

Nano WiReach SMT-G2

Version 1.1.2

iChip, Nano WiReach SMT G2, IP Communication Controller, SerialNET, AT+i and Connect One are trademarks of Connect One Ltd. Copyright © 2014 Connect One Ltd. All rights reserved.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -- Reorient or relocate the receiving antenna.
- -- Increase the separation between the equipment and receiver.
- -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -- Consult the dealer or an experienced radio/TV technician for help.

FCC Radiation Exposure Statement

The modular can be installed or integrated in mobile or fix devices only. This modular cannot be installed in any portable device, for example, USB dongle like transmitters is forbidden.

This modular complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. This modular must be installed and operated with a minimum distance of 20 cm between the radiator and user body.

If the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID:XM5-SMG2SMT or Contains FCC ID:XM5-SMG2SMT

when the module is installed inside another device, the user manual of this device must contain below warning statements;

- 1. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
- (1) This device may not cause harmful interference.
- (2) This device must accept any interference received, including interference that may cause undesired operation.
- 2. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The devices must be installed and used in strict accordance with the manufacturer's instructions as described in the user documentation that comes with the product.

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

This modular complies with RSS-102 radiation exposure limits set forth for an uncontrolled environment. This modular must be installed and operated with a minimum distance of 20 cm between the radiator and user body.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

If the IC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains IC: 8516A-SMG2SMT"

when the module is installed inside another device, the user manual of this device must contain below warning statements;

- 1) This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.
- 2) Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Table of Contents

Re	visic	on History	6
1.	In	troduction	7
	2)	General Description	7
	3)	Hardware Description	9
	4)	Performance Specifications	9
	5)	Internet Protocols	9
	6)	Security Protocols	9
	7)	Application Program Interface (API)	9
	8)	Wireless Specifications	10
	9)	Recommended Antenna	10
	10)	Certification	10
	11)	Installation Requirements	11
2.	Fe	atures	11
	1)	Security	11
	2)	Protocols	11
	3)	Additional Features	11
3.	Ту	pical Applications	12
4.	ΑТ	T+i Command Set	13
5.	La	yout and Pin Description	14
	1)	Layout	14
	2)	Pin Functional Description	14
6.	In	terfaces	16
	1)	Serial Interface	16
	2)	SPI Interface	16
	3)	USB 2.0 Device Interface	16
	4)	RMII Interface	17
	5)	USB 2.0 Host Interface	17

7.	E	Electrical Specifications	18
	1)	Absolute Maximum Ratings	18
;	2)	DC Operating Characteristics	18
3	3)	AC Operating Characteristics	19
4	4)	Transmit Specification	19
ļ	5)	Receive Specifications	19
(6)	On Board Antenna	20
8.	N	Mechanical Dimensions	21
9.	F	PCB Footprint Design Recommendation	22
	1)	Host PCB Footprint	22
;	2)	Antenna Clearance Requirements	22
10.		Evaluation Board	23
11.		Ordering Information	23
Ар	pe	ndix A - Internet Protocol Compliance	24
Ар	pe	ndix B – AT+I Configuration Examples	25
		Automatically connect to a specific Access Point:	25
		Create an Access Point to allow connection from mobile devices:	25
		LAN – WiFi switch mode - merges Ethernet station(s) with WiFi client(s) into one logical subnet.	25
Ар	pe	endix C – Soldering Profile	27

Revision History

Version Date		Description		
1.0 May 14 th 2014 Initial prelin		Initial preliminary version		
1.1 May 21 st 2014		Adding AT+i commands examples		
1.1.1 July 7 th 2014		Updating security features		
1.1.2 July 31, 2014 T		Typo fix		

1. Introduction

2) General Description

Nano WiReach™ SMT G2 is a secure serial-to-Wireless-LAN device module that can perform as a WLAN client or Access Point to connect serial devices to 802.11b/g/n Wireless LANs. It includes the iChip™ CO2144 IP Communication Controller™ chip and Broadcom BCM43362 WiFi chipset. It is packaged in RoHS-compliant ultra-slim form factor and uses an industry standard pin-out. The Nano WiReach SMT G2 can also be interfaced to a 10/100BaseT wired LAN and a USB cellular modem with some external components and glue logic.

