Name: Huize Shi - A92122910

Discussion: A04 Homework: 5

1. (a) Prove that $\sqrt{-10}$ is irreducible in $\mathbb{Z}[\sqrt{-10}] = \{a + \sqrt{-1}b \mid a, b \in \mathbb{Z}\}$

$$\sqrt{-10} = (a + \sqrt{-10}b)(c + \sqrt{-10}d)$$
$$10 = (a^2 + 10b^2)(c^2 + 10d^2)$$
$$a^2 + 10b^2 \in \{1, 2, 5, 10\}$$

If $b \neq 0$, $a^2 + 10b^2 \geq 10$. This means that $(c^2 + 10d^2) = 1$, which implies $(c + \sqrt{-10}d)(c - \sqrt{-10}d) = 1$, and this shows that $(c + \sqrt{-10}d) \in \mathbb{U}(\mathbb{Z}[\sqrt{-10}])$. If b = 0, $a^2 + 10b^2 \in \{1, 2, 5, 10\} \Rightarrow a^2 = a = 1$ since 1 is the only perfect square option. This implies the following:

$$a^{2} + 10b^{2} = 1$$
$$(a + \sqrt{-10}b)(a - \sqrt{-10}b) = 1$$
$$a + \sqrt{-10}b \in \mathbb{U}(\mathbb{Z}[\sqrt{-10}])$$

Hence shown $\sqrt{-10}$ is irreducible in $\mathbb{Z}[\sqrt{-10}]$.

(b) Show that $2 \times 5 \in \langle \sqrt{-10} \rangle$ and $2 \notin \langle \sqrt{-10} \rangle$ and $5 \notin \langle \sqrt{-10} \rangle$.

$$2 \times 5 = 10 = -\sqrt{-10} \times \sqrt{-10} \in \langle \sqrt{-10} \rangle$$

Assume towards contradiction that $2 \in \langle \sqrt{-10} \rangle$.

$$2 = \sqrt{-10} \cdot (a + b\sqrt{-10})$$
$$= \sqrt{-10}a - 10b$$
$$\Rightarrow a = 0, \ b = -\frac{1}{5}$$

 $b = -\frac{1}{5} \notin \mathbb{Z}$, Contradiction!!

Assume towards contradiction that $5 \in \langle \sqrt{-10} \rangle$.

$$5 = \sqrt{-10} \cdot (a + b\sqrt{-10})$$
$$= \sqrt{-10}a - 10b$$
$$\Rightarrow a = 0, \ b = -\frac{1}{2}$$

 $b = -\frac{1}{2} \notin \mathbb{Z}$, Contradiction!!

Hence shown $2 \times 5 \in \langle \sqrt{-10} \rangle$ and $2 \notin \langle \sqrt{-10} \rangle$ and $5 \notin \langle \sqrt{-10} \rangle$.

(c) Prove that $\mathbb{Z}[-10]$ is not a PID.

Proof. Assume towards contrary that $\mathbb{Z}[-10]$ is a PID. By part a, we have shown that $\sqrt{-10}$ is irriducible. This means that $\langle \sqrt{-10} \rangle$ is maximal therefore prime. By part b, we have shown that it is not prime. This means that the assumption is false, $\mathbb{Z}[-10]$ is not a PID.

2. We are told that $p(x) = x^4 - 2x^3 + 2x^2 - 2x + 2$ is irreducible in $\mathbb{Q}[x]$ and $\alpha \in \mathbb{C}$ is a zero of p(x). Let

$$\phi_{\alpha} : \mathbb{Q}[x] \mapsto \mathbb{C}$$

 $\phi_{\alpha}(f(x)) := f(\alpha)$

We know that ϕ_{α} is a ring homomorphism.

- (a) Prove that $\ker \phi_{\alpha} = \langle p(x) \rangle$ $\langle p(x) \rangle \subseteq \ker \phi_{\alpha} \text{ since } \phi_{\alpha}(p(x)) = 0.$ Since we know p(x) is irreducible in $\mathbb{Q}[x]$, $\langle p(x) \rangle$ is therefore a maximal ideal. Since we have shown $\langle p(x) \rangle \subseteq \ker \phi_{\alpha} \subsetneq \mathbb{Q}[x]$, by definition of maintal idea, $\ker \phi_{\alpha} = \langle p(x) \rangle$.
- (b) Prove that $Im \ \phi_{\alpha} = \{c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3 \mid c_0, c_1, c_2, c_3 \in \mathbb{Q}\}\$ First show that $\{c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3 \mid c_0, c_1, c_2, c_3 \in \mathbb{Q}\} \subseteq Im \ \phi_{\alpha}$:

$$\phi_{\alpha}(c_0 + c_1x + c_2x^2 + c_3x^3) = c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3$$

