Capitolo Secondo GLI INSIEMI NUMERICI

§ 1. I NUMERI NATURALI

Tutti conoscono l'insieme N dei numeri naturali

$$\mathbb{N} := \{0, 1, 2, 3, \dots \}$$

e le operazioni in esso definite. Noi perciò non affronteremo uno studio sistematico di \mathbb{N} , ma ci limiteremo a mettere in risalto alcuni punti.

In \mathbb{N} è definita una *relazione d'ordine totale* (cfr. Cap. 1, § 6) detta "*ordine naturale*" che si indica con il simbolo \leq (*minore o uguale*). In realtà, nel caso dell'insieme \mathbb{N} è spesso più comodo usare la corrispondente relazione antiriflessiva indicata con il simbolo < (*minore*). Sono dunque verificate le seguenti proprietà:

- 1) Prop. antiriflessiva: $(\forall n \in \mathbb{N})$ $(n \nleq n)$; cioè: nessun elemento è minore di se stesso.
- 2) Prop. antisimmetrica. Per la (1), essa diviene: $(\forall m \in \mathbb{N})(\forall n \in \mathbb{N})(m < n \Rightarrow n \nleq m)$.
- 3) Prop. transitiva: $(\forall m \in \mathbb{N})(\forall n \in \mathbb{N})(\forall p \in \mathbb{N})((m < n) \land (n < p) \Rightarrow m < p)$.
- 4) **Principio di tricotomia**: $(\forall n \in \mathbb{N})(\forall m \in \mathbb{N})[(m < n) \lor (m = n) \lor (m > n)]$; ossia: *dati due numeri naturali* (diversi) *uno di essi è minore dell'altro* (ordine *totale*).

Inoltre:

- 5) *Ogni numero naturale n ha un immediato seguente* (n + 1).
- 6) **Principio del minimo**: *Ogni sottoinsieme non vuoto di* \mathbb{N} *ha minimo*. In particolare, *esiste il minimo di* \mathbb{N} , *lo* 0.
 - 7) *Ogni numero naturale n* > 0 *ha un immediato precedente* (n 1).
- 8) **Principio del massimo**: Ogni sottoinsieme non vuoto e superiormente limitato di \mathbb{N} ha massimo. (Cfr. Esercizio 1, \S 9.)

Del Principio di induzione ci occuperemo nel prossimo paragrafo.

Ricordiamo che si chiama *operazione* (*interna*) in un insieme E ogni applicazione φ di $E \times E$ in E. In luogo di $\varphi(x,y)$, si preferisce interporre fra x e y un segno come \circ , +, \times , \circ , \wedge , \vee , etc. Quindi, in luogo di $\varphi(x,y) = z$, si scrive $x \circ y = z$, x + y = z, ... In qualche caso, invece di $\varphi(x,y)$ si scrive semplicemente xy.

18 - Capitolo Secondo

9) Com'è ben noto, nell'insieme \mathbb{N} sono definite le operazioni di *somma* e *prodotto*. Queste operazioni godono delle seguenti proprietà:

$$(a+b)+c=a+(b+c); (ab)c=a(bc)$$
 proprietà associative $a+b=b+a;$ $ab=ba$ proprietà commutative $a+0=0+a;$ $a1=1a$ esistenza dell'elemento neutro $a(b+c)=ab+ac;$ $(b+c)a=ba+ca$ propr. distributive del prodotto rispetto alla somma $ab=0\Leftrightarrow (a=0)\vee (b=0)$ legge dell'annullamento del prodotto $a=b\Leftrightarrow a+c=b+c$ legge di cancellazione della somma $a b\Leftrightarrow a+c b+c$ compatibilità della relazione d'ordine con la somma $a=b\Leftrightarrow ac=bc, \forall c\neq 0$ legge di cancellazione del prodotto compatibilità della relazione d'ordine col prodotto.

Ricordiamo ancora che in \mathbb{N}^+ si introduce anche l'operazione di *innalzamento a potenza* definita da

per
$$n = 1$$
, $a^1 = a$;
per $n > 1$, $a^n = a \times a \times ... \times a$ (ossia il prodotto di n fattori uguali ad a).

Si definisce inoltre:

$$a^0 = 1, \forall a > 0$$
: $0^n = 0, \forall n > 0$.

Si tenga ben presente che al simbolo 0^0 non è attribuito alcun significato. L'innalzamento a potenza gode delle seguenti proprietà:

$$\begin{cases} a^n a^m = a^{n+m} \\ (a^n)^p = a^{np} \\ a^n b^n = (ab)^n. \end{cases}$$
 (Le richiameremo con l'espressione: *proprietà formali delle potenze*.)

E ancora:

$$a = b \Leftrightarrow a^n = b^n, \ \forall \ n > 0$$
 legge di *cancellazione* dell'innalzamento a potenza $a < b \Leftrightarrow a^n < b^n, \ \forall \ n > 0$ compatibilità della relazione d'ordine con l'innalzamento a potenza.

Sappiamo, in fine, che in \mathbb{N} è definita una "operazione" di *divisione con resto*. Sussiste infatti il seguente Teorema di cui omettiamo la dimostrazione.

TEOREMA 1. Quali che siano i numeri naturali a e b, con b > 0, esiste una e una sola coppia di numeri naturali (q, r) tali che:

1)
$$a = qb + r$$
,
2) $(0 \le) r < b$.

DEFINIZIONE. I numeri q ed r prendono rispettivamente il nome di *quoziente* e di *resto* della divisione di a per b. Se è r=0, si dice che a è un *multiplo* di b e che b è un *divisore* di a.

Osserviamo che questa divisione non è un'operazione nel vero senso della parole in quanto non è un'applicazione di $\mathbb{N} \times \mathbb{N}$ in \mathbb{N} .

§ 2. IL PRINCIPIO DI INDUZIONE

L'ordinamento esistente in \mathbb{N} ha un'altra interessantissima proprietà. Partendo da 0, si può raggiungere un qualunque numero naturale n con un numero finito di passi del tipo $n \mapsto n + 1$.

Sia dunque A l'insieme dei numeri naturali raggiungibili da 0 con un numero finito di passi. Ovviamente, $0 \in A$ e, se $n \in A$, è anche $n + 1 \in A$. La cosa interessante è il fatto che un insieme di umeri naturali che gode di queste due proprietà deve necessariamente coincidere con \mathbb{N} .

TEOREMA 2 (Principio di induzione). Sia A un sottoinsieme di \mathbb{N} tale che:

1) $0 \in A$ (base dell'induzione),

2) se $n \in A$, anche $n + 1 \in A$ (passo dell'induzione).

Sotto queste ipotesi, si conclude che è $A = \mathbb{N}$.

DIM. Supponiamo, per assurdo, che sia $A \neq \mathbb{N}$. Dunque l'insieme $X = \{n: n \in \mathbb{N} \setminus A\}$ non è vuoto. Per il *Principio del minimo*, esiste $m = \min X$. Non può essere m = 0 per l'ipotesi (1). Esiste dunque $m - 1 \notin X$ da cui $m - 1 \in A$. Si ha quindi $m - 1 \in A$ e $(m - 1) + 1 = m \notin A$. Ma ciò va contro la (2).

Intuitivamente, dalle ipotesi del Teorema si vede che: $0 \in A$, da cui $1 \in A$; da $1 \in A$ segue $2 \in A$; da $2 \in A$ segue $3 \in A$; ...

Per sottolineare l'importanza di questo risultato, vediamo con un controesempio che le cose possono anche andare altrimenti.

ESEMPIO. 1) Nell'insieme \mathbb{N} introduciamo un nuovo ordinamento in cui tutti i numeri pari precedono i numeri dispari

In questo ordinamento è ancora vero che ogni sottoinsieme ha minimo e che ogni elemento n ha un immediato seguente n'; si vede, però, che 1 non ha un immediato precedente. Sia A l'insieme dei numeri pari. Si ha $0 \in A$ e da $n \in A$ segue $n' \in A$, ma, in questo caso, risulta $A \neq \mathbb{N}$.

Se, anziché partire da 0, si parte da un numero k si ha il seguente enunciato equivalente a quello del Teorema 2:

TEOREMA 2' (Principio di induzione). Sia A un sottoinsieme di \mathbb{N} tale che:

1) $k \in A$ (base dell'induzione),

2) se $n \in A$, anche $n + 1 \in A$ (passo dell'induzione).

Sotto queste ipotesi, si conclude che $A \supset \{n \in \mathbb{N} : n \ge k\}$ *.*

Un'altra formulazione dello stesso Teorema è la seguente

TEOREMA 2" (Principio di induzione). Per ogni numero naturale $n \ge k \in \mathbb{N}$, sia p(n) una proposizione dipendente da n tale che:

1) p(k) è vera (base dell'induzione),

2) se p(n) è vera, allora è vera anche p(n + 1) (passo dell'induzione).

Sotto queste ipotesi, si conclude che p(n) è vera almeno per ogni $n \ge k$.

Il Principio di induzione si sfrutta molto spesso per dimostrare la validità di formule o proprietà p(n) che dipendono da $n \in \mathbb{N}$, (dimostrazione *per induzione*) o per ottenere valori numerici K(n) che dipendono da n, quando si conosce il legame tra K(n) e K(n-1) (metodi *ricorsivi*).

Per dimostrare per induzione la validità di una proprietà p(n) bisogna fare due verifiche:

a) la validità del punto di partenzea (p(k) è vera);

b) la validità del teorema: Se p(n) è vera, allora anche p(n+1) è vera.

[L'ipotesi di quest'ultimo teorema è detta *ipotesi induttiva*. Non è che si dimostri che p(n) è vera partendo dall'ipotesi che p(n) è vera! Ci si limita a controllare che se p(n) è vera, allora deve essere vera anche p(n+1), solo un passo! Poi si conclude in base al *Principio di induzione*.]

ESEMPI. 2) Si voglia dimostrare che per ogni n > 0 sussiste l'uguaglianza

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}, [p(n)].$$

Per induzione su n.

Base dell'induzione: n = 1. Si ha: $1 = \frac{1 \times 2}{2}$; dunque p(1) è vera.

Passo dell'induzione. Supposta p(n) vera, proviamo che è vera anche p(n+1). Si ha

$$1 + 2 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}.$$

Si è così provato che da p(n) vera segue p(n + 1) vera. Per il *Principio di induzione*, la p(n) è quindi vera per ogni $n \ge 1$.

3) Si voglia dimostrare che per ogni n > 0 sussiste l'uguaglianza

$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$
.

Per induzione su n.

Base dell'induzione: n = 1. Si ha: $1^3 = 1^2$; dunque p(1) è vera.

Passo dell'induzione. Supposta p(n) vera, proviamo che è vera anche p(n + 1). Si ha

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} \text{ ip } \overline{\text{ind}} (1+2+\dots+n)^{2} + (n+1)^{3} =$$

$$= \left[\frac{n(n+1)}{2} \right]^{2} + (n+1)^{3} = (n+1)^{2} \left[\frac{n^{2}}{4} + (n+1) \right] =$$

$$= \left[\frac{(n+1)(n+2)}{2} \right]^{2} = (1+2+\dots+n+(n+1))^{2}.$$

Per il Principio di induzione, la p(n) è quindi vera per ogni $n \ge 1$.

4) Date n rette del piano ($n \ge 1$), a 2 a 2 incidenti e a 3 a 3 non concorrenti in un punto, esse dividono il piano in un numero K(n) di regioni. Si vuol provare che è $K(n) = \frac{n(n+1)}{2} + 1$.

Per induzione su n.

Base dell'induzione: n = 1. Si ha: $2 = \frac{1 \times 2}{2} + 1$; dunque p(1) è vera.

Passo dell'induzione. Supposta p(n) vera, proviamo che è vera anche p(n + 1).

Fissiamo n+1 rette del piano, a 2 a 2 incidenti e a 3 a 3 non concorrenti in un punto, e diciamo r una di queste. La r incontra le altre rette in n punti che la dividono in n+1 parti (segmenti o semirette). Ognuna di queste parti divide in 2 una delle regioni formate dalle restanti rette. Passando da n a n+1 rette, il numero delle regioni ottenute aumenta dunque di n+1. Si ha perciò K(n+1) = K(n) + (n+1). Sfruttando l'ipotesi induttiva, si ottiene

$$K(n+1) = K(n) + (n+1) = \frac{n(n+1)}{2} + 1 + (n+1) = \frac{(n+1)(n+2)}{2} + 1.$$

Per il Principio di induzione, la p(n) è quindi vera per ogni $n \ge 1$.

§ 3. GLI INTERI RELATIVI

Consideriamo l'equazione a coefficienti in $\mathbb N$

$$a + x = b$$
.

Sappiamo che questa ha una e una sola soluzione (x = b - a) se è $a \le b$, mentre se è a > b non ammette nessuna soluzione nell'insieme dei numeri naturali.

Per far sì che un'equazione del tipo a + x = b abbia sempre soluzione, si definisce l'insieme \mathbb{Z} dei numeri interi (relativi)

$$\mathbb{Z} := \{ \dots -3, -2, -1, 0, 1, 2, 3, \dots \}.$$

L'insieme \mathbb{Z} è altrettanto noto di \mathbb{N} ; ci limiteremo perciò soltanto a qualche osservazione.

Anche in \mathbb{Z} è definita una relazione d'*ordine totale* (<). Sono dunque verificate le prime 4 proprietà elencate nel § 1. Inoltre:

- Ogni numero intero ha un immediato precedente e un immediato seguente.
- \mathbb{Z} non ha né minimo né massimo, ma ogni sottoinsieme non vuoto e inferiormente limitato ha minimo e ogni sottoinsieme non vuoto e superiormente limitato ha massimo.
 - Continua a valere il Principio di induzione secondo gli enunciati dei Teoremi 2' e 2".
- Le operazione di somma e prodotto definite in $\mathbb Z$ godono delle proprietà (9) del \S 1, salvo che l'ultima assume la seguente forma

$$a < b \Leftrightarrow ac < bc, \forall c > 0$$

 $a < b \Leftrightarrow ac > bc, \forall c < 0$

 $compatibilit\`{a} \ della \ relazione \ d'ordine \ col \ prodotto.$

Inoltre:

- 10) Per ogni $x \in \mathbb{Z}$ esiste $-x \in \mathbb{Z}$ tale che x + (-x) = (-x) + x = 0 esistenza dell'*opposto*.
- 11) L'equazione a + x = b, con $a, b \in \mathbb{Z}$ ha in \mathbb{Z} una e una sola soluzione data da

$$x = b + (-a) =: b - a$$
.

Dell'operazione di innalzamento a potenza ci occuperemo piò avanti (Cap. 4).

Ricordiamo, in fine, che anche in \mathbb{Z} è definita una "operazione" di *divisione con resto*. Sussiste infatti il seguente Teorema:

TEOREMA 3. Quali che siano i numeri interi a e b, con b > 0, esiste una e una sola coppia di numeri interi (q, r) tali che:

- 1) a = ab + r,
- 2) $0 \le r < b$.

DIM. Se è $a \ge 0$, la tesi segue dal Teorema 1. Sia dunque a < 0. Essendo -a > 0, esiste, sempre per il Teorema 1, una coppia di numeri naturali (q', r') tale che

$$-a = q'b + r';$$
 $0 \le r' < b.$

Se è r' = 0, si ottiene a = (-q')b + 0.

Se è r' > 0, si ottiene a = -q'b - r' = -q'b - r' + b - b = -(q' + 1)b + (b - r').

Posto q = -(q' + 1) e r = b - r', si prova l'esistenza di una coppia del tipo cercato.

Per provare l'unicità, supponiamo che sia a = qb + r = q'b + r', con $0 \le r \le r' < b$. Si ottiene

$$(q - q')b = r' - r.$$

Essendo $0 \le r' - r < b$, deve essere anche $0 \le (q - q')b < b$. Ma ciò è possibile solo se è q = q' e, quindi, r = r'.

I numeri q ed r prendono ancora rispettivamente il nome di *quoziente* e di *resto* della divisione di a per b. Se è r = 0, si dice che a è un *multiplo* di b e che b è un *divisore* di a.

ESEMPIO. Si voglia dividere - 24 per 7. Si ha

$$24 = 3 \times 7 + 3$$
; $-24 = -3 \times 7 - 3 + 7 - 7 = -4 \times 7 + 4$.

§ 4. I NUMERI RAZIONALI

Consideriamo l'equazione a coefficienti interi

$$ax = b$$
, con $a \ne 0$.

Sappiamo che questa ha una (unica) soluzione in \mathbb{Z} se e solo se b è multiplo di a.

Per far sì che un'equazione del tipo ax = b, con $a \ne 0$, abbia sempre soluzione, si definisce l'insieme \mathbb{Q} dei numeri *razionali*.

Diamo un'idea del modo con cui si ottiene questa nuova estensione numerica.

Si parte dall'insieme $F = \mathbb{Z} \times \mathbb{Z}^*$ formato da tutte le frazioni. È dunque

$$F := \left\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{Z}^* \right\}.$$

Si introduce in F la relazione binaria definita da $\frac{m}{n} \sim \frac{m'}{n'} \Leftrightarrow mn' = m'n$ e si verifica che si tratta di un'equivalenza. (Esercizio!)

DEFINIZIONE. Gli elementi dell'insieme quoziente F / \sim sono detti *numeri razionali*. L'insieme dei numeri razionali si indica solitamente con \mathbb{Q} (da quoziente).

In F si definiscono le ben note operazioni di somma e prodotto:

$$\frac{m}{n} + \frac{p}{q} = \frac{mq + np}{nq}; \qquad \frac{m}{n} \frac{p}{q} = \frac{mp}{nq}.$$

A questo punto si verifica che le operazioni ora definite sono compatibili con la relazione di equivalenza. Si dimostra cioè il seguente

TEOREMA 4. Se è
$$\frac{m}{n} \sim \frac{m'}{n'}$$
 e $\frac{p}{q} \sim \frac{p'}{q'}$ allora è anche
$$\frac{m}{n} + \frac{p}{q} \sim \frac{m'}{n'} + \frac{p'}{q'} \quad e \qquad \frac{m}{n} \frac{p}{q} \sim \frac{m'}{n'} \frac{p'}{q'}. \blacksquare$$

Per esempio, per provare la seconda tesi, bisogna verificare che è $\frac{mp}{nq} \sim \frac{m'p'}{n'q'}$ ossia che è mpn'q' = m'p'nq: ma ciò è immediato dato che, per ipotesi, è mn' = m'n e pq' = p'q. L'altra verifica è un poco più fastidiosa e la tralasciamo.

