

TABLE OF CONTENTS

- 1. Introduction
- 2. Theoretical study
- 3. Demonstration
- 4. Conclusion

What is LRP?

- Layer-wise Relevance Propagation (LRP): clt's an explaination tech applied to neural networks, where pictures video, text
- The goal: Generate explaination of the classification decisions made by the algo through analyzing deeply the model neuron by neuron
- The functionnment is based on backward propagation

Visual introduction

Explainable Al Demos (fraunhofer.de)

How works LRP?

Propragation:

$$X_i^{L+1} = \phi(\boldsymbol{X}^L \boldsymbol{W}_i^L + \boldsymbol{b}_i^L)$$

Taylor decomposition:

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2!}f^{(2)}(x_0) + \dots + \frac{h^n}{n!}f^{(n)}(x_0) + h^n\varepsilon(h)$$
$$= \sum_{k=0}^n \frac{h^k}{k!}f^{(k)}(x_0) + h^n\varepsilon(h)$$

Propagating relevance scores

$$R_j = \sum_k \frac{z_{jk}}{\sum_j z_{jk}} R_k.$$

Rules of LRP

Basic Rule (LRP-0):

$$R_j = \sum_{k} \frac{a_j w_{jk}}{\sum_{0,j} a_j w_{jk}} R_k$$

Epsilon Rule (LRP- ϵ):

$$R_j = \sum_k rac{a_j w_{jk}}{\epsilon + \sum_{0,j} a_j w_{jk}} R_k$$

Gamma Rule (LRP-γ):

$$R_{j} = \sum_{k} \frac{a_{j} \cdot (w_{jk} + \gamma w_{jk}^{+})}{\sum_{0,j} a_{j} \cdot (w_{jk} + \gamma w_{jk}^{+})} R_{k}$$

Name	Formula	Usage	\mathbf{DTD}
LRP-0 [7]	$R_{j} = \sum_{k} \frac{a_{j} w_{jk}}{\sum_{0,j} a_{j} w_{jk}} R_{k}$	upper layers	√
LRP- ϵ [7]	$R_j = \sum_k \frac{x_j - y_k}{\epsilon + \sum_{0,j} a_j w_{jk}} R_k$	middle layers	√
LRP- γ	$R_{j} = \sum_{k} \frac{a_{j}(w_{jk} + \gamma w_{jk}^{+})}{\sum_{0,j} a_{j}(w_{jk} + \gamma w_{jk}^{+})} R_{k}$	lower layers	✓
LRP- $\alpha\beta$ [7]	$R_{j} = \sum_{k} \left(\alpha \frac{(a_{j}w_{jk})^{+}}{\sum_{0,j} (a_{j}w_{jk})^{+}} - \beta \frac{(a_{j}w_{jk})^{-}}{\sum_{0,j} (a_{j}w_{jk})^{-}} \right) R_{k}$	lower layers	×*
flat [30]	$R_j = \sum_k \frac{1}{\sum_j 1} R_k$	lower layers	×
w^2 -rule [36]	$R_i = \sum_j \frac{w_{ij}^2}{\sum_i w_{ij}^2} R_j$	first layer (\mathbb{R}^d)	✓
$z^{\mathcal{B}}$ -rule [36]	$R_{i} = \sum_{j} \frac{x_{i}w_{ij} - l_{i}w_{ij}^{+} - h_{i}w_{ij}^{-}}{\sum_{i} x_{i}w_{ij} - l_{i}w_{ij}^{+} - h_{i}w_{ij}^{-}} R_{j}$	first layer (pixels)	√

Implementation

Conclusion:

