SALT TOLERANT OIL CROPS

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 60/395,656, filed July 12, 2002, which is incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

[0002] This invention is in the field of agricultural biotechnology. In particular, this invention relates to salt tolerant, transgenic oil crop plants that produce normal or near normal distributions of fatty acids.

BACKGROUND OF THE INVENTION

[0003] Agricultural productivity is severely affected by soil salinity, and the damaging effects of salt accumulation in agricultural soils have influenced ancient and modern civilizations. The detrimental effects of salt on plants are a consequence of both a water deficit that results from the relatively high solute concentrations in the soil, and a Na+-specific stress resulting from altered K+/Na+ ratios and Na+ ion concentrations that are inimical to plants. The alteration of ion ratios in the plant is due to the influx of Na+ through pathways that function in the acquisition of K+. (Maathius, et al. (1999)) Full citations for the references cited herein are provided at the end of the Examples.

[0004] Salt tolerance is not exclusively associated with cellular Na⁺ homeostasis, but also involves adaptations to secondary effects of salinity such as oxidative damage and changes in the levels and composition of fatty acids of the major glycerolipids in roots and leaves of a wide range of plants. (Rais, et al. (1993)) Oil crops can be particularly affected by growth under elevated salt conditions. Changes in the level of fatty acid saturation/unsaturation have been reported as a response to salt stress, and a reduction in the levels of triacylglycerols containing unsaturated fatty acids has been reported in seed oil from cotton under salt stress. (Wu, et al. (1998); Yu, et al. (1998) and Smaoui, et al. (2000)) In addition, salt stress has been reported as leading to lowered levels of triolein, the major triacylglycerol in olive oil, in olives.

[0005] There is thus a tremendous need to be able to produce a salt tolerant oil crops that produce oils with normal or near normal distributions of fatty acids.

SUMMARY OF THE INVENTION

[0006] In order to meet these needs, the present invention is directed to transgenic oil crops that are able to grow and produce oil in the presence of elevated salt concentrations. In particular, we show that transgenic *Brassica napus* plants overexpressing a vacuolar Na⁺/H⁺ antiport were able to grow, flower and produce seeds in the presence of 200 mM NaCl. *Brassica napus*, commonly known as canola or rapeseed, represents one of the most important oilseed crops that is being cultivated worldwide. The sustained growth of the transgenic plants, the seed yields and the quality of the seed oil demonstrate the potential use of these transgenic plants for agricultural use in saline soils.

[0007] One aspect of the present invention is directed to a non-naturally occurring non-halophyte oil crop plant comprising seeds with normal or near normal fatty acid distribution when cultivated in high salt. In some variations, the normal near normal fatty acid distribution is within 3%, within 5%, within 8%, within 10%, within 15%, or within 20% of the distribution in the corresponding plant variety grown in low to moderate salt. In another variation, the high salt is at least two times, at least three times, at least four times, at least five times, at least ten times, or at least twenty times the optimal salt concentration for the naturally occurring non-halophyte plant. In other variations, the plant may be canola, safflower, palm, coconut, cotton, flax, jojoba, peanut, castor, sesame, sunflower or soybean.

[0008] In another aspect of the present invention, the plant comprises a transgene. In still another variation, the transgene induces vacuolar accumulation of salt, secretion of the salt out of the cytoplasm or exclusion of salt from the cytoplasm. In one variation, the transgene comprises a first nucleic acid sequence encoding a Na+/H+ transporter or a plant derived Na+/H+ transporter. In another variation, the transgene comprises a first nucleic acid selected from the following group: a nucleic acid molecule of the coding strand shown in SEQ ID NO:1, or a complement thereof; a nucleic acid molecule encoding the amino acid sequence shown in SEQ ID NO:2; a nucleic acid molecule that hybridizes to the sequence set forth in SEQ ID NO:1 or the complement of the sequence set forth in SEQ ID NO:1 under highly stringent conditions that

include at least one wash in 0.1xSSC, 0.1% SDS, at 65° C for thirty minutes; and a nucleic acid molecule encoding a plant NHX transporter polypeptide that hybridizes to the sequence set forth in SEQ ID NO:1 or the complement of the sequence set forth in SEQ ID NO:1 under moderately stringent conditions that includes at least one wash in 0.1xSSC, 0.1% SDS, at 50° C for thirty minutes. In still another variation, the transgene further comprises a promoter sequence operably linked to the first nucleic acid sequence. In yet another variation, the promoter is a constitutive promoter or an inducible promoter. In certain variations, the promoter may be selected from the group consisting of the 35 S promoter and the CaMV promoter.

[0009] An additional aspect of the present invention is a seed produced from any of the foregoing plants and variations thereof.

[0010] The present invention also includes methods of generating the foregoing. One variation includes transfecting a plant with a transcriptional regulatory element and identifying plants comprising seeds with normal or near normal fatty acid distribution when cultivated in high salt. In another variation, plants are transfected with a transcriptional regulatory element and identifying a plant wherein said transcriptional regulatory element has integrated operably linked to a Na+/H+ transporter. In yet another variation, the transcriptional regulatory element is a promoter, an enhancer element, a repressor element or a boundary element. In one variation, plants are transfected with a transgene comprising a Na+/H+ transporter and a plant comprising seeds with normal or near normal fatty acid distribution when cultivated in high salt is identified. In one variation, the Na+/H+ transporter gene is selected from the group consisting of a nucleic acid molecule of the coding strand shown in SEQ ID NO:1, or a complement thereof; a nucleic acid molecule encoding the amino acid sequence shown in SEQ ID NO:2; a nucleic acid molecule that hybridizes to the sequence set forth in SEQ ID NO:1 or the complement of the sequence set forth in SEQ ID NO:1 under highly stringent conditions that include at least one wash in 0.1xSSC, 0.1% SDS, at 65° C for thirty minutes; and a nucleic acid molecule encoding a plant NHX transporter polypeptide that hybridizes to the sequence set forth in SEQ ID NO:1 or the complement of the sequence set forth in SEQ ID NO:1 under moderately stringent conditions that includes at least one wash in 0.1xSSC, 0.1% SDS, at 50° C for thirty minutes.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0011] Figure 1 shows salt tolerance of wild-type plants and transgenic *Brassica* plants overexpressing AtNHX1grown in the presence of 200 mM NaCl. Wild-type (wt) and homozygous plants showing high (X1OE₁), medium (X1OE₂) and low (X1OE₃) levels of expression were grown in the presence of 200 mM NaCl. Plants shown after 10 weeks of growth. *Inset:* Western blots of leaf tonoplast-enriched membrane fractions isolated from wild-type and transgenic plants with low, medium and high levels of expression of *AtNHX1*. Blots were probed with antibodies raised against the C-terminus of AtNHX1. Equal amounts of protein (20 μg) were loaded in each lane. Relative molecular masses are indicated on the left.
- **[0012]** Figure 2 shows Na⁺ and K⁺ contents of leaves and roots from wild-type plants grown at 10 mM NaCl (black bars) and transgenic plants (X10E1) grown at 10 mM NaCl (white bars) and 200 mM NaCl (hatched line bars). (A) Na⁺ content; (B) K⁺ content. Leaves and roots were collected from fifteen plants from each treatment, the material pooled in three groups and ion contents measured as described in Materials and Methods. Values are the Mean \pm S.D (n = 3).
- [0013] Figure 3 shows proline, soluble sugars, protein and total nitrogen contents of leaves and roots from wild-type plants grown at 10 mM NaCl (black bars); and transgenic plants (X10E₁) grown at 10 mM NaCl (white bars) and 200 mM NaCl (hatched line bars). (A) Proline content; (B) soluble sugar content; (C) total protein content; (D) total nitrogen content. Leaves and roots were collected from fifteen plants from each treatment, the material pooled in three groups and contents measured as described in Materials and Methods. Values are the Mean \pm S.D (n = 3).
- **[0014]** Figure 4 shows fatty acid composition of the minor chloroplastic lipids from wild-type plants grown at 10 mM NaCl (black bars); and transgenic plants grown (X10E₁) at 10 mM NaCl (white bars) and 200 mM NaCl (hatched line bars). (A) Sulfoquinovosyldiacylglycerol; (B) Phosphatidylglycerol. Leaves were collected as leaf discs from 15 plants from each treatment, the material pooled in to 3 groups of 2 g each and contents purified and measured as described in Material and Methods. Values are the Mean \pm S.D (n = 5).

[0015] Figure 5 shows fatty acid composition of seeds from wild-type plants grown in 10 mM NaCl (black bars) and transgenic plants (X10E₁) grown in the presence of 200 mM NaCl (hatched line bars). Seeds were collected from individual plants and batches of 3 seeds per plant were used for each measurement. Values are the Mean \pm S.D (n =5).

BRIEF DESCRIPTION OF THE TABLES

- [0016] Table I shows a comparison of the yield of a non-naturally occurring salt tolerant oil crop in the presence of 10 mM NaCl and 200 mM NaCl and the yield of the naturally occurring oil crop of the same variety grown in the presence of 10 mM NaCl.
- [0017] Table II shows the a comparison of the lipid content of leaves and roots of a non-naturally occurring salt tolerant oil crop grown in the presence of 10 mM and 200 mM NaCl and a naturally occurring oil crop of the same variety grown in the presence of 10 mM NaCl.
- [0018] Table III shows a representative list of NXH related gene products.
- [0019] Table IV shows the salinity levels that lead to a 25% relative decrease in yield and a 50% relative decrease in yield for various crop plants, including soybean, an oil crop plant.

DETAILED DESCRIPTION OF THE INVENTION

Oil Crops of the Present Invention

- [0020] The present invention provides a non-naturally occurring oil crop that is characterized by increased salt tolerance and a normal or near normal distribution of seed oils when grown under elevated salt conditions. A preferred method of making such crop plants is to ectopically express a nucleic acid molecule encoding an NHX related gene product. The NHX related gene product can have, for example, substantially the amino acid sequence of an NHX ortholog such as those described in Table III.
- [0021] As defined herein, an "oil crop" is any crop plant capable of producing oil. Such crop plants include rape/canola; coconut; cotton; flax; palm; olive; jojoba; peanut; castor; safflower; sesame; sunflower and soybean.

[0022] In one embodiment, the invention provides a transgenic oil crop characterized by increased salt tolerance due to ectopic expression of an exogenous nucleic acid molecule encoding an NHX-related gene product. The nucleic acid molecule encoding the NHX-related gene product can be operatively linked to an exogenous regulatory element such as a constitutive regulatory element or crop-selective regulatory element.

[0023] The present invention is directed to the surprising discovery that the NHX-1 increases salt tolerance in oil crops and results in a normal or near normal distribution of fatty acids in seed oils. As disclosed herein, transgenic *Brassica* plants overexpressing AtNHX1 were able to grow, flower and produce seeds in the presence of 200 mM NaCl. The seeds produced in the presence of 200 mM NaCl had a normal or near normal distribution of fatty acids when compared to seeds produced in the presence of 10 mM NaCl.

[0024] As further disclosed herein, overexpression of AtNHX1 in *Brassica* plants results in increased salt tolerance as compared to the salt tolerance of wild type *Brassica* plants. As set forth in The Example, constitutive expression of NHX1 under control of a 35 S promoter resulted in oil crops having increased salt tolerance as compared to the salt tolerance of wild type plants. In view of the presence and expression of the NHX ortholog, as detailed in Table III, the skilled artisan will recognize that an NHX-related gene product, such as an ortholog of NHX-1, can be used in the methods of the present invention, for example, to produce transgenic plants having the characteristics disclosed herein. Thus, the invention provides a non-naturally occurring oil crop such as a transgenic *Brassica* plant, characterized by increased salt tolerance due to ectopic expression of a nucleic acid molecule encoding an NHX-1 related gene product.

[0025] As used herein, the term "non-naturally occurring," when used in reference to an oil crop, means an oil crop that has been genetically modified by man. A transgenic oil crop of the invention, for example, is a non-naturally occurring plant that contains an exogenous nucleic acid molecule, such as a nucleic acid molecule encoding an NHX-related gene product and, therefore, has been genetically modified by human intervention. In addition, an oil crop that contains, for example, a mutation in an endogenous NHX-related gene product regulatory element or coding sequence as a result of calculated exposure to a mutagenic agent, such as a chemical mutagen, or an "insertional mutagen," such as a transposon, also is considered a non-

naturally occurring oil crop, since it has been genetically modified by human intervention. Furthermore, a plant generated by cross breeding different strains and varieties are also considered a "non-naturally occurring plant," because the selection and breeding is performed by human intervention. In contrast, an oil crop containing only spontaneous or naturally occurring mutations is not a "non-naturally occurring oil crop" as defined herein and, therefore, is not encompassed within the invention. One skilled in the art understands that, while a non-naturally occurring oil crop typically has a nucleotide sequence that is altered as compared to a similar naturally occurring oil crop, a non-naturally occurring oil crop also can be genetically modified by human intervention without altering its nucleotide sequence, for example, by modifying its methylation pattern.

[0026] The term "ectopically," as used herein in reference to expression of a nucleic acid molecule, refers to an expression pattern in a non-naturally occurring plant that is distinct from the expression pattern in a comparable naturally occurring plant. Thus, one skilled in the art understands that ectopic expression of a nucleic acid molecule encoding an NHX-related gene product can refer to expression in a cell type other than a cell type in which the nucleic acid molecule normally is expressed, or at a time other than a time at which the nucleic acid molecule normally is expressed, or at a level other than the level at which the nucleic acid molecule normally is expressed. For example, under control of a constitutive promoter such as the cauliflower mosaic virus 35S promoter, NHX is expressed is expressed at higher than normal levels in oil crops and, thus, is ectopically expressed.

[0027] The term "increased salt tolerance," as used herein in reference to a non-naturally occurring oil crop variety of the invention, means a significantly increased salt tolerance as compared to the salt tolerance of a corresponding oil crop variety lacking a genetic modification introduced by human intervention such as an ectopically expressed nucleic acid molecule encoding an NHX-related gene product such as a wild type oil crop. As disclosed herein in The Example, transgenic *Brassica napus* plants ectopically expressing NHX-1 have an increased salt tolerance as compared to wild type *Brassica* plants.

[0028] It is recognized that there can be natural variation in the salt tolerance of a particular plant species or variety. However, the salt tolerance of an oil crop using a method of the

invention readily can be identified by sampling a population of the oil crop and determining that the normal distribution of salt tolerance is higher, on average, than the normal distribution of an oil crop lacking an ectopically expressed nucleic acid molecule encoding an NHX-related gene product. Thus, production of non-naturally occurring oil crops of the invention provides a means to skew the normal distribution of salt tolerance of a plant, such that the salt tolerance is, on average, at least about 5% greater, 10% greater, 20% greater, 30% greater, 50% greater, 75% greater, 100% greater, 200% greater, 300% greater or 500% greater than in the corresponding plant species that does not contain an ectopically expressed nucleic acid molecule encoding an NHX-related gene product.

[0029] The term "normal or near normal distribution of fatty acids," as used herein in reference to a non-naturally occurring oil crop of the invention, means a distribution of major fatty acids (greater than 5% of the oil) in the oil produced from the non-naturally occurring oil crop grown in high salt wherein the fraction of each major fatty acid is nearly normal when compared to the distribution of major fatty acids in the oil produced from the same non-naturally occurring oil crop grown in moderate salt. As disclosed herein in The Example, transgenic *Brassica napus* plants ectopically expressing NHX-1 have a normal or near normal distribution of fatty acids when grown in the presence of 200 mM NaCl as compared to the transgenic plants grown at 10 mM NaCl. The term, however, does not include the distribution of fatty acids in the leaves or the roots.

[0030] It is recognized that there can be natural variation in the distribution of fatty acids in oils produced by a particular plant species or variety. However, the distribution of fatty acids in oils produced by an oil crop using a method of the invention readily can be identified by sampling a population of the oil crop and determining that the normal distribution of fatty acids is nearly normal when the oil crop is cultivated under high salt, on average, when compared to the distribution of fatty acids when the oil crop is grown in moderate to low salt. Thus, production of non-naturally occurring oil crops of the invention provides a means to produce plants which when grown in high salt produce oils with a distribution of major fatty acids in the oil produced wherein the fraction of each major fatty acid is within 3%, within 5%, within 8%, within 10%, within 15%, or within 20% of the fraction of the same major fatty acid in oil produced by the corresponding plant grown in low to moderate salt.

