Случайные события

Кафедра СМиМ

2019

"Probability theory is nothing but common sense reduced to calculation"

- Pierre-Simon Laplace

План

Случайные события

Классическая формула вероятности

Некоторые формулы из комбинаторики Парадокс дней рождения

Геометрическая вероятность

Сложение и умножение вероятностей

Схема Бернулли

Локальная и интегральная теоремы Лапласа

Формула полной вероятности

Теорема Байеса

Ссылки

Теория вероятностей – раздел математики, изучающий *закономерности* случайных явлений: случайные события, случайные величины, их свойства и операции над ними

- Анализ азартных игр (кости, рулетка, ...)
- ▶ Начало теории вероятности набор эмпирических фактов
- XVII век формализация знаний и применение математического аппарата

- ► Как связать вероятность возникновения события и частоту его возникновения?
- Что если одно случайное событие является причиной другого?
- Как по возникновению одного случайного события узнать произошло ли другое?
- Что если повторять опыты в которых происходят случайные события?

Вероятность

Вероятность — степень (относительная мера, количественная оценка) возможности наступления некоторого события.

- Безразмерная величина
- ▶ Лежит на отрезке [0,1]

Outline

Случайные события

Классическая формула вероятности

Некоторые формулы из комбинаторики Парадокс дней рождения

Геометрическая вероятность

Сложение и умножение вероятностей

Схема Бернулли

Локальная и интегральная теоремы Лапласа

Формула полной вероятности

Теорема Байеса

Ссылки

События

- Достоверные Ω
- ▶ Случайные Обозначаются большими латинскими буквами: A, B, ...
- ▶ Невозможные Ø

Примеры

- Выпадение 6 очков на игральной кости
- Выпадание 1 или 2 очков на игральной кости
- ▶ Выпадение более 3-х очков на игральной кости
- Начало пары вовремя (с точностью до минуты)
- Присутствие всей группы СУС-15 на паре по сопротивлению материалов
- Выпадение 5 сантиметров снега в Чите в феврале 2019 года
- Разрушение кубика бетона класса В30 под действием под давлением 30 МПа в результате испытания на прочность.

События

Примеры достоверных событий?

События

- Примеры достоверных событий?
- Примеры невозможных событий?

Что если событие случайно, но маловероятно¹?

 $^{^1}$ порог маловероятности события зависит от условий. Где важно меньше ошибиться, при подсчёте лампочек или парашютов? « \square » « \nearrow » « \nearrow » » \nearrow

Что если событие случайно, но маловероятно¹?

Практически невозможным событием называют событие, вероятность которого не выше определённой наперёд заданной величины.

Можно считать, что практически невозможное событие не произойдёт в *единичном* испытании.

 $^{^1}$ порог маловероятности события зависит от условий. Где важно меньше ошибиться, при подсчёте лампочек или парашютов? $^{-1}$

Принцип практической невозможности маловероятных событий

Если случайное событие имеет очень малую вероятность, то практически можно считать, что в единичном испытании это событие не наступит.

Достаточно малую вероятность, при которой (в данной определённой задаче) событие можно считать практически невозможным, называют уровнем значимости.

На практике обычно в ряде задач принимают уровни значимости, заключенные между вероятностями 0,01 и 0,05.

Испытание

Испытанием в теории вероятностей называют какой-нибудь эксперимент (не обязательно научный).

Испытание – это эксперимент, проводимый над объектом в комплексе определенных условий.

В испытании могут происходить (или не происходить) события.

Бросок монетки – *испытание*, выпадение орла - *событие*.

Виды событий

- Несовместные
 Появление одного события исключает появление других в одном и том же испытании
- Полная группа событий
 в результате испытания появится хотя бы одно из событий
- Равновозможные ни одно из событий не является объективно более возможным чем другое

Случаи (шансы) - несовместные, образующие полную группу, равновозможные события.

Виды событий

Примеры?

