BIOCARTA AKAPCENTROSOME PATHWAY—14																								
KEGG GAP JUNCTION—89	-		+		\vdash	+		+									 			2 1		•	++	-
KEGG HEDGEHOG SIGNALING PATHWAY—56			+																				+	
KEGG PATHOGENIC ESCHERICHIA COLI INFECTION—55			+		1															2 1		•	++	
NABA CORE MATRISOME—272		•						•											•					
NABA ECM GLYCOPROTEINS—193								•											•			•	•	
NABA MATRISOME—1015		•			9	•		•				•							•			•	•	•
PID LKB1 PATHWAY—47														<u>Q</u>			2							
REACTOME ACTIVATION OF AMPK DOWNSTREAM OF NMDARS—28														•			•			2 1	2	•		
REACTOME ACTIVATION OF NMDA RECEPTORS AND POSTSYNAPTIC EVENTS—92														•			1			2 1	1	•	\perp	
REACTOME ACTIVATION OF SMO—18					1	•					•												$\perp \perp$	
REACTOME ADAPTIVE IMMUNE SYSTEM—781									•	•								• •		•		•	\perp	
REACTOME ASPARAGINE N LINKED GLYCOSYLATION—302																2				21	¥Ω	•	\perp	_
REACTOME ASSEMBLY AND CELL SURFACE PRESENTATION OF NMDA RECEPTORS—42			_												\perp					2 2	1	•	+	_
REACTOME AXON GUIDANCE—548			_			•	•	_										-	-		44		+	_
REACTOME CARBOXYTERMINAL POST TRANSLATIONAL MODIFICATIONS OF TUBULIN—42	_		+		\vdash	-		_	+						$\overline{}$				+		44		+	_
REACTOME CELLULAR RESPONSES TO EXTERNAL STIMULI—525 REACTOME CILIUM ASSEMBLY—199			+		\vdash	+			+						+				+				+	_
REACTOME CLASS B 2 SECRETIN FAMILY RECEPTORS—94																				*			+	
REACTOME COOPERATION OF PREFOLDIN AND TRIC CCT IN ACTIN AND TUBULIN FOLDING—33			_			_			+						\dashv	_				2 1			+++	_
REACTOME COOPERATION OF PREFOLDIN AND TRIC CCT IN ACTIN AND TOBOLIN FOLDING—35 REACTOME COPI DEPENDENT GOLGI TO ER RETROGRADE TRAFFIC—99			+						+								++		+				++	
REACTOME COI I DEI ENDENT GOLGI TO ER RETROGRADE TRAFFIC—52			+	+											++		+		+			•	++	
REACTOME COPI MEDIATED ANTEROGRADE TRANSPORT—101	\vdash		+		\vdash			+	+								++		+			•	++	
REACTOME CRMPS IN SEMA3A SIGNALING—16			+			•	•		+								++		+				+	
REACTOME DEVELOPMENTAL BIOLOGY—1095			+		\Box	•	•								•		++	•		•		•	+	
REACTOME ER TO GOLGI ANTEROGRADE TRANSPORT—154																•	•		+	9 9	2	•		
REACTOME FACTORS INVOLVED IN MEGAKARYOCYTE DEVELOPMENT AND PLATELET PRODUCTION—167																				2 9		•	\top	
REACTOME FORMATION OF TUBULIN FOLDING INTERMEDIATES BY CCT TRIC—26																				2 5	Ì	•		
REACTOME GAP JUNCTION ASSEMBLY—37																				2,5	N	•		
REACTOME GAP JUNCTION TRAFFICKING AND REGULATION—50																				2 1	N	•		
REACTOME GOLGI TO ER RETROGRADE TRANSPORT—133																2				21	\mathbf{S}	•		
REACTOME GPCR LIGAND BINDING—453			0			0																		0
REACTOME HEDGEHOG OFF STATE—111																		•		2 1	1	•	\perp	
REACTOME HEDGEHOG ON STATE—84			\perp			•					•							•					\perp	
REACTOME HSP90 CHAPERONE CYCLE FOR STEROID HORMONE RECEPTORS SHR—53																				2 1	1	•	\perp	
REACTOME INTRAFLAGELLAR TRANSPORT—54			\perp																\perp	2 1	11	•	\perp	
