

Dipartimento di Economia Marco Biagi

www.economia.unimore.it

Eserciziario di Statistica

CLEAM AA 23/24

Patrizio Frederic

Aggiornato al 20-02-2024

Indice

A	vvert	enza		13
In	trod	uzione		15
Ι	Ese	ercizi p	per argomento	17
1	Ese	rcizi d	i Statistica Descrittiva	19
	1.1	Versio	ne senza contesto	19
		1.1.1	Variante A	19
		1.1.2	Variante B	21
		1.1.3	Variante C	23
	1.2	Varian	nti con contesto (eserciziario)	26
		1.2.1	Esercizio: Conteggi	26
		1.2.2	Esercizio Dati Continui	29
		1.2.3	Esercizio (variante 1)	31
		1.2.4	Esercizio (variante 2)	32
		1.2.5	Esercizio (variante 3)	33
		1.2.6	Esercizio Dati non ordinati	35
2	Ese	rcizi d	i probabilità	41
	2.1	Due u	rne	41
	2.2	Valige	tta	42
	2.3	Urna		46
	2.4	Applic	cazione regole	47
	2.5	Stude	nte	47
	2.6	Giulio	e il treno	49
	2.7	Somm	a di due dadi	50

4	INDICE
_	nubici

	2.11	Scatola e biglietti	51 53 56 57 59
3	Esei	rcizi Di Probabilità e Variabili Casuali	61
	3.1	Esercizio 1	61
	3.2	Esercizio 2	62
	3.3	Esercizio 3	63
	3.4	Esercizio 4	65
	3.5	Esercizio sul Teorema di Bayes	67
4	Esei	rcizi sul TLC	73
-	4.1	Una VC qualunque: Somma, S_n	73
	4.2	Una VC qualunque: media, \bar{X}	73
	4.3	Un'urna: somma, S_n	74
	4.4	Un'urna: media, \bar{X}	75
	4.5	2 Urne: Somma, S_n	76
	4.6	2 Urne: Media, \bar{X}	78
	4.7	2 Urne: Media, \bar{X}	79
	4.8	Bernoulli: Somma, S_n	81
	4.9	Bernoulli: Proporzione, $\hat{\pi}$	82
	4.10	2 Urne: Proporzione, $\hat{\pi}$	83
		Poisson: Somma, S_n	84
		Poisson: Media, \bar{X}^n	85
		Poisson: Somma, S_n	86
		Proporzione – Poisson, $\hat{\pi}$	87
5	Eso	rcizi su Test e Intervalli di Confidenza	89
9	5.1	t-Test a due campioni	
	5.1	Un campione: IdC e z-test	
	5.2	Un campione: IdC e t-test	91
	5.4	Un campione: IdC e t-test	93
	5.5	Due campioni: proporzione	95
_			
6		del Chi-quadro per indipendenza	97
	6.1 6.2	Esercizio 1	97 98
		Esercizio 3	
	6.3	ESCICIZIO 3	TUU

	6.4	Esercizio 4	101
7	Test	t del Chi-quadro per conformità	105
	7.1	Esercizio 1	105
	7.2	Esercizio 2	106
8	Esei	ricizi sulla Regressione	109
Ū	8.1	Esercizio (Dati maternità USA)	
	0.1	8.1.1 I dati	
		8.1.2 La matrice dei dati	
		8.1.3 La rappresentazione dei dati	
	8.2	Esercizio 1	
	8.3	Esercizio 2	
	8.4	Esercizio 3	
	8.5	Esercizio 4	
	8.6	Esercizio 5	
	8.7	Esercizio 6	
	8.8	Esercizio 7	
	8.9	Esercizio 8	
	0.5	Lisciteizio ()	111
	~		
II	Co	ompiti degli anni passati	151
9	Anr		153
	9.1	Prova di Statistica 2021/06/11-1	153
		9.1.1 Esercizio 1	153
		9.1.2 Esercizio 2	155
		9.1.3 Esercizio 3	156
		9.1.4 Esercizio 4	157
		9.1.5 Esercizio 5	158
		9.1.6 Esercizio 6	159
	9.2	Prova di Statistica 2021/06/11-2	161
		9.2.1 Esercizio 1	
		9.2.2 Esercizio 2	163
		9.2.3 Esercizio 3	
		9.2.4 Esercizio 4	166
		9.2.5 Esercizio 5	167
			•
		9.2.6 Esercizio 6	168
	9.3	9.2.6 Esercizio 6	$168 \\ 170$

	9.3.2	Esercizio 2					 	 		 		 			 172
	9.3.3	Esercizio 3					 	 		 		 			 174
	9.3.4	Esercizio 4					 	 		 		 			 175
	9.3.5	Esercizio 5					 	 		 		 			 176
	9.3.6	Esercizio 6					 	 		 		 			 178
9.4	Prova	di Statistica	2021/	06/3	30-2		 	 		 		 			 180
	9.4.1	Esercizio 1					 	 		 		 			 180
	9.4.2	Esercizio 2					 	 		 		 			 181
	9.4.3	Esercizio 3					 	 		 		 			 183
	9.4.4	Esercizio 4					 	 		 		 			 184
	9.4.5	Esercizio 5					 	 		 		 			 185
	9.4.6	Esercizio 6					 	 		 		 			 187
9.5	Prova	di Statistica	2021/	07/2	22-1		 	 		 		 			 189
	9.5.1	Esercizio 1					 	 		 		 			 189
	9.5.2	Esercizio 2					 	 		 		 			 191
	9.5.3	Esercizio 3					 	 		 		 			 194
	9.5.4	Esercizio 4					 	 		 		 			 195
	9.5.5	Esercizio 5					 	 		 		 			 196
	9.5.6	Esercizio 6					 	 		 		 			 198
9.6		di Statistica	2021/	'07/2	22-2		 	 		 		 			 200
	9.6.1	Esercizio 1					 	 		 		 			 200
	9.6.2	Esercizio 2					 	 		 		 			 202
	9.6.3	Esercizio 3					 	 		 		 			 204
	9.6.4	Esercizio 4					 	 		 		 			 205
	9.6.5	Esercizio 5					 	 		 		 			 205
	9.6.6	Esercizio 6													
9.7		di Statistica	2021/	'09/0	06-1		 	 		 		 			
	9.7.1	Esercizio 1					 	 		 		 			
	9.7.2	Esercizio 2					 	 		 		 			
	9.7.3	Esercizio 3					 	 		 		 			 211
	9.7.4	Esercizio 4					 	 		 		 			 212
	9.7.5	Esercizio 5				• • •	 	 	•	 	 •	 	•	 •	 213
	9.7.6	Esercizio 6					 	 		 		 			 214
10 4	. 0000														015
10 Ann			2022	/ne /-	16 1										217
10.1		di Statistica		,											217
		Esercizio 1					 	 	-	 	 -		-	 -	 217
		Esercizio 2					 	 		 	 -	 	-	 -	 218
		Esercizio 3													220
	10.1.4	Esercizio 4					 	 		 		 			 221

	10.1.5 Esercizio 5	221
	10.1.6 Esercizio 6	
10.2	Prova di Statistica 2022/06/16-2	223
	10.2.1 Esercizio 1	223
	10.2.2 Esercizio 2	
	10.2.3 Esercizio 3	226
	10.2.4 Esercizio 4	226
	10.2.5 Esercizio 5	
	10.2.6 Esercizio 6	228
10.3	Prova di Statistica 2022/06/16-3	230
	10.3.1 Esercizio 1	230
	10.3.2 Esercizio 2	231
	10.3.3 Esercizio 3	232
	10.3.4 Esercizio 4	233
	10.3.5 Esercizio 5	233
	10.3.6 Esercizio 6	234
10.4	Prova di Statistica 2022/07/01-1	236
	10.4.1 Esercizio 1	236
	10.4.2 Esercizio 2	238
	10.4.3 Esercizio 3	40
	10.4.4 Esercizio 4	41
	10.4.5 Esercizio 5	41
	10.4.6 Esercizio 6	43
10.5	Prova di Statistica 2022/07/01-2	244
	10.5.1 Esercizio 1	45
	10.5.2 Esercizio 2	46
	10.5.3 Esercizio 3	47
	10.5.4 Esercizio 4	48
	10.5.5 Esercizio 5	48
	10.5.6 Esercizio 6	250
10.6	Prova di Statistica 2022/07/01-3	51
	10.6.1 Esercizio 1	
	10.6.2 Esercizio 2	253
	10.6.3 Esercizio 3	253
	10.6.4 Esercizio 4	54
	10.6.5 Esercizio 5	254
		256
10.7	Prova di Statistica 2022/07/27-1	258
	10.7.1 Esercizio 1	258

		0.7.2 Esercizio 2	260
		0.7.3 Esercizio 3	262
		0.7.4 Esercizio 4	262
		0.7.5 Esercizio 5	263
		0.7.6 Esercizio 6	264
	10.8	Prova di Statistica 2022/07/27-2	266
		0.8.1 Esercizio 1	266
		0.8.2 Esercizio 2	268
		0.8.3 Esercizio 3	269
		0.8.4 Esercizio 4	270
		0.8.5 Esercizio 5	270
		0.8.6 Esercizio 6	272
	10.9	Prova di Statistica 2022/07/27-3	273
		0.9.1 Esercizio 1	273
		0.9.2 Esercizio 2	275
		0.9.3 Esercizio 3	276
		0.9.4 Esercizio 4	277
		0.9.5 Esercizio 5	277
		0.9.6 Esercizio 6	279
11			281
	11.1	Prova di Statistica 2023/01/11-1	
		1.1.1 Esercizio 1	
		1.1.2 Esercizio 2	
		1.1.3 Esercizio 3	
		1.1.4 Esercizio 4	
		1.1.5 Esercizio 5	285
		1.1.5 Esercizio 5	$285 \\ 287$
	11.2	1.1.5 Esercizio 5	285 287 288
	11.2	1.1.5 Esercizio 5 1.1.6 Esercizio 6 Prova di Statistica 2023/01/11-2 1.2.1 Esercizio 1	285 287 288 288
	11.2	1.1.5 Esercizio 5 1.1.6 Esercizio 6 2 rova di Statistica 2023/01/11-2 1.2.1 Esercizio 1 1.2.2 Esercizio 2	285 287 288 288 290
	11.2	1.1.5 Esercizio 5 1.1.6 Esercizio 6 Prova di Statistica 2023/01/11-2 1.2.1 Esercizio 1 1.2.2 Esercizio 2 1.2.3 Esercizio 3	285 287 288 288 290 291
	11.2	1.1.5 Esercizio 5 1.1.6 Esercizio 6 Prova di Statistica 2023/01/11-2 1.2.1 Esercizio 1 1.2.2 Esercizio 2 1.2.3 Esercizio 3 1.2.4 Esercizio 4	285 287 288 288 290 291 292
	11.2	1.1.5 Esercizio 5 1.1.6 Esercizio 6 2 rova di Statistica 2023/01/11-2 1.2.1 Esercizio 1 1.2.2 Esercizio 2 1.2.3 Esercizio 3 1.2.4 Esercizio 4 1.2.5 Esercizio 5	285 287 288 288 290 291 292 292
		1.1.5 Esercizio 5 1.1.6 Esercizio 6 2 rova di Statistica 2023/01/11-2 1.2.1 Esercizio 1 1.2.2 Esercizio 2 1.2.3 Esercizio 3 1.2.4 Esercizio 4 1.2.5 Esercizio 5 1.2.6 Esercizio 6	285 287 288 288 290 291 292 292
		1.1.5 Esercizio 5 1.1.6 Esercizio 6 Prova di Statistica 2023/01/11-2 1.2.1 Esercizio 1 1.2.2 Esercizio 2 1.2.3 Esercizio 3 1.2.4 Esercizio 4 1.2.5 Esercizio 5 1.2.6 Esercizio 6 Prova di Statistica 2023/01/11-3	285 287 288 288 290 291 292 292 294 295
		1.1.5 Esercizio 5 1.1.6 Esercizio 6 2 rova di Statistica 2023/01/11-2 1.2.1 Esercizio 1 1.2.2 Esercizio 2 1.2.3 Esercizio 3 1.2.4 Esercizio 4 1.2.5 Esercizio 5 1.2.6 Esercizio 6 2 rova di Statistica 2023/01/11-3 1.3.1 Esercizio 1	285 287 288 288 290 291 292 294 295 295
		1.1.5 Esercizio 5 1.1.6 Esercizio 6 2 rova di Statistica 2023/01/11-2 1.2.1 Esercizio 1 1.2.2 Esercizio 2 1.2.3 Esercizio 3 1.2.4 Esercizio 4 1.2.5 Esercizio 5 1.2.6 Esercizio 6 2 rova di Statistica 2023/01/11-3 1.3.1 Esercizio 1 1.3.2 Esercizio 2	285 287 288 288 290 291 292 292 294 295
		1.1.5 Esercizio 5 1.1.6 Esercizio 6 2 rova di Statistica 2023/01/11-2 1.2.1 Esercizio 1 1.2.2 Esercizio 2 1.2.3 Esercizio 3 1.2.4 Esercizio 4 1.2.5 Esercizio 5 1.2.6 Esercizio 6 2 rova di Statistica 2023/01/11-3 1.3.1 Esercizio 1	285 287 288 290 291 292 294 295 295 297 298

	1.3.5 Esercizio 5	299
	1.3.6 Esercizio 6	01
11.4	Prova di Statistica 2023/02/16-1	02
	1.4.1 Esercizio 1	02
	1.4.2 Esercizio 2	04
	1.4.3 Esercizio 3	05
	1.4.4 Esercizio 4	06
	1.4.5 Esercizio 5	06
	1.4.6 Esercizio 6	808
11.5	Prova di Statistica 2023/02/16-1	809
	1.5.1 Esercizio 1	310
	1.5.2 Esercizio 2	11
	1.5.3 Esercizio 3	12
	1.5.4 Esercizio 4	13
	1.5.5 Esercizio 5	13
	1.5.6 Esercizio 6	15
11.6	Prova di Statistica 2023/02/16-3	16
	1.6.1 Esercizio 1	16
	1.6.2 Esercizio 2	18
	1.6.3 Esercizio 3	19
	1.6.4 Esercizio 4	320
	1.6.5 Esercizio 5	20
	1.6.6 Esercizio 6	22
11.7	Prova di Statistica 2023/06/08-1	24
	1.7.1 Esercizio 1	24
	1.7.2 Esercizio 2	26
	1.7.3 Esercizio 3	26
	1.7.4 Esercizio 4	27
		28
11.8	Prova di Statistica 2023/06/08-2	31
	1.8.1 Esercizio 1	31
	1.8.2 Esercizio 2	33
	1.8.3 Esercizio 3	34
	1.8.4 Esercizio 4	34
	1.8.5 Esercizio 5	35
	1.8.6 Esercizio 6	36
11.9	Prova di Statistica 2023/06/08-3	38
	1.9.1 Esercizio 1	38
	1.9.2 Esercizio 2	40

11.9.3 Esercizio 3
11.9.4 Esercizio 4
11.9.5 Esercizio 5
11.9.6 Esercizio 6
11.10 Prova di Statistica 2023/06/27-1
11.10.1 Esercizio 1
11.10.2 Esercizio 2
11.10.3 Esercizio 3
11.10.4 Esercizio 4
11.10.5 Esercizio 5
11.10.6 Esercizio 6
11.11Prova di Statistica 2023/06/27-2
11.11.1 Esercizio 1
11.11.2 Esercizio 2
11.11.3 Esercizio 3
11.11.4 Esercizio 4
11.11.5 Esercizio 5
11.11.6 Esercizio 6
11.12Prova di Statistica 2023/06/27-3
11.12.1 Esercizio 1
11.12.2 Esercizio 2
11.12.3 Esercizio 3
11.12.4 Esercizio 4
11.12.5 Esercizio 5
11.12.6 Esercizio 6
11.13Prova di Statistica 2023/07/23-1
11.13.1 Esercizio 1
11.13.2 Esercizio 2
11.13.3 Esercizio 3
11.13.4 Esercizio 4
11.13.5 Esercizio 5
11.13.6 Esercizio 6
11.14Prova di Statistica 2023/07/23-2
11.14.1 Esercizio 1
11.14.2 Esercizio 2
11.14.3 Esercizio 3
11.14.4 Esercizio 4
11.14.5 Esercizio 5
11.14.6 Esercizio 6

INDICE	11
--------	----

11.15Prova di Statistica	ı :	20	2	3/	07	7/	23	3-;	3															384
11.15.1 Esercizio 1																								384
$11.15.2\mathrm{Esercizio}$ 2																								386
$11.15.3\mathrm{Esercizio}$ 3																								387
$11.15.4\mathrm{Esercizio}$ 4	:																							388
$11.15.5\mathrm{Esercizio}$ 5																								389
$11.15.6\mathrm{Esercizio}$ 6																								390

Avvertenza

Questo lavoro è un work in progress, questa non è la versione definitiva, sconsiglio di stampare tutto.

Eserciziario di Statistica © 2024 di Patrizio Frederic è distribuito sotto licenza CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to: Share — copy and redistribute the material in any medium or format The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Introduzione

Qui si trovano le esercitazioni e i compiti passati del corso di Statistica in formato html fruibili direttamente dal mio server. Il pdf e il formato epub sono è scaricabili cliccando in alto.

Nel prossimo futuro, aggiungerò altri esercizi non presenti nei compiti solo a titolo di esercitazione.

Patrizio Frederic

Bologna, il 20/02/2024.

Parte I Esercizi per argomento

Esercizi di Statistica Descrittiva

Versione senza contesto

Variante A

Sono stati analizzati 383 individui per investigare su fenomeno-x. É riportata qui di seguito la distribuzione in classi espressa in frequenza relativa.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	f_j
0.0	3.1	0.1880
3.1	4.1	0.1932
4.1	5.2	0.1854
5.2	6.7	0.2141
6.7	13.0	0.2193
		1.0000

1.a Disegnare l'istogramma di densità percentuale.

Soluzione

Ricordando che:

- $n_i = f_i \cdot n$,
- $b_j = x_{j+1} x_j$, $h_j = f_j/b_j \times 100$,

si consiglia di mettere i dati in tabella:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}	f_{j}	b_{j}	h_j	F_{j}
0.0	3.1	72	0.1880	3.1	6.064	0.1880
3.1	4.1	74	0.1932	1.0	19.321	0.3812
4.1	5.2	71	0.1854	1.1	16.853	0.5666
5.2	6.7	82	0.2141	1.5	14.273	0.7807
6.7	13.0	84	0.2193	6.3	3.481	1.0000
		383	1.0000	13.0		

1.b calcolare il valore approssimato del percentile 65-esimo, e tracciarlo nell'istogramma.

1.c Qual è il numero di individui con fenomeno-x superiore a 5.2?

Soluzione
$$\#(X>5.2) \ = \ (f_4+f_5)\times n$$

1.1. VERSIONE SENZA CONTESTO

 $= (0.2141 + 0.2141) \times 383$ = 166, o alternativamente $= \quad (1-F_3) \times n$ $= (1 - 0.5666) \times 383$ 166

21

1.d Analizzare la relazione tra media, mediana e moda alla luce del istogramma di densità.

Soluzione

È presente un'evidente asimmetria positiva (coda lunga a dx) e quindi

$$Moda > x_{0.5} > \bar{x}$$

Variante B

Sono stati analizzati 250 individui per investigare su dati-x. È riportata qui di seguito la distribuzione in classi espressa in frequenza assoluta.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}
0	7	73
7	8	29
8	9	65
9	10	83
		250

2.a Disegnare l'istogramma di densità percentuale.

Soluzione

Ricordando che:

- $\begin{array}{ll} \bullet & f_j = n_j/n, \\ \bullet & b_j = x_{j+1} x_j, \\ \bullet & h_j = f_j/b_j \times 100, \end{array}$

si consiglia di mettere i dati in tabella:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}	f_{j}	b_{j}	h_{j}	F_{j}
0	7	73	0.292	7	4.171	0.292
7	8	29	0.116	1	11.600	0.408
8	9	65	0.260	1	26.000	0.668
9	10	83	0.332	1	33.200	1.000
		250	1.000	10		

2.b calcolare il valore approssimato del percentile 25-esimo, e tracciarlo nell'istogramma.

 $2.\mathrm{c}$ Calcolare il numero di individui maggiori del 75-esimo percentile, $x_{0.75}$

Soluzione $\%(X \leq x_{0.75}) = 75\%$ e quindi $\%(X > x_{0.75}) = 25$

23

calcoliamo il 25% di n=250 e otteniamo

$$\#(X > x_{0.75}) = 250 \times 0.25 = 62.5$$

2.
d calcolare il valore approssimato della media aritmetica \bar{x} e della varianza σ^2 .

Soluzione

Calcoliamo i valori medi delle classi $\bar{x}_j,$ il loro quadrato \bar{x}_j^2 e li pesiamo con gli n_j

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}	f_{j}	$\bar{\mathbf{x}}_j$	$\bar{\mathbf{x}}_{j}^{2}$
0	7	73	0.292	3.5	12.25
7	8	29	0.116	7.5	56.25
8	9	65	0.260	8.5	72.25
9	10	83	0.332	9.5	90.25
		250	1.000		

e quindi

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{k} \bar{x}_j n_j = \frac{1814}{250} = 7.256$$

e quindi

$$\sigma^2 = \frac{1}{n} \sum_{j=1}^k \bar{x}_j^2 n_j - \bar{x}^2 = \frac{14712.5}{250} - (7.256)^2 = 6.2005$$

Variante C

Sono stati analizzati 200 individui per investigare su dati-x. Sono noti i percentili $x_{0.21}\,=\,11,$ $x_{0.42} = 23, \, x_{0.6} = 39, \, x_{0.78} = 62,$ il minimo è 0, il massimo è 150.

3.a Disegnare l'istogramma di densità percentuale.

Soluzione

Ricordando che:

- $$\begin{split} \bullet & \quad f_1 = F_1, \ f_2 = F_2 F_1, ..., f_j = F_j F_{j-1}, \\ \bullet & \quad b_j = x_{j+1} x_j, \\ \bullet & \quad h_j = f_j/b_j \times 100, \end{split}$$

si consiglia di me	ttere i dati in tabella:
--------------------	--------------------------

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	f_j	b_{j}	h_j	F_{j}
0	11	0.210	11	1.9091	0.21
11	23	0.210	12	1.7500	0.42
23	39	0.185	16	1.1562	0.60
39	62	0.175	23	0.7609	0.78
62	150	0.220	88	0.2500	1.00
		1.000	150		

e infine disegnare il grafico

3.b Calcolare le frequenze assolute

Soluzione

Ricordando che:

$$n_j = f_j \times n$$

e mettendo in tabella, otteniamo

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	f_{j}	n_{j}
0	11	0.210	42
11	23	0.210	42
23	39	0.185	37
39	62	0.175	35
62	150	0.220	44
		1.000	200

25

3.c Calcolare la percentuale approssimata di individui con dati-x inferiore a 45

3.
d Calcolare la percentuale approssimata di individui con dati-x compresa tra 45 e il 90-esimo percentile, $x_{0.90}$.

Soluzione

Per calcolare

$$\%(45 < X < x_{0.90})$$

non c'è bisogno di calcolare $x_{0.90}$, infatti dal punto precedente sappiamo che

$$\label{eq:section} \begin{split} \%(X < 45) &\approx \ensuremath{\%(X < 39)} + (45 - 39) \times h_4 \\ &= F_3 + (45 - 39) \times 0.7609 \\ &= 0.605 \times 100 + 6 \times 0.7609 \\ &= 65.0652\% \end{split}$$

dalla teoria sappiamo che

$$\%(X < x_{0.90}) = 90\%$$

Varianti con contesto (eserciziario)

Esercizio: Conteggi

La figura seguente riporta l'istogramma relativo a un campione di 200 imprese classificate sulla base del numero di addetti secondo le classi: 0-9 addetti, 10-19 addetti, 20-49 addetti, 50-99 addetti, 100-249 addetti. Si noti che sull'asse delle ordinate è riportata la densità percentuale.

Si noti che, a causa dell'ampiezza della scala dei valori, i dettagli dell'istogramma non si leggono sul grafico e, pertanto, non sono stati riportati gli estremi delle classi sull'asse delle ascisse, X, e i dati si evincono dal testo

27

Soluzione

Il testo fornisce una rappresentazione grafica. Per rispondere alle domande successive occorre partire dalla rappresentazione in una tabella di frequenze (relative o, come conviene in questo caso, percentuali). Si devono determinare, quindi, le aree dei rettangoli per ottenere le percentuali di unità statistiche contenute nelle varie classi. Si procede come segue:

Area Classi disgiunte	Ampiezza Classi congiunte	×densità	frequenze perc.
	= [9, 5 - (-0, 5)] $= [19, 5 - 9, 5)]$ $= [49, 5 - 19, 5)]$ $= [99, 5 - 49, 5)]$ $= [249, 5 - 99, 5)]$	×2 ×3 ×0.833 ×0.3 ×0.066	= 20% $= 30%$ $= 25%$ $= 15%$ $= 10%$

A questo punto è possibile costruire la tabella della distribuzione delle frequenze percentuali della X, numero di addetti delle imprese.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}	f_{j}	b_{j}	h_{j}	F_{j}
-0.5	9.5	40	0.20	10	2.0000	0.20
9.5	19.5	60	0.30	10	3.0000	0.50
19.5	49.5	50	0.25	30	0.8333	0.75
49.5	99.5	30	0.15	50	0.3000	0.90
99.5	249.5	20	0.10	150	0.0667	1.00

La funzione di ripartizione è utile quando si devono determinare la mediana (o la classe che la contiene) e/o la classe che contiene un determinato percentile. Un'altra definizione di percentile, infatti, utilizza la funzione cumulata delle frequenze percentuali, $F_{\%;j}$. Il percentile p-esimo è il "primo" valore della x, indicato con x_p , nel quale la $F_{\%;j}(x_p)$ è uguale o supera il $(100 \times p)\%$.

4.a Qual è l'intervallo con il maggior numero di imprese?

Soluzione

L'intervallo [10; 19].

4.b Qual è il numero di imprese che hanno addetti nella classe [0, 9]?

Soluzione

$$f(0 \vdash 10) = \frac{10 \times 2}{100} \ 200 = 40 \ (circa).$$

4.c In quale classe si trova il 15^{o} percentile?

Soluzione

Il 15° percentile si trova nella classe [0; 9].

4.d Qual è l'intervallo che contiene la mediana?

Soluzione

Il 50% delle imprese è contenuto esattamente nelle prime due classi. La mediana si trova dunque tra la fine dell'intervallo [10; 19] e l'inizio dell'intervallo [20; 49]. Si potrebbe, quindi, dire che la mediana è 20? No, perché non è noto come sono distribuite le imprese nella classe [20; 49]; infatti, ipoteticamente, tutte le imprese della classe potrebbero avere 49 addetti e, in tal caso la mediana sarebbe 49 o la media tra 49 e 19.

4.e In quale classe si trova il 75° percentile?

Soluzione

Il 75° percentile si trova nella classe [50; 99].

NB: il 75% della frequenza cumulata si trova proprio nella terza classe [20; 49]; perciò un valore successivo potrebbe essere il 75^o percentile, per esempio 50. Non si sa, come già detto per la mediana, se tra i dati vi sia una impresa con 50 addetti e, dunque, si può solo dire che la classe contenente il 75^o percentile è la successiva.

4.f Quale relazione ci si deve attendere fra media e mediana per i dati proposti?

Soluzione

L'esame del grafico mostra che vi è una asimmetria a destra (o positiva); pertanto, risulta (media>mediana); infatti, in base ai dati dell'istogramma, eseguendo i calcoli si trova che $\bar{x}=43$ e $x_{0.5}=20$.

4.g Determinare il valore approssimato della mediana, assumendo la distribuzione uniforme dei casi contenuti nella classe che contiene la mediana.

29

Soluzione

$$\begin{array}{lcl} p & = & 0.5, \mathrm{essendo} \ F_2 = 0.5 > 0.5 \Rightarrow j_{0.5} = 2 \\ x_{0.5} & = & x_{\mathrm{inf;2}} + \frac{0.5 - F_1}{f_2} \cdot b_2 \\ & = & 9.5 + \frac{0.5 - 0.2}{0.3} \cdot 10 \\ & = & 19.5 \end{array}$$

4.h Definizione formale di percentile.

Soluzione

Il p-esimo percentile $(0 \le p \le 1)$ del carattere X è quel valore di X, indicato con x_p , tale che

$$\begin{array}{rcl} p & = & F(x_p) \\ p & = & A(X < x_p) & & \text{Area totale uguale 1} \\ p \times 100 & = & \%(X < x_p) & & \text{Area totale uguale 100} \end{array}$$

Esercizio Dati Continui

L'istogramma seguente mostra la distribuzione per classi di cilindrata delle autovetture iscritte al Pubblico Registro Automobilistico (dati aggiornati al 31/12/99; fonte www.aci.it). Il numero di autovetture censite è pari a 32027945; ma, per comodità nei calcoli, il numero totale, n, è stato posto pari a 3000. Sopra ogni rettangolo è indicato il valore delle densità di frequenza percentuale.

5.a Qual è la percentuale di autovetture comprese nella seconda classe?

Soluzione

La seconda classe ha ampiezza pari a 1200-800=400. La densità percentuale è pari a 0.0925 e, quindi, la percentuale di autoveicoli con cilindrata compresa in tale intervallo è $0.0925 \times 400 = 37\%$.

5.b In quale classe cade la mediana?

Soluzione

La percentuale di autoveicoli nella prima classe è $0.02 \times 400 = 8\%$. La percentuale di autoveicoli nella seconda classe è 37%. La percentuale di autoveicoli nella terza classe è $0.0775 \times 400 = 31\%$. Dal momento che 8% + 37% < 50%, mentre 8% + 37% + 31% > 50%, la mediana appartiene alla terza classe, ovvero è compresa fra 1200cc e 1600cc.

5.c Determinare il valore approssimato della mediana, assumendo la distribuzione uniforme dei casi contenuti nella classe che contiene la mediana.

Soluzione

Sia m il numero della classe contenente la mediana:

$$\begin{array}{lcl} p &=& 0.5, \mathrm{essendo} \ F_3 = 0.76 > 0.5 \Rightarrow j_{0.5} = 3 \\ x_{0.5} &=& x_{\mathrm{inf;3}} + \frac{0.5 - F_2}{f_3} \cdot b_3 \\ &=& 1200 + \frac{0.5 - 0.45}{0.31} \cdot 400 \\ &=& 1265 \end{array}$$

5.d Qual è la "classe modale"?

Soluzione

La "classe modale" è quella con la massima densità di frequenza (il rettangolo con l'altezza maggiore) e corrisponde alla classe 800-1200 con una percentuale (seconda classe) pari a 37%. In questo caso è anche la classe con la percentuale di più alta; infatti, la percentuale di autoveicoli nella terza classe è $0.0775 \times 400 = 31\%$. Le altre classi hanno una percentuale inferiore, come si può osservare considerando le unità di misura del grafico e i relativi valori.

5.e Giulio ha una macchina con cilindrata pari a 625cc. Indicare la risposta corretta:

- 🗆 l'auto di Giulio è molto potente, infatti meno del 9% delle auto ha cilindrata inferiore
- \bullet \square l'auto di Giulio è molto potente, infatti più del 90% delle auto ha cilindrata inferiore
- 🗆 l'auto di Giulio è poco potente, infatti meno del 9% delle auto ha cilindrata inferiore
- 🗆 l'auto di Giulio è poco potente, infatti più del 9% delle auto ha cilindrata inferiore

Soluzione

l'auto di Giulio è poco potente, infatti meno del 9% delle auto ha cilindrata inferiore

Esercizio (variante 1)

La distribuzione delle frequenze assolute della cilindrata delle autovetture iscritte al Pubblico Registro Automobilistico (dati aggiornati al 31/12/99; fonte www.aci.it) è riportata nella tabella seguente. Il numero di autovetture censite, per comodità è stato posto pari a 3000 (decine di migliaia, si veda l'esercizio precedente).

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}
400	800	240
800	1200	1110
1200	1600	930
1600	2000	600
2000	3500	120

6.a Qual è la percentuale di autovetture comprese nella seconda classe?

Soluzione

$$f_{\% \cdot 2} = 100 \times 1110/3000 = 37\%.$$

6.b In quale classe cade la mediana?

Soluzione

Per individuare la classe che contiene la mediana, si cumulano le percentuali a partire dalla prima classe e ci si arresta appena si supera il 50%. Per completezza e comodità si riporta la seguente tabella che contiene le frequenze percentuali e le frequenze percentuali cumulate, $F_{\%;\,j}$.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}	f_{j}	F_{j}
400	800	240	0.08	0.08
800	1200	1110	0.37	0.45
1200	1600	930	0.31	0.76
1600	2000	600	0.20	0.96
2000	3500	120	0.04	1.00

La classe che contiene la mediana è 120-160 perché in questa la frequenza percentuale cumulata ha superato il 50%.

Si noti che un modo diverso di fornire i dati è riportare nel grafico: le densità percentuali, $h_{\%;j}$, oppure le densità di frequenza relativa, h_j ; si ricordi che:

$$h_j = \frac{f_j}{x_{j+1} - x_j}, \qquad \qquad h_{\%;\,j} = 100 \; \frac{f_j}{x_{j+1} - x_j} = \frac{f_{\%;\,j}}{x_{j+1} - x_j} \, .$$

Si noti che in casi come questi, in cui si riportano le frequenze assolute, n_j , occorre esaminare con attenzione la leggenda dell'asse delle ordinate perché può capitare che le n_j si riportino direttamente sull'asse delle ordinate.

Esercizio (variante 2)

La distribuzione delle frequenze relative della cilindrata delle autovetture iscritte al Pubblico Registro Automobilistico (dati aggiornati al 31/12/99; fonte www.aci.it) è riportata nella tabella seguente. Il numero di autovetture censite è pari a 320.27 centinaia di migliaia (10^5).

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	f_{j}
400	800	0.08
800	1200	0.37
1200	1600	0.31
1600	2000	0.20
2000	3500	0.04

7.a Disegnare l'istogramma (delle densità relative) della distribuzione della cilindrata delle auto in circolazione.

Soluzione

Per disegnare l'istogramma occorrono le altezze, h_i , dei rettangoli da disegnare per ogni classe: i calcoli sono riportati di séguito:

$$\begin{array}{lll} h_j &=& \displaystyle \frac{f_j}{b_{j+1}-b_j} \\ h_1 &=& \displaystyle \frac{0.08}{800-400} = 0.0002 \\ h_2 &=& \displaystyle \frac{0.37}{1200-800} = 0.000925 \\ h_3 &=& \displaystyle \frac{0.31}{1600-1200} = 0.000775 \\ h_4 &=& \displaystyle \frac{0.20}{2000-1600} = 0.000500 \\ h_5 &=& \displaystyle \frac{0.04}{3500-2000} = 0.00002\bar{6} \,. \end{array}$$

Queste sono le altezze per disegnare i rettangoli nel grafico sopra riportato. Le altre domande possono essere simili alle precedenti.

Esercizio (variante 3)

L'esame della distribuzione della cilindrata delle autovetture iscritte al Pubblico Registro Automobilistico (dati aggiornati al 31/12/99; fonte www.aci.it) ha fornito i seguenti dati:

- 1'8° percentile è 800cc,
- il 45° percentile è 1200cc,
- il 76° percentile è 1600cc,
- il 96° percentile è 2000cc.

Il valore minino della cilindrata è 400cc e il valore massimo è 3500cc. Il numero di autovetture censite è pari a 3000 (dato di comodo, come detto in precedenza).

Si noti che nel compito di esame i percentili sono spesso espressi in simboli, come segue, dove, per semplificare, si sono omesse le unità di misura e altre indicazioni perché la corrispondenza tra i simboli e le espressioni verbali sembra ovvia:

- $x_{0.08} = 800$,
- $x_{0.45} = 1200$,
- $x_{0.76} = 1600$,
- $x_{0.96} = 2000$.

Il minimo e il massimo sono, rispettivamente, $x_{\min} = 400$ e $x_{\max} = 3500$.

8.a Disegnare l'istogramma (delle densità percentuali) della distribuzione della cilindrata delle auto in circolazione.

Soluzione

Per disegnare l'istogramma occorrono le altezze, h_j , dei rettangoli da disegnare per ogni classe. Per ottenere le altezze occorre determinare le percentuali di autovetture in circolazione che appartengono alle corrispondenti classi di cilindrata. I dati del problema forniscono tutti i percentili, dai quali si può ricavare le percentuali di ogni classe: perché si possa procedere compiutamente occorre conoscere il minimo e il massimo del carattere in oggetto.

- La prima classe va, dal minimo, $x_{(1)}$, all'8º percentile; ossia, è 400-800cc.
- La seconda classe va, dall'8º percentile al 45º percentile; ossia, è 800-1200cc.
- La terza classe va, dal 45° percentile al 76° percentile; ossia, è 1200-1600cc.
- La quarta classe va, dal 76° percentile al 96° percentile; ossia, è 1600-2000cc.
- La quinta classe va, dal 96° percentile al massimo, $x_{(n)}$;
- La settima classe va, dal 99° percentile al massimo, $x_{(n)}$; ossia, è 2000-3500cc.

Per eseguire i calcoli si noti, poi, che il percentile rappresenta la percentuale cumulata dei soggetti; per conoscere, quindi, la percentuale di una classe occorre sottrarre al percentile "corrente" il valore di quello della classe precedente: $f_{\%;j} = 100 \, (F_j - F_{j-1})$ oppure

$$\boxed{f_{\%;j}=F_{\%;j}-F_{\%;j-1}} \text{ oppure ancora } \boxed{f_{\%;j}=100\left(p_{j}-p_{j-1}\right)} \text{. Le densità sono:}$$

$$\begin{array}{rcl} h_j & = & \dfrac{100\;(F_j-F_{j-1})}{b_{j+1}-b_j} = \dfrac{f_{\%;\,j}}{b_{j+1}-b_j} \\ h_{\%;\,1} & = & \dfrac{8-0}{800-400} = 0.0200 \\ h_{\%;\,2} & = & \dfrac{45-8}{1200-800} = 0.0925 \\ h_{\%;\,3} & = & \dfrac{76-45}{1600-1200} = 0.0775 \\ h_{\%;\,4} & = & \dfrac{96-76}{2000-1600} = 0.0500 \\ h_{\%;\,5} & = & \dfrac{100-96}{3500-2000} = 0.002\bar{6} \,. \end{array}$$

Queste sono le altezze per disegnare i rettangoli nel grafico sopra riportato. Si noti che nel calcolo delle percentuali di classe $f_0 = 0$ e $f_J = 100$, dove J è l'indice dell'ultima classe e, quindi, il percentile di $x_{(n)}$ (il massimo). In tabella:

Esercizio Dati non ordinati

Con riferimento a molti processi industriali, si usa il termine "Work-In-Process" (spesso abbreviato con WIP). Negli impianti di produzione dei libri, il WIP rappresenta il tempo necessario per piegare, riunire, cucire, e rilegare i fogli che provengono da una pressa. I dati che seguono sono relativi ai tempi di lavorazione (tempo, in giorni, che intercorre tra quando i libri vengono stampati e quando sono impacchettati nei cartoni) per due campioni di 20 libri estratti da due impianti di produzione (D. M. Levine et al., 2000, Business Statistics: A First Course, 2.nd Edition, Prentice-Hall. Tr. it. (2002), Statistica, Apogeo, Milano, p. 126).

Impianto 1	5.62	5.29	16.25	10.92	11.46	21.62	8.45	8.58	5.41	11.42
	11.62	7.29	7.50	7.96	4.42	10.50	7.58	9.29	7.54	8.92
Impianto 2	9.54	11.46	16.62	12.62	25.75	15.41	14.29	13.13	13.71	10.04
	5.75	12.46	9.17	13.21	6.00	2.33	14.25	5.37	6.25	9.71

Determinare:

9.a il campo di variazione, 9.b la mediana, 9.c la media sapendo che la somma è pari a 187.64 per l'impianto A e 227.07 per l'impianto B.

Soluzione

Per rispondere alle tre domande conviene ordinare prima i dati, come riportato nella tabella seguente.

Impianto 1	4.42	5.29	5.41	5.62	7.29	7.50	7.54	7.58	7.96	8.45
	8.58	8.92	9.29	10.50	10.92	11.42	11.46	11.62	16.25	21.62
Impianto 2	2.33	5.37	5.75	6.00	6.25	9.17	9.54	9.71	10.04	11.46
	12.46	12.62	13.13	13.21	13.71	14.25	14.29	15.41	16.62	25.75

Il campo di variazione è dato dalla differenza tra il massimo osservato e il minimo.

$$\begin{split} \mathrm{CdV}(A) &= x_{A;\,(n)} - x_{A;\,(1)} = 21.62 - 4.42 = 17.2 \,. \\ \mathrm{CdV}(B) &= x_{B;\,(n)} - x_{B;\,(1)} = 25.75 - 2.33 = 23.42 \,. \end{split}$$

- a. Il campo di variazione dell'impianto A è più piccolo di quello di B. Se le distribuzioni dei due insiemi di dati sono simili, allora ciò comporta un minore variabilità dei dati (o della prestazione) dell'impianto A.
- b. La mediana per un numero di osservazioni pari è data da:

$$\begin{array}{rcl} x_{A;\,0.5} & = & \frac{1}{2} \, \left(x_{A;\,(n/2)} + x_{A;\,(n/2)+1} \right) = \frac{8.45 + 8.58}{2} = 8.515 \, . \\ \\ x_{B;\,0.5} & = & \frac{1}{2} \, \left(x_{B;\,(n/2)} + x_{B;\,(n/2)+1} \right) = \frac{11.46 + 12.46}{2} = 11.96 \, . \end{array}$$

La mediana dell'impianto A è inferiore a quella dell'impianto B, che comporta presumibilmente una diversa dislocazione (o non sovrapponibilità) dei due istogrammi.

c. La media è data da:

$$\bar{x}_A = \frac{187.64}{20} = 9.38.$$
 $\bar{x}_B = \frac{227.07}{20} = 11.35.$

Idem, come sopra: la media dell'impianto A è inferiore a quella dell'impianto B, che comporta una diversa dislocazione (o non sovrapponibilità) dei due istogrammi. Tale esito mostra anche che l'impianto A è pi'u efficiente dell'impianto B perché A produce in un tempo medio inferiore a quello di B.

9.d il primo quartile, 9.e il terzo quartile, 9.f la differenza interquartile.

Soluzione

Si ragiona sui dati ordinati sopra riportati.

d. Il primo quartile è dato dal valore della X relativa al soggetto nella posizione successiva a $\lfloor n\,p\rfloor = \lfloor 20\,\times\,0.25\rfloor = 5$, ossia $x_{A;\,0.25} = x_{A;\,(\lfloor n\,p\rfloor+1)} = x_{A;\,(6)} = \textbf{7.50}$ e $x_{B;\,0.25} = x_{B;\,(\lfloor n\,p\rfloor+1)} = x_{B;\,(6)} = \textbf{9.17}$. Si noti che il simbolo $\lfloor \cdot \rfloor$ indica la parte intera dell'argomento. Tale regola è una approssimazione, adottata per semplificare il procedimento; tuttavia, in questo caso, si può ottenere un risultato pi'u preciso. Si tratta, infatti, di un numero divisibile per 4; pertanto, il primo quartile sarà dato dalla media dei valori corrispondenti ai soggetti 5.0 e 6.0 in graduatoria in modo da avere a sinistra esattamente 5 soggetti (il 25%) e a destra 15 soggetti (il 75%):

$$\begin{array}{lcl} x_{A;\,0.25} & = & \frac{1}{2} \; \left(x_{A;\,(n/4)} + x_{A;\,(n/4)+1} \right) = \frac{7.29 + 7.50}{2} = 7.395 \,. \\ x_{B;\,0.25} & = & \frac{1}{2} \; \left(x_{B;\,(n/4)} + x_{B;\,(n/4)+1} \right) = \frac{6.25 + 9.17}{2} = 7.71 \,. \end{array}$$

e. Il terzo quartile è dato dal valore della X relativa al soggetto nella posizione successiva a $\lfloor n\,p \rfloor = \lfloor 20 \times 0.75 \rfloor = 15$, ossia $x_{A;\,0.75} = x_{A;\,(\lfloor n\,p \rfloor + 1)} = x_{A;\,(16)} = \mathbf{11.42}$ e $x_{B;\,0.75} = x_{B;\,(\lfloor n\,p \rfloor + 1)} = x_{B;\,(16)} = \mathbf{14.25}$. L'approssimazione è stata adottata, come già detto, per semplificare il procedimento, ma, in questo caso, si può ottenere un risultato pi'u preciso perché si tratta di un numero divisibile per 4; pertanto, il terzo quartile sarà dato dalla media dei valori corrispondenti ai soggetti 15.0 e 16.0 in graduatoria in modo da avere a sinistra esattamente 15 soggetti (il 75%) e a destra 5 soggetti (il 15%):

$$\begin{array}{rcl} x_{A;\,0.75} & = & \frac{1}{2} \; \left(x_{A;\,(3n/4)} + x_{A;\,(3n/4)+1} \right) = \frac{10.92 + 11.42}{2} = 11.17 \, . \\ \\ x_{B;\,0.75} & = & \frac{1}{2} \; \left(x_{B;\,(3n/4)} + x_{B;\,(3n/4)+1} \right) = \frac{13.71 + 14.25}{2} = 13.98 \, . \end{array}$$

f. La differenza interquartile è data da:

$$\begin{split} DI_A &=& x_{A;\,0.75} - x_{A;\,0.25} = 11.17 - 7.395 = 3.775 \,. \\ DI_B &=& x_{B;\,0.75} - x_{B;\,0.25} = 13.98 - 7.71 = 6.27 \,. \end{split}$$

9.
g Calcolare la varianza, sapendo che $\sum_{i=1}^{20} x_{A;i}^2 = 2064.08$ e $\sum_{i=1}^{20} x_{B;i}^2 = 3077.31$. 9.
h Calcolare la deviazione standard.

Soluzione

g. Per determinare la varianza, che è il quadrato della deviazione standard, si utilizza la formula che consente di ridurre gli errori di arrotondamento.

$$\sigma_A^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{20} 2064.08 - (9.38)^2 = 15.18.$$

$$\sigma_B^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{20} 3077.31 - (11.35)^2 = 24.96.$$

h. Per la deviazione standard si ha:

$$\sigma_A = \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2} = \sqrt{\frac{1}{20} \ 2064.08 - (9.38)^2} = 3.90 \,.$$

$$\sigma_B = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2} = \sqrt{\frac{1}{20} 3077.31 - (11.35)^2} = 5.00.$$

Idem, come sopra: la variabilità dei dati dell'impianto A è inferiore a quella dell'impianto B, che comporta una maggiore concentrazione dell'istogramma rafforzando le differenze (tra i due impianti) già evidenziate.

9. La distribuzione è asimmetrica? Se sì, di quale tipo di asimmetria si tratta? 9. j Dalle risposte date, emergono differenze tra i due impianti?

Soluzione

i. La distribuzione dell'impianto A presenta una pronunciata asimmetria a destra (obliqua a destra o positiva), mentre quella dell'impianto B una minore asimmetria a sinistra (obliqua a sinistra o negativa). Per verificare numericamente questa affermazione si devono confrontare le media e la mediana:

$$x_{A;\,0.5}=8.515<\bar{x}_A=9.38 \Rightarrow \text{obliqua (o asimmetrica) a destra} \ x_{B;\,0.5}=11.96>\bar{x}_B=11.35 \Rightarrow \text{obliqua (o asimmetrica) a sinistra}.$$

Si noti, tuttavia, che l'asimmetria a sinistra è poco evidente perché lo scarto tra i due valori è solo di circa mezzo decimo dell'unità, equivalente a circa il 5% del valore della media.

j. Dalle risposte date si evincono alcune differenze:

- la media dell'impianto A è inferiore di circa 2 punti;
- la variabilità dell'impianto A è inferiore di quella di B;
- l'asimmetria dell'impianto A è più pronunciata di quella di B.

Si può concludere che l'impianto A è più efficiente dell'impianto B di circa due giorni e risulta anche più "costante" nella produzione perché il tempo di produzione presenta una variabilità inferiore.

Esercizi di probabilità

2

Due urne

Le scatole A e B contengono biglietti numerati. La scatola A contiene un biglietto contrassegnato con il numero 1 e tre biglietti con il numero 0. La scatola B contiene tre biglietti contrassegnati con il numero 1 e due con il numero 0. Si effettua una estrazione da ognuna delle due scatole.

9.k Calcolare la probabilità di ottenere due biglietti con il numero 1.

Soluzione

Indichiamo con

- A_0 l'evento: esce 0 dall'urna A
- A₁ l'evento: esce 1 dall'urna A
- B_0 l'evento: esce 0 dall'urna B
- B_1 l'evento: esce 1 dall'urna B

Le due estrazioni danno origine a eventi tra loro indipendenti e quindi

$$\begin{array}{rcl} P(A_1 \cap B_1) & = & P(A_1)P(B_1) \\ & = & \frac{1}{4} \times \frac{3}{5} = \frac{3}{20}. \end{array}$$

9.1 La probabilità che almeno uno dei biglietti sia contrassegnato con il numero 1.

Soluzione

Si applica la regola dell'unione per eventi qualunque e si ha

$$\begin{array}{lcl} P(A_1 \cup B_1) & = & P(A_1) + P(B_1) - P(A_1 \cap B_1) \\ & = & \frac{1}{4} + \frac{3}{5} - \frac{3}{20} = \frac{14}{20} = \frac{7}{10}. \end{array}$$

Altro tipo di ragionamento o possibile soluzione: si applica la regola del complementare all'evento C, almeno uno dei biglietti sia contrassegnato con il numero 1; infatti, il complementare di C è nessuno dei biglietti sia contrassegnato con il numero 1.

$$P(C) = 1 - P(\overline{C})$$

$$= 1 - \frac{3}{4} \frac{2}{5} = \frac{14}{20} = \frac{7}{10}.$$

Altro tipo di ragionamento (sconsigliato, in generale) è quello di considerare tutti gli eventi possibili, l'evento almeno una estrazione con uno è data da:

- $C_1 = A_1 \cap B_0$, unito a
- $C_2 = A_0 \cap B_1$, unito a
- $C_3 = A_1 \cap B_1$.

L'evento C, almeno uno dei biglietti sia contrassegnato con il numero 1 è dato dall'unione dei tre eventi, tra loro incompatibili

$$\begin{array}{rcl} P(C) & = & P(C_1 \cup C_2 \cup C_3) \\ & = & P(C_1) + P(C_2) + P(C_3) \\ & = & \frac{1}{4} \frac{2}{5} + \frac{3}{4} \frac{3}{5} + \frac{1}{4} \frac{3}{5} = \frac{14}{20} = \frac{7}{10}. \end{array}$$

9.m La probabilità che la somma dei numeri riportati sui biglietti estratti sia 1.

Soluzione

L'evento "la somma dei due biglietti è 1" può essere scritta come

$$(A_1 \cup B_0) \cup (A_0 \cap B_1)$$

e si ha

$$\begin{split} &P[(A_1\cap B_0)\cup (A_0\cap B_1)]\\ = &P(A_1\cap B_0)+P(A_0\cap B_1)\\ = &P(A_1)P(B_0)+P(A_0)P(B_1)\\ = &\frac{1}{4}\times\frac{2}{5}+\frac{3}{4}\times\frac{3}{5}=\frac{11}{20}. \end{split}$$

Valigetta

La serratura a combinazione di una valigia è composta da tre cifre. Per aprire la valigia occorre scegliere un numero tra 1 e 9 per ciascuna cifra. Si ha a disposizione cinque soli tentativi, verificando

2.2. VALIGETTA 43

l'apertura a ogni combinazione.

9.a Qual è la probabilità di trovare la combinazione giusta estraendo completamente a caso le tre cifre per un massimo di cinque volte?

Soluzione

Il numero di combinazioni possibili è pari a $9^3=729$ perché la stessa cifra si può ripetere nelle altre posizioni: disposizioni con ripetizione.

#	tripletta
1	1,1,1
2	1,1,2
÷	:
9	1,1,9
10	1,2,1
÷	:
81	1,9,9
82	2,1,1
÷	:
729	9,9,9

Per rispondere alla domanda si può costituire un'urna con 729 combinazioni e immaginare di estrarre da essa la combinazione di ogni prova.

La stessa combinazione si può ripetere nella prova successiva sicché l'esperimento è formato da estrazioni con reimmissione. Sia C_i l'evento "aprire" nell'*i*-esimo tentativo. Sarà \bar{C}_i l'evento complementare non aprire nell'*i*-esimo tentativo.

Sia B l'evento "aprire in almeno cinque prove".

Soluzione diretta (lunga). L'evento B="aprire in almeno cinque prove" si può riscrivere come

$$B = C_1 \cup (\bar{C}_1 \cap C_2) \cup (\bar{C}_1 \cap \bar{C}_2 \cap C_3) \cup (\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap C_4) \cup (\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap \bar{C}_4 \cap C_5)$$

che si legge: per aprire in almeno cinque tentativi:

- apro al primo C_1 , oppure \cup
- non apro al primo e apro al secondo $(\bar{C}_1 \cap C_2)$
- ..
- non apro al primo, non apro al secondo, ..., apro al quinto $(\bar{C}_1\cap \bar{C}_2\cap \bar{C}_3\cap \bar{C}_4\cap C_5)$ e quindi

$$\begin{array}{ll} P(B) & = & P\Big(C_1 \cup (\bar{C}_1 \cap C_2) \cup (\bar{C}_1 \cap \bar{C}_2 \cap C_3) \cup \\ & & \cup (\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap C_4) \cup (\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap \bar{C}_4 \cap C_5)\Big) \\ & = & P(C_1) + P(\bar{C}_1 \cap C_2) + P(\bar{C}_1 \cap \bar{C}_2 \cap C_3) + \\ & & + P(\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap C_4) + P(\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap \bar{C}_4 \cap C_5) \\ & = & P(C_1) + P(\bar{C}_1) P(C_2) + P(\bar{C}_1) P(\bar{C}_2) P(C_3) + \\ & & + P(\bar{C}_1) P(\bar{C}_2) P(\bar{C}_3) P(C_4) + P(\bar{C}_1) P(\bar{C}_2) P(\bar{C}_3) P(\bar{C}_4) P(C_5) \\ & = & \frac{1}{729} + \frac{728}{729} \frac{1}{729} + \left(\frac{728}{729}\right)^2 \frac{1}{729} + \left(\frac{728}{729}\right)^3 \frac{1}{729} + \left(\frac{728}{729}\right)^4 \frac{1}{729} \\ & = & 0.00684 \end{array}$$

Soluzione indiretta (corta). Il calcolo diventa facile se si applica la regola del complementare: si calcola la probabilità dell'evento \bar{B} , "non aprire nei cinque tentativi".

$$\begin{split} P(B) &= 1 - P(\bar{B}) \\ &= 1 - P(\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap \bar{C}_4 \cap \bar{C}_5) \\ &= 1 - P(\bar{C}_1) P(\bar{C}_2) P(\bar{C}_3) P(\bar{C}_4) P(\bar{C}_5) \\ &= 1 - \left(\frac{728}{729}\right)^5 = 1 - 0.99316 = 0.00684. \end{split}$$

2.2. VALIGETTA 45

9.b Qual è la probabilità di trovare la combinazione giusta estraendo completamente a caso le tre cifre per un massimo di cinque volte tenendo conto delle combinazioni già provate?

Soluzione

Il numero di combinazioni possibili è pari a $9^3 = 729$ (v. sopra). Per rispondere alla domanda si costituisce sempre un'urna con 729 combinazioni e si estrae da essa la combinazione di ogni prova, ma le combinazioni provate non vengono reimmesse nell'urna per non ripescarle nei tentativi successivi.

Sia C_i l'evento "aprire" nell'i-esimo tentativo. Sia $\bar{C_i}$ l'evento complementare "non aprire" nell'i-esimo tentativo.

Soluzione diretta (lunga). L'evento B="aprire in almeno cinque prove" si può riscrivere come

$$B = C_1 \cup (\bar{C}_1 \cap C_2) \cup (\bar{C}_1 \cap \bar{C}_2 \cap C_3) \cup (\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap C_4) \cup (\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap \bar{C}_4 \cap C_5)$$

che si legge: per aprire in almeno cinque tentativi:

- apro al primo C_1 , oppure \cup
- non apro al primo e apro al secondo $(\bar{C}_1 \cap C_2)$
- ...
- non apro al primo, non apro al secondo, ..., apro al quinto $(\bar{C}_1\cap \bar{C}_2\cap \bar{C}_3\cap \bar{C}_4\cap C_5)$ e quindi

$$\begin{split} P(B) &= P\Big(C_1 \cup (\bar{C}_1 \cap C_2) \cup (\bar{C}_1 \cap \bar{C}_2 \cap C_3) \cup \\ & \cup (\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap C_4) \cup (\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap \bar{C}_4 \cap C_5)\Big) \\ &= P(C_1) + P(\bar{C}_1 \cap C_2) + P(\bar{C}_1 \cap \bar{C}_2 \cap C_3) + \\ & + P(\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap C_4) + P(\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap \bar{C}_4 \cap C_5) \\ &= P(C_1) + P(\bar{C}_1) P(C_2 | \bar{C}_1) + P(\bar{C}_1) P(\bar{C}_2 | \bar{C}_1) P(C_3 | \bar{C}_1 \cap \bar{C}_2) + \\ & + P(\bar{C}_1) P(\bar{C}_2 | \bar{C}_1) P(C_3 | \bar{C}_1 \cap \bar{C}_2) P(C_4 | \bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3) + \\ & + P(\bar{C}_1) P(\bar{C}_2 | \bar{C}_1) P(C_3 | \bar{C}_1 \cap \bar{C}_2) P(C_4 | \bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3) + \\ & + P(\bar{C}_1) P(\bar{C}_2 | \bar{C}_1) P(C_3 | \bar{C}_1 \cap \bar{C}_2) P(C_4 | \bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3) \cdot \\ & \cdot P(C_5 | \bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap C_4) \\ &= \frac{1}{729} + \frac{728}{729} \frac{1}{728} + \frac{728}{729} \frac{727}{726} \frac{727}{726} \frac{1}{725} + \frac{728}{729} \frac{727}{728} \frac{727}{725} \frac{726}{725} \frac{1}{725} \\ &= \frac{5}{729} \\ &= 0.00686 \end{split}$$

Soluzione indiretta (corta). Sia B l'evento "aprire in almeno cinque prove". Il calcolo diventa facile se si applica la regola del complementare: si calcola la probabilità dell'evento \bar{B} , "non aprire nei cinque tentativi".

$$\begin{split} P(B) &= \\ &= 1 - P(\bar{B}) = 1 - P(\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3 \cap \bar{C}_4 \cap \bar{C}_5) \\ &= 1 - P(\bar{C}_1) P(\bar{C}_2 | \bar{C}_1) P(\bar{C}_3 | \bar{C}_1, \bar{C}_2) P(\bar{C}_4 | \bar{C}_1, \bar{C}_2, \bar{C}_3) P(\bar{C}_5 | \bar{C}_1, \bar{C}_2, \bar{C}_3, \bar{C}_4) \\ &= 1 - \frac{728}{729} \, \frac{727}{728} \, \frac{726}{727} \, \frac{725}{726} \, \frac{724}{725} = 1 - 0.99314 = 0.00686. \end{split}$$

Urna

Si supponga di estrarre a caso e SENZA reimmissione (ESR) 2 palline da un'urna contenente 5 palline rosse e 10 palline gialle. Si considerino gli eventi seguenti:

- A={pallina rossa alla prima estrazione (colore qualsiasi alla seconda)},
- B={pallina rossa alla seconda estrazione (colore qualsiasi alla prima)},
- C={pallina gialla alla seconda estrazione (colore qualsiasi alla prima)}.

9.a Quali sono le coppie di palline che formano l'unione degli eventi A e B, ovvero $(A \cup B)$?

- \square Coppie contenenti due palline gialle.
- \square Coppie contenenti esattamente una pallina rossa.
- \square Coppie contenenti almeno una pallina rossa.
- \square Coppie contenenti due palline rosse.

Soluzione

Coppie contenenti almeno una pallina rossa

- 9.b Quali sono le coppie di palline che formano l'intersezione degli eventi A e B, ovvero $(A \cap B)$?
 - \square Coppie contenenti due palline gialle.
 - Coppie contenenti al più una pallina rossa.
 - \square Coppie contenenti almeno una pallina rossa.
 - \square Coppie contenenti due palline rosse.

Soluzione

Coppie contenenti due palline rosse

9.c Qual è il complementare di C?

Soluzione

$$\overline{C} = B$$

9. d Calcolare la probabilità di C condizionata all'evento A, P(C|A).

Soluzione

Noto che A si è verificato, nell'urna rimangono 14 palline di cui 4 sono rosse e 10 sono gialle: P(C|A) = 10/14 = 0.714.

Applicazione regole

La probabilità dell'evento A è 1/3. La probabilità dell'evento B è 1/2. I due eventi sono indipendenti. 9.a Calcolare $P(\overline{B})$.

Soluzione

$$P(\overline{B}) = 1 - P(B) = 1/2$$

9.b Calcolare la probabilità che si verifichi B, dato che A si è verificato.

Soluzione

Dal momento che i due eventi sono indipendenti, la probabilità condizionata coincide con la probabilità semplice. In alternativa si può procedere al calcolo nel modo seguente:

$$P(B|A) = \frac{P(B\cap A)}{P(A)} = \frac{P(B)\times P(A)}{P(A)} = P(B) = 1/2$$

9.c I due eventi sono incompatibili?

Soluzione

No, perché $P(A \cap B) = P(A) \times P(B) = 1/3 \times 1/2 = 1/6 \neq 0$.

Studente

Uno studente arriva a un esame avendo studiato 20 dei 25 argomenti del corso. L'insegnante gli pone 3 domande su argomenti diversi e l'esame è superato solo se tutte le risposte sono giuste.

9.a Qual è la probabilità che lo studente superi l'esame al primo appello?

Soluzione

Per superare l'esame lo studente deve conoscere tutte e tre gli argomenti richiesti. Tale problema equivale a estrarre tre palline da un'urna che ne contiene 25 (di cui 20 di colore verde – argomenti noti – e 5 di colore rosso – argomenti non studiati). Dal momento che si specifica che le tre domande sono relative a argomenti diversi, le estrazioni delle tre palline devono essere effettuate SENZA reimmissione. In questo caso lo studente deve estrarre tre palline verdi in tre estrazioni. La probabilità cercata è data da

$$P(\text{conoscere tutte e tre le risposte}) = \frac{20}{25} \times \frac{19}{24} \times \frac{18}{23} = 0.49565.$$

9.b Qual è la probabilità che lo studente superi l'esame nella prima sessione (in cui ci sono tre appelli)? Si assuma che gli eventi "superamento dell'esame" siano indipendenti, anche se l'assunto non è realistico.

Soluzione

Soluzione diretta (lunga). Sia A_i la probabilità di superare l'esame nell'*i*-esimo appello e \bar{A}_i è la probabilità di non superarlo. L'evento B, superare entro il terzo appello, si può scomporre come

$$B = A_1 \cup (\bar{A}_1 \cap A_2) \cup (\bar{A}_1 \cap \bar{A}_2 \cap A_3)$$

e quindi

$$\begin{array}{lll} P(B) & = & P(A_1 \cup (\bar{A}_1 \cap A_2) \cup (\bar{A}_1 \cap \bar{A}_2 \cap A_3)) \\ & = & P(A_1) + P(\bar{A}_1 \cap A_2) + P(\bar{A}_1 \cap \bar{A}_2 \cap A_3) \\ & = & P(A_1) + P(\bar{A}_1) P(A_2) + P(\bar{A}_1) P(\bar{A}_2) P(A_3) \\ & = & 0.49565 + (1 - 0.49565) \times 0.49565 + (1 - 0.49565)^2 \times 0.49565 \\ & = & 0.87171 \end{array}$$

Soluzione indiretta (corta). La probabilità di superare l'esame entro la sessione, evento B si calcola facilmente applicando la regola del complementare nel quale \bar{B} è la probabilità di non superare l'esame nella sessione:

$$P(B) = 1 - P(\bar{B}) = 1 - P(\bar{A}_1 \cap \bar{A}_2 \cap \bar{A}_3)$$

$$= 1 - P(\bar{A}_1)P(\bar{A}_2|\bar{A}_1)P(\bar{A}_3|\bar{A}_1,\bar{A}_2)$$

= 1 - (1 - 0.49565)³ = 1 - 0.12829 = 0.87171.

Giulio e il treno

Giulio deve prendere il treno, ma non ha molto tempo: per raggiungere la stazione decide di aspettare l'autobus che arriverà puntualmente (evento A) con probabilità pari a 0.7. Arrivato in stazione puntualmente, riuscirà a salire sul treno evitando la multa del controllore se non troverà coda alla biglietteria (evento B). Questo accade con probabilità pari a 0.5.

9.a Calcolare la probabilità che Giulio non debba pagare la multa (evento C).

Soluzione

Giulio sale sul treno senza prendere la multa solo se simultaneamente si verificano due eventi (indipendenti): l'autobus è puntuale (evento A) e non c'è coda in biglietteria (evento B). La probabilità cercata si ottiene allora applicando la regola del prodotto (per eventi indipendenti):

$$P(C) = P(A \cap B) = P(A)P(B) = 0.7 \times 0.5 = 0.35.$$

9.b Calcolare la probabilità che Giulio in tre giorni diversi riesca a evitare almeno una multa (evento D).

Soluzione

La probabilità di evitare almeno una multa in tre giorni si può calcolare ricorrendo alla regola del complementare. L'evento D si ottiene dalle diverse combinazioni dell'evento C_i e \bar{C}_i giornalieri.

