You may assume all algebras are finite-dimensional over a field k. You may attempt the exercises with the additional assumption of k being algebraically closed.

Throughout, unadorned tensor product over assumed to be taken over a field, i.e. $\otimes = \otimes_{\mathbb{k}}$.

Ex 1. Let e be an idempotent of an algebra A.

- 1. Show that $\operatorname{Hom}_A(eA, \operatorname{Hom}_{eAe}(Ae, M)) \cong M$ as eAe-module.
- 2. Show that indecomposable projective (right) eAe-modules are of the form fAe for an idempotent $f \in A$ with $fe \neq 0$.
- 3. Show that indecomposable injective (right) eAe-modules are of the form D(fAe) for an idempotent $f \in A$ with $fe \neq 0$.
- 4. Show that $-\otimes_{eAe}eA$ sends projective A-modules to projective A-modules, and $\operatorname{Hom}_{eAe}(Ae, -)$ sends injective A-modules to injective A-modules.

 *** Ideal solution is to prove this directly using part 1 and 2. If you only present this as a

consequence of property of adjointness, no mark will be awarded.

- 5. Suppose that $M \in \operatorname{\mathsf{mod}} eAe$ has a projective resolution $\cdots \to P_1 \xrightarrow{d_1} P_0 \to M \to 0$. Show that there is a projective resolution of $M \otimes_{eAe} eA \in \operatorname{\mathsf{mod}} A$ where the first two term are given by direct sums of direct summands of eA.
- 6. Suppose that $M \in \operatorname{\mathsf{mod}} A$ has a projective resolution $\cdots \to P_1 \xrightarrow{d_1} P_0 \to M \to 0$ such that, for both $i \in \{0,1\}$, the projective module P_i is given by direct sums of direct summands of eA. Show that $Me \otimes_{eAe} eA \cong M$.

Hint: Use part 2 and find an appropriate commutative diagram.

Ex 2.

- 1. Show that $\operatorname{Hom}_A(M,N) \cong D(M \otimes_A DN)$ as vector spaces.
- 2. Let $P_{\bullet} = (P_i, d_i : P_i \to P_{i-1})_{i \geq 0}$ be a projective resolution of an A-module M, and define

$$\operatorname{Tor}_1^A(M,N) := H_1(P_{\bullet} \otimes_A N) = \frac{\operatorname{Ker}(d_1 \otimes_A N)}{\operatorname{Im}(d_2 \otimes_A N)}$$

the first homology group of the complex $P_{\bullet} \otimes_A N$. Show that $\operatorname{Ext}_A^1(M,N) \cong D \operatorname{Tor}_1^A(M,DN)$ as \mathbb{k} -vector spaces.

- 3. Show that $D \operatorname{Hom}_A(M, A) \cong M \otimes_A DA$ as right A-modules.
- 4. Let ${}_{A}X_{B}$ be an A-B-bimodule. If M is a C-A-bimodule and N is a C-B-bimodule. Show that $\operatorname{Hom}_{C^{\operatorname{op}}\otimes B}(M\otimes_{A}X,N)\cong \operatorname{Hom}_{C^{\operatorname{op}}\otimes A}(M,\operatorname{Hom}_{B}(X,N))$ as vector spaces.
- 5. Let $B := A^{op} \otimes A$. Show that $\operatorname{Hom}_B(A, B) \cong \operatorname{Hom}_A(DA, A)$ as A-A-bimodules. $Hint: B \cong (DDA) \otimes A \cong \operatorname{Hom}_{\mathbb{k}}(DA, A)$ as B-modules.

Ex 3. Consider the quiver algebra A = kQ/I given by

$$Q: 1 \underbrace{\bigcap_{\beta_1}^{\alpha_1}}_{\beta_2} 2 \underbrace{\bigcap_{\beta_2}^{\alpha_2}}_{\beta_3} 3 \underbrace{\bigcap_{\beta_3}^{\alpha_3}}_{\beta_3} 4, \quad I = (\beta_3 \alpha_3, \alpha_i \alpha_{i+1}, \beta_{i+1} \beta_i, \beta_i \alpha_i - \alpha_{i+1} \beta_{i+1} \mid i = 1, 2)$$

For $i \in \{1, 2, 3, 4\}$, let $\Delta(i) := P_i/\alpha_i A$ (with $\alpha_4 := 0$ as a convention).

- (i) Write down the minimal projective resolution of $\Delta(1)$.
- (ii) Show that $\operatorname{Ext}_A^k(\Delta(i), \Delta(j)) = 0$ whenever i > j for any $k \ge 0$.
- (iii) Show that $\operatorname{Ext}_A^k(\Delta(i), \Delta(j)) = 0$ whenever k > 3 for any i, j.
- (iv) Compute $\dim_{\mathbb{K}} \operatorname{Ext}_A^k(\Delta(i), \Delta(j))$ for all possible i, j, k. Show your working.
- (v) Consider the chain of ideals

$$A = Af_1A \supset Af_2A \supset Af_3A \supset Af_4A \supset Af_5A = 0$$

where $f_i = \sum_{j=i}^4 e_j$ for i < 4 and $f_5 = 0$. Let $A_i := A/Af_{i+1}A$. Compute the A_i -bimodule structure of $\overline{I}_i := Af_iA/Af_{i+1}A$ and show that

- (i) \overline{I}_i is projective as a right A_i -module, and
- (ii) $\overline{I}_i \operatorname{rad}(A_i) \overline{I}_i = 0.$

Ex 4. Let e be an idempotent of an algebra A.

- 1. Show that indecomposable projective $\operatorname{End}_A(eA)$ -modules are of the form $\operatorname{Hom}_A(eA, fA)$ for an primitive idempotent $f \in A$ with $fe \neq 0$.
- 2. Show that if $(AeA)_A$ is projective, then Ae is a projective (right) eAe-module. Hint (i): Assumption implies that $AeA \cong (eA)^{\oplus m}$ (since $eA^{\oplus A} \twoheadrightarrow AeA$ splits). Hint (ii): Ae = AeAe and use part 1.
- 3. Show that if $(Ae)_{eAe}$ is projective, then $gldimeAe \leq gldimA$ for any simple A-module S. $Hint: \otimes_{eAe} Ae$ takes simple module to simple module or zero.

Let I be a two-sided ideal of A such that I_A is projective, and take B := A/I.

- 3. Show that $pdim(B_A) \leq 1$.
- 4. Show that $\operatorname{pdim}(M_A) \leq 1 + \operatorname{pdim}(M_B)$.

Hint(i): Prove by induction.

Hint (ii): Construct a short exact sequence in mod A involving M and a projective B-module.

Deadline: 29th December, 2022

Submission: E-mail to (replace at by @) aaron.chan at math.nagoya-u.ac.jp