МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Инженерная школа информационных технологий и робототехники Отделение информационных технологий Направление «Программная инженерия»

Отчет

по лабораторной работе №3

по дисциплине

«ЭЛЕКТРОТЕХНИКА 1.3»

КОНДЕНСАТОР И КАТУШКА ИНДУКТИВНОСТИ
В ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Выполнил:	
Студент группы 8К12	3.Е. Гапеев
Проверил:	
Доктор физико-математических наук	С.А. Новиков

Томск 2022

Цель работы: научиться определять параметры конденсатора и катушки индуктивности, строить векторные диаграммы, а также проверить выполнение законов Кирхгофа в цепи синусоидального тока.

Схема электрической цепи:

Схемы активно-емкостной и активно-индуктивной цепей, исследуемые в работе, показаны на рис. 3.1 и 3.2 соответственно.

Пунктиром в них обведены конденсатор с параметрами g, C и катушка индуктивности с параметрами R, L. Обе цепи питаются от источника синусоидального напряжения, частоту f и действующее значение напряжения U которого можно регулировать. Величины U и f, а также параметры схем выбирают из табл. 3.1, согласно указанному преподавателем варианту. Измерения действующих значений токов и напряжений выполняются амперметрами с пределом 200 мА и вольтметрами с пределом 20 В.

При параллельном соединении элементов g и C по законам Ома и Кирхгофа в комплексной форме для тока конденсатора имеем:

$$\underline{I_2} = \underline{I_g} + \underline{I_C} = \underline{U}\underline{Y},$$

где $\underline{Y} = g + jb_C = y$ е $^{-j\phi}$ 2 — комплексная проводимость; g — активная, $b_C = \omega C$ — емкостная, y — полная проводимости конденсатора; $\phi_2 = -\arctan(b_C/g)$ — угол сдвига фаз напряжения и тока конденсатора. Напряжение на конденсаторе отстает по фазе от тока на угол ϕ_2 и угол сдвига фаз -90°< ϕ_2 < 0° можно найти по векторной диаграмме.

Эквивалентную схему замещения такой катушки обычно представляют в виде последовательного соединения элементов R и L. И эти параметры можно экспериментально определить, используя показания приборов и векторную диаграмму.

При последовательном соединении элементов R и L по законам Ома и Кирхгофа в комплексной форме напряжение катушки равно:

$$\underline{U_1} = \underline{U_R} + \underline{U_L} = \underline{IZ}.$$

где $Z = R + jX_L = z e^{+j\phi}$ 1 — комплексное сопротивление; R — активное, $X_L = \omega L$ — индуктивное, z — полное сопротивление катушки; $\phi_1 = \arctan(X_L/R)$ — угол сдвига фаз напряжения и тока.

Ток в катушке отстает по фазе от напряжения на угол ϕ_1 и угол сдвига фаз $0^\circ < \phi_1 < 90^\circ$ можно также найти по векторной диаграмме.

Расчётная часть

А) Исследование активно-емкостной цепи

1. Собрать цепь по схеме рис. 3.1 с параметрами согласно варианту,

указанному преподавателем (табл. 3.1). Вармант 9:
$$U = 4.5 B$$
; $f = 1000 Py$; $R_1 = 350 OH$; $C = 0.47 ML 9$ $L_2 = 470 OH$; $L_3 = 40 MTH$

2. Установить необходимые частоту и напряжение источника и записать показания приборов и параметры схемы в табл. 3.2 (величину сопротивления *R*1 уточнить измерением омметром).

	100	0		828	3					блица 3.		
	$f =\Gamma$ ц;			$\omega = 2\pi f = \dots$ рад/с;			$R_1 = 322.\text{OM};$		$C = 0.47$ MK Φ			
Дан	(анные опыта Результаты расчета											
U	I	I_2	I_1	φ_2	8	C	I	\underline{I}_2	\underline{I}_1	$\underline{I}_1 + \underline{I}_2$		
В	мА	мА	мА	град	См	мкФ	мА	мА	мА	мА		
4,5	17	12,7	13,9	101	-0,0538	0,441		12.7. eilol	13,9ei0	16,95 e 45°		

3. Вычислить ток в сопротивлении R1: I1 = U/R1. Записать его величину в табл. 3.2. Выбрать масштаб векторов токов mI (мА/мм). Принять начальную фазу входного напряжения равной нулю: U=U.

