Group No: 01

Student id:-

Aarti Bodani : 202412001

Bhakti Khokhani: 202412039

Description:-

What Is Sustainable Agriculture?

Sustainable agriculture is a method of farming that focuses on long-term crop and livestock production and minimization of environmental harms. It is about meeting the needs of the present without compromising the needs of future generations. It can have a number of objectives, including water conservation, minimising the use of chemical fertilisers and pesticides, and promoting biodiversity in crops and ecosystems. It also helps producers improve their practices and sustain the economic viability of their farms.

- Tracks farm ownership, farm size, and crop production.
- Gathers essential crop dates, weather data, and soil conditions supporting effective management decisions.
- Saves time calculating the correct fertiliser and agricultural inputs with maximum productivity.

<u>Purpose of Sustainable Agriculture :</u>

The primary aim of the database is to assist farmers in farm management by monitoring essential aspects such as crops, soil conditions, weather and resource utilisation. Therefore, it will facilitate better decision making by farmers aimed at increasing productivity and sustainable farming practice.

This model supports farmers making work more productive, more environmentally responsive, and enhancing systems to improve productivity.

The Future Usability of Sustainable Agriculture For Farmers:

- 1. Improved Yield and Efficiency:
- Farmers will grow more crops by using natural resources efficiently, which means using less water and fewer chemical fertilisers.

2. Soil Health:

- Sustainable agriculture maintains healthy soil with adequate nutrients, allowing farmers to grow crops on the same land without exhausting its fertility.

3. Water Conservation:

- Sustainable agriculture promotes water conservation by integrating efficient irrigation practices, especially important for farmers in areas facing water shortages.

4. Climate Change Adaptation:

- Sustainable farming practices like crop rotation and soil conservation help farms cope better with extreme weather and adapt to changing climate conditions.

5. Environmental and Economic Security:

- By lowering input costs and preventing environmental degradation, sustainable agriculture ensures that farms remain economically stable and ecosystems can be restored for future generations.

By implementing sustainable farming practices, farmers will have options for continuing to be productive, conserve their land, and have the choice to continue farming in the future.

<u>Problems Farmers in Sustainable Agriculture</u> Face:

1. Resource Use:

- As water, fertilisers, and energy are critical for farming, farmers often struggle to use them effectively. Overuse can lead to waste, increased costs, and negative environmental impacts, while underuse can reduce crop yield. Effective resource management is essential in sustainable agriculture, but many farmers do not identify inefficiencies without proper tools.

2. Lack of Real-Time Information Regarding Soil Health:

- Soil health is the foundation of productive farming, but many farmers lack easy access to real-time information about their soil. Without tracking critical elements like nutrient levels, organic matter, and pH, it is challenging to maintain healthy

soils that support good crop yields. Poor soil leads to reduced yields and land degradation.

3. Unpredictable and Changing Weather Conditions:

- Climate change has altered weather patterns in unpredictable ways, making it difficult for farmers to plan. Sudden droughts and unseasonal heavy rains can severely affect crop development and yields. Many farmers lack resources to anticipate these changes and do not know when to adjust their practices.

4. Access to Comprehensive Data for Decision-Making:

- Many farmers rely on partial or outdated information for decisions related to planting, resource use, and crop management. Without a system to capture and process comprehensive information, they may miss critical inputs that could enhance their practices, leading to inefficiencies and increased costs.

5. Lack of Long-Term Planning and Forecasting:

- Sustainable farming requires long-term planning, but many farmers struggle to predict future needs such as water availability, nutrient requirements, and crop performance. Without appropriate forecasting tools, they find it challenging to prepare for future sustainability and respond to regulatory or environmental demands.

Why Use a Database Management System for Sustainable Agriculture?

A Sustainable Agriculture Resource Management Database provides the technological support needed to overcome these issues. It centralises critical farm

data, enabling farmers to make informed decisions that can boost efficiency, sustainability, and productivity.

1. Optimised Resource Management:

- The database monitors water usage, fertiliser application, and energy consumption in real time. This helps farmers apply the right amount of resources, reducing waste and saving money. By minimising the overuse of inputs, the environmental footprint of the farm decreases, enhancing sustainability.

2. Real-Time Monitoring of Soil Health:

- Key parameters such as nutrients, moisture content, pH balance, and organic matter are monitored continuously. This ongoing assessment allows farmers to detect nutrient deficiencies or soil degradation early and take corrective action to maintain soil fertility.

