G7. Let O be the circumcentre, and Ω be the circumcircle of an acute-angled triangle ABC. Let P be an arbitrary point on Ω , distinct from A, B, C, and their antipodes in Ω . Denote the circumcentres of the triangles AOP, BOP, and COP by O_A , O_B , and O_C , respectively. The lines ℓ_A , ℓ_B , and ℓ_C perpendicular to BC, CA, and AB pass through O_A , O_B , and O_C , respectively. Prove that the circumcircle of the triangle formed by ℓ_A , ℓ_B , and ℓ_C is tangent to the line OP.

Solution. As usual, we denote the directed angle between the lines a and b by $\not<(a,b)$. We frequently use the fact that $a_1 \perp a_2$ and $b_1 \perp b_2$ yield $\not<(a_1,b_1) = \not<(a_2,b_2)$.

Let the lines ℓ_B and ℓ_C meet at L_A ; define the points L_B and L_C similarly. Note that the sidelines of the triangle $L_A L_B L_C$ are perpendicular to the corresponding sidelines of ABC. Points O_A , O_B , O_C are located on the corresponding sidelines of $L_A L_B L_C$; moreover, O_A , O_B , O_C all lie on the perpendicular bisector of OP.

Claim 1. The points L_B , P, O_A , and O_C are concyclic. Proof. Since O is symmetric to P in O_AO_C , we have

$$\not \preceq (O_A P, O_C P) = \not \preceq (O_C O, O_A O) = \not \preceq (CP, AP) = \not \preceq (CB, AB) = \not \preceq (O_A L_B, O_C L_B). \quad \Box$$

Denote the circle through L_B , P, O_A , and O_C by ω_B . Define the circles ω_A and ω_C similarly. Claim 2. The circumcircle of the triangle $L_A L_B L_C$ passes through P.

Proof. From cyclic quadruples of points in the circles ω_B and ω_C , we have

Claim 3. The points P, L_C , and C are collinear.

Proof. We have $\angle(PL_C, L_CL_A) = \angle(PL_C, L_CO_B) = \angle(PO_A, O_AO_B)$. Further, since O_A is the centre of the circle AOP, $\angle(PO_A, O_AO_B) = \angle(PA, AO)$. As O is the circumcentre of the triangle PCA, $\angle(PA, AO) = \pi/2 - \angle(CA, CP) = \angle(CP, L_CL_A)$. We obtain $\angle(PL_C, L_CL_A) = \angle(CP, L_CL_A)$, which shows that $P \in CL_C$.

Similarly, the points P, L_A , A are collinear, and the points P, L_B , B are also collinear. Finally, the computation above also shows that

$$\not \preceq (OP, PL_A) = \not \preceq (PA, AO) = \not \preceq (PL_C, L_CL_A),$$

which means that OP is tangent to the circle $PL_AL_BL_C$.

Comment 1. The proof of Claim 2 may be replaced by the following remark: since P belongs to the circles ω_A and ω_C , P is the Miquel point of the four lines ℓ_A , ℓ_B , ℓ_C , and $O_AO_BO_C$.

Comment 2. Claims 2 and 3 can be proved in several different ways and, in particular, in the reverse order.

Claim 3 implies that the triangles ABC and $L_AL_BL_C$ are perspective with perspector P. Claim 2 can be derived from this observation using spiral similarity. Consider the centre Q of the spiral similarity that maps ABC to $L_AL_BL_C$. From known spiral similarity properties, the points L_A, L_B, P, Q are concyclic, and so are L_A, L_C, P, Q .

Comment 3. The final conclusion can also be proved it terms of spiral similarity: the spiral similarity with centre Q located on the circle ABC maps the circle ABC to the circle $PL_AL_BL_C$. Thus these circles are orthogonal.

Comment 4. Notice that the homothety with centre O and ratio 2 takes O_A to A' that is the common point of tangents to Ω at A and P. Similarly, let this homothety take O_B to B' and O_C to C'. Let the tangents to Ω at B and C meet at A'', and define the points B'' and C'' similarly. Now, replacing labels O with I, Ω with ω , and swapping labels $A \leftrightarrow A''$, $B \leftrightarrow B''$, $C \leftrightarrow C''$ we obtain the following

Reformulation. Let ω be the incircle, and let I be the incentre of a triangle ABC. Let P be a point of ω (other than the points of contact of ω with the sides of ABC). The tangent to ω at P meets the lines AB, BC, and CA at A', B', and C', respectively. Line ℓ_A parallel to the internal angle bisector of $\angle BAC$ passes through A'; define lines ℓ_B and ℓ_C similarly. Prove that the line IP is tangent to the circumcircle of the triangle formed by ℓ_A , ℓ_B , and ℓ_C .

Though this formulation is equivalent to the original one, it seems more challenging, since the point of contact is now "hidden".