

MEMORANDUM REPORT BRL-MR-3891

BRL

MIG FILE COPY

COMBUSTION TESTS OF BLACK-POWDER SUBSTITUTES FOR THE HAND-HELD SIGNAL FLARE

WILLIAM F. McBRATNEY MARTIN S. MILLER RONALD A. SASSÉ

JANUARY 1991

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

HINGI ACCIETED

REPORT DOC	UNCLASE UNENTATION P	AGE	Form Approved
REPORT DOCUMENTATION PAGE Taking reporting burden for this collection of information is estimated to creating 1 hour pay replacing, including the time for reviewing limit information and information of information. Simil committee this bard information, including angulation for reducing this bard information, including insequentiates for reducing this barden. Only the collection of information, including impagnitions for reducing this barden. Newtonic formation for information, and the collection of information in the collection in the			OMB No. 0704-0188
	pletang and reviewing the collection of bluong this burden, to Washington Hea , and to the Office of Management and		
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE January 1991		AND DATES COVERED Aug 88 - Aug 89
4. TITLE AND SUBTITLE			S. FUNDING NUMBERS
COMBUSTION TESTS OF BLACK FOR THE HAND-HELD SIGNAL		3	1L162618A1FL
6. AUTHOR(S)	······································	· · · · · · · · · · · · · · · · · · ·	AMCCOM PRON:
William F. McBratney, Mar Ronald A. Sasse'	tin S. Miller,		F17XM167M1AJ
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPORSONING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
Enlistic Research Labora ATIN: SLCBR-DD-T Aberdean Proving Ground,			BRL-11R-3891
Approved for public reledistribution unlimited			12b. DISTRIBUTION COOL
13. ABSTRACT (Mezimum 200 words)			
of more consistent combu currently used in both p ignition, propulsion, ti The laboratory work desc for evaluating candidate	stion properties is reseed and granular ming, payload expul ribed in this repor materials to repla	states to prosion, and ignored is intended to black powder	ovide for the functions of trion of the illuminant. to provide a rational basis er in these various
range of 2 MPa to 4 MPa substitutes. Fixtures w functions requiring gran	for Goex black powdere designed and in ular forms of the e fixtures permit a lative to black pow	er, Pyrodex Ristrumented to nergetic mate comparison of	determined over the pressure S, and four black-powder simulate those flare rial. Temperature and
range of 2 MPa to 4 MPa substitutes. Fixtures w functions requiring gran pressure data from these candidate substitutes reexpulsion phases of the	for Goex black powdere designed and in what forms of the e fixtures permit a clative to black powdiane operation.	er, Pyrodex Ristrumented to energetic mate comparison of der in the mo	determined over the pressures, and four black-powder simulate those flare rial. Temperature and the performance of the tor-ignition and payload-
range of 2 MPa to 4 MPa substitutes. Fixtures w functions requiring gran pressure data from these candidate substitutes reexpulsion phases of the	for Goex black powdere designed and in ular forms of the e fixtures permit a clative to black powdiare operation.	er, Pyrodex Ristrumented to energetic mate comparison of oder in the mo	determined over the pressure S, and four black-powder simulate those flare rial. Temperature and the performance of the tor-ignition and payload-
range of 2 MPa to 4 MPa substitutes. Fixtures w functions requiring gran pressure data from these candidate substitutes reexpulsion phases of the signal Flare, Linear Bur Pyrodex, Black Pawder Su	for Goex black powdere designed and in ular forms of the e fixtures permit a clative to black powdiare operation.	er, Pyrodex Ristrumented to energetic mate comparison of oder in the mo	determined over the pressure S, and four black-powder simulate those flare rial. Temperature and the performance of the tor-ignition and payload- 15. NUMBER OF FASES 51 16. PROCE TOOS

HNOLACCIPIES

Standard Form 296 (Rev. 2-89) Protesses by APRI tot. 236-18

INTENTIONALLY LEFT BLANE

TABLE OF CONTENTS

		PAGE
	LIST OF FIGURES	. v
	LIST OF TABLES	. vii
1.	INTRODUCTION	. 1
2.	FORMULATIONS	. 1
3.	PRESSED-MATERIAL COMBUSTION TESTS	. 1
4.	GRANULAR-MATERIAL COMBUSTION TESTS	. 5
5.	CONCLUSIONS	10
	REFERENCES	13
	APPENDIX	15
	DISTRIBUTION LIST	43

