Departamento de Engenharia Informática SCC 2016/2017

Relatório

Gonçalo Oliveira Amaral 2015249122 Joaquim Ramires Ferrer 2015260670

Arquitetura do simulador

O simulador criado foi baseado no exemplo fornecido no inforestudante na linguagem Python. Está desenvolvido utilizando o paradigma de programação orientado a objetos e cria simulações baseadas em eventos.

Como usar o simulador

O simulador requer que o módulo PyQt4 (http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyqt4) e a versão Python 3.6 (https://www.python.org/downloads/release/python-360/) estejam instalados. Para correr o simulador, abra a linha de comandos e use o seguinte comando **python App.py**.

Classes presentes no simulador

aleatorio.py

Random

Classe para gerar números aleatórios de acordo com o tipo de distribuição. (exponencial ou normal). Cada objeto criado desta classe tem associada uma stream e é inicializado com uma seed. De forma a que se um objeto for criado com a mesma seed vai retirar a mesma sequência de números aleatórios (que são posteriormente transformados numa normal ou numa exponencial).

Cliente.py

Client

Classe que representa o tipo de cliente, neste caso o tipo de peça (A ou B).

eventos.py

Evento

Classe genérica que representa um evento com o instante em que deve ser executado.

Chegada

Classe que representa uma chegada à fábrica. Inicialmente são criadas duas chegadas, uma para o A e outra para o B. Sempre que uma é executada agenda a próxima chegada do mesmo tipo.

Saida

Classe que representa a saída de um serviço. Quando é criada, é passada a fila a que é associada. Quando é executada retira o objeto da fila a que está associada e põe na próxima fila (isto depende da fila a que está associado).

fila.py

Fila

Classe que representa um serviço, a fila de espera e os clientes a que estão a ser servidos associados a esse serviço. Agenda as saídas sempre que é inserido um cliente no serviço. Cada objeto também vai criando estatísticas com base no que vai acontecendo no seu objeto.

lista.py

Lista

Classe que representa a lista de eventos ordenados pelo tempo de execução com os métodos necessários para gerir a mesma.

rand_genrator.py

Ficheiro fornecido para gerar números aleatórios de acordo com uma stream. Essa stream pode inicializada com uma seed.

simulador.py

Simulador

Classe principal do simulador onde residem todos os métodos para a gestão do mesmo como inicialização dos serviços e da fila de eventos, criação de dois eventos de chegada e execução dos eventos enquanto estes existirem ou de acordo com o tempo ou número de clientes limite. Também é responsável pela agregação das estatísticas das filas.

App.py

App

Classe main (que deve ser chamada). Inicializa o ambiente gráfico e apresenta o output. É também responsável por criar e calcular médias de um número de simulações de acordo com o que o utilizador quer.

Validação Interna

Resultados médios de 10 repetições com os parâmetros descritos no enunciado:

Como podemos ver os valores estabilizaram por volta dos 1000 clientes.

Validação externa

Para fazer uma validação independente do simulador criado, utilizamos o programa GPSS usado nas aulas. Usando os parâmetros descritos no enunciado e servindo 1000 clientes, fizemos 1000 repetições da simulação:

GPSS

	Média espera	Utilização média	Comp médio fila
Perfuração A	0.919	0.400	0.180
Polimento A	7.413	0.782	1.453
Perfuração B	0.584	0.567	0.440
Polimento B	78.301	0.981	58.886
Envernizamento	0.091	0.596	0.078

Simulador

Peças grandes (A)						
Perfuração	Media espera	0.737	Utilizacao media	0.402	Comp medio fila	0.141
Polimento	Media espera	7.600	Utilizacao media	0.797	Comp medio fila	1.622
Clientes atendidos	Perfuracao	233,652	Polimento	231.216		
Peças grandes (B)						
Perfuração	Media espera	0.561	Utilizacao media	0.564	Comp medio fila	0.482
Polimento	Media espera	69.341	Utilizacao media	0.994	Comp medio fila	102.276
Clientes atendidos	Perfuracao	873.926	Polimento	769.650		
Envernizamento	Media espera	0.093	Utilizacao media	0.602	Comp medio fila	0.014
Clientes atendidos	1000.000	Tempo	simulacao	1136	Nº repetições	1000

Usando os parâmetros descritos no enunciado e servindo durante 1200 unidades temporais (valor arredondado do tempo médio da simulação para 1000 clientes onde a simulação estabiliza), fizemos 1000 repetições da simulação:

GPSS

	Média espera	Utilização média	Comp médio fila
Perfuração A	0.901	0.400	0.177
Polimento A	7.360	0.786	1.448
Perfuração B	0.584	0.571	0.443
Polimento B	79.208	0.981	59.934
Envernizamento	0.091	0.596	0.078

Simulador

Clientes atendidos	1031,996		simulacao	1200	Nº repetições	1000
Envernizamento	Media espera	0.093	Utilizacao media	0.602	Comp medio fila	0.077
Clientes atendidos	Perfuracao	901.824	Polimento	794.500		
Polimento	Media espera	71.430	Utilizacao media	0.994	Comp medio fila	105.324
Perfuração	Media espera	0.561	Utilizacao media	0.564	Comp medio fila	0.402
Peças grandes (B)						
Clientes atendidos	Perfuracao	241.186	Polimento	238.782		
Polimento	Media espera	7.592	Utilizacao media	0.797	Comp medio fila	1.599
Perfuração	Media espera	0.736	Utilizacao media	0.402	Comp medio fila	0.147
Peças grandes (A)						

Podemos concluir que a precisão do simulador criado se aproxima dos resultados obtidos no GPSS comprovando assim a implementação do simulador.

