

Therefore, * is a binary operation.

(iii) On \mathbf{R} , * is defined by $a * b = ab^2$.

It is seen that for each $a, b \in \mathbf{R}$, there is a unique element ab^2 in \mathbf{R} .

This means that * carries each pair (a, b) to a unique element $a * b = ab^2$ in **R**.

Therefore, * is a binary operation.

(iv) On Z^+ , * is defined by a * b = |a - b|.

It is seen that for each $a, b \in \mathbf{Z}^+$, there is a unique element |a - b| in \mathbf{Z}^+ .

This means that * carries each pair (a, b) to a unique element a * b =

|a - b| in **Z**⁺.

Therefore, \ast is a binary operation.

(v) On \mathbf{Z}^+ , * is defined by a * b = a.

* carries each pair (a, b) to a unique element a * b = a in \mathbf{Z}^+ .

Therefore, * is a binary operation.

Question 2:

For each binary operation * defined below, determine whether * is commutative or

(i) On **Z**, define
$$a * b = a - b$$

(ii) On
$$\mathbf{Q}$$
, define $a * b = ab + 1$

(iii) On
$$\mathbf{Q}$$
, define $a*b=\frac{ab}{2}$ (iv) On \mathbf{Z}^+ , define $a*b=2^{ab}$

(iv) On
$$\mathbf{Z}^+$$
, define $a * b = 2^{ab}$

(v) On
$$\mathbf{Z}^+$$
, define $a * b = a^b$

(vi) On
$$\mathbf{R} - \{-1\}$$
, define $a*b = \frac{a}{b+1}$

(i) On **Z**, * is defined by a * b = a - b.

It can be observed that 1 * 2 = 1 - 2 = 1 and 2 * 1 = 2 - 1 = 1.

$$..1 * 2 \neq 2 * 1$$
; where 1, 2 \in **Z**

Hence, the operation $\boldsymbol{*}$ is not commutative.

Also we have:

$$(1*2)*3 = (1-2)*3 = -1*3 = -1-3 = -4$$

$$1*(2*3) = 1*(2-3) = 1*-1 = 1-(-1) = 2$$

$$\therefore$$
(1 * 2) * 3 ≠ 1 * (2 * 3); where 1, 2, 3 ∈ **Z**

Hence, the operation \ast is not associative.

(ii) On \mathbf{Q} , * is defined by a * b = ab + 1.

It is known that:

$$ab = ba \square a, b \in \mathbf{Q}$$

$$\Rightarrow ab + 1 = ba + 1 \square a, b \in \mathbf{Q}$$

$$\Rightarrow a*b=a*b\ \Box\ a,b\in\mathbf{Q}$$

Therefore, the operation * is commutative.

It can be observed that:

$$(1 * 2) * 3 = (1 \times 2 + 1) * 3 = 3 * 3 = 3 \times 3 + 1 = 10$$

$$\therefore (1\ ^{*}\ 2)\ ^{*}\ 3\ \neq\ 1\ ^{*}\ (2\ ^{*}\ 3)\ ;\ where\ 1,\ 2,\ 3\in \boldsymbol{Q}$$

Therefore, the operation * is not associative.

(iii) On
$$\mathbf{Q}$$
, * is defined by $a*b=\frac{ab}{2}$. It is known that:

$$ab = ba \square a, b \in \mathbf{Q}$$

$$\Rightarrow \frac{ab}{2} = \frac{ba}{2} \quad \Box \ a, \ b \in \mathbf{Q}$$

$$\Rightarrow a * b = b * a \square a, b \in \mathbf{Q}$$

Therefore, the operation \ast is commutative.

For all $a, b, c \in \mathbf{Q}$, we have:

$$(a*b)*c = \left(\frac{ab}{2}\right)*c = \frac{\left(\frac{ab}{2}\right)c}{2} = \frac{abc}{4}$$

$$a*(b*c) = a*\left(\frac{bc}{2}\right) = \frac{a\left(\frac{bc}{2}\right)}{2} = \frac{abc}{4}$$

$$(a*b)*c = a*(b*c)$$

Therefore, the operation * is associative.

(iv) On \mathbf{Z}^+ , * is defined by $a * b = 2^{ab}$.

It is known that:

$$ab = ba \square a, b \in \mathbf{Z}^+$$

$$\Rightarrow$$
 $2^{ab} = 2^{ba} \square a, b \in \mathbf{Z}^+$

$$\Rightarrow a * b = b * a \square a, b \in \mathbf{Z}^+$$

Therefore, the operation \ast is commutative.