[0031] The term "non-halophyte," as used herein means a plant that is not naturally morphologically and/or physiologically adapted to grow in salt rich soils or salt laden air. A non-halophyte is a plant variety that has a relative yield decrease of 50 % or more at 200 mM NaCl (the equivalent of about 20 dS/m) when compared to the plant variety grown at optimal salinity levels which are below 200 mM NaCl. The invention is suitable for even more salt sensitive plant varieties which have a relative yield decrease of 50% or more at 180 mM NaCl, 160 mM NaCl, 140 mM NaCl, 120 mM NaCl, 100 mM NaCl or 80 mM NaCl. Table IV lists the relative yield decrease for various non-halophyte crop plants.

[0032] The term "elevated salinity conditions" as used herein refers to the salinity level at which a plant variety has a relative yield decrease of 50 % when compared to the plant variety grown at lower optimal salinity levels.

[0033] The term "saline-intolerant plants" as used herein means a plant variety that cannot complete its life cycle in growth media containing a salinity level above 200 mM NaCl. The invention is suitable for even more highly saline-intolerant plant varieties that cannot complete their life cycle in growth media containing a salinity level above 180 mM NaCl, 160 mM NaCl, 140 mM NaCl, 120 mM NaCl, 100 mM NaCl and even 7 mM NaCl.

Methods of Making the Oil Crop Plants

[0034] The following methods are illustrative of some of the methods that may be used to make the oil crops of the present invention. With the Example herein, one of skill in the art will now recognize that many methods may be used to generate the oil crops of the present invention based upon dealing with salt accumulation in the cytosol. Examples include without limitation: replacement of salt sensitive enzymes in the fatty acid biosynthetic pathway with salt tolerant enzymes; exclusion of salt from the cytosol; secretion of salt out of the cytosol; and compartmentalization of the salt away from the cytosol such as in the vacuole. A preferred method is generating an oil crop ectopically expressing an NHX-related gene product.

[0035] As used herein, the term "NHX-related gene product" means a gene product that has the same or similar function as At NHX such that, when ectopically expressed in an oil crop, normal salt tolerance is altered such that oil crops with increased salt tolerance are produced. *Arabidopsis* NHX-1 is an example of an NHX-related gene product as defined herein.

[0036] An NHX-related gene product generally is characterized, in part, as containing a putative action binding domain and an amiloride binding domain. An NHX-related gene product also generally is characterized by having an amino acid sequence that has at least about 40% amino acid identity with the amino acid sequence of *Arabidopsis* NHX-1. An NHX-related gene product can have, for example, an amino acid sequence with greater than about 45% amino acid sequence identity with *Arabidopsis* NHX-1, preferably greater than about 50% amino acid identity with *Arabidopsis* NHX-1, preferably greater than about 55% amino acid identity with *Arabidopsis* NHX-1, preferably greater than about 60% amino acid identity with *Arabidopsis* NHX-1, preferably greater than about 65% amino acid identity with *Arabidopsis* NHX-1, more preferably greater than about 75% amino acid identity with *Arabidopsis* NHX-1, and can be a sequence having greater than about 90%, 95% or 97% amino acid identity with *Arabidopsis* NHX-1.

[0037] Preferably, an NHX-related gene product is orthologous to the plant species in which it is ectopically expressed. A nucleic acid molecule encoding *Brassica* NHX, for example, can be ectopically expressed in a *Brassica* plant to produce a non-naturally occurring *Brassica* variety characterized by an increased salt tolerance and normal or near-normal distributions of fatty acids. Similarly, a nucleic acid molecule encoding oil plant NHX, for example, can be ectopically expressed in an oil crop to produce a non-naturally occurring oil crop characterized by producing salt tolerant oil crops.

[0038] A nucleic acid molecule encoding an NHX-related gene product also can be ectopically expressed in a heterologous plant to produce a non-naturally occurring plant characterized by an increased salt tolerance. NHX proteins have been cloned from a number of plant species (including Arabidopsis, tomato, sugar beets, petunia, rice, etc) indicating that they are widely conserved throughout the plant species. NHX-related gene products such as NHX orthologs also can be conserved and can function across species boundaries to result in an increased salt tolerance. Thus, ectopic expression of a nucleic acid molecule encoding NHX in a heterologous plant can alter the salt tolerance of the plant. Furthermore, a nucleic acid molecule encoding NHX, for example, can be ectopically expressed in more distantly related heterologous plants, including oil crops, and, upon ectopic expression, can alter salt tolerance.

[0039] As used herein, the term "NHX-related gene product" encompasses an active segment of an NHX-related gene product, which is a polypeptide portion of an NHX-related gene product that, when ectopically expressed, increases salt tolerance. An active segment can be, for example, an amino terminal, internal or carboxy terminal fragment of NHX-1 that, when ectopically expressed in an oil crop, results in an increased salt tolerance. The skilled artisan will recognize that a nucleic acid molecule encoding an active segment of an NHX-related gene product can be used to generate a plant of the invention characterized by an increased salt tolerance and in the related methods and kits of the invention described further below.

[0040] An active segment of an NHX-related gene product can be identified using the methods described in The Example or using other routine methodology. Briefly, an oil crop such as *Brassica napus* can be transformed with a nucleic acid molecule under control of a constitutive regulatory element such as a tandem CaMV 35S promoter. Biochemical analysis of the plant and plant growth observations reveals whether an oil crop ectopically expressing a particular polypeptide portion has an increased salt tolerance. For analysis of a large number of polypeptide portions of an NHX-related gene product, nucleic acid molecules encoding the polypeptide portions can be assayed in pools, and active pools subsequently subdivided to identify the active nucleic acid molecule.

[0041] In one embodiment, the invention provides a non-naturally occurring oil crop that is characterized by an increased salt tolerance due to ectopic expression of a nucleic acid molecule encoding an NHX-related gene product having substantially the amino acid sequence of an NHX ortholog. As used herein, the term "NHX ortholog" means an ortholog of Arabidopsis NHX-1 and refers to an NHX-related gene product that, in a particular plant variety, has the highest percentage homology at the amino acid level to Arabidopsis NHX-1. An NHX-1 ortholog can be, for example the NHX-1 orthologs described in Table III. Novel NHX ortholog cDNAs can be isolated from additional plant species using a nucleotide sequence as a probe and methods well known in the art of molecular biology (Glick and Thompson (eds.), Methods in Plant Molecular Biology and Biotechnology, Boca Raton, Fla.: CRC Press (1993); Sambrook et al. (eds.), Molecular Cloning: A Laboratory Manual (Second Edition), Plainview, N.Y.: Cold Spring Harbor Laboratory Press (1989), each of which is incorporated herein by reference).

[0042] As used herein, the term "substantially the amino acid sequence," when used in reference to an NHX ortholog, is intended to mean a polypeptide or polypeptide segment having an identical amino acid sequence, or a polypeptide or polypeptide segment having a similar, nonidentical sequence that is considered by those skilled in the art to be a functionally equivalent amino acid sequence. For example, an NHX-related gene product having substantially the amino acid sequence of Arabidopsis NHX-1 can have an amino acid sequence identical to the sequence of Arabidopsis NHX-1, or a similar, non-identical sequence that is functionally equivalent. In particular, a gene product that has "substantially the amino acid sequence" of an NHX ortholog can have one or more modifications such as amino acid additions, deletions or substitutions, including conservative or non-conservation substitutions, relative to the NHX-1 amino acid sequence, for example, provided that the modified polypeptide retains substantially the ability to increase salt tolerance when the nucleic acid molecule is ectopically expressed in the plant. Comparison of sequences for substantial similarity can be performed between two sequences of any length and usually is performed with sequences between about 6 and 1200 residues, preferably between about 10 and 100 residues and more preferably between about 25 and 35 residues. Such comparisons for substantial similarity are performed using methodology routine in the art.

Includes nucleotide sequences having at least about: 48% similarity to SEQ ID NO:1. The similarity may also be at least about: 60% similarity, 75% similarity, 80% similarity, 90% similarity, 95% similarity, 97% similarity, 98% similarity, 99% similarity, or more preferably at least about 99.5% similarity, wherein the polypeptide has Na+/H+ transporter activity. The invention also includes salt tolerant oil crop plants made by transgenic expression of nucleic acid molecules encoding polypeptides, with the polypeptides having at least about: at least about: 48% similarity to SEQ ID NO:2. The similarity may also be at least about: 60% similarity, 75% similarity, 80% similarity, 90% similarity, 95% similarity, 97% similarity, 98% similarity, 99% similarity, or more preferably at least about 99.5% similarity, wherein the polypeptide Na+/H+ has transporter activity, to SEQ ID NO:2 (or a partial sequence thereof) considering conservative amino acid changes, wherein the polypeptide has Na+/H+ transporter activity. Sequence similarity is preferably calculated as the number of similar amino acids in a pairwise alignment expressed as a percentage of the shorter of the two sequences in the alignment. The pairwise

alignment is preferably constructed using the Clustal W program, using the following parameter settings: fixed gap penalty=10, floating gap penalty=10, protein weight matrix=BLOSUM62. Similar amino acids in a pairwise alignment are those pairs of amino acids which have positive alignment scores defined in the preferred protein weight matrix (BLOSUM62). The protein weight matrix BLOSUM62 is considered appropriate for the comparisons described here by those skilled in the art of bioinformatics. (The reference for the clustal w program (algorithm) is Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673-4680; and the reference for BLOSUM62 scoring matrix is Henikoff, S. and Henikoff, J.G. (1993) Performance evaluation of amino acid substitution matrices. Proteins, 7:49-61.)

[0044] It is understood that minor modifications of primary amino acid sequence can result in an NHX-related gene product that has substantially equivalent or enhanced function as compared to the NHX ortholog from which it was derived. Further, various molecules can be attached to an NHX ortholog or active segment thereof, for example, other polypeptides, antigenic or other peptide tags, carbohydrates, lipids, or chemical moieties. Such modifications are included within the term NHX ortholog as defined herein.

[0045] One or more point mutations can be introduced into a nucleic acid molecule encoding an NHX ortholog to yield a modified nucleic acid molecule using, for example, site-directed mutagenesis (see Wu (Ed.), Meth. In Enzymol. Vol. 217, San Diego: Academic Press (1993); Higuchi, "Recombinant PCR" in Innis et al. (Ed.), PCR Protocols, San Diego: Academic Press, Inc. (1990), each of which is incorporated herein by reference). Such mutagenesis can be used to introduce a specific, desired amino acid insertion, deletion or substitution; alternatively, a nucleic acid sequence can be synthesized having random nucleotides at one or more predetermined positions to generate random amino acid substitutions. Scanning mutagenesis also can be useful in generating a modified nucleic acid molecule encoding substantially the amino acid sequence of an NHX ortholog.

[0046] Modified nucleic acid molecules can be routinely assayed for the ability to alter normal plant development such that salt tolerance is increased. For example, a nucleic acid

molecule encoding substantially the amino acid sequence of an NHX ortholog can be ectopically expressed, for example, using a constitutive regulatory element such as the CaMV 35S promoter or using a tissue-specific regulatory element such as a seed-selective regulatory element as described further below. If such ectopic expression results in a seed plant in which seeds of increased size are produced, the modified polypeptide or segment is an "NHX ortholog" as defined herein.

[0047] Other functional equivalent forms of the NHX-related gene product encoding nucleic acids can be identified using conventional DNA-DNA or DNA-RNA hybridization techniques. These nucleic acid molecules and the AtNHX sequences can be modified without significantly affecting their activity.

[0048] The oil crops of the present invention may therefore also be made by generating transgenic plants containing nucleic acid molecules that hybridize to one SEQ ID NO:1 or their complementary sequences, and that encode expression for peptides or polypeptides exhibiting substantially equivalent activity as that of an AtNHX polypeptide produced by SEQ ID NO:1 or their variants. Such nucleic acid molecules preferably hybridize to the sequences under low, moderate (intermediate), or high stringency conditions. (See Sambrook et al. (Most recent edition) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).

[0049] As used herein, the phrase "low stringency hybridization conditions" refers the following conditions and equivalents thereto: hybridization at 5xSSC, 2% SDS, and $100 \mu g/ml$ single stranded DNA at 40° C for 8 hours, followed by at least one wash in 2xSSC, 0.2% SDS, at 40° C for thirty minutes.

[0050] As used herein, the phrase "moderate stringency hybridization conditions" refers the following conditions and equivalents thereto: hybridization at 5xSSC, 2% SDS, and $100 \mu g/ml$ single stranded DNA at 50° C for 8 hours, followed by at least one wash in 0.1xSSC, 0.1% SDS, at 50° C for thirty minutes.

[0051] As used herein, the phrase "high stringency hybridization conditions" refers the following conditions and equivalents thereto: hybridization at 5xSSC, 2% SDS, and $100 \mu g/ml$

single stranded DNA at 65° C for 8 hours, followed by at least one wash in 0.1xSSC, 0.1% SDS, at 65° C for thirty minutes.

[0052] The invention also provides a transgenic oil crop that is characterized by increased salt tolerance resulting from ectopic expression of an exogenous nucleic acid molecule encoding an NHX-related gene product. In a transgenic oil crop of the invention, the ectopically expressed exogenous nucleic acid molecule encoding an NHX-related gene product can be operatively linked to an exogenous regulatory element. In one embodiment, the invention provides a transgenic plant characterized by increased salt tolerance having an ectopically expressed exogenous nucleic acid molecule encoding an NHX-related gene product that is operatively linked to a constitutive regulatory element. The invention provides, for example, a transgenic oil crop that is characterized by an increased salt tolerance due to ectopic expression of an exogenous nucleic acid molecule encoding substantially the amino acid sequence of an NHX ortholog operatively linked to a cauliflower mosaic virus 35S promoter.

[0053] In another embodiment, an exogenous constitutive or inducible regulatory element may be introduced to the plant such that the exogenous regulatory element is operably linked to an endogenous gene and alters the expression pattern of the gene in a manner that provides salt tolerance that leads to normal or near normal distributions of fatty acids when the plant is grown in the presence of high salt. One example of this would be to transfect a plant with the cauliflower mosaic virus 35S promoter such that the promoter integrates in a way that it is operably linked to one of the plant's endogenous NHX-related genes.

[0054] In yet another embodiment, an exogenous NHX-related gene may be introduced to the plant such that the exogenous NHX-related gene is operably linked to an endogenous regulatory element which directs the expression of the gene in a manner that provides salt tolerance that leads to normal or near normal distributions of fatty acids when the plant is grown in the presence of high salt. One example of this would be to transfect a plant with the atNHX1 gene such that the gene integrates in a way that it is operably linked to one of the plant's endogenous strong promoters.

[0055] As used herein, the term "transgenic" refers to an oil crop that contains an exogenous nucleic acid molecule, which can be derived from the same plant species or from a heterologous plant species.

[0056] The term "exogenous," as used herein in reference to a nucleic acid molecule and a transgenic plant, means a nucleic acid molecule originating from outside the plant. An exogenous nucleic acid molecule can have a naturally occurring or non-naturally occurring nucleotide sequence. One skilled in the art understands that an exogenous nucleic acid molecule can be a heterologous nucleic acid molecule derived from a different plant species than the plant into which the nucleic acid molecule is introduced or can be a nucleic acid molecule derived from the same plant species as the oil crop into which it is introduced.

[0057] The term "operatively linked," as used in reference to a regulatory element and a nucleic acid molecule, such as a nucleic acid molecule encoding an NHX-related gene product, means that the regulatory element confers regulated expression upon the operatively linked nucleic acid molecule. Thus, the term "operatively linked," as used in reference to an exogenous regulatory element such as a constitutive regulatory element and a nucleic acid molecule encoding an NHX-related gene product, means that the constitutive regulatory element is linked to the nucleic acid molecule encoding an NHX-related gene product such that the expression pattern of the constitutive regulatory element is conferred upon the nucleic acid molecule encoding the NHX-related gene product. It is recognized that a regulatory element and a nucleic acid molecule that are operatively linked have, at a minimum, all elements essential for transcription, including, for example, a TATA box.

[0058] As used herein, the term "constitutive regulatory element" means a regulatory element that confers a level of expression upon an operatively linked nucleic molecule that is relatively independent of the cell or tissue type in which the constitutive regulatory element is expressed. A constitutive regulatory element that is expressed in a plant generally is widely expressed in a large number of cell and tissue types.

[0059] A variety of constitutive regulatory elements useful for ectopic expression in a transgenic plant of the invention are well known in the art. The cauliflower mosaic virus 35S (CaMV 35S) promoter, for example, is a well-characterized constitutive regulatory element that

produces a high level of expression in all plant tissues (Odell et al., Nature 313:810-812 (1985)). The CaMV 35S promoter can be particularly useful due to its activity in numerous diverse plant species (Benfey and Chua, Science 250:959-966 (1990); Futterer et al., Physiol. Plant 79:154 (1990); Odell et al., supra, 1985). A tandem 35S promoter, in which the intrinsic promoter element has been duplicated, confers higher expression levels in comparison to the unmodified 35S promoter (Kay et al., Science 236:1299 (1987)). Other constitutive regulatory elements useful for ectopically expressing a nucleic acid molecule encoding an NHX-related gene product in a transgenic oil crop of the invention include, for example, the cauliflower mosaic virus 19S promoter; the Figwort mosaic virus promoter; and the nopaline synthase (nos) gene promoter (Singer et al., Plant Mol. Biol. 14:433 (1990); An, Plant Physiol. 81:86 (1986)).

[0060] Additional constitutive regulatory elements including those for efficient ectopic expression in monocots also are known in the art, for example, the pEmu promoter and promoters based on the rice Actin-1 5' region (Last et al., Theor. Appl. Genet. 81:581 (1991); Mcelroy et al., Mol. Gen. Genet. 231:150 (1991); Mcelroy et al., Plant Cell 2:163 (1990)). Chimeric regulatory elements, which combine elements from different genes, also can be useful for ectopically expressing a nucleic acid molecule encoding an NHX-related gene product (Comai et al., Plant Mol. Biol. 15:373 (1990)). One skilled in the art understands that a particular constitutive regulatory element is chosen based, in part, on the plant species in which a nucleic acid molecule encoding an NHX-related gene product is to be ectopically expressed and on the desired level of expression.

[0061] An exogenous regulatory element useful in a transgenic oil crop of the invention also can be an inducible regulatory element, which is a regulatory element that confers conditional expression upon an operatively linked nucleic acid molecule, where expression of the operatively linked nucleic acid molecule is increased in the presence of a particular inducing agent or stimulus as compared to expression of the nucleic acid molecule in the absence of the inducing agent or stimulus. Particularly useful inducible regulatory elements include copper-inducible regulatory elements (Mett et al., Proc. Natl. Acad. Sci. USA 90:4567-4571 (1993); Furst et al., Cell 55:705-717 (1988)); tetracycline and chlor-tetracycline-inducible regulatory elements (Gatz et al., Plant J. 2:397-404 (1992); Roder et al., Mol. Gen. Genet. 243:32-38 (1994); Gatz, Meth. Cell Biol. 50:411-424 (1995)); ecdysone inducible regulatory elements (Christopherson et al.,

Proc. Natl. Acad. Sci. USA 89:6314-6318 (1992); Kreutzweiser et al., Ecotoxicol. Environ. Safety 28:14-24 (1994)); heat shock inducible regulatory elements (Takahashi et al., Plant Physiol. 99:383-390 (1992); Yabe et al., Plant Cell Physiol. 35:1207-1219 (1994); Ueda et al., Mol. Gen. Genet. 250:533-539 (1996)); and lac operon elements, which are used in combination with a constitutively expressed lac repressor to confer, for example, IPTG-inducible expression (Wilde et al., EMBO J. 11:1251-1259 (1992)).

[0062] An inducible regulatory element useful in the transgenic oil crops of the invention also can be, for example, a nitrate-inducible promoter derived from the spinach nitrite reductase gene (Back et al., Plant Mol. Biol. 17:9 (1991)) or a light-inducible promoter, such as that associated with the small subunit of RuBP carboxylase or the LHCP gene families (Feinbaum et al., Mol. Gen. Genet. 226:449 (1991); Lam and Chua, Science 248:471 (1990)). Additional inducible regulatory elements include salicylic acid inducible regulatory elements (Uknes et al., Plant Cell 5:159-169 (1993); Bi et al., Plant J. 8:235-245 (1995)); plant hormone-inducible regulatory elements (Yamaguchi-Shinozaki et al., Plant Mol. Biol. 15:905 (1990); Kares et al., Plant Mol. Biol. 15:225 (1990)); and human hormone-inducible regulatory elements such as the human glucocorticoid response element (Schena et al., Proc. Natl. Acad. Sci. USA 88:10421 (1991)).

[0063] It should be recognized that a non-naturally occurring oil crop of the invention, which contains an ectopically expressed nucleic acid molecule encoding an NHX-related gene product, also can contain one or more additional modifications, including naturally and non-naturally occurring mutations that can, for example, increase salt tolerance.

[0064] The invention further provides a method of producing a non-naturally occurring oil crop characterized by an increased salt tolerance. The method is practiced by ectopically expressing a nucleic acid molecule encoding an NHX-related gene product in the plant, whereby salt tolerance is increased due to ectopic expression of the nucleic acid molecule. In one embodiment, the method is practiced by introducing an exogenous nucleic acid molecule encoding an NHX-related gene product into the plant.

[0065] As discussed above, the term "ectopically" refers to expression of a nucleic acid molecule encoding an NHX-related gene product in a cell type other than a cell type in which the

nucleic acid molecule is normally expressed, at a time other than a time at which the nucleic acid molecule is normally expressed or at an expression level other than the level at which the nucleic acid molecule normally is expressed.

[0066] Actual ectopic expression of an NHX-related gene product is dependent on various factors. The ectopic expression can be widespread expression throughout most or all plant tissues or can be expression restricted to a small number of plant tissues, and can be achieved by a variety of routine techniques. Mutagenesis, including seed or pollen mutagenesis, can be used to generate a non-naturally occurring oil crop, in which a nucleic acid molecule encoding an NHX-related gene product is ectopically expressed. Ethylmethane sulfonate (EMS) mutagenesis, transposon mediated mutagenesis or T-DNA mediated mutagenesis also can be useful in ectopically expressing an NHX-related gene product to produce a seed plant that produces seeds of increased size (see, generally, Glick and Thompson, supra, 1993). While not wishing to be bound by any particular mechanism, ectopic expression in a mutagenized plant can result from inactivation of one or more negative regulators of NHX, for example.

[0067] Ectopic expression of an NHX-related gene product also can be achieved by expression of a nucleic acid molecule encoding an NHX-related gene product from a heterologous regulatory element or from a modified variant of its own promoter. Heterologous regulatory elements include constitutive regulatory elements, which result in expression of the NHX-related gene product in a limited number of plant tissues.

[0068] Ectopic expression of a nucleic acid molecule encoding an NHX-related gene product can be achieved using an endogenous or exogenous nucleic acid molecule encoding an NHX-related gene product. A recombinant exogenous nucleic acid molecule can contain a heterologous regulatory element that is operatively linked to a nucleic acid sequence encoding an NHX-related gene product. Methods for producing the desired recombinant nucleic acid molecule under control of a heterologous regulatory element and for producing a non-naturally occurring plant of the invention are well known in the art (see, generally, Sambrook et al., supra, 1989; Glick and Thompson, supra, 1993).

[0069] An exogenous nucleic acid molecule can be introduced into a plant for ectopic expression using a variety of transformation methodologies including Agrobacterium-mediated

transformation and direct gene transfer methods such as electroporation and microprojectile-mediated transformation (see, generally, Wang et al. (eds), Transformation of Plants and Soil Microorganisms, Cambridge, UK: University Press (1995), which is incorporated herein by reference). Transformation methods based upon the soil bacterium Agrobacterium tumefaciens are particularly useful for introducing an exogenous nucleic acid molecule into an oil crop. The wild type form of Agrobacterium contains a Ti (tumor-inducing) plasmid that directs production of tumorigenic crown gall growth on host plants. Transfer of the tumor-inducing T-DNA region of the Ti plasmid to a plant genome requires the Ti plasmid-encoded virulence genes as well as T-DNA borders, which are a set of direct DNA repeats that delineate the region to be transferred. An Agrobacterium-based vector is a modified form of a Ti plasmid, in which the tumor inducing functions are replaced by the nucleic acid sequence of interest to be introduced into the plant host.

[0070] Agrobacterium-mediated transformation generally employs cointegrate vectors or, preferably, binary vector systems, in which the components of the Ti plasmid are divided between a helper vector, which resides permanently in the Agrobacterium host and carries the virulence genes, and a shuttle vector, which contains the gene of interest bounded by T-DNA sequences. A variety of binary vectors are well known in the art and are commercially available, for example, from Clontech (Palo Alto, Calif.). Methods of coculturing Agrobacterium with cultured plant cells or wounded tissue such as leaf tissue, root explants, hypocotyledons, stem pieces or tubers, for example, also are well known in the art (Glick and Thompson, supra, 1993). Wounded cells within the plant tissue that have been infected by Agrobacterium can develop organs de novo when cultured under the appropriate conditions; the resulting transgenic shoots eventually give rise to transgenic plants that ectopically express a nucleic acid molecule encoding an NHX-related gene product. Agrobacterium also can be used for transformation of oil crops as described in Bechtold et al., C.R. Acad. Sci. Paris. Life Sci. 316:1194-1199 (1993) (which is incorporated herein by reference). Agrobacterium-mediated transformation is useful for producing a variety of transgenic oil crops (Wang et al., supra, 1995) including transgenic plants of the Brassicaceae family, such as rapeseed and flax.

[0071] Microprojectile-mediated transformation also can be used to produce a transgenic oil crop that ectopically expresses an NHX-related gene product. This method, first described by

Klein et al. (Nature 327:70-73 (1987), which is incorporated herein by reference), relies on microprojectiles such as gold or tungsten that are coated with the desired nucleic acid molecule by precipitation with calcium chloride, spermidine or PEG. The microprojectile particles are accelerated at high speed into an angiosperm tissue using a device such as the BIOLISTIC PD-1000 (Biorad; Hercules Calif.).

[0072] Microprojectile-mediated delivery or "particle bombardment" is especially useful to transform oil crops that are difficult to transform or regenerate using other methods. Microprojectile-mediated transformation has been used, for example, to generate a variety of transgenic plant species, including cotton, tobacco, corn, hybrid poplar and papaya (see Glick and Thompson, supra, 1993) as well as cereal crops such as wheat, oat, barley, sorghum and rice (Duan et al., Nature Biotech. 14:494-498 (1996); Shimamoto, Curr. Opin. Biotech. 5:158-162 (1994), each of which is incorporated herein by reference). In view of the above, the skilled artisan will recognize that Agrobacterium-mediated or microprojectile-mediated transformation, as disclosed herein, or other methods known in the art can be used to produce a transgenic oil crop of the invention.

[0073] If desired, a kit of the invention also can contain a plant expression vector. As used herein, the term "plant expression vector" means a self-replicating nucleic acid molecule that provides a means to transfer an exogenous nucleic acid molecule into an oil crop host cell and to express the molecule therein. Plant expression vectors encompass vectors suitable for Agrobacterium-mediated transformation, including binary and cointegrating vectors, as well as vectors for physical transformation.

[0074] Plant expression vectors can be used for transient expression of the exogenous nucleic acid molecule, or can integrate and stably express the exogenous sequence. One skilled in the art understands that a plant expression vector can contain all the functions needed for transfer and expression of an exogenous nucleic acid molecule; alternatively, one or more functions can be supplied in trans as in a binary vector system for Agrobacterium-mediated transformation.

[0075] In addition to containing a nucleic acid molecule encoding an NHX-related gene product operatively linked to a seed-selective regulatory element, a plant expression vector of the invention can contain, if desired, additional elements. A binary vector for Agrobacterium-

mediated transformation contains one or both T-DNA border repeats and can also contain, for example, one or more of the following: a broad host range replicon, an ori T for efficient transfer from *E. coli* to Agrobacterium, a bacterial selectable marker such as ampicillin and a polylinker containing multiple cloning sites.

[0076] A plant expression vector for physical transformation can have, if desired, a plant selectable marker and can be based on a vector such as pBR322, pUC, pGEM and M13, which are commercially available, for example, from Pharmacia (Piscataway, N.J.) or Promega (Madison, Wis.). In plant expression vectors for physical transformation of an oil crop, the T-DNA borders or the ori T region can optionally be included but provide no advantage.

[0077] The invention will be better understood by reference to the following non-limiting example.

EXAMPLE

Materials and Methods

Plant Material.

Seeds of Brassica napus cv. Westar were rinsed with running water for two days, surface-sterilized with a solution of 10% commercial bleach (0.525% sodium hypochlorite) and 0.1% SDS for 5 min and washed three times with sterile distilled water. Seeds were germinated on Murashige and Skoog medium (MS). Cotyledon explants were excised from 7 day-old seedlings. The binary Ti vector pBI121 was used for transformation. (Jefferson, et al. (1986)) The GUS gene of the binary vector was replaced with the AtNHX1 gene to gain the new expression construct pHZX1. The new construct was electroporated into Agrobacterium tumefaciens strain LBA4404. For co-cultivation, 1 ml of pHZX1 containing LBA4404 Agrobacterium was inoculated into 15 ml LB medium containing 50 mg.l-1 kanamycin, 50 mg.l-1 rifampicin and 200 µM acetone-syringone. The culture was incubated one day at room temperature under constant shaking (250 rpm) and then diluted one time with liquid MS medium. The cotyledon explants were submerged in the Agrobacterium solution for 3 min, blotted on sterile paper towels and returned to the feeder plates for 2 days of co-cultivation. After co-cultivation, the explants were transferred to a selective regeneration medium. (Moloney, et al. (1989)) Regenerated

shoots were transferred to fresh medium bi-weekly. When the green shoots were 1-2 cm tall, they were separated from the calli and transferred onto rooting medium which contained modified MS medium supplemented with 3.7 mM KNO3, 4.1 mM NH4NO3, 0.5 mM MgSO4, 75 mg/l Kanamycin, 200 mg/l Ampicillin and 1 mg/l indole butyric acid. Under these conditions, about 98% shoots formed roots in two weeks. Rooted shoots were transplanted to soil, plants were grown and seeds (T1) collected. T1 seeds were grown on MS medium plates containing 15mg/l kanamycin, plants were grown and homozygous seeds (T2) selected. For salt tolerance experiments, wild type and transgenic seeds (T2) overexpressing the vacuolar Na+/H+ antiport were germinated in 250 ml pots containing pro-mix BX peat moss, perlite and vermiculite medium (Premier Brands, New Rochelle, N.Y.) and grown in the greenhouse. Two weeks after germination the plants were watered bi-weekly with a nutrient solution with low (10 mM) or high (200 mM) concentrations of NaCl. Sixty of each wild-type and transgenic plants were distributed in two groups of thirty plants each, and each group was watered with a solution with low or high salinity. The nutrient solution was obtained by mixing 1.2 g per liter of stock fertilizer (6-11-31, Plant-Prod, Brampton, Ontario) and 1g per liter of Ca(NO3)2. The final nutrient solution contained (in mM) 15 N, 2 P, 6.5 K, 4 Ca, 2 Mg, 9.5 S, micronutrients and was supplemented with 5 mM or 200 mM NaCl. Day temperature was maintained at 28 ± 2 °C and night temperature was 20 ± 2 °C. Relative humidity was maintained at $50 \pm 10\%$. Plants were grown under a 14 h/10h light/dark photoperiod. Supplemental lighting consisted of eight highpressure sodium lamps, and resulted in a total flux (sunlight and supplemental light) of approximately 1,450 µmol m⁻²s⁻¹.

Membrane isolation and Western blots.

[0078] Tonoplast-enriched membrane fractions were isolated from leaves of 10-week-old plants as described. (Zhang, et al. (2001)) Western blots were performed as described.

Leaf, root and seed chemical and lipid analysis.

