Corrigé 23

1. Calculer la longueur des arcs définis ci-dessous :

- a) $y = a \cosh\left(\frac{x}{a}\right)$, $\alpha \le x \le \beta$, c) $y = \ln\left[\cos(x)\right]$, $x \in \left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$,
- b) $y = \ln(1 x^2)$, $-\frac{1}{2} \le x \le \frac{1}{2}$, d) $y = \arcsin(e^{-x})$, $0 \le x \le a$.
- a) Soit L la longueur de l'arc : $L = \int_{-\beta}^{\beta} \sqrt{1 + y'^2(x)} \ dx$. Or $y'(x) = \sinh(\frac{x}{a})$, donc $L = \int_{-\beta}^{\beta} \sqrt{1 + \sinh^2(\frac{x}{a})} dx = \int_{-\beta}^{\beta} \cosh(\frac{x}{a}) dx$, $L = \left[a \sinh(\frac{x}{a}) \right]^{\beta} = a \left[\sinh(\frac{\beta}{a}) - \sinh(\frac{\alpha}{a}) \right].$
- b) $L = \int_{-1}^{\frac{1}{2}} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$ avec $y = \ln(1 x^2)$ et $\frac{dy}{dx} = \frac{-2x}{1 x^2}$. $\sqrt{1+\left(\frac{dy}{dx}\right)^2} = \sqrt{1+\left(\frac{-2x}{1-x^2}\right)^2} = \sqrt{\frac{(1-x^2)^2+4x^2}{(1-x^2)^2}} = \sqrt{\frac{x^4+2x^2+1}{(1-x^2)^2}}$ $\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{\frac{(x^2 + 1)^2}{(1 - x^2)^2}} = \left|\frac{x^2 + 1}{1 - x^2}\right| = \frac{x^2 + 1}{1 - x^2}, \quad \forall x \in \left[-\frac{1}{2}, \frac{1}{2}\right].$ $L = \int_{-1}^{\frac{1}{2}} \frac{x^2 + 1}{1 - x^2} dx = 2 \int_{0}^{\frac{1}{2}} \frac{x^2 + 1}{1 - x^2} dx.$

Pour intégrer cette fonction rationnelle, on la décompose en éléments simples :

$$\frac{x^2+1}{1-x^2} = -1 + \frac{2}{1-x^2} = -1 + \frac{1}{1-x} + \frac{1}{1+x}.$$

$$L = 2\int_0^{\frac{1}{2}} \frac{x^2+1}{1-x^2} dx = 2\int_0^{\frac{1}{2}} \left(-1 + \frac{1}{1-x} + \frac{1}{1+x}\right) dx$$

$$L = 2\left[-x - \ln(1-x) + \ln(1+x)\right]_0^{\frac{1}{2}} = 2\left[-x + \ln(\frac{1+x}{1-x})\right]_0^{\frac{1}{2}} = -1 + 2\ln 3.$$

c) • Intégration par rapport à x

Soit L la longueur de l'arc : $L = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \sqrt{1 + y'^2(x)} \ dx$.

Or
$$y = \ln \left[\cos(x)\right] \Rightarrow y'(x) = \frac{1}{\cos(x)} \cdot \left[-\sin(x)\right] = -\tan(x)$$
.

Donc
$$L = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \sqrt{1 + \tan^2(x)} \ dx = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \sqrt{\frac{1}{\cos^2(x)}} \ dx = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{\cos(x)} \ dx$$

car $\cos(x) > 0$, $\forall x \in [-\frac{\pi}{6}, \frac{\pi}{6}]$.

$$L = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{\cos(x)} dx = 2 \int_{0}^{\frac{\pi}{6}} \frac{1}{\cos(x)} dx = \int_{0}^{\frac{\pi}{6}} \frac{2}{\cos(x)} dx.$$

Recherche des primitives :

$$\int \frac{2 \, dx}{\cos(x)} = \int \frac{2 \cos(x)}{\cos^2(x)} \, dx = \int \frac{2 \cos(x)}{1 - \sin^2(x)} \, dx = \int \frac{2 \cos(x) \, dx}{[1 - \sin(x)] \cdot [1 + \sin(x)]}$$
$$= \int \frac{\cos(x)}{1 - \sin(x)} \, dx + \int \frac{\cos(x)}{1 + \sin(x)} \, dx$$
$$= -\ln[1 - \sin(x)] + \ln[1 + \sin(x)] + C = \ln\frac{1 + \sin(x)}{1 - \sin(x)} + C.$$

Remarque:

On aurait pu arriver au même résultat en utilisant les tests d'invariance de Bioche.

