Contents

1	Rem 1.1 1.2	inder Observation Bug List .																				
2	Init 2.1	vimrc																				. 1
	2.2	template.c																				
	2.3	run.sh																				
	2.4	init.sh																				
	2.5	template (optio	nal)																		. 2
_																						_
3	Basi	-																				2
	3.1 3.2	Stress PBDS																				
	3.3	Random																				
	5.5	Random					•	•	•	 •	•	٠.	•	 •	•	•	 •	•	•	•	•	. 2
4	Pyth	ion																				2
	4.1																					
	4.2	Decimal .																				. 2
5	Date	Structure																				2
,	5.1	Heavy Ligh		comr	ากร	itio	n															
	5.2	Skew Hear																				
	5.3	Leftist Hea																				
	5.4	Persistent	Treap	ο.																		. 3
	5.5	Li Chao Tre																				
	5.6	Time Segn	nent 1	Tree	٠		•	•		 •	•		٠	 •	٠		 •	•	•	•	•	. 4
6	DP																					4
•	6.1	Aliens																				. 4
7	Grap			_																		5
	7.1	Bellman-Fe																				
	7.2																					
	7.3	BCC - Bridg																				
	7.4 7.5	SCC - Tarja Eulerian Pa																				
	7.6	Eulerian Pa																				
	7.7	Hamilton I																				
	7.8	Kth Shorte	st Pa	th .																		. 8
	7.9	System of	Differ	rence	e Co	ons	tr	ain	ıts													. 8
8	Strir																					9
0	8.1	Rolling Ha	sh																			_
	8.2	Trie																				
	8.3	KMP																				
																						_
	8.4	Z Value .																				
	8.5	Manacher																	:			. 9
	8.5 8.6	Manacher Suffix Arra	 ay					:				 										. 9 . 9
	8.5 8.6 8.7	Manacher Suffix Arra SA-IS	y		 	 				 	:	 		 								. 9 . 9 . 10
	8.5 8.6 8.7 8.8	Manacher Suffix Arra SA-IS Minimum	y Ny Rotat	 	 	 				 		 		 								. 9 . 9 . 10
	8.5 8.6 8.7	Manacher Suffix Arra SA-IS	y Ny Rotat	 	 	 				 		 		 								. 9 . 9 . 10
9	8.5 8.6 8.7 8.8 8.9	Manacher Suffix Arra SA-IS Minimum Aho Coras metry	Rotat	ion						 				 			 					. 9 . 10 . 10 . 10
9	8.5 8.6 8.7 8.8 8.9 Geo 9.1	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Oper	Rotatick .	ion						 				 			 					. 9 . 10 . 10 . 10 . 10
9	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Oper InPoly	Rotatick .	ion						 				 								. 9 . 9 . 10 . 10 . 10 . 11 . 11
9	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Oper InPoly Sort by An	Rotat Rotat iick ration	ion						 				 								. 9 . 9 . 10 . 10 . 10 . 11 . 11
9	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Opel InPoly Sort by An Line Inters	Rotatick	ion										 								. 9 . 9 . 10 . 10 . 10 . 11 . 11 . 11
9	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Opel InPoly Sort by An Line Inters Line Inters	Rotatick	ion is						 				 								. 9 . 9 . 10 . 10 . 10 . 11 . 11 . 11 . 11
9	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Opel InPoly Sort by An Line Inters	Rotatick	ion is										 								9 . 9 . 10 . 10 . 10 . 11 . 11 . 11 . 11
9	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.6 9.7	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Oper InPoly Sort by An Line Inters Convex Hu Lower Con Polygon A	Rotation	ion is										 								9. 9 . 10 . 10 . 10 . 11 . 11 . 11 . 11 . 11
9	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Opei InPoly Sort by An Line Inters Convex Hu Lower Con Polygon Al Pick's Theo	Rotation gle sect C sectio ull ncave rea . orem	ion is										 								9 9 10 10 10 11 11 11 11 11 11 11 11 11 11
9	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Opel InPoly Sort by An Line Inters Convex Hu Lower Con Polygon Al Pick's Theo Minimum	ration gle sect C sectio ull ncave rea . prem Enclo	ion heck n Hull										 								9 9 10 10 10 11 11 11 11 11 11 11 11 11 11
9	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.1 9.1 9.1	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Oper InPoly Sort by An Line Inters Line Inters Convex Hu Lower Con Polygon A Pick's Thec Minimum PolyUnion	ration	ion ns . heckknn . Hull										 								. 9 . 10 . 10 . 10 . 11 . 11 . 11 . 11 . 11
9	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.1 9.1 9.1	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Opel InPoly Sort by An Line Inters Convex Hu Lower Con Polygon Al Pick's Theo Minimum	ration	ion ns . heckknn . Hull										 								. 9 . 10 . 10 . 10 . 11 . 11 . 11 . 11 . 11
	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Oper InPoly Sort by An Line Inters Line Inters Convex Hu Lower Con Polygon A Pick's Thec Minimum PolyUnion	ration gle . sect C sectio ull . ncave rea . prem Enclo i Sum	ion ns . heckknn . Hull										 								. 9 . 10 . 10 . 10 . 11 . 11 . 11 . 11 . 11
	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 Num	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Opel InPoly Sort by An Line Inters Line Inters Convex Hu Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski	Rotatick	ion																		. 99 . 100 . 100 . 110 . 111 . 111 . 111 . 112 . 122 . 122 . 122 . 123 . 133 . 133 . 134 . 100 .
	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 0.11 0.11	Manacher Suffix Arra SA-IS Minimum Aho Coras Metry Basic Oper InPoly Sort by An Line Inters Line Inters Convex HL Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski	Rotation Rot	ns																		. 99 . 100 . 100 . 110 . 111 . 111 . 111 . 112 . 122 . 122 . 122 . 133 . 133 . 133
	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.10 9.11 9.12 Nun 10.1 10.2	Manacher Suffix Arra SA-IS Minimum Aho Coras Metry Basic Oper InPoly Sort by An Line Inters Convex Hu. Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski her Theor Pollard's rh Miller Rabi Fast Powe	Rotatick	icion has	Cir																	. 99 . 100 . 100 . 110 . 111 . 111 . 111 . 111 . 112 . 122 . 122 . 123 . 123 . 133 . 133 . 133
	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.10 9.11 9.12 Nun 10.12 10.3 10.4	Manacher Suffix Arra SA-IS Minimum Aho Coras Metry Basic Oper InPoly Sort by An Line Inters Convex Hu. Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski her Theor Pollard's rh Miller Rabi Fast Powe Extend GC	ration gle sect C sectio care rea i Sum ry ho r r	icion hesk heck n Hull sising	Cir																	. 99. 100. 100. 100. 110. 111. 111. 111.
	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.7 9.8 9.9 9.10 10.1 10.2 10.3 10.5	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Opel InPoly Sort by An Line Inters Line Inters Convex Hu Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski hber Theor Pollard's rh Miller Rabi Fast Powel Extend GC Mu + Phi	Rotation ration gle	heck	Cir																	9 9 9 1 100 110 110 110 110 110 110 110
	8.5 8.6 8.7 8.8 8.9 Geo 9.1 9.2 9.3 9.4 9.5 9.7 9.8 9.9 9.10 10.1 10.2 10.3 10.5 10.5 10.5	Manacher Suffix Arra SA-IS Minimum Aho Coras Metry Basic Oper InPoly Sort by An Line Inters Line Inters Convex Hu Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski hber Theor Pollard's rl Miller Rabi Fast Powe Extend GC Mu + Phi Other Forr	ration ra	heck heck n																		. 99. 100. 100. 110. 111. 111. 111. 111.
10	8.5 8.6 8.7 8.8 9.1 9.2 9.3 9.5 9.6 9.7 9.9 9.10 9.11 10.2 10.3 10.4 10.5 10.6	Manacher Suffix Arra SA-IS Minimum Aho Coras Metry Basic Oper InPoly Sort by An Line Inters Convex Hu. Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski her Theor Pollard's rhe Sast Power Extend GC Mu + Phi Other Forr Polynomia	ration gle sect C sectio rera cave rea i Sum ry ho i CD small	heck heck n																		. 99. 100. 100 110. 111. 111. 111. 111. 111
10	8.5 8.6 8.7 8.8 8.9 9.1 9.2 9.3 9.4 9.5 9.7 9.8 9.9 9.10 10.1 10.2 10.3 10.6 10.7 Line	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Opel InPoly Sort by An Line Inters Convex Hu Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski Theo Pollard's rh Miller Rabi Fast Powe Extend GC Mu + Phi Other Forr Polynomia ar Algebra	ration ration ration ration gle . gle . gle . rocave rea . i Sum ry ho . r C	heck heck n	Cir																	9 9 9 1 100 110 110 110 110 110 110 110
10	8.5 8.6 8.7 8.8 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.1 10.2 10.3 10.4 10.6 10.7 Line	Manacher Suffix Arra SA-IS Minimum Aho Coras Metry Basic Oper InPoly Sort by An Line Inters Line Inters Convex Hu Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski Mber Theor Pollard's r Miller Rabi Fast Power Extend GC Mu + Phi Other Forr Polynomia ar Algebra Gaussian-J	ration ration ration ration gle	ns																		9 9 9 10 10 10 11 11 11 11 11 11 11 11 11 11
10	8.5 8.6 8.7 8.8 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.1 10.2 10.3 10.4 10.6 10.7 Line	Manacher Suffix Arra SA-IS Minimum Aho Coras metry Basic Opel InPoly Sort by An Line Inters Convex Hu Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski Theo Pollard's rh Miller Rabi Fast Powe Extend GC Mu + Phi Other Forr Polynomia ar Algebra	ration ration ration ration gle	ns																		9 9 9 10 10 10 11 11 11 11 11 11 11 11 11 11
10	8.5 8.6 8.7 8.8 9.1 9.2 9.3 9.4 9.5 9.7 9.8 9.9 9.10 10.1 10.5 10.6 10.7 Line	Manacher Suffix Arra SA-IS Minimum Aho Coras Metry Basic Oper InPoly Sort by An Line Inters Line Inters Convex Hu Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski Mber Theor Pollard's r Miller Rabi Fast Power Extend GC Mu + Phi Other Forr Polynomia ar Algebra Gaussian-J	ration Rotat ration	ns																		9 9 9 10 10 10 11 11 11 11 11 11 11 11 11 11
10	8.5 8.6 8.7 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.1 10.2 10.3 10.4 10.6 10.7 Line 11.1 11.2	Manacher Suffix Arra SA-IS Minimum Aho Coras Metry Basic Oper InPoly Sort by An Line Inters Line Inters Convex Hu Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski Mber Theor Pollard's rh Miller Rabi Fast Power Extend GC Mu + Phi Other Forr Polynomia ar Algebra Gaussian-J Determina J / Matchir Dinic	ration Rotatick . ration gle gle sect Co reaction reaction reaction reaction	Hull																		9 9 9 100 100 100 100 100 100 100 100 10
10	8.5 8.6 8.7 8.8 8.9 9.1 9.2 9.3 9.4 9.5 9.7 9.8 9.9 10.2 10.3 10.4 10.5 10.7 Line 11.2 Flow 12.2	Manacher Suffix Arra SA-IS	ration ration ration ration ration sect Cosectio clacave rea . rorem Enclo i Sum ry mulas do nordar ant . a lordar ant . a	heck n	Cir																	9 9 9 10 10 10 11 11 11 11 11 11 11 11 11 11
10	8.5 8.6 8.7 8.8 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.2 10.3 10.4 10.5 10.7 11.2 Flow 12.1 12.2 12.3	Manacher Suffix Arra SA-IS Minimum Aho Coras Metry Basic Oper InPoly Sort by An Line Inters Convex HL Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski Mer Theor PolyInformation Minkowski Mar Algebra Gaussian-J Determina Mar Algebra Gaussian-J Determina Misky Matchir Dinic ISAP MCMF MCMF	ration ration ration ration ration resect C sectio casect C rea rea rea rorem Enclo i i sum ry ry casect j g g g g g g g g g g g g g g g g g g	heck n																		. 99 . 100 . 100 . 111 . 111 . 111 . 111 . 111 . 111 . 111 . 111 . 111 . 112 . 122 . 122 . 122 . 122 . 123 . 133 . 134 . 144 . 156 . 166 .
10	8.5 8.6 8.7 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 10.1 10.2 10.3 10.4 10.5 10.6 11.1 11.2 Flow 12.1 12.2 12.3	Manacher Suffix Arra SA-IS Minimum Aho Coras Metry Basic Opel InPoly Sort by An Line Inters Line Inters Convex Hu Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski Mber Theor Pollard's rh Miller Rabi Fast Powe Extend GC Mu + Phi Other Forr Polynomia Gaussian-J Determina J / Matchir Dinic ISAP MCMF . Hopcroft-k	ration ration ration ration gle	heckin	Cir																	9 9 9 1 10 10 11 11 11 11 11 11 11 11 11 11 1
10	8.5 8.6 8.7 9.1 9.2 9.3 9.4 9.5 9.7 9.8 9.9 9.10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 Line 11.1 11.2 12.2 12.3 12.3	Manacher Suffix Arra SA-IS	ration ration ration ration gle	ssing Elir																		9 9 9 100 100 101 101 101 101 101 101 10
10	8.5 8.6 8.7 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 10.1 10.2 10.3 10.4 10.5 10.6 11.1 11.2 Flow 12.1 12.2 12.3	Manacher Suffix Arra SA-IS	ration ration ration ration gle	ssing Elir																		9 9 9 100 100 101 101 101 101 101 101 10
10 11 12	8.5 8.6 8.7 8.8 8.9 9.2 9.3 9.4 9.5 9.7 9.8 9.9 9.10 10.2 10.3 10.4 10.5 10.7 Line 11.2 12.2 12.3 12.4 12.5	Manacher Suffix Arra SA-IS	ration gle sect C sectio cration gle sect C sectio sect	ssing Elir																		9 9 9 100 100 101 101 101 101 101 101 10
10 11 12	8.5 8.6 8.7 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10.1 10.2 10.3 10.4 10.6 10.7 Line 11.1 11.2 12.3 12.3 12.5 12.6 Com 13.1	Manacher Suffix Arra SA-IS	ration ration ration ration gle	ns	control contro																	9 9 9 100 100 101 111 111 111 111 111 11
10 11 12	8.5 8.6 8.7 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10.1 10.2 10.3 10.4 10.6 10.7 Line 11.1 11.2 12.3 12.3 12.5 12.6 Com 13.1	Manacher Suffix Arra SA-IS Minimum Aho Coras Metry Basic Opel InPoly Sort by An Line Inters Convex Hu Lower Con Polygon A Pick's Theo Minimum PolyUnion Minkowski Theor Pollard's rh Miller Rabi Fast Power Extend GC Mu + Phi Other Forr Polynomia Gaussian-J Determina J / Matchir Dinic ISAP MCMF Hopcroft-K Cover / Inc KM	ration ration ration ration gle	ns	control contro																	9 9 9 100 100 101 111 111 111 111 111 11

