决策树 Decision Tree

决策树

比较适合分析离散数据。如果是连续数据要先转成离散数据再做分析。

Python机器学习-覃秉丰

决策树算法

70年代后期至80年代, Quinlan开发了ID3算法。

Quinlan改进了ID3算法,称为C4.5算法。

1984年,多位统计学家提出了CART算法。

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

期待输出的结果

熵(entropy)概念

1948年, 香农提出了"信息熵"的概念。

一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者是我们一无所知的事情,需要了解大量信息->信息量的度量就等于不确定性的多少。

信息熵计算

信息熵公式:
$$H[x] = -\sum_x p(x)log_2 p(x)$$

假如有一个普通骰子A,仍出1-6的概率都是1/6

有一个骰子B,扔出6的概率是50%,扔出1-5的概率都是10%

有一个骰子C,扔出6的概率是100%。

信息熵计算

骰子A:
$$-\left(\frac{1}{6} \times \log_2 \frac{1}{6}\right) \times 6 \approx 2.585$$

骰子B:
$$-\left(\frac{1}{10} \times \log_2 \frac{1}{10}\right) \times 5 - \frac{1}{2} \times \log_2 \frac{1}{2} \approx 2.161$$

骰子C:
$$-(1 \times \log_2 1) = 0$$

ID3算法

决策树会选择最大化信息增益来对结点进行划分。 信息增益计算:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$Info_A(D) = \sum_{i=1}^{n} \frac{|D_i|}{|D|} \times Info(D_i)$$

$$Gain(A) = Info(D) - Info_A(D)$$

选择根节点-ID3算法

信息增益(Information Gain): Gain(A) = Info(D) - Infor_A(D)

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Info(D) =
$$-\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940 \text{ bits.}$$

$$\begin{split} Info_{age}(D) &= \frac{5}{14} \times (-\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5}) \\ &+ \frac{4}{14} \times (-\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4}) \\ &+ \frac{5}{14} \times (-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}) \\ &= 0.694 \text{ bits.} \end{split}$$

$$Gain(age) = Info(D) - Info_{age}(D) = 0.940 - 0.694 = 0.246$$
 bits.

类似:

选择根节点-ID3算法

Python机器学习-覃秉丰

连续变量处理


```
Age:
10
      12
14
      17
20
      23
26
      32
36
      42
48
     49
50
```

Python机器学习-覃秉丰

C4.5算法

信息增益的方法倾向于首先选择因子数较多的变量信息增益的改进:增益率

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2} \left(\frac{|D_{j}|}{|D|} \right)$$

$$GrianRate(A) = \frac{Grain(A)}{SplitInfo_A(D)}$$

决策树-例子

Python机器学习-覃秉丰

CART算法

CART决策树的生成就是递归地构建二叉决策树的过程。 CART用基尼(Gini)系数最小化准则来进行特征选择,生 成二叉树。

Gini系数计算:

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

$$Gini_A(D) = \frac{|D_1|}{|D|} Gini(D_1) + \frac{|D_2|}{|D|} Gini(D_2)$$

$$\Delta Gini(A) = Gini(D) - Gini_A(D)$$

分别计算它们的Gini系数增益,取Gini系数增益值最大的属性作为决策树的根节点属性。根节点的Gini系数:

$$Gini($$
是否拖欠贷款 $) = 1 - (\frac{3}{10})^2 - (\frac{7}{10})^2 = 0.42$

序号	是否有房	婚姻状况	年收入	是否拖欠贷款
1	yes	single	125K	no
2	no	married	100K	no
3	no	single	70K	no
4	yes	married	120K	no
5	no	divorced	95K	yes
6	no	married	60K	no
7	yes	divorced	220K	no
8	no	single	85K	yes
9	no	married	75K	no
10	no	single	90K	yes

