

MÉTAHEURISTIQUES

Trouver le minimum d'une fonction

Cas hors d'étude d'une fonction analytique dérivable (S non fini)

Stéphane Bonnevay - Polytech Lyon

Cours « Optimisation »

45

OPTIMISATION PAR MÉTAHEURISTIQUES

MÉTAHEURISTIQUES

Trouver le minimum d'une fonction

Explorer toutes les solutions de **S** ?

Stéphane Bonnevay – Polytech Lyon

Cours « Optimisation »

MÉTAHEURISTIQUES

Trouver le minimum d'une fonction Les méthodes de descente

Stéphane Bonnevay – Polytech Lyon

Cours « Optimisation »

47

OPTIMISATION PAR MÉTAHEURISTIQUES

MÉTAHEURISTIQUES

Trouver le minimum d'une fonction
Le recuit simulé ou la méthode Tabou

Stéphane Bonnevay – **Polytech Lyon**

Cours « Optimisation »

MÉTAHEURISTIQUES

Trouver le minimum d'une fonction

Les méthodes à base de population

Stéphane Bonnevay – Polytech Lyon

Cours « Optimisation »

OPTIMISATION PAR MÉTAHEURISTIQUES

MÉTAHEURISTIQUES

Stéphane Bonnevay – Polytech Lyon

Notion de Landscape

Un landscape est la donnée d'un ensemble S, d'une fonction de fitness f(.) et d'une relation de voisinage V.

Stéphane Bonnevay – Polytech Lyon

Cours « Optimisation » 51

OPTIMISATION PAR MÉTAHEURISTIQUES

VOISINAGE

Notion de Voisinage

Soit $x \in S$, Qu'est-ce qu'un voisin de x?

Exemple : le « voyageur de commerce »

6 villes notées A, B, C, D, E et F.

Soit x un trajet de S, x = « ABCDEF » (notation circulaire)

Stéphane Bonnevay – Polytech Lyon

VOISINAGE

Transformation locale

Transformation « échanger 2 villes »:

$$x = \langle ABCDEF \rangle \longrightarrow x' = \langle ADCBEF \rangle$$

 $V(x) = \{ BACDEF, CBADEF, DBCAEF, EBCDAF, FBCDEA, \}$ ACBDEF, ADCBEF, AECDBF, AFCDEB, ABDCEF, ABEDCF, ABFDEC, ABCEDF, ABCFED, ABCDFE }

Stéphane Bonnevay – Polytech Lyon

Cours « Optimisation » 53

OPTIMISATION PAR MÉTAHEURISTIQUES

VOISINAGE

Transformation locale

Transformation « insértion-décalage »:

$$x = \text{``} ABCDEF \text{``}$$
 $x' = \text{``} AEBCDF \text{``}$
 $x' = \text{``} AEBCDF \text{``}$
 $x' = \text{``} ACDEBF \text{``}$

Cette transformation définie un autre ensemble de voisins \Rightarrow un autre landscape.

Transformation « inversion »:

$$x = \langle ABCDEF \rangle$$
 $x' = \langle AEDCBF \rangle$

Stéphane Bonnevay – Polytech Lyon

VOISINAGE

Transformation locale

Transformation 2-opt : « échange de 2 arêtes disjointes »

Stéphane Bonnevay – Polytech Lyon

Cours « Optimisation » 55

OPTIMISATION PAR MÉTAHEURISTIQUES

VOISINAGE

Transformation locale

V(x)= {ABFEDC, ABCFED, ABCDFE, ACBDEF, ADCBEF, AEDCBF, ABDCEF, ABEDCF, ABCEDF }

pour n villes,
$$|V(x)| = \frac{n(n-3)}{2}$$

Il existe une transformation 3-opt : « échange de 3 arêtes disjointes »

Stéphane Bonnevay – Polytech Lyon

VOISINAGE

Exemple: le « sac à dos »

Soit S l'ensemble des solutions possibles (ensemble des sous-ensembles d'items). Soit x une solution de S,

Fitness

f(x) = somme des utilités des objets à 1

Transformation locale

Inverser un bit x = « 01100101 »

$$V(x) = \{ 11100101, 00100101, 01000101, 01110101, 01101101, 01100001, 01100111, 01100100 \}$$

Stéphane Bonnevay - Polytech Lyon

Cours « Optimisation » 57

OPTIMISATION PAR MÉTAHEURISTIQUES

VOISINAGE

Exemple : coloration d'un graphe

Soit x une solution du problème :

$$x = [c(1), ..., c(i), ..., c(n)]$$

où n est le nombre de sommets et c(i) est la couleur du sommet i. Pour avoir une seule représentation d'une solution x, les couleurs sont systématiquement ordonnées par ordre croissant.

