Rebalancing vBucket Mapping

2: The Topology-Replication-Mapping Scheme

Weikang Zhou

Couchbase

July 27, 2012

Table of contents

- Algorithm
 - Algorithm scheme
 - Optimal topology
 - From topology to mapping
 - Algorithm Analysis
- 2 Testing results
- Next step

Notations

- N: number of vbuckets
- M: number of nodes
- L: number of copies for each vBucket
- S: slave number for each node

$\mathsf{Mapping}\ A$

vBucket Mapping matrix $A: N \times L$ matrix of node IDs.

Count R

Replication matrix R: $M \times M$ matrix of occurrences of replication pairs.

Topology RI

Adjacency matrix $RI: M \times M$ matrix. RI := (R > 0)

Previous Algorithm Recap

The Replication-Mapping scheme:

- Input: balanced mapping with known node ordering
- Node ordering determines the (known) optimal topology of target mapping, which determines R
- \bullet The algorithm then tries to change A minimally so that R will conform to target R
- Weakness
 - Must take a balanced input mapping
 - Must keep track of the original ordering of nodes
 - Can only generate one type of topology
 - Cannot extend to accommodate other constraints

Algorithm: new scheme

The Topology-Replication-Mapping scheme:

- Each block specializes in optimizing different aspects:
 - RI (topology): Slave nodes selection, node tags, node health constraint, (relaxed slave number constraint), ...

 - \bullet A (vBucket mapping): movement minimization
- \bullet New algorithm: current $A\longrightarrow$ current $R\longrightarrow$ current $RI\longrightarrow$ target $RI\longrightarrow$ target $R\longrightarrow$ new A

Finding optimal topology

- Current $RI \longrightarrow \text{target } RI$: the most computationally expensive step.
- Start from any feasible topology and greedily look for the optimal topology.
- Proposal: uniformly randomly sample two rows and two columns having two 1's on the diagonal, and propose to switch $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- Evaluation the "energy" of a topology: for a particular RI, we compute its energy to approximate the distance between the resulting target R with the original R.
- We accept the proposal if and only if energy decreases.
- ullet $pprox 10^6$ proposals are assessed in a typical setting: energy evaluation should be effective and fast.

Energy evaluation

- ullet Energy $E:=\sum_{i,j}\Bigl|R(i,j)-\widetilde{R}^T(i,j)\Bigr|$, where $\widetilde{R}^T:=rac{N\cdot L}{M\cdot S}\,RI$
- Consider the following difference with the same energy:

$$\begin{bmatrix} n \\ n & -n \\ & -n \end{bmatrix}$$
 (requiring $3n$ steps to balance)
$$\begin{bmatrix} n \\ n & -n \\ -n \end{bmatrix}$$
 (requiring only $2n$ steps to balance)

- Our algorithm, however, is indifferent between the two.
- This can arise when we are simultaneously adding and deleting nodes.
- For now, to circumvent this issue, we "cheat" by matching the deleted nodes with added nodes first.
- A better energy function??

Target $RI \longrightarrow \mathsf{target}\ R$

- Nonzero positions are determined by target RI
- We disperse the nonzero elements in target R by fixing row sums first, so that target R will be as close to the previous R as possible.
- Then we only have to balance the column sums of R, as this is the only remaining constraint to be satisfied.
- We search to switch two elements in a row, or switch two element in different rows via a third column, or weakly switch between elements in a row.
- If needed, we revisit row sums and search to switch two row sums.
- Here RI need not be "connected" any more, and this can be problematic...

Target $RI \longrightarrow \text{target } R$

For a given (optimal) topology RI, it is *not* always possible to find R such that its column sums are balanced. ($\approx 0.3\%$ cases for L=4.)

O O

Target $R \longrightarrow A$

- Two step greedy search:
 - **1 Inter-row change**: change of one active node modifies two row sums of R by (L-1).
 - 2 Intra-row change: change of one replica node modifies two column sums of R by 1.
- We minimize the movements of active node first; then we minimize the movements of replica nodes.
- We assume there is no trade-off between the two: the above two steps are separate.
- ullet The "no trade-off" assumption is only valid for small L.
- Currently the implementation is for indexed nodes, i.e. promoting a replica to active is counted as one move.

