A study of the DASH algorithm for software property checking

Jacob Hougaard

20083206

May 30, 2014

Table of contents

DASH_{int}

DASH_{int} overview DASH_{int} pseudocode

Modifications and Challenges

Modifications and Challenges

Optimizations

An Emperical Study of Optimizations in YOGI

```
int abs(int a)
{
  if(a < 0)
    a = -a;
  assert a ≥ 0;
  return a;
}</pre>
```

```
int abs(int a)
{
  if(a < 0)
    a = -a;
  assert a ≥ 0;
  return a;
}</pre>
```

```
int abs(int a)
                                    a ≥ 0
  if(a < 0)
     a = -a;
                                                 DASH<sub>int</sub>
  assert a \ge 0;
  return a;
                                   a ≥ 0
                                error
                                  return a
```



```
\mathsf{DashLoop}(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
              return (PASS, G)
         end if
 5:
 7:
         \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
 8:
         \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_c, P)
 9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12:
                  return (FAIL, t)
13:
              end if
14:
         else
              G := RefineGraph(\rho, \tau_c, G)
15:
         end if
16:
17: end loop
```


a ≥ 0

return a

DASH_{int} pseudocode

```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := \mathsf{FindAbstractErrorPath}(G)
         if \tau = \text{NO-PATH} then
              return (PASS, G)
 5:
         end if
 7:
         \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
 8:
         \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_c, P)
 9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12:
                  return (FAIL, t)
13:
              end if
14:
         else
              G := RefineGraph(\rho, \tau_c, G)
15:
         end if
16:
17: end loop
```


DASH_{int}

DASH_{int} pseudocode

```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH then}
              return (PASS, G)
         end if
 5:
 7:
         \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
 8:
          \langle t, \rho \rangle := \mathsf{ExtendFrontier}(\tau_{\mathsf{C}}, P)
 9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12:
                  return (FAIL, t)
13:
              end if
14:
          else
              G := RefineGraph(\rho, \tau_c, G)
15:
          end if
16:
17: end loop
```



```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
             return (PASS, G)
 5:
         end if
 7:
         \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
 8:
         \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_c, P)
 9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12:
                  return (FAIL, t)
13:
             end if
14:
         else
              G := RefineGraph(\rho, \tau_c, G)
15:
         end if
16:
17: end loop
```



```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
              return (PASS, G)
         end if
 5:
 7:
         \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
 8:
         \langle t, \rho \rangle := \mathsf{ExtendFrontier}(\tau_{\mathsf{C}}, P)
 9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12:
                   return (FAIL, t)
13:
              end if
14:
          else
              G := RefineGraph(\rho, \tau_c, G)
15:
          end if
16:
17: end loop
```


DASH_{int}

```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
              return (PASS, G)
 5:
         end if
 7:
         \tau_c := \mathsf{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
 8:
         \langle t, \rho \rangle := \mathsf{ExtendFrontier}(\tau_{\mathsf{C}}, P)
 9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12:
                   return (FAIL, t)
13:
              end if
14:
          else
              G := RefineGraph(\rho, \tau_c, G)
15:
          end if
16:
17: end loop
```


$$\longrightarrow \, \langle [a_0 \mapsto 0], \textit{true} \rangle$$

```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
              return (PASS, G)
 5:
         end if
 7:
         \tau_c := \mathsf{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
         \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_c, P)
 8:
         if t \neq \text{UNSAT} then
 9:
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12:
                  return (FAIL, t)
13:
              end if
14:
         else
              G := RefineGraph(\rho, \tau_c, G)
15:
         end if
16:
17: end loop
```


$$\longrightarrow \, \langle [a_0 \mapsto 0], \textit{true} \rangle$$

```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
              return (PASS, G)
 5:
         end if
 7:
         \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
 8:
         \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_c, P)
 9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12.
                  return (FAIL, t)
13:
              end if
14:
         else
              G := RefineGraph(\rho, \tau_c, G)
15:
         end if
16:
17: end loop
```


DASH_{int}

•00000000

```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
             return (PASS, G)
 5:
         end if
 7:
         \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
         \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_c, P)
8:
9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12:
                  return (FAIL, t)
13:
             end if
14:
         else
              G := RefineGraph(\rho, \tau_c, G)
15:
         end if
16:
17: end loop
```

```
0 {#0[a→0]}
          a ≥ 0
2 {#1[a→0]}
        a ≥ 0
   error
4 {#2[a→0]}
      return a
5 {#3[a→0]}
```

```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := \mathsf{FindAbstractErrorPath}(G)
         if \tau = \text{NO-PATH then}
             return (PASS, G)
 5:
         end if
 7:
         \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
         \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_c, P)
8:
9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12.
                  return (FAIL, t)
13:
             end if
14.
         else
              G := RefineGraph(\rho, \tau_c, G)
15.
         end if
16:
17: end loop
```



```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
             return (PASS, G)
 5:
         end if
 7:
         \tau_c := \mathsf{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
         \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_c, P)
8:
9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12.
                  return (FAIL, t)
13:
             end if
14.
         else
              G := RefineGraph(\rho, \tau_c, G)
15.
         end if
16:
17: end loop
```



```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
             return (PASS, G)
         end if
 5:
 7:
         \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
8:
         \langle t, \rho \rangle := \mathsf{ExtendFrontier}(\tau_c, P)
9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12:
                  return (FAIL, t)
13:
             end if
14:
         else
              G := RefineGraph(\rho, \tau_c, G)
15:
         end if
16:
17: end loop
```

```
0 {#0[a→0]}
          a ≥ 0
2 {#1[a→0]}
        a ≥ 0
   error
4 {#2[a→0]}
      return a
5 {#3[a→0]}
```

```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
             return (PASS, G)
 5:
         end if
 7:
         \tau_c := \mathsf{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
         \langle t, \rho \rangle := \mathsf{ExtendFrontier}(\tau_c, P)
8:
         if t \neq \text{UNSAT} then
9:
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12.
                  return (FAIL, t)
13:
             end if
14.
         else
              G := RefineGraph(\rho, \tau_c, G)
15.
         end if
16:
17: end loop
```



```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
              return (PASS, G)
 5:
         end if
 7:
         \tau_c := \mathsf{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
8:
         \langle t, \rho \rangle := \mathsf{ExtendFrontier}(\tau_c, P)
         if t \neq \text{UNSAT} then
9:
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12.
                  return (FAIL, t)
13:
              end if
14:
         else
              G := \mathsf{RefineGraph}(\rho, \tau_C, G)
15.
         end if
16:
17: end loop
```

```
0 {#0[a→0]}
          a ≥ 0
2 {#1[a→0]}
        a ≥ 0
   error
4 {#2[a→0]}
      return a
5 {#3[a→0]}
```



```
DashLoop(P, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
 1: loop
         \tau := FindAbstractErrorPath(G)
         if \tau = \text{NO-PATH} then
              return (PASS, G)
 5:
         end if
 7:
         \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
 8:
         \langle t, \rho \rangle := \mathsf{ExtendFrontier}(\tau_c, P)
 9:
         if t \neq \text{UNSAT} then
10:
              G := RunTest(t, P, G)
11:
              if IsErrorRegionReached(G) then
12:
                  return (FAIL, t)
13:
              end if
14:
         else
15:
              G := RefineGraph(\rho, \tau_C, G)
         end if
16:
17: end loop
```


DASH_{int}

DASH_{int} pseudocode

RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
              return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\kappa}^* := \rightarrow_{\kappa} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_k^* := Simplify(\rho_{k-1} \land \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^*,S) \mid S \in \mathsf{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{k-1}^*\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
              \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
20: end if
```


RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k=1 then
              return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\kappa}^* := \rightarrow_{\kappa} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_k^* := Simplify(\rho_{k-1} \land \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^*,S) \mid S \in \mathsf{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{k-1}^*\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
              \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
20: end if
```


RefineGraph

21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
               return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{+}^{*} := \Sigma_{\sim} \setminus \{S_{k-1}\}
  6: \rightarrow_{\kappa}^* := \rightarrow_{\kappa} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^*,S) \mid S \in \mathsf{Children}(S_{k-1})\}
13: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
               \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
20: end if
```


5 {#3[a→0]}

RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
               return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\sim}^* := \rightarrow_{\sim} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^{\overline{*}}:=\rightarrow_{\sim}^{*}\setminus\{(S_{k-1},S)\mid S\in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^*,S) \mid S \in \mathsf{Children}(S_{k-1})\}
13: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
               \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
20: end if
```


RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
               return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\sim}^* := \rightarrow_{\sim} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_i^* , := \langle \rho_i^* , states\rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^*,S) \mid S \in \mathsf{Children}(S_{k-1})\}
13: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
               \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^{**}) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
20: end if
```


RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
               return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\kappa}^* := \rightarrow_{\kappa} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_k^* := Simplify(\rho_{k-1} \land \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^*,S) \mid S \in \mathsf{Children}(S_{k-1})\}
13: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
              \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^{**}) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
20: end if
```


RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
              return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\kappa}^* := \rightarrow_{\kappa} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \text{Parents}(S_{k-1})\}
12: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^*,S) \mid S \in \mathsf{Children}(S_{k-1})\}
13: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
              \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
20: end if
```


RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
              return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\kappa}^* := \rightarrow_{\kappa} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
              \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
20: end if
```


a < 0

error

return a

DASH_{int} pseudocode

DASH_{int}

RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
              return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\kappa}^* := \rightarrow_{\kappa} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
              \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
20: end if
```


RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
              return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\kappa}^* := \rightarrow_{\kappa} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{k-1}^*\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
          \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^{**}) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
20: end if
```


RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
              return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\kappa}^* := \rightarrow_{\kappa} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
18: if IsSAT(\rho_{L}^{**}) \neq UNSAT then
         \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^{**}) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
20: end if
```


20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
               return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\kappa}^* := \rightarrow_{\kappa} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
19: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \cup \{(S, S_{k-1}^{**}) \mid S \in \mathsf{Parents}(S_{k-1})\}
```


20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

RefineGraph

```
RefineGraph(\rho, \tau_C = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let \langle \rho_{k-1}, states \rangle = S_{k-1}
  2. if k = 1 then
               return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\kappa}^* := \rightarrow_{\kappa} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
              \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
19:
```


DASH_{int}

000000000

```
\begin{split} & \text{ExtendFrontier}(\tau_c, P) \\ & 1: \  \, \phi := \text{ExecuteSymbolic}(\tau_c, P) \\ & 2: \  \, t := \text{IsSAT}(\phi, P) \\ & 3: \  \, \text{if} \  \, t = \text{UNSAT} \  \, \text{then} \\ & 4: \quad  \, \rho := \text{RefinePred}(\tau_c) \\ & 5: \  \, \text{else} \\ & 6: \quad  \, \rho := true \\ & 7: \  \, \text{end} \  \, \text{if} \\ & 8: \  \, \text{return} \  \, \langle t, \rho \rangle \end{split}
```


DASH_{int}

000000000

```
\begin{split} & \text{ExtendFrontier}(\tau_c, P) \\ & 1: \  \, \phi := \text{ExecuteSymbolic}(\tau_c, P) \\ & 2: \  \, t := \text{IsSAT}(\phi, P) \\ & 3: \  \, \text{if} \  \, t = \text{UNSAT} \  \, \text{then} \\ & 4: \quad \rho := \text{RefinePred}(\tau_c) \\ & 5: \  \, \text{else} \\ & 6: \quad \rho := true \\ & 7: \  \, \text{end} \  \, \text{if} \\ & 8: \  \, \text{return} \  \, \langle t, \rho \rangle \end{split}
```

```
0 {#0[a→0]}
         a ≥ 0
2 {#1[a→0]}
         a ≥ 0
   error
4 {#2[a→0]}
      lreturn a
5 {#3[a→0]}
```

```
ExecuteSymbolic(\tau_c = \langle S_0, \dots, S_k \rangle, P)
 1: let \langle \rho_0, \_ \rangle = S_0
 2: S := [v \mapsto v_0 \mid v \in params(P)]
 3: \phi := SymbolicEval(\rho_0, S)
 4. for i = 0 to k - 1 do
          op := Op(S_i, S_{i+1})
          match op
               case(v := e):
                   S := S[v \mapsto SymbolicEval(e, S)]
 9:
               case(assume c):
10:
                    \phi := \phi \land \mathsf{SymbolicEval}(c, s)
          \operatorname{let}\langle \rho_{i+1}, \_ \rangle = S_{i+1}
11:
12:
          \phi := \phi \wedge \mathsf{SymbolicEval}(\rho_{i+1}, \mathcal{S})
13: end for
14: return \phi
```

```
0 {#0[a→0]}
          a ≥ 0
2 {#1[a→0]}
         a ≥ 0
   error
4 {#2[a→0]}
      lreturn a
5 {#3[a→0]}
```

```
ExecuteSymbolic(\tau_c = \langle S_0, \dots, S_k \rangle, P)
 1: let \langle \rho_0, \_ \rangle = S_0
 2: S := [v \mapsto v_0 \mid v \in params(P)]
 3: \phi := SymbolicEval(\rho_0, S)
 4. for i = 0 to k - 1 do
          op := Op(S_i, S_{i+1})
          match op
               case(v := e):
                    S := S[v \mapsto SymbolicEval(e, S)]
 9:
               case(assume c):
10:
                    \phi := \phi \land \mathsf{SymbolicEval}(c, s)
          \operatorname{let}\langle \rho_{i+1}, \_ \rangle = S_{i+1}
11:
12:
          \phi := \phi \wedge \mathsf{SymbolicEval}(\rho_{i+1}, \mathcal{S})
13: end for
14: return \phi
```



```
ExecuteSymbolic(\tau_c = \langle S_0, \dots, S_k \rangle, P)
 1: let \langle \rho_0, \_ \rangle = S_0
 2: S := [v \mapsto v_0 \mid v \in params(P)]
 3: \phi := SymbolicEval(\rho_0, S)
 4. for i = 0 to k - 1 do
          op := Op(S_i, S_{i+1})
          match op
               case(v := e):
                   S := S[v \mapsto SymbolicEval(e, S)]
 9:
               case(assume c):
10:
                    \phi := \phi \land \mathsf{SymbolicEval}(c, s)
          \operatorname{let}\langle \rho_{i+1}, \_ \rangle = S_{i+1}
11:
12:
          \phi := \phi \wedge \mathsf{SymbolicEval}(\rho_{i+1}, \mathcal{S})
13: end for
14: return \phi
```



```
ExecuteSymbolic(\tau_c = \langle S_0, \dots, S_k \rangle, P)
 1: let \langle \rho_0, \_ \rangle = S_0
 2: S := [v \mapsto v_0 \mid v \in params(P)]
 3: \phi := SymbolicEval(\rho_0, S)
 4. for i = 0 to k - 1 do
          op := Op(S_i, S_{i+1})
          match op
               case(v := e):
                   S := S[v \mapsto SymbolicEval(e, S)]
 9:
               case(assume c):
10:
                    \phi := \phi \land \mathsf{SymbolicEval}(c, s)
          \operatorname{let}\langle \rho_{i+1}, \_ \rangle = S_{i+1}
11:
12:
          \phi := \phi \wedge \mathsf{SymbolicEval}(\rho_{i+1}, s)
13: end for
14: return \phi
```


