Семинар 4. Расчет витого аппарата с трубами, оребренными проволокой

Темы для подготовки к семинарскому занятию

- 1. Методики расчета витых теплообменных аппаратов с однофазными и многофазными потоками. Особенности расчета процесса теплообмена.
- 2. Преимущества и недостатки конструкции витых теплообменных аппаратов в процессе сборки и эксплуатации.
- 3. Варианты конструктивного исполнения витых теплообменных аппаратов в зависимости от взаимного направления потоков, рабочих веществ и их фазового состава, исполнения ребер и т.д.
- 4. Последовательность технологических процессов, реализуемых при изготовлении и сборке витых теплообменных аппаратов.

Витой ТОА (ВТОА) — теплообменный аппарат, в котором движение рабочих веществ происходит по трубам (для потоков высокого давления) и по межтрубному пространству (для потоков низкого давления), которое образовано внешней поверхностью трубок.

В случае ТОА с трубами, оребренными проволокой, межтрубное пространство формируется внешней поверхностью трубок и регулярной структурой навитой на трубки проволокой.

Особенности и преимущества ВТОА

- высокий тепловой КПД, стабильная структура теплообменной поверхности и надежность за счет грамотного подбора геометрических параметров оребренных труб;
- прочные каналы труб круглого сечения с возможностью их контроля до намотки;
- малая протяженность паяных и сварных соединений, высокая надежность швов за счет однородности температурного поля;
- самокомпенсация температурных напряжений на свободных концах труб, выходящих из намотки;
- высокая компактность за счет труб малого диаметра без нарушения геометрии структуры теплообменной поверхности;
- работоспособность аппаратов на небольших разностях температур с высоким тепловым КПД за счет устойчивой среднестатистической геометрической характеристики теплообменной поверхности.

Материалы, применяемые при изготовлении ВТОА

Для изготовления основных элементов конструкции витых аппаратов за исключением элементов, образующих теплообменную поверхность, используют высоколегированные криогенные стали.

12X18H10T ГОСТ 5632-72 – кожух, фланцы, трубные доски, лапы и проушины. Легирующие элементы: *хром* – повышает антикоррозионные свойства; *никель* – усиливает технологические и эксплуатационные свойства аустенитной стали; *титан* – исключает риск межкристаллитной коррозии за счет карбидообразующего эффекта; *марганец* – допускает изготовление стали с мелкозернистой структурой; *кремний* – улучшает степень текучести, увеличивает плотность, снижает пластичность; *алюминий* – усиливает

качества ферритной стали. Сталь сохраняет эксплуатационные характеристики в широком диапазоне от минус 196 до 600 градусов Цельсия. Аналоги: 08X18Г8Н2Т, 10X14Г14Н4Т, 12X17Г9АН4, 08X22Н6Т, 08X17Т, 15X25Т, 12X18Н9Т. Наиболее часто используемы стали для изготовления криогенных теплообменных аппаратов представлены ниже [2].

Эксплуатационные характеристики сталей и термообработка

Сталь	Рабочие т-ры, К	Область применения	Применение в конструкции
08X15H24B4TP	41000	Несварные детали, крепежи, подвесы сосудов	Шпильки, винты, гайки, шайбы
12X18H12T	4750	Свариваемые конструкции, трубы, сосуды, теплообменные аппараты	Платики
03Х20Н16АГ6	4870	Сосуды, трубы, арматура, оболочки теплообменных аппаратов	Сильфон, штуцеры, усиливающие втулки
04Х21Н16АГ8М2ФД	4870	Сварные высоконагруженные изделия, узлы машин	Корпус, диффузор, крышки

Сталь	Термическая обработка
08X15H24B4TP	— горячая деформация и старение (при плюс $730 \pm 25^{\circ}C$ в течение 16 ч, охлаждение на воздухе). — аустенизация (нагрев до плюс $1130 \pm 25^{\circ}C$, выдержка $1-2$ ч, охлаждение на воздухе) и старение (при плюс $730 \pm 25^{\circ}C$ в течение 16 ч, охлаждение на воздухе). Снижение обрабатываемости резанием после старения. Термообработка после сваривания.
12X18H12T	Закалка на аустенит с температуры плюс $1050 - 1100^{\circ}C$ с охлаждением в воде. Сталь может подвергаться ремонтным нагревам.
03Х20Н16АГ6	Закалка на аустенит с температуры плюс $1050 \pm 25^{\circ}C$ с охлаждением в воде или на воздухе с обдувом. Время выдержки при толщине до $12 \text{ мм} - 30 \text{ мин}$, свыше $12 \text{ мм} - 45 \text{ мин}$.
04Х21Н16АГ8М2ФД	Закалка с температуры плюс $1000 \pm 25^{\circ}C$ с охлаждением до плюс $520^{\circ}C$ и выдержкой 5 ч.
03X14H10K5M2Ю2T	1000 1 250 5
03Х13Н8М2Ю2Т	Закалка с температуры плюс $1000 \pm 25^{\circ} C$ в воду.

