Advanced Engineering Mathematics Vectors, Matrices, and Vector Calculus by Dennis G. Zill Notes

Chris Doble

June 2023

Contents

1	Vectors		1
	1.1	Vectors in 2-Space	1
	1.2	Vectors in 3-Space	1
	1.3	Dot Product	1
	1.4	Cross Product	2

1 Vectors

1.1 Vectors in 2-Space

- The zero vector can be assigned any direction
- The vectors **i** and **j** are known as the **standard basis vectors** for \mathbb{R}^2

1.2 Vectors in 3-Space

• In \mathbb{R}^3 the octant in which all coordinates are positive is known as the **first** octant. There is no agreement for naming the other seven octants.

1.3 Dot Product

- ullet The dot product is also known as the inner product or the scalar product and is denoted ${\bf a}\cdot {\bf b}$
- Two non-zero vectors are orthogonal iff their dot product is 0
- The zero vector is considered orthogonal to all vectors
- The angles α , β , and γ between a vector and the unit vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} , respectively are called the **direction angles** of the vector

• The cosines of a vectors direction angles (the **direction cosines**) can be calculated as

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{||\mathbf{a}||||\mathbf{i}||}$$

$$= \frac{a_1}{||\mathbf{a}||}$$

$$\cos \beta = \frac{\mathbf{a} \cdot \mathbf{j}}{||\mathbf{a}||||\mathbf{j}||}$$

$$= \frac{a_2}{||\mathbf{a}||}$$

$$\cos \gamma = \frac{\mathbf{a} \cdot \mathbf{k}}{||\mathbf{a}||||\mathbf{k}||}$$

$$= \frac{a_3}{||\mathbf{a}||}$$

Equivalently, these can be calculated as the components of the unit vector $\mathbf{a}/|\mathbf{a}||$.

ullet To find the component of a vector ${f a}$ in the direction of a vector ${f b}$

$$\mathrm{comp}_{\mathbf{b}}\mathbf{a} = ||\mathbf{a}||\cos\theta = \frac{\mathbf{a}\cdot\mathbf{b}}{||\mathbf{b}||}$$

• To project a vector **a** onto a vector **b**

$$\mathrm{proj}_{\mathbf{b}}\mathbf{a} = (\mathrm{comp}_{\mathbf{b}}\mathbf{a})\frac{\mathbf{b}}{||\mathbf{b}||} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right)\mathbf{b}$$

1.4 Cross Product

- The cross product is only defined in \mathbb{R}^3
- The scalar triple product of vectors a, b, and c is defined as

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

- The area of a parallelogram with sides \mathbf{a} and \mathbf{b} is $||\mathbf{a} \times \mathbf{b}||$
- The area of a triangle with sides **a** and **b** is $\frac{1}{2}||\mathbf{a} \times \mathbf{b}||$
- The volume of a paralleleipied with sides \mathbf{a} , \mathbf{b} , and \mathbf{c} is $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$
- $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0$ iff \mathbf{a} , \mathbf{b} , and \mathbf{c} are coplanar