Analysis of massive data sets

http://www.fer.hr/predmet/avsp

Prof. dr. sc. Siniša Srbljić

Doc. dr. sc. Dejan Škvorc

Doc. dr. sc. Ante Đerek

Faculty of Electrical Engineering and Computing
Consumer Computing Laboratory

Analysis of Massive Data Sets: Finding Similar Items (A)

Marin Šilić, PhD

Overview

- Motivation
- Shingling
- MinHashing
- Locality Sensitive Hashing

- Fundamental Data-mining problem
 - Examine data for similar items
 - Particular notion of similarity similarity of sets
 - Find near-neighbors in "high-dimensional space"
 - Examples of finding similar sets
 - Collection of Products
 - Collection of Images
 - Collection of Web Pages

Collection of Products

Collection of Images

Image is represented as a long vector of pixel colors

$$image = \begin{bmatrix} p_{11} & \cdots & p_{1m} \\ \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nm} \end{bmatrix}$$

- o Define some distance function $d(i_1, i_2)$
 - lacktriangle Quantifies the distance between i_1 and i_2
- Goal #1: Given some image i, find all k images that are within some distance threshold $d(i,k) \le s$
- Goal #2: Find all pairs of images that are within some distance threshold $d(i_1, i_2) \le s$

Collection of Web Pages

- Finding textually similar documents in a large corpus
 - Web Pages
 - News Articles
- Testing whether two documents are identical is easy
 - Compare character-by-character
- However, documents are not identical
 - Share large portion of text
- Appliance
 - Plagiarism
 - Mirror Pages don't show both in search results
 - Articles from the Same Source cluster articles as same stories

Distance Measure

- Goal: Find near-neighbors in a high-dimensional data
 - Near-neighbors are points that are small distance apart
 - Distance measure for each application should be defined
- Jaccard distance/similarity
 - Used for quantifying similarity between high-dimensional data points which are represented as large sets
 - Jaccard similarity of two sets is the size of their intersection divided by the size of their union:

$$sim(S_1, S_2) = |S_1 \cap S_2|/|S_1 \cup S_2|$$

■ Jaccard distance: $d(S_1, S_2) = 1 - sim(S_1, S_2)$

Distance Measure

- Goal: Find near-neighbors in a high-dimensional data
 - Near-neighbors are points that are small distance apart
 - Distance measure for each application should be defined
- Jaccard distance/similarity
 - Jaccard similarity: $sim(S_1, S_2) = |S_1 \cap S_2|/|S_1 \cup S_2|$
 - Jaccard distance: $d(S_1, S_2) = 1 sim(S_1, S_2)$

$$sim(S_1, S_2) = 2 / 5$$

$$d(S_1, S_2) = 3 / 5$$

Challenges

- Challenge #1: How to convert the documents into sets?
 - Solution: Shingling
- Challenge #2: Given the documents are represented as sets, how can we compare two documents in O(1)?
 - Solution: Min-Hashing
- Challenge #3: Given the documents can be compared in O(1), how can we examine N ~ 10⁵ documents for duplicates?
 - Solution: LSH

High-level Overview

□ Challenge #1: Convert documents to sets

- Approaches
 - Document = set of words that appear in it
 - Document = set of "important" words that appear in it
- We need to have a representation that incorporates the ordering of words
 - A different approach should be used Shingles

Shingle definition

- A k-shingle (or a k-gram) is a sequence of k tokens that appear in the doc
 - Tokens can be characters, words
 - It depends on the application
- \circ Example, k = 3, document D = abeabe
 - Set of 3-shingles $S(D) = \{abe, bea, eab\}$
 - Optionally, shingles can seen as bag (multiset), then we can count abe twice:
 - $S'(D) = \{abe, bea, eab, abe\}$

Shingles Compression

- Some shingles may be long
- o Idea:
 - Hash singles to integer representation (4 bytes)
 - Represent each document by the set of hash values of its kshingles
- \circ Example, k = 3, document D = abeabe
 - Set of 3-shingles $S(D) = \{abe, bea, eab\}$
 - Hash the shingles $h(D) = \{96356, 97406, 100166\}$

Representation

- Each document is represented as a set of its k-shingles
 - Each shingle is a dimension
 - Vector of 0/1 representation
 - If the shingle is contained in the doc 1, otherwise 0

$$\begin{array}{c} D_1 & D_2 & D_3 \\ D_1 & = \text{abeabe} \\ D_2 & = \text{abe eab} \\ D_3 & = \text{eab} \end{array} \qquad \begin{array}{c} \text{abe} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Similarity measure – Jaccard similarity:

$$sim(S_1, S_2) = |S_1 \cap S_2|/|S_1 \cup S_2|$$

 $sim(D_1, D_2) = 2/3, sim(D_1, D_3) = 1/3$

Fine tuning

- Documents that have a lot of similar text
 - Share a lot of shingles
 - Even if the text is in different order
- The appropriate k should be chosen
 - It should be large enough, or large docs will have most shingles
 - A value k = 5 is fine for short docs
 - A value k = 10 is fine for long docs

- Challenge #2: How can we compare two documents in O(1)?
 - Encode sets using 0/1 vectors
 - Use Jaccard similarity/distance
 - Compute set intersection as bitwise AND, and set union as bitwise OR
 - o Example: $D_1 = 111$, $D_3 = 001$
 - Intersection cardinality = 1
 - Union cardinality = 3
 - Jaccard similarity = 1/3
 - Jaccard distance = 1 (Jaccard similarity) = 2/3

Representation

- Rows = shingles (set elements)
- Columns = documents (sets)

	documents			
shingles	1	0	1	1
	0	0	1	1
	1	1	0	0
	0	0	1	1

- Challenge #2 ~ Compute columns (docs) similarity in O(1)
 - If we have *k*-shingles, English alphabet, 26^k shingles
 - If k = 5, ~ 11M shingles
 - Obviously, we cannot compare two docs in O(1)!

□ Key Idea: Hashing Columns (Signatures)

- Each column that represents doc D hashes to a small signature h(D) such that:
 - h(D) is small enough to fit in RAM and so we can efficiently compare two signatures in constant time O(1)
 - $sim(D_1, D_2)$ is the same as the similarity of signatures $h(D_1)$ and $h(D_2)$
- o Goal: Find a hash function $h(\cdot)$ such that:
 - If $sim(D_1, D_2)$ is high, then with a high probability $h(D_1) = h(D_2)$
 - If $sim(D_1, D_2)$ is low, then with a high probability $h(D_1) \neq h(D_2)$

- $\ \square$ Goal: Find a hash function $h(\cdot)$ such that:
 - o If $sim(D_1, D_2)$ is high, then $h(D_1) = h(D_2)$
 - o If $sim(D_1, D_2)$ is low, then $h(D_1) \neq h(D_2)$
- □ The hash function depends on the similarity measure
 - It is very hard to find the appropriate hash function for some similarity measure
- However, there is a hash function for the Jaccard similarity
 - Min-Hashing

- \circ Create a random permutation π of 0/1 matrix rows
- \circ Define a hash function $h_{\pi}(D)$
 - The index of the first (in the permuted order π) row in which column D has a value 1

$$h_{\pi}(D) = \min_{\pi} \pi(D)$$

- To create a signature (hash) of the document
 - Generate a number (for instance 100) of independent permutations
 - For each permutation, compute the hash function and represent each document with the obtained signature

□ Min-Hashing Example

Permutation				
0	1	3		
3	5	2		
4	3	0		
1	2	5		
2	4	4		
5	0	1		

	Documents			
Shingles	1	0	1	1
ngle	0	0	1	1
S	1	1	0	0
	0	0	1	1
	0	0	1	0
	1	1	0	0

Signatures				
0	4	0	0	
0	0	1	1	
0	0	2	2	

□ Min-Hashing Example

Permutation				
0	1	3		
3	5	2		
4	3	0		
1	2	5		
2	4	4		
5	0	1		

	Documents			
Shingles	1	0	1	1
ngle	0	0	1	1
S	1	1	0	0
	0	0	1	1
	0	0	1	0
	1	1	0	0

Signatures			
0	4	0	0
0	0	1	1
0	0	2	2

i, j	1, 2	3, 4	2, 4
$Jacc_sim(D_i, D_j)$	0.67	0.75	0.0
$Jacc_sim(S_i, S_j)$	0.67	1.0	0.0

- \Box Claim: $p[h_{\pi}(D_1) = h_{\pi}(D_2)] = Jaccard_Sim(D_1, D_2)$
- □ Proof: There are 3 row types:
 - [1, 1] x type, suppose we have X rows of type x
 - [1, 0] and [0, 1] y type, suppose we have Y rows of this type
 - [0, 0] z type, suppose we have Z rows of z type
- □ What is $Jaccard_Sim(D_1, D_2)$ equal to?
 - \circ It is X/(X + Y)

- \Box Claim: $p[h_{\pi}(D_1) = h_{\pi}(D_2)] = Jaccard_Sim(D_1, D_2)$
- □ Proof: There are 3 row types:
 - [1, 1] x type, suppose we have X rows of type x
 - [1, 0] and [0, 1] y type, suppose we have Y rows of this type
 - [0, 0] z type, suppose we have Z rows of z type
- □ On the other hand, what is $p[h_{\pi}(D_1) = h_{\pi}(D_2)]$ equal to?
 - \circ We rearrange rows of D_1 and D_2 using π
 - Then, we search the first row that contains a 1 in either doc
 - O What is the probability that we encounter x row type?
 - \circ It is X/(X + Y)

- Challenge #2: How can we compare two documents in O(1)?
 - \circ We can pick k = 100 random permutations of the rows
 - Define sig[D][i] as the index of the 1st 1-row according to the *i*-th permutation in the doc *D*
 - $sig[D][i] = min(\pi_i(D))$
 - We can see that each document D is represented with its signature S, where the length of |S| = k = 100
 - As can be seen, our goal is reached
 - We can compare two documents in constant time O(1)

Implementation trick

- \circ Generating random permutations π_i is prohibitively costly
- Instead, we can use random hash functions to generate permutations
 - We pick k = 100 hash functions h_i
 - Then, for each row r, we compute $h_i(r)$
 - We use values $h_i(r)$ as random row permutation
- O How to pick a random hash function?
 - Universal hashing:
 - $\bullet h_{a,b}(r) = ((ax + b \bmod p) \bmod |R|)$
 - a and b are random integers
 - p is a prime number (p > |R|)
 - *R* is the set of *k*-shingles

Row	r+1 mod 5	$3r + 1 \mod 5$
0	1	1
1	2	4
2	3	2
3	4	0
4	0	3

Challenge #3: Given the documents can be compared in O(1), how can we examine N ~ 10^5 documents for duplicates?

Naïve solution:

- Compare each pair of signatures and determine if they are duplicates
- It takes $O(N^2)$
 - Assume we can have 10⁶ comparisons per second, it would take
 84 hours
 - If we have N = 10⁶, it would take more than a year

o Feasible solution:

 Focus on pairs of signatures that are likely to be from similar docs

- □ Goal: Find docs whose Jaccard similarity is at least s
 - \circ For instance at least s = 0.75
- □ LSH Locality Sensitive Hashing
 - o Idea: Use a special function f that tells whether D_1 and D_2 is a candidate pair
- □ For Min-Hash matrices
 - Hash columns of signature matrix to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

LSH for Min-Hashing

- Two similar docs have signatures that agree on at least fraction s of their rows
- Signatures partially agree
 - The length of the signature is *k* (number of hash functions used in Min-Hash)
 - Some parts of the signature are identical, some parts differ
 - The idea is to split the signature into *b* equal parts bands
 - For each band *b*, hash its portion of signature to a hash table with *M* buckets
 - Candidate pairs are signatures that hash to the same bucket in at least 1 band
 - By hash to the same bucket, we mean "identical in that band"

Hashing Bands

Signature Matrix

k rows representing hash functionsused in Min-Hash

Each column is a doc signature

M buckets

Split the signatures into b equal bands, each band contains r = k/b rows

According to the band b_i candidates for similarity are: (S_2, S_4) and (S_5, S_7)

Example of Bands

- \circ Suppose we have $N = 10^5$ docs
 - We use k = 100 hash functions therefore 100 rows in signature matrix M
 - We use b = 20, therefore r = k/b = 5
- \circ Goal: find pairs with at least s = 0.75 similarity
 - We assume $sim(S_1, S_2) \ge 0.75$
 - S_1 and S_2 to hash to the same bucket in at least one band we want them to be identical in at least one band
 - $P[S_1 = S_2 \text{ in exactly one band}] = s^r = 0.75^5 = 0.2373$
 - $P[S_1 \neq S_2 \text{ in all bands}] = (1 s^r)^b = (1 0.75)^{20} = 0.0044$
 - 0.4% of 75% similar docs are false negatives (missed)
 - We would find 99.56% pairs of 75% similar docs

Example of Bands

- \circ Suppose we have $N = 10^5$ docs
 - We use k = 100 hash functions therefore 100 rows in signature matrix M
 - We use b = 20, therefore r = k/b = 5
- \circ Goal: find pairs with at least s = 0.75 similarity
 - We assume $sim(S_1, S_2) = 0.2$
 - S_1 and S_2 are bellow our threshold, so we want them not to hash to common buckets (different in all bands)
 - $P[S_1 = S_2 \text{ in one band}] = sim^r = 0.2^5 = 0.00032$
 - $P[S_1 \neq S_2 \text{ in all bands}] = (1 sim^r)^b = 0.9936$
 - $P[S_1 = S_2 \text{ in at least one band}] = 1 (1 sim^r)^b = 0.0064$
 - 0.6% of 20% similar docs are candidate pairs false positives

□ LSH trade-off

- Balance between false negatives and false positives
 - Choose appropriate values for:
 - k, the number of hash functions used in Min-Hash
 - b, the number of bands used in LSH
 - r, the number of rows per band
 - For instance, in previous example
 - If we had b = 10, and r = 10, what would have happened?
 - The number of false positives would go down
 - The number of false negatives would go up

□ LSH Ideally

□ LSH in Practice

LSH in Practice

LSH in Practice

Summary

- Choose k, b, r to get the most of pairs with similar signatures, but eliminate pairs that do not have similar signatures
- Check candidate pairs whether they really have similar signatures
- Optional:
 - In another pass check that docs with similar signatures are really similar documents