Climate-Conscious Monetary Policy

Anton Nakov Carlos Thomas

European Central Bank · Banco de España¹

Oslo, 30 January 2024

1/36

 $^{^{1}\}mathrm{The}$ opinions expressed here are those of the authors only and do not necessarily reflect the views of the Banco de España, the ECB, or the Eurosystem.

Motivation

- Broad consensus on the need to decarbonize the global economy to mitigate climate change.
- Agreement also on the key role of carbon taxation/pricing.
- Less agreement on what role central banks should play in the green transition
 - ► Transatlantic "divide": Lagarde (2021) vs Powell (2023)
- Even if central banks assume climate goals, key normative questions remain unanswered:
 - Trade-offs between climate and core goals (price stability)?
 - ▶ How do these trade-offs depend on what climate authorities are doing?
 - How are these trade-offs optimally resolved?
- To address these questions, we use a canonical New Keynesian model and add to it climate externalities as in Golosov et al (ECMA, 2014).

Preview of results

- If carbon taxes are set optimally, then the central bank faces no policy trade-offs: strict inflation targeting delivers the first-best equilibrium
- Under sub-optimal carbon taxes, there is a trade-off between price stability and climate goals, but it is resolved overwhelmingly in favor of price stability
 - Under "slow" green transition (optimal fossil tax reached after ≈30 years), departure from strict zero inflation targeting is tiny (barely 15 bp)
- Optimal green tilting of QE accelerates the green transition (faster reduction in fossil energy use)
- But the impact on carbon concentration in the atmosphere and on global temperatures is small
 - ► The effectiveness of green tilting is limited by the (small) size of spreads on eligible (i.e. investment grade) corporate bonds

Related literature

- Standard environmental policies (taxes, subsidies, caps) in RBC models
 - ► Fischer & Springborn (2011), Heutel (2012), Angelopoulos et al (2013)
 - ▶ Optimal carbon taxation: Golosov-Hassler-Krusell-Tsyvinski (ECMA, 2014)
- Climate mitigating policies in New Keynesian DSGE and "greenflation"
 - Annicchiarico & Di Dio (2015), Ferrari & Nispi Landi (2022), Airaudo, Pappa & Seoane (2023), Del Negro et al (2023), Olovsson & Vestin (2023)
- Monetary policy (shocks) in DSGE models with climate externalities
 - Benmir & Roman (2020), Ferrari & Pagliari (2021), Diluiso et al (2020),
 Ferrari & Nispi Landi (2021, 2022)
- Welfare-maximizing green QE in a real (non-monetary) model:
 - ▶ Papoutsi, Piazzesi & Schneider (2023)

Model structure

- World economy as a single climate- and monetary-policy jurisdiction
- New Keynesian model...
 - ▶ Households consume differentiated consumption varieties and supply labor
 - Monopolistic competition in goods markets and staggered price setting
- ... extended with energy sector...
 - ► Goods production uses labor and combination of green and fossil energy
- ... and climate change externalities along Nordhaus' DICE model (we follow closely Golosov et al's 2014 specification)
 - Fossil energy produces carbon emissions
 - adding to atmospheric carbon concentration and global warming,
 - which damages the economy's productive capacity
 - Tax on carbon emissions phased in gradually from zero to optimal

Model: Households

Representative household maximizes

$$\sum_{t=0}^{\infty} \beta^{t} \left[\log(C_{t}) - \frac{\chi}{1+\varphi} N_{t}^{1+\varphi} \right],$$

where
$$C_t = \left(\int_0^1 c_{\mathsf{z},t}^{(\epsilon-1)/\epsilon} dz\right)^{\epsilon/(\epsilon-1)}$$
, subject to

$$\int_0^1 P_{z,t} c_{z,t} dz + B_t = R_{t-1} B_{t-1} + W_t N_t + \Pi_t + T_t.$$

Households (cont'd)

FOCs,

$$\chi N_t^{\varphi} C_t = \frac{W_t}{P_t} \equiv w_t,$$

$$\frac{1}{C_t} = \beta R_t E_t \left(\frac{P_t}{P_{t+1} C_{t+1}} \right),$$

$$c_{z,t} = \left(\frac{P_{z,t}}{P_t} \right)^{-\epsilon} C_t, \quad \forall z \in [0,1].$$

