## Ch 10: Seasonal models

#### Motivating example

- ► Carbon dioxide (CO<sub>2</sub>) levels, as monitored montly in Canada, near the Artic circle.
- Interesting data! What's going on? How to forecast future outcomes?

#### Exhibit 10.2 Carbon Dioxide Levels with Monthly Symbols



## CO<sub>2</sub> data series: does a simple regression model work?

- ▶ If you are familiar with regression analysis, you may consider fitting a model with a time trend and dummies to capture the seasonal variation (e.g., one dummy for each month except for January).
- ► However, residuals turn out to be autocorrelated, so we need to use time series analysis techniques to account for the autocorrelation in the series.
- We can use seasonal models!
  - Material: Ch.10, material from all sections but 10.3 and 10.5 are not covered in detail.



# Seasonal ARIMA models: intro with an example

Suppose

$$Y_t = e_t - \Theta e_{t-12}, \tag{1}$$

where t here refers to time in months.

- ▶ What is  $\rho_k$  for k = 1, 2, ...?
- ▶ We find  $\rho_k \neq 0$  for k = 12 only (when considering k > 0), e.g.

$$Cov(Y_t, Y_{t-1}) = Cov(e_t - \Theta e_{t-12}, e_{t-1} - \Theta e_{t-13}) = 0,$$

$$Cov(Y_t, Y_{t-12}) = Cov(e_t - \Theta e_{t-12}, e_{t-12} - \Theta e_{t-24}) = -\Theta \sigma_e^2.$$

- You can consider the model in Eq. 1
  - ▶ an MA(12) model with  $\theta_i = 0$  for i = 1, 2, ..., 11, or
  - ▶ a seasonal MA(1) model of order 1 with seasonal period s = 12 and only one parameter  $\Theta$ .

# Seasonal MA(Q) models

▶ A seasonal MA(Q) model of order Q with seasonal period s is defined by

$$Y_t = e_t - \Theta_1 e_{t-s} - \Theta_2 e_{t-2 \cdot s} - \ldots - \Theta_Q e_{t-Q \cdot s}$$

with seasonal MA characteristic polynomial

$$\Theta(x) = 1 - \Theta_1 x^{\mathfrak{s}} - \Theta_2 x^{2 \cdot \mathfrak{s}} - \ldots - \Theta_Q x^{Q \cdot \mathfrak{s}}.$$

This corresponds to a non-seasonal MA( $Q \cdot s$ ) model but with a lot less parameters (more parsimonious model representation), e.g.  $\theta_i \neq 0$  only for  $i = s, 2 \cdot s, \ldots, Q \cdot s$ .

# Seasonal AR(P) models

► A seasonal AR(P) model of order P with seasonal period s is defined by

$$Y_t = \Phi_1 Y_{t-s} + \Phi_2 Y_{t-2 \cdot s} + \ldots + \Phi_P Y_{t-P \cdot s} + e_t,$$

with seasonal AR characteristic polynomial

$$\Phi(x) = 1 - \Phi_1 x^{\mathfrak{s}} - \Phi_2 x^{2 \cdot \mathfrak{s}} - \ldots - \Phi_P x^{P \cdot \mathfrak{s}}.$$

- ▶ For these models,  $\rho_{k \cdot s} \neq 0$  for k = 0, 1, 2, ... only.
- **Example:** Seasonal stationary AR(1) model with s = 12 months:

$$Y_t = \Phi Y_{t-12} + e_t$$

▶ Multiply by  $Y_{t-k}$ , take expectations, and divide by  $\gamma_0$  to get

$$\rho_k = \Phi \rho_{k-12}$$
 for  $k \ge 1$ .

- ▶ Then  $\rho_{12} = \Phi$ ,  $\rho_{24} = \Phi \rho_{12} = \Phi^2$  etc.:  $\rho_{k \cdot s} = \Phi^k$  for k = 1, 2, ...
- All other  $\rho$ 's are zero, e.g.  $\rho_1 = \Phi \rho_{11}$  and  $\rho_{11} = \Phi \rho_1$  which implies  $\rho_1 = \rho_{11} = 0$  for  $\Phi \neq 0$ .
- What if there is autocorrelation at seasonal AND low lags?

