- 18. Let $P(X) \in \mathbf{Q}[X]$ be a polynomial in one variable with rational coefficients. It may happen that $P(n) \in \mathbf{Z}$ for all sufficiently large integers n without necessarily P having integer coefficients.
 - (a) Give an example of this.

Proof. The value of $\binom{X}{2} = \frac{1}{2}X^2 + \frac{1}{2}X$ at $X = n \in \mathbf{Z}$ is the number of ways to choose 2 elements from a collection of n, which must be integral.

(b) Assume that P has the above property. Prove that there are integers c_0, c_1, \ldots, c_r such that

$$P(X) = c_r {X \choose r} + c_{r-1} {X \choose r-1} + \dots + c_0$$

where

$$\binom{X}{r} = \frac{1}{r!}X(X-1)\cdots(X-r+1)$$

is the binomial coefficient function. In particular, $P(n) \in \mathbf{Z}$ for all n. Thus we may call P integral valued.

Lemma. For a sequence a_n , let Δ be the difference operator $\Delta a_n = a_{n+1} - a_n$. Then

$$\Delta^k a_n = \sum_{i=0}^k \binom{k}{i} (-1)^i a_{n+k-i} \quad and \quad a_{n+k} = \sum_{i=0}^k \binom{k}{i} \Delta^i a_n.$$

Proof of lemma. By induction. Both clearly hold for k=0. Suppose they hold for some k.

$$\begin{split} \Delta^{k+1}a_n &= \Delta^k a_{n+1} - \Delta^k a_n \\ &= \sum_{i=0}^k \binom{k}{i} (-1)^i a_{n+k-i+1} + \sum_{i=0}^k \binom{k}{i} (-1)^{i+1} a_{n+k-i} \\ &= \binom{k}{0} a_{n+k+1} + \sum_{i=0}^{k-1} \binom{k}{i+1} (-1)^{i+1} a_{n+k-i} + \sum_{i=0}^{k-1} \binom{k}{i} (-1)^{i+1} a_{n+k-i} + \binom{k}{k} (-1)^{k+1} a_n \\ &= \binom{k+1}{0} a_{n+k+1} + \sum_{i=0}^{k-1} \binom{k+1}{i+1} (-1)^{i+1} a_{n+k-i} + \binom{k+1}{k+1} (-1)^{k+1} a_n \\ &= \binom{k+1}{0} a_{n+k+1} + \sum_{i=1}^k \binom{k+1}{i} (-1)^i a_{n+(k+1)-i} + \binom{k+1}{k+1} (-1)^{k+1} a_n \\ &= \sum_{i=0}^{k+1} \binom{k+1}{i} (-1)^i a_{n+(k+1)-i} \\ a_{n+k+1} &= a_{n+k} + \Delta a_{n+k} \\ &= \sum_{i=0}^k \binom{k}{i} \Delta^i a_n + \sum_{i=0}^k \binom{k}{i} \Delta^{i+1} a_n \\ &= \binom{k}{0} \Delta^0 a_n + \sum_{i=0}^{k-1} \binom{k}{i+1} \Delta^{i+1} a_n + \sum_{i=0}^{k-1} \binom{k}{i} \Delta^{i+1} a_n + \binom{k}{k} \Delta^{k+1} a_n \\ &= \binom{k+1}{0} \Delta^0 a_n + \sum_{i=0}^{k-1} \binom{k+1}{i+1} \Delta^{i+1} a_n + \binom{k+1}{k+1} \Delta^{k+1} a_n \\ &= \sum_{i=0}^{k+1} \binom{k+1}{i} \Delta^i a_n \end{split}$$

Proof. Suppose there is some N such that $P(n) \in \mathbf{Z}$ for all n > N. Define a sequence $a_n = p(N + d - n + 1)$, where d - 1 is the degree of the polynomial. We want to show that $a_{d+1} = P(N) \in \mathbf{Z}$, since this will inductively imply that $P(n) \in \mathbf{Z}$ for all $n \in \mathbf{Z}$. For any polynomial f of degree d - 1, the degree of $\Delta f(X)$ is strictly less than that of f(X), and so $\Delta^d f(X)$ is the zero polynomial. Therefore, by the lemma, we know that $\Delta^k a_1 \in \mathbf{Z}$ for all $k \in \{1, \ldots, d\}$, since $\Delta^k a_1$ is a \mathbf{Z} -linear combination of a_1, \ldots, a_{k+1} . Since a_{d+1} is a \mathbf{Z} -linear combination of a_1, \ldots, a_d , we have $P(N) = a_{d+1} \in \mathbf{Z}$, as desired. So we have $P(\mathbf{Z}) \subseteq \mathbf{Z}$.

