Problem Set 8

Solutions

$$\Pi 14(E) = \Pi e^{-\frac{i}{R}t} | \Psi(t=0) \rangle$$

$$= e^{-\frac{i}{R}t} \Pi | \Psi(t=0) \rangle = \pi_i e^{-\frac{i}{R}t} | \Psi(t=0) \rangle$$

= Mo 14(t)), where Mi is the initial definite parity

No, because a non-flat potential has [p,H] #0.

Proof for this case:

kinetic potential

$$[p, H] = [p, T + VG] = [p, VG]$$

= $-i\hbar(\vec{x} V(x)) Y(x) \neq 0$ since it is an odd-parity operator.

(3) かずり=ず, かずり=戸=> かず・ずり=-s.戸 The initial state of the isolated particle detates is non-degenerate, so if [M,H]=0, it must have a definite parity, and M(t)) should have the same definite parity. In which case (\$.\$\parity\$ (0)=0 for all time

4. (a)

$$H = \begin{pmatrix} \epsilon & -\Delta & 0 & -\Delta & -\Delta \\ -\Delta & \epsilon & -\Delta & 0 & -\Delta \\ 0 & -\Delta & \epsilon & -\Delta & -\Delta \\ -\Delta & 0 & -\Delta & \epsilon & -\Delta \\ -\Delta & -\Delta & -\Delta & -\Delta & \epsilon \end{pmatrix}$$
(1)

The Hamiltonian above is the same of problem 7.2 so we refer to the eigenvectors and eigenvalues of that problem's solution.

$$\Pi_{x} = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$
(2)

The reflection does not change site 5, so Π_x act as the identity in that state (eigenvalue is unity). More generally $\Pi_x^2 = 1$ so the reflection has eigenvalues ± 1 . Eigenstates are found by explicitly writing the 5-dimensional matrix equation:

$$\Pi_x |\pi\rangle = \pm |\pi\rangle \,, \tag{3}$$

and are:

$$|\pi_1\rangle = \frac{1}{2} \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \quad |\pi_2\rangle = \frac{1}{2} \begin{pmatrix} 1\\1\\-1\\-1\\0 \end{pmatrix} \quad \text{and} \quad |\pi_5\rangle = \begin{pmatrix} 0\\0\\0\\0\\1 \end{pmatrix} \quad (4)$$

with eigenvalue +1 and:

$$|\pi_3\rangle = \frac{1}{2} \begin{pmatrix} 1\\ -1\\ 1\\ -1\\ 0 \end{pmatrix}$$
 and $|\pi_4\rangle = \frac{1}{2} \begin{pmatrix} 1\\ -1\\ -1\\ 1\\ 0 \end{pmatrix}$ (5)

with eigenvalue -1.

 $[\Pi_x, H] = 0$ so we can expect the eigenvectors to be shared in general. However, testing the $|\pi\rangle$ eigenvectors in the Hamiltonian will reveal off-diagonal elements. More specifically:

- i. testing those eigenvectors in the Hamiltonian (1), or
- ii. making reference to problem 7.2, or
- iii. inspecting H in the $|\pi\rangle$ space, i.e. the matrix elements $\langle \pi | H | \pi \rangle$, or
- iv. stating H in $|\pi\rangle$ space is block-diagonal,

we find $|\pi_2\rangle, |\pi_3\rangle$ and $|\pi_4\rangle$ to be eigenvectors of H, with eigenvalues:

$$e_2 = e_4 = \epsilon$$
 and $e_3 = e_+ = \epsilon + 2\Delta$ (6)

The others are found diagonalizing the subspace spanned by $|\pi_1\rangle$ and $|\pi_5\rangle$:

$$\begin{pmatrix} \langle \pi_1 | H | \pi_1 \rangle & \langle \pi_1 | H | \pi_5 \rangle \\ \langle \pi_5 | H | \pi_1 \rangle & \langle \pi_5 | H | \pi_5 \rangle \end{pmatrix} = \begin{pmatrix} \epsilon - 2\Delta & -2\Delta \\ -2\Delta & \epsilon \end{pmatrix}$$
(7)

which leads to eigenvalues

$$E_{\pm} = \epsilon - (1 \mp \sqrt{5}) \Delta, \qquad (8)$$

with eigenvectors

$$|E_{\pm}\rangle = \frac{1}{\sqrt{10 \pm 2\sqrt{5}}} \left[-2|\pi_1\rangle + (1 \pm \sqrt{5})|\pi_5\rangle \right].$$
 (9)

(b) The system is symetric under $\pi/2$ rotations about site 5. This shifts every site to its counterclockwise neighbour. So, by inspection we could have:

$$R_{\pi/2} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \tag{10}$$

By checking that $(R_{\pi/2})^4 = 1$ or by solving the eigenvalue problem you should find the four eigenvalues (which need not to be real) to be $e^{\pm i\pi/2}$ and ± 1 .

