

# **Edexcel GCSE Physics**



# **Forces & Elasticity**

### **Contents**

- \* Changing Shape
- \* Hooke's Law
- \* Elastic Potential Energy
- \* Core Practical: Investigating Force & Extension



# **Changing Shape**

# Your notes

# Forces & Changing Shape

- For stationary objects, multiple forces have to be applied to change their shape
- Objects can change their shape by:
  - Stretching
  - Bending
  - Compressing
- A combination of all three shape changes can also occur

## Compression

- An object is **compressed** when forces act
  - In opposite directions
  - Towards the object
- An example of **compression** is placing a mass on top of a spring placed on a flat surface
- The two forces are:
  - The weight of the mass on the spring
  - The reaction force of the surface on the spring







COMPRESSING (OR STRETCHING) A SPRING CAN CHANGE ITS SHAPE

Copyright © Save My Exams. All Rights Reserved

### The compression or stretching of a spring requires two forces

# Stretching

- An object is **stretched** when forces act:
  - In opposite directions
  - Away from the object
- An example of **stretching** is placing a mass on the bottom of a spring hanging vertically from a rod
- The two forces are:
  - The weight of the mass of the mass on the spring
  - The tension in the spring
- These two opposing forces cause a **tension force** in the spring

## **Bending**

- An object is **bent** when multiple forces act:
  - In opposing directions



- At different points on the object
- An example of **bending** is a diving board bending when a swimmer stands at the far end
- The two forces are:
  - The weight of the swimmer on the diving board
  - The **reaction force** of the block on the dividing board



Copyright © Save My Exams. All Rights Reserved

Forces on a diving board cause it to be bend when a swimmer stands on one end









More than one force on an object can cause it to bend

# **Elastic & Inelastic Distortion**

- When some objects, such as springs or rubber bands, are stretched they will return to their original shape and length once the forces are removed
  - Other materials, such as plastic, remain permanently distorted (stretched)







 $\textbf{\it Elastic materials return to their original shape and size after stretching whilst plastic materials don't}$ 

- A change of shape is called a **distortion** and can either be:
  - Elastic
  - Inelastic

### **Elastic Distortion**

Elastic distortion occurs:

When objects return to their original shape when the stretching force is removed

- Examples of materials that undergo elastic distortion are:
  - Rubber bands
  - Fabrics
  - Steel springs



## **Inelastic Distortion**

Inelastic distortion occurs:



When objects remain stretched and do not return completely to their original shape even when the stretching force is removed

- Examples of materials that undergo inelastic distortion are:
  - Plastic
  - Clay
  - Glass



### Hooke's Law

# Your notes

## Hooke's Law

- The relationship between the extension of an elastic object and the applied force is defined by
  Hooke's Law
- Hooke's Law states that:

The extension of an elastic object is directly proportional to the force applied, up to the limit of proportionality

- Directly proportional means that as the force is increased, the extension increases
  - If the force is doubled, then the extension will double
  - If the force is halved, then the extension will also halve
- The **limit of proportionality** is the point beyond which the relationship between force and extension is no longer directly proportional
  - This limit varies according to the material





# Hooke's Law states that a force applied to a spring will cause it to extend by an amount proportional to the force

Your notes

• Hooke's Law is defined by the equation:

 $F = k \times x$ 

- Where:
  - F =force in newtons (N)
  - k = spring constant in newtons per metres (N/m)
  - x = extension in metres (m)
- The symbol x can represent either the extension **or** compression of an elastic object
- The Hooke's law equation can be rearranged using the following formula triangle:



- The spring constant represents how **stiff** a spring is
  - The higher the spring constant, the higher the stiffness
- The extension of an object can be calculated by:

Final length - Original length



- The extension of the spring can be measured by marking the position of bottom of the unstretched spring
- When the spring is stretched the final length must be measured from the bottom of the spring





The extension measured from its final and original length



### **Worked Example**

The figure below shows the forces acting on a child who is balancing on a pogo stick. The child and pogo stick are not moving.







The spring constant of the spring on the pogo stick is 4900 N/m. The weight of the child causes the spring to compress elastically from a length of 40 cm to a new length of 33 cm. Calculate the weight of the child.