Обозначения элементов в марках сталей: X — хром; H — никель; K — кобальт; M — молибден; B — вольфрам; T — титан; \mathcal{L} — медь; Γ — марганец; C — кремний; Φ — ванадий; P — бор; A — азот; E — ниобий; E — селен; E — цирконий; E — алюминий; E — наличие редкоземельных металлов.

Типоразмеры теплообменной поверхности

	$E_4 = F/M$	$M^2/K\Gamma$	1,180	1,140	0,623	0,510	0,383	0,306	0,410	0,350	0,313	0,228	0,184	0,137
актеристики	$E_3 = F/V$	$\mathrm{M}^2/\mathrm{M}^3$	4872	3100	2358	1520	1430	1430	1165	985	726	889	595	495
Удельные характеристики	$E_2 = F/S_2$	$M^2/(M^2 \cdot M)$	14530	9424	5969	4764	3830	3830	3360	3247	2088	2133	1840	1650
	$E_1 = S_2/S_2$	$\mathrm{M}^2/\mathrm{M}^2$	0,335	0,330	0,338	0,319	0,373	0,373	0,346	0,303	0,348	0,322	0,324	0,300
Коэффициент оребрения	$\varphi = F/F_1$	-	3,63	2,54	3,25	2,52	3,46	4,94	2,76	2,59	2,31	2,74	2,85	2,96
йинтнэпвапаж фтэмвид	$d_{\scriptscriptstyle 9}$	MM	0,27	0,42	0,57	0,84	1,04	1,04	1,19	1,23	1,92	1,87	2,10	2,41
Продольный шаг намотки	t_2	MM	1,25	1,85	2,50	3,65	4,10	4,10	5,10	6,10	7,35	8,65	10,10	12,20
Поперечный шаг намотки	t_1	MM	1,10	1,65	2,20	3,20	3,60	3,60	4,60	5,35	6,50	7,60	8,85	10,70
проволоки Дизметр	d_{Π}	MM	0,160	0,250	0,335	0,500	0,800	0,800	0,800	0,800	1,000	1,200	1,500	1,600
Внутренний диаметр трубы	d_1	MM	9,0	1,2	1,3	2,3	2,0	1,4	3,2	4,0	5,0	5,4	6,0	7,0
Наружный диаметр трубы	d_2	MM	1,0	1,5	2,0	3,0	3,0	3,0	4,0	5,0	6,0	7,0	8,0	10,0
Типоразмер поверхности		Размерность	100-16-50	150-25-90	200-33-110	300-50-200	300-80-250	300-80-250	400-80-250	500-80-275	600-100-400	700-120-400	800-150-500	1000-160-550

Типоразмеры теплообменных поверхностей ВТОА

На сегодняшний день основным производителем криогенных витых теплообменных аппаратов с трубами, оребренными проволокой, в Российской Федерации является АО «НПО «Гелиймаш».

Методика расчета аппаратов была разработана в 1987 году в НПО «Гелиймаш» и изложена в руководящем документе «Теплообменники витые криогенных систем. Тепловой, гидравлический и конструктивный расчет РД26-04-4-87» при участии д.т.н., академика Международной Академии Холода Красниковой О.К., а затем изложена в форме методического указания в [1].

В таблице выше представлены все типоразмеры теплообменной поверхности, которые могут быть использованы при расчете и проектировании ВТОА. Имеющаяся технологическая оснастка в АО «НПО «Гелиймаш» позволяет изготавливать аппараты со всеми типами теплообменной поверхности за исключением 700-120-400.

Методика расчета

Расчет витого теплообменного аппарата с трубами, оребренными проволокой, проводится по методике, описанной в [1]. Автоматизированный расчет ВТОА, выполненный в MathCAD, доступен в [2].

Исходные данные

Параметр	Прямой	Обратный	
		поток	поток
Рабочее вещество	ı	Гелий	Гелий
Давление на входе, р	бар	$p_{1\pi} = 23.00$	$p_{2\pi} = 1.14$
Температура на входе, Т	K	$T_{1\pi} = 318.10$	$T_{2\pi} = 75.98$
Температура на выходе, р	K	$T_{1\kappa} = 80.00$	$T_{2K} = 297.70$
Возможное падение давления, Δp	кПа	$\Delta p_{\pi p} = 36.0$	$\Delta p_{ m ofp} = 9.1$
Pасход, G	кг/с	$G_{\rm np} = 0.1280$	$G_{\text{ofp}} = 0.1374$
Тип навивки	-	500 8	30 275

Выбор типоразмера теплообменной поверхности

Выбор типа навивки осуществляется на основе анализа конструктивных, технологических и эксплуатационных показателей. Приведем пример анализа типоразмеров намотки при оценке следующих характеристик:

Теплофизические характеристики

- коэффициент теплоотдачи по трубному и межтрубному потокам;
- коэффициент теплопередачи;
- площадь теплообмена.

Геометрические характеристики

- высота навивки;
- диаметр сердечника;
- наружный диаметр аппарата;
- масса навивки;

- число рядов навивки в радиальном направлении и по высоте;
- число труб на главной диагонали трубной решетки;
- число труб общее.

Гидравлические характеристики

- гидравлическое сопротивление по прямому потоку;
- гидравлическое сопротивление по обратному потоку;

Дополнительные характеристики

• отношение диаметра навивки к ее высоте.

