Freie Aufloesungen und das Syszygien Theorem

Jens Heinrich

10.01.2017

Theorem 1 (Das Hilbert'sche Syzygien Theorem [1]1.13). Wenn $R = l[x_1, ..., x_r]$ gilt, dann hat jeder endlich erzeugte graduierte R-Modul eine endlich erzeugte freie Auflösung von Länge $\leq r$ aus endlich erzeugten freien Moduln.

Algorithmus 1 (Divisionsalgorithmus [1]15.7). Sei F ein freier S-Modul mit Basis und fester Monomordnung. Wenn $f, g_1, \ldots, g_t \in F$, dann können wir einen Standard Ausdruck

$$f = \sum m_u g_{s_u} + f'$$

von f bezüglich g_1, \ldots, g_t finden, indem wir die Indices s_u und die Terme m_u induktiv definieren. Wenn wir bereits s_1, \ldots, s_p und m_1, \ldots, m_p , gewählt haben, dann wählen wir, falls

$$f_p' := f - \sum_{u=1}^p m_u g_{s_u} \neq 0$$

und m der maximale Term von f'_{p} , der durch eines der der $in(g_{i})$ teilbar ist,

$$s_{p+1} = i, m_{p+1} = m/in(g_i)$$

. Dieser Vorgang bricht entweder ab, wenn $f'_p = 0$ oder wenn keines der $in(g_i)$ ein Monom aus f'_p teilt; der Rest f' ist dann f'_p .

Theorem 2 (Buchberger Kriterium [1]15.8). *Mit der Notation aus* ?? *folgt, dass die* g_1, \ldots, g_t *eine Gröbnerbasis bilden, genau dann wenn* h_{ij} *für alle i und j.*

Algorithmus 2 (Buchberger Algorithmus [1]333). Unter den Vorraussetzungen aus 2 sei M, das ein Untermodul von F und g_1, \ldots, g_t seien Erzeuger von M. Berechne die Reste h_{ij} . Wenn alle $h_{ij} = 0$, dann bilden die g_i eine Gröbnerbasis von M. Wenn einige der $h_{ij} \neq 0$ dann ersetze g_1, \ldots, g_t mit g_1, \ldots, g_t, h_{ij} und wiederholen dann den Prozess. Da der von g_1, \ldots, g_t, h_{ij} erzeugte Untermodul echt grösser als der von g_1, \ldots, g_t erzeugte Untermodul ist, und damit terminiert der Prozess nach endlich vielen Schritten. Die obere Schranke

$$b = ((r+1)(d+1)+1)^{2^{(s+1)}(r+1)}$$

hält für

r =number of variables d =maximum degree of the polynomials g_i , and s =the degree of the Hilbert polynomial (this is one less than the dimension; it is between 0 and r-1).

Theorem 3 (Schreyer [1][15.10). Mit der Notation von ??, konnen wir annehmen, dass g_1, \ldots, g_t eine Gröbnerbasis sind. Sei jetzt > eine Monomordnung auf $\bigoplus_{j=1}^t S\epsilon_j$, für die gilt $m\epsilon_u > n\epsilon_v \iff$

$$\operatorname{in}\left(mg_{u}\right) > \operatorname{in}\left(ng_{v}\right)$$
 bezüglich der Ordnung auf F

oder

$$\operatorname{in}(mg_u) = \operatorname{in}(ng_v)$$
 (bis auf Vielfachheit) butu $< v$.

. Die τ_{ij} erzeugen die Syuygien auf den g_i . Insbesondere sind die τ_{ij} eine Gröbnerbasis der Syzygien bezüglich der Ordnung > und in $(\tau_{ij}) = m_{ji}\epsilon_i$.

Literatur

[1] David Eisenbud. Commutative Algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, 1995.