PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-066406

(43)Date of publication of application: 10.03.1995

(51)Int.CI.

H01L 29/78 H01L 21/336 H01L 21/28

(21)Application number: 05-210584

(71)Applicant : OKI ELECTRIC IND CO LTD

(22)Date of filing:

25.08.1993

(72)Inventor: IDA JIRO

(54) SELF-ALIGNED SILICIDE MOSFET AND ITS MANUFACTURE

(57)Abstract:

PURPOSE: To restrain the increase of gate resistance in accordance with the reduction of gate size, and realize the high speed operation of a circuit.

CONSTITUTION: In a self-aligned silicide MOSFET, high melting point metal silicide 31 is formed in at least a part of both side surfaces of a gate electrode 24 and at least a part of the lower portion of a side wall 28 of the gate electrode 24.

LEGAL STATUS

[Date of request for examination]

24.08.1999

[Date of sending the examiner's decision of

26.06.2001

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-66406

(43)公開日 平成7年(1995)3月10日

(51) Int.Cl. ⁶ H 0 1 L		裁別記号	₱	庁内整理番号	FΙ				技術表示箇所
	21/28	3 0 1		7376 – 4M 7514 – 4M	H01L	29/ 78	3 0	1 P	
					審査請求	未讃求	請求項の数	4 01	L (全 6 頁)
(21)出願番号		特顧平5-210584		(71)出顧人					
(22)出顧日		平成5年(1993)8月25日			•		工業株式会社 巻区虎ノ門 1 T	Г日 <i>7∄</i>	₹ 12長
					(72)発明者			т 14 г. 14	AIT.
							巻区虎ノ門 1 T 式会社内	「目7番	F12号 沖電気
					(74)代理人	弁理士	清水 守	(外1名	3)

(54) 【発明の名称】 サリサイド型MOSFET及びその製造方法

(57)【要約】

【目的】 ゲート寸法が縮小化されるに伴い、ゲート抵抗が増えるのを抑え、回路の高速動作を図り得るサリサイド型MOSFET及びその製造方法を提供する。

【構成】 サリサイド型MOSFETにおいて、ゲート電極24の両側面の少なくとも一部及び該ゲート電極24のサイドウォール28の下方の少なくとも一部に高融点金属シリサイド31を形成する。

1

【特許請求の範囲】

【請求項1】 ゲート電極の両側面の少なくとも一部に 形成される高融点金属シリサイドを具備することを特徴 とするサリサイド型MOSFET。

【請求項2】 前記ゲート電極のサイドウォール絶縁膜 の下方の少なくとも一部に形成される高融点金属シリサ イドを具備することを特徴とする請求項1記載のサリサ イド型MOSFET。

【請求項3】(a)ゲート電極形成後、全面に酸化膜を 堆積する工程と、

- (b) 全面に窒化膜を堆積し、異方性エッチングにより 窒化膜サイドウォールを形成する工程と、
- (c) 前記酸化膜を前記ゲート電極の両側面が一部露出 し、窒化膜サイドウォール下のシリコン基板が一部露出 するようにエッチングする工程と、
- (d) 全面に高融点金属を堆積する工程と、
- (e) シリサイド化反応を行い、未反応高融点金属を除 去する工程とを施すことを特徴とするサリサイド型MO SFETの製造方法。

【請求項4】 (a) ゲート電極形成後、全面に絶縁膜を 20 堆積する工程と、

- (b) 異方性エッチングによりゲート電極両側面の一部 分が露出するまでエッチングを行う工程と、
- (c)全面に高融点金属を堆積する工程と、
- (d) シリサイド化反応を行い、未反応高融点金属を除 去する工程とを施すことを特徴とするサリサイド型MO SFETの製造方法。

【発明の詳細な説明】

[0001]

ETの構造及びその製造方法に関するものである。

[0002]

【従来の技術】MOSFET (Metal Oxide Semiconductor Field Effe ct Transistor) が縮小化されるにしたが い、そのゲート長が短くなり、また、短チャネル効果を 抑制するため、ソース・ドレイン領域の接合深さXf は、浅くせざるを得ない。ゲート長が短くなり、MOS FETのオン抵抗は下がり、一方でXjが浅くなるた め、ソース・ドレインのシート抵抗は増大する。

【0003】したがって、ゲート長がサブミクロン領域 のMOSFETでは、ソース・ドレインのシート抵抗 が、MOSFETのオン抵抗に対して無視し得なくな り、MOSFETの駆動力がソース・ドレイン領域の寄 生抵抗により低下する問題が顕著となる。このような問 題に対して、ソース・ドレイン及びゲートをセルフ・ア ライメントにシリサイド化し、シート抵抗を下げるサリ サイド・プロセスがある。

【0004】図2に、従来より使われてきたサリサイド

示す。

(1) まず、図2 (a) に示すように、通常製造工程に したがって、半導体基板 1 上にフィールド酸化膜 2 を形 成後、ゲート電極3、サイドウォール4、ソース・ドレ イン層5を形成する。

【0005】(2)次に、図2(b)に示すように、全 面にTi膜6を堆積する。

(3) 次に、図2 (c) に示すように、700℃で10 秒程度のアニールにより、ソース・ドレイン及びゲート 10 のシリコン層とTi膜6が接しているところで、シリサ イド7化を起こさせる。その後、フィールド酸化膜2 上、サイドウォール 4 上の未反応Tiを選択エッチング により除去する。その後、900℃で10秒程度のシリ サイド低抵抗化アニールを行なう。

【0006】(4)その後、通常プロセスにしたがっ て、図2(d)に示すように、中間膜8を堆積し、コン タクトホール9を開口し、配線層10を形成し、最後に 保護膜11を形成する。

[0007]

【発明が解決しようとする課題】しかしながら、以上述 べた従来のサリサイド型MOSFETにおいても、今後 ゲート長がさらに短くなるにしたがい、以下の問題があ る。まず、ゲート長が0. 3μ m, 0. 2μ m, 0. 1 μ mと短くなるにしたがい、シリサイド化されたゲート においても、そのゲートの抵抗が回路の高速動作を阻害 するようになる。すなわち、ゲート長 O. 2 μ m, ゲー ト幅 $20 \mu m$,通常シリサイドのシート抵抗を $5 \Omega /\Box$ とすると、20μm幅のゲートのみで500Ωの抵抗と なり、 0. 2 μ m時代のMOSFETのオン抵抗(2 0 【産業上の利用分野】本発明は、サリサイド型MOSF 30 μ m幅, 0.6 mA $/\mu$ mとすると170 Ω)より十分 大きくなり、回路の高速動作の劣化要因となる。

【0008】また、サイドウォール下のサリサイド化さ れていないソース・ドレイン領域のシート抵抗が無視し 得なくなり、これがサリサイド型MOSFETであって も、電流駆動力を下げる原因となる。本発明は、以上述 べたゲート寸法が縮小化されるに伴うゲート抵抗の増大 をなくし、回路の高速動作を図り得るサリサイド型MO SFET及びその製造方法を提供することを目的とす る。

40 [0009]

【課題を解決するための手段】本発明は、上記目的を達 成するために、

(A) サリサイド型MOSFETにおいて、ゲート電極 の両側面の少なくとも一部に形成される高融点金属シリ サイドを設けるようにしたものである。また、更に、前 記ゲート電極のサイドウォール絶縁膜の下方の少なくと も一部に形成される高融点金属シリサイドを設けるよう にしたものである。

【0010】(B) また、サリサイド型MOSFETの 型MOSFET・プロセスをチタン・サリサイドを例に 50 製造方法において、ゲート電極形成後、全面に酸化膜を

堆積する工程と、全面に窒化膜を堆積し、異方性エッチ ングにより窒化膜サイドウォールを形成する工程と、前 記酸化膜を前記ゲート電極の両側面が一部露出し、窒化 膜サイドウォール下のシリコン基板が一部露出するよう にエッチングする工程と、全面に高融点金属を堆積する 工程と、シリサイド化反応を行い、未反応高融点金属を 除去する工程とを施すようにしたものである。

【0011】(C) 更に、サリサイド型MOSFETの 製造方法において、ゲート電極形成後、全面に絶縁膜を **堆積する工程と、異方性エッチングによりゲート電極両 10** 側面の一部分が露出するまでエッチングを行う工程と、 全面に高融点金属を堆積する工程と、シリサイド化反応 を行い、未反応高融点金属を除去する工程とを施すよう にしたものである。

