

Generación de Trayectorias Cinemáticas

Prof. Oscar E. Ramos, Ph.D.

https://youtu.be/HTPIED6jUdU

Objetivos

- Comprender conceptos básicos de cinemática inversa
- Comprender el concepto de espacio de trabajo
- Obtener la cinemática inversa de robots manipuladores simples usando métodos analíticos
- Obtener la cinemática inversa de robots manipuladores complejos mediante métodos numéricos

Temas

- 1. Generación de Trayectorias
- 2. Trayectorias en el Espacio Articular
- 3. Trayectorias en el Espacio Operacional

Esquema Funcional de un Robot

En el generador de trayectorias:

- Entradas (IN): secuencia de posiciones/orientaciones o configuraciones articulares
- Salidas (OUT): referencias (continuas/discretas) para el controlador del robot

Introducción

• Se desea: de puntos a trayectorias (Cartesianas/Articulares)

Ir de la posición/orientación *A* a la posición/orientación *C*

Ir de la posición/orientación *A* a la posición/orientación *C* pasando por la posición/orientación *B*

¿El tiempo interesa?

Trayectoria vs Camino

- Camino (geométrico):
 - Conjunto de puntos (en el espacio articular o Cartesiano) que el manipulador debe seguir

$$p(s) = \begin{bmatrix} x(s) & y(s) & z(s) \end{bmatrix}^T$$

- Es una descripción puramente geométrica
- Trayectoria:
 - Camino geométrico p(s) + consideraciones temporales s(t)

$$p(s(t)) = \begin{bmatrix} x(s(t)) & y(s(t)) & z(s(t)) \end{bmatrix}^{T}$$

- Considera restricciones de velocidades/aceleraciones

R

Trayectoria vs Camino

 Usualmente se escoge un camino y luego se escoge la ley temporal (para la trayectoria)

Camino Ley temporal
$$p = p(s) \longrightarrow s = s(t)$$
 Espacio Cartesiano
$$q = q(\lambda) \longrightarrow \lambda = \lambda(t)$$
 Espacio articular Trayectoria

- Parametrización natural: s = t

- Derivadas:
$$\dot{p}(t) = \frac{dp(s)}{ds}\dot{s}(t)$$
 $\ddot{p}(t) = \frac{dp(s)}{ds}\ddot{s}(t) + \frac{d^2p(s)}{ds^2}\dot{s}^2(t)$

- Ley temporal:
 - Se basa en las especificaciones (velocidades, dónde detenerse, etc.)
 - Restricciones impuestas por los actuadores o tareas (max torque, max velocidad)
 - Puede considerar criterios de optimización (mínimo tiempo, mínima energía, etc.)

Ejemplo de Camino

- Objetivo:
 - Pasar por los puntos Cartesianos A, B, C
 - Evitar discontinuidades

Ejemplo de Camino

Pasos:

- Camino geométrico deseado p(s), donde s es un parámetro

Ejemplo de Camino

Pasos:

 Muestreo del camino Cartesiano para obtener puntos deseados

Ejemplo de Camino

Pasos:

- Camino geométrico en el espacio articular $q_1(\lambda), q_2(\lambda), q_3(\lambda)$

Procedimiento Típico

Procedimiento:

Espacio Articular vs Espacio Cartesiano

- Trayectorias en el espacio Cartesiano (operacional):
 - Visualización más directa del camino generado
 - Permite evitar obstáculos
 - Se puede seguir una forma Cartesiana determinada (evitar "divagar")
 - Requiere cinemática inversa (computacionalmente más costoso)
- Trayectorias en el espacio articular
 - Más complicado de visualizar
 - No se puede evitar obstáculos
 - No se puede seguir formas Cartesianas (ejemplo: una "línea")
 - No requiere cinemática inversa en cada punto (menor costo computacional)

Espacio Articular vs Espacio Cartesiano

Ejemplos

Interpolación articular no coordinada

Interpolación articular coordinada

Interpolación articular no coordinada

Interpolación en el espacio Cartesiano

Clasificación de Trayectorias

- Según el espacio:
 - Trayectorias Cartesianas (operacionales)
 - Trayectorias articulares
- Según el tipo de tarea:
 - Trayectorias punto a punto
 - Trayectorias de múltiples puntos ("knots")
 - Trayectorias contínuas (continuidad de velocidad, aceleración)
 - Trayectorias concatenadas (ejemplo: "overfly")
- Según la geometría del camino:
 - Trayectorias rectilíneas
 - Trayectorias polinomiales
 - Trayectorias exponenciales
 - Trayectorias cicloides, etc.

