5.28 (a)
$$\pi_{1}=0.2$$
 $\pi_{2}=0.3$ $p_{WR}=0.8$ $\beta=1-p_{W}p=0.2$ $d=0.1$.

Equal suple size= $n=n_{2}=\frac{(3y_{1}+3p)^{2}(\pi_{1}(1-\pi_{1})+\pi_{1}(1-\pi_{2}))}{(\pi_{1}-\pi_{2})^{2}}\approx 228$.

(b) (i) Some Equation but $p_{WP}=0.9$ $\Rightarrow \beta=1-p_{W}p=0.1$
 $n_{1}=n_{2}=\frac{(3y_{1}+3p)^{2}(\pi_{1}(1-\pi_{1})+\pi_{2}(1-\pi_{2}))}{(\pi_{1}-\pi_{2})^{2}}\approx 316$.

(ii) α changed to 0.05. Since Equation $n_{1}=n_{2}\approx 291$

(iii) α changed to 0.05. Since Equation $n_{1}=n_{2}\approx 291$

6.1

6.1 a. lug
$$\frac{\pi_{P}}{\hat{\pi}D} = lug \frac{\pi_{P}}{\pi_{Z}} - lug \frac{\pi_{D}}{\pi_{Z}} = -2.3 + 0.5 \times$$
.

Sluge leve: log odds rotho of Republication to Denveront is out one with charged.

D. $\pi_{P} > \pi_{D} \Rightarrow lug \frac{\pi_{P}}{\pi_{D}} > 0$.: $\chi > 46$.

C. $\pi_{Z} = \frac{1}{1 + e^{3.3 + 0.1 \chi} + e^{1 + e.5 \chi}}$.

y=1:
$$log \frac{\pi_1}{\pi_5} = 0.0564 + 1.5164x_1 + 0.6902x_2 + 1.5107x_3 + 0.3316x_4$$

y=2: $log \frac{\pi_2}{\pi_5} = 1.0875 + 0.3944x_1 - 2.0901x_2 + 1.3260x_3 - 1.1267x_4$
y=3: $log \frac{\pi_3}{\pi_5} = -0.6742 - 1.4183x_1 - 1.0023x_2 + 1.0343x_3 + 0.6828x_4$
y=4: $log \frac{\pi_4}{\pi_5} = -1.5796 + 0.4286x_1 + 0.2975x_2 - 0.2303x_3 + 0.9622x_4$

$$v=3$$
: $log \frac{\pi_5}{\pi_3} = -0.6742 - 1.4183 r_4 - 1.0023 r_5 + 1.0343 r_5 + 0.6828 r_4$

y=4:
$$log \frac{\pi_4}{\pi_5} = -1.5796 + 0.4286x_1 + 0.2975x_2 - 0.2303x_3 + 0.9622x_4$$

	Ana	lysi	s of M	aximum Lik	elihood Esti	mates	
Parameter		у	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSe
Intercept		1	1	0.0564	0.5022	0.0126	0.910
Intercept		2	1	1.0875	0.4700	5.3530	0.020
Intercept		3	1	-0.6742	0.6506	1.0739	0.300
Intercept		4	1	-1.5796	0.7926	3.9717	0.046
lake	George	1	1	1.5164	0.6214	5.9541	0.014
lake	George	2	1	0.3944	0.6263	0.3965	0.528
lake	George	3	1	-1.4183	1.1890	1.4229	0.232
lake	George	4	1	0.4286	0.9383	0.2087	0.647
lake	Hancock	1	1	0.6902	0.5597	1.5207	0.217
lake	Hancock	2	1	-2.0901	0.7184	8.4653	0.003
lake	Hancock	3	1	-1.0023	0.8297	1.4593	0.227
lake	Hancock	4	1	0.2975	0.8342	0.1272	0.721
lake	Oklawaha	1	1	1.5107	0.7532	4.0229	0.044
lake	Oklawaha	2	1	1.3260	0.7468	3.1527	0.075
lake	Oklawaha	3	1	1.0343	0.8402	1.5154	0.218
lake	Oklawaha	4	1	-0.2303	1.3005	0.0313	0.859
size		1	1	0.3316	0.4483	0.5471	0.459
size		2	1	-1.1267	0.5049	4.9790	0.025
size		3	1	0.6828	0.6514	1.0988	0.294
size		4	1	0.9622	0.7127	1.8227	0.177

b.

longth = 2.3,
$$x_3 = 0$$
, $T = 0.26$
 $T_2 \neq 0$
 $T_2 \neq 0$
 $T_3 \neq 0$
 $T_4 \neq 0.26$

length > 2.3, $x_3 = 1$ $T_4 = 0.46$.

 $T_4 \neq 0.0564 + 0.231674 + 1.51075$
 $T_4 = 0.0564 + 0.331674 + 1.51075$
 $T_5 = 0.0564 + 0.331674 + 1.51075$

Interpretation: As the length increased from below 2.3 to above 2.3, the probability of the choice on fish is increased from 0.26 to 0.46.

a.

Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	4	1	-2.4221	0.3276	54.6609	<.0001		
Intercept	3	1	-1.3713	0.3059	20.0903	<.0001		
Intercept	2	1	0.1960	0.2947	0.4424	0.5060		
trt		1	0.5807	0.2119	7.5131	0.0061		
male		1	0.5414	0.2953	3.3619	0.0667		

Deviance and Pearson Goodness-of-Fit Statistics							
Criterion Value DF Value/DF Pr > ChiSc							
Deviance	5.5677	7	0.7954	0.5910			
Pearson	5.3527	7	0.7647	0.6170			

Model: $logit(\pi) = \alpha_i + 0.5807x_1 + 0.5414x_2$ x_1 : trt, x_2 : gender; $\alpha_2 = 0.1960$; $\alpha_3 = -1.3713$; $\alpha_4 = -2.4221$

Interpretation: The log odds of any in sequential trt is 0.5807 to the alternating trt. As p-value here is 0.5910 > 0.05, we fail to reject H₀. So the null model fits well.

b.

Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq			
Intercept	4	1	-2.6978	0.4260	40.1002	<.0001			
Intercept	3	1	-1.6484	0.4102	16.1462	<.0001			
Intercept	2	1	-0.0770	0.3986	0.0373	0.8468			
trt		1	1.0786	0.5498	3.8490	0.0498			
male		1	0.8646	0.4309	4.0268	0.0448			
trt*male		1	-0.5906	0.5935	0.9901	0.3197			

Deviance and Pearson Goodness-of-Fit Statistics							
Criterion	iterion Value DF Value/DF Pr > Chis						
Deviance	4.5209	6	0.7535	0.6066			
Pearson	4.4151	6	0.7359	0.6207			

Model: $logit(\pi) = \alpha_i + 1.0786x_1 + 0.8846x_2 - 0.5906x_1x_2$ x_1 : trt, x_2 : gender; $\alpha_2 = -0.0770$; $\alpha_3 = -1.6484$; $\alpha_4 = -2.6978$

If male: $x_2 = 1$: $logit(\pi) = \alpha_i + 0.4880x_1 + 0.8846x_2$

Interpretation: The log odds of any in sequential trt is 0.4880 to the alternating trt when gender is male.

If female: $x_2 = 0$: $logit(\pi) = \alpha_i + 1.0786x_1 + 0.8846x_2$

Interpretation: The log odds of any in sequential trt is 1.0786 to the alternating trt when gender is female.

As p-value here is 0.6066 > 0.05, we fail to reject H₀. So the null model fits well.

c. Diff = $(\text{Dev1-Dev2})/(\text{df1-df2})=(5.5677-4.4151)/(7-6)=1.05 \sim \text{chi-square distribution}$. Therefore, the p-value is >0.05, so we fail to reject H₀ here, there is no difference between these two models. So the null model (no interaction) fits well enough.

6.11

a.

Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	1	-2.5795	0.5618	21.0840	<.0001		
Intercept	2	1	-0.8940	0.3603	6.1569	0.0131		
Intercept	3	1	2.0780	0.4206	24.4101	<.0001		
incscore		1	-0.0444	0.0185	5.7372	0.0166		
male		1	-0.0259	0.4274	0.0037	0.9516		

Effect of income: As income score increased by one, the log odds of that is -0.0444 as gender controlled.

Goodness of fit: As row margins from the table 6.12 is small, so we cannot use the Pearson's test or deviance to test goodness of fit.

b.

Analysis of Maximum Likelihood Estimates							
Parameter DF Estimate Standard Wald Chi-Square Pr > Chi							
Intercept	4	1	-2.0582	0.4197	24.0511	<.0001	
Intercept	3	1	0.9154	0.3616	6.4091	0.0114	
incscore		1	0.0435	0.0186	5.4991	0.0190	
male		1	0.0247	0.4286	0.0033	0.9541	

Effect of income: As income score increased by one, the log odds of that is 0.0435 as gender controlled, which the correspond direction changed from negative to positive. Goodness of fit: As row margins is still small, have the same conclusion as above, not applied.

c. Model w/t gender

Deviance a	Deviance and Pearson Goodness-of-Fit Statistics								
Criterion Value DF Value/DF Pr > ChiSq									
Deviance	6.7494	8	0.8437	0.5639					
Pearson	5.7584	8	0.7198	0.6743					

w/ gender

Deviance and Pearson Goodness-of-Fit Statistics							
Criterion Value DF Value/DF Pr > ChiSq							
Deviance	13.9519	19	0.7343	0.7865			
Pearson	14.3128	19	0.7533	0.7652			

Diff = $(13.8519-6.7494)/(19-8) = 7.2 \sim \text{chi-squared with degree of freedom of } 11$. Therefore, we cannot reject null hypothesis. So the model w/t gender is good, we can drop the gender.