Le produit $\frac{2}{\cos(x)} \cdot dx$ est invariant lorsqu'on remplace x par $\pi - x$, on pose donc $z = \sin(x)$, ce qui nous amène à l'intégration d'une fonction

Evaluation:

rationnelle en z.

$$L = \int_0^{\frac{\pi}{6}} \frac{2}{\cos(x)} dx = \ln \left. \frac{1 + \sin(x)}{1 - \sin(x)} \right|_0^{\frac{\pi}{6}} = \ln \frac{3/2}{1/2} - \ln(1) = \ln(3).$$

• Intégration par rapport à y

Soit ℓ la longueur de l'arc défini par $y = \ln \left[\cos(x) \right], \quad x \in \left[0, \frac{\pi}{6} \right],$ c'est la moitié de la longueur cherchée.

Pour calculer cette longueur ℓ en intégrant par rapport à y, il faut déterminer x en fonction de y:

$$x = \arccos(e^y)$$
, $y \in \left[\ln\left(\frac{\sqrt{3}}{2}\right), 0\right]$.

Posons $a = \ln\left(\frac{\sqrt{3}}{2}\right)$.

Expression de
$$\ell$$
: $\ell = \int_{0}^{0} \sqrt{\left(\frac{dx}{dy}\right)^{2} + 1} dy$ avec $\frac{dx}{dy} = -\frac{e^{y}}{\sqrt{1 - e^{2y}}}$

$$\ell = \int_{a}^{0} \sqrt{\left(\frac{e^{y}}{\sqrt{1 - e^{2y}}}\right)^{2} + 1} dy = \int_{a}^{0} \sqrt{\frac{e^{2y}}{1 - e^{2y}} + 1} dy = \int_{a}^{0} \frac{1}{\sqrt{1 - e^{2y}}} dy$$

Intégration:

$$\ell = \int_{a}^{0} \frac{1}{\sqrt{1 - e^{2y}}} dy = \int_{a}^{0} \frac{e^{-y}}{\sqrt{e^{-2y} - 1}} dy = -\arg\cosh\left(e^{-y}\right)\Big|_{a}^{0}$$

$$\ell = -\left[\underbrace{\arg\cosh\left(1\right)}_{=0} - \arg\cosh\left(e^{-a}\right)\right] = \arg\cosh\left(e^{-a}\right) = \arg\cosh\left(\frac{2}{\sqrt{3}}\right).$$

Conclusion:
$$L = 2 \ell = 2 \operatorname{arg} \cosh \left(\frac{2}{\sqrt{3}}\right)$$
.

d) • Expression de la longueur

$$L = \int_0^a \sqrt{1 + y'^2} \, dx \quad \text{avec} \quad y' = \frac{-e^{-x}}{\sqrt{1 - e^{-2x}}}$$
$$L = \int_0^a \sqrt{1 + \frac{e^{-2x}}{1 - e^{-2x}}} \, dx = \int_0^a \frac{1}{\sqrt{1 - e^{-2x}}} \, dx$$

- Intégration
 - Primitive

$$\int \frac{1}{\sqrt{1 - e^{-2x}}} dx = \int \frac{e^x}{\sqrt{e^{2x} - 1}} dx = \arg \cosh (e^x) + C.$$

Evaluation

$$L = \int_0^a \frac{1}{\sqrt{1 - e^{-2x}}} dx = \operatorname{arg} \cosh(e^a) - \operatorname{arg} \cosh(e^0) = \operatorname{arg} \cosh(e^a).$$