INTENTIONALLY LEFT BLANE

LIST OF FIGURES

Figui	<u>re</u>	PAGE
1	Pressed-Stick Burning Rates	. 3
2	Anthraflavic Acid: 4.32 MPa Average	. 4
3	Igniting-Charge Test Fixture	. 6
4	Heat Sensor, Thermocouple Assembly	. 7
5	Expelling-Charge Test Fixture	. 9
A-l	Igniting-Charge Test Fixture Data for Goex Black Powder [Run 48]	19
A-2	Igniting-Charge Test Fixture Data for Goex Black Powder [Run 49]	20
A-3	Igniting-Charge Test Fixture Data for Goex Black Powder [Run 60]	21
A-4	Igniting-Charge Test Fixture Data for Goex Black Powder [Run 51]	22
A- 5	Igniting-Charge Test Fixture Data for Goex Black Powder [Run 52]	23
A-6	Igniting-Charge Test Fixture Data for Goex Black Powder [Run 53]	24
A-7	Igniting-Charge Test Fixture Data for Pyrodex RS [Run 59]	25
A-8	Igniting-Charge Test Fixture Data for Pyrodex RS [Run 60]	26
A-9	Igniting-Charge Test Fixture Data for Pyrodex RS [Run 61]	27
A-10	Igniting-Charge Test Fixture Data for Pyrodex RS [Run 62]	28
A-11	Igniting-Charge Test Fixture Data for Pyrodex RS [Run 63]	29
A-12	Igniting-Charge Test Fixture Data for Pyrodex RS [Run 64]	30
A-13	Igniting-Charge Test Fixture Data for Pyrodex RS [Run 65]	31
A-14	Expelling-Charge Test Fixture Data for Goex Black Powder [Run 34]	32
A -15	Expelling-Charge Test Fixture Data for Goex Black Powder [Run 35]	33
A -16	Expelling-Charge Test Fixture Data for Goex Black Powder [Run 36]	34

LIST OF FIGURES

FIGUR	<u>E</u>	PAGE
A-17	Expelling-Charge Test Fixture Data for Goex Black Powder [Run 37]	35
A-18	Expelling-Charge Test Fixture Data for Goex Black Powder [Run 73]	36
A-19	Expelling-Charge Test Fixture Data for Pyrodex RS [Run 66]	37
A-20	Expelling-Charge Test Fixture Data for Pyrodex RS [Run 67]	38
A-21	Expelling-Charge Test Fixture Data for Pyrodex RS [Run 68]	3 9
A-22	Expelling-Charge Test Fixture Data for Pyrodex RS [Run 69]	40
A-23	Expelling-Charge Test Fixture Data for Pyrodex RS [Run 70]	41
A-24	Expelling-Charge Test Fixture Data for Pyrodex RS [Run 71]	42

LIST OF TABLES

TABLE		Page
1	Measured Densities of Pressed Samples	5
2	Parameters of Burning-Rate Law $r(cm/s) = b P^n(MPa)$	5
3	Average Peak Pressure and Temperature Changes in Fixture Tests	. 10
A-4	Ignition-Fixture Data	. 17
A-5	Expelling-Charge Fixture Data	. 18

1. INTRODUCTION

This work is part of the task to find energetic materials to replace black powder in the hand-held signal flare (e.g., SIGNAL, ILLUMINATION, GROUND RED STAR, CLUSTER, M158). This device is a percussion-fired item in which a granulated black-powder charge ejects a small rocket from a hand-held launcher. The motor of the rocket consists of hollow cylinders of pressed black powder which are ignited during launch. As the motor charge is consumed, a delay pellet of pressed black powder burns along a connecting passage. When this delay charge is consumed, a granulated black-powder expelling charge is ignited to deploy and ignite the flare mixture. This device utilizes the recognized positive characteristics of black powder such as small pressure exponent of burn rate, ease of ignitability, and utility in the ignition of other materials. Conventional black powder, however, exhibits an undesirable degree of variability in its performance, a trait generally attributed to its charcoal component. Consequently, one direction of the effort has been to replace the charcoal in black powder with a single organic compound to reduce the uncertainty in pyrolized natural wood composition.

Four of these charcoal-substitutes were utilized by Picatinny Arsenal to fabricate four black-powder substitute materials. These items were in the form of fine powder for pressing into sticks. The charcoal-substituted materials were not provided in Class 5 granular form for testing in the granular-charge fixtures to be described. In addition, Pyrodex RS, manufactured by the Hodgdon Powder Co. was supplied by the manufacturer for testing. This material is granular with a particle size just under Class 5 and could be used to form pressed sticks as well as compared with black powder in the loose-charge combustion tests. The linear burning rates of the pressed materials over the operating pressures of the flare were measured along with pressed Goex black powder as a baseline. The performance of black powder and Pyrodex RS in the granular-charge applications were tested in special fixtures designed to mimic the internal geometry of the flare. Pressures and temperatures produced by these two materials were measured in these fixtures. The resulting data provide a basis for judging the probable performance of these materials relative to black powder with respect to the various functions of energetic material in the flare.

2. FORMULATIONS

The black powder is assumed to be a standard potassium nitrate (75%), sulfur (10%), charcoal (15%) formulation. The substitutes replace the charcoal with the chosen organic compound. The four compounds chosen for this effort are phenolphalein, fluorescein, anthraflavic acid, and isopthalic acid. The formulation of Pyrodex is proprietary information.

3. PRESSED-MATERIAL COMBUSTION TESTS

The samples were pressed in custom dies from SPECAC (Yent, England). The die bore is 6 mm in diameter by 65 mm long. A Carver Laboratory Press with a 12 ton hydraulic jack was used to apply force to the die pistons. The press was calibrated

against a force ring from Morehouse Instrument Co. at 13350 N (3000 pounds) and 17800 N (4000 pounds).

