

Redes Convolucionais Profundas para Classificação de Resíduos em Usinas de Triagem: Uma Abordagem com Transfer Learning e Validação Cruzada K-Fold

Squad 1:

Franciscleide Lauriano

Introdução: Desafios na Triagem de Resíduos

A triagem manual de resíduos sólidos urbanos em usinas enfrenta:

Baixa Produtividade

Processos lentos e ineficientes.

Ambientes Insalubres

Exposição a condições de trabalho perigosas.

Alto Erro Humano

Classificação imprecisa dos materiais.

Machine Learning e Visão Computacional oferecem uma alternativa promissora para automação.

Objetivos da Etapa

1

Modelo Próprio

Desenvolver e avaliar um modelo próprio para classificação de resíduos.

2

Balanceamento de Dados

Corrigir o desbalanceamento das classes.

3

Comparar Modelos

Comparar com o modelo da literatura: Recycle-ResNet-MobileNet-Ensembled.

4

Apresentar Resultados

Apresentar métricas, visualizações e conclusões.

Desafio: Dataset Desbalanceado

Nosso dataset de 8.823 imagens de resíduos recicláveis apresenta um desbalanceamento severo:

A classe "Bottle" representa ~69% das amostras, enquanto "Cans" e "Glass" têm menos de 500 amostras. Sem tratamento, o modelo favorecerá a classe majoritária.

Metodologia Própria: Arquitetura e Estratégia

1 Backbone

ResNet50 pré-treinada no ImageNet (Transfer Learning), com camadas superiores removidas.

2 Camadas Adicionais

- GlobalAveragePooling2D()
- Dropout(0.5)
- Dense(128, activation='relu')
- BatchNormalization()
- Dropout(0.5)
- Dense(6, activation='softmax')

3 Técnicas Aplicadas

- Undersampling seletivo da classe majoritária
- Data Augmentation (rotação, zoom, brilho, flips)
- Normalização das imagens (rescale): 1./255
- Pesos das classes para compensar desbalanceamento: class_weight
- EarlyStopping com patience=5
- Otimizador: Adam com learning_rate=1e-5

Validação Cruzada e Avaliação

K-Fold Cross-Validation (n_splits=5)

Estratificada, com shuffle e seed (random_state=42), para avaliação confiável e sem viés de partição.

Métricas Avaliadas por Fold

Accuracy, Precision, Recall, F1-Score (macro), AUC-ROC (macro e por classe), Cohen's Kappa, Matriz de Confusão.

Critérios de Desempenho

Baseados na literatura (He et al., Kohavi, Sammut & Webb, Fawcett).

Curvas de Treinamento Fold 1 – Método Próprio

Curvas de Treinamento Fold 2 — Método Próprio

Curvas de Treinamento Fold 3 — Método Próprio

Curvas de Treinamento Fold 4 — Método Próprio

Curvas de Treinamento Fold 5 — Método Próprio

Matriz de Confusão Agregada – Método Próprio

MÉTRICAS FINAIS – CROSS- VALIDATION (5 folds)				
Métrica	Média	Desvio Padrão		
Accuracy	0.9460	0.0688		
Precision (macro)	0.9352	0.0800		
Recall (macro)	0.9541	0.0606		
F1-Score (macro)	0.9427	0.0729		
Cohen's Kappa	0.9326	0.0858		
AUC-ROC (macro)	0.9926	0.0119		

AUC-ROC por Classe			
Classe	AUC Média	Desvio Padrão	
bottle	0.9876	0.0181	
canister	0.9936	0.0121	
cans	0.9963	0.0071	
cardboard	0.9962	0.0073	
detergent	0.9855	0.0208	
glass	0.9961	0.0064	

Excelente desempenho em todas as classes. Confusão residual: bottle, cardboard e detergent.

Comparação entre os Métodos

Método da Literatura*

* Notebook Recycle-ResNet-MobileNet-Ensembled (Kaggle), Autor: Abdel-Hamid-M-Aljamal

Método da Próprio

Comparação entre os Métodos

Critério	Modelo Próprio	Método da Literatura*
Arquitetura	ResNet50 + camadas adaptadas	Ensemble: ResNet + MobileNet
Validação	K-Fold (5 folds)	Split simples
Técnicas adicionais	Data Augmentation, Undersampling, class weight	Data Augmentation
Accuracy	0.9442 ± 0.0715	~ 0.87
AUC-ROC (macro)	0.9931 ± 0.0114	Não informado
Robustez frente a ruído	Alta (validação estratificada)	Baixa
Confusão entre classes	Baixa	Alta (bottle ↔ cardboard ↔ detergent)
	lobileNet-Ensembled (Kaggle), Autor: Abdel-Hamid-M-Aljamal	

Conclusões e Próximos Passos

1 2 3

Modelo Proposto Superou a Literatura

Desempenho superior, mais robusto e menor confusão entre classes.

Contribuições

Estratégia leve, eficaz e replicável para automação de triagem.

Próximos Passos

Testar redes mais leves, otimizar para dispositivos embarcados e aumentar o dataset.

Referências Bibliográficas

- Aljamal, Abdel-Hamid-M. Recycle ResNet MobileNet Ensembled. Kaggle, 2023. Disponível em: https://www.kaggle.com/code/abdelhameedmaljamal/recycle-resnet-mobilenet-ensembled. Acesso em: 07 jul. 2025.
- Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.
- Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.
- He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
- Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI), 1137–1143.
- Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.
- Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.
- Sammut, C., & Webb, G. I. (2010). Encyclopedia of Machine Learning. Springer.
- Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for deep learning. Journal of Big Data, 6(1), 60.
- Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437.