problem set

I — Hermitian Hamiltonian

Townsend 4.1

Show that unitarity of the infinitesimal time-evolution operator (4.4) requires that the Hamiltonian \hat{H} be Hermitian.

Solution

The infinitesimal time-evolution operator is:

$$\hat{U}(\mathrm{d}t) = 1 - \frac{i}{\hbar}\hat{H}\mathrm{d}t$$

where \hat{H} is a generator of time translations known as the Hamiltonian.

Note that the time evolution operator, which translates kets forward in time (i.e. $\hat{U}(t)|\psi(0)\rangle = |\psi(t)\rangle$), must be unitary in order that time evolution does not affect the normalisation of a state (i.e. to conserve probability):

$$\langle \psi(t)|\psi(t)\rangle = \langle \psi(0)|\hat{U}^{\dagger}(t)\hat{U}(t)|\psi(0)\rangle = \langle \psi(0)|\psi(0)\rangle = 1$$

$$\therefore \hat{U}^{\dagger}(t)\hat{U}(t) = 1$$

Naturally the *infinitesimal* time evolution operator must also be unitary, i.e. $\hat{U}^{\dagger}(\mathrm{d}t)\hat{U}(\mathrm{d}t) = 1$. Note the product $\hat{U}^{\dagger}(\mathrm{d}t)\hat{U}(\mathrm{d}t)$ can be expanded as follows:

$$\left(1 + \frac{i}{\hbar}\hat{H}^{\dagger}dt\right)\left(1 - \frac{i}{\hbar}\hat{H}dt\right) = 1$$
$$1 - \frac{i}{\hbar}\hat{H}dt + \frac{i}{\hbar}\hat{H}^{\dagger}dt - \frac{i^2}{\hbar^2}\hat{H}^{\dagger}\hat{H}(dt)^2 = 1$$

where $(dt)^2$ term is negligible (since it's infinitesimal) and thus:

$$1 - \frac{i}{\hbar}\hat{H}dt + \frac{i}{\hbar}\hat{H}^{\dagger}dt = 1$$

Subtracting 1 from each side and rearranging gives:

$$\frac{i}{\hbar}\hat{H}^{\dagger}dt = \frac{i}{\hbar}\hat{H}dt$$

And, cancelling like terms leaves:

$$\hat{H}^{\dagger} = \hat{H}$$

which is consistent with the condition for a Hermitian operator (that the matrix representation of the operator is equal to its adjugate transpose).

Thus it follows that the Hamiltonian operator \hat{H} is Hermitian.

II — Expectation Values for Stationary States

Townsend 4.3

Use (4.16) to verify that the expectation value of an observable A does not chage with time if the system is in an energy eigenstate (a stationary state) and \hat{A} does not depend explicitly on time.

Solution

The expectation value of an observable A in terms of its corresponding operator \hat{A} can be expressed:

$$\left\langle A\right\rangle =\left\langle \psi\right|\hat{A}\left|\psi\right\rangle$$

Under time evolution, the time-dependence of the expectation value can thus be expressed:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle A \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi(t) | \hat{A} | \psi(t) \rangle$$

Expanding the derivative (by using the product rule) gives:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle A \rangle = \left(\frac{\mathrm{d}}{\mathrm{d}t} \langle \psi(t) | \right) \hat{A} |\psi(t)\rangle + \langle \psi(t) | \hat{A} \left(\frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle\right) + \langle \psi(t) | \frac{\partial \hat{A}}{\partial t} |\psi(t)\rangle$$

where the last term on the RHS is included in case the operator \hat{A} explicitly depends on time. In this problem we assume it does not, and thus the last term can be neglected.

Note that from the Schrodinger equation:

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$
$$\therefore \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \frac{1}{i\hbar} \hat{H} |\psi(t)\rangle$$

Using this we can simplify the derivative above to read:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \langle A \rangle &= \left(\frac{1}{-i\hbar} \left\langle \psi(t) \right\rangle | \hat{H} \right) \hat{A} \left| \psi(t) \right\rangle + \left\langle \psi(t) \right| \hat{A} \left(\frac{1}{i\hbar} \hat{H} \left| \psi(t) \right\rangle \right) \\ &= \frac{i}{\hbar} \left\langle \psi(t) \right| \hat{H} \hat{A} - \hat{H} \hat{A} \left| \psi(t) \right\rangle \\ &= \frac{i}{\hbar} \left\langle \psi(t) \right| \left[\hat{H}, \hat{A} \right] \left| \psi(t) \right\rangle \end{split}$$

This is valid for any observable A as long as \hat{A} does not depend explicitly on time.

