A Appendix

Given an execution history x, the history x|p denotes the subsequence of x for the calls issued by the process p, and the history x|u denotes the subsequence of x for the calls on the update method u. Similarly, x|g denotes the subsequence of x for the calls on the update methods in the group g.

We use the familiar functions $\operatorname{size}(l)$, $\operatorname{prefix}(l,e)$ (excluding e and later elements), and $l \cdot l'$ (concatenation) and the predicate $\operatorname{prefix-of}(l,l')$ on lists.

```
Definition 1 (Refinement Relation).
```

For all K, W and τ ,

refines (K, W, τ) iff

$$\begin{split} & \text{let } \overline{[p_i \mapsto \sigma'_j, A_i, S_i, F_i, L_i]}_{i \in \{1...|P|\}} = K, \\ & \text{and } \langle \overline{[p_i \mapsto \sigma_i]}_{i \in \{1...|P|\}}, \overline{[p_i \mapsto x_j]}_{i \in \{1...|P|\}} \rangle = W \text{ in } \\ & (R_0) \text{ For all } i, j \in \{1...|P|\} \text{ and } u, \end{split}$$

prefix-of($x_j|p_i|u, x_i|p_i|u$).

 (R_1) For all $i \in \{1..|P|\}$, $\sigma_i = \mathsf{Apply}(S_i)(\sigma_i')$

 (R_2) For all $i, j, k \in \{1..|P|\}$, u, v, r and u', $let c = u(v)_{p_i,r}$ in $\langle c, D \rangle \in F_j(p_i) \land u' \in \mathsf{Dep}(u) \rightarrow$ $size(prefix(x_i, c)|p_k|u') = D(p_k, u')$

 (R'_2) For all $i, j \in \{1..|P|\}$, u, v, r, g and u', let $c = u(v)_{p_i,r}$ in $\langle c, D \rangle \in L_j(g) \wedge \text{Leader}(u) = p_i \wedge u' \in \text{Dep}(u) \rightarrow size(prefix}(x_i, c)|p_k|u') = D(p_k, u')$

 (R_3) For all $j, k \in \{1..|P|\}$ and u, $size(x_j|p_k|u) = A_j(p_k, u)$

 (R_4) For all $i, j, k \in \{1..|P|\}$, u, v and r, let $c = u(v)_{p_k,r}$ in $\langle c, _ \rangle \in F_j(p_i) \to k = i \land c \in x_i \land c \notin x_j$

 (R_5) For all $i, j, k \in \{1..|P|\}$, u, v, r and g, $let c = u(v)_{p_k,r}$ in $\langle c, _ \rangle \in L_j(g) \land \mathsf{SyncGroup}(u) = g \land \mathsf{Leader}(g) = p_i \rightarrow k = i \land c \in x_i \land c \notin x_j$

 (R_6) For all $i, j \in \{1..|P|\}$, u, v, and r, $u(v)_{p_i,r} \in x_i \to u(v)_{p_i,r} \in x_i$

 (R_7) For all $i \in \{1..|P|\}$, u, v, and r, let $c = u(v)_{p_i,r}$ in $c \in x_i \to (p_i, (u(v)_r) \in \tau)$

 (R_8) For all $g, i, j, k \in \{1..|P|\}$, u, v and r, $u(v)_{p_j,r} \in x_k \land \mathsf{SyncGroup}(u) = g \land \mathsf{Leader}(g) = p_i \rightarrow j = i$

 (R_9) For all g and $i, j \in \{1..|P|\}$, $x_i|g \cdot (map(fst, L_i(g))) = x_j|g \cdot (map(fst, L_j(g))) \land L_{Leader(g)}(g) = \emptyset$

 (R_{10}) For all $i, j, k \in \{1..|P|\}$ and usuch that $\mathsf{SyncGroup}(u) = \bot$, $x_i|p_k|u \cdot (map(fst, F_i(p_k))) = x_j|p_k|u \cdot (map(fst, F_j(p_k)))$

Lemma 4 (Refinement). For all K and τ , if $K_0 \stackrel{\iota}{\to} K$, there exists W, such that $W_0 \stackrel{\tau}{\to} W$ and refines (K, W, τ) .

