

Dados Raster

Carlos H. Grohmann 2021

Instituto de Energia e Ambiente USP

Dados Raster (matriciais)

- · São dados regularmente espaçados no espaço, em uma estrutura de matriz com células quadradas (normalmente) e de mesmo tamanho. Cada célula (pixel) recebe o valor de um atributo, que representa um fenômeno (por exemplo temperatura ou altitude). As células são organizadas em linhas e colunas, e seu valor pode ser acessado pelas coordenadas absolutas da matriz (linha/coluna) ou pelas coordenadas geográficas
- Tamanho do pixel = Resolução espacial

Raster x Vetor

Raster - pixels

Raster - valores e coordenadas

Value applies to the center point of the cell

For certain types of data, the cell value represents a measured value at the center point of the cell. An example is a raster of elevation

Value applies to the whole area of the cell For most data, the cell value represents a sampling of a phenomenon, and the value is presumed to represent the whole cell square.

Raster - pixel-is-area

Raster - pixel-is-point(?)

Bits & Bytes...

- · 1 bit menor unidade de informação armazenada
- · 1 byte (1B) 8 bits
- 1 kB (kilobyte) = 2^{10} bytes = 1.024 bytes
- 1 MB (megabyte) = 2^{20} bytes = 1.048.576 bytes
- 1 GB (gigabyte) = 2^{30} bytes = 1.073.741.824 bytes

Bits & Bytes...

- · imagem 8 bits 1 byte por pixel
- · imagem 16 bits 2 bytes por pixel
- · imagem 32 bits 4 bytes por pixel
- imagem 1000 linhas x 1000 col. x 1 banda x 1 byte =
 1.000.000 bytes
- 1 byte = 2^8 = 256
- · imagem 8 bits cada pixel pode ter valores de 0 a 255

Bits & Bytes - Imagem Landsat

```
p220r079_7x20000507.met
PRODUCT_SAMPLES_PAN = 17654
PRODUCT_LINES_PAN = 15614
PRODUCT_SAMPLES_REF = 8827
PRODUCT_LINES_REF = 7807
PRODUCT_SAMPLES_THM = 4414
PRODUCT_LINES_THM = 3904
```

- Banda 8 (PAN): 17654 x 15614 x 1byte = 275.649.556 B
- Bandas 1-5: 8827 x 7807 x 1byte = 68.912.389 B
- Banda 6 (termal): 4414 x 3904 x 1byte = 17.232.256 B

Bits & Bytes...

- 1_BIT A 1-bit unsigned integer. The values can be 0 or 1.
- \cdot 2_BIT A 2-bit unsigned integer. The values supported can be from 0 to 3.
- \cdot 4_BIT A 4-bit unsigned integer. The values supported can be from 0 to 15.
- 8_BIT_UNSIGNED An 8-bit, unsigned data type. The values can range from 0 to 255. This is the default.
- 8_BIT_SIGNED An 8-bit signed data type. The values can range from -128 to 127.
- 16_BIT_UNSIGNED A 16-bit, unsigned data type. The values can range from 0 to 65,535.
- 16_BIT_SIGNED A 16-bit signed data type. The values can range from -32,768 to 32,767.
- 32_BIT_UNSIGNED A 32-bit unsigned data type. The values can range from 0 to 4,294,967,295.
- 32_BIT_SIGNED A 32-bit signed data type supported by GRID. The values can range from -2,147,483,648 to 2,147,483,647.
- 32_BIT_FLOAT A 32-bit data type supporting decimals.
- \cdot 64_BIT A 64-bit data type supporting decimals.

Raster - Tamanho dos arquivos

Raster - Compressão

- Diminuir o tamanho do arquivo (em bytes) para armazenagem e consulta
- · Taxa de compressão depende do arquivo original
- Sem perda de informação (Lossless)
- Com perda de informação (Lossy)
- · Uso de informação redundante

• Ex.: 25.88888888

· lossless: 25.[9]8

· lossy: 26

Raster - Compressão por Run-lenght encoding (1)

raster representation

A	Α	A	A	0	0	0	0
A	Α	A	Α	Α	0	0	0
Α	Α	Α	Α	0	В	0	0
A	Α	Α	A	0	0	0	0
	Α			0			
0	0	0	0	0	С	0	0
		C					
0	0	0	0	0	0	0	0

pixel	value
1	Α
2	Α
3	Α
4	A A 0
5	0
6	0
7	0
8	0
9	A
10	Δ
11	Α
12	A
13	A A A A
14	0
15	o
16	o
	0 0
62 63	U
	0
64	0

Raster - Compressão por Run-lenght encoding (2)

raster representation

			А				
A	Α	A	А	Α	0	۰	0
Α	A	A	A	0	В	0	0
Α	Α	A	A	D	0	0	0
Α	A	Α	0	D	D	U	С
0	0	0	0	0	O	0	Q
С	C	С	С	C	D	0	Q
0	0	0	0	D	D	0	0

Raster - Compressão por Quadtrees

Raster - tipos de arquivo

- BIL Band Interleaved by Line (image format linked with satellite derived imagery)
- Digital raster graphic (DRG) digital scan of a paper USGS topographic map
- ECW Enhanced Compressed Wavelet (from ERMapper). A compressed wavelet format, often lossy.
- ESRI grid proprietary binary and metadataless ASCII raster formats used by ESRI
- · GeoTIFF TIFF variant enriched with GIS relevant metadata
- IMG ERDAS IMAGINE image file format
- JPEG2000 Open-source raster format. A compressed format, allows both lossy and lossless compression.
- MrSID Multi-Resolution Seamless Image Database (by Lizardtech). A compressed wavelet format, often lossy.

