

UNITED STATES PATENT APPLICATION
FOR
**EXPERT CALL ANALYZER AND NEXT GENERATION TELEPHONY
NETWORK CONFIGURATION SYSTEM**

INVENTOR:

Eugene M. Pester III

Prepared by:

BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN LLP
12400 WILSHIRE BOULEVARD
SEVENTH FLOOR
LOS ANGELES, CALIFORNIA 90025
(408) 720-8598

Attorney's Docket No. 023341.P002

"Express Mail" mailing label number: EM531599526US

Date of Deposit: January 5, 2000

I hereby certify that I am causing this paper or fee to be deposited with the United States Postal Service "Express Mail Post Office to Addressee" service on the date indicated above and that this paper or fee has been addressed to the Assistant Commissioner for Patents, Washington, D. C. 20231

Geneva Walls

(Typed or printed name of person mailing paper or fee)

Geneva Walls
(Signature of person mailing paper or fee)

January 4, 2000

(Date signed)

~~This application claims the benefit of prior filed application Ser. no. 60/111,998 filed 11/6/00.~~ no claim
11/11/11

FIELD OF THE INVENTION

The present invention relates generally to field of telephone testing and monitoring systems. More specifically, the present invention is directed to a 5 configuration system of analyzing calls in a Next Generation Telephony Network.

BACKGROUND

Traditional telephony networks such as public switched telephone 10 network (PSTN) employ Time Division Multiplex (TDM) circuits, copper cable pairs, and electronic switches to provide voice communication services. The PSTN uses a circuit-switched architecture in which a direct connection, or circuit, is made between two users. The circuit provides a full-duplex, or bi-directional, connection with extremely low latency, or delay, between the two 15 end points. The connection is generally a logical connection through many switches and across a variety of wiring types (twisted-pair, fiber-optic cable, etc.). The users have exclusive and full use of the circuit until the connection is released. This circuit switching technology has slowly evolved over the last 100 years providing a complex mixture of analog and digital circuits with a variety 20 of signaling techniques. Along the way, many different testing methods and monitor systems are developed to assist with the delivery of PSTN telephony signals.

Data communication, on the other hand, uses packet switching 25 transmission technology. Data is assembled into distinct digital "packets" with addresses that are read by switches or routers as the packets are received. The switches / routers forward the packets onto the appropriate destination. Unlike the PSTN technology, there is no dedicated circuit connection between a sending station and a receiving station. As such, data packets from the sending station

may take different routes to the same receiving station, depending on network traffic conditions and other factors. This type of transmission is only half-duplex, or unidirectional, which can easily lead to high delays between sending and receiving.

5 Internet Protocol (IP) provides a connectionless service, tracks Internet addresses of nodes, routes outgoing messages and recognizes incoming messages. In other words, IP provides the addressing needed to enable routers to forward data packets across multiple networks. Due to IP's inherent transmission efficiency of packet switching and IP's ability to run over any

10 network medium (Ethernet, FDDI, ATM, Frame Relay, etc.), circuit switched networks (voice) and packet switched networks (data) are rapidly converging into one network, referred to as a Next Generation Telephony Network (NGTN).

Unlike the existing PSTN network, the new NGTN network is relatively

15 immature and lacks sufficient testing and monitoring capabilities. Telephone service providers such as Competitive Local Exchange Carriers (CLECs), Regional Bell Operating Companies (RBOCs) and Inter-Exchange Carriers (IXCs) that want to take advantage of the IP technology are finding that Customer Premise Equipment (CPE) does not always adhere to established

20 standards. This often makes the transition to the IP technology difficult, as the service providers may need to perform time-consuming manual pre-service tests in order to verify a subscriber's CPE configuration and existing or potential inter-operability problems.

SUMMARY OF THE INVENTION

A method and apparatus for determining and monitoring the status of telephone calls in a Next Generation Telephony Network (NGTN) is disclosed.

- 5 The method detects protocols occurring between two or more network elements of a telecommunication circuit and control protocol used to initiate or to react to the events generated by the network elements. One sensor is connected to the telecommunication circuits to sense raw call progress signaling information indicative of an event relative to the call on the monitored line. Another sensor
- 10 is connected to call control channel of a NGTN network element. The sensors are connected to a call processing system. The call processing system includes a call progress event analyzer module consisting of a call progress event processor and a call progress state machine, a NGTN event processor and a NGTN state machine. The call processing system also includes a protocol independent call
- 15 processor module and a multi protocol analysis module. Raw call progress signaling information and NGTN message information are converted to logical call handling events and forwarded to the protocol independent call processor module for processing. The protocol independent call processor module includes a timer processor to keep track of timing of events. The call processing system also includes an alarm handler to keep track and generate alarms when
- 20 an error condition occur after processing the call progress events and the NGTN message events.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example in the following drawings in which like references indicate similar elements. The following 5 drawings disclose various embodiments of the present invention for purposes of illustration only and are not intended to limit the scope of the invention.

Figure 1 is an exemplary embodiment illustrating the use of the call analyzer in different configurations.

10 **Figure 2** is a simplified block diagram illustrating one exemplary embodiment of a configuration of the call analyzer coupled to sensors and remote devices.

Figure 3A-Figure 3H illustrates exemplary embodiments of raw call processing signal information sent by the sensor to the protocol independent call processor module.

15 **Figures 4** illustrates an exemplary embodiment of an implementation of an event analyzer module including a call progress event processor and call progress state machine coupled to a protocol independent call processor module and an analysis state machine.

20 **Figure 4A** illustrates an exemplary embodiment of an implementation of an event analyzer module including a NGTN event processor and NGTN state machine coupled to a protocol independent call processor module and an analysis state machine.

Figure 5 illustrates an exemplary embodiment of a call progress state machine.

25 **Figure 5A** illustrates an exemplary embodiment of a NGTN state machine.

Figure 5B illustrates an exemplary embodiment of an analysis state machine.

Figure 6a, 6b, 6c, 6d, 6e, 6f, 6g1, 6g2, 6h1, 6h2, 6i, 6j, and 6k are exemplary state diagrams illustrating the function of the call progress state machine for a loop start circuit.

5 **Figure 6l, 6m, 6n, 6o, 6p, and 6q** are exemplary state diagrams illustrating the function of the NGTN state machine for a loop start circuit.

Figure 6r, 6s, 6t, 6u, 6v, 6w, 6x, 6y, 6z, and 6z1 are exemplary state diagrams illustrating the function of the analysis state machines.

Figure 7 illustrates an exemplary embodiment of how a call is normally handled in the PSTN.

10 **Figure 8** illustrates an exemplary embodiment of how a call is handled in the PSTN when the CO is not provisioned for Wink Start.

Figure 9 illustrates an exemplary configuration for a subscriber's service benchmarking.

Figure 10 illustrates an exemplary configuration benchmark report.

15 **Figure 11** illustrates an exemplary digit map as supported by one embodiment.

Figure 12 illustrates an exemplary call handling performance report.

Figure 13 illustrates an exemplary configuration for NGTN post cutover benchmarking.

20 **Figure 14** illustrates an exemplary embodiment of a computer-readable medium containing instructions for carrying out the call analyzer functions.

DEFINITIONS

The following table contains definitions of call states and status as defined in the detailed description and in the drawings.

5

<u>SM Variable</u>	<u>Meaning</u>	<u>State Machine</u>
Notable States		
Ns3WCall	Three way call	CAS
NsAbandon	No user action	CAS
NsAudRing	Audible Ringing	CAS
NsAudRngOff	Audible Ringing Off	CAS
NsAudRngOn	Audible Ringing On	CAS
NsBsyCall	Busy Call	CAS
NsCallAbandon	Call Abandon	CAS
NsCallAns	Call Answered	CAS
NsCallingPtyHld	Calling Party Hold	CAS
NsCircuitOpen	Open Line	CAS
NsCoOfh	Central Office Off Hook	CAS
NsCoOnh	Central Office On Hook	CAS
NsCW	Call Waiting	CAS
NsDialing	Dialing	CAS
NsDrop3W	Drop Three way call	CAS
NsDT	Dial Tone	CAS
NsDTdly	Dial Tone delay	CAS
NsDThit	Dial Tone hit	CAS
NsEndFlash	End Flash	CAS
NsFastDialDT	Fast Dial No Dial Tone	CAS
NsFeaCall	Feature type Call	CAS
NsFlsh	Flash on line	CAS
NsIdle	Idle line	CAS
NsIncompleteCall	Inncomplete Call	CAS
NsLineTest	Central Office Line Test	CAS
NsLodi	Process Manually	CAS
NsNoDialTone	No Dial Tone	CAS

NsNoDigits	No Digits	CAS
NsMsgDT	Message waiting Dial Tone	CAS
NsOfh	Off Hook	CAS
NsOnh	On Hook	CAS
NsOpn	Open	CAS
NspermSignal	Permanent Signal	CAS
NsPSoffHook	Perrmanent Signal Off Hook	CAS
NsRclDT	Recall Dial Tone	CAS
NsReOrder	Reorder	CAS
NsRngOff	Ringing Off	CAS
NsRngOn	Ringing On	CAS
NsRngOSI	Ringing Open Switch Interval	CAS
NsShrtAns	Short Answer	CAS
NsShortCall	Short Call	CAS
NsSpeech	False Call progress Tone Identified	CAS
NsStb	Stable Call	CAS
NsStbDig	Stable Digit	CAS

Transition Reasons

A.sub.—B.sub.—C.sub.—	Feature three way call connected	CAS
Talking		
2DTMFoffs	Second DTMF Off	CAS
Abandon	Abandon	CAS
BptyOnHold	“B” Party On Hold Feature Call State	CAS
CallAbandoned	Call Abandoned	CAS
CallingPtyHld	Calling Party Hold	CAS
DialingO	Dialing over	CAS
DiaiTone	DialTone	CAS
DigOffnoOn	Digit Off Without Digit On	CAS
DigLT50ms	Digit less than 50 ms	CAS
Dtdetected	Dial Tone detected	CAS
Dtoff	Dial Tone Off	CAS
LineNormal	Line Normal	CAS
LineOffHook	Line Off Hook	CAS
LineOnHook	Line On Hook	CAS

LineOpen2secs	Line Open for 2 Seconds	CAS
LineTest	Central Office Line Test	CAS
NoDT4secs	No Dial Tone for 4 Seconds	CAS
Openfor500ms	Open line for 500 milliseconds	CAS
Openfor10secs	Open line for 10 Seconds	CAS
PreTripped	Line trips Ringing before answer	CAS
RingNoAnswer	Ringing without answer	CAS
RingStopped	Ringing tripped	CAS

Call Count Block

CcbAudRng	Audible Ring(s)	CAS
CcbBsyDig	Digit(s) During Busy	CAS
CcbCW	Call Waiting Tones	CAS
CcbDig	Digit(s)	CAS
CcbDPpls	Dial Pulse(s)	CAS
CcbFlsh	Flash(es)	CAS
CcbRng	Machine Ring(s)	CAS
CcbROdig	Digit(s) During Reorder	CAS
CcbStbDig	Digit(s) During Talk Interval	CAS

Call Dispositions

Cd3W	Three Way Call	CAS
CdAnsCall	Call Answered	CAS
CdBsy	Busy	CAS
CdCW	Call Waiting	CAS
CdDPdig	Dial Pulse Digit	CAS
CdDT2	Second Dial Tone	CAS
dLodi	Process Manually	CAS
CdMsgWtDT	Message Waiting	CAS
CdOrg	Originating Call	CAS
CdOrgCallAbdn	Originating Call Abandon	CAS
CdOSI	Open Switch Interval (OSI)	CAS
CdRingNoAns	Unanswered Mach. Ringing	CAS
CdTalk	Completed Call	CAS
CdTerm	Terminating Call	CAS

CdTermCall	Terminating	CAS
CdTermCallAbdn	Call Abandon Terminating	CAS

Call Network Trouble

CntDTdly	Dial Tone Delay	CAS
CntNoDialTone	No Dial Tone	CAS
CntNoSync	Circuit Open	CAS
CntRO	Reorder	CAS

Call Network Unusual

CnuCktOpen	Circuit Open	CAS
CnuCWosi	Call Waiting OSI	CAS
CnuDThit	Dial Tone Hit	CAS
CnuHit	Hit	CAS
CnuPreTrp	Pre Trip (Answer)	CAS
CnuTmDisc	Timed Disconnect	CAS

Call Station Trouble

CstErrBsyDig	Error Digit during Busy	CAS
CstErrDropOff	Error Drop Off	CAS
CstLnPS	Line Permanent Signal	CAS
CstLongDig	Long Digit	CAS
CstPreTrp	Pre Trip. (Answer)	CAS
CstROdig	Digit over Reorder	CAS
CstShrtDig	Short Digit	CAS

Call Station Unusual

CsuBsyDig	Digit during Busy	CAS
CsuDTtimeout	Dial Tone Timeout	CAS
CsuEndFlsh	End Flash	CAS
CsuFastDial	Fast Dial	CAS
CsuOrgCallAbdn	Originating Call Abandon	CAS
CsuRclDT	Recall Dial Tone	CAS
CsuShrtAns	Short Answer	CAS
CsuStaDisc	Station Disconnect	CAS

Line Count Block

lcb3W	(3) Three Way Call	CAS
lcbAnsCall	Call Answered	CAS
lcbCallNum	Call Count	CAS
lcbDTdly	Dial Tone Delay	CAS
lcbErrDig	Digit Error	CAS
lcbLodi	Analyze Manually	CAS
lcbNoDT	No Dial Tone	CAS
lcbOrgAbdn	Origination Abandon	CAS
lcbOrgCall	Originating Call	CAS
lcbOrgCallAbdn	Originating Call Abandon	CAS
lcbSeize	Seize	CAS
lcbShrtAns	Short Answer	CAS
lcbTerm	Terminating	CAS
lcbTermCall	Terminating Calls	CAS
lcbTermCallAbdn	Terminating Call Abandon	CAS

States

3W	Three way call	CAS
3WstbCall	Three way Call Stable Call	CAS
Abdn	Abandon	CAS
AddOnCall	Add OnCall	CAS
Ans	Answer	CAS
AudRngOff	Audible Ringing Off	CAS
AudRngOn	Audible Ringing On	CAS
BadDPdig	Bad Dial Pulse Digit	CAS
BptyHld	"B" Party Hold	CAS
Bsy	Busy	CAS
BsyDig	Digit over busy signai	CAS
BsyROoff	Busy/Reorder off	CAS
BsyROon	Busy/Reorder on	CAS
BsyROon2	Busy/Reorder on second cycle	CAS
BsyUnk	Busy Unknown	CAS
CallAbdn	Call Abandon	CAS

