PROJECT REPORT

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM

Team ID: PNT2022TMID27796

Batch: B7-1A3E

TEAM LEADER:

Name: R.ADITYA

Register Number: 311519104004

Name: HARISH KUMAR B Register Number: 311519104022

Name: AKASH KV

Register Number: 311519104301

Name: RAJAI SHANKAR P

Register Number: 311519104302

CONTENTS

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1Existing problem
- 2.2References
- 2.3Problem Statement Definition

3. IDEATION& PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution& Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. **RESULTS**

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE

13. APPENDIX

Source Code

GitHub & Project Demo Link

Project Report

1.INTRODUCTION:

1.1. Project Overview

Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of cthe computer to identify and understand handwritten digits or characters autocmatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort. Hence, there comes a need for handwritten digit recognition in many real-time applications. MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit, this image is analyzed by the model and the detected result is returned on to U

1.2 Purpose

The capacity of a computer to categorise human handwriting into 10 specified categories from various sources, such as photos, sheets, touch defences, etc (0-9). We encounter several difficulties in handwritten number identification. because various people have different writing styles. Based on an examination of the thickness and form of the numerical picture, it can accurately and efficiently identify the digits

2. LITERATURE SURVEY

2.1 Existing problem

Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. UsingArtificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit. this image is analyzed by the model and the detected result is returned on to UI

2.2References

S.No	Author	Title of the Paper	Methodology	Pros (Advantage)	Cons (Disadvantag e)
1.	GAGANDEE P KAUR MUHAMMA D PARVEZ QUAMAR. (IEEE paper 1)	Handwritte n Digit Recognition Using CNN	This paper theconvolutional neural network used. Convolutional neural networkis a type of artificial neural network, which is widely used for image/objectrecognition and classification. Deep Learning thus recognizes objects in an image by using a CNN	IN CNN Very High accuracy in image recognition problems. Automatica lly detects the important features without any human supervision.	CNN do not encode the position and orientation of object. Lack of ability to be spatially invariant to the input data. Lots of training data is required

2.	Peiyu Ma. (IEEE paper 2)	Recognition of handwritten digit using convolution al neural network (cnn)	Although the application of CNN has greatly improved the accuracy of handwriting recognition, there is no model make the accuracy reach 100% and there are also some restrictions on the recognized sample, such as the requirements of clarity. Therefore, there is still some space of future update on the CNN	faster and easily recognize the digits with a good accuracy	Lack of ability to be spatially invariant to the input data. Lots of training data is required and the time also is taken more .
3.	FathmaSiddiq ue ,ShadmanSaki b , Md. Abu Bakr Siddique (IEEE paper 3)	Real time handwritten digit recognition using convolution al neural network	CNN is playing an important role in many sectors like image processing. It has a powerful impact on many fields. Even, in nanotechnologies like manufacturing semiconductors, CNN is used for fault detection and classification. Handwritten digit recognition hasbecome an issue of interest among researchers. There are a large number of papers and articles are being published thesedays about this topic. In research, it is shown that DeepLearning algorithm like multilayer CNN using Keras with Theano and Tensorflow gives the	faster and easily recognize the digits with a good accuracy	Inability of the machine to indicate the blurred and bizarre images and it reduces accuracy

			highest accuracy incomparison with the most widely used machine learningalgorithms like SVM, KNN & RFC		
4.	Kaveti upender, venkata siva kumar pasupuleti	Real time handwritten digits recognition using convolution al neural network	The images are first trained and the test images are sent to the machine and the machine detects the digit with the help of the digits that are present in the data and the output is visible on the screen	Reading handwritten information like examination answer sheets is still a difficult task for many of us because each one have different interpretation style .As the world is moving towards digitalization . Converting it to human readable format	They have some disadvantages that include the accuracy is not enough and the system needs to improved for better accuracy

5.	Chao zhang , Zhiyao zhou , Lan lin	Handwritte n digits recognition based on convolution al neural network	When the image is uploaded and the digit is recognized. the output is shown on the screen .CNN is playing an important role in many sectors like image processing. It has a powerful impact on many fields. Even, in nanotechnologies like	Faster and easily recognize the digits with a good accuracy	Blurred images cannot be scanned Rtraining was not done properly The accuracy was not sufficient
			recognition hasbecome an issue of interest among researchers. There are a large number of papers and articles are being published these days about this topic.		

