Информационные технологии. Лекция 02. Свойства КФС. Основные компоненты КФС.

Студент группы 2305 Макурин Александр

13 февраля 2023

1 Схема организации КФС

Механическая часть делится на автопилот (он же простейший вычислитель) с приводами и целевую нагрузку. И то, и другое представляет собой вычислительные устройства:

- Механика
 - Автопилот + приводы
 - Целевая нагрузка

Система: E=< Phys, Inf, Act, Sens, Humans>. При этом люди (Humans) делятся на:

- ЛПР лица, принимающие решения
- Stakeholder лица, заинтересованные в результате работы системы, выготопреобретатели
- \bullet Env окружающая среда. Люди, влияющие на работу системы, но не связанные с ней напрямую

Функциональная единица: F = < Ph, Inf >. Это то, за счёт чего производится воздействие.

Тензор: $Tr = \langle Act, Sens, Humans \rangle$. Это то, что воздействует на систему.

Отсюда, система: E = < F, Tr >.

 $func: E \rightarrow Service,$ где Service-это пространство услуг.

 $user: Service \rightarrow Consumer,$ где Consumer- потребитель услуги.

БАС (беспилотно-авиационная система) делится на:

- НПУ (Наземный центр управления)
- БВС (беспилотное воздушное судно). После повышения уровня автономности, БВС называют БПЛА (беспилотным летательным аппаратом).

1

 $\Delta
ho^{phy}
ightarrow 0$ — пространственно нераспределённые КФС

 $\Delta
ho^{phy}
ightarrow \infty$ — пространственно распределённые КФС

Централизованные системы управления постепенно сменяются децентрализованными.

Устройство централизованной СУ:

- ГСУ (глобальная СУ)
 - УСУ (узел субсидиарного управления). Одна ГСУ может быть связана с несколькими УСУ.
 - * ЛВУ (локальные вычислительные устройства). Один УСУ может быть связан с несколькими ЛВУ. Представляет собой объединение сенсоров и/или механики.

Устройство децентрализованной СУ:

- $H\Pi Y \Leftrightarrow H\Pi Y -$ множество $H\Pi Y$, коммуницирующих между собой.
 - ЛВУ. Один НПУ может быть связан с несколькими ЛВУ. При этом к ЛВУ может быть привязано одно БВС.

2 Навигация

Навигация — определение местоположения, ориентации и скорости движения объекта.

Positioning — позиционирование, местоопределение, определение местоположения.

Постановка задачи:

- Робот находится в неизвестном месте
- Необходимо установить его местоположение

Решения:

- Глобальная навигация
- Локальная навигация

2.1 Глобальная навигация

2.1.1 Система наземного базирования

До спутниковой системы навигации была попытка создать радионавигационную систему наземного базирования — Loran (LOng RAnge Navigation). Принци работы — импульсно-фазовый. Имела погрешность определения положения в несколько десятков километров у первой версии (использовалась во время Второй мировой войны). У системы Loran-C погрешность удалось снизить до 150-300 метров.

2.1.2 Спутниковая навигация

Спутниковая система навигации — комплексная электронно-техническая система, состоящая из совокупности наземного и космического оборудования. Предназначена для определения местоположения (географически координат и высоты), а также параметров движения (скорости и направления) для наземных, водных и воздушных объектов.

Первая спутниковая система навигации в СССР называлась Циклон и была предназначена для военных (гражданский
вариант — Цикада). Основные параметры:
• Погрешность 90м
• Принцип работы — эффект Доплера
• Система позволяла получать данные о местоположении лишь 6 минут раз в полтора часа
Для работы спутниковой навигации необходимо:
• Видимость нескольких спутников из любой точки земли
• Контроль с земли
• Атомные часы на каждом спутнике
• Координаты спутников должны быть известны в любой момент времени
Методы исключения ошибок:
• Методы моделирования
• Двухчастотный приёмник
• Разностные Методы
• Методы высокой точности
Недостатки:
• Точность
• Потеря связи
• Недостаточное количество спутников
• Ошибки из-за инфраструктурных объектов
2.2 Локальное позиционирование
• Lidar
• Видеокамера
• Датчики расстояния

• ит. д.

2.2.1 Одометрия

Одометрия — использование данных о движении приводов для оценки перемещения.

Расстояние = Скорость · Поправка · Время

Проблемы:

• Измерение движение относительно идеала и, как следствие низкая точность

Причины:

- Неверные настройки
- Различные покрытия (одни колёса ездят по-разному по разным материалам, например по асфальту и гравию)
- Различия моторов (даже моторы в одной партии с одного завода не будут идеально идентичны, а современем их различия лишь возрастут)

Несколько уменьшить расхождение с моделью и повысить точность могут помочь энкодеры — датчики угла поворота, которые позволяют точно знать число совершённых колесом оборотов.

Таким образом, для определения положения в пространстве методом одометрии будет требоваться изначальная калибровка модели. При этом со временем реальное положение робота будет всё больше отклонятся от модели из-за накапливающихся ошибок и требовать повторного проведения калибровки.