北京航空航天大学

2009~2010 学年第 一 学期

电子线路 II 期末考试试卷 (2010 年 1 月 14 日)

班级:	; 学号:	; 姓名:	; 成绩	į:
一、填空(每题 2				
1. (2分)常用中源	技广播波段的波长范围为	187m─560m,那么	、其频率范围为	; 为了
避免邻台干扰,两	万个相邻电台载频之间至少	>要相差 10kHz,	耶么在此波段范 围	国内最多可以容
纳个电台。				
2. (2分) 在题图	11所示并联谐振回路中,	电感的Q值为20	00,电感量为 10	μH,电容值为
10pF,电容器的拉	员耗可以忽略,则该回路:	通频带的宽度 Δ f	=; 要使	 美 通频带扩大
到 4 ∆ f,可以采月	用的方法有 $C = L$ (Q)	°	$R_s \bigoplus_{-1}^{+1} R_1 $	
	题图 1		题图 2	
3. (2分)题图 2	2 中电阻网络的噪声系数分	勺	_, 其中 V_s 、 R_s	_s 为外加信号源
电压及其内阻, I	R_1, R_2 均为有噪电阻。			
4. (2分)在超外差	差广播收音机中,中频 f_I	$= f_L - f_S = 4657$	kHz,当收到频率	$f_S = 550kHz$
的电台时,听到频	顶率为 1480kHz 的强电	台播音,则意味着	₌₌₌₌₌	干扰;当收
到频率 $f_s = 1480$)kHz 的电台时,听到频率	区为 740kHz 的	强电台播音,则意	意味着出现了
	扰。		510Ω	V _{cc}
5. (2分)题图3	3 所示	151	$PF \qquad 15k\Omega \qquad 1500$	
振荡器类型为	,	П		2.2 <i>PF</i>
振荡频率为	•	$ \begin{array}{c} \underline{4} \\ \underline{3}.3 \\ 5.3 \\ 57 \mu H \end{array} $	BPF	v _o = 2.2PF

题图3

- 二、选择题(每题2分,共10分)
- 1. 峰值包络检波器在解调高频等幅波时,其低通滤波器的输出电压为。
 - (A) 正弦波电压 (B) 直流电压 (C) 余弦脉冲
- (D) 零电压
- 2. 根据调频波的特性, 当单音频调制信号的振幅和频率均增大一倍时, 则调频波的有效带
 - (A)减小一倍 (B)增大一倍 (C)不变 (D)增大两倍

- 3. 若非线性电路的输出——输入特性表示为下列幂级数 $v_0(t) = a_0 + a_2 v_i^2 + a_6 v_i^6$, 若输 入信号 $v_i(t) = (\sin 2\pi \times 10^5 t + \sin 5\pi \times 10^5 t)V$, 则输出电压 $v_0(t)$ 中含有下述哪些频率分 量? __

 - (A) 50kHz、150kHz、350kHz (B) 350kHz、1050kHz、200kHz

 - (C) 100kHz、80kHz、1500kHz (D) 300kHz、850kHz、1250kHz
- 4. 判断图示电路是否可能产生正弦波振荡 (图中谐振回路的交流等效电感4毫亨, C_B 、 C_C 、 C_E 对交流短路.)
- (A)都能振荡 (B)都不能振荡 (C)a能振荡 (D)b能振荡

题图4(b)

- 5. 高频功率放大器一般工作在丙类工作状态,它的效率为。
- (A) 50% (B) 78.5% (C) 与导通角和电压利用系数有关 (D) 89.7%
- 三、简答题(每题4分,共24分)
- 1. 在无线电通信中为什么要进行调制解调?
- 2. 为什么晶体管在高频工作时要考虑单向化问题,而在低频工作时,可不必考虑?

- 3. 为什么在振荡电路中,晶体管大都用固定偏置与自偏置的混合偏置电路?在通常条件下 反馈型振荡器的振荡频率与其振荡回路的自然谐振频率是否一致?为什么?
- 4. *PLL* 的频率特性为什么不等于环路滤波器的频率特性? 在 *PLL* 中低通滤波器的作用是什么?
- 5. 为什么振荡电路必须满足平衡条件、起振条件和稳定条件? 试从振荡的物理过程来说明 这三个条件的含义。
- 6. 试说出两种频率合成的方法,并说明频率合成器的主要指标有哪些?

