SPRINT DELIVERY – 4

Team ID	PNT2022TMID41134
Project Name	
	IoT Enabled Smart
	Farming Application
Date	18 November 2022

5.5 Receiving commands from IBM cloud using Python program

```
time import
                                          ibmiotf.application import
  import
                              sys import
  ibmiotf.device import
  random
  #Provide your IBM Watson
                                    Device
                                    "3j2gcg"
  Credentials
                  organization =
  deviceType = "ultrasonic" deviceId = "1407"
  authMethod = "token" authToken =
  "14073008"
  # Initialize GPIO
                        def
myCommandCallback(cmd): print("Command
received: %s" % cmd.data['command'])
  status=cmd.data['command'] if status=="motoron": print
  ("motor is on") elif status == "motoroff": print
   ("motor is off") else:
      print ("please send proper command")
  try:
         deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
  "auth-method": authMethod, "auth-token": authToken} deviceCli
  = ibmiotf.device.Client(deviceOptions)
        #.....
```

```
except
          Exception
                             e:
                                   print("Caught
                      as
          exception connecting device: %s" %
str(e)) sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event
of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110) Humid=random.randint(60,100)
Mois=random. Randint(20,120) data = {
  'temp': temp, 'Humid': Humid,
'Mois': Mois}
    #print data def myOnPublishCallback(
):
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%" %
Humid, "Moisture = %s deg c" % Mois "to IBM Watson") success
     = deviceCli.publishEvent("IoTSensor", "json", data,
      qos=0, on_publish=myOnPublishCallback)
                                                     if not
      success: print("Not connected to IoTF")
time.sleep(10)
                       deviceCli.commandCallback
myCommandCallback # Disconnect the device
                                                     and
application from the cloud deviceCli.disconnect()
```


6. Flow Chart

7. Observations & Results

8. Advantages & Disadvantages Advantages:

• Farms can be monitored and controlled remotely.

- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

9. Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.