Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

-100.000 -200.000 -300.000 -400.000 -600.000 -700.000 -800.000

1500

2000

Tidspunkt for observasjon (timer)

2500

3000

3500

4000

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 2.90e+09.

ò

500

1000

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas luminositet er 1/10 av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE B) Stjerna har en overflatetemperatur på 10000K. Luminositeten er betydelig mindre enn solas luminositet.

STJERNE C) stjerna fusjonerer helium i kjernen

STJERNE D) stjerna har en levetid på noen millioner år og fusjonerer hydrogen til helium i kjernen

STJERNE E) radiusen er en hundredel av solens radius og gassen i stjerna er elektrondegenerert

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 7.096e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne B har massetet
thet 4.109e+06 kg/m3̂ og temperatur 21 millioner K.

Kjernen i stjerne C har massetet
thet 3.737e+06 kg/m3̂ og temperatur 20 millioner K.

Kjernen i stjerne D har massetet
thet 2.826e+06 kg/m3̂ og temperatur 18 millioner K.

Kjernen i stjerne E har massetet
thet 5.095e+06 kg/m3̂ og temperatur 25 millioner K.

Filen 1K/1K.txt

Påstand 1: denne stjerna er lengst vekk

Påstand 2: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: den absolutte størrelseklassen (magnitude) med UV filter er betydelig større enn den absolutte størrelseklassen i blått filter

Påstand 4: den absolutte størrelseklassen (magnitude) med UV filter er betydelig mindre enn den absolutte størrelseklassen i blått filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen~1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

Figur B tilsynelatende størrelseklasse 13.46 1.70 1.60 1.50 Relativ fluks 1.40 1.30 1.20 1.10 1.00 21.12 21.15 21.25 21.18 21.20 21.23 21.27 21.10 21.30 Bølgelgende (cm)

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 1.268e+05 kg/m3̂ og temperatur 27.90 millioner K.

Kjernen i stjerne B har massetet
thet 2.040e+05 kg/m3̂ og temperatur 33.04 millioner K.

Kjernen i stjerne C har massetet
thet $2.464\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 19.22

millioner K.

Kjernen i stjerne D har massetet
thet 2.332e+05 kg/m3̂ og temperatur 23.62 millioner K.

Kjernen i stjerne E har massetet
thet 1.586e+05 kg/m3̂ og temperatur 35.28 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

0.2401

0.2411

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Observasjon er gjort 126.61 dager etter første observasjon. 0.93 0.88 Normalisert fluks 0.78 0.73 0.68 | 0.2391

0.2421

0.2431

Bølgelengde (nm) minus 656nm

0.2441

0.2451

0.2461

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen 2C/2C_Figur_1.png

Vinkelforflytning 3.25 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Trondheim som ligger i en avstand av 600 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 97.20010 km/t.

Filen 3E.txt

Tog1 veier 95500.00000 kg og tog2 veier 96600.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 456 km/s.

Filen 4E.txt

Massen til gassklumpene er 1100000.00 kg.

Hastigheten til G1 i x-retning er 48600.00 km/s.

Hastigheten til G2 i x-retning er 51660.00 km/s.

Filen 4G.txt

Massen til stjerna er 10.80 solmasser og radien er 2.31 solradier.