Protein secondary structure

Regular, recurring arrangements in space of adjacent amino acid residues in a polypeptide chain.

Maintained by hydrogen bonds between amide hydrogen and carbonyl oxygen of the peptide backbone.

- 1. α-helices
- 2. β-strands (sheets)
- 3. Turns (bends)
- 4. Coil (irregular)

Secondary structures: \alpha-helix

The α -helix is stabilized by hydrogen bonds between the CO and the NH groups of the main chain (i and i+4). 3.6 residues/turn; 5.4 Å/turn (repeating unit of α -helix)

Residues are closely packed.

Secondary structures: **\beta-strand**

 β -strand is fully extended and loosely packed; they can hydrogen bond together to form β -sheets (parallel or anti parallel) depending on the direction.

Turns

One-third of all residues in globular proteins are contained in turns that serve to reverse the direction of the polypeptide chain.

Turns contain a hydrogen bond between the carbonyl oxygen of residue i and the amide nitrogen of i+3.

These three types of turns are designated I, II, and III.

Type I turns occur most frequently (2-3 times more frequently than type II).

The backbone dihedral angles of residue are (-60, -30) and (-90, 0) of residues i+1 and i+2 of the type I turn.

Proline is often found in position i+1 in type I turns as its phi angle is restricted to -60.

Turns

The backbone dihedral angles of residue are (-60, 120) and (80, 0) of residues i+1 and i+2, respectively of the type II turn.

Glycine is favored in this position in the type II' as it requires a positive phi value.

The backbone dihedral angles of residue are (-60, -30) and (-60, -30) of residues i+1 and i+2, of the classical type III turn.

Ramachandran plot

 N-C_{α} and $\text{C}_{\alpha}\text{-C}$ bonds are free to rotate.

These rotations are represented by the torsional angles, Φ and Ψ , respectively.

G N Ramachandran used computer models of small polypeptides to systematically vary Φ and Ψ for finding stable conformations.

Atoms were treated as hard spheres (dimensions -> van der Waals radii).

Φ and Ψ angles that cause spheres to collide -> sterically disallowed conformation

Red: Allowed; White: Disallowed

Torsional angles

	ATOM	27	CG	GLU	A	4	7.583	14.248	24.732	1.00 14.95	С
	ATOM	28	CD	GLU	A	4	7.577	15.734	24.340	1.00 15.89	С
	ATOM	29	OE1	GLU	A	4	6.511	16.344	24.159	1.00 17.02	0
	ATOM	30	OE2	GLU	A	4	8.572	16.043	23.730	1.00 15.37	0
	ATOM	31	N	${\tt GLY}$	A	5	7.687	11.127	22.185	1.00 12.43	N
	ATOM	32	CA	${\tt GLY}$	A	5	8.655	10.062	21.811	1.00 14.67	С
_	ATOM	33>	С	${\tt GLY}$	A	5	9.176	10.126	20.356	1.00 16.35	С
	ATOM	34	0	${\tt GLY}$	A	5	10.347	9.825	20.076	1.00 11.57	0
-	ATOM	35>	N	GLU	A	6	8.315	10.552	19.440	1.00 13.50	N
	ATOM	36>	CA	GLU	A	6	8.800	10.689	18.054	1.00 12.50	С
_	ATOM	37>	С	GLU	A	6	9.632	11.962	17.942	1.00 13.96	С
	ATOM	38	0	GLU	A	6	10.617	11.986	17.195	1.00 14.23	0
	ATOM	39	CB	GLU	A	6	7.614	10.784	17.076	1.00 13.07	С

(x1,y1,z1) (x2,y2,z2) (x3,y3,z3)

Dihedral Angles

Surface One

Poi

	^	,	-
int 1	9.1760	10.126	20.3560
int 2	8.3150	10.5520	19.4400
int 3	8.8000	10.6890	18.0540

Distances

1.2 1.327348108072.3 1.474784730053.1 2.39948932066

Equation of Plane Ax+By+Cz+D=0

-0.46494399999999 X +	-1.637606 y +	-0.324567 z +	27.4556103519997 =	= 0
-----------------------	---------------	----------------------	--------------------	-----

Surface Two

	X	У	Z
Point 1	8.3150	10.5520	19.4400
Point 2	8.8000	10.6890	18.0540
Point 3	9.6320	11.9620	17.9420

Distances

1.2 1.47478473005 2-3 1.52489245522

3-1 2.44266104893

Equation of Plane Ax+By+Cz+D=0

$$1.749034 \times + \left[-1.098831999999999 \right] y + \left[0.50342100000000 \right] z + \left[-12.734846686000 \right] = 0$$

1.34556071239086

radians

77.094949898613

degrees

$$A = \begin{bmatrix} 1 & y1 & z1 \\ 1 & y2 & z2 \\ 1 & y3 & z3 \end{bmatrix} \quad B = \begin{bmatrix} x1 & 1 & z1 \\ x2 & 1 & z2 \\ x3 & 1 & z3 \end{bmatrix} \quad C = \begin{bmatrix} x1 & y1 & 1 \\ x2 & y2 & 1 \\ x3 & y3 & 1 \end{bmatrix} \quad D = - \begin{bmatrix} x1 & y1 & z1 \\ x2 & y2 & z2 \\ x3 & y3 & z3 \end{bmatrix}$$

Dihedral Angle Calculator

A dihedral angle is the angle between two planes.

To calculate this angle, you can follow these steps:

1. Calculate the equation for each plane. It will be in the form:

$$Ax + By + Cz + D = 0$$

2. Then, knowing the equation of the two planes, you can calculate the dihedral angle:

$$\cos\alpha = \frac{A_1A_2 + B_1B_2 + C_1C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2}\sqrt{A_2^2 + B_2^2 + C_2^2}}$$

M. Michael Gromiha, IIT Madras, Class 31

Check whether the residues 60-69 form an α -helix (4MBN)

ATOM	483	N	ASP	A	60	30.554	28.872	-1.439	1.00	13.41
ATOM	484	CA	ASP	Α	60	29.251	29.577	-1.346	1.00	13.47
ATOM	485	С	ASP	A	60	28.082	28.593	-1.208	1.00	10.85
ATOM	486	0	ASP	A	60	27.129	28.854	-0.468	1.00	10.89
ATOM	487	CB	ASP	A	60	29.115	30.488	-2.563	1.00	11.63
ATOM	488	CG	ASP	Α	60	27.959	31.474	-2.407	1.00	11.34
ATOM	489	OD1	ASP	A	60	27.239	31.637	-3.388	1.00	10.56
ATOM	490	OD2	ASP	A	60	27.926	32.207	-1.407	1.00	11.89
ATOM	491	N	LEU	A	61	28.180	27.469	-1.910	1.00	11.29
ATOM	492	CA	LEU	A	61	27.158	26.395	-1.785	1.00	13.55
ATOM	493	С	LEU	A	61	27.140	25.792	-0.377	1.00	12.39
ATOM	494	0	LEU	A	61	26.076	25.569	0.204	1.00	10.30
ATOM	495	CB	LEU	A	61	27.403	25.337	-2.873	1.00	13.67
ATOM	496	CG	LEU	A	61	26.455	24.132	-2.929	1.00	12.05
ATOM	497	CD1	LEU	A	61	26.375	23.553	-4.341	1.00	12.93
ATOM	498	CD2	LEU	A	61	26.930	23.031	-2.000	1.00	16.59
ATOM	499	N	LYS	A	62	28.333	25.566	0.144	1.00	10.86
ATOM	500	CA	LYS	A	62	28.491	25.175	1.544	1.00	13.89
ATOM	501	С	LYS	A	62	27.916	26.199	2.531	1.00	13.74
ATOM	502	0	LYS	A	62	27.209	25.822	3.464	1.00	12.28
ATOM	503	CB	LYS	A	62	30.002	25.061	1.776	1.00	12.89
ATOM	504	CG	LYS	A	62	30.365	24.572	3.153	1.00	13.43
ATOM	505	CD	LYS	A	62	31.694	23.828	3.063		12.14
ATOM	506	CE	LYS	A	62	32.046	23.190	4.390		15.51
ATOM	507	ΝZ	LYS	A	62	33.369	22.534	4.287		17.63
ATOM	508	N	LYS	A	63	28.139	27.478	2.257		13.23
ATOM	509	CA	LYS	A	63	27.570	28.584	3.080	1.00	12.05
ATOM	510	С	LYS	A	63	26.048	28.526	3.104	1.00	11.13
ATOM	511	0	LYS	A	63	25.438	28.658	4.164	1.00	12.64
ATOM	512	CB	LYS	A	63	27.932	29.946	2.489	1.00	11.27
ATOM	513	CG	LYS	A	63	28.277	30.918	3.588	1.00	13.99
ATOM	514	CD	LYS	A	63	28.534	32.349	3.116		14.19
ATOM	515	CE	LYS	A	63	29.792	32.484	2.276		16.43
ATOM	516	NZ	LYS	A	63	29.892	33.917	1.896	1.00	15.02

