Convergence stochastique : rappels et compléments

Statistique mathématique M2 santé publique, université Paris-Sud

17 octobre 2017

- 1. Motivation : fonctions de variables aléatoires.
- 2. Convergence stochastique
 - ▶ Comment fonctionne la convergence d'une variable aléatoire?
 - Convergence en probabilité et convergence en loi
- 3. Théorèmes utiles
 - Convergence faible de variables aléatoires
- 4. Notions de convergence forte
- 5. Les deux grands théorèmes

Fonctions de variables aléatoires

Soit X_1, \ldots, X_n des variables aléatoires iid où $\mathbb{E}(X_i) = \mu$ et $\operatorname{Var}(X_i) = \sigma^2$. On considère :

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

- ▶ Si $X_i \sim \mathcal{N}(\mu, \sigma^2)$ ou $X_i \sim \exp(1/\mu)$ alors on connait la loi de \bar{X}_n .
- $ightharpoonup X_i$ peut avoir une loi moins classique que les précédentes.
- \triangleright Souvent, il est difficile de calculer la loi jointe des X_i

On veut dire quelque chose à propos de \bar{X}_n même dans ces cas

Difficile à n fixé, mais si on faisait tendre n vers l'infini? (faire de l'asymptotique)

Fonctions de variables aléatoires

Quand $n \to \infty$ on comprend mieux la loi de \bar{X}_n

• Grossièrement, \bar{X}_n se concentre autour de μ

$$\forall \varepsilon>0, \mathbb{P}\big[|\bar{X}_n-\mu|>\varepsilon\big]\approx 0, \text{ quand } n\to\infty$$

Peut-être qu'il est plus intéressant de regarder

$$\mathbb{P}\Big[\sqrt{n}(\bar{X}_n - \mu) \le x\Big] \overset{n \to \infty}{\approx} ? \text{ pour obtenir } \mathbb{P}\big[\bar{X}_n \le x\big]$$

Plus généralement \rightarrow on veut étudier la loi de $Y = g(X_1, \dots, X_n)$ pour une une certaine fonction générique g

- ightharpoonup Souvent difficile à n fixé
- Recours aux approximations asymptotiques pour comprendre la loi de Y.

Convergence de variables aléatoires

On a besoin de préciser ce que veut dire :

- ▶ Y_n se concentre autour de μ quand $n \to \infty$
- ▶ Plus généralement, ce qu'on entend par Y_n se comporte comme Y quand n est grand
- ▶ Loi de $g(X_1, ..., X_n)$ quand $n \to \infty$.

 \hookrightarrow notions appropriées de convergence de variables aléatoires

Petit rappel : Les variables aléatoires sont des fonctions entre espaces mesurables.

- ⇒ Il y a différents modes de convergence de variables aléatoires
 - ► Convergence en probabilité (convergence en mesure)
 - ► Convergence en loi (convergence faible)
 - ▶ Convergence avec probabilité 1 (convergence presque sûre)
 - ightharpoonup Convergence du $p^{\text{ième}}$ moment (convergence \mathbb{L}^p)

Convergence en probabilité

Définition (Convergence en probabilité)

Soit $\{X_n\}_{n\geq 1}$ et X des variables aléatoires définies sur le même espace de probabilité. On dit que X_n converge en probabilité vers X quand $n\to\infty$ et on écrit $(X_n\stackrel{p}{\to} X)$ si pour tout $\varepsilon>0$, nous avons

$$\mathbb{P}[|X_n - X| > \varepsilon] \to 0$$
, quand $n \to \infty$

Intuitivement, si $X_n \xrightarrow{p} X$, alors $X_n \approx X$ avec une forte probabilité quand n tend vers l'infini

Exemple

Soit $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{U}[0, 1]$, on définit $M_n = \max\{X_1, \ldots, X_n\}$. Alors,

$$F_{M_n}(x) = x^n \Rightarrow \mathbb{P}[|M_n - 1| > \varepsilon] = \mathbb{P}[M_n < 1 - \varepsilon]$$

= $(1 - \varepsilon)^n \stackrel{n \to \infty}{\longrightarrow} 0$

pour tout $0 < \varepsilon < 1$. On déduit $M_n \stackrel{p}{\to} 1$.

