Software Architecture

Lecture 11 Program Correctness

Néstor Cataño Innopolis University

Spring 2016

Programmer's Major Concerns

1. Mathematical Correctness Concern

 Whether the program defines a proper relation between an initial state and a final state

2. Engineering concerns about efficiency

 They are only defined in relation to an implementation

Correctness

 We are interested in mechanisms that, when started in an initial state, will end up in a final state which, as a rule, depends on the choice of the initial state

Deterministic Mechanisms

Result depends on the choice of the input

Non-Deterministic Mechanisms

- Choice of the input will produce one of the possible outputs
- The input only fixes the class of possible outputs

The Idea

 We would like to know the set of initial states such that the use of the mechanism will result in a final state satisfying a so-called post-condition

The Idea

For example, we would like to know the set of initial states such that executing x:= x + 5 will result in a final state satisfying the post-condition x ≥ 13

The Weakest PreCondition

 The condition that characterizes the set of all initial states such that the use of the mechanism will leave the system in a state satisfying the postcondition is called the Weakest PreCondition for that post-condition

The Weakest PreCondition

 We call it weakest because the weaker a condition the more states satisfy it and we are aim here at characterizing all possible starting states that lead to a desired state

Weaker Conditions

- c1 is weaker than c2 if c2 implies c1
 - x > 0 is weaker than x > 5

 Let prog be program code.
 A correctness formula is an expression of the form

```
{P} prog {Q}
```

"Any execution of prog starting in a state where P holds, will terminate in a state where Q holds".

- {P} prog {Q}
 - -prog is program code
 - P is a PreCondition
 - Q is a post-condition

```
\{x \ge 7\} \ x := x + 5 \ \{x \ge 13\}
```

Is this formula correct?

```
\{x \ge 10\} \ x := x + 5 \ \{x \ge 13\}
```

Is this formula correct?

```
\{x \ge 10\} \ x := x + 5 \ \{x \ge 13\}
```

 The formula holds whenever x ≥ 10 is true before x:= x + 5 is executed, the condition x ≥ 13 holds after

When is this formula correct?

```
\{P\} \ x := x + 5 \ \{x \ge 13\}
```

When is this formula correct?

$$\{P\} \ x := x + 5 \ \{x \ge 13\}$$

It is correct if an only if

$$P ==> x \ge 8$$

When is this formula correct?

$$\{P\} \ x := x + 5 \{Q\}$$

When is this formula correct?

$$\{P\} \ \mathbf{x} := \mathbf{x} + \mathbf{5} \ \{Q\}$$

the formula is correct when

$$P ==> Q[x \setminus x + 5]$$

Weakest Precondition

 What is the weakest precondition P making the following formula true?

```
\{P\} \ x := x + 5 \ \{x \ge 13\}
```

Weakest Precondition

 What is the weakest precondition P making the following formula true ?

$$\{P\} \ x := x + 5 \ \{x \ge 13\}$$

$$(x \ge 13) [x \setminus x + 5]$$

Weakest Precondition

 The condition characterizing all the initial states so that executing a program prog will result in a final state satisfying a post-condition Q, will be called the weakest PreCondition, denoted by

WP (prog, Q)

A Remark

 We are sometimes not interested in finding the exact form of WP (prog,Q) but would be content with a stronger condition c, that is, a condition for which

$$C ==> WP(prog,Q)$$

$$\{P\} \ \mathbf{x} := \mathbf{x} + 5 \ \{\mathbf{x} \ge 13\}$$

$$\{P\} \ x := x + 5 \ \{x \ge 13\}$$

$$(x \ge 13)[x \setminus x + 5]$$

$$\{P\} \ x := x + 5 \ \{x \ge 13\}$$

$$(x \ge 13) [x \setminus x + 5]$$

$$x + 5 \ge 13$$

$$\{P\} \ x := x + 5 \ \{x \ge 13\}$$

$$(x \ge 13) [x \setminus x + 5]$$

$$x + 5 \ge 13$$

$$x \ge 8$$

Key Remark

 x ≥ 8 is the weakest condition p such that the following correctness formula holds

$$\{P\} \ x := x + 5 \ \{x \ge 13\}$$

In particular

$$-x \ge 10 ==> x \ge 8$$

$$-x \ge 15 ==> x \ge 8$$

Results On WP

Results On WP

1. WP(prog, false) = false 2. Q1 ==> Q2 then WP(prog,Q1) ==> WP(prog,Q2)3. WP(prog,Q) and WP(prog,R) = WP(prog, Q and R) 4. WP(prog,Q) or WP(prog,R) ==> WP(prog,Q or R)