DASH_{int}

000000000

```
ExecuteSymbolic(\tau_c = \langle S_0, \dots, S_k \rangle, P)
 1: let \langle \rho_0, \_ \rangle = S_0
 2: S := [v \mapsto v_0 \mid v \in params(P)]
 3: \phi := SymbolicEval(\rho_0, S)
 4. for i = 0 to k - 1 do
          op := Op(S_i, S_{i+1})
          match op
               case(v := e):
                    S := S[v \mapsto \mathsf{SymbolicEval}(e, S)]
 9:
               case(assume c):
10:
                     \phi := \phi \land \mathsf{SymbolicEval}(c, s)
          \operatorname{let}\langle \rho_{i+1}, \_ \rangle = S_{i+1}
11:
12:
           \phi := \phi \wedge \mathsf{SymbolicEval}(\rho_{i+1}, \mathcal{S})
13: end for
14: return \phi
```


DASH_{int}

```
ExecuteSymbolic(\tau_c = \langle S_0, \dots, S_k \rangle, P)
 1: let \langle \rho_0, \_ \rangle = S_0
 2: S := [v \mapsto v_0 \mid v \in params(P)]
 3: \phi := SymbolicEval(\rho_0, S)
 4. for i = 0 to k - 1 do
          op := Op(S_i, S_{i+1})
          match op
               case(v := e):
                    S := S[v \mapsto \mathsf{SymbolicEval}(e, S)]
 9:
               case(assume c):
10:
                    \phi := \phi \wedge \mathsf{SymbolicEval}(c, s)
          \operatorname{let}\langle \rho_{i+1}, \_ \rangle = S_{i+1}
11:
12:
           \phi := \phi \wedge \mathsf{SymbolicEval}(\rho_{i+1}, S)
13: end for
14: return \phi
```


$$S \rightarrow [a \mapsto a_0]$$

$$\phi
ightarrow a_0 \geq 0$$

DASH_{int}

000000000

```
ExecuteSymbolic(\tau_c = \langle S_0, \dots, S_k \rangle, P)
 1: let \langle \rho_0, \_ \rangle = S_0
 2: S := [v \mapsto v_0 \mid v \in params(P)]
 3: \phi := SymbolicEval(\rho_0, S)
 4. for i = 0 to k - 1 do
          op := Op(S_i, S_{i+1})
          match op
               case(v := e):
                    S := S[v \mapsto SymbolicEval(e, S)]
 9:
               case(assume c):
10:
                    \phi := \phi \wedge \mathsf{SymbolicEval}(c, s)
          \operatorname{let}\langle \rho_{i+1}, \_ \rangle = S_{i+1}
11:
12:
           \phi := \phi \wedge \mathsf{SymbolicEval}(\rho_{i+1}, \mathcal{S})
13: end for
14: return \phi
```


DASH_{int}

```
ExecuteSymbolic(\tau_c = \langle S_0, \dots, S_k \rangle, P)
 1: let \langle \rho_0, \_ \rangle = S_0
 2: S := [v \mapsto v_0 \mid v \in params(P)]
 3: \phi := SymbolicEval(\rho_0, S)
 4. for i = 0 to k - 1 do
          op := Op(S_i, S_{i+1})
          match op
               case(v := e):
                    S := S[v \mapsto SymbolicEval(e, S)]
 9:
               case(assume c):
10:
                    \phi := \phi \land \mathsf{SymbolicEval}(c, s)
          \operatorname{let}\langle \rho_{i+1}, \_ \rangle = S_{i+1}
11:
12:
          \phi := \phi \wedge \mathsf{SymbolicEval}(\rho_{i+1}, s)
13: end for
14: return \phi
```


DASH_{int}

```
ExecuteSymbolic(\tau_c = \langle S_0, \dots, S_k \rangle, P)
 1: let \langle \rho_0, \_ \rangle = S_0
 2: S := [v \mapsto v_0 \mid v \in params(P)]
 3: \phi := SymbolicEval(\rho_0, S)
 4. for i = 0 to k - 1 do
          op := Op(S_i, S_{i+1})
          match op
               case(v := e):
                    S := S[v \mapsto SymbolicEval(e, S)]
 9:
               case(assume c):
10:
                    \phi := \phi \wedge \mathsf{SymbolicEval}(c, s)
          \operatorname{let}\langle \rho_{i+1}, \_ \rangle = S_{i+1}
11:
12:
           \phi := \phi \wedge \mathsf{SymbolicEval}(\rho_{i+1}, \mathcal{S})
13: end for
14: return \phi
```


DASH_{int}

```
ExecuteSymbolic(\tau_c = \langle S_0, \dots, S_k \rangle, P)
 1: let \langle \rho_0, \_ \rangle = S_0
 2: S := [v \mapsto v_0 \mid v \in params(P)]
 3: \phi := SymbolicEval(\rho_0, S)
 4. for i = 0 to k - 1 do
          op := Op(S_i, S_{i+1})
          match op
               case(v := e):
                    S := S[v \mapsto SymbolicEval(e, S)]
 9:
               case(assume c):
10:
                    \phi := \phi \wedge \mathsf{SymbolicEval}(c, s)
          \operatorname{let}\langle \rho_{i+1}, \_ \rangle = S_{i+1}
11:
12:
          \phi := \phi \wedge \mathsf{SymbolicEval}(\rho_{i+1}, S)
13: end for
14: return \phi
```


DASH_{int}

14: return ϕ

000000000

```
ExecuteSymbolic(\tau_c = \langle S_0, \dots, S_k \rangle, P)
 1: let \langle \rho_0, \_ \rangle = S_0
 2: S := [v \mapsto v_0 \mid v \in params(P)]
 3: \phi := SymbolicEval(\rho_0, S)
 4. for i = 0 to k - 1 do
          op := Op(S_i, S_{i+1})
          match op
               case(v := e):
                    S := S[v \mapsto \mathsf{SymbolicEval}(e, S)]
 9:
               case(assume c):
10:
                     \phi := \phi \wedge \mathsf{SymbolicEval}(c, s)
          \operatorname{let}\langle \rho_{i+1}, \_ \rangle = S_{i+1}
11:
12:
           \phi := \phi \wedge \mathsf{SymbolicEval}(\rho_{i+1}, \mathcal{S})
13: end for
```



```
\begin{split} & \text{ExtendFrontier}(\tau_c, P) \\ & 1: \  \, \phi := \text{ExecuteSymbolic}(\tau_c, P) \\ & 2: \  \, t := \text{IsSAT}(\phi, P) \\ & 3: \  \, \text{if} \  \, t = \text{UNSAT} \  \, \text{then} \\ & 4: \quad \rho := \text{RefinePred}(\tau_c) \\ & 5: \  \, \text{else} \\ & 6: \quad \rho := true \\ & 7: \  \, \text{end} \  \, \text{if} \\ & 8: \  \, \text{return} \  \, \langle t, \rho \rangle \end{split}
```


DASH_{int}

000000000

```
ExtendFrontier(\tau_c, P)
 1: \phi := \text{ExecuteSymbolic}(\tau_c, P)
 2: t := IsSAT(\phi, P)
 3: if t = \text{UNSAT} then
         \rho := \mathsf{RefinePred}(\tau_c)
 5: else
          \rho := true
 7: end if
 8: return \langle t, \rho \rangle
```


DASH_{int}

```
ExtendFrontier(\tau_c, P)
 1: \phi := \text{ExecuteSymbolic}(\tau_c, P)
 2: t := IsSAT(\phi, P)
 3: if t = UNSAT then
         \rho := \mathsf{RefinePred}(\tau_c)
 5: else
          \rho := true
 7: end if
 8: return \langle t, \rho \rangle
```


DASH_{int}

```
0 {#0[a→0]}
RefinePred(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)
 1: let \langle \_, states_{k-1} \rangle = S_{k-1}
 2: let \langle \rho_k, \_ \rangle = S_k
                                                                                                 a ≥ 0
 3: op := Op(S_{k-1}, S_k)
 4: if op matches assume c then
         if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then
              return \rho_k
                                                                                      2 {#1[a→0]}
         end if
 8. end if
 9: return WP(op, \rho_k)
                                                                                                a ≥ 0
WP(op, \rho_k)
                                                                                          error
 1: match op
         case(v := e):
                                                                                      4 {#2[a→0]}
 3:
              return \rho_k[e/v]
                                                                                             lreturn a
 4:
         case(assume c):
              return c \wedge \rho_{k}
                                                                                      5 {#3[a→0]}
```

```
0 {#0[a→0]}
RefinePred(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)
 1: let \langle \_, states<sub>k-1</sub>\rangle = S_{k-1}
 2: let \langle \rho_k, \_ \rangle = S_k
 3: op := Op(S_{k-1}, S_k)
 4: if op matches assume c then
         if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then
              return \rho_k
                                                                                       2 {#1[a→0]}
         end if
 8. end if
 9: return WP(op, \rho_k)
WP(op, \rho_k)
                                                                                          error
 1: match op
         case(v := e):
                                                                                       4 {#2[a→0]}
 3:
              return \rho_k[e/v]
 4:
         case(assume c):
              return c \wedge \rho_{k}
                                                                                       5 {#3[a→0]}
```

```
a ≥ 0
                     \rho_{\nu} \rightarrow true
   a ≥ 0
lreturn a
```

```
RefinePred(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)
 1: let \langle \_, states_{k-1} \rangle = S_{k-1}
 2: let \langle \rho_k, \_ \rangle = S_k
 3: op := Op(S_{k-1}, S_k)
 4: if op matches assume c then
         if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then
              return \rho_k
         end if
 8. end if
 9: return WP(op, \rho_k)
WP(op, \rho_k)
                                                                                            error
 1: match op
         case(v := e):
 3:
              return \rho_k[e/v]
 4:
         case(assume c):
              return c \wedge \rho_{k}
```

```
0 {#0[a→0]]
           a ≥ 0
2 {#1[a→0]}
                        \rho_k \rightarrow true
                       op \rightarrow a < 0
           a ≥ 0
4 {#2[a→0]}
       lreturn a
5 {#3[a→0]}
```

DASH_{int}

```
RefinePred(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)
 1: let \langle \_, states<sub>k-1</sub>\rangle = S_{k-1}
 2: let \langle \rho_k, \_ \rangle = S_k
 3: op := Op(S_{k-1}, S_k)
 4: if op matches assume c then
          if k > 1 \land \forall s \in \mathit{states}_{k-1} : \mathsf{Eval}(\neg \rho_k, s) = \mathit{true} then
               return \rho_k
          end if
 8. end if
 9: return WP(op, \rho_k)
WP(op, \rho_k)
 1: match op
          case(v := e):
 3:
               return \rho_k[e/v]
 4:
          case(assume c):
               return c \wedge \rho_{k}
```

```
0 {#0[a→0]}
           a ≥ 0
2 {#1[a→0]}
                        \rho_k \rightarrow true
                      op \rightarrow a < 0
           a ≥ 0
   error
4 {#2[a→0]}
       lreturn a
5 {#3[a→0]}
```

DASH_{int}

```
RefinePred(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)
 1: let \langle \_, states<sub>k-1</sub>\rangle = S_{k-1}
 2: let \langle \rho_k, \_ \rangle = S_k
 3: op := Op(S_{k-1}, S_k)
 4: if op matches assume c then
         if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then
              return \rho_k
         end if
 8. end if
 9: return WP(op, \rho_k)
WP(op, \rho_k)
 1: match op
         case(v := e):
 3:
              return \rho_k[e/v]
 4:
         case(assume c):
 5:
              return c \wedge \rho_{k}
```

```
0 {#0[a→0]}
           a ≥ 0
2 {#1[a→0]}
                        \rho_k \rightarrow true
                      op \rightarrow a < 0
           a ≥ 0
   error
4 {#2[a→0]}
       lreturn a
5 {#3[a→0]}
```

```
RefinePred(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)
 1: let \langle \_, states_{k-1} \rangle = S_{k-1}
 2: let \langle \rho_k, \_ \rangle = S_k
 3: op := Op(S_{k-1}, S_k)
 4: if op matches assume c then
         if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then
              return \rho_k
         end if
 8. end if
 9: return WP(op, \rho_k)
WP(op, \rho_k)
 1: match op
         case(v := e):
 3:
              return \rho_k[e/v]
 4:
         case(assume c):
              return c \wedge \rho_{k}
```

```
0 {#0[a→0]}
           a ≥ 0
2 {#1[a→0]}
                        \rho_k \rightarrow true
                      op \rightarrow a < 0
           a ≥ 0
   error
4 {#2[a→0]}
       lreturn a
5 {#3[a→0]}
```