2. Calculer la longueur des arcs définis paramétriquement ci-dessous :

a)
$$\begin{cases} x(t) = 2t + t^2 \\ y(t) = 2t - t^2 \end{cases} \quad 0 \le t \le 1,$$

b)
$$\begin{cases} x(t) = 2\cos t - \cos(2t) \\ y(t) = -2\sin t - \sin(2t) \end{cases} - \pi \le t \le \pi.$$

a) Soit
$$L$$
 la longueur de l'arc Γ : $L = \int_0^1 \sqrt{[\dot{x}(t)]^2 + [\dot{y}(t)]^2} dt$.
$$\dot{x}(t) = 2 + 2t = 2(1+t) , \qquad \dot{y}(t) = 2 - 2t = 2(1-t) ,$$

$$L = \int_0^1 \sqrt{[2(1+t)]^2 + [2(1-t)]^2} dt = 2\sqrt{2} \int_0^1 \sqrt{1+t^2} dt .$$

Calcul de l'intégrale définie $\int_0^1 \sqrt{1+t^2} \ dt$.

On pose $t = \sinh(z)$, d'où $\sqrt{1+t^2} = \cosh(z)$ et $dt = \cosh(z) dz$.

Et lorsque $\,t\,$ parcourt l'intervalle $\,[\,0\,,\,1\,]\,,\,\,z\,$ varie entre $\,0\,$ et $\,\arg\sinh(1)\,.$

Posons $a = \arg \sinh(1)$,

$$\int_0^1 \sqrt{1+t^2} \, dt = \int_0^a \cosh^2(z) \, dz = \int_0^a \frac{1+\cosh(2z)}{2} \, dz = \left[\frac{\sinh(2z)}{4} + \frac{z}{2}\right]_0^a$$

$$= \left[\frac{\sinh(z)\cosh(z)}{2} + \frac{z}{2}\right]_0^a = \left[\frac{\sinh(z)\sqrt{1+\sinh^2(z)} + z}{2}\right]_0^a$$

$$= \frac{\sqrt{2} + \arg\sinh(1)}{2}.$$

$$L = 2\sqrt{2} \int_0^1 \sqrt{1+t^2} \, dt = 2 + \sqrt{2} \arcsinh(1).$$

b) Soit L la longueur de l'arc : $L = \int_{-\pi}^{\pi} \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt$. $\dot{x}(t) = -2 \sin(t) + 2 \sin(2t) = -2 \left[\sin(t) - \sin(2t) \right],$ $\dot{y}(t) = -2 \cos(t) - 2 \cos(2t) = -2 \left[\cos(t) + \cos(2t) \right].$ $\dot{x}^2(t) + \dot{y}^2(t)$ $= 4 \left[\sin(t) - \sin(2t) \right]^2 + 4 \left[\cos(t) + \cos(2t) \right]^2$ $= 4 \left[\sin^2(t) - 2 \sin(t) \sin(2t) + \sin^2(2t) + \cos^2(t) + 2 \cos(t) \cos(2t) + \cos^2(2t) \right]$ $= 4 \left[2 + 2 \cos(t) \cos(2t) - 2 \sin(t) \sin(2t) \right]$ $= 8 \left[1 + \cos(3t) \right].$ $\dot{x}^2(t) + \dot{y}^2(t) = 16 \frac{1 + \cos(3t)}{2} = 16 \cos^2\left(\frac{3t}{2}\right).$

Donc $\sqrt{\dot{x}^2(t) + \dot{y}^2(t)} = 4 |\cos(\frac{3t}{2})|$.

Sur l'intervalle $[-\pi, \pi]$, $\cos \frac{3t}{2}$ n'est pas de signe constant :

Par périodicité et symétrie, on en déduit que $\int_{-\pi}^{\pi} \left| \cos \left(\frac{3t}{2} \right) \right| dt = 6 \int_{0}^{\frac{\pi}{3}} \cos \left(\frac{3t}{2} \right) dt$.

$$L = 4 \int_{-\pi}^{\pi} \left| \cos \left(\frac{3t}{2} \right) \right| dt = 24 \int_{0}^{\frac{\pi}{3}} \cos \left(\frac{3t}{2} \right) dt = 24 \left[\frac{2}{3} \sin \left(\frac{3t}{2} \right) \right]_{0}^{\frac{\pi}{3}} = 16.$$

3. Déterminer l'aire de la surface de révolution obtenue par la rotation de la courbe d'équation y = f(x) autour de l'axe d dans les deux cas suivants :

a)
$$f(x) = \frac{1}{3} x^3$$
, $0 \le x \le 1$ et $d = (Ox)$,

b)
$$f(x) = \cosh(x), 0 \le x \le 1$$
 et $d = (Oy)$.