Convergence en loi

Définition (convergence en loi)

Soit $\{X_n\}_{n\geq 1}$ et X des variables aléatoires. On dit que X_n converge en loi vers X quand $n\to\infty$ (on écrit $X_n\stackrel{d}{\to} X$) si

$$\mathbb{P}\big[X_n \leq x\big] \overset{n \to \infty}{\longrightarrow} \mathbb{P}\big[X \leq x\big],$$

en tout point de continuité de $F_X(x) = \mathbb{P}[X \leq x]$.

Exemple 1

Soit X_1, \ldots, X_n des v.a iid telles que

$$\mathbb{P}(X_i = j) = \frac{1}{10} \text{ pour } j = 0, 1, 2, \dots, 9$$

et on définit

$$U_n = \sum_{i=1}^n \frac{X_i}{10^i}.$$

On s'intéresse à la loi limite de U_n , dont les valeurs possibles sont

$$\frac{1}{10^n}$$
 où $j = 0, 1, 2, \dots, 10^n - 1$ et

$$\mathbb{P}\left(U_n = \frac{j}{10^n}\right) = \frac{1}{10^n} \text{ pour } j = 0, 1, 2, \dots, 10^n - 1.$$

- Calculer la fonction de répartition de $\mathbb{P}(U_n \leq x)$ pour
 - $\frac{j}{10^n} \le x < \frac{j+1}{10^n}.$
- ▶ Majorer $|\mathbb{P}(U_n \leq x) x|$ et conclure.

Exemple 1 : suite

$$\mathbb{P}(U_n \le x) = \frac{j+1}{10^n} \text{ pour } \frac{j}{10^n} \le x < \frac{j+1}{10^n}.$$

$$|\mathbb{P}(U_n \le x) - x| \le 10^{-n} \to 0 \text{ quand } n \to \infty.$$

Exemple 2

Soit
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{U}[0, 1]$$
, on définit $M_n = \max\{X_1, \ldots, X_n\}$, et $Q_n = n(1 - M_n)$.

- ightharpoonup Calculer la loi limite de Q_n .
 - ightharpoonup Calculer la fonction de répartition de M_n
 - ightharpoonup Calculer la fonction de répartition de Q_n
 - ightharpoonup Faire tendre n vers l'infini

Exemple 2

Soit $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{U}[0, 1]$, on définit $M_n = \max\{X_1, \ldots, X_n\}$, et $Q_n = n(1 - M_n)$.

- ightharpoonup Calculer la loi limite de Q_n .
 - ightharpoonup Calculer la fonction de répartition de M_n
 - ightharpoonup Calculer la fonction de répartition de Q_n
 - ▶ Faire tendre n vers l'infini

Exemple 2 : suite

$$\mathbb{P}[Q_n \le x] = \mathbb{P}[M_n \ge 1 - \frac{x}{n}] = 1 - \left(1 - \frac{x}{n}\right)^n \xrightarrow{n \to \infty} 1 - e^{-x}$$

pour tout $x \geq 0$. On a donc, $Q_n \stackrel{d}{\to} Q$, où $Q \sim \mathcal{E}(1)$.

Quelques commentaires sur $\stackrel{p}{\rightarrow}$ et $\stackrel{d}{\rightarrow}$

- La convergence en probabilité implique la convergence en loi
- La convergence en loi n'implique pas la convergence en probabilité

Considérons
$$X \sim \mathcal{N}(0,1), -X + \frac{1}{n} \xrightarrow{d} X$$
 mais $-X + \frac{1}{n} \xrightarrow{p} -X$

- $ightharpoonup \frac{d}{d}$ fait le lien entre des fonctions de répartition
 - On peut l'utiliser pour approcher des fonctions de répartitions (erreur d'approximation?)
- ightharpoonup Les deux modes de convergence sont m'etrisables
 - lacktriangleright i.e. il existe des métriques sur les espaces de variables aléatoires ...
 - ▶ On peut utiliser l'inégalité triangulaire etc ...
- ightharpoonup est appelée aussi $convergence\ faible$

Définition équivalente

 $X_n \xrightarrow{d} X \Longleftrightarrow \mathbb{E} f(X_n) \to \mathbb{E} f(X)$ pour tout fonction f continue bornée

Quelques propriétés

Théorème

(a)
$$X_n \stackrel{p}{\to} X \Longrightarrow X_n \stackrel{d}{\to} X$$

(b)
$$X_n \stackrel{d}{\to} c \Longrightarrow X_n \stackrel{p}{\to} c, \quad c \in \mathbb{R}$$

Quelques propriétés

Théorème

- (a) $X_n \stackrel{p}{\to} X \Longrightarrow X_n \stackrel{d}{\to} X$
- (b) $X_n \stackrel{d}{\to} c \Longrightarrow X_n \stackrel{p}{\to} c$, $c \in \mathbb{R}$
- (a) Soit x un point de continuité de F_X , montrer les deux inégalités suivantes

 - $\begin{array}{ll} \text{(i)} & \mathbb{P}\big[X_n \leq x\big] \leq \mathbb{P}\big[X \leq x + \varepsilon\big] + \mathbb{P}\big[|X_n X| > \varepsilon\big] \\ \text{(ii)} & \mathbb{P}\big[X \leq x \varepsilon\big] \mathbb{P}\big[|X_n X| > \varepsilon\big] \leq \mathbb{P}\big[X_n \leq x\big] \\ \end{array}$
- (b) Écrire la fonction de répartition d'une variable aléatoire constante et majorer $\mathbb{P}[|X_n - c| > \varepsilon]$.

Preuve

(a) Soit x un point de continuité de F_X et $\varepsilon > 0$. On a

(i) $\mathbb{P}[X_n \le x] = \mathbb{P}[X_n \le x, |X_n - X| \le \varepsilon] + \mathbb{P}[X_n \le x, |X_n - X| > \varepsilon]$ $\le \mathbb{P}[X \le x + \varepsilon] + \mathbb{P}[|X_n - X| > \varepsilon],$

$$\operatorname{car}\left\{X_n \leq x, |X_n - X| \leq \varepsilon\right\} \subseteq \left\{X \leq x + \varepsilon\right\}.$$

(ii) On a aussi,

$$\mathbb{P}[X \le x - \varepsilon] = \mathbb{P}[X \le x - \varepsilon, |X_n - X| \le \varepsilon] + \mathbb{P}[X \le x - \varepsilon, |X_n - X| > \varepsilon] \\ \le \mathbb{P}[X_n \le x] + \mathbb{P}[|X_n - X| > \varepsilon].$$

On obtient $\mathbb{P}[X \leq x - \varepsilon] - \mathbb{P}[|X_n - X| > \varepsilon] \leq \mathbb{P}[X_n \leq x]$. On déduit (a) des deux inégalités précédentes (i) et (ii).

preuve : suite

(b) Soit F la fonction de répartition d'une variable aléatoire constante c,

$$F(x) = \mathbb{P}[c \le x] = \begin{cases} 1 & \text{si } x \ge c, \\ 0 & \text{si } x < c. \end{cases}$$

$$\mathbb{P}[|X_n - c| > \varepsilon] = \mathbb{P}\Big[\{X_n - c > \varepsilon\} \cup \{c - X_n > \varepsilon\} \Big]$$

$$= \mathbb{P}[X_n > c + \varepsilon] + \mathbb{P}[X_n < c - \varepsilon]$$

$$\leq 1 - \mathbb{P}[X_n \leq c + \varepsilon] + \mathbb{P}[X_n \leq c - \varepsilon]$$

$$\xrightarrow{n \to \infty} 1 - F(c + \varepsilon) + F(c - \varepsilon) = 0$$

$$\stackrel{\geq c}{\geq c} < c$$

 $\operatorname{car} X_n \stackrel{d}{\to} c.$

Transformation continue

Théorème

Soit $g: \mathbb{R} \to \mathbb{R}$ une application continue.