CallHold	Call Hold	CAS
CallOnHld	Call on Hold	CAS
CallOver	Call Complete	CAS
ChkBnchMrk	Check Bench Mark	CAS
ChkDP	Check Dial Pulse	CAS
ChkDTa	Check Dial Tone a	CAS
ChkDTb	Check Dial Tone b	CAS
ChkFlsh	Check Flash	CAS
CoOfh	Central Office Off Hook	CAS
CoOnh	Central OfficeOn Hook	CAS
CptyHld	"C" Party Hold	CAS
CW	Call Waiting	CAS
Cwabdn	Call Waiting Abandon	CAS
DetRngOff	Detect Ringing Off	CAS
DetRngOn	Detect Ringing On	CAS
DigErr	Digit Error	CAS
Disc3W	Disconnect three Way	CAS
Dpdig	Dial Pulse Digit	CAS
DPplsBrk	Dial Pulse Break	CAS
DPplsMk	Dial PulseMake	CAS
Drop3W	Drop three way	CAS
DT	Dial Tone	CAS
DTbkA	Dial Tone back A	CAS
DTbkB	Dial Tone back B	CAS
DTbkC	Dial Tone back C	CAS
Dtoff	Dial Tone off	CAS
DToffDP	Dial Tone on Dial Pulse	CAS
Dtdly	Dial Tone Delay	CAS
DTMFdig	Dual Tone Multiple Frequency digit	CAS
DTMFoff	Dual Tone Multiple Frequency off	CAS
EndFlsh	End Flash	CAS
ErrBsyOff	Error Busy Off	CAS
ErrorSz	Error Seizure	CAS
FastDial	Fast Dial	CAS
Float	Float voltage	CAS
HitOrFlshTmr	Hit or Flash timer	CAS

HitTmr	Hit Timer	CAS
Idle	Idle	CAS
Idle2	idle 2	CAS
IsFlsh	Is Flash	CAS
LnClose	Line Close	CAS
LnTest	Central Office Line test	CAS
Lndl	Undefined state Process Manually	CAS
LongDig	Long Digit	CAS
MissDt	Missing Digit	CAS
MoreDig	More Digit	CAS
MsgWaitDT	Message waiting dial tone	CAS
NetHld	Network Hold	CAS
No3W	No three way	CAS
NoDig	No digit	CAS
NoDT	No dial Tone	CAS
NoSync	No Synchronization	CAS
OkFlsh	OK Flash	CAS
OnHook	On Hook	CAS
Opn	Open	CAS
OSI	Open Switch Interval	CAS
PermSigRing	Permanent Signal Ringing	CAS
Psofh	Permanent Signal off hook	CAS
Psopen	Permanent Signal open	CAS
PSUopen	Phone Service Unit open	CAS
RclDT	Recall Dial Tone	CAS
RclOff	Recall Off	CAS
RclOn	Recall On	CAS
RealHit	Real Hit	CAS
RngOSI	Ringing Open Switch Interval	CAS
RO	ReOrder	CAS
Rodig	ReOrder digit detection	CAS
SamePSU	Same Phone Service Unit	CAS
ShrtAns	Short Answer	CAS
ShrtDig	Short Digit	CAS
StbCall	Stable Call	CAS
StbDig	Stable Digit	CAS

Sz	Seizure	CAS
TalkOn	Talk On	CAS
ToneOn	Tone On	CAS
ValidDig	Valid Digit	CAS
Unknown	Unknown	CAS

Status

2DTMFoffs	Dual Tone Multiple Frequency	CAS
3W	Three Way call	CAS
5E	5ESS Switch	CAS
BptyHld	"B" Party Hold	CAS
BptyHld3W	"B" Party Hold three way call	CAS
CallHold	Call Hold	CAS
CptyHld	"C" Party Hold	CAS
CurEqOfh	Current Equal off hook	CAS
CurEqOnh	Current Equal On hook	CAS
CurAvailable	Current Available	CAS
CurRelayClosed	Current Relay Closed	CAS
CW	Call Waiting	CAS
Cwabdn	Call Waiting Abandon	CAS
DigOn	Digit On	CAS
Dpdig	Dial Pulse digit	CAS
DPOff	Dial Pulse Off	CAS
Dtbk	Dial Tone break (Stutter)	CAS
ErrDigOff	Error Digit Off	CAS
ErrDigOn	Error Digit On	CAS
ErrLodi	Error Undefined state Process Manually	CAS
ErrSz	Error Seizure	CAS
FarEndAns	Far End Answer	CAS
FeaCall	Feature Call	CAS
Float	Float voltage	CAS
LnOpen	Line Open	CAS
Lodi	Undefined state Process Manually	CAS
LongOpen	Long Open	CAS
Offflook	Off Hook	CAS

OnHook	On Hook	CAS
Org	Originating	CAS
PDdigOff	Dial Pulse digit Off	CAS
RngEqOfh	Ring Equals Off Hook	CAS
RngEqOnh	Ring Equals On Hook	CAS
RngGtOfh	Ring Equals Greater than Off Hook	CAS
RngGtOnh	Ring Equals Greater than On Hook	CAS
RngLtOfh	Ring Equals Less Than Off Hook	CAS
RngLtOnh	Ring Equals Less Than On Hook	CAS
SzOSI	Seizure	CAS
Term	Terminating	CAS
TermCall	Terminating Call	CAS
Test	Central Office test	CAS
TipEqOfh	Tip Equals Off Hook	CAS
TipEqOnh	Tip Equals On Hook	CAS
TipGtOfh	Tip Equals Greater than Off Hook	CAS
TipGtOnh	Tip Equals Greater than	CAS
TipLtOfh	Tip Equals Less Than Off Hook	CAS
TipLtOnh	Tip Equals Less	CAS
VcUnchanged	Voltage Unchanged	CAS
VoltEqOfh	Voltage Equals Off Hook	CAS
VoltEqOnh	Voltage Equals On Hook	CAS

Non-Voltage

Event Status

bStsTimeHrt	heartbeat time condition	CAS
bStsTimeTmr	timer condition	CAS
bStsTimeFilt	fltered time condition	CAS
bStsCPTa	CPT tone(s) has just finished	CAS
bStsCPTb	CPT tone 350 Hz	CAS
bStsCPTc	CPT tones 350 + 440 Hz	CAS
bStsCPTd	CPT tones 440 + 480 Hz	CAS
bStsCPTe	CPT tone 480 Hz	CAS
bStsCPTf	CPT tones 350 + 480 Hz	CAS
bStsCPTg	CPT tones 440 + 480 Hz	CAS

bStsCPTh	CPT tones 350 + 440 + 480 Hz	CAS
bStsCPTi	CPT tone 620 Hz	CAS
bStsCPTj	CPT tones 350 + 620 Hz	CAS
bStsCPTk	CPT tones 440 + 620 Hz	CAS
bStsCPTl	CPT tones 350 + 440 + 620 Hz	CAS
bStsCPTm	CPT tones 480 + 620 Hz	CAS
bStsCPTn	CPT tones 350 + 480 + 620 Hz	CAS
bStsCPTo	CPT tones 440 + 480 + 620 Hz	CAS
bStsCPTp	CPT tones 350 + 440 + 480 + 620 Hz	CAS
evDTMF	Dual Tone Multiple Frequency event conditions	CAS
bStsDTMFone	DTMF digit one 697 + 1209 Hz	CAS
bStsDTMFfour	DTMF digit four 770 + 1209 Hz	CAS
bStsDTMFseven	DTMF digit seven 852 + 1209 Hz	CAS
bStsDTMFstar	DTMF symbol * 941 + 1209 Hz	CAS
bStsDTMFtwo	DTMF digit two 697 + 1336 Hz	CAS
bStsDTMFfive	DTMF digit five 770 + 1336 Hz	CAS
bStsDTMFeight	DTMF digit eight 852 + 1336 Hz	CAS
bStsDTMFzero	DTMF digit zero 941 + 1336 Hz	CAS
bStsDTMFthree	DTMF digit three 697 + 1477 Hz	CAS
bStsDTMFsix	DTMF digit six 770 + 1477 Hz	CAS
bStsDTMFnine	DTMF digit nine 852 + 1477 Hz	CAS
bStsDTMFpound	DTMF symbol # 941 + 1477 Hz	CAS
bStsDTMFa	DTMF character A 697 + 1633 Hz	CAS
bStsDTMFb	DTMF character B 770 + 1633 Hz	CAS
bStsDTMFc	DTMF character C 852 + 1633 Hz	CAS
bStsDTMFd	DTMF character D 941 + 1633 Hz	CAS
bStsDTMFoff	DTMF tone(s) has just finished	CAS
evMF	Multiple Frequency event conditions	CAS
bStsMFoff	MF tone(s) just finished	CAS
bStsMFone	MF digit one 700 + 900 Hz	CAS
bStsMFtwo	MF digit two 700 + 1100 Hz	CAS
bStsMFfour	MF symbol four 700 + 1300 Hz	CAS
bStsMFseven	MF digit seven 700 + 1500 Hz	CAS
bStsMFst3p	MF indicator ST3P 700 + 1700 Hz	CAS

bStsMFthree	MF digit three 900 + 1100 Hz	CAS
bStsMFfive	MF digit five 900 + 1300 Hz	CAS
bStsMFeight	MF digit eight 900 + 1500 Hz	CAS
bStsMFstp	MF indicator STP 900 + 1700 Hz	CAS
bStsMFsix	MF digit six 1100 + 1300 Hz	CAS
bStsMFnine	MF digit nine 1100 + 1500 Hz	CAS
bStsMFkp	MF indicator KP 1100 + 1700 Hz	CAS
bStsMFzero	MF digit 0 1100 + 1500 Hz	CAS
bStsMFst2p	MF indicator ST2P 1300 + 1700 Hz	CAS
bStsMFst	MF indicator ST 1500 + 1700 Hz	CAS
		CAS
evRng	Ringing event conditions	CAS
bStsRngOff	Ringing has just finished	CAS
bStsRngOn	Ringing is in progress	CAS
evSIT - Special	Information Tone event conditions	CAS
bStsSIToff	SIT tone has just finished	CAS
bStsSITs1lS	SIT tone segment 1 low short duration (s1 lS)	CAS
bStsSITs1hS	SIT tone segment 1 high short duration (s1 hS)	CAS
bStsSITs2lS	SIT tone segment 2 low short duration (s2 lS)	CAS
bStsSITs2hS	SIT tone segment 2 high short duration (s2 hS)	CAS
bStsSITs3lS	SIT tone segment 3 low short duration (s3 lS)	CAS
bStsSITs3hS	SIT tone segment high short duration (s3 hS)	CAS
bStsSITnst1	no SIT tone 1	CAS
bStsSITnst2	no SIT tone 2	CAS
bStsSITs1hL	SIT tone segment 1 low long duration (s1 hL)	CAS
bStsSITs1lL	SIT tone segment 1 high long duration (s1 lL)	CAS
bStsSITs2lL	SIT tone segment 2 low long duration (s2 lL)	CAS
bStsSITs2hL	SIT tone segment 2 high long duration (s2 hL)	CAS
bStsSITs3lL	SIT tone segment 3 low long duration (s3 lL)	CAS
bStsSITs3hL	SIT tone segment 3 high long duration (s3 hL)	CAS
bStsSITnst3	no SIT tone 3	CAS
evLnCktSnsrOfl	line circuit sensor offline conditions	CAS
bStsLnCktSnsrOfl	the line circuit sensor has gone offline	CAS
evLnCktSnsrTrblBtn 1	line circuit sensor trouble button conditions	CAS
		CAS
bStsSuTrblBtnOn	line circuit sensor trouble button is being pressed	CAS

bStsSuTrblOff	line circuit sensor trouble button just released	CAS
bStsCPTon	Call Progress Tone on	CAS
bStsDTMFon	Dual Tone Multiple Frequency on	CAS
bStsMFon	Multiple Frequency on	CAS
bstsMFdigitOn	Multiple Frequency digit On	CAS
bStsMFstOn	Multiple Frequency On	CAS
bStsSITon	Special Information Tone on	CAS

State Dependent

Timers

SdAns100	Answer 100ms	CAS
SdAns4k	Answer 4000ms	CAS
SdAns12k	Answer 12000ms	CAS
SdAud5200	Audible 5200ms	CAS
SdBkA200	Break a 200ms (Stutter)	CAS
SdBkB200	Break B 200ms(Stutter)	CAS
SdChkDT75	Check Dial Tone 75ms	CAS
SdChkDT200	Check Dial Tone 200ms	CAS
SdDigOff10k	Digit Off 10000ms	CAS
SdDP75	Dial Pulse 75ms	CAS
SdDP500	Dial Pulse 500ms500ms	CAS
SdDPbrk300	Dial Pulse break 300ms	CAS
SdDPbrk500	Dial Pulse break500ms	CAS
SdDPdig10k	Dial Pulse Digit 10000ms	CAS
SdDPmk300	Dial Pulse Make 300ms	CAS
SdDT200	Dial Tone 200ms	CAS
SdDTdly4k	Dial Tone Delay 4000ms	CAS
SdDTMFon4k	Dual Tone Multiple Frequency 4000ms	CAS
SdDTMFon50	Dual Tone Multiple Frequency 50ms	CAS
SdDToff200	Dial Tone off 200ms	CAS
SdEndFlsh4k	End Flash 4000ms	CAS
SdFlsh1k	Flash 1000ms	CAS
SdGoIdle1k	Go Idle 1000ms	CAS
SdHit400	Hit 400ms	CAS
SdLnClose2k	Line Closed 2000ms	CAS
SdLodi2k	Undefined state 2000ms	CAS

Process Manually		CAS
SdLodi7k	Undefined state 7000ms Process Manually	CAS
SdLodi15k	Undefined state 15000ms Process Manually	CAS
SdLodi20k	Undefined state 20000ms Process Manually	CAS
		CAS
SdNull0	Null 10ms	CAS
SdOnHk200	On Hook 200ms	CAS
SdOpen1k	Open 1000ms	CAS
SdOpen30k	Open 30000ms	CAS
SdOpen400	Open 400ms	CAS
SdOpen500	Open 500ms	CAS
SdPS2k	Permanent Signal 2000ms	CAS
SdPSring100	Permanent Signal Ring 100ms	CAS
SdRclDT125	Recal Dial Tone 125ms	CAS
SdRclOff200	Recal Dial Tone 200ms	CAS
SdRclOn160	Recal Dial Tone 160ms	CAS
SdRng300	Ringing 300ms	CAS
SdRng5500	Ringing 5500ms	CAS
SdSUOpen10k	Service Unit Open 10000ms	CAS
SdTermHLd2k	Term Hold 2000ms	CAS
SdWait250	Wait 250ms	CAS
SdWait500	Wait 500ms	CAS