Clasificación de Trayectorias

- Según la ley temporal:
 - Trayectorias tipo bang-bang (on/off) en aceleración
 - Trayectorias trapezoidales en velocidad
 - Trayectorias polinomiales, etc.
- Según la coordinación:
 - Trayectorias coordinadas (todas las articulaciones inician y terminan el movimiento al mismo tiempo y en simultáneo)
 - Trayectorias independientes (movimiento independiente de cada articulación)

Temas

1. Generación de Trayectorias

2. Trayectorias en el Espacio Articular

- 2.1. Movimiento Punto a Punto
- 2.2 Movimiento por Secuencia de puntos
- 3. Trayectorias en el Espacio Operacional

(Polinomios: repaso)

- Grado 5: $q = a_5 t^5 + a_4 t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0$ 6 parámetros (a_5 , a_4 , a_3 , a_2 , a_1 , a_0), se requiere 6 ecuaciones
- Grado n: $q = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0 \leftarrow n$ parametros $(a_n, a_{n-1}, \dots, a_1, a_0)$ Se requiere n+1 ecuaciones

(Polinomios: repaso)

Ejemplo:

Interpolar linealmente los puntos mostrados en la figura, donde t_0 = 2 [s], q_0 = 16 [°], t_f = 10 [s], q_f = 40 [°]

Ecuación genérica: $q(t) = a_1 t + a_0$

- Punto 1:
$$q_0 = a_1 t_0 + a_0 \longrightarrow 16 = 2a_1 + a_0$$

- Punto 2:
$$q_f = a_1 t_f + a_0 \longrightarrow 40 = 10a_1 + a_0$$

Sistema de ecuaciones:

$$Ax = b \quad \Rightarrow \quad \begin{bmatrix} 2 & 1 \\ 10 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 16 \\ 40 \end{bmatrix}$$

$$x = A^{-1}b \implies \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} = \begin{pmatrix} \frac{1}{-8} \begin{bmatrix} 1 & -1 \\ -10 & 2 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 16 \\ 40 \end{bmatrix} = \begin{bmatrix} 3 \\ 10 \end{bmatrix}$$

Ecuación de la línea:

$$q(t) = 3t + 10$$

Trayectorias en el Espacio Articular

• Utiliza directamente cada una de las articulaciones $q_{\rm i}(t)$

Trayectorias en el Espacio Articular

- Utiliza directamente cada una de las articulaciones q_i(t)
 - Puede depender directamente del tiempo: $q_i(t)$
 - Puede estar parametrizado: $q_i(\lambda)$ donde $\lambda = \lambda(t)$
- Los valores deseados son usualmente obtenidos a partir de las especificaciones en el espacio operacional
- Especificaciones (alguna de o todas las siguientes):
 - Posición inicial y final
 - Velocidad inicial y final
 - Aceleración inicial y final
 - Posiciones/orientaciones ("puntos") intermedias ("interpolación")
 - Continuidad de la curva (hasta el k-ésimo orden: clase C^k)

Problema:

- El movimiento en el espacio operacional no es predecible
- Puede haber "overshooting" en el espacio operacional

Temas

- 1. Generación de Trayectorias
- 2. Trayectorias en el Espacio Articular
 - 2.1. Movimiento Punto a Punto
 - 2.2 Movimiento por Secuencia de puntos
- 3. Trayectorias en el Espacio Operacional

• Moverse de una posición inicial q_i a final q_f en un tiempo t_f .