Since the Hamiltonian is the energy operator, i.e. $\langle E \rangle = \langle \psi | \hat{H} | \psi \rangle$, it follows the following eigenvalue equation:

$$\hat{H}|E\rangle = E|E\rangle$$

where $|E\rangle$ is an energy eigenstate of \hat{H} with eigenvalue E.

Thus if the system is in an energy eigenstate, its Hamiltonian \hat{H} can be replaced by the energy eigenvalue E. Substituting E for \hat{H} in the equation for $\frac{d}{dt}\langle A \rangle$ gives:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle A \rangle = \frac{i}{\hbar} \langle \psi(t) | [\hat{H}, \hat{A}] | \psi(t) \rangle$$

$$= \frac{i}{\hbar} \langle \psi(t) | [E, \hat{A}] | \psi(t) \rangle$$

$$= \frac{i}{\hbar} \langle \psi(t) | E\hat{A} - \hat{A}E | \psi(t) \rangle$$

$$= \frac{i}{E} \langle \psi(t) | \hat{A} - \hat{A} | \psi(t) \rangle = 0$$

Thus if the system is in an energy eigenstate and \hat{A} does not depend explicitly on time, the expectation value of the observable A does not depend on time either, i.e. $\frac{d}{dt}\langle A\rangle = 0$.

Note that if \hat{A} does depend on time, i.e. $\frac{\partial \hat{A}}{\partial t} \neq 0$, then $\frac{d}{dt} \langle A \rangle = \frac{\partial \hat{A}}{\partial t}$, i.e. in this case the expectation value of the observable A is governed by the explicit time-dependence of \hat{A} (provided, of course, that the system is in an energy eigenstate).

III — Spin $\frac{1}{2}$ in a Magnetic Field (a)

Townsend 4.5

A beam of spin- $\frac{1}{2}$ particles in the $|+z\rangle$ state enters a uniform magnetic field B_0 in the xz plane oriented at an angle θ with respect to the z axis. At time T later, the particles enter an SGy device. What is the probability the particles will be found with $S_y = \frac{\hbar}{2}$? Check your result by evaluating the special cases $\theta = 0$ and $\theta = \frac{\pi}{2}$.

Solution

The magnetic field in this problem can be written in terms of its components in the x and z directions as:

$$\boldsymbol{B}_0 = B_0 \sin \theta \boldsymbol{i} + B_0 \cos \theta \boldsymbol{k} = B_0 \boldsymbol{n}$$

where n is a unit vector in the direction of the magnetic field.

The Hamiltonian of a spin- $\frac{1}{2}$ particle in this magnetic field is:

$$\hat{H} = -\hat{\boldsymbol{\mu}} \cdot \boldsymbol{B}_0 = -\frac{gq}{2mc} \hat{\boldsymbol{S}} \cdot \boldsymbol{B}_0 = \frac{ge}{2mc} \hat{S}_n B_0 = \omega_0 \hat{S}_n$$

where the charge of the particle is q = -e, and $\omega_0 = \frac{geB_0}{2mc}$.

The time evolution operator in this case is:

$$\hat{U}(t) = e^{-i\hat{H}t/\hbar} = e^{-i\omega_0 \hat{S}_n t/\hbar}$$

Note since $\omega_0 t = \phi$:

$$e^{-i\omega_0 \hat{S}_n t/\hbar} = e^{-i\hat{S}_n \phi/\hbar} = \hat{R}(\phi \boldsymbol{n})$$

i.e. the Hamiltonian causes the spin to precess about $\boldsymbol{n},$ the direction of the magnetic field.