WP Calculus → Assignment Rule

$$WP(x := E, Q) = Q[x \setminus E]$$

WP Calculus Assignment Rule

$$WP(x := E, Q) = Q[x \setminus E]$$

$$\{P\} \ x := x + 5 \ \{x \ge 13\}$$

WP Calculus → Assignment Rule

$$WP(x := E, Q) = Q[x \setminus E]$$

$$\{P\} \ x := x + 5 \ \{x \ge 13\}$$

$$WP(x:=x+5,x \ge 13) = (x \ge 13)[x \times +5]$$

WP Calculus → Assignment Rule

$$WP(x := E, Q) = Q[x \setminus E]$$

$$\{P\} \ x := x + 5 \ \{x \ge 13\}$$

$$WP(x:=x+5,x \ge 13) = (x \ge 13)[x \times +5]$$

$$x \ge 8$$

WP Calculus -> Composition Rule

WP(S;T,Q) = WP(S,WP(T,Q))

WP Calculus→ Composition Rule

$$WP(S;T,Q) = WP(S,WP(T,Q))$$

$${P} x:=z+1; y:=x+y {y > 5}$$

WP Calculus→ Composition Rule

$$WP(S;T,Q) = WP(S,WP(T,Q))$$

$$\{P\} \ x := z+1; \ y := x+y \ \{y > 5\}$$

$$WP(x:=z+1; y:=x+y, y > 5)$$

$$WP(S;T,Q) = WP(S,WP(T,Q))$$

$$\{P\} \ x := z+1; \ y := x+y \ \{y > 5\}$$

$$WP(x:=z+1; y:=x+y, y > 5)$$

$$WP(x:=z+1, WP(y:=x+y, y > 5))$$

$$WP(S;T,Q) = WP(S,WP(T,Q))$$

$$\{P\} \ x := z+1; \ y := x+y \ \{y > 5\}$$

$$WP(x:=z+1; y:=x+y, y > 5)$$

$$WP(x:=z+1, x+y > 5)$$

$$WP(S;T,Q) = WP(S,WP(T,Q))$$

$$\{P\} \ x := z+1; \ y := x+y \ \{y > 5\}$$

$$WP(x:=z+1; y:=x+y, y > 5)$$

$$z+1+y > 5$$

$$WP(S;T,Q) = WP(S,WP(T,Q))$$

$$\{P\} \ x := z+1; \ y := x+y \ \{y > 5\}$$

$$WP(x:=z+1; y:=x+y, y > 5)$$

$$z+y > 4$$

$$WP(if(C) S else T, Q) =$$

$$WP(if(C) S else T, Q) =$$

```
C => WP(S,Q) &&
!C => WP(T,Q)
```

$$C \Rightarrow WP(S,Q)$$

WP Calculus

```
{P} if(x>y) z:=x else z:=y {z>0}
```

WP Calculus

```
{P} if(x>y) z := x \text{ else } z := y \{z>0\}
```

```
x>y => WP(z:=x,z>0) && x\le y => WP(z:=y,z>0)
```

WP Calculus

{P} if(
$$x>y$$
) $z:=x$ else $z:=y$ { $z>0$ }

$$WP(skip, Q) = Q$$

WP Calculus → Abort Rule

WP(abort, Q) = false

```
B
while(C) {
   prog
}
```

```
B
while(C) {
  prog
}
```

```
Post-condition Q
Loop-Invariant I
Variant V
```

```
B
while(C) {
   prog
}
Variant V
```

1. The Loop-Invariant holds initially

```
B
while(C) {
   prog
}
Variant V
```

1. The Loop-Invariant holds initially

```
{true} B {I}
```

```
B
while(C) {
   prog
}
Variant V
```

1. The Loop-Invariant holds initially

```
B
while(C) {
   prog
}
Variant V
```

2. Program prog maintains the Loop-Invariant I provided that the guard c holds as well

```
{I \ C} prog {I}
```

```
B
while(C) {
   prog
}
Variant V
```

