CS 519: Scientific Visualization

Network Visualization: Visual Analysis of Large Graphs

Eric Shaffer

Some slides adapted from:

Alexandru Telea, Data Visualization Principles and Practice

Large Networks Are Problematic

- 2012 webgraph:3.5 billion pages128 billion links
- Probably don't have enough pixels
- Even if we did, probably don't have enough cognitive capacity

Not the webgraph

Graph Preprocessing

- Idea: We can visualize smaller graphs
 Let's make the big graph into a small graph
 ...try to keep the most important parts
- Two approaches:
 - Graph filtering: remove unimportant parts
 - Graph aggregation: merge similar graph elements together

Graph Filtering

JIA Y., HOBEROCK J., GARLAND M., HART J.: **On the visualization of social and other scale-free networks.** IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008)

Removes edges in order of increasing betweeness centrality

Preserves connectivity
Preserves araph features (e.c.

Preserves graph features (e.g. cliques)

Betweeness Centrality

- Betweeness centrality (BC) ranks edges
 - How often they appear on shortest paths
 - □ High BC → important communication tunnels
 - Low BC → less important
- Remove low BC edges
 - Keeps "back bone" of the graph

Simple Edge Filtering is Insufficient

Need to maintain connectivity...possibly other important features

Workflow

Betweeness Centrality is Expensive

Graph
$$G = (V, E), |V| = n, |E| = m$$

- Betweenness centrality [Freeman 1977]
- Relies on computing All-Pairs Shortest Paths
- Complexity O(m*n) for unweighted graph [Brandes 01]

For huge graphs

- Approximated with random sampling [Jacob et al. 05]
 - O((m+n)*log(n)) with C*log(n) samples where C is a constant
- For our edge filtering purpose
 - Only relative orders of BC are needed
 - Select C*log(n) highest degree hub nodes

Graph Feature Detection

- Graph features
 - Cliques
 - NP-Complete problem
 - Fast approximation O(m*n) [Chiricota et al. 03]
- User defined features

Edge Filtering

Edges	BC Metric	
e h	1.3	
e i	1.1	
еј	1.2	
e k	1.15	
eı	1.21	
e m	1.09	

	e i	
Sort	e k	
	e j	
	eı	

Edges	BC Metric
e m	1.09
e i	1.1
e k	1.15
e j	1.2
eı	1.21
e h	1.3

Threshold t = 1.25

Recover Connectivity

eı	1.21	
e j	1.2	
e k	1.15	+
e i	1.1	
e m	1.09	
Removed Edges	BC Metric	

stack

Recompute the Layout

Edge No. 441

Fixing the Hairball....

Empirical Data on Error

Relative error of BC approximation

Error measured as

Performance

Graph	Nodes	Edges	Timing
siggraph07	328	773	0.02s
sp500-038	365	3206	0.20s
bo	1458	1948	0.44s
cg_web	2269	8131	1.50s
as-rel.071008	26242	53174	43.66s
hep-th	27400	352021	120.72s
flickr	820878	6625280	12442.70s

Limitations

- Doesn't work well for non-power law graphs
 - Including planar graphs
- Obviously doesn't show entire data set

Graph Aggregation

AggregationTechniques for Large Graphs

- We have seen some techniques already
 - Multi-level force-directed placement
 - Matrix representations and re-orderings
- Some other methods
 - Edge bundling
 - Visually group similar edges to alleviate occlusion
 - Graph splatting
 - Force directed layout meets volume rendering

Matrix Aggregation

N. Elmqvist, T.-N. Do, H. Goodell, N. Henry, J.-D. Fekete. **ZAME: Interactive Large-Scale Graph Visualization.** In *Proceedings of the IEEE*

Pacific Visualization Symposium, pp. 215-222, 2008.

Figure 1: A protein-protein interaction dataset (100,000 nodes and 1,000,000 edges) visualized using ZAME at two different levels of zoom.

Graph Aggregation: Edge Bundling

- Edge bundles are clusters of similar edges
- Many approaches...usually cluster vertices
 - Edges between clusters follow similar paths
- Some metrics
 - Shortest path distance to a "hub-node"
 - Remove high-BC edges to discover clusters
 - Lots of others

Hierarchical Edge Bundling: Example

Yuntao Jia, Michael Garland, John C. Hart:

Social Network Clustering and Visualization using Hierarchical Edge
Bundles. Comput. Graph. Forum 30(8): 2314-2327 (2011)

- 1. Generate a hierarchical structure of vertex clusters
- 2. Vertices are placed radially around circle
 - 1. Positions from in-order traversal of hierarchy
 - 2. Root nodes of clusters in in interior, leaves on the perimeter
- 3. Edges are B-Spline curves
 - 1. Control points are hierarchy node layout positions along shortest tree path between the two nodes

Balanced Hierarchy Construction

- Filter edges by removing highest-bc first
- Construct communities by merging in increasing BC order of removed edges

BC Calculation

$$BC(v) = \sum_{u \neq v \neq w \in V} \sigma_{u,w}(v) / \sigma_{u,w}$$

where $\sigma_{u,w}$ counts the number of shortest paths between u and w, and $\sigma_{u,w}(v)$ counts only the ones containing v.

- An edge a,b is removed only if min(deg(a),deg(b)) > 1
- \square And BC(a,b) > 1

Examples

Enron E-Mail Graph

- Enron scandal 2001
- 389 e-mails, 132 employees
- Red = sender, Green = recipient
- Can select node to see which communities that person contacted

Community Discovery

Generated Hierarchy (with user supplied labels)

Figure 8 visualizes the undirected graph "sp500-38," which represents 3,206 cross correlations of price fluctuation of 365 stocks from the S&P 500. Our method is able to recognize different stock sectors and put them near to each other in the hierarchy. The hierarchical edge bundles visualization reveals that financial stocks affect all other kind of stocks except energy, consumer staples and health stocks, which are relatively independent.

Graph Splatting

- node-link layouts get easily cluttered; remove problem by not drawing edges
- key idea: transform discrete dataset into a continuous one!
- do a force-directed layout
- convolve nodes (and optionally edges) with a Gaussian filter (radius r = simplification level)

$$f(x, y) = \sum_{i=1}^{N} k_i e^{-\left(\frac{|x-x_i|}{r}\right)^2}$$

render the resulting density signal using SciVis methods

Graph Splatting

- use factor k_i to specify the importance of i^{th} node
- example: $k_{\rm i}$ = number of requirements / provisions of a component (out/ingoing edges)
- high densities denote strongly connected clusters / important nodes

components using String class

package requirements

Graph Splatting

- the splat field can be visualized also as a height plot
- other SciVis techniques possible too (isolines, clipping...)
- however: the result quality strongly depends on the layout quality

Other Techniques

