Основы теории графов. Теория.

Содержание

1	Основы	1			
2	Деревья	2			
3	Эйлеровы графы	2			
4	Паросочетания I	2			
5	Гамильтоновы графы	2			
3	Графы деБрейна	2			
7	Вершинная связность	2			
3	Рёберная связность	3			
9	Паросочетания II	3			
10	Раскраски 10.1 Хроматическое число	4 4 5			
11	Планарные графы I	5			
12	Планарные графы II	6			
1	Основы				
Оī	Опр. 1.1. Цикл - замкнутый маршрут, рёбра не повторяются?????				

 $\sum_{v \in V} \deg(v) = 2|E(G)|$

Теор. 1.2. В дереве V = E + 1

 $*\mathcal{T}\mathcal{O}\mathcal{D}\mathcal{O}*\dots$

Teop. 1.1.

Опр. 1.2. Простой цикл - замкнутый маршрут, рёбра и вершины не повторяются

2 Деревья

Teop. 2.1. граф двудольный $\iff \forall$ цикл в графе чётный « \mathcal{TODO} »...

3 Эйлеровы графы

Опр. 3.1 (Цикл Эйлера). проходит все рёбра по одному разу

Teop. 3.1. Цикл Эйлера $∃ \iff$ степень всех вершин чётная « \mathcal{TODO} »...

4 Паросочетания I

TODO...

5 Гамильтоновы графы

Опр. 5.1 (Цикл Гамильтона). проходит все **вершины** по одному разу « \mathcal{TODO} »...

6 Графы деБрейна

 $\mathcal{C}(\mathcal{T}\mathcal{O}\mathcal{D}\mathcal{O})$...

7 Вершинная связность

Опр. 7.1 (Точка сочленения). если удалить, то распадётся.

Лемма 7.1 (Хёринг). тах кол-во путей $P(x \to y)$ (не перес. во внутр. точках) = |R| — тах мн-ва вершин, отделяющих x и y.

Теор. 7.1 (Менгер). Для \forall несмежных вершин $x,y \in V \not\equiv e(x,y)$ размер мин. **верш.**-разделяющего мн-ва $|R_{min}(x \leftrightarrow y)| = \max$ числу простых путей $P(x \to y)$, отличных во внутренних точках.

Теор. 7.2 (Уитни). G - k-связный $\iff \forall x,y \in V, \exists k$ простых путей $P(x \to y)$, не пересекающихся во внутренних точках $P_i \neq P_i$ (внут.).

Теор. 7.3. $\Im \kappa$ – вершинная связность, λ – рёберная связность,

$$\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)$$

где
$$\delta(G) = \min_{V} deg(V)$$

Лемма 7.2. Если $|V| \geqslant 3$ и граф связный, то след. утв. эквивалентны:

- граф 2-связный
- \forall 2 верш. лежат на цикле
- $\bullet \ \forall \ 2$ ребра лежат на цикле

Теор. 7.4. 2-связный граф допускает разложение на цикл и ручки

Опр. 7.2. 1-связный граф можно представить в виде дерева блоков (2-связные компоненты + мосты) и точек сочленения

$*\mathcal{T}\mathcal{O}\mathcal{D}\mathcal{O}*...$

8 Рёберная связность

Опр. 8.1. Мост – ребро, при его удалении граф развалится

Теор. 8.1 (Форд-Фалкерсон). тах поток Q через сеть = пропускной способности минимального S-T разреза.

Теор. 8.2 (Менгер "рёберная"). Для \forall несмежных вершин $x,y \in V \not\equiv e(x,y)$ размер min **рёберно**-разделяющего мн-ва $|R_{min}^{edge}(x \leftrightarrow y)| = \max$ числу простых **рёберно**непересекающихся путей $P(x \to y)$.

$$\mathcal{C}\mathcal{T}\mathcal{O}\mathcal{D}\mathcal{O}$$
»...

9 Паросочетания II

	вершинное	рёберное	
незав. мн-во	α	α'	max
покрытие	β	β'	min
	вершинное	п-сочетание	

Св-во. Если S — независ.мн-во вершин, то \bar{S} — покрытие (необязательно max). Замечание: это неверно для рёбер.

Teop. 9.1 (Галаи).

$$\alpha + \beta = \alpha' + \beta' = n$$

Теор. 9.2 (Кёниг). В \forall 2-дольном графе B(m,n): $\beta = \alpha'$

Опр. 9.1 (Кубический граф). регулярный $(\deg v_i = \operatorname{const})$ граф: $\deg = 3$

Св-во. В кубическом графе |V| – чётное

Teop. 9.3 (Татт). \exists совершенное п.с. \iff при удалении \forall $S \subset V$ образуется нечётных компонент

$$C_o(G \setminus S) \leq |S|$$

Сл-е (Петерсен). В кубическом графе \exists с.п.с., если $N() \leqslant 2$

Св-во. В чётном графе если $C_o(G\setminus S)\geq |S|$ то $C_o(G\setminus S)\geqslant |S|+2$

Опр. 9.2 (Дефицит). число вершин, не покрытых максимальным п.с.

$$def(G) = |V| - 2\max|M|$$

Теор. 9.4 (Татта-Бержа). $def(G) = \max_{S \subset V} (C_o(G \setminus S) - |S|)$

Сл-е. $def \equiv |V| \pmod{2}$

10 Раскраски

10.1 Хроматическое число

Onp. 10.1. $\Delta = \max_{v \in V} \deg(v)$

Св-во. chromatic number $\mathcal{X}(G) \leqslant \Delta + 1$ (оценка жадного алгоритма)

- деревья: $\mathcal{X} = 2$
- двудольные графы B(m,n): $\mathcal{X}=2$
- полные графы K_n : $\Delta = n 1$, $\mathcal{X} = n$
- циклы чётной длины C_{2n} : $\Delta=2,~\mathcal{X}=2$
- циклы нечётной длины C_{2n+1} : $\Delta=2,~\mathcal{X}=3$

Teop. 10.1 (Брукс). $\mathcal{X}(G) \leqslant \Delta$ для всех графов кроме полных и нечётных циклов

Опр. 10.2 (Клика). полный подграф

Опр. 10.3 (Кликовое число). $\omega(G) = \max_{K_n \subseteq G} n$

Св-во. $\mathcal{X}(G) \geqslant \omega(G)$

Св-во. K_n содержит $K_{n-1}, K_{n-2}, \ldots, K_3$ (треугольники)

Теор. 10.2 (Мицельский). $\forall n \in \mathbb{N} \ \exists G : \mathcal{X}(G) = n, \ G \not\ni K_3$ (свободен от треугольников, т.е. $\omega(G) = 2$)

Опр. 10.4 (Обхват). $\Omega(G) = \min_{C_n \subseteq G} n, C_n$ — простой цикл

Теор. 10.3 (Эрдёш). $\forall k, m \in \mathbb{N} \ \exists G : \mathcal{X}(G) = k, \ \Omega(G) \geqslant m$

10.2 Хроматический многочлен

Опр. 10.5. $P_G(k)$ – число способов раскрасить G в k цветов, $P_G(k)=0$ при $k<\mathcal{X}(G)$

- полный граф K_n $P_{K_n}(z) = z(z-1)\cdots(z-n+1)$
- пустой граф \bar{K}_n $P_{\overline{K}_n}(z) = z^n$
- дерево T_n $P_{T_n}(z) = z(z-1)^{n-1}$
- ullet лес $T_{n,k}$ из k деревьев и $n=n_1+\cdots+n_k\geqslant k$ вершин $P_{T_{n,k}}(z)=z^k(z-1)^{n-k}$
- цикл C_n $P_{C_n}(z) = (z-1)^n + (-1)^n(z-1)$

Св-во. Если в графе есть кратные рёбра, то это никак не влияет на раскраску

Теор. 10.4. $P_G(z) = 1z^n - C_{n-1}z^{n-1} + \dots + (-1)^n C_n, \quad C_i \geqslant 0$, причём

- $C_{n-1} = |E(G)|$
- $G = \{G_1, ..., G_m\}$ (связные компоненты) $\implies P_G(z) = P_{G_1}(z) \cdot ... \cdot P_{G_m}(z)$

Лемма 10.1. (G-e) — удаление ребра $e, (G\sim e)$ — "стягивание" ребра e

$$P_G(z) = P_{G-e}(z) - P_{G\sim e}(z)$$

Доказательство.

