Sub Code: CST-002 ROLL NO.....

ODD SEMESTER EXAMINATION, 2023 – 24 2nd Year , B.Tech– (CS&E/AI&ML/IT) Discrete Structure

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1.	Answer any four parts of the following.	5x4=20
	a) If A and B be finite sets and $f: A \to B$. Then show that	
	(i) If f is injective, then $ A \le B $	
	(ii) If f is surjective, then $ B \le A $	
	b) Using mathematical induction method verify that $1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{n}$	
	c) Let $f: A \to B$ and $g: B \to C$ be functions. If f and g are surjections, then show that $g \circ f: A \to C$ is a surjection.	
	d) Show that the mapping $f: R \to R$ be defined by $f(x) = ax + b$, where $a, b, x \in R$, $a \ne 0$ is invertible.	
	e) For any three sets A, B and C , prove that $A - (B \cap C) = (A - B) \cup (A - C)$	
	f) Define the following: (i) Multisets (ii) Union of Multisets (iii) Sum of Multisets (iv) Intersection of Multisets (v) Difference of Multisets	
Q 2.	Answer any four parts of the following.	5x4=20
	a) Prove that the proposition $\sim (p \land q) \lor q$ is a tautology.	
	b) Prove that the intersection of two sublattices is a sublattice.	
	c) Prove that two bounded lattices A and B are complemented if and only if $A \times B$ is complemented.	
	d) Determine whether the following is a tautology, contingency and a contradiction:	
	(i) $p \to (p \to q)$ (ii) $p \to (q \to p)$ (iii) $p \land \sim p$	
	e) Consider the poset $A = (\{1,2,3,4,6,9,12,18,36\},/)$, find the greatest lower bound and the least upper bound of the sets $\{6,18\}$ and $\{4,6,9\}$.	
	f) If L be any lattice, then for any $a,b,c \in L$, prove that $a \lor (b \lor c) = (a \lor b) \lor c$.	
Q 3.	Answer any two parts of the following.	10x2 = 20
	a) Solve the recurrence relation $a_{r+2} - 5 a_{r+1} + 6 a_r = 2$ by the method of generating functions with initial conditions $a_0 = 1$ and $a_1 = 2$.	
	b) (i) How many 11 letter words can be formed using the letters of the word INSTITUTION.	
	(ii) Prove that $C(n,r) = C(n-1, r) + C(n-1,r-1)$.	
	c) Among the first 1000 positive integers, using principle of inclusion and exclusion,	
	determine the integers which are not divisible by 5, nor by7, nor by 9.	
Q 4.	Answer any two parts of the following.	10x2 = 20
	a) If R_+ be the multiplicative group of all positive real numbers and R be the additive group of all real numbers. Show that the mapping $g: R_+ \to R$ defined by	

	b) Prove that the set of all positive rational numbers under the binary operation * defined by $a * b = \frac{ab}{2}$ is a group.	
	c) Show that a commutative ring R is an integral domain if and only if for all a , b , $c \in R$ ($a \ne 0$) $ab = ac \Rightarrow b = c$.	
Q 5.	Answer any two parts of the following.	10x2 = 20
	a) Apply Dijkstra's algorithm to the graph given below and find the shortest path from a to f:	
	b 6 d 2 c 1 e b) If a linear graph has exactly one path between any two vertices. The linear graph is a tree and Conversely. Explain it. c) If G be a connected planar simple graph with e edges and e vertices. If e be the number of regions in a planar representations of e , then show that e is the simple graph with e edges and e vertices. If e is the number of regions in a planar representations of e , then show that e is the simple graph with e edges and e vertices. If e is the number of regions in a planar representations of e , then show that e is the simple graph with e edges and e vertices. If e is the number of regions in a planar representations of e , then show that e is the simple graph with e is the simple g	
