Symmetry breaking in competing single-well linear-nonlinear potentials

D. A. Zezyulin¹, M. E. Lebedev^{2,3}, G. L. Alfimov^{2,4}, B. A. Malomed^{1,5}

¹ITMO University, St. Petersburg, Russia

²Institute of Mathematics RAS, Ufa, Russia

³All-Russian Institute for Scientific and Technical Information RAS, Moscow, Russia

⁴MIEE University, Zelenograd, Moscow, Russia

⁵Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel

15 Aug. 2018 Tashkent, Uzbekistan

Setup

One-dimentional Gross-Pitaevskii equation:

$$i\Psi_t = -\Psi_{xx} + V(x)\Psi - P(x)|\Psi|^2\Psi, \quad V(x), P(x) \in \mathbb{R}.$$

Optics: implanting nonlinearity-inducing dopants¹.

BEC: locally applied Feshbach resonance².

- $\triangleright V(x)$ linear potential;
- \triangleright P(x) nonlinear (pseudo) potential.

Stationary localized nonlinear modes:
$$\| \begin{array}{c} \Psi(t,x) = e^{-i\mu x} u(x) \\ \lim_{x \to \infty} u(x) = 0 \end{array}$$

¹J. Hukriede, D. Runde, and D. Kip, Phys. D **36**, R1-R16 (2003)

²D. M. Bauer, M. Lettner, C. Vo, G. Rempe and S. Dürr, Nature Phys. 5, 339-342 (2009)

SSB

Spontaneous symmetry breaking (SSB) — type of bifurcation when one symmetric solution loses its stability and two stable asymmetric solutions arise.

SSB: examples (1)

GNLS (Generalized NLS), V(x) – double-well³:

$$i\Psi_t = -\Psi_{xx} + V(x)\Psi - |\Psi|^2\Psi + 0.25|\Psi|^4\Psi.$$

³ Jianke Yang, Phys. D **244**, 50-67 (2013)

SSB: examples (2)

2D GNLS, V(x, y) – double-well³:

$$i\Psi_t = -\Psi_{xx} - \Psi_{yy} + V(x, y)\Psi + |\Psi|^2\Psi.$$

³ Jianke Yang, Phys. D **244**, 50-67 (2013)

SSB: examples (3)

NLS,
$$V(x) = 0$$
, $P(x) - double-well4:$

$$i\Psi_t = \Psi_{xx} + P(x)|\Psi|^2\Psi.$$

⁴T. Mayteevarunyoo, B. A. Malomed, and G. Dong, Phys. Rev. A **78**, 053601 (2008)

SSB without double-well structure?

$$i\Psi_t = -\Psi_{xx} + V(x)\Psi - P(x)|\Psi|^2\Psi;$$

$$V(x) = \frac{1}{2}\omega^2x^2, \quad P(x) = 1 + A\tanh^2x.$$

Interplay between linear and nonlinear potentials?

(γ_+, γ_-) diagrams⁵

$$u_{xx} + (\mu - V(x))u + P(x)u^3 = 0;$$
 (1)

$$S_{+} = \{u(x) | \lim_{x \to +\infty} u(x) = 0\}; \quad u(x) \sim C_{+} x^{\frac{1}{2}(\mu - 1)} e^{-\frac{\omega^{2} x^{2}}{4}}.$$

⁵G. L. Alfimov and D. A. Zezyulin, Nonlinearity **20**, 2075–2092 (2007)

(γ_+, γ_-) diagrams

$$S_{-} = \{u(x) | \lim_{x \to -\infty} u(x) = 0\}; \quad u(x) \sim C_{-}(-x)^{\frac{1}{2}(\mu - 1)} e^{-\frac{\omega^{2}x^{2}}{4}}$$

$$u(x)$$
 - localized $\leftrightarrow u(x) \in S_+ \cap S_-;$
 $u(0) = u_+(0; C_+) = u_-(0; C_-), \quad u'(0) = u'_+(0; C_+) = u'_-(0; C_-).$

$$(\gamma_+, \gamma_-)$$
 diagrams
 $\gamma_+ = \{(u_+(0; C_+); u'_+(0; C_+)), C_+ \in [-\tilde{C}_+, \tilde{C}_+]\};$
 $\gamma_- = \{(u_-(0; C_-); u'_-(0; C_-)), C_- \in [-\tilde{C}_-, \tilde{C}_-]\}$

Properties:

- ▶ each point of intersection $\gamma_+ \cap \gamma_-$ corresponds to a solution;
- ▶ symmetry of equation $x \to -x$ leads to a symmetry of γ_{\pm} curves about u' axis;
- intersections of γ_{\pm} with u, u' axes correspond to even and add localized modes.

Application: $\mu = 0$, A = 2

Application: $\mu = 0$, A = 2

Application: $\mu = 0$, A = 2

Application: $\mu = -0.5$, A = 2

Application: $\mu = -0.8$, A = 2

Application: $\mu = -1.1$, A = 2

SSB bifurcation?

Stability

Considering eqigenvalue problem for operator⁵:

$$\mathcal{L} = i \begin{pmatrix} 0 & \mathcal{L}_{-} \\ \mathcal{L}_{+} & 0 \end{pmatrix} \tag{2}$$

where
$$\mathcal{L}_{\pm} = \frac{d^2}{dx^2} + \mu - \frac{1}{2}\omega^2 x^2 + +(2\pm 1)P(x)u^2$$
.

⁶Jianke Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Society of Industrial and Applied Mathematics (2010)

SSB bifurcation

$$N = \int_{-\infty}^{+\infty} u^2(x) dx, \quad X_c = N^{-1} \int_{-\infty}^{+\infty} x u^2(x) fx$$

Evolution of unstable symmetric mode

Unbounded nonlinear potential

$$V(x) = \frac{1}{2}\omega^2 x^2$$
; $P(x) = 1 + Ax^2$

Conclusion

▶ GPE equation with signle-well linear and nonlinear potentials was considered:

$$i\Psi_t = -\Psi_{xx} + V(x)\Psi - P(x)|\Psi|^2\Psi, \quad V(x), P(x) \in \mathbb{R}.$$

- Method of (γ_+, γ_-) diagrams helps us to understand the structure of nonlinear modes for this case.
- SSB bifurcation was found.

Symmetry breaking in competing single-well linear-nonlinear potentials

Dmitry A. Zezyulin, Mikhail E. Lebedev, 2,3 Georgy L. Alfimov, 2,4 and Boris A. Malomed 5,1 11TMO University, St. Petersburg 197101, Russia

²Institute of Mathematics with Computer Center, Ufa Scientific Center, Russian Academy of Sciences,

Chernyshevskii str., 112, Ufa 450008, Russia

³ All-Russian Institute for Scientific and Technical Information, Russian Academy of Sciences, 20 Usievich str, Moscow, 125190, Russia
⁴ Moscow Institute of Electronic Engineering, Zelenograd, Moscow, 124498, Russia

SDepartment of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel

(Received 7 August 2018; published 17 October 2018)

⁷D. A. Zezyulin, M. E. Lebedev, G. L. Alfimov, and Boris A. Malomed, Phys. Rev. E **98**, 042209 (2018)

Thanks for your attention!