Initial pressing tests were performed with potassium nitrate as a simulant for the black powder. Dry pressing of the material proved to be a problem. The samples would chatter during pressing from the die and pulverize or break into short pieces. Previous work (Sasse) reported success at low percentile water addition. A light application of WD40 to the die and 2 wt % water to the powder resulted in samples that were generally removed from the die easily and were of uniform translucent appearance. A drop of moisture was expressed from the die during the pressing. The potassium nitrate sample pressed with 13350 N (3000 pounds) resulted in a sample calculated as 99.3% of crystal density with no correction for retained water and no effort at forced drying. The energetic material was moistened in a plastic bag using an atomizer to spray the powered sample. The bag was shaken to distribute the droplets thru the sample. Approximately 2% water was added. The moisture was allowed to diffuse thru the sample enclosed in the bag for at least an hour before press runs.

The moistened powder was loaded into the die with manual compaction. One plunger was in the die in a fixed position to determine the quantity of material used. The die assembly was completed and it was loaded into the press. The force on the die plunger was raised to 17800 N (4000 pounds) over a time period of thirty seconds and held there for the remainder of a five minute cycle. After the die was removed from the press and disassembled, a large mechanical press was used to push the sample from the die. The samples all had a diameter of about 6 mm and lengths in the range 25 - 31 mm. The pressing force applied to the die and the resulting average densities and standard deviations for the samples are given in Table 1. In most cases a droplet of water was expressed from the die during pressing. Noticeably less water was expressed with the black powder samples.

The samples were burned in a uniaxial mode in a windowed chamber pressurized to the desired level with nitrogen. The samples were oriented with axis vertical and ignited at the top end with a hot wire. The burn was recorded with video equipment and the rate data were obtained from digitized position versus time data, which were fitted with a linear least-squares line routine. The rate datum was obtained as the slope of this line. The rate data for the various pressures were fitted to the usual power-law expression and summarized in Table 2. The burn rate data plots are presented in Figure 1 for a pressure range of 2 MPa to 4 MPa (300 psi to 600 psi). As shown in the plots, the anthraflavic acid substitute is nearest to the Goex in burn rate over this pressure range.

Figure 2 shows an example of the position/time plot from which the rate datum is obtained. The agreement of the points and the line gives a notion of the steadiness of the burn. In general, the burns of all the substitutes and the Goex samples were very regular after the ignition perturbation smoothed out. The Pyrodex samples were somewhat more irregular in their steadiness.

Figure 1. Pressed-Stick Burning Rates

Figure 2. Anthraflavic Acid: 4.32 MPa Average

Table 1. Measured Densities of Pressed Samples					
MATERIAL	DIE FORCE (N)	DENSITY (g/cc)	# SAMPLES		
Phenolpthalein	17800	1.8871 ± .0049	14		
Phenolpthalein	8900	1.8656 ± .0004	2		
Fluorescein	17800	1.9546 ± .0076	20		
Anthraflavic Acid	17800	1.9601 ± .0057	20		
Isopthalic Acid	17800	1.8921 ± .0063	20		
Goex BP	17800	1.9294 ± .0062	20		
Goex BP	13350	1.9135 ± .0085	2		
Goex BP	8900	$1.9161 \pm .0028$	3		
Pyrodex	17800	1.8525 ± .0055	10		

Table 2. Parameters of Burning-Rate Law r(cm/s) = b Pn(MPa)				
MATERIAL	COEFFICIENT b	EXPONENT n		
Goex Black Powder	2.014	0.2126		
Phenolpthalein	1.512	0.1828		
Fluorescein	1.273	0.2997		
Anthraflavic Acid	1.773	0.2875		
Isopthalic Acid	0.7727	0.3455		
Pyrodex	0.9940	0.4680		

6. CRANULAR-MATERIAL COMBUSTION TESTS

Laboratory-fixture tests were desired in order to burn the materials under conditions approximating those found in the hand-held signal flare. Two fixtures were made. One fixture was designed to examine the expelling-charge combustion phase. The other fixture was made to examine the rocket-motor igniting-charge combustion.

The igniting-charge test fixture, Figure 3, examines a small high velocity jet impinging against the material to be ignited here simulated by the heat sensor, Figure 4.

Figure 3. Igniting-Charge Test Fixture

8 MIL CHROMEL-ALUMEL JUNCTION
ALUMINA TUBE TIP

OMEGA ALUMINA THERMOCOUPLE TUBE

Figure 4. Heat Sensor, Thermocouple Assembly

The expelling-charge fixture, Figure 5, is intended to examine the pressurization and heat transfer during the payload-deployment phase. The venting of the combustion products is adjustable by using shims of various thickness at the "top" of the chamber. The shims used for the test sequence reported here were 0.254 mm (0.010 in.) stainless steel.

Pressure instrumentation consisted of a Kistler Pressure Transducer Model 211B2 with a Piezotron 5120 Coupler.

