SBML Model Report

Model name: "Heldt2012 - Influenza Virus Replication"

May 6, 2016

1 General Overview

This is a document in SBML Level 3 Version 1 format. This model was created by the following three authors: Nick Juty¹, Vijayalakshmi Chelliah² and Frank Stefan Heldt³ at August seventh 2013 at 1:32 p. m. and last time modified at April eighth 2016 at 5:34 p. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	39
events	0	constraints	0
reactions	50	function definitions	2
global parameters	48	unit definitions	5
rules	19	initial assignments	0

Model Notes

Heldt2012 - Influenza Virus Replication

¹EMBL-EBI, juty@ebi.ac.uk

²EMBL-EBI, viji@ebi.ac.uk

³Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany, heldt@mpi-magdeburg.mpg.de

The model describes the life cycle of influenza A virus in a mammalian cell including the following steps: attachment of parental virions to the cell membrane, receptor-mediated endocytosis, fusion of the virus envelope with the endosomal membrane, nuclear import of vRNPs, viral transcription and replication, translation of the structural viral proteins, nuclear export of progeny vRNPs and budding of new virions. It also explicitly accounts for the stabilization of cRNA by viral polymerases and NP and the inhibition of vRNP activity by M1 protein binding. In short, the model focuses on the molecular mechanism that controls viral transcription and replication.

This model is described in the article:Modeling the intracellular dynamics of influenza virus replication to understand the control of viral RNA synthesis.Heldt FS, Frensing T, Reichl U.J Virol.

Abstract:

Influenza viruses transcribe and replicate their negative-sense RNA genome inside the nucleus of host cells via three viral RNA species. In the course of an infection, these RNAs show distinct dynamics, suggesting that differential regulation takes place. To investigate this regulation in a systematic way, we developed a mathematical model of influenza virus infection at the level of a single mammalian cell. It accounts for key steps of the viral life cycle, from virus entry to progeny virion release, while focusing in particular on the molecular mechanisms that control viral transcription and replication. We therefore explicitly consider the nuclear export of viral genome copies (vRNPs) and a recent hypothesis proposing that replicative intermediates (cRNA) are stabilized by the viral polymerase complex and the nucleoprotein (NP). Together, both mechanisms allow the model to capture a variety of published data sets at an unprecedented level of detail. Our findings provide theoretical support for an early regulation of replication by cRNA stabilization. However, they also suggest that the matrix protein 1 (M1) controls viral RNA levels in the late phase of infection as part of its role during the nuclear export of viral genome copies. Moreover, simulations show an accumulation of viral proteins and RNA toward the end of infection, indicating that transport processes or budding limits virion release. Thus, our mathematical model provides an ideal platform for a systematic and quantitative evaluation of influenza virus replication and its complex regulation.

With the current parameter set, the model reproduces an infection at a multiplicity of infection (MOI) of 10. Figure 2A of the paper is reproduced here, with parameters kDegRnp and kSynP changed to zeros.

Initial conditions and parameter changes that were used to obtain specific figures in the article can be found in Table A2.

The model has the correct value for kAttLo as 4.55e-04. The value of this parameter mentioned as 4.55e-02 in Table 1 of the paper is incorrect. This is checked with the author.

This model is hosted on BioModels Database and identifiedby: MODEL1307270000.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resourcefor published quantitative kinetic models .

To the extent possible under law, all copyright and related orneighbouring rights to this encoded model have been dedicated to the publicdomain worldwide. Please refer to CCO Public DomainDedication for more information.

2 Unit Definitions

This is an overview of five unit definitions.

2.1 Unit length

Name length

Definition m

2.2 Unit area

Name area

Definition m^2

2.3 Unit volume

Name volume

Definition dimensionless

2.4 Unit time

Name time

Definition 3600 s

2.5 Unit substance

Name substance

Definition dimensionless

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment_1	cell		3	1		\checkmark	

$\textbf{3.1 Compartment} \texttt{compartment}_1$

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains 39 species. The boundary condition of four of these species is set to true so that these species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi- tion
species_1	Bhi	compartment_1	$\text{mol} \cdot l^{-1}$		\Box
species_2	VattHi	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_3	Vex	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_4	Blo	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_5	VattLo	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_6	Ven	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		\Box
species_7	Vfus	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_8	VpCyt	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_9	VpNuc	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_10	Rc	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_11	P_Rdrp	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_12	RcRdrp	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_13	P_Np	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		\Box
species_14	P_M1	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_15	VpNucM1	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_16	VpCytM1	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_17	Ср	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_18	Rv	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_19	RvRdrp	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		
species_20	Rm1	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		\Box
species_21	Rm2	${\tt compartment_1}$	$\text{mol} \cdot l^{-1}$		

0	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	species_22	Rm3	compartment_1	$\text{mol} \cdot 1^{-1}$	\Box	\Box
	species_23	Rm4	${ t compartment}_{ t 1}$	$\text{mol} \cdot l^{-1}$	\Box	
	species_24	Rm5	${ t compartment}_{ t 1}$	$\operatorname{mol} \cdot 1^{-1}$	\Box	
	species_25	Rm6	${ t compartment}_{ t 1}$	$\operatorname{mol} \cdot 1^{-1}$		\Box
	species_26	Rm7	${\tt compartment_1}$	$\text{mol} \cdot l^{-1}$	\Box	
	species_27	Rm8	${\tt compartment_1}$	$\text{mol} \cdot l^{-1}$	\Box	\Box
	species_28	P_Pb1	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$	\Box	
_	species_29	P_Pb2	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$	\Box	
Denduned by	species_30	P_Pa	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$	\Box	
1	species_31	P_Nep	${\tt compartment_1}$	$\text{mol} \cdot l^{-1}$	\Box	
4	species_32	P_Ha	${\tt compartment_1}$	$\text{mol} \cdot l^{-1}$	\Box	
4	species_33	P_Na	${\tt compartment_1}$	$\text{mol} \cdot l^{-1}$	\Box	
	species_34	P_M2	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$	\Box	
	species_35	Vrel	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$	\Box	
	species_36	total cRNA	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$	\Box	\square
<	species_37	total cRNA of a segment	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$	\Box	\square
	species_38	total vRNA	${\tt compartment_1}$	$\text{mol} \cdot l^{-1}$		
	species_39	total vRNA of a segment	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		\square

5 Parameters

This model contains 48 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
parameter_1	kAttHi		0.081		
parameter_2	kAttLo		$4.55 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
parameter_3	kDisHi		7.159		
$parameter_4$	kDisLo		5.462		
$parameter_5$	kEn		4.800		
$parameter_6$	kFus		3.210		$ \overline{\mathbf{Z}} $
$parameter_{-}7$	kDegVen		3.084		
$parameter_8$	kImp		6.000		
$parameter_9$	kSynP		64800.000		
$parameter_10$	kSynV		13.860		
$parameter_11$	kSynC		1.380		
$parameter_12$	kBindRdrp		1.000		
$parameter_13$	kBindNp		$3.01 \cdot 10^{-4}$		
$parameter_14$	kBindM1		$1.39 \cdot 10^{-6}$		
$parameter_{-}15$	kExp		10^{-6}		
$parameter_16$	kSynP_Drib		405.000		
$parameter_17$	kRdrp		1.000		
$parameter_18$	kRel		0.004		
$parameter_19$	kDegR		36.360		
$parameter_20$	kDegRnp		0.090		
$parameter_21$	kDegM		0.330		
$parameter_22$	kDegRrdrp		4.250		
$parameter_23$	Ffus		0.510		
$parameter_24$	Drib		160.000		
$parameter_25$	Fspl7		0.020		
$parameter_26$	Fspl8		0.125		
$parameter_27$	kSynP_M1		396.900		
$parameter_28$	kSynP_M2		8.100		
$parameter_29$	kSynP_NEP		50.625		
$parameter_30$	L1		2320.000		
$parameter_31$	L2		2320.000		
$parameter_32$	L3		2211.000		
$parameter_33$	L4		1757.000		
$parameter_34$	L5		1540.000		
$parameter_35$	L6		1392.000		
parameter_36	L7		1005.000		
parameter_37	L8		868.000		\square

Id	Name	SBO	Value	Unit	Constant
parameter_38	kSynM		250000.000		$\overline{\checkmark}$
parameter_39	kSynM1		13.470		
$parameter_40$	kSynM2		13.470		\Box
parameter_41	kSynM3		14.134		\Box
parameter_42	kSynM4		17.786		\Box
parameter_43	kSynM5		20.292		\Box
parameter_44	kSynM6		22.450		\Box
parameter_45	kSynM7		31.095		
parameter_46	kSynM8		36.002		
parameter_47	kEqHi		0.011		
parameter_48	kEqLo		$8.33 \cdot 10^{-5}$		$\overline{\mathbf{Z}}$

6 Function definitions

This is an overview of two function definitions.

