ÁLGEBRA II (61.08 - 81.02)

Evaluación	integradora
Duración: 3	horas.

Segundo cuatrimestre – 2022 21/XII/22 – 9:00 hs.

Apellido y Nombres:

Legajo:

Curso:

1. Usando la técnica de mínimos cuadrados, ajustar los siguientes datos

mediante una parábola $y = ax^2 + bx + c$.

2. Hallar la solución $Y \in C^{\infty}(\mathbb{R}, \mathbb{R}^2)$ del problema de valores iniciales

$$Y' = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} Y, \qquad Y(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

3. Sea $A \in \mathbb{R}^{3\times 3}$ la matriz simétrica tal que nul $\left(A - \frac{1}{2}I\right) = \left\{x \in \mathbb{R}^3 : 2x_1 + 2x_2 - x_3 = 0\right\}$ y traza(A) = 2. Hallar $\lim_{k \to \infty} A^k \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

4. Hallar una matriz $A \in \mathbb{R}^{2\times 3}$ tal que $\begin{bmatrix} -1 & 2 & 2 \end{bmatrix}^T \in \text{nul}(A)$, $A \begin{bmatrix} 2 & -1 & 2 \end{bmatrix}^T = \begin{bmatrix} 9 & 12 \end{bmatrix}^T$ y $\max_{\|x\|=1} \|Ax\| = 10$.

5. Sea $\Pi: \mathbb{R}^3 \to \mathbb{R}^3$ la proyección sobre el plano $\{x \in \mathbb{R}^3 : x_3 = 0\}$ en la dirección de la recta gen $\{[-2 \ 0 \ 1]^T\}$. Hallar y graficar la imagen por Π de la esfera unitaria de \mathbb{R}^3 .