Результаты анализа

100 16 50	150 25 90	200 33.5 110	300 50 200	300 80 250	300 80 250	400 80 250	500 80 275	600 100 400	700 120 400	800 150 500	1000 160 550
3,55	4,55	5,53	5,75	4,95	4,32	5,25	5,78	5,19	4,64	4,08	2,74
44,4	56,9	69,2	71,8	61,8	53,9	65,7	72,3	64,8	57,9	51,0	34,3

В таблице: 1 строка — типоразмер навивки, 2 — суммарный вклад выбранных параметров в характеристику навивки, 3 — процент соответствия навивки установленным критериям, 4 — соответствие падения давления при выбранных в аппарате скоростях движения потоков максимально возможному падению давления.

Из таблицы следует, что намотки 600|100|400, 700|120|400 и 1000|160|550 не удовлетворяют возможному интервалу гидравлического сопротивления по межтрубному потоку. А оптимальной является намотка 500|80|275, которая в большей степени удовлетворяет критериям -5.78/8 (72.3 %).

Определенная оптимальная намотка была принята к расчету в проектируемом аппарате.

Расчетная схема теплообменного аппарата

Условная схема для расчета ТОА и обозначения, используемые при расчете приведены на рисунке ниже:

Обозначения: 1 — прямой поток высокого давления; 2 — обратный поток низкого давления; n — параметры потока на входе; k — параметры потока на выходе; m — среднее значение параметров.

Параметры теплообменной поверхности

Параметр	Прямой поток	
Наружный диаметр трубы, d_2	ММ	5
Внутренний диаметр трубы, d_1	ММ	4
Диаметр проволоки, $d_{\rm n}$	ММ	0.8
Поперечный шаг намотки, t_1	ММ	5.35
Продольный шаг намотки, t_2	ММ	6.1
Эквивалентный гидравлический диаметр, $d_{\mathfrak{p}}$	MM	1.23
Коэффициент оребрения, φ	-	2.59
Отношение площадей, $S_{yд}$	M^2/M^2	0.303
Компактность, ψ	M^2/M^3	985
Приведенная масса, М'	м ² /кг	0.35

Теплофизические свойства рабочих веществ

Параметр	Прямой поток	Обратный поток
Энтальпия на входе, кДж/кг	1664.4	400.0
Энтальпия на выходе, кДж/кг	425.3	1551.6
Теплоемкость на входе, кДж/(кг \cdot K)	5.194	5.197
Теплоемкость на выходе, кДж/(кг \cdot K)	5.247	5.193

Тепловые характеристики потоков

Параметр	Прямой поток	Обратный поток
Температурный напор на «горячей» стороне аппарата, K $\Delta T_h = T_{1n} - T_{2k}$	$\Delta T_h = 318.1 -$	- 297.7 = 20.4
Температурный напор на «холодной» стороне аппарата, K $\Delta T_c = T_{1k} - T_{2n}$	$\Delta T_c = 80 - 75.98 = 4.02$	

	Ī	Ī
Средняя температура потока, K $T_m = \frac{T_{\text{вх}} + T_{\text{вых}}}{2}$	$T_{1m} = 199.1$	$T_{2m} = 186.8$
Среднее давление потока, МПа $p_m = \frac{p_{\scriptscriptstyle \mathrm{BX}} + p_{\scriptscriptstyle \mathrm{BbIX}}}{2}$	$p_{m1} = 2.2820$	$p_{m2} = 0.1095$
Плотность рабочего вещества при средней температуре и давлении, $\frac{\kappa \Gamma}{M^3}$	$\rho_{1m} = 5.40$	$\rho_{2m} = 0.28$
Динамическая вязкость рабочего вещества при средней температуре и давлении, 10^6 Па \cdot с	$\mu_{1m} = 15.3$	$\mu_{2m} = 14.5$
Коэффициент теплопроводности рабочего вещества при средней температуре и давлении, $10^3 \frac{\text{Вт}}{\text{м} \cdot \text{K}}$	$\lambda_{1m} = 119.3$	$\lambda_{1m} = 112.6$
Теплоемкость изобарная рабочего вещества при средней температуре и давлении, $\frac{\kappa \mathcal{J}_{\infty}}{\kappa \Gamma \cdot K}$ $C_{p_m} = \frac{C_{p_{_{\mathrm{BX}}}} + C_{p_{_{\mathrm{Bbix}}}}}{2}$	$C_{1m} = 5.220$	$C_{2m} = 5.195$
Тепловая нагрузка на аппарат, кВт $Q_{\scriptscriptstyle{\mathrm{TH}}} = G_{1} \cdot (h_{\scriptscriptstyle{\mathrm{1BX}}} - h_{\scriptscriptstyle{\mathrm{1BЫX}}})$	158	3.33

