Machin learning Regression

1. Multiple Linear Regression

 R^2 Value = 0.9358680970046243

2. Support Vector Machine

	Hyper				
S.No	parameter	linear	poly	rbf	sigmoid
1	0.3	0.940888432	-0.055502409	-0.0574356	-0.05749
2	1	0.895077924	-0.050890118	-0.0573173	-0.0575
3	0.1	0.937521652	-0.056824517	-0.0574694	-0.05749
4	0.4	0.943940332	-0.054842073	-0.0574187	-0.05749
5	0.5	0.940616633	-0.054182216	-0.0574018	-0.05749

 R^2 Value = 0.943940332

3. Decision Tree

S.No	criterion	splitter	R.score
1	squared_error	best	0.977318464
2	squared_error	random	0.967881147
3	friedman_mse	best	0.9530324
4	friedman_mse	random	0.976486124
5	absolute_error	best	0.972011229
6	absolute_error	random	0.97393525
7	poisson	best	0.948117007
8	poisson	random	0.973282829

 R^2 Value = 0.977318464