Control Systems Engineering Chapter 1: Introduction

Dr.-Ing. Witthawas Pongyart

What is Control System?

A control system consists of subsystems and processes (or plants) assembled for the purpose of obtaining a desired output with desired performance, given a specified input.

Example of a control system: Elevator

When the fourth-floor button is pressed on the first floor, the elevator rises to the fourth floor with a speed and floor-leveling accuracy designed for passenger comfort.

Example of a control system: Elevator

• Example of a control system: Elevator

Two major measures of performance:

- (1) the transient response
- (2) the steady-state error.

Advantages of Control Systems

- 1. Power amplification
- 2. Remote control
- 3. Convenience of input form
- 4. Compensation for disturbances

Advantages of Control Systems

- 1. Power amplification
- 2. Remote control
- 3. Convenience of input form
- 4. Compensation for disturbances

Advantages of Control Systems

- 1. Power amplification
- 2. Remote control
- 3. Convenience of input form
- 4. Compensation for disturbances

Advantages of Control Systems

- 1. Power amplification
- 2. Remote control
- 3. Convenience of input form
- 4. Compensation for disturbances

System Configurations

We discuss two major configurations of control systems: **open loop** and **closed loop**.

We can consider these configurations to be the internal architecture of the total system shown in Figure 1.1.

Finally, we show how a digital computer forms part of a control system's configuration.

 Open Loop System Disturbance 1 Disturbance 2 Output Input Input Process or Controller transducer or Plant Controlled Reference Summing Summing variable junction junction

Figure 1.6 (a)

Open Loop System

Figure 1.6 (a)

Open Loop System

The distinguishing characteristic of an open-loop system is that it cannot compensate for any disturbances that add to the controller's driving signal

Figure 1.6 (a)

Open Loop System

Open Loop System

Figure 1.6 (a)

Open loop System

Figure 1.6 (a)

Closed Loop System

Open Loop System

Control System

