

NOSSOS DIFERENCIAIS | QUEM SOMOS

Graduação, pós-graduação, MBA, Pós- MBA, Mestrado Profissional, Curso In Company e EAD

CONSULTING

Consultoria personalizada que oferece soluções baseada em seu problema de negócio

RESEARCH

Atualização dos conhecimentos e do material didático oferecidos nas atividades de ensino

Líder em Educação Executiva, referência de ensino nos cursos de graduação, pós-graduação e MBA, tendo excelência nos programas de educação. Uma das principais escolas de negócio do mundo, possuindo convênios internacionais com Universidades nos EUA, Europa e Ásia. +8.000 projetos de consultorias em organizações públicas e privadas.

Único curso de graduação em administração a receber as notas máximas

A primeira escola brasileira a ser finalista da maior competição de MBA do mundo

Única Business School brasileira a figurar no ranking LATAM

Signatária do Pacto Global da ONU

Membro fundador da ANAMBA -Associação Nacional MBAs

Credenciada pela AMBA -Association of MBAs

Credenciada ao Executive MBA Council

Filiada a AACSB
- Association to
Advance
Collegiate
Schools of
Business

Filiada a EFMD
- European
Foundation for
Management
Development

Referência em cursos de MBA nas principais mídias de circulação

O **Laboratório de Análise de Dados** – LABDATA é um Centro de Excelência que atua nas áreas de ensino, pesquisa e consultoria em análise de informação utilizando técnicas de **Big Data**, **Analytics** e **Inteligência Artificial**.

O LABDATA é um dos pioneiros no lançamento dos cursos de *Big Data* e

Analytics no Brasil

Os diretores foram professores de grandes especialistas do mercado

- +10 anos de atuação
- +1000 alunos formados

Docentes

- Sólida formação acadêmica: doutores e mestres em sua maioria
- Larga experiência de mercado na resolução de *cases*
- Participação em Congressos Nacionais e Internacionais
- Professor assistente que acompanha o aluno durante todo o curso

Estrutura

- > 100% das aulas realizadas em laboratórios
- Computadores para uso individual durante as aulas
- 5 laboratórios de alta qualidade (investimento +R\$2MM)
- 2 Unidades próximas a estação de metrô (com estacionamento)

CONTEÚDO PROGRAMÁTICO

ANÁLISE

EXPLORATÓRIA

Conteúdo da Aula

5

- 1. Suposições do Modelo
 - i. Normalidade
 - ii. Variabilidade constante
- 2. Métricas de qualidade do modelo
 - i. MAPE
 - ii. SSE
- 3. Código R

1. Suposições do modelo

REGRESSÃO LINEAR | SUPOSIÇÕES DO MODELO

- Para verificar se o modelo ajustado é adequado, deve-se investigar se as suposições do modelo teórico adotado estão satisfeitas.
- Existem várias técnicas formais para conduzir essa análise, e nesta aula aprenderemos a realizá-la por métodos gráficos.

A Regressão Linear Múltipla (modelo teórico) é dada por:

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p + \epsilon \quad \text{com } \epsilon^{\sim} N(0, \sigma^2) - X_1, ..., X_p \text{: variáveis independentes.}$$

$$\epsilon \text{ : erro aleatório associado ao modelo.}$$

Y: variável dependente.

Suposições do modelo

- A **média** dos **resíduos** é **zero**.
- Os resíduos seguem uma distribuição normal.
- Os **resíduos** têm a **variabilidade constante** em torno de x.
- 4. $ε_i$ e $ε_i$ são **não correlacionados**, pata todo i ≠ j.

Distribuição Normal (Gaussiana) dos resíduos

Fazer um histograma dos resíduos e verificar:

- Simetria
- Distribuição dos dados na proporção ao lado e ao redor de zero.

Média dos resíduos próxima de zero

- Histograma dos Resíduos: mostra a distribuição dos resíduos. Espera-se valores centralizados e simétricos ao redor do **zero**.
- QQ-plot (gráfico quantil x quantil): no eixo X, estão dispostos os quantis teóricos da distribuição Normal Padrão; já no eixo y, os valores dos resíduos do modelo. Se os resíduos observados seguirem uma distribuição normal, os pontos devem se dispor ao longo da reta azul.

