Digital Circuits: Part 3

M. B. Patil mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

Decimal (base 10) system $\begin{array}{c|c} 3\ 1\ 7 = 3\times 10^2 + 1\times 10^1 + 7\times 10^0 \\ & 10^2 & 10^1 & 10^0 \end{array}$

Decimal (base 10) system

1	.0 ⁴	10^{3}	10^{2}	10 ¹	10 ⁰	weight
_		3	1	7	9	first number
_		8	0	1	5	second number
	1			1		carry
-	1	1	1	9	4	sum

Decimal (base 10) system

10^{4}	10^{3}	10 ²	10^1	10 ⁰	weight
_	3	1	7	9	first number
Т	8	0	1	5	second number
1			1		carry
1	1	1	9	4	sum

Decimal (base 10) system

10)4	10^{3}	10 ²	10^1	10^{0}	weight
_		3	1	7	9	first number
'		8	0	1	5	second number
1				1		carry
1		1	1	9	4	sum

*
$$0+1=1+0=1 \to S=1, \ C=0$$

Decimal (base 10) system

1	-0^4	10^{3}	10^{2}	10^1	10^{0}	weight
_		3	1	7	9	first number
'		8	0	1	5	second number
	1			1		carry
	1	1	1	9	4	sum

*
$$0 + 1 = 1 + 0 = 1 \rightarrow S = 1, C = 0$$

*
$$1 + 1 = 10 (dec. 2) \rightarrow S = 0, C = 1$$

Decimal (base 10) system

10^{4}	10^{3}	10^{2}	10^1	10 ⁰	weight
L.	3	1	7	9	first number
_	8	0	1	5	second number
1			1		carry
1	1	1	9	4	sum

*
$$0 + 1 = 1 + 0 = 1 \rightarrow S = 1$$
. $C = 0$

*
$$1+1=10$$
 (dec. $2) \rightarrow S=0, \ C=1$

*
$$1 + 1 + 1 = 11 \text{ (dec. 3)} \rightarrow S = 1, C = 1$$

example

	2 ⁴	2^3	2^2	2 ¹	2 ⁰	weight
_		1	0	1	1	first number
_		1	1	1	0	second number
	1	1	1	0	-	carry
	1	1	0	0	1	sum

general procedure 2^{0} weight A_N A_2 A_1 first number + B_N B_2 B_1 B_0 second number C_N $\mathsf{C}_{\mathsf{N}-1}$ C_1 C_0 carry S_N S_2 S_1 S_0 sum

	example						general procedure							
	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	weight			2 ^N		2 ²	2 ¹	2 ⁰	weight
		1	0	1	1	first number	,		A _N		A_2	A ₁	A_0	first number
+	1	1	1	0	second number	+	+	B _N		B ₂	B ₁	B_0	second number	
	1	1	1	0	-	carry		C_N	C_{N-1}		C_1	Co		carry
	1	1	0	0	1	sum	_		S _N		S ₂	S ₁	S ₀	sum

* The rightmost block (corresponding to the LSB) adds two bits A_0 and B_0 ; there is no input carry. This block is called a "half adder."

	example					general procedure								
	24	2 ³	2 ²	2 ¹	20	weight			2 ^N		2 ²	2 ¹	2 ⁰	weight
		1	0			A _N		A_2	A_1	A ₀	first number			
+	1	1	1	0	second number	+	+	B _N		B ₂	B ₁	B ₀	second number	
	1	1	1	0	-	carry		C_N	C_{N-1}		C_1	C ₀		carry
	1	1	0	0	1	sum			S _N		S ₂	S ₁	S ₀	sum

- * The rightmost block (corresponding to the LSB) adds two bits A₀ and B₀; there is no input carry. This block is called a "half adder."
- * Each of the subsequent blocks adds three bits (A_i, B_i, C_{i-1}) and is called a "full adder."

Α	В	C_o	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Α	В	C_o	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Α	В	C _o	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Α	В	C _o	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

$$S = \overline{A}B + A\overline{B} = A \oplus B$$

$$C_o = AB$$

Full adder implementation

В	C_{in}	C_o	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	
0	0	0	1	
0	1	1	0	
1	0	1	0	
1	1	1	1	
	0 0 1 1 0 0	0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0	0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1	0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0

Full adder implementation

Α	В	C_{in}	C_o	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = \overline{A}\,B\,\overline{C}_{in} + A\,\overline{B}\,\overline{C}_{in} + \overline{A}\,\overline{B}\,C_{in} + A\,B\,C_{in}$$

