1. Képtér és magtér

Magtér és injektivitás.

Definíció (Freud, 5.1.4. Definíció)

```
A \in \text{Hom}(V, W). Az A magtere \text{Ker}(A) = \{v \in V : A(v) = 0_W\}.
```

Ker(A) altér V-ben, és pontosan akkor $\{0_V\}$, ha A injektív.

Bizonyítás

```
A(0_V)=0_W, ezért 0_V\in \operatorname{Ker}(A). Legyen u,v\in \operatorname{Ker}(A), ekkor A(u)=A(v)=0. Ezért A(u+v)=A(u)+A(v)=0+0=0 \Longrightarrow u+v\in \operatorname{Ker}(A). A(\lambda v)=\lambda A(v)=\lambda 0=0 \Longrightarrow \lambda v\in \operatorname{Ker}(A). Tehát \operatorname{Ker}(A) altér. Ha \operatorname{Ker}(A)=\{0\}, akkor A injektív, mert ha A(u)=A(v), akkor A(u-v)=A(u)-A(v)=0, ezért u-v=0, azaz u=v. Ha A injektív, akkor \operatorname{Ker}(A)=0, mert ha v\in \operatorname{Ker}(A), akkor A(v)=0=A(0), így az injektivitás miatt v=0.
```

Képtér és szürjektivitás.

Definíció (Freud, 5.1.3. Definíció)

```
A \in \operatorname{Hom}(V, W). Az A képtere \operatorname{Im}(A) = \{A(v) \in W : v \in V\}. Azaz \operatorname{Im}(A) az A értékkészlete, azon w \in W vektorokból áll, melyekhez van olyan v \in V, hogy A(v) = w.
```

Im(A) altér W-ben, és pontosan akkor W, ha A szürjektív.

Bizonyítás

```
A(0_V)=0_W, ezért 0_W\in {\rm Im}(A). Legyen w,t\in {\rm Im}(A), ekkor A(u)=w és A(v)=t alkalmas u,v\in V-re. Ezért A(u+v)=A(u)+A(v)=w+t \implies w+t\in {\rm Im}(A). A(\lambda u)=\lambda A(u)=\lambda w \implies \lambda w\in {\rm Im}(A). Tehát {\rm Im}(A) altér. Szürjektív akkor és csak akkor, ha értékkészlete az egész W.
```

A dimenziótétel.

Dimenziótétel (Freud, 5.4.1. Tétel)

 $\dim \operatorname{Im}(A) + \dim \operatorname{Ker}(A) = \dim V \ (A \in \operatorname{Hom}(V, W), \dim(V) \ \text{véges}).$

Bizonyítás

Legyen b_1, \ldots, b_n bázis $\operatorname{Ker}(A)$ -ban. Egészítsük ezt ki a d_1, \ldots, d_m vektorokkal V egy bázisává. Ekkor dim V = m + n. Elég tehát belátni, hogy $A(d_1), \ldots A(d_m)$ bázis $\operatorname{Im}(A)$ -ban.

```
Generátorrendszer: Ha w \in \text{Im}(A), akkor w = A(v) alkalmas v \in V-re. Legyen v = \lambda_1 b_1 + \ldots + \lambda_n b_n + \mu_1 d_1 + \ldots + \mu_m d_m. Ekkor w = A(v) = \mu_1 A(d_1) + \ldots + \mu_m A(d_m), mert A(b_j) = 0. Független: Tegyük föl, hogy \mu_1 A(d_1) + \ldots + \mu_m A(d_m) = 0. Ekkor v = \mu_1 d_1 + \ldots + \mu_m d_m \in \text{Ker}(A), és így felírható v = \lambda_1 b_1 + \ldots + \lambda_n b_n alakban is. Bázisban v felírása egyértelmű, ezért \mu_1 = \ldots = \mu_m = 0.
```

A dimenziótétel következménye.

