

· Features :-

- Hash function converts data of arbitrary length to a fixed length. This process is often referred to as hosing the data.
 - In general, the hash is much smaller than the input data, hence thash functions are sometimes called compression functions.

 Since a hash is a smaller representation of a larger data, it is also referred to as a digest.

Ly Efficiency of Operation

- Grenesally for any hash function h with input x, remputation of h(x) 95 a fast operation.
- Computation hash functions are much faster than a symmetric encryption.

· Properties:

- 1> Pre- Image Resistance
- 5 Second Pre-Image Resistance
- 4 Collision Resistance

· Applications :-

Punction based on its cryptographic propostion

Lash functions provide protection passivosal storage is Data Integrity Check.
Is It checks the most common application of the hosh functions 2) Explain Hash functions applications in dus - There are two direct applications of bash fuction based on its cayptographic properties. · Password Storage 4 Hash functions provide protection to password storage - Instead of storing password in clear mostly all logon processes store the bash values of passwords in the file - The Passwood file consider of a table of pairs which are in the form (user, id) - The process of logon is depicted in the following illustration -

The process is depicted in the following · nortration original data original data Hashing Algorithm Metwork -> Hashing computed Algorithm > Hash Hash Indentical value hashes Received. Hash Value data integaty. - The integrity their helps the user to detent any changes made the to original file . - It however does not provide any assurance about originally. The attackers posted of madifying file data, can change the entire Rile and compute all together new hash and send to the seceiver This integrity check application is useful only of the user is sure about the organality of files

DFCD 1234 BBEA ACT7 5213 AD12 925A CDA9 7923 ACT8

Ans - A Secure Hash Algorithm is actually a set of algorithms developed by the National Tristitutes of standars and Technology (NTST) and other government and private pareties. These secure encryption or "fell check" functions have arisen have arisen have arisen to meet some of the top appropriately challenge of the 21st century as a number of public service groups work with federal government agencies to provide better anline security standards for anganizations and the public

Figure:

Input Digest

cayptographic

C	1010	DIO COL		110		-		2000	
T				7-100		50.0	220	0.00	1
ĺ	The red		canbodaabhic		008-8	+812	eBE2	SABC	
No.	for jumps		hash	->	109 A	COTE	2161	9220	1
	over the	2010	Function	10	7.43	3.2	and H	1-1	+
	hive dog		Contract of the Contract of th	4	PER CONTRACTOR CONTRAC	THE REAL PROPERTY OF THE PERSON NAMED IN COLUMN 1	THE PERSON NAMED IN	SECTION NEWSTRANDS	4

· Characteristics &

- Comptagraphic hash functions are utilized in cooder to keep data secured by providing three fundamental of characteristes which

is consist of a pre-image resistance, second pre-image resistance, and collision resistance.

· Types of SHA

- There are many types of SHA, some of those family are SHA-0, SHA-1, SHA-2, SHA-3 and SHA-256, each of which was succeeded increasingly stronger encryption and still being updated in response to backer ordark.
- SHA-O, for example, this is now obsoloute due to widely exposed to the work.

 Because there are too many types of SHA algorithms, in this article I will just point out few of those types
- Ht Explain requirements and security in detail.
- Am All the requirements and security in of hash functions are given further.
 - 1. Can be applied to any sized message
 - 2. Produces fixed-length output h
 - 3. It is easy to compute h= H(M) for any message M.
 - 4. Griven mash value h is infeasible to find y such that (H(y)=h)
 - · One way property.

