МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра систем штучного інтелекту

Звіт

Лабораторна робота №1 з дисципліни:

"Дискретна математика"

Виконав:

Студент групи КН-113

Добосевич Д.А.

Викладач:

Мельникова Н.І.

Тема: "Моделювання основних логічних операцій "

Мета: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні значення за таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Постановка завдання:

Варіант № 8

- 1. Формалізувати речення. Людину не підкуплять лестощі, якщо розум у людини ϵ .
- 2. Побудувати таблицю істинності для висловлювань: $(x \lor (y \lor z)) \Rightarrow (\overline{x} \lor (\overline{y} \lor \overline{z}));$
- 3. Побудовою таблиць істинності вияснити, чи висловлювання ϵ тавтологією або протиріччям: $\overline{((p \leftrightarrow q) \lor (q \leftrightarrow r))} \land \overline{(p \lor r)}$
- 4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи ϵ тавтологі ϵ ю висловлювання: $((p \rightarrow q) \land (q \rightarrow q)) \rightarrow p$;
- 5. Довести, що формули еквівалентні: $q \wedge (p \to r)$ та $p \to (q \wedge r)$.

Додаток 2 до лабораторної роботи з розділу 1

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для наступних формул:

8.
$$(x \lor (y \lor z)) \Rightarrow (\overline{x} \lor (\overline{y} \lor \overline{z}));$$

Розв'язок задачі №1

Нехай:

p- розум у людини ϵ ;

q – людину підкуплять лестощі;

Тоді формалізація речення буде такою:

$$p \rightarrow \neg q$$

Розв'язок задачі №2

Таблиця істинності для висловлювання

$$(x \lor (y \lor z)) \Rightarrow (\overline{x} \lor (\overline{y} \lor \overline{z}));$$

	`	`		//			//			
X	у	Z	yvz	xv(yvz)	¬x	¬y	~z	(¬y)v(¬z)	$(\neg x)v((\neg y)v(\neg z))$	$(xv(yvz)) \rightarrow ((\neg x)v((\neg y)v(\neg z)))$
0	0	0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1
0	1	0	1	1	1	0	1	1	1	1
0	1	1	1	1	1	0	0	0	1	1
1	0	0	0	1	0	1	1	1	1	1
1	0	1	1	1	0	1	0	1	1	1
1	1	0	1	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	0	0	0

Розв'язок задачі №3

p	q	r	p = q	q = r	(p = q)v(q = r)	$\neg((p=q)v(q=r))$	pvr	¬(pvr)	$(\neg((p=q)v(q=r))) \ \land $ $(\neg(pvr))$
0	0	0	1	1	1	0	0	1	1
0	0	1	1	0	1	0	1	0	0
0	1	0	0	0	0	1	0	1	0
0	1	1	0	1	1	0	1	0	0
1	0	0	0	1	1	0	1	0	0
1	0	1	0	0	0	1	1	0	1
1	1	0	1	0	1	0	1	0	0
1	1	1	1	1	1	0	1	0	0

Задане висловлювання не ϵ ні тавтологі ϵ ю, ні протиріччям.

Розв'язок задачі №4

Припустимо що висловлювання $((p \to q) \land (q \to q)) \to p \in$ протиріччям.

$$((p \rightarrow q) \land (q \rightarrow q)) =$$
True;

p = False;

Оскільки ((p
$$\to$$
 q) \land (q \to q)) = **True**, то (p \to q) = **True** i (q \to q) = **True**

Так як p = False, то $(p \to q) = True$ і оскільки $(q \to q)$ завжди **True**, тоді в такому випадку значення висловлювання **False**, отже, якщо хоча б в одному можливому випадку значення висловлювання **False**, то це висловлювання **не** ϵ **тавтологією**.

Розв'язок задачі №5

Таблиця істинності для двох формул р ightarrow (q Λ r) та р V (q \oplus r)

р	q	r	p→r	q⊕(p→r)	q⊕r	p→(q⊕r)
0	0	0	1	1	0	1
0	0	1	1	1	1	1
0	1	0	1	0	1	1
0	1	1	1	0	0	1
1	0	0	0	0	0	0
1	0	1	1	1	1	1
1	1	0	0	1	1	1
1	1	1	1	0	0	0

Ці дві формули не ϵ еквівалентними, оскільки їхні значення відрізняються.

Розв'язок задачі з додатку №2

Отримавши результати заданого висловлювання відносно значень змінних $(\mathbf{x}, \mathbf{y}, \mathbf{z})$, будуємо програму на мові програмування С

Висновок:

Виконуючи лабораторну роботу, я ознайомився із основними поняттями математичної логіки, навчився будувати складні висловлювання за допомогою логічних операцій та знаходити їхні значення за допомогою таблиць істинності, використовувати закони алгебри логіки.