Full adder implementation

Α	В	C_{in}	C_o	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

	C _{in}	B 00	01	11	10
S:	0	0	1	0	1
-	1	1	0	1	0

$$S = \overline{A}\,B\,\overline{C}_{in} + A\,\overline{B}\,\overline{C}_{in} + \overline{A}\,\overline{B}\,C_{in} + A\,B\,C_{in}$$

$$C_o = AB + BC_{in} + AC_{in}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A \cdot B}}$$

$$+ B = \overline{A} \cdot \overline{B}$$

$$Y = \overline{\overline{A}\,\overline{B} \cdot \overline{B}\,\overline{C}\,\overline{\overline{D}} \cdot \overline{\overline{A}}\,\overline{D}}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{A \cdot I}$$

$$Y = \overline{\overline{A}\,\overline{B}\cdot\overline{B}\,\overline{C}\,\overline{D}\cdot\overline{\overline{A}}\,\overline{D}}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

$$Y = \overline{\overline{A}\,\overline{B} \cdot \overline{B}\,\overline{C}\,\overline{\overline{D}} \cdot \overline{\overline{A}}\,\overline{D}}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$A \cdot B = \overline{\overline{A \cdot I}}$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

$$Y = \overline{\overline{A}\,\overline{B} \cdot \overline{B}\,\overline{C}\,\overline{\overline{D}} \cdot \overline{\overline{A}}\,\overline{D}}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$A\cdot B=\overline{\overline{A\cdot B}}$$

$$A + B = \overline{\overline{A} \cdot \overline{}}$$

$$Y = \overline{\overline{A}\,\overline{B}\cdot\overline{B}\,\overline{C}\,\overline{D}\cdot\overline{\overline{A}}\,\overline{D}}$$

$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$A\cdot B=\overline{\overline{A\cdot B}}$$

$$\mathsf{A}+\mathsf{B}=\overline{\overline{\mathsf{A}}\cdot\overline{\mathsf{B}}}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$\mathsf{A}\cdot\mathsf{B}=\overline{\overline{\mathsf{A}\cdot\mathsf{B}}}$$

$$\mathsf{A}+\mathsf{B}=\overline{\overline{\mathsf{A}}\cdot\overline{\mathsf{B}}}$$

$$\overline{A} = \overline{A \cdot A}$$

$$A\cdot B=\overline{\overline{A\cdot B}}$$

$$A+B=\overline{\overline{A}\cdot\overline{B}}$$

Implement Y = A + B + C using only 2-input NAND gates.

Implement Y = A + B + C using only 2-input NAND gates.

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A+B=\overline{\overline{A}\cdot\overline{B}}$$

$$Y = (A + B) + C$$
$$= \overline{\overline{(A + B)} \cdot \overline{C}}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$\mathsf{A}\cdot\mathsf{B}=\overline{\overline{\mathsf{A}\cdot\mathsf{B}}}$$

$$\mathsf{A}+\mathsf{B}=\overline{\overline{\mathsf{A}}\cdot\overline{\mathsf{B}}}$$

Implement Y = A + B + C using only 2-input NAND gates.

$$Y = (A + B) + C$$
$$= \overline{(A + B) \cdot \overline{C}}$$

$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A \cdot B = \overline{A \cdot B}$$

$$A+B=\overline{\overline{A}\cdot\overline{B}}$$

$$Y = (A + B) + C$$
$$= \overline{\overline{(A + B)} \cdot \overline{C}}$$

$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A+B=\overline{\overline{A}\cdot\overline{B}}$$

$$Y = (A + B) + C$$
$$= \overline{(A + B) \cdot \overline{C}}$$
$$= \overline{\overline{A \cdot B} \cdot \overline{C}}$$

$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

$$Y = (A + B) + C$$
$$= \overline{(A + B) \cdot \overline{C}}$$
$$= \overline{\overline{A \cdot \overline{B} \cdot \overline{C}}}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$A\cdot B=\overline{\overline{A\cdot B}}$$

$$A+B=\overline{\overline{A}\cdot\overline{B}}$$

 $Implement \ Y = A + B + C \ using \ only \ 2\text{-input NAND gates}.$

$$Y = (A + B) + C$$
$$= \overline{(A + B) \cdot \overline{C}}$$
$$= \overline{\overline{A \cdot B} \cdot \overline{C}}$$

$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

The NOT, AND, OR operations can be realised by using only NOR gates:

The NOT, AND, OR operations can be realised by using only NOR gates:

NOT

$$\overline{\mathsf{A}} = \overline{\mathsf{A} + \mathsf{A}}$$

The NOT, AND, OR operations can be realised by using only NOR gates:

The NOT, AND, OR operations can be realised by using only NOR gates:

The NOT, AND, OR operations can be realised by using only NOR gates:

Implementation of functions with only NOR (or only NAND) gates is more than a theoretical curiosity. There are chips which provide a "sea of gates" (say, NOR gates) which can be configured by the user (through programming) to implement functions.

$$= \overline{\mathsf{A} + \mathsf{A}}$$

$$\overline{A} = \overline{A + A}$$

$$A + B = \overline{\overline{A + B}}$$

$$A \cdot B = \overline{\overline{A + B}}$$

$$A \cdot B = A +$$

$$Y = \overline{AB + BC\overline{D} + \overline{A}D}$$

$$\overline{A} = \overline{A + A}$$

$$A + B = \overline{\overline{A + B}}$$

$$A \cdot B = \overline{\overline{A + B}}$$

$$A \cdot B = A +$$

Implement $Y=A\,B+B\,C\,\overline{D}+\overline{A}\,D$ using only NOR gates.

$$Y = \overline{AB + BC\overline{D} + \overline{A}D}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} + \mathsf{A}}$$

$$A + B = \overline{A + A}$$

$$\mathsf{A}\cdot\mathsf{B}=\overline{\overline{\mathsf{A}}+\overline{\mathsf{B}}}$$

Implement $Y=A\,B+B\,C\,\overline{D}+\overline{A}\,D$ using only NOR gates.

$$\begin{split} Y &= \overline{\overline{A}\,B + B\,C\,\overline{D} + \overline{A}\,D} \\ &= \overline{\overline{(\overline{A} + \overline{B})} + \overline{(\overline{B} + \overline{C} + D)} + \overline{(A + \overline{D})}} \end{split}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} + \mathsf{A}}$$

$$A + B = \overline{A + B}$$

$$A\cdot B=\overline{\overline{A}+\overline{B}}$$

$$\begin{split} Y &= \overline{\overline{A}\,B + B\,C\,\overline{D} + \overline{A}\,D} \\ &= \overline{\overline{(\overline{A} + \overline{B})} + \overline{(\overline{B} + \overline{C} + D)} + \overline{(A + \overline{D})}} \end{split}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} + \mathsf{A}}$$

$$+B = \overline{A + B}$$

$$A\cdot B=\overline{\overline{A}+\overline{B}}$$

Implement $Y=A\,B+B\,C\,\overline{D}+\overline{A}\,D$ using only NOR gates.

$$\begin{split} Y &= \overline{\overline{A}\,B + B\,C\,\overline{D} + \overline{A}\,D} \\ &= \overline{\overline{(\overline{A} + \overline{B})} + \overline{(\overline{B} + \overline{C} + D)} + \overline{(A + \overline{D})}} \end{split}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} + \mathsf{A}}$$

$$A + B = \overline{\overline{A + B}}$$

$$A\cdot B=\overline{\overline{A}+\overline{B}}$$

$$\begin{split} Y &= \overline{\overline{A\,B + B\,C\,\overline{D} + \overline{A}\,D}} \\ &= \overline{\overline{(\overline{A} + \overline{B})} + \overline{(\overline{B} + \overline{C} + D)} + \overline{(A + \overline{D})}} \end{split}$$

$$\overline{A} = \overline{A + A}$$

$$A + B = \overline{\overline{A + B}}$$

$$A \cdot B = \overline{\overline{A + B}}$$

S1	S0	Z
0	0	10
0	1	11
1	0	12
1	1	13

* A multiplexer or data selector (MUX in short) has N Select lines, 2^N input lines, and it *routes* one of the input lines to the output.

* A multiplexer or data selector (MUX in short) has N Select lines, 2^N input lines, and it *routes* one of the input lines to the output.

- * A multiplexer or data selector (MUX in short) has N Select lines, 2^N input lines, and it *routes* one of the input lines to the output.
- * Conceptually, a MUX may be thought of as 2^N switches. For a given combination of the select inputs, only one of the switches closes (makes contact), and the others are open.

- * A multiplexer or data selector (MUX in short) has N Select lines, 2^N input lines, and it *routes* one of the input lines to the output.
- * Conceptually, a MUX may be thought of as 2^N switches. For a given combination of the select inputs, only one of the switches closes (makes contact), and the others are open.
- * SEQUEL file: mux_test_1.sqproj

* A 4-to-1 MUX can be implemented as,

$$Z = I_0 \overline{S_1} \overline{S_0} + I_1 \overline{S_1} S_0 + I_2 S_1 \overline{S_0} + I_3 S_1 S_0.$$

For a given combination of S_1 and S_0 , only one of the terms survives (the others being 0). For example, with $S_1 = 0$, $S_0 = 1$, we have $Z = I_1$.