6.1 Function definition function_2

Name Virus release kinetic

Arguments k, substrateA, substrateB, KmB, substrateC, KmC, substrateD, KmD, substrateE, KmE, substrateF, KmF, substrateG, KmG, substrateH, KmH

Mathematical Expression

 $\frac{k \cdot substrateA \cdot substrateB \cdot substrateC \cdot substrateD \cdot substrateE \cdot substrateF \cdot substrate}{(substrateB + KmB) \cdot (substrateC + KmC) \cdot (substrateD + KmD) \cdot (substrateE + KmE) \cdot (substrateF + KmF) \cdot (substrateF + KmF) \cdot (substrateB + KmE) \cdot (substrateB + KmE$

6.2 Function definition function_1

Name Protein binding

Arguments k, substratea, substrateb

Mathematical Expression

 $k \cdot substratea \cdot substrateb$ (2)

7 Rules

This is an overview of 19 rules.

7.1 Rule parameter_16

Rule parameter_16 is an assignment rule for parameter parameter_16:

$$parameter_16 = \frac{parameter_9}{parameter_24}$$
 (3)

7.2 Rule parameter_3

Rule parameter_3 is an assignment rule for parameter parameter_3:

$$parameter_{3} = \frac{parameter_{1}}{parameter_{47}}$$
 (4)

7.3 Rule parameter_4

Rule parameter_4 is an assignment rule for parameter parameter_4:

$$parameter_4 = \frac{parameter_2}{parameter_48}$$
 (5)

7.4 Rule parameter_7

Rule parameter_7 is an assignment rule for parameter parameter_7:

$$parameter_{7} = \frac{1 - parameter_{23}}{parameter_{23}} \cdot parameter_{6}$$
 (6)

7.5 Rule parameter_43

Rule parameter_43 is an assignment rule for parameter parameter_43:

$$parameter_43 = \frac{\frac{parameter_38}{parameter_34}}{8}$$
 (7)

7.6 Rule parameter_44

Rule parameter_44 is an assignment rule for parameter parameter_44:

$$parameter_44 = \frac{\frac{parameter_38}{parameter_35}}{8}$$
 (8)

7.7 Rule parameter_27

Rule parameter_27 is an assignment rule for parameter parameter_27:

$$parameter_27 = \frac{parameter_9}{parameter_24} \cdot (1 - parameter_25)$$
 (9)

7.8 Rule parameter_46

Rule parameter_46 is an assignment rule for parameter parameter_46:

$$parameter_46 = \frac{\frac{parameter_38}{parameter_37}}{8}$$
 (10)

7.9 Rule parameter_40

Rule parameter_40 is an assignment rule for parameter parameter_40:

$$parameter_40 = \frac{\frac{parameter_38}{parameter_31}}{8}$$
 (11)

7.10 Rule parameter_41

Rule parameter_41 is an assignment rule for parameter parameter_41:

$$parameter_41 = \frac{\frac{parameter_38}{parameter_32}}{8}$$
 (12)

7.11 Rule parameter_39

Rule parameter_39 is an assignment rule for parameter parameter_39:

$$parameter_{39} = \frac{\frac{parameter_{38}}{parameter_{30}}}{8}$$
 (13)

7.12 Rule parameter_42

Rule parameter_42 is an assignment rule for parameter parameter_42:

$$parameter_42 = \frac{\frac{parameter_38}{parameter_33}}{8}$$
 (14)

7.13 Rule parameter_28

Rule parameter_28 is an assignment rule for parameter parameter_28:

$$parameter_28 = \frac{parameter_9}{parameter_24} \cdot parameter_25$$
 (15)

7.14 Rule parameter_29

Rule parameter_29 is an assignment rule for parameter parameter_29:

$$parameter_29 = \frac{parameter_9}{parameter_24} \cdot parameter_26$$
 (16)

7.15 Rule parameter_45

Rule parameter_45 is an assignment rule for parameter parameter_45:

$$parameter_{45} = \frac{\frac{parameter_{38}}{parameter_{36}}}{8}$$
 (17)

7.16 Rule species_38

Rule species_38 is an assignment rule for species species_38:

$$species_38 = 8 \cdot ([species_2] + [species_5] + [species_6]) + [species_8] + [species_9] + [species_18] + [species_19] + [species_15] + [species_16]$$

$$(18)$$

7.17 Rule species_36

Rule species_36 is an assignment rule for species species_36:

$$species_36 = [species_10] + [species_12] + [species_17]$$
 (19)

Derived unit $mol \cdot l^{-1}$

7.18 Rule species_39

Rule species_39 is an assignment rule for species species_39:

$$species_39 = \frac{[species_38]}{8}$$
 (20)

7.19 Rule species_37

Rule species_37 is an assignment rule for species species_37:

$$species_37 = \frac{[species_36]}{8}$$
 (21)

12

8 Reactions

This model contains 50 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Nº	Id	Name	Reaction Equation SBO
1	reaction_1	Binding of virions to high-affinity sites	species_3+species_1 species_2, species_1, species_2 species_2
2	${\tt reaction_2}$	Binding of virions to low-affinity sites	species_3 + species_4 species_5 species_5
3	reaction_3	Endocytosis of virions bound to high-affinity sites	species_2 $\xrightarrow{\text{species}_2}$ species_6 + species_1
4	${\tt reaction_4}$	Endocytosis of virions bound to low-affinity sites	species_5 $\xrightarrow{\text{species}_5}$ species_6 + species_4
5	reaction_5	Fusion of virions with endosomes	species_6 $\xrightarrow{\text{species}_6}$ species_7 + 8 species_8
6	reaction_6	Degradation of virions in endosomes	species_6 $\xrightarrow{\text{species}_6} \emptyset$
7	reaction_7	Nuclear import of vRNPs	species_8 species_9 species_9
8	reaction_8	Synthesis of cRNA	species_9 $\xrightarrow{\text{species}_9}$ species_9 + species_10
9	reaction_9	Binding of polymerase to nascent cRNA	$species_10 + species_11 \xrightarrow{species_10, species_11} species_12$
10	reaction_10	Binding of NP to RdRp-cRNA complexes	species_12+71 species_13 $\xrightarrow{\text{species}_12, \text{ species}_13}$ species_17
11	reaction_11	Binding of M1 to vRNPs in the nucleus	species_9 + 8 · 5 species_14 $\xrightarrow{\text{species}_9, \text{ species}_14}$ species_15
12	reaction_12	Nuclear export of vRNPs	species_15 + species_31 $\xrightarrow{\text{species}_15, \text{ species}_31}$ species_16
13	reaction_13	Synthesis of vRNA	species_17 $\xrightarrow{\text{species}_17}$ species_17 + species_18
14	reaction_14	Binding of polymerase to nascent vRNA	species_18 + species_11 $\xrightarrow{\text{species}_18, \text{ species}_11}$ species_19

