Series 10

1. Feynman Kac links

The price of a multi-asset option on d assets is given as the conditional expectation

$$V(t,x) = \mathbb{E}\left[e^{-\int_t^T r(X_s) ds} g(X_T) \mid X_t = x\right],$$

where $X_t = (X_t^1, \dots, X_t^d)^{\top}$ is an \mathbb{R}^d -valued stochastic process modeling the dynamics of the d assets, $r \in C^0(\mathbb{R}^d; \mathbb{R}_{\geq 0})$ is the deterministic interest rate and $g \colon \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ denotes the payoff of the option. We assume that the ith component of the process X evolves according to

$$dX_t^i = b_i(X_t) dt + \sum_{j=1}^n \Sigma_{ij}(X_t) dW_t^j, \quad X_0^i = Z^i, \quad i = 1, \dots, d,$$

and we further assume the coefficients $b \colon \mathbb{R}^d \to \mathbb{R}^d, \Sigma \colon \mathbb{R}^d \to \mathbb{R}^{d \times n}$ satisfy the usual Lipschitz continuity and linear growth condition, i.e. there exists a constant C > 0 such that for all $x, y \in \mathbb{R}^d$

$$|b(x) - b(y)| + |\Sigma(x) - \Sigma(y)| \le |x - y|,$$

 $|b(x)| + |\Sigma(x)| \le C(1 + |x|).$

a) Let $f \in C^{1,2}(\mathbb{R} \times \mathbb{R}^d)$ with bounded derviatives in x. Let \mathcal{A} be the infinitesimal generator of X

$$(\mathcal{A}f)(x) = \frac{1}{2}\operatorname{tr}[\mathcal{Q}(x)D^2f(x)] + b(x)^{\top}\nabla f(x)$$
(1)

and assume that $r \in C^0(\mathbb{R}^d)$ is bounded. Show that the process

$$M_t := e^{-\int_0^t r(X_s) \, ds} f(t, X_t) - \int_0^t e^{-\int_0^s r(X_\tau) \, d\tau} (\partial_t f + \mathcal{A}f - rf)(s, X_s) \, ds$$

is a martingale with respect to the filtration of W.

Hint: Use Theorem 1.2.6 and Proposition 1.2.7 from the textbook.

b) Prove Theorem 8.1.3 in the textbook: Let $V \in C^{1,2}(J \times \mathbb{R}^d) \cap C^0(\overline{J} \times \mathbb{R}^d)$ with bounded derivatives in x be a solution of

$$\partial_t V + \mathcal{A}V - rV = 0$$
 in $J \times \mathbb{R}^d$, $V(T, x) = g(x)$ in \mathbb{R}^d ,

with A as in (1). Then, V(t,x) can also be represented as

$$V(t,x) = \mathbb{E}\left[e^{-\int_t^T r(X_s) \, ds} g(X_T) \mid X_t = x\right].$$

Hint: Use the result from a).

2. Basic properties of the Kronecker product

Given $\mathbf{A} \in \mathbb{R}^{n \times m}$, $\mathbf{B} \in \mathbb{R}^{s \times t}$, and $\mathbf{C} \in \mathbb{R}^{p \times q}$ for $n, m, s, t, p, q \in \mathbb{N}$, show that

- a) If $\mathbf{A} \otimes \mathbf{B} = \mathbf{0} \in \mathbb{R}^{sn \times tm}$, then at least one of the matrices \mathbf{A}, \mathbf{B} is a zero matrix.
- b) $A \otimes B + A \otimes C = A \otimes (B + C)$, if s = p and t = q,
- c) $(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C}),$
- d) \otimes is not commutative, i.e. there exists $\mathbf{A} \in \mathbb{R}^{n \times m}$, $\mathbf{B} \in \mathbb{R}^{s \times t}$ such that $\mathbf{A} \otimes \mathbf{B} \neq \mathbf{B} \otimes \mathbf{A}$.
- e) If $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{B} \in \mathbb{R}^{s \times s}$ are symmetric, then $\mathbf{A} \otimes \mathbf{B}$ is also symmetric.

3. The pricing equation for multi-asset options

We consider the two-dimensional Black-Scholes model. Let $(W_t)_{t\geq 0}$ be a two-dimensional Brownian motion. The *i*-th component of the process $S=(S_t)_{t\geq 0}, S_t:=(S_t^1,S_t^2)^{\top}$ evolves according to

$$dS_t^i = b_i(S_t)dt + \sum_{j=1}^d \Sigma_{ij}(S_t)dW_t^j, \quad i = 1, 2,$$
(2)

starting from $S_0 = (S_0^1, S_0^2)$, where $b_i(s) = rs_i$, $\Sigma_{ij}(s) = \Sigma_{ij}s_i$, $S_0^j > 0$, $1 \le i, j \le 2$. We assume $r \in [-1, 1]$, Σ is a constant matrix such that $\det(\Sigma) \ne 0$, and set $\mathcal{Q} = \Sigma \Sigma^{\top}$. The price $V(t, S_t^1, S_t^2)$ of a European basket option maturing at T with a sufficiently smooth payoff g is given by the conditional expectation

$$V(t, s_1, s_2) = \mathbb{E}\left[e^{-r(T-t)}g(S_T^1, S_T^2) \mid S_t^i = s_i, \ i = 1, 2\right].$$

