Special Topics on Basic EECS I VLSI Devices Lecture 10

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Diffusion

- It is not only for charged particles.
 - For example,

Diffusion of ink (Google images)

-Therefore, no polarity is expected.

A simple game, again

Random motion of balls in a 1D box

- At each turn, they can move forward (+1) or backward (-1).

Initial condition

1 k turns

10 k turns

Equation

- Flux
 - -The electron flux due to the diffusion mechanism is given by

$$\mathbf{F}_n = -D_n \nabla n$$

where D_n is the electron diffusion coefficient in the unit of (cm²/sec).

-The diffusion current density is

$$\mathbf{J}_{n,diff} = q D_n \nabla n$$

Taur, Eq. (2.36)

- How about the hole?
 - The diffusion current density is

$$\mathbf{J}_{p,diff} = -qD_p \nabla p$$

Taur, Eq. (2.37)

An example

- Taken from Neamen's book
 - -Over 1 mm, the electron density varies linearly from 1X10¹⁸ cm⁻³ to 7X10¹⁷ cm⁻³.
 - -The diffusion coefficient is D_n = 225 cm2/sec.
 - Calculate the current density.

$$J_n = +qD_n \frac{dn}{dx}$$
= $(1.6 \times 10^{-19} \text{ C})(225 \text{ cm}^2/\text{s}) \left(\frac{1 \times 10^{18} \text{ cm}^{-3} - 7 \times 10^{17} \text{ cm}^{-3}}{0.1 \text{ cm}}\right)$
= 108 A/cm^2

Revisit the total current density.

- Total current density
 - Electron current density

$$\mathbf{J}_n = q\mu_n n\mathbf{E} + qD_n \nabla n$$

Hole current density

$$\mathbf{J}_p = q\mu_p p \mathbf{E} - q D_p \nabla p$$

- (Time-dependent) displacement current density

$$\mathbf{J}_{displacement} = \frac{\partial}{\partial t} (\epsilon \mathbf{E})$$

Taur, Eq. (2.54)

Taur, Eq. (2.55)

Einstein relation

• At equilibrium, we have the following relations:

$$D_n = \frac{k_B T}{q} \mu_n$$
, $D_p = \frac{\bar{k}_B T}{q} \mu_p$

Taur, Eq. (2.38) and Eq. (2.39)

(Park's book)

Current density with Einstein relation

- Alternative forms
 - Electron current density

$$\mathbf{J}_n = -q\mu_n n \left[\nabla \phi - \frac{k_B T}{q} \frac{1}{n} \nabla n \right]$$

Taur, Eq. (2.56)

Hole current density

$$\mathbf{J}_{p} = -q\mu_{p}p\left[\nabla\phi + \frac{k_{B}T}{q}\frac{1}{p}\nabla p\right]$$

Taur, Eq. (2.57)

Revisiting carrier concentrations

 $E_f = -q\phi_f$

9

Carrier densities are expressed as

$$n = n_i \exp\left(-\frac{E_i - E_f}{k_B T}\right) = n_i \exp\left(\frac{\phi - \phi_f}{k_B T/q}\right)$$
 Taur, Eq. (2.49)

$$p = n_i \exp\left(\frac{E_i - E_f}{k_B T}\right) = n_i \exp\left(-\frac{\phi - \phi_f}{k_B T/q}\right)$$
 Taur, Eq. (2.50)

 These relations are generally applicable in the presence of net charge and band bending.

Extension to non-equilibrium cases

- ullet Of course, at non-equilibrium cases, we cannot define E_f .
 - However, we introduce ϕ_n and ϕ_p to satisfy:

$$n = n_i \exp\left(\frac{\phi - \phi_n}{k_B T/q}\right)$$
 Taur, Eq. (2.61)

$$p = n_i \exp\left(-\frac{\phi - \phi_p}{k_B T/q}\right)$$
 Taur, Eq. (2.62)

 They are called quasi-Fermi potentials. (Electron quasi-Fermi potential and hole quasi-Fermi potential)

Current density with $\nabla \phi_n$ and $\nabla \phi_p$

- From the expression for the quasi-Fermi potential,
 - It can be written as

$$\phi_n = \phi - \frac{k_B T}{q} \log \frac{n}{n_i}$$

Taur, Eq. (2.65)

- Taking the gradient,

$$\nabla \phi_n = \nabla \phi - \frac{k_B T}{q} \frac{\nabla n}{n}$$

-Using this expression,

$$\mathbf{J}_n = -q\mu_n n \left[\nabla \phi - \frac{k_B T}{q} \frac{1}{n} \nabla n \right] = -q\mu_n n \nabla \phi_n \text{ Taur, Eq. (2.63)}$$

$$\mathbf{J}_p = -q \mu_p p
abla \phi_p$$

Taur, Eq. (2.64)

Gradient of quasi-Fermi potential

We have the following relations,

$$\mathbf{J}_n = -q\mu_n n \nabla \phi_n$$

$$\mathbf{J}_p = -q\mu_p p \nabla \phi_p$$

- The gradient of electron quasi-Fermi potential drives the electron current.
- -The gradient of hole quasi-Fermi potential drives the hole current.

Poisson equation

- Electrostatic potential, ϕ (In Taur, it is denoted as ψ_i .)
 - Conventionally, it is defined in terms of the intrinsic Fermi level,

$$E_i = -q\phi$$
 Taur, Eq. (2.40)

- Electric field, E
 - It is equal to the negative gradient of ϕ ,

$$\mathbf{E} = -\nabla \phi$$

Taur, Eq. (2.41)

Poisson equation

$$\nabla \cdot \mathbf{D} = \nabla \cdot (\epsilon \mathbf{E}) = \rho^{-\rho} = q(p - n + N_d^+ - N_a^-)$$

One dimensional and homogeneous system

$$\frac{d^2\phi}{dx^2} = -\frac{\rho}{\epsilon}$$

Taur, Eq. (2.42)

Boundary condition

- Tangential field
 - Tangential fields are continuous.

$$E_{1y}(0,y) = E_{2y}(0,y)$$

Taur, Eq. (2.46)

- Normal field
 - Perpendicular component of is continuous.

$$\epsilon_1 E_{1x}(0,y) = \epsilon_2 E_{2x}(0,y)$$

Taur, Eq. (2.47)

14

Debye length (1)

Consider an n-type silicon. (Neglect holes and acceptors)

$$\frac{d^2\phi}{dx^2} = -\frac{q}{\epsilon} \left[N_d(x) - n_i \exp\left(\frac{\phi - \phi_f}{k_B T/q}\right) \right]$$
 Taur, Eq. (2.51)

– For a uniformly doped background, N_d ,

$$0 = -\frac{q}{\epsilon} \left[N_d - n_i \exp\left(\frac{\phi - \phi_f}{k_B T/q}\right) \right]$$

-By introducing an incremental change, $\Delta N_d(x)$, the corresponding change in the electrostatic potential, $\Delta \phi(x)$, is given as

$$\frac{d^2\Delta\phi}{dx^2} = -\frac{q}{\epsilon} \left[\Delta N_d(x) - N_d \frac{\Delta\phi}{k_B T/q} \right]$$
 Taur, Eq. (2.52)

Debye length (2)

With the Debye length,

$$L_D = \sqrt{\frac{\epsilon k_B T}{q^2 N_d}}$$
 Taur, Eq. (2.51)

-The equation can be written as

$$\frac{d^2\Delta\phi}{dx^2} - \frac{\Delta\phi}{L_D^2} = -\frac{q}{\epsilon}\Delta N_d(x)$$

- Its solution takes the form of $\exp\left(-\frac{x}{L_D}\right)$.
- -It keas a distance on the order of L_D for the silicon bands to respond to an abrupt change in N_d .

Debye length (2)

With the Debye length,

$$L_D = \sqrt{\frac{\epsilon k_B T}{q^2 N_d}}$$
 Taur, Eq. (2.51)

-The equation can be written as

$$\frac{d^2\Delta\phi}{dx^2} - \frac{\Delta\phi}{L_D^2} = -\frac{q}{\epsilon}\Delta N_d(x)$$

- Its solution takes the form of $\exp\left(-\frac{x}{L_D}\right)$.
- -It keas a distance on the order of L_D for the silicon bands to respond to an abrupt change in N_d .

Thank you!