T(Q) диаграмма ТОА и температурный напор в сечениях ТОА

Среднелогарифмическая разность $\Delta T_m = \frac{(T_{1k} - T_{2n}) - (T_{1n} - T_{2k})}{\ln\left(\frac{T_{1k} - T_{2n}}{T_{1n} - T_{2k}}\right)}$	$\frac{(80-76)-(31)}{\ln\left(\frac{80-7}{318-2}\right)}$	$\frac{8 - 298)}{\frac{6}{98}} = 10.1$
Коэффициент допускаемой потери давления в намотке, —	a =	0.65
Пересчитанные допустимые потери по потокам, кПа $\Delta P' = a \cdot \Delta p$	$\Delta P_1' = 23.4$	$\Delta P_2' = 5.92$

Предварительный расчет ТОА

Критерий Прандтля
$$Pr = \frac{\mu \cdot C_p}{\lambda} \qquad \qquad Pr_1 = 0.6672 \qquad Pr_2 = 0.6674$$

Коэффициенты уравнения теплопередачи:

$$A_{1} = 0.023 \cdot \frac{\lambda_{1m}}{d_{1}} \cdot Pr_{1}^{0.33} = 0.023 \cdot \frac{0.1193}{4 \cdot 10^{-3}} \cdot 0.6672^{0.33} = 0.6$$

$$A_{2} = 0.168 \cdot \frac{\lambda_{2m}}{d_{9}} \cdot Pr_{2}^{0.33} = 0.168 \cdot \frac{0.1126}{1.23 \cdot 10^{-3}} \cdot 0.6674^{0.33} = 13.46$$

$$P_{1} = \frac{Z \cdot Q_{\text{TII}}}{8 \cdot \varphi \cdot \rho_{1m} \cdot \Delta P'_{1} \cdot \Delta T_{m} \cdot G_{1}} \cdot \left(\frac{\mu_{1m}}{d_{1}}\right)^{3} =$$

$$= \frac{1.3 \cdot 158330}{8 \cdot 2.59 \cdot 5.4 \cdot 23400 \cdot 10.08 \cdot 0.128} \cdot \left(\frac{1.53 \cdot 10^{-5}}{4 \cdot 10^{-3}}\right)^{3} =$$

$$= 3.36 \cdot 10^{-9} \, \text{BT/(M}^{2} \cdot K)$$

$$P_{2} = \frac{Z \cdot Q_{\text{TII}}}{8 \cdot \varphi \cdot \rho_{2m} \cdot \Delta P'_{2} \cdot \Delta T_{m} \cdot G_{2}} \cdot \left(\frac{\mu_{2m}}{d_{2}}\right)^{3} =$$

$$= \frac{1.3 \cdot 158330}{8 \cdot 2.59 \cdot 0.28 \cdot 5920 \cdot 10.08 \cdot 0.1374} \cdot \left(\frac{1.45 \cdot 10^{-5}}{1.23 \cdot 10^{-3}}\right)^{3} =$$

$$= 7.25 \cdot 10^{-5} \, \text{BT/(M}^{2} \cdot K)$$

Граничные значения коэффициентов теплоотдачи:

• по трубному потоку при $Re_1 = 2300$:

$$g_1 = 3.3856 \cdot 10^8 \cdot P_1 = 3.3856 \cdot 10^8 \cdot 3.36 \cdot 10^{-9} =$$

= 1.139 Bt/(M² · K)

• по межтрубному потоку при $Re_{21} = 20$:

$$g_{21} = 15.05 \cdot 10^3 \cdot P_2 = 15.05 \cdot 10^3 \cdot 7.25 \cdot 10^{-5} = 1.091 \,\mathrm{Bt/(m^2 \cdot \it{K})}$$

• по межтрубному потоку при $Re_{22} = 100$:

$$g_{22} = 6.656 \cdot 10^5 \cdot P_2 = 6.656 \cdot 10^5 \cdot 7.25 \cdot 10^{-5} =$$

= 48.245 BT/(M² · K)

Значения критериальных коэффициентов:

• для трубного потока:

$$egin{bmatrix} B_1(k) \ x_1(k) \end{bmatrix} = egin{cases} egin{bmatrix} 64 \ -1 \end{bmatrix}$$
, если $k \leq g_1$ $0.3164 \ -0.25 \end{bmatrix}$, иначе

• для межтрубного потока:

$$\begin{bmatrix} B_2(k) \\ x_2(k) \end{bmatrix} = \begin{cases} \begin{bmatrix} 12.8 \\ -0.64 \end{bmatrix} \text{, если } g_{21} \leq k \leq g_{22} \\ \begin{bmatrix} 2.65 \\ -0.3 \end{bmatrix} \text{, иначе} \end{cases}$$

Число Рейнольдса:

$$Re_{1}(k) = \left(\frac{k}{B_{1}(k) \cdot P_{1}}\right)^{\frac{1}{x_{1}(k)+3}}$$

$$Re_{2}(k) = \left(\frac{k}{B_{2}(k) \cdot P_{2}}\right)^{\frac{1}{x_{2}(k)+3}}$$

