CS1010S Programming Methodology

Lecture 4 Higher-order Functions

5 Sep 2018

More thinking Less Coding Less is more

Don't need to do EVERY Side Quest

Just do ALL the main missions

Post on Forum (Reflections) +30 EXP

Tutorials

- +200 (attend)
- +200 (submit)

Remedial Lessons

Watch for announcements

Today's Agenda

- Clarifications
- Count Change
 - Recursion
 - Order of Growth
- Higher-order Functions
 - Generalizing Common Patterns
 - Functions as arguments

Watch your syntax

Function call

```
beside(pic1, pic2)

beside(pic)
beside(p1, p2, p3)
```

Conditional

```
missing colon
Form 2
if expr:
                               print('a > 0!')
    statements(s)
else:
                                   print('a <= 0')</pre>
    statements(s)
                      no indentation!
```

What is pass? Do nothing ©

Importing Modules

Remember?

from runes import *

Insight:

Often convenient to have code in different files for code reuse

Importing Modules

- import X
 - use X.name to refer to objects in X
- from X import *
 - creates references to all <u>public</u> objects in X
 - can use plain name
- from X import a, b, c
 - creates references to specified objects
 - can now use a and b and c in your program

Recap

- Recursion
- Iteration
- Order of Growth

Let me tell you a story...

Once on a trip overseas, my friend forgot the combination to the lock on his suitcase.

I asked him to show me the lock.

And so...

I told him that simply trying every combination will only take about 15 mins.

He did just that and managed to unlock it.

Some time later...

My friend came to complain to me.

He forgot the combination to another lock, and thought he could do the same process.

But...

It's been almost a week and he still couldn't unlock it.

109

109

I asked him to show me the lock.

The problem?

3 digits15 mins

Problem

Make change for \$1, using coins

50¢, 20¢, 10¢, 5¢, 1¢

(assuming unlimited number of coins)

e.g.
$$50$$
¢ + 50 ¢ 50 ¢ + 20 ¢ + 20 ¢ + 10 ¢ 20 ¢ + 20 ¢ + 20 ¢ + 20 ¢ + 20 ¢ + 20 ¢ etc.

Counting Change How many ways to do it?

Recap: Recursion

- 1. Express (divide) the problem into smaller similar problem(s)
- 2. Solve the problem for a simple (base) case

Formulate the problem

- amount: a
 - The amount in cents.
- types-of-coins: $\{d_1, d_2, ..., d_k\}$
 - e.g. only 50¢ and 20¢

Recursive Idea

Observation: we can divide into two groups

Recursive Idea

Given a particular set of coins

$$\{d_1, d_2, \dots, d_n\}$$

the change for an amount a can be divided into two disjoint and complimentary sets:

- 1. Those that has least one d_1 coin
- 2. Those that do not use any d_1 coins

Reduce the problem

In general

Base Cases

• if amount = 0

• if amount < 0

• if coins = {}

only 1 way to make change.

no way to make change, i.e. 0.

no way to make change.

Python function

```
def cc(amount, kinds_of_coins):
  if amount == 0:
    return 1
  elif (amount < 0) or (kinds of coins == 0):</pre>
                                                                             Using 1 coin
    return 0
                                                                            for first kind
  else:
    return cc(amount - first_denomination(kinds_of_coins),
               kinds_of_coins) +
           cc(amount, kinds_of_coins-1)
                                                                Without using first
def first_denomination(kinds_of_coins):
                                                                   kind of coin
  ... <left as an exercise>
def count change(amount)
                                              cc(100, 5) \rightarrow 343
  return cc(amount,5)
```

Recursion vs. Iteration

- Counting change is (quite) easily formulated via recursive process.
- Can you write an iterative process to count change?

Yes, but not easy!

Moral of the story

- In general, an iterative process is (usually) more efficient than a recursive process.
- But sometimes it is hard to devise an iterative solution, whereas a recursive one is straightforward (and more elegant).

Don't hesitate to write recursive processes. Leave the optimization to the interpreter.

