МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Отчёт о выполнении лабораторной работы №4.5.2

Интерференция лазерного излучения

Авторы: Сенокосов Арсений Олегович Сафин Дим Рустемович Б02-012

Долгопрудный 11 августа 2022 г.

1 Введение

Цель работы: исследование видности интерференционной картины излучения гелий-неонового лазера и определение длины когерентности излучения.

Оборудование: Не-Ne-лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф, поляроид, линейка.

2 Теоретическое введение

Важный параметр интерференционной картины — ее видность:

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \tag{1}$$

Удобно представлять видимость в виде произведения функций различных параметров установки/системы:

$$V = V_1 V_2 V_3 \tag{2}$$

Рассмотрим эти функции подробнее. Первая из них отвечает за отношение интенсивностей интерферирующих волн:

$$V_1 = \frac{2\sqrt{\delta}}{1+\delta}, \quad \delta = \frac{B_m^2}{A_m^2} \tag{3}$$

Здесь A_m, B_m — амплитуды волн. Вторая функция учитывает влияние разности хода и спектрального состава волн:

$$\gamma_2 = \frac{\sum_n A_n^2 \cos \frac{2\pi\Delta\nu nl}{c}}{\sum_n A_n^2} \sim e^{-(\pi\Delta F l/c^2)}$$
(4)

Здесь l — разность хода, $\Delta \nu$ — спектральный состав излучения, A_n^2 — интенсивность мод. Оценка приведена из перехода к непрерывному пределу. На графике (рис.1) показан вид $V_2(l)$, позволяющий получить расстояние L между зеркалами резонатора и межмодовое расстояние $\Delta \nu$. Величина $l_{1/2}$ позволяет оценить диапазон частот ΔF . Формулы связи межмодового расстояния и длины L, а также $l_{1/2}$ и ΔF таковы:

Рис. 1: Качественный график
$$V_2$$

$$\Delta \nu = \frac{c}{2L}, \quad l_{1/2} \approx \frac{0.26c}{\Delta F}$$
 (5)

Последняя функция — зависимость от угла поляризации α :

$$V_3 = |\cos \alpha| \tag{6}$$

3 Экспериментальная установка

3.1 Описание установки

Для получения интерференционной картины используется интерферометр Майкельсона, смонтированный на вертикально стоящей массивной металлической плите. Схема установки приведена на рисунке.

Схема установки. З, З₁, З₂, З₃ — зеркала. П₁ и П₂ — поляроиды. Б₁ и Б₂ — блоки № 1 и 2. ДК — делительный кубик, РФ — ромб Френеля. ФД — фотодиод, Э — экран, ПК — пьезокерамика, Л — линза

Источником света служит гелий-неоновый лазер (средняя длина волны $\lambda_0 = 632,8$ нм). Пучок лазерного излучения отражается от зеркала 3 и проходит призму полного внутреннего отражения РФ (ромб Френеля), которая превращает линейную поляризацию излучения в круговую. Если в установке используется лазер, излучающий неполяризованный свет, то ромб Френеля не нужен, но он и не мешает выполнению работы. Далее лазерное излучение делится диагональной плоскостью делительного кубика ДК на два пучка.

Пучок 1 проходит поляроид Π_1 , отражается под небольшим углом от зеркала 3_1 , снова проходит поляроид Π_1 и, частично отражаясь от диагональной плоскости делительного кубика, выходит из интерферометра, попадает на зеркало 3_3 и далее на фотодиод Φ Д. Зеркало 3_1 наклеено на пьезокерамику ПК, которая может осуществлять малые колебания зеркала вдоль направления распространения падающего пучка. Поляроид и зеркало с пьезокерамикой собраны в единый блок B_1 , который крепится к вертикально стоящей плите. В блоке B_1 имеются юстировочные винты, которые позволяют регулировать угол наклона зеркала 3_1 . В установке предусмотрена возможность вращения поляроида Π_1 . Угол поворота отсчитывается по шкале, нанесённой на оправу поляроида. Пучок 2 проходит линзу Π_2 , поляроид Π_2 , отражается от зеркала 3_2 , снова проходит поляроид Π_2 , линзу Π_2 и делительный кубик, выходит из интерферометра, попадает на зеркало 3_3 и далее на фотодиод Φ Д. Таким образом, от зеркала 3_3 под небольшим углом друг к другу идут на фотодиод два пучка, прошедшие разные плечи интерферометра. Между ними происходит интерференция и образуются интерференционные полосы. Линза Π_2 и зеркало Π_2 обраны в единый блок Π_2 .