Число Стэнтона:

$$St_1(k) = \begin{cases} \begin{bmatrix} 3.66 \end{bmatrix}, \text{если } Re_1(k) \leq 2300 \\ \\ 3.66 \cdot \left(\frac{Re_1(k)}{2300} \right)^{2.3 + \log(Pr_1)} \end{bmatrix}, \text{если } 2300 < Re_1(k) \leq 4000 \\ \\ \begin{bmatrix} 0.023 \cdot Re_1(k)^{0.8} \cdot Pr_1^{0.33} \end{bmatrix}, \text{если } 4000 < Re_1(k) \leq 10^5 \\ \\ \begin{bmatrix} 0 \end{bmatrix}, \text{иначе} \end{cases}$$

$$St_2(k) = 0.168 \cdot Re_2(k)^{-0.3} \cdot Pr_2^{-0.66}$$

Массовые скорости потоков:

$$w_1(k) = Re_1(k) \cdot \frac{\mu_{1m}}{d_1}$$
 $w_2(k) = Re_2(k) \cdot \frac{\mu_{2m}}{d_9}$

Коэффициенты теплоотдачи:

$$\alpha_1(k) = \frac{Nu_1(k) \cdot \lambda_{1m}}{d_1}$$

$$\alpha_2(k) = St_2(k) \cdot w_2(k) \cdot C_{p_{2m}}$$

Критериальная функция коэффициента теплопередачи:

$$F(k) = \frac{k}{\alpha_2(k)} + \frac{k \cdot \varphi}{\alpha_1(k)} - 1$$

Для нахождения приближенного значения коэффициента теплопередачи находится корень уравнения:

$$F(k) = 0; g_{21} \le k \le 1000 \text{ BT/(M}^2 \cdot K)$$

Таким образом, корень уравнения:

$$k' = 244.79 \text{ BT/}(\text{M}^2 \cdot K)$$

Для данного значения k' число Рейнольдса:

- по трубному потоку: $Re_1 = 13535.8$;
- по межтрубному потоку: $Re_2 = 182.5$;

Массовые скорости удельные:

- по трубному потоку: $w_1 = 51.62 \text{ кг/(м}^2 \cdot \text{с)};$
- по межтрубному потоку: $w_2 = 2.15 \text{ кг/(м}^2 \cdot \text{с)}$;

Скорости:

- по трубному потоку: $w_1/\rho_{1m} = 9.51 \text{ м/c}$;
- по межтрубному потоку: $w_2/\rho_{2m} = 7.61$ м/с;

Число Нуссельта по трубному потоку:

$$Nu_1 = 40.64$$

Число Стэнтона по межтрубному потоку:

$$St_2 = 0.046$$

Фактор трения Дарси для потоков при найденном значении k':

$$\zeta_1(k') = B_1(k') \cdot Re_1(k')^{x_1(k')} = 0.3164 \cdot 13535.8^{-0.25} = 0.0293$$

$$\zeta_2(k') = B_2(k') \cdot Re_2(k')^{x_2(k')} = 2.65 \cdot 182.5^{-0.3} = 0.556$$

Число труб в предварительном расчете:

$$n'_{\text{Tp}} = \frac{4 \cdot G_1}{\pi \cdot d_1^2 \cdot w_1(k')} = \frac{4 \cdot 0.128}{\pi \cdot (4 \cdot 10^{-3}) \cdot 51.62} = 197$$

Число труб на главной диагонали для шестигранной сетки:

$$n_{_{\rm ЛИАГ}} = 16$$

Оценка патрубка для размещения вводного пучка:

$$2 \cdot d_1 \cdot n_{\text{лиаг}} = 2 \cdot 4 \cdot 16 = 128 \text{ мм}$$

Предварительная площадь теплообменной поверхности:

$$F_{\mathrm{fl}} = \frac{Z \cdot Q_{\mathrm{th}}}{k' \cdot \Delta T_m} = \frac{1.3 \cdot 158330}{244.79 \cdot 10.08} = 83.4 \; \mathrm{m}^2$$

Средняя длина одной трубы:

$$L_{1 ext{тp}} = rac{F_{ ext{ iny Z}}}{arphi \cdot \pi \cdot d_1 \cdot n_{ ext{ iny Tp}}} = rac{84.4}{2.59 \cdot \pi \cdot (4 \cdot 10^{-3}) \cdot 197} = 13 \; ext{м}$$

Площадь среднего сечения свободного объема навивки:

$$S_2 = \frac{G_2}{w_2(k')} = \frac{0.1374}{2.15} = 0.064 \text{ m}^2$$

Площадь фронтального сечения:

$$S_{\Phi} = \frac{S_2}{E_1} = \frac{0.064}{0.303} = 0.2112 \text{ m}^2$$

Высота навивки:

$$H_{\text{\tiny HAB}} = \frac{F_{\text{\tiny Z}}}{S_2 \cdot E_2} = \frac{83.4}{0.064 \cdot 3247} = 0.4013 \text{ M}$$

Число рядов труб по высоте намотки:

$$n_{\rm p} = \frac{H_{\rm HAB} - (d_2 + 2 \cdot d_{\rm II})}{t_2} + 1 = \frac{401.1 - (5 + 2 \cdot 0.8)}{6.1} + 1 = 65.7$$

Диаметр сердечника:

$$D_{\rm c} = 20 \cdot d_2 = 20 \cdot 5 = 100 \,\mathrm{MM}$$

Наружный диаметр намотки:

$$D = \sqrt{\frac{4 \cdot S_{\phi}}{\pi} + D_{c}^{2}} = \sqrt{\frac{4 \cdot 0.2112}{\pi} + 0.1^{2}} = 0.5281 \text{ m}$$

