2-2 로봇 좌표계

강의 요약

01

링크

02

조인트

Degree of Freedom

Revolute - 1 dof

Prismatic - 1 dof

Helical - 1 dof

Cylindrical - 2 dof

Universal - 2 dof

Spherical - 3 dof

03

액추에이터

Mechanical

Pneumatic

Hydrilic

04

URDF

로봇의 설계도

시뮬레이션에 활용

Link

Joint

Transmission (Actuator)

Material

...

좌표계

좌표계

절대 좌표계 (Global)

- 전체 환경을 기준으로 하는 고정 좌표계
- "고정좌표계"
- 로봇, 물체, 카메라

상대 좌표계 (Local)

- 특정 객체를 기준으로 하는 좌표계
- 로봇 팔 끝단에서 본 물체의 위치

좌표계

01

02

03

Base Frame

로봇의 베이스 및 첫 번째 링크 로봇의 전체 기준점 (고정 좌표계)

Joint Frame

각 관절마다 정의되는 프레임

Sensor Frame

센서의 관찰 기준

Base Frame

Joint Frame

Sensor Frame

좌표 변환의 필요성

다른 기준에서 물체의 위치를 알고 싶을 때 필요 (예: 카메라 좌표로 본 물체의 위치 \rightarrow 베이스 좌표계로 변환) 연쇄적으로 적용이 가능 (예: A \rightarrow B \rightarrow C)

좌표계 = 회전 + 평행이동

좌표계 = 회전 + 평행이동

좌표계 변환 = 회전 변환 + 평행이동 변환

회전변환과 평행이동

• 회전변환: 방향을 회전

회전변환과 평행이동

● 회전변환: 방향을 회전

행렬 구조

$$R(heta) = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

회전 변환

$$egin{bmatrix} x' \ y' \end{bmatrix} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix}$$

회전변환과 평행이동

● 회전변환: 방향을 회전

회전변환과 평행이동

● 회전변환: 방향을 회전

행렬 구조

$$R_x(heta) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{bmatrix} \ R_x(heta) = egin{bmatrix} \cos heta & 0 & \sin heta \ 0 & 1 & 0 \ -\sin heta & 0 & \cos heta \end{bmatrix} \ R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix} \$$

회전변환과 평행이동

● 회전변환: 방향을 회전

회전 변환

$$R = R_z(\gamma) R_y(\beta) R_x(\alpha)$$

$$= \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$= \begin{bmatrix} \cos \beta \cos \gamma & \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma & \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \\ \cos \beta \sin \gamma & \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma \\ -\sin \beta & \sin \alpha \cos \beta & \cos \alpha \cos \beta \end{bmatrix}$$

회전변환과 평행이동

● 회전변환: 방향을 회전

회전 변환 표기법

 R_B^A

회전변환과 평행이동

● 회전변환: 방향을 회전

회전 변환 표기법

$$R_B^A$$

$$R_D^A = R_B^A \, R_C^B \, R_D^C$$

회전변환과 평행이동

● 회전변환: 방향을 회전

회전 변환 표기법

$$R_B^A$$

$$R_D^A = R_B^A \, R_C^B \, R_D^C$$

회전 변환 연산법

$$P^A=R^A_B\,P^B$$

회전변환과 평행이동

● 평행이동: 위치를 이동

회전변환과 평행이동

● 평행이동: 위치를 이동

점 이동 벡터
$$\mathbf{p} = egin{bmatrix} x \\ y \end{bmatrix}$$
 $\mathbf{t} = egin{bmatrix} t_x \\ t_y \end{bmatrix}$

회전변환과 평행이동

● 평행이동: 위치를 이동

점

$$\mathbf{p} = \begin{bmatrix} x \\ y \end{bmatrix}$$

이동 벡터

$$\mathbf{t} = egin{bmatrix} t_x \ t_y \end{bmatrix}$$

평행이동

$$\mathbf{p'} = \mathbf{p} + \mathbf{t} = egin{bmatrix} x + t_x \ y + t_y \end{bmatrix}$$

회전변환과 평행이동

● 평행이동: 위치를 이동

회전변환과 평행이동

● 평행이동: 위치를 이동

회전변환과 평행이동

● 평행이동: 위치를 이동

점

$$\mathbf{p} = egin{bmatrix} x \ y \ z \end{bmatrix}$$

이동 벡터

$$\mathbf{t} = egin{bmatrix} t_x \ t_y \ t_z \end{bmatrix}$$

평행이동

$$\mathbf{p'} = \mathbf{p} + \mathbf{t} = egin{bmatrix} x + t_x \ y + t_y \ z + t_z \end{bmatrix}$$

회전변환과 평행이동

● 평행이동: 위치를 이동

평행이동 표기법

 P_B^A

회전변환과 평행이동

● 평행이동: 위치를 이동

평행이동 표기법

$$P_B^A$$

$$P_D^A = P_B^A + P_C^B + P_D^C$$

회전변환과 평행이동

• 평행이동: 위치를 이동

평행이동 표기법

$$P_B^A$$

$$P_D^A = P_B^A + P_C^B + P_D^C$$

평행이동 연산법

$$P^A = P_B^A + P^B$$

좌표계 = 회전 + 평행이동

좌표계 변환 = 회전 변환 + 평행이동 변환

Transformation Matrix (변환)