3. Integration of Weather Data for Better Adaptation:

- The system integrates historical weather data and real-time forecasts, helping farmers adapt to unpredictable conditions. This enables them to adjust planting schedules, irrigation systems, and crop protection strategies based on expected weather patterns.

4. Comprehensive Decisions:

- The database provides a complete view of the farm by integrating data on soil conditions, crop performance, resource use, and weather patterns. This comprehensive perspective allows farmers to make informed decisions that

improve productivity. Trends can be analyzed over time to adapt practices for optimal yields.

5. Predictive Analytics for Future Planning:

- Predictive analytics help farmers forecast yield potential, resource needs, and potential risks. This enhances their ability to prepare for future growing seasons and make proactive decisions, allowing them to respond effectively to challenges like water shortages or crop failures.

How the Database Solves Challenges:

- Resource Optimization: The system tracks resource usage, facilitating optimal allocation of water, fertilisers, and energy to each crop without overusing them, thereby minimising ecological impact.
- Soil Health: Continuous monitoring of soil quality ensures fertile land for harvests while preventing soil degradation.
- Adaptation to Climate Change: Integrating weather data enables farmers to adjust to changing conditions, enhancing resilience against adverse weather.
- Informed Decisions: Comprehensive data aids decision-making in crop management, improving yields and reducing unnecessary inputs.
- Long-Term Sustainability: Predictive analytics support preparation for future challenges, helping farmers adopt practices that ensure sustainability for both their farms and the environment.

A specific database management system for sustainable agriculture will address farmers' concerns regarding resource use, soil health, climatic uncertainty, and long-term sustainability.

Sustainable Agriculture Resource Management Database:

To facilitate the transition toward sustainability, the Sustainable Agriculture Resource Management Database serves as a centralised data repository designed to support farmers in adopting eco-friendly practices. The database provides a range of tools and insights that empower farmers to make informed decisions aimed at optimising resource use, enhancing crop yields, and improving sustainability metrics.

Purpose of the Database:

- Centralised Data Hub: It stores crucial farm data, offering farmers a single point of access for managing various aspects of their operations.
- Decision Support: By analysing data trends, the database helps farmers make well-informed choices that support sustainability.
- Sustainability Enhancement: It promotes sustainable farming practices by optimizing the use of water, soil, fertilizers, and energy, reducing the overall environmental impact.

Key Features:

1. Farm Profile Management:

- Provides detailed records of farm attributes like location, size, and ownership.
- Facilitates better management of diverse farming operations.

2. Crop Management:

- Tracks planting schedules, harvest outcomes, and crop types, offering insights into yield trends and crop performance over time.
- Enables farmers to monitor productivity and make adjustments for future planting cycles.

3. Soil Health Monitoring:

- Measures essential soil parameters such as nutrient levels, pH, and organic matter, which are critical for sustainable crop production.
 - Provides actionable insights to enhance soil health and optimize fertility.

4. Weather Data Integration:

- Incorporates historical and real-time weather information to assist in climatesmart planning.
- Supports farmers in adapting to weather changes, improving resilience to climate variability.

5. Resource Usage Management:

- Tracks the use of water, fertilisers, and energy, enabling farmers to optimise inputs and reduce waste.

- Helps minimise the environmental footprint of farming practices.

6. Predictive Analytics:

- Uses data-driven models to forecast crop yields and optimise resource allocation.
- Identifies potential risks, offering farmers foresight to avoid problems before they escalate.

7. Sustainability Metrics:

- Assesses farms' sustainability performance by evaluating environmental, economic, and social factors.
- Encourages continuous improvement in sustainable practices by providing benchmarks and actionable insights.

By equipping farmers with this integrated resource management tool, the Sustainable Agriculture Resource Management Database will empower them to make informed choices that not only increase productivity but also align with sustainable agricultural practices. This holistic approach is essential for fostering an environmentally responsible and economically stable agricultural sector.

