Αλγεβρα - Ανισώσεις 2ου βαθμού Ανισώσεις

Κωνσταντίνος Λόλας

Ανισώσεις 2ου βαθμού

Εκτιμούμε τα παλιά

Αν μπορώ να λύσω ως προς x έχω τελειώσει. Τα καινούρια...

•
$$x^2 - 9 > 0$$

•
$$x^2 - 3x + 2 \le 0$$

$$5x^3 - 3x^2 + 2x - 1 \ge 0$$

Κάτι βαρετόοοοοοοοοο

$$\begin{split} \alpha x^2 + \beta x + \gamma &= \alpha (x^2 + \frac{\beta}{\alpha} x + \frac{\gamma}{\alpha}) \\ &= \alpha (x^2 + \frac{\beta}{\alpha} x + \frac{\beta^2}{4\alpha^2} - \frac{\beta^2}{4\alpha^2} + \frac{\gamma}{\alpha}) \\ &= \alpha \left(x^2 + \frac{\beta}{\alpha} x + \frac{\beta^2}{4\alpha^2} - \frac{\beta^2}{4\alpha^2} + \frac{\gamma}{\alpha} \right) \\ &= \alpha \left(\left(x + \frac{\beta}{2\alpha} \right)^2 - \frac{\beta^2 - 4\alpha\gamma}{4\alpha^2} \right) \\ &= \alpha \left(\left(x + \frac{\beta}{2\alpha} \right)^2 - \frac{\Delta}{4\alpha^2} \right) \end{split}$$

Περιπτώσεις

 $\bullet \Delta > 0$

$$\begin{split} \alpha\left(\left(x+\frac{\beta}{2\alpha}\right)^2-\frac{\Delta}{4\alpha^2}\right)&=\alpha\left(x+\frac{\beta}{2\alpha}+\frac{\sqrt{\Delta}}{2\alpha}\right)\left(x+\frac{\beta}{2\alpha}-\frac{\sqrt{\Delta}}{2\alpha}\right)\\ &=\alpha(x-\rho_1)(x-\rho_2) \end{split}$$

 $\bullet \Delta = 0$

$$\alpha \left(\left(x + \frac{\beta}{2\alpha} \right)^2 - \frac{\Delta}{4\alpha^2} \right) = \alpha \left(x + \frac{\beta}{2\alpha} \right) = \alpha (x - \rho)^2$$

 \bullet $\Delta < 0$

$$\alpha \left(\left(x + \frac{\beta}{2\alpha} \right)^2 - \frac{\Delta}{4\alpha^2} \right) = \alpha \left(+ \right)$$

5/29

Λόλας Αλγεβρα - Ανισώσεις

Περιπτώσεις

 $\bullet \Delta > 0$

$$\begin{split} \alpha\left(\left(x+\frac{\beta}{2\alpha}\right)^2-\frac{\Delta}{4\alpha^2}\right)&=\alpha\left(x+\frac{\beta}{2\alpha}+\frac{\sqrt{\Delta}}{2\alpha}\right)\left(x+\frac{\beta}{2\alpha}-\frac{\sqrt{\Delta}}{2\alpha}\right)\\ &=\alpha(x-\rho_1)(x-\rho_2) \end{split}$$

$$\alpha \left(\left(x + \frac{\beta}{2\alpha} \right)^2 - \frac{\Delta}{4\alpha^2} \right) = \alpha \left(x + \frac{\beta}{2\alpha} \right) = \alpha (x - \rho)^2$$

 \bullet Δ < (

$$\alpha \left(\left(x + \frac{\beta}{2\alpha} \right)^2 - \frac{\Delta}{4\alpha^2} \right) = \alpha \left(+ \right)$$

Περιπτώσεις

 $\bullet \Delta > 0$

$$\begin{split} \alpha\left(\left(x+\frac{\beta}{2\alpha}\right)^2-\frac{\Delta}{4\alpha^2}\right)&=\alpha\left(x+\frac{\beta}{2\alpha}+\frac{\sqrt{\Delta}}{2\alpha}\right)\left(x+\frac{\beta}{2\alpha}-\frac{\sqrt{\Delta}}{2\alpha}\right)\\ &=\alpha(x-\rho_1)(x-\rho_2) \end{split}$$

