Binary neutron star population in the Milky Way

Mostly isolated pulsars

- young pulsars
- high magnetic field

Mostly pulsars in binaries

- old/recycled pulsars
- low magnetic fields

MILLISECOND PULSARS

PULSARS IN BNSS

WHERE PULSARS ARE BORN?

HOW DO THEY EVOLVE?

GRAVITATIONAL WAVES

BNS FORMATION

Tauris et al. 2017

BNS FORMATION

Tauris et al. 2017

WHAT CAN WE SAY ABOUT THE COMMON ENVELOPE?

WHAT ARE THE BIRTH MAGNETIC FIELDS AND SPIN PERIODS?

DOES THE MAGNETIC FIELD EVOLVE WITH TIME?

Milky-Way model

Stellar EVolution N-body Population synthesis code written in C++ https://gitlab.com/sevncodes/sevn

Iorio et al. 2023

EAGLE: Schaye et al. 2014, the EAGLE team 2017 IllustrisTNG: Nelson et al. 2019, Pillepich et al. 2019

Sgalletta et al 2023: 10.1093/mnras/stad2768

Iorio et al. 2023

observations from: Manchester et al. 2005, Sengar et al. 2022

Sgalletta et al 2023: 10.1093/mnras/stad2768

SPIN-DOWN

SPIN-UP

RADIO SELECTION EFFECTS

PSRPOPPY LORIMER ET AL. 2011, BATES ET AL. 2014

Initial distributions

Faucher-Giguère & Kaspi 2006, Chattopadhyay et al. 2020, 2021, Rudak & Ritter 1994

observations from: Manchester et al. 2005, Sengar et al. 2022

THE EFFECT OF INITIAL DISTRIBUTIONS

Sgalletta et al 2023:

CONCLUSIONS

- We are able to reproduce the merger rates, orbital and pulsars properties in a self-consistent fashion
- Solid statistical framework to evaluate the different models, however **too large** uncertainties due to the small sample of pulsars
- The **initial distributions** of magnetic field and spin period at pulsar formation play a critical role
- We predict **SKA** to observe about 20 new pulsars in BNSs

Spin-down

$$\dot{\Omega}=rac{8\pi B^2R^6\sin^2(lpha)\Omega^3}{3\mu_0c^3I} \ B=(B_0-B_{min})e^{-\Delta t/ au}+B_{min}$$

Spin-up

$$V_{diff}=\Omega_K-\Omega_{NS}$$
 $B=(B_0-B_{min})e^{-\Delta M_{NS}/\Delta M_d}+B_{min}$
 $R_{Alfven}=\left(rac{2\pi^2}{G\mu_0^2}
ight)^{1/7}\left(rac{R^6}{\dot{M}_{NS}M_{*/2}^{1/2}}
ight)^{1/7}B^{4/7}$

 $J = V_{diff} R_A^2 \dot{M}_{NS}$

SN KICKS

Giacobbo & Mapelli 2020, Hobbs et al. 2005, Atri et al. 2019

Figure A1. BNS merger rate in the MW as a function of the look-back time for different natal kick models. Purple dashed line: Fiducial model (Ua3t1Emp); pink dot-dashed line: $K\sigma265$ model, yellow solid line: $K\sigma150$ model. The circles show the BNS merger rate in the MW inferred from observations, as in Fig. 1. All simulations shown in this figure assume our fiducial model parameters: $\tau_d = 1$ Gyr, the U distribution for initial spins and magnetic fields, the Emp MW model and $\alpha = 3$. The natal kick model has a dramatic impact on the MW merger rate. Our fiducial model is the only one that matches the observed rate.

NEUTRON STARS MASSES

