C'est quand on a raison qu'il est difficile de prouver qu'on n'a pas tort.

Pierre Dac

eXplainable Artificial Intelligence

Cours 7 - mardi 6 novembre 2023

Marie-Jeanne Lesot Christophe Marsala Jean-Noël Vittaut Gauvain Bourgne

LIP6 – Sorbonne Université

XAI - 2023-2024

Plan du cours

Approches par modèle de substitution contexte et rappels approche LORE

Apprentissage de règles floues

1 – Approches par modèle de substitution – contexte et rappels

Les approches par modèle de substitution (surrogate)

- ▶ But : étant donné f (boîte noire), trouver un modèle interprétable à lui substituer pour fournir une explication à la décision f(x) donnée pour x. ⇒ substitut (surrogate) à f
- Cadre :
 - approche agnostique
 - approche globale ou locale
 - approche simple et interprétable
- Différentes approches
 - explications par "feature importance" : LIME, SHAP,...
 - explications par des règles : LORE, TREPAN, FoilTree, ANCHOR...

1 – Approches par modèle de substitution – contexte et rappels

Contexte

- lackbox Un modèle déjà construit : $f:\mathcal{D}
 ightarrow \mathcal{Y}$
 - ullet approche agnostique : on n'a que f (et on ne sait rien de plus)
 - boîte noire
 - ullet hypothèse : on peut utiliser f autant que l'on veut
- ightharpoonup Un exemple d'intérêt : $\mathbf{x} \in \mathcal{D}$
 - exemple à classer et pour lequel on voudrait une explication locale
- Approches post-hoc

Source : (Laugel, 2018)

Christophe Marsala – 2023-2024

XAI – cours 7 – 4

1 – Approches par modèle de substitution – contexte et rappels

Rappels: LIME

- revoir le cours 3
- ► LIME : Local Interpretable Model-agnostic Explanations

(Ribeiro et al., 2016)

- génération d'un échantillon autour du centre des données
- pondération des exemples selon leur proximité à x
- mise en évidence des caractéristiques (features) importantes
- Etapes principales :
 - 1. créer une base d'apprentissage étiquetée grâce à f
 - 2. pondérer les exemples à l'aide d'une mesure de proximité à ${\bf x}$
 - 3. apprendre un modèle interprétable q
 - 4. produire une explication pour $f(\mathbf{x})$ grâce à g
- Problèmes
 - aspect global de l'explication
 - interprétabilité ("peut mieux faire")

Approche LORE: l'algorithme

Une approche par substitution et explication contre-factuelle

- L'approche LORE : LOcal Rule-based Explainer (Guidotti et al., 2019)
- ► Combinaison des approches par substitution et contre-factuelle
 - 1. créer une base d'apprentissage dans le voisinage de x et dont la classification par f couvre les 2 classes
 - 2. apprendre un modèle interprétable q:
 - ⇒ choix de l'arbre de décision
 - 3. produire une explication pour $f(\mathbf{x})$ grâce à g
 - ullet explication contre-factuelle dérivée de la structure de g
- Avantages
 - pas d'hyperparamètre lié au nombre de features (≠ LIME)
 - pas d'a priori (par exemple : discrétisation (≠ ANCHOR))

Christophe Marsala - 2023-2024 XAI – cours 7 – 8

1. Créer une base d'apprentissage $\mathbf{X}_{\mathbf{x}}$ dans le voisinage de \mathbf{x} et

• construction d'un arbre de décision g à partir de $\mathbf{X}_{\mathbf{x}}$

ullet explication contre-factuelle dérivée de la structure de g

• recenser les branches de g associées à la classe $\overline{g(\mathbf{x})}$

2 étapes : exemples positifs puis exemples négatifs (selon f)

dont la classification par f couvre les 2 classes

fonction de fitness et opérateurs dédiés

3. Produire une explication pour $f(\mathbf{x})$ grâce à q

• en déduire une explication pour $f(\mathbf{x})$

• trouver la branche de g pour \mathbf{x} : classe $g(\mathbf{x})$

2. Apprendre un modèle interprétable g

génération de $\mathbf{X}_{\mathbf{x}}$ par algorithme génétique

1 – Approches par modèle de substitution – approche LORE

Christophe Marsala - 2023-2024

1 – Approches par modèle de substitution – approche LORE

Génération de X_x

► Algorithmes génétiques

(Holland, 1975)

