AI 1103 - Challenging Problem 11

T. Rohan CS20BTECH11064

Download all latex codes from

https://github.com/rohanthota/ Challenging problem/main.tex

1 Problem

(UGC/MATH 2018 (June set-a)-Q.106) Let $X_{ii\geq 1}$ be a sequence of i.i.d. random variables with $E(X_i) = 0$ and $V(X_i) = 1$. Which of the following are true?

- 1) $\frac{1}{n} \sum_{i=1}^{n} X_i^2 \to 0$ in probability 2) $\frac{1}{n^{3/4}} \sum_{i=1}^{n} X_i \to 0$ in probability
- 3) $\frac{1}{\eta^{1/2}} \sum_{i=1}^{n} X_i \to 0$ in probability
- 4) $\frac{1}{n} \sum_{i=1}^{n} X_i^2 \rightarrow 1$ in probability

2 Solution

Definition 1. (Convergence in distribution)

A sequence of random variables $Y, Y_1, Y_2 \dots$ converges in distribution to a random variable Y, if

$$\lim_{n \to \infty} F_{X_n}(a) = F_X(a) \ \forall a \in \mathbb{R}. \tag{2.0.1}$$

Definition 2. (Convergence in probability)

A sequence of random variables $Y, Y_1, Y_2 \dots$ is said to converge in probability to Y, if

$$\lim_{n \to \infty} \Pr(|Y_n - Y| > \epsilon) = 0 \ \forall \epsilon > 0.$$
 (2.0.2)

Lemma 2.1. If $Y_n \rightarrow Y$ in probability, $Y_n \rightarrow Y$ Y in distribution.

Lemma 2.2. (Strong Law of Large Numbers) Let $X_1, X_2, ... X_n$ be i.i.d. random variables with expected value $E(X_i) = \mu < \infty$, then,

$$\lim_{n \to \infty} \Pr\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_i - \mu\right| \ge \epsilon\right) = 0 \tag{2.0.3}$$

Or, $\frac{1}{n} \sum_{i=1}^{n} X_i$ converges in probability to μ .

Lemma 2.3. (Chebyshev's Inequality)

Let the random variable X have a finite mean μ and a finite variance σ^2 . For every k > 0,

$$\Pr(|X - \mu| \ge k\sigma) \le \frac{1}{k^2} \tag{2.0.4}$$

Lemma 2.4. (Central Limit Theorem)

Let $X_1, X_2, ... X_n$ be i.i.d. random variables with expected value $E(X_i) = \mu < \infty$ and $0 < V(X_i) =$ $\sigma^2 < \infty$. Then the random variable

$$Z_n = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n}\sigma}$$
 (2.0.5)

converges in distribution to the standard normal random variable as n goes to infinity, that is

$$\lim_{n \to \infty} \Pr\left(Z_n \le a\right) = \Phi(a) \ \forall a \in \mathbb{R}. \tag{2.0.6}$$

where $\Phi(a)$ is the standard normal CDF.

1)

Lemma 2.5. Let $F_{X_i}(x)$ be the c.d.f. for the random variable X_i . If X_i is a sequence of i.i.d. random variables, it follows the following conditions $\forall x, x_i \in \mathbb{R}$:

- a) $F_{X_1}(x) = F_{X_2}(x) = \dots = F_{X_n}(x) = F_X(x)$
- b) $F_{X_1,...X_n}(x_1...x_n) = F_X(x_1)F_X(x_2)...F_X(x_n)$ where $F_X(x)$ is the c.d.f. of X_i .

Now, we know that $\{X_i\}$ is a sequence of i.i.d. random variables. We now try to prove $\{X_i^2\}$ is a sequence of i.i.d. random variables.

Proof. Let $Y_i = X_i^2$.

a) For $y \ge 0$,

$$F_{Y_i}(y) = \Pr(Y_i \le y)$$
 (2.0.7)

$$\implies F_{Y_i}(y) = \Pr\left(X_i^2 \le y\right)$$
 (2.0.8)

$$\implies F_{Y_i}(y) = \Pr\left(-\sqrt{y} \le X_i \le \sqrt{y}\right) (2.0.9)$$

$$\implies F_{Y_i}(y) = \Pr(X_i \le \sqrt{y}) - \Pr(X_i \le -\sqrt{y})$$
(2.0.10)

$$\implies F_{Y_i}(y) = F_{X_i}(\sqrt{y}) - F_{X_i}(-\sqrt{y})$$
(2.0.11)

Using condition (a) for $\{X_i\}$,

$$F_{Y_i}(y) = F_X(\sqrt{y}) - F_X(-\sqrt{y})$$
 (2.0.12)

From (2.0.12),

$$F_{Y_1}(y) = F_{Y_2}(y) = \dots = F_{Y_n}(y) = F_Y(y)$$
(2.0.13)

where $F_Y(y)$ is the c.d.f. of $Y_i = X_i^2$.