Proof. The proof is by induction on the concrete steps with the refinement relation defined in Definition 1.

Case analysis on the concrete step:

For each concrete step, we take one or more abstract steps. We assume the refinement relation for the pre-states and show that the steps preserve it for the post-states.

Case Reduce:

The abstract steps are Call for p_j and Prop for other processes.

Since $SyncGroup(u) = \bot$ and $Dep(u) = \emptyset$, the conditions CallConfSync and PropDepPres trivially hold. Thus, the abstract steps are enabled.

 R_0 :

The call by p_i is only added to the history x_i of p_i .

 R_1 :

The relation R_1 for the post-states holds by R_1 for the pre-states, the summarization property, and the state-commutativity property of u.

 R_2 :

F maps stay the same and x_i is only extended.

 R_2'

L maps stay the same and x_j is only extended.

 R_2

The call is added to all processes and the record of the applied calls is advanced for all.

 R_4 :

The maps F stay the same. The call c is added to x_i for each $i \in 1..|P|$. However, by the uniqueness of request identifiers in the trace, $(p_j, c) \notin \tau$. Therefore, by the contra-positive of C_3 , we have $\langle c, _ \rangle \notin F_i(p_j)$. Therefore, the addition of c to x_i does not invalidate R_4 for any element in $F_i(p_j)$.

 R_5 :

The map L stays the same. The call c is added to x_i for each $i \in 1..|P|$. However, by the uniqueness of request identifiers in the trace, $(p_j, c) \notin \tau$. Therefore, by the contra-positive of C_3 , we have $\langle c, _ \rangle \notin L_i(g)$. Therefore, the addition of c to x_i does not invalidate R_5 for any element in $L_i(g)$.

 R_6 :

Trivial since c is applied at P_j and all other processes p_i , $i \neq j$.

 R_7 :

Trivial as the added call is in the label.

 R_8 :

The premise is refuted since $SyncGroup(u) = \bot$.

 R_{\circ}

As $SyncGroup(u) = \bot$, the step of this case do not apply a method of any synchronization group.

 R_{10} :

This case adds the call to the history of all processes and does not change *F* maps.

Case Free:

The abstract step is CALL for p_i .

Since SyncGroup(u) = \bot , the conditions CallConfSync trivially holds. Therefore, the abstract step is enabled.

 R_0 :

The call by p_i is only added to the history x_i of p_i .

 R_1 :

The relation R_1 for the post-states holds by R_1 for the prestates, and the state-commutativity property of u.

 R_2 :

By the rule Call, the call c is appended to the history x_j In the post-state, prefix (x_j, c) is equal to x_j before the step. By the rule Free, the dependencies D are a projection over A. By R_3 , A represents the size of the sub-histories.

 R'_{\circ}

L maps stay the same and x_j is only extended.

 R_3 :

The call is added to the history of x_j and its record of the applied calls $A_j(p_j)$ is advanced.

 R_4 :

The call c is added to x_j and all $F_i(p_j)$, $i \neq j$. By the uniqueness of request identifiers in the trace, $(p_j, c) \notin \tau$. Therefore, by the contra-positive of R_7 , we have $c \notin x_i$. Therefore, R_4 holds in the post-state for the new call c in the F map. Further, similar to the case Reduce, R_4 is preserved for previous elements in F maps as well.

 R_5 :

The map L stays unchanged. Similar to the case Reduce, by C_3 , R_5 is preserved for the elements of L map.

 R_6 :

Trivial since i = j.

 R_7 :

Trivial as the added call is in the label.

 R_8 :

The premise is refuted since $SyncGroup(u) = \bot$.

 R_0 :

As $SyncGroup(u) = \bot$, the step of this case do not apply a method of any synchronization group.

 R_{10} :

This case adds the call to the history of the local process and does not change its *F* maps. It adds it to the *F* maps of other processes and does not change their histories.

Case Conf:

The abstract step is CALL for p_i .

Let $c = u(v)_{p_i,r}$.

We show that the condition CallConfSync holds:

By the contra-positive of R_7 , for all $k \in \{1..|P|\}$, we have $c \notin x_k$.

Consider arbitrary $k, k' \in \{1..|P|\}$ and $c' = u'(v')_{p_{k'},r'}$ such that $c' \in x_k$ and $c' \bowtie c$.