No	Id	Name	Reaction Equation	SBO
15	reaction_15	Binding of NP to RdRp-vRNA complexes	species_19+71 species_13 species_19, species_13 species_19	pecies_9
16	reaction_16	Synthesis of mRNA of segment 1	species_9 $\xrightarrow{\text{species}_9}$ species_9 + species_20	
17	reaction_17	Synthesis of mRNA of segment 2	species_9 $\xrightarrow{\text{species}_9}$ species_9 + species_21	
18	reaction_18	Synthesis of mRNA of segment 3	species_9 $\xrightarrow{\text{species}_9}$ species_9 + species_22	
19	reaction_19	Synthesis of mRNA of segment 4	species_9 $\xrightarrow{\text{species}_9}$ species_9 + species_23	
20	reaction_20	Synthesis of mRNA of segment 5	species_9 $\xrightarrow{\text{species}_9}$ species_9 + species_24	
21	reaction_21	Synthesis of mRNA of segment 6	species_9 $\xrightarrow{\text{species}_9}$ species_9 + species_25	
22	reaction_22	Synthesis of mRNA of segment 7	species_9 $\xrightarrow{\text{species}_9}$ species_9 + species_26	
23	reaction_23	Synthesis of mRNA of segment 8	species_9 $\xrightarrow{\text{species}_9}$ species_9 + species_27	
24	reaction_24	Synthesis of PB1	species_21 $\xrightarrow{\text{species}_21}$ species_21 + species_28	
25	reaction_25	Synthesis of PB2	$species_20 \xrightarrow{species_20} species_20 + species_29$	
26	reaction_26	Synthesis of PA	$species_22 \xrightarrow{species_22} species_22 + species_30$	
27	reaction_27	Formation of polymerases	species 28 + species 29 + species 30 + species 30	
			species_30 species_28, species_29, species_30 species_30	es_11
28	reaction_28	Synthesis of NP	species_24 $\xrightarrow{\text{species}_24}$ species_24 + species_13	
29	reaction_29	Synthesis of M1	species_26 $\xrightarrow{\text{species}_26}$ species_26 + species_14	
30	reaction_30	Synthesis of NEP	species_27 $\xrightarrow{\text{species}_27}$ species_27 + species_31	
31	reaction_31	Synthesis of HA	species_23 $\xrightarrow{\text{species}_23}$ species_23 + species_32	
32	reaction_32	Synthesis of NA	species_25 $\xrightarrow{\text{species}_25}$ species_25 + species_33	
33	reaction_33	Synthesis of M2	species_26 $\xrightarrow{\text{species}_26}$ species_26 + species_34	

14	N⁰	Id	Name	Reaction Equation	SBO
	34	reaction_34	Virus release	8 species_16 + 37 species_11 + 433 species_13 2932 species_14 + 157 species_31 500 species_32 + 100 species_33 40 species_34 species_16, species_11, species_32,	+
	35	reaction_35	Degradation of vRNPs in the nucleus	species_9 $\xrightarrow{\text{species}_9} \emptyset$	
	36	reaction_36	Degradation of nascent cRNA	$species_10 \xrightarrow{species_10} \emptyset$	
	37	reaction_37	Degradation of nascent vRNA	species_ $18 \xrightarrow{\text{species}_18} \emptyset$	
Pr	38	reaction_38	Degradation of RdRp-cRNA	species_12 $\xrightarrow{\text{species}_12} \emptyset$	
oduc	39	reaction_39	Degradation of RdRp-vRNA	$species_19 \xrightarrow{species_19} \emptyset$	
ed b.	40	${\tt reaction_40}$	Degradation of cRNPs	species_17 $\xrightarrow{\text{species}_17} \emptyset$	
Produced by SBML2 ST EX	41	reaction_41	Degradation of M1-vRNP complexes in the nucleus	species_15 $\xrightarrow{\text{species}_15} \emptyset$	
PATEX	42	reaction_42	Degradation of M1-vRNP complexes in the cytoplasm	$species_{-}16 \xrightarrow{species_{-}16} \emptyset$	
	43	reaction_43	Degradation of mRNA of segment 1	$species_20 \xrightarrow{species_20} \emptyset$	
	44	reaction_44	Degradation of mRNA of segment 2	species_21 $\xrightarrow{\text{species}_21} \emptyset$	
	45	reaction_45	Degradation of mRNA of segment 3	species_22 $\xrightarrow{\text{species}_22} \emptyset$	
	46	reaction_46	Degradation of mRNA of segment 4	species_23 $\xrightarrow{\text{species}_23} \emptyset$	
	47	reaction_47	Degradation of mRNA of segment 5	species_24 $\xrightarrow{\text{species}_24} \emptyset$	
	48	reaction_48	Degradation of mRNA of segment 6	species_25 $\frac{\text{species}_25}{}$ \emptyset	
	49	reaction_49	Degradation of mRNA of segment 7	species_26 $\xrightarrow{\text{species}_26} \emptyset$	

Nº Id	Name	Reaction Equation	SBO
50 reaction_50	Degradation of mRNA of segment 8	species_27 $\xrightarrow{\text{species}_27} \emptyset$	

8.1 Reaction reaction_1

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Name Binding of virions to high-affinity sites

Reaction equation

$$species_3 + species_1 \xrightarrow{species_3, species_1, species_2} species_2$$
 (22)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
species_3 species_1	Vex Bhi	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
species_3 species_1 species_2	Vex Bhi VattHi	

Product

Table 8: Properties of each product.

Id	Name	SBO
species_2	VattHi	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol} (\text{compartment_1}) \cdot (\text{parameter_1} \cdot [\text{species_3}] \cdot [\text{species_1}] - \text{parameter_3} \cdot [\text{species_2}])$$
(23)

8.2 Reaction reaction_2

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Name Binding of virions to low-affinity sites

Reaction equation

Reactants

Table 9: Properties of each reactant.

Id	Name	SBO
species_3 species_4	Vex Blo	

Modifiers

Table 10: Properties of each modifier.

Id N	
species_3 Versions species_4 Branches_5 Versions Species_5 Versions Species_6 Versions_6 Versions Species_6	

Product

Table 11: Properties of each product.

Id	Name	SBO
species_5	VattLo	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol} (\text{compartment_1}) \cdot (\text{parameter_2} \cdot [\text{species_3}] \cdot [\text{species_4}] - \text{parameter_4} \cdot [\text{species_5}])$$
(25)

8.3 Reaction reaction_3

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Endocytosis of virions bound to high-affinity sites

Reaction equation

$$species_2 \xrightarrow{species_2} species_6 + species_1$$
 (26)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
species_2	VattHi	

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
species_2	VattHi	

Products

Table 14: Properties of each product.

Id	Name	SBO
species_6	Ven	
species_1	Bhi	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{compartment}_1) \cdot \text{parameter}_5 \cdot [\text{species}_2]$$
 (27)

8.4 Reaction reaction_4

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Endocytosis of virions bound to low-affinity sites

Reaction equation

species_5
$$\xrightarrow{\text{species}_5}$$
 species_6 + species_4 (28)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
species_5	VattLo	

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
species_5	VattLo	

Products

Table 17: Properties of each product.

Id	Name	SBO
species_6	Ven	
species_4	Blo	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol} (\text{compartment}_1) \cdot \text{parameter}_5 \cdot [\text{species}_5]$$
 (29)

8.5 Reaction reaction_5

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Fusion of virions with endosomes

Reaction equation

$$species_6 \xrightarrow{species_6} species_7 + 8 species_8$$
 (30)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
species_6	Ven	

Modifier

Table 19: Properties of each modifier.

Id	Name	SBO
species_6	Ven	

Products

Table 20: Properties of each product.

Id	Name	SBO
species_7	Vfus	_
species_8	VpCyt	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{compartment}_1) \cdot \text{parameter}_6 \cdot [\text{species}_6]$$
 (31)

8.6 Reaction reaction_6

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of virions in endosomes

Reaction equation

$$species_6 \xrightarrow{species_6} \emptyset$$
 (32)

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
species_6	Ven	

Modifier

Table 22: Properties of each modifier.

Id	Name	SBO
species_6	Ven	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{compartment}_1) \cdot \text{parameter}_7 \cdot [\text{species}_6]$$
 (33)

8.7 Reaction reaction_7

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Nuclear import of vRNPs

Reaction equation

$$species_8 \xrightarrow{species_8} species_9$$
 (34)

Reactant

Table 23: Properties of each reactant.

Id	Name	SBO
species_8	VpCyt	

Modifier

Table 24: Properties of each modifier.

Id	Name	SBO
species_8	VpCyt	

Product

Table 25: Properties of each product.

Id	Name	SBO
species_9	VpNuc	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{compartment}_1) \cdot \text{parameter}_8 \cdot [\text{species}_8]$$
 (35)

8.8 Reaction reaction_8

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of cRNA

Reaction equation

$$species_9 \xrightarrow{species_9} species_9 + species_10$$
 (36)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
species_9	VpNuc	

Modifier

Table 27: Properties of each modifier.