四、(16分) 调频接收机方框图如图 5 (a),中频为 10MHZ,本振频率 $f_L > f_C$,其鉴频特性如图 5 (b)所示,现输入一个电压为 $5 \mu V$ (有效值),载波频率为 100MHZ、调制频率 F=5KHZ、调制指数 m=5 的单音余弦调频信号。

- 1) 写出输入电压*Us*(t)的表达式;
- 1. $u(t) = 52\cos\sqrt{2} (2\pi \times 10 \ t + 5\sin 10\pi \times 10 \ t)$
- 2) 接收机必须的频带宽度为多少; 2、BS = $2(m+1)F = 2(5+1) \times 5 = 60$ (KHz)
- 3) 画出鉴频器输出电压的波形图; (标出最大值)
- 4) 若鉴频特性不变, m=10, 画出鉴频器输出电压的波形。

五、(12分)一阶环路的输入信号为

$$v_i(t) = V_{im} \sin(\omega_{i0}t + \frac{\Delta\omega}{\Omega}\cos\Omega t) = V_{im} \sin(\omega_{i0}t + m_F\cos\Omega t) \quad (V)$$

当其接入环路的瞬间,输出信号(压控振荡器振荡信号)为:

$$v_{o}(t) = V_{om} \cos \omega_{o0} t$$
 (V)

求: (1) 环路的起始频差;

- (2) 环路的起始相差;
- (3) 环路的稳态相差;
- (4) 锁定后环路输出电压表示式。
- 六、(16分)题图 6(a)所示为谐振功率放大器的电路图。其中,电容 C_0 为旁路电容, R_1 为产生自偏压的电阻,RFC为高频扼流圈, R_L 为负载电阻,LC 回路谐振于输入信号 $v_i(t)$ 的频率 f_c 。若晶体管的转移特性如题图 6(b)所示,输入信号 $v_i(t)=V_{im}\cos 2\pi f_c t$ 。已知晶体管集电极电流余弦脉冲的峰值为 30mA,流通角为 60^o 。
 - (1)试计算自偏压 V_B 的值;
 - (2)电阻 R_1 的值;
 - (3)输入电压的振幅 V_{im}
 - (4)输出电压 $v_0(t)$ 中频率为 f_c 分量的振幅(假定 $R_L=1K\Omega$)。

$$\alpha_0(60^\circ) = 0.218, \alpha_1(60^\circ) = 0.391$$

4-17. 解:

已知:
$$I_{cm} = gV_{im}(1-\cos\theta) = 20mA$$
, $g = 10mA/V$, $\cos\theta = \cos 60^\circ = \frac{1}{2}$

所以:
$$V_{im} = \frac{I_{cm}}{g(1-\cos\theta)} = \frac{20}{10(1-\cos60^\circ)} = 4$$
 (V)

因为:
$$\theta = \arccos \frac{V_{th} - V_{BB}}{V_{im}} = \arccos \frac{V_{th} - (-V_B)}{V_{im}}$$

所以:
$$V_B = V_{im} \cos \theta - V_{th} = 1$$
 (V)

晶体管集电极中的直流分量为:

$$I_0 = I_{cm} \times \alpha_0 (60^\circ) \approx 20 \times 0.218 = 4.36 \quad (mA)$$

则有:
$$I_{c0} \times R_1 = V_B \Rightarrow R_1 = \frac{V_B}{I_{c0}} = \frac{1}{4.36} \times 10^3 = 229.36$$
 (Ω)

晶体管集电极电流中基波(频率为 f。)的幅值:

$$I_{c1} = I_{cm} \times \alpha_1(60^\circ) \approx 20 \times 0.391 = 7.82$$
 (mA)

输出电压 $v_o(t)$ 中频率为 f_c 分量的振幅:

$$V_{f_{cm}} = I_{c1}R_L = 7.82 \times 10^{-3} \times 1 \times 10^3 = 7.82$$
 (V)

注:因为负载为并联谐振回路,谐振频率为 f_c ,故对于频率为 f_c 的信号而言,负载为一纯阻 R_L 。

- 七、(12分) 题图 7 是一个超外差式接收机方框图,在解调器前是八级线性系统的级联。已 知两个射频放大器的噪声系数为 2dB 和 3.5dB,功率增益为 8dB 和 14dB,变频器的噪声系数为 8dB,插入损耗为 68dB,两个中频放大器的放大倍数为 18dB 和 50dB,噪声系数为 15dB 和 17dB,两个射频滤波器的带宽均为 5MHz,插入损耗为 1dB,中频滤波器的带宽均为 200kHz,插入损耗为 20dB。
 - 1) 求该接收机前端的噪声系数;
 - 2) 如果解调器需要最小 8.7 dB 的信噪比才能正常解调, 求接收机的灵敏度;
 - 3) 简要说明框图中各模块的功能;

