Automated Gleason Grading of Whole Slide Images

Parth Dodhia (180070041), MK Ipsit (180070032)

Introduction

- Prostate cancer: second leading cause of cancer deaths in men [1]
- Gleason grading system: prognostic predictor for patients with Prostate Cancer, identifies aggressiveness of tumors formed
- Trained pathologists perform Gleason grading manually
- Based entirely on the architectural patterns of the tumor

Why Deep Learning?

- Train a CNN to learn structural differences between Gleason patterns
- Remove the grading bias of a pathologist and increase generalizability
- Can drastically speed up the process of grading

Gleason Patterns

 Benign tissues have small, well differentiated glands. As the Gleason score increases, the glands tend to become variable in size, fused, distant and less in number

Image source: Wikipedia

Contents

- Dataset
- Architecture
- Implementation details
- Evaluation and Results
- Further experiments
- Evaluation and Results
- Conclusion and Future Work

Dataset

- 641 whole slide images for training and 245 images for testing, each corresponding to a different patient (Harvard prostate cancer dataset)
- Images of size 3100x3100, with corresponding annotated ground truth images
- Image and Ground truth

Images taken from the dataset: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OCYCMP

Architecture

Pre trained encoder: Resnet 34

Image source: https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

Architecture

 A symmetric UNet architecture for segmentation. We found pretrained encoders to work much better

Middle layer

Decoder block

Implementation

- The trainset comprised of 641 images from 4 microarrays. We took 133 images for validation and 508 images for training
- Resized image to size 512 for decent batch size. Implemented dynamic mask generation from ground truths to tackle storage issues
- Data augmentations: random horizontal and vertical flip, random affine and color jitter to tackle small trainset size and normalisation as per ImageNet mean and variance.

Loss Functions

Cross Entropy

$$\mathcal{L}_{CE} = -\sum_{c=1}^{M} y_c \log p_c$$

• Soft Dice

$$\mathcal{L}_{Dice}(p,q) = 1 - \frac{1}{M} \sum_{c=1}^{M} \frac{2 \times \sum_{i,j} p_{cij} q_{cij} + \varepsilon}{\left(\sum_{i,j} p_{cij}^2\right) + \left(\sum_{i,j} q_{cij}^2\right) + \varepsilon}$$

Focal Loss

$$\mathcal{L}_{Focal} = -\sum_{c=1}^{M} y_c (1 - p_c)^{\gamma} \log(p_c)$$

Results

Kappa Score:0.44 Mis-classifications: 0.2667 (Among Pathologists)

Kappa Score:0.53 Mis-classifications: 0.3212 (Model vs Pathologists)

Visualisation of results

Further Experiments

Attention Based Multiple Instance Learning

Why A-MIL?

- Medical image datasets are weakly annotated.
- Identifying key instances is useful in clinical practice.

Eg: Targeted Therapy, Precision Medicine etc.

Giving attention to key instances helps!!!

What is A-MIL?

- Pooling the lower dimensional embeddings by determining weights using neural networks.
- Predicting the label of a bag of instances instead of predicting for an instance.
- Advantage?
 - o End-to-end training of the model using back propagation.
 - Larger weights can be used to identify key instances.
- h_k is the lower-dimensional embedding

$$z = \sum_{k=1}^{K} a_k h_k$$

where
$$a_k = \frac{exp(w^T \tanh(Vh_k^T))}{\sum_{j=1}^K exp(w^T \tanh(Vh_j^T))}$$

Further Experiments (MIL)

- We proposed this problem as a classification task and tried to use attention based multiple instance learning.
- We experimented with different image/patch sizes to make a bag.
- We used embedding based attention technique, for which ResNet18 was used as a feature extractor.
- On the right, h_i's are lower dimensional $z = \sum_{k=1}^{K} a_k h_k$ embeddings. where

$$a_k = \frac{exp(w^T \tanh(Vh_k^T))}{\sum_{j=1}^K exp(w^T \tanh(Vh_j^T))}$$

MIL Architecture

Image

source:https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FArchitecture-of-ResNet-18-Figure-from-32_fig2_336278800&psig=AOvVaw3Qe3zE_MKNVWwCVujMOsya&ust=1592805961150000&source=images&cd=vfe&ved=0CAlQjRxqFwoTCPDlzd-ekuoCFQAAAAAdAAAABAD

MIL Pooling

Image source: https://arxiv.org/pdf/1802.04712.pdf

Implementation

- WSI is divided into pure patches(homogeneous grade) of size 1024x1024
- Each such patch is further divided into 5 smaller patches to make a bag.
- Features are extracted using a ResNet18 backbone.
- MIL Pooling
- Bag level classifier
- Cross Entropy Loss minimization
- Data Augmentation: Random Horizontal and Vertical Flips, mean normalization using ImageNet statistics

Evaluation and Results

- Gleason 3 and Gleason 4 are being detected more accurately than others.
- The model is getting confused b/w grades
 3 and 4.
- Patch-level classification accuracy on test set is 52.4%.

Conclusion and Future Work

Multiresolution segmentation network