Tema 1 - Calcul numeric - an I ID

Dinu Eugen Cosmin

Due March 28, 2021 6:59 PM

Instructions

Se se rezolve urmatoarele exercitii. Rezolvarile se vor scrie intr-un fisier (se pot include si poze ale rezolvarilor problemelor pe hartie).

- 1. Sa se determine o solutie a ecuatiei f(x) = 0 unde $f(x) = x^3 x^2 x + 1$ folosind metoda lui Newton cu valorea initiala $x_0 = -0.2$ si epsilon = 0.01.
- 2. Sa se determine o solutie a ecuatiei f(x) = 0 unde $f(x) = 8x^3 + x^2 + 8x 3$ folosind metoda secantei cu 0.0 si 0.6 valori initiale si epsilon = 0.01.
- 3. Sa se determine o solutie a ecuatiei f(x) = 0 unde $f(x) = x^3 4x + 2$ folosind metoda bisectiei cu valorile initiale a = 0, b = 1, epsilon = 0.01.
- 4. Se da functia de la exercitiul 3. Daca $x_1 = 1$, cat este x_2 din metoda lui Newton-Raphson?
- 5. Se da functia de la exercitiul 3. Daca $x_0 = 0$ si $x_1 = 1$, cat sunt x_2 si x_3 din metoda secantei?

Rezolvări:

(1) $f(x) = x^3 - x^2 - x + 1, f(x) = 0, x = ?$, prin metoda lui Newton-Raphson, având $x_0 = -0.2, \varepsilon = 0.01$.

```
# Cod octave:
f = @(x) x.^3-x.^2-x+1;
df = @(x) 3*x.^2-2*x-1;
epsilon = 0.01;
x_0 = -0.2;
x_1 = x_0 - (f(x_0) / df (x_0));
```

```
while epsilon < abs(f(x_1))
    # Urmatoarea estimare a solutiei
    x_1 = x_0 - (f(x_0) / df (x_0));
    print_graph(f, df, x_0, x_1, iter_count);
    x_0 = x_1;
endwhile</pre>
```


Sirul solutiilor aproximate este:

 $X = \{2.200000, 1.694737, 1.387033, 1.208029, 1.108694, 1.055712, 1.0557\}$ $x_7 = 1.0557, f(x_7) = 0.00638065, f(x_7) < \varepsilon,$ deci $solutia = x_7 = 1.0557.$

Fig.1.1 $x_0 = -0.2$, $x_1 = 2.2$

Fig.1.2 $x_0 = 2.2$, $x_1 = 1.6947$

Fig.1.3 $x_0 = 1.6947$, $x_1 = 1.387$

Fig.1.4 $x_0 = 1.387$, $x_1 = 1.208$

Fig.1.5 $x_0 = 1.208$, $x_1 = 1.1087$

Fig.1.6 $x_0 = 1.1087$, $x_1 = 1.0557$

Fig.1.7 $x_0 = 1.0557$, $x_1 = 1.0557$

(2) $f(x) = 8x^3 + x^2 + 8x - 3$, f(x) = 0, x = ?, prin metoda secantei, având 0.0, 0.6 valori initiale si $\varepsilon = 0.01$.

```
# Cod octave:
i = 1;
i_max = 5;
while abs(f(x_0)) > epsilon && i < i_max
    x_1 = x_1 - (f(x_1)*(x_1-x_0))/(f(x_1)-f(x_0));
    print_graph(f, x_0, x_1, i);
    i ++;
endwhile</pre>
```

Fig.2.0 $x_0 = 0$, $x_1 = 0.6$, $f(x_1) = 3.888$

		_	$f(\mathbf{x}_1) = -0.698350$
	"	_	$f(x_2) = 0.157059$
i=3	$x_0 = 0.00$	$x_3 = 0.323668$	$f(x_3) = -0.034631$
i=4	$x_0 = 0.00$	$x_4 = 0.327448$	$f(x_4) = 0.007685$

$$f(x_4) = 0.007685 < \varepsilon = 0.01,$$

deci solutia = 0.007685.

Fig.2.1 $x_0 = 0$, $x_1 = 0.26132$, $f(x_1) = -0.69835$

Fig.2.2 $x_0 = 0$, $x_1 = 0.34061$, $f(x_1) = 0.15706$

Fig.2.3 $x_0 = 0$, $x_1 = 0.32367$, $f(x_1) = -0.034631$

Fig.2.4 $x_0 = 0$, $x_1 = 0.32745$, $f(x_1) = 0.007685$

(3) $f(x) = x^3 - 4x + 2$, f(x) = 0, x = ?, prin metoda bisectiei, având $a = 0, b = 1, \varepsilon = 0.01$.

```
# Cod octave
f = 0(x) x.^3-4*x+2;
a = 0;
b = 1;
epsilon = 0.01;
x_m = (a+b)/2;
i = 1;
max_i = 10;
while abs(f(x_m)) > epsilon
    if max_i < i
        printf("Solution not found!\n");
        break;
    endif
    printf("i=%d & a=%f & b=%f & x_m=%f & f(x_m)=%f\n",i,a,b,x_m,f(x_m));
    print_graph(f, a, b, i);
    x_m = (a+b)/2;
    if f(x_m)*a < 0
        b = x_m;
    else
        a = x_m;
    endif
    i++;
endwhile
```

