Context

Setup Consider data $\mathcal{X} \subseteq \mathbb{R}^d$, labels $\mathcal{Y} \subseteq \mathbb{R}$ and a classifier $f: \mathcal{X} \mapsto \mathcal{Y}$. We approximate f by \hat{f} using n labelled data $(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_n, y_n) \in \mathcal{X}_0 \times \mathcal{Y}, \ \mathcal{X}_0 \subset \mathcal{X}$.

Bias-variance tradeoff For $y = f(\boldsymbol{x}) + \epsilon$, $\epsilon \sim \mathrm{N}(0, \sigma^2)$, $\mathrm{E}([y - \hat{f}(\boldsymbol{x})]^2) = [\mathrm{Bias}(\hat{f}(\boldsymbol{x}))]^2 + \mathrm{var}(\hat{f}(\boldsymbol{x})) + \sigma^2,$ $\mathrm{Bias}(\hat{f}(\boldsymbol{x})) = \mathrm{E}(\hat{f}(\boldsymbol{x})) - f(\boldsymbol{x}),$ $\mathrm{var}(\hat{f}(\boldsymbol{x})) = \mathrm{E}([\hat{f}(\boldsymbol{x}) - \mathrm{E}(\hat{f}(\boldsymbol{x}))]^2).$

1 Naive Bayes $\mathcal{Y} = \{0, 1\}$

$$\hat{f}(\boldsymbol{x}) = \arg\max_{y \in \mathcal{Y}} \left(P(Y = y) \prod_{j=1}^{d} P(X_j = x_j | Y = y) \right)$$

Training $\mathcal{O}(nd)$

- Compute the class prior P(Y = y) from \mathcal{X}_0 .
- Choose a model for each $P(X_i = x_i | Y = y)$.
- Use the closed-form for the MLE to find the parameters for each $P(X_j = x_j | Y = y)$.

Classifying $\mathcal{O}(d)$ Evaluate $\hat{f}(x)$.

2 k-NNs $\mathcal{Y} = \{0, 1\}$

$$\hat{f}(\boldsymbol{x}) = \text{label}\left(\arg\min_{1 \leq i \leq n} d_{\boldsymbol{W}}(\boldsymbol{x}, \boldsymbol{x}_i)\right) \quad (k = 1)$$

Training $\mathcal{O}(nd^2s + n\log(n)d)$

- Find distance $d_{\mathbf{W}}(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \mathbf{x}_j)^T \mathbf{W} (\mathbf{x}_i \mathbf{x}_j)$, with s steps of BFGS, that best separates the data.
- Choose k. Find medians to produce k-d trees.

Classifying $\mathcal{O}(\log(n)d)$ Evaluate $\hat{f}(x)$.

3 Perceptron $\mathcal{Y} = \{-1, 1\}$

$$\hat{f}(\boldsymbol{x}) = \operatorname{sign}\left(\boldsymbol{w}^T \boldsymbol{x} + w_0\right)$$

Training $\mathcal{O}(ndP)$, with $P = \max_{1 \le i \le n} \|\boldsymbol{x}_i\|^2 / \gamma^2$ (margin γ)

- Initialize $\mathbf{w} = \mathbf{0}$ and $w_0 = 0$.
- For k = 1, 2, ...,
 - if there is $x_i \in \mathcal{X}_0$ such that

$$\operatorname{sign}\left(\boldsymbol{w}^T\boldsymbol{x}_i + w_0\right) \neq y_i,$$

set $\mathbf{w} = \mathbf{w} + y_i \mathbf{x}_i$ and $w_0 = w_0 + y_i$.

Classifying $\mathcal{O}(d)$ Evaluate $\hat{f}(\boldsymbol{x})$.

4 Kernel perceptron $\mathcal{Y} = \{-1, 1\}$

$$\hat{f}(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i K(\boldsymbol{x}_i, \boldsymbol{x})\right)$$

Training $\mathcal{O}(ndP)$, with $P = \max_{1 \le i \le n} \|\boldsymbol{x}_i\|^2/\gamma^2$ (margin γ)

- Choose K. (Perceptron is $K(\boldsymbol{x}, \boldsymbol{y}) = (1 + \boldsymbol{x}^T \boldsymbol{y})$.)
- Initialize $\alpha = 0$.
- For $k = 1, 2, \dots$,
 - set $\alpha_i = \alpha_i + 1$ if there is $\boldsymbol{x}_i \in \mathcal{X}_0$ such that

$$\operatorname{sign}\left(\sum_{j=1}^n \alpha_j y_j K(\boldsymbol{x}_j, \boldsymbol{x}_i)\right) \neq y_i.$$

Classifying $\mathcal{O}(nd)$ Evaluate $\hat{f}(\boldsymbol{x})$.

