

Chapitre XV – Matrices et graphes (Maths expertes)

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES
I – Matrices
1. Définition
2. Types de matrices carrées
II – Opérations sur les matrices
1. Somme
2. Produit
3. Inverse et déterminant
4. Puissance
5. Transposition
III – Applications
1. Écriture matricielle d'un système d'équations linéaires
2. Suites de matrices colonnes
3. Transformations géométriques du plan
IV – Graphes
1. Graphes non-orientés et orientés
2. Chaînes et chemins
3. Matrices d'adjacence

I – Matrices

I – Matrices

1. Définition

À RETENIR 🕴

Définition

Soient m et n deux entiers non nuls. Une **matrice réelle** A de taille $m \times n$ est un tableau de réels tel que :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix}$$

Où $a_{1,1}$, $a_{1,2}$, $a_{2,1}$, ..., $a_{m,n}$ sont les **coefficients** de la matrice. L'ensemble des matrices à coefficients réels est noté $\mathcal{M}_{m,n}(\mathbb{R})$.

Il serait également possible de prendre des matrices à coefficients entiers ou même complexes, mais nous nous limiterons ici au cas des matrices réelles.

À RETENIR 💡

Types de matrices

Selon leur taille, on peut avoir différents types de matrices :

- Une matrice $1 \times n$ est une **matrice ligne de taille** n.
- Une matrice $m \times 1$ est une **matrice colonne de taille** m.
- Une matrice $n \times n$ est une **matrice carrée d'ordre** n. L'ensemble de ces matrices est noté $\mathcal{M}_n(\mathbb{R})$.
- Une matrice 1×1 est un **réel**.
- La matrice $m \times n$ dont tous les termes sont nuls est la **matrice nulle** et est notée $0_{\mathcal{M}_{m,n}(\mathbb{R})}$ (ou plus simplement $0_{m,n}$).

I – Matrices 2

2. Types de matrices carrées

À RETENIR 🕴

Types de matrices carrées

Il existe différentes matrices carrées remarquables :

- Une matrice carrée dont tous les coefficients en dessous de la diagonale principale sont nuls est une **matrice triangulaire supérieure**.
- Une matrice triangulaire supérieure dont les coefficients sur la diagonale sont nuls est une **matrice triangulaire supérieure stricte**.
- Une matrice carrée dont tous les coefficients au-dessus de la diagonale principale sont nuls est une **matrice triangulaire inférieure**.
- Une matrice triangulaire inférieure dont les coefficients sur la diagonale sont nuls est une **matrice triangulaire inférieure stricte**.
- Une matrice carrée dont tous les coefficients qui ne sont pas sur la diagonale sont nuls est une **matrice diagonale**.
- Une matrice diagonale dont les coefficients sont égaux à 1 est une **matrice identité**. Si la taille d'une telle matrice est n, alors on la note I_n .

ÀLIRE 00

Diagonale d'une matrice carrée

La diagonale d'une matrice carrée d'ordre n représente l'ensemble des coefficients $a_{i,i}$ où i varie de 1 à n.

II – Opérations sur les matrices

1. Somme

À RETENIR 💡

Somme de deux matrices

Pour additionner deux matrices de même taille, il suffit d'additionner leurs coefficients deux-à-deux. Plus spécifiquement :

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix} + \begin{pmatrix} b_{1,1} & b_{1,2} & \dots & b_{1,n} \\ b_{2,1} & b_{2,2} & \dots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m,1} & b_{m,2} & \dots & b_{m,n} \end{pmatrix}$$

$$= \begin{pmatrix} a_{1,1} + b_{1,1} & a_{1,2} + b_{1,2} & \dots & a_{1,n} + b_{1,n} \\ a_{2,1} + b_{2,1} & a_{2,2} + b_{2,2} & \dots & a_{2,n} + b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} + b_{m,1} & a_{m,2} + b_{m,2} & \dots & a_{m,n} + b_{m,n} \end{pmatrix}$$

ÀLIRE 👀

Attention!

Il n'est possible d'additionner que deux matrices de même taille.

