历史版本

	修改人	时间	备注
V0.1	盘龙	2012-12-	建立初始版本
		12	建立切如成本
V0.2	盘龙	2013-01-	发布第一版
		09	次中 カー X

目录

历史版本	1
目录	
1 系统(System)	4
1.1 [platform]	4
1.2 [target]	5
1.3 [pm_para]	
1.4 [card_boot]	
1.5 [card_boot0_para]	6
1.6 [card_boot2_para]	6
1.7 [twi_para]	7
1.8 [uart_para]	7
1.9 [jtag_para]	8
1.10 [clock]	8
2 SDRAM	g
2.1 [dram_para]	g
3 GMAC	11
3.1 [gmac_para]	11
4 I2C 总线	
4.1 [twi0_para]	
4.2 [twi1_para]	

4.3 [twi2_para]	13
4.4 [twi3_para]	13
5 串口(UART)	14
5.1 [uart_para0]	14
5.2 [uart_para1]	14
5.3 [uart_para2]	15
5.4 [uart_para3]	16
5.5 [uart_para4]	16
5.6 [uart_para5]	17
5.7 [uart_para6]	17
5.8 [uart_para7]	17
6 SPI 总线	18
6.1 [spi0_para]	18
6.2 [spi1_para]	18
6.3 [spi2_para]	19
6.4 [spi3_para]	19
6.5 [spi_devices]	20
6.6 [spi_board0]	20
7 电阻屏(rtp)	21
7.1 [rtp_para]	21
8 电容屏(capacitor tp)	21
8.1 [ctp_para]	21
9 触摸按键(touch key)	22
9.1 [tkey_para]	22
10 马达(motor)	23
10.1 [motor_para]	23
11 闪存(nand0 flash)	23
11.1 [nand0_para]	23
11.2 [nand1_para]	24
12 显示初始化(disp init)	25
12.1 [disp_init]	25
13 LCD 屏 0	27
13.1 [lcd0_para]	27
14 LCD 屏 1	31
14.1 [lcd1_para]	31
15 HDMI	31
15.1 [hdmi_para]	31
16 摄像头(CSI)	31
16.1 [csi0_para]	31
16.2 [csi1_para]	32
17 SD / MMC	36
17.1 [mmc0_para]	36

17.2 [mmc1_para]	37
17.3 [mmc2_para]	38
17.4 [mmc3_para]	39
18 SIM 卡	
18.1 [smc_para]	40
19 USB 控制标志	40
19.1 [usbc0]	
19.2 [usbc1]	41
19.3 [usbc2]	42
20 USB Device	43
20.1 [usb_feature]	43
20.2 [msc_feature]	44
21 重力感应(G Sensor)	44
21.1 [gsensor_para]	44
22 WIFI	45
22.1 [wifi_para]	45
22.2 sdio 接口 wifi rtl8723as demo	45
22.3 usb 接口 wifi rtl8188eu demo	46
23 3G	47
23.1 [3g_para]	47
24 gyroscope	48
24.1 [gy_para]	48
25 光感(light sensor)	48
25.1 [ls_para]	48
26 罗盘 Compass	49
26.1 [compass_para]	49
27 蓝牙(blueteeth)	49
27.1 [bt_para]	
28 数字音频总线(I2S)	50
28.1 [i2s_para]	
29 数字音频总线(pcm)	
29.1 [pcm_para]	
30 数字音频总线(S/PDIF)	
30.1 [spdif_para]	
31 喇叭控制	
31.1 [audio_para]	52
32 红外(ir)	
32.1 [ir_para]	
33 PMU 电源	
33.1 [pmu_para]	53

备注: 蓝色为模块芯片引脚配置,黑色为模块内部控制配置项描述 gpio 的 GPIO 配置的形式:

Port:端口+组内序号<功能分配><内部电阻状态><驱动能力><输出电平状态>配置举例中的管脚不一定为真实可用的,实际使用时需向技术支持人员询问

1 系统(System)

1.1 [platform]

配置项	配置项含义
eraseflag=1	量产时是否擦除。0:不擦,1:擦除
	(仅仅对量产工具,升级工具无效)

配置举例: [platform]

eraseflag = 1

1.2 [target]

配置项	配置项含义
boot_clock=xx	启动频率; xx 表示多少 MHZ
dcdc1_vol=1400	Dcdc1(IO)的输出电压,mV
dcdc2_vol=1400	Dcdc2(GPU)的输出电压,mV,
dcdc3_vol=1250	Dcdc3(CPU)的输出电压,mV,
Storage_type = -1	启动介质选择 0: nand, 1: card0,2:
	card2,-1(defualt)自动扫描启动介质:

配置举例:

[target]

 $\begin{array}{lll} boot_clock & = 1008 \\ dcdc1_vol & = 300 \\ dcdc2_vol & = 1400 \\ dcdc3_vol & = 1250 \\ storage_type & = -1 \end{array}$

1.3 [pm_para]

配置项	配置项含义
standby_mode = x	if 1 == standby_mode, then support super

standby;
else, support normal standby.

配置举例:
;------; if 1 == standby_mode, then support super standby; else, support normal standby.
;------[pm_para]
standby_mode = 1

1.4 [card_boot]

配置项	配置项含义
Logical_start=xx	
Sprite_gpio0=	

配置举例:

[card_boot]

logical_start = 40960

sprite_gpio0 =

1.5 [card_boot0_para]

配置项	配置项含义
card_ctrl=0	卡量产相关的控制器选择0
card_high_speed=xx	速度模式0为低速,1为高速
card_line=4	代表4线卡
sdc_d1=xx	sdc 卡数据 1 线信号的 GPIO 配置
sdc_d0=xx	sdc 卡数据 0 线信号的 GPIO 配置
sdc_clk=xx	sdc 卡时钟信号的 GPIO 配置
sdc_cmd=xx	sdc 命令信号的 GPIO 配置
sdc_d3=xx	sdc 卡数据 3 线信号的 GPIO 配置
sdc_d2=xx	sdc 卡数据 2 线信号的 GPIO 配置

配置举例:

 $card_ctrl = 0$

card_high_speed = 1 card_line = 4

 $\begin{array}{lll} sdc_d1 &= port: PF0 < 2 > < 1 > < default > < default > \\ sdc_d0 &= port: PF1 < 2 > < 1 > < default > < default > \\ sdc_clk &= port: PF2 < 2 > < 1 > < default > < default > \\ sdc_cmd &= port: PF3 < 2 > < 1 > < default > < default > \\ sdc_d3 &= port: PF4 < 2 > < 1 > < default > < default > \\ sdc_d2 &= port: PF5 < 2 > < 1 > < default > < default$

1.6 [card_boot2_para]

配置项	配置项含义
card_ctrl=2	卡启动控制器选择 2
card_high_speed=xx	速度模式0为低速,1为高速
card_line=4	4线卡
sdc_ cmd =xx	sdc 命令信号的 GPIO 配置
sdc_ clk =xx	sdc 卡时钟信号的 GPIO 配置
sdc_ d0 =xx	sdc 卡数据 0 线信号的 GPIO 配置
sdc_ d1 =xx	sdc 卡数据 1 线信号的 GPIO 配置
sdc_d3=xx	sdc 卡数据 3 线信号的 GPIO 配置
sdc_d2=xx	sdc 卡数据 2 线信号的 GPIO 配置

配置举例:

card_ctrl = 2 card_high_speed = 1 card_line = 4

 sdc_cmd
 = port:PC6<3><1>

 sdc_clk
 = port:PC7<3><1>

 sdc_d0
 = port:PC8<3><1>

 sdc_d1
 = port:PC9<3><1>

 sdc_d2
 = port:PC10<3><1>

 sdc_d3
 = port:PC11<3><1>

1.7 [twi_para]

配置项	配置项含义
twi_port= xx	Boot 的 twi 控制器编号
twi_scl=xx	Boot 的 twi 的时钟的 GPIO 配置

配置举例:

twi_port = 0

twi_scl = port:PB0<2><default><default><tefault> twi_sda = port:PB1<2><default><default><

1.8 [uart_para]

配置项	配置项含义
uart_debug_port=xx	Boot 串口控制器编号
uart_debug_tx=xx	Boot 串口发送的 GPIO 配置
uart_debug_rx=xx	Boot 串口接收的 GPIO 配置

配置举例:

uart_debug_port = 0

uart_debug_tx = port:PB22<2>
uart_debug_rx = port:PB23<2>

1.9 [jtag_para]

配置项	配置项含义
jtag_enable=xx	JTAG 使能
jtag_ms=xx	测试模式选择输入(TMS)的 GPIO 配置
jtag_ck=xx	测试时钟输入(TMS)的 GPIO 配置
jtag_do=xx	测试数据输出(TDO)的 GPIO 配置
jtag_di=xx	测试数据输入(TDI)的 GPIO 配置

配置举例:

[jtag_para]

jtag_enable = 1

jtag_ms = port:PB14<3> jtag_ck = port:PB15<3> jtag_do = port:PB16<3> jtag_di = port:PB17<3>

1.10 [clock]

配置项	配置项含义
Pll3 =297	Video0 时钟频率
Pll4 =300	Ve 时钟频率
Pll6 =600	Peripherals 时钟频率
Pll7 =297	Video1 时钟频率
Pll8 =360	GPU(通信)时钟频率
Pll9 =297	GPU(运算)时钟频率
Pll10 297	De 时钟频率

配置举例:

[clock]

pll3 = 297

pll4 = 300

pll6 = 600

pll7 = 297

pll8 = 360

pll9 = 297

pll10 = 297

2 SDRAM

2.1 [dram_para]

配置项	配置项含义
dram_clk =xx	DRAM 的时钟频率,单位为 MHz;它为
	24 的整数倍,最低不得低于 120,
dram_type =xx	DRAM 类型:
	2为DDR2
	3为DDR3
dram_zq=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_odt_en=xx	ODT 是否需要使能
	0: 不使能

	1: 使能
	,
	一般情况下,为了省电,此项为 0
dram_para1=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_para2 =xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_mr0 =xx	DRAM CAS 值,可为 6,7,8,9; 具体需
	根据 DRAM 的规格书和速度来确定
dram_mr1 =xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_mr2 =xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_mr3 =xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_tpr0=xx	DRAM 控制器内部参数,由原厂来进
drum_tpro m	行调节,请勿修改
dram_tpr1=xx	DRAM 控制器内部参数,由原厂来进
than_thi-xx	行调节,请勿修改
dram tor2-vy	DRAM 控制器内部参数,由原厂来进
dram_tpr2=xx	行调节,请勿修改
J 47	
dram_tpr3=xx	DRAM 控制器内部参数,由原厂来进
1	行调节,请勿修改
dram_tpr4=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_tpr5=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_tpr6=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_tpr7=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_tpr8=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_tpr9=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_tpr10=xx	DRAM 控制器内部参数,由原厂来进
_	行调节,请勿修改
dram_tpr11=xx	DRAM 控制器内部参数,由原厂来进
_	行调节,请勿修改
dram_tpr12=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_tpr13=xx	DRAM 控制器内部参数,由原厂来进
didii_tpi10 AA	DIVINI JI IN HILL J HAVE AND

