Fibonacci

Fonte: http://www.geek.com/geek-cetera/

PF 2.3 S 5.2

http://www.ime.usp.br/~pf/algoritmos/aulas/recu.html

<ロ > ←□ > ←□ > ←□ > ←□ > ・□ ● ・ りへで

4D > 4D > 4E > 4E > E 990

fibonacciR(4)

fibonacciR(4)
 fibonacciR(3)
 fibonacciR(2)
 fibonacciR(1)
 fibonacciR(0)
 fibonacciR(2)
 fibonacciR(1)
 fibonacciR(2)
 fibonacciR(0)

Qual é mais eficiente?

meu_prompt> time ./fibonacciI.py 10 fibonacci(10)=55 real 0m0.028s 0m0.024s user 0m0.000s sys meu_prompt> time ./fibonacciR.py 10 fibonacci(10)=55 real 0m0.028s 0m0.024suser 0m0.000s sys

Números de Fibonacci

```
\begin{split} \mathbf{F_0} &= \mathbf{0} & \quad \mathbf{F_1} = \mathbf{1} & \quad \mathbf{F_n} = \mathbf{F_{n-1}} + \mathbf{F_{n-2}} \\ & \frac{\mathbf{n} \; | \; 0 \; \; 1 \; \; 2 \; \; 3 \; \; 4 \; \; 5 \; \; 6 \; \; 7 \; \; \; 8 \; \; 9}{\mathbf{F_n} \; | \; 0 \; \; 1 \; \; 1 \; \; 2 \; \; 3 \; \; 5 \; \; 8 \; \; 13 \; \; 21 \; \; 34} \end{split}
```

Algoritmo recursivo para F_n:

```
def fibonacciR(n)
  if n == 0: return 0
  if n == 1: return 1
  return fibonacciR(n-1) +
      fibonacciR(n-2)
```

Fibonacci iterativo

```
def fibonacciI(n)
  if n == 0:   return 0
  if n == 1:   return 1
  anterior = 0
  atual = 1
  for i in range(1,n,1):
      proximo = atual + anterior
      anterior = atual
      atual = proximo
  return atual
```

Qual é mais eficiente?

<pre>meu_prompt> time ./fibonacc fibonacci(20) = 6765</pre>	ciI.py 20
real	0m0.028s
user	0m0.024s
sys	0m0.000s
<pre>meu_prompt> time ./fibonacc fibonacci(20) = 6765</pre>	ciR.py 20
real	0m0.030s
user	0m0.024s
sys	0m0.000s

⟨□⟩ ⟨∰⟩ ⟨∃⟩ ⟨∃⟩ ∃ り⟨⊘

4 D > 4 B > 4 B > B 9 Q C

Qual é mais eficiente?

<pre>meu_prompt> time ./fibo</pre>	nacciI.py 30
fibonacci(30) = 832040	
real	0m0.028s
user	0m0.024s
sys	0m0.000s
meu_prompt> time ./fibo	nacciR.py 30
<pre>meu_prompt> time ./fibo fibonacci(30) = 832040</pre>	nacciR.py 30
	nacci <mark>R</mark> .py 30
fibonacci(30) = 832040	
fibonacci(30) = 832040 real	0m0.584s

Qual é mais eficiente?

meu_prompt> time	./fibonacciI.py 45
fibonacci(45) = 1	134903170
real	0m0.032s
user	0m0.028s
sys	0 m 0.000 s
meu_prompt> time	./fibonacciR.py 45
fibonacci(45) = 1	134903170
real	12m47.577s
user	12m47.248s
sys	0m0.080s

fibonacciR(8)

fibonacciR resolve subproblemas muitas vezes.

ibonacciR(8)	fibonacciR(1)	fibonacciR(2)
fibonacciR(7)	fibonacciR(2)	fibonacciR(1)
fibonacciR(6)	fibonacciR(1)	fibonacciR(0)
fibonacciR(5)	fibonacciR(0)	fibonacciR(1)
fibonacciR(4)	fibonacciR(5)	fibonacciR(2)
fibonacciR(3)	fibonacciR(4)	fibonacciR(1)
fibonacciR(2)	fibonacciR(3)	fibonacciR(0)
fibonacciR(1)	fibonacciR(2)	fibonacciR(3)
fibonacciR(0)	fibonacciR(1)	fibonacciR(2)
fibonacciR(1)	fibonacciR(0)	fibonacciR(1)
fibonacciR(2)	fibonacciR(1)	fibonacciR(0)
fibonacciR(1)	fibonacciR(2)	fibonacciR(1)
fibonacciR(0)	fibonacciR(1)	fibonacciR(4)
fibonacciR(3)	fibonacciR(0)	fibonacciR(3)
fibonacciR(2)	fibonacciR(3)	fibonacciR(2)
fibonacciR(1)	fibonacciR(2)	fibonacciR(1)
fibonacciR(0)	fibonacciR(1)	fibonacciR(0)
fibonacciR(1)	fibonacciR(0)	fibonacciR(1)
fibonacciR(4)	fibonacciR(1)	fibonacciR(2)
fibonacciR(3)	fibonacciR(6)	fibonacciR(1)
fibonacciR(2)	fibonacciR(5)	fibonacciR(0)
fibonacciR(1)	fibonacciR(4)	fibonacci(8) = 21.
fibonacciR(0)	fibonacciR(3)	