RefinePred

```
RefinePred(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)
 1: let \langle \_, states_{k-1} \rangle = S_{k-1}
 2: let \langle \rho_k, \_ \rangle = S_k
 3: op := Op(S_{k-1}, S_k)
 4: if op matches assume c then
         if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then
              return \rho_k
         end if
 8. end if
 9: return WP(op, \rho_k)
WP(op, \rho_k)
 1: match op
         case(v := e):
 3:
              return \rho_k[e/v]
 4:
         case(assume c):
              return c \wedge \rho_{\nu}
```



```
\begin{array}{c} \longrightarrow \\ \rho_k \to \text{true} \\ op \to a < 0 \end{array}
```

a < 0

```
ExtendFrontier(	au_c, P)

1: \phi:= \operatorname{ExecuteSymbolic}(	au_c, P)

2: t:= \operatorname{IsSAT}(\phi, P)

3: if t= \operatorname{UNSAT} then

4: \rho:= \operatorname{RefinePred}(	au_c)

5: else

6: \rho:= \operatorname{true}

7: end if

8: return \langle t, \rho \rangle
```


ExtendFrontier - Refine

```
\begin{split} & \text{ExtendFrontier}(\tau_c, P) \\ & \text{1: } \phi := \text{ExecuteSymbolic}(\tau_c, P) \\ & \text{2: } t := \text{IsSAT}(\phi, P) \\ & \text{3: } \text{if } t = \text{UNSAT then} \\ & \text{4: } \rho := \text{RefinePred}(\tau_c) \\ & \text{5: else} \\ & \text{6: } \rho := true} \\ & \text{7: end if} \\ & \text{8: return } \langle t, \rho \rangle \end{split}
```


 $ightarrow \langle \mathit{UNSAT}, \mathit{a} < 0 \rangle$

Modifications to DashLoop

```
1: loop
          \tau := FindAbstractErrorPath(G)
 3:
          if \tau = \text{NO-PATH then}
              return (PASS, G)
 5.
         end if
 6:
 7:
          \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
 8:
          \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_c, P)
9:
          if t \neq \text{UNSAT} then
              G := RunTest(t, P, G)
10:
              if IsErrorRegionReached(G) then
11.
12.
                  return (FAIL, t)
13:
              end if
14.
          else
              G := RefineGraph(\rho, \tau_c, G)
15.
          end if
16:
17:
     end loop
```

```
1: \Sigma_{\simeq} := \left\{ \int_{I \subset I} \left\{ \left\{ (pc, v) \in \Sigma \mid pc = I \right\} \right\} \right\}
 2: \sigma^I \simeq := \{ S \in \Sigma_{\simeq} \mid pc(S) \text{ is the the initial } pc \}
 3: \rightarrow \sim := \{(S, S') \in \Sigma \sim \times \Sigma \sim \mid \text{Edge}(S, S') \in E\}
 4: P_{\sim} := \langle \Sigma_{\sim}, \sigma_{\sigma}^{I}, \rightarrow_{\sim} \rangle
 5: F:= Test(P)
 6:
       loop
 7:
             if \varphi \cap F \neq \emptyset then
 8.
                  choose s \in \varphi \cap F
                   t := \text{TestForWitness}(s)
  g.
10:
                  return ("fail", t)
11.
             end if
12.
             \tau := \text{GetAbstractTrace}(P_{\sim}, \varphi)
             if \tau = \epsilon then
13:
14:
                  return ("pass", \Sigma_{\sim})
15.
             else
                   \tau_0 := \text{GetOrderedAbstractTrace}(\tau, F)
16:
17:
                   \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_0, F, P)
18.
                  if \rho = true then
19.
                        F := AddTestToForest(t, F)
20:
                   else
21.
                        Refinement of graph
22.
                   end if
23:
             end if
```

end loop

Modifications to DashLoop

```
1: loop
                                                                                                       1: \Sigma_{\simeq} := \bigcup_{l \in I} \{\{(pc, v) \in \Sigma \mid pc = l\}\}
            \tau := FindAbstractErrorPath(G)
            if \tau = \text{NO-PATH then}
  3:
                                                                                                       2: \sigma^{I} \simeq := \{ S \in \Sigma_{\simeq} \mid pc(S) \text{ is the the initial } pc \}

3: \rightarrow \simeq := \{ (S, S') \in \Sigma_{\simeq} \times \Sigma_{\simeq} \mid Edge(S, S') \in E \}
  4:
                 return (PASS, G)
  5.
            end if
                                                                                                       4: P_{\sim} := \langle \Sigma_{\sim}, \sigma_{\sigma}^{I}, \rightarrow_{\sim} \rangle
 6:
                                                                                                       5: F:= Test(P)
 7:
            \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
                                                                                                       6:
                                                                                                            loop
 8:
            \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_c, P)
                                                                                                       7:
                                                                                                                  if \varphi \cap F \neq \emptyset then
 9:
            if t \neq \text{UNSAT} then
                                                                                                       8.
                                                                                                                      choose s \in \varphi \cap F
10:
                 G := RunTest(t, P, G)
                                                                                                                       t := \text{TestForWitness}(s)
                                                                                                       g.
11.
                 if IsErrorRegionReached(G) then
                                                                                                     10:
                                                                                                                      return ("fail", t)
12.
                      return (FAIL, t)
                                                                                                     11.
                                                                                                                  end if
13:
                 end if
                                                                                                     12.
                                                                                                                  \tau := \text{GetAbstractTrace}(P_{\sim}, \varphi)
14.
            else
                                                                                                                  if \tau = \epsilon then
                                                                                                     13:
                 G := RefineGraph(\rho, \tau_c, G)
15.
                                                                                                     14:
                                                                                                                      return ("pass", \Sigma_{\sim})
            end if
16:
                                                                                                     15.
                                                                                                                  else
       end loop
                                                                                                                       \tau_0 := \text{GetOrderedAbstractTrace}(\tau, F)
                                                                                                     16:
                                                                                                     17:
                                                                                                                       \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_0, F, P)
         Remove creation of region graph
                                                                                                     18.
                                                                                                                      if \rho = true then
                                                                                                     19.
                                                                                                                            F := AddTestToForest(t, F)
                                                                                                     20:
                                                                                                                       else
                                                                                                     21.
                                                                                                                            Refinement of graph
                                                                                                     22.
                                                                                                                       end if
```

23:

end if end loop

Modifications to DashLoop

```
1: loop
                                                                                                   1: \Sigma_{\simeq} := \left\{ \int_{I \subset I} \left\{ \left\{ (pc, v) \in \Sigma \mid pc = I \right\} \right\} \right\}
            \tau := FindAbstractErrorPath(G)
            if \tau = \text{NO-PATH then}
 3:
                                                                                                   2: \sigma^I \simeq := \{ S \in \Sigma_{\simeq} \mid pc(S) \text{ is the the initial } pc \}
 4:
                return (PASS, G)
                                                                                                   3: \rightarrow \sim := \{(S, S') \in \Sigma \sim \times \Sigma \sim \mid \text{Edge}(S, S') \in E\}
 5.
           end if
                                                                                                   4: P_{\sim} := \langle \Sigma_{\sim}, \sigma_{\sigma}^{I}, \rightarrow_{\sim} \rangle
 6:
                                                                                                   5: F := \text{Test}(P)
 7:
            \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
                                                                                                   6:
                                                                                                         loop
 8:
            \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_c, P)
                                                                                                   7:
                                                                                                              if \varphi \cap F \neq \emptyset then
 9:
            if t \neq \text{UNSAT} then
                                                                                                   8.
                                                                                                                   choose s \in \varphi \cap F
10:
                 G := RunTest(t, P, G)
                                                                                                                   t := \text{TestForWitness}(s)
                                                                                                    g.
11.
                if IsErrorRegionReached(G) then
                                                                                                  10:
                                                                                                                   return ("fail", t)
12.
                     return (FAIL, t)
                                                                                                  11.
                                                                                                              end if
13:
                end if
                                                                                                  12.
                                                                                                              \tau := \text{GetAbstractTrace}(P_{\sim}, \varphi)
14.
            else
                                                                                                              if \tau = \epsilon then
                                                                                                  13:
                 G := RefineGraph(\rho, \tau_c, G)
15.
                                                                                                  14:
                                                                                                                   return ("pass", \Sigma_{\sim})
            end if
16:
                                                                                                  15.
                                                                                                              else
       end loop
                                                                                                                   \tau_0 := \text{GetOrderedAbstractTrace}(\tau, F)
                                                                                                  16:
                                                                                                  17:
                                                                                                                   \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_0, F, P)
         Remove creation of region graph
                                                                                                  18.
                                                                                                                   if \rho = true then
         Do no load test input
                                                                                                  19.
                                                                                                                        F := AddTestToForest(t, F)
                                                                                                  20:
                                                                                                                   else
                                                                                                  21.
                                                                                                                        Refinement of graph
                                                                                                  22.
                                                                                                                   end if
                                                                                                  23:
                                                                                                              end if
```

