Resolução do Problema do Caixeiro Viajante Utilizando Simulated Annealing

Victor Raposo Ravaglia de Oliveira

1 Introdução

Esse trabalho tem como objetivo avaliar o desempenho do algoritmo de *Simulated Annealing* [1](SA) para a solução de uma configuração Problema do Caixeiro Viajante ¹(PCV). Mais especificamente, pretende-se avaliar o uso de uma heurística específica para um diferente número de cidades. Nesse estudo, as cidades estão dispostas ao longo de um percurso em forma de uma estrela de 5 pontas. Uma vantagem dessa configuração é que a distância mínima a ser percorrida é sempre conhecida.

O documento está dividido da maneira que se segue. Na Seção 2 é apresentado o embasamento teórico necessário para entender a heurística avaliada e a configuração do PCV. A Seção 3 descreve a metodologia e a implementação utilizados para obter os resultados. Na Seção 4 resultados de execuções do SA para diferentes números de cidades são apresentados. Finalmente, a Seção 5 apresenta conclusões sobre o trabalho.

2 Teoria

O Simulated Annealing (SA) é um algoritmo que pode ser utilizado para diversos problemas de otimização [2]. Os parâmetros do SA variam de acordo com a função que deseja-se otimizar. Além disso, heurísticas podem ser implementadas na expectativa melhorar o desempenho do algoritmo [3]. Nesse trabalho, uma configuração específica do Problema do Caixeiro Viajante (PCV) e uma heurística de atualização de estados são estudadas.

2.1 Configuração do PCV

O PCV consiste em, para uma dada lista de cidades e as distâncias entre elas, encontrar o menor caminho necessário para percorrer todas elas. O PCV pode ser definido com diferentes configurações, que definem regras que devem ser seguidas ao definir a ordem em que as cidades são percorridas (*e.g.* se cidades podem ser visitadas mais de uma vez, se a primeira cidade é sempre a mesma, etc).

Para configuração do PCV estudada, todas as cidades são posicionadas ao longo de uma circunferência de raio variável. A posição das cidades são coordenadas cartesianas de duas dimensões. As cidades devem ser percorridas exatamente uma vez e o trajeto deve terminar na primeira cidade escolhida, seja ela qual for. O raio da circunferência varia conforme uma onda triangular de frequência 10π , de modo

que o posicionamento resultante se assemelhe a uma estrela. A Figura 1 ilustra a configuração do PCV utilizada para 100 cidades. O circulo tem raio 0.85 e a onda triangular amplitude 0.2 e valor médio 0.2, todos valores arbitrários. Para essa configuração de cidades, o mínimo global é sempre o caminho que envolve percorrer as cidades em ordem crescente ou decrescente.

Figura 1: Ilustração da configuração PCV utilizada para os testes do trabalho para 100 cidades.

2.2 SA e a Heurística Estudada

O SA é um método de otimização com o seguinte algoritmo:

- Passo 1: Inicializar x_i um valor aleatório dentro do espaço de soluções Inicializar temperatura $T = T_0$, o contador de iteração k = 1 e o contador N
- Passo 2: Calcular $J(x_i)$
- Passo 3: Selecione $\hat{x_i} = P(x_i)$
- Passo 4: Calcular $J(\hat{x_i})$
- Passo 5: Calcular $\Delta J = J(x_i) J(\hat{x_i})$
 - Calcular $p = \exp(-\Delta J/T)$
 - se $J(\hat{x_i}) < J(x_i)$
 - $* x_i = \hat{x}_i$

 $^{{}^{1}}https:/\!/en.wikipedia.org/wiki/Travelling_salesman_problem$

- senão se
$$[rand[0,1) < p]$$

* $x_i = \hat{x}_i$

- se $J(x_i) < J_{min}$

* $J_{min} = J(x_i)$

* $x_{min} = x_i$

- se $J_{min} == J_{otimo}$

* Vá para o passo 8

- Atribuir $n = n + 1$

- Passo 6: Se n > N
 - Atribuir $T = T_0/\log 2(1+k)$
 - Atribuir n = 0
- Passo 7: Se $k < K_{max}$ Vá para o passo 3
- Passo 8: Retorne a solução J_{min}

