Examen final - Été 2017 MAT1720 - Probabilités

NOM:
CODE PERMANENT :
-
Instructions:
— Vous avez 3 heures pour compléter l'examen.
 Expliquez de manière détaillée votre raisonnement (excepté pour les Vrai ou Faux).
— La calculatrice est permise.
— Réduisez vos réponses le plus possible.
— Bon examen!

Pondération : 45% de la note finale. L'examen est corrigé sur 60 points.

Date : 3 août 2017

Chargé de cours : Frédéric Ouimet

Formule de variance conditionnelle

$$Var(S) = E[Var(S \mid N)] + Var(E[S \mid N]).$$

Lois de probabilités importantes

Poisson

 $-X \sim \text{Pois}(\lambda), \quad \lambda > 0.$

 $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k \in \mathbb{N}_0.$

 $-E[X] = \lambda \text{ et } Var(X) = \lambda.$

Uniforme

 $-X \sim \text{Unif}(a, b), \quad -\infty < a < b < \infty.$

 $f_X(x) = \frac{1}{b-a}, \quad x \in [a, b].$

 $-F_X(x) = \frac{x-a}{b-a}, \quad x \in [a, b].$

- $E[X] = \frac{a+b}{2}$ et $Var(X) = \frac{(b-a)^2}{12}$.

Exponentielle

 $-X \sim \text{Exp}(\lambda), \quad \lambda > 0.$

 $f_X(x) = \lambda e^{-\lambda x}, \quad x > 0.$

 $-F_X(x) = 1 - e^{-\lambda x}, \quad x > 0.$

 $-E[X] = \frac{1}{\lambda}$ et $Var(X) = \frac{1}{\lambda^2}$.

Gamma

 $-X \sim \text{Gamma}(\alpha, \lambda), \quad \alpha, \lambda > 0$

 $f_X(x) = \frac{(\lambda x)^{\alpha - 1} \lambda e^{-\lambda x}}{\Gamma(\alpha)}, \quad x > 0, \quad \text{où } \Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt.$

- Notez que la fonction Γ satisfait $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$ pour tout $\alpha > 1$. En particulier, $\Gamma(n) = (n-1)!$ pour tout $n \in \mathbb{N}$. On a aussi $\Gamma(1/2) = \sqrt{\pi}$.
- $-E[X] = \frac{\alpha}{\lambda} \text{ et } Var(X) = \frac{\alpha}{\lambda^2}.$

Normale

 $-X \sim \mathcal{N}(\mu, \sigma^2), \quad \mu \in \mathbb{R}, \ \sigma > 0.$

 $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad x \in \mathbb{R}.$

 $-E[X] = \mu \text{ et } Var(X) = \sigma^2.$

Problème 1 (15 points)

Vrai ou Faux (Aucune justification n'est nécessaire)

ATTENTION:

- Bonne réponse = +1 point;
- Aucune réponse = 0 point;
- Mauvaise réponse = -0.5 points.
- 1. Soit X une v.a. telle que P(X=0)=1, alors $F_X(\cdot)$ est constante.
- 2. Soit X une v.a. avec densité $f_X : \mathbb{R} \to \mathbb{R}$. Si on admet que $\lim_{|x| \to \infty} f_X(|x|)$ existe, alors nous avons $\lim_{|x| \to \infty} f_X(|x|) = 0$.
- 3. Si $Z \sim \mathcal{N}(0,1)$, alors $X = e^Z$ a pour densité $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\log x)^2}{2}\right)$, x > 0.
- 4. La fonction caractéristique d'une v.a. existe toujours.
- 5. Soit X une v.a. avec variance nulle, alors on peut avoir $P(X \neq E[X]) > 0$.
- 6. Soit $X \sim \mathcal{N}(2,4)$, alors $P(1 \le X \le 3) = 2F_Z(0.25) 1$ où $F_Z(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$.
- 7. Soit X une v.a. avec fonction de répartition $F_X(\cdot)$ inversible. Alors, $U(\omega) \stackrel{\circ}{=} F_X(X(\omega))$ est de loi uniforme sur (0,1).
- 8. Nous considérons une v.a. X avec fonction de répartition

$$F_X(x) = \begin{cases} 0, & \text{si } x < 0, \\ \frac{x}{2}, & \text{si } 0 \le x < 1/2, \\ \frac{x}{x+1}, & \text{si } x \ge 1/2. \end{cases}$$

Nous avons $P(1/2 \le X \le 1) = 1/6$.

