K-Maps

Karnaugh - Mabs

er K-Maps in a graphical method, to Simblify a boolean function of 'n' variables, which consists of 2nd Cells for 'n' vaniables. The adjecent Cells are differed only in Single bit position."

Gray code

A le male can be abplied to any number of Variables. but it becomes Complicated for more than 5 variables.

Troubing	& Var	ables	in k	(- Ma)	× :	
→ for Cr	' Vana	ibles -	there	are	2	Combination
Sad	Jox Cell	Consint	s 1	Vani	able	Compinati
الح	3 variat	les = d	$2^3 = 8$	Combi	nation J Oce	اله
		Cell				

from 22 Combination

- > The Square that Consists 1's, Dhadd be taken in Simplifying the least once.

 1 is noting but the mintern.
- > The Square that Contains 'I' can be considered as many times as the grouping is possible with it.
 - The group should not include any 'zewes' for mintermy

* - The group Should be as large as possible. * The group Should be Vertical or Horizontal, but Not diagonal. * The number of 1's in the group must be in power of 2. 4, 2, 4, 8, 16 1 1 1 1 1 1 1 1 1

Theree of 2.

No. 1 18= 4

Not be Considered

Not be Considered

The boolean function must be in Canonical SUP or POS form. Grouping -> It we grow 2K cells, then 'k' variables are elemenated.

Cells of first & last Glumn Can be grombed together

The cells of 1st of last your Can be grouped together

* All the four Conners Can be growted together

* Adjecent Cellis Can de gromped together

group of 2 terms: Eleminates 2 variables group of 2 terms: Eleminates 3 variables group of 2 terms: Eleminate h' variables Examples:

wrap around

		/	
T	1		$\langle 1 \rangle$
			L
			L
1	1		\sqrt{T}
			1

Group of 8 terms Called as Octate

Cube of 4 Homs qued

R-Maks: 2 Variables K-Mak 2 variables (A,B) are minterns J -> The possible AB AB AB AB LSB BO location on Kmas B Passible ofp В A 1 MSB 0 ĀB 0 0 A 00 01 A B ĀB A O A B 0 10 2 AB 0 A 1 A B AB 3 A B

Minterms

2 variable k-Mabs for maxterms: to Add the bits so that use can get zero

A	В	Passible o/p	location on Kmas	
0	0	D+#	0	MSB
0	1	A+B	1	
1	0	A+B	2	
1	1	Ā+B	3	

LSB	B	1 1
# O	A+B	A+B
Ā 1	Ā + B 2	Ā+R 3

Maxterns