Se realiza interpolaciones entre q_i y q_f

- No interesa:
 - Ningún punto en el camino intermedio entre q_i y q_f
 - El camino seguido por el efector final
- Ejemplos de interpolación:
 - Polinomios:
 - Cúbico
 - · De quinto grado, etc
 - Interpolación con velocidad trapezoidal, trayectoria de tiempo mínimo, etc

Polinomio cúbico

Se especifica:

- Tiempo inicial y final: t_0 , t_f
- Punto inicial y final: q_0, q_f
- Velocidad inicial y final: \dot{q}_0 , \dot{q}_f

Expresión analítica

Posición: $q(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0$ Velocidad: $\dot{q}(t) = 3a_3 t^2 + 2a_2 t + a_1$

Sistema de ecuaciones:

$$q_0 = a_3 t_0^3 + a_2 t_0^2 + a_1 t_0 + a_0$$

$$q_f = a_3 t_f^3 + a_2 t_f^2 + a_1 t_f + a_0$$

$$\dot{q}_0 = 3a_3 t_0^2 + 2a_2 t_0 + a_1$$

$$\dot{q}_f = 3a_3 t_f^2 + 2a_2 t_f + a_1$$

$$\begin{bmatrix} t_0^3 & t_0^2 & t_0 & 1 \\ t_f^3 & t_f^2 & t_f & 1 \\ 3t_0^2 & 2t_0 & 1 & 0 \\ 3t_f^2 & 2t_f & 1 & 0 \end{bmatrix} \begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} q_0 \\ q_f \\ \dot{q}_0 \\ \dot{q}_f \end{bmatrix}$$

Nota:

- Solo se puede especificar posiciones y velocidades (inicial/final)
- No se puede especificar la aceleración

Polinomio cúbico

Ejemplo

Calcular la trayectoria cúbica de una articulación de $q(2)=10^{\circ}$ a $q(4)=60^{\circ}$ con velocidad inicial y final nula. Graficar la posición, velocidad y aceleración.

Sistema de ecuaciones:

$$10 = 2^{3} a_{3} + 2^{2} a_{2} + 2a_{1} + a_{0} \qquad 0 = 3(2^{2})a_{3} + 2(2)a_{2} + a_{1}$$

$$0 = 3(2^2)a_3 + 2(2)a_2 + a_1$$

$$60 = 4^{3} a_{3} + 4^{2} a_{2} + 4a_{1} + a_{0} \qquad 0 = 3(4^{2})a_{3} + 2(4)a_{2} + a_{1}$$

$$0 = 3(4^2)a_3 + 2(4)a_2 + a_1$$

Solución:

Trayectoria:

$$q(t) = -12.5t^3 + 112.5t^2 - 300t + 260$$

Polinomio quíntico (de 5^{to} grado)

• Se especifica:

- Tiempo inicial y final: t_0 , t_f
- Punto inicial y final: q_0 , q_f
- Velocidad inicial y final: \dot{q}_0 , \dot{q}_f
- Aceleración inicial y final: \ddot{q}_0 , \ddot{q}_f

Expresión analítica

Posición: $q(t) = a_5 t^5 + a_4 t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0$

Velocidad: $\dot{q}(t) = 5a_5t^4 + 4a_4t^3 + 3a_3t^2 + 2a_2t + a_1$

Aceleración: $\ddot{q}(t) = 20a_5t^3 + 12a_4t^2 + 6a_3t + 2a_2$

Sistema de ecuaciones:

$$q_0 = a_5 t_0^5 + a_4 t_0^4 + a_3 t_0^3 + a_2 t_0^2 + a_1 t_0 + a_0$$

$$q_f = a_5 t_f^5 + a_4 t_f^4 + a_3 t_f^3 + a_2 t_f^2 + a_1 t_f + a_0$$

$$\dot{q}_0 = 5a_5 t_0^4 + 4a_4 t_0^3 + 3a_3 t_0^2 + 2a_2 t_0 + a_1$$

$$\dot{q}_f = 5a_5 t_f^4 + 4a_4 t_f^3 + 3a_3 t_f^2 + 2a_2 t_f + a_1$$

$$\ddot{q}_0 = 20a_5 t_0^3 + 12a_4 t_0^2 + 6a_3 t_0 + 2a_2$$

$$\ddot{q}_f = 20a_5 t_f^3 + 12a_4 t_f^2 + 6a_3 t_f + 2a_2$$

Polinomio quíntico (de 5^{to} grado)

Ejemplo

Calcular la trayectoria cúbica de una articulación de $q(2)=10^{\circ}$ a $q(4)=60^{\circ}$ con

velocidad y aceleración iniciales y finales nulas.

