

## King Mongkut's University of Technology Thonburi Final Exam of 2<sup>nd</sup> Semester, Academic Year 2007

COURSE CPE 222 Signals and Systems Tuesday, March 4, 2008 Computer Engineering Department 01.00-04.00 p.m.

#### **Instructions**

- 1. Calculator and Ruler with mathematical formula are allowed in the examination room.
- 2. Books, documents, and notes are not allowed in the examination room.
- 3. Do not take the examination sheets out of the examination room.
- 4. This examination has 4 pages (5 problems, 100 marks).

Students will be punished if they violate any examination rules. The highest punishment is dismissal.

This examination is designed by

Asst.Prof.Dr. Bundit Tipakron

Tel. 0-2470-9083

# King Mongkut's University of Technology Thonburi Final Examination 2/2007

CPE 222 Signals and Systems Date: March 4, 2008

Computer Engineering Department Time: 1:00 - 4:00 p.m.

#### **Instructions:**

- 1. Calculator and Ruler with mathematical formula are allowed in the examination room.
- 2. Books, documents, and notes are not allowed in the examination room.
- 3. Do not take the examination sheets out of the examination room.
- 4. This examination has 3 pages (5 problems, 100 marks).
- 1. a) The response of an LTI c-t system when the input  $x(t) = A\cos(\Omega_0 t + \theta)$  is applied to the system for t > 0 with zero initial condition is  $y(t) = 6\cos(t + \pi/4)$ . If the system function of this system is:

  (10 marks)

$$H(s) = \frac{s+2}{(s+1)^2 + 4}$$

Determine the value of the amplitude A, the angular frequency  $\Omega_0$  and the phase  $\theta$  of the input x(t).

b) Determine the system function, its ROC and the location of all poles and zeros of this following system: (10 marks)

$$h[n] = (0.5)^n \{u[n] - u[n-10]\}$$

2. Consider an LTI c-t system with the frequency response:

$$H(j\Omega) = \frac{4 + j\Omega}{6 + 5j\Omega - \Omega^2}.$$

#### Determine:

- a) Is this system is casual and stable? (2 marks)
  b) The difference equation describes this system. (2 marks)
  c) The impulse response of this system. (4 marks)
- d) The response of this system to the input:  $x(t) = e^{-4t}u(t) - te^{-4t}u(t).$

$$x(t) = e^{-4t}u(t) - te^{-4t}u(t).$$
 (7 marks)

3. Given an LTI d-t system with the frequency response defined as:

$$H(e^{j\omega}) = (1 + 4\cos\omega + 2\cos2\omega) (2\cos\omega)e^{-j\omega}.$$

#### Determine:

| a) | The magnitude and the phase response of this system.             | (2 marks) |
|----|------------------------------------------------------------------|-----------|
| b) | h[4] of the impulse response.                                    | (6 marks) |
| c) | The system function of this system.                              | (2 marks) |
| d) | Is this system causal and stable? Give the reason.               | (4 marks) |
| e) | What is the response of this system to the input $x[n] = u[n]$ ? | (6 marks) |

- 4. a) Suppose the following information is given about the LTI system:
  - i) When the input  $x(t) = e^{-\alpha t}u(t)$ , the response is  $y(t) = (e^{-t} e^{-\beta t})u(t)$ .
  - ii) When the input  $x(t) = e^t$ , the response is  $y(t) = \frac{2}{3}e^t$ .
  - iii)  $\int_{-\infty}^{\infty} x(t)dt = \frac{3}{2}$

ŧ

Determine the values of  $\alpha$  and  $\beta$ . Dose the frequency response exist? Give the reason.

(10 marks)

b) Fig. 1 shows the response y[n] to the input x[n] applied to an LTI d-t system. Determine (i) the magnitude and phase response of this system; (ii) the response to the input  $x[n] = \cos(\pi n/2) + \cos(\pi n/4)$ .



Figure 1. The input x[n] and its response y[n] of Problem 4b.

- 5. Explain briefly with rational reasons supporting your answers why you agree or disagree with these following statements.
  - a) A periodic signal has a discrete line spectrum containing any frequencies.

    (2 marks)
  - b) Every system that has the system function will have the frequency response. (2 marks)
  - c) If the overall cascade of two systems is causal, each individual system must be causal. (2 marks)
  - d) A d-t system with rational system function having only two zeros at z = 0 and z = 2 and poles at z = 1 and z = -2 with no poles at infinity can be causal or stable but cannot be both causal and stable. (2 marks)
  - e) The spectrum of impulse response indicates that how any LTI system reacts to sinusoidal signals of different frequencies, therefore; we will know how such system reacts to all other signals because all other signals are made up of nothing but sinusoidal oscillations. (2 marks)
  - f) For the rational system function, if the number of zeros is greater than the number of poles, the system will be non-causal system. (2 marks)
  - g) If any LTI system has zero at z = 1, such system will block the D.C. signals. (2 marks)
  - h) Consider system function H(s) and a real impulse response h(t) of a stable and causal LTI system. H(s) has one of its poles at s = -1+j, one of its zeros at s = 3+j and exactly two zeros at infinity. From the given information we can conclude that:
    - i) H(s) has at least two more unknown finite poles. (2marks)
    - ii) All poles of H(s) must lie in the left half of plane and the ROC must include the  $j\Omega$ -axis. (2 marks)
    - iii) The ROC for H(s) is  $\sigma > -1$  (2 marks)

e) Consider the periodic signal x(t) with period of 0.02 sec. It is possible to find an LTI c-t system so that the response to this input will be  $\cos(50\pi t)$ .

(5 marks)

### Note:

ŧ

**Fourier Series:** 

$$x(t) = \sum_{k=-\infty}^{\infty} X[k] e^{jk\Omega_0 t} \qquad \text{and} \qquad X[k] = \frac{1}{T} \int_0^T x(t) e^{-jk\Omega_0 t} dt$$

**Discrete-Time Fourier Series:** 

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{jk\omega_0 n} \qquad \text{and} \qquad X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\omega_0 n}$$

Fourier Transform:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \text{ and } x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega$$

Discrete-Time Fourier Transform:

$$X(e^{j\omega}) = \sum_{-\infty}^{\infty} x[n]e^{-j\omega n} \qquad \text{and} \qquad x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega$$

Asst. Prof. Bundit Thipakorn Dept. of Computer Engineering 9083