end loop

```
1: loop
                                                                                                  1: \Sigma_{\simeq} := \left\{ \int_{I \subset I} \left\{ \left\{ (pc, v) \in \Sigma \mid pc = I \right\} \right\} \right\}
            \tau := FindAbstractErrorPath(G)
            if \tau = \text{NO-PATH then}
 3:
                                                                                                  2: \sigma^I \simeq := \{ S \in \Sigma_{\simeq} \mid pc(S) \text{ is the the initial } pc \}
 4:
                return (PASS, G)
                                                                                                  3: \rightarrow \sim := \{(S, S') \in \Sigma \sim \times \Sigma \sim \mid \text{Edge}(S, S') \in E\}
 5.
           end if
                                                                                                  4: P_{\sim} := \langle \Sigma_{\sim}, \sigma_{\sigma}^{I}, \rightarrow_{\sim} \rangle
 6:
                                                                                                  5: F:= Test(P)
 7:
            \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
                                                                                                  6:
                                                                                                        loop
 8:
            \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_C, P)
                                                                                                  7:
                                                                                                             if \varphi \cap F \neq \emptyset then
 9:
            if t \neq \text{UNSAT} then
                                                                                                  8.
                                                                                                                 choose s \in \varphi \cap F
10:
                 G := RunTest(t, P, G)
                                                                                                                  t := \text{TestForWitness}(s)
                                                                                                   g.
11.
                if IsErrorRegionReached(G) then
                                                                                                 10:
                                                                                                                 return ("fail", t)
12.
                     return (FAIL, t)
                                                                                                 11.
                                                                                                             end if
13:
                end if
                                                                                                 12.
                                                                                                             \tau := \text{GetAbstractTrace}(P_{\sim}, \varphi)
14.
            else
                                                                                                             if \tau = \epsilon then
                                                                                                 13:
                 G := RefineGraph(\rho, \tau_c, G)
15.
                                                                                                 14:
                                                                                                                 return ("pass", \Sigma_{\sim})
            end if
16:
                                                                                                 15.
                                                                                                             else
      end loop
                                                                                                                  \tau_0 := \text{GetOrderedAbstractTrace}(\tau, F)
                                                                                                 16:
                                                                                                 17:
                                                                                                                  \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_0, F, P)
        Remove creation of region graph
                                                                                                 18.
                                                                                                                 if \rho = true then
        Do no load test input
                                                                                                 19.
                                                                                                                      F := AddTestToForest(t, F)
                                                                                                 20:
                                                                                                                  else
        No forest
                                                                                                 21.
                                                                                                                      Refinement of graph
                                                                                                 22.
                                                                                                                  end if
                                                                                                 23:
                                                                                                             end if
                                                                                                        end loop
```

```
1: loop
                                                                                                 1: \Sigma_{\simeq} := \left\{ \int_{I \subset I} \left\{ \left\{ (pc, v) \in \Sigma \mid pc = I \right\} \right\} \right\}
           \tau := FindAbstractErrorPath(G)
           if \tau = \text{NO-PATH then}
 3:
                                                                                                 2: \sigma^I \simeq := \{ S \in \Sigma_{\simeq} \mid pc(S) \text{ is the the initial } pc \}
 4:
                return (PASS, G)
                                                                                                 3: \rightarrow \sim := \{(S, S') \in \Sigma \sim \times \Sigma \sim \mid \text{Edge}(S, S') \in E\}
 5.
           end if
                                                                                                 4: P_{\sim} := \langle \Sigma_{\sim}, \sigma_{\sigma}^{I}, \rightarrow_{\sim} \rangle
 6:
                                                                                                 5: F:= Test(P)
 7:
           \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
                                                                                                 6:
                                                                                                       loop
 8:
            \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_C, P)
                                                                                                 7:
                                                                                                           if \varphi \cap F \neq \emptyset then
 9:
           if t \neq \text{UNSAT} then
                                                                                                 8.
                                                                                                                choose s \in \varphi \cap F
10:
                G := RunTest(t, P, G)
                                                                                                                 t := \text{TestForWitness}(s)
                                                                                                  g.
11.
                if IsErrorRegionReached(G) then
                                                                                                10:
                                                                                                                return ("fail", t)
12.
                     return (FAIL, t)
                                                                                                11.
                                                                                                            end if
13:
                end if
                                                                                                12.
                                                                                                            \tau := \text{GetAbstractTrace}(P_{\sim}, \varphi)
14.
           else
                                                                                                            if \tau = \epsilon then
                                                                                                13:
                G := RefineGraph(\rho, \tau_c, G)
15.
                                                                                                                return ("pass", \Sigma_{\sim})
                                                                                                14:
           end if
16:
                                                                                                15.
                                                                                                            else
      end loop
                                                                                                                 \tau_0 := \text{GetOrderedAbstractTrace}(\tau, F)
                                                                                                16:
                                                                                                17:
                                                                                                                 \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_0, F, P)
        Remove creation of region graph
                                                                                                18.
                                                                                                                if \rho = true then
        Do no load test input
                                                                                                19.
                                                                                                                     F := AddTestToForest(t, F)
                                                                                                20:
                                                                                                                 else
        No forest
                                                                                                21.
                                                                                                                     Refinement of graph
        Move test for error region reached
                                                                                                22.
                                                                                                                 end if
                                                                                                23:
                                                                                                            end if
                                                                                                      end loop
```

```
1: loop
                                                                                                1: \Sigma_{\simeq} := \left\{ \int_{I \subset I} \left\{ \left\{ (pc, v) \in \Sigma \mid pc = I \right\} \right\} \right\}
           \tau := FindAbstractErrorPath(G)
           if \tau = NO-PATH then
 3:
                                                                                                2: \sigma^I \simeq := \{ S \in \Sigma_{\simeq} \mid pc(S) \text{ is the the initial } pc \}
 4:
                return (PASS, G)
                                                                                                3: \rightarrow \sim := \{(S, S') \in \Sigma \sim \times \Sigma \sim \mid \text{Edge}(S, S') \in E\}
 5.
           end if
                                                                                                4: P_{\sim} := \langle \Sigma_{\sim}, \sigma_{\sigma}^{I}, \rightarrow_{\sim} \rangle
 6:
                                                                                                5: F:= Test(P)
 7:
           \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
                                                                                                6:
                                                                                                     loop
 8:
            \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_C, P)
                                                                                                7:
                                                                                                          if \varphi \cap F \neq \emptyset then
 9:
           if t \neq \text{UNSAT} then
                                                                                                8.
                                                                                                               choose s \in \varphi \cap F
10:
                G := RunTest(t, P, G)
                                                                                                               t := \text{TestForWitness}(s)
                                                                                                g.
11.
                if IsErrorRegionReached(G) then
                                                                                               10:
                                                                                                               return ("fail", t)
12.
                     return (FAIL, t)
                                                                                               11.
                                                                                                          end if
13:
                end if
                                                                                               12.
                                                                                                          \tau := \text{GetAbstractTrace}(P_{\sim}, \varphi)
14.
           else
                                                                                                          if \tau = \epsilon then
                                                                                               13:
                G := RefineGraph(\rho, \tau_c, G)
15.
                                                                                               14:
                                                                                                               return ("pass", \Sigma_{\sim})
           end if
16:
                                                                                               15.
                                                                                                          else
      end loop
                                                                                                               \tau_0 := \text{GetOrderedAbstractTrace}(\tau, F)
                                                                                               16:
                                                                                               17:
                                                                                                               \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_0, F, P)
        Remove creation of region graph
                                                                                               18.
                                                                                                               if \rho = true then
                                                                                                                    F := AddTestToForest(t, F)
        Do no load test input
                                                                                               19.
                                                                                               20:
                                                                                                               else
        No forest
                                                                                               21.
                                                                                                                    Refinement of graph
        Move test for error region reached
                                                                                               22.
                                                                                                               end if
                                                                                               23:
                                                                                                          end if
        The rest is nearly the same
                                                                                                     end loop
```

```
1: loop
                                                                                                 1: \Sigma_{\simeq} := \left\{ \int_{I \subset I} \left\{ \left\{ (pc, v) \in \Sigma \mid pc = I \right\} \right\} \right\}
           \tau := FindAbstractErrorPath(G)
           if \tau = \text{NO-PATH then}
 3:
                                                                                                 2: \sigma^I \simeq := \{ S \in \Sigma_{\simeq} \mid pc(S) \text{ is the the initial } pc \}
 4:
                return (PASS, G)
                                                                                                 3: \rightarrow \sim := \{(S, S') \in \Sigma \sim \times \Sigma \sim \mid \text{Edge}(S, S') \in E\}
 5.
           end if
                                                                                                 4: P_{\sim} := \langle \Sigma_{\sim}, \sigma_{\sigma}^{I}, \rightarrow_{\sim} \rangle
 6:
                                                                                                 5: F:= Test(P)
 7:
           \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
                                                                                                 6:
                                                                                                      loop
 8:
            \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_C, P)
                                                                                                 7:
                                                                                                           if \varphi \cap F \neq \emptyset then
 9:
           if t \neq \text{UNSAT} then
                                                                                                 8.
                                                                                                                choose s \in \varphi \cap F
10:
                G := RunTest(t, P, G)
                                                                                                                t := \text{TestForWitness}(s)
                                                                                                 g.
11.
                if IsErrorRegionReached(G) then
                                                                                               10:
                                                                                                                return ("fail", t)
12.
                     return (FAIL, t)
                                                                                               11.
                                                                                                           end if
13:
                end if
                                                                                               12.
                                                                                                           \tau := \text{GetAbstractTrace}(P_{\sim}, \varphi)
14.
           else
                                                                                                           if \tau = \epsilon then
                                                                                               13:
                G := RefineGraph(\rho, \tau_c, G)
15.
                                                                                               14:
                                                                                                                return ("pass", \Sigma_{\sim})
           end if
16:
                                                                                               15.
                                                                                                           else
      end loop
                                                                                                                \tau_0 := \text{GetOrderedAbstractTrace}(\tau, F)
                                                                                               16:
                                                                                               17:
                                                                                                                \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_0, F, P)
        Remove creation of region graph
                                                                                               18.
                                                                                                                if \rho = true then
                                                                                                                    F := AddTestToForest(t, F)
        Do no load test input
                                                                                               19.
                                                                                               20:
                                                                                                                else
        No forest
                                                                                               21.
                                                                                                                    Refinement of graph
        Move test for error region reached
                                                                                               22.
                                                                                                                end if
                                                                                               23:
                                                                                                           end if
        The rest is nearly the same
                                                                                                      end loop
```

```
1: loop
                                                                                                 1: \Sigma_{\simeq} := \left\{ \int_{I \subset I} \left\{ \left\{ (pc, v) \in \Sigma \mid pc = I \right\} \right\} \right\}
           \tau := FindAbstractErrorPath(G)
           if \tau = \text{NO-PATH then}
 3:
                                                                                                 2: \sigma^I \simeq := \{ S \in \Sigma_{\simeq} \mid pc(S) \text{ is the the initial } pc \}
 4:
                return (PASS, G)
                                                                                                 3: \rightarrow \sim := \{(S, S') \in \Sigma \sim \times \Sigma \sim \mid \text{Edge}(S, S') \in E\}
 5.
           end if
                                                                                                 4: P_{\sim} := \langle \Sigma_{\sim}, \sigma_{\sigma}^{I}, \rightarrow_{\sim} \rangle
 6:
                                                                                                 5: F:= Test(P)
 7:
           \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
                                                                                                 6:
                                                                                                      loop
 8:
           \langle t, \rho \rangle := \mathsf{ExtendFrontier}(\tau_c, P)
                                                                                                 7:
                                                                                                           if \varphi \cap F \neq \emptyset then
 9:
           if t \neq \text{UNSAT} then
                                                                                                 8.
                                                                                                                choose s \in \varphi \cap F
10:
                G := RunTest(t, P, G)
                                                                                                                t := \text{TestForWitness}(s)
                                                                                                 g.
11.
                if IsErrorRegionReached(G) then
                                                                                               10:
                                                                                                                return ("fail", t)
12.
                     return (FAIL, t)
                                                                                                11.
                                                                                                           end if
13:
                end if
                                                                                               12.
                                                                                                           \tau := \text{GetAbstractTrace}(P_{\sim}, \varphi)
14.
           else
                                                                                                           if \tau = \epsilon then
                                                                                                13:
                G := RefineGraph(\rho, \tau_c, G)
15.
                                                                                               14:
                                                                                                                return ("pass", \Sigma_{\sim})
           end if
16:
                                                                                               15.
                                                                                                           else
      end loop
                                                                                                                \tau_0 := \text{GetOrderedAbstractTrace}(\tau, F)
                                                                                                16:
                                                                                               17:
                                                                                                                \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_0, F, P)
        Remove creation of region graph
                                                                                               18.
                                                                                                                if \rho = true then
                                                                                                                     F := AddTestToForest(t, F)
        Do no load test input
                                                                                               19.
                                                                                               20:
                                                                                                                else
        No forest
                                                                                               21.
                                                                                                                     Refinement of graph
        Move test for error region reached
                                                                                               22.
                                                                                                                end if
                                                                                               23:
                                                                                                           end if
        The rest is nearly the same
                                                                                                      end loop
```

```
1: loop
                                                                                                 1: \Sigma_{\simeq} := \left\{ \int_{I \subset I} \left\{ \left\{ (pc, v) \in \Sigma \mid pc = I \right\} \right\} \right\}
           \tau := FindAbstractErrorPath(G)
           if \tau = \text{NO-PATH then}
 3:
                                                                                                 2: \sigma^I \simeq := \{ S \in \Sigma_{\simeq} \mid pc(S) \text{ is the the initial } pc \}
 4:
                return (PASS, G)
                                                                                                 3: \rightarrow \sim := \{(S, S') \in \Sigma \sim \times \Sigma \sim \mid \text{Edge}(S, S') \in E\}
 5.
           end if
                                                                                                 4: P_{\sim} := \langle \Sigma_{\sim}, \sigma_{\sigma}^{I}, \rightarrow_{\sim} \rangle
 6:
                                                                                                 5: F:= Test(P)
 7:
           \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
                                                                                                 6:
                                                                                                      loop
 8:
            \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_C, P)
                                                                                                 7:
                                                                                                           if \varphi \cap F \neq \emptyset then
 9:
           if t \neq \text{UNSAT} then
                                                                                                 8.
                                                                                                               choose s \in \varphi \cap F
10:
                G := RunTest(t, P, G)
                                                                                                                t := \text{TestForWitness}(s)
                                                                                                 g.
11.
                if IsErrorRegionReached(G) then
                                                                                               10:
                                                                                                               return ("fail", t)
12.
                     return (FAIL, t)
                                                                                               11.
                                                                                                           end if
13:
                end if
                                                                                               12.
                                                                                                           \tau := \text{GetAbstractTrace}(P_{\sim}, \varphi)
14.
           else
                                                                                                           if \tau = \epsilon then
                                                                                               13:
                G := RefineGraph(\rho, \tau_c, G)
15.
                                                                                               14:
                                                                                                               return ("pass", \Sigma_{\sim})
           end if
16:
                                                                                               15.
                                                                                                           else
      end loop
                                                                                                                \tau_0 := \text{GetOrderedAbstractTrace}(\tau, F)
                                                                                               16:
                                                                                               17:
                                                                                                                \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_0, F, P)
        Remove creation of region graph
                                                                                               18.
                                                                                                               if \rho = true then
        Do no load test input
                                                                                               19.
                                                                                                                    F := AddTestToForest(t, F)
                                                                                               20:
                                                                                                                else
        No forest
                                                                                               21.
                                                                                                                    Refinement of graph
        Move test for error region reached
                                                                                               22.
                                                                                                                end if
                                                                                               23:
                                                                                                           end if
        The rest is nearly the same
                                                                                                      end loop
```

Modifications to DashLoop

```
1: loop
                                                                                                 1: \Sigma_{\simeq} := \left\{ \int_{I \subset I} \left\{ \left\{ (pc, v) \in \Sigma \mid pc = I \right\} \right\} \right\}
           \tau := FindAbstractErrorPath(G)
           if \tau = \text{NO-PATH then}
 3:
                                                                                                 2: \sigma^I \simeq := \{ S \in \Sigma_{\simeq} \mid pc(S) \text{ is the the initial } pc \}
 4:
                return (PASS, G)
                                                                                                 3: \rightarrow \sim := \{(S, S') \in \Sigma \sim \times \Sigma \sim \mid \text{Edge}(S, S') \in E\}
 5.
           end if
                                                                                                 4: P_{\sim} := \langle \Sigma_{\sim}, \sigma_{\sigma}^{I}, \rightarrow_{\sim} \rangle
 6:
                                                                                                 5: F:= Test(P)
 7:
           \tau_c := \text{ConvertToRegionTraceWithAbstractFrontier}(\tau, G)
                                                                                                 6:
                                                                                                      loop
 8:
            \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_C, P)
                                                                                                 7:
                                                                                                           if \varphi \cap F \neq \emptyset then
 9:
           if t \neq \text{UNSAT} then
                                                                                                 8.
                                                                                                                choose s \in \varphi \cap F
10:
                G := RunTest(t, P, G)
                                                                                                                t := \text{TestForWitness}(s)
                                                                                                 g.
11.
                if IsErrorRegionReached(G) then
                                                                                               10:
                                                                                                                return ("fail", t)
12.
                     return (FAIL, t)
                                                                                               11.
                                                                                                           end if
13:
                end if
                                                                                               12.
                                                                                                           \tau := \text{GetAbstractTrace}(P_{\sim}, \varphi)
14.
           else
                                                                                                           if \tau = \epsilon then
                                                                                               13:
                G := RefineGraph(\rho, \tau_c, G)
15.
                                                                                               14:
                                                                                                                return ("pass", \Sigma_{\sim})
           end if
16:
                                                                                               15.
                                                                                                           else
      end loop
                                                                                                                \tau_0 := \text{GetOrderedAbstractTrace}(\tau, F)
                                                                                               16:
                                                                                               17:
                                                                                                                \langle t, \rho \rangle := \text{ExtendFrontier}(\tau_0, F, P)
        Remove creation of region graph
                                                                                               18.
                                                                                                                if \rho = true then
                                                                                                                     F := AddTestToForest(t, F)
        Do no load test input
                                                                                               19.
                                                                                               20:
                                                                                                                else
        No forest
                                                                                               21.
                                                                                                                     Refinement of graph
        Move test for error region reached
                                                                                               22.
                                                                                                                end if
                                                                                               23:
                                                                                                           end if
        The rest is nearly the same
                                                                                                      end loop
```

Refinement moved to later slide

- What makes a trace ordered?
 - ▶ GetOrderedAbstractTrace and τ_o

- ▶ What makes a trace ordered?
 - ▶ GetOrderedAbstractTrace and τ_o
- Why include the tail of the path in the trace?

$$u$$
 $\tau_o = S_0, \dots, S_{k-1}, S_k, \dots S_n$

- What makes a trace ordered?
 - ▶ GetOrderedAbstractTrace and τ_o
- Why include the tail of the path in the trace?

$$\tau_c = S_0, \dots, S_{k-1}, S_k
\tau_o = S_0, \dots, S_{k-1}, S_k, \dots S_n$$

▶ Should the trace τ_c follow the path τ ?

```
void foo(int a)
{
  int i = 0;
  while(i < 1)
    i = i + 1;
  assert(a < 0);
}</pre>
```

- What makes a trace ordered?
 - GetOrderedAbstractTrace and τ_o
- Why include the tail of the path in the trace?

$$\tau_c = S_0, \dots, S_{k-1}, S_k$$

$$\tau_o = S_0, \dots, S_{k-1}, S_k, \dots S_n$$

▶ Should the trace τ_c follow the path τ ?

