## Conceptual Data Modeling and the Entity-Relationship Model

Department of Computer ScienceNorthern Illinois UniversitySeptember 2018

#### Data Models

- A means of describing the structure of the data
- A set of operations that manipulate the data (only in data models that are implemented)
- Types of data models
  - Conceptual data model
  - Logical data models relational, network, hierarchical, inverted list, or object-oriented

### Conceptual Data Model

- Shows the structure of the data including the relationships
- Communication tool
- Independent of commercial DBMSs
- Easy to learn and use
- Provides semantics
- Graphical representation of the data
- Entity-Relationship Model is most common one used in world

- Relational -
  - data stored in tables with no repeating groups allowed
  - based upon a mathematical model
  - first presented by E. F. Codd in early 1970s
  - Commercial relational data models
    - DB2, Oracle, Ingress, and Microsoft Access

- Network -
  - data stored in records and associations called sets
  - very complex model
  - based upon the CODASYL model
  - created by a committee in 1970's
  - commercial DBMSs
    - IDMS and TOTAL

- Hierarchical -
  - data stored in tree structure with parent / child relationships
  - first commercial DBMS created by IBM in late 1960s
  - commercial DBMSs
    - IMS and System 2000
  - XML

- Inverted List -
  - tabular representation of the data using indicies to access the tables
  - first touted themselves as relational in early 1970's when no real relational available
  - NOT relational because repeating groups are allowed
  - commercial DBMSs
    - ADABAS (out of Germany)

- Object-Oriented
  - Data stored as objects which contain
    - Identifier
    - Name
    - Lifetime
    - Structure
  - Commercial object-oriented DBMSs
    - O2 (now called Ardent) and ObjectStore

### Entity-Relationship Model

- First introduced in 1976 by Peter P.
   Chen
- Simple
- Readable
- Understood easily by both database designer and unsophisticated user

#### Entities

- principal objects about which information is kept
- denote a noun such as person, place, thing, or event
- shown as a rectangle with the name (singular) inside

Person

- Relationships
  - associations among one or more entities
  - cannot exist without associated entities
  - represented as a diamond with name inside or just next to it



#### Attributes

- characteristics of entities or relationships
- fields in a file
- shown using oval attached to entity



Attributes



- Degree of a Relationship
  - the number of entities associated with a relationship
    - binary





Degree of a Relationship

the number of entities associated with a relationship

no limit (n-ary)

Sales person

contacted

Contact person

Date of Contact

Contact
Description

- Connectivity of a Relationship
  - constraint on the mapping of associated entities
  - written as (min,max)
  - minimum zero or one (usually)
  - maximum one or many (usually)
  - actual number is called CARDINALITY

Connectivity of a Relationship



Connectivity of a Relationship



- Attributes of a Relationship
  - must be on a many-to-many relationship (NOT on a 1-m or 1-1 relationship)
  - intersection data
  - needs to know ALL associated entities to access attribute

Student

(1,m) completed (1,n)

Course

Basic ER Concepts Need to know **BOTH Student** AND Course to get to grade. grade (1,m)(1,n)Student Course completed



Identifier of Address = SSN and Type

Recursive Relationship: many-to-many (network)



A Person has many relatives. AND A Person is related to many other Persons.



Recursive Relationship: 1 - many (tree)



A Department reports to One and only one Department. AND A Department may have 0, 1, or more reporting to it.



 Recursive Relationship: many-to-many (network)



A Person has many relatives. AND A Person is related to many other Persons.



- Supertype / Subtype ( isa relationship)
  - generalization
  - specialization
  - overlapping subtypes
  - disjoint subtypes

- Inheritance
  - the attributes describing the supertype entity are inherited by the entities of the subtypes
- The identifier of the subtypes is the same as the supertype.
  - NOTE: the notation used here is different than the book.

- Generalization
  - Supertype is the UNION of all the subtypes.
  - An instance of the supertype CANNOT exist without being related to at least one instance of a subtype.



- Specialization
  - The subtype entities specialize the supertype.
  - An instance of the supertype CAN exist without being related to any subtype.



A Person CAN be either a Faculty, Student, or Staff but DOES NOT have to be any of them.

- OverlappingSubtype Entities
  - An instance of the supertype can be related to one or more of the subtypes.



A Person CAN be either a Faculty, Student, or Staff OR can be BOTH a Faculty and Student OR BOTH a Faculty and Staff OR BOTH a Student and Staff OR can be all three.

ر ب

- Disjoint Subtype Entities
  - the subtype entities are mutually exclusive



A Person CAN be ONLY ONE of either Faculty, Student, or Staff.

- Use combinations:
  - G / O: generalization with overlapping subtypes
  - G / D: generalization with disjoint subtypes
  - S / O: specialization with overlapping subtypes
  - S / D: specialization with disjoint subtypes



**3** ]

- Aggregation (ispo relationship)
  - Is-part-of
  - Is-made-up-of



An Auto is-made-up-of one Hood, four Wheels, and two doors.





NO, because the insert would cause a duplicate instance. A duplicate instance is NOT allowed.

| <u>SSN</u> | VIN# |
|------------|------|
| 222        | 1111 |
| 333        | 5555 |
| 444        | 8888 |

222 1111

Can we insert?







#### **ENTITIES**

## Entity-Relationship Model

- Person
  - SSN (Identifier)
  - Name
  - Birth-Date
  - Beginning Date
- Address
  - Type (discriminator)
  - Street
  - City
  - State
  - Zip

- Faculty
  - SSN (Identifier)
  - Contact hours
  - Tenure status
- Staff
  - SSN (Identifier)
  - Position
- Student
  - SSN (Identifier)
  - Overall GPA
  - Major  $_3$

#### **ENTITIES**

#### Entity-Relationship Model

- Dept.
  - Dept-Code (ID)
  - Dept-Name
  - Dept-Address
  - Dept-Chair
- Course
  - Crse-Code (ID)
  - Crse-Title
  - Crse-Max-Credit-Hours
  - Crse-Var-Hours-Code
  - Crse-Fee

- Section
  - Sect-Code (ID)
  - Sect-Credit-Hours
  - Sect-Meet-Time
  - Sect-Meet-Day
- Semester
  - Sem-Yr (ID)
  - Sem-Session (ID)

### Entity-Relationship Model

# RELATIONSHIPS with attributes

- Student enrolled-in Section
  - Credit-hours
    - In a variable credit section this attribute would be used to hold the credit hours for which a specific student is enrolled.
- Completed
  - Grade
    - A student is allowed to take a course more than once.