Relevant Logics:

Proof Theory and Model Theory

Jingde Cheng

Saitama University

Relevant Logics: Proof Theory and Model Theory

- ♦ Formal Language of Relevant Logics
- ♦ Hilbert Style Axiomatic Systems of Relevant Logics
- ♦ Various Properties of Relevant Logics
- Model Theory for Relevant Logics
- ◆ Natural Deduction Systems of Relevant Logics
- ◆ Sequent Calculus Systems of Relevant Logics
- ♦ Semantic Tableau Systems of Relevant Logics
- Bibliography

Pioneers' Seminal / Primitive Works

- ♦ W. Ackermann, "Begrundung Einer Strengen Implikation," The Journal of Symbolic Logic, Vol. 21, pp. 113-128, 1956 (in German).
- S-K. Moh, "The Deduction Theorems and Two New Logical Systems," Methodos, Vol. 2, pp. 56-75, 1950.
- A. Church, "The Weak Theory of Implication," in A. Menne, A. Wilhelmy, and H. Angsil (Eds.), "Kontrolliertes Denken, Untersuchungen zum Logikkalkul und zur Logik der Einzelwissenschaften," pp. 22-37, 1951.
- ◆ I. E. Orlov, "The Calculus of Compatibility of Propositions," Matematicheskii Sbornik, Vol. 35, pp. 263-286, 1928 (in Russian). (Known by the community of relevant logic from a report in 1990 by K. Dosen)

Major Reference Books on Relevant Logics

- A. R. Anderson and N. D. Belnap Jr., "Entailment: The Logic of Relevance and Necessity," Vol. I, Princeton University Press, Princeton, 1975. [A&B-E1-75]
- A. R. Anderson, N. D. Belnap Jr., and J. M. Dunn, "Entailment: The Logic of Relevance and Necessity," Vol. II, Princeton University Press, Princeton, 1992. [A&B&D-
- ♦ E. D. Mares, "Relevant Logic: A Philosophical Interpretation," Cambridge University Press, Cambridge, 2004. [M-RL-04]
- S. Read, "Relevant Logic: A Philosophical Examination of Inference," Basil Blackwell, Oxford, 1988, 2012 (Corrected Edition). [R-RL-12]

Reference Books on Relevant Logics

- M. R. Diaz, "Topics in the Logic of Relevance," Philosophia Verlag,
- R. Routley, V. Plumwood, R. K. Meyer, and R. T. Brady, "Relevant Logics and their Rivals, Part I, The Basic Philosophical and Semantical Theory," Ridgeview, Atascadero, California, 1982.
- J. Norman and R. Sylvan (Eds.), "Directions in Relevant Logic," Kluwer Academic, Dordrecht, 1989.
- D. M. Gabbay and J. Woods, "Agenda Relevance: A Study in Formal Pragmatics," Elsevier, Amsterdam, 2003.
- R. Brady (Ed.), "Relevant Logics and their Rivals, Volume II, A Continuation of the Work of Richard Sylvan, Robert Meyer, Val Plumwood, and Ross Brady," Ashgate Publishing, Farnham, 2003.
- G. Restall, "An Introduction to Substructural Logics," Routledge, London, 2000.
- G. Priest, "An Introduction to Non-Classical Logic: From If to Is," Cambridge University Press, Cambridge, 2001, 2008 (2nd Edition).

Major Survey Articles on Relevant Logics

- J. M. Dunn, "Relevance Logic and Entailment," in D. Gabbay and F. Guenthner (eds.), "Handbook of Philosophical Logic," Vol. III, pp. 117-224, D. Reidel, Dordrecht, 1986. [D-RL-86]
- E. D. Mares and R. K. Meyer, "Relevant Logics," in L. Goble (Ed.), "The Blackwell Guide to Philosophical Logic," pp. 280-308, Blackwell, Oxford, 2001. [M&M-RL-01]
- J. M. Dunn and G. Restall, "Relevance Logic," in D. Gabbay and F. Guenthner (Eds.), "Handbook of Philosophical Logic, 2nd Edition," Vol. 6, pp. 1-128, Kluwer Academic, Dordrecht, 2002. [D&R-RL-02]
- E. D. Mares, "Relevance Logic," in D. Jacquette (Ed.), "A Companion to Philosophical Logic," pp. 609-627, Blackwell, Oxford, 2002. [M-RL-02]
- K. Bimbo, "Relevance Logics," in D. Jacquette (Ed.), "Philosophy of Logic," pp. 723-789, Elsevier, Amsterdam, 2007. B-RL-07
- E. D. Mares, "Relevance Logic," in Stanford Encyclopedia of Philosophy, Center for the Study of Language and Information (CSLI), Stanford University, 2012. [M-RL-12]

Relevant Logics: Proof Theory and Model Theory

- ◆ Formal Language of Relevant Logics
- ♦ Hilbert Style Axiomatic Systems of Relevant Logics
- ♦ Various Properties of Relevant Logics
- ♦ Model Theory for Relevant Logics
- Natural Deduction Systems of Relevant Logics
- ◆ Sequent Calculus Systems of Relevant Logics
- ◆ Semantic Tableau Systems of Relevant Logics
- Bibliography

Formal Language of Propositional Relevant Logics

Alphabet (Symbols)

$$\{\neg, \rightarrow, \land, \lor, \leftrightarrow, \Rightarrow, \otimes, \oplus, \leftrightarrow, L, \top, \bot, (,), p_1, p_2, ..., p_n, ...\}$$

Extensional connectives

$$\neg$$
, \rightarrow , \wedge , \vee , \leftrightarrow

Intensional connectives

Propositional constants (Propositional constant symbols)

Propositional variables (Proposition symbols)

 $p_1, p_2, ..., p_n, ...,$

Formal Language of Predicate Relevant Logics

Alphabet (Symbols)

$$\begin{split} \{ & \neg, \rightarrow, \land, \lor, \leftrightarrow, \Rightarrow, \otimes, \oplus, \leftrightarrow, L, \bigvee, \exists, \top, \bot, (,), \\ & x_1, x_2, \dots, x_n, \dots, c_1, c_2, \dots, c_n, \dots, \\ & f_1^1, \dots, f_n^1, \dots, f_1^2, \dots, f_n^2, \dots, f_1^k, \dots, f_n^k, \dots, \\ & p_0^1, \dots, p_n^0, \dots, p_1^1, \dots, p_n^1, \dots, p_1^2, \dots, p_n^2, \dots, p_n^k, \dots, p_n^k, \dots \} \end{split}$$

A Individual variables (Variable symbols)

$$x_1, x_2, ..., x_n, ...,$$

Individual Constants/Names (Constant/Name symbols)

$$c_1, c_2, ..., c_n, ...,$$

Individual Functions (Function symbols)

$$f_1^1,...,f_n^1,...,f_1^2,...,f_n^2,...,f_n^k,...,f_n^k,...$$

Individual Predicates/Relations (Predicate/relation symbols)

$$p^0_1,...,p^0_n,...,p^1_1,...,p^1_n,...,p^2_1,...,p^2_n,...,p^k_1,...,p^k_n,...$$

23/21

23/21

Formal Language of Relevant Logics

- Primitive logical connectives
 - ⇒: entailment (primitive! And therefore, intensional!)
 - : negation
 - A: extensional conjunction
- Defined logical connectives
 - \otimes : intensional conjunction (fusion), $A \otimes B =_{df} \neg (A \Rightarrow \neg B)$

 - \oplus : intensional disjunction, $A \oplus B =_{\mathrm{df}} \neg A \Rightarrow B$ \Leftrightarrow : intensional equivalence, $A \Leftrightarrow B =_{\mathrm{df}} (A \Rightarrow B) \otimes (B \Rightarrow A)$

 - v: extensional disjunction, $A \lor B = {}_{df} \neg (\neg A \land \neg B)$ \rightarrow : material implication, $A \rightarrow B = {}_{df} \neg (\neg A \land \neg B)$ or $\neg A \lor B$ \leftrightarrow : extensional equivalence, $A \leftrightarrow B = {}_{df} (A \rightarrow B) \land (B \rightarrow A)$
 - L: necessity operator, $LA =_{df} (A \Rightarrow A) \Rightarrow A$
- Terms and formulas
 - Similar to that of classical propositional/predicate calculus

Relevant Logics: Proof Theory and Model Theory

- ♦ Formal Language of Relevant Logics
- ♦ Hilbert Style Axiomatic Systems of Relevant Logics
- ♦ Various Properties of Relevant Logics
- Model Theory for Relevant Logics
- ♦ Natural Deduction Systems of Relevant Logics
- ◆ Sequent Calculus Systems of Relevant Logics
- ◆ Semantic Tableau Systems of Relevant Logics
- ◆ Bibliography

