Name: _____

1. (25 points) Let $X \sim N(3,4)$. What are the following?

(a)
$$\Pr[-2 \le X \le 2]$$

(b)
$$\Pr[X \geq 3]$$

(c)
$$\Pr[0 \le X \le 5]$$

(d)
$$\Pr[|\boldsymbol{X}| \geq 2]$$

(e)
$$\Pr[X^2 \le 1]$$

a)
$$P[-2 \le x \le 2] = P[-2-3 \le x \le 2-3 = \#(-\frac{1}{2}) - \#(-\frac{1}{2}) - \#(-\frac{1}{2}) = \#(-\frac{1}{2}) = \#(-\frac{1}{2}) - \#(-\frac{1}{2}) = \#(-\frac$$

c)
$$P[0 \le \times \le 5] = P[0 = 3 \le \times 3 \le 5 = 9[1] = 9[1] - 9[-\frac{3}{2}]$$

= $9[1] + 9[\frac{3}{2}] - 1 = 0.8413 + 9.9332 = 9.9332$

e)
$$P[x^{2} \le 1] = P[-(\le x \le 1] = P[-\frac{1-3}{2} \le x - \frac{3}{2} \le \frac{1-3}{2}]$$

= $\underline{\mathfrak{G}}(-1) - \underline{\mathfrak{G}}(-2) = \underline{\mathfrak{G}}(2) - \underline{\mathfrak{G}}(1) = 0.9772 - 0.84/3$
= $[0./359]$

- 2. (25 points) Let X and Y be IID Gaussian with mean μ and variance σ^2 . What are the following?
 - (a) $\Pr[-1 \le X \le 1 \cap 0 \le Y \le 2]$
 - (b) $\Pr[X > Y]$
 - (c) $\Pr[X + Y \leq 2]$
 - (d) E[2X + 3Y]

a) P[-16×61106Y52] = P[-1-4626 +] P[\$456] 里(学)-里(学)(重(学)-里(学)) Y]=P[X-YZO] Z=X-YNN(0,202)

c) P[X+Y52] = P[Z52] ZNN(2µ,202) $=P(\frac{2-2\mu}{\sqrt{2}\sigma} \leq \frac{2-2\mu}{\sqrt{2}\sigma}) \leq \left| \frac{3}{\sqrt{2}} \left(\frac{2-2\mu}{\sqrt{2}\sigma} \right) \right|$

a) E[2X+3Y]=2E[X]+3E[Y]=2\mu+3\mu=

e) Vor [2X+3Y] = 2 Var[X] + 3 Var[Y] = (4+9) 52= 13 52 1

- 3. (25 points) Let X_1, X_2, \ldots, X_n be a sequence of IID Bernoulli random variables with parameter p. Let $S = X_1 + X_2 + \cdots + X_n$.
 - (a) What is $\Pr[S = k]$?
 - (b) What is the probability at least one X_i equals 1?
- 8=1-6

- (c) What is E[S]?
- (d) What is Var[S]?
- (e) What is a good Gaussian approximation to $\Pr[k_0 \leq S \leq k_1]$?

- 4. (25 points) A test for a disease counts antibodies in a blood sample. Let N be the count. Under the null hypothesis that there is no disease, N is Poisson with parameter λ_0 ; under the alternative that there is a disease, N is Poisson with parameter $\lambda_1 > \lambda_0$.
 - (a) Describe the hypothesis test for the two hypotheses. What is the decision rule?
 - (b) What is the false alarm probability?
 - (c) What threshold value results in a false alarm probability equal to α ?

- 5. (25 points) Let a sequence of observations be 1, 2, -3, 2, 5, 2.
 - (a) What is the sample mean?
 - (b) What is the (unbiased) sample variance?

