## Modifying MED for Model Selection

Kristyn Pantoja

11/06/2019

#### MED Overview

Sequential Modified MED

Case 1: Quadratic true model

Case 2: Cubic

Gaussian Process Application

Appendix A: MED Algorithms

Appendix B: Evaluations

### **MED Overview**

## Minimum Energy Design

Design  $\mathbf{D} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$  is a MED if it minimizes the total potential energy, given by:

$$\sum_{i\neq j}\frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}$$

Theorem: If  $q = \frac{1}{f^{1/2p}}$ , the **limiting** distribution<sup>1</sup> of the design points is target distribution, f.



Figure 1: Sampling the "Banana" function

<sup>&</sup>lt;sup>1</sup>"Sequential Exploration of Complex Surfaces Using Minimum Energy Designs," Joseph et. al. 2015, Result 1

#### MED for Model Selection

A design  $\mathbf{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  to gather data that will

- 1. help distinguish these two slopes
- 2. allow adequate estimation of  $\beta$

Define q in terms of  $f_D(x)$ , a normalized Wasserstein distance between  $y|H_0, X$  and  $y|H_1, X$ , assuming a bounded design space.

#### Modified Objective

$$q = \frac{1}{f_D^{1/2p}}$$

where  $f_D(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}}, \phi_{1,\mathbf{x}})$ ,

- ► Here, the regions that are important for distinguishing the two models have high density.
- A tuning parameter  $\alpha$  adjusts the space-filling aspect:

$$q_{\alpha}=1/f_{D}^{\alpha/2p}$$

## Original Motivating Example



## Limiting Distribution

## MED, N = 300, $q = 1/W^{(1/2p)}$



### Cautionary Example

Suppose we want to consider a linear model and quadratic model:

$$H_0: \beta \sim N((0,0)^T, \nu^2 I_2)$$
  
 $H_1: \beta \sim N((0,0,0)^T, \nu^2 I_3)$ 

Consider the case where the true model is quadratic:

$$\beta_T = (-0.2, -0.4, 0.4)$$



## Limiting Distribution

## MED, N = 300, $q = 1/W^{(1/2p)}$



## D-Optimal and Space-filling Designs



#### Posterior Probabilities



#### Points for Estimation



Points in the middle do not show large difference between the two models, but are importaint for constraining the models to be  $distinguished^2$ 

<sup>&</sup>lt;sup>2</sup>"Designing Test Information and Test Information in Design", Jones & Meng

## Sequential Modified MED

## Sequential Design

If an experiment setting allows for data to be gathered sequentially, the modified MED (M-MED) can be adjusted to take into account data from previous experiments.

Currently, we have 
$$q_{\alpha} = 1/f_D^{\alpha/2p}$$
, where  $f_D(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}},\phi_{1,\mathbf{x}})$ 

▶ M-MED:  $\phi_{\ell,\mathbf{x}}$  is the marginal distribution of  $y|H_{\ell},X$ 

#### Taking data into account

- Sequential M-MED:  $\phi_{\ell, \mathbf{x}}$  is the posterior predictive distribution<sup>3</sup> of  $y|H_{\ell}, X$
- ▶ In addition, we can sequentially adjust  $\alpha$ :
  - 1. Start the sequence at  $\alpha=0$ , a space-filling design, to help determine the models that we would like to select from.
  - 2. Incrementally adjust  $\alpha$  to focus more on distinguishing models, while still allowing some space-filling for robustness.<sup>4</sup>

<sup>&</sup>lt;sup>3</sup>See Appendix A

<sup>&</sup>lt;sup>4</sup>See Appendix A for more details

## Case 1: Quadratic true model

## Hypothesized and True Models

Suppose we want to consider a linear model and quadratic model:

$$H_0: \beta \sim N((0,0)^T, \nu^2 I_2)$$
  
 $H_1: \beta \sim N((0,0,0)^T, \nu^2 I_3)$ 

Consider the case where the true model is quadratic:

$$\beta_T = (-0.2, -0.4, 0.4)$$



## Sequential M-MED (using data)

A sequence of 10 steps, generating 10 points in each step, resulting in 100 points:

#### Sequential M-MED (with data)





х

## Competing Designs

## Linear and Quadratic Fits



## Hypothesis Testing



#### T-Optimal Designs

res

Comparing linear model with fixed parameters against the quadratic model parameters allowed to vary

```
##
## Models:
## [[1]]
## function(x, theta0)
  theta0[1] + theta0[2] * x
## <bytecode: 0x7fb507b3fd78>
##
## [[2]]
## function(x, theta1)
  theta1[1] + theta1[2] * x + theta1[3] * x^2
## <bytecode: 0x7fb5078beee0>
##
## Fixed parameters:
## [[1]]
## [1] -0.06492809 -0.39745204
##
## [[2]]
## [1] -0.1988117 -0.3974520 0.3936974
##
##
## Design:
        [,1] [,2]
                  Γ.31
## x -1.0000000 0.0 1.0000000
## w 0.2500026 0.5.0.2499974
##
```

#### T-Optimal Designs

res2

Comparing quadratic model with fixed parameters against the linear model parameters allowed to vary

```
##
## Models:
## [[1]]
## function(x, theta0)
 theta0[1] + theta0[2] * x
## <bytecode: 0x7fb507b3fd78>
##
## [[2]]
## function(x, theta1)
 theta1[1] + theta1[2] * x + theta1[3] * x^2
## <bytecode: 0x7fb5078beee0>
##
## Fixed parameters:
## [[1]]
## [1] -0.06492809 -0.39745204
##
## [[2]]
## [1] -0.1988117 -0.3974520 0.3936974
##
##
## Design:
       [,1]
             [,2]
## x -1 0000000 1 0000000
## w 0.6516207 0.3483793
##
```

## E[P(Hi|Y,D)] with T-Optimal Designs

sigmasq01 = 0.3 instead of sigmasq01 = 0.1 for clarity



## **Understanding SMMED**

# Recall the Sequential MED Sequential M-MED (with data)





## High Density Areas





- ▶ Since both the linear and quadratic models are trying to capture the data from sequential experiment design, they will intersect in such a way that regions near -1,0,1 are given high density.
- Why not use quadratic D-optimal design?
  - ▶ D-optimal designs are not robust to model misspecification.

## Parameter Estimation: MSE(Bn)



## Prediction: MSE(y-hat)



## Case 2: Cubic

## f0, f1, true f

Suppose we want to consider a linear model and quadratic model:

$$H_0: \beta \sim N((0,0)^T, V_0)$$
  
 $H_1: \beta \sim N((0,0,0)^T, V_0)$ 

and suppose  $\beta_T = (0, -0.75, 0, 1)$ 



#### Sequential M-MED With Data

A sequence of 10 steps, generating 10 points in each step, resulting in 100 points:

#### Sequential M-MED (with data)





х

### Linear, Quadratic, Cubic Fits



## Hypothesis Testing



## Parameter Estimation: MSE(Bn)



## Prediction: MSE(y-hat)



## Gaussian Process Application

### Applying MED to Gaussian Process Model Selection

- When there are two Gaussian Process Models that can be used to estimate a function, e.g. Matern vs. Squared Exponential covariance functions<sup>5</sup>
  - ► Squared Exponential: infinitely differentiable, standard choice
  - ► Matern: more reasonable smoothness assumptions



Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from Gaussian processes with Matérn covariance functions, eq. (4.14), for different values of  $\nu$ , with  $\ell=1$ . The sample functions on the right were obtained using a discretization of the x-axis of 2000 equally-spaced points.

<sup>&</sup>lt;sup>5</sup> "Gaussian Processes for Machine Learning" Rasmussen et. al. 2005

## Applying MED to Gaussian Process Model Selection

- ► Goal: Choose a design that will distinguish the two gaussian process models.
- Distinguishing functions vs. distributions over functions:
  - For regression models, we use  $f_D(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}}, \phi_{1,\mathbf{x}})$ . What is the distance function now? What are  $\phi_{0,\mathbf{x}}, \phi_{0,\mathbf{x}}$ ?
  - Key Question: Do we need to consider the predictive distribution for each GP model?
    - **Doing** so would give us an option for  $\phi_{0,x}, \phi_{0,x}$ .
    - However, we will need data (and possibly need to choose new points one at a time).

