Санкт-Петербургский национальный исследовательский университет ИТМО

Факультет Программной Инженерии и Компьютерной техники

Вычислительная математика

Лабораторная работа №2 «Численное решение нелинейных уравнений и систем»

Вариант №4

Выполнил:

Кешишян Давид Артурович

P3214

Преподаватель:

Малышева Татьяна Алексеевна

Санкт-Петербург 2024

Код программы:

https://github.com/AEKDA/vm

1 часть

Уравнение: $x^3 - 1.89x^2 - 2x + 1.76$

График функции $x^3 - 1.89x^2 - 2x + 1.76$

Метод простой итерации для уточнения правого корня

a = 2

b = 3

начальное приближение $x_0 = 2$

Νō	X _i	x_{i+1}	$\varphi(x_{i+1})$	$f(x_{i+1})$	$ x_{i+1}-x_i $
1	2	2.13177	2.13177	-1.8	0.13177
2	2.13177	2.23461	2.23461	-1.40482	0.10284
3	2.23461	2.30697	2.30697	-0.98839	0.07235

Otbet: x = 2.30697095996831

Погрешность: 0.0723571803440639

Метод половинного деления для крайнего левого корня

$$a = -2$$

$$b = -1$$

Если f(a) * f(x) > 0 то a = x, иначе b = x

Νō	a	b	X	F(a)	F(b)	F(x)	a-b
1	-1,5	-1	-1,5	-9,8	0,87	-2.8675	2.8675
2	-1,25	-1	-1,25	-2,8675	0,87	-0.64625	0.64625
3							
		-					
	-1,25	1,125	-1,125	-0,64625	0,194140625	0.194140625	0.194140625
4							
		-					
	-1,1875	1,125	-1,1875	-0,64625	0,194140625	-0.204755859375	0.204755859375
5	-	-	-				
	1,15625	1,125	1,15625	-0,204755859	0,194140625	-0.0000744628906250711	0.0000744628906250711

Otbet: x = -1,15625

Погрешность: 0.0000744628906250711

Метод секущих для крайнего центрального корня:

$$a = 0 b = 1$$

Νō	x_{i-1}	x_i	x_{i+1}	f(x_{i+1})	X_{i+1}-x_i
1	1,1	1	0,575028	0,175138384	0,424972
2	1	0,575028	0,632056	-0,00665336	0,057028
3	0,575028	0,632056	0,629969	0,000006071	0,002087

Otbet: x = 0,629969

Погрешность: 0,002087

Решение системы нелинейных уравнений

$$\begin{cases} \sin(x+y) - 1.2x = 0.2 \\ x^2 + 2y^2 = 1 \end{cases} \Rightarrow \begin{cases} \sin(x+y) - 1.2x - 0.2 = 0 \\ x^2 + 2y^2 - 1 = 0 \end{cases}$$

Построим матрицу Якоби:

 $\frac{df}{dx} = \cos(x+y) - 1.2$; $\frac{df}{dy} = \cos(x+y)$; $\frac{dg}{dx} = 2x$; $\frac{dg}{dy} = 4y$, тогда решаем следующую систему уравнений:

$$\begin{vmatrix} \cos(x+y) & \cos(x+y) \\ 2x & 4y \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} 0.2 + 1.2x - \sin(x+y) \\ 1 - x^2 - 2y^2 \end{pmatrix}$$

$$\begin{cases} \cos(x+y)\Delta x + \cos(x+y) \Delta y = 0.2 + 1.2x - \sin(x+y) \\ 2x\Delta x + 4y\Delta y = 1 - x^2 - 2y^2 \end{cases}$$

Начальное приближение равно х = 0.6, у = 0.6. Получаем:

Шаг 1:

$$\Delta y = -0.03344$$

$$\Delta x = 0.000218$$

$$x_1 = x_0 + \Delta x = 0.6 + 0.000218 = 0.600218$$

$$y_1 = y_0 + \Delta y = 0.6 - 0.03344 = 0.56656$$

$$|x_1 - x_0| < \varepsilon$$
; 0.000218 < 0.01

$$|y_1 - y_0| < \varepsilon$$
; 0.03344 > 0.01

Шаг 2:

$$\Delta x = 0.006284$$

$$\Delta y = -0.00431$$

$$x_2 = x_1 + \Delta x = 0.600218 + 0.006284 = 0.606502$$

$$y_2 = y_1 + \Delta y = 0.56656 - 0.00431 = 0.562241$$

$$|x_1 - x_0| < \varepsilon$$
; 0.006284 < 0.01

$$|y_1 - y_0| < \varepsilon; -0.00431 < 0.01$$