Note $\hat{S}_n = \boldsymbol{n} \cdot \hat{\boldsymbol{S}} = n_x \hat{S}_x + n_y \hat{S}_y + n_z \hat{S}_z$. In this case the magnetic field has no y-component, so \hat{S}_n is:

$$\hat{S}_n = \frac{\hbar}{2} \begin{bmatrix} n_z & n_x \\ n_x & -n_z \end{bmatrix} = \frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

where the matrix on the RHS is the Pauli spin matrix σ_n in the S_z basis, as follows:

$$\sigma_n \xrightarrow[S_z]{\cos \theta + \sin \theta \\ \sin \theta - \cos \theta}$$

The time-evolution operator can thus be written in the S_z basis as:

$$\hat{U}(t) = e^{-i\hat{S}_n\phi/\hbar} = \cos\frac{\phi}{2} - i\sigma_n\sin\frac{\phi}{2}$$

which gives:

$$\hat{U}(t) \xrightarrow{S_z} \begin{bmatrix} \cos\frac{\phi}{2} - i\sin\frac{\phi}{2}\cos\theta & -i\sin\frac{\phi}{2}\sin\theta \\ -i\sin\frac{\phi}{2}\sin\theta & \cos\frac{\phi}{2} + i\sin\frac{\phi}{2}\cos\theta \end{bmatrix}$$

Thus the state of the particle at time t is:

$$|\psi(t)\rangle = \hat{U}(t)|+z\rangle = \left[\cos\frac{\phi}{2} - i\sin\frac{\phi}{2}\cos\theta\right]|+z\rangle - i\sin\frac{\phi}{2}\sin\theta|-z\rangle$$

The probability amplitude to find the particle in state $|+y\rangle$ at time t can be expressed $\langle +y|\psi(t)\rangle$. Note that the state $|+y\rangle$ can be expressed as a superposition of the $|\pm z\rangle$ states:

$$|+y\rangle = \frac{1}{\sqrt{2}} |+z\rangle - \frac{i}{\sqrt{2}} |-z\rangle$$

Thus the probability amplitude $\langle +y|\psi(t)\rangle$ is:

$$\langle +y|\psi(t)\rangle = \frac{1}{\sqrt{2}} \left[\cos\frac{\phi}{2} - i\sin\frac{\phi}{2}\cos\theta\right] - \frac{1}{\sqrt{2}}\sin\frac{\phi}{2}\sin\theta \left|-z\right\rangle$$

And, the probability of finding the particle in $|+y\rangle$ reduces to:

$$\left| \langle +y|\psi(t)\rangle \right|^2 = \frac{1-\sin(\omega t)\sin\theta}{2}$$

In the case that $\theta = 0$, i.e. the magnetic field is completely in the z-direction, the sine terms become zero and the probability of finding a particle in $|+y\rangle$ evalues to $P = \frac{1}{2}$.

In the case that $\theta = \frac{\pi}{2}$, i.e. the magnetic field is completely in the x-direction, and the probability of finding a particle in $|+y\rangle$ evalues to $P = \frac{1-\sin(\omega t)}{2}$. Note this has a time dependency. At time T, the specific probability is $P = \frac{1-\sin(\omega T)}{2}$.

III — Spin $\frac{1}{2}$ in a Magnetic Field (b)

Townsend 4.8

A spin- $\frac{1}{2}$ particle, initially in a state with $S_n = \frac{\hbar}{2}$ with $\mathbf{n} = \sin \theta \mathbf{i} + \cos \theta \mathbf{k}$, is in a constant magnetic field B_0 in the z direction. Determine the state of the particle at time t and determine how $\langle S_x \rangle$, $\langle S_y \rangle$, and $\langle S_z \rangle$ vary with time. Hint: you can make use of the general spin states from problems 1.3 and 1.6.

Solution

The Hamiltonian for a spin- $\frac{1}{2}$ particle in a magnetic field $\mathbf{B}_0 = B_0 \mathbf{k}$ (i.e. the z-direction) is given by:

$$\hat{H} = \omega_0 \hat{S}_z$$

where $\omega_0 = \frac{geB_0}{2mc}$. The time evolution operator is given by:

$$\hat{U}(t) = e^{-i\hat{H}t/\hbar} = e^{-i\omega_0\hat{S}_z t/\hbar} = e^{-iS_z\phi/\hbar} = \hat{R}(\phi \mathbf{k})$$

where $\phi = \omega_0 t$. Thus the Hamiltonian causes the spin to precess about the z-axis.