2.3 Problem Statement Definition

Character handwriting recognition has been around since the 1980s. Handwritten digit recognition using a classifier offers a wide range of applications, including digital digit recognition on PC devices, recognising zip codes on mail, handling bank cheque amounts, numeric portions in structures filled out by hand (for example, tax forms), and so on. There are several difficulties encountered while attempting to address this problem. The digits are not necessarily the same height, width, orientation, or location with respect to the margins. The primary goal was to implement a pattern characterisation approach for perceiving handwritten digits using the MNIST data collection of photographs of handwritten digits (0 - 9). Machine Learning provides a variety of approaches for reducing human effort in detecting manually typednumbers. Deep Learning is a technology that educates computers to do what people do naturally: learning via examples. Human efforts in seeing, learning, recognising, and many other areas can be reduced by using deep learning approaches. The machine learns to do classification tasksfrom images or the text of any document using deep learning. Models using deep learning can achieve state-of-the-art accuracy, outperforming humans.

3.IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

Brainstorm & Idea Prioritization Template:

Step-2: Brainstorm, Idea Listing and Grouping

Brainstorm and Idea Listing

Brainstorm

Write down any ideas that come to mind that address your problem statement.

WIET INCOME IN THE PARTY OF THE

ReiO activation layer with ReiO activation has a mare pool layer, ReiO attractions van-timently and their peology helps with remarking house state.

The appointm soul by convolutional immany selection is supply solidal for should image processing that the own selections selected sound inhance convolutional layers and convolutional layers and convolutional layers.

When you check the shape of the lateset to see if it is compatible to use in for CNN

4,000,000

After the model is defined, we must be evaluate it using opinion actionary metrics auditative from a solution in precious, small are fit access.

Find it was to spread of frost the rescope fraction or the stouch for refer or pare legisle for sectoring of a context the parts sign around fragility to legisle for register to legisle for register

Clears at ordinate contacts to the over its state of the over its

tell a tra mod toot form of GC GCE subtacts for product mulgines for the second published to the second published to second to the second published to the second to the second to the

HARISH KUMAR B

Company of the compan

The second of the benefits and place to the benefits of the benefits of the benefit of the benefits of the ben

The color of the C

Many machine his may appetition control operate or 1800 data metals floor respondings, excellent and major contines to be

RAJAI SHANKAR P

Opposition on surface sound to change the streets continued to the supplement of the surface streets of the surfac

THE RESERVE THE PARTY OF T

And the part of th

Directorally technical and a second of the report reason. White reduces the presence of the column o

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

3.3 Proposed Solution

S.No	Parameter	Description
1.	Problem Statement (Problem to besolved)	The capacity of computer programmes to detect human handwritten digits is known as handwritten digit recognition. Because handwritten figures are not always accurate and can take many various forms and sizes, it is a difficult work for the machine. A solution to this issue is the handwritten digit recognition system, which uses a picture of a digit to identify the digit that is contained in the image.
2.	Idea / Solution description	The capacity of a computer to categorise human handwriting into 10 specified categories from various sources, such as photos, sheets, touch defences, etc (0-9). We encounter several difficulties in handwritten number identification. because various people have different writingstyles.
3.	Novelty / Uniqueness	Based on an examination of the thickness and form of the numerical picture, it can accurately and efficiently identify the digits.
4.	Social Impact/ Customer Satisfaction	It is utilised for many other functions, including the identification of car numbers, the reading of checks at banks and post offices, and the addressing of letters. It is the fastest approach, but it takes time
5.	Business Model(Revenue Model)	The goal of this is to provide efficient and trustworthy methods for reading handwritten numbers online
6.	Scalability of the Solution	Due to its applicability in several machine learning and computer vision applications, handwritten digitrecognition has become a crucial fieldand is enticing many people

