Евгений Борисов

создаем признаки (feature extraction / feature engineering)

отображение данных, специфических для предметной области, в точки пространства признаков

создаем признаки (feature extraction / feature engineering)

отображение данных, специфических для предметной области, в точки пространства признаков

Типы признаков

- бинарные (да/нет)
- категориальные
- количественные (\mathbb{R})
- порядковые

создаем признаки (feature extraction / feature engineering)

отображение данных, специфических для предметной области, в точки пространства признаков

Типы признаков

- бинарные (да/нет)
- категориальные
- количественные (ℝ)
- порядковые

примеры признаков

для текстов

- TF-IDF
- Word2Vec

для изображений:

- Haar-like features,
- HOG (Histogram of Oriented Gradients)

собираем признаки формируем учебный датасет

анализ датасета

обработка пропусков

- удалить объект из выборки
- заполнить средним (медианой) вещественных переменных
- заполнить наиболее частым значением для категориальных
- заменить пропуск на редкое (мало вероятное) значение
- заменить на соседнее значение для упорядоченных данных

анализ датасета

обработка пропусков

- удалить объект из выборки
- заполнить средним (медианой) вещественных переменных
- заполнить наиболее частым значением для категориальных
- заменить пропуск на редкое (мало вероятное) значение
- заменить на соседнее значение для упорядоченных данных

поиск выбросов / Outlier Detection

выброс или аномалия это то, что не вписывается в общие правила

Статистические тесты - отсечение по персентелю 0.95

<u>Метрические методы</u> - у выброса мало соседей

<u>Итерационные методы</u> - последовательное удаление выпуклых оболочек.

<u>Модельные тесты</u> - строим модель данных, точки, которые сильно отклоняются от модели - аномалии

Специальные модели ML - IsolationForest, выбросы попадают в листья на небольшой глубине дерева

выбор модели

- тип задачи (классификация, регрессия, кластеризация...)
- особенности датасета (линейная разделимость и т.п.)

профили компактности

анализ признаков

- оценка зависимости (корреляции)

мультиколлинеарность - наличие линейной зависимости у признаков

зависимость признаков не позволяет однозначно оценить параметры модели

анализ признаков

- оценка зависимости (корреляции)

мультиколлинеарность - наличие линейной зависимости у признаков

зависимость признаков не позволяет однозначно оценить параметры модели

преобразования признаков (feature transformation)

полезен для визуализации, легко перенести признаки на отрезок [0, 255] $x := \frac{x - x_{min}}{x_{max} - x_{min}}$ - масштабирование в отрезок

$$x := \frac{x - x_{min}}{x_{max} - x_{min}}$$

анализ признаков

- оценка зависимости (корреляции)

мультиколлинеарность - наличие линейной зависимости у признаков

зависимость признаков не позволяет однозначно оценить параметры модели

- масштабирование в отрезок полезен для визуализации, легко перенести признаки на отрезок [0, 255]
- $x := \frac{x x_{min}}{x_{max} x_{min}}$
- <u>стандартизация</u> ; приведение к μ =0 и σ =1 ; χ := $\frac{x-\mu}{\sigma}$ можно применять с метрическими методами ;

анализ признаков

- оценка зависимости (корреляции)

мультиколлинеарность - наличие линейной зависимости у признаков

зависимость признаков не позволяет однозначно оценить параметры модели

- масштабирование в отрезок полезен для визуализации, легко перенести признаки на отрезок [0, 255] $x := \frac{x-x}{x_{max}}$
- стандартизация приведение к μ =0 и σ =1 ; $x:=\frac{x-\mu}{\sigma}$ улучшает ситуацию с выбросами; $x:=\frac{x-\mu}{\sigma}$
- <u>логарифмирование</u> помогает сделать значения более равномерными x := log(x)

анализ признаков

- оценка зависимости (корреляции)

мультиколлинеарность - наличие линейной зависимости у признаков

зависимость признаков не позволяет однозначно оценить параметры модели

преобразования признаков (feature transformation)

- масштабирование в отрезок полезен для визуализации, легко перенести признаки на отрезок [0, 255]

$$x := \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

- стандартизация приведение к μ =0 и σ =1 ; χ := $\frac{\chi-\mu}{\sigma}$ можно применять с метрическими методами ;
- логарифмирование помогает сделать значения более равномерными $x := \log(x)$
- метод пространственных знаков (spatial sign) проецирует значения на поверхность многомерной сферы, данные становятся равноудаленными от центра этой сферы; $x_j := \frac{x_j}{\sum_k x_k^2}$ применяется после стандартизации всех признаков

анализ признаков

- оценка зависимости (корреляции)

