Solutions to Ireland, Rosen "A Classical Introduction to Modern Number Theory"

Richard Ganaye

October 21, 2019

Chapter 7

Ex. 7.1 Use the method of Theorem 1 to show that a finite subgroup of the multiplicative group of a field is cyclic.

A solution is already given in Ex. 4.15

Ex. 7.2 Find the finite subgroups of \mathbb{R}^* and \mathbb{C}^* and show directly that they are cyclic.

Proof. If G is a finite subgroup of \mathbb{R} or \mathbb{C} , and n = |G|, then from Lagrange's Theorem, $x^n = 1$ for all $x \in G$.

- If G is a finite subgroup of \mathbb{R}^* , then the solutions of $x^n = 1$ are in $\{-1, 1\}$, so $\{1\} \subset G \subset \{-1, 1\} : G = \{1\}$ or $G = \{-1, 1\}$, both cyclic.
- If G is a finite subgroup of \mathbb{C}^* , then $G \subset \mathbb{U}_n = \{e^{2ik\pi/n} \mid 0 \le k \le n-1\}$. As $|G| = |\mathbb{U}_n| = n$, then $G = \mathbb{U}_n \simeq \mathbb{Z}/n\mathbb{Z}$ is cyclic.

Ex. 7.3 Let F a field with q elements and suppose that $q \equiv 1 \pmod{n}$. Show that for $\alpha \in \mathbb{F}^*$, the equation $x^n = \alpha$ has either no solutions or n solutions.

Proof. This is a particular case of Prop. 7.1.2., where $d = n \wedge (q-1) = n$: the equation $x^n = \alpha$ has solutions iff $\alpha^{(q-1)/n} = 1$. In this case, there are exactly d = n solutions.

We give here a direct proof.

Let g a generator of F^* . Write $x = g^y, \alpha = g^a$. Then

$$x^n = \alpha \iff g^{ny} = g^a \iff q - 1 \mid ny - a.$$

Suppose that there exists $x \in F$ such that $x^n = \alpha$. Then there exists $y \in \mathbb{Z}$ such that $q-1 \mid ny-a$. Since $n \mid q-1$, then $n \mid a$.

$$q-1 \mid ny-a \iff \frac{q-1}{n} \mid y-\frac{a}{n} \iff y=\frac{a}{n}+k\frac{q-1}{n}, k \in \mathbb{Z}.$$

As $\frac{a}{n} + (k+n)\frac{q-1}{n} = \frac{a}{n} + k\frac{q-1}{n}, k \in \mathbb{Z}$, the values $k = 0, 1, \dots, n-1$ are sufficient:

$$x^{n} = \alpha \iff y = \frac{a}{n} + k \frac{q-1}{n}, k \in \{0, 1, \dots, n-1\}.$$

Moreover, these solutions are all distinct : if $k, l \in \{0, 1, \dots, n-1\}$,

$$g^{\frac{a}{n} + k \frac{q-1}{n}} = g^{\frac{a}{n} + l \frac{q-1}{n}} \Rightarrow g^{(k-l)\frac{q-1}{n}} = 1$$

$$\Rightarrow q - 1 \mid (k-l)\frac{q-1}{n}$$

$$\Rightarrow n \mid k - l$$

$$\Rightarrow k \equiv l \mid [n] \Rightarrow k = l.$$

Conclusion: if F is a field with q elements and $n \mid q-1$, the equation $x^n = \alpha$ has either no solutions or n solutions in F.

Remark:

$$\exists x \in F^*, x^n = \alpha \iff n \mid a \iff \alpha^{(q-1)/n} = 1.$$

Indeed, if $x^n = \alpha$ has a solution, we have proved that $n \mid a$, thus $\alpha^{(q-1)/n} = (g^{a/n})^{q-1} = 1$.

Reciprocally, if $\alpha^{(q-1)/n} = 1$, $g^{a.(q-1)/n} = 1$, thus $q-1 \mid a(q-1)/n$, so $n \mid a : \alpha = x^n$, with $x = q^{n/a}$.

Ex. 7.4 (continuation) Show that the set of $\alpha \in F^*$ such that $x^n = \alpha$ is solvable is a subgroup with (q-1)/n elements.

Proof. Here $n \mid q-1$.

Let $\varphi = F^* \to F^*$ the application defined by $\varphi(x) = x^n$. φ is a morphism of groups, and $\ker \varphi$ is the set of solutions of $x^n = 1$. As $n \mid q - 1$, $x^n = 1$ has exactly n solutions (Prop 7.1.1, Corollary2, or Ex 7.3 with $\alpha = 1$). So $|\ker \varphi| = n$.

Thus $\operatorname{Im}\varphi \simeq F^*/\ker \varphi$ is a subgroup with cardinality $|F^*|/|\ker \varphi| = (q-1)/n$, and $\operatorname{Im}\varphi$ is the set of α such that $x^n = \alpha$ is solvable.

Conclusion: the set of $\alpha \in F^*$ such that $x^n = \alpha$ is solvable is a subgroup with (q-1)/n elements.

Ex. 7.5 (continuation) Let K be a field containing F such that [K:F]=n. For all $\alpha \in F^*$, show that the equation $x^n=\alpha$ has n solutions in K. [Hint: Show that q^n-1 is divisible by n(q-1) and use the fact that $\alpha^{q-1}=1$.]

Proof. As $q \equiv 1$ [n], $\frac{q^n - 1}{q - 1} = 1 + q + \dots + q^{n-1} \equiv 0$ [n], then $n \mid \frac{q^n - 1}{q - 1}$:

$$q^n - 1 = kn(q - 1), k \in \mathbb{N}.$$

Since $\alpha \in F^*$, $\alpha^{q-1} = 1$, so

$$\alpha^{(q^n-1)/n} = (\alpha^{q-1})^k = 1.$$

As $|K| = q^n$, Prop. 7.1.2 (or the final remark in Ex.7.3) show that there exists $x \in K^*$ such that $x^n = \alpha$. Then, from Ex.7.3, we know that there exist n solutions in K.

Conclusion: if [K:F] = n, the equation $x^n = \alpha$ has n solutions in K.

Ex. 7.6 Let $K \supset F$ be finite fields with [K : F] = 3. Show that if $\alpha \in F$ is not a square in F, it is not a square in K.

Proof. Let q = |F|. Then $|K| = q^3$.

If the characteristic of F is 2, $q = 2^k$, and for all $x \in F$, $x = x^q = \left(x^{2^{k-1}}\right)^2$. So all elements in F or K are squares. We can now suppose that the characteristic of F is not 2, and consequently $1 \neq -1$ in F.

As α is not a square in F, $\alpha^{(q-1)/2} \neq 1$ (Prop. 7.1.2). From $0 = \alpha^{q-1} - 1 = (\alpha^{(q-1)/2} - 1)(\alpha^{(q-1)/2} + 1)$, we deduce $\alpha^{(q-1)/2} = -1$. Then

$$\alpha^{(q^3-1)/2} = (\alpha^{(q-1)/2})^{q^2+q+1} = (-1)^{q^2+q+1} = -1,$$

since $q^2 + q + 1$ is always odd.

 $\alpha^{(q^3-1)/2} \neq 1$: this implies (Prop. 7.1.2) that α is not a square in K.

Ex. 7.7 Generalize Exercise 6 by showing that if α is not a square in F, it is not a square in any extension of odd degree and is a square in every extension of even degree.

Proof. Write q = [K : F], and q = Card F.

As α is not a square in F, the characteristic of F is not 2 (see Ex.7.6), and $\alpha^{(q-1)/2} \neq 1$. Since $\alpha^{q-1} = 1$, $\alpha^{(q-1)/2} = -1$.

$$\alpha^{(q^n-1)/2} = (\alpha^{(q-1)/2})^{1+q+\dots+q^{n-1}} = (-1)^{1+q+\dots+q^{n-1}}.$$

- If n is odd, $1+q+\cdots+q^{n-1}\equiv 1\pmod 2$, thus $\alpha^{(q^n-1)/2}=-1\neq 1$, and consequently α is not a square in K.
- If n is even, as q is odd $(\operatorname{char}(F) \neq 2)$, $1 + q + \cdots + q^{n-1} \equiv 0 \pmod{2}$, thus $\alpha^{(q^n-1)/2} = 1$, so α is a square in K.

Ex. 7.8 In a field with 2^n elements, what is the subgroup of squares.

Let F a field with $q = 2^n$ elements.

Proof 1

Proof. $d = (q-1) \wedge 2 = (2^n-1) \wedge 2 = 1$, thus each $\alpha \in F^*$ verifies $\alpha^{(q-1)/d} = \alpha^{q-1} = 1$. Theorem 7.1.2 show that α is a square in F, of exactly one root.

Proof 2

Proof. For all $x \in F$, $x = x^q = \left(x^{2^{n-1}}\right)^2$. So all elements in F or K are squares. \square

Ex. 7.9 If $K \supset F$ are finite fields, $|F| = q, \alpha \in F, q \equiv 1 \pmod{n}$, and $x^n = \alpha$ is not solvable in F, show that $x^n = \alpha$ is not solvable in K if (n, [K : F]) = 1.

Proof. Let k = [K : F]. From hypothesis, $k \wedge n = 1$, so there exist integers u, v such that uk + vn = 1.

As $n \mid q-1, n \land (q-1) = n$, so the hypothesis " $x^n = \alpha$ is not solvable in F" implies that $\alpha^{(q-1)/n} \neq 1$ (Prop. 7.1.2).

Write $\omega = \alpha^{(q-1)/n}$, so $\omega \neq 1$ and $\omega^n = 1$.

As n | q - 1, $n | q^k - 1$ and

$$\alpha^{(q^k-1)/n} = (\alpha^{(q-1)/n})^{1+q+q^2+\dots+q^{k-1}} = \omega^{1+q+q^2+\dots+q^{k-1}}.$$

Moreover $1 + q + \dots + q^{k-1} \equiv k \pmod{n}$, and $\omega^n = 1$, so $\alpha^{(q^k - 1)/n} = \omega^k$.

If $\omega^k = 1$, then $\omega = \omega^{uk+vn} = (\omega^k)^u(\omega^n)^v = 1$, which is in contradiction with $\omega = \alpha^{(q-1)/n} \neq 1$.

So $\alpha^{(q^k-1)/n} = \omega^k \neq 1$, and consequently the equation $x^n = \alpha$ has no solution in K.

Ex. 7.10 If $K \supset F$ be finite fields and [K : F] = 2. For $\beta \in K$, show that $\beta^{1+q} \in F$ and moreover that every element in F is of the form β^{1+q} for some $\beta \in K$.

Proof. If $\beta = 0$, $\beta^{1+q} = 0 \in F$, and if $\beta \in K^*$, $\beta^{q^2-1} = 1$, so $(\beta^{1+q})^{q-1} = 1$, thus $\beta^{1+q} \in F$ (Prop. 7.1.1, Corollary 1).

Let g a generator of $K^*: K^* = \{1, g, g^2, \dots, g^{q^2-2}\}.$

For every in integer $k \in \mathbb{Z}$,

$$g^k \in F^* \iff (g^k)^{q-1} = 1 \iff g^{k(q-1)} = 1 \iff q^2 - 1 \mid k(q-1) \iff q+1 \mid k.$$

Thus $F^* = \{1, g^{q+1}, g^{2(q+1)}, \dots, g^{(q-2)(q+1)}\}$. I $\alpha \in F^*$, there exists $i, 0 \le i \le q-1$ such that $\alpha = g^{i(q+1)}$. If we write $\beta = g^i$, then $\alpha = \beta^{1+q}$ (and for $\alpha = 0$, we take $\beta = 0$).

Conclusion: if K is a quadratic extension of F (F, K finite fields), every element in F is of the form β^{1+q} for some $\beta \in K$.

Ex. 7.11 With the situation being that of Exercise 10 suppose that $\alpha \in F$ has order q-1. Show that there is a $\beta \in K$ with order q^2-1 such that $\beta^{1+q}=\alpha$.

Write |a| the order of an element a in a group G. We recall the following lemma:

Lemma If |a| = d, then for all $i \in \mathbb{Z}$, $|a^i| = \frac{d}{d \wedge i}$.

Proof. Indeed, for all $k \in \mathbb{Z}$,

$$(a^i)^k = e \iff a^{ik} = e \iff d \mid ik \iff \frac{d}{d \land i} \mid \frac{i}{d \land i} k \iff \frac{d}{d \land i} \mid k.$$

Proof. (Ex. 7.11)

Let $\alpha \in F^*$ with |a| = q - 1, and g a generator of K^* , so $|g| = q^2 - 1$. We know from exercise 7.10 that there exists an integer i such that $\alpha = q^{i(q+1)}$.

Let $h = g^{q+1}$. As $h^{q-1} = 1$, then $h \in F^*$, and since $|g| = q^2 - 1$, |h| = q - 1, so h is a generator of F^* .

Note that for all $s \in \mathbb{Z}$, $\alpha = g^{(i+s(q-1))(q+1)}$, since $g^{q^2-1} = 1$.

We will show that we can choose s such that j = i + s(q - 1) is relatively prime with q + 1. Then j is such that $\alpha = q^{j(q+1)} = h^j$.

i is odd: if not α is an element of the subgroup of squares in F^* , so its order divides (q-1)/2, in contradiction with $|\alpha|=q-1$.

 $(q-1) \wedge (q+1) \mid 2$. Since i-1 is even, there exist integers s,t verifying the Bézout's equation

$$i-1 = t(q+1) - s(q-1).$$

Then j = i + s(q - 1) = 1 + t(q + 1) is relatively prime with $q + 1 : j \land (q + 1) = 1$. Moreover, as $\alpha = h^j$, with $|\alpha| = |h| = q - 1$, the lemme implies that

$$q-1 = |\alpha| = \frac{q-1}{(q-1) \wedge j},$$

so $(q-1) \wedge j = 1$. As $(q+1) \wedge j = 1$ and $(q-1) \wedge j = 1$, then $(q^2-1) \wedge j = 1$. Let $\beta = g^j$: then $\alpha = \beta^{1+q}$, and using the lemma:

$$|\beta| = |g^j| = \frac{q^2 - 1}{(q^2 - 1) \wedge j} = q^2 - 1.$$

Conclusion : there exists a $\beta \in K^*$ with order $q^2 - 1$ such that $\beta^{1+q} = \alpha$.

Ex. 7.12 Use Proposition 7.2.1 to show that given a field k and a polynomial $f(x) \in k[x]$ there is a field $K \supset k$ such that [K : k] is finite and $f(x) = a(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$ in K[x].

Proof. We show by induction on the degree n of f that for all polynomials $f \in k[x]$ with $\deg(f) = n \geq 1$, there exists a field extension K such that [K:k] is finite, and f(x) splits in linear factors on K.

If n = 1, $f(x) = ax + b = a(x - \alpha_0)$, where $\alpha_0 = -b/a$: K = k is suitable.

Suppose that the property is true for all polynomials of degree less than n on an arbitrary field k.

Let $f(x) \in k[x], \deg(f) = n$. From proposition 7.2.1. applied to an irreducible factor of f, there exists a field $L, [L:K] < \infty$ and $\alpha \in L$ such that $f(\alpha_1) = 0$. Then $f(x) = (x - \alpha_1)g(x), g(x) \in L[x]$.

Applying the induction hypothesis in the field L on the polynomial $g \in L[x]$ with $\deg(g) = n - 1$, we obtain a field $K, [K : L] < \infty$ such that $g(x) = a(x - \alpha_2) \cdots (x - \alpha_n)$ with $\alpha_i \in K$. So $f(x) = a(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$ splits in linear factors in K. The induction is achieved.

Ex. 7.13 Apply Exercise 7.12 to $k = \mathbb{Z}/p\mathbb{Z}$ and $f(x) = x^{p^n} - x$ to obtain another proof of Theorem 2.

Proof. Let $f(x) = x^{p^n} - x$. We know from Ex. 7.12 that there exists a finite extension K of \mathbb{F}_p such that f splits in linear factors on K:

$$f(x) = \prod_{k=1}^{p^n} (x - \alpha_k), \qquad \alpha_1, \dots, \alpha_{p^n} \in K.$$

The set $k = \{\alpha_1, \dots, \alpha_{p_n}\} \subset K$ of the roots of $x^{p^n} - x$ is a subfield of K: indeed, if $\alpha, \beta \in k$,

- (a) f(1) = 0, so $1 \in k$
- (b) $(\alpha \beta)^{p^n} = \alpha^{p^n} \beta^{p^n} = \alpha \beta$, so $\alpha \beta \in k$.
- (c) $(\alpha\beta)^{p^n} = \alpha^{p^n}\beta^{p^n} = \alpha\beta$, so $\alpha\beta \in k$.
- (d) $(\alpha^{-1})^{p^n} = (\alpha^{p^n})^{-1} = \alpha^{-1}$, so $\alpha^{-1} \in k$ if $\alpha \neq 0$.

As f'(x) = -1, $f(x) \wedge f'(x) = 1$, so f has no multiple root, so the cardinality of k is p^n . Let $g(x) \in \mathbb{F}_p[x]$ a factor of f(x), irreducible in $\mathbb{F}_p[x]$, with $d = \deg(g)$. As $g \mid f$, g splits in linear factors in k[x]. Let α a root of g(x) in k. As g is irreducible on \mathbb{F}_p , $d = \deg(g) = [\mathbb{F}_p[\alpha] : \mathbb{F}_p]$. Moreover $n = [k : \mathbb{F}_p] = [k : \mathbb{F}_p[\alpha]] [\mathbb{F}_p[\alpha] : \mathbb{F}_p]$, so $d \mid n$.

Reciprocally, suppose that g is any irreducible polynomial in $\mathbb{F}_p[x]$, with $d = \deg(g) \mid n$. Then $K_0 = \mathbb{F}_p[x]/\langle g \rangle$ contains a root α of g, and $[K_0 : \mathbb{F}_p] = \deg(g) = d$, so $\alpha^{p^d} = \alpha$. As $d \mid n$, then $p^d - 1 \mid p^n - 1$ and $x^{p^d} - 1 \mid x^{p^n} - 1$ (Lemma 2,3 in section 1), so

$$x^{p^d} - x \mid x^{p^n} - x.$$

 $f(\alpha) = \alpha^{p^n} - \alpha = 0$ and g is the minimal polynomial of α , so $g \mid f$.

Conclusion:

$$x^{p^n} - x = \prod_{d|n} F_d(x),$$

where $F_d(x)$ is the product of the monic irreducible polynomial of degree d.

Ex. 7.14 Let F be a field with q elements and n a positive integer. Show that there exist irreducible polynomials in F[x] of degree n.

Proof. Leq $F = \mathbb{F}_q$ a field with $q = p^m$ elements, and n a positive integer.

From Theorem 2 Corollary 3, there exists an irreducible polynomial $f(x) \in \mathbb{F}_p[x]$ of degree nm. Let g an irreducible factor of f in $\mathbb{F}_q[x]$, and α a root of g in an extension of \mathbb{F}_q .

We show that $\mathbb{F}_q \subset \mathbb{F}_p[\alpha]$.

 \mathbb{F}_q and $\mathbb{F}_p[\alpha]$ are two subfield of the same finite field $\mathbb{F}_q[\alpha]$. Moreover, $|\mathbb{F}_q| = p^m$, and $|\mathbb{F}_p[\alpha]| = p^{nm}$. As $m \mid n$, $\mathbb{F}_q \subset \mathbb{F}_p[\alpha]$.

Indeed, for all $\gamma \in \mathbb{F}_q[\alpha]$,

$$\gamma \in \mathbb{F}_q \Rightarrow \gamma^{p^m} = \gamma \Rightarrow \gamma^{p^{mn}} = \gamma \Rightarrow \gamma \in \mathbb{F}_p[\alpha].$$

So $\mathbb{F}_q \subset \mathbb{F}_p[\alpha]$.

We show that $\mathbb{F}_q[\alpha] = \mathbb{F}_p[\alpha]$.

As $\mathbb{F}_p \subset \mathbb{F}_q$, $\mathbb{F}_p[\alpha] \subset \mathbb{F}_q[\alpha]$.

Let $\beta \in \mathbb{F}_q[\alpha]$: $\beta = \sum_{i=1}^k a_i \alpha^i$, where $a_i \in \mathbb{F}[q] \subset \mathbb{F}_p[\alpha]$, so $a_i = p_i(\alpha), p_i \in \mathbb{F}_p[\alpha]$.