Python机器学习-覃秉丰

根据是否有房来进行划分时, Gini系数增益计算: (左子节点代表yes, 右子节点代表no)

$$Gini(左子节点) = 1 - (\frac{0}{3})^2 - (\frac{3}{3})^2 = 0$$
$$Gini(右子节点) = 1 - (\frac{3}{7})^2 - (\frac{4}{7})^2 = 0.4898$$

$$\Delta$$
{是否有房} = 0.42 - $\frac{7}{10} \times 0.4898 - \frac{3}{10} \times 0 = 0.077$

	是否拖欠贷款
Yes	3
No	7

		是否有房				
		N1(Yes)	N2(No)			
欠贷款	Yes	0	3			
是否拖欠	No	3	4			

根据婚姻状况来进行划分时,Gini系数增益计算:

- {married} | {single,divorced}
- {single} | {married,divorced}
- {divorced} | {single,married}

当分组为{married} | {single,divorced}时:

$$\Delta$$
{婚姻状况} = 0.42 - $\frac{4}{10} \times 0 - \frac{6}{10} \times \left[1 - (\frac{3}{6})^2 - (\frac{3}{6})^2\right] = 0.12$

当分组为{single} | {married,divorced} 时:

$$\Delta$$
{婚姻状况} = 0.42 - $\frac{4}{10} \times 0.5 - \frac{6}{10} \times \left[1 - (\frac{1}{6})^2 - (\frac{5}{6})^2\right] = 0.053$

当分组为{divorced} | {single,married} 时:

$$\Delta$$
{婚姻状况} = $0.42 - \frac{2}{10} \times 0.5 - \frac{8}{10} \times \left[1 - (\frac{2}{8})^2 - (\frac{6}{8})^2\right] = 0.02$

根据年收入来进行划分时,Gini系数增益计算:

是否拖り	7贷款	no	no	no	yes	yes	ye	es	no	no	no	no
年收	入	60	70	75	85	90	9	5	100	120	125	220
相邻值	中点	65	72.5	80	87.	7	92.5	9	7.5	110	122.5	172.5
Gini 系数	女增益 (0.02	0.045	0.077	7 0.00	03	0.02	C).12	0.077	0.045	0.02

例如当面对年收入为60和70这两个值时,我们算得其中间值为65。倘若以中间值65作为分割点,于是则得Gini系数增益为:

$$\Delta(\text{年收入}) = 0.42 - \frac{1}{10} \times 0 - \frac{9}{10} \times \left[1 - (\frac{6}{9})^2 - (\frac{3}{9})^2\right] = 0.02$$

根据计算知道,三个属性划分根节点的增益最大的有两个:年收入属性和婚姻状况,他们的增益都为0.12。可以随机选择一个作为根结点。如假我们选择婚姻状况作为根结点。接下来,使用同样的方法,分别计算剩下的属性,其中根结点的Gini系数为:

$$Gini($$
是否拖欠贷款 $) = 1 - (\frac{3}{6})^2 - (\frac{3}{6})^2 = 0.5$

与前面的计算过程类似,对于是否有房属性,可得:

$$\Delta\{\text{ 是否有房}\} = 0.5 - \frac{4}{6} \times \left[1 - (\frac{3}{4})^2 - (\frac{1}{4})^2\right] - \frac{2}{6} \times 0 = 0.25$$

对于年收入属性则有:

是否拖欠贷款	no	yes	yes	ye	s	no	no
年收入	70	85	90	95		125	220
相邻值中点	77.5	87.7	92	92.5		110	172.5
Gini 系数增益	0.1	0.25	0.	05	0.25		0.1

最后构建的CART

预剪枝后剪枝

Python机器学习-覃秉丰

优缺点

优点:

小规模数据集有效

缺点:

处理连续变量不好 类别较多时,错误增加的比较快 不能处理大量数据

决策树

Python机器学习-覃秉丰

决策树-线性二分类

Python机器学习-覃秉丰

决策树-非线性二分类

Python机器学习-覃秉丰

Python机器学习-覃秉丰

回归树

Python机器学习-覃秉丰

回归树-预测房价

Python机器学习-覃秉丰