Id	Name	SBO
species_9	VpNuc	

Table 28: Properties of each product.

Id	Name	SBO
species_9	VpNuc	
species_10	Rc	

Derived unit contains undeclared units

$$v_8 = \text{vol} (\text{compartment_1}) \cdot \text{parameter_11} \cdot [\text{species_9}]$$
 (37)

8.9 Reaction reaction_9

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name Binding of polymerase to nascent cRNA

Reaction equation

$$species_10 + species_11 \xrightarrow{species_10, species_11} species_12$$
 (38)

Reactants

Table 29: Properties of each reactant.

Id	Name	SBO
species_10 species_11	Rc P_Rdrp	

Modifiers

Table 30: Properties of each modifier.

Id	Name	SBO
species_10	Rc	
species_11	P_Rdrp	

Table 31: Properties of each product.

Id	Name	SBO
species_12	RcRdrp	

Derived unit contains undeclared units

$$v_9 = \text{vol} (\text{compartment}_1) \cdot \text{parameter}_12 \cdot [\text{species}_10] \cdot [\text{species}_11]$$
 (39)

8.10 Reaction reaction_10

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name Binding of NP to RdRp-cRNA complexes

Reaction equation

$$species_{1}2 + 71 species_{1}3 \xrightarrow{species_{1}2, species_{1}3} species_{1}7$$
 (40)

Reactants

Table 32: Properties of each reactant.

Id	Name	SBO
species_12	RcRdrp	
$species_{-}13$	PNp	

Modifiers

Table 33: Properties of each modifier.

Id	Name	SBO
species_12 species_13	RcRdrp P_Np	

Table 34: Properties of each product.

Id	Name	SBO
species_17	Cp	

Derived unit contains undeclared units

$$v_{10} = \text{vol} (\text{compartment_1}) \cdot \text{function_1} (\text{parameter_13}, [\text{species_12}], [\text{species_13}])$$
 (41)

function_1 (k, substratea, substrateb) =
$$k \cdot substratea \cdot substrateb$$
 (42)

function_1 (k, substratea, substrateb) =
$$k \cdot \text{substratea} \cdot \text{substrateb}$$
 (43)

8.11 Reaction reaction_11

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name Binding of M1 to vRNPs in the nucleus

Reaction equation

species_9 +
$$8.5$$
 species_14 $\xrightarrow{\text{species}_9}$, species_14 $\xrightarrow{\text{species}_15}$ (44)

Reactants

Table 35: Properties of each reactant.

Id	Name	SBO
species_9 species_14	VpNuc P_M1	

Modifiers

Table 36: Properties of each modifier.

Id	Name	SBO
species_9	VpNuc	
species_14	P_M1	

Product

Table 37: Properties of each product.

Id	Name	SBO
species_15	VpNucM1	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}(\text{compartment_1}) \cdot \text{function_1}(\text{parameter_14}, [\text{species_9}], [\text{species_14}])$$
 (45)

function_1 (k, substratea, substrateb) =
$$k \cdot \text{substratea} \cdot \text{substrateb}$$
 (46)

function_1 (k, substratea, substrateb) =
$$k \cdot substratea \cdot substrateb$$
 (47)

8.12 Reaction reaction_12

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name Nuclear export of vRNPs

Reaction equation

species_15 + species_31
$$\xrightarrow{\text{species}_15, \text{ species}_31}$$
 species_16 (48)

Reactants

Table 38: Properties of each reactant.

Id	Name	SBO
species_15 species_31	VpNucM1 P_Nep	

Modifiers

Table 39: Properties of each modifier.

Id	Name	SBO
species_15	VpNucM1	

Id	Name	SBO
species_31	P_Nep	

Product

Table 40: Properties of each product.

Id	Name	SBO
species_16	VpCytM1	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_15} \cdot [\text{species_15}] \cdot [\text{species_31}]$$
 (49)

8.13 Reaction reaction_13

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of vRNA

Reaction equation

$$species_{17} \xrightarrow{species_{17}} species_{17} + species_{18}$$
 (50)

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
species_17	Cp	

Modifier

Table 42: Properties of each modifier.

Id	Name	SBO
species_17	Cp	

Products

Table 43: Properties of each product.

Id	Name	SBO
species_17	•	
species_18	ΚV	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol} \left(\text{compartment}_{-1} \right) \cdot \text{parameter}_{-10} \cdot \left[\text{species}_{-17} \right]$$
 (51)

8.14 Reaction reaction_14

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name Binding of polymerase to nascent vRNA

Reaction equation

species_18 + species_11
$$\xrightarrow{\text{species}_18, \text{ species}_11}$$
 species_19 (52)

Reactants

Table 44: Properties of each reactant.

Id	Name	SBO
species_18	Rv	
species_11	P_Rdrp	

Modifiers

Table 45: Properties of each modifier.

Id	Name	SBO
species_18	Rv	
species_11	P_Rdrp	

Table 46: Properties of each product.

Id	Name	SBO
species_19	RvRdrp	

Derived unit contains undeclared units

$$v_{14} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_12} \cdot [\text{species_18}] \cdot [\text{species_11}]$$
 (53)

8.15 Reaction reaction_15

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name Binding of NP to RdRp-vRNA complexes

Reaction equation

species_19 + 71 species_13
$$\xrightarrow{\text{species}_19}$$
 species_9 (54)

Reactants

Table 47: Properties of each reactant.

Id	Name	SBO
species_19	RvRdrp	
$species_{-}13$	PNp	

Modifiers

Table 48: Properties of each modifier.

Id	Name	SBO
species_19 species_13		

Table 49: Properties of each product.

Id	Name	SBO
species_9	VpNuc	

Derived unit contains undeclared units

$$v_{15} = \text{vol}(\text{compartment_1}) \cdot \text{function_1}(\text{parameter_13}, [\text{species_19}], [\text{species_13}])$$
 (55)

$$function_{-1}(k, substratea, substrateb) = k \cdot substratea \cdot substrateb$$
 (56)

function_1 (k, substratea, substrateb) =
$$k \cdot substratea \cdot substrateb$$
 (57)

8.16 Reaction reaction_16

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of mRNA of segment 1

Reaction equation

$$species_9 \xrightarrow{species_9} species_9 + species_20$$
 (58)

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
species_9	VpNuc	

Modifier

Table 51: Properties of each modifier.

Id	Name	SBO
species_9	VpNuc	

Table 52: Properties of each product.

Id	Name	SBO
species_9	VpNuc	
species_20	Rm1	

Derived unit contains undeclared units

$$v_{16} = \text{vol} (\text{compartment}_1) \cdot \text{parameter}_39 \cdot [\text{species}_9]$$
 (59)

8.17 Reaction reaction_17

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of mRNA of segment 2

Reaction equation

$$species_9 \xrightarrow{species_9} species_9 + species_21$$
 (60)

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
species_9	VpNuc	

Modifier

Table 54: Properties of each modifier.

Id	Name	SBO
species_9	VpNuc	

Table 55: Properties of each product.

Id	Name	SBO
species_9	VpNuc	
species_21	Rm2	

Derived unit contains undeclared units

$$v_{17} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_40} \cdot [\text{species_9}]$$
 (61)

8.18 Reaction reaction_18

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of mRNA of segment 3

Reaction equation

$$species_9 \xrightarrow{species_9} species_9 + species_22$$
 (62)

Reactant

Table 56: Properties of each reactant.

Id	Name	SBO
species_9	VpNuc	

Modifier

Table 57: Properties of each modifier.

Id	Name	SBO
species_9	VpNuc	

Table 58: Properties of each product.

Id	Name	SBO
species_9	VpNuc	
species_22	Rm3	

Derived unit contains undeclared units

$$v_{18} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_41} \cdot [\text{species_9}]$$
 (63)

8.19 Reaction reaction_19

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of mRNA of segment 4

Reaction equation

species_9
$$\xrightarrow{\text{species}_9}$$
 species_9 + species_23 (64)

Reactant

Table 59: Properties of each reactant.

Id	Name	SBO
species_9	VpNuc	

Modifier

Table 60: Properties of each modifier.

Id	Name	SBO
species_9	VpNuc	

Table 61: Properties of each product.

