Pseudo-Code for the Agent-Based Model *Liminality and the Diffusion of Innovations among Adolescents* by Diego F. Leal (www.diegoleal.info)

FIRST PROCEDURE/LOOP (Populate Model)

- Extract Add Health friendship nomination network data (e.g. Sunshine High data) and nodes' attributes data (race, ethnicity, income, age, grade, gender).
- Symmetrize the network using the weak rule.
- Create as many agents as there are in the school under analysis. Denote the number of agents as n.
- Bestow each agent with the attributes (sex, race, grade, income, and ethnicity) of the student it represents.
- Create a variable for each agent, A_i , that signals adoption ($A_i = 1$ adopted; $A_i = 0$ did not adopt)

SECOND PROCEDURE/LOOP (Model Diffusion)

- For agent i to agent n, where n is the number of agents in a given school (e.g. Sunshine High)
 - Make agent i the seed agent, that is, the seed innovator $(A_i = 1)$
 - Make i's group of friends adopt the innovation. Call this set of agents the seed neighborhood (Si)
 - Repeat N times (N \in [1,n]):
 - o In random order, and with no replacement, ask each agent/alter outside S_i to:
 - Adopt the innovation if a given user-defined proportion, T, of her friends have adopted the innovation $(T \in [0,1])$
 - Retrieve the number of agents infected by agent i. Call this quantity M_{i raw}
 - Calculate the proportion of the population infected by agent i (M_{i_raw}/n). Call this quantity the *spreading capacity* of agent i (CAP_i).

THIRD PROCEDURE/LOOP (Calculate Centrality Measures & Average Spreading Capacity)

- Calculate the following centrality scores for each ego:
 - Degree (deg_i); Betweenness (betw_i); Closeness (close_i); interracial brokerage (IB_i); egonetwork diversity (diver_i); Eigenvector centrality (eigen_i); Local clustering coefficient (clust_i)
- Consider a user-defined proportion p of the most efficient spreaders ($p \in [0,1]$)
- Define the set $\Upsilon_{CAP}(p)$ as the portion p of agents with the highest spreading capacity (CAP_i)
- Compute the average proportion of alters infected for each ego included in $\Upsilon_{CAP}(p)$. Call this quantity $AVG_{CAP}(p)$
- Define the set $\Upsilon_{\text{centrality_measure}}(p)$ as the portion p of agents with the highest score in a given centrality measure. For instance, the set $\Upsilon_{\text{degree}}(p)$ is the portion p of agents with the highest degree centrality.
- Compute the average proportion of alters infected for each ego included in $\Upsilon_{\text{centrality_measure}}(p)$. Call this quantity $\text{AVG}_{\text{CAP_centrality_measure}}(p)$

FOURTH PROCEDURE/LOOP (Compute Imprecision Function)

• To assess the merit of using a given centrality measure to identify efficient spreaders, one needs to compare the sets AVG_{CAP}(*p*) and AVG_{CAP_centrality_measure(*p*). In order to do so, Follow Kitsak et al. (2010) by computing an *imprecision function* based on these two quantities:}

$$IM_{centrality_measure}(p) = 1 - [AVG_{CAP_centrality_measure}(p)/AVG_{CAP}(p)]$$

O Note: A value of IM close to 0 represents a very precise decision process because the nodes chosen under the centrality measure under analysis (e.g. degree centrality) are those who, indeed, individually contribute most to the diffusion process.