Introduction to Big Data & Hadoop Ecosystem Training

Nagabhushan

Agenda – Day 1

- Introduction to Big Data & Hadoop
- Hadoop Use Cases & History
- Commercial Distributions of Hadoop
- Hadoop's Storage Architecture HDFS
- Hadoop Setup

What is Big Data?

- 3 Vs of Big Data
 - Volume → Size
 - Velocity → Speed
 - Variety
 Different Forms
- Hadoop's V → VALUE

- How to store Big Data? → HDFS
- How to process Big Data? → MapReduce (Hadoop 1.x) / YARN (Hadoop 2.x)

Data Measurement Scale

 1 Kilobyte 	KB	1000
1 Megabyte	MB	1000000
1 Gigabyte	GB	100000000
1 Terabyte	TB	100000000000
1 Petabyte	PB	100000000000000
1 Exabyte	EB	100000000000000000
1 Zettabyte	ZB	10000000000000000000000000000000000000
 1 Yotabyte 	YB	100000000000000000000000000000000000000

Problems with the traditional system

1 T B / day

Big Data Systems to the Rescue → Hadoop

Commodity Hardware

Hadoop Layout / Node

Features of Hadoop

- Commodity Hardware
- Open Source http://hadoop.apache.org/
- Distributed Storage Parallel Processing
- Scale Out Architecture (Horizontal Scaling)
- Fault Tolerance
- Data Locality A new paradigm of moving processing to data
- Java software library
- WORM → Write Once Read Many

Limitations of Hadoop

- Batch Processing (MR approach)
- No updates (yet) Alternative → MapR FS
- No Random Reads / Writes Alternative → HBase
- Too many small data blocks / files

NoSQL Vs HDFS

■ HDFS → Distributed File System

Dumb Data

■ NoSQL → Distributed Database

Smart Data

Handle Big Data

History of Hadoop

- Google published whitepapers on "GFS" and "MapReduce" in Dec 2004
- Yahoo hired "Doug Cutting" to work on the whitepapers and Hadoop was the result
- Yahoo handed over the project to "Apache Software Foundation" in 2006

Hadoop Ecosystem

Commercial Distributions of Hadoop

- Cloudera
- Hortonworks
- MAPR
- Big Insights (IBM)

Hadoop's Storage Architecture - HDFS

Hadoop Terminologies

HDFS Daemons

Master – Slave Architecture

HDFS Daemons - Responsibilities

- Stores the metadata of the File System
 - File Vs Block Mapping
 - Block Vs Node Mapping
- Manages distribution → allocation of DataNodes
- The metadata files are stored on the local file system of the node running NN

- Stores the "DataBlocks" of a file
- Data Integrity
- Sends heartbeats to NN
- Sends regular block reports to NN
- DataBlocks are stored as files on the local file system of the node running DN

Hadoop Daemons distributed over a cluster

Hadoop Client Gateway

DataNode & NodeManager co-exist

Hadoop Daemons distributed over a single node cluster

Pseudo Distributed Mode Setup

Anatomy of a File Write - HDFS

Anatomy of a File Write - HDFS

Rack Awareness

- With a standard replication factor = 3, HDFS block placement policy is to put
 - $> 1^{st}$ replica on a node within a local rack
 - \geq 2nd replica on a different node in the local rack
 - ≥ 3rd replica on a different node in a remote rack

Hadoop Configuration Files

dfs.replication = 3 dfs.blocksize = 134217728 = 128 MB dfs.heartbeat.interval = 3 dfs.namenode.stale.datanode.interval = 30000

dfs.namenode.checkpoint.period = 3600 dfs.namenode.checkpoint.txns = 1000000

Customized Hadoop Configuration

core-site.xml
hdfs-site.xml
mapred-site.xml
yarn-site.xml

dfs.replication = 1

\$HADOOP_HOME/etc/hadoop → Hadoop's conf dir

Comparison

Hadoop 1.x

Hadoop 2.x

Hadoop Setup

Infrastructure

- In premise
- SAN
- Cloud AWS / GCP / Azure
- Virtualization

Hadoop

- Cloudera
- Apache
- Hortonworks
- MAPR
- Big Insights

OS

- RHEL
- CentOS
- Ubuntu
- Fedora
- SUSE
- •

Hadoop Setup Modes

- Standalone Mode
- Pseudo Distributed Mode
- Fully Distributed Mode

JDK

- Open JDK
- Oracle JDK
- IBM JDK

Hadoop Setup Modes

- Standalone Mode
 - Single Node
 - Non Distributed
 - Hadoop runs as a single Java process
- Pseudo Distributed Mode
 - Single Node & Pseudo Distributed
 - HDFS → 1 NN, 1 DN, 1 SNN
 - · YARN → 1 RM, 1 NM
 - Each Hadoop daemon runs in a separate JVM
- Fully Distributed Mode
 - Multi Node Setup
 - Production Setup

Hadoop Setup Steps

- Pre-Requisites
 - Linux
 - Java
 - ssh (passphraseless)
- Download and unpack Hadoop packages
- Customize Hadoop
 - core-site.xml
 - hdfs-site.xml
 - mapred-site.xml
 - yarn-site.xml
 - hadoop-env.sh
- Format the NameNode
- Start Hadoop Services