- * A 4-to-1 MUX can be implemented as, $Z = I_0 \overline{S_1} \overline{S_0} + I_1 \overline{S_1} S_0 + I_2 S_1 \overline{S_0} + I_3 S_1 S_0$. For a given combination of S_1 and S_0 , only one of the terms survives (the others being 0). For example, with $S_1 = 0$, $S_0 = 1$, we have $Z = I_1$.
- * Multiplexers are available as ICs, e.g., 74151 is an 8-to-1 MUX.

- * A 4-to-1 MUX can be implemented as,
 - $Z = I_0 \overline{S_1} \overline{S_0} + I_1 \overline{S_1} S_0 + I_2 S_1 \overline{S_0} + I_3 S_1 S_0.$

For a given combination of S_1 and S_0 , only one of the terms survives (the others being 0). For example, with $S_1 = 0$, $S_0 = 1$, we have $Z = I_1$.

- * Multiplexers are available as ICs, e.g., 74151 is an 8-to-1 MUX.
- * ICs with arrays of multiplexers (and other digital blocks) are also available. These blocks can be configured ("wired") by the user in a programmable manner to realise the functionality of interest.

Active high and active low inputs/outputs

Active high and active low inputs/outputs

Select inputs are active high.

Select inputs are active low.

* Many digital ICs have an "Enable" (E) pin. If the Enable pin is active, the IC functions as desired; else, it is "disabled," i.e., the outputs are set to some default values.

- * Many digital ICs have an "Enable" (E) pin. If the Enable pin is active, the IC functions as desired; else, it is "disabled," i.e., the outputs are set to some default values.
- * The Enable pin can be active high or active low.

- * Many digital ICs have an "Enable" (E) pin. If the Enable pin is active, the IC functions as desired; else, it is "disabled," i.e., the outputs are set to some default values.
- * The Enable pin can be active high or active low.
- * If the Enable pin is active low, it is denoted by $\overline{\text{Enable}}$ or $\overline{\text{E}}$. When $\overline{\text{E}}=0$, the IC functions normally; else, it is disabled.

Using two 8-to-1 MUXs to make a 16-to-1 MUX

S3	S2	S1	S0	Χ
0	0	0	0	D0
0	0	0	1	D1
0	0	1	0	D2
0	0	1	1	D3
0	1	0	0	D4
0	1	0	1	D5
0	1	1	0	D6
0	1	1	1	D7
1	0	0	0	D8
1	0	0	1	D9
1	0	1	0	D10
1	0	1	1	D11
1	1	0	0	D12
1	1	0	1	D13
1	1	1	0	D14
1	1	1	1	D15

 $\mbox{Implement } {\it X} = {\it A}\, \overline{\it B}\, \overline{\it C}\, {\it D} + \overline{\it A}\, {\it B}\, \overline{\it C}\, \overline{\it D} \mbox{ using a 16-to-1 MUX}.$

Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Α	В	C	D	Χ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

* When $A\overline{B}\overline{C}D=1$, we want X=1. $A\overline{B}\overline{C}D=1 \rightarrow A=1$, B=0, C=0, D=1, i.e., the input line corresponding to 1001 (I9) gets selected. \rightarrow Make I9 = 1.

Α	В	С	D	Χ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	Λ

- * When $A\overline{B} \overline{C} D = 1$, we want X = 1. $A\overline{B} \overline{C} D = 1 \rightarrow A = 1$, B = 0, C = 0, D = 1, i.e., the input line corresponding to 1001 (I9) gets selected.
 - \rightarrow Make I9 = 1.

Α	В	С	D	Χ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
-1	-1	-1	-1	_

- * When $A\overline{B}\overline{C}D=1$, we want X=1. $A\overline{B}\overline{C}D=1 \rightarrow A=1$, B=0, C=0, D=1, i.e., the input line corresponding to 1001 (19) gets selected. \rightarrow Make 19 = 1.
- * Similarly, when $\overline{A} B \overline{C} \overline{D} = 1$, we want X = 1. \rightarrow Make I4 = 1.

Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	Λ

- * When $A\overline{B}\overline{C}D=1$, we want X=1. $A\overline{B}\overline{C}D=1 \rightarrow A=1$, B=0, C=0, D=1, i.e., the input line corresponding to 1001 (19) gets selected. \rightarrow Make 19=1.
- * Similarly, when $\overline{A} B \overline{C} \overline{D} = 1$, we want X = 1. \rightarrow Make I4 = 1.

