

MAT1503

May/June 2015

LINEAR ALGEBRA

Duration

2 Hours

100 Marks

EXAMINERS FIRST

DR L GODLOŽA

DR ZE MPONO

Closed book examination

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

MAT1503

May/June 2015

LINEAR ALGEBRA

Duration 2 Hours 100 Marks

EXAMINERS

FIRST DR L GODLOZA

DR ZE MPONO

Closed book examination

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

This paper consists of 3 pages

Answer All Questions

QUESTION 1

(a) Solve the following system

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 1 \\ x_2 - x_3 = 2 \\ 2x_3 = 4 \end{cases}$$

(5)

(b) Find x, y, z such that

$$x\begin{bmatrix} 2\\5 \end{bmatrix} + y\begin{bmatrix} 3\\-4 \end{bmatrix} + z\begin{bmatrix} -2\\2 \end{bmatrix} = \begin{bmatrix} 5\\6 \end{bmatrix}$$
(3)

(c) Let

$$A = \left[\begin{array}{cc} 3 & 4 \\ 1 & 1 \\ 2 & 7 \end{array} \right]$$

and verify that

$$(1) \ 5A = 3A + 2A \tag{3}$$

(a)
$$6A = 3(2A)$$

$$(\mathbf{m}) \ (A^I)^I = A \tag{2}$$

[TURN OVER]

(d) Consider the following matrices

$$B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} , C = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

Then compute B^2 and C^2

(4)

(e) Without using determinants, show that the following matrix

$$D = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right]$$

has no inverse (5)

[25]

QUESTION 2

(a) Let

$$E = \left[\begin{array}{rrr} 2 & 5 & 4 \\ 3 & 1 & 2 \\ 5 & 4 & 6 \end{array} \right]$$

and find the determinant of E by the cofactor expansion

(b) Given that

$$F = \left[egin{array}{cc} 3 & 5 \\ 2 & 4 \end{array}
ight]$$

then

(i) show that
$$det(F) = det(F^T)$$
 (3)

(ii) find
$$det(3F)$$
 (3)

(iii) compare
$$det(3F)$$
 with $det(F)$ (2)

(c) Using Cramer's Rule, solve the following system of linear equations

$$\begin{cases} x_1 + 2x_2 + x_3 = 5 \\ 2x_1 + 2x_2 + x_3 = 6 \\ x_1 + 2x_2 + 3x_3 = 9 \end{cases}$$

(7)

[25]

[TURN OVER]

QUESTION 3

Consider the vectors $\underline{u} = (1, 1, 0)$ and $\underline{v} = (0 \ 1, 1)$

- (a) Determine $cos(\theta)$ if θ is the angle between \underline{u} and \underline{v} (5)
- (b) Calculate the area of the parallelogram determined by \underline{u} and \underline{v} (5)
- (c) Find an equation of the plane V containing \underline{u} and \underline{v} (5)
- (d) Determine the equation of the plane parallel to the plane V in (c) and passing through the point (1,1,1)
- (e) Find an equation of the line perpendicular to the plane V in (c) and passing through the tip of \underline{w} , where \underline{w} is the unit vector in the direction of \underline{u} with the same initial point as \underline{u} (5)

[25]

QUESTION 4

- (a) Use de Moivre's Theorem to express $\cos 4\theta$ in terms of powers of $\sin \theta$ and $\cos \theta$ (10)
- (b) Determine the 4th roots of 16 in polar form (10)
- (c) Let w = 3 + 4i z = 5 2i Show that $\frac{w}{z} = \frac{7}{29} + \frac{26}{29}i$ (5)

[25]

TOTAL: 100 Marks

©

UNISA 2015