5/23/21

Axiom Schemata on Entailment

Axiom schemata on entailment

- (Self-Implication) E1 $A \Rightarrow A$ E2 $(A \Rightarrow B) \Rightarrow ((C \Rightarrow A) \Rightarrow (C \Rightarrow B))$ (Prefixing)
- $E2' (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$ (Suffixing)
- E3 $(A \Rightarrow (A \Rightarrow B)) \Rightarrow (A \Rightarrow B)$ (Contraction)
- E3' $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$ (Self-Distribution)
- $\text{E3''}\ (A{\Rightarrow}B){\Rightarrow}((A{\Rightarrow}(B{\Rightarrow}C)){\Rightarrow}(A{\Rightarrow}C))$
 - (Permuted Self-Distribution)
- E4 $(A \Rightarrow ((B \Rightarrow C) \Rightarrow D)) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow D))$
- (Restricted Permutation) $E4' (A \Rightarrow B) \Rightarrow (((A \Rightarrow B) \Rightarrow C) \Rightarrow C)$ (Restricted Assertion)
- (Specialized Assertion) $E4''((A \Rightarrow A) \Rightarrow B) \Rightarrow B$
- $E4^{\prime\prime\prime}(A\Rightarrow B)\Rightarrow ((B\Rightarrow C)\Rightarrow (((A\Rightarrow C)\Rightarrow D)\Rightarrow D))$ $E5 \quad (A\Rightarrow (B\Rightarrow C))\Rightarrow (B\Rightarrow (A\Rightarrow C)) \qquad (Perm$
- (Permutation)
- E5' $A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$ (Assertion)
- E5" $A \Rightarrow ((A \Rightarrow A) \Rightarrow A)$ (Demodalizer)

Axiom Schemata on Conjunction and Disjunction

Axiom schemata on conjunction

C1 $(A \land B) \Rightarrow A$ (Conjunction Elimination) C2 $(A \land B) \Rightarrow B$ (Conjunction Elimination)

C3 $((A \Rightarrow B) \land (A \Rightarrow C)) \Rightarrow (A \Rightarrow (B \land C))$

(Conjunction Introduction)

C4 $(LA \land LB) \Rightarrow L(A \land B)$, where $LA =_{df} (A \Rightarrow A) \Rightarrow A$

(Distribution of Necessity over Conjunction)

Axiom schemata on disjunction

D1 $A \Rightarrow (A \lor B)$ (Disjunction Introduction) D2 $B \Rightarrow (A \lor B)$ (Disjunction Introduction) D3 $((A \Rightarrow C) \land (B \Rightarrow C)) \Rightarrow ((A \lor B) \Rightarrow C)$ (Disjunction Elimination)

A Distribution axiom schema

DCD $(A \land (B \lor C)) \Rightarrow ((A \land B) \lor C)$

(Distribution of Conjunction over Disjunction)

Axiom Schemata on Negation and Necessity

Axiom schemata on negation

N1 $(A \Rightarrow (\neg A)) \Rightarrow (\neg A)$ (Reduction) N2 $(A \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow (\neg A))$ (Contraposition) N3 $(\neg(\neg A)) \Rightarrow A$ (Double Negation)

Mingle axiom schemata

 $\text{EM0}\;(A{\Rightarrow}B){\Rightarrow}((A{\Rightarrow}B){\Rightarrow}(A{\Rightarrow}B))$

 $RM0 A \Rightarrow (A \Rightarrow A)$

Axiom schemata on necessity

 $L1 \quad LA \Rightarrow A$

 $L2 \quad L(A \Rightarrow B) \Rightarrow (LA \Rightarrow LB)$

 $L3 (LA \land LB) \Rightarrow L(A \land B)$

L4 LA⇒LLA

L5 $LA \Rightarrow ((LA \Rightarrow LA) \Rightarrow LA)$

Axiom Schemata on Individual Quantification

Axiom schemata on individual quantification

IQ1 $\forall x(A \Rightarrow B) \Rightarrow (\forall xA \Rightarrow \forall xB)$

 $\mathrm{IQ2}\left(\forall x A \wedge \forall x B\right) {\Rightarrow} \forall x (A \wedge B)$

IQ3 ∀xAx⇒Ay

 $IO4 \forall x(A \Rightarrow B) \Rightarrow (A \Rightarrow \forall xB)$ (x not free in A) $IQ5 \forall x(A \lor B) \Rightarrow (A \lor \forall xB)$ (x not free in A)

 ${\rm IQ6}\;\forall x_1\dots\forall x_n\,(((A{\Rightarrow}A)\overset{'}{\Rightarrow}B){\Rightarrow}B)\,(n{\succeq}0)$ (for E and EM)

IQ7 $Ay \Rightarrow \exists xAx$

 $\mathsf{IQ8} \ \forall x(A {\Rightarrow} B) {\Rightarrow} (\exists xA {\Rightarrow} B)$ (x not free in B) $IQ9 (\exists x A \land B) \Rightarrow \exists x (A \land B)$ (x not free in B)

Axiom clause: if A is an axiom, so is $\forall xA$.

