

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

Electric Circuits & Electrical Safety

Question Paper

Course	CIE IGCSE Physics								
Section	4. Electricity & Magnetism								
Topic	Electric Circuits & Electrical Safety								
Difficulty	Medium								

Time Allowed 40

Score /29

Percentage /100

Question 1

A student investigates a wind turbine, which is an electrical generator driven by a propeller blade.

Plan an experiment which will enable him to investigate how the current in a resistor connected across the terminals of the turbine varies with the speed of the air flow through the turbine.

The apparatus available includes:

- a model wind turbine as shown in Fig. 4.1
- an electric fan to provide the moving air to turn the turbine
- a device for measuring air speed.

In your plan, you should:

- list any additional apparatus needed
- complete the wind turbine circuit diagram on Fig. 4.1
- state the key variables to be kept constant
- explain briefly how to carry out the experiment, including how the speed of the air flow is to be changed
- explain how to use the readings to reach a conclusion.

Fig. 4.1

[7 marks]

Question 2a

A student determines the resistances of some filament lamps.

Fig. 2.1 shows the first circuit she uses.

Fig. 2.1

(i) Record the potential difference $\,V_1^{}$ across the lamp $\rm L_1^{}$, as shown on the voltmeter in Fig. 2.2.

Fig. 2.3

$$\boldsymbol{V}_{1}$$
 = \vee [1]

(ii) Record the current $I_{\rm 1}$ in the circuit, as shown in Fig. 2.3.

$$I_1$$
 = A [1]

- (iii) Calculate the resistance R_1 of the filament of lamp L1. Use the equation $R_1 = \frac{V_1}{I_1}$. Include the unit.
 - R_1 =[2]

Question 2b

The student disconnects the voltmeter. She connects lamp L_2 in series with lamp L_1 . She connects the voltmeter across lamp L_2 .

She measures the current I_2 in the circuit and the potential difference V_2 across lamp L2.

$$I_2 = 0.30 A$$

 $V_2 = 1.7 V$

Calculate the resistance R_2 of the filament of lamp L₂. Use the equation $R_2 = \frac{V_2}{I_2}$.

The student disconnects the voltmeter. She connects lamp L_3 in series with lamps L_1 and L_2 . She connects the voltmeter across lamp L_3 .

She measures the current I_3 in the circuit and the potential difference V_3 across lamp L $_3$.

$$I_2 = 0.26 A$$

 $V_2 = 1.2 V$

Calculate the resistance R_3 of the filament of lamp L₃. Use the equation $R_3 = \frac{V_3}{I_3}$.

$$R_3 = \dots$$
 [1 mark]

Question 2c

Calculate $R_1 + R_2 + R_3$. Give your answer to a suitable number of significant figures for this experiment.

 $R_1 + R_2 + R_3 = \dots$

[1 mark]

Question 2d

Some students make suggestions about the results of the experiment.

Suggestion A: $R_1 + R_2 + R_3$ should be equal to $3 \times R_1$

Suggestion **B**: $R_1 + R_2 + R_3$ should be less than $3 \times R_1$

Suggestion C: $R_1 + R_2 + R_3$ should be greater than $3 \times R_1$

State which suggestion A, B or C agrees with your results. Justify your answer by reference to your results.

[2 marks]

Question 2e

Draw a circuit diagram to show the circuit used in part (b) with all three lamps connected in series.

[3 marks]

Question 3a

A student is investigating a circuit containing different lamps. She is using the circuit shown in Fig. 3.1.

Fig. 3.1

On Fig. 3.1, draw a voltmeter connected so that it measures the potential difference (p.d.) across lamp \mathbf{X} .

[1 mark]

Question 3b

The student uses the ammeter to measure the current in the circuit.

Fig. 3.2

Record the current I_S in the circuit, as shown in Fig. 3.2.

/_S =[1 mark]

Question 3c

(i) The student uses the voltmeter to measure the p.d. V_X across lamp \mathbf{X} and then reconnects the voltmeter to measure the p.d. V_Y across lamp \mathbf{Y} .

Fig. 3.3

Fig. 3.4

Record the value of the p.d. V_X across lamp \boldsymbol{X} , shown in Fig. 3.3.

V_X =

Record the value of the p.d. V_Y across lamp Y, shown in Fig. 3.4.

V_Y =[1]

(ii) She then measures the p.d. $V_{\rm S}$ across both lamps in series.

Fig. 3.5

Record the value of the p.d. $V_{\rm S}$ across both lamps in series, shown in Fig. 3.5.

V_S =[1]

(iii) A student suggests that V_S should be equal to $(V_X + V_Y)$. State whether the readings support this suggestion. Justify your statement with reference to the results.

[2]

[4 marks]

Question 3d

Calculate the resistance R_1 of lamp \mathbf{X} . Use the readings from (b) and (c)(i) and the equation

$$R_1 = \frac{V_X}{I_S}.$$

R_1	=																																		. (ς.	
-------	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-----	----	--

.

[1 mark]

Question 3e

Extended tier only

- (i) The circuit components are to be rearranged so that
 - lamps X and Y are connected in parallel
 - the ammeter measures the current in lamp **X** only
 - the voltmeter measures the p.d. across the lamps.

Draw a circuit diagram of this arrangement.

(ii) The student sets up the circuit as described in **(e)(i)**.

She measures and records the current in lamp \boldsymbol{X} and the p.d. across the lamps.

She then calculates a new resistance R_2 for lamp \boldsymbol{X} in this parallel circuit.

$$R_2 = 8.3 \,\Omega$$

The student notices that lamp X is very bright in this parallel circuit, but it was dim in the series circuit in (a).

Suggest how temperature affects the resistance of a lamp.

Justify your suggestion by reference to the value of R_1 from (d) and the value of R_2 .

[2]

[2]

[4 marks]