1 Reminder

1.1 Observations and Tricks

- Contribution Technique
- 二分圖/Spanning Tree/DFS Tree
- 行、列操作互相獨立
- 奇偶性
- 當 s,t 遞增並且 t=f(s) ,對 s 二分搜不好做,可以改成 對 t 二分搜,再算 f(t)
- 啟發式合併
- Permutation Normalization (做一些平移對齊兩個 permutation)
- 枚舉 $a_1 \sim a_n$ 再枚舉 $a_n \sim a_1$ 可以包在一個迴圈
- 兩個凸型函數相加還是凸型函數,相減不一定

1.2 Bug List

- 沒開 long long
- 陣列戳出界/陣列開不夠大
- 寫好的函式忘記呼叫
- 0-base / 1-base
- 忘記初始化
- == 打成 =
- <= 打成 <+
- dp[i] 從 dp[i-1] 轉移時忘記特判 i > 0
- std::sort 比較運算子寫成 < 或是讓 = 的情況為 true
- •漏 case
- 線段樹改值懶標初始值不能設為 0
- · DFS 的時候不小心覆寫到全域變數
- 浮點數誤差
- · unsigned int128
- · 多筆測資不能沒讀完直接 return
- 記得刪 cerr
- vector 超級肥,小 vector 請用 array,例如矩陣快速冪

2 Init

開場流程:

- 1. 打好 /.vimrc
- 2. 新資料夾 contest,打好 template.cpp、run.sh, chmod +x run.sh
- 3. 打好 init.sh, chmod +x init.sh
- 4. ./init.sh
- 5. vim */*.cpp

set nu rnu ru cul mouse=a

2.1 vimrc

syn on

```
set cin et ts=4 sw=4 sts=4
   set autochdir
   set clipboard=unnamedplus
   colo koehler
   no h b
5 9
   no l e
   no b l
   no e h
   no <C-h> ^
   no <C-l> $
   no <C-k> 4<C-y>4k
   no <C-j> 4<C-e>4j
   no ; :
819
   inoremap { {}<Left>
   inoremap {<CR> {<CR>}<Esc>ko
8,
   :command! Run :!clear && %:p:h/run.sh %:p<CR>
18<sup>22</sup>
   :command! Stdio :!clear && %:p:h/run_stdio.sh %:p -
       stdio<CR>
```

2.2 template.cpp

```
#include <bits/stdc++.h>
  using namespace std;
  #define endl '\n'
  #define iter(v) v.begin(), v.end()
 typedef long long ll;
typedef pair<int, int> pii;
  typedef pair<ll, ll> pll;
 /* ======
// debug(), output()
"\x1b[90m"
  /* ========= */
                    "\x1b[0m"
  #define COLOREND
  void _debug() {}
  template<typename A, typename... B> void _debug(A a, B...<sub>15</sub>
      b) { cerr << a << ' ', _debug(b...); }
  #define debug(...) cerr<<GRAY<<#__VA_ARGS_</pre>
      COLOREND,_debug(__VA_ARGS__),cerr<<endl</pre>
  const int INF = 1.05e9;
  const ll LINF = 4e18;
21
  /* ----- */
23
24
  void init(int &TEST) {
     // 如果有 t 筆測資的話,取消底下的註解
      //cin >> TEST;
  }
28
  void input() {}
  void solve(int kase) {}
  /* ----- */
33
  int main() {
34
      ios_base::sync_with_stdio(false); cin.tie(0);
      int TEST = 1; init(TEST);
      for (int kase = 1; kase <= TEST; kase++) {</pre>
          input();
         solve(kase);
39
      return 0;
41
  }
```

2.3 run.sh

```
#!/bin/bash
  g++ -std=c++17 -02 -g -fsanitize=undefined,address "$1" 47
       && echo DONE COMPILE || exit 1
  if [[ $2 == "-stdio" ]]; then
      echo ===== RUN =====
      ./a.out
  else
8
      for input in testcases/*.in; do
          id=${input%.in}
          echo ===== INPUT =====
          cat $input
          echo ===== STDERR =====
13
          ./a.out <$input >$id.ot
          echo ===== OUTPUT =====
          cat $id.ot
16
      done
17
```

2.4 init.sh

2.5 template (optional)

```
typedef pair<int, ll> pil;
  typedef pair<ll, int> pli;
  /* ========= */
  // pair
  template<typename T1, typename T2>
  ostream& operator<<(ostream& os, pair<T1, T2> p) {
    return os << "(" << p.first << ", " << p.second <<
  template<typename T1, typename T2>
  istream& operator>>(istream& is, pair<T1, T2>& p) {
       return is >> p.first >> p.second; }
  // vector
14
  template<typename T>
  istream& operator>>(istream& is, vector<T>& v) {
      for (auto& x : v) is >> x;
      return is;
19
  }
  template<typename T>
  ostream& operator<<(ostream& os, const vector<T>& v) {
      for (const auto& x : v) os << x << ' ';</pre>
23
       return os;
  }
  /* =====--
// debug(), output()
"\x1b[31m"
  /* ======= */
25
  #define GREEN
                       "\x1b[32m'
                       "\x1b[33m"
  #define YELLOW
31
  void _output() {}
  template<typename A, typename... B> void _output(A a,B
... b) { cout << a << ' ', _output(b...); }
#define output(...) _output(__VA_ARGS___),cout<<endl</pre>
  /* -----
  // BASIC ALGORITHM
35
  string binary(ll x, int b = -1) {
       if (b == -1) b = __lg(x) + 1;
       string s =
       for (int k = b - 1; k >= 0; k--) {
    s.push_back((x & (1LL<<k)) ? '1' : '0');</pre>
40
41
      return s;
42
43
  }
  /* ========== */
  // CONSTANT
  const int MOD = 1e9 + 7;
  //const int MOD = 998244353;
48 const int maxn = 2e5 + 3;
```

3 Basic

3.1 Stress

3.2 PBDS

```
#include <bits/extc++.h>
using namespace __gnu_pbds;

// map
tree<int, int, less<>, rb_tree_tag,
tree_order_statistics_node_update> tr;
tr.order_of_key(element);
```

```
tr.find_by_order(rank);
// set
                                                11
tree<int, null_type, less<>, rb_tree_tag,
                                                12
   tree_order_statistics_node_update> tr;
                                                13
tr.order_of_key(element);
tr.find_by_order(rank);
                                                15
                                                16
// priority queue
__gnu_pbds::priority_queue<int, less<int> > big_q;
   Big First
 // Small First
q1.join(q2); // join
```

3.3 Random

```
mt19937 gen(chrono::steady_clock::now().
    time_since_epoch().count());
#define RANDINT(a, b) uniform_int_distribution<int> (a, 28
     b)(rng) // inclusive
#define RANDLL(a, b) uniform_int_distribution<long long 30
    >(a, b)(rng) // inclusive
#define RANDFLOAT(a, b) uniform_real_distribution<float
32</pre>
                  // exclusive
    >(a, b)(rng)
#define RANDDOUBLE(a, b) uniform_real_distribution
                                                          34
    double > (a, b)(rng)
                         // exclusive
                                                          35
shuffle(v.begin(), v.end(), gen);
                                                          36
```

4 Python

4.1 I/O

```
import sys
  input = sys.stdin.readline
  # Input
  def readInt():
      return int(input())
  def readList():
      return list(map(int,input().split()))
  def readStr():
      s = input()
      return list(s[:len(s) - 1])
  def readVars():
      return map(int,input().split())
  # Output
  sys.stdout.write(string)
18
  # faster
  def main():
19
20
      pass
  main()
```

4.2 Decimal

```
from decimal import *
getcontext().prec = 2500000
getcontext().Emax = 2500000
a,b = Decimal(input()),Decimal(input())
a*=b
print(a)
```

5 Data Structure

5.1 Heavy Light Decomposition

```
constexpr int maxn=2e5+5;
int arr[(maxn+1)<<2];
#define m ((l+r)>>1)
void build(V<int>& v,int i=1,int l=0,int r=maxn){
    if((int)v.size()<=l) return;
    if(r-l==1){arr[i]=v[l];return;}
    build(v,i<<1,l,m),build(v,i<<1|1,m,r);
    arr[i]=max(arr[i<<1],arr[i<<1|1]);</pre>
```

```
if(p<l||r<=p) return;</pre>
       if(r-l==1){arr[i]=k;return;}
       if(p<m) modify(p,k,i<<1,l,m);</pre>
       else modify(p,k,i<<1|1,m,r);</pre>
       arr[i]=max(arr[i<<1],arr[i<<1|1]);
  int query(int ql,int qr,int i=1,int l=0,int r=maxn){
       if(qr<=l||r<=ql) return 0;</pre>
       if(ql<=l&&r<=qr) return arr[i];</pre>
       if(qr<=m) return query(ql,qr,i<<1,l,m);</pre>
       if(m<=ql) return query(ql,qr,i<<1|1,m,r);</pre>
       return max(query(ql,qr,i<<1,l,m),query(ql,qr,i</pre>
            <<1|1,m,r));
23
  #undef m
  inline void solve(){
       int n,q;cin>>n>>q;
       V<int> v(n);
       for(auto& i:v)
           cin>>i;
       V<V<int>> e(n);
       for(int i=1;i<n;i++){</pre>
           int a,b;cin>>a>>b,a--,b--;
           e[a].emplace_back(b);
           e[b].emplace_back(a);
       V<int> d(n,0),f(n,0),sz(n,1),son(n,-1);
37
       F<void(int,int)> dfs1=
       [&](int x,int pre){
38
           for(auto i:e[x]) if(i!=pre){
39
40
                d[i]=d[x]+1,f[i]=x;
                dfs1(i,x),sz[x]+=sz[i];
41
42
                if(!~son[x]||sz[son[x]]<sz[i])</pre>
43
                    son[x]=i;
44
       };dfs1(0,0);
45
       V<int> top(n,0),dfn(n,-1),rnk(n,0);
       F<void(int,int)> dfs2=
47
       [&](int x, int t){
48
49
           static int cnt=0;
           dfn[x]=cnt++,rnk[dfn[x]]=x,top[x]=t;
50
           if(!~son[x]) return;
           dfs2(son[x],t);
53
           for(auto i:e[x])
                <mark>if</mark>(!~dfn[i]) dfs2(i,i);
       };dfs2(0,0);
56
       V<int> dfnv(n);
57
       for(int i=0;i<n;i++)</pre>
           dfnv[dfn[i]]=v[i];
58
59
       build(dfnv);
       while(q--){
60
61
           int op,a,b;cin>>op>>a>>b;
62
           switch(op){
           case 1:{
63
                modify(dfn[a-1],b);
65
           }break;
66
           case 2:{
67
                a--,b--;
                int ans=0:
68
                while(top[a]!=top[b]){
69
                     if(d[top[a]]>d[top[b]]) swap(a,b);
                    ans=max(ans,query(dfn[top[b]],dfn[b]+1)
                    b=f[top[b]];
73
                if(dfn[a]>dfn[b]) swap(a,b);
74
                ans=max(ans,query(dfn[a],dfn[b]+1));
75
                cout<<ans<<endl;</pre>
76
           }break;
           }
       }
```

void modify(int p,int k,int i=1,int l=0,int r=maxn){

5.2 Skew Heap

```
struct node{
  node *l,*r;
  int v;
  node(int x):v(x){
```

5.3 Leftist Heap

```
struct node{
      node *l,*r;
      int d, v;
      node(int x):d(1),v(x){
          l=r=nullptr;
  };
  static inline int d(node* x){return x?x->d:0;}
  node* merge(node* a, node* b){
      if(!a||!b) return a?:b;
      min heap
      if(a->v>b->v) swap(a,b);
      a->r=merge(a->r,b);
13
      if(d(a->l)< d(a->r))
15
          swap(a->l,a->r);
      a->d=d(a->r)+1;
16
      return a;
18 }
```

5.4 Persistent Treap

```
1 struct node {
    node *l, *r;
    char c; int v, sz;
node(char x = '$'): c(x), v(mt()), sz(1) {
      l = r = nullptr;
    node(node* p) {*this = *p;}
    void pull() {
       sz = 1;
       for (auto i : {l, r})
11
         if (i) sz += i->sz;
12
  } arr[maxn], *ptr = arr;
  inline int size(node* p) {return p ? p->sz : 0;}
  node* merge(node* a, node* b) {
     if (!a || !b) return a ? : b;
    if (a\rightarrow v < b\rightarrow v) {
       node* ret = new(ptr++) node(a);
18
19
       ret->r = merge(ret->r, b), ret->pull();
      return ret;
20
    else {
      node* ret = new(ptr++) node(b);
23
       ret->l = merge(a, ret->l), ret->pull();
25
      return ret;
26
    }
27
  }
  P<node*> split(node* p, int k) {
28
    if (!p) return {nullptr, nullptr};
    if (k \ge size(p \ge l) + 1) {
       auto [a, b] = split(p->r, k - size(p->l) - 1);
31
       node* ret = new(ptr++) node(p);
      ret->r = a, ret->pull();
33
      return {ret, b};
    else {
36
       auto [a, b] = split(p->l, k);
       node* ret = new(ptr++) node(p);
      ret->l = b, ret->pull();
39
40
       return {a, ret};
41
  }
```

