

مدیریت کنترل پروژه

جلسه یازدهم... برآورد مدت زمان فعالیت ها، زمانبندی پروژه

نكات مهم

برآورد مدتزمان فعالیت، فرآیند <mark>تخمین تعداد دوره زمانی</mark> لازم برای تکمیل آن و جهت استفاده در <mark>زمانبندی</mark> پروژه میباشد.

- ۱- مدت زمان فعالیت به <mark>روش اجرا</mark> و <mark>منابع در اختیار</mark> آن وابسته است.
- ۲- واحد زمانی فعالیتها بصورت <mark>یکسان و استاندارد</mark> باشد. بطورمثال: روز
- ۳- در تخمین مدت زمان فعالیتها<mark>، روزهای کاری</mark>(Working Days) مورد نظر هستند و نه ایام تقویمی.
 - لازم است که تقویمکاری (روزهای کاری و تعطیل) هر فعالیت مشخص شود.
 - ۴- مدت زمان فعالیتها <mark>بطور مستقل از یکدیگر</mark> بر آورد شوند.
- ۵- در برآورد مدت زمان فعالیتها شرایط معمول درنظر گرفته میشون<mark>د و اتفاقات غیر مترقب</mark>ه مانند سیل و زلزله درصور تیکه غیرقابل پیشبینی هستند <mark>لحاظ نمی گردند</mark>.

۱- از طریق <mark>حجم کاری فعالیت</mark>

۲- نظرات کارشناسی

🔻 ۳- <mark>آرای گروهی</mark>

۴ – استفاده از <mark>سوابق اطلاعاتی</mark>

۵- از طریق <mark>تخمین سهزمانه</mark>

۶- شکستن فعالیت به <mark>اجزای کوچکتر</mark>

روشهای تخمین مدت زمان فعالیت

در این روش ابتدا حجم کاری فعالیت اندازه گیری شده و <mark>براساس منابع در دسترس</mark> و <mark>توانایی کاری منابع</mark>، مدت زمان فعالیت بر آورد میشود.

مثال:

در این روش به یک <mark>فرد متخصص و باتجربه</mark> در زمینه آن فعالیت رجوع میشود.

در صورتی که <mark>تاریخچه پروژههای قبلی</mark> مستند و <mark>تاریخ شروع و پایان فعالیتهای</mark> همانند ثبت شده باشد، می توان از سوابق آنها در تخمین مدت فعالیت استفاده نمود.

سوابق تاريخي

برای هر فعالیت، سه بر آورد مدت زمان (خوشبینانه، محتمل و بدبینانه) ارائه شده و براساس آنها مدت زمان فعالیت پیشبینی می شود.

خوشبینانه O: Optimistic

P: Pessimistic بدبینانه

M: Most likely

Duration=(O+4M+P)/6

می توان فعالیت را به اجزای کوچکتر تقسیم نمود و سپس با یکی از روشهای ذکر شده مدت هریک را تخمین و با سرجمع کردن آنها مدت زمان فعالیت اصلی را بر آورد نمود.

بیشترین کاربرد این روش در مواقعی است که <mark>WBS در سطوح بالا متوقف شده</mark> و بصورت کلان به برنامهریزی نگاه میشود.

زمان بندی پروژه ها

تهیه زمانبندی پروژه، <mark>فرآیند تعیین زمانهای شروع و پایان فعالیتهای پروژه</mark> است.

اهداف زمانی پروژه ساختار شکست کار WBS روابط پیشنیازی وروديهاي لازم جهت زمانبندي پروژه شبکه پروژه برآورد مدت زمان فعاليتها تقویم کاری پروژه

نمادگذاري يك فعاليت در <mark>زمانبندي شبكه گرهي</mark>

زمانبندي در شبکه گرهي

$\overline{ ext{EF}}_{ ext{(Finish)}} =$ زودترین زمان اتمام پروژه

زمانبندي در شبکه گرهي

براي <mark>فعاليت پاياني</mark> داريم : براي <mark>فعاليت پاياني</mark> داريم ا

LS = LF - D

LF= min{LS} for all Succeessor

براي فعاليتهاي غير پاياني داريم:

قواعد محاسبات رفت:

A)
$$ES (start) = 0$$

B) ESi = Max{EFj}
$$j=\{$$
 مجموعه فعالیتهای پیش نیاز فعالیت $j=\{$

حداقل زمانی است که پروژه انجام می شود. <mark>EF(finish)</mark>

$$i$$
 دیرترین زمان شروع فعالیت = LSi (Latest Start) i دیرترین زمان پایان فعالیت = LFi (Latest Finish) i مدت زمان فعالیت = Di (Duration)

قواعد محاسبات برگشت:

- A) LF (finish) = EF(finish)
- B) LFi = Min $\{LS_k\}$ k= $\{i\}$
- C) LSi =LFi-Di

EF(Finish) می تواند عددی غیر از (EF(Finish باشد(طبیعتا" باید عددی بزرگتر از (Finish) LF باشد) در این صورت ما برای اتمام پروژه مهلتی پیش از حداقل زمان پروژه تعیین کرده.

: Total Float (Total slaok) شناوری کل فعالیت

شناوری کل یک فعالیت <mark>مدت زمانی</mark> است که <mark>یک فعالیت</mark> می تواند <mark>نسبت به زودترین زمان شروع، دیرتر شروع شود</mark> بدون آنکه زمانبندی کل پروژه <mark>به تأخیر بیافند.</mark>

$$TF = LSi - ESi$$

<u>OR</u>

TF = LFi - EFi

شناوری آزاد (Free Float)(FF):

مدت زمانی است که یک فعالیت می تواند نسبت به زودترین زمانبندی اش دیرتر تمام شود. بدون آنکه بر زمانبندی فعالیت های بعدی تأثیر بگذارد.

$$FF = Min\{ESj\} - EFi$$

$$\mathbf{j}{=}\{\mathbf{i}$$
 مجموعه فعالیت های پس نیاز j

شناوري كل در شبكه گرهي

TIME ES=6 EF=8 **Activity 7** LS=7 LF=9 TF **Activity 7 Total Float** TF=LF-EF TF=LS-ES or

شناوري کل در شبکه گرهي

شناوري آزاد در شبکه گرهي

همیشه بین شناوریها روابط زیر وجود دارد:

$$SF_{ij} \leq TF_{ij}$$

$$IFi_{ij} \leq FF_{ij} \leq TF_{ij}$$

$$IFi_{ij} \leq SF_{ij} \leq TF_{ij}$$

مقرر شده است که کارخانهای جهت تولید قطعات خودرو ایجاد شود. مطابق بررسی ها انجام شده ابتدا لازم است که طراحی کارخانه (که ۶۰ روز زمان میبرد) انجام شود. پس از اتمام طراحی، دو فعالیت میتوانند شروع شوند فعالیت ساخت کارخانه (طی ۱۸۰ روز) و فعالیت خرید ماشینآلات (طی ۳۰ روز). پس از اتمام فعالیتهای ساخت کارخانه و همچنین خرید ماشینآلات، نصب و راه اندازی ماشین آلات در کارخانه طی ۳۰ روز انجام میشود.

زمانبندی و همچنین شناوری کل و شناوری آزاد فعالیتها را بدست آورید.

