UGANDA MARTYRS UNIVERSITY

UNIVERSITY EXAMINATIONS

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

END OF SEMESTER FINAL ASSESSMENT

SEMESTER II 2021/22

THIRD YEAR EXAMINATIONS FOR BACHELOR OF SCIENCE WITH

EDUCATION

(BSc EDUC. 3)

General Topology

MTH 3206

DATE: WED 13th July 2021

TIME: 2:00 PM - 5:00 PM

TIME: 3 Hours

Instructions

- 1. Carefully read through ALL the questions before attempting.
- 2. ANSWER FOUR (4) Questions (All questions carry equal marks).
- No names should be written anywhere on the examination booklet.
- Ensure that your Reg. number and Course are indicated on all pages of your work.
- 5. Ensure that your work is clear and readable. Untidy work will be penalized.
- 6. Any type of examination Malpractice will lead to automatic disqualification.

(a) Topology consists of the study of the collection of objects that posses a mathematical structure. An example of such is the set of natural numbers N = {1,2,3,....} which has a successor function (S).

(i) State the conditions that the successor function (S) must satisfy (Peanos Axiom).[3 Marks]

- (ii) Which of the conditions yield the principle of mathematical induction?[1 Marks]
- (b) (i) Define the equality of two sets as used in topology. [2 Marks]
 - (ii) Determine whether each of the following statements as used in topology is True or False.
 - (iia) For each set B, then $B \in 2^B$.
 - (iib) For each set B, then $B \subset 2^B$.
 - (iic) There are no members of the set $\{\phi\}$. [3 Marks]
- (c) Let A, B and C be sets, Prove that if $A \subset B$ and $B \subset C$ then $A \subset C$. [4 Marks]
- (d) Let A and B be two finite sets.
 - (i) Define the cartesian product $A \times B$. [2 Marks]
 - (ii) Do you think $A \times B = B \times A$? If No, justify your answer. [2 Marks]
- (e) A relation $h: P \to Q$ is a function

$$P \times Q = \{(x, y), (x, z) \in h \Rightarrow y = z\}$$

i.e each object has at most one image. From this definition which of the following is a function?

(i)
$$h(x) = x^2 + 3$$

(ii)
$$f(x) = \pm \sqrt{x} + 3$$
. [2 Marks]

- (e) The possible characteristics of a mapping include; injective, surjective and bijective. Define with examples what each characteristic means. [6 Marks]
- (a) With an aid of an example define what is meant by a metric space. [3 Marks]
 - (b) (i) Let (X, d) be a metric space and let X be a set of all continuous functions
 f: (a, b) → ℝ for , g ∈ X. Define a metric

$$d(f,g) = \int_a^b |f(t) - g(t)| dt.$$

Prove that (X, d(f, g)) is a metric space.

[8 Marks]

- (ii) If $f(t) = t^2 + 1$ and $g(t) = 1 t^2$ on (0,1), use the above metric to compute the distance between f(t) and g(t). [3 Marks]
- (c) Let $f: X \to Y$ be a function between two metric spaces X and Y.
 - (i) What is meant by f being continuous at $a \in X$? [2 Marks]
 - (ii) Let (X, d) and (X, d') be metric spaces, and assume $f: X \to Y$ is an identity function. Show that f is a continuous function. [3 Marks]
- (d) (i) Differentiate between an open ball and a neighborhood of a point a ∈ X where X is a metric space.
 [4 Marks]
 - (ii) What is meant by a set $M \subset \mathbb{R}^2$ being closed and compact in \mathbb{R}^2 [2 Marks]
- 3. (a) Let (X, d) be a metric space and $A \subseteq X$;
 - (i) What is meant by A being bounded? [2 Marks]
 - (ii) Define the diameter of A. [2 Marks]
 - (iii) When is A an open set? [2 Marks]
 - (iv) What makes A a closed set? [2 Marks]
 - (v) when is y a limit point of A. [2 Marks]
 - (b) Using clear examples show that;
 - (i) It is false to generalise that the intersection of an infinite number of open sets is open.[1 Mark]

(ii) A set can be simultaneously open and closed.

[1 Mark]

- (c) Let $f: (A_1, d_1) \to (A_2, d_2)$. Explain what is meant by f being continuous at point $c \in A_1$ in terms of;
 - (i) open sets

[2 Marks]

(ii) sequences

2 Marks

(iii) closed sets

[2 Marks]

- (d) (i) Define a homeomorphism g from metric space (X, d_1) to metric space (Y, d_2) . [2 Marks]
 - (ii) Two metrics d_1 and d_2 are (Lipschitz) equivalent if there are constants $K \ k > 0$ such that for every $x, y \in A$

$$kd_2(x,y) \le d_1(x,y) \le Kd_2(x,y)$$

. Deduce that for any $x, y \in A$

$$\frac{1}{K}d_1(x,y) \le d_2(x,y) \le \frac{1}{k}d_1(x,y).$$

[3 Marks]

- (iii) Let $A_1 = [0, 2\pi]$ and $A_2 = \{x \in \mathbb{R}^2, x_1^2 + x_2^2 = 1\}$ and take as metrics the restrictions of the usual metric on \mathbb{R} . Define $f: A_1 \to A_2$ by $f(t) = (\cos t, \sin t)$, show that f is a continuous bijection but f^{-1} is not continuous at the point (1,0).
- 4. (a) Define and give at least two examples of a topological space. [6 Marks]
 - (b) (i) What is meant by a topological space being Hausdorff? [2 Marks]
 - (ii) What other name is given to a Hausdorff space? [2 Marks]
 - (c) With an example, differentiate between the interior and the closure of a subset of a topological space. [6 Marks]
 - (d) Prove that the subset A of a topological space X is closed if $A = \overline{A}$. [4 Marks]

	(e)	Prove that given a subset A of a topological space and an open set O contained	
		in A then $O \subset$ interior of O .	[5 Marks]
5.	(a)	When is a topological space said to be connected?	[2 Marks]
	(b)	(i) Define an interval I on a real line.	[2 Marks]
		(ii) Prove that a subset A of a real line that contains at least two	distinct points
		is connected if and only if it is continuous in the interval.	[10 Marks]
	(c) (i) State and prove the intermediate value theorem a an application of con-		
		nectedness of topological spaces.	[3 Marks]
		(ii) Using an example demonstrate the intermediate value theo	rem as stated
		in $4c(i)$ above.	[2 Marks]
	(d)	Let (X, τ) be a topological space, $x, y \in X$.	
		(i) Define a path from x to y .	[2 Marks]
		(ii) When is the path said to be connected?	[2 Marks]
(e) Determine whether the following statements are true.			
		(i) Any path connected topological space is connected.	[1 Mark]
		(ii) A connected open set in \mathbb{R}^n is path connected.	[1 Mark]

End