Dunque le operazioni definite in F diventano operazioni definite in \mathbb{Q} . Si dimostra poi che queste operazioni godono delle seguenti proprietà:

$$(a+b)+c=a+(b+c); (ab)c=a(bc)$$
 proprietà associative $a+b=b+a;$ $ab=ba$ proprietà commutative $a+0=0+a;$ $a1=1a$ esistenza dell'elemento neutro $(\forall x \in \mathbb{Q})(\exists -x \in \mathbb{Q})(x+(-x)=(-x)+x=0)$ esistenza dell'opposto $(\forall x \in \mathbb{Q} \setminus \{0\})(\exists x^{-1} \in \mathbb{Q} \setminus \{0\})(xx^{-1}=x^{-1}x=1)$ esistenza del reciproco $a(b+c)=ab+ac;$ $(b+c)a=ba+ca$ propr. distributive del prodotto rispetto alla somma $ab=0\Leftrightarrow (a=0)\vee (b=0)$ legge dell'annullamento del prodotto $a=b\Leftrightarrow a+c=b+c$ legge di cancellazione della somma $a=b\Leftrightarrow ac=bc, \forall c\neq 0$ legge di cancellazione del prodotto. L'equazione $a+x=b$, con $a,b\in\mathbb{Q}$ ha in \mathbb{Q} una e una sola soluzione: $x=b+(-a)=:b-a$. L'equazione $ax=b$, con $a,b\in\mathbb{Q}$, $a\neq 0$, ha in \mathbb{Q} una e una sola soluzione: $x=ba^{-1}$.

Nell'insieme Q si introduce anche una relazione d'ordine.

DEFINIZIONE. Dati i due numeri razionali x e y rappresentati, rispettivamente, dalle frazioni $\frac{m}{n}$ e $\frac{p}{q}$, con n > 0 e q > 0, si definisce $x \le y$ se e solo se è $mq \le pn$.

Affinché questa definizione sia sensata, bisogna provare che essa non dipende dalle frazioni scelte per rappresentare i numeri x e y. Si deve cioè mostrare che se è $\frac{m}{n} \sim \frac{m'}{n'}$, $\frac{p}{q} \sim \frac{p'}{q'}$, con n, n', q, q' tutti positivi, allora si ha $mq \le pn$ se e solo se è $m'q' \le p'n'$. Ma ciò si verifica facilmente. Infatti, la disuguaglianza $mq \le pn$, equivale alla $mqn'q' \le pnn'q'$, dato che n' e q' sono positivi. Essendo, per ipotesi, mn' = m'n e pq' = p'q, l'ultima disuguaglianza equivale alla $m'nqq' \le p'qnn'$ che, a sua volta, equivale alla $m'q' \le p'n'$, dato che n e q aono positivi. Si prova poi la validità delle seguenti proprietà:

 $\begin{array}{ll} a < b \Leftrightarrow a + c < b + c \\ a < b \Leftrightarrow ac < bc, \ \forall \ c > 0 \\ a < b \Leftrightarrow ac > bc, \ \forall \ c < 0 \end{array}$ compatibilità della relazione d'ordine con la somma compatibilità della relazione d'ordine col prodotto.

Tutto ciò si esprime col

TEOREMA 5. Q è un corpo commutativo (o campo) ordinato.

Si tenga ben presente che, a differenza di quanto accade in \mathbb{N} e in \mathbb{Z} , nell'ordinamento di \mathbb{Q} un elemento *non ha* più né un immediato precedente né un immediato seguente. Anzi sussiste il

TEOREMA 6. Il campo dei numeri razionali è denso, cioè: fra due numeri razionali ce n'è sempre compreso almeno un altro (e quindi ce ne sono infiniti).

DIM. Siano dati due numeri razionali a e b, con a < b. Sommando ad ambo i membri di questa disuguaglianza una volta a e una volta b, si ottiene 2a < a + b < 2b, da cui

$$a < \frac{a+b}{2} < b$$
.

Accenniamo ora brevemente al problema della rappresentazione decimale dei numeri razionali. Ricordiamo intanto la

DEFINIZIONE. Dato un numero razionale x, si chiama parte intera di x il più grande numero intero che non supera x; esso si indica con [x]. Il numero x - [x], che si indica con (x), è detto la mantissa di x. Per definizione, è dunque

$$x = [x] + (x), \quad [x] \in \mathbb{Z}, \quad [x] \le x < [x] + 1, \quad 0 \le (x) < 1.$$

Per esempio, si ha -
$$\frac{23}{7}$$
 = -4 + $\frac{5}{7}$; è dunque $\left[-\frac{23}{7} \right]$ = -4 e $\left(-\frac{23}{7} \right)$ = $\frac{5}{7}$.

Ora si ha

$$\frac{5}{7} = \frac{1}{10} \frac{50}{7} = \frac{1}{10} \left(7 + \frac{1}{7} \right) = \frac{7}{10} + \frac{1}{10} \frac{1}{7} = \frac{7}{10} + \frac{1}{100} \frac{10}{7} =$$
$$= \frac{7}{10} + \frac{1}{100} \left(1 + \frac{3}{7} \right) = \frac{7}{10} + \frac{1}{100} + \frac{1}{100} \frac{3}{7} = \dots$$

Si ottiene così il ben noto algoritmo della divisione. Utilizzando l'usuale notazione posizionale delle cifre "dopo la virgola", si ricava la scrittura

$$-\frac{23}{7} = -4 + 0,71428571824571... = -4 + 0,\overline{714285}.$$

Questa tecnica può essere usata per trovare la *rappresentazione decimale* di un qualunque numero razionale. Siccome i possibili resti nei singoli passi delle divisioni successive (dopo la virgola) sono in numero finito, ne viene che la scrittura ottenuta è sempre *periodica*; si potrebbe anche dimostrare che il *periodo* non può essere fatto da sole cifre 9.

Osserviamo che vale anche il viceversa, cioè: una qualunque successione periodica di cifre non definitivamente uguali a 9 è la successione delle cifre della rappresentazione decimale di un numero razionale x, con $0 \le x < 1$.

Per esempio, data la scrittura $0,12\overline{345}$, cerchiamo un numero razionale x il cui sviluppo decimale coincida con quello dato. Se un tale x esiste, cioè se è $x = 0,12\overline{345}$, si ha

$$100x = 12 + 0,\overline{345}$$
 e $100000x = 12345 + 0,\overline{345}$.

Si ricava (100000 - 100)x = 12345 - 12, da cui $x = \frac{12345 - 12}{99900} = \frac{12333}{99900}$. Si constata poi che, effettivamente, lo sviluppo di questo numero razionate è quello di partenza.

Se fossimo partiti dalla scrittura -3 + 0,12 $\overline{345}$, avremmo trovato il numero - 3 + $\frac{12333}{99900}$.

Quanto visto nell'esempio numerico ha carattere generale:

TEOREMA 7. *I* numeri razionali sono tutti e soli quelli che ammettono una rappresentazione decimale periodica con le cifre non definitivamente uguali a 9.

§ 5. INSUFFICIENZA DEL CAMPO RAZIONALE - I NUMERI REALI

Consideriamo l'equazione $x^2=2$ e proviamo che essa non ha alcuna soluzione in $\mathbb Q$. Supponiamo che esista un numero razionale positivo $r=\frac{p}{q}$ che sia soluzione della nostra equazione. È lecito supporre p e q primi tra loro. Si ha $p^2=2q^2$. Ne viene che p^2 è divisibile per 2. Dunque p è pari e perciò p^2 è divisibile per 4. Deve essere quindi tale anche $2q^2$. Ma questo è assurdo, dato che q, essendo primo con p, è dispari.

Questa non è però l'unica mancanza di \mathbb{Q} . Anzi, questa è, per così dire, la meno grave. Si tenga presente che, anche dopo aver introdotto i numeri reali, ci saranno ancora equazioni senza soluzioni: per esempio $x^2 + 1 = 0$. La ragione vera per cui \mathbb{Q} proprio non ci basta è un'altra.

Sappiamo che tutti i numeri razionali sono rappresentabili su una retta (coordinate cartesiane). Ebbene, mentre così facendo ad ogni numero razionale si associa un punto della retta, non è vero il viceversa; esistono cioè dei punti della retta che non hanno ascissa e questo è inaccettabile.

Si potrebbe anche pensare di togliere dalla retta i punti privi di ascissa razionale, ma ciò porterebbe a risultati ancora più strani.

Si introduca in un piano π un sistema di coordinate cartesiane e si costruisca il quadrato di lato 1 e di vertici O(0, 0), A(1, 0), B(1, 1) e C(0, 1). Consideriamo la circonferenza di centro O e raggio OB. Questa circonferenza deve incontrare la retta OA.in due punti. Ma questi, se ci sono, non hanno ascissa!

E ancora: Consideriamo la circonferenza di centro C(0, 1) e raggio 1 e facciamola rotolare, senza strisciare, sull'asse delle ascisse. Dopo un giro completo, la circonferenza dovrà ben avere un punto di contatto; ma questo, se c'è, non ha ascissa!

Questo tipo di mancanze può anche essere visto sotto un'altra angolazione.

Abbiamo già notato come in $\mathbb Q$ ci sono sottoinsiemi superiormente limitati che non hanno estremo superiore. Ciò accade, per esempio, per l'insieme $A = \{x \in \mathbb Q^+: x^2 < 2\}$ e anche per l'insieme formato dai numeri razionali positivi che esprimono le misure dei perimetri dei poligoni convessi contenuti in un cerchio di diametro 1.

DEFINIZIONE. Si dice che due sottoinsiemi A e B di \mathbb{Q} formano una coppia di *classi separate*, se per ogni $a \in A$ e per ogni $b \in B$, si ha a < b.