Id	Name	SBO
species_9	VpNuc	
species_23	Rm4	

Derived unit contains undeclared units

$$v_{19} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_42} \cdot [\text{species_9}]$$
 (65)

8.20 Reaction reaction_20

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of mRNA of segment 5

Reaction equation

$$species_9 \xrightarrow{species_9} species_9 + species_24$$
 (66)

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
species_9	VpNuc	

Modifier

Table 63: Properties of each modifier.

Id	Name	SBO
species_9	VpNuc	

Table 64: Properties of each product.

Id	Name	SBO
species_9	VpNuc	
species_24	Rm5	

Derived unit contains undeclared units

$$v_{20} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_43} \cdot [\text{species_9}]$$
 (67)

8.21 Reaction reaction_21

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of mRNA of segment 6

Reaction equation

species_9
$$\xrightarrow{\text{species}_9}$$
 species_9 + species_25 (68)

Reactant

Table 65: Properties of each reactant.

Id	Name	SBO
species_9	VpNuc	

Modifier

Table 66: Properties of each modifier.

Id	Name	SBO
species_9	VpNuc	

Table 67: Properties of each product.

Id	Name	SBO
species_9 species_25	VpNuc Rm6	

Derived unit contains undeclared units

$$v_{21} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_44} \cdot [\text{species_9}]$$
 (69)

8.22 Reaction reaction_22

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of mRNA of segment 7

Reaction equation

species_9
$$\xrightarrow{\text{species}_9}$$
 species_9 + species_26 (70)

Reactant

Table 68: Properties of each reactant.

Id	Name	SBO
species_9	VpNuc	

Modifier

Table 69: Properties of each modifier.

Id	Name	SBO
species_9	VpNuc	

Table 70: Properties of each product.

Id	Name	SBO
species_9	VpNuc	
species_26	Rm7	

Derived unit contains undeclared units

$$v_{22} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_45} \cdot [\text{species_9}]$$
 (71)

8.23 Reaction reaction_23

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of mRNA of segment 8

Reaction equation

$$species_9 \xrightarrow{species_9} species_9 + species_27$$
 (72)

Reactant

Table 71: Properties of each reactant.

Id	Name	SBO
species_9	VpNuc	

Modifier

Table 72: Properties of each modifier.

Id	Name	SBO
species_9	VpNuc	

Table 73: Properties of each product.

Id	Name	SBO
species_9	VpNuc	
species_27	Rm8	

Derived unit contains undeclared units

$$v_{23} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_46} \cdot [\text{species_9}]$$
 (73)

8.24 Reaction reaction_24

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of PB1

Reaction equation

species_21
$$\xrightarrow{\text{species}_21}$$
 species_21 + species_28 (74)

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
species_21	Rm2	

Modifier

Table 75: Properties of each modifier.

Id	Name	SBO
species_21	Rm2	

Table 76: Properties of each product.

Id	Name	SBO
species_21		
species_28	P_Pb1	

Derived unit contains undeclared units

$$v_{24} = \text{vol}(\text{compartment}_{-1}) \cdot \text{parameter}_{-16} \cdot [\text{species}_{-21}]$$
 (75)

8.25 Reaction reaction_25

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of PB2

Reaction equation

$$species_20 \xrightarrow{species_20} species_20 + species_29$$
 (76)

Reactant

Table 77: Properties of each reactant.

Id	Name	SBO
species_20	Rm1	

Modifier

Table 78: Properties of each modifier.

Id	Name	SBO
species_20	Rm1	

Table 79: Properties of each product.

Id	Name	SBO
1	Rm1 P_Pb2	

Derived unit contains undeclared units

$$v_{25} = \text{vol}(\text{compartment}_{-1}) \cdot \text{parameter}_{-16} \cdot [\text{species}_{-20}]$$
 (77)

8.26 Reaction reaction_26

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of PA

Reaction equation

$$species_22 \xrightarrow{species_22} species_22 + species_30$$
 (78)

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
species_22	Rm3	

Modifier

Table 81: Properties of each modifier.

Id	Name	SBO
species_22	Rm3	

Table 82: Properties of each product.

Id	Name	SBO
species_22		
species_30	P_Pa	

Derived unit contains undeclared units

$$v_{26} = \text{vol}(\text{compartment}_{-1}) \cdot \text{parameter}_{-16} \cdot [\text{species}_{-22}]$$
 (79)

8.27 Reaction reaction_27

This is an irreversible reaction of three reactants forming one product influenced by three modifiers.

Name Formation of polymerases

Reaction equation

species_28 + species_29 + species_30
$$\xrightarrow{\text{species}_28, \text{ species}_29, \text{ species}_30}$$
 species_11 (80)

Reactants

Table 83: Properties of each reactant.

Id	Name	SBO
species_28	P_Pb1	
species_29	P_Pb2	
species_30	P_Pa	

Modifiers

Table 84: Properties of each modifier.

Id	Name	SBO
species_28		
species_29		
species_30	r_ra	

Product

Table 85: Properties of each product.

Id	Name	SBO
species_11	P_Rdrp	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{vol}(\text{compartment_1}) \cdot \text{parameter_17} \cdot [\text{species_28}] \cdot [\text{species_29}] \cdot [\text{species_30}]$$
 (81)

8.28 Reaction reaction_28

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of NP

Reaction equation

$$species_24 \xrightarrow{species_24} species_24 + species_13$$
 (82)

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
species_24	Rm5	

Modifier

Table 87: Properties of each modifier.

Id	Name	SBO
species_24	Rm5	

Table 88: Properties of each product.

Id	Name	SBO
species_24	Rm5	
species_13	P_Np	

Derived unit contains undeclared units

$$v_{28} = \text{vol}(\text{compartment_1}) \cdot \text{parameter_16} \cdot [\text{species_24}]$$
 (83)

8.29 Reaction reaction_29

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of M1

Reaction equation

$$species_26 \xrightarrow{species_26} species_26 + species_14$$
 (84)

Reactant

Table 89: Properties of each reactant.

Id	Name	SBO
species_26	Rm7	

Modifier

Table 90: Properties of each modifier.

Id	Name	SBO
species_26	Rm7	

Table 91: Properties of each product.

Id	Name	SBO
species_26 species_14		

Derived unit contains undeclared units

$$v_{29} = \text{vol}(\text{compartment_1}) \cdot \text{parameter_27} \cdot [\text{species_26}]$$
 (85)

8.30 Reaction reaction_30

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of NEP

Reaction equation

$$species_27 \xrightarrow{species_27} species_27 + species_31$$
 (86)

Reactant

Table 92: Properties of each reactant.

Id	Name	SBO
species_27	Rm8	

Modifier

Table 93: Properties of each modifier.

Id	Name	SBO
species_27	Rm8	

Table 94: Properties of each product.

Id	Name	SBO
species_27	Rm8	
species_31	P_Nep	

Derived unit contains undeclared units

$$v_{30} = \text{vol}(\text{compartment_1}) \cdot \text{parameter_29} \cdot [\text{species_27}]$$
 (87)

8.31 Reaction reaction_31

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of HA

Reaction equation

$$species_23 \xrightarrow{species_23} species_23 + species_32$$
 (88)

Reactant

Table 95: Properties of each reactant.

Id	Name	SBO
species_23	Rm4	

Modifier

Table 96: Properties of each modifier.

Id	Name	SBO
species_23	Rm4	

Table 97: Properties of each product.

Name	SBO
Rm4 P Ha	
	- 1 (411110

Derived unit contains undeclared units

$$v_{31} = \text{vol}(\text{compartment}_{-1}) \cdot \text{parameter}_{-16} \cdot [\text{species}_{-23}]$$
 (89)

8.32 Reaction reaction_32

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of NA

Reaction equation

$$species_25 \xrightarrow{species_25} species_25 + species_33$$
 (90)

Reactant

Table 98: Properties of each reactant.

Id	Name	SBO
species_25	Rm6	

Modifier

Table 99: Properties of each modifier.

Id	Name	SBO
species_25	Rm6	

Table 100: Properties of each product.

Id	Name	SBO
species_25 species_33		

Derived unit contains undeclared units

$$v_{32} = \text{vol}(\text{compartment_1}) \cdot \text{parameter_16} \cdot [\text{species_25}]$$
 (91)

8.33 Reaction reaction_33

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Synthesis of M2

Reaction equation

$$species_26 \xrightarrow{species_26} species_26 + species_34$$
 (92)

Reactant

Table 101: Properties of each reactant.