Inference Rules

♣ Inference rules

 \Rightarrow E: From A and $A \Rightarrow B$ to infer B (Modus Ponens)

 $\wedge I$: From A and B to infer $A \wedge B$ (Adjunction)

LI: If A is a theorem, so is LA

 $\otimes I : If A \Rightarrow (B \Rightarrow C)$ is a theorem, so is $(A \otimes B) \Rightarrow C$

 \otimes E : If $(A \otimes B) \Rightarrow C$ is a theorem, so is $A \Rightarrow (B \Rightarrow C)$

 $TI: If A \text{ is a theorem, so is } T \Rightarrow A$ $TE: If T \Rightarrow A \text{ is a theorem, so is } A$

The Pure Entailment Fragments

The pure entailment (relevant implication) fragments

 $T_{\Rightarrow} = \{E1, E2, E2', E3 \mid E3''\} + \Rightarrow E$

 $E_{\rightarrow} = \{E1, E2 \mid E2', E3 \mid E3', E4 \mid E4'\} + \Rightarrow E$

 $E \Rightarrow = \{E2', E3, E4''\} + \Rightarrow E$ $E_{\Rightarrow} = \{E1, E3, E4'''\} + \Rightarrow E$

 $\overrightarrow{E} \Rightarrow \overrightarrow{=} \overrightarrow{T} \Rightarrow + \overrightarrow{E4} \qquad [\overrightarrow{E4}: (A \Rightarrow ((B \Rightarrow C) \Rightarrow D)) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow D))]$

 $E_{\Rightarrow} = T_{\Rightarrow} + E4'$ $[E4': (A \Rightarrow B) \Rightarrow (((A \Rightarrow B) \Rightarrow C) \Rightarrow C)]$

 $\overrightarrow{E} = \overrightarrow{T} + EA'' \quad [EA'': ((A \Rightarrow A) \Rightarrow B) \Rightarrow B]$

 $R_{\perp} = \{E1, E2 \mid E2', E3 \mid E3', E5 \mid E5'\} + \Rightarrow E$

 $R_{\Rightarrow} = E_{\Rightarrow} + E5'' \quad [E5'': A \Rightarrow ((A \Rightarrow A) \Rightarrow A) = A \Rightarrow LA]$

Note Note

"A | B" means that one can choose any one of the two axiom schemata A and B.

The Positive (Negation-free) Fragments

The positive (negation-free) fragments

 $T_{+} = T_{\Longrightarrow} + \{C1 \sim C3, D1 \sim D3, DCD\} + AI$

 $E_{+} = E_{--} + \{C1 \sim C4, D1 \sim D3, DCD\} + AI$

 $E_{+} = T_{+} + \{E4 \mid E4' \mid E4'', C4\}$

 $R_{+} = R_{\Longrightarrow} + \{C1 \sim C3, D1 \sim D3, DCD\} + AI$ $R_{+} = E_{+} + E5''$

5/23/21

The Entailment with Negation Fragments

* The entailment (relevant implication) with negation fragments

$$\begin{split} T_{\rightarrow,\neg} &= T_{\rightarrow} + \{\text{N1, N2, N3}\} \\ E_{\rightarrow,\neg} &= E_{\rightarrow} + \{\text{N1, N2, N3}\} \\ R_{\rightarrow,\neg} &= R_{\rightarrow} + \{\text{N2, N3}\} \end{split}$$

E /22 /21

***** linade t

Hilbert Style Axiomatic Systems of Relevant Logics

* Propositional relevant logics

$$\begin{split} T &= T_{\text{\tiny max}} + \{C1\text{\sim}\text{\sim}3,\,D1\text{\sim}D3,\,DCD\} + \text{\wedge}I \\ E &= E_{\text{\tiny max}} + \{C1\text{\sim}C4,\,D1\text{\sim}D3,\,DCD\} + \text{\wedge}I \\ E &= T + \{\,E4 \,|\,E4' \,|\,E4'',\,C4\} \end{split}$$

$$R = R_{\rightarrow, \neg} + \{C1 \sim C3, D1 \sim D3, DCD\} + AI$$

 $R = E + A \Rightarrow LA, LR = R - DCD$

$$RM = R + RWO$$
 (semi-relevant logic)
 $RM = EM + A \Rightarrow LA$ (semi-relevant logic)

$$E^{L} = E + \{L1 \sim L5\} + LI$$

$$\mathbf{R}^L = \mathbf{R} + \{L1{\sim}L4\} + L\mathbf{I}$$

5/23/21

20

* Jingde Cheng / Saitama University

Hilbert Style Axiomatic Systems of Relevant Logics

♣ Predicate relevant logics

$$S^{V\exists x} = S + \{IQ1, IQ3, IQ4, IQ7, IQ8\}$$

where
$$S = T_{\neg}$$
, $T_{\rightarrow,\neg}$, R_{\neg} , $R_{\rightarrow,\neg}$

$$S^{\forall\exists x} = S + \{IQ1 \sim IQ5, IQ7 \sim IQ9\}$$

where
$$S = T_+, T, R_+, R, RM$$

$$S^{V\exists x} = S + \{IQ1, IQ3, IQ4, IQ6 \sim IQ8\}$$

where
$$S = E_{\neg}$$
, $E_{\Rightarrow,\neg}$

$$S^{\forall\exists x} = S + \{IQ1 \sim IQ9\}$$

where
$$S = E_+$$
, E, EM

5/23/21

3

Hilbert Style Axiomatic Systems of Relevant Logics

Axiom schemata on conjunction

C5 $(A \wedge A) \Rightarrow A$

C6 $(A \land B) \Rightarrow (B \land A)$

C7 $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$

C8 $(A \land (A \Rightarrow B)) \Rightarrow B$

C9: ¬(A^¬A)

