

Introduction to PCI Express and DMA attacks

Andrey Konovalov <andreyknvl@gmail.com>

PHDays 2019, Hack Zone May 22nd 2019

Agenda

- Part 1: PCIe 101
- Part 2: Hardware for DMA Attacks
- Part 3: Attacking Linux
- Part 4: Attacking Windows
- Part 5: Attacking MacOS

Part 1: PCIe 101

PCI Express

- PCle is a high-speed serial expansion bus
- Point-to-point communication, packet based
- From 1 to 16 serial lanes x1, x4, x8, x16
- Hot pluggable (sometimes)
- DMA capable

PCI Express Form Factors

M.2 key B (+M) M.2 key A+E

M.2 key M

Thunderbolt3 (USB-C)

Thunderbolt

PCle x1

Mini PCle

ExpressCard

Everything here is PCI Express in different form factors and variations.

Input-Output Memory Management Unit

- IOMMU limits access by DMA-enabled peripherals to system memory
- Physical address space is virtualized to produce a number of I/O virtual address (IOVA) spaces (per device or per group of devices)

Thunderbolt

- Tunnels PCle and DisplayPort over USB Type-C or mini DisplayPort connectors
- Hot pluggable
- Security policies (selected via a BIOS option)

- SL 0: No limitations (2011+)
- SL 1: Ask for permission to connect device (2013+)
- SL 2: HW cryptographic authentication (2014+)
- SL 3: DisplayPort only (2013+)

DMA Attacks Applications

- Evil maid (physical access to locked laptop/desktop/server machines)
- Research (reverse engineering of proprietary hardware with secure boot)
 - iPhone NVMe NAND reverse engineering by Oleg Kupreev and Vladimir
 Putin [1], [2]
 - Breaking UEFI security with software DMA attacks by Dmytro Oleksiuk aka Cr4sh
- Attacking hosts via compromised PCIe devices
 - Over The Air: Exploiting Broadcom's Wi-Fi Stack Gal Beniamini

Part 2: Hardware for DMA Attacks

History of DMA Attacks

- 2011: Attack over FireWire with <u>Inception</u>
- 2015: Attack over PCIe with <u>SLOTSCREAMER</u> on USB3380 by Joe FitzPatrick and Miles Crabil
- 2016: Attack over PCIe with <u>pcileech</u> on USB3380 by Ulf Frisk
- 2017: Attack over PCIe with a <u>custom toolkit</u> for Xilinx SP605 FPGA board by Dmytro Oleksiuk aka Cr4sh (now supported by pcileech as well)
- 2019: Attack targeting kernel drivers over PCIe with Intel Arria 10 SoC board aka <u>Thunderclap</u>

Base Hardware

USB3380 Boards

- <u>USB3380EVB</u> (156\$) and <u>PP3380-AB</u> (208\$), but End-Of-Life
- 150 MB/s, 32-bit access only (64-bit with code injection), no TLP access

Xilinx FPGA Boards

- Xilinx SP605 (\$650) and Xilinx AC701 (\$1295)
- 75 and 150 MB/s, 64-bit access, TLP access

Xilinx FPGA Boards

Both boards also require <u>FTDI UMFT601X-B</u> (77\$)

PCIe Screamer (R02)

- PCIe Screamer (R02) (300\$)
- 100 MB/s, 64-bit access, TLP access
- R01 was extremely unstable

Comparison

Device	Type	Interface	Speed	64-bit memory access	PCIe TLP access	
AC701/FT601	FPGA	USB3	150MB/s	Yes	Yes	1372 \$
PCleScreamer	FPGA	USB3	100MB/s	Yes	Yes	300 \$
SP605/FT601	FPGA	USB3	75MB/s	Yes	Yes	727 \$
SP605/TCP	FPGA	TCP/IP	100kB/s	Yes	Yes	
USB3380-EVB	USB3380	USB3	150MB/s	No	No	(156 \$)
PP3380	USB3380	USB3	150MB/s	No	No	(208 \$)
DMA patched HP iLO	TCP/IP	TCP	1MB/s	Yes	No	

Risers and Adapters

Cheap PCIe Risers

- Unnamed PCle => PCle (7\$)
- Unnamed Mini PCle => PCle (7\$)

EXP GDC Beast Video Card Dock

- <u>EXP GDC Beast Video Card Dock</u> (36\$): ExpressCard/34 => PCle
 - + Mini PCle Cable for EXP GDC Beast (17\$): Mini PCle => PCle
 - + M.2 A Key Cable for EXP GDC Beast (29\$): M.2 Key A+E => PCIe

Bplus PCIe Risers

- PE3B (130\$): ExpressCard => mini-PCle
- <u>PE3A</u> (100\$): ExpressCard => PCle
- <u>ADP</u> (50\$): PCIe => mini-PCIe
- P15S-P15F (60\$): M.2 Key A+E => mini-PCle

ExpressCard Adapter

Thunderbolt 2/3 Graphics Card Docks

- <u>HighPoint RocketStor 6361A</u> (\$340): Thunderbolt 2 => PCle
- And many others

Sonnet Echo ExpressCard Pro

Sonnet Echo ExpressCard Pro (170\$): Thunderbolt 2 => ExpressCard/34

Apple T3 to T2 Adapter

Apple T3 to T2 Adapter (61\$): Thunderbolt 3 => Thunderbolt 2

Part 3: Attacking Linux

DMA on Linux

- IOMMU supported, but not enabled by default in Ubuntu/Fedora/RHEL
- Thunderbolt access control supported in UEFI firmware, but not in the kernel
- Usual default mode is SL 1 (ask for permission), but no user prompt
- More details in the <u>Thunderclap</u> paper

Demo: Leaking User Password from gnome-keyring-daemon on Linux via ExpressCard

Part 4: Attacking Windows

DMA on Windows

- Windows 7, 8.1 and 10 Home/Pro (on older hardware) don't use IOMMU
- Windows 10 (on hardware shipped with version 1803+) enables IOMMU for Thunderbolt devices only
- Windows 10 Enterprise uses IOMMU for the optional "Virtualization-Based Security" (VBS) feature to protect the hypervisor and containers only
- Thunderbolt access control supported in UEFI firmware and in the kernel
- Usual default mode is SL 1 (ask for permission to connect device)
- More details in the <u>Thunderclap</u> paper

Demo: Unlocking Windows via ExpressCard

Part 5: Attacking MacOS

DMA on MacOS

- Supports IOMMU, but uses shared mappings (a single IOMMU page map that is shared among all devices)
- Memory that is exposed to one device is exposed to all
- Every device has full visibility of network traffic continuously
- Whitelisting for Thunderbolt, many Thunderbolt to PCIe bridges are whitelisted
- More details in the <u>Thunderclap</u> paper

Demo: Leaking Cookies from MacBook Pro 2015 via Thunderbolt

Thunderclap

- Reproduced and documented most of the already known results
- Something new: attacking the kernel over PCIe with IOMMU enabled
- Intel Arria 10 SoC Development Kit (4495 \$)
- More details in the <u>Thunderclap</u> paper
- thunderclap.io

Thanks! Questions?

https://github.com/xairy/hardware-village/tree/master/dma

Andrey Konovalov <andreyknvl@gmail.com>