Let $G \subset \mathbb{R}^2$ be a bounded Lipschitz domain and let its boundary ∂G be divided into two parts: $\partial G = \partial_1 G \cup \partial_2 G$. Assume that $\partial_1 G \cap \partial_2 G = \emptyset$ and $\partial_1 G \neq \emptyset$. We transform the pricing equation to time-to-maturity, log-price and localize to G to obtain the following transformed PDE for $u(t, \mathbf{x}) = u(t, x_1, x_2) := V(T - t, \exp(x_1), \exp(x_2))$:

$$\partial_t u(t, \mathbf{x}) - \frac{1}{2} \nabla \cdot (\mathbf{Q} \nabla u(t, \mathbf{x})) + \mu^\top \nabla u(t, \mathbf{x}) + r u(t, \mathbf{x}) = 0 \quad \text{in } J \times G ,$$

$$u(t, \mathbf{x}) = 0 \quad \text{in } J \times \partial_1 G ,$$

$$(\mathbf{Q} \nabla u) \cdot \mathbf{n} = 0 \quad \text{in } J \times \partial_2 G ,$$

$$u(0, \mathbf{x}) = g(e^{\mathbf{x}}) \quad \text{in } G ,$$

$$(3)$$

where $\mu := [Q_{11}/2 - r, Q_{22}/2 - r]^{\top}$, $g(e^{\mathbf{x}}) := (g(e^{x_1}), g(e^{x_2}))$. Also, at any point $\mathbf{x} \in \partial G$, $\mathbf{n}(\mathbf{x})$ denotes the outer unit normal vector, which means that this vector satisfies (1) it is perpendicular to the tangent line to ∂G at \mathbf{x} (2) its length is 1 and (3) it points outward with respect to G. This truncation aims at approximating the knock-out barrier option

$$V_G(t, s_1, s_2) = \mathbb{E}\left[e^{-r(T-t)}g(S_T^1, S_T^2)\mathbf{1}_{\{T<\tau_G\}} \mid S_t^i = s_i, \ i = 1, 2\right].$$

Here $\tau_G = \inf\{t > 0 \mid \log(S_t) \in \mathbb{R}^2 \setminus G\}.$

a) Define $V = \{v \in H^1(G) \mid v|_{\partial_1 G} = 0\}$ equipped with $H^1(G)$ norm and let V^* be the dual space of V, show that the weak formulation of Equation (3) is as follows:

Find
$$u \in H^1(J; V^*) \cap L^2(J; V)$$
 s. t. for all $v \in V$ and for a.e. $t \in J$:
$$\langle \partial_t u(t, \mathbf{x}), v \rangle_{H^{-1}(G) \times V} + a(u(t, \mathbf{x}), v) = 0$$

$$u(0, \mathbf{x}) = g(\exp(\mathbf{x})) . \tag{4}$$

Here,

$$a(w,v) := \frac{1}{2} \int_G \nabla w(\mathbf{x})^\top \, \mathcal{Q} \nabla v(\mathbf{x}) \, d\mathbf{x} + \int_G \mu^\top \nabla w(\mathbf{x}) \, v(\mathbf{x}) \, d\mathbf{x} + r \int_G w(\mathbf{x}) \, v(\mathbf{x}) \, d\mathbf{x} \; .$$

Hint: Green's formula implies

$$\int_{G} v \nabla \cdot (\mathbf{Q} \nabla u) + \nabla v \cdot (\mathbf{Q} \nabla u) \, d\mathbf{x} = \int_{\partial G} v (\mathbf{Q} \nabla u) \cdot \mathbf{n} \, ds.$$

This holds if $u \in H^1(G)$ and $v \in C^{\infty}(G)$.

b) Prove that $a(\cdot,\cdot)$ obtained in a) satisfies the Gårding inequality, i. e. under which there exist $C_1>0, C_2\geq 0$ such that

$$a(v,v) \ge C_1 ||v||_{H^1(G)}^2 - C_2 ||v||_{L^2(G)}^2$$
.

Hint: You may use the following arithmetic-geometric mean inequality $ab \le \epsilon/2a^2 + 1/(2\epsilon)b^2$, which is valid for any $a,b \in \mathbb{R}$ and $\epsilon > 0$ to estimate the integral $\int_G \mu^\top \nabla w(\mathbf{x}) \, v(\mathbf{x}) \, d\mathbf{x}$.

c) Assume that $g(\cdot, \cdot)$ satisfies the polynomial growth condition (see (8.10) in the textbook). Prove that there exists $C, \gamma_1, \gamma_2 > 0$ depending only on \mathcal{Q}, μ, T, g such that if $G \supset B_R(0) := \{(x_1, x_2) \in \mathbb{R}^2, \sqrt{x_1^2 + x_2^2} < R\}$ for some R > 0, then for any $s_1, s_2 \in \mathbb{R}^+$,

$$|V_G(t, s_1, s_2) - V(t, s_1, s_2)| \le C \exp(-\gamma_1 \cdot R + \gamma_2 \max(s_1, s_2)).$$

Hint: Use Theorem 8.3.1 in the textbook, which is stated using log-price.

Due: Wednesday, May 15th, at 2pm.