## One-at-a-Time Algorithm (2015) Review

Steps to obtain MED using One-at-a-Time algorithm:

- 1. Obtain *numCandidates* candidate points, **x**, in [0,1] to form candidate set *C*.
- 2. Initialize  $D_N$  by choosing  $\mathbf{x}_1$  to be the candidate  $\mathbf{x}$  which optimizes f, where  $f(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}}, \phi_{1,\mathbf{x}})$  and

$$\begin{split} \phi_{0,\mathbf{x}} &= \textit{N}(\mu_0\mathbf{x}, \sigma_0^2 + \mathbf{x}^2\nu_0^2),\\ \phi_{1,\mathbf{x}} &= \textit{N}(\mu_1\mathbf{x}, \sigma_1^2 + \mathbf{x}^2\nu_1^2) \end{split}$$

3. Choose the next point  $\mathbf{x}_{i+1}$  by:

$$\mathbf{x}_{j+1} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{j} \left( rac{q(\mathbf{x}_i) q(\mathbf{x})}{d(\mathbf{x}_i, \mathbf{x})} 
ight)^k$$

where  $q = 1/f^{(1/2p)}$ , d(x, y) is Euclidean distance and k = 4p.

### One-at-a-Time Algorithm for GP?

Suppose you have training data  $\mathcal{T} = \{(\mathbf{x}_k, y_k)\}_{k=1}^{N_1}$ .

- 1. Obtain candidate set C
- 2. Initialize the new set of design points  $\mathbf{D}$  as the candidate point  $\mathbf{x}_*$  that maximizes  $f(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}},\phi_{1,\mathbf{x}})$ , where, here,  $\phi_{\ell,\mathbf{x}}$  is the predictive distribution  $f_*|\mathbf{x}_*,X,f\sim N(k_*^T(K+\tau^2I)^{-1}Y,k(\mathbf{x},\mathbf{x})-k_*^T(K+\tau^2I)^{-1}k_*)$ , where  $k_*=k(\mathbf{x},X),K=K(X,X)$ , and k and K are determined by the hypothesis  $\ell$ .
- 3. For subsequent design points, choose:

$$\mathbf{x}_{j+1} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{C}} \sum_{\mathbf{x}_i \in \mathbf{D}}^j \left( \frac{q(\mathbf{x}_i)q(\mathbf{x})}{d(\mathbf{x}_i,\mathbf{x})} \right)^k + \sum_{\mathbf{x}_i \in \mathcal{T}} \left( \frac{q(\mathbf{x}_i)q(\mathbf{x})}{d(\mathbf{x}_i,\mathbf{x})} \right)^k$$

What is the data for previously added design points,  $\{(\mathbf{x}_i)|i=1:j\}$ ?

# Including Data's Points in TPE

#### Histogram of updateDesign\$updatedD





# Excluding Data's Points in TPE

#### Histogram of updateDesign2\$updatedD





# Appendix A: MED Algorithms

### Posterior Predictive Distribution of y

 $[\tilde{y}|\tilde{x},X,y,\sigma_{arepsilon}^{2},H_{i},V_{i}]$  for brevity, call it  $\tilde{y}|y$ 

$$f(\tilde{y}|y) = \int f(\tilde{y}|\beta; \tilde{x}, \sigma_{\varepsilon}^{2}) f(\beta|y, X, V_{i}, \sigma_{\varepsilon}^{2}) d\beta$$

where  $f(\tilde{y}|\beta; \tilde{x}, \sigma_{\varepsilon}^2)$  is the pdf of  $N(\tilde{x}^T\beta, \sigma_{\varepsilon}^2)$  and  $f(\beta|y, X, V_i, \sigma_{\varepsilon}^2)$  is the posterior distribution of  $\beta$ ; we denote the posterior mean and variance  $\beta_n$  and  $\Sigma_n$ , respectively.