Зеркало 3_2 установлено в фокальной плоскости линзы Л. Это сделано для того, чтобы падающий и выходящий из блока \mathbf{E}_2 пучки всегда были параллельны друг другу. Блок \mathbf{E}_2 может перемещаться вдоль пучка 2 по штанге, жёстко связанной с плитой интерферометра. Длина штанги 90 см. В установке предусмотрена возможность небольшого поперечно- го перемещения блока \mathbf{E}_2 , что позволяет регулировать расстояние меж- ду падающим и выходящим из блока

пучками. При измерениях блок B2 крепится к штанге при помощи двух винтов. Вдоль штанги нанесены деления через один сантиметр. При перемещении блока B_2 вдоль штанги на величину x_1 геометрическая разность хода между пучками 1 и 2 изменяется на величину $l=2x_1$.

Сферическое зеркало 3_3 с небольшим фокусным расстоянием увеличивает картину интерференционных полос и позволяет наблюдать её на экране 9, расположенном в плоскости входного окна фотодиода. Свет попадает на фотодиод Φ Д через узкую щель в центре экрана. Щель ориентируется параллельно интерференционным полосам. Ширина щели меньше расстояния между полосами. Сигнал фотодиода усиливается и подаётся на вход осциллографа. Для питания усилителя сигнала фотодиода и управления пьезокерамикой используется блок питания БП.

На пьезокерамику подаётся напряжение с частотой 50 Гц. При этом её длина изменяется с частотой 100 Гц. Величина удлинения зависит от приложенного напряжения и регулируется ручкой «Качание» на блоке питания. Обычно удлинение составляет несколько длин волн света. На эту величину перемещается вдоль пучка 1 зеркало 3_1 . Интерференционная картина смещается на ширину полосы (одно колебание на экране осциллографа), если зеркало 3_1 смещается на $\lambda_0/2 \sim 0.3$ мкм. При измерениях через входную щель фотодиода последовательно проходит несколько полос интерференционной картины, а на экране осциллографа наблюдаются колебания с изменяющимся периодом.

3.2 Методика измерения

Рис. 2: Сигнал фотодиода на осциллографе

Осциллограф мы используем для нахождения следующих вели- чин: фоновой засветки (линия 0 — перекрыты оба пучка 1 и 2); интенсивность света каждого из пучков (линии 1 или 2 — перекрыт пучок 2 или 1); максимума и минимума интенсивности интерференционной картины (открыты оба пучка). При этом параметр δ из (3), определяется отношением

$$\delta = \frac{h_1}{h_2} \tag{7}$$

Понятно, что из физического смысла, наша видимость рассчитывается очевидным образом, согласно формуле (1), так:

$$V = \frac{h_4 - h_3}{h_4 + h_3} \tag{8}$$

Отсюда, используя (2), мы можем получить наши функции из (8), фиксируя одну из них (т.е. беря равной единице). Так, при $\alpha = 0 \Rightarrow V_3 = 1$,

$$V_2(l) = \frac{V}{V_1} = \frac{h_4 - h_3}{h_4 + h_3} \cdot \frac{h_2}{h_1} \tag{9}$$

А приняв разность хода $l = 0 \Rightarrow V_2 = 0$, можно найти

$$V_3(\alpha) = \frac{V}{V_1} = \frac{h_4 - h_3}{h_4 + h_3} \cdot \frac{h_2}{h_1} \tag{10}$$

4 Ход работы

4.1 Изучение поляризации

Поворотами поляризатора Π_1 убедимся, что свет от лазера — поляризованный. Настроив поляроид на минимальную видимость и введя дополнительный поляроид, мы вновь получаем

интерференционную картину при его поворотах. Интенсивность излучения при вращении поляроида меняется, что говорит о его не хаотической поляризации. При вращении также изменяется интерференционная картина, что говорит о линейной или круговой поляризации, а не хаотической.