Id	Name	SBO
species_26	Rm7	

Modifier

Table 102: Properties of each modifier.

Id	Name	SBO
species_26	Rm7	

Table 103: Properties of each product.

Id	Name	SBO
species_26 species_34		

Derived unit contains undeclared units

$$v_{33} = \text{vol}(\text{compartment_1}) \cdot \text{parameter_28} \cdot [\text{species_26}]$$
 (93)

8.34 Reaction reaction_34

This is an irreversible reaction of eight reactants forming one product influenced by eight modifiers.

Name Virus release

Reaction equation

8 species_16 + 37 species_11 + 433 species_13 + 2932 species_14 + 157 species_31 + 500 species_32 + 100 species_33 (94)

Reactants

Table 104: Properties of each reactant.

Id	Name	SBO
species_16	VpCytM1	
species_11	P_Rdrp	
species_13	P_Np	
species_14	P_M1	
species_31	P_Nep	
species_32	P_Ha	
species_33	P_Na	
species_34	P_M2	

Modifiers

Table 105: Properties of each modifier.

Id	Name	SBO
species_16	VpCytM1	
species_11	P_Rdrp	
species_32	P_Ha	
species_13	P_Np	
species_33	P_Na	
species_14	P_M1	
species_34	P_M2	
species_31	P_Nep	

Product

Table 106: Properties of each product.

Id	Name	SBO
species_35	Vrel	

Kinetic Law

Derived unit contains undeclared units

```
v_{34} = \text{vol (compartment\_1)} \cdot \text{function\_2 (parameter\_18, [species\_16], [species\_11], KmB,} \\ [\text{species\_32}], \text{KmC, [species\_13], KmD, [species\_33], KmE, [species\_14], KmF,} \\ [\text{species\_34}], \text{KmG, [species\_31], KmH})
\text{function\_2 (k, substrateA, substrateB, KmB, substrateC, KmC, substrateD,} \\ [\text{KmD, substrateE, KmE, substrateF, KmF, substrateG, KmG, substrateH, KmH})} \\ = \frac{\text{k} \cdot \text{substrateA} \cdot \text{substrateB} \cdot \text{substrateC} \cdot \text{substrateD} \cdot \text{substrateE} \cdot \text{substrateF} \cdot \text{substrateF} \cdot \text{substrateF} \cdot \text{substrateF} \cdot \text{substrateB} \cdot \text{substrateB} + \text{KmE}) \cdot (\text{substrateF} + \text{KmF}) \cdot (\text{substrateA, substrateB, KmB, substrateC, KmC, substrateD}, 
\text{function\_2 (k, substrateA, substrateB, KmB, substrateC, KmC, substrateD}, 
\text{(97)}
```

(suestrate | 11m2)

 $KmD, substrateE, KmE, substrateF, KmF, substrateG, KmG, substrateH, KmH) \\ _ _ _ _ _ \\ k \cdot substrateA \cdot substrateB \cdot substrateC \cdot substrateD \cdot substrateE \cdot substrateF \cdot substrateF$

 $\overline{(substrateB + KmB) \cdot (substrateC + KmC) \cdot (substrateD + KmD) \cdot (substrateE + KmE) \cdot (substrateF + KmF) \cdot (subs$

8.35 Reaction reaction_35

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of vRNPs in the nucleus

Reaction equation

$$species_9 \xrightarrow{species_9} \emptyset$$
 (98)

Reactant

Table 107: Properties of each reactant.

Id	Name	SBO
species_9	VpNuc	

Modifier

Table 108: Properties of each modifier.

Id	Name	SBO
species_9	VpNuc	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{vol} (\text{compartment}_1) \cdot \text{parameter}_20 \cdot [\text{species}_9]$$
 (99)

8.36 Reaction reaction_36

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of nascent cRNA

Reaction equation

$$species_{-}10 \xrightarrow{species_{-}10} \emptyset$$
 (100)

Reactant

Table 109: Properties of each reactant.

Id	Name	SBO
species_10	Rc	

Modifier

Table 110: Properties of each modifier.

Id	Name	SBO
species_10	Rc	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol}(\text{compartment}_{-1}) \cdot \text{parameter}_{-19} \cdot [\text{species}_{-10}]$$
 (101)

8.37 Reaction reaction_37

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of nascent vRNA

Reaction equation

$$species_{-}18 \xrightarrow{species_{-}18} \emptyset$$
 (102)

Reactant

Table 111: Properties of each reactant.

Id	Name	SBO
species_18	Rv	

Modifier

Table 112: Properties of each modifier.

Id	Name	SBO
species_18	Rv	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_19} \cdot [\text{species_18}]$$
 (103)

8.38 Reaction reaction_38

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of RdRp-cRNA

Reaction equation

$$species_{-}12 \xrightarrow{species_{-}12} \emptyset$$
 (104)

Reactant

Table 113: Properties of each reactant.

Id	Name	SBO
species_12	RcRdrp	

Modifier

Table 114: Properties of each modifier.

Id	Name	SBO
species_12	RcRdrp	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_22} \cdot [\text{species_12}]$$
 (105)

8.39 Reaction reaction_39

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of RdRp-vRNA

Reaction equation

$$species_{-19} \xrightarrow{species_{-19}} \emptyset$$
 (106)

Reactant

Table 115: Properties of each reactant.

Id	Name	SBO
species_19	RvRdrp	

Modifier

Table 116: Properties of each modifier.

Id	Name	SBO
species_19	RvRdrp	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_22} \cdot [\text{species_19}]$$
 (107)

8.40 Reaction reaction_40

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of cRNPs

Reaction equation

$$species_{-17} \xrightarrow{species_{-17}} \emptyset$$
 (108)

Reactant

Table 117: Properties of each reactant.

Id	Name	SBO
species_17	Cp	

Modifier

Table 118: Properties of each modifier.

Id	Name	SBO
species_17	Cp	

Derived unit contains undeclared units

$$v_{40} = \text{vol}(\text{compartment_1}) \cdot \text{parameter_20} \cdot [\text{species_17}]$$
 (109)

8.41 Reaction reaction_41

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of M1-vRNP complexes in the nucleus

Reaction equation

$$species_{-}15 \xrightarrow{species_{-}15} \emptyset$$
 (110)

Reactant

Table 119: Properties of each reactant.

Id	Name	SBO
species_15	VpNucM1	

Modifier

Table 120: Properties of each modifier.

Id	Name	SBO
species_15	VpNucM1	

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_20} \cdot [\text{species_15}]$$
 (111)

8.42 Reaction reaction_42

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of M1-vRNP complexes in the cytoplasm

Reaction equation

$$species_{-16} \xrightarrow{species_{-16}} \emptyset$$
 (112)

Reactant

Table 121: Properties of each reactant.

Id	Name	SBO
species_16	VpCytM1	

Modifier

Table 122: Properties of each modifier.

Id	Name	SBO
species_16	VpCytM1	

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = \text{vol}(\text{compartment}_1) \cdot \text{parameter}_20 \cdot [\text{species}_16]$$
 (113)

8.43 Reaction reaction_43

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of mRNA of segment 1

Reaction equation

$$species_20 \xrightarrow{species_20} \emptyset$$
 (114)

Reactant

Table 123: Properties of each reactant.

Id	Name	SBO
species_20	Rm1	

Modifier

Table 124: Properties of each modifier.

Id	Name	SBO
species_20	Rm1	

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = \text{vol}(\text{compartment_1}) \cdot \text{parameter_21} \cdot [\text{species_20}]$$
 (115)

8.44 Reaction reaction_44

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of mRNA of segment 2

Reaction equation

$$species_{21} \xrightarrow{species_{21}} \emptyset$$
 (116)

Reactant

Table 125: Properties of each reactant.

Id	Name	SBO
species_21	Rm2	

Modifier

Table 126: Properties of each modifier.

Id	Name	SBO
species_21	Rm2	

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_21} \cdot [\text{species_21}]$$
 (117)

8.45 Reaction reaction_45

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of mRNA of segment 3

Reaction equation

species_22
$$\xrightarrow{\text{species}_22} \emptyset$$
 (118)

Reactant

Table 127: Properties of each reactant.