Variação de parâmetros

Variação da média de chegada de A de 5 para 10

Clientes atendidos	1000.000	Tempo	simulacao	1306	Nº repeticoes	10
Envernizamento	Media espera	0.055	Utilizacao media	0.532	Comp medio fila	0.000
Clientes atendidos	Perfuracao	982,400	Polimento	866.600		
Po <mark>limento</mark>	Media espera	77.353	Utilizacao media	0.995	Comp medio fila	113,80
Perfuração	Media espera	0.560	Utilizacao media	0.560	Comp medio fila	0.200
Peças grandes (B)						
Clientes atendidos	Perfuracao	134,500	Polimento	134, 100		
Polimento	Media espera	1.480	Utilizacao media	0.414	Comp medio fila	0.000
Perfuração	Media espera	0.324	Utilizacao media	0.205	Comp medio fila	0.000
Peças grandes (A)						

Como dobramos o tempo com que chegam peças, verificamos, como esperado, que a taxa de utilização da perfuração e do polimento de A diminui para metade e uma pequena diminuição na taxa de utilização do envernizamento pois o bottleneck do sistema reside no polimento de B.

Variação da média de chegada de A de 5 para 4.1

Peças grandes (A)						
Perfuração	Media espera	1.048	Utilizacao media	0.482	Comp medio fila	0.100
Polimento	Media espera	27,367	Utilizacao media	0.947	Comp medio fila	7.500
Clientes atendidos	Perfuracao	270.300	Polimento	261.800		
Peças grandes (B)						
Perfuração	Media espera	0.547	Utilizacao media	0.560	Comp medio fila	0.300
Polimento	Media espera	66.547	Utilizacao media	0.994	Comp medio fila	94.800
Clientes atendidos	Perfuracao	836.000	Polimento	739.200		
Envernizamento	Media espera	0.099	Utilizacao media	0.625	Comp medio fila	0.000
Clientes atendidos	1000.000	Tempo	simulacao	1116	Nº repetições	10

Como aproximamos o tempo de chegada de A da média do polimento de A, a taxa de utilização sobe para quase 100% criando assim um bottleneck, confirmado pela taxa de utilização do envernizamento que aumenta.

Variação da média de tempo de serviço da perfuração de A de 2 para 4.9

Peças g <mark>randes (A</mark>)						
Perfuração	Media espera	29.695	Utilizacao media	0.953	Comp medio fila	6.900
Polimento	Media espera	0.455	Utilizacao media	0.781	Comp medio fila	0.200
Clientes atendidos	Perfuracao	227.500	Polimento	226.300		
Peças grandes (B)						
Perfuração	Media espera	0.560	Utilizacao media	0.561	Comp medio fila	0.900
Polimento	Media espera	69.352	Utilizacao media	0.995	Comp medio fila	103.100
C <mark>lientes atendido</mark> s	Perfuracao	879.500	Polimento	774.400		
Envernizamento	Media espera	0.083	Utilizacao media	0.596	Comp medio fila	0.000
Clientes atendidos	1000.000	Tempo	simulacao	1163	Nº repetições	10

Ao aproximarmos o tempo médio de servico do tempo do intervalo de chegada de peças A a sua taxa de utilização irá naturalmente aumentar como se confirma, criando um bottleneck que alivia o serviço de polimento de A.

Variação da média de tempo de serviço da perfuração de A de 2 para 1

Clientes atendidos	1000.000	Tempo	simulacao	1158	Nº repetições	10
Envernizamento	Media espera	0.085	Utilizacao media	0,600	Comp medio fila	0.000
Clientes atendidos	Perfuracao	874.100	Polimento	769.700		
Polimento	Media espera	68.929	Utilizacao media	0.995	Comp medio fila	102.400
Perfuração	Media espera	0.559	Utilizacao media	0.562	Comp medio fila	0.900
Peças grandes (B)						
Clientes atendidos	Perfuracao	233.700	Polimento	231.200		
Polimento	Media espera	8.295	Utilizacao media	0.804	Comp medio fila	1.600
Perfuração	Media espera	0.197	Utilizacao media	0.206	Comp medio fila	0.100
Peças grandes (A)						

Ao diminuirmos a média do serviço de perfuração de A para metade a sua utilização também diminui para metade, mas como este serviço não perturba negativamente o resto do sistema, não vemos mudanças no mesmo.