Következmény (Freud, 5.4.2. Tétel)

Ha $\dim(V)$ véges, és $A \in \operatorname{Hom}(V)$, akkor A szürjektivitása és injektivitása (külön) is elegendő az invertálhatósághoz.

Bizonyítás

 $\dim \operatorname{Im}(A) + \dim \operatorname{Ker}(A) = \dim V$. Ha A szürjektív, akkor $\dim \operatorname{Im}(A) = \dim(V)$, így $\dim \operatorname{Ker}(A) = 0$. Ezért A injektív is. Ha A injektív, akkor $\dim \operatorname{Ker}(A) = 0$, ezért $\dim \operatorname{Im}(A) = \dim(V)$. Mivel valódi altér dimenziója kisebb, ezért A szürjektív is.

Végtelen dimenzióban nem igaz! Példa:

 $\mathbb{R}[x]$ -ben A(f(x)) = xf(x). Injektív, de nem szürjektív.

 $\mathbb{R}[x]$ -ben A(f(x)) = f'(x) (derivált). Szürjektív, de nem injektív.

2. Az invertálhatóság jellemzései

Leképezés determinánsa.

Definíció

Legyen $A \in \text{Hom}(V)$, ahol V véges dimenziós vektortér.

Ekkor A determinánsa det(A) = det[A].

[A] az A mátrixa, de melyik bázisban? MINDEGY!

A bázistranszformáció képlete miatt $[A]_{\mathbf{d}/\mathbf{d}} = S^{-1}[A]_{\mathbf{b}/\mathbf{b}}S$.

Determinánsok szorzástétele: det $(S^{-1}[A]_{\mathbf{b}/\mathbf{b}}S) = \det([A]_{\mathbf{b}/\mathbf{b}})$,

hiszen a $det(S^{-1})$ és det(S) számok egymás reciprokai.

A det(A) jelentése: hányszorosára növeli A a térfogatot.

Pontos tárgyalás előjeles mértékek segítségével: lásd Freud-jegyzet, 9.8. szakasz.

det(A) pozitív, ha A irányítástartó, negatív, ha A irányításváltó.

Az invertálhatóság nyolc jellemzése.

Tétel (Freud, 5.6. szakasz)

Ha dim(V) véges, és $0 \neq A \in \text{Hom}(V)$, akkor *ekvivalens*:

- (1) A invertálható (azaz van kétoldali inverze, ami lineáris).
- (2) A-nak van balinverze.
- (3) A-nak van jobbinverze.
- (4) A nem bal oldali nullosztó (azaz $AC = 0 \implies C = 0$).
- (5) A nem jobb oldali nullosztó (azaz $DA = 0 \implies D = 0$).
- (6) A injektív (azaz $Ker(A) = \{0\}$).
- (7) A szürjektív (azaz Im(A) = V).
- (8) A bijektív.
- (9) $\det(A) \neq 0$.

Itt C és D is Hom(V)-ben van.

 $(1) \implies (2), (3)$ triviális, $(6), (7) \implies (8)$ volt már.

Az invertálhatóság jellemzései: megjegyzések.

Az A mint függvény pontosan akkor invertálható, ha bijektív. Ilyenkor az inverze is lineáris: HF. Ezért (8) \iff (1).

Az A pontosan akkor invertálható, ha [A] invertálható. Egy M mátrix pontosan akkor invertálható, ha $\det(M) \neq 0$ (ezt beláttuk az előző félévben). Ezért (8) \iff (9).

Ha A bal oldali nullosztó, akkor nem lehet balinverze. Mert ha AC = 0, de XA = I, akkor 0 = X(AC) = (XA)C = IC = C. Ez ugyanaz az ötlet, mint hogy test nullosztómentes. Ezért (2) \implies (4). Hasonlóan (3) \implies (5) (HF).

Tehát elég belátni, hogy (4) \implies (6) és (5) \implies (7), mert így a bebizonyított nyilakon bármely két állítás között elmehetünk!

