Outils Mathématiques pour l'Ingénieur Equations Différentielles Ordinaires Linéaires

Enseignant Denis Arzelier : directeur de recherche au LAAS-CNRS

Contacts Tel: 05 61 33 64 76 - email: arzelier@laas.fr

Web-page https://homepages.laas.fr/arzelier

Organisation du cours

10 cours 1h15 : 12h30

- cours magistral en amphi avec planches
- 2 10 séances TD 1h15 : 12h30
 - □ Exercices d'application
- 3 1 examen final

Durée totale = 25h00

Algèbre

lacktriangle Décomposition en éléments simples $\underline{\operatorname{Ex.}}: \frac{p+1}{p^2(p-1)} = \frac{-2}{p} - \frac{1}{p^2} + \frac{2}{p-1}$

Algèbre linéaire

- Calcul vectoriel et matriciel, espaces vectoriels et bases
- Produit scalaire et projection
- **3** Valeurs propres, vecteurs propres $Av = \lambda v$, $\underline{\mathsf{Ex.}} : A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$

✔ Dérivation et intégration

- Dérivation
- 2 Intégration / parties : $\int_a^b u(x)v'(x)\mathrm{d}x = [uv]_a^b \int_a^b u'(x)v(x)\mathrm{d}x, \quad \underline{\mathrm{Ex.}} : \int_0^\pi x \sin x \mathrm{d}x$
- $\textbf{ 1ntégration / chang. de var. : } \int_a^b u(v(t))v'(t)\mathrm{d}t = \int_{v(a)}^{v(b)} u(x)\mathrm{d}x, \\ \underline{\operatorname{Ex. :}} \int_1^e \frac{\ln^n(x)}{x}\mathrm{d}x$

Définition 1 On appelle Equation Différentielle Ordinaire (ED0) toute relation entre une fonction y, ses dérivées successives et une variable indépendante x

$$F(x, \mathbf{y}(x), \mathbf{y}'(x), \cdots, \mathbf{y}^{(n)}(x)) = 0$$

- ✓ La fonction y est une variable dépendante, (inconnue) de l'EDO
- L'ordre de l'EDO est n si la dérivée d'ordre le plus élevé est d'ordre n $\underline{\operatorname{Ex.}}:y''(x)+xy(x)y'^2(x)=\sin(x)$
- L'EDO est dite homogène si elle ne contient que des termes en y et ses dérivées $\underline{\operatorname{Ex.}}: y''(x) + xy(x)y'^2(x) = 0$
- L'EDO est dite linéaire si $F(\cdot)$ est linéaire par rapport à y et à toutes ses dérivées $\underline{\operatorname{Ex.}}: (x+1)y^{(3)}(x) + 2xy''(x) + xy'(x) = \sin(x)$
- $m \prime$ L'EDO est dite linéaire à coefficients constants si $F(\cdot)$ est linéaire par rapport à y et à toutes ses dérivées et les coefficients ne dépendent pas de x

$$\underline{\mathsf{Ex.}} : y^{(3)}(x) + 2y''(x) + y'(x) + y(x) = \sin(x)$$

✓ Un système d'EDO est une collection de plusieurs EDO avec plusieurs inconnues

$$\underline{\mathsf{Ex.}} : \dot{x}_1(t) = x_2(t), \dot{x}_2(t) = x_1^2(t) + x_2(t)$$

Système masse-ressort

$$M\ddot{y}(t) + ky(t) = u(t)$$

- EDO linéaire d'ordre 2 à coefficients constants non autonome
- EDO illieaire d'ordro 2 à commune d'ordro 2
- Vibration libre ($u\sim 0$) :

$$y(t) = \frac{\dot{y}_0}{\omega_0} \sin(\omega_0 t) + y_0 \cos(\omega_0 t) = A \cos(\omega_0 t + \varphi)$$

- Energie :
$$M\frac{\dot{y}(t)^2}{2} + k\frac{y^2}{2} = M\frac{\omega_0^2A}{2}$$

Pendule amorti

$$\ddot{\theta}(t) = -\frac{g}{l}\sin(\theta(t)) - \frac{k}{ml^2}\dot{\theta}(t)$$

- EDO non linéaire d'ordre 2 à coefficients constants autonome ($\omega_0 = \sqrt{\frac{g}{l}}$)
- Approximation petits angles : $\theta(t) = \theta_0 e^{-\xi \omega_0 t} \cos(\sqrt{1-\xi^2}\omega_0 t + \varphi)$, $\xi = -\frac{k}{2m^{12}}$

✓ Oscillateur de Van der Pol (1926)

$$\ddot{x}(t) - (\varepsilon - x^2(t))\dot{x}(t) + x(t) = 0$$

- Cycle limite défini par arepsilon
- Radios à tubes à vide (diode tunnel)
- Oscillation à deux phases : 1 lente et 1 de relaxation rapide
- Modélisation du battement cardiaque (1928)

B. Van der Pol (1889-1959

Attracteur étrange de Lorenz (1963)

$$\dot{x}(t) = \sigma(y(t) - x(t))$$

$$\dot{y}(t) = rx(t) - y(t) - x(t)z(t)$$

$$\dot{z}(t) = x(t)y(t) - bz(t)$$

- Convection de Rayleigh-Bénard (atmosphère-terre)
- Equations de Navier-Stokes en incompressible (Boussinesq)
- σ nombre de Prandtl (10), r nombre de Rayleigh (28), b géométrie (8/3)

Définition 2 Soit l'EDO $F(x, y(x), y'(x), \cdots, y^{(n)}(x)) = 0$ d'inconnue y et définie sur l'intervalle I

- La fonction $f:I\to\mathbb{R}$, dont les dérivées d'ordre n existent, est une solution explicite de l'EDO sur I si $F(x,f(x),f'(x),\cdots,f^{(n)}(x))$ est définie sur I et $F(x,f(x),f'(x),\cdots,f^{(n)}(x))=0$ sur I
- g(x,y) est une solution implicite de l'EDO sur I si g(x,y)=0 définit au moins une fonction $f:I\to\mathbb{R}$ telle que f est une solution explicite de l'EDO