Then show that $Im \ \phi_{\alpha} \subseteq \{c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3 \mid c_0, c_1, c_2, c_3 \in \mathbb{Q}\}$:

$$\forall f(x) \in \mathbb{Q}[x], \exists q(x), r(x) \in \mathbb{Q}[x]$$
$$f(x) = q(x)p(x) + r(x)$$
$$\phi_{\alpha}(f) = q(\alpha)p(\alpha) + r(\alpha)$$
$$\phi_{\alpha}(f) = 0 + r(\alpha)$$
$$\phi_{\alpha}(f) = c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3$$

Hence shown $Im \ \phi_{\alpha} = \{c_0 + c_1 \alpha + c_2 \alpha^2 + c_3 \alpha^3 \mid c_0, c_1, c_2, c_3 \in \mathbb{Q}\}.$

(c) Prove that $\mathbb{Q}[x]/\langle p(x)\rangle \simeq \{c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3 \mid c_0, c_1, c_2, c_3 \in \mathbb{Q}\}$ By 1^{st} isomorphism theorem, $\mathbb{Q}[x]/\langle er \phi_\alpha \simeq Im \phi_\alpha$. By part a, we have shown that $\ker \phi_\alpha = \langle p(x) \rangle$. By part b, we have shown that $Im \phi_\alpha = \{c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3 \mid c_0, c_1, c_2, c_3 \in \mathbb{Q}\}$. By substituting the corresponding parts we obtain the following:

$$\mathbb{Q}[x]_{\langle p(x)\rangle} \simeq \{c_0 + c_1 \alpha + c_2 \alpha^2 + c_3 \alpha^3 \mid c_0, c_1, c_2, c_3 \in \mathbb{Q}\}$$

(d) Prove that $\{c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3 \mid c_0, c_1, c_2, c_3 \in \mathbb{Q}\}$ is a field. We know that p(x) is irreducible, therefore $\langle p(x) \rangle$ is a maximal ideal. This means that $\mathbb{Q}[x]/\langle p(x) \rangle$ is a field. By isomorphism established in part c, we have $\{c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3 \mid c_0, c_1, c_2, c_3 \in \mathbb{Q}\}$ is a field.

- 3. We are told that $R = \left\{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}$ is a unital commutative ring. Let $\phi : R \mapsto \mathbb{Z}, \phi \left(\begin{bmatrix} a & b \\ b & a \end{bmatrix} \right) = a b$
 - (a) Prove that ϕ is a ring homomorphism.

Addition:

$$\phi\left(\begin{bmatrix} a & b \\ b & a \end{bmatrix} + \begin{bmatrix} c & d \\ d & c \end{bmatrix}\right) = \phi\left(\begin{bmatrix} a+c & b+d \\ b+d & a+c \end{bmatrix}\right)$$

$$= (a+c) - (b+d)$$

$$= (a-b) + (c-d)$$

$$= \phi\left(\begin{bmatrix} a & b \\ b & a \end{bmatrix}\right) + \phi\left(\begin{bmatrix} c & d \\ d & c \end{bmatrix}\right)$$

Multiplication:

$$\phi\left(\begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} c & d \\ d & c \end{bmatrix}\right) = \phi\left(\begin{bmatrix} ac + bd & ad + bc \\ bc + ad & bd + ac \end{bmatrix}\right)$$

$$= \phi\left(\begin{bmatrix} ac + bd & ad + bc \\ ad + bc & ac + bd \end{bmatrix}\right)$$

$$= (ac + bd) - (ad + bc)$$

$$= ac - ad - bc + bd$$

$$= (a - b)(c - d)$$

$$= \phi\left(\begin{bmatrix} a & b \\ b & a \end{bmatrix}\right) \phi\left(\begin{bmatrix} c & d \\ d & c \end{bmatrix}\right)$$

Hence shown ϕ is a ring homomorphism.

(b) Find $ker \phi$.

$$\phi\left(\begin{bmatrix} a & b \\ b & a \end{bmatrix}\right) = a - b = 0$$

$$a = b$$

$$ker \ \phi = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid a \in \mathbb{Z} \right\}$$

(c) Prove that $R_{ker \phi} \simeq \mathbb{Z}$ By 1^{st} isomorphism theorem, showing that $\phi : R \mapsto \mathbb{Z}$ is surjective completes the isomorphism proof.

$$\forall z \in \mathbb{Z}, \phi\left(\begin{bmatrix} z & 0 \\ 0 & z \end{bmatrix}\right) = z - 0 = z$$

By 1^{st} isomorphism theorem, $R_{ker \phi} \simeq \mathbb{Z}$.

