Activités Mentales

24 Août 2023

Soit $(u_n)_n$ la suite définie pour tout n par $u_{n+1} = u_n + 7n$ et $u_0 = 5$. Après avoir conjecturé le sens de variation de la suite, le démontrer.

Soit $(u_n)_n$ la suite définie pour tout n par $u_{n+1} = u_n - 5n$ et $u_0 = 1$. Après avoir conjecturé le sens de variation de la suite, le démontrer.

Soit $(u_n)_n$ la suite définie pour tout n par $u_n = 4n + 10$. Après avoir conjecturé le sens de variation de la suite, le démontrer.

Soit $(u_n)_n$ la suite définie pour tout n par $u_{n+1} = u_n + 3n$ et $u_0 = 8$. Après avoir conjecturé le sens de variation de la suite, le démontrer.

Soit $(u_n)_n$ la suite définie pour tout n par $u_n = -6n - 5$. Après avoir conjecturé le sens de variation de la suite, le démontrer.

Soit $(u_n)_n$ la suite définie pour tout n par $u_{n+1} = u_n + 7n$ et $u_0 = 5$. Après avoir conjecturé le sens de variation de la suite, le démontrer. On commence par calculer les premiers termes de la suite. On a

$$u_{n+1} = u_n + 7n$$
 $u_1 = 5$ $u_2 = 12$ $u_3 = 26$

 $u_2 \geqslant u_1 \geqslant u_0$ donc il semblerait que la suite soit croissante. Pour le démontrer, il faut calculer la différence $u_{n+1}-u_n$ et montrer qu'elle est positive pour tout $n \in \mathbb{N}$. Ainsi :

$$u_{n+1} - u_n = u_n + 7n - u_n$$
$$= 7n > 0$$

car n > 0.

Ainsi, la suite est bien croissante.

Soit $(u_n)_n$ la suite définie pour tout n par $u_{n+1}=u_n-5n$ et $u_0=1$. Après avoir conjecturé le sens de variation de la suite, le démontrer. On commence par calculer les premiers termes de la suite. On a

$$u_{n+1} = u_n - 5n$$
 $u_1 = 1$ $u_2 = -4$ $u_3 = -14$

 $u_0 \geqslant u_1 \geqslant u_2$ donc il semblerait que la suite soit décroissante. Pour le démontrer, il faut calculer la différence $u_{n+1}-u_n$ et montrer qu'elle est négative pour tout $n \in \mathbb{N}$. Ainsi :

$$u_{n+1} - u_n = u_n - 5n - u_n$$
$$= -5n < 0$$

car n > 0.

Ainsi, la suite est bien décroissante.

On commence par calculer les premiers termes de la suite. On a

$$u_n = 4n + 10$$
 $u_0 = 10$ $u_1 = 14$ $u_2 = 18$

 $u_2 \geqslant u_1 \geqslant u_0$ donc il semblerait que la suite soit croissante. Pour le démontrer, il faut calculer la différence $u_{n+1}-u_n$ et montrer qu'elle est positive pour tout $n \in \mathbb{N}$. Pour cela, il faut connaître l'expression de u_{n+1} :

$$u_{n+1} = 4(n+1) + 10 = 4n + 4 + 10 = 4n + 14$$

On peut maintenant calculer $u_{n+1} - u_n$:

$$(u_{n+1}) - u_n = 4n + 14 - (4n + 10)$$
$$= 4n + 14 - 4n - 10$$
$$= 4 > 0$$

La suite est donc croissante.

Soit $(u_n)_n$ la suite définie pour tout n par $u_{n+1} = u_n + 3n$ et $u_0 = 8$. Après avoir conjecturé le sens de variation de la suite, le démontrer. On commence par calculer les premiers termes de la suite. On a

$$u_{n+1} = u_n + 3n$$
 $u_1 = 8$ $u_2 = 11$ $u_3 = 17$

 $u_2 \geqslant u_1 \geqslant u_0$ donc il semblerait que la suite soit croissante. Pour le démontrer, il faut calculer la différence $u_{n+1}-u_n$ et montrer qu'elle est positive pour tout $n \in \mathbb{N}$. Ainsi :

$$u_{n+1} - u_n = u_n + 3n - u_n$$
$$= 3n > 0$$

car n > 0.

Ainsi, la suite est bien croissante.

On commence par calculer les premiers termes de la suite. On a

$$u_n = -6n - 5$$
 $u_0 = -5$ $u_1 = -11$ $u_2 = -17$

 $u_0 \geqslant u_1 \geqslant u_2$ donc il semblerait que la suite soit décroissante. Pour le démontrer, il faut calculer la différence $u_{n+1}-u_n$ et montrer qu'elle est négative pour tout $n \in \mathbb{N}$. Pour cela, il faut connaître l'expression de u_{n+1} :

$$u_{n+1} = -6(n+1) - 5 = -6n - 6 - 5 = -6n - 11$$

On peut maintenant calculer $u_{n+1} - u_n$:

$$u_{n+1} - (u_n) = -6n - 11 - (-6n - 5)$$
$$= -6n - 11 + 6n + 5$$
$$= -6 < 0$$

La suite est donc croissante.

