Mathematical background

Christos Dimitrakakis

September 23, 2025

Outline

Probability background

Logic and Set theory Probability facts

Conditional probability and independence

Random variables, expectation and variance

Linear algebra

Vectors

Norms and distances

Linear operators and matrices

Calculus

Univariate caclulus
Multivariate calculus

Probability background

Logic and Set theory
Probability facts
Conditional probability and independence
Random variables, expectation and variance

Linear algebra

Vectors

Norms and distances

Linear operators and matrices

Calculus

Univariate caclulus Multivariate calculus

Logic

Statements

A statement A may be true or false

Unary operators

▶ negation: $\neg A$ is true if A is false (and vice-versa).

Binary operators

- ightharpoonup or: $A \lor B$ (A or B) is true if either A or B are true.
- ▶ and: $A \land B$ is true if both A and B are true.
- ▶ implies: $A \Rightarrow B$: is false if A is true and B is false.
- ▶ iff: $A \Leftrightarrow B$: is true if A, B have equal truth values.

Operator precedence

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

Set theory

- lacktriangle First, consider some universal set Ω and the empty set \emptyset
- ▶ A set A is a collection of points x in Ω .
- $\{x \in \Omega : f(x)\}$: the set of points in Ω for which f(x) is true.

Unary operators

Binary operators

- ▶ $A \cup B$ if $\{x \in \Omega : x \in A \lor x \in B\}$ (c.f. $A \lor B$)
- ► $A \cap B$ if $\{x \in \Omega : x \in A \land x \in B\}$ (c.f. $A \land B$)

Binary relations

- ▶ $A \subset B$ if $x \in A \Rightarrow x \in B$ (c.f. $A \Longrightarrow B$)
- ▶ A = B if $x \in A \Leftrightarrow x \in B$ (c.f. $A \Leftrightarrow B$)

Interesting cases

- ▶ If $A \cap B = \emptyset$, then they are disjoint, or mutually exclusive.
- ▶ If $A \cap B = A$ only if $A \subset B$.

Probability fundamentals

Probability measure P

- ightharpoonup Defined on a universe Ω
- ▶ $P: \Sigma \to [0,1]$ is a function of subsets of Ω .
- ▶ A subset $A \subset \Omega$ is an event and P measures its likelihood.

Axioms of probability

- $ightharpoonup P(\Omega) = 1$
- ▶ For $A, B \subset \Omega$, if $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$.

Partition

 $\{A_i\}$ is a partition of Ω if $A_i \cap A_j = \emptyset \ \forall i \neq j$ and $\bigcup_{i=1}^n A_i = \Omega$. A partition of Ω defines a complete set of mutually exclusive alternatives.

Marginalisation

Let $A_1, \ldots, A_n \subset \Omega$ be a partition of Ω . Then

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i).$$

Conditional probability

Definition (Conditional probability)

The conditional probability of an event A given an event B is defined as

$$P(A|B) \triangleq \frac{P(A \cap B)}{P(B)}$$

The above definition requires P(B) to exist and be positive.

Conditional probabilities as a collection of probabilities

More generally, we can define conditional probabilities as simply a collection of probability distributions:

$$\{P_{\theta}(A) \mid \theta \in \Theta\},\$$

where Θ is an arbitrary set.

The theorem of Bayes

Theorem (Bayes's theorem)

$$P(A|B) = \frac{P(B|A)}{P(B)}$$

The theorem of Bayes

Theorem (Bayes's theorem)

$$P(A|B) = \frac{P(B|A)}{P(B)}$$

The general case

If A_1, \ldots, A_n are a partition of Ω , meaning that they are mutually exclusive events (i.e. $A_i \cap A_j = \emptyset$ for $i \neq j$) such that one of them must be true (i.e. $\bigcup_{i=1}^n A_i = \Omega$), then

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

and

$$P(A_j|B) = \frac{P(B|A_j)}{\sum_{i=1}^n P(B|A_i)P(A_i)}$$

Independence

Independent events

A, B are independent iff $P(A \cap B) = P(A)P(B)$.

Conditional independence

A, B are conditionally independent given C iff $P(A \cap B|C) = P(A|C)P(B|C)$.

Random variables

A random variable $f: \Omega \to \mathbb{R}$ is a real-value function measurable with respect to the underlying probability measure P, and we write $f \sim P$.

The distribution of f

The probability that f lies in some subset $A \subset \mathbb{R}$ is

$$P_f(A) \triangleq P(\{\omega \in \Omega : f(\omega) \in A\}).$$

Independence

Two RVs f,g are independent in the same way that events are independent:

$$P(f \in A \land g \in B) = P(f \in A)P(g \in B) = P_f(A)P_g(B).$$

In that sense, $f \sim P_f$ and $g \sim P_g$.