State Independent

Timers

SiBsyRO300	Busy/Reorder 300ms	CAS
SiCW12k	Call Waiting 12000ms	CAS
SiOffHk4k	Off Hook 4000ms	CAS
SiOnHk12k	On Hook 12000ms	CAS
SiOnHk1500	On Hook 1500ms	CAS

Event Filter

EvCPTall	Call Progress Tone all	CAS
EvDTMFall	Dual Tone Multiple Frequency all	CAS

EvMFall	Multiple Frequency	CAS
---------	--------------------	-----

Event Pass

CPTc100	Call Progress Tone	CAS
CPTd	Call Progress Tone Dial Tone	CAS
CPTd100	Call Progress Tone Dial Tone 100ms	CAS
CPTd2k	Call Progress Tone Dial Tone 2000ms	CAS
CPTg	Call Progress Tone Audible Ring	CAS
CPTg500	Call Progress Tone Audible Ring 500ms	CAS
CPTm	Call Progress Tone Busy/Reorder Low Tone	CAS
DTMFall100	Dual Tone Multiple Frequency all 100ms	CAS
DTMFall200	Dual Tone Multiple Frequency all 200ms	CAS

Non-Voltage Events

Heartbeat Time	heartbeat time condition	CAS
Timer Time	Timer timeout time condition	CAS
Filter Time	fltered time condition	CAS
CPT Off	CPTa CPT tone(s) has just finished	CAS
CPT 350 Hz	CPTb CPT tone 350 Hz	CAS
CPT Call Waiting	CPTc CPT tone 440 Hz	CAS
CPT Dial Tone	CPTd CPT tones 350 + 440 Hz	CAS
CPT Perm Signal	CPTe CPT tone 480 Hz	CAS
CPT Recall Tone	CPTf CPT tones 350 + 480 Hz	CAS
CPT Aud Ring On	CPTg CPT tones 440 + 480 Hz	CAS
CPT 350/440/480 Hz	CPTh CPT tones 350 + 440 + 480 Hz	CAS
CPT 620 Hz	CPTi CPT tone 620 Hz	CAS
CPT 350/620 Hz	CPTj CPT tones 350 + 620 Hz	CAS
CPT Intercept	CPTk CPT tones 440 + 620 Hz	CAS
CPT 350/440/620 Hz	CPTl CPT tones 350 + 440 + 620 Hz	CAS
CPT Busy/Reorder	CPTm CPT tones 480 + 620 Hz	CAS
CPT 350/480/620	CPTn CPT tones 350 + 480 + 620 Hz	CAS
CPT 440/480/620 Hz	CPTo CPT tones 440 + 480 + 620 Hz	CAS
CPT 350/440/480/620 Hz	CPTp CPT tones 350 + 440 + 480 + 620 Hz	CAS
evDTMF	Dual Tone Multiple Frequency event conditions	CAS

DTMF 1	DTMF digit one 697 + 1209 Hz	CAS
DTMF 4	DTMF digit four 770 + 1209 Hz	CAS
DTMF 7	DTMF digit seven 852 + 1209 Hz	CAS
DTMF *	DTMF symbol * 941 + 1209 Hz	CAS
DTMF 2	DTMF digit two 697 + 1336 Hz	CAS
DTMF 5	DTMF digit five 770 + 1336 Hz	CAS
DTMF 8	DTMF digit eight 852 + 1336 Hz	CAS
DTMF 0	DTMF digit zero 941 + 1336 Hz	CAS
DTMF 3	DTMF digit three 697 + 1477 Hz	CAS
DTMF 6	DTMF digit six 770 + 1477 Hz	CAS
DTMF 9	DTMF digit nine 852 + 1477 Hz	CAS
DTMF #	DTMF symbol # 941 + 1477 Hz	CAS
DTMF A	DTMF character A 697 + 1633 Hz	CAS
DTMF B	DTMF character B 770 + 1633 Hz	CAS
DTMF C	DTMF character C 852 + 1633 Hz	CAS
DTMF D	DTMF character D 941 + 1633 Hz	CAS
DTMF Off	DTMF tone(s) has just finished	CAS
evMF	Multiple Frequency event conditions	CAS
MF off	MF tone(s) just finished	CAS
MF 1	MF digit one 700 + 900 Hz	CAS
MF 2	MF digit two 700 + 1100 Hz	CAS
MF 4	MF symbol four 700 + 1300 Hz	CAS
MF 7	MF digit seven 700 + 1500 Hz	CAS
MF st3p	MF indicator ST3P 700 + 1700 Hz	CAS
MF 3	MF digit three 900 + 1100 Hz	CAS
MF 5	MF digit five 900 + 1300 Hz	CAS
MF 8	MF digit eight 900 + 1500 Hz	CAS
MF stp	MF indicator STP 900 + 1700 Hz	CAS
MF 6	MF digit six 1100 + 1300 Hz	CAS
MF 9	MF digit nine 1100 + 1500 Hz	CAS
MF kp	MF indicator KP 1100 + 1700 Hz	CAS
MF 0	MF digit 0 1100 + 1500 Hz	CAS
MF st2p	MF indicator ST2P 1300 + 1700 Hz	CAS
MF st	MF indicator ST 1500 + 1700 Hz	CAS

evRng	Ringing event conditions	CAS
Machine Ring Off	Ringing has just finished	CAS
Machine Ring On	Ringing is in progress	CAS
ecSIT	Special Information Tone event conditions	CAS
SIT off	SIT tone has just finished	CAS
SIT s1lS	SIT tone segment 1 low short duration (s1 lS)	CAS
SIT s1hS	SIT tone segment 1 high short duration (s1 hS)	CAS
SIT s2lS	SIT tone segment 2 low short duration (s2 lS)	CAS
SIT s2hS	SIT tone segment 2 high short duration (s2 hS)	CAS
SIT s3lS	SIT tone segment 3 low short duration (s3 lS)	CAS
SIT s3hS	SIT tone segment high short duration (s3 hS)	CAS
SIT nst1	no SIT tone 1	CAS
SIT nst2	no SIT tone 2	CAS
SIT s1hL	SIT tone segment 1 low long duration (s1 hL)	CAS
SIT s1lL	SIT tone segment 1 high long duration (s1 lL)	CAS
SIT s2lL	SIT tone segment 2 low long duration (s2 lL)	CAS
SIT s2hL	SIT tone segment 2 high long duration (s2 hL)	CAS
SIT s3lL	SIT tone segment 3 low long duration (s3 lL)	CAS
SIT s3hL	SIT tone segment 3 high long duration (s3 hL)	CAS
SIT nst3	no SIT tone 3	CAS
evSUOfL	line circuit sensor offline conditions	CAS
SU Offline	the line circuit sensor has gone offline	CAS
evSUTrblBtn	line circuit sensor trouble button conditions	CAS
SU Mark Event In	SU trouble button is being pressed	CAS
SU Mark Event Out	SU trouble button just released	CAS

SGCP Cause Codes

bCcGWEndPntNoRdy	End Point Not Ready	SGCP
bCcGWnoResources	Gateway does not have the requested capability	SGCP
bCcGWStaOffHk	GW detected station was off hook	SGCP
bCcGWwhatEndPnt	GW does not know the end point	SGCP

SGCP Message Events

bSbbvCAAckNTFYOK	Call Agent acknowledgement message of GW	SGCP
------------------	--	------

	Notification message - Status = OK	
bSbbvCACRCX	CA Create Connection message	SGCP
bSbbvCADLCX	CA Delete Connection message	SGCP
bSbbvCAMDCX	CA Modify Connection message	SGCP
bSbbvCARQNT	CA Notification Request message	SGCP
bSbbvGWAckCRCXOK	GW acknowledgement message of CA Create Connection message - Status = OK	SGCP
bSbbvGWAckDLCXOK	GW acknowledgement message of GW Delete Connection message - Status = OK	SGCP
bSbbvGWAckMDCXOK	GW acknowledgement message of GW Modify Connection message - Status = OK	SGCP
bSbbvGWAckRQNTOK	GW acknowledgement message of GW Notification Request message - Status = OK	SGCP
bSbbvGWNTFY	GW Notify message	SGCP

Circuit Configuration

Events

bVaG711	Compression Algorithm G711 - 8Khz	SGCP
bVaG726_32	Compression Algorithm G726 - 32Khz	SGCP
bVmAVP711P	Connection Mode G711 - 8Khz	SGCP
bVmAVP726_32_4A	Connection Mode G726 - 32Khz	SGCP
bVmRcvOnly	Connection Mode receive only	SGCP
bVmSndRcv	Connection Mode Send/Receive	SGCP
bVoDigits	GW Observed Events = Digits	SGCP
bVoOnHk	GW Observed Events = Station On Hook	SGCP
bVoStaOffHook	GW Observed Events = Station Off Hook	SGCP
bVoStaOnHk	GW Observed Events = Station On Hook	SGCP
bVpStatsAvail	Performance Statistics Available	SGCP
bVrOffHk	GW look for Station Off Hook	SGCP
bVrOnHk	GW look for Station Off Hook	SGCP
bVrStaOffHk	GW look for Station Off Hook	SGCP
bVsDTresp	GW send Dial Tone	SGCP
bVsRinging	GW set Ringing AB bit pattern	SGCP
bVsRingPhone	GW set Ringing AB bit pattern	SGCP

SGCP Call Counts

Blocks

bCcbVGwNoRspAck	Count GW no response time out	SGCP
-----------------	-------------------------------	------

SGCP Call Dispositions

bCdvCAIncConFail	CA incoming call connection error	SGCP
bCdvCANotAck	CA not acknowledging GW message	SGCP
bCdvCAnotNtfyAck	CA not acknowledging GW Notify message	SGCP
bCdvCANotResp	CA not responding	SGCP
bCdvEndPntNoRdy	End point not ready	SGCP
bCdvGWAUDIO8	Connection mode 8Khz	SGCP
bCdvGWnoResorcs	GW not responding	SGCP
bCdvGWrelCall	GW released call	SGCP
bCdvGWReorder	GW sending Reorder tone	SGCP
bCdvIEmissing	CA or GW message has invalid information	SGCP
bCdvInvalidMsg	Invalid message Id	SGCP
bCdvLSCircuit	Call is a Loop Start call	SGCP
bCdvNtwkCallAns	Network answered call	SGCP
bCdvNtwkDisco	Network Disconnect	SGCP
bCdvNtwkDisco1st	Network disconnected first	SGCP
bCdvResetGW	GW reset	SGCP
bCdvStaAlrdyOfHk	Station already off hook	SGCP
bCdvStaDisco1st	Station disconnected first	SGCP
bCdvStatsAvail	GW statistics available	SGCP
bCdvTermCall	Terminating Call	SGCP
bCdvWhatEndPnt	End point unknown	SGCP

SGCP Network Troubleshooting

Events

bCntCAnoWaitOnHk	CA did not wait for On Hook	SGCP
------------------	-----------------------------	------

SGCP Network

Unusual Events

bCnuCAnoNtyAck	CA not acknowledging GW Notify message	SGCP
----------------	--	------

SGCP Alarms

bIPMinorAlarm1	Minor Alarm	SGCP
----------------	-------------	------

SGCP Notable States

bNsv1WayTrans	Call is in receive only mode	SGCP
bNsv2WayTrans	Call is in Send/receive mode	SGCP
bNsvAlerting	GW is alerting station	SGCP
bNsvAudRing	GW is generating Audible ringing	SGCP
bNsvCAIncConFail	CA incoming call connection failed	SGCP
bNsvCallEstb	Call established	SGCP
bNsvCAnotNtfyAck	CA not acknowledging GW Notify message	SGCP
bNsvCANotResp	CA not responding	SGCP
bNsvDigitRcvd	Digit received	SGCP
bNsvDigitsAcptd	Digits accepted	SGCP
bNsvEndPntNoRdy	End point not ready	SGCP
bNsvEstIncTrk	GW established Incoming Trunk	SGCP
bNsvGWAudio8	GW set for Audio 8Khz	SGCP
bNsvGWAudRing	GW sending audible ringing tone	SGCP
bNsvGWCollectDig	GW to collect digits	SGCP
bNsvGWDialTone	GW sending Dial Tone	SGCP
bNsvGWnoResorcs	GW does not have the requested capability	SGCP
bNsVGwNoRspAck	GW not responding to CA message	SGCP
bNsvGWnotReset	GW is not reset	SGCP
bNsvGWOFFhook	GW detected Off hook	SGCP
bNsvGWready	GW is ready to accept call requests	SGCP
bNsvGWrelCall	GW released call	SGCP
bNsvGWReorder	GW sending Reorder	SGCP
bNsvGWwaitOffHk	GW waiting for Off Hook	SGCP
bNsvIBsigNoAvail	In band signaling is not available	SGCP
bNsvIdle	Circuit is Idle	SGCP
bNsvIdleWaiting	Circuit is Idle and waiting for a call	SGCP
bNsvIEmissing	CA or GW message has invalid information	SGCP
bNsvInvalidMsg	Invalid message Id	SGCP
bNSvLSCircuit	Circuit is Loop Start	SGCP

bNsvNtwkCallAns	Network answered the call	SGCP
bNsvNtwkCallPres	Network call is present	SGCP
bNsvNtwkDisco	Network disconnected the call	SGCP
bNsvNtwkDisco1st	Network disconnected first	SGCP
bNsvOffHk	Off hook	SGCP
bNsvPreStablCall	Presstable call	SGCP
bNsvRcvOnly	Circuit is in receive only mode	SGCP
bNsvResetGW	GW is reset	SGCP
bNsvStaAlrdyOfHk	Station is already off hook	SGCP
bNsvStaAns	Station answer	SGCP
bNsvStaDisco	Station disconnected	SGCP
bNsvStaDisco1st	Station disconnected first	SGCP
bNsvStatsAvail	GW statistics are available	SGCP
bNsvTermCall	Terminating call	SGCP
bNsvWait4OnHk	GW is waiting for an off hook	SGCP
bNsvWhatEndPnt	Unknown end point	SGCP