b) Now, for $y_i \ge 0$, consider

$$F_{Y_1,Y_2,...,Y_n}(y_1, y_2, ..., y_n)$$
= $\Pr(Y_1 \le y_1, Y_2 \le y_2, ..., Y_n \le y_n)$
(2.0.14)

$$= \Pr\left(X_1^2 \le y_1, X_2^2 \le y_2, \dots, X_n^2 \le y_n\right)$$

$$= \Pr\left(-\sqrt{y_1} \le X_1 \le \sqrt{y_1}, -\sqrt{y_2} \le X_2 \le \sqrt{y_2}, \dots, -\sqrt{y_n} \le X_n \le \sqrt{y_n}\right)$$

$$(2.0.15)$$

Since X_1, X_2, \ldots, X_n are independent,

$$F_{Y_{1},Y_{2},...,Y_{n}}(y_{1}, y_{2},..., y_{n}) = \Pr\left(-\sqrt{y_{1}} \leq X_{1} \leq \sqrt{y_{1}}\right) \Pr\left(-\sqrt{y_{2}} \leq X_{2} \leq \sqrt{y_{2}}\right) \dots \Pr\left(-\sqrt{y_{n}} \leq X_{n} \leq \sqrt{y_{n}}\right)$$
(2.0.17)

From (2.0.9) and (2.0.13),

$$F_{Y_1,Y_2,...,Y_n}(y_1, y_2, ..., y_n)$$

$$= F_{Y_1}(y_1)F_{Y_2}(y_2)...F_{Y_n}(y_n) \qquad (2.0.18)$$

$$= F_{Y_1}(y_1)F_{Y_2}(y_2)...F_{Y_n}(y_n) \qquad (2.0.19)$$

So,

$$F_{Y_1,Y_2,\dots,Y_n}(y_1,y_2,\dots,y_n)$$

$$= F_Y(y_1)F_Y(y_1)\dots F_Y(y_n)$$
(2.0.20)

By (2.0.13) and (2.0.20), $\{Y_i\} = \{X_i^2\}$ must also be a sequence of i.i.d. random variables. \square We know,

$$E(X_i^2) = V(X_i) + (E(X_i))^2$$
 (2.0.21)

Putting given values, we get,

$$E(X_i^2) = 1 (2.0.22)$$

From 2.2, $\frac{1}{n} \sum_{i=1}^{n} X_i^2$ converges in probability

to
$$E(X_i^2) = 1$$
.

Therefore, option 1 is incorrect.

2) Now, we define

$$Y_n = \frac{1}{n^{3/4}} \sum_{i=1}^n X_i \tag{2.0.23}$$

Then,

$$E(Y_n) = \frac{1}{n^{3/4}} E\left(\sum_{i=1}^n X_i\right)$$
 (2.0.24)

$$\implies E(Y_n) = \frac{1}{n^{3/4}} \left(E(X_1) + E(X_2) \dots E(X_n) \right)$$
(2.0.25)

Since $E(X_i) = 0$

$$E(Y_n) = \frac{1}{n^{3/4}}(0) = 0 (2.0.26)$$

Now,

$$V(Y_n) = V\left(\frac{1}{n^{3/4}} \sum_{i=1}^n X_i\right)$$
 (2.0.27)

$$\implies V(Y_n) = \frac{1}{n^{3/2}} V(X_1 + X_2 + \dots + X_n)$$
(2.0.28)

As $X_1, X_2, \dots X_n$ are independent of each other,

$$V(Y_n) = \frac{1}{n^{3/2}} \left(V(X_1) + V(X_2) + \dots + V(X_n) \right)$$
(2.0.29)

Since $V(X_i) = 1$

$$V(Y_n) = \frac{1}{n^{3/2}} (1 + 1 + \dots + 1) = \frac{1}{n^{3/2}} \times n$$
(2.0.30)

$$V(Y_n) = \frac{1}{n^{1/2}} \tag{2.0.31}$$

Now for any $\epsilon > 0$, consider the probability

$$\Pr(|Y_n - 0| \ge \epsilon) = \Pr(|Y_n - E(Y_n)| \ge \epsilon)$$
(2.0.32)

Applying 2.3

$$\Pr(|Y_n - 0| \ge \epsilon) \le \frac{V(Y_n)}{\epsilon^2} \left(= \frac{1}{n^{1/2} \epsilon^2} \right)$$
(2.0.33)

$$\implies \lim_{n \to \infty} \Pr(|Y_n - 0| \ge \epsilon) \le \lim_{n \to \infty} \frac{1}{n^{1/2} \epsilon^2} = 0$$
(2.0.34)

$$\implies \lim_{n \to \infty} \Pr\left(\left|\frac{1}{n^{3/4}} \sum_{i=1}^{n} X_i - 0\right| \ge \epsilon\right) = 0$$
(2.0.35)

So, $\frac{1}{n^{3/4}} \sum_{i=1}^{n} X_i \to 0$ in probability. Thus, option 2 is correct.

3) The option states that $\frac{1}{n^{1/2}} \sum_{i=1}^{n} X_i \to 0$ in probability. This statement implies that $\frac{1}{n^{1/2}} \sum_{i=1}^{n} X_i \to 0$ in distribution, from 2.1.

Writing the random variable Z_n from 2.4, for $\{X_i\}$,

$$Z_n = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n}\sigma}$$
 (2.0.36)

$$= \frac{X_1 + X_2 + \ldots + X_n}{\sqrt{n}}$$
 (2.0.37)

$$= \frac{1}{n^{1/2}} \sum_{i=1}^{n} X_i \tag{2.0.38}$$

Since $\mu = 0$ and $\sigma = 1$. According to 2.4,

$$Z_n \to Z$$
, where, $Z \sim N(0, 1)$ (2.0.39)

which is not what the option states. Therefore, option 3 is incorrect.

4) As proved in option (1), $\frac{1}{n} \sum_{i=1}^{n} X_i^2 \rightarrow 1$ in probability. So option 4 is correct.

Therefore, options 2 and 4 are correct.