#### Answer:

### Step 1: List the known quantities

- Spring constant, k = 4900 N/m
- Original length = 40 cm
- Final length = 33 cm

### Step 2: Write the relevant equation

F = kx

### Step 3: Calculate the extension, x

x = final length - original length = 40 - 33 = 7 cm

### Step 4: Convert any units

 $\blacksquare \quad \text{Since the spring constant is given in N/m, } x \, \text{must be in metres (m)}$ 

 $7 \, \text{cm} = 0.07 \, \text{m}$ 

#### Page 11 of 22



### Step 5: Substitute the values into the Hooke's Law equation

 $F = 4900 \times 0.07 = 343 N$ 





### **Examiner Tips and Tricks**

Look out for unit conversions! Unless the spring constant is given in N/cm, make sure the extension is converted into **metres** ( $\div$  100) before substituting values into the Hooke's Law equation

# **Linear & Non-Linear Stretching**

- Hooke's law is the **linear** relationship between force and extension
  - This is represented by a **straight line** on a force-extension graph
- Materials that do not obey Hooke's law, i.e they do not return to their original shape once the force has been removed, have a non-linear relationship between force and extension
  - This is represented by a **curve** on a force-extension graph
- Any material beyond its limit of proportionality will have a non-linear relationship between force and extension



Page 12 of 22



### Linear and non-linear regions of a force-extension graph





### **Examiner Tips and Tricks**

Remember these important mathematical terms:

- **Proportional** = when a graph is a straight line going through the origin
- Linear = when a graph is a straight line (but does not necessarily go through the origin)
- Non-linear = when a graph is not a straight line



## **Elastic Potential Energy**

# Your notes

# **Elastic Potential Energy**

- When a spring is stretched or compressed by a force, **work** is done by the spring
- Work done is the transfer of energy
  - The energy is transferred to its **elastic potential energy** store



When a spring is stretched or compressed, there is work done and elastic potential energy is stored

• Elastic potential energy is defined as:

The energy stored in an elastic object when work is done on the object

• Provided the spring is not inelastically distorted (i.e has not exceeded its limit of proportionality), the work done on the spring and its elastic potential energy stored are **equal** 



• The work done, or the elastic potential energy stored, while stretching or compressing a spring can be calculated using the equation:



 $E = \frac{1}{2} kx^2$ 

- Where:
  - E = elastic potential energy (energy transferred in stretching) in joules (J)
  - k = spring constant in newtons per metre (N/m)
  - x = extension in metres (m)



### The elastic potential energy in a stretched spring depends on its spring constant and extension

- This equation is only for springs that have not been stretched beyond their **limit of proportionality** 
  - The term x<sup>2</sup> means that if the extension is **doubled** then the work done is **quadrupled**
  - This is because  $2^2 = 4$



### **Worked Example**

A mass is attached to the bottom of a hanging spring with a spring constant k and 0.2 J of work is done to stretch it by 4.5 cm. Calculate the spring constant, k for this spring.

Answer:

### Step 1: List the known quantities

- o Work done / elastic potential energy, E = 0.2 J
- o Extension, x = 4.5 cm

### Step 2: Write down the relevant equation

$$E = \frac{1}{2} kx^2$$

### Step 3: Rearrange for the spring constant, k

o Multiply by 2 on both sides

$$2E = kx^2$$

o Divide by  $x^2$  to make k the subject

$$\frac{2E}{x^2} = k$$

### Step 4: Convert any units

The extension should be in metres

$$4.5 \text{ cm} = 0.045 \text{ m}$$

### Step 5: Substitute the values into the equation

$$k = \frac{2 \times 0.2}{(0.045)^2} = 198 \text{ N/m}$$



### **Examiner Tips and Tricks**

Remember: when calculating the work done the extension, x, is **squared** ( $x^2$ )!



