

2015—2016 学年第一学期 《大学物理 (2-2)》56 学时期末试卷

专业	班级	
姓	名	
学	号	
开课	系室	基础物理系
考试	日期 2016	6年1月10日14:30-16:30

题		二				三				总分		
号		1	2	3	4	5	6	1	2	3	4	
得分												
阅 卷 人												

注意事项:

- 1. 请在试卷正面答题, 反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面整洁;
- 3. 本试卷共三道大题,满分100分;试卷本请勿撕开,否则作废;
- 4. 本试卷正文共9页。

一、选择题(共10小题,每小题3分,共30分)

1、(本题 3 分)

关于高斯定理,下列说法中哪一个是正确的?

- (A) 高斯面内不包围自由电荷,则面上各点电位移矢量 \bar{D} 为零.
- (B) 高斯面上处处 \vec{D} 为零,则面内必不存在自由电荷.
- (C) 高斯面的 \bar{D} 通量仅与面内自由电荷有关.
- (D) 以上说法都不正确.

2、(本题 3 分)

一平行板电容器中充满相对介电常量为 ε ,的各向同性均匀电介质.已知介质表面极化电荷面密度为 $\pm \sigma'$,则极化电荷在电容器中产生的电场强度的大小为:

(A)
$$\frac{\sigma'}{\varepsilon_0}$$

(B)
$$\frac{\sigma'}{\mathcal{E}_0 \mathcal{E}_r}$$

(C)
$$\frac{\sigma'}{2\varepsilon_0}$$
.

(D)
$$\frac{\sigma'}{\varepsilon_r}$$
.

[]

本大题满分30分

本

大

题

得

分

Γ

3、(本题 3 分)

取一闭合积分回路 L,使三根载流导线穿过它所围成的面. 现改变三根导线之间的相互间隔,但不越出积分回路,则

- (A) 回路 L 内的 ΣI 不变,L 上各点的 \bar{B} 不变.
- (B) 回路 L 内的 ΣI 不变,L 上各点的 \bar{B} 改变.
- (C) 回路 L 内的 ΣI 改变,L 上各点的 \bar{B} 不变.
- (D) 回路 L 内的 ΣI 改变,L 上各点的 \bar{B} 改变.

Γ

4、(本题 3 分)

对于单匝线圈取自感系数的定义式为 $L = \Phi/I$. 当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数 L

- (A) 变大, 与电流成反比关系.
- (B) 变小.
- (C) 不变.
- (D) 变大,但与电流不成反比关系.

Γ

7

5、(本题3分)

在圆柱形空间内有一磁感强度为 \bar{B} 的均匀磁场,如图所示. \bar{B} 的大小以速率 dB/dt 变化.在磁场中有A、B 两点,其间可放直导线 \overline{AB} 和弯曲的导线 \overline{AB} ,则

- (A) 电动势只在 \overline{AB} 导线中产生.
- (B) 电动势只在 \widehat{AB} 导线中产生.
- (C) 电动势在 \overline{AB} 和 \overline{AB} 中都产生,且两者大小相等.
- $(D) \overline{AB}$ 导线中的电动势小于 \widehat{AB} 导线中的电动势.

Γ

6	(本题:	2 44
O.) '// .

对位移电流,有下述四种说法,请指出哪一种说法正确.

- (A) 位移电流是由变化的电场产生的.
- (B) 位移电流是由线性变化磁场产生的.
- (C) 位移电流的热效应服从焦耳—楞次定律.
- (D) 位移电流的磁效应不服从安培环路定理.

7、(本题 3 分)

不确定关系式 $\Delta x \cdot \Delta p_x \geq \hbar$ 表示在 x 方向上

- (A) 粒子位置不能准确确定.
- (B) 粒子动量不能准确确定.
- (C) 粒子位置和动量都不能准确确定.
- (D) 粒子位置和动量不能同时准确确定.

8、(本题 3 分)

如果(1)锗用锑(五价元素)掺杂,(2)硅用铝(三价元素)掺杂,则分别获得的半导体属于下述类型:

- (A) (1), (2)均为n型半导体.
- (B) (1)为 n 型半导体, (2)为 p 型半导体.
- (C) (1)为p型半导体,(2)为n型半导体.
- (D) (1), (2)均为p型半导体.

Γ

9、(本题 3 分)

在激光器中利用光学谐振腔

- (A) 可提高激光束的方向性,而不能提高激光束的单色性.
- (B) 可提高激光束的单色性,而不能提高激光束的方向性.
- (C) 可同时提高激光束的方向性和单色性.
- (D) 既不能提高激光束的方向性也不能提高其单色性.