Α	В	С	D	Χ	•
0	0	0	0	0	•
0	0	0	1	0	
0	0	1	0	0	-10
0	0	1	1	0	— I1 — I2
0	1	0	0	1	— <u>13</u>
0	1	0	1	0	1 — 14
0	1	1	0	0	<u>16</u>
0	1	1	1	0	— I8 WOX 2
1	0	0	0	0	1 - 19
1	0	0	1	1	- I11 - I12
1	0	1	0	0	— I13
1	0	1	1	0	— 114 — 115
1	1	0	0	0	S3 S2 S1 S0
1	1	0	1	0	IIII ABCD
1	1	1	0	0	
1	1	1	1	Λ	-

- * When $A\overline{B}\overline{C}D=1$, we want X=1. $A\overline{B}\overline{C}D=1 \rightarrow A=1$, B=0, C=0, D=1, i.e., the input line corresponding to 1001 (19) gets selected. \rightarrow Make 19=1.
- * Similarly, when $\overline{A} B \overline{C} \overline{D} = 1$, we want X = 1. \rightarrow Make 14 = 1.
- * In all other cases, X should be 0.
 → connect all other pins to 0.

Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- * When $A\overline{B}\overline{C}D=1$, we want X=1. $A\overline{B}\overline{C}D=1 \rightarrow A=1$, B=0, C=0, D=1, i.e., the input line corresponding to 1001 (I9) gets selected.
- * Similarly, when $\overline{A} B \overline{C} \overline{D} = 1$, we want X = 1. \rightarrow Make 14 = 1.
 - , make 11 1.

 \rightarrow Make 19 = 1.

* In all other cases, X should be 0.
 → connect all other pins to 0.

Α	В	C	D	Χ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- * When $A\overline{B}\overline{C}D=1$, we want X=1. $A\overline{B}\overline{C}D=1 \rightarrow A=1$, B=0, C=0, D=1, i.e., the input line corresponding to 1001 (19) gets selected. \rightarrow Make 19=1.
- * Similarly, when $\overline{A} B \overline{C} \overline{D} = 1$, we want X = 1. \rightarrow Make 14 = 1.
- * In all other cases, X should be 0.
 → connect all other pins to 0.

I2 to X(0010), etc.

* In this example, since the truth table is organized in terms of ABCD, with A as the MSB and D as the LSB (the same order in which A, B, C, D are connected to the select pins), the design is simple: connect I0 to X(0000), I1 to X(0001),

Α	В	С	Χ
0	0	0	0
0	0	1	0
0	1	0	D
0	1	1	0
1	0	0	D
1	0	1	0
1	1	0	0
1	1	1	0

Α	В	С	Χ
0	0	0	0
0	0	1	0
0	1	0	D
0	1	1	0
1	0	0	D
1	0	1	0
1	1	0	0
1	1	1	0

* When $A\overline{B}\overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D.

 \rightarrow connect the input line corresponding to 100 (I4) to $\it D.$

Α	В	С	Χ
0	0	0	0
0	0	1	0
0	1	0	D
0	1	1	0
1	0	0	D
1	0	1	0
1	1	0	0
1	1	1	0

* When $A\overline{B}\overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D.

 \rightarrow connect the input line corresponding to 100 (I4) to $\emph{D}.$

Α	В	С	Χ
0	0	0	0
0	0	1	0
0	1	0	D
0	1	1	0
1	0	0	D
1	0	1	0
1	1	0	0
1	1	1	0

- * When $A\overline{B}\overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.
- * When $\overline{A}B\overline{C} = 1$, i.e., A = 0, B = 1, C = 0, we have $X = \overline{D}$. \rightarrow connect the input line corresponding to 010 (I2) to \overline{D} .

Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	D
0	1	1	0
1	0	0	D
1	0	1	0
1	1	0	0
1	1	1	0

- * When $A\overline{B}\overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.
- * When $\overline{A}B\overline{C} = 1$, i.e., A = 0, B = 1, C = 0, we have $X = \overline{D}$. \rightarrow connect the input line corresponding to 010 (I2) to \overline{D} .

Α	В	C	Χ				
0	0	0	0		10		
0	0	1	0	_	- I1		
0	1	0	D	<u>D</u>	12 13		
0	1	1	0	D.	—I4	MUX	Z
1	0	0	D	•	— 15		
1	0	1	0		16		
1	1	0	0		1 7	S2 S1 S0	
1	1	1	0			A B C	

- * When $A\overline{B}\overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.
- * When $\overline{A}B\overline{C} = 1$, i.e., A = 0, B = 1, C = 0, we have $X = \overline{D}$. \rightarrow connect the input line corresponding to 010 (I2) to \overline{D} .
- * In all other cases, X should be 0.
 → connect all other pins to 0.

