PID based Path Planning

Mentor Name: Amiraj

Interns Required: 2

Problem Description:

The aim of the project is to detect the Firebird V robot using image processing in an arena and given a fixed end location, plan the robot's motion using PID closed loop feedback system. The arena will contain moving obstacles.

Task List:

Task	Task	Deadline
No.		
1	Learning Firebird V Programming, Xbee Communication, PID	5 days
	controller, OpenCV & make the arena	
2	Develop Motion commands and communication between	5 days
	Firebird V and Laptop	
3	Detection of Firebird V using Image Processing	2 days
4	Develop the PID controller	8 days
5	Tune the PID controller for smoother movements	5 days
6	Testing / Documentation (Usage Manual, document the code) /	5 days
	Create tutorials for PID controller	

Prerequisite:, Firebird V Programming, Xbee communication (preferred), Python or C/C++ with OpenCV, Experience with Linux

Hardware Required:

- 1. Firebird V
- 2. Xbee Modules 2
- 3. Laptop

Deliverables:

- 1. Documented Code for PID controller
- 2. Documentation (User Manual) and tutorial on PID controller

Software Required:

AVR Studio, Python IDE, Linux

References:

- 1. PID General Idea: http://ctms.engin.umich.edu/CTMS/index.php? example=Introduction§ion=ControlPID
- 2. Courera Course on Control Theory: https://www.coursera.org/course/conrob
- 3. PID Tuning tutorial: http://www.expertune.com/tutor.aspx