ATOM	517	N	HIS	A	64	25.479	28.309	1.940	1.00	11.61
ATOM	518	CA	HIS	A	64	24.016	28.237	1.840	1.00	10.72
ATOM	519	С	HIS	A	64	23.445	26.952	2.461	1.00	10.86
ATOM	520	0	HIS	A	64	22.427	27.022	3.140	1.00	11.94
ATOM	521	CB	HIS	A	64	23.561	28.299	0.392	1.00	11.17
ATOM	522	CG	HIS	A	64	22.055	28.401	0.271	1.00	11.82
ATOM	523	ND1	HIS	A	64	21.332	29.442	0.778	1.00	12.13
ATOM	524	CD2	HIS	A	64	21.170	27.481	-0.259	1.00	16.49
ATOM	525	CE1	HIS	A	64	20.008	29.178	0.545	1.00	11.48
ATOM	526	NE2	HIS	A	64	19.911	27.978	-0.083	1.00	12.54
ATOM	527	N	GLY	A	65	24.189	25.846	2.403	1.00	9.84
ATOM	528	CA	GLY	A	65	23.765	24.640	3.124	1.00	10.13
ATOM	529	С	GLY	A	65	23.720	24.833	4.640	1.00	12.09
ATOM	530	0	GLY	A	65	22.785	24.356	5.310	1.00	10.90
ATOM	531	N	VAL	A	66	24.653	25.629	5.138	1.00	11.12
ATOM	532	CA	VAL	A	66	24.554	26.025	6.578	1.00	11.96
ATOM	533	С	VAL	A	66	23.297	26.851	6.899	1.00	10.82
ATOM	534	0	VAL	A	66	22.631	26.593	7.910	1.00	11.04
ATOM	535	CB	VAL	A	66	25.799	26.777	7.027	1.00	12.19
ATOM	536	CG1		A	66	25.709	27.227	8.478	1.00	11.49
ATOM	537	CG2	VAL	A	66	27.062	25.931	6.850	1.00	13.42
ATOM	538	N	THR		67	22.967	27.768	5.995	1.00	11.19
ATOM	539	CA	THR	A	67	21.780	28.628	6.142	1.00	11.60
ATOM	540	С		A	67	20.497	27.825	6.258	1.00	9.84
ATOM	541	0	THR		67	19.740	28.004	7.218	1.00	10.87
ATOM	542	CB	THR		67	21.678	29.575	4.949	1.00	11.28
ATOM	543	OG1	THR		67	22.640	30.627	5.157		12.09
ATOM	544	CG2	THR		67	20.315	30.245	4.853		12.21
ATOM	545	N	VAL	A	68	20.397	26.839	5.373		11.34
ATOM	546	CA	VAL	A	68	19.193	25.996	5.309	1.00	9.46
ATOM	547	С	VAL	A	68	19.020	25.073	6.515	1.00	8.75
ATOM	548	0	VAL	A	68	17.966	25.083	7.152		10.55
ATOM	549	СВ	VAL		68	19.215	25.219	3.994	1.00	9.32
ATOM	550		VAL	A	68	18.113	24.174	3.924		12.56
ATOM	551	CG2	VAL	A	68	19.100	26.200	2.837		10.55
ATOM	552	N	LEU	A	69	20.079	24.401	6.906		11.18
ATOM	553	CA	LEU		69	19.977	23.500	8.092		12.51
ATOM	554	С	LEU	A	69	19.814	24.216	9.418	1.00	10.58
ATOM	555	0	LEU	A	69	19.230	23.676	10.347	1.00	10.91

