강의계획표

주	해당 장	주제				
1	1장	머신러닝이란				
2	2장, 3장	머신러닝을 위한 기초지식, 구현을 위한 도구				
3	4장	선형 회귀로 이해하는 지도학습				
4	5장	분류와 군집화로 이해하는 지도 학습과 비지도 학습				
5		다양한 머신러닝 기법들				
6	6장	- 다항 회귀, Logistic Regression - 정보이론, 결정트리				
7		- SVM, Ensemble				
8		중간고사 (04-20)				
9	7장	인공 신경망 기초 - 문제와 돌파구				
10	8장	고급 인공 신경망 구현				
11	9장	신경망 부흥의 시작, 합성곱 신경망				
12	10장	순환 신경망				
13	11장	차원축소와 매니폴드 학습				
14	12장	오토인코더와 잠재표현 학습				
15	13장	AI의 현재와 미래				
16		기말고사				

13장 인공지능의 현재와 미래

14 주차

- 기계학습의 여러 기법 정리
- 실시간 객체탐지에 활용하고 있는 YOLO
- 어텐션, 트랜스포머, BERT, GPT-3, T5
- 적대적 생성모델, GAN
- 강화학습
- 인공지능의 윤리적 문제
- 참고사이트
 - YOLO, Object Detection Network 블로그 네이버
 - [딥러닝] Object Detection with YOLO velog
 - 딥 러닝을 이용한 자연어 처리 입문
 - GPT3, BERT까지!자연어처리 알고리즘발전 스토리 [토크아이티 ...
 - [GAN] 이제 제발 이해하자 GAN 0장 (개념) : 네이버 블로그
 - <u>강화학습 Reinforcement Learning 생활코딩</u>
 - [NHN FORWARD 2020] 강화 학습 기초: #1 강화 학습 이해하기
 - <u>9.인공지능 윤리(중급) Part 2. AI 윤리 문제 사례 AI4School</u>

인공 신경망으로 무엇을 할 수 있을까? (1)

❖ 학습내용

인공 신경망으로 무엇을 할 수 있을까? (2)

❖ CNN 활용

- 시각 지능 구현
- 객체위치 파악localization
- 실시간 객체탐지object detection YOLO
- 비디오와 텍스트 처리video and text processing
- Image 생성

❖ RNN 활용

- 언어 지능 구현: 챗봇, 기계번역, 질의응답, 영상캡션 추가, 내용요약, MRC
- 시퀀스-투-시퀀스sequence-to-sequence:seq2seq
- 어텐션 메커니즘attention mechanism
- 트랜스포머transformer
- GPTgenerative pretrained transformer_3
- ❖ 적대적 생성 모델: GAN
- ❖ 강화학습

시각 인식 응용 (1)

- ❖ 실시간 객체탐지 기술
 - 경계 상자bounding box
 - 객체탐지^{object detection}: 하나의 이미지에서 여러 문체를 분류하고 위치 추정
 - 이미지 분류image classification
 - 다중-레이블 분류multi-labeled classification
 - 인스턴스 분할instance segmentation : 인스턴스별로 레이블을 구분

시각 인식 응용(2)

- ❖ YOLOYou Only Look Once
 - 2015년 조셉 레드몬Joseph Redmon
 - https://homl.info/yolodemo
 - 한번 보고 처리: 이미지 전체를 단 한번만 봄
 - 모델 사용: 단 하나의 인공 신경망을 통해 처리
 - **실시간 객체 탐지**: 실시간으로 여러 장의 이미지를 탐지
 - YOLO, Object Detection Network 블로그 네이버
 - [딥러닝] Object Detection with YOLO velog
- ❖ 시맨틱 분할semantic segmentation
 - 이미지 내의 모든 픽셀에 대해 어떤 클래스 레이블에 속하는지 예측

언어처리 기술 응용 (1)

❖ 시퀀스-투-시퀀스seq2seq

■ 챗봇, 기계번역, 질의응답, 영상캡션 추가, 내용요약, STT 응용

	0.157		0.78
	-0.25	am	0.29
	0.478		-0.96
	-0.78		0.52
	0.75	student	0.88
a	-0.81		-0.17
	0.96		0.29
	0.12		0.48