Средний диаметр намотки:

$$D_{\rm cp} = \frac{D + D_c}{2} = \frac{528.1 + 100}{2} = 314.06 \,\mathrm{MM}$$

Средняя относительная кривизна труб в намотке:

$$A_{\rm Tp} = \frac{d_1}{D_{\rm cp}} = \frac{4}{314.06} = 0.0127$$

Число слоев труб в намотке:

$$m'_{\text{Tp}} = \frac{0.5 \cdot (D - D_{\text{c}}) - d_2 - 2 \cdot d_{\text{II}}}{t_1} + 1 =$$

$$= \frac{0.5 \cdot (528.1 - 100) - 5 - 2 \cdot 0.8}{5.35} = 39.8$$

Объем навивки:

$$V_{\text{\tiny HAB}} = \frac{F_{\text{\tiny A}}}{E_3} = \frac{83.4}{985} = 0.0847 \text{ m}^3$$

Масса навивки:

$$M_{\text{нав}} = \frac{F_{\text{д}}}{E_4} = \frac{83.4}{0.35} = 238.23 \text{ кг}$$

Гидравлическое сопротивление:

$$\Delta p_1' = \zeta_1(k') \cdot \frac{w_1(k')^2}{2 \cdot \rho_{1m}} \cdot \frac{L_{1\text{Tp}}}{d_1} =$$

$$= 0.0293 \cdot \frac{51.62^2}{2 \cdot 5.4} \cdot \frac{13}{4 \cdot 10^{-3}} = 23397.7 \text{ \Pia}$$

$$\Delta p_2' = \zeta_2(k') \cdot \frac{w_2(k')^2}{2 \cdot \rho_{1m}} \cdot \frac{F_{\text{A}}}{S_2} =$$

$$= 0.556 \cdot \frac{2.15^2}{2 \cdot 0.28} \cdot \frac{83.4}{0.064} = 5915 \text{ \Pia}$$

Относительное отклонение гидравлического сопротивления:

$$\Delta p_{1\text{отн}} = \frac{\Delta p_{\text{пр}} - \Delta p_1'}{\Delta p_{\text{пр}}} = \frac{36 - 23.4}{36} = 0.35$$

$$\Delta p_{2\text{отн}} = \frac{\Delta p_{\text{обр}} - \Delta p_2'}{\Delta p_{\text{обр}}} = \frac{9.1 - 5.92}{9.1} = 0.35$$

Гидравлическое сопротивление близко к требуемому.

Уточненный расчет ТОА

Количество труб в трубной решетке для ее полного заполнения по шестигранной сетке:

$$n_{\rm Tp}^{\prime\prime} = 217$$

Количество слоев навивки:

$$\mathbf{m}_{\mathrm{Tp}}^{\prime\prime} = \mathbf{\Pi} \left(\frac{n_{\mathrm{Tp}}}{n_{\mathrm{Tp}}^{\prime\prime}} \cdot m_{\mathrm{Tp}} \right) = \mathbf{\Pi} \left(\frac{197}{217} \cdot 40 \right) = 36$$

$$D'' = D_{c} + 2 \cdot (m''_{Tp} - 1) \cdot t_{1} + 2 \cdot (d_{2} + 2 \cdot d_{\Pi}) =$$

$$= 100 + 2 \cdot (36 - 1) \cdot 5.4 + 2 \cdot (5 + 2 \cdot 0.8) = 487.7 \text{ MM}$$

Средний диаметр намотки:

$$D_{\rm cp}^{\prime\prime} = \frac{D^{\prime\prime} + D_{\rm c}}{2} = \frac{487.7 + 100}{2} = 293.8 \text{ MM}$$

Средняя относительная кривизна труб в намотке:

$$A_{\rm TP}^{\prime\prime} = \frac{d_1}{D_{\rm CD}^{\prime\prime}} = \frac{4}{293.8} = 0.014$$

Площадь фронтального сечения:

$$S_{\phi}^{"} = \frac{\pi}{4} \cdot \left(D^{"^2} - D_c^2 \right) = \frac{\pi}{4} \cdot \left((487.7 \cdot 10^{-3})^2 - (100 \cdot 10^{-3})^2 \right)$$
$$S_{\phi}^{"} = 0.179 \text{ m}^2$$

Площадь среднего сечения свободного объема:

$$S_2^{\prime\prime} = S_{\Phi}^{\prime\prime} \cdot E_1 = 0.179 \cdot 0.303 = 0.0542 \text{ m}^2$$

Массовая скорость межтрубного потока:

$$w_2'' = \frac{G_2}{S_2''} = \frac{0.1374}{0.0542} = 2.533 \text{ kg/(m}^2 \cdot \text{c)}$$

Критерий Рейнольдса:

$$Re_2'' = \frac{w_2'' \cdot d_3}{\mu_{2m}} = \frac{2.533 \cdot 1.23}{1.45} = 215.4$$

