Retail_exploratory.pynb

March 9, 2018

Let's do some exploratory analysis on store sales data. Let's load and combine the data first.

```
In [8]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
        from datetime import datetime
        from pandas import Series, DataFrame, concat
In [9]: def build_dataset():
            #LOAD DATA
            features_data = pd.read_csv('~/Projects/Store_sales/Features_data_set.csv').fillna
            sales_data = pd.read_csv('~/Projects/Store_sales/sales_data_set.csv').fillna('VK')
            stores_data = pd.read_csv('~/Projects/Store_sales/stores_data_set.csv').fillna('VK
            #MERGE DATA INTO A SINGLE DATA SET
            features_data.drop('IsHoliday', axis = 1, inplace = True)
            data = pd.merge(sales_data, stores_data, on='Store')
            data = pd.merge(data, features_data, on=['Store', 'Date'])
            del(features_data, sales_data, stores_data)
            #REPLACE DATE STRING WITH DATETIME
            data['Date'] = pd.Series([datetime.strptime(d, '%d/%m/%Y') for d in data['Date']])
            #ADD YEAR, MONTH AND WEEK COLUMNS
            data['Year'] = pd.Series([t.year for t in data['Date']])
            data['Month'] = pd.Series([t.month for t in data['Date']])
            '''there is a slight inconsistency here because of a leap year and the
            definition of the sales week depending on what week day the year starts;
            however given the dates are all fridays the datetime week function does
            a good job assigning week numbers'''
            data['Week'] = pd.Series([t.week for t in data['Date']])
            return data
In [3]: data = build_dataset()
```

Let's take a look now what this data set contains.

In [4]: data.describe(include = 'all')

Out[4]:		S	tore	Dept		Date	e Weekly_Sales	\
ouclij.	count	421570.00		1570.000000		421570		`
	unique	121010.00	NaN	NaN		143		
	top		NaN	NaN	2011-12-23			
	freq		NaN	NaN		3027		
	first		NaN	NaN	2010-02-05			
	last		NaN	NaN	2012-10-26			
	mean	22.20		44.260317		NaN		
	std	12.78		30.492054		NaN		
	min	1.00	0000	1.000000		NaN	-4988.940000	
	25%	11.00	0000	18.000000		NaN	2079.650000	
	50%	22.00	0000	37.000000		NaN	7612.030000	
	75%	33.00	0000	74.000000		NaN	20205.852500	
	max	45.00	0000	99.000000		NaN	693099.360000	
		IsHoliday	Туре		_	rature	Fuel_Price \setminus	
	count	421570	421570	421570.0000			121570.000000	
	unique	2	3		aN	NaN	NaN	
	top	False	Α		aN	NaN	NaN	
	freq	391909	215478		aN	NaN	NaN	
	first	NaN	NaN		aN	NaN	NaN	
	last	NaN	NaN		aN	NaN	NaN	
	mean	NaN	NaN	136727.9157		090059	3.361027	
	std	NaN	NaN	60980.5833		447931	0.458515	
	min	NaN	NaN	34875.0000		060000	2.472000	
	25%	NaN	NaN	93638.0000		680000	2.933000	
	50%	NaN	NaN	140167.0000		090000	3.452000	
	75%	NaN	NaN	202505.0000		280000	3.738000	
	max	NaN	NaN	219622.0000	100.	140000	4.468000	
		MarkDown1	MarkDown	2 MarkDown3	MarkDown4 M	arkDown5	CPI	\
	count	421570	42157	0 421570	421570	421570	421570.000000	
	unique	2278	150	0 1663	1945	2294	2145.000000	
	top	VK	V	K VK	VK	VK	129.855533	
	freq	270889	31032	2 284479	286603	270138	711.000000	
	first	NaN	Na	N NaN	NaN	NaN	NaN	
	last	NaN	Na	N NaN	NaN	NaN	NaN	
	mean	NaN	Na	N NaN	NaN	NaN	NaN	
	std	NaN	Na	N NaN	NaN	NaN	NaN	
	min	NaN	Na	N NaN	NaN	NaN	NaN	
	25%	NaN	Na	N NaN	NaN	NaN	NaN	
	50%	NaN	Na	N NaN	NaN	NaN	NaN	
	75%	NaN	Na	N NaN	NaN	NaN	NaN	
	max	NaN	Na	N NaN	NaN	NaN	NaN	
		Unemploym	ent	Year	Mon	th	Week	

count	421570.000	421570.000000	421570.000000	421570.000000
unique	349.000	NaN	NaN	NaN
top	8.099	NaN	NaN	NaN
freq	5152.000	NaN	NaN	NaN
first	NaN	NaN	NaN	NaN
last	NaN	NaN	NaN	NaN
mean	NaN	2010.968591	6.449510	25.826762
std	NaN	0.796876	3.243217	14.151887
min	NaN	2010.000000	1.000000	1.000000
25%	NaN	2010.000000	4.000000	14.000000
50%	NaN	2011.000000	6.000000	26.000000
75%	NaN	2012.000000	9.000000	38.000000
max	NaN	2012.000000	12.000000	52.000000