2. Produit

À RETENIR 💡

Multiplication d'une matrice par un réel

Soit λ un réel. Le produit d'une matrice par λ est la matrice de même taille dont les coefficients sont tous multipliés par λ . Plus spécifiquement :

$$\lambda \times \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix} = \begin{pmatrix} \lambda \times a_{1,1} & \lambda \times a_{1,2} & \dots & \lambda \times a_{1,n} \\ \lambda \times a_{2,1} & \lambda \times a_{2,2} & \dots & \lambda \times a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda \times a_{m,1} & \lambda \times a_{m,2} & \dots & \lambda \times a_{m,n} \end{pmatrix}$$

Si A est la matrice de gauche, on note λA la matrice de droite.

ÀLIRE 🍑

Soustraction de deux matrices

Pour soustraire deux matrices A et B, on additionne A et (-1)B i.e. A-B=A+(-1)B.

À RETENIR 🕴

Produit d'une matrice ligne et d'une matrice colonne

Soient $L = \begin{pmatrix} l_1 & \dots & l_n \end{pmatrix}$ une matrice ligne de taille n et $C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$ une matrice colonne

de taille n.

Le produit de ces deux matrices (noté LC) est le réel $LC = l_1 \times c_1 + \cdots + l_n \times c_n$.

Plus généralement, le produit matriciel ne se limite pas qu'à la multiplication d'une matrice ligne avec une matrice colonne.

À RETENIR 🕴

Produit de deux matrices

Soient A une matrice de taille $m \times n$ et B une matrice de taille $n \times p$ deux matrices. Le produit de ces deux matrices (notée $A \times B$ ou AB) est la matrice de taille $m \times p$ dont le coefficient à la position (i;j) est égal au produit de la i-ième ligne de A par la j-ième colonne de B. Plus spécifiquement, en notant L_i la i-ème ligne de A et C_j la j-ième colonne de B:

$$AB = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,p} \\ c_{2,1} & c_{2,2} & \dots & c_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m,1} & c_{m,2} & \dots & c_{m,p} \end{pmatrix} \text{ où } c_{i,j} = L_i \times C_j.$$

ÀLIRE **

Attention!

Le produit matriciel n'est pas commutatif! Donc en général, $AB \neq BA$.

De plus, il faut bien s'assurer que le nombre de lignes de *A* est égal au nombre de colonnes de *B*.

À LIRE 🍑

Si A et B sont deux matrices diagonales de taille n. Leur produit est la matrice diagonale de même taille dont le coefficient à la position (i;i) est le produit du coefficient de A à la position (i;i) par celui du coefficient de B à la position (i;i). Plus spécifiquement, en notant $A = (a_{i,j})$ et $B = (b_{i,j})$:

$$\begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{n,n} \end{pmatrix} \times \begin{pmatrix} b_{1,1} & 0 & \dots & 0 \\ 0 & b_{2,2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_{n,n} \end{pmatrix}$$

$$= \begin{pmatrix} a_{1,1} \times b_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} \times b_{2,2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{n,n} \times b_{n,n} \end{pmatrix}$$

De plus, on a AB = BA.

À RETENIR 💡

Propriétés du produit matriciel

Soient A, B et C trois matrices carrées d'ordre n. Alors :

- Le produit matriciel est **associatif** : A(BC) = (AB)C.
- Le produit matriciel est **distributif** : A(B+C) = AB + AC.
- I_n est l'**unité** de $\mathcal{M}_n(\mathbb{R})$: $AI_n = I_n A = A$.
- 0_n est le **zéro** de $\mathcal{M}_n(\mathbb{R})$: $A0_n = 0_n A = 0_n$ et $A + 0_n = A$.
- Pour tout $\lambda \in \mathbb{R}$, $\lambda(AB) = (\lambda A)B = A(\lambda B)$.

ÀLIRE **

Attention!

Si on a une égalité du type $A \times B = 0$, cela n'implique pas forcément que A = 0 ou B = 0!

De plus, si on a AB = AC, on n'a pas forcément B = C.

Cela peut sembler logique, mais on signale tout de même que les priorités les opératoires sont "les mêmes" que dans les ensembles de nombres comme \mathbb{R} ou \mathbb{C} (la multiplication prime sur l'addition, etc...).

