

Carolina Lopez and Victor Sainz

OUR GOAL

IMAGE CLASSIFICATION ON MULTIPLE DATASETS BENCHMARKING AND ANALYSIS

CIFAR 100 60.000 32x32

100 classes

600 images / class

50.000 training (500 per class)

10.000 testing (100 per class)

DATA AUGMENTATION AND ANALYSIS OF ITS IMPACT

- ✓ RandomCrop
- ✓ RandomHorizontalFlip
- ✓ RandomRotation
- ✓ ColorJitter
- ✓ Added Gaussian Noise with std = 0.1
- ✓ Normalize

CIFAR 10

60.000 32x32

10 classes

6.000 images / class

50.000 training (5000 per class)

10.000 testing (1000 per class)

OUR MICROCONTROLLER

| MAX78000FTHR BOARD

- Arm Cortex-M4 Processor with FPU up to 100MHz
- 512KB Flash
- 128KB SRAM
- Image Sensor
- DAPLINK Interface

STATE OF THE ART

MULTIPLE PAPERS FOUND TESTED IN MCUs

SIMPLENET

[1] Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen
Fayyaz, Mohammad Sabokrou "Lets keep it simple, Using simple architectures to outperform deeper and more complex architectures."
https://arxiv.org/abs/1608.06037

CIFAR 10			
Original parameters	5.4 M		
SimpleNet-Arch1 Accuracy	94.75 %		
SimpleNet-Arch2 Accuracy	95.32 %		
Reduced parameters	310K - 460K		
SimpleNet Accuracy	91.98 - 92.33 %		
CIFAR 100			
	X 100		
Original parameters	5.4 M		
Original parameters SimpleNet-Arch1 Accuracy			
	5.4 M		
SimpleNet-Arch1 Accuracy	5.4 M 73.45 %		

MODEL FOR STM32

[2] Lai, Liangzhen, Naveen Suda, and Vikas Chandra. "CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs." https://arxiv.org/abs/1801.06601

CIFAR 10			
Platform	Arm Cortex-M7 STM32		
Time/Inference	99.1 ms (10.1 images)		
Throughput (MAC/Cycle)	249 MOps		
Memory footprint	133 kB		
Accuracy	79.9 %		

NUCLEO-F746ZG The STM32 Nucleo-144 – 216 MHz

EXISTING MODELS

CIFAR100

CIFARNAS

Best performing model from maxim

FusedConv2dBNReLU(3, 64, 3, stride=1, padding=1) FusedConv2dBNReLU(64, 32, 1, stride=1, padding=0) FusedConv2dBNReLU(32, 64, 3, stride=1, padding=1) FusedMaxPoolConv2dBNReLU(64, 32, 3, stride=1, padding=1) FusedConv2dBNReLU(32, 64, 1, stride=1, padding=0) FusedMaxPoolConv2dBNReLU(64, 128, 3, stride=1, padding=1) FusedConv2dBNReLU(128, 128, 1, stride=1, padding=0) FusedMaxPoolConv2dBNReLU(128, 64, 3, stride=1, padding=1) FusedConv2dBNReLU(64, 128, 3, stride=1, padding=1) FusedMaxPoolConv2dBNReLU(128, 128, 1, stride=1, padding=1) Linear (2x2x128, 10)

SIMPLENET

Inspired from the layer architecture of the SimpleNet paper


```
FusedConv2dBNReLU(32, 32, 3, stride=1, padding=1)
 FusedConv2dBNReLU(32, 32, 3, stride=1, padding=1)
      MaxPool2d (kernel_size=2, pool_stride=2)
                    Dropout (0.3)
FusedConv2dBNReLU(32, 32, 3, stride=1, padding=1)
      MaxPool2d (kernel_size=2, pool_stride=2)
                   Dropout (0.3)
FusedConv2dBNReLU(32, 64, 3, stride=1, padding=1)
FusedConv2dBNReLU(64, 128, 3, stride=1, padding=1)
      MaxPool2d (kernel_size=2, pool_stride=2)
                   Dropout (0.3)
FusedConv2dBNReLU(128, 256, 3, stride=1, padding=1)
                Linear (1x1x256, 10)
```

CMSISNNET

Inspired from the architecture of the paper evaluated in STM32

RESULTS CIFAR10 - PAPERS COMPARISON

	CmsisnNet		SimpleNet	
	STM32 - REFERENCE	MAXIM	PAPER - REFERENCE	MAXIM
Input Size	32x32x3	32x32x3	32x32x3	32x32x3
Model parameters		94,314	310K – 460K	401,599
Weight + Bias memory	133 kB	94.30 kB	310 kB – 460 kB	401.60 kB
MACs	-	16,820,224	-	-
Time/inference	99.1 ms 10.1 images	1.97 ms 507.6 images X 50.30 times faster	_	-
Throughput	249.00 MOps	170.76 MOps	-	-
Accuracy	79.9 %	87.15 % + 7.25 %	91.98 - 92.33 %	87.57 %

RESULTS CIFAR10 - AI85NASCIFARNET COMPARISON

	ai85nascifarnet		Nascifarnet	
	REFERENCE BY MAXIM	QAT	WO/Q	PTQ
Input Size	32x32x3	32x32x3	32x32x3	32x32x3
Model parameters	302,602	302,602	302,602	302,602
Weight + Bias memory	302.60 kB	302.60 kB	1210.4 kB	302.60 kB
MACs	36,180,992	36,180,992	✓	36,180,992
Time/inference	4.57 ms 218.81 (images/sec)	4.57 ms	✓	4.58 ms
MACs/Cycle	158.34 MOps	158.34 MOps	✓	157.99 MOps
Accuracy	90.03% *600 epochs	90.13% *150 epochs	85.88%	85.76%

COMPARISON OF SYNTHESIZED MODELS WITH CIFAR10

- Similar accuracy
- Cmsisnnet lowest inference
- Best accuracy cifarnas (data aug)

RESULTS CIFAR100

	Nascifarnet		
	REFERENCE BY MAXIM	OUR TRAINING	
Input Size	32x32x3	32x32x3	
Model parameters	347840	347840	
Weight + Bias memory	348.77 kB	348.77 kB	
MACs	36,227,072	36,227,072	
Time/inference	4584 us	4584 us	
Throughput	158.05 MOps	158.05 MOps	
Accuracy	64.36% *600 epochs	49.18% *150 epochs	

CONCLUSIONS

CMSISNNET is 50.3 times faster ran in MAXIM78000 than in the STM32 Nucleo-144 used by the paper.

- We are able to classify 507.6 images/s with an accuracy of 87.15 %
- Where the paper presented **10.1 images/s** with an accuracy of **79.9**%

NASCIFARNET showed an improvement in accuracy after performing data augmentation and modifying the learning rate of 0.10% with -450 epochs

• We confirmed **QAT yields a better accuracy** compared to PTQ, specifically **+4.25**%

SIMPLENET showed lower accuracy than the model presented by the paper -4%. We have used 50 epochs. There is no information about the paper's model.

NASCIFARNET showed reduced accuracy but there isn't a fair comparison.

150 epochs << 600

CHALLENGES WITH THE CAMERA

MAIN CHALLENGE:

THE IMAGE <u>FORMAT OF THE CAMERA</u> IS DIFFERENT TO THE <u>ONE THE NEURAL NETWORK</u> USES -> we had to find that conversion to:

- 1. Visualize the images from the camera in PNG format
- 2. Convert the sample inputs given to PNG
- 3. Change the output given by the camera to the format required by the NN

QUESTIONS?

THANK YOU FOR YOUR ATTENTION