(a)
$$X_n \stackrel{p}{\to} X \Longrightarrow g(X_n) \stackrel{p}{\to} g(X)$$

(b)
$$Y_n \stackrel{d}{\to} Y \Longrightarrow g(Y_n) \stackrel{d}{\to} g(Y)$$

Théorème de Slutsky

Slutsky

Soit $X_n \stackrel{d}{\to} X$ et $Y_n \stackrel{d}{\to} c \in \mathbb{R}$. Alors,

- (a) $X_n + Y_n \stackrel{d}{\to} X + c$
- (b) $X_n Y_n \stackrel{d}{\to} cX$

Théorème de Slutsky

Slutsky

Soit $X_n \stackrel{d}{\to} X$ et $Y_n \stackrel{d}{\to} c \in \mathbb{R}$. Alors,

- (a) $X_n + Y_n \stackrel{d}{\rightarrow} X + c$
- (b) $X_n Y_n \stackrel{d}{\to} cX$
- (a) Prendre c=0 et x un point de continuité de F_X montrer que
 - $\mathbb{P}(X_n + Y_n \le x) \le \mathbb{P}(X_n \le x + \varepsilon) + \mathbb{P}(|Y_n| > \varepsilon)$ $\mathbb{P}(X_n \le x \varepsilon) \mathbb{P}(|Y_n| > \varepsilon) \le \mathbb{P}(X_n + Y_n \le x).$
- (b) Soit $\varepsilon > 0$ et M > 0, il suffit de montrer que

$$\mathbb{P}(|X_n Y_n| > \varepsilon) \le \mathbb{P}(|X_n| > \varepsilon M) + \mathbb{P}(|Y_n| > 1/M).$$

Slutsky: preuve

Nous avons

$$\mathbb{P}\big[X_n + Y_n \le x\big] = \mathbb{P}\big[X_n + Y_n \le x, |Y_n| \le \varepsilon\big] + \mathbb{P}\big[X_n + Y_n \le x, |Y_n| > \varepsilon\big]$$
$$\le \mathbb{P}\big(X_n \le x + \varepsilon\big) + \mathbb{P}\big(|Y_n| > \varepsilon\big)$$

De manière similaire,

$$\mathbb{P}\big[X_n \leq x - \varepsilon\big] - \mathbb{P}\big[|Y_n| > \varepsilon\big] \leq \mathbb{P}\big[X_n + Y_n \leq x\big]$$
 On l'encadrement suivant

$$\begin{split} \mathbb{P}\big[X_n \leq x - \varepsilon\big] - \mathbb{P}\big[|Y_n| > \varepsilon\big] \leq \mathbb{P}\big[X_n + Y_n \leq x\big] \\ \leq \mathbb{P}\big[X_n \leq x + \varepsilon\big] + \mathbb{P}\big[|Y_n| > \varepsilon\big] \end{split}$$

Il suffit de faire tendre $n \to \infty$ et $\varepsilon \to 0$

Slutsky: preuve (suite)

Nous avons

$$\begin{split} \mathbb{P}\big[|X_nY_n| > \varepsilon\big] &\leq \mathbb{P}\big[|X_nY_n| > \varepsilon, |Y_n| \leq 1/M\big] + \mathbb{P}\big[|Y_n| > 1/M\big] \\ &\leq \mathbb{P}\big[|X_n| > \varepsilon M\big] + \mathbb{P}\big[|Y_n| > 1/M\big] \\ &\to \mathbb{P}\big[|X_n| > \varepsilon M\big] + 0 \text{ quad } n \text{ tend vers l'infini} \end{split}$$

Il suffit de tendre M suffisamment grand pour que ce terme tend vers 0.

