NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING

EXAMINATION FOR

SEMESTER 2 AY 2013/2014

CS1231 - DISCRETE STRUCTURES

Apr/May 2014

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **FIVE** questions and comprises **EIGHT** printed pages, including this page.
- 2. Answer ALL questions within the space in this booklet.
- 3. This is a Closed Book examination. Candidates are allowed to bring in an A4-sized help sheet, written on both sides.
- 4. Calculators are allowed.
- 5. Please write your Matriculation Number below.

Matriculation NO:	

Page	Marks	Remarks
2		7
3		
4		
5		
6		
7		
8		
Total		

PAGE 2 CS1231

	tten as integers or powers of a single integer. For example, you can venot $\binom{5}{1}\binom{3}{1}$.	vrite 2300 or 3 ² 7	
(1)	Find -532 Div 9.		
(2)	Find -532 Mod 9.	14000 to 1400 to 1	
(3)	Is (a)667, (b) 839 a prime number? Answer Yes or No.	(a) (b)	
(4)	The integers x_n , $n \in \mathbb{Z}^+$, $0 \le x_n < 7$, are defined by $x_0 = 2$ and for		
	$n \ge 1$, $x_n \equiv 3x_{n-1} + 4 \pmod{7}$. Find the value of x_4 .		
(5)	Find the value of $\sum_{k=0}^{100} {100 \choose k} 3^{100-k}$.		
(6)	For this question express you answers in terms of factorials, such as 2!9!/6!. Five chemistry majors, 6 mathematics majors and 7 physics majors are to be arranging a row. Find the number of arrangements if		
	(a) the chemistry majors are to occupy the first 5 positions;		
	(b) the chemistry majors cannot occupy the first 5 positions;		
	(c) students with the same major must be together in a block.		
(7)	Find the coefficient of a^3b^9 in the expansion of $(a-2b)^{12}$.		
(8)	How many bit strings of length 8 are there where the '1' bits are	not next to each	
	other?		

Question A [36 marks]. For each of the following, just write down the answers in the spaces provided. Detailed workings are not required. Also numerical answers are to be

(9)	Consider positive integers ≤ 1000 .	
	(a) How many are divisible by either 9 or 15?	
	(b) How many are divisible by 8 but not by 15?	1116
(10)	Suppose in an ordered rooted tree the universal address of a vertex v	
	is $4.3.2.5.1.6$. Find (a) the level of v ;	
	(b) the address of the parent of v ;	
	(c) the minimum number of vertices that the tree can have.	
(11)	Mr Brown wants to paint a wall in his living room. The wall is made up panels arranged in the form of a 2×2 grid. He wants to paint each panels that adjacent panels are painted with different colours. (Two panels share a common side.) If he has 10 colours, how many choices do	el with one colour ls are adjacent if
(12)	Let G be a graph with 14 vertices and 30 edges in which every vertex is of degree 4 or 5. How many vertices are there of degree 5?	

- (13) Consider the 7-cube Q_7 .
 - (a) How many vertices are there?
 - (b) How many edges are there?
 - (c) Which of the following is adjacent to 0101010? (Just write (i), (ii), etc, in the box.)

 (i) 0101011, (ii) 0101111, (iii) 0111110, (iv) 1101010.
 - (c) What is the length of a shortest path from 0101010 to 1010101?
- (14) Find the weight of a minimum spanning tree in the following graph.

(15)

Let G be the graph above. Using the alphabetical ordering, find a spanning tree by depth first search and by breadth first search. Draw the trees below.

Depth First Search

Breadth First Search

PAGE 5	CS1231
Question B [6 marks]. (a) Find gcd(555, 252).	
(b) Find s with $1 \le s \le 184$ so that $84s \equiv 1 \pmod{185}$.	
(c) Find 5 ¹³¹⁷ Mod 97.	

PAGE 6 CS1231

Question C [6 marks]. Use mathematical induction to prove that for $n \in \mathbb{Z}^+$,

$$1^3 + 3^3 + \dots + (2n+1)^3 = (n+1)^2 (2n^2 + 4n + 1).$$

PAGE 7 CS1231

Question D [6 marks]. Does there exist a full m-ary tree with 188 leaves and height 5 where m is some positive integer? If the answer is no, give your reasons. If the answer is yes, give a value of m and describe how the tree can be constructed. (*Hint: The formula* $i + \ell = mi + 1$ is useful.)

Question E [6 marks]. You are to colour four squares, with 2 red and 2 blue, in a 5×5 grid so that squares of the same colour do not lie in the same row or same column. How many ways are there to do it?