5 SVMs $\mathcal{Y} = \{-1, 1\}$

$$\hat{f}(\boldsymbol{x}) = \operatorname{sign}\left(\boldsymbol{w}^T \boldsymbol{x} + w_0\right)$$

Training Minimize, with s steps of PGD,

$$J(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|^2,$$

such that $y_i(\boldsymbol{w}^T\boldsymbol{x}_i + w_0) \geq 1, 1 \leq i \leq n$.

Classifying $\mathcal{O}(d)$ Evaluate $\hat{f}(x)$.

6 Kernel SVMs $\mathcal{Y} = \{-1, 1\}$

$$\hat{f}(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i K(\boldsymbol{x}_i, \boldsymbol{x}) + w_0\right)$$

Training

- Choose K. (SVMs is $K(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}^T \boldsymbol{y}$.)
- Maximize, with s steps of SQP,

$$J(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(\boldsymbol{x}_j, \boldsymbol{x}_i),$$

such that
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 and $\alpha_i \geq 0, 1 \leq i \leq n$.

• For
$$i$$
 with $\alpha_i \neq 0$, $w_0 = y_i - \sum_{i=1}^n \alpha_j y_j K(\boldsymbol{x}_j, \boldsymbol{x}_i)$.

Classifying $\mathcal{O}(nd)$ Evaluate $\hat{f}(x)$.

7 Logistic regression $\mathcal{Y} = [0, 1]$

$$\hat{f}(\boldsymbol{x}) = \frac{1}{1 + e^{-(\boldsymbol{w}^T \boldsymbol{x} + w_0)}}$$

Training $\mathcal{O}(nd^3s)$ Minimize the likelihood with s steps of Newton's method.

Classifying $\mathcal{O}(d)$ Evaluate $\hat{f}(\boldsymbol{x})$.

8 Neural networks $\mathcal{Y} = [0, 1]$

$$\hat{f}(\boldsymbol{x}) = \sigma \left(\boldsymbol{w}^{(2)T} \sigma \left(\boldsymbol{W}^{(1)T} \boldsymbol{x} + \boldsymbol{w}_0^{(1)} \right) + w_0^{(2)} \right) \quad \text{(shallow)}$$

Training $\mathcal{O}(ndNs)$ Minimize, with s steps of GD,

$$J(\boldsymbol{w}_0^{(1)}, \boldsymbol{W}^{(1)}, w_0^{(2)}, \boldsymbol{w}^{(2)}) = \frac{1}{n} \sum_{i=1}^n L(\hat{f}(\boldsymbol{x}_i), y_i).$$

Note that $\boldsymbol{w}_0^{(1)}$ is $N \times 1$, $\boldsymbol{W}^{(1)}$ is $d \times N$ and $\boldsymbol{w}^{(2)}$ is $N \times 1$.

Classifying $\mathcal{O}(dN)$ Evaluate $\hat{f}(\boldsymbol{x})$.

9 Decision trees

$$\hat{f}(\boldsymbol{x}) = \text{label}(C(\boldsymbol{x}))$$

Training Find feature and threshold that maximize

$$u(C) - (p_L u(C_L) + p_R u(C_R), \ u(C) = -\sum_{y \in \mathcal{Y}} p_y \log p_y.$$

Classifying $\mathcal{O}(\log(n)d)$ Evaluate $\hat{f}(\boldsymbol{x})$.

10 Random forests

$$\hat{f}(\boldsymbol{x}) = \frac{1}{T} \sum_{t=1}^{T} \text{label}(C_t(\boldsymbol{x}))$$

Training Sample T times, with replacement, m < n training examples from \mathcal{X}_0 to construct T decision trees.

Classifying $\mathcal{O}(\log(n)dT)$ Evaluate $\hat{f}(x)$.

H. Montanelli

2