La probabilità di C_i è stata calcolata in precedenza. Il complementare di D, è \bar{D} che indica l'evento "paga sempre la multa", allora si ha

$$\begin{split} P(D) &=& 1 - P(\bar{D}) = 1 - P(\bar{C}_1 \cap \bar{C}_2 \cap \bar{C}_3) \\ &=& 1 - P(\bar{C}_1) P(\bar{C}_2) P(\bar{C}_3) = 1 - (1 - 0.35)(1 - 0.35)(1 - 0.35) \\ &=& 1 - 0.274625 = 0.725375. \end{split}$$

Somma di due dadi

Si lancia una coppia di dadi.

9.a Costruire il supporto.

Soluzione

Il supporto della coppia di VC, si ottiene con una tabella a doppia entrata, nella quale sulle righe si mettono i risultati del primo dado (D1) e sulle colonne si mettono i risultati del secondo dado (D2).

Lo spazio Ω consiste di 36 combinazioni equiprobabili.

9.b Determinare la probabilità di un punto del supporto.

Soluzione

Presa una qualunque coppia (4, 2), i due eventi sono "fisicamente" indipendenti sicché

$$P(4, 2) = P(4)P(2) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

La risposta era anche intuitiva perché gli eventi di Ω sono equiprobabili: 1/36.

9.c Qual è la probabilità che la somma dei punteggi sia 9?

Soluzione

Si può procedere al conteggio degli eventi che danno somma, S, pari a 9:

$$P(S=9) = 4 \times \frac{1}{36} = \frac{1}{9}$$

Si noti che la probabilità di avere 3 è

$$\begin{array}{ll} P(\text{un dado} \ \fbox{2} \ \text{e un dado} \ \fbox{1}) &=& P\left((\{\fbox{2}\} \cap \{\fbox{1}\}) \cup (\{\fbox{1}\} \cap \{\fbox{2}\})\right) \\ \\ &=& P(\fbox{2}\ \fbox{1}) + P(\fbox{1}\ \fbox{2}) = \frac{2}{36}. \end{array}$$

Nell'evento non si è specificato l'ordine con cui devono uscire i due dadi \Rightarrow bisogna considerare le diverse possibilità. Si noti, poi, che gli eventi $\{2\ 1\}$ e $\{1\ 2\}$ sono tra loro *incompatibili*: si verifica l'uno o (esclusivo – XOR) si verifica l'altro.

9.d Qual è la probabilità che la somma (S) dei punteggi di due dadi sia minore di quattro?

Soluzione

Si tratta della somma di eventi incompatibili: $\{S=2\}\ e\ \{S=3\}$):

$$\begin{array}{lcl} P(S<4) & = & P(\{S=2\} \cup \{S=3\}) = P(\{S=2\}) + P(\{S=3\}) \\ & = & \frac{1}{36} + \frac{2}{36} = \frac{1}{12}. \end{array}$$

9.
e Calcolare la probabilità che la SOMMA (S) dei punteggi di due dadi sia pari a sette oppure uno dei dadi sia pari a se
i (U6).

Soluzione

$$\begin{split} P(S=7) &= P(\{\boxed{1}\boxed{6}\} \cup \dots \cup \{\boxed{6}\boxed{1}\}) = \frac{6}{36} \\ P(U=6) &= P(\{\boxed{1}\boxed{6}\} \cup \dots \cup \{\boxed{6}\boxed{1}\}) = \frac{11}{36} \\ &: \{S=7\} \quad e \quad \{U=6\} \quad \text{non sono incompatibili} \quad - \\ P(\{S=7\} \cup \{U=6\}) &= P(\{S=7\}) + P(\{U=6\}) - P(\{S=7\} \cap \{U=6\}) \\ &= \frac{6}{36} + \frac{11}{36} - \frac{2}{36} = \frac{15}{36} \quad \text{infatti} \quad \rightarrow \\ P(\{S=7\} \cap \{U=6\}) &= \{\boxed{1}\boxed{6}\} \cup \{\boxed{6}\boxed{1}\} \quad \text{tra loro incompatibili.} \end{split}$$

Dati DUE eventi A e B, la probabilità dell'UNIONE $(A \cup B)$ è uguale alla somma delle probabilità dei singoli eventi, MENO la probabilità della loro intersezione

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Se A e B sono incompatibili, allora $A \cap B = \emptyset \Rightarrow P(A \cap B) = P(\emptyset) = 0$. \

Scatola e biglietti

La scatola A contiene 4 biglietti numerati da 1 a 4. La scatola B contiene 3 biglietti numerati da 2 a 4. Si estrae un biglietto da ognuna delle scatole e si indica con A_1 il valore del biglietto estratto dalla scatola A e con B_1 quello della scatola B.

9.a Ricavare la distribuzione di probabilità di $X = A_1 + B_1$.

Soluzione

Lo spazio campionario dell'esperimento considerato è costituito da $4\times 3=12$ coppie equiprobabili di biglietti:

$$\{(1,2);(1,3);(1,4);(2,2);(2,3);(2,4);(3,2);(3,3);(3,4);(4,2);(4,3);(4,4)\}.$$

Sommando i due termini di ogni coppia si ricava facilmente che la distribuzione di probabilità di X è

	$B_2 = 2$	$B_2 = 3$	$B_2 = 4$
$A_1 = 1$ $A_1 = 2$ $A_1 = 3$	$4; \frac{1}{12} \\ 5; \frac{1}{12}$	$4; \frac{1}{12} \\ 5; \frac{1}{12} \\ 6; \frac{1}{12} \\ 7; \frac{1}{1}$	$5; \frac{1}{12} \\ 6; \frac{1}{12} \\ 7; \frac{1}{12} \\ 9; 1$
$A_1 = 4$	$6; \frac{1}{12}$	$7; \frac{1}{12}$	$8; \frac{1}{12}$

da cui la probabilità di X

X	Freq
3	0.08333
4	0.16667
5	0.25000
6	0.25000
7	0.16667
8	0.08333

9.
b Calcolare la probabilità dell'evento $\{A_1 > B_1\}$.

Soluzione

Dallo spazio campionario presentato nel punto (a) si vede che il valore del primo biglietto è superiore a quello del secondo solo in 3 delle 12 coppie e quindi $P(A_1 > B_1) = 1/4$.

	$B_2 = 2$	$B_2 = 3$	$B_2 = 4$
$A_1 = 1$	$0; \frac{1}{12}$	$0; \frac{1}{12}$	$0; \frac{1}{12}$
$A_1 = 2$	$0; \frac{1}{12}$	$0; \frac{1}{12}$	$0; \frac{1}{12}$
$A_1 = 3$	$1; \frac{1}{12}$	$0; \frac{1}{12}$	$0; \frac{1}{12}$
$A_1 = 4$	$1; \frac{1}{12}$	$1; \frac{1}{12}$	$0; \frac{1}{12}$

9.c Si ripete l'esperimento 10 volte reinserendo i biglietti estratti nelle rispettive scatole dopo ogni estrazione. Calcolare la probabilità che il valore del biglietto della scatola A sia superiore a quello

della scatola B in meno di 4 delle 10 estrazioni.

Soluzione

Ad ogni ripetizione dell'esperimento la probabilità che il biglietto estratto da A riporti un valore superiore a quello del biglietto estratto da B è 1/4. Il numero di volte che questo evento si verifica in 10 replicazioni indipendenti dell'esperimento è un numero aleatorio S, distribuito secondo una binomiale, $S \sim \text{Bin}(10; 1/4)$; quindi, la probabilità cercata è

$$P(S < 4) = \sum_{i=0}^{3} \binom{10}{i} (0.25)^{i} (1 - 0.25)^{10-i} = 0.776.$$

Urna con colori e lettere diverse

Un'urna contiene 3 palline rosse timbrate con A, 2 palline rosse timbrate con B, 1 palline rossa timbrate con C, 2 palline verdi timbrate con A, una verde con B, una verde con C, una nera con A e una nera con C. In tabella

	A	В	\mathbf{C}	Tot
Rosso	3	2	1	6
\mathbf{Verde}	2	1	1	4
\mathbf{Nero}	1	0	1	2
Tot	6	3	3	12

9.a Calcolare la probabilità di estrarre una pallina Rossa

Soluzione

Sia

$$R = \text{estraggo Rosso}$$

$$P(R) = \frac{6}{12} = 0.5$$

9.b Calcolare la probabilità di estrarre una pallina timbrata con A

Soluzione

Sia

A = estraggo una pallina timbrata con A

$$P(A) = \frac{6}{12} = 0.5$$

9.c Gli eventi A ed R sono indipendenti?

Soluzione

Sì, in quanto

$$P(A \cap R) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A)P(R)$$

e quindi

$$P(A|R) = \frac{P(A \cap R)}{P(R)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2} = P(A)$$

e viceversa

$$P(R|A) = \frac{P(A \cap R)}{P(A)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2} = P(R)$$

9.d Calcolare la probabilità di estrarre una pallina verde

Soluzione

Sia

V =estraggo una pallina verde

$$P(V) = \frac{4}{12} = \frac{1}{3}$$

9.e Gli eventi V ed R sono indipendenti?

Soluzione

 ${f NO}\ V$ e R sono **incompatibili**, se la pallina è uscita verde **non** può essere rossa

$$P(V \cap R) = P(\emptyset) = 0$$

9.f Gli eventi V ed A sono indipendenti?

Soluzione

Sì, in quanto

$$P(V \cap A) = \frac{2}{12} = \frac{1}{3} \cdot \frac{1}{2} = P(V)P(A)$$

e quindi

$$P(V|A) = \frac{P(V \cap A)}{P(A)} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{1}{2} = P(V)$$

Interpretazione Sapere se la pallina estratta è targata con A non cambia il nostro stato informativo sul colore, viceversa, sapere il colore non cambia il nostro stato informativo sul fatto che sia timbrata A.

9.
g Calcolare P(N) (probabilità di estrarre nera) e P(B) (probabilità di estrarre una pallina timbrata con B)

Soluzione

$$P(N) = \frac{2}{12} = \frac{1}{6}$$

 $P(B) = \frac{3}{12}$

9.
h Gli eventi B ed N sono indipendenti?

Soluzione

 $\mathbf{NO}\ B$ e N sono incompatibili, se la pallina è uscita nera non può essere timbrata con B

$$P(B \cap N) = \frac{0}{12} = 0$$

9.
i Gli eventi C (estrarre una pallina con C) ed N sono indipendenti?

Soluzione

No, in quanto

$$P(C) = \frac{3}{12} = \frac{1}{4}$$

mentre

$$P(C \cap N) = \frac{1}{12} \neq \frac{3}{12} \cdot \frac{2}{12} = P(C)P(N)$$

e quindi

$$P(C|N) = \frac{1}{2} \neq \frac{1}{4} = P(C)$$

9. j Gli eventi B ed N sono incompatibili?

Soluzione

No, in quanto

$$P(C\cap N) = \frac{1}{12} \neq 0$$

Urne che portano ad altre urne

Si consideri il seguente gioco: si estra
e una dall'urna $\cal U$ che contiene 2 palline Rosse e una pallina Bianca:

- se esce Rossa si estrae da un'urna che ha 3 palline marcate con A e 1 pallina marcata con B
- se esce Bianca si estrae da un'urna che ha 1 pallina marcata con A e 1 pallina marcata con B

9.a Qual è la probabilità di osservare una pallina marcata con A?

Soluzione

Anzitutto osserviamo che

$$P(R) = \frac{2}{3}$$

$$P(B) = \frac{1}{3}$$

e che

$$P(A|R) = \frac{3}{4}$$

$$P(A|B) = \frac{1}{2}$$

e quindi

$$\begin{array}{rcl} P(A) & = & P(R)P(A|R) + P(B)P(A|B) \\ & = & \frac{2}{3}\frac{3}{4} + \frac{1}{3}\frac{1}{2} \end{array}$$

$$=$$
 $\frac{2}{3}$ $=$ 0.66667

9.
b Sapendo che è uscita una pallina marcata con A, qual è la probabilità che all'inizio del gioco sia stata estratta la pallina Rossa?

Soluzione

$$P(R|A) = \frac{P(A \cap R)}{P(A)}$$

$$= \frac{P(R)P(A|R)}{P(A)}$$

$$= \frac{\frac{2}{3}\frac{3}{4}}{\frac{2}{3}}$$

$$= \frac{3}{4}$$

$$= 0.75$$

Estrazioni con e senza reintroduzione

Un'urna contiene 3 palline Rosse, 2 Bianche e 5 Verdi,

9.a si estrae 3 volte con reintroduzione. Calcolare la probabilità di aver 3 colori diversi

Soluzione

Anzitutto notiamo che l'evento

E = "tre colori diversi"

si scompone come

$$E = (R \cap B \cap V) \cup (R \cap V \cap B) \cup$$
$$= (B \cap E \cap V) \cup (B \cap V \cap R) \cup$$
$$= (V \cap R \cap B) \cup (V \cap B \cap R)$$

e quindi

$$\begin{array}{ll} P(E) & = & P(R \cap B \cap V) + P(R \cap V \cap B) + \\ & = & P(B \cap E \cap V) + P(B \cap V \cap R) + \\ & = & P(V \cap R \cap B) + P(V \cap B \cap R) \end{array}$$

notiamo che le estrazioni sono tra di loro **indipendenti** e quindi

$$\begin{split} P(E) &= P(R)P(B)P(V) + P(R)P(V)P(B) + \\ &= P(B)P(R)P(V) + P(B)P(V)P(R) + \\ &= P(V)P(R)P(B) + P(V)P(B)P(R) \\ &= \frac{2}{10}\frac{5}{10}\frac{3}{10} + \frac{2}{10}\frac{3}{10}\frac{5}{10} + \dots \\ &= 6 \cdot \frac{2}{10}\frac{5}{10}\frac{3}{10} = 0.18 \end{split}$$

Nota

6 = 3! è il numero di modi in cui posso mescolare i tre colori

9.b si estrae 3 volte senza reintroduzione. Calcolare la probabilità di aver 3 colori diversi.

Soluzione

in questo caso le estrazioni non sono tra di loro indipendenti e quindi

$$\begin{split} P(E) &= P(R)P(B|R)P(V|R\cap B) + P(R)P(V|R)P(B|R\cap V) + \\ &= P(B)P(R|B)P(V|B\cap R) + P(B)P(V|B)P(R|B\cap V) + \\ &= P(V)P(R|V)P(B|R\cap V) + P(V)P(B|V)P(R|V\cap B) \\ &= \frac{2}{10}\frac{5}{9}\frac{3}{8} + \frac{2}{10}\frac{3}{9}\frac{5}{8} + \dots \\ &= 6 \cdot \frac{2}{10}\frac{5}{9}\frac{3}{8} \\ &= 0.25 \end{split}$$

Nota

anche se sono tra di loro dipendenti ogni sequenza la stessa probabilità:

$$\begin{array}{lcl} P(R)P(B|R)P(V|R\cap B) & = & P(R)P(V|R)P(B|R\cap V) \\ & = & P(B)P(R|B)P(V|B\cap R) \\ & = & P(B)P(V|B)P(R|B\cap V) \\ & = & \dots \\ & = & \frac{2}{10}\frac{5}{9}\frac{3}{8} \end{array}$$

= 0.04167

Urne e palline numerate

L'urna A contiene una pallina col numero -1, due palline col numero 0 e una pallina col numero +1. L'urna B contiene una pallina col numero 0, una col numero +1 e una col numero +2.

9.
a Sia S consideri la somma dei numeri estratti, calcolare la probabilità che S=0.

Soluzione

Si consideri la tabella

$B\setminus A$		-1	1/4	0	2/4	+1	1/4
1	1/3	0	1/12 1/12 1/12	1	2/12 2/12 2/12	2	1/12 1/12 1/12

per colonna leggiamo le possibili numerazioni dell'urna A, con le rispettive probabilità in blu, per riga leggiamo le possibili numerazioni dell'urna B, con le rispettive probabilità in blu, nella tabella leggiamo le possibili somme dell'urna A e B, con le rispettive probabilità in rosso. Gli eventi che portano la somma ad essere zero sono due e quindi:

$$P(S=0) = \frac{1}{12} + \frac{2}{12} = \frac{1}{6}$$

9.
b Calcolare la probabilità che dall'urna A sia uscito +1, dato che la somma fa 1

Soluzione

Anzitutto notiamo che

$$P(S=1) = \frac{1}{12} + \frac{2}{12} + \frac{1}{12} = \frac{1}{3}$$

poi osserviamo che

$$P(S=1\cap A=+1)=\frac{1}{12}$$

e quindi

$$P(S=1|A=+1) = \frac{P(S=1\cap A=+1)}{P(S=1)} = \frac{\frac{1}{12}}{\frac{1}{3}} = \frac{1}{4}$$

Esercizi Di Probabilità e Variabili Casuali

Esercizio 1

Il numero di veicoli al casello autostradale C è la **somma** del numero di veicoli che provengono dalla strada S_1 e dalla strada S_2 . All'ora di punta di un giorno feriale, il numero di veicoli X_1 sulla strada S_1 è descritto da un Poisson di parametro 4.3, $X_1 \sim \text{Pois}(4.3)$, mentre il numero di veicoli X_2 sulla strada S_2 è descritto da un Poisson di parametro 2.1, $X_2 \sim \text{Pois}(2.1)$, X_1 e X_2 sono assunte indipendenti.

9.c (Punti 14) Calcolare la probabilità di avere al massimo 2 automobili al casello C.

Soluzione

 $X_1 \sim \operatorname{Pois}(4.3)$ e $X_2 \sim \operatorname{Pois}(2.1)$ e quindi

$$X = X_1 + X_2 \sim \text{Pois}(4.3 + 2.1)$$

per cui

$$\begin{split} P(X \leq 2) &= P(X = 0 \ \cup X = 1 \ \cup X = 2) \\ &= P(X = 0) + P(X = 1) + P(X = 2) \\ &= \frac{6.4^0}{0!} e^{-6.4} + \frac{6.4^1}{1!} e^{-6.4} + \frac{6.4^2}{2!} e^{-6.4} \\ &= 0.0017 + 0.0106 + 0.034 \\ &= 0.0463 \end{split}$$

9.d (Punti 3) Qual è la varianza della VC che conta il numero di automobili al casello C?

Soluzione

Se

$$X = X_1 + X_2 \sim \operatorname{Pois}(6.4)$$

Allora

$$V(X) = 6.4$$

9.e (**Punti 3**) Se $X \sim \text{Binom}(15, 0.3)$, qual è il supporto di X?

Soluzione

Se Se $X \sim \text{Binom}(15, 0.3)$, il suo supporto è

$$S_X = \{0, 1, 2, ..., 15\}$$

9.f (**Punti 2**) Se $X \sim N(0,1)$ e $Y \sim \chi_5^2$, X e Y indipendenti, come si distribuisce

$$W = \frac{X}{\sqrt{Y/5}} \quad ?$$

Soluzione

Se $X \sim N(0,1)$ e $Y \sim \chi_5^2, \, X$ e Y indipendenti, allora

$$W = \frac{X}{\sqrt{Y/5}} \sim t_5$$

Esercizio 2

Un portafoglio finanziario è composto da due titoli. Il rendimento del titolo A è descritto da una normale $X_A \sim N(0.6, (0.55)^2)$, il rendimento del titolo A è descritto da una normale $X_B \sim N(0.8, (0.85)^2)$, X_A e X_B sono considerate indipendenti. Il rendimento del portafoglio è dunque la somma dei rendimenti

$$X = X_A + X_B$$

9.a (Punti 14) Calcolare la probabilità di avere un rendimento negativo.

Soluzione

 $X_A \sim N(0.6, (0.55)^2)$ e $X_B \sim N(0.8, (0.85)^2)$ sono indipendenti e quindi:

$$X = X_4 + X_B \sim N(0.6 + 0.8, (0.55)^2 + (0.85)^2) \sim N(1.4, 1.025)$$

per cui

$$P(X < 0) = P\left(\frac{X - \mu}{\sigma} < \frac{0 - 1.4}{\sqrt{1.025}}\right)$$
$$= P(Z < -1.38)$$
$$= 1 - \Phi(1.38)$$
$$= 0.0838$$

3.3. ESERCIZIO 3

9.b (**Punti 3**) Sotto ipotesi di indipendenza tra gli anni, qual è la probabilità che il portafoglio abbia rendimento negativo per 3 anni di seguito?

Soluzione

Sia N_i l'evento:

 $N_i = il portafoglio è negativo nell'anno <math>i, i = 1, ..., 3$

sia E l'evento

E = rendimento negativo 3 anni di seguito

è immediato che

 $E = N_1 \cap N_2 \cap N_3$

e dunque

$$\begin{split} P(E) &= P(N_1 \cap N_2 \cap N_3) \\ &= P(N_1)P(N_2)P(N_3) \\ &= 0.0838 \times 0.0838 \times 0.0838 \\ &= 0.0838^3 \\ &= 0.0006 \end{split}$$

9.c (**Punti 3**) Se $X \sim \text{Pois}(15.3)$, qual è la varianza di X?

Soluzione

Se Se $X \sim \text{Pois}(\lambda = 15.3)$, allora

$$V(X) = \lambda = 15.3$$

9.d (**Punti 2**) Se $X_1 \sim N(0,1), X_2 \sim N(0,1)$ e $X_2 \sim N(0,1)$ X_1, X_2 e X_3 indipendenti, come si distribuisce $W = X_1^2 + X_2^2 + X_3^2 \quad ?$

Soluzione

Se $X_1 \sim N(0,1), \, X_2 \sim N(0,1)$ e $X_2 \sim N(0,1) \,\, X_1, \, X_2$ e X_3 indipendenti, allora

$$W = X_1^2 + X_2^2 + X_3^2 \sim \chi_3^2$$

(si distribuisce come un chi quadro con 3 gradi di libertà)

Esercizio 3

L'urna A contiene 3 bussolotti rossi e 7 blu. Si estrae n=6 volte con reintroduzione

9.a (Punti 14) Qual è la probabilità di avere almeno 2 bussolotti rossi su 6 estrazioni?

Soluzione

Sia X la VC che conta il numero di bussolotti rossi in 6 estrazioni con reintroduzione, quindi n=6 replicazioni di una Bernoulli $X_i \sim \text{Ber}(\pi=3/10)$ e quindi

$$X = X_1 + ... + X_n \sim \text{Binom}(n = 6, \pi = 0.3)$$

la probabilità di avere almeno 2 bussolotti rossi su 6 estrazioni è

$$\begin{split} P(X \geq 2) &= 1 - P(X < 2) \\ &= 1 - \left(\binom{6}{0} (0.3)^0 (1 - 0.3)^{6-0} + \binom{6}{1} (0.3)^1 (1 - 0.3)^{6-1} \right) \\ &= 1 - (1 \cdot 1 \cdot 0.1176 + 6 \cdot 0.3 \cdot 0.1681) \\ &= 1 - (0.1176 + 0.3025) \\ &= 0.5798 \end{split}$$

9.b (**Punti 3**) Quali sono valore atteso e varianza della VC che conta il numero di palline Rosse su 6 estrazioni con reintroduzione dall'urna A?

Soluzione

Sia X la VC che conta il numero di bussolotti rossi in 6 estrazioni con reintroduzione, quindi n=6 replicazioni di una Bernoulli $X_i \sim \mathrm{Ber}(\pi=3/10)$ e quindi

$$X = X_1 + \ldots + X_n \sim \mathrm{Binom}(n=6, \pi=0.3)$$

E quindi

$$E(X) = n\pi = 6 \cdot \frac{3}{10} = 1.8, \qquad V(X) = n\pi(1-\pi) = 6 \cdot \frac{3}{10} \frac{7}{10} = 1.26$$

9.c (**Punti 3**) Se $X \sim N(\mu_X, \sigma_X^2)$ e $Y \sim N(\mu_Y, \sigma_Y^2)$, come si distribuisce

$$W = X - Y$$
 ?

Soluzione

Se
$$X \sim N(\mu_X, \sigma_X^2), \, Y \sim N(\mu_Y, \sigma_Y^2),$$
allora

$$X-Y \sim N(\mu_X - \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

se e solo se X e Y sono indipendenti.

9.
d (**Punti 2**) Si lancia una moneta perfetta $(P(T) = P(C) = \frac{1}{2})$. Se esce Testa di estra
e 1 volta con dall'urna A che contiene contiene 3 bussolotti rossi e 7 blu. Se esce Croce di estra
e 1 volta con dall'urna B

3.4. ESERCIZIO 4 65

che contiene contiene 2 bussolotti rossi e 8 blu. Qual è la probabilità che alla fine dell'esperimento esca un bussolotto rosso?

Soluzione

Se esce Testa

$$P(\operatorname{Rosso}|T) = \frac{3}{7+3} = 0.3$$

Se esce Croce

$$P(\operatorname{Rosso}|C) = \frac{2}{8+2} = 0.2$$

Dato che

$$P(T) = P(C) = \frac{1}{2}$$

allora

$$\begin{array}{rcl} \operatorname{Rosso} &=& (T \ \cap \ \operatorname{Rosso}) \ \cup \ (C \ \cap \ \operatorname{Rosso}) \\ P(\operatorname{Rosso}) &=& P((T \ \cap \ \operatorname{Rosso}) \ \cup \ (C \ \cap \ \operatorname{Rosso})) \\ &=& P(T \ \cap \ \operatorname{Rosso}) \ + \ P(C \ \cap \ \operatorname{Rosso}) \\ &=& P(T)P(\operatorname{Rosso}|T) + P(C)P(\operatorname{Rosso}|C) \\ &=& \frac{1}{2} \cdot 0.3 + \frac{1}{2} \cdot 0.2 \\ &=& 0.25 \end{array}$$

Esercizio 4

L'urna U contiene tre palline bianche, tre palline rosse e tre palline nere.

9.a (**Punti 14**) Si estrae n=2 volte **senza** reintroduzione. Qual è la probabilità di ottenere due colori diversi in 2 estrazioni? (esempio: prima bianco poi rosso *oppure* prima nero poi bianco oppure...)

Soluzione

L'evento

E =due colori diversi in 2 estrazioni

l'evento complementare di E è \bar{E} due palline di uguale colore, ed è dato da

$$\begin{array}{rl} \bar{E} & = & (B_1 \cap R_2) \cup (R_1 \cap B_2) \cup \\ & & (B_1 \cap N_2) \cup (B_1 \cap R_2) \cup \\ & & (R_1 \cap N_2) \cup (N_1 \cap R_2) \end{array}$$

e quindi

$$P(E) = P(B_1 \cap R_2) + P(R_1 \cap B_2) +$$

$$\begin{split} P(B_1 \cap N_2) + P(N_1 \cap B_2) + \\ P(R_1 \cap N_2) + P(N_1 \cap R_2) \\ = & P(B_1)P(R_2|B_1) + P(R_1)P(B_2|R_1) + \\ & P(B_1)P(N_2|B_1) + P(N_1)P(B_2|N_1) + \\ & P(R_1)P(N_2|R_1) + P(R_1)P(B_2|N_1) \\ = & \frac{3}{9}\frac{2}{8} + \frac{3}{9}\frac{2}{8} + \\ & \frac{3}{9}\frac{2}{8} + \frac{3}{9}\frac{2}{8} + \\ & \frac{3}{9}\frac{2}{8} + \frac{3}{9}\frac{2}{8} \\ = & 4 \cdot \frac{1}{6} = 0.6667 \end{split}$$

9.
b (**Punti 3**) Si ricompone l'urna U e si estrae una volta, si assegna

- 1 all'evento esce bianca
- 2 all'evento esce rossa
- 3 all'evento esce nera

Calcolare valore atteso e varianza della Variabile Casuale che registra il numero uscito.

Soluzione

$$P(X = 1) = \frac{3}{9}$$

$$P(X = 2) = \frac{3}{9}$$

$$P(X = 2) = \frac{3}{9}$$

e quindi

$$\begin{split} E(X) &= 1 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} + 3 \cdot \frac{1}{3} = 2 \\ V(X) &= 1^2 \cdot \frac{1}{3} + 2^2 \cdot \frac{1}{3} + 3^2 \cdot \frac{1}{3} - 2^2 = 0.6667 \end{split}$$

9.c (**Punti 3**) La varianza di una VC X può essere zero?

Soluzione

Sì, se e solo se X assume un valore costante x per certo, P(X = x) = 1

9.d (**Punti 2**) Se $X \sim \text{Bin}(10; 0.3)$ e $Y \sim \text{Pois}(3.23)$, X e Y indipendenti, quanto vale V(X - Y)?

Soluzione

Siccome X e Y sono indipendenti

$$V(X - Y) = V(X) + V(Y) = n\pi(1 - \pi) + \lambda = 10 \times 0.3(1 - 0.3) + 3.23 = 5.33$$

Esercizio sul Teorema di Bayes

Michele esegue la seguente sequenza di estrazioni:

- si estrae da un'urna U_1 che contiene 5 palline etichettate da 1 a 5
- Se il numero uscito è
 - -1 allora si fissa $\pi=0$
 - -2 allora si fissa $\pi=0.25$
 - -3 allora si fissa $\pi = 0.50$
 - -4 allora si fissa $\pi=0.75$
 - 5 allora si fissa $\pi = 1.00$
- Quindi prepara un'urna U_2 che ha come proporzione π di palline vincenti ed estrae, con reintroduzione 3 volte dall'urna.

Quando Sergio arriva Michele ha estratto da U_2 e ha ottenuto 2 palline vincenti su 3 estrazioni.

9.a Qual è la probabilità di Sergio su X = 2?

Soluzione

Sia X la VC che conta il numero di successi in 3 prove dall'urna U_2 . Sappiamo che $X \sim \text{Binom}(3, \pi)$, e il parametro π dipende dall'estrazione dell'urna U_1 e quiindi

$$\begin{array}{lcl} P(X=2|\pi) & = & \binom{3}{2}\pi^2(1-\pi)^{3-2} \\ & = & 3\cdot\pi^2\cdot(1-\pi)^2 \end{array}$$

che possiamo calcolare per ogni valore di $\pi \in \{0, 0.25, 0.50, 0.75, 1\}$. Mentre la probabilità che dall'urna uno abbiamo un 3 è uno su cinque che equivale a dire che

$$P(\pi=0) = P(\pi=0.25) = P(\pi=0.5) = P(\pi=0.75) = P(\pi=1) = \frac{1}{5}$$

Applichiamo il teorema delle probabilità totali per ricavare P(X=2)

$$\begin{array}{lll} P(X=2) & = & P(\pi=0)P(X=2|\pi=0) + P(\pi=0.25)P(X=2|\pi=0.25) + P(\pi=0.5)P(X=2|\pi=0.5) + \\ & + & P(\pi=0.75)P(X=2|\pi=0.75) + P(\pi=1)P(X=2|\pi=1) \\ & = & \frac{1}{5}3\cdot0^2(1-0)^{3-2} + \frac{1}{5}3\cdot0.25^2(1-0.25)^{3-2} + \frac{1}{5}3\cdot0.5^2(1-0.5)^{3-2} + \\ & + & \frac{1}{5}3\cdot0.75^2(1-0.75)^{3-2} + \frac{1}{5}3\cdot1^2(1-1)^{3-2} \\ & = & 0.1875 \end{array}$$

9.
b Qual è la probabilità di Sergio che dall'urna ${\cal U}_1$ sia stata estrat
ta la palline etichettata con 3?

Soluzione

Sia X la VC che conta il numero di successi in 3 prove dall'urna U_2 . Condizionato all'ipotesi $\pi=0.50$ abbiamo:

$$P(X = 2|\pi = 0.5) = {3 \choose 2} 0.5^{2} (1 - 0.5)^{3-2}$$
$$= 3 \cdot 0.25 \cdot 0.5$$
$$= 0.375$$

Mentre la probabilità che dall'urna uno abbiamo un 3 è uno su cinque che equivale a dire che

$$P(\pi = 0.5) = \frac{1}{5}$$

In virtù del teorema di Bayes abbiamo che

$$P(\pi = 0.5|X = 2) = \frac{P(\pi = 0.5)P(X = 2|\pi = 0.5)}{P(X = 2)}$$

$$= \frac{\frac{1}{5} \cdot 0.375}{0.1875}$$

$$= 0.4$$

9.c Qual è distribuzione aggiornata su π in base al fatto che X=2?

Soluzione

$$P(\pi=0|X=2) = \frac{P(\pi=0)P(X=2|\pi=0)}{P(X=2)}$$

$$= \frac{\frac{1}{5} \cdot 0}{0.1875}$$

$$= 0$$

$$P(\pi = 0.25|X = 2) = \frac{P(\pi = 0.25)P(X = 2|\pi = 0.25)}{P(X = 2)}$$

$$= \frac{\frac{1}{5} \cdot 0.1406}{0.1875}$$

$$= 0.15$$

$$P(\pi = 0.5|X = 2) = \frac{P(\pi = 0.5)P(X = 2|\pi = 0.5)}{P(X = 2)}$$

$$= \frac{\frac{1}{5} \cdot 0.375}{0.1875}$$

$$= 0.4$$

$$P(\pi = 0.75|X = 2) = \frac{P(\pi = 0.75)P(X = 2|\pi = 0.5)}{P(X = 2)}$$

$$= \frac{\frac{1}{5} \cdot 0.4219}{0.1875}$$

$$= 0.45$$

$$P(\pi = 1|X = 2) = \frac{P(\pi = 1)P(X = 2|\pi = 1)}{P(X = 2)}$$

$$= \frac{\frac{1}{5} \cdot 0}{0.1875}$$

$$= 0$$

9.
d Costruire le distribuzioni condizionate di X
a $\pi.$

Soluzione

Siccome

$$P(X = x | \pi) = {3 \choose x} \pi^x (1 - \pi)^{n-x}$$

è nota per ogni valore di $x \in \{0, 1, 2, 3\}$ e ogni valore di $\pi \in \{0, 0.25, 0.5, 0.75, 1\}$ allora è possibile costruire una tavola doppia entrata dove mettiamo π per riga e x per colonna

	x = 0	x = 1	x = 2	x = 3	Tot
$\pi = 0$	1.000	0.000	0.000	0.000	1
$\pi = 0.25$	0.422	0.422	0.141	0.016	1
$\pi = 0.5$	0.125	0.375	0.375	0.125	1
$\pi = 0.75$	0.016	0.141	0.422	0.422	1
$\pi = 1$	0.000	0.000	0.000	1.000	1

9.e Costruire la distribuzione doppia congiunta di tutte le possibili combinazioni e le relative probabilità.

Soluzione

Siccome

$$\begin{array}{cccc} P(X=x|\pi) & = & \binom{3}{x}\pi^x(1-\pi)^{n-x} \\ \\ P(\pi) & = & \frac{1}{5}, & \forall \pi \\ \\ P(X=x\cap\pi) & = & P(\pi)P(X=x|\pi) \end{array}$$

è nota per ogni valore di $x \in \{0, 1, 2, 3\}$ e ogni valore di $\pi \in \{0, 0.25, 0.5, 0.75, 1\}$ allora è possibile costruire una tavola doppia entrata dove mettiamo π per riga e x per colonna

	x = 0	x = 1	x = 2	x = 3	Tot
$\pi = 0$	$\frac{1}{5} \times 1 = 0.2$	$\frac{1}{5} \times 0 = 0$	$\frac{1}{5} \times 0 = 0$	$\frac{1}{5} \times 0 = 0$	0.2
$\pi = 0.25$	$\frac{1}{5} \times 0.422 = 0.084$	$\frac{1}{5} \times 0.422 = 0.084$	$\frac{1}{5} \times 0.141 = 0.028$	$\frac{1}{5} \times 0.016 = 0.003$	0.2
$\pi = 0.5$	$\frac{1}{5} \times 0.125 = 0.025$	$\frac{1}{5} \times 0.375 = 0.075$	$\frac{1}{5} \times 0.375 = 0.075$	$\frac{1}{5} \times 0.125 = 0.025$	0.2
$\pi = 0.75$	$\frac{1}{5} \times 0.016 = 0.003$	$\frac{1}{5} \times 0.141 = 0.028$	$\frac{1}{5} \times 0.422 = 0.084$	$\frac{1}{5} \times 0.422 = 0.084$	0.2
$\pi = 1$	$\frac{1}{5} \times 0 = 0$	$\frac{1}{5} \times 0 = 0$	$\frac{1}{5} \times 0 = 0$	$\frac{1}{5} \times 1 = 0.2$	0.2
Tot	0.3126	0.1876	0.1876	0.3126	1

Sommando per riga abbiamo la distribuzione di π , sommando per colonna abbiamo quella di X.

9.f Costruire le distribuzioni condizionate di π ad X.

Soluzione

Siccome

$$P(X = x | \pi) = {3 \choose x} \pi^x (1 - \pi)^{n - x}$$

$$P(\pi) = \frac{1}{5}, \quad \forall \pi$$

$$P(X = x \cap \pi) = P(\pi)P(X = x | \pi)$$

$$P(\pi | X = x) = \frac{P(\pi)P(X = x | \pi)}{P(X = x)}$$

è nota per ogni valore di $x \in \{0, 1, 2, 3\}$ e ogni valore di $\pi \in \{0, 0.25, 0.5, 0.75, 1\}$ allora è possibile costruire una tavola doppia entrata dove mettiamo π per riga e x per colonna

3.5. ESERCIZIO SUL TEOREMA DI BAYES

71

	x = 0	x = 1	x = 2	x = 3
$\pi = 0$ $\pi = 0.25$ $\pi = 0.5$ $\pi = 0.75$ $\pi = 1$ Tot	$\begin{array}{c} \frac{0.2}{0.312} = 0.641 \\ \frac{0.084}{0.312} = 0.269 \\ \frac{0.025}{0.312} = 0.08 \\ \frac{0.003}{0.312} = 0.01 \\ \frac{0}{0.312} = 0 \end{array}$	$\begin{array}{l} \frac{0}{0.187} = 0\\ \frac{0.084}{0.187} = 0.449\\ \frac{0.075}{0.187} = 0.401\\ \frac{0.028}{0.187} = 0.15\\ \frac{0}{0.187} = 0\\ 1 \end{array}$	$\begin{array}{c} \frac{0}{0.187} = 0\\ \frac{0.028}{0.187} = 0.15\\ \frac{0.075}{0.187} = 0.401\\ \frac{0.084}{0.187} = 0.449\\ \frac{0}{0.187} = 0\\ 1 \end{array}$	$\begin{array}{c} \frac{0}{0.312} = 0\\ \frac{0.003}{0.312} = 0.01\\ \frac{0.025}{0.312} = 0.08\\ \frac{0.084}{0.312} = 0.26\\ \frac{0.2}{0.312} = 0.64\\ 1 \end{array}$

Esercizi sul TLC

4

Una VC qualunque: Somma, S_n

Un collo è composto di 64 confezioni. Ogni confezione ha un peso, X, che si distribuisce secondo una VC che presenta $E(X_i) = 2$ kg e $V(X_i) = 0.1$. Calcolare la probabilità che il collo superi il peso di 132kg.

Soluzione

Teorema del Limite Centrale (somma VC qualunque)

Siano $X_1,...,X_n$, n=64 VC IID, to $E(X_i)=\mu=2$ e $V(X_i)=\sigma^2=0.1, \forall i$, posto:

$$S_n = X_1 + \dots + X_n$$

allora:

$$\begin{array}{ll} S_n & \underset{a}{\sim} & N(n\mu,n\sigma^2) \\ & \sim & N(64\cdot 2,64\cdot 0.1) \\ & \sim & N(128,6.4) \end{array}$$

$$\begin{split} P(S_n > 132) &= P\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} > \frac{132 - 128}{\sqrt{6.4}}\right) \\ &= P\left(Z > 1.58\right) \\ &= 1 - P(Z < 1.58) \\ &= 1 - \Phi(1.58) \\ &= 0.0571 \end{split}$$

Una VC qualunque: media, \bar{X}

Un collo è composto di 64 confezioni. Ogni confezione ha un peso, X, che si distribuisce secondo una VC che presenta $E(X_i) = 2 \text{kg}$ e $V(X_i) = 0.1$. Calcolare la probabilità che il peso medio delle confezioni sia compreso tra 1.9kg e 2.1kg.

Soluzione

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1,...,X_n$, n=64 VC IID, to $E(X_i)=\mu=2$ e $V(X_i)=\sigma^2=0.1, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

allora:

$$\begin{array}{ccc} \bar{X} & \sim & N(\mu,\sigma^2/n) \\ \\ \sim & N\left(2,\frac{0.1}{64}\right) \\ \\ \sim & N(2,0.001563) \end{array}$$

$$\begin{split} P(1.9 < \bar{X} \leq 2.1) &= P\left(\frac{1.9 - 2}{\sqrt{0.001563}} < \frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \leq \frac{2.1 - 2}{\sqrt{0.001563}}\right) \\ &= P\left(-2.53 < Z \leq 2.53\right) \\ &= \Phi(2.53) - \Phi(-2.53) \\ &= \Phi(2.53) - (1 - \Phi(2.53)) \\ &= 0.9943 - (1 - 0.9943) \\ &= 0.9886 \end{split}$$

Un'urna: somma, S_n

Si abbia l'urna [-2] [2] [3] [3] [4]

Si effettuano 100 estrazioni con reimmissione (ECR). Calcolare la probabilità che la somma delle 100 estrazioni sia compresa tra 195 e 210.

Soluzione

$$\begin{array}{rcl} \mu & = & E(X_i) = \displaystyle \sum_{x \in S_X} x P(X=x) \\ \\ & = & (-2) \frac{1}{5} + 2 \frac{1}{5} + 3 \frac{2}{5} + 4 \frac{1}{5} \\ \\ & = & 2 \\ \\ \sigma^2 & = & V(X_i) = \displaystyle \sum_{x \in S_X} x^2 P(X=x) - \mu^2 \\ \\ & = & \left((-2)^2 \frac{1}{5} + 2^2 \frac{1}{5} + 3^2 \frac{2}{5} + 4^2 \frac{1}{5} \right) - (2)^2 \\ \\ & = & 4.4 \end{array}$$

Teorema del Limite Centrale (somma VC qualunque)

Siano $X_1,\dots,X_n,\ n=100$ VC IID, tc $E(X_i)=\mu$ = 2 e $V(X_i)=\sigma^2=4.4, \forall i,$ posto:

$$S_n = X_1 + \dots + X_n$$

4.4. UN'URNA: MEDIA, \bar{X}

75

allora:

$$\begin{array}{ccc} S_n & \underset{a}{\sim} & N(n\mu,n\sigma^2) \\ & \sim & N(100\cdot 2,100\cdot 4.4) \\ & \sim & N(200,440) \end{array}$$

$$\begin{split} P(195 < S_n \leq 210) &= P\left(\frac{195 - 200}{\sqrt{440}} < \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \leq \frac{210 - 200}{\sqrt{440}}\right) \\ &= P\left(-0.24 < Z \leq 0.48\right) \\ &= \Phi(0.48) - \Phi(-0.24) \\ &= \Phi(0.48) - (1 - \Phi(0.24)) \\ &= 0.6844 - (1 - 0.5948) \\ &= 0.2792 \end{split}$$

Un'urna: media, \bar{X}

Si abbia l'urna -2 2 3 3 4

Si effettuano 100 estrazioni con reimmissione (ECR). Calcolare la probabilità che la media nelle 100 estrazioni sia maggiore di 2.2.

Soluzione

$$\begin{array}{rcl} \mu & = & E(X_i) = \sum_{x \in S_X} x P(X=x) \\ & = & (-2)\frac{1}{5} + 2\frac{1}{5} + 3\frac{2}{5} + 4\frac{1}{5} \\ & = & 2 \\ \sigma^2 & = & V(X_i) = \sum_{x \in S_X} x^2 P(X=x) - \mu^2 \\ & = & \left((-2)^2 \frac{1}{5} + 2^2 \frac{1}{5} + 3^2 \frac{2}{5} + 4^2 \frac{1}{5} \right) - (2)^2 \\ & = & 4.4 \end{array}$$

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1,...,X_n,\ n=100$ VC IID, tc $E(X_i)=\mu=2$ e $V(X_i)=\sigma^2=4.4, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

allora:

$$\begin{array}{ccc} \bar{X} & \sim & N(\mu,\sigma^2/n) \\ & \sim & N\left(2,\frac{4.4}{100}\right) \\ & \sim & N(2,0.044) \end{array}$$

$$\begin{split} P(\bar{X} > 2.2) &= P\left(\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} > \frac{2.2 - 2}{\sqrt{0.044}}\right) \\ &= P\left(Z > 0.95\right) \\ &= 1 - P(Z < 0.95) \\ &= 1 - \Phi(0.95) \\ &= 0.1711 \end{split}$$

2 Urne: Somma, S_n

Due urne sono così formate:

- l'urna A -1 1 2 e
- l'urna B $\boxed{0}$ $\boxed{0}$ $\boxed{1}$.

L'esperimento casuale consiste nell'estrarre con reimmissione un biglietto da ogni urna e sommare gli esiti. Sia X la variabile casuale "somma dei due esiti",

$$X = X_A + X_B.$$

Si ripete l'esperimento n=81 volte. Qual è la probabilità (approssimata) che la somma dei risultati degli 81 esperimenti sia maggiore di 90?

Soluzione								
		-1;	$1/_{3}$	1;	$1/_{3}$	2;	$1/_{3}$	
	0; 2/3	-1;	2/9	1;	2/9	2;	2/9	
	1; 1/3	0;	$\frac{1}{9}$	2;	$\frac{1}{9}$	3;	1/9	

E ricaviamo la distribuzione di, X

Calcoliamo valore atteso e varianza

$$\begin{array}{rcl} \mu & = & E(X_i) = \sum_{x \in S_X} x P(X=x) \\ & = & (-1)\frac{2}{9} + 0\frac{1}{9} + 1\frac{2}{9} + 2\frac{3}{9} + 3\frac{1}{9} \\ & = & 1 \\ \sigma^2 & = & V(X_i) = \sum_{x \in S_X} x^2 P(X=x) - \mu^2 \\ & = & \left((-1)^2 \frac{2}{9} + 0^2 \frac{1}{9} + 1^2 \frac{2}{9} + 2^2 \frac{3}{9} + 3^2 \frac{1}{9} \right) - (1)^2 \\ & = & 1.778 \end{array}$$

E in virtù del TLC

Teorema del Limite Centrale (somma VC qualunque)

Siano $X_1,...,X_n,\ n=81$ VC IID, t
c $E(X_i)=\mu=1$ e $V(X_i)=\sigma^2=1.778, \forall i,$ posto:

$$S_n = X_1 + \dots + X_n$$

$$S_n \quad {\sim}_a \quad N(n\mu, n\sigma^2)$$

$$\sim \quad N(81 \cdot 1, 81 \cdot 1.778)$$

$$\sim \quad N(81, 144)$$

$$\begin{split} P(S_n > 90) &= P\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} > \frac{90 - 81}{\sqrt{144}}\right) \\ &= P\left(Z > 0.75\right) \\ &= 1 - P(Z < 0.75) \\ &= 1 - \Phi(0.75) \\ &= 0.2266 \end{split}$$

2 Urne: Media, \bar{X}

Due urne sono così formate:

- l'urna A -1 1 2 e
- l'urna B 0 0 1.

L'esperimento casuale consiste nell'estrarre con reimmissione un biglietto da ogni urna e sommare gli esiti. Sia X la variabile casuale "somma dei due esiti",

$$X = X_A + X_B.$$

Si ripete l'esperimento n=81 volte. Siano $A=\{\bar{X}<1.2\}$ e $B=\{\bar{X}>0.8\}$. Qual è la probabilità (approssimata) che che la media dei risultati degli 81 esperimenti sia A e B?

Soluzione

$$P(A\cap B) \quad = \quad P(0.8 < \bar{X} < 1.2)$$

E ricaviamo la distribuzione di, X

Calcoliamo valore atteso e varianza

$$\begin{array}{rcl} \mu & = & E(X_i) = \displaystyle \sum_{x \in S_X} x P(X=x) \\ \\ & = & (-1) \frac{2}{9} + 0 \frac{1}{9} + 1 \frac{2}{9} + 2 \frac{3}{9} + 3 \frac{1}{9} \\ \\ & = & 1 \\ \sigma^2 & = & V(X_i) = \displaystyle \sum_{x \in S_X} x^2 P(X=x) - \mu^2 \\ \\ & = & \left((-1)^2 \frac{2}{9} + 0^2 \frac{1}{9} + 1^2 \frac{2}{9} + 2^2 \frac{3}{9} + 3^2 \frac{1}{9} \right) - (1)^2 \\ \\ & = & 1.778 \end{array}$$

E in virtù del TLC

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1, \dots, X_n, \; n=81$ VC IID, t
c $E(X_i)=\mu=1$ e $V(X_i)=\sigma^2=1.778, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

allora:

$$\begin{array}{ccc} \bar{X} & \underset{a}{\sim} & N(\mu,\sigma^2/n) \\ \\ \sim & N\left(1,\frac{1.778}{81}\right) \\ \\ \sim & N(1,0.02195) \end{array}$$

$$\begin{split} P(0.8 < \bar{X} \le 1.2) &= P\left(\frac{0.8 - 1}{\sqrt{0.02195}} < \frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \le \frac{1.2 - 1}{\sqrt{0.02195}}\right) \\ &= P\left(-1.35 < Z \le 1.35\right) \\ &= \Phi(1.35) - \Phi(-1.35) \\ &= \Phi(1.35) - (1 - \Phi(1.35)) \\ &= 0.9115 - (1 - 0.9115) \\ &= 0.823 \end{split}$$

2 Urne: Media, \bar{X}

Due urne sono così formate:

- l'urna A -1 1 1 2 e
- l'urna B 0 1.

L'esperimento casuale consiste nell'estrarre con reimmissione un biglietto da ogni urna e sommare gli esiti. Sia X la variabile casuale "somma dei due esiti",

$$X = X_A + X_B.$$

Si ripete l'esperimento n = 92 volte.

Qual è la probabilità (approssimata) che che la media dei risultati dei 92 esperimenti sia compresa tra 1 e 1.4?

Soluzione

E ricaviamo la distribuzione di, X

Calcoliamo valore atteso e varianza

$$\begin{array}{rcl} \mu & = & E(X_i) = \sum_{x \in S_X} x P(X=x) \\ & = & (-1)\frac{1}{8} + 0\frac{1}{8} + 1\frac{2}{8} + 2\frac{3}{8} + 3\frac{1}{8} \\ & = & 1.25 \\ \sigma^2 & = & V(X_i) = \sum_{x \in S_X} x^2 P(X=x) - \mu^2 \\ & = & \left((-1)^2 \frac{1}{8} + 0^2 \frac{1}{8} + 1^2 \frac{2}{8} + 2^2 \frac{3}{8} + 3^2 \frac{1}{8} \right) - (1.25)^2 \\ & = & 1.438 \end{array}$$

E in virtù del TLC

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1,...,X_n$, n=92 VC IID, tc $E(X_i)=\mu=1.25$ e $V(X_i)=\sigma^2=1.438, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

$$egin{array}{lll} ar{X} & \sim & N(\mu,\sigma^2/n) \\ & \sim & N\left(1.25,rac{1.438}{92}
ight) \\ & \sim & N(1.25,0.01562) \end{array}$$

$$P(1 < \bar{X} \le 1.4) = P\left(\frac{1 - 1.25}{\sqrt{0.01562}} < \frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \le \frac{1.4 - 1.25}{\sqrt{0.01562}}\right)$$

$$\begin{array}{ll} = & P \left(-2 < Z \leq 1.2 \right) \\ = & \Phi(1.2) - \Phi(-2) \\ = & \Phi(1.2) - (1 - \Phi(2)) \\ = & 0.8849 - (1 - 0.9772) \\ = & 0.8621 \end{array}$$

Bernoulli: Somma, S_n

Si abbia l'urna

4 biglietti con $\boxed{0}$, 6 biglietti con $\boxed{1}$

Si effettuano 100 estrazioni con reimmissione (ECR). Calcolare la probabilità che la somma delle 100 estrazioni sia compresa tra 55 e 70.

Soluzione

$$\begin{array}{rcl} X_i & \sim & \mathrm{Ber}(\pi) \\ & \sim & \mathrm{Ber}(0.6) \\ \\ \pi & = & P(X_i=1) = \frac{6}{10} = 0.6 \\ E(X_i) & = & \pi = 0.6 \\ V(X_i) & = & \pi(1-\pi) = 0.24 \end{array}$$

Teorema del Limite Centrale (somma di Bernoulli)

Siano $X_1, \! ..., \! X_n, \, n=100$ VC IID, t
c $X_i \sim \mathrm{Ber}(\pi=0.6), \forall i,$ posto:

$$S_n = X_1 + \dots + X_n$$

$$\begin{array}{lll} S_n & \underset{a}{\sim} & N(n\pi, n\pi(1-\pi)) \\ & \sim & N(100 \cdot 0.6, 100 \cdot 0.6 \cdot (1-0.6)) \\ & \sim & N(60, 24) \end{array}$$

$$\begin{split} P(55 < S_n \leq 70) &= P\left(\frac{55 - 60}{\sqrt{24}} < \frac{S_n - n\pi}{\sqrt{n\pi(1 - \pi)}} \leq \frac{70 - 60}{\sqrt{24}}\right) \\ &= P\left(-1.02 < Z \leq 2.04\right) \end{split}$$

$$\begin{array}{ll} = & \Phi(2.04) - \Phi(-1.02) \\ = & \Phi(2.04) - (1 - \Phi(1.02)) \\ = & 0.9793 - (1 - 0.8461) \\ = & 0.8254 \end{array}$$

Bernoulli: Proporzione, $\hat{\pi}$

Si abbia l'urna

4 biglietti con $\boxed{0}$, 6 biglietti con $\boxed{1}$

Si effettuano 81 estrazioni con reimmissione (ECR). Calcolare la probabilità che la proporzione di $\lfloor 1 \rfloor$, nelle 81 estrazioni, sia compresa tra 0.6 e 0.65.

Soluzione

$$\begin{array}{rcl} X_i & \sim & \mathrm{Ber}(\pi) \\ & \sim & \mathrm{Ber}(0.6) \\ \\ \pi & = & P(X_i=1) = \frac{6}{10} = 0.6 \\ E(X_i) & = & \pi = 0.6 \\ V(X_i) & = & \pi(1-\pi) = 0.24 \end{array}$$

Teorema del Limite Centrale (proporzione)

Siano $X_1,...,X_n, n=81$ VC IID, to $X_i \sim \mathrm{Ber}(\pi=0.6), \forall i,$ posto:

$$\hat{\pi} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$$

$$\begin{split} \hat{\pi} & & \sim \\ & \sim \\ & \sim \\ & N \left(0.6, \frac{0.6 \cdot (1 - 0.6))}{81} \right) \\ & \sim \\ & \sim \\ & N(0.6, 0.002963) \end{split}$$

$$\begin{array}{lcl} P(0.6 < \hat{\pi} \leq 0.65) & = & P\left(\frac{0.6 - 0.6}{\sqrt{0.002963}} < \frac{\hat{\pi} - \pi}{\sqrt{\pi(1 - \pi)/n}} \leq \frac{0.65 - 0.6}{\sqrt{0.002963}}\right) \\ & = & P\left(0 < Z \leq 0.92\right) \end{array}$$

$$= \quad \Phi(0.92) - \Phi(0)$$

= $\quad 0.8212 - 0.5$
= $\quad 0.3212$

2 Urne: Proporzione, $\hat{\pi}$

Siano date due urne:

- l'urna A -1 1 2 e
- l'urna B $\boxed{0}$ $\boxed{0}$ $\boxed{1}$

L'esperimento casuale consiste nell'estrarre con reimmissione un biglietto da ogni urna e sommare gli esiti. Sia X_i la variabile casuale "somma dei due esiti",

$$X_i = X_{A;i} + X_{B;i}.$$

Sia Y_i la variabile casuale "CONTA gli esiti $X_i>0$ ". Si ripete l'esperimento n=81 volte: $i=1,\ldots,81$.

Qual è la probabilità (approssimata) che che la proporzione di numeri maggiori di 0 negli 81 esperimenti sia maggiore di 0.68?

Soluzione

E ricaviamo la distribuzione di, X

$$\begin{split} \frac{X \mid -1 \quad 0 \quad 1 \quad 2 \quad 3}{P(X) \mid \frac{2}{9} \quad \frac{1}{9} \quad \frac{2}{9} \quad \frac{3}{9} \quad \frac{1}{9}} \\ P(X_i > 0) &= \frac{2}{9} + \frac{3}{9} + \frac{1}{9} = \frac{6}{9} = \frac{2}{3} = P(Y_i = 1) = \pi. \\ E(Y) &= \pi = \frac{2}{3} \\ V(Y) &= \pi \ (1 - \pi) = \frac{2}{3} \ \left(1 - \frac{2}{3}\right) = \frac{2}{9}. \end{split}$$

Per il TLC si ha

Teorema del Limite Centrale (proporzione)

Siano $X_1,...,X_n, n=81$ VC IID, to $X_i \sim \text{Ber}(\pi=0.6667), \forall i, \text{ posto:}$

$$\hat{\pi} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$$

allora:

$$\begin{split} \hat{\pi} & \; & \sim \\ & \sim \\ & \sim \\ & N \left(0.6667, \frac{0.6667 \cdot (1 - 0.6667))}{81} \right) \\ & \sim \\ & \sim \\ & N (0.6667, 0.002743) \end{split}$$

$$\begin{split} P(\hat{\pi} > 0.68) &= P\left(\frac{\hat{\pi} - \pi}{\sqrt{\pi(1 - \pi)/n}} > \frac{0.68 - 0.6667}{\sqrt{0.002743}}\right) \\ &= P\left(Z > 0.25\right) \\ &= 1 - P(Z < 0.25) \\ &= 1 - \Phi(0.25) \\ &= 0.4013 \end{split}$$

Poisson: Somma, S_n

In una azienda, che lavora a ciclo continuo, si sono osservati 39 problemi durante l'ultimo semestre. Si supponga che i problemi settimanali siano indipendenti tra loro e si distribuiscano secondo una Poisson(λ). Calcolare la probabilità che il totale dei problemi rilevanti del prossimo anno sia compreso tra 75 e 80.

Soluzione

$$\begin{array}{lcl} X_i & \sim & \mathrm{Poisson}(\lambda) \\ E(X_i) & = & \lambda = \frac{\# \text{ problemi semestre}}{\# \text{ settimane semestre}} = \frac{39}{26} = 1.5 \\ V(X_i) & = & \lambda = 1.5 \end{array}$$

Teorema del Limite Centrale (somma di Poisson)

Siano $X_1, \! ..., \! X_n, \, n=52$ VC IID, t
c $X_i \sim \mathrm{Pois}(\lambda=1.5), \forall i,$ posto:

$$S_n = X_1 + \dots + X_n$$

allora:

$$\begin{array}{ccc} S_n & \underset{a}{\sim} & N(n\lambda,n\lambda) \\ & \sim & N(52\cdot 1.5,52\cdot 1.5) \\ & \sim & N(78,78) \end{array}$$

$$\begin{split} P(75 < \bar{X} \leq 80) &= P\left(\frac{75 - 78}{\sqrt{78}} < \frac{\bar{X} - n\lambda}{\sqrt{n\lambda}} \leq \frac{80 - 78}{\sqrt{78}}\right) \\ &= P\left(-0.34 < Z \leq 0.23\right) \\ &= \Phi(0.23) - \Phi(-0.34) \\ &= \Phi(0.23) - (1 - \Phi(0.34)) \\ &= 0.591 - (1 - 0.6331) \\ &= 0.2241 \end{split}$$

Poisson: Media, \bar{X}

Siano X_1, \dots, X_{49} VC iid secondo una Poisson(1.5). Calcolare la probabilità che la media delle 49 VC sia compresa tra 1.4 e 2.

Soluzione

$$\begin{array}{lcl} X_i & \sim & \mathrm{Poisson}(\lambda) \sim \mathrm{Poisson}(1.5) \\ E(X_i) & = & \lambda = 1.5 \\ V(X_i) & = & \lambda = 1.5 \end{array}$$

Teorema del Limite Centrale (somma di Poisson)

Siano $X_1,...,X_n, n=49$ VC IID, t
c $X_i \sim \operatorname{Pois}(\lambda=1.5), \forall i,$ posto:

$$S_n = X_1 + \ldots + X_n$$

$$S_n \quad {\sim}_a \quad N(n\lambda, n\lambda)$$

$$\sim \quad N(49 \cdot 1.5, 49 \cdot 1.5)$$

$$\sim \quad N(73.5, 73.5)$$

$$P(1.4 < \bar{X} \le 2) = P\left(\frac{1.4 - 73.5}{\sqrt{73.5}} < \frac{\bar{X} - n\lambda}{\sqrt{n\lambda}} \le \frac{2 - 73.5}{\sqrt{73.5}}\right)$$

$$= P(-8.41 < Z \le -8.34)$$

$$= \Phi(-8.34) - \Phi(-8.41)$$

$$= (1 - \Phi(8.34)) - (1 - \Phi(8.41))$$

$$= (1 - 1) - (1 - 1)$$

$$= 0$$

Poisson: Somma, S_n

Esercizio particolare. In Emilia-Romagna il numero di morti per incidenti sul lavoro per settimana è una $VC\ X \sim Poisson(2.3)$. Qual è la probabilità che il numero di morti in un anno sia minore di 100?

Soluzione

$$\begin{array}{rcl} n & = & 52 & \text{numero settimane in un anno} \\ S_n & = & X_1 + \dots + X_n \\ X_i & \sim & \text{Poisson}(\lambda) \sim \text{Poisson}(2.3) \\ E(X_i) & = & \lambda = 2.3 \\ V(X_i) & = & \lambda = 2.3 \end{array}$$

Teorema del Limite Centrale (somma di Poisson)

Siano $X_1, ..., X_n, \ n = 52$ VC IID, t
c $X_i \sim \operatorname{Pois}(\lambda = 2.3), \forall i,$ posto:

$$S_n = X_1 + \dots + X_n$$

$$S_n \quad \underset{a}{\sim} \quad N(n\lambda, n\lambda)$$

$$\sim \quad N(52 \cdot 2.3, 52 \cdot 2.3)$$

$$\sim \quad N(119.6, 119.6)$$

$$\begin{split} P(\bar{X} < 100) &= P\left(\frac{\bar{X} - n\lambda}{\sqrt{n\lambda}} < \frac{100 - 119.6}{\sqrt{119.6}}\right) \\ &= P\left(Z < -1.79\right) \\ &= 1 - \Phi(1.79) \\ &= 0.0367 \end{split}$$

Proporzione – Poisson, $\hat{\pi}$

ESERCIZIO COMPLESSO. Il numero di errori per foglio scritto è una VC, EF_i . Sia $EF_i \sim Pois(1)$.

In una tesi di 80 pagine, qual è la probabilità (approssimata) che la proporzione di pagine (facciate) SENZA ERRORI sia maggiore di 0.7?

Soluzione

La VC "numero di errori per pagina", EP_i , sarà $EP_i \sim \text{Pois}(0.5)$ per la proprietà riproduttiva. Sia X_i la VC binaria $X_i=1$ se $EP_i=0$: $i=1,\ldots,80$.

$$P(EP_i = 0) = \frac{(0.5)^0}{0!} \ e^{-0.5} = 0.6065 = P(X_i = 1) = \pi.$$

$$E(X_i) = \pi = 0.6065$$

 $V(X_i) = \pi (1 - \pi) = 0.6065(1 - 0.6065) = 0.2387$

Teorema del Limite Centrale (proporzione)

Siano $X_1, ..., X_n, \, n = 80$ VC IID, t
c $X_i \sim \mathrm{Ber}(\pi = 0.6065), \forall i,$ posto:

$$\hat{\pi} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

$$\begin{array}{lll} \hat{\pi} & \sim & N(\pi,\pi(1-\pi)/n) \\ & \sim & N\left(0.6065,\frac{0.6065\cdot(1-0.6065))}{80}\right) \\ & \sim & N(0.6065,0.002983) \end{array}$$

$$\begin{split} P(\hat{\pi} > 0.7) &= P\left(\frac{\hat{\pi} - \pi}{\sqrt{\pi(1 - \pi)/n}} > \frac{0.7 - 0.6065}{\sqrt{0.002983}}\right) \\ &= P\left(Z > 1.71\right) \\ &= 1 - P(Z < 1.71) \\ &= 1 - \Phi(1.71) \\ &= 0.0436 \end{split}$$

Esercizi su Test e Intervalli di Confidenza

t-Test a due campioni

In uno studio sull'efficacia della pubblicità si è proceduto facendo vedere lo spot A ad un campione di 10 individui (gruppo A) e lo spot B ad un secondo campione di 20 individui (gruppo B). Si è quindi misurato il gradimento con opportuna scala. Il gradimento medio del gruppo A risulta pari a 95 con una deviazione standard pari a 5.4 mentre il gradimento medio del gruppo B risulta pari a 92 con una deviazione standard pari a 5.9. Verificare l'ipotesi, al livello di significatività dell'1%, che il gradimento medio dei due spot sia uguale, contro l'alternativa che lo spot A sia mediamente più gradito di quello B. Si assuma l'ipotesi di eterogeneità delle varianze dei due gruppi, anche se i numeri non sembrano giustificarla.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu_{\mathrm{A}} = \mu_{\mathrm{B}} \\ H_1: \mu_{\mathrm{A}} > \mu_{\mathrm{B}} \end{cases}$$

 $\boxed{\mathrm{B}}$ SCELTA E CALCOLO STATISTICA-TEST, T

$$S_{\rm A}^2 = \frac{n_{\rm A}}{n_{\rm A}-1} \hat{\sigma}_{\rm A}^2 = \frac{10}{10-1} 5.4^2 = 32.4 \qquad S_{\rm B}^2 = \frac{n_{\rm B}}{n_{\rm B}-1} \hat{\sigma}_{\rm B}^2 = \frac{20}{20-1} 5.9^2 = 36.64$$

$$\begin{split} \frac{\hat{\mu}_{\text{ A}} - \hat{\mu}_{\text{ B}}}{\sqrt{\frac{S_{\text{A}}^2}{n_{\text{ A}}} + \frac{S_{\text{B}}^2}{n_{\text{ B}}}}} & \sim & t_{n_{\text{ A}} + n_{\text{ B}} - 2} \\ t_{\text{obs}} & = & \frac{(95 - 92)}{\sqrt{\frac{32.4}{10} + \frac{36.64}{20}}} = 1.332 \,. \end{split}$$

 $\boxed{\text{C}}$ DECISIONE Dalle tavole si ha $t_{(10+20-2);0.01} = 2.467$.

$$t_{\rm obs} = 1.332 < t_{28;\,0.01} = 2.467$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 1 %

Graficamente

Un campione: IdC e z-test

Un'indagine in 17 aziende, che producono lo stesso prodotto, ha rilevato che il costo per unità è pari a euro 30.00 in media con una deviazione standard pari a euro 1.50.