 $\bullet \Delta = 0$

$$\alpha \left(\left(x + \frac{\beta}{2\alpha} \right)^2 - \frac{\Delta}{4\alpha^2} \right) = \alpha \left(x + \frac{\beta}{2\alpha} \right) = \alpha (x - \rho)^2$$

 $\bullet \Delta < 0$

$$\alpha \left(\left(x + \frac{\beta}{2\alpha} \right)^2 - \frac{\Delta}{4\alpha^2} \right) = \alpha \left(+ \right)$$

Παράδειγμα

$$x^2 - 3x + 2$$

$$x^2 - 3x + 2 = 1(x - 1)(x - 2)$$

$$2 -2x^2 + 12x - 18$$

$$-2(x^2 - 6x + 9) = -2(x - 3)^2$$

$$x^2 + x + 1$$

$$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$

Παράδειγμα

$$x^2 - 3x + 2 = 1(x-1)(x-2)$$

$$2 -2x^2 + 12x - 18$$

$$-2(x^2 - 6x + 9) = -2(x - 3)^2$$

$$x^2 + x + 1$$

$$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$

Παράδειγμα

$$x^2 - 3x + 2 = 1(x-1)(x-2)$$

$$2 -2x^2 + 12x - 18$$

$$-2(x^2 - 6x + 9) = -2(x - 3)^2$$

$$x^2 + x + 1$$

$$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$

Τι χρειαζόμαστε

Πρόσημο $x-\rho$

x	$-\infty$		ρ		$+\infty$
$x-\rho$		_	0	+	

Τι χρειαζόμαστε

Πρόσημο $(x-\rho_1)(x-\rho_2)$?

x	$-\infty$		ρ_1		ρ_2	$+\infty$
$x- ho_1$		_	0	+		+
$x-\rho_2$		_		_	0	+
$(x-\rho_1)(x-\rho_2)$		+	0	_	0	+

Av $\alpha < 0$?

Πρόσημο $(x-\rho_1)(x-\rho_2)?$

x	$-\infty$		ρ_1		ρ_2		$+\infty$
α		_		_		_	
$x- ho_1$		_	0	+		+	
$x- ho_2$		_		_	0	+	
$\alpha(x-\rho_1)(x-\rho_2)$		_	0	+	0	_	

Συγκεντρωτικά για $\alpha>0$

 $\bullet \Delta > 0$

x	$-\infty$	ρ_1	ρ_2	$+\infty$
$ax^2 + bx + c$	+	0	- 0	+

x	$-\infty$	ρ	$+\infty$
$ax^2 + bx + c$	+	0	+

 $\bullet \ \Delta < 0$

x	$-\infty$	$+\infty$
$ax^2 + bx + c$	-	F

Συγκεντρωτικά για $\alpha < 0$

 $\bullet \Delta > 0$

x	$-\infty$	ρ_1		ρ_2	$+\infty$
$ax^2 + bx + c$	_	0	+	0	_

 $\Delta = 0$

x	$-\infty$	ρ	$+\infty$
$ax^2 + bx + c$	_	0	_

 \bullet $\Delta < 0$

x	$-\infty$	$+\infty$
$ax^2 + bx + c$	_	

- $x^2 3x + 2$
- $2 -3x^2 + x + 2$
- $x^2 1$
- $-x^2 + x$

- $x^2 3x + 2$
- $x^2 1$
- $-x^2 + x^2$

- $x^2 3x + 2$
- $2 -3x^2 + x + 2$
- $x^2 1$
- $-x^2 + x$

- $x^2 3x + 2$
- $2 -3x^2 + x + 2$
- 3 $x^2 1$
- $-x^2 + x$

Να κάνετε τον πίνακα προσήμων του τριωνύμου $x^2 - 2x + 1$.

