Berechnung von Dirichletzellen kristallographischer Gruppen mittels endlicher Wortlänge

Lukas Schnelle

Grüppchen 2025 In Zusammenarbeit mit Alice C. Niemeyer und Reymond Akpanya

Notation

Seien $v, w \in \mathbb{R}^n$ Vektoren und $r \in \mathbb{R}$ eine reelle Zahl.

Notation

Seien $v, w \in \mathbb{R}^n$ Vektoren und $r \in \mathbb{R}$ eine reelle Zahl. Dann bezeichnen wir mit

(i) $\langle v, w \rangle$ das Euklidische Skalarprodukt,

Notation

Seien $v, w \in \mathbb{R}^n$ Vektoren und $r \in \mathbb{R}$ eine reelle Zahl. Dann bezeichnen wir mit

- (i) $\langle v, w \rangle$ das Euklidische Skalarprodukt,
- (ii) $||v|| := \sqrt{\langle v, v \rangle}$ die Euklidische Norm,

Notation

Seien $v,w\in\mathbb{R}^n$ Vektoren und $r\in\mathbb{R}$ eine reelle Zahl. Dann bezeichnen wir mit

- (i) $\langle v, w \rangle$ das Euklidische Skalarprodukt,
- (ii) $||v|| := \sqrt{\langle v, v \rangle}$ die Euklidische Norm,
- (iii) d(v, w) := ||v w|| die Euklidische Distanz,

Notation

Seien $v,w\in\mathbb{R}^n$ Vektoren und $r\in\mathbb{R}$ eine reelle Zahl. Dann bezeichnen wir mit

- (i) $\langle v, w \rangle$ das Euklidische Skalarprodukt,
- (ii) $||v|| := \sqrt{\langle v, v \rangle}$ die Euklidische Norm,
- (iii) d(v, w) := ||v w|| die Euklidische Distanz,
- (iv) $B_r(v) := \{u \in \mathbb{R}^n \mid d(v,u) < r\}$ den offenen r-Ball und mit

Notation

Seien $v,w\in\mathbb{R}^n$ Vektoren und $r\in\mathbb{R}$ eine reelle Zahl. Dann bezeichnen wir mit

- (i) $\langle v, w \rangle$ das Euklidische Skalarprodukt,
- (ii) $||v|| := \sqrt{\langle v, v \rangle}$ die Euklidische Norm,
- (iii) d(v, w) := ||v w|| die Euklidische Distanz,
- (iv) $B_r(v) := \{u \in \mathbb{R}^n \mid d(v,u) < r\}$ den offenen r-Ball und mit
- (v) $\overline{B_r(v)} \coloneqq \{u \in \mathbb{R}^n \mid d(v,u) \le r\}$ den abgeschlossenen r-Ball.

Notation

Seien $v,w\in\mathbb{R}^n$ Vektoren und $r\in\mathbb{R}$ eine reelle Zahl. Dann bezeichnen wir mit

- (i) $\langle v, w \rangle$ das Euklidische Skalarprodukt,
- (ii) $||v|| := \sqrt{\langle v, v \rangle}$ die Euklidische Norm,
- (iii) d(v, w) := ||v w|| die Euklidische Distanz,
- (iv) $B_r(v) := \{u \in \mathbb{R}^n \mid d(v,u) < r\}$ den offenen r-Ball und mit
- (v) $\overline{B_r(v)} \coloneqq \{u \in \mathbb{R}^n \mid d(v,u) \le r\}$ den abgeschlossenen r-Ball.

Kurz: Unsere Welt ist eine Euklidische.

Sei $n \in \mathbb{N}$ und $\varphi : \mathbb{R}^n \to \mathbb{R}^n$. Dann bezeichnen wir φ also *Isometrie*, falls für alle $v, w \in \mathbb{R}^n$ gilt, dass:

$$d(v^{\varphi},w^{\varphi})=d(v,w).$$

Sei $n \in \mathbb{N}$ und $\varphi : \mathbb{R}^n \to \mathbb{R}^n$. Dann bezeichnen wir φ also *Isometrie*, falls für alle $v, w \in R^n$ gilt, dass:

$$d(v^{\varphi},w^{\varphi})=d(v,w).$$

Die Menge aller Isometrien zu einem festen n bezeichnen wir mit E(n).

Sei $n \in \mathbb{N}$ und $\varphi : \mathbb{R}^n \to \mathbb{R}^n$. Dann bezeichnen wir φ also *Isometrie*, falls für alle $v, w \in \mathbb{R}^n$ gilt, dass:

$$d(v^{\varphi},w^{\varphi})=d(v,w).$$

Die Menge aller Isometrien zu einem festen n bezeichnen wir mit E(n).

Proposition

Sei $n \in \mathbb{N}$ fest. Dann ist die Menge aller Isometrien E(n) eine Gruppe mit der Konkatenation von Abbildungen als Gruppenoperation. Diese Gruppe bezeichnen wir als die *euklidische Gruppe*. Die Gruppe operiert auf \mathbb{R}^n durch die Anwendung eines Gruppenelements als Abbildung.

Sei $\Gamma \leq E(n)$ eine Untergruppe und $F \subseteq \mathbb{R}^n$ eine abgeschlossene Menge. Dann heißt F ein Fundamentalbereich von Γ falls

(i)
$$\bigcup_{\gamma \in \Gamma} F^{\gamma} = \mathbb{R}^n$$

Sei $\Gamma \leq E(n)$ eine Untergruppe und $F \subseteq \mathbb{R}^n$ eine abgeschlossene Menge. Dann heißt F ein Fundamentalbereich von Γ falls

- (i) $\bigcup_{\gamma \in \Gamma} F^{\gamma} = \mathbb{R}^n$
- (ii) es gibt ein Vertretersystem $V \subseteq \mathbb{R}^n$ von den Bahnen der Operation von Γ auf \mathbb{R}^n , sodass

$$F^{\circ} \subseteq V \subseteq F$$
.

Sei $\Gamma \leq E(n)$ eine Untergruppe und $F \subseteq \mathbb{R}^n$ eine abgeschlossene Menge. Dann heißt F ein Fundamentalbereich von Γ falls

- (i) $\bigcup_{\gamma \in \Gamma} F^{\gamma} = \mathbb{R}^n$
- (ii) es gibt ein Vertretersystem $V \subseteq \mathbb{R}^n$ von den Bahnen der Operation von Γ auf \mathbb{R}^n , sodass

$$F^{\circ} \subset V \subset F$$
.

Definition

Sei $\Gamma \leq E(n)$ eine Untergruppe. Dann heißt Γ kristallographische Gruppe falls Γ eine diskrete Untergruppe ist und ein kompakter Fundamentalbereich von Γ existiert.

In der Literatur werden kristallographische Gruppen (insbesondere der Dimension 3) auch als Raumgruppen bezeichnet.

Kristallographische Gruppen

TODO: Bieberbach

test

gfddsg