Natural Language Processing ELMo and Transformers (BERT)

Tomasz Walkowiak

Wroclaw University of Science and Technology
CLARIN-PL
tomasz.walkowiak@pwr.edu.pl

Word embeddings problems

- context-free vectors, but the language is ambiguous (e.g., bank)
- how to turn sequences of embeddings into a single vector?
 - average of embeddings (fastText)
 - LSTM
- problems with LSTM
 - sequential processing, state-by-state, slow
- word2vec, fastText models are simple, not "deep"
 - one layer compared to 50-150 in ResNet (CNN for images)
 - just LUT for words or tokens (sub-words)

Embeddings from Language Models

- Washington Uni./Microsoft/Allen Inst. -Peters et al. (2018)
- Contextual language model, Two-way, two-layer
- Separate LSTMs process forward and backward sequences and hidden layers at each stage are combined to form the cell output

ELMo - inference

www.analyticsvidhya.com/blog/2019/03/learn-to-use-elmo-to-extra ct-features-from-text/

Fune-tuning for downstream tasks

Problems

- sequential
- slow
 - 13.6-93.6 mil. parameters

Attention

- RNNs are sequential and linear
- Sentences can be very long, language is not linear
- How to parallelize the process?
- How to calculate the input (context vector) to the decoder based on the encoder states?
- Solution:
 - Bahdanau'2014

ENCODER

you

- Adding focus, attention => biological analogies
- Context vector=weighted sum from hidden states (something like CNN)
- alphas by softmax (sum to 1) from a layer learned in parallel with the whole network

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j.$$

DECODER

$$\alpha_{ij} = \frac{\exp\left(e_{ij}\right)}{\sum_{k=1}^{T_x} \exp\left(e_{ik}\right)},$$

$$e_{ij} = a(s_{i-1}, h_j)$$

Transformer

- "Attention Is All You Need", Google, 2017, for machine translation
- http://nlp.seas.harvard.edu/annotated-transformer/
- Not patented !!!!, no recursion
- Tokenizer
 - statistically learned, text -> list of tokens
 - Tomasz lives in Vienna!
 - '[CLS]', 'tomas', '##z', 'lives', 'in', 'vienna', '!', '[SEP]'
 - **-** [101, 12675, 2480, 3268, 1999, 6004, 999, 102]]
- Position encoding

 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$ $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

- Token encoding
 - input and output (learned LUT)
 - text-> 2D array (tokens, encodings)
 - with max. length
- Uses 3 types of attention
 - Encoder self-attention
 - Decoder self-attention
 - Multi-head for encoder and decoder

Output

Transformer - architecture

several layers (6) of encoders and decoders

- Encoder and decoder consist of :
 - self-attention and feed-forward (linear + RELu) layers

Attention

- Input –matrixes (512 x number of tokens)
 - Key , Value, Query (Q,K dimension d_k)
- Scaled dot-product attention $Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_L}})V \qquad \text{weighted average after tokens}$
- Multi-head
 - h various linear input transformations (h=8)
 512 to 64
 - scaled dot-product attention (d_k=64)
 - concatenation: 8*64 = 512
 - additional linear transform
 - K,V,Q in the encoder are identical
 - inputs (for each token) or output(s) from the previous encoder
- In the decoder.
 - the same (the first), but masking future tokens
 - K,V from the last encoder, Q from the decoder

Encoder (simplified)

$$c_{anorm} = \frac{c_{alayer} - mean(c_{alayer})}{\mathbf{std}(c_{alayer}) + \varepsilon}$$

$$c_{alayer} = c_{attn} + \mathbf{Dropout}(c_{input})$$

$$egin{aligned} \mathbf{c_{attn}} &= \mathbf{sum} \left(\left[lpha_1 \mathbf{a_{input}}, lpha_2 \mathbf{b_{input}}
ight]
ight) \ lpha &= \mathbf{softmax} (ilde{lpha}) \ & ilde{lpha} &= \left[rac{\mathbf{c_{input}}^{ op} \mathbf{a_{input}}}{\sqrt{d_k}}, rac{\mathbf{c_{input}}^{ op} \mathbf{b_{input}}}{\sqrt{d_k}}
ight] \end{aligned}$$

$$c_{\text{input}} = x_{34} + p_3$$

A look at the Transformer inference

Figure 1: The Transformer - model architecture.

decoder is autoregressive at inference time and non-autoregressive at training time

BERT

- Google 2018
- BERT is an encoder from a transformer
 - 12 (24) encoders, size 768,1024, head 12,16
- Language model learned
 - on a very large but unannotated corpus
 - but unlike the other models
 - simultaneously on two tasks
 - and tuned in downstream tasks
- Ready models, to be downloaded
- In the original work
 - https://github.com/google-research/bert
 - Monolingual: English, Chinese
 - multilingual: simultaneously for 104 languages
- Now
 - Huggingface everything , including

BERT input

Sum of 3 embeddings

- BERT contains its own tokenizer: 'em', '##bed', '##ding', '##s'
 - List of words, word fragments, characters
 - Unknown word is broken into fragments and/or characters
 - For multilingual version is in the dictionary: 120k entries, for English 30k
 - Token->vector (size 768 or 1024)
 - Text -> array (768/1024 by 512)
 - All embeddings are learned !!!

Training - masking

Vienna

Training – next sentence

- binary classifier
- whether one sentence is the next sentence of another
- additional tokens
 - [CLS] for the output of the classifier
 - [SEP] sentence boundary
- the learning error is the sum of the average masked LM probability and the average probability of predicting the next sentence

Inference

- input: token id-s, token masks, sentence ids
- output: embedding (768-dimensional vector) for each token

Practical usage (downstream tasks)

- the classification layer is added
- BERT + extra layers are tuned !!!
- we use batches (samples on which the model makes predictions in one forward pass) – GPU architecture
- we need padding (the same length) and truncation (BERT size is limited)

Deep language models summary ELMo, BERT

- Important features
 - based on very large datasets that do not require labeling
 - supervised learning despite formal lack of labels
 - publicly available models
 - can be re-used in tasks where annotated sets (costly) are small (transfer learning)
 - SoA for NLP (BERT)
 - BERT and ELMo are contextual, works with polysemy and pronouns
- Problems
 - size of models
 - BERT 345 million parameters, 1.4 GB
 - but Sent2vec for PL: 20 GB
 - have a lot of complexity even when generating vectors
 - they require GPUs (even during inference)
 - in BERT it is not as bad as in ELMo
 - usage of ONNX

What happened after 2018?

- BERT modifications
 - RoBERTa Facebook
 - DistilBERT distilled version
 - HuggingFace, ½ of BERT weights, 95% effectiveness
 - SentenseTransformers metric learning
 - LongFormers
- Text -> Text (text generation)
 - GPT (Open Al Transformer)
 - only decoders
 - GPT-2 (2019) 1.5 billion par., 8 mil. web pages
 - GPT-3 (2020) 175 billion parameters, 96 attention layers
 - ChatGPT (2022) GPT3.5
 - T5 (Google)
 - Encoders and decoders
 - From 60 million do 11 billion parameters
 - C4 data set
 - BART

Bert for text classification

- Fine-tuned on downstream tasks, transfer learning
 - pick up a pre-trained BERT

... = trainer.predict(test dataset)

- add a dense layer (classifier) to token- 0 (pooling operation)
- tune (on our task) all weights (except embeddings)
- How
 - Transformers from HuggingFace (PyTorch)

```
from transformers import ...
model name = "bert-base-uncased"
tokenizer = BertTokenizer.from pretrained(model name)
train encodings = tokenizer(train texts, truncation=True,...)
model=BertForSequenceClassification.from pretrained (model name, num labels=...))
train dataset = Dataset(train encodings, labels)
trainer = Trainer( model=model, args=..., train dataset=train dataset)
trainer.train()
```


HUGGING FACE

Example results for subject classification (for Polish)

Data set	TF-IDF		doc2vec		fastText		Polbert		HerBERT	
	mean	std	mean	std	mean	std	mean	std	mean	std
Wiki	0.8302	0.0038	0.9044	0.004	0.8816	0.0055	0.943	0.0064	0.9494	0.0066
Press	0.9438	0.0056	0.9559	0.0038	0.9587	0.0049	0.9704	0.0068	0.9718	0.0091
Web	0.5627	0.0098	0.5764	0.0274	0.5451	0.0221	0.5533	0.0194	0.5952	0.0324
Rev	0.9425	0.0046	0.917	0.0036	0.9659	0.0037	0.9524	0.0077	0.9555	0.0106
Qual	0.7943	0.0165	0.8023	0.0116	0.8155	0.011	0.83	0.0137	0.8221	0.0253

Sentence Transformers

- Sentence embedding based on text similarities
- Twin/Siamese networks
- Metric learning
- Good vectors for
 - clustering
 - searches (Q&A)
 - visualization

```
cosine-sim(u, v)

u
v
pooling
pooling
BERT
BERT
BERT
Sentence A
Sentence B
```

-1 ... 1