мультиколлинеарность - наличие линейной зависимости у признаков

зависимость признаков не позволяет однозначно оценить параметры модели

значения признака

16 37 18 81 9 40 29 x 0.53 0.73 0.08 0.89 0.92 0.38 0.23

- масштабирование в отрезок полезен для визуализации, легко перенести признаки на отрезок [0, 255] $x := \frac{x x_{min}}{x_{max} x_{min}}$
- стандартизация приведение к μ =0 и σ =1 ; $x:=\frac{x-\mu}{\sigma}$ улучшает ситуацию с выбросами; $x:=\frac{x}{\sigma}$
- логарифмирование помогает сделать значения более равномерными $x := \log(x)$
- метод пространственных знаков (spatial sign) проецирует значения на поверхность многомерной сферы, данные становятся равноудаленными от центра этой сферы; $x_j := \frac{x_j}{\sum_k x_k^2}$ применяется после стандартизации всех признаков
- <u>категоризация по шкале и бинаризация</u> уход от избыточной детализации; помогает улучшить результаты некоторых типов моделей

анализ признаков

- оценка зависимости (корреляции)

мультиколлинеарность - наличие линейной зависимости у признаков

зависимость признаков не позволяет однозначно оценить параметры модели

значения признака

	16	37	18	81	9	40	29	
х	0.53	0.73	0.08	0.89	0.92	0.38	0.23	

шкала персентилей

	min	10%	25%	50%	75%	95%	max
х	0.00	0.08	0.21	0.43	0.75	0.94	0.97

- масштабирование в отрезок полезен для визуализации, легко перенести признаки на отрезок [0, 255] $x := \frac{x x_{min}}{x_{max} x_{min}}$
- стандартизация приведение к μ =0 и σ =1 ; χ := $\frac{\chi-\mu}{\sigma}$ улучшает ситуацию с выбросами; χ := $\frac{\chi-\mu}{\sigma}$
- логарифмирование помогает сделать значения более равномерными $x := \log(x)$
- метод пространственных знаков (spatial sign) проецирует значения на поверхность многомерной сферы, данные становятся равноудаленными от центра этой сферы; $x_j := \frac{x_j}{\sum_k x_k^2}$ применяется после стандартизации всех признаков
- <u>категоризация по шкале и бинаризация</u> уход от избыточной детализации; помогает улучшить результаты некоторых типов моделей

анализ признаков

- оценка зависимости (корреляции)

мультиколлинеарность - наличие линейной зависимости у признаков

зависимость признаков не позволяет однозначно оценить параметры модели

значения признака

	16	37	18	81	9	40	29
x	0.53	0.73	0.08	0.89	0.92	0.38	0.23

шкала персентилей

	min	10%	25%	50%	75%	95%	max
х	0.00	0.08	0.21	0.43	0.75	0.94	0.97

категоризация по шкале

	Х	cat	bin
16	0.53	3	[0, 0, 0, 1, 0, 0]
37	0.73	3	[0, 0, 0, 1, 0, 0]
18	0.08	1	[0, 1, 0, 0, 0, 0]
81	0.89	4	[0, 0, 0, 0, 1, 0]
9	0.92	4	[0, 0, 0, 0, 1, 0]
40	0.38	2	[0, 0, 1, 0, 0, 0]
29	0.23	2	[0, 0, 1, 0, 0, 0]

- масштабирование в отрезок полезен для визуализации, легко перенести признаки на отрезок [0, 255] $x := \frac{x x_{min}}{x_{max} x_{min}}$
- стандартизация приведение к μ =0 и σ =1 ; χ := $\frac{\chi-\mu}{\sigma}$ можно применять с метрическими методами ;
- логарифмирование помогает сделать значения более равномерными $x := \log(x)$
- метод пространственных знаков (spatial sign) проецирует значения на поверхность многомерной сферы, данные становятся равноудаленными от центра этой сферы; $x_j := \frac{x_j}{\sum_k x_k^2}$ применяется после стандартизации всех признаков
- <u>категоризация по шкале и бинаризация</u> уход от избыточной детализации; помогает улучшить результаты некоторых типов моделей

обучение модели

задача оптимизации: минимизация функции потери в пространстве параметров модели

обучение модели

задача оптимизации: минимизация функции потери в пространстве параметров модели

оценка модели (применяем кроссвалидацию)

- кластеризация: отношение средних внутрикластерного и межкластерного расстояний
- классификация: погрешность, точность, полнота, ROC AUC
- регрессия: среднеквадратичное отклонение

обучение модели

задача оптимизации: минимизация функции потери в пространстве параметров модели

оценка модели (применяем кроссвалидацию)

- кластеризация: отношение средних внутрикластерного и межкластерного расстояний
- классификация: погрешность, точность, полнота, ROC AUC
- регрессия: среднеквадратичное отклонение

результаты оценки модели

- успешное завершение
- замена модели
- коррекция (отбор) признаков

методы отбора признаков

цель: минимизация ошибки модели на контроле

на каждой итерации переобучаем и оцениваем модель

- полный перебор подмножеств признаков
- добавление признаков по одному с минимизацией ошибки (жадный)
- поочередное добавление/удаление

Конкурс BigData от Beeline

https://special.habrahabr.ru/beeline/

Александр Куменко
Как я победил в конкурсе BigData от Beeline
7 ноября 2015

https://habr.com/post/270367/

Литература

git clone https://github.com/mechanoid5/ml_lectorium.git

К.В. Воронцов Обобщающая способность. Методы отбора признаков. - курс "Машинное обучение" ШАД Яндекс 2014

Александр Дьяконов Поиск аномалий https://dyakonov.org

http://www.machinelearning.ru