Manarat International University (MIU)

Department of Computer Science and Engineering Final Examination (Fall 2019) Neural Network and Fuzzy Systems (CSE-433)

	ll Marks: 40 Time: 2.5 Hour swer any 8 (Eight) questions. All questions are of equal value.	
лп 1	a. What is a Recurrent Neural Networks (RNN)? How it does work?	3
	b. Why do we need RNN?	2
2	a. Explain the main intuition of Contrastive Divergence (CD-k) algorithm.	3
	b. What is the primary disadvantage of using (CD-k) algorithm to train a Restricted Boltzmann Machines (RBMs) .	2
3	a. Explain the Softplus activation function. Write the equation of Free Energy for a RBM.	3
	b. Define semi-restricted Boltzmann Machines. Write the Energy Function equation when x , t he inputs of visible layer, are unbounded reals .	2
4	a. Why is gradient flow important when training deep neural networks?	2
	b. Explain some common methods that help to ensure good gradient flow.	3
5	a. What is Denoising Autoencoder (DAE). How it does work?	3
	b. Explain from the following illustration of what the denoising autoencoder is trying to learn ? $q_{\mathcal{D}}(\tilde{x} x)$	2

3

2

a. What is a **Contractive Autoencoder** (CAE)? How does it work?

b. Why does the **penalty term** added to the loss function in a CAE ?

7	a. What is Sequence-to-Sequence learning (Seq2Seq)? What are the applications of it?	2
	b. Explain a vanilla RNN architecture for Seq2Seq learning task.	3
8	a. Explain Teacher Forcing algorithm for RNN.	3
	b. Write the main idea of Bidirectional RNNs ?	2
9	a. Explain the techniques to get rid of a badly conditioned curvature .	2
	b. Why do we need to decay the learning rate ? Write a technique to decay the learning rate on an exponential schedule.	3