XAI – cours 7 – 7

- algorithmes évolutionnaires
- Approche inspirée par des lois de l'évolution
 - population d'individus qui évoluent de génération en génération
 - croisements entre individus
 - mutations d'individus : saut génétique
 - mesure de performance d'un individu : mesure de fitness
- Méthode d'optimisation d'une mesure de fitness M
 - ullet trouver un optimum de M par une recherche aléatoire
 - croisement : mélange de propriétés de 2 individus pour tenter ${\rm d'augmenter}\ M$
 - mutation : changer légèrement un individu pour tenter d'augmenter M

Algorithmes génétiques : éléments de base

- ► Contexte
 - soit la fonction $M:\mathcal{E} \to \mathbb{R}$ à optimiser (max)
 - ullet : ensemble de solutions possibles pour M
- Population P_0 à l'intant t : sous-ensemble de $\mathcal E$ de taille donnée
- ightharpoonup Chromosome : représentation d'élément de ${\mathcal E}$
 - ightarrow représenté pour l'approche génétique (vecteur de \mathcal{D})
- Opérations possibles
 - croisement (cross-over) : $c: \mathcal{D} \times \mathcal{D} \to \mathcal{D}$
 - mutation : $m:\mathcal{D}\to\mathcal{D}$
- Propriétés

Christophe Marsala - 2023-2024

- ullet aucune contrainte sur M
- exploration aléatoire et guidée de l'espace des solutions
- minimiser le risque de tomber dans un optimum local

Christophe Marsala - 2023-2024 XAI – cours 7 – 9

1 – Approches par modèle de substitution – approche LORE

Algorithmes génétiques : l'algorithme général

- 1. étant donné
 - ullet M la fonction à optimiser
 - taille de la population N
 - un taux de croisement pc et un taux de mutation pm
- 2. soit P_0 une population initial e à t=0
- 3. sélectionner des chromosomes dans la population courante P_t
 - ullet sélection selon leur valeur pour M
- 4. effectuer des croisements et des mutations pour obtenir P_{t+1}
- 5. recommencer en 3

1 – Approches par modèle de substitution – approche LORE

Algorithmes génétiques : usage dans LORE (1)

- ► Génération de X_x en 2 étapes
 - 1. générer des exemples proches de x et de même classe (f(x))

XAI - cours 7 - 10

- 2. générer des exemples proches de ${\bf x}$ et de classe différente
- ► Mesures de fitness

1. $M_{=}^{\mathbf{x}}(\mathbf{z}) = I_{f(\mathbf{x})=f(\mathbf{z})} + (1 - d(x, z)) - I_{\mathbf{x}=\mathbf{z}}$ 2. $M_{\neq}^{\mathbf{x}}(\mathbf{z}) = I_{f(\mathbf{x})\neq f(\mathbf{z})} + (1 - d(x, z)) - I_{\mathbf{x}=\mathbf{z}}$

• $I_{true}=1$ et $I_{false}=0$ • $d:\mathcal{E}\times\mathcal{E}\to[0,1]$ une mesure de la distance $d(\mathbf{x},\mathbf{z}) = \frac{h}{d} \; \mathsf{match}(\mathbf{x},\mathbf{z}) + \frac{d-h}{d} \; \mathsf{norm}(\mathbf{x}-\mathbf{z})$ $match(\mathbf{x}, \mathbf{z})$: comparaison sur les h attributs catégoriels $norm(\mathbf{x}, \mathbf{z})$: norme euclidienne sur les d-h attributs numériques

- ▶ Interprétation de la fitness : on cherche des exemples z
 - proches de \mathbf{x} $(1 d(\mathbf{x}, \mathbf{z}))$ et différents de \mathbf{x} $(-I_{\mathbf{x}=\mathbf{z}})$
 - avec la même classe par f ou une classe différente

Algorithmes génétiques : usage dans LORE (2)

- Population initiale : duplication de l'exemple x
- Opérations de croisement et de mutation
 - croisement 2-points : tirage aléatoire de 2 attributs entre lesquels tous les attributs seront croisés
 - mutation : tirage aléatoire d'un attribut
 - la valeur de remplacement est tirée aléatoirement suivant la distribution des valeurs dans l'ensemble test
 - Chromosome = exemple

Figure 1: Crossover.

