INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns Ref. No. 1990.65934
Sheet 1 of 21 (312) 360 0080

FIG. 2

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al. Greer, Burns & Crain, Ltd. (Patrick Burns) Ref. No. 1990.65934
Sheet 2 of 21 (312) 360 0080

2/21

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns, Ref. No. 1990.65934
Sheet 3 of 21 (312) 360 0080

3/21

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burn
Ref. No. 1990.65934
Sheet 4 of 21 (312) 360 0080

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burnef. No. 1990.65934
Sheet 5 of 21 (312) 360 0080

5/21

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burn
Ref. No. 1990.65934
Sheet 6 of 21 (312) 360 0080

FIG. 5

$X_{k-1}X_k$	S ₀
00	S ₁
01	S₂
10	S₃
11	S ₄

FIG. 6

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burn
Ref. No. 1990.65934
Sheet 7 of 21 (312) 360 0080

7/21

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns Ref. No. 1990.65934
Sheet 8 of 21 (312) 360 0080

FIG. 8

	RECOF	RECORDING SIGNAL Xk ON MEDIUM	IGNAL >	K _k ON M	IEDIUM		STATE	MEAN VALUE OF WAVEFORM AFTER
X _{k-N}	•••	X _{k-1}	X _k	X _{k+1}	•••	X _{k+Q}		EQUALIZATION
0	:	0	0	0	•••	0	0 ES	(° _w S)P
0	:	0	0	0	•••	1	l mS	(¹ _w S) p
:	•	:		:	•••	•••	•••••	•••••
1	:	V-	1	1	•••	0	S "2-[N+Q+1]-2	q (S _m ^{2-[1+0+1]-2})
1	:	1	-	-	•••	1	S "2^[N+Q+1]-1	d (S ^m 2^[N+Q+1]-1)

FIG. 10A

FIG. 10B

FIG. 10C

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns)
Ref. No. 1990.65934
Sheet 11 of 21 (312) 360 0080

STATE	•		CORRELATION OF NOISES	N OF NOISES			STANDARD DEVIATION
	e-L(S ^m)	:	$e_{-1}(S_k^m)$	e ₁ (S ^m _k)	:	e _M (S ^m _k)	$\sigma(S^m_k)$
S ^m ₀	(⁰ _w S) ^{¬-} e	:	6-1 (S ₀)	e ₁ (S ^m ₀)	:	e _M (S ^m ₀)	σ (S ^m ₀)
S ^m ₁	e _{-L} (S ^m ₁)		e_1(Sm1)	e ₁ (S ^m ₁)	:	e _M (S ^m ₁)	σ (S ^m ₁)
•••	•	:			:		:
S"2'[N+Q+1]-2	$S_{2^{\lceil (N+Q+1]-2}}^{m} = e_{-L}(S_{2^{\lceil (N+Q+1]-2})}^{m}$:	6-1 (S"2~[N+Q+1]-2)	Θ ₁ (S ^m ₂ (N+Q+1)-2)	:	e _M (S ^m 2'[N+Q+1]-2)	σ (S ^m ₂ (N+Q+1)-2)
S ^m ₂ (N+Q+1)-1	$e_{-L}(S^{m}_{2^{2}[N+Q+1]-1})$:	$e_{-1}(S^{m}_{2^{n}[N+Q+1]-1})$	e ₁ (S ^m ₂ ² (N+Q+1)-1)	:	$e_{M}(S_{2}^{m}(N+Q+1)-1})$	σ (S ^m ₂ ^{*[N+Q+1]-1})

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al. Greer, Burns & Crain, Ltd. (Patrick Burns, Ref. No. 1990.65934 Sheet 12 of 21 (312) 360 0080

12/21

 $S_{k-1} = S_0 \rightarrow PATHS WHICH PASS S_k = S_1$ $S_{k-1} = S_0 \rightarrow PATH OF THE SHORTEST PATH METRIC AMONG PATHS WHICH PASS S_k = S_1$

