#### Fundamentos Teóricos da Computação

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni



#### Sumário

- \* Introdução
- \* Autômatos de Pilha Determinísticos



# Introdução

\* Introdução



### Introdução

- \* Veremos agora, uma extensão dos AFs, os denominados <u>autômatos de pilha</u>. São de grande importância, visto que constituem uma base para a obtenção de reconhecedores para muitas linguagens que ocorrem na prática.
- \* Em particular, alguns compiladores de linguagens de programação utilizam alguma variante de autômato de pilha na fase de análise sintática.

### Introdução

- \* Ao contrário dos AFs, a versão não determinística desse tipo de autômato tem uma abrangência maior que a determinística.
- \* No entanto, as linguagens que podem ser reconhecidas por autômatos de pilha determinísticos são especialmente importantes, já que admitem reconhecedores eficientes.

#### Um olhar para o futuro

\* Depois de vermos as versões determinística e não determinística de autômatos de pilha, serão estudadas as gramáticas livres de contexto, que são um formalismo de grande utilidade prática para a especificação de linguagens reconhecíveis por autômatos de pilha.

#### **Autômatos Finitos**

\* Um AFD pode ser visto como uma máquina que opera sobre uma fita somente de leitura, cujo cabeçote se movimenta somente para a direita.



\* <u>Legenda</u>:  $a_1$ ,  $a_2$ ... $a_n$ ...:fita de leitura apenas, unidirecional e:registrador com estado atual

#### Limites dos AFs

- \* AFs reconhecem somente a classe das linguagens regulares
- \* Muitas linguagens interessantes não são regulares
  - \* Como é o caso, por exemplo, de algumas linguagens que contêm expressões aritméticas.

$$(^{n}t_{1}+t_{2})+t_{3})...+t_{n+1})$$

- \* Um AF não pode reconhecer a linguagem acima porque não tem uma memória poderosa o suficiente para "lembrar" que leu n ocorrências de certo símbolo, para n arbitrário.
- \* O único modo de ler uma quantidade arbitrária de determinado símbolo, em um AF, é por meio de um ciclo. E, nesse caso, não há como contar o número de símbolos lidos.

#### Arquitetura de um AP

\* Um AP pode ser visto como uma máquina semelhante à vinculada ao AF, porém com uma pilha adicional.



### Função de Transição

\* Em um AP com conjunto de estados E, alfabeto de entrada (da fita)  $\Sigma$  e alfabeto da pilha  $\Gamma$ , cada transição será da forma:

\* 
$$\delta(e, a, b) = [e', z]$$

\* Ou  $[e', z] \in \delta(e, a, b)$  para AP não determinístico

### Representação Gráfica de uma Transição

- \* A transição de e para e' ocorre se recebe-se um símbolo a e o topo da pilha é o símbolo b. O símbolo b é desempilhado e o símbolo z é empilhado.
  - \* z pode ser uma palavra. Neste caso, o símbolo mais a esquerda em z deve ficar no topo (convenção)



### Transições

- \* Se  $a = \lambda$ , não é consumido símbolo de entrada
- \* Se  $b = \lambda$ , a pilha não é consultada e nada é desempilhado
- \* Se  $z = \lambda$ , nada é empilhado

#### Reconhecendo Palavras

- \* Informalmente:
  - Para um AP reconhecer uma palavra
    - \* A palavra tem que ser totalmente consumida
    - \* O AP terminar em um estado final
    - \* A pilha deve estar vazia ao fim da computação (λ)

- \* Seja a linguagem EA, de expressões aritméticas, definida recursivamente por:
  - \*  $t \in EA$ ;
  - \* Se x, y  $\in$  *EA*, então pertencem à EA:
    - \* (x)
    - \* x + y
    - \* x y

O símbolo *t* representa expressões básicas, como número inteiros, reais ou variáveis (O reconhecimento de expressões básicas pode ser feito usando um AF, como já visto anteriormente)

#### \* Raciocínio

- \* No estado inicial pode-se receber t ou "("
  - \* Uma palavra de EA não pode começar com ")"
- \* Sempre que se recebe um "(", deve-se empilhar um símbolo na pilha para armazenar que ocorreu um abre parênteses. Vamos utilizar o símbolo "X"
- \* Pode-se chegar a um estado final recebendo t ou ")"
  - \* Uma palavra de EA não pode terminar com "("
- \* Sempre que se recebe um ")", deve-se desempilhar "X" da pilha
- \* Depois de um "+" ou de um "-", pode-se seguir um "(" ou t