- Несовместные
- Полная группа событий
- Равновозможные

Outline

Случайные события

Классическая формула вероятности

Некоторые формулы из комбинаторики Парадокс дней рождения

Геометрическая вероятность

Сложение и умножение вероятностей

Схема Бернулли

Локальная и интегральная теоремы Лапласа

Формула полной вероятности

Теорема Байеса

Ссылки

Элементарный исход – каждый из возможных результатов испытания

Элементарный исход – каждый из возможных результатов испытания

Примеры элементарного исхода:

- Выпадение 1 очка на игральной кости
- Присутствие 20 студентов в аудитории на момент начала пары

Элементарный исход – каждый из возможных результатов испытания

Примеры элементарного исхода:

- Выпадение 1 очка на игральной кости
- Присутствие 20 студентов в аудитории на момент начала пары

Примеры события:

- Выпадение 1 очка на игральной кости
- Выпадение более 4-х очков на игральной кости
- Присутствие 20 студентов в аудитории на момент начала пары
- Присутствие от 10 до 20 студентов в аудитории на момент начала пары

$$P = \frac{M}{N}$$

N - общее число испытаний

М - число благоприятствующих исходов

В урне 2 белых шара и 3 чёрных. Определить вероятность вынуть белый шар и вынуть черный шар.

Классическая формула вероятности _{Пример}

В урне 2 белых шара и 3 чёрных. Определить вероятность вынуть белый шар и вынуть черный шар.

- Обозначим события:
 - А вынут белый шар;
 - В вынут чёрный шар;

В урне 2 белых шара и 3 чёрных. Определить вероятность вынуть белый шар и вынуть черный шар.

- Обозначим события:
 - А вынут белый шар;
 - В вынут чёрный шар;
- P(A) = $\frac{2}{5}$ = 0.4 P(B) = $\frac{3}{5}$ = 0.6;

Outline

Случайные события

Классическая формула вероятности

Некоторые формулы из комбинаторики

Парадокс дней рождения

Геометрическая вероятность

Сложение и умножение вероятностей

Схема Бернулли

Локальная и интегральная теоремы Лапласа

Формула полной вероятности

Теорема Байеса

Ссылки

Комбинаторика

Комбинаторика (комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них.

Комбинаторика — раздел математики, изучающий всевозможные перестановки элементов.

Комбинаторика

- Сколько возможно создать паролей из букв и цифр длинной 8?
- Сколько различных сандвичей можно приготовить в subway?
- Сколькими способам можно рассадить группу из 28 человек в аудитории?

Множество всевозможных комбинаций полученных путём перестановки из n элементов.

$$P_n = A_n^n = n!$$

- Одна комбинация от другой отличается только порядком элементов
- Состав одинаковый
- Элементы при перестановке не повторяются

Перестановки 4 элементов

Перестановки Пример

Сколькими способами можно составить расписание на день из 5 пар?

Пример

Сколькими способами можно составить расписание на день из 5 пар?

$$P = 5! = 150$$

Что если нужно разместить элементы в пространстве не в линейном порядке, а например на прямоугольной сетке?

Что если нужно разместить элементы в пространстве не в линейном порядке, а например на прямоугольной сетке?

Легко перейти от произвольного размещения в пространстве к размещению линейному (в ряд) если пронумеровать все места в пространстве от 1 до k.

Сочетания

Множество всевозможных комбинаций из n элементов по k элементов

$$C_n^k = \frac{n!}{(n-k)!k!}$$

- Комбинации отличаются друг от друга составом
- Порядок элементов не важен
- Элементы не повторяются

В англ. литературе и ПО сочетания обозначается как nCr

Сочетания

Сочетания из 4 по 2

Сочетания Пример

Сколькими способами можно выбрать двух студентов из 25?

Сочетания

Сколькими способами можно выбрать двух студентов из 25?

$$C_{25}^2 = \frac{25!}{2!(25-2)!} = \frac{23! \cdot 24 \cdot 25}{2! \cdot 23!} = 300$$

Число всевозможных комбинаций из n элементов по k

$$A_n^k = \frac{n!}{(n-k)!}$$

- Комбинации отличаются друг от друга составом
- Комбинации отличаются друг от друга порядком
- Элементы не повторяются

Размещения - это сочетания, где порядок элементов имеет значение В англ. литературе и ПО размещения обозначается как nPr

Размещения из 4 по 3 Варианты размещений приведены в столбцах

Пример

Сколькими способами можно составить расписание на один день недели, если на неделю предусмотрено 18 пар. а именно в день

недели, если на неделю предусмотрено 18 пар, а именно в день должно быть ровно 3 пары?