Eigenvectors with eigenvalue +1 are:

$$|+1\rangle = \begin{pmatrix} 0\\0\\0\\0\\1 \end{pmatrix}$$
 and $|+1'\rangle = \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1\\0 \end{pmatrix}$; (11)

with imaginary eigenvalues we have:

$$|+i\rangle = \frac{1}{2} \begin{pmatrix} i \\ -1 \\ -i \\ 1 \\ 0 \end{pmatrix}$$
 and $|-i\rangle = \frac{1}{2} \begin{pmatrix} -i \\ -1 \\ i \\ 1 \\ 0 \end{pmatrix}$ (12)

and finally with eigenvalue -1:

$$|-1\rangle = \frac{1}{2} \begin{pmatrix} 1\\ -1\\ 1\\ -1\\ 0 \end{pmatrix}$$
 (13)

Also the eigenvectors are consistent. Within the obegeneral subspace with energy E, the π + R basis vectors are superpositions of one another. For instance, $|+i\rangle = (\frac{c-1}{2}) |\pi_2\rangle + (\frac{c+1}{2}) |\pi_4\rangle$.

The Hamiltonian is again block-diagonal on these states. By operating with H, we find:

$$H|\pm i\rangle = \epsilon |\pm i\rangle$$
 and $H|-1\rangle = (\epsilon + 2\Delta)|-1\rangle$. (14)

and the degenerate subspace is:

$$\begin{pmatrix} \langle 1|H|1\rangle & \langle 1|H|1'\rangle \\ \langle 1'|H|1\rangle & \langle 1'|H|1'\rangle \end{pmatrix} = \begin{pmatrix} \epsilon - 2\Delta & -2\Delta \\ -2\Delta & \epsilon \end{pmatrix}$$
(15)

which is the same as (7), leading to the same eigensystem.

5. (a) You should find:

$$h = \frac{1}{2}(p^2 + x^2) + \Lambda x^4 = \frac{1}{2}\frac{d^2}{dx^2} + \frac{x^2}{2} + \Lambda x^4.$$
 (16)

If $h\psi = e\psi$, and if Λ is small enough, then the dependence of eigenvalues are on the form $e = f(\Lambda)$.

(b)

$$E_{try} = \frac{\hbar\omega}{2} + \Lambda \langle 0|x^4|0\rangle \tag{17}$$

To compute $\langle 0|x^4|0\rangle$ you can do $(a+a^{\dagger})^4$ by brute force or:

$$\frac{1}{4} \left[\langle 0 | (a+a^{\dagger})^2 \right] \left[(a+a^{\dagger})^2 | 0 \rangle \right]. \tag{18}$$

Since $(a + a^{\dagger})^2 = a^2 + a^{\dagger 2} + 2N + 1$, where $N = a^{\dagger}a$ we have

$$(a+a^{\dagger})^2|0\rangle = \sqrt{2}|1\rangle + |0\rangle \tag{19}$$

and

$$\langle 0|x^4|0\rangle = 3\tag{20}$$

in the appropriate units. The energy is:

$$E_{try} = \left(\frac{1}{2} + \frac{3}{4}\Lambda\right)\hbar\omega \tag{21}$$

(c) Suppose $H|\alpha\rangle=E_{\alpha}|\alpha\rangle$ is the exact eigenproblem for the Hamiltonian given, with $\alpha=g$ being the exact ground state energy. Then, if $\{|\alpha\rangle\}$ is a complete basis:

$$|0\rangle = \sum_{\alpha} |\alpha\rangle\langle\alpha|0\rangle \tag{22}$$

and

$$E_{try} = \sum_{\alpha} |\langle \alpha | 0 \rangle|^2 E_{\alpha} \tag{23}$$

which clearly leads to

$$E_{try} \geqslant E_g$$
, (24)

since all $E_{\alpha} \geqslant E_g$.

(d) Why not $|1\rangle$? Because the integrand in $\langle 0|x^4|1\rangle$ will be odd, leading to no correction.