C10: $A \Rightarrow (B \Rightarrow (A \land B))$

Strong relevant logics

$$Tc =_{df} T_{\Rightarrow, \neg} + \{C3, C5 \sim C10\} \quad TcQ =_{df} Tc + \{IQ1 \sim IQ5\} + \forall I$$

$$Ec = {}_{df} E_{\rightarrow,\neg} + \{C3\sim C10\}$$
 $EcQ = {}_{df} Ec + \{IQ1\sim IQ5\} + \forall I$

$$Rc = _{df} R_{\rightarrow \neg} + \{C3, C5 \sim C10\}$$
 $RcQ = _{df} Rc + \{IQ1 \sim IQ5\} + \forall I$

. Z

Relevant Logics: Proof Theory and Model Theory

- ♦ Formal Language of Relevant Logics
- ♦ Hilbert Style Axiomatic Systems of Relevant Logics
- **♦** Various Properties of Relevant Logics
- ◆ Model Theory for Relevant Logics
- ♦ Natural Deduction Systems of Relevant Logics
- ◆ Sequent Calculus Systems of Relevant Logics
- Semantic Tableau Systems of Relevant Logics
- Bibliography

The Notion of Degree

* The degree of a formula with implicational connective

- ◆ The *degree* of a formula with implicational connective is the largest number of nesting of implicational connective, e.g. ⇒, that represents the notion of conditional within it.
- A Zero degree formula
- A formula is called a zero degree formula (zdf) if and only if there is no occurrence of ⇒ in it.
- First degree conditional (entailment)
 - ◆ A formula of the form A⇒B is called a first degree conditional (fdc) (entailment, fde) if and only if both A and B are zero degree formulas.

5/23/21

24

* Jingde Cheng / Saitama University

The Notion of Degree

- ◆ A formula A is called a *first degree formula* (fdf) if and only if it satisfies the one of the following conditions: (1) A is a first degree conditional,
- (2) A is in the form +B (+ is a one-place connective such as negation and so on) where B is a first degree formula, and (3) A is in the form B*C (* is a non-implicational two-place connective such as conjunction or disjunction and so on) where both of B and C is first degree formulas, or one of Band C is a first degree formula and the another is a zero degree formula.

The Notion of Degree

* kth degree conditional (entailment)

♦ Let k be a natural number. A formula of the form $A \Rightarrow B$ is called a kth degree conditional (kdc) (entailment, kde) if and only if both A and B are (k-1)th degree formulas, or one of A and B is a (k-1)th degree formula and another is a jth (j < k-1)degree formula.

* kth degree formula

- Let k be a natural number. A formula A is called a k^{th} gree formula (kdf) if and only if it satisfies the one of the

 - following conditions:
 (1) A is a kth degree conditional,
 (2) A is in the form +B where B is a kth degree formula, and
- (3) A is in the form B*C where both of B and C is kth degree formulas, or one of B and C is a kth degree formula and another is a jth (j<k) degree formula.

Zero Degree Fragments of Relevant Logics: CPC

- ♣ Classical Propositional Calculus (CPC) is contained in E (R, T)
 - ◆ Theorem: All tautologies (theorems) of CPC are provable in E (R, T), i.e., E (R, T) is complete with respect to CPC.
 - ◆ Theorem: Only tautologies (theorems) of CPC among the zero degree formulas of E (R, T) are provable in E (R, T), i.e., E (R, T) is conservative with respect to CPC.
- Classical Propositional Calculus (CPC) is the zero degree fragment of E (R, T) [A&B-E1-75]
- CPC is in exactly the right sense contained in E (R, T), i.e., it is exactly the zero degree (extensional) fragment of E (R, T).

Zero Degree Fragments of Relevant Logics: CPC RL_{zdf} (CPC) RLRL. Zero degree formulas Extensional formulas High degree formulas Intensional formulas

Primitive Entailments

- An atom is a propositional variable or the negate of such, i.e., an atom has either the form p or the form $\neg p$.
- A Primitive conjunction and disjunction
 - A primitive conjunction is a conjunction $A_1 \land A_2 \land ... \land A_m$ $(m \ge 1)$ 1) where each A_i is an atom.
 - ♦ A primitive disjunction is a disjunction $B_1 \lor B_2 \lor ... \lor B_n \ (n \ge 1)$ where each B_i is an atom.

