

Single Dell Data Analysis Course

Differential abundance and gene expression analysis

Lisa Buchauer

Professor of Systems Biology of Infectious Diseases
Department of Infectious Diseases and Intensive Care
Charité - Universitätsmedizin Berlin

Today

Heumos, L., Schaar, A.C., Lance, C. et al. Best practices for single-cell analysis across modalities. Nat Rev Genet 24, 550–572 (2023). https://doi.org/10.1038/s41576-023-00586-w

Recap: Where we stand after a whole lot of processing

Finally, an annotated dataset.

What to do with an annotated dataset: 1) Compositional analysis

Cell type fraction data is compositional.

Type A	5%
Type B	30%
Type C	25%
Type D	40%

sums to 100%

Cell type fraction data is compositional.

If one cell type becomes more abundant,

the fractional contribution of the other cell types goes down

even though their absolute numbers may be unchanged.

Cell type count data **from a sample** is compositional.

Cell type count data **from a sample** is compositional.

Whole organ

Compositional data requires special statistical methods.

Compositional data is characterized by inherent negative correlations between its features

[If one goes up, another must go down]

Compositional data requires special statistical methods.

Compositional data is characterized by inherent negative correlations between its features

[If one goes up, another must go down]

Statistical methods for non-compositional data (e.g. t-test, Wilcoxon's test...) may return false positive results when testing for differential abundance

Compositional data requires special statistical methods.

Compositional data is characterized by inherent negative correlations between its features

[If one goes up, another must go down]

Statistical methods for non-compositional data (e.g. t-test, Wilcoxon's test...) may return false positive results when testing for differential abundance

ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION Volume 8, 2021

Review Article | Free

Compositional Data Analysis

Michael Greenacre1

For differential abundance testing in sc data, use dedicated methods.

scCODA for labelled clusters

miloR for graph neighborhoods (does not need labels)

https://www.nature.com/articles/s41467-021-27150-6

What to do with an annotated dataset:

2) Differential expression testing between conditions

pseudobulk methods

- 1. Preprocess, cluster and annotate the dataset
- 2. Aggregate counts by taking the mean per cell type and sample/patient

Differential Gene Expression Testing: Cells are not independent replicates

Aim: compare case and control, e.g. disease X vs. healthy

Naïve approach

Statistical comparison (e.g. Wilcoxon via marker gene tests) between celltype A in case and control

Many highly significant results!

https://www.sc-bestpractices.org/conditions/differential_gene_expression.html

Differential Gene Expression Testing: Cells are not independent replicates

Aim: compare case and control, e.g. disease X vs. healthy

Naïve approach

Statistical comparison (e.g. Wilcoxon via marker gene tests) between celltype A in case and control

Many highly significant results!

But: Treats each cell as an independent replicate, ignoring that cells from same patient are correlated!

https://www.sc-bestpractices.org/conditions/differential_gene_expression.html

Differential Expression – Marker Testing vs Condition comparison

Marker gene testing (within dataset)	Differential expression between conditions
Compares: "Cluster X" vs "all other cells"	Compares: "Condition A" vs "Condition B" within same cell type
Purpose: Identify cell type-defining features	Purpose: Identify condition-responsive genes
Tests assume cells are independent observations	 Requires biological replicates (multiple patients/samples) Needs ability to account for donor-specific effects (paired samples)
FindMarkerGenes() and friends	DEG framework like DESeq, edgeR and friend

One valid strategy: Pseudobulking

mean or sum of counts

- One gene expression vector per sample and cell type
- Less sparse

pseudobulk methods

- 1. Preprocess, cluster and annotate the dataset
- 2. Aggregate counts by taking the mean per cell type and sample/patient
- 3. Apply a differential expression method like for bulk data

pseudobulk methods

- 1. Preprocess, cluster and annotate the dataset
- 2. Aggregate counts by taking the mean per cell type and sample/patient
- 3. Apply a differential expression method like for bulk data

single-cell specific methods

- Typically use generalized mixed effects models
- Model specific single-cell data noise properties accurately

Das, S. et al. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies. Genes 2021, 12, 1947. https://doi.org/10.3390/genes12121947

pseudobulk methods

single-cell specific methods

Consensus and robustness across methods are low!

pseudobulk methods

single-cell specific methods

Consensus and robustness across methods are low!

Pseudobulk methods perform favourably against single-cell specific methods.