Figure 2: Mutation

(Guidotti et al., 2018)

1 – Approches par modèle de substitution – approche LORE

Approche LORE: l'algorithme

- 1. Créer une base d'apprentissage ${\bf X_x}$ dans le voisinage de ${\bf x}$ et dont la classification par f couvre les 2 classes
 - ullet génération de $X_{\mathbf{x}}$ par algorithme génétique
 - génération en 2 temps : exemples positifs puis exemples négatifs
 - fonction de fitness et opérateurs dédiés
- 2. Apprendre un modèle interprétable g
 - construction d'un arbre de décision g à partir de $\mathbf{X}_{\mathbf{x}}$
 - algorithme classique

Christophe Marsala – 2023-2024 XAI – cours 7 – 15

1 – Approches par modèle de substitution – approche LORE

Rappel : classification avec un arbre de décision

Approche LORE : génération des exemples

Algorithm 2: GeneticNeigh(x, fitness, b, N, G, pc, pm)

```
Input : x - instance to explain, b - black box, fitness - fitness function, N - population size, G - \# of generations, pc - crossover probability, pm - mutation probability
```

Output: Z - neighbors of x

```
1 P_0 \leftarrow \{x | \forall 1 \dots N\}; i \leftarrow 0;
                                                                                      // population init.
2 evaluate(P<sub>0</sub>, fitness, b);
                                                                                 // evaluate population
    while i < G do
           P_{i+1} \leftarrow select(P_i);
                                                                             // select sub-population
           P'_{i+1} \leftarrow crossover(P_{i+1}, pc);
           P_{i+1}^{\prime\prime} \leftarrow \mathit{mutate}(P_{i+1}^{\prime}, \mathit{pm});
                                                                                   // perform mutations
           evaluate(P_{i+1}^{\prime\prime},fitness,\,b);
                                                                                 // evaluate population
          P_{i+1} = P_{i+1}^{\prime\prime};\, i \leftarrow i+1
                                                                                   // update population
9 end
10 Z \leftarrow P_i return Z;
```

(Guidotti et al., 2018)

Christophe Marsala – 2023-2024

XAI - cours 7 - 14

1 – Approches par modèle de substitution – approche LORE

Approche LORE: algorithme

- 1. Créer une base d'apprentissage $\mathbf{X}_{\mathbf{x}}$ dans le voisinage de \mathbf{x} et dont la classification par f couvre les 2 classes
 - génération de $\mathbf{X}_{\mathbf{x}}$ par algorithme génétique
 - génération en 2 temps : exemples positifs puis exemples négatifs
 - fonction de fitness et opérateurs dédiés
- 2. Apprendre un modèle interprétable q
 - \bullet construction d'un arbre de décision g à partir de $\mathbf{X}_{\mathbf{x}}$
 - algorithme classique
- 3. Produire une explication pour $f(\mathbf{x})$ grâce à g
 - ullet explication contre-factuelle dérivée de la structure de g
 - trouver la branche de g pour \mathbf{x} : classe $g(\mathbf{x})$
 - recenser les branches de g associées à la classe $\overline{g(\mathbf{x})}$
 - ullet en déduire une explication pour $f(\mathbf{x})$

Christophe Marsala – 2023-2024 XAI – cours 7 – 16

1 – Approches par modèle de substitution – approche LORE

Classification : ensemble de règles

- ► Règle de classification
 - si Longueur cheveux ≥ 11.38 et Couleur cheveux est noir et Groupe 2 alors classe +1
- Règles contre-exemples
 - si Longueur cheveux < 11.38 et Groupe 2 alors classe -1
 - si Longueur cheveux ≥ 11.38 et Couleur cheveux est roux alors classe -1
 - si Longueur cheveux ≥ 11.38 et Couleur cheveux est blond alors classe -1
 - si Longueur cheveux ≥ 11.38 et Couleur cheveux est châtain alors classe -1
 - si Longueur cheveux ≥ 11.38 et Couleur cheveux est noir et Groupe 1 alors classe -1