Devices were desired which would examine the relative heat transfer from the propellant products under several of the conditions encountered in the flare. Wall heat transfer, as in the expelling charge fixture would be characterized by relatively low velocity combustion products. For the ignition fixture, a jet of particle loaded combustion products would impact a surface at normal incidence. The heat sensors for both fixtures consisted of discs of copper exposed to the combustion gases on one side. The copper disc is supported by a ceramic cylinder with a 1.6 mm (1/16 inch) hole along the axis. A 0.127 mm (0.005 inch) wire chromel/alumel thermocouple in a 1.6 mm (1/16 inch) alumina thermocouple tube is inserted in the ceramic support and butts against the atmospheric pressure side of the copper disc. A ballpoint-pen spring was used to tension the thermocouple tube against the copper disc.

For the ignition charge test fixture 12.7 mm (1/2 inch) diameter copper discs, 0.64 mm thick were used in the heat sensor. The position of the thermocouple is troublesome in this fixture. The jet is small in diameter and position shifts of the thermocouple off the jet centerline alters the sensed temperature rapidly. Marking of the components of the heat sensor allows the parts to be assembled in the same position each time. In tests with this sensor, an erosion dimple at the jet impact point that is about half the thickness of the copper occurs for the black-powder shots. For the Pyrodex shots the erosion pit is somewhat shallower and somewhat broader.

For the sensor in the expelling-charge fixture, the copper disc is 0.12 nm thick. Variations in the shape and peak values of the temperature curves in these tests are believed to be due to the combustion product droplets flowing across the face of the disc. Upon disassembly of the sensor after a black-powder shot, residue in the shape of rivulets was observed. For the Pyrodex shots some of the examinations showed very little residue on the sensor face.

Masking tape was used over the hole between the two major parts of the chambers to provide initial charge confinement. This tape, to some degree, mimics the kraft paper used in the signal flare. The masking tape in the expelling-charge fixture was slit at one edge segement of the hole so that the tape would flop open in a repetitive fashion away from the heat sensor.

Pressure and temperature data were recorded on a Nicolet 4094 B2 scope using a 4851 plug-in.

Figure 5. Expelling-Charge Test Fixture

The charge of powder for the reported tests was set at 1.000 grams. Ignition was achieved with #40 B&S gauge nickel wire spot welded into position atop the Berning seals electrodes. It was found necessary to tension this wire during spot welding in order to obtain repeatability in the pressure traces. For the expelling charge fixture, the chamber axis had to be oriented horizontally, with the ignition wire down, to obtain repeatable ignition.

Based upon an examination of the data from the ignition fixture tests, it is recommended that the charge of powder be reduced and the fixture be redesigned in order to lower the pressures obtained before additional tests are performed. As tested, the pressures obtained were nearly at the damage point of the gage. An improved seal between the fixture segments would probably make the pressure traces more reproducible.

Table 3 lists a summary of the peak pressure and temperature data obtained in the ignition fixture and the expelling charge fixture for Goex Class 5 black powder and for Pyrodex RS powder. Samples of the substitute candidate powders were not available in the proper granulation for tests in the flare fixtures. The granulation of the Pyrodex RS powder is visibly finer than that of the Goex Class 5 black powder. The detailed data for these shots is presented in Appendix A.

Table 3. Average Peak Pressure and Temperature Changes in Fixture Tests					
FIXTURE MATERIAL ΔP (MPa) ΔT (°C					
Ignition	Goex Black Powder	40.22 ± 1.41	716 ± 49		
Ignition	Pyrodex RS	51.21 ± 1.18	567 ± 5		
Expelling-Charge	Goex Black Powder	9.70 ± 1.25	96 ± 31		
Expelling-Charge	Pyrodex RS	6.75 ± 0.93	78 ± 17		

8. CONCLUSIONS

Based upon the burn rate data, the anthraflavic acid substitute might function as a direct replacement for the Goex black powder in the 2 to 4 MPa range expected in the flare. The material should be granulated to the appropriate size for testing in the fixtures. The phenolphialein substitute with the lowest pressure exponent obtained in these tests deserves testing with probable granulation adjustment.

The isopthalic acid mixture as tested in the strand burner produced large droplets of residue that tended to plug the vents of the chamber. This is probably due to the much

lower burn rate of the material. This material may be of special interest as an igniter material in other applications.

The Pyrodex gave slightly higher pressures in the ignition fixture tests and lower pressures in the expelling charge fixture.

Before additional tests are performed with the ignition fixture, it is recomended that the charge of powder be reduced and that the chamber be modified to lower the peak pressures that are obtained.

INTENTIONALLY LEFT BLANK

REFERENCES

1. S. Wise, R.A. Sassé, and H.E. Holmes, "Organic Substitutes for Charcoal in "Black Powder" Type Pyrotechnic Formulations", BRL Technical Report ARBRL-TR-02569, July 1964.