Roots were rinsed with distilled water and leaves and roots were collected from fifteen plants from each treatment, pooled in three groups, dried at 70°C for 24 h and the material was ground to a fine powder. Seeds were collected from the rest of the plants 3 weeks later. For the determination of soluble sugars and proline contents, 100 mg of each pool was resuspended in 2

ml of water, sonicated and centrifuged for 10 min at 2,500 xg. Soluble sugar, proline and protein contents were determined in the supernatant as described. (Blumwald, et al. (1985); Dubois, et al. (1956) and Bates, et al. (1973)) Ion contents were determined by atomic absorption spectrophotometry. Lipids were extracted from 2 g of mature leaf tissue or 3 g of root tissue with chloroform/methanol (2;1,v/v) and purified as previously described. (Williams, et al. (1970)) Lipid classes were separated by thin-layer chromatography (TLC) on silica gel G plates containing ammonium sulfate using acetone/benzene/water (91:30:8,v/v). (Khan, et al. (1977)) The lipids were scraped from the plate and trans-esterified with 1 mL 1.5 M HCl in dry methanol in a microwave oven as previously described and the fatty acid methyl esters (FAME) were extracted from the methanolic HCl with hexane. (Khan, et al. (1993)) Seed oil fatty acid compositions were determined by direct trans-esterification of whole seeds using the microwave technique. The FAME were analyzed by gas-liquid chromatography using a Hewlett-Packard model 5890 gas-liquid chromatograph (Hewlett-Packard, Mississauga, Ontario, Canada) with a 30 m x 0.25 mm ID DB-23 capillary column (J & W Scientific, Folsom, California) programmed from 160°C to 210°C at 3°C min-1. The FAME were estimated quantitatively using methylpentadecanoate as an internal standard.

Results

[0079] A construct containing the *AtNHX1* was introduced into the genome of *Brassica* napus cv Westar. Sixty-four transgenic plants were obtained and nine homozygous lines from these transgenic plants were obtained in the T2 generation (data not shown). In order to assess whether the enhanced expression of the vacuolar Na⁺/H⁺ antiport would allow plants to grow in high salt conditions, wild-type and three lines of transgenic plants (with relatively low, medium and high levels of transgene expression) were grown in the presence of 200 mM NaCl (Fig. 1), a concentration that inhibits the growth of almost all crop plants. The overexpression of the vacuolar Na⁺/H⁺ antiport did not affect the growth of the transgenic plants since similar growth was observed when the wild-type and the transgenic plants were grown in the presence of 10 mM NaCl (Table I). The growth of the wild-type plants was severely affected by the presence of 200 mM NaCl in the growth solution, plant growth was inhibited and the plants were severely stunted (Fig. 1). On the other hand, the transgenic plants grew, flowered and produced seeds (Fig 1, Table I). The growth of the transgenic plants in 200 mM NaCl was correlated with the

increased levels of AtNHX1 protein (Fig. 1). Immunoblots of membrane fractions isolated from wild-type and transgenic plants only detected AtNHX1 in the tonoplast-enriched fractions from transgenic plants indicating the proper targeting of the Na⁺/H⁺ antiport to the tonoplast (Fig. 1).

[0080] We determined the Na⁺, K⁺, soluble sugars, proline, total protein, nitrogen and phosphorus contents of wild-type and transgenic plants grown at low (10 mM) NaCl and transgenic plants grown at high (200 mM) NaCl (Figs. 2 and 3). At low salinity, no significant differences were seen in the leaf and root Na⁺ content from wild-type and transgenic plants (Fig. 2). Dramatic changes were seen in transgenic plants grown at high salinity. A 70- and 9-fold increase in Na⁺ content was seen in the leaves and roots of these plants, respectively. The K⁺ content of leaves and roots of transgenic plants growing at high salinity decreased by 75% and 82%, respectively. While the leaf soluble sugars content declined during growth at high salinity (Fig. 3), a 6-fold increase in proline content was seen in high-salt grown leaves. There were no significant differences in N (Fig. 3) or total P content (data not shown). It should be noted that a comparison with wild-type plants grown at high salinity was not possible since all of the wild-type plants grown in these conditions were dead.

[0081] The major root and leaf lipids from wild-type grown at low salinity and transgenic plants grown at low and high salinity were analyzed (Table II). No significant differences in the major chloroplastic and extraplastidic lipids were found. The fatty acid composition of the two major extraplastidic lipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) did not differ in either the 16/18C ratio or the degree of unsaturation (not shown). Similarly, no differences were observed in the fatty acid compositions of the chloroplastic lipids digalactosyldiacylglycerol (DGDG) and mongalactosyldiacylglycerol (MGDG). Neither DGDG (synthesized predominantly through the eukaryotic pathway) nor MGDG (synthesized predominantly through the prokaryotic pathway) showed any significant difference in the 16/18C ratio or degree of unsaturation (results not shown). Some differences, however, were seen in the minor chloroplastic lipids, sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) (Fig. 4).

[0082] Although the 16/18C ratios were the same, there were differences in the degree of unsaturation of the 18C fatty acids in both SQDG and PG from transgenic plants grown in 200

mM NaCl. The ratio of palmitic acid (16:0)/trans- Δ^3 -hexadecenoic acid (trans16:1) in PG from transgenic plants grown in 200 mM NaCl was significantly higher than in plants grown in 10 mM NaCl.

[0083] In roots, the predominant lipids are the extraplastidic phospholipids. Although the levels of MGDG, synthesized predominantly through the eukaryotic pathway in roots, are similar to those in leaves, the other plastidic lipids are found in very low quantities in roots. There were no significant differences in the fatty acid compositions of PC, PE and MGDG from wild type and transgenic plants grown at 10 mM NaCl or 200 mM NaCl (results not shown). Total fatty acid analyses of the seed oil did not differ significantly in seeds from wild-type plants grown in 10 mM NaCl and transgenic plants grown in 200 mM NaCl (Fig. 5). Quantitatively and qualitatively the seed oil from the transgenic plants is identical with seed oil from the wild-type plants.

Discussion

[0084]Taken together, our results demonstrate the ability of the transgenic oil crops to utilize salty water for growth. In spite of the high Na⁺ content in the leaves of the transgenic plants grown at 200 mM NaCl, these plants were able to grow, flower and set seed. These results clearly demonstrate that the enhanced accumulation of Na⁺, mediated by the vacuolar Na⁺/H⁺ antiport, allowed the transgenic plants to mitigate the toxic effects of Na⁺. (Apse, et al. (1999) and Zhang, et al. (2001)) Notably, transgenic plants grown at 200 mM NaCl produced numbers of seeds similar to those of wild-type plants grown at low salinity. Moreover, qualitative and quantitative analyses of the oil content showed no significant differences between seeds from wild-type grown at low salinity and transgenic plants grown at high salinity. It should be noted that although our experiments were carried out in the greenhouse, our results were obtained under growth conditions with a relatively low humidity and high light intensity. The leaf and root K⁺ contents of the transgenic plants grown in 200 mM NaCl were lower than those from plants grown in low salinity. Adaptation of plants to saline environments not only depends on their ability to ameliorate the toxic effects of Na⁺ per se, but also on their ability to overcome saltinduced impaired nutrient acquisition. (Marschner (1995)) This is of particular importance with regards to K⁺ uptake and K⁺ homeostasis. Potassium concentrations in plant cells are kept under homeostatic control with cytosolic K⁺ concentrations in the order of 100 – 200 mM. (Wyn

Jones, et al. (1983)) When exposed to relatively low NaCl concentrations, Na⁺ ions can promote growth of many plants, in particular at low K⁺ concentrations in the growth medium. (Elzam, et al. (1969)) Under high salinity conditions, Na⁺ ions may displace K⁺ from its carrier binding sites and this competition results in impaired K⁺ uptake and lower K⁺ cytosolic concentrations. Nevertheless, the growth of the transgenic plants was not significantly affected by high salinity, suggesting that K⁺ nutrition was not compromised in our experiments. It should be noted that we have used a high level of K⁺ (6.5 mM) in our solutions. It would be interesting to determine the tolerance of the transgenic *Brassica* plants overexpressing *AtNHX1* in conditions of low K⁺ availability. Transgenic plants grown in 200 mM NaCl displayed a six-fold increase in proline content compared to plants grown in low salinity. This accumulation of proline in response to high salinity is well documented. Proline contributes to osmotic adjustment, the protection of macromolecules during dehydration, and as a hydroxyl radical scavenger. (LeRudulier, et al. (1984); Yancey, et al. (1982) and Smirnoff, et al. (1989)) Evidence supporting the role of proline during salt stress was obtained on the basis of salt tolerance in transgenic tobacco plants with enhanced levels of proline biosynthesis and salt tolerance of Arabidopsis with suppressed levels of proline degradation. (Kishoor, et al. (1995) and Nanjo (1999) Moreover, a similar increase in proline content was observed in transgenic tomato plants overexpressing AtNHX1 growing at high salinity.

[0085] In all plant cells there are two major sites of lipid synthesis and desaturation of fatty acids. Glycerolipids derived from diacylglycerols synthesized in the extraplastidic compartments of the cell are synthesized by the eukaryotic pathway, whereas lipids derived from diacylglycerol synthesized in plastids are produced by a prokaryotic pathway. (Browse, et al. (1991) and Williams, et al. (2000)) Each compartment possesses different isoforms of glycerol-3-phosphate acyltransferase (GPAT) and lysophosphatidic acid acyltransferase (LPAT) that show differing specificity toward the fatty acid esterified to the two *sn* positions of the diacylglycerol. In addition, the desaturases of these diacylglycerol are specific to the specific compartment. Thus, through analyses of fatty acid composition it is possible to determine any specific effect of stress on lipid synthesis in the cell compartments. Our data suggest that the major structural lipids of the extraplastidic compartments (PC and PE) and of the chloroplasts (DGDG and MGDG) were unaffected by the overexpression of *AtNHX1* and by the growth of the transgenic plants at high salinity. Only minor changes in the chloroplast lipids, SQDG and PG, were seen in transgenic

plants grown in 200 mM NaCl. Little differences in the quantity of lipid or fatty acids were detected in the structural lipids of the cell. The 16/18C ratio remained similar, suggesting little effect on GPAT or LPAT activities. Further, the levels of unsaturation remained constant, indicating little or no effect on the desaturase activity. Only in the minor chloroplast lipids were changes in desaturation seen, the major difference being the 16:0/trans16:1 ratio in PG (1.7 and 1.0 in transgenic plants grown in 200 mM NaCl and plants grown in low salinity, respectively). Previous work has shown that this difference reflects a change in the light-harvesting complexes of the thylakoid membranes during the acclimation of plants to stress. (Huner, et al. (1987)) Our results would suggest that the transgenic plants displayed little signs of stress or acclimation to high NaCl conditions. Analyses of the seed oil show no significant difference between seeds from wild-type and transgenic plants grown at low or high salinity.

Worldwide, more than 60 million hectares of irrigated land (representing 25% of the [0086]total irrigated acreage in the world) have been damaged by salt. (Ghassemi, et al. (1995)) Twenty years ago, Epstein argued for the development of salt tolerant crops with truly halophytic responses to salinity, i.e., accumulation of salt, in which the consumable part is botanically a fruit, such as grain or berries or pomes. (Epstein (1983)) In these plants, Na⁺ ions would accumulate mainly in their leaves, and since the water transport to the fruits and seeds is mainly symplastic (33,34,35) much of the salt from these organs would be screened. (Ehret, et al. (1986); Lee (1986) and Davies, et al. (2000)) Our results clearly support Epstein's argument. Recently, we have shown that when transgenic tomato plants, overexpressing AtNHX1, were grown at high salinity, salt accumulated in the leaves and not in the fruits. (Zhang, et al. (2001)) These results together with the data presented here clearly demonstrate the feasibility of generating salt tolerant crops for agricultural use. Much of the effort towards breeding crop cultivars with improved salt tolerance assumed that salt tolerance will be achieved only after pyramiding several characteristics in a single genotype. (Yeo, et al. and Cuartero, et al. (1999)) However, the modification of a single trait (vacuolar Na⁺ accumulation) significantly improved the salinity tolerance of *Brassica* plants. These results strongly suggest that with a combination of breeding and transgenic plants it could be possible to produce salt tolerant crops with far fewer introduced traits than had been anticipated.

[0087] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

REFERENCES

All references cited herein are hereby incorporated by reference.

Maathuis, FJM. & Amtmann, A. (1999) Ann. Bot. 84,123-133.

Flowers, TJ, Troke, PF & Yeo, AR (1977) Annu. Rev. Plant Physiol. 28, 89-21.

Glenn, E., Brown, J.J. & Blumwald, E. (1999) Crit. Rev. Plant Sci. 18, 227-255.

Blumwald, E., Aharon, G.S. & Apse, P. (2000) Biochim. Biophys. Acta 1465,140-151.

Shi, H., Ishitani, M., Kim, C. & Zhu, J-K. (2000). Proc. Natl. Acad. Sci. USA 97,6896-6901.

Blumwald, E.& Poole, R.J. (1985) *Plant Physiol.* **78**, 163-167.

Apse, M.P., Aharon, G.S., Snedden, W.S. & Blumwald, E. (1999) Science 285, 1256-1258.

Ben Raïs, L., Alpha, M.-J., Bahl, J., Guillot-Salomon, T. & Dubacq, J.-P. (1993) Plant. Physiol. Biochem. 31, 547-557

Wu, J., Seliskar, D.M. & Gallagher, J.L. (1998) Physiol. Plant. 102, 307-317

Yu, B., Gong, H. & Lui, Y. (1998) J. Plant Nutrition 21, 1589-1600

Smaoui, A. & Cherif, A. (2000) Biochem. Soc. Trans. 28, 902-905

Zhang, H-X & Blumwald, E. (2001) *Nature Biotechnol.* 19, 765-768

Jefferson, R.A., Kavanagh, T.A. & Bevan, M.W. (1987) EMBO J. 6,3901-3907.

Moloney, M.M., Walker, J.M., & Sharma, K.K. (1989). Plant Cell Rep. 8, 238-242

Dubois, M., Gilles, RA., Hamilton, JK., Roberts, PA. & Smith, F. (1956) *Anal. Chem.* **28**,350-356.

Bates, L.S., Waldren, R.P. & Teare, I.D. (1973) Plant & Soil 39, 205-207.

Williams, J.P. & P.A. Merrilees. (1970) Lipids 5, 367-370.

Khan, M. & J.P. Williams. (1977) J. Chromatog. 140, 79-185

Khan, M.U. & J.P. Williams (1993) Lipids 28, 953-955

- Marschner, H. (1995). Mineral nutrition of higher plants. (Academic Press, New York)
- Wyn Jones, RG and Pollard, A (1983). in *Encyclopedia of Plant Physiology, New Series Vol* 15B, eds, Lauchli, A.& Bieleski, R.L (Springer-Verlag, Berlin), pp. 528-562,
- Elzam, OE. & Epstein, E. (1969). Agrochim. 13,187-195.
- LeRudulier, D., Strom, A.R., Dandekar, A.M., Smith, L.T. & Valentine, R.C. (1984) *Science* 224,1064-1068.
- Yancey, P., Clark, M., Hand, S., Bowlus, R. & Somero, G. (1982) Science 217,1214-1222.
- Smirnoff, N. & Cumbes, Q.J. (1989). *Phytochemistry* **28,**1057-1060.
- Kishor, P.B.K, Hong, Z., Miao, G-H., Hu, C-A.A. & Verma, DPS. (1995). *Plant Physiol.* **108**,1387-1394.
- Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. (1999) FEBS Lett. 461,205-210.
- Browse, J.A. and Somerville, C.R. (1991) Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 467-506.
- Williams, J.P., V. Imperial, M.U. Khan & J.N. Hodson (2000). Biochem. J. 349, 127-133
- Huner, N.P.A., M. Krol, J.P. Williams, E. Maissan, P.S. Low, D. Roberts & J.E. Thompson. (1987). *Plant Physiol.* 84, 12-18.
- Ghassemi, F., Jakeman, A. & Nix, H. (1995) Salinization of land and water resources: Human causes, extent, management and case studies. (University of South Wales Press, Sydney).
- Epstein, E. (1983) in *Better Crops for Food, Ciba Foundation Symposium*, eds Nugent, J. & O'Connor, M. (Pitman, London), pp. 97, 61-82.
- Ehret, D.L. & Ho, L.C. (1986) J. Exp. Bot. 37,1294-1302).
- Lee, D.R. A (1986) Can J. Bot. 67,1898-1902.

