问题回顾

为理解人类复杂的思维方式,可以使用类比的方法将其划分为两种不同的思维方式,能集中控制的称为是_____,

而分散、不可控的思维模式是____。

数字时代的学习: 认知的细胞机制

姚 远 yaoyuan@shu.edu.cn

上海大学工程训练中心 2021/12/15

大纲

- ■认知研究历史
- ■信号传输机制
- ■神经系统功能与结构
- ■认知与学习
- ■大脑的可塑性

- □古希腊时期
- **亚里士多德**撰写《灵魂论及其他》,阐述了他对生与死、睡与醒,以及其他心脑问题的深入思考
- 希波克拉底则认为,"人类应该知道,我们的喜怒哀乐都来自大脑,且只来自大脑。"希 波克拉底可能是最早的一元论者

□中世纪

笛卡尔提出身心二元论,认为人由完全不同的两种实体组成,一个是心灵,一个是身体,心灵寄居于体内,接收身体的信号并向身体发出指令。

我思故我在

笛卡尔(1596-1650)

- □ 18-19世纪
- 颅相学兴起

卖出了很多著作 提出35个大脑分区(伪科学)

- 心理学研究者进入

1879德国莱比锡大学创建了第一 个心理学实验室

心理学是研究意识的科学

- □ 20世纪
- 意大利医生高格 (Camillo Golgi) 发明了一种向单个神经元中注入银的染色法
- 西班牙神经解剖学家罗曼尼·卡哈尔(Romany Cajal)运用并改进了银染色法 ,明确了信号是从神经元的一端流向另 一端
- 1897年,英国科学家查尔斯·斯科特·谢灵顿爵士(Sir Charles Scott Sherrington)在神经元学说的基础上,提出使用突触(synapse)这个术语

Camillo Golgi (1843-1926)

Romany Cajal (1852-1934)

- □ 20世纪
- 1913年<mark>行为主义</mark>兴起,认为意识和灵魂 是同一概念,因此意识问题被排挤出心理 学
- 1923年德国医生汉斯·伯杰(HansBerger)第一次记录了患者的脑电波
- 其后出现了很多种不同的观点
- 1990年《论意识的神经生物学理论》发表, 认为研究神经元之间的相互作用,建立起真正 科学的意识模型。

John Watson(1596-1650)

Francis 和 Christof

- □ 21世纪
- 2004年,美国科学家朱利奥·托诺尼(GiulioTononi)提出检测意识的系统
- 2012微软创始人保罗艾伦建立brainmap.org提供老鼠大脑基因图谱
- 2013年奥巴马启动"大脑计划",目的是 找到一系列神经疾病的疗法,并为人工智 能研究和应用铺平道路
- 2019年,美国计算机协会将2018年图灵奖 授予人工神经网络的三位推动者。

大纲

- ■认知研究历史
- ■信号传输机制
- ■神经系统功能与结构
- ■认知与学习
- ■大脑的可塑性

□ 构成神经系统的细胞有两大类:神经元细胞和神经胶质细胞

神经元细胞

胶质细胞

□ 神经元细胞

□ 神经胶质细胞

数量是神经元细胞的10倍

- 星形细胞形成血脑屏障
- 为多轴突和单轴突形成髓鞘
- 小胶质起到巨噬细胞的作用
- 许旺氏形成单个髓鞘

胶质细胞

- □ 神经信号的传导
- 神经元间传递的神经信号的过程为树 突接收信息,评估信息和传递信息
- 细胞间传送的信号包括:

化学形式:神经递质、气味等

物理形式:光、电信号

- 细胞内传递依靠电位差传导

□问题

根据髓鞘的功能,推测如果髓鞘受损,将可能出现哪些症状?

胶质细胞

□神经信号的传导

两层磷脂 双分子层 结构

静息膜电位:电位差为-40~-90mV

□神经信号的传导

细胞核 細胞体 输丘 髓鞘 轴突末梢 可控的通道

两层磷脂 双分子层 结构

常开通道

静息膜电位:电位差为-40~-90mV

髓鞘

轴突末梢

细胞膜上的离子通道

三磷酸腺苷 (ATP) : 3 Na+ (出) 2 K+(入)

电化学平衡:浓度+电势

□ 神经信号的传导 传导过程

- 1. 突触被激活
- 突触附近将产生主动的穿膜电流
- 3. 静息膜电位变化
- 4. 产生主动穿膜电流
- 5. 反复直至传导到末端
- 6. 传到第二个神经元

- > 离子电流: 电荷的载体是Na、K和CI离子
- ➤ 在没有能量补充的情况下能传导1mm

口 神经信号的传导 动作电位与离子运动

- 1. 突触被激活
- 2. 突触附近将产生主动 的穿膜电流
- 3. 静息膜电位变化
- 4. 产生主动穿膜电流
- 5. 反复直至传导到末端
- 6. 传到第二个神经元

□ 神经信号的传导

- 1. 突触被激活
- 出处附近将产生主 动的穿膜电流
- 3. 产生动作电位
- 4. 产生穿膜电流
- 5. 反复直至传导到末 端
- 6. 传到第二个神经元

哺乳动物的神经能以120m/s的速度传递信号。

髓鞘内电信号的跳跃性传导

□信号在细胞间的传递

神经递质的传递是一个很复杂的过程

- 当动作电位到达突触末梢时 , 引起电压门控的钙离子通 道开放产生动作电位
- 2. 引起囊泡与突触前膜的融合
- 神经递质被已泡吐的形式释放到突触间隙中,并在间隙扩散
- 4. 并与树突的受体分子结合, 结束传导过程

- □ 神经信号的传导
 - ▶ 神经递质有100多种
 - 有些起到刺激作用 (肾上腺素)
 - 有些会起到抑制作用(乙酰胆碱)

- > 电信号也被直接用细胞间传递
 - 适用于需要快速传导
 - 神经元间细胞浆连续
 - 缺乏可塑性(不能表示抑制、无法放大)

□问题

神经信号传递时,怎样表达感知的强度?

大纲

- ■认知研究历史
- ■信号传输机制
- ■神经系统功能与结构
- ■认知与学习
- ■大脑的可塑性

□ 神经系统主要由神经元细胞和神经胶质细胞组成

□大脑的结构

大脑皮质:大脑表面结构,有两个对称的半球,每个半球都是由分层的神经元构成。

脑回:表面曲折的部分

□大脑的结构

大脑皮质: 大脑表面结构, 有两个对称的半球, 每个半球都是由分层的

神经元构成。

脑回: 表面曲折的部分

真实的人体大脑 (爱因斯坦)

□大脑的结构

大脑皮质

■ 感觉 / 运动皮质

联合皮质

在进化过程中,越高等的哺乳动物的大脑皮 质面积越大

联合皮质能够完成更高层次的心理活动

□大脑的结构

皮质功能映射

联合皮质:传统上将新皮质中不能被单纯划分为感觉或运动的部分定义为联合皮质。

□视觉

视网膜的感光细胞: 光→神经信号

视网膜细胞

- 三种视锥细胞:对颜色敏感, 分别感知不同光谱区域
- 视杆细胞:多分布在视网膜的外周,对光线敏感

视神经在视交叉区域交叉,传递到 觉皮层

有10%的视神经连接枕核和上丘

□嗅觉

不经过丘脑传递

嗅皮质与边缘系 统相邻,容易触 发记忆

气味种类

气味变化

超过1000种感受器

□躯体感觉

- 微小体用于编码

梅克尔小体探测一般的接触 迈斯纳小体检测轻微的接触 环层小体感受深层压力 鲁菲尼小体感受温度

- 自由神经终端感受疼痛 (快/慢)
- 肌肉和肌腱出的特化神经(交叉)

肌肉信息 四肢状态

□ 大脑的结构-感觉皮质拓扑映射

□ 大脑的结构-运动皮质拓扑映射

- □ 大脑的结构-皮质映射拓扑
- ■定位了感觉和运动区域
- 手和嘴能够实现最精细的 控制

■准确性可能有待调整

□大脑的结构

□基底神经节

- 前脑下面一系列神经组织的集合
- 基底神经节在运动的发起习惯形成中起到关键作用

其中的托巴胺活动使系统偏向于产生特定的反应,而抑制其它反应

大纲

- ■认知研究历史
- ■信号传输机制
- ■神经系统功能与结构
- •记忆与学习
- ■大脑的可塑性

□思考题

- ▶ 你是否会骑车? 你还记得怎样学会骑自行车的吗?
- ▶ 你是否可以向其他人讲述骑车的要诀?
- 如果你为一个没骑过自行车的人写一份详细的说明,你认为他/她是否可以在阅读后跳上自行车快乐的骑行?
- ▶ 如果不是,为什么?