A partir de um estado atual x_i , o SA gera perturbações $P(x_i)$ gerando um estado candidato $\hat{x_i}$ para a próxima iteração do algoritmo. O objetivo do SA nesse caso, é minimizar uma função custo J(x). No caso do PCV, x_i representa uma possível ordem em que as cidades podem ser percorridas e $J(x_i)$ a distância percorrida ao seguir a ordem x_i . O estado candidato $\hat{x_i}$, é o próprio estado x mas com uma permutação no índice de duas cidades aleatórias. Caso \hat{x} seja aceito como próximo estado, ele é comparado com estado de menor custo encontrado até o momento x_{min} . O algoritmo finaliza sua execução caso $k > K_{max}$ ou caso encontre o custo mínimo global J_{otimo} .

Uma possível heurística que pode ser implementada para esse problema é, a cada incremento do valor de k, alterar o valor do estado atual para que $x_i = x_{min}$. Ao longo desse documento, essa heurística será referenciada apenas como "a heurística".

3 Metodologia

Para avaliar o desempenho da heurística, são realizadas execuções do SA para diferentes quantidades de cidades. Iniciando com 10 cidades, uma grade de parâmetros é testada para 10 diferentes sementes, tanto com quanto sem utilizar a heurística. Em seguida, a grade é reduzida baseando-se no desempenho obtido. A grade reduzida é então utilizada para os demais números de cidades. Caso o algoritmo obtenha sucesso em pelo menos uma configuração em pelo menos uma semente, o número de cidades é aumentado. Caso contrário, os parâmetros da grade são ajustados.

3.1 Ajuste da grade de parâmetros

A partir de testes inicias com número relativamente pequeno de cidades (10) são estabelecidas as seguintes faixas de valores iniciais para os parâmetros do SA: $N=10^4$, $K_{max}=50$, $T_0=[0.1,\ 0.2,\ \dots,\ 1.0]$. Essas faixas de valores correspondem a grade reduzida. Em seguida, 10 sementes são testadas, caso o ótimo global não seja encontrado, N ou K_{max} é aumentado. A grade de parâmetros é a mesma para execuções com ou sem o uso da heurística.

С	N	K_{max}	T_0
10	10^{4}	50	[0.1, 1.0]
20	10^{4}	50	[0.1, 1.0]
40	10^{4}	50	[0.1, 1.0]
60	10^{4}	50	[0.1, 1.0]
80	10^{4}	50	[0.1, 0.5]
100	$10^4, 10^5$	50, 100	[0.1, 0.5]
150	10^{5}	100	[0.1, 0.5]
200	10^{5}	100, 250, 500	[0.1, 0.5]
250	10^{5}	500, 1000, 2000	[0.1, 0.5]

Tabela 1: Histórico de ajustes dos parâmetros do SA para cada número de cidades (C). As temperaturas T_0 indicam intervalos com incremento de 0.1 (e.g. 0.1, 0.2, ... 0.5).

A Tabela 1 apresenta as mudanças realizadas no parâmetros para cada aumento no número de cidades. Os melhores resultados se concentram na faixa de T_0 = [0.1, 0.2, ..., 0.5], por isso foi modificada a partir de 80 cidades. O valor de k em que o algoritmo obtém seu menor custo é salvo no final de cada execução. Caso k seja próximo de K_{max} , o valor de K_{max} é aumentado. Valores de N maiores que 10^5 não apresentam melhora significativa no desempenho do algoritmo e aumentam consideravelmente o tempo de execução (o número de iterações do SA é proporcional a N).

Para cada execução do algoritmo, caso o mesmo encontre o ótimo global, a execução é interrompida. Consequentemente, execuções diferentes com os mesmos valores de K_{max} e N, e que o ótimo global não é encontrado, tem tempos de execução semelhantes. Analogamente, execuções em que o mínimo global é encontrado, têm tempos de execução diferentes pois o algoritmo é interrompido prematuramente.

