Unit No. 6

Trigonometry

Exercise No. 6.4

Question No. 1

Find the value of the following trigonometric ratios without using the calculator.

Θ	0	30°	45°	60°	90°
$\sin \theta$	0	1	1	$\sqrt{3}$	1
		$\overline{2}$	$\sqrt{2}$	2	
$\cos \theta$	1	$\sqrt{3}$	1	1	0
		2	$\sqrt{2}$	$\overline{2}$	
tan θ	0	1	1	$\sqrt{3}$	∞
		$\sqrt{3}$			

(i) sin 30°

Solution:

sin 30°

As
$$\sin \theta = \frac{Perpendicular}{Hypotenuse} = \frac{a}{c}$$

$$\sin 30^\circ = \frac{1}{2}$$

(ii) cos 30°

Solution:

 $\cos 30^{\circ}$

As
$$\cos \theta = \frac{Base}{Hypotenuse} = \frac{b}{c}$$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

(iii)
$$\tan \frac{\pi}{6}$$

Solution:

$$\tan \frac{\pi}{6}$$

1st convertint radian into degree:

$$= \tan\frac{\pi}{6} \times \frac{180}{\pi}$$

As
$$\tan \theta = \frac{Perpendicular}{Base} = \frac{a}{b}$$

$$\tan 30^\circ = \frac{1}{\sqrt{3}}$$

By rationalizing:

$$\tan 30^{\circ} = \frac{\sqrt{3}}{3}$$

(iv) tan 60°

Solution:

$$= \tan 60^{\circ}$$

As
$$\tan \theta = \frac{Perpendicular}{Base} = \frac{a}{b}$$

$$\tan 60^\circ = \frac{\sqrt{3}}{1} = \sqrt{3}$$

(v) sec 60°

Solution:

sec 60°

As
$$\sec \theta = \frac{Hypotenuse}{Base} = \frac{c}{b}$$

$$\sec 60^{\circ} = \frac{2}{1} = 2$$

(vi)
$$\cos \frac{\pi}{3}$$

Solution:

$$\cos \frac{\pi}{3}$$

1st convertint radian into degree:

$$=\cos\frac{\pi}{3}\times\frac{180}{\pi}$$

$$=\cos 60^{\circ}$$

As
$$\cos \theta = \frac{Base}{Hypotenuse} = \frac{b}{c}$$

$$\cos 60^{\circ} = \frac{1}{2}$$

(vii) cot 60°

Solution:

 $\cot 60^{\circ}$

As
$$\cot \theta = \frac{Base}{Perpendicular} = \frac{b}{a}$$

$$\cot 60^\circ = \frac{1}{\sqrt{3}}$$

By rationalizing:

$$\cot 60^{\circ} = \frac{\sqrt{3}}{3}$$

(viii) sin 60°

Solution:

sin 60°

As
$$\sin \theta = \frac{Perpendicular}{Hypotenuse} = \frac{a}{c}$$

$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$

(ix) sec 30°

Solution:

sec 30°

As sec
$$\theta = \frac{Hypotenuse}{Base} = \frac{c}{b}$$

$$\sec 30^{\circ} = \frac{2}{\sqrt{3}}$$

By rationalizing:

$$\sec 30^\circ = \frac{2\sqrt{3}}{3}$$

(x) cosec 30°

Solution:

cosec 30°

As cosec
$$\theta = \frac{Hypotenuse}{Perpendicular} = \frac{c}{a}$$

$$\csc 30^{\circ} = \frac{2}{1} = 2$$

(xi) sin 45°

Solution:

sin 45°

As
$$\sin \theta = \frac{Perpendicular}{Hypotenuse} = \frac{a}{c}$$

$$\sin 45^\circ = \frac{1}{\sqrt{2}}$$

By rationalizing:

$$\sin 45^\circ = \frac{\sqrt{2}}{2}$$

(xii)
$$\cos \frac{\pi}{4}$$

Solution:

$$\cos \frac{\pi}{4}$$

1st convertint radian into degree:

$$=\cos\frac{\pi}{4}\times\frac{180}{\pi}$$

$$= \cos 45^{\circ}$$

As
$$\cos \theta = \frac{Perpendicular}{Hypotenuse} = \frac{a}{c}$$

$$\cos 45^\circ = \frac{1}{\sqrt{2}}$$

By rationalizing:

$$\cos 45^\circ = \frac{\sqrt{2}}{2}$$

Question No. 2

Evaluate:

Θ	0	30°	45°	60°	90°
sin θ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	8

(i) 2 sin 60° cos 60°

Solution:

2 sin 60° cos 60°

$$=2\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)$$

$$=\frac{\sqrt{3}}{2}$$

(ii)
$$2\cos\frac{\pi}{6}\sin\frac{\pi}{6}$$

Solution:

$$2\cos\frac{\pi}{6}\sin\frac{\pi}{6}$$

1st convertint radian into degree:

$$=\frac{\pi}{6}\times\frac{180}{\pi}=30^{\circ}$$

 $= 2 \cos 30^{\circ} \sin 30^{\circ}$

$$=2\;(\frac{\sqrt{3}}{2})\;(\frac{1}{2})$$

$$=\frac{\sqrt{3}}{2}$$

(iii) $2 \sin 45^{\circ} + 2 \cos 45^{\circ}$

Solution:

 $2 \sin 45^{\circ} + 2 \cos 45^{\circ}$

$$= 2 \left(\frac{1}{\sqrt{2}} \right) + 2 \left(\frac{1}{\sqrt{2}} \right)$$

$$= \frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}}$$

$$= \frac{2+2}{\sqrt{2}}$$

$$=\frac{4}{\sqrt{2}}$$

By rationalizing:

$$=\frac{4\sqrt{2}}{2}$$

$$= 2\sqrt{2}$$

(iv) $\sin 60^{\circ} \cos 30^{\circ} + \cos 60^{\circ} \sin 30^{\circ}$

Solution:

 $\sin 60^{\circ} \cos 30^{\circ} + \cos 60^{\circ} \sin 30^{\circ}$

$$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$$

$$=\frac{3}{4}+\frac{1}{4}$$

$$=\frac{3+1}{4}$$

$$=\frac{4}{4}$$

$$= 1$$

(v) cos 60° cos 30° - sin 60° sin 30°

Solution:

 $\cos 60^{\circ} \cos 30^{\circ}$ - $\sin 60^{\circ} \sin 30^{\circ}$

$$= \left(\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{2}\right)$$

$$=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}$$

$$=\frac{\sqrt{3}-\sqrt{3}}{4}$$

$$=0$$

(vi) sin 60° cos 30° - cos 60° sin 30°

Solution:

 $\sin 60^{\circ} \cos 30^{\circ}$ - $\cos 60^{\circ} \sin 30^{\circ}$

$$=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$$

$$=\frac{3}{4}-\frac{1}{4}$$

$$=\frac{3-1}{4}$$

$$=\frac{2}{4}$$

$$=\frac{1}{2}$$

(vii) $\cos 60^{\circ} \cos 30^{\circ} + \sin 60^{\circ} \sin 30^{\circ}$

Solution:

 $\cos 60^{\circ} \cos 30^{\circ} + \sin 60^{\circ} \sin 30^{\circ}$

$$= \left(\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{2}\right)$$

$$=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}$$

$$=\frac{\sqrt{3}+\sqrt{3}}{4}$$

$$=\frac{2\sqrt{3}}{4}$$

$$=\frac{\sqrt{3}}{2}$$

(viii)
$$\tan \frac{\pi}{6} \cot \frac{\pi}{6} + 1$$

Solution:

$$\tan\frac{\pi}{6}\cot\frac{\pi}{6}+1$$

1st convertint radian into degree:

$$=\frac{\pi}{6}\times\frac{180}{\pi}=30^{\circ}$$

$$= \tan 30^{\circ} \cot 30^{\circ} + 1$$

$$=\left(\frac{1}{\sqrt{3}}\right)\left(\sqrt{3}\right)+1$$

$$= 1 + 1$$

$$=2$$

Question No. 3

If $\sin \frac{\pi}{4}$ and $\cos \frac{\pi}{4}$ equal to $\frac{1}{\sqrt{2}}$ each, then find the value of the followings:

Data:

$$\sin\frac{\pi}{4} = 30^\circ = \frac{1}{\sqrt{2}}$$

$$\cos\frac{\pi}{4} = 30^\circ = \frac{1}{\sqrt{2}}$$

(i) 2 sin 45° - 2 cos 45°

Solution:

 $2 \sin 45^{\circ} - 2 \cos 45^{\circ}$

$$= 2 \left(\frac{1}{\sqrt{2}} \right) - 2 \left(\frac{1}{\sqrt{2}} \right)$$

$$=\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{2}}$$

$$=0$$

(ii) $3 \cos 45^{\circ} + 4 \sin 45^{\circ}$

Solution:

 $3\cos 45^{\circ} + 4\sin 45^{\circ}$

$$= 3 \left(\frac{1}{\sqrt{2}} \right) + 4 \left(\frac{1}{\sqrt{2}} \right)$$

$$=\frac{3}{\sqrt{2}}+\frac{4}{\sqrt{2}}$$

$$=\frac{3+4}{\sqrt{2}}$$

$$=\frac{7}{\sqrt{2}}$$

By rationalizing:

$$=\frac{7\sqrt{2}}{2}$$

(iii) 5 cos 45° - 3 sin 45°

Solution:

5 cos 45° - 3 sin 45°

$$= 5 \left(\frac{1}{\sqrt{2}} \right) - 3 \left(\frac{1}{\sqrt{2}} \right)$$

$$=\frac{5}{\sqrt{2}}-\frac{3}{\sqrt{2}}$$

$$=\frac{5-3}{\sqrt{2}}$$

$$=\frac{2}{\sqrt{2}}$$

By rationalizing:

$$=\frac{2\sqrt{2}}{2}$$

$$=\sqrt{2}$$