2	3	4	4	4	4	3	2
3	4	6	6	6	6	4	3
4	6	8	8	8	8	6	4
4	6	8	8	8	8	6	4
4	6	8	8	8	8	6	4
4	6	8	8	8	8	6	4
3	4	6	6	6	6	4	3
2	3	4	4	4	4	3	2

图 2

假设 G 是 Hamilton 图,则存在 Hamilton 回路 C,由 $d(v_{11})=2$ 知,C 中与 v_{11} 相邻的两个顶点为 v_{23} 和 v_{32} 。如果从 v_{11} 开始进行遍历,其过程一定是 $v_{11},v_{23}\cdots v_{32},v_{11}$,则 $G-v_{11}$ 中必然存在 v_{23} 到 v_{32} 的 Hamilton 通路。由 v_{18},v_{81},v_{88} 和 v_{11} 具有相同的性质可知, $C-\{v_{11},v_{18},v_{81},v_{88}\}$ 会产生 4 条互不相交的路径。而这些路径的起始点只能是 $\{v_{23},v_{26},v_{32},v_{37},v_{62},v_{67},v_{73},v_{76}\}$ 中的点。

由图 1 和图 2 可以看出,G 有"旋转对称性"(即将 G 顺时针旋转 90°, 180°, 270° 后,仍与 G 重合)。不妨提出猜想: $C-\{v_{11},v_{18},v_{81},v_{88}\}$ 产生的 4 条路径也具有"旋转对称性"(一个依据:C 中已经确定下来的 8 条边具有"旋转对称性")。如果猜想成立,那么只需求出一条路径,通过旋转就可以得到其它 3 条。

 $G - \{v_{11}, v_{18}, v_{81}, v_{88}\}$ 中有 60 个顶点,由猜想知 4 条路径长度相同,可以进行分组,每组 15 个点,例如将 v_{21} 顺时针旋转 90°, 180°, 270° 后,得到 v_{17}, v_{78} 和 v_{82} ,则这 4 个点属于同一组。给每个组编一个号,如图 3 所示。