口层次化的运动控制

脊髓神经元直接控制运动神经元 小脑与基底神经节进行运动准备 大脑皮层部分起到修饰作用

最高层是运动目的的抽象表征

学习

最底层是特定的具体指令

□层次化的运动控制 (记忆)

- ➤ 肌肉由α运动神经元激活
- > a输入导致肌肉收缩
- 关节附着的一对肌肉使关节 活动

- 起源于脊髓
- 中止于肌肉纤维
- 输出神经递质是乙酰胆碱
- 接收脊髓的信号输入(兴奋/抑制)
- 接收肌肉神经的感觉输入

□层次化的运动控制 (记忆)

> 脊髓神经元直接控制运动神经元

口层次化的运动控制 (记忆)

复杂运动并不是肌肉编码

脊髓神经元直接控制运动神经元

小脑与基底神经节进行运动准备

大脑皮层起到修饰作用

口运动的神经编码

熟练的运动员不需要反馈也能 做出正确的运动

运动皮质的向量场

编码位置:运动皮质

编码模式:一组细胞活动总和

编码特征:方向性与运动序列

180°

如果位置变化人类会在 100ms内调整轨迹

口运动的神经编码

神经编码模式的应用

运动皮质的向量场

编码位置:运动皮质

编码模式:一组细胞活动总和

编码特征:方向性与运动序列

脑机接口

侵入式 1978

Neuralink 2020

Emotiv 2018

□层次化的运动控制 (学习与实施)

运动分为计划、准备和执行三个部分: 涉及两个平行的回路

参与运动的主要神经区域

□基底神经节的选择

运动控制是层次化的

当上层干扰不强烈时:

基底神经节倾向于那些产生有利结果的行为——习惯

□层次化的运动控制

口人工运动控制模拟

□思考题

- ▶ 你是否会骑车?你还记得怎样学会骑自行车的吗?
- > 你是否可以向其他人讲述骑车的要诀?
- 如果你为一个没骑过自行车的人写一份详细的说明,你认为他/她是否可以在阅读后跳上自行车快乐的骑行?
- ▶ 如果不是,为什么?

获取新信息的过程: 存储

建立系神经

元连接

回顾:

提取/巩固

再激活

□感觉记忆

感觉神经的痕迹形成,只能保持300-500毫秒

□短时记忆和工作记忆

被注意选择的感觉记忆进入短时记忆 (1968) 延续几秒-几分钟

口长时陈述性记忆

事件、经历 常识性和理论知识

口长时非陈述性记忆

无法通过有意识过程接触的知识 如运动技能、习惯,及刺激引发的简单学习行为

口记忆的存储与关联

加州大学洛杉矶分校 (UCLA微内窥镜)

含有 CREB 的细胞都比其邻近细胞更容易激活

当个体回忆起关 联在一起的两段 记忆中的一段时, 这些神经元就会

口记忆的巩固

- > 有组织学习
- > 短时间内复习和扩展
- > 充足的睡眠

大脑正在建立的联系 超越了我们直接观察 的信息和知识

使相关信息 存储在相近 的区域 加强神经元 突触,增加新的信息入

睡眠中海马细胞会按照清醒时的神经元激活顺序重放,使记忆巩固。

大纲

- ■认知研究历史
- ■信号传输机制
- ■神经系统功能与结构
- ■认知与学习
- 大脑的可塑性

大脑的可塑性

□儿童大脑的可塑性

大脑可塑性: 脑部被外界环境以及人的 经历所改变的可能性

- 3岁时有1000万亿的连接 -是成年人的两倍
- 成长中突触后细胞加强与 某些细胞的连接并消除与 其他细胞的联系

■ 突触的变化取决于信息的 输入

大脑的可塑性

- □大脑皮层的映射具有可塑性
- ■感觉和运动区域可以重组
- ■能够长出新的突触

■能够产生新的神经

成人的大脑具有可塑性

大脑的可塑性

- □神经元及突触可塑性
- ■神经元的功能可能发生变化
- ■对神经递质敏感性的变化

■ 释放神经递质的量发生变化

■神经元的连接可强化和减弱

成人的大脑具有可塑性

总结

- 现代认知科学认为,应在神经元及它们之间的相互 作用的基础上建立认知模型
- ■神经元细胞通过电化学过程传递信号

■大脑皮质可以完成感觉、运动和复杂的心里活动

■人类大脑是可塑的,但在不同阶段具有差异

■认知与学习依赖于大脑的结构和神经元的活动模式