Consequently

$$\beta = \sum_{i=1}^{k} p_i(\alpha) \alpha^i \in \mathbb{F}_p[\alpha],$$

so $\mathbb{F}_q[\alpha] = \mathbb{F}_p[\alpha]$.

$$nm = [\mathbb{F}_p[\alpha] : \mathbb{F}_p] = [\mathbb{F}_q[\alpha] : \mathbb{F}_p] = [\mathbb{F}_q[\alpha] : \mathbb{F}_q] \times [\mathbb{F}_q : \mathbb{F}_p] = [\mathbb{F}_q[\alpha] : \mathbb{F}_q] \times m.$$

Thus $[\mathbb{F}_q[\alpha]:\mathbb{F}_q]=n$, and g is the minimal polynomial of α on \mathbb{F}_q , so $\deg(g)=n$.

Conclusion: if F is a field with $q = p^m$ elements, there exist irreducible polynomials in F[x] of degree n for all positive integers n.

Ex. 7.15 Let $x^n - 1 \in F[x]$, where F is a finite field with q elements. Suppose that (q,n)=1. Show that x^n-1 splits into linear factors in some extension field and that the least degree of such a field is the smallest integer f such that $q^f \equiv 1 \pmod{n}$.

Proof. From exercise 7.12, we know that x^n-1 splits into linear factors in some extension field K, with $[K:F] < \infty$:

$$u(x) = x^n - 1 = (x - \zeta_0)(x - \zeta_1) \cdots (x - \zeta_{n-1}), \qquad \zeta_i \in K.$$

 $u'(x) \wedge u(x) = nx^{n-1} \wedge (x^n - 1) = 1$, since $x(nx^{n-1}) - n(x^n - 1) = n$, and $n \neq 0$ in the field F, since we know from the hypothesis $q \wedge n = 1$ that the characteristic p doesn't divide n. So the n roots of $x^n - 1$ are distinct.

The set $G = \{x \in K \mid x^n = 1\}$ is a subgroup of K^* , thus G is cyclic of order n. Let ζ a generator of G. Then

$$x^{n} - 1 = (x - 1)(x - \zeta)(x - \zeta^{2}) \cdots (x - \zeta^{n-1}).$$

Let p(x) the minimal polynomial of ζ on F, and f the degree of p:

$$f = \deg(p) = [F[\zeta] : F].$$

So Card $F[\zeta] = q^f$, and since $\zeta \in F[\zeta]^*$, $\zeta^{q^f-1} - 1 = 0$. As the order of ζ in the group Gis $n, n \mid q^f - 1$, namely $q^f \equiv 1 \pmod{n}$.

Let k any positive integer such that $q^k \equiv 1 \pmod n$. Then $n \mid q^k - 1$, so $\zeta^{q^k - 1} - 1 = 0$, $\zeta^{q^k} - \zeta = 0$. Let L an extension of K such that $x^{q^k} - x$ splits in linear factors in L. As $\zeta^{q^k} - \zeta = 0$, ζ belongs to the subfield M of L with cardinality q^k , such that [M:F]=k. Thus $\mathbb{F}[\zeta]\subset M$, so $f=[F[\zeta]:F]\leq k=[M:F]$. $f = [F[\zeta] : F]$ is the smallest $k \in \mathbb{N}^*$ such that $q^k \equiv 1 \pmod{n}$.

If K is any extension of F containing the roots of $x^n - 1$, then $K \supset F[\zeta]$, where ζ is a primitive root of unity, so $[K:F] \geq [F[\zeta]:F] = f$.

Conclusion: the minimal degree of a extension $K \supset F$ containing the roots of $x^n - 1$, with $n \wedge q = 1$, is the smallest positive integer f such that $q^f \equiv 1 \pmod{n}$, the order of q modulo n.

Calculate the monic irreducible polynomials of degree 4 in $\mathbb{Z}/2\mathbb{Z}[x]$.

Proof. Write F_d the product of irreducible monic polynomials in $\mathbb{F}_2[x]$. Theorem 2 gives

$$x^{16} - x = x^{2^4} - x = \prod_{d|4} F_d(x) = F_1(x)F_2(x)F_4(x)$$

and

$$x^4 - x = x^{2^2} - x = \prod_{d|2} F_d(x) = F_1(x)F_2(x)$$

so
$$F_4(x) = \frac{x^{16} - x}{x^4 - x} = \frac{x^{15} - 1}{x^3 - 1} = x^{12} + x^9 + x^6 + x^3 + 1$$

 $F_4(x) = (x^4 + x^3 + x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)$

Among the 16 monic polynomials of degree 4 in $\mathbb{F}_2[x]$, 3 are irreducible :

$$P_1(x) = x^4 + x^3 + x^2 + x + 1,$$

$$P_2(x) = x^4 + x + 1$$

$$P_3(x) = x^4 + x^3 + 1$$

With sage:

sage: A = PolynomialRing(GF(2),'x')

sage: x = A.gen()

sage: $f = (x^16-x)/(x^4-x)$

sage: factor(f)

 $(x^4 + x + 1) * (x^4 + x^3 + 1) * (x^4 + x^3 + x^2 + x + 1)$

Ex. 7.17 Let q and p be distinct odd primes. Show that the number of monic irreducibles of degree q in $\mathbb{Z}/p\mathbb{Z}$ is $q^{-1}(p^q - p)$.

Proof. From Theorem 2 Corllary 2, we know that the number of irreducible polynomials on \mathbb{F}_p of degree q is given by

$$N_q = \frac{1}{q} \sum_{d|q} \mu\left(\frac{q}{d}\right) p^d.$$

As q is prime, d takes the values 1, q, with $\mu(1) = 1, \mu(q) = -1$, so

$$N_q = \frac{p^q - p}{q}.$$

Ex. 7.18 Let p be a prime with $p \equiv 3 \pmod{4}$. Show that the residue classes modulo p in $\mathbb{Z}[i]$ form a field with p^2 elements.

Proof. If p is a prime rational integer, with $p \equiv 3 \pmod{4}$, then p is a prime in $\mathbb{Z}[i]$.

Indeed, p is irreducibel: if p = uv, $u, v \in \mathbb{Z}[i]$, where u = c + di, v are not units, then $p^2 = N(u)N(v)$, N(u) > 1, N(v) > 1, so $p = N(u) = u\overline{u} = c^2 + d^2$.

As $c^2 \equiv 0, 1 \pmod{4}$, $d^2 \equiv 0, 1 \pmod{4}$, so $p \equiv 1 \pmod{4}$, which is in contradiction with the hypothesis.

So p is irreducible in $\mathbb{Z}[i]$, and since $\mathbb{Z}[i]$ is a principal ideal domain, p is prime in $\mathbb{Z}[i]$, thus $\mathbb{Z}[i]/(p)$ is a field.

Let $z = a + bi \in \mathbb{Z}[i]$. The Euclidean division of a, b by q gives

$$a = qp + r, \ 0 \le r < p,$$
 $b = q'p + s, \ 0 \le s < p,$

so

$$z \equiv r + is \pmod{p}, \ 0 \le r < p, 0 \le s < p.$$

Let's verify that these p^2 elements are in different classes of congruences modulo p.

If $r + is \equiv r' + is' \pmod{p}$, then $(r - r')/p + i(s - s')/p \in \mathbb{Z}[i]$, so $r \equiv r', s \equiv s' \pmod{p}$.

As r, r', s, s' are between 0 and p - 1, r = r', s = s'.

So the cardinality of the field $\mathbb{Z}[i]/(p)$ is p^2 .

Ex. 7.19 Let F be a finite field with q elements. If $f(x) \in F[x]$ has degree t, put $|f| = q^t$. Verify the formal identity $\sum_f |f|^{-s} = (1 - q^{1-s})^{-1}$. The sum is over all monic polynomials.

Proof. Let U the set of monic polynomials in $\mathbb{F}_q[x]$, and U_t the set of monic polynomials of degree t, and $s \in \mathbb{C}$. Then $U = \coprod_{t \in \mathbb{N}} U_t$, so

$$\sum_{f \in U} |f|^{-s} = \sum_{t=0}^{\infty} \sum_{f \in U_t} |f|^{-s}$$
$$= \sum_{t=0}^{\infty} \frac{1}{q^{ts}} \sum_{f \in U_t} 1$$

As $\sum_{f \in U_t} 1 = \operatorname{Card}(U_t) = q^t$, then, for $\operatorname{Re}(s) > 1$

$$\sum_{f \in U} |f|^{-s} = \sum_{t=0}^{\infty} \frac{1}{q^{t(s-1)}}$$
$$= \frac{1}{1 - \frac{1}{q^{s-1}}}$$
$$= (1 - q^{1-s})^{-1}$$

As $\left|\frac{1}{q^{t(s-1)}}\right| = \frac{1}{q^{t(\text{Re}(s)-1)}}$, the serie is absolutely convergent for Re(s) > 1. This justifies the grouping of terms in this sum.

Conclusion: if Re(s) > 1,

$$\sum_{f \in U} |f|^{-s} = (1 - q^{1-s})^{-1},$$

where U is the set of monic polynomials in $\mathbb{F}_q[x]$.

Ex. 7.20 With the notation of Exercise 19 let d(f) be the number of monic divisors of f and $\sigma(f) = \sum_{g|f} |g|$, where the sum is over the monic divisors of f. Verify the following identities:

(a)
$$\sum_f d(f)|f|^{-s} = (1-q^{1-s})^{-2}$$

(b)
$$\sum \sigma(f)|f|^{-s} = (1-q^{1-s})^{-1}(1-q^{2-s})^{-1}$$

Proof. (a) With the notation of 7.19, for $s \in \mathbb{C}$, Re(s) > 1, $\sum_{f \in U} |f|^{-s}$ is absolutely convergent and

$$(1 - q^{1-s})^{-1} = \sum_{f \in U} |f|^{-s}$$

Then

$$(1 - q^{1-s})^{-2} = \sum_{f \in U} |f|^{-s} \sum_{g \in U} |g|^{-s}$$
$$= \sum_{(f,g) \in U^2} |fg|^{-s}$$
$$= \sum_{h \in U} \sum_{g \in U, g|h} |h|^{-s},$$

indeed, the application

$$\varphi: \left\{ \begin{array}{ccc} U\times U & \to & \{(h,g)\in U\times U, g\mid h\}\\ (f,g) & \mapsto & (fg,g) \end{array} \right.$$

is a bijection.

So

$$(1 - q^{1-s})^{-2} = \sum_{h \in U} |h|^{-s} \operatorname{Card} \{g \in U, g \mid h\}$$
$$= \sum_{h \in U} |h|^{-s} d(h)$$
$$= \sum_{f \in U} d(f)|f|^{-s}$$

(b) Similarly,

$$(1 - q^{1-s})^{-1}(1 - q^{2-s})^{-1} = \sum_{f \in U} |f|^{-s} \sum_{g \in U} |g|^{-s+1}$$

$$= \sum_{(f,g) \in U^2} |g| |fg|^{-s}$$

$$= \sum_{h \in U} \sum_{g \in U, g|h} |g| |h|^{-s}$$

$$= \sum_{h \in U} |h|^{-s} \sum_{g \in U, g|h} |g|$$

$$= \sum_{h \in U} \sigma(h) |h|^{-s}$$

$$= \sum_{f \in U} \sigma(f) |f|^{-s}$$

Ex. 7.21 Let F be a field with $q = p^n$ elements. For $\alpha \in F$ set $f(x) = (x - \alpha)(x - \alpha^p)(x - \alpha^{p^2}) \cdots (x - \alpha^{p^{n-1}})$. Show that $f(x) \in \mathbb{Z}/p\mathbb{Z}[x]$. In particular, $\alpha + \alpha^p + \cdots + \alpha^{p^{n-1}}$ and $\alpha \alpha^p \alpha^{p^2} \cdots \alpha^{p^{n-1}}$ are in $\mathbb{Z}/p\mathbb{Z}$.

Proof. Let
$$F: \left\{ \begin{array}{ccc} \mathbb{F}_q & \to & \mathbb{F}_q \\ x & \mapsto & x^p \end{array} \right.$$

As the characteristic of \mathbb{F}_q is p, $(x+y)^p = x^p + y^p$ et $(xy)^p = x^p y^p$, and each homomorphism of field is injective, F is a field automorphism (Frobenius automorphism).

For every automorphism H in \mathbb{F}_q , and every polynomial $p(x) = \sum a_i x^i \in \mathbb{F}_q[x]$, write $(H.p)(x) = \sum_i H(a_i)x^i$. Then for all $(p,q) \in \mathbb{F}_q[x]^2$, H.(pq) = (H.p)(H.q).

With this notation,

$$f(x) = (x - \alpha)(x - F\alpha)(x - F^2\alpha) \cdots (x - F^{n-1}\alpha),$$

$$(H.f)(x) = (x - F\alpha)(x - F^2\alpha)(x - F^3\alpha) \cdots (x - F^n\alpha).$$

Since $\alpha \in \mathbb{F}_{p^n}$, $F^n \alpha = \alpha^{p^n} = \alpha$, thus

$$H.f = f.$$

In other words, if $f(x) = \sum_i a_i x^i$, then for all i, $H(a_i) = a_i$, so $a_i^p = a_i$, thus $a_i \in \mathbb{F}_p$, and $f \in \mathbb{F}_p[x]$. In particular, the coefficients $a_{n-1} = \alpha + \alpha^p + \cdots + \alpha^{p^{n-1}}$, $a_0 = \alpha \alpha^p \alpha^{p^2} \cdots \alpha^{p^{n-1}}$ are in \mathbb{F}_p .

Ex. 7.22 (continuation) Set $tr(\alpha) = \alpha + \alpha^p + \cdots + \alpha^{p^{n-1}}$. Prove that

- (a) $tr(\alpha) + tr(\beta) = tr(\alpha + \beta)$.
- (b) $\operatorname{tr}(a\alpha) = a \operatorname{tr}(\alpha)$ for $a \in \mathbb{Z}/p\mathbb{Z}$.
- (c) There is an $\alpha \in F$ such that $tr(\alpha) \neq 0$.

Proof. Let F the Frobenius automorphism of \mathbb{F}_q introduced in Ex.7.21.

- (a),(b): If $x, y \in \mathbb{F}_q$, and $a \in \mathbb{F}_p$, then $a^p = a$, so $F(x+y) = (x+y)^p = x^p + y^p = F(x) + F(y)$, and $F(ax) = a^p x^p = a F(x)$, so F is \mathbb{F}_p -linear, and also $tr = I + F + F^2 + \cdots + F^{n-1}$.
- (c) The polynomial $p(x) = x + x^p + x^{p^2} + \dots + x^{p^{n-1}}$ has degree p^{n-1} , so p(x) has at most p^{n-1} roots in \mathbb{F}_q , and $|\mathbb{F}_q| = p^n > deg(p) = p^{n-1}$. Therefore there exist in \mathbb{F}_q some element α which is not a root of p(x), and so $tr(\alpha) = p(\alpha) \neq 0$.

Ex. 7.23 (continuation) For $\alpha \in F$ consider the polynomial $x^p - x - \alpha \in F[x]$. Show that this polynomial is either irreducible or the product of linear factors. Prove that the latter alternative holds iff $\operatorname{tr}(\alpha) = 0$.

Proof. Let $f(x) = x^p - x - \alpha \in F[x]$. There exists an extension $K \supset F$ with finite degree on F which contains a root γ of f.

As $\gamma^p - \gamma - \alpha = 0$, then for all $i \in \mathbb{F}_p$,

$$(\gamma + i)^p - (\gamma + i) - \alpha = (\gamma^p - \gamma - \alpha) + i^p - i = 0.$$

So f has n distinct roots in $K: \gamma, \gamma + 1, \ldots, \gamma + p - 1$, and so

$$f(x) = (x - \gamma)(x - \gamma - 1) \cdots (x - \gamma - (p - 1)).$$

 $F[\gamma]$ contains all roots of f.

- If $\gamma \in F$, f(x) splits in linear factors in F. f(x) is not irreducible, since $\deg(f) = p > 1$.
 - If $\gamma \notin F$, we will show that f is irreducible in F[x].

If not, then f(x) = g(x)h(x) is the product of two polynomials $g, h \in F[x]$ such that $1 \le \deg(g) \le p-1$.

The unicity of the decomposition in irreducible factors in $F[\gamma][x]$ shows that

$$g(x) = \prod_{i \in A} (x - \gamma - i),$$

where A is a subset of \mathbb{F}_p , with $A \neq \emptyset$, $A \neq \mathbb{F}_p$. As $g(x) \in F[x]$, $\sum_{i \in A} (\gamma + i) = k\gamma + l \in \mathbb{F}_p$, where $1 \leq k = |A| \leq p-1$ and $l = \sum_{i \in A} i \in \mathbb{F}_p$.

So $k\gamma \in \mathbb{F}_p$. Since $\gamma \notin \mathbb{F}_p$, k is not invertible in \mathbb{F}_p , in contradiction with $1 \le k \le p-1$. Consequently, f(x) is irreducible.

We conclude that $x^p - x - \alpha \in F[x]$ is irreducible iff $\gamma \notin F$.

Let F the Frobenius automorphism of K (cf. Ex. 7.21).

$$\alpha = F(\gamma) - \gamma, F(\alpha) = F^{2}(\gamma) - F(\gamma), \dots, F^{n-1}(\alpha) = F^{n}(\gamma) - F^{n-1}(\gamma).$$

The sum of these equalities gives

$$tr(\alpha) = \alpha + F(\alpha) + \dots + F^{n-1}(\alpha) = F^n(\gamma) - \gamma = \gamma^{p^n} - \gamma.$$

As the cardinality of F is $q = p^n$,

$$\gamma \in F \iff \gamma^{p^n} - \gamma = 0 \iff \operatorname{tr}(\alpha) = 0.$$

Conclusion : $x^p - x - \alpha$ is irreducible iff $\operatorname{tr}(\alpha) \neq 0$. If $\operatorname{tr}(\alpha) = 0$, $x^p - x - \alpha$ splits in linear factors in F[x].

Ex. 7.24 Suppose that $f(x) \in \mathbb{Z}/p\mathbb{Z}[x]$ has the property that $f(x+y) = f(x) + f(y) \in \mathbb{Z}/p\mathbb{Z}[x,y]$. Show that f(x) must be of the form $a_0x + a_1x^p + a_2x^{p^2} + \cdots + a_mx^{p^m}$.

Lemma If the prime number p divides all binomial coefficients $\binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n-1}$, then n is a power of p.

Proof. Let
$$u(x) = (x+1)^n - x^n - 1 \in \mathbb{F}_p[x]$$
. Then $f(x) = \sum_{k=1}^{n-1} {n \choose i} x^i = 0$.

Write $n = p^a q$, with $p \wedge q = 1$. With a reductio as absurdum, suppose that q > 1. Then

$$f(x) = 0 = (x+1)^{p^{\alpha}q} - x^{p^{\alpha}q} - 1 = (x^{p^{\alpha}} + 1)^q - x^{p^{\alpha}q} - 1 = \sum_{k=1}^{q-1} \binom{q}{k} x^{kp^a}.$$

Consequently, the coefficient of x^{p^a} is null, so $p \mid q$: this is absurd. Therefore q = 1 and $n = p^a$.

Proof. (Ex. 7.24)

Suppose that $f \in \mathbb{F}_p[x]$ verify in $\mathbb{F}_p[x,y]$ the equality f(x+y) = f(x) + f(y).

Write
$$f(x) = \sum_{k=1}^{d} c_i x^i$$
.

$$0 = f(x+y) - f(x) - f(y) = \sum_{n=0}^{d} c_n [(x+y)^n - x^n - y^n]$$
$$= \sum_{n=0}^{d} \sum_{k=1}^{n-1} c_n \binom{n}{k} x^k y^{n-k}$$

So for all n, for all k, $1 \le k \le n - 1$, $c_n \binom{n}{k} = 0$ in \mathbb{F}_p .

From the lemma, if n is not a power of p, there exists a k, $1 \le k \le n-1$ such that $\binom{n}{k} \not\equiv 0 \pmod{p}$, so $c_n = 0$. If we write $a_k = c_{p^k}$, then f(x) is of the form

$$f(x) = a_0 x + a_1 x^p + a_2 x^{p^2} + \dots + a_m x^{p^m}.$$

Chapter 8

Ex. 8.1 Let p be a prime and d = (m, p - 1). Prove that $N(x^m = a) = \sum \chi(a)$, the sum being over all χ such that $\chi^d = \varepsilon$.

Proof. Let $d = m \wedge (p-1)$. we prove that $N(x^m = a) = N(x^d = a)$ for all $d \in \mathbb{F}_p$.

