Test 1 du 14 Mars 2017

Durée: 1h45, Polycopié autorisé.

Trouver les solutions $t \rightarrow y(t)$ des équations différentielles suivantes, en précisant le domaine de définition :

a) $y'(t) = y(t) \cos t$, avec pour donnée initiale y(0) = 1.

b)
$$y'(t) = y(t) + \cos t$$
, avec pour donnée intiale $y(0) = 0$.
c) $y'(t) = \frac{\exp(-(y(t))^2)}{y(t)}$, avec pour donnée initiale $y(0) = 1$.

d)
$$y'(t) = 1 + t^2 + \frac{y(t)}{t}$$
, avec pour donnée initiale $y(1) = 2$.

Exercice 2. On considère l'équation

$$\frac{\partial u}{\partial t}(x,t) + x^3 \frac{\partial u}{\partial x}(x,t) = 0 \text{ pour } (x,t) \in \mathbb{R} \times [0,+\infty[.$$

- 1) Montrer qu'il s'agit d'une équation de transport linéaire.
- 2) Préciser les courbes caractéristiques, en particulier celle qui passe par un point (x^*, t^*) donné.
- 3) Donner l'expression de la solution qui vérifie $u(x,0) = \sin x, \forall x \in \mathbb{R}$.

Exercice 3. Soit u_0 une foncion régulière, 2π -périodique sur \mathbb{R} . On considère l'équation sur $\mathbb{R} \times [0, +\infty[$

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) + \frac{\partial^4 u}{\partial x^4}(x,t) = 0 \text{ pour } (x,t) \in \mathbb{R} \times [0,+\infty[\\ u(x,0) = u_0(x) \text{ pour } x \in \mathbb{R} \end{cases}$$

On cherche une solution u qui soit 2π -périodique par rapport à x, c'est à dire telle que $u(x+2\pi, t) = u(x, t)$.

- 1) Montrer que si une telle solution u, alors elle est unique.
- 2) Trouver la solution en utilisant un développement en séries de Fourier.
- 3) Trouver la solution du problème pour $u_0 = (\sin x)^2$ pour tout $x \in \mathbb{R}$.
- 4) Trouver la solution du problème :

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) + \frac{\partial^4 u}{\partial x^4}(x,t) = t(\cos x)^3 \text{ pour } (x,t) \in \mathbb{R} \times [0,+\infty[\\ u(x,0) = 0 \text{ pour } x \in \mathbb{R} \end{cases}$$
 (2)

*5) Que peut-on dire des solutions 2π -périodiques par rapport à x de l'équation

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) - \frac{\partial^4 u}{\partial x^4}(x,t) = 0 \text{ pour } (x,t) \in \mathbb{R} \times [0,+\infty[\\ u(x,0) = u_0(x) \text{ pour } x \in \mathbb{R}. \end{cases}$$

Exercice 4. A) Soit a > 0 et f_a la fonction définie sur \mathbb{R} par par $f_a(x) = \exp(-a|x|)$, pour $x \in \mathbb{R}$.

Al Déterminer la fonction \widehat{f}_a .

A2) En déduire la valeur de l'intégrale $I = \int_{\mathbb{R}} \frac{1}{(s^2+1)^2} \mathrm{d}s$. A3) Déduire de la question A1) l'expression de \widehat{g} , où g désigne la fonction définie sur \mathbb{R} par $g(x) = \frac{1}{1+x^2}$ pour tout $x \in \mathbb{R}$.

B) On considère la fonction h définie sur $\mathbb R$ par

$$h(x) = 1 - x^2 \text{ pour } |x| \le 1 \text{ et } h(x) = 0 \text{ pour } |x| > 1.$$
 (3)

B1) Calculer la transformée de Fourier \widehat{h} de h.

B2) En déduire la valeur de l'intégrale $I = \int_{\mathbb{R}} \frac{1}{s^6} (s \cos s - \sin s)^2 ds$.

B3) En utilisant la question B1) calculer l'intégrale

$$K = \int_{\mathbb{R}} \frac{s \cos s - \sin s}{s^3} \cos \left(\frac{s}{2}\right) ds.$$