MTH 3105 DISCRETE MATHS ASSIGNMENT 1 DUE: 6TH DEC 2011

1. a) Let R_1 and R_2 be the "congruent modulo 3" and the "congruent modulo 4" relations, respectively, on the set of integers. That is, $R_1 = \{(a, b) \mid a = b \pmod 3\}$ and $R_2 = \{(a, b) \mid a = b \pmod 4\}$. Find

i) R₁ U R₂.

 $ii) R_1 n R_2.$

iii) R₁ - R₂.

iv) R₂- R₁.

v) $R_1 \oplus R_2$.

- b) What a re the equivalence classes for R_1 and R_2 ?
- 2. Find the inverses of the following functions mapping R to R

a)
$$f(x) = 2x + 3$$

b)
$$h(x)=(x-2)^3$$

- 3. Let $S=\{1,2,3,4,5\}$ and $T=\{a,b,c,d\}$. For each question below: if the answer is YES give an example :if the answer is NO, explain briefly.
 - a) Are there any one-to-one functions from S into T?
 - b) Are there any one-to-one functions from T into S?
 - c) Are there any functions mapping T onto S?
 - d) Are there any one-to-one correspondences between \boldsymbol{S} and $\boldsymbol{T}?$
- 4. Let f:S->T and g:T->U be invertible functions. Show that g o f is invertible and that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

N.B: The assignment to be done in groups of 10. Groups less than 10 people will be penalized.

The deadline should be adhered to.