行调节,请勿修改

配置举例:

[dram_para]

 $dram_clk = 240$ $dram_type = 3$

 $dram_zq = 0x17b$

 $dram_odt_en = 0$

 dram_para1
 = 0x10F40800

 dram_para2
 = 0x1211

 dram_mr0
 = 0x1A50

 dram_mr1
 = 0x4

 dram_mr2
 = 0x18

 dram_tpr0
 = 0

dram_tpr1 = 0x80000800= 0x39a70140dram_tpr2 dram_tpr3 = 0xa092e74cdram_tpr4 = 0x2948c209dram_tpr5 = 0x8944422cdram_tpr6 = 0x30028480dram_tpr7 = 0x2a3297dram_tpr8 = 0x5034fa8dram_tpr9 = 0x36353d8

 $\begin{array}{ll} dram_tpr10 & = 0 \\ dram_tpr11 & = 0 \\ dram_tpr12 & = 0 \\ dram_tpr13 & = 0 \end{array}$

3 GMAC

3.1 [gmac_para]

配置项	配置项含义
gmac_used=0	Gmac 模块是否使能: 1: enable0:
	disable
gmac_txd0=xx	Gmac tx0的 GPIO 配置

	,
gmac_txd1=xx	Gmac tx1的 GPIO 配置
gmac_txd2=xx	Gmac tx2的 GPIO 配置
gmac_txd3=xx	Gmac tx3的 GPIO 配置
gmac_txd4=xx	Gmac tx4的 GPIO 配置
gmac_txd5=xx	Gmac tx5的 GPIO 配置
gmac_txd6=xx	Gmac tx6的 GPIO 配置
gmac_txd7=xx	Gmac tx7的 GPIO 配置
gmac_txclk=xx	Gmac MII 接口发送时钟
gmac_txen=xx	Gmac 发送使能 GPIO 配置
gmac_gtxclk=xx	Gmac GMII 接口发送时钟
gmac_rxd0=xx	Gmac rx0的 GPIO 配置
gmac_rxd1=xx	Gmac rx1的 GPIO 配置
gmac_rxd2=xx	Gmac rx2 的 GPIO 配置
gmac_rxd3=xx	Gmac rx3的 GPIO 配置
gmac_rxd4=xx	Gmac rx4的 GPIO 配置
gmac_rxd5=xx	Gmac rx5的 GPIO 配置
gmac_rxd6=xx	Gmac rx6的 GPIO 配置
gmac_rxd7=xx	Gmac rx7的 GPIO 配置
gmac_rxdv=xx	Gmac 接收数有效使能
gmac_rxclk=xx	Gmac 接收时钟
gmac_txerr=xx	Gmac 发送错误使能
gmac_rxerr=xx	Gmac 接收错误使能
gmac_col=xx	Gmac 冲突检测(仅用于半双工)
gmac_crs=xx	Gmac 载波监测(仅用于半双工)
gmac_clkin=xx	Gmac GMII 外部时钟
gmac_mdc=xx	Gmac 配置接口时钟
gmac_mdio=xx	Gmac 配置接口数据 I/O
-	·

[gmac_para]

gmac_used = 0

gmac_txd0 = port:PA00<2><default><default> gmac_txd1 = port:PA01<2><default><default> gmac_txd2 = port:PA02<2><default><default> gmac_txd3 = port:PA03<2><default><default> gmac_txd4 = port:PA04<2><default><default> gmac_txd5 = port:PA05<2><default><default> gmac_txd6 = port:PA06<2><default><default> = port:PA07<2><default><default> gmac_txd7 = port:PA08<2><default><default> gmac_txclk gmac_txen = port:PA09<2><default><default> gmac_gtxclk = port:PA10<2><default><default> gmac_rxd0 = port:PA11<2><default><default> gmac_rxd1 = port:PA12<2><default><default> gmac_rxd2 = port:PA13<2><default><default> gmac_rxd3 = port:PA14<2><default><default> gmac_rxd4 = port:PA15<2><default><default> = port:PA16<2><default><default> gmac_rxd5 gmac_rxd6 = port:PA17<2><default><default> gmac_rxd7 = port:PA18<2><default><default> gmac_rxdv = port:PA19<2><default><default> gmac_rxclk = port:PA20<2><default><default> gmac_txerr = port:PA21<2><default><default> = port:PA22<2><default><default> gmac_rxerr gmac_col = port:PA23<2><default><default><default> gmac_crs = port:PA24<2><default><default> gmac_clkin = port:PA25<2><default><default> gmac_mdc = port:PA26<2><default><default> gmac_mdio = port:PA27<2><default><default>

4 I2C 总线

主控有4个I2C(twi)控制器

4.1 [twi0_para]

配置项	配置项含义
twi0_used =xx	TWI 使用控制: 1 使用, 0 不用
twi0_scl =xx	TWI SCK 的 GPIO 配置
twi0_sda=xx	TWI SDA 的 GPIO 配置

配置举例:

 $twi0_used = 1$

twi0_scl = port:PH14<2><default><default><default><twi0_sda = port:PH15<2><default><default><default>

4.2 [twi1_para]

配置项	配置项含义
twi1_used =xx	TWI 使用控制: 1 使用, 0 不用
twi1_scl =xx	TWI SCK 的 GPIO 配置
twi1_sda=xx	TWI SDA 的 GPIO 配置

配置举例:

[tw1_para]

 $twi1_used$ = 1

twi1_scl = port:PH16<2><default><default><default> twi1_sda = port:PH17<2><default><default>

4.3 [twi2_para]

配置项	配置项含义
twi2_used =xx	TWI 使用控制: 1 使用, 0 不用
twi2_scl =xx	TWI SCK 的 GPIO 配置
twi2_sda=xx	TWI SDA 的 GPIO 配置

配置举例:

[twi2_para]

twi2_used = 1

twi2_scl = port:PH18<2><default><default><default> twi2_sda = port:PH19<2><default><default>

4.4 [twi3_para]

配置项	配置项含义
twi3_used =xx	TWI 使用控制: 1 使用, 0 不用
twi3_scl =xx	TWI SCK 的 GPIO 配置
twi3_sda=xx	TWI SDA 的 GPIO 配置

配置举例:

[twi2_para]

 $twi2_used = 1$

twi2_scl = port:PB05<4><default><default>

5 串口(UART)

主控有 6 路 uart 接口,其中 uart1 支持完整的 8 线通讯,而其他 5 路支持 4 线或者 2 线通讯(但十分不建议用 uart0 作为控制台以外的用途),实例中,有些路仅仅写出 2 路的配置形式,但实际使用时只要将其按照 4 路的格式补全,也能支持 4 线通讯

5.1 [uart_para0]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart0_tx =xx	UART TX 的 GPIO 配置
uart0_rx=xx	UART RX 的 GPIO 配置

配置举例:

[uart_para0]

uart_used = 1 uart_port = 0

uart0_tx = port:PB22<2> uart0_rx = port:PB23<2>

5.2 [uart_para1]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart1_tx =xx	UART TX 的 GPIO 配置
uart1_rx = xx	UART RX 的 GPIO 配置
uart1_rts=xx	UART RTS 的 GPIO 配置
uart1_cts=xx	UART CTS 的 GPIO 配置
uart1_dtr=xx	UART DTR 的 GPIO 配置

uart1_dsr=xx	UART DSR 的 GPIO 配置
uart1_dcd=xx	UART DCD 的 GPIO 配置
uart1_ring=xx	UART RING 的 GPIO 配置

配置举例:

[uart_para1]

uart_used= 0uart_port= 1uart_type= 8

uart1_tx = port:PA10<4><default><default> uart1_rx = port:PA11<4><default><default> = port:PA12<4><default><default> uart1 rts uart1_cts = port:PA13<4><default><default> uart1_dtr = port:PA14<4><default><default> = port:PA15<4><default><default> uart1_dsr uart1_dcd = port:PA16<4><default><default> uart1_ring = port:PA17<4><default><default>

5.3 [uart_para2]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart2_tx =xx	UART TX 的 GPIO 配置
$uart2_rx = xx$	UART RX 的 GPIO 配置
uart2_rts=xx	UART RTS 的 GPIO 配置
uart2_cts=xx	UART CTS 的 GPIO 配置

配置举例:

[uart_para2]

uart_used= 0uart_port= 2uart_type= 4

uart2_tx= port:PI18<3><default><default><default><default>uart2_rx= port:PI19<3><default><default><default><default>uart2_rts= port:PI16<3><default><default><default><default><default>uart2_cts= port:PI17<3><default><default><default>

5.4 [uart_para3]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart3_tx =xx	UART TX 的 GPIO 配置
uart3_rx = xx	UART RX 的 GPIO 配置
uart3_rts=xx	UART RTS 的 GPIO 配置
uart3_cts=xx	UART CTS 的 GPIO 配置

配置举例:

[uart_para3]

uart_used= 0uart_port= 3uart_type= 4

uart3_tx = port:PH00<4><default><default><default><
uart3_rx = port:PH01<4><default><default><default><default><
uart3_rts = port:PH02<4><default><default><default><default><<default>
uart3_cts = port:PH03<4><default><default><default><<default>

5.5 [uart_para4]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart4_tx =xx	UART TX 的 GPIO 配置
uart4_rx = xx	UART RX 的 GPIO 配置

配置举例:

[uart_para4]

uart_used= 0uart_port= 4uart_type= 2

uart4_tx = port:PH04<4><default><default><default><
uart4_rx = port:PH05<4><default><default><default>

5.6 [uart_para5]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart5_tx =xx	UART TX 的 GPIO 配置
$uart5_rx = xx$	UART RX 的 GPIO 配置

配置举例:

[uart_para5]

uart_used= 0uart_port= 5uart_type= 2

uart5_tx = port:PH06<4><default><default><default><
uart5_rx = port:PH07<4><default><default><default>

5.7 [uart_para6]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart6_tx =xx	UART TX 的 GPIO 配置
uart6_rx = xx	UART RX 的 GPIO 配置

配置举例:

[uart_para6]

uart_used= 0uart_port= 6uart_type= 2

uart6_tx = port:PA12<4><default><default><default><
uart6_rx = port:PA13<4><default><default><default>

5.8 [uart_para7]

配置项	配置项含义
-----	-------

uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart7_tx =xx	UART TX 的 GPIO 配置
uart7_rx = xx	UART RX 的 GPIO 配置

配置举例:

[uart_para7]

uart_used= 0uart_port= 7uart_type= 2

uart7_tx = port:PA14<4><default><default><default><
uart7_rx = port:PA15<4><default><default><default>

6 SPI 总线

6.1 [spi0_para]

配置项	配置项含义
spi_used =xx	SPI 使用控制: 1 使用, 0 不用
spi_cs0 =xx	SPI CS0的 GPIO 配置
spi_cs1 =xx	SPI CS1的 GPIO 配置
spi_sclk =xx	SPI CLK 的 GPIO 配置
spi_mosi = xx	SPI MOSI 的 GPIO 配置
spi_miso=xx	SPI MISO 的 GPIO 配置

配置举例:

[spi0_para]

spi_used = 0 spi_cs_bitmap = 1

;--- spi0 mapping0 ---

spi_cs0 = port:PI10<3><default><default><default> ;spi_cs1 = port:PI14<3><default><default><default> spi_sclk = port:PI11<3><default><default><default> spi_mosi = port:PI12<3><default><default><default> spi_miso = port:PI13<3><default><default><default>

6.2 [spi1_para]

配置项	配置项含义
spi_used =xx	SPI 使用控制: 1 使用, 0 不用
spi_cs0 =xx	SPI CS0的 GPIO 配置
spi_cs1 =xx	SPI CS1的 GPIO 配置
spi_sclk =xx	SPI CLK 的 GPIO 配置
spi_mosi = xx	SPI MOSI 的 GPIO 配置
spi_miso=xx	SPI MISO 的 GPIO 配置

配置举例:

[spi1_para]

spi_used = 0 spi_cs_bitmap = 1

spi_cs0 = port:PA00<4><default><default><default><spi_sclk = port:PA01<4><default><default><default><default><spi_mosi = port:PA02<4><default><default><default><default><<default><default><default><default><

6.3 [spi2_para]

配置项	配置项含义
spi_used =xx	SPI 使用控制: 1 使用, 0 不用
spi_cs0 =xx	SPI CS0的 GPIO 配置
spi_cs1 =xx	SPI CS1 的 GPIO 配置
spi_sclk =xx	SPI CLK 的 GPIO 配置
spi_mosi = xx	SPI MOSI 的 GPIO 配置
spi_miso=xx	SPI MISO 的 GPIO 配置

配置举例:

spi_used = 0 spi_cs_bitmap = 1

spi_cs0 = port:PB14<2><default><default><default><spi_sclk = port:PB15<2><default><default><default><spi_mosi = port:PB16<2><default><default><default><spi_miso = port:PB17<2><default><default><default><

6.4 [spi3_para]

配置项	配置项含义
spi_used =xx	SPI 使用控制: 1 使用, 0 不用
spi_cs0 =xx	SPI CS0的 GPIO 配置
spi_cs1 =xx	SPI CS1的 GPIO 配置
spi_sclk =xx	SPI CLK 的 GPIO 配置
spi_mosi = xx	SPI MOSI 的 GPIO 配置
spi_miso=xx	SPI MISO 的 GPIO 配置

配置举例:

[spi3_para]

spi_used = 0 spi_cs_bitmap = 1

;--- spi3 mapping0 ---

spi_cs0 = port:PA05<3><default><default><default><spi_sclk = port:PI06<3><default><default><default><spi_mosi = port:PI07<3><default><default><default><default><spi_miso = port:PI08<3><default><default><default><default><spi_cs1 = port:PA09<3><default><default><default><

6.5 [spi_devices]

配置项	配置项含义
spi_dev_num=xx	该项目直接和下面的[spi_board0]相关
	它指定主板连接 spi 设备的数目,假如
	有N个SPI设备那么[spi_devices]中就
	要有N个([spi_board0]到
	[spi_board (N-1)]) 配置

6.6 [spi_board0]

配置项	配置项含义
modalias=xx	Spi 设备名字,
max_speed_hz =xx	最大传输速度(HZ)
bus_num =xx	Spi 设备控制器序号

chip_select=xx	理论上可以选0,1,2,3,目前只支
	持1,2(芯片没引出接口)
mode = xx	SPI MOSI 的 GPIO 配置可选值 0-3

7 电阻屏(rtp)

7.1 [rtp_para]

配置项	配置项含义
rtp_used=xx	该模块在方案中是否启用,
rtp_screen_size =xx	屏幕尺寸设置,以斜对角方向长度为
	准, 以寸为单位
rtp_regidity_level=xx	表屏幕的硬度,以指覆按压,抬起时
	开始计时,多少个10ms时间单位之后,
	硬件采集不到数据为准;通常,我们
	建议的屏, 5 寸屏设为 5,7 寸屏设为
	7, 对于某些供应商提供的屏, 硬度可
	能不合要求,需要适度调整
rtp_press_threshold_enable=xx	是否开启压力的们门限制,建议选0
	不开启
rtp_press_threshold = xx	这配置项当 rtp_press_threshold_enable
	为1时才有效,其数值可以是0到
	0xFFFFFF 的任意数值,数值越小越敏
	感,推荐值为 0xF
rtp_sensitive_level=xx	敏感等级,数值可以是0到0xF之间的
	任意数值,数值越大越敏感,0xF为推
	荐值
rtp_exchange_x_y_flag=xx	当屏的 x,y 轴需要转换的时候,这个项
	目该置1,一般情况下则该置0

8 电容屏(capacitor tp)

8.1 [ctp_para]

配置项	配置项含义
ctp_used=xx	该选项为是否开启电容触摸,支持的
	话置1, 反之置0
ctp_twi_id=xx	用于选择 i2c adapter, 可选 1, 2
ctp_twi_addr =xx	指明 i2c 设备地址,与具体硬件相关
ctp_screen_max_x = xx	触摸板的x轴最大坐标
ctp_screen_max_y=xx	触摸板的y轴最大坐标
ctp_revert_x_flag=xx	是否需要翻转 x 坐标, 需要则置 1, 反
	之置0
ctp_revert_y_flag=xx	是否需要翻转 y 坐标, 需要则置 1, 反
	之置0
ctp_exchange_x_y_flag	是否需要x轴y轴坐标对换
ctp_int_port=xx	电容屏中断信号的 GPIO 配置
ctp_wakeup=xx	电容屏唤醒信号的 GPIO 配置

配置举例:

[ctp_para]

 ctp_used
 = 1

 ctp_twi_id
 = 1

 ctp_twi_addr
 = 0x5d

 ctp_screen_max_x
 = 1280

 ctp_screen_max_y
 = 800

 ctp_revert_x_flag
 = 1

 ctp_revert_y_flag
 = 1

 ctp_exchange_x_y_flag
 = 1

ctp_int_port = port:PA03<6><default><default><default><ctp_wakeup = port:PA02<1><default><default><1>

注意事项:

若要支持新的电容触控 ic, 在原有电容触控 ic 的代码基础上, 须结合 A31 bsp 层的配置情况, 作相应修改。具体说来,

- 1. 在 sys_config 中: ctp_twi_id 应与硬件连接一致;
- 2. 在驱动部分代码中: sysconfig 中的其他子健也要正确配置,在程序中,要

对这些配置进行相应的处理;

9 触摸按键(touch key)

9.1 [tkey_para]

配置项	配置项含义
tkey_used =xx	支持触摸按键的置1,反之置0
tkey_twi_id=xx	用于选择 i2c adapter, 可选 1, 2
tkey_twi_addr=xx	指明 i2c 设备地址,与具体硬件相关
tkey_int = xx	触摸按键中断信号的 GPIO 配置

配置举例:

 $\begin{array}{ll} tkey_used & = 0 \\ tkey_twi_id & = 2 \\ tkey_twi_addr & = 0x62 \end{array}$

tkey_int = port:PI13<6><default><default>

注意事项:

若支持,则将 tkey_used 置 1 并配置相应子键值;否则,tkey_used 置 0;

10 马达(motor)

10.1 [motor_para]

配置项	配置项含义
motor_used =xx	是否启用马达,启用置1,反之置0
motor_shake=xx	马达使用的 GPIO 配置

配置举例:

motor_used = 1

motor_shake = port:power3<1><default><1>

注意事项:

motor_shake = port:power3<1><default><1>

11闪存(nand0 flash)

11.1 [nand0_para]

配置项	配置项含义
nand_support_2ch	nand0 是否使能双通道
nand0_used =xx	nand0 模块使能标志
nand0_we =xx	nand0 写时钟信号的 GPIO 配置
nand0_ale =xx	nand0 地址使能信号的 GPIO 配置
nand0_cle =xx	nand0 命令使能信号的 GPIO 配置
nand0_ce1 =xx	nand0 片选 1 信号的 GPIO 配置
nand0_ce0 =xx	nand0 片选 0 信号的 GPIO 配置
nand0_nre =xx	nand0 读时钟信号的 GPIO 配置
nand0_rb0=xx	nand0 Read/Busy 1 信号的 GPIO 配置
nand0_rb1 =xx	nand0 Read/Busy 0 信号的 GPIO 配置
nand0_d0=xx	nand0 数据总线信号的 GPIO 配置
nand0_d1=xx	/
nand0_d2=xx	/
nand0_d3=xx	1
nand0_d4=xx	/
nand0_d5=xx	/
nand0_d6=xx	/
nand0_d7=xx	/
nand0_ce2=xx	nand0 片选 2 信号的 GPIO 配置
nand0_ce3=xx	nand0 片选 3 信号的 GPIO 配置
nand0_ndqs=xx	nand0 ddr 时钟信号的 GPIO 配置

配置举例:

[nand0_para]

nand_support_2ch = 1 nand0_used = 1

nand0_we = port:PC00<2><default><default><default>
nand0_ale = port:PC01<2><default><default><default>
nand0_cle = port:PC02<2><default><default><default><default>
nand0_ce1 = port:PC03<2><default><default><default><

nand0_ce0 = port:PC04<2><default><default> nand0_nre = port:PC05<2><default><default> nand0_rb0 = port:PC06<2><default><default> nand0_rb1 = port:PC07<2><default><default> nand0_d0 = port:PC08<2><default><default> nand0_d1 = port:PC09<2><default><default> nand0_d2 = port:PC10<2><default><default> nand0_d3 = port:PC11<2><default><default> nand0_d4 = port:PC12<2><default><default> nand0_d5 = port:PC13<2><default><default> nand0_d6 = port:PC14<2><default><default> nand0_d7 = port:PC15<2><default><default> nand0 ce2 = port:PC17<2><default><default> nand0_ce3 = port:PC18<2><default><default> nand0_spi = port:PC23<3><default><default>< nand0_ndqs = port:PC24<2><default><default>

11.2 [nand1_para]

配置项	配置项含义
nand1_used =xx	nand1 模块使能标志
nand1_we =xx	nand1 写时钟信号的 GPIO 配置
nand1_ale =xx	nand1 地址使能信号的 GPIO 配置
nand1_cle =xx	nand1 命令使能信号的 GPIO 配置
nand1_ce1 =xx	nand1 片选 1 信号的 GPIO 配置
nand1_ce0 =xx	nand1 片选 0 信号的 GPIO 配置
nand1_nre =xx	nand1 读时钟信号的 GPIO 配置
nand1_rb0=xx	nand1 Read/Busy 1 信号的 GPIO 配置
nand1_rb1 =xx	nand1 Read/Busy 0 信号的 GPIO 配置
nand1_d0=xx	nand1 数据总线信号的 GPIO 配置
nand1_d1=xx	/
nand1_d2=xx	/
nand1_d3=xx	/
nand1_d4=xx	/
nand1_d5=xx	/
nand1_d6=xx	/
nand1_d7=xx	/
nand1_ce2=xx	nand1 片选 2 信号的 GPIO 配置
nand1_ce3=xx	nand1 片选 3 信号的 GPIO 配置

12 显示初始化(disp init)

12.1 [disp_init]

配置项	配置项含义
disp_init_enable=xx	是否进行显示的初始化设置
disp_mode =xx	显示模式:
	0:screen0 <screen0,fb0></screen0,fb0>
screen0_output_type=xx	屏 0 输 出 类 型 (0:none; 1:lcd; 2:tv;
	3:hdmi; 4:vga)
screen0_output_mode =xx	屏0输出模式(used for tv/hdmi output,
	0:480i 1:576i 2:480p 3:576p 4:720p50
	5:720p60 6:1080i50 7:1080i60
	8:1080p24 9:1080p50 10:1080p60 11:pal
	14:ntsc)
screen1_output_type = xx	屏 1 输 出 类 型 (0:none; 1:lcd; 2:tv;
	3:hdmi; 4:vga)
screen1_output_mode=xx	屏1输出模式(used for tv/hdmi output,
	0:480i 1:576i 2:480p 3:576p 4:720p50
	5:720p60 6:1080i50 7:1080i60
	8:1080p24 9:1080p50 10:1080p60 11:pal
	14:ntsc)
fb0_format=xx	fb0 的格式 (4:RGB655 5:RGB565
	6:RGB556 7:ARGB1555 8:RGBA5551
	9:RGB888 10:ARGB8888
	12:ARGB4444)
fb0_pixel_sequence=xx	fb0的 pixel sequence(0:ARGB 1:BGRA
	2:ABGR 3:RGBA)
fb0_scaler_mode_enable=xx	fb0 是否使用 scaler mode,即使用 FE
fb0_width=xx	fb0的宽度,为0时将按照输出设备的分
	辨率
fb0_height=xx	fb0的高度,为0时将按照输出设备的
	分辨率
fb1_format=xx	fb1 的格式 (4:RGB655 5:RGB565

	6:RGB556 7:ARGB1555 8:RGBA5551
	9:RGB888 10:ARGB8888
	12:ARGB4444)
fb1_pixel_sequence=xx	fb1的 pixel sequence(0:ARGB 1:BGRA
	2:ABGR 3:RGBA)
fb1_scaler_mode_enable=xx	fb1 是否使用 scaler mode,即使用 FE
fb1_width=xx	Fb1 的宽度,为 0 时将按照输出设备的
	分辨率
fb1_height=xx	Fb1 的高度,为 0 时将按照输出设备的
	分辨率
lcd0_backlight	Lcd0 的背光初始值,0~255
lcd1_backlight	Lcd1 的背光初始值,0~255
lcd0_bright	Lcd0 的亮度值,0~100
lcd0_contrast	Lcd0 的对比度,0~100
lcd0_saturation	Lcd0 的饱和度,0~100
lcd0_hue	Lcd0 的色度,0~100
lcd1_bright	Lcd1 的亮度值,0~100
lcd1_contrast	Lcd1 的对比度,0~100
lcd1_saturation	Lcd1 的饱和度,0~100
lcd1_hue	Lcd1 的色度,0~100

配置举例:

[disp_init]

disp_init_enable = 1 = 0 disp_mode screen0_output_type = 1 screen0_output_mode = 4 screen1_output_type = 1 screen1_output_mode = 4 fb0_format = 10 fb0_pixel_sequence = 0fb0_scaler_mode_enable = 0 $fb0_width$ = 0= 0fb0_height fb1_format = 10 fb1_pixel_sequence = 0 fb1_scaler_mode_enable = 0 = 0fb1_width = 0 fb1_height lcd0_backlight = 197 lcd1_backlight = 197

lcd0_bright	= 50
lcd0_contrast	= 50
lcd0_saturation	= 57
lcd0_hue	= 50
lcd1_bright	= 50
lcd1_contrast	= 50
lcd1_saturation	= 57
lcd1_hue	= 50

13 LCD 屏 0

13.1 [lcd0_para]

配置项	配置项含义
lcd_used=xx	是否使用 lcd0
lcd_if =xx	lcd interface(0:hv(sync+de); 1:8080; 2:ttl;
	3:lvds, 4:dsi; 5:edp)
lcd_x=xx	lcd active width
lcd_y =xx	lcd active height
lcd_dclk_freq=xx	pixel clock, in MHZ unit
lcd_pwm_freq = xx	pwm freq, in HZ unit
lcd_pwm_pol =xx	pwm polarity, 0:positive; 1:negative
lcd_pwm_max_limit=xx	Lcd pwm max limit(<=255)
lcd_hbp=xx	hsync back porch
lcd_ht=xx	hsync total cycle
lcd_vbp=xx	vsync back porch
lcd_vt=xx	vysnc total cycle
lcd_hv_vspw=xx	vysnc plus width
lcd_hv_hspw=xx	hsync plus width
lcd_hv_if =xx	hv interface(0:parallel;
	8:serial(8bit/3cycle);
	10:dummyrgb(8bit/4cycle);11:rgbdummy
	(8bit/4cycle); 12: ccir656)
lcd_hv_srgb_seq=xx	serial RGB output sequence
lcd_hv_syuv_seq=xx	serial YUV output sequence
lcd_hv_syuv_fdly	serial YUV output F line delay(0: no

	delay;1: delay 2line[CCIR NTSC]; 2:
	delay 3line[CCIR PAL])
lcd_lvds_if=xx	0:single channel; 1:dual channel
lcd_lvds_colordepth=xx	0:8bit; 1:6bit
lcd_lvds_mode=xx	0:NS mode; 1:JEIDA mode
lcd_lvds_io_polarity=xx	0:normal; 1:pn cross
lcd dsi if=xx	0:video mode; 1:command mode
lcd_dsi_lane=xx	1/2/3/4lane
lcd_dsi_format=xx	0:RGB888; 1:RGB666; 2:RGB666P;
	3:RGB565
lcd_dsi_eotp=xx	0:no ending symbol 1:insert ending
	symbol;
lcd_dsi_te=xx	0:disable te mode; 1:rising te mode; 2:falling te mode
lcd_cpu_if=xx	cpu i/f mode(0:18bit; 1:16bit mode0;
	2:16bit mode1; 3:16bit mode2;4:16bit
	mode3; 5:9bit; 6:8bit 256K; 7:8bit 65K;)
lcd_cpu_te=xx	0:disable te mode; 1:enable rising te
	mode; 2:enable falling te mode
lcd_frm=xx	0:disable; 1:enable rgb666 dither;
	2:enable rgb656 dither
lcd_edp_tx_ic=xx	0:anx9804; 1:anx6345
lcd_edp_tx_rate=xx	1:1.62G; 2:2.7G; 3:5.4G
lcd_edp_tx_lane=xx	1/2/4lane
lcd_io_phase=xx	0:noraml; 1:intert phase(0~3bit: vsync
	phase; 4~7bit:hsync phase;8~11bit:dclk
	phase; 12~15bit:de phase)
deu_mode=xx	Parameter for deu. 0:smoll lcd screen;
	1:large lcd screen(larger than 10inch)
lcdgamma4iep=xx	Smart Backlight parameter, lcd gamma
	vale * 10;
smart_color=xx	90:normal lcd screen 65:retina lcd
	screen(9.7inch) (0~100)
lcd_bl_en=xx	LCD_BL_EN 的 GPIO 配置
lcd_power=xx	LCD_VCC control 的 GPIO 配置
lcd_pwm=xx	lcd PWM 的 GPIO 配置 (PWM0 固定使
	用 PB02, PWM1 固定使用 PI03,用户无
	需修改该项)
lcd_gpio_scl	iic SCL
lcd_gpio_sda	iic SDA
lcd_gpio_0/1/2/3=xx	LCD 额外需要使用的 GPIO 配置

	-
lcdd0~23=xx	lcd 数据的 GPIO 配置
lcdclk=xx	lcd 信号的 GPIO 配置(具体信号与实
	际电路相关)
lcdde=xx	lcd 信号的 GPIO 配置(具体信号与实
	际电路相关)
lcdhsync=xx	lcd 信号的 GPIO 配置(具体信号与实
	际电路相关)
lcdvsync=xx	lcd 信号的 GPIO 配置(具体信号与实
	际电路相关)

配置举例:

[lcd0_para]

lcd_used = 1 lcd_if = 0 lcd_x = 1280 = 800 lcd_y lcd_dclk_freq = 70 lcd_pwm_freq = 50000 lcd_pwm_pol = 0lcd_pwm_max_limit = 150 lcd_hbp = 20 lcd_ht = 1418 lcd_hspw = 10 lcd_vbp = 10 = 814 lcd_vt = 5 lcd_vspw lcd_hv_if = 0= 0lcd_hv_srgb_seq lcd_hv_syuv_seq = 0lcd_hv_syuv_fdly = 0lcd_lvds_if = 0lcd_lvds_colordepth = 1 lcd_lvds_mode = 0lcd_lvds_io_polarity = 0lcd_dsi_if = 0= 0lcd_dsi_lane = 0 lcd_dsi_format lcd_dsi_eotp = 0lcd_dsi_te = 0= 0lcd_cpu_if

= 0lcd_cpu_te lcd_frm = 1= 0lcd_edp_tx_ic lcd_edp_tx_rate = 0lcd_edp_tx_lane = 0lcd_io_phase = 0x00deu_mode = 0lcdgamma4iep = 22

Smart_color = 90

lcd_bl_en = port:PA25<1><0><default><1>
lcd_power = port:power2<1><0><default><1>
lcd_pwm = port:PH13<2><0><default><default>

lcd_gpio_scl=lcd_gpio_sda=lcd_gpio_0=lcd_gpio_1=lcd_gpio_2=lcd_gpio_3=

lcdd23

lcdd0 = port:PD00<2><0><default><default> lcdd1 = port:PD01<2><0><default><default> lcdd2 = port:PD02<2><0><default><default> = port:PD03<2><0><default><default> lcdd3 lcdd4 = port:PD04<2><0><default><default> lcdd5 = port:PD05<2><0><default><default> lcdd6 = port:PD06<2><0><default><default> lcdd7 = port:PD07<2><0><default><default> lcdd8 = port:PD08<2><0><default><default> lcdd9 = port:PD09<2><0><default><default> lcdd10 = port:PD10<2><0><default><default> lcdd11 = port:PD11<2><0><default><default> lcdd12 = port:PD12<2><0><default><default> lcdd13 = port:PD13<2><0><default><default> lcdd14 = port:PD14<2><0><default><default> lcdd15 = port:PD15<2><0><default><default> lcdd16 = port:PD16<2><0><default><default> lcdd17 = port:PD17<2><0><default><default> lcdd18 = port:PD18<2><0><default><default> lcdd19 = port:PD19<2><0><default><default> lcdd20 = port:PD20<2><0><default><default> lcdd21 = port:PD21<2><0><default><default> lcdd22 = port:PD22<2><0><default><default>

= port:PD23<2><0><default><default>

lcdclk = port:PD24<2><0><default><default> lcdde = port:PD25<2><0><default><default> lcdhsync = port:PD26<2><0><default><default> lcdvsync = port:PD27<2><0><default><default>

14 LCD 屏 1

14.1 [lcd1_para]

所有配置跟 lcd0 一样

15 HDMI

15.1 [hdmi_para]

配置项	配置项含义
para_used =xx	是否使用 hdmi

16 摄像头(CSI)

16.1 [csi0_para]

留空,不要填写,如下: [csi0_para] csi_used = 0

16.2 [csi1_para]