SGCP Statistics

bStssaIdleWait	Idle waiting	SGCP
bStssNoOffHkID	No off hook identified	SGCP
bStssStaDisco2st	Station sent second disconnect	SGCP
bStssv1WayTrans	Circuit has one way transmission only	SGCP
bStssv1WInTrkRdy	One way incoming trunk ready	SGCP
bStssvAlerting	alerting	SGCP
bStssvCAIncCFail	CA caused incomplete incoming call failure	SGCP
bStssvCANoNtyAck	CA no GW notify acknowledgement	SGCP
bStssvEndPtNoRdy	End point is not ready	SGCP
bStssvEstIncTrk	Establishing incoming trunk	SGCP
bStssvGWnoResors	GW does not have the requested capability	SGCP
bStssVGwNoRspAck	GW not responding to CA message	SGCP
bStssvGWReorder	GW sending Reorder	SGCP
bStssvIdle	Idle	SGCP
bStssvMDCXrcvd	CA MDCX message was received	SGCP
bStssvStableCall	Stable call	SGCP
bStssvStaOffHk	Station is off hook	SGCP

bStssvWhatEndPnt	Unknown End Point	SGCP
bStsvWaitOnHk	Waiting for off hook	SGCP
bStsvStaDisco1st	Station Disconnected First	SGCP
bStsvMDCXrcvd	CA MDCX message received	SGCP

SGCP Timer Events

bTmrrSiCAAckN200	Set wait for CA Ack to GW Notify message Timer 200ms	SGCP
bTmrrSiGWAckM200	Set wait for GW Ack to CA Modify Connection message Timer 200ms	SGCP
bTmrrSiGWAckR200	Set wait for GW Ack to CA GW Notification Request message Timer 200ms	SGCP
bTmrsSd2ndTri200	Set 2nd Trial Timer expired 200ms	SGCP
bTmrsSdCAAckN200	Set wait for CA Ack message 200ms	SGCP
bTmrsSdCancel3m	Set Cancel call in 3 minutes Timer	SGCP
bTmrsSdGWAckC200	Set wait for GW Ack to CA Create Connection message Timer 200ms	SGCP
bTmrsSdGWAckD200	Set wait for GW Ack to CA Delete Connection message Timer 200ms	SGCP
bTmrsSdGWAckM200	Set wait for GW Ack to CA Modify Connection message Timer 200ms	SGCP
bTmrsSdGWAckR200	Set wait for GW Ack to CA GW Notification Request message Timer 200ms	SGCP
bTmrsSdNoDig30k	Set no Digit received Timer	SGCP
bTmrsSdNull	Set Null Timer	SGCP
bTmrsSiCAAckN200	Set wait for CA Ack to GW Notify message Timer 200ms	SGCP
bTmrsSiGWAckM200	Set wait for GW Ack to CA Modify Connection message Timer 200ms	SGCP
bTmrsSiGWAckR200	Set wait for GW Ack to CA Notification Request message Timer 200ms	SGCP
bTmdSd2ndTri200	2nd Trial Timer expired 200ms	SGCP
bTmdSdCAAckN200	Wait for CA Ack message 200ms	SGCP
bTmdSdCancel3m	Cancel call in 3 minutes Timer	SGCP
bTmdSdGWAckC200	Wait for GW Ack to CA Create Connection message	SGCP

	Timer 200ms	
bTmdSdGWAckD200	Wait for GW Ack to CA Delete Connection message	SGCP
	Timer 200ms	
bTmdSdGWAckM200	Wait for GW Ack to CA Modify Connection message	SGCP
	Timer 200ms	
bTmdSdGWAckR200	Wait for GW Ack to CA GW Notification Request message	SGCP
	Timer 200ms	
bTmdSdNull	Null Timer	SGCP
bTmdSiCAAckN200	Wait for CA Ack to GW Notify message	SGCP
bTmdSiGWAckM200	Wait for GW Ack to CA Modify Connection message	SGCP
	Timer 200ms	
bTmdSiGWAckR200	Wait for GW Ack to CA Notification Request message	SGCP
	Timer 200ms	

SGCP States

stCACallPres	CA Call Present	SGCP
stCADigitsAcptd	CS Digits Accepted	SGCP
stCAError1	CS Error1	SGCP
stCallInProg	Call in Progress	SGCP
stCAntwkDisco	CA Network Disconnect	SGCP
StCreateGWTrk	Create GW Trunk	SGCP
stCutThruTrk	Cut Through Trunk	SGCP
stDiscoGWTrk	Disconnect GW Trunk	SGCP
stEndPntNoRdy	End Point Not Ready	SGCP
stErrorHandler	Error Handler	SGCP
stGWAudiContMade	GW Audio Connection Made	SGCP
stGWAudRing	GW Audible Ringing	SGCP
stGWAudRingSent	GW Audible Ringing Sent	SGCP
stGWCallAcptd	Call Accepted	SGCP
stGWcutThruTrk	GW Cut Through Trunk	SGCP
stGWDigitRcvd	GW Digit Received	SGCP
stGWIdle	GWE Idle	SGCP

stGWIIncIdle	GW Incoming Idle	SGCP
stGWOFFHook	GW Off Hook	SGCP
stGWOnHkReady	GW On Hook Ready	SGCP
stGwReset	GW Reset	SGCP
stGwResetReq	GW Reset Requested	SGCP
stGWrmvTrk	GW Remove Trunk	SGCP
stGWstaDisco	GW Station Disconnect	SGCP
stGwTrkRel	GW Trunk Released	SGCP
stGWwaitOnHk	GW Waiting On Hook	SGCP
stIncStaOnHk	Incoming Station On Hook	SGCP
stIPAlertReq	IP Alert Requested	SGCP
stIPCANotResp	CA not Responding	SGCP
stIPOFFHook	OFF Hook	SGCP
stIPResetGW	GW Reset	SGCP
stNtwkCallAns	Network Call Answered	SGCP
stNtwkDisco	Network Disconnect	SGCP
stReceiveDigits	Received Digits	SGCP
stRemoveTrk	Remove trunk	SGCP
stStableCall	Stable Call	SGCP
stStaDisco	Station Disconnect	SGCP
StStaOnHk	Station On Hook	SGCP
stVAlertgStart	Alerting Started	SGCP
stVAlerting	Alerting	SGCP
stvCAIncConFail	CA Incoming Connection Failed	SGCP
stvCAnotNtfyAck	CA Not responding to GW Notify message	SGCP
stVCAnotResp1	CA Not Responding 1	SGCP
stVEstIncTrk	Established Incoming Trunk	SGCP
stVGWnoResources	GW no Resources Available	SGCP
stVGwNotRespCR	GW not Responding to CRCX	SGCP

stVIdle	Idle	SGCP
stVIdleReady	Idle Ready	SGCP
stVIdleWaiting	Idle Waiting	SGCP
stVIncTrkEstb	Incoming trunk Established	SGCP
stVnoWhatEndPnt	End Point Unknown	SGCP
stvPreStableCall	Pre Stable Call	SGCP
stVStaAlrdyOffHk	Station Already Off Hook	SGCP
StvStblCallWaitg	Stable Call Waiting	SGCP
stvStCallArmed	Call Armed	SGCP

Analysis Call Count

Blocks

bCcbaCAConDly	CA connection delay	Analyze
bCcbaCANoMDerr	CA no MDCX message sent error	Analyze
BCcbaGWnoFNtfy	No NTFY message sent by GW	Analyze
bCcbaGWnoOHkDt	No Off Hook detected by GW	Analyze
bCcbaGWnoRQNTOK	GW did not respond to CA RQNT message	Analyze
bCcbAGwNotResp2C	GW not responding to CA CRCX message	Analyze
bCcbaGWnotRng	GW not ringing	Analyze
bCcbaGWRingErr	GW ringing error	Analyze
bCcbStaPermSig	Station went to Permanent Signal	Analyze

Analysis Call

Dispositions

bCda3WayCall	3 Way Call	Analyze
bCdaBadCall	Bad Call	Analyze
bCdaCAcktSetpErr	CA circuit setup error	Analyze
bCdaCAConDly	CA CRCX delay	Analyze
bCdaCACPerror1	CA Call Processing error	Analyze
bCdaCAerror	CA error	Analyze
bCdaCallFailure	Call Failure	Analyze
bCdaCANoMDCXerr	CA did not send MDCX message	Analyze
bCdaCktNotIdle	Circuit is not idle	Analyze
bCdaDtDly	Dial Tone Delay	Analyze
bCdaErrorCall	Erred call	Analyze

bCdaGoodCall	Good Call	Analyze
bCdaGW2RngTmrBad	GW timer has timed out twice	Analyze
bCdaGWDigitTO	GW Timed Out waiting for digit	Analyze
bCdaGWnoDigIdent	GW did not identify digits even though they were sent	Analyze
bCdaGWnoFlshNtfy	GW did not detect a legitimate Flash	Analyze
bCdaGWnoOfHkDet	GW did not detect a legitimate Off Hook	Analyze
bCdaGWnoRngAck	GW did not send Ringing acknowledgement message	Analyze
bCdaGWnoRQNTOK	GW did not send RQNT acknowledgement message	Analyze
bCdAGWnotResp2C	GW not responding to second CRCX message	Analyze
bCdaGWOFFHkErr1	GW Off Hook Error 1	Analyze
bCdaGWProtoErr2	GW Protocol Error 2	Analyze
bCdaGWrejCRCX	GW rejected CA CRCX message	Analyze
bCdaGWringEarly	GW rang the station early	Analyze
bCdaGWrингError	GW ringing error	Analyze
bCdaGWRingLate	GW ringing late	Analyze
bCdaGWtermCall	GW terminating Call	Analyze
bCdaNoDigDetErr	GW no digits reported error	Analyze
bCdaNtwkAbdnCall	Network abandoned call	Analyze
bCdaNtwkDiscEly	Network disconnected early	Analyze
bCdaOrgCall	Originating Call	Analyze
bCdaRngConfirm	GW Ringing confirmed	Analyze
bCdaStaAbdnCall	Station abandoned call	Analyze
bCdaStableCall	Stable call	Analyze
bCdaStaOffHkErr	Station Off Hook error	Analyze
bCdaStaPermSig	Station in Permanent Signal mode	Analyze
bCdaSubAnswer	Station answered	Analyze

Analysis Network

Unusual Events

bCnuaGWnoRngAck	GW did not send Ringing acknowledgement message	Analyze
bCnuaGWrингEarly	GW rang the station early	Analyze

Analysis Notable States

bNsaa3WayCall	3 Way Call	Analyze
bNsaa3WayCallSt	3 Way call starting	Analyze
bNsaaCA2CompCall	CA tried twice to complete call	Analyze
bNsaaCAcktSetupErr	CA circuit setup error	Analyze

bNsaCAcktSetup	CA attempting to set up a call	Analyze
bNsaCAConDly	CA connection delay	Analyze
bNsaCACPerror1	CA Call Processing error 1	Analyze
bNsaCAerror	CA error	Analyze
bNsaCAflashOK	CA Flash OK	Analyze
bNsaCANoMDCXerr	CA did not send MDCX message	Analyze
bNsaCktDiscoCmp	Circuit disconnect complete	Analyze
bNsaCktNotIdle	Circuit is not idle	Analyze
bNsaCRCXb4Digits	CRCX message received before digits were sent	Analyze
bNsaDtDly	Dial Tone Delay	Analyze
bNsaGoodCall	Good Call	Analyze
bNsaGWDetDig	GW detected digits	Analyze
bNsaGWDigitTO	GW Timed Out waiting for digit	Analyze
bNsaGWDTerror	GW dial Tone error	Analyze
bNsaGWIdle	GW Idle	Analyze
bNsaGWnoDigIdent	GW did not identify digits even though they were sent	Analyze
bNsaGWnoFlshNtfy	GW did not detect a legitimate Flash	Analyze
bNsaGWnoOffHkDet	GW did not detect a legitimate Off Hook	Analyze
bNsaGWNoRingErr	GW did not send Ringing acknowledgement message	Analyze
bNsaGWnoRngAck	GW did not send RQNT acknowledgement message	Analyze
bNsaGWnoRQNTOK	GW did not respond to RQNT message	Analyze
bNsAGWnotResp2C	GW did not respond to CA CRCX message	Analyze
bNsaGWOFFHkErr1	GW Off Hook Error 1	Analyze
bNsaGWrecovrNoRg	GW recovered from No ringing state	Analyze
bNsaGWrejCRCX	GW rejected CA CRCX message	Analyze
bNsaGWringEarly	GW rang the station early	Analyze
bNsaGWringError	GW ringing error	Analyze
bNsaGWRinging	GW ringing station	Analyze
bNsaGWRingLate	GW ringing late	Analyze
bNsaGWRngSta	GW Ringing Station	Analyze
bNsaGWSndDT	GW sent Dial Tone	Analyze
bNsaGWtermCall	GW Terminating Call	Analyze
bNsaInBndCPNBusy	Calling Party's line is busy, busy tone supplied in band	Analyze
bNsaInCallPresnt	Ca;; presented to GW	Analyze
bNsaNoDigDetErr	GW no digits reported error	Analyze

bNsaNoTransPath	No transmission path provided	Analyze
bNsaNtwkDiscEly	Network disconnected early	Analyze
bNsaNtwkDisco	Network initiated disconnect	Analyze
bNsaOrgCall	Originating Call	Analyze
bNsaOrgNkDisco	Network disconnect for an Originating call	Analyze
bNsaOrgStbCall	Stable Originating call	Analyze
bNsaPreOnHk	Pre On Hook state	Analyze
bNsaStaAbdnCall	Station abandoned call	Analyze
bNsaStaAudRing	Audible ringing sent to Station	Analyze
bNsaStaDigRcvd	GW detected Station digits	Analyze
bNsaStaDisco	Station initiated disconnect	Analyze
bNsaStaDiscoErr	Station was disconnected in error	Analyze
bNsaStaHk	Station On Hook	Analyze
bNsaStaIdle	Station is Idle	Analyze
bNsaStaOffHkErr	Station Off Hook error	Analyze
bNsaStaPermSig	Station in Permanent Signal mode	Analyze
bNsaSubAnswer	Station answered	Analyze
bNsaTranCutThru	Transmission is now 2 way	Analyze
bNsGwOffHkNtfy	GW notified CA of Station Off Hook	Analyze
bNsGwTrkRel	GE released the trunk	Analyze
bNsOrgCallPres	Originating call present	Analyze
bNsSetup2ndCall	Second call setup attempt	Analyze

