Fusers in homogenous ensemble of undersampled majority class for highly imbalanced data classification

Paweł Ksieniewicz

PAWEL.KSIENIEWICZ@PWR.EDU.PL

Department of Systems and Computer Networks Faculty of Electronics Wrocław University of Science and Technology

Editor: Editor's name

Abstract

This is the abstract for this article.

Keywords: classification, classifier ensemble, undersampling, imbalanced data

1. Introduction

Additionally, in incremental learning, if the majority-class objects outnumber greatly the minority class, the latter can be completely ignored He and Garcia (2009). The aforementioned issues are reasons why most existing classification methods for imbalanced data are restricted to the *offline* learning only, i.e., a case where the entire data set is provided prior to the analysis.

Most of the classification algorithms assume that there are no significant disproportions among instances from different classes. Nevertheless, in many practical tasks, we may observe that instances from one class (so-called majority class) significantly outnumber the objects from remaining classes (minority class). Most of traditional classifiers have a bias in favor of the majority class although more often the minority class is more interesting, because misidentification of an instance belonging to it is usually much more expensive than assigning an instance from majority class to minority one. A good example is an undetected fraud that would be more expensive than the cost of additional analysis of a correct transaction classified as fraudless transaction. Such a problem is known as imbalanced data classification Sun et al. (2009); Wang et al. (2017), where an unequal number of instances from the examined classes plays a key role during the classifier learning. Various approaches have been proposed in the literature to tackle this challenging difficulty embedded in the nature of data. Usually, the researchers are focusing on maximizing the correct minority class classification. At the same time, performance on the majority class cannot be neglected.

In this project we will focus on binary imbalanced problems, because this setup is the one most frequently studied in the literature and most commonly meet in practical problems, e.g., fault detection or spam filtering. Therefore, another important issue is proposing an appropriate quality measure that would be adequate for imbalanced data classification Elazmeh et al. (2006).

Figure 1: Easy separable imbalance dataset

In case of imbalanced data classification the disproportion between the different classes is not the sole issue of learning difficulties. One may easily came up with an example where the instance distributions from different classes are well-separated, as depicted in Fig.??.

Proposing a efficient classifier for such a task is not a challenge. Unfortunately, instances from the minority class often form clusters of an unknown structure that are scattered Napierala and Stefanowski (2012). Additional complication comes from the fact that during learning, the number of intactness from the minority class may be not sufficient enough for the learning algorithm to acquire the appropriate generalization level, which in effect can cause *overfitting* Chen and Wasikowski (2008). All those problems are a focus of intense research Chawla et al. (2002); Bunkhumpornpat et al. (2009); Kubat and Matwin (1997).

Methods for imbalanced data classification can be divided into three main groups Lopez et al. (2012).

Data preprocessing methods. This approach focuses on reducing the number of objects in majority class (*undersampling*) or generating new objects of the minority class (*oversampling*). The difference between *under-* and *oversampling* is presented in Fig. ??.

These mechanisms have the objective of balancing the quantity of instances from considered classes. For oversampling, new instances are random copies of existing ones or are generated in a guided manner. The most popular method is SMOTE Chawla et al. (2011) algorithm, which creates new instances on a basis of existing ones by slightly modifying the values of their attributes. As a result, new artificial examples that are in compliance with the minority class distribution are generated. Other oversampling methods are ADASYN He et al. (2008), in which a difficulty of an object for the classifying model is considered or RAMOBOOST Chen et al. (2010). Unfortunately, methods such as SMOTE may lead to changes in the characteristic of the minority class and in result to overfitting the classifier, what was shown in Fig. ??.

W WYPADKU UNDERSAMPLINGU NIE WYSTEPUJE RYZYKO NIESŁUSZNEGO ROZSZERZENIA PRZESTRZENI WZORCÓW KLASY MNIEJSZOŚCIOWEJ, CO MA MIEJSCE W CHOĆBY SMOTE.

Several modifications of SMOTE have been proposed that are able to identify the instances to be copied in a more intelligent fashion such as *Borderline*SMOTE Han et al. (2005). It generates new instances from the minority class close to the decision border. *Safe-Level* SMOTE (Bunkhumpornpat et al., 2009) and LN-SMOTE Maciejewski and Stefanowski (2011) reduce the probability of generating synthetic instances of the minority class in areas where

Figure 2: Examples of data preprocessing methods.

Figure 3: Example of wrong SMOTE oversampling.

the predominant objects are that of the majority class. It is worth noticing that our team proposed two novel solutions to this problem: RBO Koziarski et al. (2017) and CCR that enforce instances from the majority-class to be relocated from the areas where the minority-class instances are present Koziarski and Woźniak (2017). Methods of undersampling are built around the idea of randomly removing the instances from the majority-class or removing them from the areas in such way that the quality of the classifier is not disrupted using neighbor analysis.

Inbuilt mechanisms. In this approach existing classification algorithms are adapted for imbalanced problems ensuring balanced accuracy for instances from both classes. Two of the most popular areas of research of this methods are using one-class classification Japkowicz

et al. (1995), usually known as learning without counterexamples, where the goal is to learn the minority class decision areas and because of the frequently assumed regular, closed shape of the decision borders is adequate to the clusters created by minority classes Krawczyk et al. (2014a). The disproportion between the number of instances in classes is then omitted. Another approach is the (cost sensitive) classification, where the algorithm takes into account the asymmetrical loss function that assigns a higher cost to a misclassification of an instance form a minority class Krawczyk et al. (2014b); Lopez et al. (2012); He and Garcia (2009); Zhou and Liu (2006). Unfortunately such methods can cause a reverse bias towards the minority class. Worth noting are methods based on ensemble classification Woźniak et al. (2014), like SMOTEBoost Chawla et al. (2003) and AdaBoost.NC Wang et al. (2010)

Hybrid methods. They combine the advantages of methods using data pre-processing with the classification methods. The most popular category is the hybridisation of *under*-and *oversampling* with ensemble classifiers Galar et al. (2012). This approach allows the data to be independently processed for each of the base model. Algorithms formed on modifications of *Bagging* and *Boosting* Chawla et al. (2003) enjoy wide popularity.

The main contributions of this work are:

2. Homogenous ensemble based on undersampling the majority class

Zaawansowane metody oversamplingu nie są możliwe do zastosowania przy sytuacji, gdzie w zbiorze uczącym znajduje się zaledwie kilka wzorców.

Algorithm 1: Training classifier ensemble from multiple balanced training datasets separated from one imbalanced dataset of binary problem Given a dataset DS:

- 1. Divide DS into subsets of minority- MinC and majority-class MajC
- 2. Calculate imbalanced ratio IR as the proportion of the number of patterns in MinC and MajC
- 3. Establish k by rounding IR to nearest integer
- 4. Perform a shuffled k-fold division of MajC to produce a set of subsets $MajC_1, MajC_2, \ldots, MajC_k$
- 5. For every i in range to k
 - 6. Join $MajC_i$ with MinC to prepare a training set TS_i ,
 - 7. Train classifier Ψ_i on TS_i and add it into ensemble

Idea k-foldowego podziału klasy większościowej. Wyznaczanie wartości k jako zaokrąglonego IR. Atut w postaci wykorzystania wszystkich wzorców, gdzie tworzymy komitet k zbalansowanych zbiorów.

Wyliczanie wag. Accuracy się nie sprawdzi, więc BAC.

Figure 4: Scheme of using k-Fold division in ensemble construction

Jeśli klasyfikujemy nie jeden wzorzec, a wiele, wagi mogą być też dla pojedynczych próbek, dla podbicia, a więc pojawia się KONTRAST. Mamy takie ładne ilustracje z badań, dodajmy rysunek chociaż jeden poglądowo.

Figure 5: Rysunek.

Potencjał kontrastu dla danych strumieniowych.

Proponowane metody decyzyjne.

W konstrukcji reguły decyzyjnej opieramy się na wsparciu dla klasy pozytywnej.

- - reg akumulacja wsparć,
- wei akumulacja ważona po członkach komitetu, gdzie waga to BAC dla zbioru uczącego,
- - con akumulacja ważona po wzorcach, przez kontrast,
- - nor akumulacja znormalizowanych wag członków,
- - nci iloczyn znormalizowanych wag i kontrastu

Duża skala niezbalansowania to duża wielkość komitetu (ilustracja zależności na wykresie). Przyda się więc przycinanie (pruning).

Wyjaśnienie podejścia do pruningu. Wyliczamy wzajemną zależność statystyczną (Wilcoxonem) pomiędzy wsparciami członków i grupujemy – omijając kwestię 1z2 2z3 ale nie 1z3 – je uśredniając wsparcia w obrębie grupy. Uśredniamy też wagi i tworzymy tak dwupoziomowy system fuzji (potrzebna ilustracja).

Pruning też jest w kontekście klasyfikacji wielu wzorców na raz.

Wyjaśnienie kwestii wspomnianej wcześniej i uzasadnienie pominięcia jej analizy.

3. Experiment design

For the experimental evaluation of the proposed method, a collection of data sets made available with KEEL (Alcalá-Fdez et al., 2011) was used, focusing on a section containing highly unbalanced data, with IR greater than 9 (Fernández et al., 2009). From among the available datasets, 40 were selected presenting only binary problems with quantitative attributes. A review of selected datasets, including information on their number of features, the number of patterns in each class and the unbalance ratio is presented in Table 1.

As may be observed after the Table analysis, the experiments will be based on data sets with relatively small spatiality (up to 13 dimensions), with imbalance ratio from 9 to even 40.

Wykorzystane klasyfikatory bazowe. Wyjaśnienie dlaczego odrzuciliśmy MLP (brak konwergencji na bardzo niewielkich zbiorach) i SVC (nie jest on naturalnie probabilistyczny, a jego probabilistyczna interpretacja jest silnie zakłamana przy niewielkich zbiorach danych). Stąd bierzemy GNB, kNN i DT, przy domyślnych parametrach z sklearn.

- Gaussian Naive Bayes (GNB) —
- k-Nearest Neighbors (knn) —
- Decision Tree Classifier (DTC) —

,,	D	ъ .	Sa	ample	s	
#	Dataset	Features	ALL	MAJ	MIN	IR
1	ecoli-0-1-3-7-vs-2-6	7	281	274	7	39.14
2	ecoli4	7	336	316	20	15.80
3	glass- 0 - 1 - 6 - vs - 2	9	192	175	17	10.29
4	glass- 0 - 1 - 6 - vs - 5	9	184	175	9	19.44
5	glass2	9	214	197	17	11.59
6	glass4	9	214	201	13	15.46
7	glass5	9	214	205	9	22.78
8	page-blocks-1-3-vs-4	10	472	444	28	15.86
9	shuttle-c0-vs-c4	9	1829	1706	123	13.87
10	shuttle- $c2$ - vs - $c4$	9	129	123	6	20.50
11	vowel0	13	988	898	90	9.98
12	yeast-0-5-6-7-9-vs-4	8	528	477	51	9.35
13	yeast-1-2-8-9-vs-7	8	947	917	30	30.57
14	yeast-1-4-5-8-vs-7	8	693	663	30	22.10
15	yeast-1-vs-7	7	459	429	30	14.30
16	yeast-2-vs-4	8	514	463	51	9.08
17	yeast-2- vs -8	8	482	462	20	23.10
18	yeast4	8	1484	1433	51	28.10
19	yeast5	8	1484	1440	44	32.73
20	yeast6	8	1484	1449	35	41.40
21	ecoli-0-1-4-6- vs -5	6	280	260	20	13.00
22	ecoli-0-1-4-7-vs-2-3-5-6	7	336	307	29	10.59
23	ecoli-0-1-4-7-vs-5-6	6	332	307	25	12.28
24	ecoli-0-1- vs -2-3-5	7	244	220	24	9.17
25	ecoli- 0 - 1 - vs - 5	6	240	220	20	11.00
26	ecoli-0-2-3-4- vs -5	7	202	182	20	9.10
27	ecoli-0-2-6-7- vs -3-5	7	224	202	22	9.18
28	ecoli-0-3-4-6- vs -5	7	205	185	20	9.25
29	ecoli - 0 - 3 - 4 - 7 - vs - 5 - 6	7	257	232	25	9.28
30	ecoli-0-3-4- vs -5	7	200	180	20	9.00
31	ecoli-0-4-6- vs -5	6	203	183	20	9.15
32	ecoli-0-6-7- vs -3-5	7	222	200	22	9.09
33	ecoli-0-6-7- vs -5	6	220	200	20	10.00
34	glass-0-1-4-6-vs-2	9	205	188	17	11.06
35	glass- 0 - 1 - 5 - vs - 2	9	172	155	17	9.12
36	glass-0-4-vs-5	9	92	83	9	9.22
37	glass-0-6-vs-5	9	108	99	9	11.00
38	yeast - 0 - 2 - 5 - 6 - vs - 3 - 7 - 8 - 9	8	1004	905	99	9.14
39	yeast - 0 - 2 - 5 - 7 - 9 - vs - 3 - 6 - 8	8	1004	905	99	9.14
40	yeast-0-3-5-9-vs-7-8	8	506	456	50	9.12

Table 1: Summary of imbalanced datasets chosen for evaluation

Powównawczo uczenie na pełnym zbiorze i zbiorach po pojedynczym under i oversamplingu.

Undersampling, ze względu na niestabilność, powtórzony pięciokrotnie na każdym foldzie. Zastosowana metoda podziału – wymuszone przez KEEL k-fold CV (z k=5).

Zastosowana miara jakości – zbalansowana dokładność, wymierna w niezbalansowanych danych.

Zastosowana analiza statystyczna – parowa zależność pomiędzy klasyfikatorem z najwyższym rezultatem a pozostałymi w postaci testu Wilcoxona.

Przygotowane oprogramowanie ze wskazaniem repozytorium.

4. Experimental evaluation

Przedstawienie tabel.

Tabela zbiorcza zwycięstw w zależności od parametrów (z grupowaniem). Interpretacja wyników, czyli co zostało należycie uprawdopodobnione.

5. Conclusions

Co zostało zaproponowane.

Na co pozwala taka metoda.

Do jakich rezultatów doprowadziła.

Jakie są plany na przyszłość (czyli co robisz w wakacje).

Acknowledgments

Acknowledgements go here.

References

- Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaquín Derrac, Salvador García, Luciano Sánchez, and Francisco Herrera. Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. *Journal of Multiple-Valued Logic & Soft Computing*, 17, 2011.
- C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap. Safe-Level-SMOTE: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In Advances in Knowledge Discovery and Data Mining, 13th Pacific-Asia Conference 2009, Bangkok, Thailand, April 27-30, 2009, Proceedings, pages 475–482, 2009.
- N V Chawla, K W Bowyer, L O Hall, and W P Kegelmeyer. SMOTE: Synthetic Minority Over-sampling Technique. arXiv.org, June 2011.
- Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE: Synthetic Minority Over-sampling Technique. *Journal of Artificial Intelligence Research*, 16:321–357, 2002.
- Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer. SMOTE-Boost: Improving Prediction of the Minority Class in Boosting, pages 107–119. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-540-39804-2. doi: 10.1007/978-3-540-39804-2 12. URL https://doi.org/10.1007/978-3-540-39804-2_12.
- S. Chen, H. He, and E. A. Garcia. RAMOBoost: Ranked minority oversampling in boosting. *IEEE Transactions on Neural Networks*, 21(10):1624–1642, 2010.