Ha nem injektív, akkor bal nullosztó.

Állítás

Ha V véges dimenziós, és $0 \neq A \in \text{Hom}(V)$ nem injektív, akkor létezik $0 \neq C \in \text{Hom}(V)$, hogy AC = 0.

Bizonvítás

Tudjuk, hogy $\operatorname{Ker}(A)$ nem csak a nullvektorból áll. Legyen $0 \neq v \in \operatorname{Ker}(A)$ és b_1, \ldots, b_n bázis V-ben. Az előírhatósági tétel miatt van olyan $C \in \operatorname{Hom}(V)$, hogy $C(b_j) = v$ minden j-re. Tehát $C \neq 0$. Ugyanakkor $AC(b_j) = A(v) = 0$ minden j-re, mert $v \in \operatorname{Ker}(A)$. Azaz AC egy bázis minden elemét nullába viszi, így minden vektort nullába visz, tehát AC = 0.

Ha nem szürjektív, akkor jobb nullosztó.

Állítás

Ha V véges dimenziós, és $0 \neq A \in \text{Hom}(V)$ nem szürjektív, akkor létezik $0 \neq D \in \text{Hom}(V)$, hogy DA = 0.

Bizonyítás

Tudjuk, hogy $\operatorname{Im}(A)$ nem az egész V. Legyen b_1, \ldots, b_m bázis $\operatorname{Im}(A)$ -ban, és egészítsük ezt ki a d_1, \ldots, d_k vektorokkal V egy bázisává. Ekkor $k \neq 0$. Az előírhatósági tétel miatt van olyan $D \in \operatorname{Hom}(V)$, hogy $D(b_i) = 0$ minden i-re és $D(d_j) = d_j \neq 0$ minden j-re. Tehát $D \neq 0$, viszont D(v) = 0 minden $v \in \operatorname{Im}(A)$ -ra, mert minden ilyen v felírható $\lambda_1 b_1 + \ldots + \lambda_m b_m$ alakban,

és $D(\lambda_1 b_1 + \ldots + \lambda_m b_m) = \lambda_1 D(b_1) + \ldots + \lambda_m D(b_m) = 0$. Így DA(w) = 0 minden $w \in V$ -re, mert $v = A(w) \in \text{Im}(A)$.

Mátrix invertálhatóságának jellemzései.

Tétel (Freud, 5.6. szakasz)

Az $M \in T^n \times n$ -es mátrixra ekvivalens:

- (1) *M* invertálható (azaz van kétoldali inverze).
- (2) M-nak van balinverze.
- (3) M-nak van jobbinverze.
- (4) M nem bal oldali nullosztó (azaz $MC = 0 \implies C = 0$).
- (5) M nem jobb oldali nullosztó (azaz $DM = 0 \implies D = 0$).
- (9) $\det(M) \neq 0$.

Itt C és D is $T^{n \times n}$ -beli mátrix.

Bizonyítás

A mátrixok és a lineáris transzformációk közötti *kölcsönösen egyértelmű, művelettartó* megfeleltetésből következik.

Bal- és jobbinverz.

Tétel

Ha dim(V) véges, $A, B \in \text{Hom}(V)$ és AB = I, akkor BA = I.

Bizonyítás

A feltétel szerint A-nak van jobbinverze (a B), ezért az előző tétel miatt van egy C balinverze is: CA = I. Ekkor B = IB = (CA)B = C(AB) = CI = C. Azaz B = C tehát B kétoldali inverz: BA = CA = I.

Fontos megjegyzés

Innen négyzetes mátrixokra $MN = E \implies NM = E$. Ezt tavaly előjeles aldeterminánsokkal bizonyítottuk. A mostani *számolásmentes* bizonyítás mélyén a *dimenziótétel* van. Ez az absztrakt módszerek erejét demonstrálja.