## Multiplicative Seasonal ARMA models

- Usually, we have not only seasonal autocorrelation but also nonseasonal autocorrelation (for low lags of neighboring values).
- ► Let's look at parsimonious models that incorporate both: multiplicative seasonal ARMA models.
- ▶ These models become a bit complicated to write out in full; easier to use characteristic equations and the backshift operator *B*.
- Example (and review of B):
  - For a non-seasonal MA(1) model, with MA char. function  $\theta(x) = 1 \theta x$ , we can write

$$Y_t = e_t - \theta e_{t-1} = (1 - \theta B)e_t = \theta(B)e_t.$$
 (2)

For a seasonal MA(1) model with s=12, with seasonal MA char. function  $\Theta(x)=1-\Theta x^{12}$ , we write

$$Y_t = e_t - \Theta e_{t-12} = (1 - \Theta B^{12})e_t = \Theta(B)e_t.$$
 (3)

What happens when we combine both?

# Multiplicative Seasonal ARMA(0,1)x(0,1)<sub>12</sub> model

▶ For a non-seasonal MA(1) model, with MA char. eq.  $\theta(x) = 1 - \theta x$ , we can write

$$Y_t = e_t - \theta e_{t-1} = (1 - \theta B)e_t = \theta(B)e_t.$$
 (4)

For a seasonal MA(1) model with s=12, with seasonal MA char. eq.  $\Theta(x)=1-\Theta x^{12}$ , we write

$$Y_t = e_t - \Theta e_{t-12} = (1 - \Theta B^{12})e_t = \Theta(B)e_t.$$
 (5)

▶ When we combine both as follows, we obtain a multiplicative Seasonal ARMA(0,1)x(0,1)<sub>12</sub> model:

$$Y_{t} = \theta(B) \cdot \Theta(B)e_{t},$$

$$= (1 - \theta B)(1 - \Theta B^{12})e_{t},$$

$$= (1 - \theta B - \Theta B^{12} + \theta \Theta B^{13})e_{t},$$

$$= e_{t} - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}.$$

# ACF for ARMA(0,1)x(0,1)<sub>12</sub> model

▶ The multiplicative Seasonal ARMA $(0,1)x(0,1)_{12}$  model is given by:

$$Y_t = \theta(B) \cdot \Theta(B)e_t,$$
  
=  $e_t - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}.$ 

- ▶ Derive autocorrelation function as usual and find that  $\rho_k = 0$  for  $k \neq 0, 1, 11, 12, 13$ .
- ▶ Below are example ACFs for different values of the parameters.



# Multiplicative Seasonal ARMA models: general definition

- $\triangleright$   $Y_t$  is a multiplicative ARMA(p,q)x $(P,Q)_s$  process with
  - "mean parameter" (not the mean of  $Y_t!$ )  $\theta_0$ ,
  - seasonal period s,
  - ▶ AR characteristic polynomial  $\phi(x)\Phi(x)$  with

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p,$$
  

$$\Phi(x) = 1 - \Phi_s x^s - \Phi_2 x^{2 \cdot s} - \dots - \Phi_p x^{p \cdot s},$$

▶ MA characteristic polynomial  $\theta(x)\Theta(x)$  with

$$\theta(x) = 1 - \theta_1 x - \theta_2 x^2 - \dots - \theta_q x^q,$$
  

$$\Theta(x) = 1 - \Theta_1 x^s - \Theta_2 x^{2 \cdot s} - \dots - \Theta_Q x^{Q \cdot s},$$

if  $Y_t$  is defined as follows:

$$\phi(B)\Phi(B)Y_t = \theta_0 + \theta(B)\Theta(B)e_t.$$

# Second example: ARMA $(0,1)x(1,0)_{12}$

- Write out model expression!
- Using standard techniques, we find that for this model

$$\begin{split} \gamma_0 &= \left[\frac{1+\theta^2}{1-\Phi^2}\right] \sigma_e^2 \\ \rho_{12k} &= \Phi^k \text{ for } k \geq 1 \\ \rho_{12k-1} &= \rho_{12k+1} = \left(-\frac{\theta}{1+\theta^2} \Phi^k\right) \text{ for } k = 0, 1, 2, \dots \end{split}$$

Below are example ACFs for different values of the parameters.





## Back to CO2 data



#### Exhibit 10.5 Sample ACF of CO<sub>2</sub> Levels



- ▶ Does the sample ACF decay exponentially?
- ▶ What to do?

## Differenced CO2 data

- ▶ Difference the series as usual, to remove the time trend:  $X_t = \nabla Y_t = Y_t Y_{t-1}$  (reason for using  $X_t$  instead of  $W_t$  becomes clear in a bit).
- ightharpoonup Sample ACF for  $X_t$  is below.
- ► Can we use a stationary seasonal model now?

