Прикладная статистика и анализ данных. Задание 4.

- Дедлайн **10 марта 23:59**. После дедлайна работы не принимаются кроме случаев наличия уважительной причины.
- Выполненную работу нужно отправить на почту mipt.stats@yandex.ru, указав тему письма "[asda] Фамилия Имя задание 4". Квадратные скобки обязательны. Если письмо дошло, придет ответ от автоответчика.
- По задачам 3-4 прислать нужно ноутбук и его pdf-версию (без архивов). Названия файлов должны быть такими: 4.N.ipynb и 4.N.pdf, где N ваш номер из таблицы с оценками.
- Задачи 1 и 2 необходимо оформить в tex'e и прислать pdf или же прислать фотку в правильной ориентации рукописного решения, где все четко видно.
- Решения, размещенные на каких-либо интернет-ресурсах не принимаются. Кроме того, публикация решения в открытом доступе может быть приравнена к предоставлении возможности списать.
- Не забывайте делать пояснения и выводы.
- 1. (2 балла) Пусть $X \in \mathbb{R}^{n \times d}$ матрица признаков, а $Y \in \mathbb{R}^n$ вектор отклика. Рассмотрим $\widehat{\theta}$ оценка коэффициентов линейной модели методом ридж-регрессии. Представив матрицу X в виде сингулярного разложения распишите $\widehat{\theta}$, а также оценку отклика на обучающей выборке \widehat{Y} . Что происходит при отсутствии регуляризации?
- 2. (4 балла) Пусть $X_1,...,X_n$ выборка в пространстве \mathbb{R}^D , а $Y_1,...,Y_n$ ее проекция на линейное подпространство размерности d < D. Докажите, что величина

$$\sum_{i=1}^{n} (X_i - Y_i)^2$$

минимальна, если $Y_1, ..., Y_n$ — проекция на линейное подпространство, образованное первыми d главными компонентами. Чему она равна?

3. **(4 балла)** В этой задаче нужно пронаблюдать экспериментально проблему скученности (crowding problem) в методе SNE. Все числа в задаче носят рекомендательный характер, можно выбрать свои.

Рассмотрите трехмерный симплекс с вершинами в точках (1,0,0), (0,1,0), (0,0,1), (1,1,1). Вокруг каждой вершины сгенерируйте 50 точек из нормального распределения с масштабом 0.1, получив тем самым выборку в пространстве большой размерности. Результаты в задаче будут наглядными если точки выборки будут отсортированы по вершинам.

Посчитайте вероятности p_{ij} и визуализируйте матрицу их логарифмов с помощью plt.imshow. Для избежания ошибок округления проводите все вычисления в логарифмах и используйте функцию scipy.special.logsumexp. Для удобства работы с вероятностями p_{ii} можно использовать функцию numpy.nan_to_num там, где это необходимо. Перплексию возьмите равной 10-15. Числа σ_i можно честно посчитать для каждой точки, а можно и сделать приближение, взяв их одинаковыми для всех точек в силу локальной однородности данных.

В пространстве малой размерности рассмотрите квадрат со стороной 10 и аналогичным образом сгенерируйте выборку, разброс точек вокруг вершин равен 1. Посчитайте вероятности q_{ij} , определяемые методом SNE, и визуализируйте матрицу. Какой наблюдается эффект? Посчитайте дивергенцию Кульбака-Лейблера.

Для некоторого объекта i визуализируйте зависимость p_{ij} и q_{ij} от j. При минимизации дивергенции Кульбака-Лейблера вероятности q_{ij} должны приближать p_{ij} . Что будет в таком случае?

Повторите те же операции для q_{ij} , определяемых методом t-SNE. Сторону квадрата возьмите равной 1000, разброс точек 100. Какой наблюдается эффект?

4. (12 баллов) Рассмотрим датасет Leaf Classification:

https://www.kaggle.com/c/leaf-classification

Данные содержат 1584 изображений образцов листьев (16 изображений для 99 видов). По ссылке доступно подробное описание данных. Для вашего удобства размер некоторых изображении был изменен, в результате чего все изображения имеют одинаковый размер 170×250 . Скачайте файл с данными на сайте курса.

- Загрузите все изображения с помощью plt.imread и визуализируйте некоторые из них. Каждое изображение матрица размера 170×250 .
- В файле train_labels.csv указаны номера образцов листьев, которые относятся к обучающей части данных, а так же их виды. Разделите данные на обучающую и тестовую часть.
- На обучающей части данных постройте 30 главных компонент. Какую долю дисперсии данных они объясняют? Какую долю дисперсии объясняет каждая компонента отдельно?
- Визуализируйте главные компоненты. Можете ли вы их как-то охарактеризовать?
- Визуализируйте обучающую часть данных в проекции на две первых главных компоненты. Цвет точки должен соответствовать виду образца. Используйте cmap='Set1' во избежании градации цвета по номеру вида. Наблюдаются ли какие-либо закономерности?
- Визуализируйте данные при помощи t-SNE двумя способами на основе исходных признаков (пиксели) и по проекциям на первые 30 главных компонент. Кластеризуются ли точки?
- По проекциям данных на первые 30 главных компонент обучите многоклассовую классификацию. Для образцов из тестовой части данных оцените вероятности принадлежности к классам.