Math exercise: Calculus

1. Prove they
$$\frac{d}{dx} [f(g(x))] = f(g(x))g'(x)$$
, $y = f(g(x))$

$$\frac{dy}{dx} = \lim_{h \to 0} \left(\frac{f(g(x+h)) - f(g(a))}{h} \right) \quad [def'' \text{ of derivcurive}]$$

=
$$\lim_{h\to 0} \left(\frac{f(g(o(th)) - f(g(\alpha))}{g(xth) - g(x)}\right) * \frac{g(xth) - g(x)}{g(xth) - g(x)}$$

-
$$\lim_{h\to 0} \left(\frac{f(g(\alpha+h)) - f(g(\alpha))}{g(\alpha+h) - g(\alpha)}\right) \lim_{h\to 0} \left(\frac{g(\alpha+h) - g(\alpha)}{h}\right)$$

=
$$\lim_{h\to 0} \left(\frac{f(g(\alpha + h)) - f(g(\alpha))}{g(\alpha + h) - g(\alpha)}\right) \cdot g'(\alpha)$$
 [$\lim_{h\to 0} \left(\frac{f(g(\alpha + h)) - f(g(\alpha))}{g(\alpha + h) - g(\alpha)}\right) \cdot g'(\alpha)$

Let
$$k = g(x+h) - g(x)$$

i as $k \to 0$, $k \to 0$
 $g(x+h) = g(x) + h$

=
$$\lim_{K\to 0} \left(\frac{f(g(x))+K}{K} - f(g(x)) \right) g'(x)$$

=
$$f'(g(x)) \cdot g'(x)$$
 [From def of derivative]

hence, $\frac{d}{dx}$ [$f(g(x)) \cdot g'(x)$] = $f'(g(x)) \cdot g'(x)$

HANDER OF THE BELLEVILLE

2. white chain hale for
$$x = f(x, y, z)$$
 and $x = f(x, y, z)$ and $x =$

P

"
$$\frac{1}{2} \frac{1}{(x_1^2 + x_2^2 + \dots + x_n^2)^2}$$

$$=\frac{x_1^2}{\sqrt{x_1^2+x_2^2+\cdots x_n^2}}$$

Putting all partial derivaties together,

5. Find the gradient $\nabla f(x)$ of the tollowing trun and then solve the eqn to find the minimum value of f.

$$f(x) = (y-x)^{T}(y-x)$$

$$= (y^{T}-x^{T}) \cdot y - x$$

$$\nabla x f(x) = -Y - Y + 2x \qquad \left[x^{T}Y = X \cdot Y \right]$$

$$= 2(X - Y)$$

now for minimum value of f, $\nabla x f(x) = 0$ 2(X-Y) = 0 X = Y

$$\int f(x)$$
 is o when $X=Y$.