Nano WiReach SMT G2 offers and supports large variety of features which among them:

- Ten simultaneous TCP/UDP sockets
- Two listening sockets
- Webserver with two websites
- SMTP and POP3 clients
- DHCP client/server
- POP3 SMTP client with MIME attachment
- FTP client
- TELNET client
- SerialNET™ mode for serial to IP bridging
- Gateway between a local network on it's LAN/WLAN interfaces and a WAN on any of it's other interfaces
- Switch between it's WLAN interface and the Ethernet interface when acting as a WLAN access point
- An Ethernet to WiFi bridge to connect an ETH client to a WiFi network (cable replacement)
- Security gap between the application and the network

Nano WiReach SMT G2 supports the SSL3/TLS1 protocol for secure sockets, HTTPS, FTPS and secure web server. On the WLAN interface it supports: WEP, WPA and WPA2 WiFi encryption.

Nano WiReach SMT G2 minimizes the need to redesign the host device hardware. It features a standard economical SMT footprint providing for low-cost placement on a host PCB with provisions for an on-board or external antenna. Minimal or no software configuration is needed for Nano WiReach SMT G2 to access the Wireless LAN.

Connect One's high-level AT+i[™] API eliminates the need to add WiFi drivers, security and networking protocols and tasks to the host application. The AT+i SerialNET operating mode offers a true plug-and-play mode that eliminates any changes to the host application.

Nano WiReach SMT G2 firmware – the IP stack and Internet configuration parameters – are stored in an external FLASH memory.

The II-EVB-365-G2 evaluation board provides an easy environment for testing the Nano WiReach SMT G2 prior to designing it into your product.

3) Hardware Description

Size: 37.0 x 20.0 x 2.5 mm

Core CPU: 32-bit RISC ARM7TDMI,

Low-leakage, 0.13 micron, at 48MHz

Operating Voltage: +3.3V+/-10%

Operating Humidity: 90% maximum (non-condensing)

Operating Temperature Range: -30°C to +85°C

-22°F to 185°F

Power Consumption (max): Transmit – 350mA@11Mbps, 310mA@54Mbps,

310mA@72Mbps

Receive - 130mA

Antenna: On-Board or U.FL RF Connector

Connection: 44 SMT pads

Host Interface: Serial, SPI, USB Device

A/D Input

Cellular Modem Interface: USB Host

10/100 Base T LAN Interface: RMII (w/ext. PHY)

4) Performance Specifications

Host Data Rate: Up to 3Mbps in serial mode

Serial Data Format (AT+i mode): Asynchronous character; binary; 8 data bits; no parity; 1 stop bit

SerialNET mode: Asynchronous character; binary; 7 or 8 data bits; odd, even, or

no parity; 1 stop bit

Flow Control: Hardware (-RTS, -CTS) and software flow control.

5) Internet Protocols

ARP, ICMP, IP, UDP, TCP, DHCP, DNS, NTP, SMTP, POP3, MIME, HTTP, FTP and TELNET

6) Security Protocols

SSL3/TLS1, HTTPS, FTPS, RSA, AES-128/256, 3DES, RC-4, SHA-1, MD-5, WEP, WPA and WPA2 Accelerated in HW: AES, 3DEC and SHA

7) Application Program Interface (API)

Connect One's AT+i protocol

8) Wireless Specifications

Standards supported: IEEE 802.11b/g/n

Frequency:

USA: 2.412-2.462GHz

Channels:

USA: 11 channels

The on-board antenna is from Antenova, part number: 30 30 A5887 – 01 antenna gain 2.1dBi

9) Approved External Antenna

Connect One's iW-ANT2-BL: 2.4GHz, 2.0dBi, 50Ω, Omni-directional, 1/4 wavelength

Dipole configuration, VSWR≤2.0

Height - 82.5mm, Weight - 6.3 grams

10) Certification

The below is pending certification approval

Radio & EMC:

USA

FCC Modular Approval

CFR Title 47 FCC Part 15, Subpart B and C

Canada

Industry Canada Module Approval

Industry Canada ICES-003, RSS-Gen, RSS-210

ΕU

EN 300 328

EN 301 489

Safety:

UL 60950

CAN/CSA-C22.2 No. 60950

EN 60950, Low Voltage Directive

THIS DEVICE COMPLIES WITH PART 15 OF THE FCC RULES. OPERATION IS SUBJECT TO THE FOLLOWING TWO CONDITIONS: (1) THIS DEVICE MAY NOT CAUSE HARMFUL INTERFERENCE, AND (2) THIS DEVICE MUST ACCEPT ANY INTERFERENCE RECEIVED, INCLUDING INTERFERENCE THAT MAY CAUSE UNDESIRED OPERATION. THE MANUFACTURER IS NOT RESPONSIBLE FOR ANY RADIO OR TV INTERFERENCE CAUSED BY UNAUTHORIZED MODIFICATIONS TO THIS EQUIPMENT. SUCH MODIFICATIONS COULD VOID THE USER'S AUTHORITY TO OPERATE THE EQUIPMENT

11) Installation Requirements

The Nano WiReach SMT must be installed within a full-enclosure device that is safety certified.