Id	Name	SBO
species_22	Rm3	

Modifier

Table 128: Properties of each modifier.

Id	Name	SBO
species_22	Rm3	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \text{vol} \left(\text{compartment_1} \right) \cdot \text{parameter_21} \cdot \left[\text{species_22} \right]$$
 (119)

8.46 Reaction reaction_46

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of mRNA of segment 4

Reaction equation

species_23
$$\xrightarrow{\text{species}_23} \emptyset$$
 (120)

Reactant

Table 129: Properties of each reactant.

Id	Name	SBO
species_23	Rm4	

Modifier

Table 130: Properties of each modifier.

Id	Name	SBO
species_23	Rm4	

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = \text{vol} (\text{compartment_1}) \cdot \text{parameter_21} \cdot [\text{species_23}]$$
 (121)

8.47 Reaction reaction_47

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of mRNA of segment 5

Reaction equation

$$species_24 \xrightarrow{species_24} \emptyset$$
 (122)

Reactant

Table 131: Properties of each reactant.

Id	Name	SBO
species_24	Rm5	

Modifier

Table 132: Properties of each modifier.

Id	Name	SBO
species_24	Rm5	

Derived unit contains undeclared units

$$v_{47} = \text{vol}(\text{compartment_1}) \cdot \text{parameter_21} \cdot [\text{species_24}]$$
 (123)

8.48 Reaction reaction_48

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of mRNA of segment 6

Reaction equation

species_25
$$\xrightarrow{\text{species}_25} \emptyset$$
 (124)

Reactant

Table 133: Properties of each reactant.

Id	Name	SBO
species_25	Rm6	

Modifier

Table 134: Properties of each modifier.

Id	Name	SBO
species_25	Rm6	

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = \text{vol} (\text{compartment_1}) \cdot \text{parameter.21} \cdot [\text{species.25}]$$
 (125)

8.49 Reaction reaction_49

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of mRNA of segment 7

Reaction equation

$$species_{26} \xrightarrow{species_{26}} \emptyset$$
 (126)

Reactant

Table 135: Properties of each reactant.

Id	Name	SBO
species_26	Rm7	

Modifier

Table 136: Properties of each modifier.

Id	Name	SBO
species_26	Rm7	

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = \text{vol}(\text{compartment_1}) \cdot \text{parameter_21} \cdot [\text{species_26}]$$
 (127)

8.50 Reaction reaction_50

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Degradation of mRNA of segment 8

Reaction equation

$$species_27 \xrightarrow{species_27} \emptyset$$
 (128)

Reactant

Table 137: Properties of each reactant.

Id	Name	SBO
species_27	Rm8	

Modifier

Table 138: Properties of each modifier.

Id	Name	SBO
species_27	Rm8	

Kinetic Law

Derived unit contains undeclared units

$$v_{50} = \text{vol} \left(\text{compartment_1} \right) \cdot \text{parameter_21} \cdot \left[\text{species_27} \right]$$
 (129)

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

9.1 Species species_1

Name Bhi

SBO:0000605 high affinity receptor

Notes free high-affinity binding sites (sites)

Initial concentration 150 mol·l⁻¹

This species takes part in three reactions (as a reactant in reaction_1 and as a product in reaction_3 and as a modifier in reaction_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-1} = |v_3| - |v_1| \tag{130}$$

9.2 Species species_2

Name VattHi

SBO:0000605 high affinity receptor

Notes virions attached to high-affinity binding sites (virions)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in reaction_3 and as a product in reaction_1 and as a modifier in reaction_1, reaction_3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}.2 = |v_1| - |v_3| \tag{131}$$

9.3 Species species_3

Name Vex

Notes virions in the extracellular medium (virions)

Initial concentration $10 \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in reaction_1, reaction_2 and as a modifier in reaction_1, reaction_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{3} = -v_{1} - v_{2} \tag{132}$$

9.4 Species species_4

Name Blo

SBO:0000606 low affinity receptor

Notes free low-affinity binding sites (sites)

Initial concentration 1000 mol·l⁻¹

This species takes part in three reactions (as a reactant in reaction_2 and as a product in reaction_4 and as a modifier in reaction_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{4} = |v_{4}| - |v_{2}| \tag{133}$$

9.5 Species species_5

Name VattLo

SBO:0000606 low affinity receptor

Notes virions attached to low-affinity binding sites (virions)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in reaction_4 and as a product in reaction_2 and as a modifier in reaction_2, reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{5} = |v_{2}| - |v_{4}| \tag{134}$$

9.6 Species species_6

Name Ven

Notes virions in endosomes (virions)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in reaction_5, reaction_6 and as a product in reaction_3, reaction_4 and as a modifier in reaction_5, reaction_6).

$$\frac{d}{dt} \text{species}_{6} = |v_{3}| + |v_{4}| - |v_{5}| - |v_{6}| \tag{135}$$

9.7 Species species_7

Name Vfus

Notes total amount of virions fused with endosomes (virions)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in reaction_5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-7} = v_5 \tag{136}$$

9.8 Species species_8

Name VpCyt

Notes parental vRNPs in the cytoplasm (virions)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_7 and as a product in reaction_5 and as a modifier in reaction_7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{8} = 8 \ v_5 - v_7 \tag{137}$$

9.9 Species species_9

Name VpNuc

Notes vRNPs in the nucleus (virions)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in 33 reactions (as a reactant in reaction_8, reaction_11, reaction_16, reaction_17, reaction_18, reaction_19, reaction_20, reaction_21, reaction_22, reaction_23, reaction_35 and as a product in reaction_7, reaction_8, reaction_15, reaction_16, reaction_17, reaction_18, reaction_19, reaction_20, reaction_21, reaction_22, reaction_23 and as a modifier in reaction_8, reaction_11, reaction_16, reaction_17, reaction_18, reaction_19, reaction_20, reaction_21, reaction_22, reaction_23, reaction_35).

$$\frac{d}{dt} species_{9} = v_{7} + v_{8} + v_{15} + v_{16} + v_{17} + v_{18} + v_{19} + v_{20} + v_{21} + v_{22} + v_{23} - v_{8} - v_{11} - v_{16} - v_{17} - v_{18} - v_{19} - v_{20} - v_{21} - v_{22} - v_{23} - v_{35}$$

$$(138)$$

9.10 Species species_10

Name Rc

Notes nascent cRNA (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in reaction_9, reaction_36 and as a product in reaction_8 and as a modifier in reaction_9, reaction_36).

$$\frac{d}{dt} \text{species}_{-10} = |v_8| - |v_9| - |v_{36}| \tag{139}$$

9.11 Species species_11

Name P_Rdrp

SBO:0000297 protein complex

Notes viral polymerase complex (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in seven reactions (as a reactant in reaction_9, reaction_14, reaction_34 and as a product in reaction_27 and as a modifier in reaction_9, reaction_14, reaction_34).

$$\frac{d}{dt} \text{species}_{11} = |v_{27}| - |v_{9}| - |v_{14}| - 37 |v_{34}|$$
 (140)

9.12 Species species_12

Name RcRdrp

SBO:0000296 macromolecular complex

Notes complex of viral polymerase and cRNA (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in reaction_10, reaction_38 and as a product in reaction_9 and as a modifier in reaction_10, reaction_38).

$$\frac{d}{dt} \text{species}_{12} = |v_9| - |v_{10}| - |v_{38}| \tag{141}$$

9.13 Species species_13

Name P_Np

Notes NP proteins (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in seven reactions (as a reactant in reaction_10, reaction_15, reaction_34 and as a product in reaction_28 and as a modifier in reaction_10, reaction_15, reaction_34).

$$\frac{d}{dt} \text{species}_{-13} = |v_{28}| - 71 |v_{10}| - 71 |v_{15}| - 433 |v_{34}|$$
(142)

9.14 Species species_14

Name P_M1

Notes M1 proteins (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in reaction_11, reaction_34 and as a product in reaction_29 and as a modifier in reaction_11, reaction_34).

$$\frac{d}{dt} \text{species}_{-14} = v_{29} - 8.5 v_{11} - 2932 v_{34}$$
 (143)