Пример

Сколькими способами можно составить расписание на один день недели, если на неделю предусмотрено 18 пар, а именно в день должно быть ровно 3 пары?

$$A_{18}^3 = \frac{18!}{(18-3)!} = 16 \cdot 17 \cdot 18 = 4896$$

Число всевозможных комбинаций из n элементов по k

$$\bar{A}_n^k = n^k$$

- Комбинации отличаются друг от друга составом
- Комбинации отличаются друг от друга порядком
- Элементы могут повторятся

Пример

Пароль от WiFi сети вашего соседа длинной 12 символов и, как вы выяснили, состоит только из цифр.

Сколько существует возможных паролей?

Пример

Пароль от WiFi сети вашего соседа длинной 12 символов и, как вы выяснили, состоит только из цифр.

Сколько существует возможных паролей? $n = 10 \ k = 12$

$$\bar{A}_{10}^{12}=10^{12}$$

Сколько времени в худшем случае займёт перебор пароля если ваш компьютер способен подбирать их со скоростью $2\cdot 10^6$?

 $10^{12}/2000000 = 500000.0$ секунд pprox 139 дней

Пример

Пароль от WiFi сети вашего соседа длинной 12 символов и, как вы выяснили, состоит только из цифр.

Сколько существует возможных паролей? $n = 10 \ k = 12$

$$\bar{A}_{10}^{12} = 10^{12}$$

Сколько времени в худшем случае займёт перебор пароля если ваш компьютер способен подбирать их со скоростью $2\cdot 10^6$?

 $10^{12}/2000000 = 500000.0$ секунд ≈ 139 дней

А что если длинна пароля 8 - цифр?

Пример

Пароль от WiFi сети вашего соседа длинной 12 символов и, как вы выяснили, состоит только из цифр.

Сколько существует возможных паролей? $n = 10 \ k = 12$

$$\bar{A}_{10}^{12} = 10^{12}$$

Сколько времени в худшем случае займёт перебор пароля если ваш компьютер способен подбирать их со скоростью $2\cdot 10^6$?

 $10^{12}/2000000 = 500000.0$ секунд pprox 139 дней

А что если длинна пароля 8 - цифр?

$$A_{10}^8 = 10^8$$

 $10^8/2000000 = 50$ секунд

Связь между размещениями, перестановками и сочетаниями

- В сочетаниях важен состав, а не порядок
- Если учесть порядок в каждом отдельном сочетании
- То получим сочетания с порядком, т.е. размещения

Связь между размещениями, перестановками и сочетаниями

- В сочетаниях важен состав, а не порядок
- Если учесть порядок в каждом отдельном сочетании
- То получим сочетания с порядком, т.е. размещения

$$A_n^k = C_n^k P_k$$

Правило сложения (правило «или»)

Если элемент A можно выбрать n способами, а элемент B можно выбрать m способами, то выбрать A **или** B можно n + m способами.

Правило умножения (правило «и»)

Если элемент A можно выбрать n способами, и при любом выборе A элемент B можно выбрать m способами, то **пару** (A, B) можно выбрать *nm* способами.

Outline

Случайные события

Классическая формула вероятности

Некоторые формулы из комбинаторики Парадокс дней рождения

Геометрическая вероятность

Сложение и умножение вероятностей

Схема Бернулли

Локальная и интегральная теоремы Лапласа

Формула полной вероятности

Теорема Байеса

Ссылки

Вероятность совпадения дней рождения в группе из n человек хотя бы у двоих больше, чем кажется.

В группе, состоящей из 23 или более человек, вероятность совпадения дней рождения (число и месяц) хотя бы у двух людей превышает 0.5

- Рассмотрим год длинной в 365 дней
- Будем обозначать день рождения порядковым номером этого дня в году
- Тогда дни рождения *п* человек можно представить последовательностью из *п* чисел
- Сколько возможно таких последовательностей?
 размещения с повторениями:

- Рассмотрим год длинной в 365 дней
- Будем обозначать день рождения порядковым номером этого дня в году
- Тогда дни рождения п человек можно представить последовательностью из п чисел
- Сколько возможно таких последовательностей?
 размещения с повторениями:

$$\bar{A}_{365}^n = 365^n$$

- Совпадение дней рождения означает, что два или более числа в последовательности повторяются
- Чтобы определить число таких последовательностей с повторениями, определим число последовательностей без повторений. Затем вычтем из общего числа
- Число последовательностей где числа не повторяются