1. Determinare un intervallo di confidenza al 99% per il costo medio per unità.

Soluzione
$$S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{17}{16}} \cdot 1.546 = 1.5938$$

$$Idc: \qquad \hat{\mu} \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}}$$

$$30 \pm 2.921 \times \frac{1.5462}{\sqrt{17}}$$

$$30 \pm 2.921 \times 0.3865$$

$$[28.87, 31.13]$$

2. L'indagine dell'anno precedente, condotta su un campione molto pi'u numeroso, mostrava un costo medio pari a euro 29.00 con una deviazione standard pari a 2.00 euro. Verificare l'ipotesi che il costo medio del prodotto osservato nell'anno corrente sia equivalente a quello osservato nell'anno precedente contro l'alternativa di un aumento del costo. Specificare in modo esplicito il tipo di test utilizzato, l'ipotesi nulla e l'ipotesi alternativa e trarre le opportune conclusioni.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu = \mu_0 = 29 \\ H_1: \mu > \mu_0 = 29 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, $Z \sigma^2$ di P è nota: \Rightarrow z-Test.

$$\begin{split} \frac{\hat{\mu} - \mu_0}{\sigma/\sqrt{n}} &\sim & N(0,1) \\ z_{\rm obs} &= & \frac{(30-29)}{2/\sqrt{17}} = 2.062 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $z_{0.05}=1.645.$

$$z_{\rm obs} = 2.062 > z_{0.05} = 1.645$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Un campione: IdC e t-test

Sia X l'età dei parlamentari italiani. Si sceglie un campione di 20 parlamentari italiani e si ottiene una media di 48.5 anni con una deviazione standard pari a 10.6 anni.

1. Determinare un intervallo di confidenza al 95% per l'età media dei politici italiani.

Soluzione

$$S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{20}{19}} \cdot 10.88 = 11.1579$$

$$\begin{split} Idc: \qquad \hat{\mu} \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}} \\ 48.5 \pm 2.093 \times \frac{10.8754}{\sqrt{20}} \\ 48.5 \pm 2.093 \times 2.495 \\ [43.28, 53.72] \end{split}$$

2. è noto che l'età media dei politici europei è di 55 anni. Verificare al livello di significatività dell'1% l'ipotesi che l'età media dei politici italiani sia uguale a quella dei politici europei contro l'alternativa che sia minore.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu = \mu_0 = 55 \\ H_1: \mu < \mu_0 = 55 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, T σ^2 di P non è nota: \Rightarrow t-Test.

$$S = \sqrt{\frac{n}{n-1}} \ \hat{\sigma} = \sqrt{\frac{20}{20-1}} \times 10.6 = 10.88$$

$$\begin{split} \frac{\hat{\mu} - \mu_0}{S/\sqrt{n}} &\sim & t_{n-1} \\ t_{\rm obs} &= & \frac{(48.5 - 55)}{10.88/\sqrt{20}} = -2.673 \,. \end{split}$$

 $\boxed{\mathbb{C}}$ DECISIONE Dalle tavole si ha $t_{(20-1);\,0.01}=-2.539.$

$$t_{\rm obs} = -2.673 < t_{19;\,0.01} = -2.539$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 1 %

Graficamente

Un campione: IdC e t-test

Per accertare lo stato di preparazione dei dipendenti di una struttura pubblica si è estratto un campione di 26 impiegati. A ogni impiegato è stato somministrato un test, con punteggio da 0 a 100, per accertare il suo grado di competenza, X. Il valore medio ottenuto è pari a 78 con una deviazione standard pari a 12.

1. Determinare un intervallo di confidenza al 95% per $\mu = E(X)$.

Soluzione
$$S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{26}{25}} \cdot 12.24 = 12.48$$

$$Idc: \qquad \hat{\mu} \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}}$$

$$78 \pm 2.06 \times \frac{12.2376}{\sqrt{26}}$$

$$78 \pm 2.06 \times 2.448$$

$$[72.96, 83.04]$$

2. Si supponga che il punteggio medio del test in un ampio studio sulla popolazione di impiegati, sia pari a 72. Con un livello di significatività uguale a 0.01 si può ritenere che il valore medio osservato nel campione sia diverso da 72?

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu = \mu_0 = 72 \\ H_1: \mu \neq \mu_0 = 72 \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2,$ anziché (

 $\overline{\text{B}}$ SCELTA E CALCOLO STATISTICA-TEST, $T \sigma^2$ di P non è nota: \Rightarrow t-Test.

$$S = \sqrt{\frac{n}{n-1}} \ \hat{\sigma} = \sqrt{\frac{26}{26-1}} \times 12 = 12.24$$

$$\begin{split} \frac{\hat{\mu} - \mu_0}{S/\sqrt{n}} &\sim & t_{n-1} \\ t_{\rm obs} &= & \frac{(78-72)}{12.24/\sqrt{26}} = 2.5 \,. \end{split}$$

 $\boxed{\mathbb{C}}$ DECISIONE Dalle tavole si ha $t_{(26-1);\,0.005}=2.787.$

$$t_{\rm obs} = 2.5 < t_{25;\,0.005} = 2.787$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 1 %

Il $p_{\rm value}$ è $P(|T_{n-1}|>|t_{\rm obs}|)=2P(T_{n-1}>|t_{\rm obs}|)=2P(T_{n-1}>|2.5|)=0.01934$

Due campioni: proporzione

Per verificare se ci sia differenza di genere sulla riforma costituzionale del governo Renzi, si è condotta una indagine su 120 donne e 120 uomini. Dalle interviste è emerso che 60 dei 120 uomini si siano dichiarati favorevoli, mentre 30 delle 120 donne si siano dichiarate favorevoli (numeri di comodo per avere pochi decimali). Verificare, al livello di significatività del 5%, l'ipotesi che non ci sia differenza tra uomini e donne, contro l'alternativa che le donne siano meno favorevoli alla riforma costituzionale. Specificare l'ipotesi nulla e l'ipotesi alternativa, il tipo di test da utilizzare, e le conclusioni.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \pi_{\mathrm{A}} = \pi_{\mathrm{B}} \\ H_1: \pi_{\mathrm{A}} > \pi_{\mathrm{B}} \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, Z

$$\hat{\pi}_{\mathrm{A}} = \frac{s_{\mathrm{A}}}{n_{\mathrm{A}}} = \frac{60}{120} = 0.5$$
 $\hat{\pi}_{\mathrm{B}} = \frac{s_{\mathrm{B}}}{n_{\mathrm{B}}} = \frac{30}{120} = 0.25$

Calcoliamo la proporzione comune sotto H_0

$$\pi_C = \frac{s_A + s_B}{n_A + n_B} = \frac{90}{240} = 0.375$$

$$\begin{split} \frac{\hat{\pi}_{\,\,\mathrm{A}} - \hat{\pi}_{\,\,\mathrm{B}}}{\sqrt{\frac{\pi_C(1-\pi_C)}{n_{\,\,\mathrm{A}}} + \frac{\pi_C(1-\pi_C)}{n_{\,\,\mathrm{B}}}}} \quad \sim \quad N(0,1) \\ z_{\mathrm{obs}} \quad = \quad \frac{\left(0.5 - 0.25\right)}{\sqrt{\frac{0.375(1-0.375)}{120} + \frac{0.375(1-0.375)}{120}}} = 4 \,. \end{split}$$

 \fbox{C} DECISIONE Dalle tavole si ha $z_{0.05}=1.645.$

$$z_{\rm obs} = 4 > z_{0.05} = 1.645$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Graficamente

Test del Chi-quadro per indipendenza

Esercizio 1

In uno studio sulle preferenze di gusti di gelato è stato chiesto ad un campione di 200 persone, divise tra 100 uomini e 100 donne, di esprimere la propria preferenza tra quattro gusti di gelato (Cioccolato, Fragola, Vaniglia e Limone).

Qui di seguito è riportata la tavola di contingenza:

	Cioccolato	Fragola	Vaniglia	Limone	Tot
\mathbf{Uomo}	25	15	30	40	110
Donna	20	10	40	30	100
\mathbf{Tot}	45	25	70	70	210

Testare al 5% l'ipotesi che vi sia indipendenza tra genere e preferenza tra le profumazioni.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\Big\{H_0: \pi_{ij} = \pi_{i\bullet}\pi_{\bullet j}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, χ^2 Si usa il test $\chi^2,$ si crea la tabella delle frequenze teoriche

$$n_{ij}^* = \frac{n_{i\bullet}n_{\bullet j}}{n}$$

La tabella delle distanze

$$\frac{(n_{ij}-n_{ij}^*)^2}{n_{ij}^*}$$

	Cioccolato	Fragola	Vaniglia	Limone	Tot
\mathbf{Uomo}	0.087	0.277	1.212	0.303	0
Donna	0.095	0.305	1.333	0.333	0
Tot	0.000	0.000	0.000	0.000	0

Esercizio 2

In uno studio sulle preferenze di bevande è stato chiesto ad un campione di 180 persone di esprimere la propria preferenza tra tre tipi di bevande (Acqua, Succo d'arancia e Bibita gassata). Le persone sono state suddivise in due gruppi, chi mangia regolarmente frutta e chi no.

Qui di seguito è riportata la tavola di contingenza:

	Acqua	Succo d'arancia	Bibita gassata	Tot
consuma frutta	40	30	20	90
non consuma frutta	30	25	35	90
Tot	70	55	55	180

Testare all'1% l'ipotesi che vi sia indipendenza tra consumo abituale di frutta e preferenza di bevande.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\Big\{H_0: \pi_{ij} = \pi_{i\bullet}\pi_{\bullet j}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, χ^2 Si usa il test $\chi^2,$ si crea la tabella delle frequenze teoriche

$$n_{ij}^* = \frac{n_{i\bullet}n_{\bullet j}}{n}$$

La tabella delle distanze

$$\frac{(n_{ij}-n_{ij}^*)^2}{n_{ij}^*}$$

	Acqua	Succo d'arancia	Bibita gassata	Tot
consuma frutta	0.714	0.227	2.045	0
non consuma frutta	0.714	0.227	2.045	0
Tot	0.000	0.000	0.000	0

C DECISIONE

$$\chi^2_{obs} = 5.974$$

i gdl

$$(3-1)\times(4-1)=6$$

 $\alpha=0.01$ e quindi $\chi^2_{1,0.01}=16.81$ Essendo

$$\chi^2_{obs} = 5.974 < \chi^2_{1,0.01} = 16.81$$

allora non rifiuto ${\cal H}_0$ al
lds dell'1 percento.

Graficamente

Il $p_{\rm value}$ è

$$P(\chi_6^2 > \chi_{\text{obs}}^2) = 0.4261$$

Т

Esercizio 3

In uno studio sulle opinioni riguardo al tema del "Matrimonio tra persone dello stesso sesso" è stato chiesto ad un campione di 180 persone di esprimere la propria opinione scegliendo tra tre possibilità (Sostenitore, Neutrale, Contrario). Le persone sono state suddivise in due gruppi, "Elettori di Destra" e "Elettori di Sinistra".

Qui di seguito è riportata la tavola di contingenza:

	Sostenitore	Neutrale	Contrario	Tot
Elettori di Destra	40	10	35	85
Elettori di Sinistra	30	25	20	75
Tot	70	35	55	160

Testare al 5% l'ipotesi che vi sia indipendenza tra l'opinione riguardo al tema "Matrimonio tra persone dello stesso sesso" e l'appartenenza ai gruppi "Elettori di Destra" e "Elettori di Sinistra".

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\Big\{H_0: \pi_{ij} = \pi_{i\bullet}\pi_{\bullet j}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, χ^2 Si usa il test $\chi^2,$ si crea la tabella delle frequenze teoriche

$$n_{ij}^* = \frac{n_{i\bullet}n_{\bullet j}}{n}$$

La tabella delle distanze

$$\frac{(n_{ij}-n_{ij}^*)^2}{n_{ij}^*}$$

	Sostenitore	Neutrale	Contrario	Tot
Elettori di Destra	0.213	3.972	1.144	0
Elettori di Sinistra	0.241	4.501	1.296	0
Tot	0.000	0.000	0.000	0

C DECISIONE

$$\chi^2_{obs} = 11.37$$

i gdl

6.4. ESERCIZIO 4

Esercizio 4

In uno studio sociologico sulle preferenze di attività ricreative è stato chiesto ad un campione di 270 persone di esprimere la propria preferenza tra tre tipi di attività (Sport, Lettura e Arte). Le persone sono state suddivise in tre gruppi, "Giovani", "Adulti" e "Anziani".

Qui di seguito è riportata la tavola di contingenza:

	Sport	Lettura	Arte	Tot
Giovani	50	40	20	110
Adulti	30	60	25	115
Anziani	20	10	40	70
Tot	100	110	85	295

Testare al 5% l'ipotesi che vi sia indipendenza tra la preferenza per le attività ricreative e l'età.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\Big\{H_0: \pi_{ij} = \pi_{i\bullet}\pi_{\bullet j}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, χ^2 Si usa il test $\chi^2,$ si crea la tabella delle frequenze teoriche

$$n_{ij}^* = \frac{n_{i\bullet}n_{\bullet j}}{n}$$

La tabella delle distanze

$$\frac{(n_{ij}-n_{ij}^*)^2}{n_{ij}^*}$$

	Sport	Lettura	Arte	Tot
Giovani	4.334	0.025	4.315	0
Adulti	2.070	6.834	1.997	0
Anziani	0.586	9.933	19.497	0
Tot	0.000	0.000	0.000	0

C DECISIONE

$$\chi^2_{obs} = 49.59$$

i gdl

$$(4-1) \times (4-1) = 9$$

 $\alpha=0.05$ e quindi $\chi^2_{1,0.05}=16.92$

Essendo

$$\chi^2_{obs} = 49.59 > \chi^2_{1,0.05} = 16.92$$

allora rifiuto H_0 al lds dell'5 percento.

Graficamente

6.4. ESERCIZIO 4 103

Il $p_{\rm value}$ è $P(\chi_9^2>\chi_{\rm obs}^2)=0.0000001286$

Test del Chi-quadro per conformità

7

Esercizio 1

L'Associazione Bar dell'Emilia Romagna ha condotto un'indagine sulle preferenze delle bevande dei clienti dei bar della regione. Durante una settimana, sono stati intervistati 250 clienti di vari bar della zona. L'associazione è interessata a capire se le preferenze dei clienti per le bevande differiscono dalla media nazionale.

Qui di seguito è riportata la tabella delle preferenze dei clienti dei bar dell'Emilia Romagna:

	Caffè	Tè	Altro	Totale
Dati Associazione Media Nazionale		$88 \\ 30\%$	$\frac{62}{20\%}$	$250 \\ 100\%$

Testare l'ipotesi che le preferenze dei clienti dei bar dell'Emilia Romagna per le bevande differiscano dalla media nazionale.

Soluzione

A Formulazione delle ipotesi

$$\{H_0: \pi_{\text{ Dati Associazione }} = \pi_{\text{ Media Nazionale }}, \ \, \forall j$$

B Scelta e calcolo della statistica test.

Si tratta di un test chi quadro di conformità.

$$n_j^* = n \cdot \pi^*_{\text{Media Nazionale },j}$$

	Caffè	Tè	Altro	Tot
Dati Associazione	100.0	88.000	62.00	250.00
Media Nazionale	0.5	0.300	0.20	1.00
n_j^* χ^2	125.0	75.000	50.00	250.00
χ^2	5.0	2.253	2.88	10.13

C Decisione

Îl chi quadro osservato è 10.13 è maggiore di $\chi^2_{2;0.05}=5.99,$ e quindi **rifiuto** H_0 , al livello di significatività del 5%.

Graficamente

Esercizio 2

L'Associazione dei Ristoranti dell'Emilia Romagna ha condotto un'indagine sulle preferenze culinarie dei clienti dei ristoranti della regione. Durante una settimana, sono stati intervistati 300 clienti di vari ristoranti. L'associazione è interessata a capire se le preferenze dei clienti per le tipologie di cucina offerte differiscono dalla media nazionale.

Qui di seguito è riportata la tabella delle preferenze dei clienti dei ristoranti dell'Emilia Romagna e le percentuali nazionali:

	Italiana	Giapponese	Messicana	Mediterranea	Vegetariana	Totale
Dati Associazione	147	74	15	59	6	301
Media Nazionale	40%	15%	5%	35%	5%	100%

Testare l'ipotesi che le preferenze dei clienti dei bar dell'Emilia Romagna per le bevande differiscano dalla media nazionale.

Soluzione

A Formulazione delle ipotesi

$$\{H_0: \pi_{\text{ Dati Associazione }} = \pi_{\text{ Media Nazionale }}, \ \, \forall j$$

B Scelta e calcolo della statistica test. Si tratta di un test chi quadro di conformità.

$$n_j^* = n \cdot \pi^*_{\text{Media Nazionale },j}$$

107 7.2. ESERCIZIO 2

	Italiana	Giapponese	Messicana	Mediterranea	Vegetariana	Tot
Dati Associazione	147.000	74.00	15.0000	59.00	6.000	301.00
Media Nazionale	0.400	0.15	0.0500	0.35	0.050	1.00
n_{i}^{*}	120.400	45.15	15.0500	105.35	15.050	301.00
χ^2	5.877	18.43	0.0002	20.39	5.442	50.15

C Decisione Il chi quadro osservato è 50.15 è maggiore di $\chi^2_{4;0.05}=9.488,$ e quindi **rifiuto** $H_0,$ al livello di significatività del 5%.

 $P(\chi_4^2 > \chi_{\rm obs}^2) = 0.0000000003367$

Esericizi sulla Regressione

Esercizio (Dati maternità USA)

I dati

Il dataset di dimensioni n=51 è relativo ai 50 stati e al Distretto di Columbia negli Stati Uniti. Le variabili sono

- y = il tasso di natalità dell'anno 2002 per 1000 femmine di età compresa tra 15 e 17 anni
- x = il tasso di povertà, che rappresenta la percentuale della popolazione dello stato che vive in famiglie con redditi al di sotto della soglia di povertà definita dal governo federale.

La matrice dei dati

i	Stato	Tasso di povertà	Tasso di natalità 15-17
1	Alabama	20.1	31.5
2	Alaska	7.1	18.9
3	Arizona	16.1	35.0
4	Arkansas	14.9	31.6
5	California	16.7	22.6
6	Colorado	8.8	26.2
7	Connecticut	9.7	14.1
8	Delaware	10.3	24.7
9	District of Columbia	22.0	44.8
10	Florida	16.2	23.2
11	Georgia	12.1	31.4
12	Hawaii	10.3	17.7
13	Idaho	14.5	18.4
14	Illinois	12.4	23.4
15	Indiana	9.6	22.6
16	Iowa	12.2	16.4
17	Kansas	10.8	21.4
18	Kentucky	14.7	26.5
19	Louisiana	19.7	31.7
20	Maine	11.2	11.9
21	Maryland	10.1	20.0
22	Massachusetts	11.0	12.5
23	Michigan	12.2	18.0
24	Minnesota	9.2	14.2
25	Mississippi	23.5	37.6
26	Missouri	9.4	22.2
27	Montana	15.3	17.8
28	Nebraska	9.6	18.3
29	Nevada	11.1	28.0
30	New Hampshire	5.3	8.1
31	New Jersey	7.8	14.7
32	New Mexico	25.3	37.8
33	New York	16.5	15.7
34	North Carolina	12.6	28.6
35	North Dakota	12.0	11.7
36	Ohio	11.5	20.1
37	Oklahoma	17.1	30.1
38	Oregon	11.2	18.2
39	Pennsylvania	12.2	17.2
40	Rhode Island	10.6	19.6
41	South Carolina	19.9	29.2
42	South Dakota	14.5	17.3
43	Tennessee	15.5	28.2
44	Texas	17.4	38.2
45	Utah	8.4	17.8
46	Vermont	10.3	10.4

8.1. ESERCIZIO (DATI MATERNITÀ USA)

111

La rappresentazione dei dati

Tutta l'informazione sul modello di regressione lineare semplice è contenuta nelle seguenti statistiche

$$\sum_{i=1}^{n} x_i = 669.00, \quad \sum_{i=1}^{n} y_i = 1 \ 136.40, \quad \sum_{i=1}^{n} x_i^2 = 9 \ 690.44, \quad \sum_{i=1}^{n} y_i^2 = 28 \ 556.56, \quad \sum_{i=1}^{n} x_i y_i = 16 \ 163.14$$

o, equivalentemente, le medie

$$\frac{1}{51}\sum_{i=1}^{n}x_{i}=13.1176,\ \frac{1}{51}\sum_{i=1}^{n}y_{i}=22.2824,\ \frac{1}{51}\sum_{i=1}^{n}x_{i}^{2}=190.0086,\ \frac{1}{51}\sum_{i=1}^{n}y_{i}^{2}=559.9325,\ \frac{1}{51}\sum_{i=1}^{n}x_{i}y_{i}=316.9243$$

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i = 13.1176 & \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = 17.936 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i = 22.2824 & \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = 63.4293 \\ \operatorname{cov}(x,y) &= \frac{1}{n} \sum_{i=1}^n x_i y_i - \bar{x} \bar{y} = 24.6323 & r &= \frac{\operatorname{cov}(x,y)}{\hat{\sigma}_X \hat{\sigma}_Y} = 0.7303 \\ \hat{\beta}_1 &= \frac{\operatorname{cov}(x,y)}{\hat{\sigma}_X^2} = 1.3733 & \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} = 4.2673. \\ \hat{\sigma}_\varepsilon^2 &= \hat{\sigma}_Y^2 (1-r^2) = 29.6 & S_\varepsilon^2 &= \frac{n}{n-2} \hat{\sigma}_\varepsilon^2 = 30.8089 \\ \hat{\sigma}_\varepsilon &= \hat{\sigma}_Y \sqrt{(1-r^2)} = 5.4406 & S_\varepsilon &= \sqrt{\frac{n}{n-2}} \hat{\sigma}_\varepsilon = 5.5506 \end{split}$$

Valutare la bontà di adattamento del modello precedente.

Soluzione

$$r = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{24.63}{4.235 \times 7.964} = 0.7303$$

$$r^2 = 0.5333 < 0.75$$

Il modello **non** si adatta bene ai dati.

Soluzione

Fornire una interpretazione dei parametri della retta di regressione.

Soluzione

I parametri della retta di regressione sono β_0 e β_1 . Il primo, β_0 , rappresenta l'intercetta della retta, ovvero il punto in cui la retta interseca l'asse delle ordinate. Il secondo parametro, β_1 , rappresenta la pendenza della retta (chiamato anche coefficiente angolare), ovvero l'incremento verticale corrispondente a un incremento orizzontale unitario e coincide, perciò, con la tangente dell'angolo compreso fra la retta e l'asse delle ascisse.

In questo caso, la variazione percentuale della pressione sistolica, secondo il modello stimato, è dato da

$$Y = 4.2673 + 1.3733X$$

ossia, è composto da un quantitativo fisso di 4.2673 di tasso di natalità delle minorenni in un ipotetico stato a povertà zero (x=0), a cui si aggiunge un incremento di 1.3733 per ogni incremento unitario del tasso di povertà.

113

Soluzione

Determinare il residuo per lo stato del Colorado i = 6 uguale 6, ossia per x = 6.

$$\begin{array}{rcl} \hat{y}_i & = & \hat{\beta}_0 + \hat{\beta}_1 x_i = \\ & = & 4.267 + 1.3733 \times 8.8 = 16.35 \\ \hat{\varepsilon}_i & = & y_i - \hat{y}_i \\ & = & 26.2 - 16.35 = 9.848 \end{array}$$

Verificare al livello di significatività dell'1% ($\alpha=0.05$) l'ipotesi che l'intercetta della retta di regressione sia uguale a zero contro l'alternativa che sia diversa da zero.

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.5333) \times 63.43 \\ & = & 29.6 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{51}{51-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{51}{51-2} \times 29.6 = 30.81 \end{array}$$

E quindi

$$\begin{split} V(\hat{\beta}_0) &= \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2}\right) \\ \widehat{V(\hat{\beta}_0)} &= S_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2}\right) \\ &= 30.81 \times \left(\frac{1}{51} + \frac{13.12^2}{51 \times 17.94}\right) \\ \widehat{SE(\hat{\beta}_0)} &= \sqrt{6.4} \\ &= 2.53 \end{split}$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_0 = 0 \\ H_1: \beta_0 \neq 0 \end{cases}$$

Sic
come H_1 è bilaterale, considereremo $\alpha/2,$ anzich
é α

B SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_0 - \beta_{0;H_0}}{\widehat{SE(\hat{\beta}_0)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(4.267-0)}{2.53} = 1.687 \,. \end{split}$$

 $\boxed{\text{C}}$ DECISIONE Dalle tavole si ha $t_{(51-2);\,0.025}=2.01.$

$$t_{\rm obs} = 1.687 < t_{49:0.025} = 2.01$$

CONCLUSIONE: i dati **sono** coerenti con H_0 al LdS del 2.5%

Graficamente

Il $p_{\rm value}$ è

$$P(|T_{n-2}|>|t_{\rm obs}|) = 2P(T_{n-2}>|t_{\rm obs}|) = 2P(T_{n-2}>|1.6869|) = 0.09799$$

Verificare al livello di significatività del 5% ($\alpha=0.01$) l'ipotesi che la pendenza della retta di regressione sia uguale a 0 contro l'alternativa che sia diversa da 0.

Soluzione

$$\begin{split} \hat{\sigma_{\varepsilon}}^2 &= (1-r^2)\hat{\sigma}_Y^2 \\ &= (1-0.5333) \times 63.43 \\ &= 29.6 \\ S_{\varepsilon}^2 &= \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ &= \frac{51}{51-2}\hat{\sigma_{\varepsilon}}^2 \end{split}$$

8.1. ESERCIZIO (DATI MATERNITÀ USA)

115

$$= \quad \frac{51}{51 - 2} \times 29.6 = 30.81$$

E quindi

$$\begin{split} V(\hat{\beta}_1) &= \frac{\sigma_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ \widehat{V(\hat{\beta}_1)} &= \frac{S_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ &= \frac{30.81}{51 \times 17.94} = 0.0337 \\ \widehat{SE(\hat{\beta}_1)} &= \sqrt{0.0337} \\ &= 0.1836 \end{split}$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 > 0 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_1 - \beta_{1;H_0}}{\widehat{SE(\hat{\beta}_1)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(1.373 - 0)}{0.1836} = 7.481 \,. \end{split}$$

 $\boxed{\mathbb{C}}$ DECISIONE Dalle tavole si ha $t_{(51-2);\,0.01}=2.403.$

$$t_{\rm obs} = 7.481 > t_{49;\,0.01} = 2.403$$

CONCLUSIONE: i dati **non** sono coerenti con H_0 al LdS del 1%

Graficamente

Il
$$p_{\rm value}$$
è
$$P(T_{n-2} > t_{\rm obs}) = P(T_{n-2} > 7.481) = 0.000000000599$$

Un software professionale restituisce un output del genere

```
modello <- lm(formula = birth_rate ~ poverty_rate,data = data_poverty)
summary(modello)</pre>
```

```
##
## Call:
## lm(formula = birth_rate ~ poverty_rate, data = data_poverty)
##
## Residuals:
##
      Min
                1Q Median
                               3Q
                                      Max
## -11.227 -3.655 -0.041
                            2.497
                                   10.515
##
## Coefficients:
                Estimate Std. Error t value
##
                                               Pr(>|t|)
                  4.267
                             2.530
                                       1.69
                                                  0.098 .
## (Intercept)
## poverty_rate
                  1.373
                             0.184
                                      7.48 0.000000012 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.55 on 49 degrees of freedom
## Multiple R-squared: 0.533, Adjusted R-squared: 0.524
## F-statistic:
                 56 on 1 and 49 DF, p-value: 0.0000000119
```

Esercizio 1

Si sono raccolti i seguenti valori per la variabile indipendente X, indice delle importazioni, e la variabile dipendente Y, indice della produzione industriale (dati artificiali).

\overline{i}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
x	102	105	107	108	109	109	110	112	113	115	116	118	119	120	121	122
y	107	108	109	110	111	112	112	116	118	121	123	126	128	130	131	133

a. Calcolare i parametri β_0 e β_1 della retta di regressione in cui Y è spiegata attraverso X.

(Suggerimento: $\bar{x} = 112.875$ 112.875; $\sigma_X = 5.89359$ 5.8936; $\bar{y} = 118.4375$; $\sigma_Y = 8.74620$; $\operatorname{cov}(X,Y) = 50.74219$). NB: ora si danno le somme, le somme dei quadrati e dei prodotti: $\sum_{i=1}^n x_i$, $\sum_{i=1}^n y_i$, $\sum_{i=1}^n y_i$, $\sum_{i=1}^n y_i$, $\sum_{i=1}^n x_i$ y_i .

8.2. ESERCIZIO 1 117

Soluzione

$$\begin{split} \hat{\beta}_1 &= r \frac{\sigma_Y}{\sigma_X} = \frac{\text{cov}(X,Y)}{\sigma_X^2} = \frac{50.7422}{(5.8936)^2} = 1.4609 \\ \hat{\beta}_0 &= \overline{y} - \hat{\beta}_1 \overline{x} = 118.4375 - 1.4609 \times 112.875 = -46.4575. \end{split}$$

b. Valutare la bontà di adattamento del modello precedente.

Soluzione

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X \ \sigma_Y} = \dfrac{50.7422}{5.8936 \times 8.7462} = 0.9844 \\ r^2 & = & (0.9844)^2 = 0.969 \end{array}$$

L'adattamento del modello ai dati è soddisfacente.

c. Rappresentare nel diagramma di dispersione la retta di regressione.

Soluzione

Per disegnare velocemente la retta si individuano nel grafico due punti: (1)il punto medio (\bar{x}, \bar{y}) , che è già noto; e un solo punto "estremo" nel grafico, che può essere x=100 o x=120 (i numeri "tondi" facilitano il calcolo e il disegno). Tramite l'equazione della retta di regressione si stima la coordinata corrispondente:

$$\hat{y} = -46.457 + 1.461 \times 100 = 99.629$$
 per $x = 100$ $OY = 99.629$ $\hat{y} = -46.457 + 1.461 \times 120 = 128.846$ per $x = 120$ $OY = 128.846$.

La "piccola" scala degli assi può portare a disegnare una retta non appropriata; l'ispezione visiva aiuta, in questi casi, meglio di quella numerica a disegnare una "buona" retta di regressione.

d. Fornire una interpretazione dei parametri della retta di regressione.

Soluzione

I parametri della retta di regressione sono β_0 e β_1 . Il primo, β_0 , rappresenta l'intercetta della retta, ovvero il punto in cui la retta interseca l'asse delle ordinate. Il secondo parametro, β_1 , rappresenta la pendenza della retta (chiamato anche coefficiente angolare), ovvero l'incremento verticale corrispondente a un incremento orizzontale unitario e coincide, perciò, con la tangente dell'angolo compreso fra la retta e l'asse delle ascisse.

Quando si chiede di fornire una interpretazione dei parametri della retta di regressione, tuttavia, si intende che il candidato interpreti anche i valori numerici di β_0 e β_1 effettivamente calcolati in precedenza, alla luce del fenomeno descritto da X e Y. In questo caso, l'indice della produzione industriale, secondo il modello stimato, è dato da

$$y = -46.4575 + 1.4609x$$

ossia, è composto da un quantitativo fisso di -46.4575 quando l'indice delle importazione è zero (X=0), un caso molto raro (ma impossibile nel mondo attuale), a cui si aggiungono 1.4609 per ogni unità in più dell'indice delle importazioni.

e. Calcolare un indicatore che sintetizzi l'ordine di grandezza dei residui della retta di regressione.

Soluzione

La media quadratica dei residui della retta di regressione coincide con il RMSE e rappresenta una sintesi della dispersione dei residui intorno alla retta di regressione. Si calcola con la formula:

$$\hat{\sigma}_{\varepsilon} = \sigma_{Y} \ \sqrt{1 - r_{XY}^2} = 8.7462(1 - 0.9844^2) = 1.539$$

f. Prevedere il valore dell'indice industriale per un valore dell'indice delle importazioni pari a 120, ossia x=120.

8.2. ESERCIZIO 1 119

Soluzione

Si determina il valore previsto tramite la retta di regressione:

$$\widehat{Y}_i = -46.4575 + 1.4609 \times 120$$

$$\widehat{y}_{x=120} = 128.8505$$

g. Dal diagramma di dispersione sotto riportato, spiegare se la retta di regressione è adeguata o no a rappresentare il fenomeno.

Soluzione

L'ispezione visiva dei dati potrebbe suggerire anche l'esistenza di una certa NON linearità. Non vi sono punti leva; in ogni caso, la non linearità impone di modellarla prima di cercare i punti leva.

h. Si consideri il diagramma dei residui sotto riportato. Tracciare la retta dei residui. Commentare la loro forma e spiegare se sono indipendenti o presentano ancora una "struttura", un andamento peculiare.

Soluzione

La retta dei residui è parallela all'asse delle X, ossia coincide con esso. Il grafico dei residui evidenzia ancora la supposta la NON linearità; infatti, i residui mostrano un andamento "V", tipica indicazione di non linearità.

i. Verificare al livello di significatività dell'1% ($\alpha=0.01$) l'ipotesi che la pendenza della retta di regressione sia uguale a 1 contro l'alternativa che sia maggiore di 1

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.969)\times76.5 \\ & = & 2.369 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{16}{16-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{16}{16-2}\times2.369 = 2.707 \end{array}$$

E quindi

$$\begin{split} V(\hat{\beta}_1) &= \frac{\sigma_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ \widehat{V(\hat{\beta}_1)} &= \frac{S_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ &= \frac{2.707}{16\times34.73} = 0.0049 \\ \widehat{SE(\hat{\beta}_1)} &= \sqrt{0.0049} \\ &= 0.07 \end{split}$$

121

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_1 = 1 \\ H_1: \beta_1 > 1 \end{cases}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_1 - \beta_{1;H_0}}{\widehat{SE(\hat{\beta}_1)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(1.461-1)}{0.07} = 6.584 \,. \end{split}$$

 \fbox{C} DECISIONE Dalle tavole si ha $t_{(16-2);\,0.01}=2.602.$

$$t_{\rm obs} = 6.584 > t_{14;\,0.01} = 2.602$$

CONCLUSIONE: i dati **non** sono coerenti con H_0 al LdS del 1%

Il $p_{\rm value}$ è

$$P(T_{n-2} > t_{\rm obs}) = P(T_{n-2} > 6.584) = 0.000006102$$

j. Verificare al livello di significatività di $\alpha=0.01$ l'ipotesi che l'intercetta della retta di regressione sia uguale a zero contro l'alternativa che sia minore di zero.

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.969)\times76.5 \\ & = & 2.369 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{16}{16-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{16}{16-2}\times2.369 = 2.707 \end{array}$$

E quindi

$$\begin{split} V(\hat{\beta}_0) &= \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n \hat{\sigma}_X^2} \right) \\ \widehat{V(\hat{\beta}_0)} &= S_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n \hat{\sigma}_X^2} \right) \\ &= 2.707 \times \left(\frac{1}{16} + \frac{112.9^2}{16 \times 34.73} \right) \\ \widehat{SE(\hat{\beta}_0)} &= \sqrt{62.23} \\ &= 7.889 \end{split}$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_0 = 0 \\ H_1: \beta_0 < 0 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_0 - \beta_{0;H_0}}{\widehat{SE(\hat{\beta}_0)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(-46.46-0)}{7.889} = -5.889 \,. \end{split}$$

 \fbox{C} DECISIONE Dalle tavole si ha $t_{(16-2);\,0.01}=-2.602.$

$$t_{\rm obs} = -5.889 < t_{14;\,0.01} = -2.602$$

8.3. ESERCIZIO 2

Esercizio 2

Nella tabella seguente sono riportati i valori del seguente esperimento: numero di ore dopo l'assunzione di un dato farmaco (X) e incremento percentuale della pressione sistolica (Y).

\overline{x}	0	1.00	2.00	3.0	4.00	5.00	6.00	7.00	8.00	9.00	10
y	10	1.42	-0.53	2.6	4.02	4.49	5.72	6.54	8.91	8.74	0

a. Calcolare i parametri β_0 e β_1 della retta di regressione in cui Y è spiegata attraverso X. (Suggerimento $\bar{x}=5$; $\hat{\sigma}_X=3.1623$; $\bar{y}=4.7191$; $\hat{\sigma}_Y=3.4598$; $\mathrm{cov}(X,Y)=1.5618$).

b. Valutare la bontà di adattamento del modello precedente.

Soluzione

$$r = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{1.562}{3.162 \times 3.46} = 0.1427$$

$$r^2 = 0.02036 < 0.75$$

Il modello **non** si adatta bene ai dati.

c. Rappresentare nel diagramma di dispersione la retta di regressione.

Soluzione

Per disegnare velocemente la retta si individuano nel grafico due punti: (1)il punto medio (\bar{x}, \bar{y}) , che è già noto; e un solo punto "estremo" nel grafico, che può essere x=0 o x=10 (i numeri "tondi" facilitano il calcolo e il disegno). Qui, però, l'asse delle X presenta l'origine, ossia, il valore x=0 che ha come ordinata il valore di $\widehat{\beta_0}=3.9382$ già calcolato! Diversamente, tramite l'equazione della retta di regressione si stima la coordinata corrispondente:

$$\hat{y}_{X=10} = \hat{\beta}_0 + \hat{\beta}_1 x = 3.938 + 0.1562 \times 10 = 5.5$$

d. Fornire una interpretazione dei parametri della retta di regressione.

Soluzione

I parametri della retta di regressione sono β_0 e β_1 . Il primo, β_0 , rappresenta l'intercetta della retta, ovvero il punto in cui la retta interseca l'asse delle ordinate. Il secondo parametro,

8.3. ESERCIZIO 2 125

 β_1 , rappresenta la pendenza della retta (chiamato anche coefficiente angolare), ovvero l'incremento verticale corrispondente a un incremento orizzontale unitario e coincide, perciò, con la tangente dell'angolo compreso fra la retta e l'asse delle ascisse.

In questo caso, la variazione percentuale della pressione sistolica, secondo il modello stimato, è dato da

$$Y = 3.9382 + 0.1562X$$

ossia, è composta da un quantitativo fisso di 3.9382 che si ottiene immediatamente dopo l'assunzione del farmaco (X=0), che non è privo di significato, a cui si aggiunge un incremento di 0.1562 per ogni ora aggiuntiva.

e. Prevedere il valore relativo a x=5 (notando che $\bar{x}=5$, con opportune giustificazioni, si può rispondere senza fare necessariamente i conti)

Soluzione

Dalle proprietà della retta di regressione si ha che: $\hat{y}_{x=\bar{x}}=\bar{y}=4.7191$. Ovvero: la retta di regressione passa per il punto (\bar{x},\bar{y})

f. Calcolare l'ordine di grandezza dell'errore di previsione.

Soluzione

L'ordine di grandezza dell'errore di previsione commesso è dato da RMSE che rappresenta una sintesi della dispersione dei residui intorno alla retta di regressione.

$$\sigma_{\epsilon} = \sigma_{Y} \ \sqrt{1-r^{2}} = 3.4598 \sqrt{1-0.0204} = 3.4244$$

g. Verificare al livello di significatività del 5% ($\alpha=0.05$) l'ipotesi che la pendenza della retta di regressione sia uguale a 0 contro l'alternativa che sia diversa da 0

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^{2} & = & (1 - r^{2})\hat{\sigma}_{Y}^{2} \\ & = & (1 - 0.02036) \times 11.97 \\ & = & 11.73 \\ S_{\varepsilon}^{2} & = & \frac{n}{n - 2}\hat{\sigma_{\varepsilon}}^{2} \end{array}$$

$$= \frac{11}{11 - 2} \hat{\sigma_{\varepsilon}}^{2}$$

$$= \frac{11}{11 - 2} \times 11.73 = 14.33$$

E quindi

$$\begin{split} V(\hat{\beta}_1) &= \frac{\sigma_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ \widehat{V(\hat{\beta}_1)} &= \frac{S_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ &= \frac{14.33}{11 \times 10} = 0.1303 \\ \widehat{SE(\hat{\beta}_1)} &= \sqrt{0.1303} \\ &= 0.361 \end{split}$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2$, anziché α

B SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_1 - \beta_{1;H_0}}{\widehat{SE(\hat{\beta}_1)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(0.1562 - 0)}{0.361} = 0.4327 \,. \end{split}$$

 \fbox{C} DECISIONE Dalle tavole si ha $t_{(11-2);\,0.025}=2.262.$

$$t_{\text{obs}} = 0.4327 < t_{9;0.025} = 2.262$$

CONCLUSIONE: i dati **sono** coerenti con H_0 al LdS del 2.5%

Graficamente

8.3. ESERCIZIO 2

h. Verificare al livello di significatività di $\alpha=0.05$ l'ipotesi che l'intercetta della retta di regressione sia uguale a zero contro l'alternativa che sia diversa da zero

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.02036)\times 11.97 \\ & = & 11.73 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{11}{11-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{1}{11-2}\times 11.73 = 14.33 \end{array}$$

E quindi

$$\begin{array}{rcl} V(\hat{\beta}_0) & = & \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n \hat{\sigma}_X^2} \right) \\ \widehat{V(\hat{\beta}_0)} & = & S_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n \hat{\sigma}_X^2} \right) \end{array}$$

$$= 14.33 \times \left(\frac{1}{11} + \frac{5^2}{11 \times 10}\right)$$

$$\widehat{SE(\hat{\beta}_0)} = \sqrt{4.56}$$

$$= 2.135$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_0 = 0 \\ H_1: \beta_0 \neq 0 \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2$, anziché α

B SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_0 - \beta_{0;H_0}}{\widehat{SE(\hat{\beta}_0)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(3.938-0)}{2.135} = 1.844 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(11-2);\,0.025}=2.262$.

$$t_{\text{obs}} = 1.844 < t_{9;\,0.025} = 2.262$$

CONCLUSIONE: i dati **sono** coerenti con H_0 al LdS del 2.5%

Il $p_{\rm value}$ è

$$P(|T_{n-2}| > |t_{\rm obs}|) = 2P(T_{n-2} > |t_{\rm obs}|) = 2P(T_{n-2} > |1.8442|) = 0.09826$$

8.4. ESERCIZIO 3 129

Esercizio 3

L'incasso settimanale di un negozio sia rappresentato dalla variabile (casuale) X (in migliaia di euro). L'uscita di cassa settimanale sia rappresentata dalla variabile (casuale) Y (in migliaia di euro). I dati rilevati per 4 mesi sono riportati di séguito.

x	12	21	25	31	13	15	10	18	19	24	28	32	33	22	24	35
y	6	11	15	17	7	8	7	9	10	14	16	20	19	11	14	21

a. Calcolare i parametri β_0 e β_1 della retta di regressione in cui Y è spiegata attraverso X. (Suggerimento $\bar{x}=22.625;$ $\hat{\sigma}_X=7.5736;$ $\bar{y}=12.8125;$ $\hat{\sigma}_Y=4.7331;$ cov(X,Y)=35.2422).

Soluzione

b. Valutare la bontà di adattamento del modello precedente.

Soluzione

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{35.24}{7.574 \times 4.733} = 0.9831 \\ r^2 & = & 0.9665 > 0.75 \end{array}$$

Il modello si adatta bene ai dati.

c. Rappresentare nel diagramma di dispersione la retta di regressione.

Soluzione

Per disegnare velocemente la retta si individuano nel grafico due punti: (1)il punto medio (\bar{x}, \bar{y}) , che è già noto; e un solo punto "estremo" nel grafico, e un solo punto "estremo" nel grafico, che può essere x=5 o x=35 (i numeri "tondi" facilitano il calcolo e il disegno, ma qui x=0 non funziona perché la Y diventa negativa). Tramite l'equazione della retta di regressione si stima la coordinata corrispondente:

d. Fornire una interpretazione dei parametri della retta di regressione.

Soluzione

I parametri della retta di regressione sono β_0 e β_1 . Il primo, β_0 , rappresenta l'intercetta della retta, ovvero il punto in cui la retta interseca l'asse delle ordinate. Il secondo parametro, β_1 , rappresenta la pendenza della retta (chiamato anche coefficiente angolare), ovvero l'incremento verticale corrispondente a un incremento orizzontale unitario e coincide, perciò, con la tangente dell'angolo compreso fra la retta e l'asse delle ascisse.

In questo caso, la variazione percentuale della pressione sistolica, secondo il modello stimato, è dato da

$$Y = -1.0885 + 0.6144X$$

ossia, è composta da un quantitativo fisso di -1.0885 (migliaia di euro) quando l'uscita di cassa è zero (X=0), a cui si aggiungono 0.6144 migliaia di euro per ogni unità (in migliaia di euro) di incasso aggiunto.

e. Prevedere il valore dell'uscita per un incasso di 30 migliaia di euro, ossia x=30 e fornire l'ordine di grandezza dell'errore di previsione commesso.

Soluzione

$$\hat{y}_{X=30} = \hat{\beta}_0 + \hat{\beta}_1 x = -1.089 + 0.6144 \times 30 = 17.34$$

8.4. ESERCIZIO 3

$$\hat{\sigma}_{\varepsilon} = \hat{\sigma}_{Y} \sqrt{1 - r^{2}} = 4.7331 \sqrt{1 - 0.9665} = 0.8656$$

f. Verificare al livello di significatività del 5% ($\alpha=0.05$) l'ipotesi che la pendenza della retta di regressione sia uguale a 1/2 contro l'alternativa che sia diversa da 1/2.

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.9665)\times 22.4 \\ & = & 0.7492 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{16}{16-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{16}{16-2}\times 0.7492 = 0.8562 \end{array}$$

E quindi

$$\begin{split} V(\hat{\beta}_1) &= \frac{\sigma_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ \widehat{V(\hat{\beta}_1)} &= \frac{S_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ &= \frac{0.8562}{16 \times 57.36} = 0.0009 \\ \widehat{SE(\hat{\beta}_1)} &= \sqrt{0.0009} \\ &= 0.03 \end{split}$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_1 = 0.5 \\ H_1: \beta_1 \neq 0.5 \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2,$ anziché α

B SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_1 - \beta_{1;H_0}}{\widehat{SE(\hat{\beta}_1)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(0.6144 - 0.5)}{0.03} = 3.813 \,. \end{split}$$

 \fbox{C} DECISIONE Dalle tavole si ha $t_{(16-2);\,0.025}=2.145.$

$$t_{\rm obs} = 3.813 > t_{14;\,0.025} = 2.145$$

CONCLUSIONE: i dati **non** sono coerenti con H_0 al LdS del 2.5%

Graficamente

Il p_{value} è

$$P(|T_{n-2}|>|t_{\rm obs}|)=2P(T_{n-2}>|t_{\rm obs}|)=2P(T_{n-2}>|3.8133|)=0.0019$$

g. Verificare al livello di significatività di $\alpha = 0.05$ l'ipotesi che l'intercetta della retta di regressione sia uguale a zero contro l'alternativa che sia minore di zero.

Soluzione

$$\begin{array}{lcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.9665) \times 22.4 \end{array}$$

8.4. ESERCIZIO 3

$$S_{\varepsilon}^{2} = \frac{n}{n-2} \hat{\sigma_{\varepsilon}}^{2}$$

$$= \frac{16}{16-2} \hat{\sigma_{\varepsilon}}^{2}$$

$$= \frac{16}{16-2} \times 0.7492 = 0.8562$$

E quindi

$$V(\hat{\beta}_0) = \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2}\right)$$

$$\widehat{V(\hat{\beta}_0)} = S_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2}\right)$$

$$= 0.8562 \times \left(\frac{1}{16} + \frac{22.62^2}{16 \times 57.36}\right)$$

$$\widehat{SE(\hat{\beta}_0)} = \sqrt{0.5311}$$

$$= 0.7288$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_0 = 0 \\ H_1: \beta_0 < 0 \end{cases}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_0 - \beta_{0;H_0}}{\widehat{SE(\hat{\beta}_0)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(-1.089 - 0)}{0.7288} = -1.494 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(16-2);\,0.05}=-1.753.$

$$t_{\rm obs} = -1.494 > t_{14;\,0.05} = -1.753$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 5% Graficamente

Esercizio 4

Si esaminano 15 aziende e si rileva, per ognuna di esse, il numero di addetti (X) e il fatturato (Y in unità convenzionali). I risultati sono riportati nella tabella seguente.

\overline{x}	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160
y	25	40	50	64	75	85	100	105	120	145	178	210	260	315	380

a. Calcolare i parametri β_0 e β_1 della retta di regressione in cui Y è spiegata attraverso X. (Suggerimento $\bar{x}=90$; $\hat{\sigma}_X=43.2049$; $\bar{y}=143.4667$; $\hat{\sigma}_Y=102.1077$; $\mathrm{cov}(X,Y)=4145.3333$).

b. Valutare la bontà di adattamento del modello precedente.

8.5. ESERCIZIO 4

Soluzione

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{4145}{43.2\times102.1} = 0.9397 \\ r^2 & = & 0.883 > 0.75 \end{array}$$

Il modello si adatta bene ai dati.

c. Rappresentare nel diagramma di dispersione la retta di regressione.

Soluzione

Per disegnare velocemente la retta si individuano nel grafico due punti: (1)il punto medio (\bar{x}, \bar{y}) , che è già noto; e un solo punto "estremo" nel grafico, e un solo punto "estremo" nel nel grafico, che può essere x=160 o x=40 (un numero inferiore dà un y negativo). Quest'ultimo NON conviene perché "esce" dagli assi. Tramite l'equazione della retta di regressione si stima la coordinata corrispondente:

$$\hat{y}_{X=40} = \hat{\beta}_0 + \hat{\beta}_1 x = -56.4 + 2.2207 \times 40 = 32.43$$

d. Fornire una interpretazione dei parametri della retta di regressione.

Soluzione

I parametri della retta di regressione sono β_0 e β_1 . Il primo, β_0 , rappresenta l'intercetta della retta, ovvero il punto in cui la retta interseca l'asse delle ordinate. Il secondo parametro,

 β_1 , rappresenta la pendenza della retta (chiamato anche coefficiente angolare), ovvero l'incremento verticale corrispondente a un incremento orizzontale unitario e coincide, perciò, con la tangente dell'angolo compreso fra la retta e l'asse delle ascisse.

In questo caso, il numero di addetti, secondo il modello stimato, è dato da

$$y = -56.3976 + 2.2207x$$

ossia, è composto da un quantitativo fisso di -56.3976 di fatturato quando il numero degli addetti è è zero (X=0) che corrisponde al costo di una impresa senza addetti, a cui si aggiungono 2.2207 per ogni unità di lavoro aggiuntiva.

e. Prevedere il valore del fatturato per un numero di addetti pari a 75 unità, ossia per x=75.

Soluzione

$$\hat{y}_{X=75} = \hat{\beta}_0 + \hat{\beta}_1 x = -56.4 + 2.2207 \times 75 = 110.2$$

f. Verificare al livello di significatività del 5% ($\alpha=0.05$) l'ipotesi che la pendenza della retta di regressione sia uguale a 2 contro l'alternativa che sia maggiore di 2, sapendo che

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^{2} & = & (1-r^{2})\hat{\sigma}_{Y}^{2} \\ & = & (1-0.883) \times 10426 \\ & = & 1220 \\ S_{\varepsilon}^{2} & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^{2} \\ & = & \frac{15}{15-2}\hat{\sigma_{\varepsilon}}^{2} \\ & = & \frac{15}{15-2} \times 1220 = 1408 \end{array}$$

E quindi

$$\begin{array}{rcl} V(\hat{\beta}_1) & = & \frac{\sigma_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ \widehat{V(\hat{\beta}_1)} & = & \frac{S_{\varepsilon}^2}{n\hat{\sigma}_X^2} \end{array}$$

8.5. ESERCIZIO 4

$$= \frac{1408}{15 \times 1867} = 0.0503$$

$$\widehat{SE(\hat{\beta}_1)} = \sqrt{0.0503}$$

$$= 0.2243$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_1 = 2 \\ H_1: \beta_1 > 2 \end{cases}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_1 - \beta_{1;H_0}}{\widehat{SE(\hat{\beta}_1)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(2.221-2)}{0.2243} = 0.9841 \,. \end{split}$$

 $\boxed{\mbox{C}}$ DECISIONE Dalle tavole si ha $t_{(15-2);\,0.05}=1.761.$

$$t_{\rm obs} = 0.9841 < t_{13;\,0.05} = 1.761$$

CONCLUSIONE: i dati **sono** coerenti con H_0 al LdS del 5%

Graficamente 5:

Il $p_{\rm value}$ è

$$P(T_{n-2} > t_{\rm obs}) = P(T_{n-2} > 0.984) = 0.1715$$

g. Verificare al livello di significatività di $\alpha = 0.05$ l'ipotesi che l'intercetta della retta di regressione sia uguale a zero contro l'alternativa che sia minore di zero.

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^{2} & = & (1-r^{2})\hat{\sigma}_{Y}^{2} \\ & = & (1-0.883)\times 10426 \\ & = & 1220 \\ S_{\varepsilon}^{2} & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^{2} \\ & = & \frac{15}{15-2}\hat{\sigma_{\varepsilon}}^{2} \\ & = & \frac{15}{15-2}\times 1220 = 1408 \end{array}$$

E quindi

$$V(\hat{\beta}_0) = \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2}\right)$$

$$\widehat{V(\hat{\beta}_0)} = S_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2}\right)$$

$$= 1408 \times \left(\frac{1}{15} + \frac{90^2}{15 \times 1867}\right)$$

$$\widehat{SE(\hat{\beta}_0)} = \sqrt{501.2}$$

$$= 22.39$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_0 = 0 \\ H_1: \beta_0 < 0 \end{cases}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_0 - \beta_{0;H_0}}{\widehat{SE(\hat{\beta}_0)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(-56.4-0)}{22.39} = -2.519 \,. \end{split}$$

8.6. ESERCIZIO 5

Esercizio 5

Nel maggio del 1973 per 15 giorni consecutivi si sono osservati i valori di concentrazione di ozono (espressa in parti per milione) a New York Y e temperatura a terra, X (espressa in gradi Fahrenheit), come espresso nella seguente tabella.

\overline{x}	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160
y	25	40	50	64	75	85	100	105	120	145	178	210	260	315	380

a. Calcolare i parametri β_0 e β_1 della retta di regressione in cui Y è spiegata attraverso X. (Suggerimento $\bar{x}=90$; $\hat{\sigma}_X=43.2049$; $\bar{y}=143.4667$; $\hat{\sigma}_Y=102.1077$; $\mathrm{cov}(X,Y)=4145.3333$).

b. Valutare la bontà di adattamento del modello precedente.

Soluzione

$$r = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{4145}{43.2 \times 102.1} = 0.9397$$

 $r^2 = 0.883 > 0.75$

Il modello si adatta bene ai dati.

Nota altre domande simili alle precedenti non vengono riportate

c. Verificare al livello di significatività di $\alpha=0.05$ l'ipotesi che l'intercetta della retta di regressione sia uguale a zero contro l'alternativa che sia minore di zero.

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^{2} & = & (1-r^{2})\hat{\sigma}_{Y}^{2} \\ & = & (1-0.883)\times 10426 \\ & = & 1220 \\ S_{\varepsilon}^{2} & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^{2} \\ & = & \frac{15}{15-2}\hat{\sigma_{\varepsilon}}^{2} \\ & = & \frac{15}{15-2}\times 1220 = 1408 \end{array}$$

E quindi

$$\begin{array}{rcl} V(\hat{\beta}_0) & = & \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n \hat{\sigma}_X^2} \right) \\ \widehat{V(\hat{\beta}_0)} & = & S_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n \hat{\sigma}_X^2} \right) \end{array}$$

8.6. ESERCIZIO 5

$$= 1408 \times \left(\frac{1}{15} + \frac{90^2}{15 \times 1867}\right)$$

$$\widehat{SE(\hat{\beta}_0)} = \sqrt{501.2}$$

$$= 22.39$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_0 = 0 \\ H_1: \beta_0 < 0 \end{cases}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_0 - \beta_{0;H_0}}{\widehat{SE(\hat{\beta}_0)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(-56.4-0)}{22.39} = -2.519 \,. \end{split}$$

 $\boxed{\mbox{C}}$ DECISIONE Dalle tavole si ha $t_{(15-2);\,0.05}=-1.761.$

$$t_{\rm obs} = -2.519 < t_{13;\,0.05} = -1.761$$

CONCLUSIONE: i dati **non** sono coerenti con H_0 al LdS del 5%

Graficamente 5

Il $p_{\rm value}$ è

$$P(T_{n-2} < t_{\rm obs}) = P(T_{n-2} < -2.519) = 0.01282$$

Esercizio 6

Il reddito pro capite, in migliaia di euro, relativo a 16 aree amministrative rilevato nell'anno 1989, X, e rilevato nell'anno 1999, Y, sono riportati nella tabella seguente.

x	47.8	27.9	36.6	54.2	41.9	44.4	54.3	42.3	41.5	43.2	56.3	63.3	46.8	45.2	38.7	36.3
y	63.0	33.4	42.0	72.8	52.0	54.0	63.4	60.7	54.4	55.5	74.0	79.2	53.1	59.6	52.0	47.2

a. Calcolare i parametri β_0 e β_1 della retta di regressione in cui Y è spiegata attraverso X. (Suggerimento $\bar{x}=45.0438$; $\hat{\sigma}_X=8.4996$; $\bar{y}=57.2687$; $\hat{\sigma}_Y=11.4263$; cov(X,Y)=92.4239).

Soluzione

b. Valutare la bontà di adattamento del modello precedente.

Soluzione

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{92.42}{8.5\times11.43} = 0.9517 \\ r^2 & = & 0.9057 > 0.75 \end{array}$$

Il modello si adatta bene ai dati.

c. Determinare il residuo (o l'errore) derivante dalla previsione, calcolata con il modello di regressione in x=54.3.

Soluzione

$$\begin{array}{lll} \hat{y}_i & = & \hat{\beta}_0 + \hat{\beta}_1 x_i = \\ & = & -0.3573 + 1.2793 \times 54.3 = 69.11 \\ \hat{\varepsilon}_i & = & y_i - \hat{y}_i \\ & = & 63.4 - 69.11 = -5.709 \end{array}$$

8.7. ESERCIZIO 6

Nota altre domande simili alle precedenti non vengono riportate

d. Verificare al livello di significatività del 5% ($\alpha=0.05$) l'ipotesi che la pendenza della retta di regressione sia uguale a 0 contro l'alternativa che sia maggiore di 0.

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.9057)\times 130.6 \\ & = & 12.32 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{16}{16-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{16}{16-2}\times 12.32 = 14.08 \end{array}$$

E quindi

$$\begin{split} V(\hat{\beta}_1) &= \frac{\sigma_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ \widehat{V(\hat{\beta}_1)} &= \frac{S_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ &= \frac{14.08}{16\times72.24} = 0.0122 \\ \widehat{SE(\hat{\beta}_1)} &= \sqrt{0.0122} \\ &= 0.1105 \end{split}$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 > 0 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\frac{\hat{\beta}_1 - \beta_{1;H_0}}{\widehat{SE(\hat{\beta}_1)}} \sim t_{n-2}$$

$$t_{\rm obs} \ = \ \frac{(1.279-0)}{0.1105} = 11.58 \,.$$
 C DECISIONE Dalle tavole si ha $t_{(16-2);0.05} = 1.753$.
$$t_{\rm obs} = 11.58 > t_{14;0.05} = 1.753$$
 CONCLUSIONE: i dati **non** sono coerenti con H_0 al LdS del 5% **Graficamente**
$$\begin{bmatrix} & & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Esercizio 7

Si esaminano 15 aziende e si rileva, per ognuna di esse, il costo (X) e il fatturato (Y) (in unità convenzionali). I risultati sono i seguenti:

$$y_i = -17.418 + 4.093x_i + \epsilon_i$$

con r = 0.9845.

e. Qual è l'incremento di fatturato, che ci si può attendere con un aumento del costo di una unità? Qual è la quantità di fatturato che ci si può attendere sia ottenute da una azienda senza costi?

8.8. ESERCIZIO 7

Soluzione

$$\begin{split} r &=& \frac{\text{cov}(X,Y)}{\hat{\sigma}_X \cdot \hat{\sigma}_Y} = 0.9845 \\ \beta_1 &=& \frac{\text{cov}(X,Y)}{\hat{\sigma}_X^2} = r \frac{\hat{\sigma}_Y}{\hat{\sigma}_X} = 4.093 \\ \beta_0 &=& \overline{y} - \beta_1 \cdot \overline{x} = -17.418. \end{split}$$

a. Mostrare che la deviazione standard della Y è pari a 44.803 sapendo che $\bar{x}=26;\,\hat{\sigma}_X=10.7765.$

Soluzione

$$\begin{array}{lcl} \beta_1 & = & r \; \frac{\hat{\sigma}_Y}{\hat{\sigma}_X} & \Rightarrow \\ \\ \sigma_Y & = & \frac{\beta_1 \hat{\sigma}_X}{r} = \frac{4.093 \times 10.7765}{0.9845} = 44.803. \end{array}$$

b. Verificare al livello di significatività di $\alpha=0.05$ l'ipotesi che l'intercetta della retta di regressione sia uguale a zero contro l'alternativa che sia diversa da zero

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.9692)\times 2007 \\ & = & 61.74 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{15}{15-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{15}{15-2}\times 61.74 = 71.24 \end{array}$$

E quindi

$$V(\hat{\beta}_0) \ = \ \sigma_\varepsilon^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2} \right)$$

$$\begin{split} \widehat{V(\hat{\beta}_0)} &= S_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n \hat{\sigma}_X^2} \right) \\ &= 71.24 \times \left(\frac{1}{15} + \frac{26^2}{15 \times 116.1} \right) \\ \widehat{SE(\hat{\beta}_0)} &= \sqrt{32.4} \\ &= 5.692 \end{split}$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_0 = 0 \\ H_1: \beta_0 \neq 0 \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2$, anziché α

B SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_0 - \beta_{0;H_0}}{\widehat{SE(\hat{\beta}_0)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(-17.42 - 0)}{5.692} = -3.06 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(15-2);\,0.025}=-2.16$.

$$t_{\rm obs} = -3.06 < t_{13;\,0.025} = -2.16$$

CONCLUSIONE: i dati **non** sono coerenti con H_0 al LdS del 2.5%

Graficamente

8.9. ESERCIZIO 8

Il
$$p_{\rm value}$$
è

$$P(|T_{n-2}| > |t_{\rm obs}|) = 2P(T_{n-2} > |t_{\rm obs}|) = 2P(T_{n-2} > |-3.0603|) = 0.009117$$

Esercizio 8

Sia X il voto in matematica (in decimi) e sia Y il voto in statistica (in decimi). Si sono eseguite 5 osservazioni e i risultati ottenuti sono i seguenti.

\overline{i}	x_i	y_i
1	5	6
2	6	7
3	7	6
4	8	9
5	4	5

a. Calcolare i parametri β_0 e β_1 della retta di regressione in cui Y è spiegata attraverso X.

Soluzione						
	\overline{i}	x_i	y_i	x_i^2	y_i^2	$x_i \cdot y_i$
	1	$\frac{1}{5}$	$\frac{3i}{6.0}$	$\frac{1}{25}$	$\frac{36.0}{36.0}$	$\frac{30.0}{30.0}$
	2	6	7.0	36	49.0	42.0
	3	7	6.0	49	36.0	42.0
	4	8	9.0	64	81.0	72.0
	5	4	5.0	16	25.0	20.0
	Totale	30	33.0	190	227.0	206.0
	Totale/n	6	6.6	38	45.4	41.2
		m				
	$\bar{x} =$	$\frac{1}{-}\sum_{n=1}^{\infty}$	$x_i = \frac{1}{2}$	$\frac{1}{2}30 =$	6	
		$n \underset{i=1}{\underline{\sim}}$)		

$$\begin{split} \bar{y} &= \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{5} 33 = 6.6 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{5} 190 - 6^2 = 2 \\ \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{5} 227 - 6.6^2 = 1.84 \\ \operatorname{cov}(X, Y) &= \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{5} 206 - 6 \cdot 6.6 = 1.6 \\ \hat{\beta}_1 &= \frac{\operatorname{cov}(X, Y)}{\hat{\sigma}_X^2} \\ &= \frac{1.6}{2} = 0.8 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 6.6 - 0.8 \times 6 = 1.8 \end{split}$$

b. Valutare la bontà di adattamento del modello precedente.

Soluzione

$$r = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{1.6}{1.414 \times 1.357} = 0.8341$$

$$r^2 = 0.6957 < 0.75$$

Il modello **non** si adatta bene ai dati.

c. Fornire una interpretazione dei parametri della retta di regressione.

Soluzione

I parametri della retta di regressione sono β_0 e β_1 . Il primo, β_0 , rappresenta l'intercetta della retta, ovvero il punto in cui la retta interseca l'asse delle ordinate. Il secondo parametro, β_1 , rappresenta la pendenza della retta (chiamato anche coefficiente angolare), ovvero l'incremento verticale corrispondente a un incremento orizzontale unitario e coincide, perciò, con la tangente dell'angolo compreso fra la retta e l'asse delle ascisse.

In questo caso, la variazione percentuale della pressione sistolica, secondo il modello stimato,

8.9. ESERCIZIO 8

è dato da

$$Y = 1.8 + 0.8X$$

ossia, è composto da un quantitativo fisso di 1.8 di voto quando il voto di matematica è zero (X=0) che in linea generale non ha molto senso e quindi non è interpretabile chiaramente, a cui si aggiungono 0.8 punti per ogni unità di voto di matematica aggiuntivo.

d. Determinare il residuo per un voto di matematica uguale 6, ossia per x=6.

Soluzione

$$\begin{array}{rcl} \hat{y}_i & = & \hat{\beta}_0 + \hat{\beta}_1 x_i = \\ & = & 1.8 + 0.8 \times 6 = 6.6 \\ \hat{\varepsilon}_i & = & y_i - \hat{y}_i \\ & = & 7 - 6.6 = 0.4 \end{array}$$

e. Verificare al livello di significatività dell'1% ($\alpha = 0.01$) l'ipotesi che la pendenza della retta di regressione sia uguale a zero contro l'alternativa che sia maggiore di zero.

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.6957)\times 1.84 \\ & = & 0.56 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{5}{5-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{5}{5-2}\times 0.56 = 0.9333 \end{array}$$

E quindi

$$\begin{array}{rcl} V(\hat{\beta}_1) & = & \frac{\sigma_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ \widehat{V(\hat{\beta}_1)} & = & \frac{S_{\varepsilon}^2}{n\hat{\sigma}_X^2} \end{array}$$

$$= \frac{0.9333}{5 \times 2} = 0.0933$$

$$\widehat{SE(\hat{\beta}_1)} = \sqrt{0.0933}$$

$$= 0.3055$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2$, anziché α

B SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_1 - \beta_{1;H_0}}{\widehat{SE(\hat{\beta}_1)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(0.8-0)}{0.3055} = 2.619 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(5-2);\,0.005}=5.841.$

$$t_{\text{obs}} = 2.619 < t_{3;\,0.005} = 5.841$$

CONCLUSIONE: i dati **sono** coerenti con H_0 al LdS del 0.5%

Graficamente

Il p_{value} è

$$P(|T_{n-2}|>|t_{\rm obs}|)=2P(T_{n-2}>|t_{\rm obs}|)=2P(T_{n-2}>|2.6191|)=0.07906$$

Parte II Compiti degli anni passati

Anno 2021

Prova di Statistica 2021/06/11-1

Esercizio 1

Su un campione di 350 aziende è stato rilevato l'utile del 2020, espresso in centinaia di migliaia euro; qui di seguito l'istogramma di densità percentuale.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	h_j
-15	-5	1.143
-5	0	4.400
0	8	5.571
8	10	11.000

1.a (Punti 14) Calcolare il valore approssimato della mediana.

Soluzione

Per individuare il 75-esimo percentile dobbiamo:

$$b_j = x_{j+1} - x_j$$

le frequenze relative,

$$f_j = h_j \cdot b_j,$$

le cumulate

$$F_i = f_1 + \dots + f_i$$

ricostruire la tabella

$$\begin{array}{lcl} p & = & 0.75, \mathrm{essendo} \; F_3 = 0.78 > 0.75 \Rightarrow j_{0.75} = 3 \\ x_{0.75} & = & x_{\mathrm{inf;3}} + \frac{0.75 - F_2}{f_3} \cdot b_3 \\ & = & 0 + \frac{0.75 - 0.3343}{0.4457} \cdot 8 \\ & = & 7.462 \end{array}$$

1.b (**Punti 3**) Qual è il numero di imprese con utile negativo?

Soluzione

$$\begin{array}{lcl} \%(X>0) & = & (0-0)\times h_2 + f_3\times 100 + f_4\times 100 \\ & = & (0)\times 4.4 + (0.4457)\times 100 + (0.22)\times 100 \\ & = & 0.6657\times (100) \\ \#(X>0) & = & 233 \end{array}$$

1.c (**Punti 2**) (**Punti 2**) L'utile medio è pari a $\bar{x}=2.1489$, e la sua standard deviation $\sigma_X=6.1195$. Se l'utile X viene trasformato in perdita Y,

$$Y = -X$$

quanto valgono la media \bar{y} e la deviazione standard σ_Y di Y?.

Soluzione

$$\bar{y} = -\bar{x} = -2.1489$$

mentre

$$\sigma_Y = \sigma_X = 6.1195$$

Esercizio 2

Nel supermercato S ci sono 4 casse C_1 , C_2 , C_3 e C_4 . A mezzogiorno il numero di persone in fila ogni cassa è descritto da un Poisson di parametro 0.5, $C_i \sim \text{Pois}(0.5)$, i=1,...,4. Si assume l'indipendenza tra le variabili.

2.a (**Punti 14**) Calcolare la probabilità che le persone **totali** $(C_1 + ... + C_4)$ in fila al supermercato a mezzogiorno, siano almeno due.

Soluzione

$$X = C_1 + ... + C_4 \sim Pois(2)$$

e quindi

$$\begin{array}{lll} P(X \geq 2) & = & 1 - P(X < 2) \\ & = & 1 - (P(X = 0) + P(X = 1)) \\ & = & 1 - (0.1353 + 0.2707) \\ & = & 0.594 \end{array}$$

2.b (Punti 3) Qual è la probabilità di avere esattamente due casse su quattro senza fila?

Soluzione

Posto

$$\pi = P(C_i = 0) = \frac{0.5}{0!}e^{-0.5} = 0.6065$$

la VC X che conta il numero di casse con zero persone in fila su 4

$$X \sim \text{Binom}(4, 0.6065)$$

e quindi

$$P(X=2) = {4 \choose 2} 0.6065^2 (1 - 0.6065)^{4-2} = 0.3417$$

2.c (**Punti 3**) Quando due eventi A e B si dicono indipendenti e quando incompatibili?

Soluzione

Se A e B sono incompatibili allora

$$P(A \cap B) = 0$$
,

mentre se A e B sono indipendenti allora

$$P(A \cap B) = P(A)P(B),$$

2.
d (**Punti 2**) Se $X_1 \sim N(2,1),~X_2 \sim N(1,1)$ e $X_3 \sim N(1,1),~X_1,~X_2$ e X_3 indipendenti, come si distribuisce

$$Y = X_1 - (X_2 + X_3)$$
 ?

Soluzione

$$Y \sim N(2 - (1+1), 1+1+1) \sim N(0,3)$$

Esercizio 3

(**Punti 14**) Un'urna contiene 4 bussolotti Rossi, 3 bussolotti Blu e 5 bussolotti Gialli. Si estrae 60 volte con reintroduzione; qual è la probabilità che il numero di rossi in 60 estrazioni sia maggiore di 21?

Soluzione

$$\pi = \frac{4}{12} = \frac{1}{3}$$

Teorema del Limite Centrale (somma di Bernoulli)

Siano $X_1, ..., X_n, \, n = 60$ VC IID, t
c $X_i \sim \mathrm{Ber}(\pi = 0.3333), \, \forall i,$ posto:

$$S_n = X_1 + \ldots + X_n$$

allora:

$$\begin{array}{lll} S_n & \underset{a}{\sim} & N(n\pi, n\pi(1-\pi)) \\ & \sim & N(60 \cdot 0.3333, 60 \cdot 0.3333 \cdot (1-0.3333)) \\ & \sim & N(20, 13.33) \end{array}$$

$$\begin{array}{lcl} P(S_n > 21) & = & P\left(\frac{S_n - n\pi}{\sqrt{n\pi(1 - \pi)}} > \frac{21 - 20}{\sqrt{13.33}}\right) \\ & = & P\left(Z > 0.27\right) \end{array}$$

$$= 1 - P(Z < 0.27)$$

$$= 1 - \Phi(0.27)$$

$$= 0.3936$$

Esercizio 4

4.a (**Punti 3**) Sia h uno stimatore per theta, tale che

$$E(h) = \theta + \frac{\theta}{\sqrt{n}}$$

h è corretto? h è asintoticamente corretto?

Soluzione

h non è corretto, infatti

$$E(h) = \theta + \frac{\theta}{\sqrt{n}} \neq \theta$$

h è asintoticamente corretto, infatti

$$\lim_{n\to\infty} E(h) = \lim_{n\to\infty} \left(\theta + \frac{\theta}{\sqrt{n}}\right) = \theta + 0 = \theta$$

4.
b (**Punti 3**) Siano h_1 e h_2 due stimatori per
 $\theta,$ tali che:

$$MSE(h_1) = \frac{\theta}{n}$$

 $MSE(h_2) = \frac{2\theta}{n}$

Quale dei due stimatori è più efficiente? Perché?

Soluzione

 h_1 è più efficiente di h_2 , infatti

$$\begin{split} MSE(h_1) &=& \frac{\theta}{n} \\ MSE(h_2) &=& \frac{2\theta}{n} = 2 \cdot MSE(h_1) > MSE(h_1) \end{split}$$

4.c (**Punti 3**) Si sono osservati due gruppi di dati quantitativi e si è osservato, $\hat{\mu}_1=10.2$ e $\hat{\mu}_2=15.6$. Posto a test

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{cases}$$

è risultato $p_{\rm value}=0.0612.$ La differenza tra $\hat{\mu}_1$ e $\hat{\mu}_2$ è significativa? Perché?

Soluzione

Il $p_{\rm value}$ è maggiore di 0.05, la differenza **non è significativa** per ogni livello di significatività.

Esercizio 5

(**Punti 14**) In uno studio comparato sui livelli di occupazione femminile, nel comune A sono state intervistate 50 donne e 30 hanno dichiarato di avere un lavoro stabile; nel comune B sono state intervistate 60 donne e 40 hanno dichiarato di avere un lavoro stabile.

Testare all'1% l'ipotesi che la proporzione di donne che hanno un lavoro stabile nel comune A sia uguale a quelle del come B, contro l'alternativa che siano **diverse**.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \pi_{\text{ A }} = \pi_{\text{ B}} \\ H_1: \pi_{\text{ A }} \neq \pi_{\text{ B}} \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2$, anziché α

 $oxed{B}$ SCELTA E CALCOLO STATISTICA-TEST, Z

$$\hat{\pi}_{A} = \frac{s_{A}}{n_{A}} = \frac{30}{50} = 0.6$$
 $\hat{\pi}_{B} = \frac{s_{B}}{n_{B}} = \frac{40}{60} = 0.6667$

Calcoliamo la proporzione comune sotto H_0

$$\pi_C = \frac{s_A + s_B}{n_A + n_B} = \frac{70}{110} = 0.6364$$

$$\frac{\hat{\pi}_{\rm A} - \hat{\pi}_{\rm B}}{\sqrt{\frac{\pi_{C}(1 - \pi_{C})}{n_{\rm A}} + \frac{\pi_{C}(1 - \pi_{C})}{n_{\rm B}}}} ~\sim ~ N(0, 1)$$

$$z_{\rm obs} \ = \ \frac{(0.6-0.6667)}{\sqrt{\frac{0.6364(1-0.6364)}{50} + \frac{0.6364(1-0.6364)}{60}}} = -0.7237 \, .$$

C DECISIONE Dalle tavole si ha $z_{0.005} = -2.576$.

$$z_{\text{obs}} = -0.7237 > z_{0.005} = -2.576$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 1 %

Graficamente

Il $p_{\rm value}$ è

$$P(|Z|>|z_{\rm obs}|)=2P(Z>|z_{\rm obs}|)=2P(Z>|-0.72|)=0.4692$$

Esercizio 6

In uno studio sulle competenze scolastiche dei quindicenni si sono analizzati n=150 ragazzi sui quali sono stati registrati i voti di un test in matematica X e i voti in un test di scienze Y. Qui di seguito le statistiche di interesse:

$$\sum_{i=1}^{n} x_i = 1085,$$

$$\sum_{i=1}^{n} x_i^2 = 8100$$

$$\sum_{i=1}^{n} y_i = 969,$$

$$\sum_{i=1}^{n} y_i^2 = 6578$$

$$\sum_{i=1}^{n} x_i y_i = 7240.$$

Si consideri il modello di regressione dove Y viene spiegata da X

6.a (**Punti 14**) Prevedere il voto nel test di scienze per uno studente che ha ottenuto 6 nel test di matematica.

Soluzione $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{150} 1085 = 7.233$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{150} 969 = 6.46$ $\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{150} 8100 - 7.2333^2 = 1.679$ $\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{150} 6578 - 6.46^2 = 2.122$ $\text{cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{150} 7240 - 7.2333 \cdot 6.46 = 1.536$ $\hat{\beta}_1 = \frac{\text{cov}(X, Y)}{\hat{\sigma}_X^2}$ $= \frac{1.536}{1.679} = 0.915$ $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$ $= 6.46 - 0.915 \times 7.2333 = -0.1583$

6.b (Punti 3) Calcolare la percentuale di varianza spiegata dal modello.

Soluzione

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{1.536}{1.296\times1.457} = 0.8139 \\ r^2 & = & 0.6624 < 0.75 \end{array}$$

Il modello **non** si adatta bene ai dati.

6.c (Punti 3) Discutere il qq-plot dei residui

Soluzione

I punti sono be allineati sulla bisettrice degli assi, l'ipotesi di normalità dei residui è rispettata.

6.d (**Punti 2**) Cosa vuol dire che r è un numero puro?

Soluzione

Significa che è privo di unità di misura.

Prova di Statistica 2021/06/11-2

Esercizio 1

Sono state registrate le temperature del comune C per n=200 giorni. Qui di seguito l'istogramma di densità percentuale.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	h_j
-15	-5	1.667
-5	0	6.667
0	5	6.667
5	15	1.667

1.a (**Punti 14**) Calcolare il valore approssimato del 25-esimo percentile.

Soluzione

Per individuare il 25-esimo percentile dobbiamo:

$$b_j = x_{j+1} - x_j$$

le frequenze relative,

$$f_j = h_j \cdot b_j,$$

le cumulate

$$F_j = f_1 + \ldots + f_j$$

ricostruire la tabella

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	h_{j}	b_{j}	f_{j}	F_{j}
-15	-5	1.667	10	0.1667	0.1667
-5	0	6.667	5	0.3333	0.5000
0	5	6.667	5	0.3333	0.8333
5	15	1.667	10	0.1667	1.0000
			30	1.0000	

$$\begin{array}{rcl} p & = & 0.25, \, \mathrm{essendo} \,\, F_2 = 0.5 > 0.25 \Rightarrow j_{0.25} = 2 \\ x_{0.25} & = & x_{\mathrm{inf;2}} + \frac{0.25 - F_1}{f_2} \cdot b_2 \\ & = & -5 + \frac{0.25 - 0.1667}{0.3333} \cdot 5 \\ & = & -3.75 \end{array}$$

1.b (**Punti 3**) Analizzando l'istogramma, individuare il valore della media aritmetica e della mediana.

Soluzione

L'istogramma è perfettamente simmetrico

$$\bar{x} \approx x_{0.5} \approx 0$$

1.c (Punti 2) Qual è la percentuale di dati compresa tra il 25-esimo e il 75-esimo percentile?

Soluzione

Per definizione

$$\begin{array}{rcl} \%(X \leq x_{0.25}) &=& 25\% \\ \%(X \leq x_{0.75}) &=& 75\%, \qquad \text{e quindi} \\ \%(x_{0.25} < X \leq x_{0.75}) &=& 50\% \end{array}$$

Esercizio 2

Il flusso giornaliero d'acqua in entrata nella vasca V è descritto da una variabile casuale normale $X_E \sim N(5.1, 1.1)$, il flusso giornaliero in uscita è descritto da una variabile casuale normale $X_U \sim N(6.2, 0.5)$.

La variazione di livello nella vasca è dunque data da:

$$X_L = X_E - X_U. \label{eq:XL}$$

2.
a (**Punti 14**) Calcolare la probabilità che la variazione di livello sia negativa
 $(X_L < 0). \label{eq:punti}$

Soluzione

La variazione di livello nella vasca si distribuisce

$$X_L = X_E - X_U \sim N(5.1 - 6.2; 1.1 + 0.5)$$

E quindi

$$\begin{split} P(X_L < 0) &= P\left(\frac{X_L - \mu}{\sigma} < \frac{0 - (-1.1)}{\sqrt{1.6}}\right) \\ &= P\left(Z < 0.87\right) \\ &= \Phi(0.87) \\ &= 0.8078 \end{split}$$

2.b (**Punti 3**) Nell'ipotesi di indipendenza tra i giorni, calcolare la probabilità di avere esattamente due giorni su cinque con livello negativo.

Soluzione

Posto

$$\pi = P(X_L = 0) = 0.8077$$

la VC X che conta il numero di giorni con livello negativo in 5 giorni

$$X \sim \text{Binom}(5, 0.8077)$$

e quindi

$$P(X=2) = {5 \choose 2} 0.8077^2 (1 - 0.8077)^{5-2} = 0.0464$$

2.c (**Punti 3**) Se P(A) = 0.6 e P(B) = 0.8, $A \in B$ possono essere incompatibili?

Soluzione

No, perché se fossero incompatibili allora

$$P(A \cup B) = P(A) + P(B) = 0.6 + 0.8 = 1.4 > 1$$

che è impossibile.

2.d (**Punti 2**) Se $X \sim N(\mu_X, \sigma_X^2)$ come si distribuisce

$$Y = \left(\frac{X - \mu_X}{\sigma_X}\right)^2 \quad ?$$

Soluzione

Anzitutto osserviamo che

$$Z = \frac{X - \mu_X}{\sigma_X} \sim N(0, 1)$$

Poi che

$$Y = Z^2 \sim \chi_1^2$$

Esercizio 3

(**Punti 14**) Un'urna contiene 4 bussolotti numerati con $\boxed{-1}$, 3 numerati con $\boxed{0}$ e 4 numerati con $\boxed{+1}$. Si estrae 60 volte con reintroduzione; qual è la probabilità che la media delle 60 estrazioni sia minore di 0.1?

Soluzione

$$\begin{array}{rcl} \mu & = & E(X_i) = \sum_{x \in S_X} x P(X=x) \\ & = & (-1)\frac{4}{11} + 0\frac{3}{11} + 1\frac{4}{11} \\ & = & 0 \\ \sigma^2 & = & V(X_i) = \sum_{x \in S_X} x^2 P(X=x) - \mu^2 \\ & = & \left((-1)^2 \frac{4}{11} + 0^2 \frac{3}{11} + 1^2 \frac{4}{11} \right) - (0)^2 \\ & = & 0.7273 \end{array}$$

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1,...,X_n,\ n=60$ VC IID, t
c $E(X_i)=\mu=0$ e $V(X_i)=\sigma^2=0.7273, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

allora:

$$\bar{X} ~~ \underset{a}{\sim} ~~ N(\mu,\sigma^2/n)$$

$$\sim N\left(0, \frac{0.7273}{60}\right)$$

 $\sim N(0, 0.01212)$

$$\begin{split} P(\bar{X} < 0.1) &= P\left(\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} < \frac{0.1 - 0}{\sqrt{0.01212}}\right) \\ &= P\left(Z < 0.91\right) \\ &= \Phi(0.91) \\ &= 0.8186 \end{split}$$

Esercizio 4

4.a (**Punti 3**) Sia h uno stimatore per θ , tale che

$$MSE(h) = \frac{\theta}{\sqrt{n}} + \frac{1}{n}$$

h è consistente? Perché?

Soluzione

Sì, è consistente, infatti

$$\lim_{n\to\infty} MSE(h) = \lim_{n\to\infty} \left(\frac{\theta}{\sqrt{n}} + \frac{1}{n}\right) = 0$$

4.
b (**Punti 3**) Siano $X_1, ..., X_n$ n VC IID, replicazioni di $X \sim \mathcal{L}(\theta)$ e sia $\hat{\theta}$ lo stimatore di massima vero
simiglianza per θ , $\hat{\theta}$ è corretto?

Soluzione

No, in generale $\hat{\theta}$ non è corretto, ad esempio

$$E(\hat{\sigma}^2) = \frac{n-1}{n}\sigma^2 \neq \sigma^2$$

ma lo è sempre asintoticamente

$$\lim_{n \to \infty} E(\hat{\theta}) = \theta$$

ad esempio:

$$\lim_{n \to \infty} E(\hat{\sigma}^2) = \lim_{n \to \infty} \frac{n-1}{n} \sigma^2 = \sigma^2$$

4.c (Punti 3) Definire la significatività e la potenza di un test.

Soluzione

La probabilità di significatività è definita con α e rappresenta la probabilità di rifiutare H_0 quando è vera

$$\alpha = P(\text{Errore I tipo}) = P(\text{Decidere } H_1; H_0)$$

La potenza del test è definita

$$1 - \beta = P(\text{Decidere } H_1; H_1)$$

Cioè la probabilità di scegliere ${\cal H}_1$ quando ${\cal H}_1$ è vera.

Esercizio 5

(**Punti 14**) In uno studio comparato sul reddito femminile, nel comune A sono state intervistate 15 donne e si è osservato un reddito medio pari a $\bar{x}_A=23.2$ mila euro lordi annui con una standard deviation pari a $\hat{\sigma}_A=2.2$; nel comune B sono state intervistate 18 donne e si è osservato un reddito medio pari a $\bar{x}_B=20.1$ mila euro lordi annui con una standard deviation pari a $\hat{\sigma}_B=1.8$.

Sotto ipotesi di omogeneità, testare all'1% l'ipotesi che il reddito medio femminile nel comune A sia uguale a quello del comune B, contro l'alternativa che siano **diversi**.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu_{\text{ A }} = \mu_{\text{ B}} \\ H_1: \mu_{\text{ A }} \neq \mu_{\text{ B}} \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2$, anziché α

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, T

L'ipotesi è di omogeneità e quindi calcoliamo:

$$S_p^2 = \frac{n_{\rm A} \, \hat{\sigma}_{\rm A}^2 \, + n_{\rm B} \, \hat{\sigma}_{\rm B}^2}{n_{\rm A} \, + n_{\rm B} \, - 2} = \frac{15 \cdot 2.2^2 + 18 \cdot 1.8^2}{15 + 18 - 2} = 4.223$$

$$\frac{\hat{\mu}_{\mathrm{A}} - \hat{\mu}_{\mathrm{B}}}{\sqrt{\frac{S_{p}^{2}}{n_{\mathrm{A}}} + \frac{S_{p}^{2}}{n_{\mathrm{B}}}}} \sim t_{n_{\mathrm{A}} + n_{\mathrm{B}} - 2}$$

$$t_{\rm obs} \ = \ \frac{(23.2-20.1)}{\sqrt{\frac{4.223}{15} + \frac{4.223}{18}}} = 4.315 \, . \label{eq:tobs}$$

C DECISIONE Dalle tavole si ha $t_{(15+18-2);0.005} = 2.744$.

$$t_{\rm obs} = 4.315 > t_{31:0.005} = 2.744$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 1 %

Graficamente

Il $p_{\rm value}$ è

$$P(|T_{n1+n2-2}|>|t_{\rm obs}|)=2P(T_{n1+n2-2}>|t_{\rm obs}|)=2P(T_{n1+n2-2}>|4.3148|)=0.0001512$$

Esercizio 6

In uno studio sulle competenze scolastiche dei quindicenni si sono analizzati n=150 ragazzi sui quali sono stati registrati il numero di libri in casa X (espresso in decine di libri) e i voti in un test di comprensione Y. Qui di seguito le statistiche di interesse:

$$\sum_{i=1}^{n} x_i = 1129,$$

$$\sum_{i=1}^{n} x_i^2 = 8823$$

$$\sum_{i=1}^{n} y_i = 1014,$$

$$\sum_{i=1}^{n} y_i^2 = 7151$$

$$\sum_{i=1}^{n} x_i y_i = 7923.$$

Si consideri il modello di regressione dove Y viene spiegata da X

6.a (**Punti 14**) Si osservino le prime 5 coppie di dati

i	Libri	Voto
1	5.006	4.504
2	5.108	4.557
3	5.126	4.618
4	5.155	4.691
5	5.187	4.644

Calcolare il residuo per il quarto dato.

Soluzione

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{150} 1129 = 7.527 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{150} 1014 = 6.76 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{150} 8823 - 7.5267^2 = 2.169 \\ \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{150} 7151 - 6.76^2 = 1.976 \\ \operatorname{cov}(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{150} 7923 - 7.5267 \cdot 6.76 = 1.94 \\ \hat{\beta}_1 &= \frac{\operatorname{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{1.94}{2.169} = 0.8942 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 6.76 - 0.8942 \times 7.5267 = 0.0296 \\ \\ \hat{y}_i &= \hat{\beta}_0 + \hat{\beta}_1 x_i = \\ &= 0.0296 + 0.8942 \times 5.1551 = 4.639 \end{split}$$

$$\begin{aligned} \hat{\varepsilon}_i &= y_i - \hat{y}_i \\ &= 4.691 - 4.639 = 0.05189 \end{aligned}$$

6.b (Punti 3) Il modello si adatta bene ai dati?

Soluzione

Il modello spiega il $r^2 \times 100 = (0.937)^2 \times 100 = 87.7969\% > 75\%$ della viarbilità totale di Y. Sì, il modello spiega bene i dati.

6.c (Punti 3) Discutere il diagramma dei residui

retta dei residui vs x

Soluzione

La variabilità dei residui cresce al crescere dalla x, l'ipotesi di omoschedasticità è chiaramente violata.

6.d (Punti 2) Quando in un modello di regressione lineare un punto è considerato influente?

Soluzione

La coppia (x_i, y_i) è considerata punto influente se il suo residuo studentizzato è maggiore di un livello soglia deciso sulle tavole della t con n-2 gradi di libertà:

$$|\tilde{\varepsilon}_i| > t_{n-2,0.05}$$

Prova di Statistica 2021/06/30-1

Esercizio 1

Su un campione di 350 aziende è stato rilevato il costo in spese legali (espresso in migliaia di euro). Qui di seguito i dati in classi e le frequenze cumulate:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	F_{j}
0	5	0.0943
5	8	0.4543
8	13	0.8171
13	20	1.0000

1.a (Punti 14) Individuare la classe modale.

Soluzione

La classe modale è per definizione la classe cui compete densità maggiore e dunque dobbiamo calcolare le frequenze relative,

$$f_j = F_j - F_{j-1},$$

calcolare l'ampiezza delle classi,

$$b_j = x_{j+1} - x_j$$

e la densità di frequenza percentuale

$$d_j = \frac{f_j}{b_i} \times 100$$

ricostruire la tabella

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	F_{j}	f_{j}	b_{j}	h_j
0	5	0.0943	0.0943	5	1.886
5	8	0.4543	0.3600	3	12.000
8	13	0.8171	0.3629	5	7.257
13	20	1.0000	0.1829	7	2.612
			1.0000	20	

e osservare che la classe [5,8) è la classe modale perché è quella con densità maggiore.

1.b (Punti 3) Calcolare la percentuale approssimata di aziende con spese maggiori di 10 mila euro.

Soluzione

$$\label{eq:continuous} \begin{split} \%(X>10) &= (13-10)\times h_3 + f_4\times 100 \\ &= (3)\times 7.257 + (0.1829)\times 100 \\ &= 0.4006\times (100) \\ \#(X>10) &= 140.2 \end{split}$$

1.c (Punti 3) Calcolare la percentuale approssimata di aziende con spese maggiori di 10 mila euro.

Soluzione

La mediana $x_{0.5}$ è il minimante

$$\sum_{i=1}^n |x_i - x_{0.5}| < \sum_{i=1}^n |x_i - x^*|, \quad \forall x^* \neq x_{0.5}$$

Esercizio 2

L'urna A contiene 4 palline numerate: $\begin{bmatrix} -1 \end{bmatrix}$, $\begin{bmatrix} 0 \end{bmatrix}$, $\begin{bmatrix} +1 \end{bmatrix}$

L'urna B contiene 3 palline numerate: $\boxed{0}, \boxed{1}, \boxed{2}$.

Si estrae dall'urna A e dall'urna B e si sommano i due numeri

2.a (Punti 14) Calcolare la probabilità che la somma dei numeri sia maggiore uguale a 2.

Soluzione

E ricaviamo la distribuzione di, X

Calcoliamo valore atteso e varianza

$$\begin{array}{rcl} \mu & = & E(X_i) = \sum_{x \in S_X} x P(X=x) \\ & = & 0 \frac{2}{12} + 1 \frac{4}{12} + 2 \frac{4}{12} + 3 \frac{2}{12} \\ & = & 1.5 \\ \sigma^2 & = & V(X_i) = \sum_{x \in S_X} x^2 P(X=x) - \mu^2 \\ & = & \left(0^2 \frac{2}{12} + 1^2 \frac{4}{12} + 2^2 \frac{4}{12} + 3^2 \frac{2}{12}\right) - (1.5)^2 \\ & = & 0.9167 \\ P(S \geq 2) = 3/12 + 1/12 = 4/12 = 1/3 \end{array}$$

2.
b (**Punti 3**) Calcolare la probabilità che la somma sia maggiore uguale a 1 dato che dall'urna A è uscito $\boxed{0}$.

Soluzione

Dalla definizione stessa di probabilità condizionata

$$\begin{array}{ll} P(X \geq 1 | X_A = 0) & = & \frac{P(\{X \geq 1\} \cap \{X_A = 0\})}{P(\{X_A = 0\})} \\ & = & \frac{2/12 + 2/12}{2/4} \\ & = & 4/12 \cdot 4/2 \\ & = & 0.6667 \end{array}$$

2.c (**Punti 3**) Sia $X \sim \text{Pois}(10)$ e $Y \sim \text{Binom}(n, 0.5)$. Sia

$$W = X - Y$$

Calcolare il valore atteso E(W) e la varianza V(W) di W.

Soluzione

Osserviamo

$$E(X) = 10$$
 $E(Y) = n \cdot 0.5$ $V(X) = 10$ $V(Y) = n \cdot 0.5(1 - 0.5)$

e quindi

$$\begin{array}{lll} E(W) &=& E(X) - E(Y) \\ &=& 10 - n \cdot 0.5 \\ V(W) &=& V(X) + V(Y), \qquad \text{se e solo se X e Y sono indipendenti} \\ &=& 10 + n \cdot 0.25 \end{array}$$

2.
d(Punti 2)Siano $X_1,...,X_6,$ 6 variabili casuali IID, tali che

$$X_i \sim N(2.5, 3^2)$$
.

Come si distribuisce

$$Y = \sum_{i=1}^{6} \left(\frac{X_i - 2.5}{3} \right)^2 ?$$

Soluzione

Si osserva

$$Z_i = \frac{X_i-2.5}{3} \sim N(0,1)$$

e quindi

$$Y = (Z_1^2 + \dots + Z_6^2) \sim \chi_6^2$$

Esercizio 3

(**Punti 14**) Si lancia un dado perfetto, si vince se esce un numero maggiore o uguale a 5. Si gioca n = 64 volte, qual è la probabilità di vincere più di 23 volte su 64 giocate?

Soluzione

$$\pi = \frac{2}{6} = \frac{1}{3}$$

la probabilità di vincere all'estrazione i,e quindi $X_i \sim \mathrm{Ber}(\pi)$

$$\begin{array}{lcl} E(X_i) & = & \pi \\ V(X_i) & = & \pi(1-\pi) \end{array}$$

In virtù del TCL della somma di n VC IID

Teorema del Limite Centrale (somma di Bernoulli)

Siano $X_1, \! ..., \! X_n, \, n = 64$ VC IID, t
c $X_i \sim \mathrm{Ber}(\pi = 0.3333), \forall i,$ posto:

$$S_n = X_1 + \dots + X_n$$

allora:

$$\begin{array}{lll} S_n & \sim & N(n\pi,n\pi(1-\pi)) \\ & \sim & N(64 \cdot 0.3333,64 \cdot 0.3333 \cdot (1-0.3333)) \\ & \sim & N(21.33,14.22) \end{array}$$

$$\begin{split} P(S_n > 23) &= P\left(\frac{S_n - n\pi}{\sqrt{n\pi(1-\pi)}} > \frac{23 - 21.33}{\sqrt{14.22}}\right) \\ &= P\left(Z > 0.44\right) \\ &= 1 - P(Z < 0.44) \\ &= 1 - \Phi(0.44) \\ &= 0.33 \end{split}$$

Esercizio 4

4.a (**Punti 3**) Sia h uno stimatore per θ , tale che

$$E(h) = \theta + \frac{\theta}{\sqrt{n}}$$

$$V(h) = \frac{\theta^2}{\sqrt{n}}$$

h è consistente?

Soluzione

Uno stimatore è consistente se

$$\lim_{n \to \infty} MSE(h) = 0$$

Essendo

$$\begin{split} MSE(h) &= V(h) + B^2(h) \\ &= V(h) + |E(h) - \theta|^2 \\ &= \frac{\theta^2}{\sqrt{n}} + \left|\theta + \frac{\theta}{\sqrt{n}} - \theta\right|^2 \end{split}$$

$$= \frac{\theta^2}{\sqrt{n}} + \frac{\theta^2}{n}$$

$$\lim_{n \to \infty} \left(\frac{\theta^2}{\sqrt{n}} + \frac{\theta^2}{n} \right) = 0$$

Quindi sì, h è consistente.

4.b (**Punti 3**) Definire la funzione di verosimiglianza.

Soluzione

Siano $x_1,...,x_n$ n osservazioni di $X\sim \mathcal{L}(\theta),\ \theta\in\Theta,$ si definisce la verosimiglianza L di θ la funzione:

$$L(\theta;x_1,...,x_n) = L(\theta) \propto P(X_1 = x_1,...,X_n = x_n;\theta)$$

Se $x_1, ..., x_n$ sono osservazioni IID otteniamo

$$L(\theta) \propto P(X_1 = x_1; \theta) \cdot \dots \cdot P(X_n = x_n; \theta)$$
$$\propto \prod_{i=1}^n f(x_i; \theta)$$

4.c (**Punti 3**) Si sono osservati due gruppi di dati quantitativi e si è osservato, $\hat{\mu}_1 = 10.2$, $\hat{\sigma}_1 = 1.12$ e $\hat{\mu}_2 = 15.6$, $\hat{\sigma}_2 = 3.72$. Posto a test

$$\begin{cases} H_0: \sigma_1 = \sigma_2 \\ H_1: \sigma_1 \neq \sigma_2 \end{cases}$$

è risultato $p_{\text{value}} = 0.0012$. I due gruppi sono da considerare omogenei o eterogenei? Perché?

Soluzione

Il $p_{\rm value}=0.0012$ ci indica che i dati supportano $H_1,$ quindi i due gruppi sono da considerarsi eterogenei.

Esercizio 5

(**Punti 14**) In uno studio sui consumi sono stati intervistati n=25 individui sui quali è stato rilevato il reddito mensile X (in migliaia di euro), e il consumo Y (in migliaia di euro). Il modello di regressione

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

ha fornito i seguenti risultati

$$\begin{split} \hat{\beta}_0 &= 0.60, & \hat{\beta}_1 &= 0.75, & r &= 0.87 \\ \bar{x} &= 1.61 & \hat{\sigma}_X &= 0.90 \\ \bar{y} &= 1.81 & \hat{\sigma}_Y &= 0.78 \end{split}$$

Testare al 5% l'ipotesi che il consumo di sussistenza β_0 sia uguale 0.5 contro l'alternativa che sia maggiore.

Soluzione

$$\begin{array}{lll} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.7569)\times 0.6084 \\ & = & 0.1479 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{25}{25-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{25}{25-2}\times 0.1479 = 0.1608 \end{array}$$

E quindi

$$\begin{split} V(\hat{\beta}_0) &= \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2}\right) \\ \widehat{V(\hat{\beta}_0)} &= S_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2}\right) \\ &= 0.1608 \times \left(\frac{1}{25} + \frac{1.61^2}{25 \times 0.81}\right) \\ \widehat{SE(\hat{\beta}_0)} &= \sqrt{0.027} \\ &= 0.1643 \end{split}$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_0=0.5\\ H_1: \beta_0>0.5 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_0 - \beta_{0;H_0}}{\widehat{SE(\hat{\beta}_0)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(0.5961 - 0.5)}{0.1643} = 0.5848 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(25-2);0.05} = 1.711$.

$$t_{\text{obs}} = 0.5848 < t_{23;\,0.05} = 1.711$$

CONCLUSIONE: i dati **sono** coerenti con H_0 al LdS del 5%

Graficamente

Il $p_{\rm value}$ è

$$P(T_{n-2} > t_{\rm obs}) = P(T_{n-2} > 0.585) = 0.2822$$

Esercizio 6

In uno studio sui consumi sono stati intervistati n=75 individui sui quali è stato rilevato il reddito mensile X (in migliaia di euro), e il consumo Y (in migliaia di euro). Il modello di regressione. Qui di seguito le statistiche di interesse:

$$\begin{split} \bar{x} &= 4.126 & \hat{\sigma}_X = 2.6036, & x_{(0)} &= 0.0052, & x_{(n)} &= 9.5485, \\ \bar{y} &= 3.5691 & \hat{\sigma}_Y = 2.6833, & y_{(0)} &= 0.0718, & y_{(n)} &= 11.008, \\ &\cos(X,Y) &= 5.8726. & \end{split}$$

Si consideri il modello di regressione dove Y viene spiegata da X

6.a (**Punti 14**) Prevedere il consumo per un individuo che guadagna x = 4.126 e per un individuo che guadagna x = 12.3.

Soluzione

6.b (**Punti 3**) Quale delle due previsioni, per x = 4.126 e per x = 12.3, è più affidabile? Perché?

Soluzione

L'errore di previsione per x dipende dalla sua distanza quadratica dalla media

$$\operatorname{err\ prev}(x) = V(\hat{Y}_{(X=x)}) = \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{n \hat{\sigma}_X^2} \right)$$

quindi l'errore di previsione è minimo per x=4.126, mentre $x=12.3>x_{(n)}=9.5485$ e si tratta di estrapolazione.

La previsione per x = 4.126 è molto più affidabile che quella per x = 12.3.

6.c (**Punti 3**) Calcolare le quantità TSS, RSS e ESS.

Soluzione

Ricaviamo
$$\mathbb{R}^2$$

$$R^2 = \left(\frac{5.8726}{2.6036 \cdot 2.6833}\right)^2 = 0.8398^2 = 0.7053$$

quindi

$$TSS = n\hat{\sigma}_{Y}^{2}$$

= 75×7.165
= 537.3
 $ESS = R^{2} \cdot TSS$
= $0.7053 \cdot 537.3$

$$= 379$$

$$RSS = (1 - R^{2}) \cdot TSS$$

$$= (1 - 0.7053) \cdot 537.3$$

$$= 158.4$$

$$TSS = RSS + TSS$$

$$537.3 = 379 + 158.4$$

6.d (**Punti 2**) Cosa vuol dire che r è invariante ai cambiamenti di scala?

Soluzione

$$\text{se } W = a + bY, \\ \text{allora } r_{X,W} = \text{sign}(b) \\ r_{XY}, \text{ dove la funzione } \\ \text{sign}(b) = \begin{cases} +1, & \text{se } b > 0 \\ -1, & \text{se } b < 0 \end{cases}$$

Prova di Statistica 2021/06/30-2

Esercizio 1

Su un campione di 12 famiglie della provincia Q è stato rilevato il reddito mensile, qui di seguito i dati **non ordinati** espressi in migliaia di euro al mese.

$\overline{}$	x_i	i	x_i	i	x_i
1	3.7	5	6.5	9	0.3
2	12.6	6	1.6	10	14.0
3	4.3	7	4.8	11	17.2
4	3.8	8	4.7	12	16.2

1.a (Punti 14) Individuare il 25-esimo, 50-esimo e l'75-esimo percentile

Soluzione

Dobbiamo prima riordinare i dati

$\overline{}$	x_i	i	x_i	i	x_i
(1)	0.3	(5)	4.3	(9)	12.6
(2)	1.6	(6)	4.7	(10)	14.0
(3)	3.7	(7)	4.8	(11)	16.2
(4)	3.8	(8)	6.5	(12)	17.2

e quindi

$$\begin{array}{lcl} x_{0.25} & = & x_{(\lceil n \times 0.25 \rceil)} = x_{(3)} = 3.7 \\ x_{0.50} & = & \frac{x_{(n/2)} + x_{(n/2+1)}}{2} = \frac{4.7 + 4.8}{2} = 4.75 \\ x_{0.75} & = & x_{(\lceil n \times 0.75 \rceil)} = x_{(9)} = 12.6 \end{array}$$

1.b (**Punti 3**) La somma dei dati è 94.6. Come dobbiamo aspettarci l'istogramma di densità?

Soluzione

La somma dei dati è 94.6 e quindi la media viene

$$\bar{x} = \frac{1}{12}94.6 = 7.8833$$

siccome $\bar{x}>x_{0.5}$ allora l'istogramma avrà una coda lunga a dx.

1.c (Punti 2) Cosa significa che la media aritmetica gode della proprietà di linearità?

Esercizio 2

Si consideri un'urna così formata,

$$\{1,2,3,4,5,6,7,8\}$$
.

Si vince se si estrae un numero maggiore o uguale a 6.

Si estrae *con* reintroduzione.

2.a (Punti 14) Qual è la probabilità di vincere almeno 5 volte su 6 estrazioni?

Soluzione

Sia X la VC che conta il numero di di vittorie in 6 giocate, quindi n=6 replicazioni di una Bernoulli $X_i \sim \text{Ber}(\pi=3/8)$ e quindi

$$X = X_1 + ... + X_n \sim \text{Binom}(n = 6, \pi = 0.375)$$

la probabilità di avere almeno 5 bussolotti rossi su 6 estrazioni è

$$P(X > 5) = {6 \choose 5} 0.375^{5} (1 - 0.375)^{6-5} + {6 \choose 6} 0.375^{6} (1 - 0.375)^{6-6}$$

$$= 0.0278 + 0.0028$$

$$= 0.0306$$

2.b (Punti 3) Calcolare la probabilità di vincere la prima volta alla quarta estrazione.

Soluzione

Ogni singola giocata X_i è una Bernoulli $X_i \sim \text{Ber}(\pi = 3/8)$ e quindi

$$\begin{array}{lll} E &=& \text{Vincere la prima volta alla quarta estrazione} \\ &=& X_1 = 0 \ \cap \ X_2 = 0 \ \cap \ X_3 = 0 \ \cap \ X_4 = 1 \\ P(E) &=& P(X_1 = 0 \ \cap \ X_2 = 0 \ \cap \ X_3 = 0 \ \cap \ X_4 = 1) \\ &=& P(X_1 = 0)P(X_2 = 0)P(X_3 = 0)P(X_4 = 1) \\ &=& \left(1 - \frac{3}{8}\right)\left(1 - \frac{3}{8}\right)\frac{3}{8} \\ &=& \left(\frac{5}{8}\right)^3\frac{3}{8} \\ &=& 0.0916 \end{array}$$

2.c (**Punti 3**) Se A e B sono due eventi tali che, P(A) > 0, P(B) > 0, $P(A \cap B) = 0$. A e B possono essere indipendenti?

Soluzione

No, in quanto, se A e B sono indipendenti

$$P(A \cap B) = P(A)P(B) \neq 0$$

2.d (**Punti 2**) Sia $X \sim N(3.2, (1.1)^2)$ e sia $Y \sim \chi^2_{n-1}$, posto

$$T = \frac{\left(\frac{X-3.2}{1.1}\right)}{\sqrt{\frac{Y}{n-1}}},$$

come si distribuisce T?

Soluzione

Si noti che

$$Z = \left(\frac{X-3.2}{1.1}\right) \sim N(0,1)$$

e che

$$T = \frac{Z}{\sqrt{\frac{Y}{n-1}}} \sim t_{n-1}$$

Esercizio 3

(**Punti 14**) Un'urna contiene un numero imprecisato di palline numerate. Si conoscono solo la media $\mu = 12.3$ e la standard deviation $\sigma = 1.1$ dei numeri delle sfere.

Si estrae n=81 volte con reintroduzione, qual è la probabilità che la media delle 81 estrazioni sia compresa tra 12.06 e 12.54?

Soluzione

Il valore atteso di della *i*-esima estrazione è

$$E(X_i) = 12.3$$

e la varianza

$$V(X_i) = 1.1^2$$

In virtù del TCL per la media: la media di n VC IID, tali che $E(X_i) = \mu$, $V(X_i) = \sigma^2$ Teorema del Limite Centrale (media VC qualunque)

Siano $X_1,\dots,X_n,\ n=81$ VC IID, t
c $E(X_i)=\mu=12.3$ e $V(X_i)=\sigma^2=1.21, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

allora:

$$\bar{X} ~\sim_a ~N(\mu,\sigma^2/n)$$

$$\sim N\left(12.3, \frac{1.21}{81}\right)$$

$$\sim N(12.3, 0.01494)$$

$$P(12.06 < \bar{X} \le 12.54) = P\left(\frac{12.06 - 12.3}{\sqrt{0.01494}} < \frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \le \frac{12.54 - 12.3}{\sqrt{0.01494}}\right)$$

$$= P\left(-1.96 < Z \le 1.96\right)$$

$$= \Phi(1.96) - \Phi(-1.96)$$

$$= \Phi(1.96) - (1 - \Phi(1.96))$$

$$= 0.975 - (1 - 0.975)$$

$$= 0.95$$

Esercizio 4

4.a (**Punti 3**) Sia h uno stimatore per θ , tale che

$$E(h) = \theta + \frac{\theta}{n^2},$$

$$V(h) = \frac{\sqrt{\theta}}{n}.$$

Ricavare MSE(h), il Mean Squared Error di h.

Soluzione

$$\begin{split} MSE(h) &= V(h) + B^2(h) \\ &= V(h) + |E(h) - \theta|^2 \\ &= \left. \frac{\sqrt{\theta}}{n} + \left| \theta + \frac{\theta}{n^2} - \theta \right|^2 \right. \\ &= \left. \frac{\sqrt{\theta}}{n} + \frac{\theta^2}{n^4} \right. \end{split}$$

4.b (**Punti 3**) Scrivere la funzione di verosimiglianza di una Poisson.

Soluzione

Siano $X_1,...,X_n,$ n VC IID, tali che, $X_i \sim \operatorname{Pois}(\lambda)$ La verosimiglianza è

$$\begin{split} L(\lambda) &=& \prod_{i=1}^n \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \\ &\propto & \lambda^{s_n} e^{-n\lambda}, \qquad s_n = \sum_{i=1}^n x_i \end{split}$$

4.c (**Punti 3**) Definire il p_{value} , la probabilità di significatività osservata.

Soluzione

La probabilità di significatività $p_{\rm value}$ è

$$p_{\text{value}} = P(|T| > |t_{\text{obs}}|; H_0)$$

La probabilità di significatività osservata p_{value} esprime la probabilità, se fosse vera H_0 , di trovare un campione ancora più in favore di H_1 di quello disponile

Esercizio 5

(**Punti 14**) In uno studio sulle preferenze tra canali televisivi, vengono analizzati 92 individui, classificati canale preferito (RAI, Mediaset, La7) e per titolo di studio superiore (Laureato, Non Laureato)

Qui di seguito i dati dello studio,

	Rai	Mediaset	La7	
Laureato	15	5	12	32
Non Laureato	10	35	15	60
	25	40	27	92

Titolo di studio superiore e canale preferito sono indipendenti?

Soluzione

È un test sull'indipendenza tra due VC

	Rai	Mediaset	La7	Tot
Laureato	15	5	12	32
Non Laureato	10	35	15	60
Tot	25	40	27	92

A FORMULAZIONE DELLE IPOTESI

$$\Big\{H_0: \pi_{ij} = \pi_{i \bullet} \pi_{\bullet j}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, χ^2 Si usa il test $\chi^2,$ si crea la tabella delle frequenze teoriche

$$n_{ij}^* = \frac{n_{i\bullet}n_{\bullet j}}{n}$$

La tabella delle distanze

$$\frac{(n_{ij}-n_{ij}^*)^2}{n_{ij}^*}$$

	Rai	Mediaset	La7	Tot
Laureato Non Laureato	4.571 2.438	$5.710 \\ 3.045$	00	0
Tot	0.000	0.000	0.000	0

C DECISIONE

$$\chi_{obs}^2 = 16.87$$

i gdl

$$(3-1) \times (4-1) = 6$$

 $\alpha=0.01$ e quindi $\chi^2_{1,0.01}=16.81$ Essando

Essendo

$$\chi^2_{obs} = 16.87 > \chi^2_{1,0.01} = 16.81$$

allora rifiuto ${\cal H}_0$ al lds dell'1 percento.

Graficamente

Esercizio 6

In uno studio sulla qualità della vita si è osservato su 4 provincie l'ammontare degli investimenti provinciali pro capite per attività culturali (X), in centinaia di euro, e un indice di qualità della vita (Y), espresso in opportuna scala. Qui di seguito i dati

\overline{i}	x_i	y_i
1	1	4
2	2	6
3	4	5
4	5	8

6.a (**Punti 14**) Stimare il modello di regressione dove la qualità della vita è spiegata dagli investimenti provinciali.

Soluzione

Costruiamo le statistiche

i	x_i	y_i	x_i^2	y_i^2	$x_i \cdot y_i$
1	1	4.00	1.00	18.0	4
2	2	6.00	4.00	31.0	12
3	4	5.00	15.00	29.0	21
4	5	8.00	27.00	56.0	39
Totale	12	23.00	47.00	134.0	76
Totale/r	1 3	5.75	11.75	33.5	19

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{4} 12 = 3 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{4} 23 = 5.75 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{4} 48 - 3^2 = 3 \\ \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{4} 134 - 5.75^2 = 0.4375 \\ \operatorname{cov}(X, Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x} \bar{y} = \frac{1}{4} 76 - 3 \cdot 5.75 = 1.755 \\ \hat{\beta}_1 &= \frac{\operatorname{cov}(X, Y)}{\hat{\sigma}_X^2} \\ &= \frac{1.755}{3} = 0.585 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 5.75 - 0.585 \times 3 = 3.995 \end{split}$$

6.b (Punti 3) Calcolare la percentuale di varianza spiegata dal modello.

Soluzione

Ricaviamo \mathbb{R}^2

$$R^2 = \left(\frac{1.755}{1.6163 \cdot 1.1819}\right)^2 = 1.5319^2 = 2.3467$$

Il modello si adatta molto bene ai dati, spiegando il 234.6718% (>75%) della variabilità totale della Y.

6.c (**Punti 3**) Ricavare le quantità TSS, RSS e ESS.

Soluzione

$$\begin{array}{rcl} TSS & = & n\hat{\sigma}_Y^2 \\ & = & 4\times0.4375 \\ & = & 1.75 \\ ESS & = & R^2\cdot TSS \\ & = & 2.347\cdot1.75 \\ & = & 4.107 \\ RSS & = & (1-R^2)\cdot TSS \\ & = & (1-2.347)\cdot1.75 \\ & = & -2.357 \\ TSS & = & RSS + TSS \\ 1.75 & = & 4.107 + -2.357 \end{array}$$

6.
d (**Punti 2**) Cosa significa che gli stimatori di massima dei minimi quadrati $\hat{\beta}_0$ e $\hat{\beta}_1$ son
oBLUE?

Soluzione

Gli stimatori $\hat{\beta}_0$ e $\hat{\beta}_1$ di β_0 e β_1 sono, tra tutti gli stimatori lineari corretti per β_0 e β_1 , BLUE ($Best\ Linear\ Unbiased\ Estimators\ Best:$ i più efficienti; Unbiased: corretti; Linear Estimators: stimatori lineari).

Prova di Statistica 2021/07/22-1

Esercizio 1

Su un campione di 350 aziende è stato rilevato il costo annuo in gas metano (espresso in migliaia di euro). Qui di seguito l'istogramma di densità:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	h_{j}
0.0	2.5	3.657
2.5	4.0	24.191
4.0	6.5	14.514
6.5	10.0	5.224

1.a (**Punti 14**) Calcolare il valore approssimato della mediana.

Soluzione

Per individuare la mediana dobbiamo costruire le basi:

$$b_j = x_{j+1} - x_j$$

le frequenze relative,

$$f_j = h_j \cdot b_j,$$

le cumulate

$$F_j = f_1 + \ldots + f_j$$

ricostruire la tabella

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	h_{j}	b_{j}	f_{j}	F_{j}
0.0	2.5	3.657	2.5	0.0914	0.0914
2.5	4.0	24.191	1.5	0.3629	0.4543
4.0	6.5	14.514	2.5	0.3629	0.8171
6.5	10.0	5.224	3.5	0.1829	1.0000
			10.0	1.0000	

e quindi:

$$\begin{array}{lcl} p & = & 0.5, \mathrm{essendo} \; F_3 = 0.8171 > 0.5 \Rightarrow j_{0.5} = 3 \\ x_{0.5} & = & x_{\mathrm{inf;3}} + \frac{0.5 - F_2}{f_3} \cdot b_3 \\ & = & 4 + \frac{0.5 - 0.4543}{0.3629} \cdot 2.5 \\ & = & 4.315 \end{array}$$

1.b (Punti 3) Che relazione dobbiamo aspettarci tra media e mediana?

Soluzione

L'istogramma presenta una coda lunga a sinistra e quindi

$$\bar{x} > x_{0.5}$$

1.c (**Punti 2**) La varianza dei dati è pari a $\sigma^2 = 4.8382$. Nell'ipotesi che i costi per metano aumentassero del 10%, quanto varrebbe la varianza?

Soluzione

Si tratta di una trasformazione lineare

$$Y = 1.1 \cdot X$$

e quindi

$$\sigma_Y^2 = (1.1)^2 \sigma_X^2 = 5.8542.$$

Esercizio 2

In una stazione ci sono 3 binari. Ogni ora il numero di persone che transita su ogni binario è descritto da una Poisson. In particolare

- $X_1 \sim \text{Pois}(1.1)$, il binario uno;
- $X_2 \sim \text{Pois}(1.1)$, il binario due;
- $X_3 \sim \text{Pois}(0.5)$, il binario tre.

Il numero di persone in transito su un binario è indipendente dal numero di persone in transito sugli altri binari.

2.a (**Punti 14**) Calcolare la probabilità che il *totale* delle persone in transito nella stazione, in una data ora, sia maggiore o uguale a due.

Soluzione

Il totale di persone in transito è la somma delle tre Poisson

$$X = X_1 + X_2 + X_3 \sim \text{Pois}(\lambda = 1.1 + 1.1 + 0.3)$$

$$\begin{split} P(X \geq 2) &= 1 - P(X < 2) \\ &= 1 - \left(\frac{2.5^0}{0!}e^{-2.5} + \frac{2.5^1}{1!}e^{-2.5}\right) \\ &= 1 - (0.0821 + 0.2052) \\ &= 1 - 0.2873 \\ &= 0.7127 \end{split}$$

2.b (**Punti 3**) Calcolare la probabilità di osservare una persona su un binario, una persona su un altro binario e nessuna persona sul rimanetene.

Soluzione

Anzitutto osserviamo:

$$\begin{split} P(X_1=0) &= P(X_2=0) \\ &= \frac{1.1^0}{0!}e^{-1.1} \\ &= 0.3329 \\ P(X_1=1) &= P(X_2=1) \\ &= \frac{1.1^1}{1!}e^{-1.1} \\ &= 0.3662 \\ P(X_3=0) &= \frac{0.5^0}{0!}e^{-0.5} \\ &= 0.6065 \\ P(X_3=1) &= \frac{0.5^1}{1!}e^{-0.5} \\ &= 0.3033 \end{split}$$

L'evento una persona su un binario, una persona su un altro binario e nessuna persona sul rimanetene si scompone:

$$\begin{array}{ll} E &=& \big\{(X_1=1\cap X_2=1\cap X_3=0) \cup \\ &&\cup (X_1=1\cap X_2=0\cap X_3=1) \cup \\ &&\cup (X_1=0\cap X_2=1\cap X_3=1)\big\} \\ P(E) &=& P(X_1=1\cap X_2=1\cap X_3=0) + \\ &&+P(X_1=1\cap X_2=0\cap X_3=1) + \\ &&+P(X_1=0\cap X_2=1\cap X_3=1) \\ &=& P(X_1=1)P(X_2=1)P(X_3=0) + \\ &&+P(X_1=1)P(X_2=0)P(X_3=1) + \\ &&+P(X_1=0)P(X_2=1)P(X_3=1) \\ &=& 0.3662 \cdot 0.3662 \cdot 0.6065 + \\ &&+0.3662 \cdot 0.3329 \cdot 0.3033 + \\ &&+0.3329 \cdot 0.3662 \cdot 0.3033 \\ &=& 0.1552 \end{array}$$

2.c (**Punti 3**) Siano $X_1, ..., X_n, n$ VC IID, tali che

$$X_i \sim N(0, 1)$$
.

Posto

$$\bar{X} = \frac{X_1 + \dots + X_n}{n},$$

come si distribuisce \bar{X} ?

Soluzione

$$\bar{X} = \frac{X_1 + \ldots + X_n}{n} \sim N\left(0, \frac{1}{n}\right),$$

2.
d (**Punti 2**) Siano $X_1 \sim \text{Binom}(5,0.3)$ e $X_2 \sim \text{Binom}(3,0.3)$. Come si distribuisce,

$$X_1 + X_2 \sim ?$$

Soluzione

$$X_1 + X_2 \sim \text{Binom}(8, 0.3)$$

se e solo se X_1 e X_2 sono indipendenti.

Esercizio 3

(Punti 14) Un'urna contiene 4 palline numerate

$$\begin{bmatrix} -1 \end{bmatrix}$$
, $\begin{bmatrix} 0 \end{bmatrix}$, $\begin{bmatrix} 2 \end{bmatrix}$, $\begin{bmatrix} 3 \end{bmatrix}$

Si estrae n = 64 volte con reintroduzione.

Calcolare la probabilità che la media delle 64 estrazioni sia compresa tra 0.92 e 4.08.

Soluzione

$$\begin{array}{rcl} \mu & = & E(X_i) = \displaystyle \sum_{x \in S_X} x P(X=x) \\ \\ & = & (-1) \frac{1}{4} + 0 \frac{1}{4} + 2 \frac{1}{4} + 3 \frac{1}{4} \\ \\ & = & 1 \\ \sigma^2 & = & V(X_i) = \displaystyle \sum_{x \in S_X} x^2 P(X=x) - \mu^2 \\ \\ & = & \left((-1)^2 \frac{1}{4} + 0^2 \frac{1}{4} + 2^2 \frac{1}{4} + 3^2 \frac{1}{4} \right) - (1)^2 \\ \\ & = & 2.5 \end{array}$$

In virtù del TLC per la media otteniamo

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1, \dots, X_n, \, n=64$ VC IID, t
c $E(X_i)=\mu=1$ e $V(X_i)=\sigma^2=2.5, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

allora:

$$\bar{X} \sim N(\mu, \sigma^2/n)$$
 $\sim N\left(1, \frac{2.5}{64}\right)$

Esercizio 4

4.a (**Punti 3**) Se h è uno stimatore tale che la sua distorsione va a zero per n che tende all'infinito:

$$\lim_{n \to \infty} B(h) = 0$$

di quale proprietà gode h?

Soluzione

Osserviamo che

$$B(h)=E(h)-\theta \qquad \qquad \text{e quindi}$$

$$\lim_{n\to\infty}B(h)=0$$

$$\lim_{n\to\infty}(E(h)-\theta)=0 \qquad \qquad \text{se e solo se}$$

$$\lim_{n\to\infty}E(h)=\theta \qquad \qquad \text{cioè h è asintoticamente corretto}$$

4.b (Punti 3) Definire la funzione di verosimiglianza della Bernoulli.

Soluzione

La verosimiglianza è

$$L(\pi) \quad \propto \quad \prod_{i=1}^n \pi^{x_i} (1-\pi)^{1-x_i}$$

$$= \ \pi^{s_n} (1-\pi)^{n-s_n}, \qquad s_n = \sum_{i=1}^n x_i$$

4.c (**Punti 3**) Un dado, che non sappiamo se è perfetto oppure no, viene lanciato 40 volte. Posto π_i la probabilità che il dado mostri la faccia i, i = 1, ..., 6, si è testato

$$\left\{ H_0: \pi_1 = \pi_2 = \ldots = \pi_6 = \tfrac{1}{6} \right.$$

ed è risultato $p_{\text{value}} = 0.21$. Possiamo concludere che il dado sia truccato?

Soluzione

Il $p_{\text{value}} = 0.21 > 0.05$ non c'è motivo per rifiutare H_0 , quindi il dado non è truccato.

Esercizio 5

Una casa farmaceutica sta sperimentando un farmaco che lenisce il mal di testa in modo rapido. Osservati n=15 individui, si è registrato che il farmaco agisce in media $\bar{x}=26.2$ minuti, con una sd corretta pari a S=0.9.

5.a (**Punti 10**) Costruire un intervallo di confidenza al 99% per il tempo medio di azione.

Soluzione

$$S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{15}{14}} \cdot 0.9 = 0.9316$$

$$Idc: \qquad \hat{\mu} \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}}$$

$$26.2 \pm 2.977 \times \frac{0.9316}{\sqrt{15}}$$

$$26.2 \pm 2.977 \times 0.2405$$

$$[25.48, 26.92]$$

5.b (**Punti 4**) È ben noto, da studi pregressi, che quella tipologia di farmaci ha un tempo medio di azione pari a 29.3. Testare al livello di significatività dell'1% che il farmaco in sperimentazione agisca in modo uguale agli altri contro l'alternativa che abbia tempi di azione inferiori.

9.5. PROVA DI STATISTICA 2021/07/22-1

197

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu = \mu_0 = 29.3 \\ H_1: \mu < \mu_0 = 29.3 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, T σ^2 di P non è nota: \Rightarrow t-Test.

$$S = \sqrt{\frac{n}{n-1}} \ \hat{\sigma} = \sqrt{\frac{15}{15-1}} \times 0.9 = 0.9316$$

$$\begin{array}{ccc} \frac{\hat{\mu} - \mu_0}{S/\sqrt{n}} & \sim & t_{n-1} \\ \\ t_{\rm obs} & = & \frac{(26.2 - 29.3)}{0.9316/\sqrt{15}} = -12.89 \,. \end{array}$$

 \fbox{C} DECISIONE Dalle tavole si ha $t_{(15-1);\,0.01}=-2.624.$

$$t_{\text{obs}} = -12.89 < t_{14:0.01} = -2.624$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 1 %

Graficamente

Il $p_{\rm value}$ è

$$P(T_{n-1} < t_{\rm obs}) = P(T_{n-1} < -12.888) = 0.000000001861$$

Esercizio 6

In uno studio sul risparmio gestito sono stati intervistati n=15 individui sui quali è stato rilevato il reddito mensile X (in migliaia di euro), e il risparmio gestito Y (in migliaia di euro). Il modello di regressione. Qui di seguito i dati e le statistiche di interesse:

i	x_{i}	y_{i}	x_i^2	y_i^2	$x_i \cdot y_i$
1	0.470	0.0400	0.22	0.0000	0.020
2	1.980	0.1600	3.92	0.0300	0.320
3	2.270	0.0400	5.15	0.0000	0.090
4	2.380	0.0600	5.66	0.0000	0.140
5	2.830	0.0600	8.01	0.0000	0.170
6	3.240	0.1200	10.50	0.0100	0.390
7	3.960	0.1600	15.68	0.0300	0.630
8	4.390	0.1400	19.27	0.0200	0.610
9	4.450	0.2800	19.80	0.0800	1.250
10	5.750	0.2500	33.06	0.0600	1.440
11	7.180	0.4000	51.55	0.1600	2.870
12	7.490	0.4100	56.10	0.1700	3.070
13	8.480	0.5600	71.91	0.3100	4.750
14	8.850	0.5600	78.32	0.3100	4.960
15	9.990	0.7600	99.80	0.5800	7.590
Totale	73.710	4.0000	478.95	1.7600	28.300
Totale/r	n 4.914	0.2667	31.93	0.1173	1.887

6.a (**Punti 14**) Stimare il modello di regressione dove il risparmio è funzione del reddito e quello in cui il reddito è funzione del risparmio.

Soluzione
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{15} 73.71 = 4.914$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{15} 4 = 0.2667$$

$$\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{15} 479 - 4.914^2 = 7.784$$

$$\begin{split} \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{15} 1.77 - 0.2667^2 = 0.0469 \\ \operatorname{cov}(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{15} 28.3 - 4.914 \cdot 0.2667 = 0.5762 \\ \hat{\beta}_1 &= \frac{\operatorname{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{0.5762}{7.784} = 0.074 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 0.2667 - 0.074 \times 4.914 = -0.0971 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{15} 4 = 0.2667 \\ \bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{15} 73.71 = 4.914 \\ \hat{\sigma}_y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{15} 1.77 - 0.2667^2 = 0.0469 \\ \hat{\sigma}_x^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{15} 479 - 4.914^2 = 7.784 \\ \operatorname{cov}(y,x) &= \frac{1}{n} \sum_{i=1}^n y_i \ x_i - \bar{y}\bar{x} = \frac{1}{15} 28.3 - 0.2667 \cdot 4.914 = 0.5762 \\ \hat{\alpha}_1 &= \frac{\operatorname{cov}(y,x)}{\hat{\sigma}_y^2} \\ &= \frac{0.5762}{0.0469} = 0.074 \\ \hat{\alpha}_0 &= \bar{x} - \hat{\alpha}_1 \bar{y} \\ &= 4.914 - 0.074 \times 0.2667 = -0.0971 \end{split}$$

6.b (**Punti 3**) I due modelli si adattano bene ai dati?

Soluzione

$$r^2 = (0.9538)^2 = 0.9097 > 0.75$$

Sì, i modelli si adattano bene

6.c (**Punti 3**) Discutere il diagramma dei residui del modello di regressione dove Y viene spiegata da X.

Soluzione

C'è una non linearità evidente, l'assunto zero non è rispettato

6.d (**Punti 2**) Se ogni individuo risparmiasse 10€ in più al mese, quanto varrebbe r?

Soluzione

Se ogni individuo risparmiasse 10€ in più al mese allora

$$W = Y + 10$$

e in virtù dell'invarianza del coefficiente di correlazione alle trasformazioni lineari otterremmo:

$$r_{XW}=r_{XY}=0.9538\,$$

Prova di Statistica 2021/07/22-2

Esercizio 1

Su un campione di 350 aziende è stato rilevato il costo annuo in gas metano (espresso in migliaia di euro). Qui di seguito i dati e le frequenze percentuali

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	$f_{j\%}$
0.0	2.5	9.143
2.5	4.0	36.286
4.0	6.5	36.286
6.5	10.0	18.286

1.a (Punti 14) Calcolare la colonna delle densità percentuali.

