Oggi introdurremo l'analisi lessicale.

Vediamo innanzitutto le **espressioni regolari**. Le seguenti regole definiscono le *espressioni regolari di un alfabeto* ∑.

Sia \sum un alfabeto, cioè un insieme di simboli. Da \sum si definiscono in maniera induttiva le espressioni regolari. Si dice cioè quali sono le minime espressioni regolari, gli operatori che possiamo usare fra tali espressioni; utilizzando espressioni regolari e operatori possiamo comporre espressioni più grandi.

La specifica di un'espressione regolare è un'esempio di definizione ricorsiva, in quanto fa uso di base e passo induttivi:

```
Base:

1 & e un'e spressione regolare, che denota il linguaggio { & }.

2 Se a è un simbolo di Z, allora a è un'espressione regolare che denota il linguaggio { a }.

Passo:

Siano r, s due espressioni regolari, che rispettivamente denotano i linguaggi L(r) e L(s)

Allora valgono:

1. r | s è un'espressione regolare che denota L(r) u L(s).

2. r s (meno comunemente, r · s) è un'espressione regolare che denota L(r) L(s) := { w = w, w, a k w, e L(r) k w, e L(s) }.

3. r e è un'espressione regolare che denota L(r = { E} v { w, ... w, | \forall | = 1, ..., k , w | e L(r, ) }.

4. (r) è un'espressione regolare che denota L(r).

Esempio: L(a) = { a } , L(a) = { a }.
```

Le parentesi vengono utilizzate per meglio evidenziare l'ordine di precedenza e associatività. **Convenzioni** su precedenza e associatività degli operatori:

```
* Ha la precedenza più alta

Ha precedenza interiore a *

Ha precedenza inferiore a *

Esempio: a \mid b^*c

1. a \mid (b^*)c \rightarrow 2. a \mid ((b^*)c)

Sia r = a \mid b^*c. L(r) = L(a) \cup L(b^*c)

• L(b^*c) = \{w \mid w = w_Aw_2 \& w_A \in L(b^*) \& w_A \in L(c)\}

• L(c) = \{c\} \Rightarrow w_A = c

= \{wc \mid w \in L(b^*)\}

= \{a\} \cup \{b^*c \mid n \ge 0\}
```

Facciamo alcuni esempi

r	L(r)	_	
a b	{a,b}		
ablb	{ab,b}		
a (blc)	{ab,ac}		
a*b*	{ a b n, j >	.o} → 51 pno	fare di meglio : {a ⁿ n 30}
ala*b	{a} ∪ {a"		, , ,

Ora proviamo il contrario.