Foundations of Physics 2B/3C

2019-2020

Thermodynamics – Lecture 12 Recap

- Looked at adiabatic cooling, both via expansion and demagnetization.
- Were introduced to the Third Law of Thermodynamics.
- Looked at example of Thermodynamics in action, including elastic rods and real gases:

$$pV \rightarrow xY$$
 ; $\delta W = -pdV \rightarrow \delta W = xdY$
 $\delta W = +fdx, mdB, ...$

$$pV = RT \to f(p, V, T) = 0$$

$$\left(p + \frac{a}{V^2}\right)(V - b) = RT \dots \left(\frac{\partial p}{\partial V}\right)_T = \dots$$

Thermodynamics – Lecture 13 Aims

- To review Thermodynamics.
- To introduce Statistical Mechanics.
- To consider distinguishable particles.
- To consider how we can define entropy and temperature statistically.
- To see how the Boltzmann distribution, for thermal equilibrium arises.

Three Laws + Zeroth

O - Temperature + thermal equilibrium

1 - Energy convention dU = SQ + SW

2 - Entropy of the Universe increases (Engines aren't 100%)

3 - Cont get to absolute zero

21. Statistical Mechanics

Considered built properties - impossible to look at the

Considered but properties — impossible to look at the individuo behaviour of all atoms — Statistical methods

Macrostate - haw a system behaves on average

Microstate - most detailed description of a system use can imagine

Example 21.1 Flip 4 coms	, get Head on Tail
Macrostate = number of heals + number Marostate = individual arrangement	er of toil
Macro 4 H 3H IT 3H 2T 3T IH 4 T	HTH, HTHH, THHH 4 6 4
Particles are distinguishable, the nous the macrostate SZ = N! n! (N-n)	N = Total number of
S2(24,24) = 4! = 6	N-n = Number of particles in state 2
Total number of arrungements =	$= 52 = 3^{N}$ posite atomes
More generally. N particles in to in a state energy e;	
$N = \sum_{j} n_{j}$ $SL = \frac{1}{1}$	

Foundations of Physics 2B/3C

2019-2020

Thermodynamics – Handout 13

21.2 100 coins in a box, can be arranged in one of $2^{100} \approx 10^{30}$ ways, each equally likely, $\rho \sim 10^{30}$

Macrostate	Number of Mid	rostates
50 <i>H</i> and 50 <i>T</i>	^{100!} / _{50! 50!} ~	4×10^{27}
53 <i>H</i> and 47 <i>T</i>	100!/ _{59! 47!} ~	3×10^{27}
90 <i>H</i> and 10 <i>T</i>	^{100!} / _{90! 10!} ~	1×10^{13}
99 <i>H</i> and 1 <i>T</i>	100!/99! 1!	~100

7 potential wells with energy levels of $0, \varepsilon, 2\varepsilon, 3\varepsilon, 4\varepsilon$. What arrangements of particles give total energy of 4ε ?

* Secretary

26

Any one well has energy 48, 7. Other well have energy 0

$$\Omega = \frac{7!}{(6! \ 0! \ 0! \ 0! \ 1!)} = 7$$

$$\Omega = \frac{7!}{4! \ 2! \ 1! \ 0! \ 0!} = 105$$

ny depend on the internel arrangement.

Energy	0	ε	2ε	3ε	4ε
n: S	6	0	0	0	1
7	4	2	1	0	0
	5	1	0	1	0

 $2|.4 \ln 5! = \ln 120 = 4.79$. Stirling, $5 \ln 5 - 5 = 3.04$, 4 ~ 40% under

In 100! = 364, Stirling= 361 1% underestimate

ln 1000! = 5912, Stirling = 5908 O 1% understinde

N~ 10²³ for one mole, error in Stirling approx is negligible

12. Temperatur + Entropy Statistically	
Thermal equilibrium defined by some to - Macrostate you see will most li associated microstates L'Eryadic hypothesis, microstates au	reperative the most e continually changing]
Proof 22.1 Two systems thermally bolated E = E1 + E2 [F10]	from World ed Lotel energy)
First syptem has $SL_1(E_1)$ mice Second 11 $SL_2(E_2)$	notate
Total Microstate SL, (E1) SZ	
Slightly change energy E, mas	
$\frac{d(S_1 E_1)S_2(E_2)) = S_2(E_2)}{dE_1}$	dE, + SI, 1G) d SI21G), dE, dE,
$dE = dE_{1} dE_{2} = 0$ $dE_{1} = -1$ dE_{2}	a total energy fixed
$\frac{1}{SL_1(E_1)} \frac{d SL_1(E_1)}{d E_1} = \frac{1}{SL_2(E_2)}$	$dSl_2(E_2)$ dE_2
$\frac{d\ln \Omega_1(E_1)}{dE_1} = \frac{d\ln \delta}{dE}$	$\frac{2_2(E_2)}{k_BT} = \frac{1}{k_BT}$
Must be a temperatur - themal eg	ulibrium

Prof 22.2 S= kg ln 52 Ist Law du = TdS-pdV.

(au) = T $\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_{V} \qquad j \qquad \frac{1}{k_{B}T} = \frac{d \ln SL}{dE}$ Statistically thereon E corresponds to interndenergy, 4 => dS = kB d ln Sl => S= kB ln Sl 23. Boltzmann distribution Canonical dutabetion - an ensemble of systems, which exchange energy with a heat reservoir Thermal eguilibrium from distinguishable particles
- System at same temperature as the reservoir Plej) = exp(-sikeT) 5 exp (-E/ko-) $\sum_{i} exp(-\xi_{BT}) = Z$, Normalisation Partition function.

Perove purbon

Joule expansion, with volume doubling for one mole ideal gas isothermally.

U=U(T), so dU=0, and the first law $(dU=\delta Q+\delta W)$ is TdS=pdV

$$\Delta S = \int_{V}^{2V} \frac{p}{T} dV = \int_{V}^{2V} \frac{R}{V} dV = R \ln 2.$$

Any single moderate now in two places, either left on right

Statistically the number of possible microstates becomes larger by a multiplicative factor of 2^{N_A}

$$\Omega_{After} = 2^{N_A} \Omega_{Before}$$
 $S_{After} = k_B \ln \Omega_{After} = k_B \ln (2^{N_A} \Omega_{Before}) = k_B \ln (2^{N_A}) + \ln \Omega_{Before}$
 $= N_A k_B \ln 2 + k_B \ln \Omega_{Before}.$

$$\Delta S = N_A k_B \ln 2 = R \ln 2.$$

$$P(\varepsilon_j) \propto \exp\left(-\frac{\varepsilon_j}{k_B T}\right).$$

Increase temperature, distribution has more chance of finding a positive cuts higher energy

For a given temperature, energy takes a probability Attribution 1 System has reasonable chance of houring E - RBT The exponential quickly reduces the chance of E>RBT