5.5 Li Chao Tree

```
constexpr int maxn = 5e4 + 5;
  struct line {
    ld a, b;
    ld operator()(ld x) {return a * x + b;}
  } arr[(maxn + 1) << 2];</pre>
  bool operator<(line a, line b) {return a.a < b.a;}</pre>
  #define m ((l+r)>>1)
  void insert(line x, int i = 1, int l = 0, int r = maxn)
    if (r - l == 1) {
  if (x(l) > arr[i](l))
11
        arr[i] = x;
      return;
13
    line a = max(arr[i], x), b = min(arr[i], x);
    if (a(m) > b(m))
      arr[i] = a, insert(b, i << 1, l, m);
17
    else
18
      arr[i] = b, insert(a, i << 1 | 1, m, r);
19
  ld query(int x, int i = 1, int l = 0, int r = maxn) {
20
    if (x < l || r <= x) return -numeric_limits<ld>::max
         ();
    if (r - l == 1) return arr[i](x);
    return max({arr[i](x), query(x, i << 1, l, m), query(</pre>
        x, i << 1 | 1, m, r)});
25 #undef m
```

5.6 Time Segment Tree

```
constexpr int maxn = 1e5 + 5;
  V<P<int>>> arr[(maxn + 1) << 2];</pre>
  V<int> dsu, sz;
  V<tuple<int, int, int>> his;
  int cnt, q;
  int find(int x) {
      return x == dsu[x] ? x : find(dsu[x]);
  inline bool merge(int x, int y) {
       int a = find(x), b = find(y);
       if (a == b) return false;
       if (sz[a] > sz[b]) swap(a, b);
      his.emplace_back(a, b, sz[b]), dsu[a] = b, sz[b] +=
            sz[a];
      return true;
14
  };
  inline void undo() {
      auto [a, b, s] = his.back(); his.pop_back();
17
18
       dsu[a] = a, sz[b] = s;
19
  #define m ((l + r) >> 1)
20
  void insert(int ql, int qr, P<int> x, int i = 1, int l
       = 0, int r = q) {
       // debug(ql, qr, x); return;
       if (qr <= l || r <= ql) return;
       if (ql <= l && r <= qr) {arr[i].push_back(x);</pre>
           return;}
       if (qr <= m)
           insert(ql, qr, x, i << 1, l, m);
27
       else if (m <= ql)</pre>
           insert(ql, qr, x, i \langle\langle 1 | 1, m, r \rangle\rangle;
       else {
           insert(ql, qr, x, i << 1, l, m);
31
           insert(ql, qr, x, i \langle\langle 1 | 1, m, r);
33
  void traversal(V<int>& ans, int i = 1, int l = 0, int r
        = q) {
       int opcnt = 0;
       // debug(i, l, r);
36
37
       for (auto [a, b] : arr[i])
           if (merge(a, b))
38
39
               opcnt++, cnt--;
       if (r - l == 1) ans[l] = cnt;
41
       else {
42
           traversal(ans, i << 1, l, m);</pre>
43
           traversal(ans, i << 1 | 1, m, r);
44
45
       while (opcnt--)
           undo(), cnt++;
```

```
arr[i].clear();
  }
48
49
  #undef m
  inline void solve() {
       int n, m; cin>>n>>m>>q,q++;
51
       dsu.resize(cnt = n), sz.assign(n, 1);
       iota(dsu.begin(), dsu.end(), 0);
53
       // a, b, time, operation
       unordered_map<ll, V<int>> s;
       for (int i = 0; i < m; i++) {</pre>
56
           int a, b; cin>>a>>b;
           if (a > b) swap(a, b);
           s[((ll)a << 32) | b].emplace_back(0);
59
       for (int i = 1; i < q; i++) {</pre>
61
62
           int op,a, b;
           cin>>op>>a>>b;
           if (a > b) swap(a, b);
64
65
           switch (op) {
           case 1:
               s[((ll)a << 32) | b].push_back(i);
               break;
           case 2:
               auto tmp = s[((ll)a << 32) | b].back();</pre>
               s[((ll)a << 32) | b].pop_back();
               insert(tmp, i, P<int> {a, b});
           }
       for (auto [p, v] : s) {
75
           int a = p >> 32, b = p \& -1;
           while (v.size()) {
               insert(v.back(), q, P<int> {a, b});
78
               v.pop_back();
           }
80
81
82
       V<int> ans(q);
       traversal(ans);
83
       for (auto i : ans)
84
85
           cout<<i<<'
       cout << endl:
86
87 }
```

6 DP

6.1 Aliens

```
int n; ll k;
  vector<ll> a;
  vector<pll> dp[2];
  void init() {
    cin \gg n \gg k;
    Each(i, dp) i.clear(), i.resize(n);
    a.clear(); a.resize(n);
Each(i, a) cin >> i;
  }
  pll calc(ll p) {
10
    dp[0][0] = mp(0, 0);
    dp[1][0] = mp(-a[0], 0);
    FOR(i, 1, n, 1) {
13
       if (dp[0][i-1].F > dp[1][i-1].F + a[i] - p) {
         dp[0][i] = dp[0][i-1];
       } else if (dp[0][i-1].F < dp[1][i-1].F + a[i] - p)</pre>
16
         dp[0][i] = mp(dp[1][i-1].F + a[i] - p, dp[1][i]
             -1].S+1);
       } else {
         dp[0][i] = mp(dp[0][i-1].F, min(dp[0][i-1].S, dp
             [1][i-1].S+1));
       if (dp[0][i-1].F - a[i] > dp[1][i-1].F) {
         dp[1][i] = mp(dp[0][i-1].F - a[i], dp[0][i-1].S);
       } else if (dp[0][i-1].F - a[i] < dp[1][i-1].F) {</pre>
         dp[1][i] = dp[1][i-1];
         dp[1][i] = mp(dp[1][i-1].F, min(dp[0][i-1].S, dp
             [1][i-1].S));
27
       }
28
29
    return dp[0][n-1];
30
  }
                                                              61
```

```
void solve() {
    ll l = 0, r = 1e7;
33
    pll res = calc(0);
34
     if (res.S <= k) return cout << res.F << endl, void();</pre>
    while (l < r) {
35
       ll\ mid = (l+r)>>1;
37
       res = calc(mid);
       if (res.S \ll k) r = mid;
38
       else l = mid+1;
40
41
    res = calc(l);
    cout << res.F + k*l << endl;</pre>
```

7 Graph

7.1 Bellman-Ford + SPFA

```
1 int n, m;
  // Graph
  vector<vector<pair<int, ll> > > g;
  vector<ll> dis;
  vector<bool> negCycle;
  // SPFA
  vector<int> rlx;
  queue<int> q;
  vector<bool> inq;
  vector<int> pa;
  void SPFA(vector<int>& src) {
      dis.assign(n+1, LINF);
15
      negCycle.assign(n+1, false);
16
      rlx.assign(n+1, 0);
      while (!q.empty()) q.pop();
17
      inq.assign(n+1, false);
18
      pa.assign(n+1, -1);
19
20
21
      for (auto& s : src) {
22
           dis[s] = 0;
23
           q.push(s); inq[s] = true;
24
26
      while (!q.empty()) {
27
           int u = q.front();
28
           q.pop(); inq[u] = false;
           if (rlx[u] >= n) {
29
               negCycle[u] = true;
30
31
32
           else for (auto& e : g[u]) {
               int v = e.first;
               ll w = e.second;
               if (dis[v] > dis[u] + w) {
35
                   dis[v] = dis[u] + w;
                   rlx[v] = rlx[u] + 1;
38
                   pa[v] = u;
                   if (!inq[v]) {
                       q.push(v);
                       inq[v] = true;
  // Bellman-Ford
  queue<int> q;
  vector<int> pa;
  void BellmanFord(vector<int>& src) {
      dis.assian(n+1, LINF):
      negCycle.assign(n+1, false);
      pa.assign(n+1, -1);
      for (auto& s : src) dis[s] = 0;
      for (int rlx = 1; rlx <= n; rlx++) {</pre>
           for (int u = 1; u <= n; u++) {</pre>
               if (dis[u] == LINF) continue; // Important
               for (auto& e : g[u]) {
                   int v = e.first; ll w = e.second;
59
                   if (dis[v] > dis[u] + w) {
60
                       dis[v] = dis[u] + w;
```

```
pa[v] = u;
                          if (rlx == n) negCycle[v] = true;
63
   15
                                                                  16
                                                                  17
   // Negative Cycle Detection
                                                                  18
   void NegCycleDetect() {
                                                                  19
   /* No Neg Cycle: NO
                                                                  20
70 Exist Any Neg Cycle:
   YFS
71
                                                                  22
   v0 v1 v2 ... vk v0 */
72
                                                                  23
73
        vector<int> src;
74
                                                                  25
        for (int i = 1; i <= n; i++)</pre>
            src.emplace_back(i);
                                                                  27
77
                                                                  28
        SPFA(src);
       // BellmanFord(src);
80
                                                                  31
        int ptr = -1;
                                                                  32
        for (int i = 1; i <= n; i++) if (negCycle[i])</pre>
82
                                                                  33
            { ptr = i; break; }
        if (ptr == -1) { return cout << "NO" << endl, void</pre>
            (); }
        cout << "YES\n";</pre>
                                                                  39
        vector<int> ans;
        vector<bool> vis(n+1, false);
89
                                                                  41
                                                                  42
        while (true) {
            ans.emplace_back(ptr);
92
                                                                  44
            if (vis[ptr]) break;
                                                                  45
            vis[ptr] = true;
                                                                  46
                                                                    }
95
            ptr = pa[ptr];
                                                                  47
                                                                  48
       reverse(ans.begin(), ans.end());
97
                                                                  49
                                                                  50
98
        vis.assign(n+1, false);
        for (auto& x : ans) {
100
                                                                  52
            cout << x << '
101
                                                                  53
            if (vis[x]) break;
                                                                  54
102
103
            vis[x] = true;
                                                                  55
                                                                  56
       cout << endl:
                                                                    }
                                                                  57
106
                                                                  58
107
   // Distance Calculation
108
                                                                  60
   void calcDis(int s) {
       vector<int> src;
110
                                                                  62
        src.emplace_back(s);
                                                                  63
        SPFA(src);
                                                                  64
        // BellmanFord(src);
                                                                  65
114
                                                                  66
        while (!q.empty()) q.pop();
                                                                  67
        for (int i = 1; i <= n; i++)</pre>
116
            if (negCycle[i]) q.push(i);
118
        while (!q.empty()) {
            int u = q.front(); q.pop();
            for (auto\& e : g[u]) {
                 int v = e.first;
                 if (!negCycle[v]) {
124
                     q.push(v);
```

7.2 BCC - AP

126 } } } }

```
int n, m;
int low[maxn], dfn[maxn], instp;
vector<int> E, g[maxn];
bitset<maxn> isap;
bitset<maxm> vis;
stack<int> stk;
int bccnt;
vector<int> bcc[maxn];
inline void popout(int u) {
   bccnt++;
   bcc[bccnt].emplace_back(u);
while (!stk.empty()) {
```

negCycle[v] = true;

```
int v = stk.top();
    if (u == v) break;
    stk.pop();
    bcc[bccnt].emplace_back(v);
void dfs(int u, bool rt = 0) {
  stk.push(u);
  low[u] = dfn[u] = ++instp;
  int kid = 0;
  Each(e, g[u]) {
    if (vis[e]) continue;
    vis[e] = true;
    int v = E[e]^u;
    if (!dfn[v]) {
      // tree edge
      kid++; dfs(v);
      low[u] = min(low[u], low[v]);
      if (!rt && low[v] >= dfn[u]) {
        // bcc found: u is ap
        isap[u] = true;
        popout(u);
    } else {
      // back edge
      low[u] = min(low[u], dfn[v]);
  // special case: root
  if (rt) {
    if (kid > 1) isap[u] = true;
    popout(u);
void init() {
  cin >> n >> m;
  fill(low, low+maxn, INF);
  REP(i, m) {
    int u, v;
    cin >> u >> v;
    g[u].emplace_back(i);
    g[v].emplace_back(i);
    E.emplace_back(u^v);
 }
void solve() {
  FOR(i, 1, n+1, 1) {
    if (!dfn[i]) dfs(i, true);
  vector<int> ans;
  int cnt = 0;
  FOR(i, 1, n+1, 1) {
    if (isap[i]) cnt++, ans.emplace_back(i);
  cout << cnt << endl;</pre>
  Each(i, ans) cout << i << ' ';</pre>
  cout << endl;</pre>
```

7.3 BCC - Bridge

```
1 int n, m;
  vector<int> g[maxn], E;
  int low[maxn], dfn[maxn], instp;
  int bccnt, bccid[maxn];
  stack<int> stk;
  bitset<maxm> vis, isbrg;
  void init() {
    cin >> n >> m;
    REP(i, m) {
      int u, v;
      cin >> u >> v;
      E.emplace_back(u^v);
13
      g[u].emplace_back(i);
      g[v].emplace_back(i);
15
    fill(low, low+maxn, INF);
16
  void popout(int u) {
18
    bccnt++;
    while (!stk.empty()) {
```

```
int v = stk.top();
       if (v == u) break;
22
       stk.pop();
23
24
       bccid[v] = bccnt;
25
    }
  }
26
  void dfs(int u) {
27
    stk.push(u);
    low[u] = dfn[u] = ++instp;
30
31
    Each(e, g[u]) {
       if (vis[e]) continue;
32
       vis[e] = true;
33
       int v = E[e]^u;
       if (dfn[v]) {
         // back edge
         low[u] = min(low[u], dfn[v]);
39
       } else {
         // tree edge
         dfs(v);
41
42
         low[u] = min(low[u], low[v]);
43
         if (low[v] == dfn[v]) {
           isbrg[e] = true;
           popout(u);
         }
46
47
      }
48
    }
49
  }
  void solve() {
    FOR(i, 1, n+1, 1) {
51
      if (!dfn[i]) dfs(i);
52
    vector<pii> ans;
55
    vis.reset();
    FOR(u, 1, n+1, 1) {
      Each(e, g[u]) {
         if (!isbrg[e] || vis[e]) continue;
58
         vis[e] = true;
         int v = E[e]^u;
60
         ans.emplace_back(mp(u, v));
61
62
      }
63
    cout << (int)ans.size() << endl;</pre>
    Each(e, ans) cout << e.F << ' ' << e.S << endl;</pre>
65
```

