Automatic Program Protection Using Fuzzing Driven Classifiers

Introduction

Goal

- Classify program inputs to avoid crashing states that may lead to vulnerabilities
- Using fuzzer driven ML models to create automatic program protection filters
- Leveraging novel techniques in generating highquality data for attention-based architectures

Address Limitations in Past Work

- Generates large (500k+) training datasets
- Usage for protection and not fuzzing guidance
- Models capable of extracting syntactic features
- Analysis of corpus coverage and layer contributions

Automatic Supervised Learning Corpus

Provide Tailored Program Protection via Classifier

Transformer Architecture

Experiment

Approach

- 1. Modified fuzzer to generate training data for supervised learning
- 2. Binary classifier model trained with attention heads to learn nominal vs. crashing
- 3. Inference for collecting metrics and providing tailored application protection

Metrics

- <u>Ablation study</u>: Statistics collected for reduced models: dense only, positional, transformer
- <u>F1/AUC Scores</u>: Measure performance of classifier with false positives/negatives
- <u>PaCMAP</u>: Qualitative analysis of manifold coverage for both datasets and activations

Findings

Quantitative

- Transformer model more performant in all cases
- Sequence information needed for inputs with heavy overlap, as seen in Test Program
- Able to correctly identify CVE inducing inputs
- Dense model achieves similar performance when special characters are present

Qualitative

- Good solution-space coverage from fuzzer, acts as a form of dataset augmentation
- Extra structure added by transformer to create distinct groupings on learned manifold

	Dense		Position		Attention	
	F1	AUC	F1	AUC	F1	AUC
Test	$0.\overline{8044}$	0.8666	0.9695	0.9880	$0.\overline{9911}$	0.9993
Fuzzgoat	0.9527	0.9851	0.9355	0.9746	0.9906	0.9994
XML CVE	0.9744	0.9747	0.9860	0.9964	0.9992	1.0000

Test Classifier Scores

Learned Dataset Structure