From $c' \bowtie c$, and SyncGroup(u) = g, we have $u' \in g$.

By R_8 and Leader $(q) = p_i$, we have k' = j.

By R_6 , we have $c' \in x_j$.

Thus, the CallConfSync condition holds.

Thus, the abstract step is enabled.

 R_0 :

The call by p_j is only added to the history x_j of p_j .

 R_1

The relation R_1 for the post-states follow from R_1 for the pre-states and the state-commutativity property of calls in S.

 R_2 :

F maps stay the same and x_i is only extended.

 R'_2

By the rule Call, the call c is appended to the history x_j In the post-state, prefix(x_j , c) is equal to x_j before the step. By the rule Conf, the dependencies D are a projection over A. By R_3 , A represents the size of the sub-histories.

 R_3 :

The call is added to the history of x_j and its record of the applied calls $A_j(p_j)$ is advanced.

 R_4 :

The maps F stay unchanged. Similar to the case Reduce, by C_3 , R_4 is preserved for the elements of F maps.

 R_5 :

The call c is added to x_j and all $L_i(p_j)$, $i \neq j$. By the uniqueness of request identifiers in the trace, $(p_j, c) \notin \tau$. Therefore, by the contra-positive of R_7 , we have $c \notin x_i$. Therefore, R_5 holds in the post-state for the new call c in the L maps. Further, similar to the case REDUCE, R_5 is preserved for previous elements in $L_i(g)$ as well.

 R_6 :

Trivial since i = j.

 R_7 :

Trivial as the added call is in the label.

 R_8

The call is added to x_j . Trivial from the premises of the rule CONF

 R_9 :

We have that p_j = Leader(g). This step applies the call to x_j , and appends it to the L_i map for each other process p_i , $i \neq j$. Therefore, the equality is preserved for any pair of js. Further, $L_{\text{Leader}(g)}(g)$ stays empty and the equality is preserved for any pair of i and j.

 R_{10} :

This case does not apply since SyncGroup(q) $\neq \bot$.

Case Free-App:

Let the concrete step be for the process p_i .

The abstract step is Prop for p_i .

The condition PropConfSync hold by C_1 .

The condition PropDepPres holds as follow:

Let $c = u(v)_{p_i,r}$ and $u' \in Dep(u)$.

By R_3 , $D \le A$ and R_2 , for all $k \in \{1..|P|\}$, we have

 $size(prefix(x_i, c)|p_k|u') \le size(x_i|p_k|u')$

By R_0 , we have that $x_i|p_k|u'$ and $x_j|p_k|u'$ are prefixes of $x_k|p_k|u'$. Thus, one is a prefix of another:

prefix-of $(x_i|p_k|u,x_j|p_k|u) \vee \text{prefix-of}(x_j|p_k|u,x_i|p_k|u)$.

From the size equation above, we have:

prefix-of (prefix(x_i , c)| $p_k|u'$, $x_i|p_k|u'$)

Thus, for all v', $c' = u'(v')_{p_k}$,

 $c' \prec_{x_i} c \rightarrow c' \in x_j$

Thus, the condition PropDepPres holds.

The condition $c \in xs(p') \setminus xs(p)$ hold by R_4 .

Thus, the abstract step is enabled.

 R_0 :

Immediate from R_4 .

R.

The relation R_1 for the post-states follow from R_1 for the pre-states and the state-commutativity property of calls in S.

 R_2 :

An element is only removed from the F maps and the history x_i is only extended.

 R_2' :

L maps stay the same and x_i is only extended.

 R_3 :

The call from p_i is added to the history of x_j and its record of the applied calls $A_i(p_i)$ is advanced.

 R_4 :

An element is only removed from F. However, the call c from $F_j(p_i)$ is applied in x_j . By C_4 , there is no duplicate call in $F_j(p_i)$. Therefore, R_4 is preserved for remaining elements of $F_j(p_i)$.

 R_5 :

The L maps stay unchanged. However, the call c from $F_j(p_i)$ is applied in x_j . By C_4 , there is no duplicate call in $F_j(p_i)$ and $L_j(g)$ (for each $i \in \{1..|P|\}$). Therefore, R_5 is preserved for the elements of $L_i(g)$.

