第三章 函数

第三章函数

- 3.1 基本概念
- 3.2 函数的复合(合成)
- 3.3 逆函数
- 3.4 集合的特征函数

早期函数概念(几何函数); 18世纪函数概念(代数函数):19世纪函数概念(变量函数).

1、早期的函数概念来源于人们迫切需要了解日月星辰的运动规律

17世纪,伽俐略(Galileo, 1564-1642)在《两门新科学》一书,提出了函数或称为变量关系的概念 1673年前后笛卡尔(Descartes, 1596-1650)研究解析几何,注意到一个变量对另一个变量的依赖关系

真正函数概念: 莱布尼兹1673 年首次使用"function"表示 "幂",后用该词表示曲线上 点的横坐标、纵坐标、切线长 等曲线上点的有关几何量

2、函数符号f(x)瑞士数学家欧拉 (Euler, 1707-1783)在1724年 提出. 其后, 1748年,欧拉在其 《无穷分析引论》一书中把函数定 义为由一个变量与一些常量通过任 何方式形成的解析表达式

18世纪,函数概念进入代数函数阶段,当时占主导观点:把函数理解为一个解析表达式.瑞士数学家约翰贝努利(Johann Bernoulli, 1667—1748)在1718年对莱布尼兹函数概念从代数角度重新定义:由变量x和常量用任何方式构成的量都可称为x函数,首次强调函数用式子表示.

到19世纪时,函数概念的发展已经渐渐完善,进入到变量函数阶段. 1821年,法国数学家柯西(Cauchy,1789—1857)从变量角度给出了函数的定义 进人20世纪以后,德国数学家康托(Cantor, 1845—1918) 创立的集合论基础上,对函数概念的认识又有了进一步的深化. 1930年,美国数学家维布伦(Veblen, 1880—1960) 用"集合"和"对应"的概念给出了现代函数的定义,通过集合概念把函数的对应关系、定义域和值域进一步具体化了,且打破了"变量是数"的极限,变量可以是数,也可以是其它任何对象.

3.1 基本概念

特殊性质的函数: 单射(内射)、满射、双射

二元关系 单值性 f 从X 到Y 的 dom(f) = X f 从X 到Y 的函数 $f: X \to Y$

定义域dom(R)/ dom(f) 值域 ran(R)/ ran(f) 像 f[A], $A \subseteq X$ 源像 $f^{-1}[B]$, $B \subseteq Y$

函数的限制 $f|_{A}=f\cap (A\times Y),$ $A\subseteq X$

函数是一种特殊类型的二元关系,见下列关系:设 f_1, f_2 是从 $\{a, b, c\}$ 到 $\{1, 2\}$ 的关系

$$f_1 = \{ \langle a, 2 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle \}$$
 是函数 $f_2 = \{ \langle a, 2 \rangle, \langle b, 2 \rangle, \langle a, 1 \rangle \}$ 不是函数

单值性

3.1.1 部分函数

定义1 (部分函数) 如果从集合 X 到 Y 的二元关系 f 是 "单值"的,即 f 满足以下条件:

若 $< x, y_1 > \in f$ 且 $< x, y_2 > \in f$, 则 $y_1 = y_2$,

就称f为从X到Y的部分函数.

- 若f是部分函数且 $\langle x, y \rangle \in f$,则称
 - □ y是 f 在x处的值(在f 作用下x的像点),记为y = f(x),
 - \square x 为 y 的一个源像点.

re.

例:下列关系中哪些是部分函数?对于不是部分函数的关系,说明不能构成部分函数的原因.

- (1) $\{ \langle x, y \rangle | x, y \in N \coprod x + y \langle 10 \};$
- (2) $\{ \langle x, y \rangle | x, y \in R \perp x^2 \};$
- (3) $\{ \langle x, y \rangle | x, y \in R \perp y^2 = x \}$

解: (1) 不是部分函数: 存在<0, 1>, <0, $2> \in f$, 01 $\neq 2$.

- (2) 是部分函数;
- (3)不是部分函数:存在<4, 2>, <4, $-2> \in f$, 但 $2 \neq -2$.

3.1.2 定义域与值域

设f为从集合X到Y的部分函数,则

- f 的定义域 dom (f):
 - $dom(f) = \{x \in X \mid \exists y \in Y \notin y = f(x) \subseteq X\}$
- ✓ 若 $x \in \text{dom}(f)$, 就称 $f \in x$ 处有定义, 记为 "f(x)」"; 否则称 $f \in x$ 处无定义, 记为 "f(x)↑"。
- f 的值域 ran f: ran $f = \{ y \in Y \mid \exists x \in X \notin y = f(x) \} \subseteq Y$
- 单值性: 对每个 $x \in \text{dom } f$, 都有唯一的 $y \in \text{ran } f$, 使得 $\langle x, y \rangle \in f$ 。

3.1.3 函数

定义2 设f为从集合X到集合Y的部分函数.

- 1) 若 dom f = X, 则称 f 为从 X 到 Y 的全函数,
- 简称 f 为从 X 到 Y 的函数,记为 $f: X \to Y$.
- 2) 若 $dom f \subset X$, 则称 f 为从 X 到 Y 的严格部分函数.
- 3) 若 ran f = Y, 则称 f 为从 X 到 Y 上的部分函数.
- 4) 若 $ran f \subset Y$, 则称 f 为从 X 到 Y 内的部分函数.
- 5) 若对任意的 $x_1, x_2 \in \text{dom } f$,

当 $x_1 \neq x_2$ 时,皆有 $f(x_1) \neq f(x_2)$,

则称 f 为从 X 到 Y的 1-1 部分函数.

(即: 当 $f(x_1) = f(x_2)$ 时, 皆有 $x_1 = x_2$)

例:设 U是全集, P(U)是U的幂集。两个集合的并和交运算可如下定义:

$$f_{\cup} : \mathcal{P}(U) \times \mathcal{P}(U) \rightarrow \mathcal{P}(U),$$

对任意
$$A, B \in \mathcal{P}(U), f_{\cup}(\langle A, B \rangle) = \{x \mid x \in A \lor x \in B\}$$

$$f_{\cap}: P(U) \times P(U) \rightarrow P(U),$$

对任意
$$A, B \in \mathcal{P}(U), f_{\cap}(\langle A, B \rangle) = \{x \mid x \in A \land x \in B\}$$

例: N 是自然数集合,函数 $S: N \rightarrow N$ 定义为:

对任意
$$n$$
 ∈ N, $S(n) = n+1$.

显然, S(0) = 1, S(1) = 2, 函数 S 称为后继函数.

例:考虑以下从实数集R到R的部分函数:

(1) 实数的平方根运算 $x^{1/2}$

是从R到R内的部分函数,因为 $x^{1/2}$ 对 x < 0 无定义

(2) f(x) = 1/x

是从R到R内的部分函数,因为 1/x 在 x = 0处无定义.

 $(3) \ f(x) = x$

是一个从R到R上的函数.

$$f_1 = \{ \langle x, -2x \rangle \mid x \in \mathbb{R} \}$$

R到R上的1-1函数,

$$f_2 = \{ \langle x, 2^x \rangle \mid x \in \mathbb{R} \}$$
 R到R内的1-1函数,

$$f_3 = \{ \langle x, x^3 + 2x^2 \rangle \mid x \in \mathbb{R} \}$$
 R到R上的函数,

$$f_4 = \{ \langle x, x^2 \rangle | x \in \mathbb{R} \}$$

R到R内的函数,

3.1.4 像与源像

```
定义4(部分函数f的像与源像)设f为从集合X到集
ext{e} 合 Y 的部分函数,A \subset X 且 B \subset Y.
(1) f[A] = \{ y ∈ Y \mid \exists x ∈ A \notin y = f(x) \}
(2) f^{-1}[B] = \{x \in X \mid \exists y \in B \notin y = f(x) \}
称 f[A] 为 A 在 f 下的像, f^{-1}[B] 为 B 在 f 下的源像.
即: f[A] = \{ f(x) \mid x \in A \perp f(x) \downarrow \}
     f^{-1}[B] = \{ x \in X \mid f(x) \downarrow \coprod f(x) \in B \}
```

- $□ ran f = \{ y \in Y \mid \exists x \in X \notin y = f(x) \neq f[X]$

3.1.4 像与源像

```
定义4(部分函数f的像与源像)设f为从集合X到集
ext{e} 合 Y 的部分函数,A \subset X 且 B \subset Y.
(1) f[A] = \{ y ∈ Y \mid \exists x ∈ A \notin y = f(x) \}
(2) f^{-1}[B] = \{x \in X \mid \exists y \in B \notin y = f(x) \}
称 f[A] 为 A 在 f 下的像, f^{-1}[B] 为 B 在 f 下的源像.
即: f[A] = \{ f(x) \mid x \in A \perp f(x) \downarrow \}
     f^{-1}[B] = \{ x \in X \mid f(x) \downarrow \coprod f(x) \in B \}
```

□ 实际上定义了一个新的函数 $F: \mathcal{P}(X) \to \mathcal{P}(Y)$, 对于 $\forall A \subseteq X, F(A) = \{f(x) \mid x \in A \perp f(x)\downarrow\} = f[A]$

例: 设函数
$$f: \{0, 1, 2, 3\} \rightarrow \{a, b, c\},$$
 $f = \{<0, b>, <1, a>, <2, c>, <3, b>\}$,则
 $f(\{0, 1, 2, 3\}) = \{a, b, c\}$
 $f(\{2, 3\}) = \{b, c\}$
 $f(\{0\}) = \{b\}$
 $f(\emptyset) = \emptyset$
例: 设函数 $f: N \rightarrow N$, $f(x) = \begin{cases} 1, \overline{A}x \neq \overline$

×

函数的限制

- 定义3 (函数 f 的限制): 设函数 $f: X \rightarrow Y$, $A \subseteq X$, 则 1) $f \cap (A \times Y)$ 是从 A 到 Y 的函数,称为 f 在 A上的限制,记作 $f|_A$;
- 2) 称 f 为 $f|_A$ 到 X 的 延拓.

$$f|_{A}$$
 可表示为: $f|_{A} = \{ \langle x, y \rangle | \langle x, y \rangle \in f \land x \in A \}$

例: 设函数 $f: R \to R$ 为: $f(x) = x^2$, $f|_{N} = \{ \langle x, x^2 \rangle | x \in N \}$

例:设函数 $f: \mathbf{R} \to \mathbf{R}, f(x) = |x|,$ 其中,|x|为 x 的绝对值,

设 R_+ 是正实数集合, $g:R_+ \to R$, g(x) = x ,则:

g是f的限制,即 $g = f|_{\mathbb{R}^+}$,而f是g的延拓.

