Evaluation of Microservice Architecture Designs in an IoT-Context

Abramov Sviatoslav svyatabram@gmail.com

Supervisor: Prof. Dr.-Ing Günter Schäfer Supervisor: Associate Prof. Dr. Igor Anikin

Content

- ► Introduction
- Requirements
- State of the Art
- ▶ Results
- **▶** Conclusion
- ► Future Work

Introduction

The thesis overview

The microservice system

- CoAP s-ce edge service handling IoT devices request
- Adapter s-ce transforms CoAP a device data model and forward its request.
- Alive s-ce provides information about connected devices
- Registration s-ce –
 responsible for device
 registration within the system

Component diagram

Component diagram (gRPC)

Load generation

Test scenario

Requirements

The system requirements

Transformation

Non-functional Requirements

Qualitative

- Testable
- Reproducible
- Deployable

Quantitative

- Response time
- Scalable

State of the art

Literature overview

Basic articles

- M. S. Hatem Hamad and R. Abed, "Performance evaluation of restful web services for mobile devices," Computer Engineering Department, Islamic University of Gaza, Palestine, International Arab Journal of e-Technology, 2010.
- P. J. Amaral M. and C. D., "Performance evaluation of microservices architectures using containers.," IEEE 14th International Symposium on Network Computing and Applications, 2015.
- J. F. Kunhua Zhu and Y. Li, Research the performance testing and performance improvement strategy in web application", 2nd international Conference on Education Technology and Computer. 2010.

Results

The Results discussion

Interconnection comparison

- Messaging provides the lowest response time less than1 millisecond.
- Async. HTTP provides the highest response time, a bit higher 70 milliseconds.

Transaction duration by service

- gRPC interconnection provides lowest transaction duration time of persistence services.
- The messaging one provides the lowest transaction duration time of non-persistence services.

Load balancing strategies comparison

- Client-side LB strategy provides about 10% less the system response time, scaling persistency services.
- Server-side LB
 strategy improves the
 system response by
 almost the same
 amount but by scaling
 edge service.

impact of lb on services

 Probably picture with an error.

DBMS comparison

- Key-Value DBMS requires significantly less time to execute database operations.
- Despite a data structure it needs about 8 milliseconds to process an operation.

Conclusion

Summing up the thesis

Conclusion

- The fastest an IoT device request handling can provide a microservice system with messaging middleware interconnection to non-persistency services and gRPC interconnection to persistency services.
- Document-oriented key-value DBMS can ensure the lowest transaction duration of persistency services.
- Load balancing strategy choice depends on where a microservice system has a bottleneck.

Future work

- To test the microservice system with some additional services satisfying more realistic requirements.
- Improve the load generation.
- Survey about how caching might affect the system response time.
- Prove our research on a production made application.

EOF