Критерий Стэнтона:

$$St_2'' = 0.168 \cdot Re_2''^{-0.3} \cdot Pr_2^{-0.66} = 0.168 \cdot 215.4^{-0.3} \cdot 0.6674^{-0.66}$$

 $St_2'' = 0.0438$

Коэффициент теплоотдачи в межтрубном пространстве:

$$\alpha_2^{\prime\prime} = St_2^{\prime\prime} \cdot w_2^{\prime\prime} \cdot C_{p_{2m}} = 0.0438 \cdot 2.533 \cdot 5.195 = 576.13 \; \mathrm{Bt/(M^2 \cdot \mathit{K})}$$

Площадь сечения труб:

$$S_1^{\prime\prime} = \pi \cdot \frac{d_1^2}{4} \cdot n_{\text{Tp}}^{\prime\prime} = \pi \cdot \frac{4^2}{4} 217 = 2726.9 \text{ mm}^2$$

Массовая скорость трубного потока:

$$w_1'' = \frac{G_1}{S_1''} = \frac{0.128}{2.727 \cdot 10^{-3}} = 46.86 \text{ kg/(m}^2 \cdot \text{c})$$

Критерий Рейнольдса для трубного потока:

$$Re_1'' = \frac{w_1'' \cdot d_1}{\mu_{1m}} = \frac{46.86 \cdot 4 \cdot 10^{-3}}{1.53 \cdot 10^{-5}} = 12287$$

Проверка условия для необходимости учета кривизны при расчете гидравлического сопротивления и числа Нуссельта:

$$A_{\rm Tp}^{\prime\prime} = 0.014 > 0.002$$

Критерий Нуссельта:

$$u_{1}^{"} = 0.023 \cdot \left[1 + 14.8 \cdot \left(1 + A_{\text{Tp}}^{"} \right) \cdot A_{\text{Tp}}^{"}^{\frac{1}{3}} \right] \cdot Re_{1}^{"}^{\left(0.8 - 0.22 \cdot A_{\text{Tp}}^{"}^{0.1} \right)} \cdot Pr_{1}^{\frac{1}{3}} =$$

$$= 0.023 \cdot \left[1 + 14.8 \cdot \left(1 + 0.014 \right) \cdot 0.014^{\frac{1}{3}} \right] \cdot 12287^{\left(0.8 - 0.22 \cdot 0.014^{0.1} \right)}.$$

$$0.6672^{\frac{1}{3}} = 44.7$$

Коэффициент теплоотдачи в трубном пространстве:

$$\alpha_1^{"} = \frac{Nu_1^{"} \cdot \lambda_{1m}}{d_1} = \frac{44.7 \cdot 0.1193}{4 \cdot 10^{-3}} = 1333.8 \text{ BT/(M}^2 \cdot K)$$

Коэффициент теплопередачи:

$$k'' = \frac{1}{\frac{\varphi}{\alpha_1''} + \frac{1}{\alpha_2''}} = \frac{1}{\frac{2.59}{1333.8} + \frac{1}{576.13}} = 271.9 \text{ BT/(M}^2 \cdot K)$$

Необходимая площадь поверхности теплообмена:

$$F_{\text{H}}^{\prime\prime} = \frac{Q_{\text{TII}}}{k^{\prime\prime} \cdot \Delta T_m} = \frac{158330}{271.9 \cdot 10.08} = 57.74 \text{ M}^2$$

Действительная площадь поверхности теплообмена:

$$F_{\pi}^{\prime\prime} = Z \cdot F_{H}^{\prime\prime} = 1.3 \cdot 57.74 = 75.06 \text{ m}^2$$

Высота навивки:

$$H_{\text{\tiny HAB}}^{\prime\prime} = \frac{F_{\text{\tiny A}}^{\prime\prime}}{S_2^{\prime\prime} \cdot E_2} = \frac{75.06}{0.0542 \cdot 3247} = 0.4263 \text{ M}$$

Число рядов труб по высоте намотки:

$$n_{\rm p}^{\prime\prime} = \frac{H_{\rm HaB}^{\prime\prime} - (d_2 + 2 \cdot d_{\rm II})}{t_2} + 1 = \frac{426.3 - (5 + 2 \cdot 0.8)}{6.1} + 1 = 69.8$$

Средняя длина одной трубы:

$$L_{1 ext{Tp}}^{\prime\prime} = rac{F_{ ext{A}}^{\prime\prime}}{arphi \cdot \pi \cdot d_1 \cdot n_{ ext{Tp}}^{\prime\prime}} = rac{75.06}{2.59 \cdot \pi \cdot (4 \cdot 10^{-3}) \cdot 217} = 10.6 \text{ M}$$

Объем навивки:

$$V_{\text{HaB}}^{"} = \frac{F_{\text{A}}^{"}}{E_{\text{3}}} = \frac{75.06}{985} = 0.076 \text{ m}^3$$

Масса навивки:

$$M''_{\text{HaB}} = \frac{F''_{\text{A}}}{E_4} = \frac{75.06}{0.35} = 214.46 \text{ kg}$$

