Computation 1: Find a number z so that $z^2 = i$. Write it in the form z = x + iy.

Solution: We wish to find a number z such that

$$(x+iy)^2 = i.$$

So $x^2 - y^2 = 0$ and 2xy = 1. Thus we have $x = y = \pm \frac{\sqrt{2}}{2}$ and hence

$$z = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, \quad z = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}.$$

Exercise 1: Stein Shakarchi 3,4,5,7,23,24

3. With $\omega = se^{i\phi}$, where $s \geq 0$ and $\phi \in \mathbb{R}$, solve the equation $z^n = \omega$ in \mathbb{C} where n is a natural number. How many solutions are there?

Solution: Write z as $re^{i\theta}$ where $r \geq 0$ and $\theta \in \mathbb{R}$. Now,

$$r^n e^{ni\theta} = se^{i\phi}$$

so we have that $r = s^{1/n}$ and $\theta = \phi/n$. Uhh, what's the number of soln here.

4. Show that it is impossible to define a total ordering on \mathbb{C} .

Solution: Assume such a relation, \succ , exists. Now, consider that $i \succ 0$. Furthermore, multiplying by i, we see that $-1 \succ 0$. Now, using (iii) again, multiplying by -1 gives $(-1)(-1) = 1 \succ 0$. This is a contradiction to (i) given that both $1 \succ 0$ and $-1 \succ 0$ hold.

Solution: Assume such a relation, \succ , exists with $i \succ 0$. Using condition (iii), observe that

$$\begin{aligned} i \cdot i &\succ 0 \cdot i \implies -1 \succ 0 \\ -1 \cdot i &\succ 0 \cdot i \implies -i \succ 0 \\ i \cdot (-i) &\succ 0 \cdot (-i) \implies 1 \succ 0. \end{aligned}$$

This breaks condition (i), so we've arrived at a contradiction, and there is no such relation.

- 5. Prove that an open set Ω is pathwise connected if and only if Ω is connected.
 - (a) Suppose first that Ω is open and pathwise connected, and that it can be written as $\Omega = \Omega_1 \cup \Omega_2$ where Ω_1 and Ω_2 are disjoint non-empty open sets. Choose two points $\omega_1 \in \Omega_1$ and $\omega_2 \in \Omega_2$ and let γ denote a curve in Ω joining ω_1 to ω_2 . Consider a parametrization $z : [0,1] \to \Omega$ of this curve with $z(0) = \omega_1$ and $z(1) = \omega_2$, and let

$$t^{\star} = \sup_{0 \le t \le 1} \{t : z(s) \in \Omega_1 \text{ for all } 0 \le s < t\}.$$

Arrive at a contradiction by considering the point $z(t^*)$.

Solution: 0 is contained in the set $T_1 = \{t : z(s) \in \Omega_1 \text{ for all } 0 \le s < t\}$. Furthermore, when $t^* = 1$, $z(t^*) \in \Omega_2$ so the set $T_2 = \{t : z(s) \in \Omega_2 \text{ for all } t \le s \le 1\}$ is non-empty. Now, $T_1 \cup T_2 = [0, 1]$, but intervals in \mathbb{R} are connected