Homotopie II: Examen

Najib Idrissi, Université de Paris

5 mars 2021, 14h–17h

Durée : 3 heures. Les notes de cours imprimées ou manuscrites sont autorisées. Le matériel électronique est interdit. Lisez bien tout le sujet avant de commencer.

Exercice 1. Soit C une catégorie et \mathcal{W} une classe de morphismes. On dit que \mathcal{W} vérifie la propriété "2 parmi 6" (2P6) si, étant donnés trois morphismes composables f, g, et h,

$$\{h \circ g, g \circ f\} \subseteq \mathcal{W} \implies \{f, g, h, h \circ g \circ f\} \subseteq \mathcal{W}.$$

- (1A) Montrer que si \mathcal{W} vérifie 2P6 et $\forall X$, id $_X \in \mathcal{W}$, alors \mathcal{W} contient tous les isomorphismes.
- (1B) Montrer que si \mathcal{W} vérifie 2P6 alors elle vérifie la propriété MC2 ("2 parmi 3").
- (1C) Montrer que si \mathcal{W} vérifie MC2 et $\{h \circ g, g \circ f\} \subseteq \mathcal{W} \implies g \in \mathcal{W}$, alors \mathcal{W} vérifie 2P6.
- (1D) Montrer que la classe des isomorphismes d'une catégorie quelconque vérifie 2P6.
- (1E) En déduire que les équivalences faibles d'une catégorie de modèles vérifient 2P6.

Exercice 2. Soit C une catégorie munie de deux structures de modèles $(\mathcal{W}_1, \mathcal{C}_1, \mathcal{F}_1)$ et $(\mathcal{W}_2, \mathcal{C}_2, \mathcal{F}_2)$. On suppose que $\mathcal{W}_1 \subseteq \mathcal{W}_2$ et $\mathcal{F}_1 \subseteq \mathcal{F}_2$. On appelle "structure mixte" $(\mathcal{W}_m, \mathcal{C}_m, \mathcal{F}_m)$ définie par $\mathcal{W}_m = \mathcal{W}_2$ et $\mathcal{F}_m = \mathcal{F}_1$. Les cofibrations mixtes, \mathcal{C}_m , sont définies par propriété de relèvement.

- (2A) Montrer que $C_2 \subseteq C_m \subseteq C_1$.
- (2B) Démontrer que $C_m \cap W_m = C_1 \cap W_1$. (Indication : MC3+MC5.)
- (2C) Démontrer que la structure mixte est une structure de catégorie de modèles.
- (2D) On dit que f est une cofibration mixte $sp\acute{e}ciale$ s'il existe $i \in C_2$ et $j \in C_1 \cap W_1$ tels que $f = j \circ i$. Démontrer que toute cofibration mixte spéciale est une cofibration mixte, et que toute cofibration mixte est un rétract d'une cofibration mixte spéciale.
- (2E) On dit qu'une catégorie de modèles est propre à gauche si le pushout d'une équivalence faible le long d'une cofibration est une équivalence faible. Déduire de (2D) que si la structure 2 est propre à gauche, alors la structure mixte aussi.
- (2F) Entre lesquelles des trois structures de modèles ci-dessus le foncteur id_C est-il un adjoint à droite ou à gauche de Quillen?

Exercice 3. Une catégorie de Reedy est une catégorie R munie de deux sous-catégories \vec{R} et \vec{R} qui contiennent tous les objets et d'une fonction deg : ob R $\rightarrow \mathbb{N}$ vérifiant :

- $\operatorname{si} f \in \vec{R}(\alpha, \beta)$, alors $(\alpha = \beta \operatorname{et} f = \operatorname{id}_{\alpha})$ ou $\operatorname{deg} \beta > \operatorname{deg} \alpha$;
- si $f \in \hat{R}(\alpha, \beta)$, alors $(\alpha = \beta \text{ et } f = \text{id}_{\alpha})$ ou $\deg \beta < \deg \alpha$;
- tout morphisme f se factorise de manière unique comme $\vec{f} \circ \vec{f}$ où $\vec{f} \in \vec{R}$ et $\vec{f} \in \vec{R}$.

- (3A) On note $R_{< n}$ la sous-catégorie pleine des objets de degré $\leq n$. Montrer que $R_{< 0}$ est discrète.
- (3B) Montrer qu'un ensemble partiellement ordonné fini est de Reedy. Montrer que la catégorie simpliciale Δ est de Reedy, où $\vec{\Delta}$ se compose des injections, $\vec{\Delta}$ des surjections, et deg = id $_{\mathbb{N}}$. Montrer que la catégorie opposée d'une catégorie de Reedy est de Reedy.

Soit $\alpha \in \mathbb{R}$. La catégorie *latching* $L_{\alpha}\mathbb{R}$ a pour objets les morphismes $f \in \vec{\mathbb{R}}(\beta, \alpha)$ où $\beta \neq \alpha$. Si $f : \beta \to \alpha$, $f' : \beta' \to \alpha$, alors $\text{Hom}_{L_{\alpha}\mathbb{R}}(f, f') = \{g \in \vec{\mathbb{R}}(\beta, \beta') \mid f'g = f\}$. Dualement, les objets de la catégorie *matching* $M_{\alpha}\mathbb{R}$ sont les morphismes $f \in \vec{\mathbb{R}}(\alpha, \beta)$ où $\beta \neq \alpha$.