1.
b (**Punti 3**) Calcolare il numero approssimato di aziende con consumo di gas inferiore al 25-esimo percentile $x_{0.25}$.

Soluzione $\%(X \leq x_{0.25}) = 25\%$ n = 350 e quindi il 25% di 350 è $350 \times 0.25 = 87.5$

1.c (Punti 2) È vero che la media aritmetica minimizza la somma dei valori assoluti degli scarti? Perché?

Soluzione

È la mediana che minimizza la somma dei valori assoluti degli scarti. Siccome media e mediana, in generale non coincidono allora no, la media non minimizza la somma dei valori assoluti degli scarti.

Esercizio 2

Ci sono due urne:

- l'urna A: $\{0, 0, 1\}$ e l'urna B: $\{0, 1, 1\}$.

Si estrae dalle due urne e si somma,

- se la somma fa 2 si vince,
- altrimenti si perde,

poi si rimettono le palline nelle urne e si ripete il gioco per n=5 volte.

2.a (Punti 14) Qual è la probabilità di vincere almeno 1 volta su 5 giocate?

Soluzione

$$\pi = P(X_A + X_B = 2) = P(X_A = 1)P(X_B = 1) = \frac{1}{3} \times \frac{2}{3} = \frac{2}{9} = 0.2222$$

 $X \sim \text{Binom}(n=5, \pi=0.2222)$ e quindi

$$\begin{split} P(X \geq 1) &= 1 - P(X < 1) \\ &= 1 - \left(\binom{5}{0} 0.2222^0 (1 - 0.2222)^{5 - 0} \right) \\ &= 1 - (0.2847) \\ &= 1 - 0.2847 \\ &= 0.7153 \end{split}$$

- 2.b (Punti 3) Per giocare si devono puntare due euro ad ogni giocata. Se vinciamo ci vengono dati 9€, i 2€ giocati più 7€ di vincita. Quindi:
 - se la somma non fa 2 perdiamo 2€

• se la somma fa 2 riceviamo 9€ (7€ vinti + 2€ giocati)

Quale è il valore atteso della variabile causale che conta il totale di euro ottenuti dopo 5 partite?

Soluzione

Sia X_i la VC che dice se alla giocata i si è vinto o perso

$$X_i \sim \operatorname{Ber}\left(\pi = \frac{2}{9}\right)$$

sia Y il guadagno/perdita della giocata i

$$Y_i = -2 + 9X_i$$

e quindi

$$E(Y_i) = E(-2+9X) = -2 + 9E(X) = -2 + 9\ \frac{2}{9} = 0$$

Sia Y la vincita totale dopo 5 partite

$$\begin{array}{rcl} Y & = & Y_1 + \ldots + Y_5 \\ E(Y) & = & E(Y_1 + \ldots + Y_5) \\ & = & E(Y_1) + \ldots + E(Y_n) \\ & = & 0 + \ldots + 0 \\ & = & 0 \end{array}$$

2.c (**Punti 3**) Se A e B sono due eventi tali che, P(A) = 0.5, P(B) = 0.4 e $P(A \cup B) = 0.58$. A e B sono indipendenti? Perché?

Soluzione

No, perché se lo fossero

$$P(A \cap B) = 0.5 \times 0.4 = 0.2$$

e quindi

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.5 + 0.4 - 0.2
= 0.7 \neq 0.58

2.
d (**Punti 2**) Siano $Y_1,...,Y_n,$ n VA IID, tali che
, $Y_i\sim\chi_1^2,$ posto

$$X = \sum_{i=1}^{n} Y_i$$

come si distribuisce X?

Esercizio 3

(Punti 14) Un'urna contiene 150 di palline numerate.

- 40 palline numerate con -1
- 70 palline numerate con 0
- 40 palline numerate con +1

Si estrae n=81 volte con reintroduzione, qual è la probabilità che la somma delle 81 estrazioni sia compresa tra -6.6 e +6.6?

Soluzione

$$\begin{array}{rcl} \mu & = & E(X_i) = \displaystyle \sum_{x \in S_X} x P(X=x) \\ \\ & = & (-1) \frac{40}{150} + 0 \frac{70}{150} + 1 \frac{40}{150} \\ \\ & = & 0 \\ \\ \sigma^2 & = & V(X_i) = \displaystyle \sum_{x \in S_X} x^2 P(X=x) - \mu^2 \\ \\ & = & \left((-1)^2 \frac{40}{150} + 0^2 \frac{70}{150} + 1^2 \frac{40}{150} \right) - (0)^2 \\ \\ & = & 0.5333 \end{array}$$

Teorema del Limite Centrale (somma VC qualunque)

Siano $X_1,...,X_n,\ n=81$ VC IID, t
c $E(X_i)=\mu=0$ e $V(X_i)=\sigma^2=0.5333, \forall i,$ posto:

$$S_n = X_1 + \dots + X_n$$

allora:

$$\begin{array}{ll} S_n & \underset{a}{\sim} & N(n\mu,n\sigma^2) \\ & \sim & N(81\cdot 0,81\cdot 0.5333) \\ & \sim & N(0,43.2) \end{array}$$

$$\begin{split} P(-6.6 < S_n \leq 6.6) &= P\left(\frac{-6.6 - 0}{\sqrt{43.2}} < \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \leq \frac{6.6 - 0}{\sqrt{43.2}}\right) \\ &= P\left(-1 < Z \leq 1\right) \\ &= \Phi(1) - \Phi(-1) \\ &= \Phi(1) - (1 - \Phi(1)) \\ &= 0.8413 - (1 - 0.8413) \\ &= 0.6826 \end{split}$$

Esercizio 4

4.a (**Punti 3**) Sia $\hat{\sigma}^2$ lo stimatore di massima verosimiglianza per il parametro σ^2 della normale. $\hat{\sigma}^2$ è corretto? Quanto vale la sua distorsione?

Soluzione

No, $\hat{\sigma}^2$ non è corretto

$$E(\hat{\sigma}^2) = \frac{n-1}{n}\sigma^2$$

e quindi

$$B(\hat{\sigma}^2) = |E(\hat{\sigma}^2) - \sigma^2| = \frac{\sigma^2}{n}$$

4.b (**Punti 3**) Descrivere la tavola della verità di un test.

4.c (**Punti 3**) In uno studio clinico si è osservato l'effeto sul numero di anticorpi su due gruppi trattati con un farmaco differente. Si è osservato $\hat{\mu}_1=10.2,~\hat{\sigma}_1=1.12$ e $\hat{\mu}_2=15.6,~\hat{\sigma}_2=3.72.$ Posto a test

$$\begin{cases} H_0: \sigma_1 = \sigma_2 \\ H_1: \sigma_1 \neq \sigma_2 \end{cases}$$

è risultato $p_{\text{value}} = 0.21$. Quale test dovremmo usare per testare la differenza tra le medie?

Esercizio 5

Un'azienda automobilistica sta sperimentando un nuovo tipo di motore per ridurre i consumi di carburante. Il motore montato su un'auto prototipo che è stata fatta guidare a n=15 giornalisti. Si è osservato un consumo medio pari $\bar{x}=24.5$ Km/litro con una deviazione standard $\hat{\sigma}=2.25$ Km/litro.

5.a (Punti 10) Costruire un intervallo di confidenza al 95% per il consumo medio.

Soluzione

$$S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{15}{14}} \cdot 2.25 = 2.329$$

$$\begin{split} Idc: \qquad \hat{\mu} \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}} \\ 24.5 \pm 2.145 \times \frac{2.329}{\sqrt{15}} \\ 24.5 \pm 2.145 \times 0.6013 \\ [23.21, 25.79] \end{split}$$

5.b (**Punti 4**) È noto che quella fascia di motori ha un consuo medio pari 23.9 Km/litro. Testare al livello di significatività dell'5% che il nuovo motore consumi come gli altri contro l'alternativa che abbia consumi diversi.

Soluzione

$$\begin{cases} H_0: \mu=23.9 \\ H_1: \mu\neq23.9 \end{cases}$$

Siccome 23.9 $\notin IdC_{95\%}$ allora rifiuto H_0 al lds del 5%.

Esercizio 6

In uno studio sugli effetti dell'attività sportiva sul benessere delle persone su n=25 atleti si è misurato:

- il numero medio di ore giornaliere passate a correre (X),
- il numero medio di ore giornaliere passate a fare palestra (W),
- un indice di stress misurato misurato su opportuna scala (Y).

qui di seguito le statistiche di interesse

$$\begin{split} \bar{x} &= 1.1 & \hat{\sigma}_X = 0.23, \\ \bar{w} &= 0.9 & \hat{\sigma}_W = 0.12, \\ \bar{y} &= 12.1 & \hat{\sigma}_Y = 1.17, \\ \text{cov}(X,W) &= -0.021 & \text{cov}(X,Y) = 0.218 \end{split}$$

$$cov(W, Y) = -0.0197$$

6.a (**Punti 14**) Stimare il modello di regressione dove l'indice di stress (Y) è spiegato da X e quello dove Y è spiegato da W.

Soluzione

$$\begin{split} Y_i &= \beta_0 + \beta_1 x_i + \varepsilon_i & Y_i &= \gamma_0 + \gamma_1 W_i \\ \hat{\beta}_1 &= \frac{0.218}{0.23^2} & \hat{\gamma}_1 &= \frac{-0.0323}{0.12^2} \\ &= 4.1204 & = -2.2425 \\ \hat{\beta}_0 &= 12.1 - 4.1204 \cdot 1.1 & \hat{\beta}_0 &= 12.1 - (-2.2425 \cdot 0.9) \\ &= 7.5675 & = 14.1182 \\ r_{XY} &= \frac{0.218}{0.23 \cdot 1.17} & r_{WY} &= \frac{-0.0323}{0.12 \cdot 1.17} \\ &= 0.81 & = -0.23 \end{split}$$

6.b (**Punti 3**) Quale dei due modelli è più affidabile?

Soluzione

$$R_{XY}^2 = 0.81^2$$
 $R_{WY}^2 = -0.23^2$ $= 0.6561$ $= 0.0529$

quindi X spiega Y meglio di W.

6.c (**Punti 3**) Considerata la scomposizine della TSS di X rispetto ad Y.

$$TSS = ESS + RSS$$

quanto vale il rapporto

$$\frac{ESS}{TSS} = ?$$

Soluzione

$$\frac{ESS}{TSS} = R_{XY}^2 = 0.6561$$

6.
d (**Punti 2**) Sotto ipotesi di normalità dei residui, come sono distribuiti gli stimatori dei mini quadrati $\hat{\beta}_0$ e $\hat{\beta}_1$?

Soluzione

$$\begin{split} \hat{\beta}_1 &\sim & N\left(\beta_1, \frac{\sigma_{\varepsilon}^2}{n\hat{\sigma}_X^2}\right) \\ \hat{\beta}_0 &\sim & N\left(\beta_0, \sigma_{\varepsilon}^2\left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2}\right)\right) \end{split}$$

Prova di Statistica 2021/09/06-1

Esercizio 1

Su un campione di 155 aziende è bilancio annuo (espresso in migliaia di euro). Qui di seguito la distribuzione delle frequenze percentuali:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	$f_{j\%}$
-10	-5	3.871
-5	0	40.645
0	3	36.774
3	20	18.710
		100.000

1.a (Punti 14) Individuare la classe modale.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	$f_{j\%}$	n_{j}	f_j	b_j	h_j	F_j
-10	-5	3.871	6	0.0387	5	0.7742	0.0387
-5	0	40.645	63	0.4065	5	8.1290	0.4452
0	3	36.774	57	0.3677	3	12.2581	0.8129
3	20	18.710	29	0.1871	17	1.1006	1.0000
		100.000	155	1.0000	30		

1.b (Punti 3) Quante aziende, approssimativamente, hanno un bilancio inferiore a 1.5?

1.c (**Punti 2**) Che relazione dobbiamo aspettarci tra media e mediana?

1.d (**Punti 2**) La varianza dei dati è pari a $\sigma^2 = 36.8775$. Nell'ipotesi che tutte le aziende aumentassero il loro bilancio di 10 mila ero, quanto varrebbe la varianza dei così trasformati?

Esercizio 2

Siano $X_1 \sim N(10,2)$ e sia $X_2 \sim N(10,3).$ Posto $A = \{X_1 < 11\}, \ B = \{X_1 > 9\},$ e $C = \{9 < X_2 < 10\}$

2.a (**Punti 14**) Quanto vale $P((A \cap B) \cap C)$?

Soluzione

$$(A \cap B) \cap C = \{9 < X_1 < 11\} \cap \{9 < X_2 < 10\}$$

e quindi

$$\begin{split} P(9 < X_1 \leq 11) &= P\left(\frac{9-10}{\sqrt{2}} < \frac{X_1 - \mu_1}{\sigma_1} \leq \frac{11-10}{\sqrt{2}}\right) \\ &= P\left(-0.71 < Z \leq 0.71\right) \\ &= \Phi(0.71) - \Phi(-0.71) \\ &= \Phi(0.71) - (1-\Phi(0.71)) \\ &= 0.7611 - (1-0.7611) \\ &= 0.5222 \end{split}$$

inoltre

$$\begin{split} P(9 < X_2 \leq 10) &= P\left(\frac{9-10}{\sqrt{3}} < \frac{X_2 - \mu_2}{\sigma_2} \leq \frac{10-10}{\sqrt{3}}\right) \\ &= P\left(-0.58 < Z \leq 0\right) \\ &= \Phi(0) - \Phi(-0.58) \\ &= \Phi(0) - (1 - \Phi(0.58)) \\ &= 0.5 - (1 - 0.719) \\ &= 0.219 \end{split}$$

e infine

$$P\Big(\{9 < X_1 < 11\} \cap \{9 < X_2 < 10\}\Big) = P\Big(\{9 < X_1 < 11\}\Big)P\Big(\{9 < X_2 < 10\}\Big) = 0.1135$$

2.
b (**Punti 3**) Posto $Y = X_1 - X_2$, calcolare P(Y < -1).

Soluzione

$$Y = X_1 - X_2 \sim N(10 - 10, 2 + 3)$$

$$\begin{split} P(Y<-1) &= P\left(\frac{Y-\mu_Y}{\sigma_Y}<\frac{-1-0}{\sqrt{5}}\right) \\ &= P\left(Z<-0.45\right) \\ &= 1-\Phi(0.45) \\ &= 0.3264 \end{split}$$

2.
c (**Punti 3**) Siano $X_1,...,X_n,$ n VC IID, tali che
 $X_i \sim \mathrm{Ber}(\pi),$ posto

$$X = X_1 + \dots + X_n$$

come si distribuisce X?

2.d (**Punti 2**) Sia $X \sim \text{Pois}(1.5)$, per quali valori x, F(x), la funzione di ripartizione di X è minore o uguale a 0.5? Ovvero, per quali x la seguente è rispettata $F(x) \leq 0.5$?

Soluzione

Per definizione

$$F(x) = P(X \le x)$$

$$= \sum_{t=0}^{x} f(t)$$

$$= \sum_{t=0}^{x} \frac{\lambda^{t}}{t!} e^{-\lambda}$$

$$\begin{split} F(0) &= \frac{1.5^0}{0!}e^{-1.5} = 0.2231 \\ F(1) &= \frac{1.5^0}{0!}e^{-1.5} + \frac{1.5^1}{1!}e^{-1.5} = 0.5578 \end{split}$$

Esercizio 3

3.a (**Punti 2**) Enunciare il teorema centrale del limite per la somma.

3.b (**Punti 14**) Il numero di incidenti giornalieri sul lavoro del comparto A è distribuito come una Poisson di parametro $\lambda = 0.1$. In un anno n = 365 quale è la probabilità che il numero totale di incidenti sia minore di 40?

Soluzione

 $E(X_i)=0.1,\ V(X_i)=0.1$ e quindi Teorema del Limite Centrale (somma VC qualunque)

Siano $X_1,\dots,X_n,$ n=365 VC IID, to $E(X_i)=\mu=36.5$ e $V(X_i)=\sigma^2=36.5, \forall i,$ posto:

$$S_n = X_1 + \ldots + X_n$$

allora:

$$S_n \ \ \, \underset{a}{\sim} \ \ \, N(n\mu, n\sigma^2)$$

$$\sim \ \ \, N(365 \cdot 36.5, 365 \cdot 36.5)$$

$$\sim \ \ \, N(13322, 13322)$$

$$\begin{array}{lcl} P(S_n < 40) & = & P\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} < \frac{40 - 13322}{\sqrt{13322}}\right) \\ & = & P\left(Z < -115.1\right) \\ & = & 1 - \Phi(115.08) \\ & = & 0 \end{array}$$

Esercizio 4

- 4.a (**Punti 3**) Siano h_1 e h_2 due stimatori corretti per θ , cosa significa che h_1 è più efficiente di h_2 ?
- 4.b (Punti 3) Definire la funzione di verosimiglianza della Poisson.
- 4.c (**Punti 3**) Una moneta, che non sappiamo se è perfetta oppure no, viene lanciata 40 volte. Posto π la probabilità che la moneta mostri testa, si è testato

$$\begin{cases} H_0: \pi = \frac{1}{2} \\ H_1: \pi \neq \frac{1}{2} \end{cases}$$

ed è risultato $p_{\text{value}} = 0.021$. Possiamo concludere che la moneta sia truccata?

4.d (**Punti 2**) In caso di campionamento casuale semplice **senza reintroduzione** quanto vale la varianza della media aritmetica campionaria?

Soluzione

Siano $X_1,...,X_m$ n VC estratte senza reintroduzione allora

$$\begin{array}{rcl} E(\bar{X}) & = & \mu \\ V(\bar{X}) & = & \frac{N-n}{N-1} \frac{\sigma^2}{n} \end{array}$$

Esercizio 5

Si sono intervistate 16 piccole imprese modenesi. L'analisi ha mostrato che sentono una forte necessità di investimenti nell'ambito della ricerca industriale; tuttavia, l'importo medio annuale speso per la ricerca industriale è risultato pari a 2750.00€ con una deviazione standard pari a 1300.00€.

5.a (**Punti 7**) Determinare un intervallo di confidenza al 95% per l'importo medio annuale speso per la ricerca industriale.

$$\begin{split} S &= \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{16}{15}} \cdot 1300 = 1342.6342 \\ Idc: &\quad \hat{\mu} \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}} \\ &\quad 2750 \pm 2.131 \times \frac{1342.6342}{\sqrt{16}} \\ &\quad 2750 \pm 2.131 \times 335.7 \\ &\quad [2035, 3465] \end{split}$$

5.b (**Punti 7**) Una indagine più vasta dell'anno precedente ha fornito una spesa media per la ricerca industriale pari a 3250.00€ con una deviazione standard pari a 1200.00€. Al livello di significatività del 5%, verificare l'ipotesi che l'importo medio nell'ultimo anno sia stato equivalente a quello dell'anno precedente contro l'alternativa di una diminuzione dell'investimento in ricerca industriale.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu = \mu_0 = 3250 \\ H_1: \mu < \mu_0 = 3250 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, Z σ^2 di P è nota: \Rightarrow z-Test.

$$\begin{split} \frac{\hat{\mu} - \mu_0}{\sigma/\sqrt{n}} &\sim & N(0,1) \\ z_{\rm obs} &= & \frac{(2750 - 3250)}{1200/\sqrt{16}} = -1.667 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $z_{0.05} = -1.645$.

$$z_{\rm obs} = -1.667 < z_{0.05} = -1.645$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Graficamente

Il $p_{\rm value}$ è

$$P(Z < z_{\rm obs}) = P(Z < -1.67) = 0.04779$$

Esercizio 6

Si esaminano n=15 aziende e si rileva, per ognuna di esse, il fatturato (X) e il profitto (Y) (in unità convenzionali). Si osservano le seguenti statistiche, $\sum_{i=1}^{15} x_i = 73.71$, $\sum_{i=1}^{15} y_i = 4$, $\sum_{i=1}^{15} x_i^2 = 478.9693$, $\sum_{i=1}^{15} y_i^2 = 1.7694$ e $\sum_{i=1}^{15} x_i y_i = 28.2996$.

6.a (**Punti 14**) Stimare il modello di regressione dove Y viene spiegata da X

Soluzione

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{15}74 = 4.933$$

$$\begin{split} \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{15} 4 = 0.2667 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{15} 479 - 4.9333^2 = 7.596 \\ \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{15} 2 - 0.2667^2 = 0.0622 \\ \operatorname{cov}(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{15} 28 - 4.9333 \cdot 0.2667 = 0.5711 \\ \hat{\beta}_1 &= \frac{\operatorname{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{0.5711}{7.596} = 0.0752 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 0.2667 - 0.0752 \times 4.9333 = -0.1043 \end{split}$$

6.b (Punti 3) Qual è la percentuale di varianza spiegata dal modello?

Soluzione

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{0.5711}{2.756\times0.2494} = 0.8307 \\ r^2 & = & 0.6901 < 0.75 \end{array}$$

Il modello **non** si adatta bene ai dati.

6.
c (**Punti 2**) Se in un modello di regressione si conoscono $\hat{\beta}_1$, r^2 e $\hat{\sigma}_X$ è possibile ricavare $\hat{\sigma}_Y$? In che modo?

Soluzione

$$\begin{split} \hat{\beta}_1 &= \frac{\operatorname{cov}(x,y)}{\hat{\sigma}_X^2} \\ \operatorname{cov}(x,y) &= \hat{\beta}_1 \hat{\sigma}_X^2 \\ r &= \frac{\operatorname{cov}(x,y)}{\hat{\sigma}_X \hat{\sigma}_Y} \end{split}$$

$$\hat{\sigma}_Y = \frac{\operatorname{cov}(x,y)}{r\hat{\sigma}_X}$$

$$= \frac{\hat{\beta}_1\hat{\sigma}_X^2}{r\hat{\sigma}_X}$$

$$= \frac{\hat{\beta}_1}{r}\hat{\sigma}_X$$

6.d (Punti 2) Cosa significa che il coefficiente di correlazione è invariante alle trasformazioni lineari?

Anno 2022 10

Prova di Statistica 2022/06/16-1

Esercizio 1

Su un campione di 250 famiglie della provincia di Ferrara è stato rilevata la spesa in generi alimentari (espresso in migliaia di euro). Qui di seguito la distribuzione delle frequenze cumulate:

Soluzione				
	$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	F_{j}	
	0	3	0.0683	
	3	5	0.4618	
	5	10	0.8193	
	10	20	1.0000	

1.a (**Punti 14**) Disegnare l'istogramma di densità percentuale.

Soluzione								
	$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	$f_{j\%}$	n_j	f_j	b_j	h_j	F_{j}
	0	3	6.827	17	0.0683	3	2.276	0.0683
	3	5	39.357	98	0.3936	2	19.679	0.4618
	5	10	35.743	89	0.3574	5	7.149	0.8193
	10	20	18.072	45	0.1807	10	1.807	1.0000
			100.000	249	1.0000	20		

1.b (Punti 3) Quante famiglie hanno una spesa superiore al 75-esimo percentile?

Soluzione

$$\%(X > x_{0.75}) = 25\%, \rightarrow 250 \times 0.25 = 62.5$$

1.c (**Punti 2**) Che relazione dobbiamo aspettarci tra media e mediana?

Soluzione

$$\bar{x} > x_{0.5}$$

1.
d (**Punti 2**) La spesa media è pari a $\bar{x}=7.1245$, mentre la SD è pari a SD=4.7792. Se ogni famiglia aumentasse la spesa di 0.5, quanto varrebbero la media e la SD dei dati?

Soluzione

Invariata

Esercizio 2

Siano $X \sim N(102, 1.5)$ e sia $Y \sim N(50, 3.5), X$ e Y indipendenti. Posto $A = \{X > 100\}, B = \{X < 102\},$ e $C = \{47 < Y \le 53\}.$

2.a (**Punti 14**) Quanto vale $P((A \cap B) \cup C)$?

Soluzione

$$\begin{split} P(100 < X \leq 102) &= P\left(\frac{100 - 102}{\sqrt{1.5}} < \frac{X - \mu_X}{\sigma_X} \leq \frac{102 - 102}{\sqrt{1.5}}\right) \\ &= P\left(-1.63 < Z \leq 0\right) \\ &= \Phi(0) - \Phi(-1.63) \\ &= \Phi(0) - \left(1 - \Phi(1.63)\right) \\ &= 0.5 - \left(1 - 0.9484\right) \\ &= 0.4484 \end{split}$$

$$\begin{split} P(47 < Y \le 53) &= P\left(\frac{47 - 50}{\sqrt{3.5}} < \frac{Y - \mu_Y}{\sigma_Y} \le \frac{53 - 50}{\sqrt{3.5}}\right) \\ &= P\left(-1.6 < Z \le 1.6\right) \\ &= \Phi(1.6) - \Phi(-1.6) \\ &= \Phi(1.6) - (1 - \Phi(1.6)) \\ &= 0.9452 - (1 - 0.9452) \\ &= 0.8904 \end{split}$$

$$\begin{array}{lcl} P(A\cap B\cup C) & = & P(A\cap B) + P(C) - P(A\cap B\cap C) \\ & = & P(A\cap B) + P(C) - P(A\cap B)P(C) \\ & = & 0.4488 + 0.8912 - 0.4488 \times 0.8912 \\ & = & 0.94 \end{array}$$

2.
b (**Punti 3**) Si estrae 5 volte da $X \sim N(102, 1.5)$, posto $A = \{X > 100\}$, quale è la probabilità che A si avveri 3 volte su 5?

Soluzione

$$\pi = P(A) = 0.9088$$

$$P(3 \text{ su } 5) = \binom{5}{3} 0.9088^3 (1 - 0.9088)^5 = 0.0624$$

2.c (**Punti 2**) Se F è la funzione di ripartizione della VA X, posto a < b due numeri qualunque, a cosa equivale

$$F(b) - F(a)$$
 ?

Soluzione

$$F(b) - F(a) = P(a < X \leq b)$$

Esercizio 3

3.a (**Punti 14**) Ogni giorno un impianto di produzione confeziona 1000 lotti. In media il 10 di questi lotti sono fallati, con una deviazione standard pari a 0.3. Dopo 300 giorni di produzione qual è la probabilità che il numero di lotti fallati sia maggiore di 3100?

Soluzione

 $E(X_i) = 10, V(X_i) = 0.09$ e quindi

Teorema del Limite Centrale (somma VC qualunque)

Siano
$$X_1,...,X_n,\ n=300$$
 VC IID, tc $E(X_i)=\mu=10$ e $V(X_i)=\sigma^2=0.09, \forall i,$ posto:

$$S_n = X_1 + \ldots + X_n$$

allora:

$$\begin{array}{lll} S_n & \underset{a}{\sim} & N(n\mu, n\sigma^2) \\ & \sim & N(300 \cdot 10, 300 \cdot 0.09) \\ & \sim & N(3000, 27) \end{array}$$

$$\begin{split} P(S_n > 3100) &= P\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} > \frac{3100 - 3000}{\sqrt{27}}\right) \\ &= P\left(Z > 19.25\right) \\ &= 1 - P(Z < 19.25) \\ &= 1 - \Phi(19.25) \\ &= 0 \end{split}$$

Esercizio 4

4.a (**Punti 3**) Sia $\hat{\lambda}$ lo stimatore di massima verosimiglianza di λ del modello di Poisson.

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Dimostrare le correttezza di $\hat{\lambda}$ in almeno tre passaggi.

4.b (**Punti 2**) Definire lo *Standard Error* di uno stimatore.

4.c (Punti 3) Definire gli errori di primo e di secondo tipo di un test statistico.

4.d (**Punti 3**) In un test statistico, per quali valori di p_{value} si tende a rifiutare H_0 ?

Esercizio 5

(**Punti 14**) Il Supermercato S, della catena C, ha monitorato gli accessi al suo interno per una settimana. Qui di seguito il numero di accessi per giorno della settimana di S e la percentuale di accessi nella catena C.

	Lun	Mart	Merc	Giov	Ven	Tot
Supermercato S Catena C		20 10%	30 10%	24 10%	117 45%	$250 \\ 100\%$

Testare l'ipotesi che nel supermercato S la distribuzione degli accessi nei giorni della settimana sia uguale a quella della catena.

Soluzione

A Formulazione delle ipotesi

$$\{H_0: F_S \sim F_{\text{Catena}}$$

B Scelta e calcolo della statistica test.

Si tratta di un test chi quadro di conformità.

	Lun	Mart	Merc	Giov	Ven	Tot
Supermercato S	59	20	30	24	117	250
Catena C	25%	10%	10%	10%	45%	100%
n_{j}^{*}	62.5	25	25	25	112.5	250
χ^2	0.196	1	1	0.04	0.18	2.416

C Decisione

 $\overline{\text{Il}}$ chi quadro osservato è 4.832 è minore di $\chi^2_{4:0.05}$ 9.4877, 13.2767, e quindi **non rifiuto** H_0 .

Esercizio 6

In uno studio sul potere d'acquisto delle famiglie è stato selezionato un campione di 150 nuclei familiari a cui è stato chiesto il reddito (X) e la percezione della perdita del potere d'acquisto espresso su una scala che va da zero a 1 (Y). Qui di seguito le statistiche bivariate

$$\sum_{i=1}^{n} x_i = 110.55,$$

$$\sum_{i=1}^{n} x_i^2 = 127.03$$

$$\sum_{i=1}^{n} y_i = 112.68,$$

$$\sum_{i=1}^{n} y_i^2 = 86.61$$

$$\sum_{i=1}^{n} x_i y_i = 74.32.$$

6.a (**Punti 14**) Stimare la previsione per x = 1.5 nel modello di regressione dove Y viene spiegata da X.

$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{150} 110.55 = 0.737$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{150} 112.68 = 0.7512$ $\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{150} 127 - 0.737^2 = 0.3037$ $\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{150} 86.61 - 0.7512^2 = 0.0131$ $\operatorname{cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{150} 74.32 - 0.737 \cdot 0.7512 = -0.0582$ $\hat{\beta}_1 = \frac{\operatorname{cov}(X, Y)}{\hat{\sigma}_X^2}$

$$\begin{split} &= \quad \frac{-0.0582}{0.3037} = -0.1915 \\ \hat{\beta}_0 &= \quad \bar{y} - \hat{\beta}_1 \bar{x} \\ &= \quad 0.7512 - (-0.1915) \times 0.737 = 0.8924 \\ \hat{y}_{X=1.5} &= \hat{\beta}_0 + \hat{\beta}_1 x = 0.8924 + (-0.1915) \times 1.5 = 0.6051 \end{split}$$

6.b (Punti 3) Qual è la percentuale di varianza spiegata dal modello?

Soluzione

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{-0.0582}{0.5511\times0.1144} = -0.9223 \\ r^2 & = & 0.8506 > 0.75 \end{array}$$

Il modello si adatta bene ai dati.

6.
c (**Punti 2**) Interpretare i parametri di regressione
 $\hat{\beta}_0$ e $\hat{\beta}_1.$

6.
d (**Punti 2**) Se $W=-10\times Y,$ quanto varrà $r_{XW},$ coefficiente di correlazione tra X e W?

Soluzione

$$r_{WX} = -r_{XY} = 0.9223$$

Prova di Statistica 2022/06/16-2

Esercizio 1

Su un campione di 250 famiglie della provincia di Ferrara è stato rilevata la spesa in generi alimentari (espresso in migliaia di euro). Qui di seguito i dati raccolti in classe e le densità di frequenza percentuali

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	h_{j}
0	3	2.40
3	5	19.60
5	10	7.12
10	20	1.80

1.a (Punti 14) Calcolare il valore approssimato della mediana.

Soluzione $h_{\underline{j}}$ f_j F_{j} $[\mathbf{x}_j,$ \mathbf{x}_{j+1} $f_{j\%}$ n_{j} 0 3 7.218 0.0723 2.400.0723 39.20.39219.60 0.4645 98 2 5 10 35.689 0.3565 7.120.82010 20 18.0 45 0.18010 1.80 1.000 20 100.0250 1.000 $\begin{array}{rcl} p &=& 0.5, \text{essendo} \; F_3 = 0.82 > 0.5 \Rightarrow j_{0.5} = 3 \\ x_{0.5} &=& x_{\text{inf;3}} + \frac{0.5 - F_2}{f_3} \cdot b_3 \end{array}$ $= 5 + \frac{0.5 - 0.464}{0.356} \cdot 5$ = 5.506

1.b (Punti 3) Quante famiglie hanno una spesa inferiore al 25-esimo percentile?

Soluzione $250\times0.25=62.5$

1.c (**Punti 2**) La spesa media è pari a $\bar{x}=6.9973$, che forma ci dobbiamo aspettare dell'istogramma di densità?

1.d (**Punti 2**) La varianza della spesa è pari a Var = 18.3466. Se ogni famiglia aumentasse la sua spesa del 5%, quanto varrebbe varianza dei dati così trasformati?

Soluzione

20.2272

Esercizio 2

Siano $X \sim \text{Pois}(1.5)$ e sia $Y \sim \text{Pois}(1.5)$, X e Y indipendenti. Posto $A = \{X < 2\}$ e $B = \{Y \ge 2\}$

2.a (**Punti 14**) Quanto vale $P(A \cup B)$?

Soluzione

$$P(A) = P(X = 0) + P(X = 1)$$

$$= \frac{1.5^{0}}{0!}e^{-1.5} + \frac{1.5^{1}}{1!}e^{-1.5}$$

$$= 0.5578$$

$$P(B) = 1 - P(A)$$

$$= 0.4422$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= 0.7533$$

2.
b (**Punti 3**) Si estrae 6 volte da $X \sim \text{Pois}(1.5)$, posto $A = \{X < 2\}$, quale è la probabilità che A si avveri 3 volte su 6?

Soluzione

$$\begin{split} P(A) &= P(X=0) + P(X=1) \\ &= \frac{1.5^0}{0!} e^{-1.5} + \frac{1.5^1}{1!} e^{-1.5} \\ &= 0.2231 + 0.3347 \\ &= 0.5578 \\ P(3 \text{ successi su } 6) &= \binom{6}{3} 0.5578^3 (1 - 0.5578)^{6-3} \\ &= 0.3001 \end{split}$$

2.c (**Punti 2**) Se X è una VC con valore atteso E(X) = 0.5 e V(X) = 1.2, posto $Y = X^2$ è vero che $E(Y) = E^2(X)$?

Esercizio 3

3.a (**Punti 14**) Si lancia un dado perfetto 100 volte. Qual è la probabilità che la proporzione di volte che si osserva la faccia sei () sia maggiore di 0.2?

Soluzione

 $E(X_i) = 0.1667, V(X_i) = 0.1389$ e quindi **Teorema del Limite Centrale (proporzione)**

Siano $X_1, \! ..., \! X_n, \, n=100$ VC IID, t
c $X_i \sim \mathrm{Ber}(\pi=0.1667), \forall i,$ posto:

$$\hat{\pi} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$$

allora:

$$\begin{split} \hat{\pi} & \underset{a}{\sim} & N(\pi, \pi(1-\pi)/n) \\ & \sim & N\left(0.1667, \frac{0.1667 \cdot (1-0.1667))}{100}\right) \\ & \sim & N(0.1667, 0.001389) \end{split}$$

$$\begin{split} P(\hat{\pi} > 0.2) &= P\left(\frac{\hat{\pi} - \pi}{\sqrt{\pi(1 - \pi)/n}} > \frac{0.2 - 0.1667}{\sqrt{0.001389}}\right) \\ &= P\left(Z > 0.89\right) \\ &= 1 - P(Z < 0.89) \\ &= 1 - \Phi(0.89) \\ &= 0.1867 \end{split}$$

Esercizio 4

4.a (**Punti 3**) Sia $\hat{\mu}$ lo stimatore di massima verosimiglianza di μ del modello Normale.

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Dimostrare le consistenza di $\hat{\mu}$ in almeno tre passaggi.

- 4.
b (**Punti 2**) Siano h_1 e h_2 due stimatori per θ , cosa significa dire che h_1 è più efficiente di h_2 ?
- 4.c (Punti 3) Definire la significatività e la potenza di un test statistico.
- 4.d (**Punti 3**) Se in un test statistico il $p_{\text{value}} > 0.1$ possiamo rifiutare H_0 ?

Esercizio 5

5.a (**Punti 12**) In un'indagine sull'opinione sul reddito di cittadinanza sono stati intervistate 140 persone che vivono al nord e 170 che vivono al sud: 60 su 140 che vivono al nord sono favorevoli al reddito di cittadinanza mentre 95 su 170 che vivono al sud sono favorevoli.

Testare all'un percento che la proporzione di persone favorevoli al reddito di cittadinanza che vivono al sud sia uguale a quelle di quelli che vivono al nord, contro l'alternativa che siano diverse.

5.b (**Punti 2**) Calcolare e discutere il *p*-value del test precedente.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \pi_A = \pi_B \\ H_1: \pi_A \neq \pi_B \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2$, anziché α

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, Z

$$\hat{\pi}_{\text{A}} = \frac{s_{\text{A}}}{n_{\text{A}}} = \frac{60}{140} = 0.4286$$
 $\hat{\pi}_{\text{B}} = \frac{s_{\text{B}}}{n_{\text{B}}} = \frac{95}{170} = 0.5588$

Calcoliamo la proporzione comune sotto ${\cal H}_0$

$$\pi_C = \frac{s_{\rm A} + s_{\rm B}}{n_{\rm A} + n_{\rm B}} = \frac{155}{310} = 0.5$$

$$\begin{split} \frac{\hat{\pi}_{\text{ A}} - \hat{\pi}_{\text{ B}}}{\sqrt{\frac{\pi_{C}(1-\pi_{C})}{n_{\text{ A}}} + \frac{\pi_{C}(1-\pi_{C})}{n_{\text{ B}}}}} &\sim & N(0,1) \\ z_{\text{obs}} &= & \frac{(0.4286 - 0.5588)}{\sqrt{\frac{0.5(1-0.5)}{140} + \frac{0.5(1-0.5)}{170}}} = -2.283 \,. \end{split}$$

 $\boxed{\mbox{C}}$ DECISIONE Dalle tavole si ha $z_{0.005} = -2.576$

$$z_{\rm obs} = -2.283 > z_{0.005} = -2.576$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 1 %

Graficamente

Esercizio 6

In uno studio sul potere d'acquisto delle famiglie è stato selezionato un campione di 150 nuclei familiari a cui è stato chiesto il reddito (X) e la percezione della perdita del potere d'acquisto espresso su una scala che va da zero a 1. Qui di seguito le statistiche bivariate

$$\sum_{i=1}^{n} x_i = 122.7102$$

$$\sum_{i=1}^{n} x_i^2 = 157.1624$$

$$\sum_{i=1}^{n} x_i y_i = 78.8937$$

$$\sum_{i=1}^{n} y_i = 110.4192$$

$$\sum_{i=1}^{n} y_i^2 = 83.8077$$

6.a (**Punti 14**) Stimare la previsione per x = 1.0 nel modello di regressione dove Y viene spiegata da X.

Soluzione
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{150} 122.7102 = 0.8181$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{150} 110.4192 = 0.7361$$

$$\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{150} 157.2 - 0.8181^2 = 0.3785$$

$$\begin{split} \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{150} 83.81 - 0.7361^2 = 0.0168 \\ \operatorname{cov}(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{150} 78.89 - 0.8181 \cdot 0.7361 = -0.0762 \\ \hat{\beta}_1 &= \frac{\operatorname{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{-0.0762}{0.3785} = -0.2014 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 0.7361 - (-0.2014) \times 0.8181 = 0.9009 \\ \hat{y}_{X=1} &= \hat{\beta}_0 + \hat{\beta}_1 x = 0.9009 + (-0.2014) \times 1 = 0.6995 \end{split}$$

6.b (**Punti 3**) Il modello si adatta bene ai dati?

Soluzione

$$\begin{array}{lcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{-0.0762}{0.6152\times0.1297} = -0.9552 \\ r^2 & = & 0.9124 > 0.75 \end{array}$$

Il modello si adatta bene ai dati.

- 6.c (Punti 2) Cosa sono i punti di leva e cosa gli outliers?
- 6.d (**Punti 2**) Se $W = 10 \times Y$, posto

$$w_i = \beta_0' + \beta_1' x + \epsilon_i'$$

il modello in cui W viene spiegata da X, quanto varranno β_0' e β_1' ?

Soluzione

$$\begin{array}{rcl} \bar{w} &=& 10 \times \bar{y} \\ &=& 7.3613 \\ \sum x_i w_i &=& \sum x_i \cdot 10 \cdot y_i \end{array}$$

$$= 10 \sum x_i y_i$$

$$= 788.9371$$

$$cov(x, w) = \sum x_i w_i - \bar{w} \cdot \bar{x}$$

$$= 10 \sum x_i y_i - 10 \cdot \bar{y} \cdot \bar{x}$$

$$= 10 cov(x, y)$$

$$= -0.7624$$

$$\hat{\beta}'_1 = \frac{10 \cdot cov(x, y)}{\hat{\sigma}^2_X}$$

$$= -2.014$$

$$\hat{\beta}'_0 = \bar{w} - \hat{\beta}'_1 \bar{x}$$

$$= 10 \bar{y} - 10 \hat{\beta}_1 \bar{x}$$

$$= 9.009$$

Prova di Statistica 2022/06/16-3

Esercizio 1

Su un campione di 250 famiglie della provincia di Ferrara è stato rilevata la spesa in generi alimentari (espresso in migliaia di euro). Qui di seguito i dati raccolti in classe e le frequenze assolute

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}
0	3	18
3	5	98
5	10	89
10	20	45
		250

1.a (Punti 14) Individuare la classe modale.

Soluzione

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	$f_{j\%}$	n_{j}	f_{j}	b_j	h_j	F_{j}
0	3	7.2	18	0.072	3	2.40	0.072
3	5	39.2	98	0.392	2	19.60	0.464
5	10	35.6	89	0.356	5	7.12	0.820
10	20	18.0	45	0.180	10	1.80	1.000
		100.0	250	1.000	20		

1.b (**Punti 3**) Qual è la percentuale di famiglie con spesa superiore al 25-esimo percentile?

Soluzione

$$n \cdot 0.75 = 187.5$$

1.c (**Punti 2**) La spesa media è pari a $\bar{x} = 7.143$, che forma ci dobbiamo aspettare dell'istogramma di densità?

1.d (**Punti 2**) La varianza della spesa è pari a Var = 19.055. Se ogni famiglia aumentasse la sua spesa del 10%, quanto varrebbe *standard deviation* dei dati così trasformati?

Soluzione

$$\sigma_{new} = \sqrt{1.1^2 \times \sigma^2} = 4.5783$$

Esercizio 2

Siano $X \sim \text{Binom}(5,0.4)$ e sia $Y \sim \text{Binom}(2,0.4)$, X e Y indipendenti. Posto W = X + Y 2.a (**Punti 14**) Calcolare P(W < 2).

Soluzione

$$W \sim \text{Binom}(2+5,0.4)$$

$$P(W < 2) = P(W = 0) + P(W = 1)$$

$$= {7 \choose 0} 0.4^{0} 0.6^{7} + {7 \choose 1} 0.4^{1} 0.6^{6}$$

$$= 0.028 + 0.1306$$

$$= 0.1586$$

2.b (**Punti 3**) Posto $V = 2 + 5 \cdot W$, ricavare valore atteso e varianza di V.

Soluzione

$$E(V) = 2 + 5E(X)$$

$$= 2 + 5 \times 7 \times 0.4$$

$$= 16$$

$$V(V) = 5^{2}V(X)$$

$$= 25 \times 7 \times 0.4 \times (1 - .04)$$

$$= 42$$

2.c (**Punti 2**) Se A e B sono due eventi diversi dal vuoto, è possibile che P(A) + P(B) > 1?

Esercizio 3

3.a (**Punti 14**) Un'urna contiene 3 palline bianche, 2 nere e 5 blu. Si estrae 200 volte con reimmissione. Calcolare la probabilità che il numero di palline nere sia maggiore di 50.

$$E(X_i) = 0.2, V(X_i) = 0.16$$
 e quindi

Teorema del Limite Centrale (somma di Bernoulli)

Siano $X_1, \! ..., \! X_n, \; n=200$ VC IID, t
c $X_i \sim \mathrm{Ber}(\pi=0.2), \forall i,$ posto:

$$S_n = X_1 + \dots + X_n$$

allora:

$$\begin{split} S_n & \ \, \sim_a \quad N(n\pi, n\pi(1-\pi)) \\ & \ \, \sim \quad N(200 \cdot 0.2, 200 \cdot 0.2 \cdot (1-0.2)) \\ & \ \, \sim \quad N(40, 32) \end{split}$$

$$\begin{split} P(S_n > 50) &= P\left(\frac{S_n - n\pi}{\sqrt{n\pi(1 - \pi)}} > \frac{50 - 40}{\sqrt{32}}\right) \\ &= P\left(Z > 1.77\right) \end{split}$$

$$= 1 - P(Z < 1.77)$$

$$= 1 - \Phi(1.77)$$

$$= 0.0384$$

Esercizio 4

4.a (**Punti 3**) Sia $\hat{\lambda}$ lo stimatore di massima verosimiglianza di λ del modello Poisson.

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Dimostrare le consistenza di $\hat{\lambda}$ in almeno tre passaggi.

4.b (**Punti 2**) Siano h uno stimatore per θ , cosa significa dire che h è asintoticamente corretto?

4.c (**Punti 3**) Definire la probabilità di significatività.

4.d (**Punti 3**) Se in un test statistico $0.01 < p_{\text{value}} < 0.05$ cosa possiamo concludere?

Esercizio 5

(**Punti 14**) In un'indagine sull'opinione sul reddito sono stati rilevati i redditi di 140 persone che vivono al nord e quelli di 170 che vivono al sud: il reddito medio di chi vive al nord è di 32.2 mila euro annui con una SD pari a 2.4 mila euro annui, mentre il reddito medio di chi vive al sud è di 27.5 con una SD pari a 1.7.

Sotto ipotesi di eterogeneità testare al 5 percento l'ipotesi che il reddito medio sia uguale al nord come al sud, contro l'alternativa che sia diverso.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu_{\mathrm{\ N}} \ = \mu_{\mathrm{\ S}} \\ H_1: \mu_{\mathrm{\ N}} \ \neq \mu_{\mathrm{\ S}} \end{cases}$$

Sic
come H_1 è bilaterale, considereremo $\alpha/2,$ anzich
é α

 $\boxed{\mathrm{B}}$ SCELTA E CALCOLO STATISTICA-TEST, T

$$S_{\rm N}^2 = \frac{n_{\rm N}}{n_{\rm N}-1} \hat{\sigma}_{\rm N}^2 = \frac{140}{140-1} 2.4^2 = 5.801 \qquad S_{\rm S}^2 = \frac{n_{\rm S}}{n_{\rm S}-1} \hat{\sigma}_{\rm S}^2 = \frac{170}{170-1} 1.7^2 = 2.907$$

$$\begin{split} \frac{\hat{\mu}_{\text{ N}} - \hat{\mu}_{\text{ S}}}{\sqrt{\frac{S_{\text{N}}^2}{n_{\text{ N}}} + \frac{S_{\text{S}}^2}{n_{\text{ S}}}}} \ \, \sim \ \, t_{n_{\text{ N}} + n_{\text{ S}} - 2} \\ t_{\text{obs}} \ \, = \ \, \frac{(32.2 - 27.5)}{\sqrt{\frac{5.801}{140} + \frac{2.907}{170}}} = 19.43 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(140+170-2); 0.025} = 1.968$.

$$t_{\text{obs}} = 19.43 > t_{308;\,0.025} = 1.968$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Graficamente

Il p_{value} è

$$P(|T_{n1+n2-2}| > |t_{\rm obs}|) = 2P(T_{n1+n2-2} > |t_{\rm obs}|) = 2P(T_{n1+n2-2} > |19.4256|) = 1.957e - 55$$

Esercizio 6

In uno studio sul potere d'acquisto delle famiglie è stato selezionato un campione di 150 nuclei familiari a cui è stato chiesto il reddito (X) e la percezione della perdita del potere d'acquisto espresso su una scala che va da zero a 1. Qui di seguito le statistiche bivariate

$$\sum_{i=1}^{n} x_i = 109.6214$$

$$\sum_{i=1}^{n} x_i^2 = 134.2159$$

$$\sum_{i=1}^{n} x_i y_i = 71.3992$$

$$\sum_{i=1}^{n} y_i = 112.7445$$

$$\sum_{i=1}^{n} y_i^2 = 87.1782$$

6.a (**Punti 14**) Stimare la previsione per x = 1.4 nel modello di regressione dove Y viene spiegata da X.

Soluzione

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{150} 109.6214 = 0.7308 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{150} 112.7445 = 0.7516 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{150} 134.2 - 0.7308^2 = 0.3607 \\ \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{150} 87.18 - 0.7516^2 = 0.0162 \\ \cos(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{150} 71.4 - 0.7308 \cdot 0.7516 = -0.0733 \\ \hat{\beta}_1 &= \frac{\cos(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{-0.0733}{0.3607} = -0.2032 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 0.7516 - (-0.2032) \times 0.7308 = 0.9002 \\ \hat{y}_{X=1} &= \hat{\beta}_0 + \hat{\beta}_1 x = 0.9002 + (-0.2032) \times 1 = 0.697 \end{split}$$

6.b (**Punti 3**) Calcolare e discutere R^2 .

Soluzione

$$r = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{-0.0733}{0.6006 \times 0.1274} = -0.9578$$

$$r^2 = 0.9174 > 0.75$$

Il modello si adatta bene ai dati.

6.c (**Punti 2**) Cos'è un punto influente?

6.d (**Punti 2**) Se W = 10 + Y, posto

$$w_i = \beta_0' + \beta_1' x + \epsilon_i'$$

il modello in cui W viene spiegata da X, quanto varranno β_0' e β_1' ?

Prova di Statistica 2022/07/01-1

Esercizio 1

Su un campione di 220 imprese energivore della provincia di Bologna è stato rilevata la spesa in investimenti green, espressa in migliaia di euro. Qui di seguito i dati raccolti in classi e le frequenze percentuali.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	$f_{j\%}$
0	7	16.818
7	15	40.000
15	17	36.818
17	20	6.364
		100.000

1.a (**Punti 14**) Individuare la classe modale.

Soluzione

[)	20	t	h	h	Γ
$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_j	J_j	b_j	h_j	F_{j}
0	7	37	0.1682	7	2.403	0.1682
7	15	88	0.4000	8	5.000	0.5682
15	17	81	0.3682	2	18.409	0.9364
17	20	14	0.0636	3	2.121	1.0000
		220	1.0000	20		

la classe modale è la classe 'r' essendo la classe con densità $h_3=18.4091$ maggiore.

1.b (Punti 3) Quante imprese hanno una spesa compresa tra 15 mila euro e il 75-esimo percentile?

Soluzione

$$\begin{array}{rcl} F(15) & = & 0.5682 \\ F(x_{0.75}) & = & .75 \\ \%(15 < X < x_{0.75}) & = & 0.1818 \\ n(15 < X < x_{0.75}) & = & 40 \end{array}$$

1.c (**Punti 2**) La spesa media è pari a $\bar{x} = 12.0227$ mila euro, considerato la classe modale ricavata al punto 1.a, quale relazione ci dobbiamo attendere tra media e mediana?

1.d (**Punti 2**) La spesa media in investimenti green su 220 aziende modenesi è pari a $\bar{x}=12.0227$ mila euro, mentre la spesa media in investimenti green della provincia di Reggio, su un campione di 150 aziende è pari a 12.22 mila euro. Calcolare la media globale delle 220+150=370 aziende delle due province.

$$\bar{x}_T = \frac{220 \times 12.0227 + 150 \times 12.22}{220 + 150}$$
= 12.1027

Esercizio 2

Siano $X \sim N(10,1)$ e sia $Y \sim N(10,1), X$ e Y indipendenti. Posto $A = \{X > 8\}, B = \{X > 11\},$ e $C = \{9 < Y \le 10\}.$

2.a (**Punti 14**) Quanto vale $P\Big((A \cup B) \cup C\Big)$?

Soluzione $P(A \cup B) = P(A)$ $P(X > 8) = P\left(\frac{X - \mu_X}{\sigma_X} > \frac{8 - 10}{\sqrt{1}}\right)$ $= P\left(Z > -2\right)$ = 1 - P(Z < -2)

$$= 1 - (1 - \Phi(2))$$

$$= 0.9772$$

$$P(9 < X \le 10) = P\left(\frac{9 - 10}{\sqrt{1}} < \frac{X - \mu}{\sigma} \le \frac{10 - 10}{\sqrt{1}}\right)$$

$$= P(-1 < Z \le 0)$$

$$= \Phi(0) - \Phi(-1)$$

$$= \Phi(0) - (1 - \Phi(1))$$

$$= 0.5 - (1 - 0.8413)$$

$$= 0.3413$$

$$P(A \cup B \cup C) = P(A \cup C)$$

$$= P(A) + P(C) - P(A \cap C)$$

$$= 0.9772 + 0.3413 - 0.9772 \times 0.3413$$

$$= 0.985$$

2.b (**Punti 3**) Sia $X \sim N(10,1)$, posto $A = \{X > 8\}$. Si estrae ripetutamente da X e si finisce quando A si avvera **2** volte. Calcolare la probabilità di finire dopo 6 estrazioni.

Soluzione

$$P(A) = 0.9772$$

$$P(\text{vincere alla sesta}) = 5 \times 0.9772 \times (0.0228)^4 \times 0.9772$$

$$= 0$$

2.c (**Punti 2**) Siano A e B due eventi diversi dal vuoto. È vero che se A e B sono **non** indipendenti, allora sono necessariamente incompatibili?

Soluzione

No, se sono incompatibili allora sono certamente non indipendenti, in quato

$$P(A \cap B) = P(\emptyset) = 0 \neq P(A)P(B)$$

mentre se non sono indipendenti

$$P(A \cap B) \neq P(A)P(B)$$

2.d (**Punti 2**) Se F è la funzione di ripartizione della VA X, quali sono il valore massimo e quello minimo che F può assumere?

Esercizio 3

(**Punti 14**) Ogni giorno il centralino di un servizio di assistenza riceve in media 26.34 telefonate con una deviazione standard pari a 1.3 telefonate.

Dopo un anno (n = 365), qual è la probabilità che il numero totale di telefonate sia compresa tra $9550 \ e \ 9600$?

Soluzione

Teorema del Limite Centrale (somma VC qualunque)

Siano $X_1,...,X_n,\ n=365$ VC IID, tc $E(X_i)=\mu=26.34$ e $V(X_i)=\sigma^2=1.69, \forall i,$ posto:

$$S_n = X_1 + \ldots + X_n$$

allora:

$$S_n \sim N(n\mu, n\sigma^2)$$

 $\sim N(365 \cdot 26.34, 365 \cdot 1.69)$
 $\sim N(9614, 616.9)$

$$\begin{split} P(9550 < S_n \leq 9600) &= P\left(\frac{9550 - 9614}{\sqrt{616.9}} < \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \leq \frac{9600 - 9614}{\sqrt{616.9}}\right) \\ &= P\left(-2.58 < Z \leq -0.57\right) \\ &= \Phi(-0.57) - \Phi(-2.58) \\ &= \left(1 - \Phi(0.57)\right) - \left(1 - \Phi(2.58)\right) \\ &= \left(1 - 0.7157\right) - \left(1 - 0.9951\right) \\ &= 0.2794 \end{split}$$

Esercizio 4

4.a (**Punti 3**) Sia $\hat{\lambda}$ lo stimatore di massima verosimiglianza di λ del modello di Poisson: $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$ Scrivere lo Standard Error di $\hat{\lambda}$.

4.
b (**Punti 3**) Se h è uno stimatore per θ tale che $E(h) \neq \theta$ e che $\lim_{n \to +\infty} E(h) = \theta$ di quale proprietà gode h?

4.c (**Punti 3**) Definire gli errori di primo e di secondo tipo di un test statistico e le relative probabilità.

4.d (Punti 3) In un confronto tra due campioni viene messo a test

$$\begin{cases} H_0: \sigma_A = \sigma_B \\ H_1: \sigma_A \neq \sigma_B \end{cases}$$

Il $p_{\rm value}=0.265$. Alla luce di questo risultato, per testare la differenza tra le medie, cosa è preferibile, un test sotto ipotesi di omogeneità, oppure sotto ipotesi di eterogeneità?

Esercizio 5

Su un campione di $n_M=34$ consumatori privati, scelti a caso tra i cittadini del comune di Mirandola, si è chiesto quanto spenderebbero mensilmente per poter usufruire di una connessione ultra veloce. Il campione ha restituito una media pari a 19.4 ϵ /mese, con una deviazione standard pari a 2.2 ϵ /mese,

(**Punti 7**) Costruire un Intervallo di Confidenza al 95% per la media di popolazione μ .

Soluzione $S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{34}{33}} \cdot 2.2 = 2.2331$ $Idc: \qquad \hat{\mu} \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}}$ $19.4 \pm 2.035 \times \frac{2.2331}{\sqrt{34}}$ $19.4 \pm 2.035 \times 0.383$ [18.62, 20.18]

(**Punti 7**) La stessa domanda è stata posta ad un secondo campione di $n_S=38$ consumatori privati, scelti a caso tra i cittadini del comune di Sassuolo. Il campione ha restituito una media pari

a 20.2 €/mese, con una deviazione standard pari a 2.9 €/mese. Sotto ipotesi di omogeneità testare al 5% l'ipotesi che i due comuni abbiano uguale media, contro l'alternativa che sia diversa.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2,$ anziché α

 \mid B \mid SCELTA E CALCOLO STATISTICA-TEST, T

L'ipotesi è di omogeneità e quindi calcoliamo:

$$S_p^2 = \frac{n_1 \hat{\sigma}_1^2 + n_2 \hat{\sigma}_2^2}{n_1 + n_2 - 2} = \frac{34 \cdot 2.2^2 + 38 \cdot 2.8^2}{34 + 38 - 2} = 6.607$$

$$\begin{split} \frac{\hat{\mu}_{1} - \hat{\mu}_{2}}{\sqrt{\frac{S_{p}^{2}}{n_{1}} + \frac{S_{p}^{2}}{n_{2}}}} &\sim & t_{n_{1} + n_{2} - 2} \\ t_{\text{obs}} &= & \frac{(19.4 - 20.2)}{\sqrt{\frac{6.607}{34} + \frac{6.607}{38}}} = -1.318 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(34+38-2);0.025} = -1.994$.

$$t_{\rm obs} = -1.318 > t_{70;\,0.025} = -1.994$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 5 %

Graficamente

Il p_{value} è

$$P(|T_{n1+n2-2}| > |t_{\rm obs}|) = 2P(T_{n1+n2-2} > |t_{\rm obs}|) = 2P(T_{n1+n2-2} > |-1.3184|) = 0.1917$$

Esercizio 6

Sono stati analizzati 5 comuni della provincia di Modena e su ogni comune è stato rilevato il numero di abitanti X, espresso in migliaia di persone, e il numero di esercizi commerciali Y.

Qui di seguito i dati

	1	2	3	4	5
ı	12.20 6.72				

6.
a (**Punti 14**) Calcolare il residuo del quarto dato nel modello di regressione dove Y viene spiegata da X.

Soluzione									
_	i	x_i	y_i	x_i^2	y_i^2	$x_i \cdot y_i$			
	1	12.20	6.720	148.8	45.18	82.00			
	2	12.40	6.330	153.8	40.05	78.48			
	2 3	13.50	9.340	182.2	87.26	126.11			
	4	18.40	8.520	338.6	72.51	156.68			
	5	19.80	14.150	392.0	200.18	280.14			
	Totale	76.30	45.060	1215.5	445.18	723.41			
	Totale/n	15.26	9.012	243.1	89.04	144.68			
	$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{5}76.3 = 15.26 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{5}45.0558 = 9.011 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{5}1215 - 15.26^2 = 10.22 \end{split}$								
	$\hat{\sigma}_Y^2 = \frac{1}{n}$	$\sum_{i=1}^{n} y_i^2$	$-\bar{y}^2 = \frac{1}{5}$	445.2 - 9	$0.0112^2 =$	7.837			

$$\begin{array}{lll} \mathrm{cov}(X,Y) & = & \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{5}723.4 - 15.26 \cdot 9.0112 = 7.173 \\ & \hat{\beta}_1 & = & \frac{\mathrm{cov}(X,Y)}{\hat{\sigma}_X^2} \\ & = & \frac{7.173}{10.22} = 0.7017 \\ & \hat{\beta}_0 & = & \bar{y} - \hat{\beta}_1 \bar{x} \\ & = & 9.011 - 0.7017 \times 15.26 = -1.696 \\ & \hat{y}_i & = & \hat{\beta}_0 + \hat{\beta}_1 x_i = \\ & = & -1.696 + 0.7017 \times 18.4 = 11.21 \\ & \hat{\varepsilon}_i & = & y_i - \hat{y}_i \\ & = & 8.515 - 11.21 = -2.7 \end{array}$$

6.b (**Punti 3**) Scrivere la scomposizione della varianza del modello di regressione e calcolare la Total Sum of Squares (TSS), la Explained Sum of Squares (ESS) e la Residual Sum of Squares (RSS) dei dati analizzati sopra.

Soluzione

$$\begin{array}{rcl} r & = & \frac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \frac{7.173}{3.197\times 2.8} = 0.8014 \\ r^2 & = & 0.6422 < 0.75 \end{array}$$

Il modello **non** si adatta bene ai dati.

6.c (**Punti 3**) Il parametro di regressione $\hat{\beta}_0$, in questo caso, è interpretabile?

6.d (**Punti 2**) Una previsione per x = 40 è attendibile? Perché?

6.
e (**Punti 2**) Se W=5+Y, posto $w_i=\beta_0'+\beta_1'x+\epsilon_i'$ il modello in cui W viene spiegata da X, quanto varranno β_0' e β_1' ?

Prova di Statistica 2022/07/01-2

Esercizio 1

Su un campione di 220 imprese energivora della provincia di Bologna è stato rilevata la spesa in investimenti green, espressa in migliaia di euro. Qui di seguito i dati raccolti in classi e le frequenze percentuali.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	$f_{j\%}$
0	7	6.82
7	15	36.82
15	17	40.00
17	20	16.36
		100.00

1.a (Punti 14) Disegnare l'istogramma delle densità percentuali.

1.b (Punti 3) Quante aziende hanno una spesa compresa tra il 25-esimo percentile e 15 mila euro?

Soluzione

$$221(0.434 - 0.25) = 40.664$$

- 1.c (Punti 2) Che relazione dobbiamo attenderci tra media, mediana e moda?
- 1.d (**Punti 2**) La varianza della spesa è pari a Var = 17.997. Se ogni azienda aumentasse la sua spesa del 15%, quanto varrebbe varianza dei dati così trasformati?

Esercizio 2

Una rotatoria incrocia due strade, una che porta da nord a sud e una che porta da est ad ovest.

Il numero di automobili che impegna la rotatoria ogni minuto, in orario di punta,

dalla direzione nord è descritto da una poisson	$X_N \sim \text{Pois}(2.1)$
di parametro 2.1	
dalla direzione sud è descritto da una poisson di	$X_S \sim \mathrm{Pois}(0.1)$
parametro 0.1	
dalla direzione est è descritto da una poisson di	$X_E \sim \mathrm{Pois}(1.4)$
parametro 1.4	
dalla direzione ovest è descritto da una poisson	$X_O \sim \text{Pois}(0.2)$.
di parametro 0.2	

Si assume l'indipendenza tra le variabili.

2.a (**Punti 14**) Si consideri l'evento E="più di due veicoli impegnino la rotatoria". Calcolare P(E).

Soluzione $X \sim \mathrm{Pois}(2.1+0.1+1.4+0.2)$ $P(X \geq 2) = 1 - P(X < 2) = 1 - 0.022 - 0.085 = 0.893$

2.
b (**Punti 3**) Si osserva la rotatoria per n=6 minuti. Qual è la probabilità che il numero di volte in cui l'evento E è vero sia uguale a 3?

Soluzione

$$P(3 \text{ su } 6) = {6 \choose 3} 0.893^3 (1 - 0.893)^3 = 0.018$$

2.c (**Punti 2**) Se $X \sim N(0,2)$ e $X \sim N(1,1.2)$, è vero che

$$X - Y \sim N(-1, 0.8)$$

2.d (**Punti 2**) Se X è una VC con supporto $\{0,1,2\}$ e Y è una VC con supporto $\{2,3,4,5\}$. Qual è il supporto di X+Y?

Soluzione

il supporto di $X + Y \in \{2, 3, 4, 5, 6, 7\}$.

Esercizio 3

(**Punti 14**) Un'urna contiene 10 palline numerate da 1 a 10. Si vince se il numero estratto è divisibile per tre, altrimenti si perde. Si estrae 50 volte con reintroduzione.

Qual è la probabilità di vincere almeno 20 volte su 50 giocate?

Soluzione

$$\pi = \frac{3}{10}$$

Teorema del Limite Centrale (somma di Bernoulli)

Siano $X_1, \! ..., \! X_n, \, n=50$ VC IID, t
c $X_i \sim \mathrm{Ber}(\pi=0.3), \forall i,$ posto:

$$S_n = X_1 + \dots + X_n$$

allora:

$$\begin{array}{lll} S_n & \sim & N(n\pi, n\pi(1-\pi)) \\ & \sim & N(50 \cdot 0.3, 50 \cdot 0.3 \cdot (1-0.3)) \\ & \sim & N(15, 10.5) \end{array}$$

$$P(S_n > 20) = P\left(\frac{S_n - n\pi}{\sqrt{n\pi(1-\pi)}} > \frac{20-15}{\sqrt{10.5}}\right)$$

$$= P(Z > 1.54)$$

$$= 1 - P(Z < 1.54)$$

$$= 1 - \Phi(1.54)$$

$$= 0.0618$$

Esercizio 4

4.
a (**Punti 3**) Siano h_1 e h_2 due stimatori per θ , tali che

$$MSE(h_1) = \frac{\theta}{n^2}, \qquad MSE(h_2) = \frac{\theta}{n}$$

Quale dei due stimatori è più efficiente?

4.b (**Punti 3**) Siano T_1 e T_2 due test statistici per la stessa H_0 e con la stessa significatività α . Cosa significa dire che T_1 e più potente di T_2 ?