3.4 Problem Solution fit

4.REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional requireme nt	Sub Requirement (Story / Sub-Task)
FR-1	IMAGE DATA	Handwritten digitrecognition refers to a computer's capacity to i dentifyhuman handwritten digits from a variety of sources, such as photographs, documents, touch screens, etc., and categorise them into ten established classifications (0-9). In the realm of deep learning, this has been the subject of countless studies.
FR-2	WEBSITE	Web hosting makesthe code, graphics, and other itemsthat make up awebsite accessible online. A server hosts every website you've ever visited. Thetype of hosting determines how much space is allotted to a website on a server. Shared, dedicated, VPS, and reseller hosting are the fourb asic varieties.
FR-3	DIGIT CLASSIFI ERMODEL	To train a convolutional network to predict the digit from an image, use the MNIST database of handwritten digits get the training and validation data first.
<u>FR-4</u>	CLOUD	The cloud offers a range of IT services, including virtual storage,networking, servers, databases, and applications. In plain English, cloud computing is described as a virtual platform that enables unlimited storage and access to your data over the internet.
<u>FR-5</u>	MNIST DATASET	The abbreviation MNIST stands for Modified National Institute of Standards and Technology dataset. It is a collection of 60,000 ti ny square grayscale photographs, each measuring 28 by 28, comprising handwritten single digits between 0 and 9.

4.2 Non-Functional requirements

FR No	Non- Functional Req uirement	Description
NF R-1	Usability	One of the very significant problems in patternrecognition applications is the recognition of handwritten characters. Applications for digit recognition include filling out forms, processing bank checks, andsorting mail.
NF R-2	Security	1) The system generates a thoroughdescription of the instantiation parameters, which might reveal information like the writing style, in addition to a categorization of the digit.2) The generative models are capable of segmentation drivenby recognition. 3) The procedure uses a relatively.
NF R-3	Reliability	The samples are used by the neural network toautomatically deduce rules for reading handwritten digits. Furthermore, the network may learn more about handwriting and hence enhance its accuracy by increasing the quantity of training instances. Numerous techniques and algorithms, suchas Deep Learning/C NN, SVM, Gaussian Naive Bayes, KNN, Decision Trees, Random Forests, etc., can be used to recognize handwritten num bers.
NF R-4	Accuracy	With typedtext in high-quality photos, optical character recognition (OCR) technology offers accuracy rates of greater than 99%. However, variances in spacing, abnormalities in handwriting, and the variety of human writing styles result in less precise character identification.
NF R-5	Availability	Available formobile and web browsers

NF R-6	Scalability	The scalability in the task of handwritten digit recognition using a classifier has a great importance and it makes use of online handwriting recognition on computer tablets , recognizing zipcodes on mailfor postalmail sorting , processing bank check amountsnumeric entries in forms filledup manua lly (for example tax forms)and so on
		forms jand so on

5.PROJECT DESIGN

5.1 Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Example: simplified flow Input Image Pre-processing Output Recognition Recognition Train, Evaluate and Evaluate and