Interpretação: nos ajustes de modelos com dados reais, pode ocorrer uma leve fuga da normalidade. No caso acima, podemos concluir que os resíduos não violam a suposição de normalidade de forma grave.

Suposição 3: Variabilidade constante ANÁLISE DE RESÍDUOS | REGRESSÃO LINEAR

A variância é constante ao longo dos possíveis valores da variável independente.

Variabilidade constante: Suposições 3 e 4

ANÁLISE DE RESÍDUOS | REGRESSÃO LINEAR

A variância é constante ao longo dos possíveis valores da variável independente.

O gráfico de resíduos *versus* a variável X deve fornecer uma nuvem horizontal de pontos distribuídos **aleatoriamente** ao redor do valor zero.

No caso da Regressão Linear Múltipla, como há *p* variáveis independentes, a fim de não gerar *p* gráficos, uma alternativa consiste em construir um gráfico cujo eixo x represente o valor predito pelo modelo.

Para garantir a suposição 4, o próprio delineamento do problema deve ser realizado de tal forma que as unidades amostrais (observações analisadas) não tenham dependência entre si, ou seja, no gráfico acima os pontos devem se dispor de forma aleatória.

ANÁLISE DE RESÍDUOS | REGRESSÃO LINEAR

Possíveis transformações:

raiz(y): recomendada quando a variância do erro cresce proporcionalmente a *x*.

In(y): recomendada quando o crescimento da variância do erro é mais acentuado do que o anterior; isto é, a variância cresce proporcionalmente a x^2 .

Um investidor deseja estimar o lucro de empresas *startups* de acordo com suas característica, com objetivo de tomada de decisão de investimento baseada no lucro projetado da empresa. A base de dados histórica possui informações de investimento por área, gastos administrativos e região das empresas.

Investimento_PeD	Investimento_em_Mkt	Gastos_Administrativos	Estado	Lucro
0	45173,06	116983,8	Rio de Janeiro	14681,4
542,05	0	51743,15	São Paulo	35673,41
0	0	135426,92	Rio de Janeiro	42559,73
1315,46	297114,46	115816,21	São Paulo	49490,75
1000,23	1903,93	124153,04	São Paulo	64926,08
20177,74	28334,72	154806,14	Rio de Janeiro	65200,33

- i. Base de dados em "Startups"
- ii. Código R em "Startups R"

CASE | FAZER ANÁLISE NO R

Um investidor deseja estimar o lucro de empresas *startups* de acordo com suas característica, com objetivo de tomada de decisão de investimento baseada no lucro projetado da empresa. A base de dados histórica possui informações de investimento por área, gastos administrativos e região das empresas.

(a) Após obter o modelo de regressão linear, verifique se os resíduos possuem distribuição normal.

- i. Base de dados em "Startups"
- ii. Código R em "Startups R"

CASE: Predição *Startups*

SUPOSIÇÕES 1 E 2 | FAZER ANÁLISE NO R

```
#Ajuste do modelo de Regressão Linear
regressao <- lm(data=Startups,
            Lucro ~
            Investimento PeD+Investimento em Mkt)
#Fornece os resíduos do modelo
residuo< (regressao)
    Calcula os resíduos do modelo
      ▲ Histograma dos resíduos
#Gráficos para verificar Normalidade resíduos
(par(mfrow=c(1,2))) Matriz de gráficos (1 linha e 2 colunas)
hist(residuo, col="darkturquoise")
qqnorm(residuo, pch = 1,col="darkturquoise", frame = FALSE)
gqline(residuo, col = "steelblue", lwd = 2)
           qq norm: recebe os resíduos e compara com os quantis da distribuição normal padrão
            qq line: constrói a linha esperada para servir de referência sobre "o que é esperado"
```

caso os resíduos sigam uma distribuição normal padrão.

SUPOSIÇÕES 1 E 2 | FAZER ANÁLISE NO R

Os quantis da distribuição observada são semelhantes aos quantis da distribuição teórica.

