

EVERLASTING Cearning

FUNDAMENTALS OF COMPUTER GRAPHICS (CSIT304)

PLANE CURVES - INTRODUCTION

CHIRANJOY CHATTOPADHYAY

Associate Professor,
FLAME School of Computation and Data Science

INTRODUCTION

- The simplest curves (lines) and surfaces (planes) discussed earlier.
- There are conics and quadric surfaces.
 - o They have been around for about 2000 years.

We shall discuss these in this part of the course.

- Background knowledge
 - Consulting Calculus and/or geometry books should be very helpful.
 - Linear algebra book should also helpful.

PLANE CURVE

- A multitude of techniques are available for drawing and designing curves manually.
- Tools are used to aid the designer.
 - No single tool is sufficient for all tasks.
- Software tools for curve design and generation in computer graphics.
- Two-dimensional curve generation techniques are discussed here.

REPRESENTING CURVES

Point based representation

Observe the spacing of the points along the curve.

- Analytical representation [ADVANTAGES?]
 - Non-parametric (Explicit, Implicit)
 - Parametric

IMPLICIT REPRESENTATION (NON-PARAMETRIC)

A general second-degree implicit equation written as:

$$ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0$$

IMPLICIT REPRESENTATION (NON-PARAMETRIC)

• A general second-degree implicit equation written as:

$$ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0$$

PARAMETRIC CURVE

- Each coordinate of a point on a curve is represented as a function of a single parameter.
- The position vector of a point on the curve is fixed by the value of the parameter.
- For a two-dimensional curve with t as the parameter, a point on the curve

Cartesian Coordinate

The position vector

$$x = x(t)$$

$$y = y(t)$$

$$P(t) = \begin{bmatrix} x(t) & y(t) \end{bmatrix}$$

EXAMPLE OF PARAMETRIC CURVE

• The simplest parametric 'curve' representation is for a straight line.

$$P(t) = P_1 + (P_2 - P_1)t \qquad 0 \le t \le 1$$

The position vector is represented as: $P(t) = [x(t) \ y(t)]$

$$x(t) = x_1 + (x_2 - x_1)t$$

$$y(t) = y_1 + (y_2 - y_1)t$$

EXAMPLE (1)

 $P_1(1,2)$

- 1. For the position vectors P_1 [12] and P_2 [43] determine the parametric representation of the line segment between them.
- 2. Also determine the slope and tangent vector of the line segment.

PARAMETRIC REPRESENTATION OF A CIRCLE

ullet An origin-centered circle of radius $oldsymbol{r}$ is parametrically represented by

$$x = r \cos \theta \qquad 0 \le \theta \le 2\pi$$
$$y = r \sin \theta$$

Here θ is the parameter

The Cartesian coordinates of any point on an origin-centered circle are then

$$x_{i+1} = r\cos(\theta_i + \delta\theta)$$
 Does it appear similar to some earlier concepts?

Which approach is more efficient and why?

EXAMPLE

Generate a circle of radius 2 with center located at (2,2).

What are the steps to draw this circle using parametric equation?

$$x_{i+1} = x_i \cos \delta \theta - y_i \sin \delta \theta$$

$$y_{i+1} = x_i \sin \delta \theta + y_i \cos \delta \theta$$

$$\delta\theta = \frac{2\pi}{(n+1-1)} = \frac{2\pi}{n} = \frac{2\pi}{8} = \frac{\pi}{4}$$

CALCULATION OF POINTS ON THE CIRCLE (UNIT CIRCLE AT THE ORIGIN)

• At $\theta = 0$ (First point)

$$x_1 = r \cos \theta_1 = (1) \cos(0) = 1$$

 $y_1 = r \sin \theta_1 = (1) \sin(0) = 0$

• Compute $\delta\theta$ component

$$\sin \delta \theta = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$
$$\cos \delta \theta = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

The second point

$$x_2 = x_1 \cos \delta \theta - y_1 \sin \delta \theta$$

 $y_2 = x_1 \sin \delta \theta + y_1 \cos \delta \theta$
 $= (1)(\sqrt{2}/2) - 0(\sqrt{2}/2) = (\sqrt{2}/2)$
 $= (1)(\sqrt{2}/2) + 0(\sqrt{2}/2) = (\sqrt{2}/2)$

• And so on ...

CALCULATION OF POINTS ON THE CIRCLE (UNIT CIRCLE AT THE ORIGIN)

All the points on the circle

\overline{i}	x_i	y_i	
1	1	0	
2	$\sqrt{2}/2$	$\sqrt{2}/2$	
3	0	1	
4	$-\sqrt{2}/2$	$\sqrt{2}/2$	
5	-1	0	
6	$-\sqrt{2}/2$	$-\sqrt{2}/2$	
7	0	-1	
8	$\sqrt{2}/2$	$-\sqrt{2}/2$	
9	1	0	

RELOCATION TO THE DESIRED POSITION

- 1. Locally scale the points by a factor of 2
- 2. Translates the center of the circle to the point (2,2)

$$T = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P_1 = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$$

CALCULATION OF POINTS ON THE CIRCLE (RADIUS = 2, CENTER AT (2,2))

All the points on the circle

\overline{i}	x_i	y_i	i	x_i	y_i
${1}$	1	0	1	4	2
2	$\sqrt{2}/2$	$\sqrt{2}/2$	2	3.414	3.414
3	0	1	3	2	4
4	$-\sqrt{2}/2$	$\sqrt{2}/2$	4	0.586	3.414
5	-1	0	5	0	2
6	$-\sqrt{2}/2$	$-\sqrt{2}/2$	6	0.586	0.586
7	0	-1	7	2	0
8	$\sqrt{2}/2$	$-\sqrt{2}/2$	8	3.414	0.586
9	1	0	9	4	2

• By restricting the range of the parameter, the algorithm generates circular arcs.

EXERCISE

- Implement the parametric circle generation algorithm discussed in todays class.
- Radius 2 with center located at (2,2).

EVERLASTING Ceasing

THANK YOU