INTENTIONALLY LEFT BLANK

APPENDIK.	DATA FROM	FIXTURE CO	MBUSTION 1	TESTS

INTENTIONALLY LEFT BLANK

APPENDIX: DATA FROM FIXTURE COMBUSTION TESTS

Table A-1. Ignition-Fixture Data				
MATERIAL	RUN #	AF (MFa)	ΔΤ (°C)	DISC MASS (g)
Goex BP	48	41.0	771	0.725
Goex BP	49	41.8	686	0.731
Goex BP	50	37.3	697	0.733
Goex BP	5 1	41.0	634	0.725
Goex BP	52	40.3	762	0.741
Goex BP	53	39.8	746	0.730
Pyrodex RS	59		562	0.750
Pyrodex RS	60	52.2	570	
Pyrodex RS	61	48.8	570	0.736
Pyrodex RS	62	51.7	562	0.728
Pyrodex RS	63	52.4	565	0.745
Pyrodex RS	64	50.8	574	0.738
Pyrodex RS	65	51.4	-4-	0.745

Table A-2. Expelling-Charge Fixture Data							
MATERIAL	MATERIAL RÜN# ΔP (MPa) ΔT (°C)						
Goex BP	34	9.30	100				
Goex BP	35	11.22	132				
Goex BP	36	9.51	128				
Goex BP	37	10.81	54				
Goex BP	73	7.67	68				
Pyrodex PS	66	6.14	90				
Pyrodex RS	67	8.18	73				
Pyrodex RS	68	6.36	63				
Pyrodex RS	69	7.90	82				
Pyrodex RS	70	6.04	5 5				
Pyrodex RS	71	5.96	106				

Figure A-1. Igniting-Charge Test Fixture Data for Goex Black Powder [Run 48]

Figure A-2. Igniting-Charge Test Fixture Data for Goex Black Powder [Run 49]

Figure A-3. Igniting-Charge Test Fixture Data for Goex Black Powder [Run 50]

Figure A-4. Igniting-Charge Test Fixture Data for Goex Black Powder [Run 51]

Figure A-5. Igniting-Charge Test Fixture Data for Goex Black Powder [Run 52]

Figure A-6. Igniting-Charge Test Fixture Data for Goex Black Powder [Run 53]

Figure A-7. Igniting-Charge Test Fixture Data for Pyrodex RS [Run 59]

Figure A-8. Igniting-Charge Test Fixture Data for Pyrodex RS [Run 60]

Figure A-9. Igniting-Charge Test Fixture Data for Pyrodex RS [Run 61]

Figure A-10. Igniting-Charge Test Fixture Data for Pyrodex RS [Run 62]

Figure A-11. Igniting-Charge Test Fixture Data for Pyrodex RS [Run 63]

Figure A-12. Igniting-Charge Test Fixture Data for Pyrodex RS [Run 64]

Figure A-13. Igniting-Charge Test Fixture Data for Pyrodex RS [Run 65]

Figure A-14. Expeiling-Charge Test Fixture Data for Goex Black Powder [Run 34]

Figure A-15. Expelling-Charge Test Fixture Data for Goex Black Powder [Run 35]

Figure A-16. Expelling-Charge Test Fixture Data for Goex Black Powder [Run 36]

Figure A-17. Expelling-Charge Test Fixture Data for Goex Black Powder [Run 37]

Figure A-18. Expelling-Charge Test Fixture Data for Goex Black Powder [Run 73]

Figure A-19. Expelling-Charge Test Fixture Data for Pyrodex RS [Run 66]

Figure A-20. Expelling-Charge Test Fixture Data for Pyrodex RS [Run 67]

Figure A-21. Expelling-Charge Test Fixture Data for Pyrodex RS [Run 68]

Figure A-22. Expelling-Charge Test Fixture Data for Pyrodex RS [Run 69]

Figure A-23. Expelling-Charge Test Fixture Data for Pyrodex RS [Run 70]

Figure A-24. Expelling-Charge Test Fixture Data for Pyrodex RS [Run 71]

No of Copies Organization

- 2 Administrator
 Defense Technical Info Center
 ATTN: DTIC-DDA
 Cameron Station
 Alexandria, VA 22304-6145
- 1 HQDA (SARD-TR) WASH DC 20310-0001
- 1 Commander
 US Army Materiel Command
 ATTN: AMCDRA-ST
 5001 Eisenhower Avenue
 Alexandria, VA 22333-0001
- 1 Commander US Army Laboratory Command ATTN: AMSLC-DL Adelphi, MD 20783-1145
- 2 Commander
 US Army, ARDEC
 ATTN: SMCAR-IMI-!
 Picatinny Arsenal, NJ 07806-5000
- 2 Commander
 US Army, ARDEC
 ATTN: SMCAR-TDC
 Picatinny Arsenal, NJ 07806-5000
- 1 Director
 Benet Weapons Laboratory
 US Army, ARDEC
 ATTN: SMCAR-CCB-TL
 Watervillet, NY 12189-4050

E.