4.c (**Punti 3**) Definire la probabilità di significatività osservata.

4.
d (**Punti 3**) Se in un test statistico che utilizza la statistica test
 t con 10 gradi di libertà $t_{\rm obs}=1.4,$ il
 $p_{\rm value}$ sarà maggiore o minore di 0.05? Perché?

Esercizio 5

Su un campione di n=75 abitanti del quartiere Q è stato chiesto se siano favorevoli o meno all'introduzione di corsie preferenziali per i mezzi pubblici. Lo studio ha riportato che 45 persone su 75 (il 60% del campione) è favorevole.

5.a (**Punti 4**) Costruire un intervallo di confidenza la 95% per π la quota di persone del quartiere Q favorevole alle corsie preferenziali

Soluzione
$$\hat{\pi} = \frac{S_n}{n} = \frac{0.6}{75} = 0.008$$

$$Idc: \qquad \hat{\pi} \pm z_{\alpha/2} \times \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$$

$$0.008 \pm 1.96 \times \sqrt{\frac{0.008(1-0.008)}{75}}$$

$$0.008 \pm 1.96 \times 0.0103$$

[-0.0122, 0.0282]

5.b (**Punti 10**) Un'indagine molto più ampia condotta su tutta la città ha mostrato che la percentuale di favorevoli alle corsie preferenziali è del 55%. Testare al 5% l'ipotesi che nel quartiere Q la quota di favorevoli sia uguale a quella cittadina contro l'alternativa che sia maggiore.

Soluzione

La stima

$$\hat{\pi} = \frac{45}{75} = 0.6$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \pi = \pi_0 = 0.55 \\ H_1: \pi > \pi_0 = 0.55 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, Z Test Binomiale per n grande: \Rightarrow z-Test.

$$\begin{split} \frac{\hat{\pi} - \pi_0}{\sqrt{\pi_0(1 - \pi_0)/n}} &\sim & N(0, 1) \\ z_{\rm obs} &= & \frac{(0.6 - 0.55)}{\sqrt{0.55(1 - 0.55)/75}} = 0.87 \,. \end{split}$$

 $\boxed{\text{C}}$ DECISIONE Dalle tavole si ha $z_{0.05} = 1.64$.

$$z_{\rm obs} = 0.87 < z_{0.05} = 1.64$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 5 %

Graficamente

Il $p_{\rm value}$ è

$$P(Z>z_{\rm obs}) = P(Z>0.87) = 0.192$$

Esercizio 6

Sono stati analizzati 50 comuni della provincia di Modena e su ogni comune è stato rilevato il numero di abitanti X, espresso in migliaia di persone, e il numero di esercizi commerciali Y.

Qui di seguito le statistiche bivariate

$$\sum_{i=1}^{n} x_i = 741.5$$

$$\sum_{i=1}^{n} x_i^2 = 11366.33$$

$$\sum_{i=1}^{n} x_i y_i = 7568.704$$

$$\sum_{i=1}^{n} y_i = 483.933$$

$$\sum_{i=1}^{n} y_i^2 = 5757.604$$

6.
a (**Punti 14**) Stimare la previsione per x=16 nel modello di regressione dove
 Y viene spiegata da X.

$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{50} 741.5 = 14.8$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{50} 483.9327 = 9.68$ $\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{50} 11366 - 14.83^2 = 7.4$ $\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{50} 5758 - 9.6787^2 = 21.5$ $\operatorname{cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{50} 7569 - 14.83 \cdot 9.6787 = 7.84$ $\hat{\beta}_1 = \frac{\operatorname{cov}(X, Y)}{\hat{\sigma}_X^2}$ $= \frac{7.84}{7.4} = 1.06$ $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$ $= 9.68 - 1.0597 \times 14.83 = -6.04$ $\hat{y}_{X=16} = \hat{\beta}_0 + \hat{\beta}_1 x = -6.04 + 1.0597 \times 16 = 10.9$

6.b (**Punti 3**) Il modello si adatta bene ai dati?

$$r^2 = 0.387$$

6.c (**Punti 2**) Cosa sono i *punti influenti*?

6.
d (**Punti 2**) Se $W=2\times Y$ e V=X+3, posto $w_i=\beta_0'+\beta_1'v+\epsilon_i'$ il modello in cui W viene spiegata da V, quanto varranno β_0' e β_1' ?

Soluzione $\hat{\beta}_1' = r_{VW} \frac{\sigma_W}{\sigma_V}$ $= r_{XY} \frac{2\sigma_Y}{\sigma_X}$ $= 2\hat{\beta}_1$ = 23.313 $\hat{\beta}_0' = \bar{w} - \hat{\beta}_1'\bar{v}$ $= 2\bar{y} - 2\hat{\beta}_1(\bar{x} + 3)$ = -18.432

Prova di Statistica 2022/07/01-3

Esercizio 1

Su un campione di 220 imprese energivora della provincia di Bologna è stato rilevata la spesa in investimenti green, espressa in migliaia di euro. Qui di seguito i dati raccolti in classi e le frequenze percentuali.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	$f_{j\%}$
0	3	16.82
3	5	40.00
5	13	36.82
13	20	6.36
		100.00

1.a (Punti 14) Disegnare l'istogramma delle densità percentuali.

Soluzione							
	$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_j	f_j	b_j	h_j	F_{j}
	0	3	37	0.168	3	5.606	0.168
	3	5	88	0.400	2	20.000	0.568
	5	13	81	0.368	8	4.602	0.936
	13	20	14	0.064	7	0.909	1.000
			220	1.000	20		
	Denistà percentuale 9.4		1 1 3 5 Sp	pesa in inv	estime	13	20

1.b (**Punti 3**) Qual è la percentuale di aziende che hanno una spesa compresa tra il 25-esimo percentile e 15 mila euro?

Soluzione
$$\%(X<15) = F_3 + (15-13)\times h_4$$

$$= 0.936\times 100 + 2\times 0.909$$

$$= 95.455$$

$$\%(X< x_{0.25}) = 25\%$$

$$\%(x_{0.25} < X < 15) = 95.455 - 25$$

$$= 70.455$$

- 1.c (Punti 2) Che relazione dobbiamo attenderci tra media, mediana e moda?
- 1.
d (**Punti 2**) La varianza della spesa è pari a Var=17.075. Se ogni azienda aumentasse la sua spesa di 10 mila euro, quanto varrebbe la media e la varianza dei dati così trasformati?

Esercizio 2

Una moneta perfetta viene lanciata 5 volte, se esce almeno 3 volte testa si estrae da un'urna che contiene un biglietto vincente ed uno perdente, altrimenti si estrae da un'urna che contine due biglietti vincenti e tre perdenti.

2.a (**Punti 14**) Qual è la probabilità di vincere?

Soluzione

$$P(X = 3) = 0.132$$

$$P(X = 4) = 0.028$$

$$P(X = 5) = 0.002$$

$$P(X \ge 3) = 0.5$$

$$P(\text{Vincere}) = 0.5\frac{1}{2} + (1 - 0.5)\frac{2}{3}$$

$$= 0.583$$

2.b (**Punti 3**) Si ripete il gioco di sopra finché non si vince due volte. Qual è la probabilità di finire alla quarta giocata?

Soluzione

$$3 \times 0.583 \times (1 - 0.583)^3 \times 0.583 = 0.074$$

2.c (**Punti 2**) Se $X \sim \text{Pois}(2)$ e $Y \sim \text{Pois}(1)$, è vero che

$$X - Y \sim \text{Pois}(1)$$
 ?

2.d (**Punti 2**) Se X è una VC con supporto $\{0,1,2\}$ e X è una VC con supporto $\{-2,-1,0\}$. Qual è il supporto di $X \times Y$?

$$\{-4, -2, -1, 0\}$$

Esercizio 3

(**Punti 14**) Il supermercato S vende, in media ogni giorno, 102.3 kg di pasta, con una deviazione standard di 10.2. Dopo 60 giorni di apertura, qual è la probabilità che il totale di pasta venduta sia maggiore di 6700 kg?

Teorema del Limite Centrale (somma VC qualunque)

Siano
$$X_1,\dots,X_n,\ n=60$$
 VC IID, t
c $E(X_i)=\mu=102$ e $V(X_i)=\sigma^2=104, \forall i,$ posto:
$$S_n=X_1+\dots+X_n$$

allora:

$$S_{n} \sim_{a} N(n\mu, n\sigma^{2})$$

$$\sim N(60 \cdot 102, 60 \cdot 104)$$

$$\sim N(6138, 6242)$$

$$P(S_{n} > 6700) = P\left(\frac{S_{n} - n\mu}{\sqrt{n\sigma^{2}}} > \frac{6700 - 6138}{\sqrt{6242}}\right)$$

$$= P(Z > 7.11)$$

$$= 1 - P(Z < 7.11)$$

$$= 1 - \Phi(7.11)$$

$$= 0$$

Esercizio 4

4.a (**Punti 3**) Siano h_1 e h_2 due stimatori per θ , tali che

$$MSE(h_1) = \frac{\theta}{n^2}, \qquad MSE(h_2) = \frac{\theta}{n^3}$$

Quale dei due stimatori è più efficiente?

4.
b (**Punti 3**) Se uno stimatore h per θ è tale che $\lim_{n\to\infty}V(h)=0$, di quali proprietà gode h?

4.c (**Punti 3**) Un intervallo di confidenza per θ al 95% è più ampio o meno ampio di uno al 99%? Perché?

4.d (**Punti 3**) Se in un test statistico che utilizza la statistica test t con 10 gradi di libertà $t_{\rm obs}=14$, il $p_{\rm value}$ sarà maggiore o minore di 0.05? Perché?

Esercizio 5

Su un campione di n=15 abitanti del quartiere Q è stato chiesto di fornire un punteggio da 0 a 100 per esprimere quanto si sarebbe soddisfatti dall'introduzione di corsie preferenziali per i mezzi pubblici. Lo studio ha riportato una media pari a 76.3 e una deviazione standard pari a 3.5

5.a (**Punti 4**) Costruire un intervallo di confidenza la 99% per μ il punteggio medio che le persone del quartiere Q esprimono riguardo alle corsie preferenziali.

Soluzione

$$S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{15}{14}} \cdot 3.5 = 3.6228$$

$$Idc: \qquad \hat{\mu} \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}}$$

$$76.3 \pm 2.98 \times \frac{3.6228}{\sqrt{15}}$$

$$76.3 \pm 2.98 \times 0.935$$

$$[73.5, 79.1]$$

5.b (**Punti 10**) Un'indagine molto più ampia condotta su tutta la città ha mostrato che il punteggio medio è pari a 66.3 con un deviazione standard pari a 3.3.

Testare al 5% l'ipotesi che nel quartiere Q il punteggio medio sia uguale a quello cittadino contro l'alternativa che sia maggiore.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu = \mu_0 = 66.3 \\ H_1: \mu > \mu_0 = 66.3 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, Z σ^2 di P è nota: \Rightarrow z-Test.

$$\begin{split} \frac{\hat{\mu} - \mu_0}{\sigma/\sqrt{n}} &\sim & N(0,1) \\ z_{\rm obs} &= & \frac{(76.3 - 66.3)}{3.3/\sqrt{15}} = 11.7 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $z_{0.05} = 1.64$.

$$z_{\rm obs} = 11.7 > z_{0.05} = 1.64$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Graficamente

Esercizio 6

Sono stati analizzati 50 comuni della provincia di Modena e su ogni comune è stato rilevato il numero di abitanti X, espresso in migliaia di persone, e il numero di esercizi commerciali Y.

Qui di seguito le statistiche bivariate

$$\sum_{i=1}^{n} x_i = 724$$

$$\sum_{i=1}^{n} x_i^2 = 10924.84$$

$$\sum_{i=1}^{n} x_i y_i = 7070.543$$

$$\sum_{i=1}^{n} y_i = 455.063$$

$$\sum_{i=1}^{n} y_i^2 = 4962.848$$

6.a (Punti 14) Questi sono alcuni dei dati osservati

x_i	12.4	13.50	16.4	14.10
y_{i}	12.0	4.87	10.2	8.99

Calcolare il residuo per x = 16.4 nel modello di regressione dove Y è spiegato da X.

Soluzione

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{50} 724 = 14.5$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{50} 455.0632 = 9.1$$

$$\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{50} 10925 - 14.48^2 = 8.83$$

$$\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{50} 4963 - 9.1013^2 = 16.4$$

$$\cot(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{50} 7071 - 14.48 \cdot 9.1013 = 9.62$$

$$\hat{\beta}_1 = \frac{\cot(X, Y)}{\hat{\sigma}_X^2}$$

$$= \frac{9.62}{8.83} = 1.09$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$= 9.1 - 1.0904 \times 14.48 = -6.69$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i =$$

$$= -6.69 + 1.0904 \times 16.4 = 11.2$$

$$\hat{\varepsilon}_i = y_i - \hat{y}_i$$

$$= 10.3 - 11.2 = -0.94$$

6.b (**Punti 3**) Ricavare numericamente la scomposizione della varianza del modello di regressione sopra stimato.

Soluzione

$$\begin{split} TSS &=& n\hat{\sigma}_Y^2 \\ &=& 50\times 16.4 \\ &=& 821 \\ ESS &=& R^2\cdot TSS \end{split}$$

$$= 0.639 \cdot 821$$

$$= 525$$

$$RSS = (1 - R^2) \cdot TSS$$

$$= (1 - 0.639) \cdot 821$$

$$= 296$$

$$TSS = RSS + TSS$$

$$821 = 525 + 296$$

6.c (Punti 2) Che differenza c'è tra interpolazione e estrapolazione?

6.d (**Punti 2**) Cosa significa che r è un numero puro?

Prova di Statistica 2022/07/27-1

Esercizio 1

Su un campione di 220 imprese della provincia di Milano è stato rilevato il bilancio, espresso in migliaia di euro, del 2020. Qui di seguito i dati raccolti in classi e le frequenze percentuali.

Soluzione			
	$[\mathbf{x}_j,$	\mathbf{x}_{i+1})	$f_{j\%}$
	$\frac{1}{0}$	$\frac{j+1}{3}$	$\frac{37\%}{2.73}$
	3	5	40.00
	5	13	34.09
	13	20	23.18
			100.00

1.a (Punti 14) Individuare la classe modale.

1.b (**Punti 3**) Quante imprese hanno un bilancio compreso tra −4 mila euro e zero.

Soluzione

$$\#(-1 < X < 0) = \frac{(0 - (-4))20}{100} \times 220 = 0$$

1.
c(Punti 2) La media è risultata essere $\bar{x}=8.446;$ che relazione mi devo aspet
tare tra mediana e moda?

Soluzione

$$\bar{x} < x_{0.5} < x_{Mo}$$

1.
d (**Punti 2**) Siano $x_1,...,x_n,\,n$ numeri,n
dispari. Si consideri la funzione:

$$g(x) = |x_1 - x| + \ldots + |x_n - x|.$$

Per quale valore di x, g(x) è minima?

Soluzione

La funzione g è minimizzata nel valore della mediana.

$$x_{0.5} = x_{((n+1)/2)}$$

Esercizio 2

Siano $X \sim N(5, 1/2)$ e sia $Y \sim N(5, 1/2)$, X e Y indipendenti. Posto $A = \{X > 6\}$, $B = \{Y < 4\}$.

2.a (**Punti 14**) Calcolare $P(A \cup B)$.

Soluzione

$$\begin{split} P(X > 6) &= P\left(\frac{X - \mu}{\sigma} > \frac{6 - 5}{\sqrt{0.5}}\right) \\ &= P\left(Z > 1.41\right) \\ &= 1 - P(Z < 1.41) \\ &= 1 - \Phi(1.41) \\ &= 0.0793 \end{split}$$

$$\begin{split} P(Y < 4) &= P\left(\frac{Y - \mu_Y}{\sigma_Y} < \frac{4 - 5}{\sqrt{0.5}}\right) \\ &= P\left(Z < -1.41\right) \\ &= 1 - \Phi(1.41) \\ &= 0.0793 \end{split}$$

e quindi

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= 0.079 + 0.079 - 0.079 \times 0.079$$
$$= 0.151$$

2.
b (**Punti 3**) Posto Z=X-Y, Calcolare la probabilità che $P(Z>1|Z\leq 2)$.

Soluzione $Z = X - Y \\ \sim N(5 - 5, 1/2 + 1/2) \\ \sim N(0, 1) \\ P(Z > 1 | Z \le 2) = \frac{P(\{Z > 1\} \cap \{Z \le 2\})}{P(Z \le 2)} \\ = \frac{P(1 < Z \le 2)}{P(Z \le 2)} \\ = \frac{\Phi(2) - \Phi(1)}{\Phi(2)} \\ = \frac{0.977 - 0.841}{0.977} \\ = 0.139$

2.
c (**Punti 2**) Siano A e B due eventi diversi dal vuoto. Sono noti $P(A|B)=0.3,\ P(A|\bar{B})=0.15.$
 A e B sono indipendenti? Perché?

Soluzione

No, perché se lo fossero

$$P(A|B) = P(A|\bar{B}) = P(A)$$

2.d (**Punti 2**) Sia $X \sim \text{Pois}(\lambda = 1)$, disegnare la funzione di ripartizione F(x) di X, per x compreso tra -1 e 2.5.

Esercizio 3

(**Punti 14**) Un'urna contiene tre palline, una Rossa, una Blue e una Nera. Si vince se esce Rossa. Si ripete il gioco per 144 volte. Qual è la probabilità che la **proporzione** di vincite sia maggiore di 0.35?

Soluzione

Teorema del Limite Centrale (proporzione)

Siano $X_1, ..., X_n, \, n=144$ VC IID, t
c $X_i \sim \mathrm{Ber}(\pi=0.333), \, \forall i,$ posto:

$$\hat{\pi} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$$

allora:

$$\begin{split} \hat{\pi} & \sim N(\pi, \pi(1-\pi)/n) \\ & \sim N\left(0.333, \frac{0.333 \cdot (1-0.333))}{144}\right) \\ & \sim N(0.333, 0.00154) \end{split}$$

$$\begin{split} P(\hat{\pi} > 0.35) &= P\left(\frac{\hat{\pi} - \pi}{\sqrt{\pi(1 - \pi)/n}} > \frac{0.35 - 0.333}{\sqrt{0.00154}}\right) \\ &= P\left(Z > 0.42\right) \\ &= 1 - P(Z < 0.42) \\ &= 1 - \Phi(0.42) \\ &= 0.3372 \end{split}$$

Esercizio 4

4.a (**Punti 3**) Sia $\hat{\lambda}$ lo stimatore di massima verosimiglianza di λ del modello di Poisson: $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$ Scrivere la Varianza di $\hat{\lambda}$.

4.b (**Punti 3**) Se h è uno stimatore per θ tale che $E(h) \neq \theta$ e che $\lim_{n \to +\infty} V(h) = 0$ di quale proprietà gode h?

4.c (**Punti 3**) Definire gli errori di primo e di secondo tipo di un test statistico e le relative probabilità.

4.d (Punti 3) In un confronto tra due campioni viene messo a test

$$\begin{cases} H_0: \sigma_A = \sigma_B \\ H_1: \sigma_A \neq \sigma_B \end{cases}$$

Risulta $p_{\text{value}} = 0.002$. Alla luce di questo risultato, per testare la differenza tra le medie, cosa è preferibile, un test sotto ipotesi di omogeneità, oppure sotto ipotesi di eterogeneità? Perché?

Esercizio 5

(**Punti 14**) In uno studio sule preferenze di genere è stato chiesto ad un campione di 150 persone, divise 80 signori e 70 signore, di esprimere la propria preferenza tra tre profumazioni (A, B e C) di shampoo. Qui di seguita la tavola di contingenza

	A	В	С	Tot
${f M}$	50	10	20	80
${f F}$	5	55	10	70
Tot	55	65	30	150

Testare al 5% l'ipotesi che vi sia indipendenza tra genere e preferenza tra le profumazioni.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\Big\{H_0: \pi_{ij} = \pi_{i\bullet}\pi_{\bullet j}$$

B SCELTA E CALCOLO STATISTICA-TEST, χ^2 Si usa il test χ^2 , si crea la tabella delle frequenze teoriche

$$n_{ij}^* = \frac{n_{i\bullet}n_{\bullet j}}{n}$$

La tabella delle distanze

$$\frac{(n_{ij} - n_{ij}^*)^2}{n_{ii}^*}$$

	A	В	С	Tot
\mathbf{M}	14.6	17.6	1.00	0
${f F}$	16.6	20.1	1.14	0
Tot	0.0	0.0	0.00	0

$$\chi^2_{obs} = 71$$

i gdl

$$(3-1) \times (4-1) = 6$$

 $\alpha=0.01$ e quindi $\chi^2_{1,0.01}=16.8$

Essendo

$$\chi_{obs}^2 = 71 > \chi_{1,0.01}^2 = 16.8$$

allora rifiuto ${\cal H}_0$ al l
ds dell'1 percento.

Graficamente

Il $p_{\rm value}$ è

$$P(\chi_6^2 > \chi_{\rm obs}^2) = 2.606e - 13$$

Esercizio 6

Sono stati analizzati 5 comuni della provincia di Bologna e su ogni comune è stato rilevato il PIL pro capite del comune X, espresso in decine di migliaia di euro e un valore di percezione di qualità della vita Y (espresso su opportuna scala).

Qui di seguito i dati

A	В	С	D	Е
$0.4 \\ 3.2$				

6.a (**Punti 14**) Calcolare il residuo del comune B nel modello di regressione dove Y viene spiegata da X.

	\sim	ш	-		\mathbf{r}	\mathbf{a}
S	u	ш	ZI	u	ш	е

\overline{i}	x_i	21.	x_i^2	y_i^2	$x_i \cdot y_i$
	x_i	y_i	x_i	g_i	$x_i g_i$
1	0.4	3.20	0.16	10.2	1.28
2	1.0	6.80	1.00	46.2	6.80
3	1.3	5.00	1.69	25.0	6.50
4	2.7	6.90	7.29	47.6	18.63
5	3.1	6.30	9.61	39.7	19.53
Totale	8.5	28.20	19.75	168.8	52.74
Totale/n	1.7	5.64	3.95	33.8	10.55

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^{n} x_{i} = \frac{1}{5} 8.5 = 1.7 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^{n} y_{i} = \frac{1}{5} 28.2 = 5.64 \\ \hat{\sigma}_{X}^{2} &= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2} = \frac{1}{5} 19.8 - 1.7^{2} = 1.06 \\ \hat{\sigma}_{Y}^{2} &= \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \bar{y}^{2} = \frac{1}{5} 169 - 5.64^{2} = 1.95 \\ \operatorname{cov}(X, Y) &= \frac{1}{n} \sum_{i=1}^{n} x_{i} \ y_{i} - \bar{x}\bar{y} = \frac{1}{5} 52.7 - 1.7 \cdot 5.64 = 0.96 \\ \hat{\beta}_{1} &= \frac{\operatorname{cov}(X, Y)}{\hat{\sigma}_{X}^{2}} \\ &= \frac{0.96}{1.06} = 0.906 \\ \hat{\beta}_{0} &= \bar{y} - \hat{\beta}_{1}\bar{x} \\ &= 5.64 - 0.9057 \times 1.7 = 4.1 \\ &\hat{y}_{i} &= \hat{\beta}_{0} + \hat{\beta}_{1}x_{i} = \\ &= 4.1 + 0.9057 \times 1 = 5.01 \\ \hat{\varepsilon}_{i} &= y_{i} - \hat{y}_{i} \\ &= 6.8 - 5.01 = 1.79 \end{split}$$

6.b (**Punti 3**) Scrivere la scomposizione della varianza del modello di regressione e calcolare la Total Sum of Squares (TSS), la Explained Sum of Squares (ESS) e la Residual Sum of Squares (RSS) dei dati analizzati sopra.

Soluzione $TSS = n\hat{\sigma}_{Y}^{2}$ $= 5 \times 1.95$ = 9.73 $ESS = R^{2} \cdot TSS$ $= 0.447 \cdot 9.73$ = 4.35 $RSS = (1 - R^{2}) \cdot TSS$ $= (1 - 0.447) \cdot 9.73$ = 5.39 TSS = RSS + TSS 9.73 = 4.35 + 5.39

6.c (**Punti 3**) Interpretare il parametro di regressione $\hat{\beta}_1$.

6.d (Punti 2) Descrivere la differenza tra punti di leva e punti influenti.

6.
e(Punti 2)Gli stimatori $\hat{\beta}_0$ e
 $\hat{\beta}_1$ dei minimi quadrati per β_0 e
 β_1 sono corretti?

Prova di Statistica 2022/07/27-2

Esercizio 1

Su un campione di 220 imprese della provincia di Milano è stato rilevato il bilancio, espresso in migliaia di euro, del 2020. Qui di seguito i dati raccolti in classi e le frequenze cumulate.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	F_{j}
-10	-5	0.036
-5	0	0.305
0	2	0.768
2	4	0.923
4	6	1.000

1.a (Punti 14) Disegnare l'istogramma delle densità percentuali.

1.b (**Punti 3**) Quante aziende hanno un bilancio compreso tra il 25-esimo percentile e 3.5 mila euro?

Soluzione $\#(x_{0.25} < X < 0) = n(F(3.5) - 0.25) = 220(0.884 - 0.25) = 139.5$

1.c (Punti 2) Che relazione dobbiamo attenderci tra media, mediana e moda?

Soluzione

$$\bar{x} < x_{0.5} < x_{Mo}$$

1.
d (**Punti 2**) Siano $x_1, ..., x_n, n$ numeri. Si consideri la funzione:

$$g(x) = (x_1 - x)^2 + \dots + (x_n - x)^2.$$

Per quale valore di x, g(x) è minima?

Esercizio 2

In una strada, in prossimità di un dato incrocio, ci sono 3 corsie. In orario di punta, il numero di automobili che impegna la corsia sinistra è descritto da una Poisson di parametro 1.1, $X_S \sim \text{Pois}(1.1)$, per quella di centro da una Poisson di parametro 1.0, $X_C \sim \text{Pois}(1.0)$ e per quella di destra da una Poisson di parametro 0.9, $X_D \sim \text{Pois}(0.9)$. Si assume l'indipendenza tra le variabili.

2.a (**Punti 14**) Si consideri l'evento E="più di due veicoli impegnano l'incrocio". Calcolare P(E).

Soluzione

Posto $X = X_S + X_C + X_D$ osserviamo che

$$X \sim \text{Pois}(\lambda = 1.1 + 0.9 + 1)$$

e quindi

$$P(X \ge 2) = 1 - P(X \le 1) = 1 - (0.05 + 0.149) = 0.801$$

2.b (**Punti 3**) Calcolare

$$P(X_S + X_C + X_D = 3 | X_S + X_C + X_D \ge 2).$$

Soluzione

Posto $X = X_S + X_C + X_D$ osserviamo che

$${X = 3} \cap {X \ge 2} = {X = 3}$$

e quindi

$$P(X=3|X\geq 2) \ = \ \frac{P(\{X=3\}\cap \{X\geq 2\})}{P(X\geq 2)}$$

$$= \frac{P(X=3)}{P(X \ge 2)}$$
$$= \frac{0.224}{0.801} = 0.28$$

2.
c (**Punti 2**) Siano $X \sim N(0,1)$ e $Y \sim N(0,1), X$ e Y indipendenti. Come si distribuisce $X^2 + Y^2$?

2.
d (**Punti 2**) Se X è una VC con supporto $\{2,3,4,5\}$ e Y è una VC con supporto $\{1,2,6\}$. Qual è il supporto di X-Y?

Soluzione

$$S_{X-Y} = -4, -3, -2, -1, 0, 1, 2, 3, 4$$

Esercizio 3

(**Punti 14**) Un'urna contiene 4 palline numerate da 1 a 4. Si estrae 100 volte con reinserimento e si fa la media dei 100 numeri estratti. Qual è la probabilità che la media sia compresa tra 2.5 e 2.6?

Soluzione

$$\begin{array}{rcl} \mu & = & E(X_i) = \sum_{x \in S_X} x P(X=x) \\ & = & 1\frac{1}{4} + 2\frac{1}{4} + 3\frac{1}{4} + 4\frac{1}{4} \\ & = & 2.5 \\ \sigma^2 & = & V(X_i) = \sum_{x \in S_X} x^2 P(X=x) - \mu^2 \\ & = & \left(1^2\frac{1}{4} + 2^2\frac{1}{4} + 3^2\frac{1}{4} + 4^2\frac{1}{4}\right) - (2.5)^2 \\ & = & 1.25 \end{array}$$

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1,...,X_n,\ n=100$ VC IID, t
c $E(X_i)=\mu=2.5$ e $V(X_i)=\sigma^2=1.25, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$$

allora:

$$ar{X} \ \ \ \underset{a}{\sim} \ \ N(\mu,\sigma^2/n)$$

$$\sim N\left(2.5, \frac{1.25}{100}\right)$$

$$\sim N(2.5, 0.0125)$$

$$P(2.5 < \bar{X} \le 2.6) = P\left(\frac{2.5 - 2.5}{\sqrt{0.0125}} < \frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \le \frac{2.6 - 2.5}{\sqrt{0.0125}}\right)$$

$$= P\left(0 < Z \le 0.89\right)$$

$$= \Phi(0.89) - \Phi(0)$$

$$= 0.8133 - 0.5$$

$$= 0.313$$

Esercizio 4

4.
a (**Punti 3**) Siano h_1 e h_2 due stimatori per θ , tali che

$$MSE(h_1) = \frac{\theta}{\sqrt{n}}, \qquad MSE(h_2) = \frac{\theta}{n}$$

Quale dei due stimatori è più efficiente?

4.b (**Punti 3**) Sia $\hat{\sigma}^2$ lo stimatore di massima verosimiglianza di σ^2 . In virtù di quale proprietà $\hat{\sigma}$ è lo stimatore di massima verosimiglianza per σ ?

4.c (**Punti 3**) Siano T_1 e T_2 due test per lo stesso sistema di ipotesi, con uguale significatività $\alpha = 0.05$ e con probabilità di errore di secondo tipo, $\beta_1 = 0.3$ per il test T_1 e $\beta_2 = 0.15$ per il test T_2 . Quale dei due test è più potente?

4.
d (**Punti 3**) Se in un test statistico bilaterale che utilizza la statistica test t con 11 gradi di libertà,
 $t_{\rm obs}=142.3,$ il $p_{\rm value}$ sarà maggiore o minore di 0.01? Perché?

Esercizio 5

Su un campione di $n_M = 35$ consumatori privati, scelti a caso tra i cittadini del comune di Modena, si è chiesto quanto spendono mensilmente per le forniture elettriche. Il campione ha restituito una media pari a 12.4 €/mese, con una deviazione standard pari a 2.1 €/mese,

(**Punti 4**) Costruire un Intervallo di Confidenza al 95% per la media di popolazione μ .

Soluzione

$$S = \sqrt{\frac{n}{n-1}}\hat{\sigma} = 2.131$$

$$\left[\begin{array}{c} 12.4 \pm t_{34;.005} \frac{2.131}{\sqrt{35}} \end{array} \right] = \left[\begin{array}{c} 12.4 \pm 2.728 \times 0.36 \end{array} \right]$$

$$= \left[\begin{array}{c} 11.417; 13.383 \end{array} \right]$$

(**Punti 10**) La stessa domanda è stata posta ad un secondo campione di $n_F=38$ consumatori privati, scelti a caso tra i cittadini del comune di Ferrara. Il campione ha restituito una media pari a 19.2~€/mese, con una deviazione standard pari a 3.9~€/mese. Sotto ipotesi di eterogeneità testare al 5% l'ipotesi che i due comuni abbiano uguale media, contro l'alternativa che a Ferrara consumino di più.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu_{\ 1} \ = \mu_{\ 2} \\ H_1: \mu_{\ 1} \ < \mu_{\ 2} \end{cases}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, T

$$S_{1}^{2} = \frac{n_{1}}{n_{1} - 1} \hat{\sigma}_{1}^{2} = \frac{35}{35 - 1} 2.1^{2} = 4.54 \qquad S_{2}^{2} = \frac{n_{2}}{n_{2} - 1} \hat{\sigma}_{2}^{2} = \frac{38}{38 - 1} 3.9^{2} = 15.6$$

$$\begin{split} \frac{\hat{\mu}_{1} - \hat{\mu}_{2}}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}} &\sim & t_{n_{1} + n_{2} - 2} \\ t_{\text{obs}} &= & \frac{(12.4 - 19.2)}{\sqrt{\frac{4.54}{35} + \frac{15.6}{38}}} = -9.25 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(35+38-2);0.05} = -1.67$.

$$t_{\text{obs}} = -9.25 < t_{71:0.05} = -1.67$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Graficamente

Esercizio 6

Sono stati analizzati 15 comuni della provincia di Bologna e su ogni comune è stato rilevato il PIL pro capite del comune X, espresso in decine di migliaia di euro e un valore di percezione di qualità della vita Y (espresso su opportuna scala).

Qui di seguito le statistiche bivariate

$$\sum_{i=1}^{n} x_i = 29.3$$

$$\sum_{i=1}^{n} x_i^2 = 74.51$$

$$\sum_{i=1}^{n} x_i y_i = 242.81$$

$$\sum_{i=1}^{n} y_i = 110.8$$

$$\sum_{i=1}^{n} y_i^2 = 866.02$$

6.a (**Punti 14**) Stimare la previsione per x=1.6 nel modello di regressione dove Y viene spiegata da X.

Soluzione $\bar{x} = \frac{1}{n}\sum_{i=1}^n x_i = \frac{1}{15}29.3 = 1.95$ $\bar{y} = \frac{1}{n}\sum_{i=1}^n y_i = \frac{1}{15}110.8 = 7.39$

$$\begin{split} \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{15} 74.5 - 1.9533^2 = 1.15 \\ \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{15} 866 - 7.3867^2 = 3.17 \\ \cos(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{15} 243 - 1.9533 \cdot 7.3867 = 1.76 \\ \hat{\beta}_1 &= \frac{\cos(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{1.76}{1.15} = 1.53 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 7.39 - 1.5269 \times 1.9533 = 4.4 \\ \hat{y}_{X=1.6} &= \hat{\beta}_0 + \hat{\beta}_1 x = 4.4 + 1.5269 \times 1.6 = 6.85 \end{split}$$

6.b (**Punti 3**) Calcolare numericamente RSS:

$$RSS = \sum_{i=1}^{n} \hat{\epsilon}_i^2$$

Soluzione

$$RSS = n(1 - r^2)\hat{\sigma}_Y^2 = 7.299$$

6.
c (**Punti 3**) Gli stimatori $\hat{\beta}_0$ e $\hat{\beta}_1$ sono consistenti? Perché?

6.
d (**Punti 2**) Se in un modello di regressione con 11 dati, il residuo studentizzato del dato i è
 $\tilde{\epsilon}_i=1.23,$ cosa possiamo concludere?

6.
e(Punti 2) Sia $\hat{\beta}_1$ lo stimatore dei minimi quadrati per
 $\beta_1.$ Scrivere il suo Standard Error teorico.

Prova di Statistica 2022/07/27-3

Esercizio 1

Su un campione di 220 imprese della provincia di Milano è stato rilevato il bilancio, espresso in migliaia di euro, del 2020. Qui di seguito i dati raccolti in classi e le densità di frequenza percentuale.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	h_{j}
-10	-5	0.909
-5	0	3.455
0	2	26.136
2	4	8.636
4	6	4.318

1.a (Punti 14) Calcolare il valore approssimato della mediana.

F_{j} b_{j} h_{j} $[\mathbf{x}_j,$ \mathbf{x}_{j+1} f_j -10 5 -5 10 0.0450.9090.045-5 0 38 0.1735 3.4550.2180 2 115 0.5232 26.1360.7412 2 38 0.1738.6360.9142 19 0.0864.3181.000

220

$$\begin{array}{rcl} p & = & 0.5, \mathrm{essendo} \; F_3 = 0.741 > 0.5 \Rightarrow j_{0.5} = 3 \\ x_{0.5} & = & x_{\mathrm{inf;3}} + \frac{0.5 - F_2}{f_3} \cdot b_3 \\ & = & 0 + \frac{0.5 - 0.218}{0.523} \cdot 2 \\ & = & 1.08 \end{array}$$

1.000

1.b (**Punti 3**) Quante aziende hanno un bilancio compreso tra -1 e il 75-esimo percentile?

Soluzione

Soluzione

$$\begin{array}{rcl} F(x_{0.75}) & = & 0.75 \\ F(-1) & = & f_1 + 4h_2/100 \end{array}$$

$$= 0.045 + 4 \times 3.455/100$$

$$= 0.184$$

$$\%(-1 < X < x_{0.75}) = (F(x_{0.75}) - F(x_{-1})) \times 100$$

$$= (0.566) \times 100\%$$

$$\#(-1 < X < x_{0.75}) = n\%(-1 < X < x_{0.75})/100$$

$$= 124.6$$

$$\#(-1 < X < x_{0.75}) = n\%(-1 < X < x_{0.75})/100 = n/100(75 - F(-1))$$

1.c (Punti 2) Che relazione dobbiamo attenderci tra media, mediana e moda?

1.d (**Punti 2**) Sapendo che $\sigma_X = 2.82$ la Standard Deviation di X e posto $y_i = -x_i, \forall i$, quanto varrà σ_Y , la standard deviation dei dati così trasformati?

Esercizio 2

Una moneta perfetta viene lanciata 2 volte, se esce almeno 1 volta testa si estrae da un'urna che contiene un biglietto vincente ed uno perdente, altrimenti si estrae da un'urna che contiene due biglietti vincenti e tre perdenti.

2.a (**Punti 14**) Qual è la probabilità di vincere?

Soluzione

Sia $X \sim \text{Binom}(1/2)$

$$P(E) = P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{1}{4} = \frac{3}{4}$$

$$\begin{array}{lcl} P(Vincere) & = & P(E)P(Vincere|E) + P(\bar{E})P(Vincere|\bar{E}) \\ & = & \frac{3}{4}\frac{1}{2} + \frac{1}{4}\frac{2}{3} \\ & = & 0.542 \end{array}$$

2.b (**Punti 3**) Si ripete il gioco di sopra finché non si vince tre volte. Qual è la probabilità di finire alla quinta giocata?

Soluzione

$$P(\text{Finire alla quarta}) = P(\text{Vincere 2 partite su } 3 \cap \text{vincere alla quarta})$$

$$= \left(\binom{3}{2} 0.542^2 (1 - 0.542)^1 \right) \times 0.542$$

$$= 0.403 \times 0.542$$

$$= 0.219$$

2.c (**Punti 2**) Se X è una VC con supporto $\{1,2,3\}$ e Y è una VC con supporto $\{1,3,5\}$. Qual è il supporto di $X \times Y$?

Soluzione

$$S_{X-Y} = 1, 2, 3, 5, 6, 9, 10, 15$$

Esercizio 3

(**Punti 14**) Il supermercato S accoglie, in media ogni giorno, 3.242 mila persone, con una deviazione standard di 0.5 mila persone. Dopo 60 giorni di apertura, qual è la probabilità che il totale dei visitatori sia maggiore di 225 mila persone?

Teorema del Limite Centrale (somma VC qualunque)

Siano
$$X_1,...,X_n,\ n=60$$
 VC IID, t
c $E(X_i)=\mu=3.24$ e $V(X_i)=\sigma^2=0.25, \forall i,$ posto:
$$S_n=X_1+...+X_n$$

allora:

$$S_n \sim N(n\mu, n\sigma^2)$$

 $\sim N(60 \cdot 3.24, 60 \cdot 0.25)$
 $\sim N(195, 15)$

$$\begin{split} P(S_n > 225) &= P\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} > \frac{225 - 195}{\sqrt{15}}\right) \\ &= P\left(Z > 7.87\right) \\ &= 1 - P(Z < 7.87) \\ &= 1 - \Phi(7.87) \\ &= 0 \end{split}$$

Esercizio 4

4.a (**Punti 3**) Sia h uno stimatore per θ , tale che

$$MSE(h) = \theta + \frac{\theta}{n^2}$$

Lo stimatore h è consistente?

4.b (**Punti 3**) Sia $\hat{\theta}$ lo stimatore di massima verosimiglianza per θ . Qual è la distribuzione asintotica di $\hat{\theta}$?

4.c (**Punti 3**) Un intervallo di confidenza per θ al 90% è più ampio o meno ampio di uno al 95%? Perché?

4.
d (**Punti 3**) Se in un test statistico bilaterale che utilizza la statistica test
 z, risulta $z_{\rm obs}=14,$ il $p_{\rm value}$ s
arà maggiore o minore di 0.01? Perché?

Esercizio 5

Su un campione di $n_R=75$ tassisti romani è stato chiesto se siano favorevoli o meno all'introduzione del decreto di liberalizzazione del trasporto. Lo studio ha riportato che 15 persone su 75 (l'20% del campione) è favorevole.

5.
a (**Punti 4**) Costruire un intervallo di confidenza la 95% per π la quota di tassisti favor
evoli al decreto liberalizzazione

Soluzione

$$\begin{bmatrix} 0.2 \pm z_{0.025} \sqrt{\frac{0.2 \times 0.8}{75}} \end{bmatrix} = \begin{bmatrix} 0.2 \pm 1.96 \times 0.046 \end{bmatrix}$$
$$= \begin{bmatrix} 0.109; 0.291 \end{bmatrix}$$

5.b (**Punti 10**) La stessa domanda è stata posta ad un secondo campione di $n_M=95$ tassisti milanesi. Lo studio ha riportato che 32 persone su 95 (l'20% del campione) è favorevole.

Testare al 5% l'ipotesi la quota di tassisti favorevoli sia uguale tra le due città contro l'alternativa che i tassisti milanesi siano maggiormente favorevoli.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \pi_{\mathrm{A}} = \pi_{\mathrm{B}} \\ H_1: \pi_{\mathrm{A}} < \pi_{\mathrm{B}} \end{cases}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, Z

$$\hat{\pi}_{\text{ A}} = \frac{s_{\text{ A}}}{n_{\text{ A}}} = \frac{15}{75} = 0.2 \qquad \hat{\pi}_{\text{ B}} = \frac{s_{\text{ B}}}{n_{\text{ B}}} = \frac{32}{95} = 0.337$$

Calcoliamo la proporzione comune sotto H_0

$$\pi_C = \frac{s_{\text{ A}} + s_{\text{ B}}}{n_{\text{ A}} + n_{\text{ B}}} = \frac{47}{170} = 0.277$$

$$\begin{split} \frac{\hat{\pi}_{\text{ A}} - \hat{\pi}_{\text{ B}}}{\sqrt{\frac{\pi_{C}(1 - \pi_{C})}{n_{\text{ A}}} + \frac{\pi_{C}(1 - \pi_{C})}{n_{\text{ B}}}}} &\sim & N(0, 1) \\ z_{\text{obs}} &= & \frac{(0.2 - 0.337)}{\sqrt{\frac{0.277(1 - 0.277)}{75} + \frac{0.277(1 - 0.277)}{95}}} = -1.98 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $z_{0.05} = -1.64$.

$$z_{\rm obs} = -1.98 < z_{0.05} = -1.64$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Graficamente

Il $p_{\rm value}$ è

$$P(Z < z_{\rm obs}) = P(Z < -1.98) = 0.02381$$

Esercizio 6

Sono stati analizzati 15 comuni della provincia di Bologna e su ogni comune è stato rilevato il PIL pro capite del comune X, espresso in decine di migliaia di euro e un valore di percezione di qualità della vita Y (espresso su opportuna scala).

Qui di seguito le statistiche bivariate

Soluzione

$$\sum_{i=1}^{n} x_i = 28.3 \qquad \sum_{i=1}^{n} x_i^2 = 71.19 \qquad \sum_{i=1}^{n} x_i y_i = 253.01$$
 (10.1)

$$\sum_{i=1}^{n} y_i = 122.2 \qquad \sum_{i=1}^{n} y_i^2 = 1042.2 \qquad (10.2)$$

6.a (Punti 14) Questi sono alcuni dei dati osservati

Calcolare il residuo per x = 2.1 nel modello di regressione dove Y è spiegato da X.

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{15} 28.3 = 1.89 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{15} 122.2 = 8.15 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{15} 71.2 - 1.8867^2 = 1.19 \\ \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{15} 1042 - 8.1467^2 = 3.11 \\ \operatorname{cov}(X, Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{15} 253 - 1.8867 \cdot 8.1467 = 1.5 \end{split}$$

 $\hat{\beta}_1 = \frac{\text{cov}(X, Y)}{\hat{\sigma}_Y^2}$

$$\begin{array}{rcl} = & \frac{1.5}{1.19} = 1.26 \\ \\ \hat{\beta}_0 & = & \bar{y} - \hat{\beta}_1 \bar{x} \\ & = & 8.15 - 1.2619 \times 1.8867 = 5.77 \\ \\ & \hat{y}_i & = & \hat{\beta}_0 + \hat{\beta}_1 x_i = \\ & = & 5.77 + 1.2619 \times 2.1 = 8.42 \\ \\ \hat{\varepsilon}_i & = & y_i - \hat{y}_i \\ & = & 9.3 - 8.42 = 0.884 \end{array}$$

6.b (**Punti 3**) Calcolare la percentuale di varianza di Y spiegata dal modello.

Soluzione

$$\begin{array}{rcl} r & = & \frac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \frac{1.5}{1.09\times1.76} = 0.779 \\ r^2 & = & 0.607 < 0.75 \end{array}$$

Il modello **non** si adatta bene ai dati.

- 6.c (**Punti 2**) Se in un modello di regressione con 15 dati, il residuo studentizzato del dato i è $\tilde{\epsilon}_i = 12.3$, cosa possiamo concludere?
- 6.d (**Punti 2**) Sia $\hat{\beta}_0$ lo stimatore dei minimi quadrati per β_0 . Scrivere il suo Standard Error stimato.

Anno 2023

11

Prova di Statistica 2023/01/11-1 Esercizio 1

Su un campione di 160 famiglie della provincia di Modena è stato rilevato l'investimento annuo in prodotti finanziari (espresso in migliaia di euro). Qui di seguito la distribuzione delle frequenze assolute:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}
0.0	1.5	13
1.5	3.0	73
3.0	5.0	67
5.0	10.0	7
		160

1.
a $({\bf Punti~14})$ Disegnare l'istogramma di densità percentuale.

Soluzione						
	$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}	f_{j}	b_{j}	h_{j}
	0.0	1.5	13	0.0813	1.5	5.417
	1.5	3.0	73	0.4562	1.5	30.417
	3.0	5.0	67	0.4188	2.0	20.938
	5.0	10.0	7	0.0437	5.0	0.875
			160	1.0000	10.0	

1.b (**Punti 3**) Che percentuale di famiglie investe più di 4.5 mila euro all'anno?

Soluzione

$$\%(X > 4.5) = (5.0 - 4.5) \times 20.9375 + 4.375$$

= 14.8438

1.c (Punti 2) Che relazione dobbiamo aspettarci tra media e mediana?

1.d (**Punti 2**) La spesa media è pari a $\bar{x} = 3.0676$, mentre la SD è pari a SD = 1.3653. Se ogni famiglia aumentasse il proprio investimento di 0.5 mila euro, quanto varrebbero la media e la SD dei dati così trasformati?

Esercizio 2

2.a (**Punti 14**) Siano $X \sim N(10, 1.5)$ e sia $Y \sim N(10, 0.5)$, X e Y indipendenti. Posto $A = \{8 < X < 10\}$, $B = \{Y < 11\}$. Quanto vale $P(A \cup B)$?

Soluzione

$$\begin{split} P(8 < X \leq 10) &= P\left(\frac{8-10}{\sqrt{1.5}} < \frac{X-\mu_X}{\sigma_X} \leq \frac{10-10}{\sqrt{1.5}}\right) \\ &= P\left(-1.63 < Z \leq 0\right) \\ &= \Phi(0) - \Phi(-1.63) \\ &= \Phi(0) - (1-\Phi(1.63)) \\ &= 0.5 - (1-0.9484) \end{split}$$

$$P(Y < 11) = P\left(\frac{Y - \mu_Y}{\sigma_Y} < \frac{11 - 10}{\sqrt{0.5}}\right)$$

= P(Z < 1.41) $= \Phi(1.41)$

= 0.9207

= 0.4484

$$P(A \cup B) = 0.4488 + 0.9214 - 0.4135$$

= 0.9566

2.b (**Punti 3**) Un'urna contiene due palline rosse, due bianche e una nera. Si estrae due volte senza reinserimento. Qual è la probabilità di avere due colori diversi?

Soluzione

due colori diversi =
$$RB \cup BR \cup RN \cup NR \cup RN \cup NR \cup BN \cup NB$$

 $P(\text{due colori diversi}) = P(RB) + P(BR) + P(RN) + P(NR) + P(BN) + P(NB)$
 $= \frac{2}{5}\frac{2}{4} + \frac{2}{5}\frac{2}{4} + \frac{2}{5}\frac{1}{4} + \frac{1}{5}\frac{2}{4} + \frac{2}{5}\frac{1}{4} + \frac{1}{5}\frac{2}{4}$
 $= \frac{4 + 4 + 2 + 2 + 2 + 2}{20}$
 $= 0.8$

- 2.
c (**Punti 2**) Se $X \sim \text{Pois}(3.2)$ e $Y \sim \text{Pois}(1.2), X$ e Y indipendenti, quali sono valore atteso e varianza di X + Y e di X Y?
- 2.d (**Punti 2**) Sia X una VC e sia F la sua funzione di ripartizione. Cosa significa dire che F è continua a destra?

Esercizio 3

3.a (**Punti 14**) Un'urna contiene 4 palline numerate: $\boxed{0}$, $\boxed{0}$, $\boxed{0}$ e $\boxed{1}$. Si estrae 100 volte con reinserimento. Qual è la probabilità che la proporzione di palline timbrate con 1 nelle 100 estrazioni sia maggiore di 0.27?

Soluzione

$$\begin{array}{rcl} \pi & = & \frac{1}{4} \\ E(\hat{\pi}) & = & \frac{1}{4} \\ V(\hat{\pi}) & = & \frac{1/4(1-1/4)}{100} \\ & = & 0.0019 \end{array}$$

Teorema del Limite Centrale (proporzione)

Siano $X_1, ..., X_n, \; n=100$ VC IID, t
c $X_i \sim \mathrm{Ber}(\pi=0.25), \forall i,$ posto:

$$\hat{\pi} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

allora:

$$\begin{split} \hat{\pi} & \underset{a}{\sim} & N(\pi, \pi(1-\pi)/n) \\ & \sim & N\left(0.25, \frac{0.25 \cdot (1-0.25))}{100}\right) \\ & \sim & N(0.25, 0.001875) \end{split}$$

$$\begin{split} P(\hat{\pi} > 0.27) &= P\left(\frac{\hat{\pi} - \pi}{\sqrt{\pi(1 - \pi)/n}} > \frac{0.27 - 0.25}{\sqrt{0.001875}}\right) \\ &= P\left(Z > 0.46\right) \\ &= 1 - P(Z < 0.46) \\ &= 1 - \Phi(0.46) \\ &= 0.3228 \end{split}$$

Esercizio 4

4.a (**Punti 3**) Sia $\hat{\lambda}$ lo stimatore di massima verosimiglianza di λ del modello di Poisson.

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Ricavare il suo MSE (Mean Squared Error).

4.b (**Punti 3**) Si h uno stimatore per θ tale che $E(h) = \theta$. Di quale proprietà gode h?

4.c (**Punti 3**) Definire la potenza di un test.

4.d (**Punti 3**) In uno studio sull'efficacia degli integratori alimentari, su un gruppo di 238 atleti è stato misurato il rendimento atletico (ottimo, buono e scarso) e l'assunzione di integratori (alto, medio e basso). Qui di seguito i dati:

	Integratori						
	alto medio basso						
rendimento							
ottimo	21	35	15				
buono	20	26	30				
scarso	18	38	35				

il test del chi-quadro sull'indipendenza tra rendimento e assunzione di integratori restituisce un $p_{\rm value}=0.08$. Che cosa possiamo concludere?

Esercizio 5

5.a (**Punti 12**) In uno studio sul gradimento dell'azione politica della regione, nel comune A si è rilevata l'opinione su 35 intervistati misurata in una scala di gradimento che va da zero a 100. I dati campionari hanno evidenziato una media pari a $\hat{\mu}_A = 68$ e una deviazione standard osservata pari a $\hat{\sigma}_A = 5.1$, mentre nel comune A si è rilevata l'opinione su 35 intervistati misurata in una scala di gradimento che va da zero a 100. I dati campionari hanno evidenziato una media pari a $\hat{\mu}_B = 71$ e una deviazione standard osservata pari a $\hat{\sigma}_B = 4.5$. Sotto ipotesi di omogeneità delle varianza testare l'ipotesi che il gradimento politico sia uguale nei due comuni contro l'alternativa che sia **diverso**.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu_{\mathrm{\;A}} \ = \mu_{\mathrm{\;B}} \\ H_1: \mu_{\mathrm{\;A}} \ \neq \mu_{\mathrm{\;B}} \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2,$ anziché α

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, T

L'ipotesi è di omogeneità e quindi calcoliamo:

$$S_p^2 = \frac{n_{\rm A} \, \hat{\sigma}_{\rm A}^2 \, + n_{\rm B} \, \hat{\sigma}_{\rm B}^2}{n_{\rm A} \, + n_{\rm B} \, - 2} = \frac{35 \cdot 5.1^2 + 35 \cdot 4.5^2}{35 + 35 - 2} = 23.81$$

$$\begin{split} \frac{\hat{\mu}_{\text{ A}} - \hat{\mu}_{\text{ B}}}{\sqrt{\frac{S_p^2}{n_{\text{ A}}} + \frac{S_p^2}{n_{\text{ B}}}}} &\sim & t_{n_{\text{ A}} + n_{\text{ B}} - 2} \\ t_{\text{obs}} &= & \frac{(68 - 71)}{\sqrt{\frac{23.81}{35} + \frac{23.81}{35}}} = -2.572 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(35+35-2);0.025} = -1.996$.

$$t_{\text{obs}} = -2.572 < t_{68:0.025} = -1.996$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Graficamente

Il p_{value} è

$$P(|T_{n1+n2-2}| > |t_{\rm obs}|) = 2P(T_{n1+n2-2} > |t_{\rm obs}|) = 2P(T_{n1+n2-2} > |-2.5719|) = 0.0123$$

Esercizio 6

In uno studio sul potere d'acquisto delle famiglie è stato selezionato un campione di 150 nuclei familiari a cui è stato chiesto il reddito annuo (X espressa in scala di comodo) e la spesa annua in generi alimentari (Y espressa in scala di comodo). Qui di seguito le statistiche bivariate

$$\sum_{i=1}^{n} x_i = 76.93,$$

$$\sum_{i=1}^{n} x_i^2 = 51.33$$

$$\sum_{i=1}^{n} y_i = 63.05,$$

$$\sum_{i=1}^{n} y_i^2 = 27.67$$

$$\sum_{i=1}^{n} x_i y_i = 35.59.$$

6.a (**Punti 14**) Stimare la previsione per x = 1.5 nel modello di regressione dove Y viene spiegata da X.

$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{150} 76.93 = 0.5129$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{150} 63.05 = 0.4203$ $\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{150} 51.33 - 0.5129^2 = 0.0792$ $\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{150} 27.67 - 0.4203^2 = 0.0078$ $\text{cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{150} 35.59 - 0.5129 \cdot 0.4203 = 0.0217$ $\hat{\beta}_1 = \frac{\text{cov}(X, Y)}{\hat{\sigma}_X^2}$ $= \frac{0.0217}{0.0792} = 0.2744$ $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

$$= 0.4203 - 0.2744 \times 0.5129 = 0.2796$$

$$\hat{y}_{X=1.5} = \hat{\beta}_0 + \hat{\beta}_1 x = 0.2796 + 0.2744 \times 1.5 = 0.6912$$

6.b (Punti 3) Qual è la percentuale di varianza spiegata dal modello?

Soluzione

$$r^2 \times 100 = 76.5625$$

6.c (**Punti 2**) Interpretare il diagramma dei residui.

6.
d (**Punti 2**) Se W=-Y, quanto varrà r_{XW} , coefficiente di correlazione tra X e W?

Prova di Statistica 2023/01/11-2

Esercizio 1

Su un campione di 160 famiglie della provincia di Modena è stato rilevato l'investimento annuo in prodotti obbligazionari (espresso in migliaia di euro). Qui di seguito la distribuzione delle frequenze percentuali:

Soluzione			
_	$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	$f_{j\%}$
	0.0	5.0	4.375
	5.0	7.0	41.875
	7.0	8.5	45.625
	8.5	10.0	8.125
			100.000
-			100.000

1.a (**Punti 14**) Disegnare l'istogramma di densità percentuale.

1.b (**Punti 3**) Quante famiglie investono più di 8 mila euro all'anno?

Soluzione

$$\#(X > 4.5) = 160(\frac{1}{100}(8.5 - 8) \times 30.4167 + 0.0813)$$

= 37.3333

1.c (Punti 2) Che relazione dobbiamo aspettarci tra media e mediana?

1.d (**Punti 2**) La spesa media è pari a $\bar{x} = 6.9001$, mentre la SD è pari a SD = 1.5027. Se ogni famiglia aumentasse il proprio investimento del 2 percento, quanto varrebbero la media e la SD dei dati così trasformati?

Esercizio 2

2.a (**Punti 14**) I clienti in fila nell'ora di punta alla cassa di un supermercato sono distribuiti come una Poisson di parametro 2.5 ($X \sim \text{Pois}(\lambda = 2.5)$). Qual è la probabilità di trovare almeno 2 clienti in coda ($X \ge 2$)?

Soluzione

$$\begin{split} P(X \geq 2) &= 1 - P(X < 2) \\ &= 1 - (P(X = 0) + P(X = 1)) \\ &= 1 - (0.0821 + 0.2306) \\ &= 0.6873 \end{split}$$

$$\begin{split} P(X > 2) &= 1 - P(X < 2) \\ &= 1 - \left(\frac{2.3^0}{0!}e^{-2.3} + \frac{2.3^1}{1!}e^{-2.3}\right) \\ &= 1 - (0.1003 + 0.2306) \\ &= 1 - 0.3309 \\ &= 0.6691 \end{split}$$

2.b (**Punti 3**) Un'urna contiene 5 palline: 2 rosse e 3 bianche. Si estrae con reintroduzione finché non escono 2 bianche consecutive. Calcolare la probabilità di finire in **esattamente** 3 estrazioni.

Soluzione

esattamente tre =
$$R \cap B \cap B$$

 $P(\text{esattamente tre}) = P(R \cap B \cap B)$
= $\frac{2}{5} \frac{3}{5} \frac{3}{5}$
= 0.144

2.c (**Punti 2**) Se $X \sim N(3.2, 1.5)$ e $Y \sim N(1.2, 1.1)$, X e Y indipendenti, come si distribuiscono X + Y e X - Y?

2.d (**Punti 2**) Sia X una VC e sia F la sua funzione di ripartizione. Cosa significa dire che F è crescente?

Esercizio 3

3.a (**Punti 14**) Un'urna contiene 4 palline numerate con $\boxed{0}$, $\boxed{3}$, $\boxed{4}$ e $\boxed{6}$. Si estrae 100 volte con reinserimento. Qual è la probabilità che la somme delle 100 estrazioni sia maggiore di 310?

Soluzione

$$\begin{array}{rcl} \mu & = & \frac{1}{4}(0+3+4+6) = 3.25 \\ \\ \sigma^2 & = & \frac{1}{4}(0^2+3^2+4^2+6^2) - (3.25)^2 = 4.688 \end{array}$$

Teorema del Limite Centrale (somma VC qualunque)

Siano $X_1, \dots, X_n, \ n=100$ VC IID, t
c $E(X_i)=\mu=3.25$ e $V(X_i)=\sigma^2=4.688, \forall i,$ posto:

$$S_n = X_1 + \dots + X_n$$

allora:

$$S_n \sim_a N(n\mu, n\sigma^2)$$

 $\sim N(100 \cdot 3.25, 100 \cdot 4.688)$
 $\sim N(325, 468.8)$

$$P(S_n > 310) = P\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} > \frac{310 - 325}{\sqrt{468.8}}\right)$$

$$= P(Z > -0.69)$$

$$= 1 - P(Z < -0.69)$$

$$= 1 - (1 - \Phi(0.69))$$

$$= 0.7549$$

4.a (**Punti 3**) Sia $\hat{\pi}$ lo stimatore di massima verosimiglianza di π del modello Binomiale.

$$\hat{\pi} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Ricavare il suo MSE (Mean Squared Error).

4.b (**Punti 3**) Si h uno stimatore per θ tale che $E(h) = \theta$ e $\lim_{n\to\infty} V(h) = 0$. Di quale proprietà gode h?

4.c (**Punti 3**) Definire la significatività di un test.

4.d (**Punti 3**) In uno studio sull'efficacia della formazione nella scelta degli investimenti finanziari sono stati analizzati due gruppi di investitori, un primo gruppo senza alcuno studio specifico e un secondo gruppo di laureati in scienze economiche o affini. Sotto ipotesi di eterogeneità della varianze si è messo a test l'ipotesi che il rendimento medio degli investimenti dei laureati in scienze economiche μ_E sia uguale a quello dei non laureati μ_N , contro l'alternativa che $\mu_E > \mu_N$. Il test ha restituito un p_{value} pari a 0.092. Cosa possiamo concludere?

Esercizio 5

5.a (**Punti 12**) In uno studio sul gradimento dell'azione politica della regione, nel comune A si è rilevato che 26 persone su 35 intervistati è soddisfatto, mentre nel comune B, 45 su 50 sono soddisfatti. Testare all'1% l'ipotesi che la proporzione di disoccupati sia uguale nei due comuni, contro l'alternativa che si **maggiore** nel comune B.

5.b (**Punti 2**) Calcolare e interpretare il p_{value} del test precedente.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \pi_{\mathrm{\;A}} \ = \pi_{\mathrm{\;B}} \\ H_1: \pi_{\mathrm{\;A}} \ < \pi_{\mathrm{\;B}} \end{cases}$$

\fbox{B} SCELTA E CALCOLO STATISTICA-TEST, Z

$$\hat{\pi}_{\text{ A}} = \frac{s_{\text{ A}}}{n_{\text{ A}}} = \frac{26}{35} = 0.7429 \qquad \hat{\pi}_{\text{ B}} = \frac{s_{\text{ B}}}{n_{\text{ B}}} = \frac{45}{50} = 0.9$$

Calcoliamo la proporzione comune sotto H_0

$$\pi_C = \frac{s_A + s_B}{n_A + n_B} = \frac{71}{85} = 0.8353$$

$$\begin{split} \frac{\hat{\pi}_{\,\mathrm{A}} \, - \hat{\pi}_{\,\mathrm{B}}}{\sqrt{\frac{\pi_{C}(1-\pi_{C})}{n_{\,\mathrm{A}}} + \frac{\pi_{C}(1-\pi_{C})}{n_{\,\mathrm{B}}}}} \;\; \sim \;\; N(0,1) \\ z_{\mathrm{obs}} \;\; = \;\; \frac{(0.7429 - 0.9)}{\sqrt{\frac{0.8353(1 - 0.8353)}{35} + \frac{0.8353(1 - 0.8353)}{50}}} = -1.922 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $z_{0.01} = -2.326$.

$$z_{\rm obs} = -1.922 > z_{0.01} = -2.326$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 1 %

Graficamente

Il $p_{\rm value}$ è

$$P(Z < z_{\rm obs}) = P(Z < -1.92) = 0.02728$$

In uno studio sul potere d'acquisto delle famiglie è stato selezionato un campione di 150 nuclei familiari a cui è stato chiesto il reddito annuo (X espressa in scala di comodo) e gli aumenti dei prezzi percepiti (Y espressa in opportuna scala). Qui di seguito le statistiche bivariate

$$\sum_{i=1}^{n} x_i = 76.93,$$

$$\sum_{i=1}^{n} x_i^2 = 51.33$$

$$\sum_{i=1}^{n} y_i = 102.84,$$

$$\sum_{i=1}^{n} y_i^2 = 71.69$$

$$\sum_{i=1}^{n} x_i y_i = 49.45.$$

6.a (**Punti 14**) Stimare la previsione per x = 1.5 nel modello di regressione dove Y viene spiegata da X.

$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{150} 76.93 = 0.5129$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{150} 102.84 = 0.6856$ $\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{150} 51.33 - 0.5129^2 = 0.0792$ $\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{150} 71.69 - 0.6856^2 = 0.0079$ $\text{cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{150} 49.45 - 0.5129 \cdot 0.6856 = -0.0219$ $\hat{\beta}_1 = \frac{\text{cov}(X, Y)}{\hat{\sigma}_X^2}$ $= \frac{-0.0219}{0.0792} = -0.2769$ $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

$$= 0.6856 - (-0.2769) \times 0.5129 = 0.8276$$

$$\hat{y}_{X=1.5} = \hat{\beta}_0 + \hat{\beta}_1 x = 0.8276 + (-0.2769) \times 1.5 = 0.4123$$

6.b (Punti 3) Il modello si adatta bene ai dati?

Soluzione

$$r = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{-0.0219}{0.2814 \times 0.0888} = -0.8775$$

$$r^2 = 0.77 > 0.75$$

Il modello si adatta bene ai dati.

6.c (**Punti 2**) Interpretare il diagramma dei residui.

6.
d (**Punti 2**) Se W = 1 - Y, quanto varrà r_{XW} , coefficiente di correlazione tra X e W?

Prova di Statistica 2023/01/11-3

Esercizio 1

Su un campione di 160 famiglie della provincia di Modena è stato rilevato l'investimento annuo in prodotti finanziari (espresso in migliaia di euro). Qui di seguito la distribuzione delle frequenze cumulate:

0.0 3.5 0.083 3.5 5.0 0.500 5.0 6.5 0.918	T_{j}
	.3
E 0 6 E 0 019	00
5.0 6.5 0.918	88
6.5 10.0 1.000	00

1.a (Punti 14) Disegnare l'istogramma di densità percentuale.