- \* Como ficou este AP que reconhece EA:
- \* Conjunto de estados:  $E = \{ap, fp\}$
- \* Alfabeto de entrada:  $\Sigma = \{t, (,), +, -\}$
- \* Alfabeto da pilha:  $\Gamma = \{X\}$



- 1.  $\delta(ap, (, \lambda) = [ap, X]$
- 2.  $\delta(ap, t, \lambda) = [fp, \lambda]$
- 3.  $\delta(fp, ), \times) = [fp, \lambda]$
- 4.  $\delta(fp, +, \lambda) = [ap, \lambda]$
- 5.  $\delta(fp, -, \lambda) = [ap, \lambda]$

- \* Configuração instantânea
  - \* [estado, palavra, pilha]

4.  $\delta(fp, +, \lambda) = [ap, \lambda]$ 

5.  $\delta(fp, -, \lambda) = [ap, \lambda]$ 

 $[ap, (t - (t+t)), \lambda]$ 

\* Executamos até a palavra terminar ou nenhum símbolo poder ser consumido

[-[ap, t-(t+t)], X] por 1

[-[fp, ], X] por 3

 $[-[fp, \lambda, \lambda]]$  por 3

$$|-[fp, -(t+t)), X] \text{ por } 2$$

$$|-[ap, (t+t)), X] \text{ por } 5$$

$$|-[ap, t+t)), XX] \text{ por } 1$$
1.  $\delta(ap, (, \lambda) = [ap, X]$ 
2.  $\delta(ap, t, \lambda) = [fp, \lambda]$ 
3.  $\delta(fp, ), X = [fp, \lambda]$ 

$$|-[fp, +t)), XX] \text{ por } 2$$

$$|-[ap, t), XX] \text{ por } 4$$

$$|-[fp, ), XX] \text{ por } 1$$

- \* Se executarmos o mesmo procedimento para a palavra: "t)"
- \* Veremos que não há transição que se aplique a  $[fp, ), \lambda$  (Esperávamos [fp, ), X] por 3, não havia X para desempilhar)
- \* Isso mostra que o AP pode não consumir toda a palavra de entrada
- \* Sendo assim, diz-se que o AP pode "parar sem consumir toda a palavra de entrada"

## Configuração Instantânea

- \* Em um AF, somente o estado e a palavra a ser processada eram o suficientes para determinar a configuração instantânea
- \* Em um AP, é necessário o estado, a palavra a ser processada e o conteúdo da pilha

#### Autômatos de Pilha Determinísticos

\* Autômatos de Pilha Determinísticos



#### Autômatos de Pilha Determinísticos

\* Os autômatos de pilha determinísticos (APDs) são especialmente importantes, já que lidam com uma classe de linguagens para as quais há reconhecedores eficientes.

- \* Uma pilha de símbolos de um alfabeto  $\Gamma$  será representada por meio de uma palavra w de  $\Gamma^*$
- Seja a função de Transição

$$\delta : E \times (\Sigma \cup {\lambda}) \times (\Gamma \cup {\lambda}) \rightarrow E \times \Gamma^*$$

(Além dos estados atingidos, é importante saber o conteúdo da pilha)

\* Duas transições  $\delta(e, a, b)$  e  $\delta(e, a', b')$  são ditas compatíveis se, e somente se:

$$(a = a' \text{ ou } a = \lambda \text{ ou } a' = \lambda) \text{ e } (b = b' \text{ ou } b = \lambda \text{ ou } b' = \lambda)$$



$$\begin{array}{c|c}
 & a, \lambda/z_1 \\
\hline
 & a, b/z_2
\end{array}$$

$$\begin{array}{c}
 & a, b/z_1 \\
\hline
 & a, \lambda/z_2
\end{array}$$





$$\underbrace{e} \qquad \frac{\lambda, b/z_1}{a, \lambda/z_2} \rightarrow$$





$$\begin{array}{c}
a, b/z_{1} \\
\lambda, \lambda/z_{2}
\end{array}$$



$$\begin{array}{c|c}
 & a, \lambda / z_1 \\
\hline
 & a, b / z_2
\end{array}$$

$$\begin{array}{c}
 & a, b/z_1 \\
\hline
 & a, \lambda/z_2
\end{array}$$





$$\underbrace{e} \frac{\lambda, b/z_1}{a, \lambda/z_2} \rightarrow$$

$$\begin{array}{c}
a, b/z_1 \\
\lambda, b/z_2
\end{array}$$



$$\begin{array}{c}
 & a, b/z_1 \\
\hline
 & \lambda, \lambda/z_2
\end{array}$$

- \* Um autômato de pilha <u>determinístico</u> tem no máximo uma transição possível para uma mesma combinação de estado, símbolo de entrada, e símbolo no topo da pilha.
- \* Isto é o que o difere de um autômato de pilha <u>não</u> <u>determinístico</u>.

### Problema de Equivalência

- \* Géraud Sénizergues (1997) provou que o problema de equivalência para autômatos de pilha determinísticos é decidível.
- \* Isto é, dados dois APDs A e B, é possível dizer que L(A) = L(B)?
- \* Para AP não determinístico, o problema de equivalência é indecidível.

Fonte: Sénizergues G. (1997) The equivalence problem for deterministic pushdown automata is decidable. In: Degano P., Gorrieri R., Marchetti-Spaccamela A. (eds) Automata, Languages and Programming. ICALP 1997. Lecture Notes in Computer Science, vol 1256. Springer, Berlin, Heidelberg.

#### Problema de Equivalência

- \* Esta prova rendeu a Géraud Sénizergues, em 2002, um Gödel Prize.
- \* O Prêmio Gödel é um prêmio por artigos de destaque em teoria da ciência da computação, homenageando Kurt Gödel e concedido conjuntamente pela Associação Europeia de Ciência Computacional Teórica (EATCS) e pela ACM SIGACT.
- \* O prêmio é concedido anualmente desde 1993. Seu valor monetário é de 5 mil dólares. O prêmio é concedido durante o "Simpósio sobre Teoria da Computação" ou durante o "Colóquio Internacional sobre Autômatos, Linguagem e Programação". Para ser elegível ao prêmio, um artigo deve ter sido publicado em uma revista especializada com revisores nos 14 anos precedentes. Anteriormente o tempo era de 7 anos.

#### Definição de APD

- \* Um Autômato de Pilha Determinístico (APD) é uma sêxtupla  $(E, \Sigma, \Gamma, \delta, i, F)$  em que:
  - \* E é um conjunto finito de um ou mais estados;
  - \* Σ é o alfabeto de entrada;
  - Γ é o alfabeto de pilha;
  - \*  $\delta$ , a função de transição, é <u>parcial</u> e <u>sem transições</u> <u>compatíveis</u>;
  - \* i é o estado inicial;
  - \* F é conjunto de estados finais.

## Definição da relação "Resulta"

- \* As seguintes razões fazem com que não haja como definir uma função de transição estendida  $\hat{\delta}$ , similar àquela que vimos anteriormente na aula de AFDs:
  - \* 1) Ficou claro que podem haver computações que não terminam
  - \* 2) Além do(s) estado(s) atingido(s), é importante saber o conteúdo da pilha
- \* Sendo assim, em vez de uma função de transição estendida  $\hat{\delta}$ , será usada a relação  $\vdash$  definida a seguir

### Definição da relação "Resulta"

- \* Seja o APD  $M = (E, \Sigma, \Gamma, \delta, i, F)$ .
- \* A relação  $\vdash \subseteq (E \times \Sigma^* \times \Gamma^*)^2$  é tal que para todo

$$e, e' \in E, a \in \Sigma \cup \{\lambda\}, b \in \Gamma \cup \{\lambda\} \text{ e } x \in \Gamma^* :$$

$$[e, ay, bz] \vdash [e', y, xz] \leftrightarrow \delta(e, a, b) = [e', x]$$
, para todo  $y \in \Sigma^*$  e  $z \in \Gamma^*$ 

- Utilizamos a relação ⊢ no exemplo 1 (slide 18)
- \* Relembre:

$$[ap, (t-(t+t)), \lambda] \vdash [ap, t-(t+t)), X] \leftrightarrow \delta(ap, (\lambda)) = [ap, X]$$

#### Linguagem Reconhecida

- \* Utilizando a relação \*⊢, define-se a seguir o que é a linguagem reconhecida (aceita) por um APD.
- \* Seja o APD  $M = (E, \Sigma, \Gamma, \delta, i, F)$ . A linguagem reconhecida por M é:

$$L(M) = \{ w \in \Sigma^* | [i, w, \lambda] * \vdash [e, \lambda, \lambda] \text{ para algum } e \in F \}$$

\* Informalmente: Começamos consumindo a palavra w a partir do estado inicial i com a pilha vazia ( $\lambda$ ) e terminamos em um estado final e com nada a ser desempilhado ( $\lambda$ ) e nada a empilhar ( $\lambda$ ).

\* Vimos na aula de "Projeto de AFDs" que o conjunto  $\{a^nb^n\mid n\in \mathbb{N}\}$  não é uma linguagem regular. Dessa forma, é <u>impossível</u> construir um AF para a linguagem:

$$L = \{a^n b^n | n \ge 0\}$$

\* Essa linguagem, porém, pode ser reconhecida por um autômato de pilha determinístico (APD):

$$M = (\{\text{ca, cb}\}, \{\text{a,b}\}, \{\text{X}\}, \delta, \text{ca, } \{\text{ca, cb}\})$$

\* Em que  $\delta$ , é dada por:

- 1.  $\delta(ca, a, \lambda) = [ca, X]$
- 2.  $\delta(ca, b, X) = [cb, X]$
- 3.  $\delta(cb, b, X) = [cb, X]$
- st O APD M deve reconhecer a palavra vazia
- \* Deve-se contar o número de a's até chegar o primeiro b (empilhando um símbolo). Depois, deve-se contar o número de b's.
- A função de transição está representada graficamente na figura a seguir:

\* APD para  $a^nb^n$ :



\* Construir um APD que reconheça a seguinte linguagem, e simular o funcionamento do AP para algumas palavras

 $L(M) = \{ w \in \{0,1\}^* \mid \text{o número de 0s em } w \text{ é igual ao de 1s} \}$ 

- \* Raciocínio
  - Sempre que se recebe um 0
    - \* Se o topo da pilha for Z, empilha ZZ:
    - \* Se o topo da pilha for U, não empilha nada.
  - \* Sempre que se recebe um 1
    - \* Se o topo da pilha for U, empilha UU:
    - \* Se o topo da pilha for Z, não empilha nada.
  - \* Ao fim da computação
    - \* A pilha terá  $\mathbb{Z}^n$  se a palavra de entrada tiver n 0s a mais que 1s; ou
    - \*  $U^n$  se a palavra de entrada tiver n 1s a mais que 0s.
  - \* É necessário um símbolo para marcar que a pilha está vazia

\* Construir um APD que reconheça a seguinte linguagem, e simular o funcionamento do AP para algumas palavras

 $L(M) = \{ w \in \{0,1\}^* \mid \text{o número de 0s em } w \text{ \'e igual ao de 1s } \}$ 



Dica: Lembre-se de quem está no topo da pilha.

- \* Construa APDs para as seguintes linguagens
- \* {  $0^n 1^{2n} | n >= 0$  }
- \*  $\{ w0w^{r} \mid w \in \{1,2\}^* \}$

\* 
$$\{ 0^n 1^{2n} | n >= 0 \}$$



\* Exemplos de execução: 011, 001111, 000111111...

\*  $\{w0w^{r} \mid w \in \{1,2\}^{*}\}$   $1, \lambda/U \qquad 1, U/\lambda$   $2, \lambda/D \qquad 2, D/\lambda$   $0, \lambda/\lambda \qquad (1, U/\lambda)$ 

\* Exemplos de execução: 0, 101, 202, 11011, 12021...

- \* Resolução para  $w0w^{\mathrm{r}}$ :
- \* LIFO: Last-in-first-out
- \* O último símbolo a entrar na pilha, deve ser o primeiro a sair dela:

w: 12 0 21

Passo 1) Empilha U [1]

Passo 2) Empilha D (que passa a ser o topo da pilha) [2]

(Empilhou DU, com D no topo)

Passo 3) Ocorre a transição sob 0 [0]

Passo 4) Desempilha D (Sai da pilha) [2]

Passo 5) Desempilha U (Sai da pilha, deixando-a vazia) [1]

Resposta: w reconhecida. É palíndromo.

O último símbolo a entrar na pilha (D) foi o primeiro a sair dela.

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