α	h_4	h_3	h_2	h_1	V	δ	V_1	V_3
5	32	25	16	13	0.12	0.81	0.99	0.12
15	33	23	16	12	0.18	0.75	0.99	0.18
25	37	23	16	15	0.23	0.94	1.00	0.23
35	38	21	16	15	0.29	0.94	1.00	0.29
40	34	18	16	10	0.31	0.63	0.97	0.32
45	35	17	16	11	0.35	0.69	0.98	0.35
50	35	16	16	11	0.37	0.69	0.98	0.38
60	29	14	16	6	0.35	0.38	0.89	0.39
70	28	13	16	6	0.37	0.38	0.89	0.41
80	27	13	16	5	0.35	0.31	0.85	0.41
90	24	13	16	4	0.30	0.25	0.80	0.37
100	24	14	16	4	0.26	0.25	0.80	0.33
110	22	14	16	3	0.22	0.19	0.73	0.30
120	22	15	16	3	0.19	0.19	0.73	0.26
130	22	16	16	3	0.16	0.19	0.73	0.22
140	22	17	16	4	0.13	0.25	0.80	0.16
150	23	19	17	5	0.10	0.29	0.84	0.11
160	24	22	17	7	0.04	0.41	0.91	0.05

Таблица 1: Измерение зависимости видности от угла

4.2 Измерение зависимости видности от угла

Исследуем зависимость видности интерференционной картины от угла α поворота поляроида Π_1 при нулевой разности хода ($V_2=1$). Для этого измерим величины h_1,h_2,h_3 и h_4 на экране осциллографа. Результаты занесем в таблицу 1 и построим график согласно формуле (10). Значения для δ, V, V_1 получим из формул выше.

Измерение зависимости видности V_3 от угла поляризации lphaГрафик 1

Из графика следует, что он приближается функцией $\cos^2\alpha$. Это значит, что **поляризация** — **линейная**. Выполняется **закон Малюса**:

$$I = I_0 \cos^2 \alpha$$

4.3 Измерение зависимости видности от дальности хода

Теперь установим α на максимальную видность и будем перемещать блок B_2 , тем самым изменяя дальность хода x. Аналогично предыдущему пункту измерим величины h_1, h_2, h_3 и h_4 на экране осциллографа. Результаты занесем в таблицу 2 и построим график согласно формуле (9). Значения для δ, V, V_1 получим из формул выше.

График 2 Измерение зависимости видности V_2 от разности хода x

Видно, что у нас наблюдается 2 максимума по краям области измерения и некоторые колебания в промежуточной области. А именно, максимумы в области $x_1 \approx (14 \pm 2)$ см и в области $x_2 \approx (78 \pm 2)$ см, откуда получаем следующий результат:

$$L = \frac{1}{2}(x_2 - x_1) = (32.0 \pm 1.4) \text{ cm}$$
 (11)

Отсюда нетрудно получить и значение $\Delta \nu$ из формулы (5):

$$\Delta \nu = \frac{c}{2L} \approx (4.7 \pm 0.2) \cdot 10^8 \, \Gamma \text{I} \tag{12}$$

Оценим $l_{1/2} \approx (22-14)$ см = (8 ± 2) см, откуда по формуле (5) получаем

$$2\Delta F = 2 \cdot \frac{0,26c}{l_{1/2}} \approx (19.5 \pm 4.9) \cdot 10^8 \, \Gamma$$
ц (13)

x	h_4	h_3	h_2	h_1	V	δ	V_1	V_2
11	18	7	6	8	0.44	1.33	0.99	0.44
12	16	7	4	8	0.39	2.00	0.94	0.42
14	28	9	11	8	0.51	0.73	0.99	0.52
16	37	18	17	11	0.35	0.65	0.98	0.35
17	39	17	18	16	0.39	0.89	1.00	0.39
18	39	19	19	11	0.34	0.58	0.96	0.36
20	33	17	15	11	0.32	0.73	0.99	0.32
22	37	21	19	11	0.28	0.58	0.96	0.29
24	33	25	22	11	0.14	0.50	0.94	0.15
26	27	20	14	11	0.15	0.79	0.99	0.15
28	24	19	12	11	0.12	0.92	1.00	0.12
30	28	24	16	11	0.08	0.69	0.98	0.08
32	35	32	23	11	0.04	0.48	0.94	0.05
34	30	27	18	11	0.05	0.61	0.97	0.05
36	32	30	21	11	0.03	0.52	0.95	0.03
38	19	18	8	10	0.03	1.25	0.99	0.03
40	13	12	3	10	0.04	3.33	0.84	0.05
42	17	15	7	10	0.06	1.43	0.98	0.06
44	27	22	17	10	0.10	0.59	0.97	0.11
46	29	21	17	8	0.16	0.47	0.93	0.17
48	30	18	16	8	0.25	0.50	0.94	0.27
50	21	18	12	8	0.08	0.67	0.98	0.08
52	22	20	13	9	0.05	0.69	0.98	0.05
54	16	15	6	10	0.03	1.67	0.97	0.03
56	17	15	9	7	0.06	0.78	0.99	0.06
58	16	14	9	7	0.07	0.78	0.99	0.07
60	17	15	10	8	0.06	0.80	0.99	0.06
62	18	14	10	7	0.13	0.70	0.98	0.13
64	15	11	11	7	0.15	0.64	0.97	0.16
66	19	16	13	5	0.09	0.38	0.90	0.10
68	36	29	26	8	0.11	0.31	0.85	0.13
72	21	13	10	8	0.24	0.80	0.99	0.24
74	16	10	6	7	0.23	1.17	1.00	0.23
76	28	13	14	8	0.37	0.57	0.96	0.38
78	22	5	8	6	0.63	0.75	0.99	0.64
80	22	7	7	8	0.52	1.14	1.00	0.52
82	24	8	9	8	0.50	0.89	1.00	0.50
84	28	11	12	8	0.44	0.67	0.98	0.44

Таблица 2: Измерение зависимости видности от разности хода

Тогда для числа одновременно генерируемых лазером продольных волн можно провести оценку:

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu} \approx 5 \pm 1 \tag{14}$$

5 Вывод

- В ходе выполнения лабораторная работы была изучена поляризация излучения лазера. При этом было установлено, что при вращении поляроида интенсивность излучения меняется, что говорит о его не хаотической поляризации. При этом изменяется и интерференционная картина. По этим результатам можно предположить, что поляризация линейная или круговая.
- Затем была исследована зависимость видности интерференционной картины от угла поляроида Π_1 . Из результатов измерений и аппроксимации следует, что зависимость приближается функцией $\cos^2 \alpha$. Это значит, что поляризация излучения **линейная** согласно закону Малюса.
- В заключительной части работы была исследована зависимости видности интерференционной картины от разности хода. По полученным данным было оценено расстояние между максимумами, расстояние L между зеркалами оптического резонатора лазера, а также межмодовое расстояние $\Delta \nu$. Для этих величин были получены следующие результаты:

$$L = (32.0 \pm 1.4) \text{ cm}$$

$$\Delta \nu = (4.7 \pm 0.2) \cdot 10^8$$
 Γιμ

• Также по графику также было оценена полуширина $l_{1/2}$. При помощи этих данных было получен диапазон частот $2\Delta F$, в котором происходит генерация продольных мод, и приблизительное число мод. Были получены следующие результаты:

$$l_{1/2} = (8 \pm 2) \text{ cm}$$

$$2\Delta F = (19.5 \pm 4.9) \cdot 10^8 \ \Gamma$$
ц $N = 5 \pm 1$

• Основной вклад в погрешнсть в ходе выполнения работы могла внести ошибка при определении продольного сдвига второго зеркального блока. Также не всегда было реальным точное измерение максимумов напряжений по показаниям осциллографа в силу их изменения во времени.