Math 415B Midterm 2 Practice Problems (Posted)

Max von Hippel

April 16, 2019

Question 1

Let R,S be commutative unital rings and $\phi:R\to S$ an *onto* ring homomorphism. Let $I\triangleleft S$ be an ideal.

(a) NTS I prime in $S \implies \phi^{-1}(I)$ prime in R.

Proof. Assume I is a prime ideal in S. If $\phi^{-1}(I) = R$ then as R is unital $1_R \in R = \phi^{-1}(R)$ so as ϕ is a homomorphism $\phi(1_R) = 1_S \in I$ but then I = S contradicting out assumption of primality. So, $\phi^{-1}(I) \subsetneq R$.

Let $a, b \in \phi^{-1}(I)$ arbitrarily; then as ϕ is a homomorphism $\phi(a - b) = \phi(a) - \phi(b) \in I$ since I is an ideal containing $\phi(a), \phi(b)$. Let $r \in R$ arbitrarily; then as ϕ is a homomorphism, $\phi(ra) = \phi(r)\phi(a) \in I$ since $\phi(r) \in S$ and $\phi(a) \in I$ and I is an ideal in S. By commutativity and the preceding logic we conclude $\phi^{-1}(I)$ is a proper ideal of R.

Let $h, j \in R$ be such that $hj \in \phi^{-1}(I)$. Then as ϕ is a homomorphism, $\phi(hj) = \phi(h)\phi(j) \in I$; but then as I is prime $\phi(h) \in I$ or $\phi(j) \in I$, so $\phi^{-1}(\phi(h)) \subseteq \phi^{-1}(I)$ or $\phi^{-1}(\phi(j)) \subseteq \phi^{-1}(I)$, so $h \in \phi^{-1}(I)$ or $j \in \phi^{-1}(I)$. But h, j were arbitrary so, combined with the fact that $\phi^{-1}(I)$ is a proper ideal of R, we conclude that $\phi^{-1}(I)$ is a prime ideal of R and we are done.

(b) NTS I maximal in $S \implies \phi^{-1}(I)$ maximal in R.

Proof. Assume I is a maximal ideal in S. Consider the natural homomorphism $\sigma: R \to S/I$ defined by $r \mapsto \phi(r) + I$. By the First Isomorphism Theorem for Rings:

 $R/\mathrm{Ker}(\sigma) = R/\phi^{-1}(I) \cong \sigma(R)$

Clearly:

 $\sigma(R) = \phi(R)/I$

So then:

 $R/\phi^{-1}(I) \cong \phi(R)/I$

Question 2

Show that the homomorphic image of a PID is a PID

Proof. Assume that S is a PID, R is a ring, and $\phi: S \to R$ is a homomorphism. Let $I \triangleleft \phi(S)$ be an arbitrary ideal of $\phi(S)$. Then $\phi^{-1}(I)$ is an ideal of S. But S is a PID, so we can express $\phi^{-1}(I) = \langle i \rangle$ for some $i \in \phi^{-1}(I)$. So, for any $j \in \phi^{-1}(I)$, we have that j = ri for some $r \in R$. Then $\phi(j) = \phi(r)\phi(i)$ where $\phi(i) \in \phi(\phi^{-1}(I)) \subseteq I$; so $\phi(\phi^{-1}(I)) = \langle \phi(i) \rangle$. But ϕ is onto, so $\phi(\phi^{-1}(I)) = I$, therefore $I = \langle \phi(i) \rangle$. So I is principal. But I was arbitrary so every ideal of $\phi(R)$ is principal; hence as ϕ, R, S were arbitrary (with only the restrictions that ϕ be a homomorphism and S a PID) we conclude in general that the homomorphic image of a PID is a PID, and we are done.

Question 3

Show that the polynomial $2X + 1 \in \mathbb{Z}_4[X]$ has a multiplicative inverse in $\mathbb{Z}_4[X]$.

Proof.

$$(2X+1)(1-2X) = (1+2X)(1-2X) = 1-4X^2$$

$$4+0=4=0 \text{ mod } 4 \implies -4=0 \in \mathbb{Z}_4[X]$$

$$\implies 1-4X^2 = 1+0X^2 = 1 \in \mathbb{Z}_4[X] \implies (2X+1)^{-1} = (1-2X) \in \mathbb{Z}_4[X]$$

Question 4

Prove that the ideal $\langle X \rangle \subseteq \mathbb{Q}[X]$ is maximal.

Proof. Let $a(X) + \langle X \rangle \in \mathbb{Q}[X] + \langle X \rangle$ arbitrarily. If $\deg(a(X)) > 0$, then we can set $a(X) = a_m X^m + a_{m-1} X^{m-1} + ... + a_1 X + a_0 = X(a_m X^{m-1} + a_{m-1} X^{m-2} + ... + a_1) + a_0$ so $a(X) + \langle X \rangle = a_0 + \langle X \rangle$. So, $\deg(a(X)) = 0$. Then $a(X) = a_0 \in \mathbb{Q}$ is just a rational constant. If it is non-zero, then it must be of the form $a_0 = t_0/b_0$ for some $t_0, b_0 \in \mathbb{Z} - \{0\}$. Then it has the multiplicative inverse b_0/t_0 in \mathbb{Q} , so:

$$(a_0 + \langle X \rangle)(\frac{b_0}{t_0} + \langle X \rangle) = a_0 \frac{b_0}{t_0} + \langle X \rangle = \frac{b_0}{a_0} \frac{a_0}{b_0} + \langle X \rangle = 1 + \langle X \rangle$$

Since $1 \notin \langle X \rangle$ given that $\deg(1) = 0 < \deg(X) = 1$ it follows that this must be the identity in $\mathbb{Q}[X]/\langle X \rangle$. So then $a(X)^{-1} = (b_0/t_0)X^0$, so $a(X) \in U(\mathbb{Q}[X]/\langle X \rangle)$, so $U(\mathbb{Q}[X]/\langle X \rangle) = \mathbb{Q}[X]/\langle X \rangle$. Moreover, X is irreducible and therefore $\mathbb{Q}[X]/\langle X \rangle$ has no zero divisors. So then $\mathbb{Q}[X]/\langle X \rangle$ is a ring in which every non-zero element is a unit and there are no zero divisors, so it's a field, so $\langle X \rangle \subseteq \mathbb{Q}[X]$ is a maximal ideal of $\mathbb{Q}[X]$ by Theorem 14.4 and we are done.

Question 5

Find a polynomial with integer coefficients that has 1/2 and -1/3 as zeros.

Proof.

$$(X - \frac{1}{2})2(X + \frac{1}{3})3 = (2X - 1)(3X + 1) = 6X^{2} - 3X + 2X - 1 = 6X^{2} - X - 1$$

$$6(\frac{1}{2})^{2} - \frac{1}{2} - 1 = \frac{6}{4} - \frac{2}{4} - 1 = \frac{4}{4} - 1 = 0$$

$$6(\frac{-1}{3})^{2} - \frac{-1}{3} - 1 = 6(\frac{1}{9}) + \frac{3}{9} - \frac{9}{9} = \frac{6 + 3 - 9}{9} = \frac{9 - 9}{9} = 0$$

So $f(X) = 6X^2 - X - 1$ solves the problem.

Question 6

Assume that an integer n > 0 can be written in the form $n = t^2m$. Show that tmX + 1 is a unit in $\mathbb{Z}_n[X]$.

Proof. Let g(X) = (n - m)tX + 1. Then:

$$(tmX + 1)g(X) = (tmX + 1)(ntX - mtX + 1) = t^{2}nmX^{2} - t^{2}m^{2}X^{2} + tmX + ntX - mtX + 1$$
$$= 0 - 0 + tmX + 0 - mtX + 1 = 0 + 1 = 1$$

So, tmX + 1 has a multiplicative inverse in $\mathbb{Z}_n[X]$ and is therefore a unit in $\mathbb{Z}_n[X]$, and we are done.

Question 7

Suppose that $f(X) = X^n + a_{n-1}X^{n-1} + ... + a_0 \in \mathbb{Z}[X]$. If $r \in \mathbb{Q}$ is a rational number such that X - r divides f(X) then show that r is an integer.

Proof. Assume that $r = t/b \in \mathbb{Q}$ is a rational number such that $X - r \mid f(X) = X^n + a_{n-1}X^{n-1} + ... + a_0 \in \mathbb{Z}[X]$. Then f(t/b) = 0 if we evaluate in $\mathbb{Q}[X]$, so:

$$(\frac{t}{b})^n + a_{n-1}(\frac{t}{b})^{n-1} + \dots + a_1\frac{t}{b} + a_0 = 0$$

Multiplying both sides by b^n :

$$t^{n} + a_{n-1}t^{n-1}b + \dots + a_{1}tb^{n-1} + a_{0}b = 0$$

Moving terms around:

$$t^{n} = b(-a_{n-1}t^{n-1} - \dots - a_{1}tb^{n-2} - a_{0})$$

Then we must have that $b \mid t^n$. If $gcd(b,t) \neq 1$ then we trivially have that $t/b \in \mathbb{Z}$ so we assume the opposite; but then combining these statements we conclude $b = \pm 1$ so $t/b \in \{\pm t\} \subseteq \mathbb{Z}$ and we are done. So in all cases r is an integer when (X-r) divides f(X).

Question 8

Show that $X^3 + X^2 + X + 1$ is reducible over \mathbb{Q} .

Proof. Using the Reducibility Test for degrees 2, 3, I see that $(-1)^3 + (-1)^2 + (-1) + 1 = -1 + 1 + -1 + 1 = 0 + 0 = 0$ so -1 is a root so $X^3 + X^2 + X + 1$ is reducible and we are done.

Does this fact contradict the statement that if p > 0 is prime then the cyclotomic polynomial ϕ_p is irreducible?

Proof. No because it's not a cyclotomic polynomial.

Question 9

Determine which of the polynomials in $\mathbb{Q}[X]$ are irreducible over \mathbb{Q} .

- (i) $X^5 + 9X^4 + 12X^2 + 6$
- (ii) $X^4 + X + 1$
- (iii) $X^4 + 3X^2 + 3$
- (iv) $X^5 + 5X^2 + 1$
- (v) $\frac{5}{2}X^5 + \frac{9}{2}X^4 + 15X^3 + \frac{3}{7}X^2 + 6X + \frac{3}{14}$

(i):

Proof. Notice that $3 \mid 9, 3 \mid 12$, but $3 \nmid 1$ and $3^2 \nmid 6$. So by Eisentein's Criterion, as 3 > 0 is prime, we conclude that this is irreducible.

(ii):

Proof. Consider $f(X) = X^4 + X + 1$. We apply the Mod 2 Irreducibility Test. Since it has no zeros in \mathbb{Z}_2 , it has no degree-1 factor in \mathbb{Z}_2 . So if we can factor it into two polynomials of non-zero degree, they must each be of degree 2. Our choices for factors are $X^2, X^2 + X, X^2 + 1, X^2 + X + 1$. Long division shows that none of these divide f(X). So, f(X) is irreducible in $\mathbb{Z}_2[X]$, and therefore irreducible in $\mathbb{Q}[X]$.

(iii):

Proof. We can use the same trick to see that $X^4 + 3X^2 + 3$ in mod 2 is literally just $X^4 + X^2 + 1$ which is irreducible in mod 2, so $X^4 + 3X^2 + 3$ is irreducible in \mathbb{Q} and we're done.

(iv):

Proof. $X^5 + 5X^2 + 1$ in mod 2 is $X^5 + X^2 + 1$ which is the same as (iii) so and (ii) so by identical logic to (iii) this is also irreducible over \mathbb{Q} .

(v):

Proof.

$$f(X) = \frac{5}{2}X^5 + \frac{9}{2}X^4 + 15X^3 + \frac{3}{7}X^2 + 6X + \frac{3}{14}$$
$$= \frac{1}{14} \left(35X^5 + 63X^4 + 6X^2 + 84X + 3 \right)$$

Notice that 3 > 0 is prime, $3 \mid 63, 6, 84, 3^2 = 9 \nmid 3$, and $3 \nmid 35$. So by Eisenstein's Criterion, $35X^5 + 63X^4 + 6X^2 + 84X + 3$ is irreducible over \mathbb{Q} . But up to multiplication by a unit, this is the same as our original polynomial f(X). So, f(X) is irreducible over \mathbb{Q} and we are done.

Question 10

Assume $d \in \mathbb{Z}$ is a square-free integer. Prove that the function $N : \mathbb{Z}[\sqrt{d}] \to \mathbb{N}_0$ defined by $N(a + b\sqrt{d}) = |a - db^2|$ satisfies the following conditions:

- (i) N(z) = 0 if and only if z = 0
- (ii) N(zw) = N(z)N(w) for all $z, w \in \mathbb{Z}[\sqrt{2}]$
- (iii) $z \in \mathbb{Z}[\sqrt{d}]$ is a unit if and only if N(z) = 1
- (iv) if N(z) is a prime integer then z is irreducible in $\mathbb{Z}[\sqrt{2}]$
- (i): N(z) = 0 if and only if z = 0

Proof.

$$0 = N(z) = N(a + b\sqrt{d}) = |a - db^{2}|$$

$$\iff a = \sqrt{d}b$$

Note $a \in \mathbb{Z}$ so $\sqrt{db} \in \mathbb{Z}$ but since d is a square free integer it follows that \sqrt{d} is irrational, which yields an immediate contradiction.

(ii): N(zw) = N(z)N(w) for all $z, w \in \mathbb{Z}[\sqrt{2}]$

(iii): $z \in \mathbb{Z}[\sqrt{d}]$ is a unit if and only if N(z) = 1

(iv): if N(z) is a prime integer then z is irreducible in $\mathbb{Z}[\sqrt{2}]$

Question 11

Let R be a PID and let $f \in R$. Prove that $\langle f \rangle$ is a maximal ideal in R if and only if f is irreducible.

Proof. In a PID an element is prime if and only if it is irreducible. So, f is irreducible

 $\iff f$ is a prime element

 $\iff \langle f \rangle$ is a prime ideal

In a PID, every nontrivial prime ideal is a maximal ideal. So this implies $\langle f \rangle$ is a maximal ideal.

On the other hand, assume $\langle f \rangle$ is a maximal ideal, and let f = gh. For a contradiction assume neither g nor h is a unit. Then, without loss of generality, $\langle f \rangle \subseteq \langle g \rangle$; but by maximality we have either $\langle g \rangle = \langle f \rangle$ or $\langle g \rangle = R$. In the first case (given that $\langle f \rangle$ is maximal and therefore proper) we must have f = g. Since integral domains have unity and PIDs are integral domains, it follows in the second case that $1 \in \langle g \rangle$ so g is a unit. As g,h were arbitrary elements dividing f this suffices to show f is irreducible.

Question 12

Find $q, r \in \mathbb{Z}[i]$ such that 3 - 4i = (2 + 5i)q + r and d(r) < d(2 + 5i).

Proof. TODO