a) Soit A l'aire de cette surface de révolution.

$$A = \int_{O}^{A} 2\pi y \, ds = 2\pi \int_{0}^{1} y(x) \sqrt{1 + y'^{2}(x)} \, dx$$
$$y(x) = \frac{1}{3} x^{3}, \quad y'(x) = x^{2}, \quad ds = \sqrt{1 + x^{4}} \, dx$$

$$A \; = \; \frac{2\pi}{3} \int_0^1 x^3 \sqrt{1+x^4} \; dx \; = \; \frac{2\pi}{3} \left[\frac{1}{6} \, (1+x^4)^{3/2} \right]_0^1 \; = \; \frac{\pi}{9} \, \left(2 \, \sqrt{2} - 1 \right).$$

$$A = \int_A^B 2\pi x \, ds = 2\pi \int_0^1 x \sqrt{1 + \sinh^2 x} \, dx$$
$$A = 2\pi \int_0^1 x \cosh x \, dx$$

Intégration de $x \cosh x$ par parties :

$$\int x \cosh x \, dx = x \sinh x - \cosh x + C.$$

$$A = 2\pi [x \sinh x - \cosh x]_0^1 = 2\pi (\sinh 1 - \cosh 1 + 1).$$

4. Calculer l'aire d'une sphère de rayon r.

• Une méthode : description paramétrique Description de la sphère

La sphère de rayon $\,r\,$ peut être décrite comme la surface de révolution engendrée par la rotation, autour de l'axe $\,Oy\,$, du demi-cercle $\,C\,$ d'équations paramétriques

$$C: \begin{cases} x(t) = r \cos(t) \\ y(t) = r \sin(t) \end{cases} \qquad t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$

On décompose cette surface de révolution en "tranches" perpendiculaires à l'axe de rotation Oy.

Ces surfaces élémentaires sont des troncs de cône de rayon moyen x et dont les génératrices sont de longueur ds. Elles ont pour aire $2\pi \, x \, ds$.

Soit \mathcal{A} l'aire de la surface de révolution :

$$\mathcal{A} = \int_A^B 2\pi \, x \, ds \,.$$

Et en l'exprimant par rapport à t:

$$\mathcal{A} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2\pi x(t) \cdot \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt.$$

Calcul de l'aire de la sphère

$$\mathcal{A} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2\pi x(t) \cdot \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt$$

$$= 4\pi \int_0^{\frac{\pi}{2}} x(t) \cdot \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt$$

$$= 4\pi \int_0^{\frac{\pi}{2}} r \cos(t) \cdot \sqrt{[-r \sin(t)]^2 + [r \cos(t)]^2} dt$$

$$= 4\pi r^2 \int_0^{\frac{\pi}{2}} \cos(t) dt$$

$$= 4\pi r^2 \left[\sin(t) \right]_0^{\frac{\pi}{2}}$$

$$= 4\pi r^2.$$

• Une autre méthode : description cartésienne

Description de la sphère

La sphère de rayon $\,r\,$ peut être décrite comme la surface de révolution engendrée par la rotation, autour de l'axe $\,Ox\,,\,$ du demi-cercle $\,C\,$ d'équation cartésienne

$$x^{2} + y^{2} = r^{2}$$
, $y \ge 0 \Leftrightarrow y = +\sqrt{r^{2} - x^{2}}$, $-r \le x \le r$.

On décompose cette surface de révolution en "tranches" perpendiculaires à l'axe de rotation Ox.

Ces surfaces élémentaires sont des troncs de cône de rayon moyen y et dont les génératrices sont de longueur ds. Elles ont pour aire $2\pi\,y\,ds$.

Soit \mathcal{A} l'aire de la surface de révolution :

$$\mathcal{A} = \int_{A}^{B} 2\pi y \, ds = 4\pi \int_{O}^{B} y \, ds.$$

Expression que l'on peut intégrer par rapport à x ou à y.

