

Denoising Distantly Supervised Open-Domain Question Answering

Yankai Lin

THUNLP, Tsinghua University

Reading Comprehension

Reading comprehension is the ability to read, process and understand natural language text.

Reading Comprehension

Question: What are injectors used to supply?

Passage: The Rankine cycle and most practical steam engines have a water pump to recycle or top up the boiler water, so that they may be run continuously. Utility and industrial boilers commonly use multi-stage centrifugal pumps; however, other types are used. Another means of supplying lower-pressure boiler feed water is an injector, which uses a steam jet usually supplied from the boiler. Injectors became popular in the 1850s but are no longer widely used, except in applications such as steam locomotives.

Answer: lower-pressure boiler feed water

Reading Comprehension

- People have proposed massive reading comprehension models and achieved promising results
 - -BiDAF (Seo et al. 2016)
 - -Attentive Reader (Chen et al., 2016)
 - -AoA Reader (Cui et al., 2017)
 - -R-NET (Wang et al., 2017)
 - **—** . . .
- Problem
 - -Rely on pre-identified relevant text, not practical in real-world

Open Domain Question Answering (OpenQA)

Question Passage Answer

Question: What's the population in Beijing?

Answer:

21.148 million

Difference with Reading Comprehension

- Reading Comprehension
 - -Input
 - Question & Passage
 - -Passage
 - Pre-identified
 - Only one
 - Related to the question
- OpenQA
 - -Input
 - Only question
 - -Passage
 - Search results
 - Multiple
 - May not be related to the question

Open Domain Question Answering

- Researchers have made some attempts to answer open-domain questions.
 - -DrQA (Chen et al. 2017)
 - -R^3 (Wang et al. 2018)

_···

DrQA

Document retriever + Reading comprehension

R^3

Reinforcement learning

Open Domain Question Answering

- Researchers have made some attempts to answer open-domain questions.
 - -DrQA (Chen et al. 2017)
 - -R^3 (Wang et al. 2018)

Problem

- -Cannot deal with noise problem of the retrieved passages
- Cannot effectively aggregate information from different passages

Noise Problem in OpenQA

- Question
 - -Which country has the fourth largest population?
- Passage
 - -With well over 210 million people, Indonesia is the fourth most populous country in the world.
 - -..., Indonesia is New Zealand's fourth largest source of imports.
- Not all retrieved passages are related to the question!

Aggregate Information in OpenQA

Question

–What famous artist could write with both his left and right hand at the same time?

Passage

- -Leonardo Da Vinci was and is best known as an artist, ...
- -... the reason Leonardo da Vinci used his left hand exclusively was that his right hand was paralyzed.
- -... forced me to use my right-hand, ... beat my left-hand fingers with ... so that I use the right hand.

Need to aggregate information from all paragraphs!

Motivation

How human being read?

Fast Skimming

Careful Reading

Summarizing

- Fast skimming aims to identify relevant text from largescale corpus.
- Careful reading aims to extract answers from a specified relevant text.
- Summarizing aims to aggregate information of all relevant text.

Our Model

Question:

Paragraphs:

What's the capital of Ireland?

Search

 \rightarrow

p₁: As the capital of Ireland, Dublin is ...

p₂: Ireland is an island in the North Atlantic...

p₃: Dublin is the capital of Ireland. Besides, Ottawa is one of famous tourist cities in Ireland and ...

$$P(a|q,P) = \sum_{p,\in P} P(a|q,p_i) P(p_i|q,P)$$

Fast Skimming

p₁: As the capital of Ireland, Dublin is ...

p₃: Dublin is the capital of Ireland. Besides, Ottawa is one of famous tourist cities in Ireland and ...

Paragraph Selector

 $P(p_i|q,P)$

Careful Reading

p₁: As the capital of Ireland,

Dublin is ...

p₃: Dublin is the capital of Ireland. Besides, Dublin is one of famous tourist cities in Ireland and ...

Paragraph Reader

 $P(a|q,p_i)$

Answer: Dublin

Paragraph & Question Encoding

- Word Representation
 - -Word embedding (pretrained by GloVe)
 - Aligned question embedding (only for paragraphs)
 - –Exact match (only for paragraphs)
- Unified Encoder
 - $-\mathsf{MLP} \qquad \hat{\mathbf{q}}_i^j = \mathsf{MLP}(\mathbf{q}_i^j)$
 - $-\mathsf{RNN} \qquad \{\hat{\mathbf{q}}^1, \hat{\mathbf{q}}^2, \cdots, \hat{\mathbf{q}}^{|q|}\} = \mathsf{RNN}(\{\mathbf{q}^1, \mathbf{q}^2, \cdots, \mathbf{q}^{|q|}\})$
- Question Encoder

$$\hat{\mathbf{q}} = \sum_{j} \alpha^{j} \hat{\mathbf{q}}^{j}, \quad \alpha_{i} = \frac{\exp(\mathbf{w}_{b}\mathbf{q}_{i})}{\sum_{j} \exp(\mathbf{w}\mathbf{q}_{j})}$$

Paragraph Selector

- Motivation: to filter out noisy paragraphs to aggregate useful information
- Measure the probability of each paragraph containing the answer
- A max layer and a softmax layer

$$\Pr(p_i|q, P) = \operatorname{softmax} \left(\max_{j} (\hat{\mathbf{p}}_i^j \mathbf{W} \mathbf{q}) \right)$$

Paragraph Reader

- Extract answer of the question from a given paragraph
- Calculate the start and end position of the answer span

$$P_s(j) = \operatorname{softmax}(\bar{\mathbf{p}}_i^j \mathbf{W}_s \bar{\mathbf{q}}), \qquad P_e(j) = \operatorname{softmax}(\bar{\mathbf{p}}_i^j \mathbf{W}_e \bar{\mathbf{q}})$$

- Multiple answer span problem in OpenQA
 - -Max
 - Only one answer span indicates the answer

$$Pr(a|q, p_i) = \max_{j} \Pr_{s}(a_s^j) \Pr_{e}(a_e^j)$$

- -Sum
 - All answer spans is the same

$$\Pr(a|q, p_i) = \sum_{j} \Pr_{s}(a_s^j) \Pr_{e}(a_e^j)$$

Experimental Setup

Data

- -Quasar-T (Dhingra et al., 2017)
- -SearchQA (Dunn et al., 2017)
- -TriviaQA (Joshi et al., 2017)

Datasets	#Train	#Dev	#Test
Quasar-T	28,496	3,000	3,000
SearchQA	99,811	13,893	27,247
TriviaQA	66,828	11,313	10,832

- Evaluation
 - -EM, F1

Effect of Different Paragraph Selectors

RNN selector is better!

Effect of Different Paragraph Readers

Max and Sum reader is comparable.

Overall Results

• Quasar-T: +8 points

• SearchQA: +9 points

• TriviaQA: +3 points

Datasets	Quasar-T		SearchQA		TriviaQA	
Models	EM	F1	EM	F1	EM	F1
GA (Dhingra et al., 2017a)	26.4	26.4	-	_	_	_
BiDAF (Seo et al., 2017)	25.9	28.5	28.6	34.6	_	_
AQA (Buck et al., 2017)	-	_	40.5	47.4	-	-
R ³ (Wang et al., 2018a)	35.3	41.7	49.0	55.3	47.3	53.7
Our + AVG	38.5	45.7	55.6	61.0	42.7	48.2
+ FULL	42.2	49.3	58.8	64.5	48.7	56.3

Performance with different numbers of paragraphs

Our model performs better with a few paragraphs!

Potential improvement

Our model is more potential using answer re-ranking.

Datasets		Quasar-T		SearchQA		
Models	Top-k	EM	F1	EM	F1	
	1	35.5	41.6	51.2	57.3	
R^3	3	46.2	53.5	63.9	68.9	
	5	51.0	58.9	69.1	73.9	
	1	42.2	49.3	58.8	67.4	
Our+FULL	3	53.1	62.0	72.9	77.4	
	5	56.4	66.4	76.9	81.0	

Motivation

- Distantly supervised OpenQA datasets lacks enough supervised signal to learn good paragraph selector (discriminator)
- Can we leverages alignment information from querysentence pairs in supervised reading comprehension (RC) datasets for enhance?

Our Model

- Regard it as a transfer learning problem
 - -OpenQA model
 - -Semantic labeler

Semantic Labeler

- Transfer knowledge from the supervised RC dataset
- Two Strategies
 - -Semi-supervised Learning with Semantic Labels (SSL)
 - Train a semantic labeler with RC dataset

$$\mathcal{L}_{SL} = \frac{1}{n'} \sum_{i=1}^{n'} -y_i^{\mathcal{S}} \log(\hat{y}_i^{\mathcal{S}}) - (1 - y_i^{\mathcal{S}}) \log(1 - \hat{y}_i^{\mathcal{S}}).$$

• Use the semantic labeler to give soft label for OpenQA dataset

$$\mathcal{L}_{WD} = \frac{1}{n} \sum_{i=1}^{n} -\hat{y}_{i}^{\mathcal{T}} \log(R_{i}^{\mathcal{T}}) - (1 - \hat{y}_{i}^{\mathcal{T}}) \log(1 - R_{i}^{\mathcal{T}})$$

- -Collaborative Learning with Semantic Labels (CSL)
 - Collaborative learning for semantic labeler and paragraph selector

$$\mathcal{L}_{TL} = \frac{1}{n} \sum_{i=1}^{n} -R_i \log(\hat{y}_i^{\mathcal{T}}) - (1 - R_i) \log(1 - \hat{y}_i^{\mathcal{T}})$$

Overall Results

• Achieve state-of-the-art performance in all datasets

Datasets	Quasar-T		SearchQA		TriviaQA	
Models	EM	F1	EM	F1	EM	F1
Denoise OpenQA (Lin et al., 2018)	42.2	49.3	58.8	64.5	48.7	56.3
Re-ranker (Wang et al., 2018)	42.3	49.6	57.0	63.2	50.6	57.3
S-Norm (Clark & Gardner, 2018)					61.6	67.6
SSL	61.4	66.6	59.5	65.1	61.9	66.4
CSL	62.2	67.5	59.4	64.9	63.7	68.2

Performance of Sentence Discriminator

 Great improvement to measure if a paragraph contains the answer span by incorporating the information from supervised RC datasets

Datasets	TriviaQA(unfiltered)	Quasar-T	SearchQA
Models	Top1	Top1	Top1
Paragraph Selector (Lin et al., 2018)	-	27.7	58.9
Semantic Labeler (pretrained on SQuAD)	38.8	34.7	52.3
Sentence Discriminator + DISTANT	54.4	59.3	71.6
Sentence Discriminator + SEMANTIC	57.4	62.6	72.6

Case Study

 Semantic labels could give a better estimation compared with distant supervision labels.

question: Which sport has a name which literally means 'gentle way'?	label	
Ground truth: judo	distant	semantic
The term "do way", which is used in the names of arts like judo , aikido	1	0.53
Sport and beyond despite the literal meaning of judo being 'gentle way'	1	0.94
Kano took the name judo from jikishin ryu judo, which is an older school	1	0.34
Dr. Kano meant for his gentle way to be a way to live, a path to follow.	0	0.91

Different proportion of supervised data

CSL model is more robust with few supervised data

Conclusion

- We model how human being's read
 - -Fast skimming + Careful reading + Summarizing
- We transfer supervised RC dataset to OpenQA model
- Our system has promising performance only using a few paragraphs
- Our system can be further improved by answer reranking

Future Direction

Incorporate knowledge

Transfer to other area

Consider more complex reasoning

Question rewriting

Transfer to task-orient QA

Thank you!