Nominal consumption: $\int_0^1 P_{z,t} c_{z,t} dz = P_t C_t$, where

$$P_t = \left(\int_0^1 P_{z,t}^{1-\epsilon} dz\right)^{1/(1-\epsilon)}.$$

Final goods producers: technology

Production function of variety-z producer,

$$y_{z,t} = [1 - D(S_t)] A_t F(N_{z,t}, E_{z,t}),$$

- $D(S_t)$: damage function, D' > 0. S_t : stock of carbon concentration in the atmosphere
- Producers combine green (g) and fossil-fuel (f) energy inputs,

$$E_{z,t} = \mathbf{E}(E_{z,t}^g, E_{z,t}^f).$$

• Both F and E have constant returns to scale

Final goods producers: cost minimization

- p_t^i : real price of type-i energy, i = f, g
- Cost minimization implies

$$w_{t} = \frac{MC_{t}}{P_{t}} \left[1 - D\left(\cdot \right) \right] A_{t} \frac{\partial F\left(\cdot \right)}{\partial N_{z,t}}$$

$$p_t^i = \frac{MC_t}{P_t} \left[1 - D(\cdot) \right] A_t \frac{\partial F(\cdot)}{\partial E_{z,t}^i}, \quad i = f, g,$$

where MC_t is nominal marginal cost

Final goods producers: pricing

- Each producer faces demand $y_{z,t} = (P_{z,t}/P_t)^{-\epsilon} C_t$.
- Subsidy τ^y per unit of sales
- Calvo (1983) pricing, θ : probability of non-adjustment.
- Optimal price decision,

$$\sum_{t=0}^{\infty} E_{t} \left\{ \Lambda_{t,t+s} \theta^{s} \left(\left(1 + \tau^{y} \right) P_{t}^{*} - \frac{\epsilon}{\epsilon - 1} M C_{t+s} \right) \left(\frac{P_{t}^{*}}{P_{t+s}} \right)^{-\epsilon} C_{t+s} \right\} = 0,$$

Aggregate price level follows

$$P_t^{1-\epsilon} = (1-\theta) \left(P_t^*\right)^{1-\epsilon} + \theta P_{t-1}^{1-\epsilon}.$$

Energy sectors

• Technology of energy sector i = f, g:

$$E_t^i = A_t^i N_t^i$$
.

- ullet Fossil-fuel energy production subject to a per-unit tax au_t^f
- Representative firm in energy sector i = g, f maximizes

$$\left(p_t^i - \mathbf{1}_{i=f}\tau_t^i\right)A_t^iN_t^i - w_tN_t^i.$$

FOCs

$$p_t^g = \frac{w_t}{A_t^g},$$

$$p_t^f = \frac{w_t}{A_t^f} + \tau_t^f.$$

Climate externalities

- Following Golosov et al (2014)
- Damage function,

$$1 - D(S_t) = e^{-\gamma_t(S_t - \bar{S})},$$

 γ_t exogenous elasticity, \bar{S} pre-industrial atmospheric carbon concentration.

• Law of motion of atmospheric carbon concentration (measured in GtC),

$$S_t - \bar{S} = \sum_{s=0}^{t+T} (1 - d_s) \xi E_{t-s}^f.$$

 ξ : GtC/Gtoe conversion factor

Market clearing

- For each z, $y_{z,t} = c_{z,t}$
- Aggregate output: $Y_t \equiv \left(\int_0^1 y_{z,t}^{\frac{\epsilon}{\epsilon-1}} dz\right)^{\frac{\epsilon-1}{\epsilon}} \Rightarrow Y_t = C_t$
- Labor market clearing: $N_t = \sum_{i=g,f} N_t^i + N_t^y$, where $N_t^y \equiv \int_0^1 N_{z,t} dz$.
- From CRS and energy-labor ratio equalization,

$$\left[1-D\left(\cdot\right)\right]A_{t}F\left(N_{t}^{y},E_{t}\right)=\Delta_{t}Y_{t},$$

where

$$\Delta_t \equiv \int_0^1 \left(P_{z,t}/P_t \right)^{-\epsilon} dz$$

are relative price distortions, with law of motion

$$\Delta_t = \theta \pi_t^{\epsilon} \Delta_{t-1} + (1 - \theta) \left(\frac{P_t^*}{P_t} \right)^{-\epsilon}.$$

Characterization of the first-best equilibrium

Social planner maximizes

$$\sum_{t=0}^{\infty} \beta^t E_0 \left\{ \log(C_t) - \frac{\chi}{1+\varphi} \left(N_t^{y} + \sum_{i=g,f} N_t^{i} \right)^{1+\varphi} \right\}$$

subject to

$$egin{aligned} \mathcal{C}_t &= \left[1 - D\left(S_t
ight)
ight] A_t F\left(N_t^y, \mathbf{E}(E_t^g, E_t^f)
ight), \ E_t^i &= A_t^i N_t^i, \quad i = f, g, \ S_t - ar{S} &= \sum_{s=0}^{t+T} (1 - d_s) \, \xi E_{t-s}^f. \end{aligned}$$

