数据分析

为了分析coin rate而编写python程序,作为毕业论文的课题。

随机数据

文件中包括了对随机数据的模拟,随机数据计算其coin rate。

文献的数据

分析文献中的SD数据(来自公司员工的短信息交流数据)。

绘制网络

coin rate

coin rate的结果绘制为网络图,包括了挑选:

1. cr>0.5的作为连边的两种不同排列类型的图(cr.5)

(cr.5)绘图方式: circular_layout

2. cr最大的对象的连边(cr_max)

(cr_max)绘图方式: circular_layout

3. cr>0.5的作为连边且保留每个节点最大的边(cr.5_re)

(cr.5_re)绘图方式: circular_layout

一共4张图

SD 数据

来自文献的SD01数据:

1. 挑选收信比例>50%的对象连边(data.5)

(data.5)绘图方式: circular_layout

2. 挑选收信比例为所有对象的最大值的连边(data_max)

(data_max) 绘图方式: circular_layout

一共2张图

网络的相似性

定义网络的相似性: 连边集合1和连边集合2的交集与并集的比例作为网络的相似性的度量

$$sim = rac{edg1 \cap edg2}{edg1 \cup edg2}$$

由此可以得出上列网络图中的不同网络的相似度

相似度	cr.5	cr_max	cr.5_re	data.5	data_max
cr.5	1.00	0.42	0.82	0.80	0.75
cr_max	0.42	1.00	0.47	0.48	0.51
cr.5_re	0.82	0.47	1.00	0.98	0.91
data.5	0.80	0.48	0.98	1.00	0.93
data_max	0.75	0.51	0.91	0.93	1.00

值得注意的是(cr.5_re)与(data.5)的相似度达到了0.98,这表明这两个网络基本相同而(cr.5_re)是依据coin rate得出的网络,而(data.5)是依据SD01数据直接画出的网络,这两个网络的形成方式不同,却有高度的相似性,这表明coin rate作为衡量社交网络的方法非常接近实际情况。