Ex.:

- -y'=2x
- -yy' = -x et $g_1(x,y) = x^2 + y^2 25$ et $g_2(x,y) = x^2 + y^2 + 25$
- ✓ Famille paramétrée de solutions $y_c = x^2 + c$ (1 paramètre)
- \checkmark Courbes intégrales y = Y(x, c)
- Méthodes de résolution
 - Analytiques ou exactes
 - Développement en séries infinies
 - Graphiques
 - Numériques

Définition 3 Etant donné $y_0 \in \mathbb{R}$, le problème de Cauchy consiste à rechercher la solution y de l'équation différentielle du premier ordre vérifiant la condition initiale associée :

$$y' = f(x, y), y(x_0) = y_0$$

où la fonction $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ est continue en x et y sur un domaine $D \ni x_0, y_0$ et la fonction $y: \mathbb{R} \to \mathbb{R}$ est différentiable sur un intervalle contenant x_0

Théorème 1 (Cauchy-Lipschitz) Soit \mathcal{O} un sous-ensemble ouvert de \mathbb{R}^2 et $(x_0, y_0) \in \mathcal{O}$. Si la fonction $f: \mathcal{O} \to \mathbb{R}$ est continue, Lipschitz uniformément

$$\exists L > 0, \forall (x, y), (x, z) \in \mathcal{O} \times \mathcal{O}, |f(x, y) - f(x, z)| \le L|y - z|$$

alors il existe $I \ni x_0$ t.q. le problème de Cauchy :

$$y' = f(x, y), \forall x \in I, y(x_0) = y_0$$

a une solution unique

Ex.:
$$y' = y^{2/3}$$
, $y(0) = 0$

Définition 4 On appelle équation différentielle ordinaire (EDO) linéaire du premier ordre, une équation différentielle de la forme :

(E)
$$a(x)y'(x) + b(x)y(x) = f(x), \quad x \in I \subset \mathbb{R}$$

où I est un intervalle de $\mathbb R$ sur lequel les fonctions a, b et f sont données. Les fonctions a et b sont appelées coefficients de l'EDO et la fonction f second membre de l'EDO

Nota: La relation différentielle F(y',y)=a(x)y'(x)+b(x)y(x) est linéaire ssi :

$$F(y_1' + y_2', y_1 + y_2) = F(y_1', y_1) + F(y_2', y_2)$$
$$F(\alpha y', \alpha y) = \alpha F(y', y), \alpha \in \mathbb{R}$$

Ex. et C.Ex.:
$$x^2y'(x) + 2xy(x) = \cos(x)$$
 et $x^2y(x)y'(x) + 2xy(x) = \cos(x)$

- L'équation (E) est dite homogène si le second membre f est identiquement nul : $f \equiv 0$. $\underline{\operatorname{Ex.}} : x^2 y'(x) + 2xy(x) = 0$
- (E) est dite à coefficients constants si les fonctions coefficients a et b sont constantes $\underline{\operatorname{Ex.}} : 2y'(x) - y(x) = \sin(x)$

Définition 5 Une EDO linéaire du premier ordre est dite sous forme normale si elle s'écrit comme :

$$(E_N)$$
 $y'(x) + p(x)y(x) = g(x), x \in I \subset \mathbb{R}$

où I est un intervalle de $\mathbb R$ sur lequel les fonctions p et g sont continues

$$\underline{\mathsf{Ex.}} : y'(x) + 2x^2y(x) = x^3$$

Nota: Si $a(x) \neq 0$, $x \in I$ alors (E) est équivalent à (E_N) avec p(x) = b(x)/a(x) et g(x) = f(x)/a(x)

Définition 6

- On appelle solution particulière d'une EDO linéaire du premier ordre (E) toute fonction y_p définie sur I vérifiant cette équation
- On appelle solution générale d'une EDO linéaire du premier ordre (E) la famille paramétrée à 1 paramètre (l'ensemble) de solutions y_c

Ex.:
$$y'(x) - 2y(x) = 0$$
, $y_p(x) = e^{2x}$, $y_c(x) = ce^{2x}$, $c \in \mathbb{R}$

Théorème 2 Soient les fonctions a, b, f continues sur l'intervalle $I \subset \mathbb{R}$ définissant une EDO (E), linéaire du premier ordre, alors la solution générale y(x) de (E) est donnée par :

$$\mathbf{y}(\mathbf{x}) = y_h(\mathbf{x}) + y_p(\mathbf{x})$$

οù

- y_h est une solution générale de l'EDO homogène (E_h)
- y_p est une solution particulière de l'EDO complète (E)

$$\underline{\text{Ex.}} : y'(x) - y(x) = 3xe^{2x} \text{ avec } y(x) = ce^x + 3(x-1)e^{2x}$$

Nota: Principe de superposition

Soient les fonctions a,b,f_1 et f_2 continues sur $I\subset\mathbb{R}$. Si y_{p_1} et y_{p_2} sont resp. solutions particulières des EDO $a(x)y'+b(x)y=f_1(x)$ et $a(x)y'+b(x)y=f_2(x)$ alors $y_p=\lambda_1 y_{p_1}+\lambda_2 y_{p_2}$ est solution particulière de l'EDO $a(x)y'+b(x)y=\lambda_1 f_1(x)+\lambda_2 f_2(x)$ pour $\lambda_1,\lambda_2\in\mathbb{R}$