Table 1: All Extracted Nouns & Verbs from Problem Description

Noun	Verb
Agriculture	Manages
Resources	Allocates

Farmers	Cultivates
Crop	Grows
Management	Optimises
System	Tracks
Information	Collects
Data	Analyses
Soil	Measures
Water	Conserves
Policy	Develops
Survey	Conducts
Techniques	Implements
Database	Stores
Inputs	Monitors
Outputs	Evaluates
Sustainability	Promotes
Ecosystem	Supports
Environment	Protects
Technology	Integrates

Tools	Utilizes
Research	Conducts
Climate	Adapts
Seeds	Plants
Pesticides	Uses
Fertilizers	Applies
Yield	Increases
Production	Enhances
Cost	Reduces
Techniques	Improves
Results	Analyses
Stakeholders	Involves
Students	Educates
Teachers	Guides
Government	Regulates
Reports	Generates
Experts	Advises
Land	Cultivates
	1

Livelihoods	Improves
Crops	Harvests
Knowledge	Shares
Communities	Engages
Feedback	Receives
Decision	Makes
Opportunities	Creates
Strategies	Develops
Inputs	Supplies
Outputs	Delivers
Market	Connects
Resources	Provides
Productivity	Increases
Quality	Enhances
Waste	Minimises
Goals	Sets
Systems	Establishes
Policies	Implements

Initiatives	Launches
Farmers	Engages
Communities	Builds
Action	Takes
Impact	Assesses
Livelihoods	Enhances
Strategies	Proposes
Programs	Executes
Infrastructure	Develops
Support	Provides
Food	Grows
Regions	Includes
Rainfall	Affects
Projects	Designs
Issues	Identifies
Energy	Consumes
Solutions	Proposes
Team	Forms
	1

Farmers	Consults
Experts	Collaborates
Challenges	Faces
Problems	Solves
Solutions	Implements
Farms	Supports
Collaboration	Encourages
Policies	Influences
Soil	Enriches
Agriculture	Enhances
Discussions	Leads
Reports	Provides
Markets	Links
Profitability	Enhances
Partnerships	Develops
Farmers	Supports
Goals	Achieves
Impact	Measures
	T

Engagement	Encourages
Results	Reports
Land	Utilises
Inputs	Increases
Data	Gathers
Technology	Adopts
Communication	Facilitates
Outputs	Processes
Equipment	Uses
Land	Acquires
Projects	Coordinates
Reports	Summarizes
Technology	Automates
Systems	Evaluates
Frameworks	Develops
Soil	Analyses
Partnerships	Encourages
Communities	Supports
-	

Strategies	Formulates
Models	Simulates
Databases	Integrates
Fields	Cultivates
Fertilisers	Distributes
Insects	Controls
Pest	Mitigates
Programs	Manages
Reports	Verifies
Sensors	Monitors
Projects	Tests
Energy	Consumes
Sustainability	Promotes
Techniques	Demonstrates
Innovations	Introduces
Harvest	Collects
Feedback	Analyses
Algorithms	Executes

Investments	Expands
Reports	Details
Tools	Measures
Applications	Manages
Software	Develops
Techniques	Models
Practices	Enhances
Agriculture	Improves
Yields	Measures
Farmers	Invests
Projects	Plans
Workshops	Conducts
Research	Expands
Labs	Tests
Technology	Creates
Resources	Maximises
Markets	Supports
Data	Automates

Crops	Improves
Plants	Enhances
Feedback	Captures
Research	Designs

Table 2: Accepted Noun & Verbs list

Candidate Entity Set	Candidate Attributes Set	Candidate Relationship Set
Agriculture	Agriculture ID, Practices, Economic Viability	Agriculture-Implements- Policies
Sustainability	Sustainability ID, Practices	Sustainability-Supports- Community
Farmers	Farmer ID, Name, Practices	Farmers-Engages-Community
Inputs	Input ID, Type, Quantity	Inputs-Supports-Resources
Resources	Resource ID, Type, Availability	Resources-Manages-Inputs
Outputs	Output ID, Type, Quantity	Outputs-Monitors- Performance
Data	Data ID, Type, Collection Method	Data-Analyzes-Effectiveness
Environment	Environment ID, Quality	Environment-Protects- Biodiversity

Water	Water ID, Quality, Source	Water-Conserves-Soil
Crop	Crop ID, Type, Yield	Crop-Improves-Productivity
Technology	Technology ID, Type, Application	Technology-Optimizes- Management
Community	Community ID, Name, Engagement Level	Community-Engagement- Facilitates
Ecosystem	Ecosystem ID, Health Status	Ecosystem-Supports- Environmental Quality
Impact	Impact ID, Description, Assessment	Impact-Evaluates- Performance
Biodiversity	Biodiversity ID, Species Count	Biodiversity-Monitoring- Effectiveness
Policies	Policy ID, Description, Implementation	Policies-Guide-Management
Development	Development ID, Type, Goals	Development-Conducts- Research
Soil	Soil ID, Type, Health Status	Soil-Measures-Quality
Water Quality	Water Quality ID, Parameters	Water Quality-Monitors- Effectiveness

