

APPRENTISSAGE ADAPTATIF DE COMPORTEMENTS ÉTHIOUES

Rémy Chaput ¹ Olivier Boissier ² Mathieu Guillermin ³ Salima Hassas ¹ 30 Juin 2020

Travaux financés par la Région Auvergne Rhône-Alpes (Pack Ambition Recherche), dans le cadre du projet Ethics.Al.

¹Univ. Lyon, Université Lyon 1, LIRIS, UMR5205, F-69622, LYON, France

²Univ. Lyon, IMT Mines Saint-Étienne, CNRS, Laboratoire Hubert Curien UMR 5516

³GEEST, UR Confluence, Sciences et Humanités, Université Catholique de Lyon

PLAN DE LA PRÉSENTATION

Introduction

Contributions

Cas d'application

Expérimentations

Conclusion

INTRODUCTION

MOTIVATIONS

- · Les systèmes d'IA ont de plus en plus d'impact sur les humains
 - · (conséquences positives ou négatives)
- La société exprime le besoin d'intégrer des considérations éthiques [OCD20]
- De nombreuses approches ont été proposées [Yu+18], mais la question de l'adaptation reste ouverte

Notre objectif

Proposer un modèle d'apprentissage capable d'apprendre des comportements "éthiques"¹ et de s'adapter face aux changements dans la fonction de récompense.

¹Comportement pouvant être jugé par un humain comme correspondant à ses valeurs ou principes éthiques

CONTRIBUTIONS

MODÈLE D'APPRENTISSAGE

Figure 1: Cycle d'apprentissage et décision

- · Modèle s'inspirant de l'approche de Smith [Smi02]
 - Q-Learning [WD92]
 - 2 Dynamic Self-Organizing Maps [RB11]
- · Récompense différenciées [YT14] (Credit Assignment Problem)
 - $\cdot R_i = V(Actions) V(Actions \setminus \{Actions_i\})$
- Éthique par conception [Dig18]
 - · (un peu d'Éthique dans la conception également)

CAS D'APPLICATION

SMART GRIDS

Répartition de l'énergie ; maximiser confort et intérêt des autres

Figure 2: Schéma d'une Smart Grid (dans notre simulateur).

EXPÉRIMENTATIONS

MODÈLES ET FONCTIONS DE RÉCOMPENSE

- 4 Modèles
 - · Aléatoire
 - · DDPG [Lil+19] (Deep Deterministic Policy Gradient)
 - · Q-SOM [Smi02] (modèle initial de Smith)
 - · Q-DSOM (notre modèle)
- · 6 Fonctions de récompense
 - · Équité : minimiser dispersion des conforts
 - · Sur-consommation : minimiser l'énergie sur-consommée
 - Multi-Objectif Somme: minimiser sur-consommation et maximiser confort personnel
 - · Multi-Objectif Produit
 - · Adaptabilité1:
 - · D'abord minimiser sur-consommation
 - · Puis, minimiser sur-consommation et maximiser équité
 - · Adaptabilité2 :
 - · D'abord minimiser sur-consommation
 - · Puis, minimiser sur-consommation et maximiser équité
 - Puis, minimiser sur-consommation, maximiser équité et confort personnel

RÉSULTATS

Figure 3: Résultats pour chaque modèle et fonction de récompense.

Score de simulation = moyenne du score "global" (tous agents) sur l'ensemble des pas de temps.

LIMITATIONS ET PERSPECTIVES

- · Améliorations techniques :
 - · Q-DSOM et Q-SOM ont des résultats assez proches
 - · Apprentissage des actions (multi-dimensionnelles)
 - · Question de la non-stationarité
- · Scénarios différents :
 - Profils de consommation annuels au lieu de journaliers
 - · Périodes de "pénuries" (moins d'énergie dans la grille)
 - · Différentes tailles de sociétés multi-agents
- · Questions éthiques :
 - · Les fonctions de récompense sont-elles adaptées ?
 - · Possibilité d'avoir des fonctions différentes selon les agents

REFERENCES

- Virginia Dignum. "Ethics in Artificial Intelligence: Introduction to the Special Issue". en. In: Ethics and Information Technology 20.1 (Mar. 2018), pp. 1–3.
- Timothy P. Lillicrap et al. "Continuous Control with Deep Reinforcement Learning". en. In: arXiv:1509.02971 [cs, stat] (July 2019).
- Leila Ouchchy, Allen Coin, and Veljko Dubljević. "Al in the Headlines: The Portrayal of the Ethical Issues of Artificial Intelligence in the Media". en. In: AI & SOCIETY (Mar. 2020).

BIBLIOGRAPHIE II

Self-Organising Map". en. In: Neurocomputing 74.11 (May 2011), pp. 1840–1847.

Andrew James Smith. "Applications of the Self-Organising Map to Reinforcement Learning". en. In: *Neural Networks* 15.8-9 (Oct. 2002), pp. 1107–1124.

Christopher J. C. H. Watkins and Peter Dayan. "Q-Learning". en. In: *Machine Learning* 8.3 (May 1992), pp. 279–292.

Logan Yliniemi and Kagan Tumer. "Multi-Objective Multiagent Credit Assignment Through Difference Rewards in Reinforcement Learning". en. In: Simulated Evolution and Learning. Ed. by Grant Dick et al. Lecture Notes in Computer Science. Springer International Publishing, 2014, pp. 407–418.

BIBLIOGRAPHIE III

Han Yu et al. "Building Ethics into Artificial Intelligence". In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. IJCAI'18. Stockholm, Sweden: AAAI Press, July 2018, pp. 5527–5533.