Approche LORE: explication contre-factuelle

- ► Soit r la règle déclenchée par \mathbf{x} pour donner $g(\mathbf{x})$
- Soit r' une règle représentant une branche produisant $g(\mathbf{x})$
 - ullet on note $n_{r'}$: nombre de tests de r' invalidés par ${f x}$
- Explication contre-factuelle : règle r_{best} qui minimise n_{r^\prime}
 - il peut exister plusieurs telles règles
- Exemple précédent :
 - règle r :
 - si Longueur cheveux ≥ 11.38 et Couleur cheveux est noir et Groupe 2 alors classe +1
 - règles r' qui minimisent $n_{r'}$
 - si Longueur cheveux ≥ 11.38 et Couleur cheveux est roux alors $\mathsf{classe}\ -1$
 - si Longueur cheveux > 11.38 et Couleur cheveux est blond alors classe -1
 - si Longueur cheveux ≥ 11.38 et Couleur cheveux est châtain alors classe -1
 - si Longueur cheveux > 11.38 et Couleur cheveux est noir et Groupe 1 alors classe -1

Christophe Marsala - 2023-2024 XAI - cours 7 - 19

1 – Approches par modèle de substitution – approche LORE

Approche LORE: explication contre-factuelle

- ► Explications pour notre exemple : il est de classe +1
 - car il est dans le groupe 2 (et pas le groupe 1)
 - car il a les cheveux noirs (et pas roux, blonds ou châtains)

Approche LORE: explication contre-factuelle

- ▶ Soit r la règle représentant la branche fournissant $g(\mathbf{x})$
- ▶ Soit r' une règle représentant une branche telle que $g(\mathbf{x})$
 - $n_{r'}$: nombre de tests de r' invalidés par ${f x}$
- Explication contre-factuelle:
 - règle r_{best} qui minimise $n_{r'}$
- Exemple précédent :
 - règle r :
 - si Longueur cheveux ≥ 11.38 et Couleur cheveux est noir et Groupe 2 alors classe +1
 - règles r' qui minimisent $n_{r'}$
 - si Longueur cheveux ≥ 11.38 et Couleur cheveux est roux alors $\mathsf{classe}\ -1$
 - si Longueur cheveux > 11.38 et Couleur cheveux est blond alors classe -1
 - si Longueur cheveux ≥ 11.38 et Couleur cheveux est châtain alors
 - si Longueur cheveux > 11.38 et Couleur cheveux est noir et Groupe 1 alors classe -1

Christophe Marsala – 2023-2024 XAI - cours 7 - 20

1 – Approches par modèle de substitution – approche LORE

Approche LORE: bilan

- ► Approche efficace et basée sur l'utilisation d'arbres de décision
- Construction de contre-factuels
 - approche plus générale qui peut s'appliquer dans un cadre non agnostique..
 - ullet ... si le modèle f est un arbre ou une base de règles
- Remarques
 - génération de la base d'exemples
 - hyper-paramètres
 - recherche des règles contre-factuelles (tout ou rien pour le test)
- ▶ D'autres pistes avec des surrogates
 - TREPAN, ANCHOR, FoilTREE,...

Christophe Marsala - 2023-2024 XAI - cours 7 - 21

1 – Approches par modèle de substitution – approche LORE

Approche LORE : quelques références

- ► "Factual and counterfactual explanations for black box decision making". R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, F. Turini. IEEE Intelligent Systems 34 (6), 14-23. 2019.
- "Local rule-based explanations of black box decision systems". R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, F. Giannotti. arXiv 2018.

Christophe Marsala - 2023-2024

1 - Approches par modèle de substitution - approche LORE

Apprentissage inductif flou

- ► Théorie des sous-ensembles flous pour aider l'apprentissage
 - prise en compte de données numériques, imprécises ou floues

XAI - cours 7 - 22

- mise en œuvre d'un raisonnement flou
- La base d'apprentissage contient des exemples décrits par des données numériques ou des valeurs floues
- Discrétisation / fuzzification des données
 - une valeur floue généralise un ensemble de valeurs précises
 - robustesse

Apprentissage inductif flou : pouvoir de généralisation élevé.