2. Program prog maintains the Loop-Invariant I provided that the guard c holds as well

```
(I \( \text{C} \) => \( \text{WP(prog,I)} \)
```

```
B
while(C) {
   prog
}
Variant V
```

3. The **Variant** is strictly decreased by the execution of **prog** provided that the invariant **I** and the guard **c** hold

```
{I ∧ C} prog {0 ≤ V < V₀}
```

```
Post-condition Q
while(C)
                        Invariant I
  prog
                        Variant V
                     Remark!
3. The Val
  the exe vo is v before executing prog
  the inv
         {I \land C} prog {0 \le V < V_0}
```

```
B
while(C) {
  prog
}
Variant V
```

3. The **Variant** is strictly decreased by the execution of **prog** provided that the invariant **I** and the guard **c** hold

```
(I \land C) \Rightarrow WP(prog, 0 \leq V < V_0)
```

```
B
while(C) {
  prog
}
Variant V
```

4. The post-condition holds after the loop ends

```
(I ∧ ¬C) => Q
```

```
x:= M;
y:= N;
z:= 0;
while(x≥y) {
  z:= z + 1;
  x:= x - y;
}
```

```
x:= M;
y:= N;
z:= 0;
while(x≥y) {
z:= z + 1;
x:= x - y;
}
```

```
Invariant zy+x = M
```

```
Post-condition
zy+x = M \wedge x < y
```

Variant x

```
x:= M;
y:= N;
z:= 0;
while(x≥y) {
z:= z + 1;
x:= x - y;
}
```

```
Invariant zy+x = M
```

```
Post-condition
zy+x = M \wedge x < y
```

```
Variant x
```

$$1.WP(B,I) = true$$

```
x:= M;
y:= N;
z:= 0;
while(x≥y) {
z:= z + 1;
x:= x - y;
}
```

```
Invariant zy+x = M
```

```
Post-condition
zy+x = M \wedge x < y
```

Variant x

1. WP(
$$x := M; y := N; z := 0, zy + x = M$$
) = true

WP(
$$x := M; y := N; z := 0, zy+x=M$$
) =

$$WP(x:=M; y:=N; z:=0, zy+x=M) =$$

$$WP(x := M; y := N, 0y + x = M) =$$

WP(
$$x := M; y := N; z := 0, zy+x=M$$
) =

$$WP(x := M; y := N, 0y + x = M) =$$

$$WP(x:=M,0N+x=M) =$$

WP(
$$x := M; y := N; z := 0, zy+x=M$$
) =

$$WP(x := M; y := N, 0y + x = M) =$$

$$WP(x:=M,0N+x=M) =$$

$$0N+M=M =$$

```
WP(x := M; y := N; z := 0, zy+x=M) =
```

$$WP(x := M; y := N, 0y + x = M) =$$

$$WP(x:=M,0N+x=M) =$$

$$0N+M=M =$$

true

Is Is this Program Correct?Program Correct?

```
x:= M;
y:= N;
z:= 0;
while(x≥y) {
z:= z + 1;
x:= x - y;
}
```

```
Invariant zy+x = M
```

```
Post-condition
zy+x = M \( \lambda \) x < y
```

Variant x

2. (I
$$\wedge$$
 C) => WP(prog, I)

```
x:= M;
y:= N;
z:= 0;
while(x≥y) {
z:= z + 1;
x:= x - y;
}
```

```
Invariant zy+x = M
```

```
Post-condition
zy+x = M \wedge x < y
```

Variant x

```
2. (zy+x=M) \land (x \ge y) => WP(z:=z+1; x:=x-y, zy+x=M)
```

$$(zy+x=M) \land (x \ge y) =>$$
 $WP(z:=z+1; x:=x-y, zy+x=M)$

```
(zy+x=M) \land (x \ge y) =>
WP(z:=z+1; x:=x-y, zy+x=M)
```

```
WP(z:= z+1; x:= x-y, zy+x=M)=
```

```
(zy+x=M) \land (x \ge y) =>
WP(z:=z+1; x:=x-y, zy+x=M)
```

