Exercise 1. Let $\{x_n\}_{n=0}^{N+1}$ be a grid in the interval $\Lambda = (0,1)$, i.e., $0 = x_0 < x_1 < x_2 < \cdots < x_N < x_{N+1} = 1$. Let $I_n = (x_{n-1}, x_n)$, $h_n = x_n - x_{n-1}$, and $h = \max_{1 \le n \le N+1} h_n$. Prove

$$\{v \in C^0(\Lambda) : v|_{I_n} \in H^1(I_n), n = 1, \dots, N+1\} \subset H^1(\Lambda).$$

Proof. For any $v \in \{v \in C^0(\Lambda) : v|_{I_n} \in H^1(I_n), n = 1, \dots, N+1\}$, it is clear that $v \in L^2(\Lambda)$ because continuity implies square integrability on the bounded domain Λ . It remains to show that the weak derivative of v also belongs to $L^2(\Lambda)$. Since $v|_{I_n} \in H^1(I_n)$, we define a piecewise derivative by

$$g|_{I_n}(x) = (v|_{I_n})'(x), \quad x \in I_n, \ n = 1, \dots, N+1.$$

Obviously, $g \in L^2(\Lambda)$, as each piece $(v|_{I_n})' \in L^2(I_n)$ and the intervals I_n are disjoint and cover Λ . We claim that g is the derivative of v. Indeed, for any test function $\phi(x) \in C_0^{\infty}(\Lambda)$, we have

$$\int_{0}^{1} g(x)\phi(x)dx = \sum_{n=1}^{N+1} \int_{I_{n}} g|_{I_{n}}(x)\phi(x)dx = \sum_{n=1}^{N+1} \int_{I_{n}} (v|_{I_{n}})'(x)\phi(x)dx$$

$$= \sum_{n=1}^{N+1} [v(x)\phi(x)]|_{x_{n-1}}^{x_{n}} - \sum_{n=1}^{N+1} \int_{I_{n}} (v|_{I_{n}})(x)\phi'(x)dx$$

$$= \sum_{n=1}^{N+1} \left(v(x_{n}^{-})\phi(x_{n}^{-}) - v(x_{n-1}^{+})\phi(x_{n-1}^{+})\right) - \sum_{n=1}^{N+1} \int_{I_{n}} (v|_{I_{n}})(x)\phi'(x)dx.$$

Due to the continuity of v across element interfaces, we have $v(x_n^-) = v(x_n^+)$ for $n = 1, \dots, N$, and since $\phi \in C_0^{\infty}(\Lambda)$ we have $\phi(x_0) = \phi(x_{N+1}) = 0$. Hence, the sum of boundary terms cancels out, yielding

$$\int_0^1 g(x)\phi(x)\mathrm{d}x = -\int_0^1 v(x)\phi'(x)\mathrm{d}x,$$

which confirms that g is the weak derivative of v. Therefore, $v \in H^1(\Lambda)$.