函数的限制

定义 (函数 f 的限制): 设函数 $f: X \to Y$, $A \subseteq X$, 则 1) $f \cap (A \times Y)$ 是从 A 到 Y 的函数,称为 f 在 A上的限制,记作 $f \mid_{\Lambda}$;

2) 称 f 为 $f|_A$ 到 X 的 延拓.

 $f|_{A}$ 可表示为: $f|_{A} = \{ \langle x, y \rangle | \langle x, y \rangle \in f \land x \in A \}$

定理1 若 f 为从集合 X 到 Y 的部分函数 且 $A \subseteq X$,则 dom $(f|_A) = A \cap \text{dom } f$, ran $(f|_A) = f[A]$ 若 $A \subseteq \text{dom } (f)$,则 $f|_A$ 是全函数.

定理2: 设f为从集合X到集合Y的部分函数.

- (1) 若 $A_1 \subseteq A_2 \subseteq X$,则 $f[A_1] \subseteq f[A_2]$;
- (2) 若 $B_1 \subseteq B_2 \subseteq Y$, 则 $f^{-1}[B_1] \subseteq f^{-1}[B_2]$;
- (3) 若 $A \subseteq \text{dom } f$,则 $A \subseteq f^{-1}[f[A]]$; 为什么是 \subseteq ?
- (4) 若 $B \subseteq \operatorname{ran} f$, 则 $B = f[f^{-1}[B]]$.

证明: (1) 和 (2) 显然, 只证 (3) 和 (4)

(3) 任取 *x*∈*A*,

故 f(x)↓且 $f(x) \in f[A]$,

所以 $x \in f^{-1}[f[A]]$,

得 $A \subseteq f^{-1}[f[A]]$

定理2: 设f为从集合X到集合Y的部分函数.

- (1) 若 $A_1 \subseteq A_2 \subseteq X$,则 $f[A_1] \subseteq f[A_2]$;
- (2) 若 $B_1 \subseteq B_2 \subseteq Y$, 则 $f^{-1}[B_1] \subseteq f^{-1}[B_2]$;
- (3) 若 $A \subseteq \text{dom } f$,则 $A \subseteq f^{-1}[f[A]]$;
- (4) 若 $B \subseteq \operatorname{ran} f$, 则 $B = f[f^{-1}[B]]$.

证明: 4) 任取 $y \in B$, 由 $B \subseteq \operatorname{ran} f$, 得 $y \in \operatorname{ran} f$ 。

因此,存在 $x \in X$ 使y = f(x), 得 $x \in f^{-1}[B]$,

从而 $y \in f[f^{-1}[B]]$,

所以, $B \subseteq f[f^{-1}[B]]$ 。

任取 $y \in f[f^{-1}[B]]$,则存在 $x \in f^{-1}[B]$ 使f(x) = y,

从而 $y \in B$,

所以, $f[f^{-1}[B]] \subseteq B$ 。

综上, 得 $B = f[f^{-1}[B]]$.

定理3 设 f 为从集合X到Y的部分函数, $A \subseteq P(X)$, $B \subseteq P(Y)$

- 1) $f[\cup A] = \cup \{f[A] \mid A \in A\};$
- 2) 若 $\mathcal{A} \neq \emptyset$,则 $f[\cap \mathcal{A}] \subseteq \cap \{f[A] \mid A \in \mathcal{A}\};$

综上, $f^{-1}[\cap \mathcal{B}] = \bigcap \{f^{-1}[B] \mid B \in \mathcal{B}\}$

- $(3) f^{-1}[\cup \mathcal{B}] = \cup \{f^{-1}[B] \mid B \in \mathcal{B} \};$
- 4) 若 $\mathcal{B} \neq \emptyset$, 则 $f^{-1}[\cap \mathcal{B}] = \cap \{f^{-1}[B] \mid B \in \mathcal{B}\}.$

证明: 只证 4),其它的证明与此类似.

任取 $B \in \mathcal{B}$,则由 $\cap \mathcal{B} \subseteq B$ 可得 $f^{-1}[\cap \mathcal{B}] \subseteq f^{-1}[B]$,故有 $f^{-1}[\cap \mathcal{B}] \subseteq \cap \{f^{-1}[B] \mid B \in \mathcal{B}\}$;

任取 $x \in \cap \{f^{-1}[B] \mid B \in \mathcal{B}\}$,任取 $B \in \mathcal{B}$,则 $x \in f^{-1}[B]$,即 $f(x) \in B$.

因此 $f(x) \in \cap \mathcal{B}$,即 $x \in f^{-1}[\cap \mathcal{B}]$.

故有: $\cap \{f^{-1}[B] \mid Y \in \mathcal{B}\} \subseteq f^{-1}[\cap \mathcal{B}]$.

3.1.5 函数的计数

定义5 设A和B为任意两个集合,记A到B的函数的集合为 B^A : $B^A = \{f \mid f : A \rightarrow B\}$.

例: 设A为任意集合, B为任意非空集合.

- $(1) A^{\phi} = \{ \phi \}$ 因为存在唯一的一个从 ϕ 到A的函数 ϕ ,
- $(2) \phi^{B} = \phi$ 因为不存在从B到 ϕ 的函数
- (3) 是否 存在 从 B 到 Ø 的 部分 函数?

定义5 设A和B为任意两个集合,记A到B的函数的集合为 B^A : $B^A = \{f \mid f : A \rightarrow B\}$.

定理4: 若A和B都是有限集,则

$$n(B^A) = (n(B))^{n(A)}$$

分析:

设
$$A=\{a_1, a_2, ..., a_m\}, B=\{b_1, b_2, ..., b_n\}$$

A到B的一个函数f包含m个序偶:

$$< a_1, *>, < a_2, *>, ..., < a_m, *>$$

每个 *∈ B.

定理4: 若A和B都是有限集,则

$$n(B^A) = (n(B))^{n(A)}$$

证明: 设n(A)=m且 n(B)=n,对m用归纳法.

当m=0时, $A=\emptyset, B^\emptyset=\{\emptyset\}, n(B^\emptyset)=1=n^0.$

设m=k $(k \ge 0)$ 时定理成立.

若m=k+1,则 $A \neq \phi$,因此存在 $a \in A$.

任取 $f \in B^A$, 令 $f' = f|_{A-\{a\}}$,则f'是从 $A-\{a\}$ 到B的函数,

得 $f = f' \cup \{ \langle a, f(a) \rangle \}$.

按照归纳假设, $n(B^{A-\{a\}})=n^k$.

因此, f'可有 n^k 种选择.

由于f(a)可取B中的任意元素,所以可有n种选择,

故f可有 $n^k \cdot n = n^{k+1}$ 种选择,即 $n(B^A) = n^{k+1}$.

综上,结论成立.

3.1.6 特殊性质的函数

定义8 (单射、满射、双射) 若 $f: X \to Y$,

(1) 若 ran f = Y, 则称 f 为满射;

(2) 若 f 是 1-1的,则称 f 是单射(内射);

(3) 若 f 既是满射,又是单射,则称 f 为双射.

例: 若R为集合A上的等价关系,则

$$\varphi = \{ \langle x, [x]_R \rangle \mid x \in A \}$$

是从A到A/R的满射,并称 φ 为自然映射或正则映射.

例:设 $f: X \to Y$,若存在同一个 $c \in Y$,使得对所有的 $x \in X$,f(x) = c,则称 f为常值函数,记为 f_c 。

例:下列函数是否为满射,单射和双射?

- (1) $f: \{1, 2\} \rightarrow \{0\}$ 由于 f 的值域是单元素集,显然 f(1) = f(2) = 0. 函数 f 是满射,而不是单射的.
- (2) $f:\{a,b\} \to \{2,4,6\}$, f(a)=2, f(b)=6 f 是单射,而不是满射.
- (3) $f: N \to N$, f(x) = 2x因 f 的值域是偶整数集,并且 若 $x_1 \neq x_2$,则 $f(x_1) \neq f(x_2)$,所以,函数 f 是单射. 所有奇自然数关于 f 没有源象,因此f 不是满射.
- (4) $f: I \to I$, f(x) = x+1 $f: N \to N$, f(x) = x+1 ?? 因为若 $x_1 \neq x_2$, 则 $f(x_1) \neq f(x_2)$, 并且对任意 $y \in I$, 都存在 $x = y-1 \in I$, 使得 y = f(x), 故函数 f 是双射.

例: 设 [a,b] 表示实数闭区间,a < b,即

$$[a, b] = \{ x \mid a \le x \le b \}.$$

令 $f: [0,1] \rightarrow [a,b]$ 为: f(x) = (b-a)x + a. 判断 f 是否为满射,单射和双射?

解: 若 $x_1\neq x_2$,则有

$$f(x_1) - f(x_2) = (b - a)x_1 + a - ((b - a)x_2 + a)$$

$$=(b-a)(x_1-x_2)\neq 0, \ \mathbb{P} f(x_1)\neq f(x_2),$$

因此f是单射.

对任意 $y \in [a, b]$ 都有 $x = (y - a) / (b - a) \in [0, 1]$,使得 y = f(x),故函数 f 是满射.

因此 函数 f 是双射.

例:证明:如果 $f:X \to Y$ 是单射,而且 $A \subseteq X$,则:

 $f|_A: A \to Y$ 是单射.

证明: 对于任意 $x_1, x_2 \in A$,因为 $A \subseteq X$,所以 $x_1, x_2 \in X$.

由 $f|_A$ 的定义可知: $f|_A(x_1) = f(x_1)$, $f|_A(x_2) = f(x_2)$,

若 $f|_A(x_1) = f|_A(x_2)$,即 $f(x_1) = f(x_2)$,

由f是单射,则有 $x_1 = x_2$.

由单射的定义可知: $f|_A$ 是单射.

思考题

1. 有限集 X 上 的 满射 必为 单射.

 $f: X \longrightarrow X$

2. 有限集X上的单射必为满射.

- 3. 设A和B为有限集,#A = m 且 #B = p,试问
 - a) 有多少个从A到B的函数为 单射?
 - b) 有多少个从A到B的函数为 满射?

例:设A和B为有限集,# A = m且 # B = p.

- (1) 有多少个从A到B的单射?
- (2) 有多少个从A到B的满射?

解: (1) 显然,当m>p时,不存在从A到B的单射. 当 $m \le p$ 时,从A到B的单射的个数为从B中选m个元素构成的排列个数,即

$$P_p^m = \frac{p!}{(p-m)!}$$

- 例:设A和B为有限集,# A = m 且 # B = p
- (1) 有多少个从A到B的单射?
- (2) 有多少个从A到B的满射?

解: (2) 当m < p时,不存在从A到B的满射;

当p=0且 $m\neq 0$, 0个;

 $p = 0 \perp m = 0, 1 \uparrow;$

当 $m \ge p \ge 1$ 时,从A到B上的一个函数对应集合A的一

个包含p个子集的划分,

而一个划分对应p!个函数.

因此从A到B上的满射的个数等于s(m, p) p!,

其中,s(m,p)为集合A的包含p个子集的划分个数.

第三章函数

- 3.1 基本概念
- 3.2 函数的复合(合成)
- 3.3 逆函数
- 3.4 集合的特征函数

3.2 函数的复合(合成)

回顾:关系的合成

■ 关系的合成: 设R是X到Y的关系,S是Y到Z的关系,则

 $R \circ S = \{ \langle x, z \rangle \mid \exists y \in Y (\langle x, y \rangle \in R \land \langle y, z \rangle \in S) \}$ 为 X 到 Z 的关系,称为 R 和 S 的复合关系.

问题: 是否同样定义(部分)函数的合成?

3.2.1 (部分)函数的复合

定理5 (部分函数的合成) 设f为从X到Y的部分函数,g为从Y到Z的部分函数,则复合关系 $f \circ g$ 为从X到Z的部分函数. 复合保持单值性

得 $z_1 = z_2$.

复合函数

定义6 设f 为从X到Y的部分函数,g 为从Y到Z的部分函数,则称复合关系 $f \circ g$ 为f 与g 的复合(部分)函数,用 $g \circ f$ 表示,即

 $g \circ f = \{ \langle x, z \rangle \mid x \in X \land z \in Z \land \exists y (y \in Y \land y = f(x) \land z =$

$$g(y))\}$$

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

$$x \to y = f(x) \to z = g(y) = g(f(x))$$

$$\langle x, z \rangle \in g \circ f \Leftrightarrow \langle x, y \rangle \in f \land \langle y, z \rangle \in g$$

复合函数

定义6 设f 为从X到Y的部分函数,g 为从Y到Z的部分函数,则称复合关系 $f \circ g$ 为f 与g 的复合(部分)函数,用 $g \circ f$ 表示,即

 $g \circ f = \{ \langle x, z \rangle \mid x \in X \land z \in Z \land \exists y (y \in Y \land y = f(x) \land z = f(x)) \}$

- □ 复合函数 gf与复合关系 fg 表示同一个集合. 这种表示上的差异是历史形成的,具有其方便之处:
- 部分函数: $(g \circ f)(x) = g(f(x))$

例. 设 $X = \{1, 2, 3\}, f, g, h$ 是从 X 到 X 的函数,它们分别 定义为:

$$f = \{ <1, 2>, <2, 3>, <3, 1> \}$$
 $g = \{ <1, 2>, <2, 1>, <3, 3> \}$
 $h = \{ <1, 1>, <2, 2>, <3, 1> \}$
求复合函数 $f \circ g$, $g \circ f$, $f \circ g \circ h$

解:
$$f \circ g = \{ <1, 3>, <2, 2>, <3, 1> \}$$

$$g \circ f = \{ <1, 1>, <2, 3>, <3, 2> \}$$

$$f \circ g \circ h = \{ <1, 3>, <2, 2>, <3, 3> \}$$

复合(部分)函数的定义域与值域

$$X \xrightarrow{f} Y, \qquad Y \xrightarrow{g} Z$$

$$dom f \rightarrow ran f \qquad dom g \rightarrow ran g$$

$$z = g \circ f(x) \qquad x \rightarrow y \qquad y \rightarrow z$$

$$x \in \text{dom}(g \circ f) \Longrightarrow \exists y (y = f(x) \land y \in \text{dom } g)$$

$$\Longrightarrow x \in f^{-1}[\text{dom } g]$$

$$z \in \operatorname{ran}(g \circ f) \implies \exists y(y \in \operatorname{ran} f \land z = g(y))$$

$$\implies z \in g[\operatorname{ran} f]$$

问题:反向是否成立?

定理6: 设f为从X到Y的部分函数,g为从Y到Z的部分函数,则

- (1) $\operatorname{dom}(g \circ f) = f^{-1}[\operatorname{dom} g] \coprod \operatorname{ran}(g \circ f) = g[\operatorname{ran} f]$.
- (2) 若f和g都是全函数,则 $g \circ f$ 也是全函数.

证明: (1) 给定任意 $x \in \text{dom } (g \circ f)$,

则有 $z \in Z$ 使得 $\langle x, z \rangle \in g \circ f$,

因此, 必有 $y \in Y$ 使得 $\langle x, y \rangle \in f$ 且 $\langle y, z \rangle \in g$.

由 $< y, z > \in g$ 可知 $y \in \text{dom } g$,

又由 $\langle x, y \rangle \in f$ 得 $x \in f^{-1}[\text{dom } g]$.

故 $dom(g \circ f) \subseteq f^{-1}[dom g]$

定理6: 设f为从X到Y的部分函数,g为从Y到Z的部分函数,则

- (1) $dom(g \circ f) = f^{-1}[dom g] \coprod ran(g \circ f) = g[ran f]$.
- (2) 若f和g都是全函数,则 $g \circ f$ 也是全函数.

证明(续): (1) 给定任意 $x \in f^{-1}$ [dom g],

则有 $y \in \text{dom } g$ 使得 $\langle x, y \rangle \in f$.

由 $y \in \text{dom } g$ 得,存在 $z \in Z$ 使 $\langle y, z \rangle \in g$,故 $\langle x, z \rangle \in g \circ f$,

这表明 $x \in \text{dom}(g \circ f)$.

故 $f^{-1}[\operatorname{dom} g] \subseteq \operatorname{dom}(g \circ f)$.

综上, $dom(g \circ f) = f^{-1}[dom g].$

同理可证: $ran(g \circ f) = g[ran f]$.

定理6: 设f为从X到Y的部分函数,g为从Y到Z的部分函数,则

- (1) $\operatorname{dom}(g \circ f) = f^{-1}[\operatorname{dom} g] \coprod \operatorname{ran}(g \circ f) = g[\operatorname{ran} f]$.
- (2) 若f和g都是全函数,则 $g \circ f$ 也是全函数.

 $dom (g \circ f) = X$

证明: (2) 由(1)知, dom $(g \circ f) = f^{-1} [\text{dom } g]$ 。

由于 g为全函数,

因此, $\operatorname{dom} g = Y$ 。

又由于f为全函数,因此 $f^{-1}[Y]=X$ 。

故 dom $(g \circ f) = f^{-1} [\text{dom } g] = f^{-1} [Y] = X.$

所以, $g \circ f$ 也是 全函数.

例. 设对于 $x \in \mathbb{R}$, f(x) = x+2, g(x) = x-2, h(x) = 3x, \mathbb{R} 是实数集合.求 $g \circ f$, $f \circ g$, $f \circ f \circ g$, $f \circ f \circ g$, $f \circ f \circ g$.

解
$$g \circ f = \{ \langle x, x \rangle | x \in \mathbb{R} \} \}$$

 $f \circ g = \{ \langle x, x \rangle | x \in \mathbb{R} \} = g \circ f$
 $f \circ f = \{ \langle x, x \rangle | x \in \mathbb{R} \} \}$
 $g \circ g = \{ \langle x, x \rangle | x \in \mathbb{R} \} \}$
 $f \circ h = \{ \langle x, 3x \rangle | x \in \mathbb{R} \} \}$
 $h \circ g = \{ \langle x, 3x \rangle | x \in \mathbb{R} \} \}$
 $h \circ f = \{ \langle x, 3x \rangle | x \in \mathbb{R} \} \}$
 $(f \circ h) \circ g = \{ \langle x, 3x \rangle | x \in \mathbb{R} \} \}$
 $f \circ (h \circ g) = \{ \langle x, 3x \rangle | x \in \mathbb{R} \} = f \circ (h \circ g)$

例 设
$$f: \mathbb{N} \to \mathbb{N}$$
, $g: \mathbb{N} \to \mathbb{N}$, 且 $g(x) = 2x$,
$$f(x) = \begin{cases} x/2 & x \in \mathbb{R} \\ 0 & x \in \mathbb{N} \end{cases}$$

求: $f\circ g$, $g\circ f$

解: (1)
$$f \circ g: N \to N$$
, $(f \circ g)(x) = f(g(x)) = f(2x) = x$,

$$(2) g \circ f : \mathbf{N} \to \mathbf{N}$$

若
$$x$$
 是 偶数: $(g \circ f)(x) = g(f(x)) = g(x/2) = x$

若
$$x$$
 是 奇数: $(g \circ f)(x) = g(f(x)) = g(0) = 0$

所以,
$$(g \circ f)(x) = \begin{cases} x & \exists x \text{ 是偶数} \\ 0 & \exists x \text{ 是奇数} \end{cases}$$

3.2.2 函数复合运算的性质

恒等函数:集合 X上的恒等关系

$$I_X = \{ \langle x, x \rangle | x \in X \}$$

称为X到X的恒等函数.

定理7 设函数 $f: X \to Y$, I_X 和 I_Y 是恒等函数,则

$$f I_X = I_Y \circ f = f$$

证明: 对任意 $x \in X, y \in Y, f < x, x > \in I_X, f < y, y > \in I_Y,$ $f < x, y > \in f \Leftrightarrow < x, x > \in I_X \land < x, y > \in f$ $\Leftrightarrow < x, y > \in f \circ I_X$ $< x, y > \in f \Leftrightarrow < x, y > \in f \land < y, y > \in I_Y$ $\Leftrightarrow < x, y > \in I_Y \circ f$

3.2.2 函数复合运算的性质

定理 8 若 f 是 X 到 Y 的部分函数,g 是 Y 到 Z 的部分函数,h 是 Z 到 W 的部分函数,则 (结合律)

$$h \circ (g \circ f) = (h \circ g) \circ f$$

证明:由题设, $h \circ g$, $g \circ f$, $h \circ (g \circ f)$,($h \circ g$) $\circ f$ 均有定义,又因为f, g, h是关系,由关系的复合运算满足结合律,因此定理成立.

м

函数的幂

定义7 若函数 $f: X \to X$, 则 f 的 n 次幂, 记为 f^n ,

可归纳定义如下:

- $1) \quad f^0 = I_X$
- 2) $f^{n+1} = f \circ f^n$, 即对任意 $a \in X$,
 - a) $f^{0}(a) = I_{X}(a) = a$;
 - b) $f^{n+1}(a) = f(f^n(a))$

м

例: 设 $X = \{0, 1, 2\}$, 求出 X^X 中满足 $f^2 = f$ 的所有函数.