9.15 Species species_15

Name VpNucM1

Notes M1-vRNP complexes in the nucleus (virions)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in reaction_12, reaction_41 and as a product in reaction_11 and as a modifier in reaction_12, reaction_41).

$$\frac{d}{dt} \text{species}_{-}15 = |v_{11} - v_{12}| - |v_{41}| \tag{144}$$

9.16 Species species_16

Name VpCytM1

Notes M1-vRNP complexes in the cytoplasm (virions)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in reaction_34, reaction_42 and as a product in reaction_12 and as a modifier in reaction_34, reaction_42).

$$\frac{d}{dt} \text{species}_{16} = v_{12} - 8 v_{34} - v_{42} \tag{145}$$

9.17 Species species_17

Name Cp

Notes cRNPs (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction_13, reaction_40 and as a product in reaction_10, reaction_13 and as a modifier in reaction_13, reaction_40).

$$\frac{d}{dt} \text{species}_{17} = |v_{10}| + |v_{13}| - |v_{13}| - |v_{40}| \tag{146}$$

9.18 Species species_18

Name Rv

Notes nascent vRNA (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in reaction_14, reaction_37 and as a product in reaction_13 and as a modifier in reaction_14, reaction_37).

$$\frac{d}{dt} \text{species}_{18} = |v_{13}| - |v_{14}| - |v_{37}| \tag{147}$$

9.19 Species species_19

Name RvRdrp

Notes complex of viral polymerase and vRNA (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in reaction_15, reaction_39 and as a product in reaction_14 and as a modifier in reaction_15, reaction_39).

$$\frac{d}{dt} \text{species}_{-}19 = |v_{14}| - |v_{15}| - |v_{39}| \tag{148}$$

9.20 Species species_20

Name Rm1

SBO:0000278 messenger RNA

Notes mRNA of segment 1 (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in reaction_25, reaction_43 and as a product in reaction_16, reaction_25 and as a modifier in reaction_25, reaction_43).

$$\frac{d}{dt} \text{species} 20 = |v_{16}| + |v_{25}| - |v_{25}| - |v_{43}|$$
(149)

9.21 Species species_21

Name Rm2

SBO:0000278 messenger RNA

Notes mRNA of segment 2 (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in reaction_24, reaction_44 and as a product in reaction_17, reaction_24 and as a modifier in reaction_24, reaction_44).

$$\frac{d}{dt} \text{species} 21 = |v_{17}| + |v_{24}| - |v_{24}| - |v_{44}|$$
 (150)

9.22 Species species_22

Name Rm3

SBO:0000278 messenger RNA

Notes mRNA of segment 3 (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction_26, reaction_45 and as a product in reaction_18, reaction_26 and as a modifier in reaction_26, reaction_45).

$$\frac{d}{dt} \text{species} \cdot 22 = |v_{18}| + |v_{26}| - |v_{26}| - |v_{45}| \tag{151}$$

9.23 Species species_23

Name Rm4

SBO:0000278 messenger RNA

Notes mRNA of segment 4 (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction_31, reaction_46 and as a product in reaction_19, reaction_31 and as a modifier in reaction_31, reaction_46).

$$\frac{d}{dt} \text{species} 23 = |v_{19}| + |v_{31}| - |v_{46}|$$
 (152)

9.24 Species species_24

Name Rm5

SBO:0000278 messenger RNA

Notes mRNA of segment 5 (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction_28, reaction_47 and as a product in reaction_20, reaction_28 and as a modifier in reaction_28, reaction_47).

$$\frac{d}{dt} \text{species.} 24 = |v_{20}| + |v_{28}| - |v_{28}| - |v_{47}| \tag{153}$$

9.25 Species species_25

Name Rm6

SBO:0000278 messenger RNA

Notes mRNA of segment 6 (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction_32, reaction_48 and as a product in reaction_21, reaction_32 and as a modifier in reaction_32, reaction_48).

$$\frac{d}{dt} \text{species} 25 = |v_{21}| + |v_{32}| - |v_{32}| - |v_{48}|$$
(154)

9.26 Species species_26

Name Rm7

SBO:0000278 messenger RNA

Notes unspliced mRNA of segment 7 (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in nine reactions (as a reactant in reaction_29, reaction_33, reaction_49 and as a product in reaction_22, reaction_29, reaction_33 and as a modifier in reaction_29, reaction_33, reaction_49).

$$\frac{d}{dt} \text{species}_26 = |v_{22}| + |v_{29}| + |v_{33}| - |v_{29}| - |v_{33}| - |v_{49}|$$
(155)

9.27 Species species_27

Name Rm8

SBO:0000278 messenger RNA

Notes unspliced mRNA of segment 8 (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in reaction_30, reaction_50 and as a product in reaction_23, reaction_30 and as a modifier in reaction_30, reaction_50).

$$\frac{d}{dt} \text{species} 27 = |v_{23}| + |v_{30}| - |v_{30}| - |v_{50}|$$
 (156)

9.28 Species species_28

Name P_Pb1

Notes PB1 proteins (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_27 and as a product in reaction_24 and as a modifier in reaction_27).

$$\frac{d}{dt} \text{species}_2 = |v_{24}| - |v_{27}| \tag{157}$$

9.29 Species species_29

Name P_Pb2

Notes PB2 proteins (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in reaction_27 and as a product in reaction_25 and as a modifier in reaction_27).

$$\frac{d}{dt} \text{species.} 29 = |v_{25}| - |v_{27}| \tag{158}$$

9.30 Species species_30

Name P_Pa

Notes PA proteins (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_27 and as a product in reaction_26 and as a modifier in reaction_27).

$$\frac{d}{dt} \text{species}_{30} = |v_{26}| - |v_{27}| \tag{159}$$

9.31 Species species_31

Name P_Nep

Notes NEP proteins (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in reaction_12, reaction_34 and as a product in reaction_30 and as a modifier in reaction_12, reaction_34).

$$\frac{d}{dt} \text{species}_{31} = |v_{30}| - |v_{12}| - 157 v_{34}$$
 (160)

9.32 Species species_32

Name P_Ha

Notes HA proteins (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_34 and as a product in reaction_31 and as a modifier in reaction_34).

$$\frac{d}{dt} \text{species}_{32} = v_{31} - 500 v_{34} \tag{161}$$

9.33 Species species_33

Name P_Na

Notes NA proteins (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in reaction_34 and as a product in reaction_32 and as a modifier in reaction_34).

$$\frac{d}{dt} \text{species}_{33} = v_{32} - 100 v_{34} \tag{162}$$

9.34 Species species_34

Name P_{M2}

Notes M2 proteins (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in reaction_34 and as a product in reaction_33 and as a modifier in reaction_34).

$$\frac{d}{dt} \text{species}_3 4 = |v_{33}| - 40 |v_{34}| \tag{163}$$

9.35 Species species_35

Name Vrel

Notes total amount of released virions (virions)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in reaction_34).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{.35} = v_{34} \tag{164}$$

9.36 Species species_36

Name total cRNA

Notes total amount of cRNA in the cell considering all segments (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule species_36

One rule determines the species' quantity.

9.37 Species species_37

Name total cRNA of a segment

Notes total amount of cRNA in the cell considering an arbitrary segment (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule species_37

One rule determines the species' quantity.

9.38 Species species_38

Name total vRNA

Notes total amount of vRNA in the cell considering all segments (molecules)

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule species_38

One rule determines the species' quantity.

9.39 Species species_39

Name total vRNA of a segment

Notes total amount of vRNA in the cell considering an arbitrary segments (molecules)

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

Involved in rule species_39

One rule determines the species' quantity.

A Glossary of Systems Biology Ontology Terms

- **SBO:0000278 messenger RNA:** A messenger RNA is a ribonucleic acid synthesized during the transcription of a gene, and that carries the information to encode one or several proteins
- **SBO:0000296** macromolecular complex: Non-covalent complex of one or more macromolecules and zero or more simple chemicals
- **SBO:0000297 protein complex:** Macromolecular complex containing one or more polypeptide chains possibly associated with simple chemicals. CHEBI:3608
- **SBO:0000605** high affinity receptor: A receptor where binding occurs through strong intermolecular forces such as Van der Waals, hydrogen bonds or ionic bonds
- **SBO:0000606 low affinity receptor:** A receptor where binding occurs through weak intermolecular forces

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany