Effective data visualizations

Data visualization, sometimes referred to as "data viz," allows analysts to properly interpret data. A good way to think of data visualization is that it can be the difference between utter confusion and really grasping an issue. Creating effective data visualizations is a complex task; there is a lot of advice out there, and it can be difficult to grasp it all. In this reading, you are going to learn some tips and tricks for creating effective data visualizations. First, we will review two frameworks that are useful for thinking about how you can organize the information in your visualization. Second, we will explore pre-attentive attributes and how they can be used to affect the way people think about your visualizations. From there, we will do a quick review of the design principles that you should keep in mind when creating your visualization. We will end the reading by reviewing some practices that you can use to avoid creating misleading or inaccurate visualizations.

Frameworks for organizing your thoughts about visualization

Frameworks can help you organize your thoughts about data visualization and give you a useful checklist to reference. Here are two frameworks that may be useful for you as you create your own data viz:

1) The McCandless Method

You learned about the David McCandless method in the first lesson on effective data visualizations, but as a refresher, the McCandless Method lists four elements of good data visualization:

- 1. **Information**: the data you are working with
- 2. **Story**: a clear and compelling narrative or concept
- 3. Goal: a specific objective or function for the visual
- 4. **Visual form**: an effective use of metaphor or visual expression

Note: One useful way of approaching this framework is to notice the parts of the graphic where there is incomplete overlap between all four elements. For example, visual form without a goal, story, or data could be a sketch or even art. Data plus visual form without a goal or function is eye candy. Data with a goal but no story or visual form is boring. All four elements need to be at work to create an effective visual.

2) Kaiser Fung's Junk Charts Trifecta Checkup

This approach is a useful set of questions that can help consumers of data visualization critique what they are consuming and determine how effective it is. The Checkup has three questions:

- 1. What is the practical question?
- 2. What does the data say?
- 3. What does the visual say?

Note: This checklist helps you think about your data viz from the perspective of your audience and decide if your visual is communicating your data effectively to them or not. In addition to these frameworks, there are some other building blocks that can help you construct your data visualizations.

Pre-attentive attributes: marks and channels

Creating effective visuals means leveraging what we know about how the brain works, and then using specific visual elements to communicate the information effectively. **Preattentive attributes** are the elements of a data visualization that people recognize automatically without conscious effort. The essential, basic building blocks that make visuals immediately understandable are called marks and channels.

Marks

Marks are basic visual objects like points, lines, and shapes. Every mark can be broken down into four qualities:

1. **Position** - Where a specific mark is in space in relation to a scale or to other marks

2. Size - How big, small, long, or tall a mark is

3. Shape - Whether a specific object is given a shape that communicates something about it

4. **Color** - What color the mark is

Channels

Channels are visual aspects or variables that represent characteristics of the data. Channels are basically marks that have been used to visualize data. Channels will vary in terms of how effective they are at communicating data based on three elements:

1. **Accuracy** - Are the channels helpful in accurately estimating the values being represented?

For example, color is very accurate when communicating categorical differences, like apples and oranges. But it is much less effective when distinguishing quantitative data like 5 from 5.5.

2. **Popout** - How easy is it to distinguish certain values from others?

There are many ways of drawing attention to specific parts of a visual, and many of them leverage pre-attentive attributes like line length, size, line width, shape, enclosure, hue, and intensity.

3. **Grouping** - How good is a channel at communicating groups that exist in the data?

Consider the proximity, similarity, enclosure, connectedness, and continuity of the channel.

But, remember: the more you emphasize different things, the less that emphasis counts. The more you emphasize one single thing, the more that counts.

Design principles

Once you understand the pre-attentive attributes of data visualization, you can go on to design principles for creating effective visuals. These design principles are important to your work as a data analyst because they help you make sure that you are creating visualizations that communicate your data effectively to your audience. By keeping these rules in mind, you can plan and evaluate your data visualizations to decide if they are working for you and your goals. And, if they aren't, you can adjust them!

Principle	Description
Choose the right visual	One of the first things you have to decide is
	which visual will be the most effective for
	your audience. Sometimes, a simple table
	is the best visualization. Other times, you
	need a more complex visualization to
	illustrate your point.
Optimize the data-ink ratio	The data-ink entails focusing on the part of
	the visual that is essential to understanding
	the point of the chart. Try to minimize non-
	data ink like boxes around legends or
	shadows to optimize the data-ink ratio.
Use orientation effectively	Make sure the written components of the
	visual, like the labels on a bar chart, are
	easy to read. You can change the
	orientation of your visual to make it easier
	to read and understand.
Color	There are a lot of important considerations
	when thinking about using color in your
	visuals. These include using color
	consciously and meaningfully, staying
	consistent throughout your visuals, being
	considerate of what colors mean to
	different people, and using inclusive color
	scales that make sense for everyone
	viewing them.
Numbers of things	Think about how many elements you
	include in any visual. If your visualization
	uses lines, try to plot five or fewer. If that
	isn't possible, use color or hue to
	emphasize important lines. Also, when
	using visuals like pie charts, try to keep the
	number of segments to less than seven
	since too many elements can be
	distracting.

Avoiding misleading or deceptive charts

As you are considering what kind of visualization to create and how to design it, you will want to be sure that you are not creating misleading or deceptive charts. As you have been learning, data analysis provides people with insights and knowledge they can use to make decisions. So, it is important that the visualizations you create are communicating your data accurately and truthfully. Here are some common errors to avoid so that your visualizations aren't accidentally misleading:

What to avoid	Why
Cutting off the y-axis	Changing the scale on the y-axis can make
	the differences between different groups in
	your data seem more dramatic, even if the
	difference is actually quite small.
Misleading use of a dual y-axis	Using a dual y-axis without clearly
	labeling it in your data visualization can
	create extremely misleading charts.
Artificially limiting the scope of the data	If you only consider the part of the data
	that confirms your analysis, your
	visualizations will be misleading because
	they don't take all of the data into account.
Problematic choices in how data is binned or grouped	It is important to make sure that the way
	you are grouping data isn't misleading or
	misrepresenting your data and disguising
	important trends and insights.
Using part-to-whole visuals when the totals do not sum up appropriately	If you are using a part-to-whole visual like
	a pie chart to explain your data, the
	individual parts should add up to equal
	100%. If they don't, your data visualization
	will be misleading.
Hiding trends in cumulative charts	Creating a cumulative chart can disguise
	more insightful trends by making the scale
	of the visualization too large to track any
	changes over time.
Artificially smoothing trends	Adding smooth trend lines between points
	in a scatter plot can make it easier to read
	that plot, but replacing the points with just
	the line can actually make it appear that the
	point is more connected over time than it
	actually was.

Finally, keep in mind that data visualization is an art form, and it takes time to develop these skills. Over your career as a data analyst, you will not only learn how to design good data visualizations, but you will also learn how to evaluate good data visualizations. Use these tips to think critically about data visualization—both as a creator and as an audience member.

Further reading

• The Wall Street Journal Guide to Information Graphics: The Dos and Don'ts of Presenting Data, Facts, and Figures: This is a comprehensive guide to data visualization, including chapters on basic data visualization principles and how to create useful data visualizations even when you find yourself in a tricky situation. This is a useful book to add to your data visualization library, and you can reference it over and over again.