Λόλας Αλγεβρα - Ανισώσεις 13/29

Να κάνετε τον πίνακα προσήμων των τριωνύμων

- $x^2 2x + 2$
- $2x-1-x^2$
- $3 -3x^2 1$

Να κάνετε τον πίνακα προσήμων των τριωνύμων

- $x^2 2x + 2$
- $2x-1-x^2$
- $3 -3x^2 1$

Να κάνετε τον πίνακα προσήμων των τριωνύμων

- $x^2 2x + 2$
- 2 $x-1-x^2$
- $3 -3x^2 1$

Να λύσετε την ανίσωση $x^2 - x - 2 > 0$.

Λόλας Αλγεβρα - Ανισώσεις 15/29

Να λύσετε την ανίσωση $4x-2 \ge x(3x-1)$.

16/29

Να λύσετε τις ανισώσεις

- $x^2 \le 3x$

Να λύσετε τις ανισώσεις

- $x^2 \le 3x$
- $2x^2 > 1$

Να λύσετε τις ανισώσεις

- $x^2 \le 3x$
- $2x^2 > 1$
- $x^2 5x + 6 < 0$

Να λύσετε τις ανισώσεις

- $4x^2 > 4x 1$
- $(x-1)^2 > 2x-4$

Να λύσετε τις ανισώσεις

- $4x^2 > 4x 1$
- $(x-1)^2 > 2x-4$

Να βρείτε τις τιμές του $x\in\mathbb{R}$ για τις οποίες συναληθεύουν οι ανισώσεις:

$$x^2 \le 9$$
 και $x + 2 < x^2$

Να βρείτε τις τιμές του $x \in \mathbb{R}$ για τις οποίες ισχύει:

$$2x - 1 < x^2 < 3x$$

Λόλας Αλγεβρα - Ανισώσεις

20/29

Δίνεται η εξίσωση $(\lambda-3)x^2-\lambda x-1=0$, $\lambda\neq 3$. Να βρείτε τις τιμές του λ για τις οποίες η εξίσωση έχει δύο ρίζες πραγματικές και άνισες.

Λόλας Αλγεβρα - Ανισώσεις 21/29

Να βρείτε το πλήθος των ριζών της εξίσωσης $x^2-(2\lambda-1)x-2\lambda+1=0$ για κάθε τιμή του λ .

Να δείξετε ότι

- $2x^2 + xy + y^2 > 0$, για κάθε $x, y \in \mathbb{F}$

Λόλας Αλγεβρα - Ανισώσεις 23 / 29

Να δείξετε ότι

②
$$x^2 + xy + y^2 > 0$$
, για κάθε $x, y \in \mathbb{R}$

Λόλας Αλγεβρα - Ανισώσεις 23 / 29

Να δείξετε ότι η εξίσωση $x^2+\lambda x+\lambda-2=0$ έχει 2 πραγματικές ρίζες πραγματικές και άνισες για κάθε $\lambda\in\mathbb{R}.$

Nα λύσετε την ανίσωση $x^2 - 3|x| + 2 < 0$.

25/29

Να λύσετε την ανίσωση $|x^2-1| < x^2-x-2$.

Λόλας Αλγεβρα - Ανισώσεις 26 / 29

Να βρείτε τις τιμές του $\lambda \in \mathbb{R}$ για τις οποίες ισχύει

$$(\lambda-1)x^2-\lambda x+\lambda<0$$
, $\lambda\neq 1$, για κάθε $x\in\mathbb{R}$

Λόλας Αλγεβρα - Ανισώσεις 27/29

Να βρείτε τις τιμές του $\lambda \in \mathbb{R}$ για τις οποίες ισχύει

$$(\lambda-1)x^2+(\lambda-1)x+1<0$$
, για κάθε $x\in\mathbb{R}$

Λόλας Αλγεβρα - Ανισώσεις 28/29

Για κάθε $x\in\mathbb{R}$ και $\lambda\in\mathbb{R}$, να αποδείξετε ότι $x^2-(\lambda+2)x+\lambda^2+2>0.$