IID (Independent and Identically Distributed) random variables

A sequence x_t of r.v.s is IID if $x_t \sim P(x_1, \dots, x_t, \dots, x_T) \sim P^T$.

Expectation

For any real-valued random variable $f: \Omega \to \mathbb{R}$, the expectation with respect to a probability measure P is

$$\mathbb{E}_P(f) = \sum_{\omega \in \Omega} f(\omega) P(\omega).$$

Linearity of expectations

For any RVs x, y, $\mathbb{E}_P(x + y) = \mathbb{E}_P(x) + \mathbb{E}_P(y)$

Correlation

If x, y are not correlated then $\mathbb{E}_P(xy) = \mathbb{E}(x) \mathbb{E}(y)$.

Independence

If x, y are independent RVs then they are also uncorrelated (but not vice-versa)

Conditional expectation

The conditional expectation of a random variable $f: \Omega \to \mathbb{R}$, with respect to a probability measure P conditioned on some event B is simply

$$\mathbb{E}_{P}(f|B) = \sum_{\omega \in \Omega} f(\omega) P(\omega|B).$$

Variance

For any real-valued random variable $f: \Omega \to \mathbb{R}$, the variance with respect to a probability measure P is

$$\mathbb{V}_P(f) = \sum_{\omega \in \Omega} [f(\omega) - \mathbb{E}_P(f(\omega))]^2 P(\omega).$$

Linearity of variance

If f, g are uncorrelated RVs

$$\mathbb{V}_P(f+g) = \mathbb{V}_P(f) + \mathbb{V}_P(g).$$

Variance products

If f, g are independent RVs

$$\mathbb{V}_P(f+g) = \mathbb{E}_P(f)^2 \, \mathbb{V}_P(g) + \mathbb{E}_P(g)^2 \, \mathbb{V}_P(f) + \mathbb{V}_P(f) \, \mathbb{V}_P(g).$$

Probability background

Logic and Set theory
Probability facts
Conditional probability and independence
Random variables, expectation and variance

Linear algebra

Vectors Norms and distances Linear operators and matrices

Calculus

Univariate caclulus Multivariate calculus

Vector space F axioms

Here we consider a vector space F. Typically, it is a subset of the Euclidean d-dimensional space, ie. $F \subset \mathbb{R}^d$.

- (x+y)+z=x+(y+z), for all $x,y,z\in F$.
- \triangleright x + y = y + x, for all $x, y \in F$.
- ▶ There is a zero element $0 \in F$ such that x + 0 = 0 for all $x \in F$.
- ▶ For all $x \in F$, there is an element $-x \in F$ so that x + (-x) = 0.
- ightharpoonup a(x+y)=ax+ay, For any $a\in\mathbb{R}$, $x,y\in F$.
- (a+b)x = ax + bx, For any $a, b \in \mathbb{R}$, $x \in F$.

The real vector space $F = \mathbb{R}^d$

For $a \in \mathbb{R}$ and $x, y \in F$,

$$\triangleright$$
 $x = (x_1, \ldots, x_d), y = (y_1, \ldots, y_d)$

$$> x + y = (x_1 + y_1, \dots, x_d + y_d).$$

$$-x = (-1)x$$
.

$$ightharpoonup 0 = (0, ..., 0)$$

Norms

A norm $\|\cdot\|$ is a scalar operator on a vector with the properties

- $\|x\| \ge 0$ with equality iff x = 0.
- $||x + y|| \le ||x|| + ||y||$
- $\|cx\| = c\|x\|$ for every scalar c.

Example: Manhattan norm \mathbb{R}^n

$$||x||_1 = \sum_{i=1}^n |x_i|$$

Example: Euclidean norm in \mathbb{R}^n

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i}$$

Example: *p*-norm

$$||x||_p = \left(\sum_{i=1}^n x_i\right)^{1/p}$$

Metrics

A metric (or distance) on is a function $d: \times \to \mathbb{R}$ with the properties:

- ▶ $d(x, y) \ge 0$ with equality iff x = y.
- d(x,y) = d(y,x).
- $d(x,y) \leq d(x,z) + d(z,y).$

Example: Euclidean distance

$$d_2(x,y) = ||x-y||_2$$

Linear operators

Linear operator $A: F \rightarrow G$

- ightharpoonup A(x+y) = Ax + Ay
- ightharpoonup A(ax) = a(Ax).

Matrices in $\mathbb{R}^{n\times m}$.

A matrix $A \in \mathbb{R}^{n \times m}$ is a tabular array $A = \begin{bmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{bmatrix}$ Matrices

can be seen as linear operators when used to multiply vectors.

