Постановка завдання

Для заданого набору вихідних даних необхідно побудувати синтетичні й індивідуальні показники, використовуючи наведені у вказівках методи.

	Вхідні дані								
№ п/п				Номери ознак					
	1	2	3	4	5	6	7		
1	1.95	35.53	54.54	55.47	580	24.96	191.1		
2	1.92	38.42	64.8	72.24	710	27.04	253.5		
3	1.9	37.4	67.5	86.43	740	38.22	308.1		
4	0.35	38.08	3.78	47.73	450	4.68	74.1		
5	0.35	7.65	4.32	55.47	500	5.98	95.55		
6	0.55	4.97	6.48	76.11	680	9.36	95.55		
7	0.57	10.88	6.48	87.72	760	10.92	120.9		
8	0.86	12.41	28.62	33.54	480	16.12	136.5		
9	0.86	12.75	29.7	38.7	590	32.5	163.8		
10	0.84	12.41	34.02	42.57	600	54.34	154.05		
11	0.82	11.73	37.26	51.6	640	106.86	154.05		
12	0.82	16.49	8.64	64.5	340	12.74	169.65		
13	0.82	15.13	9.18	78.69	410	14.82	216.45		
14	0.81	15.3	10.26	94.17	450	16.64	212.55		
15	0.8	14.96	11.88	104.49	500	60.84	366.6		
16	1.19	19.04	32.94	45.15	580	18.46	136.5		
17	1.2	20.23	34.56	55.47	660	19.76	169.65		
18	1.29	22.1	43.2	68.37	780	23.66	222.3		
19	1.27	21.25	45.9	77.4	830	26	200.85		
20	1.36	26.35	28.08	87.72	1270	25.48	200.85		

Виконання

Визначивши, що усі ознаки ε стимуляторами стандартизуємо дані і обчислюємо координати верхнього полюса:

		Стандартизовані дані					
	1	2	3	4	5	6	7
1	1.92	1.53	1.31	-0.53	-0.24	-0.11	0.13
2	1.86	1.81	1.82	0.30	0.41	-0.02	1.00
3	1.82	1.71	1.95	1.00	0.56	0.45	1.77
4	-1.41	1.78	-1.21	-0.91	-0.88	-0.96	-1.52
5	-1.41	-1.16	-1.18	-0.53	-0.63	-0.91	-1.22
6	-0.99	-1.42	-1.07	0.49	0.26	-0.76	-1.22
7	-0.95	-0.85	-1.07	1.07	0.66	-0.70	-0.86
8	-0.35	-0.70	0.03	-1.62	-0.73	-0.48	-0.64
9	-0.35	-0.67	0.08	-1.36	-0.19	0.21	-0.26
10	-0.39	-0.70	0.29	-1.17	-0.14	1.13	-0.39
11	-0.43	-0.77	0.45	-0.72	0.06	3.35	-0.39
12	-0.43	-0.31	-0.96	-0.08	-1.43	-0.62	-0.18
13	-0.43	-0.44	-0.94	0.62	-1.08	-0.53	0.48
14	-0.45	-0.42	-0.88	1.39	-0.88	-0.46	0.43
15	-0.47	-0.45	-0.80	1.90	-0.63	1.41	2.59
16	0.34	-0.06	0.24	-1.04	-0.24	-0.38	-0.64
17	0.36	0.06	0.32	-0.53	0.16	-0.33	-0.18
18	0.55	0.24	0.75	0.11	0.76	-0.16	0.56
19	0.51	0.15	0.88	0.56	1.00	-0.06	0.26
20	0.69	0.65	0.00	1.07	3.19	-0.08	0.26
Рв	1.92	1.81	1.95	1.90	3.19	3.35	2.59

Побудуємо матрицю відстаней:

							:
Матриця відстаней							
	1	2	3	4	5	6	7
1	0,038516	0,024731	1,756449	8,780946	6,317758	12,7089	6,513317
2	0	0,071472	0,404686	5,99229	3,415743	11,93885	6,099881
3	0,003466	0	0,017564	2,593616	0,786987	11,34013	2,533333
4	0,009629	0,008903	0	0,813358	0,44268	8,385891	0,677765
5	9,860166	0,000989	9,782718	8,033985	7,891732	18,58345	16,94411
6	9,860166	8,102007	9,617612	5,99229	5,95159	18,1136	14,5501
7	7,549189	8,464064	8,971239	2,008496	1,229667	16,92014	14,5501
8	7,335039	6,490311	8,971239	0,701314	0,267794	16,38302	11,95577
9	4,576118	5,789197	3,642173	12,5531	6,694856	14,65522	10,48577
10	4,576118	5,638835	3,44264	10,79359	3,147948	9,841775	8,145224
11	4,74559	5,789197	2,700716	9,561106	2,891085	4,909577	8,947245
12	4,918143	6,095857	2,20329	6,975789	1,972933	0	8,947245
13	4,918143	4,115427	8,347348	3,987944	13,12192	15,76734	7,682085
14	4,918143	4,641695	8,194888	1,659914	9,640592	15,07814	4,464962

15	5,005575	4,574181	7,894184	0,265586	7,891732	14,48773	4,699921
16	5,093777	4,709705	7,453667	0	5,95159	3,769536	0
17	2,2247	3,213995	2,877766	8,780946	3,415743	13,90911	10,48577
18	2,16654	2,831412	2,614299	5,99229	1,579439	13,50302	7,682085
19	1,677769	2,279176	1,422724	3,253432	0,13663	12,32087	4,123821
20	1,780992	2,522773	1,124127	1,830055	0	11,63757	5,440943

Побудуємо таксономічний показник:

	Mi	Групи
1	0.81	2
2	0.84	3
3	0.87	3
4	0.71	1
5	0.71	1
6	0.73	1
7	0.75	1
8	0.74	1
9	0.76	1
10	0.78	2
11	0.80	2
12	0.74	1
13	0.76	1
14	0.76	1
15	0.81	2
16	0.77	2
17	0.79	2
18	0.82	3
19	0.83	3
20	0.84	3

В результаті за значеннями таксономічного показника можна отримати три групи:

Перша група (0,71<=Мі< 0,77) має низьке значення показника;

Друга группа (0,77<=Mi< 0,82) має середнє значення показника;

Третя група $(0.82 \le Mi \le 0.87)$ має високе значення показника;

Метод потенціалів

Обчислюємо кореляційну матрицю для наведених значень ознак.

	Кореляційна матриця						
	1	2	3	4	5	6	7
1	1	0.6968	0.9054	0.1306	0.4110	0.1300	0.5599
2	0.6968	1	0.6017	0.0733	0.2234	-0.0888	0.3298
3	0.9054	0.6017	1	-0.1083	0.3905	0.3354	0.4367
4	0.1306	0.0733	-0.1083	1	0.2928	-0.0173	0.6178
5	0.4110	0.2234	0.3905	0.2928	1	0.1031	0.1318
6	0.1300	-0.0888	0.3354	-0.0173	0.1031	1	0.3594
7	0.5599	0.3298	0.4367	0.6178	0.1318	0.3594	1

На її основі побудуємо матрицю відстаней між ознаками. Для кожної ознаки визначимо «найближчу» до неї ознаку. Ці найменші значення виділимо в таблиці кольором:

	Матриця відстаней						
	1	2	3	4	5	6	7
1	0.000	0.303	0.095	0.869	0.589	0.870	0.440
2	0.303	0.000	0.398	0.927	0.777	0.911	0.670
3	0.095	0.398	0.000	0.892	0.609	0.665	0.563
4	0.869	0.927	0.892	0.000	0.707	0.983	0.382
5	0.589	0.777	0.609	0.707	0.000	0.897	0.868
6	0.870	0.911	0.665	0.983	0.897	0.000	0.641
7	0.440	0.670	0.563	0.382	0.868	0.641	0.000

В результаті одержимо два скупчення з 4 та 3 елементів:

У першому скупченні вершина з найбільшим потенціалом – X1.

У другому скупченні вершина з найбільшим потенціалом – Х7.

Таким чином, діагностичними ознаками будуть ознаки: X1, X7.

Метод центра ваги

Проаналізуємо матрицю відстаней і виділимо в ній однорідні підмножини ознак. Критичне значення радіуса кулі становить 0,641. В результаті одержимо першу множину з двох елементів {X1,X3}, друга підмножина {X2, X4, X5}, та дві підмножини по одному елементу {X6} та {X7}

	Матриця відстаней							
0	1	2	3	4	5	6	7	
1	0.000	0.303	0.095	0.869	0.589	0.870	0.440	
2	0.303	0.000	0.398	0.927	0.777	0.911	0.670	
3	0.095	0.398	0.000	0.892	0.609	0.665	0.563	
4	0.869	0.927	0.892	0.000	0.707	0.983	0.382	
5	0.589	0.777	0.609	0.707	0.000	0.897	0.868	
6	0.870	0.911	0.665	0.983	0.897	0.000	0.641	
7	0.440	0.670	0.563	0.382	0.868	0.641	0.000	r
min	0.095	0.303	0.095	0.382	0.589	0.641	0.382	0,641
k	5	3	5	2	3	1	4	

З багатоелементної підмножини візьмемо ту ознаку, сума відстаней від якої до інших ознак підмножини найменша. Сумарні значення відстаней становлять:

X1	1,510078
X2	2,260289
X3	1,506632
X5	2,879168
X7	2,615668

Отже, репрезантом цієї множини буде ознака ХЗ.

Одноелементні групи містять такі ознаки, значення яких різко відрізняється від значень інших ознак; тому їх одразу включають у діагностичну сукупність.

Таким чином, діагностичними ознаками будуть ознаки: X3,X4,X6.

Даний метод у порівнянні з попереднім дав більшу кількість діагностичних ознак.