Variação do desvio padrão da perfuração de A de 0.7 para 1.4

Peças grandes (A)						
Perfuração	Media espera	1.057	Utilizacao media	0.411	Comp medio fila	0.400
Polimento	Media espera	7.685	Utilizacao media	0.803	Comp medio fila	1.200
Clientes atendidos	Perfuracao	233,200	Polimento	231.100		
Peças grandes (B)						
Perfuração	Media espera	0.559	Utilizacao media	0.562	Comp medio fila	0.900
Polimento	Media espera	68.929	Utilizacao media	0.995	Comp medio fila	102.600
Clientes atendidos	Perfuracao	874.500	Polimento	769.900		
Envernizamento	Media espera	0.089	Utilizacao media	0.600	Comp medio fila	0.100
Clientes atendidos	1000.000	Tempo	simulacao	1158	Nº repetições	10

Como esperado, o aumento do desvio padrão não causa mudanças no sistema, apenas aumenta o tempo médio de pois estamos a considerar uma amostra de 1000, para uma amostra infinitamente grande a variação do desvio padrão seria negligenciável.

Variação do desvio padrão da perfuração de A de 0.7 para 0.1

Peças grandes (A)						
Perfuração	Media espera	0.682	Utilizacao media	0.401	Comp medio fila	0.300
Polimento	Media espera	7.796	Utilizacao media	0.803	Comp medio fila	1.400
Clientes atendidos	Perfuracao	233,400	Polimento	231.100		
Peças grandes (B)						
Perfuração	Media espera	0.559	Utilizacao med <mark>i</mark> a	0.562	Comp medio fila	0.900
Polimento	Media espera	68.915	Utilizacao media	0.995	Comp medio fila	102.500
Clientes atendidos	Perfuracao	874.500	Polimento	770.000		
Envernizamento	Media espera	0.088	Utilizacao media	0.600	Comp medio fila	0.100
Clientes atendidos	1000.000	Tempo	simulacao	1158	Nº repetições	10

Seguindo a linha de pensamentos anterior verificamos que diminuir o desvio padrão apenas diminui o tempo médio de espera.

Variação do número de máquinas da perfuração de A de 1 para 2

Peças grandes (A)						
Perfuração	Media espera	0.056	Utilizacao media	0.201	Comp medio fila	0.000
Polimento	Media espera	8.365	Utilizacao media	0.803	Comp medio fila	1.500
Clientes atendidos	Perfuracao	233.500	Polimento	231.100		
Peças grandes (B)						
Perfuração	Media espera	0.559	Utilizacao media	0.562	Comp medio fila	0.800
Polimento	Media espera	68.907	Utilizacao media	0.995	Comp medio fila	102.600
Clientes atendidos	Perfuracao	874.600	Polimento	770.000		
Envernizamento	Media espera	0.089	Utilizacao media	0.600	Comp medio fila	0.100
Clientes atendidos	1000.000	Tempo	simulacao	1158	Nº repetições	10

Semelhante 'a diminuição do tempo médio de serviço da perfuração de A, vemos uma descida da taxa de utilização para metade e menor tempo de espera.

Variação da média do tempo de serviço do polimento de A de 4 para 2

Peças grandes (A)						
Perfuração	Media espera	0.779	Utilizacao media	0.401	Comp medio fila	0.100
Polimento	Media espera	0.556	Utilizacao media	0.412	Comp medio fila	0.100
Clientes atendidos	Perfuracao	232.800	Polimento	232.200		
Peças grandes (B)						
Perfuração	Media espera	0.558	Utilizacao media	0.562	Comp medio fila	1.000
Polimento	Media espera	68.842	Utilizacao media	0.995	Comp medio fila	102.600
Clientes atendidos	Perfuracao	873,200	Polimento	768.600		
Envernizamento	Media espera	0.114	Utilizacao media	0.601	Comp medio fila	0.000
Clientes atendidos	1000.000	Tempo	simulacao	1157	Nº repetiçoes	10

Ao reduzirmos a média do tempo do serviço de polimento de peças A para metade, como expectável, a taxa de utilização desceu para metade, removendo este serviço como potencial bottleneck.

Variação da média do tempo de serviço do polimento de A de 4 para 4.9

Peças grandes (A)						
Perfuração	Media espera	0.775	Utilizacao media	0.401	Comp medio fila	0.000
Polimento	Media espera	33.277	Utilizacao media	0.952	Comp medio fila	7.800
Clientes atendidos	Perfuracao	234.700	Polimento	225.900		
Peças grandes (B)						
Perfuração	Media espera	0.560	Utilizacao media	0.562	Comp medio fila	0.700
Polimento	Media espera	69.411	Utilizacao media	0.995	Comp medio fila	103.200
Clientes atendidos	Perfuracao	880.300	Polimento	775.100		
Envernizamento	Media espera	0.082	Utilizacao media	0.596	Comp medio fila	0.000
Clientes atendidos	1000.000	Tempo	simulacao	1161	Nº repetições	10

Aproximando a média de tempo deste serviço do tempo de chegada de cada peça obtemos um taxa de utilização perto de 100% pois a frequência com que chegam peças ao sistema e' muito próxima da frequência a que o serviço as liberta.

