1208CW Vector + Calculus [29 marks]

1. Line L_1 has equation $r_1 = \begin{pmatrix} 10 \\ 6 \\ -1 \end{pmatrix} + s \begin{pmatrix} 2 \\ -5 \\ -2 \end{pmatrix}$ and line L_2 has equation $r_2 = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} + t \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$.

[7 marks]

Lines L₁ and L₂ intersect at point A. Find the coordinates of A.

2a. The line L passes through the point (5, -4, 10) and is parallel to the vector $\begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix}$.

[2 marks]

Write down a vector equation for line L.

2b. The line L intersects the x-axis at the point P. Find the x-coordinate of P.

[6 marks]

3a. Consider points A(1, -2, -1), B(7, -4, 3) and C(1, -2, 3). The line L₁ passes through C and is parallel to \overrightarrow{AB} .

[2 marks]

 \overrightarrow{AB} .

3b. Hence, write down a vector equation for L_1 .

[2 marks]

3c. Consider points A(1, -2, -1), B(7, -4, 3) and C(1, -2, 3). The line L_1 passes through C and is parallel to \overrightarrow{AB} .

[3 marks]

A second line, L₂, is given by $r = \begin{pmatrix} -1 \\ 2 \\ 15 \end{pmatrix} + s \begin{pmatrix} 3 \\ -3 \\ p \end{pmatrix}$.

Given that L_1 is perpendicular to L_2 , show that p = -6.

3d. Consider points A(1, -2, -1), B(7, -4, 3) and C(1, -2, 3). The line L_1 passes through C and is parallel to \overrightarrow{AB} .

[7 marks]

A second line, L_2 , is given by $r = \begin{pmatrix} -1 \\ 2 \\ 15 \end{pmatrix} + s \begin{pmatrix} 3 \\ -3 \\ p \end{pmatrix}$.

The line L_1 intersects the line L_2 at point Q. Find the x-coordinate of Q.