Modular Arithmetic

 $a \mod n$ is the remainder obtained when a is divided by n. For example, $100 \mod 12 = 4$ (similar to % you encounter while programming). By Euclid's Division Lemma, $a \mod n$ is unique. Some of it's properties are listed below:

- $(a+b) \mod n = (a \mod n + b \mod n) \mod n$
- $(a-b) \mod n = (a+n-b) \mod n$
- $(a * b) \mod n = ((a \mod n) * (b \mod n)) \mod n$

Euler's Totient function $\Phi(n)$

For any n, $\Phi(n) = \#\{x \in \{1, 2, \dots, n-1\} | (x, n) = 1\}$ where (a, b) denotes the Greatest Common Divisor (GCD) of numbers a and b and # means the cardinality of the set. eg: $\Phi(5) = 4$, $\Phi(2) = 1$

Some specific values of Euler's Totient function :

- $\Phi(p) = p 1$ if p is Prime.
- $\Phi(p^n) = p^n p^{n-1}$ if p is Prime.
- $\Phi(ab) = \Phi(a)\Phi(b)$ if (a, b) = 1.

In general, if $n = \prod_{i=1}^r p_i^{k_i}$ where p_i is a prime number, then:

$$\Phi(n) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right)$$

Chinese Remainder Theorem (CRT)

Before moving directly to CRT we need to learn about some symbols.

 \mathbb{Z}_n represents the set of whole numbers less than n, i.e. the set $\{1, 2, \dots, n-1\}$ (this set is called **multiplicative group of integers modulo n**).

 \mathbb{Z}_n^* represents the set $\{a \in \mathbb{Z}_n | (a, n) = 1\}$. Note that cardinality of this group is $\Phi(n)$.

Definition a is said to be **congruent** to b module n if n|(a-b). This is represented as $a \equiv b \mod n$.

Theorem (CRT) For every element $x \in \mathbb{Z}_{pq}$, there exists a unique pair $(x \mod p, x \mod q)$ in $\mathbb{Z}_p \times \mathbb{Z}_q$ (this is cartesian product) where (p, q) = 1.

Conversely, for every (r, s) in $\mathbb{Z}_p \times \mathbb{Z}_q$, there exists a unique $x \in \mathbb{Z}_{pq}$ where $r = x \mod p$ and $s = x \mod q$.

Definition a is said to be **Modular Inverse** of another integer b modulo n if $ab \equiv 1 \mod n$.

One can find modular inverse using Extended Euclidean Algorithm.

Euler's Totient Theorem

Theorem If n is a positive integer and (a, n) = 1, then $a^{\Phi(n)} \equiv 1 \mod n$.