

# Potrošnja električne energije – 2

Dnevna krivulja opterećenja Predviđanje porasta opterećenja

Energijske tehnologije FER 2008.





- 1. Organizacija i sadržaj predmeta
- 2. Uvodna razmatranja
- 3. O energiji
- 4. Energetske pretvorbe i procesi u termoelektranama
- 5. Energetske pretvorbe i procesi u hidroelektranama
- 6. Energetske pretvorbe i procesi u nuklearnim el.
- 7. Geotermalna energija
- 8. Potrošnja električne energije
- 9. Prijenos i distribucija električne energije
- 10. Energija Sunca
- 11. Energija vjetra
- 12. Biomasa
- 13. Gorivne ćelije i ostale neposredne pretvorbe
- 14. Skladištenje energije
- 15. Utjecaj na okoliš
- 16. Održivi razvoj i energija

# Sadržaj

- Karakteristike potrošnje/opterećenja
- Dnevni dijagram opterećenja
- Pokrivanje dnevnog dijagrama opterećenja (tzv. "vozni red" elektrana)
- Predviđanje porasta potrošnje

# Ukupna godišnja potrošnja u HR (GWh)



## Vršno godišnje opterećenje HR sustava (MW)



# Ukupna mjesečna potrošnja u HR (GWh)



### Dnevni dijagram opterećenja Srijeda, 20.12.2006. (MW)



# Neke dnevne krivulje opterećenja



# Krivulja dnevnog opterećenja i krivulja trajanja opterećenja



10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

h

### Godišnja krivulja trajanja opterećenja 2006



#### Dnevna krivulja opterećenja Opskrbno područje "East New England", Boston - 1919



#### Dnevna krivulja opterećenja – danas



http://www.hep.hr/ops/hees/dijagram.aspx

# Ovisnosti opterećenja

- geografska lokacija
- vremenska promjenjivost
- vrsta potrošača
  - kućanstva (rezidencijalni)
  - uprava/trgovine/usluge (komercijalni)
  - javna potrošnja (npr. rasvjeta)
  - industrija
- utjecaj ostalih energenata
- veliki događaji



## Vremenska promjenjivost opterećenja

- godišnje
  - (osim u slučaju ratova, velikih prirodnih katastrofa i sl.)
     opterećenje uglavnom raste zbog
    - povećanja broja stanovnika
    - porasta životnog standarda
- mjesečno
  - zbog godišnjih doba i drugih ciklusa (npr. sezona odmora i sl.)
- dnevno
  - ovisno o danu u tjednu (radni dan, subota, nedjelja) i
- trenutno
  - električna energija ne koristi se jednoliko tijekom dana

## Dnevna krivulja opterećenja



m - faktor opterećenja;

m<sub>D</sub> - faktor ravnomjernosti

### Aproksimacija dnevne krivulje opterećenja



### Aproksimacija dnevnog dijagrama opterećenja



$$W_{K} = 24 \cdot P_{K}$$

$$W_{V} = W - W_{K}$$

$$m = \frac{W}{24 \cdot P_{\text{max}}}$$

$$m_{D} = \frac{P_{\text{min}}}{P_{\text{max}}}$$

$$T_{P \max} = \frac{W}{P_{\max}} < 24 \text{ h}$$

Dnevni dijagram opterećenja

Dnevna krivulja trajanja opterećenja

najmanja snaga, konstantna snaga  $P_{min}, P_{K}$ (ne moraju biti jednake) najveća snaga ukupna dnevna potrošena energija W faktor opterećenja m faktor ravnomjernosti  $m_D$ konstantna energija  $W_{\kappa}$ varijabilna energija  $W_{\mathbf{v}}$ vrijeme korištenja maksimalne snage  $T_{Pmax}$ 

1. Prema aproksimativnim podacima dnevnog opterećenja (21-5 h = 400 MW, 5-12 h = 700 MW, 12-16 = 600 MW, 16-21 = 1000 MW) odredite: minimalnu i maksimalnu snagu, ukupno, konstantno i promjenjivo dnevno potrošenu energiju, faktor opterećenja, te vrijeme korištenja maksimalne snage. Potrebno je i nacrtati dnevnu krivulju trajanja opterećenja.



