Homework1 for EECS 340

Yu Mi

January 25, 2018

1 Warm-up: Big-Oh and Counting Primitive Operations

Show your work on the following questions. Use the limit-based definitions of asymptotic notation on the "Big-Oh Cheat Sheet" on Canvas wherever applicable.

1.1 Solve R-1.20, R-1.22, and R-1.23 in the text

1.1.1 R-1.20

Show that $(n+1)^5$ is $O(n^5)$.

Proof: Let $f(n) = (n+1)^5$ and $g(n) = n^5$ so that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{(n+1)^5}{n^5} = \lim_{n \to \infty} \frac{n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1}{n^5}$$
$$= 1 + \lim_{n \to \infty} \frac{5}{n} + \frac{10}{n^2} + \frac{10}{n^3} + \frac{5}{n^4} + \frac{1}{n^5} = 1$$

Since $0 \le 1 < \infty$, $(n+1)^5$ is $O(n^5)$.

1.1.2 R-1.22

Show that n is $o(n \log n)$.

Proof: Let f(n) = n and $g(n) = n \log n$ so that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n}{n \log n} = \lim_{n \to \infty} \frac{1}{\log n} = 0$$

Since 0 = 0, n is $o(n \log n)$.

1.1.3 R-1.23

Show that n^2 is $\omega(n)$.

Proof: Let $f(n) = n^2$ and g(n) = n so that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^2}{n} = \lim_{n \to \infty} n = \infty$$

Since $\infty = \infty$, n^2 is $\omega(n)$.

1.2 Intuitively, $2^x \in O(3^x)$, since 3^x grows faster. Is $3^x \in O(2^x)$?

Answer: No, proof as follows:

Let $f(x) = 3^x$ and $g(x) = 2^x$ so that

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{3^x}{2^x} = \lim_{x \to \infty} (\frac{3}{2})^x = \infty$$

1

Since $\infty = \infty$, so that 3^x is $\omega(2^x)$, $3^x \notin O(2^x)$

1.3 Intuitively, $\log_3(x) \in O(\log_2(x))$. Is $\log_2(x) \in O(\log_3(x))$?

Answer: Yes, proof as follows:

Let $f(x) = \log_2(x)$ and $g(x) = \log_3(x)$ so that

$$\lim_{x \to \infty} \frac{\log_2(x)}{\log_3(x)} = \lim_{x \to \infty} \frac{\frac{\ln x}{\ln 2}}{\frac{\ln x}{\ln 3}} = \lim_{x \to \infty} \frac{\ln 3}{\ln 2} = \log_2(3)$$

Since $0 \le \log_2(3) < \infty$, $\log_2(x)$ is $O(\log_3(x))$.

1.4 Use summations to derive tight asymptotic bounds $(\Theta(-))$ on the runtime of each algorithm

1.4.1 R-1.12

Answer: First, we need to rewrite this algorithm into while loop:

Algorithm Loop2(n):

```
\begin{array}{lll} p \leftarrow 1 & & & > 1 \text{ unit of time} \\ i \leftarrow 1 & & > 1 \text{ unit of time} \\ \textbf{while } i \leq 2n \textbf{ do} & & > 2n+1 \text{ units of time} \\ p \leftarrow p \times i & & > 2 \times 2n \text{ units of time} \\ i \leftarrow i+1 & & > 2 \times 2n \text{ units of time} \\ \textbf{end while} & & \\ \end{array}
```

As is described in the comments of the algorithm, the run time of this algorithm should be $\Theta(10n+3)$ units of time. So that this algorithm is $\Theta(n)$

1.4.2 R-1.14

Answer: First, we need to rewrite this algorithm into while loop:

Algorithm Loop4(n):

```
s \leftarrow 0
                                                                                                                                                    \triangleright 1 unit of time
i \leftarrow 1
                                                                                                                                                    \triangleright 1 unit of time
while i \leq 2n do
                                                                                                                                         \triangleright 2n + 1 units of time
                                                                                                                                                \triangleright 2n units of time
     i \leftarrow 1
     while j \leq i do
                                                                                                                                \triangleright (i+1) \times 2n units of time
                                                                                                                                   \triangleright 2 \times i \times 2n units of time
           s \leftarrow s + i
           j \leftarrow j + 1
                                                                                                                                   \triangleright 2 \times i \times 2n units of time
     end while
     i \leftarrow i + 1
                                                                                                                                                \triangleright 2n units of time
end while
```

To calculate the time cost of the inner loop, we need to focus on the value of i which changes with the outer loop. To make calculate easy to understand, we define C_1 as the actual units of time the outer loop will cost and C_2 as the actual units of time the inner loop will cost. So that:

$$C_1 = 1 + 1 + 2n + 1 + 2n + 2n = 6n + 3$$

$$C_2 = 2n \sum_{i=1}^{2n} (i + 1 + 2i + 2i) = 10n^2 + 7n$$

To sum up, the total units of time this algorithm will cost should be $time_{total} = C_1 + C_2 = 10n^2 + 13n + 3$. So that this algorithm is $\Theta(n^2)$

1.4.3 R-1.15

Answer: First, we need to rewrite this algorithm into while loop:

```
Algorithm Loop5(n):
s \leftarrow 0
                                                                                                                                             \triangleright 1 unit of time
i \leftarrow 1
                                                                                                                                             \triangleright 1 unit of time
while i \le n^2 do
                                                                                                                                   \triangleright n^2 + 1 units of time
                                                                                                                                         \triangleright n^2 units of time
     j \leftarrow 1
                                                                                                                           \triangleright (i+1) \times n^2 units of time
     while j \leq i do
                                                                                                                             \triangleright 2 × i × n^2 units of time
          s \leftarrow s + i
                                                                                                                              \triangleright 2 \times i \times n^2 units of time
          j \leftarrow j + 1
     end while
                                                                                                                                         \triangleright n^2 units of time
     i \leftarrow i + 1
end while
```

To calculate the time cost of the inner loop, we need to focus on the value of i which changes with the outer loop. To make calculate easy to understand, we define C_1 as the actual units of time the outer loop will cost and C_2 as the actual units of time the inner loop will cost. So that:

$$C_1 = 1 + 1 + n^2 + 1 + n^2 + n^2 = 3n^2 + 3$$

$$C_2 = 2n \sum_{i=1}^{n^2} (i + 1 + 2i + 2i) = \frac{5}{2}n^4 + \frac{7}{2}n^2$$

To sum up, the total units of time this algorithm will cost should be $time_{total} = C_1 + C_2 = \frac{5}{2}n^4 + \frac{13}{2}n^2 + 3$. So that this algorithm is $\Theta(n^4)$

1.5 Explain why it is reasonable to ignore the overhead of a ranged *for* loop when you derived the tight asymptotic runtime bounds in the previous question.

Answer: When calculating the runtime bounds of a loop, the overhead of such loop will cost a constant time of computation, while the loop body will cost n times more than the overhead. As n grows big enough, the overhead is always significantly smaller than the loop body. Thus, when we are deriving the asymptotic runtime bounds, we can ignore the overhead of a ranged loop.