Lab10-Report

RollNo-190020021

Kushagra Khatwani

Answers-

Q1-

Rootlocus from MATLAB-

Code for plotting response-

```
%Q1
clear all;
close all;
%uncompensated system
sys = tf([41.1],[1,12,41,42]);
%compensated system
sys1 = tf([41.1,16.81],[1,12.1,42.2,46.1,4.2]);
hold on;
step(sys/(sys+1));
step(sys/(sys+1));
legend('uncompensated','compensated');
hold off;
```


We can see error from graph - 1-0.8 =0.2. which will give

$$\frac{1}{1+K_p}.=0.2$$

Hence

$$K_p = 4$$

So it matches and hence it is correct.

(00	· Ginen - G(A) = K
- 44	a(a+10) (a+20)
+	0
ļ.	- in sent To love a factor of 7 1.05 = 20x
5	
AN	$\%os = e^{-\frac{\sqrt{3}\pi}{\sqrt{1-3^2}}}$
	0.2 do = e J1-82
	0.21 20 = 6 11-82
	8 100
10	ralculating -
	salculating - salculating - 3 = 0.456
	Follo = -3.28 ± 5.94
	· (791/2 = 1080
15	Poles = -3.28 ± 5.941
	closed loop system poles.
	grant my specific forces
	G -> 080
	$\frac{G}{1+G} \rightarrow \frac{1080}{1+304^2+2004+1080}$
20	1+G 2 + 302+ 2002+ 680
	Poles -> d - 23,432
	Poles -> 2 - 23,432 As it is & times away from jw min
	brown the dominant pain
25	from the dominant pain se second order approx. valid.
	see original approx. Days.
	CHDing 1'm
-7	Settling time, $T_s = \frac{4}{5} = \frac{4}{5} = \frac{4}{3.28}$
	30n 6 3.28
30	Ts = 1.22
	5 1 d d
Res-	

$\frac{\text{Comlin Page}}{\text{Date } I}$ $\frac{\text{Ts}}{\text{Ts}} = 1.22 = 0.30.5$
$0.305 = 4 = 4$ $(5 con)_N = 6N$
6N = 13.11 Sinq, for $7.05 = 20%$, $f = 0.456$
$0 = \cos^{-1}(3) = 62.87^{\circ}$ $\tan(180 - 117.13) = \omega dN$
$\tan (62.87) = \omega \theta N$ $\overline{13.11}$
$25.59 = \omega_{ln}$ Resided closed loop dominant poles - $P = -13.11 \pm 25.59j$
Now noot lows should pass through P. So $ \frac{P}{P} = 180^\circ $ where $ \frac{P}{P} = 180^\circ $
QQ-(97-13-7132.09 QQQQQ)
0 = -(96.93 + 117.13 + 2000) $0 = -(1900) - 289$ $0 = -180'$
07 = (09)

	So location of you $ (09)$ $y_1 - y_2 = tan(1890)$ $x_1 - x_2$
17	$ \frac{25.59 - 0}{-13.11 - 2c} = -60005 - 2.90 $ $ \frac{25.59}{-13.11 - 2c} = -60005 - 2.90 $
15	-8.811 - 30000 = -13.11 - 20 $= -9.800$ $= -9.800$
20	so add extern pole at $z_c = -4.30$
25	

Root Locus-

Code for plotting response-

```
%Q2
clear all;
close all;
%uncompensated system
   sys = tf([1080],[1,30,200,0]);
%compensated system
   sys1 = tf([1080,4644],[1,30,200,0]);

hold on;
step(sys/(sys+1));
step(sys/(sys+1));
step(sys1/(sys1+1));
legend('uncompensated','compensated');
hold off;
```


ld.	2(2+ 10)(2+20)
	M(K1 (7/(K7 20)
035	$(9(A) = K$ $y.05 = 20x.$ $(4+15)(A^2+6A+13)$
AN	$3 \rightarrow \frac{3\pi}{2.05}$ $2.5 = e^{\frac{3\pi}{1-52}}$ $2.5 = e^{\frac{3\pi}{1-52}}$
	S = 0.358 From MATLAB = (for 7.05 = 30x) Gain = 383 Polo = -2.03 ± 5.48j
15	$T_{S} = 4 = 4 = 4 = 1.97$ $gcon = 2.08$
23	$(T_c) = T_c = 1.27 \text{ o. } 985$ $(T_c) = 4 = 0.985$
	$(T_S)^l = \frac{4}{(3w_n)^l} = 0.085$ $6^l = \frac{4}{(3w_n)^2} = 4.061$ 0.985
2	$\theta = \cos^{-1}(o.358) = 69'$
	$tan(69) = \omega_N$ $y.061$ $\omega_N = 10.58$
	desired pole location - (for 75' = T5') -4.06 ± 10.58 j
1	

$z_c = -7$ (given)
so if deaned poles to lie on most locus
due to ze and other poles
$0 = 0_{2}(-0_{1}-0_{2}-0_{3})$ $= 69.57 - 41.54 - 300 - 200$
e = -000000 -163.84
angle court ni bution slue to pe-
163.84 = -180 + QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
$\frac{-16.16}{10.58}$ $\frac{-10.58}{7_{c}-4.06}$
PC = -32.45
so TF of lead congensation -
77 = 383 (-5 +7). (5+4.08)
TF = 383 (•5+7) (5+32.45)

Code for plotting response-

```
%Q1
clear all;
close all;
%uncompensated system
sys = tf([383],[1,21,103,195]);
%compensated system
sys1 = tf([383,2681],[1,61.57,954.97,4731.71,7911.15]);

hold on;
step(sys/(sys+1));
step(sys/(sys+1));
step(sys1/(sys1+1));
legend('uncompensated','compensated');
hold off;
```