Proposition 1

Soit I un intervalle où les fonctions a et b sont définies et continues et telles que $a(x) \neq 0$, $\forall x \in I$. La solution générale y_h de l'EDO homogène (E_h) :

$$(E_h) a(x)y'(x) + b(x)y(x) = 0$$

est de la forme :

$$y_h(x) = \lambda e^{u(x)}$$

où $\lambda \in \mathbb{R}$ est une constante arbitraire et $u'(x) = -\frac{b(x)}{a(x)}$ (u(x) est une primitive de $-\frac{b(x)}{a(x)}$). Si $y(x_0) = y_0$, avec $x_0 \in I$ et $y_0 \in \mathbb{R}$, alors λ est fixé

Nota : L'ensemble des solutions de (E_h) est un espace vectoriel de dimension 1

$$\underline{\mathsf{Ex.}}\, : y' + 2xy = 0 \ \mathsf{avec} \ y_h = \lambda e^{-x^2}$$
 , $\lambda \in \mathbb{R}$

Principe:

- On va chercher une solution particulière sous la forme :

$$y_p(x) = \lambda(x)e^{u(x)}$$

- On injecte cette solution particulière dans l'équation (E) en calculant :

$$y_p'(x) = \lambda'(x)e^{u(x)} + \lambda(x)u'(x)e^{u(x)}$$

La fonction λ vérifie alors :

$$\lambda'(x) = \frac{f(x)}{a(x)}e^{-u(x)}$$

- On cherche une primitive quelconque de $\dfrac{f(x)}{a(x)}e^{-u(x)}$ afin de trouver $\lambda(x)$ et obtenir $y_p(x)$

$$\lambda(x) = \int_{c}^{x} \frac{f(s)}{a(s)} e^{-u(s)} ds, \quad y_p(x) = e^{u(x)} \int_{c}^{x} \frac{f(s)}{a(s)} e^{-u(s)} ds$$

Ex. : Pour $\sin(x)y' - \cos(x)y = x$, une solution particulière sur $I =]0, \frac{\pi}{2}[$ est donnée par

$$y_p(x) = -x\cos(x) + \sin(x)\ln(\sin(x))$$

- ✓ Solution particulière de ay' + by = f(x) sur I avec $a \neq 0$ (coefficients constants)
 - Si $f(x) = \alpha \cos(x) + \beta \sin(x)$ alors $y_p(x) = c_1 \cos(x) + c_2 \sin(x)$
 - Si $f(x) = e^{\lambda x} P_n(x)$
 - 1- si $\lambda
 eq -rac{b}{a}$ alors $y_p(x) = e^{\lambda x}Q_n(x)$
 - **2- si** $\lambda = -\frac{b}{a}$ alors $y_p(x) = e^{\lambda x} x Q_n(x)$
 - Si $f_1(x)=\cos(\lambda x)P_n(x)$ ou $f_2(x)=\sin(\lambda x)P_n(x)$ alors on cherche une solution particulière complexe y_p^c de l'EDO $ay'+by=e^{i\lambda x}P_n(x)$
 - 1- $\Re(y_p^c)$ pour l'EDO avec f_1
 - 2- $\Im(y_p^c)$ pour l'EDO avec f_2
 - Si $f_1(x)=\operatorname{ch}(\lambda x)P_n(x)$ ou $f_2(x)=\operatorname{sh}(\lambda x)P_n(x)$ alors on cherche y_p^+ de l'EDO $ay'+by=e^{\lambda x}P_n(x)$ et y_p^- de l'EDO $ay'+by=e^{-\lambda x}P_n(x)$
 - 1- $y_p=rac{y_p^++y_p^-}{2}$ pour l'EDO avec f_1
 - 2- $y_p=rac{y_p^+-y_p^-}{2}$ pour l'EDO avec f_2

Ex. : Pour $y'-y=e^{2x}(x^2+1)$, $y_p(x)=e^{2x}(x^2-2x+3)$; pour $y'-y=\cos(2x)(x-1)$, $y_p(x)=(1/5)\left[\sin(2x)(2x-6/5)-\cos(2x)(x-8/5)\right]$

Définition 7 Une équation différentielle de la forme :

$$y'(x) + P(x)y(x) = Q(x)y^{n}(x), n > 1$$

est appelée équation différentielle de Bernoulli

Théorème 3 La transformation $v(x) = y^{1-n}(x)$, n > 1 réduit l'équation différentielle de Bernoulli à une EDO linéaire en v:

$$v'(x) + P_1(x)v(x) = Q_1(x)$$

avec
$$P_1(x) = (1-n)P(x)$$
 et $Q_1(x) = (1-n)Q(x)$

Ex.: l'équation $y'(x) + y(x) = xy^3(x)$ est équivalente à l'équation v'(x) - 2v(x) = -2x avec $v(x) = y^{-2}(x)$.

On obtient finalement:

$$v(x) = x + \frac{1}{2} + Ke^{2x}$$
 et $y^2(x) = \frac{1}{x + \frac{1}{2} + Ke^{2x}}$

Définition 8 Une équation différentielle de la forme :

$$y'(x) = P(x)y^{2}(x) + Q(x)y(x) + R(x)$$

est appelée équation différentielle de Riccati

Théorème 4 La transformation $z(x)=\frac{1}{y(x)-y_1(x)}$, $y_1(x)$ solution particulière de l'équation de Riccati, réduit l'équation différentielle de Riccati à une EDO linéaire en z:

$$z'(x) = P_1(x)z(x) + Q_1(x)$$

avec
$$P_1(x) = -Q(x) - 2P(x)y_1(x)$$
 et $Q_1(x) = -P(x)$

Ex.: l'équation $y'(x) + y^2(x) + \frac{1}{x}y(x) - \frac{4}{x^2} = 0$ a pour solution particulière $y_1(x) = \frac{2}{x}$. Le changement de variables $y(x) = y_1(x) + \frac{1}{z}$ transforme l'équation de Riccati initiale en l'équation $z'(x) = \frac{5z(x)}{x} + 1$. On obtient finalement :

$$z(x) = Kx^5 - \frac{1}{4}x$$
 et $y(x) = \frac{2Kx^4 + \frac{1}{2}}{Kx^5 - \frac{1}{4}x}$

Définition 9 On appelle équation différentielle ordinaire (EDO) linéaire d'ordre n, une équation différentielle de la forme :

$$(E_n)$$
 $a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y(x) = f(x), x \in I \subset \mathbb{R}$

où a_i , $i=0,\cdots n$ et f sont données continues sur I telles que $a_0\neq 0$. Les fonctions a_i , $i=0,\cdots n$ sont appelées coefficients de l'EDO et la fonction f second membre de l'EDO

Nota : La relation différentielle $F(y^{(n)},\cdots,y',y)$ est linéaire si et seulement si elle vérifie :

$$F(y_1^{(n)} + y_2^{(n)}, \dots, y_1 + y_2) = F(y_1^{(n)}, \dots, y_1) + F(y_2^{(n)}, \dots, y_2)$$
$$F(\alpha y^{(n)}, \dots, \alpha y) = \alpha F(y_1^{(n)}, \dots, y), \ \alpha \in \mathbb{R}.$$

Ex. et C.Ex.:
$$xy''(x) + x^3y'(x) + 2xy(x) = \cos(x)$$
 et $y'(x)y^{(3)}(x) + y''(x) + x^3y(x)y'(x) + 2xy(x) = \cos(x)$

- L'équation (E_n) est dite homogène si le second membre f est identiquement nul : $f\equiv 0$.

$$\underline{\mathsf{Ex.}} : 2xy''(x) + x^2y'(x) + 2xy(x) = 0$$

- (E_n) est dite à coefficients constants si les fonctions a_i , $i=0,\cdots n$ sont constantes.

$$\underline{\mathsf{Ex.}} : -y^{(3)} + y''(x) + 2y'(x) - y(x) = \sin(x)$$

Théorème 5 Soit l'EDO linéaire d'ordre n (E_n) où les fonctions a_i , $i=0,\cdots n$ et f sont continues et $a_0(x)\neq 0$ sur I alors $\forall \ x_0\in I$ et $c_0,\cdots,c_{n-1}\in\mathbb{R}$, il existe une solution unique g de (E_n) définie sur I telle que :

$$y(x_0) = c_0, \ y'(x_0) = c_1, \dots, \ y^{(n-1)}(x_0) = c_{n-1}$$

<u>Ex.</u>: $y''(x) + 2xy'(x) + x^3y(x) = e^x$ avec $y(1) = 2 = c_0$ et $y'(1) = -5 = c_1$ a une solution unique sur \mathbb{R}

Corollaire 1 Soit y une solution de l'EDO linéaire d'ordre n homogène (E_{nh}) telle que $y(x_0)=0$, $y'(x_0)=0$, \cdots , $y^{(n-1)}(x_0)=0$ pour $x_0\in I$ alors y(x)=0 pour $x\in I$

Ex. : l'EDO $y^{(3)}(x)+2y''(x)+4xy'(x)+x^2y(x)=0$ avec y(2)=y'(2)=y''(2)=0 a une solution unique y(x)=0 pour tout $x\in\mathbb{R}$

Définition 10

- On appelle solution particulière d'une EDO (E_n) toute fonction y_p définie sur I vérifiant cette équation
- On appelle <mark>solution générale</mark> d'une EDO (E_n) la famille à n paramètres de solutions y_c

Ex.: Pour
$$y''(x) + y(x) = x$$
 alors $y_c(x) = c_1 \sin(x) + c_2 \cos(x) + x$ et $y_p(x) = x$ sur \mathbb{R}

Théorème 6 Soient a_i , $i=0,\cdots n$ et f continues $I\subset\mathbb{R}$ définissant une EDO (E_n) linéaire d'ordre n, alors la solution générale y(x) de (E) est donnée par :

$$y(x) = y_h(x) + y_p(x)$$

- y_h est une solution générale de l'EDO homogène (E_{nh})
- y_p est une solution particulière de l'EDO complète (E_n)

Ex.:
$$y(x) = c_1 \sin(x) + c_2 \cos(x) + x$$
 solution générale de $y''(x) + y(x) = x$ sur \mathbb{R}

Nota: Principe de superposition

Ex.:
$$y''(x) - 5y'(x) + 6y = 2 - 12x + 6e^x$$
 et $y_p(x) = -4/3 - 2x + 3e^x$

Soit
$$(E_{nh})$$
 $a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y(x) = 0$

Théorème 7 principe de superposition

Soient y_1 , y_2 , \cdots , y_m solutions de l'EDO linéaire homogène (E_{nh}) alors toute combinaison linéaire

$$y = c_1 y_1 + c_2 y_2 + \dots + c_m y_m$$

est aussi une solution de l'EDO linéaire homogène (E_{nh}) pour c_1 , c_2 , \cdots , $c_m \in \mathbb{R}$

Ex. : Pour y''(x) + y(x) = 0, $\sin(x)$ et $\cos(x)$ sont 2 solutions donc $2\sin(x) + 3\cos(x)$ est une solution

Définition 11 f_1, f_2, \cdots, f_n sont linéairement dépendantes sur I s'il existe $c_1, c_2, \cdots, c_n \in \mathbb{R}$ non toutes nulles telles que $c_1 f_1(x) + c_2 f_2(x) + \cdots + c_n f_n(x) = 0, \ \forall \ x \in I$

A contrario, si $c_1 f_1(x) + c_2 f_2(x) + \cdots + c_n f_n(x) = 0$, $\forall x \in I$ implique $c_1 = c_2 = \cdots = c_n = 0$ alors f_1 , f_2, \cdots, f_n sont linéairement indépendantes

 $\underline{\operatorname{Ex.}}$: x et 2x sont linéairement dépendantes sur I=[0,1] alors que x et x^2 sont linéairement indépendantes sur I

Proposition 2 Soient a_i , $i=1,2,\cdots,n$ définies et continues sur I avec $a_0(x)\neq 0 \ \forall \ x\in I$

