

Introduction to deal.II

<u>Jean-Paul Pelteret</u> (<u>jean-paul.pelteret@fau.de</u>) Luca Heltai (<u>luca.heltai@sissa.it</u>)

19 March 2018

Why use deal.II (or any other PDE toolbox)?

- Applies to:
 - Users
 - Developers
- "The secret to good scientific software is (re)using existing libraries"

What is deal.II? Differential Equation Analysis Library

- Flexible open-source finite element toolkit
 - All the support functionality required to describe and solve a FE problem (PDEs)
 - · Optimised for speed
 - Heavily tested
 - Many error checks (debug mode)
 - ~9500 regression tests run continuously
 - https://cdash.kyomu.43-1.org/index.php? project=deal.ll
 - Part of SPEC CPU 2017 benchmark
- Templated C++ library (Object Orientated)
 - Dimension independent programming
- Portable
 - OS, architecture, compiler
- Origins
 - Study mesh adaptivity and error estimation
 - Now used in many other applications, frameworks

What is deal. 11?

- Heavily documented
 - Over 10000 pages of interface documentation
 - Numerous tutorials
 - Illustrate functionality
 - Present methods to solve problems
- Quite widely used, and growing
- Active community
 - Approachable developers
 - Helpful online forum

Classes of problems solved using deal.II

- Geomechanics
- Fluid and gas dynamics
- · Porous media
- Fluid-structure interaction
- · Boundary element method
- Topology optimisation
- Medical image reconstruction
- Structural mechanics
- Biomechanics
- Crystal growth
- Gradient and crystal plasticity
- Contact mechanics
- Continuum-atomistic coupling
- Magneto- and electro-elasticity
- Thermo-plasticity

What deal. II is not

- A black box
 - Can't throw any problem at it
 - Won't do anything more than you ask it to
- Knows little* about
 - Numerical methods
 - Problem-specific implementation
 - Finite-element perspective
 - Physical conditions

How deal. II will help you

- Unified and well thought out data structure
 - Problem implementation
- Many tutorials
 - Baseline from which to build on
 - Demonstrate how to use features
- Comprehensive debugging support
 - Error messages everywhere!
- Some built in numerical tools
- Integration with advanced frameworks
 - Nonlinear solvers
 - Time integrators

Fundamental capabilities and frameworks

- · Mesh adaptivity
- Full and sparse linear algebra
 - Built in tensor, dense matrix/vector classes
 - BLAS and LAPACK integration; GSL
 - Built in linear solvers and preconditioners
 - Eigenvalue solvers
- Parallelisation
 - MPI
 - Linear algebra libraries (PETSc, Trilinos)
 - Distributed meshes → Billion DoF problems
 - Threading
 - Vectorised numbers (AVX extensions)
- Pre/post-processing

Advanced capabilities and frameworks

- hp-finite element support
- Meshworker
 - Assembly assistance
 - Functions to perform assembly for specific problem classes
- Geometric multi-grid
 - Using coarse grid as preconditioner to solution for finer grid
- Matrix-free
 - No explicit storing of matrix elements
 - Huge time-savings possible
- Charts and manifolds
 - Accurate description of topologically complex objects

How deal. II is developed

- Open repository on GitHub
 - https://github.com/dealii/dealii
- Anyone can contribute!
 - We encourage all to participate