Chapitre 4. Complexes : fiche découverte.

Introduction

Pour résoudre une équation de la forme $ax^2 + bx + c = 0$, avec a, b, c réels fixés et $a \neq 0$, on calcule le discriminant de l'équation $b^2 - 4ac$, noté Δ .

• Si $\Delta \geq 0$:

Les solutions, éventuellement confondues, sont $\frac{-b+\sqrt{\Delta}}{2a}$ et $\frac{-b-\sqrt{\Delta}}{2a}$, autrement dit, $\frac{-b+\delta}{2a}$ et $\frac{-b-\delta}{2a}$ en posant $\delta=\sqrt{\Delta}$.

Cependant, en posant $\delta = -\sqrt{\Delta}$, les solutions sont également les nombres $\frac{-b+\delta}{2a}$ et $\frac{-b-\delta}{2a}$...

Bref, les solutions sont $\frac{-b \pm \delta}{2a}$, avec δ désignant n'importe quel nombre vérifiant $\delta^2 = \Delta$ (c'est ce qu'on appelle une racine carrée de Δ).

• Si $\Delta < 0$, il n'y a pas de solution réelle...

D'où l'idée d'introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas $\Delta < 0$.

On va montrer qu'un trinôme du second degré $ax^2 + bx + c$ admet toujours deux racines dans \mathbb{C} (éventuellement confondues).

Mieux : nous verrons plus tard dans l'année que tout polynôme de degré n admet n racines dans \mathbb{C} ...

1 Présentation de i, de \mathbb{C} , de la forme algébrique

On admet l'existence d'un nombre noté i vérifiant :

$$i^2 = -1$$

et $\mathbb C$ désigne alors l'ensemble des nombres de la forme :

$$x + iy$$
 avec $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

On utilise souvent la lettre z pour désigner un nombre complexe, mais ce n'est pas une obligation.

Dans l'écriture ci-dessus, on peut prendre y=0, donc tous les réels x sont dans \mathbb{C} : ainsi l'ensemble \mathbb{C} contient l'ensemble \mathbb{R} .

L'écriture d'un complexe z sous la forme x + iy avec x et y réels s'appelle la forme algébrique de z, elle est unique; le réel x s'appelle la partie réelle de z et le réel y s'appelle la partie imaginaire de z.

Somme et produit

Dans \mathbb{C} , on a une loi + et une loi \times , avec les mêmes propriétés que dans \mathbb{R} . Par exemple :

$$(2+3i) + (-1+4i) = 1+7i$$

Pour le produit, c'est tout aussi facile, en faisant attention au fait que $i^2 = -1$:

$$(2+3i) \times (-1+4i) = 2 \times (-1) + 2 \times 4i + 3i \times (-1) + 3i \times 4i$$

= $-2+8i-3i+12i^2$
= $-2+5i-12$
= $-14+5i$

Exercice 1. Mettre sous forme algébrique les complexes suivants :

1°)
$$(2+6i)(5+i)$$

$$3^{\circ}$$
) $(1-2i)(1+2i)$

$$2^{\circ}$$
) $(1+i)^2$

$$4^{\circ}$$
) $(2-3i)^3$

Inverse

De façon générale, pour x et y réels, $(x + iy)(x - iy) = x^2 - (iy)^2 = x^2 - i^2y^2 = x^2 + y^2$.

Cela permet de calculer l'inverse de x + iy sous forme algébrique, en multipliant au numérateur et au dénominateur par x - iy:

$$\frac{1}{x+iy} = \frac{x-iy}{(x+iy)(x-iy)} = \frac{x-iy}{x^2+y^2} \qquad \text{(c'est bien la forme algébrique } : \underbrace{\frac{x}{x^2+y^2}}_{\text{r\'eel}} + i\underbrace{\frac{-y}{x^2+y^2}}_{\text{r\'eel}})$$

Exercice 2. Mettre sous forme algébrique les complexes suivants :

1°)
$$\frac{1}{3-i}$$

3°)
$$\frac{1}{i}$$

$$2^{\circ}$$
) $\frac{2-3i}{5+2i}$

$$4^{\circ}$$
) $\frac{1+2i}{3-4i}$

Interprétation géométrique

Tout complexe z s'écrit de façon unique sous la forme algébrique z = x + iy avec x et y des réels, ce qui permet de lui associer le point M du plan de coordonnées (x, y).

