Numerische Methoden der Physik - physik440

$Modul ext{-}Nr.$	physik440
Kategorie	Pflicht
Le ist ung spunkte	6
Semester	4.

Modul: Numerische Methoden der Physik

Modulbest and teile:

$\overline{ m Nr}$	Lehrveranstaltung	LV-Nr.	LP	LV-Art	SWS	Semester
1	Numerische Methoden der Physik	physik441	6	Vorl. + Üb.	2+2	SS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse: Physik I - III (physik110, physik210, physik310), Lineare Algebra, Analysis.

Inhalt: Rechengenauigkeit, numerische und algorithmische Fehler, Programmiersprache C, Makefiles, numerische Bibliotheken, Software für Visualisierung wissenschaftlicher Daten; Lösung wissenschaftlicher Probleme mit numerischen Methoden: Lösung von Differentialgleichungen, Nullstellensuche, Fast Fourier Transform, Faltung, Numerische Integration; Minimierungsprobleme

Lernziele/Kompetenzen: Fähigkeit, eine Programmiersprache auf wissenschaftliche Problemlösungen anzuwenden. Vorbereitung für Software-Entwicklung auch in nicht-universitären Bereichen.

Prüfungsmodalitäten: Zulassungsvoraussetzung zur Modulprüfung (Klausur): Erfolgreiche Teilnahme an den Übungen

Dauer des Moduls: 1 Semester

Max. Teilnehmerzahl: ca. 200

Anmeldeformalitäten: s. https://basis.uni-bonn.de u. http://bamawww.physik.uni-bonn.de

Anmerkung:

PDF version of this page.

Numerische Methoden der Physik - physik441

$\overline{Lehr veran staltung}$	Numerische Methoden der Physik
LV-Nr.	physik441

Kategorie	LV-Art	Sprache	SWS	LP	Semester
Pflicht	Vorlesung mit Übungen	deutsch	2+2	6	SS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse: Physik I - III (physik110, physik210, physik310), Lineare Algebra, Analysis

Studien- und Prüfungsmodalitäten: Zulassungsvoraussetzung zur Modulprüfung (Klausur): Erfolgreiche Teilnahme an den Übungen

Dauer der Lehrveranstaltung: 1 Semester

Lernziele der LV: Fähigkeit, eine Programmiersprache auf wissenschaftliche Problemlösungen anzuwenden. Vorbereitung für Software-Entwicklung auch in nicht-universitären Bereichen.

Inhalte der LV: Rechengenauigkeit, numerische und algorithmische Fehler, Programmiersprache C, Makefiles, numerische Bibliotheken, Software für Visualisierung wissenschaftlicher Daten; Lösung wissenschaftlicher Probleme mit numerischen Methoden: Lösung von Differentialgleichungen, Nullstellensuche, Fast Fourier Transform, Faltung, Numerische Integration; Minimierungsprobleme

Literaturhinweise:

Lecture Notes

W.H. Press et al.; Numerical Recipes in C (Cambridge University Press, 1992)

PDF version of this page.