L'EDO (E_{nh}) a toujours n solutions linéairement indépendantes et toute solution y est :

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x),$$

où $c_i \in \mathbb{R}$ et y_1 , y_2 , \cdots , y_n sont n solutions linéairement indépendantes

Nota : L'ensemble des solutions de (E_{nh}) est un espace vectoriel de dimension n

Définition 12 n solutions linéairement indépendantes de (E_{nh}) sont appelées solutions fondamentales de (E_{nh}) alors que toute fonction :

$$y_h(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x), \ \forall \ x \in I$$

est une solution générale de (E_{nh}) sur I, $c_i \in \mathbb{R}$

Ex.: Pour y''(x) + y(x) = 0, $\sin(x)$ et $\cos(x)$ sont deux solutions indépendantes sur $\mathbb R$ alors $y_h(x) = c_1 \sin(x) + c_2 \cos(x)$ sur $\mathbb R$

 $y_p(x) = \sin(x + \pi/6)$ est une solution particulière sur \mathbb{R}

Définition 13 Soient n fonctions réelles y_1 , y_2 , \cdots , y_n de classe C^{n-1} sur I=[a,b]

On appelle Wronskien de $\cos n$ fonctions :

$$W(y_1, y_2, \cdots, y_n) = egin{array}{c|cccc} y_1 & y_2 & \cdots & y_n \ y_1' & y_2' & \cdots & y_n' \ dots & dots & dots & dots \ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \ \end{array}$$

Notation: $W(y_1, y_2, \dots, y_n)(x)$ ou $W(y_1(x), y_2(x), \dots, y_n(x))$

Proposition 3 Caractérisation de l'indépendance linéaire

- 1. Si $\exists x_0 \in I$, $W(y_1, \dots, y_n)(x_0) = 0$ alors y_1, \dots, y_n ne sont pas des solutions linéairement indépendantes de (E_{nh})
- 2. Si $\forall x \in I$, $W(y_1, \dots, y_n)(x) \neq 0$ alors y_1, \dots, y_n sont des solutions linéairement indépendantes de (E_{nh})

Ex. : e^x , e^{-x} et e^{2x} sol. indépendantes de $y^{(3)}-2y''-y'+2y=0$ sur tout $I\subset\mathbb{R}$

$$(E_n)$$
 $a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y(x) = f(x), \ \forall x \in I$

Méthode de la variation des constantes :

$$(E_2)$$
 $a(x)y''(x) + b(x)y'(x) + c(x)y(x) = f(x), \forall x \in I$

- ✓ Soit $y_h(x) = Ay_1(x) + By_2(x)$ solution générale de (E_{2h})
- On cherche :

$$y_p(x) = A(x)y_1(x) + B(x)y_2(x)$$

On obtient:

$$y_p'(x) = A'(x)y_1(x) + B'(x)y_2(x) + A(x)y_1'(x) + B(x)y_2'(x)$$

✓ On impose :

$$A'(x)y_1(x) + B'(x)y_2(x) = 0$$

Alors,

$$y_p''(x) = A'(x)y_1'(x) + B'(x)y_2'(x) + A(x)y_1''(x) + B(x)y_2''(x)$$

à substituer dans (E_2)

 \checkmark On doit résoudre le système en (A'(x), B'(x)) :

(S)
$$\begin{cases} y_1(x)A'(x) + y_2(x)B'(x) = 0 \\ y'_1(x)A'(x) + y'_2(x)B'(x) = \frac{f(x)}{a(x)}. \end{cases}$$

de déterminant le Wronskien $W(y_1(x),y_2(x))=y_1(x)y_2'(x)-y_1'(x)y_2(x)\neq 0$

 \checkmark Les solutions du système (S) sont données par :

$$A'(x) = -\frac{f(x)y_2(x)}{a(x)W(y_1(x), y_2(x))} \quad B'(x) = \frac{f(x)y_1(x)}{a(x)W(y_1(x), y_2(x))}.$$

 \checkmark On obtient ainsi les fonctions A(x) et B(x) comme :

$$A(x) = -\int_{c_1}^x \frac{f(u)y_2(u)}{a(u)W(y_1(u), y_2(u))} du \quad B(x) = \int_{c_2}^x \frac{f(u)y_1(u)}{a(u)W(y_1(u), y_2(u))} du$$

 \checkmark Une solution particulière de l'EDO (E_2) est alors donnée par :

$$y_p(x) = A(x)y_1(x) + B(x)y_2(x)$$

Ex.: Soit $y''(x) + y(x) = \tan(x)$ avec $y_h(x) = c_1 \sin(x) + c_2 \cos(x)$ et donc $y_p(x) = c_1(x) \sin(x) + c_2(x) \cos(x)$

On doit résoudre le système linéaire

$$(S) \begin{cases} c'_1(x)\sin(x) + c'_2(x)\cos(x) = 0 \\ c'_1(x)\cos(x) - c'_2(x)\sin(x) = \tan(x) \end{cases} W(\sin(x), \cos(x)) = \begin{vmatrix} \sin(x) & \cos(x) \\ \cos(x) & -\sin(x) \end{vmatrix} = -1$$

On obtient les deux solutions $c_1'(x) = \sin(x)$ et $c_2'(x) = \cos(x) - \frac{1}{\cos(x)}$

$$c_1(x) = -\cos(x) + c_3 \text{ et } c_2(x) = \sin(x) - \ln\left|\frac{1}{\cos(x)} + \tan(x)\right| + c_4$$

Pour $c_3 = c_4 = 0$:

$$y_p(x) = c_1(x)\sin(x) + c_2(x)\cos(x)$$

$$= -\cos(x)\sin(x) + \left(\sin(x) - \ln\left|\frac{1}{\cos(x)} + \tan(x)\right|\right)\cos(x)$$

$$= -\left(\ln\left|\frac{1}{\cos(x)} + \tan(x)\right|\right)\cos(x)$$

$$(E_{2ch})$$
 $ay''(x) + by'(x) + cy(x) = 0, \ a, b, c \in \mathbb{R} \text{ et } a \neq 0$

