TRIGONOMETRY Chapter 06

Razones trigonométricas de un ángulo en posición normal l

CURIOSIDADES EN LA MATEMÁTICA

El numero $\pi(pi) = 3.14159...$

ÁNGULO EN POSICIÓN NORMAL

Es aquel ángulo trigonométrico cuyo vértice (V) está en el origen de coordenadas cartesianas y su lado inicial (LI) coincide con el semieje positivo de las abscisas. El lado final (LF) nos indica el cuadrante al cual pertenece el ángulo.

EJEMPLOS:

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN

POSICIÓN NORMAL

$$=\sqrt{+}$$
 >0

y: Ordenada del punto P

x: Abscisa del punto P

r: Radio vector

DEFINICIONES

senα	cosa	tanα	cotα	secα	cscα
	_				_

1. El lado terminal de un ángulo α en posición estándar pasa por el punto P(3 ; – 4). Calcule sec α – tan α .

RESOLUCIÓN

$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{(3)^2 + (-4)^2} \implies r = 5$$

Calculamos:

$$E = \sec \alpha - \tan \alpha$$

$$E = \frac{5}{3} - \frac{-4}{3} = \frac{9}{3}$$

Recordar:

Sen	Cos	Tan
<u>y</u>	<u>x</u>	<u>y</u>
r	r	x

Csc	Sec	Cot
<u>r</u>	<u>r</u>	<u>x</u>
y	x	y

2. Del gráfico mostrado, calcule:

$$=\sqrt{}$$
 α α

RESOLUCIÓN

•
$$\sqrt{13} = \sqrt{x^2 + (-3)^2}$$

Al cuadrado: $13 = x^2 + 9$

$$\Rightarrow 4 = x^2 \Rightarrow x = -2$$

Recordar

$$r = \sqrt{x^2 + y^2}$$

Sen	Cos	Tan
$\frac{y}{r}$	$\frac{x}{r}$	$\frac{y}{x}$

• Calculamos: $P = \sqrt{13} sen \alpha - 6 tan \alpha$

$$P = \sqrt{13} \left(\frac{-3}{\sqrt{13}} \right) - 6 \left(\frac{-3}{-2} \right) = -3 - 9$$

 $\therefore P = -12$

3. Del gráfico, calcule:

$$\alpha +$$

RESOLUCIÓN

Recordar:

tanβ	secα
λ	<u>r</u>
X	X

Calculamos: $E = \sec \alpha + \tan^2 \beta$

$$E = \left(\frac{3}{-2}\right) + \left(\frac{-2}{-\sqrt{5}}\right)^2$$

$$E = -\frac{3}{2} + \frac{2}{5}$$

$$\therefore E = -\frac{7}{10}$$

HELICO | PRACTICE

4. Del gráfico, si tan θ = 3; efectúe: $=\sqrt{\theta-n}$

Recordar

$$r = \sqrt{x^2 + y^2}$$

	cosθ	tanθ
	V	1//
	_ ^ i	.y
1.0		
	P	1/
		X

RESOLUCIÓN

Dato:
$$tan\theta = 3 = \frac{4n-1}{n-1}$$

$$3n-3 = 4n-1$$

$$n = -2$$

• Calculamos: $=\sqrt{10}$ $\theta-1$

$$=\sqrt{10}\left(\frac{-3}{3\sqrt{10}}\right)-(-2)$$

$$=-1+2$$

 $\therefore M = 1$

5. Lucas ha rendido sus exámenes de Trigonometría, Geometría y Álgebra obteniendo las notas A, B y C, respectivamente. Si los valores de A, B y C se obtienen resolviendo los siguientes ejercicios, ¿en cuál de los cursos obtuvo la mejor calificación?

A =
$$13 sen \alpha + 5$$

B = $11 - 13 cos \alpha$
C = $5 - 24 cot \alpha$

senα	cosa	cotα
<u> </u>	<u>X</u>	X
r	r	y

RESOLUCIÓN

$$r = \sqrt{x^2 + y^2}$$

$$\Rightarrow 13 = \sqrt{x^2 + (12)^2} \Rightarrow x^2 = 25$$

$$\Rightarrow x = -5$$

Reemplazamos:

$$A = 13 \left(\frac{12}{13} \right) + 5 \implies A = 17$$

• B = 11-13
$$\left(\frac{-5}{13}\right)$$
 \Rightarrow B = 16

•
$$C = 5 - 24 \left(\frac{-5}{12} \right) \Rightarrow C = 15$$

$$\therefore$$
 A = Trigonometría

6. Si el lado final de un ángulo α en posición normal pasa por el punto de intersección de las rectas

$$L_1: 3x + y + 8 = 0 ... (I)$$

 $L_2: 5x - 2y - 5 = 0 ... (II)$

Efectúe:
$$=\sqrt{}(\alpha+\alpha)$$

RESOLUCIÓN

Multiplicamos por 2 la ecuación (I)

$$6x + 2y + 16 = 0$$

$$5x - 2y - 5 = 0$$
(+)

$$11x + 11 = 0 \implies x = -1 \land y = -5$$

• Calculamos: $W = \sqrt{26(sen\alpha + cos\alpha)}$

$$\Rightarrow W = \sqrt{26} \left(\frac{-5}{\sqrt{26}} + \frac{-1}{\sqrt{26}} \right)$$

$$\Rightarrow W = \sqrt{26} \left(\frac{-6}{\sqrt{26}} \right) \quad \therefore W = -6$$

7. Desde la torre de control del aeropuerto (punto O) se conoce la trayectoria de un avión como = $^2/$ - . Cuando el avión se encuentra en el punto P a 30 m del eje Y; calcule $\sqrt{}$ ϕ ϕ .

Nota: Considere que 1u en el plano cartesiano equivale a 1m.

RESOLUCIÓN

Dato: x = 30 Reemplazando en la ecuación

$$y = \frac{30^2}{30} - 120 \Longrightarrow y = -90$$

$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{30^2 + (-90)^2} \implies r^2 = 9000$$

$$\Rightarrow r = 30\sqrt{10}$$

Usamos el punto P(30;-90), para calcular:

$$= \sqrt{\frac{0}{30}} \sqrt{\frac{30}{10}} \sqrt{\frac{-90}{30}}$$

$$E = \sqrt{10} \left(\frac{30\sqrt{10}}{30}\right) \left(\frac{-90}{30}\right)$$

$$E = -30$$