Predicting the Income Level of Working Adults in 1994 US

DTSA 5509 Final Project

Data

Source file: Adult.DATA¹ from UCI Machine Learning Repository https://archive.ics.uci.edu/dataset/2/adult

- Data is collected from the 1994 US Census results
- 32,561 samples with 15 data points each
- Small data size: 3.8MB
- Data points revolve around demographics, work, and finances for US working adults.
- The 15th data point is whether each person makes above or below \$50K USD annually.
 - This is what we'll be predicting using a classification model

¹Adult. UCI Machine Learning Repository. (n.d.). https://archive.ics.uci.edu/dataset/2/adult

Goals & Motivation

- Use and compare the classification models we learned about throughout the course
- Score an accuracy in line with baselines on UCI (80% 85% for accuracy metric)

Columns/Features

Variable	Data Type	Variable Type	Description
age	integer	nominal	The age in years of this person.
workclass	string	categorical	Occupation type as far as being self-employed, government worker, unemployed, etc.
fnlwgt	integer	continuous	"final weight", a set of weights given to each observation that represent how many people each observation represents.
education	string	categorical	The highest level of schooling completed.
education-num	integer	ordinal	A numerical representation of the educational column.
marital-status	string	categorical	Different categorizations ranging from single, to married/divorced, or widowed.
occupation	string	categorical	The industry that this person works in.
relationship	string	categorical	The relationship of this person in their family (wife, husband, unmarried, not-in-family, etc.)
race	string	categorical	The ethnicity of this person.
sex	string	categorical	The gender of this person.
capital-gain	integer	continuous	Total capital gain for this person.
capital-loss	integer	continuous	Total capital loss for this person.
hours-per-week	integer	discrete	The number of hours this person works in a week.
native-country	string	categorical	The birth country for this person before coming to the US.
income	string	categorical	Indication of whether this person makes below or above \$50K.

Data Cleaning and Munging

- Extra whitespace was removed from all entry values
- About 3.7K samples were removed for having missing values '?' in a few data points
- 'age' and 'hours-per-week' numerical data points were normalized so they add up to 1
- Categorical data points were converted to 0/1 columns (aka dummy variables, one-hot encoding)
 - o i.e., a data point with N category values is converted into N separate binary columns, 1 for each category
- Target variable 'income' was encoded as (-1 = below \$50k annual) (1 = above \$50k annual).
- Data points removed for being vague/undefined, or had many missing values.
 - fnlwgt
 - education-num
 - capital-gain
 - capital-loss
 - native-country

Exploratory Data Analysis (EDA)

DTSA 5509 Final Project

EDA Process

- Plot histogram for numerical variables
- Plot distribution for categorical variables using bar chart
- Assess how realistic the values look, compare it to distributions² from Bureau of Labor Statistics
- Keep data bias in mind and determine how much it exists in the dataset
- Justification will be given for removed data points:
 - fnlwgt
 - o education-num
 - o capital-gain
 - capital-loss
 - native-country

²(N.d.). *Labor Force, Employment, and Earnings*. https://www2.census.gov/library/publications/1996/compendia/statab/116ed/tables/labor.pdf

Data Point: age and hours-per-week

Data below seems to align with reality of working adults in 1994 US, comparing to BLS publication²

²(N.d.). *Labor Force, Employment, and Earnings*. https://www2.census.gov/library/publications/1996/compendia/statab/116ed/tables/labor.pdf

Data Point: marital status

Data below seems to align with reality of working adults in the US

Data Point: education-num and education

- Education-num is a 1-to-1 encoding of Education, and can be excluded from the model.
- Category definitions are not that clear
- Breakout seems realistic for a workforce in the 1994 timeframe and align with stats from BLS²

²(N.d.). Labor Force, Employment, and Earnings.

https://www2.census.gov/library/publications/1996/compendia/statab/116ed/tables/labor.pdf

Data Point: workclass

- The vast majority of employees are Private employed which is realistic
- Other groups are similar in size and seem accurate enough for purposes of this project
- 1,836 missing values '?'

Questionable Data Point: occupation

- Distribution roughly matches up with BLS publication² in order, but not proportions
- Catch-all groups that aren't broken out
 - Prof-specialty
 - Other service
 - Priv-house-serv(ice)
- Armed-Forces are underrepresented
 - Likely not surveyed
- Representation by occupation is questionable
 - Are there really more exec-managerial than sales?
 - More handlers-cleaners than farming-fishing?