DSSP: Dictionary of Secondary Structures in Proteins

	\$	A G	Н	>	S+	0	0	35	2,-0.2	4,-1.6	1,-0.2	-1,-0.2	0.823 107.4	48.1 /63. 4.5
	6	A E	H	>	S+	0	0	51	2,-0.2	4,-1.8	1,-0.2	-1,-0.2	0.883 109.7	52.9/-77.1 -34.6
Ĭ	7	A W	H	X	S+	0	0	15	-4,-2.7	4,-2.6	2,-0.2	5,-0.3	0.894 105.3	56.2 -63.6 -34.4
	8	AQ	H	X	S+	0	0	133	-4,-2.1	4,-2.5	1,-0.2	5,-0.2	0.938 107.3	48.2 -56.7 -47.2
	9	A L	H	X	S+	0	0	55	-4,-1.6	4,-1.5	1,-0.2	-1,-0.2	0.855 112.8	50.0 -60.7 -40.5
	10	$\mathtt{A} \ \mathtt{V}$	H	X	S+	0	0	0	-4,-1.8	4,-2.0	2,-0.2	-1,-0.2	0.917 114.6	40.0 -65.7 -50.1
	11	A L	H	X	S+	0	0	44	-4,-2.6	4,-2.2	2,-0.2	-2,-0.2	0.842 107.7	61.6 -78.6 -27.9
1	12	ΑH	H	X	S+	0	0	120	-4,-2.5	4,-0.6	-5,-0.3	-1,-0.2	0.965 109.4	43.1 -64.9 -40/0

Propensity

The propensity of an amino acid residue i in any conformation (helix or strand or turn or coil) has been defined as the percentage of residue i in that conformation to the percentage of all residues in the same conformation.

propensity_{\alpha}(i) = \% of residue i in \alpha-helix/ \% of all residues in \alpha-helix.

% of residue i in α -helix = $n_{\alpha}(i)/N(i)$

 $n_{\alpha}(i)$ = number of residues of type i in α -helix

N(i) = number of residues of type i in the whole dataset

% of all residues in α -helix = n_{α}/N

 $n_a = total number of residues in a-helix$

N = total number of residues in the whole dataset

Propensity

VLSEGEWQLV LHVWAKVEAD VAGHGQDILI RLFKSHPETL EKFDRFKHLK HHHHHHH HHHHHHHGGG HHHHHHHHHHH HHHHH HHHH HT GGGTT

YQG

E.g. Ala: % of Ala in α -helix = $N_{\alpha}(Ala)/N(Ala)$ = 15/16 = 0.94 % of all residues in α -helix = N_{α}/N = 115/153 = 0.75 Propensity of Ala = 0.94/0.75 = 1.25

Propensity of Gly:

Algorithm

- 1. Compute the occurrence of 20 residues in helix
- 2. Compute the occurrence of 20 residues in whole protein
- 3. Compute the ratio
- 4. Compute total number of residues in helix
- 5. Divide with total number of residues in a protein
- 6. Divide 3 by 5, to get the propensity of all the 20 amino acid residues in helix.