Qual é mais eficiente?

<pre>meu_prompt> time ./fibonac fibonacci(40) = 102334155</pre>	ciI.py 40	
real	0m0.026s	
user	0m0.024s	
sys	0m0.000s	
<pre>meu_prompt> time ./fibonacciR.py 40 fibonacci(40) = 102334155</pre>		
real	1m8.530s	
user	1m8.508s	
sys	0m0.004s	

fibonacciR(5)

fibonacciR resolve subproblemas muitas vezes.

fibonacciR(5)	fibonacciR(1)
fibonacciR(4)	fibonacciR(0)
fibonacciR(3)	fibonacciR(3)
fibonacciR(2)	fibonacciR(2)
fibonacciR(1)	fibonacciR(1)
fibonacciR(0)	fibonacciR(0)
fibonacciR(1)	fibonacciR(1)
fibonacciR(2)	fibonacci(5) = 5.

Árvore da recursão

Consumo de tempo é **exponencial**. **fibonacciR** resolve subproblemas muitas vezes.

Consumo de tempo

T(n) := n úmero de somas feitas por fibonacci R(n)

```
def fibonacciR(n)

if n == 0: return 0

if n == 1: return 1

return fibonacciR(n-1) +

fibonacciR(n-2)
```

Consumo de tempo

linha número de somas

$$\begin{array}{rcl}
1 & = 0 \\
2 & = 0 \\
3 & = T(n-1) \\
4 & = T(n-2) + 1
\end{array}$$

$$T(n) = T(n-1) + T(n-2) + 1$$

←□ → ←□ → ←□ → □ → ○

Recorrência

$$\begin{split} & T(\textbf{0}) = 0 \\ & T(\textbf{1}) = 0 \\ & T(\textbf{n}) = T(\textbf{n} - 1) + T(\textbf{n} - 2) + 1 \ \text{para } \textbf{n} = 2, 3, \dots \end{split}$$

Uma estimativa para T(n)?

Recorrência

$$T(0) = 0$$
 $T(1) = 0$
 $T(n) = T(n-1) + T(n-2) + 1$ para $n = 2, 3, ...$

Uma estimativa para T(n)?

Recorrência

Prova: T(6) =
$$12 > 11.40 > (3/2)^6$$
 e T(7) = $20 > 18 > (3/2)^7$. Se n \geq 8, então

$$T(n) = T(n-1) + T(n-2) + 1$$

$$\stackrel{\text{hi}}{>} (3/2)^{n-1} + (3/2)^{n-2} + 1$$

$$= (3/2+1)(3/2)^{n-2} + 1$$

$$> (5/2)(3/2)^{n-2}$$

$$> (9/4)(3/2)^{n-2}$$

$$= (3/2)^2(3/2)^{n-2}$$

$$= (3/2)^n.$$

Logo, $T(n) \ge (3/2)^n$. Consumo de tempo é exponencial.

Conclusão

O consumo de tempo é da função fibonacciI(n) é proporcional a n.

O consumo de tempo da função fibonacciR é exponencial.

Exercícios

Prove que

$$\mathtt{T}(\mathtt{n}) = \frac{\phi^{\mathtt{n}+1} - \hat{\phi}^{\mathtt{n}+1}}{\sqrt{5}} - 1 \quad \mathsf{para} \ \mathtt{n} = 0, 1, 2, \dots$$

onde

$$\phi = \frac{1+\sqrt{5}}{2} \approx 1{,}61803 \quad \text{e} \quad \hat{\phi} = \frac{1-\sqrt{5}}{2} \approx -0{,}61803.$$

Prove que $1+\phi=\phi^2$.

Prove que $1+\hat{\phi}=\hat{\phi}^2$.

(D) (A) (E) (E) E 900