- 1 Commander
 US Army Armament, Munitions
 and Chemical Command
 ATTN: SMCAR-ESP-L
 Rock Island, IL 61299-5000
- Director
 US Army Aviation Research
 and Technology Activity
 ATTN: SAVRT-R (Library)
 M/S 219-3
 Ames Research Center
 Mottett Field, CA 94035-1000

No of Copies Organization

- 1 Commander
 US Army Missile Command
 ATTN: AMSMI-RD-CS-R (DOC)
 Redstone Arsenal, AL 35898-5010
- 1 Commander
 US Army Tank-Automotive Command
 ATTN: AMSTA-TSL (Technical Library)
 Warren, MI 48397-5000
- Director US Army TRADOC Analysis Command ATTN: ATRC-WSR White Sands Missile Range, NM 88002-5502
- (Class. only) 1 Commandant
 US Army Infantry School
 ATTN: ATSH-CD (Security Mgr.)
 Fort Benning, GA 31905-5660
- (Unclass, only) 1 Commandant
 US Army Infantry School
 ATTN: ATSH-CD-CSO-OR
 Fort Benning, QA 31905-5660
 - 1 Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000

Aberdeen Proving Ground

- P. Dir, USAMSAA
 ATTN: AMXSY-D
 AMXSY-MP, H. Cohen
- 1 Cdr, USATECOM
 ATTN: AMSTE-TD
 3 Cdr, CRDEC, AMCCOM
 ATTN: SMCCR-RSP-A
 SMCCR-MU
 SMCCR-MSI
- 1 Dir, VLAMO ATTN: AMSLC-VL-D

No. of Copies

Organization

4 Commander

US Army Research Office

ATIN:

R. Ghirardelli

D. Mann

R. Singleton

R. Shaw

P.O. Box 12211

Research Triangle Park, NC

27709-2211

2 Commander

US Army, ARDEC

ATTN: SMCAR-AEE-B, D.S. Downs

SMCAR-AEE, J.A. Lannon

Picatinny Arsenal, NJ 07806-5000

1 Commander

US Army, ARDEC

ATTN: SMCAR-AEE-BR, L. Harris

Picatinny Arsenal, NJ 07806-5000

2 Commander

US Army Missile Command

ATTN: AMSMI-RK.

DJ. Ifshin

W. Wharton

Redstone Arsenal, AL 35898

1 Commander

US Army Missile Command

ATTN: AMSMI-RKA, A.R. Maykut

Redstone Arsenal, AL 35898-5249

1 Office of Naval Research

Department of the Navy

ATTN: R.S. Miller, Code 432

800 N. Quincy Street

Arlington, VA 22217

1 Commander

Naval Air Systems Command

ATIN: J. Ramparace,

AIR-54111C

Washington, DC 20360

2 Commander

Naval Ordnance Station

ATTN: J.E. Rose

F. Valenta

Indian Head, MD 20640-5000

1 Commander

Naval Surface Warfare Center

ATTN: J.L. East, Jr., G-23

Dahlgren, VA 22448-5000

No. of

Copies Organization

2 Commander

Naval Surface Warfare Center

ATTN: R. Bernecker, R-13

G.B. Wilmot, R-16

Silver Spring, MD 20903-5000

5 Commander

Naval Research Laboratory

ATTN: M.C. Lin

J. McDonald

E. Oran

J. Shnur

RJ. Doyle, Code 6110

Washington, DC 20375

1 Commanding Officer

Naval Underwater Systems

Center Weapons Dept.

ATTN: R.S. Lazar/Code 36301

Newport, RI 02840

Commander

Naval Weapons Center

ATIN:

T. Boggs, Code 388

T. Parr, Code 3895

China Lake, CA 93555-6001

1 Commander

Naval Weapons Support Center

ATTN: B. Douda, Code 50

Crane, IN 47522-5050

1 Superintendent

Naval Postgraduate School

Dept. of Aeronautics

ATTN:

D.W. Netzer

Monterey, CA 93940

3 AL/LSCF

ATTN: R. Corley

R. Geister

J. Levine

Edwards AFB, CA 93523-5000

I AL/MKPB

ATTN: B. Goshgarian

Edwards AFB, CA 93523-5000

1 AFOSR

ATTN: J.M. Tishkoff

Bolling Air Force Base

Washington, DC 20332

No. of	
Copies	Organization

- 1 OSD/SDIO/IST ATTN: L. Caveny Pentagon Washington, DC 20301-7100
- 1 Commandant
 USAFAS
 ATTN: ATSF-TSM-CN
 Fort Sili, OK 73503-5600
- 1 F.J. Seiler ATTN: S.A. Shackleford USAF Academy, CO 80840-6528
- University of Dayton Research Institute ATTN: D. Campbell AL/PAP Edwards AFB, CA 93523
- NASA
 Langley Research Center
 Langley Station
 ATTN: G.B. Northam/MS 168
 Hampton, VA 23365
- 4 National Bureau of Standards
 ATTN: J. Hastie
 M. Jacox
 T. Kashiwagi
 H. Semerjian
 US Department of Commerce
 Washington, DC 20234
- Aerojet Solid Propulsion Co. ATTN: P. Michell Sacramento, GA 95813
- Applied Combustion Technology, Inc. ATTN: A.M. Varne.
 P.O. Box 507885
 Orlando, FL 32860
- 2 Applied Mechanics Reviews
 The American Society of
 Mechanical Engineers
 ATTN: R.F. White
 A.B. Wenzel
 345 E. 47th Street
 New York, NY 10 7
- 1 Atlantic Research Corp. ATTN: M.K. King 5390 Cherokee Avenue Alexandria, VA 22314