 $\checkmark y = e^{rx}, r \in \mathbb{C} \text{ avec } y(x) = e^{rx}, \ y'(x) = re^{rx}, \ y''(x) = r^2 e^{rx}$

Si $y(x) = e^{rx}$ est solution de (E_{2ch}) alors r est une racine de l'équation caractéristique :

$$ar^2 + br + c = 0$$

Si $\Delta = b^2 - 4ac > 0$ alors $r_1 \neq r_2$ réelles et :

$$y_h(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$
 avec $c_1, c_2 \in \mathbb{R}$ constantes arbitraires

Si $\Delta=b^2-4ac<0$ alors $r=\alpha+i\beta$ et $\bar{r}=\alpha-i\beta$ et :

$$y_h(x) = c_1 e^{rx} + c_2 e^{\bar{r}x}, \text{ avec } c_1, c_2 \in \mathbb{C}$$

ou
$$y_h(x) = e^{\alpha x} \left(A \cos(\beta x) + B \sin(\beta x) \right)$$
 avec $A, B \in \mathbb{R}$

Si $\Delta = b^2 - 4ac = 0$ alors $r = -\frac{b}{2a}$ (racine double) et

 $y_h(x) = (A + Bx)e^{rx}$ où A et B sont deux constantes arbitraires

Ex.: Pour y''(x) - 6y'(x) + 25y(x) = 0, on a $y_h(x) = e^{3x}(c_1\sin(4x) + c_2\cos(4x))$

- ✓ Solution particulière de ay'' + by' + cy = f(x) sur I avec $a \neq 0$
 - Si $f(x) = \alpha \cos(x) + \beta \sin(x)$ alors $y_p(x) = c_1 \cos(x) + c_2 \sin(x)$
 - Si $f(x) = e^{\lambda x} P_n(x)$
 - 1- si $a\lambda^2 + b\lambda + c \neq 0$ alors $y_p(x) = e^{\lambda x}Q_n(x)$
 - 2- si $a\lambda^2 + b\lambda + c = 0$ et $2a\lambda + b \neq 0$ alors $y_p(x) = e^{\lambda x} x Q_n(x)$
 - 3- si $\lambda=r_1=r_2$ alors $y_p(x)=e^{\lambda x}x^2Q_n(x)$
 - Si $f_1(x)=\cos(\lambda x)P_n(x)$ ou $f_2(x)=\sin(\lambda x)P_n(x)$ alors on cherche une solution particulière complexe y_p^c de l'EDO $ay''+by'+cy=e^{i\lambda x}P_n(x)$
 - 1- $\Re(y_p^c)$ pour l'EDO avec f_1
 - 2- $\Im(y_p^c)$ pour l'EDO avec f_2
 - Si $f_1(x)=\operatorname{ch}(\lambda x)P_n(x)$ ou $f_2(x)=\operatorname{sh}(\lambda x)P_n(x)$ alors on cherche y_p^+ de l'EDO $ay''+by'+cy=e^{\lambda x}P_n(x)$ et y_p^- de l'EDO $ay''+by'+cy=e^{-\lambda x}P_n(x)$
 - 1- $y_p=rac{y_p^++y_p^-}{2}$ pour l'EDO avec f_1
 - 2- $y_p=rac{y_p^+-y_p^-}{2}$ pour l'EDO avec f_2

Ex.: Pour $y'' + y' - y = e^{2x}(x^2 + 1)$, $y_p(x) = (1/5)e^{2x}(x^2 - 2x + (13/5))$

Mise en équations :

- Loi de Hooke : $\overrightarrow{F_1}(t) = -k(x(t)+l)\overrightarrow{i}$
- Forces de gravité et de résistance : $\overrightarrow{F_2}=mg\overrightarrow{i}$, $\overrightarrow{F_3}(t)=u \frac{dx(t)}{dt}\overrightarrow{i}$
- Force externe : $\overrightarrow{F_4}(t) = f(t)\overrightarrow{i}$
- Principe fondamental de la dynamique :

$$m\frac{d^2x(t)}{dt^2} + \nu\frac{dx(t)}{dt} + kx(t) = f(t)$$

 \checkmark Mouvement libre non amorti f(t)=0 et $\nu=0$: $m\frac{d^2x(t)}{dt^2}+kx(t)=0,\ x(0)=x_0,\ x'(0)=v_0$

$$x_h(t) = \frac{v_0}{\omega_n} \sin(\omega_n t) + x_0 \cos(\omega_n t) = X \cos(\omega_n t + \varphi)$$

avec

$$\omega_n = \sqrt{\frac{k}{m}}$$

$$X = \sqrt{\left(\frac{v_0}{\omega_n}\right)^2 + x_0^2}$$

$$\omega_n = \sqrt{\frac{k}{m}}$$
 $X = \sqrt{\left(\frac{v_0}{\omega_n}\right)^2 + x_0^2}$ $\cos(\varphi) = \frac{x_0}{X}, \sin(\varphi) = -\frac{v_0}{\omega_n X}$

✓ Mouvement libre amorti f(t) = 0 : $m \frac{d^2 x(t)}{dt^2} + \nu \frac{dx(t)}{dt} + kx(t) = 0, \ x(0) = x_0, \ x'(0) = v_0$

