PRÁTICA 3 – REGULADORES E FONTES CC

Revisão

SEL0610 - LABORATÓRIO DE CIRCUITOS ELETRÔNICOS

Engenharia de Computação – 6° Período Letivo

Conteúdo

- Fonte de Tensão
- Retificação de Meia Onda
- Retificação de Onda Completa
- Tensão de Ondulação
- Filtro a Capacitor
- Referência

Fonte de Tensão

Diagrama em blocos de uma fonte de tensão

Retificação de Meia Onda

Retificador de Meia Onda

 $V_{\rm dc} = 0.318 V_m$ half-wave

Boa aproximação para $V_m >> V_T$

Tensão de saída completa

Retificador em Ponte de Onda Completa

Retificador em Ponte de Onda Completa

Retificador em Ponte de Onda Completa

$$V_{\rm dc} = 0.636 V_m$$
 full-wave

Boa aproximação para $V_m >> V_T$

 $PIV \ge V_m$

Tensão de saída completa

 Retificador de Onda Completa com Transformador com derivação central

 Retificador de Onda Completa com Transformador com derivação central

Tensão de Ondulação

Fator de Ondulação do Sinal Retificado (sem filtro)

$$r = \frac{\text{ripple voltage (rms)}}{\text{dc voltage}} = \frac{V_r(\text{rms})}{V_{\text{dc}}} \times 100\%$$

Meia onda

$$V_{dc} = 0.318 V_{m}$$

$$V_{r}(rms) = 0.385 V_{m}$$

Onda Completa

$$V_{dc} = 0.636 V_{m}$$

$$V_{r}(rms) = 0.308V_{m}$$

$$r = 48,7\%$$

Filtro a Capacitor

Diagrama em blocos de filtro com capacitor único

Filtro a Capacitor

Diagrama em blocos de filtro com capacitor único

Filtro a Capacitor

Ondulação de um filtro a capacitor

$$V_{\rm dc} = V_m - \frac{I_{\rm dc}}{4fC} = V_m - \frac{4.17I_{\rm dc}}{C}$$

$$V_r \text{ (rms)} = \frac{I_{dc}}{4\sqrt{3} fC} = \frac{2.4 I_{dc}}{C} = \frac{2.4 V_{dc}}{R_L C}$$

$$r = \frac{V_r(\text{rms})}{V_{dc}} \times 100\% = \frac{2.4 I_{dc}}{CV_{dc}} \times 100\% = \frac{2.4}{R_L C} \times 100\%$$

C – capacitância do filtro [µF]

I_{dc} - corrente na carga [mA]

 R_L - resistência da carga [k Ω]

Considerando V_{dc} ≈ V_m

Referência

Boylestad, R. L., Nashelsky, L. Dispositivos Eletrônicos e teoria de circuitos, 8^a. Edição, Pearson.