解: 假设函数 f 满足 $f^2 = f$, 则对任意 $a \in X$,

若f(a) = a, 则 $f^2(a) = f(a) = a$. (1)

若 $f(a) = b (b \neq a)$, 则由 $f^2(a) = f(b) = f(a) = b$,得f(b) = b.(2)

下面证明满足(1)与(2)的函数 f一定满足 $f^2 = f$.

对任意的 $a \in X$,

若 $f(a)=b\neq a$, 且f(b)=b,则 $f^2(a)=f(f(a))=f(b)=b=f(a)$.

得: f是满足 $f^2 = f$ 的函数当且仅当对任意 $a \in X$, f(a) = a 或 $f(a) = b \neq a$ 且f(b) = b.

M

例: 设 $X = \{0, 1, 2\}$, 求出 X^X 中满足 $f^2 = f$ 的所有函数.

解: 因此,满足条件 $f^2(x) = f(x)$ 的函数是:

(1) 只有一个 $a \in \{0, 1, 2\}$,满足f(a) = a:

$$f_1(x) = \{ <0, 0>, <1, 0>, <2, 0> \}$$

$$f_2(x) = \{ <0, 1>, <1, 1>, <2, 1> \}$$

$$f_3(x) = \{ <0, 2>, <1, 2>, <2, 2> \}$$

(2) 只有两个 $a \in \{0, 1, 2\}$,满足f(a) = a:

$$f_4(x) = \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 0 \rangle \}, f_5(x) = \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 1 \rangle \}$$

$$f_6(x) = \{\langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 2, 2 \rangle\}, f_7(x) = \{\langle 0, 0 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle\}$$

$$f_8(x) = \{\langle 0, 1 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle\}, f_9(x) = \{\langle 0, 2 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle\}$$

(3) 任意 $a \in \{0, 1, 2\}$, 满足f(a) = a

$$f_{10}(x) = \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle \}$$

м

3.2.3 特殊性质函数的复合

定理9 设 $f: X \rightarrow Y$ 和 $g: Y \rightarrow Z$,则

- (1) 若f和g都是满射,则 $g \circ f$ 也是满射.
- (2) 若f和g都是单射,则g of 也是单射
- (3) 若f和g都是双射,则g of 也是双射

定理10 设 $f: X \rightarrow Y$ 和 $g: Y \rightarrow Z$

- 1) 若g 是满射,则g 是满射;
- 2) 若gf是单射,则f是单射;
- 3) 若gf是双射,则g是满射且f是单射.

定理9设 $f: X \rightarrow Y$ 和 $g: Y \rightarrow Z$,则

- (1) 若f和g都是满射,则 $g \circ f$ 也是满射.
- (2) 若f和g都是单射,则 $g \circ f$ 也是单射
- (3) 若f和g都是双射,则g of 也是双射

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

$$f^{1}(g^{-1}(\{z\})) \quad g^{-1}(\{z\}) \quad \{z\}$$

$$\neq \emptyset \qquad \neq \emptyset$$

$$E \otimes z \in Z$$

解: (1) 因为f和g都是满射,

因此 $\operatorname{ran} f = Y$, $\operatorname{ran} g = Z$.

得 ran $(g \circ f) = g(\operatorname{ran} f) = g(Y) = Z$.

因此g of 是满射.

定理9设 $f: X \rightarrow Y$ 和 $g: Y \rightarrow Z$,则

- (1) 若f和g都是满射,则 $g \circ f$ 也是满射.
- (2) 若f和g都是单射,则 $g \circ f$ 也是单射
- (3) 若f和g都是双射,则g of 也是双射

(2)若 $x_1, x_2 \in X \coprod x_1 \neq x_2$, 因为 f 是单射,因此 $f(x_1) \neq f(x_2)$. 又因为 g 是单射,得 $g(f(x_1)) \neq g(f(x_2))$. 即 $(g \circ f)(x_1) \neq (g \circ f)(x_2)$. 故 $g \circ f$ 为单射.

- 1) 若gf是满射,则g是满射; 规则: 左满 右单
- 2) 若g f 是单射, 则 f 是单射;
- 3) 若gf是双射,则g是满射且f是单射.

- 定理10 设 $f: X \rightarrow Y$ 和 $g: Y \rightarrow Z$
- 1) 若gf是满射,则g是满射; 规则: 左满 右单
- 2) 若g f 是单射,则 f 是单射;
- 3) 若g f 是双射,则g 是满射且f 是单射.

证明: (1) 只需证明 $\operatorname{ran} g = Z$.

显然 $ran g \subseteq Z$.

由 $\operatorname{ran} f \subseteq Y$ 可知 $g[\operatorname{ran} f] \subseteq g[Y] = \operatorname{ran} g$

 $\overline{\mathbb{M}} g[ran f] = g f[X]$

 $= \operatorname{ran}(g \circ f)$

=Z (因为g f满射),

所以 $Z \subseteq \operatorname{ran} g$, 综上, 可得 $Z = \operatorname{ran} g$, 即g为满射.

定理10 设 $f: X \rightarrow Y$ 和 $g: Y \rightarrow Z$

- 1) 若gf是满射,则g是满射; 规则: 左满 右单
- 2) 若g f 是单射, 则 f 是单射;
- 3) 若g f 是双射,则g 是满射且f 是单射.

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

(2) 反证法:

假设f 不是单射,则有 $x_1, x_2 \in X \perp x_1 \neq x_2$ 使 $f(x_1) = f(x_2)$,

因此 $(gf)(x_1) = g(f(x_1)) = g(f(x_2)) = (gf)(x_2)$, 这与 gf 为单射 矛盾.

所以假设不成立,即f为单射.

(3)由(1)与(2)可得.

定理10 设 $f: X \rightarrow Y$ 和 $g: Y \rightarrow Z$

- 1) 若gf是满射,则g是满射; 规则: 左满 右单
- 2) 若g 是单射,则f 是单射;
- 3) 若 g f 是双射,则 g 是满射且 f 是单射.
- □ 若 g∘f 是满射,则 f 不一定是满射;

例: $X=\{a\}$, $Y=\{0, 1\}$, $Z=\{b\}$. $f=\{\langle a, 0\rangle\}, g=\{\langle 0, b\rangle, \langle 1, b\rangle\},$ $g \in \{\langle a, b\rangle\}$ 是满射,但f不是满射 定理10 设 $f: X \rightarrow Y$ 和 $g: Y \rightarrow Z$

- 1) 若 g f 是满射,则 g 是满射; 规则: 左满 右单
- 2) 若g 是单射,则f 是单射;
- 3) 若 $g \in \mathcal{L}$ 是双射,则 g 是满射且 f 是单射.
- □ 若 $g \circ f$ 是单射,则 g 不一定是单射;

$$\begin{array}{c} \mathbf{X} \xrightarrow{f} \mathbf{Y} \xrightarrow{g} \mathbf{Z} \\ y_1 \\ \neq \\ y_2 \end{array}$$

例: $X = \{a\}$, $Y = \{0, 1, 2\}$, $Z = \{b\}$. $f = \{\langle a, 2 \rangle\}$, $g = \{\langle 0, b \rangle, \langle 1, b \rangle, \langle 2, b \rangle\}$, $g \neq \{\langle a, b \rangle\}$ 是单射,但g不是单射

例

- 1. 设 $A = \{1, 2, ..., n\}$ 。有多少满足以下条件的从A到 A的函数 f:
 - $a) f \circ f = f$
 - $\mathbf{b}) f \circ f = I_A$
 - $\mathbf{c})f \circ f \circ f = I_A$

第三章函数

- 3.1 基本概念
- 3.2 函数的复合(合成)
- 3.3 逆函数
- 3.4 集合的特征函数

3.3 逆函数

3.3.1 逆函数

问题: 能否用关系的逆定义函数的逆?

例: 设函数 $f: I \to I$, $f = \{ < i, i^2 > | i \in I \}$ 作为关系的逆: $f^1 = \{ < i^2, i >, < i^2, -i > | i \in N \}$ 显然, $< 1, 1 >, < 1, -1 > \in f^{-1}$, 所以,关系 f^1 不是部分函数, 故不能把逆函数直接定义为逆关系.

3.3.1 逆函数

定义9 设 X和 Y为集合 且 $f: X \rightarrow Y$.

- 1)若有 $g: Y \to X$ 使 $g \circ f = I_X$,则称 f 为左可逆的, 并称 g 为 f 的一个左逆函数,简称 左逆.
- 2)若有 $g: Y \to X$ 使 $f \circ g = I_Y$,则称 f 为右可逆的, 并称 g 为 f 的一个右逆函数,简称 右逆.
- 3)若有 $g: Y \to X$ 使 $g \circ f = I_X \coprod f \circ g = I_Y$, 则称 f 为 可逆的,并称 g 为 f 的一个逆函数,简称 逆.

问题:一个函数的左逆、右逆和逆是否一定存在?是 否唯一?它们存在的条件是什么?

例: 如下定义N上的四个函数:

$$f_1 = \{ <0, 0>, <1, 0> \} \cup \{ < n+2, n> \mid n \in \mathbb{N} \} \}$$

$$f_2 = \{ <0, 1>, <1, 1> \} \cup \{ < n+2, n> \mid n \in \mathbb{N} \} \}$$

$$g_1 = \{ < n, n+2> \mid n \in \mathbb{N} \} \}$$

$$g_2 = \{ <0, 0> \} \cup \{ < n+1, n+3> \mid n \in \mathbb{N} \} \}$$

对任意 $n \in \mathbb{N}$,

(1)
$$(f_1 \circ g_1)(n) = f_1(n+2) = n$$

(2)
$$(f_2 \circ g_1)(n) = f_2(n+2) = n$$

(3)
$$(f_1 \circ g_2)(n) = \begin{cases} f_1(0)=0, n=0 \\ f_1(n+2)=n, n>0 \end{cases}$$

(4)
$$(f_2 \circ g_2)(n) = \begin{cases} f_2(0)=1, n=0 \\ f_2(n+2)=n, n>0 \end{cases}$$

因此, $f_1 \circ g_1 = f_2 \circ g_1 = f_1 \circ g_2 = I_N$

• f_1 与 f_2 都是 g_1 的左逆

• f_1 是 g_2 的左逆

• g_1 与 g_2 都是 f_1 的右逆

• g_1 是 f_2 的右逆

例:设 F_X 是所有从 X 到 X 的双射的集合,其中 $X = \{1, 2, 3\}$. 求出 F_X 的全部元素,并求出每个元素的逆函数 .

