NOM: GROUPE:

R3.09 - Cryptographie et sécurité Contrôle Terminal

Nom du responsable :	A. Ridard
Date du contrôle :	Mercredi 19 octobre 2022
Durée du contrôle :	1h30
Nombre total de pages :	7 pages : 1 à 4 + 5 à 7
Impression:	A4 recto-verso agrafé (1 point)
Documents autorisés :	A4 recto-verso manuscrit
Calculatrice autorisée :	Oui
Réponses :	Directement sur le sujet

Exercice 1.

1. En utilisant l'algorithme d'Euclide étendu , déterminer pgcd(255, 141) et une identité d	de Bézou
--	----------

2. (a) Décomposer en facteurs premiers 120 et 252.

(b) En déduire le pgcd et le ppcm de 120 et 252.

Exercice 2.

1. Dresser la table de multiplication de $\mathbb{Z}/8\mathbb{Z}.$

×	0	1	2	3	4	5	6	7
0								
1								
2								
3								
4								
5								
6								
7								

2. Résoudre les équations suivantes $modulo\ 8$:

(a)
$$5x + 2 \equiv 4$$

(b)
$$6x - 3 \equiv 0$$

(c)
$$2x - 6 \equiv 6$$

(d)
$$x^2 - 6 \equiv 3$$

(e)
$$x^2 - 2x + 1 \equiv 4$$

NOM: GROUPE:

Exercice 3.

Dans les deux premiers chiffrements, une lettre est représentée par son rang dans l'alphabet en partant de 0.

1. On considère la fonction de **chiffrement affine** suivante :

$$\begin{array}{cccc} \mathbf{E}_k \colon & \mathbb{Z}/26\mathbb{Z} & \longrightarrow & \mathbb{Z}/26\mathbb{Z} \\ & m_i & \longmapsto & c_i = 21m_i + 5 \end{array}$$

(a) Chiffrer le message "LN".

(b) Déchiffrer le message "AJO".

2. On considère la fonction de **chiffrement de Hill** suivante :

$$\begin{array}{cccc} \mathbf{E}_{k} \colon & (\mathbb{Z}/26\mathbb{Z})^{2} & \longrightarrow & (\mathbb{Z}/26\mathbb{Z})^{2} \\ & \begin{pmatrix} m_{i} \\ m_{i+1} \end{pmatrix} & \longmapsto & \begin{pmatrix} c_{i} \\ c_{i+1} \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} m_{i} \\ m_{i+1} \end{pmatrix} \end{array}$$

(a) Chiffrer le message "LN".

(b) Déchiffrer le message "DVAX".

3. On considère la fonction de **chiffrement RSA** suivante :

$$E_k : \ \mathbb{Z}/n\mathbb{Z} \longrightarrow \ \mathbb{Z}/n\mathbb{Z}$$

$$m_i \longmapsto c_i = m_i^e$$

avec $n = pq = 11 \times 13$ et e = 7

(a) Déterminer la clé privée (n, d) où d est l'inverse de e modulo $\varphi(n)$.

(b) Déchiffrer le message "123".