Cryptography Modular Arithmetic

INSTITUTO POLITÉCNICO NACIONAL

Sandra Díaz Santiago

ESCOM-IPN

August 12, 2016

Divisibility

Definition

Let a and b be integers, then a **divides** b if there exists an integer x such that b=ax. We denote this as a|b.

Example

2|8, 7|168, -3|6. Also 2 1/5 y 3 1/14.

Division algorithm

Definition

If a and b are integers such that $b \ge 1$ then when we divide a by b we get q (quotient) and r (remainder) such that

$$a = bq + r \quad 0 \le r < b$$

Example

If a=23 y b=7 then a divided by b is equal to q=3 y r=2. And

$$23=7\cdot 3+2$$

Also it is true that

$$23 \ mod \ 7 = 2$$

Congruences

Definition

Suppose a and b are integers and m is a positive integer. Then we write $a \equiv b \mod m$ if m divides b-a. The phrase $a \equiv b \mod m$ is called a **congruence** and it is read as a **is congruent to** b **modulo** m. The integer m is called the **modulus**.

Example

- 101 mod 7, we must find the remainder dividing 101 by 7. Then we get 3. We can also write this as 101 = 7 * 14 + 3, since $0 \le 3 < 7$
- $-101 \mod 7$. In this case we have -101 = 7*(-15) + 4 since 0 < 4 < 7

Properties of congruences

- (Reflexivity) $a \equiv a \mod m$.
- (Symmetry) If $a \equiv b \mod m$ then $b \equiv a \mod m$
- (Transitivity) If $a \equiv b \mod m$ and $b \equiv c \mod m$ then $a \equiv b \mod m$

How can we prove these properties?

\mathbb{Z}_m : integers modulo m

$$\mathbb{Z}_m = \{0, 1, \dots m - 1\}$$
$$[r] = \{a \mid a \in \mathbb{Z}, a \equiv r \bmod n\}$$

Example If we take m = 7 we have:

$$\begin{array}{lll} [0] &=& \{\ldots, -28, -21, -14, -7, 0, 7, 14, 21, 28\ldots\} \\ [1] &=& \{\ldots, -27, -20, -13, -6, 1, 8, 15, 22, 29\ldots\} \\ [2] &=& \{\ldots, -26, -19, -12, -5, 2, 9, 16, 23, 30,\ldots\} \\ [3] &=& \{\ldots, -25, -18, -11, -4, 3, 10, 17, 24, 31\ldots\} \\ [4] &=& \{\ldots, -24, -17, -10, -3, 4, 11, 18, 25, 32\ldots\} \\ [5] &=& \{\ldots, -23, -16, -9, -2, 5, 12, 19, 26, 33\ldots\} \\ [6] &=& \{\ldots, -22, -15, -8, -1, 6, 13, 20, 27, 34\ldots\} \\ \end{array}$$

Addition in \mathbb{Z}_m

If $a, b \in \mathbb{Z}_m$, then $(a + b) \mod m \in \mathbb{Z}_m$

Example. If we consider m = 6 i.e. $\mathbb{Z}_6 = \{0, 1, ..., 5\}$ then

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	
3	3	4	5		1	
4 5	4	5	0	1		
5						

Remarks

In the previous example, notice that

- $(1+5) \mod 6 = (5+1) \mod 6 = 0$
- $(2+4) \mod 6 = (4+2) \mod 6 = 0$
- $(3+3) \mod 6 = 0$

We can say that 5 is the **additive inverse** of 1, 2 is the **additive inverse** of 4 and 3 is its own additive inverse.

Can you find the additive inverses for the following elements?

- 1. $11 \in \mathbb{Z}_{31}$
- 2. $5 \in \mathbb{Z}_{48}$
- 3. $23 \in \mathbb{Z}_{100}$
- 4. $35 \in \mathbb{Z}_{53}$

Groups

Definition

A group (G, *) consists of a set G with a binary operation * on G satisfying the following three axioms.

- 1. The group operation is associative. That is, a*(b*c) = (a*b)*c for all $a,b,c \in G$.
- 2. There is an element $e \in G$, called the identity element, such that a * e = e * a = a for all $a \in G$.
- 3. For each $a \in G$ there exists an element $a^{-1} \in G$, called the inverse of a, such that $a * a^{-1} = a^{-1} * a = 1$.

A group G is abelian (or commutative) if, furthermore, a * b = b * a for all $a, b \in G$.

Questions

Is \mathbb{Z}_m with the addition a group?

How can we see this?

Is \mathbb{Z}_m an abelian group?

How can we use \mathbb{Z}_m in cryptography?

And what about multiplication?

Is it true that if $a, b \in \mathbb{Z}_m$, then $a * b \mod m \in \mathbb{Z}_m$? Let's see what happens with \mathbb{Z}_6

+	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

What is wrong with this table?

What about $\mathbb{Z}_7 - \{0\}$?

+	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Everything seems fine! What is going on?