GÉOMÉTRIE ET ARITHMÉTIQUE Planche : Polynômes 2

Exercice 1. Déterminer $a, b \in \mathbb{Z}$ de façon à ce que le polynôme $aX^{n+1} - bX^n + 1$ soit divisible par le polynôme $(X - 1)^2$. Calculer alors le quotient des deux polynômes.

Exercice 2. Pour $n \in \mathbb{N}$, montrer que le polynôme $(X-1)^{n+2} + X^{2n+1}$ est divisible par $X^2 - X + 1$. Trouver le quotient si n = 2.

Exercice 3. Décomposer dans $\mathbb{C}[X]$ puis sur $\mathbb{R}[X]$ les polynômes $X^4 - 1$ et $X^3 + 1$.

Exercice 4. Soient A, B et C les polynômes de $\mathbb{R}[X]$ suivants :

$$A = (X+3)^{2}(X+1)(X^{2}+1)^{3}$$

$$B = (X+3)^{2}(X+2)^{2}(X^{2}+1)$$

$$C = (X+3)(X+2)(X^{2}+1)^{2}.$$

- 1. Combien A possède-t-il de diviseurs unitaires? et B? et C?
- 2. Écrire le PGCD et le ppcm de A et B.
- 3. Écrire le PGCD et le ppcm des trois polynômes A, B et C.

Exercice 5. Soient $P = 2X^4 - 2X^3 + 3X^2 - X + 1$ et $Q = X^4 - X^3 + 3X^2 - 2X + 2$. Calculer pgcd(P, Q) et factoriser P et Q en produit de polynômes irréductibles de $\mathbb{R}[X]$.

Exercice 6. Factoriser $P = X^4 + X^2 + 1$ et $Q = X^4 - X^2 + 1$ en produit de polynômes irréductibles et unitaires de $\mathbb{R}[X]$. Montrer que Q est un polynôme irréductible de $\mathbb{Q}[X]$.

Exercice 7. Déterminer le polynôme $P \in \mathbb{R}[X]$ de degré au plus 3 tel que P(0) = 1, P(1) = 0, P(-1) = -2 et P(2) = 4.

Exercice 8. Montrer que

$$P = 1 + \frac{X}{1!} + \frac{X^2}{2!} + \dots + \frac{X^n}{n!}$$

n'as pas de racine multiple.

Exercice 9. Soient $P, Q \in \mathbb{K}[X]$ tels que $X^2 + X + 1$ divise $P(X^3) + XQ(X^3)$. Montrer que P(1) = Q(1) = 0. Que peut on dire de la réciproque?

Exercice 10. Soit $P = X^4 + X^3 + X^2 + 3 \in \mathbb{R}[X]$. Montrer que P n'a pas de racine réelle. P est-il irréductible dans $\mathbb{R}[X]$?

Exercice 11. On considère la famille de polynômes définie pas récurrence par $P_0 = 1$ et $P_n = (1+n)XP_{n-1} + XP'_{n-1}$.

- 1. Calculer P_1 , P_2 et P_3 .
- 2. Calculer $P_n(0)$.
- 3. Montrer que $P_n(X) = X^n P(\frac{1}{X})$ et en déduire que si a est une racine de P_n alors $\frac{1}{a}$ aussi.

Exercice 12. Donner une condition nécessaire et suffisante sur $p,q\in\mathbb{C}$ pour que les deux équations

$$z^4 + 2z^2 + p = 0$$

$$z^3 + z + q = 0$$

aient deux solutions communes distinctes.

Exercice 13. Soit $P = 2X^5 + 5X^4 + 8X^3 + 7X^2 + 4X + 1 \in \mathbb{R}[X]$. Combien P a-t-il de racines multiples dans \mathbb{C} ? Factoriser P en produit de polynômes irréductibles et unitaires de $\mathbb{R}[X]$.

Exercice 14. Trouver les polynômes P tels que P+1 soit divisible par $(X-1)^4$ et P-1 par $(X+1)^4$:

- 1. en utilisant la relation de Bézout,
- 2. en considérant le polynôme dérivé P'.

Combien y a-t-il de solutions de degré inférieur ou égal à 7?

Exercice 15. Trouver tous les polynômes divisibles par leur dérivée.

Exercice 16. Résoudre l'équation d'inconnue $P \in \mathbb{R}[X]$ suivante

$$X(X+1)P" + (X+2)P' - P = 0$$

Exercice 17. Montrer que

$$\forall n \in \mathbb{N}, \quad \exists ! P_n \in \mathbb{Q}[X], \qquad P_n - P'_n = X^n.$$

Calculer P_n .