Analysis Statistics

bStsaBadCall	Bad Call	Analyze
bStsaGWrcvrNoRg	GW received no ringing message	Analyze
bStssa3WayCall	3 Way Call	Analyze
bStsaGWNoRngErr	GE did not set Ringing AB bits	Analyze
bStsaGWOFFhkErr1	GW did not detect Off Hook	Analyze
bStsaGWofHkNtfy	GW did not notify CA of an Event	Analyze
bStsaGWRingCnf	Ringing confirmed - both LS and SGCP CPs verified ringing	Analyze
bStsaGWRinging	GW is ringing the station	Analyze
bStsaSubAnswer	Station Answered	Analyze
bStsaUnusualCall	Collection of calls that had unusual events - call	Analyze

	processing was successful	
bStssa3WayCallSt	3 Way call starting	Analyze
bStssaBadCall	Bad Call	Analyze
bStssaCA2ComCall	CA tried twice to complete call	Analyze
bStssaCAcktSetup	CA attempting to set up a call	Analyze
bStssaCAcktSUErr	CA circuit setup error	Analyze
bStssaCAConDly	CA connection delay	Analyze
bStssaCACPerror1	CA Call Processing error 1	Analyze
bStssaCAerror	CA error	Analyze
bStssaCANoMDerr	CA did not send MDCX message error	Analyze
bStssaCktDiscCmp	Circuit disconnect complete	Analyze
bStssaCktNotIdle	Circuit is not idle	Analyze
bStssaCXb4Digits	CRCX message received before digits were sent	Analyze
bStssaDtDly	Dial Tone Delay	Analyze
bStssaGoodCall	Good Call	Analyze
bStssaGW2RgTmBad	GW ringing timing bad	Analyze
bStssaGWDigitTO	GW Timed Out waiting for digit	Analyze
bStssaGWDTerror	GW dial Tone error	Analyze
bStssaGWflash	GW detected Flash	Analyze
bStssaGWIdle	GW Idle	Analyze
bStssaGWnoDigsId	GW did not identify digits even though they were sent	Analyze
bStssaGWnoFNtfy	GW did not detect a legitimate Flash	Analyze
bStssaGWnoOHkDt	GW did not detect a legitimate Off Hook	Analyze
bStssaGWnoRngAck	GW did not send Ringing acknowledgement message	Analyze
bStssaGWNoRngErr	GW did not ring station	Analyze
bStssaGWOOfHkErr1	GW Off Hook Error 1	Analyze
bStssaGWOfHkNtfy	GW off Hook Notify message sent	Analyze
bStssaGWRingCnf	GW Ringing confirmed	Analyze
bStssaGWringErly	GW rang the station early	Analyze
bStssaGWRinging	GW Ringing Station	Analyze
bStssaGWRingLate	GW ringing late	Analyze
bStssaGWrngError	GW ringing error	Analyze
bStssaGWRngSta	GW ringing station	Analyze
bStssaGWSndDT	GW sent Dial Tone	Analyze
bStssaGWtermCall	GW Terminating Call	Analyze
bStssaGWTrkRel	GW released Trunk	Analyze

bStssaInBdCPNBsy	Calling Party's line is busy, busy tone supplied in band	Analyze
bStssaInCallPres	Call presented to GW	Analyze
bStssaNkDiscEly	Network disconnected call early	Analyze
bStssaNoDigDet	GW no digits reported error	Analyze
bStssaNoTrnsPath	No transmission path provided	Analyze
bStssaOrgCall	Originating Call	Analyze
bStssaOrgCalPres	Originating call present	Analyze
bStssaOrgStbCall	Stable Originating call	Analyze
bStssaPreOnHk	Pre On Hook state	Analyze
bStssaSetupCall2	Second call setup attempt	Analyze
bStssaStaAudRing	Audible ringing sent to Station	Analyze
bStssaStableCall	Stable call	Analyze
bStssaStaDigRcvd	GW detected Station digits	Analyze
bStssaStaDisco	Station initiated disconnect	Analyze
bStssaStaOffHk	Station Off Hook	Analyze
bStssaStaOfHkErr	Station Off Hook error	Analyze
bStssaStaPermSig	Station in Permanent Signal mode	Analyze
bStssaSubAnswer	Station answered	Analyze
bStssaTrnCutThru	Transmission is now 2 way	Analyze

Analysis Timer Events

bTmrsaCktRdy5k	Circuit ready timer - 5 seconds	Analyze
bTmrsaDigTO5k	GW Digit report timer - 5 seconds	Analyze
bTmrsaGWack200	GW acknowledgement message timer - 200ms	Analyze
bTmrsaGWnoRng7k	No Ringing detection timer - 7 seconds	Analyze
bTmrsaAmRngDet4k	Ringing detection timer - 4 seconds	Analyze
bTmrsaPSig20k	GW station Permanent Signal timer - 20 seconds	Analyze
bTmrsaSdGWsdDT3k	GW stutter Dial Tone over timer - 3 seconds	Analyze
bTmrsaSdWait1k	1 second wait timer	Analyze
bTmrsaSdWtCon500	500ms wait for create connection timer	Analyze
bTmrsaWait13k	13 second wait timer	Analyze
bTmrsaWtStOH30k	30 second wait for on hook timer	Analyze
bTmdaDigTO5k	GW Digit report timer - 5 seconds	Analyze
bTmdaGWack200	GW acknowledgement message timer - 200ms	Analyze

bTmdaGWFsh200	GW Flash reporting timer - 200ms	Analyze
bTmdAmRngDet4k	Ringing detection timer - 4 seconds	Analyze
bTmdaPSig20k	GW station Permanent Signal timer - 20 seconds	Analyze
bTmdaSdGWsdDT3k	GW stutter Dial Tone over timer - 3 seconds	Analyze
bTmdaSdWait1k	1 second wait timer	Analyze
bTmdaSdWtCon500	500ms wait for create connection timer	Analyze
bTmdaWait13k	13 second wait timer	Analyze
bTmdaWtStOH30k	30 second wait for on hook timer	Analyze
bTmrsGWnoRng7k	No Ringing detection timer - 7 seconds	Analyze

Analysis States

sAmtStaDigRcvd	Station digits received	Analyze
stAm3WayCall	3 Way Call	Analyze
stAm3WayCallSt	3 Way call Start	Analyze
stAm3WdigCmp	3 way digits complete	Analyze
stAmAlertNorm	Alert Normal	Analyze
stAmAlertReady	Alert Ready	Analyze
stAmCA2CompCall	CA to complete call	Analyze
stAMCAcktSetupErr	CA circuit setup error	Analyze
stAmCAcktSetup	CA circuit setup	Analyze
StAmCAConDly	CA Connection Delay	Analyze
stAmCaCPerror1	CA Call Processing error	Analyze
stAmCAflshOK	CA Flash Ok	Analyze
stAmCaGlareIdent	CA Glare Identified	Analyze
stAmCANoMDCXerr	CA No MDCX message sent	Analyze
stAmCAsetDT	CA set Dial Tone	Analyze
stAmCircuitReady	Circuit ready	Analyze
stAmCktDiscoCmp	Circuit Disconnect complete	Analyze
stAmCktNotIdle	Circuit not Idle	Analyze
stAmDigitTO	Digit Time Out	Analyze
stAmGWCECXerr1	GW create connection error 1	Analyze
stAmGWdt	GE dial Tone	Analyze
stAmGWidle	GW Idle	Analyze
stAmGWInCallPres	Gateway Incoming call present	Analyze
stAmGWnoDigDet	GW no Digits Detected	Analyze

stAmGWnoDigits	GW No Digits	Analyze
StAmGWnoOfHkDet	GW No Off Hook Detected	Analyze
stAmGWNoRingErr	GW No Ringing Error	Analyze
StAmGWnoRngAck	GW No Ringing Acknowledge	Analyze
stAmGWOFFHkErr1	GW Off Hook Error 1	Analyze
stAmGwOffHkNtfy	GW Off Hook Notify	Analyze
stAmGWrecovrNoRg	GW recovered ringing	Analyze
stAmGWrejCRCX	GW rejected CRCX message	Analyze
stAmGWRelTrk	GW released Trunk	Analyze
stAmGWrinfEarly	GW Ringing early	Analyze
stAmGWrngError	GW Ringing Error	Analyze
stAmGWRngLate	GW Ringing Late	Analyze
stAmGWRngSta	GW Ringing Station	Analyze
stAmInBndCPNBusy	In band Calling Party Number Busy	Analyze
stAMNtwkDiscEly	Network Disconnect Early	Analyze
stAmNtwkDisco	Network Disconnect	Analyze
stAmOrgCallPres	Originating Call Present	Analyze
stAmOrgNtwkDisco	Originating Network Disconnect	Analyze
stAmOrgStbCall	Originating Stable Call	Analyze
stAmPreDisco	Pre Disconnect	Analyze
stAmSetup2ndCall	Setup second Call	Analyze
stAmStaAbdnCall	Station Abandon Call	Analyze
stAmStaAudRing	Station Audible Ringing	Analyze
stAMStableCallWt	Stable call Waiting	Analyze
stAmStaDisco	Station Disconnected	Analyze
stAmStaDiscoErr	Station Disconnect Error	Analyze
stAmStaDiscSt	Station Disconnect Start	Analyze
stAmStaIdle	Station Idle	Analyze
stAmStaOffHkErr	Station Off Hook Error	Analyze
stAmStaOnHk	Station On Hook	Analyze
stAmStaPermSig	Station Permanent Signal	Analyze
stAmSubAnswer	Station Answered	Analyze
stAmTalkPathRdy	Talk Path Ready	Analyze
stAmTCallAnal1	Terminating Call Analysis 1	Analyze
stAmTermNKDiscSt	Terminating Network Disconnect Start	Analyze
stAmTermStaDisSt	Terminating Station Disconnect Start	Analyze

stAmTranCutThru	Transmission cut through	Analyze
stAOrgCallInit	Originating call Initiated	Analyze
stGWnoDigsIdent	GW no Digits Identified	Analyze
stStaDialing	Station Dialing	Analyze

Ellipsys 023341.P002

DETAILED DESCRIPTION

The following detailed description sets forth numerous specific details to provide a thorough understanding of the invention. However, those of ordinary skill in the art will appreciate that the invention may be practiced without these specific details. In other instances, well-known methods, procedures, protocols, elements, algorithms, and circuits have not been described in detail so as not to obscure the invention.

10 The present invention discloses a method of testing, monitoring, and analyzing traffic in a Next Generation Telephony Network (NGTN) using call analyzers. **Figure 1** illustrates in diagram form various exemplary connection configurations using the call analyzer in accordance with the present invention. The call analyzer may monitor status of calls originating and terminating at a variety of devices. Referring to **Figure 1**, the call analyzer, referred to herein as a Expert Call Analyzer (ECA) may be connected to monitor a simple telephony environment such as a call which exists between the central office (CO) 100 and a residence 102. The ECA may also be connected to a more complex environment such as a business having a private branch exchange (PBX) 104.

20 In the NGSN network, the ECA may passively monitors the protocol between two or more network elements in a circuit while simultaneously monitoring control and status messages from an NGSN call Agent, Gatekeeper or Gateway. For example, the ECA 150 monitors the protocol between the PBX 104 and the IP Gateway 160. The ECA 150 also monitors the control and status messages between the call Agent or Gatekeeper 175 and the IP Gateway 160. This is different from prior art devices that are active elements of the circuit and therefore requiring that a portion of the protocol created relates to the functioning of the network element performing the monitoring. The call analyzer of the present invention provides detailed analysis of the progress of

the call by monitoring signals originating from more than one network element and the response to these signals by the NGTN Gateway and call control managers such as, for example, Call Agent or Gatekeeper 175.

5 In the present embodiment, the ECA may be connected to the NGTN switched circuits that contain raw call progress signaling. The ECA may also be connected to the call control channel (LAN, H323, H225, etc.) that carries information indicative of the progress of a call. The type of raw call progress signaling information is dependent upon the environment monitored. For

10 example, the sensors may provide physical events (DC/AC voltage and current changes, tones, etc.), call setup messages (ISDN D-Channel messages, CCS7- ISUP messages, etc.) or digital carrier signaling bits (T1/E1 A&B signaling bits). Thus, if the call progress event sensor is to provide physical event information, it may provide a voltage transition from 48 volts (ring conductor to ground) to

15 36 volts (ring conductor to ground) indicative of an off hook event, or a voltage transition from 36 volts (ring conductor to ground) to 48 volts (ring conductor to ground) indicative of an on hook event, or a dual frequency detection of 770 Hz and 1336 Hz indicative of a DTMF (dual tone multiple frequency) Digit 5 On event. Alternatively, if the NGTN control channel sensor is to provide call setup

20 and status information, it may provide a Notification Request message decode indicative of the Call Agent's 175 request to the IP Gateway 160 to initiate a call, or a Status message decode indicative of the IP Gateway's 160 detection of an Off Hook condition.

25 The ECA tracks the number of calls generated over the monitored circuit and captures all raw call progress signaling information that occurs between the origination and termination of each call. The ECA may be placed in the serving Central Office (CO) 100 and/or the subscriber locations such as, for example, the residence 102 and the business 104.

As illustrated in **Figure 1**, the ECA may be connected to wide variety of circuits or facilities that carry telephone or telephone-like calls. For example, ECA 151 is connected to a local subscriber cable pair 110; ECA 152 is connected to a T1/E1 Digital Carrier (CXR) 120; ECA 153 is connected to an Integrated

5 Services Digital Network (ISDN)/Aysnc., Symmetrical, Variable, High bit rate, etc. Digital Subscriber Line (DSL) cable pair 125; ECA 150 is connected to an ATM or Frame Relay T1 facilities 135; ECA 153 is connected to a LAN/WAN 140.

10 The Call Progress event sensor and the NGTN control channel sensor of the ECA can be connected intrusively or non-intrusively to the circuit. When the Call Progress event sensor is connected non-intrusively, it is half tapped on the circuit via a high resistance. This permits the Call Progress event sensor to be connected while the circuit is in use without affecting the circuit. In one 15 embodiment, it is preferable to use this type of connection for data circuits, 911 circuits, and other sensitive type circuits. When the Call Progress event sensor is connected intrusively, the circuit is opened up and taken out of service for a short time in order to connect the sensor. Therefore, the circuit is connected through the sensor. This connection permits current detection in analog circuits, 20 making it more accurate since current can be used as an additional parameter for analysis. Current can not be detected in non-intrusive connections.

The NGTN control channel sensor can be connected non-intrusively to a LAN/WAN via a hub, or as a Terminal on a LAN by half tapping the T1 or E1 25 facility carrying the control channel. Intrusive access can be provided for T1/E1 facility access but is not necessary for LAN/WAN access. Using either type of connection, the ECA 150 can generate accurate determination as to the current value that is present at any time because the states are monitored so closely. From the raw call progress signaling and NGTN call control information, the 30 ECA 150 processes the detected events and, in the present embodiment outputs

call count and call event information to an output device such as, for example, an external display system 145.