In this case the particle is initially in the state $|+n\rangle$, i.e. $|\psi(0)\rangle = |+n\rangle$. Since the magnetic field points in the z-direction, it is useful to express the initial state $|+n\rangle$ as a superposition of states $|\pm z\rangle$ (the eigenstates of the Hamiltonian):

$$|+n\rangle = \cos\frac{\theta}{2}|+z\rangle + \sin\frac{\theta}{2}|-z\rangle$$

Thus the initial state of the particle can be expressed:

$$|\psi(0)\rangle = |+n\rangle = \cos\frac{\theta}{2}|+z\rangle + \sin\frac{\theta}{2}|-z\rangle$$

The state of the particle at time t is:

$$\begin{aligned} |\psi(t)\rangle &= \hat{U}(t) |\psi(0)\rangle \\ &= e^{-i\hat{H}t/\hbar} \bigg(\cos\frac{\theta}{2} |+z\rangle + \sin\frac{\theta}{2} |-z\rangle \bigg) \\ &= e^{-i\omega_0 t/2} \cos\frac{\theta}{2} |+z\rangle + e^{i\omega_0 t/2} \sin\frac{\theta}{2} |-z\rangle \end{aligned}$$

The expected value of S_x is given by $\langle S_x \rangle = \langle \psi(t) | \hat{S}_x | \psi(t) \rangle$, where $\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Expanding this product:

$$\langle S_x \rangle = \left(e^{i\omega_0 t/2} \cos \frac{\theta}{2} \langle +z| + e^{-i\omega_0 t/2} \sin \frac{\theta}{2} \langle -z| \right) \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \left(e^{-i\omega_0 t/2} \cos \frac{\theta}{2} | +z \rangle + e^{i\omega_0 t/2} \sin \frac{\theta}{2} | -z \rangle \right)$$

$$= \frac{\hbar}{2} \left(e^{i\omega_0 t} \sin \frac{\theta}{2} \cos \frac{\theta}{2} + e^{-i\omega_0 t} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \right)$$

$$= \frac{\hbar}{2} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cdot 2 \cos(\omega_0 t) = \frac{\hbar}{2} \sin \theta \cos(\omega_0 t)$$

$$\therefore \langle S_x \rangle = \frac{\hbar}{2} \sin \theta \cos(\omega_0 t)$$

The expected value of S_y is given by $\langle S_y \rangle = \langle \psi(t) | \hat{S}_y | \psi(t) \rangle$, where $\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$. Expanding this product, using a similar method to above:

$$\langle S_y \rangle = (\dots) \hat{S}_y (\dots)$$

$$= \frac{i\hbar}{2} \left(e^{-i\omega_0 t} \sin \frac{\theta}{2} \cos \frac{\theta}{2} - e^{-i\omega_0 t} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \right)$$

$$= \frac{i\hbar}{2} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cdot (-2i \sin(\omega_0 t))$$

$$= \frac{\hbar}{2} \sin \theta \sin(\omega_0 t)$$

The expected value of S_z is given by $\langle S_z \rangle = \langle \psi(t) | \hat{S}_z | \psi(t) \rangle$, where $\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Expanding this product, using a similar method to above:

$$\langle S_z \rangle = (\dots) \hat{S}_z (\dots)$$

$$= \frac{i\hbar}{2} \left(e^{-i\omega_0 t} \sin \frac{\theta}{2} \cos \frac{\theta}{2} - e^{-i\omega_0 t} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \right)$$

$$= \frac{\hbar}{2} \left(\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} \right)$$

$$= \frac{\hbar}{2} \cos \theta$$

Thus:

$$\langle S_x \rangle = \frac{\hbar}{2} \sin \theta \cos(\omega_0 t) \quad \langle S_y \rangle = \frac{\hbar}{2} \sin \theta \sin(\omega_0 t) \quad \langle S_z \rangle = \frac{\hbar}{2} \cos \theta$$

Naturally, since \hat{S}_z commutes with the Hamiltonian, the expectation value of S_z is constant and does not depend on time. But the converse is true for the expectation values of S_x and S_y , whose operators do not commute with the Hamiltonian, and thus exhibit time-dependence.