It can be observed that:

$$(1*2)*3 = 2^{(1\times2)}*3 = 4*3 = 2^{4\times3} = 2^{12}$$

$$1*(2*3)=1*2^{2\times 3}=1*2^6=1*64=2^{64}$$

$$(1 * 2) * 3 \neq 1 * (2 * 3)$$
; where 1, 2, 3 $\in \mathbf{Z}^+$

Therefore, the operation \ast is not associative.

(v) On
$$\mathbf{Z}^+$$
, * is defined by $a * b = a^b$.

It can be observed that:

$$1*2=1^2=1$$
 and $2*1=2^1=2$

$$1 * 2 \neq 2 * 1$$
; where 1, 2 \in **Z**⁺

Therefore, the operation \ast is not commutative.

It can also be observed that:

$$(2*3)*4=2^3*4=8*4=8^4=(2^3)^4=2^{12}$$

$$2*(3*4) = 2*3^4 = 2*81 = 2^{81}$$

$$(2 * 3) * 4 \neq 2 * (3 * 4)$$
; where 2, 3, 4 \in **Z**⁺

Therefore, the operation \ast is not associative.

(vi) On
$${\bf R},\, {\bf *} - \{-1\}$$
 is defined by

$$1*2 = \frac{1}{2+1} = \frac{1}{3} \quad \text{and} \quad 2*1 = \frac{2}{1+1} = \frac{2}{2} = 1.$$
 It can be observed that

∴1 * 2 ≠ 2 * 1; where 1, 2 ∈
$$\mathbf{R}$$
 - {-1}

Therefore, the operation * is not commutative.

It can also be observed that:

$$(1*2)*3 = \frac{1}{3}*3 = \frac{\frac{1}{3}}{3+1} = \frac{1}{12}$$

$$1*(2*3)=1*\frac{2}{3+1}=1*\frac{2}{4}=1*\frac{1}{2}=\frac{1}{\frac{1}{2}+1}=\frac{1}{\frac{3}{2}}=\frac{2}{3}$$

$$\therefore$$
 (1 * 2) * 3 \neq 1 * (2 * 3); where 1, 2, 3 \in **R** - {-1}

Therefore, the operation * is not associative.

Question 3:

Consider the binary operation v on the set $\{1, 2, 3, 4, 5\}$ defined by $a \lor b = \min \{a, b\}$.

Write the operation table of the operationv.

Answer

The binary operation v on the set $\{1, 2, 3, 4, 5\}$ is defined as $a \lor b = \min \{a, b\}$

$$\Box a, b \in \{1, 2, 3, 4, 5\}.$$

Thus, the operation table for the given operation \boldsymbol{v} can be given as:

l	V	1	2	3	4	5
	1	1	1	1	1	1
I	2	1	2	2	2	2
	3	1	2	3	3	3
I	4	1	2	3	4	4
	5	1	2	3	4	5

Question 4:

Consider a binary operation * on the set $\{1, 2, 3, 4, 5\}$ given by the following multiplication table.

- (i) Compute (2 * 3) * 4 and 2 * (3 * 4)
- (ii) Is * commutative?
- (iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

*	1	2	3	4	5
1	1	1	1	1	1

2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

Answer

(ii) For every $a, b \in \{1, 2, 3, 4, 5\}$, we have a * b = b * a. Therefore, the operation * is commutative.

(iii)
$$(2 * 3) = 1$$
 and $(4 * 5) = 1$

Ouestion 5:

Let*' be the binary operation on the set $\{1, 2, 3, 4, 5\}$ defined by a *' b = H.C.F. of a and b. Is the operation *' same as the operation * defined in Exercise 4 above? Justify your answer.

Answer

The binary operation *' on the set $\{1, 2, 3, 4, 5\}$ is defined as a *' b = H.C.F of a and b. The operation table for the operation *' can be given as:

*/	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

We observe that the operation tables for the operations \ast and \ast' are the same.

Thus, the operation $^{*\prime}$ is same as the operation*.

Question 6:

Let * be the binary operation on $\bf N$ given by $a*b={\sf L.C.M.}$ of a and b. Find

- (i) 5 * 7, 20 * 16 (ii) Is * commutative?
- (iii) Is * associative? (iv) Find the identity of * in ${\bf N}$

********** END ********