Prova-01

Prof. Dr. Gustavo Teodoro Laureano Prof. Dr. Thierson Rosa Couto

Sumário

1	Número de finais (++)	2
2	Tempo de jogo em minutos (++)	3
3	Cálculo da raiz quadrada (+++)	4
4	Índices da matriz inferior (+++)	5

1 Número de finais (++)

Em um campeonato de futebol os times são nomeados como Time1, Time2, ..., TimeN. A organização do campeonato deseja saber quais são as finais possíveis dado a quantidade N de times. Para resolver esse problema, você foi contratado para fazer um programa de computador que, dada a quantidade N de times, imprima todas as configurações possíveis de finais.

Entrada

O programa deve ler um número N, inteiro e positivo, referente à quantidade de times do campeonato.

Saída

O programa deve apresentar na tela a sequência de finais com cada linha no formato: Final k: Timei X Timej, onde k é um contador de finais, i e j são as denominações de cada time. Caso o número de times informado for menor que 2, então o programa deve imprimir a mensagem: "Campeonato invalido!".

Entrada				
3				
Saída				
Final	1:	Time1	Χ	Time2
Final	2:	Time1	Χ	Time3
Final	3 :	Time2	Χ	Time3

Entrada	
1	
Saída	
Campeonato	invalido!

2 Tempo de jogo em minutos (++)

Faça um programa que leia o horário de início e término de um jogo, em horas e minutos (hora inicial, minuto inicial, hora final, minuto final). Em seguida, imprima a duração do jogo, sabendo que o jogo pode começar em um dia e terminar em outro dia.

Saída

Quatro números inteiros representando o horário de início e término do jogo.

Observações

Imprima a duração do jogo em horas e minutos, neste formato: "O JOGO DUROU XXX HORA(S) E YYY MINUTO(S)". O que significa: o jogo durou XXX hora(s) e YYY minutos.Leia o horário de início e término de um jogo, em horas e minutos (hora inicial, minuto inicial, hora final, minuto final). Em seguida, imprima a duração do jogo, sabendo que o jogo pode começar em um dia e terminar no dia seguinte.

Entrada	Saída		
7 10 8 9	O JOGO DUROU O HORA(S) E 59 MINUTO(S)		

Entrada	Saída		
7 8 9 10	O JOGO DUROU 2 HORA(S) E 2 MINUTO(S)		

Entrada	Saída		
7 7 7 7	O JOGO DUROU 24 HORA(S) E 0 MINUTO(S)		

3 Cálculo da raiz quadrada (+++)

Os Babilônios utilizavam um algoritmo para aproximar uma raiz quadrada de um número qualquer, da seguinte maneira:

Dado um número n, para calcular $r=\sqrt{n}$ assume-se uma aproximação inicial $r_0=1$ e calcula-se r_k para $k=1,\ldots,\infty$ até que $r_k^2\approx n$. O algoritmo deve realizar a aproximação enquanto $|n-r_k^2|>e$. O método babilônico é dado pela seguinte equação:

$$r_k = \frac{r_{k-1} + \frac{n}{r_{k-1}}}{2} \tag{1}$$

Entrada

O programa deve ler um número **double** n, cuja raiz quadrada deseja-se obter, e o erro e que deverá ser considerado pelo algoritmo.

Saída

A saída deve apresentar cada iteração do algoritmo, sendo cada linha composta pelo valor aproximado da raiz quadrada de *n* com 9 casas decimais, seguido do erro, também com 9 casas decimais.

Ent	rada		
2			
0.0	0001		
Saíd	la		
r:	1.500000000,	err:	0.250000000
r:	1.416666667,	err:	0.006944444
r:	1.414215686,	err:	0.000006007

4 Índices da matriz inferior (+++)

Faça um algoritmo em linguagem C que apresente os pares de índices inferiores à diagonal principal de uma matriz $m \times n$. A diagonal principal corresponde aos elementos $a_{i,i}$.

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$
(2)

Entrada

O programa deve ler as dimensões m e n da matriz, onde m é o número de linhas e n o número de colunas.

Saída

O programa deve apresentar em cada linha os pares de índices de uma mesma linha. Os pares devem ser apresentados entre parênteses e separados por um ífen.

Entrada	
3	
3	
Saída	
(2,1)	
(3,1)-(3,2)	

Entrada	
6	
3	
Saída	
(2,1)	
(3,1)-(3,2)	
(4,1)-(4,2)-(4,3)	
(5,1)-(5,2)-(5,3)	
(6,1)-(6,2)-(6,3)	

Entrada	
5	
2	
Saída	
(2,1)	
(3,1) - (3,2)	
(4,1) - (4,2)	
(5,1) - (5,2)	