IV — Time Evolution of a 3-State System

Townsend 4.13

Let

$$\begin{bmatrix} E_0 & 0 & A \\ 0 & E_1 & 0 \\ A & 0 & E_0 \end{bmatrix}$$

be the matrix representation of the Hamiltonian for a three-state system with basis states $|1\rangle$, $|2\rangle$, and $|3\rangle$.

(a) if the state of the system at time t=0 is $|\psi(0)\rangle=|2\rangle$, what is $|\psi(t)\rangle$? (b) if the state of the system at time t=0 is $|\psi(0)\rangle=|3\rangle$, what is $|\psi(t)\rangle$?

Solution

The Hamiltonian operator satisfies the following eigenvalue equation:

$$\hat{H}|E\rangle = E|E\rangle$$

where $|E\rangle$ is an energy eigenstate of \hat{H} with eigenvalue E.

Using the matrix representation of \hat{H} given above, the eigenstates and eigenvalues can be computed by solving the eigenvalue equation. First, rearranging the equation:

$$(\hat{H} - \mathbf{I}E) |E\rangle = 0$$

where I is the identity matrix. In matrix form this equation is:

$$\begin{bmatrix} E_0 - E & 0 & A \\ 0 & E_1 - E & 0 \\ A & 0 & E_0 - E \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

Taking the determinant of the matrix $(\hat{H} - IE)$:

$$\begin{bmatrix} E_0 - E & 0 & A \\ 0 & E_1 - E & 0 \\ A & 0 & E_0 - E \end{bmatrix}_{\text{det.}}$$
$$= (E_0 - E)(E_1 - E)(E_0 - E) - A^2(E_1 - E) = 0$$

Which gives three the eigenvalues $E = \{E_1, E_0 + 1, E_0 - A\}.$

Setting $E = E_1$ and substituting:

$$\begin{bmatrix} E_0 - E_1 & 0 & A \\ 0 & E_1 - E_1 & 0 \\ A & 0 & E_0 - E_1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

gives the following three equations:

$$(E_0 - E_1)a + Ac = 0$$

 $(E_1 - E_1)b = 0$
 $Aa + (E_0 - E_1)c = 0$

This is only possible if b = 1 and a = c = 0. Thus the eigenstate corresponding to the eigenvalue $E = E_1$ is:

$$|E_1\rangle = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

Note this corresponds to the basis state $|2\rangle$, thus:

$$|E_1\rangle = |2\rangle$$

Next, setting $E = E_0 + A$ and substituting:

$$\begin{bmatrix} -A & 0 & A \\ 0 & E_1 - E_0 - A & 0 \\ A & 0 & -A \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

gives the following three equations:

$$-Aa + Ac = 0$$
$$(E_1 - E_0 - A)b = 0$$
$$Aa - Ac = 0$$

Thus is only possible if a = c and b = 0. Requiring that the vector be normalized also pulls out a factor of $\frac{1}{\sqrt{2}}$. Thus the eigenstate corresponding to the eigenvalue $E = E_0 + A$ is:

$$|E_0 + A\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

Noting that this can also be written:

$$|E_0 + A\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0 \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

means this eigenstate is a superposition of the basis states $|1\rangle$ and $|3\rangle$:

$$|E_0 + A\rangle = \frac{1}{\sqrt{2}}|1\rangle + \frac{1}{\sqrt{2}}|3\rangle$$

Next, setting $E = E_0 - A$ and substituting:

$$\begin{bmatrix} A & 0 & A \\ 0 & E_1 - E_0 + A & 0 \\ A & 0 & A \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

gives the following three equations:

$$Aa + Ac = 0$$
$$(E_1 - E_0 + A)b = 0$$
$$Aa + Ac = 0$$

This is only possible if a = -c and b = 0. Again, requiring that the vector be normalized pulls out a factor of $\frac{1}{\sqrt{2}}$. Thus the eigenstate corresponding to the eigenvalue $E = E_0 - A$ is:

$$|E_0 - A\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0 \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\0\\-1 \end{bmatrix}$$

i.e. this eigenstate is also a superposition of the basis states $|1\rangle$ and $|3\rangle$:

$$|E_0 - A\rangle = \frac{1}{\sqrt{2}}|1\rangle - \frac{1}{\sqrt{2}}|3\rangle$$

If the initial state is $|2\rangle$:

$$|\psi(0)\rangle = |2\rangle$$

the eigenvalue is simply E_1 , and it follows that:

$$|\psi(t)\rangle = e^{-i\hat{H}t/\hbar} |E_1\rangle$$

$$|\psi(t)\rangle = e^{-iE_1t/\hbar} \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

If the initial state is $|3\rangle$:

$$|\psi(0)\rangle = |3\rangle$$

This state can be written as the following superposition:

$$|3\rangle = \frac{1}{\sqrt{2}}|E_0 + A\rangle + \frac{1}{\sqrt{2}}|E_0 - A\rangle$$

Thus at time t the state of the system is:

$$|\psi(t)\rangle = \frac{e^{-i(E_0+A)t/\hbar}}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix} - \frac{e^{-i(E_0-A)t/\hbar}}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$

${f V}$ — Spin $rac{3}{2}$ in a Magnetic Field

Townsend 4.15

If the Hamiltonian for a spin- $\frac{3}{2}$ particle is given by

$$\hat{H} = \omega_0 \hat{S}_x$$

and at time $t = 0 |\psi(0)\rangle = \left|\frac{3}{2}, \frac{3}{2}\right\rangle$, determine the probability that the particle is in the state $\left|\frac{3}{2}, -\frac{3}{2}\right\rangle$ at time t. Evaluate this probability when $t = \frac{\pi}{\omega_0}$ and explain your result. Suggestion: See problem 3.23 for the eigenstates of \hat{S}_x .

Solution

For a spin- $\frac{3}{2}$ particle there are four spin states, $\left|\frac{3}{2},\frac{3}{2}\right\rangle$, $\left|\frac{3}{2},\frac{1}{2}\right\rangle$, $\left|\frac{3}{2},-\frac{1}{2}\right\rangle$, and $\left|\frac{3}{2},-\frac{3}{2}\right\rangle$. For this particle, whose Hamiltonian has eigenstates in the S_x basis, the representation of these four states in the S_z basis is given by:

$$\begin{vmatrix} \frac{3}{2}, \frac{3}{2} \rangle_x \longrightarrow \frac{1}{2\sqrt{2}} \begin{bmatrix} 1\\\sqrt{3}\\\sqrt{3}\\1 \end{bmatrix} \qquad \begin{vmatrix} \frac{3}{2}, \frac{1}{2} \rangle_x \longrightarrow \frac{1}{2\sqrt{2}} \begin{bmatrix} \sqrt{3}\\1\\-1\\-\sqrt{3} \end{bmatrix}$$
$$\begin{vmatrix} \frac{3}{2}, -\frac{1}{2} \rangle_x \longrightarrow \frac{1}{2\sqrt{2}} \begin{bmatrix} \sqrt{3}\\-1\\-1\\\sqrt{3} \end{bmatrix} \qquad \begin{vmatrix} \frac{3}{2}, -\frac{3}{2} \rangle_x \longrightarrow \frac{1}{2\sqrt{2}} \begin{bmatrix} 1\\-\sqrt{3}\\\sqrt{3}\\-1 \end{bmatrix}$$

For this particle, at time t the state is given by:

$$|\psi(t)\rangle = e^{-i\hat{H}t/\hbar} |\psi(0)\rangle$$

where in this case $|\psi(0)\rangle = \left|\frac{3}{2}, \frac{3}{2}\right\rangle$. It is convenient to represent this state in the S_z basis as:

$$\left|\frac{3}{2},\frac{3}{2}\right\rangle_{x} = \frac{1}{2\sqrt{2}}\left|\frac{3}{2},\frac{3}{2}\right\rangle_{z} + \frac{\sqrt{3}}{2\sqrt{2}}\left|\frac{3}{2},\frac{1}{2}\right\rangle_{z} + \frac{\sqrt{3}}{2\sqrt{2}}\left|\frac{3}{2},-\frac{1}{2}\right\rangle_{z} + \frac{1}{2\sqrt{2}}\left|\frac{3}{2},-\frac{3}{2}\right\rangle_{z}$$