D	ata	set																						2-6																8-9	8-9	
			ecoli-0-1-3-7-vs-2-6	ecoli4	glass-0-1-6-vs-2	glass-0-1-6-vs-5	glass2	glass4	glass5	page-blocks-1-3-vs-4	shuttle-c0-vs-c4	shuttle-c2-vs-c4	vowel0	yeast-0-5-6-7-9-vs-4	yeast-1-2-8-9-vs-7	yeast-1-4-5-8-vs-7	yeast-1-vs-7	yeast-2-vs-4	yeast-2-vs-8	yeast4	yeast5	yeast6	ecoli-0-1-4-6-vs-5	ecoli-0-1-4-7-vs-2-3-5-6	ecoli-0-1-4-7-vs-5-6	ecoli-0-1-vs-2-3-5	ecoli-0-1-vs-5	ecoli-0-2-3-4-vs-5	ecoli-0-2-6-7-vs-3-5	ecoli-0-3-4-6-vs-5	ecoli-0-3-4-7-vs-5-6	ecoli-0-3-4-vs-5	ecoli-0-4-6-vs-5	ecoli-0-6-7-vs-3-5	ecoli-0-6-7-vs-5	glass-0-1-4-6-vs-2	glass-0-1-5-vs-2	glass-0-4-vs-5	glass-0-6-vs-5	yeast-0-2-5-6-vs-3-7-8-9	yeast-0-2-5-7-9-vs-3-6-8	yeast-0-3-5-9-vs-7-8
	Ful	1	.825	878.	.580	.941	.591	587	.938	.763	.991	966.	.917	.504	.544	.547	.604	.561	.657	.551	.831	.650	877	.630	.735	.638	.782	.754	.563	.784	.775	.817	.854	.508	.780	.577	.519	.994	.945	029.	.577	.557
	US	3	.838	787.	.589	975	.620	.745	.945	908.	.993	.946	.905	.601	.598	.566	989.	.739	.762	099.	.910	.795	629.	.634	899.	.578	.658	.657	.595	.716	.665	.657	.725	.571	.682	.590	.555	.984	686.	.605	.785	.633
	os	;	908.	.859	.569	.941	.617	.731	.938	.791	066.	886.	906.	.498	.540	.541	.586	.529	919.	.526	.780	.628	.885	299.	.863	.639	797.	.638	.592	.725	.734	.730	.890	.544	.847	.597	.508	.984	.945	.782	.524	.539
	ro.	NC	.837	.922	585	686.	.641	.771	.938	.828	166.	966.	606:	.791	639	.568	.719	.861	.773	.811	.955	878.	.913	629	.831	.658	.816	895	.628	895	.791	.883	.901	597	.830	.620	.584	.994	995	.783	900	.605
	mber	NOR	.837	.923	585	686	.641	.771	.938	.830	.991	966	606.	.785	.625	.564	.725	698.	.773	.820	.957	788.	.910	.657	.826	.658	.816	.895	.623	.901	.789	.883	.903	.618	.853	.620	.584	.994	.995	.781	268.	.605
	Reduced members	CON	845	.895	. 277	686	644	774	938	.831	.994	966	606	.710	.556	.562	674	827	.773	692	935	845	862	.630	.617	.618	689	.758	.613	.870	673	.783	928	208	.755	.620	.558	.994	. 366	. 276	968	009
d set	duce	WEI	.845	968	577	686	641	.774	938	.831	994	966	606	.724	564	555	695	833	.773	292	930	098	837	.630	.617	819	.691	.758	613	870	673	.783	878	208	.755	622	551	.994	995	.576	968	.612
mple	\mathbf{R} e	REG	.845	746	577	686	641	812	938	831	994	966	910	. 289	556	588	.700	805	773	.710	927	818	785	.630	617	558	641	.731	288	.843	653	. 758	878	548	889	622	533	994	995	. 576	894	.611
With oversampled set		NC	825	904	591	941	919	. 622	938	845	991	886	903	715	266	590	700	800	773	746	934	795	906	. 693	855	. 889	830	.803	. 628	851	747	758	901	575	825	595	533	994	995	. 892	868	633
rith o	sre	NOR	828	. 613	560	. 146	. 919	. 622	938	. 846	. 991	. 886	904	. 726	.574	555	705	. 662	. 773	. 781	934	.843	. 906	. 662	.852	. 889	.834	. 828	625	. 228	785	772	901	575	828	595	530	. 994	. 395	. 777	. 006	. 619
🔰	members	CON	839	898	552	941 .	619	.774	938	803	995	. 676	910	. 229	553	554	. 674	. 781	. 962.	. 229	919	. 897.	. 098.	. 630	. 755	. 889	. 789	. 908.	588	. 849	. 726	•	. 901	. 557	.838	558	527	. 994	995	. 692		. 589