Multiplication operators

Matrix multiplication

For $A \in \mathbb{R}^{n \times d}$, $B \in \mathbb{R}^{d \times m}$, the ij-th element of the result of the multiplication AB is

$$(AB)_{i,j} = \sum_{k=1}^{d} A_{i,k} B_{k,j}.$$

so that $AB \in \mathbb{R}^{n \times m}$.

Matrix-vector multiplication

A matrix $A \in \mathbb{R}^{n \times m}$ defines the following linear operator $A : \mathbb{R}^m \to \mathbb{R}^n$.

$$Ax = \left(\sum_{j=1}^{m} A_{i,j}x_j : i = 1, \dots, n\right)$$

All vectors $x \in \mathbb{R}^m$ are equivalent to matrices in $\mathbb{R}^{m \times 1}$.

Matrix inverses

The identity matrix $I \in \mathbb{R}^{n \times n}$

- ▶ For this matrix, $I_{i,i} = 1$ and $I_{i,j} = 0$ when $j \neq i$.
- \blacktriangleright Ix = x and IA = A.

The inverse of a matrix $A \in \mathbb{R}^{n \times n}$

 A^{-1} is called the inverse of A if

- $AA^{-1} = I$.
- ▶ or equivalently $A^{-1}A = I$.

The pseudo-inverse of a matrix $A \in \mathbb{R}^{n \times m}$

- $ightharpoonup \tilde{A}^{-1}$ is called the left pseudoinverse of A if $\tilde{A}^{-1}A = I$.
- $ightharpoonup \tilde{A}^{-1}$ is called the right pseudoinverse of A if $A\tilde{A}^{-1} = I$.

Probability background

Logic and Set theory
Probability facts
Conditional probability and independence
Random variables, expectation and variance

Linear algebra

Vectors
Norms and distances
Linear operators and matrices

Calculus

Univariate caclulus
Multivariate calculus

Derivatives

Derivative

The derivative of a single-argument function is defined as:

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}.$$

f must be absolutely continuous at x for the derivative to exist.

Subdifferential

For non-differential functions, we can sometimes define the set of all subderivatives:

$$\partial f(x) = \left[\lim_{\epsilon \to 0} \frac{f(x) - f(x - \epsilon)}{\epsilon}, \lim_{\epsilon \to 0} \frac{f(x + \epsilon) - f(x)}{\epsilon}\right]$$

Integrals

Riemann integral

The Reimann integral is obtained by taking a horizontal discretisation of a function to the limit:

$$\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{t=1}^n f(x_t) \frac{b-a}{n}, \qquad x_t = a + (t-1) \cdot \frac{b-a}{n}$$

Lebesgue integral

This integral is obtained by taking a vertical discretisation of a function to the limit. Let λ be the Lebesgue measure (i.e. area) of a set. Then:

$$\int_X f(x)d\lambda(x) = \lim_{n \to \infty} \sum_{t=1}^n y_t \lambda(S_t),$$

$$S_t = \{x : f(x) \in (y_{t-1}, y_t), y_0 = -\infty, y_n = \sup_x f(x).$$

Fundamental theorem of calculus

$$f(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt$$

If $\frac{d}{dx}F = f$ then its integral from a to b is:

$$\int_a^b f(x)dx = F(b) - F(a),$$

Multivariate Functions

We consider functions operating in multi-dimensional Euclidean spaces.

$$f: \mathbb{R}^n \to \mathbb{R}$$
.

- ▶ Any $x \in \mathbb{R}^n$ is $x = (x_1, ..., x_n)$, with $x_i \in \mathbb{R}$.
- ▶ We write f(x) instead of $f(x_1,...,x_n)$.

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
.

- ▶ If y = f(x) then y_i is the *i*-th component of $y \in \mathbb{R}^m$.
- ▶ Can be seen as m functions $f_i : \mathbb{R}^n \to \mathbb{R}$, with $y_i = f_i(x)$.

Derivatives in many dimensions

Partial derivative

The partial derivative of $f: \mathbb{R}^n \to \mathbb{R}$ with respect to its *i*-th argument is: $\frac{\partial}{\partial x_i} f(x)$, where we see all x_j with $j \neq i$ as fixed.

Gradient of f

This is the vector of all its partial derivatives:

$$\nabla_{x} f(x) = \left(\frac{\partial}{\partial x_{1}} f(x) \cdots \frac{\partial}{\partial x_{i}} f(x) \cdots \frac{\partial}{\partial x_{n}} f(x)\right)^{\top}$$

When $f: \mathbb{R}^n \to \mathbb{R}^m$, the gradient is an $n \times m$ matrix called the Jacobian.

Directional derivative

We can also define the derivative with respect to a direction $\delta \in \mathbb{R}^n$:

$$D_{\delta}f(x) = \lim_{\epsilon \to 0} \frac{f(x + \epsilon \delta) - f(x)}{\epsilon}.$$

For simplicity say that $\|\delta\| = 1$.