Pledge: I pledge my honor that I have abided by the Stevens Honor System. -Eric Altenburg

1: Try your hand at the following lemma.

Lemma 1. Let R be an equivalence relation on a nonempty set A, and let $a, b \in A$. Then [a] = [b] if and only if $(a, b) \in R$.

Proof. (\Rightarrow) Assume [a] = [b]. Since we know that R is an equivalence relation, it is reflexive. Therefore, [a] = [a] and from our original assumption we say that [a] = [b], so it shows that $a, b \in R$.

 \Leftarrow Assume that $(a,b) \in R$. Let $x \in [a]$, and since $(a,b) \in R$, due to transitivity $(x,b) \in R$ so $x \in [b]$. Let $y \in [b]$, and since $(a,b) \in R$, due to symmetry we have $(y,a) \in R$ so $y \in [a]$. Therefore, it is proven.

2: Recall that a partition of a set A is a collection of nonempty pairwise-disjoint subsets of A whose union is all of A. Now try your hand at proving the following theorem.

Theorem 2. If R is an equivalence relation on a nonempty set A, then the set $\Pi = \{[a]\}_{a \in A}$ of equivalence classes of elements of A is partition of A.

I'm not sure where to really begin when trying to prove this and cannot form it into a formal proof, but loosely the logic I would try to follow would be to show that because Π is set of equivalence classes, we can use it to show that they form sets whose union will form A.

3: Given integers $a, b \in \mathbb{Z}$ and an integer n > 1, we say that A and B are congruent modulo n written $a \equiv b \pmod{n}$ if n divides a - b.

(Prove that for any n > 1, being congruent modulo n is an equivalence relation.)

Proof. To show that for any n > 1, being congruent modulo n is an equivalence relation we need to show that congruency is both reflexive, symmetric, and transitive.

(Reflexive) We can say a - a = 0x where x is some integer. Then it is reasonable to say that $a \equiv a \pmod{n}$.

(Symmetric) If we assume that $a \equiv b \pmod{n}$, then it stands that a - b = nx where x is some integer. Then we can multiply both sides by -1 and obtain b - a = n(-x) which is the same as saying $b \equiv a \pmod{n}$,

(Transitive) Assume we have $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. Then we have the two equations a-b=nx for some integer x and b-c=ny for some integer y. When combining the equations together we get $(a-b)+(b-c)=nx+ny\Rightarrow a-c=n(x+y)$ and since $x,y\in\mathbb{Z}$ we can say that $a\equiv c\pmod{n}$.

(Describe the equivalence classes of congruence modulo 3.)

Since we are going up to 3 for this modulo there are only three sets of integers that satisfy this congruence. The first is the set of all integers which are congruent to 1 mod 3. The second is the

set of all integers which are congruent to $2 \mod 3$. Finally, the third is the set of all integers which are congruent to $3 \mod 3$.