CHAPTER 1: INTRODUCTION TO COMPUTER GRAPHICS (PART 1)

Objectives

- In this lecture, we explore what computer graphics is about and survey some application areas
- We start with a historical introduction

Computer Graphics

- Computer graphics deals with all aspects of creating images with a computer
 - Hardware
 - Software
 - Applications

Computer Graphics

- Different things in different contexts:
 - pictures, scenes that are generated by a computer.
 - tools used to make such pictures, software and hardware, input/output devices.
 - the whole field of study that involves these tools and the pictures they produce.
- Use of computer to define, store, manipulate, interrogate and present pictorial output.

Example

Where did this image come from?

What hardware/software did we need to produce it?

Preliminary Answer

- ▶ **Application**: The object is an artist's rendition of the sun for an animation to be shown in a domed environment (planetarium)
- Software: Maya for modeling and rendering but Maya is built on top of OpenGL
- Hardware: PC with graphics card for modeling and rendering

Example

Translation Rotation

Flat Shading

Garoud Shading

Example

FIGURE 1-69 Examples of morphing from the David Byrne video She's Mad. (Courtesy of David Byrne, Index Video, and Pacific Data Images.)

Another Example of Morphing

3 Frames from a morph from George W. Bush to Arnold Schwarzenegger showing the mid-point between the two extremes

Source: http://en.wikipedia.org/wiki/Morphing

Computer Graphics Scope

- •Imaging = representing 2D images
- •Modeling = representing 3D objects
- •Rendering = constructing 2D images from 3D models
- •Animation = *simulating changes over time*

Short History

A short history of graphics:

- 1950: MIT Whirlwind (CRT)
- 1955: Sage, Radar with CRT and light pen
- 1960: Spiel "Spacewar" on PDP-11
- 1963: Ivan Sutherland's "Sketchpad" (CAD)
- 1963: Steven Coons, Coons patches
- 1969: ACM Siggraph founded
- 1968: Tektronix storage tube (\$5-10.000)
- 1968: Evans&Sutherland (flight simulators) founded
- 1970er: First software standards, raster displays
- 1971: Gourand shading
- 1974: Z-buffer
- 1975: Phong model
- 1979: Eurographics founded
- 1980: Whitted: Ray tracing

Computer Graphics: 1950-1960

- Computer graphics goes back to the earliest days of computing
 - Strip charts
 - Pen plotters
 - Simple displays using A/D converters to go from computer to calligraphic CRT
- Cost of refresh for CRT too high
 - Computers slow, expensive, unreliable

Computer Graphics: 1960-1970

- Wireframe graphics
 - Draw only lines
- Sketchpad
- Display Processors
- Storage tube

wireframe representation of sun object

Sketchpad

- Ivan Sutherland's PhD thesis at MIT
 - Recognized the potential of man-machine interaction
 - Loop
 - Display something
 - User moves light pen
 - Computer generates new display
 - Sutherland also created many of the now common algorithms for computer graphics

Display Processor

 Rather than have the host computer try to refresh display use a special purpose computer called a display processor (DPU)

- Graphics stored in display list (display file) on display processor
- Host compiles display list and sends to DPU

Direct View Storage Tube

- Created by Tektronix
 - Did not require constant refresh
 - Standard interface to computers
 - Allowed for standard software
 - ▶ Plot3D in Fortran
 - Relatively inexpensive
 - Opened door to use of computer graphics for CAD community

Computer Graphics: 1970-1980

- Raster Graphics
- Beginning of graphics standards
 - **▶ IFIPS**
 - ▶ GKS: European effort
 - □ Becomes ISO 2D standard
 - ▶ Core: North American effort
 - □ 3D but fails to become ISO standard
- Workstations and PCs

Raster Graphics

Image produced as an array (the raster) of picture elements (pixels) in the frame buffer

Raster Graphics

Allows us to go from lines and wire frame images to filled polygons

PCs and Workstations

- Although we no longer make the distinction between workstations and PCs, historically they evolved from different roots
 - Early workstations characterized by
 - Networked connection: client-server model
 - High-level of interactivity
 - Early PCs included frame buffer as part of user memory
 - ▶ Easy to change contents and create images

Computer Graphics: 1980-1990

Realism comes to computer graphics

smooth shading

environment mapping

bump mapping

Computer Graphics: 1980-1990

- Special purpose hardware
 - Silicon Graphics geometry engine
 - VLSI implementation of graphics pipeline
- Industry-based standards
 - PHIGS
 - RenderMan
- Networked graphics: X Window System
- Human-Computer Interface (HCI)

Computer Graphics: 1990-2000

- OpenGLAPI
- Completely computer-generated feature-length movies (Toy Story) are successful
- New hardware capabilities
 - Texture mapping
 - Blending
 - Accumulation, stencil buffers

Computer Graphics: 2000-

- Photorealism
- Graphics cards for PCs dominate market
 - Nvidia, ATI
- Game boxes and game players determine direction of market
- Computer graphics routine in movie industry: Maya, Lightwave
- Programmable pipelines