Белгородский Государственный Технологический Университет им. В.Г. Шухова Кафедра электротехники и автоматики

Преподаватель	
« <u></u> »	200года
Группа Студент	
Рабочее место Л	No
12 перемычек	

ЛАБОРАТОРНАЯ РАБОТА № 4 (М218)

Определение параметров и исследование режимов работы электрической цепи переменного тока с последовательным соединением катушки индуктивности, резистора и конденсатора. Резонанс напряжений.

Цель работы:

- 1. Определение параметров схемы замещения индуктивной катушки с магнитопроводом.
- 2. Изучение основных режимов работы электрической цепи при последовательном соединении R, L, C.
- 3. Изучение методов построения векторных диаграмм напряжений и токов.

Рис. 4.1.

1. Определение параметров схемы замещения катушки индуктивности

Таблица 4.1

	римента данные		Расчётные значения							
U, B	I _H ,	Р, Вт	S, BA	Z _{1∑} , Ом	R _{1∑} , Ом	R _{L1} , Ом	X _{L1} , Ом	L1, Гн	cosφ	I _{pe3 max} , A

РАСЧЁТНЫЕ ФОРМУЛЫ

$$\begin{split} S = UI_H \,; \quad Z_{\rm 1\Sigma} = & \frac{U}{I_H} \,; \qquad R_{\rm 1\Sigma} = & \frac{P}{I_H^2} \,; \qquad R_{\rm L1} = R_{\rm 1\Sigma} - R17 \,; \qquad X_{\rm L1} = & \sqrt{Z_{\rm 1\Sigma}^2 - R_{\rm 1\Sigma}^2} \,; \\ R17 = \qquad \qquad \text{Om}; \quad L1 = & \frac{X_{\rm L1}}{2\pi f} \,; \qquad \cos \varphi = & \frac{P}{S} = & \frac{P}{UI_H} \,; \ I_{\rm pes\,max} = & \frac{U}{R_{\rm 1\Sigma}} \,. \end{split}$$

2. Расчётные параметры для опыта резонанса напряжений

Таблица 4.2

C11 _{pe3} , мкФ	U _{min} , B	$I_H=I_{pe3}, A$

РАСЧЁТНЫЕ ФОРМУЛЫ

При резонансе
$$X_{L1}=X_{C11}$$
, поэтому $C11_{pes}=\frac{1}{2\pi f X_{L1}}$

$$U_{\min} = I_H (R_{L1} + R17) = I_H R_{1\Sigma}$$
 $R_{1\Sigma} = \frac{P}{I_H^2}$

3. Результаты опыта резонанса напряжений

Таблица 4.3

	Расчет				
U _{min} , B	I _{pe3} , A	Р, Вт	С _{рез} , мкФ	cosφ	

4. Определение расчётным путём значения $cos \varphi$ и тока I в цепи при максимальном значении ёмкости конденсатора C11=63 мк Φ и $U=U_{min}$.

Таблица 4.4

Исходнь	іе данные	Расчётные значения			
U_{min},B	С11, мкФ	Х _{С11} , Ом	I, A	cosφ	

РАСЧЁТНЫЕ ФОРМУЛЫ

$$X_{C11} = \frac{1}{2\pi f C11}, \qquad I = \frac{U}{\sqrt{R_{1\Sigma}^2 + (X_{L1} - X_{C11 \text{max}})^2}} = \frac{U}{Z}, \quad \cos \varphi = \frac{P}{U_{\text{min}} \cdot I}.$$

5. Зависимость
$$I=f(C11)$$
 , $cos \varphi = f(C11)$, $U_{C11}=f(C11)$, $U_{L1}=f(C11)$ при $U_{min}=$ В.