- What makes a trace ordered?
 - GetOrderedAbstractTrace and τ_o
- Why include the tail of the path in the trace?

$$au_c = S_0, \dots, S_{k-1}, S_k$$

$$\tau_o = S_0, \ldots, S_{k-1}, S_k, \ldots S_n$$

- ▶ Should the trace τ_c follow the path τ ?
 - No.

- What makes a trace ordered?
 - ▶ GetOrderedAbstractTrace and τ_o
- Why include the tail of the path in the trace?

$$\tau_c = S_0, ..., S_{k-1}, S_k
\tau_o = S_0, ..., S_{k-1}, S_k, ... S_n$$

- Should the trace τ_c follow the path τ ?
- Which state to pick when generating a trace?

```
void foo()
{
  int a = 1;
  int i = 0;
  while(i < 1000)
    i = i + 1;
  if(a == 0)
    error;
}</pre>
```

- What makes a trace ordered?
 - GetOrderedAbstractTrace and τ_o
- Why include the tail of the path in the trace?

$$\tau_c = S_0, \dots, S_{k-1}, S_k$$

$$\tau_o = S_0, \ldots, S_{k-1}, S_k, \ldots S_n$$

- ▶ Should the trace τ_c follow the path τ ?
 - ► No
- Which state to pick when generating a trace?

- What makes a trace ordered?
 - ▶ GetOrderedAbstractTrace and τ_o
- Why include the tail of the path in the trace?

$$\tau_c = S_0, \dots, S_{k-1}, S_k$$

$$\qquad \qquad \tau_o = S_0, \ldots, S_{k-1}, S_k, \ldots S_n$$

- Should the trace τ_c follow the path τ ?
 - ich state to nick when son
- Which state to pick when generating a trace?
 - Pick random

- What makes a trace ordered?
 - ▶ GetOrderedAbstractTrace and τ_o
- Why include the tail of the path in the trace?

$$\tau_c = S_0, \dots, S_{k-1}, S_k$$

$$\tau_o = S_0, \ldots, S_{k-1}, S_k, \ldots S_n$$

- ▶ Should the trace τ_c follow the path τ ?
 - No.
- Which state to pick when generating a trace?
 - Pick random
 - Pick the last state

- What makes a trace ordered?
 - ▶ GetOrderedAbstractTrace and τ_o
- Why include the tail of the path in the trace?

$$\tau_c = S_0, \dots, S_{k-1}, S_k$$

$$\tau_o = S_0, \ldots, S_{k-1}, S_k, \ldots S_n$$

- ▶ Should the trace τ_c follow the path τ ?
 - ► No.
- Which state to pick when generating a trace?
 - Pick random
 - Pick the last state
 - Pick a state the enters the sought region

- What makes a trace ordered?
 - ▶ GetOrderedAbstractTrace and τ_o
- Why include the tail of the path in the trace?

$$\tau_c = S_0, \dots, S_{k-1}, S_k$$

$$\tau_o = S_0, \ldots, S_{k-1}, S_k, \ldots S_n$$

- ▶ Should the trace τ_c follow the path τ ?
 - No.
- Which state to pick when generating a trace?
 - Pick random
 - Pick the last state
 - Pick a state the enters the sought region

21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications and Challenges

Modifications to refinement

```
RefineGraph(\rho, \tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle)
  1: let(\rho_{k-1}, states) = S_{k-1}
  2. if k = 1 then
             return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\infty}^* := \rightarrow_{\infty} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*, \}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
             \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^{**}) \mid S \in \mathsf{Parents}(S_{k-1})\}
20: end if
```

```
\begin{array}{ll} 1: & \text{let } S_0, S_1, \dots, S_n = \tau_0 \text{ and} \\ 2: & (k-1,k) = \text{Frontier}(\tau_0) \text{ in} \\ 3: & \sum_{\simeq} := (\sum_{\sim} \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\} \\ 4: & \to \simeq := (\to \simeq \setminus \{S_{(s-1)}\}) \cup \{S_{(s-1)}\} \\ & \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\} \\ 5: & \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\} \\ & \cup \{(S, S_{k-1} \wedge \neg \rho, I) \mid S \in \text{Parents}(S_{k-1})\} \\ & \cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\} \\ & \cup \{(S_{k-1} \wedge \neg \rho, S) \mid S \in \text{Children}(S_{k-1})\} \\ & \cup \{(S_{k-1} \wedge \neg \rho, S) \mid S \in \text{Children}(S_{k-1})\} \\ \end{array}
```

20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications and Challenges

Modifications to refinement RefineGraph(ρ , $\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle$, $G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle$)

```
1: let(\rho_{k-1}, states) = S_{k-1}
  2. if k = 1 then
             return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\infty}^* := \rightarrow_{\infty} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*, \}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
```

```
1: let S_0, S_1, \ldots, S_n = \tau_0 and

2: (k-1, k) = \text{Frontier}(\tau_0) in

3: \Sigma_{\simeq} := (\Sigma_{\simeq} \setminus \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\}

4: \to \simeq := (\to \simeq \setminus \{(S, S_{k-1}) \mid S \in \text{Parents}(S_{k-1})\})

\setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}

5: \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S, S_{k-1} \wedge -\rho, S) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1}) \setminus \{S_k\}\}
```

Disambiguate regions and region predicates

18: if $IsSAT(\rho_{k-1}^{**}) \neq UNSAT$ then

20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications to refinement RefineGraph(ρ , $\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle$, $G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle$)

```
1: let(\rho_{k-1}, states) = S_{k-1}
  2. if k = 1 then
             return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\sim}^* := \rightarrow_{\sim} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*, \}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
```

```
1: let S_0, S_1, \ldots, S_n = \tau_0 and

2: (k-1, k) = \text{Frontier}(\tau_0) in

3: \Sigma_{\simeq} := (\Sigma_{\simeq} \setminus \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\}

4: \to \simeq := (\to \simeq \setminus \{(S, S_{k-1}) \mid S \in \text{Parents}(S_{k-1})\})

\setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}

5: \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S, S_{k-1} \wedge -\rho, S) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1}) \setminus \{S_k\}\}
```

- Disambiguate regions and region predicates
- Spell out what happens

20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications to refinement RefineGraph(ρ , $\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle$, $G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle$)

```
1: let(\rho_{k-1}, states) = S_{k-1}
  2. if k = 1 then
             return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4. end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\sim}^* := \rightarrow_{\sim} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*, \}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
```

```
1: let S_0, S_1, \ldots, S_n = \tau_0 and

2: (k-1, k) = \text{Frontier}(\tau_0) in

3: \Sigma_{\simeq} := (\Sigma_{\simeq} \setminus \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\}

4: \to \simeq := (\to \simeq \setminus \{(S, S_{k-1}) \mid S \in \text{Parents}(S_{k-1})\}) \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}

5: \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\} \cup \{(S, S_{k-1} \wedge \rho, S) \mid S \in \text{Parents}(S_{k-1})\} \cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\} \cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1}) \setminus \{S_k\}\}
```

- Disambiguate regions and region predicates
- Spell out what happens

20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications to refinement RefineGraph(ρ , $\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle$, $G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle$)

```
1: let(\rho_{k-1}, states) = S_{k-1}
  2. if k = 1 then
              return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\infty}^* := \rightarrow_{\infty} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*\}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^*\setminus\{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{\nu-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}\}
17: \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S_{k-1}^{**},S) \mid S \in \mathsf{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
```

```
1: let S_0, S_1, \ldots, S_n = \tau_0 and

2: (k-1, k) = \text{Frontier}(\tau_0) in

3: \Sigma_{\simeq} := (\Sigma_{\simeq} \setminus \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\}

4: \to \simeq := (\to \simeq \setminus \{(S, S_{k-1}) \mid S \in \text{Parents}(S_{k-1})\})

\setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}

5: \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S, S_{k-1} \wedge -\rho, S) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1}) \setminus \{S_k\})\}
```

- Disambiguate regions and region predicates
- Spell out what happens

18: if $IsSAT(\rho_{k-1}^{**}) \neq UNSAT$ then

20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications to refinement RefineGraph(ρ , $\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle$, $G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle$)

```
1: let(\rho_{k-1}, states) = S_{k-1}
  2. if k = 1 then
              return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\infty}^* := \rightarrow_{\infty} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*, \}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
```

```
1: let S_0, S_1, \ldots, S_n = \tau_0 and

2: (k-1, k) = \text{Frontier}(\tau_0) in

3: \Sigma_{\simeq} := (\Sigma_{\simeq} \setminus \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\}

4: \to \simeq := (\to \simeq \setminus \{(S, S_{k-1}) \mid S \in \text{Parents}(S_{k-1})\})

\setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}

5: \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S, S_{k-1} \wedge -\rho) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1}) \setminus \{S_k\}\}
```

- Disambiguate regions and region predicates
- Spell out what happens

18: if $IsSAT(\rho_{k-1}^{**}) \neq UNSAT$ then

20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications to refinement RefineGraph(ρ , $\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle$, $G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle$)

```
1: let(\rho_{k-1}, states) = S_{k-1}
  2. if k = 1 then
              return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4. end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\infty}^* := \rightarrow_{\infty} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*, \}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
```

```
1: let S_0, S_1, \ldots, S_n = \tau_0 and

2: (k-1, k) = \text{Frontier}(\tau_0) in

3: \Sigma_{\simeq} := (\Sigma_{\simeq} \setminus \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\}

4: \to \simeq := (\to \simeq \setminus \{(S, S_{k-1}) \mid S \in \text{Parents}(S_{k-1})\})

\setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}

5: \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S, S_{k-1} \wedge \rho, S) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1}) \setminus \{S_k\}\}
```

- Disambiguate regions and region predicates
- Spell out what happens

1: $let\langle \rho_{k-1}, states \rangle = S_{k-1}$ 2: if k = 1 then

20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications to refinement RefineGraph(ρ , $\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle$, $G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle$)

```
return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\infty}^* := \rightarrow_{\infty} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*, \}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
```

```
1: let S_0, S_1, \ldots, S_n = \tau_0 and

2: (k-1, k) = \text{Frontier}(\tau_0) in

3: \Sigma_{\simeq} := (\Sigma_{\simeq} \setminus \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\}

4: \to \simeq := (\to \simeq \setminus \{(S, S_{k-1}) \mid S \in \text{Parents}(S_{k-1})\})

\setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}

5: \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S, S_{k-1} \wedge -\rho) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1}) \setminus \{S_k\}\}
```

- Disambiguate regions and region predicates
- Spell out what happens

1: $let\langle \rho_{k-1}, states \rangle = S_{k-1}$ 2: if k = 1 then

20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications to refinement RefineGraph(ρ , $\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle$, $G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle$)

```
return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4. end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\infty}^* := \rightarrow_{\infty} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*, \}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
```

```
1: let S_0, S_1, \ldots, S_n = \tau_0 and

2: (k-1, k) = \text{Frontier}(\tau_0) in

3: \Sigma_{\simeq} := (\Sigma_{\simeq} \setminus \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\}

4: \to \simeq := (\to \simeq \setminus \{(S, S_{k-1}) \mid S \in \text{Parents}(S_{k-1})\})

\setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}

5: \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S, S_{k-1} \wedge -\rho, S) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1}) \setminus \{S_k\}\}
```

- Disambiguate regions and region predicates
- Spell out what happens

20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications and Challenges

Modifications to refinement RefineGraph(ρ , $\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle$, $G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle$)

```
1: let(\rho_{k-1}, states) = S_{k-1}
  2. if k = 1 then
             return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\infty}^* := \rightarrow_{\infty} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*, \}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
             \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^{**}) \mid S \in \mathsf{Parents}(S_{k-1})\}
```

```
1: let S_0, S_1, \ldots, S_n = \tau_0 and

2: (k-1, k) = \text{Frontier}(\tau_0) in

3: \Sigma_{\simeq} := (\Sigma_{\simeq} \setminus \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\}

4: \to \simeq := (\to \simeq \setminus \{(S, S_{k-1}) \mid S \in \text{Parents}(S_{k-1})\})

\setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}

5: \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S, S_{k-1} \wedge \rho, S) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1}) \setminus \{S_k\}\}
```