The first-best equilibrium (cont'd)

Social efficiency conditions,

$$[1 - D(S_t)] A_t \frac{\partial F(\cdot)}{\partial N_t^y} = \chi N_t^{\varphi} C_t,$$

$$[1 - D(S_t)] A_t \frac{\partial F(\cdot)}{\partial E_t^i} = \frac{\chi N_t^{\varphi} C_t}{A_t^i} + 1_{i=f} \tau_t^{f*},$$

where *climate externality* τ_t^{f*} is as in Golosov et al (2014),

$$au_t^{f*} \equiv Y_t E_t \left\{ \sum_{s=0}^{\infty} \beta^s (1 - d_s) \xi \gamma_{t+s} \right\}.$$

Optimal monetary policy: the case of optimal carbon tax

- Under strict inflation targeting ($\Pi_t = 1$), the decentralized equilibrium replicates the *flexible-price equilibrium*
- All firms have the same price (no relative price distortions: $\Delta_t = 1$),

$$P_{z,t} = P_t = (1 + au^y)^{-1} \underbrace{\frac{\epsilon}{\epsilon - 1}}_{ ext{monopolistic markup}} MC_t.$$

• Since $MC_t/P_t = (1+\tau^y)\frac{\epsilon-1}{\epsilon}$,

$$\left(1+\tau^{y}\right)\frac{\epsilon-1}{\epsilon}\left[1-D\left(S_{t}\right)\right]A_{t}\frac{\partial F\left(\cdot\right)}{\partial N_{t}^{y}}=\chi N_{t}^{\varphi}C_{t},$$

$$(1+\tau^{y})\frac{\epsilon-1}{\epsilon}\left[1-D\left(S_{t}\right)\right]A_{t}\frac{\partial F\left(\cdot\right)}{\partial E_{t}^{i}}=\frac{\chi N_{t}^{\varphi}C_{t}}{A_{t}^{i}}+1_{i=f}\tau_{t}^{f}.$$

• Provided $1+\tau^y=\frac{\epsilon}{\epsilon-1}$ and $\tau^f_t=\tau^{f*}_t$, the flex-price equilibrium replicates the first-best equilibrium

Optimal monetary policy: the case of optimal carbon tax

Theorem

Let $\tau^y = \frac{\epsilon}{\epsilon-1} - 1$, such that monopolistic distortions are offset. Provided carbon taxes are set at their socially optimal level, $\tau_t^f = \tau_t^{f*}$, it is optimal to fully stabilize prices: $\Pi_t = 1$.

- Intuition:
 - If $\tau_t^f = \tau_t^{f*}$, climate change externalities are perfectly internalized by fossil-fuel energy producers
 - If in addition $\tau^y = \frac{\epsilon}{\epsilon-1} 1$, the only distortions left are those caused by nominal rigidities, which are fully offset by strict price stability
- In sum: as long as they are set at their socially optimal level, carbon taxes create no trade-offs for MP: strict price stability is optimal

Calibration: functional forms

• Goods production technology,

$$F(N_t, E_t) = [\alpha(E_t)^{\delta} + (1 - \alpha)(N_t)^{\delta}]^{1/\delta}$$

Energy basket,

$$E_t = \left[\omega \left(E_t^g\right)^\rho + \left(1 - \omega\right) \left(E_t^f\right)^\rho\right]^{1/\rho}$$

• Depreciation of atmospheric carbon concentration

$$(1-d_s)=\phi_0(1-\phi)^s$$

Calibration

Description		Value	Target/Source					
New K	New Keynesian block							
β	Household discount factor	$0.985^{1/4}$	Golosov et al (2014)					
θ	Calvo parameter	0.75	Price adj. freq. 1 yr					
ϵ	Elasticity of substitution	7	Standard					
φ	(inv) elasticity labor supply	1	Standard					
Energy & climate change								
α	Energy share of output	0.04	Golosov et al (2014)					
ho	(1-inv) elast subst g vs f	1 - 1/2.86	Papageorgiou et al (2017)					
δ	(1-inv) elast subst L vs E	1 - 1/0.4	Böringer and Rivers (2021)					
γ	Elasticity damage function	0.000024	Golosov et al (2014)					
$\phi_{f 0}, \phi$	carbon depreciation structure	0.51 0.00033	Golosov et al carbon structure					
ω	weight of green energy	0.2571	$\int p^g/p^f = 0.54$					
\mathcal{A}^f	productivity fossil sector	290.33	$\begin{cases} E^{f'} = 11.7 \text{ Gtoe} \end{cases}$					
\mathcal{A}^{g}	productivity green sector	537.65	$E^g = 3.3 \; Gtoe$					
$\frac{\xi}{\bar{S}}, S_0$	carbon content fossil energy	0.879	IPCC (2006) tables					
\bar{S}, S_0	Atmosph. carbon concentr.	581,802	Golosov et al (2014)					

