Kolokwium POTEC termin 1. 12.04.2021 (30 pkt.)	1	2	3	suma
Imię i nazwisko: Nr indeksu:				
0. Biorąc najmłodszą cyfrę indeksu studenckiego, wybieramy zestaw A jeśli parzysta, B jeśli			a b c d	f
nieparzysta.		0		
1.1. Wiedząc, że funkcja f(a,b,c,d) ma postać F=(0,2,7) i R=(3,11,13,15), podać SOP iloczynam	i	1		
zupełnymi dla zbioru F (<mark>2</mark> pkt.)		2		
1.2. Podać kolejne (dwa poziomy) rozwinięcia Shannona funkcji z p.1.1. względem zmiennych	١,	3		
zestaw A : pierwsza b , druga a ; zestaw B : pierwsza d , druga c (<mark>5</mark> pkt.)		4		
1.3. Przedstawić funkcję w postaci <u>uporządkowanej</u> tablicy prawdy (rysunek obok) (<mark>2</mark> pkt.)		5		
		6		
postaci odpowiednio SOP i POS.		7		
·		8		
1.5. Przedstawić funkcję w postaci zbioru: (2 pkt.) f = π ()		9		
1.6. Narysować schemat bramkowy zminimalizowanej funkcji f z p.1.4, zestaw A : SOP; zestav	v B :	10		
POS (<mark>5</mark> pkt.)		11		
		12		
2. Wiedząc, że kostka k=0101 należy do zbioru F i zbiór R = {0,2,3,9}, podać wszystkie implikar	nty	13		
proste stosując procedurę ekspansji (<mark>5</mark> pkt.).	-	14		
		15		
3.1. Zakodować na 4 bitach <u>najmłodszą</u> i <u>najstarszą</u> cyfrę swojego indeksu,				
Naimłodsza cyfra (dziesietnie) to:: (binarnie)				

Najmłodsza cyfra (dziesiętnie) to:: (binarnie)
<u>Najstarsza</u> cyfra (dziesiętnie) to:: (binarnie)(<mark>1</mark> pkt.)
3.2. Dopisać do liczb binarnych z p.3.1 na <u>najstarszej</u> pozycji '1' (bit o wartości 1) tworząc słowo 5-bitowe:
Nowa najmłodsza cyfra binarnie to:
Nowa najstarsza cyfra binarnie to: (<mark>1</mark> pkt.)
3.3. Wykonać operację na wektorach z p.3.1 binarnie:
(najmłodsza)XNOR (najstarsza) = (<mark>3</mark> pkt.)

ab\cd	00	01	11	10
00				
01				
11				
10				
ab\cd	00	01	11	10
ab\cd 00	00	01	11	10
	00	01	11	10
00	00	01	11	10

Oświadczam, że przesłane rozwiązanie jest mojego autorstwa oraz wykonałem(-łam) je samodzielnie bez pomocy innych osób. Podpis: