Universidad Nacional de San Agustín Ciencia de la Computación

Inteligencia Artificial

Chávez Cruz, Jhunior Kenyi Basurco Cayllahua Eduardo Rolando

29 de mayo de 2019

En el presente informe se presentan, la implementación (lenguaje Python), visualización (Matplotlib) y análisis (Matriz de Confusión) de una Red Neuronal MLP (back propagation). Se ha empleado la base de Datos "*Iris.csv*"

1. Red Neuronal Back Propagation (MLP)

1.1. Introducción

- Es un método que utiliza algoritmos de aprendizaje supervisado utilizados para entrenar redes neuronales artificiales.
- El método emplea un ciclo propagación adaptación de dos fases.
 - Una vez que se ha aplicado un patrón a la entrada de la red como estímulo, este se propaga desde la primera capa a través de las capas siguientes de la red, hasta generar una salida.
 - La señal de salida se compara con la salida deseada y se calcula una señal de error para cada una de las salidas.
 - Las salidas de error se propagan hacia atrás, partiendo de la capa de salida, hacia todas las neuronas de la capa oculta que contribuyen directamente a la salida.

1.2. Análisis de Entrenamiento y Predicción

Consideraciones

- Análisis de Características: Se estan procesando las 4 características de cada clase de Flor
- Base de Datos: *Iris.csv*, Clase Setosa, Versicolor y Virginica
- \blacksquare **División**: 70 % del Archivo para Entrenamiento y 30 % para Testeo

Gráfica: Se está mostrando las matrices de cofusión para cada consideración de alpha y número de capas

1.2.1. Resultados (Matriz de Confusión)

Se están tomando las siguientes iteraciones:

- neuronas por capa= 4, 6, 8, 10, 12
- \bullet alfas = 0.01, 0.04, 0.07, 0.1, 0.5

Figura 1: Número de Capas= 4, Alpha=0.01

Figura 2: Número de Capas= 4 , Alpha= 0.04

Figura 3: Número de Capas= 4, Alpha= 0.07

Figura 6: Número de Capas= 6, Alpha= 0.01

Figura 4: Número de Capas= 4, Alpha= 0.1

Figura 7: Número de Capas= 6, Alpha= 0.07

Figura 5: Número de Capas= 4, Alpha= 0.5

Figura 8: Número de Capas= 6, Alpha= 0.07

Figura 9: Número de Capas= 6, Alpha=0.1

Figura 12: Número de Capas= 8, Alpha= 0.04

Figura 10: Número de Capas= 6, Alpha= 0.5

Figura 13: Número de Capas= 8, Alpha= 0.07

Figura 11: Número de Capas= 8, Alpha= 0.01

Figura 14: Número de Capas= 8, Alpha= 0.1

Figura 18: Número de Capas= 10, Alpha= 0.07

Figura 16: Número de Capas= 10, Alpha= 0.01

Figura 19: Número de Capas=10, Alpha= $0.1\,$

Figura 17: Número de Capas= 10, Alpha= 0.04

Figura 20: Número de Capas= 10, Alpha= 0.5

Figura 21: Número de Capas= 12, Alpha= 0.01

Figura 24: Número de Capas= 12, Alpha= 0.1

Figura 22: Número de Capas= 12, Alpha= 0.04

Figura 25: Número de Capas= 12, Alpha= 0.5

1.2.2. Conclusiones

- Como se puede apreciar en los resultados podemos ver ciertas tendencias con respecto a el resultado numérico de las virginicas, solo logra encontrar y atinar con éxito pero casi con un 100% de veces el 24,4 por ciento en todas las capas y con todos los alfas
- también podemos observar que cuando se le da un valor alfa muy bajo el rango de acierto cambia drásticamente véase la comparacion entre alfa = 0,1 y 0,001 donde básicamente no encuentra las versicolor, pero esto también pasa cuando el alfa es muy grande sea el alfa 0,5
- Por tanto si el alfa es muy grande o es muy pequeño el rango de acierto de nuestra red puede variar enormemente, también encontramos algo curioso que pasa cuando se tiene 8 capas y el alfa es 0,1 mientras que con todas las capas logra tener un rango de acierto del 40 % cuando se tiene 8 capas el rango de acierto baja enormemente
- Tambien se observo que a mayor numero de capas el rango de acierto empieza a declinar, no siendo este el caso con el numero de 6 capas

Figura 23: Número de Capas= 12, Alpha= 0.07

•	Con 6 capas nos dimos cuenta que sea el alfa que tome siempre tiene el mismo rango de exito