APS/DFD 2001, November 20 (San Diego)

[KQ.1] Lubrication-correction for many-particle systems in Stokes flows

Kengo Ichiki <ichiki@mailaps.org>

Department of Applied Physics
University of Twente
The Netherlands

Introduction

Motivation of my recent works

To understand, extend, and justify the Stokesian Dynamics method

KI & J.F.Brady, Phys.Fluids 13 (2000) 350)

- Accurate formulation beyond FTS version
 (APS/DFD 2000; KI, JFM in press)
- Lubrication-correction (APS/DFD 2001)

What is the lubrication-correction?

- a method to describe nearly touching particles accurately with less cost
 - ⇒ trick or magic (or cheating...)
- an accurate method with large cost is "multipole expansion method"

Introduction - Goal

Goal of this work

formulate a lubrication-correction method with steady basis

- considering physical conditions
- using shift operators for force/velocity moments
- approximation by 2B exact solution
- fill the gap among the existing works;
 - Stokesian Dynamics method (SD)
 (Durlofsky et al., J.Fluid Mech. 180 (1987) 21)
 presents a robust method for lubrication.
 [Q] how to justify the method?
 [Q] where is the limitation?
 - Sangani & Mo (Phys. Fluids 6 (1994) 1637)
 presents a "gap-expansion" for lubrication.
 [Q] relation to SD?
 - Cichocki et al. (CEW)

(J.Chem.Phys. **111** (1999) 3265) presents an improvement of SD lubrication. [Q] reason of collective-motion projection?

Comparison with other works

The present work

$$\hat{\mathcal{U}}(\alpha) = \sum_{\beta} \hat{\mathcal{M}}(\alpha, \beta) \cdot \hat{\mathcal{F}}(\beta)
+ \sum_{g} \hat{\mathcal{M}}(\alpha, 2B_g) \cdot
\left\{ -\hat{\mathcal{L}}^{2B} + \left[\mathcal{H} \cdot \mathcal{G} \cdot \hat{\mathcal{L}}^{2B} \cdot \mathcal{H} \cdot \mathcal{G} \right] \right\} \cdot \hat{\mathcal{U}}(2B_g)$$

Stokesian Dynamics method (SD)

$$\hat{\mathcal{U}} = \hat{\mathcal{M}} \cdot \left[\hat{\mathcal{F}} - \hat{\mathcal{L}} \cdot \hat{\mathcal{U}} \right]; \quad \mathcal{HGLHG} \text{ is missing}$$

$$\Rightarrow \text{SD is inconsistent } (\hat{\mathcal{F}} \text{ is not } \hat{\mathcal{F}}_{nor})$$

Cichocki et al. (CEW)

$$\hat{\mathcal{L}} - \mathcal{H}G\hat{\mathcal{L}}\mathcal{H}G \longrightarrow q^t \cdot \hat{\mathcal{L}}^{2B} \cdot q$$

Sangani & Mo

- treat \mathcal{HGLHG} term directly by $\mathcal{F}_{loc}(g)$
- $\bar{\mathscr{F}}_{loc} = 0$ is assumed.

Formulation 1

Decomposition of force density

Integral equation for fluid velocity u(x)

$$u(x) = -\frac{1}{8\pi\mu} \sum_{\beta} \int_{S_{\beta}} dS(y) J(x - y) \cdot f(y)$$

Oseen tensor $J_{ij}(\mathbf{r}) = (\delta_{ij} - r_i r_j / r^2) / r$, force density $\mathbf{f}(\mathbf{y})$ Decompose \mathbf{f} into localized \mathbf{f}_{loc} and normal \mathbf{f}_{nor}

$$f = f_{nor} + f_{loc} \approx \boxed{\bar{f} - \bar{f}_{loc} + f_{loc}}$$

where $ar{f}$ and $ar{f}_{loc}$ are coarse-grained values

Formulation 2

Multipole expansion

 \bar{f}, \bar{f}_{loc} are suitable for "center-expansion".

 f_{loc} is suitable for "gap-expansion".

