Homework 4 Connor Baker, February 2017

1. Prove that if R is a partial order or	n a set A , then R^{-1} (the inverse	relation) is also a partial order on A .
Proof.		

2. Let R be a relation on the set A. Prove that if S is a symmetric relation on A, and $R \subseteq S$, then $R^{-1} \subseteq S$.

Proof.

3.	Let R be an antisymmetric relation on the nonempty set A. Prove that if R is symmetric and $dom(R) = A$,
	then $R = I_A$ (the identity relation on A).

Proof.

4. Prove that the subset of every well-ordered set is well ordered.	
Proof.	

5. Prove that R is transitive on a set A if and only if $R \circ R \subseteq R$.

Proof.