Um investidor deseja estimar o lucro de empresas *startups* de acordo com suas característica, com objetivo de tomada de decisão de investimento baseada no lucro projetado da empresa. A base de dados histórica possui informações de investimento por área, gastos administrativos e região das empresas.

(b) Após obter o modelo de regressão linear e verificar a normalidade dos resíduos, verifique se sua variância é constante.

- i. Base de dados em "Startups"
- ii. Código R em "Startups R"

SUPOSIÇÕES 3 E 4 | FAZER ANÁLISE NO R

#Fornece os valores preditos do modelo predito< fitted.values(regressao)

Valores ajustados pelo modelo

#Gráfico para verificar igualdade de variâncias

(plot(predito, residuo, main='Resíduos x Ajustado', ylab='Resíduos', col="darkturquoise")

Gráfico de dispersão: Resíduos x Valores ajustados

SUPOSIÇÕES 3 E 4 | FAZER ANÁLISE NO R

O gráfico fornece uma nuvem horizontal de pontos distribuídos de forma aleatória ao redor do valor zero.

Uma cervejaria deseja iniciar comercialização de uma das marcas de sua cerveja premium em uma cidade no interior de São Paulo. Para isso, ela deseja projetar qual será o consumo de cerveja (em litros) nesta cidade com base em algumas características da região. Cada linha da base de dados é uma cidade.

Temperatura	_Media Precipitacao	População	Renda_Media	Consumo_de_cerveja
27,3	0	38300	7280	14343
27,02	0	51840	9480	14940
24,82	0	50580	9550	16228
23,98	1,2	54180	8220	16748
23,82	0	46570	6810	16956
23,78	12,2	25470	6120	16977
24	0	24840	9790	17075
24,9	48,6	11200	9860	17241
28,2	4,4	36970	5130	17287

R Studio

- i. Base de dados em "Cerveja"
- ii. Código R em "Cerveja R"

base de dados é uma cidade.

CASE | FAZER ANÁLISE NO R

Uma cervejaria deseja iniciar comercialização de uma das marcas de sua cerveja premium em uma cidade no interior de São Paulo. Para isso, ela deseja projetar qual será o consumo de cerveja (em litros) nesta cidade com base em algumas características da região. Cada linha da

- (a) Após obter o modelo de regressão linear, verifique se os resíduos possuem distribuição normal.
- (b) Após obter o modelo de regressão linear e verificar a normalidade dos resíduos, verifique se sua variância é constante.

- i. Base de dados em "Cerveja"
- ii. Código R em "Cerveja R"

CASE: Predição da rentabilidade média de um município

CASE | FAZER ANÁLISE NO R

Um município deseja projetar a rentabilidade média da sua população por meio da taxa de desocupação. A hipótese é que, quanto maior a taxa de desocupação (desemprego) da cidade, menores os salários oferecidos pelo mercado de trabalho. Considere a rentabilidade média do município como a soma dos gastos dividida pela soma dos salários.

Taxa de Desocupação	Taxa de rentab. média
21,9	18,5
6,0	33,7
22,8	19,7
18,1	21,0
12,7	35,1
14,5	19,4
20,0	25,3
19,2	17,0
16,0	24,0
6,6	31,4

R Studio

- i. Base de dados em "Rentabilidade"
- ii. Código R em "Rentabilidade R"

CASE: Predição da rentabilidade média de um município

CASE | FAZER ANÁLISE NO R

Um município deseja projetar a rentabilidade média da sua população por meio da taxa de desocupação. A hipótese é que, quanto maior a taxa de desocupação (desemprego) da cidade, menores os salários oferecidos pelo mercado de trabalho. Considere a rentabilidade média do município como a soma dos gastos dividida pela soma dos salários.

- (a) Após obter o modelo de regressão linear, verifique se os resíduos possuem distribuição normal.
- (b) Após obter o modelo de regressão linear e verificar a normalidade dos resíduos, verifique se sua variância é constante.