► Une valeur floue est déjà une généralisation

Plan du cours

Approches par modèle de substitution

Apprentissage de règles floues

systèmes d'inférence floue modèles de Mamdani modèles de Takagi & Sugeno approches neuro-floues arbres de décision flous

2 – Apprentissage de règles floues

Quelques approches floues (1)

- ► Fuzzy cluster analysis
 - prise en compte d'appartenance graduelle
 - les frontières entre les clusters ne peuvent pas être définies précisément
- ► Apprentissage de règles floues
 - classification ou régression
 - combinaison avec d'autres approches
 - p.ex. optimisation de fonctions d'appartenance par algorithmes génétiques
 - approches neuro-floues
 - représentation d'un système flou comme un réseau de neurones
 - techniques classiques d'optimisation
 - combine les avantages du flou (interprétabilité) et des réseaux de neurones (flexibilité)

2 - Apprentissage de règles floues -

Apprentissage de règles floues

- ► Étant donné une base de règles floues,
 - apprendre les caractéristiques de chaque règle : optimiser des fonctions d'appartenance
- ▶ Étant donné une base d'apprentissage
 - apprendre une base de règles floues : trouver des relations entre les exemples de la base
 - exemple : construction d'une base de règles par arbres de décision flous

Christophe Marsala – 2023-2024

XAI - cours 7 - 26

2 – Apprentissage de règles floues –

Quelques approches floues (2)

- ► Apprentissage d'arbres de décision flous
 - exemple type de fuzzification d'un algorithme
 - paramètres : interface avec les représentations floues / vagues
- ► Règles d'association floues
 - notion floue de support / confiance
 - mesures de qualité
- ▶ Représentations floues pour l'apprentissage à partir de cas
 - importance de la similarité
 - agrégation (opérateurs OWA ou approches de fusion)
- ► Réseaux possibilistes
 - lien possibilistes (\neq probabilistes) entre les informations

Christophe Marsala – 2023-2024

XAI – cours 7 – 27

2 – Apprentissage de règles floues

Comment rendre flou?

- Données floues
 - construction de fonctions d'appartenance
 - les données sont floues
 - connaissances subjectives: sensation, sentiment, opinion, perception
 - connaissances vagues : capteurs imprécis, bruit
- ► Frontières de décision floues
 - les classes ou groupes ne sont pas connus avec précision
 - mal définies ou mal identifiées
- ► Mesures floues : paramètres de l'algorithme
 - similarité entre individus
 - mesures d'information floues

Christophe Marsala – 2023-2024 XAI – cours 7 – 28

2 – Apprentissage de règles floues – systèmes d'inférence floue

Systèmes d'inférence floue (SIF) à base de règles

- ► Règles : IF premisse> THEN <conséquent>
- ► Selon le type du conséquent :
 - modèle de Mamdani
 - modèle de Takagi-Sugeno

[Jang 94]

SIF: différents modèles

[Jang 94]

- ▶ types 1 & 2 : modèle de Mamdani
- ▶ type 3 : modèle de Takagi-Sugeno

Christophe Marsala – 2023-2024 XAI - cours 7 - 31

2 – Apprentissage de règles floues – modèles de Mamdani

Modèle de Mamdani

Règles de type Mamdani

 $R_1:$ IF V_1 is $A_{1,1}$ and ... and V_k is $A_{1,k}$ THEN W is B_1

 R_p : IF V_1 is $A_{p,1}$ and ... and V_k is $A_{p,k}$ THEN W is B_p

► Variables linguistiques :

$$(V_1, X_1, T_1), \ldots, (V_k, X_k, T_k), (U, Y, T_Y)$$

- lackbox Observation de données précises : $(x_1,\ldots,x_k)\in X_1\times\cdots\times X_k$
- - agrégation des conséquents des règles par un "or"
- ► Sortie précise si nécessaire :
 - $y \in Y$ obtenue par défuzzification : centre de gravité, moyenne du noyau, milieu, etc.