Ogni eventuale elemento $x \in \mathbb{Q}$ compreso fra le due classi, cioè ogni eventuale $x \in \mathbb{Q}$ per cui si abbia $a \le x \le b$ per ogni $a \in A$ e per ogni $b \in B$ è detto elemento separatore delle due classi.

Due classi separate A e B sono dette contigue se accade che

$$(\forall \ \epsilon \in \mathbb{Q}^+)(\exists \ a \in A)(\exists \ b \in B)(b - a < \epsilon).$$

Ovviamente, una coppia di classi contigue non può avere più di un elemento separatore. Infatti, se esistessero due elementi separatori x e y, per esempio con x < y, per ogni $a \in A$ e per ogni $b \in B$ si avrebbe $a \le x < y \le b$, da cui $b - a \ge y - x$, contro la definizione di classi contigue.

Ebbene, in $\mathbb Q$ ci sono coppie di classi separate che non hanno elementi separatori. Basta prendere i sottoinsiemi $A = \{x \in \mathbb Q^+: x^2 < 2\}$ e $B = \{x \in \mathbb Q^+: x^2 > 2\}$.

Per ovviare a tutte queste lacune si introducono i numeri reali.

Una trattazione rigorosa dei numeri reali è una cosa molto impegnativa che richiede tempo e fatica. Cercheremo di semplificare al massimo le cose, procurando di dare solo le idee fondamentali.

Ripartiamo l'insieme \mathbb{Q} in due classi *separate* A e B. Ci sono due possibilità:

- 1) Esiste un elemento separatore $r \in \mathbb{Q}$; dunque si ha $(r = \max A) \lor (r = \min B)$. Decidiamo di metterci sempre nella seconda situazione, cioè in quella in cui A non ha massimo e B ha minimo.
 - 2) Non esiste in \mathbb{Q} un elemento separatore. Dunque A non ha massimo e B non ha minimo.

(Non può accadere che esistano $a = \max A$ e $b = \min B$, perché allora $\frac{a+b}{2}$ non starebbe né in A né in B.)

La situazione critica è la (2). Bisogna dunque inventare dei nuovi numeri che coprano questi buchi. Questi nuovi numeri sono detti irrazionali. L'unione degli insiemi dei numeri razionali e dei numeri irrazionali dà l'insieme \mathbb{R} dei numeri reali. Ammettiamo dunque che, per ogni ripartizione di \mathbb{Q} in due classi separate, esiste uno ed un solo numero reale fra esse compreso.

In modo un po' più preciso:

DEFINIZIONE. Chiameremo *sezione* o *taglio* di \mathbb{Q} ogni sua ripartizione (A, B) in classi separate (anzi contigue) in cui la prima classe non ha massimo.

DEFINIZIONE. Dicesi *numero reale* ogni sezione (A, B) di \mathbb{Q} . L'insieme dei numeri reali si indica con \mathbb{R} .

(Se tale definizione spaventa, si pensi pure che *una sezione di* \mathbb{Q} *individua un numero reale.*) Teniamo ben presente che ogni numero razionale r individua ed è individuato da una sezione (A, B) di \mathbb{Q} in cui è $r = \min B$; la indicheremo con \hat{r} .

Sappiamo che, se è $\hat{r} = (A, B)$, r è l'unico elemento separatore fra A e B. Quello che vorremmo poter dire è che sussiste un'analoga proprietà per ogni numero reale α . Ma, per poterlo fare, abbiamo bisogno di definire in \mathbb{R} una relazione d'ordine. La definizione più naturale è la seguente:

DEFINIZIONE. Dati $\alpha = (A, B)$ e $\alpha' = (A', B')$, si pone $\alpha < \alpha'$ se e solo se è $A \subsetneq A'$ o, equivalentemente, se e solo se è $B' \subsetneq B$.

Si dimostra facilmente che questa è effettivamente una relazione d'ordine totale e che, dati r, $s \in \mathbb{Q}$, si ha r < s se e solo se è $\hat{r} < \hat{s}$. (Esercizio!)

LEMMA 8. Siano $\alpha = (A, B)$ un numero reale e x un numero razionale diverso da α . Si ha $x \in A$ se e solo se è $\hat{x} < \alpha$ e $x \in B$, con $x \ne \min B$, se e solo se è $\hat{x} > \alpha$.

DIM. Dato un numero razionale x, si ponga $\hat{x} = (A^*, B^*)$. Se è $x \in A$, ai ha $A^* \subset A$; è dunque $\hat{x} \le \alpha$, anzi $\hat{x} < \alpha$, dato che è $x \in A \setminus A^*$. Se è $x \in B$, ai ha $B^* \subset B$; è dunque $\hat{x} \ge \alpha$, anzi $\hat{x} > \alpha$, dato che x è il minimo di x0.

Il viceversa si prova facilmente ragionando per assurdo.

In particolare, dato $\alpha = (A, B)$, si ha $\alpha > 0$ se e solo se in A esistono dei numeri (razionali) positivi e si ha $\alpha < 0$ se e solo se in B ci sono degli elementi negativi.

§ 6. PROPRIETÀ FONDAMENTALI DI R

TEOREMA 9 (della densità di Q in \mathbb{R}). \mathbb{Q} *è denso in* \mathbb{R} . Cioè: *Fra due numeri reali è sempre compreso un numero razionale.*

DIM. Siano dati due numeri reali $\alpha = (A, B)$ e $\alpha' = (A', B')$, con $\alpha < \alpha'$ ossia tali che $A \subsetneq A'$. Esiste dunque almeno un numero razionale $s \in A' \setminus A$, ossia $s \in A' \cap B$. Siccome A' non ha massimo, esiste r > s, con $r \in A'$. È ancora $r \in A' \cap B$ e certamente r non è il minimo di B. È dunque $\alpha < \hat{r} < \alpha'$.

D'ora in poi identificheremo i numeri razionai r con le corrispondenti sezioni \hat{r} .

TEOREMA 10 (di esistenza dell'estremo superiore). Ogni insieme non vuoto e superiormente limitato E di numeri reali ammette estremo superiore.

DIM. Sia $E \subset \mathbb{R}$ non vuoto e superiormente limitato. Siano K l'insieme dei numeri razionali che sono limitazioni superiori di E e H il complementare di K in \mathbb{Q} . Gli insiemi H e K formano una ripartizione di \mathbb{Q} in due classi separate. Siano, infatti, $h \in H$ e $k \in K$. Se fosse $h \geq k$, anche h sarebbe una limitazione superiore di E; dato che ciò non è, deve essere h < k. Inoltre, H non ha massimo. Infatti, fissato $h \in H$, esiste $x \in E$ tale che h < x. Fra h e x ci sono numeri razionali che devono appartenere a H e che sono più grandi di h. Dunque (H, K) è una sezione di \mathbb{Q} , ossia un numero reale α compreso fra H e K.

Proviamo che è $\alpha = \sup E$. Intanto vediamo che α è una limitazione superiore di E. Infatti se così non fosse, esisterebbe un $x \in E$ con $x > \alpha$. Per la densità di $\mathbb Q$ in $\mathbb R$, esisterebbe anche un numero razionale r compreso tra α e x. Ma allora si avrebbe $r \in H$, dato che è r < x, e $r \in K$, dato che è $r > \alpha$. Se poi α non fosse la minima limitazione superiore di E, ne esisterebbe una β più piccola di α . Fra $\beta \in \alpha$ ci sarebbe un numero razionale s il quale dovrebbe ancora una volta appartenere sia a E che a E.

Esiste poi un analogo teorema di esistenza dell'estremo inferiore. I risultati di questi due teoremi si esprime anche dicendo che l'insieme \mathbb{R} è *continuo*.

ESEMPI. 1) Sia
$$I = \{x: -1 \le x < 2\}$$
. Si ha inf $I = \min I = -1$ e sup $I = 2$.

2) Sia
$$E = \{x : x = 1/n, n \in \mathbb{N}^+\}$$
. Si ha inf $I = 0$ e sup $I = \max I = 1$.

Per esprimere il fatto che un insieme è superiormente [inferiormente] illimitato, si *dice* che è $E = +\infty$ [inf $E = -\infty$].

La nozione di classi separate definita in \mathbb{Q} si estende pari-pari anche a \mathbb{R} .

DEFINIZIONE. Due classi separate A e B di \mathbb{R} sono dette *contigue* se è sup $A = \inf B$.

TEOREMA 11. Ogni coppia di classe separate A e B di \mathbb{R} ammette almeno un elemento separatore. L'elemento separatore è unico se e solo se è $\sup A = \inf B$, ossia se e solo se le due classi sono contigue.

DIM Per il Teorema 10, esistono $\alpha = \sup A$ e $\beta = \inf B$. Siccome ogni elemento di B è limitazione superiore per A; si ha $\alpha \le b$, per ogni $b \in B$. Dunque α è una limitazione inferiore

di *B*. Si ha pertanto $\alpha \le \beta$. Sono perciò elementi separatori di *A* e *B* tutti e soli i numeri reali *x* tali che $\alpha \le x \le \beta$. La seconda parte della tesi, a questo punto, è ovvia.

Osserviamo esplicitamente che, dato un numero reale $\alpha = (A, B)$, si ha $\alpha = \sup A = \inf B$.

TEOREMA 12. Esiste una corrispondenza biunivoca ordinata tra \mathbb{R} e l'insieme dei punti di una retta r.

DIM. Sappiamo rappresentare su r i numeri razionali. Dato $\alpha = (A, B)$, i punti provenienti dai numeri di A individuano una semiretta di origine un punto P al quale si attribuisce ascissa α . Abbiamo così un'applicazione di $\mathbb R$ in r. È facile vedere che questa è biiettiva e che, al crescere di α in $\mathbb R$, il corrispondente punto $P(\alpha)$ si muove su r in uno dei due versi possibili.