	All m	WEI	841 .	. 868	552	941 .	616	781	938	. 208.	. 395	. 676.	910	. 007	552	558	. 681	794	. 771	.655	. 921	. 773	.812	. 630	. 229	. 618	. 739	. 758	588	. 865	735	794	. 106.	557	.838	592	·	. 994	. 395	. 657	.834	. 209.
		REG	. 841	.874	552	941 .	619	. 781	938	. 208	. 395	. 984	910	. 702	. 563	551	. 671	. 773	. 796	.644	. 716	. 760	. 810	. 630	. 637	. 618	.714	. 756 .	588	. 859	. 269	. 697.	. 901	. 557	.845	592	. 527	. 994	. 395	.634	. 622.	.601
		NC	.837	. 898	.580	. 989	.641	. 766	938	828	991	. 966	. 606	.774	_	575	. 722	.862	.773	.813	. 955	. 878	.913	.654	. 829	.658	.741	.853	.630	. 898	. 799			. 597	.830	.620	_		995	. 782	_	.605
	members	NOR	8. 788.	3. 926.	583	3. 686.	641 .6	. 997.	3. 886	828	991 .9	3. 966	3. 606	7. 987	. 627	550	.726	3. 078.	7. 877.	8. 822	957	3. 788.	3. 906.	.652 .(823 .8	. 859.	741 .7	853 .8	625 .	3. 106.	781	883 .8	303	.640	853 .8	620 .	. 604	994	995	782		. 605
		CON	ည		7	3. 686.	.641 .(.804	. 886.	828.	. 994	3 966		727	.562 .(.554	. 689.			3. 992.	938	.848	. 810	. 089.	. 617	. 578	.664	3. 887.	.588	873		. 783	878.	.548	. 705	.620	.542	.994	. 395	. 576		909.
d set	$\mathbf{Reduced}$	WEI	845 .8	3. 008.	577	3. 686.	.641 .0	3. 708.	938	828	994		606	737	. 557	566	. 710	822 .8	. 773	. 997.	934 .9	863 .8	8. 018.	. 630	. 719.	. 578	999.	. 733	588	3. 078.	. 673		8. 978.	548	. 755	.622			995	. 576	901	. 605
	\mathbf{Rec}	REG		3. 748	. 577	3. 686.	.641 .0	3. 708.	. 886.	828	. 994	-	3. 606.	. 089.		. 567	. 703	. 820	. 773	. 708	926.	3. 628.	3. 099.	. 630		.558	. 616	. 658	. 588	818.	.633		.853	.548	. 685	.622	.542	. 994	. 995	. 576		909.
Without oversampled set		NC	837	. 228.	.610	.941	919	802	938	845	.994	_	903	. 731	_	.563	703		774	. 728	934	3. 967.	.804	.630	. 693	. 578	732	. 753	.613		. 627			. 555	812	.581		. 994	. 366	. 576	-	.621
nout	ß	NOR	837 . 8	3. 678.	580	939	. 919	.802	938	846	995		905	. 728	. 576	557	. 705		. 2773	. 692.	. 934	. 244	804	. 089.	. 710	. 575	. 736	. 877.	.635	3. 928	. 765			. 573	802	.615	·	. 994	995	. 576		. 620
Wit.	members	CON	843 .8	859	.610	686	. 619	8. 008.	938	8. 718.	994		906	. 689		. 550	, 669	. 803	. 773	. 674	934	3. 787.	. 783	. 630	. 719.	. 578	. 689	. 807.	.588	3. 928	.633	-		. 598	. 793	. 558	·	. 994	. 395	. 576		909
	All me	WEI	843 .8	834 .8	580	3. 686.	. 619	3. 797.	938	8. 718	994 .9		606	902	·	553	9. 869	801 .8	773	. 674	. 934	787	781	. 630	. 617	578). 689.	733	. 563	8. 978.	633	Ċ		598	787	589		. 994	366	576		. 632
	7	REG	8. 845 .8	3. 608.	580	686	619	5. 008	938	8. 718	. 994	•	3. 606.	•	·	.552	ľ	•	7. 877	. 675	. 934		·	. 089	·	578	. 639	. 683	. 563	8. 928.	.633	•	8. 928.	. 598	7. 367	558		. 994	995	. 576	ľ	. 262.
			~.	~.	E)	<u>ن</u>		w.		w.		<u>ن</u>		٠.	щì	тż	<u>.</u>	w.	Ţ.	9.		7.	۲٠.	<u>.</u>	<u>ب</u>	тż	٠.	. ب	т.;	w.	<u>ب</u>	, ·	<u>~</u>	E	<u>. </u>	п.	т.)	<u>ن</u>	O.	E)	w.	α.j

