

شبكههاى مخابراتي

د کتر رجبی نیمسال دوم سال تحصیلی ۹۹-۹۹ دانشگاه صنعتی همدان گروه مهندسی برق

مروری بر لایه فیزیکی

در کدام بخش درس هستیم؟

• برای شروع کار از لایه فیزیکی شروع میکنیم.

Application

Transport

Network

Link

Physical

گستره لایه فیزیکی

- سیگنالها چگونه بیتهای پیام را از طریق یک لینک منتقل میکنند؟
 - سیمها و غیره، سیگنالهای آ**نالوگ** را حمل میکنند.
 - ما مىخواهيم بيتهاى **ديجيتال** ارسال كنيم.

یک نگاه کلی

Α

اجزای یک سیستم مخابراتی دیجیتال

موضوعات

- خواص مدیا
- سیم، فیبر نوری و بیسیم
 - انتشار ساده سیگنال
- پهنای باند، تضعیف و نویز
 - روشهای مدولاسیون نمایش بیتها، نویز
 - محدودیتهای اساسی نایکوئیست، شانون

مدل لینک ساده

- چکیدهای از کانال فیزیکی
- نرخ (یا پهنای باند، ظرفیت، سرعت) بر حسب بیت بر ثانیه (bit/sec)
 - تأخير بر حسب ثانيه، وابسته به طول

- ساير خواص مهم:
- است یا نه این که کانال پخش (Broadcast) است یا نه
 - نرخ خطای کانال

تأخير پيام (Message Latency)

- تأخير (Latency) ميزان وقفه در ارسال يک پيام توسط يک لينک است.
- "عان ارسال ($\frac{1}{2}$ Transmission Delay): زمان لازم برای قرار دادن M بیت پیام روی یک سیم
- T-delay = M (bits) / Rate (bits/sec) = M/R seconds
 - <u>تأخیر انتشار (Propagation Delay)</u>: زمانی که برای انتشار بیتها در طول سیم صرف میشود.
- P-delay = Length / speed of signals = Length / $\frac{2}{3}c$ = D seconds
 - با ترکیب دو بند بالا داریم:

$$L = M/R + D$$

واحدهای متریک

• پیشوندهای اصلی که استفاده میکنیم:

Prefix	Exp.	prefix exp.	
K(ilo)	10 ³	m(illi)	10-3
M(ega)	10 ⁶	μ(micro)	10-6
G(iga)	10 ⁹	n(ano) 10 ⁻⁹	

- برای نرخها از توانهای ۱۰ و برای واحدهای ذخیرهسازی از توانهای ۲ استفاده میشود.
- $-1 \text{ Mbps} = 1,000,000 \text{ bps}, 1 \text{ KB} = 2^{10} \text{bytes}$
 - از B برای بایت و از b برای بیت استفاده میشود.

مثالهای تأخیر (Latency)

Dialup با یک مودم تلفنی:

-D = 5 ms, R = 56 kbps, M = 1250 bytes

- لینک پهنباند میان کشوری*
- -D = 50 ms, R = 10 Mbps, M = 1250 bytes

11

^{*}الان نرخ های خیلی بالاتر وجود دارد. اعداد این اسلاید فقط یک مثال است.

مثالهای تأخیر (Latency) (۲)

· Dialup با یک مودم تلفنی:

$$D = 5 \text{ ms}, R = 56 \text{ kbps}, M = 1250 \text{ bytes}$$

$$L = 5 \text{ ms} + (1250 \times 8)/(56 \times 10^3) \text{ sec} = 184 \text{ ms!}$$

• لینک پهنباند میان کشوری

D = 50 ms, R = 10 Mbps, M = 1250 bytes
L = 50 ms +
$$(1250 \times 8) / (10 \times 10^6)$$
 sec = 51 ms

یک لینک طولانی یا یک نرخ پایین به معنای تأخیر زیاد است. - معمولا یکی از این عوامل تأخیر، غالب است.

عرض (پهنای) باند-BandWidth (BW)-عرض

حاصل ضرب پهنای باند – تأخير

• پیامها بر روی سیم فضا اشغال می کنند!

• به مقدار داده در حال انتقال Bandwidth-delay(BD) product می گویند.

$$BD = R \times D$$

- محاسبه بر حسب بیت یا پیام
- برای LAN ها مقداری کم و برای خطهای طولانی و پهن (long fat pipes) مقداری بزرگ است.

مثال پهنای باند - تأخير

• فیبر نوری خانگی، داخل یک کشور

R = 40 Mbps, D = 50 ms

مثال پهنای باند – تأخیر (۲)

• فیبر نوری خانگی، داخل یک کشور

R = 40 Mbps, D = 50 ms
BD =
$$40 \times 10^6 \times 50 \times 10^{-3}$$
 bits
= 2000 Kbit
= 250 KB

این مقدار بسیار زیادی دیتا درون شبکه است.

محدودیت پهنای باند

1 bit in 1µSec => Data Rate=1 000 000 bits/sec

Main harmonic frequency for 8 bits= ?

محدوديت پهناي باند

1 bit in 1µSec => Data Rate=1 000 000 bits/sec=1Mbps Time for passing 8 bits (1Kbits)=8 µSeconds

محدوديت پهناي باند

1 bit in 1μSec => Data Rate=1 000 000 bits/sec=1Mbps Time for passing 8 bits (1Kbits)=8 μSeconds

Main Harmonic Frequency=
$$\frac{1}{8\mu \text{Sec}}$$
=0.125 MHz

Highest Harmonic Frequency=
$$\frac{BW}{0.125 \text{ MHz}}$$

محدودیت پهنای باند

Bps	T (msec)	First harmonic (Hz)	# Harmonics sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Figure 2-2. Relation between data rate and harmonics for our example.