Now, take the sequence $a_n = P(n)$. We know the elements are integral and hence so are the kth differences. For any $n \ge d$, we have by the lemma

$$P(n) = a_n = \sum_{k=0}^{n} \binom{n}{k} \Delta^k P(0) = \sum_{k=0}^{d-1} \binom{n}{k} \Delta^k P(0)$$

because $\Delta^k P(0) = 0$ for $k \geq d$. Taking any d integers greater than d, we see that P agrees at these points with the polynomial

$$\sum_{k=0}^{d-1} {X \choose k} \Delta^k P(0).$$

Since d points define a degree d-1 polynomial, this must be P(X), which thus takes the stated form.

(c) Let $f: \mathbf{Z} \to \mathbf{Z}$ be a function. Assume that there exists an integral valued polynomial Q such that the difference function Δf defined by

$$(\Delta f)(n) = f(n) - f(n-1)$$

is equal to Q(n) for all n sufficiently large positive. Show that there exists an integral-valued polynomial P such that f(n) = P(n) for all n sufficiently large.

Proof. There is some N such that $\Delta f(n) = Q(n)$ for n > N. Define a sequence $a_n = f(N+n)$. Then $\Delta^{k+1}a_1 = \Delta^k Q(N+1)$ for all $n \in \mathbb{N}$. By the lemma, we have $P(N+k) = a_k = \sum_{i=0}^k \binom{k}{i} \Delta^i a_1 = a_1 + \sum_{i=0}^k \binom{k}{i+1} \Delta^i Q(N+1)$ for all $k \in \mathbb{N}$. Again, taking n greater than the degree d-1 of Q, we get

$$f(N+n) = a_1 + \sum_{i=0}^{d-1} \binom{n}{i+1} \Delta^i Q(N+1).$$

Therefore, for large n, f is the polynomial

$$f(X) = a_1 + \sum_{i=0}^{d-1} {X - N \choose i+1} \Delta^i Q(N+1).$$

1. Let $E = \mathbf{Q}(\alpha)$, where α is a root of the equation

$$\alpha^3 + \alpha^2 + \alpha + 2 = 0.$$

Express $(\alpha^2 + \alpha + 1)(\alpha^2 + \alpha)$ and $(\alpha - 1)^{-1}$ in the form

$$a\alpha^2 + b\alpha + c$$

with $a, b, c \in \mathbf{Q}$.

Proof. We employ the division algorithm:

$$(\alpha^2 + \alpha + 1)(\alpha^2 + \alpha) = (\alpha + 1)(\alpha^3 + \alpha^2 + \alpha + 2) + (-2x - 2) = -2x - 2.$$

Next, we know that $\alpha - 1$ and $\alpha^3 + \alpha^2 + \alpha + 2$ are relatively prime, we can express 1 as a linear combination of them:

$$0 = \alpha^3 + \alpha^2 + \alpha + 2 = (\alpha^2 + 2\alpha + 3)(\alpha - 1) + 5$$
$$\implies (\alpha - 1)^{-1} = -\frac{1}{5}\alpha^2 - \frac{2}{5}\alpha - \frac{3}{5}.$$

2. Let $E = F(\alpha)$ where α is algebraic over F, of odd degree. Show that $E = F(\alpha^2)$.

Proof. Let 2n+1 be the degree of $F(\alpha)$. Then $\{\alpha, \alpha^2, \dots, \alpha^{2n+1}\}$ is a basis for $F(\alpha)$ over F. $\{\alpha^2, \alpha^4, \dots, \alpha^{2n}\}$ is linearly independent, but cannot span $F(\alpha^2)$ since the degree of this extension must divide 2n+1. So there is some $\alpha^{2k+1} \in F(\alpha^2)$. But then $\frac{\alpha^{2k+1}}{\alpha^{2k}} = \alpha \in F(\alpha^2)$, so $F(\alpha^2) = F(\alpha)$ (since the other inclusion is trivial).