Построить U и I1 на комплексной плоскости вдоль оси вещественных чисел. Они совпадают по фазе. Дополнить остальными двумя токами лучевую диаграмму. Векторы I1 и I2 образуют при сложении параллелограмм, диагональю которого является ток I (все векторы токов строятся в одном масштабе mI). Вершину этого параллелограмма можно найти с помощью засечек циркулем. Угол-I2, на который ток I2 опережает входное напряжение, также внести в табл. I3. Пример векторной диаграммы показан на рис. I3.

Рис. 3.3

4. Подсчитать параметры конденсатора g и C . Сравнить рассчитанное значение C с величиной емкости, установленной в схеме. Результаты этих вычислений внести в табл. 3.2, причем

$$g = \underbrace{I_2 \cdot \cos \varphi_2}_U \cdot C = \underbrace{I_2 \cdot |\sin \varphi_2|}_{\omega U}$$

5. Записать в табл.3.2, исходя из векторной диаграммы, числовые значения комплексов действующих значений токов в показательной форме

$$\underline{I}=Ie^{-j\phi}, \underline{I}_2=I_2e^{-j\phi_2}, \underline{I}_1=I_1e^{j0^\circ}$$
, например, $\underline{I}=28.3e^{j56^\circ}$

и проверить выполнение первого закона Кирхгофа в комплексной форме. Для этого подсчитать $\Sigma I = I1 + I2$ и сравнить результат со значением I , полученном в эксперименте.

Б) Исследование активно-индуктивной цепи

1. Собрать электрическую цепь по схеме, показанной на рис. 3.2 с параметрами, соответствующими варианту из табл. 3.1, который указан преподавателем.

ance	neet 1000 Ah 17 6283						1.61	Таблица 3.3			
		Гц;	$\omega = 2\pi f = \dots$ рад/с;			$R_2 =O_{\rm M};$			L = 40 MTH		
Дан	ные о	ыта	Результаты расчета								
U	I	U_1	U_2	φ1	R	L	U	U_1	U	U_1+U_2	
В	мА	В	В	град	Ом	мГн	В	В	В	В	
4,5	6,8	1,85	3,07	55	156	38,5	4501200	1850iss°	307e10°	1,4 e 120°	

2. Установить требуемые значения U и f. Параметры цепи и показания приборов записать в табл. 3.3 (величину сопротивления R2 уточнить измерением омметром).

3. Вычислить напряжение на сопротивлении R2: U2=IR2. Записать его величину в табл. 3.3. Выбрать масштаб векторов напряжений mU (В/мм). Принять начальную фазу тока равной нулю: I=I. Отложить I и U2 на комплексной плоскости вдоль оси абсцисс. Дополнить топографическую диаграмму напряжений векторами U1 и U (все векторы напряжений строятся в одном масштабе mU). Векторы напряжений образуют треугольник, одна из вершин которого лежит в начале координат, а найти другую можно с помощью засечек, сделанных циркулем. Пример векторной диаграммы показан на рис. 3.4.

Рис. 3.4

4. Найти из диаграммы угол ϕ_{1} между током и напряжением на катушке и вычислить параметры катушки R, L. Найденную величину L сравнить со значением, установленным в схеме. Результаты вычислений внести в табл. 3.3, причем

$$R = \frac{U_1}{I} \cdot \cos \varphi_1; L = \frac{U_1}{\omega I} \cdot \sin \varphi_1$$

5. На основании диаграммы записать числовые значения комплексов действующих значений напряжений в показательной форме.

$$\underline{U}=Ue^{j\phi}, \underline{U}_1=U_1e^{j\phi_1}, \underline{U}_2=U_2e^{j0^\circ}$$
, например, $\underline{U}=4.5e^{j64^\circ}$

и проверить выполнение второго закона Кирхгофа. Для этого подсчитать $\Sigma \underline{U} = \underline{U1} + \underline{U2} \text{ и сравнить результат со значением } U \text{, полученном в эксперименте.}$ 6. Сделать общие выводы по работе.

 $U_1 = 1,86 \cdot e^{i55^{\circ}} + p(sine+iase) = pe^{ie}$ $U_2 = 3,07 \cdot e^{io} = 3,07$ 11+112 = 4,4 e 120° Borbog: в ходе работо по определим параметро конденсатора и катушки индуктивности, построини векторные диагримно 919 тока и напряшения проверим вопыше законов Хирхгора в чети синусопраньного тока. Растегноге значимя параметров конденсаторя и катумки совпадают с данногии нашего варианта в пределах no y emporer. Проверса законов Кирхгода увенгалась услехом 11+12= I, V1+12=V

Calculator

Change the form

Change the form

Exponential form:

16.945e^{i47.3675°}

Complex form:

11.4767 + i12.4667