- Совпадение дней рождения означает, что два или более числа в последовательности повторяются
- Чтобы определить число таких последовательностей с повторениями, определим число последовательностей без повторений. Затем вычтем из общего числа
- Число последовательностей где числа не повторяются это число размещений без повторений

$$A_{365}^n = \frac{365!}{(365 - n)!}$$

Вероятность совпадения дней рождения хотя бы у двух человек

- Совпадение дней рождения означает, что два или более числа в последовательности повторяются
- Чтобы определить число таких последовательностей с повторениями, определим число последовательностей без повторений. Затем вычтем из общего числа
- Число последовательностей где числа не повторяются это число размещений без повторений

$$A_{365}^n = \frac{365!}{(365 - n)!}$$

▶ Вероятность совпадения дней рождения хотя бы у двух человек

$$P = \frac{\bar{A}_{365}^n - A_{365}^n}{\bar{A}_{365}^n}$$

Outline

Классическая формула вероятности

Геометрическая вероятность

- ► Если число всевозможных исходов бесконечно, то классическая формула вероятности неприменима например кубиковая прочность образца бетона может быть определена как 16.1 МПа, или 16.11, или 16.111 МПа и т.д.
- ▶ Тогда исход можно рассматривать как точку на отрезке
- Вместо числа благоприятствующих исходов можно используем отрезок содержащий значения соответствующих исходов
- Вместо общего числа исходов отрезок содержащий значения всех возможных исходов

$$P = \frac{l}{L}$$

I – длинна отрезка с благоприятствующими значениями
 L – длинна отрезка со всеми возможными значениями.

Кроме того, вместо отрезков можно рассматривать площади, объёмы и т.д.

Пример

На отрезке АВ длиной 20 см наугад отметили точку С. Какова вероятность, что она находится на расстоянии не более 9 см от точки А и не больше 15 см от точки В?

Пример

На отрезке АВ длиной 20 см наугад отметили точку С. Какова вероятность, что она находится на расстоянии не более 9 см от точки А и не больше 15 см от точки В?

Пример

На отрезке АВ длиной 20 см наугад отметили точку С. Какова вероятность, что она находится на расстоянии не более 9 см от точки А и не больше 15 см от точки В?

$$P = \frac{4}{20} = 0.2$$

Outline

Случайные события

Классическая формула вероятности

Некоторые формулы из комбинаторики Парадокс дней рождения

Геометрическая вероятность

Сложение и умножение вероятностей

Схема Бернулли

Локальная и интегральная теоремы Лапласа

Формула полной вероятности

Теорема Байеса

Ссылки

Сложение

Суммой событий A и B называется событие C = A + B, состоящее в наступлении, по крайней мере, одного из событий A или B, т. е. в наступлении события A, или события B, или обоих этих событий вместе, если они совместны.

Вероятность суммы двух несовместных событий А и В равна сумме вероятностей этих событий:

$$P(A + B) = P(A) + P(B)$$

Полная группа событий

Сумма вероятностей событий образующих полную группу равна единице.

Противоположные события – два единственно возможных события образующих полную группу.

Независимые и зависимые события

Событие А называют **независимым** от события В, если вероятность появления события А не зависит от того, произошло событие В или нет.

Событие A называют **зависимым** от события B, если вероятность появления события A меняется в зависимости от того, произошло событие B или нет.

Условная вероятность

Пусть A и B — зависимые события. Условной вероятностью P(A|B) события A называется вероятность события A, найденная в предположении, что событие B уже наступило.

Иногда условная вероятность обозначается так: $P_B(A)$

Пример

В урне 2 белых шара и 3 чёрных. Определить вероятность вынуть белый шар и вынуть черный шар.

Найти вероятность вынуть белый шар, если перед ним был вынут чёрный.

Пример

В урне 2 белых шара и 3 чёрных. Определить вероятность вынуть белый шар и вынуть черный шар.

Найти вероятность вынуть белый шар, если перед ним был вынут чёрный.

Обозначим события:

- А вынут белый шар;
- В вынут чёрный шар;

Как обозначить вероятность условного события?

Пример

В урне 2 белых шара и 3 чёрных. Определить вероятность вынуть белый шар и вынуть черный шар.

Найти вероятность вынуть белый шар, если перед ним был вынут чёрный.

Обозначим события:

- А вынут белый шар;
- В вынут чёрный шар;

Как обозначить вероятность условного события? P(A|B)

Пример

В урне 2 белых шара и 3 чёрных. Определить вероятность вынуть белый шар и вынуть черный шар.