- 컨텍스트 벡터context vector:
 - 입력 시퀀스를 고정된 크기의 벡터 표현으로 압축
 - 인코더에서의 마지막 RNN 셀의 은닉 상태값

0.15 0.21 -0.11 0.91

- 문제점
 - 인코더가 고정된 크기의 벡터에 정보를 압축하기 때문에 정보 손실 발생
 - 순환 신경망의 고질적인 문제인 **기울기 소실 문제(장기 의존성)** 발생

언어처리 기술 응용 (2)

❖ 어텐션attention

- 디코더가 출력 단어를 예측할 예측하는 매 시점(time step)마다, 인코더에 서 전체 입력 문장을 다시 한번 참고함
- 해당 시점에서 예측해야 할 단어와 연관이 있는 단어에 가중치를 더 부여함으로써 중요한 부분에 집중
- 어텐션 함수
 - Attention(Q, K, V) = Attention Value

Q = Query : t 시점의 디코더 셀에서의 은닉 상태
K = Keys : 모든 시점의 인코더 셀의 은닉 상태들
V = Values : 모든 시점의 인코더 셀의 은닉 상태들

- 주어진 '쿼리(Query)'에 대해서 모든 '키(Key)'와의 유사도를 각각 구하고,
- 이 유사도를 키와 맵핑되어 있는 각각의 '값(Value)'에 반영한 후,
- 유사도가 반영된 '값(Value)'을 모두 더해서 리턴

언어처리 기술 응용 (3)

- ❖ Dot-Product Attention: Luong 어텐션
 - 1) 어텐션 스코어(Attention Score)
 - 현재 디코더의 시점 t에서 단어를 예측하기 위해, 인코더의 모든 은닉 상태 (h_1,h_2,\ldots,h_N) 각각이 디코더의 현시점의 은닉 상태 s_t 와 얼마나 유사한지를 판단하는 스코어값

$$score(s_t,\ h_i) = s_t^T h_i \ e^t = [s_t^T h_1, \dots, s_t^T h_N]$$

- 2) 소프트맥스함수를 통해 어텐션 분포
 - 어텐션 가중치(Attention Weight)

$$lpha^t = softmax(e^t)$$

3) 어텐션 값(Attention Value)

• 각 인코더의 어텐션 가중치와 은닉 상태를 가중합

언어처리 기술 응용 (4)

4) 어텐션 값과 디코더의 t 시점의 은닉 상태를 연결

5) 출력층 연산의 입력이 되는 \tilde{s}_t 를 계산

6) \tilde{s}_t 를 출력층의 입력으로 사용

$$\hat{y}_t = \operatorname{Softmax}\left(W_y \tilde{s}_t + b_y\right)$$

언어처리 기술 응용 (5)

❖ 트랜스포머Transformer

- 2017년 구글 논문, "Attention is all you need"
- 어텐션만으로 인코더와 디코더를 구현한 모델
- Self Attention
- Multi-head attention
- Masked Language Model

BERT

- Bidirectional Encoder Representations from Transformers
- 위키피디아(25억 단어)와 BooksCorpus(8억 단어)와 같은 레이블이 없는 텍스트 데이터로 사전 훈련된(Pre-Trained) 언어 모델
- Masked Language Model
- 다음 문장 예측(Next Sentence Prediction, NSP)
- Fine-Tuning

언어처리 기술 응용 (6)

- GPT Generative Pre-trained Transformer _3
 - OpenAl API
 - 1,750억개의 매개변수, 3,000억개의 text
 - 문제풀이, 랜덤 글짓기, 간단한 사칙연산, 번역,
 주어진 문장에 따른 간단한 웹 코딩
 - chatGPT
 - BARD
 - <u>GPT-3 패러다임을 바꿀 미친 성능의 인공지능 등</u> <u>장 및 활용 사례 ...</u>
 - NAVER AI NOW
 - 새로운 AI의 시작, HyperCLOVA

