STA $721~\mathrm{HW}~7$

1. Suppose $\mathbf{Y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}_n)$. Consider finding an estimator \mathbf{a} for $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$ to minimize squared error loss, $(\boldsymbol{\mu} - \mathbf{a})^T(\boldsymbol{\mu} - \mathbf{a})$. Show that the posterior mean of $\boldsymbol{\mu}$ minimizes the posterior expected loss:

$$\mathsf{E}[(\boldsymbol{\mu} - \mathbf{a})^T (\boldsymbol{\mu} - \mathbf{a})]$$

where the expectation is taken with respect to the posterior distribution of $p(\mu \mid \mathbf{Y})$.

- 2. Suppose that you are using a g-prior for β : $\beta \mid \phi, g \sim \mathsf{N}(\mathbf{a}_0, \frac{g}{\phi}(\mathbf{X}^T\mathbf{X})^{-1})$ for the model $\mathbf{Y} \sim \mathsf{N}(\mathbf{X}\beta, \mathbf{I}_n/\phi)$ where $\phi \sim G(\nu_0/2, \mathsf{SS}_0/2)$ and \mathbf{X} is of rank p.
 - (a) Find the posterior distribution for $\mu = X\beta$.
 - (b) Suppose that you decide to reparametrize your model, $X\beta = XUU^{-1}\beta = Z\alpha = \mu$ where U is a $p \times p$ matrix that is full rank. What is the implied prior distribution for $\alpha \mid \phi$?
 - (c) Using the prior above, show that posterior distribution for $\mathbf{Z}\alpha$ is the same as the posterior distribution for $\mathbf{X}\beta$.
 - (d) Community Problem [post on Piazza] Write an R function to compute $(1 \alpha)100\%$ credible intervals for each β_j using the output from 1m. (replacement for confint) (extra for any linear combination $\lambda\beta$.)