 R_6 :

It follows from R_4 in the pre-state.

 R_7 :

Follows from C_3 .

 R_8

The call from F is added to x_j . By C_2 , SyncGroup(u) = \bot ; thus, the premise is refuted.

 R_9

By C_1 , this rule does not change the set of methods on synchronization groups.

 R_{10} :

The call is removed from *F* map and added to the history.

Case Conf-App:

Let the concrete step be for the process p_j and call c = u(v). The abstract step is Prop for p_j .

The condition PropDepPres holds similar to the case Conf-App except that instead of the relation R_2 , the relation R_2' is used

We show that the condition PropConfSync holds:

Consider arbitrary $i \in \{1..|P|\}$ and $c' = u'(v')_{p_i,r'}$ such that $c' \prec_{x_i} c$ and $c' \bowtie c$. From C_2 , we have $u' \in g$. Thus, we consider the group g.

By R_9 , we have

 $x_i|g \cdot (\mathsf{map}(\mathsf{fst}, L_i(g))) = x_j|g \cdot (\mathsf{map}(\mathsf{fst}, L_j(g))) \text{ where } c = u(v) = \mathsf{head}(\mathsf{map}(\mathsf{fst}, L_j(g)))$

We consider two cases:

Case prefix($x_i|g,x_j|g$):

From $c' \prec_{x_i} c$, we have $c' \prec_{x_i} c$.

Case prefix($x_i|g,x_i|g$):

Thus, $\operatorname{prefix}(x_i|g,c) = x_i|g$.

Thus, if $c' \prec_{x_i} c$ then $c' \prec_{x_j} c$.

Thus, the condition PropConfSync holds.

The condition $c \in xs(p') \setminus xs(p)$ hold by R'_4

Thus, the abstract step is enabled.

 R_0 :

Immediate from R_4 .

 R_1 :

The relation R_1 for the post-states holds by R_1 for the prestates, and the state-commutativity property of S.

 R_2 :

The F maps stay the same and the history x_i is only extended.

 R_2' :

An element is only removed from the L maps and the history x_i is only extended.

 R_3 :

The call from p_i is added to the history of x_j and its record of the applied calls $A_j(p_i)$ is advanced.

 R_4 :

The F maps stay unchanged. However, the call c from $L_j(g)$ is applied in x_j . By C_4 , there is no duplicate call in $F_j(p_i)$ and $L_j(g)$ (for each $i \in \{1..|P|\}$). Therefore, R_4 is preserved for the elements of $F_j(p_i)$.

 R_5 :

An element is only removed from $L_j(g)$. However, the call c from $L_j(g)$ is applied in x_j . By C_4 , there is no duplicate call in $L_j(g)$. Therefore, R_5 is preserved for remaining elements of $L_j(g)$.

 R_6 :

It follows from R_5 in the pre-state.

 R_7 :

Follows from C_3 .

 R_8 :

The call from L is added to x_j . Thus, the conclusion immediately follows from R_5 .

 R_9 :

This step removes a call from the head of the L list and appends it to the execution history x. Thus, the equality is preserved.

 R_{10} :

This case does not apply since by C_2 , SyncGroup $(u) \neq \bot$

Case QUERY:

The abstract step QUERY is trivially enabled.

By R_1 , the two return values v' are equal.

 R_0 :

The histories stay the same.

 R_1

The states σ and S stay the same.

 R_2 :

The map F and the histories xs stay the same.

 R_2' :

The map L and the histories xs stay the same.

 R_3 :

The histories and the record of applied calls stay the same.

 R_{4} :

The map F and the histories xs stay the same.

 R_5 :

The map L and the histories xs stay the same.

 R_6 :

The histories xs stay the same.

 R_7 :

The histories *xs* stay the same and the trace is extended.

 R_8 :

The histories xs stay the same.

 R_9 :

The histories xs and the maps L stay the same.

 R_{10} :

The histories *xs* and *F* maps stay the same.

Application of a call c to a state σ , $c(\sigma)$ is naturally lifted to application of an execution history x to a state σ , $x(\sigma)$.