Davies, W.J., Bacon, M.A., Thompson, D.S., Sobeih, W. & Rodriguez, L.G. (2000) *J. Exp. Bot.* 51,1617-1626.

Yeo, A.R., Yeo, M.E., Flowers, S.A. & Flowers, T.J. Teor. Appl. Genet. 79, 377-384.

Cuartero, J. & Fernandez-Muñoz, R. (1999) Sci. Hort. 78, 83-125.

Zarrouk, M. (1999) Doctoral Thesis, d'Etat es-Sciences, Faculté des Sciences de Tunis.

Table I. Plant and seed yield of wild-type (WT) plants grown in the presence of 10 mM NaCl and transgenic plants overexpressing AtNHX1 (X10E₁) grown in the presence of 10 mM and 200 mM NaCl. Each value is the Mean \pm SD (n = 15).

	WT	X1OE ₁	
	(10 mM NaCl)	(10 mM NaCl)	(200 mM NaCl)
Height (cm)	210 ±15	218 ±13	183 ± 17
Fresh Weight (g)	1,750 ±103	1,790 ±110	1,630 ±134
Seeds per plant	470 ±39	481 ± 43	463 ± 35

Table II. Total lipid content of leaves and roots from wild-type (WT) plants grown in the presence of 10 mM NaCl and transgenic plants overexpressing AtNHX1 (X1OE₁) grown in the presence of 10 mM and 200 mM NaCl. Each value is the Mean \pm SD (n = 5).

		WT	: X10	<u>)E₁</u>
TISSUE	LIPID (nmole/gFW)	(10 mM NaCl)	(10 mM NaCl)	(200 mM NaCl)
LEAVES	PC	1,120 ± 538	1,343 ± 375	$1,160 \pm 287$
	PE	670 ±255	814 ± 274	590 ± 214
	SQDG	403 ±103	532 ±109	591 ± 72
	PG	899 ± 70	830 ±181	776 ± 158
	DGDG	$1,640 \pm 360$	$1,776 \pm 289$	$1,817 \pm 329$
	MGDG	$4,411 \pm 532$	$4,316 \pm 786$	$3,658 \pm 749$
ROOTS	PC .	844 ± 106	688 ± 60	826 ± 88
	PE	690 ± 110	629 ± 60	660 ± 56
	MQDG	394 ± 92	563 ± 83	633 ± 50

Table III.

SEQ	PROTEIN	PROTEIN	PROTEIN					A		
	NUMBER	ACCESSION	DESCRIPTION				SEQUENCE	NCE		
No	(CI)		(SPECIES)							
2	NHX1	AAD16946	NHX1 Na+/H+	1	MLDSLVSKLP	SLSTSDHASV	VALNLFVALL	CACIVLGHLL	EENRWMNESI	TALLIGLGTG
	4324597		exchanger	61	VTILLISKGK	SSHLLVFSED	LFFIYLLPPI	IFNAGFQVKK	KQFFRNFVTI	MLFGAVGTI
	1		Anghidonois	121	SCTIISLGVT	QFFKKLDIGT	FDLGDYLAI G	AIFAATDSVC	TLQVLNQDET	PLLYSLVFGE
			Arabiaopsis	181	GVVNDATSVV	VFNAIQSFDL	THLNHEAAFH	LLGNFLYLFL	LSTLLGAATG	LISAYVIKKL
			thaliana	241	YFGRHSTDRE	VALMMLMAYL	SYMLAELFDL	SGILTVFFCG	IVMSHYTWHN	VTESSRITTK
				301	HTFATLSFLA	ETFIFLYVGM	DALDIDKWRS	VSDTPGTSIA	VSSILMGLVM	VGRAAFVFPL
				361	SFLSNLAKKN	QSEKINFNMQ	VVIWWS GLMR	GAVSMALAYN	KFTRAGHTDV	RGNAIMITST
				421	ITVCLFSTVV	FGMLTKPLIS	YLLPHQNATT	SMLSDDNTPK	SIHIPLLDQD	SFIEPSGNHN
				481	VPRPDSIRGF	LTRPTRTVHY	YWRQFDDSFM	RPVFGGRGFV	PFVPGSPTER	NPPDLSKA
n	10716129	BAB16380	Na+/H+	1	MAFGLSSLLQ	NSDLFTSDHA	SVVSMNLFVA	LLCACIVLGH	LLEENRWVNE	SITALIIGEC
			exchanger	61	TGWILLLSG	GKSSHLLVFS	EDLFFIYLLP	PIIFNAGFQV	KKKQFFVNFM	TIMLFGAIGT
			Locusting	121	LISCSIISFG	AVKIFKHLDI	DFLDFGDYLA	IGAIFAATDS	VCTLQVLSQD	ETPL LYSLVF
			Ipomoea nu	181	GEGVVNDATS	VVLFNAIQSF	DMTSFDPKIG	LHFIGNFLYL	FLSSTFLGVG	IGL LCAYIIK
				241	KLYFGRHSTD	REVALIMMLMS	YLSYIMAELF	YLSGILTVFF	CCIAWSHALM	HNVTESSRVT
				301	TRHSFATLSF	VAETFIFLYV	GMDALDIEKW	KFVKNSQGLS	VAVSSILVGL	ILVGRAAFVF
				361	PLSFLSNLAK	KNSSDKISFR	QQIIIWWA GL	MRGAVSIALA	YNKFTTSGHT	SLHENAIMIT
				421	STVTVVLFST	VVFGLMTKPL	INLLLPPHKQ	MPSGHSSMTT	SEPSSPKHFT	VPLLDNQPDS
				481		ARPTALRMLL	RTPTHTVHRY	WRKFDDSFMR	PVFGGRGFVP	FVAGSPVEQS
				541						
4	14039961	AAK53432	Na+/H+	.	MLSQLSSFFA	SKMDMVSTSD	HASVVSMNLF	VALLRGCIVI	GHLLEENRWM	NESITALLIG
			Antiporter	61	LSTGI ILLLI	SGGKSSHLLV	FSED LFFIYL	LPPIIFNAGF	QVKKKQFFRN	FITIILFGAV
			Cuanda	121	GTLVSFIIIS	LGSIAIFQKM	DIGSLELGDL	LAIGAIFAAT	DSVCTLQVLN	QDETPL LYSL
п			Suaeda	181	VFGEGVVNDA	TSVVLFNAIQ	NFDLTHIDHR	IAFQFGGNFL	YLFFASTLL G	AVTGLLSAYV
			maritima	241	IKKLYFGRHS	TDREVALMML	MAYLSYMLAE	LFYLSGILTV	FFCGIVMSHY	TWHNVTESSR
			subsp. salsa	301	VTTKHAFATL	SFVAEIFIFL	YVGMDALDIE	KWRFVSDSPG	TSVAVSSILL	GLHMVGRAAF
			•	361	VFPFAFLMNL	SKKSNSEKVT	FNQQIVIWWA	GLMKSAVSVA	LAYNQFSRSG	HTQLRGNAIM
				421	ITSTITVVLF	STMVFGLLTK	PLILFMLPQP	KHFTSASTVS	DLGSPKSFSL	PLLEDRQDSE
				481	ADLGNDDEEA	YPRGTIARPT	SLRMLLNAPT	HTVHHYWRRF	DDYFMRPVFG	GRGFVPFVPG
				541	SPTEQSITNF	VTENIS				

SEO	PROTEIN	PROTEIN	PROTEIN		A Company of the	2000 Carlo				83
E		Accedent	Decommend				Cro	E 7.3		
2 2			(SPECIES)				TO VICE TO STATE OF THE STATE O	1) T		
5	14211574	BAB56105	Na+/H+	Н	MAFDFGTLLG	NVDRLSTSDH	QSVVSINLFV	ALICACIVIG	HLLEENRWMN	ESITALVIGS
			Antinorter	61	CTGIVILLIS	GGKNSHILVF	SEDLFFIYLL	PPIIFNAGFO	VKKKSFFRNF	STIMLFGALG
			District	121	. TLISFIIISL	GAIGIFKKMN	IGSLEIGDYL	AIGAIFSATD	SVCTLQVLNQ	DETPLLYSLV
			Fetunia X	181	FGEGVVNDAT	SVVLFNAIQN	FDLSHIDTGK	AMELVGNFLY	LFASSTAL GV	AAGLLSAYII
			hybrida	241	KKLYFGRHST	DREVAIMILM	AYLSYMLAEL	FYLSAILTVF	FSGIVMSHYT	WHNVTESSRV
				301	TTKHTFATLS	FIAEIFIFLY	VGMDALDIEK	WKFVSDSPGI	SVQVSSILLG	LVLVGRAAFV
				361	FPLSFLSNLT	KKTPEAKISF	NQQVTIWWAG	LMRGAVSMAL	AYNQFTRGGH	TQLRANAIMI
_				421	TSTITVVLFS	TVVFGLMTKP	LIRILLPSHK	HLSRMISSEP	TTPKSFIVPL	LDSTQDSEAD
				481	LERHVPRPHS	LRMLLSTPSH	TVHYYWRKFD	NAFMRPVFGG	RGFVPFAPGS	PTDPVGGNLQ
9	14211578	BAB56107	Na+/H+	1	MGFESVIKLA	ASETDNLWSS	GHGSVVAITL	FVTLLCTCIV	IGHLLEENRW	MNESIIALII
			Antinorter	61	GLATGVIILL	ISCCKSSHLL	VFSED LFFIY	ALPPIIFNAG	FQVKKKSFFR	NFATIMMF GA
			Tought by building	121	. VGTLISFIII	SLGTIAFFPK	MNMRLGVGDY	LAIGAIFAAT	DSVCTLQVLS	QDETPL LYSL
			l orenia nyoriaa	181	VFGEGVVNDA	TSVVLFNAVQ	NFDLPHMSTA	KAFELVGNFF	YLFATSTVLG	VLTGL LSAYI
				241	IKKLYFGRHS	TDREVAIMIL	MAYLSYMLAE	LFDLSGILTV	FFC GIVMSH Y	TWHINVTENSR
				301	VTTKHTFATL	SFVAEIFIFL	YVGMDALDIE	KWRFVS GSMT	TSAAVSATLL	GLVLLSRAAF
				361	. VFPLSFLSNL	AKKSPLEKIS	LRQQIIIWWA	GLMRGAVSMA	LAYKQFTREG	LTVERENAIF
				421	ITSTITIVLE	STVVFGLMTK	PLINLLIPSP	KLNRSVSSEP	LTPNSITIPL	LGESQDSVAE
				481	LFSIRGQTSQ	GGEPVARPSS	LRMLLTKPTH	TVHYYWRKFD	NAFMRPVFGG	RGFVPYVPGS
				541	PTERSVRNWE	EETKO				
7	14488270	BAB60901	Na+/H+		MAFGLSSLLQ	NSELFTSDHA	SVVSMNLFVA	LLCACIVLGH	LLEENRWVNE	SITALIIGEC
		-	exchanger	61	TGVVILLLSR	GKSSHLLVFS	ED LFFIYLLP	PIIFNAGFQV	KKKQFFVNFM	TIMLFGAIGT
			Incinion	121	LISCSIISFG	AVKIFKHLDI	DFLDFGDYLA	IGAIFAATDS	VCTLQVLSQD	ETPL LYSLVF
	·		Ipomoed	181	GEGVVNDATS	VVLFNAI QSF	DMTSFDPKIG	LHFIGNFLYL	FLSSTFLGVG	IGLICAYIIK
			tricolor	241	KLYFGRHSTD	REVALMMLMS	YLSYIMAELF	YLSGILTVFF	CCIAWSHALM	HNVTESSRVT
				301	TRHSFATLSF	VAETFIFLYV	GWDALDIEKW	KFVKNSQGLS	VAVSSILVGL	ILVGRAAFVF
				361	PLSFLSNLAK	KNSSDKISFR	QQIIIWWAGL	MRGAVSIALA	YNKFTTSGHT	SLHENAIMIT
	-			421	STVTVVLFST	VVFGLMTKPL	INLLLPPHKQ	IASGHSSMTT	SEPSSPKHFA	VPLLDNQHDS
				481	ESDMITGPEV	ARPTALRMLL	RTPTHTVHRY	WRKFDDSFMR	PVFGGRGFVP	FVAGSPAEQS
				541	. PR					

SEQ	PROTEIN	PROTEIN	PROTEIN							
9	Nimero	ACCECCION								,
N N	(GI)	ACCESSION	SPECIES)				SECUENCE			
8	4585981	AAD25617	similar to	1	MISPVEHDPQ	GQVKQQQAAG	VGILLQIMML	VLSFVLGHVL	RRHRFHYLPE	ASGSLLI GLI
			Na+/H+-	61	VGILANISDT	ETSIRFCPPP	SIPEFSLLSF	PRSLVCSFYS	VSGR GLISTK	SSSSCFCCLP
			owohome;ne	121	SYYILCFNIC	ISSFKFAAM	LCIMDVIFLD	IHLFEPSOV	SVFNLNHSFL	TLEPLLPLLS
			exclianging	181	SELLSLQLLL	VVCYLGGSMY	LMY KLPFVEC	LMFGALISAT	DPVTVLSIFQ	VLLLFLLLSV
			proteins	241	STGYKYSHDV	GTDVNLYALV	FGESVLNDAV	SFYYLLRYWA	LPFKTMSLVN	RQSSSGEHFF
			Arabidopsis	301	MVVIRFFETF	AGSMSAGLAI	SFLNSFYTVV	FTLLILSEHI	VNVMSLFSLF	STSIHACRRC
			thaliana	361	WSLRHCFYTL	HRNCNRRVMK	RYTFSNLSEA	SOSFVSSFFH	LISSLAETFT	FIYMGFDIAM
				421	EQHSWSHVGA	VNVFGCAYLV	nlfr Qenqki	PMKHQKALWY	SGLRGAMAFA	LALQSLHDLP
				481	EGHGQIIFTA	TTTIVVVTVT	FVLLIGGSTG	KMLEALEVVG	DDLDDSMSEV	NSRRSTLISL
				541	NIGASSDEDT	SSSGSRFKMK	LKEFHKTGDG	DGDGE		
6	8515714	AAF76139	putative	1	MTTVIDATMA	YRFLEEATDS	SSSSSSKLE	SSPVDAVLFV	GMSLVLGIAS	RHLLRGTRVP
			Na+/H+	61	YTVALLVI GI	ALGSLEYGAK	HNLGKIGHGI	RIWNEIDPEL	LLAVFLPALL	FESSFSMEVH
			יייייייייייייייייייייייייייייייייייייי	121	QIKRCLGQMV	LLAVP GVLIS	TACLGSLVKV	TFPYEWDWKT	SLLLGGLLSA	TDPVAVVALL
			anuporter SOS1	181	KELGASKKLS	TILEGESLMN	DGTAIVVFQL	FLKMAMGQNS	DWSSIIKFLL	KVALGAV GIG
			Arabidopsis	241	LAFGIASVIW	LKF IFNDTVI	EITLTIAVSY	FAYYTAQEWA	GASGVLTVMT	LGMFYAAFAR
			thaliana	301	TAFKGDSQKS	LHHFWEMVAY	IANTLIFILS	GVVIAEGILD	SDKIAYQGNS	WR FLFLLYVY
				361	IQLSRVVVVG	VLYPLLCRFG	YGLDWKESII	LVWSGLRGAV	ALALSLSVKQ	SSGNSHISKE
				421	TGTLFLFFG	GIVFLTLIVN	GSTTQFVLRL	LRMDILPAPK	KRILEYTKYE	MLNKALRAFQ
				481	DLGDDEELGP	ADWPTVESYI	SSLKGSEGEL	VHHPHNGSKI	GSLDPKSLKD	IRMRFLNGVQ
				541	ATYWEMLDEG	RISEVTANIL	MQSVDEALDQ	VSTTLCDWRG	LKPHVNFPNY	YNFLHSKVVP
				601	RKLVTYFAVE	RLESACYISA	AFLRAHTIAR	QQLYDFLGES	NIGSIVINES	EKEGEEAKKF
				o	LEKVRSSFPQ	VLRVVKTKQV	TYSVLNHLLG	YIENLEKVGL	LEEKEIAHLH	DAVQTGLKKL
				721	LRNPPIVKLP	KLSDMITSHP	LSVALPPAFC	EPLKHSKKEP	MKLRGVTLYK	EGSKPTGVWL
				781	IFDGIVKWKS	KILSNNHSLH	PTFSH GSTLG	LYEVLTGKPY	LCDLITDSMV	LCFFIDSEKI
				841	LSLQSDSTID	DFLWQESALV	LLKLLRPQIF	ESVAMQELRA	LVSTESSKLT	TYVTGESIEI
				901	DCNSIGLLLE	GFVKPVGIKE	ELISSPAALS	PSNGNQSFHN	SSEASGIMRV	SFSQQATQYI
				961	>	NI GAFGAD RT	LHRRPSSLTP	PRSSSSDQLQ	RSFRKEHRGL	MSWPENIYAK
				1021	1 QQQEINKTTL	. SLSERAMQLS	S IFGSMVNVYR	RSVSFGGIYN	NKTODNILLYK	K KLPLNPAQGL
				1081	1 VSAKSESSIV	/ TKKQLETRKH	1 ACQLPLKGES	S STRONTMVES	SDEEDEDEGI	. WVRIDSPSKI
				1141	1 VFRNDL					

