Systèmes d'Exploitation 1

Correction TD N°5 Gestion de la mémoire : Allocation de mémoire non contiguë

Exercice 1:

On dispose d'un espace adressable virtuel 4 Go (adressable sur 32 bits), et d'un espace physique 32 Mo (adressable sur 25 bits). Une page occupe 1 Ko (déplacement sur 10 bits).

Quelle est la taille de la table des pages (en octet), sachant qu'une case de la table de page comporte 1 bit de présence et un n° physique de la page ?

Taille Table de Pages = taille d'une entrée de la page * nombre de pages

- Taille d'une entrée : 1(bit de présence) + nbre de bits nécessaires pour adresser les cases
 - \circ Nombre de cases : 32 Mo / 1 Ko = 2^{25} / 2^{10} = 2^{15}
 - O Nbre de bits nécessaire pour adresser les cases : 15 bits
- Nombre de pages = $4 \text{ Go} / 1 \text{ Ko} = 2^{32} / 2^{10} = 2^{22}$
- \Rightarrow taille de la table de pages = $2^{22} * 16 = 2^{22} * 2^4 = 2^{26} = \frac{64}{64}$ Mo

Exercice 2:

Soit la table de pages suivante :

Sachant que les pages virtuelles et physiques font 1K octets, quelle est l'adresse mémoire correspondant à chacune des adresses virtuelles suivantes codées en hexadécimal : 142A et 0AF1

1 page =
$$1\text{Ko} = 2^{10} \Longrightarrow$$
 offset sur 10 bits

142A

0001	0100	0010	1010
1	4	2	A

$$N^{\circ}$$
 page = 5 offset = 2A

@ physique : n° cadre = 1

offset = 2A

0000	0100	0010	1010
0	4	2	A

<u>0AF1</u>

0000	1010	1111	0001
0	A	F	1

 N° page = 2

offset = 2F1

(a) physique : n° cadre = 8

offset = 2F1

0010	0010	1111	0001
2	2	F	1

Exercice 3:

On s'intéresse aux systèmes utilisant la pagination

A- Détailler les algorithmes FIFO et LRU.

B- Au cours de son exécution, un programme accède successivement aux pages : 0, 1, 4, 2, 0, 1, 3, 0, 1, 4, 2, 3.

Donner la suite des pages présentes en mémoire ainsi que le nombre de défauts de pages pour chacun des cas suivant :

B.1- Si on utilise l'algorithme **FIFO** et sachant que le système alloue à ce programme un espace de 3 pages.

0	0	0	2	2	2	3	3	3	3	3	3
	1	1	1	0	0	0	0	0	4	4	4
		4	4	4	1	1	1	1	1	2	2

→ défauts de page = 9

B.2- Si on utilise l'algorithme **LRU** et sachant que le système alloue à ce programme un espace de 3 pages.

0	0	0	2	2	2	3	3	3	4	4	4
	1	1	1	0	0	0	0	0	0	2	2
		4	4	4	1	1	1	1	1	1	3

→ défauts de page = 9

B.3- Si on utilise l'algorithme **Optimal** et sachant que le système alloue à ce programme un espace de 3 pages.

0	0	0	0	0	0	0	0	0	4	4	4
	1	1	1	1	1	1	1	1	1	2	2
		4	2	2	2	3	3	3	3	3	3

→ défauts de page = 7

B.4- Si on utilise l'algorithme **FIFO** et sachant que le système alloue à ce programme un espace de 4 pages.

0	0	0	0	0	0	3	3	3	3	2	2
	1	1	1	1	1	1	0	0	0	0	3
		4	4	4	4	4	4	1	1	1	1
			2	2	2	2	2	2	4	4	4

→ défauts de page = 10

B.5- Si on utilise l'algorithme **LRU** et sachant que le système alloue à ce programme un espace de 4 pages.

0	0	0	0	0	0	0	0	0	0	0	3
	1	1	1	1	1	1	1	1	1	1	1
		4	4	4	4	3	3	3	3	2	2
			2	2	2	2	2	2	4	4	4

→ défauts de page = 8

Exercice 4:

On dispose d'un système doté d'une pagination à la demande, suivant deux algorithmes A1 et A2, Au cours de son exécution, un programme accède successivement aux pages 1, 5, 2, 5, 1, 4, 1, 5, 3. Le système alloue à ce programme un espace de trois pages.

Avec l'algorithme A1, on constate que l'on a successivement en mémoire les pages suivantes

1	1	1	1	1	4	4	4	3
	5	5	5	5	5	1	1	1
		2	2	2	2	2	5	5

Avec l'algorithme A2, on constate que l'on a successivement en mémoire les pages suivantes :

1	1	1	1	1	1	1	1	1
	5	5	5	5	5	5	5	5
		2	2	2	4	4	4	3

A.- A votre avis, lequel des deux algorithmes correspondrait à l'algorithme FIFO, et lequel correspondrait à LRU ? Justifiez votre raisonnement.

1^{er}: FIFO 2^{ème}: LRU

B. – Déterminer dans chacun des cas le nombre de défauts de pages.

 1^{er} : NDF = 7 2^{eme} : NDF = 5

Exercice 5:

Le système dispose de 4 cases qui sont toutes occupées, le tableau ci-dessous donne, pour chacune d'elles, la date en microsecondes du chargement de la page qu'elle contient, la date en microsecondes du dernier accès à cette page et l'état des indicateurs de la case (Read et Modified).

Case	Chargement	Accès	R	M
0	126	279	0	1
1	230	260	1	1
2	120	272	1	1
3	160	280	1	1

En justifiant votre réponse, donner quelle sera la page remplacée, pour chacun des 4 algorithmes de remplacement suivants FIFO, LRU, NRU (seconde chance).

FIFO → remplacer case 2 car sa date de chargement est inférieures à celles des autres

LRU → remplacer case1 car sa date d'accès est inférieure à celles des autres

NRU \rightarrow remplacer case 0 car bit R = 0