Γ

10、(本题 3 分)

宇宙飞船相对于地面以速度 v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过 Δt (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)

(A)
$$c \cdot \Delta t$$

(B)
$$v \cdot \Delta t$$

(C)
$$\frac{c \cdot \Delta t}{\sqrt{1 - (v/c)^2}}$$

(D)
$$c \cdot \Delta t \cdot \sqrt{1 - (\upsilon/c)^2}$$

二、简答和简单计算题(共6小题,每小题5分,共30分)

1、(本题5分)

如图所示,一内半径为a、外半径为b的金属球壳,带有电荷Q,在球壳空腔内距离球心r处有一点电荷q. 设无限远处为电势零点,试求:

- (1) 球壳内外表面上的电荷.
- (2) 球心 O 点处的总电势.

本大题满分30分		
本		
大		
题		
得		
分		

2、(本题 5 分)

试写出麦克斯韦方程组的四个方程(积分形式).

3、(本题5分)

以波长 λ = 410 nm (1 nm = 10^{-9} m)的单色光照射某一金属,产生的光电子的最大动能 E_{K} = 1.0 eV,求能使该金属产生光电效应的单色光的最大波长是多少? (普朗克常量 h =6.63× 10^{-34} J·s)

4、(本题 5 分)

实验发现基态氢原子可吸收能量为 12.75 eV 的光子.

- (1) 试问基态氢原子吸收该光子后将被激发到哪个能级?
- (2) 受激发的氢原子向低能级跃迁时,可能发出几条谱线?请画出能级图(定性),并将这些跃迁画在能级图上.

5、(本题 5 分)

粒子在一维矩形无限深势阱中运动,其波函数为:

$$\psi_n(x) = \sqrt{2/a}\sin(n\pi x/a) \qquad (0 < x < a)$$

若粒子处于 n=1 的状态,它在 0-a/4 区间内的概率是多少?

[提示:
$$\int \sin^2 x \, dx = \frac{1}{2}x - (1/4)\sin 2x + C$$
]

6、(本题 5 分)

假定在实验室中测得静止在实验室中的 μ^+ 子(不稳定的粒子)的寿命为 $2.2\times10^{-6}\,\mathrm{s}$,而当它相对于实验室运动时实验室中测得它的寿命为 $1.63\times10^{-5}\,\mathrm{s}$. 试问:这两个测量结果符合相对论的什么结论? μ^+ 子相对于实验室的速度是真空中光速c的多少倍?

三. 计算题 (共4小题,共计40分)

1、(本题 10 分)

一球体内均匀分布着电荷体密度为 ρ 的正电荷,若保持电荷分布不变,在该球体挖去半径为r的一个小球体,球心为O',两球心间距离 $\overline{OO'}=d$,如图所示.求:

本小题满分10分 本 小 题 得 分

- (1) 在球形空腔内,球心O'处的电场强度 \bar{E}_0 .
- (2) 在球体内 P 点处的电场强度 \vec{E} .设 O' 、O 、P 三点在同一直径上,且 $\overline{OP} = d$.

2、(本题 10 分)

一根半径为R的长直导线载有电流I,作一宽为R、长为I的假想平面S,如图所示。若假想平面S可在导线直径与轴OO'所确定的平面内离开OO'轴移动至远处.

- (1) 试求导线内外的磁感应强度 B 的大小.
- (2) 在假想平面 S 移动的过程中, 试求当通过 S 面的磁通量最大时 S 平面的位置(设直导线内电流分布是均匀的).

本小题满分10分			
本			
小			
题			
得			
分			

3、(本题 10 分)

半径为R的半圆线圈ACD通有电流 I_2 ,置于电流为 I_1 的无限长直线电流的磁场中,直线电流 I_1 恰过半圆的直径,两导线相互绝缘。求半圆线圈受到长直线电流 I_1 的磁场力。

4、(本题 10 分)

如图所示,长直导线中电流为 i,矩形线框 abcd 与长直导线共面,且 ad //AB,dc 边固定,ab 边沿 da 及 cb 以速度 \bar{v} 无摩擦地匀速平动. t=0 时,ab 边与 cd 边重合. 设线框自感忽略不计.

- (1) 如 $i = I_0$,求 ab 中的感应电动势. ab 两点哪点电势高?
- (2) 如 $i = I_0 \cos \omega t$,求 ab 边运动到图示位置时线框中的总感应电动势.

