AIATS Functions Assignment

1.	. Range of the function $f(x) = \log_2(2 - \log_{\sqrt{2}}(16\sin^2 x + 1))$ is:						
	(1) [0,1]	$(2) \ (-\infty, 1]$	(3) [-1,1]	$(4) \ (-\infty, \infty)$			
2.	Let A be the greatest value of the function $f(x) = \log_x[x]$, (where $[\cdot]$ denotes greatest integer function) and B be the least value of the function $g(x) = \sin x + \cos x $, then:						
	(1) A > B	(2) A < B	(3) A = B	(4) 2A + B = 4			
3.	Solution of the inequation $\{x\}(\{x\}-1)(\{x\}+2) \ge 0$ (where $\{\cdot\}$ denotes fractional part function) is:						
	$(1) \ x \in (-2, 1)$	$(2) x \in I$	(3) $x \in [0,1)$	$(4) \ x \in [-2, 0)$			
4.		action $f(x) = [1 + \sin x] + \left[2 + \sin \frac{x}{2}\right] + \left[3 + \sin \frac{x}{3}\right] + \dots + \left[n + \sin \frac{x}{n}\right]$ $N([\cdot] \text{ denotes greatest integer function}) is:$					
	$(1) \left\{ \frac{n^2 + n - 2}{2}, \frac{n(n+1)}{2} \right\}$	$\left(\frac{(n+1)}{2}\right)$	$(2) \left\{ \frac{n(n+1)}{2} \right\}$				
	(3) $\left\{ \frac{n(n+1)}{2}, \frac{n^2+1}{2} \right\}$	$\left. \frac{-n+2}{2}, \frac{n^2+n+4}{2} \right\}$	$(4) \left\{ \frac{n(n+1)}{2}, \frac{n^2}{4} \right\}$	$\left\{-\frac{n+2}{2}\right\}$			
5.	. If $f(x)$ and $g(x)$ are two functions such that $f(x) = [x] + [-x]$ and $g(x) = \{x\} \forall$ and $h(x) = f(g(x))$; then which of the following is incorrect? ([·] denotes greatest integer function and $\{\cdot\}$ denotes fractional part function)						
	(1) $f(x)$ and $h(x)$ are identical functions						
	(2) $f(x) = g(x)$ has no solution						
	(3) $f(x) + h(x) > 0$ has no solution						
	(4) $f(x) - h(x)$ is a periodic function						
6.	Number of elements in the range set of $f(x) = \left[\frac{x}{15}\right] \left[-\frac{15}{x}\right] \forall x \in (0, 90)$; (where $[\cdot]$ denotes greatest integer function):						
	(1) 5	(2) 6	(3) 7	(4) Infinite			
7				. ,			
1.	f(x) + 6 - x = f(x) + 6	J(x) + 4 - x + 2	(2) $x \in (-\infty, -2) \cup$	sarily non-negative for: $(2, \infty)$			
			$(4) \ x \in [-5, -2] \cup [2, 5]$				
	L J						
8.	The number of solutions of the equation $[y + [y]] = 2\cos x$ is: (where $y = \frac{1}{3}[\sin x + [\sin x + [\sin x]]]$ and $[\cdot]$ = greatest integer function)						
	(1) 0	(2) 1	$(3) \ 2$	(4) Infinite			

