國立清華大學 超大型積體電路測試 VLSI Testing

Homework 2

系所級:電子所一年級、電機系碩士班一年級

學號:111063548、111061624

姓名:蕭方凱、尤弘瑋

指導老師:黃錫瑜教授

目錄

(a)	Write the RTL code in Verilog or VHDL that takes in two 8-bit positive integers, A[7:0] and				
	B[7:0], and produces its quotient Q[7:0] and remainder R[7:0]	4			
	divider.v	4			
	Finite State Machine	6			
(b)	Verify the correctness of your RTL code by a testbench. You should try it out by at least	3 pairs			
	of input numbers	7			
	PATTERN.v	7			
	TESTBED.v				
	Display on MobaXterm	13			
	nWave	13			
(c)	Use a synthesis script to convert your RTL code into a gate-level netlist. Report the final	l gate			
	count, the maximum operating speed (in MHz) and the estimated power dissipation in	_			
	using Design Compiler.	14			
	Area Report	14			
	Slack Report	15			
	Power dissipation	16			
(d)	Add the scan chain into your gate-level netlist obtained by part(c), report the resulting gate				
	count, the maximum operating speed (in MHz) of your circuit. Compare to the non-scan				
	version, and report the area overhead percentage and performance penalty de to scan	chain			
	insertion	17			
	Area Report	18			
	Slack Report	19			
	Power dissipation	20			
	Comparing before/after scan chain	20			
	Comment:	21			
(e)	Run ATPG using a commercial tool available and report the fault coverage	22			

圖目錄

FIG 1 RTL CODE(DIVIDER.V)	4
FIG 2 RTL CODE(DIVIDER.V)	5
FIG 3 PATTERN.V (I/O PORTS AND PARAMETERS)	7
FIG 4 PATTERN.V (MAIN TASK STRUCTURE)	8
FIG 5 PATTERN.V (CLOCK GENERATION)	8
FIG 6 PATTERN.V (RESET TASK)	9
FIG 7 PATTERN.V (INPUT TASK)	9
FIG 8 PATTERN.V (CHECK TASK)	9
FIG 9 PATTERN.V (ERROR TASK)	9
FIG 10 PATTERN.V (FAIL TASK)	10
FIG 11 PATTERN.V (PASS TASK)	11
FIG 12 TESTBED.V(TESTBENCH)	12
FIG 13 10 PAIRS OF INPUTS	13
FIG 14 NWAVE RESULT	13
FIG 15 AREA REPORT	14
FIG 16 SLACK REPORT	15
FIG 17 POWER DISSIPATION	16
FIG 18 AREA REPORT(AFTER SCAN CHAIN INSERT)	18
FIG 19 SLACK REPORT(AFTER SCAN CHAIN INSERT)	19
FIG 20 POWER DISSIPATION(AFTER SCAN CHAIN INSERT)	20
FIG 21 FAULT COVERAGE	22

```
分工:
蕭方凱:RTL、Testbench、Compiler、DFT、Report
尤弘瑋:Algorithm、RTL、Testbench、Compiler、ATPG
```

(a) Write the RTL code in Verilog or VHDL that takes in two 8-bit positive integers, A[7:0] and B[7:0], and produces its quotient Q[7:0] and remainder R[7:0].

divider.v

```
module divider(dividend, divisor, quotient, remainder, clk, rst_n, in_valid, out_valid);
     input clk, rst_n;
    input [7:0] dividend;
    input [7:0] divisor;
    input in_valid;
    output reg out_valid;
     output reg [7:0] quotient;
    output reg [7:0] remainder;
    reg [7:0] input_A;
11
    reg [7:0] input_B;
    reg [2:0] c_state, n_state;
13
    parameter IDLE = 2'b00;
    parameter CALCULATE = 2'b01;
14
    parameter OUTPUT = 2'b10;
17
     always @(posedge clk or negedge rst_n) begin
         if(!rst_n) begin
19
             input_A <= 0;
20
             input_B <= 0;
21
          end
22
          else begin
23
              if(in_valid) begin
24
                input_A <= dividend;
25
                 input_B <= divisor;</pre>
26
              else if(c_state == CALCULATE) begin
27
28
                 input_A <= input_A - input_B;</pre>
29
              end
30
31
32
     always@(posedge clk or negedge rst_n)begin
34
          if(!rst_n) c_state<=IDLE;</pre>
35
          else c_state<=n_state;</pre>
```