Referring to **Figure 1**, ECA 150 is connected to T1 facility 155 that feeds a subscriber's PBX 104. When a call is placed to the PBX 104 on one of the T1 channels, the Call Progress event sensor of the ECA 150 captures the raw call progress signaling information indicative of the occurrence of physical events, for example an AB bit change to 0001 for 2 seconds, an AB bit change to 0101 for 4 seconds, an AB bit change to 0111, and an AB bit change to 0101. The sensor identifies the AB bit change and passes the raw call progress signaling information to the call progress event analyzer module of the ECA 150, where each raw call progress signaling event detected is time stamped and converted to logical call handling events for subsequent processing by the system. The logical call handling events may include Machine Ring On, Machine Ring Off, Off Hook, and On Hook. The logical call handling events are passed to the protocol independent call processor module that calls a timer processor which calculates the elapsed time from the previous call progress event, determines if any other timer(s) previously set by the call progress state machine has expired. These timers are used to determine the wait for an expected call progress event, for example dial tone should be detected within 4 seconds after an off hook event is detected, or validate the duration of a call progress event, for example DTMF digits should remain on for at least 50 ms to be valid.

Similarly, the NGTN call control sensor identifies NGTN call control message and status message, and passes the decodes of these messages to the NGTN event analyzer module, where each message detected is time stamped and converted to logical call handling events for subsequent processing by the system. Additional information about the meaning of the NGTN message is

provided by the call control message information element (IE) information. The call control message information element (IE) information is a part of the NGTN message. For example, an NGTN message, Notify, sent by the Gateway informs the Call Agent that a request event or events had occurred. The 5 information element (IE) with in the Notify message could be Dialed Digits, an Off Hook indication, Flash, Bandwidth requested, Sequence number, error code, etc. These are common building blocks of both NGTN and Call Progress(ISDN, SS7, etc.) messages. The message type (Notify, Notification Request, Create Connection, etc) is the event, the IE is data describing the event. The 10 state machine doesn't always need all the IE information, but it is included in the call record, therefore it is set by the either the event processor and/or qualified by the state machine.

NGTN control and status message may include Notification Request 15 message to ring the phone and upon detection of an off hook remove the ringing, Notify message indicating the Off hook was detected, Notification Request message to wait for an On Hook, and Notify message indicating an On Hook was detected. The logical call handling events are passed to the protocol independent call processor module that calls a timer processor which calculates 20 the elapsed time from the previous NGTN message event to receipt or generation of the NGTN message event, determines if any other timer(s) previously set by the NGTN state machine has expired. These timers are used to determine the wait for an expected NGTN control or status message, for example a Notification message should be sent within 100 ms of the time call 25 progress event was detected, or validate response times between gateway and Call Agent, for example an Acknowledgement message should be sent back to the originator within 1 second of a transmitted message.

The timer processor selects the most recent event in time, for example expired-timer or call progress event, and clocks the call progress state machine. When clocked, the call progress state machine analyzes the event and current call status indicators provided by a call status handler located in the protocol independent call processor module. The call status handler is used to track the current status of the call, for example dial tone received, the call is an originating call, circuit is off hook, etc. The call progress state machine either transitions to a new state or remains in the current state. If it transitions to a new state, the call progress state machine updates the call status handler with the new status information, updates a state tracker processor of the protocol independent call processor module with the new state and informs the timer processor that state machine has completed the current cycle. If the call progress state machine did not transition to a new state, it informs the timer processor that it has completed the current cycle without altering the contents of the call status handler of state tracker. This process is performed for the logical call handling event and each expired timer identified by the timer processor. The protocol independent call processor module and the call progress state machine then wait for the next event to occur.

Similarly, the timer processor selects the most recent NGTN control or status event, for example expired-timer or presence of a control or status message, and clocks the NGTN state machine. When clocked, NGTN state machine analyzes the event and current call handling status indicators provided by a call status handler located in the protocol independent call processor module. The call status handler is used to track the current status of the call as seen by the call control manager (Call Agent/Gatekeeper) 175, for example digits detected notification message sent by the IP Gateway 160, call control manager 175 responded with Ack message within 100 ms, and call terminated by call control manager 175, etc. The NGTN state machine either transitions to a new state or remains in the current state. If it transitions to a new state, the

NGTN state machine updates the call status handler with the new status information, updates a state tracker processor of the protocol independent call processor module with the new state and informs the timer processor that state machine has completed the current cycle. If the NGTN state machine did not

5 transition to a new state, it informs the timer processor that it has completed the current cycle without altering the contents of the call status handler of state tracker. This process is performed for the NGTN control or status event and each expired timer identified by the timer processor.

10 When either the call progress or NGTN state machines have been updated with new event information, an analysis engine consisting of an analysis state machine and Alarm Handler evaluates their current state. The Analysis state machine is also referred to as a multi protocol analyzer.

15 The multi protocol analyzer has a total view of the call, whereas the call progress state machine's view is limited to the PBX 104 and IP Gateway 160 TDM/ISDN interface, and the NGTN state machine's view is limited to the call handling of the IP Gateway control channel 160 and the call control manager 175.

20 The multi protocol analyzer or analysis state machine is triggered by the timer processor at the end of the NGTN or Call Progress state machine cycle.

When triggered, the analysis state machine uses state, event and status information from the status handler to transition to a new state. For example when the last digit was sent from the PBX 104, the IP Gateway 160 sends a 25 notification message to the call control manager 175. The notification message contains the same digits detected by the call progress state machine. The analysis state machine transitions to a Call Initiated state. If the trigger does not result in a new analysis state, it informs the timer processor that it has completed the current cycle. All state machines are now ready for the next 30 event.

If the multi protocol analyzer / analysis state machine transitions to an alarm or error state, the timer processor is notified and an alarm condition is sent to the alarm handler. For example, a digits-received notification is sent by 5 the IP gateway 160 to the call control manager 175, but an Ack message was not returned by the call control manager 175. The alarm handler uses priority treatment algorithms to evaluate the severity of the alarm. Depending on the implementation of the invention, a server alarm condition could cause an alarm message to be sent to the user's network management system. In any event, the 10 alarm condition is archived along with the call progress and NGTN status information in the status handler.

The states indicative of progression of the call are maintained for further analysis and reference. The information maintained is useful to 15 test/maintenance personnel for analysis of the sensed circuit. For example, when the call progress state machine determines that the call has terminated, the information maintained may include Idle, Machine Ring On, Machine Ring Off, Station Off Hook, Stable Call, Station On Hook, and CO On Hook. The NGTN information that is maintained may include Call Agent Notification Request 20 (ring station and wait for Off hook), Gateway Ack (ready), Gateway Notification (Call Answered), Call Agent Ack (ready), Call Agent Notification Request (wait for On Hook), Gateway Ack (ready), Call Agent Notification Request (Go On Hook, wait for Off Hook), Gateway Ack (ready), Gateway Notification (Call Cleared, waiting for Off Hook), and Call Agent Ack (ready). The Analysis 25 Information that is maintained may include Normal Call Handling.

The state machines also determine unusual call events. For example, if a caller on the monitored line abandons the call before it is answered, the output 30 of the state machine may include One Terminating Call, One Unusual Event-- Caller Abandon. The output may also include events such as Idle, Machine Ring Ellipsys

On, Machine Ring Off, and CO On Hook. The NGTN information may include Call Agent Notification Request (ring station and wait for Off hook), Gateway Ack (ready), Call Agent Notification Request (Go On Hook, wait for Off Hook), Gateway Ack (ready), Gateway Notification (Call Cleared, waiting for Off Hook), and Call Agent Ack (ready). The Analysis Information may include Normal Call Handling. It should be noted that even though the caller abandoned the call, from a call handling view, the call was handled normally.

5 Features such as described above allow maintenance personnel
10 responsible for call processing to identify potentially bad Gateway circuits and correct them before subscriber trouble reports are generated.

15 **Figure 2** illustrates one embodiment of the system of the present invention. Device 200 captures raw call progress, NGTN call control and status information, indicative of progress of a call, detected on the monitored line and NGTN call control channel. The sensors 210 are connected to switched and/or NGTN network circuits coupled to the line to be monitored. The raw call progress signaling, the NGTN call control and status information is encoded into a data message and sent to a data communication device such as local area
20 network (LAN) 215 where it is decoded and passed to an Call Progress or NGTN event analyzer module 204 via a Process Controller 220. NGTN control and status information can also be obtained from the NGTN LAN 270 where it is decoded and passed to an appropriate or NGTN event analyzer module 204 via a TCP/IP Communication Engines 240 and Process Controller 220. In one
25 embodiment, it is preferable that a event analyzer module 204 consisting of a event processors and 201 and associated Call Progress State Machine 205, and a protocol independent call processor module is created for each switched or NGTN network circuit and NGTN Control channel connected to the system 200.

The event analyzer module 204 receives the physical event data from the sensors 210 and generates logical call handling event, passing it to the protocol independent call processor module where expired timer information and event information is used to clock the inputs to the call progress, NGTN, and analysis state machines / multi protocol analyzer 205. The call progress, NGTN, and Analysis state machines 205 determines the state the call has transitioned to based on the new event information and timer information and reports the state change, if any, back to the protocol independent call processor module. The protocol independent call processor module 201 updates call status, for example, either updates a local display 235 or a remote display 265, via a communication device 245 and 250, with the new call status. The state information can be output a variety of ways including displaying the results locally or on a remote display. In addition, the state information can be output to a database for archive purposes. In one embodiment, it is preferable that, once a completed call is detected by the call progress state, NGTN, and analysis state machines 205, the protocol independent call processor module 201 creates a call record containing event information and corresponding call states. The call record is passed to a database engine device 225 via the process controller device 220, which archives the call record in a database 230.

The archive of calls may be later accessed for a variety of analysis. For example, if a user wishes to retrieve archived call records, a remote terminal 270 could access the system via a communication device 250 and 245 and down load the call record database to a remote database engine 255 which saves the call records to a local database 260. The user can then browse the call record data base as needed. This permits the user to review the corresponding subscriber circuit(s), switched network circuit(s), and NGTN network circuit(s) usage patterns and call processing performance. If an anomaly is detected, corrective action can be taken to eliminate any potential service problems.

30

An example of information transferred in one embodiment is illustrated in **Figures 3a, 3b, 3c, 3d, 3e, 3f, 3g, and 3h**. Illustrated in **Figure 3a** is the raw call processing signal information sent by the sensor to the event analyzer module 204 and protocol independent call processor module 201. This information includes an identification of the type of message (e.g., Supervision Message), a time stamp, detailed portion of the message (in the present example, ABCD bit signaling information; and circuit ID). The protocol independent call processor module 201 determines the corresponding event and forwards it to the call processor state machine. **Figure 3b** illustrates the corresponding events for the received raw call processing signal information. In one embodiment, it is preferable that the protocol independent call processor module forwards each event to the state machine, along with the type of message and date-time stamp. The state machine determines the corresponding state. **Figure 3c** illustrates the states determined from the corresponding events. In one embodiment, the system provides some analysis regarding the call. With respect to the above illustration, the following exemplary analysis are provided by the system and stored in the call status module for subsequent output:

20 Call = terminating (since the machine ringing was detected--if the call was an originating call, a dial tone would have been detected)
 No Unusual Events (the state machine did not detect any anomalous events)
 Physical Events=Idle, Machine Ring On=2, Machine Ring Off=2, Station Off Hook (answer), Stable Call, Station On Hook, CO On Hook.

25

30 NGTN information is handled in a similar way. **Figure 3d** illustrates the Gateway and call control message information sent by the sensor or LAN controller to the NGTN event analyzer module 204 and passes it to the protocol independent call processor module. This information includes an identification

of the type of message (e.g., CA Notification Request Message), a time stamp, detailed portion of the message (in the present example, Call Agent and Gateway messages information), and circuit ID. The protocol independent call processor module determines the corresponding event and forwards it to the

5 NGTN state machine. **Figure 3e** illustrates the corresponding events for the detected call control message information. In one embodiment, the protocol independent call processor module forwards each event to the NGTN state machine, along with the type of message and date-time stamp. The state machine determines the corresponding state. **Figure 3f** illustrates the states
10 determined from the corresponding events. In one embodiment, the system provides some analysis regarding the call handling by the Gateway or call controller. With respect to the above illustration, for example, the following analysis are provided by the system and stored in the call status module for subsequent output:

15

Call = terminating (since the Call Agent initiated ringing towards the station -- if the call was originating, the Gateway would have detected an Off Hook)

20

No Unusual Events (the NGTN state machine did not detect any anomalous events)

Physical Events = CA NotificationRequests = 3, CA Acknowledgements = 2, GW Notify messages = 2, GW Acknowledgements = 3, Ring Station = 1, Station Off Hook, Stable Call, Station On Hook, Network On Hook, GW Reset for Org Call detection.

25

The Analysis information is processed as each call progress or NGTN event is detected and presented to the protocol independent call processor module. **Figure 3g** illustrates the call progress and NGTN state and status information is made available by the call status handler and timer processor to 30 the analysis state machine. The timer processor clocks the analysis state

machine after an event has been processed by either the call progress or NGTN state machines and the protocol independent call processor module. The information provided is used to analyze the performance of the station equipment (PBX), Gateway and call controller (Call Agent/Gatekeeper). Once 5 clocked, the analysis state machine determines the new state. In one embodiment, the system provides some analysis regarding the call handling by the Station equipment, Gateway and call controller. With respect to the above illustration, for example, the following analysis are provided by the system and stored in the call status module for subsequent output:

10

Call Type = Terminating (both call progress and NGTN status indicators are verified to insure they agree)

Call Handling = Valid Call, Valid End of Call

15 Analysis = Idle, Circuit Ready, Alerting Ready, Normal Alerting, Stop Ringing, Ringing Stopped, Stable Call Waiting, Disconnect Waiting, Call Clearing, Call Cleared, GW Reset for Org Call.

15

Figure 3h illustrates an analysis of a call that failed. In this example, the Gateway never sent ringing towards the station (call progress state machine indicates Idle State not Machine Ring) even though it had acknowledged doing so (AlertingReady). This caused the analysis state machine to go to an error state (GW_ErrNoRinging). The error state information would be sent to the Alarm Handler for processing. The error state information is also referred to as the call handling error information. With respect to the above illustration, for 20 example, the following analysis are provided by the system and stored in the call status module for subsequent output:

25 Call Type = Terminating

Call Handling = GW not Ringing Station, Call Canceled by CA

30 Analysis = Idle, Circuit Ready, Alerting Ready, Alert Time Out - GW not Responding, Invalid Call, GW Reset for Org Call

Figure 4 illustrates the operation of the call progress event analyzer module and protocol independent call processor module. The call progress event analyzer module 420 includes a call progress event processor module 405 and a call progress state machine 410. The protocol independent call processor module 401 includes a call status handler module 425, state tracker module 430, timer processor module 415 and call processor executive module 402. During the progress of a call, the call status handler module 425 maintains a record status of the call, including the state of the call and all raw call progress signals, for each physical event received.