特别注意事项:

在 A31 以及后续项目中(因为内核对 GPIO 资源的管理有修改),如果两个 sensor 制作 2 合 1 模组的时候请注意将两个模组的 reset 控制脚分开(包括),stby 控制脚也分开,仅有电源,数据线、clock 线、地可以复用。如果是使用 RAW 格式的 sensor,硬件上需要 CSI_D[11:2]共 10 条数据线,请不要将 CSI_D3 和 CSI_D2 用做 GPIO 功能,模组上的 D[3:2]也要注意从 sensor 端引出来。

配置项	配置项含义
csi_used =xx	是否使用 csi1
csi_twi_id =xx	csi 使用的 IIC 通道序号,查看具体方
	案原理图,使用 twi0 填 0
csi_mname=xx	csi 使用的模组名称,需要与驱动匹配,
	可以查看驱动目录里面的 readme 目前
	有 gc0307 , gc0308 , gc2035,
	gt2005,hi253, ov5640, s5k4ec 可选
csi_twi_addr=xx	csi 使用的模组的 IIC 地址(8bit 地址),
	可以查看驱动目录里面的 readme
csi_if	配置目前使用模组的接口时序:
	0:8bit 数据线,带 Hsync,Vsync
	1:16bit 数据线,带 Hsync,Vsync
	2:24bit 数据线,带 Hsync,Vsync
	3:8bit 数据线,BT656 内嵌同步,单通道
	4:8bit 数据线,BT656 内嵌同步,双通道
	5:8bit 数据线,BT656 内嵌同步,四通道
csi_mode	配置 csi 接收 buffer 的模式:
	0: 一个 CSI 接收对应一个 buffer
	1: 两个 CSI 接收内容拼接成一个
	buffer
csi_dev_qty	配置 csi 目前连接的器件数量,目前只能
	配置为1或2
csi_vflip	配置 csi 接收图像默认情况下,上下颠

	倒情况:
	0: 正常
	1: 上下颠倒
. 1 (1.	
csi_hflip	配置 csi 接收图像默认情况下,左右颠
	倒情况:
	0: 正常
	1: 左右颠倒
csi_stby_mode	配置 csi 在进入 standby 时的处理:
	0: 不关闭电源,只拉 standby io
	1: 关闭电源,同时拉 standy io
csi_iovdd	配置 csi iovdd 电源来源:
	请查看对应方案原理图,一般填写的
	名字为"axp22_XldoN"等(注意带英文
	字符的双引号,不使用 axp 电源供电
	时候请务必留空引号"")
	如 EVB 上,配置成"axp22_eldo3"
csi_avdd	配置 csi avdd 电源来源:
	请查看对应方案原理图,一般填写的
	名字为"axp22_XldoN"等(注意带英文
	字符的双引号,不使用 axp 电源供电
	时候请务必留空引号""),这个地方
	请特别注意,因为此电源对于 sensor
	图像质量关系较大,对于高像素 sensor
	建议使用 axp22_ldoio0 或 axp22_ldoio1
	这两组电源或者采用外挂带 EN 控制的
	LDO
csi_dvdd	配置 csi dvdd 电源来源:
	请查看对应方案原理图,一般填写的
	名字为"axp22_XldoN"等(注意带英文
	字符的双引号,不使用 axp 电源供电
	时候请务必留空引号"")
	·
csi_vol_iovdd	配置 csi iovdd 电源电压
	如果 csi iovdd 配置不为空时会配置对
	应的 axp 电源为相应电压
	配置为 2800 表示 2.8V, 范围不要超过
	1800~2800, 请查看具体 sensor 的
	datasheet 填写此电压
csi_vol_avdd	配置 csi avdd 电源电压
	如果 csi avdd 配置不为空时会配置对
	应的 axp 电源为相应电压
	EXP. AMA CIMA THEY GITE

	■ 男头 2000 まご 2 0V 加了 画 收 3 1
	配置为 2800 表示 2.8V, 一般不要修改 此数值
csi_vol_dvdd	配置 csi dvdd 电源电压
csi_voi_uvuu	如果 csi dvdd 配置不为空时会配置对
	应的 axp 电源为相应电压
	配置为 1500 表示 1.5V ,范围不要超过
	1200~1800 , 请查看具体 sensor 的
	datasheet 填写此电压
cci pok = vv	模组送给 csi 的 clock 的 GPIO 配置
csi_pck = xx csi_ck=xx	csi 送给模组的 clock 的 GPIO 配置
csi_hsync=xx	模组送给 csi 的行同步信号 GPIO 配置
csi_vsync=xx	模组送给 csi 的帧同步信号 GPIO 配置
csi_d0=xx	模组送给 csi 的 8bit/16bit/24bit 数据的
	GPIO 配置,使用 YUV 格式的 sensor
csi_d23=xx	方案中, csi_d0/d1/d2/d3 会被配置成
	普通 GPIO,用来控制 sensor的
	pwdn/reset 信号,使用 RAW 格式的
•	sensor只能用 csi_d0/d1 作 GPIO 用途。
csi_reset=xx	控制模组的 reset 的 GPIO 配置,默认
	值为 reset 有效(高或低有效需要取决
:	于模组) 核制模组的电源的 CNIO 配置。若
csi_power_en=xx	控制模组的电源的 GPIO 配置,若
	csi_power_en 的默认值一般配置成 1;
	若 csi_stby_mode 配 置 成 1 , 则
	csi_power_en 的默认值一般配置成 0。
cci ethy-vy	控制模组的 standby 的 GPIO 配置,默
csi_stby=xx	认值为 standby 有效(高或低有效需要)
	取决于模组)
csi_reset_b=xx	如果有两个模组同时连接到一个 CSI,
CSI_ICSCI_U-AA	需要额外的 IO 控制;控制模组的 reset
	的 GPIO 配置,默认值为 reset 有效
	(高或低有效需要取决于模组)
csi_power_en_b=xx	如果有两个模组同时连接到一个 CSI,
coi_power_cii_o=xx	無要额外的 IO 控制,控制模组的电源
	的 GPIO 配置,若 csi_stby_mode 配置
	成 0,则 csi_power_en 的默认值一般配
	置成 1; 若 csi_stby_mode 配置成 1, 则
	csi_power_en 的默认值一般配置成 0。
csi_stby_b=xx	如果有两个模组同时连接到一个 CSI,
COL_OLOY_O AA	需要额外的 IO 控制,控制模组的

standby 的 GPIO 配 置 , 默 认 值 为 standby 有效(高或低有效需要取决于 模组)

```
配置举例:
[csi1_para]
csi_used
              = 1
csi_mode
               = 0
csi_dev_qty
                = 2
csi_stby_mode
                 = 0
csi_mname
                = "ov5640"
csi_twi_id
               = 0
csi_twi_addr
                = 0x78
csi_if
            = 0
              = 0
csi_vflip
csi_hflip
              = 1
csi_iovdd
              = "axp22_eldo3"
csi_avdd
              = "axp22_dldo4"
              = "axp22_eldo2"
csi_dvdd
csi_vol_iovdd
                = 2800
csi_vol_avdd
                = 2800
csi_vol_dvdd
                = 1800
csi_flash_pol
                = 1
csi_mname_b
                 = "gc0307"
csi_twi_id_b
                = 0
csi_twi_addr_b
                 = 0x42
csi\_if\_b
              = 0
csi_vflip_b
               = 1
csi_hflip_b
               = 1
csi_iovdd_b
                = "axp22_eldo3"
                = "axp22_dldo4"
csi_avdd_b
                = "axp22_eldo2"
csi_dvdd_b
csi_vol_iovdd_b = 2800
csi_vol_avdd_b
                 = 2800
csi_vol_dvdd_b
                 = 1800
csi_flash_pol_b
csi_pck
              = port:PE00<2><default><default>
```

```
csi_mck
             = port:PE01<2><default><default>
csi_hsync
             = port:PE02<2><default><default>
             = port:PE03<2><default><default>
csi_vsync
csi_d0
csi_d1
csi_d2
csi_d3
csi_d4
            = port:PE08<2><default><default>
csi_d5
            = port:PE09<2><default><default>
csi_d6
            = port:PE10<2><default><default>
csi_d7
            = port:PE11<2><default><default>
csi_d8
            = port:PE12<2><default><default>
csi_d9
            = port:PE13<2><default><default>
csi_d10
            = port:PE14<2><default><default>
csi_d11
            = port:PE15<2><default><default>
            = port:PE04<1><default><default><0>
csi_reset
csi_power_en
csi_stby
            = port:PE05<1><default><default><1>
csi_flash
csi_af_en
csi_reset_b
             = port:PE06<1><default><default><0>
csi_power_en_b
             = port:PE07<1><default><default><1>
csi_stby_b
csi_flash_b
csi_af_en_b
```

17 SD / MMC

17.1 [mmc0_para]

配置项	配置项含义
sdc_used=xx	SDC 使用控制: 1 使用, 0 不用
sdc_detmode=xx	检测模式: 1-gpio 检测, 2-data3 检测, 3-无检测,卡常在(不卡拔插), 4 - manual mode(from proc file system node)
bus_width=xx	位宽: 1-1bit, 4-4bit

1 14	CDC DATA 1 th CDIO TIPE
sdc_d1=xx	SDC DATA1 的 GPIO 配置
$sdc_d0 = xx$	SDC DATA0 的 GPIO 配置
sdc_clk=xx	SDC CLK 的 GPIO 配置
sdc_cmd=xx	SDC CMD 的 GPIO 配置
sdc_d3=xx	SDC DATA3的 GPIO 配置
sdc_d2=xx	SDC DATA2 的 GPIO 配置
sdc_det=xx	SDC DET 的 GPIO 配置
sdc_use_wp=xx	SDC 写保护配置: 1 使用, 0 不用
sdc_wp=xx	SDC WP 的 GPIO 配置
sdc_isio=xx	是否是 sdio card,0:不是,1:是
sdc_regulator=xx	假如过卡支持 SD3.0 或者 emmc4.5 的
	UHS-I/DDR、HS200, 这里就要写成
	sdc_regulator = "axp22_eldo2"

[mmc0_para]

 sdc_used = 1 $sdc_detmode$ = 1 bus_width = 4

 sdc_d1
 = port:PF0<2><1><default><default>

 sdc_d0
 = port:PF1<2><1><default><default>

 sdc_clk
 = port:PF2<2><1><default><default>

 sdc_cmd
 = port:PF3<2><1><default><default>

 sdc_d3
 = port:PF4<2><1><default><default>

 sdc_d2
 = port:PF5<2><1><default><default>

 sdc_det
 = port:PH1<0><1><default><default>

sdc_use_wp = 0 sdc_wp =

17.2 [mmc1_para]

配置项	配置项含义
sdc_used=xx	SDC 使用控制: 1 使用, 0 不用
sdc_detmode=xx	检测模式: 1-gpio 检测, 2-data3 检测,
	3-无检测,卡常在(不卡拔插),4-
	manual mode(from proc file system node)
bus_width=xx	位宽: 1-1bit, 4-4bit
sdc_d1=xx	SDC DATA1 GPIO 配置