²(N.d.). Labor Force, Employment, and Earnings. https://www2.census.gov/library/publications/1996/compendia/statab/116ed/tables/labor.pdf

Questionable Data Point: relationship and sex

- Unclear definition of Not-in-family, Own-child
- Husband is overrepresented, and Wife are underrepresented
 - Model will be better trained for husbands than wives, and similarly for males than females
 - Doesn't match with BLS stats which has males and females closer to a 55:45 split

Questionable Data Point: race

- White is overwhelming majority
- Proportions seem aligned with BLS publication
- Data bias: other races are underrepresented
- Acknowledge the model will be best trained for White adult workers

Bad Data Points - not included in the model

fnlwgt

- Represents "final weight", and how many people match each observation
- Not fully documented, and definition is unclear e.g., taking the sum of this column exceeds the population of the US by a great margin.
- Not interpretable

Bad Data Points - not included in the model

native-country

- Nearly all records are workers born in the United States
- Data bias: immigrant workers are underrepresented
- Regardless of bias, this is not a useful data point as nearly everything is a single value.

Bad Data Points - not included in the model

capital-gain and capital-loss

- The majority of these data points are zeros
- Doesn't add any helpful information to the model

Class Balance and Correlation

DTSA 5509 Final Project

Class Balance and Correlation

- Majority of income labels are -1, so indicates a class imbalance though not severe.
 - Some algorithms sensitive to imbalance like decision tree will be affected.
 - Utilize class_weight = 'balanced'
- ullet There is little correlation (0.1) between age and hours-per-week ullet
 - We don't need to be concerned with issues regarding collinearity affecting our models.

Model Building and Tuning

DTSA 5509 Final Project

Models Trained and Compared

Logistic Regression	K-Nearest Neighbors - KNN
Single Decision Tree	Random Forest (bagging)
Ada Boost (boosting)	Gradient Boost (boosting)
Support Vector Machine - SVM	

Approach to building each model

- Training and test datasets were the same for each model
- Whenever possible, class_weight = 'balanced' was use to account for the class imbalance.
- Grid Search with 5-fold cross validation was done to find the correct hyperparameters.
- Once hyperparameters were found, model was trained and CPU time taken was recorded.
- Accuracy and F1 score were computed, and F1 score was used to assess and compare models.

KNN	n_neighbors = 24	84.0%	83.2%	65.4%	63.6%
Single Decision Tree	max_depth = 5, max_leaf_nodes = 10	74.3%	73.7%	60.9%	59.7%
Random Forest	n_estimators = 11, max_depth = 8, max_leaf_nodes = 12	72.7%	72.3%	60.7%	59.6%
Ada Boost	n_estimators = 100, learning_rate = 1, max_depth (base tree) = 2	82.8%	83.1%	60.1%	60.3%
Gradient Boost ద	loss = exponential, learning_rate = 1, n_estimators = 100, max_depth = 2	84.4%	83.7%	66.8%	65.4%
SVM	kernel = rbf*, C = 10, gamma = 0.1	83.8%	82.7%	64.0%	61.2%

Hyperparameters found via Grid Search

C = 15.56

Model

Logistic Regression

Training

82.8%

Accuracy

Test

82.6%

Accuracy

Training

F1 Score

61.3%

Test

F1 Score

60.6%

Training

Time

63 ms

16 ms

47 ms

63 ms

1880 ms

1480 ms

2080 ms

* Grid search for SVM was taking very long, so kernel was run through grid search separately from other parameters.

Closing thoughts

- GradientBoost performed the best and had acceptable runtime.
- SVM took the longest to train, and didn't perform better than models that took shorter time.
- KNN was the quickest to train, and performed well (2nd best).
- GridSearchCV started to take a while (few minutes) for the boosting algorithms, and almost an hour for SVM.
- A stronger understanding of acceptable ranges for each parameter would likely allow me to be more efficient with GridSearch, and find better hyperparameters particularly for SVM and decision tree.

Github

https://github.com/jDyn90/dtsa5509

- Adult.DATA file
- Jupyter notebook with full code used for data cleaning, munging, EDA, and model building & tuning
- PDF of this slide deck