$$P_{min} = 400 \text{ MW}, P_{max} = 1000 \text{ MW}$$

$$W = 8 h \cdot 400 MW + 7 h \cdot 700 MW + 4 h \cdot 600 MW + 5 h \cdot 1000 MW = 15500 MWh$$

$$W_K = 24 \text{ h} \cdot P_{min} = 24 \text{ h} \cdot 400 \text{ MW} = 9600 \text{ MWh}$$

$$W_V = W - W_K = 5900 \text{ MWh}$$

$$m = \frac{W}{24 \cdot P_{\text{max}}} = 0.65$$

$$m = \frac{W}{24 \cdot P_{\text{max}}} = 0.65$$
  $T_{P \text{max}} = \frac{W}{P_{\text{max}}} = 15.5 \text{ h}$ 

# Aproksimacija dnevne krivulje opterećenja s tri pravca



# Aproksimacija dnevne krivulje opterećenja s tri pravca

Koeficijenti  $\alpha$  i  $\beta$  određeni su zahtjevom da količina varijabilne energije u aproksimiranoj krivulji trajanja opterećenja bude jednaka količini te energije u stvarnoj krivulji trajanja opterećenja.



### Aproksimacija dnevne krivulje opterećenja s tri pravca

a=0.8 i B=0.65



Jednadžba pravca kroz dvije točke

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

I dio krivulje (dužina AB)

$$0 \le t \le \alpha T_V = 14h$$

#### točka B

$$(x_1, y_1) = (\alpha T_V, P_K + \beta P_V)$$

#### točka A

$$(x_2, y_2) = (0, P_K + P_V)$$

$$y = P(t)$$

$$x = t$$

Vrijeme t je u satima, a snaga u MW.

$$P(t) - (P_K + P_V) = \frac{(P_K + \beta \cdot P_V) - (P_K + P_V)}{\alpha \cdot T_V} \cdot t \quad \Rightarrow \quad P(t) = P_K + P_V - \frac{P_V(1 - \beta)}{\alpha T_V} t = 7 + 17 - \frac{17 \cdot (1 - 0.65)}{0.8 \cdot 17.5} \cdot t = \underbrace{24 - 0.425 \cdot t \left[MW\right]}_{}$$

II. dio krivulje (dužina BC)

$$\alpha T_{V} = 14h \le t \le T_{V} = 17,5h$$

točka B

točka C

$$\alpha T_V = 14h \le t \le T_V = 17.5h$$
  $(x_1, y_1) = (\alpha T_V, P_K + \beta P_V)$   $(x_2, y_2) = (T_V, P_K)$ 

$$(x_2, y_2) = (T_V, P_K)$$

- 2. Dnevna krivulja trajanja opterećenja aproksimirana je s tri pravca, prema slici.
  - a) Odrediti ( $\alpha + \beta$ ) kao funkciju poznatih veličina ( $P_v$ ,  $W_v$  i  $T_v$ ).
  - b) Navesti područje vrijednosti za faktore  $\alpha$  i  $\beta$ .



$$\begin{aligned} W_{v} &= \left[ (1 - \beta) \ P_{v} \cdot \alpha \cdot T_{v} + \cdot \beta \cdot P_{v} \cdot (1 - \alpha) \cdot T_{v} \right] / \ 2 + \alpha \cdot T_{v} \cdot \beta \cdot P_{v} \\ \text{ili} \quad W_{v} &= \left[ (1 - \beta) \cdot P_{v} \cdot \alpha \cdot T_{v} - \beta \cdot P_{v} \cdot (1 - \alpha) \cdot T_{v} \right] / \ 2 + \beta \cdot T_{v} \cdot P_{v} \\ \text{sređivanjem} \quad \ldots &= > \quad (\alpha + \beta) = 2 \cdot W_{v} / \left( T_{v} \cdot P_{v} \right) \\ 0 &\leq \alpha \leq 1; \qquad 0 \leq \beta \leq 1; \qquad 0 \leq (\alpha + \beta) \leq 2; \end{aligned}$$

3. Dnevni dijagram opterećenja nekog elektroenergetskog sustava određuju sljedeći podaci:  $P_{max} = 10$  MW,  $P_{V} = 6$  MW,  $T_{V} = 15$  h,  $\alpha = \beta = 0,7$ . Potrebno je nacrtati dnevni dijagram trajanja opterećenja, odrediti iznose konstantne energije, varijabilne energije, dnevno potrošene energije, faktora dnevnog opterećenja i vrijeme korištenja maksimalne snage.