$sdc_d0 = xx$	SDC DATA0 GPIO 配置
sdc_clk=xx	SDC CLK GPIO 配置
sdc_cmd=xx	SDC CMD GPIO 配置
sdc_d3=xx	SDC DATA3 GPIO 配置
sdc_d2=xx	SDC DATA2 GPIO 配置
sdc_det=xx	SDC DET GPIO 配置
sdc_use_wp=xx	SDC 写保护配置: 1使用, 0不用
sdc_wp=xx	SDC WP GPIO 配置

[mmc1_para]

sdc_used = 1 sdc_detmode = 1 bus_width = 4

 sdc_cmd
 = port:PH22<5><1><default><default>

 sdc_clk
 = port:PH23<5><1><default><default>

 sdc_d0
 = port:PH24<5><1><default><default>

 sdc_d1
 = port:PH25<5><1><default><default>

 sdc_d2
 = port:PH26<5><1><default><default>

 sdc_d3
 = port:PH27<5><1><default><default>

 sdc_det
 = port:PH2<0><1><default><default>

sdc_use_wp = 0 sdc_wp =

17.3 [mmc2_para]

配置项	配置项含义
sdc_used=xx	SDC 使用控制: 1 使用, 0 不用
sdc_detmode=xx	检测模式: 1-gpio 检测, 2-data3 检测,
	3-无检测,卡常在(不卡拔插),4-
	manual mode(from proc file system node)
bus_width=xx	位宽:1-1bit,4-4bit
sdc_d1=xx	SDC DATA1 GPIO 配置
$sdc_d0 = xx$	SDC DATA0 GPIO 配置
sdc_clk=xx	SDC CLK GPIO 配置
sdc_cmd=xx	SDC CMD GPIO 配置
sdc_d3=xx	SDC DATA3 GPIO 配置
sdc_d2=xx	SDC DATA2 GPIO 配置
sdc_det=xx	SDC DET GPIO 配置

sdc_use_wp=xx	SDC 写保护配置: 1使用, 0不用
sdc_wp=xx	SDC WP GPIO 配置

[mmc2_para]

 sdc_used = 1 $sdc_detmode$ = 1 bus_width = 4

 sdc_cmd
 = port:PH22<5><1><default><default>

 sdc_clk
 = port:PH23<5><1><default><default>

 sdc_d0
 = port:PH24<5><1><default><default>

 sdc_d1
 = port:PH25<5><1><default><default>

 sdc_d2
 = port:PH26<5><1><default><default>

 sdc_d3
 = port:PH27<5><1><default><default>

 sdc_det
 = port:PH2<0><1><default><default>

sdc_use_wp = 0 sdc_wp =

17.4 [mmc3_para]

配置项	配置项含义
sdc_used=xx	SDC 使用控制: 1 使用, 0 不用
sdc_detmode=xx	检测模式: 1-gpio 检测, 2-data3 检测,
	3-无检测,卡常在(不卡拔插), 4 -
	manual mode(from proc file system node)
bus_width=xx	位宽:1-1bit,4-4bit
sdc_d1=xx	SDC DATA1 GPIO 配置
$sdc_d0 = xx$	SDC DATA0 GPIO 配置
sdc_clk=xx	SDC CLK GPIO 配置
sdc_cmd=xx	SDC CMD GPIO 配置
sdc_d3=xx	SDC DATA3 GPIO 配置
sdc_d2=xx	SDC DATA2 GPIO 配置
sdc_det=xx	SDC DET GPIO 配置
sdc_use_wp=xx	SDC 写保护配置: 1 使用, 0 不用
sdc_wp=xx	SDC WP GPIO 配置

配置举例:

[mmc3_para]

sdc_used = 1 sdc_detmode = 1 bus_width = 4 sdc_cmd = port:PH22<5><1><default><default> = port:PH23<5><1><default><default> sdc_clk sdc_d0 = port:PH24<5><1><default><default> = port:PH25<5><1><default><default> sdc_d1 = port:PH26<5><1><default><default> sdc_d2 sdc_d3 = port:PH27<5><1><default><default> = port:PH2<0><1><default><default> sdc_det sdc_use_wp = 0

sdc_wp

18 SIM 卡

18.1 [smc_para]

配置项	配置项含义
smc_used =xx	
smc_rst=xx	
smc_vppen=xx	
smc_vppp=xx	
smc_det = xx	
smc_vccen=xx	
smc_sck=xx	
smc_sda=xx	

配置举例:

19 USB 控制标志

19.1 [usbc0]

配置项	配置项含义

usb used =xx	USB 使能标志(xx=1 or 0)。置 1,表示
usb_uscu =xx	系统中 USB 模块可用,置 0,则表示
	系统 USB 禁用。此标志只对具体的
	USB控制器模块有效。
1	
usb_port_type =xx	USB 端口的使用情况。(xx=0/1/2)
	0: device only 1: host only 2: OTG
usb_detect_type=xx	USB端口的检查方式。
	0: 无检查方式 1: vbus/id 检查
usb_id_gpio=xx	USB ID pin 脚配置。具体请参考 gpio 配
	置说明。《配置与 GPIO 管理.doc》
usb_det_vbus_gpio = xx	USB DET_VBUS pin 脚配置。如果
	GPIO 提供 pin,请参考 gpio 配置说明
	《配置与 GPIO 管理.doc》。如果的 AXP
	提供 pin,则配置为: "axp_ctrl"。
usb_drv_vbus_gpio=xx	USB DRY_VBUS pin 脚配置。具体请参
	考 gpio 配置说明。《配置与 GPIO 管
	理.doc》
usb_restrict_gpio=xx	USB 限流控制 pin 脚
	USB RESTRICT_GPIO pin 脚配置。具
	体请参考 gpio 配置说明。《配置与 GPIO
	管理.doc》
usb_host_init_state=xx	host only 模式下,Host 端口初始化状态
	0:初始化后 USB 不工作 1:初始化
	后 USB 工作
usb_restric_flag=xx	Usb 限流标志位
	0: 不使能限流功能 1: 使能限流功能
usb_restric_voltage=xx	限流开启的条件
	电压值小于设置值,则开启限流
usb_restric_capacity=xx	限流开启的条件
1	电量值小于设置值,则开启限流
	, , , , , , , , , , , , , , ,

[usbc0]

usb_used = 1 usb_port_type = 2 usb_detect_type = 1

usb_id_gpio= port:PH4<0><1><default><default>usb_det_vbus_gpio= port:PH5<0><0><default><default>usb_drv_vbus_gpio= port:PB9<1><0><default><0>usb_restrict_gpio= port:PH26<1><0><default><0>

usb_host_init_state = 0

usb_restric_flag = 0

usb_restric_voltage = 3550000

usb_restric_capacity = 5

19.2 [usbc1]

配置项	配置项含义
usb_used =xx	USB 使能标志(xx=1 or 0)。置 1,表示
	系统中 USB 模块可用,置 0,则表示
	系统 USB 禁用。此标志只对具体的
	USB 控制器模块有效。
usb_port_type =xx	USB 端口的使用情况。(xx=0/1/2)
	0: device only 1: host only 2: OTG
usb_detect_type=xx	USB 端口的检查方式。
	0: 无检查方式 1: vbus/id 检查
usb_id_gpio=xx	USB ID pin 脚配置。具体请参考 gpio 配
	置说明。《配置与 GPIO 管理.doc》
usb_det_vbus_gpio = xx	USB DET_VBUS pin 脚配置。具体请参
	考 gpio 配置说明。《配置与 GPIO 管
	理.doc》
usb_restrict_gpio=xx	USB 限流控制 pin 脚
	USB RESTRICT_GPIO pin 脚配置。具
	体请参考 gpio 配置说明。《配置与 GPIO
	管理.doc》
usb_drv_vbus_gpio=xx	USB DRY_VBUS pin 脚配置。具体请参
	考 gpio 配置说明。《配置与 GPIO 管
	理.doc》
usb_host_init_state=xx	host only 模式下,Host 端口初始化状态
	0: 初始化后 USB 不工作 1: 初始化
	后USB工作
usb_restric_flag=xx	Usb 限流标志位
	0: 表不设限流, 1 开启限流

配置举例:

[usbc1]

usb_used= 1usb_port_type= 1usb_detect_type= 0usb_id_gpio=usb_det_vbus_gpio=

usb_drv_vbus_gpio = port:PH6<1><0><default><0> usb_restrict_gpio = port:PH26<1><0><default><0> usb_host_init_state = 1

usb_restric_flag = 0

19.3 [usbc2]

配置项	配置项含义
usb_used =xx	USB 使能标志(xx=1 or 0)。置 1,表示
	系统中 USB 模块可用,置 0,则表示
	系统 USB 禁用。此标志只对具体的
	USB 控制器模块有效。
usb_port_type =xx	USB 端口的使用情况。(xx=0/1/2)
	0: device only 1: host only 2: OTG
usb_detect_type=xx	USB 端口的检查方式。
	0: 无检查方式 1: vbus/id 检查
usb_id_gpio=xx	USB 限流控制 pin 脚
	USB ID pin 脚配置。具体请参考 gpio 配
	置说明。《配置与 GPIO 管理.doc》
usb_det_vbus_gpio = xx	USB DET_VBUS pin 脚配置。具体请参
	考 gpio 配置说明。《配置与 GPIO 管
	理.doc》
usb_drv_vbus_gpio=xx	USB DRY_VBUS pin 脚配置。具体请参
	考 gpio 配置说明。《配置与 GPIO 管
	理.doc》
usb_restrict_gpio=xx	USB RESTRICT_GPIO pin 脚配置。具
	体请参考 gpio 配置说明。《配置与 GPIO
	管理.doc》
usb_host_init_state=xx	host only 模式下,Host 端口初始化状态
	0:初始化后 USB 不工作 1:初始化
	后USB工作
usb_restric_flag=xx	Usb 限流标志位
	0: 表不设限流, 1 开启限流

配置举例:

[usbc2]

usb_used= 1usb_port_type= 1usb_detect_type= 0usb_id_gpio=

usb_det_vbus_gpio =

usb_drv_vbus_gpio = port:PH3<1><0><default><0> usb_restrict_gpio = port:PH26<1><0><default><0>

usb_host_init_state = 1 usb_restric_flag = 0

20 USB Device

20.1 [usb_feature]

配置项	配置项含义
vendor_id=xx	USB 厂商 ID
mass_storage_id =xx	U盘ID
adb_id =xx	USB 调试桥 ID
manufacturer_name=xx	USB厂商名
product_name = xx	USB 产品名
serial_number=xx	USB 序列号

配置举例:

[usb_feature]

vendor_id= 0x18D1mass_storage_id= 0x0001adb_id= 0x0002

manufacturer_name = "USB Developer"

product_name = "Android" serial_number = "20080411"

20.2 [msc_feature]

配置项	配置项含义
vendor_name=xx	U盘厂商名
product_name=xx	U盘产品名
release=xx	发布版本
luns=xx	U 盘逻辑单元的个数(PC 可以看到的

U 盘盘符的个数)

配置举例:

[msc_feature]

vendor_name = "USB 2.0"

product_name = "USB Flash Driver"

release = 100 luns = 2

21 重力感应(G Sensor)

