UNIT-III

Basic of Memory Management.

The capability of a computer depends on CPU and memory.

Three criteria on far an memory concern

-> Size (1)

-> Access time (4)

-> Per unit (ou (1)

A size is contradictory in nature with access time and per unit cost.

Logical address & and & Physical jaddress

Paragone	Logical Address	Physical Address.
Basic	9t is the virtual address	
	generated by CPU	a location in a memory ant
Address Space	generated by cpu in references to a program	set of all physical addresses mapped to the corresponding logical addresses is mely referred as physical address space.

Vrsibility	The user can view the logical address at a program.	The user can never view physical address of program.
Access	address to access the	The user can not directly access physical address.
Creneration	The Logical Address is generated by the CPU	physical address 1's couputed by MMV

MMU (memory Management Unit)

Address Binding

(2) Compile time (2) Load time (2) Execution time

> 9t there is a process

PI and we want to excute

That then first that process

showed be brought into
main memory.

Memory Allocation Policy

(1) CONTILATIONS POLICY

In contigions Policy, executing process onnot be loaded entirely in main-memory in contigions faction. It can be divided of two types:-

(a) Fixed Size Partitioning / Static Partitioning

- -> oldest and simplest technique.
- Jo this scheme, first we divide the main memory into certain number of partitions (Hon-overlapping). and e; e number of partitions (Hon-overlapping) is fixed.
 - -> Size of each partition may or may not be same.
 - > Hero partition are made before execution or during system configure.

Fixed Size Protitioning

Advantages:

- (i) Easy to implement
- (22) Little Os overhead.

Disadvantagu:-

- (2) Internal Fragonentation
- (ex) External Fragmentation
- (éèci) Limit Process Siza
- (2'v) Limitation on degree of multiprogramming.
- (b) Variable Size Partitioning | Dynamic Partitioning

 > Gnitially RAM is emply and partitioned are

 made during roun-time according to process's

 need entered of partitioning during system

 configure.
 - -> The size of partition will be equal to incoming process.
 - The partition size varies according to the next of the process so that the internal fragmentation can be avoided to ensure efficient utilisation of memory.
 - And depends on the number of incoming.

 process and Main memory size.

 Know your
 - -> Partition size = Process size.

03	
P1 = 2MB	Block S120 = 2M/B
P2 = 4MB	Block 3120 = 4 MB
P3 = 5MB.	13/00/c 9/20 = 5 M/B
Emply Space	

Dynamic Partitioning.

Advantages: -

- (2) No-internal fragmentation
- (22) No-restriction on degree of multiposogramming (22) No Limitation on the size of the process.

Disadvantages !-

- (2) Difficult implementation
- (22) External fragmentation Leig. If Pto and P3 has coupleted and on empty space P41's running than P5 of 6MB cannot be allocatual in memory in above figure)

Memory Allocation Algorithm for Contigious Policy

FIRST FIT: - Allocate the first hole that is big enough. Searching can start either at beginning of the set of holes or where the previous first-fit search ended. We

can stop searching on soon as we find a free hole that 1's large enough.

BEST FIT: - Allocate the smallest hole that

I's big enough. We must crarch

the entire list, unless the list it kept ordered

by size. This startegy produce the smallest

lettover hole (intermal fragmentation)

(3) MORST FIT !-

Allocate the largest hole. Again we must search the entire list unless it is sorted by size. This strategy produces the largest leftover hole, which may be more useful than a smaller leftover hove from a best-fit approach

MEMORY PROTECTION:

- enstructions in process
- -> Relocation register store the base address.

B: Griven memory partitions of 10016B, 500KB, 200KB, 300KB and 600 KB (in order). How would each of the first-fit, best-fit and worst fit algorithms place processes of 212KB, 417 KB, 112KB, and 426KB (in order) 9. Which algorithm makes the most efficient use of Momory.

6017

Let P1 = 212 KB, P2 = A17 KB, P3 = 112 KB, and P4 = 42814B

First Fit		Best Fix		Worst fit			
100	okB		100KB		100108		
P1(212) 50	OKB	P2(417 KB)	5001 <b< td=""><td>P2(417 KB)</td><td>5001CB</td></b<>	P2(417 KB)	5001CB		
123(112) 20	01613	P3 (\$121 <b)< td=""><td>2001<b< td=""><td></td><td>2001eB</td></b<></td></b)<>	2001 <b< td=""><td></td><td>2001eB</td></b<>		2001eB		
30	001013	P3 (212KB)	30012B	P3(112KB)	300KB		
P2(417) 6	00 KB	P4 (426 KB)	6001613	P1(212 kg)	6001CB.		
PA County be placed							

P4 Commot placed.

so Brest fit is most refficient here.