Fondamenti di Algebra e Geometria

Cognome......MatricolaMatricola

GRIGLIA DI VALUTAZIONE

Esercizio	1	2	3	4	5	6	Totale
Punteggio							

 \bigcirc TEMPO A DISPOSIZIONE: 2,5 ore

1. Sia ϕ l'endomorfismo di \mathbb{R}^3 che nella base canonica \mathcal{E} è rappresentato dalla matrice

$$A = \left(\begin{array}{rrr} -3 & 6 & -2 \\ -2 & 4 & -1 \\ 0 & 0 & 1 \end{array}\right)$$

Verificare che l'insieme $\mathcal{B} := \{t(1,0,-2),t(0,1,3),t(2,1,0)\}$ costituisce una base dello spazio vettoriale \mathbb{R}^3 , determinare la matrice di ϕ nella base \mathcal{B} e scrivere la matrice di cambio di base da \mathcal{E} a \mathcal{B} .

2. Sia data la matrice

$$A = \left(\begin{array}{ccc} \sqrt{k^2 h} & 0 & 0\\ 0 & 1 & \sqrt{h^2}\\ 0 & 1 & 1 \end{array}\right)$$

Stabilire per quali valori $h, k \in \mathbb{R}$ la matrice A: a) esiste; b) è simmetrica; c) è invertibile.

3. Verificare con un calcolo diretto che l'unica soluzione in \mathbb{C}^3 del sistema

$$\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 0 \\ x^3 + y^3 + z^3 = 0 \end{cases}$$

è la soluzione banale (0,0,0).

4. Siano $a,b \in \mathbb{R}$. Discutere la diagonalizzabilità della matrice

$$A = \left(\begin{array}{ccc} a & b & 0 \\ b & a & b \\ 0 & b & a \end{array}\right)$$

senza utilizzare il teorema spettrale.

- **5**. Determinare una possibile forma canonica di Jordan di una matrice $A \in M_{15}(\mathbb{C})$ sapendo che ha un solo autovalore distinto $\lambda = 1$, rk(A I) = 8, $rk(A I)^2 = 3$ e $rk(A I)^3 = 2$.
- 6. Quali sono le operazioni elementari sulle righe di una matrice? Qual è la loro utilità? Da quali matrici sono rappresentate?