Рис. 10.1: chromatic polynome rule

11 Планарные графы І

Опр. 11.1 (Планарный). G можно правильно уложить в плоскость (сферу), получив nлоский cраф \tilde{G} . Рёбра \tilde{G} пересекаются **только** в вершинах.

Лемма 11.1 (Жордана). Если точка A лежит внутри замкнутого контура, а B – вне его, то любой путь (A,B) пересечёт контур минимум 1 раз

Св-во. Непланарные – K_5 , $K_{3,3}$

Опр. 11.2 (Грань f_i). ...

Уложив планарный граф в сферу и поворачивая сферу можно ∀ заданную вершину уложить во внешнюю грань.

Св-во.
$$\sum \deg(f_i) = 2|E|$$
 ... = $\sum \deg(v_i)$

Теор. 11.1. Граница \forall грани 2-связного \tilde{G} — простой цикл

Сл-е. Вершины, смежные с \forall вершиной 3-связного \tilde{G} – лежат на простом цикле

Опр. 11.3 (Дуальный граф плоского графа). грани \longrightarrow вершины (с сохранением степеней); соединяем дуальные вершины ребром, если исходные грани смежны (т.е. отделены 1 ребром)

Св-во. Дуальный граф всегда связен

Teop. 11.2 (Формула Эйлера для выпуклых многогранников и связных планарных графов).

$$V+F=E+2$$
 или $n+r-m=2$

Св-во. В простом (без петель и мультирёбер) плоском графе $\deg(f_i) \geqslant 3$

- $\deg(f_i) = 1 \implies$ петля
- \bullet $\deg(f_i) = 2 \implies$ мультиребро

Сл-е. В простом \tilde{G} при $V \geqslant 3$ будет $E \leqslant 3V - 6$.

Сл-е. В простом \tilde{G} при $V \geqslant 3$ будет $\delta = 5$.

Опр. 11.4 (максимальный плоский граф). Если достигли равенства E = 3V - 6.

Св-во (максимальный плоский граф). $\forall f_i \deg(f_i) = 3$

Teop. 11.3 (Fary). ∀ планарный граф можно так уложить в плоскость, что все рёбра – прямые отрезки

Теор. 11.4 (о 4 красках). Для правильной раскраски *граней* \tilde{G} без мостов хватит 4 цветов. Для правильной раскраски *вершин планарного* графа хватит 4 цветов.

Сл-е. Плоский граф — дуальный (грани ⇔ вершины), а вершины плоского дуального графа ⇔ вершинам его планарного. Так что задача ≡ правильной раскраске вершин планарного графа

12 Планарные графы II

Teop. 12.1. Если 2-связные графы в дереве блоков 1-связного графа планарны, то и весь граф планарный

Доказательство. (по индукции по точкам сочленения).

Опр. 12.1 (подразбиение графа). добавление вершин deg = 2 внутри рёбер

Лемма 12.1 (Томасон). в 3-свяном графе ∃ ребро: если его стянуть, граф останется 3-связным

Teop. 12.2 (критерий Куратовского). граф планарный \iff он не содержит подразбиение K_5 или $K_{3,3}$

Теор. 12.3 (Татт). \forall 3-связный планарный граф можно вложить на плоскость так, что \forall внутренняя грань будет выпуклым многоугольником (2-связный — не обязательно)

Опр. 12.2 (Минор). получен из графа удалением или стягиванием рёбер

Св-во. минор планарного графа будет планарным

Теор. 12.4 (Вагнер). граф планарный \iff не содержит миноров K_5 или $K_{3,3}$

Опр. 12.3. вложение графа в поверхность рода g правильное, если при разрезании на грани получатся (криволинейные) многоугольники (а не 3-мерные цилиндры итд), т.е. получится карта

Св-во. Род поверхности для сферы g=0 (без дырок, 2-2g=2), род тора g=1 (одна дырка, 2-2g=0).

Teop. 12.5 (Эйлера). Эйлерова характеристика карты (укладки): $\chi(M) = V + F - E$. Укладка (вложение) правильная $\iff \chi(M) = 2 - 2g$.

 K_5 и $K_{3,3}$ можно вложить в тор.

TODO...