[0012]

【作用】本発明によれば、上記したように、高集積化に 伴いゲート寸法が縮小化される場合でも、ゲート電極の 少なくとも両側面の一部がシリサイド化されるため、ゲ 一ト電極の低抵抗化を図ることができる。また、サイド ウォールを一部除去して、ソース・ドレイン上のシリサ イド化をゲート近傍まで近づけるようにしたので、サイ ドウォール下の寄生抵抗を低減することができる。

【0013】しかも、上記(B)において、窒化膜下 は、スパッタリング時の回り込みにより、高融点金属を 堆積するようにしているため、奥に行くほど、つまりゲ 一ト電極側に行くほど、高融点金属は薄くなり、ソース ・ドレインの接合深さ、及び不純物濃度もゲート電極側 に近づくほど浅くなるため、接合リーク電流を低減でき る。

【0014】また、上記(B)において、窒化膜サイド ウォールとゲート電極の間、及び窒化膜サイドウォール とシリコン基板の間を1000A程度エッチングする間 に、ゲート電極表面、ソース・ドレインとなるシリコン 基板表面の酸化膜を確実にエッチング除去できるため、 安定したシリサイド形成が可能となる。

[0015]

【実施例】以下、本発明の実施例について図を参照しな がら詳細に説明する。図1は本発明の第1の実施例を示 すサリサイド型MOSFETの製造工程断面図である。 ここでは、NチャネルMOSFETの例で示す。

(1) まず、図1 (a) に示すように、P型シリコン基 板21上にフィールド酸化膜22(約4000A)を通 常のLOCOS法で形成する。その後、ゲート酸化膜2 3 (約100Å) を形成し、更に、LPCVDにより、 ゲート電極となる多結晶シリコン膜24を約3000A 堆積する。通常のホトリソエッチングにより、ゲート電 極のパターン形成を行なう。25はLDD層である。

【0016】(2)次に、図1(b)に示すように、全 面にLPCVDにより、酸化膜26を300Å~700

げる等により粗な膜として、後の工程(4) (図1 (d) 参照] における酸化膜ウェットエッチング時にフ ィールド酸化膜22より十分速くエッチングが進む膜質 とする。その後、プラズマCVDにより、1500A程 度の窒化膜27を堆積する。この場合、膜質としては、 RFパワーを下げる等により、低ストレスな膜質とし、 シリコン中に欠陥が入るのを防止する必要がある。

【0017】(3)次に、図1(c)に示すように、異 方性エッチングにより、窒化膜27をエッチングし、1 500A程度の幅を持つサイドウォール28を形成す る。その後、サイドウォール28をマスクにしてシリコ ン中へソース・ドレイン形成用不純物注入を行い、ソー ス・ドレイン層29を形成する。

(4) 次に、図1 (d) に示すように、フッ酸系のエッ チャントにより、前記工程(2)〔図1(b)参照〕で 堆積した酸化膜26をエッチング除去し、さらに窒化膜 サイドウォール28の下、及びゲート電極を構成する多 結晶シリコン膜24と挟まれた部分の酸化膜をも100 O A程度エッチング除去する。引き続き、Ti等の高融 点金属膜30を全面にスパッタリングにより、300~ 400A程度堆積する。この場合、例えば、ECR共鳴 周波数の高い875MHz×2倍等のスパッタリングに より、ゲート両側面及び窒化膜サイドウォール28下に も十分高融点金属膜30が堆積されるようにする。

【0018】 (5) 次に、図1 (e) に示すように、ア ニールにより、高融点金属膜30、P型シリコン基板2 1 及び多結晶シリコン膜 2 4 の接触した部分でシリサイ ド化を起こさせ、高融点金属シリサイド31とする。更 に、酸化膜26上及び窒化膜27上の未反応高融点金属 をエッチングにより選択的に除去する。その後、高融点 金属シリサイド31の低抵抗化アニールを行なう。

【0019】 (6) 次に、図1 (f) に示すように、通 常の方法に従い、中間膜32を堆積し、配線とのコンタ クトホール33を開け、そこに配線層34をパターニン グする。図3は本発明の第2の実施例を示すサリサイド 型MOSFETの製造工程断面図である。

【0020】(1)まず、図3(a)に示すように、図 1 (a) と同様、ゲートパターニングまで完了する。 つ まり、P型シリコン基板41上にフィールド酸化膜42 40 (約4000Å) を通常のLOCOS法で形成する。そ の後、ゲート酸化膜43(約100Å)を形成し、更 に、LPCVDにより、ゲート電極となる多結晶シリコ ン膜44を約3000A堆積する。通常のホトリソエッ チングにより、ゲート電極のバターン形成を行なう。 4 5はLDD層である、

【0021】(2)次に、図3(b)に示すように、全 面にLPCVDにより、酸化膜46を1000A程度堆 積する。この場合、成膜条件として、温度を下げる等に より粗な膜として、後の工程(3) [図1(c)参照] Å程度堆積する。この場合、成膜条件として、温度を下-50---における酸化膜異方性エッチング時にフィールド酸化膜

42より十分速くエッチングが進む膜質とする。

(3)次いで、図3(c)に示すように、異方性エッチ ングによりその酸化膜46をエッチングし、さらにゲー トの両側面に酸化膜47が1000Å程度出るまでエッ チングを進める。

【0022】(4)次いで、図3(d)に示すように、 全面に高融点金属48を堆積する。この場合、第1の実 施例と同様、ゲートの両側面に十分高融点金属48が堆 積するスパッタリング技術を使用する。

様に、シリサイド化反応、未反応高融点金属除去、低抵 抗化アニールを行なう。すなわち、このアニールによ り、高融点金属膜48、P型シリコン基板41及びゲー ト電極である多結晶シリコン膜44と接触した部分でシ リサイド化を起こさせ、高融点金属シリサイド49とす る。

【0023】以下は、図1 (f) の工程に従う。なお、 前記高融点金属の堆積は、共鳴周波数(高い周波数を用 いる)、ECRスパッタリング技術などのステップカバ レージの良いスパッタリング技術で行なうことが望まし 20 い。また、本発明は上記実施例に限定されるものではな く、本発明の趣旨に基づいて種々の変形が可能であり、 これらを本発明の範囲から排除するものではない。

[0024]

【発明の効果】以上、詳細に説明したように、本発明に よれば、高集積化に伴いゲート寸法が縮小化される場合 でも、ゲート電極両側面の少なくとも一部がシリサイド 化されるため、ゲート電極の低抵抗化を図ることができ る。更に、窒化膜サイドウォール下も一部シリサイド化 することができ、サイドウォール下の寄生抵抗を低減す 30 ることができる。しかも、窒化膜サイドウォール下は、 スパッタリング時の回り込みにより、高融点金属を堆積 しているため、奥に行くほど、つまりゲート電極側に近 づくほど、高融点金属は薄くなり、ソース・ドレインの

接合深さ、及び不純物濃度もゲート電極側に近づくほど 浅くなるため、接合リーク電流を低減できる。

【0025】また、窒化膜サイドウォールとゲート電極 の間、及び窒化膜サイドウォールとシリコン基板の間を 1000A程度エッチングする間に、ゲート電極表面。 ソース・ドレインとなるシリコン基板表面の酸化膜を確 実にエッチング除去できるため、安定したシリサイド形 成が可能となる。更に、第3図における製造方法におい ては、簡単な工程でもって、ゲート電極両側面の少なく (5) 次に、図3 (e) に示すように、図1 (e) と同 10 とも一部がシリサイド化されるため、ゲート電極の低抵 抗化を図ることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施例を示すサリサイド型MO SFETの製造工程断面図である。

【図2】従来のサリサイド型MOSFETの製造工程断 面図である。

【図3】本発明の第2の実施例を示すサリサイド型MO SFETの製造工程断面図である。

【符号の説明】

- 21, 41 P型シリコン基板
 - 22, 42 フィールド酸化膜
 - 23, 43 ゲート酸化膜
 - 24, 44 多結晶シリコン膜 (ゲート電極)
 - 25, 45 LDD層
 - 26, 46, 47 酸化膜
 - 2 7 窒化膜
 - 28 サイドウォール
 - ソース・ドレイン層 29
 - 高融点金属膜 30, 48
- 31, 49 高融点金属シリサイド
 - 中間膜 3 2
 - コンタクトホール 3 3
 - 3 4 配線層

[図3]