위치와 방향을 하나의 행렬로 표현하고, 이를 통해 좌표 변환을 수행

행렬 구조

$$T = egin{bmatrix} R & t \ 0 & 1 \end{bmatrix} = egin{bmatrix} R_{3 imes 3} & t_{3 imes 1} \ \mathbf{0}^T & 1 \end{bmatrix}$$

- R: 3x3 회전 행렬
- t: 3x1 위치 벡터

변환 표기법

 T_B^A

Transformation Matrix (변환)

위치와 방향을 하나의 행렬로 표현하고, 이를 통해 좌표 변환을 수행

행렬 구조

$$T = egin{bmatrix} R & t \ 0 & 1 \end{bmatrix} = egin{bmatrix} R_{3 imes 3} & t_{3 imes 1} \ \mathbf{0}^T & 1 \end{bmatrix}$$

- R: 3x3 회전 행렬
- t: 3x1 위치 벡터

변환 표기법

$$T_B^A$$

$$T_D^A = T_B^A \, T_C^B \, T_D^C$$

Transformation Matrix (변환)

위치와 방향을 하나의 행렬로 표현하고, 이를 통해 좌표 변환을 수행

행렬 구조

$$T = egin{bmatrix} R & t \ 0 & 1 \end{bmatrix} = egin{bmatrix} R_{3 imes 3} & t_{3 imes 1} \ \mathbf{0}^T & 1 \end{bmatrix}$$

- R: 3x3 회전 행렬
- t: 3x1 위치 벡터

변환 표기법

$$T_B^A$$

$$T_D^A = T_B^A \, T_C^B \, T_D^C$$

변환 연산법

$$P^A = [\,x,\;y,\;z,\;1\,]^T$$

$$P^B = T^B_A P^A$$

Transformation Matrix (변환)

위치와 방향을 하나의 행렬로 표현하고, 이를 통해 좌표 변환을 수행

행렬 구조

$$T = egin{bmatrix} R & t \ 0 & 1 \end{bmatrix} = egin{bmatrix} R_{3 imes 3} & t_{3 imes 1} \ \mathbf{0}^T & 1 \end{bmatrix}$$

- R: 3x3 회전 행렬
- t: 3x1 위치 벡터

변환 표기법

$$egin{aligned} T_B^A \ T_D^A = T_B^A \, T_C^B \, T_D^C \end{aligned}$$

변환 연산법

$$egin{aligned} P^A &= [\,x,\;y,\;z,\;1\,]^T \ P^B &= T_A^B\,P^A \end{aligned}$$

역변환

$$\left(T_B^A\right)^{-1} \ = \ T_A^B$$

$$egin{aligned} T_B^A \ = \ egin{bmatrix} a_1 & b_1 & c_1 & p_x \ a_2 & b_2 & c_2 & p_y \ a_3 & b_3 & c_3 & p_z \ 0 & 0 & 0 & 1 \end{bmatrix}, \quad egin{pmatrix} (T_B^A)^{-1} \ = \ egin{bmatrix} a_1 & a_2 & a_3 & -ig(p_x a_1 + p_y a_2 + p_z a_3ig) \ b_1 & b_2 & b_3 & -ig(p_x b_1 + p_y b_2 + p_z b_3ig) \ c_1 & c_2 & c_3 & -ig(p_x c_1 + p_y c_2 + p_z c_3ig) \ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

로봇의 주요 좌표계 예시 1

• 기본 변환법 예시

프레임 A 와 B 가 일치할 때, 프레임 B를 프레임 A에 대하여 다음의 순서로 변환한 행렬을 구하기 Y축에 대하여 30도 → X축에 대하여 60도 → Z축에 대하여 30도 → 원점을 [10, -5, 4] 만큼 이동

로봇의 주요 좌표계 예시 2

• 물체 상대위치 구하기

$$egin{aligned} T_{obj}^{cam} &= egin{bmatrix} 0 & 0 & 1 & 2 \ 1 & 0 & 0 & 2 \ 0 & 1 & 0 & 4 \ 0 & 0 & 0 & 1 \end{bmatrix}, & T_{cam}^{Grip} &= egin{bmatrix} 0 & 0 & -1 & 3 \ 0 & -1 & 0 & 0 \ -1 & 0 & 0 & 5 \ 0 & 0 & 0 & 1 \end{bmatrix}, & T_{Arm}^{Grip} &= egin{bmatrix} 0 & -1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 4 \ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Base Frame

Joint Frame

Sensor Frame

로봇 좌표계의 활용

 01
 02
 03
 04

 Task Description
 Perception
 Planning
 Control

 물체를 잡기
 카메라로 물체 인식
 로봇 기준으로 물체 위치 계산
 모터를 구동

 로봇팔 움직임 계산 (이후 강의)
 (이후 강의)

강의 요약

01

절대 좌표계 (Global)

전체 환경을 기준으로 고정된 좌표계

02

상대 좌표계 (Local)

특정 객체를 기준으로

03

로봇의 좌표계

Base frame

Joint frame

Sensor frame

04

회전변환과 평행이동

$$T = egin{bmatrix} R & t \ 0 & 1 \end{bmatrix}$$

- R: 3x3 회전 행렬
- t: 3x1 위치 벡터