## **Probability**

Bayes Theorem:

$$P(Y = \pm 1|X) = \frac{P(X|Y = \pm 1)P(Y = \pm 1)}{P(X|Y = +1)P(Y = +1) + P(X|Y = -1)P(Y = -1)}$$

# Perceptron

$$f(\mathbf{x}) = \boldsymbol{\theta} \cdot \mathbf{x} + \theta_0 = \sum_{i=1}^d \theta_i x_i + \theta_0, \ \hat{y} = \begin{cases} 1, & \text{if } f(x) \ge 0 \\ -1, & \text{if } f(x) < 0 \end{cases}$$

Decision boundary, a hyperplane in  $\mathbb{R}^d$ :  $H = \{ \mathbf{x} \in \mathbb{R}^d : f(\mathbf{x}) = 0 \} = \{ \mathbf{x} \in \mathbb{R}^d : \theta \cdot \mathbf{x} + \theta_0 = 0 \}$ 

 $\theta$  is the **normal** of the hyperplane,

 $\theta_0$  is the **offset** of the hyperplane from origin,

 $-\frac{\theta_0}{\|\boldsymbol{\theta}\|}$  is the **signed distance** from the origin to hyperplane.

#### Perceptron algorithm,

Input: 
$$(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^d \times \{\pm 1\}$$
  
while some  $y_i \neq \text{sign}(\boldsymbol{\theta} \cdot \mathbf{x}_i)$   
pick some misclassified  $(\mathbf{x}_i, y_i)$   
 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y_i \mathbf{x}_i$ 

Given a linearly separable data, perceptron algorithm will take no more than  $\frac{R^2}{\gamma^2}$  updates to **converge**, where  $R = \max_i \|\mathbf{x}_i\|$  is the radius of the data,  $\gamma = \min_i \frac{y_i(\boldsymbol{\theta} \cdot \mathbf{x}_i)}{\|\boldsymbol{\theta}\|}$  is the margin.

Also,  $\frac{\theta \cdot \mathbf{x}}{\|\theta\|}$  is the signed distance from H to  $\mathbf{x}$  in the direction  $\theta$ .

 $\theta = \sum_i \alpha_i y_i \mathbf{x}_i$ , thus any inner product space will work, this is a kernel.

Gradient descent view of perceptron, minimize margin cost function  $J(\theta) = \sum_{i} (-y_i(\theta \cdot \mathbf{x}_i))_+$  with  $\theta \leftarrow \theta - \eta \nabla J(\theta)$ 

# Support Vector Machine

Hard margin SVM,

 $\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|^2$ , such that  $y_i \boldsymbol{\theta} \cdot \mathbf{x}_i \geq 1 (i = 1, \dots, n)$ 

Soft margin SVM,

$$\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^n (1 - y_i \boldsymbol{\theta} \cdot \mathbf{x}_i)_+$$

Regularization and SVMs: Simulated data with many features  $\phi(\mathbf{x})$ ; C controls trade-off between margin  $1/\|\boldsymbol{\theta}\|$  and fit to data; Large C: focus on fit to data (small margin is ok). More overfitting. Small C: focus on large margin, less tendency to overfit. Overfitting increases with: less data, more features.

$$\theta = \sum_i \alpha_i y_i \mathbf{x}_i, \ \alpha_i \neq 0$$
 only for support vectors.

 $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$ , K is called a kernel. Solve  $\alpha_j$  to determine  $\sum_j \alpha_j y_j \phi(\mathbf{x}_j)$ . Compute the classifier for a test point  $\mathbf{x}$  via  $\boldsymbol{\theta} \cdot \phi(\mathbf{x}) = \sum_j \alpha_j y_j K(\mathbf{x}_j, \mathbf{x})$ 

degree-m polynomial kernel:  $K_m(\mathbf{x}, \tilde{\mathbf{x}}) = (1 + \mathbf{x} \cdot \tilde{\mathbf{x}})^m$  radial basis function kernel:  $K_{rbf}(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\gamma \|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$ 

## Decision Theory

**Loss function**:  $l: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ , and  $l(\hat{y}, y)$  is the cost of predicting  $\hat{y}$  when the outcome is y.

Assume  $(\mathbf{X}, \mathbf{Y})$  are chosen i.i.d according to some probability distribution on  $\mathcal{X} \times \mathcal{Y}$ . **Risk** is misclassification probability:  $R(f) = \mathbb{E}l(f(\mathbf{X}), \mathbf{Y}) = Pr(f(\mathbf{X}) \neq \mathbf{Y})$ 

#### Bayes Decision Rule is

$$f^*(x) = \begin{cases} 1, & \text{if } P(\mathbf{Y} = 1|x) > P(\mathbf{Y} = -1|x) \\ -1, & \text{otherwise.} \end{cases}$$

and the optimal risk (Bayes risk)  $R^* = \inf_f R(f) = R(f^*)$ 

Excess risk is for any 
$$f: \mathcal{X} \to \{-1, +1\}$$
,  $R(f) - R^* = \mathbb{E}(1[f(x) \neq f^*(x)]|2P(\mathbf{Y} = +1|\mathbf{X}) - 1|)$ 

Risk in Regression is expected squared error:  $P(f) = P(f(\mathbf{Y}), \mathbf{Y}) = P(f(\mathbf{Y}), \mathbf{Y}) \cdot \mathbf{Y}^{2} \cdot \mathbf{Y}^{1}$ 

$$R(f) = \mathbb{E}l(f(\mathbf{X}), \mathbf{Y}) = \mathbb{E}\mathbb{E}[f(\mathbf{X}) - \mathbf{Y}^2 | \mathbf{X}]$$

Bias-variance decomposition:

$$R(f) = \mathbb{E}[\underbrace{(f(\mathbf{X}) - \mathbb{E}[\mathbf{Y}|\mathbf{X}])^2}_{\text{bias}^2}] + \mathbb{E}[\underbrace{(\mathbb{E}[\mathbf{Y}|\mathbf{X}] - \mathbf{Y})^2}_{\text{variance}}]$$

## Generative and Discriminative

Discriminative models: P(X, Y) = P(X)P(Y|X).