Forme Standard:

$$\frac{d^2x(t)}{dt^2} + 2\xi\omega_n \frac{dx(t)}{dt} + \omega_n^2 x(t) = 0, \ x(0) = x_0, \ x'(0) = v_0$$

avec

Pulsation propre

$$\omega_n = \sqrt{\frac{k}{m}}$$

Coefficient (facteur) d'amortissement

$$\xi = \frac{\nu}{2\sqrt{km}}$$

• Amortissement critique $\xi=1$ ou hyper-amortissement $\xi>1$:

$$\xi = 1 : x_h(t) = (x_0 + (v_0 + \omega_n x_0)t)e^{-\omega_n t}$$

Nota : $\xi \downarrow$ produit des oscillations de x

$$\xi > 1 : x_h(t) = \frac{(r_2 x_0 - v_0)e^{r_1 t} - (r_1 x_0 - v_0)e^{r_2 t}}{r_2 - r_1}$$
$$r_1 = -\xi \omega_n + \omega_n \sqrt{\xi^2 - 1}$$
$$r_2 = -\xi \omega_n - \omega_n \sqrt{\xi^2 - 1}$$

2 Sous-amortissement $\xi < 1$:

$$x_h(t) = e^{-\xi \omega_n t} \left(\frac{\xi \omega_n x_0 + v_0}{\omega_n \sqrt{1 - \xi^2}} \sin(\omega_n \sqrt{1 - \xi^2} t) + x_0 \cos(\omega_n \sqrt{1 - \xi^2} t) \right)$$
$$= X \cos(\omega_n \sqrt{1 - \xi^2} t + \varphi) e^{-\xi \omega_n t}$$

$$X = \sqrt{x_0^2 + \left(\frac{\xi \omega_n x_0 + v_0}{\omega_n \sqrt{1 - \xi^2}}\right)^2}$$

$$\cos(\varphi) = \frac{(\xi \omega_n x_0 + v_0)/(\omega_n \sqrt{1 - \xi^2})}{\sqrt{x_0^2 + \left(\frac{\xi \omega_n x_0 + v_0}{\omega_n \sqrt{1 - \xi^2}}\right)^2}}$$

$$\sin(\varphi) = -\frac{x_0}{\sqrt{x_0^2 + \left(\frac{\xi \omega_n x_0 + v_0}{\omega_n \sqrt{1 - \xi^2}}\right)^2}}$$

✓ Mouvement forcé $f(t) = F\cos(\omega t) : m\frac{d^2x(t)}{dt^2} + \nu\frac{dx(t)}{dt} + kx(t) = F\cos(\omega t), \ x(0) = x_0, \ x'(0) = v_0$ Forme Standard:

$$\frac{d^2x(t)}{dt^2} + 2\xi\omega_n \frac{dx(t)}{dt} + \omega_n^2 x(t) = E\cos(\omega t), \ x(0) = x_0, \ x'(0) = v_0$$

avec E = F/m et $\xi < 1$

$$x(t) = x_h(t) + x_p(t) = X\cos(\omega_n \sqrt{1 - \xi^2}t + \varphi)e^{-\xi\omega_n t} + \frac{E}{\sqrt{(\omega_n^2 - \omega^2)^2 + 4\xi^2\omega_n^2\omega^2}}\cos(\omega t + \theta)$$

οù

$$\cos(\theta) = \frac{\omega_n^2 - \omega^2}{\sqrt{(\omega_n^2 - \omega^2)^2 + 4\xi^2 \omega^2 \omega_n^2}}$$

$$\sin(\theta) = -\frac{2\xi\omega_n\omega}{\sqrt{(\omega_n^2 - \omega^2)^2 + 4\xi^2\omega^2\omega_n^2}}$$

Phénomène de résonance :

$$x_p(t) = \frac{E}{\sqrt{(\omega_n^2 - \omega^2)^2 + 4\xi^2 \omega_n^2 \omega^2}} \cos(\omega t + \theta) = f(\omega) \cos(\omega t + \theta)$$

$$f'(\omega) = \frac{-2E\omega \left[2\xi^2 \omega_n^2 - (\omega_n^2 - \omega^2)\right]}{((\omega_n^2 - \omega^2)^2 + 4\xi^2 \omega^2 \omega_n^2)^{3/2}}$$

Pulsation de résonnance:

$$\omega_r = \omega_n \sqrt{1 - 2\xi^2} \quad \underset{\xi \longrightarrow 0}{\longrightarrow} \quad \omega_n$$

$$f(\omega_r) = \frac{E}{2\xi\omega_n^2\sqrt{1-\xi^2}} \quad \underset{\xi \to 0}{\longrightarrow} \quad +\infty$$

$$\begin{cases}
\frac{dx_1}{dt} = a_{11}x_1 + \dots + a_{1n}x_n + f_1(t), \\
\vdots & \vdots & \vdots & \Leftrightarrow X'(t) = AX(t) + F(t) \\
\frac{dx_n}{dt} = a_{n1}x_1 + \dots + a_{nn}x_n + f_n(t)
\end{cases}$$

où:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}, \quad X(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}, \quad F(t) = \begin{bmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{bmatrix} \in \mathbb{R}^n$$

Théorème 8 Soient les fonctions f_1, \dots, f_n continues sur l'intervalle $I, t_0 \in I$ et n constantes réelles x_1^0, \dots, x_n^0 alors le système (S) a une unique solution X(t) telle que :

$$X(t_0)^T = \begin{bmatrix} x_1(t_0) & \cdots & x_n(t_0) \end{bmatrix} = \begin{bmatrix} x_1^0 & \cdots & x_n^0 \end{bmatrix}$$

$$(S) X'(t) = AX(t) + F(t)$$

Théorème 9 Soient f_i , $i=1,\cdots n$ continues sur $I\subset\mathbb{R}$ définissant un SDL (S), alors la solution générale X(t) de (S) est donnée par :

$$X(t) = X_h(t) + X_p(t)$$

- X_h est une solution générale du SDL homogène (S_h)
- X_p est une solution particulière du SDL complet (S)

Ex.: Le SDL

$$x'_1(t) = 2x_1(t) - x_2(t) - 5t$$

 $x'_2(t) = 3x_1(t) + 6x_2(t) - 4$ a pour solution générale $x_1(t) = c_1e^{5t} + c_2e^{3t} + 2t + 1$
 $x_2(t) = -3c_1e^{5t} - c_2e^{3t} - t$