Найти вероятность вынуть белый шар, если перед ним был вынут чёрный.

Обозначим события:

- А вынут белый шар;
- В вынут чёрный шар;

Как обозначить вероятность условного события? $P(A|B) = \frac{2}{4} = 0.5$

Умножение

Зависимые события

Вероятность произведения двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого.

$$P(AB) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

Умножение

Независимые события

Вероятность произведения двух независимых событий равна произведению вероятности одного из них на вероятность другого.

$$P(AB) = P(A) \cdot P(B)$$

Вероятность появления хотя бы одного события

Пример

Монету подбросили 2 раза.

Опишем элементарные события:

- A_1 выпадание решки в первом броске;
- A_2 выпадание решки в втором броске;

$$\overline{A}_1$$
 – выпадание орла в первом броске;

 \overline{A}_2 – выпадание орла в втором броске;

Тогда вероятности сложных событий

$$P(A_1A_2) = 0.25$$

$$P(A_1\overline{A_2}) = 0.25$$

$$P(\overline{A}_1A_2) = 0.25$$

$$P(\overline{A}_1\overline{A}_2) = 0.25$$

Вероятность появления хотя бы одного события

- $P(A_1A_2) = 0.25$
- $P(A_1\overline{A_2}) = 0.25$
- $P(\overline{A}_1A_2) = 0.25$
- $P(\overline{A}_1\overline{A}_2) = 0.25$

Тогда вероятность возникновения решки хотя бы один раз

$$P = P(A_1A_2) + P(A_1\overline{A_2}) + P(\overline{A}_1A_2)$$

Все перечисленные выше события образуют полную группу, поэтому удобнее вычислить вероятность так:

$$P = 1 - P(\bar{A_1}\bar{A_2})$$

Вероятность появления хотя бы одного события

 $A_1, A_2, ..., A_n$ - независимые события; Будем обозначать \bar{A}_i - не появление события A_i

Тогда вероятность появления хотя бы одного событий $A_1, A_2, ..., A_n$:

$$P=1-P(\bar{A_1}\bar{A_2}...\bar{A_n})$$

Outline

Случайные события

Классическая формула вероятности

Некоторые формулы из комбинаторики Парадокс дней рождения

Геометрическая вероятность

Сложение и умножение вероятностей

Схема Бернулли

Локальная и интегральная теоремы Лапласа

Формула полной вероятности

Теорема Байеса

Ссылки

А: результат всех бросков - "оррор"

Все испытания – броски монеты, считаем независимыми. Пусть p=0.5 – вероятность выпадения peшкu, тогда q=1-p=0.5 – вероятность выпадения opna

А: результат всех бросков - "оррор"

Все испытания – броски монеты, считаем независимыми. Пусть p=0.5 – вероятность выпадения peшкu, тогда q=1-p=0.5 – вероятность выпадения opna

$$P(A) = qppqp = 0.5^5 = 0.03125$$

Стоит заметить, что задачу можно переформулировать, при этом решение не поменяется: было подброшено 5 пронумерованных монет, на первой выпал орёл, на второй решка, на третей решка,

 В: орёл выпал 2 раза
 Орёл мог выпасть 2 раза в серии испытаний в разное время в рамкох одной серии испытаний: ооррр, орорр, оррор, оррро, ...

Применением формулу сложения вероятностей: P(B) = P(ooppp) + P(opopp) + P(opppo) + P(opppo) + ...

 В: орёл выпал 2 раза
 Орёл мог выпасть 2 раза в серии испытаний в разное время в рамкох одной серии испытаний: ооррр, орорр, оррор, оррро, ...

Применением формулу сложения вероятностей:
$$P(B) = P(ooppp) + P(opopp) + P(opopp) + P(opppo) + ...$$

Все слагаемые в правой части формулы имеют одинаковые значение, подсчитаем их число.

Рассмотрим запись вида $x_1x_2x_3x_4x_5$, где x_i - либо "p" либо "o"

Предположим, что все пять элементов - "o". Нужно подсчитать, сколькими способами можно выбрать 2 элемента чтобы изменить их на "p".