XAI – cours 7 – 33

2 – Apprentissage de règles floues – modèles de Mamdani

Etape 1 : application d'une règle

On considère

Christophe Marsala - 2023-2024

- une règle $R = Si V_1$ est A_1 et ... et V_n est A_n , alors W est B
- l'entrée $x_0 = (x_1,...,x_n) \in X_1 \times ... \times X_n$
- ullet Calculer la compatibilité avec R

degré d'appartenance de x_0 au sousensemble flou prémisse de la règle (défini sur le produit cartésien)

$$a_R = f_A(x_0)$$

= min $(f_{A_1}(x_1), ..., f_{A_n}(x_n))$

ullet Calculer le résultat de la règle Ravec la (fausse) implication floue de Mamdani

$$\begin{array}{ccc} f_{resR}: Y & \rightarrow & [0,1] \\ & y & \mapsto & \min(a_R, f_B(y)) \end{array}$$

Principe théorique

(Zadeh, 73)

Principe : modélisation sous la forme de règles floues

Si θ vaut environ 0 et si $\dot{\theta}$ vaut environ zéro alors F doit être approximativement zéro

- mesure de θ , $\dot{\theta}$, ... : observations précises
- modus ponens généralisé (MPG) pour en déduire la commande
- Avantages
 - connaissance mathématique du système non nécessaire
 - simulation de l'expert qui contrôle le système
 - flexibilité et adaptabilité de la commande

Christophe Marsala - 2023-2024

XAI - cours 7 - 32

2 – Apprentissage de règles floues – modèles de Mamdani

Traitement

- ▶ On considère
 - une règle R= Si V_1 est A_1 et ... et V_n est A_n , alors W est B
 - l'entrée $x_0=(x_1,...,x_n)\in X_1\times...\times X_n$
- ► Etape 1 : application de la règle
 - utilisation des résultats sur le MPG
 - avec une observation précise
 - avec l'"implication" de Mamdani : $f_R(x,y) = \min(x,y)$

$$f_{res}(y) = \sup_{x \in X} \top (f_{A'}(x), \min(f_A(x), f_B(y)))$$
$$= \min(f_A(\mathbf{x_0}), f_B(y))$$

 $A = A_1 \times \cdots \times A_n$ défini sur $X = X_1 \times \cdots \times X_n$

Christophe Marsala – 2023-2024

XAI - cours 7 - 34

2 – Apprentissage de règles floues – modèles de Mamdani

Traitement

- ► On considère
 - un ensemble de règles

 $R_1 = \operatorname{Si} V_1 \text{ est } A_1 \text{ et } \dots \text{ et } V_n \text{ est } A_n$, alors W est B $R_2 = Si V_1$ est A'_1 et ... et V_n est A'_n , alors W est B' $R_3 = Si \ V_1 \text{ est } A_1'' \text{ et } \dots \text{ et } V_n \text{ est } A_n'', \text{ alors } W \text{ est } B''$

- l'entrée $x_0=(x_1,...,x_n)\in X_1\times...\times X_n$
- ► Etape 2 : combinaison des résultats de toutes les règles
 - ⇒ sous-ensemble flou décrivant la commande à appliquer

Etape 2 : combinaison des règles

ullet Calcul de la compatibilité avec R

$$a_R = f_A(x_0)$$

= $\min(f_{A_1}(x_1), ..., f_{A_n}(x_n))$

ullet Calcul du résultat de la règle R

$$\begin{array}{ccc} f_{resR}: Y & \rightarrow & [0,1] \\ & y & \mapsto & \min(a_R, f_B(y)) \end{array}$$

• Combinaison des sef

obtenus avec chacune des règles, par l'opérateur max

$$\begin{array}{ccc} f_{res}: Y & \to & [0,1] \\ & y & \mapsto & \max_{R} f_{resR}(y) \end{array}$$

Etapes 1 et 2 : exemple

R: si V_1 est A_1 et V_2 est A_2 , alors W est B

- ullet Compatibilité avec la règle R : $a_R = \min(f_{A_1}(x_1), ..., f_{A_n}(x_n))$
- ullet Résultat de la règle R $f_{resR}: Y \rightarrow [0,1]$ $y \mapsto \min(a_R, f_B(y))$
- Combinaison des règles