Analyze

5.2 Solution & Technical Architecture

5.3 User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Home	USN-1	As a user, I can view the guide and awareness to use this application.	I can view the awareness to use this application and its limitations.	Low	Sprint-1
		USN-2	As a user, I'm allowed to view the guided video to use the interface of this application.	I can gain knowledge to use this application by a practical method.	Low	Sprint-1
		USN-3	As a user, I can read the instructions to use this application.	I can read instructions also to use it in a user-friendly method.	Low	Sprint-2
	Recognize	USN-4	As a user, in this prediction page I get to choose the image.	I can choose the image from our local system and predict the output.	High	Sprint-2
	Predict	USN-6	As a user, I'm Allowed to upload and choose the image to be uploaded	I can upload and choose the image from the system storage and in any virtual storage.	Medium	Sprint-3
		USN-7	As a user, I will train and test the input to get the maximum accuracy of output.	I can be able to train and test the application until it gets maximum accuracy of the result.	High	Sprint-4
		USN-8	As a user, I can access the MNIST data set	I can access the MNIST data set to produce the accurate result.	Medium	Sprint-3
Customer (Web user)	Dashboard	USN-9	As a user, I can view the guide to use the web app.	I can view the awareness of this application and its limitations.	Low	Sprint-1

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
	Recognize	USN-10	As a user, I can use the web application virtually anywhere.	I can use the application portably anywhere.	High	Sprint-1
		USN-11	As it is an open source, can use it cost freely.	I can use it without any payment to be paid for it to access.	Medium	Sprint-2
		USN-12	As it is a web application, it is installation free	I can use it without the installation of the application or any software.	Medium	Sprint-4
	Predict	USN-13	As a user, I will train and test the input to get the maximum accuracy of output.	I can be able to train and test the application until it gets maximum accuracy of the result.	High	Sprint-4
Customer Care Executive		USN-14	As a user, I can use the web application virtually anywhere.	I can use the application portably anywhere and get the accurate result.	Medium	Sprint-2
Administrator		USN-15	As a user, I can use the web/mobile application virtually anywhere.	I can use the application portably anywhere and get the accurate result.	High	Sprint-2

6.PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	As a user, I need to collect the data with different handwriting to train the model	6	High	Aditya R Harishkumat B Rajaishankat P Akash KV
Sprint-1	Importing libraries	USN-2	As a user, I have to implement necessary libraries in python packages.	4	Low	Aditya R Harishkumar B
Sprint-1	Data preprocessing	USN-3	As a user, I can load the dataset, handle the missing values, scale and split the data.	10	Medium	Rajaishankar P Akash KV
Sprint-2	Model building	USN-4	As a user, I will get an application with ML model which provides high accuracy of recognized handwritten digit.	5	High	Aditya R Hatishkumat B Rajaishankat P Akash KV

Sprint-2	Add the CNN layers	USN-5	Add input convolutional layer, max-pooling layer, flatten, hidden and output layers to the model.	5	High	Aditya R Harishkumar B Bajaishankar P Akash KV
Sprint- 2	Compile the model	USN-6	As a user, compile the model for trained dataset.	2	Medium	Aditya R Harishkumar B
Sprint-2	Train and test the model	USN-7	As a user, train and test the model for the dataset collected and data are validated.	4	High	Aditya R Bajaishankar P
Sprint-2	Save the model	USN-8	As a user, the compiled data are saved and integrated with an android application or web application.	2	Low	Bajaishankar,P Akash KV
Sprint-3	Building UI application	USN-9	As a user upload the input image that contains handwritten digits.	10	Medium	Rajaishankar P Akash KV
Sprint-3		USN-10	As a user, I can provide the fundamental details about the usage of application to customer.	5	Low	Harishkumar B Akash KV
Sprint-3		USN-11	As a user, I can see the predicted or recognized digits in the application.	5	Medium	Aditya R Harishkumar B
Sprint-4	Train the model on IBM	USN-12	As a user train the model in IBM cloud and integrate the results.	10	High	Rajaishankar.P Akash KV

Sprint-4	Cloud Deployment	USN-13	As a user, I can access the web application and make the use of the product from anywhere.	10	High	Rajaishaukar, P Aditya R

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	31 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	6 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	13 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit

(story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

6.2 Sprint Delivery Schedule

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Average Velocity =
$$20 / 6 = 3.33$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

6.3 Reports from JIRA

•		OCT							NOV NOV NOV															
		22	23	24 25	26	27	18 29	30	31 1	1 2	3	4 [5 6	7	8 9	9 10	11	12 1	13	14 15	16	7 18	19	20
Sprints					HDR S	print 1				HDR	l Sprint 2				но	R Sprint 3					HDR Spri	ıt 4		
▼ ■ HDR-1 Data collection and preprocessing																								
☑ HDR-8 Collect the data with different handwriting to train the model	DONE AAKASHCH																							
☑ HDR-9 Import necessary libraries in python packages	DONE HARISH KU																							
HDR-10 Load the dataset, handle the missing values, scale and split the data.	DONE AAKASHCH																							
▼ MDR-2 Model building																								
☑ HDR-12 Add convolutional & max-pooling layer, flatten, hidden & output layers to model	DONE ADITYA																							
HDR-11 Get an application with ML model which provides high accuracy of recognized handwritten digit	DONE ADITYA																							
∠ HDR-49 Compile the model for trained dataset	DONE HARISH KU																							
HDR-20 Train and test the model for dataset collected and validate data	DONE ADITYA																							
☑ HDR-21 Save and integrate compiled data with an android/web application	DONE AAKASHCH																							
▼ MDR-3 Building UI Application ■ Manual Properties ■ Manual Prop																								
■ HDR-13 Upload the input image that contains handwritten digits	DONE RAJAISHA																							
☑ HDR-14 Provide the fundamental details about the usage of application to customer	DONE HARISH KU																							
HDR-16 See the recognized digits in the application	DONE ADITYA																							
▼ INDR-4 Training the model and Deployment The property of the property																								
☑ HDR-+7 Train the model in IBM Cloud and integrate the results	DONE RAJAISHA																							
✓ HDR-18 Cloud Deployment: Access the web application and make use of product from anywhere	DONE RAJAISHA																							

7.CODING & SOLUTIONING

7.1 Feature 1

Python Flask

Python Flask is used to develop handwritten digit recognition using python. Flask is mainly used to renderand integrate the digit recognition app and connect the model with the front end application, the suitable server domain link is obtained and run in the browser.

HTML:

The HTML and CSS is used to design the overall digit recognizer UI. HTML is used to add UI components and CSS is used to add style to those components. IBM watson studio helps in builds the model.

Flask code:

```
import numpy as np
import os
from PIL import Image
from flask import Flask, request, render template, url for
from werkzeug.utils import secure_filename, redirect
from gevent.pywsgi import WSGIServer
from keras.models import load_model
from keras.preprocessing import image
from flask import send_from_directory
UPLOAD_FOLDER = 'D:/flask apps/uploads'
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
model = load_model("model.h5")
@app.route('/')
def index():
  return render_template('Index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
  if request.method == "POST":
    f = request.files["image"]
    filepath = secure_filename(f.filename)
    f.save(os.path.join(app.config['UPLOAD_FOLDER'], filepath)
    upload_img = os.path.join(UPLOAD_FOLDER, filepath)
```

```
img = Image.open(upload_img).convert("L") # convert image to monochrome
img = img.resize((28, 28)) # resizing of input image
im2arr = np.array(img) # converting to image
im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement
pred = model.predict(im2arr)
num = np.argmax(pred, axis=1) # printing our Labels
return render_template('predict.html', num=str(num[0]))

if __name__ == '__main__':
    app.run(debug=True, threaded=False)
```

7.2 Feature 2

Model building was done in the project to build a model which can predict the uploaded image and let us know what number is displayed in the image

