CHENYU ZHANG

Email: chenyu.zhang@columbia.edu Homepage: zcysxy.github.io

EDUCATION

Columbia University		2022 - 2023 (expected)			
M.S. in Data Science					
Overall GPA: 4.28/4.00					
Relevant Courses					
Reinforcement Learning	A+	A	Algorithms for Data Science	A+	
Probability and Statistics for Data Science	A+	E	Exploratory Data Analysis	A+	
Machine Learning	A	\mathbf{N}	Iodern Control Theory	A+	
High-dimensional Probability	A	C	Computer Systems	A	
Fudan University				2018 - 2022	
B.S. in Mathematics and Applied Mathematics	3				
Honors Student of Su Buqing Top Talent Progr					
Relevant Courses					
Numerical Linear Algebra and Optimization (H	\mathbf{H}	A	Deep Learning	A	
Numerical Solution to Differential Equations		Α	Methods of Optimization	A	
Functions of Complex Variable		A	Probability Theory	A	
An Introduction to Differential Manifolds (H)		A-	Advanced Algebra	A	
Computational Thinking		A	Fundamentals of Mechanic	es A	
Relevant Seminars					
Intelligent Optimization Algorithms		Convex Optimization			
Complex Analysis	1		Global Differential Geometry		
Differential Manifolds and Differential Topolog	y	Differential Geometry of Curves and Surfaces			
Non-Euclidean Geometry and Point Set Topolo	ogy	Adva	anced Mathematical Analysis		
Shenzhen Middle School				2015 - 2018	

Honor Curriculum (Physics Olympiad)

Award: Chinese Physics Olympiad - First Class Award

PUBLICATIONS

- Chenyu Zhang, Xu Chen, and Xuan Di. A single online agent can efficiently learn mean field games. Twenty-Seventh International Conference on Artificial Intelligence and Statistics, 2023. [Under review]
- Chenyu Zhang, Han Wang, Aritra Mitra, and James Anderson. Finite-time analysis of on-policy heterogeneous federated reinforcement learning. The Twelfth International Conference on Learning Representations, 2023. [Under review] [Preprint]
- Chenyu Zhang and Rujun Jiang. Riemannian adaptive regularized Newton methods with Hölder continuous Hessians. *Mathematics of Operations Research*, 2023. [Under review] [Preprint]
- Chenyu Zhang, Rufeng Xiao, Wen Huang, and Rujun Jiang. Riemannian trust region methods for SC¹ minimization. *Journal of Scientific Computing*, 2023. [Under review] [Preprint]

WORKING PAPERS

- Chenyu Zhang, Xu Chen, and Xuan Di. Efficient single-agent model-free methods for learning mean field games with automatic stabilization and linear function approximation. 2023. [Ready to submit]
- Chenyu Zhang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. On reward-free reinforcement learning for POMDPs with linear function approximation. [Ready to submit]

RESEARCH EXPERIENCE

Neural Networks

May 2023 - Present

Research assistant, advised by Prof. John Wright

Dept. EE&APAM, Columbia University, NY

 Identified limitations of neural tangent kernels and designing optimizable data-aware kernels for neural networks.

Mean Field Games

May 2023 - Present

Research assistant, advised by Prof. Sharon Di

Dept. CEEM, Columbia University, NY

- Developed sample-efficient single-agent model-free methods for learning mean field games.
- Designing multi-agent reinforcement learning systems able to handle large heterogeneous populations.

Federated Reinforcement Learning

September 2022 - Present

Research assistant, advised by Prof. James Anderson Co-advised by Prof. Aritra Mitra

n Dept. EE, Columbia University, NY Dept. ECE, North Carolina State University, NC

- Developed a novel federated SARSA algorithm and established its finite-time error bounds, as well as demonstrated its linear convergence speedups with the presence of environmental heterogeneity.
- Conducted three numerical experiments to verify the theoretical results of the federated SARSA algorithm.

Manifold Nonsmooth Nonconvex Optimization

October 2021 - September 2022

Research assistant, advised by Prof. Rujun Jiang Co-advised by Prof. Wen Huang

Dept. Data Science, Fudan University, China Dept. Mathematics, Xiamen University, China

- Developed the first semismooth Riemannian trust-region method for nonsmooth nonconvex optimization problems on manifolds, and proved its convergence results including superlinear local convergence rate.
- Applied our semismooth Riemannian trust-region method to solve augmented Lagrangian methods' subproblem on manifolds, and demonstrated its superiority through three numerical experiments.
- Established an optimal iteration complexity $\tilde{O}(\epsilon^{-(2+\alpha)/(1+\alpha)})$ of Riemannian Newton-type methods with α -Hölder continuous Hessian.

Reinforcement Learning for POMDPs

March 2021 - January 2022

Research assistant, advised by Prof. Zhaoran Wang Dept. of IEMS&CS, $Northwestern\ University,\ IL$ Co-advised by Prof. Zhuoran Yang Dept. of $Stat\&Data\ Science,\ Yale\ University,\ CT$

• Designed a reward-free RL algorithm for linear POMDPs and established its sample efficiency guarantee.

TEACHING EXPERIENCE

COMS 4771 Machine Learning

Teaching assistant, advised by Prof. Daniel Hsu

ORCS 4529 Reinforcement Learning

Teaching assistant, advised by Prof. Shipra Agrawal

EEOR 4650 Convex Optimization

Teaching assistant, advised by Prof. James Anderson

CSOR 4231 Analysis of Algorithms

Teaching assistant, advised by Prof. Eleni Drinea

September 2023 - December 2023

Dept. CS, Columbia University, NY

September 2023 - December 2023 Dept. IEOR, Columbia University, NY

September 2023 - December 2023

Dept. EE, Columbia University, NY

January 2023 - May 2023

Dept. CS, Columbia University, NY