Министерство образования Республики Беларусь

Учреждение образования "Белорусский государственный университет информатики и радиоэлектроники"

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Представление и обработка информации в интеллектуальных системах» на тему «Задача поиска подграфов в неориентированном графе, изоморфных графуобразцу»

Выполнил Липский Р. В. студент группы 121701

Проверил Голенков В. В.

Цель: получить навыки формализации и обработки информации с использованием семантических сетей

Задача: поиск подграфов в неориентированном графе, изоморфных графуобразцу.

Список понятий

1. Граф (абсолютное понятие) - совокупность непустого множества вершин и наборов пар вершин (связей между вершинами).

Рисунок 1.1. - Граф

2. Неориентированный граф (абсолютное понятие) – граф, в котором все связки-ребра.

Рисунок 1.2. - Неориентированный граф

3. Подграф (абсолютное понятие) — граф, образованный из подмножества вершин графа вместе со всеми рёбрами, соединяющими пары вершин из этого подмножества.

Рисунок 1.3. - Подграф

4. Изоморфизм графов $G = \langle V_G, E_G \rangle$ и $H = \langle V_H, E_H \rangle$ (абсолютное понятие) — биекция между множествами вершин графов $f: V_G \to V_H$, такая, что любые две вершины u и v графа G смежны тогда и только тогда, когда вершины f(u) и f(v) смежны в графе H.

Рисунок 1.4. – Изоморфизм графов

Входные данные:

В неориентированном графе необходимо найти все подграфы, изомофорные графу-образцу.

Ход выполнения:

1. Создадим случайную биекцию f между множествами вершин изначального графа и графа-образца, все биекции должны проверяться только один раз.

2. Проверим, правда ли, что для $\forall \langle f(x), f(y) \rangle \in$ множеству ребёр графа — образца, где x и $y \in$ множеству вершин изначального графа, $\exists \langle x, y \rangle \in$ множеству ребёр изначального графа. (обозначим это соответствие как x^*)

3. В данном случае, условие не выполняется, так что пропускаем данную биекцию и повторяем шаги 1, 2, пока условие из шага 2 не выполнится.

4. Создадим случайную биекцию f между множествами вершин изначального графа и графа-образца.

5. Проверим, правда ли, что для $\forall \langle f(x), f(y) \rangle \in$ множеству ребёр графа — образца, где x и $y \in$ множеству вершин изначального графа, $\exists \langle x, y \rangle \in$ множеству ребёр изначального графа. (обозначим это соответствие как x^*)

- 6. В данном случае условие выполняется, следовательно биекция, созданная в шаге 4 соответствует одному из подграфов, изоморфных графу-образцу, следовательно это будет один из ответов.
- 7. Повторяем шаги 4, 5, пока все возможные биекции не будут проверены.

Тестовые примеры

Во всех тестах графы будут приведены в сокращенной форме со скрытыми ролями элементов графа и будет требоваться найти все подграфы, изоморфные графу образцу, в неориентированном графе.

Тест 1

Вход:

В неориентированном графе необходимо найти все подграфы, изомофорные графу-образцу.

Рисунок 2.1.1. - Вход теста

Выход:

Найдено 6 подграфов, изоморфных графу-образцу.

Рисунок 2.1.2. – Выходы теста

Вход:

В неориентированном графе необходимо найти все подграфы, изомофорные графу-образцу.

Рисунок 3.1.1. – Вход теста

Выход:

Найдены подграфы изоморфные графу-образцу.

Рисунок 3.1.2. – Выход теста

Вход:

В неориентированном графе необходимо найти все подграфы, изомофорные графу-образцу.

Рисунок 4.1.1. - Вход теста

Выход:

Найдено 8 подграфов изоморфных графу-образцу.

Рисунок 4.1.2. – Выходы теста

Вход:

В неориентированном графе необходимо найти все подграфы, изомофорные графу-образцу.

Рисунок 5.1.1. - Вход теста

Выход:

Найдено 28 подграфов изоморфных графу-образцу.

Рисунок 5.1.1. – Выходы теста

Вывод

Мы получили навыки формализации и обработки информации с использованием семантических сетей, углубились в теорию графов, в частности, в изоморфизм графов. Разработали и проверили работоспособность алгоритма по поиску изоморфных подграфов в графе.

Вход:

В неориентированном графе необходимо найти все подграфы, изомофорные графу-образцу.

Рисунок 5.1.1. - Вход теста

Выход:

Найдено 6 подграфов изоморфных графу-образцу.

Список литературы

OSTIS GT [В Интернете] // База знаний по теории графов OSTIS GT. - 2011 г.. -

http://ostisgraphstheo.sourceforge.net/index.php/Заглавная_страница.

Харарри Ф. Теория графов [Книга]. - Москва : ЕдиториалУРСС, 2003.