Integrating out  $\beta$  leads to a normal distribution with mean

$$E[\tilde{y}|y] = E[E[\tilde{y}|\beta, y]] = E[\tilde{x}^T\beta|y] = \tilde{x}^T\beta_n$$

and with variance

$$Var[\tilde{y}|y] = E[Var[\tilde{y}|\beta, y]] + Var[E[\tilde{y}|\beta, y]]$$
$$= \sigma_{\varepsilon}^{2} + Var[\tilde{x}^{T}\beta|y] = \sigma_{\varepsilon}^{2} + \tilde{x}^{T}\Sigma_{n}\tilde{x}$$

# One-at-a-Time Algorithm (2015)

Steps to obtain MED using One-at-a-Time algorithm:

- 1. Obtain numCandidates candidate points,  $\mathbf{x}$ , in [0,1].
- 2. Initialize  $\mathbf{D}_N$  by choosing  $\mathbf{x}_1$  to be the candidate  $\mathbf{x}$  which optimizes f, where  $f(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}}, \phi_{1,\mathbf{x}})$  and

$$\phi_{0,\mathbf{x}} = N(\mu_0 \mathbf{x}, \sigma_0^2 + \mathbf{x}^2 \nu_0^2),$$
  

$$\phi_{1,\mathbf{x}} = N(\mu_1 \mathbf{x}, \sigma_1^2 + \mathbf{x}^2 \nu_1^2)$$

3. For j = 1, ..., N, choose the next point  $\mathbf{x}_{j+1}$  by:

$$\mathbf{x}_{j+1} = \operatorname*{arg\,min}_{\mathbf{x}} \sum_{i=1}^{j} \left( rac{q(\mathbf{x}_i) q(\mathbf{x})}{d(\mathbf{x}_i, \mathbf{x})} 
ight)^k$$

where  $q = 1/f^{(1/2p)}$ , d(x, y) is Euclidean distance and k = 4p.

▶ This is a greedy algorithm for choosing points one at a time

# Fast Algorithm (2018)

In each of S stages, create a new design to iteratively minimize

$$\max_{i \neq j} \frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}$$

- 1. Initialize space-filling design  $\mathbf{D}_1 = \{\mathbf{x}_1^{(1)} \dots \mathbf{x}_N^{(1)}\}$
- 2. For  $s=1,\ldots,S-1$  stages, obtain each design point  $\mathbf{x}_{j}^{(s+1)} \in \mathbf{D}_{s+1}$  by:

$$\mathbf{x}_{j}^{s+1} = \underset{\mathbf{x} \in \mathbf{C}_{j}^{s+1}}{\text{arg min}} \max_{i=1:(j-1)} \frac{1}{f^{\gamma_{s}}(\mathbf{x}_{i})f^{\gamma_{s}}(\mathbf{x})d^{(2p)}(\mathbf{x}_{i}, \mathbf{x})}$$
$$= \underset{\mathbf{x} \in \mathbf{C}_{i}^{s+1}}{\text{arg min}} \max_{i=1:(j-1)} \frac{q^{\gamma_{s}}(\mathbf{x}_{i})q^{\gamma_{s}}(\mathbf{x})}{d(\mathbf{x}_{i}, \mathbf{x})}$$

where  $\gamma_s = s/(S-1)$  and  $\mathbf{C}_i^{s+1}$  is the candidate set for  $\mathbf{x}_i^{(s+1)}$ 

▶ Points migrate to more optimal locations in each stage

# Appendix B: Evaluations

# Posterior Probabilities of Hypotheses

▶ Posterior Probability of model  $H_{\ell}, \ell \in 1, ..., M$ :

$$P(H_{\ell}|y,X) = \frac{\pi_{\ell}f(y|H_{\ell},X)}{\sum_{m=1}^{M} \pi_{m}f(y|H_{m},X)}$$

where  $\pi_m$  is the prior on  $H_m$  (typically  $\pi_m = \frac{1}{M}$ ), and  $f(y|H_m,X)$  is the model evidence, i.e. density of  $N_N(X\mu_\ell,\sigma_\varepsilon^2I+XV_\ell X^T)$  evaluated at a given y and design D with N design points.

- ▶  $P(H_{\ell}|y,X)$  tells which hypothesis is more likely to give the correct model.
- ►  $E[P(H_{\ell}|y,X)|H_r,X]$  may be estimated using MC approximation from simulated responses y.
- ►  $E[P(H_{\ell}|y, \mathbf{D})|H_r, \mathbf{D}]$  can be used to evaluate a design  $\mathbf{D}$ 's ability to distinguish hypotheses

# Estimate Expected Posterior Probability of a Hypothesis

Estimate the expected posterior probability of hypothesis  $H_{\ell}$  for J simulations of Y under  $H_r$ , given design  $\mathbf{D} = \{x_1, ..., x_N\}$ :

