

Recipiente Inteligente para Transporte de Órgãos com Monitoramento em Tempo Real

Alunos: Giovana Ferreira Santos e Filipe Alves de Sousa

Nome sugerido para o projeto: BioCooler ou BioSmartCooler

Introdução

A era da digitalização e da biotecnologia tem impulsionado avanços significativos na medicina, especialmente no campo dos transplantes de órgãos. No entanto, o sucesso desses procedimentos depende não apenas da compatibilidade entre doador e receptor, mas também de uma logística de transporte altamente eficiente. Atualmente, esse processo enfrenta limitações sérias, principalmente relacionadas à manutenção de condições ideais de temperatura, umidade e proteção contra impactos. O método convencional, baseado em caixas térmicas com gelo, carece de monitoramento em tempo real e de sistemas de alerta, o que compromete a viabilidade do órgão e, consequentemente, a taxa de sucesso dos transplantes (OPTN, 2024).

Diante desse cenário, surge o BioCooler, um recipiente térmico inteligente projetado para modernizar o transporte de órgãos, incorporando sistemas eletrônicos embarcados e princípios da Internet das Coisas (IoT). Seu diferencial está na capacidade de monitorar continuamente, em tempo real, parâmetros críticos como temperatura, umidade, luminosidade e impacto, oferecendo alertas sonoros e visuais imediatos em caso de anomalias. Isso garante respostas ágeis a qualquer desvio das condições ideais, aumentando significativamente a segurança do transporte (Gubbi et al., 2013).

A relevância social do BioCooler é evidente, pois a otimização do transporte de órgãos reduz diretamente a perda de materiais viáveis, aumentando o número de transplantes bemsucedidos. Em um contexto global marcado pela escassez de doadores e longas filas de espera, cada órgão salvo representa uma vida preservada ou significativamente melhorada (WHO, 2023). O projeto não é apenas uma melhoria operacional, mas um avanço em saúde pública.

O funcionamento inteligente do BioCooler é viabilizado por sistemas eletrônicos embarcados, tendo como núcleo um microcontrolador, como o Raspberry Pi Pico W presente na placa BitDogLab. Esse dispositivo atua como o "cérebro" do sistema, processando dados de sensores de temperatura, umidade, luminosidade e aceleração. Essa integração garante autonomia, confiabilidade e precisão, essenciais para um equipamento que precisa operar de forma independente durante todo o transporte (Al-Fuqaha et al., 2015).

A conectividade via Wi-Fi amplia ainda mais as capacidades do BioCooler, permitindo transmissão de dados em tempo real para equipes médicas e centros de monitoramento remoto. Isso possibilita intervenções imediatas em caso de falhas, melhora a tomada de decisões e fornece registros completos para auditoria e aperfeiçoamento contínuo dos protocolos de transporte (Gubbi et al., 2013).

Além das variáveis ambientais, o BioCooler também é capaz de detectar eventos físicos como impactos ou abertura indevida da tampa, adicionando uma camada extra de segurança e rastreabilidade. Diferentemente das soluções tradicionais, que atuam de forma passiva, o BioCooler registra, analisa e reage a qualquer anomalia, destacando-se por sua proatividade e inteligência embarcada.

Sua implementação tem impacto direto na preservação da integridade do órgão. O controle rigoroso da temperatura evita a degradação celular, o monitoramento da umidade previne condições desfavoráveis, e a detecção de manipulações indevidas protege o conteúdo transportado. Ao fornecer dados precisos e alertas em tempo real, o BioCooler fortalece a

capacidade das equipes médicas de garantir que o órgão chegue ao seu destino em condições ideais (OPTN, 2024).

O grande diferencial deste projeto está na integração precisa entre hardware e software, viabilizando um sistema automatizado, confiável e adaptável. Enquanto métodos convencionais dependem de verificações manuais e suscetíveis a erro, o BioCooler atua com autonomia e precisão, elevando o padrão de segurança no transporte de órgãos.

A conectividade com uma central de monitoramento via IoT permite acompanhamento remoto contínuo, registro histórico de dados e análises posteriores que podem aperfeiçoar os protocolos logísticos e aumentar as taxas de sucesso dos transplantes (Garcia et al., 2022).

Em síntese, o BioCooler representa um salto tecnológico na medicina, transformando a logística de transporte de órgãos em um processo mais seguro, eficiente e humanizado. Ao unir eletrônica embarcada e IoT, este projeto oferece uma solução concreta para um dos maiores desafios da área da saúde, contribuindo diretamente para a redução de perdas e o salvamento de vidas.

1. Descrição do Problema

O transporte de órgãos para transplantes exige controle rigoroso das condições ambientais, como temperatura e umidade, além de segurança contra impactos ou aberturas indevidas. O método tradicional com caixas térmicas e gelo não oferece controle inteligente ou registro em tempo real das condições durante o transporte, o que pode comprometer a viabilidade do órgão.

2. Objetivo da Solução

- Desenvolver um protótipo de recipiente térmico inteligente que simule o transporte de órgãos com:
 - Monitoramento em tempo real de temperatura, umidade, luminosidade e impacto.
 - o Alertas sonoros e visuais em caso de anomalias.
 - o Armazenamento ou transmissão dos dados monitorados.

3. Requisitos do projeto

O projeto proposto visa superar as limitações dos métodos convencionais ao integrar sensores que monitoram temperatura, umidade, luminosidade e impactos, garantindo que o órgão permaneça em condições ideais durante todo o trajeto. Conforme destacado na Tabela 1 (Requisitos Funcionais), o sistema deve medir e exibir parâmetros críticos (RF01 e RF02), essenciais para manter o órgão dentro de faixas fisiológicas aceitáveis, evitando deterioração; detectar movimentos bruscos (RF03), garantindo que o órgão não sofra danos mecânicos durante o transporte; e aberturas indevidas (RF04) por meio da detecção de luminosidade, prevenindo abertura indevida da tampa, que poderia expor o órgão a contaminantes; o uso de um display externo (RF05) que permite verificação rápida das condições pelo transportador; além de emitir alertas sonoros em situações de risco (RF06), notificando imediatamente sobre falhas, como aumento excessivo de temperatura; e a alimentação autônoma (RF07) que assegura sua operação contínua durante o transporte, independente de tomadas. Essas funcionalidades

são essenciais para evitar danos ao órgão, assegurando que ele chegue em condições adequadas para o transplante.

Tabela 1 - Requisitos Funcionais (RF)

Código	Requisito Funcional
RF01	Medir e exibir a temperatura interna do
	recipiente.
RF02	Medir e exibir a umidade interna do
	recipiente.
RF03	Detectar e registrar movimentos bruscos
	ou quedas.
RF04	Detectar abertura da tampa (mudança de
	luminosidade).
RF05	Exibir dados em um display visível do
	lado externo.
RF06	Emitir alerta sonoro (buzzer) em
	situações críticas.
RF07	Alimentação autônoma via bateria ou
	power bank.

Além dos requisitos funcionais, os Requisitos Não Funcionais (Tabela 2) estabelecem critérios de desempenho e usabilidade, como autonomia energética mínima de quatro horas (RNF01), essencial para viagens longas, onde recargas não são possíveis; e interface de fácil operação (RNF02) voltada para profissionais de saúde sem treinamento técnico avançado. Esses aspectos são fundamentais para garantir que o sistema seja prático e confiável em situações reais, onde falhas podem ter consequências irreversíveis. A integração de sensores de alta precisão (RNF03) para viabilizar dados confiáveis, e a integridade do dispositivo (RNF04) por meio da fixação adequada dos sus componentes, reforçam a necessidade de um projeto bem estruturado e durável.

Tabela 2 - Requisitos Não Funcionais (RNF)

Código	Requisito Não Funcional
RNF01	O sistema deve operar por ao menos 4
	horas sem recarga.
RNF02	A interface deve ser de fácil leitura e
	operação.
RNF03	Os sensores devem ter tempo de resposta
	rápido e precisão adequada.
RNF04	Os componentes devem estar bem
	fixados e protegidos contra possíveis
	movimentos bruscos durante o
	deslocamento.

RNF05	O recipiente deve manter isolamento
	térmico adequado (simulado).

Esta tabela detalha os requisitos não funcionais do projeto "BioCooler", que definem as qualidades e restrições do sistema, cruciais para sua eficácia e confiabilidade, especialmente no contexto de sistemas embarcados e IoT.

A Tabela 3 (Lista de Materiais) detalha os componentes necessários para a implementação do cooler inteligente, como a placa BitDogLab com microcontrolador Raspberry Pi Pico W (responsável pelo processamento central e integração dos sensores), sensores que coletam dados ambientais e de movimento, fundamentais para o monitoramento de temperatura e pressão (BMP280), umidade (SHT31) e luminosidade (BH1750), além de um acelerômetro (MPU6050) para detecção de impactos. Esses elementos serão utilizados com base em sua eficiência e compatibilidade com sistemas embarcados, permitindo o processamento e a transmissão de dados em tempo real, princípios fundamentais da IoT (Tanenbaum & Wetherall, 2021).

Tabela 3 - Lista de Materiais

Item	Quantidade	Descrição
Caixa térmica de isopor (8 a 12L)	1	Recipiente base com isolamento térmico
Placa BitDogLab com Raspberry Pi Pico W	1	Microcontrolador com periféricos integrados (OLED, buzzer, joystick, botões, LED RGB)
Sensor de Temperatura e Pressão BMP280	1	Sensor externo conectado via placa adaptadora I2C
Sensor de Umidade e Temperatura AHT10	1	Sensor externo conectado via placa adaptadora I2C
Sensor de Luminosidade BH1750	1	Sensor externo conectado via placa adaptadora I2C
Acelerômetro e Giroscópio MPU6050	1	Sensor externo conectado via placa adaptadora I2C
Servo motor 9g SG90	1	Atuador externo conectado via placa adaptadora I2C
Teclado matricial 4x4	1	Interface externa conectada via conector IDC direto
Placa para SDCARD SPI	1	Módulo externo conectado via conector IDC direto
Placa extensora I2C com 8 conectores XH	1	Permite conexão simultânea de até 7 sensores I2C

Item	Quantidade	Descrição
Interface DVI/HDMI para BitDogLab	1	Conexão direta via conector IDC (2x7 pinos)
Cabos customizados XH I2C	9	Para conexão dos sensores externos à BitDogLab
Cooler pequeno (5V)	1	Simulação de refrigeração ativa (opcional)
Fonte de energia (power bank ou bateria Li-ion)	1	Alimentação portátil para o sistema
Fios jumper e materiais de fixação	Diversos	Para ligações e montagem interna

Referências:

- Organ Procurement and Transplantation Network (OPTN): Embora o usuário não tenha fornecido informações sobre uma base de dados específica, a OPTN é uma referência primária para dados e políticas de transplante nos EUA, sendo um ponto de referência confiável para a compreensão da demanda e logística de órgãos.
- World Health Organization (WHO): A OMS é uma autoridade global em saúde e, como tal, suas publicações fornecem o contexto para a importância da otimização de processos de saúde, como o transporte de órgãos.
- Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. *IEEE Communications Surveys & Tutorials*, 17(4), 2347-2376. Esta referência foi utilizada para fundamentar o papel dos sistemas embarcados na IoT.
- Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. *Future Generation Computer Systems*, 29(7), 1645-1660. Esta referência foi empregada para descrever os fundamentos da IoT e sua aplicação em projetos.
- CARVALHO, A. et al. Desafios no transporte de órgãos para transplante. Revista Brasileira de Engenharia Biomédica, 2021.
- **GARCIA**, **L. et al.** IoT aplicada à saúde: monitoramento remoto em transplantes. IEEE HealthTech, 2022.
- TANENBAUM, A.; WETHERALL, D. Redes de Computadores. 5^a ed. Pearson, 2021.