- Disambiguate regions and region predicates
- Spell out what happens

1: $let\langle \rho_{k-1}, states \rangle = S_{k-1}$ 2: if k = 1 then

20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications to refinement RefineGraph(ρ , $\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle$, $G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle$)

```
return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\infty}^* := \rightarrow_{\infty} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*, \}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
```

```
1: let S_0, S_1, \dots, S_n = \tau_0 and

2: (k-1,k) = \text{Frontier}(\tau_0) in

3: \Sigma_{\simeq} := (\Sigma_{\simeq} \setminus \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\}

4: \to \simeq := (\to \simeq \setminus \{(S, S_{k-1}) \mid S \in \text{Parents}(S_{k-1})\})

\setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}

5: \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\}

\cup \{(S, S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\}

\cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1}) \setminus \{S_k\})\}
```

- Disambiguate regions and region predicates
- Spell out what happens
- ▶ Remove incoming edges (remove infeasible regions)

20: end if 21: return $\langle \Sigma_{\sim}^*, \rightarrow_{\sim}^* \rangle$

Modifications and Challenges

Modifications to refinement RefineGraph(ρ , $\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle$, $G = \langle \Sigma_{\sim}, \rightarrow_{\sim} \rangle$)

```
1: let(\rho_{k-1}, states) = S_{k-1}
  2. if k = 1 then
             return \langle \Sigma_{\sim}, \rightarrow_{\sim} \backslash (S_0, S_1) \rangle
  4: end if
  5: \Sigma_{\infty}^* := \Sigma_{\infty} \setminus \{S_{k-1}\}
  6: \rightarrow_{\infty}^* := \rightarrow_{\infty} \setminus \{(S, S_{k-1}) \mid S \in \mathsf{Parents}(S_{k-1})\}
  7: \rightarrow_{\sim}^* := \rightarrow_{\sim}^* \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}
 8: \rho_{k-1}^* := Simplify(\rho_{k-1} \wedge \neg \rho)
 9: S_k^* := \langle \rho_k^* , states \rangle
10: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^*, \}
11: \to_{\sim}^* := \to_{\sim}^* \cup \{(S, S_{k-1}^*) \mid S \in \mathsf{Parents}(S_{k-1})\}
12: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^*, S) \mid S \in \text{Children}(S_{k-1})\}
13: \to_{\sim}^* := \to_{\sim}^* \setminus \{(S_k^*, S_k)\}
14: \rho_k^{**} := Simplify(\rho_{k-1} \wedge \rho)
15: S_{k-1}^{**} := \langle \rho_{k-1}^{**}, \emptyset \rangle
16: \Sigma_{\sim}^* := \Sigma_{\sim}^* \cup \{S_{\iota}^{**}, 1\}
17: \to_{\sim}^* := \to_{\sim}^* \cup \{(S_{k-1}^{**}, S) \mid S \in \text{Children}(S_{k-1})\}
18: if IsSAT(\rho_{k-1}^{**}) \neq UNSAT then
            \rightarrow_{\sim}^*:=\rightarrow_{\sim}^* \cup \{(S,S_{k-1}^{**}) \mid S \in \mathsf{Parents}(S_{k-1})\}
```

```
1: let S_0, S_1, \ldots, S_n = \tau_0 and

2: (k-1,k) = \text{Frontier}(\tau_0) in

3: \Sigma_{\simeq} := (\Sigma_{\simeq} \setminus \{S_{k-1}\}) \cup \{S_{k-1} \wedge \rho, S_{k-1} \wedge \neg \rho\}

4: \to \simeq := (\to_{\simeq} \setminus \{(S, S_{k-1}) \mid S \in \text{Parents}(S_{k-1})\}) \setminus \{(S_{k-1}, S) \mid S \in \text{Children}(S_{k-1})\}

5: \to \simeq := \to \simeq \cup \{(S, S_{k-1} \wedge \rho) \mid S \in \text{Parents}(S_{k-1})\} \cup \{(S, S_{k-1} \wedge \rho, S) \mid S \in \text{Parents}(S_{k-1})\} \cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1})\} \cup \{(S_{k-1} \wedge \rho, S) \mid S \in \text{Children}(S_{k-1}) \setminus \{S_k\})\}
```

- Disambiguate regions and region predicates
- Spell out what happens
 - ► Remove incoming edges (remove infeasible regions)
 - Initial region refinement

Initial region refinement

How should the initial region be refined?

Initial region refinement

- How should the initial region be refined?
 - Like any other region (Multiple initial regions)

Initial region refinement

- How should the initial region be refined?
 - Like any other region (Multiple initial regions)
 - ► Remove infeasible edge

Initial region refinement

- How should the initial region be refined?
 - Like any other region (Multiple initial regions)
 - Remove infeasible edge

```
\begin{aligned} & \mathsf{RefineGraph}(\rho, \tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle, G = \langle \Sigma_{\simeq}, \rightarrow_{\simeq} \rangle) \\ & 1 \colon \mathsf{let} \ \langle \rho_{k-1}, \mathit{states} \rangle = S_{k-1} \\ & 2 \colon \mathsf{if} \ k = 1 \ \mathsf{then} \\ & 3 \colon \quad \mathsf{return} \ \langle \Sigma_{\simeq}, \rightarrow_{\simeq} \setminus (S_0, S_1) \rangle \\ & 4 \colon \mathsf{end} \ \mathsf{if} \\ & 5 \colon \dots \\ & 6 \colon \mathsf{return} \ \langle \Sigma_{\simeq}^*, \rightarrow_{\simeq}^* \rangle \end{aligned}
```

Modifications to ExtendFrontier

```
ExtendFrontier(\tau_c, P)

1: \phi:= ExecuteSymbolic(\tau_c, P)

2: t:= IsSAT(\phi, P)

3: if t = UNSAT then

4: \rho:= RefinePred(\tau_c)

5: else

6: \rho:= true

7: end if

8: return \langle t, \rho \rangle
```

9: return $\langle t, \rho \rangle$

Modifications to ExtendFrontier

```
ExtendFrontier(\tau_c, P)

1: \phi:= ExecuteSymbolic(\tau_c, P)

2: t:= IsSAT(\phi, P)

3: if t= UNSAT then

4: \rho:= RefinePred(\tau_c)

5: else

6: \rho:= true

7: end if

8: return \langle t, \rho \rangle
```

```
\begin{aligned} & \mathsf{ExtendFrontier}(\tau, F, P) \\ & 1: \ (k-1, k) := \mathsf{Frontier}(\tau) \\ & 2: \ (\phi_1, S, \phi_2) := \mathsf{ExecuteSymbolic}(\tau, F, P) \\ & 3: \ t := \mathsf{IsSAT}(\phi_1, S, \phi_2, P) \\ & 4: \ \ \mathsf{if} \ t = \epsilon \ \ \mathsf{then} \\ & 5: \ \rho := \mathsf{RefinePred}(S, \tau) \\ & 6: \ \mathsf{else} \\ & 7: \ \rho := \mathsf{true} \\ & 8: \ \ \mathsf{end} \ \ \mathsf{if} \end{aligned}
```

9: return $\langle t, \rho \rangle$

lacktriangle Consistent naming of au and au_o/ au_c

Modifications to ExtendFrontier

```
ExtendFrontier(\tau_c, P)

1: \phi:= ExecuteSymbolic(\tau_c, P)

2: t:= IsSAT(\phi, P)

3: if t= UNSAT then

4: \rho:= RefinePred(\tau_c)

5: else

6: \rho:= true

7: end if

8: return \langle t, \rho \rangle
```

- lacktriangle Consistent naming of au and au_o/ au_c
- \triangleright Removal of Frontier since k-1 and k is unused

Modifications to ExtendFrontier

```
ExtendFrontier(\tau_c, P)

1: \phi := \text{ExecuteSymbolic}(\tau_c, P)

2: t := \text{IsSAT}(\phi, P)

3: if t = \text{UNSAT} then

4: \rho := \text{RefinePred}(\tau_c)

5: else

6: \rho := true

7: end if

8: return \langle t, \rho \rangle
```

```
\begin{aligned} & \text{ExtendFrontier}(\tau, F, P) \\ & 1: \ (k-1, k) := \text{Frontier}(\tau) \\ & 2: \ (\phi_1, S, \phi_2) := \text{ExecuteSymbolic}(\tau, F, P) \\ & 3: \ t := \text{IsSAT}(\phi_1, S, \phi_2, P) \\ & 4: \ \text{if } t = \epsilon \ \text{then} \\ & 5: \quad \rho := \text{RefinePred}(S, \tau) \\ & 6: \ \text{else} \\ & 7: \quad \rho := true \\ & 8: \ \text{end if} \end{aligned}
```

9: return $\langle t, \rho \rangle$

- ▶ Consistent naming of τ and τ_o/τ_c
- \blacktriangleright Removal of Frontier since k-1 and k is unused
- ▶ Simpler path constraint $(\phi_1 \land S \land \phi_2)$

Modifications to ExtendFrontier

```
ExtendFrontier(\tau_c, P)

1: \phi:= ExecuteSymbolic(\tau_c, P)

2: t:= IsSAT(\phi, P)

3: if t= UNSAT then

4: \rho:= RefinePred(\tau_c)

5: else

6: \rho:= true

7: end if

8: return \langle t, \rho \rangle
```

```
ExtendFrontier(\tau, F, P)

1: (k - 1, k) \coloneqq \text{Frontier}(\tau)

2: (\phi_1, S, \phi_2) \coloneqq \text{ExecuteSymbolic}(\tau, F, P)

3: t \coloneqq \text{IsSAT}(\phi_1, S, \phi_2, P)

4: if t = \epsilon then

5: \rho \coloneqq \text{RefinePred}(S, \tau)

6: else

7: \rho \coloneqq \text{true}

8: end if

9: return (t, \rho)
```

- lacktriangle Consistent naming of au and au_o/ au_c
- \triangleright Removal of Frontier since k-1 and k is unused
- ▶ Simpler path constraint $(\phi_1 \land S \land \phi_2)$
- Use UNSAT to indicate unsatisfiability, instead of \(\epsilon \)

Modifications to ExecuteSymbolic

```
ExecuteSymbolic (\tau_c = \langle S_0, \dots, S_k \rangle, P)
                                                                        ExecuteSymbolic(\tau_0, F, P)
 1: let \langle \rho_0, \rangle = S_0
                                                                         1: (k-1, k) := \text{Frontier}(\tau_0 = \langle S_0, S_1, \dots, S_n \rangle)
 2: S := [v \mapsto v_0 \mid v \in params(P)]
                                                                         2: S := [v \mapsto v_0 \mid *v \in inputs(P)]
 3: \phi := SymbolicEval(\rho_0, S)
                                                                         3: \phi_1 := SymbolicEval(S_0, S)
 4: for i = 0 to k - 1 do
                                                                         4: \phi_2 := true
         op := Op(S_i, S_{i+1})
                                                                         5: i := 0
         match op
                                                                         6: while i \neq k-1 do
              case(v := e):
                                                                                 op := \lambda(\mathsf{Edge}(S_i, S_{i+1}))
                  S := S[v \mapsto SymbolicEval(e, S)]
                                                                                 match op
                                                                                      case(*m=e):
 g.
              case(assumec):
                                                                                           \hat{S} := \hat{S} + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
                   \dot{\phi} := \phi \land \mathsf{SymbolicEval}(c, s)
                                                                        10:
10:
                                                                        11:
                                                                                      case(if e goto I):
11:
         let \langle \rho_{i+1}, \rangle = S_{i+1}
                                                                        12:
                                                                                          \phi_1 := \phi_1 \land SymbolicEval(e, S)
         \phi := \phi \wedge \text{SymbolicEval}(\rho_{i+1}, S)
12.
13: end for
                                                                        13.
                                                                                 i := i + 1
                                                                                  \phi_1 := \phi_1 \land SymbolicEval(S_i, S)
14: return \phi
                                                                        14:
                                                                        15: end while
                                                                        16: op := \lambda(\mathsf{Edge}(S_{k-1}, S_k))
                                                                        17: match op
                                                                        18:
                                                                                 case(*m=e):
                                                                                      \phi_2 := \phi_2 \wedge *(SymbolicEval(m, S)) = SymbolicEval(e, S)
                                                                        19.
                                                                                      S' := S + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
                                                                        20:
                                                                        21:
                                                                                 case(if e goto I):
                                                                        22:
                                                                                      \phi_2 := \phi_2 \land \mathsf{SymbolicEval}(e, S)
S' = S
                                                                        23.
                                                                        24: \phi_2 := \phi_2 \land SymbolicEval(S_{\nu}, S')
                                                                        25: return \langle \phi_1, S, \phi_2 \rangle
```

Modifications to ExecuteSymbolic

```
ExecuteSymbolic (\tau_c = \langle S_0, \dots, S_k \rangle, P)
                                                                        ExecuteSymbolic(\tau_0, F, P)
 1: let \langle \rho_0, \rangle = S_0
                                                                         1: (k-1, k) := \text{Frontier}(\tau_0 = \langle S_0, S_1, \dots, S_n \rangle)
 2: S := [v \mapsto v_0 \mid v \in params(P)]
                                                                         2: S := [v \mapsto v_0 \mid *v \in inputs(P)]
 3: \phi := SymbolicEval(\rho_0, S)
                                                                         3: \phi_1 := SymbolicEval(S_0, S)
 4: for i = 0 to k - 1 do
                                                                         4: \phi_2 := true
         op := Op(S_i, S_{i+1})
                                                                         5: i := 0
         match op
                                                                         6: while i \neq k-1 do
              case(v := e):
                                                                                 op := \lambda(\mathsf{Edge}(S_i, S_{i+1}))
                  S := S[v \mapsto SymbolicEval(e, S)]
                                                                                 match op
                                                                                      case(*m=e):
 g.
              case(assumec):
                                                                                           \hat{S} := \hat{S} + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
                   \dot{\phi} := \phi \land \mathsf{SymbolicEval}(c, s)
                                                                        10:
10:
                                                                        11:
                                                                                      case(if e goto I):
11:
         let \langle \rho_{i+1}, \rangle = S_{i+1}
                                                                        12:
                                                                                           \phi_1 := \phi_1 \land SymbolicEval(e, S)
         \phi := \phi \wedge \text{SymbolicEval}(\rho_{i+1}, S)
12.
13: end for
                                                                        13.
                                                                                i := i + 1
                                                                                  \phi_1 := \phi_1 \land SymbolicEval(S_i, S)
14: return \phi
                                                                        14:
                                                                        15: end while
    \phi = \phi_1 \wedge \phi_2
                                                                        16: op := \lambda(\mathsf{Edge}(S_{k-1}, S_k))
                                                                        17: match op
                                                                        18:
                                                                                  case(*m=e):
                                                                                       \phi_2 := \phi_2 \wedge *(SymbolicEval(m, S)) = SymbolicEval(e, S)
                                                                        19.
                                                                                       S' := S + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
                                                                        20:
                                                                        21:
                                                                                  case(if e goto I):
                                                                        22:
                                                                                      \phi_2 := \phi_2 \land \mathsf{SymbolicEval}(e, S)
S' = S
                                                                        23.
                                                                        24: \phi_2 := \phi_2 \land SymbolicEval(S_{\nu}, S')
                                                                        25: return \langle \phi_1, S, \phi_2 \rangle
```

