Why "Learn"?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Learning is used when:
 - ☐ Human expertise does not exist (navigating on Mars),
 - ☐ Humans are unable to explain their expertise (speech recognition)
 - □ Solution changes in time (routing on a computer network)
 - □ Solution needs to be adapted to particular cases (user biometrics)

Eva

What We Talk About When We Talk About "Learning"

- Learning general models from a data of particular examples
- Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
- Example in retail: Customer transactions to consumer behavior:

People who bought "Da Vinci Code" also bought "The Five People You Meet in Heaven" (www.amazon.com)

Build a model that is *a good and useful approximation* to the data.

Eva

Data Mining/KDD

 <u>Definition</u> := "KDD is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data" (Fayyad)

• Applications:

- Retail: Market basket analysis, Customer relationship management (CRM)
- Finance: Credit scoring, fraud detection
- Manufacturing: Optimization, troubleshooting
- Medicine: Medical diagnosis
- Telecommunications: Quality of service optimization
- Bioinformatics: Motifs, alignment
- Web mining: Search engines
- _____

Eva

What is Machine Learning?

- Machine Learning
 - □ Study of algorithms that
 - □ improve their performance
 - □ at some task
 - **→** with experience
- Optimize a performance criterion using example data or past experience.
- Role of Statistics: Inference from a sample
- Role of Computer science: Efficient algorithms to
 - □Solve the optimization problem
 - □Representing and evaluating the model for inference

Ev

Growth of Machine Learning

- Machine learning is preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control
 - Computational biology
- This trend is accelerating
 - □ Improved machine learning algorithms
 - ☐ Improved data capture, networking, faster computers
 - □ Software too complex to write by hand
 - □ New sensors / IO devices
 - □ Demand for self-customization to user, environment
 - □ It turns out to be difficult to extract knowledge from human experts \rightarrow failure of expert systems in the 1980's.

Applications

- Association Analysis
- Supervised Learning
 - □ Classification
 - □ Regression/Prediction
- Unsupervised Learning
- Reinforcement Learning

Laar

Learning Associations

Basket analysis:

P(Y|X) probability that somebody who buys **X** also buys **Y** where **X** and **Y** are products/services.

Example: P (chips | coke) = 0.7

 Example of Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, milk, Eggs
3	Milk, Diaper, milk, Coke
4	Bread, Milk, Diaper, milk
5	Bread, Milk, Diaper, Coke

Classification

Example:

Credit scoring

Differentiating between low-risk and high-risk customers from their income and savings

© Discriminant: IF $income > \theta_1$ AND $savings > \theta_2$

o risk THEN low-risk ELSE high-

Model

Classification: Applications

- Aka: Pattern recognition
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - \square Use of a dictionary or the syntax of the language.
 - □ Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Medical diagnosis: From symptoms to illnesses
- Web Advertizing: Predict if a user clicks on an ad on the Internet.

Face Recognition

Training examples of a person

Test images

- AT&T Laboratories, Cambridge UK
- http://www.uk.research.att.com/facedatabase.html

*

Prediction: Regression

Example: Price of a used car

x : car attributes

y : price

$$y = g(x \mid \theta)$$

g () model,

 θ parameters

• X : mileage

Regression Applications

- Navigating a car: Angle of the steering wheel (CMU NavLab)
- Kinematics of a robot arm

Eval

SupervisedLearning: Uses

- Example: decision trees tools that create
 - **Presction of future cases:** Use the rule to predict the output for future inputs
 - Knowledge extraction: The rule is easy to understand
 - Compression: The rule is simpler than the data it explains
 - Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

UnsupervisedLearning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances
- Other applications: Summarization, Association Analysis
- Example applications
 - □Customer segmentation in CRM
 - □ Image compression: Color quantization
 - ☐Bioinformatics: Learning motifs

ReinforcementLearning

- Topics:
 - □ Policies: what actions should an agent take in a particular situation
 - \square Utility estimation: how good is a state (\rightarrow used by policy)
- No supervised output but delayed reward
- Credit assignment problem (what was responsible for the outcome)
- Applications:
 - ☐ Game playing
 - □ Robot in a maze
 - □ Multiple agents, partial observability, ...

Resources: Datasets

- UCI Repository:
 http://www.ics.uci.edu/~mlearn/MLRepository.html
- UCI KDD Archive:
 http://kdd.ics.uci.edu/summary.data.application.html
- Statlib: http://lib.stat.cmu.edu/
- Delve: http://www.cs.utoronto.ca/~delve/

:

Resources: Journals

- Journal of Machine Learning Research www.jmlr.org
- Machine Learning
- IEEE Transactions on Neural Networks
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- Journal of the American Statistical Association
- **-** ...

Resources: Conferences

- International Conference on Machine Learning (ICML)
- European Conference on Machine Learning (ECML)
- Neural Information Processing Systems (NIPS)
- Computational Learning
- International Joint Conference on Artificial Intelligence (IJCAI)
- ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
- IEEE Int. Conf. on Data Mining (ICDM)

From book: Machine Learning, Tom Mitchel

What is the Learning Problem?

Learning = Improving with experience at some task

- Improve over task T,
- with respect to performance measure P,
- based on experience E.

E.g., Learn to play checkers

- T: Play checkers
- P: % of games won in world tournament
- E: opportunity to play against self