解:因为 F_X 的元素均为双射,所以 $n(F_X) = 3! = 6$. 设 $F_{Y} = \{ f_1, f_2, f_3, f_4, f_5, f_6 \}$ $f_1 = \{ <1, 1>, <2, 2>, <3, 3> \}$ $f_2 = \{ <1, 1>, <2, 3>, <3, 2> \}$ $f_3 = \{ <1, 2>, <2, 1>, <3, 3> \}$ $f_4 = \{ <1, 2>, <2, 3>, <3, 1> \}$ $f_5 = \{ <1, 3>, <2, 1>, <3, 2> \}$ $f_6 = \{ <1, 3>, <2, 2>, <3, 1> \}$ 故 $f_1^{-1} = f_1$, $f_2^{-1} = f_2$, $f_3^{-1} = f_3$, $f_4^{-1} = f_5$, $f_5^{-1} = f_4$, $f_6^{-1} = f_6$.

.

3.3.2 (左、右)可逆的充要条件

定理11: 设X和Y为集合且 $X \neq \emptyset$. 若 $f: X \rightarrow Y$, 则下列条件等价:

- (1) ƒ 为单射;
- (2) ƒ为左可逆
- (3) f 可左消去,即对任意集合 Z 及任意的 g: $Z \to X$ 和 h: $Z \to X$, 当 $f \circ g = f \circ h$ 时,皆有g = h.

定理12: 设X和Y为集合, 若 $f: X \rightarrow Y$, 则下列条件等价:

- (1) ƒ 为满射;
- (2) f 为右可逆;
- (3) f 可右消去,即对任意集合 Z 及任意的 $g: Y \rightarrow Z$ 和 $h: Y \rightarrow Z$, 当 $g \circ f = h \circ f$ 时,皆有 g = h.

定理11: 设X和Y为集合且 $X \neq \emptyset$. 若 $f: X \rightarrow Y$, 则下列条件等价:

(1) ƒ为单射;

(2) f 为左可逆 $\exists g: Y \rightarrow X$, s.t., $g \circ f = I_X$

(3) f 可左消去,即对任意集合 Z 及任意的g: $Z \to X$ 和h: $Z \to X$, 当 $f \circ g = f \circ h$ 时,皆有g = h.

- 定理11: 设X和Y为集合且 $X \neq \emptyset$. 若 $f: X \rightarrow Y$,则下列条件等价:
- (1) ƒ为单射;
- (2) f 为左可逆 $\exists g: Y \rightarrow X$, s.t., $g \circ f = I_X$
- (3) f 可左消去,即对任意集合 Z 及任意的g: $Z \to X$ 和h: $Z \to X$, 当 $f \circ g = f \circ h$ 时,皆有g = h.

证明: (1) \Rightarrow (2) 设 f 是单射,则对任意的 $x_1, x_2 \in X$,若 $x_1 \neq x_2$,则必有 $f(x_1) \neq f(x_2)$,

即,若 $f(x_1)=f(x_2)$,则必有 $x_1=x_2$.

因此,f 的逆关系 f^{-1} 为从 Y 到 X 的一个部分函数.

由于 $X \neq \emptyset$, 令 $a \in X$, 如下定义函数 $g: Y \rightarrow X$:

$$g = f^{-1} \cup ((Y - \operatorname{ran} f) \times \{a\}),$$

对任意 $x \in X$, $g \circ f(x) = g(f(x)) = x$, 即 $g \circ f = I_X$.

因此,g为f的一个左逆,f为左可逆.

定理11: 设X和Y为集合且 $X \neq \emptyset$. 若 $f: X \rightarrow Y$,则下列条件等价:

- (1) ƒ 为单射;
- (2) f 为左可逆 $\exists g: Y \rightarrow X$, s.t., $g \circ f = I_X$
- (3) f 可左消去,即对任意集合 Z 及任意的g: $Z \to X$ 和h: $Z \to X$, 当 $f \circ g = f \circ h$ 时,皆有g = h.

证明: $(2) \Rightarrow (3)$ 若 f 为左可逆的,

则有 $f_1: Y \rightarrow X$,使得 $f_1 \circ f = I_X$ 。

对于任意集合 Z 及任意的 $g: Z \to X$ 和 $h: Z \to X$,

当 $f \circ g = f \circ h$ 时,有

$$f_1\circ (f\circ g)=f_1\circ (f\circ h),$$

得
$$g = I_X \circ g = (f_1 \circ f) \circ g = f_1 \circ (f \circ g)$$

= $f_1 \circ (f \circ h) = (f_1 \circ f) \circ h = I_X \circ h = h$ 。 因此, f 可左消去.

定理11: 设X和Y为集合且 $X \neq \emptyset$. 若 $f: X \rightarrow Y$, 则下列条件等价:

(1) ƒ为单射;

(2) f 为左可逆 $\exists g: Y \rightarrow X$, s.t., $g \circ f = I_X$

(3) f 可左消去,即对任意集合 Z 及任意的g: $Z \to X$ 和h: $Z \to X$, 当 $f \circ g = f \circ h$ 时,皆有g = h.

证明: (3) ⇒(1) 反证法.

定理11: 设X和Y为集合且 $X \neq \emptyset$. 若 $f: X \rightarrow Y$, 则下列条件等价:

- (1) ƒ 为单射;
- (2) f 为左可逆 $\exists g: Y \rightarrow X$, s.t., $g \circ f = I_X$
- (3) f 可左消去,即对任意集合 Z 及任意的g: $Z \to X$ 和h: $Z \to X$, 当 $f \circ g = f \circ h$ 时,皆有g = h.

证明: (3) ⇒(1) 反证法.

假设f不是单射,则必有 $a_1, a_2 \in X$,使得 $a_1 \neq a_2$ 且 $f(a_1) = f(a_2)$.

定义
$$h: X \to X$$
,满足 $h(x) = \begin{cases} x, x \neq a_1 \\ a_2, x = a_1 \end{cases}$,则有 $h \neq I_X$,

且 $f \circ I_X = f = f \circ h$,与(3)矛盾,因此f一定是单射.

定理12: 设X和Y为集合, 若 $f: X \rightarrow Y$, 则下列条件等价:

(1) ƒ 为满射;

(2) f 为右可逆; $\exists g: Y \rightarrow X$, s.t., $f \circ g = I_Y$

(3) f 可右消去,即对任意集合 Z 及任意的 g: Y \rightarrow Z 和

 $h: Y \to Z$, 当 $g \circ f = h \circ f$ 时,皆有 g = h.

定理12: 设X和Y为集合, 若 $f: X \rightarrow Y$, 则下列条件等价:

(1) ƒ 为满射;

- (2) f 为右可逆; $\exists g: Y \rightarrow X$, s.t., $f \circ g = I_Y$
- (3) f 可右消去,即对任意集合 Z 及任意的 $g: Y \rightarrow Z$ 和 $h: Y \rightarrow Z$, 当 $g \circ f = h \circ f$ 时,皆有 g = h.

证明: (1) \Rightarrow (2) 若 f 为满射,则对任意的 $y \in Y$,有 $x \in X$,使得 y = f(x),即 $f^{-1}[\{y\}] \neq \emptyset$.
如下定义函数 $g: Y \to X$,使得,对任意的 $y \in Y$,任取 $x_y \in f^{-1}[\{y\}]$,定义 $g(y) = x_y$.
则有对任意的 $y \in Y$, $(f \circ g)(y) = f \circ (g(y)) = f(x_y) = y$.
因此 $f \circ g = I_y$,从而 f 是右可逆.

- (1) ƒ 为满射;
- (2) f 为右可逆; $\exists g: Y \rightarrow X$, s.t., $f \circ g = I_Y$
- (3) f 可右消去,即对任意集合 Z 及任意的 $g: Y \rightarrow Z$ 和

 $h: Y \to Z$, 当 $g \circ f = h \circ f$ 时,皆有 g = h.

证明: (2) \Rightarrow (3) 若 f 右可逆,则存在 f_1 : $Y \rightarrow X$,使得 $f \not f_1 = I_Y$.

又由 $g \circ f = h \circ f$, 得 $g = g \circ (f \circ f_1) = (g \circ f) \circ f_1$ $= (h \circ f) \circ f_1 = h \circ (f \circ f_1) = h.$

因此,f可右消去。

- (1) ƒ 为满射;
- (2) f 为右可逆; $\exists g: Y \rightarrow X$, s.t., $f \circ g = I_Y$
- (3) f 可右消去,即对任意集合 Z 及任意的 $g: Y \rightarrow Z$ 和

 $h: Y \to Z$, 当 $g \circ f = h \circ f$ 时,皆有 g = h.

证明: (3) \Rightarrow (1) 假设f不是满射,则存在 $b \in Y$,使得 $b \notin ran f$.

(a) 若 $X=\emptyset$, 则由 $f: X \to Y$, 可知 $f=\emptyset$.

令Z={1, 2}, g: Y →Z, 满足 g(y) = 1,

 $h: Y \to Z$, 满足 h(y) = 2.

此时, $g \neq h$,但 $g \circ f = h \circ f = \emptyset$,与(3)矛盾.

- (1) ƒ 为满射;
- (2) f 为右可逆; $\exists g: Y \rightarrow X$, s.t., $f \circ g = I_Y$
- (3) f 可右消去,即对任意集合 Z 及任意的 g: Y \rightarrow Z 和

 $h: Y \to Z$, 当 $g \circ f = h \circ f$ 时,皆有 g = h.

证明: (3) \Rightarrow (1) 假设f不是满射,则存在 $b \in Y$,使得 $b \notin \operatorname{ran} f$.

(b) 若 $X \neq \emptyset$, 则有 $\operatorname{ran} f \neq \emptyset$.

$$h \circ f = f = I_Y \circ f$$
$$h \neq I_Y$$

- (1) ƒ 为满射;
- (2) f 为右可逆; $\exists g: Y \rightarrow X$, s.t., $f \circ g = I_Y$
- (3) f 可右消去,即对任意集合 Z 及任意的 $g: Y \rightarrow Z$ 和

 $h: Y \to Z$, 当 $g \circ f = h \circ f$ 时,皆有 g = h.

证明: (3) \Rightarrow (1) 假设f不是满射,则存在 $b \in Y$,使得 $b \notin ran f$.

(b) 若 $X \neq \emptyset$, 则有 $\operatorname{ran} f \neq \emptyset$.

任取b'∈ ran f, 显然有 $b \neq b'$.