- i. Base de dados em "Rentabilidade"
- ii. Código R em "Rentabilidade R"

CASE: Predição de preço de imóvel

CASE | FAZER ANÁLISE NO R

25)

De acordo com a localização de um imóvel, sabe-se que o valor do mesmo pode variar substancialmente. Na base de dados disponibilizada são fornecidas informações sobre o valor do imóvel (R\$) por mil m², a distância para estação de metrô (km), a quantidade comércios próximos, e a idade (anos) do imóvel, em um bairro bem localizado de grande centro urbano. Quais são as características relacionadas ao imóvel que predizem seu valor?

Fonte Adaptada: https://www.kaggle.com/quantbruce/real-estate-price-prediction?select=Real+estate.csv

Idade_imovel	Distancia_metro_Km	Comercios_proximos	Mil_reais_m2
32	1,083595131	10	7,58
19,5	1,396946429	9	8,44
13,3	1,544788954	5	9,46
13,3	1,544788954	5	10,96
5	1,456009608	5	8,62
7,1	1,874980478	3	6,42
34,5	1,570122315	7	8,06
20,3	1,381344189	6	9,34
31,7	2,101860788	1	3,76

R Studio

- i. Base de dados em "Imobiliario"
- ii. Código R em "Imobiliario R"

CASE: Predição de preço de imóvel

CASE | FAZER ANÁLISE NO R

De acordo com a localização de um imóvel, sabe-se que o valor do mesmo pode variar substancialmente. Na base de dados disponibilizada são fornecidas informações sobre o valor do imóvel (R\$) por mil m², a distância para estação de metrô (km), a quantidade comércios próximos, e a idade (anos) do imóvel, em um bairro bem localizado de grande centro urbano. Quais são as características relacionadas ao imóvel que predizem seu valor?

Fonte Adaptada: https://www.kaggle.com/quantbruce/real-estate-price-prediction?select=Real+estate.csv

- (a) Após obter o modelo de regressão linear, verifique se os resíduos possuem distribuição Normal.
- (b) Após obter o modelo de regressão linear e verificar Normalidade dos resíduos, verifique se sua variância é constante.

- i. Base de dados em "Imobiliario"
- ii. Código R em "Imobiliario R"

demais.

CASE | FAZER ANÁLISE NO R

Pode-se segmentar as observações, para manter a relação linear entre a idade e a variável resposta.

Imóveis mais novos

A normalidade dos resíduos é melhor atendida para os imóveis mais novos.

Imóveis mais antigos

Já para imóveis mais antigos, o modelo não está adequado. É necessário incluir variáveis para diminuir os resíduos, por exemplo.

2. Qualidade do modelo

Quantificação dos resíduos

REGRESSÃO LINEAR | QUALIDADE DO MODELO

O **coeficiente de determinação** foi apresentado inicialmente, como indicador de qualidade de ajuste modelo de regressão linear. De forma complementar, apresentamos duas medidas de qualidade adicionais, o **SSE** e **MAPE**, definidos por:

- **SSE** (Sum of Squares Errors): é dado pela soma dos quadrados dos resíduos.
- * MAPE (Mean Absolute Percentage Error): avalia a média absoluta dos resíduos, em relação ao valor original da resposta (y).

Interpretação: quanto menores os valores de SSE e MAPE, melhor o ajuste do modelo, pois buscamos resíduos mais próximos de zero.

SSE =
$$\Sigma \left(y - \widehat{y} \right)^2$$

MAPE = $\frac{100\%}{n} \Sigma \left| \frac{y - \widehat{y}}{y} \right|$

Estatística	Critério
R-Quadrado (regressão linear simples)	Quanto maior , melhor
R-Quadrado Ajustado (regressão linear múltipla)	Quanto maior , melhor
SSE	Quanto m enor , melhor
MAPE	Quanto menor , melhor

CASE | FAZER ANÁLISE NO R

Uma empresa de turismo deseja estimar as vendas mensais (R\$) de passagens aéreas em função do tempo de experiência (anos) dos agentes de viagem. Existe relação linear entre as duas informações?

Tempo de Experiência	Vendas Mensais
(Anos)	(Mil R\$)
1	91
3	110
4	106
4	116
6	119
8	129
10	139
10	143
11	138
13	159

CASE | FAZER ANÁLISE NO R

Uma empresa de turismo deseja estimar as vendas mensais (R\$) de passagens aéreas em função do tempo de experiência (anos) dos agentes de viagem. Existe relação linear entre as duas informações?

Vendas = 90 + 5 * (anos de experiência)

90: R\$90.000 é o valor esperado da venda mensal para um vendedor que não possui experiência

5: R\$5.000 seria o acréscimo esperado na venda mensal a cada variação de um ano no tempo de experiência do vendedor

Exemplo: quantificação dos resíduos

REGRESSÃO LINEAR | QUALIDADE DO MODELO

Tempo de Experiência (Anos)	Valor da venda mensal	Valor da venda mensal estimado pelo modelo	Erro	Erro Absoluto	Erro Absoluto Percentual	Erro ²
1	91	95	-4	4	4,40%	16
3	110	105	5	5	4,55%	25
4	106	110	-4	4	3,77%	16
4	116	110	6	6	5,17%	36
6	119	120	-1	1	0,84%	1
8	129	130	-1	1	0,78%	1
10	139	140	-1	1	0,72%	1
10	143	140	3	3	2,10%	9
11	138	145	-7	7	5,07%	49
13	159	155	4	4	2,52%	16

MAPE	SSE
2,99%	170

sse e MAPE são muito utilizados para avaliação de "melhoria do ajuste" a cada passo de redução de variáveis até se chegar no modelo final ajustado.

Também é útil para comparar com outras técnicas, utilizando a mesma base de dados.

Um investidor deseja estimar o lucro de empresas *startups* de acordo com suas característica, com objetivo de tomada de decisão de investimento baseada no lucro projetado da empresa. A base de dados histórica possui informações de investimento por área, gastos administrativos e região das empresas.

(a) Ajuste o modelo de Regressão Linear Múltipla. A cada passo de redução de variáveis, avalie as medidas MAPE e SSE do modelo.

(b) Discuta os valores de MAPE e SSE em conjunto com o indicador de R²-ajustado.

- i. Base de dados em "Startups"
- ii. Código R em "Startups R"

CASE | FAZER ANÁLISE NO R

Uma cervejaria deseja iniciar comercialização de uma das marcas de sua cerveja premium em uma cidade no interior de São Paulo. Para isso, ela deseja projetar qual será o consumo de cerveja (em litros) nesta cidade com base em algumas características da região. Cada linha da base de dados é uma cidade.

(a) Ajuste o modelo de Regressão Linear Múltipla. A cada passo de redução de variáveis, avalie as medidas MAPE e SSE do modelo.

(b) Discuta os valores de MAPE e SSE em conjunto com o indicador de R²-ajustado.

- i. Base de dados em "Cerveja"
- ii. Código R em "Cerveja R"

3. Código em R

Análise de Resíduos e Qualidade de ajuste

REGRESSÃO LINEAR | EXEMPLO: CASE STARTUP

```
regressao <- Im(data = Startups,
             Lucro ~
             Investimento PeD +
            Investimento em Mkt)
summary(regressao)
residuo <- residuals(regressao) #fornece os resíduos do modelo
# Gráficos para verificar normalidade dos resíduos
par(mfrow = c(1,2))
hist(residuo, col = "darkturquoise")
qqnorm(residuo, pch = 1,col = "darkturquoise", frame = FALSE)
ggline(residuo, col = "steelblue", lwd = 2)
#Gráfico para verificar igualdade de variâncias
predito <- fitted.values(regressao) #fornece os preditos do modelo</pre>
par(mfrow = c(1,1))
plot(predito, residuo, main = 'Resíduos x Ajustado', ylab = 'Resíduos', col = "darkturquoise")
# Quantificação dos resíduos
library(Metrics)
mape(actual = Startups$Lucro, predicted = predito)
sse(actual = Startups$Lucro, predicted = predito)
```


1. Anderson, R. A., Sweeney, J. D. e Williams, T. A. *Estatística Aplicada à Administração e Economia*. Editora Cengage. 4ª edição, 2019.