Example: pseudobulk/DESeq2

1) Create pseudobulk object

Example dataset: *in vitro* stimulated PBMCs from 8 Lupus patients before and after 6h-treatment with INF-β (16 samples in total)

label	cluster	cell_type	replicate
ctrl	9	CD14+ Monocytes	patient_1016
ctrl	9	CD14+ Monocytes	patient_1256
ctrl	3	CD4 T cells	patient_1488
ctrl	9	CD14+ Monocytes	patient_1256
ctrl	4	Dendritic cells	patient_1039

calculate summed gene expression per patient and cell type

Pseudobulk dataset with one entry per patient_celltype [patient x cell types rows] [e.g. 16 x 7 = 112]

annotated single cell dataset with **raw counts**[thousands of rows]

Example: pseudobulk/ DESeq2 2) Inspect major axes of variation

The statistical model used for differential gene expression must capture **major axes of variation** to return accurate differential gene expression results.

Lognormalize pseudobulk data \rightarrow PCA \rightarrow inspect covariates

Example: pseudobulk/ DESeq2 2) Inspect major axes of variation

The statistical model used for differential gene expression must capture **major** axes of variation to return accurate differential gene expression results.

Lognormalize pseudobulk data \rightarrow PCA \rightarrow inspect covariates

[R-like pseudocode]

Example: pseudobulk/ DESeq2

3) Run a differential expression test for a chosen cell type

Since we identified no major confounders during the exploratory analysis, we set up the simplest **design matrix** with the stimulation label as sole covariate.

design matrix

Sample	Intercept	condition	Interpretation
ctrl_1	1	0	baseline expression
ctrl_2	1	0	baseline expression
ctrl_3	1	0	baseline expression
stim_1	1	1	baseline + treatment
stim_2	1	1	baseline + treatment
stim_3	1	1	baseline + treatment

model

Gene expression = $\beta_0 \times \text{Intercept} + \beta_1 \times \text{condition}$

Example: pseudobulk/ DESeq2 3) Run a differential expression test for a chosen cell type

Run the DESeq2 pipeline (normalization, dispersion estimation, statistical testing)

dds <- DESeq(dds)

Size factor estimation:

Normalizes for library size differences between samples

Dispersion estimation:

Models the relationship between mean expression and variance across genes

Statistical testing:

Fits negative binomial generalized linear models and performs Wald tests

Example: pseudobulk/ DESeq2 3) Run a differential expression test for a chosen cell type

design matrix

Sample	Intercept	condition	n Interpretation
ctrl_1	1	0	baseline expression
ctrl_2	1	0	baseline expression
ctrl_3	1	0	baseline expression
stim_1	1	1	baseline + treatment
stim_2	1	1	baseline + treatment
stim_3	1	1	baseline + treatment

model

Is β_1 (the log2 fold change) different from 0?

log(expected counts) =

 β_0 × Intercept +

 $\beta_1 \times condition$

Size factor estimation:

Normalizes for library size differences between samples

Dispersion estimation:

Models the relationship between mean expression and variance across genes

Statistical testing:

Fits negative binomial generalized linear models and performs Wald tests

Example: pseudobulk/ DESeq2 3) Run a differential expression test for a chosen cell type

Run the DESeq2 pipeline (normalization, dispersion estimation, statistical testing)

dds <- DESeq(dds)

Extract results for the comparison of interest
res <- results(dds, contrast = c("label", "stimulated",
"control"))</pre>

- Extracts the differential expression results for a specific comparison
- Returns log2 fold changes, p-values, and adjusted p-values for each gene
- contrast: Specifies which comparison to extract (condition, numerator, denominator)
- Here: "stimulated" vs "control" within the "label" column

Inspect and visualize DEG results: Smear plot

CD14+ monocytes

	logFC	logCPM	F	PValue	FDR
HESX1	8.345536	6.773420	1281.013295	1.837373e-15	2.766927e-12
CD38	7.126846	7.420668	1243.793133	2.266164e-15	2.766927e-12
NT5C3A	5.657050	8.327003	1218.102628	2.628780e-15	2.766927e-12
SOCS1	4.388247	6.943768	1191.289806	3.079524e-15	2.766927e-12
GMPR	6.943484	7.031832	1159.601183	3.730018e-15	2.766927e-12

Filter for genes with FDR < 0.01 (here marked in red)

Inspect and visualize DEG results: Volcano plot

CD14+ monocytes

	logFC	logCPM	F	PValue	FDR
HESX1	8.345536	6.773420	1281.013295	1.837373e-15	2.766927e-12
CD38	7.126846	7.420668	1243.793133	2.266164e-15	2.766927e-12
NT5C3A	5.657050	8.327003	1218.102628	2.628780e-15	2.766927e-12
SOCS1	4.388247	6.943768	1191.289806	3.079524e-15	2.766927e-12
GMPR	6.943484	7.031832	1159.601183	3.730018e-15	2.766927e-12

Filter for genes with FDR < 0.01 And logFC>1.5, (here marked in orange)

Inspect and visualize DEG results: Heatmap

CD14+ monocytes

Filter for genes with FDR < 0.01 And logFC>1.5

Genes