2. Features

1) Security

Acts as a security gap between the host application and the network

One secure SSL3/TLS1 socket

Provides WEP, WPA and WPA2 Wireless LAN security

Supports multiple Certificate Authorities and both client-side and server-side authentication

Secure FTP and HTTP clients (over SSL3)

Secure Web Server

Includes a true hardware random number generator

AES, 3DES and SHA accelerated in hardware

2) Protocols

Up to 10 simultaneous TCP/UDP sockets and two listening sockets

HTTP client

HTTP web server with two on-chip websites: configuration site and application site

FTP and TELNET clients

DHCP client and server

POP3 or SMTP client allows sending and receiving textual and binary email with MIME attachments

3) Additional Features

Supports infrastructure Wireless LAN networks

SerialNET mode for serial-to-IP bridging (port server mode)

Local firmware update

Remote configuration and firmware update over the Internet

Note: For a detailed description of all available features, see the AT+i Programmer's Manual.

3. Typical Applications

Adding IP communications over WiFi to serial embedded devices.

Replacing a LAN cable with a WiFi connection.

Adding SSL security to M2M solutions.

LAN to WiFi Bridge - allowing transparent bridging of LAN client over WiFi (Cable replacement), using direct RMII connection to existing MAC hardware or direct PHY-to-PHY connection.

SerialNetTM **Serial to WiFi Bridge** - allowing transparent bridging of Serial over WiFi, using a 3Mbps fast UART. This is a true plug-and-play mode that eliminates any changes to the host application.

PPP modem emulation – allowing existing (i.e. modem) designs currently using PPP to connect transparently over WiFi.

Full Internet Controller mode – allowing simple MCU to use the Nano WiReach SMT's rich protocol and application capabilities to perform complex Internet operations such as E-mail, FTP, SSL, embedded Web server and others. It also acts as a firewall, providing a security gap between the application and the network.

LAN \Leftrightarrow Cellular / WiFi \Leftrightarrow Cellular / LAN \Leftrightarrow WiFi / WiFi \Leftrightarrow LAN Gateway – allowing local systems, communicating over LAN and/or WiFi, to gain WAN access to the Internet. The WAN can be implemented using cellular modem / WiFi / LAN. A user configurable parameter allows the WAN to be configured to one of the iChip network interfaces. This mode includes a DHCP server and NAT to support multiple local systems communicating over a single cellular link.

4. AT+i Command Set

The iW-SMG2SMT is configured and controlled using proprietary AT+i protocol. You can create a quick configuration using our AT+i Configuration Wizard located in Connect One's website http://www.connectone.com. In addition, the AT+i Programmer's Manual includes commends description and format of the entire AT+i command set.

Please refer to Appendix B for examples of module configuration using AT+i command set.

5. Layout and Pin Description

1) Layout

2) Pin Functional Description

Pin	Signal	Туре	Description
1	GND	Power	
2	HDM	Analog	USB Host negative
3	HDP	Analog	USB Host positive
4	nRESET	Input	Reset Module. Pull LOW for 100mSec to Reset
5	PIOC4	I/O	General In/Output Port
6	MSEL	Input	Mode select. Used for inducing rescue mode and forced local
			FW-update.
7	DATA_RDY	Output	Data ready. Signals incoming Internet data.
8	ETX_EN	Output	RMII Transmit Enable
9	REFCLK	Input	RMII Reference Clock 50Mhz
10	ETX0	Output	RMII transmit Data 0
11	ETX1	Output	RMII transmit Data 1
12	CRSDV	Input	RMII Carrier sense and Data Valid
13	ERX0	Input	RMII Receive Data 0
14	ERX1	Input	RMII Receive Data 1

15	ERXER	Input	RMII Receive Error
16	EMDC	Output	Management data Clock
17	EMDIO	I/O	Management data I/O
18	PIOC5	I/O	General In/Output Port
19	VBUS	Output	VBUS for USB Host
20	Readiness	Output	iChip Ready status line. See AT+I programmers manual.
21	PIOC3	I/O	General In/Output Port
22	VDD	Power	3.3V
23-31	GND	Power	
32	nRF_LED	Output	RF LED indicator
33	ACH	Input	Analog Input
34	SPI1_CLK	Input	SPI 1 clock for host (Max 12MHz)
35	nSPI1_CS	Input	SPI 1 chip select for host
36	SPI1_MISO	Output	SPI 1 slave out for host master in
37	SPI1_MOSI	Input	SPI 1 slave in for host master out
38	SPI1_INT	Output	SPI 1 have data on his buffer
39	TXD0	Output	UART 0 transmit
40	RXD0	Input	UART 0 receive
41	nCTS0	Input	UART 0 clear to send
42	nRTS0	Output	UART 0 request to send
43	DDM	Analog	USB device negative
44	DDP	Analog	USB device positive

6. Interfaces

1) Serial Interface

Nano SMT G2 Pins

2) SPI Interface

Nano SMT G2 Pins

3) USB 2.0 Device Interface

4) RMII Interface

Nano SMT G2 Pins

5) USB 2.0 Host Interface

7. Electrical Specifications

1) Absolute Maximum Ratings

Parameter	Rating
Voltage at any pin with respect to ground	-0.3V to +3.6V
Operating Temperature	-30°C to +85°C -22°F to +185°F
Storage Temperature	-40°C to +85°C -40°F to +185°F

2) DC Operating Characteristics

Parameter	Min	Typical	Max	Units
VDD	3.0	3.3	3.6	Volts
High Level Input	2.0		VDD I/O +0.3	Volts
Low Level Input	-0.3		0.8	Volts
High Level Output @2mA	VDD I/O -0.4			Volts
High Level Output @0mA	VDD I/O-0.2			Volts
Low Level Output @2mA			0.4	Volts
Low Level Output @0mA			0.2	Volts
Input Leakage Current			10	μΑ
Power Supply Current from VDD (Tx. Mode)			350	mA
Power Supply Current from VDD (Rcv. Mode)			130	mA
Power Supply Current from VDD (Power Save			TBD	mA
Mode)				
Input Capacitance			5.3	pF
Radio Frequency Range	2.412		2.484	GHz

3) AC Operating Characteristics

4) Transmit Specification

Item	Condition		Min	Тур	Max	Unit
Transmit Power Levels	s 802.11b		15	17	19	dBm
	802.11g		12	14	16	dBm
	802.11n		10	12	14	dBm
Transmit Error vector	802.11b	11Mbps		-13	-11	dB
Magnitude		1Mbps		-13	-11	dB
	802.11g	54Mbps		-30	-25	dB
		6Mbps		-30	-22	dB
	802.11n	HT20M@MCS0		-30	-22	dB
		HT20M@MCS0		-30	-28	dB

5) Receive Specifications

Item	Condition	Min	Тур	Max	Unit
Receiver Minimum	802.11b Data Rate = 11Mbps PER < 8%		-87	-83	dBm
Input Level Sensitivity	802.11b Data Rate = 1Mbps PER < 8%		-94	-89	dBm
	802.11g Data Rate = 54Mbps PER <10%		-73	-68	dBm
	802.11g Data Rate = 6Mbps PER <10%		-86	-81	dBm
	802.11n MCS0 PER <10%		-86	-81	dBm
	802.11n MCS7 PER <10%		-70	-65	dBm

6) On Board Antenna

Designed for 2.4Ghz Operation

Peak Gain 2.1dBi
Average efficiency: 75%

Max Return Loss: -11dBi

Max VSWR: 1, 8:1

Antenna Patterns

8. Mechanical Dimensions

UPPER VIEW

BOTTOM VIEW

All measurements are in millimeters +/- 0.2mm

9. PCB Footprint Design Recommendation

1) Host PCB Footprint

2) Antenna Clearance Requirements

10. Evaluation Board

The II-EVB-365-G2 evaluation board enables you to evaluate the Nano WiReach SMT G2 without changing anything in your current development environment. Using a simple Windows-based application on a PC, you can issue AT+i commands.

AT+i commands are used to configure parameter values into iChip's flash memory and activate Internet tasks such as email send, sockets, FTP sessions, configuration, and more.

A full description of AT+i commands can be found in the *AT+i Programmer's Manual* on Connect One's website.

To help you evaluate the Nano WiReach SMT G2, Connect One supplies the iChip Config Utility. This is a Windows-based application that contains intuitive dialog boxes to fully configure iChip CO2144. It doesn't require any knowledge of AT+i commands. It also contains local firmware update tools. The iChip Config Utility allows you to perform specific Internet communication tasks such as sending and receiving emails, activating iChip's websites, entering SerialNET mode, and more. The latest iChip Config Utility version and user manual can be found on Connect One's website under the Support section.

On board connectors allow a choice of Host interfaces:

- RS232 COM port
- SPI
- USB Device

11. Ordering Information

Part Number	Description
iW-SMG2SMT-EX	Nano WiReach SMT-G2 module, Surface Mounting, External Antenna
iW-SMG2SMT-OB	Nano WiReach SMT-G2 module, Surface Mounting, On Board Antenna

Appendix A - Internet Protocol Compliance

Nano WiReach SMT G2 complies with the Internet standards listed in the following table

	11			
RFC 768	User datagram protocol (UDP)			
RFC 791	Internet protocol (IP)			
RFC 792	ICMP – Internet control message protocol			
RFC 793	Transmission control protocol (TCP)			
RFC 821	Simple mail transfer protocol (SMTP)			
RFC 822	Standard for the format of ARPA Internet text messages			
RFC 826	Ethernet address resolution protocol (ARP)			
RFC 959	File transfer protocol (FTP)			
RFC 854	TELNET protocol specification			
RFC 857	Telnet ECHO option			
RFC 858	Telnet suppress go-ahead option			
RFC 1034	Domain names (DNS) - concepts and facilities			
RFC 1035	Domain names (DNS) - implementation and specification			
RFC 1073	Telnet window size option			
RFC 1091	Telnet terminal type option			
RFC 1321	MD5 message digest algorithm			
RFC 1939	Post office protocol - version 3 (POP3)			
RFC 1957	Some observations on the implementations of the post office protocol (POP3)			
RFC 2030	Simple network time protocol (SNTP)			
RFC 2045	Multipurpose Internet mail extensions (MIME) part one: internet message body format			
RFC 2046	MIME part two: media types			
RFC 2047	MIME part three: message header extensions for non-ASCII text			
RFC 2048	MIME part four: registration procedures			
RFC 2049 MIME part five: conformance criteria and examples				
RFC 2068	Hypertext transfer protocol HTTP/1.1			
RFC 2131	Dynamic host configuration protocol (DHCP)			
RFC 2132	DHCP options (only relevant parts)			
RFC 2228	FTP security extensions			
RFC 2246	The TLS protocol version 1.0			

Appendix B – AT+I Configuration Examples

Automatically connect to a specific Access Point:

AT+iFD (restore to factory defaults)

AT+iHIF=1 (set the serial interface to RS232)

AT+iBDRF=9 (fix baud rate to 115200 after power cycle)

AT+iRP20 (list visible networks)

AT+iWLSI=My_WiFi

AT+iWST0=4 (WPA2 security)

AT+iWPP0=<WPA2 passphrase>

AT+iAWS=1 (enable website upon reboot)

AT+iDOWN (reboot to apply settings)

Create an Access Point to allow connection from mobile devices:

AT+iFD (restore to factory defaults)

AT+iHIF=1 (set the serial interface to RS232)

AT+iBDRF=9 (fix baud rate to 115200 after power cycle)

AT+iWLSI=My_AP

AT+iDIP=10.0.0.1 (IP address)

AT+iDPSZ=8 (Enable internal DHCP server, up to 8 clients)

AT+iWST0=0 (open security)

AT+iAWS=1 (enable website upon reboot)

AT+iDOWN (reboot to apply settings)

LAN – WiFi switch mode - merges Ethernet station(s) with WiFi client(s) into one logical subnet

AT+iFD (restore to factory defaults)

AT+iHIF=1 (set the serial interface to RS232)

AT+iBDRF=9 (fix baud rate to 115200 after power cycle)

AT+iwlsi=SWITCH

AT+idpsz=8 (Enable internal DHCP server, up to 8 clients)

AT+iwst0=0 (open security)

AT+iltyp=4 (LAN type: WiFi+Ethernet)

AT+idip=192.168.0.1 (WiFi side IP address)

AT+isnet=255.255.255.0 (WiFi side subnet mask)

Nano WiReach SMT G2 –Datasheet

AT+iedip=192.168.0.100 (Ethernet side IP address)

AT+iesnt=255.255.255.0 (Ethernet side subnet mask)

AT+istap=1 (WiFi in Access Point mode)

AT+iswen=1 (Enable Switch Mode)

Appendix C – Soldering Profile

Solder Paste: LEAD FREE

Statistic Name	Low Limit	High Limit	Units
Max Rising Slope (Target=2.0)	0	4	Degrees/Second
(Calculate Slope over 20 Seconds)			
Soak Time 110-180C	60	120	Seconds
Time Above Reflow - 220C	30	50	Second
Peak Temperature	235	250	Degrees Celsius