Definition 2 (Locally permissible). A replicated execution xs is locally permissible, written as LocalPerm(xs), iff every call $c = u(v)_{p,r}$ of xs is permissible in the state resulting from the sub-history of xs(p) before c, i.e., $\mathcal{P}(prefix(xs(p), c)(\sigma_0), c)$.

Definition 3 (Conflict-synchronizing). A replicated execution xs is conflict-synchronizing, written as ConfSync(xs), iff

for every pair of processes p and p' and pair of calls c and c' such that $c \bowtie c'$,

1.
$$c \in xs(p) \land c' \in xs(p') \rightarrow c \in xs(p') \lor c' \in xs(p)$$

2. $c' \prec_{xs(p)} c \rightarrow c \not\prec_{xs(p')} c'$

Definition 4 (Dependency-Preserving). A replicated execution xs is dependency-preserving, written as DepPres(xs), iff for every pair of calls $c = u(v)_{p,r}$ and c' such that $c' \not\perp \!\!\!\perp c$, if $c \prec_{xs(p)} c'$, then for every process p', $c \prec_{xs(p')} c'$.

Lemma 5 (Abstract Invariant).

For all W and τ , if $W_0 \xrightarrow{\tau} W$, then let $\langle [p_i \mapsto \sigma_i]_{i \in \{1...|P|\}}, xs \rangle = W$ in let $\overline{[p_i \mapsto x_i]}_{i \in \{1...|P|\}} = xs$ in (A_0) For all $i \in \{1...|P|\}$, u, v, and r, $u(v)_{p_i,r} \in x_j \to (p_i, (u(v)_r) \in \tau)$ (A_1) For all $i \in \{1...|P|\}$, $\sigma_i = x_i(\sigma_0)$ (A_2) LocalPerm(xs) (A_3) ConfSync(xs)

Proof. The proof is by induction on the steps. Case analysis on the step:

Case Call:

 (A_4) DepPres(xs)

 A_0 :

The call is on the label and is added to xs(p).

 A_1 :

By the induction hypothesis and the premise $\sigma' = u(v)(\sigma)$.

 A_2 :

Immediate from the premise $\mathcal{P}(\sigma, c)$.

 A_3 :

The condition 1 of ConfSync for the new call c: It follows from the premise CallConfSync that $c' \in xs(p)$.

The condition 2 of ConfSync for the new call c: From the contra-positive of A_0 , for all p', $c \notin xs(p')$. Therefore, $c \not \prec_{xs(p')} c'$.

 A_4 :

Immediate as *p* is the issuing process itself.

Case Prop:

 A_0 :

 $c = u(v)_{p',r}$

Since $c \in xs(p')$, by the induction hypothesis, $(p', (u(v)_r) \in T)$

 A_1 :

By the induction hypothesis and the premise $\sigma' = u(v)(\sigma)$.

 A_2 :

The two processes p and p' are distinct. The issuing process of the call is p and the call is applied to the process p'.

 A_3 :

The condition 1 of ConfSync for the new call c: It follows from the premise PropConfSync that $c' \in xs(p)$ and therefore, $c' \in xs'(p)$.

The condition 2 of ConfSync for the new call c: From the premise PropConfSync we have that $c' \prec_{xs(p')} c \rightarrow c' \in xs(p)$. Therefore, $c' \prec_{xs'(p')} c \rightarrow c' \prec_{xs'(p)} c$. Therefore, $c \not \prec_{xs(p')} c'$.

 A_4 :

Immediate from the premise PropDepPres.

Case QUERY:

 A_0 :

The histories and the states stay the same.

 A_1 :

The histories and the states stay the same.

 A_2 :

The histories stay the same.

 A_3 :

The histories stay the same.

 A_4 :

The histories stay the same.

Lemma 6 (Convergence). For all ss, xs, p and p', if $W_0 \rightarrow^* \langle ss, xs \rangle$ and $xs(p) \sim xs(p')$ then ss(p) = ss(p').

Proof. This lemma follows from the invariant A_3 and Lemma 1 of [39].

Lemma 7 (Integrity). For all ss and p, if $W_0 \rightarrow^* \langle ss, _ \rangle$ then I(ss(p)).

Proof. This lemma follows from the invariants A_2 , A_3 and A_4 and Lemma 2 of [39].