#### Exhibit 10.7 Sample ACF of First Differences of CO<sub>2</sub> Levels



## More differencing...

- After differencing to remove the time trend,  $X_t = \nabla Y_t = Y_t Y_{t-1}$ , we find that the sample ACF for lags 12,24,36, ... does not seem to decay exponentially (which we would expect under a seasonal ARMA model).
- ▶ What if we apply "seasonal differencing" to  $X_t$ :  $W_t = \nabla_{12}X_t = X_t X_{t-12} = \nabla_{12}\nabla Y_t = (Y_t Y_{t-1}) (Y_{t-12} Y_{t-13})$ .
- ▶ What does the sample ACF of  $W_t$  suggest?

## Exhibit 10.9 Sample ACF of First and Seasonal Differences of CO<sub>2</sub>



### Candidate model for CO2 data

▶ The sample ACF for  $W_t$  shows sign. autocorrelation for lags 1 and at/around lag 12, thus an ARMA(0,1)×(0,1)<sub>12</sub> model (with both a nonseasonal and a seasonal MA(1) part) may be appropriate for  $W_t$ :

$$W_t = \theta(B)\Theta(B)e_t,$$
  
=  $e_t - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}.$ 

- ► This type of model for a differenced series is an example of a non-stationary seasonal ARIMA models:
  - A process  $Y_t$  is a multiplicative ARIMA(p,d,q)x $(P,D,Q)_s$  model with seasonal period s, non-seasonal orders p,d,q and seasonal orders P,D,Q, if the differenced series  $W_t = \nabla^d \nabla^D_s Y_t$  follows an ARMA(p,q)x $(P,Q)_s$  model.
- ▶ What ARIMA(p, d, q)× $(P, D, Q)_s$  model for  $Y_t$  does the ARMA(0,1)× $(0,1)_{12}$  model for  $W_t = \nabla \nabla_{12} Y_t$  correspond to?

# How to fit these multiplicative (non-stationary) seasonal models?

- ► Remember that seasonal models are special cases of non-seasonal ARIMA models (with many parameters that are equal to zero).
- ▶ Use maximum likelihood estimation to obtain parameter estimates.
- Model diagnostics proceed as explained in Ch. 8.

## Exhibit 10.10 Parameter Estimates for the CO<sub>2</sub> Model

| Coefficient                                                                           | θ      | Θ      |
|---------------------------------------------------------------------------------------|--------|--------|
| Estimate                                                                              | 0.5792 | 0.8206 |
| Standard error                                                                        | 0.0791 | 0.1137 |
| $\hat{\sigma}_{\mathcal{E}}^2 = 0.5446$ : log-likelihood = $-139.54$ , AIC = $283.08$ |        |        |

<sup>&</sup>gt; m1.co2=arima(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=12))

<sup>&</sup>gt; m1.co2

## Forecasting multiplicative seasonal ARIMA models

- Same approach is used as discussed for nonseasonal ARIMA models.
- Simple example:  $ARIMA(0,0,0)x(0,1,1)_{12}$ :

$$\begin{array}{rcl} Y_{t} - Y_{t-12} & = & e_{t} - \Theta e_{t-12}, \\ Y_{t+g} - Y_{t+g-12} & = & e_{t+g} - \Theta e_{t+g-12}, \\ & \hat{Y}_{t}(1) = Y_{t-11} - \Theta e_{t-11} \\ & \hat{Y}_{t}(2) = Y_{t-10} - \Theta e_{t-10} \\ & \vdots \\ & \hat{Y}_{t}(12) = Y_{t} - \Theta e_{t} \end{array}$$

$$\hat{Y}_t(\ell) = \hat{Y}_t(\ell - 12)$$
 for  $\ell > 12$ 

- ► After 12 months, the monthly point forecasts do not change anymore!
- Ch. 10.5 gives more examples (optional).

## Forecasting the CO2 data series

#### Exhibit 10.17 Long-Term Forecasts for the CO<sub>2</sub> Model



<sup>&</sup>gt; plot(m1.co2,n1=c(2004,1),n.ahead=48,xlab='Year',type='b',
 ylab='CO2 Levels')

## Summary

- We discussed multiplicative seasonal ARIMA models.
- ► There's a bit of notation to get used to, but once we do get used to it, these models give a broad flexible class of time series model to deal with seasonal patterns.
- We focused on applying this type of modeling, using built-in R functions, to the CO2 time series to obtain forecasts that account for seasonal patterns.