Fig 1 RTL code(divider.v)

```
always @(*) begin
39
40
          case(c_state)
41
               IDLE: begin
42
43
44
                   if(in_valid) n_state = CALCULATE;
45
                   else n_state = IDLE;
               end
46
47
48
               CALCULATE: begin
49
50
                   if(input_A >= input_B) n_state = CALCULATE;
51
                   else n_state = OUTPUT;
52
               end
53
54
               OUTPUT: begin
55
56
                   n_state = IDLE;
57
58
59
               default: n_state = c_state;
60
          endcase
61
      always @(posedge clk or negedge rst_n) begin
68
69
          if(!rst_n) quotient<=0;</pre>
70
          else begin
71
              if(c_state==IDLE) quotient<=0;</pre>
72
              else if (c_state == CALCULATE) quotient <= quotient + 1'b1;</pre>
73
              else if(c_state==OUTPUT) quotient <= quotient - 1;</pre>
74
              else quotient<=quotient;</pre>
75
          end
76
      end
77
78
      always @(posedge clk or negedge rst_n) begin
79
          if(!rst_n) remainder<=0;</pre>
80
          else begin
81
              if(c_state==IDLE) remainder<=0;</pre>
82
              else if(c_state==CALCULATE) remainder <= input_A;</pre>
83
              else remainder<=remainder;</pre>
84
          end
85
      end
86
87
88
      always @(posedge clk or negedge rst_n)begin
89
          if(!rst_n) out_valid<=0;</pre>
90
          else begin
             if(c_state == OUTPUT) out_valid<=1;</pre>
91
92
              else out_valid <= 0;</pre>
93
94
95
      end
96
97
      endmodule
```

Fig 2 RTL code(divider.v)

Finite State Machine

另外,除了 FSM 功能以外,RTL 電路還包含以下主要功能:

1. rst_n = 0 時:

input_A = 0; input_B = 0; c_state = IDLE; n_state = IDLE; quotient = 0;
remainder = 0; out_valid = 0

2. in_valid = 1 時:

將由 pattern 產生的 dividend 及 divisor 輸入給 input_A 及 input_B。

(b) Verify the correctness of your RTL code by a testbench. You should try it out by at least 3 pairs of input numbers.

PATTERN.v

```
timescale 1ns/1ps
    define CYCLE_TIME 1.6
3
4 ∨ module PATTERN(
    //OUTPUT signals
      dividend,
7
      divisor,
8
      clk,
9
     rst_n,
10
     in_valid,
      //INPUT signals
11
12
     quotient,
13
     remainder,
14
    out_valid
15
   );
16
   // I/O PORTS
17
18
   clk;
19
   output reg
20
   output reg [7:0] dividend;
21
22
   output reg [7:0] divisor;
23
   output reg
             in_valid;
24
   input
              out_valid;
25
   input [7:0]
              quotient;
26
   input [7:0] remainder;
27
28
   29
        PARAMETERS & VARIABLES
30
   31
   parameter CYCLE = `CYCLE_TIME;
   parameter PATNUM
                  = 10; PATNUM: number of inputs = 10
32
33
   integer SEED
                  = 122;
34
   // PATTERN CONTROL
35
   integer
                i;
   integer err cnt;
36
   integer out_latency;
37
38
39
40
   reg [7:0] tp_quotient;
41
   reg [7:0] tp_remainder;
```

Fig 3 PATTERN.v (I/O ports and parameters)

```
initial clk = 1'b0:
    always #(CYCLE/2.0) clk = ~clk;
                 MATN
51
    initial main_task;
    //----
55
                 TASKS
    task main_task; begin
58
        reset task:
       $display("\n\t\t\t DIVIDEND DIVISOR | DIVIDEND DIVISOR | QUOTIENT REMAINDER | QUOTIENT REMAINDER ");
61
        for(i = 0; i < PATNUM; i = i+1) begin</pre>
         input_task;
check_task;
62
63
65
        if (err_cnt !== 0) fail_task;
66
        else pass_task;
     end endtask
```

Fig 4 PATTERN.v (main task structure)
Fig 5 PATTERN.v (clock generation)

此 pattern 分別有 reset_task、input_task、check_task、error_task、fail_task、pass_task,及一些 display 以讓使用者觀察出輸入與輸出的對應結果。

以下為各個 task 之功能說明:

- Reset_task: 負責將所有訊號歸零,歸零後始 rst_n 常態保持在 1。
- Input task: 負責 input 被除數及除數,並算出正確的商及餘數。
- Check_task: 驗證 pattern 算出的商及餘數是否與 RTL 算出的相同,若相同 代表 RTL 正確,否則 RTL 存在錯誤。
- Error_task: display 錯誤的 input 發生在第幾筆 input,同時使 err_cnt 加 1,
 此 err_cnt 代表錯誤筆數。
- Fail_task: 顯示總共有幾筆錯誤資料,同時顯示出失敗小熊圖案。
- Pass_task: 顯示 PASS!! No errors were found!,同時顯示出成功小熊圖案。

```
//*********************
70
   // Reset Task
   //********************
71
72
    task reset_task; begin
73
      clk = 0;
74
       rst_n
                = 1:
75
      in_valid = 0;
76
                 = 0;
       err_cnt
77
       #(CYCLE/2.0) rst_n = 0;
78
       #(CYCLE/2.0) rst_n = 1;
79
    end endtask
80
   //********************
81
82
   // Input Task
   //****************
83
   task input_task; begin
84
85
       in_valid = 1; //in_valid 為1時才輸入
86
       dividend = {$random(SEED)} % 255;
       divisor = {$random(SEED)} % 255 + 1; // +1防止除數為0
87
88
       tp_quotient = dividend / divisor;
       tp_remainder = dividend % divisor;
89
       $write("\tInput%d\t %b %b %d %d ", i, dividend, divisor, dividend, divisor);
90
91
       repeat(1) @(negedge clk);
92
       in_valid = 0;
       dividend = 8'bx;
93
94
       divisor = 8'bx;
    end endtask
```

Fig 6 PATTERN.v (reset task)

Fig 7 PATTERN.v (input task)

```
//**********************
          Check Task
     //*********************
99
100
     task check_task; begin
101
       out_latency = 0;
        while(out valid == 0)begin
102
         out_latency = out_latency + 1;
@(negedge clk); //只要out_valid 還沒拉起來就要多等一個cycle
103
104
105
          $display("%b %b %d %d \n", quotient, remainder, quotient, remainder);
if ((tp_quotient !== quotient) || (tp_remainder !== remainder)) error;
107
          $display("%b %b
108
109
       repeat(5) @(negedge clk);
110
111
     end endtask
112
     //***********************
113
     //************************
115
116
117
       $display("\t\t -----");
        $display("\t\t\ ERROR AT %d, correct quotient should be %d\t\t your quotient is %d", i, tp_quotient, quotient);
118
        $display("\t\\t \\...\n");
119
120
       err_cnt = err_cnt + 1;
     end endtask
```

Fig 8 PATTERN.v (check task)

Fig 9 PATTERN.v (error task)

```
//********************
123
124
      Failed Task
    //***********************
125
126
    task fail_task; begin
127
      $display("\nFAIL!! There were %d errors in all.\n", err_cnt);
128
      $display("
                                                                ");
129
      $display("
                                             ./+00+/.
                                                                ");
130
      $display('
                                             /s:---+s`
                                            y/----:y
                                                                ");
131
      $display('
                                                                ");
                                          `.-:/od+/----y`
132
      $display("
133
      $display("
                                `:///+++0000000+//::::----:/y+:`
                                -m+::::::::----:::0+.
                                                                ");
      $display("
134
                                                                ");
135
      $display(
                            ./++/:s/-o/-----/s///::.
136
      $display(
                           /s::-://--:-----:00/::::0+
                                                                ");
      $display("
137
                         -+ho++++//hh:-------:s:-----+/
                                                                ");
138
      $display("
                        -s+shdh+::+hm+----:s
                                                                ");
139
      $display("
                       -s:hMMMMNy---+y/-----//
140
                                                                ");
      $display("
                       y:/NMMMMN:---:s-/o:-----+
      $display("
                                                                ");
141
                                                                ");
142
                       h--sdmmdy/----:hyssoo++:----:/
      $display("
                                                                ");
      $display("
                       h---::::-----::+++s-
143
                       s:-----o`
                                                                ");
      $display("
144
                   145
      $display("
                                                                ");
      $display("
146
                 -/oyhyyyyym:----://///:----:/
147
      $display("
                /dyssyyyssssyh:------
                                                                ");
                                                                ");
148
      $display("
               -+o/---:/oyyssshd/---------:/.
                                                                ");
      $display(" `++---:/sysssddy+:-----/+-----s/-----://
149
                                                                ");
      $display(" .s:-----:+ooyysyyddoo++os-:s-----/y-----:++.
150
                                                                ");
      $display(" s:----/yyhssyshy:---/:o:-----:dsoo++//::::-::+syh`
151
      152
                                                                ");
      $display("`h-----:yyssssyyhhyy+------+dyyyyssssssssyyyhs+/.
153
154
      $display(" s:-----/yysssssyhy:-----shyyyyyhyyssssyyh.
                                                                ");
      ");
      $display(" .s-----/yssssssyyyyssssyo
155
                                                                ");
156
                                                                ");
157
      $display("`+yhdo----::/----::sysssssssssssssssy.
158
159
      $display("+yysyhh:-----/ysysssssssssssssssssy/
      $display(" /hhysyds:------y------/+yysssssssssssssssh)
                                                                ");
160
                                                                ");
161
      $display(" .h-+yysyds:-----:s-----:-/ysssssssssssssssssym:
      $display(" y/---oyyyyhyo:----:o:----:ysssssssssyyyssyyd-
                                                                ");
162
                                                                ");
      $display("`h----+syyyyhhsoo+///+osh-----:ysssyysyyyysssssyd:
163
                                                                ");
      $display("/s----:+syyyyyyyyyyyyyyyyyyhso/:----::+oyyyyhyyyyssssssssyy+-
164
165
      166
      $display("+s----:/osyyyyssssssssssssssyyhyyssssssyyyyso/y`
167
      $display(".h------o`
168
169
      repeat(5) @(negedge clk);
170
      $finish;
171
    end endtask
```

Fig 10 PATTERN.v (fail task)

```
//* PASS Task

//* PASS Task

//* task pass_task; begin

//*display("\033[1;33m 'oo+oy+' display("\033[1;33m 'so+oy+' display("\033[1;31m 'so+oy+' display("\033[1;33m 'so+oy+' display("\033[
                                             //***************************
                                                                                                                                                                                                            out_latency);
    185
186
187
    191
  214
215
216
217
218
219
  220
  221
  225
226
  227
  228
  234
  235
```

Fig 11 PATTERN.v (pass task)

TESTBED.v

```
`include "PATTERN.v"
 1
 2
     module TESTBED;
 3
    wire clk;
 4
 5
    wire rst_n;
    wire in_valid;
 6
 7
   wire [7:0] dividend;
   wire [7:0] divisor;
8
    wire [7:0] quotient;
9
10
    wire [7:0] remainder;
    wire out_valid;
11
12
     divider U_divider(
13
14
         .dividend(dividend),
15
         .divisor(divisor),
16
         .quotient(quotient),
                                                RTL PART
17
         .remainder(remainder),
18
         .clk(clk),
19
         .rst_n(rst_n),
20
         .in_valid(in_valid),
21
         .out_valid(out_valid)
22
     );
23
24
     PATTERN U PATTERN(
25
         .dividend(dividend),
26
         .divisor(divisor),
27
         .quotient(quotient),
28
         .remainder(remainder),
                                            PATTERN PART
29
         .clk(clk),
30
         .rst_n(rst_n),
31
         .in_valid(in_valid),
32
         .out_valid(out_valid)
33
     );
34
     initial begin
35
36
         $sdf_annotate("divider_syn.sdf", U_divider);
         $fsdbDumpfile("./divider.fsdb");
37
         $fsdbDumpvars(0,"+mda");
38
39
         $fsdbDumpvars();
40
     end
     endmodule
41
```

Fig 12 TESTBED.v(testbench)

Display on MobaXterm

	_	DIVIDEND	DIVISOR	DIVIDEND	DIVISOR	QUOTIENT	REMAINDER	QUOTIENT	REMAINDER
Input		10010110	10001111	150	143	00000001	00000111	1	
Input		00000101	11011010		218	00000000	00000101		
Input		00001001	10101010		170	00000000	00001001		
Input		01111000	11000100	120	196	00000000	01111000		120
Input		01101111	10000001	111	129	00000000	01101111		111
Input		11111100	00011001	252	25	00001010	00000010	10	
Input		11100110	01001111	230	79	00000010	01001000		72
Input		10101100	11010111	172	215	00000000	10101100		172
Input	8	10010000	10001011	144	139	00000001	00000101		
Input		00001111	00100100	15	36	00000000	00001111	0	15
/h/	++oo+/: hhhhhhhso/: hhhddhhhhh hhhhddddhy yyhdhyhhddh	:::+oso+:/y	PASS Tota -: -:yyo+ /-/hos/ s:/-:sy- ssm/o+ o+yNNmms::odmdy/+,::/h:-:c:ofmdy/+,:/h:-:cofmdy/+,	:` 'yyo: 'yyhy lldmy: 'syhssv:-`	Maybe 2				

Fig 13 10 pairs of inputs

由左至右,分別為:

由 pattern 所產生的被除數及除數(binary) \rightarrow 由 pattern 所產生的被除數及除數(decimal) \rightarrow RTL 的商數及餘數(binary) \rightarrow RTL 的商數及餘數(decimal)

nWave

Fig 14 nWave result

一開始先將 rst_n 變為 0,使電路 reset。Reset 完後,將 rst_n 拉回 1,同時將 in_valid enable,使 pattern 提供一組被除數及除數,待 RTL 運算完成後, out_valid 變為 1,此時的 quotient 及 remainder 即為輸出結果值。 以上面波形為例,第一筆輸入為黃色部分 150/143,得到的結果為 1...7; 第二筆輸入為 5/218,得到的結果為 0...5。

並且從波形上可看出,latency = 2 cycles。

(c) Use a synthesis script to convert your RTL code into a gate-level netlist. Report the final gate count, the maximum operating speed (in MHz) and the estimated power dissipation in (mW) using Design Compiler.

Area Report

90 10 20 20	
Number of ports:	78
Number of nets:	324
Number of cells:	267
Number of combinational cel	lls: 229
Number of sequential cells:	35
Number of macros/black boxe	es: 0
Number of buf/inv:	61
Number of references:	61
Combinational area:	932.097619
Buf/Inv area:	137.592005
Noncombinational area:	642.096017
Macro/Black Box area:	0.000000
Net Interconnect area:	undefined (No wire load specified)
Total cell area:	1574.193636
Total area:	undefined
1	Couperation to the Control of the Co
1007	

Fig 15 area report

Total Area = 1574.194

Final Gate Count
$$=\frac{Total\ area}{area\ of\ NAND2\ gate}=\frac{1574.19}{2.8}=562$$

Slack Report

Point	Incr	Path
clock clk (rise edge)	0.00	0.00
clock network delay (ideal)	0.00	0.00
input_B_reg_0_/CK (DFFRHQX2)	0.00	0.00 r
input_B_reg_0_/Q (DFFRHQX2)	0.15	0.15 r
sub_28/B[0] (divider_DW01_sub_1)	0.00	0.15 r
sub_28/U104/Y (INVX2)	0.04	0.19 f
sub_28/U91/Y (NOR2X4)	0.07	0.26 r
sub_28/U98/Y (OAI21X2)	0.06	0.31 f
sub_28/U111/Y (CLKNAND2X2)	0.03	0.34 r
sub_28/U112/Y (NAND2XL)	0.06	0.40 f
sub_28/U126/Y (XNOR2X1)	0.08	0.48 f
sub_28/DIFF[3] (divider_DW01_sub_1)	0.00	0.48 f
U98/Y (A02B2BX2)	0.13	0.61 f
U116/Y (A021X4)	0.10	0.71 f
input_A_reg_3_/D (DFFRHQX4)	0.00	0.71 f
data arrival time		0.71
clock clk (rise edge)	0.80	0.80
clock network delay (ideal)	0.00	0.80
input_A_reg_3_/CK (DFFRHQX4)	0.00	0.80 r
library setup time	-0.09	0.71
data required time		0.71
data required time		0.71
data arrival time		-0.71
slack (MET)		0.00

Fig 16 Slack report

Clock period = 0.8ns

Maximum Operating speed
$$=\frac{1000}{0.8+0}MHz=1250MHz$$

Power dissipation

```
Global Operating Voltage = 0.9
Power-specific unit information :
      Voltage Units = 1V
      Capacitance Units = 1.000000pf
      Time Units = 1ns
      Dynamic Power Units = 1mW (derived from V,C,T units)
    Leakage Power Units = 1pW
   Cell Internal Power = 743.7397 uW (96%)
   Net Switching Power = 31.4377 uW (4%)
              | | | | | | | | | ------
Total Dynamic Power = 775.1775 uW (100%)
Cell Leakage Power = 6.1710 uW
| | | | | Internal Switching Leakage Total
Power Group Power Power Power ( % ) Attrs

        io_pad
        0.0000
        0.0000
        0.0000
        0.0000
        ( 0.00%)

        memory
        0.0000
        0.0000
        0.0000
        0.0000
        ( 0.00%)

        black_box
        0.0000
        0.0000
        0.0000
        0.0000
        ( 0.00%)

        clock_network
        0.0000
        0.0000
        0.0000
        0.0000
        ( 0.00%)

        register
        0.7041
        6.7734e-03
        1.9327e+06
        0.7128
        ( 91.23%)

        sequential
        0.0000
        0.0000
        0.0000
        0.0000
        0.0000
        0.0000
        0.0000

        combinational
        3.9659e-02
        2.4664e-02
        4.2383e+06
        6.8561e-02
        ( 8.77%)

0.7437 mW 3.1438e-02 mW 6.1710e+06 pW
                                                                                                                         0.7813 mW
```

Fig 17 power dissipation

Total Power Dissipation = 0.7813mW

(d) Add the scan chain into your gate-level netlist obtained by part(c), report the resulting gate count, the maximum operating speed (in MHz) of your circuit. Compare to the non-scan version, and report the area overhead percentage and performance penalty due to scan chain insertion.

• DRC Report: Total violations: 0

• Sequential Cell Report: no violation

Area Report

```
Number of ports:
                                          80
Number of nets:
                                         326
Number of cells:
                                         267
Number of combinational cells:
                                         229
Number of sequential cells:
                                         35
Number of macros/black boxes:
                                          0
Number of buf/inv:
                                          61
Number of references:
Combinational area:
                                  985.723218
Buf/Inv area:
                                  147.470405
Noncombinational area:
                                  881.294407
Macro/Black Box area:
                                    0.000000
Net Interconnect area: undefined (No wire load specified)
Total cell area:
                                 1867.017625
Total area:
                           undefined
1
```

Fig 18 area report(after scan chain insert)

Total Area = 1867.018

Final Gate Count
$$=\frac{Total\ area}{area\ of\ NAND2\ gate} = \frac{1867.02}{2.8} = 667$$

Overhead Percentage
$$=\frac{1867.02}{1574.19} = 1.186$$

Slack Report

Point	Incr	Path
clock clk (rise edge)	0.00	0.00
clock network delay (ideal)	0.00	0.00
input_A_reg_3_/CK (SDFFRHQX4)	0.00	0.00 r
input_A_reg_3_/Q (SDFFRHQX4)	0.13	0.13 f
U4/Y (NAND2BX8)	0.08	0.20 f
U1/Y (INVX6)	0.03	0.23 r
U24/Y (OAI32X1)	0.07	0.30 f
U115/Y (OAI2B2X2)	0.09	0.39 r
U17/Y (OAI22X2)	0.07	0.46 f
U83/Y (AND2X4)	0.07	0.54 f
U2/Y (NOR2X2)	0.06	0.60 r
U13/Y (AND2X6)	0.07	0.67 r
U12/Y (MXI2X6)	0.03	0.70 f
c_state_reg_0_/D (SDFFRHQX8)	0.00	0.70 f
data arrival time		0.70
clock clk (rise edge)	0.80	0.80
clock network delay (ideal)	0.00	0.80
c_state_reg_0_/CK (SDFFRHQX8)	0.00	0.80 r
library setup time	-0.11	0.69
data required time		0.69
data required time		0.69
data arrival time		-0.70
slack (VIOLATED)		-0.02

Fig 19 Slack report(after scan chain insert)

Clock period = 0.8ns

Maximum Operating speed
$$=\frac{1000}{0.8+0.02}MHz=1219.512MHz$$

Power dissipation

```
Global Operating Voltage = 0.9
Power-specific unit information :
      Voltage Units = 1V
      Capacitance Units = 1.000000pf
      Time Units = 1ns
      Dynamic Power Units = 1mW (derived from V,C,T units)
     Leakage Power Units = 1pW
  Cell Internal Power = 1.0117 mW (97%)
   Net Switching Power = 36.6594 uW
                | | | | | | ------
Total Dynamic Power = 1.0483 mW (100%)
Cell Leakage Power = 7.9324 uW
     Internal Switching Leakage
er Group Power Power Power
                                                                                                                  Total
Power ( % ) Attrs
Power Group Power
______

        io_pad
        0.0000
        0.0000
        0.0000
        0.0000
        (0.00%)

        memory
        0.0000
        0.0000
        0.0000
        0.0000
        (0.00%)

        black_box
        0.0000
        0.0000
        0.0000
        0.0000
        (0.000)

        clock_network
        0.0000
        0.0000
        0.0000
        0.0000
        (0.000)

        register
        0.9701
        9.8548e-03
        3.0478e+06
        0.9830
        (93.07%)

        sequential
        0.0000
        0.0000
        0.0000
        0.0000
        0.0000
        (0.00%)

        combinational
        4.1538e-02
        2.6805e-02
        4.8846e+06
        7.3227e-02
        (6.93%)

                           1.0117 mW 3.6659e-02 mW 7.9324e+06 pW 1.0563 mW
```

Fig 20 power dissipation(after scan chain insert)

Total Power Dissipation = 1.0563mW

Comparing before/after scan chain

	Before scan chain	After scan chain	Overhead Percentage
Area	1574.194	1867.018	15.684%
Operating speed	1250MHz	1219.512MHz	2.5%
Power dissipation	0.7813mW	1.0563mW	26.03%

Comment:

本組在 clk period 上試了很多組合,因 operation speed 及 area 是一個 trade off,無法同時兼顧兩者。

以下為幾組不同結果(均為 before insert scan chain):

- 1. 在 clk period=2ns 時(預設), divider 面積約為 1167, power 為 0.202mW。
- 2. 在 clk period=1.5ns 時, divider 面積約為 1205, power 為 0.271mW。
- 3. 在 clk period=1ns 時, divider 面積約為 1394, power 為 0.518mW。
- 4. 在 clk period=0.8ns 時, divider 面積約為 1574, power 為 0.781mW。

由上面幾組數據可得到在在 clk period=2ns 時,有最好的整體表現,雖然頻率不快,但面積及功耗都算小,是個不錯的設計。

但因此作業不會比較數據,且在合成 RTL 電路時盡可能使 slack 為 0 會比較好, 故本作業還是使用 clk period = 0.8ns 為報告數據。 (e) Run ATPG using a commercial tool available and report the fault coverage.

Fault Coverage:

Uncollapsed Stuck Fault	Summary Re	eport
fault class	code	#faults
Detected	DT	1952
Possibly detected	PT	0
Undetectable	UD	6
ATPG untestable	AU	0
Not detected	ND	0
total faults		1958
test coverage		100.00%

Fig 21 Fault Coverage