- If a=0, 0 is the only root of x^m-a or x^d-a , so $N(x^m=a)=N(x^d=a)=1$.
- If $a \in \mathbb{F}_p^*$ and $x^n = a$ has a solution, then we know from the demonstration of Proposition 4.2.1 that $N(x^n a) = d = N(x^d a)$.
- If If $a \in \mathbb{F}_p^*$ and $x^n = a$ has no solution, then (Prop. 4.2.1) $a^{(p-1)/d} \neq 1$, so $x^d = a$ has no solution : $N(x^n a) = 0 = N(x^d a)$.

Using Prop. 8.1.5, as $d \mid n$, we obtain

$$N(x^n=a)=N(x^d=a)=\sum_{\chi^d=\varepsilon}\chi(a).$$

Ex. 8.2, false sentence. With the notation of Exercise 1 show that $N(x^m = a) = N(x^d = a)$ and conclude that if $d_i = (m_i, p - 1)$, then $\sum_i a_i x^{m_i} = b$ and $\sum_i a_i x^{d_i} = b$ have the same number of solutions.

This result is false. I give a counterexample with p=5: $x+x^3=0 \in \mathbb{F}_5[x]$ has 3 solutions 0,2,-2. As $3 \wedge (p-1)=3 \wedge 4=1$, the reduced equation is x+x=0, which has an unique solution 0. The true sentence is:

Ex. 8.2 With the notation of Exercise 1 show that $N(x^m = a) = N(x^d = a)$ and conclude that if $d_i = (m_i, p - 1)$, then $\sum_i a_i x_i^{m_i} = b$ and $\sum_i a_i x_i^{d_i} = b$ have the same number of solutions.

Proof. From Ex. 8.1, we know that

$$N(x^m = a) = \sum_{\chi^d = \varepsilon} \chi(a) = N(x^d = a).$$

Using this result, we obtain

$$\begin{split} N\left(\sum_{i=1}^{l} a_{i} x_{i}^{m_{i}} = b\right) &= \sum_{a_{1}u_{1} + \dots + a_{l}u_{l} = b} \prod_{i=1}^{l} N(x^{m_{i}} = u_{i}) \\ &= \sum_{a_{1}u_{1} + \dots + a_{l}u_{l} = b} \prod_{i=1}^{l} N(x^{d_{i}} = u_{i}) \\ &= N\left(\sum_{i=1}^{l} a_{i} x_{i}^{d_{i}} = b\right) \end{split}$$

Ex. 8.3 Let χ be a non trivial multiplicative character of \mathbb{F}_p and ρ be the character of order 2. Show that $\sum_t \chi(1-t^2) = J(\chi,\rho)$.[Hint: Evaluate $J(\chi,\rho)$ using the relation $N(x^2=a)=1+\rho(a)$.]

Proof.

$$J(\chi, \rho) = \sum_{a+b=1} \chi(a)\rho(b)$$

$$= \sum_{a+b=1} \chi(a)(N(x^2 = b) - 1)$$

$$= \sum_{a+b=1} \chi(a)N(x^2 = b) - \sum_{a+b=1} \chi(a)$$

As $\chi \neq \varepsilon$,

$$\sum_{a+b=1} \chi(a) = \sum_{a \in \mathbb{F}_p} \chi(a) = 0.$$

Let $C = \{x^2 \mid x \in \mathbb{F}^*\}$ the set of squares in \mathbb{F}_p^* , \overline{C} its complementary in \mathbb{F}_p^* :

$$\mathbb{F}_p = \{0\} \cup C \cup \overline{C}.$$

Then

$$\begin{split} J(\chi,\rho) &= \sum_{a+b=1} \chi(a) N(x^2 = b) \\ &= \sum_{a+b=1,b=0} \chi(a) N(x^2 = b) + \sum_{a+b=1,b \in C} \chi(a) N(x^2 = b) + \sum_{a+b=1,b \in \overline{C}} \chi(a) N(x^2 = b) \\ &= \chi(1) + 2 \sum_{b \in C} \chi(1-b) \end{split}$$

(because $N(x^2 = b) = 0$ if $x \in \overline{C}$, and $N(x^2 = b) = 2$ if $x \in C$). As each $b \in C$ has two roots, and as the set of roots of two distinct b are disjointed,

$$J(\chi, \rho) = \chi(1) + \sum_{t \in \mathbb{F}_p^*} \chi(1 - t^2) = \sum_{t \in \mathbb{F}_p} \chi(1 - t^2).$$

Conclusion: if χ is a non trivial multiplicative character of \mathbb{F}_p and ρ the character of order 2,

$$J(\chi, \rho) = \sum_{t \in \mathbb{F}_p} \chi(1 - t^2).$$

Ex. 8.4 Show, if $k \in \mathbb{F}_p$, $k \neq 0$, that $\sum_t \chi(t(k-t)) = \chi(k^2/2^2)J(\chi,\rho)$.

Proof. We know from Ex. 8.3 that $J(\chi, \rho) = \sum_t \chi(1-t^2)$, so

$$\leq J(\chi,\rho) = \sum_{t \in \mathbb{F}_p} \chi(1-t)\chi(1+t)$$

$$= \sum_{u \in \mathbb{F}_p} \chi(u)\chi(2-u) \qquad (u=1-t)$$

$$= \chi(2^2) \sum_{u \in \mathbb{F}_p} \chi\left(\frac{u}{2}\right)\chi\left(1-\frac{u}{2}\right)$$

$$= \chi(2^2) \sum_{v \in \mathbb{F}_p} \chi(v)\chi(1-v) \qquad (u=2v)$$

$$= \chi(2^2)\chi(k^{-2}) \sum_{w \in \mathbb{F}_p} \chi(kv)\chi(k-kv)$$

$$= \chi(2^2/k^2) \sum_{t \in \mathbb{F}_p} \chi(t)\chi(k-t) \qquad (t=kv).$$

Conclusion: if $k \in \mathbb{F}^*$, and χ is a non trivial character, ρ the character of order 2,

$$\sum_{t\in\mathbb{F}_p}\chi(t(k-t))=\chi(k^2/2^2)J(\chi,\rho).$$

Ex. 8.5 If $\chi^2 \neq \varepsilon$, show that $g(\chi)^2 = \chi(2)^{-2} J(\chi, \rho) g(\chi^2)$. [Hint: Write out $g(\chi)^2$ explicitly and use Exercise 4.]

Proof. Let $\zeta = e^{2i\pi/p}$. Using the result of Ex. 8.4, we obtain

$$\begin{split} g(\chi)^2 &= \left(\sum_t \chi(t)\zeta^t\right) \left(\sum_s \chi(s)\zeta^s\right) \\ &= \sum_{s,t} \chi(t)\chi(s)\zeta^{t+s} \\ &= \sum_k \left(\sum_{s+t=k} \chi(t)\chi(s)\right)\zeta^k \\ &= \sum_k \left(\sum_t \chi(t(k-t))\zeta^k\right) \\ &= \chi(-1)\sum_t \chi(t^2) + \sum_{k\neq 0} \chi(k^2/2^2)J(\chi,\rho)\zeta^k \\ &= \chi(-1)\sum_t \chi^2(t) + \chi(2)^{-2}J(\chi,\rho)\sum_{k\neq 0} \chi^2(k)\zeta^k \end{split}$$

If
$$\chi^2 \neq \varepsilon$$
, $\sum_t \chi^2(t) = 0$, so

$$g(\chi)^2 = \chi(2)^{-2} J(\chi, \rho) g(\chi^2).$$

Ex. 8.6 (continuation) Show that $J(\chi, \chi) = \chi(2)^{-2} J(\chi, \rho)$.

Proof. As $\chi^2 \neq \rho$, Theorem 1 Chapter 8 gives $J(\chi, \chi) = g(\chi)^2/g(\chi^2)$, and Exercise 8.5 gives $g(\chi)^2/g(\chi^2) = \chi(2)^{-2}J(\chi, \rho)$, so

$$J(\chi, \chi) = \chi(2)^{-2} J(\chi, \rho).$$

Ex. 8.7 Suppose that $p \equiv 1 \pmod{4}$ and that χ is a character of order 4. Then $\chi^2 = \rho$ and $J(\chi, \chi) = \chi(-1)J(\chi, \rho)$. [Hint: Evaluate $g(\chi)^4$ in two ways.]

Proof. As χ is a character of order 2, χ^2 is a character of order, and ρ (Legendre's character) is the unique character of order 2, so $\chi^4 = \rho$.

From Prop. 8.3.3 we have

$$g(\chi)^4 = \chi(-1)pJ(\chi,\chi)J(\chi,\chi^2) = \chi(-1)pJ(\chi,\chi)J(\chi,\rho).$$

Squaring the result of Ex. 8.5, we obtain

$$g(\chi)^4 = \chi(2)^{-4} J(\chi, \rho)^2 \left[g(\chi^2) \right]^2$$
.

Moreover $\chi(2^4) = \chi^4(2) = \varepsilon(2) = 1$, and $g(\chi^2) = g(\rho) = g$, so $\left[g(\chi^2)\right]^2 = g^2 = (-1)^{(p-1)/2}p = p$ (From Prop. 6.3.2 and $p \equiv 1 \pmod{4}$).

Equating these two result, we obtain

$$\chi(-1)pJ(\chi,\chi)J(\chi,\rho) = J(\chi,\rho)^2p.$$

As $g(\chi)^4 \neq 0$ since $|g(\chi)|^2 = p$, we have $J(\chi, \rho) \neq 0$, so

$$\chi(-1)J(\chi,\chi) = J(\chi,\rho).$$

$$[\chi(-1)]^2 = \chi((-1)^2) = \chi(1) = 1$$
, so $\chi(-1) = \pm 1$, and $\chi(-1)^{-1} = \chi(-1)$, thus

$$J(\chi,\chi)=\chi(-1)J(\chi,\rho).$$

Ex. 8.8 Generalize Exercise 3 in the following way. Suppose that p is a prime, $\sum_t \chi(1-t^m) = \sum_{\lambda} J(\chi,\lambda)$, where λ varies over all characters such that $\lambda^m = \varepsilon$. Conclude that $|\sum_t \chi(1-t^m)| \leq (m-1)p^{1/2}$.