Ainsi, on peut même identifier l'ensemble \mathbb{C} et le plan

Voici quelques exemples :

2

2 Présentation des nombres $e^{i\theta}$ et de la forme trigonométrique

Si on identifie encore les points du plan et les nombres complexes, on peut s'intéresser aux points du cercle trigonométrique : leurs coordonnées sont de la forme $(\cos(\theta), \sin(\theta))$ avec $\theta \in \mathbb{R}$. Le complexe associé sera alors $\cos(\theta) + i\sin(\theta)$; de façon étrange au premier abord, on va noter ce nombre $e^{i\theta}!!$

Pour tout $\theta \in \mathbb{R}$, on note : $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

Par exemple, $e^{i\frac{\pi}{3}} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$.

Exercice 3. Compléter les égalités suivantes, et placer les nombres correspondants sur le cercle trigonométrique :

1°)
$$e^{i\frac{\pi}{4}} =$$

$$2^{\circ}$$
) $e^{i\frac{\pi}{6}} =$

$$3^{\circ}$$
) $e^{i\frac{2\pi}{3}} =$

4°)
$$e^{i\frac{\pi}{2}} =$$

5°)
$$e^{i0} =$$

$$6^{\circ}) = -1$$

$$7^{\circ}$$
) = $-i$

$$\mathbf{8}^{\circ}) \qquad = \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}}$$

9°)
$$=-\frac{\sqrt{3}}{2}-\frac{i}{2}$$

Forme trigonométrique d'un complexe non nul

Soit z un complexe non nul, il s'écrit sous forme algébrique z=x+iy, avec x et y réels, qui sont les coordonnées du point M associé.

La distance \overrightarrow{OM} vaut donc $\rho = \sqrt{x^2 + y^2}$, et en notant θ l'angle entre le vecteur \overrightarrow{i} et le vecteur \overrightarrow{OM} :

$$\begin{cases} x = \rho \cos(\theta) \\ y = \rho \sin(\theta) \end{cases}$$

Donc
$$z = \rho \cos(\theta) + i\rho \sin(\theta)$$

Ainsi le complexe non nul z peut s'écrire sous la forme dite trigonométrique :

$$z = \rho(\cos(\theta) + i\sin(\theta)) = \rho e^{i\theta}$$
, avec $\rho > 0$ et $\theta \in \mathbb{R}$.

Par exemple, avec
$$z = 1 + i\sqrt{3}$$
, on a $z = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2e^{i\frac{\pi}{3}}$.

 $M\'{e}thode$

Dans cet exemple, la valeur de ρ se trouvait "à vue" en essayant de faire apparaître un nombre $e^{i\theta}$ "connu". Mais on aurait pu procéder ainsi :

- On trouve la valeur de ρ grâce à la formule $\rho = \sqrt{x^2 + y^2}$, avec x la partie réelle de z et y la partie imaginaire de z.
- Puis on met artificiellement ρ en facteur dans l'écriture algébrique de z, et on espère reconnaître $\cos(\theta) + i\sin(\theta)$ avec un angle θ remarquable.

 \bigcirc **Exercice 4.** Déterminer la forme trigonométrique des complexes non nuls suivants :

1°)
$$4\sqrt{3} + 4i$$

4
$$^{\circ}$$
) 2*i*

2°)
$$1 - i$$

5°)
$$-5i$$

$$3^{\circ}$$
) $-\frac{1}{3} - \frac{i}{3}$

$$7^{\circ}) -3$$

4