3.2 Implementação

A linguagem Julia 2 foi utilizada para realizar todas as execuções do SA. Para reduzir o tempo de execução do programa, houve um foco em reduzir ao máximo o número de alocações em memória. Isso foi feito declarando todos os possíveis parâmetros como constantes e pré-alocando os vetores de histórico de temperaturas e custos. Além disso, os vetores de estado x_i e $\hat{x_i}$ tiveram apenas os valores de cada índice alterado a cada iteração do programa. A alternativa para isso seria criar uma cópia simples dos vetores, o que acarretaria em alocar um novo espaço de memória a cada iteração do SA.

Outra medida de otimização adotada, foi calcular uma matriz de distâncias euclidianas X_d tal que:

$$X_d = \begin{bmatrix} ||x_1 - x_1|| & ||x_1 - x_2|| & \dots & ||x_1 - x_c|| \\ ||x_2 - x_1|| & ||x_2 - x_2|| & \dots & ||x_2 - x_c|| \\ \vdots & \vdots & \ddots & \vdots \\ ||x_c - x_1|| & ||x_c - x_2|| & \dots & ||x_c - x_c|| \end{bmatrix},$$

²https://julialang.org/

onde c é o número de cidades e x_n a posição euclidiana da cidade de índice n. Assim, ao calcular a função custo, a matriz X_d é lida conforme a sequência de cidades presente no trajeto x_i ou $\hat{x_i}$. Consequentemente, não é necessário calcular novamente as distâncias a cada iteração do SA. O número total de execuções E do SA, para cada número de cidades é dado por:

$$E = T_{0s} \times N_s \times K_{maxs} \times seeds \times 2$$
,

onde T_{0s} , N_s , K_{maxs} e seeds são o número de possibilidades de T_0 , N, K_{max} e sementes para cada execução, respectivamente. O fator 2 é devido ao fato de que o algoritmo é executado tanto com quanto sem o uso da heurística.

A cada execução, o histórico de temperaturas e custos foi guardado para que fosse possível analisar o comportamento da curva de custos. Para cada execução, o custo mínimo encontrado e os parâmetros utilizados foram salvos em arquivo. Os parâmetros em conjunto com a semente utilizada permitem reproduzir os resultados caso necessário. Ao final de todas as execuções, para um dado número de cidades e uso ou não da heurística, a execução que foi capaz de obter o menor custo (J_{min}) é considerada a melhor execução e é salva em outro arquivo. Caso mais de uma execução seja capaz de encontrar o mínimo global, o tempo de execução é utilizado como critério de desempate (quanto menor melhor).

4 Resultados

Seguindo a metodologia descrita na Seção 3, foram obtidos resultados para diferentes números de cidades, comparando o uso ou não da heurística. Além do custo mínimo encontrado, é observado o tempo necessário e os parâmetros que levam a uma execução particular do SA chegar a um dado resultado.

A Figura 2 apresenta uma comparação geral entre o uso ou não da heurística. Para cada iteração do SA, é mostrado o tempo médio e o menor custo encontrado, ambos normalizados com relação ao número de cidades. É possível ver que o desempenho tanto com relação ao tempo quanto ao menor custo é semelhante.

A Tabela 2 apresenta os resultados médios obtidos para cada execução do SA. Pode-se observar que, os resultados serem semelhantes entre o uso ou não da heurística para C < 150. No entanto, para os parâmetros testados, apenas a configuração sem heurística foi capaz de encontrar resultados ótimos para um número de cidades C > 100.

A Tabela 3 apresenta os parâmetros e resultados obtidos para as melhores execuções do SA, para cada número de cidades. É possível ver que, para os parâmetros testados, o mínimo global foi encontrado apenas em casos que a heurística não foi utilizada.