Théorème de Slutsky

(version générale)

Soit $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ une fonction continue et supposons que $X_n \stackrel{d}{\to} X$ et $Y_n \stackrel{d}{\to} c \in \mathbb{R}$. Alors

$$g(X_n, Y_n) \stackrel{d}{\to} g(X, c).$$

quand $n \to \infty$.

Théorème de Slutsky

(version générale)

Soit $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ une fonction continue et supposons que $X_n \stackrel{d}{\to} X$ et $Y_n \stackrel{d}{\to} c \in \mathbb{R}$. Alors

$$g(X_n, Y_n) \stackrel{d}{\to} g(X, c).$$

quand $n \to \infty$.

- ▶ Cette version n'est pas une conséquence du théorème de l'application continue. Il faut que le couple (X_n, Y_n) (la loi jointe) converge en loi vers couple (X, c).
- ▶ Ici, on a supposé la convergence des lois marginales seulement $(X_n \stackrel{d}{\to} X \text{ et } Y_n \stackrel{d}{\to} c \text{ séparément}).$
- ▶ Le point clé de la preuve : lorsque $Y_n \xrightarrow{d} c$ où c une constante, convergence des marges \iff convergence de la loi jointe.
- ▶ Ce théorème n'est pas valable lorsque $X_n \xrightarrow{d} X$ et $Y_n \xrightarrow{d} Y$.

la delta méthode

δ -méthode

Soit $Z_n = a_n(X_n - \theta) \stackrel{d}{\to} Z$ où $\theta \in R$ et $a_n \uparrow \infty$. Soit $g(\cdot)$ une fonction continue dérivable en θ . Alors

$$a_n(g(X_n) - g(\theta)) \stackrel{d}{\to} g'(\theta)Z.$$

la delta méthode : preuve

Preuve

Développement de Taylor autour de θ , nous avons

$$g(X_n) = g(\theta) + g'(\theta_n^*)(X_n - \theta)$$
 où θ_n^* est entre θ et X_n .

On a $|\theta_n^* - \theta| < |X_n - \theta| = a_n^{-1}|a_n(X_n - \theta)| = a_n^{-1}|Z_n| \xrightarrow{p} 0$ (par Slutsky). Ainsi, $\theta_n^* \xrightarrow{p} \theta$.

Par le théorème de l'application continue, nous avons $g'(\theta_n^*) \xrightarrow{p} g'(\theta)$. On déduit

$$a_n(g(X_n) - g(\theta)) = a_n(g(\theta) + g'(\theta_n^*)(X_n - \theta) - g(\theta))$$
$$= g'(\theta_n^*)a_n(X_n - \theta) \stackrel{d}{\to} g'(\theta)Z.$$

On peut utiliser la delta méthode lorsque $g'(\theta)$ n'est pas dérivable (la preuve fait appel au théorème de représentation de Skorokhod).

Convergence de l'espérance

Convergence de l'espérance

Si
$$|X_n| < M < \infty$$
 et $X_n \stackrel{d}{\to} X$, alors

$$\mathbb{E}(X_n) \to \mathbb{E}(X)$$
 quand $n \to \infty$.

Convergence de l'espérance : Preuve

Convergence de l'espérance : preuve

Supposons un premier temps que les variables X_n sont positives ou nulles $\forall n$. Utiliser le fait que pour toute v.a Y positive ou nulle, nous avons

$$\mathbb{E}(Y) = \int_0^\infty \mathbb{P}[Y > y] dy,$$

pour montrer le théorème.

Remarques sur la convergence faible

- ▶ Il est souvent difficile de montrer la convergence faible en utilisant sa définition.
- ightharpoonup Quand F_n est connue, on y arrive.
- ▶ Nous avons besoin d'autres conditions suffisantes mais commodes.

Remarques sur la convergence faible

- ▶ Il est souvent difficile de montrer la convergence faible en utilisant sa définition.
- ▶ Quand F_n est connue, on y arrive.
- ▶ Nous avons besoin d'autres conditions suffisantes mais commodes.

Théorème de Scheffé

Supposons que X_n a pour densité f_n (ou une fonction de masse dans le cas discret) et f la densité de X. Alors

$$f_n(x) \stackrel{n \to \infty}{\longrightarrow} f(x)$$
 pour tout $x, \Rightarrow X_n \stackrel{d}{\to} X$.

Remarques sur la convergence faible

- Il est souvent difficile de montrer la convergence faible en utilisant sa définition.
- ▶ Quand F_n est connue, on y arrive.
- ▶ Nous avons besoin d'autres conditions suffisantes mais commodes.

Théorème de Scheffé

Supposons que X_n a pour densité f_n (ou une fonction de masse dans le cas discret) et f la densité de X. Alors

$$f_n(x) \stackrel{n \to \infty}{\longrightarrow} f(x)$$
 pour tout $x, \Rightarrow X_n \stackrel{d}{\to} X$.

Attention : l'inverse du théorème de Scheffé n'est pas vrai.

Théorème de continuité ou théorème de Lévy

Attention : à ne pas confondre avec le théorème de l'application continue!!!!

Théorème de continuité ou théorème de Lévy

Soit $\varphi_n(t) = \mathbb{E}[e^{itX_n}]$ et $\varphi(t) = \mathbb{E}[e^{itX}]$ les fonctions caractéristiques de X_n et X respectivement.

- (a) $X_n \stackrel{d}{\to} X \iff \varphi_n \stackrel{n \to \infty}{\longrightarrow} \varphi$ ponctuellement.
- (b) Si $\varphi_n(t)$ converge ponctuellement vers une certaine limite $\psi(t)$ continue en 0. Alors
 - (i) Il existe une mesure de probabilité ν ayant $\psi(t)$ comme fonction caractéristique.
 - (ii) $F_{X_n} \stackrel{w}{\to} \nu$ (w pour weak).

Convergence faible pour les vecteurs aléatoires

Définition

Soit $\{\mathbf{X}_n\}$ une suite de vecteurs aléatoires à valeurs dans \mathbb{R}^d et \mathbf{X} un vecteur aléatoire de \mathbb{R}^d où $\mathbf{X}_n = (X_n^1, X_n^2, \dots, X_n^d)^{\top}$ et

$$\mathbf{X} = \left(X^1, X^2, \dots, X^d\right)^\top.$$

On définit les fonctions de répartitions

$$F_{X_n}(\mathbf{x}) = \mathbb{P}\left[X_n^1 \le x^1, X_n^2 \le x^2, \dots, X_n^d \le x^d\right]$$

et

$$F(\mathbf{x}) = \mathbb{P}\left[X^{1} \le x^{1}, X^{2} \le x^{2}, \dots, X^{d} \le x^{d}\right]$$

pour tout $\mathbf{x} = (x^1, x^2, \dots, x^d)^{\top} \in \mathbb{R}^d$.