Writing the code is the easy part, figuring out WHAT TO DO is the hard part

Order of Growth

- 1. Identify the basic computation steps
- 2. Try a few small values of *n*
- 3. Extrapolate for really large *n*
- 4. Look for "worst case" scenario

1. Identify the basic computational step

```
def cc(amount, kinds_of_coins):
  if amount == 0:
    return 1
  elif (amount < 0) or (kinds of coins == 0):</pre>
                                                               Using 1 coin for
    return 0
                                                                  first kind
  else:
    return cc(amount - first_denomination(kinds_of_coins),
               kinds of coins) +
           cc(amount, kinds_of_coins-1)
                                                   Without using first
def first_denomination(kinds_of_coins):
                                                      kind of coin
  ... <left as an exercise>
def count change(amount)
  return cc(amount,5)
```

2. Try a few small values of n

3. Extrapolate for really large *n*

4. Two steps:

- (a) Work out the steps in the computation
- (b) Generalize to n

4b. Generalize to n

Order of Growth

• For large amounts a,
Time complexity

= leaves in the tree

Each leaf is the base case, every leaf is "visited"

Order of Growth

• For large amounts a,

Time complexity

```
= leaves in the tree
```

$$= 2^{L}$$
 (full tree) – (missing leaves)

$$= O(2^L - \cdots)$$

$$= O(2^{a+n} - \cdots)$$

$$= O(2^a)$$

Order of Growth in Space

Two main sources:

- 1. Function Calls (Stack)
 - Look for pending operations & recursive function calls
- 2. Data Structures (Heap)
 - To be discussed later

Visualizing Space

In Pythontutor

```
def fact(n):
   if n <= 1:
     return 1
   return n * fact(n-1)</pre>
```


Order of Growth

Space complexity

= depth of entire tree

Order of Growth

```
Space complexity

= depth of entire tree

= L

= a + \#_{coin\_types}

= O(a)
```

To Think About

What if you only had a finite number of coins?

break>

CS1010S Road Map

Higher Order Functions

WHAT WHY HOW

WHAT

WHY Higher Abstraction

Consider the following code to sum all integers in the range *a* to *b*

```
def sum_integers(a, b):
   if a > b:
     return 0
   else:
     return a + sum_integers(a + 1, b)
```

```
\sum_{n=a}^{b} n
```

Now suppose we want to sum the cubes of numbers in the range *a* to *b*

```
def sum_cubes(a, b):
    if a > b:
        return 0
    else:
        return cube(a) + sum_cubes(a + 1, b)

def cube(n):
    return n * n * n
```

Finally, we want to sum this series:

```
\frac{1}{1\times3} + \frac{1}{5\times7} + \frac{1}{9\times11} + \cdots
which converges very slowly to \pi/8
def pi sum(a, b):
  if a > b:
     return 0
  else:
     return 1/(a*(a + 2)) + pi sum(a + 4, b)
```

All three functions are very similar.

```
def sum_integers(a, b):
                                   def pi_sum(a, b):
 if a > b:
                                     if a > b:
    return 0
                                       return 0
  else:
                                     else:
    return a +
                                       return 1/(a*(a+2)
           sum_integers(a + 1, b)
                                              pi sum(a + 4, b)
 def sum_cubes(a, b):
                                   def <name>(a, b):
   if a > b:
                                     if a > b:
     return 0
                                       return 0
   else:
                                     else:
     return cube(a) +
                                       return <term>(a) +
            sum cubes(a + 1,
                                              <name>(<next>(a), b)
```

All three functions are very similar.

```
def sum_integers(a, b):
                                   def pi_sum(a, b):
  if a > b:
                                      if a > b:
    return 0
                                        return 0
  else:
                                      else:
                                        return 1/(a*(a + 2)
    return a
                                               pi sum(a + 4, b)
           sum_integers(a + 1, b)
 def sum_cubes(a, b):
                                       <name>(a, b);
   if a > b:
                                         a > b:
     return 0
   else:
     return cube(a)-
                                              <mark>→ <name>(</mark> <next>(a), b)
            sum_cubes (a + 1, b)
           Can we abstract this common pattern?
```

Yes!

```
def sum(term, a, next, b):
    if a > b:
        return 0
    else:
        return term(a) +
        sum(term, next(a), next, b)
```

- Note that term and next are functions.
- Note also that there is a pre-defined function called sum. We are over-writing it.