# Core Practical: Investigating Force & Extension

# Your notes

# Core Practical 7: Investigating Force & Extension

## Aim of the Experiment

• The aim of this experiment is to investigate the relationship between force and extension for a spring

#### Variables:

- Independent variable = Force, F
- **Dependent variable** = Extension, *x*
- Control variables:
  - Spring constant, k

### **Equipment List**

| Equipment                 | Purpose                                         |  |  |
|---------------------------|-------------------------------------------------|--|--|
| Clamp and stand           | To hold the spring and masses                   |  |  |
| Ruler                     | To measure the extension of the spring          |  |  |
| Spring                    | To measure the extension of                     |  |  |
| 5 × 100g masses           | To apply a force to the spring                  |  |  |
| 100g mass hanger          | To hold the additional masses                   |  |  |
| Pointer (fiducial marker) | To accurately read the extension from the ruler |  |  |

Copyright © Save My Exams. All Rights Reserved

- **Resolution** of measuring equipment:
  - Ruler = 1 mm

### Method







### Investigating Hooke's law apparatus

- 1. Set up the apparatus as shown in the diagram, initially without any masses hanging from the spring
- 2. Align the marker to a value on the ruler, record this initial length of the spring
- 3. Add the 100 mass hanger onto the spring
- 4. Record the mass (in kg) and position (in cm) from the ruler now that the spring has extended
- 5. Add another 100 g to the mass hanger
- 6. Record the new mass and position from the ruler now that the spring has extended further
- 7. Repeat this process until all masses have been added
- 8. The masses are then removed and the entire process repeated again, until it has been carried out a total of three times, and an average length is calculated
- An example table of results might look like this:



|         |         | F = mg     | AVERA                          | AVERAGE LENGTH - ORIGINAL |                     |             |  |
|---------|---------|------------|--------------------------------|---------------------------|---------------------|-------------|--|
| MASS/kg | FORCE/N | LENGTH 1/m | LENGTH 2/m                     | LENGTH 3/m                | AVERAGE<br>LENGTH/m | EXTENSION/m |  |
| 0       |         |            |                                |                           |                     |             |  |
| 0.1     |         |            |                                |                           |                     |             |  |
| 0.2     |         |            |                                |                           |                     |             |  |
| 0.3     |         |            |                                |                           |                     |             |  |
| 0.4     |         |            |                                |                           |                     |             |  |
| 0.5     |         |            |                                |                           |                     |             |  |
| 0.6     |         |            |                                |                           |                     |             |  |
|         | I       | I          | Copyright © Save My Exams, All | Rights Reserved           |                     | l l         |  |



### **Analysis of Results**

- The force, F added to the spring is the **weight** of the mass
- The weight is calculated using the equation:

W = mg

- Where:
  - W = weight in newtons (N)
  - m = mass in kilograms (kg)
  - g = gravitational field strength on Earth in newtons per kg (N/kg)
- Therefore, multiply each mass by gravitational field strength, g, to calculate the force, F
  - The force can be calculated by multiplying the mass (in kg) by 10 N/kg
- The extension of the spring is calculated using the equation:

### Final length - Original length

- The final length is the length of the spring recorded from the ruler when the masses were added
- The original length is the length of the spring when there were **no** masses
- 1. Plot a graph of the force against extension



- 2. Draw a line of best fit
- 3. If the graph has a **linear** region (is a straight line), then the force is **proportional** to the extension and the spring obeys Hooke's law for these forces and extension





Example force-extension graph for a spring that obeys Hooke's law

# **Evaluating the Experiment**

### Systematic Errors:

• Make sure the measurements on the ruler are taken at eye level to avoid **parallax error** 

### Random Errors:

• The accuracy of such an experiment is improved with the use of a pointer (a fiducial marker)







### Fiducial marker to measure the extension more accurately

- Wait a few seconds for the spring to fully extend when a mass is added, before taking the reading for its new length
- Make sure to check whether the spring has not gone past its limit of proportionality otherwise, it has been stretched too far and will stop obeying Hooke's law

# **Safety Considerations**

- Wear goggles during this experiment in case the spring snaps
- Stand up while carrying out the experiment making sure no feet are directly under the masses
- Place a mat or a soft material below the masses to prevent any damage in case they fall
- Use a G clamp to secure the clamp stand to the desk so that the clamp and masses do not fall over
  - As well as this, place each mass carefully on the hanger and do not pull the spring too hard that it breaks or pulls the apparatus over





### **Examiner Tips and Tricks**

Remember - the extension measures how much the object has stretched by and can be found by **subtracting the original length from each of the subsequent lengths.** A common mistake is to calculate the increase in length by each time instead of the total extension – if each of your extensions is roughly the same then you might have made this mistake!