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns,
Ref. No. 1990.65934
Sheet 13 of 21 (312) 360 0080

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns)
Ref. No. 1990.65934
Sheet 14 of 21 (312) 360 0080

14/21

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns, Ref. No. 1990.65934
Sheet 15 of 21 (312) 360 0080

15/21

Ichihara et al. Greer, Burns & Crain, Ltd. Ref. No. 1990.65934

INFORMATION RECORDING AND REPRODUCING (312) 360 0080 Sheet 16 of 21

17/21

START

DIVIDE INPUT SERIES y_k OF SERIES LENGTH Ns IN MAP INTO SMALL N_{wind} SERIES (WINDOWS) OF SERIES LENGTH $N_u + N_t$

 $N_{wind} = [(N_s - N_t) / \overline{N_u}]$

WINDOW No. i=1

YES

OBTAIN $\gamma k(s)$ REGARDING $k=(i-1)N_u+1\sim i(N_u+N_t)$ BY EQUATION(3) AND STORE IT

INITIALIZE $\alpha_{(i-1)Nu+1}(s)$ BY EQUATION(6), OBTAIN $\alpha_k(s)$ REGARDING $k=(i-1)N_u+1\sim iN_u$ BY EQUATION(4) AND STORE IT

INITIALIZE $\beta_{i(Nu+Nt)}(s)$ BY EQUATION(6) BY SETTING $N=i(N_u+N_t)$, CALCULATE $\beta_k(s)$ IN OPPOSITE ORDER FROM $k=i(N_u+N_t)-1$ TO $k=(i-1)N_u+1$ BY EQUATION(5) AND STORE THE PORTION IN A RANGE FROM $k=iN_u$ TO $k=(i-1)N_u+1$

OBTAIN RELIABILITY INFORMATION $\Lambda(x_k)$ AND $\Lambda_e(x_k)$ REGARDING $k=(i-1)N_u+1\sim iN_u$ BY EQUATIONS(7) AND (8) FROM α,β , AND γ OBTAINED BY PROCESSES 4), 5), AND 6)

i=i+1

S8

S7

<S2

5**S**4

< S5

~S6

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al. Greer, Burns & Crain, Ltd. (Patrick Burns Ref. No. 1990.65934 Sheet 18 of 21 (312) 360 0080

18/21

FIG. 17B

< S9

₅ S10

S11

OBTAIN $\gamma_k(s)$ REGARDING $k=(i-1)N_u+1\sim N_s$ BY EQUATION(3) AND STORE IT

INITIALIZE $\alpha_{(i-1)Nu+1}(s)$ BY EQUATION(6), OBTAIN $\alpha_{k}(s)$ REGARDING $k=(i-1)N_{u}+1\sim N_{s}$ BY EQUATION(4) AND STORE IT

INITIALIZE $\beta_N(s)$ BY EQUATION(6), CALCULATE $\beta_k(s)$ IN OPPOSITE ORDER FROM k=N-1 TO $k=(N_{wind}-1)N_u+1$ BY EQUATION(5) AND STORE IT

OBTAIN RELIABILITY INFORMATION $\Lambda(x_k)$ AND $\Lambda_e(x_k)$ REGARDING $k=(i-1)N_u+1\sim N_s$ BY EQUATIONS(7) AND (8) FROM α,β , AND γ OBTAINED BY PROCESSES 9), 10), AND 11)

END

_<S12

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns)
Ref. No. 1990.65934
Sheet 19 of 21 (312) 360 0080

19/21

FIG. 18

$x_{k-3}x_{k-2}x_{k-1}x_k$	STATE
0000	S ^m _o
0001	S ^m 1
0010	S ^m ₂
0011	S ^m ₃
0100	S ^m ₄
0101	NOT EXIST
0110	S ^m ₆
0111	S ^m ,
1000	S ₈
1001	S ^m ₉
. 1010	NOT EXIST
1011	S ^m ₁₁
1100	S ^m ₁₂
1101	S ^m ₁₃
1110	S ^m ₁₄
1111	S ^m ₁₅