9. Soit $X_1, X_2, \ldots, X_n, \ldots$ des v.a. i.i.d. de loi Poisson(1) et $Y_1, Y_2, \ldots, Y_n, \ldots$ des v.a. i.i.d. de loi Normale(0, 1). Alors, par la loi faible des grands nombres,

$$P\left(0 \le \frac{1}{n} \sum_{i=1}^{n} (X_i + Y_i) \le 2\right) \to 1 \quad \text{lorsque } n \to \infty.$$

10. À un examen final de probabilité, un étudiant doit répondre à 15 questions Vrai ou Faux valant 1 point chacun. Le pointage attribué à chaque question est le même que dans le présent examen. L'étudiant étant désespéré, <u>il répond à toutes les questions</u> au hasard (Vrai ou Faux avec probabilité 1/2 respectivement). Sa note est donnée par la v.a. X/15. L'espérance de X est 7.5.

- 11. Soit X et Y deux v.a. discrètes, alors $E[X \mid \{Y=y\}]$ est une variable aléatoire pour tout $y \in \mathbb{R}$ tel que P(Y=y) > 0.
- 12. Soit (X, Y) un vecteur gaussien. Si Cov(X, Y) = 0, alors les v.a. X et Y sont indépendantes.
- 13. Soit X une v.a. continue, alors la densité $f_X(\cdot)$ satisfait $\max_{x \in \mathbb{R}} f_X(x) \leq 1$.
- 14. Soit $N \sim \text{Pois}(\lambda)$ et soit X_1, X_2, X_3, \ldots une suite i.i.d. de v.a. telles que $E[X_i^2] < \infty$. On suppose aussi que N et les X_i sont indépendants. Alors,

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_i\right) = \lambda \cdot \operatorname{Var}(X_1).$$

15. Soit $X, Y \sim \text{Pois}(\lambda)$. On a toujours $\text{Cov}(X, Y) \leq \lambda$.

Problème 1 (15 points)

Noircissez vos réponses

1.	V	F	
2.	V	\mathbf{F}	
3.	V	\mathbf{F}	
4.	V	F	
5.	V	F	
6.	V	F	
	V	F	
	V	F	
9.		F	
10.	V	F	
11.	V	F	
12.	V	F	
13.	V	F	
14.	V	F	
15.	V	\mathbf{F}	

Problème 2 (10 points)

Un point X est choisi au hasard sur l'intervalle (0,1) avec la densité suivante

$$f_X(x) = \begin{cases} c(1-x^2), & x \in (0,1), \\ 0, & \text{sinon.} \end{cases}$$

- (a) (2 points) Trouvez c.
- (b) (2 points) Montrez que $E[X^2] = 1/5$.
- (c) (2 points) Trouvez la fonction de répartition $F_X(x)$ pour $x \in (0,1)$.
- (d) (2 points) Soit $Y \stackrel{\circ}{=} X^3$. Trouvez une expression pour la fonction de répartition de Y.
- (e) ($\mathbf{2}$ points) Trouvez la densité de Y.

Problème 3 (15 points)

Soit la densité conjointe

$$f_{X,Y}(x,y) = \begin{cases} xe^{-x(y+1)}, & \text{si } x > 0, y > 0, \\ 0, & \text{sinon.} \end{cases}$$

- (a) (4 **points**) Trouvez la densité marginale de X et la densité marginale de Y. Est-ce que X et Y sont indépendantes?
- (b) (3 points) Considérons $Z \stackrel{\circ}{=} XY$. Montrez que $Z \sim \text{Exp}(1)$. Indice: Il y a plusieurs façons de faire, calculez $F_Z(z)$ ou $f_Z(z)$ pour z > 0.
- (c) (4 points) Est-ce que Z et X sont des v.a. indépendantes? (Justifiez rigoureusement.)
- (d) (2 points) Soit $W \sim \text{Exp}(\lambda)$. Montrez qu'on a $E[W^k] = \frac{k}{\lambda} E[W^{k-1}]$ pour tout $k \in \mathbb{N}$ et déduisez une formule générale pour $E[W^k]$.
- (e) (2 points) Calculez $E[X^6Y^3]$.