3. Inverse et déterminant

À RETENIR 🕴

Inverse d'une matrice

Soit *A* une matrice carrée d'ordre *n*. *A* est dite inversible s'il existe une matrice A^{-1} telle que $A \times A^{-1} = I_n$.

Si cette matrice existe, elle est unique et s'appelle **inverse** de A. De plus, A et A^{-1} commutent.

Le **déterminant** permet, entre autres, de calculer l'inverse d'une matrice (s'il existe). Nous nous limiterons ici au cas des matrices carrées d'ordre 2, mais il est possible de le généraliser encore plus.

À RETENIR 🕴

Déterminant d'une matrice 2 × 2

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice carrée d'ordre 2.

Alors le déterminant de A (noté $\det(A)$) est le réel $\det(A) = ad - bc$. De plus, A est inversible si et seulement si $\det(A) \neq 0$.

À RETENIR 🜹

Inverse d'une matrice 2 × 2

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice carrée d'ordre 2 dont le déterminant ne s'annule pas.

Alors
$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
.

À LIRE 🍑

Exemple

Calculons le produit de $A = \begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix}$ par $B = \begin{pmatrix} 4 & -1 \\ -6 & 2 \end{pmatrix}$, et déduisons-en que A est inversible sans utiliser la formule donnée précédemment.

Le produit nous donnera une matrice carrée d'ordre 2 car on multiplie deux matrices carrées d'ordre 2 :

$$\begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix} \times \begin{pmatrix} 4 & -1 \\ -6 & 2 \end{pmatrix} = \begin{pmatrix} 8-6 & -2+2 \\ 24-24 & -6+8 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Donc $A \times B = 2I_2$. Ainsi, A est inversible et $A^{-1} = \frac{1}{2}B$.

4. Puissance

À RETENIR 🕴

Puissance d'une matrice carrée

Soient A une matrice carrée d'ordre n et i un entier naturel :

- Si
$$i > 0$$
, $A^i = \underbrace{A \times \cdots \times A}_{i \text{ fois}} = A^{i-1} \times A$.

- Si $i = 0$, $A^i = A^0 = I_n$.

- Si $i < 0$, $A^i = \underbrace{A^{-1} \times \cdots \times A^{-1}}_{i \text{ fois}} = A^{i-1} \times A^{-1}$.

De plus, pour tout entier naturel j, on a $A^i \times A^j = A^{i+j}$.

Puissance d'une matrice diagonale

Si A est une matrice diagonale, alors A^i est la matrice de même taille où tous les termes de la diagonale sont mis à la puissance i (cela vaut aussi si i est négatif et que la diagonale ne comporte pas de 0).

5. Transposition

À RETENIR 🕴

Définition

Soit A une matrice. La **matrice transposée** de A (notée tA) est la matrice dont la i-ième ligne correspond à la i-ième colonne de A.

Exemple

Soient
$$A = \begin{pmatrix} 2 & 5 & 9 \\ 3 & 6 & 10 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 3 & 5 \\ 8 & 13 & 21 \end{pmatrix}$. Calculons ${}^{t}A$ et ${}^{t}B$.

On a ${}^{t}A = \begin{pmatrix} 2 & 3 \\ 5 & 6 \\ 9 & 10 \end{pmatrix}$ et ${}^{t}B = \begin{pmatrix} 0 & 2 & 8 \\ 1 & 3 & 13 \\ 1 & 5 & 21 \end{pmatrix}$.

On a
$${}^{t}A = \begin{pmatrix} 2 & 3 \\ 5 & 6 \\ 9 & 10 \end{pmatrix}$$
 et ${}^{t}B = \begin{pmatrix} 0 & 2 & 8 \\ 1 & 3 & 13 \\ 1 & 5 & 21 \end{pmatrix}$.

