Unidade 2 – Testes para uma amostra

Teste de Aleatoriedade ou de Iterações

Tem como objetivo verificar se uma amostra extraída de uma população é, realmente, aleatória.

Para aplicar o teste devemos ter os dados dicotomizados, para que possamos realizar uma contagem do número "r" de iterações.

Pressuposições:

Os dados analisados consistem de uma sequência de observações, registradas na ordem de suas ocorrências, os quais podem ser classificados dentro de dois tipos mutuamente exclusivos, onde:

- 1. n é o tamanho da amostra;
- 2. n_1 é o número de observações do tipo "A";
- 3. n₂ é o número de observações do tipo "B".

Hipóteses:

^H₀: a ordem dos símbolos é aleatória;

 H_1 : a ordem dos símbolos não é aleatória.

Procedimento

Dispor as observações na ordem de sua ocorrência e contar o número de iterações de "a" e de "b", ou seja, o valor de "r"; Isso se baseia na ordem ou seqüência em que os escores individuais foram obtidos originalmente, sendo que uma iteração é definida como uma sucessão de símbolos idênticos que aparecem seguidos e precedidos por símbolos diferentes (ou por nenhum símbolo).

Por exemplo, suponha que nossos dados sejam codificados em AAAAABBAAABBBBBBBBBAA

Começando pelo primeiro elemento "A", enquanto temos somente "A" o sucedendo, estamos na primeira iteração. No momento em que mudamos para "B" passaremos a segunda iteração que acontecerá até que apareça um próximo "A" e mudaremos para a terceira iteração e assim sucessivamente. No caso:

A	A	A	A	A	В	В	A	A	A	В	A	A	В	В	В	В	В	В	В	В	A	A
1					2		3			4	5		6								7	

Cada cor acima representa uma iteração. Observe os pontos de mudança de iterações. Quando saímos da sequencia de símbolos iguais e começa um símbolo diferente, alteramos a iteração. Nesse caso temos r=7 iterações e a partir dessa informação podemos testar se essa sequência de "A" e "B" é aleatória ou não.

Quando os dados já se apresentam dicotomizados por natureza, fica fácil obter o valor de r. No caso em que temos dados numéricos, devemos aplicar uma regra para atribuir dois símbolos: atribuímos "A" aos valores maiores que a mediana e "B" aos valores menores que a mediana. A partir daí conseguimos contar as iterações normalmente.

Regra de Decisão

Depende do tamanho dos grupos n_1 e n_2 ; se n_1 e n_2 são menores ou iguais a 20, recorrer à tabela do teste (disponível no moodle).

Essa tabela tem duas partes, FI e FII, que são os limites para o valor de "r". Se FI < r < FII, ou seja, estiver dentro dos limites, não rejeitamos a hipótese nula. Do contrário se r \le FI ou r \ge FII, rejeitamos Ho. Observe que a tabela é simétrica, logo não temos critério em escolher quem é n_1 ou n_2 .

Exemplo: Verifique a aleatoriedade da sequencia abaixo:

AAAAABBAAABAABBBBBBBAA

Resolução:

 H_0 : é aleatório

 H_1 : não é aleatório

Devemos encontrar n_1 (numero de A's), n_2 (número de B's) e o valor de r (número de iterações).

Assim, $n_1 = 12$ e $n_2 = 11$ e r = 7 iterações.

Na tabela, cruzando os valores n_1 e n_2 encontramos os limites.

 F_I F_{II} 2 3 4 5 6 7 8 9 10 <mark>11</mark> 12 13 14 15 16 17 18 19 20 4 5 6 7 8 9 10 <mark>11</mark> 12 13 14 15 16 17 18 19 20 2 3 2 2 2 2 2 2 2 2 3 3 3 4 2 2 3 3 3 3 3 5 9 10 10 11 11 6 6 9 10 11 12 12 13 13 13 13 6 2 2 3 3 3 4 4 5 5 5 5 11 12 13 13 14 14 14 14 15 15 15 7 11 12 13 14 14 15 15 16 16 16 16 17 17 17 17 17 6 6 6 8 2 3 3 4 4 5 5 5 13 14 14 15 16 16 16 17 17 18 18 18 18 18 18 9 13 14 15 16 16 17 17 18 18 18 19 19 19 20 20 10 2 3 3 4 5 5 5 6 7 11 2 3 4 4 5 5 6 6 13 14 15 16 17 17 18 19 19 19 20 20 20 21 21 13 14 16 16 17 <mark>18</mark> 19 19 20 <u>2</u>0 21 21 21 <u>22 22</u> 12 2 2 3 4 4 5 6 6 7 15 16 17 18 19 19 20 20 21 21 22 22 23 23 2 2 3 4 5 5 6 6 7 8 8 9 9 10 10 10 10 13 2 2 3 4 5 5 6 7 7 15 16 17 18 19 20 20 21 22 22 23 23 23 24 8 8 9 9 9 10 10 10 11 11 14 2 3 3 4 5 6 6 7 7 15 16 18 18 19 20 21 22 22 23 23 24 24 25 15 8 8 9 9 10 10 11 11 11 12 16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12 17 18 19 20 21 21 22 23 23 24 25 25 25 17 18 19 20 21 22 23 23 24 25 25 26 26 17 9 10 10 11 11 11 12 12 13 2 3 4 5 5 6 7 8 8 9 9 10 10 11 11 12 12 13 13 17 18 19 20 21 22 23 24 25 25 26 26 27 17 18 20 21 22 23 23 24 25 26 26 27 27 9 10 10 11 11 12 12 13 13 13 17 18 20 21 22 23 24 25 25 26 27 27 28 20 2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14

Verificamos então que FI = 7 e F2 = 18.

Como r = 7 e é **menor ou igual** a FI que também é 7, **rejeitamos H**₀. Não existem evidências para afirmarmos que exista aleatoriedade.

Se n_1 e n_2 são maiores que 20, utilizamos a padronização abaixo:

$$Z = \frac{r - \mu_r}{\sigma_r} = \frac{r - \left(\frac{2n_1n_2}{n_1 + n_2} + 1\right)}{\sqrt{\frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}}}$$

Para decidir pela aceitação ou rejeição de $^{H_{o}}$, considerar os valores tabelados da variável $Z \approx N(0,1)$.

Regra de decisão:

Se o valor de p, associado ao valor de r, não for superior a α , rejeitase $^{H_{\circ}}$. Caso contrário, aceita-se $^{H_{\circ}}$.

Exemplo: Verifique a aleatoriedade da seguinte amostra constituída pelos resultados de 40 lançamentos de uma moeda onde K representa cara e C coroa.