REACTOME INTRA GOLGI AND RETROGRADE GOLGI TO ER TRAFFIC—202			_			\perp														2 2	1	•	+	
REACTOME KINESINS—60			_																	2 2	42	•	+	_
REACTOME L1CAM INTERACTIONS—118			+			-					+			+	\rightarrow	+					44		+	
REACTOME MHC CLASS II ANTIGEN PRESENTATION—110 REACTOME MITOTIC G2 G2 M PHASES—195			_			_									+						#		+	
REACTOME MITOTIC G2 G2 M FHASES—193 REACTOME MITOTIC METAPHASE AND ANAPHASE—199			+		\vdash	-			+						+						*		+	\dashv
REACTOME MITOTIC PROMETAPHASE—199 REACTOME MITOTIC PROMETAPHASE—196			+																		**		+	
REACTOME NEURONAL SYSTEM—409			+																		*		+++	
REACTOME NEUROTRANSMITTER RECEPTORS AND POSTSYNAPTIC SIGNAL TRANSMISSION—204			+			+			+						++			-					+	\dashv
REACTOME ORGANELLE BIOGENESIS AND MAINTENANCE—291			+												1					• •		•	+	
REACTOME POST CHAPERONIN TUBULIN FOLDING PATHWAY—23			+					+	+									+ +	+			•	++	
REACTOME POST TRANSLATIONAL PROTEIN MODIFICATION—1417			+	+					•	•	•		•			•	•	•		•		•	+	-
REACTOME PREFOLDIN MEDIATED TRANSFER OF SUBSTRATE TO CCT TRIC—28			\top											+						2	•	•	+	
REACTOME PROTEIN FOLDING—100																				2 9	1	•	\top	
REACTOME RECRUITMENT OF NUMA TO MITOTIC CENTROSOMES—93																				2 1	2	•		
REACTOME RECYCLING PATHWAY OF L1—48						•														2 1	2	•		
REACTOME RESOLUTION OF SISTER CHROMATID COHESION—125																				21	2	•		
REACTOME RHO GTPASES ACTIVATE FORMINS—139				•						1										21	2	•		
REACTOME RHO GTPASES ACTIVATE IQGAPS—31																				21	2	•	\perp	
REACTOME RHO GTPASE EFFECTORS—320			\perp	•						1	_									21	12	•	\perp	
REACTOME SIGNALING BY HEDGEHOG—148											-									11	12			
REACTOME SIGNALING BY RHO GTPASES—449																	+-			! !			+	
REACTOME SIGNALING BY WNT—322 REACTOME THE ROLE OF GTSE1 IN G2 M PROGRESSION AFTER G2 CHECKPOINT—75			+		•				+					++			+-						++	
REACTOME THE ROLE OF GISEI IN G2 M PROGRESSION AFTER G2 CHECKPOINT—75 REACTOME TRANSLOCATION OF SLC2A4 GLUT4 TO THE PLASMA MEMBRANE—71			+																				+	
REACTOME TRANSLOCATION OF SLC2A4 GLU14 TO THE PLASMA MEMBRANE—71 REACTOME TRANSMISSION ACROSS CHEMICAL SYNAPSES—269	\vdash		+																+				++	
REACTOME TRANSPORT OF CONNEXONS TO THE PLASMA MEMBRANE—20			+	+	\vdash	+		+	+									+-	++				++	\dashv
REACTOME TRANSPORT TO THE GOLGI AND SUBSEQUENT MODIFICATION—185	\vdash		+	+					+							•			+			•	+++	-
REACTOME VESICLE MEDIATED TRANSPORT—722	\vdash		+						+										+				+	\dashv
WNT SIGNALING—89			+	•											+				+				•	•
	ىر 	A1 -	R1		,T1	$\frac{\text{DHH}}{\text{YSL2}}$	3L5 -	IN1 A3)111)31	712 SS.	H15 - 2D -)6B P2	PT)1R 	NSF VUT2	EB G1	P1 W1 W1	3S1	1A 1B	110	BB3	F11	
	AGBL	COL15A	CRHR	DAAM1	DACTI	DHE DPYSE.	DPYSL	EMILINI EPHA:	FBXO1	FBXO31 FMNL3	ALNT12 GAS8	ITIH5 KMT2D	LYPD6B MAP2	MAPT	MC1R MEIS1	NSE POFUT	PREB PRKAG1	RASGRP1 SHFM1	THBS	TUBA1A TUBA1B	TUBA1C	TUBB3 VIT	WISP1	WNT3
		ٽ ٽ)	. ¬		I	П	ш	Н	-	GA	_	П			Ь	Ъ	\mathbf{R}^L		L L	L			