Thus at time t, applying the time evolution operator, the state of the particle is:

$$\begin{split} |\psi(t)\rangle &= e^{-i\hat{H}t/\hbar} \Biggl(\frac{1}{2\sqrt{2}} \left| \frac{3}{2}, \frac{3}{2} \right\rangle_z + \frac{\sqrt{3}}{2\sqrt{2}} \left| \frac{3}{2}, \frac{1}{2} \right\rangle_z \\ &+ \frac{\sqrt{3}}{2\sqrt{2}} \left| \frac{3}{2}, -\frac{1}{2} \right\rangle_z + \frac{1}{2\sqrt{2}} \left| \frac{3}{2}, -\frac{3}{2} \right\rangle_z \Biggr) \\ &= \frac{e^{-3i\omega_0 t/2}}{2\sqrt{2}} \left| \frac{3}{2}, \frac{3}{2} \right\rangle_z + \frac{\sqrt{3}e^{-i\omega_0 t/2}}{2\sqrt{2}} \left| \frac{3}{2}, \frac{1}{2} \right\rangle_z \\ &+ \frac{\sqrt{3}e^{i\omega_0 t/2}}{2\sqrt{2}} \left| \frac{3}{2}, -\frac{1}{2} \right\rangle_z + \frac{e^{3i\omega_0 t/2}}{2\sqrt{2}} \left| \frac{3}{2}, -\frac{3}{2} \right\rangle_z \end{split}$$

The probability amplitude to find the particle in state $\left|\frac{3}{2}, -\frac{3}{2}\right\rangle$ is:

$$\left\langle \frac{3}{2}, -\frac{3}{2} \middle| \psi(t) \right\rangle$$

where the bra vector $\langle \frac{3}{2}, -\frac{3}{2} |$ in the S_z basis is:

$$\left\langle \frac{3}{2}, -\frac{3}{2} \right|_{x} = \left(\frac{1}{2\sqrt{2}} \left\langle \frac{3}{2}, \frac{3}{2} \right|_{z} - \frac{\sqrt{3}}{2\sqrt{2}} \left\langle \frac{3}{2}, \frac{1}{2} \right|_{z} + \frac{\sqrt{3}}{2\sqrt{2}} \left\langle \frac{3}{2}, -\frac{1}{2} \right|_{z} - \frac{1}{2\sqrt{2}} \left\langle \frac{3}{2}, -\frac{3}{2} \right|_{z} \right)$$

Taking the product $\langle \frac{3}{2}, -\frac{3}{2} | \psi(t) \rangle$ gives the probability amplitude as:

$$\left[\frac{1}{2\sqrt{2}} - \frac{\sqrt{3}}{2\sqrt{2}} \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}\right] \begin{bmatrix} \frac{e^{-3i\omega_0t/2}}{2\sqrt{2}} \\ \frac{\sqrt{3}e^{-i\omega_0t/2}}{2\sqrt{2}} \\ \frac{2\sqrt{2}}{2\sqrt{2}} \\ \frac{e^{3i\omega_0t/2}}{2\sqrt{2}} \end{bmatrix} \\
= \frac{e^{-3i\omega_0t/2}}{8} - \frac{3e^{-i\omega_0t/2}}{8} + \frac{3e^{i\omega_0t/2}}{8} - \frac{e^{3i\omega_0t/2}}{8}$$

Setting $t = \frac{\pi}{\omega_0}$, this amplitude becomes zero.

Thus the probability that the particle is in the state $\left|\frac{3}{2}, -\frac{3}{2}\right\rangle$ at time t is zero. This makes sense as the states $\left|\frac{3}{2}, -\frac{3}{2}\right\rangle$ and $\left|\frac{3}{2}, \frac{3}{2}\right\rangle$ are orthogonal.