In \mathbb{R} si introducono le operazioni di somma e prodotto. Siano $\alpha = (A, B)$ e $\alpha' = (A', B')$.

Somma. Sappiamo che se a, a', b, b' sono, rispettivamente, elementi di A, A', B, B', allora si ha a + a' < b + b'. Dunque le classi di numeri razionali A'' e B'' definite da

$$A'' := \{a + a': a \in A, a' \in A'\}$$
 e $B'' := \{b + b': b \in B, b' \in B'\}$

sono separate. Si prova poi che esse sono anche contigue. Esiste dunque uno ed un solo elemento separatore fra A'' e B'' che viene assunto, per definizione, come $\alpha + \alpha'$.

Prodotto di numeri reali positivi. Sappiamo che se a, a', b, b' sono elementi positivi rispettivamente di A, A', B, B', allora si ha (0 <) aa' < bb'. Dunque le classi di numeri razionali A^* e B^* definite da

$$A^* := \{aa': (a \in A) \land (a > 0) \land (a' \in A') \land (a' > 0)\}$$

e $B^* := \{bb': (b \in B) \land (b' \in B')\}$

sono separate. Si prova poi che esse sono anche contigue. Esiste dunque uno ed un solo elemento separatore fra A^* e B^* che viene assunto, per definizione, come $\alpha\alpha'$.

Ricordiamo la

DEFINIZIONE. Dato un numero reale x si chiama valore assoluto di x il numero reale

$$|x| := \begin{cases} x & \text{se è } x \ge 0 \\ -x & \text{se è } x < 0. \end{cases}$$

Prodotto di numeri reali qualsiasi. Dati due numeri reali α e α' , si definisce il loro prodotto come segue: Si assume intanto $|\alpha\alpha'| = |\alpha| \times |\alpha'|$; inoltre si adotta la ben nota regole dei segni (ossia: $\alpha\alpha'$ è positivo se e solo se α e α' hanno segni concordi, negativo se α e α' hanno segni discordi). In particolare, $\alpha\alpha'$ è nullo se e solo se è nullo uno dei due fattori.

Si dimostra poi che le operazioni ora definite godono di tutte le proprietà formali di cui godevano le analoghe operazioni in \mathbb{Q} e che per i numeri razionali i risultati sono quelli già noti.

Tenuto poi conto del Teorema 10, tutto ciò è riassunto dal

TEOREMA 13. \mathbb{R} è un corpo commutativo (o campo) ordinato e continuo.

Osservazione. Tra due numeri razionali c'è sempre almeno un numero irrazionale. Infatti, dati $a, b \in \mathbb{Q}$, basta prendere il numero $a + \frac{b-a}{\sqrt{2}}$.

Le nozioni di *parte intera* e *mantissa* definite nel § 4 per i numeri razionali si estendono in modo del tutto naturale ai numeri reali.

Sussiste il seguente Teorema di cui tralasciamo la dimostrazione.

TEOREMA 14. Sia S l'insieme delle scritture del tipo A + 0, $a_1a_2a_3 \dots a_n \dots$, con $A \in \mathbb{Z}$, $0 \le a_n \le 9$ e con a_n non definitivamente uguale a 9. Introduciamo in S l'ordinamento lessicografico (ossia quello del vocabolario). Tra gli insiemi \mathbb{R} e S esiste una corrispondenza biunivoca e ordinata.

Adesso che in \mathbb{R} abbiamo le operazioni, possiamo stabilire i seguenti risultati che caratterizzano, rispettivamente, l'estremo superiore e l'estremo inferiore di un insieme di numeri reali.

TEOREMA 15. Sia E un insieme non vuoto e superiormente limitato di numeri reali. Un numero reale λ è l'estremo superiore di E se e solo se soddisfa alle due seguenti proprietà

- 1) $(\forall x \in E)(x \leq \lambda)$,
- 2) $(\forall \ \epsilon > 0)(\exists \ x \in E)(x > \lambda \epsilon)$.

DIM. La (1) equivale a dire che λ è una limitazione superiore di E. La (2) dice che, invece, ogni numero minore di λ , che si può sempre scrivere nella forma λ - ε , non lo è più. Le due proprietà prese assieme dicono dunque che λ è la minima limitazione superiore di E.

TEOREMA 15'. Sia E un insieme non vuoto e inferiormente limitato di numeri reali. Un numero reale μ è l'estremo inferiore di E se e solo se soddisfa alle due seguenti proprietà

- 1) $(\forall x \in E)(x \ge \mu)$,
- 2) $(\forall \epsilon > 0)(\exists x \in E)(x < \mu + \epsilon)$.

Si è visto che, se l'insieme E è superiormente illimitato, si dice che è sup $E=+\infty$. È dunque sup $E=+\infty$ se e solo se $(\forall M \in \mathbb{R})(\exists x \in E)(x>M)$.

Similmente, se l'insieme E è inferiormente illimitato, si dice che è inf $E = -\infty$. È dunque inf $E = -\infty$ se e solo se $(\forall M \in \mathbb{R})(\exists x \in E)(x < M)$.

Proviamo ora che la definizione di classi contigue di \mathbb{R} data in questo paragrafo è in accordo con quella data nel \S 5 per i numeri razionali

TEOREMA 16. Due classi separate A e B di numeri reali sono contigue se e solo se

(*)
$$(\forall \ \varepsilon > 0)(\exists \ a \in A)(\exists \ b \in B)(b - a < \varepsilon).$$

DIM. Se le due classi sono contigue, si ha $\sup A = \inf B = \lambda$. Fissiamo ora un $\varepsilon > 0$. Per i Teoremi precedenti, esistono $a \in A$ e $b \in B$ tali che $a > \lambda - \varepsilon/2$ e $b < \lambda + \varepsilon/2$. Si ha dunque $b - a < \varepsilon$. Pertanto la (*) è verificata. Viceversa, se le classi non sono contigue, si ha $\sup A = \alpha < \beta = \inf B$. Per ogni $a \in A$ e per ogni $b \in B$ si ha allora $b - a \ge \beta - \alpha$. In questo caso, la (*) non sussiste. \blacksquare

ESEMPI. 3) Sia $E = \left\{ \frac{2x}{1+x} : x \in \mathbb{R}^+ \right\}$. Proviamo che è sup A = 2. Essendo x > 0, si

a)
$$\frac{2x}{1+x} = 2\frac{x}{1+x} < 2$$
.

b) Dato
$$\varepsilon > 0$$
, si ha: $\frac{2x}{1+x} > 2 - \varepsilon \Leftrightarrow 2x > (1+x)(2-\varepsilon) \Leftrightarrow \varepsilon x > 2 - \varepsilon \Leftrightarrow x > \frac{2-\varepsilon}{\varepsilon}$.

4) Sia
$$A = \left\{ \frac{3+2x}{1+x} : x \in \mathbb{R}^+ \right\}$$
. Proviamo che è trif $A = 2$. Essendo $x > 0$, si ha:

a)
$$\frac{3+2x}{1+x} = 2 + \frac{1}{1+x} > 2$$
.

b) Dato
$$\varepsilon > 0$$
, si ha: $\frac{3+2x}{1+x} < 2+\varepsilon \Leftrightarrow 3+2x < (1+x)(2+\varepsilon) \Leftrightarrow \varepsilon x > 1-\varepsilon \Leftrightarrow x > \frac{1-\varepsilon}{\varepsilon}$.

5) Sia $A = \left\{\frac{1}{x}: |x| < 2, \ x \neq 0\right\}$. Proviamo che è inf $A = -\infty$. Dobbiamo cioè provare che l'insieme A è inferiormente illimitato. Fissiamo dunque un $M \in \mathbb{R}$. È lecito supporre M < 0 e possiamo anche limitarci agli x < 0; si ha: $\frac{1}{x} < M \Leftrightarrow x > \frac{1}{M}$. Dovendo però essere anche x > -2, si prendono gli x tali che $x > \max\{-2, M^{-1}\}$.

§ 7. INTERVALLI E INTORNI

DEFINIZIONE. Fissati $a, b \in \mathbb{R}$, si chiamano *intervalli limitati* di *estremi a* e b gli insiemi:

 $]a, b[:= \{x: a < x < b\}, intervallo aperto;$

 $[a, b] := \{x: a \le x \le b\}$, intervallo *chiuso*;

 $[a, b] := \{x: a < x \le b\}$, intervallo aperto a sinistra e chiuso a destra;

 $[a, b] := \{x: a \le x < b\}$, intervallo *chiuso a sinistra* e *aperto a destra*.

Fissato $a \in \mathbb{R}$, si chiamano *intervalli illimitati* di *estremo a* gli insiemi:

 $]a, +\infty[:= \{x: x > a\},]-\infty, a[:= \{x: x < a\}, intervalli illimitati aperti;$

 $[a, +\infty[:= \{x: x \ge a\},]-\infty, a] := \{x: x \le a\},$ intervalli illimitati *chiusi*;

si pone poi $]-\infty, +\infty[:= \mathbb{R},$ intervallo illimitato *aperto e chiuso*.

La proprietà caratterizzante gli intervalli è espressa dal seguente teorema, la cui dimostrazione è lasciata per esercizio al Lettore.

TEOREMA 17. Gli intervalli sono tutti e soli i sottoinsiemi I di \mathbb{R} con più di un elemento che godono della seguente proprietà (cfr. Esercizio 6):

Dati
$$x, y, z \in \mathbb{R}$$
, con $x < y < z$, da $x, z \in I$ segue $y \in I$.

