

CÉSAR VALLEJO

CÉSAR VALLEJO

ÁLGEBRA

Inecuaciones

Semana 03

Docente: José Luis Vásquez Carhuamaca

OBJETIVOS:

- ✓ Resolver inecuaciones polinomiales y fraccionarias.
- ✓ Aplicar teoremas sobre inecuaciones.
- ✓ Resolver problemas tipo, relacionados con el tema de inecuaciones.

INECUACIÓN

Una inecuación es una desigualdad entre dos expresiones matemáticas, donde esta presente al menos una variable que será llamada incógnita.

Ejemplo:

•
$$2x^2 \le 3x - 1$$

$$\bullet \quad \frac{x-3}{x+1} > \frac{5}{x+3}$$

•
$$|2x - 3| \le 10$$

Solución de una inecuación

Es el valor que al reemplazarla por la incógnita en la inecuación, la desigualdad se verifica.

Ejemplo:

• $x^2 \le x + 6$ una solución es el 2, veamos:

$$x = 2$$
: $2^2 \le 2 + 6$ is everifica!

$$2^2 \le 2 + 6$$

INECUACIÓN LINEAL

Su forma general es:

$$ax + b \ge 0$$
 $a \ne 0$

Resolución:

Su resolución por lo general es por despeje de la incógnita aplicando los teoremas de desigualdades.

Ejemplo

Resuelva

$$3x - 5 \le x - 17$$

Resolución

$$\xrightarrow{-x}$$
 $2x - 5 \le -17$

$$\xrightarrow{\div 2}$$
 $x \le -6$

$$\therefore CS = \langle -\infty; -6]$$

INTENSIVO UNI

INECUACIÓN CUADRÁTICA

Su forma general es:

$$ax^2 + bx + c \ge 0 \qquad a \ne 0$$

Ejemplos

•
$$5x^2 + 3x - 7 > 0$$
 • $x^2 - 10 \le 0$

Resolución:

La inecuación cuadrática se debe reducir a su forma general y es conveniente que su coeficiente principal sea positivo ($\alpha > 0$).

Según el discriminante (Δ) de la cuadrática, se presentan 3 casos:

Caso 1 $(\Delta > 0)$

Halle sus dos raíces (por factorización o fórmula general), luego aplique el criterio de los puntos críticos e indique el CS.

Ejemplo:

Resuelva

$$5x + 12 \ge 2x^2$$

Resolución

$$0 \ge 2x^2 - 5x - 12$$

$$2x - 3$$

$$x - 4$$

$$0 \ge (2x+3)(x-4)$$

$$C = \begin{bmatrix} -3 \\ 2 \end{bmatrix}, L$$

Caso 2
$$(\Delta = \mathbf{0})$$

El polinomio es un trinomio cuadrado perfecto y por simple inspección se obtiene el conjunto solución.

Ejemplo

Resuelva la inecuación

inecuación
$$x^2 - 12x + 36 \le 0$$

$$\begin{cases} x^2 - 12x + 36 \le 0 \\ x - 6 \\ x - 6 \end{cases}$$

Resolución:

Se tiene
$$x^2 - 12x + 36 \le 0$$
 $(x-6)(x-6) \le 0$

Como
$$\Delta = (-12)^2 - 4(1)(36) = 0$$

entonces la cuadrática es un TCP

También tenga en cuenta lo siguiente:

• Si
$$(x-3)^2 \ge 0 \longrightarrow CS = \mathbb{R}$$

• Si
$$(x-3)^2 > 0$$
 \longrightarrow CS = $\mathbb{R} - \{3\}$

• Si
$$(x-3)^2 \le 0$$
 \longrightarrow CS = {3} (Solución única)

• Si
$$(x-3)^2 < 0 \longrightarrow CS = \emptyset$$

Observación

Si el conjunto solución de:

- $ax^2 + bx + c \le 0$ es de la forma $\{\alpha\}$
- $ax^2 + bx + c > 0$ es de la forma $\mathbb{R} \{\alpha\}$

entonces $\alpha > 0$, $\Delta = 0$ y α es raíz doble.

Se puede aplicar Cardano.