Previous

```
def sum_cubes(a, b):
    if a > b:
        return 0
    else:
        return cube(a) +
        sum_cubes(a + 1, b)
```

Redefined

```
def sum cubes(a, b):
  return sum(cube, a, inc, b)
def inc(n):
   return n+1
def cube(x):
  return x*x*x
sum_cubes(1,10)
                 \rightarrow 3025
```

• Redefining sum_integers

```
def sum_integers(a, b):
    return sum(identity, a, inc, b)

def identity(x):
    return x

sum_integers(1,10) → 55
```

 Alternatively, def identity(x): return x def sum_integers(a,b): return sum(lambda x: x) def inc(x): a, return x+1 lambda n: n+1 b) anonymous functions

• Redefining pi_sum

Key idea

- sum captures a common pattern.
- The other functions (sum_integers, sum_cubes, pi_sum) are specific cases of sum.

Key idea

sum_integers, sum_cubes, pi_sum can be defined in terms of sum by providing the appropriate term and next arguments to sum

e.g.
$$s_{int}(a,b) = s(t,a,n,b)$$
, where $t(a) = a$ and $n(x) = x + 1$

sum is a higher-order function

Higher-order Functions generalize common patterns by taking functions as input

$$\int_{a}^{b} f(x)dx = \text{area under curve}$$

Integration is a Higher Order Function

- Inputs contains a function
- Output is a number (area)

 $\int_{a}^{b} f(x)dx \approx \text{sum area of rectangles}$

Example: Integration

```
\int_{a} f(x)dx \approx \left\{ f\left(a + \frac{dx}{2}\right) + f\left(a + dx + \frac{dx}{2}\right) + f\left(a + 2dx + \frac{dx}{2}\right) + \cdots \right\} dx
                                                def sum(term, a, next, b):
                                                  if a > b:
def integral(f, a, b, dx):
                                                    return 0
                                                  else:
     def add dx(x):
                                                    return term(a) +
                                                            sum(term, next(a), next, b)
            return x + dx
      return dx * sum(f, a+(dx/2), add dx, b)
integral(cube, 0, 1, 0.01)
# 0.249987500000000042
# exact value is 1/4
```

Let's take a closer look

```
def integral(f, a, b, dx):
    def add dx(x):
                              Scope of add dx
         return x + (dx)
                              Escapes the scope
    return dx * sum(f, a+(dx/2), add dx, b)
                                  integral
integral(cube, 0, 1, 0.01)
                                          cube
                                        dx 0.01
                                                      parent
                                                 function
dx is "captured" in the newly created add dx
                                                 add dx(x)
```

Higher-order Functions Functions as Closures (Captured variables)

Functions as return values

Functions may be returned as values from other functions.

Import to understand what is a function's return type: value or function?

Higher-order Functions Functions as output

Example: Derivative

$$\frac{dy}{dx} = D(y)(x)$$

Example:

$$y = x^2$$

$$\frac{dy}{dx} = 2x$$

$$f(x) = x^2$$

What are the inputs? A function What is the output? A function
$$f(x) = 2x$$

Example: Derivative

• In math, the derivative of g(x) is

$$D(g)(x) = \lim_{dx\to 0} \frac{g(x+dx) - g(x)}{dx}$$

Example:

$$g(x) = x^3$$

$$\frac{dg}{dx} = 3x^2$$

$$g'(x) = 3x^2$$

Example: Derivative

$$D(g)(x) = \lim_{dx\to 0} \frac{g(x+dx) - g(x)}{dx}$$

Derivative transforms a function into another function.

```
def deriv(g):
    dx = 0.00001
    return lambda x: (g(x+dx) - g(x))/dx
```

Derivative

```
cube = lambda x: x*x*x
d cube = deriv(cube)
d cube(5) \rightarrow 75.00014999664018
from math import sin, pi
cos = deriv(sin)
cos(pi/4) \rightarrow 0.7071032456451575
cos(pi/2) \rightarrow -5.000000413701855e-06
    i.e., -5.0000 \times 10-6 \approx 0
```

Another example

Example: Newton's method

To compute root of function g(x), i.e. find x such that g(x) = 0

Example: Newton's method

To compute root of function g(x), i.e. find x such that g(x) = 0

- 1. Start with initial guess x_0
- 2. $x \leftarrow x_0$
- 3. If $g(x) \approx 0$ then stop: answer is x
- 4. $\chi \leftarrow \chi \frac{g(\chi)}{D(g)(\chi)}$
- 5. Go to step 3

