Teoría de Autómatas e Linguaxes Formales [G4011321]

Pregunta 1

Resposta gardada

Puntuado fóra de 1,7 Dado el autómata finito no determinista AF = ($\{0, 1\}$, $\{A, B, C, D, E, F\}$, f, A, $\{F\}$), donde f es:

	0	1	lambda
->A	В	E	С
В	С		1
С			A, D, F
D		E	F
E		F	1
*F		† !	D

En el proceso de obtención del autómata determinista equivalente se han definido los siguientes nuevos estados: $q0=\{A, D, F\}$, $q1=\{E\}$, $q2=\{B\}$, $q3=\{D, F\}$, $q4=\{A, C, D, F\}$.

Pregunta: ¿Cuál es la clausura del estado "F"?

Introduce la respuesta respetando mayúsculas y minúsculas, en el orden de aparición dado por evaluación perezosa, con un espacio único entre letras, por ejemplo: "X Y Z" (sin comillas).

Resposta:	FD
-----------	----

Resposta gardada

Puntuado fóra de 1,7 Dado el autómata finito no determinista AF = ($\{0, 1\}, \{Z, A, B, C, D, E, F, G\}, f, Z, \{B, D, E, G\}$), donde f es:

	0	1	lambda
->Z			Α
Α	B, E	Α	
*B		В	С
С	С	D	
*D			В
*E		Е	F
F	F	G	1
*G			E

En el proceso de obtención del autómata determinista equivalente se han definido los siguientes nuevos estados: $q0=\{Z, A\}, q1=\{A\}, q2=\{B, C, E, F\}, q3=\{B, C, D, E, F, G\}, q4=\{C, F\}.$

Pregunta: ¿Cuál es la clausura del estado "Z"?

Introduce la respuesta respetando mayúsculas/minúsculas y en el orden de aparición dado por evaluación perezosa, con un espacio único entre letras, por ejemplo: "X Y Z" (sin comillas).

Resposta:	ZA
Resposta:	ZA

Resposta gardada

Puntuado fóra de 1,7

Dado el autómata finito no determinista AF = ({0, 1}, {A, B, C, D, E, F}, f, A, {C, E}), donde f es:

	0	1	lambda
->A	В	†	В
В	Α	С	Α
*C		D	Α
1 1	-	F	Е
*E		E	F
F	Е		

En el proceso de obtención del autómata determinista equivalente se han definido los siguientes nuevos estados: q0={A, B}, q1={A, B, C}, q2={A, B, C, D, E, F}, q3={A, B, E, F}, q4={A, B, C, E, F}.

Pregunta: d(q2, 0) = ???

Donde "d" es la función de transición. Introduce el estado o estados correspondientes separados por un único espacio, respetando mayúsculas/minúsculas y el orden dado.

Resposta: q3

Resposta gardada

Puntuado fóra de

1,7

El autómata finito AF_ER1:

En el proceso de obtención de la expresión regular simplificada que representa el lenguaje reconocido por dicho autómata, se ha seguido la siguiente secuencia de eliminación de estados: R, S, Q.

Pregunta: Tras eliminar el estado R, ¿cuál es la expresión regular de S a Q? Introduce la expresión regular correspondiente sin espacios, por ejemplo: "0(10*+11)*" (sin comillas)

Resposta: 0+10*1

Aínda non respondido

Puntuado fóra de 1,7 Dado el autómata finito determinista AF_ER2:

En el proceso de obtención de la expresión regular simplificada que representa el lenguaje reconocido por dicho autómata, se ha seguido la siguiente secuencia de eliminación de estados: U, T, R, S.

Seleccione unha ou máis:

- a. Tras eliminar el estado R, la expresión regular de P a P es 10*
- c. Tras eliminar el estado T, la expresión regular de P a R es 10*
- d. Tras eliminar el estado S, la expresión regular de Q a Q es (10)*.

Aínda non respondido

Puntuado fóra de 1,7 Dado el autómata finito determinista AF_ER3:

En el proceso de obtención de la expresión regular simplificada que representa el lenguaje reconocido por dicho autómata, se ha seguido la siguiente secuencia de eliminación de estados: B.

Seleccione unha ou máis:

$$\blacksquare$$
 a. L(D) = $(1 + 00*10*11*0)*00*10*11*$

$$\bullet$$
 b. L(A) = $(1 + 00*10*11*0)*$

□ c. Tras eliminar el estado B, la expresión regular de A a C es 00*10*

$$\Box$$
 d. L(C) = (1 + 00*10*11*0)* 00*10*