Α	В	С	Χ
0	0	0	0
0	0	1	0
0	1	0	D
0	1	1	0
1	0	0	D
1	0	1	0
1	1	0	0
1	1	1	0

- * When $A\overline{B}\overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.
- * When $\overline{A}B\overline{C}=1$, i.e., A=0, B=1, C=0, we have $X=\overline{D}$. \rightarrow connect the input line corresponding to 010 (I2) to \overline{D} .
- * In all other cases, X should be 0.
 → connect all other pins to 0.

Α	В	С	Χ				
0	0	0	0		0 — 10		
0	0	1	0		0 - 11		
0	1	0	D		\overline{D} $ 12$ 0 $ 13$		
0	1	1	0		D — 14	MUX	Ζ
1	0	0	D	•	0 15		
1	0	1	0		0 — 16		
1	1	0	0		0 — 17	S2 S1 S0	
1	1	1	0			A B C	

- * When $A\overline{B}\overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.
- * When $\overline{A}B\overline{C}=1$, i.e., A=0, B=1, C=0, we have $X=\overline{D}$. \rightarrow connect the input line corresponding to 010 (I2) to \overline{D} .
- * In all other cases, X should be 0.
 → connect all other pins to 0.
- * Home work: Implement the same function (X) with S2 = B, S1 = C, S0 = D.

	D	
1	0	
1	1	
	0	
	1	
	0	
ı	1	
	0	
	1	
ı	0	
ı	1	
	0	
	1	
١	0	
ı	1	
	0	
	1	

Х
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
0

Α	В	C	D	Χ
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Α	В	C	D	Χ
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Α	В	C	D	Χ
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

* When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.

Α	В	С	D	Χ
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

* When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.

Α	В	С	D	Х
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

* When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.

Α	В	C	D	Х
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- * When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.
- * When ABC = 001, $X = 1 \rightarrow 11 = 1$, and so on.

Α	В	C	D	Х
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- * When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.
- * When ABC = 001, $X = 1 \rightarrow 11 = 1$, and so on.

Α	В	C	D	Χ
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- * When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.
- * When ABC = 001, $X = 1 \rightarrow 11 = 1$, and so on.

Α	В	C	D	Χ
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

* When
$$ABC = 000$$
, $X = \overline{D} \rightarrow 10 = \overline{D}$.

* When
$$ABC = 001$$
, $X = 1 \rightarrow 11 = 1$, and so on.

* Home work: repeat with
$$S2 = B$$
, $S1 = C$, $S0 = D$.

Demultiplexers

S2	S1	S0	00	01	02	О3	O4	O5	O6	07
0	0	0	I	0	0	0	0	0	0	0
0	0	1	0	I	0	0	0	0	0	0
0	1	0	0	0	I	0	0	0	0	0
0	1	1	0	0	0	I	0	0	0	0
1	0	0	0	0	0	0	I	0	0	0
1	0	1	0	0	0	0	0	I	0	0
1	1	0	0	0	0	0	0	0	I	0
1	1	1	0	0	0	0	0	0	0	Ι

Demultiplexers

S2	S1	S0	O0	01	02	О3	O4	O5	O6	07
0	0	0	ı	0	0	0	0	0	0	0
0	0	1	0	I	0	0	0	0	0	0
0	1	0	0	0	I	0	0	0	0	0
0	1	1	0	0	0	I	0	0	0	0
1	0	0	0	0	0	0	I	0	0	0
1	0	1	0	0	0	0	0	ı	0	0
1	1	0	0	0	0	0	0	0	I	0
1	1	1	0	0	0	0	0	0	0	I

* A demultiplexer takes a single input (I) and routes it to one of the output lines (O0, O1, \cdots).

Demultiplexers

S2	S1	S0	00	01	02	О3	O4	O5	O6	07
0	0	0	I	0	0	0	0	0	0	0
0	0	1	0	I	0	0	0	0	0	0
0	1	0	0	0	I	0	0	0	0	0
0	1	1	0	0	0	I	0	0	0	0
1	0	0	0	0	0	0	I	0	0	0
1	0	1	0	0	0	0	0	ı	0	0
1	1	0	0	0	0	0	0	0	I	0
1	1	1	0	0	0	0	0	0	0	Ι

- * A demultiplexer takes a *single* input (I) and *routes* it to one of the output lines $(00, 01, \cdots)$.
- * For N Select inputs (S0, S1, \cdots), the number of output lines is 2^N .