Per ragioni di comodità, si chiamano *intervalli degeneri* gli insiemi formati da un solo punto e all'insieme vuoto si dà il nome di *intervallo nullo* e ciò per rendere vero il seguente risultato

TEOREMA 18. L'intersezione di quanti si vogliano intervalli è un intervallo.

DIM. Sia data un'arbitraria famiglia di intervalli e tre elementi x < y < z. Se x e z appartengono a tuteli gli intervalli della famiglia, accade lo stesso anche per y.

DEFINIZIONE. Dato un intervallo limitato di estremi a e b, il punto $x_0 = \frac{a+b}{2}$ è detto il suo *centro*. Si chiama poi *raggio* o *semiampiezza* dell'intervallo il numero $r = b - x_0 = x_0 - a$, mentre al numero b - a si dà il nome di *diametro* o *ampiezza* dell'intervallo.

Dunque l'intervallo aperto di centro x_0 e raggio δ , con $\delta > 0$, è l'insieme $]x_0 - \delta$, $x_0 + \delta[$. Ogni punto di un intervallo che non sia uno dei suoi estremi è detto *interno* all'intervallo.

TEOREMA 19 (di Cantor). Data una successione $(I_n)_n$ di intervalli chiusi e limitati, decrescente per inclusione (ossia tale che $I_n \supset I_{n+1}$) esiste almeno un elemento comune a tutti gli intervalli. Se poi l'ampiezza degli intervalli diventa arbitrariamente piccola, il punto comune è unico.

DIM. Sia $I_n = [a_n, b_n]$. Essendo $I_n \supset I_{n+1}$, si ha $a_n \le a_{n+1}$ e $b_n \ge b_{n+1}$. Dati $m, n \in \mathbb{N}$, sia k un naturale maggiore di entrambi. Si ha $a_n \le a_k < b_k \le b_m$. Dunque le due classi numeriche $A = \{a_n : n \in \mathbb{N}\}$ e $B = \{b_n : n \in \mathbb{N}\}$ sono separate. Per il Teorema 11, esiste un elemento x tale che $a_n \le x \le b_m$, per ogni $m, n \in \mathbb{N}$. In particolare, si ha, per ogni $n \in \mathbb{N}$, $a_n \le x \le b_n$, da cui $x \in I_n$, dato che quest'ultimo intervallo è chiuso. La seconda parte del teorema è poi immediata, dato che, se l'ampiezza degli intervalli diventa arbitrariamente piccola, le classi $A \in B$ sono contigue. \blacksquare

Si noti che se gli intervalli di partenza non sono chiusi e limitati, l'intersezione *può* essere vuota

ESEMPI. 1) Sia, per ogni $n \in \mathbb{N}^+$, $I_n = \left]0, \frac{1}{n}\right]$. Gli intervalli sono limitati ma non chiusi; la loro intersezione è vuota.

- 2) Sia, per ogni $n \in \mathbb{N}$, $I_n = [n, +\infty[$. Gli intervalli sono chiusi ma illimitati; la loro intersezione è vuota.
- 3) Sia, per ogni $n \in \mathbb{N}^+$, $I_n = \left] \frac{1}{n}, \frac{1}{n} \right[$. Gli intervalli non sono chiusi e limitati, ma la loro intersezione non è vuota, essendo data da $\{0\}$.

Il Teorema di Cantor dà una condizione sufficiente, ma non necessaria.

DEFINIZIONE. Dato $x_0 \in \mathbb{R}$, si chiama *intorno di* x_0 ogni sottoinsieme di \mathbb{R} contenente un intervallo aperto di centro x_0 .

ESEMPI. 4) Ogni intervallo aperto (in particolare \mathbb{R}) è intorno di ogni suo punto. Ogni intervallo non aperto è intorno di ogni suo punto interno, ma non dei suoi estremi.

- 5) Q non è intorno di nessuno dei suoi punti.
- 6) L'insieme $E = [1, 2[\cup \{3\} \text{ non è un intorno né di 3 né di 1, mentre è un intorno di } x = 1,000001.$

NOTAZIONE. Indicheremo con $\mathbb{U}(x)$ l'insieme degli intorni di un punto x. È dunque $\mathbb{U}(x) := \{U: U \text{ è un intorno di } x\}.$

TEOREMA 20. 1) Ogni intorno di un punto contiene il punto stesso.

- 2) Se U è un intorno di x_0 e $V \supset U$, allora anche V è un intorno di x_0 .
- 3) Se U e V sono intorni di x_0 , allora è tale anche l'insieme $U \cap V$.
- 4) Se è $x_0 \neq y_0$, allora esistono un $U \in \mathcal{U}(x_0)$ e un $V \in \mathcal{U}(y_0)$ tali che $U \cap V = \emptyset$.

DIM. Se $U \in U(x_0)$, allora, per definizione, esiste un intervallo aperto I di centro x_0 contenuto in U; dunque $x_0 \in U$ (Prop. 1). Se poi è $U \subset V$, si ha anche $I \subset V$, e quindi anche V è intorno di x_0 (Prop. 2). Se U e V sono intorni di un punto x_0 , esistono un intervallo I' contenuto in U e un intervallo I'' contenuto in V, entrambi con centro in x_0 ; quello dei due intervalli che ha il raggio più piccolo è contenuto in $U \cap V$ che è dunque ancora un intorno di x_0 (Prop. 3).

Per provare la (4), basta prendere gli intervalli I_1 di centro x_0 e raggio δ e I_2 di centro y_0 e raggio δ , con $0 < \delta < \frac{1}{2} |y_0 - x_0|$.

Si tenga ben presente che, nella pratica, l'uso degli intorni avverrà quasi sempre con frasi del tipo

"Per ogni intorno U di x_0 , esiste un punto y tale che ..."

"Esiste un intorno U di x_0 , per ogni punto y del quale ..."

Si accetta anche la seguente

DEFINIZIONE. Dato $x_0 \in \mathbb{R}$, si chiama *intorno sinistro di* x_0 ogni sottoinsieme di \mathbb{R} contenente un intervallo del tipo $]x_0 - \delta, x_0]$, con $\delta > 0$.

Dato $x_0 \in \mathbb{R}$, si chiama *intorno destro di x*₀ ogni sottoinsieme di \mathbb{R} contenente un intervallo del tipo $[x_0, x_0 + \delta[$, con $\delta > 0$.

Per ragioni di comodità, si dà anche la definizione di intorno di +∞, di -∞ e di ∞.

DEFINIZIONE. Si dice intorno di $+\infty$ ogni insieme che contiene una semiretta del tipo $]a, +\infty[$.

Si dice intorno di $-\infty$ ogni insieme che contiene una semiretta del tipo $]-\infty$, a[.

Si dice intorno di ∞ ogni insieme che contiene una coppia di semirette del tipo]- ∞ , $a[\cup]b, +\infty[$, o, ciò che è lo stesso, contiene un insieme del tipo $\{x: |x| > k\}$.

DEFINIZIONE. Si dice che un punto x è *interno* a un insieme E se esiste un intervallo aperto di centro x contenuto in E. L'insieme dei punti interni a un insieme E si chiama *interno* di E e si indica con *int* E o con E. Un punto E si dice *esterno* a un insieme E se è interno al complementare di E, ossia se esiste un intervallo aperto di centro E contenuto in E.

DEFINIZIONE. Un insieme E è detto *aperto* se ogni suo punto gli è interno o, equivalentemente, se E è intorno di ogni suo punto.

In altre parole, un insieme E è detto *aperto* se è $E = \stackrel{\circ}{E}$.

TEOREMA 21. *Una intervallo aperto è un insieme aperto.*

DIM. Dato $x \in I =]a$, b[, l'intervallo di centro x e raggiro r con $r < \min \{x - a, b - x\}$ è un intorno di x contenuto in I. Se è I =]a, $+\infty[$, basta prendere l'intervallo di centro x e raggio x - a. Analogamente per il caso $I =]-\infty$, a[. Se è $I = \mathbb{R}$, la cosa è banale.

DEFINIZIONE. Un punto x è detto di accumulazione per un insieme E se in ogni intorno di x cadono infiniti punti di E.

DEFINIZIONE. Un insieme E è detto *chiuso* se contiene tutti i suoi punti di accumulazione.

DEFINIZIONE. Un punto $x \in E$ che non sia di accumulazione per E è detto un punto *isolato* di E.

ESEMPI. 7) Ogni intervallo aperto è un insieme aperto (Teor. 21) e ogni intervallo chiuso è un insieme chiuso (Esercizio!). Sia I = [0,1[. I non è aperto, perché non è intorno di 0; I non è nemmeno chiuso, dato che 1 è di accumulazione per I, ma non gli appartiene.

Da tale esempio, si vede che: Esistono insiemi che non sono né aperti né chiusi!

- 8) Ø e \mathbb{R} sono sia aperti che chiusi (Esercizio!). Si potrebbe anzi dimostrare che in \mathbb{R} non ci sono altri insiemi che risultino contemporaneamente aperti e chiusi.
- 9) Consideriamo il sottoinsieme \mathbb{Q} di \mathbb{R} . \mathbb{Q} non ha punti interni; l'insieme dei suoi punti di accumulazione è tutto \mathbb{R} . Dunque \mathbb{Q} non è né aperto né chiuso.

10) Sia
$$E = \left\{ \frac{1}{n} : n \in \mathbb{N}^+ \right\}$$
. L'unico suo punto di accumulazione è 0 (che non appartiene a E).