A Figura 3 apresenta uma comparação entre os custos obtidos a cada iteração do SA para 150 cidades. Esse é menor quantidade de cidades testada em que o uso da heurística não resultou em um ótimo global. Na Figura 3b é possível ver que o algoritmo não é capaz de convergir, apesar de ter um comportamento semelhante a Figura 3a.

С	TE		% Ótimo		MT (s)	
	SH	СН	SH	СН	SH	СН
10	100	100	100%	100%	0.01	0.01
20	100	100	100%	100%	0.01	0.01
40	100	100	74%	74%	0.03	0.03
60	100	100	33.5%	31%	0.21	0.19
80	50	50	11.5%	10.5%	0.28	0.29
100	200	200	5.0%	2.5%	0.56	0.59
150	50	50	1.0%	0%	1.47	1.48
200	150	150	1.3%	0%	7.06	7.28
250	150	150	0.5%	0%	33.4	35.6

Tabela 2: Total de execuções (TE) do SA, percentual de vezes em que o ótimo global foi encontrado (% Ótimo) e média de tempo (MT) de cada execução, para cada número de cidades (C). "SH" e "CH" representam execuções com e sem uso da heurística, respectivamente.

C	T_0		J_{min}		Tempo (s)	
	SH	СН	SH	СН	SH	СН
10	0.1	0.5	6.49	6.49	6e-5	6e-5
20	0.2	0.2	7.68	7.68	0.0001	0.0002
40	0.1	0.1	7.71	7.71	0.0015	0.0015
60	0.1	0.3	7.72	7.72	0.0045	0.0081
80	0.2	0.3	7.72	7.72	0.013	0.033
100	0.2	0.3	7.72	7.72	0.23	0.66
150	0.2	0.3	7.65	11.1	1.94	1.96
200	0.2	0.2	7.72	7.80	8.67	12.78
250	0.2	0.2	7.68	14.24	58.29	59.1

Tabela 3: Melhores execuções do SA e seus respectivos parâmetros. "SH" e "CH" representam execuções com e sem uso da heurística, respectivamente. Os valores de J_{min} em negrito indicam ótimos globais.

(a) Comparação de tempos.

1.50

1.50

0.75

0.50

Sem Heurística

Com Heurística

(b) Comparação de custos mínimos.

Figura 2: Comparação do tempo de execução e custo mínimo obtido com e sem o uso da heurística. Os tempos e custos estão normalizados em relação a respectiva média para cada número de cidades.

(a) Sem utilizar a heurística.

(b) Utilizando a heurística.

Figura 3: Comparação das curvas de custo com e sem o uso da heurística para 150 cidades.

5 Conclusão

O algoritmo de *Simulated Annealing* foi avaliado minimizando o custo do Problema do Caixeiro Viajante. Uma grade de parâmetros foi estabelecida a partir de testes inicias com 10 cidades. Os parâmetros do algoritmo foram ajusta-

dos conforme o número de cidades foi incrementado. Para cada combinação de parâmetros, 10 sementes foram testadas em busca do menor custo. O mínimo global foi encontrado para diferentes números de cidades, até um valor máximo de 250. Para os parâmetros testados, a comparação entre o uso ou não da heurística que estabelece $x = x_{min}$ na troca de temperatura, se demonstrou inconclusiva até 100 cidades. Apesar disso, para um número de cidades maior que 100, o SA encontrou o ótimo global apenas em casos em que não utilizou a heurística.

Referências

- [1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. *Science*, 220(4598): 671–680, 1983.
- [2] Nazmul Siddique and Hojjat Adeli. Simulated annealing, its variants and engineering applications. *International Journal on Artificial Intelligence Tools*, 25(06): 1630001, 2016.
- [3] Alan R. McKendall, Jin Shang, and Saravanan Kuppusamy. Simulated annealing heuristics for the dynamic facility layout problem. *Computers & Operations Research*, 33(8):2431–2444, 2006. ISSN 0305-0548. doi:https://doi.org/10.1016/j.cor.2005.02.021.