Calcul du volume

 \circ Intégration par rapport à x.

$$\mathcal{A} = 4\pi \int_{O}^{B} y \, ds = 4\pi \int_{0}^{r} y(x) \cdot \sqrt{1 + y'^{2}(x)} \, dx.$$

$$\text{avec} \qquad y(x) = \sqrt{r^{2} - x^{2}}, \qquad y'(x) = \frac{-x}{\sqrt{r^{2} - x^{2}}}$$

$$\text{et} \qquad \sqrt{1 + y'^{2}(x)} = \sqrt{1 + \frac{x^{2}}{r^{2} - x^{2}}} = \frac{r}{\sqrt{r^{2} - x^{2}}}.$$

$$\mathcal{A} = 4\pi \int_{0}^{r} \sqrt{r^{2} - x^{2}} \cdot \frac{r}{\sqrt{r^{2} - x^{2}}} \, dx = 4\pi \, r \int_{0}^{r} dx = 4\pi \, r^{2}.$$

 \circ Intégration par rapport à y.

$$\mathcal{A} = 4\pi \int_{O}^{B} y \, ds = 4\pi \int_{0}^{r} y \cdot \sqrt{\left(\frac{dx}{dy}\right)^{2} + 1} \, dy.$$
avec
$$x(y) = \sqrt{r^{2} - y^{2}}, \qquad \frac{dx}{dy} = \frac{-y}{\sqrt{r^{2} - y^{2}}}$$
et
$$\sqrt{\left(\frac{dx}{dy}\right)^{2} + 1} = \sqrt{\frac{y^{2}}{r^{2} - y^{2}} + 1} = \frac{r}{\sqrt{r^{2} - y^{2}}}.$$

$$\mathcal{A} = 4\pi \int_{0}^{r} y \cdot \frac{r}{\sqrt{r^{2} - y^{2}}} \, dy = -4\pi r \int_{0}^{r} \frac{-y}{\sqrt{r^{2} - y^{2}}} \, dy,$$

$$\mathcal{A} = -4\pi r \left[\sqrt{r^{2} - y^{2}}\right]_{0}^{r} = 4\pi r^{2}.$$

5. On considère l'arc paramétré Γ défini par

$$\Gamma: \begin{cases} x(t) = \frac{t^2}{4+t^2} \\ y(t) = \frac{2t}{4+t^2} \end{cases} \qquad t \in [0,2].$$

- a) Calculer la longueur de l'arc Γ .
- b) Calculer l'aire de la surface de révolution obtenue par rotation de l'arc Γ autour de l'axe horizontal $y = \frac{1}{2}$.

a) Soit
$$L$$
 la longueur de l'arc Γ :
$$L = \int_0^2 \sqrt{|\dot{x}(t)|^2 + |\dot{y}(t)|^2} dt.$$
$$\dot{x}(t) = \frac{2t (4+t^2) - t^2 (2t)}{(4+t^2)^2} = \frac{8t}{(4+t^2)^2},$$
$$\dot{y}(t) = \frac{2(4+t^2) - 2t (2t)}{(4+t^2)^2} = \frac{-2t^2 + 8}{(4+t^2)^2},$$
$$\sqrt{|\dot{x}(t)|^2 + |\dot{y}(t)|^2} = 2\sqrt{\left[\frac{4t}{(4+t^2)^2}\right]^2 + \left[\frac{-t^2 + 4}{(4+t^2)^2}\right]^2} = 2\frac{\sqrt{16t^2 + (t^4 - 8t^2 + 16)}}{(4+t^2)^2}$$
$$= 2\frac{\sqrt{t^4 + 8t^2 + 16}}{(4+t^2)^2} = 2\frac{\sqrt{(t^2 + 4)^2}}{(4+t^2)^2} = \frac{2}{4+t^2}.$$

Intégration:

$$L = \int_0^2 \sqrt{\left[\dot{x}(t)\right]^2 + \left[\dot{y}(t)\right]^2} dt = \int_0^2 \frac{2}{4+t^2} dt = \int_0^2 \frac{\frac{1}{2}}{1+\left(\frac{t}{2}\right)^2} dt = \arctan\left(\frac{t}{2}\right) \Big|_0^2,$$

$$L = \frac{\pi}{4}.$$

b) On décompose cette surface de révolution en "tranches" perpendiculaires à l'axe de rotation $y=\frac{1}{2}$.

Ces surfaces élémentaires sont des troncs de cône de rayon moyen $\frac{1}{2} - y$ et dont les génératrices sont de longueur ds. Elles ont pour aire $2\pi \left(\frac{1}{2} - y\right) ds$.