(a)
$$\frac{1}{2} = \frac{1+2+(-3)+2+5+2}{6} = \frac{9}{6} = 1.5$$

6)
$$\delta^{2} = \frac{1}{12.25} \sum_{i=1}^{\infty} (X_{i} - \overline{X}_{i})^{2} = \frac{1}{10.0} \sum_{i=1}^{\infty} (1 - 1.5)^{2} + (2 - 1.5)^{2} + (-3 - 1.5)^{2} + (2 - 1.5$$

- 6. (25 points) Let $X(t) = \cos(\omega_C t + \theta)$ with ω_0 a known constant and $\theta \sim U(0, 2\pi)$.
 - (a) What is E[X(t)]?
 - (b) What is Var[X(t)]?
 - (c) What is the autocorrelation of X(t)?
 - (d) What is the power spectral density of X(t)?

a)
$$E[\chi(t)] = E[\omega s(\omega t + 0)] = 0$$

b) $V_{ac}[\chi(t)] = E[(\chi(t) - 0)^2] = E[\omega s^2(\omega t + 0)]$
 $= \frac{1}{2}$ (over full period, a verage of $\omega s^2 \theta = \frac{1}{2}$)
c) $R_{xx}(t, trn) = E[\chi(t)\chi(t+n)]$
 $= E[\cos(\omega_t t + 0)\cos(\omega_t(t+t) t + 0)]$
 $= \frac{1}{2}\cos(\omega_t t)$
d) $S(\omega) = F(R(t)) = F(\frac{1}{2}\cos(\omega_t t))$
 $= \frac{2\pi}{2}(S(\omega - \omega_t) + S(\omega t + \omega_t))$

7. (10 points) (Extra credit) Let X be geometric with parameter p. What is the entropy of X?

$$H(x) = -\frac{8}{5} \cdot p(k) \log p(k) \qquad p(k) = (1-p)^{k-1} p$$

$$= -\frac{8}{5} \cdot p(1-p)^{k-1} \log (1+p)^{k-1} = -p\log p \underbrace{8(1-p)^{k-1}}_{k=1} = \frac{8}{5} \cdot p(1-p)^{k-1} \log (1-p)^{k-1} = \frac{8}{5} \cdot p(1-p)^{k-1} = \frac{8$$

Table 1: Values of the Standard Normal Distribution Function

z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$
0.00	0.5000	1.00	0.8413	2.00	0.9772	3.00	0.9987
0.05	0.5199	1.05	0.8531	2.05	0.9798	3.05	0.9989
0.10	0.5398	1.10	0.8643	2.10	0.9821	3.10	0.9990
0.15	0.5596	1.15	0.8749	2.15	0.9842	3.15	0.9992
0.20	0.5793	1.20	0.8849	2.20	0.9861	3.20	0.9993
0.25	0.5987	1.25	0.8944	2.25	0.9878	3.25	0.9994
0.30	0.6179	1.30	0.9032	2.30	0.9893	3.30	0.9995
0.35	0.6368	1.35	0.9115	2.35	0.9906	3.35	0.9996
0.40	0.6554	1.40	0.9192	2.40	0.9918	3.40	0.9997
0.45	0.6736	1.45	0.9265	2.45	0.9929	3.45	0.9997
0.50	0.6915	1.50	0.9332	2.50	0.9938	3.50	0.9998
0.55	0.7088	1.55	0.9394	2.55	0.9946	3.55	0.9998
0.60	0.7257	1.60	0.9452	2.60	0.9953	3.60	0.9998
0.65	0.7422	1.65	0.9505	2.65	0.9960	3.65	0.9999
0.70	0.7580	1.70	0.9554	2.70	0.9965	3.70	0.9999
0.75	0.7734	1.75	0.9599	2.75	0.9970	3.75	0.9999
0.80	0.7881	1.80	0.9641	2.80	0.9974	3.80	0.9999
0.85	0.8023	1.85	0.9678	2.85	0.9978	3.85	0.9999
0.90	0.8159	1.90	0.9713	2.90	0.9981	3.90	1.0000
0.95	0.8289	1.95	0.9744	2.95	0.9984	3.95	1.0000