III - Applications

1. Écriture matricielle d'un système d'équations linéaires

À RETENIR 🕴

Lien entre système d'équations linéaires et matrices

Soient quatre réels a, b, c et d et soient deux réels α et β . Le système d'équations linéaires à deux inconnues (S): $\begin{cases} ax + by = \alpha \\ cx + dy = \beta \end{cases}$ (d'inconnues x et y) peut s'écrire matriciellement :

$$(S) \iff \underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}_{=A} \underbrace{\begin{pmatrix} x \\ y \end{pmatrix}}_{=X} = \underbrace{\begin{pmatrix} \alpha \\ \beta \end{pmatrix}}_{=B}$$

À RETENIR

Résolution du système (S)

Avec les notations ci-dessus, si A est inversible (voir les paragraphes suivants) alors le système (S) admet une unique solution $X = A^{-1}B$.

ÀLIRE **

Exemple

Cela peut sembler compliqué à appliquer, mais il n'en est rien!

Par exemple, transformons le système (S) : $\begin{cases} x + 2y = 1 \\ 2x + 5y = 4 \end{cases}$ en une égalité de matrices :

$$(S) \iff \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

Or l'inverse de
$$\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
 est $\begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}$. D'où $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$.

Or deux matrices sont égales si et seulement si leurs coefficients sont tous égaux. Donc on a x = -3 et y = 2.

Nous avons travaillé ici avec un système de deux équations, mais il est tout à fait possible de généraliser cette méthode à plus de deux équations!

2. Suites de matrices colonnes

À RETENIR 👂

Soit (U_n) une suite de matrices colonnes de taille m vérifiant une relation du type $U_{n+1} = AU_n$ pour tout $n \in \mathbb{N}$ et où $A \in \mathcal{M}_m(\mathbb{R})$.

Alors, pour tout $n \in \mathbb{N}$, $U_n = A^n U_0$.

À LIRE 👓

Il peut sembler étrange de manipuler des suites de matrices, mais c'est en réalité très intuitif. Par exemple, définissions la suite (U_n) par $U_0 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et pour tout $n \ge 1$ par $U_{n+1} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} U_n$ et cherchons son terme général.

Par la formule précédente, pour tout $n \in \mathbb{N}$, $U_n = A^n U_0$. Or, A est une matrice diagonale, donc $A^n = \begin{pmatrix} 1^n & 0 \\ 0 & 2^n \end{pmatrix}$, et ainsi :

$$U_n = \begin{pmatrix} 1 & 0 \\ 0 & 2^n \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2^{n+1} \end{pmatrix}$$

On remarque en particulier que la suite (U_n) est divergente (à cause de sa deuxième coordonnée qui tend vers $+\infty$).

À RETENIR 🕴

Soit (V_n) une suite de matrices colonnes de taille m vérifiant une relation du type $V_{n+1} = AV_n + B$ pour tout $n \in \mathbb{N}$ et où $A, B \in \mathcal{M}_m(\mathbb{R})$. Supposons qu'il existe une matrice $X \in \mathcal{M}_m(\mathbb{R})$ telle que AX + B = X.

Alors, pour tout $n \in \mathbb{N}$, $U_n = A^n(U_0 - X) + X$.

3. Transformations géométriques du plan

Il est possible de faire le lien entre les matrices et certains types de transformations géométriques du plan.

À RETENIR

On se place dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$. Soient $A = (x_A; y_A)$ et $B = (x_B; y_B)$ deux points du plan.

- *B* est l'image de *A* par la translation de vecteur $\overrightarrow{u} = \begin{pmatrix} x_{\overrightarrow{u}} \\ y_{\overrightarrow{u}} \end{pmatrix}$ si et seulement si $\begin{pmatrix} x_B \end{pmatrix} = \begin{pmatrix} x_{\overrightarrow{u}} \end{pmatrix} + \begin{pmatrix} x_A \end{pmatrix}$
- $\begin{pmatrix} x_B \\ y_B \end{pmatrix} = \begin{pmatrix} x_{\overrightarrow{u}} \\ y_{\overrightarrow{u}} \end{pmatrix} + \begin{pmatrix} x_A \\ y_A \end{pmatrix}.$ $B \text{ est l'image de } A \text{ par la rotation de centre } O \text{ et d'angle } \theta \in \mathbb{R} \text{ si et seulement}$ $\text{si } \begin{pmatrix} x_B \\ y_B \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x_A \\ y_A \end{pmatrix}.$

ÀLIRE •

Exemple

On pose A=(1;1). Calculons les coordonnées de B qui est l'image de A par la translation de vecteur $\overrightarrow{u}=\begin{pmatrix} -1\\ -2 \end{pmatrix}$, et de C qui est l'image de A par la rotation de centre O et d'angle $\frac{\pi}{4}$.