Lemma 8 (Concrete Invariants).

For all
$$K$$
, if $K_0 \xrightarrow{\tau} K$, then
$$let \overline{[p_i \mapsto \sigma'_j, A_i, S_i, F_i, L_i]}_{i \in \{1...|P|\}} = K \text{ in}$$

$$(C_1) \text{ For all } i, j \in \{1...|P|\}, u \text{ and } v,$$

$$\langle u(v), _ \rangle \in F_i(p_j) \to \text{SyncGroup}(u) = \bot$$

$$(C_2) \text{ For all } i \in \{1...|P|\}, u, v,$$

$$\begin{split} \langle u(v),_\rangle &\in L_i(g) \to \mathsf{SyncGroup}(u) = g \\ (C_3) \textit{ For all } i, j &\in \{1..|P|\}, u, v, \textit{ and } r, \\ \textit{ let } c &= u(v)_{p_i,r} \textit{ in } \\ \langle c,_\rangle &\in F_j(p_i) \lor \langle c,_\rangle \in L_i(g) \to (p_i, (u(v)_r) \in \tau \\ (C_4) \textit{ For all } i, j, k &\in \{1..|P|\} \textit{ and } g, \\ \textit{ map}(\textit{fst}, F_j(p_i)) \cdot \textit{map}(\textit{fst}, L_k(g)) \textit{ is an isogram.} \end{split}$$

Proof. The proof is by induction on the steps. Case analysis on the step:

Case Reduce:

 C_1 :

The *F* map stays the same.

 C_2 :

The L map stays the same.

 C_3 :

The F and L map stays the same.

 C_4 :

The F and L map stays the same.

Case Free:

 C_1 :

A premise of the rule Free is $SyncGroup(u) = \bot$.

 C_2 :

The L map stays the same.

 C_3 :

A call is added to the F map that is on the label. The L map stays the same.

 C_4 :

The L map stays the same. A call is added to the F map. By the uniqueness of call requests in the trace and the contrapositive of C_3 , the added call was not previously in F and L.

Case Conf:

 C_1 :

The F map stays the same.

 C_2 :

A premise of the rule Conf is SyncGroup(u) = g

 C_3 :

A call is added to the L map that is on the label. The F map stays the same.

 C_4 :

The F map stays the same. A call is added to the L map. By the uniqueness of call requests in the trace and the contrapositive of C_3 , the added call was not previously in F and L.

Case Free-App:

 C_1 :

The L map stays the same.

 C_2 :

A premise of the rule Conf is SyncGroup(u) = g

 C_3 :

A call is only removed from the F map.

 C_4 :

A call is only removed from the *F* map.

Case Conf-App:

 C_1 :

The F map stays the same.

 C_2 :

An element from the L is only removed.

 C_3 :

A call is only removed from the L map.

 C_4

A call is only removed from the L map.

Case QUERY:

 C_1 :

The *F* map stays the same.

 C_2 :

The L map stays the same.

 C_3 :

The F and L maps stays the same.

 C_4 :

The *F* and *L* maps stays the same.

Corollary 3 (Convergence). For all $i, j \in \{1..|P|\}$, if $K_0 \to^* [p_i \mapsto \sigma_j, _, S_i, F_i, L_i]_{i \in \{1..|P|\}}$ and $F_i = F_j = \emptyset$ and $L_i = L_j = \emptyset$ then $\mathsf{Apply}(S_i)(\sigma_i) = \mathsf{Apply}(S_j)(\sigma_j)$.

Proof. By Lemma 4 (R_9 and R_{10}) we have $xs(p_i) \sim xs(p_j)$. Hence, the conclusion follows from Lemma 6 and Lemma 4 (R_1).

Corollary 4 (Integrity). For all
$$i \in \{1..|P|\}$$
, if $K_0 \to^* [p_i \mapsto \sigma_{j,_}, S_{i,_},_]_{i \in \{1..|P|\}}$ then $I(\mathsf{Apply}(S_i)(\sigma_i))$.

Proof. Immediate from Lemma 4 (R_1) Lemma 7.

Figure 14. Effect of summarization and remote writes for on response time of reducible methods.

Figure 15. Effect of summarization and remote writes for on response time of irreducible methods.