Proposition 4

 (S_h) possède n solutions linéairement indépendantes et toute solution X de (S_h) :

$$X(t) = c_1 X_1(t) + c_2 X_2(t) + \dots + c_n X_n(t),$$

où X_1 , X_2 , \cdots , X_n sont n solutions linéairement indépendantes et c_i sont des constantes bien choisies. De plus,

$$X(t) = e^{At}X_0, \ X_0 = X(0) \in \mathbb{R}^n$$

Proposition 5

n solutions X_1, \cdots, X_n de (S_h) sont linéairement indépendantes ssi $\not\exists t \in I$ t.q. :

$$W(X_1, \dots, X_n)(t) = \left| X_1(t) \dots X_n(t) \right| = 0$$

Ex. : Le SDL homogène précédent a pour solutions linéairement indépendantes $X_1^T(t)=\left|\begin{array}{cc}e^{5t}&-3e^{5t}\end{array}\right|$ et

$$X_2^T(t) = \left[\begin{array}{cc} e^{3t} & -e^{3t} \end{array} \right]$$

Définition 14 Exponentielle de matrice

Soit
$$A\in \mathbb{M}_n(\mathbb{R})$$
 alors

Soit
$$A\in\mathbb{M}_n(\mathbb{R})$$
 alors $e^A=\sum_{n=0}^{+\infty}rac{A^n}{n!}=1+A+rac{A^2}{2}+rac{A^3}{3!}+\dots$

Lemme 1 Propriétés de l'exponentielle de matrice

- Si A est diagonalisable (P matrice de passage et λ_i valeurs propres de A) alors $e^A = P \operatorname{diag}\left(e^{\lambda_i}\right) \, P^{-1}$
- $-e^{0}=I$
- Si AB = BA alors $e^{A+B} = e^A e^B = e^B e^A$
- $-(e^A)^{-1} = e^{-A}$
- $-e^A A = A e^A$
- $-\frac{d}{dt}e^{At} = A e^{At}$

$$\underline{\mathsf{Ex.:}}\,A = \left[\begin{array}{ccc} 2 & -1 \\ 3 & 6 \end{array} \right] \quad e^{At} = \frac{1}{2} \left[\begin{array}{ccc} -e^{5t} + 3e^{3t} & -e^{5t} + e^{3t} \\ 3e^{5t} - 3e^{3t} & 3e^{5t} - e^{3t} \end{array} \right]$$

Si A est diagonalisable, on a :

Proposition 6 La solution générale de $X^{\prime}(t)=AX(t)$ est de la forme :

$$X(t) = c_1 e^{\lambda_1 t} V_1 + \dots + c_n e^{\lambda_n t} V_n = \sum_{i=1}^n c_i e^{\lambda_i t} V_i$$

où:

- λ_i sont les valeurs propres de A
- V_i sont les vecteurs propres associés (V_1,\ldots,V_n) forme une base de vecteurs propres)
- c_i sont des constantes arbitraires réelles (ou $\in \mathbb{C}$ si $\lambda_i \in \mathbb{C}$)

Ex.: Le SDL homogène

$$\begin{aligned}
 x_1'(t) &= 2x_1(t) - x_2(t) \\
 x_2'(t) &= 3x_1(t) + 6x_2(t)
 \end{aligned}
 A = \begin{bmatrix} 2 & -1 \\ 3 & 6 \end{bmatrix}, (\lambda_1 = 5, \lambda_2 = 3), V_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, V_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$X(t) = c_1 e^{5t} \begin{bmatrix} 1 \\ -3 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} c_1 e^{5t} + c_2 e^{3t} \\ -3c_1 e^{5t} - c_2 e^{3t} \end{bmatrix}$$

$$(S) X'(t) = AX(t) + F(t)$$

Méthode de la variation de la constante :

$$X(t) = e^{At}X_0(t)$$

$$X'(t) = Ae^{At}X_0(t) + e^{At}X'_0(t)$$

En réinjectant dans (S), on a :

$$X_0'(t) = e^{-At} F(t)$$

La solution particulière est obtenue comme (c fixé) :

$$X_p(t) = e^{At} X_0(t) = e^{At} \int_c^t e^{-Au} F(u) du$$

<u>Ex. :</u>

$$X_p = \begin{vmatrix} (-5/3)(t+1/3) \\ -(2/5) \end{vmatrix}$$
 est une solution particulière du SDL
$$\begin{aligned} x_1' &= 3x_1 + 5t \\ x_2' &= 5x_2 + 2 \end{aligned}$$

$$(E_n) a_0 y^{(n)}(t) + a_1 y^{(n-1)}(t) + \dots + a_{n-1} y'(t) + a_n y(t) = f(t)$$

En posant :
$$x_1(t) = y(t), x_2(t) = y'(t), \dots, x_n(t) = y^{(n-1)}(t)$$
, on obtient $x_1'(t) = y'(t), x_2'(t) = y''(t), \dots, x_n'(t) = y^{(n)}(t) = \frac{1}{a_0} f(t) - \frac{a_1}{a_0} y^{(n-1)}(t) - \dots - \frac{a_{n-1}}{a_0} y'(t) - \frac{a_n}{a_0} y(t)$

Sous forme matricielle, le système ci-dessus s'écrit :

$$X'(t) = AX(t) + F(t)$$

avec:

$$X(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}, \quad A = \begin{bmatrix} 0 & I_{n-1} \\ & & \\ & & \\ & -\frac{a_n}{a_0} & -\frac{a_{n-1}}{a_0} \cdots -\frac{a_1}{a_0} \end{bmatrix}, \quad F(t) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \frac{f(t)}{a_0} \end{bmatrix}$$

 $\underline{\operatorname{Ex.}} \colon y^{(3)} + 2y'' - y = 2t \text{ devient le système } x_1'(t) = x_2(t), \ x_2'(t) = x_3(t), \ x_3'(t) = x_1(t) - 2x_3(t) + 2t$