Inflation-climate trade-off along the transition: planner

Inflation-climate trade-off along the transition: $\pi=0$

Inflation-climate trade-off along the transition: OMP

Green QE: Corporate bond supply

- \bullet Fraction ψ of energy firms' operating costs financed with short-term (within period) bonds
- Bonds are issued at a price $1/R_t^i, i=f,g$. Face value =1
- # of bonds issued: $\frac{\psi w_t N_t^i}{1/R_t^i} = \psi R_t^i w_t N_t^i$
- Sector i firm now maximizes

$$\left(p_t^i - 1_{i=f}\tau_t^i\right)A_t^iN_t^i - \left[1 + \psi\left(R_t^i - 1\right)\right]w_tN_t^i.$$

FOC now reads

$$p_t^i = \left[1 + \underbrace{\psi\left(R_t^i - 1\right)}_{ ext{financial wedge}}\right] \frac{W_t}{A_t^i} + 1_{i=f} \tau_t^f, \quad i = f, g$$

Household demand and financial friction

- Households can purchase corporate bonds $(B_t^i, i = f, g)$,
- subject to transaction costs from adjusting corporate bond portfolio (ζ_t^i)
- Budget constraint is now

$$P_{t}C_{t} + B_{t} + \sum_{i=g,f} B_{t}^{i} \left(1 + \zeta_{t}^{i}\right) = R_{t-1}B_{t-1} + \sum_{i=g,f} R_{t}^{i}B_{t}^{i} + W_{t}N_{t} + ...,$$

where ζ_t^i is as in Gertler and Karadi (2013),

$$\zeta_t^i = \frac{\kappa_i}{2} \frac{\left(B_t^i - \bar{B}^i\right)^2}{B_t^i}, \quad B_t^i \geq \bar{B}^i.$$

• FOC wrt $\{B_t^i\}_{i=g,f}$,

$$R_t^i - 1 = \kappa_i \left(B_t^i - \bar{B}^i \right), \quad B_t^i \ge \bar{B}^i.$$

• The larger the amount of bonds to be absorbed by private sector (B_t^i) , the larger the spread R_t^i-1

Central bank purchases and market clearing

- Central bank purchases of corporate bonds: $B_t^{i,cb}$, i=f,g
- Market clearing for sector-i bonds,

$$\psi w_t N_t^i = B_t^i + B_t^{i,cb}.$$

• Using this in the spread equation,

$$R_t^i - 1 = \kappa_i \left(\psi w_t N_t^i - B_t^{i,cb} - \bar{B}^i \right) \tag{1}$$

- Central bank bond purchases ease sector-i financing conditions and lower the price of type-i energy
- From now on, treat spread R^i_t-1 as the policy variable: $B^{i,cb}_t$ can then be backed out from eq (1)

Optimal corporate QE: the case of optimal carbon taxes

- If $\tau_t^f = \tau_t^{f*}$ and under strict inflation targeting $(\pi_t = 1)$, the only friction left is the corporate financial wedge
- It is optimal for the CB to eliminate the spreads $\{R_t^i-1\}_{i=f,g}$ by absorbing all corporate (both green and brown) bonds supply in excess of \bar{B}^i .
- Generalize our previous (no QE) result:

Theorem

Let $au^y = rac{\epsilon}{\epsilon-1} - 1$. Provided $au^f_t = au^{f*}_t$, it is optimal to fully stabilize inflation, $\pi_t = 1$, and to fully eliminate corporate spreads, $R^g_t = R^f_t = 1$, by setting $B^{i,cb}_t = \psi w_t N^i_t - \bar{B}^i$, i = f,g.