Table 2: Balanced accuracy scores obtained using GNB as a base classifier

D	ata	set																						9-9																8-9	8-9	
			ecoli-0-1-3-7-vs-2-6	ecoli4	glass-0-1-6-vs-2	glass-0-1-6-vs-5	glass2	glass4	glass5	page-blocks-1-3-vs-4	shuttle-c0-vs-c4	shuttle-c2-vs-c4	vowel0	yeast-0-5-6-7-9-vs-4	yeast-1-2-8-9-vs-7	yeast-1-4-5-8-vs-7	yeast-1-vs-7	yeast-2-vs-4	yeast-2-vs-8	yeast4	yeast5	yeast6	ecoli-0-1-4-6-vs-5	ecoli-0-1-4-7-vs-2-3-5-6	ecoli-0-1-4-7-vs-5-6	ecoli-0-1-vs-2-3-5	ecoli-0-1-vs-5	ecoli-0-2-3-4-vs-5	ecoli-0-2-6-7-vs-3-5	ecoli-0-3-4-6-vs-5	ecoli-0-3-4-7-vs-5-6	ecoli-0-3-4-vs-5	ecoli-0-4-6-vs-5	ecoli-0-6-7-vs-3-5	ecoli-0-6-7-vs-5	glass-0-1-4-6-vs-2	glass-0-1-5-vs-2	glass-0-4-vs-5	glass-0-6-vs-5	yeast-0-2-5-6-vs-3-7-8-9	yeast-0-2-5-7-9-vs-3-6-8	yeast-0-3-5-9-vs-7-8
	Ful	1	.850	.848	.555	.739	.485	.781	.695	808.	966.	009.	977	299.	.499	.499	.517	.819	.774	.574	.850	.739	868.	.847	.838	.830	.900	.894	.787	.875	.876	.875	.900	.835	.847	.512	.527	.850	.745	.762	.902	.639
	US	;	.835	.928	999.	.852	829.	.865	.811	.872	966.	.845	.939	.792	.652	.590	.682	806.	.734	.835	.952	878	988.	.882	.883	.895	.902	.904	.814	.881	887	888	888	.844	.850	.681	.651	.917	.816	.760	.902	.702
	os	3	.835	606.	.656	.933	.715	.925	.830	.917	966.	000.	666.	.795	.627	.615	.705	.885	.803	.749	.964	.840	.917	.856	836	.887	.916	606.	.890	.911	.894	.911	.914	.893	.863	.732	.656	.988	.985	.784	.904	.718
	ı,	NC	.856	.943	.735	.841	.746	868.	.833	.920	966.	966.	986.	829	693	.643	.710	606:	.758	.852	096.	.895	892	905	688.	.863	.911	006:	.855	.895	888.	903	895	.858	887	.727	.758	.951	.933	.798	.895	.734
	Reduced members	NOR	.853	.940	.758	.833	.723	.888	.821	.917	966.	.927	086.	.828	.692	.636	902.	.921	.755	.841	096.	.893	.892	.904	.887	.883	.911	006.	.860	.895	.885	.903	.892	.863	.890	.734	.745	.951	.913	.795	968.	.723
	d me	CON	.851	.945	.737	.836	.731	.861	.826	.881	966.	906.	.954	.819	.684	.623	.734	.921	.752	.843	.958	.888	.892	688.	.871	.872	.911	006:	.848	.890	268.	906.	.890	.870	.872	.747	.712	.951	.878	.800	.912	.750
With oversampled set	educe	WEI	.853	.945	.705	.833	.732	.861	.813	.875	966.	887	.948	800	099.	209.	.755	.920	.738	.844	.958	288.	.892	988.	.893	.874	606.	006.	.843	.893	.911	906.	830	.870	.865	.749	.695	.951	878.	.798	.913	.767
	Re	REG	.854	.945	.705	.833	.726	.861	.816	.874	966.	887	.948	.799	.655	.594	.745	.921	.738	.844	.958	887	892	988.	.893	.874	606.	.900	.843	.893	.913	906.	830	.865	.865	.741	929.	.951	878.	.793	606.	.770
verse		NC	.834	606.	.728	879	.756	.913	.873	.924	966	000	966.	.820	.626	609.	.700	906	.803	.774	296.	.865	906.	988.	894	.885	.914	006.	.833	.901	.890	.903	.895	.863	.885	.716	.740	.951	.953	.798	006.	.730
Vith c	ers	NOR	.835	606.	.750	879	.756	.905	.801	606.	966.	000	266.	.830	.625	.612	.700	906:	.803	.771	.962	.840	.904	698.	892	.885	.911	.900	.830	.901	.890	.903	868.	.865	.863	.718	292.	.951	.953	.791	006.	.731
>	members	CON	.832	.972	092.	.853	.746	888.	879	.926	966.	000	.963	.832	.673	.614	.712	.913	.778	.839	096	.892	968.	988.	.887	298.	.911	006.	.860	.895	.901	906.	830	.855	.880	.701	.748	.951	.928	.800	.902	.739
	All r	WEI	.830	296.	.751	.839	.757	898.	.843	206.	966.	000	.953	.824	.695	.628	.743	.921	.782	.829	.926	006.	.894	698.	928.	.865	.911	.900	.858	.893	.901	906.	830	.875	878.	.717	.728	.951	868.	.802	.913	.742
		REG	.830	.964	.717	.836	.737	898.	.838	.901	966.	966.	.952	.810	.702	.622	.737	.921	.782	.838	.926	668.	.894	698.	.874	.872	.911	006.	.853	.893	.901	906	.890	.875	.878	.731	.705	.951	.883	.801	.913	.759
		NC	845	945	669	880	.724	863	816	268	966	820	945	187	.659	584	.742	917	.734	.843	928	988.	830	968	.891	872	911	.903	811	830	.915	006:	830	867	872	717	.650	944	878	.790	910	754
	members	NOR	844	. 921	746 .	. 880	724	. 863	813	. 902	. 966.	. 883	945	. 785		571 .	733 .	. 716.	727	.841	957	. 887		-	-			. 006.	816 .		.921			872	. 078	714 .		939	878	•		. 749
ىد ا		CON	. 847	.940		. 880		.861	.813		. 966.	.850				.602	. 736	-	. 728	.841		-	•	.891		•	·	-	.833	-	.902	-	•	.855	. 85	.712		.944	.873	•	. 806.	
ed set	$\mathbf{Reduced}$	WEI	845	. 046		. 228	.724	. 198	.813	. 871	. 966					571	. 729	.914		.841	. 957	. 988.						. 006.	. 836		.904			. 857	. 098.	.712		. 686	898			748
ampl	\mathbf{Re}	REG	. 845	.940	. 732	. 830	. 701	.861	.813		. 966.				_	. 571	. 730	.914			. 957	. 988.							.833		.904			. 857	. 098.	. 717	.674	.939	. 898.		.904	. 748
Without oversampled		NC	849	_		.883	_	875	830		966	_	_	_	_	.592	269		_						_				841		917	_			863	.725		.932	898		_	.753
hout	ırs	NOR	847	949	715	883	.721	878	.830	. 228	966	.891	. 944	. 987	. 665	593	.705	. 206.		.839		.886	-		-				.841		. 917		. 887	.872	. 898.	.712	. 699	932	898	781	911	746
Wit	members	CON	836	945	718	.880	.724	.861	.826	.874	966	859	942	. 785	.662	. 262	.695	.914			.954								.836	.874	905			. 098	.850	902	.653	939	873	. 987	806	.755
	All m	WEI	. 836	.941		. 880		. 861	.823		. 966.	·		-		.574	. 669									•			Ċ		.904	Ċ	·	. 098.	.853	. 715	_		. 873			. 757
		REG	. 836	.941		. 880		.861	.823	-	-	·		-		. 576	. 869.	. 915							•	-	-	-	. 836	-	.904		•	•	•	.715		.932	. 873	.784	Ċ	.757