Expand at the center of particles and the gap

$$u(x) = \sum_{\beta} \mathcal{J}(x - x^{\beta}) \cdot (\bar{\mathcal{F}}(\beta) - \bar{\mathcal{F}}_{loc}(\beta))$$

$$+ \sum_{g} \mathcal{J}(x - x^{g}) \cdot \mathcal{F}_{loc}(g)$$

$$\mathcal{J}^{(m)} = (1/8\pi\mu m!)\nabla^{m} J$$
$$\mathcal{F}^{(m)}(\beta) = -\int dS(\mathbf{y}) (\mathbf{y} - \mathbf{x}^{\beta})^{m} f(\mathbf{y})$$

higher orders of $\bar{\mathscr{F}}(\beta)$, $\bar{\mathscr{F}}(\beta)$, $\mathscr{F}(g)$ are reducible

Generalized mobility problem

$$\hat{\mathcal{U}}(\alpha) = \sum_{\beta} \hat{\mathcal{M}}(\alpha, \beta) \cdot \left(\hat{\bar{\mathcal{F}}}(\beta) - \hat{\bar{\mathcal{F}}}_{loc}(\beta)\right) + \sum_{g} \hat{\mathcal{M}}(\alpha, g) \cdot \hat{\mathcal{F}}_{loc}(g)$$

$$\mathcal{U}^{(n)}(\alpha) = (1/4\pi a^2) \int dS(\mathbf{y}) (\mathbf{y} - \mathbf{x}^{\alpha})^n \mathbf{u}(\mathbf{y})$$
$$\mathcal{M}^{(n,m)}(\alpha,\beta) = (1/4\pi a^2) \int dS(\mathbf{y}) (\mathbf{y} - \mathbf{x}^{\alpha})^n \mathcal{J}^{(m)}(\mathbf{y} - \mathbf{x}^{\beta})$$

Approximation

Model for $\bar{\mathscr{F}}_{loc}(\beta)$

The exact solution for 2B problem

$$\begin{bmatrix} \hat{\mathcal{F}}(1) \\ \hat{\mathcal{F}}(2) \end{bmatrix} = \hat{\mathcal{R}}_{exact}^{2B} \cdot \begin{bmatrix} \hat{\mathcal{U}}(1) \\ \hat{\mathcal{U}}(2) \end{bmatrix}$$

Approximate $\bar{\mathscr{F}}_{loc}(\beta)$ as

$$\begin{bmatrix} \hat{\bar{\mathcal{F}}}_{loc}(1) \\ \hat{\bar{\mathcal{F}}}_{loc}(2) \end{bmatrix} = \hat{\mathcal{L}}^{2B} \cdot \begin{bmatrix} \hat{\mathcal{U}}(1) \\ \hat{\mathcal{U}}(2) \end{bmatrix}$$

$$\hat{\mathcal{L}}^{2B} = \mathcal{R}_{exact}^{2B} - \left(\hat{\mathcal{M}}^{2B}\right)^{-1}$$

Note: $\mathscr{F}(\beta)$'s are particle-moments with p=1 **Model for** $\mathscr{F}_{loc}(g)$

Single-gap problem

$$\hat{\mathscr{F}}_{loc}(g) = \hat{\mathcal{L}}^{gap} \cdot \hat{\mathscr{U}}(g)$$

$$\hat{\mathcal{L}}^{gap} \approx \mathcal{G} \cdot \hat{\mathcal{L}}^{2B} \cdot \mathcal{H}$$

$$(\mathbf{x}^{gap}) = \begin{bmatrix} S(\mathbf{x}^{g}, \mathbf{x}^{1}) & S(\mathbf{x}^{g}, \mathbf{x}^{2}) \\ S(\mathbf{x}^{g}, \mathbf{x}^{2}) \end{bmatrix}$$

$$(\mathbf{x}^{gap}) = \begin{bmatrix} S(\mathbf{x}^{g}, \mathbf{x}^{1}) & S(\mathbf{x}^{g}, \mathbf{x}^{2}) \\ S(\mathbf{x}^{g}, \mathbf{x}^{2}) \end{bmatrix}$$

$$(\mathbf{x}^{gap}) = \begin{bmatrix} S(\mathbf{x}^{g}, \mathbf{x}^{1}) & S(\mathbf{x}^{g}, \mathbf{x}^{2}) \\ S(\mathbf{x}^{g}, \mathbf{x}^{g}) \end{bmatrix}$$

