

Integración Trapecio $f(x) = sen(\Pi x), x \in [-2, -1]$

Lára Kristjánsdóttir, Javier Hernández Pérez Técnicas Experimentales

17 de mayo de 2013

Facultad de Matemáticas Universidad de a Laguna

Contenido

- Motivación y objetivos
- 2 Convergencia del método de los trapecios
- 3 Descripción de los experimentos
- Resultados obtenidos
- 5 Análisis de los resultados
- 6 Conclusiones

Motivación

• El método de los trapecios y un terreno.

Motivación

- 1 El método de los trapecios y un terreno.
- 2 La integral es fácil de resolver:

$$\int_{-2}^{-1} sen(\pi x) dx = \frac{\int_{-2\pi}^{-1\pi} sen(y) dy}{\pi} = \frac{-cos(-\pi) + cos(-2 \cdot \pi)}{\pi} = \frac{1+1}{\pi} = \frac{2}{\pi} \simeq 0.6366197724$$

Theorem

Sea $f:[a,b] \to \mathbb{R}$ una función integrable en el intervalo cerrado [a,b]. Si $P = \{x_0, x_1, x_2, ..., x_n\}$ es la partición de [a,b] que divide a este intervalo en n partes iguales, entonces el siguiente número aproxima a la integral $\int_a^b f(x) dx$.

$$I_t = \frac{b-a}{n} \left(\frac{f(a)}{2} + f(x_1) + f(x_2) + f(x_3) + \dots + f(x_{n-1}) + \frac{f(b)}{2} \right)$$

La aproximación tiene un error de si la función f es C^2 y K es cota superior de la derivada segunda.

$$|I_t - \int_a^b f(x) dx| \le |\frac{(b-a)^3}{12n^2} K|$$

Demostración:

$$egin{aligned} F_{lpha} : [0,h] &
ightarrow \mathbb{R} \ t &
ightarrow F_{lpha}(t) = rac{t}{2} \left(f(lpha) + f(lpha + t)
ight) - \int_{lpha}^{lpha + t} f dt \end{aligned}$$

Demostración:

$$egin{aligned} F_{lpha} : [0,h] &
ightarrow \mathbb{R} \ t &
ightarrow F_{lpha}(t) = rac{t}{2} \left(f(lpha) + f(lpha + t)
ight) - \int_{lpha}^{lpha + t} f dt \end{aligned}$$

Derivando:

$$F'_{\alpha}(t) = \frac{1}{2} (f(\alpha) + f(\alpha + t)) + \frac{t}{2} 0 + \frac{t}{2} f'(\alpha + t) - f(\alpha + t) + 0 = \frac{1}{2} (f(\alpha) + f(\alpha + t)) + \frac{t}{2} f'(\alpha + t) - f(\alpha + t) = \frac{1}{2} (f(\alpha) - f(\alpha + t)) + \frac{t}{2} f'(\alpha + t)$$

Demostración:

$$F_{\alpha}: [0, h] \to \mathbb{R}$$

 $t \to F_{\alpha}(t) = \frac{t}{2}(f(\alpha) + f(\alpha + t)) - \int_{\alpha}^{\alpha + t} f dt$
Derivando:

$$F'_{\alpha}(t) = \frac{1}{2} (f(\alpha) + f(\alpha + t)) + \frac{t}{2} 0 + \frac{t}{2} f'(\alpha + t) - f(\alpha + t) + 0 = \frac{1}{2} (f(\alpha) + f(\alpha + t)) + \frac{t}{2} f'(\alpha + t) - f(\alpha + t) = \frac{1}{2} (f(\alpha) - f(\alpha + t)) + \frac{t}{2} f'(\alpha + t) + \frac{t}{2} f'(\alpha + t) + \frac{t}{2} f''(\alpha + t) = \frac{1}{2} (0 - f'(\alpha + t)) + \frac{1}{2} f''(\alpha + t) + \frac{t}{2} f''(\alpha + t) = \frac{1}{2} f'(\alpha + t) + \frac{1}{2} f'(\alpha + t) + \frac{t}{2} f''(\alpha + t) = \frac{t}{2} f''(\alpha + t)$$

$$|F_{\alpha}''(t)| \leq |\frac{t}{2}K|$$

$$|F''_{\alpha}(t)| \le |\frac{t}{2}K|$$
 Integramos sabiendo $F'_{\alpha}(0) = \frac{1}{2}(f(\alpha) - f(\alpha + 0)) + \frac{0}{2}f'(\alpha + 0) = 0 + 0 = 0$

$$|F_{\alpha}''(t)| \leq |\frac{t}{2}K|$$
 Integramos sabiendo

$$F'_{\alpha}(0) = \frac{1}{2} \left[f(\alpha) - f(\alpha + 0) \right] + \frac{0}{2} f'(\alpha + 0) = 0 + 0 = 0$$

$$|\int_0^t F_{\alpha}''(t)| \le |\int_0^t \frac{t}{2}K| \Rightarrow |F_{\alpha}'(t) - F_{\alpha}'(0)| \le |\frac{t^2}{4}K - \frac{0^2}{4}K| \Rightarrow |F_{\alpha}'(t)| \le |\frac{t^2}{4}K|$$