$$f_{res}: Y \rightarrow [0,1]$$

 $y \mapsto \max_{R} f_{resR}(y)$

Christophe Marsala – 2023-2024

XAI - cours 7 - 37

2 – Apprentissage de règles floues – modèles de Mamdani

Traitement

- ▶ On considère
 - un ensemble de règles

 $R_1 = Si \ V_1 \ \text{est} \ A_1 \ \text{et} \ \dots \ \text{et} \ V_n \ \text{est} \ A_n, \ \text{alors} \ W \ \text{est} \ B$ $R_2 = Si \ V_1 \ \text{est} \ A_1' \ \text{et} \ \dots \ \text{et} \ V_n \ \text{est} \ A_n', \ \text{alors} \ W \ \text{est} \ B'$ $R_3 = Si \ V_1 \ \text{est} \ A_1'' \ \text{et} \ \dots \ \text{et} \ V_n \ \text{est} \ A_n', \ \text{alors} \ W \ \text{est} \ B''$ $\text{I'entrée} \ x_0 = (x_1, \dots, x_n) \in X_1 \times \dots \times X_n$

- ▶ Etape 2 : combinaison des résultats de toutes les règles
 - ullet \Rightarrow sous-ensemble flou décrivant la commande à appliquer
- ► Etape 3 : défuzzification
 - ⇒ on en déduit une valeur précise

Christophe Marsala – 2023-2024

XAI - cours 7 - 38

2 – Apprentissage de règles floues – modèles de Mamdani

Etape 3: défuzzification

▶ Transformer le sous-ensemble flou obtenu en une valeur précise

- Méthodes principales
 - ullet maximum : choisir y qui maximise f_{res}
 - moyenne des maxima
 - centre de gravité

Christophe Marsala – 2023-2024

XAI – cours 7 – 39

Christophe Marsala – 2023-2024 2 – Apprentissage de règles floues – modèles de Mamdani XAI - cours 7 - 40

2 – Apprentissage de règles floues – modèles de Mamdani

Etape 3 : moyenne des maxima

ightharpoonup Définition : moyenne des y qui maximisent f_{res}

- Difficultés
 - suppose que l'on ait un intervalle
 - peut conduire à un contrôleur discontinu : le résultat dépend seulement de la règle qui a le plus haut degré de compatibilité

Etape 3 : centre de gravité

▶ Définition : centre de gravité de l'aire sous la courbe

- Caractéristiques
 - conduit le plus souvent à un comportement continu
 - dépend de plusieurs règles, pondérées selon leurs degrés de compatibilité
 - coût de calcul élevé
 - difficile à justifier sémantiquement

Contrôleur de Takagi-Sugeno

▶ Base de règles de forme différente : conclusion précise

R: si V_1 est A_1 et ... et V_n est A_n , alors $y=g(x_1,...,x_n)$

- $g: X_1 \times ... \times X_n \to Y$
- souvent g est linéaire : $g(x_1,...,x_n)=a_0+a_1x_1+...a_nx_n$

Christophe Marsala – 2023-2024

XAI - cours 7 - 43

2 – Apprentissage de règles floues – modèles de Takagi & Sugeno

Comparaison

Contrôleur de Mamdani

- Prémisses et conclusions linguistiques
- Avantages
 - quand le modèle est imprécis, voire inconnu
 - facile à appréhender par un non-spécialiste
- Inconvénients

Christophe Marsala – 2023-2024

Christophe Marsala – 2023-2024

 manque de preuves formelles (stabilité, optimalité)

2 – Apprentissage de règles floues – approches neuro-floues

Contrôleur de Takagi-Sugeno

- Conclusion arithmétique
- Avantages
 - preuve formelle de stabilité
 - extension des concepts de l'automatique linéaire au cas non-linéaire
- Inconvénients
 - nécessite la connaissance d'un bon modèle

Modèle de Takagi-Sugeno

Règles de type Takagi-Sugeno

[Takagi & Sugeno 8]

 $R_1:$ IF V_1 is $A_{1,1}$ and \ldots and V_k is $A_{1,k}$ THEN $y_1=g_1(x_1,\ldots,x_k)$ \ldots $R_p:$ IF V_1 is $A_{p,1}$ and \ldots and V_k is $A_{p,k}$ THEN $y_p=g_p(x_1,\ldots,x_k)$

 $\begin{aligned} \text{avec } g_i: X_1 \times \dots \times X_k &\longrightarrow Y \text{ pour tout } i=1,...,p \\ \text{en général } : g_i(x_1,\dots,x_k) = p_{i,0} + p_{i,1}x_1 + \dots + p_{i,k}x_k \text{ avec } p_{i,j} \in \mathbb{R} \end{aligned}$

