Cuckoo Hashing

Consider the following cuckoo hashing schema:

- 1. Both tables have a size of 4.
- 2. The hashing function of the first table returns the fourth and third least significant bits: $h_1(x) = (x >> 2) 8 8011$.
- 3. The hashing function of the second table returns the least significant two bits: $h_2(\mathbf{x}) = \mathbf{x} \mathbf{k} \mathbf{0}\mathbf{b}\mathbf{1}\mathbf{1}$.
- 4. When inserting, try table 1 first.
- 5. When replacement is necessary, first select an element in the second table.
- 6. The original entries in the table are shown in the figure below.

Figure 1: Initial contents of the hash tables.

Insert key 16 and the	n defete 11 Sel	ect th	ie va	lue	in ea	ch entry	of	the resulting	two tables.
i. Table 1									
α) [1 point]	Entry 0 (0b00)	(1)	16	7.9	20	Empty			
β) [1 point]	Entry 1 (0b01)	D.I	16 1	7 9	-60	Empty			
γ) [1 point]	Entry 2 (0b10)	C 1	16 1	7 0	6	Empty			
δ) [1 point]	Entry 3 (0b11)	01	16 1	3 9		Empty			
ii. Table 2									
	Entry 0 (0b00)	п 1	6 1	7 0	60	Empty			
β) [1 point]	Entry 1 (0b01)	01	6 6	20					
γ) [1 point]	Entry 2 (0b10)	01	6 I	19		Empty			
δ) [1 point]	Entry 3 (0b11)	- 1	6 [9		Empty			
β) [1 point]	Entry 0 (8b00) Entry 1 (8b01)	₪ 9					17	□ Empty	
γ) [1 point]	Entry 2 (0b10)	19	9 6		01		17	Empty	
δ) [1 point]	Entry 3 (0b11)	□ 9			01		17	□ Empty ② Empty	
ii. Table 2								100	
α) [1 point]	Entry 0 (0500)	0 9	80	10	01	6			
β) [1 point]	Entry I (8601)	□ 9		10	77 1	6 5	7	Empty Empty	
γ) [1 point]	Entry 2 (0b10)	9	6	10	DI	9/1	1	□ Empty	
o) (1 point)	Entry 3 (8611)	□ 9	0	10	01	6 11	7	□ Empty □ Empty ♠ Empty	
							1	Empty Empty	