- 1. For j = 1, ..., J:
  - 1.1 Draw  $y_i^{(j)}|\mathbf{x}_i \sim N(\mathbf{x}_i^T \beta_T, \sigma_{\varepsilon}^2), \ \forall \mathbf{x}_i \in \mathbf{D}, \ \text{so} \ y^{(j)} \in R^N$ .
  - 1.2  $\forall m = \{0,1\}$ , calculate model evidences  $f(y|H_m, \mathbf{D})$
  - 1.3 Calculate the posterior probability of  $H_{\ell}$ ,  $P(H_{\ell}|y^{(j)}, \mathbf{D})$ , from simulation j

$$P(H_{\ell}|y^{(j)},\mathbf{D}) = \frac{f(y^{(j)}|H_{\ell},X)}{f(y^{(j)}|H_{0},X) + f(y^{(j)}|H_{1},X)}$$

2. Average the estimated posterior probabilities of  $H_{\ell}$  over  $\forall j$  to obtain MC estimate of  $E[P(H_{\ell}|y,\mathbf{D})|H_r,\mathbf{D}]$ 

Note that  $y^{(j)}$  are generated from  $N_N(X\beta_T, \sigma_\varepsilon^2 I)$  and are independent, while the model evidence for  $H_m$  marginalizes out  $\beta$  and evaluates  $y^{(j)}$  using  $f(y|H_m, \mathbf{D})$ , the density of  $N_N(X\mu_m, \sigma_\varepsilon^2 I + XV_m X^T)$ , in which they are no longer assumed to be independent.

### Closed Form MSE of Posterior Mean

For notation, call  $E[\beta|Y] = \beta_n$ .

$$MSE(\beta_n) = Var[\beta_n] + (E[\beta_n] - \beta_T)^2$$
$$= Var[\beta_n] + (E[\beta_n])^2 - 2\beta_T E[\beta_n] + \beta_T^2$$

where

$$Var[\beta_n] = Var[\frac{1}{\sigma^2} \Sigma_B (X^T y + \sigma^2 V^{-1} \mu)] = Var[\frac{1}{\sigma^2} \Sigma_B X^T y]$$

$$= (\frac{1}{\sigma^2})^2 \Sigma_B X^T Var[y] X \Sigma_B = (\frac{1}{\sigma^2})^2 \Sigma_B X^T (\sigma^2 I) X \Sigma_B$$

$$= \frac{1}{\sigma^2} \Sigma_B X^T X \Sigma_B$$

$$E[\beta_n] = E[\frac{1}{\sigma^2} \Sigma_B (X^T y + \sigma^2 V^{-1} \mu)] = \frac{1}{\sigma^2} \Sigma_B (X^T E[y] + \sigma^2 V^{-1} \mu)$$

$$= \frac{1}{\sigma^2} \Sigma_B (X^T X \beta_T + \sigma^2 V^{-1} \mu) = \frac{1}{\sigma^2} \Sigma_B X^T X \beta_T + \Sigma_B V^{-1} \mu$$

where  $\Sigma_B = Var[\beta|y] = \sigma^2(X^TX + \sigma^2V^{-1})^{-1}$  and  $y \sim N(X\beta_T, \sigma^2I)$ 

# Closed Form MSE of y-hat

For an unseen point  $\mathbf{x}_*$ , its predicted response  $\hat{y} = \mathbf{x}_*^T \beta_n$ , where  $\beta_n$  is the posterior mean of  $\beta$ .

$$MSE(\hat{y}) = Var[\hat{y}] + Bias^{2}(\hat{y})$$

$$= Var[\mathbf{x}_{*}^{T}\beta_{n}] + E[\hat{y} - y_{T}]^{2}$$

$$= \mathbf{x}_{*}^{T} Var[\beta_{n}] \mathbf{x}_{*} + E[\mathbf{x}_{*}^{T}\beta_{n}] - \mathbf{x}_{*}^{T}\beta_{T}$$

$$= \mathbf{x}_{*}^{T} Var[\beta_{n}] \mathbf{x}_{*} + \mathbf{x}_{*}^{T} E[\beta_{n}] - \mathbf{x}_{*}^{T}\beta_{T}$$

where  $E[\beta_n]$  and  $Var[\beta_n]$  were calculated in the previous slide.