Variables linguistiques : $(V_1, X_1, T_1), \ldots, (V_k, X_k, T_k), (U, Y, T_Y)$

- $lackbox{ }$ Observation de données précises : $(x_1,\ldots,x_k)\in X_1\times\cdots\times X_k$
- ightharpoonup Conclusion précise : $y \in Y$
 - moyenne pondérée des y_i

Christophe Marsala – 2023-2024 XAI – cours 7 – 44

2 - Apprentissage de règles floues - approches neuro-floues

Approches neuro-floues

Idée des approches neuro-floues

Combiner une représentation à base de règles (SIF) avec un réseau de neurones

- Système neuro-flou coopératif :
 - réseau de neurones pour apprendre des sous-parties du SIF
 - une fois fait, on ne garde que le système flou
- ► Système neuro-flou combiné
 - les 2 approches se combinent

Construction / mise au point de SIF

► Selon le type, spécificités des approches :

- un réseau détermine les entrées ou les sorties d'un système flou
- ► Système neuro-flou hybride
 - pour déterminer les paramètres du système flou
 - réseau + approches d'optimisation (descente de gradient,...)

Christophe Marsala – 2023-2024 XAI – cours 7 – 46

• modèle de Mamdani : arbres de décision flous, construction de

2 – Apprentissage de règles floues – approches neuro-floues

règles. ...

Exemple de système neuro-flou hybride : ANFIS

[Jang 94]

XAI - cours 7 - 47

XAI - cours 7 - 45

Adaptive Network based Fuzzy Inference System (pour TS)

• modèle de Takagi-Sugeno : approches neuro-floues

Conclusions sur les SIF et les approches neuro-floues

- ▶ Un système d'inférence flou est un approximateur universel
 - on peut trouver un SIF pour représenter toute fonction
 - modèle interprétable
- Système neuro-flou :
 - combiner un SIF et une représentation par réseau de neurones
 - plusieurs approches existent : ANFIS, NEFCON, NEFCLASS,...
 - utilisé en contrôle flou (cf. cours à venir)
 - conception pour hardware

2 – Apprentissage de règles floues – arbres de décision flous

Exemple d'arbre de décision flou

Christophe Marsala – 2023-2024 XAI – cours 7 – 51

2 – Apprentissage de règles floues – arbres de décision flous

Classification d'un exemple e

► Paramètre : choix du couple t-norme / t-conorme

Arbres de décision flous : frontières floues

- ► Amélioration : "fuzzification" des frontières
 - arbres de décision flous

Christophe Marsala – 2023-2024 XAI – cours 7 – 50

2 – Apprentissage de règles floues – arbres de décision flous

Classification avec un arbre de décision flou

Christophe Marsala – 2023-2024 XAI – cours 7 – 52

2 – Apprentissage de règles floues – arbres de décision flous

Extension d'une approche d'apprentissage

- ► Approche classique
 - validation formelle : théorie de l'information
- ► Caractérisation des données à prendre en compte
 - hypothèses?
- ► Comment réaliser une extension?
 - qu'est-ce qui doit être étendu?
 - comment est-ce que cela doit être étendu?
 - quelles propriétés peuvent être conservées?
- ► Quelles spécificités de l'algorithme?
 - comment évaluer l'impact de l'extension ? la valider ?
 - quels apports?
- ► Etude de cas : les arbres de décision

• exemple : $\{0.24|c_+, 0.6|c_-\}$

Entropie d'événements flous

- Extension de l'entropie de Shannon aux événements flous
 - ullet $v_1,\ldots,v_m:m$ valeurs de l'attribut A
 - ullet $c_1,\ldots,c_K:K$ valeurs pour la classe C

$$H_E(C|A) = -\sum_{j=1}^{m} p^*(v_j) \sum_{k=1}^{K} p^*(c_k|v_j) \log(p^*(c_k|v_j))$$

ullet avec la probabilité d'un événement flou e d'un ensemble dénombrable X muni d'une probabilité p, définie par (Zadeh, 65) :

$$p^*(e) = \sum_{x \in X} \mu_e(x) p(x)$$

lacktriangle Mesure du lien entre A et la classe C

Christophe Marsala – 2023-2024