Modifications to ExecuteSymbolic

```
ExecuteSymbolic (\tau_c = \langle S_0, \dots, S_k \rangle, P)
                                                                        ExecuteSymbolic(\tau_0, F, P)
 1: let \langle \rho_0, \underline{\hspace{0.2cm}} \rangle = S_0
                                                                         1: (k-1, k) := \text{Frontier}(\tau_0 = \langle S_0, S_1, \dots, S_n \rangle)
 2: S := [v \mapsto v_0 \mid v \in params(P)]
                                                                         2: S := [v \mapsto v_0 \mid *v \in inputs(P)]
 3: \phi := SymbolicEval(\rho_0, S)
                                                                         3: \phi_1 := SymbolicEval(S_0, S)
 4: for i = 0 to k - 1 do
                                                                         4: \phi_2 := true
         op := Op(S_i, S_{i+1})
                                                                         5: i := 0
         match op
                                                                         6: while i \neq k-1 do
              case(v := e):
                                                                                 op := \lambda(\mathsf{Edge}(S_i, S_{i+1}))
                  S := S[v \mapsto SymbolicEval(e, S)]
                                                                                 match op
                                                                                      case(*m=e):
 g.
              case(assumec):
                                                                                           S := S + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
                   \dot{\phi} := \phi \land \mathsf{SymbolicEval}(c, s)
                                                                        10:
10:
                                                                        11:
                                                                                      case(if e goto I):
11:
         let \langle \rho_{i+1}, \rangle = S_{i+1}
                                                                        12:
                                                                                           \phi_1 := \phi_1 \land SymbolicEval(e, S)
         \phi := \phi \wedge \text{SymbolicEval}(\rho_{i+1}, S)
12.
13: end for
                                                                        13.
                                                                                i := i + 1
                                                                        14:
                                                                                  \phi_1 := \phi_1 \land SymbolicEval(S_i, S)
14: return \phi
                                                                        15: end while
    \phi = \phi_1 \wedge \phi_2
                                                                        16: op := \lambda(\mathsf{Edge}(S_{k-1}, S_k))
                                                                        17: match op
                                                                        18:
                                                                                  case(*m=e):
          Remove case for assigning to dereferenced
                                                                                       \phi_2 := \phi_2 \wedge *(\mathsf{SymbolicEval}(m, S)) = \mathsf{SymbolicEval}(e, S)
                                                                        19:
                                                                                       S' := S + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
          pointer
                                                                        20:
                                                                        21:
                                                                                  case(if e goto I):
                                                                        22:
                                                                                      \phi_2 := \phi_2 \land \mathsf{SymbolicEval}(e, S)
S' = S
                                                                        23.
                                                                        24: \phi_2 := \phi_2 \land SymbolicEval(S_k, S')
```

25: **return** $\langle \phi_1, S, \phi_2 \rangle$

Modifications to ExecuteSymbolic

```
ExecuteSymbolic (\tau_c = \langle S_0, \dots, S_k \rangle, P)
                                                                      ExecuteSymbolic(\tau_0, F, P)
 1: let \langle \rho_0, \rangle = S_0
                                                                       1: (k-1, k) := \text{Frontier}(\tau_0 = \langle S_0, S_1, \dots, S_n \rangle)
 2: S := [v \mapsto v_0 \mid v \in params(P)]
                                                                       2: S := [v \mapsto v_0 \mid *v \in inputs(P)]
 3: \phi := SymbolicEval(\rho_0, S)
                                                                       3: \phi_1 := SymbolicEval(S_0, S)
 4: for i = 0 to k - 1 do
                                                                       4: \phi_2 := true
         op := Op(S_i, S_{i+1})
                                                                       5: i := 0
         match op
                                                                       6: while i \neq k-1 do
             case(v := e):
                                                                               op := \lambda(\mathsf{Edge}(S_i, S_{i+1}))
                 S := S[v \mapsto SymbolicEval(e, S)]
                                                                               match op
                                                                                    case(*m=e):
 g.
             case(assumec):
                                                                                        \hat{S} := \hat{S} + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
                  \dot{\phi} := \phi \land \mathsf{SymbolicEval}(c, s)
                                                                      10:
10:
                                                                      11:
                                                                                    case(if e goto I):
11:
         let \langle \rho_{i+1}, \rangle = S_{i+1}
                                                                      12:
                                                                                        \phi_1 := \phi_1 \land SymbolicEval(e, S)
         \phi := \phi \wedge \text{SymbolicEval}(\rho_{i+1}, S)
12.
13: end for
                                                                      13.
                                                                              i := i + 1
                                                                                \phi_1 := \phi_1 \land SymbolicEval(S_i, S)
14: return \phi
                                                                      14:
                                                                      15: end while
    \phi = \phi_1 \wedge \phi_2
                                                                      16: op := \lambda(\mathsf{Edge}(S_{k-1}, S_k))
                                                                      17: match op
                                                                      18:
                                                                               case(*m=e):
          Remove case for assigning to dereferenced
                                                                                    \phi_2 := \phi_2 \wedge *(SymbolicEval(m, S)) = SymbolicEval(e, S)
                                                                      19:
                                                                      20:
                                                                                    S' := S + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
         pointer
                   No need to return the symbolic map
                                                                      21:
                                                                               case(if e goto I):
                                                                      22:
                                                                                    \phi_2 := \phi_2 \land \mathsf{SymbolicEval}(e, S)
S' = S
                                                                      23.
                                                                      24: \phi_2 := \phi_2 \land SymbolicEval(S_{\nu}, S')
```

25: **return** $\langle \phi_1, \mathbf{5}, \phi_2 \rangle$

ExecuteSymbolic(τ_0, F, P)

Modifications and Challenges

ExecuteSymbolic $(\tau_c = \langle S_0, \dots, S_k \rangle, P)$

Modifications to ExecuteSymbolic

```
1: let \langle \rho_0, \rangle = S_0
                                                                      1: (k-1, k) := \text{Frontier}(\tau_0 = \langle S_0, S_1, \dots, S_n \rangle)
 2: S := [v \mapsto v_0 \mid v \in params(P)]
                                                                      2: S := [v \mapsto v_0 \mid *v \in inputs(P)]
 3: \phi := SymbolicEval(\rho_0, S)
                                                                      3: \phi_1 := SymbolicEval(S_0, S)
 4: for i = 0 to k - 1 do
                                                                      4: \phi_2 := true
        op := Op(S_i, S_{i+1})
                                                                      5: i := 0
        match op
                                                                      6: while i \neq k-1 do
             case(v := e):
                                                                              op := \lambda(\mathsf{Edge}(S_i, S_{i+1}))
                 S := S[v \mapsto SymbolicEval(e, S)]
                                                                              match op
                                                                                  case(*m=e):
 g.
             case(assumec):
                                                                                       \hat{S} := \hat{S} + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
                  \dot{\phi} := \phi \land \mathsf{SymbolicEval}(c, s)
                                                                     10:
10:
                                                                     11:
                                                                                  case(if e goto I):
11:
         let \langle \rho_{i+1}, \rangle = S_{i+1}
                                                                     12:
                                                                                       \phi_1 := \phi_1 \land SymbolicEval(e, S)
         \phi := \phi \wedge \text{SymbolicEval}(\rho_{i+1}, S)
12.
13: end for
                                                                     13.
                                                                            i := i + 1
                                                                              \phi_1 := \phi_1 \land SymbolicEval(S_i, S)
14: return \phi
                                                                     14:
                                                                     15: end while
    \phi = \phi_1 \wedge \phi_2
                                                                     16: op := \lambda(\mathsf{Edge}(S_{k-1}, S_k))
                                                                     17: match op
                                                                     18:
                                                                              case(*m=e):
         Remove case for assigning to dereferenced
                                                                                   \phi_2 := \phi_2 \wedge *(SymbolicEval(m, S)) = SymbolicEval(e, S)
                                                                     19:
                                                                     20:
                                                                                   S' := S + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
         pointer
               No need to return the symbolic map
                                                                     21:
                                                                              case(if e goto I):
                   No special case for the last iteration
                                                                     22:
                                                                                  \phi_2 := \phi_2 \land \mathsf{SymbolicEval}(e, S)
S' = S
```

24: $\phi_2 := \phi_2 \land SymbolicEval(S_{\nu}, S')$

25: **return** $\langle \phi_1, S, \phi_2 \rangle$

23.

Modifications to ExecuteSymbolic

```
ExecuteSymbolic (\tau_c = \langle S_0, \dots, S_k \rangle, P)
                                                                     ExecuteSymbolic(\tau_0, F, P)
 1: let \langle \rho_0, \rangle = S_0
                                                                       1: (k-1, k) := \text{Frontier}(\tau_0 = \langle S_0, S_1, \dots, S_n \rangle)
 2: S := [v \mapsto v_0 \mid v \in params(P)]
                                                                       2: S := [v \mapsto v_0 \mid *v \in inputs(P)]
 3: \phi := SymbolicEval(\rho_0, S)
                                                                       3: \phi_1 := SymbolicEval(S_0, S)
 4: for i = 0 to k - 1 do
                                                                       4: \phi_2 := true
         op := Op(S_i, S_{i+1})
                                                                       5: i := 0
         match op
                                                                       6: while i \neq k-1 do
             case(v := e):
                                                                               op := \lambda(\mathsf{Edge}(S_i, S_{i+1}))
                 S := S[v \mapsto \mathsf{SymbolicEval}(e, S)]
                                                                               match op
                                                                                   case(*m=e):
 g.
             case(assumec):
                                                                                        \hat{S} := \hat{S} + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
                  \dot{\phi} := \phi \land \mathsf{SymbolicEval}(c, s)
                                                                      10:
10:
                                                                     11:
                                                                                   case(if e goto I):
11:
         let \langle \rho_{i+1}, \rangle = S_{i+1}
                                                                     12:
                                                                                        \phi_1 := \phi_1 \land SymbolicEval(e, S)
         \phi := \phi \wedge \text{SymbolicEval}(\rho_{i+1}, S)
12.
13: end for
                                                                      13.
                                                                             i := i + 1
                                                                               \phi_1 := \phi_1 \land SymbolicEval(S_i, S)
14: return \phi
                                                                      14:
                                                                     15: end while
    \phi = \phi_1 \wedge \phi_2
                                                                     16: op := \lambda(\mathsf{Edge}(S_{k-1}, S_k))
                                                                     17: match op
                                                                     18:
                                                                               case(*m=e):
         Remove case for assigning to dereferenced
                                                                                    \phi_2 := \phi_2 \wedge *(SymbolicEval(m, S)) = SymbolicEval(e, S)
                                                                     19:
                                                                     20:
                                                                                    S' := S + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
          pointer
                  No need to return the symbolic map
                                                                     21:
                                                                               case(if e goto I):
                   No special case for the last iteration
                                                                     22:
                                                                                   \phi_2 := \phi_2 \land \mathsf{SymbolicEval}(e, S)
S' = S
                                                                     23.
         Add case for regular assignment
                                                                     24: \phi_2 := \phi_2 \land SymbolicEval(S_{\nu}, S')
```