On dit que \mathbf{X}_n converge en loi vers \mathbf{X} quand $n \to \infty$ (et on écrit $\mathbf{X}_n \stackrel{d}{\to} \mathbf{X}$) si pour tout point de continuité de F_X , nous avons

$$F_{\mathbf{X}_n}(\mathbf{x}) \stackrel{n \to \infty}{\longrightarrow} F_{\mathbf{X}}(\mathbf{x}).$$

Lien entre les deux versions de la convergence faible (scalaire et vectorielle)

Théorème de Cramér-Wold

Soit $\{\mathbf{X}_n\}$ une suite de vecteurs aléatoires dans \mathbb{R}^d . Alors

$$\mathbf{X}_n \overset{d}{\to} \mathbf{X} \Longleftrightarrow \boldsymbol{\theta}^\top \mathbf{X}_n \overset{d}{\to} \boldsymbol{\theta}^\top \mathbf{X}, \forall \boldsymbol{\theta} \in \mathbb{R}^d.$$

Lien entre les deux versions de la convergence faible (scalaire et vectorielle)

Théorème de Cramér-Wold

Soit $\{\mathbf{X}_n\}$ une suite de vecteurs aléatoires dans \mathbb{R}^d . Alors

$$\mathbf{X}_n \stackrel{d}{\to} \mathbf{X} \Longleftrightarrow \boldsymbol{\theta}^\top \mathbf{X}_n \stackrel{d}{\to} \boldsymbol{\theta}^\top \mathbf{X}, \forall \boldsymbol{\theta} \in \mathbb{R}^d.$$

Nous allons maintenant définir deux autres modes de convergence plus forts que les précédents!!!

Convergence presque sûre

Définition (convergence presque sûre)

Soit $\{X_n\}_{n\geq 1}$ et X des variables aléatoires définies sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. Soit

$$A := \{ \omega \in \Omega : X_n(\omega) \stackrel{n \to \infty}{\longrightarrow} X(\omega) \}.$$

On dit que X_n converge presque sûrement vers X quand $n \to \infty$ (on écrit $X_n \xrightarrow{p.s} X$) si

$$\mathbb{P}\big[A\big] = 1.$$

De manière abusive, on dit que $X_n \stackrel{p.s}{\longrightarrow} X$ si $\mathbb{P}\big[X_n \to X\big] = 1$.

Convergence dans \mathbb{L}^p

Définition (Convergence dans \mathbb{L}^p)

Soit $\{X_n\}_{n\geq 1}$ et X des variables aléatoires définies sur le même espace de probabilité. On dit que X_n vers X dans \mathbb{L}^p quand $n\to\infty$ (on écrit $X_n \xrightarrow{\mathbb{L}^p} X$) si

$$\mathbb{E}|X_n-X|^p \stackrel{n\to\infty}{\longrightarrow} 0.$$

Notons que $\|X\|_{\mathbb{L}^p}=\left(\mathbb{E}\big|X\big|^p\right)^{1/p}$ définit une norme (lorsque cette espérance existe!!!)

Relations entre les différents modes de convergence

- $ightharpoonup X_n \xrightarrow{\mathbb{L}^p} X$, pour $p > 0 \Longrightarrow X_n \xrightarrow{p} X \Longrightarrow X_n \xrightarrow{d} X$
- ▶ Il n'existe pas de relation *implicative* entre $\xrightarrow{p.s}$ et $\xrightarrow{\mathbb{L}^p}$

Théorème de représentation de Skorokhod

Théorème de représentation de Skorokhod

Soit $\{X_n\}_{n\geq 1}$ et X des variables aléatoires définies sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ où $X_n \stackrel{d}{\to} X$. Alors, il existe des variables aléatoires $\{Y_n\}_{n\geq 1}$ et Y des variables aléatoires définies sur le même espace de probabilité $(\Omega', \mathcal{G}, \mathbb{Q})$ telles que

- (i) $Y \stackrel{d}{=} X$ & $Y_n \stackrel{d}{=} X_n$, pour tout $n \ge 1$,
- (ii) $Y_n \xrightarrow{p.s} Y$

Théorème de représentation de Skorokhod

Théorème de représentation de Skorokhod

Soit $\{X_n\}_{n\geq 1}$ et X des variables aléatoires définies sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ où $X_n \stackrel{d}{\to} X$. Alors, il existe des variables aléatoires $\{Y_n\}_{n\geq 1}$ et Y des variables aléatoires définies sur le même espace de probabilité $(\Omega', \mathcal{G}, \mathbb{Q})$ telles que

- (i) $Y \stackrel{d}{=} X$ & $Y_n \stackrel{d}{=} X_n$, pour tout $n \ge 1$,
- (ii) $Y_n \xrightarrow{p.s} Y$

Ce théorème est utilisé pour monter que $X_n \stackrel{d}{\to} X \Longrightarrow g(X_n) \stackrel{d}{\to} g(X)$ pour g continue.