Optimal corporate QE under suboptimal carbon taxation

- ullet Let $au_0^f=0$, assume rising path for au_t^f until reaching au_t^{f*} at some time $t^*>0$
- ullet It is optimal for CB to eliminate green bond spread: $R_t^g=1$ at all t
- CB can use brown spread to (try to) compensate for suboptimal carbon taxes...

$$\underbrace{\tau_t^f + [1 + \psi(R_t^f - 1)] \frac{w_t}{A_t^f}}_{\text{decentralized } p_t^f} = \underbrace{\tau_t^{f*} + \frac{w_t}{A_t^f}}_{\text{socially optimal } p_t^f} \Leftrightarrow R_t^f - 1 = \frac{\tau_t^{f*} - \tau_t^f}{\psi w_t / A_t^f}$$

• ... but brown spread cannot exceed $R_t^f - 1 \le \kappa_f (\psi w_t N_t^f - \bar{B}^f)$: no CB purchases, all brown bonds absorbed by private sector

Optimal corporate QE under suboptimal carbon taxation

• Therefore, optimal rule for brown spread is

$$R_t^f - 1 = \min \left\{ \frac{1}{\psi} \frac{\tau_t^{f*} - \tau_t^f}{w_t / A_t^f}, \kappa_f \left(\psi w_t N_t^f - \bar{B}^f \right) \right\}.$$

- At the beginning of green transition, $\tau_t^{f*} \tau_t^f$ is too large: the best the CB can do is not to hold any brown bonds at all (100% green tilting)
- Once $\tau_t^{f*} \tau_t^f$ becomes sufficiently small, CB maintains brown spreads just enough to compensate for suboptimal carbon taxation

Calibration: QE parameters

- Bond intensity: $\psi_i = \frac{B^i}{wN^i} = 5, i = f, g$
 - Source: bond intensity of CSPP-eligible energy firms
- $(k_f, k_g) = (0.0813, 0.5373)$
 - ▶ Target: impact of CSPP announcement on eligible firms' bond yields \simeq 50 bp (Todorov 2020)
- $(\bar{B}^f, \bar{B}^g) = (0.00512, 0.00076)$
 - ▶ Target: pre-CSPP spreads (vs OIS) of eligible energy firms' bonds $\simeq 1.5\% = 4(R^i-1), i=f,g$

Green and brown spreads along the transition

Trade-offs along the transition

Carbon concentration and global warming in the long-run

- How does all this translate into global temperatures?
- Standard mapping from atmospheric carbon concentration to global warming (vs pre-industrial temperatures),

$$T_t = \lambda \log \left(\frac{S_t}{\overline{S}} \right) / \log(2)$$

• Standard value $\lambda=3\Rightarrow$ doubling of carbon concentration (vs pre-industrial) raises temperature by $3^o{\rm C}$

Carbon concentration and global warming

Robustness

Three key parameters:

- Elasticity of substitution (ES) between L and E: $(1/(1-\delta)$; baseline 0.4). Consider higher (1, i.e. Cobb-Douglas) and lower (0.2) values
- Elasticity of damage function (γ) : what if 3 times higher?
- Discount factor (β): set it such that net emissions (under OMP) in 2050 \simeq 0 (discount rate = 0.4% annual; baseline 1.5%)

Calibration	Tax rev	Max infl	Max v-	Net em's	S(t) reduct	Welfare
	% GDP	dev (pp)	gap (%)	in 2050	in 2050	gain %C
Baseline	0.7570	-0.1280	-0.1219	0.4885	-2.0885	0.0023
Cobb-Douglas	0.7570	-0.1154	-0.1067	0.7168	-0.7591	0.0011
ES = 0.2	0.7570	-0.1342	-0.1248	-0.1935	-6.7913	0.0097
Higher γ (x3)	2.5737	-0.4415	-0.4152	-0.0114	-4.2923	0.0187
Higher \hat{eta}	2.5655	-0.4394	-0.4154	-0.0094	-4.2971	0.0120

Key takeaways

- Normative analysis of monetary policy in a simple NK model with climate change externalities
- If carbon tax is optimal: no trade offs, strict inflation targeting gives first best
- Slow transition to optimal carbon tax: policy trade-off optimally resolved overwhelmingly in favor of price stability
- Optimal green GE accelerates reduction in fossil energy consumption, but limited impact on atmospheric carbon concentration
 - Effectiveness limited by size of (high-quality) corporate bond spreads
- Hard to escape conclusion that carbon taxes (and similar direct interventions, e.g. emissions trading schemes) are the most effective "game in town"

Caveats and directions for future research

- The model is canonical NK with externalities a la Golosov et al (2014)
- No tipping point effects of carbon concentration
- Exogenous production technologies
- World economy treated as single climate- and monetary-policy jurisdiction