(High Dimensional) The quality of BDR depends on the CCD estimles. How Loes if work when X is high-Limensional? "High Limensional Spaces are weird!" (do not trust your intuition.) Examples : (1) consider a hyperculee , an inscribed hypersphere in the. volume of hypersphere: V3(r) = -Channa furction volume of hypercules: (2r) A as a microses, the volume of corners increases.

CS5487 Lecture Notes (2022B) Prof. Antoni B. Chan Dept of Computer Science City University of Hong Kong

Example 2 consider a hypersphre Shell of thickness G. $V_{Shell} = V(S_2) - V(S_1)$ $= \left(1 - \frac{V(S_2)}{V(S_2)}\right) V(S_2)$ suppose OKEKY, as a morases, then $\frac{V(S_1)}{V(S_2)} \rightarrow 0$ >) Vshull >> V(S2) as I mercuses "All the volume is in the shell of the hypersphie"

Example 3) high -Jm Gaussian

let
$$X \sim N(0, 6^2 T)$$

i.e. $X_i \sim N(0, 6^2)$ ind $x_i \sim$

Then, $E[||X||^2] = E[|X_1^2 + X_2^2 + + X_3^2] = d6^2$
 $E[\frac{1}{3}||X||^2] = 6^2$

Note: $||X||^2$ is a sum of ind $x_i \sim 1$ thus by the central limit theorem it is concentrated around the linear as $d \rightarrow \infty$.

 $\frac{1}{3}||X||^2 \sim N(6^2, \frac{1}{3})$

In high-dim, a Gaussian is essentially a shell of cardius 6 of. Most of the density is in the shell.

(max density is still the mean)

Curse of Dimension ality	In postile, he BDR, error increases as feat dim increases.
In Theory, adding new features will not increase Plems	The problem: Quality of the CCD estimates.
10 Plus	Density estimates in high-dim require more training samply Roughly, desired training set size = O(e), p=#=fparameters
1) A plant errors here. Adding infinitive Centures p(error) decreases.	Solution: 1) Reduce # of parameters (complexely of model) (e.g. full cov -) diag cov)
→ X ₍	-> 2) Reduce of features (dimensimality reduction) -> implicitly reduce of parameters.
Allow non-information forthers -> p(error) is the same as before.	3) Create where Later a) Bayesian estimation (virtual samples)
\times	b) data augmentation
	$A \rightarrow A$
	A DY

Linear Dimensionality Reduction	Principal Component Amlysis (PCA)
- Summerize correlated features w/ fewer teatures	Idea: is the data lives in a subspace, then it will look fla
- How to find these correlations? Inner projection of points and line.	in the full spore. If we fit a Gausson, it will be "skinny" in some directors.
£,	<i>•</i>
correlated data "lives" in a lower-down subspace (w/some nonze)	let (v_i, λ_i) be an eigenpair of covariance matrix Ξ $\Sigma = V \Lambda V^{T}, V = [v_1, \dots, v_d], \Lambda = [\lambda_i, 0]$
$\mathbb{R}^3 \to \mathbb{R}^2$	-each vi defines an axis of ellipse -each li defines the width on that axis
	Hence, the eigenvalues of 21 hell us which directions the Lata is float.
	= select axis vi w/ larger eigenalines
	as "principal components".

will look flat

(a) Calculate Growssian M=\frac{1}{2}\times \times \frac{1}{1} \times \frac{1}{2} \times \tim	(1) mustain zers the various of the projected data the Experience of the post-3 (2) minimizes the reconstruction error of training data. (3) can be implemented efficiently w/ SVD PS7-4 (4) select k? 1) pick k that works in the downstrian task (classification) 2) pick k to preserve variance of data por = \frac{2}{27} \times \frac{27}{27} \

Notes:
The selection of \$\overline{\pi} \cup | \overline{\pi} \overline{\pi} = \overline{\pi} \alpha | \overline{\pi} \overline{\pi} = \overline{\pi} \overline{\pi} \overline{\pi} = \overline{\pi} \overline{\pi} =

PCA: Gover the dataset 2x1,..., Xn3 or dim k

Fisher's Linear Discrement (FLD) (Linear Discrimmant Analysis (LDA)) Find the projection that best separates the classes. $z = \omega^T x$ Class statistics 1-9 star original space m; = wTu; $M_j = \frac{1}{n_j} \sum_{Y_i \in C_i} X_i$ class mean Si= WTS; W $S_j = \sum_{x_i \in C_i} (x_i - w_i) (x_i - w_i)^T$ class scatter IDEA: maximize the distance blun projected mans $(m_1 - m_2)^2 = (\omega^T (M_1 - M_2))^2$ problem: W is unconstanted -> need normalization

without close $S_B = (M_1 - M_2)(M_1 - M_2)^T$ $S_W = S_1 + S_Z$ if generalized eigenvalue polden $W^* = (S_1 + S_2)^{-1}(M_1 - M_2)$ While: this hyperplane separate 2 Gaussan U/COV In $(S_1 + S_2)$

 $\mathbf{w}^{\mathsf{T}} \mathcal{S}_{\mathbf{g}} \mathbf{\omega}$

argum x w Sw w

(m,-m2)

 $5_1 + 5_2$

Fisher's Idea

W= argment -

=> FLD is ophimal when 2 classes are Gaussians w/ egual covariance matrices.

 $(m_1 - m_2)^2 = [w^{\dagger}(m_1 - m_2)]^2 = w^{\dagger}(m_1 - m_2) \cdot (m_1 - m_2)^{\dagger}w$

= WT Sow