КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

Разбор заданий: материал 5

Вычисление наибольшего общего делителя

Данный материал демонстрирует разбор задания, посвященного вычислению наибольшего общего делителя с помощью расширенного алгоритма Евклида.

Наибольшим общим делителем целых чисел a и b называется такое целое число $d \ge 1$, которое удовлетворяет следующим условиям:

- 1) d есть общий делитель a и b;
- 2) если $d' \in \mathbb{Z}$ есть любой общий делитель a и b, то d делится на d'.

Наибольший общий делитель чисел a и b принято обозначать HOД(a,b). Если HOД(a,b)=1, то a и b называются взаимно простыми числами.

Наибольший общий делитель двух целых чисел легко может быть найден с помощью алгоритма Евклида.

Вход: целые числа $a \ge b > 0$.

Выход: d = HOД(a, b).

Шаг 1. Пока $b \neq 0$, выполнять следующее:

Шаг 1.1. Вычислить $r \leftarrow a \mod b$.

Шаг 1.2 Присвоить $a \leftarrow b, b \leftarrow r$.

Шаг 2. Возврат (*a*).

Если кроме HOД(a, b), нужно найти также и целочисленную линейную комбинацию a и b, то есть выражение xa + yb = HOД(a, b), для этого применяется расширенный алгоритм Евклида.

Вход: целые числа $a \ge b > 0$.

Выход: d = HOД(a, b) и целые x, y, такие, что xa + yb = d.

Шаг 1. Полагаем $x_2 \leftarrow 1, x_1 \leftarrow 0, y_2 \leftarrow 0, y_1 \leftarrow 1.$

Шаг 2. Пока b > 0, выполнять следующее:

IIIar 2.1.
$$q \leftarrow [a/b]$$
, $r \leftarrow a - qb$, $x \leftarrow x_2 - qx_1$, $y \leftarrow y_2 - qy_1$.

$$\coprod \text{III ar 2.2. } a \leftarrow b, b \leftarrow r, x_2 \leftarrow x_1, x_1 \leftarrow x, y_2 \leftarrow y_1, y_1 \leftarrow y.$$

Шаг 3. $d \leftarrow a, x \leftarrow x_2, y \leftarrow y_2$ и возврат (d, x, y).

Кроме того, расширенный алгоритм Евклида позволяет находить обратные элементы в кольце классов вычетов по модулю n.

Вход: n > a > 0, $a, n \in \mathbb{Z}$.

Выход: $a^{-1} \pmod{n}$.

Шаг 1. Используя расширенный алгоритм Евклида, найти целые числа x, y, такие, что xn + ya = d = HOД(n, a).

Шаг 2. Если d > 1, то $a^{-1} \pmod{n}$ не существует.

Шаг 3. Если d=1, то возврат (y).

Пример.

Найти целочисленную линейную комбинацию чисел 3931 и 1148.

Решение.

Работу итерационных алгоритмов, к которым в том числе относится расширенный алгоритм Евклида, удобно демонстрировать с помощью таблицы.

Каждая строка данной таблицы отражает полученные на очередной итерации значения переменных, которыми оперирует расширенный алгоритм Евклида. Первая строка содержит входные данные, поэтому значения переменных q, r, x, y в первой строке не определены.

q	r	x	у	а	b	x_2	x_1	y_2	y_1
	_	_	_	3931	1148	1	0	0	1
3	487	1	-3	1148	487	0	1	1	-3
2	174	-2	7	487	174	1	-2	-3	7
2	139	5	-17	174	139	-2	5	7	-17
1	35	-7	24	139	35	5	-7	-17	24
3	34	26	-89	35	34	-7	26	24	-89
1	1	-33	113	34	1	26	-33	-89	113
34	0	1148	-3931	1	0	-33	1148	113	-3931

Расчеты велись в течение семи итераций. На седьмой итерации очередное значение a было нацело разделено на очередное значение b. Это является условием завершения алгоритма.

После этого произошел выход из алгоритма с возвратом трех значений, содержащихся в ячейках, выделенных цветом.

Можно увидеть, что полученная целочисленная линейная комбинация имеет следующий вид:

$$-33 \cdot 3931 + 113 \cdot 1148 = 1.$$

Проверка показывает, что данное равенство является верным. Следовательно, числа 3931 и 1148 являются взаимно простыми. Если бы в данной задаче необходимо было найти значение 1148^{-1} mod 3931, то можно было бы сказать, что, во-первых, данное значение существует, а, во-вторых, оно равно 113.

Московский институт электроники и математики им. А.Н. Тихонова