

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:			-							1				
Daniel Kane UB Person Number: 5 0 2 3 8 7 0 6								Instructions: • Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes.						
①①①②③③③⑥⑥⑦⑦⑨⑨⑨⑨⑨⑨⑨⑨	①①③③④(5)⑥(7)(8)(9)	0 1 2 4 5 6 7 3 9	0 1 2 3 4 5 6 7 9	0 1 2 3 4 5 6 3 9	① ① ③ ④ ⑤ ⑦ ③ ⑨			• For full credit solve each problem fully, showing all relevant work.						
1	2		3		4	5	5	6	7	TOTAL	GRADE			

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

6) The Set & V., V2, V3 is likerly independent, because the vectors connot linearly combine to concel one another connotioned all terms

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 2 & -1 & 1 & 0 & 0 & 1 \end{bmatrix} - 7 \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} - 7 \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} - 7 \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} - 7 \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} - 7 \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$- \begin{bmatrix} 101010 \\ 00-1-22-1 \\ 0101-11 \end{bmatrix} - \begin{bmatrix} 101010 \\ 0101-11 \\ 0012-21 \end{bmatrix} - \begin{bmatrix} 100-23-1 \\ 010 \\ 1-11 \\ 001 \\ 2-21 \end{bmatrix}$$

$$[A11] \to [IA']$$

$$A' = \begin{bmatrix} -23 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T}C = B$$

$$C = (A^{T})^{-1}B \qquad (A^{T})^{-1} = (A^{-1})^{T} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -1 & -2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} (-2+4+6) & (MABBE) & (-6+4+2) \\ (3-4-6) & (6-5-4) & (9-4-2) \\ (-1+4+3) & (-2+5+2) & (-3+4+1) \end{bmatrix}$$

$$C = \begin{bmatrix} 8 & 5 & 0 \\ -7 & -3 & 3 \\ 46 & 5 & 2 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$A) T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$

$$T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$

$$-7\begin{bmatrix} 1 & 7 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} X_1 = 7$$

$$X_1 = 3$$

$$X_2 = 3$$

$$X_3 = 3$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(v) = Av$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

$$\mathbf{b)} \ A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{pmatrix} 6 \end{pmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 11 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 not one-to-one

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} X_1 + X_2 \\ 2x_2 + 4x_3 \\ 3X_1 + 4x_2 + 2x_3 \end{bmatrix}$$

$$\begin{array}{c}
X_{2} = X_{3} \\
\begin{bmatrix} 0 & 6 \\ 3 & 6 \end{bmatrix} & X_{1} = 1 \\
X_{2} = 1 & \begin{bmatrix} 2 \\ 4 \end{bmatrix} \\
X_{3} = 1 & \begin{bmatrix} 3 \\ 12 \end{bmatrix} \\
X_{4} = 1 & \begin{bmatrix} 3 \\ 12 \end{bmatrix}
\end{array}$$

- **6. (10 points)** For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

True

For any equation
$$W+u=a_1u+a_2v$$
, $w=a_1u-u+a_2v=cu+a_2v$
 $w \in Spon(u,v)$

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True

If {u, V} were dependent, then a, u + az V + OW = 0 would prove {zu, V, w} to
be dependent

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

False

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$$
 $V_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
 $V_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$
 $V_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $V_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $V_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $V_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $V_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $V_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $V_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $V_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $V_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $V_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $V_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $V_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in $\mathrm{Span}(v, w)$ then T(u) must be in $\mathrm{Span}(T(v), T(w))$.

U = a, V + a, w

True

The Statististes

U, a, V + D, w

are equivolent

vectors

Their trosformotions
ore the same