No. of Copies Organization

- 1 Atlantic Research Corp. ATTN: R.H.W. Waesche 7511 Wellington Road Gainesville, VA 22065
- AVCO Everett Research

 Laboratory Division
 ATTN: D. Stickler

 2385 Revere Beach Parkway
 Everett, MA 02149
- 1 Battelle Memorial Institute Tactical Technology Center ATIN: J. Huggins 505 King Avenue Columbus, OH 43201
- 1 Cohen Professional Services
 ATTN: N.S. Cohen
 141 Channing Street
 Redlands, CA 92373
- 1 Exxon Research & Eng. Co. ATTN: A. Dean Route 22E Annanda e, NJ 06801
- 1 Ford Acrospace and
 Communications Corp.
 DIVAD Division
 Div. Hq., Irvine
 ATTN: D. Williams
 Main St. 221 & Ford Road
 Newport Beach, CA 92663
- General Applied Science
 Laboratories, Inc.
 Raynor Avenue
 Ronkonkama, NY 11779-6649
- General Electric Ordnance Systems
 ATTN: J. Mandzy
 100 Plastics Avenue
 Pittsfield, MA 01203
- 2 General Motors Rach Labs
 Physics Department
 ATTN: T. Sloan
 R. Teets
 Warren, MI 48690

- 2 Hercules, Inc.
 Allegneny Ballistics Lab.
 ATTN: W.B. Walkup
 E.A. Yount
 P.O. Box 210
 Rocket Center, WV 26726
- 1 Honeywell, Inc.
 Government and Aerospace
 Products
 ATTN: D.E. Broden/
 MS MN50-2000
 600 2nd Street NE
 Hopkins, MN 55343
- Honeywell, Inc.
 ATTN: R.E. Tompkins
 MN38-3300
 10400 Yellow Circle Drive
 Minnetonka, MN 55343
- 1 IBM Corporation ATTN: A.C. Tam Research Division 5600 Cottle Road San Jose, CA 95193
- 1 IIT Research Institute ATTN: R.F. Remaly 10 West 35th Street Chicago, IL. 60616
- 1 INAAP
 ATTN: D. Tinnell
 Highway 62
 Charlestown, IN 47111
- 2 Director
 Lawrence Livermore
 National Laboratory
 ATTN: C. Westbrook
 M. Costamino
 P.O. Box 808
 Livermore, CA 94556
- 1 Lockieed Missles & Space Co. ATTN: George Lo 3251 Hanover Street Dept. 52-35/B204/2 Pato Alto, CA 94504
- 1 Los Alamos National Lab ATTN: B. Nichols T7, MS-B284 P.O. Box 1663 Los Alamos, NM 87545

No. of Copies

- National Science Foundation ATTN: A.B. Harvey Washington, DC 20550
- Olin Ordnance
 ATTN: V. McDonald, Library
 P.O. Box 222
 St. Marks, FL 32355-0222
- Paul Gough Associates, Inc. ATTN: P.S. Gough
 1048 South Street
 Portsmouth, NH 03801-5423
- 2 Princeton Combustion Research Laboratories, Inc. ATTN: M. Summerfield N.A. Messina 475 US Highway One Monmouth Junction, NJ 08852
- Hughes Aircraft Company ATTN: T.E. Ward
 8433 Fallbrook Avenue Canoga Park, CA 91303
- Rockwell International Curp.
 Rocketdyne Division
 ATTN: J.E. Flanagan/HB02
 6633 Canoga Avenue
 Canoga Park, CA 91304
- Sandia National Laboratories
 Division 8354
 ATTN: R. Cattolica
 S. Johnston
 P. Mattern
 D. Stephenson
 Livermore, CA 94550
- 1 Science Applications, Inc. ATTN: R.B. Edelman 23145 Cumorah Crest Woodland Hills, CA 91364
- 3 SRJ International
 ATTN: G. Smith
 D. Crosley
 D. Golden
 333 Ravenswood Avenue
 Menio Park, CA 94025
- Sievens Institute of Tech.
 Davidson Laboratory
 ATTN: R. McAlevy, III
 Hoboken, NJ 07030

