

Contexte La disponiblit'es

2006

des syst`emes de fichiers

Plus de disponibilite

Dissocier les disques des serveurs

disponibilite'!
La course a` la
disponibilite'

Et Nous?

Disque dur local

- Un ordinateur, une carte mère, un contrôleur, une nappe, un disque dur, une table de partition, un système de fichiers, un système d'exploitation
- Des protocoles IDE, SATA, SCSI...
- Un contexte très protégé : tout est à l'intérieur d'un boitier ou au pire au bout de un mètre de câble
- Utilisation locale des données
- Si on utilise un disque externe : DAS (Direct Access Storage)

Contexte La disponiblit'es

des syst`emes de fichiers

disponibilité Dissocier les disques des serveurs

disponibilite'!

La course a` la
disponibilite'

Et Nous?

NFS/CIFS

- Partager des données sur un réseau
- D'un ordinateur (serveur avec ses disques locaux) vers des ordinateurs (clients)
- Protocole orienté Un vers Un : un client à la fois modifie un fichier
- NFS permet de gérer les verrous mais les accès multiples sont mal gérés, problèmes de cohérence de cache.
- CIFS (smb) est réservé au monde Windows comme NFS est réservé au monde Unix
- Un et un seul serveur met à disposition Un et un seul système de fichiers (le sien)
- Un serveur mettant à disposition son système de fichier est appelé un NAS (Network Acces Network)

Contexte

La disponiblit´es des syst`emes de fichiers

disponibilite Dissocier les disques des serveurs

Encore plus de disponibilite'!
La course a' la disponibilite'

Et Nous?

NAS/RAID

- Le NAS : c'est une première réponse à la disponibilité des systèmes de fichiers : accès multiples et distants
- Le RAID (Redundant Array of Independant Disks) est un système automatique de duplication des données au moment de l'écriture
- RAID matériel/logiciel est une autre réponse à la disponibilité : protection/sécurisation

Contexte La disponiblit'es

des syst`emes de fichiers

disponibilit Dissocier les disques des serveurs

disponibilite'!
La course a` la
disponibilite'

Et Nous?

NAS/RAID

- RAID 0 : entrelacement (stripping), on associe des disques visibles sous un seul disque et on éclate les écritures sur chaque disque : performances accrues
- RAID 1 : miroir, on utilise un disque miroir pour un disque de données : chaque écriture est double, chaque lecteur est unique
- . RAID 0+1 : miroir + entrelacement
- RAID 3 : N disques +1 pour une parité : un disque peut tomber en panne, la parité permet de retrouver l'information
- . RAID 5 : N+1 disques : la parité est entrelacée sur tous les disques
- . RAID 6 : N+2 disques : deux disques peuvent tomber en panne.
- . JBOD (Just a Bunch Of Disks) :des disques sans RAID/accumulation de disques

Contexte
La disponiblit´es
des syst`emes de
fichiers

Plus de disponibilite´ Dissocier les disques des serveurs

Encore plus de disponibilité !
La course a` la

Et Nous?

NAS/RAID

- Le NAS + RAID permet de rendre disponible des données sécurisées depuis un serveur vers des clients
- La réponse est satisfaisante pour le cas "général" (ajoutons une sauvegarde des données)
- En revanche :
 - Problèmes de performances : NFS est réputé lent (NFSv4 apporte juste un mieux)
 - Ne répond pas à l'effet de mode de la haute disponibilité par la redondance totale
 - Ne répond pas à la problématiques des accès concurrents fréquents (gestion de verrous : Locks)

Mathrice Nantes 14, 15 et 16 mars 2006

Contexte

La disponiblit'es des syst'emes de fichiers

Plus de disponibilite

Dissocier les disques des serveurs

Encore plus de disponibilité ! La course a` la

disponibilite

Plus de disponibilité

Maintenant, parlons de SAN, ISCSI

Contexte

La disponiblit'es des syst'emes de fichiers

disponibilit Dissocier les disques des serveurs

Encore plus de disponibilite !
La course a` la disponibilite '

Et Nous?

SAN

- Précédemment, les disques sont directement branchés aux serveurs qui distribuent les données.
- L'accès aux données depuis les clients passent par trois intermédiaires : le réseau, le serveur et les disques.
- Un élément de la chaîne en panne, les données sont perdues.
- Le protocole SCSI (Small Computer System Interface) permet de contrôler des supports de stockage (disques durs, périphériques à bandes).
- La contrainte est que l'acheminement reste matériellement très contrôlé (un câble court entre le disque et le contrôleur qui permet d'acheminer les blocs de données parallèlement, même principe qu'un port parallèle).
- Un câble SCSI va de 1m à 20m (grand maximum).

Contexte La disponiblit´es

des syst`emes de fichiers

Plus de disponibilite Dissocier les

Dissocier les disques des serveurs

disponibilite'!

La course a` la
disponibilite'

Et Nous?

SAN

- Une réponse est de dissocier disques et serveurs : le serveur accède aux disques via un réseau :
- Le Fibre Channel et plus récemment le ISCSI, ce sont des disques SAN (Storage Area Network)
- Acheminer SCSI sur un réseau pour profiter des mécanismes de typologie de réseau (étoile, bus, commutation, etc.)

Mathrice Nantes 14,15et16 mars 2006

Contex

La disponiblit'es des syst'emes de fichiers

Plus de disponibilite

Dissocier les disques des serveurs

disponibilite'!

La course a` la
disponibilite'

Et Nous?

ISCSI

- ISCSI est une réponse récente, le SAN du pauvre
- ISCSI encapsule des requêtes SCSI dans des paquets TCP, sur des trames Ethernet...
- S'appuie sur le matériel existant (tous les serveurs ont au moins une carte et sont connectés sur un réseau Ethernet)
- Les Baies ISCSI troquent le connecteur SCSI contre un connecteur Ethernet Gb/s

Contexte La disponiblit'es

des syst`emes de fichiers

Plus de disponibilite

Dissocier les disques des serveurs

Encore plus de disponibilite´! La course a` la disponibilite´

Et Nous?

Contexto

La disponiblit'es des syst'emes de fichiers

Plus de disponibilite

disques des serveurs

disponibilite

La course a` la

disponibilite'

Et Nous?

Les objectifs de ISCSI

- S'appuyer sur l'infrastructure existante (l'adressage IP et les commutateurs existants)
- Ne pas interférer avec le trafic existant (ne pas saturer un réseau)
- Utiliser les mécanismes TCP de garantie de trafic pour garantir le protocole SCSI
- Assurer la gestion SCSI sur un LAN
- S'appuie sur des réseaux Gb/s (pas 100Mb/s)
- Même sur du WAN (routeurs, etc.) !
- Une réponse très prometteuse !
- Mais...

Contexte
La disponiblit´es

des syst`emes de fichiers

Plus de disponibilis Dissocier les

Dissocier les disques des serveurs

disponibilite'!

La course a` la

disponibilite'

Et Nous ?

Les objectifs de ISCSI

- Un LAN, ou pire un WAN, n'est pas suffisamment sûr pour assurer ce trafic
- C'est coûteux au niveau du protocole (beaucoup de traitements d'erreurs)
- C'est coûteux au niveau de la CPU: un accès à un pilote SCSI coûte environ 5.000 cycles de CPU, contre 50.000 cycles au moins pour un empilement TCP/IP.
- TCP/IP : Le transfert de 1 bit réclame 1 Hz de fréquence du processeur, donc 1Gb nécessite 1GHz de processeur
- Le débit ne peut pas être garanti comme du SCSI ou du FC,