$$P_{min} = P_{max} - P_{V} = 4 \text{ MW}$$

$$W_{K} = 24 \text{ h} \cdot P_{min} = 24 \text{ h} \cdot 4 \text{ MW} = 96 \text{ MWh}$$

$$W_{v} = (\alpha + \beta) \cdot T_{v} \cdot P_{v} / 2 = (0,7+0,7) \cdot 15 \cdot 6 / 2 = 63 \text{ MWh}$$

$$W = W_{V} + W_{K} = 159 \text{ MWh}$$

$$m = \frac{W}{24 \cdot P_{\text{max}}} = 0.66$$

$$T_{P \text{max}} = \frac{W}{P_{\text{max}}} = 15,9 \text{ h}$$

# Pokrivanje dnevnog opterećenja



## Primjer 1 Test mreža

- IEEE Reliability Test System
- 24 čvorišta
- 34 grane
- raspoloživa snaga 3405 MW



### Primjer 1 – Krivulja predviđenog dnevnog opterećenja



# Primjer 1 - Unaprijed pripremljeni raspored proizvodnje (grafički prikaz)



# Primjer 1 - Unaprijed pripremljeni raspored proizvodnje (tabelarni prikaz)

| 0   | Opterećenje Agregati |                       |     |     |     |     |     |     |     |     |     |     |     |     |     |    |    |
|-----|----------------------|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
| Sat | 0/0                  | $\overrightarrow{MW}$ | 18  | 21  | 23A | 23B | 23C | 13A | 13B | 13C | 7A  | 7B  | 7C  | 16  | 15  | 2A | 2B |
| 1   | 67                   | 1910                  | 400 | 400 | 350 | 155 | 155 | 197 |     |     | 100 |     |     |     |     |    |    |
| 2   | 63                   | 1796                  | 400 | 400 | 350 | 155 | 155 | 197 |     |     | 100 |     |     |     |     |    |    |
| 3   | 60                   | 1710                  | 400 | 400 | 350 | 155 | 155 | 197 |     |     |     |     |     |     |     |    |    |
| 4   | 59                   | 1682                  | 400 | 400 | 350 | 155 | 155 | 197 |     |     |     |     |     |     |     |    |    |
| 5   | 59                   | 1682                  | 400 | 400 | 350 | 155 | 155 | 197 |     |     |     |     |     |     |     |    |    |
| 6   | 60                   | 1710                  | 400 | 400 | 350 | 155 | 155 | 197 |     |     |     |     |     |     |     |    |    |
| 7   | 74                   | 2109                  | 400 | 400 | 350 | 155 | 155 | 197 |     |     | 100 | 100 | 100 |     |     | 76 |    |
| 8   | 86                   | 2451                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 |     |     | 76 |    |
| 9   | 95                   | 2708                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 |     | 76 | 76 |
| 10  | 96                   | 2736                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 |     | 76 | 76 |
| 11  | 96                   | 2736                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 |     | 76 | 76 |
| 12  | 95                   | 2708                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 |     | 76 | 76 |
| 13  | 95                   | 2708                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 |     | 76 | 76 |
| 14  | 95                   | 2708                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 |     | 76 | 76 |
| 15  | 93                   | 2651                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 |     | 76 | 50 |
| 16  | 94                   | 2679                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 |     | 76 | 76 |
| 17  | 99                   | 2822                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 | 155 | 76 | 76 |
| 18  | 100                  | 2850                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 | 155 | 76 | 76 |
| 19  | 100                  | 2850                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 | 155 | 76 | 76 |
| 20  | 96                   | 2736                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 |     | 76 | 76 |
| 21  | 91                   | 2594                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 | 155 |     | 76 |    |
| 22  | 83                   | 2366                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 | 197 | 100 | 100 | 100 |     |     |    |    |
| 23  | 73                   | 2081                  | 400 | 400 | 350 | 155 | 155 | 197 | 197 |     | 100 | 100 |     |     |     |    |    |
| 24  | 63                   | 1796                  | 400 | 400 | 350 | 155 | 155 | 197 |     |     | 100 |     |     |     |     |    |    |

# Primjer 2 – stvarni rezultati optimiranja "voznog reda" elektrana za sustav od 10 elektrana

| Time (1–<br>24 hours)<br>(1/0:<br>on/off<br>state) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|----------------------------------------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Unit 1                                             | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Unit 2                                             | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| Unit 3                                             | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  |
| Unit 4                                             | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  |
| Unit 5                                             | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Unit 6                                             | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  |
| Unit 7                                             | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  |
| Unit 8                                             | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  |
| Unit 9                                             | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| Unit 10                                            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  |

# Pokrivanje dnevnog opterećenja - složeni optimizacijski postupak

- Standardne elektrane (nuklearne, ugljen, nafta, plin)
  - cijena pokretanja elektrane
  - fiksni trošak pogona
  - varijabilni trošak (trošak po MW)
  - pogonska ograničenja
     (P<sub>max</sub>, P<sub>min</sub>, brzina promjene)