Proof. For all $y \in \mathbb{F}_p$, write $A_y = \{x \in \mathbb{F}_p \mid x^m = y\}$. Then $|A_y| = N(x^m = y)$. $\mathbb{F}_p = \coprod_{y \in \mathbb{F}_p} A_y$ is the disjoint union of the A_y , so

$$\sum_{t \in \mathbb{F}_p} \chi(1 - t^m) = \sum_{y \in \mathbb{F}_p} \sum_{t \in A_y} \chi(1 - t^m) = \sum_{y \in \mathbb{F}_p} |A_y| \chi(1 - y) = \sum_{y \in \mathbb{F}_p} N(x^m = y) \chi(1 - y).$$

Moreover,
$$N(x^m = y) = \sum_{\lambda^m = \varepsilon} \lambda(y)$$
 (Prop. 8.1.5), so

$$\sum_{t \in \mathbb{F}_p} \chi(1 - t^m) = \sum_{y \in \mathbb{F}_p} \sum_{\lambda^m = \varepsilon} \lambda(y) \chi(1 - y)$$
$$= \sum_{\lambda^m = \varepsilon} \sum_{x + y = 1} \chi(x) \lambda(y)$$
$$= \sum_{\lambda^m = \varepsilon} J(\chi, \lambda)$$

Conclusion:

$$\sum_{t \in \mathbb{F}_p} \chi(1 - t^m) = \sum_{\lambda^m = \varepsilon} J(\chi, \lambda).$$

We know that there exist m character whose order divides m. As $\chi \neq \varepsilon$, $J(\chi, \varepsilon) = 0$, and $|J(\chi, \lambda)| = \sqrt{p}$ for every $\lambda \neq \varepsilon$,

$$\left| \sum_{t \in \mathbb{F}_p} \chi(1 - t^m) \right| \le \sum_{\lambda^m = \varepsilon, \lambda \ne \varepsilon} |J(\chi, \lambda)| = (m - 1)\sqrt{p}.$$

Ex. 8.9 Suppose that $p \equiv 1 \pmod{3}$ and that χ is a character of order 3. Prove (using Exercise 5) that $g(\chi)^3 = p\pi$, where $\pi = \chi(2)J(\chi,\rho)$.

Proof. As χ is o character of order 3, $\chi^2 \neq \varepsilon$. From Exercise 5, we know that

$$g(\chi)^2 = \chi(2)^{-2} J(\chi, \rho) g(\chi^2).$$

So

$$g(\chi)^3 = \chi(2)^{-2} J(\chi, \rho) g(\chi^2) g(\chi).$$

Recall ($\S 8.2$) that

$$\overline{g(\chi)} = \sum_t \overline{\chi(t)} \zeta^{-t} = \chi(-1) \sum_t \overline{\chi(-t)} \zeta(-t) = \chi(-1) g(\chi),$$

Here $\chi(-1) = 1$, because $\chi(-1) = \chi((-1)^3) = \chi^3(-1) = \varepsilon(-1) = 1$. Hence

$$g(\chi^2)g(\chi) = g(\bar{\chi})g(\chi) = \overline{g(\chi)}g(\chi) = |g(\chi)|^2 = p.$$

Moreover $\chi(2)^3 = \chi^3(2) = 1$, so $\chi(2)^{-2} = \chi(2)$.

Conclusion: if χ is a character of order 3,

$$g(\chi)^3 = p\pi$$
, where $\pi = \chi(2)J(\chi,\rho)$.

Ex. 8.10 (continuation) Show that $\chi \rho$ is a character of order 6 and that

$$g(\chi \rho)^6 = (-1)^{(p-1)/2} p \overline{\pi}^4$$

.

Proof. $(\chi \rho)^6 = \chi^6 \rho^6 = \varepsilon$, $(\chi \rho)^2 = \chi^2 \neq \varepsilon$, $(\chi \rho)^3 = \rho^3 = \rho \neq \varepsilon$, so $\chi \rho$ is of order 6. $J(\chi, \rho)g(\chi \rho) = g(\chi)g(\rho)$ since $\chi, \rho, \chi \rho$ are non trivial characters. So

$$g(\chi \rho)^6 = \frac{g(\chi)^6 g(\rho)^6}{J(\chi, \rho)^6}.$$

From Exercise 8.9, $g(\chi)^6 = p^2\pi^2$. Proposition 6.3.2 gives $g(\rho)^2 = (-1)^{(p-1)/2}p$, so $g(\rho)^6 = (-1)^{(p-1)/2}p^3$. As $\pi = \chi(2)J(\chi,\rho)$, $J(\chi,\rho)^6 = \chi(2)^{-6}\pi^6 = \pi^6$, since $\chi(2)^3 = 1$. Therefore

$$g(\chi \rho)^6 = \frac{p^2 \pi^2 (-1)^{(p-1)/2} p^3}{\pi^6} = (-1)^{(p-1)/2} p^5 \pi^{-4}.$$

Moreover, $\pi \bar{\pi} = \chi(2)\overline{\chi(2)}J(\chi,\rho)\overline{J(\chi,\rho)} = |J(\chi,\rho)|^2 = p$ (Theorem 8.1, Corollary), so $\pi^{-1} = \bar{\pi}/p$. In conclusion,

$$g(\chi \rho)^6 = (-1)^{(p-1)/2} p\bar{\pi}^4.$$

Ex. 8.11 Use Gauss' theorem to find the number of solutions to $x^3 + y^3 = 1$ in \mathbb{F}_p for p = 13, 19, 37, and 97.

Proof. • p = 13.

$$4 \times 13 = 52 = (-5)^2 + 27 \times 1^2$$
, where $-5 \equiv 1 \pmod{3}$, so $A = -5$.

If p = 13, $N(x^3 + y^3 = 1) = p - 2 + A = 13 - 2 - 5 = 6$: the solutions are only the trivial solutions.

• p = 19.

$$4 \times 19 = 76 = 7^2 + 27 \times 1^2$$
, where $7 \equiv 1 \pmod{3}$, so $A = 7$.

If
$$p = 19$$
, $N(x^3 + y^3 = 1) = 19 - 2 + 7 = 24$.

• p = 37.

$$4 \times 37 = 148 = (-11)^2 + 27 \times 1^2$$
, where $-11 \equiv 1 \pmod{3}$, so $A = -11$.

If
$$p = 37$$
, $N(x^3 + y^3 = 1) = 37 - 2 - 11 = 24$.

• p = 97.

$$4 \times 97 = 388 = 19^2 + 27 \times 1^2$$
, where $19 \equiv 1 \pmod{3}$, so $A = 19$.

If
$$p = 97$$
, $N(x^3 + y^3 = 1) = 97 - 2 + 19 = 114$.

(These results were verified on pari/gp).)

Ex. 8.12 If $p \equiv 1 \pmod{4}$, then we have seen that $p = a^2 + b^2$ with $a, b \in \mathbb{Z}$. If we require that a and b are positive, that a be odd, and that b is even, show that a and b are uniquely determined. (Hint: Use the fact that unique factorization holds in $\mathbb{Z}[i]$ and that if $p = a^2 + b^2$ then a + bi is a prime in $\mathbb{Z}[i]$.)

Proof. Suppose that p is prime, $p \equiv 1 \pmod{4}$, and $p = a^2 + b^2 = c^2 + d^2$, where a, b, c, d are positive integers, a, c odd, b, d even. We will show that a = c, b = d.

As p = N(a + bi), $\pi = a + bi$ is irreducible in $\mathbb{Z}[i]$: indeed $\pi = uv$ implies that $p = N(\pi) = N(u)N(v)$, so N(u) = 1 or N(v) = 1, and u or v is an unit.

Since $\mathbb{Z}[i]$ is a principal ideal domain, π is a prime in $\mathbb{Z}[i]$.

(a+bi)(a-bi) = (c+di)(c-di), so the prime π divides c+di, or it divides c-di. As $N(\pi) = N(c+di) = N(c-di)$, the quotient is an unit. Therefore π is an associate of c+di or c-di. Since the units in $\mathbb{Z}[i]$ are 1,-1,i,-i,

$$a + bi = \pm (c + di)$$
, or $a + bi = \pm i(c + di)$, or $a + bi = \pm i(c - di)$, or $a + bi = \pm i(c - di)$.

In all cases, $a = \pm c$, $b = \pm d$, or $a = \pm d$, $b = \pm c$. Since a, b, c, d are positive, a = c, b = d, or a = d, b = c. As ac are odds, and b, d even, a = c, b = d: the unicity of the decomposition is proved.

Ex. 8.13 If $p \equiv 1 \pmod{3}$, we have seen that $4p = A^2 + 27B^2$, with $A, B \in \mathbb{Z}$. If we require that $A \equiv 1 \pmod{3}$, show that A is uniquely determined. (Hint: Use the fact that unique factorization holds in $\mathbb{Z}[\omega]$. This proof is a little trickier than that for Exercise 12.)

Proof. Suppose that $4p = A^2 + 27B^2 = C^2 + 27D^2$, where $A \equiv C \equiv 1 \pmod{3}$. We will show that A = C.

Let $\omega = e^{2i\pi/3} = -1/2 + i\sqrt{3}/2$. Then $i\sqrt{3} = 2\omega + 1$, and for all $x, y, x^3 + 3y^2 = (x + i\sqrt{3}y)(x - i\sqrt{3}y) = (x + (2\omega + 1)y)(x - (2\omega + 1)y)$,

$$x^{2} + 3y^{2} = (x + y + 2jy)(x - y - 2jy).$$

With x = A, y = 3B, we obtain

$$4p = A^{2} + 27B^{2} = (A + 3B + 6\omega B)(A - 3B - 6\omega B).$$

Note that A, B are of same parity, since $4p = A^2 + 27B^2$.

So we can write $p = ((A + 3B)/2 + 3\omega B)((A - 3B)/2 - 6\omega B)$:

$$p = \pi \overline{\pi}$$
, where $\pi = \frac{A + 3B}{2} + 3\omega B \in \mathbb{Z}[\omega]$.