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Convolution2D,MaxPooling2D,Flatten,Dense
model = Sequential()
model.add(Convolution2D(64, (3,3), input_shape=(28,28,1),activation='relu'))
model.add(Convolution2D(32,(3,3),activation='relu'))
model.add(Flatten())
model.add(Dense(num_classes, activation='softmax'))
```

8.TESTING

8.1 Test Cases

SNO.	TEST CASE SCENARIO
1	Verify user is able to see the Homepage when clickedon the link
2	Verify the UI elements in Homepage
3	Verify user is able to choose file from thelocal system and click on predict
4	Verify user ableto select invalid file format
5	Verify user is able to navigate to the predict to and view the predicted result

a.

8.2User Acceptance Testing

Test case ID	Feature Type	Component	Test Scenario	Steps To Execute	Test Data	Expected Result	ActualResult	Status	TC for Automation(Y/N)	Executed By
Homepage_TC_QQ 1	Functional	Home Page	Verify user is able to see the Homepage when clicked on theligh	Enter URL and click go Verify Homepage displayed or not	.127.0.0.1:5000	Home Page should be uspieved.	Working as expected	Pass	N	R.ADITYA HARISH KUMAR
Homenege_TC_9.9.2	UI	Home Page	Verify the UI elements in Homepage	Verify home <u>acceptul</u> elements		Application should show below UI elements: a_shoose file button b_gredict button g_clear, button	Working as expected	Pass	N	RAJAI SHANKAR AKASH KV
Homepage_TC_QQ 3	Functional	Home Page	Verify user is able to choose file from the local system and click on predict	Enter URL and click go Ciclick on Choose button Schoose a file in valid format Click on Predict	l	Choose file popup screen must be displayed and user should be able to click on predict button	Working as expected	Pass	N	rajai shankar
Homepage_TC_QQ.4	Functional	Home page	Verify user able to select invalid file format	Enter URL and click go Ciclic on Choose button Choose a file in invalid format click on Predict	2.bt	Application won't allow to attach formats other than ".808, .jff, .ejp,, jpeg, .jpg, .ejpeg"	Working as expected	Pass	N	R.ADITYA
Predict_TC_OO5	Functional	Predict page	Verify user is able to navigate to the predict to and view the predicted result	1.Enter URL and click go 2.Click on Choose button	1.png	User must be navigated to the predict page and must view the predicted result	Working as expected	Pass	N	AKASH KV

9. RESULTS

9.1Performance Metrics

S.No.	Parameter	Values	Screenshot
1.	Model Summary	The handwritten digit recognizer helps in predicting the number on the image. We use the libraries from tensor flow for building the model .This the model that was built using convolutional neural network(CNN).	[] from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Convolution2D,MaxPooling2D,Flatten,Dense model = Sequential() model.add(Convolution2D(64, (3,3), input_shape=(28,28,1),activation='relu')) model.add(Convolution2D(32,(3,3),activation='relu')) model.add(Flatten()) model.add(Dense(number_of_classes, activation='softmax'))
2.	Accuracy	Training Accuracy – 99% Validation Accuracy -100%	[] metrics = model.evaluate(X_test, Y_test, verbose=0) print("Metrics(Test loss & Test Accuracy):") print(metrics)
			Metrics(Test loss & Test Accuracy): [0.03019659034907818, 0.9907000064849854]

10.ADVANTAGES & DISADVANTAGES

Advantage:

- IN CNN Very High accuracy in image recognition problems. Automatically detects the important features without any human supervision.
- faster and easily recognize the digits with a good accuracy
- Reading handwritten information like examination answer sheets is still a difficult task for many of us because each one have different interpretation style. As the world is moving towards digitalization. Converting it to human readable format

Disadvantage:

- CNN do not encode the position and orientation of object. Lack of ability to be spatially invariant to the input data. Lots of training data is required
- They have some disadvantages that include the accuracy is not enough and the system needs to improved for better accuracy
- Lack of ability to be spatially invariant to the input data. Lots of training data is required and the time also is taken more.

11.CONCLUSION

Thus a model was built using convolutional neural network and we understood how the neurons are connected and helping the machine learn the digits and help us in predicting the numbers

12.FUTURE SCOPE

In the future the machine will be trained for alphabets also. The machine would be able to tell the handwritten alphabets written and we can use this in may industy practises for making our work easier and more efficient . we can use this model in post offices and also in data entry level places where machine will be able to detect the handwritten documents and enter the data in the machine format

13.APPENDIX

SOURCE CODE

APP.PY:

```
import numpy as np
import os
from PIL import Image
from flask import Flask, request, render_template, url_for
from werkzeug.utils import secure_filename, redirect
from gevent.pywsgi import WSGIServer
from keras.models import load_model
from keras.preprocessing import image
from flask import send_from_directory
UPLOAD_FOLDER = 'D:/flask apps/uploads'
app = Flask( name )
app.config['UPLOAD FOLDER'] = UPLOAD FOLDER
model = load model("model.h5")
@app.route('/')
def index():
  return render_template('Index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
  if request.method == "POST":
    f = request.files["image"]
    filepath = secure filename(f.filename)
    f.save(os.path.join(app.config['UPLOAD_FOLDER'], filepath))
    upload_img = os.path.join(UPLOAD_FOLDER, filepath)
    img = Image.open(upload_img).convert("L") # convert image to monochrome
    img = img.resize((28, 28)) # resizing of input image
    im2arr = np.array(img) # converting to image
    im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement
    pred = model.predict(im2arr)
```

```
num = np.argmax(pred, axis=1) # printing our Labels
    return render_template('predict.html', num=str(num[0]))
if __name__ == '__main__':
  app.run(debug=True, threaded=False)
INDEX.HTML
<html>
<head>
 <title>Digit Recognition WebApp</title>
 <meta name="viewport" content="width=device-width">
 <!-- GoogleFont -->
 k href="https://fonts.googleapis.com/css2?family=Prompt:wght@600&display=swap"
rel="stylesheet">
 link
            href="https://fonts.googleapis.com/css2?family=Varela+Round&display=swap"
rel="stylesheet">
 link
href="https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@500&display=swa
p" rel="stylesheet">
 link
href="https://fonts.googleapis.com/css?family=Calistoga|Josefin+Sans:400,700|Pacifico&dis
play=swap" rel="stylesheet">
 <!-- bootstrap -->
                                                                       rel="stylesheet"
 link
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
integrity="sha384-
ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
 <link rel="stylesheet" href= "static/style.css">
 <!-- fontawesome -->
                                        src="https://kit.fontawesome.com/b3aed9cb07.js"
 <script
crossorigin="anonymous"></script>
             src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
                                                                    integrity="sha384-
 <script
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
 <script
            src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"
integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
crossorigin="anonymous"></script>
```

```
src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"
 <script
integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
</head>
<script>
 function preview() {
 frame.src=URL.createObjectURL(event.target.files[0]);
 $(document).ready(function() {
     $('#clear_button').on('click', function() {
       $('#image').val('');
       $('#frame').attr('src',"");
      });
    });
</script>
<h1 class="welcome">IBM PROJECT
 <div id="team_id">TEAM ID : PNT2022TMID27796</div>
 </h1>
 <section id="title">
       class="heading">A NOVEL
                                    METHOD FOR
                                                     HANDWRITTEN
                                                                        DIGIT
RECOGNITION </h4>
  <br>><br>>
   >
    The website is designed to predict the handwritten digit.
   >
    Handwriting recognition is one of the compelling research works going on because
every individual in this world
```

handwritten digits or characters automatically. Because of the progress in the field of science and technology,

understand

has their own style of writing. It is the capability of the computer to identify and

Hence, there comes a need for handwritten digit recognition in many real-time applications.

MNIST data set is widely used for this recognition process and it has 70000 handwritten digits.

We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit. This image is analyzed by the model and the detected result is returned on to UI

```
</section>
<center>
<div>______
                                                               </div
>
<label for="file" style="font-weight: bold; font-size:21px;">Upload Image</label>
<img id="output" width="200" />
<script>
var loadFile = function(event) {
   var image = document.getElementById('output');
  image.src = URL.createObjectURL(event.target.files[0]);
};
</script>
 <section id="content">
    <div class="leftside">
    <form action="/predict" method="POST" enctype="multipart/form-data">
    <input id="image" type="file" name="image" accept="image/png, image/jpeg"
onchange="preview()"><br><br>
     <img id="frame" src="" width="200px" height="200px"/>
     <div class="buttons_div">
      <button type="submit" class="btn btn-yellow" id="predict_button">Predict</button>
      <button type="button" class="btn btn-dark" id="clear_button">&nbsp Clear
&nbsp</button>
```

```
</div>
</form>
</div>
</section>

</body>
</html>
```

PREDICT .HTML

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>Prediction</title>
</head>
<style>
  body{
   background-image: url('static/Imeges/index6.jpg');
   background-repeat: no-repeat;
   background-size: cover;
  #rectangle{
   width:400px;
   height:150px;
   background-color: #5796a5;
   border-radius: 25px;
   position:absolute;
   top:25%;
   left:50%;
   transform:translate(-50%,-50%);
  #ans{
 text-align: center;
 font-size: 40px;
 margin: 0 auto;
 padding: 3% 5%;
 padding-top: 15%;
 color: white;
</style>
<body>
  <div id="rectangle">
```

```
<h1 id="ans">Predicted Number : {{num}}</h1>
  </div>
</body>
</html>
STYLE.CSS:
#clear_button{
 margin-left: 15px;
 font-weight: bold;
 color: blue;
}
#confidence{
 font-family: 'Josefin Sans', sans-serif;
 margin-top: 7.5%;
#content{
 margin: 0 auto;
 padding: 2% 15%;
 padding-bottom: 0;
.welcome{
 text-align: center;
 position: relative;
 color: black;
 background-color: BA94D1;
 padding-top: 1%;
 padding-bottom: 1%;
 font-weight: bold;
 box-shadow:0px 2px 5px black;
 font-family: 'Prompt', sans-serif;
#team_id{
 text-align: right;
 font-size: 25px;
 padding-right: 3%;
#predict_button{
 margin-right: 15px;
 color: blue;
 font-weight: bold;
#prediction_heading{
 font-family: 'Josefin Sans', sans-serif;
```

```
margin-top: 7.5%;
#result{
 font-size: 5rem;
#title{
 padding: 1.5% 15%;
 margin: 0 auto;
 text-align: center;
.btn {
  font-size: 15px;
  padding: 10px;
  -webkit-appearance: none;
  background: #eee;
  border: 1px solid #888;
  margin-top: 20px;
  margin-bottom: 20px;
}
.buttons_div{
 margin-bottom: 30px;
 margin-right: 80px;
.heading{
 font-family: 'Varela Round', sans-serif;
 font-weight: 700;
 font-size: 2rem;
 display: inline;
.leftside{
 text-align: center;
 margin: 0 auto;
 margin-top: 2%;
 /* padding-left: 10%; */
#frame{
 margin-right: 10%;
.predicted_answer{
 text-align: center;
 margin: 0 auto;
 padding: 3% 5%;
 padding-top: 0;
```

```
/* padding-left: 10%; */
}

p{
  font-family: 'Source Code Pro', monospace,sans-serif;
  margin-top: 1%;
  color:black;
}

@media (min-width: 720px) {
  .leftside{
    padding-left: 10%;
  }
}
```

IBM PROJECT

TEAM ID: PNT2022TMID27796

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION

The website is designed to predict the handwritten digit.

Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort.

Hence, there comes a need for handwritten digit recognition in many real-time applications. MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit. This image is analyzed by the model and the detected result is

Upload Image

TRAIN THE MODEL ON IBM

GITHUB LINK-https://github.com/IBM-EPBL/IBM-Project-21613-1659785875

DEMO LINK- https://www.youtube.com/watch?v=k1zJw0S1ZTc