Коэффициент трения трубного пространства:

$$\zeta_1'' = \left(1 + 2.88 \cdot \frac{10^4 \cdot A_{\text{Tp}}''^{0.62}}{Re_1''}\right) \cdot \frac{0.3164}{Re_1''^{0.25}} =$$

$$= \left(1 + 2.88 \cdot \frac{10^4 \cdot 0.014^{0.62}}{12287}\right) \cdot \frac{0.3164}{12287^{0.25}} = 0.035$$

Коэффициент трения межтрубного пространства:

$$\zeta_2^{\prime\prime} = 2.65 \cdot Re_2^{\prime\prime - 0.3} = 2.65 \cdot 215.4^{-0.3} = 0.529$$

Гидравлическое сопротивление трубного пространства:

$$p_1'' = \zeta_1'' \cdot \frac{{w_1''}^2}{2 \cdot \rho_{1m}} \cdot \frac{L_{1\text{тр}}''}{d_1} =$$

$$= 0.035 \cdot \frac{46.86^2}{2 \cdot 5.4} \cdot \frac{10.6}{4 \cdot 10^{-3}} = 18778.4 \text{ Па}$$

Гидравлическое сопротивление межтрубного пространства:

$$\Delta p_2'' = \zeta_2'' \cdot \frac{{w_2''}^2}{2 \cdot \rho_{1m}} \cdot \frac{F_{\text{д}}''}{S_2''} =$$

$$= 0.529 \cdot \frac{2.533^2}{2 \cdot 0.28} \cdot \frac{75.06}{0.0542} = 8328.5 \text{ Па}$$

Относительное отклонение гидравлического сопротивления:

$$\Delta p_{\text{10TH}} = \frac{\Delta p_{\text{пр}} - \Delta p_{\text{1}}''}{\Delta p_{\text{пр}}} = \frac{36 - 18.8}{36} = 0.478$$

$$\Delta p_{2\text{oth}} = \frac{\Delta p_{\text{ofp}} - \Delta p_2''}{\Delta p_{\text{ofp}}} = \frac{9.1 - 8.3}{9.1} = 0.085$$

Заметки к методике расчета

Задание для обсуждения на семинаре

Для элементов конструкции витого теплообменного аппарата с трубами, оребренными проволокой, сделайте необходимые подписи: материал, назначение, особенности и т.д. Рассмотрите технические требования, назначенные на сборку аппарата, и проведите технологический анализ, включающий обоснование необходимости выполнения требований и вероятные последствия в случае их невыполнения.

- 1. Пример чертежа витого теплообменного аппарата с трубами, оребренными проволокой, с указанием необходимых габаритных, монтажных и присоединительных размеров; разрезов и сечений; табличных данных о сварных соединениях и порядком навивки представлен в [3].
- 2. Дополнительная информация: приведенная ниже структура витого аппарата не является сборочным чертежом и представлена для демонстрации элементов конструкции по месту. Сборочный чертеж демонстрируется преподавателем и представлен в [3].

Схема витого аппарата с трубами, оребренными проволокой

№	Название	Материал	Комментарий
1	Обечайка		
2	Сердечник		
3	Наполнитель		
4, 5	Крышка сердечника		
6	Опора сердечника		
7	Ограничитель		
8	Крышка		
9	Днище		
10	Кольцо обечайки		
11	Трубная решетка		
12, 13	Фланец трубной решетки		
14, 15	Патрубок входной		
16	Фланец входной		
17	Патрубок выходной		
18	Фланец выходной		
19	Шнур		
20	Проволока медная МНЖКТ ГОСТ 16130-90		
21	Труба ДКРНТ ГОСТ 617-2006		

Архаров И.А., Мамедов В.М. Машины и аппараты криогенных систем

Вопросы для самоконтроля

- 1. Какие материалы используются для изготовления элементов конструкции BTOA? Какие требования предъявляются к конструкционным материалам при их использовании в криогенных системах?
- 2. Каким образом происходит установка ВТОА в криостате? Какие механизмы переноса теплового потока из окружающей среды к элементам системы преобладают для каждого из предложенного решения?
- 3. Какие преимущества имеют BTOA по сравнению с другими видами TOA? В каких системах использование BTOA наиболее оправдано с учетом конструктивных и эксплуатационных факторов?
- 4. Какие режимы термообработки могут быть назначены для аустенитных криогенных сталей?
- 5. Опишите алгоритм определения коэффициента теплопередачи на приближенном и уточненном этапах расчета BTOA по методике, предложенной выше.
- 6. Какие критерии выбора теплообменной поверхности можно предложить для BTOA с трубами, оребренными проволокой?
- 7. При расчете ВТОА для определенного типа навивки гидравлическое сопротивление по трубному потоку превышает установленные значения. Каким образом можно решить проблему чрезмерного гидравлического сопротивления, если будет принят именно этот тип навивки?

Литература и материалы к семинару

- 1. Никиткина Г. В., Н. Э. Емельянов, Фролов И. А. Конструирование и расчет витых теплообменных аппаратов криогенных систем: учебное пособие. М.: Университет машиностроения, 2013. 112 с.
- 2. Загрузить пример расчета BTOA в MathCAD URL: ionium.ru/l/d-mcd-vtoa
- 3. Загрузить пример сборочного чертежа BTOA URL: ionium.ru/l/d-drawing-vtoa