20/21

FIG. 19

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns)
Ref. No. 1990.65934
Sheet 21 of 21 (312) 360 0080

<u> </u>			I	 	1		1	21/	71							 	Ī	
MEAN VALUE OF	EQUALIZATION SIGNAL	d(S _m)	q(S _m ⁰)	d (S ^m ₂)	d(S ^m ₂)	d(S _m 3)	d(Sm ₄)		(S _m) p	d(S ^m ₇)	d(S ^m ₈)	(S _m ⁹)		d(Sm1)	d(S ^m ₁₂)	d(Sm ₁₃)	d(S ^m ₁₄)	d(S ^m ₁₅)
STANDARD	DEVIATION OF NOISES	a(Sm _k)	σ(S _m)	σ(S ^m ₁)	. o(S ^m ₂)	σ(S ^m ₃)	σ(S ^m ₄)	1	σ(S ^m ₆)	σ(S ^m ₇)	σ(S ^m ₈)	0(Sm ₉)	-	σ(S ^m ₁₁)	σ(S ^m ₁₂)	σ(S ^m ₁₃)	σ(S ^m ₁₄)	σ(S ^m ₁₅)
		e _M (Sm _k)	e _M (S ^m ₀)	e _M (Sm ₁)	e _M (Sm ₂)	e _M (S ^m ₃)	e _M (S ^m ₄)	1	e _M (S ^m ₆)	e _M (S ^m ₇)	e _M (S ^m ₈)	e _M (S ^m ₉)		6 _M (Sm 11)	6 _M (Sm12)	e _M (Sm ₁₃)	e _M (S ^m ₁₄)	e _M (S ^m ₁₅)
20	S	:		:		:	-	-		-	-	:	-	•	•	•	-	•
FIG. 20	ELATION OF NOISES	e, (Sm,)	e ₁ (S ^m ₀)	.e ₁ (Sm ₁)	e ₁ (S ^m ₂)	e ₁ (S ^m ₃)	Θ ₁ (S ^m ₄)	ı	6 ₁ (S ^m ₆)	e ₁ (S ^m ₇)	61 (Sm8)	θ ₁ (S ^m ₉)	I	e ₁ (Sm ₁₁)	e ₁ (Sm ₁₂)	e ₁ (Sm ₁₃)	6, (Sm14)	e ₁ (S ^m ₁₅)
	CORRELATIO	$e_{-1}(S^m_k)$	$e_{-1}(S^{m}_{0})$	e-1 (Sm1)	e-1 (Sm2)	e-1 (Sm3)	$e_{-1}(S^{m}_{4})$	l	e ₋₁ (S ^m ₆)	6-1 (Sm)	$e_{-1}(S^{m}_{8})$	e-1 (Sm ₉)	I	e-1 (Sm11)	$e_{-1}(S_{n_{12}})$	$e_{-1}(S_{13}^m)$	$e_{-1}(S_{14}^m)$	$e_{-1}(S_{15}^m)$
	0			•	•	•		•		• •	•	•	•	• • •	•	•		•
		$e_{-L}(S^m_k)$	e-r(S ^m ₀)	e-L (Sm1)	e-L(S ^m ₂)	Θ _{-L} (S ^m ₃)	e _{-L} (S ^m ₄)	ı	Θ-Γ (S _m ⁶)	e-L (Sm,)	$e_{-L}(S^m_8)$	$e_{-L}(S^m_9)$	l	6-L (Sm11)	e-L (Sm12)	e-L (Sm13)	e-L (S"14)	e-L (Sm ₁₅)
	STATE	0.0	Smo	S ^m ₁	S ^m ₂	S m s	S ^m ₄	NOT EXIST	S ^m ₆	S ^m ₇	Smg	S m g	NOT EXIST	S ^m ₁₁	S" ₁₂	S ₁₃	S ^m ₁₄	S ^m ₁₅