 π is a prime in $\mathbb{Z}[\omega]$: indeed $\pi = uv$, $u, v \in \mathbb{Z}[\omega]$ implies $p = N(\pi) = N(u)N(v)$, then N(u) = 1 or N(v) = 1, u or v is an unit, so π is irreducible in the principal ideal domain $\mathbb{Z}[\omega]$, thus π is a prime in $\mathbb{Z}[\omega]$.

$$\pi\overline{\pi} = \left(\frac{A+3B}{2} + 3\omega B\right) \left(\frac{A-3B}{2} - 3\omega B\right) = \left(\frac{C+3D}{2} + 3\omega D\right) \left(\frac{C-3D}{2} - 3\omega D\right).$$

As π is a prime, it divides $\frac{C+3D}{2}+3\omega D$ or its conjugate. Since they have the same norm

p, they are associated. The units of $\mathbb{Z}[\omega]$ are $\pm 1, \pm j, \pm j^2$, so there exists 12 cases:

$$\frac{A+3B}{2} + 3\omega B = \pm \left(\frac{C+3D}{2} + 3\omega D\right)$$

$$\frac{A+3B}{2} + 3\omega B = \pm \omega \left(\frac{C+3D}{2} + 3\omega D\right)$$

$$\frac{A+3B}{2} + 3\omega B = \pm \omega^2 \left(\frac{C+3D}{2} + 3\omega D\right)$$

$$\frac{A+3B}{2} + 3\omega B = \pm \left(\frac{C-3D}{2} - 3\omega D\right)$$

$$\frac{A+3B}{2} + 3\omega B = \pm \omega \left(\frac{C-3D}{2} - 3\omega D\right)$$

$$\frac{A+3B}{2} + 3\omega B = \pm \omega^2 \left(\frac{C-3D}{2} - 3\omega D\right)$$

If we replace D by -D, we obtain the 6 last cases from the 6 first cases, so it is sufficient to examine the first 6 cases. Recall that $(1, \omega)$ is a \mathbb{Z} -base of $\mathbb{Z}[\omega]$.

- 1) $A + 3B + 6\omega B = C + 3D + 6\omega D$. Then B = D and A + 3B = C + 3D, so A = C, which is the expected result. The five other cases are impossible:
- 2) $A+3B+6\omega B=-C-3D-6\omega D.$ Then B=-D, A=-C. As $A\equiv C\equiv 1\pmod 3$, this is impossible.
- 3) $A+3B+6\omega B=\omega(C+3D+6\omega D)=\omega(C+3D)+(-1-\omega)6D=-6D+\omega(C-3D).$ Then $A+3B=-6D, A\equiv 0 \pmod 3$, this is impossible.
- 4) $A+3B+6\omega B = -\omega(C+3D+6\omega D) = -\omega(C+3D)+(1+\omega)6D = 6D+\omega(-C+3D).$ Then $A+3B=-6D, A\equiv 0 \pmod 3$, this is impossible.
- 5) $A + 3B + 6\omega B = \omega^2 (C + D + 6\omega D) = (-1 \omega)(C + 3D) + 6D = -C + 3D + \omega(-C 3D)$. Then A + 3B = -C + 3D, $A \equiv -C \pmod{3}$, this is impossible.
- 6) $A+3B+6\omega B = -\omega^2(C+3D+6\omega D) = (1+\omega)(C+3D)-6D = (C-3D)+\omega(C+3D)$. Then 6B = C+3D, $C \equiv 0 \pmod{3}$, this is impossible.

In conclusion A = C.

Ex. 8.14 Suppose that $p \equiv 1 \pmod{n}$ and that χ is a character of order n. Show that $g(\chi^n) \in \mathbb{Z}[\zeta]$, where $\zeta = e^{2\pi i/n}$.

Proof. From Proposition 8.3.3 we know that

$$g(\chi)^n = \chi(-1)pJ(\chi,\chi)J(\chi,\chi^2)\cdots J(\chi,\chi^{n-2}).$$

Let $\mathbb{U}_n = \{x \in \mathbb{C} \mid x^n = 1\} = \{1, \zeta, \dots, \zeta^{n-1}\}$, with $\zeta = e^{2\pi i/n}$, the group of *n*-th roots of unity. As the order of χ is *n*, for all $x \in \mathbb{F}_p^*$, $(\chi(x))^n = \chi^n(x) = \varepsilon(x) = 1$, so $\chi(x) \in \mathbb{U}_n$, and also $\chi^k(x) = (\chi(x))^k$.

and also $\chi^k(x) = (\chi(x))^k$. Therefore $J(\chi, \chi^k) = \sum_{x+y=1} \chi(x)\chi^k(x) \in \mathbb{Z}[\zeta]$. Moreover $\chi(-1) = \pm 1$, so $\chi(-1)$ and p are in $\mathbb{Z}[\zeta]$. In conclusion $g(\chi^n) \in \mathbb{Z}[\zeta]$. **Ex. 8.15** Suppose that $p \equiv 1 \pmod{6}$ and let χ and ρ be characters of order 3 and 2, respectively. Show that the number of solutions to $y^2 = x^3 + D$ in \mathbb{F}_p is $p + \pi + \overline{\pi}$, where $\pi = \chi \rho(D)J(\chi \rho)$. If $\chi(2) = 1$, show that the number of solutions to $y^2 = x^3 + 1$ is p + A, where $4p = A^2 + 27B^2$ and $A \equiv 1 \pmod{3}$. Verify this result numerically when p = 31.

Proof. $x \mapsto -x$ is a bijection between the set of roots of $x^3 = b$ and the set of roots of $(-x)^3 = b$, so $N(x^3 = b) = N((-x)^3 = b) = N(x^3 = -b)$.

As χ is a character of order 3, the characters whose order divides 3 are $\varepsilon, \chi, \chi^2$. Using Prop. 8.1.5, we obtain

$$N(y^{2} = x^{3} + D) = \sum_{a+b=D} N(y^{2} = a)N((-x)^{3} = b)$$

$$= \sum_{a+b=D} N(y^{2} = a)N(x^{3} = b)$$

$$= \sum_{a+b=D} (1 + \rho(a))(1 + \chi(b) + \chi^{2}(b))$$

$$= \sum_{i=0}^{1} \sum_{j=0}^{2} \sum_{a+b=D} \rho^{i}(a)\chi^{j}(b)$$

$$= \sum_{i=0}^{1} \sum_{j=0}^{2} \rho(D)^{i}\chi(D)^{j} \sum_{a'+b'=1} \rho^{i}(a')\chi^{j}(b') \qquad (a = Da', b = Db')$$

$$= \sum_{i=0}^{1} \sum_{j=0}^{2} \rho(D)^{i}\chi(D)^{j}J(\chi^{j}, \rho^{i})$$

We know (Theorem 1) that $J(\chi,\varepsilon)=J(\chi^2,\varepsilon)=J(\varepsilon,\rho)=0, J(\varepsilon,\varepsilon)=p,$ so

$$N(y^{2} = x^{3} + D) = p + \rho(D)\chi(D)J(\chi, \rho) + \rho(D)\chi^{2}(D)J(\chi^{2}, \rho).$$

As $\chi^2(D) = \chi^{-1}(D) = \overline{\chi(D)}$, and as $\overline{\rho(D)} = \rho(D)$, then $J(\chi^2, \rho) = J(\overline{\chi}, \overline{\rho}) = \overline{J(\chi, \rho)}$, and

$$N(y^2=x^3+D)=p+\pi+\bar{\pi}, \text{ where } \pi=(\rho\chi)(D)J(\chi,\rho).$$

If $\chi(2) = 1$, then from Exercise 8.6 we have

$$J(\chi, \chi) = \chi(2)^{-2} J(\chi, \rho) = J(\chi, \rho).$$

With D=1 (if $\chi(2)=1$), we obtain

$$N(y^2 = x^3 + 1) = p + \pi + \bar{\pi}, \pi = J(\chi, \rho) = J(\chi, \chi).$$

From Prop. 8.3.4 we know that $J(\chi,\chi) = a + b\omega, b \equiv 0 \pmod{3}, a \equiv -1 \pmod{3}$.

 $\pi + \overline{\pi} = 2 \operatorname{Re} J(\chi, \chi) = 2a - b \equiv 1 \pmod{3}$, and $p = N(J(\chi, \rho)) = a^2 - ab + b^2$, so $4p = (2a - b)^2 + 3b^2$.

Writing A = 2a - b, B = b/3, we obtain $4p = A^2 + 27B^2$, $A \equiv 1 \pmod{3}$ (the unicity of A if proved in Exercise 8.13).

Conclusion: $N(y^2 = x^3 + 1) = p + A$, where $4p = A^2 + 27B^2$, $A \equiv 1 \pmod{3}$.

If p=31, 3 is a primitive element, and $2=3^{24}=(3^8)^3$ in \mathbb{F}_{31} , therefore $\chi(2)=1$. $31=4+27, 4\times 31=124=4^2+27\times 2^2, \text{ and } 4\equiv 1\pmod 3, \text{ so}$ if $p=31, N(y^2=x^3+1)=35$.

Ex. 8.16 Suppose that $p \equiv 1 \pmod{4}$ and that χ is a character of order 4. Let N be the number of solutions to $x^4 + y^4 = 1$ in \mathbb{F}_p . Show that $N = p + 1 - \delta_4(-1)4 + 2 \operatorname{Re} J(\chi, \chi) + 4 \operatorname{Re} J(\chi, \rho)$.

Proof. Let χ a character of order 4: such a character exists since $p \equiv 1 \pmod{4}$. Then

$$N(x^{4} + y^{4} = 1) = \sum_{a+b=1}^{3} N(x^{4} = a)N(y^{4} = b)$$

$$= \sum_{a+b=1}^{3} \sum_{i=0}^{3} \chi^{i}(a) \sum_{j=0}^{3} \chi^{j}(b)$$

$$= \sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{a+b=1}^{3} \chi^{i}(a)\chi^{j}(b)$$

$$= \sum_{i=0}^{3} \sum_{j=0}^{3} J(\chi^{i}, \chi^{j})$$

$$= p - \chi(-1) - \chi^{2}(-1) - \chi^{3}(-1)$$

$$+ J(\chi, \chi) + J(\chi, \chi^{2}) + J(\chi^{2}, \chi)$$

$$+ J(\chi^{2}, \chi^{3}) + J(\chi^{3}, \chi^{2}) + J(\chi^{3}, \chi^{3}),$$

since from Theorem 1, we have $J(\varepsilon,\varepsilon)=p, J(\varepsilon,\chi^j)=0$ for j=1,2,3, and $J(\chi^i,\chi^{4-i})=-\chi^i(-1).$

Moreover

$$-[\chi(-1) + \chi^2(-1) + \chi^3(-1)] = 1 - [1 + \chi(-1) + \chi^2(-1) + \chi^3(-1)],$$

and

$$\begin{cases} 1 + \chi(-1) + \chi^2(-1) + \chi^3(-1) = \frac{1 - \chi^4(-1)}{1 - \chi(-1)} &= 0 & \text{if } \chi(-1) \neq 1 \\ &= 4 & \text{if } \chi(-1) = 1 \end{cases}$$

Let g a generator of \mathbb{F}_p^* . Recall that $\chi(g)=e^{qi\pi/2}$ with q odd, so $\chi:a=g^k\mapsto e^{iqk\pi k/2}=i^{qk}$, thus

$$\chi(a) = 1 \iff \chi(g^k) = 1 \iff i^{qk} = 1 \iff 4 \mid k \iff a = b^4, b \in \mathbb{F}^*.$$

 δ_4 is defined by $\delta_4(a) = 1$ if a is a fourth power, 0 if not. Then

$$-[\chi(-1) + \chi^2(-1) + \chi^3(-1)] = 1 - \delta_4(-1)4.$$

Moreover $J(\chi, \chi) + J(\chi^3, \chi^3) = 2 \operatorname{Re}(J(\chi, \chi))$, and

$$J(\chi,\chi^2) + J(\chi^3,\chi^2) + J(\chi^2,\chi) + J(\chi^2,\chi^3) = 2\operatorname{Re}(J(\chi,\chi^2) + 2\operatorname{Re}(J(\chi^2,\chi) = 4\operatorname{Re}(J(\chi,\chi^2)).$$

 χ is of order 4, so $\rho = \chi^2$ is the unique character of order 2, the Legendre's character. In conclusion,

$$N(x^4 + y^4 = 1) = p + 1 - \delta_4(-1)4 + 2\operatorname{Re}(J(\chi, \chi)) + 4\operatorname{Re}(J(\chi, \rho)).$$

Ex. 8.17 (continuation) By Exercise 8.7, $J(\chi, \chi) = \chi(-1)J(\chi, \rho)$. Let $\pi = -J(\chi, \rho)$. Show that

(a)
$$N = p - 3 - 6 \operatorname{Re} \pi \text{ if } p \equiv 1 \pmod{8}$$
.

(b)
$$N = p + 1 - 2 \operatorname{Re} \pi \text{ if } p \equiv 5 \pmod{8}$$
.

Proof. Let g a generator in \mathbb{F}_p^* . As $(g^{(p-1)/2})^2=1$ and $g^{(p-1)/2}\neq 1$, then $g^{(p-1)/2}=-1$. As in Exercise 8.16, write $\chi(g)=e^{qi\pi/2}$, with q odd.

Then -1 is a fourth power in \mathbb{F}_p^* iff (see Exercice 8.16)

$$\delta_4(-1) = 1 \iff \chi(-1) = 1$$

$$\iff \chi(g^{(p-1)/2}) = 1$$

$$\iff e^{q((p-1)/2)i\pi/2} = 1$$

$$\iff 4 \mid q(p-1)/2$$

$$\iff 4 \mid (p-1)/2$$

$$\iff p \equiv 1 \pmod{8}.$$

By Exercise 8.7, as χ is a character of order 4,

$$J(\chi, \chi) = \chi(-1)J(\chi, \rho).$$

• If
$$p \equiv 1[8]$$
, $\chi(-1) = 1$, so $J(\chi, \chi) = J(\chi, \rho)$, and $\delta_4(-1) = 1$.
$$N = p + 1 - \delta_4(-1)4 + 2 \operatorname{Re} J(\chi, \chi) + 4 \operatorname{Re} J(\chi, \rho)$$
$$= p - 3 + 6 \operatorname{Re} J(\chi, \rho)$$
$$= p - 3 - 6 \operatorname{Re} \pi, \qquad \text{where } \pi = -J(\chi, \rho).$$

• If
$$p \equiv 5[8]$$
,
 $\chi(-1) = -1$, donc $J(\chi, \chi) = -J(\chi, \rho)$, et $\delta_4(-1) = 0$

$$N = p + 1 - \delta_4(-1)4 + 2 \operatorname{Re} J(\chi, \chi) + 4 \operatorname{Re} J(\chi, \rho)$$

$$= p + 1 + 2 \operatorname{Re} J(\chi, \rho)$$

$$= p + 1 - 2 \operatorname{Re} \pi.$$

Ex. 8.18 (continuation) Let $\pi = a + bi$. One can show (see Chapter 11, Section 5) that a is odd, b is even, and $a \equiv 1 \pmod{4}$ if $4 \mid b$ and $a \equiv -1 \pmod{4}$ if $4 \nmid b$. Let $p = A^2 + B^2$ and fix A by requiring that $A \equiv 1 \pmod{4}$. Then show that

(a)
$$N = p - 3 - 6A$$
 if $p \equiv 1 \pmod{8}$,

(b) N = p + 1 + 2A if $p \equiv 5 \pmod{8}$.

Proof. Recall that $\pi = -J(\chi, \rho) \in \mathbb{Z}[i]$, so $\pi = a + bi$, $a, b \in \mathbb{Z}$.

1) We begin by proving that $\pi \equiv 1 \pmod{2+2i}$ (see Chapter 11, Section 5). For all $t \in \mathbb{F}_p^*$, $\rho(t) = \pm 1$, so $\rho(t) - 1 \equiv 0 \pmod{2}$.

Let's verify that $\chi(t) - 1 \equiv 0 \pmod{1+i}$. $\chi(t) \in \{1, -1, i, -i\}$, so $\chi(t) - 1 \in \{0, -2, i - 1, -i - 1\}$. As 2 = (1 - i)(1 + i) and i - 1 = i(1 + i), we obtain

$$\forall t \in \mathbb{F}_{p}^{*}, \ 1+i \mid \chi(t)-1.$$

Thus

$$\forall s \in \mathbb{F}_p^*, \forall t \in \mathbb{F}_p^*, \ (\rho(s) - 1)(\chi(t) - 1) \equiv 0 \pmod{2 + 2i}.$$

Moreover, if s = 0, t = 1, then $\chi(b) = 1$, and if s = 1, t = 0, then $\rho(s) = 1$, so

$$\sum_{s+t=1} (\rho(s) - 1)(\chi(b) - 1) \equiv 0 \pmod{2 + 2i}.$$

This gives, when developing this expression,:

$$-\pi - \sum_{b \in \mathbb{F}_p} \chi(b) - \sum_{a \in \mathbb{F}_p} \rho(a) + p \equiv 0 \pmod{2 + 2i}.$$

As $\sum_b \chi(b) = \sum_a \rho(a) = 0$, we obtain

$$\pi \equiv p \pmod{2+2i}$$
.

Finally, $p \equiv 1 \pmod{4}$, and $2+2i \mid 4$ since 4 = (1-i)(2+2i), so $p \equiv 1 \mod 2+2i$, so

$$\pi \equiv 1 \pmod{2+2i}$$
.

2) By Corollary of Theorem 1, $N(\pi) = N(J(\chi, \rho) = p = a^2 + b^2$.

We know that $p \equiv 1 \pmod 4$, $p = a^2 + b^2$ and $a + ib \equiv 1 \pmod 2 + 2i$. Then we prove that a is odd, b is even, and $a \equiv 1 \pmod 4$ if $b \pmod 4 \equiv -1 \pmod 4$ if $b \pmod 4$.

 $a + bi \equiv 1 \pmod{2 + 2i}$, so $a + bi \equiv 1 \pmod{2}$, so a is odd, and b is even.

• If $4 \mid b$, then $2 + 2i \mid b$.

 $a \equiv 1 \pmod{2+2i}$, and by complex conjugation, $a \equiv 1 \pmod{2-2i}$, so $52 + 2i(2-2i) = 8 \mid (a-1)^2$, thus $4 \mid a-1$.

• If $4 \nmid b$, then $b = 4k + 2, k \in \mathbb{Z}$.

Therefore, $1 \equiv a + bi \equiv a + 2i \pmod{2 + 2i}$. As $2i \equiv -2 \pmod{2 + 2i}$, $a \equiv 3 \equiv -1 \pmod{2 + 2i}$. By conjugation, $a \equiv -1 \pmod{2 - 2i}$. Multiplying these congruences, we obtain $8 \mid (a+1)^2$, so $a \equiv -1 \pmod{4}$.

3) $\pi = -J(\chi, \rho) = a + bi$ is such that $a^2 + b^2 = p$, a odd, b even and also

$$(4 \mid b \text{ and } a \equiv 1 \mid 4]) \text{ or } (4 \nmid b \text{ and } a \equiv -1 \mid 4]).$$

If $p = A^2 + B^2$, A odd and B even, then also $p = (-A)^2 + B^2$, and $A \equiv 1 \pmod{4}$ or $-A \equiv 1 \pmod{4}$. So there exists a decomposition $p = A^2 + B^2$ such that $A \equiv 1 \pmod{4}$. Such a decomposition is unique. Let's verify that $4 \mid b$ if $p \equiv 1 \pmod{8}$, $4 \nmid b$ if $p \equiv 5 \pmod{8}$.

$$p = a^2 + b^2$$
, $a = 2a' + 1$, $b = 2b'$, so $p = 4a'^2 + 4a' + 1 + 4b'^2 = 8\frac{a'(a'+1)}{2} + 1 + 4b'^2$.

Hence $4 \mid b \iff 2 \mid b' \iff 8 \mid p-1$.

Therefore if $p \equiv 1 \pmod{8}$, Re $\pi = a = A$, and if $p \equiv 5 \pmod{8}$, Re $\pi = a = -A$. In conclusion, by Exercise 8.17:

if
$$p = A^2 + B^2$$
, $A \equiv 1 \pmod{4}$, and $N = N(x^4 + y^4 = 1)$ in \mathbb{F}_p ,

(a)
$$N = p - 3 - 6A$$
 if $p \equiv 1 \pmod{8}$,

(b)
$$N = p + 1 + 2A$$
 if $p \equiv 5 \pmod{8}$.

Note: if $p \equiv -1 \pmod 4$, then there is no character of order 4 on \mathbb{F}_p^* , and $d = 4 \wedge (p-1) = 4 \wedge (4k+2) = 2$, so

$$N(x^4 = a) = \sum_{\chi_d = 1} \chi(a) = 1 + \rho(a) = N(x^2 = a).$$

$$N(x^4 + y^4 = 1) = \sum_{a+b=1} N(x^4 = a)N(y^4 = b)$$
$$= \sum_{a+b=1} n(x^2 = a)N(y^2 = b)$$
$$= N(x^2 + y^2) = 1$$

Using Chapter 8, Section 3, we obtain

$$N(x^4 + y^4 = 1) = p + 1 \text{ if } p \equiv -1 \pmod{4}.$$