Demultiplexers

S2	S1	S0	O0	01	02	О3	O4	O5	O6	07
0	0	0	I	0	0	0	0	0	0	0
0	0	1	0	I	0	0	0	0	0	0
0	1	0	0	0	I	0	0	0	0	0
0	1	1	0	0	0	I	0	0	0	0
1	0	0	0	0	0	0	I	0	0	0
1	0	1	0	0	0	0	0	I	0	0
1	1	0	0	0	0	0	0	0	I	0
1	1	1	0	0	0	0	0	0	0	Ι

- * A demultiplexer takes a *single* input (I) and *routes* it to one of the output lines $(00, 01, \cdots)$.
- * For N Select inputs (S0, S1, \cdots), the number of output lines is 2^N .
- * SEQUEL file: demux_test_1.sqproj

Demultiplexer: gate-level diagram

→ O0

• O1

→ O2

• O3

→ O4

→ O5

→ O6

→ 07

S2 S1 S0

* For each input combination, an associated bit pattern appears at the output.

		• •		0.4				0-	0.5	
A2	A1	A0	O0	01	O2	О3	04	O5	O6	07
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

* Example:

Decimal 75

* Example:

Decimal 75 Binary 1001011

* Example:

Decimal 75 Binary 1001011 BCD 0111 0101

* Example:

Decimal 75 Binary 1001011 BCD 0111 0101

* BCD coding is commonly used to display numbers in electronic systems.

* Example:

Decimal 75
Binary 1001011
BCD 0111 0101

* BCD coding is commonly used to display numbers in electronic systems.

* Example:

Decimal 75
Binary 1001011
BCD 0111 0101

* BCD coding is commonly used to display numbers in electronic systems.

* In some electronic systems (e.g., calculators), all computations are performed in BCD.

7-segment display

BCD-to-7 segment decoder

BCD-to-7 segment decoder

* The resistors serve to limit the diode current. For $V_{CC} = 5 V$, $V_D = 2 V$, and $I_D = 10 \text{ mA}$, $R = 300 \Omega$.

BCD-to-7 segment decoder

- * The resistors serve to limit the diode current. For $V_{CC} = 5 V$, $V_D = 2 V$, and $I_D = 10 \text{ mA}$, $R = 300 \Omega$.
- Home work: Write the truth table for \$\overline{c}\$ (in terms of D, C, B, A). Obtain a minimized expression for \$\overline{c}\$ using a K map.

BCD-to-decimal decoder

A_3	A_2	A_1	A_0	Active output
0	0	0	0	$\overline{O_0}$
0	0	0	1	$\overline{O_1}$
0	0	1	0	$\overline{O_2}$
0	0	1	1	$\overline{O_3}$
0	1	0	0	$\overline{O_4}$
0	1	0	1	$\overline{O_5}$
0	1	1	0	$\overline{O_6}$
0	1	1	1	$\overline{O_7}$
1	0	0	0	O ₈
1	0	0	1	$\overline{O_9}$
1	0	1	0	none
1	0	1	1	none
1	1	0	0	none
1	1	0	1	none
1	1	1	0	none
1	1	1	1	none

BCD-to-decimal decoder

A_3	A_2	A_1	A_0	Active output
0	0	0	0	$\overline{O_0}$
0	0	0	1	$\overline{O_1}$
0	0	1	0	$\overline{O_2}$
0	0	1	1	$\overline{O_3}$
0	1	0	0	$\overline{O_4}$
0	1	0	1	$\overline{O_5}$
0	1	1	0	$\overline{O_6}$
0	1	1	1	$\overline{O_7}$
1	0	0	0	O ₈
1	0	0	1	$\overline{O_9}$
1	0	1	0	none
1	0	1	1	none
1	1	0	0	none
1	1	0	1	none
1	1	1	0	none
1	1	1	1	none

* Only one input line is assumed to be active. The binary number corresponding to the active input line appears at the output pins.

- * Only one input line is assumed to be active. The binary number corresponding to the active input line appears at the output pins.
- * The N output lines can represent 2^N binary numbers, each corresponding to one of the M input lines, i.e., we can have $M = 2^N$. Some encoders have $M < 2^N$.

- * Only one input line is assumed to be active. The binary number corresponding to the active input line appears at the output pins.
- * The N output lines can represent 2^N binary numbers, each corresponding to one of the M input lines, i.e., we can have $M = 2^N$. Some encoders have $M < 2^N$.
- * As an example, for N=3, we can have a maximum of $2^3=8$ input lines.