 $A \Rightarrow B$ is a *primitive entailment* if A is a primitive conjunction and B is a primitive disjunction, i.e.,

 $A \Rightarrow B = (A_1 \land A_2 \land \dots \land A_m) \Rightarrow (B_1 \lor B_2 \lor \dots \lor B_n).$

Explicitly Tautological Entailments

- . Explicitly tautological entailments
- ♦ A primitive entailment $A \Rightarrow B$ is said to be *explicitly* tautological if some (conjoined) atom of A is identical with some (disjoined) atom of B, i.e., $A_i = B_j$, for some i and j.
- Explicitly tautological is both necessary and sufficient for the (weak-relevant!) validity of a primitive entailment.

• Explicitly tautological entailments satisfy the von Wright-Geach-Smiley criterion for entailment: every explicitly tautological entailment answers to a material "implication" which is a substitution instance of a tautologous material "implication" with non-contradictory antecedent and nontautologous consequent; and evidently we may ascertain the truth of the entailment without coming to know the truth of the consequent or the falsity of the antecedent.

Explicitly Tautological Entailments in Normal Form

- Entailments in normal form

- ♦ An entailment $A \Rightarrow B$ is said to be *in normal form* if it has the form $(A_1 \lor A_2 \lor \dots \lor A_m) \Rightarrow (B_1 \land B_2 \land \dots \land B_n)$ $(m \ge 1, n \ge 1)$ where each A_i is a primitive conjunction and each B_j is a primitive disjunction.
- ♦ An entailment $A\Rightarrow B$ in normal form is (weak-relevantly!) valid just in case each $A_i\Rightarrow B_j$ ($m\ge i\ge 1, n\ge j\ge 1$) is explicitly tautological.

- Explicitly tautological entailments in normal form

♦ An entailment $(A_1 \vee A_2 \vee ... \vee A_m) \Rightarrow (B_1 \wedge B_2 \wedge ... \wedge B_n)$ $(m \ge 1, n \ge 1)$ in normal form is said to be *explicitly tautological* if and only if for every A_i and B_j , $A_i \Rightarrow B_j$ $(m \ge i \ge 1, n \ge j \ge 1)$ is explicitly tautological.

iversity *****

5/23/21

31 ***** Jingde Chen

Tautological Entailments

Tautological entailments

- An entailment (A₁vA₂v ... vA_m)⇒(B₁∧B₂∧ ... ∧B_n) (m ≥ 1, n ≥ 1) in normal form is called a tautological entailment if and only if it is explicitly tautological, i.e., for every A_i and B_j, A_i⇒B_i (m ≥ i ≥ 1, n ≥ j ≥ 1) is explicitly tautological.
- Explicitly tautological is both necessary and sufficient for the (weak-relevant!) validity of a first degree entailment.

- Fundamental question

- Can we construct a formal calculus of tautological entailments?
- ◆ Answer: YES

5/23/21

***** Jingde Cheng /

Tautological Entailment Fragments of Relevant Logics

\clubsuit E_{fde} (R_{fde} , T_{fde}): First degree entailment fragment of E (R, T)

• Entailment:

Inference rule: from $A \Rightarrow B$ and $B \Rightarrow C$ to infer $A \Rightarrow C$

◆ Conjunction:

Axiom schemata: $(A \land B) \Rightarrow A$ (C1), $(A \land B) \Rightarrow B$ (C2) Inference rule: from $A \Rightarrow B$ and $A \Rightarrow C$ to infer $A \Rightarrow (B \land C)$

• Disjunction:

Axiom schemata: $A \Rightarrow (A \lor B)$ (D1), $B \Rightarrow (A \lor B)$ (D2) Inference rule: from $A \Rightarrow C$ and $B \Rightarrow C$ to infer $(A \lor B) \Rightarrow C$

• Distribution:

Axiom schema: $(A \land (B \lor C)) \Rightarrow ((A \land B) \lor C)$ (DCD)

Negation:

Axiom schema: $A \Rightarrow (\neg(\neg A)), (\neg(\neg A)) \Rightarrow A \text{ (N3)}$

Inference rule: from $A \Rightarrow B$ to infer $\neg B \Rightarrow \neg A$

33 ***** Jing

First Degree Entailment Fragments of Relevant Logics

${\stackrel{\bullet}{\bullet}}\,E_{fde}\,(R_{fde},\,T_{fde}).$ First degree entailment fragment of E (R, T)

• Entailment:

Inference rule: from $A \Rightarrow B$ and $B \Rightarrow C$ to infer $A \Rightarrow C$

Conjunction:

Axiom schemata: $(A \land B) \Rightarrow A$ (C1), $(A \land B) \Rightarrow B$ (C2) Inference rule: from $A \Rightarrow B$ and $A \Rightarrow C$ to infer $A \Rightarrow (B \land C)$

• Disjunction:

Axiom schemata: $A \Rightarrow (A \lor B)$ (D1), $B \Rightarrow (A \lor B)$ (D2) Inference rule: from $A \Rightarrow C$ and $B \Rightarrow C$ to infer $(A \lor B) \Rightarrow C$

• Distribution:

Axiom schema: $(A \land (B \lor C)) \Rightarrow ((A \land B) \lor C)$ (DCD) Negation:

Axiom schema: $A \Rightarrow (\neg(\neg A)), (\neg(\neg A)) \Rightarrow A \text{ (N3)}$

Axiom schema: $A \Rightarrow (\neg(\neg A)), (\neg(\neg A)) \Rightarrow A$ (NS) Inference rule: from $A \Rightarrow B$ to infer $\neg B \Rightarrow \neg A$

5/23/

5/23/21

First Degree Formula Fragments of Relevant Logics

♣ E_{fdf} and tautological entailments

- ${\color{blue} \bullet}$ All logical theorems of E_{fdf} are first degree entailments.
- lacktriangle Every tautological entailment is provable in E_{fdf} .
- ullet Only tautological entailments are provable in ${f E}_{\rm fdf}$
- \bullet Therefore, $\boldsymbol{E}_{\text{fdf}}$ is a formalization of tautological entailments.

- Perfect interpolation theorem

♦ If $A\Rightarrow C$ is provable in E_{fdP} then there is an "interpolation formula" B such that (1) $A\Rightarrow B$ is provable in E_{fdP} (2) $B\Rightarrow C$ is provable in E_{fdP} and (3) B has no variables not in both A and C

5/23/21

Antecedent and Consequent Parts of Formulas

- Antecedent/Consequent parts of formulas
- lacktriangle A is a consequent part of A.
- ◆ If ¬B is a consequent {antecedent} part of A, then B is an antecedent part {consequent part} of A.
- If B⇒C is a consequent {antecedent} part of A, then B is an antecedent {consequent} part of A, and C is a consequent {antecedent} part of A.
- ◆ If either B∧C or B∨C is a consequent {antecedent} part of A, then both B and C are consequent {antecedent} parts of A.

5/23/21

***** Jingde Cheng / Saitama Universi

Theorems of Variable-Sharing in Relevant Logics

- **♣** Variable-Sharing in E_→ (R_→, T_→) [A&B-E1-75]
- If A⇒B is provable in E_→ (R_→, T_→), then A and B share a sentential variable.
- If A is a theorem of E_∞ (R_∞, T_∞), then every sentential variable occurring in A occurs at least once as an antecedent part and at least once as a consequent part of A.
- ♣ Variable-Sharing in $E_{\Rightarrow,\neg}$ ($R_{\Rightarrow,\neg}$, $T_{\Rightarrow,\neg}$) [A&B-E1-75]
- If $A \Rightarrow B$ is provable in $E_{\Rightarrow,\neg}(R_{\Rightarrow,\neg}, T_{\Rightarrow,\neg})$, then A and B share a sentential variable.
- If A is a theorem of E_{→¬} (R_{→¬} T_{→¬}), then every sentential variable occurring in A occurs at least once as an antecedent part and at least once as a consequent part of A (Note: This is NOT true for E (or for R, or for T).

5/23/21

37

Theorems of Variable-Sharing in Relevant Logics

- ♣ Variable-Sharing in E (R, T) [A&B-E1-75]
 - If A⇒B is provable in E (R, T), then A and B share a sentential variable.
 - ◆ If A⇒B is a theorem of E, then some sentential variable occurs as an antecedent part of both A and B, or else as a consequent part of both A and B.
 - ◆ If A is a theorem of E containing no conjunctions as antecedent parts and no disjunctions as consequent parts, then every sentential variable in A occurs at least once as an antecedent part and at least once as a consequent part [Maksimova, 1967].

5/23/21

***** Iinade Chena / Saitama Uni

Theorems of Variable-Sharing in Relevant Logics

- ♣ Variable-Sharing in CPC [A&B-E1-75]
- If A→B is provable in CPC, then either (1) A and B share a sentential variable or (2) either ¬A or B is provable in CPC.
- **♣ Variable-Sharing in RM** [A&B-E1-75]
 - If A→B is provable in RM, then either (1) A and B share a sentential variable or (2) both ¬A and B are provable in RM.