Estimate  $P(\mathbf{Y}|\mathbf{X})$ , then pretend out estimate  $\hat{P}(\mathbf{Y}|\mathbf{X})$  is the actual  $P(\mathbf{Y}|\mathbf{X})$  and plug in bayes rule expression.

Generative model:  $P(\mathbf{X}, \mathbf{Y}) = P(\mathbf{Y})P(\mathbf{X}|\mathbf{Y})$ .

Estimate  $P(\mathbf{Y})$  and  $P(\mathbf{X}|\mathbf{Y})$ , then use bayes theorem to calculate  $P(\mathbf{Y}|\mathbf{X})$  and use discriminative model.

#### Estimation

Method of moments: Match moments of the distribution to moments measured in the data.

Maximum likelihood: Choose parameter so that the distribution it defines gives the obverved data the highest probability (likelihood).

Maximum log likelihood: Log of maximum likelihood, equilvalent to maximum likelihood since log is monotonically increase; it is useful since it can change  $\prod$  to  $\sum$ .

**Penalized maximum likelihood**: Add a penalty term in the maximum (log) likelihood equation; treat the penalty term as some imaginary data points crafted for desired probability.

Bayesian estimate: Treat parameter as a random variable, then update based on observed value (data).

Prior:  $\pi(p) = 1$ ,

Posterior: 
$$P(p|\mathbf{X}_1 = 1) = P(\mathbf{X}_1 = 1|p)\pi(p) / \int P(X_1 = 1|q)d\pi(q)$$

Maximum a posterior probability: the mode of the posterior. If uniform prior, MAP is MLE; if not uniform prior, MAP is Penalized MLE.

## Multivariate Normal Distribution

$$\mathbf{x} \in \mathbb{R}^d : p(x) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} e^{\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)}$$

Covariance matrix:  $\Sigma = \mathbb{E}(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T$ Symmetric:  $\Sigma_{i,j} = \Sigma_{j_i}$ 

Non-negative diagonal entries:  $\Sigma i, i \geq 0$ Positive semidefinite:  $\forall \mathbf{v} \in \mathbb{R}^d, \mathbf{v}^T \Sigma \mathbf{v} \geq 0$ 

Super-level sets of pdf:

$$\boldsymbol{\xi}_r = \left\{ \mathbf{x} \in \mathbb{R}^d : (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \le r^2 \right\}.$$
 Volume of  $\boldsymbol{\xi}_r \propto \prod_{i=1}^d \sigma_i = \sqrt{|\boldsymbol{\Sigma}|}$ 

### Spectral Theorem for non-diagonal covariance:

 $U = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n], \mathbf{\Lambda} = \operatorname{diag}([\lambda_1, \lambda_2, \dots, \lambda_n]^T)$ 

We can eigen decompose  $\Sigma^{-1} = U\Lambda^{-1}U^{T}$ , this is like to change to a different eigen spaces, where covariances  $(\Lambda)$  diagonal axis-alianed.

Assume independent,

$$\mathcal{N}(\boldsymbol{\mu}_x, \boldsymbol{\Sigma}) + \mathcal{N}(\boldsymbol{\mu}_y, \boldsymbol{\Sigma}_y) = \mathcal{N}(\boldsymbol{\mu}_x + \boldsymbol{\mu}_y, \boldsymbol{\Sigma}_x + \boldsymbol{\Sigma}_y)$$

Given a *d*-dimensaional Gaussian  $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , write  $\mathbf{X} = \begin{bmatrix} \mathbf{Y} \\ \mathbf{Z} \end{bmatrix}$ ,  $\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_{\mathbf{Y}} \\ \boldsymbol{\mu}_{\mathbf{Z}} \end{bmatrix}$ ,  $\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{Y}\mathbf{Y}} & \boldsymbol{\Sigma}_{\mathbf{Y}\mathbf{Z}} \\ \boldsymbol{\Sigma}_{\mathbf{Z}\mathbf{Y}} & \boldsymbol{\Sigma}_{\mathbf{Z}\mathbf{Z}} \end{bmatrix}$ , where  $\mathbf{Y} \in \mathbb{R}^m$ , and  $\mathbf{Z} \in \mathbb{R}^{d-m}$ . Then  $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{Y}}, \boldsymbol{\Sigma}_{\mathbf{Y}\mathbf{Y}})$ 

Given a *d*-dimensional Gaussian  $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , matrix  $\mathbf{A} \in \mathbb{R}^{m \times d}$  and vector  $\mathbf{b} \in \mathbb{R}^m$ , define  $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$ . Then  $\mathbf{Y} \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$ 

Given a *d*-dimensional Gaussian  $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , with  $\boldsymbol{\Sigma}$  positive definite,

$$\mathbf{Y} = \mathbf{\Sigma}^{-rac{1}{2}}(\mathbf{X} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I}, \mathbf{I})$$

#### Gaussian maximum likelihood estimation:

Sample mean:  $\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$ ;

Sample covariance:  $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \hat{\boldsymbol{\mu}})(\mathbf{x}_i - \hat{\boldsymbol{\mu}})^T$