On a:

$$\begin{pmatrix} x_B \\ y_B \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ et } \begin{pmatrix} x_C \\ y_C \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Donc B = (-1; 1) et $C = (0; \sqrt{2})$.

IV - Graphes

1. Graphes non-orientés et orientés

À RETENIR 💡

Graphe non-orienté

Un graphe G non-orienté est un couple (S; A) où :

- *S* est l'ensemble des **sommets** de *G*.
- A est un ensemble contenant les éléments de la forme $\{s_i; s_j\}$ où $s_i, s_j \in S$, et correspond aux **arêtes** de G.

ÀLIRE 👀

Exemple

Par exemple, $G = (\{A; B; C; D; E\}, \{\{A; B\}; \{B; C\}; \{C; D\}; \{D; A\}; \{D; E\}; \{E; A\}\})$ est un graphe non-orienté que l'on peut représenter comme tel :

Signalons tout de même que l'ordre dans lequel on relie les sommets n'a pas d'importance.

À RETENIR 💡

Graphe orienté

Un **graphe** G **orienté** est un couple (S; A) où :

- *S* est l'ensemble des **sommets** de *G*.
- A est un sous-ensemble de $S \times S$, et correspond aux **arêtes orientées** de G.

À LIRE 00

Exemple

Par exemple, $G = (\{A; B; C; D; E\}, \{(A; B); (B; C); (C; D); (D; E); (A; E)\}$ est un graphe orienté que l'on peut représenter comme tel :

ÀLIRE 0

À noter que dans les deux cas, il est possible de relier un sommet à lui-même (en faisant **une boucle**).

À RETENIR 💡

Définition

Soit G = (S; A) un graphe. Donnons quelques définitions nécessaires pour la suite :

- **L'ordre de** *G* est le nombre de sommets que possède *G* (i.e. le cardinal de *S*).
- **Le degré** d'un sommet est le nombre d'arêtes qui passent par ce sommet (quelque-soit le sens de l'arête dans le cas où *G* est orienté). Les boucles comptent pour 2.
- Un sommet A est **adjacent** à un autre sommet B s'il existe une arête reliant A à B (i.e. si $(A; B) \in A$ dans le cas où G est orienté / si (A; B) ou $(B; A) \in A$ si G n'est pas orienté). Si A n'est adjacent à aucun autre sommet, alors A est un sommet **isolé**.
- *G* est dit **complet** si tout sommet de *A* est adjacent à chacun des autres.

À RETENIR 🕴

Soit G un graphe. On note par a son nombre d'arêtes, et par d la somme des degrés de ses sommets. Alors d = 2a.

ÀLIRE 00

Exemple

On considère le graphe orienté *G* suivant :

Alors:

- *G* n'est pas complet.
- L'ordre de *G* est égal à 5.
- G a 4 arêtes (donc la somme des degrés des sommets de G vaut $2 \times 4 = 8$).
- Le degré des sommets A et B est égal à 1.
- Le degré des sommets *C*, *D* et *E* est égal à 2.
- Le sommet *A* est adjacent au sommet *E* (mais *E* n'est pas adjacent à *A*).
- *C* est un sommet isolé.
- L'arête orientée qui va de *C* à *C* est une boucle.

2. Chaînes et chemins

À RETENIR 🕴

Définition

Soit *G* un graphe non-orienté. On appelle **chaîne de taille** *n*, toute succession de *n* arêtes de *G* telle que l'extrémité de chacune est l'origine de la suivante.

Si *G* est un graphe orienté, on parle de **chemin** plutôt que de chaîne.