Table 5.2 Chou-Fasman parameters

Residue	P_{α}	Residue	P_{β}	Residue	P_t
Glu	Ηα 1.53	Hβ Met	1.67	Asn	1.68
Ala	1.45	Val	1.65	Gly	1.68
Leu	1.34	lle	1.60	Ser	1.56
His	hα 1.24	hβ Cys	1.30	Pro	1.54
Met	1.20	Tyr	1.29	Asp	1.26
Gln	1.17	Phe	1.28	Tyr	1.25
Trp	1.14	Gln	1.23	Cys	1.17
Val	1.14	Leu	1.22	Trp	1.11
Phe	1.12	Thr	1.20	Lys	1.01
Lys	Iα 1.07	Trp	1.19	Arg	1.00
lle	1.00	Iβ Ala	0.97	Thr	1.00
Asp	iα 0.98	iβ Arg	0.90	Phe	0.71
Thr	0.82	Gly	0.81	His	0.69
Ser	0.79	Asp	0.80	Met	0.67
Arg	0.79	bβ Lys	0.74	lle	0.58
Cys	0.77	Ser	0.72	Ala	0.57
Asn	bα 0.73	His	0.71	Gln	0.56
Tyr	0.61	Asn	0.65	Leu	0.53
Pro	$B\alpha 0.59$	Pro	0.62	Glu	0.44
Gly	0.53	Bβ Glu	0.26	Val	0.30

 $H\alpha(\beta)$: Strong helix (strand) former

 $h\alpha(\beta)$: Helix (strand) former

 $I\alpha(\beta)$: Weak helix (strand) former $i\alpha(\beta)$: Weak helix (strand) breaker

 $b\alpha(\beta)$: Helix (strand) breaker

 $B\alpha(\beta)$: Strong helix (strand) breaker

Rules for identifying helix

The propensity values and the residues belonging to these 12 classes are shown in Table 5.2.

For a protein sequence, assign the appropriate parameters from Table 5.2.

Helix:

the values of the six parameters are Ha = ha = 1; Ia = ia = 0; Ba = ba = -1;

scan for window of 6 residues, where score ≥ 4, i.e. at least four helix formers and not more than one helix breaker;

extend the length in both directions until 4-residue window has the average propensity < 1;

continue the search and locate all helical regions in the sequence.

Sequence and secondary structure for 4LYZ chain A							
	GLDNY RGYSLGNWVC AAKFESNFNT QATMRNTDGS I TIB TIB HHHHHH HHHHHHITBS S EEE SSS						
-	DGRTP GSRNLCNIP <mark>C SALL</mark> SSDI <mark>TA SVNCAKKI</mark> VS SS T T SS SBG GGGGSS HH HHHHHHHHTT						
101 DGNGMNAWVA WRNRC TSSGGGGSHH HHHHT	_						

KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGS TDYGILQINSRWWCNDGRTPGSRNLCNIPCSALLSSDITASVNCAKKIVS DGNGMNAWVAWRNRCKGTDVQAWIRGCRL

KVFGRC VFGRCE FGRCEL GRCELA RCELAA

Rules for identifying \beta-strand

The values of the six parameters are Hb = hb = 1; Ib = ib = 0; Bb = bb = -1;

scan for window of 5 residues, where score > 3, i.e. at least three strand formers and not more than one strand breaker;

extend the length in both directions until 4-residue window has the average propensity < 1;

continue the search and locate all strand regions in the sequence.

Conflict situation:

a region containing overlapping helical and strand assignments is considered as a helix (or strand) if average propensity of a-helix (b-strand) is greater than that of b-strand (a-helix).

http://fasta.bioch.virginia.edu/fasta/chofas.htm

percent: H: 36.4 E: 25.6 T: 12.4