-> It may input is true or high then output will be True.

Symbolic Representation:

A
$$A + B$$
 $A + B$
 $A + B$

bruth Table					
A	ß	4 = A+B			
0	0	D			
9	1	1			
1	0	<u>}</u>			
1	1	<u> </u>			

input = 3, L 23 = 8 Combinations

* If any I is high then

Olp = high

Enable 4 Disable on Grate:

& Of will stay at 1.

Lo 97 is Disabled OR Gate

floating Input OR Crate

$$\begin{array}{c}
A \\
Y = A
\end{array}$$

$$\begin{array}{c}
A = 0, Y = 0 \\
A = 1, Y = 1
\end{array}$$

$$\begin{array}{c}
A = 1, Y = 1
\end{array}$$

NAND Grate J. AND gate With Not Grate (AND -> NOT)

Bubble implies Anversion

Negotion Y = A.8

Y= AB

MAND

	Truth	Table	
A	В	AB	A B
O	٥	0	1
٥	1	0	1
1	0	O	1
1	1	1	0

$$\overline{A \cdot B} = \overline{B \cdot A}$$

(NAMD gode follows Commutative law)

$$A=1$$
, $B=1$, $C=0$

3 input NAND Grate:

Lo AND gate with 3 inputs + 1 NOT

A S Y= ABC

NOT

AND

X 3 input AND Gase Can NOT be directly obtained from two input NAND Grate (assading).

Truth Table

A	B	<u></u>	ABC	ABC
O	O	0	0	1
0	0	1	0	1
O	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	}
1	P	0	Ò	1
1		1	1	0

Enabled & Disabled NAND Grade:

* Ofp remains I & does Not responding by Changing in input Signal Disabled Nand Gate

floating SIP NAMD Grafe

* Output debendent on Ilp

$$A=0, Y=\overline{A\cdot A}=) \overline{0\cdot 0}=\overline{0}=\underline{1}$$
 Act like
$$A=1, Y=\overline{A\cdot A}\Rightarrow \overline{1\cdot 1}=\overline{1}=0$$
 an Inverter