A0 A1 A2 A3 A4 A5 A6 A7 O2 O1 O0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>											
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0	A0	A1	A2	А3	A4	A5	A6	A7	02	01	00
0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0	1	0	0	0	0	0	0	0	0	0	0
0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0	0	1	0	0	0	0	0	0	0	0	1
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0	0	0	1	0	0	0	0	0	0	1	0
0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0	0	0	0	1	0	0	0	0	0	1	1
0 0 0 0 0 0 1 0 1 1 0	0	0	0	0	1	0	0	0	1	0	0
	0	0	0	0	0	1	0	0	1	0	1
0 0 0 0 0 0 0 1 1 1 1	0	0	0	0	0	0	1	0	1	1	0
	0	0	0	0	0	0	0	1	1	1	1

A0	A1	A2	А3	A4	A5	A6	Α7	O2	01	00
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

* Note that only one of the input lines is assumed to be active.

A0	A1	A2	А3	A4	A5	A6	Α7	02	01	00
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

- * Note that only one of the input lines is assumed to be active.
- * What if two input lines become simultaneously active?
 - → There are "priority encoders" which assign a *priority* to each of the input lines.

74147 decimal-to-BCD priority encoder

$\overline{A_1}$	$\overline{A_2}$	$\overline{A_3}$	$\overline{A_{4}}$	$\overline{A_5}$	$\overline{A_6}$	$\overline{A_7}$	$\overline{A_8}$	$\overline{A_9}$	$\overline{O_3}$	$\overline{O_2}$	$\overline{O_1}$	$\overline{O_0}$
1	1	1	1	1	1	1	1	1	1	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	1	1	0
Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	1	0	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	0	1	1	1	0	0	0
Χ	Χ	Χ	Χ	Χ	0	1	1	1	1	0	0	1
Χ	Χ	Χ	Χ	0	1	1	1	1	1	0	1	0
Χ	Χ	Χ	0	1	1	1	1	1	1	0	1	1
Χ	Χ	0	1	1	1	1	1	1	1	1	0	0
Χ	0	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0

74147 decimal-to-BCD priority encoder

$\overline{A_1}$	$\overline{A_2}$	$\overline{A_3}$	$\overline{A_4}$	$\overline{A_{5}}$	$\overline{A_6}$	$\overline{A_7}$	$\overline{A_8}$	$\overline{A_9}$	O ₃	$\overline{O_2}$	$\overline{O_1}$	$\overline{O_0}$
1	1	1	1	1	1	1	1	1	1	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	1	1	0
Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	1	0	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	0	1	1	1	0	0	0
Χ	Χ	Χ	Χ	Χ	0	1	1	1	1	0	0	1
Χ	Χ	Χ	Χ	0	1	1	1	1	1	0	1	0
Χ	Χ	Χ	0	1	1	1	1	1	1	0	1	1
Χ	Χ	0	1	1	1	1	1	1	1	1	0	0
Χ	0	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0

* Note that the higher input lines get priority over the lower ones. For example, $\overline{A_7}$ gets priority over $\overline{A_1}$, $\overline{A_2}$, $\overline{A_3}$, $\overline{A_4}$, $\overline{A_5}$, $\overline{A_6}$. If $\overline{A_7}$ is active (low), the binary output is 1000 (i.e., 0111 inverted bit-by-bit) which corresponds to decimal 7, *irrespective of* $\overline{A_1}$, $\overline{A_2}$, $\overline{A_3}$, $\overline{A_4}$, $\overline{A_5}$, $\overline{A_6}$.

74147 decimal-to-BCD priority encoder

$\overline{A_1}$	$\overline{A_2}$	$\overline{A_3}$	$\overline{A_{4}}$	$\overline{A_{5}}$			$\overline{A_8}$	$\overline{A_9}$	$\overline{O_3}$	$\overline{O_2}$	$\overline{O_1}$	$\overline{O_0}$
1	1	1	1	1	1	1	1	1	1	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	1	1	0
Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	1	0	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	0	1	1	1	0	0	0
Χ	Χ	Χ	Χ	Χ	0	1	1	1	1	0	0	1
Χ	Χ	Χ	Χ	0	1	1	1	1	1	0	1	0
Χ	Χ	Χ	0	1	1	1	1	1	1	0	1	1
Χ	Χ	0	1	1	1	1	1	1	1	1	0	0
Χ	0	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0

- * Note that the higher input lines get priority over the lower ones. For example, $\overline{A_7}$ gets priority over $\overline{A_1}$, $\overline{A_2}$, $\overline{A_3}$, $\overline{A_4}$, $\overline{A_5}$, $\overline{A_6}$. If $\overline{A_7}$ is active (low), the binary output is 1000 (i.e., 0111 inverted bit-by-bit) which corresponds to decimal 7, *irrespective of* $\overline{A_1}$, $\overline{A_2}$, $\overline{A_3}$, $\overline{A_4}$, $\overline{A_5}$, $\overline{A_6}$.
- * The lower input lines are therefore shown as "don't care" (X) conditions.