Problème 4 (5 points)

Soit $Z \sim \mathcal{N}(0,1)$ et soit $g: \mathbb{R} \to \mathbb{R}$ une fonction différentiable telle que $\lim_{|t| \to \infty} g(t)e^{-a|t|} = 0$ pour tout a > 0.

- (a) (2 points) Intégrez par parties pour montrer que E[g'(Z)] = E[Zg(Z)].
- (b) (2 points) Justifiez rigoureusement l'égalité $E[Z^n] = (n-1)E[Z^{n-2}]$ pour tout $n \ge 2$.
- (c) (1 points) Trouvez $E[Z^6]$.

(Les problèmes 5,6 et 7 sont à la prochaine page ...)

Problème 5 (7 points)

On considère $N \sim \operatorname{Pois}(\Lambda)$ où Λ est une variable aléatoire. Précisément, nous savons que la loi conditionnelle de N sachant Λ est donnée par

$$P(N = n \mid \{\Lambda = \lambda\}) = \frac{\lambda^n}{n!} e^{-\lambda}, \quad n \in \{0, 1, 2, ...\}.$$

Nous supposons que la loi marginale de Λ est

$$P(\Lambda = 1) = 1/2$$
 et $P(\Lambda = 2) = 1/2$.

- (a) (2 points) Trouvez la loi conjointe de (N, Λ) , c'est-à-dire $P(N = n, \Lambda = \lambda)$ pour tout $n \in \{0, 1, 2, ...\}$ et pour tout $\lambda \in \{1, 2\}$.
- (b) (1 points) Trouvez P(N = n) pour tout $n \in \{0, 1, 2, ...\}$.
- (c) (2 points) Calculez $P(\Lambda = \lambda \mid \{N = 1\})$ pour $\lambda = 1$ et $\lambda = 2$.
- (d) (2 points) En déduire la valeur de $E[\Lambda \mid \{N=1\}]$.

Problème 6 (5 points)

Soit $X_1, X_2, \ldots, X_n, \ldots$ des v.a. i.i.d. de loi $\text{Exp}(\lambda)$ pour un certain $\lambda > 0$. Posons

$$N(\omega) \stackrel{\circ}{=} \max \left\{ n \in \mathbb{N} : \sum_{i=1}^{n} X_i(\omega) \le 1 \right\}.$$

C'est-à-dire que $N(\omega) = n$ si n est le plus grand entier tel que la somme des $X_i(\omega)$, $1 \le i \le n$, ne dépasse pas 1. Notez que pour tout $n \in \mathbb{N}$, on sait que $Y_n \stackrel{\circ}{=} \sum_{i=1}^n X_i \sim \operatorname{Gamma}(n,\lambda)$, et donc que

$$f_{Y_n}(y) = \frac{(\lambda y)^{n-1} \lambda e^{-\lambda y}}{(n-1)!}, \quad y > 0.$$

(a) (1 point) Justifiez (en mots ou mathématiquement) l'égalité

$$P(N = n) = P(Y_n \le 1, X_{n+1} > 1 - Y_n).$$

(b) (4 points) Conditionnez sur les valeurs que peut prendre Y_n afin de trouver la loi de N.

Problème 7 (3 points)

Soit X et Y deux v.a. de variance finie. Le but du problème est de donner une preuve alternative de l'inégalité de Cauchy-Schwarz : $|\operatorname{Cov}(X,Y)| \leq \sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}$.

- (a) (1 point) Développez $p(\lambda) \stackrel{\circ}{=} \text{Cov}(X \lambda Y, X \lambda Y)$ sous la forme $p(\lambda) = a\lambda^2 + b\lambda + c$.
- (b) (2 points) <u>Justifiez</u> une condition que $\Delta \stackrel{\circ}{=} b^2 4ac$ doit satisfaire, et concluez.

Fin de l'examen