Contest Hunter #39 解题报告

大连市第二十四中学 于纪平

目 录

0	概要	1
1	矿物运输	2
	1.1 题目大意	2
	1.2 算法	2
2	bug运输	2
	2.1 题目大意	2
	2.2 算法	2
3	货车运输	3
	3.1 题目大意	3
	3.2 算法	3
4	飞机运输	4
	4.1 题目大意	4
	4.2 算法	4
0	概要	
告。	这一场Contest Hunter的题目是我出的,在此来分享一下详细的中文解题技	艮
	所有的题目可以在http://www.contesthunter.org/contest找到。	

1 矿物运输

1.1 题目大意

有n层的资源库和W的初始资金。解锁第i层资源库须先解锁前i-1层,花费 c_i 的金钱和 t_i 的时间。解锁了第i层后单位时间可以从中离散地获得 v_i 的收入。求在T单位时间内的最大获利。

 $n \le 2 \times 10^5$,答案不超过64位整形。

1.2 算法

假设最优策略开发到了第k层,那么策略显然是,一口气开发到k层,剩下的时间自有生产。

枚举k以后,用O(n)时间算出此时的最大获利的方法是显然的,直接模拟一遍就可以了。这样总的复杂度是平方级的。

注意到每次枚举到一个新的k的时候,显然没必要从头重新模拟,只需要根据k-1时的结果O(1)计算就可以了。

时间复杂度O(n)。

2 bug运输

2.1 题目大意

给出一个 $n \times n$ 的01方阵A,要找一个边长最小的前提下字典序最小的方阵B,使得B无论如何旋转或翻转,都不会在A中出现过。

 $n \le 1000_{\circ}$

2.2 算法

答案矩阵不会很大,因为规模为 $m \times m$ 的矩阵有 2^{m^2} 个,而矩阵A的所有 $m \times m$ 的矩阵在旋转和翻转以后也只有 $8(n+1-m)^2$ 个,所以B的边长不会超过 $O(\sqrt{\log n})$,具体地,不会超过5。

我们从1到5枚举B的边长m,对于每个m我们在A中能找到8(n+1-m)²个子矩阵。将这些子矩阵插入到字典树中,检查字典树是否包括了所有长度为m²的字符串即可。如果没有,输出最靠左的叶子。

这种算法的时间复杂度是 $O(n^2 \log^{1.5} n)$,可以在时限内通过。

3 货车运输

3.1 题目大意

n个城市用n条道路连通,每条道路有长度、限速和每小时收费。q辆车,每辆车有起点、终点和最大速度。问每辆车的最小过路费。

 $n, q \leq 10^5$ °

3.2 算法

环套树的问题不好分析,我们先找出任意一条环上的边成为特殊边并从图上删去,然后对树处理这个问题。对于每个询问,两点间的最小过路费有三种情况:不经过特殊边(需要在树上询问1次)、正着走特殊边(询问2次)、反着走特殊边(询问2次)。这样,我们就把每个询问拆成了5个树上询问,不影响复杂度。

下面考虑树上的算法。显然我们要维护的量是可加可减的,即:如果A,B,C依次是树上路径的某三个点,那么ans(A,C)=ans(A,B)+ans(B,C); ans(A,B)=ans(A,C)-ans(B,C)。

以任意点(例如点1)为根建立有根树,那么ans(P,Q) = ans(1,P) + ans(1,Q) - ans(1,LCA(P,Q)),把每个询问拆成3个询问后,我们只需维护从1到每个点的答案。

设边i的长度为 l_i ,限速为 v_i ,每小时收费 w_i ;设当前的询问要从1走到P,最大速度为u,则我们的答案就是

$$\sum_{$$
边 i 在1到 P 的路径上 $} rac{w_i l_i}{\min(v_i, u)}$

这个式子等于

$$\sum_{v_i < u} \frac{w_i l_i}{v_i} + \frac{1}{u} \sum_{v_i > u} w_i l_i$$

假设在P点已经建立了以速度为下标的线段树,维护了 $\frac{w_i l}{v_i}$ 和 $w_i l_i$ 的区间和,我们就可以直接在这个线段树上查询就可以得到答案了。

我们无法在每个点上都开线段树,但注意到每个点的线段树与它的父亲相比只改动了一个值,我们可以用可持久化线段树完成这个任务。当然,按照P的dfs序离线处理所有询问(1,P,u),就可以避免可持久化,只在一棵线段树上反复修改。

时间复杂度为 $O((n+q)\log n)$,注意在q的上面有15的常数,这是比较大的。

4 飞机运输

4.1 题目大意

(简化版题面)

给出平面上n个点,每两点间有边,边权为两点间欧氏距离的平方。

这些点中有m个特殊点,要连若干条边,使得这m个点都连通。求所连的边权的最大值的最小值。

 $n \le 10^5$,坐标是等概率均匀随机生成的。

4.2 算法

首先考虑一个暴力算法:二分答案,之后将图遍历一遍,检查m个点是否连通。这个算法的时间复杂度是 $O(n^2 \log W)$ 。

由于坐标是随机生成的,可以判断,答案不是很大,在答案处每个点所连 的度数也不是很多。

考虑将坐标平面分成 $\sqrt{n} \times \sqrt{n}$ 块(即把每个坐标轴都等分成 \sqrt{n} 段),每一块期望有1个点。

处理出每个块的信息以后,我们用它来加速二分的判定。对于一个点只考察它周围的若干个块连边就可以了。那么判定的时间复杂度与二分出的答案有关,答案越大判定越慢。

只套用这个加速进行二分的话显然还是会超时,因为判定二分出的第一个 答案就会很费时。

我们尝试减小二分上界。这个上界有一个巧妙的确定方法:

 $upper_bound \Leftarrow 1$

while 问题在 upper_bound 时无解 do

 $upper_bound \leftarrow upper_bound \times 2$

end while

我们先倍增二分的上界,然后在这个范围内二分,调用判定函数的次数依然是 $O(\log W)$,但是每次判定的速度大大加快了。可以证明,每次判定期望用时O(n),故总的时间复杂度为 $O(n\log W)$ 。