Table 3: Balanced accuracy scores obtained using knn as a base classifier

D	atas	set																						9-																8-9	8-6	
			ecoli-0-1-3-7-vs-2-6	ecoli4	glass-0-1-6-vs-2	glass-0-1-6-vs-5	glass2	glass4	glass5	page-blocks-1-3-vs-4	shuttle-c0-vs-c4	shuttle-c2-vs-c4	vowel0	yeast-0-5-6-7-9-vs-4	yeast-1-2-8-9-vs-7	yeast-1-4-5-8-vs-7	yeast-1-vs-7	yeast-2-vs-4	yeast-2-vs-8	yeast4	yeast5	yeast6	ecoli-0-1-4-6-vs-5	ecoli-0-1-4-7-vs-2-3-5-6	ecoli-0-1-4-7-vs-5-6	ecoli-0-1-vs-2-3-5	ecoli-0-1-vs-5	ecoli-0-2-3-4-vs-5	ecoli-0-2-6-7-vs-3-5	ecoli-0-3-4-6-vs-5	ecoli-0-3-4-7-vs-5-6	ecoli-0-3-4-vs-5	ecoli-0-4-6-vs-5	ecoli-0-6-7-vs-3-5	ecoli-0-6-7-vs-5	glass-0-1-4-6-vs-2	glass-0-1-5-vs-2	glass-0-4-vs-5	glass-0-6-vs-5	yeast-0-2-5-6-vs-3-7-8-9	yeast-0-2-5-7-9-vs-3-6-8	yeast-0-3-5-9-vs-7-8
	Ful	1	.841	998.	.546	.936	.573	.804	868.	966.	000.	.950	.936	.659	.630	.537	.683	.843	069.	.643	.845	.730	.781	.820	.787	.760	.857	.781	.790	.786	.840	.831	.836	.850	.795	.610	.578	.994	.995	.733	.854	.688
	$\mathbf{u}\mathbf{s}$.708	.848	.630	988.	.682	.835	298.	.958	000	.959	.940	.750	.624	.581	.661	900	.715	.792	936	.818	.823	.804	.803	.802	.841	.843	.791	.834	.839	.862	.838	.786	.819	.675	.634	.942	879	.732	898.	.635
	os		.624	.817	.581	.859	.616	.819	.933	.994	000.	.990	.921	.674	.621	.533	.603	.822	269.	.626	.845	.750	.794	.827	.844	.764	.805	.832	.811	.812	.836	869	.813	.864	.827	929.	.572	.994	.955	.701	298.	.599
	· ·	NC	.842	.834	.700	.940	.801	098.	946	.992	000.	000.	196.	.759	.750	587	.789	.931	802	.845	296.	098.	.860	998.	298.	.831	.855	768.	.835	106.	.851	.947	.859	.853	.838	.715	.535	.982	066.	.780	768.	.651
	Reduced members	NOR	.842	.834	.700	.940	.801	098.	.949	.992	000.	000.	.961	.759	.750	.587	.789	.931	.802	.845	296.	.860	.860	998.	298.	.831	.855	268.	.835	.901	.851	.947	.859	.853	.838	.715	.535	.982	066.	.780	268.	.651
	d me	CON	.823	928.	.738	.934	800	.903	939	.991	000.	000.	.957	777.	.748	.649	.782	.958	.789	.850	.964	.851	788.	.848	928.	.820	.850	.917	.830	.901	.864	.936	.904	.835	.880	.739	.751	.982	.975	.795	006:	.715
d set	educe	WEI	.823	928.	.738	.934	800	.903	939	.991	000	000.	.957	777.	.748	.649	.782	.958	.789	.850	.964	.851	788.	.848	928.	.820	.850	.917	.830	.901	.864	.936	.904	.835	.880	.739	.751	.982	975	.795	006.	.715
mple	R	REG	.823	928.	.741	.934	792.	302	939	.991	000	000.	.957	.778	.749	.649	.782	096.	.790	.850	.964	.852	.892	.848	928.	.820	.852	.917	.833	906.	898.	.911	906.	.840	.880	.739	.754	.982	.975	.801	.903	.720
vers		NC	.725	688.	.584	.943	.644	898.	.973	.993	000	.950	.951	.705	.647	.562	.598	888.	.716	.642	.932	.782	.871	.852	298.	.838	.830	.895	.838	.893	.859	.944	.831	298.	.812	.681	.557	.982	.985	.723	.878	.628
With oversampled set	ers	NOR	.715	.865	.603	.943	.634	898.	.971	.993	000	.950	.951	.704	.659	.570	.622	.895	.737	.651	.931	.804	.871	698.	298.	.838	.855	268.	.838	.893	.859	.944	.829	.865	.838	.711	.557	.982	.985	.742	928.	.627
>	All members	CON	.784	878.	.722	.937	.684	.895	.946	066.	000	.950	.958	.751	.738	.645	.709	.959	.820	.830	.956	.856	.885	.849	.881	.840	.850	.917	.833	.893	998.	.936	906.	.840	.863	962.	.704	.982	696.	308	968.	.724
	All r	WEI	.784	.878	.716	.937	.684	868.	939	686.	000	.950	.959	.758	.742	.650	.741	.958	.813	.818	296.	.851	.885	.849	.881	.840	.850	.917	.833	.893	998.	.936	906.	.832	.863	.813	.704	.982	.964	803	968.	.724
		REG	.783	928.	.716	.934	.749	868.	939	686.	000.	.950	.959	.760	.733	.656	.737	.958	808	.815	996	.850	.885	.848	.879	.840	.850	.917	.833	.893	998.	.936	906.	.832	.863	.847	.704	.982	.964	.800	968.	.728
		NC	838	.873	089	.937	.784	206	891	992	000	000	926	787.	732	586	.801	954	782	.844	965	.852	887	.830	928.	865	.850	911	820	.887	.853	.911	912	.830	878	.746	819	985	086	.790	895	.724
	members	NOR	838	873	. 089	. 226	784	. 206.	891	. 266	. 000	. 000	956	787	732	. 586	. 801	954	782		965		. 887	. 830	. 928		850	911				911	912	. 830	878	746	819	. 286	. 086			.724
ند ا		CON	.823	.873	727	.934	. 087	. 268.	.934	. 991	.000	.000	. 956	787	736	.624	794	.948	. 787	.846	.964	-	.910	.845	.871	.878	.848	.911	.823	. 628.	.875	.928	. 906.	.818	. 875	.827	. 800	.982	. 959	-		.729
ed se	$\mathbf{Reduced}$	WEI		873	727	934	780	268	934		000	000	926	787	736	624	794	948	787		964		. 910	.845	.871		.848	911					906	818	875	.827	800	982	959			.729
ampl	$\mathbf{R}_{\mathbf{e}}$	REG	.823	928	732	934	785	006	934	. 991	000	000	. 957	. 787	. 736	.633	783	.948	787				.910	.847	.878		.848	.911		.879			906	.818	.882	.835	.734	. 982	959	.782		.729
Without oversampled set		NC	.816	998.	.657	.934	757	.893	877	786.	000	000	926	982.	737	605	781	955	774	-	964		873	.819	853	_	.873	606:	_				.912	.825	875	.810	.840	.982	974	.757	288.	.716
hout	ers	NOR	818	998	. 657	937	.803	868	879	786	000	000	.926	.783	722	621	784	955	822	.837	.965	.840	873	819	.853	.873	.873	606	.820	.901	.853	.914	.912	.825	875	805	836	982	974	.758	888	.709
Wit	members	CON	.816	998.	.731	.929	.739	.885	924	.981	000	.000	.955	.788	.729	.643	.764	.951	.794				868.	.838	998.		.873	.911					.912	.818	.867	.830	.803	.982	.959	.770		.737
	All m	WEI	.816	998.	.737	.929	.742	.885	924	.982	000	000	.955	.788		.639	.768	.950	.795		.962		006	.842	998.		.873	.911					.912	.818	.867	.833	.803	.982	.959	.775		.736
		REG	.816	998.	.740	.929	.739	.885	.924	.982	.000	000.	.955	.788	.731	.637	.767	.950	.798		.962		.900	.842	998.		.873	.914	.823			.928	.912	.818	.867	.835	908.	.982	.959	.775		.736

Table 4: Balanced accuracy scores obtained using DTC as a base classifier

- Xue-wen Chen and Michael Wasikowski. Fast: A ROC-based feature selection metric for small samples and imbalanced data classification problems. In *Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 124–132, 2008.
- William Elazmeh, Nathalie Japkowicz, and Stan Matwin. Evaluating misclassifications in imbalanced data. In *Proceedings of the 17th European Conference on Machine Learning*, ECML'06, pages 126–137, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-45375-X, 978-3-540-45375-8. doi: 10.1007/11871842_16. URL http://dx.doi.org/10.1007/11871842_16.
- Alberto Fernández, María José del Jesus, and Francisco Herrera. Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. *International Journal of Approximate Reasoning*, 50(3):561–577, 2009.
- M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera. A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, 42 (4):463–484, July 2012. ISSN 1094-6977. doi: 10.1109/TSMCC.2011.2161285.
- H. Han, W. Wang, and B. Mao. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In Advances in Intelligent Computing, International Conference on Intelligent Computing 2005, Hefei, China, August 23-26, 2005, Proceedings, Part I, pages 878–887, 2005.
- H. He and E. A. Garcia. Learning from imbalanced data. *IEEE Transactions on Knowledge and Data Engineering*, 21(9):1263–1284, 2009.
- H. He, Y. Bai, E. A. Garcia, and S. Li. Adasyn: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of the International Joint Conference on Neural Networks, 2008, part of the IEEE World Congress on Computational Intelligence, 2008, Hong Kong, China, June 1-6, 2008, pages 1322–1328, 2008.
- Nathalie Japkowicz, Catherine Myers, and Mark Gluck. A novelty detection approach to classification. In *Proceedings of the 14th International Joint Conference on Artificial Intelligence Volume 1*, IJCAI'95, pages 518–523, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. ISBN 1-55860-363-8, 978-1-558-60363-9. URL http://dl.acm.org/citation.cfm?id=1625855.1625923.
- Michał Koziarski, Bartosz Krawczyk, and Michał Woźniak. Radial-based approach to imbalanced data oversampling. In *International Conference on Hybrid Artificial Intelligence Systems*, pages 318–327. Springer, 2017.
- Michał Koziarski and Michał Woźniak. Ccr: Combined cleaning and resampling algorithm for imbalanced data classification. *International Journal of Applied Mathematics and Computer Science*, 27(4), 2017.
- Bartosz Krawczyk, Michal Wozniak, and Boguslaw Cyganek. Clustering-based ensembles for one-class classification. *Information Sciences*, 264:182–195, 2014a.

- Bartosz Krawczyk, Michał Woźniak, and Gerald Schaefer. Cost-sensitive decision tree ensembles for effective imbalanced classification. *Applied Soft Computing*, 14(Part C):554 562, 2014b. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.2013.08.014. URL http://www.sciencedirect.com/science/article/pii/S1568494613002895.
- Miroslav Kubat and Stan Matwin. Addressing the curse of imbalanced training sets: One-sided selection. In *In Proceedings of the 14th International Conference on Machine Learning*, pages 179–186. Morgan Kaufmann, 1997.
- V. Lopez, A. Fernandez, J. G. Moreno-Torres, and F. Herrera. Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. open problems on intrinsic data characteristics. *Expert Systems with Applications*, 39(7):6585–6608, 2012.
- T. Maciejewski and J. Stefanowski. Local neighbourhood extension of SMOTE for mining imbalanced data. In *Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining 2011, part of the IEEE Symposium Series on Computational Intelligence 2011, April 11-15, 2011, Paris, France*, pages 104–111, 2011.
- K. Napierala and J. Stefanowski. Identification of different types of minority class examples in imbalanced data. In *Hybrid Artificial Intelligent Systems*, volume 7209 of *Lecture Notes* in Computer Science, pages 139–150. Springer Berlin Heidelberg, 2012.
- Y. Sun, A. K. C. Wong, and M. S. Kamel. Classification of imbalanced data: A review. International Journal of Pattern Recognition and Artificial Intelligence, 23(4):687–719, 2009.
- S. Wang, H. Chen, and X. Yao. Negative correlation learning for classification ensembles. In *The 2010 International Joint Conference on Neural Networks (IJCNN)*, pages 1–8, July 2010. doi: 10.1109/IJCNN.2010.5596702.
- Shuo Wang, Leandro L. Minku, and Xin Yao. A systematic study of online class imbalance learning with concept drift. *CoRR*, abs/1703.06683, 2017. URL http://arxiv.org/abs/1703.06683.
- Michał Woźniak, Manuel Graña, and Emilio Corchado. A survey of multiple classifier systems as hybrid systems. *Inf. Fusion*, 16:3–17, March 2014. ISSN 1566-2535. doi: 10.1016/j.inffus.2013.04.006. URL http://dx.doi.org/10.1016/j.inffus.2013.04.006.
- Zhi-Hua Zhou and Xu-Ying Liu. Training cost-sensitive neural networks with methods addressing the class imbalance problem. *IEEE Transactions on Knowledge and Data Engineering*, 18(1):63–77, 2006. ISSN 1041-4347. doi: 10.1109/TKDE.2006.17.