Table 3: Rejected Noun & Verbs list

Rejected Noun	Rejection Reason
Agriculture	General: Too broad
Resources	Vague: Lacks context

Farmers	Irrelevant: Too generic; lacks specificity			
Management	General: Needs definition			
System	General: Lacks context			
Information	Vague: Not clearly defined			
Data	Irrelevant: Too broad			
Water	General: Needs specificity			
Policy	Vague: Lacks context			
Survey	Irrelevant: Needs context			
Techniques	Irrelevant: Already included			
Inputs	General: Needs context			
Outputs	General: Needs context			
Sustainability	Vague: Lacks specificity			
Ecosystem	General: Too abstract; lacks context			
Environment	Vague: Needs specificity			
Technology	General: Too broad; lacks clarity			
Tools	General: Needs context			
Research	General: Needs context			
Climate	Irrelevant: Lacks specificity			
Seeds	General: Needs context			
Pesticides	General: Needs context			
Fertilizers	General: Needs context			

Yield	General: Lacks context
Production	General: Needs context
Cost	Irrelevant: Too broad
Results	Vague: Not clearly defined
Stakeholders	Irrelevant: Too broad
Students	General: Needs context
Teachers	General: Needs context
Government	Irrelevant: Too broad
Land	General: Needs specificity
Livelihoods	General: Needs context
Knowledge	General: Not clearly defined
Feedback	General: Lacks context
Decision	General: Needs context
Opportunities	Irrelevant: Too broad
Strategies	General: Lacks specificity
Market	General: Needs context
Productivity	Irrelevant: Too broad
Waste	General: Needs specificity
Action	General: Not clearly defined
Impact	General: Not clearly defined
Infrastructure	General: Needs context

Food	Irrelevant: Too broad
Regions	General: Needs specificity
Rainfall	General: Needs context
Issues	General: Not clearly defined
Energy	Irrelevant: Too broad
Solutions	General: Needs context
Team	General: Needs context
Challenges	General: Not clearly defined
Problems	Irrelevant: Too broad
Collaboration	General: Needs context
Discussions	General: Not clearly defined
Profitability	Irrelevant: Lacks context
Partnerships	General: Needs context
Engagement	General: Lacks context
Communication	General: Needs specificity
Equipment	Irrelevant: Needs context
Fields	General: Needs specificity
Fertilisers	General: Needs context
Insects	General: Needs context
Pest	General: Needs specificity
Sensors	General: Needs context

Frameworks	General: Needs context

Table 4: Final Noun & Verbs list

Entity	Attributes	Relations
Farmers	Farmer_ID (PK), Farmer_Name, Contact_Details, Address, Region	One-to-Many (Farmers → Farms)
Farms	Farm_ID (PK), Farmer_ID (FK),size, Farm_Location, Soil_Type, Crop_Type, Irrigation_Method	Many-to-One (Farms → Farmers)
Crops	Crop_ID (PK), Crop_Name, Season, Water_Requirement, Fertilizer_Requirement	One-to-Many (Farms → Crops)
Weather_Data	WeatherData_ID (PK), Date, Location, Temperature, Rainfall, Humidity, Wind_Speed	One-to-Many (Farms → Weather_Data)
Farm_Activities	Activity_ID (PK), Farm_ID (FK),	One-to-Many (Farms →

	Activity_Type, Date, Resource_Used, Time_Spent	Farm_Activities):
Sustainability_Measures	Measure_ID (PK), Farm_ID (FK), Sustainability_Practice, Energy_Consumption, Water_Consumption	One-to-Many (Farms → Sustainability_Measures
Researchers	ResearcherID (PK), Name, Affiliation, Contact	One-to-Many (Researchers → Research Data)
Research_Data	ResearchData_ID (PK), Research Title, ResearcherID (FK), Data_Collected_Date, Conclusions	Many-to-One (Research data → Researchers)
Policies	PolicyID (PK), PolicyName, Description, EffectiveDate	One-to-Many(Farmers->policy)

