Loss Functions for Regression and Classification

David Rosenberg

New York University

July 26, 2017

Regression Loss Functions

Loss Functions for Regression

• In general, loss function may take the form

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathbf{R}$$

- Regression losses usually only depend on the **residual** $r = y \hat{y}$.
- Loss $\ell(\hat{y}, y)$ is called **distance-based** if it
 - only depends on the residual:

$$\ell(\hat{y}, y) = \psi(y - \hat{y})$$
 for some $\psi: \mathbf{R} \to \mathbf{R}$

2 loss is zero when residual is 0:

$$\psi(0) = 0$$

Distance-Based Losses are Translation Invariant

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + a, y + a) = \ell(\hat{y}, y).$$

- When might you not want to use a translation-invariant loss?
- e.g. Sometimes relative error is a more natural loss (but not translation-invariant)
- Often you can transform response y so it's translation-invariant (e.g. log transform)
 - See homework or concept check questions.

Some Losses for Regression

- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

У	ŷ	$ r = y - \hat{y} $	$r^2 = (y - \hat{y})^2$
1	0	1	1
5	0	5	25
10	0	10	100
50	0	50	2500

- Outliers typically have large residuals.
- Square loss much more affected by outliers than absolute loss.

Loss Function Robustness

• Robustness refers to how affected a learning algorithm is by outliers.

Some Losses for Regression

- Square or ℓ_2 Loss: $\ell(r) = r^2$ (not robust)
- Absolute or Laplace Loss: $\ell(r) = |r|$ (not differentiable)
 - gives median regression
- **Huber** Loss: Quadratic for $|r| \le \delta$ and linear for $|r| > \delta$ (robust and differentiable)

• x-axis is the residual $y - \hat{y}$.

Classification Loss Functions

8 / 18

The Classification Problem

- Outcome space $\mathcal{Y} = \{-1, 1\}$
- Action space $A = \{-1, 1\}$
- **0-1 loss** for $f: \mathcal{X} \to \{-1, 1\}$:

$$\ell(f(x), y) = 1(f(x) \neq y)$$

• But let's allow real-valued predictions $f: \mathcal{X} \to \mathbf{R}$:

$$f > 0 \implies \text{Predict } 1$$

 $f < 0 \implies \text{Predict } -1$

The Score Function

- Action space A = R Output space $y = \{-1, 1\}$
- Real-valued prediction function $f: X \to R$

Definition

The value f(x) is called the **score** for the input x.

- In this context, f may be called a score function.
- Intuitively, magnitude of the score represents the confidence of our prediction.

The Margin

Definition

The margin (or functional margin) for predicted score \hat{y} and true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin often looks like yf(x), where f(x) is our score function.
- The margin is a measure of how **correct** we are.
- We want to maximize the margin.
- Most classification losses depend only on the margin.
- Such a loss is called a margin-based loss.

(In Lab, we will discuss a related concept called the geometric margin.)

The Classification Problem: Real-Valued Predictions

• Empirical risk for 0-1 loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n 1(y_i f(x_i) \le 0)$$

Minimizing empirical 0-1 risk not computationally feasible

 $\hat{R}_n(f)$ is non-convex, not differentiable (in fact, discontinuous!). Optimization is **NP-Hard**.

Classification Losses

Zero-One loss: $\ell_{0-1} = 1 (m \leqslant 0)$

• x-axis is margin: $m > 0 \iff$ correct classification

Classification Losses

SVM/Hinge loss:
$$\ell_{\text{Hinge}} = \max\{1-m, 0\} = (1-m)_{+}$$

Hinge is a convex, upper bound on 0-1 loss. Not differentiable at m=1. We have a "margin error" when m<1.

(Soft Margin) Linear Support Vector Machine

- Hypothesis space $\mathcal{F} = \{ f(x) = w^T x \mid w \in \mathbf{R}^d \}.$
- $\bullet \ \operatorname{Loss} \ \ell(\mathit{m}) = (1-\mathit{m})_+$
- ℓ_2 regularization

$$\min_{w \in \mathbf{R}^d} \sum_{i=1}^n (1 - y_i f_w(x_i))_+ + \lambda ||w||_2^2$$

Classification Losses

 ${\sf Logistic/Log\ loss:}\ \ell_{\sf Logistic} = \log{(1+e^{-m})}$

Logistic loss is differentiable. Logistic loss always wants more margin (loss never 0).

What About Square Loss for Classification?

- Action space $A = \mathbf{R}$ Output space $\mathcal{Y} = \{-1, 1\}$
- Loss $\ell(f(x), y) = (f(x) y)^2$.
- Turns out, can write this in terms of margin m = f(x)y:

$$\ell(f(x), y) = (f(x) - y)^2 = (1 - m)^2$$

• Prove using fact that $y^2 = 1$, since $y \in \{-1, 1\}$.

What About Square Loss for Classification?

Heavily penalizes outliers.

Seems to have higher sample complexity (i.e. needs more data) than hinge & logistic¹.

1 Rosasco et al's "Are Loss Functions All the Same?" http://web.mit.edu/lrosasco/www/publications/loss.pdf