CS4102 Algorithms Fall 2018

Warm up

Show $\log(n!) = \Theta(n \log n)$

Hint: show $n! \leq n^n$

Hint 2: show $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$

$\log n! = O(n \log n)$

```
n! \le n^n

\Rightarrow \log(n!) \le \log(n^n)

\Rightarrow \log(n!) \le n \log n

\Rightarrow \log(n!) = O(n \log n)
```

$$\log n! = \Omega(n \log n)$$

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot \frac{n}{2} \cdot \left(\frac{n}{2} - 1\right) \cdot \dots \cdot 2 \cdot 1$$

$$\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} \cdot \dots \cdot 1 \cdot 1$$

$$n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$$

$$\Rightarrow \log(n!) \ge \log\left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right)$$

$$\Rightarrow \log(n!) \ge \frac{n}{2} \log \frac{n}{2}$$

$$\Rightarrow \log(n!) = \Omega(n \log n)$$

Today's Keywords

- Divide and Conquer
- Sorting
- Quicksort
- Decision Tree
- Worst case lower bound

CLRS Readings

- Chapter 7
- Chapter 8

Homeworks

- Hw3 Due 11pm Monday Oct. 1
 - Divide and conquer
 - Written (use LaTeX!)
- Hw2 Grace Period
 - Opens 4pm today, closes 4pm tomorrow
 - Do NOT ask TAs for help on Hw2 (grace period is for formatting)
 - See your email for specific details

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

Goal: All elements < p on left, all > p on right

Is it worth it?

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
 - Approach has very large constants
 - If you really want $\Theta(n \log n)$, better off using MergeSort
- Better approach: Random pivot
 - Very small constant (very fast algorithm)
 - Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely

Quicksort Run Time

• If the partition is always $\frac{n}{10}$ th order statistic:

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + n$$

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + n$$

Quicksort Run Time

• If the partition is always $\frac{n}{10}$ th order statistic:

$$T(n) = \Theta(n \log n)$$

Quicksort Run Time

• If the partition is always d^{th} order statistic:

• Then we shorten by d each time

$$T(n) = T(n - d) + n$$
$$T(n) = O(n^2)$$

What's the probability of this occurring?

Probability of n^2 run time

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: $\frac{d}{n}$

Probability second pivot is among d smallest: $\frac{d}{n-d}$

Probability all pivot are among d smallest:

$$\frac{d}{n} \cdot \frac{d}{n-d} \cdot \frac{d}{n-2d} \cdot \dots \cdot \frac{d}{2d} \cdot 1 = \frac{1}{\left(\frac{n}{d}\right)!}$$

Quicksort

- Idea: pick a pivot element, recursively sort two sublists around that element
- Divide: select an element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Random Pivot

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
 - Approach has very large constants
 - If you really want $\Theta(n \log n)$, better off using MergeSort
- Better approach: Random pivot
 - Very small constant (very fast algorithm)
 - Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely

- Remember, run time counts comparisons!
- Quicksort only compares against the pivot
 - Element i only compared to element j if one of them was the pivot

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

Goal: All elements < p on left, all > p on right

 What is the probability of comparing two given elements?

- (Probability of comparing 3 and 4) = 1
 - Why? Otherwise I wouldn't know which came first
 - ANY sorting algorithm must compare adjacent elements

 What is the probability of comparing two given elements?

- (Probability of comparing 1 and 12) = $\frac{2}{12}$
 - Why?
 - We only compare 1 with 12 if either was chosen as the first pivot
 - Otherwise they would be divided into opposite sublists

- Probability of comparing i and j (where j > i):
 - inversely proportional to the number of elements between i and j

•
$$\frac{2}{j-i+1}$$

Expected (average) number of comparisons:

•
$$\sum_{i < j} \frac{2}{j-i+1}$$

Consider when i = 1

$$\sum_{i < j} \frac{2}{j - i + 1}$$

1	2 3	4	5	6	7	8	9	10	11	12	
---	-----	---	---	---	---	---	---	----	----	----	--

Compared if 1 or 2 are chosen as pivot (these will always be compared)

Sum so far: $\frac{2}{2}$

Consider when i = 1

$$\sum_{i < j} \frac{2}{j - i + 1}$$

Compared if 1 or 3 are chosen as pivot (but not if 2 is ever chosen)