Sistema de ecuaciones:

$$\begin{bmatrix} 2^5 & 2^4 & 2^3 & 2^2 & 2 & 1 \\ 4^5 & 4^4 & 4^3 & 4^2 & 4 & 1 \\ 5(2^4) & 4(2^3) & 3(2^2) & 2(2) & 1 & 0 \\ 5(4^4) & 4(4^3) & 3(4^2) & 2(4) & 1 & 0 \\ 20(2^3) & 12(2^2) & 6(2) & 2 & 0 & 0 \\ 20(4^3) & 12(2^2) & 6(2) & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_5 \\ a_4 \\ a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 10 \\ 60 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Trayectoria:

$$q(t) = 9.375t^5 - 140.625t^4 + 812.5t^3 - 2250t^2 + 3000t - 1540$$

Interpolador de Velocidad Trapezoidal

- También llamado:
 - "Linear segments with Parabolic Blends" (LSPB)

 t_b : blend time

- Suposiciones:
 - Se asume: $t_0 = 0$, velocidad inicial y final nulas
 - (Trayectoria simétrica: $q(t_f/2) = q_f/2$)
- · Se especifica:
 - Tiempo final: t_f
 - Punto inicial y final: q_0 , q_f
 - Velocidad máxima: \dot{q}_{max} , o t_b , o aceleración máxima \ddot{q}_{max}

Interpolador de Velocidad Trapezoidal

• Trayectoria al especificar la velocidad máxima:

$$q(t) = \begin{cases} q_0 + \frac{1}{2} \frac{\dot{q}_{max}}{t_b} t^2 & , 0 < t \le t_b \\ q_0 - \frac{1}{2} t_b \dot{q}_{max} + \dot{q}_{max} t & , t_b < t \le t_f - t_b \\ q_f - \frac{1}{2} \frac{\dot{q}_{max}}{t_b} (t - t_f)^2 & , t_f - t_b < t \le t_f \end{cases}$$

• Límites de la máxima velocidad $(0 < t_b \le t_f/2)$:

$$\frac{q_f - q_0}{t_f} < \dot{q}_{max} \le \frac{2(q_f - q_0)}{t_f}$$

Aceleración máxima y velocidad máxima:

$$\ddot{q}_{max} = \frac{\dot{q}_{max}}{t_b}$$

Interpolador de Velocidad Trapezoidal

Ejemplo

Para una articulación, calcular una trayectoria con velocidad trapezoidal tal que el valor articular inicial sea 10, el valor final 60, la máxima velocidad 20 deg/s y el tiempo total 4 s.

Blend time:

$$t_b = (10 - 60 + 20(4)) / 20 = 1.5 \text{ s}$$

Trayectoria:

$$q(t) = \begin{cases} 10 + 6.67t^2 & , 0 < t \le 1.5 \\ -5 + 20t & , 1.5 < t \le 2.5 \\ 60 - 6.67(t - 4)^2 & , 2.5 < t \le 4 \end{cases}$$

t [s]

Trayectoria de Tiempo Mínimo

• Objetivo: llegar en el mínimo tiempo de q_0 a q_f considerando la máxima aceleración posible \ddot{q}_{max}

 Acelerar al máximo y luego desacelerar (on/off o bang/bang)

- Velocidad trapezoidal "colapsada" → triangular
- Tiempo de cambio (switch): $t_b = t_s = \frac{t_f}{2}$
- Con esta restricción (usando las relaciones del interpolador trapezoidal): $t_f = 2\sqrt{\frac{q_f q_0}{\ddot{q}_{max}}}$

$$q(t) = \begin{cases} q_0 + \frac{1}{2} \ddot{q}_{max} t^2 & , 0 < t \le t_s \\ q_f - \frac{1}{2} \ddot{q}_{max} (t - t_f)^2 & , t_s < t \le t_f \end{cases}$$

Trayectoria de Tiempo Mínimo

Ejemplo

Para una articulación, calcular el tiempo mínimo que tomaría ir de 10° a 60° si la aceleración máxima es 13.33 deg/s². Determinar la trayectoria resultante.