Ovviamente, ogni insieme finito *E* non ha punti di accumulazione.

Ricordiamo che un sottoinsieme E di \mathbb{R} è detto *limitato* se ammette sia limitazioni inferiori che superiori, ossia se è contenuto in un intervallo [a, b].

Si vede subito che un sottoinsieme infinito e illimitato di \mathbb{R} può ammettere o non ammettere punti di accumulazione: basta considerare, da un lato \mathbb{N} o \mathbb{Z} , dall'altro, \mathbb{Q} o lo stesso \mathbb{R} .

Sussiste invece al riguardo il seguente risultato:

TEOREMA 22 (di Bolzano - Weierstrass). Ogni insieme infinito e limitato ammette almeno un punto di accumulazione.

DIM. Essendo E limitato, esiste un intervallo $I_0 = [a_0, b_0]$ che lo contiene. Diciamo m_0 il punto medio di I_0 . In almeno uno dei due sottointervalli $[a_0, m_0]$, $[m_0, b_0]$ cadono infiniti punti di E, dato che ciò avviene per la loro riunione. Sia questo $I_1 = [a_1, b_1]$. Operiamo su I_1 come su I_0 : lo dividiamo a metà e scegliamo uno dei due sottointervalli (chiusi) così trovati in modo che in esso cadano infiniti punti di E, ribattezzandolo $I_2 = [a_2, b_2]$. E così di seguito: dato $I_n = [a_n, b_n]$, lo si divide a metà, si prende uno dei due sottointervalli (chiusi) in cui cadono infiniti punti di E e lo si ribattezza $I_{n+1} = [a_{n+1}, b_{n+1}]$. Si ottiene così una successione di intervalli chiusi e limitati (per costruzione), decrescente per inclusione. Inoltre, l'ampiezza dell'n - imo intervallo I_n è data da $\frac{b-a}{2^n}$, che diventa, al crescere di n, arbitrariamente piccola. Per il

Teorema di Cantor, esiste uno ed un solo punto ξ comune a tutti gli I_n . Proviamo che ξ è di accumulazione per E. Fissiamo dunque un intorno U di ξ . Questo contiene un intervallo del tipo $]\xi - \delta, \xi + \delta[$. Preso ora un n per cui è $\frac{b-a}{2^n} < \delta$, si ha $I_n \subset]\xi - \delta, \xi + \delta[\subset U$. A questo punto abbiamo finito, dato che, per costruzione, in I_n cadono infiniti punti di E.

ESEMPIO. 11) Sia $E = \{n\pi - [n\pi]: n \in \mathbb{N}\}$. L'insieme E è limitato, dato che è contenuto nell'intervallo [0, 1]. Esso è anche infinito. Infatti, se così non fosse, dovrebbero esistere due multipli distinti di π che differiscono per un numero intero. L'insieme E ammette perciò almeno un punto di accumulazione. (In realtà ne ammette infiniti: precisamente tutti i punti di [0, 1].)

§ 8. I NUMERI COMPLESSI

Vedremo nel Capitolo 4 che un'equazione del tipo $x^n = a$, con $n \in \mathbb{N}^+$ e a > 0, ha sempre in \mathbb{R} una e una sola soluzione positiva. Rimane però il problema che nemmeno in \mathbb{R} ha soluzioni l'equazione $x^2 + 1 = 0$. Dobbiamo dunque costruire un nuovo insieme, che indicheremo con \mathbb{C} , di numeri, detti *complessi*, in cui ci sia un elemento i il cui quadrato sia uguale a -1. Volendo che questo nuovo insieme contenga \mathbb{R} e abbia la struttura di corpo, esso dovrà contenere tutti i numeri esprimibili nella forma a + bi, con $a, b \in \mathbb{R}$. Inoltre, dovendo valere le note proprietà formali delle operazioni, dovrà aversi

$$(a+bi)+(c+di)=(a+c)+(b+d)i;$$
 $(a+bi)(c+di)=(ac-bd)+(ad+bc)i.$

DEFINIZIONE. Dicesi insieme dei numeri complessi l'insieme

$$\mathbb{C} := \{(a, b): a, b \in \mathbb{R}\} (= \mathbb{R}^2),$$

in cui si introducono le seguenti operazioni:

$$(a, b) + (c, d) := (a + c, b + d);$$
 $(a, b)(c, d) := (ac - bd, ad + bc).$

Si constata facilmente che:

- * le operazioni di somma e prodotto così definite sono entrambi associative e commutative:
- * il prodotto è distributivo rispetto alla somma;
- * (0, 0) è elemento neutro rispetto alla somma e (1, 0) è elemento neutro rispetto al prodotto;
- * (-a, -b) è l'opposto di (a, b).

Proviamo inoltre che ogni elemento $(a, b) \neq (0, 0)$ ha reciproco. Cerchiamo dunque un elemento $(x, y) \neq (0, 0)$ tale che (a, b)(x, y) = (1, 0). Essendo, per definizione, (a, b)(x, y) = (ax - by, ay + bx), ciò accade se e solo se x e y soddisfano al sistema

$$\begin{cases} ax - by = 1 \\ bx + ay = 0 \end{cases}$$

Risolvendo il sistema, si ottiene

$$(x, y) = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right).$$

Si ha poi:

$$(0, 1)^2 = (0, 1)(0, 1) = (-1, 0).$$

e ancora

$$(a, b) = (a, 0) + (0, b) = (a, 0) + (b, 0)(0, 1).$$

Il sottoinsieme di \mathbb{C} formato dalle coppie del tipo (a,0) è isomorfo a \mathbb{R} . Fra i due insiemi c'è cioè una corrispondenza biunivoca che conserva le operazioni. Conveniamo dunque di identificare questi due insiemi.

A questo punto possiamo dire che \mathbb{R} è un sottoinsieme di \mathbb{C} e convenire di scrivere semplicemente x in luogo di (x, 0). Se poi accettiamo di indicare il numero complesso (0, 1) con i, si ottiene che ogni numero complesso z può essere scritto nella forma

$$z = x + yi$$
, con $x, y \in \mathbb{R}$.

I conti con i numeri complessi si fanno normalmente; l'unica novità è data dal fatto che, come sappiamo, è $i^2 = -1$. Si tenga ben presente che

TEOREMA 23. Nell'insieme \mathbb{C} dei numeri complessi non si può definire una relazione d'ordine totale che sia compatibile con le operazione di somma e prodotto.

DIM. Supponiamo, per assurdo, che esista un ordinamento totale di \mathbb{C} compatibile con le operazioni di somma e prodotto. Osserviamo, intanto che il quadrato di un numero non nullo deve essere positivo. Inoltre, dato $a \neq 0$, uno e uno solo dei numeri a e -a deve essere positivo. Ora, essendo $1^2 = 1$ e $i^2 = -1$, devono risultare positivi sia 1, sia -1. Si ha così un assurdo.

DEFINIZIONE. Il numero complesso i è detto *unità immaginaria*. Dato il numero complesso z = x + yi, i numeri reali x e y prendono, rispettivamente i nomi di *parte reale* e *coefficiente della parte immaginaria*. Ogni numero complesso con parte reale nulla è detto *immaginario puro*.

I numeri complessi sono, per costruzione, coppie di numeri reali. È dunque naturale rappresentarli come punti di un piano detto appunto *piano complesso* o di *Gauss*.

ESEMPI. 1) Si ha:

$$i^{0} = 1, i^{1} = i; i^{2} = -1, i^{3} = -i, i^{4} = 1, i^{5} = i; i^{6} = -1, i^{7} = -i, \dots, i^{4n} = 1, i^{4n+1} = i; i^{4n+2} = -1, i^{4n+3} = -i, \dots$$
2) Si ha:
$$(3+i)(1-2i) = 3+2+(-6+1)i = 5-5i.$$

$$(2-i)^{4} = 2^{4}-4\times2^{3}i-6\times2^{2}+4\times2i+1=-7-24i.$$

$$(\sqrt{2}+i)(\sqrt{2}-i) = 2-i^{2} = 3.$$
3) Si ha:
$$\frac{1}{i} = -i; \qquad \frac{1}{3+i} = \frac{3-i}{(3+i)(3-i)} = \frac{3-i}{10} = \frac{3}{10} - \frac{1}{10}i.$$

Il coniugio nel campo complesso

DEFINIZIONE. Dato il numero complesso z = a + ib, si chiama suo (*complesso*) *coniugato* il numero $\overline{z} = a - ib$.

Nel piano di Gauss, il coniugato di un numero z è il simmetrico rispetto all'asse reale.

TEOREMA 24. Sia ω : $\mathbb{C} \to \mathbb{C}$ l'applicazione definita da $\omega(z) = \overline{z}$, ossia da $\omega(x + yi) = x$ - yi. Allora:

- 1) Si ha: $\omega(\omega(z)) = z$.
- 2) L'applicazione ω è biiettiva.
- 3) Si ha $\omega(z_1 + z_2) = \omega(z_1) + \omega(z_2)$; $\omega(z_1 z_2) = \omega(z_1) \omega(z_2)$.
- 4) Si ha $\omega(z) = z$ se e solo se z è un numero reale.

DIM. 1) Si ha $\omega(\omega(x+yi)) = \omega(x-yi) = x+yi$.

