Shuuji Murakumo, Kei Nakado, Kenichirou Kase

Presenter: Arata lura (B. A. Japanese Literature)

Department of Japanese School of Foreign Studies Central University of Finance and Economics

Online Seminar - April 21, 2022

Presentation Outline

- Introduction
- **Working Definitions**
- Results
- Recommendations

- Introduction

References

Introduction

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis ut imperdiet lorem. Sed imperdiet sit amet quam sit amet molestie. Curabitur elementum magna sem, eu viverra augue pharetra quis. Phasellus ut turpis vel nunc fermentum ornare. Maecenas sit amet semper leo. Praesent sodales vel lectus sed hendrerit.

- **2** Working Definitions
 - WD1
 - WD2
 - WD3
- 3 Results
- Recommendations

WD1

Introduction

定义 2.1.1

A set $M \subseteq E(G)$ is an edge dominating set of G if every $u \in E(G) \setminus M$ is adjacent to some $v \in M$. The edge domination number of G, denoted by $\gamma_e(G)$, is the minimum cardinality of an edge dominating set of G. Any edge dominating set of G with cardinality $\gamma_e(G)$ is referred to as a γ_e -set of G.

WD1

Introduction

column 可以用来给内容分栏。

insert a sample frame with two columns

- A (t, n) threshold secret sharing scheme allows a dealer to split her secret s into n pieces (also called shares) and distribute them among n parties.
- In a threshold scheme any t or more than t shareholders can reconstruct the secret.

Figure 1: INS@arata

定义 2.2.1

无编号公式

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[G_t] = \sum_{\boldsymbol{s} \in \mathcal{S}} \boldsymbol{d}^{\pi}(\boldsymbol{s}) \boldsymbol{V}^{\pi}(\boldsymbol{s}) = \sum_{\boldsymbol{s} \in \mathcal{S}} \boldsymbol{d}^{\pi}(\boldsymbol{s}) \sum_{\boldsymbol{a} \in \mathcal{A}} \pi_{\theta}(\boldsymbol{a}|\boldsymbol{s}) Q^{\pi}(\boldsymbol{s},\boldsymbol{a})$$

多行多列公式¹

$$Q_{\text{target}} = r + \gamma Q^{\pi}(s', \pi_{\theta}(s') + \epsilon)$$

$$\epsilon \sim \text{clip}(\mathcal{N}(0, \sigma), -c, c)$$
(1)

¹如果公式中有文字出现,请用 \mathrm{} 或者 \text{}, 不然就会变成 *clip*,而不是 clip。

Remark

编号多行公式

$$A = \lim_{n \to \infty} \Delta x \left(a^{2} + \left(a^{2} + 2a\Delta x + (\Delta x)^{2} \right) + \left(a^{2} + 2 \cdot 2a\Delta x + 2^{2} (\Delta x)^{2} \right) + \left(a^{2} + 2 \cdot 3a\Delta x + 3^{2} (\Delta x)^{2} \right) + \dots + \left(a^{2} + 2 \cdot (n-1)a\Delta x + (n-1)^{2} (\Delta x)^{2} \right) \right)$$

$$= \frac{1}{3} \left(b^{3} - a^{3} \right) \quad (2)$$

WD3 (Cont.)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

定理 2.1

Introduction

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Microsoft® Word	EALEX
文字处理工具	专业排版软件
公式排版差强人意	尤其擅长公式排版
二进制格式,兼容性差	文本文件,易读、稳定

WD3 (Cont.)

Introduction

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Important theorem

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

- English
- Ohinese

Ex1 中文 1

Ex2 中文 2

References

例1

Introduction

The sets $M_1 = \{a, c, f\}$, $M_2 = \{d, h\}$, and $M_3 = \{a, e, g, h\}$ are edge dominating sets of G in Figure 1.5. Moreover, $M_2 = \{d, h\}$ is a minimum edge dominating set of G. Thus, $\gamma_e(G) = |M_2| = 2$.

Figure 2: A graph *G* with $\gamma_e(G) = 2$.

- Working Definitions
 - WD1
 - a WD
 - o WD3
- 3 Results
- Recommendations

 Working Definitions
 Results
 Recommendations
 References

 ○○○○○○○
 ○○
 ○○
 ○

Results

Introduction

注解 3.0.1

A set S is an outer-connected edge dominating set of a graph G if S is an edge dominating set such that $H_{E(G)\setminus S}$ does not have component isomorphic to K_2 or S=E(G).

Results

Introduction

注解 3.0.1

A set S is an outer-connected edge dominating set of a graph G if S is an edge dominating set such that $H_{E(G)\setminus S}$ does not have component isomorphic to K_2 or S = E(G).

To see this, consider graphs $G_1 = P_3$, $G_2 = P_4$, and $G_3 = C_8$ in Figure 3. Then, $\gamma_{oce}(P_3) = 2$, $\gamma_{oce}(P_4) = 3$, and $\gamma_{oce}(C_8) = 4$.

Results (Cont.)

命令

Introduction

\chapter	\section	\subsection	\paragraph
章	节	小节	带题头段落
\centering	\emph	\verb	\url
居中对齐	强调	原样输出	超链接
\footnote	\item	\caption	\includegraphics
脚注	列表条目	标题	插入图片
\label	\cite	\ref	
标号	引用参考文献	引用图表公式等	

环境

table	figure	equation
表格	图片	公式
itemize	enumerate	description
无编号列表	编号列表	描述

Results (Cont.)

Figure 3: Graphs with $\gamma_{oce}(P_3) = 2$, $\gamma_{oce}(P_4) = 3$, and $\gamma_{oce}(C_8) = 4$.

Presentation Outline

Working Definitions

- Recommendations

References

Recommendations

Introduction

The following problems are suggested for further study:2

Velickovic et al. (2017) lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis ut imperdiet lorem. Sed imperdiet sit amet quam sit amet molestie.

Curabitur elementum magna sem, eu viverra augue pharetra quis. Phasellus ut turpis vel nunc fermentum ornare. Maecenas sit amet semper leo. Praesent sodales vel lectus sed hendrerit. (Kosaraju et al., 2019; Velickovic et al., 2017)

²Petar Velickovic et al. (2017). "Graph attention networks". In stat 1050 p. 20. → Q

List of References

- Kosaraju, Vineet et al. (2019). "Social-bigat: Multimodal trajectory fore-casting using bicycle-gan and graph attention networks". In: Advances in Neural Information Processing Systems 32.
- Velickovic, Petar et al. (2017). "Graph attention networks". In: *stat* 1050, p. 20.

Thank You So Much!