Organization

- Sverdrup Technology, Inc. LERC Group ATTN: R.J. Locke, MS SVR-2 2001 Aerospace Paikway Brook Park, OH 44142
- Thickol Corporation Elkton Division ATTN: S.F. Palopoli P.O. Box 241 Eikton, MD 21921
- Morton Thiokol, Inc. Huntsville Division ATTN: J. Deur Huntsville, AL 35807-7501
- Morton Thiokol, Inc. ATTN: D. Dilichzy P.O. Box 1149 Marshall, TX 75611
- Thickol Corporation Wassich Division ATIN: S.J. Bennett P.O. Box 524 Brigham City, UT 84302
- United Technologies Research Center ATTN: A.C. Eckbreth East Hartford, CT 06108
- United Technologies Corp. Chemical Systems Division ATTN: R.S. Brown T.D. Myers (2 copies) P.O. Box 49028 San Jose, CA 95161-9028
- Universal Propulsion Company H.J. McSpacden ATTN: Black Canyon Stage I Box 1140 Phoenix, AZ 85029
- Veritay Technology, Inc. ATTN: E.B. Fisher 4845 Millersport Flighway P.O. Box 308 East Amherst, NY 14051-0305
- Brigham Young University Dept. of Chemical Engineering M.W. Becksicad ATTN: Provo. UT 84058

No. of Copies

- Calitornia Institute of Tech. Jet Propulsion Laboratory L. Strand/MS 512/102 ATTN: 4800 Oak Grove Drive Pasadena, CA 91009
- California Institute of Technology F.E.C. Culick/ ATTN: MC 301-46 204 Karman Lab. Pasadena, CA 91125
- University of California Los Alamos Scientific Lab. P.O. Box 1663, Mail Stop B216 Los Alamos, NM 87545
- University of California, Berkeley Chemistry Department ATTN: C. Bradley Moore 211 Lewis Hall Berkeley, CA 94720
- University of California, San Diego ATTN: F.A. Williams AMES, BOIO La Jolia, CA 92093
- University of California, Sonta Barbara Quantum Instituté K. Schofield ATIN: M. Steinberg Same Barbara, CA 93106
- University of Colorado at Rouider Engineering Conter ATTN: J. Daily Compus Box 427 Boulder, CO 80309-0427
- University of Southern California Dept. of Chemistry S. Benson C. Wittig Los Angeles, CA 90007

Organization

- 1 Cornell University
 Department of Chemistry
 ATTN: T.A. Cool
 Baker Laboratory
 Ithaca, NY 14853
- University of Delaware ATTN: T. Brill Chemistry Department Newark, DE 19711
- University of Florida
 Dept. of Chemistry
 ATTN: J. Winefordner
 Gainesville, FL 32611
- 3 Georgia Institute of
 Technology
 School of Aerospace
 Engineering
 ATTN: E. Price
 W.C. Strahle
 B.T. Zinn
 Atlanta, GA 30332
- University of Illinois
 Dept. of Mech. Eng.
 ATTN: H. Krier
 144MEB, 1206 W. Green St.
 Urbana, IL 61801
- Johns Hopkins University/APL Chemical Propulsion Information Agency ATTN: T.W. Christian Johns Hopkins Road Laurel, MD 20707
- 1 University of Michigan
 Oas Dynamics Lab
 Aerospace Engineering Bidg.
 ATTN: G.M. Faeth
 Ann Arbor, MI 48109-2140
- University of Minnesota
 Dept. of Mechanical
 Engineering
 ATTN: E. Fletcher
 Minneapolis, MN 55455
- 3 Pennsylvania State University
 Applied Research Laboratory
 ATTN: K.K. Kuo
 H. Palmer
 M. Micci
 University Park, PA 16802

No. of Copies

- Pennsylvania State University
 Dept. of Mechanical Engineering
 ATTN: V. Yang
 University Park, PA 16802
- Polytechnic Institute of NY
 Graduate Center
 ATTN: S. Lederman
 Route 110
 Farmingdale, NY 11735
- 2 Princeton University
 Forrestal Campus Library
 ATTN: K. Brezinsky
 I. Glassman
 P.O. Box 710
 Princeton, NJ 08540
- Purdue University
 School of Aeronautics
 and Astronautics
 ATTN: J.R. Osborn
 Grissom Hall
 West Lafayette, IN 47906
- 1 Purdue University
 Department of Chemistry
 ATTN: E. Grant
 West Lafayette, IN 47906
- 2 Purdue University
 School of Mechanical
 Engineering
 ATTN: N.M. Laurendeau
 S.N.B. Murthy
 TSPC Chaffee Hall
 West Lafayette, IN 47906
- Rensselaer Polytechnic Inst.
 Dept. of Chemical Engineering ATTN: A. Fontijn
 Troy, NY 12181
- i Stanford University
 Dept. of Mechanical
 Engineering
 ATTN: R. Hanson
 Stanford, CA 94305
- 1 University of Texas
 Dept. of Chemistry
 ATTN: W. Gardiner
 Austin, TX 78712

No. of Copies

- 1 University of Utah
 Dept. of Chemical Engineering
 ATTN: G. Flandro
 Salt Lake City, UT 84112
- Virginia Polytechnic
 Institute and
 State University
 ATTN: J.A. Schetz
 Blacksburg, VA 24061
- Freedman Associates
 ATTN: E. Freedman
 2411 Diana Road
 Baltimore, MD 21209-1525

INTENTIONALLY LEFT BLANK.