Fitness

f(x) = nombre d'arêtes avec des sommets de même couleur (nombre d'erreurs)

Transformation locale

Changer la couleur d'un sommet. x = [1221]pour n sommets et k couleurs, |V(x)| = n(k-1)

Stéphane Bonnevay – Polytech Lyon

Représentation graphique du landscape

Généralement impossible de représenter le landscape sous cette forme :

Le landscape est un graphe (orienté en général), dont les sommets sont valués par la fitness :

Stéphane Bonnevay - Polytech Lyon

Cours « Optimisation »

50

OPTIMISATION PAR MÉTAHEURISTIQUES

LANDSCAPE

Conclusion de la thèse de Lionel Barnett (2003)

« the more we know of the **statistical properties** of a class of fitness landscapes, the better equipped we will be for the **design of effective search algorithms** for such landscapes »

Principales propriétés étudiées

- Nombre et Taille des bassins d'attraction
- Rugosité ou aspect lisse (étude de l'autocorrélation)
- Degré de neutralité : nombre de solutions voisines avec la même fitness

A Search Space "Cartography" for Guiding Graph Coloring Heuristics

Daniel Cosmin Porumbel ^{1,2)}, Jin Kao Hao ¹⁾ and Pascale Kuntz ²⁾

1) LERIA, Université d'Angers, 2 bd. Lavoisier, 49045 Angers, France
2) LINA, Polytech'Nantes, rue Christian Pauc, 44306 Nantes, France

August 7, 2009

Stéphane Bonnevay – Polytech Lyon

Cours « Optimisation »

Exemple de Landscape

Stéphane Bonnevay – Polytech Lyon

Cours « Optimisation » 61

OPTIMISATION PAR MÉTAHEURISTIQUES

LANDSCAPE

Exemple de Landscape

Stéphane Bonnevay – Polytech Lyon

Exemple de Landscape

Stéphane Bonnevay – Polytech Lyon

Cours « Optimisation » 63

OPTIMISATION PAR MÉTAHEURISTIQUES

MÉTHODE DE DESCENTE (HILL-CLIMBING)

La méthode de descente est une méthode gloutonne

construction d'une suite de solution $x_0, x_1, x_2, ...,$ jusqu'à un minimum locale.

toutes les solutions voisines sont moins bonnes

```
x_0: solution initiale;
i=-1;
répéter
      Choisir x_{i+1}{\in}V(x_i) tel que f(x_{i+1}){=}min\{\ f(y)\ /\ y{\in}V(x_i)\ \} ;
jusqu'à f(x_{i+1}) > f(x_i);
```

dépend de $x_0 \Rightarrow a$ exécuter plusieurs fois avec des x_0 différents.

Stéphane Bonnevay – Polytech Lyon

MÉTHODE DE DESCENTE (HILL-CLIMBING)

Bassin d'attraction

Le **bassin d'attraction** d'une solution x* est l'ensemble des solutions x tel que l'algorithme Hill-Climbing mène à x* :

$$\{ x \in S / Hill-Climbing(x) = x^* \}$$

Etude du landscape

Plus la taille du bassin d'attraction de l'optimum global est petite, plus le temps nécessaire pour le trouver est long!

Stéphane Bonnevay - Polytech Lyon

Cours « Optimisation » 65

OPTIMISATION PAR MÉTAHEURISTIQUES

MÉTHODE DU RECUIT SIMULÉ (SIMULATED ANNEALING)

Le recuit simulé est une méthode issue de la thermodynamique (fabrication de cristaux)

Objectif: sortir des minima locaux en acceptant, sous certaines conditions, des solutions « moins bonnes ».

Besoin d'une température

Principe:

- à chaque x_i , choisir x_{i+1} dans $V(x_i)$
- si $f(x_i) \ge f(x_{i+1})$, accepter x_{i+1} .
- si $f(x_i) \le f(x_{i+1})$, accepter x_{i+1} si l'écart entre $f(x_i)$ et $f(x_{i+1})$ n'est pas trop grand et si la température n'est pas trop faible.

Stéphane Bonnevay – Polytech Lyon

MÉTHODE DU RECUIT SIMULÉ (SIMULATED ANNEALING)

```
x_0: solution initiale; t_0: température initiale;
\boldsymbol{x}_{\text{min}} {=} \; \boldsymbol{x}_0 \; ; \; \; \boldsymbol{f}_{\text{min}} {=} \; \boldsymbol{f}(\boldsymbol{x}_{\text{min}}) \; ; \; \; \boldsymbol{i} = 0 \; ;
pour k=0 à n<sub>1</sub> faire
         pour l=1 à n<sub>2</sub> faire
                Choisir y \in V(x_i);
                 \Delta f = f(y) - f(x_i) ;
                  si (\Delta f \le 0) alors { x_{i+1} = y;
                                                    si(f(x_{i+1}) < f_{min}) alors { f_{min} = f(x_{i+1}); x_{min} = x_{i+1}; }
                  sinon { tirer p \in [0,1] avec une distribution uniforme;
                                   \mathbf{si} (p \le \exp(-\Delta f/t_k)) \mathbf{alors} \ x_{i+1} = y;
                                   \mathbf{sinon} \ \mathbf{x}_{i+1} = \mathbf{x}_i; \quad \}
                 i = i+1;
         t_{k+1} = g(t_k) ;
return x<sub>min</sub>;
```

Stéphane Bonnevay - Polytech Lyon

Cours « Optimisation » 67

OPTIMISATION PAR MÉTAHEURISTIQUES

MÉTHODE DU RECUIT SIMULÉ (SIMULATED ANNEALING)

Exemple : **minimiser** la fitness f sur $\{0,1\}^4$

x	0000	0001	0010	0011	0100	0101	0110	0111
f(x)	12	5	9	2	11	3	8	7
X	1000	1001	1010	1011	1100	1101	1110	1111
				-			-	

Transformation locale: « inverser un bit »

Stéphane Bonnevay – Polytech Lyon

MÉTHODE DU RECUIT SIMULÉ (SIMULATED ANNEALING)

Exemple: minimiser la fitness f sur $\{0,1\}^4$

x	0000	0001	0010	0011	0100	0101	0110	0111
f(x)	12	5	9	2	11	3	8	7
x	1000	1001	1010	1011	1100	1101	1110	1111
f(x)	6	10	6	4	0	11	1	5

$$x_2 = 0011$$
 $f(x_2) = 2$ $V(x_2) = \{1011, 0111, 0001, 0010\}$ choix aléatoire

Comme $f(0001) > f(x_2)$:

Tirer p
$$\in$$
 [0,1], $|\sin p < \exp(-3/4) \text{ alors } x_3 = 0001$
 $|\sin n x_3 = x_2|$

Stéphane Bonnevay - Polytech Lyon

Cours « Optimisation » 69

OPTIMISATION PAR MÉTAHEURISTIQUES

MÉTHODE DU RECUIT SIMULÉ (SIMULATED ANNEALING)

Exemple

http://interstices.info/jcms/c_43811/le-recuit-simule

Stéphane Bonnevay – Polytech Lyon

MÉTHODE DU RECUIT SIMULÉ (SIMULATED ANNEALING)

- Paramétrage de l'algorithme : x_0 , t_0 , g(.), n_1 , n_2 , \dots une des difficultés des métaheuristiques
- Température initiale t₀: suffisamment élevée pour accepter beaucoup de « moins bonnes solutions »:

tester différentes solutions couteuses (Δf>0)

fixer t₀ de manière à avoir 1 chance sur 2 d'accepter ces solutions :

$$\exp(-\Delta f/t_0) = 0.5$$

$$\Rightarrow$$
 t₀ = - Δ f/ln(0.5)

Stéphane Bonnevay - Polytech Lyon

Cours « Optimisation »

OPTIMISATION PAR MÉTAHEURISTIQUES

MÉTHODE DU RECUIT SIMULÉ (SIMULATED ANNEALING)

Fonction de décroissance de la température :

$$g(t) = \mu t \ (0 < \mu < 1)$$

des valeurs de μ proches de 1,

éventuellement, faire varier μ au cours du temps :

- | décroissance élevée au début (μ faible),
- décroissance lente ensuite (µ proche de 1),
- Nombre de changements de température n₁:

si µ=0.95 et n₁=60, alors une solution qui aurait une probabilité de 0.5 d'être acceptée au début, aura une probabilité de 3×10⁻⁷ de l'être après n₁ changements.

Stéphane Bonnevay – Polytech Lyon

MÉTHODE DU RECUIT SIMULÉ (SIMULATED ANNEALING)

Taïcir Loukil a Jacques Teghem b,* Philippe Fortemps b

Stéphane Bonnevay - Polytech Lyon

Cours « Optimisation »

73

OPTIMISATION PAR MÉTAHEURISTIQUES

MÉTHODE TABOU

Méthode Tabou (Tabu search)

Liste taboue T, de taille finie, contenant les « solutions » (ou « directions » ou plutôt les « transformations inverses ») interdites.

Principe:

- à chaque x_i , choisir x_{i+1} qui minimise f(.) sur $V(x_i) T$
- si $f(x_i) < f(x_{i+1})$, accepter x_{i+1} et s'interdire de redescendre sur x_i sinon, on boucle

si $x_{i+1}=m(x_i)$, alors on ajoute m^{-1} à T

transformation élémentaire

si T pleine, on supprime la transformation la plus ancienne

Stéphane Bonnevay – Polytech Lyon

Cours « Optimisation »

MÉTHODE TABOU

```
x_0: solution initiale; T=\emptyset;
x_{min} = x_0; f_{min} = f(x_{min}); i=0;
répéter
{ C=V(x_i) - \{m(x_i) / m \in T\};
      si (C≠Ø) alors
      { Choisir y\inC tel que f(y)=min{ f(z) / z\inC }; // y=m(x<sub>i</sub>)
            \Delta f = f(y) - f(x_i) ;
            si (\Delta f \ge 0) alors { mettre m<sup>-1</sup> dans T; }
            \mathbf{si} (f(y) < f_{min}) \text{ alors } \{ f_{min} = f(y);
                                          x_{min} = y; }
             x_{i+1} = y;
      i = i+1;
} jusqu'à ((i=nmax) ou (C=Ø)) ;
return x<sub>min</sub>;
```

Stéphane Bonnevay - Polytech Lyon

Cours « Optimisation » 75

OPTIMISATION PAR MÉTAHEURISTIQUES

MÉTHODE TABOU

Exemple: **minimiser** la fitness f sur $\{0,1\}^4$

x	0000	0001	0010	0011	0100	0101	0110	0111
f(x)	12	5	9	2	11	3	8	7
X	1000	1001	1010	1011	1100	1101	1110	1111
				-			-	

Transformation locale : « inverser un bit » - Liste taboue de taille 1

Stéphane Bonnevay – Polytech Lyon

MÉTHODE TABOU

Exemple: minimiser la fitness f sur $\{0,1\}^4$

X	0000	0001	0010	0011	0100	0101	0110	0111
f(x)	12	5	9	2	11	3	8	7
x	1000	1001	1010	1011	1100	1101	1110	1111
f(x)	6	10	6	4	0	11	1	5

Stéphane Bonnevay – Polytech Lyon

Cours « Optimisation »

OPTIMISATION PAR MÉTAHEURISTIQUES

MÉTHODE TABOU

- recuit simulé: non déterministe, sans mémoire méthode Tabou: déterministe, avec mémoire
- Modifications possible de l'algorithme :
 - 1. il est possible d'interdire de « remonter » d'où on vient de « descendre »
 - autoriser des transformations taboues qui améliorent le f_{min} (la meilleure solution rencontrée)

Stéphane Bonnevay – Polytech Lyon

MÉTHODE TABOU

European Journal of Operational Research 179 (2007) 788-805

www.elsevier.com/locate/ejor

A tabu search approach for solving a difficult forest harvesting machine location problem

Andres Diaz Legi

 $\fivehilde{\upshape https://docume.pdf}$ Hace ttepe Journal of Mathematics and Statistics Volume 36 (1) (2007), 53-64

A TABU SEARCH ALGORITHM TO SOLVE A COURSE TIMETABLING PROBLEM

Cağdas Hakan Aladağ* and Gülsüm Hocaoğlu*

Stéphane Bonnevay - Polytech Lyon