### INF01203 – Estruturas de Dados

### Árvores

### Árvores

- Relacionamento Lógico
  - Hierarquia ou Subordinação
- Onde:
  - um subconjunto dos componentes é subordinado a outro



### Árvores



### Exemplos de Aplicações

- Hierarquia de subordinação
  - Classes e subclasses



### Exemplos de Aplicações

- Hierarquia de subordinação
  - Classes e subclasses



### Exemplos de Aplicações

• Organograma de empresa



## Exemplos de Aplicações

• Abstração de composição



### Exemplos de Aplicações

Diretórios e arquivos



### Exemplos de Aplicações

• Organização de informações



# Árvore de derivação compilador

Exemplos de Aplicações



### Exemplos de Aplicações

• Ordenação de valores



## Formas de Representação

• Diagrama de inclusão





### Formas de Representação

Diagrama de barras







# Formas de Representação

Níveis



Aninhamento

### Definição Formal

- Conjunto finito T de zero ou mais nós, tal que:
  - número de nodos maior do que zero
    - existe um nó denominado raiz da árvore
    - os demais nós formam m > 0 conjuntos disjuntos S<sub>1</sub>, S<sub>2</sub>, ..., S<sub>m</sub>, onde cada um destes é uma árvore (S<sub>i</sub> são denominadas sub-árvores)
  - número de nodos igual a zero
    - árvore vazia



## Terminologia



# Raiz B C D K Sub-árvores



## Terminologia



### Terminologia

- Grau
  - número de sub-árvores do nodo
- Grau de saída



# Terminologia

- Grau de uma árvore
  - máximo entre os graus de seus nodos



# Terminologia

- Nó folha (ou terminal ou externo)
  - grau igual a zero



# Terminologia

- Nó de derivação (interno)
  - nó com grau maior do que zero



# Terminologia

Floresta



### Terminologia

- Caminho
  - seqüência de nodos distintos, tal que existem sempre nodos consecutivos



### Terminologia

- · Comprimento do caminho
  - seqüência de nodos distintos, tal que
    - existem sempre nodos consecutivos
    - v<sub>1</sub> alcança v<sub>k</sub> e v<sub>k</sub> é alcançado por v<sub>1</sub>



### Terminologia

- Nível
  - número de ligações entre o nodo e a raiz, acrescido de uma unidade



## Terminologia

- Altura (profundidade)
  - maior nível





### Terminologia

- Árvore ordenada
  - ordem das sub-árvores é relevante





### Definição Formal

- Conjunto finito T de zero ou mais nós, tal que:
  - número de nodos maior do que zero
    - existe um nó denominado raiz da árvore
    - os demais nós formam m > 0 conjuntos disjuntos S<sub>1</sub>, S<sub>2</sub>,
       ..., S<sub>m</sub>, onde cada um destes é uma árvore (S<sub>i</sub> são
       denominadas sub-árvores)
  - número de nodos igual a zero
    - árvore vazia



# Operações sobre as Árvores

- Dados
  - árvore A
- Operações
  - criação da árvore
  - inserção de um novo nodo
    - raiz
    - folha
    - posição intermediária
  - exclusão de um determinado nodo
  - acesso a um nodo
    - determinar forma de percorrer a árvore
  - destruição da árvore

### Árvores

- Como armazenar os nós de uma árvore?
- Como percorrer uma árvore?
- Como inserir novos nós?
- Como excluir nós?



Árvores Implementadas por Contigüidade Física

### Árvores – Contigüidade Física

• Os nodos da árvore são dispostos na memória segundo uma convenção



### Árvores – Contigüidade Física



# Árvores – Contigüidade Física



### Árvore Ternária



# TAD Árvore – contigüidade física



# TAD Árvore – contigüidade física

- Árvore representada por níveis
  - alnfo: Array [1..n] de Info;
  - aFilhos: Array [1..n] de inteiro;
  - Descritor da árvore (descA)
    - raiz: inteiro; // endereço da raiz no array
    - numNodos: inteiro;
    - · altura: inteiro;
    - grauMax: inteiro;

### TAD - operações

```
procedure inicializa(var a: descA);
// inicializa a árvore
procedure insere(var a: descA; var al: aInfo; var
                a2: aFilhos; dado: Info; pai:
                Info);
// insere um nodo na árvore
procedure remove(var a: descA; var al: aInfo; var
                a2: aFilhos: dado: Info);
// remove um nodo da árvore
function localiza (a: descA; a1: aInfo; a2:
                aFilhos; dado: Info):inteiro;
// busca o campo de informação de um nodo e
                retorna o índice do array
procedure visita(a: descA; a1: aInfo; a2:
                aFilhos);
// percorre todos os nodos da árvore
procedure destroi(var a: descA);
// destrói a árvore
```

### Análise - Contigüidade Física

- não constitui, em geral, uma boa solução
- dificuldades para manipulação da estrutura (hierarquia)
- geralmente eficiente em termos de espaço ocupado

### Análise – Contigüidade Física

- Exceção 01
  - quando os nodos são processados exatamente na mesma ordem em que são armazenados



- Exceção 02
  - quando, excetuandose as folhas, que aparecem no mesmo nível, os demais nodos têm graus iguais ou muito próx As

Árvores Implementadas por Encadeamento

# Éndereços da raiz das sub-árvores B C D B //// C ///// D /// E F G

### Árvores - Encadeamento

### • Problema:



### TAD – Árvores por Encadeamento



## TAD Árvore – contigüidade física

- nodoA // Nodo da árvore
  - dado: Info
  - filho1: ^nodoA
  - filho2: ^nodoA
  - **–** ...
  - filhoN: ^nodoA
- Descritor da árvore (descA)
  - raiz: ^nodoA; // endereço da raiz no array
  - numNodos: inteiro;
  - altura: inteiro:
  - grauMax: inteiro;

### Análise – Encadeamento

- problemas quando grau dos nodos é variado – muitos elos vazios
- acesso somente através de raiz disciplina para percorrer árvore
- inserção e remoção são simplificadas
- hierarquia é intuitiva esta forma de implementação é adotada a partir de agora