《有限元分析》理论知识随堂测试

	考生姓名:	学号:			
1.	. 选择题(20分)				
	1) 有限元分析的基本方法已经出现了大约 年。				
	A. 60 B.120	C.170	D.240		
	2) 有限元分析的三个基本步骤包括: 前处理, 和后处理。				
	A. 分网 B. 求解 C. 装配 D. 施加约束和载荷				
	3) 主控单元定义在 空间。				
	A. 数字 B. 局部	C. 参数	D. 映射		
	4) 有限元分析的优点之一是	· °			
	A. 可获得复杂问题的精确解	A. 可获得复杂问题的精确解 B. 可处理各向异性材数			
	C. 可获得工程问题的解析解	D. 以上都不	对		
	5) 在分析实际问题时,有限	元分析的缺点	之一是 难以把握。		
	A. 模型简化 B. 塑性变形	C. 复杂载荷	D. 约束方式		
	6) 在结构问题的有限元分析中,我们可以采用矩阵表达边界条件的引入和处理。				
	A. 全局 B. 单元	C. 微分	D. 分块		
	7) 在有限元方法中,坐标一定是无量纲的。				
	A. 局部 B. 全局	C. 笛卡尔	D. 重心		
	8) 单元的边界形状是由决定的。				
	A. 结点位置 B. 形函数	C. A 和 B 两	者共同 D. 问题域的边界		
	9) 当我们从拉格朗日方程推导结构分析的有限元格式时,单元内部各点位移用结点位移与				
	形函数的线性组合来表示	,这一表示在	拉格朗日方程中的角色是	0	
	A. 广义坐标 B. 弹性势能	C. 几何约束	D. 全局自由度		
	10) 当采用伽辽金法推导固体	传热问题的有	限元格式时, 对每个结点	,我们总是令该结点在	
	的残差之和为零。				
	A. 其所有相邻单元上 B. 其	所在单元内部	各点的 C. 内部单元上	D. 边界单元上	

2. 列写(15分)

如图 1 所示,请写出二次三角形单元的 6 个形函数来(用重心坐标表示)。

3. 计算(20分)

一个二维网格仅有 2 个单元 4 个结点,如图 2 所示。假设各单元的自由度和全局自由度约定如下 Q_4

$$Q = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{bmatrix} = \begin{bmatrix} q_1^{(1)} \\ q_2^{(1)} \\ q_2^{(2)} \\ q_3^{(1)} \end{bmatrix} = \begin{bmatrix} q_1^{(1)} \\ q_1^{(2)} \\ q_2^{(2)} \\ q_3^{(2)} \end{bmatrix}$$

并且单元的刚度矩阵分别为

$$\mathbf{k}^{(1)} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{k}^{(2)} = \begin{bmatrix} 3 & 0 & -2 \\ 0 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix}$$

请写出装配后的全局刚度矩阵 K。

4. 推导(20分)

对 2 结点一维单元,其内任意点的位移 u、应力 σ 、应变 ε 都只跟一个变量 x 有关。假定 l_e 、 A_e 和 E 分别表示单元的长度、截面积和弹性模量

1) 写出等参单元的两个形函数 N_1 与 N_2 的表达式,并推导 \dot{N}_x

2) 根据 $\mathbf{k}^{(e)} = \iiint_{e} \dot{\mathbf{N}}_{x}^{T} E \dot{\mathbf{N}}_{x} dV$ 导出单元的刚度矩阵

5. 推导(25分)

假定 A_e 、 t_e 和 ρ 分别代表三角形线性单元的截面积、厚度和密度,请推导单元的质量矩阵 $m^{(e)}$ 。