定义 $h: Y \to Y$, 满足 $h(y) = \begin{cases} y, y \neq b \\ b', y = b \end{cases}$, 有 $h \neq I_Y$, 且

 $h \circ f = I_{Y} \circ f$,与(3)矛盾.

综上所述,f为满射.

定理13: 设X和Y为二集合,若 $f: X \rightarrow Y$ 既是左可逆的,又是右可逆的,则f是可逆的,且f的左逆和右逆都等于f的唯一的逆.

证明: 设
$$g_1$$
: $Y \rightarrow X$, g_2 : $Y \rightarrow X$ 分别是 f 的左逆与右逆, 即
$$g_1 f = I_X, \ f \circ g_2 = I_Y.$$

$$\iiint g_1 = g_1 \circ I_Y = g_1 \circ (f \circ g_2)$$

$$= (g_1 \circ f) \circ g_2 = I_X \circ g_2 = g_2.$$

因此, g_1 是f的逆.

下面证明唯一性. 假设 g_3 也是 f 的逆,即

$$g_3 \circ f = I_X, f \circ g_3 = I_Y.$$

定理13: 设X和Y为二集合,若 $f: X \rightarrow Y$ 既是左可逆的,又是右可逆的,则f是可逆的,且f的左逆和右逆都等于f的唯一的逆.

定义10: 设 X和 Y为二集合. 若 $f: X \to Y$ 为可逆的,则 f 的 逆函数用 f^{-1} 表示.

- 定理14 若 X和Y为二集合 且 $f: X \to Y$,则下列条件等价:
- (1) f 是双射;
- (2) f 既是左可逆的,又是右可逆的;
- (3) ƒ是可逆的;
- (4) f 的 逆关系 f^{-1} 即为 f 的 逆函数.
 - 证明: $(1) \Rightarrow (2)$, $(2) \Rightarrow (3)$ 都可由定理11、12、13直接得到.
 - (3) \Rightarrow (4) 若 f 是可逆的,则存在唯一的逆 f^{-1} : $Y \rightarrow X$,使得 $f \circ f^{-1} = I_Y$,且 $f^{-1} \circ f = I_X$.
 - 由于 I_Y 是满射,因此 f是满射,由于 I_X 是单射,因此 f是单射,所以 f是双射,则其逆关系也是函数,即为 f的逆.
 - (4) \Rightarrow (1) 因为 f^{-1} 是f的逆函数,故 f^{-1} 既是f的左逆又是f的右逆,即 $f^{1} \circ f = I_{X}, f \circ f^{1} = I_{Y}$.
 - 因此 f 既是单射又是满射,即 f 是双射.

м

3.3.3 函数复合与逆的性质

定理15: 设X, Y, Z为三集合。若f: $X \to Y$ 和 g: $Y \to Z$ 都是可逆的,则 $g \not f$ 也是可逆的,且 $(g \not f)^{-1} = f^{-1} \circ g^{-1}$.

证明: 因为:

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1}$$

 $= g \circ I_{Y} \circ g^{-1} = g \circ g^{-1} = I_{Z}$
 $(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f$
 $= f^{-1} \circ I_{Y} \circ f = f^{-1} \circ f = I_{X}$
故 $g \circ f$ 是可逆的,且 $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

例: 设函数 $f: X \to Y \coprod g: Y \to X$,若令 $A = \{a \in X \mid g(f(a)) = a\} \coprod$ $B = \{b \in Y \mid f(g(b)) = b\}$ 则 f[A] = B。

例:设A为有限集且 $f:A \rightarrow A$,证明:

- (1) 若有自然数 $n \ge 1$ 使 $f^n = I_A$,则f为双射;
- (2) 若f为双射,则有自然数 $n \ge 1$ 使 $f^n = I_A$.

例: 设函数 $f: X \to Y \coprod g: Y \to X$,若令 $A = \{a \in X \mid g(f(a)) = a\} \coprod$ $B = \{b \in Y \mid f(g(b)) = b\}$ 则 f[A] = B。

例:设A为有限集且 $f:A \rightarrow A$,证明:

- (1) 若有自然数 $n \ge 1$ 使 $f^n = I_A$,则f为双射;
- (2) 若f为双射,则有自然数 $n \ge 1$ 使 $f^n = I_A$.

例:设A为有限集且 $f:A \rightarrow A$,证明:

- (1) 若有自然数 $n \ge 1$ 使 $f^n = I_A$,则f为双射;
- (2) 若f为双射,则有自然数 $n \ge 1$ 使 $f^n = I_A$.

证明: (1) 由 $f^n = I_A$,
 有 $f^{n-1} \circ f = f \circ f^{n-1} = I_A$, 且 I_A 为双射.
由 $f^{n-1} \circ f = I_A$ 为单射,可知 f 为单射.
由 $f \circ f^{n-1} = I_A$ 为满射,可知 f 为满射.
故 f 为双射.

- 例:设A为有限集且 $f:A \rightarrow A$,证明:
- (1) 若有自然数 $n \ge 1$ 使 $f^n = I_A$,则f为双射;
- (2) 若f为双射,则有自然数 n≥1 使 $f^n = I_A$.
- 证明: (2) 因 f 为双射, 由归纳法可知:对每个 n > 0, f^n 均 为双射.

设 n(A)=m,则A上的双射有 m!个,

由抽屉原理可知: 在 f, f^2 , f^3 , ..., $f^{m!+1}$ 这 m!+1个

双射中,必有两个相等, 不妨设为: $f^j = f^k (1 \le k < j)$,

因为f为双射,故有逆函数 f^{-1} ,得

$$f^{j-k}=f^{j}\circ (f^{-1})^{k}=f^{k}\circ (f^{-1})^{k}=I_{A}.$$

第三章函数

- 3.1 基本概念
- 3.2 函数的复合(合成)
- 3.3 逆函数
- 3.4 集合的特征函数

3.4 集合的特征函数

v

函数的比较和运算

定义10:设X为任意集合,f和 g都是从X到实数集R的函数,

$$(1)$$
 $f \leq g$: 对每个 $x \in X$, 皆有 $f(x) \leq g(x)$;

$$(2)$$
 $f+g:X\to R$, 对每个 $x\in X$, 皆有

$$(f+g)(x)=f(x)+g(x),$$

称 f+g为 f 和 g 的和;

(3) $f-g: X \to \mathbb{R}$, 对每个 $x \in X$, 皆有

$$(f-g)(x)=f(x)-g(x),$$

称f-g为f和g的差;

(4) $f*g: X \to \mathbb{R}$, 对每个 $x \in X$, 皆有

$$(f*g)(x)=f(x)*g(x),$$

称 f*g 为 f 和 g 的 积.

м

3.4.1 特征函数的定义

定义11 (特征函数) 设 U 是全集,A 是 U 的子集,A的特征函数 χ_{Λ} 为如下定义的从U到R的函数:

$$\chi_A(x) = \begin{cases} 1, & \text{若} x \in A \\ 0, & \text{若} x \notin A \end{cases}$$

例:设U是某大学全体学生的集合,A是计算机学院学生的集合,求 $\chi_{\Lambda}(x)$.

解: 若x 是计算机学院的学生,则 $\chi_A(x) = 1$,若x 不是计算机学院的学生,则 $\chi_A(x) = 0$.

例: 设 $U = \{a, b, c, d\}$, $A = \{a, c\}$, $\chi_A(x)$ 是 特征函数, 求 $\chi_A(x)$.

解:
$$\chi_A(a) = 1$$
, $\chi_A(b) = 0$, $\chi_A(c) = 1$, $\chi_A(d) = 0$

м

3.4.2 特征函数的性质

设A与B是全集 U 的任意两个子集,0: $U \rightarrow \mathbb{R}$,1: $U \rightarrow \mathbb{R}$,使得对任意 $x \in U$,0(x) =0,1(x)=1.

$$(1) \ 0 \le \chi_A \le 1$$

(2)
$$\chi_A = 0$$
 当且仅当 $A = \emptyset$ $\forall x (\chi_A(x) = 0) \Leftrightarrow A = \emptyset$

(3)
$$\chi_A$$
=1 当且仅当 A = U $\forall x (\chi_A(x) = 1) \Leftrightarrow A = U$

$$(4) \chi_A \leq \chi_B \text{ 当且仅当} A \subseteq B \quad \forall x (\chi_A(x) \leq \chi_B(x)) \Leftrightarrow A \subseteq B$$

(5)
$$\chi_A = \chi_B$$
 当且仅当 $A = B$ $\forall x (\chi_A(x) = \chi_B(x)) \Leftrightarrow A = B$

3.4.2 特征函数的性质

设A与B是全集 U 的任意两个子集,0: $U \to \mathbb{R}$,1: $U \to \mathbb{R}$,使得对任意 $x \in U$,0(x) =0,1(x)=1.

(6)
$$\chi_{\sim A} = 1 - \chi_A \quad \forall x, \chi_{\sim A} (x) = 1 - \chi_A (x)$$

(7)
$$\chi_{A\cap B} = \chi_{A^*}\chi_B \quad \forall x, \ \chi_{A\cap B}(x) = \chi_A(x)_*\chi_B(x)$$

(8)
$$\chi_{A \cup B} = \chi_A + \chi_B - \chi_A \times \chi_B \quad \forall x, \chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_A(x) \times \chi_B(x)$$

(9)
$$\chi_{A-B} = \chi_A - \chi_A \times \chi_B \quad \forall x, \ \chi_{A-B}(x) = \chi_A(x) - \chi_A(x) \times \chi_B(x)$$

(11)
$$\chi_A * \chi_A = \chi_A$$

$$\forall x, \chi_A(x) * \chi_A(x) = \chi_A(x)$$

м

3.4.3 特征函数的应用

$$\chi_A = \chi_B$$
 当且仅当 $A = B$

例: 证明
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

证明:
$$\chi_{A \cap (B \cup C)}$$

$$= \chi_{A} * \chi_{B \cup C}$$

$$= \chi_{A} * (\chi_{B} + \chi_{C} - \chi_{B \cap C})$$

$$= \chi_{A} * \chi_{B} + \chi_{A} * \chi_{C} - \chi_{A} * \chi_{B \cap C}$$

$$= \chi_{A \cap B} + \chi_{A \cap C} - \chi_{A \cap (B \cap C)}$$

$$= \chi_{A \cap B} + \chi_{A \cap C} - \chi_{(A \cap B) \cap (A \cap C)}$$

$$= \chi_{(A \cap B) \cup (A \cap C)}$$

例:用特征函数求 $(A-B)\cup(A-C)=A$ 成立的充分必要条件.

解:
$$\chi_{(A-B)\cup(A-C)} = \chi_{(A-B)} + \chi_{(A-C)} - \chi_{(A-B)\cap(A-C)}$$

$$= \chi_{A} - \chi_{A*}\chi_{B} + \chi_{A} - \chi_{A*}\chi_{C} - \chi_{(A-B)*} \chi_{(A-C)}$$

$$= 2\chi_{A} - \chi_{A} * \chi_{B} - \chi_{A} * \chi_{C}$$

$$-(\chi_{A} - \chi_{A} * \chi_{B}) * (\chi_{A} - \chi_{A} * \chi_{C})$$

$$= 2\chi_{A} - \chi_{A} * \chi_{B} - \chi_{A} * \chi_{C} - (\chi_{A} * \chi_{A} - \chi_{A} * \chi_{A} * \chi_{C} - \chi_{A} * \chi_{B} * \chi_{A} +$$

$$\chi_A * \chi_B * \chi_A * \chi_C$$

$$= 2\chi_A - \chi_A * \chi_B - \chi_A * \chi_C - \chi_A + \chi_A * \chi_C + \chi_A * \chi_B - \chi_A * \chi_B * \chi_C$$

$$= \chi_{A} - \chi_{A*} \chi_{B*} \chi_{C}$$

因此
$$(A-B)\cup (A-C)=A \Leftrightarrow \chi_A - \chi_{A*} \chi_{B*} \chi_C = \chi_A$$

$$\Leftrightarrow \chi_{A *} \chi_{B *} \chi_{c} = 0 = \chi_{A \cap B \cap C}$$

$$\Leftrightarrow$$
 A \cap B \cap C = \emptyset .

总结: 第三章函数

- 基本概念
 - ✓ 部分函数、(全)函数
 - ✓ 单射、满射
- 函数的复合(合成)
 - ✓ 关系的复合(合成)
 - ✓ (部分)函数的合成仍是(部分)函数
- 逆函数
 - ✓ 合成运算保持单射与满射
 - ✓ 左满右单
- 逆函数
 - 左逆、右逆、逆
- 集合的特征函数

作业7

设集合 $P=\{x_1, x_2, x_3, x_4, x_5\}$ 上的偏序 R的哈斯图 H_R 如下图所示。 a)求P的最小元、最大元、极小元和极大元(如果存在的话)。 b)求 $\{x_2, x_3, x_4\}$ 、 $\{x_3, x_4, x_5\}$ 和 $\{x_1, x_2, x_3\}$ 的上界、下界、上确界和下确界(如果存在的话)。

解: a) P的最大元: x_1 ; 最小元: 没有; 极大元: x_1 ; 极小元: x_4 , x_5 b) $\{x_2, x_3, x_4\}$ 的上界: x_1 ; 下界: x_4 , 上确界 x_1 , 下确界: x_4 $\{x_3, x_4, x_5\}$ 的上界: x_1, x_3 , 下界没有, 上确界 x_3 , 下确界: 没有 $\{x_1, x_2, x_3\}$ 的上界: x_1 , 下界 x_4 , 上确界 x_1 , 下确界: x_1

集合P上的偏序R的哈斯图HR

M

2. 设< A, < > 为偏序结构,证明A的每个非空有限子集都至少有一个极小元和极大元.

证明:证: (反证法)设 S为A的任意一个非空有限子集,且S 没有极小元.

由于S非空,则对任意的 $a_0 \in S$,存在 $a_1 \in S$,使得 $a_1 \le a_0$.

因为 a_1 不是极小元,因此存在 a_2 ,使得 $a_2 \le a_1 \le a_0$.

可以证明,对任意的 $n \in I_+$, 若存在 a_0 , a_1 , ..., $a_n \in S$,

满足 $a_n \le a_{n-1} \le \dots \le a_1 \le a_0$,。

由于S没有极小元,则一定存在 a_{n+1} ,使得 $a_{n+1} \le a_n$.

由归纳法知,S中一定存在一个无限递减序列 a₀, a₁, ..., a_n,....,

与S为有限集矛盾.

因此S一定有一个极小元.

同理可证S一定有一个极大元.

M

3. 设 R为集合 S上的全序关系。证明 R和 R-1同时为 S上的良序, 当且仅当S为有限集。

证明: (必要性)反证法:

假设S是无限集。

由于R为S的良序,则S必有关系R下的最小元,记为a1。

考虑集合 $S_1=S-\{a_1\}$,则 S_1 也为无限集。

由R为S的良序,得 S_1 也有关系R下的最小元 a_2 ,且 $a_1 \neq a_2$, $a_1 R a_2$ 。

一直继续下去,令 $S_n=S_{n-1}$ - $\{a_n\}$, S_n 也有关系R下的最小元 a_{n+1} 。因此,由于S为无限集,可得S关于关系R的无穷递增序列:

显然,该序列为S在关系 R-1下的无穷递降序列。

由于R是全序,可证R-1也是全序(请补充证明),与 R-1为良序矛盾。故假设不成立,即S是有限集。

3. 设 R为集合 S上的全序关系。证明 R和 R-1同时为 S上的良序,当且仅当S为有限集。

证明: (充分性)

若S为有限集,假设R与R-1中至少有一个不是良序。

不失一般性,假设R不是良序,

S中必存在关于R的无限递降序列,与S为有限集矛盾。

因此假设不成立,即R和R-1均为S的良序。

- 4. 试判断下列I 上的二元关系是不是I上的等价关系,并说明理由。
- a) $\{ \langle i,j \rangle | i,j \in I 且 ij > 0 \}$
- b) $\{ < i, j > | i, j \in I 且 i \le 0 \}$

解: a) 由于0*0=0, 因此0与0不满足关系, 因此该关系不满足自反性, 因此不是等价关系。

b) 对任意i>0,有i与i不满足关系,因此该关系不满足自反性,因此不是等价关系。

5. 设集合 A 上的二元关系 R是自反的。证明R为等价关系的充要条件是:

若<a, b>, <a, c> ∈R, 则<b, c> ∈R.

证明: (必要性)假设R为等价关系,

则R是自反、对称、传递的。

若<a, b>, <a, c> ∈R,

由于R为对称的,则<b, a>∈R,

由于R是传递的,

因此由 $\langle b, a \rangle \in \mathbb{R}$, $\langle a, c \rangle \in \mathbb{R}$ 得 $\langle b, c \rangle \in \mathbb{R}$.

5. 设集合 A 上的二元关系 R是自反的。证明R为等价关系的充要条件是:

若<a, b>, <a, c> ∈R, 则<b, c> ∈R.

证明: (充分性) 只需证明R是对称,传递的。

对任意<x, y>∈R,

由于R是自反的,则<x,x>∈R,

故 由 $\langle x, y \rangle \in \mathbb{R}$, $\langle x, x \rangle \in \mathbb{R}$ 得 $\langle y, x \rangle \in \mathbb{R}$,

因此,R是对称的。

对任意<x, y>, <y, z>∈R,

由于R是对称的,因此<y, x>∈R,

再由<y, z>∈R, 得<x, z>∈R。

因此,R是传递的。

综上,得 R是等价关系。

作业8

设 Π_1 和 Π_2 都是集合 A的划分。试判断下列集类是不是A的划分,为什么?

- $a)\Pi_1\cap\Pi_2$
- b) $(\Pi_1 \cap (\Pi_2 \Pi_1)) \cup \Pi_1$

作业8

- 1. 设 Π_1 和 Π_2 都是集合 A的划分。试判断下列集类是不是A的划分,为什么?
- $a)\Pi_1\cap\Pi_2$
- b) $(\Pi_1 \cap (\Pi_2 \Pi_1)) \cup \Pi_1$

解: a)

假设 $\Pi_1 \cap \Pi_2$ 是A的划分,

 $则 \cup (\Pi_1 \cap \Pi_2) = A.$

又因为 $\Pi_1 \cap \Pi_2 \subseteq \Pi_1$, $\Pi_1 \cap \Pi_2 \subseteq \Pi_2$,且 $\cup \Pi_1 = \cup \Pi_2 = A$ 。

显然 $\Pi_1 \cap \Pi_2 = \Pi_1$,且 $\Pi_1 \cap \Pi_2 = \Pi_2$,从而 $\Pi_1 = \Pi_2$ 。

显然 $\Pi_1 = \Pi_2$ 时, $\Pi_1 \cap \Pi_2 = \Pi_1$ 是A的划分。

故, $\Pi_1 \cap \Pi_2$ 是A的划分当且仅当 $\Pi_1 = \Pi_2$ 。

M

作业8

- 1. 设 Π_1 和 Π_2 都是集合 A的划分。试判断下列集类是不是A的划分,为什么?
- $a)\Pi_1\cap\Pi_2$
- b) $(\Pi_1 \cap (\Pi_2 \Pi_1)) \cup \Pi_1$

解:

b) $(\Pi_1 \cap (\Pi_2 - \Pi_1)) \cup \Pi_1 = (\Pi_1 \cap (\Pi_2 \cap \sim \Pi_1)) \cup \Pi_1$ $= ((\Pi_1 \cap \sim \Pi_1) \cap \Pi_2) \cup \Pi_1$ $= \Pi_1$

因此, $(\Pi_1 \cap (\Pi_2 - \Pi_1)) \cup \Pi_1$ 为A的划分

- м
 - 2. 设 Π_1 和 Π_2 都是集合 A的划分。若对每个 $S_1 \in \Pi_1$,皆有 $S_2 \in \Pi_2$,使得 $S_1 \subseteq S_2$,就称 Π_1 为 Π_2 的加细,记为 $\Pi_1 \le \Pi_2$ 。如果 $\Pi_1 \le \Pi_2$ 且 $\Pi_1 \ne \Pi_2$,就称 Π_1 为 Π_2 的真加细,并记为 $\Pi_1 < \Pi_2$ 。设 Π_1 和 Π_2 。
 - a) $R_1 \subseteq R_2$ 当且仅当 $A/R_1 \le A/R_2$;
 - b) R₁ ⊂ R₂ 当且仅当A/R₁ < A/R₂; 证明:

因此 $A/R_1 \leq A/R_2$.

a) 假设 $R_1 \subseteq R_2$,对任意 $[x]_{R1} \in A/R_1$,下面证明: $[x]_{R1} \subseteq [x]_{R2}$,其中 $[x]_{R2} \in A/R_2$ 。 对任意 $y \in [x]_{R1}$,有< x, $y > \in R_1$ 。由于 $R_1 \subseteq R_2$,因此< x, $y > \in R_2$,所以 $y \in [x]_{R2}$ 。故 $[x]_{R1} \subseteq [x]_{R2}$ 。