- pogonska ograničenja (raspoloživost "goriva")
- Akumulacijske hidroelektrane
  - mogućnost pohrane energije
  - ograničenje rezervoara
- Reverzibilne hidroelektrane
  - imaju dva spremnika vode
  - tijekom niskog opterećenja mogu povećavati zalihe vode u gornjem spremniku trošenjem energije iz jeftinih elektrana



## Preljev protočnih hidroelektrana



## Pokrivanje dnevnog opterećenja



4. Dnevna krivulja trajanja opterećenja nekog elektroenergetskog sustava aproksimirana je s tri pravca. Poznati su sljedeći podaci o krivulji:  $P_{max} = 1000 \text{ MW}, P_{K} = 500 \text{ MW}, T_{V} = 18 \text{ h}, W = 17000 \text{ MWh}, \beta = 0,5.$  Potrebno je nacrtati dijagram trajanja opterećenja i razmjestiti u njemu sljedeće elektrane:

```
NE: P_{NEn} = 125 \text{ MW}; c_{NE} = 25 \text{ lp/kWh}
TE1: P_{TE1n} = 350 \text{ MW}; P_{TE1min} = 25 \text{ MW}; c_{TE1} = 35 \text{ lp/kWh}
TE2: P_{TE2n} = 250 \text{ MW}; P_{TE2min} = 50 \text{ MW}; c_{TE2} = 30 \text{ lp/kWh}
HE1: P_{HE1} = 200 \text{ MW}; protočna
HE2: P_{HE2} = 100 \text{ MW}; protočna
```

#### Rješenja:

```
W_K = 24h \cdot P_K = 24h \cdot 500MW = 12000 MWh
W_V = W - W_K = 17000-12000 = 5000 MWh
(\alpha + \beta) = 2 \cdot W_V / (T_V \cdot P_V) \rightarrow \alpha = 2 \cdot W_V / (T_V \cdot P_V) - \beta = 0,6111
\alpha \cdot T_V = 11 h
```

 $\Sigma P_i - P_{max} = 1025 - 1000 = 25 - sve$  elektrane trebaju proizvoditi!

Raspored: P<sub>NE</sub>, P<sub>TE2min</sub>, P<sub>TE1min</sub>, P<sub>HE1</sub>, P<sub>HE2</sub>, P<sub>TE2-ostalo</sub>, P<sub>TE1</sub>

#### 4. Dijagram trajanja opterećenja i raspored elektrana:



5. Iz dnevnog dijagrama opterećenja nekog elektroenergetskog sustava poznate su maksimalna i minimalna snaga i iznose 1000 i 500 MW. Potrebno je smjestiti termoelektrane i protočne hidroelektrane u dnevnoj krivulji trajanja opterećenja ako su o njima poznati sljedeći podaci:

TE1:  $P_{TE1n} = 150 \text{ MW}$ ;  $P_{TE1min} = 50 \text{ MW}$ ;  $C_{TE1} = 50 \text{ lp/kWh}$ TE2:  $P_{TE2n} = 260 \text{ MW}$ ;  $P_{TE2min} = 60 \text{ MW}$ ;  $C_{TE2} = 20 \text{ lp/kWh}$ TE3:  $P_{TE3n} = 400 \text{ MW}$ ;  $P_{TE3min} = 100 \text{ MW}$ ;  $C_{TE3} = 30 \text{ lp/kWh}$ 

HE1:  $P_{HE1n} = 150 \text{ MW}$ HE2:  $P_{HE2n} = 200 \text{ MW}$ HE3:  $P_{HF3n} = 100 \text{ MW}$ 

#### Rješenja:

- Ukupna instalirana snaga: 1260 MW  $> P_{max}$
- Snaga najskuplje termoelektrane nije potrebna za pokrivanje potrošnje
- Ukupna raspoloživa snaga bez TE1 iznosi 1110 MW > P<sub>max</sub>
- TE3, najskuplja od preostalih termoelektrana i stoga neće raditi punim kapacitetom
- Zbrojene snage protočnih hidroelektrana i snage tehničkih minimuma TE2 i TE3 iznose 610 MW i veće su od P<sub>min</sub>, što znači da će se višak vode preliti preko brane (ili nekako drugačije iskoristiti, npr. izvoz)