Variação do desvio padrão do polimento de A de 1.2 para 2.4

Peças grandes (A)						
Perfuração	Media espera	0.778	Utilizacao media	0.401	Comp medio fila	0.200
Polimento	Media espera	11.311	Utilizacao media	0.817	Comp medio fila	1.900
Clientes atendidos	Perfuracao	233,500	Polimento	230.700		
Peças grandes (B)						
Perfuração	Media espera	0.559	Utilizacao media	0.562	Comp medio fila	0.700
Polimento	Media espera	68.956	Utilizacao media	0.995	Comp medio fila	102.800
Clientes atendidos	Perfuracao	875,200	Polimento	770.400		
Envernizamento	Media espera	0.109	Utilizacao media	0.599	Comp medio fila	0.000
Clientes atendidos	1000.000	Tempo	simulacao	1158	Nº repetições	10

Estes resultados vão de acordo com o que foi visto anteriormente na alteração do desvio padrão, apenas houve alterações significativas na média de espera do serviço.

Variação do desvio padrão do polimento de A de 1.2 para 0.6

Clientes atendidos	1000.000	Tempo	simulacao	1158	Nº repetições	10
Envernizamento	Media espera	0.085	Utilizacao media	0.600	Comp medio fila	0.000
Clientes atendidos	Perfuracao	874.200	Polimento	769.700		
Polimento	Media espera	68.941	Utilizacao media	0.995	Comp medio fila	102.500
Perfuraçao	Media espera	0.559	Utilizacao media	0.562	Comp medio fila	0.900
Peças grandes (B)						
Clientes atendidos	Perfuracao	233,300	Polimento	231.200		
Polimento	Media espera	6.701	Utilizacao media	0.799	Comp medio fila	1.200
Perfuração	Media espera	0.777	Utilizacao media	0.401	Comp medio fila	0.300
Peças <mark>grandes (A)</mark>						

E mais uma vez confirma-se que a diminuição do desvio padrão apenas afeta a média de espera.

Variação do número de máquinas do serviço polimento de A de 1 para 2

Peças grandes (A)						
Perfuração	Media espera	0.779	Utilizacao media	0.401	Comp medio fila	0.100
Polimento	Media espera	0.203	Utilizacao media	0.403	Comp medio fila	0.000
Clientes atendidos	Perfuracao	232,900	Polimento	232.100		
Peças grandes (B)						
Perfuração	Media espera	0.559	Utilizacao media	0.562	Comp medio fila	0.800
Polimento	Media espera	68.868	Utilizacao media	0.995	Comp medio fila	102.700
Clientes atendidos	Perfuracao	873.500	Polimento	768.800		
Envernizamento	Media espera	0.118	Utilizacao media	0.600	Comp medio fila	0.000
Clientes atendidos	1000.000	Tempo	simulacao	1157	Nº repetições	10

Mais uma vez, obtivemos um resultado expectável. Ao dobrarmos o número de máquinas, a utilização média do serviço desce para metade removendo o bottleneck deste servico, reduzindo abruptamente o tempo médio de espera.

Variação da média de chegada de peças B de 1.33 para 3

Peças grandes (A)						
Perfuração	Media espera	0.744	Utilizacao media	0.400	Comp medio fila	0.100
Polimento	Media espera	7.631	Utilizacao media	0.801	Comp medio fila	1.800
Clientes atendido	Perfuracao	378.700	Polimento	376.000		
Peças grandes (B)						
Perfuração	Media espera	0.137	Utilizacao media	0.249	Comp medio fila	0.000
Polimento	Media espera	0.504	Utilizacao media	0.498	Comp medio fila	0.600
Clientes atendido	Perfuracao	626.500	Polimento	624.700		
Envernizamento	Media espera	0.043	Utilizacao media	0.370	Comp medio fila	0.000
Envernizamento Clientes atendi	•		Utilizacao media		Comp medio fila Nº repetiçoes	0.000

Reparamos que a utilização média do polimento B diminui para 50% o que corresponde às expectativas pois o fluxo de entrada aí será 1 peça de 3 em 3 minutos (pois a perfuração de B continua sem ser um bottleneck) e como há 2 máquinas de polimento, em média uma estará vazia (50% de utilização). Verificamos que a utilização de perfuração de B diminui para menos de metade o que faz sentido também pois o fluxo de entrada diminui para menos de metade.