적대적 생성 모델: GAN

❖ 생성적 모델링generative modeling

- 학습 데이터를 이용한 훈련을 통해 데이터의 분포를 학습
- 랜덤 노이즈를 학습을 통해 익힌 분포와 일치하도 록 만드는 생성 모델
- 데이터 샘플링을 통해, 기존에 관찰했던 데이터와 같은 분포를 갖지만 존재하지는 않는 새로운 데이 터를 생성

GAN(Generative Adversarial Network)

- 2014년 **이안 굿펠로**lan Goodfellow
- 분류 문제를 해결하는 판별자 네트워크discriminative networks 와 생성자 네트워크generator networks 의 대립을 통해서 진짜 같은 가짜 이미지를 만듦

❖ 응용

- 예술, 패션 및 광고, 비디오 게임, 영화 산업
- 딥페이크deep fake

❖ 참고사이트

- [GAN] 이제 제발 이해하자 GAN 0장 (개념) : 네이버 블로그
- Deep Dream Generator

강화학습 (1)

❖ 강화학습reinforcement learning

- 행동심리학
- 어떤 환경 안에서 정의된 에이전트가 현재의 상태를 인식하여, 선택 가 능한 행동들 중 보상reward을 최대화하는 행동 혹은 행동 순서를 선택하 는 방법
- 에이전트가 학습을 하는 과정에서 점점 발전하게 되는 의사결정 전략을 정책policy

❖ 마르코프 의사결정 프로세스Markov decision process

- 상태state: 정적인 요소 + 동적인 요소
- 행동action: 어떠한 상태에서 취할 수 있는 행동
- 보상reward: 에이전트가 학습할 수 있는 유일한 정보
- 정책policy: 순차적 행동 결정문제에서 구해야 할 답, 모든 상태에 대해 에이전트가 어떤 행동을 해야 하 는지 정해 놓은 것

❖ 참고사이트

- <u>강화학습 Reinforcement Learning 생활코딩</u>
- [NHN FORWARD 2020] 강화 학습 기초: #1 강화 학습 이해하기

강화학습 (2)

- ❖ AlphaGo 발전
 - 알파고 나무위키

인공지능과 윤리적 딜레마: 윤리적 기계 (1)

- 데이터와 알고리즘 기반으로 동작하는 인공지능의 판단이 과연 객관적이고 공정한 것일까?
- 인공지능의 편향성 문제와 윤리 문제가 대두
- 미국 뉴욕대 AI 나우 연구소는 범죄예측시스템 운용 경험이 있는 미국 13개시 경찰 중 9곳에서 인종이나 성적 차별에 근거한 편견과 오류가 발견
- 흑인이 백인에 비해 범죄의 용의자일 확률이 높다고 표시하는 범죄 예측 시 스템의 치명적인 편향bias
- 인공지능(AI) 챗봇 '이루다' 서비스: 성소수자 혐오, 개인정보 유출

인공지능과 윤리적 딜레마: 윤리적 기계 (2)

❖ AI의 편향bias

- 인간의 편향human bias: 학습하는 데이터는 편향을 가질 수 있는 인간이 만듦
- 숨겨진 편향hidden bias: 잘 드러나지도 찾을 수도 없는 가장 개선하기 어려운 편향
- 데이터 표본 편향data sampling bias: 자료 수집 단계의 문제로 인한 데이터 샘플링 편향으로 예를 들어 데이터 중 남자가 의사인 경우가 많고 여자는 간호사가 많은 경우. 남자는 의사, 여자는 간호사로 단정하는 경우
- 롱테일 편향long-tail bias: 학습 데이터에서 특정 종류의 데이터가 빠져 생기는 편향으로 자율주행 AI 시스템 개발에 큰 걸림돌
- 고의적 편향: 해킹이나 공격으로 인해 AI에 의도적으로 편향을 일으킬 가능성

인공지능과 윤리적 딜레마: 윤리적 기계 (3)

- ❖ 인공지능 윤리 (참고사이트)
 - 1. 윤리적 인공지능
 - <u>2. 윤리적 인공지능 책임성</u>
 - <u>3. 윤리적 인공지능 공정성</u>
 - 4. 윤리적 인공지능 투명성
 - <u>5. 윤리적 인공지능 안전성</u>
 - 6. AI 윤리적 대응