$$(\mathbf{x}^{gap}) = \begin{bmatrix} S(\mathbf{x}^{g}, \mathbf{x}^{1}) & S(\mathbf{x}^{g}, \mathbf{x}^{2}) \\ S(\mathbf{x}^{g}, \mathbf{x}^{g}) \end{bmatrix}$$

$$(\mathbf{x}^{gap}) = \begin{bmatrix} S(\mathbf{x}^{g}, \mathbf{x}^{1}) & S(\mathbf{x}^{g}, \mathbf{x}^{2}) \\ S(\mathbf{x}^{g}, \mathbf{x}^{g}) \end{bmatrix}$$

$$(\mathbf{x}^{gap}) = \begin{bmatrix} S(\mathbf{x}^{g}, \mathbf{x}^{1}) & S(\mathbf{x}^{g}, \mathbf{x}^{2}) \\ S(\mathbf{x}^{g}, \mathbf{x}^{g}) \end{bmatrix}$$

$$(\mathbf{x}^{gap}) = \begin{bmatrix} S(\mathbf{x}^{g}, \mathbf{x}^{g}) & S(\mathbf{x}^{g}, \mathbf{x}^{g}) \\ S(\mathbf{x}^{g}, \mathbf{x}^{g}) & S(\mathbf{x}^{g}, \mathbf{x}^{g}) \end{bmatrix}$$

$$(\mathbf{x}^{gap}) = \begin{bmatrix} S(\mathbf{x}^{g}, \mathbf{x}^{g}) & S(\mathbf{x}^{g}, \mathbf{x}^{g}) \\ S(\mathbf{x}^{g}, \mathbf{x}^{g}) & S(\mathbf{x}^{g}, \mathbf{x}^{g}) \end{bmatrix}$$

Note: $G \cdot \mathcal{H} = I$ but $\mathcal{H} \cdot G \neq I$

Numerical calculations

Configurations

$$N=2$$
 $N=3$ $N=4$ $N=7$ separation $r=2.0 \sim 3.0$

Type of problem

mobility problem (give \mathbf{F}, \mathbf{T} and solve $\mathbf{U}, \mathbf{\Omega}$)

Types of motion

- collective motion: $\mathbf{F} = \text{constant}$.
- spinning motion: T = constant.

Lubrication-correction methods

- multipole expansions $(p = 1 \Leftrightarrow FTS, larger p)$
- Stokesian Dynamics (SD) $\mathcal{U} = \mathcal{M} [\mathcal{F} \mathcal{L}\mathcal{U}]$
- Cichocki *et al.* (CEW) $\mathcal{U} = \mathcal{M} [\mathcal{F} \mathbf{q}^t \mathcal{L} \mathbf{q} \mathcal{U}]$
- this work $\mathscr{U} = \mathscr{M} \left[\mathscr{F} + (-\mathcal{L} + \mathcal{HGLHG}) \mathscr{U} \right]$

Results – Collective motions

Results – Collective motions 2

Differences of *U* for *N* at r = 2.5

 U^* is the value with p_{max} .

Summary on collective motions

- this work and CEW behave similarly and are better than p = 1 for all N.
- SD is exact for N = 2
 but is worse than p = 1 for N = 7 and 13.
 ∴ L is defined by the consistency for N = 2
 and inconsistent for N ≠ 2 in general.

Results – Spinning motions

Results – Spinning motions 2

Differences of Ω for N at r=2.5

 Ω^* is the value with p_{max} .

Summary on spinning motions

N

- this work and SD behave similarly but CEW is a little bit different
- all lubrication schemes are bad for N = 13

Conclusions

reformulate the lubrication method

- by f-decomposition, shift operators, and \mathcal{R}^{2B}_{exact}
- clarify its physical condition

fill the gap among three works;

- Stokesian Dynamics method (SD)
 - [Q] how to justify the method?
 - [A] formulate the method by decomposition of force density $\Rightarrow \mathscr{F}_{loc}(g)$ is missing
 - [Q] where is the limitation?
 - [A] failed on collective motions for N = 7, 13 because of the inconsistency
- Sangani & Mo
 - [Q] relation to SD?
 - [A] given by shift operators
- Cichocki et al. CEW
 - [Q] reason of collective-motion projection?
 - [A] gap properties characterize lubrication

unsolved questions

- collective spinning motions
- $r \rightarrow 2$ limit on this work