An Implementation of Type checking for a Dependently Typed Lambda Calculus

Based on:

A tutorial implementation of a dependently typed lambda calculus A. Löh, C. McBride, W. Swierstra

What even are Dependent Types?

- ullet The normal Function type au o au' is extended to orall x: au. au'
- ullet Also commonly written as (x: au) o au' or $\Pi_{x: au} au'(x)$
- ullet The return type au' can now depend on the argument $value\ x: au'$
- Like polymorphism, but for all values, not just types

```
-- The `cons` function for lists and vectors
cons_monomorphic : Int → List Int
cons_polymorphic : (a : *) → List a → List a
cons_dependent : (n : Nat) → (a : *) → Vec a n → Vec a (1 + n)
```

Dependent Types in Practice

- General Functional Programming
 - Idris
 - Stronger compile time invariants
- Proof Assistant
 - Agda, Coq
 - Automatically check the correctness of proofs
 - → Curry-Howard correspondence

Programming with Dependent Types

```
-- Known-length vectors and the functions `append` and `head` on them

data Vec (A : Set) : N → Set where
    nil : Vec A 0
    _::_ : {n : N} → (a : A) → Vec A n → Vec A (1 + n)

append : {A : Set} → {n m : N} → Vec A n → Vec A m → Vec A (n + m)
append nil v' = v'
append (x :: v) v' = x :: (append v v')

head : {A : Set} → {n : N} → {1 ≤ n} → Vec A n → A
head (x :: v) = x
```

Proving things with Dependent Types

```
data Nat : Set where
  zero : Nat
  suc : Nat \rightarrow Nat
_{-}+ : Nat \rightarrow Nat \rightarrow Nat
zero + y = y
(suc x) + y = suc (x + y)
data \_=\_ (x : Nat) \rightarrow Set where
  refl: x = x
assoc : (x : Nat) \rightarrow (y : Nat) \rightarrow (z : Nat) \rightarrow (x + y) + z = x + (y + z)
assoc x y z = ?
```

Inputs and Outputs in Type Judgements

$$rac{\Gamma dash e : au
ightarrow au' \quad \Gamma dash e' : au}{\Gamma dash e \ e' : au'}$$

• ...

Inputs and Outputs in Type Judgements

- ullet In some Type Judgement $\Gamma dash e : au$, what is given, and what is inferred?
- Γ , e and τ are given \Rightarrow Type Checking
- Γ and e are given \Rightarrow *Type Inference*
- (Γ and τ are given \Rightarrow *Program Sythesis*)
- ⇒ We differentiate between:
 - \circ $\Gamma \vdash e :_{\downarrow} au$ ("Check that e has given type au, in context Γ ")
 - \circ $\Gamma dash e :_{\uparrow} au$ ("Infer for e what type au it has, in context Γ ")

Abstract syntax STLC

Abstract syntax DTLC

Type Checking of Abstraction ($\lambda x.e$)

$$rac{\Gamma, x : au dash e :_{\downarrow} au'}{\Gamma dash \lambda x. e :_{\downarrow} au
ightarrow au'}$$

```
\overline{\Gamma dash \lambda x.\, e:_{\downarrow} 	au 
ightarrow 	au'}
```

```
\Gamma, x: 	au dash e:_\downarrow 	au'
\overline{\Gamma dash \lambda x.\, e:_{\downarrow} orall x:	au.\,	au'}
```

```
typeCheck i g (Lam e) (Fun t t') =
  typeCheck (i + 1)
    ((Local i, HasType t) : g)
    (substCheck 0 (Free (Local i)) e)
```

```
typeCheck i g (Lam e) (VPi t t') =
  typeCheck (i + 1)
   ((Local i, t) : g)
    (substCheck 0 (Free (Local i)) e)
    (t' (vfree (Local i)))
```

Interlude: Bound Variables 👑

- There is no silver bullet solution
- We use a combintation of two styles of bindings (→ *locally nameless*)
 - Local: de Bruijn indices
 - Global: *String names*
- E.g.: $const = \lambda \rightarrow \lambda \rightarrow 1$

Type Inference of Application ($e\ e'$)

$$\frac{\Gamma \vdash e :_{\uparrow} \tau \to \tau' \quad \Gamma \vdash e' :_{\downarrow} \tau}{\Gamma \vdash e \ e' :_{\uparrow} \tau'}$$

```
\frac{\Gamma \vdash e :_{\uparrow} \forall x : \tau. \, \tau' \quad \Gamma \vdash e' :_{\downarrow} \tau}{\Gamma \vdash e \; e' :_{\uparrow} \tau [\, x \mapsto e' \,]}
```

```
typeInfer i g (e :@: e') = do
s ← typeInfer i g e
case s of
Fun t t' → do
typeCheck i g e' t
return t'
_ → failure ":("
```

```
typeInfer i g (e :0: e') = do
    s ← typeInfer i g e
    case s of
    VPi t t' → do
        typeCheck i g e' t
        return
        (t' (evalCheck [] e'))
        _ → failure ":("
```

Type Inference of Annotation (e: ho)

$$rac{\Gamma dash au : * \quad \Gamma dash e :_{\downarrow} au}{\Gamma dash (e : au) :_{\uparrow} au}$$

```
typeInfer i g (Ann e t) = do
  kindCheck g t Star
  typeCheck i g e t
  return t
```

```
rac{\Gamma dash 
ho :_{\downarrow} * \hspace{0.2cm} 
ho \Downarrow 	au \hspace{0.2cm} \Gamma dash e :_{\downarrow} 	au}{\Gamma dash (e : 
ho) :_{\uparrow} 	au}
```

```
typeInfer i g (Ann e r) = do
  typeCheck i g r VStar
  let t = evalCheck [] r
  typeCheck i g e t
  return t
```

Kind Inference of Types (au ightarrow au' and orall x: ho. ho')

• • •

Issues & Extensions

- What is the type of the type of types? I.e. For what τ is $*:\tau$?
- For simplicity we assumed *: *, but this is unsound

• ...

Tobias Hoffmann

15

Conclusion

• Dependent types aren't as scary as they seem

• ...

Sources & co

Slides at: https://github.com/Garbaz/seminar-dependent-types

[1] Löh, Andres, Conor McBride, Wouter Swierstra. "A tutorial implementation of a dependently typed lambda calculus." Fundamenta informaticae 102.2 (2010): 177-207.

[2] Jana Dunfield, Neel Krishnaswami. "Bidirectional typing" ACM Computing Surveys (CSUR) 54.5 (2021): 1-38.