À RETENIR 👂

Définition

Dans un graphe *G* non-orienté :

- Si l'origine d'une chaîne coïncide avec sa fin, on parle de **chaîne fermée** (ou de **chemin fermé** si *G* est orienté).
- Si la chaîne est composée d'arêtes toutes distinctes, on parle de **cycle** (ou de **circuit** si *G* est orienté).

ÀLIRE 00

Exemple

On considère le graphe non-orienté suivant :

Alors:

- A B C D A est un chemin fermé de longueur 4 (c'est même un cycle).
- A-C-B-D est un chemin de longueur 3 reliant A à D (mais il y en a beaucoup d'autres).

3. Matrices d'adjacence

Le but de cette section est d'étudier le lien étroit qui relie les matrices et les graphes.

À RETENIR 👂

Définition

Soit G = (S; A) un graphe d'ordre n. On note $S = \{s_1, \dots, s_n\}$ l'ensemble des sommets de G.

On fait correspondre à G la matrice carrée d'ordre n dont le coefficient à la ligne i et la colonne j est égal au nombre d'arêtes reliant le sommet s_i au sommet s_j . Cette matrice est appelée **matrice d'adjacence** du graphe G.

On notera qu'une telle matrice est **symétrique** (par rapport à sa diagonale) si le graphe en question est non-orienté.

15

À LIRE 👐

Exemple

On considère le graphe orienté G_1 suivant :

Sa matrice d'adjacence est la matrice $M_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.

À LIRE 👐

Exemple

On considère le graphe non-orienté G_2 suivant (i.e. le même que le G_1 mais sans les orientations) :

Sa matrice d'adjacence est la matrice $M_2 = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Remarquons sur ces deux exemples que le caractère orienté ou non d'un graphe change sa matrice d'adjacence!

À RETENIR 🕴

Nombre de chemins de longueur k

Soient G = (S; A) un graphe orienté d'ordre n et M sa matrice d'adjacence. On note $S = \{s_1, \ldots, s_n\}$ l'ensemble des sommets de G.

Alors le coefficient à la ligne i et à la colonne j de M^k est le nombre de chemins de longueur k reliant le sommet s_i au sommet s_j .

DÉMONSTRATION

Nombre de chemins de longueur k

On pose $m_{i,j}^{(k)}$ le coefficient à la ligne i et à la colonne j de M^k et on note \mathscr{P}_k la propriété définie pour tout $k \geq 1$ par \mathscr{P}_k : " $m_{i,j}^{(k)}$ est le nombre de chemins de longueur k reliant le sommet s_i au sommet s_j ". Montrons \mathscr{P}_n par récurrence.

Initialisation: On teste la propriété au rang 1:

 \mathcal{P}_1 est vraie car $m_{i,j}^{(1)}$ est égal au nombre d'arêtes (i.e. de chemins de longueur 1) reliant le sommet s_i au sommet s_j .

Hérédité : Supposons la propriété vraie jusqu'à un rang $k \ge 1$ et vérifions qu'elle est vraie au rang k + 1.

On a
$$M^{n+1} = M^n \times M$$
. Donc $m_{i,j}^{(k+1)} = m_{i,1}^{(k)} m_{1,j}^{(1)} + m_{i,2}^{(k)} m_{2,j}^{(1)} + \cdots + m_{i,n}^{(k)} m_{n,j}^{(1)}$.

Or, par hypothèse, pour tout $l \in \{1; ...; n\}$, $m_{i,l}^{(n)}$ est le nombre de chemins de longueur n reliant s_i à s_l et $m_{l,j}$ est le nombre d'arêtes reliant le sommet s_l au sommet s_j .

Ainsi, $m_{i,l}^{(k)} m_{l,j}^{(1)}$ est le nombre de chemins de longueur n+1 passant par s_l et reliant s_i à s_j .

Donc en sommant pour tous les sommets s_l , on obtient le nombre de chemins de longueur n+1 reliant s_i à s_i . Donc \mathcal{P}_{n+1} est vraie.

Conclusion:

La propriété est initialisée au rang 1 et est héréditaire. Ainsi, \mathcal{P}_n est vraie pour tout $n \ge 1$.