Loi faible des grands nombres

- ▶ Rappeler l'inégalité de Tchebychev.
- ▶ Montrer que si $\{X_n\}_{n\geq 1}$ une suite de v.a iid où $\mathbb{E}X_k = \mu$ et $\mathbb{E}X_k^2 < \infty$ pour tout k, alors

$$X_n \stackrel{p}{\to} \mu.$$

Loi forte des grands nombres

Loi forte des grands nombres

Soit $\{X_n\}_{n\geq 1}$ une suite de variables aléatoires iid où $\mathbb{E}(X_k)=\mu$ et $\mathbb{E}|X_k|<\infty$ pour tout $k\geq 1$, alors

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{p.s} \mu$$

▶ **forte** est en opposition à **faible** qui nécessite $\mathbb{E}X_k^2 < \infty$ au lieu de $\mathbb{E}|X_k| < \infty$ et donne une convergence \xrightarrow{p} au lieu de $\xrightarrow{p.s}$.

Théorème de la limite centrale

Théorème centrale limite

Soit $\{\mathbf{X}_n\}_{n\geq 1}$ une suite de vecteurs aléatoires iid à valeurs dans \mathbb{R}^d de moyenne $\boldsymbol{\mu}$ et de matrice de covariance Σ , on définit

$$\bar{\mathbf{X}}_n := \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i$$
. Alors

$$\sqrt{n}(\bar{\mathbf{X}}_n - \boldsymbol{\mu}) \sim \mathcal{N}_d(0_d, \Sigma).$$

Vitesse de convergence

- ▶ Souvent, montrer la convergence ne suffit pas
- ▶ À quelle vitesse?
- ▶ Ça revient à mesurer la qualité d'approximation

Vitesse de convergence

- ▶ Souvent, montrer la convergence ne suffit pas
- ▶ À quelle vitesse?
- ▶ Ça revient à mesurer la qualité d'approximation
- ▶ Loi des grands nombres : variance finie, vitesse $n^{-1/2}$ dans \mathbb{L}^2

Vitesse de convergence

- ▶ Souvent, montrer la convergence ne suffit pas
- ▶ À quelle vitesse?
- ▶ Ça revient à mesurer la qualité d'approximation
- ▶ Loi des grands nombres : variance finie, vitesse $n^{-1/2}$ dans \mathbb{L}^2

Théorème de Berry-Esseen

Soit $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ des vecteurs aléatoires iid à valeurs dans \mathbb{R}^d tels que $\mathbb{E}[\mathbf{X}_i] = \mathbf{0}_d$ et $\mathrm{Cov}[\mathbf{X}_i] = \mathrm{I}_d$. On définit

$$\mathbf{S} = \frac{1}{\sqrt{n}} (\mathbf{X}_1 + \dots + \mathbf{X}_n).$$

Si \mathcal{A} est la classe des sous-ensembles convexes de \mathbb{R}^d , alors pour $\mathbf{Z} \sim \mathcal{N}_d(\mathbf{0}, \mathbf{I}_d)$,

$$\sup_{A \in \mathcal{A}} \left| \mathbb{P} \big[\mathbf{S}_n \in A \big] - \mathbb{P} \big[\mathbf{Z} \in A \big] \right| \le C \frac{d^{1/4} \mathbb{E} \| \mathbf{X}_i \|^3}{\sqrt{n}}.$$

D > 4 D > 4 E > 4 E > E 994