Variação de média de chegada de B de 1.33 para 0.8

Peças grandes (A)						
Perfuração	Media espera	0.778	Utilizacao media	0.401	Comp medio fila	0.100
Polimento	Media espera	7.747	Utilizacao media	0.802	Comp medio fila	1.300
Clientes atendido	Perfuracao	232.600	Polimento	230.400		
Peças grandes (B)						
Perfuração	Media espera	4.934	Utilizacao media	0.923	Comp medio fila	8.000
Polimento	Media espera	267.709	Utilizacao media	0.998	Comp medio fila	660.600
Clientes atendido	Perfuracao	1433.200	Polimento	770.600		
Envernizamento	Media espera	0.091	Utilizacao media	0.601	Comp medio fila	0.000
Clientes atendi	d 1000.000	Гетро	simulacac 11	49	Nº repetições	10

Nota-se que tudo faz sentido. Como o número de peças a chegar à perfuração de B é ligeiramente mais pequeno (0.75 por minuto para 0.8) que a capacidade que este tem de as despachar, a utilização média fica praticamente nos 100%. A utilização média do polimento continua virtualmente nos 100% mas o tempo de espera aumenta. A utilização do envernizamento continua igual pois o polimento de B é um bottleneck do sistema.

Variação de média de tempo de serviço da perfuração de B de 0.75 para 1.33

Verificamos que tudo acontece como esperaríamos. Ao aumentar o tempo de serviço para o mesmo tempo que chegam pacotes B a taxa de utilização fica próxima de 100%.

Variação da média de tempo de serviço de perfuração de B de 0.75 para 0.5

Ao diminuirmos um pouco, a taxa de utilização também desce na mesma proporção. O resto das filas não se altera de forma significativa pois não criamos nenhum bottleneck.

Alteração do desvio padrão do tempo de serviço da perfuração de B de 0.3 para 1

Peças grandes (A)						
Perfuração	Media espera	0.778	Utilizacao media	0.401	Comp medio fila	0.300
Polimento	Media espera	7.743	Utilizacao media	0.803	Comp medio fila	1.400
Clientes atendido	Perfuracao	233.500	Polimento	231.200		
Peças grandes (B)						
Perfuração	Media espera	1.521	Utilizacao media	0.659	Comp medio fila	1.700
Polimento	Media espera	69.024	Utilizacao media	0.994	Comp medio fila	102.100
Clientes atendido	Perfuracao	873.800	Polimento	769.700		
Envernizamento	Media espera	0.088	Utilizacao media	0.599	Comp medio fila	0.000
Clientes atendi	d 1000.000	Гетро	simulacac 11	60	Nº repetições	10

Mais uma vez parece estar tudo certo. Ao mudarmos o desvio padrão estamos a aumentar a variabilidade do tempo. Com 1000 clientes estas variações só vão fazer diferença na utilização média final se alterarem a média da distribuição (que podem fazer pois qualquer tempo de serviço que fique abaixo de 0 fica a 0). No caso de 1 aumenta a utilização média.

Alteração do desvio padrão do tempo de serviço da perfuração de B de 0.3 para 0.01

Resultado	s da simulação					
Peças grandes (A)						
Perfuração	Media espera	0.777	Utilizacao media	0.401	Comp medio fila	0.300
Polimento	Media espera	7.744	Utilizacao media	0.803	Comp medio fila	1.300
Clientes atendido	Perfuracao	233.300	Polimento	231.100		
Peças grandes (B)						
Perfuração	Media espera	0.494	Utilizacao media	0.563	Comp medio fila	0.900
Polimento	Media espera	68.952	Utilizacao media	0.995	Comp medio fila	102.600
Clientes atendido	Perfuracao	874.300	Polimento	769.700		
Envernizamento	Media espera	0.088	Utilizacao media	0.600	Comp medio fila	0.000
Clientes atendi	d 1000.000	Гетро	simulacac 11	59	Nº repetiçoes	10

No caso de 0.01 diminui a média de espera pois diminui a "variância" que causa a formação de filas nos serviços que não são bottleneck.

Alteração do número de máquinas de perfuração de B de 1 para 2

A utilização média desce para metade que coincide com o esperado.

Variação de média de tempo de serviço de polimento de B de 3 para 4

Peças grandes (A)						
Perfuração	Media espera	0.756	Utilizacao media	0.395	Comp medio fila	0.300
Polimento	Media espera	7.330	Utilizacao media	0.793	Comp medio fila	1.300
Clientes atendido	Perfuracao	285.100	Polimento	282.900		
Peças grandes (B)						
Perfuração	Media espera	0.554	Utilizacao media	0.559	Comp medio fila	0.600
Polimento	Media espera	241.379	Utilizacao media	0.998	Comp medio fila	359.300
Clientes atendido	Perfuracao	1079.100	Polimento	717.800		
Envernizamento	Media espera	0.053	Utilizacao media	0.485	Comp medio fila	0.000
Clientes atendi	d 1000.000	Гетро	simulacac 14	48	Nº repetições	10

Verificamos que 1 segundo aumenta enormemente o tempo médio de espera no polimento de B e reduz a utilização média do envernizamento. Faz sentido pois o tempo de espera aumenta 1 segundo por cada cliente que está na fila e ao reduzir o flow de saída do polimento de B, o flow de entrada do envernizamento vai descer.

Variação de média de tempo de serviço de polimento de B de 3 para 2.9

Peças grandes (A)						
Perfuração	Media espera	0.789	Utilizacao media	0.400	Comp medio fila	0.100
Polimento	Media espera	7.820	Utilizacao media	0.801	Comp medio fila	1.200
Clientes atendido	Perfuracao	226.800	Polimento	224.900		
Peças grandes (B)						
Perfuração	Media espera	0.552	Utilizacao media	0.562	Comp medio fila	0.800
Polimento	Media espera	51.462	Utilizacao media	0.993	Comp medio fila	75.100
Clientes atendido	Perfuracao	853.100	Polimento	776.000		
Envernizamento	Media espera	0.098	Utilizacao media	0.615	Comp medio fila	0.000
Clientes atendi	d 1000.000	Гетро	simulacac 11	31	Nº repetições	10

Ao reduzirmos um pouco a média vemos que o tempo de espera diminui como esperado e a utilização média do envernizamento aumenta.

Variação do desvio padrão do tempo de serviço do polimento de B de 1 para 1.5

eças grandes (A)						
Perfuração	Media espera	0.775	Utilizacao media	0.402	Comp medio fila	0.200
Polimento	Media espera	7.723	Utilizacao media	0.803	Comp medio fila	1.600
Clientes atendido	Perfuracao	234.800	Polimento	232.300		
Peças grandes (B)						
Perfuração	Media espera	0.561	Utilizacao media	0.562	Comp medio fila	0.900
Polimento	Media espera	71.630	Utilizacao media	0.995	Comp medio fila	106.700
Clientes atendido	Perfuracao	877.800	Polimento	769.100		
Envernizamento	Media espera	0.132	Utilizacao media	0.597	Comp medio fila	0.100
Clientes atendi	d 1000.000	Гетро	simulacac 11	62	Nº repetições	10

Acontece o previsto como explicado há pouco.

Variação do desvio padrão do tempo de serviço do polimento de B de 1 para 0.5

Peças grandes (A)						
Perfuração	Media espera	0.777	Utilizacao media	0.401	Comp medio fila	0.400
Polimento	Media espera	7.760	Utilizacao media	0.803	Comp medio fila	1.100
Clientes atendido	Perfuracao	232.900	Polimento	230.800		
Peças grandes (B)						
Perfuração	Media espera	0.559	Utilizacao media	0.562	Comp medio fila	0.900
Polimento	Media espera	68.518	Utilizacao media	0.995	Comp medio fila	101.700
Clientes atendido	Perfuracao	873.500	Polimento	769.800		
Envernizamento	Media espera	0.074	Utilizacao media	0.600	Comp medio fila	0.000
Clientes atendi	d 1000.000	Гетро	simulacac 11	58	Nº repetiçoes	10

Mais uma vez acontece o previsto como explicado há pouco.

Alteração do número de máquinas de polimento de B de 2 para 3

Peças grandes (A)						
Perfuração	Media espera	0.808	Utilizacao media	0.399	Comp medio fila	0.000
Polimento	Media espera	7.997	Utilizacao media	0.800	Comp medio fila	1.100
Clientes atendido	Perfuracao	211.300	Polimento	209.400		
Peças grandes (B)						
Perfuração	Media espera	0.548	Utilizacao media	0.562	Comp medio fila	1.300
Polimento	Media espera	0.939	Utilizacao media	0.750	Comp medio fila	1.200
Clientes atendido	Perfuracao	795.900	Polimento	792.100		
Envernizamento	Media espera	0.223	Utilizacao media	0.659	Comp medio fila	0.100
Clientes atendi	d 1000.000	Гетро	simulacac 10	79	Nº repetições	10

Podemos ver que diminui a utilização média do polimento para 0.75. O que significa que a chegada de peças ocorre a um ritmo de 75% do tempo que 3 máquinas conseguem tratar o polimento.

Portanto, 1 máquina de polimento trata em média 1 peça a cada 3 segundos. Logo 3 máquinas tratam 1 peça a cada 1 segundo. 1 segundo é precisamente ¼ do tempo de chegada de peças B (1.3 segundos) confirmando-se de forma matemática o resultado.

Variação da tempo médio do serviço de envernizamento de 1.4 para 3

Peças grandes (A)						
Perfuração	Media espera	0.761	Utilizacao media	0.397	Comp medio fila	0.200
Polimento	Media espera	7.389	Utilizacao media	0.794	Comp medio fila	2.800
Clientes atendidos	Perfuracao	298.900	Polimento	295,200		
Peças grandes (B)						
Perfuração	Media espera	0.553	Utilizacao media	0.559	Comp medio fila	0.200
Polimento	Media espera	88.268	Utilizacao media	0.996	Comp medio fila	128.500
Clientes atendidos	Perfuracao	1125.000	Polimento	994,500		
Envernizamento	Media espera	170.618	Utilizacao media	0.996	Comp medio fila	287.700
Clientes atendidos	1000.000	Tempo	simulacao	1512	Nº repetiçoes	10

Como era de esperar ao aproximarmos o tempo médio do serviço de envernizamento do tempo médio que as peças dos outros servicos chegam iremos alcançar uma utilização perto dos 100% e criando um bottleneck.

Variação do tempo médio do serviço de envernizamento de 1.4 para 0.7

Peças grandes (A)						
Perfuração	Media espera	0.778	Utilizacao media	0.401	Comp medio fila	0.100
Polimento	Media espera	7.746	Utilizacao media	0.803	Comp medio fila	1.100
Clientes atendidos	Perfuracao	233,100	Polimento	231.100		
Peças grandes (B)						
Perfuraç <mark>a</mark> o	Media espera	0.558	Utilizacao media	0.562	Comp medio fila	1.000
Polimento	Media espera	68.888	Utilizacao media	0.995	Comp medio fila	102,300
Clientes atendidos	Perfuracao	873.800	Polimento	769.500		
Envernizamento	Media espera	0.011	Utilizacao media	0.300	Comp medio fila	0.000
Clientes atendidos	1000.000	Tempo	simulacao	1158	Nº repetiçoes	10

Ao diminuirmos o tempo médio para metade também iremos reduzir a utilização média para metade

Variação do desvio padrão do serviço de envernizamento de 0.3 para 0.6

Peças grandes (A)						
Perfuração	Media espera	0.777	Utilizacao media	0.401	Comp medio fila	0.300
Polimento	Media espera	7.745	Utilizacao media	0.803	Comp medio fila	1.300
Clientes atendidos	Perfuracao	233.300	Polimento	231, 100		
Peças <mark>grandes</mark> (B)						
Perfuração	Media espera	0.559	Utilizacao media	0.562	Comp medio fila	0.900
Polimento	Media espera	68.932	Utilizacao media	0.995	Comp medio fila	102,400
Clientes atendidos	Perfuracao	874.400	Polimento	770.000		
Envernizamento	Media espera	0.109	Utilizacao media	0.600	Comp medio fila	0.100
Clientes atendidos	1000.000	Tempo	simulacao	1159	Nº repetições	10

Tal como foi observado anteriormente alterações no desvio padrão apenas afetam a média de espera do serviço.

Variação do desvio padrão do serviço de envernizamento de 0.3 para 0.1

Peças grandes (A)						
Perfuração	Media espera	0.778	Utilizacao media	0.401	Comp medio fila	0.200
Polimento	Media espera	7.744	Utilizacao media	0.803	Comp medio fila	1.300
Clientes atendidos	Perfuracao	233.300	Polimento	231.100		
Peças grandes (B)						
Perfuração	Media espera	0.558	Utilizacao media	0.562	Comp medio fila	1.100
Polimento	Media espera	68.915	Utilizacao media	0.995	Comp medio fila	102,500
Clientes atendidos	Perfuracao	874.300	Polimento	769.800		
Envernizamento	Media espera	0.083	Utilizacao media	0.601	Comp medio fila	0.000
Clientes atendidos	1000.000	Tempo	simulacao	1158	Nº repetições	10

Ver comentário anterior

Alteração do número de máquinas do serviço de envernizamento de 2 para 3

Peças grandes (A)						
Perfuração	Media espera	0.777	Utilizacao media	0.401	Comp medio fila	0.400
Polimento	Media espera	7.744	Utilizacao media	0.803	Comp medio fila	1.300
Clientes atendidos	Perfuracao	233,300	Polimento	231.100		
Peças grandes (B)						
Perfuração	Media espera	0.559	Utilizacao media	0.562	Comp medio fila	0.800
Polimento	Media espera	68.913	Utilizacao media	0.995	Comp medio fila	102.600
Clientes atendidos	Perfuracao	874.500	Polimento	769.900		
Envernizamento	Media espera	0.003	Utilizacao media	0.400	Comp medio fila	0.000
Clientes atendidos	1000.000	Tempo	simulacao	1158	Nº repetições	10

Confirma-se os resultados obtidos com este tipo de alterações.

Alteração do número de máquinas do serviço de envernizamento de 2 para 1

Peças grandes (A)						
Perfuração	Media espera	0.754	Utilizacao media	0.394	Comp medio fila	0.000
Polimento	Media espera	7.409	Utilizacao media	0.795	Comp medio fila	0.800
Clientes atendidos	Perfuracao	277.300	Polimento	275.800		
Peças grandes (B)						
Perfuração	Media espera	0.555	Utilizacao media	0.560	Comp medio fila	0.500
Polimento	Media espera	82.451	Utilizacao media	0.996	Comp medio fila	121.200
Clientes atendidos	Perfuracao	1049.900	Polimento	926.700		
Envernizamento	Media <mark>esp</mark> era	120.832	Utilizacao media	0.996	Comp medio fila	201.500
Clientes atendidos	1000.000	Tempo	simulacao	1417	Nº repetiçoes	10

Ver comentário anterior

Perguntas Enunciado

Alínea c) solução i) - Acrescentar uma máquina ao polimento de B

Peças grandes (A)						
Perfuração	Media espera	0.808	Utilizacao media	0.399	Comp medio fila	0.000
Polimento	Media espera	7.997	Utilizacao media	0.800	Comp medio fila	1.100
Clientes atendido	Perfuracao	211.300	Polimento	209.400		
Peças grandes (B)						
Perfuração	Media espera	0.548	Utilizacao media	0.562	Comp medio fila	1.300
Polimento	Media espera	0.939	Utilizacao media	0.750	Comp medio fila	1.200
Clientes atendido	Perfuracao	795.900	Polimento	792.100		
Envernizamento	Media espera	0.223	Utilizacao media	0.659	Comp medio fila	0.100
Clientes atendi	d 1000.000	Гетро	simulacac 10	79	Nº repetições	10