25: **return** $\langle \phi_1, S, \phi_2 \rangle$

Modifications to ExecuteSymbolic

```
ExecuteSymbolic (\tau_c = \langle S_0, \dots, S_k \rangle, P)
                                                                      ExecuteSymbolic(\tau_0, F, P)
 1: let \langle \rho_0, \rangle = S_0
                                                                       1: (k-1, k) := \text{Frontier}(\tau_0 = \langle S_0, S_1, \dots, S_n \rangle)
 2: S := [v \mapsto v_0 \mid v \in params(P)]
                                                                       2: S := [v \mapsto v_0 \mid *v \in inputs(P)]
 3: \phi := SymbolicEval(\rho_0, S)
                                                                       3: \phi_1 := SymbolicEval(S_0, S)
 4: for i = 0 to k - 1 do
                                                                       4: \phi_2 := true
         op := Op(S_i, S_{i+1})
                                                                       5: i := 0
         match op
                                                                       6: while i \neq k-1 do
             case(v := e):
                                                                               op := \lambda(\mathsf{Edge}(S_i, S_{i+1}))
                 S := S[v \mapsto SymbolicEval(e, S)]
                                                                               match op
                                                                                   case(*m=e):
 g.
             case(assumec):
                                                                                        \hat{S} := \hat{S} + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
                  \dot{\phi} := \phi \land \mathsf{SymbolicEval}(c, s)
                                                                      10:
10:
                                                                      11:
                                                                                   case(if e goto I):
11:
         let \langle \rho_{i+1}, \rangle = S_{i+1}
                                                                      12:
                                                                                        \phi_1 := \phi_1 \land SymbolicEval(e, S)
         \phi := \phi \wedge \text{SymbolicEval}(\rho_{i+1}, S)
12.
13: end for
                                                                      13.
                                                                              i := i + 1
                                                                      14:
                                                                               \phi_1 := \phi_1 \land SymbolicEval(S_i, S)
14: return \phi
                                                                      15: end while
    \phi = \phi_1 \wedge \phi_2
                                                                      16: op := \lambda(\mathsf{Edge}(S_{k-1}, S_k))
                                                                      17: match op
                                                                      18:
                                                                               case(*m=e):
         Remove case for assigning to dereferenced
                                                                                    \phi_2 := \phi_2 \wedge *(SymbolicEval(m, S)) = SymbolicEval(e, S)
                                                                      19:
                                                                                    S' := S + [SymbolicEval(m, S) \mapsto SymbolicEval(e, S)]
          pointer
                                                                      20:
                   No need to return the symbolic map
                                                                      21:
                                                                               case(if e goto I):
                   No special case for the last iteration
                                                                      22:
                                                                                    \phi_2 := \phi_2 \land \mathsf{SymbolicEval}(e, S)
S' = S
                                                                      23.
         Add case for regular assignment
                                                                      24: \phi_2 := \phi_2 \land SymbolicEval(S_{\nu}, S')
         Simpler handling of trace
                                                                      25: return \langle \phi_1, S, \phi_2 \rangle
```

Modifications to RefinePred

```
RefinePred(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)
 1: let \langle \_, states<sub>k-1</sub>\rangle = S_{k-1}
 2: let \langle \rho_k, \_ \rangle = S_k
 3: op := Op(S_{k-1}, S_k)
 4: if op matches assume c then
         if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then
 6:
              return \rho_k
         end if
 8: end if
 9: return WP(op, \rho_k)
WP(op, p)
 1: match op
         case(v := e):
 2:
              return p[e/V]
 3.
         case(assume c):
 4.
              return C ∧ p
 5:
```

case(v := e):
 return p[e/V]

case(assume c):

return C ∧ p

3.

4.

Modifications to RefinePred

```
RefinePred(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)
1: let \langle \dots, states_{k-1} \rangle = S_{k-1}
2: let \langle \rho_k, \dots \rangle = S_k
3: op := \mathsf{Op}(S_{k-1}, S_k)
4: if op matches assume c then
5: if k > 1 \land \forall s \in states_{k-1} : \mathsf{Eval}(\neg \rho_k, s) = \mathsf{true} then
6: return \rho_k
7: end if
8: end if
9: return \mathsf{WP}(op, \rho_k)
```

```
RefinePred(S, \tau_o)

1: (k-1, k) := \text{Frontier}(\tau_o = \langle S_0, S_1, \dots, S_m \rangle)

2: op := \lambda (\text{Edge}(S_{k-1}, S_k))

3: \alpha := \text{Aliases}(S, op, S_k)

4: return \text{WP}_{\alpha}(op, S_k)

\text{WP}_{\alpha}(op, \phi) := \neg(\alpha \wedge \neg(\alpha \wedge \text{WP}(op, \phi)))
```

Provide implementation for WP

case(assume c):

return C ∧ p

4.

5:

Modifications to RefinePred

```
RefinePred(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)
 1: let \langle \_, states<sub>k-1</sub>\rangle = S_{k-1}
 2: let \langle \rho_k, \_ \rangle = S_k
 3: op := Op(S_{k-1}, S_k)
 4: if op matches assume c then
         if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then
 6:
              return \rho_k
         end if
 8: end if
 9: return WP(op, \rho_k)
WP(op, p)
 1: match op
         case(v := e):
 2:
              return p[e/V]
 3.
```

```
 \begin{aligned} & \mathsf{RefinePred}(S,\tau_o) \\ & 1: \ (k-1,k) \coloneqq \mathsf{Frontier}(\tau_o = \langle S_0, S_1, \dots, S_m \rangle) \\ & 2: \ op \coloneqq \lambda(\mathsf{Edge}(S_{k-1}, S_k)) \\ & 3: \ \alpha \coloneqq \mathsf{Aliases}(S, op, S_k) \\ & 4: \ \mathsf{return} \ \mathsf{WP}_{\alpha}(op, S_k) \end{aligned}
```

► Provide implementation for WP

 $WP_{\alpha}(op, \phi) = \neg(\alpha \land \neg(\alpha \land WP(op, \phi)))$

Remove α

RefinePred $(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)$

case(assume c):

return C ∧ p

4.

5:

Modifications to RefinePred

```
1: let \langle \_, states<sub>k-1</sub>\rangle = S_{k-1}
 2: let \langle \rho_k, \_ \rangle = S_k
 3: op := Op(S_{k-1}, S_k)
 4: if op matches assume c then
         if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then
 6:
             return \rho_k
         end if
 8: end if
 9: return WP(op, \rho_k)
WP(op, p)
 1: match op
         case(v := e):
 2:
             return p[e/V]
 3.
```

```
RefinePred(S, \tau_o)

1: (k-1, k) := \text{Frontier}(\tau_o = \langle S_0, S_1, \dots, S_m \rangle)

2: op := \lambda(\text{Edge}(S_{k-1}, S_k))

3: \alpha := \text{Aliases}(S, op, S_k)

4: return \text{WP}_{\alpha}(op, S_k)

\text{WP}_{\alpha}(op, \phi) = \neg(\alpha \land \neg(\alpha \land \text{WP}(op, \phi)))
```

- ► Provide implementation for WP
- Remove α
- Simpler trace

RefinePred $(\tau_c = \langle S_0, \dots, S_{k-1}, S_k \rangle)$

case(assume c):

return C ∧ p

4: 5:

Modifications to RefinePred

```
1: let \langle , states_{k-1} \rangle = S_{k-1}
 2: let \langle \rho_k, \_ \rangle = S_k
 3: op := Op(S_{k-1}, S_k)
 4: if op matches assume c then
        if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then
 6:
            return \rho_k
        end if
 8: end if
 9: return WP(op, ok)
WP(op, p)
 1: match op
 2:
        case(v := e):
             return p[e/V]
 3.
```

```
\begin{aligned} & \mathsf{RefinePred}(S,\tau_o) \\ & 1: \ (k-1,k) := \mathsf{Frontier}(\tau_o = \langle S_0, S_1, \dots, S_m \rangle) \\ & 2: \ op := \lambda(\mathsf{Edge}(S_{k-1}, S_k)) \\ & 3: \ \alpha := \mathsf{Aliases}(S, op, S_k) \\ & 4: \ \mathsf{return} \ \mathsf{WP}_{\alpha}(op, S_k) \\ & \\ & WP_{\alpha}(op, \phi) = \neg(\alpha \wedge \neg(\alpha \wedge WP(op, \phi))) \end{aligned}
```

- ► Provide implementation for WP
 - Remove α
- Simpler trace
- Add the loop optimization

Loop optimization

```
1: let \langle -, states_{k-1} \rangle = S_{k-1}

2: let \langle \rho_k, - \rangle = S_k

3: o\rho := Op(S_{k-1}, S_k)

4: if op matches assume c then

5: if \forall s \in states_{k-1} : \text{Eval}(\neg \rho_k, s) = \text{true then}

6: return \rho_k

7: end if

8: end if

9: return \forall P(op, \rho_k)
```

Loop optimization ignores assume on edge

```
void test()
{
  int b = 0;
  int i = 0;
  while (i < 1)
    i++;
  if (b == 1)
    error;
}</pre>
```

Loop optimization

```
\begin{array}{lll} 1: & \operatorname{let} \left< \_, \operatorname{states}_{k-1} \right> = S_{k-1} \\ 2: & \operatorname{let} \left< \rho_{k}, \_ \right> = S_{k} \\ 3: & op := \operatorname{Op}(S_{k-1}, S_{k}) \\ 4: & \operatorname{if} op \ \operatorname{matches} \ \operatorname{assume} \ \operatorname{c} \ \operatorname{then} \\ 5: & \operatorname{if} & \forall s \in \operatorname{states}_{k-1} : \operatorname{Eval}(\neg \rho_{k}, s) = \operatorname{true} \ \operatorname{then} \\ 6: & \operatorname{return} \ \rho_{k} \\ 7: & \operatorname{end} \ \operatorname{if} \\ 8: & \operatorname{end} \ \operatorname{if} \\ 9: & \operatorname{return} \ \operatorname{WP}(op, \rho_{k}) \end{array}
```

Loop optimization ignores assume on edge

Loop optimization

```
\begin{array}{lll} \text{1:}& \operatorname{let} \left< \_, \operatorname{states}_{k-1} \right> = S_{k-1} \\ \text{2:}& \operatorname{let} \left< \rho_k, \_ \right> = S_k \\ \text{3:}& op := \operatorname{Op}(S_{k-1}, S_k) \\ \text{4:}& \text{if } op \text{ matches assume c then} \\ \text{5:}& \text{if} & \forall s \in \operatorname{states}_{k-1} : \operatorname{Eval}(\neg \rho_k, s) = \operatorname{true} \text{ then} \\ \text{6:}& \operatorname{return} \rho_k \\ \text{7:}& \operatorname{end} \text{ if} \\ \text{8:}& \operatorname{end} \text{ if} \\ \text{9:}& \operatorname{return} \operatorname{WP}(op, \rho_k) \end{array}
```

Loop optimization ignores assume on edge

Loop optimization

```
1: |\text{let}\ \langle -, \text{states}_{k-1} \rangle = S_{k-1}

2: |\text{let}\ \langle \rho_k, - \rangle = S_k

3: op := Op(S_{k-1}, S_k)

4: if op \text{ matches assume c then}

5: if k > 1 \land \forall s \in \text{states}_{k-1} : \text{Eval}(\neg \rho_k, s) = \text{true then}

6: return \rho_k

7: end if

8: end if

9: return \mathsf{WP}(op, \rho_k)
```

- Loop optimization ignores assume on edge
- Disable loop optimization for initial region

Loop optimization

```
1: let \langle -, states_{k-1} \rangle = S_{k-1}

2: let \langle \rho_k, - \rangle = S_k

3: op := Op(S_{k-1}, S_k)

4: if op matches assume c then

5: if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then

7: end if

8: end if

9: return \mathsf{WP}(op, \rho_k)
```

- Loop optimization ignores assume on edge
- Disable loop optimization for initial region
- Problem: Infinite refines, due to irrelevant predicates

Loop optimization

```
1: let \langle \_, states_{k-1} \rangle = S_{k-1}

2: let \langle \rho_k, \_ \rangle = S_k

3: op := Op(S_{k-1}, S_k)

4: if op matches assume c then

5: if k > 1 \land \forall s \in states_{k-1} : Eval(\neg \rho_k, s) = true then

6: return \rho_k

7: end if

8: end if

9: return WP(op, \rho_k)
```

- Loop optimization ignores assume on edge
- Disable loop optimization for initial region
- Problem: Infinite refines, due to irrelevant predicates

Optimizations overview

- Split regions initially
- SP heuristic (Loop optimization)
- CD heuristic
- Interprocedural
- Other

Split regions initially

Split the regions in the original region graph, based on conditionals that are needed to reach the error statement.

CD heuristic

Preprocess program and set all assumes that are not relevant, based on conditionals that are needed to reach the error statement, to true.

CD heuristic

- Preprocess program and set all assumes that are not relevant, based on conditionals that are needed to reach the error statement, to true.
 - ▶ If DASH can prove it correct, then we are done.

CD heuristic

- Preprocess program and set all assumes that are not relevant, based on conditionals that are needed to reach the error statement, to true.
 - ▶ If DASH can prove it correct, then we are done.
 - If not, run a test to see if it is a real error.

CD heuristic

- Preprocess program and set all assumes that are not relevant, based on conditionals that are needed to reach the error statement, to true.
 - ▶ If DASH can prove it correct, then we are done.
 - If not, run a test to see if it is a real error.
 - ► Else add back assumes for the found error trace and then try again.

Interprocedural optimizations

1. Compute overapproximation (modification analysis) of all procedures, for the values that can be modified, check then if there is any chance that S_k can be satisfied, e.i. the correct variables are modified.

Interprocedural optimizations

- 1. Compute overapproximation (modification analysis) of all procedures, for the values that can be modified, check then if there is any chance that S_k can be satisfied, e.i. the correct variables are modified.
- 2. Cache summaries for procedure analysis

Interprocedural optimizations

- 1. Compute overapproximation (modification analysis) of all procedures, for the values that can be modified, check then if there is any chance that S_k can be satisfied, e.i. the correct variables are modified.
- 2. Cache summaries for procedure analysis
- 3. Regular analysis

Other

▶ Test optimering

- ► Test optimering
 - ► Limit number of steps after frontier

- ► Test optimering
 - ▶ Limit number of steps after frontier
 - Store delta states, to save space on storing states very important for large programs

Other

DASH_{int}

- Test optimering
 - Limit number of steps after frontier
 - Store delta states, to save space on storing states very important for large programs
- Model "external" code

- ▶ Test optimering
 - ▶ Limit number of steps after frontier
 - Store delta states, to save space on storing states very important for large programs
- Model "external" code
 - DASH needs to inspect the code

- ► Test optimering
 - Limit number of steps after frontier
 - Store delta states, to save space on storing states very important for large programs
- Model "external" code
 - DASH needs to inspect the code
 - Creating stub is difficult, must behave exactly like the modeled code.

- ▶ Test optimering
 - Limit number of steps after frontier
 - Store delta states, to save space on storing states very important for large programs
- ► Model "external" code
 - DASH needs to inspect the code
 - Creating stub is difficult, must behave exactly like the modeled code.
 - For Java this is native methods