MA-GenTA Analysis - Downstream Analysis

Jacquelynn Benjamino

August 3, 2020

This code is for the downstream analysis of the MA-GenTA assay. All code is split by figures. The JAX and Allegro probe sets are designated throughout as V4 and V2, respectively.

Load packages used for this analysis

```
library (dplyr)
library (tibble)
library (ggplot2)
library (ggpubr)
library (reshape2)
library (ggpubr)
library (phyloseq)
library (phyloseq)
library (patchwork)
library (VennDiagram)
library (RColorBrewer)
library (vegan)
```

Figure 2

Figure 2a

Import count tables

```
V2_mapping<-read.csv("V2_controls.csv", header = TRUE)
V4_mapping<-read.csv("V4_controls.csv", header = TRUE)
```

Convert to percent abundance

```
V2_meta<-V2_mapping[,1:2]
V2_counts<-V2_mapping[,3:12]
V2_prop<-as.data.frame(prop.table(as.matrix(V2_counts),2)*100)
V2_mapping_prop<-cbind(V2_meta,V2_prop)

V4_meta<-V4_mapping[,1:2]
V4_counts<-V4_mapping[,3:12]
V4_prop<-as.data.frame(prop.table(as.matrix(V4_counts),2)*100)
V4_mapping_prop<-cbind(V4_meta,V4_prop)
```

E. coli plot

Select the *E. coli* samples from the dataframe and filter probes with different percent abundance thresholds: 0.001%, 0.00025%, 0.0005%, 0.001%, 0.0025%, 0.005%.

```
V2 0001<-select(V2 mapping prop, Bin, Probe, J00YQB. Ecoli P1V2, J00YSX.ecoli P2V2) %>% melt() %>%
         group by (Bin, Probe) %>% summarize (probe mean=mean (value)) %>%
         add tally(probe mean>=0.0001, name="ppM") %>% group by(Bin) %>%
        mutate(abundance=sum(probe_mean))%>% select(Bin,ppM,abundance)%>% distinct()%>%
        ungroup %>% filter(ppM>=10) %>% mutate(set="0.0001") %>%
        add count(set, name="number of mags") %>%
        select(set,number_of_mags) %>% mutate(design="Allegro")
V2 00025<-select(V2 mapping prop, Bin, Probe, J00YQB. Ecoli P1V2, J00YSX. ecoli P2V2) %>% melt() %>%
         group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
         add tally(probe mean>=0.00025, name="ppM") %>% group by(Bin) %>% mutate(abundance=sum(probe mean))
응>응
         select(Bin,ppM,abundance)%>%distinct()%>%
         ungroup %>% filter(ppM>=10)%>% mutate(set="0.00025")%>%
         add count(set, name="number of mags") %>%
          select(set,number of mags) %>% mutate(design="Allegro")
V2 0005<-select(V2 mapping prop, Bin, Probe, J00YQB. Ecoli P1V2, J00YSX.ecoli P2V2) %>% melt() %>%
         group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
         add tally(probe mean>=0.0005, name="ppM") %>%group by(Bin) %>%
        mutate(abundance=sum(probe mean))%>%
         select(Bin,ppM,abundance)%>%distinct()%>%
         ungroup %>% filter(ppM>=10)%>% mutate(set="0.0005")%>%
```

```
add count (set, name="number of mags") %>%
         select(set,number of mags) %>% mutate(design="Allegro")
V2_001<-select(V2_mapping_prop, Bin,Probe,J00YQB.Ecoli_P1V2, J00YSX.ecoli_P2V2) %>% melt() %>%
       group_by(Bin,Probe) %>%
       summarize(probe mean=mean(value)) %>%
       add tally(probe mean>=0.001, name="ppM") %>% group by(Bin) %>%
       mutate(abundance=sum(probe mean))%>%
       select(Bin,ppM,abundance)%>%distinct()%>%
       ungroup %>% filter(ppM>=10)%>% mutate(set="0.001")%>% add count(set, name="number of mags") %>%
       select(set,number_of_mags) %>% mutate(design="Allegro")
V2 0025<-select(V2 mapping prop, Bin, Probe, J00YQB. Ecoli P1V2, J00YSX. ecoli P2V2) %>% melt() %>%
         group by(Bin, Probe) %>% summarize(probe mean=mean(value)) %>%
         add tally(probe mean>=0.0025, name="ppM") %>% group by(Bin) %>%
        mutate(abundance=sum(probe_mean))%>%
        select(Bin,ppM,abundance)%>%distinct()%>%
        ungroup %>% filter(ppM>=10)%>% mutate(set="0.0025") %>%
         add_count(set, name="number_of_mags") %>% select(set,number_of_mags) %>%
        mutate(design="Allegro")
V2_005<-select(V2_mapping_prop, Bin,Probe,J00YQB.Ecoli_P1V2, J00YSX.ecoli_P2V2) %>% melt() %>%
        group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
       add_tally(probe_mean>=0.005, name="ppM")%>% group_by(Bin) %>%
       mutate(abundance=sum(probe_mean))%>%
       select(Bin,ppM,abundance)%>%distinct()%>%
       ungroup %>% filter(ppM>=10)%>% mutate(set="0.005")%>% add count(set, name="number of mags") %>%
select(set,number_of_mags) %>% mutate(design="Allegro")
V4_0001<-select(V4_mapping_prop, Bin,Probe,J00YP0.ecoli_P1V4,J00YRM.ecoli_P2V4) %>% melt() %>%
         add_tally(probe_mean>=0.0001, name="ppM") %>% group_by(Bin) %>% mutate(abundance=sum(probe_mean))%>
        select(Bin,ppM,abundance)%>% distinct()%>%
         ungroup %>% filter(ppM>=10) %>% mutate(set="0.0001") %>%
         add_count(set, name="number_of_mags") %>% select(set,number_of_mags) %>%
        mutate(design="JAX")
V4_00025<-select(V4_mapping_prop, Bin,Probe,J00YP0.ecoli_P1V4,J00YRM.ecoli_P2V4) %>% melt() %>%
         group by(Bin, Probe) %>% summarize(probe mean=mean(value)) %>%
         add_tally(probe_mean>=0.00025, name="ppM") %>% group_by(Bin) %>%
         mutate(abundance=sum(probe_mean))%>%
         select(Bin,ppM,abundance)%>%distinct()%>%
         ungroup %>% filter(ppM>=10)%>% mutate(set="0.00025") %>%
         add_count(set, name="number_of_mags") %>%
         select(set,number of mags) %>% distinct() %>% mutate(design="JAX")
V4_0005<-select(V4_mapping_prop, Bin,Probe,J00YP0.ecoli_P1V4,J00YRM.ecoli_P2V4) %>% melt() %>%
         group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
         add_tally(probe_mean>=0.0005, name="ppM") %>%group_by(Bin) %>%
        mutate(abundance=sum(probe_mean))%>%
        select(Bin,ppM,abundance)%>%distinct()%>%
        ungroup %>% filter(ppM>=10)%>% mutate(set="0.0005") %>%
         add count(set, name="number of mags") %>%
         select(set,number_of_mags) %>% mutate(design="JAX")
V4_001<-select(V4 mapping prop, Bin, Probe, J00YP0.ecoli P1V4, J00YRM.ecoli_P2V4) %>% melt() %>%
       group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
       add_tally(probe_mean>=0.001, name="ppM") %>% group_by(Bin) %>% mutate(abundance=sum(probe_mean))%>%
       select(Bin,ppM,abundance)%>%distinct()%>%
       ungroup %>% filter(ppM>=10)%>% mutate(set="0.001")%>% add count(set, name="number of mags") %>%
        select(set,number_of_mags) %>% mutate(design="JAX")
V4_0025<-select(V4_mapping_prop, Bin,Probe,J00YP0.ecoli_P1V4,J00YRM.ecoli_P2V4) %>% melt() %>%
         group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        add_tally(probe_mean>=0.0025, name="ppM") %>% group_by(Bin) %>% mutate(abundance=sum(probe_mean))%>
        select(Bin,ppM,abundance)%>%distinct()%>%
        ungroup %>% filter(ppM>=10)%>% mutate(set="0.0025") %>%
        add_count(set, name="number_of_mags") %>% select(set,number_of_mags) %>%
        mutate(design="JAX")
V4 005<-select(V4 mapping prop, Bin, Probe, J00YP0.ecoli P1V4, J00YRM.ecoli P2V4) %>% melt() %>%
```

```
group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
add_tally(probe_mean>=0.005, name="ppM")%>% group_by(Bin) %>% mutate(abundance=sum(probe_mean))%>%
select(Bin,ppM,abundance)%>%distinct()%>%
ungroup %>% filter(ppM>=10)%>% mutate(set="0.005")%>% add_count(set, name="number_of_mags") %>%
select(set,number_of_mags) %>% mutate(design="JAX")
```

Combine the different probe threshold data into a single plot for each probe set, and then combine the two probe sets into one dataframe.

```
V2_all<-rbind(V2_0001,V2_00025,V2_0005,V2_001,V2_0025,V2_005) %>% distinct()
V4_all<-rbind(V4_0001,V4_00025,V4_0005,V4_001,V4_0025,V4_005) %>% distinct()
all<-rbind(V2_all,V4_all)
all$set<-factor(all$set, levels = c("0.0001","0.00025","0.0005","0.001","0.0025","0.0005"))
```

Plot the graph

```
theme_set(theme_bw())
ggplot(all, aes(x=set, y=number_of_mags, fill=design))+
   geom_dotplot(binaxis='y', stackdir='center', position="dodge", dotsize = 1.3, stackratio = .7)+
   scale_fill_manual(values=c("#274b69","#94ae3f"))+
   xlab("Abundance Threshold")+
   ylab("Number of MAGs")+
   theme(legend.position = "none")+
   ylim(0,15)
```

Mock plot

Select the Mock samples from the dataframe and filter probes with different percent abundance thresholds: 0.001%, 0.00025%, 0.0005%, 0.001%, 0.0025%, 0.005%.

```
V2_0001<-select(V2_mapping_prop, Bin,Probe,J00YQD.zymo_mock_P1V2,J00YT0.zymo_mock_P2V2) %>% melt() %>%
        group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        용
        select(Bin,ppM,abundance)%>% distinct()%>%
        ungroup %>% filter(ppM>=10) %>% mutate(set="0.0001") %>% add_count(set, name="number_of_mags") %>%
        select(set,number of mags) %>% mutate(design="Allegro")
V2_00025<-select(V2_mapping_prop, Bin,Probe,J00YQD.zymo_mock_P1V2,J00YT0.zymo_mock_P2V2) %>% melt() %>%
         group by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
         add_tally(probe_mean>=0.00025, name="ppM") %>% group_by(Bin) %>% mutate(abundance=sum(probe_mean))
응>응
         select(Bin,ppM,abundance)%>%distinct()%>%
         ungroup %>% filter(ppM>=10)%>% mutate(set="0.00025")%>% add count(set, name="number of mags") %>%
         select(set,number_of_mags) %>% mutate(design="Allegro")
V2 0005<-select(V2 mapping prop, Bin, Probe, J00YQD.zymo mock P1V2, J00YT0.zymo mock P2V2) %>% melt() %>%
        group by(Bin, Probe) %>% summarize(probe mean=mean(value)) %>%
        add tally(probe mean>=0.0005, name="ppM") %>%group by(Bin) %>% mutate(abundance=sum(probe mean))%>%
        select(Bin,ppM,abundance)%>%distinct()%>%
        ungroup %>% filter(ppM>=10)%>% mutate(set="0.0005")%>%
        add count(set, name="number of mags") %>%
        select(set,number_of_mags) %>% mutate(design="Allegro")
V2 001<-select(V2 mapping prop, Bin, Probe, J00YQD.zymo mock P1V2, J00YT0.zymo mock P2V2) %>% melt() %>%
       group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
       add_tally(probe_mean>=0.001, name="ppM") %>% group_by(Bin) %>%
       mutate(abundance=sum(probe_mean))%>%
       select(Bin,ppM,abundance)%>%distinct()%>%
       ungroup %>% filter(ppM>=10)%>% mutate(set="0.001") %>%
       add count(set, name="number of mags") %>%
       select(set, number of mags) %>% mutate(design="Allegro")
V2 0025<-select(V2 mapping prop, Bin, Probe, J00YQD.zymo mock P1V2, J00YT0.zymo mock P2V2) %>% melt() %>%
        group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        add tally(probe mean>=0.0025, name="ppM") %>% group by(Bin) %>%
        mutate(abundance=sum(probe_mean))%>%
        select(Bin,ppM,abundance)%>%distinct()%>%
        ungroup %>% filter(ppM>=10)%>% mutate(set="0.0025") %>%
        add_count(set, name="number_of_mags") %>%
        select(set,number_of_mags) %>% mutate(design="Allegro")
```

```
VZ UU5<-select(VZ mapping prop, Bin, Probe, JUUYQD.zymo mock PivZ, JUUYTU.zymo mock PZVZ) %>% meit() %>%
       group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
       add tally(probe mean>=0.005, name="ppM")%>% group by(Bin) %>% mutate(abundance=sum(probe mean))%>%
       select(Bin,ppM,abundance)%>%distinct()%>%
       ungroup %>% filter(ppM>=10)%>% mutate(set="0.005")%>% add count(set, name="number of mags") %>%
        select(set,number of mags) %>% mutate(design="Allegro")
V4_0001<-select(V4 mapping prop, Bin,Probe,J00YP2.mock_P1V4,J00YRP.zymo_mock_P2V4) %>% melt() %>%
         group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
         add_tally(probe_mean>=0.0001, name="ppM") %>% group by(Bin) %>% mutate(abundance=sum(probe_mean))%>
        select(Bin,ppM,abundance)%>% distinct()%>%
        ungroup %>% filter(ppM>=10) %>% mutate(set="0.0001") %>%
         add_count(set, name="number_of_mags") %>% select(set,number_of_mags) %>%
        mutate(design="JAX")
V4_00025<-select(V4_mapping_prop, Bin, Probe, J00YP2.mock_P1V4, J00YRP.zymo_mock_P2V4) %>% melt() %>%
          group by(Bin, Probe) %>% summarize(probe mean=mean(value)) %>%
          add_tally(probe_mean>=0.00025, name="ppM") %>% group_by(Bin) %>%
          mutate(abundance=sum(probe_mean))%>%
          select(Bin,ppM,abundance)%>%distinct()%>%
         ungroup %>% filter(ppM>=10)%>% mutate(set="0.00025")%>%
         add count(set, name="number of mags") %>%
          select(set, number of mags) %>% mutate(design="JAX")
V4_0005<-select(V4_mapping_prop, Bin,Probe,J00YP2.mock_P1V4,J00YRP.zymo_mock_P2V4) %>% melt() %>%
         group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
         add_tally(probe_mean>=0.0005, name="ppM") %>%group_by(Bin) %>%
        mutate(abundance=sum(probe_mean))%>%
        select(Bin,ppM,abundance)%>%distinct()%>%
        ungroup %>% filter(ppM>=10)%>% mutate(set="0.0005")%>%
         add_count(set, name="number_of_mags") %>% select(set,number_of_mags) %>%
        mutate(design="JAX")
V4_001<-select(V4_mapping_prop, Bin,Probe,J00YP2.mock_P1V4,J00YRP.zymo_mock_P2V4) %>% melt() %>%
       group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
       add_tally(probe_mean>=0.001, name="ppM") %>% group_by(Bin) %>% mutate(abundance=sum(probe_mean))%>%
       select(Bin,ppM,abundance)%>%distinct()%>%
       ungroup %>% filter(ppM>=10)%>% mutate(set="0.001")%>% add_count(set, name="number_of_mags") %>%
       select(set,number_of_mags) %>% mutate(design="JAX")
V4_0025<-select(V4_mapping_prop, Bin,Probe,J00YP2.mock_P1V4,J00YRP.zymo_mock_P2V4) %>% melt() %>%
        group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
        add_tally(probe_mean>=0.0025, name="ppM") %>% group_by(Bin) %>% mutate(abundance=sum(probe_mean))%>
         select(Bin,ppM,abundance)%>%distinct()%>%
         ungroup %>% filter(ppM>=10)%>% mutate(set="0.0025") %>%
         add_count(set, name="number_of_mags") %>% select(set,number_of_mags) %>%
        mutate(design="JAX")
V4 005<-select(V4 mapping prop, Bin, Probe, J00YP2.mock P1V4, J00YRP.zymo mock P2V4) %>% melt() %>%
       group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
       add tally(probe mean>=0.005, name="ppM")%>% group by(Bin) %>%
       mutate(abundance=sum(probe_mean))%>%
       select(Bin,ppM,abundance)%>%distinct()%>%
       ungroup %>% filter(ppM>=10)%>% mutate(set="0.005")%>%
       add count(set, name="number of mags") %>%
        select(set,number of mags) %>% mutate(design="JAX")
```

Combine the different probe threshold data into a single plot for each probe set, and then combine the two probe sets into one dataframe.

```
V2_all<-rbind(V2_0001,V2_00025,V2_0005,V2_001,V2_0025,V2_005) %>% distinct()
V4_all<-rbind(V4_0001,V4_00025,V4_0005,V4_001,V4_0025,V4_005) %>% distinct()
all<-rbind(V2_all,V4_all)
all$set<-factor(all$set, levels = c("0.0001","0.00025","0.0005","0.001","0.0025","0.005"))
```

```
theme_set(theme_bw())
ggplot(all, aes(x=set, y=number_of_mags, fill=design))+
   geom_dotplot(binaxis='y', stackdir='center', position="dodge", dotsize = 1.3, stackratio = .7)+
   scale_fill_manual(values=c("#274b69","#94ae3f"))+
   xlab("Abundance Threshold")+
   ylab("Number of MAGs")+
   theme(legend.position = "none")+
   ylim(0,15)
```

NTC plot

Select the NTC samples from the dataframe and filter probes with different percent abundance thresholds: 0.001%, 0.00025%, 0.0005%, 0.001%, 0.0025%, 0.005%.

```
V2 0001<-select(V2 mapping prop, Bin, Probe, JNC000.NTC CCF VNDR KOMP P2V2, JNC000.NTC HL44 P1V2) %>% melt() %>
         group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
        add tally(probe mean>=0.0001, name="ppM") %>% group by(Bin) %>%
        mutate(abundance=sum(probe_mean))%>%
        select(Bin,ppM,abundance)%>% distinct()%>%
        ungroup %>% filter(ppM>=10) %>% mutate(set="0.0001") %>%
        add count(set, name="number of mags") %>% select(set,number of mags) %>%
        mutate(design="Allegro")
V2 00025<-select(V2 mapping prop, Bin, Probe, JNC000.NTC CCF VNDR KOMP P2V2, JNC000.NTC HL44 P1V2) %>%
         melt() %>% group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
         add tally(probe mean>=0.00025, name="ppM") %>% group_by(Bin) %>%
         mutate(abundance=sum(probe mean))%>%
          select(Bin,ppM,abundance)%>%distinct()%>%
          ungroup %>% filter(ppM>=10)%>% mutate(set="0.00025")%>%
          add count(set, name="number of mags") %>%
          select(set,number of mags) %>% mutate(design="Allegro")
V2_0005<-select(V2_mapping_prop, Bin,Probe,JNC000.NTC_CCF_VNDR_KOMP_P2V2,JNC000.NTC_HL44_P1V2) %>%
        melt() %>% group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
         add tally(probe mean>=0.0005, name="ppM") %>%group by(Bin) %>%
        mutate(abundance=sum(probe mean))%>%
        select(Bin,ppM,abundance)%>%distinct()%>%
        ungroup %>% filter(ppM>=10)%>% mutate(set="0.0005")%>%
         add_count(set, name="number_of_mags") %>%
         select(set,number_of_mags) %>% mutate(design="Allegro")
V2 001<-select(V2 mapping prop, Bin, Probe, JNC000.NTC CCF VNDR KOMP P2V2, JNC000.NTC HL44 P1V2) %>%
        melt() %>% group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
       add tally(probe mean>=0.001, name="ppM") %>% group by(Bin) %>%
       mutate(abundance=sum(probe_mean))%>%
       select(Bin,ppM,abundance)%>%distinct()%>%
       ungroup %>% filter(ppM>=10)%>% mutate(set="0.001")%>% add_count(set, name="number_of_mags") %>%
       select(set,number of mags) %>% mutate(design="Allegro")
V2_0025<-select(V2_mapping_prop, Bin,Probe,JNC000.NTC_CCF_VNDR_KOMP_P2V2,JNC000.NTC_HL44_P1V2) %>%
        melt() %>% group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
         add_tally(probe_mean>=0.0025, name="ppM") %>% group_by(Bin) %>%
        mutate(abundance=sum(probe_mean))%>%
         select(Bin,ppM,abundance)%>%distinct()%>%
         ungroup %>% filter(ppM>=10)%>% mutate(set="0.0025") %>%
         add_count(set, name="number_of_mags") %>%
         select(set,number_of_mags) %>% mutate(design="Allegro")
V2_005<-select(V2_mapping_prop, Bin, Probe, JNC000.NTC_CCF_VNDR_KOMP_P2V2, JNC000.NTC_HL44_P1V2) %>%
       melt() %>% group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
       add tally(probe mean>=0.005, name="ppM")%>% group by(Bin) %>%
       mutate(abundance=sum(probe_mean))%>%
       select(Bin,ppM,abundance)%>%distinct()%>%
       ungroup %>% filter(ppM>=10)%>% mutate(set="0.005")%>% add_count(set, name="number_of_mags") %>%
       select(set,number_of_mags) %>% mutate(design="Allegro")
V4_0001<-select(V4_mapping prop, Bin,Probe,JNC000.NTC_CCF_VNDR_KOMP_P2V4,JNC000.NTC_HL44_P1V4) %>%
         melt() %>% group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
         add_tally(probe_mean>=0.0001, name="ppM") %>% group_by(Bin) %>%
        mutate(abundance=sum(probe mean))%>%
         select(Bin,ppM,abundance)%>% distinct()%>%
         unaroum %>% filter(nnM>=10) %>% mutate(set="0.0001") %>%
```

```
angroup or a rrrear (ppm ro, or a mac
         add_count(set, name="number_of_mags") %>%
         select(set,number_of_mags) %>% mutate(design="JAX")
V4 00025<-select(V4 mapping prop, Bin, Probe, JNC000.NTC CCF VNDR KOMP P2V4, JNC000.NTC HL44 P1V4) %>%
         melt() %>% group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
         add_tally(probe_mean>=0.00025, name="ppM") %>% group_by(Bin) %>%
         mutate(abundance=sum(probe_mean))%>%
         select(Bin,ppM,abundance)%>%distinct()%>%
         ungroup %>% filter(ppM>=10)%>% mutate(set="0.00025")%>%
         add count(set, name="number of mags") %>%
          select(set,number of mags) %>% mutate(design="JAX")
V4_0005<-select(V4_mapping_prop, Bin,Probe,JNC000.NTC_CCF_VNDR_KOMP_P2V4,JNC000.NTC_HL44_P1V4) %>%
         melt() %>% group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
         add_tally(probe_mean>=0.0005, name="ppM") %>%group_by(Bin) %>%
        mutate(abundance=sum(probe_mean))%>%
        select(Bin,ppM,abundance)%>%distinct()%>%
        ungroup %>% filter(ppM>=10)%>% mutate(set="0.0005")%>%
        add_count(set, name="number_of_mags") %>%
        select(set,number_of_mags) %>% mutate(design="JAX")
V4_001<-select(V4_mapping_prop, Bin, Probe, JNC000.NTC_CCF_VNDR_KOMP_P2V4, JNC000.NTC_HL44_P1V4) %>%
        melt() %>% group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
       add_tally(probe_mean>=0.001, name="ppM") %>% group_by(Bin) %>%
       mutate(abundance=sum(probe mean))%>%
       select(Bin,ppM,abundance)%>%distinct()%>%
       ungroup %>% filter(ppM>=10)%>% mutate(set="0.001")%>%
       add_count(set, name="number_of_mags") %>%
       select(set,number_of_mags) %>% mutate(design="JAX")
V4 0025<-select(V4 mapping prop, Bin, Probe, JNC000.NTC CCF VNDR KOMP P2V4, JNC000.NTC HL44 P1V4) %>%
        melt() %>% group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        add tally(probe mean>=0.0025, name="ppM") %>% group by(Bin) %>%
        mutate(abundance=sum(probe_mean))%>%
        select(Bin,ppM,abundance)%>%distinct()%>%
        ungroup %>% filter(ppM>=10)%>% mutate(set="0.0025") %>%
         add count(set, name="number of mags") %>%
         select(set,number of mags) %>% mutate(design="JAX")
V4 005<-select(V4 mapping prop, Bin, Probe, JNC000.NTC CCF VNDR KOMP P2V4, JNC000.NTC HL44 P1V4) %>%
       melt() %>% group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
       add_tally(probe_mean>=0.005, name="ppM")%>% group_by(Bin) %>%
       mutate(abundance=sum(probe_mean))%>%
       select(Bin,ppM,abundance)%>%distinct()%>%
       ungroup %>% filter(ppM>=10)%>% mutate(set="0.005")%>%
       add count(set, name="number of mags") %>%
        select(set,number of mags) %>% mutate(design="JAX")
```

Combine the different probe threshold data into a single plot for each probe set, and then combine the two probe sets into one dataframe.

Plot the graph

```
theme_set(theme_bw())
ggplot(all, aes(x=set, y=number_of_mags, fill=design))+
  geom_dotplot(binaxis='y', stackdir='center', position="dodge", dotsize = 1.3, stackratio = .7)+
  scale_fill_manual(values=c("#274b69","#94ae3f"))+
  xlab("Abundance Threshold")+
  ylab("Number of MAGs")+
  scale_y_continuous(breaks = c(0,1))+
  theme(legend.position = "none")
```

Figure 2b

Import count tables

```
V2_mapping<-read.csv("V2_controls.csv", header = TRUE)
V4_mapping<-read.csv("V4_controls.csv", header = TRUE)
```

convert to percent abundance

```
V2_meta<-V2_mapping[,1:2]
V2_counts<-V2_mapping[,3:12]
V2_prop<-as.data.frame(prop.table(as.matrix(V2_counts),2)*100)
V2_mapping_prop<-cbind(V2_meta,V2_prop)

V4_meta<-V4_mapping[,1:2]
V4_counts<-V4_mapping[,3:12]
V4_prop<-as.data.frame(prop.table(as.matrix(V4_counts),2)*100)
V4_mapping_prop<-cbind(V4_meta,V4_prop)</pre>
```

NTC Plot

Select the NTC samples and filter using no thresholds, combine V2 and V4 tables, and plot

```
V2 all<-select(V2 mapping prop, Bin, Probe, JNC000.NTC CCF VNDR KOMP P2V2, JNC000.NTC HL44 P1V2) %>%
        melt() %>% group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
        add_tally(probe_mean>0) %>% ungroup %>%
        group by(Bin,n) %>% summarize(BinSum=sum(probe mean)) %>% mutate(set="V2")
        colnames(V2_all)<-c("Bin", "probe_counts", "abund", "set")</pre>
V4 all<-select(V4 mapping prop, Bin, Probe, JNC000.NTC CCF VNDR KOMP P2V4, JNC000.NTC HL44 P1V4) %>%
        melt() %>% group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        add tally(probe mean>0) %>% ungroup %>%
        group_by(Bin,n) %>% summarize(BinSum=sum(probe_mean))%>% mutate(set="V4")
        colnames(V4 all)<-c("Bin", "probe counts", "abund", "set")</pre>
combined all<-rbind(V2 all, V4 all)</pre>
combined all[is.na(combined all)]<-0</pre>
ggplot(combined all, aes(x=abund, y=probe counts, color=set))+
  geom point()+
  scale_color_manual(values=c("gray", "gray"))+
  scale x continuous(trans="log10", name = "MAG Abundance (%)") +
  scale y continuous(name = "Probes per MAG") +
 geom hline(yintercept = 10, color="#777777") +
  geom count()+scale size(trans = "log2", name = element text("Count of Bins"))+
  expand_limits(y=c(0,20))+
  theme(legend.position = "none")
```

Select the NTC samples and filter using 0.001% probe abundance threshold, combine the V2 and V4 tables, and plot

```
V2_all<-select(V2 mapping prop, Bin, Probe, JNC000.NTC_CCF_VNDR_KOMP_P2V2, JNC000.NTC_HL44_P1V2) %>%
        melt() %>% group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
        add_tally(probe_mean>=0.001) %>% ungroup %>%
        group_by(Bin,n) %>% summarize(BinSum=sum(probe_mean)) %>% mutate(set="V2")
        colnames(V2_all)<-c("Bin", "probe_counts", "abund", "set")</pre>
V4 all<-select(V4 mapping prop, Bin, Probe, JNC000.NTC CCF VNDR KOMP P2V4, JNC000.NTC HL44 P1V4) %>%
        melt() %>% group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        add tally(probe mean>=0.001) %>% ungroup %>%
        group_by(Bin,n) %>% summarize(BinSum=sum(probe_mean))%>% mutate(set="V4")
        colnames(V4_all)<-c("Bin", "probe_counts", "abund", "set")</pre>
combined_all<-rbind(V2_all,V4_all)
combined all[is.na(combined all)]<-0
ggplot(combined_all, aes(x=abund, y=probe_counts, color=set))+
 geom_point(color="black")+
 scale_color_manual(values=c("#274b69","#94ae3f"))+
 scale x continuous(trans="log10", name = "MAG Abundance (%)") +
 scale y continuous(name = "Probes per MAG") +
 geom hline(yintercept = 10, color="#777777") +
 geom_count()+scale_size(trans = "log2", name = element_text("Count of Bins"))+
 expand_limits(y=c(0,20))+
 theme(legend.position = "none")
```

Mock Plot

Select the Mock samples and filter using no thresholds, combine V2 and V4 tables, and plot

```
V2_all<-select(V2_mapping_prop, Bin,Probe,J00YQD.zymo_mock_P1V2,J00YT0.zymo_mock_P2V2) %>% melt() %>%
        group by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        add_tally(probe_mean>0) %>% ungroup %>%
        group by (Bin,n) %>% summarize (BinSum=sum (probe mean)) %>% mutate (set="V2")
        colnames(V2 all)<-c("Bin", "probe counts", "abund", "set")</pre>
V4 all<-select(V4 mapping prop, Bin, Probe, J00YP2.mock P1V4, J00YRP.zymo mock P2V4) %>% melt() %>%
        group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        add_tally(probe_mean>0) %>% ungroup %>%
        group by(Bin,n) %>% summarize(BinSum=sum(probe mean))%>% mutate(set="V4")
        colnames(V4_all)<-c("Bin", "probe_counts", "abund", "set")</pre>
combined_all<-rbind(V2_all,V4_all)
combined_all[is.na(combined_all)]<-0</pre>
ggplot(combined_all, aes(x=abund, y=probe_counts, color=set))+
 geom point()+
 scale_color_manual(values=c("gray", "gray"))+
 scale x continuous(trans="log10", name = "MAG Abundance (%)") +
 scale_y_continuous(name = "Probes per MAG")+
 geom_hline(yintercept = 10, color="#777777")+
 geom_count()+scale_size(trans = "log2", name = element_text("Count of Bins"))+
 expand limits(y=c(0,20))+
 theme(legend.position = "none")
```

Select the Mock samples and filter using a 0.001% probe abundance threshold, combine the V2 and V4 tables, and plot

```
V2_all<-select(V2_mapping_prop, Bin, Probe, J00YQD.zymo_mock_P1V2, J00YT0.zymo_mock_P2V2) %>% melt() %>%
        group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
        add_tally(probe_mean>=0.001) %>% ungroup %>%
        group_by(Bin,n) %>% summarize(BinSum=sum(probe_mean)) %>% mutate(set="V2")
        colnames(V2_all)<-c("Bin", "probe_counts", "abund", "set")</pre>
V4 all<-select(V4 mapping prop, Bin, Probe, J00YP2.mock P1V4, J00YRP.zymo mock P2V4) %>% melt() %>%
        group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        add_tally(probe_mean>=0.001) %>% ungroup %>%
        group_by(Bin,n) %>% summarize(BinSum=sum(probe_mean))%>% mutate(set="V4")
        colnames(V4_all)<-c("Bin", "probe_counts", "abund", "set")</pre>
combined_all<-rbind(V2_all,V4_all)
combined all[is.na(combined all)]<-0
ggplot(combined_all, aes(x=abund, y=probe_counts, color=set))+
 geom_point()+
 scale_color_manual(values=c("#274b69","#94ae3f"))+
 scale x continuous(trans="log10", name = "MAG Abundance (%)") +
 scale y continuous(name = "Probes per MAG") +
 geom hline(yintercept = 10, color="#777777") +
 geom_count()+scale_size(trans = "log2", name = element_text("Count of Bins"))+
 expand_limits(y=c(0,20))+
 theme(legend.position = "none")
```

E. coli Plot

Select the E. coli samples and filter using no thresholds, combine the V2 and V4 tables, and plot

```
V2_all<-select(V2_mapping_prop, Bin,Probe,J00YQB.Ecoli_P1V2, J00YSX.ecoli_P2V2) %>% melt() %>%
        group by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        add_tally(probe_mean>0) %>% ungroup %>%
        group by (Bin,n) %>% summarize (BinSum=sum (probe mean)) %>% mutate (set="V2")
        colnames(V2 all)<-c("Bin", "probe counts", "abund", "set")</pre>
V4 all<-select(V4 mapping prop, Bin, Probe, J00YP0.ecoli P1V4, J00YRM.ecoli P2V4) %>% melt() %>%
        group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        add_tally(probe_mean>0) %>% ungroup %>%
        group by(Bin,n) %>% summarize(BinSum=sum(probe mean))%>% mutate(set="V4")
        colnames(V4_all)<-c("Bin", "probe_counts", "abund", "set")</pre>
combined_all<-rbind(V2_all,V4_all)
combined_all[is.na(combined_all)]<-0</pre>
ggplot(combined_all, aes(x=abund, y=probe_counts, color=set))+
 geom point()+
 scale_color_manual(values=c("gray", "gray"))+
 scale x continuous(trans="log10", name = "MAG Abundance (%)") +
 scale_y_continuous(name = "Probes per MAG")+
 geom_hline(yintercept = 10, color="#777777")+
 geom_count()+scale_size(trans = "log2", name = element_text("Count of Bins"))+
 expand limits(y=c(0,20))+
 theme(legend.position = "none")
```

Select the E. coli samples and filter using a 0.001% probe abundance threshols, combine the V2 and V4 tables, and plot

```
V2_all<-select(V2_mapping_prop, Bin,Probe,J00YQB.Ecoli_P1V2, J00YSX.ecoli_P2V2) %>% melt() %>%
        group by(Bin,Probe) %>% summarize(probe mean=mean(value)) %>%
        add_tally(probe_mean>=0.001) %>% ungroup %>%
        group_by(Bin,n) %>% summarize(BinSum=sum(probe_mean)) %>% mutate(set="V2")
        colnames(V2_all)<-c("Bin", "probe_counts", "abund", "set")</pre>
V4 all<-select(V4 mapping prop, Bin, Probe, J00YP0.ecoli P1V4, J00YRM.ecoli P2V4) %>% melt() %>%
        group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
        add_tally(probe_mean>=0.001) %>% ungroup %>%
        group_by(Bin,n) %>% summarize(BinSum=sum(probe_mean))%>% mutate(set="V4")
        colnames(V4_all)<-c("Bin","probe_counts","abund","set")</pre>
combined_all<-rbind(V2_all, V4_all)</pre>
combined all[is.na(combined all)]<-0</pre>
ggplot(combined_all, aes(x=abund, y=probe_counts, color=set))+
 geom_point()+
 scale_color_manual(values=c("#274b69","#94ae3f"))+
 scale x continuous(trans="log10", name = "MAG Abundance (%)") +
 scale y continuous(name = "Probes per MAG") +
 geom hline(yintercept = 10, color="#777777") +
 geom_count()+scale_size(trans = "log2", name = element_text("Count of Bins"))+
 expand_limits(y=c(0,20))+
 theme(legend.position = "none")
```

Figure 2c

Import mapping stats

Combine mapping stats for facets

```
melted<-melt(mouse_only_stats)</pre>
totalreads<- melted %>% filter(variable=="Total.Reads") %>% mutate(stat="Total") %>%
            mutate(other="Number of Reads")
mappedreads<- melted %>% filter(variable=="Mapped.Reads") %>% mutate(stat="Mapped")%>%
             mutate(other="Number of Reads")
uniquereads<- melted %>% filter(variable=="Uniquely.Mapped.Reads") %>%
              mutate(stat="Uniquely Mapped") %>%
              mutate(other="Number of Reads")
ontargetreads<- melted %>% filter(variable=="On.Target.Reads") %>% mutate(stat="On-Target")%>%
                mutate(other="Number of Reads")
mappedpercent<- melted %>% filter(variable=="Percent.Mapped.Reads") %>% mutate(stat="Mapped")%>%
               mutate(other="Fraction of Reads")
uniquepercent<- melted %>% filter(variable=="Percent.Uniquely.Mapped.Reads") %>%
                mutate(stat="Uniquely Mapped") %>% mutate(other="Fraction of Reads")
ontargetpercent<- melted %>% filter(variable=="Percent.On.Target.Reads") %>%
                  mutate(stat="On-Target") %>%
                  mutate(other="Fraction of Reads")
combined<-rbind(totalreads, mappedreads, uniquereads, ontargetreads, mappedpercent, uniquepercent,
          ontargetpercent)
combined$other<-factor(combined$other, levels = c("Number of Reads", "Fraction of Reads"))</pre>
combined$stat<-factor(combined$stat, levels = c("Total","Mapped","Uniquely Mapped","On-Target"))</pre>
```

Plot data

```
theme_set(theme_bw())
ggplot(combined, aes(x=stat, y=value, fill=stat)) +
    geom_boxplot(alpha=0.9)+
    scale_fill_manual(values = c("#6d6e41","#972426","#A9845C","#3B7277"))+
    xlab(element_blank())+
    ylab(element_blank())+
    theme(legend.position = "bottom")+
    theme(legend.title = element_blank())+
    theme(axis.text.x = element_blank(), axis.ticks.x = element_blank())+
    facet_grid(other~Assay, scales = "free")+
    theme(strip.background = element_blank(), strip.text = element_blank())
```

Figure 2d

Import count tables

```
V4_HLB<-read.csv("V4_mouse_nameonly.csv", header = TRUE)
V2_HLB<-read.csv("V2_mouse_nameonly.csv", header = TRUE)
```

Convert to percent abundance

```
V2_meta<-V2_HLB[,1:2]
V2_counts<-V2_HLB[,3:79]
V2_prop<-as.data.frame(prop.table(as.matrix(V2_counts),2)*100)
V2_mouse_prop<-cbind(V2_meta,V2_prop)

V4_meta<-V4_HLB[,1:2]
V4_counts<-V4_HLB[,3:79]
V4_prop<-as.data.frame(prop.table(as.matrix(V4_counts),2)*100)
V4_mouse_prop<-cbind(V4_meta,V4_prop)
```

Filter dataframes for no threshold and 0.001% probe abundance and 10ppM thresholds, combine V2 and V4 tables

```
test_melt_V4<-melt(V4_mouse_prop) %>% as_tibble
probe bin counts V4<- test melt V4 %>% group by(Bin, variable) %>%
                     add_tally(value>0, name = "probes_per_bin") %>%
                    mutate(Bin_abund=sum(value))
filtered_V4_0<- probe_bin_counts_V4 %>% group_by(Bin,variable) %>%
               summarize(abundance=mean(Bin abund)) %>% ungroup %>% group by(variable) %>%
               add_tally(abundance>0, name="MAGS") %>%
               mutate(set="None") %>% mutate(design="JAX")
%>% group by(Bin,variable) %>%
                    summarize(abundance=mean(Bin_abund))%>% ungroup %>% group_by(variable)%>%
                    add tally(abundance>0, name="MAGS") %>%mutate(set="Thresh")%>%
                    mutate(design="JAX")
test_melt_V2<-melt(V2_mouse_prop) %>% as_tibble
probe_bin_counts_V2<- test_melt_V2 %>% group_by(Bin,variable) %>%
                    add_tally(value>0, name = "probes_per_bin") %>%
                    mutate(Bin abund=sum(value))
filtered V2 O<- probe bin counts V2 %>% group by (Bin, variable) %>%
               summarize(abundance=mean(Bin_abund)) %>% ungroup %>% group_by(variable) %>%
               add_tally(abundance>0,
               name="MAGS") %>% mutate(set="None")%>%
               mutate(design="Allegro")
filtered V2 001 10<- probe bin counts V2 %>% filter(probes per bin>=10) %>% filter(value>=0.001)
                    %>%group_by(Bin,variable) %>%
                    summarize(abundance=mean(Bin abund))%>% ungroup %>% group by(variable)%>%
                    add_tally(abundance>0, name="MAGS") %>%mutate(set="Thresh")%>%
                   mutate(design="Allegro")
combined<-rbind(filtered V2 0, filtered V4 0, filtered V2 001 10, filtered V4 001 10)
ggplot(combined, aes(x=set, y=MAGS, fill=design, color=design))+
 geom boxplot()+
 scale_fill_manual(values=c("#597387","#94ae3f","#bfc0bd","#A9845C"))+
 scale_color_manual(values=c("#364450","#536222","#818181","#6D583F"))+
 xlab("Thresholds")+
 ylab("Number of MAGs")+
 theme(legend.position = "none")
```

Figure 2e

Select the percent of reads present above and below the applied thresholds, and plot

Figure 3

Figure 3a and 3b

Import count tables

```
V2_mouse_strains<-read.csv("V2_mouse_nameonly.csv", header = TRUE, check.names = FALSE)
V4_mouse_strains<-read.csv("V4_mouse_nameonly.csv", header = TRUE, check.names = FALSE)
```

Convert to percent abundance

```
V2_meta<-V2_mouse_strains[,1:2]
V2_counts<-V2_mouse_strains[,3:79]
V2_prop<-as.data.frame(prop.table(as.matrix(V2_counts),2)*100)
V2_mouse_prop<-cbind(V2_meta, V2_prop)

V4_meta<-V4_mouse_strains[,1:2]
V4_counts<-V4_mouse_strains[,3:79]
V4_prop<-as.data.frame(prop.table(as.matrix(V4_counts),2)*100)
V4_mouse_prop<-cbind(V4_meta, V4_prop)
```

Melt into tibbles

```
V2_melt<-melt(V2_mouse_prop) %>% as_tibble
V4_melt<-melt(V4_mouse_prop) %>% as_tibble
```

Add 0.001% probe abundance threshold

```
V2_all<-V2_melt %>% group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
    add_tally(probe_mean>=0.001) %>% ungroup %>%
    group_by(Bin,n) %>% summarize(BinSum=sum(probe_mean))
    colnames(V2_all)<-c("Bin","V2_probe_counts","V2_abund")

V4_all<-V4_melt %>% group_by(Bin,Probe) %>% summarize(probe_mean=mean(value)) %>%
    add_tally(probe_mean>=0.001) %>% ungroup %>%
    group_by(Bin,n) %>% summarize(BinSum=sum(probe_mean))
    colnames(V4_all)<-c("Bin","V4_probe_counts","V4_abund")</pre>
```

Make a column designating the 10ppM threshold

```
V2_all_aboevelow10<- V2_all %>% mutate(ten=V2_probe_counts>=10)
V4_all_abovebelow10<- V4_all %>% mutate((ten=V4_probe_counts>=10))
combined_all<-V2_all_aboevelow10 %>% left_join(V4_all_abovebelow10, by=c('Bin'))
combined_all[is.na(combined_all)]<-0
colnames(combined_all)<-c("Bin","V2_probe_counts","V2_abund","V2_ten","V4_probe_counts","V4_abund","V4_
ten")
combined_all<- combined_all %>% mutate(same= V2_ten==TRUE & V4_ten==TRUE)
```

Plot the graphs

```
ggplot(combined_all, aes(x=V2_abund, y=V4_abund, color=same))+
 geom_point(size=.5)+
 scale_color_manual(values = c("light gray","#274b69"))+
 scale x continuous(trans = 'log10', name = "Allegro MAG Abundance")+
 scale y continuous(trans = 'log10', name = "JAX MAG Abundance") +
 theme(legend.position = "none")
ggplot(combined_all, aes(x=V2_probe_counts, y=V4_probe_counts, color=same))+
 geom_point()+
 scale_color_manual(values = c("light gray","#274b69"))+
 scale_x_continuous(name = "Allegro Probes per MAG") +
 scale_y_continuous(name = "JAX Probes per MAG") +
  #geom_hline(yintercept = 10, color="red") +
  #geom vline(xintercept = 10, color="red") +
 geom_count()+scale_size(trans = "log2", range=c(0,5), name = element_text("Count_of_Bins\n
                                                                                                   (Log2)"))+
 theme(legend.position ="none")
```

Pearson Correlation for 3a

Figure 3c

```
metag<-read.csv("mwgs_HLB_CCF_new_mapping.csv",check.names = FALSE)
Bin<-metag[,1:1]
meta_prop<-metag[,2:71]
meta_means<-as.data.frame(rowMeans(meta_prop, dims=1))
meta_prop_sum<-cbind(Bin,meta_means)
colnames(meta_prop_sum)<-c("Bin","Meta_abund")</pre>
```

Import MA-GenTA count tables

```
V2_mapping<-read.csv("V2_HLB_CCF.csv", header = TRUE, check.names = FALSE)
V4_mapping<-read.csv("V4_HLB_CCF.csv", header = TRUE, check.names = FALSE)
```

Convert to percent abundance

```
V2_meta<-V2_mapping[,1:2]
V2_counts<-V2_mapping[,3:70]
V2_prop<-as.data.frame(prop.table(as.matrix(V2_counts),2)*100)
V2_mapping_prop<-cbind(V2_meta,V2_prop)

V4_meta<-V4_mapping[,1:2]
V4_counts<-V4_mapping[,3:71]
V4_prop<-as.data.frame(prop.table(as.matrix(V4_counts),2)*100)
V4_mapping_prop<-cbind(V4_meta,V4_prop)
```

Make tibbles

```
tb2corr<-melt(V2_mapping_prop) %>% as_tibble tb4corr<-melt(V4_mapping_prop) %>% as_tibble
```

Calculate MAG abundance counts for MA-GenTA data

Combine MA-GenTA and mWGS data and convert NA values to 0

Calculate correlation values

```
combined table<-combined_corr %>% group_by(V2_probe_counts) %>%
                mutate(V2_corr=cor(Meta_abund, V2_abund)) %>%
                add_count(V2_probe_counts, name = "V2_bin_counts") %>% ungroup %>%
                group_by(V4_probe_counts) %>% mutate(V4_corr=cor(Meta_abund,V4_abund)) %>%
                add_count(V4_probe_counts, name = "V4_bin_counts") %>%
                ungroup %>% distinct(.keep_all = TRUE)
#Export to excel and then change the corr values to the ones done by the dotplots below (more accurate)
write.csv(combined table, "combined table.csv")
#Get correlation values for Allegro and JAX vs mWGS
V2 melt<-melt(V2 mapping prop)
V2_per_sample_bincounts<-V2_melt %>% group_by(Bin,Probe,variable) %>%
                         add_tally(value>0, name = "V2_probes") %>% ungroup %>%
                         group by (Bin, variable) %>%
                         mutate(V2 probes per bin=sum(V2 probes)) %>% ungroup
V2 count table<- V2 per sample bincounts %>% group by(Bin,variable) %>%
                 mutate(V2_abund=sum(value)) %>% ungroup %>%
                 select(Bin, variable, V2_probes_per_bin, V2_abund) %>% distinct()
colnames(V2_count_table)[2]<-"Sample"</pre>
```

```
V4_melt<-melt(V4_mapping_prop)</pre>
V4_per_sample_bincounts<-V4_melt %>% group_by(Bin,Probe,variable) %>%
                         add tally(value>0, name = "V4 probes") %>% ungroup %>%
                         group_by(Bin,variable) %>%
                         mutate(V4_probes_per_bin=sum(V4_probes)) %>% ungroup
V4_count_table<- V4_per_sample_bincounts %>% group_by(Bin,variable) %>%
                 mutate(V4_abund=sum(value)) %>% ungroup %>%
                 select(Bin, variable, V4_probes_per_bin, V4_abund) %>% distinct()
colnames(V4_count_table)[2]<-"Sample"</pre>
#melt the metagenome data and rename columns
meta melted <- melt (metag)
colnames (meta melted) [1:3]<-c("Bin", "Sample", "meta abund")</pre>
#combine meta, V2, V4 data
combined for corr<- meta melted %>% full join(V2 count table, by=c("Bin", "Sample")) %>%
                   full join(V4 count table, by=c("Bin", "Sample"))
combined for corr[is.na(combined for corr)]<-0</pre>
#produce correlation plots to obtain correlation values
theme set(theme bw())
ggscatter(combined_for_corr, x="meta_abund", y="V4_abund", size = 0.5,
         add = "reg.line", conf.int = TRUE,
         cor.coef = TRUE,
          cor.coeff.args= list(method= "pearson", label.x.npc="left", label.y.npc="top"),
          cor.coef.size = 4,
          xlab = "mWGS Abundance (%)", ylab = "V4 Abundance (%)") +
 facet_wrap(combined_for_corr$V4_probes_per_bin, scales = "free") +
 theme(plot.title = element_text(hjust = 0.5, size = 14))+
 theme linedraw() +
 theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
       strip.background = element_rect(fill="#BCBABE"),
       strip.text = element_text(colour = 'black', size = 14),
       axis.text = element_text(size = 12),
       axis.title = element_text(size = 14))
ggscatter(combined_for_corr, x="meta_abund", y="V2_abund", size = 0.5,
         add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE,
         cor.coeff.args= list(method= "pearson", label.x.npc="left", label.y.npc="top"),
         cor.coef.size = 4,
         xlab = "mWGS Abundance (%)", ylab = "V2 Abundance (%)") +
         facet wrap(combined for corr$V2 probes per bin, scales = "free") +
         theme(plot.title = element_text(hjust = 0.5, size = 14))+
         theme linedraw() +
         theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
         strip.background = element_rect(fill="#BCBABE"),
         strip.text = element_text(colour = 'black', size = 14),
         axis.text = element_text(size = 12),
         axis.title = element_text(size = 14))
#Use correlation values from plots above to fill in exported table and import
combined_table<-read.csv("combined_table.csv", row.names = 1, header = TRUE)</pre>
```

Plots graphs

```
theme_set(theme_bw())
ggplot(combined_table, aes(x=V2_probe_counts, group=V2_corr)) +
geom_histogram(binwidth = 1, color="black", size= 0.3, aes(fill=V2_corr))+
scale_fill_gradient("Pearson\nCorrelation", limits=c(0,1))+
labs(x= "Number of Probes", y= "Number of MAGS", title = "Allegro-mWGS\nCorrelations")+
theme(plot.title = element_text(hjust = 0.5))+
ylim(c(0,250))

ggplot(combined_table, aes(x=V4_probe_counts, group=V4_corr)) +
geom_histogram(binwidth = 1, color="black", size= 0.3, aes(fill=V4_corr))+
scale_fill_gradient("Pearson\nCorrelation", limits=c(0,1))+
labs(x= "Number of Probes", y= "Number of MAGS", title = "JAX-mWGS\nCorrelations")+
theme(plot.title = element_text(hjust = 0.5))+
ylim(c(0,250))
```

```
V2_2<-ggplot(combined_table, aes(x=V2_probe_counts, group=V2_abund)) +
      geom histogram(binwidth = 1, aes(fill=V2 abund)) +
      scale_fill_viridis_c("V2 Design\nPercent Abundance", alpha = 0.9, limits=c(0,.01),
      na.value = "#FDE725FF")+
      labs(x= "Number of Probes", y= "Number of MAGs", title = "Allegro\nAbundance")+
      theme(legend.position = "none",plot.title = element_text(hjust = 0.5))+
      ylim(c(0, 250))
V2_3<-ggplot(combined_table, aes(x=V2_probe_counts, group=Meta_abund)) +</pre>
      geom_histogram(binwidth = 1, aes(fill=Meta_abund))+
      scale_fill_viridis_c("Percent\nAbundance", alpha = 0.9, limits=c(0,.01), na.value = "#FDE725FF")+
      labs (x= "Number of Probes", y= "Number of MAGs", title = "mWGS \ nAbundance") + \\
      theme(plot.title = element_text(hjust = 0.5))+
      ylim(c(0, 250))
library (patchwork)
V2_2 + V2_3
V4_2<-ggplot(combined_table, aes(x=V4_probe_counts, group=V4_abund)) +
      geom histogram(binwidth = 1, aes(fill=V4 abund))+
      scale fill viridis c("V4 Design\nPercent Abundance", alpha = 0.9, limits=c(0,.01),
      na.value = "#FDE725FF") +
     labs(x= "Number of Probes", y= "Number of MAGs", title = "JAX\nAbundance")+
      theme(legend.position = "none",plot.title = element_text(hjust = 0.5))+
      ylim(c(0,250))
V4 3<-ggplot(combined table, aes(x=V4 probe counts, group=Meta abund)) +
      geom_histogram(binwidth = 1, aes(fill=Meta_abund))+
      scale_fill_viridis_c("Percent\nAbundance", alpha = 0.9, limits=c(0,.01), na.value = "#FDE725FF")+
      labs(x= "Number of Probes", y= "Number of MAGs", title = "mWGS\nAbundance")+
      theme(plot.title = element_text(hjust = 0.5))+
      ylim(c(0, 250))
V4_2 + V4_3
```

Figure 3d

Import tables for Venn-diagrams

```
above_0_venn<-read.csv("above0_venn.csv", header = TRUE)
above_001_venn<-read.csv("above001_venn.csv", header = TRUE)
above_01_venn<-read.csv("above01_venn.csv", header = TRUE)
above_1_venn<-read.csv("above.1_venn.csv", header = TRUE)</pre>
```

Plot the Venn-diagrams for the MAG abundance thresholds: 0.1%, 0.01%, 0.001%, No threshold

```
venn.diagram(x=list(above 0_venn$mWGS,above 0_venn$Allegro,above_0_venn$JAX),
            category.names = c("mWGS", "Allegro", "JAX"),
            filename = 'above_0_venndiagram.png',
            imagetype = "png",
            height = 550,
            width = 550,
            resolution = 800,
            fill=c(alpha("#bfc0bd",.5),alpha("#597387",.5),alpha("#94ae3f",.5)),
            col=c("#bfc0bd","#597387","#94ae3f"),
            cex=.4
            cat.cex=.4,
            cat.fontface="bold",
            cat.pos=c(-15, 15, 180),
            cat.dist=c(0.075, 0.075, 0.075),)
category.names = c("mWGS", "Allegro", "JAX"),
            filename = 'above_001_venndiagram.png',
            imagetype = "png",
            height = 550,
            width = 550,
            resolution = 800,
            lwd=.5,
            fill=c(alpha("#bfc0bd",.5),alpha("#597387",.5),alpha("#94ae3f",.5)),
            col=c("#bfc0bd","#597387","#94ae3f"),
            cex=.4,
            cat.cex=.4,
            cat.fontface="bold",
            cat.pos=c(-15, 15, 180),
            cat.dist=c(0.075, 0.075, 0.075),)
venn.diagram(x=list(above 01 venn$mWGS,above 01 venn$Allegro,above 01 venn$JAX),
            category.names = c("mWGS", "Allegro", "JAX"),
            filename = 'above_01_venndiagram.png',
            imagetype = "png",
            height = 550,
            width = 550,
            resolution = 800,
            lwd=.5,
            fill=c(alpha("#bfc0bd",.5),alpha("#597387",.5),alpha("#94ae3f",.5)),
            col=c("#bfc0bd","#597387","#94ae3f"),
            cex=.4,
            cat.cex=.4,
            cat.fontface="bold",
            cat.pos=c(-15, 15, 180),
            cat.dist=c(0.075, 0.075, 0.075),)
venn.diagram(x=list(above_.1_venn$mWGS,above_.1_venn$Allegro,above_.1_venn$JAX),
            category.names = c("mWGS", "Allegro", "JAX"),
            filename = 'above_.1_venndiagram.png',
            imagetype = "png",
            height = 550,
            width = 550,
            resolution = 800,
            lwd=.5.
            fill=c(alpha("#bfc0bd",.5),alpha("#597387",.5),alpha("#94ae3f",.5)),
            col=c("#bfc0bd","#597387","#94ae3f"),
            cex=.4.
            cat.cex=.4,
            cat.fontface="bold",
            cat.pos=c(-15, 15, 180),
            cat.dist=c(0.075,0.075,0.075),)
```

```
otus_16s<-read.csv("16S_mouse_only.csv", header = TRUE, check.names = FALSE)
metag<-read.csv("HLB_new_mapping.csv", header = TRUE, check.names = FALSE)
V4_HLB<-read.csv("V4_HLB.csv", header = TRUE, check.names = FALSE)
V2_HLB<-read.csv("V2_HLB.csv", header = TRUE, check.names = FALSE)</pre>
```

Format data for plotting

```
otus_16s_meta<-otus_16s[,1]
otus_16s_counts<-otus_16s[,2:29]
otus_16s_prop<-as.data.frame(prop.table(as.matrix(otus_16s_counts),2)*100)
otus_16s_mouse_prop<-cbind(otus_16s_meta,otus_16s_prop)

colnames(metag)[1]<-c("Bin")
colnames(metag_hqmq)[1]<-c("Bin")

V2_meta<-V2_HLB[,1:2]
V2_counts<-V2_HLB[,3:30]
V2_prop<-as.data.frame(prop.table(as.matrix(V2_counts),2)*100)
V2_mouse_prop<-cbind(V2_meta,V2_prop)

V4_meta<-V4_HLB[,1:2]
V4_counts<-V4_HLB[,3:30]
V4_prop<-as.data.frame(prop.table(as.matrix(V4_counts),2)*100)
V4_mouse_prop<-cbind(V4_meta,V4_prop)</pre>
```

Create columns with number of MAGs at each threshold for mWGS data

Create columns with number of MAGs at each threshold for 16S data

Create columns with number of MAGs at each threshold for MA-GenTA data

```
test_melt_V4<-melt(V4_mouse_prop) %>% as_tibble
probe bin counts V4<- test melt V4 %>% group by(Bin, variable) %>%
                                               add_tally(value>0, name = "probes_per_bin") %>%
                                               mutate(Bin_abund=sum(value))
filtered_V4<- probe_bin_counts_V4 %>% filter(probes_per_bin>=10) %>%
                             group by (Bin, variable) %>%
                             summarize(abundance=mean(Bin_abund))
allegro_cutoffs_V4<- filtered_V4 %>% group_by(Bin,variable) %>%
                                             add_tally(abundance>=0, name = "above_0") %>%
                                             add_tally(abundance>=0.01, name="above_.01") %>%
                                             add_tally(abundance>=0.001, name = "above_.001") %>%
                                             add tally(abundance>=0.1, name="above.1") %>%
                                             ungroup %>% group_by(variable) %>%
                                             mutate(BinCount_0=sum(above_0))%>%mutate(BinCount_.01=sum(above_.01))%>%
                                            mutate(BinCount_.001=sum(above_.001)) %>%
                                             mutate(BinCount.1=sum(above.1)) %>% ungroup %>% mutate(set="JAX") %>%
                                             select(variable,BinCount_1,BinCount_.01,BinCount_.001,BinCount_0,set) %>%
                                            distinct()
test_melt_V2<-melt(V2_mouse_prop) %>% as_tibble
\label{lem:probe_bin_counts_V2<- test_melt_V2 %>% group_by(Bin,variable) 
                                               add_tally(value>0,name = "probes_per_bin") %>%
                                               mutate(Bin_abund=sum(value))
filtered V2<- probe bin counts V2 %>% filter(probes per bin>=10) %>% group by(Bin,variable) %>%
                              summarize(abundance=mean(Bin_abund))
allegro_cutoffs_V2<- filtered_V2 %>% group_by(Bin,variable) %>%
                                             add_tally(abundance>=0, name = "above_0")
                                             %>%add_tally(abundance>=0.01, name="above_.01") %>%
                                            add tally (abundance>=0.001, name = "above .001") %>%
                                            add tally(abundance>=0.1, name="above.1") %>%
                                            ungroup %>% group_by(variable) %>%
                                            mutate(BinCount_0=sum(above_0))%>%mutate(BinCount_.01=sum(above_.01))%>%
                                            mutate(BinCount_.001=sum(above_.001)) %>%
                                            \verb| mutate(BinCount.1=sum(above.1))| \$>\$ \  \  ungroup \$>\$ \  \  mutate(set="Allegro") \$>\$ \\
                                             select(variable,BinCount.1,BinCount_.01,BinCount_.001,BinCount_0,set) %>%
                                             distinct()
```

Plot the graph

```
combined<-rbind(otus_16s_test,metag_test, allegro_cutoffs_V2, allegro_cutoffs_V4)
combined_melt<-melt(combined, id.vars = c("variable", "set"))</pre>
colnames(combined_melt)<-c("Sample", "set", "BinCount", "value")</pre>
\verb|combined_melt| \verb|set| < -factor(combined_melt| \verb|set|, levels = c("16S", "Allegro", "JAX", "mWGS"))| \\
levels(combined melt$BinCount)<-list("No\nThreshold"="BinCount 0",</pre>
                                       "0.001%"="BinCount_.001",
                                       "0.01%"="BinCount .01",
                                       "0.1%"="BinCount.1")
combined melt$BinCount<-factor(combined_melt$BinCount, levels =</pre>
                         c("0.1%","0.01%","0.001%","No\nThreshold"))
theme_set(theme_bw())
ggplot(combined_melt, aes(x=BinCount, y=value, fill=set, color=set))+
  geom_dotplot(binaxis='y', stackdir='center', position="dodge", binwidth = 9, dotsize = 1.3,
 stackratio = .7) +
 scale fill manual(values=c("#972426","#597387","#94ae3f","#bfc0bd","#A9845C"))+
  scale color manual(values=c("#5A1517","#364450","#536222","#818181","#6D583F"))+
  xlab("Abundance Threshold") +
  ylab("Number of MAGs")
```

Supplementary figure 2

Import and format the hqmq mWGS data

Combine and plot the hgmg data with the rest of data from 3e

```
combined <- rbind (otus 16s test, metag test, allegro cutoffs V2, allegro cutoffs V4, hqmq test)
combined melt<-melt(combined, id.vars = c("variable", "set"))</pre>
colnames(combined melt) <-c("Sample", "set", "BinCount", "value")</pre>
combined melt$set<-factor(combined melt$set, levels = c("16S", "Allegro", "JAX", "mWGS", "hqmq-mWGS"))
Bincount names<-c('BinCount 0'=">0%",
                   'BinCount_.001'=">=0.001%",
                  'BinCount .01'=">=0.01%",
                  'BinCount.1'=">=0.1%")
combined melt$BinCount<-factor(combined melt$BinCount, levels =</pre>
                        c("BinCount.1", "BinCount_.01", "BinCount_.001", "BinCount_0"))
theme set(theme bw())
ggplot(combined melt, aes(x=BinCount, y=value, fill=set, color=set))+
      geom_dotplot(binaxis='y', stackdir='center', position="dodge", binwidth = 9, dotsize = 1.3,
      stackratio = .7) +
     scale_fill_manual(values=c("#972426","#597387","#94ae3f","#bfc0bd","#A9845C"))+
     scale_color_manual(values=c("#5A1517","#364450","#536222","#818181","#6D583F"))+
      xlab("Abundance Threshold")+
      ylab("Number of MAGs")
```

Figure 3f

Import data tables

```
metag<-read.csv("CCF_new_mapping.csv", header = TRUE, check.names = FALSE)
V4_HLB<-read.csv("V4_CCF.csv", header = TRUE, check.names = FALSE)
V2_HLB<-read.csv("V2_CCF.csv", header = TRUE, check.names = FALSE)</pre>
```

Format data tables and convert MA-GenTA tables to percent abundance

```
colnames(metag)[1]<-c("Bin")
colnames(metag_hqmq)[1]<-c("Bin")

V2_meta<-V2_HLB[,1:2]
V2_counts<-V2_HLB[,3:31]
V2_prop<-as.data.frame(prop.table(as.matrix(V2_counts),2)*100)
V2_mouse_prop<-cbind(V2_meta,V2_prop)

V4_meta<-V4_HLB[,1:2]
V4_counts<-V4_HLB[,3:31]
V4_prop<-as.data.frame(prop.table(as.matrix(V4_counts),2)*100)
V4_mouse_prop<-cbind(V4_meta,V4_prop)</pre>
```

Create columns with number of MAGs at each threshold for mWGS data

```
test_melt_V4<-melt(V4_mouse_prop) %>% as_tibble
probe_bin_counts_V4<- test_melt_V4 %>% group_by(Bin,variable) %>%
                                                add tally(value>0, name = "probes per bin") %>%
                                                mutate(Bin_abund=sum(value))
filtered V4<- probe bin_counts_V4 %>% filter(probes_per_bin>=10) %>% group_by(Bin,variable) %>%
                              summarize(abundance=mean(Bin_abund))
allegro cutoffs V4<- filtered V4 %>% group by (Bin, variable) %>%
                                             add tally(abundance>=0, name = "above 0") %>%
                                              add_tally(abundance>=0.01, name="above_.01") %>%
                                              add tally(abundance>=0.001, name = "above .001") %>%
                                             add_tally(abundance>=0.1, name="above.1") %>%
                                             ungroup %>% group_by(variable) %>%
                                             \verb| mutate(BinCount 0=sum(above 0))%>% \verb| mutate(BinCount .01=sum(above .01))%>% \verb| mutate(BinCount 0=sum(above .01))%>% \verb| mutate(BinCount 0=sum(above .01))%>% \verb| mutate(BinCount 0=sum(above .01))%>% \verb| mutate(BinCount .01=sum(above .01=s
                                             mutate(BinCount_.001=sum(above_.001)) %>%
                                              mutate(BinCount.1=sum(above.1)) %>% ungroup %>% mutate(set="JAX") %>%
                                              select(variable,BinCount.1,BinCount_.01,BinCount_.001,BinCount_0,set) %>%
                                              distinct()
test_melt_V2<-melt(V2_mouse_prop) %>% as tibble
probe bin counts V2<- test melt V2 %>% group by(Bin, variable) %>%
                                               add tally(value>0, name = "probes_per_bin") %>%
                                                mutate(Bin abund=sum(value))
filtered V2<- probe bin_counts_V2 %>% filter(probes_per_bin>=10) %>% group_by(Bin,variable) %>%
                              summarize(abundance=mean(Bin abund))
allegro cutoffs V2<- filtered V2 %>% group by(Bin, variable) %>%
                                              add tally(abundance>=0, name = "above 0") %>%
                                              add_tally(abundance>=0.01, name="above_.01") %>%
                                              add tally(abundance>=0.001, name = "above .001") %>%
                                              add_tally(abundance>=0.1, name="above.1") %>%
                                             ungroup %>% group_by(variable) %>%
                                             mutate(BinCount_0=sum(above_0)) %>% mutate(BinCount_.01=sum(above_.01)) %>%
                                             mutate(BinCount .001=sum(above .001)) %>%
                                             mutate(BinCount.1=sum(above.1)) %>% ungroup %>% mutate(set="Allegro") %>%
                                              select(variable,BinCount.1,BinCount_.01,BinCount_.001,BinCount_0,set) %>%
                                              distinct()
```

Combine and plot the data

```
combined<-rbind(metag_test, allegro_cutoffs_V2, allegro_cutoffs_V4)</pre>
combined melt<-melt(combined, id.vars = c("variable", "set"))</pre>
colnames(combined melt)<-c("Sample", "set", "BinCount", "value")</pre>
combined_melt$set<-factor(combined_melt$set, levels = c("Allegro", "JAX", "mWGS"))</pre>
levels(combined_melt$BinCount)<-list("No\nThreshold"="BinCount_0",</pre>
                                       "0.001%"="BinCount_.001",
                                       "0.01%"="BinCount_.01",
                                       "0.1%"="BinCount.1")
combined_melt$BinCount<-factor(combined_melt$BinCount, levels =</pre>
                         c("0.1%","0.01%","0.001%","No\nThreshold"))
theme set (theme bw())
ggplot(combined melt, aes(x=BinCount, y=value, fill=set, color=set))+
     geom_dotplot(binaxis='y', stackdir='center', position="dodge", binwidth = 9, dotsize = 1.3,
     stackratio = .7) +
     scale fill manual(values=c("#597387","#94ae3f","#bfc0bd","#A9845C"))+
     scale_color_manual(values=c("#364450","#536222","#818181","#6D583F"))+
      xlab("Abundance Threshold") +
      ylab("Number of MAGs")
```

Figure 3g

Import the data tables

```
otus_16s<-read.csv("otu_stool>4.csv", header = TRUE, check.names = FALSE)
V4_HLB<-read.csv("V4_VNDR.csv", header = TRUE, check.names = FALSE)
V2_HLB<-read.csv("V2_VNDR.csv", header = TRUE, check.names = FALSE)</pre>
```

Convert to percent abundances

```
otus_16s_meta<-otus_16s[,1]
otus_16s_counts<-otus_16s[,2:4]
otus_16s_prop<-as.data.frame(prop.table(as.matrix(otus_16s_counts),2)*100)
otus_16s_mouse_prop<-cbind(otus_16s_meta,otus_16s_prop)

V2_meta<-V2_HLB[,1:2]
V2_counts<-V2_HLB[,3:5]
V2_prop<-as.data.frame(prop.table(as.matrix(V2_counts),2)*100)
V2_mouse_prop<-cbind(V2_meta,V2_prop)

V4_meta<-V4_HLB[,1:2]
V4_counts<-V4_HLB[,3:5]
V4_prop<-as.data.frame(prop.table(as.matrix(V4_counts),2)*100)
V4_mouse_prop<-cbind(V4_meta,V4_prop)</pre>
```

Create columns with number of MAGs at each threshold for 16S data

Create columns with number of MAGs at each threshold for MA-GenTA data

```
test_melt_V4<-melt(V4_mouse_prop) %>% as_tibble
probe bin counts V4<- test melt V4 %>% group by(Bin, variable) %>%
                      add_tally(value>0, name = "probes_per_bin") %>%
                      mutate(Bin_abund=sum(value))
filtered V4<- probe bin_counts_V4 %>% filter(probes_per_bin>=10) %>% group_by(Bin,variable) %>%
              summarize(abundance=mean(Bin abund))
allegro_cutoffs_V4<- filtered_V4 %>% group_by(Bin,variable) %>%
                     add_tally(abundance>=0, name = "above_0") %>%
                     add_tally(abundance>=0.01, name="above_.01") %>%
                     add_tally(abundance>=0.001, name = "above_.001") %>%
                     add tally(abundance>=0.1, name="above.1") %>%
                     ungroup %>% group by(variable) %>%
                     mutate(BinCount_0=sum(above_0))%>%mutate(BinCount_.01=sum(above_.01))%>%
                     mutate(BinCount_.001=sum(above_.001)) %>%
                     mutate(BinCount.1=sum(above.1)) %>% ungroup %>% mutate(set="JAX") %>%
                     select(variable,BinCount.1,BinCount_.01,BinCount_.001,BinCount_0,set) %>%
                     distinct()
test melt V2<-melt(V2 mouse prop) %>% as tibble
probe_bin_counts_V2<- test_melt_V2 %>% group_by(Bin,variable) %>%
                      add_tally(value>0, name = "probes_per_bin") %>%
                     mutate(Bin_abund=sum(value))
filtered_V2<- probe_bin_counts_V2 %>% filter(probes_per_bin>=10) %>% group_by(Bin,variable) %>%
              summarize(abundance=mean(Bin abund))
allegro cutoffs V2<- filtered V2 %>% group by (Bin, variable) %>%
                     add_tally(abundance>=0, name = "above_0") %>%
                     add_tally(abundance>=0.01, name="above_.01") %>%
                     add_tally(abundance>=0.001, name = "above_.001") %>%
                     add tally(abundance>=0.1, name="above.1") %>%
                     ungroup %>% group by(variable) %>%
                    mutate(BinCount_0=sum(above_0))%>%mutate(BinCount_.01=sum(above_.01))%>%
                     mutate(BinCount_.001=sum(above_.001)) %>%
                     mutate(BinCount.1=sum(above.1)) %>% ungroup %>% mutate(set="Allegro") %>%
                     select(variable,BinCount.1,BinCount_.01,BinCount_.001,BinCount_0,set) %>%
                     distinct()
```

Combine data and plot

```
combined<-rbind(otus_16s_test, allegro_cutoffs_V2, allegro_cutoffs_V4)</pre>
combined_melt<-melt(combined, id.vars = c("variable", "set"))</pre>
colnames(combined_melt)<-c("Sample", "set", "BinCount", "value")</pre>
levels(combined_melt$BinCount)<-list("No\nThreshold"="BinCount_0",</pre>
                                      "0.001%"="BinCount_.001",
                                      "0.01%"="BinCount .01",
                                      "0.1%"="BinCount.1")
combined melt$BinCount<-factor(combined melt$BinCount, levels =</pre>
                        c("0.1%","0.01%","0.001%","No\nThreshold"))
combined_melt$set<-factor(combined_melt$set, levels = c("16S","Allegro", "JAX"))</pre>
theme set(theme bw())
ggplot(combined melt, aes(x=BinCount, y=value, fill=set, color=set))+
      geom_boxplot(position = position_dodge(0.8))+
      geom_dotplot(binaxis='y', stackdir='center', position="dodge", binwidth = 9, dotsize = .5,
      stackratio = .7) +
      scale_fill_manual(values=c("#972426","#597387","#94ae3f","#bfc0bd","#A9845C"))+
      scale color manual(values=c("#5A1517","#364450","#536222","#818181","#6D583F"))+
      xlab("Abundance Threshold") +
      ylab("Number of MAGs")
```

Figure 4

Figure 4a

Import taxon tables

Create Phyloseq objects

```
TAX_V2=tax_table(V2_tax)

TAX_V4=tax_table(V4_tax)

TAX_16S=tax_table(A16S_tax)

TAX_meta=tax_table(meta_tax)

OTU_V2=otu_table(V2_otu,taxa_are_rows=TRUE)

OTU_V4=otu_table(V4_otu,taxa_are_rows=TRUE)

OTU_16S=otu_table(A16S_otu,taxa_are_rows=TRUE)

OTU_meta=otu_table(meta_otu,taxa_are_rows=TRUE)
```

Merge OTU and TAX

```
TAX_OTU_V2=phyloseq(OTU_V2,TAX_V2)

TAX_OTU_V4=phyloseq(OTU_V4,TAX_V4)

TAX_OTU_16S=phyloseq(OTU_16S,TAX_16S)

TAX_OTU_meta=phyloseq(OTU_meta,TAX_meta)
```

Load in metadata

Merge OTU, TAXA and metadata

```
TAX_OTU_meta_V2=merge_phyloseq(TAX_OTU_V2,metadata)

TAX_OTU_meta_V4=merge_phyloseq(TAX_OTU_V4,metadata)

TAX_OTU_meta_16S=merge_phyloseq(TAX_OTU_16S,metadata)

TAX_OTU_meta_meta=merge_phyloseq(TAX_OTU_meta,metadata)
```

Create Bray-Curtis dissimilarity matrices

```
Bray_V2=distance(TAX_OTU_meta_V2,"bray")
Bray_V4=distance(TAX_OTU_meta_V4,"bray")
Bray_16S=distance(TAX_OTU_meta_16S,"bray")
Bray_meta=distance(TAX_OTU_meta_meta,"bray")
```

Ordinate the data using NMDS

```
TAX_OTU_V2.nmds = ordinate(TAX_OTU_meta_V2, method="NMDS", distance=Bray_V2)
TAX_OTU_V4.nmds = ordinate(TAX_OTU_meta_V4, method="NMDS", distance=Bray_V4)
TAX_OTU_16S.nmds = ordinate(TAX_OTU_meta_16S, method="NMDS", distance=Bray_16S)
TAX_OTU_meta.nmds = ordinate(TAX_OTU_meta_meta, method="NMDS", distance=Bray_meta)
```

Plot the graphs

```
theme_set(theme_bw())
V2nmds<-plot ordination(TAX OTU meta V2,TAX OTU V2.nmds, axes=c(1, 2), color="Diet", shape = "Strain") +
        scale_color_manual(values = c("#777777","#92C46D","#2A7D7D")) +
        geom_point(size=3)
V2nmds<-V2nmds+ scale_shape_manual(values = c(1,19))+
        ggtitle("Allegro")+ theme(plot.title = element_text(hjust = 0.5),axis.title = element_blank())
V2nmds$layers<- V2nmds$layers[-1]</pre>
V4nmds<-plot_ordination(TAX_OTU_meta_V4,TAX_OTU_V4.nmds, axes=c(1, 2), color="Diet",
                        shape = "Strain") +
        scale_color_manual(values = c("#777777","#92C46D","#2A7D7D")) +
        geom point(size=3)
V4nmds<-V4nmds+ scale_shape_manual(values = c(1,19))+
        ggtitle("JAX")+ theme(plot.title = element_text(hjust = 0.5),axis.title = element_blank())
V4nmds$layers<- V4nmds$layers[-1]
metanmds<-plot_ordination(TAX_OTU_meta_meta,TAX_OTU_meta.nmds, axes=c(1, 2), color="Diet",</pre>
                          shape = "Strain") +
          scale_color_manual(values = c("#777777","#92C46D","#2A7D7D")) +
          geom_point(size=3)
metanmds<-metanmds+ scale shape manual(values = c(1,19))+
          ggtitle("mWGS")+ theme(plot.title = element_text(hjust = 0.5),axis.title = element_blank())
metanmds$layers<- metanmds$layers[-1]</pre>
al6snmds<-plot_ordination(TAX_OTU_meta_16S,TAX_OTU_16S.nmds, axes=c(1, 2), color="Diet",
                          shape = "Strain") +
          scale color manual(values = c("#777777", "#92C46D", "#2A7D7D")) +
          geom_point(size=3)
al6snmds<-al6snmds+ scale_shape_manual(values = c(1,19))+
          ggtitle("16S")+ theme(plot.title = element_text(hjust = 0.5),axis.title = element_blank())
a16snmds$layers<- a16snmds$layers[-1]</pre>
ggarrange(a16snmds,metanmds,V2nmds,V4nmds, ncol = 4, nrow = 1, legend = c("right"),
          common.legend = TRUE)
```

Perform PERMANOVA statistics (Supplementary Table 3)

```
V2_otu<-as.data.frame(t(read.csv("V2_sum_bin.csv", header=TRUE, row.names = 1)))
V2_tax<-read.csv("V2_tax.csv", header=TRUE, row.names = 1)</pre>
meta<-read.csv("metadata.csv", header=TRUE, row.names = 1)</pre>
V2.dist<-vegdist(V2 otu, distance="bray")</pre>
adonis(V2.dist~Timepoint Strain, data=meta, permutations=1000)
V4_otu<-as.data.frame(t(read.csv("V4_sum_bin.csv", header=TRUE, row.names = 1)))
V4_tax<-read.csv("V4_tax.csv", header=TRUE, row.names = 1)
V4.dist<-vegdist(V4_otu, distance="bray")</pre>
adonis(V4.dist~Timepoint_Strain, data=meta, permutations=1000)
al6 otu<-as.data.frame(t(read.csv("16S for pcoa.csv", header=TRUE, row.names = 1)))
a16_tax<-read.csv("16s_tax.csv", header=TRUE, row.names = 1)</pre>
a16.dist<-vegdist(a16 otu, distance="bray")</pre>
adonis(a16.dist~Timepoint_Strain, data=meta, permutations=1000)
mwgs otu<-as.data.frame(t(read.csv("metag for pcoa.csv", header=TRUE, row.names = 1)))</pre>
mwgs_tax<-read.csv("meta_tax.csv", header=TRUE, row.names = 1)</pre>
mwgs.dist<-vegdist(mwgs otu, distance="bray")</pre>
adonis(mwgs.dist~Timepoint_Strain, data=meta, permutations=1000)
```

Figure 4b

Import the count tables and change "Bin" to "MAG"

```
JAX_counts<-read.csv("JAX_count_tables.csv", header = TRUE, check.names = FALSE)
colnames(JAX_counts)[1]<-c("MAG")
Allegro_counts<-read.csv("Allegro_count_table.csv", header = TRUE, check.names=FALSE)
colnames(Allegro_counts)[1]<-c("MAG")</pre>
```

```
MAG_ORF_KO<-read.table("bin_pathway_split_no4_5")

#Change column names to MAG, ORF, and KO
colnames(MAG_ORF_KO)[1:3]<-c("ORF", "MAG", "KO")

#Remove the ORF column
MAG_KO<- subset(MAG_ORF_KO, select = c("MAG", "KO"))</pre>
```

Join the count table and MAG KO table, using MAG as the reference between the two files

```
JAX_joined<-right_join(MAG_KO, JAX_counts, by="MAG")
Allegro_joined<-right_join(MAG_KO, Allegro_counts, by="MAG")</pre>
```

Group by KO and sum the values for each sample per KO

```
JAX_KO_SUM<- JAX_joined %>% group_by(KO) %>% summarise_at(c(2:29), sum)
Allegro_KO_SUM<- Allegro_joined %>% group_by(KO) %>% summarise_at(c(2:29), sum)
```

Make relative abundances of KOs for each sample

```
JAX_meta<-JAX_KO_SUM[,1]

JAX_counts<-JAX_KO_SUM[,2:29]

JAX_prop<-as.data.frame(prop.table(as.matrix(JAX_counts),2)) #sums to 1

JAX_mapping_prop<-cbind(JAX_meta,JAX_prop)

Allegro_meta<-Allegro_KO_SUM[,1]

Allegro_counts<-Allegro_KO_SUM[,2:29]

Allegro_prop<-as.data.frame(prop.table(as.matrix(Allegro_counts),2)) #sums to 1

Allegro_mapping_prop<-cbind(Allegro_meta,Allegro_prop)
```

Export tables. Make separate tab-delimited text files for each comparison. Import tables into LEfSe on the Galaxy server and perform LDA analysis.

```
write.csv(JAX_mapping_prop, "JAX_mapping_prop.csv")
write.csv(Allegro_mapping_prop, "Allegro_mapping_prop.csv")
```

Combine tables for JAX probe set, HLB444 vs. B6 comparisons in both Chow and HF. Import table.

```
TEST<-read.csv("JAX_HLB_B6_Chow_HF_TEST.csv", header = TRUE)

ggplot(TEST, aes(reorder(pathway,-LDA), LDA, fill=Class))+
   geom_bar(stat="identity", col="black")+
   scale_fill_manual(values=c("#BEBEBE","#274b69"))+
   coord_flip()+
   xlab("KO Pathway")+
   ylab("LDA Score (log10)")+
   facet_grid(cols=vars(diet), rows = vars(pathway_group), scales = "free", space = "free_y")+
   theme(strip.text.y = element_text(angle = 0))</pre>
```

Supplementary Figures 4-11

Import LDA results for each comparison

```
Allegro_HLB_B6_HF<-read.csv("Allegro_HLB_B6_HF_LDA.csv", header = TRUE)
Allegro_HLB_B6_Chow<-read.csv("Allegro_HLB_B6_Chow_LDA.csv", header = TRUE)
Allegro_HLB_Chow_HF<-read.csv("Allegro_HLB_Chow_HF_LDA.csv", header = TRUE)
Allegro_B6_Chow_HF<-read.csv("Allegro_B6_Chow_HF_LDA.csv", header = TRUE)

JAX_HLB_B6_HF<-read.csv("JAX_HLB_B6_HF_LDA.csv", header = TRUE)

JAX_HLB_B6_Chow<-read.csv("JAX_HLB_B6_Chow_LDA.csv", header = TRUE)

JAX_HLB_Chow_HF<-read.csv("JAX_HLB_Chow_HF_LDA.csv", header = TRUE)

JAX_B6_Chow_HF<-read.csv("JAX_B6_Chow_HF_LDA.csv", header = TRUE)
```

Plot the graphs

```
theme_set(theme_bw())
ggplot(Allegro_HLB_B6_HF, aes(reorder(pathway,-LDA), LDA, fill=Class))+
  geom_bar(stat="identity", col="black")+
  scale_fill_manual(values=c("#BEBEBE","#274b69"))+
  coord_flip()+
```

```
xlab("KO")+
 ylab("LDA Score (log10)")+
 facet_grid(rows = vars(Pathway_class), scales = "free", space = "free y") +
 theme(strip.text.y = element text(angle = 0))
ggplot(Allegro_HLB_B6_Chow, aes(reorder(pathway,-LDA), LDA, fill=Class))+
 geom_bar(stat="identity", col="black")+
 scale fill manual(values=c("#BEBEBE","#274b69"))+
 coord flip()+
 xlab("KO")+
 ylab("LDA Score (log10)")+
 facet_grid(rows = vars(Pathway_class), scales = "free", space = "free_y")+
 theme(strip.text.y = element text(angle = 0))
ggplot(Allegro HLB Chow HF, aes(reorder(pathway,-LDA), LDA, fill=Class))+
 geom bar(stat="identity", col="black")+
 scale fill manual(values=c("#BEBEBE", "#274b69"))+
 coord flip()+
 xlab("KO")+
 ylab("LDA Score (log10)")+
 facet_grid(rows = vars(Pathway_class), scales = "free", space = "free_y")+
 theme(strip.text.y = element_text(angle = 0))
ggplot(Allegro B6 Chow HF, aes(reorder(pathway,-LDA), LDA, fill=Class))+
 geom bar(stat="identity", col="black") +
 scale_fill_manual(values=c("#BEBEBE","#274b69"))+
 coord flip()+
 xlab("KO")+
 ylab("LDA Score (log10)")+
 facet grid(rows = vars(Pathway class), scales = "free", space = "free y")+
 theme(strip.text.y = element_text(angle = 0))
ggplot(JAX_HLB_B6_Chow, aes(reorder(pathway,-LDA), LDA, fill=Class))+
 geom_bar(stat="identity", col="black")+
 scale fill manual(values=c("#BEBEBE","#274b69"))+
 coord_flip()+
 xlab("KO")+
 ylab("LDA Score (log10)")+
 facet_grid(rows = vars(Pathway_class), scales = "free", space = "free_y")+
 theme(strip.text.y = element_text(angle = 0))
ggplot(JAX_HLB_B6_HF, aes(reorder(pathway,-LDA), LDA, fill=Class))+
 geom_bar(stat="identity", col="black")+
 scale fill manual(values=c("#BEBEBE","#274b69"))+
 coord flip()+
 xlab("KO")+
 ylab("LDA Score (log10)")+
 facet_grid(rows = vars(Pathway_class), scales = "free", space = "free_y")+
 theme(strip.text.y = element_text(angle = 0))
ggplot(JAX_HLB_Chow_HF, aes(reorder(pathway,-LDA), LDA, fill=Class))+
 geom bar(stat="identity", col="black") +
 scale_fill_manual(values=c("#BEBEBE","#274b69"))+
 coord flip()+
 xlab("KO")+
 ylab("LDA Score (log10)")+
 facet grid(rows = vars(Pathway class), scales = "free", space = "free y")+
 theme(strip.text.y = element_text(angle = 0))
ggplot(JAX_B6_Chow_HF, aes(reorder(pathway,-LDA), LDA, fill=Class))+
 geom_bar(stat="identity", col="black")+
 scale fill manual(values=c("#BEBEBE","#274b69"))+
 coord flip()+
 xlab("KO")+
 ylab("LDA Score (log10)")+
  facet_grid(rows = vars(Pathway_class), scales = "free", space = "free_y")+
  theme(strip.text.y = element_text(angle = 0))
```

```
Allegro HLB B6 HF combine<-read.csv("Allegro HLB B6 HF combine.csv", header = TRUE)
Allegro HLB B6 Chow combine<-read.csv("Allegro HLB B6 Chow combine.csv", header = TRUE)
Allegro HLB Chow HF combine <- read.csv ("Allegro HLB Chow HF combine.csv", header = TRUE)
Allegro_B6_Chow_HF_combine<-read.csv("Allegro_B6_Chow_HF_combine.csv", header = TRUE)
JAX HLB B6 HF combine<-read.csv("JAX HLB B6 HF combine.csv", header = TRUE)
JAX HLB B6 Chow combine<-read.csv("JAX HLB B6 Chow combine.csv", header = TRUE)
JAX_HLB_Chow_HF_combine<-read.csv("JAX_HLB_Chow_HF_combine.csv", header = TRUE)
JAX_B6_Chow_HF_combine<-read.csv("JAX_B6_Chow_HF_combine.csv", header = TRUE)</pre>
joined<-full_join(Allegro_HLB_B6_HF_combine, Allegro_HLB_B6_Chow_combine, by="KO")</pre>
joined2<-full_join(Allegro_HLB_Chow_HF_combine,Allegro_B6_Chow_HF_combine, by="KO")
Allegro_joined<-full_join(joined, joined2, by="KO")
joined3<-full_join(JAX_HLB_B6_HF_combine, JAX_HLB_B6_Chow_combine, by="KO")</pre>
joined4<-full_join(JAX_HLB_Chow_HF_combine, JAX_B6_Chow_HF_combine, by="KO")</pre>
JAX_joined<-full_join(joined3,joined4, by="KO")</pre>
Allegro_Jax_joined<-full_join(Allegro_joined, JAX_joined, by="KO")
#export joined tables to make table for paper
write.csv(Allegro_Jax_joined,"allegro_jax_joined.csv")
```

Supplementary Figure 3

Figure S3a

Import data tables

```
V2_mapping<-read.csv("V2_controls.csv", header = TRUE)
V4_mapping<-read.csv("V4_controls.csv", header = TRUE)
```

Convert to percent abundance

```
V2_meta<-V2_mapping[,1:2]
V2_counts<-V2_mapping[,3:12]
V2_prop<-as.data.frame(prop.table(as.matrix(V2_counts),2)*100)
V2_mapping_prop<-cbind(V2_meta,V2_prop)

V4_meta<-V4_mapping[,1:2]
V4_counts<-V4_mapping[,3:12]
V4_prop<-as.data.frame(prop.table(as.matrix(V4_counts),2)*100)
V4_mapping_prop<-cbind(V4_meta,V4_prop)</pre>
```

Select human stool samples and apply thresholds

```
V2_human<-select(V2_mapping_prop, Bin,Probe,J00YQC.human_stool_P1V2, J00YSZ.human_stool_P2V2) %>%
         melt() %>% group by(Bin, Probe) %>%
         ungroup %>% filter(n>=10) %>% mutate(set=">0.001%, 15+ Probes") %>% group_by(Bin) %>%
         mutate(BinSum=sum(mean)) %>%
         ungroup %>% mutate(design="V2")
V4_human<-select(V4_mapping_prop, Bin,Probe,J00YP1.human_stool_P1V4,J00YR0.human_stool_P2V4) %>%
        melt() %>% group_by(Bin,Probe) %>%
         \label{lem:summarize} $$ \sum_{m=0.001} \$>\$ $$ filter(mean>=0.001) \$>\$ $$ add_tally(mean>=0.001) \$>\$ $$
         ungroup %>% filter(n>=10) %>% mutate(set=">0.001%, 15+ Probes") %>% group by(Bin) %>%
         mutate(BinSum=sum(mean)) %>%
         ungroup %>% mutate(design="V4")
human_combined<-rbind(V2_human,V4_human)
h2_exclude<-droplevels(human_combined) #drop the levels from parent dataframe
           levels(h2_exclude$Bin) #check the levels to make sure theyre correct
h2_ordered<-h2_exclude[order(h2_exclude$BinSum,decreasing=T),] #order the Bins by the decreasing BinSum numb
h2 unique<-unique(h2 ordered$Bin) #get the bin names
h2 unique #check the bin names
#force the order of the levels to be in decreasing BinSum order
h2_for_plot<- within(h2_ordered, Bin <- factor(Bin, levels = c("extra-SRR5925348.8",
                                       "extra-ERR982795.38" , "single-China_7_110627.15",
                                       "single-China G1-4A 111220.15", "extra-SRR3539764.35",
                                       "extra-SRR8443416.55", "extra-SRR8581402.2" ,
                                       "extra-ERR1762100.9", "extra-SRR7533643.1",
                                       "single-China_1_110627.11" , "single-China_43_110531.14" ,
                                       "extra-SRR8291361.67","extra-ERR1762120.34",
                                       "extra-SRR3223201.41" , "extra-ERR982833.21", "iMGMC-244")))
levels(h2_for_plot$Bin) #check the levels to make sure correct
```

Plot the graph

```
theme_set(theme_bw())
ggplot(h2_for_plot, aes(x=mean, y=reorder(Bin, mean)))+
    geom_boxplot(color="black", lwd=0.3, outlier.size = 0.5, fill="gray")+
    #aes(x=reorder(Bin,-mean,sum))+
    geom_point(size=0.5)+
    #stat_summary(fun.data = give.n,geom="text")+ #vjust= -1, position="identity"
    #stat_summary(fun.y = sum, geom = "point",shape=23, size=1, color="black", fill="black")+
    theme(legend.position = "none", axis.title.y = element_blank(), axis.ticks.y = element_blank())+
    xlab("Abundance (%)")+
    xscale("log10")+
    facet_grid(cols = vars(design), scales = "free")+#, cols = vars(variable)
    guides(fill=guide_legend(nrow = 5))+
    theme(strip.text = element_blank(), axis.text.x = element_text(angle=45, hjust=1))
```

Figure S3b

Import data tables

```
V2<-read.csv("V2_mouse.csv", header = TRUE, check.names = FALSE)
V4<-read.csv("V4_mouse.csv", header = TRUE, check.names = FALSE)
```

Convert to percent abundances

```
V2_meta<-V2[,1:2]
V2_counts<-V2[,3:72]
V2_prop<-as.data.frame(prop.table(as.matrix(V2_counts),2)*100)
V2_mapping_prop<-cbind(V2_meta,V2_prop)

V4_meta<-V4[,1:2]
V4_counts<-V4[,3:72]
V4_prop<-as.data.frame(prop.table(as.matrix(V4_counts),2)*100)
V4_mapping_prop<-cbind(V4_meta,V4_prop)
```

Plot the graphs

```
theme set(theme bw())
ggplot(V4_SFB, aes(x=reorder(variable, -probes_per_bin), y=probes_per_bin))+
 geom_bar(stat="identity", fill="#94ae3f",color="black")+
 theme(axis.text.x = element text(angle=45, hjust=1), axis.ticks.x = element blank(), axis.text =
 element text(size=8))+
 xlab("Samples")+
 ylab("Probes per Bin")+
 theme(axis.text.x = element blank())
ggplot(V2_SFB, aes(x=reorder(variable, -probes_per_bin), y=probes_per_bin))+
 geom bar(stat="identity", fill="#274b69",color="black")+
 theme(axis.text.x = element text(angle=45, hjust=1), axis.ticks.x = element blank(), axis.text =
 element text(size=8))+
 xlab("Samples")+
 ylab("Probes per Bin")+
 theme(axis.text.x = element blank())+
 ylim(0,20)
```