When raw call progress signal information is passed from the sensor 400 to the call progress event processor 405, the call progress event processor 405 translates the raw call progress signal information into logical call handing event information (e.g., On Hook, Off Hook, Audible Ringing On, Dial Tone On, Dial Tone Off, etc.) and passes this information to the protocol independent call processor module. The protocol independent call processor module calculates the delta time (the elapsed time between physical events) and passes the elapsed timing events and logical call handing event information to the call progress state machine 410. In one embodiment, The protocol independent call processor module 401 sends events (timing events received from the timer processor module 415 and logical call handing received from the call progress event processor module 405) one at a time for processing by the call progress state machine 410. In one embodiment, the timing events are sent first, the last event sent being the logical call handing event. It should be realized that during the processing of an event additional events can be generated that require processing by the call progress state machine. For example, a time-out could occur, causing a timing event to be generated. Alternately, the processing of timing or logical call handing events by the call progress state machine can cause the initiation of additional timers which may time-out causing additional

timing events to be generated and processed by the call progress state machine 410. The call progress event processor 405 also accumulates dialed and mid-call digit information for channel associated signaling circuits and element information for common channel signaling circuits.

5

The call progress state machine 410 retrieves the previous call state information from the state tracker 430 module and determines if the new logical call handing event and current call status information (call status information includes the number or digits, type of call, any abnormalities or troubles in the 10 call, call dispositions, busy, how many rings, how many calls there has been, on hook/off hook, etc.) obtained from the call status handler module 425 and/or any expired timer information obtained from the timer processor module 415 indicates a transition to a new call state. If the call progress state machine 410 does not receive enough information to cause a transition to a new state, it will 15 stay in its current state until a new event is presented to it.

If a new state is identified, the call progress state machine transitions to the new state. Once transitioned to the new state, the call progress state machine 410 updates the state tracker module 430 with the new state 20 information and the call status handler 425 with new call status information. If new timers are to be enabled as a result of transitioning to the new state, the call progress state machine updates the protocol independent call processor module timer processor 415 with the timer information to enable specified timers. In one embodiment, two types of timers are used, dependent timer and 25 independent timer. Dependent timers are dependent upon the state and disabled when the state is exited. Independent timers are independent of state and remain enabled through state transitions.

In one embodiment, the call processor executive module receives call 30 information that can include the new call state information and call status

information. This information is translated and transmitted to an external display system 435 for display of the new call state and status. If the call progress state machine 410 determines that the new state indicates that the call has been terminated or abandoned, the state machine inform the call processor executive 402 and call status handler 425 that the current call has terminated.

5 The call status handler 425 forwards call status information to the call processor executive 402 will then creates a call record for output to the call record database 440. The structure of the system permits determination of the final status of the call, e.g., abandoned, dial tone delay, improper digits, etc. Table 1 illustrates the

10 events that occurred during a call that was subsequently abandoned.

15 *1054015*

	Message	Physical Event	Call Progress	Event State Machine
	Supervision Msg 1			
		0000.000 ,0101,0101, <CR> = On Hook		Idle
	Supervision Msg 2			
		0320.000 ,0000,0101, <CR> = Machine Ring On		RingOn
	Supervision Msg 3			
		0322.000 ,0101,0101, <CR> = Machine Ring Off		RingOff
20	Supervision Msg 4			
		0326.000 ,0000,0101, <CR> = Machine Ring		RingOn
	Supervision Msg 5			
		0328.000 ,0101,0101, <CR> = Machine Ring Off		RingOff
	Supervision Msg 6			
25		1573.235 ,0101,0101, <CR> = On Hook		CO On Hook

In this example, as the station never went off-hook, the call was not

answered. Since the ringing stopped after only two rings were detected, the state machine assumes the caller hung up. Therefore, the state machine sets call status bits indicative of the following:

5 Call=terminating
 Unusual Events=1 abandoned call
 Physical Events=Idle, Machine Ring On=2, Machine Ring Off=2,
 CO On Hook.

10 The call progress event processor and timer processor can filter out
 events from reaching the call progress state machine. The state machine has the
 capability to initiate filter functions. In one embodiment, these filter functions
 are maintained through the states unless disabled or changed by the state
 machine. For example, the state machine can issue a signal to filter out a certain
 event unless it is on for a predetermined amount of time. Thus, when the raw
15 signal is detected by the sensor, the corresponding logical call handling event is
 not passed to the state machine unless the signal is on for the predetermined
 amount of time as timed by the timer processor. Similarly, the signal can be
 filtered if not of a short enough duration. The filter functions can filter out a
 wide variety of events based upon a variety of criteria. For example, certain
20 types of events (e.g., DTMF signals) can be filtered out altogether. The type of
 filter functions described above are exemplary; it is readily apparent to one
 skilled in the art that other filter functions can be implemented. In addition, the
 filter function may function by filtering out the raw call progress signaling
 information at the call progress event processor 405. Alternately, the filter
25 function can operate by disabling the sensing of particular raw progress signals
 at the sensor 400.

30 Figure 4a illustrates the operation of the NGTN event analyzer module
 and protocol independent call processor module. The NGTN event analyzer
 module 480 includes a NGTN event processor module 455 and a NGTN state
 Ellipsys

machine 450. The protocol independent call processor module 401 includes a call status handler module 425, state tracker module 430, timer processor module 415 and call processor executive module 402. During the progress of a call, the call status handler module 425 maintains a record status of the call, 5 including the state of the call control and all NGTN message information, for each call control message received.

When the NGTN message information is passed from the sensor 445 to the NGTN message processor 455, the NGTN message processor 455 translates 10 the message information into logical call handling event information (e.g., Wait for Off Hook, Command Accepted, Ring Phone, Off Hook, Dial Tone On, etc.) and passes this information to the protocol independent call processor module. The protocol independent call processor module calculates delta time (the elapsed time between message events) elapsed timing events and logical call 15 handling event information to the NGTN state machine 450. In one embodiment, the NGTN message processor 455 sends events (timing events received from the timer processor module 415 and NGTN logical call handling events generated by the NGTN event processor module 455) one at a time for processing by the NGTN state machine 450. In one embodiment, the timing 20 events are sent first, the last event sent being the logical call handling event. It should be realized that during the processing of an event additional events can be generated that require processing by the NGTN state machine. For example, a time-out could occur, causing a timing event to be generated. Alternately, the processing of timing or logical call handling events by the NGTN state machine 25 can cause the initiation of additional timers which may time-out causing additional timing events to be generated and processed by the NGTN state machine 450.

The NGTN state machine 450 retrieves the previous call state information 30 from the state tracker 430 module and determines if the new logical call handing

event and current call status information (call status information includes the digit map match, type of call, any abnormalities or troubles in the call, call dispositions, busy, how many retries, how many calls there has been, on hook/off hook, etc.) obtained from the call status handler module 425 and/or

5 any expired timer information obtained from the timer processor module 415 indicates a transition to a new NGTN call state. If the NGTN state machine 450 does not receive enough information to cause a transition to a new state, it will stay in its current state until a new event is presented to it.

10 If a new state is identified, the NGTN state machine clocks itself to move to the new state. Once transitioned to the new state, the NGTN state machine 450 updates the state tracker module 430 with the new state information and the call status handler 425 with new call status information. If new timers are to be enabled as a result of transitioning to the new state, the NGTN state machine 15 updates the protocol independent call processor module timer processor 415 with the timer information to enable specified timers. In one embodiment, two types of timers are used, dependent timer and independent timer. The dependent timers are dependent upon the state and disabled when the state is exited. The independent timers are independent of state and remain enabled 20 through state transitions.

In one embodiment, the call processor executive module 402 receives call information, which can include the new call state information and call status information. This information is translated and transmitted to an external display system 435 for display of the new call handling state and status. If the 25 NGTN state machine 450 determines that the new state indicates that the call has been terminated or abandoned, the state machine informs the call processor executive 402 and the call status handler 425 that the current call has terminated. The call status handler 425 forwards call status information to the call processor executive 402 and the call processor executive 402 will then create a call record for output to the call record database 30

The structure of the system permits determination of the final status of the call as viewed by the call controller and Gateway, e.g., valid call, GW error,

5 CA error, etc. Table 1A illustrates the events that occurred during a call that was subsequently abandoned.

10580

<u>Msg. Type</u>	<u>Stamp</u>	<u>Raw Message</u>	<u>Call Control</u>	<u>State</u>
			<u>Event</u>	
CA_Notification- Request	0000.00 0	CA_RQNT,1201, R: hd	Wait for Off Hook	IdleWaiting
GW_Ack	0000.12 3	GW_ACK,1201,20 0	Command Accepted	IdleReady
CA_Notification- Request	0319.85 6	CA_RQNT,1202, S: rg	Ring Phone	AlertingStart
GW_Ack	0319.94 7	GW_ACK,1202,20 0	Command Accepted	Alerting
CA_Notification- Request	0332.83 8	CA_RQNT,1203, R: hu S:hd	CO On Hook	NtwkDisco
GW_Ack	0332.92 7	GW_ACK,1203,20 0	Command Accepted	IdleReady

In this example, as the Gateway never detected a station off-hook, the call was not answered. Since a CO On Hook message was received by the Gateway, 10 the state machine assumes the caller hung up. Therefore, the NGTB state machine sets call status bits indicative of the following:

Call=terminating

Unusual Events=1 abandoned call

Physical Events=Idle, Ringing, CO On Hook.

5 Referring to **Figure 4** and **Figure 4A**, both the call progress state machine
410 of **Figure 4** and the NGTN state machine 450 of **Figure 4A** share the same
protocol independent call processor module , even though each state machine is
triggered by different events from different sensors, i.e. sensor 400 and sensor
445. Each time one of the state machines is triggered and has completed, if any,
10 a transitions to a new state, the timer processor 415 clocks the analysis state
machine. The current state and status information from the call status handler is
made available to the analysis state machine, which uses this information to
transition to a new state, or remain in the current one. New analysis state and
status information from the analysis state machine is returned to the status
15 handler. In this way, the analysis state machine compares and evaluates the
station's (PBX) reaction to Gateway signals, the Gateway's interpretation of the
station's signals, the Gateways detection and notification of events to the call
controller and the call controller's call progress handling of the call. If a call
handling anomaly is detected via reaching an error state, the analysis state
20 machine passes an error indication or alarm status to the alarm handler 470. The
alarm handler 470 is a user-defined set of algorithms designed to set alarm
reporting priorities. Alarm messages can be generated and passed to an
external network management system if required. In one embodiment, alarm
messages are generated when an alarm count exceeds a defined threshold. In
25 any event, the alarm information is contained in the analysis status information
and passed to the call status handler 425.

Though this is the preferred method for analyzing related call events,
each state machine could run independent and correlation be performed by a
30 state machine interface module. It is also possible that the state machines could

reside in different computers, linked to each other via a LAN. Again, an interface and synchronization module would be required to coordinate the analysis process. Whichever implementation is used, the process of evaluating call performance remains the same.

5

Figure 5 is an exemplary embodiment illustrating a section of a typical call progress state machine. As is readily apparent to one skilled in the art, this is exemplary and can be extended to a variety of states for a variety of telephony configurations. In this example, the call progress state machine is in the StIdle State (i.e., circuit idle state) 415. A new physical event-bStsOffHook 401 (off hook) is detected by the sensors and passed to the call progress state machine. This causes a transition from the StIdle State 415 to a StSz State 405 (Circuit Seized). The call progress state machine then performs the following functions:

- 15 1. Sends a signal to the timer processor module to initiate a timer bTmrsSdDTdly4k (Timer for the receipt of Dial Tone);
- 20 2. Sets a status variable in the call status handler, bStssOrg, indicating the call is an originating call;
- 25 3. Sets a call disposition variable in the call status handler, bCdOrg, indicating the call disposition at this time is originating call;
- 30 4. Sets a notable state variable in the call status handler, bNsOfh, indicating the state of the call is Off Hook;
5. Sets an event filter variable in the call progress event processor, bEvpCPTall, indicating that all Call Progress Tones (CPT) detection should be active;
- 30 6. Sets a second event filter variable in the call progress event processor,

bEvpDTMFall, indicating that all Dual Tone Multi-Frequency (DTMF) tone detection should be active

7. Passes an identification (ID) of the new state to the protocol independent call processor module state tracker module indicating that the new state of the call (Progress Call State) is stSz, making the previous call state equal to StIdle.
- 5

The transition to a new state can cause the initiation of timers in the timer processor. Continuing with the present example, if the next physical event is bStsCPTd 450 (Dial Tone on), the call progress state machine calls the timer Processor, bTmrsSdDTdly4k, to initiate a dial tone timer to track the time for detection of dial tones and provide time out information if a dial tone is not initiated within a specified period of time.

- 10
- 15

At completion of determining the new state based upon a singular event information received, The call progress state machine sleeps until the next event is presented to it by the call progress event processor.

Continuing reference to **Figure 5**, the function of the timer processor will be discussed. In this example, the time delta is calculated between the receipt of the bStsOffHook (event 460 **Figure 5**) and the time of the current event bStsCPTd (event 465 **Figure 5**). When the off-hook event 460 occurs, the StSz state 405 is entered. At this state, the delay timer, bTmrsSdDTdly4k, is initiated. When a new event is identified (e.g., dial tone, bStsCPTd 465) the call progress event processor notifies the timer processor of the time delta. The timer processor compares the time delta to the initiated timers to determine if any timers have expired. In the present example, the dial tone delay timer, bTmrsSdDTdly4k, expired. The timer processor therefore issues a message to the call progress event processor which clocks the call progress state machine, passing the expired timer variable, bTmdSdDTdly4k. The call progress state

20

25

30

machine transitions 430 to a new state, StDTdly 435. Control is then passed back to the call progress event processor which then asks the timer processor if any other expired timers have occurred. If other expired timers have not been processed by the call progress state machine, in one embodiment, these are

5 forwarded one at a time, the shortest timer first, to the call progress state machine for processing. Once all expired timers have been processed, the call progress event processor forwards the physical event bStsCPTd 465 to the call progress state machine (transition 450).

10 If, upon entering state StSz 405 no timers have expired, the call progress event processor forwards the physical event bStsCPTd 465 to the call progress state machine (transistions 440). Another event causing a transition from at StSz state 405 is bStsDTMFon (non voltage event DTMF on) 420. This event causes a transition to stFastDial (fast dial state) 425. In this state, the bNsFastDialNDT 15 (notable state, fast dial, no dial tone) variable and the bCsuFastDial (call status unusual, fast dial) are set.

