Lecture 4: A=LU

Lecture 4: A=LU

A=LU
Why A=LU
compare L with E
Postscript
Application of A=LU--solution of Ax=b

A=LU

Before we talked about elimination and row exchange of matrix, now we know that matrix multiplication can achieve the same process. So suppose a good matrix A_{3x3} , we can eliminate matrix A with exchange matrix use following form and finally get a upper triangular matrix U:

$$E_{32}E_{31}E_{21}A = U (1)$$

Easy to know exchange matrix must be invertible, so formula (1) can transform into:

$$A = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} U (2)$$

and $L=E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}$, thus A=LU.

Why A=LU

Right now we have:

$$\begin{cases}
EA = U \\
AL = U
\end{cases}$$
(3)

if seems E is enough for elimination, why we still L, now let's look at a example.

compare L with E

Still a good matrix
$$A_{3x3}$$
, and $E_{32}=\begin{bmatrix}1&0&0\\0&1&0\\0&-5&1\end{bmatrix}$, $E_{21}=\begin{bmatrix}1&0&0\\-2&1&0\\0&0&1\end{bmatrix}$, $E_{31}=I$, solve the L .

Solution:

$$A = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} U$$

$$E_{21}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{31}^{-1} = I, E_{32}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix}$$
 thus, $L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix}$

Notice that elements of matrix L are all from matrix E_{21} and E_{32} , which means different with matrix

$$E=egin{bmatrix}1&0&0\\-2&1&0\\10&-5&1\end{bmatrix}$$
 , we can solve the matrix L without doing matrix multiplication.

• e_{31} in matrix E is appear due to the multiplier of elimination.

Formulation:

Define l_{ij} : multiplier of eliminate row_i use row_j , thus:

$$row_i = row_i - l_{ij} \times row_j \tag{4}$$

and in matrix multiplication we use exchange matrix E_{ij} represent this task.

Now we can write down the matrix
$$L=E^{-1}=egin{bmatrix}1&0&0\label{l21}&1&0\label{l21}&l_{31}&l_{32}&1\end{bmatrix}.$$

Postscript

In book 《Linear Algebra》 chapter2.3, it said:

The special property of L is that all the multipliers l_{ij} fall into place. Those numbers are mixed up in E(forward elimination from A to U). They are perfect in L (undoing elimination, returning from U to A). Inverting puts the steps and their matrices E_{ij}^{-1} in the opposite order and that prevents the mixup.

In short is that using inverse of E avoid the mixture of l_{ij} while forward elimination do. An intuition explain is we minus eliminated row when we doing forward elimination(for example row_3 minus eliminated row_2 while eliminate element a_{32}).

Application of A=LU--solution of Ax=b

This section is an advanced contents to show what A=LU can do, if you find it's difficult to understand this section, please read after you finished the lecture 8.

Now we know A=LU, if we want to solve Ax=b, we can substitute A=LU into it and we get LUx=b.

- suppose Ux = c, we get Lc = b
- ullet solve the c and back substitute

Example, solve the equation $egin{array}{cc} u+2v &=5 \\ 4u+9v &=21 \end{array}$

1. Extract the coefficient to matrix
$$A=\begin{bmatrix}1&2\\4&9\end{bmatrix}$$
 , $b=\begin{bmatrix}5\\21\end{bmatrix}$.

2.
$$l_{ij}=$$
 4, $L=egin{bmatrix}1&0\4&1\end{bmatrix}$

$$Lc = b \; , \quad egin{bmatrix} 1 & 0 \ 4 & 1 \end{bmatrix} \cdot [\, c\,] = egin{bmatrix} 5 \ 21 \end{bmatrix} \Longrightarrow c = egin{bmatrix} 5 \ 1 \end{bmatrix}$$

3. back substitute to Ux = c:

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} \Longrightarrow x = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

In a word, solve L is quicker than E.