INTENSIVO UNI Caso 3 $(\Delta < 0)$ Ejemplo Se debe aplicar el teorema de trinomio positivo, Halle el valor de (b + m) si la inecuación luego por simple inspección se obtiene el $2x^2 - 12x + b \le 0 \text{ tiene como } CS = \{m\}.$ conjunto solución que puede ser \mathbb{R} o \emptyset . Resolución: Teorema del trinomio positivo (TTP): Notamo q' m es la raíz doble. For Cavolano $ax^2 + bx + c > 0$; $\forall x \in \mathbb{R} \leftrightarrow (a > 0 \land \Delta < 0)$ Ejemplo e) Suma o m+m=-(-12) $\Rightarrow m=3$ Sea $P_{(x)} = 3x^2 + 7x + 5$ Como $\Delta = 7^2 - 4(3)(5)$ o) Product $r(m)(m) = \frac{b}{2} = \frac{b}{2}$ raice $\frac{1}{3}$ (3) $\Lambda = -11 < 0$ Además a = 3 > 0Por el teorema del trinomio positivo $P_{(x)} = 3x^2 + 7x + 5 > 0$; $\forall x \in \mathbb{R}$

Teorema del trinomio no negativo

$$ax^2 + bx + c \ge 0$$
; $\forall x \in \mathbb{R} \leftrightarrow (a > 0 \land \Delta \le 0)$

Aplicación

Determine la variación de m si la inecuación

$$x^2 - mx + 3 \ge 0$$

cumple para todo x que pertenece a los reales.

Resolución:

$$\chi^2 - m \chi + 3 \ge 0$$
; $\forall \chi \in \mathbb{R}$, por el. T. Tho negation

$$(-m)^2 - 4(1)(3) \le 0 \Rightarrow 1m^2 \le 12$$

$$|m| \le 2\sqrt{3}$$

& $m \in [-2\sqrt{3}]; 2\sqrt{3}]$

INECUACIÓN POLINOMIAL DE GRADO SUPERIOR

Su forma general es:

$$a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \ge 0$$

Donde: $a_0 \neq 0 \land n \geq 3$

Ejemplos:

•
$$x^3 + 2x^2 - 4x - 8 \le 0$$

•
$$4x^4 - 5x^2 + 1 > 0$$

Resolución:

- 1) La inecuación que tome su forma general y es convenientes que su coeficiente principal sea positivo.
- 2) Factorice en \mathbb{R}
- 3) Aplique los teoremas necesarios para simplificar la inecuación.

Teorema 3

Cuando $P_{(x)}$ presenta factores con **exponente par**, se puede cancelar dicho factor teniendo en cuenta lo siguiente:

Si la desigualdad es \leq o \geq , se rescata la(s) solución(es) de los factores cancelados igualándolos a cero.

Ejemplos

•
$$(x-4)^2(x-1) \le 0$$

$$x - 1 \le 0$$
 $V x - 4 = 0$

$$x \le 1$$
 \forall $x = 4$

$$\therefore CS = \langle -\infty; 1 \rangle \cup \{4\}$$

•
$$(x+3)^4(x-5)(x-8)^6 \ge 0$$

$$x - 5 \ge 0$$
 V $x + 3 = 0$ V $x - 8 = 0$

$$x \ge 5$$
 $\forall x = -3$ $\forall x = 8$

Ya está en el CS

$$\therefore CS = [5; +\infty) \cup \{-3\}$$

Si la desigualdad es < o > , se rescata la(s) restricciones obtenidas de los factores cancelados, indicando que estas deben ser diferente a cero.

Ejemplos

•
$$(x-5)^4(x-9) < 0$$

$$x - 9 < 0 \quad \land \quad x - 5 \neq 0$$

$$x < 9$$
 \wedge $x \neq 5$

$$\therefore CS = \langle -\infty; 9 \rangle - \{5\}$$

•
$$(x-6)^2(x-4)(x+1)^8 > 0$$

$$x-4>0$$
 \wedge $x-6\neq 0$ \wedge $x+1\neq 0$

$$x > 4$$
 \wedge $x \neq 6$ \wedge $x \neq -1$

$$\Lambda \quad x \neq -1$$

El CS no toma este valor

$$\therefore CS = \langle 4; +\infty \rangle - \{6\}$$

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe