

Building a model

MLOps Best Practices

- 1. Naming Convention
- 2. Code Quality Checks (Unit Testing?)
- 3. Experiments Yes Track your Experiments!
- 4. Data Validation
- 5. Model Validation across Segments
- 6. Resource Utilization : yes Experiments cost Money
- 7. Monitor Predictive Service Performance
- 8. Open Communication Lines are Important

MLOps == How to bring ML to production

Bring together **people**, **process**, and **platform** to automate ML-infused software delivery & provide continuous value to our users.

People

- Blend together the work of individual engineers in a repository.
- Each time you commit, your work is automatically built and tested, and bugs are detected faster.
- Code, data, models and training pipelines are shared to accelerate innovation.

101010 010101 101010

Process

- Provide templates to bootstrap your infrastructure and model development environment, expressed as code.
- Automate the entire process from code commit to production.

Platform

- Safely deliver features to your customers as soon as they're ready.
- Monitor your pipelines, infrastructure and products in production and know when they aren't behaving as expected

Ok, but, like, I'm a data scientist. IDGAF I don't care about all that.

Yes You Do!

Cowboys and Ranchers Can Be Friends!

Quick iteration

- Frameworks they understand
- Best of breed tools
- No management headaches
- Unlimited scale

SRE/ML Engineers

- Reuse of tooling and platforms
- Corporate compliance
- Observability
- Uptime

MLOps = ML + DEV + OPS

Experiment

Data Acquisition
Business Understanding
Initial Modeling

Develop

Modeling + Testing
Continuous Integration
Continuous Deployment

Operate

Continuous Delivery Data Feedback Loop System + Model Monitoring

MLOps Benefits

Automation / Observability

- Code drives generation and deployments
- Pipelines are reproducible and verifiable
- All artifacts can be tagged and audited

Validation

- SWE best practices for quality control
- Offline comparisons of model quality
- Minimize bias and enable explainability

Reproducibility / Auditability

- Controlled rollout capabilities
- Live comparison of predicted vs. expected performance
- Results fed back to watch for drift and improve model

== VELOCITY and SECURITY (For ML)

There are many jobs & tools involved in production ML

Azure Machine Learning GitHub TensorFlow, PyTorch, sklearn Azure Compute – CPU/GPU/FPGA

Business Owner

& many more...

Azure Data Lake Azure Data Factory Azure DataBricks Azure SQL Azure DevOps
GitHub
Azure Kubernetes Service
Azure IoT Edge
Azure Monitor

There is rarely "one pipeline" to manage the E2E process

MLOps – Process Maturity Model

Maturity Level	People	Model Creation	Model Release	Application Integration	Technology
Level 1 - No MLOps	Data Scientists - silo'd, not in regular comms with larger team	 Data pipeline gathers data automatically Compute may or may not be managed Experiments are not predictably tracked End result may be a single file manually handed off (model), with inputs/outputs 	Manual process Scoring script may be manually created well after experiments, likely version controlled Is handed off to Software Engineers	Basic integration tests exist for the model Heavily reliant on Data Scientist expertise to implement model Releases are automated Application code has unit tests	 Automated Builds Automated Tests for Application code Manual model training No centralized tracking of model performance
Level 2 - Automated Training	 Data Scientists - Working directly with Data Engineers to convert experimentation code into repeatable scripts/jobs Data Engineers - Working with Data Scientists Software Engineers - Silo'd, receive model "over the wall" 	 Data pipeline gathers data automatically Compute is managed Experiment results are tracked Both training code and resulting models are version controlled 	 Manual Release Scoring Script is version controlled with tests Release is managed by Software engineering team 	Basic integration tests exist for the model Heavily reliant on Data Scientist expertise to implement model Application code has unit tests	 Automated Builds Automated Tests for Application code Automated model training Centralized tracking of model training performance Model Management
Level 3 - Automated Model Deployment	 Data Scientists - Working directly with Data Engineers to convert experimentation code into repeatable scripts/jobs Data Engineers - Working with Data Scientists and Software Engineers to manage inputs/outputs Software Engineers - Working with Data Engineers to automate model integration into application code 	 Data pipeline gathers data automatically Compute is managed Experiment results are tracked Both training code and resulting models are version controlled 	 Automatic Release Scoring Script is version controlled with tests Release is managed by CI/CD pipeline 	 Unit and Integration tests for each model release Less reliant on Data Scientist expertise to implement model Application code has unit/integration tests 	 Automated Builds Integrated A/B testing of model performance for deployment Automated Tests for All code Automated model training Centralized tracking of model training performance Model Management
Level 4 - Automated Retraining (full MLOps)	 Data Scientists - Working directly with Data Engineers to convert experimentation code into repeatable scripts/jobs. Working with Software Engineers to identify markers for retraining Data Engineers - Working with Data Scientists and Software Engineers to manage inputs/outputs Software Engineers - Working with Data Engineers to automate model integration into application code. Implementing metrics gathering post-deployment 	 Data pipeline gathers data automatically Retraining triggered automatically based on production metrics Compute is managed Experiment results are tracked Both training code and resulting models are version controlled 	 Automatic Release Scoring Script is version controlled with tests Release is managed by CI/CD pipeline 	Unit and Integration tests for each model release Less reliant on Data Scientist expertise to implement model Application code has unit/integration tests	 Automated Builds Integrated A/B testing of model performance for deployment Automated Tests for All code Automated model training and testing Centralized tracking of model training performance Model Management Verbose, centralized metrics from deployed model

Level 1 – No MLOps

Interactive, exploratory, get to something useful.

Level 2 – Reproducible Model Training

Version code, data, ensure model can be recreated.

Level 3 – Managed Model Operationalization

Package, certify, deploy

Level 4 – Automated E2E ML Lifecycle

Azure Machine Learning

Model performance data

MLOps Questions

- Define MLOps and how it is different from Data Science?
- What is a model Registry? What does the pipeline look like
- Difference between MLOps and DevOps?
- What are the Benefits of MLOps?
- Explain Model/Concept Drift?
- What is a ML pipeline? Can you draw and explain it?
- Is Model deployment end of ML Lifecycle?

Reference Links

- 1.https://github.com/microsoft/MCW-ML-Ops
- 2.https://github.com/microsoft/MLOpsPython
- 3.https://azure.microsoft.com/en-us/services/machine-learning/mlops/
- 4. https://www.amazon.com/Data-Science-Solutions-Azure-Techniques/dp/1484264045
- 5.<u>https://docs.microsoft.com/en-us/samples/microsoft/mlopspython/mlops-with-azure-ml/</u>