9.	$f(x) = \{x\} + \{x+1\} + \{x+2\} + \cdots + \{x+99\}$, then $\left[f(\sqrt{2})\right]$, (where $\{\cdot\}$ denotes fractional part function and $[\cdot]$ denotes the greatest integer function) is equal to:					
	(1) 5050	(2) 4950	(3) 41	(4) 14		
10.	Let $f(x)$ be a polynomial of degree 5 with leading coefficient unity such that $f(1) = 5$, $f(2) = 4$, $f(3) = 3$, $f(4) = 2$, $f(5) = 1$. Then $f(6)$ is equal to:					
	(1) 0	(2) 24	(3) 120	(4) 720		
11.	Let $f:A\to B$ be a function such that $f(x)=\sqrt{x-2}+\sqrt{4-x}$ is invertible, the which of the following is not possible?					
	(1) A = [3, 4]	(2) A = [2, 3]	(3) $A = [2, 2\sqrt{3}]$	(4) $A = [2, 2\sqrt{2}]$		
12.	The number of positive integral values of x satisfying $\left[\frac{x}{9}\right] = \left[\frac{x}{11}\right]$ is:					
	(1) 21	(2) 22	(3) 23	(4) 24		
13.	The solution set of the equation $[x]^2 + [x+1] - 3 = 0$, where $[\cdot]$ represents greates integer function is:					
	$(1) \ [-1,0) \cup [1,2)$	$(2) [-2, -1) \cup [1, 2)$	(3) [1,2)	$(4) [-3, -2) \cup [2, 3)$		
14.	If complete solution set of $e^{-x} \leq 4 - x$ is $[\alpha, \beta]$, then $[\alpha] + [\beta]$ is equal to: (where $[\cdot]$ denotes greatest integer function)					
	(1) 0	(2) 2	(3) 1	(4) 4		
15.	Range of $f(x) = \sqrt{\sin(\log_7(\cos(\sin x)))}$ is:					
	(1) [0,1)	$(2) \{0,1\}$	$(3) \{0\}$	(4) [1,7]		
	If domain of $y = f(x)$ is $x \in [-3, 2]$, then domain of $y = f([x])$: (where $[\cdot]$ denotes greatest integer function)					
	(1) [-3,2]	(2) [-2,3)	(3) [-3,3]	(4) [-2,3]		
16.	Let $f: R - \left\{\frac{3}{2}\right\} \to R$, $f(x) = \frac{3x+5}{2x-3}$. Let $f_1(x) = f(x)$, $f_n(x) = f(f_{n-1}(x))$					
		$f_{2008}(x) + f_{2009}(x) =$		2 -		
	$(1) \ \frac{2x^2 + 5}{2x - 3}$	$(2) \ \frac{x^2 + 5}{2x - 3}$	$(3) \ \frac{2x^2 - 5}{2x - 3}$	(4) $\frac{x^2-5}{2x-3}$		
17.	Range of the function, $f(x) = \frac{(1+x+x^2)(1+x^4)}{x^3}$, for $x > 0$ is:					
	$(1) [0, \infty)$	$(2) [2, \infty)$	$(3) [4, \infty)$	$(4) [6, \infty)$		
18.	If $f(x) = \sin\left\{\log\left(\frac{\sqrt{4-x^2}}{1-x}\right)\right\}$; $x \in R$, then range of $f(x)$ is given by:					
	(1) [-1,1]	(2) [0,1]	(3) (-1,1)	(4) None of these		

- 19. Consider all functions $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ which are one-one, onto and satisfy the following property: If f(k) is odd then f(k+1) is even, k=1,2,3. The number of such functions is: (1) 4(2) 8(3) 12(4) 16
- 20. Let $f: R \to R$ and $f(x) = \frac{x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$, then f(x) is:
 - (1) One-one, into (2) Many-one, onto (3) One-one, onto (4) Many-one, into
- 21. Let f(x) be defined as:

$$f(x) = \begin{cases} |x| & 0 \le x < 1\\ |x - 1| + |x - 2| & 1 \le x < 2\\ |x - 3| & 2 \le x < 3 \end{cases}$$

The range of function $g(x) = \sin(7(f(x)))$ is:

- (2) [-1,0] (3) $\left[-\frac{1}{2},\frac{1}{2}\right]$ (4) [-1,1](1) [0,1]
- 22. If $[x]^2 7[x] + 10 < 0$ and $4[y]^2 16[y] + 7 < 0$, then [x + y] cannot be ([·] denotes greatest integer function):
 - (1) 7(2) 8(3) 9(4) both (b) and (c)
- 23. The function f(x) satisfy the equation $f(1-x) + 2f(x) = 3x \ \forall \ x \in \mathbb{R}$, then f(0) =(2) -1(1) -2
- 24. The number of integral values of x in the domain of function f defined as $f(x) = \sqrt{\ln|\ln|x||} + \sqrt{7|x| - |x|^2 - 10}$ is:
 - (2) 6 $(1)\ 5$ (3) 7(4) 8