(3C) Décrire $L_{[2]}\Delta^{op}$ et $R_{[2]}\Delta^{op}$.

Soit $X \in C^R$ un diagramme indexé par R, où C est une catégorie (co)complète. On définit ses objets *latching* par les colimites $L_{\alpha}X := \operatorname{colim}_{f:\beta \to \alpha \in L_{\alpha}R} X_{\beta}$. Dualement, ses objets *matching* sont $M_{\alpha}X := \lim_{f:\alpha \to \beta \in M_{\alpha}R} X_{\beta}$. (La colimite vide est l'objet initial, la limite vide est l'objet terminal.)

- (3D) Soit $X_{\bullet} \in \operatorname{Set}^{\Delta^{\operatorname{op}}}$ un ensemble simplicial. Décrire $M_{[n]}X_{\bullet}$ et $L_{[n]}X_{\bullet}$ pour $n \leq 2$.
- (3E) Soit $X: \mathbb{R}_{\leq n-1} \to \mathbb{C}$ un diagramme (où $n \geq 1$) et $\alpha \in \mathbb{C}$ un élément de degré n. Vérifier que $L_{\alpha}X$ et $M_{\alpha}X$ restent bien définis et construire un morphisme $c_{\alpha}: L_{\alpha}X \to M_{\alpha}X$ naturel en α .
- (3F) Soit $X: R_{\leq n-1} \to C$ un diagramme (où $n \geq 1$). Montrer que la donnée d'une extension de X à $R_{\leq n}$ est équivalente à la donnée d'objets X_{α} pour chaque α de degré n et de morphismes $l_{\alpha}: L_{\alpha}X \to X_{\alpha}$ et $m_{\alpha}: X_{\alpha} \to M_{\alpha}X$ tels que $m_{\alpha}l_{\alpha} = c_{\alpha}$.
- (3G) Soit $X,Y \in \mathbb{C}^R$ deux diagrammes et $\varphi:X\Rightarrow Y$ une transformation naturelle. Construire des morphismes $L_{\alpha}^{\mathrm{rel}}\varphi:X_{\alpha}\cup_{L_{\alpha}X}L_{\alpha}Y\to Y_{\alpha}$ et $M_{\alpha}^{\mathrm{rel}}\varphi:X_{\alpha}\to M_{\alpha}X\times_{M_{\alpha}Y}Y_{\alpha}$ naturels en α . (On pourra utiliser les m_{α} , l_{α} construits en (3F).)

On suppose maintenant que C est une catégorie de modèles. On définit une structure de modèles (appelée structure de Reedy) sur C^R en posant qu'une transformation naturelle φ est : une équivalence de Reedy si chaque φ_α est une équivalence faible; une cofibration de Reedy si chaque $L_\alpha^{\rm rel}\varphi$ est une cofibration; une fibration de Reedy si chaque $M_\alpha^{\rm rel}\varphi$ est une fibration.

- (3H) Soit $\phi: X \to Y$ une cofibration de Reedy. Montrer que le morphisme induit $L_{\alpha}X \to L_{\alpha}Y$ est une cofibration. (Indication : montrer qu'il a la LLP par rapport aux fibrations acycliques en construisant le relèvement par récurrence.)
- (3I) En déduire que si $\varphi: X \to Y$ est une cofibration de Reedy, alors φ_{α} est une cofibration pour tout objet α . (Indication : utiliser le fait que φ_{α} se factorise comme $X_{\alpha} \to X_{\alpha} \cup_{L_{\alpha}X} L_{\alpha}Y \xrightarrow{L_{\alpha}^{\mathrm{rel}}\varphi} Y_{\alpha}$.)
- (3J) En déduire l'existence d'adjonctions de Quillen entre la structure de Reedy et les structures projectives et injectives, si elles existent.
- (3K) Montrer qu'une adjonction de Quillen $F : C \subseteq D : G$ induit une adjonction de Quillen entre les structures de Reedy.

Exercice 4. Soit *A* une CDGA 1-connexe et α , β , $\gamma \in H^*(A)$ trois classes telles que $\alpha\beta = \beta\gamma = 0$. On considère l'ensemble des éléments de la forme $vz - (-1)^{|x|}xw \in A$ où $\alpha = [x]$, $\beta = [y]$, $\gamma = [z]$ (pour des cocycles x, y, z), dv = xy et dw = yz.

- (4A) Montrer que $vz (-1)^{|x|}xw$ est un cocycle et que sa classe dans $H^*(A)/I$, où $I = (\alpha, \gamma)$ est l'idéal engendré par α et γ , ne dépend pas des choix de x, y, z, v, w.
- (4B) Supposons que A est quasi-isomorphe à $H^*(A)$. Soit M le modèle minimal de A. Pourquoi existe-t-il un quasi-isomorphisme direct $\phi: M \to H^*(A)$?
- (4C) Utiliser ϕ pour montrer que la classe de $vz (-1)^{|x|}xw$ vaut zéro dans $H^*(A)/I$.
- (4D) En déduire un exemple de deux ADGC ayant la même cohomologie sans être quasi-isomorphes.