Sir Francis Galtons Ochsenmarkt-Problem

Ein historisches Beispiel kollektiver Weisheit

WDDA FS 2025 2025-03-19

Einführung

- Sir Francis Galton (1822-1911) war ein englischer viktorianischer Universalgelehrter und Statistiker
- Bekannt für seine Arbeit in Statistik, Psychologie und Anthropologie
- Pionier der Korrelations- und Regressionsanalyse
- Ebenfalls bekannt für die Einführung des Begriffs "Eugenik" (Rassenhygiene)

Das Ochsenmarkt-Problem

Galtons Beobachtung: Auf einem Jahrmarkt in Plymouth im Jahr 1906 beobachtete Galton einen Wettbewerb, bei dem Teilnehmer das Gewicht eines Ochsen schätzen sollten.

Das überraschende Ergebnis

- Keine einzelne Person erriet das exakte Gewicht des Ochsen
- Der Median ("the middle-most estimate") aller Schätzungen war jedoch bemerkenswert nahe am tatsächlichen Gewicht
- Ergebnisse 1907 in *Nature* veröffentlicht: "Vox Populi" (Die Stimme des Volkes)

Distribution of the estimates of the dressed weight of a particular living ox, made by 787 different persons.

Degrees of the length of Array o -100	Estimates in lbs.	* Centiles		1
		Observed deviates from 1207 lbs.	Normal p.e =37	Observed over Normal
5	1074	- 133	- 90	+43
10	1109	- 98	- 70	+28
15	1126	- 81	- 57	+24
20	1148	59	- 46	+13
91 25	1162	- 45	- 37	+ 8
30	1174	- 33	- 29	+ 4
35	1181	- 26	- 21	+ 5
40	1188	- 19	- 14	+ 5
45	1197	- IO	- 7	+ 5 + 3
m 50	1207	. 0	0	. 0
55 :	1214	. + 7	÷ 7	0
60	1219	+ 12	+14	- 2
65	1225	+ 18	. +21	- 3 - 6
70	1230	+ 23	+ 29	- 6
9s 75	1236	+ 29	+ 37	8
80	1243	+ 36	+46	- 10
85	1254	+ 47	+ 57	10
90	1267	+ 52	+ 70	- 18
95	1293	. + 86	+90	- 4

Quelle: Galton, F. (1907). Vox Populi. *Nature*, 75, 450-451.

Mathematische Darstellung

Wenn wir n individuelle Schätzungen x_1, x_2, \ldots, x_n haben, dann ist der Median der mittlere Wert in der sortierten Reihe:

Median =
$$\begin{cases} x_{(n+1)/2}, & \text{wenn } n \text{ ungerade} \\ \frac{x_{n/2} + x_{(n/2)+1}}{2}, & \text{wenn } n \text{ gerade} \end{cases}$$

Galton beobachtete, dass der Median ≈ wahres Gewicht

In seiner tatsächlichen Studie fand Galton heraus, dass der Median von 787 Schätzungen 1'207 Pfund betrug, während das tatsächliche Gewicht 1'198 Pfund war - ein Fehler von weniger als 1%.

Visualisierung des Phänomens

Moderne Anwendungen: "The Wisdom of Crowds"

- Schlüsselbedingungen für kollektive Weisheit:
 - Meinungsvielfalt
 - Unabhängigkeit der Urteile
 - Dezentralisierung
 - Aggregationsmechanismus

Statistische Erklärung

- Individuelle Fehler neigen dazu, sich gegenseitig aufzuheben
- Einige Menschen überschätzen, andere unterschätzen
- Der Durchschnitt konvergiert zum wahren Wert
- Dies steht im Zusammenhang mit dem Gesetz der grossen Zahlen

Anwendungen in der modernen Statistik

- Ensemble-Methoden im maschinellen Lernen
- Umfrage- und Meinungsforschungsaggregation
- Prognosemärkte
- Restaurantbewertungen (unter gewissen Annahmen)
- Delphi-Methode für Expertenkonsens

Einschränkungen und Überlegungen

- Die Gruppe muss über das Thema informiert sein
 - Unabhängigkeit ist entscheidend (Vermeidung von Gruppendenken)
- Ausreisser können kleine Stichproben erheblich beeinflussen

Link zur Übung aus Aufgabenserie 3

Betrachten Sie unseren Datensatz aus WDDA_03.xlsx:

- Die Variable jar enthält Schätzungen über die Anzahl der M&Ms in einem Glas
- Die tatsächliche Anzahl betrug 405 M&Ms
- Wie nahe kommt der Median aller Schätzungen an den wahren Wert heran?
- Unterstützt dies Galtons Beobachtung?

Referenzen

• Galton, F. (1907). Vox Populi. Nature, 75, 450-451.