Soit \mathcal{A} l'aire de la surface de révolution : $\mathcal{A} = \int_{A}^{B} 2\pi \left(\frac{1}{2} - y\right) ds$.

Et en l'exprimant par rapport à t:

$$\mathcal{A} = \int_0^2 2\pi \left[\frac{1}{2} - y(t) \right] \cdot \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} \ dt \,.$$

Intégration:

$$\mathcal{A} = \int_0^2 2\pi \left[\frac{1}{2} - y(t) \right] \cdot \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt = 2\pi \int_0^2 \left[\frac{1}{2} - \frac{2t}{4 + t^2} \right] \cdot \frac{2}{4 + t^2} dt$$
$$= 2\pi \left[\int_0^2 \frac{1}{4 + t^2} dt - \int_0^2 \frac{4t}{(4 + t^2)^2} dt \right].$$

•
$$\int_0^2 \frac{1}{4+t^2} dt = \frac{1}{2} \int_0^2 \frac{2}{4+t^2} dt = \frac{\pi}{8}$$
 (question précédente)

•
$$\int_0^2 \frac{4t}{(4+t^2)^2} dt = 2 \int_0^2 \frac{2t}{(4+t^2)^2} = \frac{-2}{4+t^2} \Big|_0^2 = -\frac{1}{4} - \left(-\frac{1}{2}\right) = \frac{1}{4}$$
.

$$\mathcal{A} = 2\pi \left[\frac{\pi}{8} - \frac{1}{4} \right] = \frac{\pi}{4} (\pi - 2).$$

6. On considère l'arc de courbe Γ défini par

$$y = \sinh^2(x)$$
, $x \ge 0$, $0 \le y \le 1$.

- a) Calculer la longueur de l'arc Γ .
- b) Calculer l'aire de la surface de révolution engendrée par la rotation de l'arc Γ autour de l'axe vertical d'équation $x = \arg \sinh(1)$.

Donner les résultats sous leur forme la plus simple.

Posons $a = \arg \sinh(1)$.

a) La longueur de l'arc Γ a pour expression $s = \int_0^a \sqrt{1 + \left[f'(x)\right]^2} \ dx$.

$$f'(x) = 2 \sinh(x) \cdot \cosh(x) = \sinh(2x)$$
,

$$\sqrt{1 + [f'(x)]^2} = \sqrt{1 + \sinh^2(2x)} = \cosh(2x)$$
.

$$s = \int_0^a \cosh(2x) dx = \frac{1}{2} \sinh(2x) \Big|_0^a$$

b) Calcul de l'aire \mathcal{A} de la surface de révolution.

La section de cette surface de révolution par le plan $y=y_0$ est un cercle de rayon $r=a-x_0$. On en déduit l'expression de l'aire \mathcal{A} :

$$\mathcal{A} = \int_{\Gamma} 2\pi \, r \, ds = \int_{\Gamma} 2\pi \, (a - x) \, ds \,,$$

Que l'on intègre par rapport à x:

$$\mathcal{A} = \int_0^a 2\pi (a - x) \cdot \cosh(2x) dx = 2\pi a \underbrace{\int_0^a \cosh(2x) dx}_{=\sqrt{2}} - 2\pi \int_0^a x \cdot \cosh(2x) dx$$

et on intègre $x \cdot \cosh(2x)$ par parties :

$$\int_0^a x \cdot \cosh(2x) \, dx = x \cdot \frac{\sinh(2x)}{2} \Big|_0^a - \int_0^a \frac{\sinh(2x)}{2} \, dx$$

$$= x \cdot \sinh(x) \cdot \cosh(x) \Big|_0^a - \frac{\cosh(2x)}{4} \Big|_0^a$$

$$= x \cdot \sinh(x) \cdot \sqrt{1 + \sinh^2(x)} \Big|_0^a - \frac{1}{4} \left[2 \sinh^2(x) + 1 \right] \Big|_0^a$$

$$= a \sqrt{2} - \frac{1}{4} (3 - 1) = a \sqrt{2} - \frac{1}{2}.$$

D'où:
$$A = (2\pi a \sqrt{2}) - 2\pi (a \sqrt{2} - \frac{1}{2}) = \pi$$
.