20 **Figure 5** provides a simplified example of one portion of the call progress state machine. **Figures 6a-6k** provide more detailed state diagrams of the operation of the call progress state machine for a loop start line. As is readily apparent, **Figures 6a-6k** provide the logic for one type of circuit; it is obvious to one skilled in the art, that the logic could be modified to provide accurate protocol analysis for different types of circuits.

25 **Figure 5A** illustrates an exemplary section of a typical NGTN state machine. As is readily apparent to one skilled in the art, this is exemplary and can be extended to a variety of states for a variety of NGTN telephony configurations. In this example, the NGTN state machine is in the stIPIdle State (i.e., GW circuit idle state) 470. A new NGTN message event--bSbbvRQNT & 30 bVrOffHk & bVsDTresp 472 (set GW to detect Off Hook and if Off Hook is

detected place dial tone on the station circuit) is detected by the sensors and passed to the NGTN state machine. This causes a transition from the stIPIdle State 470 to a stVIdleWaiting State 474 (wait for GW to acknowledge message). The NGTN state machine then performs the following functions:

5

1. Sends a signal to the timer processor module to initiate a timer bTmrsSdVAck200 (Timer for the receipt of GW Ack message);

10 2. Sets a status variable in the call status handler, bStsvGWidleWait, indicating the call agent is waiting for a acknowledge message;

15 3. Sets a call disposition variable in the call status handler, bCdvLSCircuit, indicating GW circuit is a Loop Start line;

4. Sets a notable state variable in the call status handler, bNsvIdleWaiting, indicating the state of the call is waiting for a GW acknowledge message;

15 5. Sets a notable state variable in the call status handler, bNSvLSCircuit, indicating the GW circuit is a Loop Start line;

20 6. Passes an identification (ID) of the new state to the protocol independent call processor module state tracker module indicating that the new state of the call (NGTN State) is stVIdleWaiting 474, making the previous NGTN state equal to stIPIdle 470.

25

The NGTN state machine calls the timer processor, bTmrsSdVAck200, to initiate a GW Ack timer to track the time for detection of GW Ack message and provide time out information if a GW Ack message was not sent within a specified period of time. The transition to a new state can cause the initiation of 30 timers in the timer processor. Continuing with the present example, if the next

message event is bSbbvAckOK (GW Ack message detected), the NGTN state machine calls the timer Processor, bTmrsSdVAck200, to initiate a GW Ack timer to track the time for detection of a GW Ack message and provide time out information if a dial tone is not initiated within a specified period of time.

5

At completion of determining the new state based upon a singular event information received, The NGTN state machine sleeps until the next event is presented to it by the call progress event processor.

10 Continuing reference to **Figure 5A**, the function of the timer processor will be discussed. In this example, the time delta is calculated between the receipt of the bSbbvRQNT (event 472 **Figure 5A**) and the time of the current event bSbbvAckOK (event 476 **Figure 5A**). When the Notification Request event 472 occurs, the stVIdleWaiting state 474 is entered. At this state, the GW Ack 15 timer, bTmrsSdVAck200, is initiated. When a new event is identified (e.g., GW Ack, bSbbvAckOK 476) the NGTN event processor notifies the timer processor of the time of the new event. The delta time is calculated between the receipt of bSbbvRQNT and receipt of the bSbbvAckOK. The timer processor compares the time delta to the initiated timers to determine if any timers have expired. In the 20 present example, the GW Ack delay timer, bTmrsSdVAck200, expired 478. The timer processor therefore issues a message to the NGTN state machine which clocks the NGTN state machine, passing the expired timer variable, bTmdSdVAck200. The NGTN state machine transitions 478 to a new state, stIPCAnotResp1 480. Control is then passed back to the timer processor which 25 determines if any other expired timers have occurred. If other expired timers have not been processed by the timer processor, these are forwarded one at a time, in one embodiment the shortest timer first, to the NGTN state machine for processing.

30 **Figure 5A** provides a simplified example of one section of the NGTN

state machine. **Figures 6l-6q** provide more detailed state diagrams of the operation of the NGTN state machine for a loop start line. As is readily apparent, **Figures 6l-6q** provide the logic for one type of call handling protocol (SGCP); it is obvious to one skilled in the art, that the logic could be modified to 5 provide accurate protocol analysis for different types of NGTN call handling protocols.

Figure 5B illustrates an exemplary section of a typical Analysis state machine / multi protocol analyzer. This state machine does not receive events 10 from any sensor, instead it uses the state and status information from the status handler as indicators to transition between analysis states. The analysis state machine is triggered by the timer processor each time one of the other state machines have processed a new event and has settled into the sleep state. In this example, the analysis state machine is in the stAMIdle state 484. The first event 15 to be detected in an NGTN Notification Request message, bSbbvRQNTrHd, 485. This causes the state machine to transition to the GW circuit ready state, stAMCircuitReady 486. This is the default state for all gateways.

The next event to be detected is another NotificationRequest message 20 from the call controller to the Gateway, bStsIPAlrtStart 487. The call progress state machine is still in the Idle state. This information, bStsCPIIdle, is made available to the analysis state machine and is used to qualify the bStsIPAlrtStart indication, bStsCPIIdle & bStsIPAlrtStart 487. This means that both conditions must be true before the transition to the next state can occur. If instead of a call 25 controller NotificationRequest message, a station Off Hook had occurred, then the transition bStsCPIIdle & bStsIPStsOffHk 494 would have been true and the state machine would have transitioned to the originating call start state, stAMOrgCallStart 496.

Continuing reference to **Figure 5B**, since the call controller has initiated a call, the analysis state machine sets bCdAMTermCall variable, indicating that this is a terminating call. The next event to be detected is the GW Ack message detection, bStsIPAlertg 489. This indicates that the Gateway can perform the alerting task, place ringing current on the station's line, and will do so at the next ringing cycle. Again, the station must be idle before ringing can occur, so the call progress state is used to qualify the transition, bStsCPIidle & bStsIPAlertg 489. This causes the state machine to transition to the next state, stIPGWalerting 490.

10

The next event to be detected is the station ringing from the call progress state machine, bStsStaRingOn 491. To validate that the GW was told to ring the station, the NGTN status is used to qualify the transition, bStsStaRingOn & bStsIPAlertg 491. This causes a transition to the call alerting normal state, stAMAlertNorm 492. As long as the station is ringing, bStsStaRingOff & bStsIPAlertg # bStsStaRingOn & bStsIPAlertg 493, the analysis state machine will stay in the stAMAlertNorm state 492 via transition 493.

If the station answers the call, bStsStaOffHook 497, and the GW has not been told to abandon the call, bStsIPAlertg 497, then the state machine transitions to the call answered state, stAMCallAns 498. If however the station does not answer the call and the caller hangs up, bStsIPOnHook 495, then the state machine transitions to the stAMCallAbdn state 499. Notice that the station could be either in the ring on or ring off state when this occurs, (bStsStaRingOff # bStsStaRingOn) & bStsIPOnHook 495.

During this process, notable states were set to indicate the stages of analysis reached, e.g., bNSvIPGWready, bNsvIPGWOK, bNsvAlerting, bNsGWRinging, bNSCPCallAns. This information stored, in time order with

the call progress and NGTN status information. **Figures 6r-6z1** provide more detailed state diagrams of the analysis state machines.

Though a state machine can be developed to define the call progress or

- 5 NGTN protocol used by switch network elements, it does not provide the ability to save status information in memory nor is it capable of tracking and processing timers. Typically these functions would be performed by external hardware that is not available to normal processors or would be very cumbersome and expensive to add to normal processor mother boards.
- 10 Hardware timers would also be difficult to modify as additional call progress protocol procedures are introduced by network switch vendors. Therefore, it is preferable that the event analyzer modules, protocol independent call processor module and analysis state machine performs these functions using C++ Objects which can be easily updated and maintained. Thus each module would be an
- 15 object instantiated for each circuit monitored. Alternately, the system can be embodied as different processes executed by one or more processors.

Though an embodiment of the call progress and NGTN state machines and its associated protocol independent call processor module and analysis state machine is discussed in detail above, other methods such as data flow diagramming tools, expert system tools such as CLIPS tools, LISP programming language, Siefuzzy fuzzy logic tools, etc.

Figure 7 shows how a call is normally handled in the PSTN. The

- 25 subscriber initiates signaling events by picking up a phone waiting for dial tone and dialing digits. The PBX translates these events into T1 signaling events (ABCD signaling Bits) and digit events (Multi-Freq. Digits). The PSTN Central Office (CO) receives these events and responds to them with the same type of signaling events (Wink and Off Hook). When sufficient information has been
- 30 received the CO translate the information into Signaling System 7 (SS7) events.

SS7 messages are used to communicate call-handling information to other COs in the PSTN. In this case, SS7 message initiates a call to the CO where the subscriber, identified by the dialed digits, resides. In order for a call to be placed successfully, all the correct procedures must be performed and the

5 information must be accurate. If a procedure is not followed correctly or if the information is corrupt, the network elements may not be able to perform the required actions or generate the appropriate information.

Figure 8 shows what can happen if the CO is not provisioned correctly.

10 In this example, the PBX is provisioned for Wink Start, but the circuit in the CO is provisioned for Immediate Start. The PBX and CO are at a stalemate. Neither one can complete the call. As a result, the subscriber will eventually give up and most likely, try the call again. This scenario is common in the PSTN today. It is usually identified when the circuits are installed and corrected before the user
15 experiences trouble. However, in the Next Generation Telephony Network (NGTN), the new service provider may not know how the subscriber's PBX is configured. The original service provider will not offer help or give the new service provider access to circuit or trouble history information. The subscriber does not always know how their circuits are configured, the "Telephone
20 Company took care of that." As a result, the new service provider must either guess or, through trial and error, determine how the subscriber's equipment works.

The invention can be used to capture signaling and call progress tones

25 (CPT) on the subscriber's PBX before the circuits are converted to the NGTN.

Figure 9 shows a configuration to benchmark the subscriber's service. The invention captures all signaling and CPT events and converts them to calls. It analyzes these calls for anomalies and saves the calls and analysis to a relational database. Reports can be generated from this data characterizing the subscriber's
30 services.

Figure 10 shows an example of a configuration report. Referring to Figure 10, a benchmark of the subscriber's usage by circuit allows the new service provider to determine how the subscriber uses their service. The new service provider can then engineer the service accordingly or suggest to the subscriber ways to improve their service. It also identifies what type of usage to provide (Voice, Data, FAX, IVR, etc.). This information is invaluable since most NGTN service providers will recommend voice compression to provide additional bandwidth for data services (Frame Relay, ATM, ISDN, etc.). Modem traffic can not be compressed and, depending on the type of NGTN architecture, "modem spoofing" might be required.

Configuration data can also be extracted from the database, allowing the new service provider to provision the NGTN equipment. One of the most difficult tasks a service provider must perform is determining when the user has finished dialing. PSTN switches use extensive translation tables to accomplish this feat, analyzing each digit or digit group as it is dialed. Even PBX's must have dialing translations to determine when to outpulse digits. NGTN equipment uses Digit Maps. These maps are an attempt to provide a means of determining when a subscriber has finished dialing. For example,

A gateway Digit Map: (0T|00T|[1-7]xxx|8xxxxxxxx|#xxxxxxxx|*xx|91xxxxxxxxx|9011x.T)

This map will consider dialing complete when,

- 0 and timer T expires, or
- 00 and timer T has expired, or
- Any 3 digit sequence where the first digit is between 1 and 7, or
- a digit string starting with 8 followed by 7 digits, or

5

- e. a digit string starting with # followed by 7 digits, or
- f. a digit string starting with * followed by 2 digits, or
- g. a digit string starting with 91 followed by 10 digits, or
- h. a digit string starting with 9011 and any digits until timer T expires

Any digit string not matching one of these criteria will be ignored. But what would happen if the subscriber dials 9 1010 220 1 415 555 1212?

10 Nothing will happen. Worse yet, what happens if the subscriber dials 9 911? Again, nothing happens. These patterns don't match any of the allowed digit maps.

15 Normally, the only way to obtain this information is to review phone bills. Unfortunately, phone bills do not capture incoming, Intra-PBX, and IVR/Voice Mail digit information and do not identify call treatment such as Toll Diversion and Answer Supervision requirements. The invention captures all digit information and can build a digit map representative of the subscriber. Figure 11 shows the Digit Map report supported by the invention.

20 In addition to configuration and Digit Map information, the invention also provides call handling performance data. Figure 12 shows a sample Call Handling report. This data can be used by the new service provider to identify faulty circuits, network load requirements, Potential PBX problems, etc.

25 This pre-service benchmark can be used to demonstrate to the subscriber service and network configuration improvements as well as eliminating subscriber concerns that the service is worse than it was before.

After the pre-service benchmark is taken and used to configure the NGTN configuration, and the subscriber is converted over to the new NGTN

equipment, a second benchmark can be taken. **Figure 13** shows how this can be done.

Figure 14 illustrates an exemplary embodiment of a computer-readable medium 1400 containing various sets of instructions, code sequences, configuration information, and other data used by a computer or other processing device. The embodiment illustrated in **Figure 14** is suitable for use with call analyzer method described above. The various information stored on medium 1400 is used to perform various data processing operations. Computer-readable medium 1400 is also referred to as a processor-readable medium. Computer-readable medium 1400 can be any type of magnetic, optical, or electrical storage medium including a diskette, magnetic tape, CD-ROM, memory device, or other storage medium.

Computer-readable medium 1400 includes interface code 1402 that controls the flow of information between various devices or components in the computer system. Interface code 1402 may control the transfer of information within a device (e.g., between the processor and a memory device), or between an input/output port and a storage device. Additionally, interface code 1402 may control the transfer of information from one device to another. The computer-readable medium 1400 may also include codes implementing the different state machines described above, such as, for example, the call progress state machine 1405, the call progress event processor 1410, the NGTN state machine 1415, the NGTN message processor 1420, the call status handler 1425, the timer processor 1430, the call processor executive 1435, the state tracker 1440, the analysis state machine 1445, and the alarm handler 1450.

From the above description and drawings, it will be understood by those of ordinary skill in the art that the particular embodiments shown and described are for purposes of illustration only and are not intended to limit the scope of

the invention. Those of ordinary skill in the art will recognize that the invention may be embodied in other specific forms without departing from its spirit or essential characteristics. References to details of particular embodiments are not intended to limit the scope of the claims.

Ellipsys