In [5]: data.dtypes

Out[5]:	Store	int64
	Dept	int64
	Date	datetime64[ns]
	Weekly_Sales	float64
	IsHoliday	bool
	Type	object
	Size	int64
	Temperature	float64
	Fuel_Price	float64
	MarkDown1	object
	MarkDown2	object
	MarkDown3	object
	MarkDown4	object
	MarkDown5	object
	CPI	object
	Unemployment	object
	Year	int64
	Month	int64
	Week	int64
	dtype: object	

Now it would be interesting to take a look at an individual store just to make sense we are clear as to what the building block of the data set represents. Let's select store 1 and see what we got. We will show two separate graphs just to keep the spatial presentation under control:

```
plt.figure()
for item in to_plot:
    plt.subplot(len(to_plot), 1, i)
    plt.plot(values[:, item])
    plt.yticks([])
    plt.title(data_df.columns[item], y=0.5, loc='right')
    i += 1
plt.show()
#AND THEN SECOND GROUP
to_plot = [10, 11, 12, 13, 14, 15]
i = 1
# plot each column
plt.figure()
for item in to_plot:
    plt.subplot(len(to_plot), 1, i)
    plt.plot(values[:, item])
    plt.yticks([])
    plt.title(data.columns[item], y=0.5, loc='right')
    i += 1
plt.show()
```


I think it gives some good idea as to what should be useful here - weekly sales for sure, IsHoliday factor perhaps, and maybe some other values for hygene (e.g. CPI, unemployment, etc.) but perhaps these won't really swing the results. I don't quite understand the nature of MarkDowns and what they represent and I don't think I will use them in the analysis anyway for this reason, and because they are only only available for 1/3 of the time series.

I also think that given the seasonal nature of the data, it would be important to add number of the week to the data set. Sales spikes occur in week 47 and 51 and we should be able to capture this.

Now let's look at some other useful things.

```
i += 1
             plt.figure()
             plt.scatter(x, y, alpha=0.5)
             plt.xlabel('stores')
             plt.ylabel('departments')
             plt.show()
In [21]: #ANNUAL SALES PER STORE
         df_2010 = data[data['Date'].isin(pd.date_range("2010-01-01", "2010-12-31"))]
         df_2011 = data[data['Date'].isin(pd.date_range("2011-01-01", "2011-12-31"))]
         df_2012 = data[data['Date'].isin(pd.date_range("2012-01-01", "2012-12-31"))]
         x = data['Week'].unique()
         x = df_2010['Week'].unique()
         y = df_2010.groupby('Week')['Weekly_Sales'].sum()
In [22]: #build table aggregating sales by year and week
         annual_sales_df = pd.concat([df_2010.groupby('Week')['Weekly_Sales'].sum(), df_2011.gr
         annual_sales_df = pd.concat([annual_sales_df, df_2012.groupby('Week')['Weekly_Sales']
         annual_sales_df.columns = ['2010', '2011', '2012']
  And now let's take a look at the plot showing all aggregated sales by week of the year.
```


It would be helpful at this stage to also look separately at each year aggregate sales, 2010, 2011 and 2012:

Out[25]: (1, 52)

Out[26]: (1, 52)

Out[27]: (1, 52)

I think these graphs give a pretty complete picture of the data: we have incomplete year 2010 (a few weeks in the beginning) and 2012 (~7 weeks at the end, including all of the holiday season). Now it would be interesting to see if a model can be built that predicts the usual seasonal fluctuation based on the observations from 2010 and 2011.

I am not going to bother with building a train/test split this time, butinstead will use the full data set as for training. It's pretty clear what we can expect to see in that gap at the end of 2012 graph.

The purpose here is only to set up a model that would correctly infer the typical sales patterns surrounding the holiday season. LSTM is an ovious model candidate. Given LSTM choice, it would be intresting to:

- make a series of predictions in one go, i.e. make one prediction of several weeks, as opposed to a week by week prediction
- experiment with adding different independent variables and their effect on the model performance

This is exactly what I will try next.