Project Proposal: Comparative Analysis of Quantum-Classical Hybrid Hedge Fund Architectures

1. Overview

This project aims to design, implement, and evaluate a **quantum–classical hybrid hedge fund framework** where different algorithmic tools — both classical and quantum — are tested under diverse market regimes. The core idea is to identify **which risk, optimization, and forecasting tools perform best under specific market conditions** and **how large language models (LLMs) select and combine these tools** when acting as the system's agentic decision-makers.

Ultimately, this will lead to:

- A **research benchmark** for hybrid quant systems integrating AI and quantum computation in real financial decision loops.

2. Objectives

- 1. **Comparative study of tools:** Evaluate multiple *risk assessment, portfolio optimization,* and *strategy selection* algorithms both classical and quantum across different historical and simulated market regimes.
- 2. **LLM-driven tool selection:** Use an **agentic LLM controller** (LangGraph or Autogen) to dynamically select which tool(s) to deploy given the current regime (bull, bear, neutral, volatile).
- 3. **Performance and interpretability analysis:** Quantify not only returns but *why* certain tools were chosen by the LLM, creating transparent mappings between market states, algorithmic decisions, and outcomes.
- 4. **Comprehensive logging and reproducibility:** All data flows, decisions, and model calls will be fully logged and versioned (MLflow + TimescaleDB + vector store) to support research reproducibility and future extension.

3. System Architecture

3.1 Core Modules

Module	Function	Tools / Frameworks	
Market Data Ingestion	Collect & preprocess market and macro data	yfinance, Polygon.io, TimescaleDB, Prefect	
Risk Assessment	Compute VaR, CVaR, GARCH volatility, QAE-based risk	PyPortfolioOpt, arch, scipy, Qiskit Finance	

Module	Function	Tools / Frameworks	
Price Forecasting	Predict returns using classical ML and quantum ML	LSTM, XGBoost, QSVM, QGAN, PennyLane	
Portfolio Construction & Optimization	Optimize portfolios under multiple objectives	cvxpy, PyPortfolioOpt, QAOA, QMV, D-Wave Ocean SDK	
Market Regime Detection	Identify market states	HMM, GMM, RS-GARCH, qPCA, QBM	
Trading Strategy Module	Simulate & evaluate momentum, mean-reversion, RL trading	vectorbt, FinRL, StableBaselines3, QRL (PennyLane)	
Agentic LLM Orchestrator	Decide which tools to invoke under current regime	LangGraph, OpenAI GPT-5 API, tool registry	
Logging & Benchmarking Layer	Record results, tool choices, and metrics	MLflow, TimescaleDB, Grafana, Prometheus	

4. Experimental Design

- 1. **Dataset selection:** Use 10–20 years of equity & ETF data (daily & intraday granularity) to capture multiple market cycles.
- 2. **Regime labeling:** Segment history into regimes via volatility clustering (RS-GARCH/HMM) and validate with macro indicators (VIX, yield curve, GDP growth).

3. Tool evaluation loop:

- For each time segment, run all applicable algorithms (classical & quantum).
- Measure: Sharpe ratio, Sortino, drawdown, VaR/CVaR, hit ratio, volatility, stability.
- Record which tool performs best under each regime.

4. LLM-driven selection:

- The LLM agent receives recent market features + performance logs.
- It chooses the next best combination of tools (risk + optimizer + predictor).
- o Log both choice rationale (LLM reasoning trace) and resulting performance.
- 5. **Comparative metrics:** Build a multi-dimensional table linking: \$\$ (\text{Market Regime}) \rightarrow (\text{Tool Selection}) \rightarrow (\text{Performance Metrics}) \$\$ enabling analysis of tool-regime-LLM decision alignment.

5. Tools, Frameworks, and Stack

Layer	Tools / Frameworks	
Core Language	Python 3.11	

Layer	Tools / Frameworks	
Computation & Orchestration	Prefect, Ray	
Databases	Postgres + TimescaleDB	
ML / DL Frameworks	PyTorch, scikit-learn, XGBoost	
Quantum Frameworks	Qiskit, PennyLane, D-Wave Ocean	
Agentic / LLM Orchestration	LangGraph, Autogen, OpenAl GPT-5 API	
Monitoring & Logging	MLflow, Grafana, Prometheus, Loki	
Backtesting / Simulation	vectorbt, FinRL	
Version Control & CI/CD	GitHub + Actions, Docker Compose	

6. Expected Outcomes

- **Empirical maps** showing which algorithmic families perform best under which market conditions.
- Quantitative benchmarks of quantum speed-quality tradeoffs versus classical baselines.
- **LLM selection logs** revealing interpretability of Al reasoning in financial contexts.
- Open-source dataset of tool-performance-regime mappings for academic use.
- **2–3 research papers** (Springer, IEEE, or Quantitative Finance) detailing performance analysis, hybrid architecture, and Al-based decision orchestration.

7. Timeline (Approx. 20 Weeks)

Phase	Duration	Focus
Setup & Data Backbone	2 weeks	Ingestion, DB setup, logging layer
Classical Pipeline	4 weeks	VaR/CVaR, Markowitz, ML predictors
Quantum Extensions	5 weeks	QAE, QAOA, QBM, QSVM integration
LLM Agent & Decision Layer	3 weeks	Tool selection logic, LangGraph orchestration
Comparative Study & Benchmarking	4 weeks	Market regime testing, backtesting, metrics
Reporting & Publication	2 weeks	Documentation, research draft

8. Research Contribution

This project creates a **new hybrid research benchmark** at the intersection of:

- Computational Finance (quant risk & optimization)
- Quantum Computing (QAE, QAOA, QBM)
- Agentic Al Systems (LLM tool orchestration)

It aims to demonstrate how **AI agents select analytical tools** under varying regimes, quantify **cross-domain performance patterns**, and propose **quantum–classical collaboration strategies** for future financial

systems.