5/23/21

39

** Jingde Cheng / Saitama U

Facts in Relevant Logics

- ♣ Why the inference rule of adjunction?
 - ◆ $A \Rightarrow (B \Rightarrow (A \land B))$ is not a logical theorem of E (R, T).
 - ◆ $A \Rightarrow (B \Rightarrow (A \land B))$ is a familiar axiom for intuitionistic and classical logic, but it is only a hair's breadth away from positive paradox $A \Rightarrow (B \Rightarrow A)$, and indeed yields it given $(A \land B) \Rightarrow A$ and $(A \Rightarrow B) \Rightarrow ((C \Rightarrow A) \Rightarrow (C \Rightarrow B))$.
- The disjunctive syllogism and the inference rule γ
 - (A∧(¬A∨B))⇒B (or (¬A∧(A∨B))⇒B) is not a logical theorem of either E (R, T). This is the most notorious feature of relevant logic.
 - The inference rule γ, i.e., suppose |- A and |-¬AνB, then |-B, is admissible in E, R, and many others.

5/23/21

ess Ford Charles (Salton Halas

The Relationship between Relevant Logics and Others

♣ The relationship between relevant logics and other logics

$$S5 \longrightarrow S4 \longrightarrow S3 \longrightarrow EM$$

$$CML \longrightarrow E \longrightarrow T$$

$$RM \longrightarrow R$$

(S3, S4, S5: Lewis's modal systems)

(---> means the inclusion relationship)

- The relationship between relevant logics and their first degree entailment fragments

5/23/21

***** Jingde Cheng / Saitama Univers

Facts in Relevant Logics

- Conservative extensions
 - ◆ Let S' is an extension of S in the sense that S' has some new language components, e.g., connectives, or axioms, or inference rules. S' is called to be a *conservative extension* of S if for any formula A in the notation of S, if A is provable in S' then A is also provable in S.
- Conservative extensions in relevant logics
 - ♦ Both E and $E_{\Rightarrow,\neg}$ are conservative extensions of E_{\Rightarrow}
 - ♦ Both R and $R_{\Rightarrow,\neg}$ are conservative extensions of R_{\Rightarrow}

5/23/21

42

** Jingde Cheng / Saitama University *

Facts in Relevant Logics

- Conservative extensions in relevant logics
- RM is not a conservative extension of RM0_→
 (RM0_→ = R_→ + RM0)
- ◆ RM0_⇒ is not the pure implicational fragment of RM
- RM does not satisfy the relevance principle but it does satisfy the weaker relevance principle that A→B is a theorem of RM only if either A and B share a sentential variable or both ¬A and B are theorems.

5/23/21

* F--1-CL

ngde Cheng / Saitama University *****

Facts in Relevant Logics

- Necessity
 - In E, the necessity operator L can be defined as
 LA =_{df} (A⇒A)⇒A, but this is impossible in R because R has
 A⇒((A⇒B)⇒B) as an axiom scheme.
 - E is both a relevant logic and a modal logic but R is only a relevant logic.
 - ◆ The rule of necessity (if A is provable in E, then LA is also provable in E) is naturally holds in E, and therefore no new logical primitives need be introduced to get the desired effect

5/23/21

***** Jingde Ck

Ł

Why R Is Interesting?

Major reason 1: Age

- ◆ The pure implicational fragment R⇒ of R, first considered by Moh Shaw-Kwei in 1950 and by A. Church in 1951, was regarded to be the oldest of the relevant logics [A&B-E1-75].
- The implication-negation fragment R_{→,¬} of R, given by I. E.
 Orlov in 1928, is the oldest of the relevant logics [Dosen,
- Major reason 2: Isolating relevance
 - In R one has an even clearer view of relevance than in E, just because of the absence of modal complications.
- Other reasons
 - Stability, Richness, Easy proof theory, Fragments, Applicability, Extensibility.

- Both E_ and R_ are decidable [Kripke, 1959].
- ◆ LR is decidable [Mayer, 1966].
- \bullet E_{fde} (R_{fde}, T_{fde}) is decidable [Anderson and Belnap, 1975].
- ◆ E_{fdf} is decidable [Anderson and Belnap, 1975].
- ◆ Both E→,¬ and R→,¬ are decidable [Anderson and Belnap, 1975].
- RM is decidable [Anderson and Belnap, 1975].
- ◆ E₊, R₊, and T₊ are undecidable [Urquhart, 1982].
- E, R, and T are undecidable [Urquhart, 1982].
- ♦ The decision problem of T_{\Rightarrow} (or of $T_{\Rightarrow,\neg}$) is open.

Relevant Logics: Proof Theory and Model Theory

- ♦ Formal Language of Relevant Logics
- ♦ Hilbert Style Axiomatic Systems of Relevant Logics
- ♦ Various Properties of Relevant Logics
- ◆ Model Theory for Relevant Logics
- ♦ Natural Deduction Systems of Relevant Logics
- ◆ Sequent Calculus Systems of Relevant Logics
- Semantic Tableau Systems of Relevant Logics
- ◆ Bibliography

5/23/21
