CLAIMS

What is claimed is:

1	1. A machine implemented method comprising:
2	accessing rows in a table, where
3	each row in the table corresponds to a dimension value combination and
4	a location at which each row is stored is determined based on the dimension
5	value combination to which the row corresponds; and
6	wherein the accessing of the rows also includes, in response to receiving a request for
7	a row corresponding to a particular dimension value combination, using the
8	particular dimension value combination for calculating the location of the
9	particular row.
1	2. The method of claim 1, wherein
2	the dimension value combination includes values for one or more dimensions, and
3	the table does not include columns for storing values for the one or more dimensions.
1	3. The method of claim 1, wherein said table includes a plurality of segments, and
2	wherein each segment stores rows for a contiguous range of dimension value
3	combinations.
1	4. The method of claim 3, further comprising creating an indexed organized table
2	(IOT) that includes
3	an entry for each segment in the plurality of segments, and
4	the calculating of the position of the particular row is based in part on
5	information contained in the entry that corresponds to the segment that
6	contains the particular row.

1	5. The method of claim 3,
2	wherein sizes of the plurality segments and locations contained within the plurality of
3	segments are allocated according to a density of discontinuities in ranges of
4	dimension value combinations
1	6. The method of claim 3, further comprising accessing an indexed organized table
2	(IOT) that includes an entry for each segment in the plurality of segments; and
3	the calculating of the position of the particular row is based in part on
4	information contained in the entry that corresponds to the segment that
5	contains the particular row.
1	7. The method of claim 6, wherein the index organized table includes nonkey
2	information used for determining locations of gaps in ranges of dimension
3	value combinations that are between the segments.
1	8. The method of claim 6, wherein at least one of the plurality of segments includes
2	more than one contiguous range of dimension value combinations.
1	9. The method of claims 6, wherein at least one of the plurality of segments
2	comprises at least two contiguous range of dimension value combinations that
3	are joined together by at least one dummy entry in the table, therein forming
4	one contiguous range of dimension value combinations.
1	10. The method of claim 6, wherein the at least two of the plurality of segments are
2	each divided into blocks having a block size, and the block size of a first of
3	the at least two of the plurality of segments is different from the block size of
4	a second of the at least two of the plurality of segments.

ORACLE CONFIDENTIAL

1	11. The method of claim 5, wherein the IOT includes an identification of a reference
2	location for each segment of the plurality of segments from which offsets
3	from the reference location are calculated to reach other locations in each of
4	the segments.
1	12. The method of claim 3, wherein each of the plurality of segments is divided into
2	one or more blocks of equal size.
1	13. The method of claim 1, wherein the accessing of the location of interest is also
2	performed by at least accessing a table having an identification of a dimension
3	value of a reference location included in the block from which offsets are
4	calculated to other locations.
1	14. The method of claim 13, wherein the reference location is an index value of a
2	first of location within a segment that stores rows for a contiguous range of
3	dimension value combinations.
l	15. The method of claim 13, wherein the table having the identification is a B-tree
2	index.
l	16. The method of claim 13, wherein the table having the identification is a bit map
2	index.
l	17. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 1.

1	18. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 2.
1	19. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 3.
1	20. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 4.
1	21. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 5.
1	22. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 6.
1	23. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 7.
1	24. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 8.

1	25. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 9.
1	26. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 10.
1	27. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 11.
1	28. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 12.
1	29. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 13.
1	30. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 14.
1	31. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 15.

ORACLE CONFIDENTIAL

1	32. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 16
1	33. A computer-readable medium carrying one or more sequences of instructions,
2	which when executed by one or more processors, causes the one or more
3	processors to perform the method recited in Claim 17
1	34. A system comprising a computer readable media system including one or more
2	computer readable media, the computer readable media system having stored
3	therein at least:
4	a table storing data on the computer readable media that corresponds to locations
5	associated with at least one dimension value;
6	wherein the data items are stored in the table in an order dictated by the data values to
7	which the data items correspond; and
8	wherein the table does not store values for the particular dimension.
1	35. The system of claim 34, wherein all of the locations of the table that have non-
2	null values are organized into one or more segments, each segment including
3	a contiguous region of data without discontinuities in the dimensions.
1	36. The system of claim 35, wherein the table has associated with it at least one
2	dimension value combination
3	that is associated with a null value, and
4	that is not included in any of the one or more segments.

ORACLE CONFIDENTIAL

1	37. The system of claim 36, wherein the computer readable media system also has
2	stored therein at least:
3	another table storing identifiers for determining the locations stored within each
4	segment of the one or more segments.