21.1 [gsensor_para]

配置项	配置项含义
gsensor_used=xx	是否支持 gsensor
gsensor_twi_id =xx	I2C 的 BUS 控 制 选 择 , 0:
	TWI0;1:TWI1;2:TWI2
gsensor_twi_addr=xx	芯片的 I2C 地址
gsensor_int1 = xx	中断1的GPIO配置
gsensor_int2=xx	中断 2 的 GPIO 配置

配置举例:

[gsensor_para]

 $gsensor_used$ = 1 $gsensor_twi_id$ = 2 $gsensor_twi_addr$ = 0x18

gsensor_int1 = port:PA09<6><1><default><

gsensor_int2 =

22 WIFI

[wifi_para]

22.1 [wifi_para]

配置项	配置项含义
wifi_used =xx	是否要使用 wifi
wifi_sdc_id =xx	sdio wifi 选用的是哪个 sdc 作为接口
wifi_usbc_id =xx	usb wifi 选用的是哪个 usb 作为接口
wifi_usbc_type=xx	usb 接口类型,1 为 ehci,0 为 ohci
wifi_mod_sel =xx	具体选择哪一款模组
	1-bcm40181; 2-bcm40183;
	3-rtl8723as; 4-rt l8189es;
	5 - rtl8192cu; 6 - rtl8188eu;
	7 – rtl8723au;
wifi_power=xx	给模组供电的 axp 引脚名

说明: [wifi_para]下的配置项是 usb 和 sdio 接口 wifi 共用的。

22.2 sdio 接口 wifi rtl8723as demo

```
wifi_used
                    = 1
wifi_sdc_id
                    = 1
wifi_usbc_id
                    = 1
wifi_usbc_type
                    = 1
wifi_mod_sel
                    =3
wifi_power
                    = "axp22_aldo1"
; 3 - rtl8723as sdio wifi + bt gpio config
rtk_rtl8723as_wl_dis
                        = port:PG10<1><default><default><0>
rtk_rtl8723as_bt_dis
                        = port:PG11<1><default><default><0>
rtk_rtl8723as_wl_host_wake = port:PG12<0><default><default><0>
rtk_rtl8723as_bt_host_wake = port:PG17<0><default><default><0>
```

以上配置意思是要使用序号为 3 的 SDIO 接口 rtl8723as 模组,选用 SDC1 接口。SDC1 对应是 mmc1, 需要确定[mmc1_para]配置项如下:

[mmc1_para]

sdc_used = 1 sdc_detmode = 4 sdc_buswidth = 4

 sdc_clk
 = port:PG00<2><1><2><default>

 sdc_cmd
 = port:PG01<2><1><2><default>

 sdc_d0
 = port:PG02<2><1><2><default>

 sdc_d1
 = port:PG03<2><1><2><default>

 sdc_d2
 = port:PG04<2><1><2><default>

 sdc_d3
 = port:PG05<2><1><2><default>

 sdc_det
 =

 sdc_use_wp
 = 0

 sdc_wp
 =

 sdc_isio
 = 1

sdc_regulator = "none"

22.3 usb接口wifi rtl8188eu demo

[wifi_para]

wifi_used = 1
wifi_sdc_id = 1
wifi_usbc_id = 1
wifi_usbc_type = 1
wifi_mod_sel = 6

wifi_power = "axp22_aldo1"

以上配置意思是要使用序号为 6 的 ehci USB 接口 rtl8188eu 模组,选用 usb1 接口。需要确定[usbc1]配置项如下:

[usbc1]

usb_used= 1usb_port_type= 1usb_detect_type= 0usb_id_gpio=usb_det_vbus_gpio=usb_drv_vbus_gpio=usb_restrict_gpio=usb_host_init_state= 0

23 3G

23.1 [3g_para]

配置项	配置项含义
3g_used	3G 使能标志位。
	0: 禁用; 1: 使能
3g_usbc_num	3G 使用到的 USB 控制器编号。
	0: USB0; 1: USB1; 2: USB2; 3: USB3等
3g_uart_num	3G 使用到的 UART 控制器编号。
	0: UART0; 1: UART1; 2: UART2; 3: UART3等
bb_name	3G 模组名称。如"mu509"
bb_vbat	gpio 配置,电池引脚。
bb_on	保留
bb_pwr_on	gpio 配置,供电引脚。
bb_wake	gpio 配置,A31 睡眠唤醒 3G 模组。
bb_rf_dis	gpio 配置,用来控制无线发射模块。
bb_rst	gpio 配置,用来复位 3G 模组。

配置举例:

[3g_para]

3g_used = 1 3g_usbc_num = 2 3g_uart_num = 0

bb_name = "mu509"

24 gyroscope

24.1 [gy_para]

配置项	配置项含义
gy_used=xx	是否支持 gyr
gy_twi_id=xx	I2C 的 BUS 控制选择, 0:
	TWI0;1:TWI1;2:TWI2
gy_twi_addr=xx	芯片的 I2C 地址
gy_int1=xx	中断1的GPIO配置
gy_int2 = xx	中断 2 的 GPIO 配置

配置举例:

[gy_para]

 gy_used = 1 gy_twi_id = 2 gy_twi_addr = 0x6a

gy_int1 = port:PA10<6><1><default>

gy_int2 =

25 光感(light sensor)

25.1 [ls_para]

配置项	配置项含义
ls_used =xx	是否支持 ls
ls_twi_id=xx	I2C 的 BUS 控制选择, 0:
	TWI0;1:TWI1;2:TWI2
ls_twi_addr =xx	芯片的 I2C 地址
ls_int=xx	中断的 GPIO 配置

配置举例:

[ls_para]

 $\begin{array}{ll} ls_used & = 1 \\ ls_twi_id & = 2 \\ ls_twi_addr & = 0x23 \end{array}$

ls_int = port:PA12<6><1><default><default>

26 罗盘 Compass

26.1 [compass_para]

配置项	配置项含义
compass_used=xx	是否支持 compass
compass_twi_id=xx	I2C 的 BUS 控制选择, 0:
	TWI0;1:TWI1;2:TWI2
compass_twi_addr =xx	芯片的 I2C 地址
compass_int =xx	中断的 GPIO 配置

配置举例:

[compass_para]

 $compass_used$ = 1 $compass_twi_id$ = 2 $compass_twi_addr$ = 0x0d

compass_int = port:PA11<6><1><default><default>

27 蓝牙(blueteeth)

27.1 [bt_para]

配置项	配置项含义
bt_used=xx	BLUETOOTH 使用控制: 1使用, 0不
	用

bt_uart_id=xx	BLUETOOTH 使用的 UART 控制器号
bt_wakeup =xx	BT WAKEUP GPIO 配置
bt_gpio=xx	BT 可选 GPIO 配置
bt_rst=xx	BT RESET GPIO 配置

[bt_para]

bt_used = 0 bt_uart_id = 2

bt_wakeup = port:PI20<1><default><default><default> bt_gpio = port:PI21<1><default><default><default> bt_rst = port:PB05<1><default><default><default>

28 数字音频总线 (I2S)

28.1 [i2s_para]

配置项	配置项含义
i2s_used=xx	xx为0时加载该模块,为0是不加载
i2s_channel=xx	声道控制
i2s_mclk =xx	I2sMCLK 信号的 GPIO 配置
i2s_bclk=xx	I2sBCLK 信号的 GPIO 配置
i2s_lrclk =xx	I2sLRCK 信号的 GPIO 配置
i2s_dout0	I2S out0的 GPIO 配置
i2s_dout1	暂不使用
i2s_dout2	暂不使用
i2s_dout3	暂不使用
i2s_din	I2sIN 信号的 GPIO 配置

配置举例:

 $i2s_used$ = 0 $i2s_channel$ = 2

 i2s_mclk
 = port:PB5<2><1><default><default>

 i2s_bclk
 = port:PB6<2><1><default><default>

 i2s_lrclk
 = port:PB7<2><1><default><default>

 i2s_dout0
 = port:PB8<2><1><default><default>

i2s_dout1 = i2s_dout2 = i2s_dout3 =

i2s_din = port:PB12<2><1><default><default>

29 数字音频总线(pcm)

29.1 [pcm_para]

配置项	配置项含义
pcm_used=xx	xx 为 0 时加载该模块, 为 0 是不加载
pcm_channel=xx	声道控制
pcm_mclk =xx	暂不使用
pcm_bclk=xx	pcmBCLK 信号的 GPIO 配置
pcm_lrclk =xx	pcmLRCK 信号的 GPIO 配置
pcm_dout	pcm out 的 GPIO 配置
pcm_din	pcmIN 信号的 GPIO 配置

配置举例:

[pcm_para]

pcm_used = 1 pcm_channel = 2 pcm_mclk =

pcm_bclk = port:PG13<3><1><default><default> pcm_lrclk = port:PG14<3><1><default><default> pcm_dout = port:PG16<3><1><default><default> pcm_din = port:PG15<3><1><default><default>

30 数字音频总线 (S/PDIF)

30.1 [spdif_para]

配置项	配置项含义
spdif_used=xx	xx 为 0 时加载该模块,为 0 是不加载
spdif_dout =xx	Spdif out 的 gpio 控制
spdif_din=xx	

配置举例:

[spdif_para]

spdif_used = 1

spdif_dout = port:PH28<3><1><default><default>

spdif_din =

31 喇叭控制

31.1 [audio_para]

配置项	配置项含义
audio_used =xx	Audiocodec 是否使用,
	1: 打开 (默认) 0: 关闭
audio_pa_ctrl=xx	喇叭的 gpio 口控制。
pa_vol	喇叭音量大小
cap_vol	录音音量大小

配置举例:

[audio_para]

audio_used = 1

audio_pa_ctrl = port:PH15<1><default><default><0>

 pa_vol = 0x1b cap_vol = 0x5

32 红外(ir)

32.1 [ir_para]

配置项	配置项含义
ir_used=xx	是否支持 ir
ir0 rx =xx	ir 的接收管脚 GPIO 配置

配置举例:

[ir_para]

ir_used = 1

ir_rx = port:PL04<2><1><default><default>

33 PMU 电源

33.1 [pmu_para]

pmu_used=xx	Pmu 使能标志(xx=1 or 0),		
	0: 不使用, 1: 使用		
pmu_twi_addr=xx	Pmu 设备地址		
pmu_twi_id=xx	Pmu 挂载的 i2c 控制器号,		
	0: twi0, 1: twi1, 2: twi2		
pmu_irq_id=xx	Pmu 中断号,0: NMI,		
	1: 1号中断 2: 2号中断		
pmu_battery_rdc=xx	电池内阻, mΩ, 根据实际测试填写		
pmu_battery_cap=xx	电池容量, mAh, 根据实际测试填写		
pmu_batdeten	PMU 电池检测功能使能,0:不自动检测		
	1: 自动检测		
pmu_runtime_chgcur=xx	设置开机充电电流,mA,		
	300/450/600/750/900/1050/1200		
	/1350/1500/1650/1800/1950		

pmu_earlysuspend_chgcur=xx	设置关屏充电电流, mA,			
pinu_curysuspenu_engeur xx	300/450/600/750/900/1050/1200			
	/1350/1500/1650/1800/1950			
pmu_suspend_chgcur=xx	设置休眠充电电流, mA,			
pinu_suspenu_engeur xx	300/450/600/750/900/1050/1200			
	/1350/1500/1650/1800/1950			
pmu_shutdown_chgcur=xx	设置关机充电电流,mA			
pina_snataown_engear xx	300/450/600/750/900/1050/1200			
	300/450/600/750/900/1050/1200 /1350/1500/1650/1800/1950			
pmu_init_chgvol=xx	0 0 0 0 0 0 0 0 0 0			
pinu_nint_cngvoi=xx	図			
pmu_init_chgend_rate=xx	设置结束充电电流的比率, %, 10, 15			
pmu_init_chg_enabled=xx	设置充电功能, 0: 关闭, 1: 打开			
	设置 adc 采样率,Hz,100/200/400/800			
pmu_init_adc_freq=xx				
pmu_init_adc_freqts=xx	,			
none init sha pretime-ver	Hz, 100/200/400/800			
pmu_init_chg_pretime=xx	设置预充电超时时间, min, 40/50/60/70			
pmu_init_chg_csttime=xx	设置恒流充电超时时间 min 360/480/600/720			
1 //	min, 360/480/600/720			
pmu_batt_cap_correct	完成一次完成充放电后,电池容量是否			
Pmu_bat_regu_en = x	充电完成后,bat regulator 是否常开,0:			
	关闭, 1: 常开			
pmu_bat_para1=xx	设置空载电池电压为 3.13V 对应的百分比,			
	%			
pmu_bat_para2=xx	设置空载电池电压为 3.27V 对应的百分比,			
	%			
pmu_bat_para3=xx	设置空载电池电压为 3.34V 对应的百分比,			
	%			
pmu_bat_para4=xx	设置空载电池电压为 3.41V 对应的百分比,			
	%			
pmu_bat_para5=xx	设置空载电池电压为 3.48V 对应的百分比,			
	%			
pmu_bat_para6=xx	设置空载电池电压为 3.52V 对应的百分比,			
	%			
pmu_bat_para7=xx	设置空载电池电压为 3.55V 对应的百分比,			
	%			
pmu_bat_para8=xx	设置空载电池电压为 3.57V 对应的百分比,			
	%			
pmu_bat_para9=xx	设置空载电池电压为 3.59V 对应的百分比,			
	%			
	· -			

pmu_bat_para10=xx	设置空载电池电压为 3.61V 对应的百分比,		
1 – –1	%		
pmu_bat_para11=xx	设置空载电池电压为 3.63V 对应的百分比,		
	%		
pmu_bat_para12=xx	设置空载电池电压为 3.64V 对应的百分比,		
·	%		
pmu_bat_para13=xx	设置空载电池电压为 3.66V 对应的百分比,		
1 – –1	%		
pmu_bat_para14=xx	设置空载电池电压为 3.7V 对应的百分比,		
·	%		
pmu_bat_para15=xx	设置空载电池电压为3.73V对应的百分比,		
1 – –1	%		
pmu_bat_para16=xx	设置空载电池电压为 3.77V 对应的百分比,		
rr	%		
pmu_bat_para17=xx	设置空载电池电压为 3.78V 对应的百分比,		
FZ	%		
pmu_bat_para18=xx	设置空载电池电压为 3.8V 对应的百分比,		
pma_sac_parazo m	%		
pmu_bat_para19=xx	设置空载电池电压为 3.82V 对应的百分比,		
pma_sac_parais ini	%		
pmu_bat_para20=xx	设置空载电池电压为 3.84V 对应的百分比,		
F	%		
pmu_bat_para21=xx	设置空载电池电压为 3.85V 对应的百分比,		
1 – –1	%		
pmu_bat_para22=xx	设置空载电池电压为 3.87V 对应的百分比,		
	%		
pmu_bat_para23=xx	设置空载电池电压为3.91V对应的百分比,		
1 – –	%		
pmu_bat_para24=xx	设置空载电池电压为 3.94V 对应的百分比,		
·	%		
pmu_bat_para25=xx	设置空载电池电压为 3.98V 对应的百分比,		
	%		
pmu_bat_para26=xx	设置空载电池电压为 4.01V 对应的百分比,		
	%		
pmu_bat_para27=xx	设置空载电池电压为 4.05V 对应的百分比,		
	%		
pmu_bat_para28=xx	设置空载电池电压为 4.08V 对应的百分比,		
	%		
pmu_bat_para29=xx	设置空载电池电压为 4.1V 对应的百分比,		
•	%		
pmu_bat_para30=xx	设置空载电池电压为 4.12V 对应的百分比,		

	%		
pmu_bat_para31=xx	→ '0 →		
pina_out_pundo1 /i/i	% E. L. X. C. C. C. L. Y. 4.14 V. A. D. C. L. D. C.		
pmu_bat_para32=xx	设置空载电池电压为 4.15V 对应的百分比,		
r	%		
pmu_usbvol_limit=xx	设置 usb 限压功能, 0: 关闭, 1: 打开		
pmu_usbvol=xx	设置 usb 限 压 电 压 ,		
	mV, 4000/4100/4200/4300/4400/4500/460		
	0/4700		
pmu_usbvol_pc =xx	设置连接至PC时USB限压值,		
	mV, 4000/4100/4200/4300/4400/4500/460		
	0/4700		
pmu_usbcur_limit=xx	设置 usb 限流功能,0:关闭,1:打开		
pmu_usbcur=xx	设置 usb 限流电流, mA, 500/900,若设置		
	为0,则不限流		
pmu_usbcur_pc =xx	设置连接至 PC 时 USB 限流值,		
	mA 。500/900,若设置为 0,则不限流		
pmu_pwroff_vol=xx	设置启动过程中硬件保护电压,		
	mV , 2600/2700/2800/2900/3000/3100/320		
_	0/3300		
pmu_pwron_vol=xx	设置开机状态下的硬件保护电压,		
	mV , 2600/2700/2800/2900/3000/3100/320		
1 (6 (*	0/3300		
pmu_pekoff_time=xx	设置硬件关机时长		
nmy polyoff function	ms, 4000/6000/8000/10000 设置长按键强制关机后是否自动启动功		
pmu_pekoff_func=xx	能, 0: 不自动启动 1: 自动启动		
pmu_pekoff_en=xx	设置长按键硬件关机功能, 0: 关闭,		
pina_pekon_en=xx	1: 打开		
pmu_peklong_time=xx	设置长按键中断时间,		
pma_pemong_ume_im	ms, 1000/1500/2000/2500		
pmu_pekon_time=xx	设置开机时间,ms, 128/1000/2000/3000		
pmu_pwrok_time=xx	设置电源启动完成后 pwrok 信号延时,		
	ms, 8/16/32/64		
pmu_battery_warning_level1 =xx	设置电池低电第一级报警门限:可设范		
	围 5%~20%,1%/step		
pmu_battery_warning_level2=xx	设置电池低电第二级报警门限: 可设范		
	围 1%~15%,1%/step		
pmu_restvol_time=xx	设置电池电量更新时间间隔值,可设范		
	围 30s/60s/120s		
pmu_restvol_adjust_time =xx	设置校正电池电量时间间隔值1,可设范		

	围 30s/60s/120s	
pmu_ocv_cou_adjust_time=xx	设置校正电池电量时间间隔值, 可设范	
	围 30s/60s/120s	
pmu_chgled_func=xx	设置 CHGLED 引脚功能, 0: 由驱动程序	
	控制, 1: 由充电逻辑控制	
pmu_chgled_type	设置 CHGLD 由充电逻辑控制时,只是方	
	式。0: 方式 A 1: 方式 B	
pmu_vbusen_func	设置 N_VBUEN 引脚功能, 0: 作为输出	
	功能 1: 作为输入功能	
pmu_reset	设置长按键 16s 后是否复位 PMU, 0: 不	
	复位 1: 复位	
pmu_IRQ_wakeup	设置在 PMU 待机和关机情况下,IRQ 是	
	否唤醒 PMU 功能: 0: 不唤醒 1: 唤醒	
pmu_hot_shutdowm	设置 PMU 内部温度过高是否自动关机保	
	护功能,0:不关机1:关机	
pmu_inshort	设置 ACIN 和 VBUS 是否短路功能,0-由	
	PMU 自动检测 1: 驱动设置为短路功能	

pmu_bat_para1

pmu_used	= 1
pmu_twi_addr	= 0x34
pmu_twi_id	= 1
pmu_irq_id	= 0
pmu_battery_rdc	= 100
pmu_battery_cap	= 0
pmu_batdeten	= 1
pmu_runtime_chgcur	= 600
pmu_earlysuspend_chgcur	= 900
pmu_suspend_chgcur	= 1500
pmu_shutdown_chgcur	= 1500
pmu_init_chgvol	= 4200
pmu_init_chgend_rate	= 15
pmu_init_chg_enabled	= 1
pmu_init_adc_freq	= 800
pmu_init_adcts_freq	= 800
pmu_init_chg_pretime	= 70
pmu_init_chg_csttime	= 720
pmu_batt_cap_correct	= 1
pmu_bat_regu_en	= 0

= 0

pmu_bat_para2	= 0
pmu_bat_para3	= 0
pmu_bat_para4	= 0
pmu_bat_para5	= 0
pmu_bat_para6	= 0
pmu_bat_para7	= 0
pmu_bat_para8	= 2
pmu_bat_para9	= 5
pmu_bat_para10	= 8
pmu_bat_para11	= 9
pmu_bat_para12	= 10
pmu_bat_para13	= 13
pmu_bat_para14	= 16
pmu_bat_para15	= 26
pmu_bat_para16	= 36
pmu_bat_para17	= 41
pmu_bat_para18	= 46
pmu_bat_para19	= 50
pmu_bat_para20	= 53
pmu_bat_para21	= 57
pmu_bat_para22	= 61
pmu_bat_para23	= 67
pmu_bat_para24	= 73
pmu_bat_para25	= 78
pmu_bat_para26	= 84
pmu_bat_para27	= 88
pmu_bat_para28	= 92
pmu_bat_para29	= 93
pmu_bat_para30	= 94
pmu_bat_para31	= 95
pmu_bat_para32	= 100
pmu_usbvol_limit	= 1
pmu_usbcur_limit	= 0
pmu_usbvol	= 4400
pmu_usbcur	= 0
pmu_usbvol_pc	= 4400
pmu_usbcur_pc	= 900
pmu_pwroff_vol	= 3300
pmu_pwron_vol	= 2600
pmu_pekoff_time	= 6000
pmu_pekoff_func	= 0

pmu_pekoff_en	= 1
pmu_peklong_time	= 1500
pmu_pekon_time	= 1000
pmu_pwrok_time	= 64
pmu_battery_warning_level1	= 15
pmu_battery_warning_level2	= 0
pmu_restvol_adjust_time	= 30
pmu_ocv_cou_adjust_time	= 60
pmu_chgled_func	= 0
pmu_chgled_type	= 0
pmu_vbusen_func	= 1
pmu_reset	= 0
pmu_IRQ_wakeup	= 0
pmu_hot_shutdowm	= 1
pmu_inshort	= 0
power_start	= 0