Python data science

Hamish Gibbs

Today: Python data science

- Introduction to Python data science tools.
- Introduction to a basic data science workflow.
- This afternoon: collaborating on a data science project.

Data science

- Definition of data science:
 - "Extracting meaningful insights from data."
- *Meaningful* is important.
 - Use the tools of programming / statistics to create meaning from your data.
- Usually, there is no "right" answer, just "better" and "worse" answers.
 - You exercise a lot of judgement.

Data science workflow

- Data science is not just machine learning.
 - Most data science work is:
 - Data preparation
 - Data transformation
 - Method selection
 - Statistics / machine learning
 - Communicating results

Python data science tools

- Today, we will learn about the most popular Python data science "stack"
 - Data preparation / data transformation
 - pandas, numpy
 - Statistics / machine learning
 - sklearn
 - Communicating results
 - matplotlib

R equivalents

- Python libraries mostly have their R equivalents:
 - pandas:dplyr
 - sklearn:caret?
 - matplotlib:ggplot2
- See what you prefer, I use both languages very regularly!

Diving deeper

- Python has many other options for data science tools.
- Alternatives to pandas:
 - polars (Like Python's version of data.table)
 - dask
- Alternatives to sklearn:
 - **.**..?
- Alternatives to matplotlib:
 - seaborn
 - plotnine (R users might like this one!)

Tutorial #1: pandas

- 10 minutes to pandas
 - This is a detailed tutorial with everything in pandas you will need to know for tomorrow!
- Core concepts:
 - Creating a DataFrame
 - Selection
 - Missing data
 - Grouping

Tutorial #2: plotting in pandas with matplotlib

- Chart visualization
 - This picks up where the previous tutorial leaves off.
- Core concepts:
 - Different types of visualizations
 - Plot formatting
 - Subplots
- Good question: This is a pandas tutorials. Where is matplotlib in all of this?

Tutorial #3: sklearn

- sklearn Getting Started
 - A very basic introduction to the way sklearn models work.
- Core concepts:
 - Fitting a model to data

```
1 clf.fit(X, y)
```

Making predictions with a model

```
1 clf.predict(X)
```

Model evaluation

```
1 result = cross_validate(lr, X, y)
```

Tutorial #4: pandas / matplotlib

- Linear model: from regression to sparsity
- Core concepts:
 - Linear regression
 - I recommend focusing on the (small) linear regression section.
 - Tip: print out each variable and try to understand how data flows through the model. What format is it in? How could you format a different dataset in the same way?

Extra

- Start working with the dataset we will use tomorrow.
 - For help reading the data: see here.
- Work on a few of the items in the challenge:
 - What variables are in the dataset?
 - What are the data types of the variables?
 - *Is there any missing data?*