Таблица 4.5

									120
С11, мкф	8	16	24	32	40	44	48	56	63
I, A									
Р, Вт									
U _{C11} , B									
U _{L1} ,B									
cosφ									

6. Расчётные формулы для построения векторных диаграмм

$$U_R = IR_{1\Sigma} =$$
 $\dot{U}_{L1} = j\dot{I}X_{L1} =$
 $\dot{U}_{C11} = -j\dot{I}X_{C11} =$
 $\dot{U}_{C11} = -j\dot{I}X_{C11} =$

- 7. Построить векторные диаграммы
- 8. Выводы по работе

Порядок выполнения лабораторной работы № 4 (М 218) 12 перемычек

- 1. Убедиться, что все выключатели стенда выключены (находятся в нижнем положении).
- 2. Собрать схему рис. 4.1, при этом: PV2 и C11 не подключать;
 - R17 соединить перемычкой с проводом, идущим к фазе «В»;
 - R18 перемычкой к проводу фазы «В» не подключать.
- 3. Определить цену деления приборов, используемых в опыте. Изучить порядок выполнения работы.
- 4. Доложить преподавателю о готовности к выполнению работы.
- 5. С разрешения преподавателя подать напряжение на стенд (нажать черную кнопку SB1).
- 6. Убедиться, что тумблер ЛАТР TV2 находится в положении « $0\rightarrow 100$ В», а оба переключателя установлены на «0» (по синей шкале). Подать напряжение на ЛАТР TV2 (включить SA3).
- 7. Левым переключателем ЛАТР TV2 увеличивать напряжение, подаваемое на схему, до установления по прибору PA1 тока $I_{\rm H}=0.8$ A. При необходимости подкорректировать величину напряжения и тока правым переключателем ЛАТР TV 2.
- 8. Снять показания приборов PW, PA1, PV3 и записать их в таблицу 4.1.
- 9. Выключить SA3. Оба переключателя ЛАТР TV2 установить на «0».
- 10. Рассчитать максимально возможное значение тока при резонансе $I_{\text{рез.max}}$. Рассчитать напряжение U_{min} , при котором в режиме резонанса напряжений ток в цепи не превысит $I_{\text{H}} = 0.8A$. Результаты расчетов записать в таблицы 4.1, 4.2.
- 11. Собрать схему рис. 4.1. PV4 подсоединить проводами к L1 (на схеме управляемого выпрямителя). Убедиться, что тумблер SA4 выключен (рычажок вниз).
- 12. С разрешения преподавателя включить SA3. Переключателями ЛАТР TV2 установить по прибору PV3 значение U_{min} . Если $50B < U_{min} < 80B$, то вместо PV3 включить выносной вольтметр электромагнитной системы, позволяющий измерять напряжение в диапазоне $50 \div 80$ B. Если $U_{min} = 50 \pm 5B$, то опыт проводить при $U_{min} = 50B$. Во время опыта поддерживать U_{min} постоянным.
- 13. Изменяя емкость С11, задавая значения, указанные в таблице 4.5, снять зависимости I = f(C11), P = f(C11), $U_{L1} = f(C11)$, $U_{C11} = f(C11)$ при $U_{min} = const$. Результаты измерений записать в таблицу 4.5. Данные измерений в момент резонанса напряжений записать в таблицу 4.3.
- 14. Выключить SA3. Выключить питание стенда (нажать красную кнопку SB2).
- 15. Доложить преподавателю о выполнении работы. Переключатели схемы поставить в исходное положение. Разобрать схему.
- 16. Сдать рабочее место преподавателю.
- 17. Рассчитать параметры схемы замещения катушки индуктивности (таблица 4.1).
- 18. Определить величину ёмкости С11, при которой в цепи наступает резонанс напряжений (С11 $_{pes}$). Результат записать в таблицу 4.2. Сравнить результат расчёта с опытными данными (таблица 4.3).
- 19. Определить расчётным путём значение соѕф и тока I в цепи при максимальном значении ёмкости конденсатора C11 = 63 мкФ. Результаты расчётов записать в таблицу 4.4.
- 20. По результатам измерений (таблица 4.5) рассчитать соѕф.
- 21. Построить зависимости I = f(C11), $cos \varphi = f(C11)$, $U_{L1} = f(C11)$, $U_{C11} = f(C11)$ в единой координатной системе.
- 22. Построить векторные диаграммы напряжений и токов для трех режимов: до резонанса, при резонансе и после резонанса.
- 23. Сделать выводы по работе.