SEO	SEQ PROTEIN	PROTEIN	PROTEIN							
=	Miner	ACTOCOLON	Ź							
e S	Magner (GI)	ACCESSION					SEQUENCE			
91	9857314	BAB11940	Na/H antiporter		MWSQLSSLLS	GKMDALTTSD	HASWUSMNLF	VALLCGCIVI	GHLLEENRWM	NESITALLIG
			Nhx 1	61	LATGWILLI	SGGKSSHLLV	FSEDLFFIYL	LPPIIFNAGF	QVKKKQFFRN	FITIVLFGAV
			1,111,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	121	GTLVSFTIIS	LGALSIFKKL	DIGTLELADY	LAIGAIFAAT	DSVCTLQVLN	QDETPLLYSL
			Airipiex gmeim	181	VFGEGVVNDA	TSVVLFNAIQ	SFDLTRIDHR	IALQFMGNFL	YLFIASTILG	AFTGLLSAYI
				241	IKKLYFGRHS	TDREVALMML	MAYLSYMLAE	LFYLSGILTV	FFC GIVMSH Y	TWHNVTESSR
				301	VTTKHAFATL	SFVAEVFLFL	YVGMDALDIE	KWRFVSDSPG	ISVAVSSILL	GLVMVGRAAF
				361	VFPLSWLMNF	AKKSQSEKVT	FNQQIVIWWA	GLMRGAVSMA	LAYNQFTRSG	HTQLRGNAIM
				421	ITSTISVULF	STMVFGLLTK	PLIMFLLPQP	KHFTSCSTVS	DVGSPKSYSL	PLLEGNQDYE
				481	VDVGNGNHED	TTEPRTIVRP	SSLRMLLNAP	THTVHHYWRK	FDDSFMRPVF	GGRGFVPFVP
				541	GSPTEQSTWN	LVDRT				
11	NHA1	NP 013239	Putative	1	MAIWEQLEVS	KAHVAYACVG	VFSSIFSLVS	LYVKEKLYIG	ESTVAGIFGL	IVGPVCLNWF
	6323167		N3+/H+	61	NPLKWGNSDS	ITLEITRIVL	CLQIFAVAVE	LPRKYMLKHW	VSVTMLLLPV	MTAGWLIGL
			ontinonton	121	FUWILIPGLN	FSASLLISAC	ITATDPILAQ	SVVSGKFAQR	VPGHLRNLLS	AESGCNDGMA
			antiporter;	181	FPFLFLSMNL	ILHPGNGREI	VKDWICVTIL	YECLF GCLLG	CFIGYVGRIT	IRFAEKKNII
			Nhalp	241	DRESFLAFYV	VLAFMCAGF G	SILGVDDLLV	SFAAGATFAW	DGWFSQKTQE	SNVSTVIDLL
			Saccharomyces	301	LNYAYFIYFG	AIIPWSQFNN	GEIGTNVWRL	IILSIVVIFL	RRIPAVMILR	PLIPDIKSWR
			cerevisiae	361	EALFVGHFGP	IGV gaifaa i	LARGELESTF	SDEPTPLNVV	PSKEESKHWQ	LIACIWPITC
				421	FFIVTSIIVH	GSSVAIITLG	RHLNTITLTK	TFTTHTTNGD	NGKSSWMQRL	PSLDKAGRSF
				481	SLHRMDTQMT	LSGDEGEAEE	GGGRKGLAGG	EDEEGLNNDQ	IGSVATSGIP	ARPAGGMPRR
				541	RKLSRKEKRL	NRRQKLRNKG	REIFSSRSKN	EMYDDDELND	LGRERLQKEK	EARAATFALS
				601	TAVNTQRNEE	IGMGGDEEED	EYTPEKEYSD	NYNNTPSFES	SERSSSLRGR	TYVPRNRYDG
				661	EETESEIESE	DEMENESERS	MASSEERRIR	KMKEEEMKPG	TAYLDGNRMI	IENKÕGEILN
	_			721	QVDIEDRNEA	RDDEVSVDST	AHSSLTTTMT	NLSSSSGGRL	KRILTPTSLG	KIHSLVDKGK
				781	DKNKNSKYHA	FKIDNLLIE	NEDGDVIKRY	KINPHKSDDD	KSKNRPRNDS	VVSRALTAVG
				841	LKSKANSGVP	PPVDEEKAIE	GPSRKGPGML	KKRTLTPAPP	RGVQDSLDLE	DEPSSEEDLG
				901	DSYNMDDSED	YDDNAYESET	EFERQRRLNA	LGEMTAPADQ	DDEELPPLPV	EAQTGNDGPG
				961	TAEGKKKQKS	AAVKSALSKT	LGLNK			

SEQ	PROTEIN	PROTEIN	PROTEIN						
8		ACCESSION	DESCRIPTION			SEQUENCE	(CE		
No No	9772		(SPECIES)						
12	NHX1	NP_010744	Required for		FKVLLTTAKR	AVDPDDDDEL	LPSPDLPGSD	DPIAGDPDVD	LNPVTEEMFS
	6320663		intracellular	61 SWALFIMLLL	LISALWSSYY	LTQKRIRAVH	ETVLSIFYGM	VIGLIIRMSP	GHYIQD TVTF
)		negation of	121 NSSYFFNVLL	PPIILNSGYE	LNQVNFFNNM	LSILIFAIPG	TFISAVVIGI	ILYIWTFLGL
	_		sequestiation of	181 ESIDISFADA	MSV GATLSA T	DPVTILSIFN	AYKVDPKLYT	IIFGESLLND	AISIVMFETC
			Na+; Nhx Ip	241 QKFH GQPATF	SSVFEGAGLF	LMTFSVSLLI	GVLIGILVAL	LLKHTHIRRY	PQIESCLILL
			Saccharomyces	301 IAYESYFFSN	CCHWSGIVSE	LPCGITLKHY	AYYNMSRRSQ	ITIK YIFQLL	ARLSENFIFI
			cerevisiae	361 YLGLELFTEV	ELVYKPLLII	VAAISICVAR	WCAVFPLSQF	V NWIYRVKTI	RSMSGITGEN
				421 ISVPDEIPYN	YOMMTFWAGE	RGAVGVALAL	GIQGEYKFTL	LATVLWWVL	TVIIFGGTTA
				481 GMLEVLNIKT	GCISEEDTSD	DEFDIEAPRA	INLLNGSSIQ	TDLGPYSDNN	SPDISIDQFA
				541 VSSNKNLPNN	ISTIGGNIFG	GLNETENTSP	NPARSSMDKR	NLRDKLGTIF	NSDSQWFQNF
				601 DEQVLKPVFL	DNVSPSLQDS	ATQSPADFSS	QNH		
13	NHX2	NP 187154	NHX2 Na+/H+	1 MTMFASLTSK	MLSVSTSDHA	SVVSLNLFVA	LLCACIVIGH	LLEENRWMNE	SITALLIGLG
	15229877	ľ	exchanger	61 TGWILLISR	GKNSHLLVFS	EDLFFIYLLP	PIIFNAGFQV	KKKQFFRNFV	TIMAFGAIGT
			Anghidonais	121 WYSCTIISLG	AIQFFKKLDI	GTFDLGDFLA	IGAIFAATDS	VCTLQVLNQD	ETPLLYSLVF
			Arabiaopsis	181 GEGVVNDATS	WLFNAI QSF	DLTHLNHEAA	FQFLGNFFYL	FLLSTGLGVA	TGLISAYVIK
			thaliana	241 KLYFGRHSTD	REVALMMLMA	YLSYMLAELF	ALSGILTVFF	CCIVMSHYTW	HNVTESSRIT
				301 TKHAFATLSF	LAETFIFLYV	GMDALDIEKW	RFVSDSPGTS	VAVSSILMGL	VMLGRAAFVF
				361 PLSFLSNLAK	KHQSEKISIK	QQVVIWWA GL	MRGAVSMALA	YNKFTRSGHT	ELRGNAIMIT
				421 STITVCLFST	MVFGMLTKPL	IRYLMPHQKA	TTSTTSMLSD	DSTPKSIHIP	LLDGEQLDSF
				81	RPNSLRGFLM	RPTRTVHYYW	RQFDDAFMRP	VFGGRGFVPF	VPGSPTERSS
				541 HDLSKP					
14	NHX3	NP_200358	NHX3 Na+/H+	1 MSIGLTEFVT	NKLAAEHPQV	IPISVFIAIL	CLCLVIGHLL	EENRWVNESI	TAILVGAASG
	15240159	I	exchanger	61 TVILLISKGK	SSHILVFDEE	LFFIYLLPPI	IFNAGFQVKK	KKFFHNFLTI	MSFGVI GVFI
	7010101		Anghidonais	121 STVIISFGTW	WLFPKLGFKG	LSARDYLAI G	TIFSSTDTVC	TLQILHQDET	PLLYSLVFGE
			Arabiaopsis	181 GVVNDATSVV	LFNAVQKIQF	ESLTGWTALQ	VFGNFLYLFS	TSTLLGIGVG	LITSFVLKTL
			thaliana	241 YFGRHSTTRE	LAIMVLMAYL	SYMLAELFSL	SGILTVFFCG	VLMSHYASYN	VTESSRITSR
				301 HVFAMLSFIA	ETFIFLYVGT	DALDFTKWKT	SSLSFGGTLG	VSGVITALVL	LGRAAFVFPL
				361 SVLTNFMNRH	TERNESITFK	HQVIIWWAGL	MRGAVSIALA	FKQFTYSGVT	LDPVNAAMVT
				421 NTTIVVLFTT	LVFGFLTKPL	VNYLLPQDAS	HNTGNRGKRT	EPGSPKEDAT	LPLLSFDESA
				481 STNFNRAKDS	ISLLMEQPVY	TIHRYWRKFD	DTYMRPIFGG	PRRENQPEC	

SEQ	SEQ PROTEIN	PROTEIN	PROTEIN	S. S						
A	NUMBER	ACCESSION	DESCRIPTION			SILL OF	SEQUENCE	ZE		
No	(GI)		(SPECIES)							
15	NHX4	NP 187288	NHX4 Na+/H+	1	MVIGLSTMLE	KTEALFASDH	ASVVSMNLFV	ALLCACIVLG	HLLEETRWMN	ESITALIIGS
	15230706	l	exchanger	61	CTGIVILLIS	GGKSSRILVF	SEDLFFIYLL	PPIIFNAGFQ	VKKKQFFRNF	MTIMLFGAIG
	000000		Amahidanaia	121	TISFVIISF	GAKHLFEKMN	IGDLTIADYL	AIGAIFSATD	SVCTLQVLNQ	DETPLLYSLV
			Arabiaopsis	181	FGEGVVNDAT	SVVLFNAIQR	FDLTNINSAI	ALEFAGNFFY	LFILSTAL GV	AAGLLSAFVI
			thaliana	241	KKLYIGRHST	DREVALMMLL	AYLSYMLAEL	FHLSSILTVF	FCGIVMSHYT	WHNVTDKSKV
				301	TTKHTFAAMS	FLAEIFIFLY	VGMDALDIEK	WDVVRNSPGQ	SIGNSSIFFG	LILLGRAAFV
				361	FPLSFLSNLT	KSSPDEKIDL	KKQVTIWWAG	LMRGAVSMAL	AYNQFTTSGH	TKVLGNAIMI
				421	TSTITVVLFS	TVVFGLLTKP	LVKHLQPSSK	QSSTTALQIT	LRSSFHDPIL	HEPLLSTQGQ
			-	481	SEYDPEQHVS	FRMFWKSPSR	AIHHYWRKFD	NAVMRRIFGG	RGVSPVVPGS	PIENSVPQWS
				541	EEVENKEONG	ЕР				
16	NHX5	NP 175839	NHX5 Na+/H+	1	MEEVMISPVE	нрросоукоо	QAAGVGILLQ	IMMLVLSFVL	GHVLRRHRFH	YLPEAS GLIV
	30695721	l	exchanger	61	GILANISDTE	TSIRFCPPPS	IPEFSLLSFP	RSLKPFFSNF	GAIVTFAIIG	TFVASVVTGG
	7710000		Anghidensis	121	LVYLGGSMYL	MYKLPFVECL	MFGALISATD	PVTVLSIFQD	VGTD VNLYAL	VFGESVLNDA
			Arabiaopsis	181	VSFYYLLRYW	ALPFKFFETF	AGSMSAEHLF	KYAGLDTENL	QNLECCLFVL	FPYFSYMLAE
			thaliana	241	GVGLSGIVSI	LFTGIVMKRY	TFSNLSEASQ	SFVSSFFHLI	SSLAETFTFI	YMGFDIAMEQ
•				301	HSWSHVGFIL	FSIVSSFTDR	QAVNVFGCAY	LVNLFRQENQ	KIPMKHQKAL	WYS GLRGAM A
				361	FALALQSLHD	LPEGHGQIIF	TATTIVVVT	VLLIGGSTGK	MLEALEVVGD	DLDDSMSEGF
				421	EESDHQYVPP	PFSIGASSDE	DTSSSGSRFK	MKLKEFHKTT	TSFTALDKNF	LTPFFTTNSG
				481	DGDGDGE					
17	9XHN	NP 178079	NHX6 Na+/H+	1	MSSELQISPA	IHDPQGQEKQ	QQAAGVGILL	QIMMLVLSFV	LGHVLRRHKF	YYLPEASASL
	22330742	I	exchanger	61	LIGLIVGGLA	NISNTETSIR	FVELFLISFF	RHGSISTMSS	SPCFCCLPSY	YIL KIEYLGG
	10001		Anghidonais	121	VMFLMYRLPF	VECLMF GSLI	SATDPVTVLS	IFQELGSDVN	LYALVFGESV	LNDADEIVTL
			Arabiaopsis	181	LIRSFSFLCC	FWOMAISLYR	TWSLVRSHSS	GONFFMVIVR	FLETFVGSMS	AAMKYFILMY
			thaliana	241	SLLLSVYRTW	SAVSSYFFHI	SRNKTLLFYT	SYVSIYFTLI	EIVQFVMKHY	TYSNLSANSQ
				301	RFVSAFFHLI	SSLAETFVFI	YMGFDIAMEK	HSWAANVFGC	GYLVNLARPA	HRKIPMTHQK
				361	ALWYSGKILL	CVPLSSYCFY	SSVINTKICG	FCI GLRGAM A	FALALQSVHD	LPEGHGQTIF
			•	421	TATTAIVVLT	VLLIGGSTGT	MLEALEVVGD	SHDTSLGDGF	EVVNSRYMTS	YDDEDTPPGS
		•		481	GFRTKLREFH	KSAASFTELD	RNYLTPFFTS	NNGDYDDEGN	MEQHHGNNII	L

