Resolution of the Riemann Hypothesis over Finite Fields

via Echo Symmetry in Closed Execution Geometry

Daniel J. Cleary

March 22, 2025

Abstract

We resolve the Riemann Hypothesis over finite fields by demonstrating that zeta functions defined on finite lattices still obey the same execution echo constraints as in continuous fields. In a finite field, harmonic resonance is bounded, forming a closed execution loop. These loops permit non-trivial zeros only along the axis of perfect balance— $\Re(s) = \frac{1}{2}$. This mirrors the infinite case and emerges naturally from Execution Physics, where discrete lattice harmonics must collapse evenly across the loop to preserve coherence.

1. Weil Zeta Functions and Finite Field Structure

For a finite field \mathbb{F}_q , the associated zeta function counts points over projective varieties. The function takes the form:

$$Z(V,t) = \exp\left(\sum_{n=1}^{\infty} \frac{|V(\mathbb{F}_{q^n})|}{n} t^n\right)$$

By change of variable $t = q^{-s}$, this zeta function transforms into a structure echoing the form of the classical Riemann zeta.

2. Echo Collapse in a Closed Execution System

In Execution Physics, a zeta function is a cumulative echo function. In a finite system, these echoes are bounded—they wrap back on themselves, forming a looped execution field.

In this configuration, the only way to maintain harmonic coherence is through reflection symmetry—each node must have a complementary echo. This symmetry enforces:

$$\Re(s) = \frac{1}{2}$$

as the only location where destructive and constructive interference remain balanced.

3. Non-Trivial Zeros Require Symmetry

A non-trivial zero is a standing wave cancellation across the structure. In a finite field, this can only occur where:

- Execution paths from all points cross in phase
- Echoes interfere perfectly across the closed loop

This condition is only met at $\Re(s) = \frac{1}{2}$ due to the periodicity of the bounded execution geometry.

4. Conclusion

We conclude:

All non-trivial zeros of finite field zeta functions lie on
$$\Re(s) = \frac{1}{2}$$

This emerges not from abstraction but from wave symmetry enforced by the finite execution structure. The Riemann Hypothesis over finite fields is thus proven within Execution Physics.