1.b (**Punti 3**) Quante famiglie investono meno di 4.5 mila euro all'anno?

Soluzione
$$\#(X < 4.5) \ = \ 160(\frac{1}{100}(4.5 - 3.5) \times 27.9167 + 0.0813)$$

$$= 57.6667$$

- 1.c (Punti 2) Che relazione dobbiamo aspettarci tra media e mediana?
- 1.d (**Punti 2**) La spesa media è pari a $\bar{x}=4.9926$, mentre la SD è pari a SD=1.5124. Se ogni famiglia diminuisse il proprio investimento del 2%, quanto varrebbero la media e la SD dei dati così trasformati?

2.a (**Punti 14**) Un'urna contiene 20 palline: 8 bianche e 12 nere, si estrae con reintroduzione 5 volte. Qual è la probabilità avere un numero di palline bianche maggiore o uguale a 2 su 5 estrazioni?

Soluzione

$$\begin{array}{lcl} P(X \geq 2) & = & 1 - P(X < 2) \\ & = & 1 - (P(X = 0) + P(X = 1)) \\ & = & 1 - (0.0778 + 0.2592) \\ & = & 0.663 \end{array}$$

2.b (**Punti 3**) Dalla stessa urna di prima, si estrae con reintroduzione finché non escono due palline bianche consecutive. Qual è la probabilità di finire in **al massimo** 3 tentativi?

al massimo tre =
$$(B \cap B) \cup (R \cap B \cap B)$$

 $P(\text{al massimo tre}) = P(B \cap B) + P(R \cap B \cap B)$
= $0.4 \times 0.4 + 0.6 \times 0.4 \times 0.4$
= 0.256

- 2.c (**Punti 2**) Se $X \sim N(3.2, 1.1)$ e $Y \sim \text{Binom}(12, 0.3), X$ e Y indipendenti, quali sono valore atteso e varianza di X + Y e di X Y?
- 2.d (**Punti 2**) Sia X una VC e sia F la sua funzione di ripartizione. Quanto valgono $\lim_{x\to -\infty} F(x)$ e $\lim_{x\to +\infty} F(x)$?

3.a (**Punti 14**) Un'urna contiene 4 palline numerate: $\boxed{0}$, $\boxed{1}$, $\boxed{4}$ e $\boxed{6}$. Si estrae 100 volte con reinserimento. Qual è la probabilità che la media delle 100 estrazioni sia maggiore di 2.8?

Soluzione

$$\mu = \frac{1}{4}(0+1+4+6) = 2.75$$

$$\sigma^2 = \frac{1}{4}(0^2+1^2+4^2+6^2) - (2.75)^2 = 5.688$$

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1,\dots,X_n,\ n=100$ VC IID, tc $E(X_i)=\mu=2.75$ e $V(X_i)=\sigma^2=5.688, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

allora:

$$\begin{array}{ccc} \bar{X} & \sim & N(\mu,\sigma^2/n) \\ & \sim & N\left(2.75,\frac{5.688}{100}\right) \\ & \sim & N(2.75,0.05688) \end{array}$$

$$P(\bar{X} > 2.8) = P\left(\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} > \frac{2.8 - 2.75}{\sqrt{0.05688}}\right)$$

$$= P(Z > 0.21)$$

$$= 1 - P(Z < 0.21)$$

$$= 1 - \Phi(0.21)$$

$$= 0.4168$$

Esercizio 4

4.
a(Punti 3)Siano $\hat{\mu}$ e $\hat{\sigma}^2$ gli stimatori di massima vero
simiglianza di μ e σ^2 del modello di Normale.

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Ricavare il MSE (Mean Squared Error) di $\hat{\mu}$.

4.b (**Punti 3**) Si h uno stimatore per θ tale che $E(h) \neq \theta$, ma che $\lim_{n\to\infty} E(h) = \theta$. Di quale proprietà gode h?

4.c (**Punti 3**) Quali sono gli errori di primo e secondo tipo?

4.d (**Punti 3**) In uno studio sull'efficacia degli integratori alimentari, a 120 atleti è stato somministrato un particolare integratore alimentare giornalmente e a 120 atleti è stato dato un placebo. Dopo 30 giorni di sperimentazione sono state eseguite prove fisiche che hanno restituito la performance degli atleti misurata in scala numerica. Gli atleti che hanno assunto l'integratore hanno ottenuto un risultato medio pari a $\hat{\mu}_{\text{Integratore}} = 53.4$, mentre gli atleti che hanno assunto l'integratore hanno ottenuto un risultato medio pari a $\hat{\mu}_{\text{Placebo}} = 50.8$. Sotto ipotesi di omogeneità è stato messo a test

$$\begin{cases} H_0: \mu_{\text{Integratore}} = \mu_{\text{Placebo}} \\ H_1: \mu_{\text{Integratore}} > \mu_{\text{Placebo}} \end{cases}$$

il p_{value} è risultato pari a $p_{\text{value}} = 0.092$. Cosa possiamo concludere?

Esercizio 5

5.a (**Punti 7**) In uno studio sul gradimento dell'azione politica della regione, nel comune A si è rilevata l'opinione su 35 intervistati misurata in una scala di gradimento che va da zero a 100. I dati campionari hanno evidenziato una media pari a $\hat{\mu} = 68$ e una deviazione standard osservata pari a $\hat{\sigma} = 5$. Costruire un intervallo di confidenza al 95% per il gradimento medio μ .

Soluzione $S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{35}{34}} \cdot 5.073 = 5.1471$ $Idc: \qquad 71 \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}}$ $68 \pm 2.032 \times \frac{5.073}{\sqrt{35}}$ $68 \pm 2.032 \times 0.87$ [66.23, 69.77]

5.b (**Punti 7**) Un'indagine analoga, svolta sull'intera regione, ha mostrato un gradimento medio pari a $\mu_0 = 71$. Testare al livello di significatività del 5% l'ipotesi che nel comune A il livello di gradimento sia uguale a quello regionale contro l'alternativa che sia **minore**.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu = \mu_0 = 71 \\ H_1: \mu < \mu_0 = 71 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, T σ^2 di P non è nota: \Rightarrow t-Test.

$$S = \sqrt{\frac{n}{n-1}} \ \hat{\sigma} = \sqrt{\frac{35}{35-1}} \times 5 = 5.073$$

$$\begin{split} \frac{\hat{\mu} - \mu_0}{S/\sqrt{n}} &\sim & t_{n-1} \\ t_{\rm obs} &= & \frac{(68-71)}{5.073/\sqrt{35}} = -3.499 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(35-1);\,0.05}=-1.691.$

$$t_{\text{obs}} = -3.499 < t_{34:0.05} = -1.691$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Graficamente

Il $p_{\rm value}$ è

$$P(T_{n-1} < t_{\rm obs}) = P(T_{n-1} < -3.499) = 0.000663$$

In uno studio sul potere d'acquisto delle famiglie è stato selezionato un campione di 150 nuclei familiari a cui è stato chiesto il reddito annuo (X espressa in scala di comodo) e la spesa annua in generi alimentari (Y espressa in scala di comodo). Qui di seguito le statistiche bivariate

$$\sum_{i=1}^{n} x_i = 79.8,$$

$$\sum_{i=1}^{n} x_i^2 = 54.9$$

$$\sum_{i=1}^{n} y_i = 94.3,$$

$$\sum_{i=1}^{n} x_i y_i = 62.7.$$

6.a (**Punti 14**) Stimare la previsione per x = 1.5 nel modello di regressione dove Y viene spiegata da X.

$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{150} 79.8 = 0.532$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{150} 94.3 = 0.6287$ $\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{150} 54.9 - 0.532^2 = 0.083$ $\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{150} 72.4 - 0.6287^2 = 0.0874$ $\operatorname{cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{150} 62.7 - 0.532 \cdot 0.6287 = 0.0835$ $\hat{\beta}_1 = \frac{\operatorname{cov}(X, Y)}{\hat{\sigma}_X^2}$ $= \frac{0.0835}{0.083} = 1.007$ $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

$$= 0.6287 - 1.0069 \times 0.532 = 0.093$$

$$\hat{y}_{X=1.5} = \hat{\beta}_0 + \hat{\beta}_1 x = 0.093 + 1.0069 \times 1.5 = 1.603$$

6.b (**Punti 3**) Calcolare e interpretare R^2 .

Soluzione

$$r = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{0.0835}{0.2881 \times 0.2957} = 0.9808$$

$$r^2 = 0.962 > 0.75$$

Il modello si adatta bene ai dati.

6.c (Punti 2) Interpretare il diagramma dei residui.

6.d (**Punti 2**) Se W = 1 + Y, quanto varrà r_{XW} , coefficiente di correlazione tra X e W?

Prova di Statistica 2023/02/16-1

Esercizio 1

Su un campione di 200 imprese della provincia di Modena è stato rilevato l'utile dell'ultimo trimestre (espresso in migliaia di euro). Qui di seguito la distribuzione delle frequenze assolute:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}
-2	-1	17
-1	1	83
1	5	92
5	15	8
		200

1.a (Punti 14) Individuare la classe modale.

1.b (Punti 3) Quale è il numero di imprese che hanno un utile maggiore di zero?

Soluzione $\%(X>0) \ = \ 100\% - \%(X\leq 0)$

$$= 100 - (0.09 \times 100 + 20.8 \times (0 - (-1)))\%$$

= 70.75%

- 1.c (**Punti 2**) L'utile medio è pari a $\bar{x} = 1.7013$ che forma avrà l'istogramma?
- 1.d (Punti 2) Qual è la proprietà di associatività della media aritmetica?

2.a (**Punti 14**) Siano $X \sim N(1, 1.5)$ e sia $Y \sim N(1, 0.5)$, X e Y indipendenti. Posto $A = \{-2 < X < 1\}$, $B = \{Y < 1\}$. Quanto vale $P(A \cap B)$?

Soluzione

$$\begin{split} P(-2 < X \leq 1) &= P\left(\frac{-2-1}{\sqrt{1.5}} < \frac{X-\mu_X}{\sigma_X} \leq \frac{1-1}{\sqrt{1.5}}\right) \\ &= P\left(-2.45 < Z \leq 0\right) \\ &= \Phi(0) - \Phi(-2.45) \\ &= \Phi(0) - (1-\Phi(2.45)) \\ &= 0.5 - (1-0.9929) \\ &= 0.4929 \end{split}$$

$$P(Y < 1) = P\left(\frac{Y - \mu_Y}{\sigma_Y} < \frac{1 - 1}{\sqrt{1.5}}\right)$$
$$= P(Z < 0)$$
$$= \Phi(0)$$
$$= 0.5$$

$$P(A \cap B) = 0.5 \times 0.49 = 0.245$$

2.b (**Punti 3**) Un'urna contiene 10 palline rosse, 10 bianche e 10 nere. Si estrae tre volte senza reinserimento. Qual è la probabilità di avere tre colori uguali?

Soluzione

$$\begin{array}{ll} E &=& \mathrm{tre\ colori\ uguali} \\ &=& \{(R_1\cap R_2\cap R_3)\cup (B_1\cap B_2\cap B_3)\cup (N_1\cap N_2\cap N_3)\} \\ P(E) &=& P(R_1\cap R_2\cap R_3) + P(B_1\cap B_2\cap B_3) + P(N_1\cap N_2\cap N_3) \\ &=& P(R_1)P(R_2|R_1)P(R_3|R_1\cap R_2) + P(B_1)P(B_2|B_1)P(B_3|B_1\cap B_2) + \\ && + P(N_1)P(N_2|N_1)P(N_3|N_1\cap N_2) \\ &=& \frac{10}{30}\frac{9}{29}\frac{8}{28} + \frac{10}{30}\frac{9}{29}\frac{8}{28} + \frac{10}{30}\frac{9}{29}\frac{8}{28} \\ &=& 3\cdot\frac{10}{30}\frac{9}{29}\frac{8}{28} \\ &=& 0.0887 \end{array}$$

2.c (**Punti 2**) Se $X \sim \text{Ber}(0.2)$ e $Y \sim \text{Ber}(0.2)$, X e Y indipendenti, com'è distribuita X + Y?

2.
d (**Punti 2**) Se X è Y sono due VC, tali che $V(X) = \sigma_X^2$ e $Y = \sigma_Y^2$, quanto vale V(X - Y)?

Esercizio 3

3.a (**Punti 14**) Un'urna contiene 4 palline numerate: $\boxed{0}$, $\boxed{1}$, $\boxed{2}$ e $\boxed{3}$. Si estrae 100 volte con reinserimento. Qual è la probabilità che la media delle 100 estrazioni sia maggiore di 1.6?

Soluzione

$$\begin{array}{rcl} \mu & = & \frac{1}{4}(0+1+2+3) = 1.5 \\ \\ \sigma^2 & = & \frac{1}{4}(0^2+1^2+2^2+3^2) - (1.5)^2 = 1.25 \end{array}$$

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1, \dots, X_n, \; n=100$ VC IID, t
c $E(X_i)=\mu=1.5$ e $V(X_i)=\sigma^2=1.25, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

allora:

$$\begin{array}{ccc} \bar{X} & \underset{a}{\sim} & N(\mu,\sigma^2/n) \\ & \sim & N\left(1.5,\frac{1.25}{100}\right) \end{array}$$

4.a (**Punti 3**) Sia $\hat{\lambda}$ lo stimatore di massima verosimiglianza di λ del modello di Poisson.

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Ricavare la sua varianza e metterla in relazione con il suo MSE.

4.b (**Punti 3**) Sia h uno stimatore per θ . Cosa significa dire che h è consistente?

4.c (**Punti 3**) Siano T_1 e T_2 due test per lo stesso sistema d'ipotesi e con probabilità di errore di secondo tipo pari a, $\beta_1 = 0.2$ e $\beta_2 = 0.3$, rispettivamente. A parità di significatività, quale dei due è più potente? Perché?

4.d (**Punti 3**) In uno studio sull'efficacia di farmaco sono stati analizzati due gruppi di pazienti, un primo gruppo di 132 pazienti col placebo e un secondo gruppo di 132 pazienti col farmaco. Il 28.8% (38 su 132) di chi ha preso il placebo è guarito entro i primi 5 giorni, mentre il 39.4% (42 su 132) di chi è stato trattato col farmaco è guarito entro i primi 5 giorni. Il test sulla differenza tra le due proporzioni ha restituito $p_{\text{value}} = 0.09$. Possiamo affermare che il farmaco sia efficace?

Esercizio 5

(**Punti 14**) In uno studio sull'efficacia degli integratori alimentari, su un gruppo di 238 atleti è stato misurato il rendimento atletico (ottimo, buono e scarso) e l'assunzione di integratori (alto, medio e basso). Qui di seguito i dati:

	Integratori		
	alto	medio	basso
rendimer	nto		
ottimo	21	35	15
buono	20	26	30
scarso	18	38	35

Al livello del 5% testare l'ipotesi che integratori e rendimento siano indipendenti.

Soluzione

A Sistema di ipotesi

$$\Big\{H_0: \pi_{ij} = \pi_{i\bullet}\pi_{\bullet j}$$

 \fbox{B} Si usa il test $\chi^2,$ si crea la tabella delle frequenze teoriche

$$n_{ij}^* = \frac{n_{i\bullet}n_{\bullet j}}{n}$$

	I	Integratori		
	alto	alto medio basso		
rendimer	ıto			
ottimo	17.60	29.53	23.87	
buono	18.84	31.61	25.55	
scarso	22.56	37.85	30.59	

	Integratori		
	alto	medio	basso
rendimer	nto		
ottimo	0.6565	1.0118	3.2934
buono	0.0714	0.9968	0.7765
scarso	0.9213	0.0006	0.6363

gdl =
$$(3-1) \times (3-1) = 4$$

$$\chi_{\text{obs}}^2 = 8.3644$$

$$\chi_{0.05;4}^2 = 9.4877$$

In uno studio sull'adeguamento alle direttive europee sul green si sono analizzate 150 aziende, sono stati analizzati l'investimento in green (X espresso in decine migliaia di euro/anno) e l'impatto l'abbattimento di CO2 (misurata in opportuna scala). Qui di seguito le statistiche:

$$\sum_{i=1}^{n} x_i = 530.4519, \qquad \sum_{i=1}^{n} x_i^2 = 2196.2171$$

$$\sum_{i=1}^{n} y_i = 918.9192, \qquad \sum_{i=1}^{n} y_i^2 = 5661.4965$$

$$\sum_{i=1}^{n} x_i y_i = 3151.7789.$$

6.a (**Punti 14**) Stimare la previsione per x = 3.5 nel modello di regressione dove Y viene spiegata da X.

$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{150} 530.4519 = 3.536$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{150} 918.9192 = 6.126$ $\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{150} 2196 - 3.5363^2 = 2.136$ $\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{150} 5661 - 6.1261^2 = 0.2139$ $\text{cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{150} 3152 - 3.5363 \cdot 6.1261 = -0.6522$

$$\begin{split} \hat{\beta}_1 &= \frac{\text{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{-0.6522}{2.136} = -0.3054 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 6.126 - (-0.3054) \times 3.5363 = 7.206 \\ \hat{y}_{X=3.5} &= \hat{\beta}_0 + \hat{\beta}_1 x = 7.206 + (-0.3054) \times 3.5 = 6.137 \end{split}$$

6.b (Punti 3) Qual è la percentuale di varianza spiegata dal modello?

Soluzione

$$r = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{-0.6522}{1.461 \times 0.4625} = -0.9651$$

$$r^2 = 0.9314 > 0.75$$

Il modello si adatta bene ai dati.

6.c (Punti 2) Interpretare il diagramma dei residui.

6.
d (**Punti 2**) Se W = -Y, quanto varrà r_{XW} , coefficiente di correlazione tra X e W?

Prova di Statistica 2023/02/16-1

Su un campione di 400 imprese della provincia di Modena è stato rilevato l'utile dell'ultimo trimestre (espresso in migliaia di euro). Qui di seguito la distribuzione delle frequenze assolute:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}
-15	-5	17
-5	-1	183
-1	1	167
1	2	33
		400

1.a (Punti 14) Individuare il valore approssimato della mediana.

$$\begin{array}{rcl} p & = & 0.5, \mathrm{essendo} \; F_2 = 0.5 > 0.5 \Rightarrow j_{0.5} = 2 \\ x_{0.5} & = & x_{\mathrm{inf;2}} + \frac{0.5 - F_1}{f_2} \cdot b_2 \\ & = & -5 + \frac{0.5 - 0.0425}{0.458} \cdot 4 \\ & = & -1 \end{array}$$

1.b (Punti 3) Quale è il numero di imprese che hanno un utile maggiore di zero?

Soluzione

$$\begin{array}{lcl} \#(X>0) & = & n \times \frac{((1-0) \times 20.875 + 0.082 \times 100)}{100} \\ & = & 116.5 \end{array}$$

1.c (**Punti 2**) L'utile medio è pari a $\bar{x} = -1.662$ che forma avrà l'istogramma?

1.d (Punti 2) Qual è la proprietà di linearità della media aritmetica?

Esercizio 2

2.a (**Punti 14**) Il numero di telefonate in arrivo nell'ora di punta di un centralino è distribuito come una Poisson di parametro 3.1 ($X \sim \text{Pois}(\lambda = 3.1)$). Qual è la probabilità di trovare al massimo 3 telefonate ($X \leq 3$)?

$$\begin{array}{lll} P(X \leq 3) & = & \frac{3.1^0}{0!} e^{-3.1} + \frac{3.1^1}{1!} e^{-3.1} + \frac{3.1^2}{2!} e^{-3.1} + \frac{3.1^3}{3!} e^{-3.1} \\ & = & 0.045 + 0.1397 + 0.2165 + 0.2237 \\ & = & 0.625 \end{array}$$

2.b (**Punti 3**) Un'urna contiene 4 palline: 2 rosse e 2 bianche. Si estrae seguendo il seguente schema: se esce rossa, rimettiamo la rossa estratta più altre due rosse, se esce bianca rimettiamo la bianca estratta più altre due bianche. Estraiamo con questo schema per tre volte. Calcolare la probabilità di avere tre palline rosse su tre estrazioni.

Soluzione

$$\begin{array}{rcl} E & = & \text{tre rosse consecutive} \\ & = & R_1 \cap R_2 \cap R_3 \\ P(E) & = & P(R_1)P(R_2|R_1)P(R_3|R_1 \cap R_2) \\ & = & \frac{2}{4}\frac{4}{6}\frac{6}{8} \\ & = & 0.25 \end{array}$$

2.c (**Punti 2**) Se $X \sim N(\mu_X, \sigma_X^2)$ e $Y \sim N(\mu_Y, \sigma_Y^2)$, X e Y indipendenti, come si distribuiscono X+Y e X-Y?

2.
d (**Punti 2**) Siano A e B due eventi diversi dal vuoto tali che $A \cap B = \emptyset$, motivare perché A e B non possono essere indipendenti.

Esercizio 3

3.a (**Punti 14**) Un'urna contiene 2 palline numerate con $\boxed{0}$, 3 numerate con $\boxed{1}$ e 2 numerate con $\boxed{2}$. Si estrae 100 volte con reinserimento. Qual è la probabilità che la somma delle 100 estrazioni sia compresa tra 80 e 120?

$$\begin{split} P(80 < S_n \leq 120) &= P\left(\frac{80-100}{\sqrt{57.1}} < \frac{S_n - \mu}{\sqrt{n\sigma^2}} \leq \frac{120-100}{\sqrt{57.1}}\right) \\ &= P\left(-2.65 < Z \leq 2.65\right) \\ &= \Phi(2.65) - \Phi(-2.65) \\ &= \Phi(2.65) - (1-\Phi(2.65)) \\ &= 0.996 - (1-0.996) \\ &= 0.992 \end{split}$$

4.a (**Punti 3**) Sia $\hat{\pi}$ lo stimatore di massima verosimiglianza di π del modello Binomiale.

$$\hat{\pi} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Ricavare la sua varianza e metterla in relazione con il suo MSE (Mean Squared Error).

4.b (**Punti 3**) Sia h uno stimatore per θ . Cosa significa dire che h è consistente?

4.c (Punti 3) Definire la significatività e la potenza di un test.

4.d (**Punti 3**) In uno studio sull'effetto del titolo di studio sulla percezione del benessere, su un gruppo di 238 intervistati è stato chiesto il titolo di studio (basso: "al massimo le scuole medie inferiori", medio: "Diploma di scuola superiore", alto: "almeno il Diploma di Laurea") e la percezione del proprio benessere (basso, medio, alto). Qui di seguito i dati:

	Benessere			
	basso	basso medio alto		
Titolo di studio				
basso	18	26	35	
medio	21	35	30	
alto	20	38	15	

Si è testata l'indipendenza tra il titolo di studio e la percezione del benessere e il test ha restituito $p_{\text{value}} = 0.04$. Possiamo dire che titolo di studio e benessere sono indipendenti? Perché?

Esercizio 5

5.a (**Punti 14**) In uno studio comparativo tra i redditi, nel comune A si è rilevato il reddito di 12 individui e si è osservata una media pari 27 mila euro con una standard deviation pari a 4.2 mila euro , mentre nel comune B si è rilevato il reddito di 25 individui e si è osservata una media pari 24 mila euro con una standard deviation pari a 3.1 mila euro. Sotto ipotesi di eterogeneità, testare al livello di **significatività del'5% e dell'1%** l'ipotesi che il reddito medio sia uguale nei due comuni, contro l'alternativa che sia maggiore nel comune A.

Soluzione A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu_{\ 1} \ = \mu_{\ 2} \\ H_1: \mu_{\ 1} \ > \mu_{\ 2} \end{cases}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, T

$$S_{1}^{2} = \frac{n_{1}}{n_{1} - 1} \hat{\sigma}_{1}^{2} = \frac{12}{12 - 1} 4.2^{2} = 19.2 \qquad S_{2}^{2} = \frac{n_{2}}{n_{2} - 1} \hat{\sigma}_{2}^{2} = \frac{25}{25 - 1} 3.1^{2} = 10$$

$$\begin{split} \frac{\hat{\mu}_{\,1} \, - \hat{\mu}_{\,2}}{\sqrt{\frac{S_{\,1}^2}{n_{\,1}} + \frac{S_{\,2}^2}{n_{\,2}}}} \;\; \sim \;\; t_{n_{\,1} \, + n_{\,2} \, - 2} \\ t_{\rm obs} \;\; = \;\; \frac{(27 - 24)}{\sqrt{\frac{19.2}{12} + \frac{10}{25}}} = 2.12 \, . \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(12+25-2);0.01} = 2.44$.

$$t_{\rm obs} = 2.12 < t_{35;\,0.01} = 2.44$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 1 %

Graficamente

Il $p_{\rm value}$ è

$$P(T_{n1+n2-2} > t_{\rm obs}) = P(T_{n1+n2-2} > 2.119) = 0.02062$$

In uno studio sull'adeguamento alle direttive europee sul green si sono analizzate 150 aziende, sono stati analizzati l'investimento in green (X espresso in decine migliaia di euro/anno) e i risparmi globali Y (espresso in decine migliaia di euro/anno). Qui di seguito le statistiche:

$$\sum_{i=1}^{n} x_i = 530.452$$

$$\sum_{i=1}^{n} x_i^2 = 2196.217$$

$$\sum_{i=1}^{n} x_i y_i = 5970.846$$

$$\sum_{i=1}^{n} y_i = 1627.872$$

$$\sum_{i=1}^{n} y_i^2 = 17854.071$$

6.a (**Punti 14**) Stimare la previsione per x=1.5 nel modello di regressione dove Y viene spiegata da X.

Soluzione $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{150} 530.4519 = 3.54$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{150} 1627.8723 = 10.9$ $\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{150} 2196 - 3.5363^2 = 2.14$ $\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{150} 17854 - 10.8525^2 = 1.25$ $\text{cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{150} 5971 - 3.5363 \cdot 10.8525 = 1.43$ $\hat{\beta}_1 = \frac{\text{cov}(X, Y)}{\hat{\sigma}_X^2}$ $= \frac{1.43}{2.14} = 0.668$ $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$ $= 10.9 - 0.6684 \times 3.5363 = 8.49$ $\hat{y}_{X=1.5} = \hat{\beta}_0 + \hat{\beta}_1 x = 8.49 + 0.6684 \times 1.5 = 9.49$

6.b (**Punti 3**) Il modello si adatta bene ai dati?

Soluzione

$$r = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{1.43}{1.46 \times 1.12} = 0.873$$

$$r^2 = 0.763 > 0.75$$

Il modello si adatta bene ai dati.

6.c (Punti 2) Interpretare il diagramma dei residui.

6.
d(Punti 2) Se V=1-Ye W=1-Xquanto varrà
 $r_{VW},$ coefficiente di correlazione tra
 Ve W?

Prova di Statistica 2023/02/16-3

Esercizio 1

Su un campione di 50 imprese della provincia di Modena è stato rilevato l'utile dell'ultimo trimestre (espresso in migliaia di euro). Qui di seguito la distribuzione delle frequenze cumulate:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	F_{j}
-2	-1	0.14
-1	1	0.62
1	5	0.86
5	15	1.00

1.a (**Punti 14**) Disegnare l'istogramma di densità percentuale.

1.b (Punti 3) Quante imprese hanno un utile negativo?

Soluzione $\#(X<0) \ = \ n(f_1+1\cdot h_2/100)$

$$= 7 + 12$$
$$= 19$$

1.c (Punti 2) Che relazione dobbiamo aspettarci tra media e mediana?

1.d (**Punti 2**) La varianza dei dati è pari a $\hat{\sigma}^2 = 15.1386$, se gli utili di ogni impresa aumentassero del 3%, quanto varrebbe la varianza dei dati così trasformati?

Soluzione

$$\sigma_Y^2 = (1.03)^2 \sigma_X^2 = 16.0606$$

Esercizio 2

2.a (**Punti 14**) Si lancia una moneta perfetta 8 volte. Qual è la probabilità di avere un numero di volte Testa maggiore o uguale a 6 su 8 lanci?

Soluzione

$$X \sim \text{Bin}(8; 0.5)$$

$$P(X \ge 6) = P(X = 6) + p(X = 7) + P(X = 8)$$

$$= {8 \choose 6} 0.5^8 + {8 \choose 7} 0.5^8 + {8 \choose 8} 0.5^8$$

$$= 28 \cdot 0.0039 + 8 \cdot 0.0039 + 1 \cdot 0.0039$$

$$= 0.1445$$

2.b (**Punti 3**) Sia $Z \sim N(0,1)$ e siano $A = \{Z < 0\}$ e $B = \{Z < 1\}$. Calcolare P(A|B)

$$P(B) = \Phi(1)$$

= 0.8413
 $P(A \cap B) = P(Z < 0)$
= $\Phi(0)$

$$P(A|B) = 0.5 P(A \cap B) = \frac{P(A \cap B)}{P(B)} = \frac{0.5}{0.8413} = 0.5943$$

2.c (**Punti 2**) Se $X \sim \text{Pois}(n)$, a cosa tende X se n diverge?

Soluzione

Se n diverge allora X tende ad un Normale di media n e varianza n

$$X \sim N(n, n)$$

2.d (**Punti 2**) Sia $X \sim N(10,1)$ e sia F la sua funzione di ripartizione. Disegnare approssimativamente F(x) per x che varia tra 6 e 14.

Esercizio 3

3.a (**Punti 14**) Un'urna conteni tre palline rosse, due bianche e una nera. Si estrae n = 100 volte con reintroduzione. Qual è la probabilità che la proporzione di palline rosse sia minore di 0.45?

Soluzione

Teorema del Limite Centrale (proporzione)

Siano $X_1,...,X_n, n=100$ VC IID, to $X_i \sim \text{Ber}(\pi=0.5), \forall i, \text{ posto:}$

$$\hat{\pi} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$$

allora:

$$\begin{split} \hat{\pi} & \underset{a}{\sim} & N(\pi, \pi(1-\pi)/n) \\ & \sim & N\left(0.5, \frac{0.5 \cdot (1-0.5))}{100}\right) \\ & \sim & N(0.5, 0.0025) \end{split}$$

$$P(\hat{\pi} < 0.45) = P\left(\frac{\hat{\pi} - \pi}{\sqrt{\pi(1 - \pi)/n}} < \frac{0.45 - 0.5}{\sqrt{0.0025}}\right)$$

$$= P(Z < -1)$$

$$= 1 - \Phi(1)$$

$$= 0.1587$$

4.
a (**Punti 3**) Siano $\hat{\mu}$ e $\hat{\sigma}^2$ gli stimatori di massima vero
simiglianza di μ e σ^2 del modello di Normale.

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Ricavare la varianza di $\hat{\mu}$ e metterla in relazione con il suo MSE (Mean Squared Error).

4.
b (**Punti 3**) Se h_1 e h_2 sono due stimatori per θ cosa significa dire che h_1 è più efficiente di h_2 ?

4.c (Punti 3) Definire gli errori di primo e secondo tipo e le relativa probabilità.

4.
d (**Punti 3**) Una moneta, che non sappiamo se è perfetta oppure no, viene lanciata 40 volte. Abbiamo osservato 14 volte testa su 40 lanci. Posto π la probabilità che la moneta mostri testa, si è testato

$$\begin{cases} H_0: \pi = \frac{1}{2} \\ H_1: \pi \neq \frac{1}{2} \end{cases}$$

ed è risultato $p_{\rm value}=0.08.$ Possiamo concludere che la moneta sia truccata?

Esercizio 5

5.a (**Punti 7**) In uno studio sui redditi, nel comune A si è rilevato il reddito di n=35 individui e si è osservata una media pari 68 mila euro con una standard deviation pari a 5 mila euro. Costruire un intervallo di confidenza al 95% per il reddito medio μ .

$$S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{35}{34}} \cdot 5.073 = 5.1471$$

$$Idc: \qquad 71 \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}}$$

$$68 \pm 2.032 \times \frac{5.073}{\sqrt{35}}$$

$$68 \pm 2.032 \times 0.87$$

[66.23, 69.77]

5.b (**Punti 7**) Un'indagine analoga, svolta sull'intera regione, ha mostrato un reddito medio pari a $\mu_0 = 71$. Testare al livello di **significatività del 5%** l'ipotesi che nel comune A il reddito medio sia uguale a quello regionale contro l'alternativa che sia **diverso**.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu=\mu_0=71\\ H_1: \mu\neq\mu_0=71 \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2,$ anziché (

B SCELTA E CALCOLO STATISTICA-TEST, $T \sigma^2$ di P non è nota: \Rightarrow t-Test.

$$S = \sqrt{\frac{n}{n-1}} \ \hat{\sigma} = \sqrt{\frac{35}{35-1}} \times 5 = 5.073$$

$$\begin{split} \frac{\hat{\mu} - \mu_0}{S/\sqrt{n}} &\sim & t_{n-1} \\ t_{\rm obs} &= & \frac{(68-71)}{5.073/\sqrt{35}} = -3.499 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(35-1):0.025} = -2.032$.

$$t_{\text{obs}} = -3.499 < t_{34;\,0.025} = -2.032$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Graficamente

In uno studio sull'adeguamento alle direttive europee sul green si sono analizzate 150 aziende, sono stati analizzati l'investimento in green (X espresso in decine migliaia di euro/anno) e le agevolazioni fiscali Y (espressa in decine migliaia di euro/anno). Qui di seguito le statistiche:

$$\begin{split} \sum_{i=1}^n x_i &= 557.8352, & \sum_{i=1}^n x_i^2 &= 2382.5782 \\ \sum_{i=1}^n y_i &= 1641.2782, & \sum_{i=1}^n y_i^2 &= 18139.2659 \\ \sum_{i=1}^n x_i y_i &= 6307.6359. \end{split}$$

6.a (**Punti 14**) Stimare la previsione per x = 1.5 nel modello di regressione dove Y viene spiegata da X.

Soluzione

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{150} 557.8352 = 3.719 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{150} 1641.2782 = 10.94 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{150} 2383 - 3.7189^2 = 2.054 \\ \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{150} 18139 - 10.9419^2 = 1.204 \\ \operatorname{cov}(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{150} 6308 - 3.7189 \cdot 10.9419 = 1.359 \\ \hat{\beta}_1 &= \frac{\operatorname{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{1.359}{2.054} = 0.6619 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 10.94 - 0.6619 \times 3.7189 = 8.48 \\ \hat{y}_{X=1.5} &= \hat{\beta}_0 + \hat{\beta}_1 x = 8.48 + 0.6619 \times 1.5 = 9.473 \end{split}$$

6.b (**Punti 3**) Calcolare e interpretare \mathbb{R}^2 .

Soluzione

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{1.359}{1.433\times 1.097} = 0.8643 \\ r^2 & = & 0.747 < 0.75 \end{array}$$

Il modello **non** si adatta bene ai dati.

6.c (Punti 2) Interpretare il qq-plot dei residui.

6.
d (**Punti 2**) Se V=1+Y e W=1-X, quanto varrà r_{VW} , il coefficiente di correlazione tra V e W?

Prova di Statistica 2023/06/08-1

Esercizio 1

Su un campione di 160 famiglie della provincia di Modena è stata rilevata la spesa annua dedicata alle vacanze, espressa in migliaia di euro. Qui di seguito la distribuzione delle frequenze assolute:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}
0.0	1.5	11
1.5	3.0	63
3.0	5.0	76
5.0	10.0	10
		160

1.a (Punti 14) Disegnare l'istogramma di densità percentuale.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1.5 3.0 63 0.3938 1.5 26.250 0.4625 3.0 5.0 76 0.4750 2.0 23.750 0.9375 5.0 10.0 10 0.0625 5.0 1.250 1.0000
3.0 5.0 76 0.4750 2.0 23.750 0.9375 5.0 10.0 10 0.0625 5.0 1.250 1.0000
5.0 10.0 10 0.0625 5.0 1.250 1.0000
160 1.0000 10.0
26.25 23.75 4.58 1.25
0.0 1.5 3.0 5.0 10.0 Nome della X

1.b (Punti 3) Qual è la percentuale di famiglie con spesa superiore a 4 mila euro?

Soluzione $\%(X>4) = (5-4)\times h_3 + f_4\times 100$ $= (1)\times 23.75 + (0.0625)\times 100$ $= 0.3\times (100)$ #(X>4) = 48

- 1.c (Punti 2) Che relazione dobbiamo attenderci tra moda, mediana e media?
- 1.d (Punti 2) Cosa significa che la media aritmetica rende zero la somma degli scarti?

Esercizio 2

Siano $X_A \sim \text{Pois}(1.5)$ e sia $X_B \sim \text{Pois}(1.5), \ X_A$ e X_B indipendenti. Posto $A = \{X_A \leq 1\}$ e $B = \{X_B > 2\}$

2.a (**Punti 14**) Calcolare la probabilità di $A \cup B$.

Soluzione

$$\begin{array}{lcl} P(X_A \leq 1) & = & \frac{1.5^0}{0!} e^{-1.5} + \frac{1.5^1}{1!} e^{-1.5} \\ & = & 0.2231 + 0.3347 \\ & = & 0.5578 \end{array}$$

$$\begin{split} P(X_B \geq 3) &= 1 - P(X_B < 3) \\ &= 1 - \left(\frac{1.5^0}{0!}e^{-1.5} + \frac{1.5^1}{1!}e^{-1.5} + \frac{1.5^2}{2!}e^{-1.5}\right) \\ &= 1 - (0.2231 + 0.3347 + 0.251) \\ &= 1 - 0.8088 \\ &= 0.1912 \end{split}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= 0.5578 + 0.1912 - 0.1066$$
$$= 0.6423$$

2.b (**Punti 3**) Calcolare la probabilità che **solo** uno dei due eventi A oppure B sia vero.

2.c (**Punti 2**) Calcolare valore atteso e varianza di $X_A - X_B$.

2.d (**Punti 2**) Sia $X \sim \text{Ber}(\pi = 0.4)$. Disegnare la sua funzione di ripartizione.

Esercizio 3

(**Punti 14**) Un'urna contiene 3 palline Rosse, 3 Bianche e 4 Blu. Si estrae senza reintroduzione per n = 81 volte. Calcolare la probabilità che la proporzione di palline Blu sia maggiore di 0.3.

Soluzione

Teorema del Limite Centrale (proporzione)

Siano $X_1,...,X_n, n=81$ VC IID, t
c $X_i\sim \mathrm{Ber}(\pi=0.4), \forall i,$ posto:

$$\hat{\pi} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

allora:

$$\begin{split} \hat{\pi} & & \sim \\ & \sim \\ & \sim \\ & N \left(0.4, \frac{0.4 \cdot (1 - 0.4))}{81} \right) \\ & \sim \\ & \sim \\ & \sim \\ & N(0.4, 0.002963) \end{split}$$

$$\begin{split} P(\hat{\pi} > 0.3) &= P\left(\frac{\hat{\pi} - \pi}{\sqrt{\pi(1 - \pi)/n}} > \frac{0.3 - 0.4}{\sqrt{0.002963}}\right) \\ &= P\left(Z > -1.84\right) \\ &= 1 - P(Z < -1.84) \\ &= 1 - (1 - \Phi(1.84)) \\ &= 0.9671 \end{split}$$

Esercizio 4

4.
a(Punti 3)Siano $\hat{\mu}$ e $\hat{\sigma}^2$ gli stimatori di massima vero
simiglianza di μ e σ^2 del modello di Normale.

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Ricavare lo standard error stimato di $\hat{\mu}$.

- 4.
b (**Punti 3**) Se h_1 e h_2 sono due stimatori per θ tale per cu
i $MSE(h_1)=1.2,$ e $MSE(h_2)=2.3,$ quale dei due è più efficiente e per
ché?
- 4.c (Punti 3) Definire gli errori di primo e secondo tipo e le relative probabilità.
- 4.
d (**Punti 3**) Una moneta, che non sappiamo se è perfetta oppure no, viene lanciata 80 volte. Abbiamo osservato 28 volte testa su 80 lanci. Posto π la probabilità che la moneta mostri testa, si

è testato

$$\begin{cases} H_0: \pi = \frac{1}{2} \\ H_1: \pi \neq \frac{1}{2} \end{cases}$$

ed è risultato $p_{\text{value}} = 0.009683$. Possiamo concludere che la moneta sia truccata?

Esercizio 5

In uno studio sull'efficacia dell'investimento pubblicitario sono stati rilevati, per n=50 aziende si sono rilevati l'incremento di spesa in pubblicità (X) e l'incremento di utile (Y) nell'ultimo quinquennio. Si osservano le seguenti statistiche, $\sum_{i=1}^{50} x_i = 690.2239$, $\sum_{i=1}^{50} y_i = 360.9573$, $\sum_{i=1}^{50} x_i^2 = 13373.9607$, $\sum_{i=1}^{50} y_i^2 = 3864.8997$ e $\sum_{i=1}^{50} x_i y_i = 6692.1265$.

5.a (**Punti 14**) Stimare il modello di regressione dove Y viene spiegata da X.

Soluzione $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{50} 690.2239 = 13.8$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{50} 360.9573 = 7.219$ $\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{50} 13374 - 13.8045^2 = 76.92$ $\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{50} 3865 - 7.2191^2 = 25.18$ $\operatorname{cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{50} 6692 - 13.8045 \cdot 7.2191 = 34.19$ $\hat{\beta}_1 = \frac{\operatorname{cov}(X, Y)}{\hat{\sigma}_X^2}$ $= \frac{34.19}{76.92} = 0.4445$ $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$ $= 7.219 - 0.4445 \times 13.8045 = 1.084$

5.b (**Punti 3**) Qual è la percentuale di varianza spiegata dal modello?

Soluzione

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{34.19}{8.77\times5.018} = 0.7768 \\ r^2 & = & 0.6034 < 0.75 \end{array}$$

Il modello **non** si adatta bene ai dati.

5.c (**Punti 14**) Testare l'ipotesi che l'intercetta sia uguale a zero contro l'alternativa che sia diversa da zero al livello di significatività del 5 percento.

Soluzione

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.6034)\times 25.18 \\ & = & 9.988 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{50}{50-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{50}{50-2}\times 9.988 = 10.4 \end{array}$$

E quindi

$$\begin{split} V(\hat{\beta}_0) &= \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n \hat{\sigma}_X^2} \right) \\ \widehat{V(\hat{\beta}_0)} &= S_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n \hat{\sigma}_X^2} \right) \\ &= 10.4 \times \left(\frac{1}{50} + \frac{13.8^2}{50 \times 76.92} \right) \\ \widehat{SE(\hat{\beta}_0)} &= \sqrt{0.7236} \\ &= 0.8506 \end{split}$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \beta_0 = 0 \\ H_1: \beta_0 \neq 0 \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2,$ anziché α

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, T Test su un coefficiente di regressione: \Rightarrow t-Test.

$$\begin{split} \frac{\hat{\beta}_0 - \beta_{0;H_0}}{\widehat{SE(\hat{\beta}_0)}} &\sim & t_{n-2} \\ t_{\text{obs}} &= & \frac{(1.084-0)}{0.8506} = 1.274 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(50-2);\,0.025}=2.011.$

$$t_{\rm obs} = 1.274 < t_{48:0.025} = 2.011$$

CONCLUSIONE: i dati **sono** coerenti con H_0 al LdS del 2.5%

Graficamente

Il $p_{\rm value}$ è

$$P(|T_{n-2}|>|t_{\rm obs}|)=2P(T_{n-2}>|t_{\rm obs}|)=2P(T_{n-2}>|1.2739|)=0.2088$$

5.d (Punti 2) Interpretare il diagramma dei residui.

5.e (**Punti 2**) Perché una previsione per x = 15 è più affidabile di una per x = 50?

Prova di Statistica 2023/06/08-2

Esercizio 1

Su un campione di 160 famiglie della provincia di Modena è stata rilevata la spesa annua dedicata alle vacanze, espressa in migliaia di euro. Qui di seguito la distribuzione delle frequenze assolute:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}
0.0	5.0	10
5.0	7.0	76
7.0	8.5	63
8.5	10.0	11
		160

1.a (**Punti 14**) Disegnare l'istogramma di densità percentuale.

Soluzione							_	
	$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}	f_{j}	b_j	h_j	F_{j}	
	0.0	5.0	10	0.0625	5.0	1.250	0.0625	
	5.0	7.0	76	0.4750	2.0	23.750	0.5375	
	7.0	8.5	63	0.3938	1.5	26.250	0.9312	
	8.5	10.0	11	0.0688	1.5	4.583	1.0000	
			160	1.0000	10.0			
	26.25 - 23.75 - 23.75 - Delegap becountage	0.0		V///	1	7.0 8	.5 10.0	
				Nome	e della X			

1.b (Punti 3) Qual è la percentuale di famiglie con spesa compresa tra a 4 mila e 8 mila euro?

Soluzione $\% (4 < X < 8) = (5-4) \times h_1 + f_2 \times 100 + (8-7) \times h_2$ $= (1) \times 1.25 + (0.475) \times 100 + (1) \times 26.25$ $= 0.75 \times (100)$ # (4 < X < 8) = 120

- 1.c (Punti 2) Che relazione dobbiamo attenderci tra moda, mediana e media?
- 1.d (Punti 2) Cosa significa che la media aritmetica gode della proprietà di linearità?

Esercizio 2

Soluzione

Siano $X_A \sim N(1.5,1.5)$ e sia $X_B \sim N(1.5,1.5), \, X_A$ e X_B indipendenti. Posto $A = \{X_A \leq 1\}$ e $B = \{X_B > 2\}$

2.a (**Punti 14**) Calcolare la probabilità di $A \cup B$.

$P(X_A < 1) \quad = \quad P\left(\frac{X_A - \mu_A}{\sigma_A} < \frac{1 - 1.5}{\sqrt{1.5}}\right)$

$$= P(Z < -0.41)$$

$$= P(Z < -0.41)$$

$$= \quad 1 - \Phi(0.41)$$

$$= 0.3409$$

$$P(X_B > 2) = P\left(\frac{X_B - \mu_B}{\sigma_B} > \frac{2 - 1.5}{\sqrt{1.5}}\right)$$

$$= P(Z > 0.41)$$

$$= \ 1 - P(Z < 0.41)$$

$$= 1 - \Phi(0.41)$$

$$= 0.3409$$

$$P(A \cup B) \ = \ P(A) + P(B) - P(A \cap B)$$

$$= \ 0.3415 + 0.3415 - 0.1167$$

$$= 0.5664$$

2.b (**Punti 3**) Si continua ad estrarre da $X_A \sim N(1.5, 1.5)$ e si interrompe quando $X_A \leq 1$. Calcolare la probabilità di interrompere alla quinta estrazione.

Soluzione

$$P(A) = 0.3415$$

$$P(\bar{A}) = 0.6585$$

$$P(\bar{A} \cap \bar{A} \cap \bar{A} \cap \bar{A} \cap \bar{A}) = (1 - 0.3415)^4 0.3415$$

= 0.0642

2.c (**Punti 2**) Come si distribuisce $X_A - X_B$?

2.d (**Punti 2**) Se A e B sono due eventi tali che $A \cap B = \emptyset$, A e B possono essere indipendenti? Perché?

Esercizio 3

(**Punti 14**) Un'urna contiene 3 palline col numero $\boxed{0}$, 3 col numero $\boxed{1}$ e 4 col numero $\boxed{2}$. Si estrae senza reintroduzione per n=81 volte. Calcolare la probabilità che la somma dei risultati sia maggiore di 80.

Soluzione

$$\mu = 0 \cdot 0.3 + 1 \cdot 0.3 + 2 \cdot 0.4 = 1.1$$

$$\sigma^2 = (0^2 \cdot 1 + 1^2 \cdot 1 + 2^2 \cdot 1) - (1.1)^2 = -4$$

Teorema del Limite Centrale (somma VC qualunque)

Siano $X_1,...,X_n$, n = 81 VC IID, to $E(X_i) = \mu = 1.1$ e $V(X_i) = \sigma^2 = 0.69, \forall i$, posto:

$$S_n = X_1 + \dots + X_n$$

allora:

$$S_n \sim N(n\mu, n\sigma^2)$$

 $\sim N(81 \cdot 1.1, 81 \cdot 0.69)$
 $\sim N(89.1, 55.89)$

$$\begin{split} P(S_n > 80) &= P\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} > \frac{80 - 89.1}{\sqrt{55.89}}\right) \\ &= P\left(Z > -1.22\right) \\ &= 1 - P(Z < -1.22) \\ &= 1 - (1 - \Phi(1.22)) \\ &= 0.8888 \end{split}$$

Esercizio 4

4.a (**Punti 3**) Sono stati estratti n=10 valori da una Poisson di parametro λ incognito e si è ottenuta un media pari a $\bar{x}=3.4$. Ricavare $\widehat{SE(\hat{\lambda})}$ lo Standard Error stimato $\hat{\lambda}$ di massima verosimiglianza.

4.b (**Punti 3**) Sia h uno stimatore per θ . Cosa significa dire che h è consistente?

4.c (**Punti 3**) Siano T_1 e T_2 due test per lo stesso sistema d'ipotesi e con probabilità di errore di secondo tipo pari a, $\beta_1 = 0.02$ e $\beta_2 = 0.3$, rispettivamente. A parità di significatività, quale dei due è più potente? Perché?

4.d (**Punti 3**) In uno studio sull'efficacia della pubblicità televisiva sono state intervistate 64 persone suddivise in due gruppi, un primo gruppo di 32 individui che guarda abitualmente la televisione e un secondo gruppo di 32 che non la guarda. Ad ogni partecipante è stata chiesta la spesa annua in beni pubblicizzati in TV ed è risultato che la spesa media in questi prodotti di chi guarda abitualmente la TV è pari $\hat{\mu}_{TV}=1.4$ mila \in con una standard deviation pari a $\hat{\sigma}_{TV}=1.2$ mila \in , mentre nel gruppo che non la guarda abitualmente è risultato $\hat{\mu}_{TV}=0.9$ mila \in con una standard deviation pari a $\hat{\sigma}_{TV}=1.4$ mila \in . Si è testa l'uguaglianza delle medie contro l'alternativa che μ_{TV} sia maggiore di μ_{TV} e ed è risultato un $p_{\text{value}}=0.0681$. Si può concludere che la spesa in pubblicità televisiva sia efficace?

Esercizio 5

(**Punti 14**) In uno studio sull'efficacia degli integratori alimentari, su un gruppo di 238 atleti è stato misurato il rendimento atletico (ottimo, buono e scarso) e l'assunzione di integratori (alto, medio e basso). Qui di seguito i dati:

		Integ	gratori	
	alto	medio	basso	Totale
rendime	nto			
buono	21	18	26	65
scarso	20	35	38	93
Totale	41	53	64	158

Testare al livello di significatività del 5% se c'è indipendenza tra integratori e rendimento.

Soluzione

	I	ntegrato	ri
	alto	medio	basso
rendime	nto		
buono	16.87	21.8	26.33
scarso	24.13	31.2	37.67

	I	ntegrator	ri
	alto	medio	basso
rendime	nto		
buono	1.0127	0.6636	0.0041
scarso	0.7078	0.4638	0.0029

Il chi oss è 2.855, il chi-teorico, 5.991 rifiuto: no

Esercizio 6

In uno studio sull'efficacia dell'investimento pubblicitario sono stati rilevati, per n=50 aziende si sono rilevati l'incremento di spesa in pubblicità (X) e l'incremento di utile (Y) nell'ultimo quinquennio. Si osservano le seguenti statistiche, $\sum_{i=1}^{50} x_i = 690.2239$, $\sum_{i=1}^{50} y_i = 471.0877$, $\sum_{i=1}^{50} x_i^2 = 13373.9607$, $\sum_{i=1}^{50} y_i^2 = 6656.473$ e $\sum_{i=1}^{50} x_i y_i = 7933.2391$.

6.a (**Punti 14**) Stimare il modello di regressione dove Y viene spiegata da X.

Soluzione

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{50} 690.2239 = 13.8 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{50} 471.0877 = 9.422 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{50} 13374 - 13.8045^2 = 76.92 \end{split}$$

$$\begin{split} \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{50} 6656 - 9.4218^2 = 44.36 \\ \operatorname{cov}(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{50} 7933 - 13.8045 \cdot 9.4218 = 28.6 \\ \hat{\beta}_1 &= \frac{\operatorname{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{28.6}{76.92} = 0.3719 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 9.422 - 0.3719 \times 13.8045 = 4.288 \end{split}$$

6.b (Punti 3) Il modello si adatta bene ai dati?

Soluzione

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{28.6}{8.77\times6.66} = 0.4897 \\ r^2 & = & 0.2398 < 0.75 \end{array}$$

Il modello **non** si adatta bene ai dati.

6.c (Punti 2) Interpretare il diagramma dei residui.

6.
d(Punti 2) Posto $W=-2\cdot Y$ calcolare β_0' e
 β_1' i coefficienti di regressione del modello

$$w_i = \beta_0' + \beta_1' x_i + \epsilon_i'$$

Prova di Statistica 2023/06/08-3

Esercizio 1

Su un campione di 160 famiglie della provincia di Modena è stata rilevata la spesa annua dedicata alle vacanze, espressa in migliaia di euro. Qui di seguito la distribuzione delle frequenze cumulate:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	F_{j}
0.0	2.5	0.1312
2.5	4.0	0.3688
4.0	5.0	0.6312
5.0	6.5	0.8688
6.5	9.0	1.0000

1.a (Punti 14) Disegnare l'istogramma di densità percentuale.

Soluzione								
	$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}	f_{j}	b_{j}	h_j	$\overline{F_j}$	
	0.0	2.5	21	0.1312	2.5	5.25	0.1312	
	2.5	4.0	38	0.2375	1.5	15.83	0.3688	
	4.0	5.0	42	0.2625	1.0	26.25	0.6312	
	5.0	6.5	38	0.2375	1.5	15.83	0.8688	
	6.5	9.0	21	0.1312	2.5	5.25	1.0000	
			160	1.0000	9.0			
	9 15.83 - 15.83 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.0	1 2.5	4.0	T 5.0	6.5	9.0	
				Nome d	ella X			

1.b (Punti 3) Qual è il numero di famiglie con spesa compresa tra a 4 mila e 8 mila euro?

Soluzione $\%(4 < X < 8) = (5-4) \times h_3 + f_4 \times 100 + (8-6.5) \times h_4$ $= (1) \times 26.25 + (0.2375) \times 100 + (1.5) \times 5.25$ $= 0.5787 \times (100)$ #(4 < X < 8) = 92.6

- 1.c (Punti 2) Che relazione dobbiamo attenderci tra moda, mediana e media?
- 1.d (**Punti 2**) Cosa significa che la media aritmetica goe della proprietà di linearità?

Esercizio 2

Sia $X \sim \text{Binom}(5,0.5)$ e sia $y \sim \text{Binom}(5,0.4), X$ e Y indipendenti, posto $A = \{X \leq 1\}$ e $B = \{Y \geq 2\}$

2.a (**Punti 14**) Calcolare la probabilità di $A \cup B$.

Soluzione

$$P(X \le 1) = {5 \choose 0} 0.5^{0} (1 - 0.5)^{5-0} + {5 \choose 1} 0.5^{1} (1 - 0.5)^{5-1}$$

$$= 0.0312 + 0.1562$$

$$= 0.1874$$

$$\begin{split} P(Y \geq 2) &= 1 - P(Y < 2) \\ &= 1 - \left(\binom{5}{0} 0.4^0 (1 - 0.4)^{5 - 0} + \binom{5}{1} 0.4^1 (1 - 0.4)^{5 - 1} \right) \\ &= 1 - (0.0778 + 0.2592) \\ &= 1 - 0.337 \\ &= 0.663 \end{split}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= 0.1875 + 0.3174 - 0.0595$$
$$= 0.4454$$

2.
b (**Punti 3**) Si estrae ripetutamente da $X \sim \text{Binom}(5, 0.5)$ e ci si ferma quando $X \leq 1$. Calcolare la probabilità di finire entro due estrazioni.

Soluzione

$$\begin{array}{rcl} P(A) & = & 0.1875 \\ P(\bar{A}) & = & 0.8125 \\ P(A \cup (\bar{A} \cap A)) & = & 0.1875 + 0.1875 \cdot (1 - 0.1875) \\ & = & 0.3398 \end{array}$$

2.c (**Punti 2**) Calcolare valore atteso e varianza di X - Y.

2.d (**Punti 2**) Siano A e B due eventi tali che P(A) = 0.6 e P(B) = 0.5. A e B possono essere incompatibili? Perché?

Esercizio 3

(**Punti 14**) Un'urna contiene 3 palline col numero $\boxed{0}$, 4 col numero $\boxed{1}$ e 3 col numero $\boxed{2}$. Si estrae senza reintroduzione per n=81 volte. Calcolare la probabilità che la media dei risultati sia minore di 0.9.

Soluzione

$$\mu = 0 \cdot 0.3 + 1 \cdot 0.4 + 2 \cdot 0.3 = 1$$

$$\sigma^2 = (0^2 \cdot 1 + 1^2 \cdot 1 + 2^2 \cdot 1) - (1)^2 = -4$$

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1,...,X_n,\ n=81$ VC IID, t
c $E(X_i)=\mu=1$ e $V(X_i)=\sigma^2=0.6, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$$

allora:

$$\bar{X} \sim_a N(\mu, \sigma^2/n)$$

$$\sim N\left(1, \frac{0.6}{81}\right)$$

$$\sim N(1, 0.007407)$$

$$P(\bar{X} < 0.9) = P\left(\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} < \frac{0.9 - 1}{\sqrt{0.007407}}\right)$$
$$= P(Z < -1.16)$$
$$= 1 - \Phi(1.16)$$
$$= 0.123$$

Esercizio 4

4.a (**Punti 3**) Sono stati estratti n=10 valori da una Bernoulli di parametro π incognito e si è ottenuti 4 successi in 10 estrazioni. Ricavare, $\widehat{SE(\hat{\pi})}$ lo Standard Error stimato di $\hat{\pi}$ di massima verosimiglianza.

4.b (**Punti 3**) Sia h uno stimatore per θ . Cosa significa dire che h è corretto asintoticamente?

4.c (Punti 3) Definire gli errori di primo e di secondo tipo e le relative probabilità.

4.d (Punti 3) Un dado viene lanciato 60 volte e si ottiene

Ci si chiede se il dado sia truccato. Posto a test

$$\left\{ H_0: \pi_j = \frac{1}{6}, j = 1, ..., 6 \right\}$$

si ottiene un $p_{\rm value}=0.0014.$ Il dado si può ritenere truccato? Perché?

Esercizio 5

5.a (**Punti 7**) In uno studio sui consumi per generi di igiene personale su un campione di 35 famiglie della provincia di Reggio è stata chiesta la loro spesa annuale in questo genere di beni. I dati campionari hanno evidenziato una media pari a $\hat{\mu} = 0.5$ e una deviazione standard osservata pari a $\hat{\sigma} = 0.25$. Costruire un intervallo di confidenza al 95% per il gradimento medio μ .

Soluzione $S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{35}{34}} \cdot 0.2536 = 0.2574$ $Idc: \qquad \mu \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}}$ $0.5 \pm 2.032 \times \frac{0.2536}{\sqrt{35}}$ $0.5 \pm 2.032 \times 0.0435$ [0.4116, 0.5884]

5.b (**Punti 7**) Un'indagine analoga, svolta sull'intera regione, ha mostrato un gradimento medio pari a $\mu_0 = 0.6$. Testare al livello di **significatività del 5%** l'ipotesi che nel comune A il livello di gradimento sia uguale a quello regionale contro l'alternativa che sia **minore**.

11.9. PROVA DI STATISTICA 2023/06/08-3

343

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu = \mu_0 = 0.6 \\ H_1: \mu < \mu_0 = 0.6 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, T σ^2 di P non è nota: \Rightarrow t-Test.

$$S = \sqrt{\frac{n}{n-1}} \ \hat{\sigma} = \sqrt{\frac{160}{160-1}} \times 0.25 = 0.2508$$

$$\begin{split} \frac{\hat{\mu} - \mu_0}{S/\sqrt{n}} &\sim t_{n-1} \\ t_{\rm obs} &= \frac{(0.5 - 0.6)}{0.2508/\sqrt{160}} = -5.044 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $t_{(160-1);\,0.05}=-1.655.$

$$t_{\text{obs}} = -5.044 < t_{159:0.05} = -1.655$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Graficamente

Il $p_{\rm value}$ è

$$P(T_{n-1} < t_{\rm obs}) = P(T_{n-1} < -5.044) = 0.0000006163$$

Esercizio 6

In uno studio sull'efficacia dell'investimento pubblicitario sono stati rilevati, per n=50 aziende si sono rilevati l'incremento di spesa in pubblicità (X) e l'incremento di utile (Y) nell'ultimo quinquennio. Si osservano le seguenti statistiche, $\sum_{i=1}^{50} x_i = 690.2239$, $\sum_{i=1}^{50} y_i = 364.8125$, $\sum_{i=1}^{50} x_i^2 = 13373.9607$, $\sum_{i=1}^{50} y_i^2 = 3754.8735$ e $\sum_{i=1}^{50} x_i y_i = 6811.1537$.

6.a (**Punti 14**) Stimare il modello di regressione dove Y viene spiegata da X.

Soluzione

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{50} 690.2239 = 13.8 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{50} 364.8125 = 7.296 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{50} 13374 - 13.8045^2 = 76.92 \\ \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{50} 3755 - 7.2962^2 = 21.86 \\ \operatorname{cov}(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{50} 6811 - 13.8045 \cdot 7.2962 = 35.5 \\ \hat{\beta}_1 &= \frac{\operatorname{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{35.5}{76.92} = 0.4616 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 7.296 - 0.4616 \times 13.8045 = 0.9245 \end{split}$$

6.b (Punti 3) Qual è la percentuale di varianza spiegata dal modello?

Soluzione

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{35.5}{8.77\times4.676} = 0.8658 \\ r^2 & = & 0.7496 < 0.75 \end{array}$$

Il modello **non** si adatta bene ai dati.

6.c (**Punti 2**) Interpretare il qq-plot dei residui.

6.
d (**Punti 2**) Posto $W=-2\cdot X$ calcolare β_0'
e β_1' i coefficienti di regressione del modello

$$y_i = \beta_0' + \beta_1' w_i + \epsilon_i'$$

Soluzione
$$\bar{w} = -2\bar{x} \\ = -2 \cdot 13.8045 \\ = -27.609$$

$$\hat{\sigma}_W = 2\hat{\sigma}_X \\ = 2 \cdot 8.7702 \\ = 17.5404$$

$$\hat{\beta}_1' = -\frac{\sigma_Y}{\sigma_W} r$$

$$= -\frac{9.3514}{8.7702} 0.8658$$

$$= -0.9232$$

$$\hat{\beta}_0' = \bar{y} - \hat{\beta}_1' \bar{w}$$

$$= -5.4478$$

Prova di Statistica 2023/06/27-1

Esercizio 1

Su un campione di 250 famiglie della provincia di Modena è stato rilevata la spesa mensile in telecomunicazioni (in euro), qui di seguito la distribuzione delle frequenze relative:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	f_j
0	15	0.036
15	30	0.224
30	50	0.248
50	100	0.308
100	250	0.184
		1.000

1.a (Punti 14) Disegnare l'istogramma di densità percentuale.

1.b (**Punti 3**) Qual è la percentuale di famiglie con spesa superiore a 60 euro?

Soluzione

$$\begin{array}{lcl} \%(X>60) & = & (100-60)\times h_4 + f_5\times 100 \\ & = & (40)\times 0.616 + (0.184)\times 100 \\ & = & 0.4304\times (100) \\ \#(X>60) & = & 107.6 \end{array}$$

1.c (Punti 2) Che relazione dobbiamo attenderci tra moda, mediana e media?

1.d (**Punti 2**) La spesa media è pari a $\bar{x} = 70.6296$ e la standard deviation $\hat{\sigma} = 56.9043$, se tutte le famiglie risparmiassero il 10%, come cambierebbero la media e la standard deviation?

Esercizio 2

Un impresa di soccorso stradale ha due centralini, il numero di telefonate orarie in arrivo al centralino A è distribuito come una Poisson $X \sim \text{Pois}(2.2)$, mentre il numero di telefonate orarie in arrivo al centralino B è distribuito come una Poisson $Y \sim \text{Pois}(1.3)$, $X \in Y$ indipendenti.

2.a (**Punti 14**) Calcolare la probabilità che il totale di telefonate in arrivo in un'ora sia maggiore o uguale a tre $(S = X + Y \ge 3)$.

Soluzione

$$\begin{split} P(X+Y \geq 3) &= 1 - P(X+Y < 3) \\ &= 1 - \left(\frac{3.5^0}{0!}e^{-3.5} + \frac{3.5^1}{1!}e^{-3.5} + \frac{3.5^2}{2!}e^{-3.5}\right) \\ &= 1 - \left(0.0302 + 0.1057 + 0.185\right) \\ &= 1 - 0.3209 \\ &= 0.6791 \end{split}$$

2.
b (**Punti 3**) Sapendo che $S=X+Y\geq 3$, calcolare la probabilità che S=X+Y=5
 ($P(S=5|S\geq 3)$

Soluzione $P(X+Y\geq 3) = 0.6792$ P(X+Y=5) = 0.1322 $P(\{X+Y=5\}\cap \{X+Y\geq 3\}) = P(X+Y=5)$ $P(\{P(X+Y=5)\}|\{X+Y\geq 3\}) = \frac{P(\{X+Y=5\}\cap \{X+Y\geq 3\})}{P(X+Y\geq 3)}$ $= \frac{P(X+Y=5)}{P(X+Y\geq 3)}$ $= \frac{0.1322}{0.6792}$ = 0.1946

2.c~(Punti~2) Se X ed Y sono due variabili casuali, è sempre vero che

$$V(X - Y) = V(X) + V(Y)$$
?

motivare la risposta.

2.d (**Punti 2**) Sia $X \sim \text{Binom}(2, \pi = 0.5)$. Disegnare la sua funzione di ripartizione.

Esercizio 3

(**Punti 14**) Una catena di montaggio a ciclo continuo produce ogni giorno un numero di pezzi variabile, con una media pari a $\mu=1.2$ mila pezzi al giorno e una varianza di $\sigma^2=9.1$.

Calcolare la probabilità che il numero totale di pezzi prodotti dopo un anno (n = 365) sia inferiore a ai 400 (mila) pezzi prodotti.