$$WP(z := z+1; x := x-y, zy+x=M) =$$

$$WP(z:=z+1, zy+x-y=M) =$$

$$(zy+x=M) \land (x \ge y) =>$$
 $WP(z:=z+1; x:=x-y, zy+x=M)$

$$WP(z := z+1; x := x-y, zy+x=M) =$$

$$WP(z:=z+1, zy+x-y=M) =$$

$$(z+1)y+x-y=M$$

```
(zy+x=M) \land (x \ge y) =>
WP(z:=z+1; x:=x-y, zy+x=M)
```

WP(z:= z+1;
$$x:= x-y$$
, $zy+x=M$)=

$$WP(z:=z+1, zy+x-y=M) =$$

$$(z+1)y+x-y=M$$

$$zy+x=M$$

```
x:= M;
y:= N;
z:= 0;
while(x≥y) {
z:= z + 1;
x:= x - y;
}
```

```
Invariant zy+x = M
```

```
Post-condition
zy+x = M \wedge x < y
```

Variant x

3. (Io
$$\land$$
 Co) => WP(progo, 0 \le V $<$ Vo)

(Io
$$\wedge$$
 Co) => WP(progo, 0 \leq V $<$ Vo)

(Io
$$\wedge$$
 Co) => WP(progo, 0 \leq V $<$ Vo)

$$(z_0y+x_0 = M) \land (x_0 \ge y) => WP(prog_0, 0 \le X < X_0)$$

(Io
$$\wedge$$
 Co) => WP(progo, 0 \leq V $<$ Vo)

$$(z_0y+x_0 = M) \land (x_0 \ge y) => WP(prog_0, 0 \le X < X_0)$$

WP(z:=z₀+1; x:=x₀-y, 0
$$\leq$$
 X $<$ X₀) =

(Io
$$\wedge$$
 Co) => WP(progo, 0 \leq V $<$ Vo)

$$(z_0y+x_0 = M) \land (x_0 \ge y) => WP(prog_0, 0 \le X < X_0)$$

WP(z:=z₀+1; x:=x₀-y, 0
$$\leq$$
 X $<$ X₀) =

$$WP(z:=z_0+1, 0 \le x_0-y < x_0) =$$

(Io
$$\wedge$$
 Co) => WP(progo, 0 \leq V $<$ Vo)

$$(z_0y+x_0 = M) \land (x_0 \ge y) => WP(prog_0, 0 \le X < X_0)$$

WP(z:=z₀+1; x:=x₀-y, 0
$$\leq$$
 X $<$ X₀) =

$$WP(z:=z_0+1, 0 \le x_0-y < x_0) =$$

$$0 \leq x_0 - y < x_0$$

(Io
$$\wedge$$
 Co) => WP(progo, 0 \leq V $<$ Vo)

$$(z_0y+x_0 = M) \land (x_0 \ge y) => 0 \le X_0-y < X_0$$

```
x:= M;
y:= N;
z:= 0;
while(x≥y) {
z:= z + 1;
x:= x - y;
}
```

```
Invariant zy+x = M
```

```
Post-condition

zy+x = M \( \lambda \) x < y
```

4. (I
$$\land \neg C$$
) => Q

```
x:= M;
y:= N;
z:= 0;
while(x≥y) {
z:= z + 1;
x:= x - y;
}
```

```
Invariant zy+x = M
```

```
Post-condition

zy+x = M \( \lambda \) x < y
```

Variant x

4.
$$(zy+x = M) \land \neg (x \ge y) =>$$

 $zy+x = M \land x < y$

What does A(x,y) calculate?

```
function A(x, y)
 if x = 0 return y
 while y \neq 0 {
  if x > y
    x := x - y
  else
    y := y - x
 return x
```

- x = 6, y = 9
- A(x,y) = ?

- x = 6, y = 9
- A(6,9) = ?

- x = 6, y = 9
- A(6,9) =
- A(6,3)

- x = 6, y = 9
- A(6,9) =
- A(6,3) =
- A(3,3)

- x = 6, y = 9
- A(6,9) =
- A(6,3) =
- A(3,3) = 3

The Greatest Common Divisor Euclid's Algorithm

```
function GCD(x, y) {
 while !(x = y)  {
  if x > y
    x := x - y
  else
    y := y - x
 return x
```