Alínea c) solução ii) - Substituir por 2 máquinas com média de processamento de 1.7 minutos

			Utilizacao media	0.800	Comp medio fila	1.100
Clientes atendido	Perfuracao	211.000	Polimento	209.100		
Peças grandes (B)						
Perfuração M	Media espera	0.548	Utilizacao media	0.562	Comp medio fila	0.900
Polimento M	Media espera	0.560	Utilizacao media	0.646	Comp medio fila	1.100
Clientes atendido	Perfuracao	795.200	Polimento	792.300		

Conclusões alínea c)

A solução 2 é superior pois tem uma utilização média mais baixa o que, por um lado, permitiu baixar o tempo médio na fila e, por outro, deixou mais espaço para aumentar a produção.

A solução 1 usa os seus recursos de forma mais eficiente para a produção atual e para o preço que custa implementá-la.

Caso não fosse previsível um aumento de produção então a solução 1 seria preferível devido a conseguir, em média, tratar de todos os produtos B que chegam sendo mais barata que a solução 2.

Conclusões alínea d)

Para a solução 1, há 3 máquinas cada uma a tratar uma peça de 3 em 3 minutos. Em média isto dá 1 peça por minuto. Logo se o fluxo de entrada for este, à partida não haverá acumulação de fila. (Apenas a atribuída às variâncias estatísticas). Então com 3 máquinas podemos aumentar a produção para este valor.

Para a solução 2, há 2 máquinas cada uma a tratar uma peça de 1.7 em 1.7 minutos. Em média tratam 1 peça por 0.85 minutos (1/0.85 peças por minuto). Ou seja podemos aumentar a produção para este valor. Reparamos que o serviço de perfuração B não vai ser bottleneck.

Sendo estas as produções máximas sem sacrificar eficiência do serviço então temos esta inequação para x minutos:

```
-5800 + 0.05 * x * 1/0.85 > -5000 + 0.05 * x * 1 \Leftrightarrow 0.05 * x/0.85 - 0.05x > 800 \Leftrightarrow x > 800/0.005 * 0.85/0.15 \Leftrightarrow x > 90666 minutos
```

90666 minutos é equivalente a cerca de 189 dias de 8h que é equivalente a 9.5 meses de 20 dias.

Conclusão: A solução 2 compensaria após cerca de 9.5 meses.

Relatório com 3 máquinas normais e tempos entre chegadas de 1.05 minutos (para não criar fila devido às variâncias):

Peças grandes (A)						
Perfuração	Media espera	0.757	Utilizacao media	0.400	Comp medio fila	0.200
Polimento	Media espera	8.163	Utilizacao media	0.801	Comp medio fila	1.000
Clientes atendido	Perfuracao	18209.000	Polimento	18207.300		
Peças grandes (B)						
Perfuração	Media espera	1.089	Utilizacao media	0.715	Comp medio fila	0.400
Polimento	Media espera	10.643	Utilizacao media	0.954	Comp medio fila	5.800
Clientes atendido	Perfuracao	86762.400	Polimento	86754.100		
Envernizamento	Media espera	0.360	Utilizacao media	0.807	Comp medio fila	0.700
Clientes atendi	d 104959.10	0 rempo	simulacac 91	000 1	N° repetiçoes	10

Relatório com 2 máquinas que polem 1 peça com um tempo seguindo uma normal com média de 1.7 minutos e com peças B a serem produzidas a 1 peça de 0.85 em 0.85 minutos (em média):

🖲 🗊 Resultado	s da simulação					
Peças grandes (A)						
Perfuração	Media espera	0.757	Utilizacao media	0.400	Comp medio fila	0.300
Polimento	Media espera	8.163	Utilizacao media	0.801	Comp medio fila	1.000
Clientes atendido	Perfuracao	18209.000	Polimento	18207.300		
Peças grandes (B)						
Perfuração	Media espera	2.198	Utilizacao media	0.835	Comp medio fila	4.300
Polimento	Media espera	10.979	Utilizacao media	0.956	Comp medio fila	25.900
Clientes atendido	Perfuracao	101246.300	Polimento	101218.400		
Envernizamento	Media espera	1.719	Utilizacao media	0.919	Comp medio fila	1.400
Clientes atendi	d 119422.50	00 Гетро	simulacac 91	000	lº repetiçoes	10

Podemos ver que a diferença de clientes atendidos foi de cerca de 15000 em média. 15000*0.05 dá cerca de 750 euros que é próximo dos 800 que diferem uma solução da outra. Poderíamos aproximar a produção dos seus limites teóricos e chegar aos 800 euros de diferença.