Raster - tipos de arquivo

- · USGS DEM The USGS' Digital Elevation Model
- DTED National Geospatial-Intelligence Agency (NGA)'s Digital Terrain Elevation Data
- · GTOPO30 Large complete Earth elevation model at 30 arc seconds
- · SDTS The USGS' successor to DEM
- · HGT SRTM (NASA)

Análise de Dados Raster

Operações em mapas raster

- · Operações locais (pixel a pixel)
- · Operações globais (consideram todo o layer)
- Operações focais (de vizinhança)
- · Operações zonais (em regiões)
- Operações descritivas

Operações locais (pixel a pixel)

- · Reclassificação
- · Sobreposição (overlay)

Álgebra de mapas – soma

Álgebra de mapas – média

Sobreposição (overlay) - lógica Booleana

Funções locais (pixel a pixel)

- · Operadores principais:
 - trigonométricos
 - · exponenciais e logarítmos
 - · reclassificação
 - · seleção baseada em condição
 - · estatística (média, mediana, moda)
 - aritmética (ex., valor absoluto de x)

Função local – Trigonométrica

1	0	1	1
2	4		1
1	2	4	2
2	1	4	2

Sin

Demers, M. N., 2002. GIS Modelling In Raster. New York: John Wiley & Sons.

Função local – Reclassificação

Função local – Seleção

Select: Values = 3:6

Output Matrix							
3	5	7	2				
6	3	4	9				
6	7	9	2				
5	6	2	7				

Demers, M. N., 2002. GIS Modelling In Raster. New York: John Wiley & Sons.

= No Data

Função local – Seleção por posição e janela

Input Matrix						
3	5	7	2			
6	3	4	9			
6	7	9	2			
5	6	2	7			

Select: Center (2x2)

Output Matrix							
3	5	7	2				
6	3	4	9				
6	7	9	2				
5	6	2	7				

Demers, M. N., 2002. GIS Modelling In Raster. New York: John Wiley & Sons.

Funções focais

- Funções examinam a célula de interesse e suas vizinhas imediatas
- · A vizinhança pode ser retangular, circular, etc

Função focal – janelas móveis (moving-windows)

vizinhança 3x3 média = 10+1+5+7+0+5+4+8+3/9 média = 43/9 = 4.77 = 5 (arredondado)

dados processados

Função focal – janela tipo "rosquinha"

FOCALSUM (grid, annulus)

Output Matrix					
4	6	2	5		
7	37	7	1		
2	5	4	2		
6	5	8	1		

Demers, M.N., 2002. GIS Modelling In Raster. New York: John Wiley & Sons.

Função focal – min, max, etc

	Inp	ut Mati	rix				Ou	ıtput N	latrix	
4	7	2	1	9		4	7	2	1	9
7	2	3	2	7	FOCALMAJORITY	7	2	3	2	7
3	2	5	3	5	(Grid, Neighbourhood, Rectangle, 3, 3)	3	2	2	3	5
4	1	2	2	4	nectarigie, 3, 3)	4	1	2	2	4
9	5	4	6	2		9	5	4	6	2
	Inp	ut Mati	rix				Ou	ıtput N	latrix	
4	7	2	1	9		4	7	2	1	9
7	2	3	2	7	FOCALMIN	7	2	3	2	7
3	2	5	3	5	(Grid, Neighbourhood, Rectangle, 3, 3)	3	2	1	3	5
4	1	2	2	4		4	1	2	2	4
9	5	4	6	2		9	5	4	6	2
	Inp	ut Mati	rix				Oı	ıtput N	latrix	
4	7	2	1	9		4	7	2	1	9
7	2	3	2	7	FOCALMEAN (Grid, Neighbourhood,	7	2	3	2	7
3	2	5	3	5	Rectangle, 3, 3)	3	2	2.4	3	5
4	1	2	2	4		4	1	2	2	4
9	5	4	6	2		9	5	4	6	2
Denes M.	N., 2002. GI	Modeling is	n Roster, Nev	v York: John	Wiley & Sons.					

Funções zonais

 Funcionam como as operações de vizinhança locais, mas usam todas as células de uma categoria (zona)

Função zonal (zonalarea)

Demers, M. N., 2002. GIS Modelling In Raster. New York: John Wiley & Sons.

Função zonal (zonalmax)

Input Matrix 2 Value Grid					
4	6	2	5		
3	4	9	1		
2	5	4	2		
6	5	8	1		

		Outpu	t Matrix	
	6	6	8	8
ZONALMAX	9	9	9	8
(Zonal grid, = Value grid)	9	9	8	8
	8	8	8	8

Demers, M. N., 2002. GIS Modelling In Raster. New York: John Wiley & Sons.

Buffers

