Robust Offline Reinforcement Learning via Lipschitz Value Function

Tengyang Xie

tx10@illinois.edu

Overview

Goal: Provably Robust RL against (adversarial) perturbations on state observations.

Results:

- 1. On robustness definition: Using Lipschitz Q-function is sufficient against perturbations on states (done: formally proved)
- Lipschitz policy evaluation
 (method proposed with basic guarantee, future work: detailed analysis)
- 3. Robust offline RL (Lipschitz policy evaluation + Policy improvement) (future work)

Lipschitz Value Function

Fact: Lipschitz (transition + reward) \Longrightarrow Lipschitz Q-Function [Asadi et al., 2018]

Theorem. [Policy improvement via Lipschitz Q-function is robust against perturbations on states]

Assume (\widehat{Q}, π) pair satisfies (1) $\|\widehat{Q} - Q^{\pi}\|_{\infty} = \varepsilon_1$; (2) \widehat{Q} is L-Lipschitz. Let $\pi_{\widehat{Q}} \circ \nu_{\varepsilon_2}$ be the perturbed greedy policy w.r.t. \widehat{Q} and an ε_2 -bounded perturbation ν_{ε_2} , then

$$V^{\pi_{\widehat{\mathcal{Q}}} \circ
u_{arepsilon_2}}(s) \geq V^{\pi}(s) - rac{2arepsilon_1 + 2Larepsilon_2}{1 - \gamma}, \,\, orall s \in \mathcal{S},$$

where $\pi \circ \nu_{\varepsilon_2}(s) = \operatorname{argmax}_{a \in \mathcal{A}} \widehat{Q}(\nu_{\varepsilon_2}(s), a)$.

Lipschitz Value Function

What can we learn from that Theorem?

Policy improvement still holds approximately even with adversarial perturbations on states as long as:

- (i) We can approximate Q^{π} accurately;
- (ii) Approximated Q^{π} is Lipschitz continuous.

A robust RL framework based on that concept:

- 1. Policy evaluation with ensuring Lipschitz; (next page)
- 2. Policy improvement according to the estimated Lipschitz Q-function. (future work)

Lipschitz Policy Evaluation

A non-parametric Lipschitz policy evaluation approach:

Given batch data $\mathcal{D} = \{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ (all the states are perturbed by v_{ϵ_2}) and target policy π .

- 1. Set $q_{0,i} = r_i \gamma Ld(s_i, s_i'), \forall i \in [i]$
- 2. For t = 1, 2, ..., T
 - $\textbf{2.1} \ \ Q_t(s,a) = \max_{i \in [n]: a = a} (q_{t-1,i} \!-\! Ld(s,s_i) \!-\! L\varepsilon_2), \ \forall (s,a) \in \mathcal{S} \!\times\! \mathcal{A}$
 - $\textbf{2.2} \hspace{0.2cm} q_{t,i} = r_i + \gamma [\widehat{T}^{\pi} Q_t](s_i,a_i), \forall i \in [i]$

Theorem

Let $Q = Q_T, T \to \infty$, we have

$$\|Q_T - Q^\pi\|_\infty \leq rac{2L(arepsilon_{\mathcal{S}} + arepsilon_2)}{1-\gamma},$$

where $\varepsilon_S := \sup_{(s,a) \in S \times A} \min_{i \in [n]: a_i = a} d(s, s_i)$, and ε_2 is the perturbation bound.

Reference

Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based reinforcement learning. In International Conference on Machine Learning, pages 264–273, 2018.