CS 6390 Advanced Computer Networks Multicast

Computer Networks Dr. Jorge A. Cobb

Motivation

- Original IP service model was one-to-one
 - One sender sending its data to one receiver at a time
- Recently, new apps with multi-receiver semantics
 - Audio/video conferencing, news dissemination, Internet TV, etc.
- Unicast not designed to efficiently support multi-receiver apps
- Solution
 - Multicast support
 - Reduces the number of "messages" in the network
 - Increases however the amount of state at routers

Multicast semantics

- A group is represented by a class D IP address (more later)
 - Zero or more receivers form a multicast group
 - Senders are not part of the group (unless they are also rcvrs)
- Open group semantic
 - Receivers can join/leave at will
 - Anyone knowing group address can send to it
- IP based best effort delivery semantics
 - Multicast supports UDP only no TCP! Why?
 - If routers are reliable per-hop, this requires lots of buffer/state at each router
 - Otherwise, if source receives ack's from the receivers, we have ack implosion problem (receive N ack's)

Open group semantic

- Advantages
 - Sources do not need to know individual receivers
 - Receivers do not need to know the sources either (they simply join the group and receive data)
- Disadvantages
 - Difficult to protect from unauthorized senders/receivers

Router and Host Functions

- Basic host model
 - When sending data, normal IP-Send operation
 - IP src-addr = address of sender
 - IP dst-addr = class D address of multicast group
 - When receiving data, tell your router what group you are interested in
 - i.e., join/leave a multicast group (start/stop receiving data from all sources sending to the group)
 - The router will forward multicast packets to the LAN of the host
 - What are the IP source and destination addresses of these packets?
 - What about LAN addressing? (later)

Routers and Multicast

- Basic router model
 - Prepared to receive data from all multicast group addresses
 - Know when to forward or drop packets
 - Keep track of interfaces leading to receivers
 - Forward multicast packets over these interfaces
 - The packet's source and destination addresses are not changed
- Hosts are simple, is the routers that do all the "magic"

Addressing

- Multicast group addresses
 - Class D IP addresses (224.0.0.0 239.255.255.255)
 - Implicit scoping
 - 224.0.0.0 224.0.0.255: link scoped
 - 224.0.1.0 238.255.255.255: global scoped
 - 239.0.0.0 239.255.255.255: admin scoped
 - Explicit scoping
 - Use TTL value for scoping

Addressing

- As mentioned bfore, multicast packet format
 - Source IP field is unicast IP address of source host
 - Destination IP field is the IP multicast group address
 - In general, we show this (Source IP, Dest IP) couple as (S,G) where S is source IP, G is dest IP (multicast group addr)
- How to do actual delivery to a receiver host?
 - Map IP multicast address to a LAN (ethernet) multicast address
 - LAN src address: router
 - LAN dst address: multicast LAN address
 - Receiver (host) NIC is configured to receive packets destined to this LAN multicast address
 - Hence, multicast on the LAN is done automatically without IP router intervention

Addressing

- What about the source?
 - IP header?
 - LAN header?

How data is forwarded to multiple receivers?

- Routers in the network build forwarding trees connecting sources and receivers
 - On-tree routers keep multicast forwarding states for each group (more on this later)
- Source data propagates on this tree toward the receivers

Source router

- N receivers
- router
- → Single multicast message

Multicast messages = 2(N - 1)If unicast,

- •log N * N unicast msgs
- •first level routers handle N/2 msgs
- •source sends N msgs

Multicast forwarding states at routers

- used to determine how a multicast packet will be forwarded
- consists of several elements:
 - source address S
 - group address G
 - (S,G) determines the particular tree
 - incoming interface iif (parent on tree)
 - outgoing interface <u>list</u> oif list (children on tree)
 - various timers (needed to deal with aging entries out of the forwarding table)
 - Other misc, info.

Dynamic State

- Created when receivers join a multicast group and when sources send packets addressed to the group.
- Deleted after receivers leave a multicast group or senders stop sending packets addressed to the group.
- Every forwarding state has a fixed lifetime needs refreshing
 - E.g., outgoing interface (oif) list maintenance
 - Every oif has a fixed lifetime
 - When lifetime expires for an oif, it is removed from oif list
 - Certain events can reset the timer to its max value

Big picture

- Create multicast forwarding trees
 - connects sources and receivers
 - data is sent along the tree from sources to receivers
- Three components
 - Host to router communication
 - Intra-domain routing
 - Inter-domain routing

IP Multicast Architecture

application API

host-to-router (IGMP)

intra-domain routing

inter-domain routing

Application API

Application API has socket options:

IP_ADD_MEMBERSHIP

IP_DROP_MEMBERSHIP

Host-to-Router

Internet Group Management Protocol (IGMPv2, v3 standardized in 10/02)

Kernel informs router that an application wants to join a specific group G

IGMP

- used by hosts to indicate their interest in receiving packets addressed to a particular multicast group G.
 - IGMPv1 (RFC 1112)
 - Routers
 - General Membership Query
 - Hosts
 - Membership Reports (requested by routers)
 - Unsolicited Group Membership Reports (sent periodically to router)
 - IGMPv2 (RFC 2236)
 - Added explicit Leave/Join Group (host) and Group Specific Membership Query (router) messages
 - IGMPv3 (RFC 3376)
 - Added source filtering capabilities
 - IGMP messages aren't forwarded by routers

Intra-Domain Routing

Building a forwarding tree among session sources and receivers

Dense Mode Protocols

• DVMRP, MOSPF, PIM-DM

Sparse Mode Protocols

• PIM-SM, SSM

Inter-Domain Routing

Building a forwarding tree Between ASms.

Back to Intradomain Routing

Multicast Tree construction

- Building forwarding trees between sources and receivers
- Hard due to the open service model
 - Sources do not know who/where the receivers are
 - Receivers do not know who/where the sources are

Multicast Tree construction (3 ways)

- Flood and prune
 - Begin by flooding traffic to entire network (Create a bdcast tree)
 - Prune branches with no receivers
 - Examples: DVMRP, PIM-DM
 - Disadv:
 - unwanted (prune) state where there are no receivers
 - Initial flood
- Link-state multicast protocols
 - Routers advertise groups for which they have senders/receivers to entire network
 - Compute trees on demand
 - Example: MOSPF
 - Disadv:
 - Link-state is not scalable
 - Unwanted state in routers not on the multicast tree

Multicast tree construction (contd)

- Receiver driven
 - Tree is built from the receivers up towards the tree root
 - Tree construction is based on the unicast routing tables
 - Disadvantage:
 - multicast state in routers even though there are no sources (if using a core approach see below)
 - Otherwise, none that I know of (if using the source-based tree)

Root Node approaches

- Core-based (shared-tree) protocols
 - Specify a meeting place or core
 - Receivers join the tree rooted at the core
 - A single tree is shared by all receivers
 - Sources send their packets to the core
 - Core forwards the data to the receivers
 - Requires mapping between group addresses and cores
 - Examples: CBT, PIM-SM
 - +s: less state at routers
 - -s: higher delay, traffic concentration at core

Root Node Approaches

- Source-tree protocols
 - Multicast tree is rooted at each individual source
 - Separate shortest path tree for each sender
 - Example: DVMRP, MOSPF, PIM-SM
 - +s: Low delay, better load distribution
 - -s: more state at routers (per source state), how to find out the identity of the sources?

A brief overview of multicast

The Evolution of Multicast: From the MBone to Inter-Domain Multicast to Internet2 Deployment

Kevin Almeroth

IEEE Network, 2000

(discusses interdomain multicast)