 $f(a) * f(b) < 0 \Longrightarrow Solutia \in [a, b]$

i=1	a=0.000000	b=1.000000	$x_m = 0.500000$	$f(x_m) = 0.125000$
i=2	a=0.500000	b=1.000000	$x_m = 0.500000$	$f(x_m) = 0.125000$
i=3	a=0.500000	b=0.750000	$x_m = 0.750000$	$f(\mathbf{x}_m) = -0.578125$
i=4	a=0.500000	b=0.625000	$x_m = 0.625000$	$f(\mathbf{x}_m) = -0.255859$
i=5	a=0.500000	b=0.562500	$x_m = 0.562500$	$f(\mathbf{x}_m) = -0.072021$
i=6	a=0.531250	b=0.562500	$x_m = 0.531250$	$f(x_m) = 0.024933$
i=7	a = 0.531250	b=0.546875	$x_m = 0.546875$	$f(\mathbf{x}_m) = -0.023945$
i=8	a=0.539062	b=0.546875	$x_m = 0.539062$	$f(x_m) = 0.000395$

 $Solutia = x_m = 0.539062$

Fig.3.1 $f(x)=x^3-4^*x+2$

Fig.3.2 $f(x)=x^3-4^*x+2$

Fig.3.3 $f(x)=x^3-4*x+2$

Fig.3.4 $f(x)=x^3-4^*x+2$

Fig.3.5 $f(x)=x^3-4*x+2$

Fig.3.6 $f(x)=x^3-4*x+2$

Fig.3.7 $f(x)=x^3-4*x+2$

Fig.3.8 $f(x)=x^3-4*x+2$

(4)
$$f(x) = x^3 - 4x + 2$$
, $x_1 = 1$, $x_2 = ?$ prin metoda lui Newton-Raphson.

Punctul $(x_2, 0)$ reprezintă intersecția cu Ox a tangentei prin $(x_1, f(x_1))$. Panta acestei tangente este dată de derivata funcției f pentru $x_1 = 1$. $m = f'(x_1)$. De asemenea aceasta pantă se poate calcula din ecuația tangentei, pentru $m = \frac{f(x_1) - y}{x_1 - x_2}, y = 0$.

Din
$$m = f'(x_1), m = \frac{f(x_1)}{x_1 - x_2} => f'(x_1) = \frac{f(x_1)}{x_1 - x_2}.$$

Calculând pentru x_2 , avem $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.$

Cod octave

$$f = @(x) x.^3 - 4*x + 2;$$

 $df = @(x) 3*x^2 - 4;$
 $x_1 = 1;$
 $x = 2 = x 1 - f(x 1)/df(x 1);$

(5) $f(x) = x^3 - 4x + 2$ Daca $x_0 = 0$ si $x_1 = 1$, cat sunt x_2 si x_3 din metoda secantei?

Definim relația y în funcție de x ca fiind secanta care trece prin punctele $(x_0, f(x_0)), (x_1, f(x_1)).$

Panta calculată cu aceste puncte este: $m = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$.

Panta calculată cu punctul $(x_1, f(x_1))$ și alt punct al secantei este: m = $\frac{f(x_1)-y}{x_1-x}.$

Din
$$m = \frac{f(x_1) - f(x_0)}{x_1 - x_0}, m = \frac{f(x_1) - y}{x_1 - x} = > \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_1) - y}{x_1 - x}.$$

Izolându-l pe x obținem:

$$x_1 - x = \frac{(f(x_1) - y)(x_1 - x_0)}{f(x_1) - f(x_0)} \le x = x_1 - \frac{(f(x_1) - y)(x_1 - x_0)}{f(x_1) - f(x_0)}.$$

Definim punctul $(x_2, 0)$ ca fiind intersecția secantei cu Ox, deci y = 0.

$$y = 0, x = x_2 = x_1 - \frac{f(x_1)(x_1 - x_0)}{f(x_1) - f(x_0)}$$
.

```
# Cod octave
f = 0(x) x^3 - 4*x + 2;
x_0 = 0;
x_1 = 1;
x_2 = x_1 - (f(x_1)*(x_1-x_0))/(f(x_1)-f(x_0));
x_3 = x_2 - (f(x_2)*(x_2-x_1))/(f(x_2-f(x_1)));
printf("x_2=\%.3f, x_3=\%.3f\n", x_2, x_3);
```

Soluțiile calculate sunt: $x_2 = 0.667, x_3 = 4.000.$

Fig.5.0 $x_0 = 0$, $x_1 = 1$, $f(x_1) = -1$