- 2) Dalla (1) segue intanto che l'applicazione ω è suriettiva. Sia ora $z_1 = x_1 + iy_1 \neq z_2 = x_2 + iy_2$. È dunque $(x_1 \neq x_2) \vee (y_1 \neq y_2)$, da cui anche $\omega(z_1) \neq \omega(z_2)$.
 - 3) Si ha:

$$\omega(z_1) + \omega(z_2) = \omega(x_1 + iy_1) + \omega(x_2 + iy_2) = (x_1 - iy_1) + (x_2 - iy_2) =$$

$$= (x_1 + x_2) - (y_1 + y_2)i = \omega(z_1 + z_2).$$

$$\omega(z_1) \omega(z_2) = \omega(x_1 + iy_1) \omega(x_2 + iy_2) = (x_1 - iy_1)(x_2 - iy_2) =$$

$$= (x_1x_2 - y_1y_2) - (x_1y_2 + x_2y_1)i = \omega(z_1z_2).$$

4) Si ha $\omega(z) = z$ se e solo se è x - iy = x + iy e dunque se e solo se è y = -y.

Tutto ciò si esprime dicendo che

Il coniugio (ossia l'applicazione che ad ogni numero complesso associa il suo coniugato) è un automorfismo involutorio di \mathbb{C} , in cui sono uniti tutti e soli i numeri reali.

Si tenga inoltre ben presente il seguente risultato di immediata verifica.

TEOREMA 25. Per ogni numero complesso z = x + iy, i numeri $z + \overline{z}$ e $z\overline{z}$ sono reali e si ha

$$z + \overline{z} = 2x$$
; $z\overline{z} = x^2 + y^2$.

Della forma trigonometrica dei numeri complessi parleremo nel Capitolo 4.

ESEMPIO. 4) Si ricercano i numeri complessi z = x + yi per cui risulta reale il numero complesso $w = \frac{1 + \overline{z}}{z - i}$.

Intanto deve essere $z \neq i$. Ciò posto, si ha:

$$w = \frac{(x+1)-iy}{x+(y-1)i} = \frac{(x+1)-iy}{x+(y-1)i} \frac{x-(y-1)i}{x-(y-1)i} =$$

$$=\frac{x(x+1)-y(y-1)}{x^2+(y-1)^2}-\frac{(x+1)(y-1)+xy}{x^2+(y-1)^2}i,$$

che è reale se e solo se si ha $((x + 1)(y - 1) + xy) = 0) \land ((x, y) \ne (0, 1))$, ossia se e solo se è

$$(2xy - x + y - 1 = 0) \land ((x, y) \neq (0,1)).$$

Nel piano di Gauss, ciò rappresenta un'iperbole equilatera privata del punto (0, 1).

§ 9. ESERCIZI

1) Si provi che, nell'insieme \mathbb{N} , il *Principio del massimo* è una conseguenza del *Principio del minimo* e dell'esistenza dell'immediato precedente.

[Dato un insieme non vuoto e superiormente limitato $A \subset \mathbb{N}$, si consideri l'insieme $K = \{L: x < L, \forall x \in A\}$. Per il *Principio del minimo*, esiste $m = \min K$. Essendo $A \neq \emptyset$, deve aversi m > 0. Si prova poi che è $m - 1 = \max A$.]

2) Si provino per induzione le seguenti uguaglianze o disuguaglianze:

a)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}, \quad n \ge 1;$$

b)
$$1 - 3 + 5 - 7 + \dots + (-1)^n (2n + 1) = (-1)^n (n + 1), \quad n \ge 0$$

c)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \ge \frac{3}{2} - \frac{1}{n+1}$$
, $n \ge 1$;

d)
$$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}, \qquad n \ge 1;$$

$$z) \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}, \qquad n \ge 1.$$

- 3) Si trovino le frazioni generatrici dei numeri periodici $2,3\overline{41}$; -6 + $0,\overline{8}$. Si applichi lo stesso procedimento anche alla scrittura $0,\overline{9}$; cosa si scopre?
- 4) Si provi che dati due numeri razionali (o reali) positivi a e b, si ha a < b, se e solo se è 1/a > 1/b.

5) Posto
$$A = \left\{ \frac{x-1}{2+x} : x \in \mathbb{R}^+ \right\}$$
, si provi che è sup $A = 1$.

Posto
$$A = \left\{ \frac{2 + x}{1 + x} : x \in \mathbb{R}^+ \right\}$$
, si provi che è inf $A = 1$.

Posto
$$A = \left\{ \frac{1}{|x|} : x \neq 0, -2 \leq x \leq 1 \right\}$$
, si provi che è inf $A = \frac{1}{2}$.

Posto
$$A = \left\{ -\frac{1}{|x|} : x \neq 0, -2 < x < 1 \right\}$$
, si provi che è inf $A = -\infty$.

- 6) Si provi il Teorema 17.
- 7) Si trovino i punti di accumulazione dei seguenti insiemi di numeri reali; per ciascuno di essi, si dica poi se è un insieme aperto e se è un insieme chiuso:

$$\{x: x > 0\}, \quad \{x: x \le 0\}, \quad \{x: |x| < 2\} \cup \{2\}, \quad \{x: x^2 = 3\}, \quad \{x: x^3 < 3\},$$

$$\left\{ \frac{n}{n+1}: n \in \mathbb{N} \right\}, \quad \left\{ \frac{1}{n}: n \in \mathbb{N}^+ \right\} \cup \left\{ 1 - \frac{1}{n}: n \in \mathbb{N}^+ \right\}, \quad \left\{ \frac{n+2}{n^2+2}: n \in \mathbb{N}^+ \right\}.$$

8) Si risolvano le seguenti disequazioni:

$$\frac{x+1}{x} - 2 > \frac{x-1}{x};$$
 $\frac{2x+3}{x-1} - \frac{3}{1-x} + 2 > 0;$ $\frac{3x}{x-2} + \frac{4}{x+2} < 0.$

9) Si verifichino le seguenti proprietà del valore assoluto:

$$|a| \ge 0;$$
 $|a| = 0$ se e solo se è $a = 0;$ $|a| = |-a|;$ $|ab| = |a| |b|;$ $|a + b| \le |a| + |b|;$ $|a| < b \Leftrightarrow -b < a < b;$ $|a| > b \Leftrightarrow (a < -b) \lor (a > b);$ $||a| - |b|| \le |a - b| \le |a| + |b|.$

10) Si risolvano le seguenti disequazioni:

$$|x+1| > 2;$$
 $|2x-3| - |x+4| < 5;$ $||x-1| + x| \ge x;$ $|5-x| < |2x-3|;$
 $x > \sqrt{2x^2 - x - 3};$ $\sqrt{4x^2 - 9} > \sqrt{2}x;$ $\sqrt{|2x+1| - 1} \ge x - 3;$

$$\frac{|x+2|-|x-1|}{1-\sqrt[3]{x^2-1}} > 0; \qquad \frac{\sqrt{x^2-1}+x-2}{x} \ge 0.$$

[Esempi.

1)
$$x > \sqrt{2x^2 - 8} \Leftrightarrow \begin{cases} x \ge 0 \\ 2x^2 - 8 \ge 0 \\ x^2 > 2x^2 - 8 \end{cases} \Leftrightarrow \begin{cases} x \ge 0 \\ x^2 \ge 4 \\ x^2 < 8 \end{cases} \Leftrightarrow 2 \le x < \sqrt{8}.$$
2) $x < \sqrt{8 - x^2} \Leftrightarrow \begin{cases} x < 0 \\ 8 - x^2 \ge 0 \end{cases} \lor \begin{cases} x \ge 0 \\ x^2 < 8 - x^2 \end{cases} \Leftrightarrow \begin{cases} x < 0 \\ x^2 < 8 - x^2 \end{cases} \Leftrightarrow \begin{cases} x < 0 \\ x^2 < 8 - x^2 \end{cases} \Leftrightarrow \begin{cases} x < 0 \\ x^2 < 8 - x^2 \end{cases} \Leftrightarrow \begin{cases} x < 0 \\ x^2 < 4 \end{cases} \Leftrightarrow x \in [-\sqrt{8}, 0[\cup [0, 2[= [-\sqrt{8}, 2[.]]]]) \end{cases}$

La cosa importante da tener presente è che si può elevare al quadrato i membri di una disequazione se e solo se questi sono entrambi positivi.]

11) Si eseguano i seguenti calcoli con i numeri complessi:

$$(2-i)^2 - (3+i)(3-i);$$
 $i(1-i)^2(1-3i);$ $(1+i^3+i^6+i^9+i^{12})^2;$ $(1-i)^3(1-i)^2 - (1+i)^2(1-i)^3;$ $(1-i)^5;$ $(2-i)^4.$

12) Si ricerchino i reciproci dei seguenti numeri complessi:

$$2i;$$
 $-5i;$ $2-i;$ $\frac{1}{\sqrt{3}}+i;$ $5-24i;$ $\frac{1}{3-4i};$ $\pi-\pi i.$

13) Si eseguano i seguenti calcoli con i numeri complessi:

$$3i + \frac{2}{i}$$
; $\frac{1-2i}{1+2i}$; $\frac{1-2i}{(1+2i)^2}$; $\left(1 + \frac{1}{1+i}\right)^2$.

14) Per ciascuna delle seguenti funzioni w = w(z), si ricerchino i numeri complessi z = x + yi per cui il numero w risulta reale e si rappresentino le soluzioni nel piano di Gauss:

$$(z+\overline{z})^5;$$
 $\frac{z+i}{z-1};$ $iz\overline{z};$ $z^2+\overline{z}^2;$ $\frac{z}{\overline{z}}-i.$

15) Si rappresenti nel piano di Gauss il luogo dei numeri complessi per cui risulta

$$|2z-1| \le |z-\overline{z}-1|$$
.