Cifar-10 实验总结

训练展示:

测试代码	网络结构	nb_epoch	loss	acc	val_loss	val_acc	训练时间/s
cifar10_cnn_dl	参考结构	50	0.7723	0.7372	0.6074	0.7926	1552
cifar10_cnn_dl3	增加两个 Dropout(0.25)	50	0.9537	0.6733	0.7407	0.7419	1616
cifar10_cnn_dl4	'same'->'valid'	50	0.8481	0.7127	0.6728	0.7722	1345
cifar10_cnn_dl5	Dropout:0.25->0.5	50	1.0443	0.6389	0.9716	0.6649	1600
cifar10_cnn_dl6	卷积核: 3*3->5*5 最后一个激活函数: 'relu'->' tanh' SGD: lr = 0.01 -> lr = 0.0065	50	0.5928	0.7960	0.5906	0.8037	2387
cifar10_cnn_dl7	卷积核: 3*3->5*5 最后一个激活函数: 'relu'->' tanh' SGD: lr = 0.01 -> lr = 0.0035	50	0.4500	0.8430	0.4769	0.8403	2362
cifar10_cnn_dl8	卷积核: 3*3->5*5 最后一个激活函数: 'relu'->' tanh' SGD: lr = 0.01 -> lr = 0.0035 增加卷积层: 第二部分	50	0.4463	0.8466	0.5207	0.8308	2677
cifar10_cnn_dl9	卷积核: 3*3->5*5 最后一个激活函数: 'relu'->' tanh' SGD: lr = 0.01 -> lr = 0.0035 增加卷积层: 第二部分 增加 nb_epoch: 50->100	100	0.3652	0.8751	0.4865	0.8552	5291

```
model = Sequential()
■model.add(Convolution2D(32, 3, 3, border mode='same',
                         input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add (Dense (512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

cifar10 cnn dl 结果:

```
| Spoch 45/50 | S0000/50000 | | S0000/50000 | S00000 | S0000/50000 | S00
```

增加两个 Dropout(0.25)效果并没有原来的好。

cifar10_cnn_dl3 网络结构:

```
model = Sequential()
model.add(Convolution2D(32, 3, 3, border mode='same',
                         input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border mode='same'))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
# let's train the model using SGD + momentum (how original).
sqd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

far10_cnn_dl3 结果:

```
model = Sequential()
model.add(Convolution2D(32, 3, 3, border mode='same',
                         input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
 model.add(Dropout(0.5))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

cifar10 cnn dl 结果:

参数改为'valid'效果并没有原来的好。

cifar10 cnn dl4 网络结构:

```
model = Sequential()
model.add(Convolution2D(32, 3, 3, border mode='valid',
                         input shape=(img channels, img rows, img cols)))
 model.add(Activation('relu'))
 model.add(Convolution2D(32, 3, 3))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Convolution2D(64, 3, 3, border mode='valid'))
 model.add(Activation('relu'))
 model.add(Convolution2D(64, 3, 3))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
 model.add(Activation('relu'))
 model.add(Dropout(0.5))
 model.add(Dense(nb classes))
 model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sqd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

far10 cnn dl4 结果:

```
model = Sequential()
model.add(Convolution2D(32, 3, 3, border mode='same',
                         input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add (Dense (512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
# let's train the model using SGD + momentum (how original).
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

cifar10_cnn_dl 结果:

参数前两个 Dropout(0.25)改为 Dropout(0.5)效果并没有原来的好。

cifar10 cnn dl5 网络结构:

```
model = Sequential()
model.add(Convolution2D(32, 3, 3, border mode='same',
                         input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.5))
model.add(Convolution2D(64, 3, 3, border mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

ifar10_cnn_dl5 结果:

```
model = Sequential()
model.add(Convolution2D(32, 3, 3, border mode='same',
                         input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border mode='same'))
model.add(Activation('relu'))
 model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
 model.add(Dropout(0.5))
model.add(Dense(nb classes))
 model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

cifar10 cnn dl 结果:

cifar10 cnn dl6 网络结构:

```
model = Sequential()
∃model.add(Convolution2D(32,5, 5, border mode='same',
                         input shape=(img channels, img rows, img cols)))
 model.add(Activation('relu'))
model.add(Convolution2D(32, 5, 5))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Convolution2D(64, 5, 5, border mode='same'))
 model.add(Activation('relu'))
model.add(Convolution2D(64, 5, 5))
model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
 model.add(Activation('tanh'))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sgd = SGD(lr=0.0065, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

ifar10_cnn_dl6 结果:

修改卷积核大小为 5*5,并降低 SGD 的 lr 值为 0.0065,效果比原来的好,但是在 nb_epoch 大于 35 之后出现明显的过拟合,训练成功率也在下降。

```
model = Sequential()
model.add(Convolution2D(32, 3, 3, border mode='same',
                         input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

cifar10 cnn dl 结果:

cifar10 cnn dl7 网络结构:

```
model = Sequential()
model.add(Convolution2D(32,5, 5, border mode='same',
                         input shape=(img channels, img rows, img cols)))
 model.add(Activation('relu'))
 model.add(Convolution2D(32, 5, 5))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Convolution2D(64, 5, 5, border mode='same'))
 model.add(Activation('relu'))
 model.add(Convolution2D(64, 5, 5))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Flatten())
 model.add(Dense(512))
 model.add(Activation('tanh'))
 model.add(Dense(nb classes))
 model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sqd = SGD(lr=0.0035, decay=1e-6, momentum=0.9, nesterov=True)
 model.compile(loss='categorical crossentropy', optimizer=sqd)
```

0_cnn_dl7 结果:

修改卷积核大小为 5*5, 并降低 SGD 的 lr 值为 0.0035, 效果比之前的更好, 且没有出现过拟合现象。

```
model = Sequential()
□model.add(Convolution2D(32, 3, 3, border mode='same',
                         input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border mode='same'))
model.add(Activation('relu'))
 model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesteroy=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

cifar10 cnn dl 实验结果:

```
Epoch 45/50
[S0080/S00800 [:=============] - 31s - loss: 0.7801 - acc: 0.7336 - val_loss: 0.6425 - val_acc: 0.7826
[Epoch 46/50
[Epoch 46/50
[Epoch 47/50
[Epoch 47/50
[Epoch 47/50
[Epoch 47/50
[Epoch 48/50
[Epoch 58/50
[Epoch
```

cifar10 cnn dl8 网络结构:

```
model = Sequential()
model.add(Convolution2D(32,5, 5, border mode='same',
                         input shape=(img_channels, img_rows, img_cols)))
 model.add(Activation('relu'))
 model.add(Convolution2D(32, 5, 5))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Convolution2D(64, 5, 5, border mode='same'))
 model.add(Activation('relu'))
 model.add(Convolution2D(64, 5, 5))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Convolution2D(64, 5, 5, border mode='same'))
 model.add(Activation('relu'))
 model.add(Convolution2D(64, 5, 5, border_mode='same'))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Flatten())
 model.add (Dense (512))
 model.add(Activation('tanh'))
 model.add(Dense(nb classes))
 model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sqd = SGD(1r=0.0035, decay=1e-6, momentum=0.9, nesterov=True)
 model.compile(loss='categorical crossentropy', optimizer=sqd)
```

cifar10_cnn_dl8 实验结果:

修改卷积核大小为5*5,并降低 SGD 的 Ir 值为 0.0035,且增加了第二部分卷基层,效果相对来说是最好的了,而且迭代 50 次后还没出现过拟合,仍具有

上升趋势。

```
model = Seguential()
model.add(Convolution2D(32, 3, 3, border_mode='same',
                         input shape=(img channels, img rows, img cols)))
 model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
 model.add(Dropout(0.5))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

cifar10_cnn_dl 实验结果:

```
| Speck 45/50 | Speck 59/50 |
```

cifar10 cnn dl9 网络结构:

```
model = Seguential()
input shape=(img channels, img rows, img cols)))
 model.add(Activation('relu'))
 model.add(Convolution2D(32, 5, 5))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Convolution2D(64, 5, 5, border mode='same'))
 model.add(Activation('relu'))
 model.add(Convolution2D(64, 5, 5))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Convolution2D(64, 5, 5, border mode='same'))
 model.add(Activation('relu'))
 model.add(Convolution2D(64, 5, 5, border mode='same'))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Flatten())
 model.add(Dense(512))
 model.add(Activation('tanh'))
 model.add(Dense(nb classes))
 model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sgd = SGD(lr=0.0035, decay=1e-6, momentum=0.9, nesterov=True)
 model.compile(loss='categorical crossentropy', optimizer=sgd)
```

cifar10_cnn_dl9 实验结果:

小结:实验发现,在 cifar10_cnn_dl8 的基础上,将 nb_epoch 改为 100,得到了实验最好结果,训练成功率是 87.51%,测试成功率是 85.52%。

测试展示:

测试代码	网络结构	测试数据	loss	acc	测试时间/s
cifar10_cnn_dl	参考结构	Cifar10 TestSet: 10000	0.6074	0.7926	1
cifar10_cnn_dl8	卷积核: 3*3->5*5 最后一个激活函数: 'relu'->' tanh' SGD: lr = 0.01 -> lr = 0.0035 增加卷积层: 第二部分	Cifar10 TestSet: 10000	0.5207	0.8308	2
cifar10_cnn_dl9	卷积核: 3*3->5*5 最后一个激活函数: 'relu'->' tanh' SGD: lr = 0.01 -> lr = 0.0035 增加卷积层: 第二部分 增加 nb_epoch: 50->100	Cifar10 TestSet: 10000	0.4865	0.8552	2

```
model = Sequential()
□model.add(Convolution2D(32, 3, 3, border mode='same',
                         input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border mode='same'))
model.add(Activation('relu'))
 model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesteroy=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

cifar10 cnn dl 测试结果:

cifar10_cnn_dl8 网络结构:

```
model = Sequential()
model.add(Convolution2D(32,5, 5, border mode='same',
                         input shape=(img channels, img rows, img cols)))
 model.add(Activation('relu'))
model.add(Convolution2D(32, 5, 5))
model.add(Activation('relu'))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Convolution2D(64, 5, 5, border mode='same'))
model.add(Activation('relu'))
 model.add(Convolution2D(64, 5, 5))
 model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Convolution2D(64, 5, 5, border mode='same'))
 model.add(Activation('relu'))
model.add(Convolution2D(64, 5, 5, border mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add (Dense (512))
model.add(Activation('tanh'))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sqd = SGD(1r=0.0035, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sqd)
```

cifar10 cnn dl8 测试结果:

小结:实验表明,改进过的结构可以将测试成功率提高4个百分点,效果还是不错的。

```
model = Seguential()
input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
# let's train the model using SGD + momentum (how original).
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

cifar10_cnn_dl 测试结果:

cifar10_cnn_dl9 网络结构:

```
model = Seguential()
input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 5, 5))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 5, 5, border mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 5, 5))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 5, 5, border mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 5, 5, border mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('tanh'))
model.add(Dense(nb classes))
model.add(Activation('softmax'))
 # let's train the model using SGD + momentum (how original).
 sgd = SGD(lr=0.0035, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
```

cifar10_cnn_dl9 测试结果:

小结:实验表明,改进过的结构可以将测试成功率提高6个百分点,效果很明显。

附录:

- 1. 文档中所有源文件都在文件夹 ImageClassifySummary 里,实验结果截图在 resultimage 文件夹下。
- 2. 保存的模型和测试结果均以其对应源代码文件名区别。例如,源代码为 cifar10_cnn_dl.py,训练保存的模型文件为 my_model_architecture_dl.json,模型权重为 my_model_weights_dl.h5,测试代码为 cifar10_cnn_dl_predict.py,测试预测结果为 test_predict_dl.txt,测试分类结果为 test_predict_classes_dl.txt。其他源文件的测试结果文件名与之类似。
- 3. 测试平台参数:

CPU: Inter(R) Core(TM) i7-6700HQ CPU @ 2.60

GPU: GeForce GTX 960M

Cuda: 7.5 CuDNN: 7.0 Python: 2.7.6 Theano: 0.8.1 Keras: 0.3.3