3. Let α and β be two elements which are algebraic over F. Let $f(X) = \min_F(\alpha)$ and $g(X) = \min_F(\beta)$. Suppose that deg f and deg g are relatively prime. Show that g is irreducible in the polynomial ring $F(\alpha)[X]$.

Proof. Note $\deg(g) = [F(\beta): F]$ divides $[F(\alpha, \beta): F(\beta)]F[(\beta): F] = [F(\alpha, \beta): F(\alpha)]F[(\alpha): F]$. Since $\deg(g)$ and $F[(\alpha): F] = \deg(f)$ are relatively prime, $\deg(g)$ divides $[F(\alpha, \beta): F(\alpha)]$, which is the degree of $\min_{F(\alpha)}(\beta)$. However, this polynomial divides g, and so $[F(\alpha, \beta): F(\alpha)] \leq \deg(g)$. Therefore, we must have the equality $\deg(g) = \deg\min_{F(\alpha)}(\beta)$, and so $g = \min_{F(\alpha)}$. Thus g is irreducible over $F(\alpha)$.

4. Let α be the real positive fourth root of 2. Find all the intermediate fields in the extension $\mathbf{Q}(\alpha)$ of \mathbf{Q} .

Proof. The only intermediate field is $\mathbf{Q}(\sqrt{2})$. The minimal polynomial for α is X^4-2 , and $\mathbf{Q}(\alpha)$ is an extension of degree 4. An intermediate extension E must then have degree 2, and the minimal polynomial g(X) of α over E must divide X^4-2 . Clearly g has real coefficients, and so the only possibility is $g(X)=X^2-\sqrt{2}$. So any intermediate extension must contain $\mathbf{Q}(\sqrt{2})$. Since this has degree 2, it is the only intermediate extension.

5. If α is a complex root of $X^6 + X^3 + 1$, find all the homomorphisms $\sigma : \mathbf{Q}(\alpha) \to \mathbf{C}$.

Proof. Because α generates the extension, its image will determine σ . Since $\sigma(\alpha)^6 + \sigma(\alpha)^3 + 1 = 0$, the only possible images for α are the roots of this polynomial. Furthermore, and such mapping gives a homomorphism, since they can be viewed as homomorphisms induced by those from $\mathbf{Q}(X)$: $\mathbf{Q}(\alpha) \cong \mathbf{Q}[X]/(X^6 + X^3 + 1)$, and such a σ contains $(X^6 + X^3 + 1)$ in its kernel, hence it factors through $\mathbf{Q}(\alpha)$.

Suppose β is a root. β^3 is a root of X^2+X+1 and so is a primitive cube root of unity, thus β must be a primitive 9th root of unity. So the possible maps are $\alpha \mapsto e^{k\frac{2\pi i}{9}}$ where $k \in \{1, 2, 4, 5, 7, 8\}$.

6. Show that $\sqrt{2} + \sqrt{3}$ is algebraic over **Q**, of degree 4.

Proof. The polynomial $f(X) = X^4 - 10X^2 + 1$ has $\sqrt{2} + \sqrt{3}$ as a root. In fact, its four roots are $\pm \sqrt{3} \pm \sqrt{2}$. If f were reducible over \mathbf{Q} , then some product of two of these roots would have to be rational, which is obviously false. So f is the minimal polynomial of $\sqrt{2} + \sqrt{3}$, meaning this number has degree 4 over \mathbf{Q} .

7. Let E, F be two finite extensions of a field k, contained in a larger field K. Show that

$$[EF:k] \le [E:k][F:k].$$

If [E:k] and [F:k] are relatively prime, show that one has an equality sign in the above relation.

Proof. Let $\{\alpha_1, \ldots, \alpha_m\}$ and $\{\beta_1, \ldots, \beta_n\}$ be bases for E and F over K, respectively. Then $EF = E(\beta_1, \ldots, \beta_m)$, so $[EF : E] \leq m = [F : K]$. Therefore, the inequality holds by the tower property. Now, since [EF : E][E : k] = [EF : F][F : k], if [E : k] and [F : k] are relatively prime then [F : k] divides [EF : E]. Therefore, the inequality $[EF : E] \leq [F : K]$ must be an equality, and so we have [EF : k] = [E : k][F : k].