Рассмотрим запись вида $x_1x_2x_3x_4x_5$, где x_i - либо "p" либо "o"

Предположим, что все пять элементов - "o". Нужно подсчитать, сколькими способами можно выбрать 2 элемента чтобы изменить их на "p".

$$C_5^2 = C_n^k = \frac{n!}{k!(n-k)!}$$

Рассмотрим запись вида $x_1x_2x_3x_4x_5$, где x_i - либо p'' либо p''

Предположим, что все пять элементов - "o". Нужно подсчитать, сколькими способами можно выбрать 2 элемента чтобы изменить их на "p".

$$C_5^2 = C_n^k = \frac{n!}{k!(n-k)!}$$

Наконец можно записать короткую формулу вероятности события В:

$$P(B) = C_5^2 p^2 (1 - p)^3$$

- Каждое испытание имеет ровно два исхода, условно называемых успехом и неудачей.
- Независимость испытаний: результат очередного эксперимента не должен зависеть от результатов предыдущих экспериментов.
- Вероятность успеха должна быть постоянной (фиксированной) для всех испытаний.

Вероятность того, что в n испытаниях событие произойдёт ровно k раз

$$P_n(k) = C_n^k \cdot p^k \cdot q^{n-k}$$

р – вероятность появления события в единичном испытании

q – вероятность e появления события в единичном испытании

Пример 1

Пусть посещения отдельными студентами занятия - события независимые, вероятность каждого из которых равна 0.9. В группе СУС-15 на занятии по строительной механике присутствует 15 человек из 25.

Определить вероятность этого события.

Пример 1

Пусть посещения отдельными студентами занятия - события независимые, вероятность каждого из которых равна 0.9. В группе СУС-15 на занятии по строительной механике присутствует 15 человек из 25.

Определить вероятность этого события.

$$p = 0.9 q = 1 - p = 0.9$$

$$P_{25}(15) = C_{25}^{15} \cdot 0.9^{15} \cdot 0.1^{10}$$

Пример 2

Определить вероятность для всех возможных значений числа студентов.

Пример 2

Определить вероятность для всех возможных значений числа студентов.

Пример 2

Определить вероятность для всех возможных значений числа студентов.

Какое число присутствующих на занятии студентов наиболее вероятно?

Пример 2

График для 100 человек

Пример 2

График для 100 человек

Какое число присутствующих наиболее вероятно?

Схема Бернулли Пример 3

Пусть посещения отдельными студентами занятия - события независимые, вероятность каждого из которых равна 0.95. Определить вероятность события: в группе СУС-16 на занятии по строительной механике присутствует от 20 до 25 человек, при полном составе группы в 25 человек.

Пусть посещения отдельными студентами занятия - события независимые, вероятность каждого из которых равна 0.95. Определить вероятность события: в группе СУС-16 на занятии по строительной механике присутствует от 20 до 25 человек, при полном составе группы в 25 человек.

$$P_{25}(20 \le k \le 25) = P_{25}(20) + P_{25}(21) + P_{25}(22) + P_{25}(23) + P_{25}(24) + P_{25}(25)$$

Outline

Случайные события

Классическая формула вероятности

Некоторые формулы из комбинаторики Парадокс дней рождения

Геометрическая вероятность

Сложение и умножение вероятностей

Схема Бернулли

Локальная и интегральная теоремы Лапласа

Формула полной вероятности

Теорема Байеса

Ссылки

Формулу Бернулли трудно применять при больших значениях пит

$$P_n(m) = \frac{n!}{m!(n-m)!} p^m q^{n-m}$$

Однако можно использовать выражение взамен:

$$P_n(m) = \frac{1}{\sqrt{2\pi npq}} \exp\left(-\frac{x_m^2}{2}\right) (1 + \alpha_n(m))$$

где
$$|\alpha_n(m)| < \frac{c}{\sqrt{n}}$$
,
 $c = \text{const} > 0$,
 $x_m = \frac{m - np}{\sqrt{npq}}$
При $n \to \infty$, $|\alpha_n(m)| \to 0$

При $n \to \infty$ используем приближённую формулу

$$P_n(m) \approx \frac{1}{\sqrt{2\pi npq}} \exp\left(-\frac{x_m^2}{2}\right)$$

$$x_m = \frac{m-np}{\sqrt{npq}}$$

При $n \to \infty$ используем приближённую формулу

$$P_n(m) \approx \frac{1}{\sqrt{2\pi npq}} \exp\left(-\frac{x_m^2}{2}\right)$$

$$x_m = \frac{m-np}{\sqrt{npq}}$$

рекомендуется применять при n > 100 и при m > 20

Локальная теорема Лапласа _{Пример}

Монета подбрасывается 400 раз. Найти вероятность того, что орёл выпадет ровно:

- ▶ 200 paз;
- ▶ 225 раз

Пример

Монета подбрасывается 400 раз. Найти вероятность того, что орёл выпадет ровно:

- 200 раз;
- 225 раз

$$n = 400$$

 $m = 200$
 $p = 0.5$

$$x_{200} = \frac{200 - 400 \cdot 0.5}{\sqrt{400 \cdot 0.5 \cdot 0.5}}$$

$$P_{400}(200) = \frac{1}{\sqrt{2\pi400 \cdot 0.5 \cdot 0.5}} exp(-x_{200}^2/2)$$

функция Гаусса

Чтобы быстро вычислить

$$\frac{1}{\sqrt{2\pi npq}} \exp\left(-\frac{x_m^2}{2}\right)$$

можно использовать таблицу значений функции Гаусса

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$$

berdov.com/img/works/teorver/laplas local/manual.68cb28.pdf

функция Гаусса

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$$

Для определения вероятности сложного события, например вероятности попадания экспериментально измеренного m_e в диапазон от m_1 до m_2 согласно теореме о сложении событий:

$$P(m_1 \le m_e \le m_2) = \sum_{i=m_1}^{m_2} P_n(i)$$

Интегральная теорема Лапласа

Однако, если npq > 10 то можно использовать интегральную теорему Лапласа.

Если вероятность появления случайного события в каждом испытании постоянна, то вероятность того, что в испытаниях событие наступит не менее и не более раз (от до раз включительно), приближённо равна:

$$P(m_1 < m_e < m_2) \approx \Phi(x_2) - \Phi(x_1)$$

где
$$X_m = \frac{m-np}{\sqrt{npq}}$$

 $\Phi(x)$ - функция Лаплас

 $\Phi(x)$ - функция Лапласа.

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt$$

функция Лапласа

Если изменить пределы интегрирования

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$$

github.com/VetrovSV/ST/blob/master/z(phi0).pdf

Функция Гаусса и функция Лапласа

Синяя кривая - функция Гаусса Красная площадь под кривой - функция Лапласа

Outline

Случайные события

Классическая формула вероятности

Некоторые формулы из комбинаторики Парадокс дней рождения

Геометрическая вероятность

Сложение и умножение вероятностей

Схема Бернулли

Локальная и интегральная теоремы Лапласа

Формула полной вероятности

Теорема Байеса

Ссылки

Гипотезы

Пусть событие может произойти только при выполнении одного из событий $H_1, H_2, ..., H_n$, которые образуют полную группу несовместных событий.

Эти события будем называть гипотезами.

Гипотезы и событие

Вероятность события A, которое может произойти только вместе с одним из событий $H_1, H_1, ..., H_n$

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A \mid H_i) \mathbb{P}(H_i)$$

- Продукция была закуплена у трёх предприятий.
 Процентный состав этой продукции на складе следующий:
 - 20% продукция первого предприятия,
 - 30% продукция второго предприятия,
 - 50% продукция третьего предприятия;
- Каждое предприятие производит продукцию разного качества (высшего и обычного)
 - 10% продукции первого предприятия высшего сорта,
 - на втором предприятии 5%
 - на третьем 20% продукции высшего сорта.
- Найти вероятность того, что случайно выбранная со склада продукция окажется высшего сорта.

- Событие А: куплена продукция высшего сорта
- Гипотезы:
 - ▶ Н₁ выбрана продукция первого предприятия
 - Н₂ выбрана продукция второго предприятия
 - ► Н₃ выбрана продукция третьего предприятия
- Вероятности гипотез:

- Пример
 - ▶ Событие А: куплена продукция высшего сорта
 - Гипотезы:
 - ▶ Н₁ выбрана продукция первого предприятия
 - ► H₂ выбрана продукция второго предприятия
 - ▶ Н₃ выбрана продукция третьего предприятия
 - Вероятности гипотез:
 - $P(H_1) = 0.2$
 - $P(H_2) = 0.3$
 - $P(H_3) = 0.5$

Пример

- Событие А: куплена продукция высшего сорта
- Гипотезы:
 - ► H₁ выбрана продукция первого предприятия
 - ► H₂ выбрана продукция второго предприятия
 - $ightharpoonup H_3$ выбрана продукция третьего предприятия
- Вероятности гипотез:
 - $P(H_1) = 0.2$
 - $P(H_2) = 0.3$
 - $P(H_3) = 0.5$
- Условные вероятности события А:
 - $P(H_1|A) = 0.1$
 - $P(H_2|A) = 0.05$
 - $P(H_3|A) = 0.2$

▶ Вероятности гипотез:

- Вероятности гипотез:
 - $P(H_1) = 0.2$
 - $P(H_2) = 0.3$
 - ► $P(H_3) = 0.5$

- Вероятности гипотез:
 - $P(H_1) = 0.2$
 - $P(H_2) = 0.3$
 - $P(H_3) = 0.5$
- Условные вероятности события А:
 - $P(A|H_1) = 0.1$
 - $P(A|H_2) = 0.05$
 - $P(A|H_3) = 0.2$

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A \mid H_i) \mathbb{P}(H_i)$$

Outline

Случайные события

Классическая формула вероятности

Некоторые формулы из комбинаторики Парадокс дней рождения

Геометрическая вероятность

Сложение и умножение вероятностей

Схема Бернулли

Локальная и интегральная теоремы Лапласа

Формула полной вероятности

Теорема Байеса

Ссылки

- Часто бывает необходимо выяснить не полную вероятность события, а по факту свершавшегося события узнать какое из событий (гипотез) к этому привело.
- В результатах испытаний бывают ошибки. Методы исследований выявляют то, чего нет (ложноположительный результат), и не выявляют то, что есть (ложноотрицательный результат) пример: результат анализа на рак
- ▶ Ложноположительные результаты искажают картину. Предположим, что требуется выявить какой-то очень редкий феномен (1 случай на 1000000). Вероятнее всего, положительный результат метода будет на самом деле ложноположительным.

Нужно учесть, что на вероятность некоторого события влияет не только вероятность его возникновения в эксперименте на одном объекте, но и вероятность встретить объект с проверяемыми свойствами.

Если тест на наличие алкоголя в крови выше заданного значения ошибается в 5% случаев, а выпивший водитель попадается в одном случае из 500, то какова вероятность того, что тест ошибётся на трезвом водителе?

Вероятность того, что событие H_i из множества возможных $H_1, H_2, ..., H_n$ стало причиной возникновения события А

$$P(H_i|A) = \frac{P(H_i)P(A|H_i)}{\sum\limits_{j=1}^{n} P(H_j)P(A|H_j)}$$

Пример

На склад поступают телефоны трех заводов, причем доля телефонов первого завода составляет 25%, второго - 60%, третьего - 15%. Известно также, что средний процент телефонов без брака для первой фабрики составляет 2%, второй - 4%, третьей - 1%.

Найти вероятность того, что наугад выбраннный телефон изготовлен на первом заводе, если он бракованный

- Событие А телефон бракованный
- Гипотезы:
 - ▶ H₁ выбранный телефон изготовлен на заводе 1
 - Н₂ выбранный телефон изготовлен на заводе 2
 - ▶ Н₃ выбранный телефон изготовлен на заводе 3

$$P(H_i|A) = \frac{P(H_i)P(A|H_i)}{\sum\limits_{j=1}^{n} P(H_j)P(A|H_j)}$$

Пример

- Вероятности гипотезы:
 - $P(H_1) = 0.25$
 - $P(H_2) = 0.6$
 - $P(H_3) = 0.15$

Условная вероятность события А если верна гипотеза

- $P(A|H_1) = 0.25$
 - $P(A|H_2) = 0.6$
 - $P(A|H_3) = 0.15$

Outline

Случайные события

Классическая формула вероятности

Некоторые формулы из комбинаторики Парадокс дней рождения

Геометрическая вероятность

Сложение и умножение вероятностей

Схема Бернулли

Локальная и интегральная теоремы Лапласа

Формула полной вероятности

Теорема Байеса

Ссылки

Источники

- ► Теория вероятностей и математическая статистика. Гмурман В.Е. biblio-online.ru/book/teoriya-veroyatnostey-i-matematicheskaya-statistika-431095
- ▶ Руководство к решению задач по теории вероятностей и математической статистике. В. Е. Гмурман. 11-е изд., Издательство Юрайт, 2019. 406 с www.biblio-online.ru/book/02E0C1D3-4EEA-43AA-AA6B-5E25C4991D0

Ссылки

Материалы курса

github.com/VetrovSV/ST