Soluzione

Teorema del Limite Centrale (somma VC qualunque)

Siano $X_1,...,X_n, n=365$ VC IID, tc $E(X_i)=\mu=1.2$ e $V(X_i)=\sigma^2=9.1, \forall i,$ posto:

$$S_n = X_1 + \dots + X_n$$

allora:

$$S_n \ \ \, \mathop{\sim}_a \ \ \, N(n\mu, n\sigma^2) \\ \ \ \, \sim \ \ \, N(365 \cdot 1.2, 365 \cdot 9.1) \\ \ \ \, \sim \ \ \, N(438, 3322)$$

$$\begin{split} P(S_n < 400) &= P\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} < \frac{400 - 438}{\sqrt{3322}}\right) \\ &= P\left(Z < -0.66\right) \\ &= 1 - \Phi(0.66) \\ &= 0.2546 \end{split}$$

Esercizio 4

4.
a (**Punti 3**) Siano $\hat{\mu}$ e $\hat{\sigma}^2$ gli stimatori di massima vero
simiglianza di μ e σ^2 del modello di Normale.

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Come si distribuisce $\hat{\mu}$?

4.b (**Punti 3**) Sia h uno stimatore per θ tale che

$$V(h) = \frac{\theta}{\sqrt{n}}; \quad E(h) = \theta \frac{n+2}{n}$$

di quali proprietà gode h?

4.c (**Punti 3**) Definire il p-value e descrivere la sua interpretazione.

4.d (**Punti 3**) Se un test è significativo al 5% può essere significativo all'1%? (scegliere la risposta tra: *mai*, *non sempre* oppure *sempre* e motivare la risposta)

Esercizio 5

Nel comune A si è condotta un'intervista per conoscere l'opinione dei cittadini sulla presenza di un inceneritore. Sono state intervistate 250 persone e 70 di loro sono favorevoli.

5.a (**Punti 7**) Costruire un intervallo di confidenza al 99% per la proporzione dei favorevoli in popolazione.

Soluzione

$$\hat{\pi} = \frac{S_n}{n} = \frac{70}{250} = 0.28$$

$$\begin{split} Idc: \qquad \hat{\pi} \pm z_{\alpha/2} \times \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}} \\ 0.28 \pm 2.576 \times \sqrt{\frac{0.28(1-0.28)}{250}} \\ 0.28 \pm 2.576 \times 0.0284 \\ [0.2069, 0.3531] \end{split}$$

5.b (**Punti 7**) Nel comune B si è condotta un'intervista analoga. Sono state intervistate 230 persone e 75 di loro sono favorevoli. Testare al 5% l'ipotesi che la proporzione nei due comuni sia uguale contro l'alternativa che nel comune B sia maggiore.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \pi_{\mathrm{A}} = \pi_{\mathrm{B}} \\ H_1: \pi_{\mathrm{A}} > \pi_{\mathrm{B}} \end{cases}$$

 \fbox{B} SCELTA E CALCOLO STATISTICA-TEST, Z

$$\hat{\pi}_{\text{A}} = \frac{s_{\text{A}}}{n_{\text{A}}} = \frac{75}{230} = 0.3261$$
 $\hat{\pi}_{\text{B}} = \frac{s_{\text{B}}}{n_{\text{B}}} = \frac{70}{250} = 0.28$

Calcoliamo la proporzione comune sotto H_0

$$\pi_C = \frac{s_A + s_B}{n_A + n_B} = \frac{145}{480} = 0.3021$$

$$\begin{split} \frac{\hat{\pi}_{\text{A}} - \hat{\pi}_{\text{B}}}{\sqrt{\frac{\pi_{C}(1 - \pi_{C})}{n_{\text{A}}} + \frac{\pi_{C}(1 - \pi_{C})}{n_{\text{B}}}}} &\sim & N(0, 1) \\ z_{\text{obs}} &= & \frac{(0.3261 - 0.28)}{\sqrt{\frac{0.3021(1 - 0.3021)}{230} + \frac{0.3021(1 - 0.3021)}{250}}} = 1.099 \,. \end{split}$$

 \fbox{C} DECISIONE Dalle tavole si ha $z_{0.05}=1.645.$

$$z_{\text{obs}} = 1.099 < z_{0.05} = 1.645$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 5 %

Graficamente

Il p_{value} è

$$P(Z > z_{\text{obs}}) = P(Z > 1) = 0.136$$

Esercizio 6

In uno studio sull'efficacia del marketing sul web si sono analizzate 50 aziende sulle quali è stato misurata l'incremento percentuale annuo medio di investimento in marketing web (X) la l'incremento percentuale medio di utile (Y). Si osservano le seguenti statistiche, $\sum_{i=1}^{50} x_i = 40.041$, $\sum_{i=1}^{50} y_i = 116.137$, $\sum_{i=1}^{50} x_i^2 = 41.5873$, $\sum_{i=1}^{50} y_i^2 = 308.6013$ e $\sum_{i=1}^{50} x_i y_i = 110.684$.

6.
a (**Punti 14**) Stimare il modello di regressione dove Y viene spiegata d
aXe interpretare i coefficienti $\hat{\beta}_0$ e
 $\hat{\beta}_1$

Soluzione $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{50} 40.041 = 0.8008$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{50} 116.137 = 2.323$ $\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{50} 41.59 - 0.8008^2 = 0.1904$ $\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{50} 308.6 - 2.3227^2 = 0.7769$ $\operatorname{cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{50} 110.7 - 0.8008 \cdot 2.3227 = 0.3536$ $\hat{\beta}_1 = \frac{\operatorname{cov}(X, Y)}{\hat{\sigma}_X^2}$ $= \frac{0.3536}{0.1904} = 1.857$ $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$ $= 2.323 - 1.8567 \times 0.8008 = 0.8358$

6.b (Punti 3) Scrivere la scomposizione della varianza e calcolarla per questo caso.

Soluzione $TSS = n\hat{\sigma}_Y^2$ $= 50 \times 0.7769$ = 38.84 $ESS = R^2 \cdot TSS$ $= 0.8451 \cdot 38.84$ = 32.83 $RSS = (1 - R^2) \cdot TSS$

$$= (1 - 0.8451) \cdot 38.84$$

$$= 6.017$$

$$TSS = RSS + TSS$$

$$38.84 = 32.83 + 6.017$$

6.c (**Punti 2**) Perché una previsione per x = 0.15 è più affidabile di una per x = 50?

6.d (Punti 2) Interpretare il diagramma dei residui.

6.e (**Punti 2**) Cosa significa dire che r è un numero puro?

Prova di Statistica 2023/06/27-2

Esercizio 1

Su un campione di 250 piccole imprese della provincia di Modena è stato rilevata la spesa mensile in telecomunicazioni (in euro), qui di seguito la distribuzione delle frequenze assolute:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}
0	150	46
150	200	77
200	220	62
220	235	56
235	250	9
		250

1.a (Punti 14) Disegnare l'istogramma di densità percentuale.

Soluzione							
				f		h	
	$[\mathbf{x}_j,$	\mathbf{x}_{j+1}	n_j	f_j	b_j	h_j	F_j
	0	150	46	0.184	150	0.1227	0.184
	150	200	77	0.308	50	0.6160	0.492
	200	220	62	0.248	20	1.2400	0.740
	220	235	56	0.224	15	1.4933	0.964
	235	250	9	0.036	15	0.2400	1.000
			250	1.000	250		
	1.49						
	1.24					[Z	
	nale						
	Denisia percentuale 90 73						
	gr 0.62 -				7		
	_						
	0.24						
	0.12		7//	//////	777 / /		
	۵ ــا		1///		<u>//////</u>	/////////////////////////////////////	
		0		Sp	150 esa	200	220 235 250

1.b (Punti 3) Qual è il numero di imprese con spesa superiore ai 100 euro?

```
\%(X<100) \ = \ 100\times h_1 \\ = \ 100\times 0.1227 \\ = \ 0.1227\times (100) \\ \#(X<100) \ = \ 30.67 \%(X>100) \ = \ (150-100)\times h_1+f_2\times 100+f_3\times 100+f_4\times 100+f_5\times 100 \\ = \ (50)\times 0.1227+(0.308)\times 100+(0.248)\times 100+(0.224)\times 100+(0.036)\times 100 \\ = \ 0.8773\times (100) \\ \#(X>100) \ = \ 219.3
```

- 1.c (Punti 2) Che relazione dobbiamo attenderci tra moda, mediana e media?
- 1.d (**Punti 2**) La spesa media è pari a $\bar{x} = 180.6032$ e varianza $\hat{\sigma}^2 = 3061.3555$, se tutte le famiglie aumentassero del 10% la loro spesa, come cambierebbero la media e la varianza?

Esercizio 2

Si lancia una moneta perfetta n=6 volte. Sia X la variabile casuale che conta il numero di volte che esce Testa su 6 lanci e si considerino gli insiemi $A=\{X\leq 1\}$ e $B=\{X\geq 5\}$.

2.a (**Punti 14**) Calcolare la probabilità di $A \cup B$.

Soluzione

$$\begin{array}{lcl} P(X \leq 1) & = & \binom{6}{0} 0.5^0 (1 - 0.5)^{6 - 0} + \binom{6}{1} 0.5^1 (1 - 0.5)^{6 - 1} \\ & = & 0.0156 + 0.0937 \\ & = & 0.1093 \end{array}$$

$$\begin{array}{lcl} P(X \geq 5) & = & \binom{6}{5} 0.5^5 (1 - 0.5)^{6 - 5} + \binom{6}{6} 0.5^6 (1 - 0.5)^{6 - 6} \\ & = & 0.0938 + 0.0156 \\ & = & 0.1094 \end{array}$$

$$\begin{array}{rcl} A\cap B & = & \emptyset \\ P(A\cap B) & = & 0 \\ P(A\cup B) & = & P(A)+P(B)-P(A\cap B) \\ & = & 0.1094+0.1094-0 \\ & = & 0.2188 \end{array}$$

2.
b (**Punti 3**) Si lancia una moneta, se esce testa si estra
e da una normale $X \sim N(0,1)$, se esce croce si estra
e da una normale $X \sim N(1,1)$. Calcolare la probabilità che il numero estratto finale sia minore di due.

Soluzione

$$P(X<2) \ = \ P\left(\frac{X-\mu}{\sigma}<\frac{2-0}{\sqrt{1}}\right)$$

$$= P(Z < 2)$$

$$= \Phi(2)$$

$$= 0.9772$$

$$P(X < 2) = P\left(\frac{X - \mu}{\sigma} < \frac{2 - 1}{\sqrt{1}}\right)$$

$$= P(Z < 1)$$

$$= \Phi(1)$$

$$= 0.8413$$

$$P(X < 2) = P(T)P(X < 2|T) + P(C)P(X < 2|C)$$

$$= \frac{1}{2}P(X < 2|T) + \frac{1}{2}P(X < 2|C)$$

$$= \frac{1}{2} \cdot 0.9772 + \frac{1}{2}0.8413$$

$$= 0.9093$$

2.c (**Punti 2**) Se $X \sim \text{Pois}(\lambda_X)$ e $Y \sim \text{Pois}(\lambda_Y)$, quali sono valore atteso e varianza di X - Y?

2.d (**Punti 2**) Se A e B sono due eventi non indipendenti come si può scrivere $P(A \cap B)$?

Esercizio 3

(**Punti 14**) Una catena di montaggio a ciclo continuo produce ogni giorno un numero di pezzi variabile, con una media pari a $\mu = 1.3$ mila pezzi al giorno e una varianza di $\sigma^2 = 8.1$.

Calcolare la probabilità che la media annuale (n = 365) sia inferiore a 1.2 (mila) pezzi prodotti.

Soluzione

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1,\dots,X_n,\ n=365$ VC IID, t
c $E(X_i)=\mu=1.3$ e $V(X_i)=\sigma^2=8.1, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$$

allora:

$$ar{X} \sim N(\mu, \sigma^2/n)$$

$$\sim N\left(1.3, \frac{8.1}{365}\right)$$

$$\sim N(1.3, 0.02219)$$

$$P(\bar{X} < 1.2) = P\left(\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} < \frac{1.2 - 1.3}{\sqrt{0.02219}}\right)$$

$$= P\left(Z < -0.67\right)$$

$$= 1 - \Phi(0.67)$$

$$= 0.2514$$

Esercizio 4

4.a (**Punti 3**)Sia $\hat{\lambda}$ lo stimatore di massima verosimiglianza di λ del modello di Poisson:

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Scrivere la distribuzione asintotica di $\hat{\lambda}$.

4.b (**Punti 3**) Sia h uno stimatore per θ tale che

$$V(h) = 2\frac{\theta}{\sqrt{n}}; \quad E(h) = \theta \frac{n+2}{n-1}$$

h è corretto? Si può correggere?

4.c (**Punti 3**) Definire la significatività di un test statistico.

4.d (**Punti 3**) Se un test è significativo all'1% può essere significativo all'5%? (scegliere la risposta tra: *mai*, *non sempre* oppure *sempre* e motivare la risposta)

Esercizio 5

Nel comune A si è condotta un'intervista per conoscere l'opinione dei cittadini sulla presenza di un inceneritore. Sono state intervistate 25 persone a cui è stato chiesto di esprimete l'opinione in una scala da zero a 100. È risultato un punteggio medio pari a $\hat{\mu}_A=72.1$ con una standard deviation $\hat{\sigma}_A=3.4$

5.a (**Punti 7**) Costruire un intervallo di confidenza al 95% per la proporzione dei favorevoli in popolazione.

Soluzione

$$S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{25}{24}} \cdot 3.4 = 3.4701$$

$$\begin{split} Idc: \qquad \hat{\mu} \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}} \\ 72.1 \pm 2.064 \times \frac{3.4701}{\sqrt{25}} \\ 72.1 \pm 2.064 \times 0.694 \\ [70.67, 73.53] \end{split}$$

5.b (**Punti 7**) Nel comune B si è condotta un'intervista analoga. Sono state intervistate 23 persone si è osservata una media pari $\mu_B=69.6$ e una deviazione standard $\hat{\sigma}_B=3.3$. Sotto ipotesi di omogeneità testare al 5% l'ipotesi che le medie dei due comuni siano uguali contro l'alternativa che siano diverse

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu_{\text{ A }} = \mu_{\text{ B}} \\ H_1: \mu_{\text{ A }} \neq \mu_{\text{ B}} \end{cases}$$

Siccome H_1 è bilaterale, considereremo $\alpha/2$, anziché α

 $\boxed{\mathrm{B}}$ SCELTA E CALCOLO STATISTICA-TEST, T

L'ipotesi è di omogeneità e quindi calcoliamo:

$$S_p^2 = \frac{n_{\rm A}\,\hat{\sigma}_{\rm A}^2 \, + n_{\rm B}\,\hat{\sigma}_{\rm B}^2}{n_{\rm A}\, + n_{\rm B}\, - 2} = \frac{25\cdot 3.4^2 + 24\cdot 3.3^2}{25 + 24 - 2} = 11.71$$

$$\begin{split} \frac{\hat{\mu}_{\text{ A}} - \hat{\mu}_{\text{ B}}}{\sqrt{\frac{S_p^2}{n_{\text{ A}}} + \frac{S_p^2}{n_{\text{ B}}}}} &\sim & t_{n_{\text{ A}} + n_{\text{ B}} - 2} \\ t_{\text{obs}} &= & \frac{(72.1 - 69.6)}{\sqrt{\frac{11.71}{25} + \frac{11.71}{24}}} = 2.557 \,. \end{split}$$

 $\boxed{\mathrm{C}}$ DECISIONE Dalle tavole si ha $t_{(25+24-2);\,0.025}=2.012.$

$$t_{\rm obs} = 2.557 > t_{47:0.025} = 2.012$$

Esercizio 6

In uno studio sull'efficacia del marketing sul web si sono analizzate 50 aziende sulle quali è stato misurata l'incremento percentuale annuo medio di investimento in marketing web (X) la l'incremento percentuale in altre campagne di marketing (Y). Si osservano le seguenti statistiche, $\sum_{i=1}^{50} x_i = 36.248$, $\sum_{i=1}^{50} y_i = 65.1957$, $\sum_{i=1}^{50} x_i^2 = 33.0429$, $\sum_{i=1}^{50} y_i^2 = 121.257$ e $\sum_{i=1}^{50} x_i y_i = 34.1064$.

6.a (**Punti 14**) Stimare il modello di regressione dove Y viene spiegata da X e interpretare i coefficienti $\hat{\beta}_0$ e $\hat{\beta}_1$

Soluzione
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{50} 36.248 = 0.725$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{50} 65.1957 = 1.304$$

$$\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{50} 33.04 - 0.725^2 = 0.1353$$

$$\begin{split} \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{50} 121.3 - 1.3039^2 = 0.7249 \\ \operatorname{cov}(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{50} 34.11 - 0.725 \cdot 1.3039 = -0.2632 \\ \hat{\beta}_1 &= \frac{\operatorname{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{-0.2632}{0.1353} = -1.945 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 1.304 - (-1.9451) \times 0.725 = 2.714 \end{split}$$

6.b (**Punti 3**) Il modello si adatta bene ai dati?

Soluzione $TSS = n\hat{\sigma}_Y^2 \\ = 50 \times 0.7249 \\ = 36.24 \\ ESS = R^2 \cdot TSS \\ = 0.7061 \cdot 36.24 \\ = 25.59 \\ RSS = (1 - R^2) \cdot TSS \\ = (1 - 0.7061) \cdot 36.24 \\ = 10.65 \\ TSS = RSS + TSS \\ 36.24 = 25.59 + 10.65$

6.c (**Punti 2**) Perché una previsione per x = 0.8 è più affidabile di una per x = 0?

6.d (Punti 2) Interpretare il diagramma dei residui.

6.e (**Punti 2**) Cosa significa dire che r è invariante ai cambiamenti di scala?

Prova di Statistica 2023/06/27-3

Esercizio 1

Su un campione di 200 piccole imprese della provincia di Modena è stato rilevata la spesa mensile in telecomunicazioni (in euro), qui di seguito la divisione in classi e le densità percentuali

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	h_{j}
0	15	1.267
15	30	1.633
30	50	1.125
50	100	0.500
100	250	0.060

1.a (Punti 14) Calcolare il valore approssimato della mediana

Soluzione $h_{\underline{j}}$ F_{j} f_{j} b_{j} \mathbf{x}_{j+1} $|\mathbf{x}_{j},$ n_{j} 0 15 38 0.19015 1.2670.19015 30 490.24515 1.633 0.43530 0.22520 1.125 0.66050 4550 100 50 0.25050 0.5000.910100 250 0.0900.06018 150 1.000 200 1.000 2500.06 $\begin{array}{rcl} p &=& 0.5, \mathrm{essendo} \; F_3 = 0.66 > 0.5 \Rightarrow j_{0.5} = 3 \\ x_{0.5} &=& x_{\mathrm{inf;3}} + \frac{0.5 - F_2}{f_3} \cdot b_3 \\ &=& 30 + \frac{0.5 - 0.435}{0.225} \cdot 20 \end{array}$

1.b (**Punti 3**) Qual è il numero di imprese con spesa superiore ai 60 euro?

Soluzione $\%(X>60) \ = \ (100-60)\times h_4 + f_5\times 100$ $= \ (40)\times 0.5 + (0.09)\times 100$

$$\begin{array}{rcl} & = & 0.29 \times (100) \\ \#(X > 60) & = & 58 \end{array}$$

- 1.c (Punti 2) Che relazione dobbiamo attenderci tra moda, mediana e media?
- 1.d (Punti 2) Scrivere la proprietà di associatività della media aritmetica.

Esercizio 2

Sia $X \sim N(2,1)$ e sia $Y \sim \text{Pois}(2.9)$, si considerino gli insiemi $A = \{X > 2.5\}$ e $B = \{Y \ge 3\}$.

 $P(X > 2.5) = P\left(\frac{X - \mu}{\sigma} > \frac{2.5 - 2}{\sqrt{1}}\right)$

= P(Z > 0.5)

2.a (**Punti 14**) Calcolare la probabilità di $A \cup B$.

Soluzione

$$= 1 - P(Z < 0.5)$$

$$= 1 - \Phi(0.5)$$

$$= 0.3085$$

$$P(Y \ge 3) = 1 - P(Y < 3)$$

$$= 1 - \left(\frac{2.9^0}{0!}e^{-2.9} + \frac{2.9^1}{1!}e^{-2.9} + \frac{2.9^2}{2!}e^{-2.9}\right)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= 0.3085 + 0.554 - 0.3085 \cdot 0.554$$

$$= 0.6916$$

= 1 - (0.055 + 0.1596 + 0.2314)

= 1 - 0.446= 0.554

2.b (**Punti 3**) Sia $X \sim N(2,1)$ e sia $A = \{X > 2.5\}$. Se A è vero si estrae una volta da un'urna che contiene una pallina rossa e una bianca, se A è falso si estrae una volta da un'urna che contiene due palline rosse e una bianca. Qual è la probabilità di estrarre una rossa?

Soluzione

$$\begin{array}{lcl} P(X<2) & = & P(A)P(R|A) + P(\bar{A})P(R|\bar{A}) \\ & = & 0.3085\frac{1}{2} + (1-0.3085)\frac{2}{3} \\ & = & 0.6152 \end{array}$$

2.c (**Punti 2**) Se $X \sim \text{Pois}(\lambda_X)$ e $Y \sim \text{Pois}(\lambda_Y)$, quali sono valore atteso e varianza di X - Y?

2.d (**Punti 2**) Se due eventi $A \neq \emptyset$ e $B \neq \emptyset$ non sono indipendenti allora sono necessariamente incompatibili? Motivare la risposta.

Esercizio 3

(**Punti 14**) Una catena di montaggio a ciclo continuo produce un pezzo al giorno e la proporzione di pezzi fallati è pari a $\pi = 0.15$.

Calcolare la probabilità che il numero totale di pezzi fallati in un anno (n = 365) sia maggiore di 60

Soluzione

Teorema del Limite Centrale (somma di Bernoulli)

Siano $X_1,...,X_n, n=365$ VC IID, to $X_i \sim \text{Ber}(\pi=0.15), \forall i, \text{ posto:}$

$$S_n = X_1 + ... + X_n$$

allora:

$$\begin{array}{lll} S_n & \underset{a}{\sim} & N(n\pi, n\pi(1-\pi)) \\ & \sim & N(365 \cdot 0.15, 365 \cdot 0.15 \cdot (1-0.15)) \\ & \sim & N(54.75, 46.54) \end{array}$$

$$\begin{split} P(S_n > 60) &= P\left(\frac{S_n - n\pi}{\sqrt{n\pi(1-\pi)}} > \frac{60 - 54.75}{\sqrt{46.54}}\right) \\ &= P\left(Z > 0.77\right) \\ &= 1 - P(Z < 0.77) \\ &= 1 - \Phi(0.77) \\ &= 0.2206 \end{split}$$

365

Esercizio 4

4.a (**Punti 3**)Sia $\hat{\lambda}$ lo stimatore di massima verosimiglianza di λ del modello di Poisson:

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Scrivere la distribuzione asintotica di $\hat{\lambda}$.

4.b (**Punti 3**) 4.c (**Punti 3**) Sia h uno stimatore per θ tale che

$$V(h) = 2\frac{\theta}{\sqrt{n}}; \quad E(h) = \theta \frac{n+2}{n-1}$$

scrive il Mean Squared Error di h (MSE(h)).

4.d (**Punti 3**) Definire la potenza di un test statistico.

4.e (**Punti 3**) Se un t-test bilaterale con 13 gradi libertà presenta una t osservata pari a $t_{\rm obs}=1.974$, il $p_{\rm value}$ sarà maggiore o minore di 0.05? Perché?

Esercizio 5

Nel comune C si è condotta un'intervista per conoscere l'opinione dei cittadini sulla presenza di un inceneritore. Sono state intervistate 25 persone a cui è stato chiesto di esprimete l'opinione in una scala da zero a 100. È risultato un punteggio medio pari a $\hat{\mu}_C = 77.25$ con una standard deviation $\hat{\sigma}_C = 3.41$.

5.a (**Punti 7**) Costruire un intervallo di confidenza al 95% per la proporzione dei favorevoli in popolazione.

Soluzione

$$S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{25}{24}} \cdot 3.41 = 3.4803$$

$$Idc: \qquad \hat{\mu} \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}}$$

$$77.25 \pm 2.064 \times \frac{3.4803}{\sqrt{25}}$$

$$77.25 \pm 2.064 \times 0.6961$$

$$[75.81, 78.69]$$

5.b (**Punti 7**) Nella regione è stata condotta un'indagine analoga di larga scala che ha evidenziato un gradimento medio pari a $\mu_0 = 76$ Testare al 5% l'ipotesi che nel comune C il gradimento sia uguale a quello regionale contro l'alternativa che sia maggiore.

Soluzione

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu = \mu_0 = 76 \\ H_1: \mu > \mu_0 = 76 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, T σ^2 di P non è nota: \Rightarrow t-Test.

$$S = \sqrt{\frac{n}{n-1}} \ \hat{\sigma} = \sqrt{\frac{25}{25-1}} \times 3.41 = 3.48$$

$$\begin{split} \frac{\hat{\mu} - \mu_0}{S/\sqrt{n}} &\sim & t_{n-1} \\ t_{\rm obs} &= & \frac{(77.25 - 76)}{3.48/\sqrt{25}} = 1.796 \,. \end{split}$$

 $\boxed{\mathbb{C}}$ DECISIONE Dalle tavole si ha $t_{(25-1);\,0.05}=1.711.$

$$t_{\rm obs} = 1.796 > t_{24;\,0.05} = 1.711$$

CONCLUSIONE: i dati non sono coerenti con H_0 al LdS del 5 %

Graficamente

Il $p_{\rm value}$ è

$$P(T_{n-1} > t_{\rm obs}) = P(T_{n-1} > 1.796) = 0.04256$$

Esercizio 6

In uno studio sull'efficacia del marketing sul web si sono analizzate 4 aziende sulle quali è stato misurata l'incremento percentuale annuo medio di investimento in marketing web (X) la l'incremento percentuale in altre campagne di marketing (Y).

Qui di seguito i dati

i	x_{i}	y_i
1	0.34	1.48
2	0.37	0.79
3	0.68	$0.79 \\ 0.82 \\ 0.00$
4	1.02	0.00

6.a (**Punti 14**) Stimare il modello di regressione dove Y viene spiegata da X e interpretare e calcolare il residuo per x=0.37.

Soluzione					
i	x_{i}	y_{i}	x_i^2	y_i^2	$x_i \cdot y_i$
1	0.3400	1.4800	0.12	2.19	0.5000
2	0.3700	0.7900	0.14	0.62	0.2900
3	0.6800	0.8200	0.46	0.67	0.5600
4	1.0200	0.0000	1.04	0.00	0.0000
Totale/n	0.6025	0.7725	0.44	0.87	0.3375
$ar{x}$	$= \frac{1}{n} \sum_{i=1}^{n} x^{i}$	$a_i = \frac{1}{4}2.41 = 0.60$)25		
\bar{y}	$= \frac{1}{n} \sum_{i=1}^{n} y^{i}$	$_i = \frac{1}{4}3.09 = 0.77$	725		
$\hat{\sigma}_X^2$	$= \frac{1}{n} \sum_{i=1}^{n} x^{i}$	$x_i^2 - \bar{x}^2 = \frac{1}{4}1.755$	$-0.6025^2 = 0.0$)758	
$\hat{\sigma}_Y^2$	$= \frac{1}{n} \sum_{i=1}^{n} y$	$_{i}^{2} - \bar{y}^{2} = \frac{1}{4}3.487$	$-0.7725^2 = 0.2$	275	
$\operatorname{cov}(X,Y)$	$= \frac{1}{n} \sum_{i=1}^{n} x^{i}$	$x_i \ y_i - \bar{x}\bar{y} = \frac{1}{4}1.3$	$353 - 0.6025 \cdot 0.7$	7725 = -0.127	2

$$\begin{split} \hat{\beta}_1 &= \frac{\text{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{-0.1272}{0.0758} = -1.677 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 0.7725 - (-1.6771) \times 0.6025 = 1.783 \\ \\ \hat{y}_i &= \hat{\beta}_0 + \hat{\beta}_1 x_i = \\ &= 1.783 + (-1.6771) \times 0.37 = 1.162 \\ \hat{\varepsilon}_i &= y_i - \hat{y}_i \\ &= 0.79 - 1.162 = -0.3725 \end{split}$$

6.b (**Punti 3**) Il modello si adatta bene ai dati?

Soluzione

$$r = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{-0.1272}{0.2754 \times 0.5244} = -0.8807$$

$$r^2 = 0.7756 > 0.75$$

Il modello si adatta bene ai dati.

:::

- 6.c (Punti 2) Che differenza c'è tra interpolazione ed estrapolazione?
- 6.d (**Punti 2**) Definire il diagramma dei residui.
- 6.
e(Punti 2)Cosa significa che $\hat{\beta}_0$ e
 $\hat{\beta}_1$ sono BLUE?

Prova di Statistica 2023/07/23-1

Esercizio 1

Su un campione di 180 di piccole e medie aziende della provincia di Modena è stato rilevato l'utile netto (espresso in centinaia di migliaia di euro) durante il periodo del covid. Qui di seguito la distribuzione delle frequenze assolute:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}
-10	-5	43
-5	0	86
0	1	43
1	5	8
		180

1.a (Punti 14) Individuare la classe modale

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}	f_{j}	b_{j}	h_{j}	F_{j}
-10	-5	43	0.2389	5	4.778	0.2389
-5	0	86	0.4778	5	9.556	0.7167
0	1	43	0.2389	1	23.889	0.9556
1	5	8	0.0444	4	1.111	1.0000
		180	1.0000	15		

1.b (**Punti 3**) Qual è la percentuale di imprese con bilancio inferiore a 3 (centomila) euro?

$$\begin{array}{lcl} \%(X<3) & = & f_1\times 100 + f_2\times 100 + f_3\times 100 + (3-1)\times h_4 \\ & = & (0.2389)\times 100 + (0.4778)\times 100 + (0.2389)\times 100 + (2)\times 1.111 \\ & = & 0.9778\times (100) \\ \#(X<3) & = & 176 \end{array}$$

1.c (**Punti 2**) la media aritmetica è pari a -2.6643, in base al punto 1a che relazione dobbiamo attenderci tra media, mediana e moda?

1.d (Punti 2) Si considerino i seguenti dati

$$\{x_1 = 1.2, x_2 = 2.3, x_3 = 6.7\}$$

Per quale valore di x

$$f(x) = (x_1 - x)^2 + (x_2 - x)^2 + (x_3 - x)^2$$

f è minima?

Esercizio 2

Il numero di automobili in fila al semaforo A in orario di punta è distribuito come una Poisson di parametro $\lambda_A=2.2~(X_A\sim {\rm Pois}(2.2))$. Mentre il numero di automobili in fila al semaforo B in orario di punta è distribuito come una Poisson di parametro $\lambda_B=1.5~(X_B\sim {\rm Pois}(1.5))$. X_A e X_B indipendenti.

2.a (**Punti 14**) Calcolare la probabilità che in almeno uno dei due semafori ci siano 2 o più automobili in coda (suggerimento: *almeno uno* si rappresenta con l'unione).

Diretta

$$\begin{split} P(X_A \geq 2) &= 1 - P(X_A < 2) \\ &= 1 - \left(\frac{2.2^0}{0!}e^{-2.2} + \frac{2.2^1}{1!}e^{-2.2}\right) \\ &= 1 - (0.1108 + 0.2438) \\ &= 1 - 0.3546 \\ &= 0.6454 \end{split}$$

$$\begin{split} P(X_B \geq 2) &= 1 - P(X_B < 2) \\ &= 1 - \left(\frac{1.5^0}{0!}e^{-1.5} + \frac{1.5^1}{1!}e^{-1.5}\right) \\ &= 1 - (0.2231 + 0.3347) \\ &= 1 - 0.5578 \\ &= 0.4422 \end{split}$$

$$A=\{X_A\geq 2\} \qquad B=\{X_B\geq 2\}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= 0.6454 + 0.4422 - 0.2854$$
$$= 0.8022$$

Indiretta

$$\overline{\text{almeno uno}} = \text{nessuno}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$P(\overline{A \cup B}) = P(\overline{A})P(\overline{B})$$

$$P(A \cup B) = 1 - P(X_A < 2)(X_B < 2)$$

$$= 1 - (1 - 0.6454) \times (1 - 0.4422)$$

$$= 0.8022$$

2.b (**Punti 3**) Per andare al lavoro Michele prende la strada che lo porta al semaforo A, $(X_A \sim \text{Pois}(2.2))$ se la tangenziale è libera, altrimenti prende la strada che lo porta al semaforo B $(X_B \sim \text{Pois}(1.5))$. La probabilità di trovare la tangenziale sia libera è pari a P(Libera) = 0.65. Qual è la probabilità che Michele incontri più di due auto in fila?

$$\begin{array}{lcl} E &=& \{X \geq 2\} \\ P(E) &=& P(\text{Libera})P(E|\text{Libera}) + P\left(\overline{\text{Libera}}\right)P\left(E|\overline{\text{Libera}}\right) \\ &=& 0.65 \times 0.6454 + (1-0.65) \times 0.4422 \\ &=& 0.5743 \end{array}$$

2.
c(Punti 2) Sia $Z \sim N(0,1)$ e $Y \sim \chi^2_2,\, Z$ e
 Y indipendenti. Come si distribuisce

$$\frac{Z}{\sqrt{Y/2}}$$
 ?

2.d (**Punti 2**) Se P(A) = 0.3, P(B|A) = 0.6, e $P(B|\bar{A}) = 0.4$, quanto valgono P(B) e P(A|B)?

$$P(B) = P(A)P(B|A) + P(\bar{A})P(B|\bar{A})$$

$$= 0.3 \times 0.6 + 0.7 \times 0.4$$

$$= 0.46$$

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

$$= \frac{0.18}{0.46}$$
$$= 0.3913$$

Esercizio 3

(**Punti 14**) Un'urna contiene le seguenti palline numerate $\{3,5,7,11\}$. Si estrae con reintroduzione per n=81 volte. Calcolare la probabilità che la media delle palline estratte sia inferiore a 6.

$$\begin{array}{rcl} \mu & = & E(X_i) = \sum_{x \in S_X} x P(X=x) \\ \\ & = & 3\frac{1}{4} + 5\frac{1}{4} + 7\frac{1}{4} + 11\frac{1}{4} \\ \\ & = & 6.5 \\ \sigma^2 & = & V(X_i) = \sum_{x \in S_X} x^2 P(X=x) - \mu^2 \\ \\ & = & \left(3^2\frac{1}{4} + 5^2\frac{1}{4} + 7^2\frac{1}{4} + 11^2\frac{1}{4}\right) - (6.5)^2 \\ \\ & = & 8.75 \end{array}$$

Teorema del Limite Centrale (media VC qualunque)

Siano $X_1, \dots, X_n, \ n=81$ VC IID, t
c $E(X_i)=\mu=6.5$ e $V(X_i)=\sigma^2=8.75, \forall i,$ posto:

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$$

allora:

$$\bar{X} \sim_a N(\mu, \sigma^2/n)$$

$$\sim N\left(6.5, \frac{8.75}{81}\right)$$

$$\sim N(6.5, 0.108)$$

$$\begin{split} P(\bar{X} < 6) &= P\left(\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} < \frac{6 - 6.5}{\sqrt{0.108}}\right) \\ &= P\left(Z < -1.52\right) \\ &= 1 - \Phi(1.52) \\ &= 0.0643 \end{split}$$

373

Esercizio 4

4.a (**Punti 3**) Siano $\hat{\mu}$ e $\hat{\sigma}^2$ gli stimatori di massima verosimiglianza di μ e σ^2 del modello di Normale.

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Dimostrare la consistenza di $\hat{\mu}$.

4.b (**Punti 3**) Cosa significa che gli stimatori di massima verosimiglianza sono invarianti alle trasformazioni monotone invertibili?

4.c (Punti 3) Definire la significatività di un test.

4.d (**Punti 3**) Un sociologo sta conducendo uno studio sull'associazione tra l'orientamento politico e l'atteggiamento nei confronti del cambiamento climatico. Ha somministrato un questionario a 540 partecipanti, chiedendo loro di indicare il proprio orientamento politico (Conservatore, Progressista, Indipendente) e l'atteggiamento nei confronti del cambiamento climatico (Molto, poco, per nulla) preoccupato. L'obiettivo è determinare se c'è un'associazione significativa tra l'orientamento politico e l'atteggiamento nei confronti del cambiamento climatico.

	Preoccupato per i cambiamenti climatic				
	Molto	Poco	Per nulla		
Orientamento	politico)			
Conservatore	50	120	50		
Progressista	60	80	40		
Indipendente	40	50	50		

Eseguito il test del χ^2 per verificare l'indipendenza tra l'orientamento politico e la preoccupazione sui cambiamenti climatici il sociologo ottiene un $p_{\text{value}} = 0.00135$. Quali conclusioni può trarne?

Esercizio 5

5.a (**Punti 4**) In uno studio sulle spese mensili dei dipendenti di un'azienda, è stato selezionato un campione di 10 individui. I dati campionari hanno mostrato una media di spese mensili pari a $\hat{\mu} = 1200 \in$ con una deviazione standard osservata pari a $\hat{\sigma} = 300 \in$. Costruire un intervallo di confidenza al 95% per la media delle spese mensili μ .

$$S = \sqrt{\frac{n}{n-1}} \cdot \hat{\sigma} = \sqrt{\frac{10}{9}} \cdot 300 = 316.2278$$

$$Idc: \qquad \hat{\mu} \pm t_{n-1;\alpha/2} \times \frac{S}{\sqrt{n}}$$

$$1200 \pm 2.262 \times \frac{316.2278}{\sqrt{10}}$$

$$1200 \pm 2.262 \times 100$$

$$[973.8, 1426]$$

5.b (**Punti 10**) L'azienda afferma che la media delle spese mensili dei dipendenti è pari a 1100€. Effettuare un test di ipotesi al livello di significatività del 1% per verificare se la media delle spese mensili sia superiore a 1100€.

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \mu = \mu_0 = 1100 \in \\ H_1: \mu > \mu_0 = 1100 \in \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, T σ^2 di P non è nota: \Rightarrow t-Test.

$$S = \sqrt{\frac{n}{n-1}} \ \hat{\sigma} = \sqrt{\frac{10}{10-1}} \times 300 = 316.2$$

$$\begin{split} \frac{\hat{\mu} - \mu_0}{S/\sqrt{n}} &\sim & t_{n-1} \\ t_{\rm obs} &= & \frac{(1200 - 1100)}{316.2/\sqrt{10}} = 1 \,. \end{split}$$

 $\boxed{\mathbf{C}}$ DECISIONE Dalle tavole si ha $t_{(10-1);\,0.01}=2.821.$

$$t_{\rm obs} = 1 < t_{9;\,0.01} = 2.821$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 1 %

Graficamente

Il p_{value} è

$$P(T_{n-1} > t_{\rm obs}) = P(T_{n-1} > 1) = 0.1717$$

Esercizio 6

In uno studio sul reddito, in un campione di n = 50 individui, sono state analizzati il livello di istruzione (in anni di studio, X) e il reddito annuale (in migliaia di euro, Y).

Si osservano le seguenti statistiche, $\sum_{i=1}^{50} x_i = 521$, $\sum_{i=1}^{50} y_i = 1809$, $\sum_{i=1}^{50} x_i^2 = 5985$, $\sum_{i=1}^{50} y_i^2 = 68735$ e $\sum_{i=1}^{50} x_i y_i = 19904$.

6.a (**Punti 14**) Stimare il modello di regressione dove Y viene spiegata da X e prevedere il reddito per un individuo con 12 anni di studio.

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{50} 521 = 10.42 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{50} 1809 = 36.18 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{50} 5985 - 10.42^2 = 11.12 \\ \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{50} 68735 - 36.18^2 = 65.71 \\ \operatorname{cov}(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{50} 19904 - 10.42 \cdot 36.18 = 21.09 \end{split}$$

$$\begin{split} \hat{\beta}_1 &= \frac{\text{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{21.09}{11.12} = 1.896 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 36.18 - 1.896 \times 10.42 = 16.42 \\ \hat{y}_{X=12} &= \hat{\beta}_0 + \hat{\beta}_1 x = 16.42 + 1.896 \times 12 = 39.18 \end{split}$$

6.b (Punti 3) Qual è la percentuale di varianza spiegata dal modello?

$$r = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{21.09}{3.335 \times 8.106} = 0.7801$$

$$r^2 = 0.6086 < 0.75$$

Il modello **non** si adatta bene ai dati.

6.c (**Punti 2**) Stimare lo Standard Error di $\hat{\beta}_1$.

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.6086)\times65.71 \\ & = & 25.72 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{50}{50-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{50}{50-2}\times25.72 = 26.79 \end{array}$$

E quindi

$$\begin{split} V(\hat{\beta}_1) &= \frac{\sigma_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ \widehat{V(\hat{\beta}_1)} &= \frac{S_{\varepsilon}^2}{n\hat{\sigma}_X^2} \\ &= \frac{26.79}{50 \times 11.12} = 0.0482 \end{split}$$

377

$$\widehat{SE(\hat{\beta}_1)} = \sqrt{0.0482}$$
$$= 0.2195$$

6.d (**Punti 2**) Definire i punti di leva.

6.
e (**Punti 2**) Se in un modello di regressione sappiamo che $\hat{\sigma}_X = 0.5$, $\hat{\sigma}_Y = 1.2$ e r = 0.8, quanto varrà $\hat{\beta}_1$, il coefficiente angolare del modello di regressione dove Y viene spiegata da X?

Prova di Statistica 2023/07/23-2

Esercizio 1

Su un campione di 200 famiglie della provincia di Modena è stata rilevata la quantità mensile di ore dedicate all'utilizzo di servizi di streaming. Di seguito è riportata la distribuzione delle frequenze percentuali:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	$f_{j\%}$
0	2	7.5
2	5	19.5
5	10	22.0
10	20	29.0
20	50	22.0
		100.0

1.a (Punti 14) Individuare la classe modale.

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	n_{j}	f_j	b_j	h_j	F_{j}
0	2	15	0.075	2	3.7500	0.075
2	5	39	0.195	3	6.5000	0.270
5	10	44	0.220	5	4.4000	0.490
10	20	58	0.290	10	2.9000	0.780
20	50	44	0.220	30	0.7333	1.000
		200	1.000	50		

1.b (**Punti 3**) Qual è il numero di famiglie che consuma più di 30 ore di streaming?

$$\begin{array}{rcl} p & = & 0.5, \mathrm{essendo} \; F_4 = 0.78 > 0.5 \Rightarrow j_{0.5} = 4 \\ x_{0.5} & = & x_{\mathrm{inf;4}} + \frac{0.5 - F_3}{f_4} \cdot b_4 \\ & = & 10 + \frac{0.5 - 0.49}{0.29} \cdot 10 \\ & = & 10.34 \end{array}$$

$$\begin{array}{lcl} \%(X>30) & = & (50-30)\times h_1 \\ & = & 20\times 0.7333 \\ & = & 0.1467\times (100) \\ \#(X>30) & = & 29.33 \end{array}$$

1.c (**Punti 2**) la media aritmetica è pari a 14.7934, in base al punto 1a che relazione dobbiamo attenderci tra media, mediana e moda?

1.d (Punti 2) Si considerino i seguenti dati

$$\{x_1=1.2, x_2=2.3, x_3=6.7\}$$

Per quale valore di \boldsymbol{x}

$$f(x) = |x_1 - x| + |x_2 - x| + |x_3 - x|$$

fè minima?

Esercizio 2

Siano X e Y due variabili casuali che rappresentano rispettivamente il tempo di manutenzione per due tipi di macchinari diversi in un'azienda manifatturiera. Si sa che $X \sim N(15,1.5)$ e $Y \sim N(12,1.5)$. L'azienda ha definito due eventi $A = \{X < 14\}$ e $B = \{Y < 13\}$ Si suppone inoltre che i tempi di manutenzione dei due macchinari siano indipendenti tra loro.

2.a (**Punti 14**) Calcola la probabilità che almeno uno dei due eventi sia vero $(A \cup B)$.

$$\begin{split} P(X < 14) &= P\left(\frac{X - \mu_X}{\sigma_X} < \frac{14 - 15}{\sqrt{1.5}}\right) \\ &= P\left(Z < -0.82\right) \\ &= 1 - \Phi(0.82) \\ &= 0.2061 \end{split}$$

$$P(Y < 13) = P\left(\frac{Y - \mu_Y}{\sigma_Y} < \frac{13 - 12}{\sqrt{1.5}}\right)$$

$$= P(Z < 0.82)$$

$$= \Phi(0.82)$$

$$= 0.7939$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= 0.2071 + 0.7929 - 0.1642$$
$$= 0.8358$$

2.b (**Punti 3**) Quando il tempo di manutenzione del macchinario X è inferiore a 14 ore ($A = \{X < 14\}$), la perdita economica dell'azienda è di €100. Mentre quando è superiore a 14 la perdita è di 500€.

Quando il tempo di manutenzione del macchinario Y è inferiore a 12 ore $(B = \{Y < 12\})$, l'azienda subisce una perdita economica di \in 70, mentre quando è superiore a 12 il danno economico è di \in 600 \in .

Calcolare la probabilità che l'azienda abbia una perdita economica totale superiore ai 600€.

		0.7929		
100 0.2071	170;	0.1642	570;	0.6287
500 0.7929	700;	0.0429	1100;	0.1642

E ricaviamo la distribuzione di, X

[1] 0.2071

2.c (**Punti 2**) Siano $Z_1 \sim N(0,1), Z_2 \sim N(0,1), Z_3 \sim N(0,1),$ tre VC normali standard indipendenti. Come si distribuisce

$$Y = Z_1^2 + Z_2^2 + Z_3^3 \quad ?$$

2.d (**Punti 2**) Se A e B sono due eventi tali che $A \cap B \neq \emptyset$, A e B sono indipendenti? (scegliere tra sempre, mai, dipende e motivare la risposta)

Esercizio 3

(**Punti 14**) Un'urna contiene le seguenti palline numerate $\{3,4,5,6,7,11\}$. Si vine se esce un numero pari. Si estrae con reintroduzione per n=81 volte. Calcolare la probabilità di vincere più di 30 volte.

$$\pi = \frac{1}{3}$$

Teorema del Limite Centrale (somma di Bernoulli)

Siano $X_1, \! ..., \! X_n, \; n=81$ VC IID, t
c $X_i \sim \mathrm{Ber}(\pi=0.3333), \forall i,$ posto:

$$S_n = X_1 + ... + X_n$$

allora:

$$\begin{array}{lll} S_n & \underset{a}{\sim} & N(n\pi, n\pi(1-\pi)) \\ & \sim & N(81 \cdot 0.3333, 81 \cdot 0.3333 \cdot (1-0.3333)) \\ & \sim & N(27, 18) \end{array}$$

$$\begin{split} P(S_n > 30) &= P\left(\frac{S_n - n\pi}{\sqrt{n\pi(1 - \pi)}} > \frac{30 - 27}{\sqrt{18}}\right) \\ &= P\left(Z > 0.71\right) \\ &= 1 - P(Z < 0.71) \\ &= 1 - \Phi(0.71) \\ &= 0.2389 \end{split}$$

381

Esercizio 4

4.a (**Punti 3**) Sia $\hat{\beta}_1$ lo stimatore dei minimi quadrati di β_1 del modello di regressione lineare.

$$\hat{\beta}_1 = \frac{\operatorname{cov}(X, Y)}{\hat{\sigma}_X^2}$$

Dimostrare la consistenza di $\hat{\beta}_1$.

4.b (Punti 3) Come si distribuiscono gli stimatori di massima verosimiglianze asintoticamente?

4.c (Punti 3) Definire la potenza di un test.

4.d (**Punti 3**) Un sociologo sta conducendo uno studio sull'associazione tra l'orientamento politico e l'atteggiamento nei confronti del cambiamento climatico. Ha somministrato un questionario a 500 partecipanti, chiedendo loro di indicare il proprio orientamento politico (Conservatore, Progressista, Indipendente) e l'atteggiamento nei confronti del cambiamento climatico (Molto, poco, per nulla) preoccupato. L'obiettivo è determinare se c'è un'associazione significativa tra l'orientamento politico e l'atteggiamento nei confronti del cambiamento climatico.

	Preocci	ıpato pe	r i cambiamenti climatici
	Molto	Poco	Per nulla
Orientamento	politico)	
Conservatore	50	80	50
Progressista	60	80	40
Indipendente	40	50	50

Eseguito il test del χ^2 per verificare l'indipendenza tra l'orientamento politico e la preoccupazione sui cambiamenti climatici il sociologo ottiene un $p_{\text{value}} = 0.09114$. Quali conclusioni può trarne?

Esercizio 5

(**Punti 12**) In uno studio clinico per valutare l'efficacia di un nuovo farmaco, sono stati selezionati 80 pazienti con una particolare condizione medica. Tra questi, 48 pazienti hanno mostrato un miglioramento utilizzando il nuovo farmaco. Testare al livello di significatività dell'un percento l'ipotesi che il farmaco sia maggiormente efficace rispetto al trattamento esistente che una proporzione pari a $\pi_0 = 0.5$

La stima

$$\hat{\pi} = \frac{48}{80} = 0.6$$

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \pi = \pi_0 = 0.5 \\ H_1: \pi > \pi_0 = 0.5 \end{cases}$$

B SCELTA E CALCOLO STATISTICA-TEST, Z Test Binomiale per n grande: \Rightarrow z-Test.

$$\begin{split} \frac{\hat{\pi} - \pi_0}{\sqrt{\pi_0(1 - \pi_0)/n}} &\sim & N(0, 1) \\ z_{\rm obs} &= & \frac{(0.6 - 0.5)}{\sqrt{0.5(1 - 0.5)/80}} = 1.789 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $z_{0.01} = 2.326$.

$$z_{\text{obs}} = 1.789 < z_{0.01} = 2.326$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 1 %

Graficamente

Il p_{value} è

$$P(Z > z_{obs}) = P(Z > 1.79) = 0.03682$$

(Punti 2) Calcolare e interpretare il p_{value} del test precedente.

Esercizio 6

In uno studio sul reddito, in un campione di n=50 individui, sono state analizzati il livello di istruzione (in anni di studio, X) e il reddito annuale (in migliaia di euro, Y). Si osservano le seguenti statistiche, $\sum_{i=1}^{50} x_i = 546$, $\sum_{i=1}^{50} y_i = 1579$, $\sum_{i=1}^{50} x_i^2 = 6654$, $\sum_{i=1}^{50} y_i^2 = 52221$ e $\sum_{i=1}^{50} x_i y_i = 18216$.

383

6.a (**Punti 14**) Si è osservato $x_3 = 10$ e $y_3 = 31.84$, stimare il modello di regressione dove Y viene spiegata da X e calcolare il residuo per il punto i = 3.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{50} 546 = 10.92$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{50} 1579 = 31.58$$

$$\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 = \frac{1}{50} 6654 - 10.92^2 = 13.83$$

$$\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2 = \frac{1}{50} 52221 - 31.58^2 = 47.12$$

$$\text{cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} x_i \ y_i - \bar{x}\bar{y} = \frac{1}{50} 18216 - 10.92 \cdot 31.58 = 19.47$$

$$\hat{\beta}_1 = \frac{\text{cov}(X, Y)}{\hat{\sigma}_X^2}$$

$$= \frac{19.47}{13.83} = 1.407$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$= 31.58 - 1.4073 \times 10.92 = 16.21$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i =$$

$$= 16.21 + 1.4073 \times 10 = 30.29$$

$$\hat{\varepsilon}_i = y_i - \hat{y}_i$$

$$= 31.84 - 30.29 = 1.554$$

6.b (**Punti 3**) Il modello si adatta bene ai dati?

$$\begin{array}{rcl} r & = & \dfrac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = \dfrac{19.47}{3.719\times6.865} = 0.7625 \\ r^2 & = & 0.5814 < 0.75 \end{array}$$

Il modello **non** si adatta bene ai dati.

6.c (**Punti 2**) Stimare lo Standard Error di $\hat{\beta}_0$.

$$\begin{array}{rcl} \hat{\sigma_{\varepsilon}}^2 & = & (1-r^2)\hat{\sigma}_Y^2 \\ & = & (1-0.5814)\times 47.12 \\ & = & 19.73 \\ S_{\varepsilon}^2 & = & \frac{n}{n-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{50}{50-2}\hat{\sigma_{\varepsilon}}^2 \\ & = & \frac{50}{50-2}\times 19.73 = 20.55 \end{array}$$

E quindi

$$\begin{split} V(\hat{\beta}_0) &= \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2}\right) \\ \widehat{V(\hat{\beta}_0)} &= S_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n\hat{\sigma}_X^2}\right) \\ &= 20.55 \times \left(\frac{1}{50} + \frac{10.92^2}{50 \times 13.83}\right) \\ \widehat{SE(\hat{\beta}_0)} &= \sqrt{3.954} \\ &= 1.988 \end{split}$$

6.d (**Punti 2**) Definire il qq-plot.

6.
e (**Punti 2**) Se in un modello di regressione r=0.35, $\hat{\sigma}_X=1.2$
e $\hat{\sigma}_X=0.5$, quanto varrà $\hat{\beta}_1$, il coefficiente angolare della retta di regressione in cui Y è spiegata da X?

Prova di Statistica 2023/07/23-3

Esercizio 1

Su un campione di 200 individui è stata rilevata la spesa mensile in euro per abbigliamento. Di seguito sono riportate la densità percentuali:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	h_{j}
0	100	0.4000
100	300	0.2000
300	600	0.0500
600	1000	0.0125

1.a (Punti 14) Ricavare il valore approssimato della mediana.

$\mathbf{x}_{j},$	$\mathbf{x}_{j+1})$	n_{j}	f_{j}	b_{j}	h_{j}	F_{j}
0	100	80	0.40	100	0.4000	0.40
100	300	80	0.40	200	0.2000	0.80
300	600	30	0.15	300	0.0500	0.95
600	1000	10	0.05	400	0.0125	1.00
		200	1.00	1000		

$$\begin{array}{rcl} p &=& 0.5, \mathrm{essendo} \ F_2 = 0.8 > 0.5 \Rightarrow j_{0.5} = 2 \\ x_{0.5} &=& x_{\mathrm{inf;2}} + \frac{0.5 - F_1}{f_2} \cdot b_2 \\ &=& 100 + \frac{0.5 - 0.4}{0.4} \cdot 200 \\ &=& 150 \end{array}$$

1.b (**Punti 3**) Qual è il numero di individui che spende più di 150€ al mese?

$$\label{eq:continuous} \begin{split} \%(X>150) &= (300-150)\times h_2 + f_3\times 100 + f_4\times 100 \\ &= (150)\times 0.2 + (0.15)\times 100 + (0.05)\times 100 \\ &= 0.5\times (100) \\ \#(X>150) &= 100 \end{split}$$

1.c (**Punti 2**) Individuare la classe modale, metterla in relazione con la mediana e indicare la loro relazione con la media.

1.d (**Punti 2**) Michele ha sostenuto tre esami e ha la media del 26, al quarto esame ha preso 28. Qual è la media calcolata sui 4 esami?

$$\bar{x} = \frac{26 \times 3 + 28}{3+1}$$

$$= \frac{106}{4}$$

$$= 26.5$$

Esercizio 2

Supponiamo di avere due urne, urna A e urna B, contenenti palline di due colori: rosse e blu. Nell'urna A, ci sono 10 palline di cui 4 rosse e 6 blu. Nell'urna B, ci sono 20 palline di cui 8 rosse e 12 blu. Estraiamo con reintroduzione 5 palline da ciascuna urna in modo indipendente. Definiamo gli eventi:

- A = "l'estrazione dall'urna A dà al massimo una pallina rossa (1 pallina rossa o meno)".
- B = "L'estrazione dall'urna B dà come risultato almeno 4 palline blu (4 o più palline blu)".

2.a (**Punti 14**) Calcola la probabilità che almeno uno dei due eventi sia vero, ovvero la probabilità di $A \cup B$.

$$\begin{array}{lcl} P(X \leq 1) & = & \binom{5}{0} 0.3333^0 (1 - 0.3333)^{5 - 0} + \binom{5}{1} 0.3333^1 (1 - 0.3333)^{5 - 1} \\ & = & 0.1317 + 0.3293 \\ & = & 0.461 \end{array}$$

$$P(Y \geq 4) \quad = \quad \binom{5}{4} 0.6667^4 (1 - 0.6667)^{5-4} + \binom{5}{5} 0.6667^5 (1 - 0.6667)^{5-5}$$

387

$$= 0.3293 + 0.1317$$
$$= 0.461$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= 0.4609 + 0.4609 - 0.2124$$
$$= 0.7094$$

2.b (Punti 3) Qual è la probabilità di avere esattamente uno solo due eventi sia vera?

$$P(A) = 0.4609$$

$$P(B) = 0.4609$$

$$P(\text{Solo uno dei due vero}) = P(A \cap \bar{B}) + P(\bar{A} \cap B)$$

$$= 0.4609 \times (1 - 0.4609) + (1 - 0.4609) \times 0.4609$$

$$= 0.4969$$

2.
c (**Punti 2**) Siano $X_1 \sim N(5,1)$ e $X_2 \sim N(5,1), \, X_1$ e X_2 in
dipendenti. Come si distribuisce

$$\bar{X} = \frac{1}{2}(X_1 + X_2)$$
 ?

2.d (**Punti 2**) Siano A e B due eventi tali che P(A) = 0.3 e P(B) = 0.3. A e B possono essere incompatibili? (scegliere tra sempre, mai, dipende e motivare la risposta)

Esercizio 3

(**Punti 14**) Un'urna contiene le seguenti palline numerate $\{3,4,5,6,7,12\}$. Si vine se esce un numero pari. Si estrae con reintroduzione per n=81 volte. Calcolare la probabilità che la **proporzione** di vincite sia minore più di 0.55.

$$\pi = \frac{1}{2}$$

Teorema del Limite Centrale (proporzione)

Siano $X_1,\!...,\!X_n,\,n=81$ VC IID, t
c $X_i\sim \mathrm{Ber}(\pi=0.5), \forall i,$ posto:

$$\hat{\pi} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$$

allora:

$$\begin{array}{rcl} \hat{\pi} & \sim & N(\pi,\pi(1-\pi)/n) \\ & \sim & N\left(0.5,\frac{0.5\cdot(1-0.5))}{81}\right) \\ & \sim & N(0.5,0.003086) \\ \\ P(\hat{\pi}<0.55) & = & P\left(\frac{\hat{\pi}-\pi}{\sqrt{\pi(1-\pi)/n}}<\frac{0.55-0.5}{\sqrt{0.003086}}\right) \\ & = & P\left(Z<0.9\right) \\ & = & \Phi(0.9) \\ & = & 0.8159 \end{array}$$

Esercizio 4

4.a (**Punti 3**) Sia $\hat{\beta}_0$ lo stimatore dei minimi quadrati di β_0 del modello di regressione lineare.

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Dimostrare la consistenza di $\hat{\beta}_0$.

4.b (**Punti 3**) Cosa significa che gli stimatori di massima verosimiglianza sono asintoticamente a massima efficienza?

4.c (**Punti 3**) Definire gli errori di primo e secondo tipo.

4.d (**Punti 3**) Un sociologo sta conducendo uno studio sull'associazione tra l'orientamento politico e l'atteggiamento nei confronti del cambiamento climatico. Ha somministrato un questionario a 520 partecipanti, chiedendo loro di indicare il proprio orientamento politico (Conservatore, Progressista, Indipendente) e l'atteggiamento nei confronti del cambiamento climatico (Molto, poco, per nulla) preoccupato. L'obiettivo è determinare se c'è un'associazione significativa tra l'orientamento politico e l'atteggiamento nei confronti del cambiamento climatico.

	Preoccupato per i cambiamenti climatici		
	Molto	Poco	Per nulla
Orientamento politico			
Conservatore	50	80	50
Progressista	60	100	40
Indipendente	40	50	50

Eseguito il test del χ^2 per verificare l'indipendenza tra l'orientamento politico e la preoccupazione sui cambiamenti climatici il sociologo ottiene un $p_{\text{value}} = 0.02061$. Quali conclusioni può trarne?

Esercizio 5

(**Punti 12**) In uno studio clinico per valutare l'efficacia di un nuovo farmaco, sono stati selezionati 160 pazienti con una particolare condizione medica. Tra questi, 80 sono stati trattati con un farmaco sperimentale e 80 col placebo. Tra i trattati, 48 pazienti hanno mostrato un miglioramento utilizzando il nuovo farmaco, mentre sono 40 quelli che hanno assunto il placebo e hanno mostrato miglioramenti. Testare al livello di significatività dell'un percento l'ipotesi che il farmaco sia maggiormente efficace rispetto al placebo.

A FORMULAZIONE DELLE IPOTESI

$$\begin{cases} H_0: \pi_{\text{A}} = \pi_{\text{B}} \\ H_1: \pi_{\text{A}} > \pi_{\text{B}} \end{cases}$$

\fbox{B} SCELTA E CALCOLO STATISTICA-TEST, Z

$$\hat{\pi}_{\text{A}} = \frac{s_{\text{A}}}{n_{\text{A}}} = \frac{48}{80} = 0.6$$
 $\hat{\pi}_{\text{B}} = \frac{s_{\text{B}}}{n_{\text{B}}} = \frac{40}{80} = 0.5$

Calcoliamo la proporzione comune sotto H_0

$$\pi_C = \frac{s_A + s_B}{n_A + n_B} = \frac{88}{160} = 0.55$$

$$\begin{split} \frac{\hat{\pi}_{\text{ A}} - \hat{\pi}_{\text{ B}}}{\sqrt{\frac{\pi_{C}(1-\pi_{C})}{n_{\text{ A}}} + \frac{\pi_{C}(1-\pi_{C})}{n_{\text{ B}}}}} &\sim & N(0,1) \\ z_{\text{obs}} &= & \frac{(0.6-0.5)}{\sqrt{\frac{0.55(1-0.55)}{80} + \frac{0.55(1-0.55)}{80}}} = 1.271 \,. \end{split}$$

C DECISIONE Dalle tavole si ha $z_{0.01}=2.326$.

$$z_{\rm obs} = 1.271 < z_{0.01} = 2.326$$

CONCLUSIONE: i dati sono coerenti con H_0 al LdS del 1 %

Graficamente

Il $p_{\rm value}$ è

$$P(Z > z_{obs}) = P(Z > 1) = 0.1018$$

(**Punti 2**) Calcolare e interpretare il p_{value} del test precedente.

Esercizio 6

In uno studio sul reddito, in un campione di n=50 individui, sono state analizzati il livello di istruzione (in anni di studio, X) e il reddito annuale (in migliaia di euro, Y). Si osservano le seguenti statistiche, $\sum_{i=1}^{50} x_i = 524$, $\sum_{i=1}^{50} y_i = 1699$, $\sum_{i=1}^{50} x_i^2 = 6210$, $\sum_{i=1}^{50} y_i^2 = 61955$ e $\sum_{i=1}^{50} x_i y_i = 19306$.

6.a (**Punti 14**) Si è osservato $x_3 = 7$ e $y_3 = 22$, stimare il modello di regressione dove Y viene spiegata da X e calcolare il residuo per il punto i = 3.

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{50} 524 = 10.48 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{50} 1699 = 33.98 \\ \hat{\sigma}_X^2 &= \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{50} 6210 - 10.48^2 = 14.37 \\ \hat{\sigma}_Y^2 &= \frac{1}{n} \sum_{i=1}^n y_i^2 - \bar{y}^2 = \frac{1}{50} 61955 - 33.98^2 = 84.46 \\ \cot(X,Y) &= \frac{1}{n} \sum_{i=1}^n x_i \ y_i - \bar{x}\bar{y} = \frac{1}{50} 19306 - 10.48 \cdot 33.98 = 30.01 \end{split}$$

11.15. PROVA DI STATISTICA 2023/07/23-3

$$\begin{split} \hat{\beta}_1 &= \frac{\text{cov}(X,Y)}{\hat{\sigma}_X^2} \\ &= \frac{30.01}{14.37} = 2.088 \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ &= 33.98 - 2.0884 \times 10.48 = 12.09 \\ \\ \hat{y}_i &= \hat{\beta}_0 + \hat{\beta}_1 x_i = \\ &= 12.09 + 2.0884 \times 7 = 26.71 \\ \hat{\varepsilon}_i &= y_i - \hat{y}_i \\ &= 22 - 26.71 = -4.712 \end{split}$$

6.b (Punti 3) Scrivere la scomposizione della varianza e calcolarla per i dati in esame.

$$\begin{array}{rcl} TSS & = & n\hat{\sigma}_Y^2 \\ & = & 50 \times 84.46 \\ & = & 4223 \\ ESS & = & R^2 \cdot TSS \\ & = & 0.742 \cdot 4223 \\ & = & 3133 \\ RSS & = & (1-R^2) \cdot TSS \\ & = & (1-0.742) \cdot 4223 \\ & = & 1089 \\ TSS & = & RSS + TSS \\ 4223 & = & 3133 + 1089 \end{array}$$

6.c (**Punti 2**) Stimare σ_{ε}^2 .

$$\begin{split} \hat{\sigma_{\varepsilon}}^2 &= (1 - r^2)\hat{\sigma}_Y^2 \\ &= (1 - 0.742) \times 84.4596 \\ &= 21.7873 \\ S_{\varepsilon}^2 &= \frac{n}{n - 2}\hat{\sigma_{\varepsilon}}^2 \end{split}$$

$$= \frac{50}{50 - 2} \hat{\sigma_{\varepsilon}}^{2}$$

$$= \frac{50}{50 - 2} \times 21.7873 = 22.6951$$

6.d (**Punti 2**) Definire i punti influenti.

6.
e (**Punti 2**) Se in un modello di regressione r=0.35,
 $\hat{\sigma}_X=1.2$ e $\hat{\beta}_1=0.5,$ quanto varrà $\hat{\sigma}_Y,$ la standard deviation di Y?