- (d) Is $ker \ \phi$ a prime ideal? Yes, since \mathbb{Z} is a integral domain.
- (e) Is $ker \phi$ a maximal ideal? No, since \mathbb{Z} is not a field.
- 4. (a) Show that $x^2 5 = 0$ has no zero in $\mathbb{Q}[\sqrt{2}]$. Suppose towards contrary that $\exists \alpha \in \mathbb{Q}[\sqrt{2}]$ such that $m_{\alpha}(x) = x^2 - 5 \in \mathbb{Q}[x]$. This means that m_{α} generates the kernel of

$$\alpha = a + b\sqrt{2}$$

$$\phi_{\alpha}(m_{\alpha}) = (a + b\sqrt{2})^2 - 5 = 0$$

$$0 = a^2 + 2ab\sqrt{2} + 2b^2 - 5$$

$$ab = 0$$

$$a^2 + 2b^2 = 5$$

Since $\mathbb{Q}[\sqrt{2}]$ is a subring of \mathbb{C} , it is an integral domain hence contain no zero divisors.

(b) Prove that $\mathbb{Q}[\sqrt{2}] \not\simeq \mathbb{Q}[\sqrt{5}]$. Suppose that $\phi : \mathbb{Q}[\sqrt{2}] \mapsto \mathbb{Q}[\sqrt{5}]$ is an isomorphism.

$$\phi(1) = 1$$

$$\phi(a) = a, \forall a \in \mathbb{Q}$$

$$\phi(2) = \phi(\sqrt{2}^2)$$

$$2 = \phi(\sqrt{2})^2$$

$$2 = (a + b\sqrt{5})^2$$

$$2 = a^2 + 2ab\sqrt{5} + 5b^2$$

$$ab = 0$$

$$a^2 + 5b^2 = 2$$

Since $\mathbb{Q}[\sqrt{5}]$ is a subring of \mathbb{C} , it is an integral domain hence contain no zero divisors. Either a or b must be 0. If a = 0:

$$5b^2 = 2$$
$$b = \sqrt{\frac{2}{5}}$$

This is a contradiction since $b \in \mathbb{Q}$. If b = 0:

$$a^2 = 2$$
$$a = \sqrt{2}$$

This is a contradiction since $a \in \mathbb{Q}$.

Hence shown such an isomorphic mapping does not exist, $\mathbb{Q}[\sqrt{2}] \not\simeq \mathbb{Q}[\sqrt{5}]$

5. (a) Suppose p is an odd prime, and there is $a \in \mathbb{Z}_p$ such that $a^2 = -1$ in \mathbb{Z}_p . Prove that the multiplicative order of a is 4.

$$a^{2} \stackrel{p}{\equiv} -1$$

$$a^{2} \stackrel{p}{\equiv} p - 1$$

$$(a^{2})^{2} \stackrel{p}{\equiv} (p - 1)^{2}$$

$$a^{4} \stackrel{p}{\equiv} p^{2} - 2p + 1$$

$$a^{4} \stackrel{p}{\equiv} 1$$

We know $a \neq 1$ since $a^2 = -1$ which also tells us $a^2 \neq 1$. $a^3 \neq 1$ because as shown above, $a^4 = 1$, $a^3 = 1$ implies that a = 1 which is a contradiction.

Hence shown the multiplicative order of a is 4.

- (b) Use Lagrange's theorem to deduce: if p is a prime and $p \stackrel{4}{\equiv} 3$, then there is no $a \in \mathbb{Z}_p$ such that $a^2 = -1$.
- (c) Suppose p is a prime and $p \stackrel{4}{\equiv} 3$. Prove that p is irreducible in $\mathbb{Z}[i]$. $p \neq 0$ and p has no multiplicative inverse in $\mathbb{Z}[i]$, hence not a unit.

$$p = (a + bi)(c + di)$$
$$|p|^2 = |a + bi|^2|c + di|^2$$
$$p^2 = (a^2 + b^2)(c^2 + d^2)$$

This means $(a^2 + b^2)$ must be either $1, p, p^2$.

Case $(a^2 + b^2) = 1$:

$$(a2 + b2) = 1$$
$$(a + bi)(a - bi) = 1$$

Hence shown (a + bi) is a unit.

Case
$$(a^2 + b^2) = p^2 \Rightarrow (c^2 + d^2) = 1$$
:
$$(c^2 + d^2) = 1$$
$$(c + di)(c - di) = 1$$

This means that (c+di) is a unit.

Case
$$(a^2 + b^2) = p$$
:

(d) Use part (c) to show $\mathbb{Z}[i]/\langle p \rangle$ is a field if p is a prime if p is a prime and $p \stackrel{4}{=} 3$. Since we know if p is a prime and $p \stackrel{4}{=} 3$, p is irreducible in $\mathbb{Z}[i]$. This means $\langle p \rangle$ is a maximal ideal of $\mathbb{Z}[i]$. The factor ring of $\mathbb{Z}[i]$ over its maximal ideal, $\mathbb{Z}[i]/\langle p \rangle$ is therefore a field by lemma proven in class.