- М
 - 2. 设 Π_1 和 Π_2 都是集合 A的划分。若对每个 $S_1 \in \Pi_1$,皆有 $S_2 \in \Pi_2$,使得 $S_1 \subseteq S_2$,就称 Π_1 为 Π_2 的加细,记为 $\Pi_1 \le \Pi_2$ 。如果 $\Pi_1 \le \Pi_2$ 且 $\Pi_1 \ne \Pi_2$,就称 Π_1 为 Π_2 的真加细,并记为 Π_1 < Π_2 。设 Π_1 和 Π_2 是集合A上的等价关系,证明:
 - a) $R_1 \subseteq R_2$ 当且仅当 $A/R_1 \le A/R2$;
 - b) R₁ ⊂ R₂ 当且仅当A/R₁ < A/R2; 证明:
 - b) 假设 $R_1 \subset R_2$,则有 $R_1 \subseteq R_2$,
 - 由a)得 $A/R_1 \le A/R2$ 。
 - 因为 $R_1 \subset R_2$,因此存在 $\langle x, y \rangle \in R_2$,但 $\langle x, y \rangle \notin R_1$.
 - 因此, $y \in [x]_{R2}, y \notin [x]_{R1}$ 。
 - 所以 $[x]_{R2} \in A/R_2$,但 $[x]_{R2} \notin A/R_1$ 。
 - 综上得 $A/R_1 < A/R_2$ 。

- 4. 设R₁和R₂都是集合A上的等价关系。试判断下列A上的二元关系是不是A上的等价关系,为什么?
- 1) R_1-R_2 ;
- 2) $r(R_1-R_2)$
- 3) $R_2 \circ R_1$
- 4) $t(R_1 \cup R_2)$

证明: 1) 不是, R₁-R₂不满足自反性。

4. 设 R_1 和 R_2 都是集合A上的等价关系。试判断下列A上的二元关系是不是A上的等价关系,为什么?

1) $r(R_1-R_2)$

证明:

2) 由于R₁-R₂不满足传递性,因此,r(R₁-R₂)不一定满足传递性。 例如: A={1,2,3,4}

 $R_1 = \{<1, 1>, <2, 2>, <3, 3>, <4, 4>, <1, 2>, <2, 3>, <1, 3>, <2, 1>, <3, 2>, <3, 1>\}$

 $R_2 = \{<1, 1>, <2, 2>, <3, 3>, <4, 4>, <1, 3>, <3, 4>, <1, 4>, <3, 1>, <4, 3>, <4, 1>\}$

 R_1, R_2 都是A上的等价关系。

 R_1 - R_2 ={<1, 2>, <2, 3>, <2, 1>, <3, 2>}, $r(R_1$ - R_2) ={<1, 1>, <2, 2>, <3, 3>, <4, 4>, <1, 2>, <2, 3>, <2, 1>, <3, 2>}不是传递的,因此不是等价关系。

- 4. 设 R_1 和 R_2 都是集合A上的等价关系。试判断下列A上的二元关系是不是A上的等价关系,为什么?
- 2) $r(R_1-R_2)$

证明:

2) 由于 R_1 - R_2 不满足传递性,因此, $r(R_1$ - R_2)不一定满足传递性。例如: $A=\{1,2,3,4\}$

R₁={<1, 1>, <2, 2>, <3, 3>,<4, 4>, <1, 2>, <2, 3>, <1, 3>, <2, 1>, <3, 2>, <3, 1>}

R₂={<1, 1>, <2, 2>, <3, 3>,<4, 4>, <2, 3>, <3, 4>, <2, 4>, <3, 2>, <4, 2>}

 R_1, R_2 都是A上的等价关系。

 $R_1-R_2=\{<1, 2>, <1, 3>, <2, 1>, <3, 1>\},$

r(R₁-R₂) ={<1, 1>, <2, 2>, <3, 3>, <4, 4>, <1, 2>, <1, 3>, <2, 1>, <3, 1>}满足自反,对称,传递,是等价关系。

M

作业 9

1. 设A为集合,若对任意 S_1 , $S_2 \in \mathcal{P}(A)$,皆令 $f(S_1, S_2) = S_1 \cap S_2$ 。证明: f是从 $\mathcal{P}(A) \times \mathcal{P}(A)$ 到 $\mathcal{P}(A)$ 的二元函数。

证明:显然 f 是从 $P(A) \times P(A)$ 到 P(A) 的二元关系。 对任意的 $<S_1, S_2>, <S_3, S_4> \in P(A) \times P(A)$, 则 $f(S_1, S_2) = S_1 \cap S_2, f(S_3, S_4) = S_3 \cap S_4$ 若 $<S_1, S_2> = <S_3, S_4>$,则 $S_1 = S_3, S_2 = S_4$,因此, $S_1 \cap S_2 = S_3 \cap S_4$ 故 f 满足单值性,因此 f 为从 $P(A) \times P(A)$ 到 P(A) 的部分函数。 显然 f 动 f 是从 f 是从 f 是从 f 的 f 的 f 是从 f 的 f 的 f 的 f 的 f 是从 f 的 f 的 f 的 f 的 f 的 f 。

- м
 - 2. 设 f 为从集合X到 Y的部分函数, $A \subseteq P(X)$, $B \subseteq P(Y)$ 。
 - 证明: 1) $f[\cup A] = \cup \{f[A] \mid A \in A\};$
 - 2) 若 $A \neq \emptyset$,则 $f[\cap A] \subseteq \cap \{f[A] \mid A \in A\}$ 。
 - 并说明为什么 2)中 "⊆" 不能替换为 "="。
 - 证明: 设 $A = \{A1, ..., A_n\}$,
 - 1) 对任意 $b \in f[\cup A]$,则存在 $a \in \cup A$,使得b = f(a)。
 - 因为 $a \in \cup A$,则存在 $A_i \in A$,使得 $a \in A_i$
 - 故有 $b \in f[A_i] \subseteq \bigcup \{f[A] \mid A \in A\}$ 。
 - 即 b∈ \cup { $f[A] \mid A$ ∈ A}.
 - 故有 f[∪A] \subseteq ∪ { f[A] | A ∈ A }
 - 对任意 $b \in \bigcup \{f[A] \mid A \in A\}$,则存在 $A_i \in A$,使得 $b \in f[Ai]$ 。
 - 则存在 $a \in A_i$ 使得 $b = f(a) \in f[A_i] \subseteq f[\cup A]$, 即 $b \in f[\cup A]$.
 - 得 \cup {f[A] \mid A ∈ A } \subseteq f[\cup A].
 - 综上, f[∪A] = ∪ {f[A] | A∈A}。

- М
 - 2. 设 f 为从集合X到 Y的部分函数, $A \subseteq P(X)$, $B \subseteq P(Y)$ 。
 - 证明: 1) $f[\cup A] = \cup \{f[A] \mid A \in A\};$
 - 2) 若 $A \neq \emptyset$,则 $f[\cap A] \subseteq \cap \{f[A] \mid A \in A\}$ 。
 - 并说明为什么 2)中 "⊆" 不能替换为 "="。
 - 证明: $\partial A = \{A1, ..., A_n\}$,
 - 2) 对任意 $b \in f[\cap A]$, 则存在 $a \in \cap A$, 使得b = f(a)。
 - 因为 $a \in \cap A$,则对任意 $A_i \in A$,有 $a \in A_i$, $f \in f[A_i]$.
 - 故, $b\in \cap \{f[A] \mid A\in A\}$ 。
 - $\mathcal{F}[\cap A] \subseteq \cap \{f[A] \mid A \in A\}$ 。
 - \diamondsuit X={1, 2, 3, 4}, Y={1}, f(1)=f(2)=f(3)=f(4)=1.
 - $A_1 = \{1, 2\}, A_2 = \{3, 4\}, A = \{A_1, A_2\},$
 - $\cap A = \emptyset$, $f(\cap A) = \emptyset$, $\overrightarrow{m} \cap \{f[A] \mid A \in A\} = f[A_1] \cap f[A_2] = \{1\}$

- 3. 下列集合能够定义函数吗?如果能,求出它们的定义域和值域。
- 1) { <1, <2, 3>>, <2, <3, 4>>, <3, <1, 4>>, <4, <1, 4>>}
- 2) { < 1, <2, 3>>, < 2, <3, 4>>, <1, <2, 4>> }

解: 1) 令A={1, 2, 3, 4},则定义了从A到P(A)的函数, 定义域为A, 值域为{<2,3>, <3, 4>, <2, 4>}。

2) 由于< 1, <2, 3>>, <1, <2, 4>>同时出现 ,不满足单值性, 因此不是函数。

4. 设 f, g, h 是从R到R的函数,对于 每个 $x \in \mathbb{R}$,皆有 f(x) = x+3, g(x) = 2x+1, h(x) = x/2。 试求 $g \circ f$, $f \circ h$, $h \circ g$ 和 $f \circ h \circ g$

解: $g \circ f$, $f \circ h$, $h \circ g$ 和 $f \circ h \circ g$ f都是R到R的函数,其中, $g \circ f(x) = 2x+7$ $f \circ h(x) = x/2+3$ $h \circ g(x) = (2x+1)/2$ $f \circ h \circ g = (2x+1)/2+3 = x + 7/2$

5. 设A = $\{1, 2, ..., n\}$ 。有多少个满足以下条件的从A到A的函数 f:

$$a) f \mathcal{G} = f$$

b)
$$f \mathcal{G} = I_A$$

解: a) 假设函数 f 满足 $f^2 = f$,则对任意 $a \in X$,

若 f(a) = a, 则 $f^2(a) = f(a) = a$.

若f(a) = b ($b \neq a$), 则由 $f^2(a) = f(b) = f(a) = b$,得f(b) = b.

设f是A上的函数,满足只存在k个A中的元素a使得f(a)=a.

假设 $A_1 \subseteq A$, $|A_1| = k$, 且对任意 $a \in A_1$, 有f(a) = a,

则对任意的 $b \in A - A_1$, 一定存在一个 $c \in A_1$, 有f(b) = c.

否则,若存在 $\mathbf{c}' \in A$ - A_1 ,使得 $\mathbf{f}(\mathbf{b})=\mathbf{c}'$,则 $\mathbf{f}(\mathbf{c}')=\mathbf{c}'$,与只在 \mathbf{k} 个A中的元素a使得 $\mathbf{f}(\mathbf{a})=\mathbf{a}$ 矛盾.

因此,满足 $f^2 = f$ 的函数的个数为 $\sum_{k=1}^n C_n^k k^{n-k}$