Newton's Method

```
def newtons_method(g, first_guess):
  dg = deriv(g)
  def improve(x):
    return x - g(x)/dg(x)
  def is_close_enough(v):
    tolerance = 0.0001
    return abs(v) < tolerance</pre>
  def attempt(guess):
    if is_close_enough(g(guess)):
      return guess
    else:
      return attempt(improve(guess))
return attempt(first_guess)
```

- 1. Start with initial guess x_0
- 2. $x \leftarrow x_0$
- 3. If $g(x) \approx 0$ then stop: answer is x
- 4. $\chi \leftarrow \chi \frac{g(\chi)}{D(g)(\chi)}$
- 5. Go to step 3

Computing square root

• Square root of α is the number x such that:

$$x^2 = a$$

• Use Newton's method to solve:

$$g(x) \equiv x^2 - a = 0$$

Newton's method

```
square = lambda y: y*y
def sqrt(a):
  return newtons_method(lambda x: square(x)-a,
                           a/2)
                         #initial guess is half of a
sqrt(9) \rightarrow 3.0000153774963274
sqrt(2) \rightarrow 1.4142156951657834
```

Higher Order Functions Manipulate Other Functions

Repeating patterns

Another Example

```
n binary operations
                    1) \oplus \cdots \bigcirc (n) for some function f, by applying
Compute f(0) \oplus f
binary operator 

n times
def fold(op,
  if n == 0:
     return f(0):
  else:
     return (op) fold(op, f, n-1) (f(n))
```

Defining expt with fold

n binary operations $\bigoplus \cdots \bigoplus f(n)$ fold(op, f, n) expt: $(a \times a \times \cdots \times a)$ lambda x: a lambda x,y: x*y op def expt(a, n): return fold(lambda x,y: x*y, lambda x: a, n-1)

Usage of fold

Suppose sum_of_digits(n) returns the sum of the digits of *n*. How do we express this as fold?

Question of the Day:

How do we define kth_digit and count_digits?

Usage of fold

```
def product_of_digits(n):
  return fold(lambda x,y: x(*)y
              lambda k: kth digit(n,k),
           count_digits(n))
def sum_of_sqrt_of_digits(n):
   return fold(lambda x,y: x+y,/
                lambda k: (sqrt(kth_digit(n,k)),
                count_digits(n))
```

Recap: Sum of Integers

Consider the following code to sum all integers in the range a to b

```
def sum_integers(a,b):
    if a > b:
        return 0
    else:
        return a + sum_integers(a + 1, b)
```

Recap: Sum of Integers

Consider the following code to sum all integers in the range *a* to *b*

Product of Integers

Consider the following code to sum all integers in the range a to b

Recall: Definition of sum

```
Definition of sum:
    def sum(term, a, next, b):
      if a > b:
        return 0
      else:
         return term(a) +
                sum(term, next(a), next, b)
Definition of product:
    def product(term, a, next, b):
      else:
        return term(a)
                product(term, next(a), next, b)
```

A More General Version of fold

```
def fold2(op, term, a, next, b, base):
  if a > b:
    return base 'abstract as parameters in higher-
                  order function
  else:
    return op (term(a),
                 fold2(op, term, next(a), next,
                        b, base))
def sum(term, a, next, b):
  return fold2(lambda x,y: x+y, term, a, next, b, 0)
def product(term, a, next, b):
  return fold2(lambda x,y: x*y, term, a, next, b, 1)
```

Please <u>DO NOT</u> memorize the definitions of fold, fold2, sum, product, etc.

Don't Worry about Definitions

- 1. Functions can be inputs to functions
- 2. Functions can be returned from functions
- 3. Both 1 & 2 can happen at the same time!

CS1010S is <u>NOT</u> about memory work. It is about UNDERSTANDING.

CS1010S is NOT about answers.

It is about **PROCESS**.

Summary

- Python functions are first-class objects.
 - They may be named by variables.
 - They may be passed as arguments to functions.
 - They may be returned as the results of functions.

Summary

- Higher-order functions capture common programming patterns.
- Functions can be returned as the result of functions

Required Competencies

- 1. Understand how to use higher-order functions to define specific functions
- 2. Understand how to define higher-order functions by abstracting patterns

For practice (and to check your understanding.....)

- How would you define factorial in terms of product?
- How would you define expt in terms of product?