Tiempo final:

$$t_f = 2\sqrt{\frac{60 - 10}{13.33}} = 3.8735 \text{ s}$$

Trayectoria:

$$q(t) = \begin{cases} 10 + 6.67t^2 & , 0 < t \le 1.94 \\ 60 - 6.67(t - 3.87)^2 & , 1.94 < t \le 3.87 \end{cases}$$

Temas

1. Generación de Trayectorias

- 2. Trayectorias en el Espacio Articular
 - 2.1. Movimiento Punto a Punto
 - 2.2 Movimiento por Secuencia de puntos
- 3. Trayectorias en el Espacio Operacional

Movimiento por Secuencia de Puntos

• Moverse de una posición inicial q_i a una final q_f "pasando por" puntos intermedios

- Interesa:
 - Puntos en el camino intermedio entre q_i y q_f
 - Continuidad (de velocidad/aceleración) en los puntos intermedios
- Usos:
 - Para evitar obstáculos
 - Para seguir trayectorias "finas"

Movimiento por Secuencia de Puntos

Métodos

- Polinomios de grado alto
 - Si se tiene N puntos, se puede usar un polinomio de grado N-1
 - ¿Problemas?
 - Trayectoria oscilante (con mayor grado, mayor oscilación)
 - No se puede asignar velocidades inicial y final
- Polinomios de bajo grado en cada segmento
 - Ejemplo:
 - Polinomios cúbicos (posiciones+velocidades)
 - Polinomios de 5to grado (posiciones+velocidades +aceleraciones)
 - Posibilidades:
 - · Cada segmento por separado
 - Segmentos interdependientes (splines)

Interpolación Polinomial 4-3-4

- Trayectoria consta de:
 - Parte inicial: 4^{to} orden
 - Parte intermedia: 3er orden
 - Parte final: 4^{to} orden

Se usa para operaciones de "pick and place"

- ¿Cuántos coeficientes?
 - Requiere determinar 14 coeficientes
 - Se especifica:
 - Posiciones articulares: q_0 , q_1 , q_2 , q_f
 - Tiempos: t_0 , t_1 , t_2 , t_f
 - Velocidades y aceleraciones iniciales y finales nulas
- Restricciones:

$$\begin{split} q(t_0) &= q_0, \ q(t_f) = q_f, \ q(t_1^-) = q(t_1^+) = \mathbf{q}_1, \ q(t_2^-) = q(t_2^+) = \mathbf{q}_2 \\ \dot{q}(t_0) &= 0, \ \dot{q}(t_f) = 0 \\ \ddot{q}(t_0) &= 0, \ \ddot{q}(t_f) = 0 \end{split}$$

+ 4 restricciones de continuidad de velocidad y aceleración en t_1 y t_2

Polinomios con especificación de Velocidad

- Dados N puntos, se usa N-1 polinomios cúbicos (uno por segmento)
- Para cada punto se especifica
 - Posición: q_k , con $k = 1, \dots, N$
 - Velocidad: \dot{q}_k , con $k = 1, \dots, N$
- Para cada polinomio cúbico:
 - Notación: polinomio k representado como $\Theta_k(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0$
 - Condiciones impuestas:

$$\Theta_k(t_k) = q_k$$

$$\Theta_k(t_{k+1}) = q_{k+1}$$

$$\dot{\Theta}_k(t_k) = \dot{q}_k$$

$$\dot{\Theta}_k(t_{k+1}) = \dot{q}_{k+1}$$

4 condiciones para calcular cada $\dot{\Theta}_k(t_k) = \dot{q}_k$ polinomio cúbico k-ésimo

Para continuidad de la velocidad: $\dot{\Theta}_k(t_{k+1}) = \dot{\Theta}_{k+1}(t_{k+1})$

Polinomios con especificación de Velocidad

Ejemplo

Trayectoria pasando por los puntos $q_1 = 0$, $q_2 = 2\pi$, $q_3 = \pi/2$, $q_4 = \pi$, en los tiempos $t_1 = 0$, $t_2 = 2$, $t_3 = 3$, $t_4 = 5$, con las velocidades $\dot{q}_1 = 0$, $\dot{q}_2 = \pi$, $\dot{q}_3 = -\pi$, $\dot{q}_4 = 0$.

- Se pasa por los puntos indicados de posición y velocidad
- La aceleración es discontinua (¿Por qué?)

