = \left(\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}\right)$$

- ✓ Ésta expresión establece que el *Campo Eléctrico* es igual a menos el *Gradiente del Potencial Eléctrico*.
- \checkmark \vec{E} apunta en la dirección en que V disminuye más rápidamente.