		T	r
	LFNGTRVPYT SSFSMDVHQI PVAVVALLKE SFGAVGIGLA MFFAAFARTA AIKWKFISQF YTKFEMMKTA NIMDIRVQAA KFLQSKIIPH VEGEEAKQFL	LFNGTRVPYT SSFSMDVHQI PVAVVALLKE SFGAVGIGLA MFFAAFARTA AIKWKFISQF YTKFEMMKTA NIMDIRVQAA KFLQSKIIPH VEGEEAKQFL	SITTLVIGLS TIMLFGAVGT ETPRLYSLVF IGLLSAYLIK HNVTFNSKVT VLVGRACFVF QQPGNAVMIT ELELEMGNVD CDQY
	SLVLGTACRY AVELPVILFE LLGGLLGATD GSIIKFLVQN SGILTVMILG VLSGQTISYK LTATKKRILE GYEAGSLDPT EPRVHFPNYY IASTVINESE EGKEVSHLHD	SLVLGTACRY AVFLPVLLFE LLGGLLGATD GSIIKFLVQN SGILTVMILG VLSGQTISYK LTATKKRILE GYEAGSLDPT EPRVHFPNYY IASTVINESE EGKEVSHLHD	LLEESRWIND KKKQFFRNFV VCTLQALNQD FLASTFLGVL CGIVMSHYTW VGVSAALLGL YNQFTRFGHT FARPLLTNEQ
NCE	PVDAVIF AGT WNGINPDLLL PYNWDWKTSL KWVMGHNSDW YYTAQEWAGV MLSGVILARDT LLLHLLRMDT LEGRQVNPHD TSSLSDWRGL QLHIFLGNSN IKNLEKVGLL ALGETDA	PVDAVIFAGT WNGINPDLLL PYNWDWKTSL KWYMGHNSDW YYTAQEWAGV MLSGVILAES LLLHLLRMDT LEGRQVNPHD TSSLSDWRGL QLHIFLGNSN IKNLEKVGLL AIGETDA	LLCGCIVIGH PIIFNAGFQV IGAIFSATDS LVFTGNFLYL DLSGILTVFI RFVKDSPGKS MRGSVSMALA **FNNLISSEQS RPLFGGRGFV
SEQUENCE	SSYSAENDSS LGKLGHGIRI CLGALIKLTF VSVVVFQLFF TVTLSASYFA AAYIANTLVF TLVVNGSTTQ VIRHISSLKD SVDEALDLVS FLRAHRIARQ HYVLNHLNGY LKDRSSFRSL	SSYSAENDSS LGKLGHGIRI CLGALIKLTF VSVVVFQLFF TVTLSASYFA AAYIANTLVF TLVVNGSTYQ VIRHISSLKD SVDEALDLVS FLRAHRIARQ HYVLNHLNGY LKDRSSFRSL	SVDSITLFVA EQLFFIYVLP GFLELRDYLA DLSHINSRAA YLSYVMAELF GMDALDIEKW LQVTIWWAGL VRFLLPSSQG HWRRFDDAFM
	YKSPEKAIAS GSLEYGTKHN AGPGVLISTF IDGESLMNDG FIFNDTVAQI HFWYFTTQEM LFLTGGIVFL EELGSADWPT TQCTANVLMQ LESACYISSA LSVLKTRQVT	YKSPEKAIAS GSLEYGTKHN AGPGVLISTF IDGESLMNDG FIFNDTVAQI HFWYFTTQEM LFLTGGIVFL EELGSADWPT TQCTANVLMQ LESACYISSA LSVLKTRQVT VDDLITSNPL	VSILSDGDQV GKSSHLLEFD AKELLGKLDI VVLFNAIQKL REVALMILMA IAEIFIFLYV RSEHDKFGLK VVFGLITKPL LKEPSYTIHN
	MTSIIGAALP VVLLVIGIFL VVLLVIGIFL KRCMGQMVLL LGASKKMTTL EGIASVFWLK FGDSHQSLH RYGNKAVLQF RYGNCSFPQV RHPPSLKLPN	MTSIIGAALP VVLLVIGIFL KRCMGQMVLL LGASKKMTTL LGASKKMTTL FGIASVFWLK FKGDSHQSLH RYGNKAVLQF LKAFENLGDD VWEMLDDGRI KLVTHLIVER EDVRDSFPQV	MGLDAVARLG TGGIILLTTK LISFSIISFG GEGVVNDATS KIYLGRHSTD TRHAFATLSF PLSLFSNCLK STITIVLFST
100 mm (100 mm) 100 mm (100 mm) 100 mm (100 mm)	1 61 121 181 301 361 421 481 541 601	1 61 121 181 2 4 1 3 0 1 3 6 1 4 2 1 5 4 1 6 6 1	1 61 121 181 241 301 361 421 481
PROTEIN DESCRIPTION (SPECIES)	NHX7 Na+/H+ exchanger Arabidopsis thaliana	NHX8 Na+/H+ exchanger Arabidopsis thaliana	Na+/H+ antiporter, isoform 1 Lycopersicon esculentum
PROTEIN ACCESSION	NP_178307	NP_172918	CAC84522
PROTEIN NUMBER (GI)	NHX7 22325422	NHX8 15223849	15982204
SEQ ID No	8	19	20

CHO		Dromain			《《《··································			
מפע		FROIEIN	FROIEIN					
A :		ACCESSION	DESCRIPTION		SEC	SEQUENCE		
9 -	(61)		(SPECIES)				- 一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、	
21	15982206	CAC83608	Na+/H+	Н	MEDHLQISPA GAKAIPGKEQ QAAGYGILLQ	IMMLVLSFVI	GHVLRRRHFY YIPEASASLL	i.
			antinorter	61	IGLIVGGLAN VSDTETSIRA WFNFHEEFFF	LFLLPPIIFQ	SGFSLSPKPF FSNFGAIITF	TF
			isoform 2	121	AILGTFIASF VTGILVYLGG VTYLMYRLPF	VECLMFGALI	SATDPVTVLS IFQELGTDVN	<u> </u>
_			7 11101011 2	181	LYALVFGESV LNDAMAISLY RTMSLVRSHM	STDQNYFMIT	IRFVETFMGS LSAGVGVGFV	FV
			Lycopersicon	241	SALLFKYAGL DIDNLQNLES CLFVLFPYFS	YMLAEGLGLS	GIVSILFTGV VMKRYTYPNL	N.
			esculentum	301	SESSQRFVSA FFHLISSLAE TFVFIYMGFD	IAMEKHSWSH	VGFIFFSILF IVIARAANVF	VF
				361	GCAYLVNLVR PPHQKIPAKH QKALWYSGLR	GAMAFALALO	PVHDLPEGHG QAIFTATTAI	AI
				421	WLTVLIIGG SAGTMLEALE VVGDGQSGSM	DETFEGNNGY	IAPSYRDESY DGEPSSGNRF	RF
				481	RMKLKEFHKS TTSFSALDKN YLTPFFTTQG	GDEDEDEPIM	HSSRRAGYDG H	
22	5731737	BAA83337	OsnHXI	1	MGMEVAAARL GALYTTSDYA SVVSINLFVA	LLCACIVLGH	LLEENRWVNE SITALIIGLC	្អ
			Orving cativa	61	TGVVILLMTK GKSSHLFVFS EDLFFIYLLP	PIIFNAGFQV	KKKQFFRNFM TITLFGAVGT	GT
			Geografie	121	MISFFTISIA AIAIFSRMNI GTLDVGDFLA	IGAIFSATDS	VCTLQVLNQD ETPFLYSLVF	VF
			Japonica	181	GEGVVNDATS IVLFNALQNF DLVHIDAAVV	LKFLGNFFYL	FLSSTFLGVF AGLLSAYIIK	IK
			cultivar-group)	241	KLYIGRHSTD REVALMMLMA YLSYMLAELL	DLSGILTVFF	CGIVMSHYTW HNVTESSRVT	ΥŢ
				301	TKHAFATLSF IAETFLFLYV GMDALDIEKW	EFASDRPGKS	IGISSILLGL VLIGRAAFVF	VF
				361	PLSFLSNLTK KAPNEKITWR QQVVIWWAGL	MRGAVSIALA .	YNKFTRSGHT QLHGNAIMIT	IT
				421	STITVVLFST MVFGMMTKPL IRLLLPASGH	PVTSEPSSPK	SLHSPLLTSM QGSDLESTTN	T.N.
				481	IVRPSSLRML LTKPTHTVHY YWRKFDDALM	RPMFGGRGFV	PFSPGSPTEQ SHGGR	
						- 1		
23	14211576	BAB56106	Na+/H+	н	MAFDFGTLLG KMNNLTTSDH QSVVSVNLFV	ALICACIVIG	HLLEENRWMN ESITALVIGS	 88
			antinorter	61	CTGVIILLIS GGKNSHILVF SEDLFFIYLL	PPIIFNAGFQ	VKKKSFFRNF STIMLFGAVG	NG
			Miniporter,	121	TLISFIIISA GAIGIFKKMD IGHLEIGDYL	AIGAIFAATD	SVCTLQVLNQ EETPLLYSLV	_ [\]
			wieremoergia	181	FGEGVVNDAT SVVLFNAVQN FDLSHISTGK	ALQLIGNFLY	LFASSTFLGV AVGLLSAFII	II
_			caerulea	241	KKLYFGRHST DREVAIMILM AYLSYMLAEL	FYLSGILTVF	FCGIVMSHYT WHNVTESSRV	RV
				301	TTKHTFATLS FIAEIFIFLY VGMDALDIEK	WKFVSDSPGT	SIKVSSILLG LVLVGRGAFV	FV
				361	FPLSFLSNLT KKNPEDKISF NQQVTIWWAG	LMRGAVSMAL	AYNQFTRGGH TQLRANAIMI	MI
				421	FSTITVVLFS TVVFGLMTKP LILLLPSQK	HLIRMISSEP	MTPKSFIVPL LDSTQDSEAD	AD
				481	LGRHVPRPHS LRMLLSTPSH TVHYYWRKFD	NAFMRPVFGG	RGFVPFVPGS PTEPVEPTEP	EP
				541	RPAESRPTEP TDE			-

SEO	PROTRIN	PROTRIN	PPOTEIN			
) } }						
3 g	NUMBER (GI)	ACCESSION	(SPECIES)			SEQUENCE
24	15812035	AAK27314	Na+/H+	1 MDQA	MDQAISSVVR KLQMVNTSDH NSVVSINIFV	NIFV ALPCASIVIG HLLEESRWMN ESITALLIGV
			exchanger	61 CAGV	CAGVIILLTT GGKSSHLFVF SEDLFFIYVL	IYVL PPIIFNAGFQ VKKKQFFRNF ITIMLFGAIG
			Citatio &	121 TLVS	TLVSCTIISL GVIQFFKKLD IGTLDIGDYL	GDYL AIGAIFAATD SVCTLQVLNQ DDTPLLYSLV
			Curus x		FGEGVVNDAT SVVLFNAIQS FDLTHINTRS	NTRS AFQFIGNFLY LFFTSTLLGV IGGLLSAYVI
			paradisi	241 KKLY	KKLYFGRHST DREVAIMVLM AYLSYMLAEL	LAEL FYLSGILTVF FCGIVMSHYT WHNVTESSRV
					TTKHTFATLS FVAEIFTFLY VGMDALDIEK	DIEK WRFVKGSPGT SVAASAMLMG LIMAGRAAFV
					FPLSFLTNLA KKSPTEKISI KQQVIIWWAG	WWAG LMRGAVSMAL AYNQFTRSGH TQLRENAIMI
				421 TSTI	TSTITVVLFS TVVFGLMTEP LIRLLLPHPK	PHPK HTTNHILSDP STPKSLSQPL LEEGQQDSYA
				481 DLVG	DLVGPTVPRP GSLRALLTTP THTVHYYWRK	YWRK FDDAFMRPVF GGRGFAPFVP GSPTERSVRG
				541 GQ		
25	15027833	AAK76737	Na+/H+	1 MGLD	MGLDLGALAL KYTGLAVSDH DSIVAINIFI	NIFI ALLCGCIVFG HLLEGNRWVN ESTTALVLGL
			antinorter	61 ITGG	ITGGVILICT KGVNSRILIF SEDIFFIYLL	IYLL PPIIFNAGFQ VKKKQFFRNF ATIILFGAAG
			Trition	121 TLIS	TLISFVIITF GAMGLFSKLD VGPLELGDYL	GDYL AIGAIFSATD SVCTLQVLNQ DEAPLLYSLV
			Irucum		FGEGVVNDAT SVVLFNAIQN IDINHFDVFV	DVFV LLQFIGKFLY LFFTSTVLGV AAGLLSAYII
-			aestivum	241 KKLC	KKLCFARHST DREVAIMILM AYLSYMLSML	LSML LDLSGILTVF FCGIVMSHYT WHNVTESSRV
					TTKHTFATLS FIAEIFLFLY VGMDALDIDK	DIDK WKLASSSPKK PIALSAVILG LVMVGRAAFV
					FPLSFLSNLS KKESHPKISF NQQVIIWWAG	WWAG LMRGAVSIAL AYNKFTTSGH TAVRVNAVMI
					TSTIIVVLFS TMVFGLLTKP LINLLIPPRP	PPRP GTAADISSQS FLDPLTASLL GSDFDVGQLT
				481 PQTN	PQTNLQYLLT MPTRSVHRVW RKFDDKFMRP	FMRP MFGGRGFVPF VPGSPIERSV HGPGLLGTVT
				541 EAEDRS	S	
76	28575021	AAK76738	Na+/H+	1 MGYQ	MGYQVVAAQL ARLSGALGTS DHASVVSITL	SITL FVALLCACIV LGHLLEENRW LNESITALII
			antinorter	61 GLCT	GLCTGVVILM TTKGKSSHVL VFSEDLFFIY	FFIY LLPPIIFNAG FQVKKKQFFR NFMAITLFGA
			Tuitions	121 VGTM	VGTMMSFFTI SLAAIAIFSR MNIGTLDVSD	DVSD FLAIGAIFSA TDSVCTLQVL NQDETPFLYS
			Iruicum	181 LVFG	LVFGEGVVND ATSVVLFNAL QNFDPNQIDA	QIDA IVILKFLGNF CYLFVSSTFL GVFTGLLSAY
			aestivum	241 VIKK	VIKKLYIGRH STDREVALVM LMAYLSYMLA	YMLA ELLDLSGILT VFFCGIVMSH YTWHNVTESS
					RVTTKHAFAT LSFIAETFLF LYVGMDALDI	ALDI EKWKFASDSP GKSIGISSIL LGLVLVGRAA
					FVFPLSFLSN LTKKTELEKI SWRQQIVIWW	VIWW AGLMRGAVSI ALAYNKFTRS GHTQLHGNAI
					MITSTITVVL FSTMLFGILT KPLIRFLLPA	LLPA SSNGAASDPA SPKSLHSPLL TSQLGSDLEA
				481 PLPI	PLPIVRPSSL RMLITKPTHT IHYYWRKFDD	KFDD ALMRPMFGGR GFVPYSPGSP TDPNVLVE