Interpolación con "Splines" cubícos

- Spline: curva suave (en este caso \mathcal{C}^2 [continuidad hasta la 2da derivada]) que une N puntos
- ¿Cómo?
 - N-1 polinomios cúbicos concatenados para pasar por los N puntos
 - Continuidad en velocidad y aceleración en cada N-2 puntos internos

Interpolación con "Splines" cúbicos

- ¿Cuántos coeficientes a determinar?
 - 4 (N-1) coeficientes (4 por polinomio)
- ¿Cuántas restricciones impuestas?
 - 2(N-2): continuidad en velocidad y aceleración de puntos internos

$$\dot{\Theta}_k(t_k) = \dot{\Theta}_{k+1}(t_k) \qquad \qquad \ddot{\Theta}_k(t_k) = \ddot{\Theta}_{k+1}(t_k)$$

$$\ddot{\Theta}_{k}(t_{k}) = \ddot{\Theta}_{k+1}(t_{k})$$

- 2(N-1): puntos de paso para cada polinomio

$$\Theta_k(t_k) = q_k$$

$$\Theta_k(t_{k+1}) = q_{k+1}$$

- ¿Cuántos parámetros libres?
 - 2: pueden especificar la velocidad inicial (\dot{q}_1) y final (\dot{q}_N)

$$\dot{\Theta}_1(t_1) = \dot{q}_1$$

$$\dot{\Theta}_1(t_1) = \dot{q}_1 \qquad \qquad \dot{\Theta}_{N-1}(t_N) = \dot{q}_N$$

Con estas restricciones se puede calcular cada polinomio cúbico

Interpolación con "Splines" cúbicos

Propiedades de splines

- Es la curva con curvatura mínima posible (para funciones \mathcal{C}^2)
- Un spline está determinado unívocamente al especificar: q_1 , ..., q_N , t_1 , ... t_N , \dot{q}_1 , \dot{q}_N
- No permiten especificar aceleración inicial o final

¿Cómo especificar aceleración inicial y final?

- Añadir 2 puntos "ficticios" ("virtuales") al inicio y final
 - 2 polinomios cúbicos extras
 - 8 coeficientes extra por determinar
- En estos puntos "ficticios" imponer:
 - Continuidad en posición, velocidad y aceleración (2x3=6 restricciones)
- Usar los 2 parámetros libres para:
 - Aceleración inicial y final (2 restricciones)

Interpolación con "Splines" cúbicos

Ejemplo

Encontrar una curva spline que pase por los puntos $q_1 = 0$, $q_2 = 2\pi$, $q_3 = \pi/2$, $q_4 = \pi$, en los tiempos $t_1 = 0$, $t_2 = 2$, $t_3 = 3$, $t_4 = 5$, considerando las velocidades inicial y final nulas.

Para obtener una aceleración nula, usar puntos ficticios en a) $t_a = 0.5$, $t_b = 4.5$, y b) $t_a = 1.5$, $t_b = 3.5$

Ajuste Parabólico

- Composición:
 - Interpolación lineal en la parte "intermedia"
 - Suavizado de las "uniones" con parábolas

Ajuste Parabólico

Ejemplo

Generar una trayectoria con ajuste parabólico a través de los puntos $q_1 = 0$, $q_2 = 2\pi$, $q_3 = \pi/2$, $q_4 = \pi$, en los tiempos $t_1 = 0$, $t_2 = 2$, $t_3 = 3$, $t_4 = 5$, con velocidades inicial y final nulas. Considerar dos casos para las duraciones de las parábolas (blending time): 0.2 s y 0.6 s

Nota: blending time = 0.2 (linea sólida), 0.6 (línea punteada)

Temas

- 1. Generación de Trayectorias
- 2. Trayectorias en el Espacio Articular
- 3. Trayectorias en el Espacio Operacional

- Se utiliza para seguir un camino especificado geométricamente (línea, círculo, etc.)
- En general:
 - Se puede aplicar los mismos métodos de interpolación del espacio articular
 - Se considera independientemente cada posición (x, y, z) y representación mínima de orientación $(\varphi_r, \varphi_p, \varphi_v)$
- Problemas con orientación:
 - Al interpolar, el resultado no puede ser visualizado intuitivamente
 - Se prefiere trabajar por separado posición y orientación
- El número de puntos a interpolar es típicamente bajo
 - Se suele usar caminos simples: líneas, arcos circulares, etc.
- Siempre necesita el uso de cinemática inversa