7.4 SCC - Tarjan

```
1 // 2-SAT
  vector<int> E, g[maxn]; // 1~n, n+1~2n
int low[maxn], in[maxn], instp;
  int sccnt, sccid[maxn];
  stack<int> stk:
  bitset<maxn> ins, vis;
  int n, m;
  void init() {
       cin >> m >> n;
       E.clear();
       fill(g, g+maxn, vector<int>());
       fill(low, low+maxn, INF);
       memset(in, 0, sizeof(in));
       instp = 1;
       sccnt = 0;
       memset(sccid, 0, sizeof(sccid));
19
20
       ins.reset();
21
       vis.reset();
  }
22
  inline int no(int u) {
       return (u > n ? u-n : u+n);
26
  }
27
  int ecnt = 0;
  inline void clause(int u, int v) {
      E.eb(no(u)^v);
30
       g[no(u)].eb(ecnt++);
       E.eb(no(v)^u);
32
```

```
g[no(v)].eb(ecnt++);
34
  }
35
  void dfs(int u) {
36
       in[u] = instp++;
37
       low[u] = in[u];
38
39
       stk.push(u);
40
       ins[u] = true;
41
       Each(e, g[u]) {
   if (vis[e]) continue;
42
43
            vis[e] = true;
45
46
            int v = E[e]^u;
            if (ins[v]) low[u] = min(low[u], in[v]);
47
            else if (!in[v]) {
48
                 dfs(v);
49
50
                 low[u] = min(low[u], low[v]);
            }
51
52
       }
53
54
       if (low[u] == in[u]) {
            sccnt++;
            while (!stk.empty()) {
56
57
                 int v = stk.top();
                 stk.pop();
58
                 ins[v] = false;
59
                 sccid[v] = sccnt;
60
                 if (u == v) break;
61
62
            }
63
       }
64
  }
65
66
67
  int main() {
       WiwiHorz
68
       init();
69
71
       REP(i, m) {
            char su, sv;
73
            int u, v;
            cin >> su >> u >> sv >> v;
if (su == '-') u = no(u);
74
75
            if (sv == '-') v = no(v);
            clause(u, v);
77
78
       FOR(i, 1, 2*n+1, 1) {
80
81
            if (!in[i]) dfs(i);
82
83
84
       FOR(u, 1, n+1, 1) {
            int du = no(u);
85
86
            if (sccid[u] == sccid[du]) {
87
                 return cout << "IMPOSSIBLE\n", 0;</pre>
            }
88
89
       }
90
       FOR(u, 1, n+1, 1) {
91
            int du = no(u);
92
            cout << (sccid[u] < sccid[du] ? '+' : '-') << '
93
       cout << endl;</pre>
95
97
       return 0;
```

7.5 Eulerian Path - Undir

```
// from 1 to n
#define gg return cout << "IMPOSSIBLE\n", void();

int n, m;
vector<int> g[maxn];
bitset<maxn> inodd;

void init() {
    cin >> n >> m;
    inodd.reset();
    for (int i = 0; i < m; i++) {</pre>
```

13

15

17

18

19

20

23

25

26

```
int u, v; cin >> u >> v;
    inodd[u] = inodd[u] ^ true;
13
    inodd[v] = inodd[v] ^ true;
14
    g[u].emplace_back(v);
15
    g[v].emplace_back(u);
16
  } }
17
  stack<int> stk;
18
19
  void dfs(int u) {
      while (!g[u].empty()) {
21
           int v = g[u].back();
           g[u].pop_back();
23
           dfs(v);
  stk.push(u);}
```

7.6 Eulerian Path - Dir

```
// from node 1 to node n
  #define gg return cout << "IMPOSSIBLE\n", 0</pre>
  int n, m;
  vector<int> g[maxn];
  stack<int> stk:
  int in[maxn], out[maxn];
  void init() {
  cin >> n >> m;
  for (int i = 0; i < m; i++) {</pre>
11
    int u, v; cin >> u >> v;
    g[u].emplace_back(v);
13
    out[u]++, in[v]++;
14
  for (int i = 1; i <= n; i++) {</pre>
16
    if (i == 1 && out[i]-in[i] != 1) gg;
    if (i == n && in[i]-out[i] != 1) gg;
18
    if (i != 1 && i != n && in[i] != out[i]) gg;
19
20
  } }
  void dfs(int u) {
      while (!g[u].empty()) {
23
           int v = g[u].back();
           g[u].pop_back();
24
25
           dfs(v);
      stk.push(u);
27
  }
28
  void solve() {
29
    dfs(1)
30
       for (int i = 1; i <= n; i++)</pre>
           if ((int)g[i].size()) gg;
32
33
       while (!stk.empty()) {
           int u = stk.top();
           stk.pop();
35
           cout << u << ' ';
36
37 } }
```

7.7 **Hamilton Path**

```
// top down DP
                                                                    27
  // Be Aware Of Multiple Edges
                                                                    28
  int n, m;
  ll dp[maxn][1<<maxn];</pre>
  int adj[maxn][maxn];
                                                                    31
                                                                    32
  void init() {
                                                                    33
       cin >> n >> m;
                                                                    34
       fill(dp[0], dp[maxn-1]+(1<< maxn), -1);
  }
  void DP(int i, int msk) {
       if (dp[i][msk] != -1) return;
13
       dp[i][msk] = 0;
       REP(j, n) if (j != i && (msk & (1<<j)) && adj[j][i
15
            1) {
            int sub = msk ^ (1<<i);</pre>
            if (dp[j][sub] == -1) DP(j, sub);
dp[i][msk] += dp[j][sub] * adj[j][i];
                                                                    42
                                                                    43
19
            if (dp[i][msk] >= MOD) dp[i][msk] %= MOD;
       }
20
21
  }
22
```

```
int main() {
24
       WiwiHorz
25
26
       init();
27
       REP(i, m) {
            int u, v;
29
            cin >> u >> v;
30
            if (u == v) continue;
           adj[--u][--v]++;
32
33
       dp[0][1] = 1;
35
36
       FOR(i, 1, n, 1) {
            dp[i][1] = 0;
37
            dp[i][1|(1<< i)] = adj[0][i];
38
       FOR(msk, 1, (1<<n), 1) {
            if (msk == 1) continue;
41
            dp[0][msk] = 0;
43
44
45
       DP(n-1, (1<< n)-1);
46
       cout << dp[n-1][(1<<n)-1] << endl;</pre>
47
48
49
       return 0;
```

7.8 Kth Shortest Path

```
1 | //  time: O(|E| \setminus Lg \mid E|+|V| \setminus Lg \mid V|+K)
 // memory: O(|E| \Lg |E|+|V|)
 struct KSP{ // 1-base
   struct nd{
      int u,v; ll d;
      nd(int ui=0,int vi=0,ll di=INF){ u=ui; v=vi; d=di;
   };
    struct heap{ nd* edge; int dep; heap* chd[4]; };
   static int cmp(heap* a,heap* b)
    { return a->edge->d > b->edge->d; }
    struct node{
      int v; ll d; heap* H; nd* E;
      node(){}
      node();
node() _d,int _v,nd* _E){ d =_d; v=_v; E=_E; }
node() heap* _H,ll _d){ H=_H; d=_d; }
friend bool operator<(node a,node b)</pre>
      { return a.d>b.d; }
    int n,k,s,t,dst[N]; nd *nxt[N];
   vector<nd*> g[N],rg[N]; heap *nullNd,*head[N];
    void init(int _n,int _k,int _s,int _t){
      n=_n; k=_k; s=_s; t=_t;
for(int i=1;i<=n;i++){</pre>
        g[i].clear(); rg[i].clear();
        nxt[i]=NULL; head[i]=NULL; dst[i]=-1;
      }
    void addEdge(int ui,int vi,ll di){
      nd* e=new nd(ui,vi,di);
      g[ui].push_back(e); rg[vi].push_back(e);
    queue<int> dfsQ;
    void dijkstra(){
      while(dfsQ.size()) dfsQ.pop();
      priority_queue<node> Q; Q.push(node(0,t,NULL));
      while (!Q.empty()){
        node p=Q.top(); Q.pop(); if(dst[p.v]!=-1)continue
        dst[p.v]=p.d; nxt[p.v]=p.E; dfsQ.push(p.v);
        for(auto e:rg[p.v]) Q.push(node(p.d+e->d,e->u,e))
      }
   heap* merge(heap* curNd,heap* newNd){
      if(curNd==nullNd) return newNd;
      heap* root=new heap;memcpy(root,curNd,sizeof(heap))
      if(newNd->edge->d<curNd->edge->d){
        root->edge=newNd->edge;
```

```
root->chd[2]=newNd->chd[2];
         root->chd[3]=newNd->chd[3];
48
         newNd->edge=curNd->edge;
49
         newNd->chd[2]=curNd->chd[2];
50
         newNd->chd[3]=curNd->chd[3];
51
       if(root->chd[0]->dep<root->chd[1]->dep)
         root->chd[0]=merge(root->chd[0],newNd);
       else root->chd[1]=merge(root->chd[1],newNd);
       root->dep=max(root->chd[0]->dep,
                 root->chd[1]->dep)+1;
       return root;
59
     vector<heap*> V;
     void build(){
61
       nullNd=new heap; nullNd->dep=0; nullNd->edge=new nd
62
       fill(nullNd->chd, nullNd->chd+4, nullNd);
       while(not dfsQ.empty()){
         int u=dfsQ.front(); dfsQ.pop();
         if(!nxt[u]) head[u]=nullNd;
         else head[u]=head[nxt[u]->v];
         V.clear();
         for(auto&& e:g[u]){
           int v=e->v;
           if(dst[v]==-1) continue;
           e->d+=dst[v]-dst[u];
           if(nxt[u]!=e){
             heap* p=new heap; fill(p->chd,p->chd+4, nullNd)
             p->dep=1; p->edge=e; V.push_back(p);
           }
         if(V.empty()) continue;
                                                              13
         make_heap(V.begin(),V.end(),cmp);
   #define L(X) ((X<<1)+1)
   #define R(X) ((X<<1)+2)
81
82
         for(size_t i=0;i<V.size();i++){</pre>
83
           if(L(i)<V.size()) V[i]->chd[2]=V[L(i)];
                                                              18
           else V[i]->chd[2]=nullNd;
           if(R(i)<V.size()) V[i]->chd[3]=V[R(i)];
                                                              20
           else V[i]->chd[3]=nullNd;
86
88
         head[u]=merge(head[u], V.front());
       }
89
     vector<ll> ans;
92
     void first_K(){
       ans.clear(); priority_queue<node> Q;
       if(dst[s]==-1) return;
       ans.push_back(dst[s]);
95
       if(head[s]!=nullNd)
         Q.push(node(head[s],dst[s]+head[s]->edge->d));
97
       for(int _=1;_<k and not Q.empty();_++){</pre>
98
         node p=Q.top(),q; Q.pop(); ans.push_back(p.d);
         if(head[p.H->edge->v]!=nullNd){
100
           q.H=head[p.H->edge->v]; q.d=p.d+q.H->edge->d;
102
           Q.push(q);
103
         for(int i=0;i<4;i++)</pre>
           if(p.H->chd[i]!=nullNd){
             q.H=p.H->chd[i];
106
             q.d=p.d-p.H->edge->d+p.H->chd[i]->edge->d;
             Q.push(q);
108
109
     void solve(){ // ans[i] stores the i-th shortest path15
110
       dijkstra(); build();
       first_K(); // ans.size() might less than k
113
| solver;
```

- $x_u x_v = c \Rightarrow \operatorname{add}(v, u, c), \operatorname{add}(u, v c)$
- $x_u \ge c \Rightarrow$ add super vertex $x_0 = 0$, then $x_u x_0 \ge c \Rightarrow$ add(u, 0, -c)
- Don't for get non-negative constraints for every variable if specified implicitly.
- Interval sum \Rightarrow Use prefix sum to transform into differential constraints. Don't for get $S_{i+1}-S_i\geq 0$ if x_i needs to be non-negative.
- $\frac{x_u}{x_v} \le c \Rightarrow \log x_u \log x_v \le \log c$

8 String

8.1 Rolling Hash

```
const ll C = 27;
  inline int id(char c) {return c-'a'+1;}
  struct RollingHash {
      string s; int n; ll mod;
      vector<ll> Cexp, hs;
      RollingHash(string& _s, ll _mod):
          s(_s), n((int)_s.size()), mod(_mod)
          Cexp.assign(n, 0);
          hs.assign(n, 0);
          Cexp[0] = 1;
          for (int i = 1; i < n; i++) {</pre>
               Cexp[i] = Cexp[i-1] * C;
               if (Cexp[i] >= mod) Cexp[i] %= mod;
          hs[0] = id(s[0]);
          for (int i = 1; i < n; i++) {</pre>
              hs[i] = hs[i-1] * C + id(s[i]);
               if (hs[i] >= mod) hs[i] %= mod;
      inline ll query(int l, int r) {
          ll res = hs[r] - (l ? hs[l-1] * Cexp[r-l+1] :
          res = (res \% mod + mod) \% mod;
          return res; }
25 }:
```

8.2 Trie

```
struct node {
      int c[26]; ll cnt;
      node(): cnt(0) {memset(c, 0, sizeof(c));}
      node(ll x): cnt(x) {memset(c, 0, sizeof(c));}
  };
  struct Trie {
      vector<node> t;
      void init() {
          t.clear();
          t.emplace_back(node());
      void insert(string s) { int ptr = 0;
          for (auto& i : s) {
              if (!t[ptr].c[i-'a']) {
                  t.emplace_back(node());
                  t[ptr].c[i-'a'] = (int)t.size()-1;}
              ptr = t[ptr].c[i-'a']; }
          t[ptr].cnt++; }
19 } trie;
```

7.9 System of Difference Constraints

```
vector<vector<pair<int, ll>>> G; void add(int u, int v, ll w) {  G[u].emplace\_back(make\_pair(v, w));   * x_u - x_v \leq c \Rightarrow \mathsf{add}(v, u, c)   * x_u - x_v \geq c \Rightarrow \mathsf{add}(u, v, -c)
```

8.3 KMP

```
int n, m;
string s, p;
vector<int> f;
void build() {
   f.clear(); f.resize(m, 0);
   int ptr = 0; for (int i = 1; i < m; i++) {
     while (ptr && p[i] != p[ptr]) ptr = f[ptr-1];
   if (p[i] == p[ptr]) ptr++;</pre>
```

```
f[i] = ptr;
                                                                               for (auto& i : buc[t]) cnt[ (t ? i.F.F : i.
                                                                                    F.S) ]++;
  }}
10
                                                                               for (int i = 0; i < n; i++)</pre>
  void init() {
                                                                                    pos[i] = (!i ? 0 : pos[i-1] + cnt[i-1])
    cin >> s >> p;
                                                                17
12
    n = (int)s.size();
13
                                                                               for (auto& i : buc[t])
    m = (int)p.size();
                                                                                    buc[t^1][pos[ (t ? i.F.F : i.F.S) ]++]
    build(); }
15
                                                                19
  void solve() {
                                                                                         = i:
    int ans = 0, pi = 0;
                                                                       bool fill_suf() {
    for (int si = 0; si < n; si++) {</pre>
18
       while (pi && s[si] != p[pi]) pi = f[pi-1];
                                                                           bool end = true;
19
                                                                           for (int i = 0; i < n; i++) suf[i] = buc[0][i].</pre>
20
       if (s[si] == p[pi]) pi++;
       if (pi == m) ans++, pi = f[pi-1];
21
    }
                                                                           rk[suf[0]] = 0;
                                                                           for (int i = 1; i < n; i++) {</pre>
23 cout << ans << endl; }</pre>
                                                                               int dif = (buc[0][i].F != buc[0][i-1].F);
                                                                               end &= dif;
  8.4 Z Value
                                                                               rk[suf[i]] = rk[suf[i-1]] + dif;
                                                                28
                                                                           } return end;
                                                                29
  string is, it, s;
                                                                30
                                                                       void sa() {
  int n; vector<int> z;
                                                                31
  void init() {
                                                                32
                                                                           for (int i = 0; i < n; i++)</pre>
       cin >> is >> it;
                                                                               buc[0][i] = make_pair(make_pair(s[i], s[i])
       s = it + '0' + is;
                                                                                      i);
       n = (int)s.size();
                                                                           sort(buc[0].begin(), buc[0].end());
                                                                           if (fill_suf()) return;
for (int k = 0; (1<<k) < n; k++) {</pre>
      z.resize(n, 0); }
                                                                35
  void solve() {
       int ans = 0; z[0] = n;
                                                                               for (int i = 0; i < n; i++)</pre>
      for (int i = 1, l = 0, r = 0; i < n; i++) {
    if (i <= r) z[i] = min(z[i-l], r-i+1);</pre>
                                                                                    buc[0][i] = make_pair(make_pair(rk[i],
                                                                                        rk[(i + (1 << k)) % n]), i);
           while (i+z[i] < n \&\& s[z[i]] == s[i+z[i]]) z[i]
                                                                               radix_sort();
                                                                               if (fill_suf()) return;
                ]++;
           if (i+z[i]-1 > r) l = i, r = i+z[i]-1;
           if (z[i] == (int)it.size()) ans++;
                                                                       void LCP() { int k = 0;
14
                                                                           for (int i = 0; i < n-1; i++) {
15
       cout << ans << endl; }</pre>
                                                                                if (rk[i] == 0) continue;
                                                                               int pi = rk[i];
                                                                               int j = suf[pi-1];
  8.5
         Manacher
                                                                               while (i+k < n \&\& j+k < n \&\& s[i+k] == s[j+k]
                                                                                    k1) k++:
1 int n; string S, s;
                                                                               lcp[pi] = k;
  vector<int> m;
                                                                               k = max(k-1, 0);
  void manacher() {
                                                                      }}
  s.clear(); s.resize(2*n+1, '.');
  for (int i = 0, j = 1; i < n; i++, j += 2) s[j] = S[i];52 SuffixArray suffixarray;</pre>
  m.clear(); m.resize(2*n+1, 0);
  // m[i] := max k such that s[i-k, i+k] is palindrome
                                                                  8.7 SA-IS
  int mx = 0, mxk = 0;
  for (int i = 1; i < 2*n+1; i++) {</pre>
    if (mx-(i-mx) >= 0) m[i] = min(m[mx-(i-mx)], mx+mxk-i | const int N=300010;
                                                                  struct SA{
    while (0 <= i-m[i]-1 && i+m[i]+1 < 2*n+1 &&
                                                                  #define REP(i,n) for(int i=0;i<int(n);i++)</pre>
                                                                  #define REP1(i,a,b) for(int i=(a);i<=int(b);i++)</pre>
          s[i-m[i]-1] == s[i+m[i]+1]) m[i]++;
13
    if (i+m[i] > mx+mxk) mx = i, mxk = m[i];
                                                                    bool _t[N*2]; int _s[N*2],_sa[N*2];
                                                                    int _c[N*2],x[N],_p[N],_q[N*2],hei[N],r[N];
int operator [](int i){ return _sa[i]; }
  } }
  void init() { cin >> S; n = (int)S.size(); }
  void solve() {
                                                                    void build(int *s,int n,int m){
17
    manacher();
                                                                      memcpy(_s,s,sizeof(int)*n);
    int mx = 0, ptr = 0;
                                                                       sais(_s,_sa,_p,_q,_t,_c,n,m); mkhei(n);
     for (int i = 0; i < 2*n+1; i++) if (mx < m[i])</pre>
       { mx = m[i]; ptr = i; }
                                                                    void mkhei(int n){
20
    for (int i = ptr-mx; i <= ptr+mx; i++)</pre>
                                                                       REP(i,n) r[_sa[i]]=i;
       if (s[i] != '.') cout << s[i];</pre>
                                                                       hei[0]=0;
23 cout << endl; }</pre>
                                                                       REP(i,n) if(r[i]) {
                                                                15
                                                                         int ans=i>0?max(hei[r[i-1]]-1,0):0;
                                                                17
                                                                         while(_s[i+ans]==_s[_sa[r[i]-1]+ans]) ans++;
  8.6 Suffix Array
                                                                        hei[r[i]]=ans;
                                                                18
  #define F first
                                                                    void sais(int *s,int *sa,int *p,int *q,bool *t,int *c
  #define S second
  struct SuffixArray { // don't forget s += "$";
                                                                         ,int n,int z){
                                                                       bool uniq=t[n-1]=true,neq;
       int n; string s;
                                                                       int nn=0,nmxz=-1,*nsa=sa+n,*ns=s+n,lst=-1;
       vector<int> suf, lcp, rk;
       vector<int> cnt, pos;
                                                                  #define MSO(x,n) memset((x),0,n*sizeof(*(x)))
                                                                  #define MAGIC(XD) MS0(sa,n);\
      vector<pair<pii, int> > buc[2];
  void init(string _s) {
    s = _s; n = (int)s.size();
// resize(n): suf, rk, cnt, pos, Lcp, buc[0~1]
                                                                  memcpy(x,c,sizeof(int)*z); XD;\
                                                                  memcpy(x+1,c,sizeof(int)*(z-1));\
                                                                  REP(i,n) if(sa[i]&&!t[sa[i]-1]) sa[x[s[sa[i]-1]]++]=sa[
11
                                                                       i]-1;\
       void radix_sort() {
                                                                  memcpy(x,c,sizeof(int)*z);\
12
13
           for (int t : {0, 1}) {
                                                                  for(int i=n-1;i>=0;i--) if(sa[i]&&t[sa[i]-1]) sa[--x[s[
```

sa[i]-1]]]=sa[i]-1;

fill(cnt.begin(), cnt.end(), 0);

```
MSO(c,z); REP(i,n) uniq&=++c[s[i]]<2;
                     REP(i,z-1) c[i+1]+=c[i];
32
                     if(uniq) { REP(i,n) sa[--c[s[i]]]=i; return; }
33
                     for(int i=n-2;i>=0;i--)
                            t[i]=(s[i]==s[i+1]?t[i+1]:s[i]<s[i+1]);
                     MAGIC(REP1(i,1,n-1) if(t[i]&&!t[i-1]) sa[--x[s[i]] sa[--x] sa[i] sa[i]
                                   ]]]=p[q[i]=nn++]=i);
                     REP(i,n) if(sa[i]&&t[sa[i]]&&!t[sa[i]-1]){
                            neq=lst<0 \mid |memcmp(s+sa[i],s+lst,(p[q[sa[i]]+1]-sa[i])|
                                          [i])*sizeof(int));
                            ns[q[lst=sa[i]]]=nmxz+=neq;
                     sais(ns,nsa,p+nn,q+n,t+n,c+z,nn,nmxz+1);
41
                     MAGIC(for(int i=nn-1;i>=0;i--) sa[--x[s[p[nsa[i
                                    ]]]]]=p[nsa[i]]);
              }
43
       }sa;
45
       int H[N],SA[N],RA[N];
       void suffix_array(int* ip,int len){
              // should padding a zero in the back
              // ip is int array, len is array length
48
              // ip[0..n-1] != 0, and ip[len]=0
              ip[len++]=0; sa.build(ip,len,128);
              memcpy(H,sa.hei+1,len<<2); memcpy(SA,sa._sa+1,len<<2)<sub>13</sub>
              for(int i=0;i<len;i++) RA[i]=sa.r[i]-1;</pre>
              // resulting height, sa array \in [0,len)
53
```

8.8 Minimum Rotation

```
//rotate(begin(s), begin(s)+minRotation(s), end(s))
int minRotation(string s) {
   int a = 0, n = s.size(); s += s;
   for(int b = 0; b < n; b++) for(int k = 0; k < n; k++) {24
      if(a + k == b ||| s[a + k] < s[b + k]) {
        b += max(0, k - 1);
      break; }

if(s[a + k] > s[b + k]) {
      a = b;
      break;
}

return a; }
```

8.9 Aho Corasick

```
struct ACautomata{
    struct Node{
      int cnt;
      Node *go[26], *fail, *dic;
      Node (){
        cnt = 0; fail = 0; dic=0;
        memset(go,0,sizeof(go));
    }pool[1048576],*root;
    int nMem;
    Node* new_Node(){
      pool[nMem] = Node();
      return &pool[nMem++];
    void init() { nMem = 0; root = new_Node(); }
    void add(const string &str) { insert(root,str,0); }
    void insert(Node *cur, const string &str, int pos){
      for(int i=pos;i<str.size();i++){</pre>
        if(!cur->go[str[i]-'a'])
          cur->go[str[i]-'a'] = new_Node();
        cur=cur->go[str[i]-'a'];
      }
23
      cur->cnt++;
24
    void make_fail(){
      queue<Node*> que;
26
      que.push(root);
      while (!que.empty()){
        Node* fr=que.front(); que.pop();
        for (int i=0; i<26; i++){
          if (fr->go[i]){
            Node *ptr = fr->fail;
32
            while (ptr && !ptr->go[i]) ptr = ptr->fail;
            fr->go[i]->fail=ptr=(ptr?ptr->go[i]:root);
```

9 Geometry

9.1 Basic Operations

```
typedef long long T;
        // typedef long double T;
        const long double eps = 1e-8;
        short sgn(T x) {
                       if (abs(x) < eps) return 0;</pre>
                       return x < 0 ? -1 : 1;
       struct Pt {
      T x, y;
      Pt(T_x=0, T_y=0):x(_x), y(_y) {}
      Pt operator+(Pt a) { return Pt(x+a.x, y+a.y); }
      Pt operator-(Pt a) { return Pt(x-a.x, y-a.y); }
      Pt operator*(T a) { return Pt(x*a, y*a); }
      Pt operator/(T a) { return Pt(x/a, y/a); }
T operator*(Pt a) { return x*a.x + y*a.y; }
      T operator^(Pt a) { return x*a.y - y*a.x; }
        bool operator<(Pt a)</pre>
                       { return x < a.x | | (x == a.x && y < a.y); }
        //return \ sgn(x-a.x) < 0 \ | \ (sgn(x-a.x) == 0 \&\& \ sgn(y-a.x) = 0 \&\& \ sgn(y-a.x)
                     y) < 0); }
       bool operator==(Pt a)
                       { return sgn(x-a.x) == 0 \&\& sgn(y-a.y) == 0; }
       Pt mv(Pt a, Pt b) { return b-a; }
       T len2(Pt a) { return a*a; }
       T dis2(Pt a, Pt b) { return len2(b-a); }
       short ori(Pt a, Pt b) { return ((a^b)>0) - ((a^b)<0); }
30
       bool onseg(Pt p, Pt l1, Pt l2) {
    Pt a = mv(p, l1), b = mv(p, l2);
31
                       return ((a^b) == 0) && ((a*b) <= 0);
```

9.2 InPoly

9.3 Sort by Angle

```
int ud(Pt a) { // up or down half plane
    if (a.y > 0) return 0;
    if (a.y < 0) return 1;
    return (a.x >= 0 ? 0 : 1);
}
sort(ALL(E), [&](const Pt& a, const Pt& b){
    if (ud(a) != ud(b)) return ud(a) < ud(b);
    return (a^b) > 0;
});
```

9.4 Line Intersect Check

```
inline bool banana(Pt p1, Pt p2, Pt q1, Pt q2) {
if (onseg(p1, q1, q2) || onseg(p2, q1, q2) ||
onseg(q1, p1, p2) || onseg(q2, p1, p2)) {
    return true;
}
Pt p = mv(p1, p2), q = mv(q1, q2);
return (ori(p, mv(p1, q1)) * ori(p, mv(p1, q2)) < 0 &&</pre>
```

9.5 Line Intersection

```
1 // T: Long double
2 Pt bananaPoint(Pt p1, Pt p2, Pt q1, Pt q2) {
3    if (onseg(q1, p1, p2)) return q1;
4    if (onseg(q2, p1, p2)) return q2;
5    if (onseg(p1, q1, q2)) return p1;
6    if (onseg(p2, q1, q2)) return p2;
7    double s = abs(mv(p1, p2) ^ mv(p1, q1));
8    double t = abs(mv(p1, p2) ^ mv(p1, q2));
9    return q2 * (s/(s+t)) + q1 * (t/(s+t));
10 }
```

9.6 Convex Hull

```
vector<Pt> hull;
  void convexHull() {
  hull.clear(); sort(ALL(E));
  REP(t, 2) {
      int b = SZ(hull);
      Each(ei, E) {
          while (SZ(hull) - b >= 2 &&
                  ori(mv(hull[SZ(hull)-2], hull.back()),
                      mv(hull[SZ(hull)-2], ei)) == -1) {
               hull.pop_back();
11
          hull.eb(ei);
      hull.pop_back();
14
15
      reverse(ALL(E));
  } }
```

9.7 Lower Concave Hull

```
struct Line {
    mutable ll m, b, p;
    bool operator<(const Line& o) const { return m < o.m; 28</pre>
    bool operator<(ll x) const { return p < x; }</pre>
  };
  struct LineContainer : multiset<Line, less<>>> {
    // (for doubles, use \inf = 1/.0, \operatorname{div}(a,b) = a/b)
    const ll inf = LLONG_MAX;
    ll div(ll a, ll b) { // floored division
       return a / b - ((a ^ b) < 0 && a % b); }
    bool isect(iterator x, iterator y) {
       if (y == end()) { x->p = inf; return false; }
       if (x->m == y->m) x->p = x->b > y->b ? inf : -inf;
       else x -> p = div(y -> b - x -> b, x -> m - y -> m);
       return x->p >= y->p;
17
    void add(ll m, ll b) {
19
       auto z = insert(\{m, b, 0\}), y = z++, x = y;
20
       while (isect(y, z)) z = erase(z);
       if (x != begin() \&\& isect(--x, y)) isect(x, y =
           erase(y));
       while ((y = x) != begin() && (--x)->p >= y->p)
  isect(x, erase(y));
24
    ll query(ll x) {
       assert(!empty());
26
       auto l = *lower_bound(x);
27
       return l.m * x + l.b;
28
29
30 };
```

9.8 Polygon Area

```
T dbarea(vector<Pt>& e) {
ll res = 0;
REP(i, SZ(e)) res += e[i]^e[(i+1)%SZ(e)];
return dbs(res);
}
```

9.9 Pick's Theorem

Consider a polygon which vertices are all lattice points. Let i = number of points inside the polygon.

Let b = number of points on the boundary of the polygon.

Then we have the following formula:

$$Area = i + \frac{b}{2} - 1$$

9.10 Minimum Enclosing Circle

```
| Pt circumcenter(Pt A, Pt B, Pt C) {
\frac{1}{2} // a1(x-A.x) + b1(y-A.y) = c1
  // a2(x-A.x) + b2(y-A.y) = c2
4 // solve using Cramer's rule
5 \mid T \mid a1 = B.x-A.x, b1 = B.y-A.y, c1 = dis2(A, B)/2.0;
  T a2 = C.x-A.x, b2 = C.y-A.y, c2 = dis2(A, C)/2.0;
  T D = Pt(a1, b1) ^ Pt(a2, b2);
  T Dx = Pt(c1, b1) ^ Pt(c2, b2);
  T Dy = Pt(a1, c1) ^ Pt(a2, c2)
  if (D == 0) return Pt(-INF, -INF);
  return A + Pt(Dx/D, Dy/D);
  Pt center; T r2;
  void minEncloseCircle() {
15
  mt19937 gen(chrono::steady_clock::now().
       time_since_epoch().count());
  shuffle(ALL(E), gen);
  center = E[0], r2 = 0;
17
  for (int i = 0; i < n; i++) {</pre>
19
20
       if (dis2(center, E[i]) <= r2) continue;</pre>
       center = E[i], r2 = 0;
       for (int j = 0; j < i; j++) {</pre>
           if (dis2(center, E[j]) <= r2) continue;</pre>
           center = (E[i] + E[j]) / 2.0;
24
           r2 = dis2(center, E[i]);
25
           for (int k = 0; k < j; k++) {</pre>
               if (dis2(center, E[k]) <= r2) continue;</pre>
               center = circumcenter(E[i], E[j], E[k]);
               r2 = dis2(center, E[i]);
           }
32 }
```

9.11 PolyUnion

```
int n; Pt pt[5]; double area;
    Pt& operator[](const int x){ return pt[x]; }
    void init(){ //n,pt[0\sim n-1] must be filled
       area=pt[n-1]^pt[0];
       for(int i=0;i<n-1;i++) area+=pt[i]^pt[i+1];</pre>
       if((area/=2)<0)reverse(pt,pt+n),area=-area;</pre>
    }
  PY py[500]; pair < double, int > c[5000];
  inline double segP(Pt &p,Pt &p1,Pt &p2){
    if(dcmp(p1.x-p2.x)==0) return (p.y-p1.y)/(p2.y-p1.y);
    return (p.x-p1.x)/(p2.x-p1.x);
13
14
15
  double polyUnion(int n){ //py[0~n-1] must be filled
16
    int i,j,ii,jj,ta,tb,r,d; double z,w,s,sum=0,tc,td;
    for(i=0;i<n;i++) py[i][py[i].n]=py[i][0];
for(i=0;i<n;i++){</pre>
17
18
19
       for(ii=0;ii<py[i].n;ii++){</pre>
20
         c[r++]=make\_pair(0.0,0); c[r++]=make\_pair(1.0,0);
21
22
         for(j=0;j<n;j++){</pre>
23
           if(i==j) continue;
           for(jj=0;jj<py[j].n;jj++){</pre>
24
             ta=dcmp(tri(py[i][ii],py[i][ii+1],py[j][jj]))
             tb=dcmp(tri(py[i][ii],py[i][ii+1],py[j][jj
                  +1]));
              if(ta==0 && tb==0){
27
                if((py[j][jj+1]-py[j][jj])*(py[i][ii+1]-py[
                    i][ii])>0&&j<i){
```

Ly=Ry=INF;

```
c[r++]=make_pair(segP(py[j][jj],py[i][ii 51
                      ],py[i][ii+1]),1);
                  c[r++]=make_pair(segP(py[j][jj+1],py[i][ 53
30
                      ii],py[i][ii+1]),-1);
             }else if(ta>=0 && tb<0){
               tc=tri(py[j][jj],py[j][jj+1],py[i][ii]);
               td=tri(py[j][jj],py[j][jj+1],py[i][ii+1]);
                                                              58
               c[r++]=make_pair(tc/(tc-td),1);
             }else if(ta<0 && tb>=0){
               tc=tri(py[j][jj],py[j][jj+1],py[i][ii]);
               td=tri(py[j][jj],py[j][jj+1],py[i][ii+1]);
               c[r++]=make_pair(tc/(tc-td),-1);
39
                                                              63
         } } }
         sort(c,c+r);
                                                              65
         z=min(max(c[0].first,0.0),1.0); d=c[0].second; s
42
                                                              66
         for(j=1;j<r;j++){</pre>
           w=min(max(c[j].first,0.0),1.0);
44
                                                              69
           if(!d) s+=w-z;
                                                              70
           d+=c[j].second; z=w;
                                                              71
46
47
                                                              72
48
         sum+=(py[i][ii]^py[i][ii+1])*s;
                                                              73
49
                                                              74
                                                              75
    return sum/2;
                                                              76
51
  }
                                                              77
                                                              78
```

9.12 Minkowski Sum

49

50

if(pt[i].X>Rx) Rx=pt[i].X;

/* convex hull Minkowski Sum*/

```
#define INF 1000000000000000LL
  int pos( const Pt& tp ){
    if( tp.Y == 0 ) return tp.X > 0 ? 0 : 1;
    return tp.Y > 0 ? 0 : 1;
  #define N 300030
  Pt pt[ N ], qt[ N ], rt[ N ];
  LL Lx, Rx;
  int dn,un;
  inline bool cmp( Pt a, Pt b ){
11
    int pa=pos( a ),pb=pos( b );
13
    if(pa==pb) return (a^b)>0;
    return pa<pb;</pre>
14
15
  int minkowskiSum(int n,int m){
16
17
    int i,j,r,p,q,fi,fj;
    for(i=1,p=0;i<n;i++)</pre>
19
       if( pt[i].Y<pt[p].Y ||</pre>
20
           (pt[i].Y==pt[p].Y && pt[i].X<pt[p].X) ) p=i; }</pre>
2
    for(i=1,q=0;i<m;i++){</pre>
       if( qt[i].Y<qt[q].Y ||</pre>
23
           rt[0]=pt[p]+qt[q];
24
25
    r=1; i=p; j=q; fi=fj=0;
    while(1){
26
       if((fj&&j==q) ||
28
          ((!fi||i!=p) &&
            cmp(pt[(p+1)%n]-pt[p],qt[(q+1)%m]-qt[q]) ) ){
         rt[r]=rt[r-1]+pt[(p+1)%n]-pt[p];
30
31
         p=(p+1)%n;
         fi=1:
32
       }else{
33
         rt[r]=rt[r-1]+qt[(q+1)%m]-qt[q];
35
         q = (q+1)%m;
36
         fj=1;
       if(r<=1 || ((rt[r]-rt[r-1])^(rt[r-1]-rt[r-2]))!=0)</pre>
38
           r++;
       else rt[r-1]=rt[r];
39
       if(i==p && j==q) break;
40
41
42
    return r-1;
43
  void initInConvex(int n){
    int i,p,q;
45
46
    LL Ly, Ry;
47
    Lx=INF; Rx=-INF;
    for(i=0;i<n;i++){</pre>
48
       if(pt[i].X<Lx) Lx=pt[i].X;</pre>
```

```
for(i=0;i<n;i++){</pre>
       if(pt[i].X==Lx && pt[i].Y<Ly){ Ly=pt[i].Y; p=i; }</pre>
       if(pt[i].X==Rx && pt[i].Y<Ry){ Ry=pt[i].Y; q=i; }</pre>
    for(dn=0,i=p;i!=q;i=(i+1)%n){ qt[dn++]=pt[i]; }
    qt[dn]=pt[q]; Ly=Ry=-INF;
     for(i=0;i<n;i++){</pre>
       if(pt[i].X==Lx && pt[i].Y>Ly){ Ly=pt[i].Y; p=i; }
       if(pt[i].X==Rx && pt[i].Y>Ry){ Ry=pt[i].Y; q=i; }
    for(un=0,i=p;i!=q;i=(i+n-1)%n){ rt[un++]=pt[i]; }
    rt[un]=pt[q];
  inline int inConvex(Pt p){
     int L,R,M;
    if(p.X<Lx || p.X>Rx) return 0;
    L=0; R=dn;
    while(L<R-1){ M=(L+R)/2;</pre>
       if(p.X<qt[M].X) R=M; else L=M; }</pre>
       if(tri(qt[L],qt[R],p)<0) return 0;</pre>
       L=0; R=un;
       while(L<R-1){ M=(L+R)/2;
         if(p.X<rt[M].X) R=M; else L=M; }</pre>
         if(tri(rt[L],rt[R],p)>0) return 0;
         return 1;
79
  int main(){
    int n,m,i;
80
81
    Pt p;
     scanf("%d",&n);
82
    for(i=0;i<n;i++) scanf("%lld%lld",&pt[i].X,&pt[i].Y);</pre>
    scanf("%d",&m);
84
85
    for(i=0;i<m;i++) scanf("%lld%lld",&qt[i].X,&qt[i].Y);</pre>
86
    n=minkowskiSum(n,m);
    for(i=0;i<n;i++) pt[i]=rt[i];</pre>
87
     scanf("%d",&m);
88
89
    for(i=0;i<m;i++) scanf("%lld%lld",&qt[i].X,&qt[i].Y);</pre>
90
    n=minkowskiSum(n,m);
91
    for(i=0;i<n;i++) pt[i]=rt[i];</pre>
    initInConvex(n);
92
    scanf("%d",&m);
93
    for(i=0;i<m;i++){</pre>
       scanf("%lld %lld",&p.X,&p.Y);
95
96
       p.X*=3; p.Y*=3;
       puts(inConvex(p)?"YES":"NO");
98
    }
```

Number Theory 10

10.1 Pollard's rho

```
from itertools import count
from math import gcd
from sys import stdin
for s in stdin:
    number, x = int(s), 2
    break2 = False
    for cycle in count(1):
        y = x
        if break2:
        for i in range(1 << cycle):</pre>
            x = (x * x + 1) % number
            factor = gcd(x - y, number)
            if factor > 1:
                 print(factor)
                 break2 = True
                 break
```

10.2 Miller Rabin

16

17

```
// n < 4,759,123,141
                                    3: 2, 7, 61
2 // n < 1,122,004,669,633
3 // n < 3,474,749,660,383
                                    4 : 2, 13, 23, 1662803
                                           6:
                                                 pirmes <= 13
4 // n < 2^64
```

```
// 2, 325, 9375, 28178, 450775, 9780504, 1795265022
  bool witness(ll a,ll n,ll u,int t){
    if(!(a%=n)) return 0;
    ll x=mypow(a,u,n);
    for(int i=0;i<t;i++) {</pre>
      ll nx=mul(x,x,n);
       if(nx==1&&x!=1&&x!=n-1) return 1;
11
      x=nx;
13
    return x!=1;
14
15
  bool miller_rabin(ll n,int s=100) {
16
    \ensuremath{//} iterate s times of witness on n
17
    // return 1 if prime, 0 otherwise
    if(n<2) return 0;</pre>
    if(!(n&1)) return n == 2;
    ll u=n-1; int t=0;
    while(!(u&1)) u>>=1, t++;
    while(s--){
       ll a=randll()%(n-1)+1;
       if(witness(a,n,u,t)) return 0;
    return 1;
  }
```

10.3 Fast Power

Note: $a^n \equiv a^{(n \mod (p-1))} \pmod{p}$

10.4 Extend GCD

```
ll GCD;
  pll extgcd(ll a, ll b) {
       if (b == 0) {
           GCD = a;
           return pll{1, 0};
       pll ans = extgcd(b, a % b);
      return pll{ans.S, ans.F - a/b * ans.S};
  pll bezout(ll a, ll b, ll c) {
      bool negx = (a < 0), negy = (b < 0);
       pll ans = extgcd(abs(a), abs(b));
       if (c % GCD != 0) return pll{-LLINF, -LLINF};
       return pll{ans.F * c/GCD * (negx ? -1 : 1),
ans.S * c/GCD * (negy ? -1 : 1)};
15
16
  ll inv(ll a, ll p) {
       if (p == 1) return -1;
18
       pll ans = bezout(a % p, -p, 1);
19
       if (ans == pll{-LLINF, -LLINF}) return -1;
       return (ans.F % p + p) % p;
```

10.5 Mu + Phi

```
const int maxn = 1e6 + 5;
  ll f[maxn];
  vector<int> lpf, prime;
  void build() {
lpf.clear(); lpf.resize(maxn, 1);
  prime.clear();
  f[1] = ...; /* mu[1] = 1, phi[1] = 1 */
for (int i = 2; i < maxn; i++) {
       if (lpf[i] == 1) {
           lpf[i] = i; prime.emplace_back(i);
           f[i] = ...; /* mu[i] = 1, phi[i] = i-1 */
       for (auto& j : prime) {
13
           if (i*j >= maxn) break;
14
           lpf[i*j] = j;
           if (i % j == 0) f[i*j] = ...; /* 0, phi[i]*j
           else f[i*j] = ...; /* -mu[i], phi[i]*phi[j] */
           if (j >= lpf[i]) break;
19 } }
```

10.6 Other Formulas

• Inversion: $aa^{-1} \equiv 1 \pmod{m}$. a^{-1} exists iff $\gcd(a,m)=1$.

• Linear inversion: $a^{-1} \equiv (m - \lfloor \frac{m}{a} \rfloor) \times (m \mod a)^{-1} \pmod m$

• Fermat's little theorem: $a^p \equiv a \pmod{p}$ if p is prime.

• Euler function: $\phi(n) = n \prod_{p|n} \frac{p-1}{p}$

• Euler theorem: $a^{\phi(n)} \equiv 1 \pmod{n}$ if $\gcd(a,n) = 1$.

• Extended Euclidean algorithm: $ax + by = \gcd(a, b) = \gcd(b, a \mod b) = \gcd(b, a - \lfloor \frac{a}{b} \rfloor b) = bx_1 + (a - \lfloor \frac{a}{b} \rfloor b)y_1 = ay_1 + b(x_1 - \lfloor \frac{a}{b} \rfloor y_1)$

• Divisor function:
$$\begin{split} \sigma_x(n) &= \sum_{d|n} d^x. \ n = \prod_{i=1}^r p_i^{a_i}. \\ \sigma_x(n) &= \prod_{i=1}^r \frac{p_i^{(a_i+1)x}-1}{p_i^x-1} \text{ if } x \neq 0. \ \sigma_0(n) = \prod_{i=1}^r (a_i+1). \end{split}$$

• Chinese remainder theorem (Coprime Moduli): $x\equiv a_i\pmod{m_i}$. $M=\prod m_i.\ M_i=M/m_i.\ t_i=M_i^{-1}.$ $x=kM+\sum a_it_iM_i,\ k\in\mathbb{Z}.$

• Chinese remainder theorem: $x\equiv a_1\pmod{m_1}, x\equiv a_2\pmod{m_2}\Rightarrow x=m_1p+a_1=m_2q+a_2\Rightarrow m_1p-m_2q=a_2-a_1$ Solve for (p,q) using ExtGCD. $x\equiv m_1p+a_1\equiv m_2q+a_2\pmod{lcm(m_1,m_2)}$

- Avoiding Overflow: $ca \mod cb = c(a \mod b)$
- Dirichlet Convolution: $(f * g)(n) = \sum_{d|n} f(n)g(n/d)$
- Important Multiplicative Functions + Proterties:

```
1. \epsilon(n) = [n=1]

2. 1(n) = 1

3. id(n) = n

4. \mu(n) = 0 if n has squared prime factor

5. \mu(n) = (-1)^k if n = p_1 p_2 \cdots p_k

6. \epsilon = \mu * 1

7. \phi = \mu * id

8. [n=1] = \sum_{d|n} \mu(d)

9. [gcd=1] = \sum_{d|qcd} \mu(d)
```

• Möbius inversion: $f = g * 1 \Leftrightarrow g = f * \mu$

10.7 Polynomial

```
1 const int maxk = 20;
  const int maxn = 1<<maxk;</pre>
  const ll LINF = 1e18;
  /*P = r*2^k + 1
  998244353
                       119 23
                        479 21
  1004535809
  3
                            2
                            4
  17
                            6
                                5
  193
                       3
  257
                        1
                            8
17 7681
```

```
12289
                                                                       for (int i = 1; i < maxn; i++) {</pre>
                             12
                                 11
                                                                           X[i] = X[i-1] * u;
  40961
                        5
                             13
                                 3
19
                                                                99
                                                                           iX[i] = iX[i-1] * iu;
20
  65537
                        1
                             16
                                 3
                                                               100
                                                                           if (X[i] >= MOD) X[i] %= MOD;
  786433
                        3
                             18
                                 10
21
  5767169
                                                                           if (iX[i] >= MOD) iX[i] %= MOD;
                        11
                             19
22
                             20
  7340033
                                 3
                                                               103
  23068673
                        11
                             21
                                                               104
  104857601
                        25
                             22
                                                               105
                                                                       rev.clear(); rev.resize(maxn, 0);
  167772161
                         5
                             25
                                                                       for (int i = 1, hb = -1; i < maxn; i++) {</pre>
  469762049
                             26
                                                                           if (!(i & (i-1))) hb++;
                                                                           rev[i] = rev[i ^ (1<<hb)] | (1<<(maxk-hb-1));
                        479
  1004535809
                            21
                                                               108
  2013265921
                            27
                                                               109
                                                                  } }
  2281701377
                        17
                             27
30
  3221225473
                         3
                             30
                                                                  template<typename T>
  75161927681
                             31
                                                                  void NTT(vector<T>& a, bool inv=false) {
  77309411329
                        9
                             33
                                                               113
                                                                       int _n = (int)a.size();
  206158430209
                        3
                                 22
                             36
                                                                       int k = __lg(_n) + ((1<<__lg(_n)) != _n);</pre>
  2061584302081
                        15
                             37
                                                                       int n = 1 << k;
                             39
  2748779069441
                        5
                                 3
                                                               116
  6597069766657
                             41
                                                                       a.resize(n, 0);
  39582418599937
                             42
38
                                                               118
  79164837199873
                        9
                             43
                                                               119
                                                                       short shift = maxk-k;
  263882790666241
                             44
                                                                       for (int i = 0; i < n; i++)
                                                                           if (i > (rev[i]>>shift))
  1231453023109121
                        35
                             45
  1337006139375617
                         19
                             46
                                                                                swap(a[i], a[rev[i]>>shift]);
  3799912185593857
                         27
                             47
                                                               123
                                                                       for (int len = 2, half = 1, div = maxn>>1; len <= n</pre>
                        15
  4222124650659841
                             48
                                 19
                                                               124
  7881299347898369
                                                                            ; len<<=1, half<<=1, div>>=1) {
                             50
                                                                           for (int i = 0; i < n; i += len) {</pre>
  31525197391593473
                             52
                                                                                for (int j = 0; j < half; j++) {</pre>
  180143985094819841
                             55
                                 6
  1945555039024054273 27
                                                                                    T u = a[i+j];
                                                                                    T v = a[i+j+half] * (inv ? iX[j*div] :
  4179340454199820289 29
                             57
49
                                                               128
                                 6 */
  9097271247288401921 505 54
                                                                                        X[j*div]) % MOD;
                                                                                    a[i+j] = (u+v >= MOD ? u+v-MOD : u+v);
51
                                                                                    a[i+j+half] = (u-v < 0 ? u-v+MOD : u-v)
52
  const int g = 3;
                                                               130
  const ll MOD = 998244353;
53
                                                                       } } }
  ll pw(ll a, ll n) { /* fast pow */ }
                                                               133
                                                                       if (inv) {
  #define siz(x) (int)x.size()
                                                                           T dn = pw(n, MOD-2);
57
                                                               134
                                                                           for (auto& x : a) {
  template<typename T>
                                                                                x *= dn;
59
                                                               136
  vector<T>& operator+=(vector<T>& a, const vector<T>& b)37
                                                                                if (x >= MOD) x \%= MOD;
60
                                                                  } } }
       if (siz(a) < siz(b)) a.resize(siz(b));</pre>
61
       for (int i = 0; i < min(siz(a), siz(b)); i++) {</pre>
                                                                  template<typename T>
           a[i] += b[i];
                                                                  inline void resize(vector<T>& a) {
           a[i] -= a[i] >= MOD ? MOD : 0;
                                                                       int cnt = (int)a.size();
64
                                                               142
                                                                       for (; cnt > 0; cnt--) if (a[cnt-1]) break;
                                                               143
                                                                       a.resize(max(cnt, 1));
66
       return a;
                                                               144
  }
67
                                                               145
                                                                  }
68
                                                               146
  template<tvpename T>
                                                                  template<typename T>
69
                                                               147
  vector<T>& operator -= (vector<T>& a, const vector<T>& b)48
                                                                  vector<T>& operator*=(vector<T>& a, vector<T> b) {
                                                                       int na = (int)a.size();
                                                               149
                                                                       int nb = (int)b.size();
       if (siz(a) < siz(b)) a.resize(siz(b));</pre>
                                                               150
       for (int i = 0; i < min(siz(a), siz(b)); i++) {</pre>
                                                                       a.resize(na + nb - 1, 0);
                                                                       b.resize(na + nb - 1, 0);
73
           a[i] -= b[i];
           a[i] += a[i] < 0 ? MOD : 0;
                                                               153
                                                                       NTT(a); NTT(b);
                                                               154
                                                                       for (int i = 0; i < (int)a.size(); i++) {
    a[i] *= b[i];</pre>
       return a:
76
  }
77
                                                               156
                                                                           if (a[i] >= MOD) a[i] %= MOD;
  template<typename T>
                                                               158
  vector<T> operator-(const vector<T>& a) {
                                                                       NTT(a, true);
81
       vector<T> ret(siz(a));
                                                               160
       for (int i = 0; i < siz(a); i++) {</pre>
82
                                                               161
                                                                       resize(a);
           ret[i] = -a[i] < 0 ? -a[i] + MOD : -a[i];
                                                                       return a;
83
                                                               162
84
                                                               163
85
       return ret;
                                                               164
  }
                                                               165
                                                                  template<typename T>
                                                                  void inv(vector<T>& ia, int N) {
87
                                                               166
  vector<ll> X, iX;
                                                                       vector<T> _a(move(ia));
                                                                       ia.resize(1, pw(_a[0], MOD-2));
  vector<int> rev;
89
                                                               168
                                                                       vector<T> a(1, -a[0] + (-a[0] < 0 ? MOD : 0));
90
  void init_ntt() {
      X.clear(); X.resize(maxn, 1); // x1 = g^{((p-1)/n)} 171
                                                                       for (int n = 1; n < N; n <<=1) {</pre>
92
                                                                           // n -> 2*n
93
       iX.clear(); iX.resize(maxn, 1);
                                                                           // ia' = ia(2-a*ia);
       ll u = pw(g, (MOD-1)/maxn);
95
                                                               174
       ll iu = pw(u, MOD-2);
                                                               175
                                                                           for (int i = n; i < min(siz(_a), (n<<1)); i++)</pre>
96
97
```

11

13

16

17

18

20

29

31

32

33

34 35

37

38

41

42

44

45

46

47

49 50

53

54

55

57

58

60

61

62

```
a.emplace_back(-_a[i] + (-_a[i] < 0 ? MOD :
            vector<T> tmp = ia;
178
            ia *= a:
179
            ia.resize(n<<1);</pre>
            ia[0] = ia[0] + 2 >= MOD ? ia[0] + 2 - MOD : ia
181
                 [0] + 2;
            ia *= tmp;
            ia.resize(n<<1);</pre>
183
184
185
        ia.resize(N);
   }
186
187
   template<typename T>
188
   void mod(vector<T>& a, vector<T>& b) {
189
        int n = (int)a.size()-1, m = (int)b.size()-1;
        if (n < m) return;</pre>
191
192
        vector<T> ra = a, rb = b;
193
        reverse(ra.begin(), ra.end()); ra.resize(min(n+1, n)
194
            -m+1));
        reverse(rb.begin(), rb.end()); rb.resize(min(m+1, n 6)
195
            -m+1));
        inv(rb, n-m+1);
197
198
        vector<T> q = move(ra);
199
200
        q *= rb;
        q.resize(n-m+1);
201
202
        reverse(q.begin(), q.end());
203
        q *= b;
        a -= q;
205
206
        resize(a);
207
208
   /* Kitamasa Method (Fast Linear Recurrence):
   Find a[K] (Given a[j] = c[0]a[j-N] + ... + c[N-1]a[j
        -17)
   Let B(x) = x^N - c[N-1]x^{(N-1)} - \dots - c[1]x^1 - c[0]
   Let R(x) = x^K \mod B(x)
                                (get x^K using fast pow and
        use poly mod to get R(x))
Let r[i] = the coefficient of x^i in R(x)
   \Rightarrow \ a[K] = \ a[\theta]r[\theta] + \ a[1]r[1] + \ldots + \ a[N-1]r[N-1] \ */
```

Linear Algebra

Gaussian-Jordan Elimination

```
int n; vector<vector<ll> > v;
  void gauss(vector<vector<ll>>>& v) {
   int r = 0;
  for (int i = 0; i < n; i++) {</pre>
       bool ok = false;
       for (int j = r; j < n; j++) {</pre>
            if (v[j][i] == 0) continue;
            swap(v[j], v[r]);
            ok = true; break;
       if (!ok) continue;
       ll div = inv(v[r][i]);
       for (int j = 0; j < n+1; j++) {
    v[r][j] *= div;</pre>
            if (v[r][j] >= MOD) v[r][j] %= MOD;
       for (int j = 0; j < n; j++) {</pre>
            if (j == r) continue;
            ll t = v[j][i];
            for (int k = 0; k < n+1; k++) {
    v[j][k] -= v[r][k] * t % MOD;</pre>
                 if (v[j][k] < 0) v[j][k] += MOD;
       } }
23
25 } }
```

11.2 Determinant

1. Use GJ Elimination, if there's any row consists of only

0, then det = 0, otherwise det = product of diagonal

- 2. Properties of det:
 - · Transpose: Unchanged
 - Row Operation 1 Swap 2 rows: -det
 - Row Operation 2 $k\overrightarrow{r_i}$: $k \times det$
 - Row Operation 3 $k\overrightarrow{r_i}$ add to $\overrightarrow{r_i}$: Unchaged

Flow / Matching

12.1 Dinic

```
struct Dinic {
    struct Edge {
        int t, c, r;
        Edge() {}
        Edge(int _t, int _c, int _r):
            t(_t), c(_c), r(_r) {}
    vector<vector<Edge>> G;
    vector<int> dis, iter;
    int s, t;
    void init(int n) {
        G.resize(n), dis.resize(n), iter.resize(n);
        for(int i = 0; i < n; ++i)</pre>
            G[i].clear();
    void add(int a, int b, int c) {
        G[a].eb(b, c, G[b].size());
        G[b].eb(a, 0, G[a].size() - 1);
    bool bfs() {
        fill(ALL(dis), -1);
        dis[s] = 0;
        queue<int> que;
        que.push(s);
        while(!que.empty()) {
            int u = que.front(); que.pop();
            for(auto& e : G[u]) {
                 if(e.c > 0 && dis[e.t] == -1) {
                     dis[e.t] = dis[u] + 1;
                     que.push(e.t);
            }
        return dis[t] != -1;
    int dfs(int u, int cur) {
        if(u == t) return cur;
        for(int &i = iter[u]; i < (int)G[u].size(); ++i</pre>
            auto& e = G[u][i];
            if(e.c > 0 \&\& dis[u] + 1 == dis[e.t]) {
                 int ans = dfs(e.t, min(cur, e.c));
                 if(ans > 0) {
                     G[e.t][e.r].c += ans;
                     e.c -= ans;
                     return ans;
                 }
            }
        return 0;
    int flow(int a, int b) {
        s = a, t = b;
        int ans = 0;
        while(bfs()) {
            fill(ALL(iter), 0);
            int tmp;
            while((tmp = dfs(s, INF)) > 0)
                 ans += tmp;
        }
        return ans;
    }
```

36

37

38

39

12.2 ISAP

```
#define SZ(c) ((int)(c).size())
  struct Maxflow{
    static const int MAXV=50010:
    static const int INF =1000000;
    struct Edge{
      int v,c,r;
      Edge(int _v,int _c,int _r):v(_v),c(_c),r(_r){}
    int s,t; vector<Edge> G[MAXV];
    int iter[MAXV],d[MAXV],gap[MAXV],tot;
    void init(int n,int _s,int _t){
      tot=n,s=_s,t=_t;
      for(int i=0;i<=tot;i++){</pre>
13
        G[i].clear(); iter[i]=d[i]=gap[i]=0;
16
    }
17
    void addEdge(int u,int v,int c){
      G[u].push_back(Edge(v,c,SZ(G[v])));
18
      G[v].push_back(Edge(u,0,SZ(G[u])-1));
19
    int DFS(int p,int flow){
      if(p==t) return flow;
      for(int &i=iter[p];i<SZ(G[p]);i++){</pre>
         Edge &e=G[p][i];
24
         if(e.c>0&&d[p]==d[e.v]+1){
           int f=DFS(e.v,min(flow,e.c));
           if(f){ e.c-=f; G[e.v][e.r].c+=f; return f; }
27
29
      if((--gap[d[p]])==0) d[s]=tot;
30
      else{ d[p]++; iter[p]=0; ++gap[d[p]]; }
      return 0;
32
33
    int flow(){
34
35
      int res=0:
36
      for(res=0,gap[0]=tot;d[s]<tot;res+=DFS(s,INF));</pre>
      return res;
37
      // reset: set iter,d,gap to 0
39 } flow;
```

12.3 MCMF

struct MCMF {

```
struct Edge {
           int to, cap, rev;
           ll cost;
           Edge() {}
           Edge(int _to, int _cap, int _rev, ll _cost) :
               to(_to), cap(_cap), rev(_rev), cost(_cost)
      static const int N = 2000;
      vector<Edge> G[N];
      int n, s, t;
      void init(int _n, int _s, int _t) {
           n = _n, s = _s, t = _t;
for(int i = 0; i <= n; ++i)</pre>
                                                               13
               G[i].clear();
      void add_edge(int from, int to, int cap, ll cost) {17
           G[from].eb(to, cap, (int)G[to].size(), cost);
18
           G[to].eb(from, 0, (int)G[from].size() - 1, -
               cost);
      }
      bool vis[N];
                                                               23
      int iter[N];
      ll dis[N];
                                                               25
      bool SPFA() {
                                                               26
           for(int i = 0; i <= n; ++i)</pre>
                                                               27
               vis[i] = 0, dis[i] = LINF;
                                                               28
                                                               29
           dis[s] = 0; vis[s] = 1;
           queue<int> que; que.push(s);
                                                               31
30
           while(!que.empty()) {
               int u = que.front(); que.pop();
32
               vis[u] = 0;
33
               for(auto\& e : G[u]) if(e.cap > 0 \&\& dis[e.
                    to] > dis[u] + e.cost) {
```

```
}
40
41
           }
42
           return dis[t] != LINF;
44
      int dfs(int u, int cur) {
45
           if(u == t) return cur;
           int ret = 0; vis[u] = 1;
47
48
           for(int &i = iter[u]; i < (int)G[u].size(); ++i</pre>
49
               auto &e = G[u][i];
               if(e.cap > 0 && dis[e.to] == dis[u] + e.
                    cost && !vis[e.to]) {
                   int tmp = dfs(e.to, min(cur, e.cap));
                   e.cap -= tmp;
                   G[e.to][e.rev].cap += tmp;
53
54
                   cur -= tmp;
                   ret += tmp;
                   if(cur == 0) {
                        vis[u] = 0;
                        return ret;
58
               }
61
           vis[u] = 0;
           return ret;
64
65
      pair<int, ll> flow() {
           int flow = 0; ll cost = 0;
66
           while(SPFA()) {
               memset(iter, 0, sizeof(iter));
68
               int tmp = dfs(s, INF);
               flow += tmp, cost += tmp * dis[t];
           return {flow, cost};
73
74
  };
```

dis[e.to] = dis[u] + e.cost;

que.push(e.to);

vis[e.to] = 1;

if(!vis[e.to]) {

12.4 Hopcroft-Karp

```
1 struct HopcroftKarp {
      // id: X = [1, nx], Y = [nx+1, nx+ny]
      int n, nx, ny, m, MXCNT;
      vector<vector<int> > g;
     vector<int> mx, my, dis, vis;
void init(int nnx, int nny, int mm) {
          nx = nnx, ny = nny, m = mm;
          n = nx + ny + 1;
          g.clear(); g.resize(n);
      void add(int x, int y) {
          g[x].emplace_back(y);
          g[y].emplace_back(x);
      bool dfs(int x) {
          vis[x] = true;
          Each(y, g[x]) {
              int px = my[y];
              if (px == -1 ||
                   (dis[px] == dis[x]+1 \&\&
                   !vis[px] && dfs(px))) {
                   mx[x] = y;
                   my[y] = x;
                   return true;
              }
          }
          return false;
      void get() {
          mx.clear(); mx.resize(n, -1);
          my.clear(); my.resize(n, -1);
          while (true) {
              queue<int> q;
              dis.clear(); dis.resize(n, -1);
              for (int x = 1; x <= nx; x++){
```

```
if (mx[x] == -1) {
                                                                                         if(aug)
                                                                                             match[j] = i;
                        dis[x] = 0;
38
                                                                26
39
                         q.push(x);
                                                                27
                                                                                         return true;
                    }
                                                                28
40
                                                                               } else {
                }
41
                while (!q.empty()) {
                                                                                    slack[j] = min(slack[j], d);
                    int x = q.front(); q.pop();
                                                                31
                    Each(y, g[x]) {
                                                                32
                                                                           }
                         if (my[y] != -1 && dis[my[y]] ==
                                                                           return false;
                             -1) {
                                                                34
                             dis[my[y]] = dis[x] + 1;
                                                                       bool augment() { // 回傳是否有增廣路
                                                                35
                             q.push(my[y]);
                                                                           for(int j = 0; j < n; j++) if(!visy[j] && slack</pre>
                                                                                [j] == 0) {
                        }
48
                    }
                                                                                visy[j] = true;
                                                                37
                                                                                if(match[j] == -1 || dfs(match[j], false))
                                                                38
                bool brk = true;
                                                                                    return true:
                vis.clear(); vis.resize(n, 0);
                                                                40
                                                                               }
                for (int x = 1; x <= nx; x++)</pre>
                                                                           }
                    if (mx[x] == -1 \&\& dfs(x))
                                                                           return false;
                                                                42
                         brk = false;
                                                                43
                                                                       void relabel() {
                if (brk) break;
                                                                           int delta = inf;
                                                                45
50
                                                                           for(int j = 0; j < n; j++) if(!visy[j]) delta =</pre>
           MXCNT = 0;
                                                                           min(delta, slack[j]);
for(int i = 0; i < n; i++) if(visx[i]) lx[i] -=</pre>
           for (int x = 1; x \leftarrow nx; x++) if (mx[x] != -1)
61
                MXCNT++;
                                                                                 delta;
                                                                           for(int j = 0; j < n; j++) {</pre>
62
      }
  } hk;
                                                                                if(visy[j]) ly[j] += delta;
                                                                50
                                                                                else slack[j] -= delta;
                                                                           }
  12.5
          Cover / Independent Set
                                                                       int solve() {
                                                                53
  V(E) Cover: choose some V(E) to cover all E(V)
                                                                           for(int i = 0; i < n; i++) {</pre>
                                                                54
  V(E) Independ: set of V(E) not adj to each other
                                                                               lx[i] = 0;
                                                                                for(int j = 0; j < n; j++) lx[i] = max(lx[i])
                                                                56
  M = Max Matching
                                                                                    ], g[i][j]);
  Cv = Min V Cover
  Ce = Min E Cover
                                                                           fill(ly.begin(), ly.end(), 0);
                                                                58
  Iv = Max V Ind
                                                                           fill(match.begin(), match.end(), -1);
  Ie = Max E Ind (equiv to M)
                                                                           for(int i = 0; i < n; i++) {</pre>
                                                                60
                                                                                // slack 在每一輪都要初始化
  M = Cv (Konig Theorem)
10
                                                                                fill(slack.begin(), slack.end(), inf);
  Iv = V \setminus Cv
                                                                                fill(visx.begin(), visx.end(), false);
                                                                63
  Ce = V - M
                                                                                fill(visy.begin(), visy.end(), false);
                                                                                if(dfs(i, true)) continue;
                                                                65
  Construct Cv:
                                                                                // 重複調整頂標直到找到增廣路徑
                                                                66
  1. Run Dinic
15
                                                                67
                                                                                while(!augment()) relabel();
16 2. Find s-t min cut
                                                                               fill(visx.begin(), visx.end(), false);
fill(visy.begin(), visy.end(), false);
17 3. Cv = \{X \text{ in } T\} + \{Y \text{ in } S\}
                                                                69
                                                                               dfs(i, true);
  12.6
          KM
                                                                           int ans = 0;
  #include <bits/stdc++.h>
                                                                73
                                                                           for(int j = 0; j < n; j++) if(match[j] != -1)</pre>
                                                                                ans += g[match[j]][j];
  using namespace std;
                                                                74
                                                                           return ans;
  const int inf = 1e9;
                                                                75
                                                                76
                                                                  };
  struct KuhnMunkres {
                                                                77
                                                                  signed main() {
       int n;
                                                                78
                                                                       ios_base::sync_with_stdio(0), cin.tie(0);
       vector<vector<int>> g;
                                                                       int n;
                                                                       while(cin >> n && n) {
       vector<int> lx, ly, slack;
       vector<int> match, visx, visy;
                                                                           KuhnMunkres KM(n);
       KuhnMunkres(int n) : n(n), g(n, vector<int>(n)),
                                                                           for(int i = 0; i < n; i++) {</pre>
           lx(n), ly(n), slack(n), match(n), visx(n), visy83
                                                                                for(int j = 0; j < n; j++) {</pre>
                                                                                    int c;
                (n) {}
       vector<int> & operator[](int i) { return g[i]; }
                                                                                    cin >> c;
                                                                                    if(c > 0)
       bool dfs(int i, bool aug) { // aug = true 表示要更
                                                                                        KM[i][j] = c;
                                                                87
           新 match
           if(visx[i]) return false;
                                                                89
           visx[i] = true;
for(int j = 0; j < n; j++) {</pre>
16
                                                                           cout << KM.solve() << '\n';</pre>
                                                                90
                if(visy[j]) continue;
18
                // 一邊擴增交錯樹、尋找增廣路徑
19
```

// 一邊更新sLack: 樹上的點跟樹外的點所造成

if(match[j] == -1 || dfs(match[j], aug)

int d = lx[i] + ly[j] - g[i][j];

的最小權重

visy[j] = true;

if(d == 0) {

23

13 Combinatorics

13.1 Catalan Number

$$C_0 = 1, C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i}, C_n = C_n^{2n} - C_{n-1}^{2n}$$

0	1	1	2	5
4	14	42	132	429
8	1430	4862	16796	58786
12	208012	742900	132 16796 2674440	9694845

13.2 Burnside's Lemma

Let X be the original set.

Let G be the group of operations acting on X.

Let X^g be the set of x not affected by g.

Let X/G be the set of orbits.

Then the following equation holds:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

14 Special Numbers

14.1 Fibonacci Series

1	1	1	2	3
5	5	8	13	21
9	34	55	89	144
13	233	377	610	987
17	1597	2584	4181	6765
21	10946	17711	28657	46368
25	75025	121393	196418	317811
29	514229	832040	1346269	2178309
33	3524578	5702887	9227465	14930352

$$f(45) \approx 10^9, f(88) \approx 10^{18}$$

14.2 Prime Numbers

• First 50 prime numbers:

• Very large prime numbers:

1000001333 1000500889 2500001909 2000000659 900004151 850001359

•
$$\pi(n) \equiv$$
 Number of primes $\leq n \approx n/((\ln n) - 1)$
 $\pi(100) = 25, \pi(200) = 46$
 $\pi(500) = 95, \pi(1000) = 168$
 $\pi(2000) = 303, \pi(4000) = 550$
 $\pi(10^4) = 1229, \pi(10^5) = 9592$
 $\pi(10^6) = 78498, \pi(10^7) = 664579$