Atividade AA-09

Nesta tarefa deve-se propôr um autômato finito não determinístico N que reconheça as cadeias da linguagem selecionada, a partir de N deve-se usar o algoritmo baseado em GNFA's para extrair uma expressão regular que gere as cadeias da linguagem reconhecida pelo NFA. O autômato N pode ser um NFA ou NFA- ε , com pelo menos uma transição não determinística ou transição ε . Atenção: NFA's criados a partir do simples acréscimo de transições $\delta(s_i, \varepsilon) = s_i$ (ε -laços) a um DFA não serão considerados corretos, por não permitirem uma avaliação razoável do aprendizado dos conceitos abordados nesta atividade avaliativa. (Cada aluna(o) deve consultar na descrição da atividade AA-09, na disciplina INF0333A da plataforma Turing, qual é a linguagem associada ao seu número de matrícula. A descrição da linguagem está disponível no arquivo "lista de linguagens regulares" da Seção "Coletânea de exercícios".)

Rafael Nunes Moreira Costa (202107855)

- $\mathcal{L}_{37} = \{w \mid w = u11, \text{ com } u \in \Sigma^* \text{ e todo } 0 \text{ em } u \text{ é seguido de um par de símbolos distintos}\}$
- $ER(\mathcal{L}_{37}) = 1^+1$.

Autômato finito não determinístico que reconhece as cadeias de \mathcal{L}_{37}

GNFA G_0 obtido a partir do NFA N_{37}

GNFA G_1 obtido a partir do GNFA G_0 após a alteração do estado s_0

GNFA G_2 obtido a partir do GNFA G_1 após a remoção do estado s_2

GNFA G_3 obtido a partir do GNFA G_2 após a remoção do estado s_1

GNFA G_4 obtido a partir do GNFA G_3 após a remoção do estado s_0