Algunos Problemas

Puntos inicial y final alcanzables en diferentes configuraciones

Puntos inicial y final alcanzables Punto intermedio inalcanzable

Singularidades causan velocidades altas

Camino Cartesiano Rectilíneo

- Segmento de línea de p_i a p_f
- Parametrización del camino:

$$p(s) = p_i + s(p_f - p_i), \quad s \in [0,1]$$

- Longitud del camino: $\sigma = Ls$
- Velocidad y aceleración:

$$\dot{p}(s) = \frac{dp}{ds}\dot{s} = (p_f - p_i)\dot{s} = \frac{p_f - p_i}{L}\dot{\sigma}$$

$$\ddot{p}(s) = \frac{dp}{ds}\ddot{s} = (p_f - p_i)\ddot{s} = \frac{p_f - p_i}{L}\ddot{\sigma}$$

- Se puede usar σ para determinar un perfil temporal

Camino Cartesiano Rectilíneo

• Ejemplo de perfil temporal de σ : usando velocidad trapezoidal

Dados: L, v_{max} , a_{max}

Trayectoria:

Trayectoria:
$$\sigma(t) = \begin{cases} \frac{1}{2}a_{max}t^2 &, 0 < t \le t_b \\ v_{max}t - \frac{1}{2}\frac{v_{max}^2}{a_{max}} &, t_b < t \le t_f - t_b \\ -\frac{1}{2}a_{max}(t - t_f)^2 + v_{max}t_f - \frac{v_{max}^2}{a_{max}} &, t_f - t_b < t \le t_f \end{cases}$$
 donde
$$t_b = \frac{v_{max}}{a_{max}} \qquad t_f = \frac{La_{max} + v_{max}^2}{a_{max}v_{max}}$$

$$t_b = \frac{v_{max}}{a_{max}} \qquad t_f = \frac{La_{max} + v_{max}^2}{a_{max}v_{max}}$$

Concatenación de caminos lineales

• Ir de un punto inicial a uno final "pasando" por un punto intermedio

Trayectoria de la Orientación

¿Cómo interpolar la orientación?

Alternativa 1:

- Usando una representación mínima de orientación (ángulos de Euler)
- Ejemplo: camino lineal en el espacio

$$\phi(s) = \phi_i + s(\phi_f - \phi_i), \quad s \in [0,1]$$
 Para cada ángulo

- Problema:

- Difícil interpretación/comprensión/predicción de las orientaciones intermedias
- El sistema puede moverse de manera "impredecible"

Planeamiento de la Orientación

Alternativa 2:

- Usando la representación eje/ángulo
- Procedimiento:
 - Determinar la rotación que parte de {A} y llega a {B}: $R = \begin{pmatrix} {}^{0}R_{A} \end{pmatrix}^{T} \begin{pmatrix} {}^{0}R_{B} \end{pmatrix}$
 - Determinar el eje r y el ángulo θ_{AB} para R
 - Asignar una ley temporal a $\theta(t)$ que interpole de $\theta=0$ a $\theta=\theta_{AB}$ (con posibles condiciones en las derivadas)
 - Para todo t, la orientación del efector final será:

$${}^{0}R_{A}R(r,\theta(t))$$

Alternativa 3:

- Usando cuaterniones (interpolación "slerp")

Conclusiones

- La generación de trayectorias cinemáticas se basa en conceptos básicos de interpolación polinomial
- Los métodos aplicados en el espacio articular son también aplicables al espacio operacional (Cartesiano)
- La generación de trayectorias en el espacio articular solamente puede llevar a resultados imprevisibles en el espacio operacional
- Normalmente se genera una trayectoria primero en el espacio operacional, luego se pasa al espacio articular y eventualmente se realiza una nueva planificación

Referencias

- B. Siciliano, L. Sciavicco, L. Villani, y G. Oriolo. Robotics: modelling, planning and control. Springer Science & Business Media, 2010 (Capítulo 4)
- M.W. Spong, S. Hutchinson, y M. Vidyasagar. *Robot Modeling and Control*. John Wiley & Sons, 2006 (*Capítulo 5*)