#### Raspored agregata u pogonu:

TE2<sub>min</sub>, TE3<sub>min</sub>, HE1, HE2, HE3, TE2<sub>ostatak</sub>, TE3<sub>ostatak</sub>

TE1 će ostati izvan pogona



# Predviđanje porasta potrošnje električne energije

Za određeno područje predviđamo:

- iznos opterećenja
- vrijeme pojave opterećenja

Prema vremenskom razdoblju planiranja

- kratkoročne (<5 god)</li>
- srednjoročne
- dugoročne (~20 god)

Prema funkcijskoj ovisnosti opterećenja

- neovisne metode
  - na temelju ponašanja potrošnje u prošlosti (kao funkcije vremena, npr. trend)
- ovisne metode
  - na temelju poznavanja ovisnosti potrošnje o drugim faktorima (BDP, porast stanovništva, drugi energenti...)
  - određuju buduće opterećenje u funkciji nekog utjecajnog faktora koji je karakterističan za razmatrano područje (simulacijske metode)

### Utjecaji na predviđanje opterećenja



#### **Metode trenda**

- 1. linearni zakon porasta (pravac)
- 2. logaritamski pravac
- 3. eksponencijalni zakon porasta
- 4. polinomni zakon porasta
- 5. logaritamski polinomni zakon porasta
- 6. logistički zakon porasta
- 7. Gompertzov zakon porasta
- krivulje porasta potrošnje ponekad nazivamo i S krivuljama zbog njihovog karakterističnog izgleda
- S krivulje u dijelovima možemo nadomjestiti krivuljama gore

$$p_{1}(t) = at + b$$

$$\log p_{2}(t) = at + b$$

$$p_{3}(t) = e^{(at+b)} \quad ili \quad p_{3}(t) = b(1+a)^{t}$$

$$p_{4}(t) = b + a_{1}t + a_{2}t^{2} + \dots + a_{n}t^{n}$$

$$p_{5}(t) = b + a_{1}\log(t) + a_{2}\log^{2}(t) + \dots + a_{n}\log^{n}(t)$$

$$p_{6}(t) = \frac{p_{z}}{1 + e^{(b-at)}}$$

$$p_{7}(t) = p_{z}e^{-ba^{t}}$$

# Problemi kod predviđanja opterećenja



6. U zamišljenom gradu porast maksimalnog opterećenja električne energije povećava se 2% godišnje, a 2005. godine je iznosilo 1500 MW. Procijenite opterećenje 2010 godine.

#### Rješenje:

$$P_{\text{max}2010} = 1500*(1,02)^5 = 1656 \text{ MW}$$

7. U zamišljenom gradu porast maksimalnog opterećenja električne energije povećava se linearno s brojem stanovnika, a broj stanovnika se povećava po logaritamskom pravcu.

2005 godine: 1500 MW, 1000000 stanovnika 2000 godine: 1200 MW, 900000 stanovnika

Procijenite opterećenje 2010. godine.

#### Rješenje:

Prvo treba provući logaritamski pravac i odrediti broj stanovnika u **2010. godini**.

0. godina – 900000 stanovnika

5. godina – 1000000 stanovnika

10. godina → ? stanovnika

Grad će 2010. godine imati

#### 1 111 111 stanovnika.

Zatim treba provući pravac kroz 900000 stanovnika – 1200 MW 1000000 stanovnika – 1500 MW 1111111 stanovnika 2010 → ? MW Opterećenje će biti **1833 MW**.

$$p(s) = as + b$$
$$\log s(t) = ct + d$$

$$\log 900000 = c \cdot 0 + d$$

$$\log 1000000 = c \cdot 5 + d$$

$$d = 5.95424; \quad c = 0.0091515$$

$$s(10) = 10^{c \cdot 10 + d} = 1111111$$

$$1200 = a \cdot 900000 + b$$

$$1500 = a \cdot 1000000 + b$$

$$a = 0.003 \quad b = -1500$$

$$p(11111111) = a \cdot 1111111 + b = 1833$$

# Zaključak

- Razmotrili smo karakteristike potrošnje i opterećenja, te njihovu promjenjivost u vremenu.
- Razmotrili smo i neke faktore koji utječu na porast potrošnje i modele za predviđanje porasta potrošnje.
- Detaljnije smo proučili dnevni dijagram opterećenja i njegove karakteristike, te njegove aproksimacije.
- Razmatrali smo pokrivanje dnevnog opterećenja raspoloživim elektranama u sustavu (tzv. "vozni red" elektrana).
- Opisali smo pristupe predviđanju opterećenja u višegodišnjem razdoblju.