Sum so far:
$$\frac{2}{2} + \frac{2}{3}$$

Consider when i = 1

$$\sum_{i < j} \frac{2}{j - i + 1}$$

1	2	3	4	5	6	7	8	9	10	11	12	
---	---	---	---	---	---	---	---	---	----	----	----	--

Compared if 1 or 4 are chosen as pivot (but not if 2 or 3 are chosen)

Sum so far:
$$\frac{2}{2} + \frac{2}{3} + \frac{2}{4}$$

Consider when i = 1

$$\sum_{i < j} \frac{2}{j - i + 1}$$

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Compared if 1 or 12 are chosen as pivot (but not if 2 -> 11 are chosen)

Overall sum:
$$\frac{2}{2} + \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{n}$$

$$\sum_{i < j} \frac{2}{j - i + 1}$$

When
$$i = 1$$
: $2\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}\right)$

n terms overall

$$\sum_{i < j} \frac{2}{j-i+1} \le 2n \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) \quad \Theta(\log n)$$

Quicksort overall: expected $\Theta(n \log n)$

Sorting, so far

Sorting algorithms we have discussed:

```
- Mergesort O(n \log n)
```

- Quicksort $O(n \log n)$
- Other sorting algorithms (will discuss):

```
- Bubblesort O(n^2)
```

- Insertionsort $O(n^2)$
- Heapsort $O(n \log n)$

Can we do better than $O(n \log n)$?

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than $O(n \log n)$
- Non-existence proof!
 - Very hard to do

- Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths

- Worst case run time is the longest execution path
- i.e., "height" of the decision tree

- Conclusion: Worst Case Optimal run time of sorting is $\Theta(n \log n)$
 - There is no (comparison-based) sorting algorithm with run time $o(n \log n)$

Sorting, so far

Sorting algorithms we have discussed:

```
- Mergesort O(n \log n) Optimal!
```

- Quicksort
$$O(n \log n)$$
 Optimal!

Other sorting algorithms

```
- Bubblesort O(n^2)
```

- Insertionsort $O(n^2)$

- Heapsort $O(n \log n)$ Optimal!

Speed Isn't Everything

- Important properties of sorting algorithms:
- Run Time
 - Asymptotic Complexity
 - Constants
- In Place (or In-Situ)
 - Done with only constant additional space
- Adaptive
 - Faster if list is nearly sorted
- Stable
 - Equal elements remain in original order
- Parallelizable
 - Runs faster with many computers

Mergesort

- Divide:
 - Break n-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)
- Combine:
 - Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?

No No Yes!

(usually)

Run Time? $\Theta(n \log n)$ Optimal!

Merge

- Combine: Merge sorted sublists into one sorted list
- We have:
 - -2 sorted lists (L_1, L_2)
 - 1 output list (L_{out})

While (L_1 and L_2 not empty):

```
If L_1[0] \le L_2[0]:

L_{out}.append(L_1.pop())
```

Else:

 L_{out} .append(L_2 .pop())

 L_{out} .append(L_1)

 L_{out} .append(L_2)

Adaptive:

If elements are equal, leftmost comes first

Mergesort

- Divide:
 - Break n-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)
- Combine:
 - Merge together sorted sublists into one sorted list

Run Time? $\Theta(n \log n)$ Optimal!

In Place? Adaptive? Stable?

No No Yes!

(usually)

Parallelizable?
Yes!

Mergesort

• Divide:

– Break n-element list into two lists of n/2 elements

Parallelizable:
Allow different
machines to work
on each sublist

Conquer:

- If n > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)

• Combine:

Merge together sorted sublists into one sorted list

Mergesort (Sequential)

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Run Time: $\Theta(n \log n)$

Mergesort (Parallel)

$$T(n) = T\left(\frac{n}{2}\right) + n$$

Run Time: $\Theta(\log n)$

Quicksort

- Idea: pick a partition element, recursively sort two sublists around that element
- Divide: select an element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Run Time? $\Theta(n \log n)$ Optimal!
(almost always)

<u>In Place? Adaptive? Stable? Parallelizable?</u>
No... No! No Yes!