Lower bound

- A theoretical lower bound evaluates the performance of the algorithm
- The lower bound should be independent of the topology chosen and should apply to any input mapping
- Recall that:
 - **1** Balanced target R^T has row sums and column sums $\approx \frac{N(L-1)}{M}$.
 - ② Change of an active node in A changes two row sums of R by (L-1).
 - \odot Change of a replica node in A changes two column sums of R by 1.
- Lower bound = $\min \Big\{ \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i - R^T \text{ row sum of row } i \Big| + \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i \Big| + \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i - R^T \text{ row sum of row } i \Big| + \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i - R^T \text{ row sum of row } i \Big| + \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i - R^T \text{ row sum of row } i \Big| + \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i - R^T \text{ row sum of row } i \Big| + \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i - R^T \text{ row sum of row } i \Big| + \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i - R^T \text{ row sum of row } i \Big| + \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i - R^T \text{ row sum of row } i \Big| + \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i - R^T \text{ row sum of row } i \Big| + \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i - R^T \text{ row sum of row } i \Big| + \frac{1}{2(L-1)} \sum_{i} \Big| R \text{ row sum of row } i - R^T \text{ row } i - R^T \text{ row su$ $\frac{1}{2} \sum \left| R \text{ column sum of row } i - R^T \text{ column sum of row } i \right| \right\}$
- This is more conservative than the previous $\frac{N \cdot L}{\max\{M \mid M_0\}} \Delta M$.

Diagnostic

1293.6	1266	461	12	585
1293.6	1266	461	15	589
1293.6	1266	461	14	589
1293.6	1266	460	8	566
1293.6	1266	459	4	563
1293.6	1266	460	13	577
1293.6	1266	460	16	591
1293.6	1266	456	20	594
1293.6	1266	458	15	581
1293.6	1266	460	14	578
1293.6	1266	459	10	576
1293.6	1268	456	9	581
1293.6	1266	456	11	575
1293.6	1266	461	11	574
1293.6	1266	458	9	576
1293.6	1266	456	5	573
1293.6	1268	461	9	592
1293.6	1266	456	14	569
1293.6	1266	461	19	583
1293.6	1266	461	10	573
1293.6	1266	461	10	559
1293.6	1266	461	8	57:
1293.6	1266	460	8	569
1293.6	1266	460	9	559
1293.6	1266	457	11	562
1293.6	1266	459	12	573
1293.6	1266	456	11	573
1293.6	1266	461	14	577
1293.6	1268	458	9	574
1293.6	1266	459	3	559
1293.6	1266	458	11	562
1293.6	1266	457	13	566

- Input mapping: random permutations of vBuckets with the same mapping
- $L = 4, M : 23 \to 26$, lower bound 452.
- 1st column: final minimum energy level
- 2nd column: after balancing target R^T , $\sum |R(i,j) - R^T(i,j)|$
- 3rd column: lower bound computed through R^T
- ullet 4th column: additional move in R o A
- 5th column: actual number of movements
- Ideally, all columns should be the same

Testing results: fixed ΔM

Figure: $\Delta M = 1, L = 2$

Testing results: fixed ΔM

Testing results: fixed M

Figure: M = 77, L = 2

Testing results: fixed M

Figure: M = 65, L = 4

Testing results: variance in deletion

Testing results: choosing S

Figure: Number of movements versus different sizes of ${\cal S}$

Testing results: imbalanced input

- Stage 1: 21 nodes, add 5 and delete 3
- Stage 1 is incomplete
- Stage 2: add 2 more nodes, delete 3 (2 of them deleted in stage 1)

Next step

- Non-indexed version.
- Nodes with tags (eg. shelves)
- Unhealthy nodes
- 4 Heterogeneous nodes.