$$\begin{split} |F_{\alpha}''(t)| &\leq |\tfrac{t}{2}K| \text{ Integramos sabiendo} \\ F_{\alpha}'(0) &= \tfrac{1}{2}\left(f(\alpha) - f(\alpha+0)\right) + \tfrac{0}{2}f'(\alpha+0) = 0 + 0 = 0 \\ |\int_0^t F_{\alpha}''(t)| &\leq |\int_0^t \tfrac{t}{2}K| \Rightarrow |F_{\alpha}'(t) - F_{\alpha}'(0)| \leq |\tfrac{t^2}{4}K - \tfrac{0^2}{4}K| \Rightarrow |F_{\alpha}'(t)| \leq |\tfrac{t^2}{4}K| \\ \text{Además sabiendo} \ F_{\alpha}(0) &= \tfrac{0}{2}\left(f(\alpha) + f(\alpha+0)\right) - \int_{\alpha}^{\alpha+0}fdt = 0 - 0 = 0 \\ \text{seguimos integrando} \end{split}$$

$$|\int_{0}^{h} F'_{\alpha}(t)| \le |\int_{0}^{h} \frac{t^{2}}{4}K| \Rightarrow |F_{\alpha}(h) - F_{\alpha}(0)| \le |\frac{h^{3}}{12}K| - \frac{0^{3}}{12}K| \Rightarrow |F_{\alpha}(h)| \le |\frac{h^{3}}{12}K|$$

$$\begin{split} |F_{\alpha}''(t)| &\leq |\tfrac{t}{2}K| \text{ Integramos sabiendo} \\ F_{\alpha}'(0) &= \tfrac{1}{2}\left(f(\alpha) - f(\alpha+0)\right) + \tfrac{0}{2}f'(\alpha+0) = 0 + 0 = 0 \\ |\int_0^t F_{\alpha}''(t)| &\leq |\int_0^t \tfrac{t}{2}K| \Rightarrow |F_{\alpha}'(t) - F_{\alpha}'(0)| \leq |\tfrac{t^2}{4}K - \tfrac{0^2}{4}K| \Rightarrow |F_{\alpha}'(t)| \leq |\tfrac{t^2}{4}K| \\ \text{Además sabiendo } F_{\alpha}(0) &= \tfrac{0}{2}\left(f(\alpha) + f(\alpha+0)\right) - \int_{\alpha}^{\alpha+0} f dt = 0 - 0 = 0 \end{split}$$

seguimos integrando

$$|\int_0^h F'_{\alpha}(t)| \le |\int_0^h \frac{t^2}{4}K| \Rightarrow |F_{\alpha}(h) - F_{\alpha}(0)| \le |\frac{h^3}{12}K| - \frac{0^3}{12}K| \Rightarrow |F_{\alpha}(h)| \le |\frac{h^3}{12}K|$$
 Haciéndolo en los n intervalos y sustituyendo h por su valor

obtenemos la cota.

$$\left| \frac{(b-a)^3}{12(n^2)} K \right|$$

Descripción

Vamos a aplicar la regla del trapecio a la función sin(pi*x) en el intervalo [-2,-1] utilizando una cantidad variable de subintervalos, n. Para cada valor de n, mediremos el error absoluto y el tiempo de ejecución del método.

n	error	tiempo
1	0.6366197724	0.0000169277
3	0.0592695032	0.0000441074
5	0.0210830649	0.0000529289
7	0.0107217341	0.0000619888
8	0.0082023359	0.0000700951
12	0.0036402630	0.0000801086
16	0.0020466231	0.0000920296
100	0.0000523607	0.0001320839
200	0.0000130900	0.0002050400

Cuadro: Resultados optenidos por numero de trapecios

Figura: nVSerror

Figura: nVSerror

Figura: nVStiempo

Para n=20 ya obtenemos una buena aproximación de la integral que queremos calcular.

- Para n=20 ya obtenemos una buena aproximación de la integral que queremos calcular.
- El error del método del trapecio converge a cero rápidamente, de manera cuadrática.

- Para n=20 ya obtenemos una buena aproximación de la integral que queremos calcular.
- El error del método del trapecio converge a cero rápidamente, de manera cuadrática.
- Ste error es en todo caso menor que la cota calculada analíticamente.

- Para n=20 ya obtenemos una buena aproximación de la integral que queremos calcular.
- ② El error del método del trapecio converge a cero rápidamente, de manera cuadrática.
- Ste error es en todo caso menor que la cota calculada analíticamente.
- El coste temporal es lineal, como habíamos dicho cuando analizamos el algoritmo.

Conclusiones

El método de trapecio nos da una buena aproximación de la integral que queríamos calcular con un coste temporal razonable.

Bibliografía

Juan de Burgos Román (2007) Cálculo infinitesimal de una variable segunda edición McGraw Hill

http://www.latex-project.org/

http://www.python.org/