SEO	PROTEIN	PROTEIN	PROTEIN		
, Ε	NIMBED	ACCESSION	DESCRIPTION	Spot in Carlo	
3 8	(GI)	MC	(SPECIES)	OFCOENCE	
27	31580736	AAP55209	Na+/H+	MGLDLGALAL KYTGLAVSDH DSIVAINIFI	IVFG HLLGGNRWVN ESTAALVLGL
			antiporter	ITGGVILICT KGVNSRILIF SEDIFFIYLL	VKKKQFFRNF
			Triticum	TLISFVIITF GAMGLFSKLD VGPLELGDYL	SVCTLQVLNQ
			gostinum	FGEGVVNDAT SVVLFNAIQN IDINHFDVFG	LFFTSTVLGV
			aestivani	DREVAIMILM AYLSCMLSML	FCGIVMSHYT
				TTKHTFATLS FIAEIFLFLY VGMDALDIDK	PIALSAVILG
				FPLSFLSNLS KKESHPKISF NQQVIIWWAG	AYNKFTTSGH
				TSTIIVVLFS TMVFGLLTKP LINLLIPPRP	FLDPLTASLL
				481 PQTNLQYLLT MPTRSAHRVW RKFDDKFMRP MFGGRGFVPF 541 FAFDRS	FVPF VPGSPIERSV HGPGLLGTVT
28	30172039	AAP20428	Na+/H+	' '	CIVL GHLLEENRWV NESTALIVGL
			antinorter	61 GTGTVILMIS RGVVIHVLVF SEDLFFFYLL PPIIFNAGFQ	AGFQ VKKKQFFRNF ITITLFGAVG
			antipolici MITV	121 TLISFTVISL GALGLISRLN IGALELGDYL ALGAIFSATD	SATD SVCTLQVLSQ DETPFLYSLV
,			NHAI	181 FGEGVVNDAT SVVVFNALQN FDITHIDAEV VFHLLGNFFY	
			Zea mays subsp.	241 KKLYFGRHST DREVALMMLM AYLSYMLAEL FALSGILTVF	LIVE FGCIVMSHYT WHNVTESSRI
		•	mays	TTKHAFATLS	FPGK SLAISSILMG LVMVGRAAFV
		•	•	361 FPLSFLSNLA KKTEHEKISW KQQVVIWWAG LMRGAVSMAL	SMAL AYKKFTRAGH TQVRGNAIMI
				21 TSTIIVVLFS	ODSS PKSLHSPLLT SQLGSDLEEP
				481 INIPRPSSIR GEFLIMIRTV HRYWRKFDDA FMRPMFGGRG	SGRG FVPFVPGSPT ERNPPDLSKA
29	30172041	AAP20429	Na+/H+	MGLGVDAETV RLGVLSSTSD HASVVSNNFF	GHLLEENRMV
			antiporter	LGTGTVILMI SRGVSIHVLV FSEDLFFIYL	QVKKKQFFRN
			NHX2	GTLISFVIIS LGAMGLFKKL DVGPLELGDY	DSVCTLQVLN
			NIIA2	VFGEGVVNDA TSIVVFNALQ	YLFLLSTVLG
			Lea mays subsp.	IKKIYFGRHS	FFGCIVMSHY
			mays	ITTKHAFATL SFLAETFIFL YVGMDALDIE	KSIAISSILM
				VFPLSFLSNL AKKNEHEKIS WKQQVVIWWS	LAYNKFTRAG
				21 ITSTITVVLF STVVFGLLTK PLIRLLMPHR	PKSLHSPLLT
				GEFTTMTRTV HRYWRKFDDK	FVPFVPGSPT
30	32396168	AAP20430	Na+/H+	MSIGLTAETV TNKLASAEHP QVVPNSVFIA	LLEENRWYNE
			antiporter	TGTVILLISK GKSSHILVFD EELFFIYLLP	KKKQFFRNFI
			NHY3	LISFVIISLG	VCTLQVLNQD
			CVUN	181 GEGVVNDATS VVLFNAVQKI DFEHLTGEVA LQVFGNFLYL	FSTSTVLGIA
			Lea mays subsp.	TLYFGRHSTT RELAIMVLMA YLSFMLAELF	CGVLMSHVTW
			mays	IAETFLFLYV GTDALDFTKW	renssarrer.
				PLSFLSNLSK KHPGEKITIR QQVVIWWAGL	FNKFTRAGHT
				STIIVVLFST VVFGLLTKPL INLLIPHRNA	KSLHSPLLTS
				481 QIPRPTNIRG EFMTMTRTVH RYWRKFDDKF MRPMFGGRGF	SRGF VPFVPGSPTE RSSPDLSKA

SEO	PROTEIN	PROTEIN	PROTEIN		
Â	NUMBER	ACCESSION	DESCRIPTION	SEQUENCE	
No	(GI)		(SPECIES)		
31	32396170	AAP20431	Na+/H+	1 MGYQVVAAQL KLASSADHAS VVIITLFVAL LCACIVLGHL LEENRWLNES ITALIIGLGT	LIIGLGT
			antiporter	_	FGAVGTM
			NHAV	21 ISFFTISLGA IATFSRMSIG TLDVGDFLAI	LYSLVFG
			NIIA+	181 EGVVNDATSV VLFNAVQKIQ FTHINAWTAL QLIGNFLYLF STSTLLGIGT GLITAFVLKK	TAFVLKK
			Lea mays subsp.	· 241 LYFGRHSTTR ELAIMILMAY LSYMLAELFS LSGLLTVFFC GVLMSHVTWH NVTESSRTTS	ESSRTTS
			mays	01 RHVFATLSFI SETFIFLYVG MDALDFEKWK TSSLSFGGTL GVSGVLMGLV	RAAFVFP
				361 LSFLSNLAKK HQSEKISFRM QVVIWWAGLM RGAVSMALAL NKFTRSGHTQ LHGNAIMITS	NAIMITS
				421 TITVVLFSTM VFGMITKPLI RLLLPASGHP RELSEPSSPK SFHSPLLTSQ QGSDLESTTN	DLESTIN
				481 IVRPSSLRGL LTKPTHTVHY YWRKFDDALM RPVFGGRGFV PFVPGSPTER NPPDLSKA	DLSKA
32	32396174	AAP20432	Na+/H+	1 MSMGYQVVAA QLKVASSADH ASVVIITLFV ALLCACIVLG HLLEENRWLN ESITALIIGL	TALIIGL
			antinorter	61 CTGGVILMTT KGKSSHVLVF SEDLFFIYLL PPIIFIAGFQ VKKKQFFRNF MTITLFGAVG	TLFGAVG
			unit porter	121 TMISFFTISL GAIAIFSRMN IGTLDVGDFL AIGAIFSATD SVCTLQVLHQ DETPFLYSLV	PFLYSLV
			CVUNI	181 FGEGVVNDAT SVVLFNAVQK IQITHINAEV ALQVFGNFLY LFSTSTLLGI ATGLITSFVL	LITSFVL
			Lea mays subsp.	. 241 KKLYFARHST TRELAIMMIM AYLSYMLAEL FSLSGILTVF FCGVLMSHVT WHNVTESSRI	VTESSRI
			mays		LGRAAFV
				361 FPLSVLTNFS NKHENESITF KHQVIIWWAG LMRGAVSIAL AFKQFTYSGV TLDPVNAAMV	PVNAAMV
				421 TNTTIVVLFT TLVFGLLTKP LIRLLMPHRH LTMLSDDSTP KSLHSPLLTS QLGSDLEEPT	SDLEEPT
					POWSEEA
				541 HNKEP	
33	32396176	AAP20433	Na+/H+	1 MGLGVVAELV RLGVLSSTSD HASVVSINLF VALLCACIVL GHLLEENRWV NESITALIIG	ITALIIG
			antiporter	LCTGVVILLT	TLFGAV
			MITVE	121 GTMISFFTIS LGALGLISRL NIGAĻELGDY LALGAIFSAT DSVCTLQVLS QDETPFLYSL	TPFLYSL
			י סעשען	181 VFGEGVVNDA TSVVVFNALQ NFDITHIDAE VVFHLLGNFF YLFLLSTVLG VATGLISALV	GLISALV
	,		Lea mays subsp.	· 241 IKKLYFGRHS TDREVALMML MAYLSYMLAE LFALSGILTV FFGCIVMSHY TWHNVTESSR	NVTESSR
			mays	301 ITTKHAFATL SFLAETFLFL YVGMDALDID KWRSVSDTPG KSLAISSILM GLVMVGRAAF	MVGRAAF
				361 VFPLSFLSNL AKKTEHEKIS WKQQVVIWWA GLMRGAVSMA LAYKKFTRAG HTQVRGNAIM	VRGNAIM
				421 ITSTIIVVLF STMVFGLLTK PLINLLIPHR NATSMLSDDS SPKSLHSPLL TSQLGSDLEE	LGSDLEE
				481 PINIPRESI RGEFLIMIRI VHRYWRKFDD AFMRPMFGGR GFVPFVPGSP IERNPPDLSK	NPPDLSK
				541 A	_

SEO	PPOTEIN	Ростети	Doorpm	为1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
γ 1 1		TWO I FILL		
	Z	ACCESSION	DESCRIPTION	SEQUENCE
No	191 H		(SPECIES)	
34	22902099	AAM54141	Na+/H+	1 MVAPQLAAVF TKLQTLSTSD HASVVSMNIF VALLCACIVI GHLLEENRWM NESITALIIG
			antiporter	VFTGVIILLT SGGKSSHLLV FSEDLFFIYL LPPIIFNAGF QVKKKQFFRN
			Gorminm	121 GTLISCTIIS LGVINFFKEM DIGSLDIGDF LAIGAIFAAT DSVCTLQVLN QDETPLLYSL
			Gossypium	181 VFGEGVVNDA TSVVLFNAIQ SFDLVNTSPR ILLEFIGSFL YLFLASTMLG VIVGLVSAYI
			hirsutum	241 IKKLYFGRHS TDREFALMML MAYLSYIMAE LFYLSGILTV FFCGIVMSHY TWHNVTESSR
				301 VTTKHAFATL SFVAETFLFL YVGMDALDME KWRFVSDSPG TSVAVSAVLM GLVMVGRAAF
	`			361 VFPLSFLSNL AKKSTSEKIS FREQIIIWWA GLMRGAVSMA LAYNQFTRGG HTQLRGNAIM
	-			421 ITSTITIVLF STVVFGLMTK PLIRFLLPHP KPTASMLSDQ STPKSMEAPF LGSGQDSFDD
				481 SLIGVHRPNS IRALLTTPAH TVHYYWRKFD NAFMRPMFGG RGFVPFVPGS PTERSEPNLP
				541 QWQ
35	30144703	AAP15178	Na+/H+	1 MWSQLSSFFA SKMDMVSTSD HASVVSMNLF VALLCGCIVI GHLLEENRWM NESITALLIG
			antinorter	61 LSTGIIILLI SGGKSSHLLV FSEDLFFIYL LPPIIFNAGF QVKKKQFFRN FITIILFGAV
			Cuanda	121 GTLVSFIIIS LGSIAIFQKM DIGSLELGDL LAIGAIFAAT DSVCTLQVLN QDETPLLYSL
			nnannc	181 VFGEGVVNDA TSVVLFNAIQ NFDLTHIDHR IAYRIAFQFG GNFLYLFFAS TLLGAVTGLL
			maritima	241 SAYVIKKLYF GRHSTDREVA LMMLMAYLSY MLAELFYLSG ILTVFFCGIV MSHYTWHNVT
			subsp. salsa	301 ESSRVTTKHA FATLSFVAEI FIFLYVGMDA LDIEKWRFVS DSPGTSVAVS SILLGLLMVG
	•			361 RALLFSLVFL MNLSKKSNSE KVTFNQQIVI WWAGLMRGAV SVALAYNQFS RSGHTQLRGN
				421 AIMITSTITV VLFSTMVFGL LTKPLILFML PQPKHFTSAS TVSDLGSPKS FSLPLLEDRQ
				481 DSEADLGNDD EEAYPRGTIA RPTSLRMLLN APTHTVHHYW RRFDDYFMRP VFGGRGFVPF
				541 VPGSPTEQST INLSQRT
36	28201131	BAC56698	Na+/H+	1 MAFEVVAAQL ARLSDALATS DHASVVSINL FVALLCACIV LGHLLEENRW LNESITALII
		-	antinorter	61 GLCTGVVILM TTKGKSSHVL VFSEDLFFIY LLPPIIFNAG FQVKKKQFFR NFMTITLFGA
			Hordoum	121 VGTMISFFTI SLAAIAIFSK MNIGTLDVSD FLAIGAIFSA TDSVCTLQVL NQDETPFLYS
			i ioraeum	181 LVFGEGVVND ATSVVLFNAL QNFDPNQIDA IVILKFLGNF CYLFVSSTFL GVFSGLLSAY
		-	vulgare	241 IIKKLYIGRH STDREVALMM LMAYLSYMLA ELLDLSGILT VFFCGIVMSH YTWHNVTESS
				301 RVTTKHAFAT LSFIAETFLF LYVGMDALDI EKWKFASDSP GKSIGISSIL LGLVLVGRAA
				421 MITSTITVVL FSTMLFGILT KPLIRFLLPA SSNGDPSEPS SPKSLHSPLL TSMLGSDMEA
		•		481 PLPIVRPSSL RMLITKPTHT IHYYWRKFDD ALMRPMFGGR GFVPYSPGSP TDPNVIVA

SEQ	SEQ PROTEIN	PROTEIN	PROTEIN	我想到了一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就	
No	ID NUMBER No (GI)	ACCESSION	DESCRIPTION (SPECIES)	SEQ	Sequence
37	27948863	AAO25547	Na+/H+	1 MGWGLGDPPA DYGSIMAVGL FVALMCIC	MGWGLGDPPA DYGSIMAVGL FVALMCICII VGHLLEENRW MNESTTALLL GLGAGTVILF
			antinorter	61 ASSGKNSRLM VFSEDLFFIY LLPPIIFNAG	AG FQVKKKQFFR NFMTITLFAV VGTLISFSII
			Hondon	121 SLGAMGLISR LNIGALELGD YLALGAIFSA	SA TDSVCTLQVL SQDETPFLYS LVFGEGVVND
			nordeum	181 ATSVVLFNAI QNFDLGNFSS LKFLQFIGNF	NF LYLFGASTFL GVASGLLSAY VIKKLYFGRH
			brevisubulatum	241 STDREVAIMM LMAYLSYMLA ELLDLSGILT	LT VFFCGIVMSH YTWHNVTESS RVTTKHAFAT
				301 LSFISETFLF LYVGMDALDI EKWKIVSETY	IY SPMKSITLSS IILALVLVAR AAFVFPLSYL
				361 SNLTKKTAGE KISIRQQVII WWAGLMRGAV	AV SIALAYNKFA KSGHTQLPSN AIMITSTIII
				421 VLFSTIVFGL LTKPLIRLLI PARHLTREVS	VS ALSEPSSPKS FLEQLTVNGP ETDVENGVSI
				481 RRPTSLRMLL ASPTRSVHHY WRKFDNAFMR	MR PVFGGRGFVP FVPGSPTESS VPLLAHGSEN
38	29825705	29825705 AAO91943	Vacuolar	1 MGPDLGALAL RYTGLAVSDH DSIVAINIFI	FI ALLCGCIVFG HLLEGNRWVN ESTTAIVLGL
			Na+/H+	61 ITGGVILLCT KGVNSRILIF SEDIFFIYLL	LL PPIIFNAGFQ VKKKQFFRNF ATIILFGAVG
			ontinonton	121 TLISFVIITL GAMGLFRKLD VGPLELGDYL	YL AIGAIFSATD SVCTLQVLNQ DQAPLLYSLV
				181 FGEGVVNDAT SVVLFNAIQN IDLNHFDVLV	LV LLQLIGKFLY LFLTSTVLGV AAGLLSAYII
			Hordeum	241 KKLCFARHST DREVAIMILM AYLSYMLSML	ML LDLSGILTVF FCGIVMSHYT RHNVTESSRV
			vulgare	301 TTKHTFATLS FIAEIFLFLY VGMDALDIDK	DK WKLASSSPKK PIALSAVILG LVMVGRAAFV
				361 FPLSYLSNLS KKESHPKISF NQQVIIWWAG	AG LMRGAVSIAL AYNKYTTSGH TAVRVNAVMI
				421 TSTIIVVLFS TMVFGLLTKP LINLLVPPRP	RP GTAADISSQS FLDPLTASLL GSDFDVGQLT
				481 PQTNLQYLLT MPSRSVHRVW RKFDDKFMRP MFGGRGFVPF	RP MFGGRGFVPF VPGSPIERSV HGPGLLGTVT
				541 EAENRS	

Table IV. Relative yield decrease of representative plants.

RELATIVE YIELD DECREASE

	25	5%	50	<u>%</u>
CROP	(mmho/cm)	(mM NaCl)	(mmho/cm)	(mM NaCl)
Barley	13	120	18	170
Sugarbeet	11	105	15	150
Sorghum	7.2	65	11	100
Soybean	6.2	59	7.5	65
Rice	3.8	36	5.9	50
Corn	3.8	36	5.9	50
Alfalfa	5.4	45	8.8	75
Cucumber	4.4	40	7.0	65
Potato	2.8	36	5.9	50
Beans	2.3	18	3.2	28
Grape	4.1	37	6.7	62
Orange	3.2	28	4.8	43
Peach	2.9	25	4.1	35
Strawberry	1.8	14	2.5	21