

Redes Neurais Artificiais

Introdução à Redes Neurais

Prof. Filipe C Fernandes

040602182@prof.unama.br

GitHub: FilipeCFernandes

Apresentação do professor

- Nome: dependente de software
- E-mail: <u>040602182@prof.unama.br</u>
- Laftes: https://lattes.cnpq.br/2458124137052507

- Graduado em Engenharia Elétrica
- Mestrado em Eng. Elétrica UFPA
- Doutorando em Telecomunicações UFPA

Ementa

- Introdução a Redes Neurais Artificiais. Arquiteturas das Redes Neurais Artificiais.
- Algoritmos de Treinamento. Perceptron. Regra Delta e Adaline. Rede Múltiplas Camadas. Redes de Funções de Base Radial.
- Redes de Hopfield. Rede Neurais Crescentes. Deep Neural Network.
 Redes de Kohonen.
- Família ART. Ensemble.

Conteúdos de aprendizagem:

- Unidade 1:
 - Rede Adaline e a regra Delta
 - Arquitetura das Redes Neurais
 - Perceptron
 - Perceptron Multicamadas

- Unidade 2:
 - Redes RBF
 - Redes de Hopfield

- Redes ART
- Unidade 3:
 - Redes Neurais de Kohonen
 - Redes Neurais Crescentes

- Unidade 4:
 - Bagging
 - Boosting
 - Stacking

Informações Gerais

- Dia e horário
 - Terça 08h00 às 10h40
- Data de início: 22/06/2025
- Data de término 17/12/2025

Avaliações

- Av 1 09/09
 - Prova: 10,0 pts
 - Trabalho: 10,0 pts
 - Av1 = Prova * 0.8 + Trabalho * 0.2
- Av 2 02/12
 - Prova: 10,0 pts
 - Av2 = Prova
- 2° Chamada 09/12
- Prova Final 16/12

Bibliografia

O que torna as máquinas capazes de aprender?

Boas-vindas à disciplina de Redes Neurais Artificiais

- As Redes Neurais Artificiais representam uma das áreas mais fascinantes e revolucionárias da computação moderna, inspiradas no funcionamento do cérebro humano.
- Estamos vivendo a era da inteligência artificial , onde sistemas computacionais são capazes de aprender padrões, tomar decisões e resolver problemas complexos.
- Nesta disciplina, exploraremos desde os fundamentos teóricos até as aplicações práticas que estão transformando diversos setores da sociedade.
- Ao final do curso, você será capaz de compreender, implementar e aplicar diferentes arquiteturas de redes neurais para solucionar problemas reais.

Como o cérebro processa informações de forma distribuída?

Especialização e cooperação entre regiões cerebrais

- O cérebro humano possui regiões especializadas que processam diferentes tipos de informação de forma paralela e coordenada.
- Cada área cerebral atua como um "processador especializado", similar às camadas especializadas em redes neurais modernas.
- A comunicação entre diferentes regiões permite o processamento de informações complexas através de conexões hierárquicas .

Inspiração para Redes Neurais:

- **Processamento Distribuído:** Múltiplas camadas especializadas
- **Hierarquia de Características:** Das simples às complexas
- **Especialização Funcional:** CNNs para visão, RNNs para sequências

Da biologia à computação: uma analogia poderosa

- O neurônio biológico é a célula fundamental do sistema nervoso, responsável por receber, processar e transmitir informações através de impulsos elétricos.
- O neurônio artificial é uma abstração matemática que simula o comportamento básico do neurônio biológico: recebe entradas, processa-as e produz uma saída.
 - Assim como o cérebro humano possui bilhões de neurônios interconectados, as redes neurais artificiais são compostas por múltiplos neurônios artificiais organizados em camadas.

Neurônio Biológico

Neurônio Artificial

A capacidade de **aprendizado** é o ponto central da analogia: assim como o cérebro aprende com experiências, as redes neurais artificiais aprendem com dados.

Exemplo de Rede Neural Artificial

Por que só agora as Redes Neurais se tornaram tão poderosas?

Uma jornada de altos e baixos até o sucesso atual

As Redes Neurais não são uma tecnologia nova. Sua história começa na década de 1940, mas enfrentou períodos de grande entusiasmo seguidos por "invernos da IA".

▲ Limitações computacionais e teóricas impediram avanços significativos por décadas, levando a períodos de descrença e redução de investimentos.

A partir de 2010, três fatores convergiram para impulsionar o renascimento e o boom atual das Redes Neurais:

1943

McCulloch e Pitts propõem o primeiro modelo matemático d

1958

Frank Rosenblatt inventa o Perceptron

1969

Minsky e Papert publicam "Perceptrons", expondo limitações

1986

Algoritmo de Backpropagation por

2012

AlexNet vence competição ImageNet, marcando o início da revolução do Deep Learning

Onde as Redes Neurais já estão transformando nossas vidas?

Aplicações revolucionárias em diversos setores

Visão Computacional: Reconhecimento facial, detecção de objetos, diagnóstico médico por imagem e carros autônomos.

Processamento de Linguagem Natural:

Assistentes virtuais, tradução automática, análise de sentimentos e geração de texto.

Carros autônomos: uma das aplicações mais promissoras de Redes Neurais

Como as máquinas 'aprendem' sem serem explicitamente programadas?

Paradigma do Aprendizado de Máquina

- Na programação tradicional , definimos regras explícitas (if/else, loops) para que o computador execute tarefas específicas.
- No aprendizado de máquina , fornecemos exemplos (dados) e respostas esperadas, permitindo que o sistema descubra os padrões automaticamente.

Processo de Aprendizado da Rede Neural

Quais são os 'blocos de construção' das Redes Neurais modernas?

Arquiteturas fundamentais

O Perceptron é o bloco básico, capaz de classificar dados linearmente separáveis.

Redes Feedforward (MLP)

Organização em camadas sequenciais para classificação e regressão.

Redes Convolucionais (CNN)

Especializadas em processamento de imagens com filtros para detectar padrões.

Redes Recorrentes (RNN)

Conexões cíclicas que permitem "memória" para sequências temporais.

Quais ferramentas nos permitem construir e treinar Redes Neurais?

Frameworks e bibliotecas para desenvolvimento prático

TensorFlow

Biblioteca de código aberto para aprendizado de máquina desenvolvida pelo Google. Ideal para pesquisa e produção.

PyTorch

Framework flexível e dinâmico desenvolvido pelo Facebook. Preferido por pesquisadores pela facilidade de depuração.

В

Keras

API de alto nível que roda sobre o TensorFlow. Fácil de usar e ideal para prototipagem rápida.

Ambientes de Desenvolvimento

Jupyter Notebooks, Google Colab e IDEs como PyCharm facilitam o desenvolvimento e experimentação.

Qual caminho percorreremos nesta disciplina?

Uma progressão estruturada do básico ao avançado

Fundamentos Teóricos

Perceptron, funções de ativação, algoritmo de backpropagation e conceitos básicos de aprendizado supervisionado.

Arquiteturas Clássicas

Redes multicamadas (MLP), redes RBF, redes de Hopfield e suas aplicações práticas.

Aprendizado Não-Supervisionado

Redes de Kohonen (SOM), mapas auto-organizáveis e técnicas de clustering neural.

Técnicas Avançadas

Métodos Ensemble, Bagging, Boosting e combinação de múltiplos modelos para melhor desempenho.