NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY

Patent Number:

JP2002042806

Publication date:

2002-02-08

Inventor(s):

MURAI TETSUYA

Applicant(s):

JAPAN STORAGE BATTERY CO LTD

Requested Patent:

П <u>JP2002042806</u>

Application Number: JP20000219580 20000719

Priority Number(s):

IPC Classification:

H01M4/48; H01M4/62; H01M10/40

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery having high battery capacity and high safety performance, using a silicon oxide as a negative electrode material. SOLUTION: The silicon oxide having electron conductive material layers on particle surfaces is used as the negative electrode material for the non- aqueous electrode secondary battery.

Data supplied from the esp@cenet database - I2

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-42806

(P2002-42806A)

(43)公開日 平成14年2月8日(2002.2.8)

(51) Int.Cl.7	酸別記号	FΙ	テーマコード(参考)
H01M 4/4		H01M 4/48	5 H O 2 9
4/6		4/62	Z 5H050
10/4		10/40	Z
		審查請求 未請求 請	求項の数4 OL (全 4 頁)
(21)出願番号	特顧2000-219580(P2000-219580)	(71) 出願人 000004282 日本電池株式会社	
(22)出願日	平成12年7月19日(2000.7.19)	京都府京都市南区吉祥院西ノ庄猪之馬場町	
		1番地	
		(72)発明者 村井 哲也	•
	-	京都府京都	市南区吉祥院西ノ庄猪之馬場町
		1番地 日本電池株式会社内	
		Fターム(参考) 5H029	AJ03 AJ12 AK02 AK03 AK05
			ALO2 AMO2 AMO3 AMO4 AMO6
			DJ08 DJ16 EJ01 EJ04
		5H050	AA08 AA15 BA17 CA02 CA08
			CA09 CA11 CB02 DA10 EA02
		1	EAO3 EAO4 EA10 FA17 FA18
			FA20

(54)【発明の名称】 非水電解質二次電池

(57)【要約】

【課題】高電池容量と高安全性能を有する、珪素酸化物 を負極材料に用いた非水電解質二次電池を提供する。 【解決手段】非水電解質二次電池の負極材料として、粒 子表面に電子導電性材料層を備えた珪素酸化物を用い る。

1

【特許請求の範囲】

【請求項1】珪素酸化物粒子の表面に電子導電性材料層 を備えた負極材料を用いたことを特徴とする非水電解質 二次電池。

【請求項2】前記電子導電性材料が炭素材料であること を特徴とする請求項1に記載の非水電解質二次電池。

【請求項3】前記炭素材料が低結晶性カーボンであると とを特徴とする請求項2に記載の非水電解質二次電池。

【請求項4】前記電子導電性材料がリチウム非合金性金 属であることを特徴とする請求項1に記載の非水電解質 10 二次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非水電解質二次電 池の負極に関する。

[0002]

【従来の技術】近年、ポータブル電子機器の小型軽量化 はめざましく、それに伴い電源となる電池に対しても小 型軽量化の要望が非常に大きい。このような要求を満足 するためにリチウム二次電池などの種々の二次電池が開 20 発され、現在、主にリチウムイオン電池が実用化されて

【0003】リチウム二次電池は、理論エネルギー密度 が他の二次電池と比較して格段に高いため、携帯用電子 ・電気機器に用いられる高性能電池のみならず、最近で は電気自動車用の新型電池として強い関心が寄せられて いる。この電池の負極材料にはリチウム金属そのものを 用いるのが理想であるが、現状では安全性の確保が困難 なため、これに変わるものとしてリチウム合金やリチウ ムイオンをインターカレーとさせる炭素材料などが提案 30 されている。

【0004】リチウムの合金化はこれまでにLiA1を 始めとして種々検討されているが、合金の骨格にリチウ ムが使われるようなこのタイプの合金は、充電-放電時 に合金中のリチウム濃度の変化に伴って生じる大きな相 変化と体積変化とにより、電極の形状が崩れ、集電効率 が低下するという致命的な欠点を有している。他方、炭 素負極は既に実用化されているが、これには充・放電容 量が小さいという本質的な問題がある。

【0005】とのような背景のもと、最近、Liが格子 間に可逆的に挿入一脱離するような珪素酸化物を負極材 料として用いる試みがなされた。なかでもSiO負極は 炭素 (グラファイト) 負極の約3倍の容量をもち、非常 に魅力的な材料である。

【0006】ただ珪素酸化物は電子導電性が非常に低い ため、負極材料として用いるためには珪素酸化物粒子間 に電子導電性を持たせなければならない。そのため、例 えば図2に示すように大量の鱗片状黒鉛などの電子導電 性マトリックスを混合させていた。

[0007]

【発明が解決しようとする課題】電子導電性を保つため には電子導電性マトリックスを多くしなければならない が、そうすると電池としてのエネルギー密度が低くな り、珪素酸化物のもつ大きな放電容量を十分に活用でき

【0008】カーボン微粒子などを混合するなど、電子 導電性マトリックスである鱗片状黒鉛粒子の粒径を図3 に示すように小さくして珪素酸化物粒子との接触面積を 増大させることも電子導電性向上の一つの手段ではある が、この場合、黒鉛粒子自身の表面積が増大して電解質 との反応性が高まり、発火などの原因となって危険であ

【0009】そこで、本発明の課題は、高電池容量と高 安全性能を有する、珪素酸化物を負極材料に用いた非水 電解質二次電池を提供することにある。

[0010]

【課題を解決するための手段】上記課題を解決する、本 発明の非水電解質二次電池は、珪素酸化物粒子の表面に 電子導電性材料層を備えた負極材料を用いたことを特徴 とする。前記電子導電性材料層は、前記珪素酸化物粒子 の表面の少なくとも一部に有していれば良い。珪素酸化 物は電子導電性が非常に低いために該粒子間に電子導電 性を持たせることが必要である。そこで、従来の珪素酸 化物と電子導電性マトリックスを混合させて作製した負 極材料を用いずに、珪素酸化物粒子の表面に電子導電性 材料層を備えた負極材料を用いて、非水電解質二次電池 を製作するのである。電池のエネルギー密度が向上し、 安全性能も高まる。

【0011】好ましくは上記電子導電性材料に炭素材料 を用いたものがよい。炭素材料は、導電性がよく安価 で、さらに酸化珪素表面が酸化されてSiOぇになるの を防ぐことができるからである。

【0012】さらに好ましくは、上記炭素材料が低結晶 性カーボンがよい。低結晶性カーボンはリチウムの吸蔵 放出に伴うc軸方向の膨張収縮が黒鉛とくらべ小さいた めに、粒子間同士の導電性が良好に保たれるからであ る。

【0013】また、好ましくは、上記電子導電性材料が リチウムと合金化しないリチウム非合金性金属がよい。 好ましくは、銅(Cu)、ニッケル(Ni)、鉄(F e)、クロム(Cr)、チタン(Ti)、ジルコニウム (Zr)、パナジウム(V)、ニオブ(Nb)から選択 される少なくとも 1 種以上の金属および/又は少なくと も2種以上の金属からなる合金が好ましい。

[0014]

【発明の実施の形態】本発明の珪素酸化物は、元素組成 が珪素(Si)と酸素(〇)からなる酸化珪素であっ T、S i O x (0 < x < 2) で表される珪素の低級酸化 物が好ましく、また該酸化珪素にしiをドープさせた珪 50 素酸リチウムであってもよい。

【0015】前記珪素酸化物粒子の表面に電子導電性材 料層を備えた負極材料は、CVD法または液相法または 焼成法を用いて作製することができる。また、ボールミ ルなど、メカニカルアロイング法により作製することも できる。これらの方法によれば、粒子の表面の少なくと も一部に前記電子導電性材料を被覆することができる。 【0016】好ましくは、CVD法で電池導電性材料を 蒸着する。該材料が微粒子にならず導電性と安全性の向 上に効果があるからである。さらに、粒子表面積に対す る被覆部の割合、すなわち被覆率を調整することも容易 10 である。

【0017】被覆は珪素酸化物、特に低級酸化物が酸化 されないように、不活性雰囲気中、例えばアルゴンや窒 素などで行うと良い。

【0018】上述したような電子導電性材料層を備えた 珪素酸化物を非水電解質二次電池の負極材料として用い る。特に、電子導電性材料で被覆された珪素酸化物の被 覆率は、20%以上が好ましい。20%より被覆率が小 さいと、十分な電子導電性が得られないからである。 【0019】被覆に用いる前記電子導電性材料として は、炭素材料が好ましい。炭素材料が導電性がよく安価 で、さらに酸化珪素表面が酸化されSiOzになるのを 防ぐからである。さらに好ましくは、低結晶性カーボン である。低結晶性カーボンはリチウムの吸蔵放出に伴う c軸方向の膨張収縮が黒鉛とくらべ小さいために、粒子 間同士の導電性が良好に保たれるからである。

[0020] 炭素材料以外の好ましい電池導電性材料と しては、リチウムと実質的に合金をつくらないリチウム 非合金性金属がよい。リチウム非合金性金属としては、 銅(Cu)、ニッケル(Ni)、鉄(Fe)、クロム (Cr)、チタン(Ti)、ジルコニウム(Zr)、バ ナジウム (V)、ニオブ (Nb) などであり、コストや 扱いやすさの点から銅(Cu)、ニッケル(Ni)、鉄 (Fe)、クロム(Cr)、チタン(Ti)、ニオブ (Nb) が特に好ましい。

【0021】とれらリチウム非合金性金属の被覆はCV D法、液相法、焼成法などで行う。この場合も、酸化を 抑制するため、不活性雰囲気中で行うのが良い。

【0022】前述負極材料以外の電池の材質、形状な ど、本発明の実施にあたっては特に限定するものではな 40 めることができる。 いが、正極活物質としては、例えばコバルト酸リチウム (LiCoO₂)、ニッケル酸リチウム(LiNi O,)、スピネル型マンガン酸リチウム(LiMn , ○,) あるいはこれらの複合酸化物など、あるいはマン ガン酸化物(Li,MnO,)、パナジウム酸化物(V, O₈、V₂O₅、V₆O₁,)、二硫化チタン(T i S₂)、 二硫化鉄(FeS,)、二硫化モリブデン(MoS,)な どを用いることができる。

【0023】セパレータは、ポリエチレンやポリプロピ レン製の微多孔膜、あるいはポリエチレンとポリプロピ 50

レンや他の樹脂膜とを貼り合わせた2層、3層のものな どを用いることができる。

【0024】非水電解液は、混合溶媒を主体とする有機 電解液であるが、支持電解質のリチウム塩を溶解させる ためには、高誘電率でリチウムイオンとの適度な溶媒和 能力を持ち、イオンの移動を妨げない低粘度の有機溶媒 が好ましい。また、電池の作動温度で液体でなければな らず、凝固点は低く、沸点は高いことが必要である。正 極と負極の活物質に対して化学的に安定であることは当 然で、さらに電池内での充放電反応にともなう厳しい酸 化還元雰囲気にも耐えなければならないものが必要であ る。これらの条件を満たすため、性質の異なる複数の溶 媒を混合して使用する。例えば、高誘電率溶媒として、 エチレンカーボネート (EC)、プロピレンカーボネー ト (PC)、γ-ブチロラクトン (γ-BL)、ジメチ ルスルホキシド(DMSO)、低粘度溶媒としてジメチ ルカーボネート (DMC)、ジエチルカーボネート (D EC)、エチルメチルカーボネート(EMC)、ジメト キシエタン(DME)、などである。支持電解質は電解 液にイオン電導性を与えるために必要で、六フッ化リン 酸リチウム(LiBF。)、過塩素酸リチウム(LiC 10√)、四フッ化ホウ酸リチウム(LiBF₄)、六フ ッ化ヒ酸リチウム(LiAsF。)のようなリチウム塩 などである。

【0025】電池容器の材質についても、特に限定され るものではなく最適なものを用いればよいが、例えば 鉄、ニッケル、ステンレス、アルミニウムなどの金属を 用いることができる。また、必要に応じて種々の材質を 混合させて複合材料としたり、多層構造としても良い。 【0026】電極体の構造は、平板状の正極、負極とセ パレータの組み合わせを複数枚積み重ねてなる積層式電 極体や、正極と負極とセパレータとを断面円形または精 円形状に巻回してなる巻回式電極体などを用いることが できる。

[0027]

30

【発明の効果】本発明によれば、電子導電性マトリック スが不要となり、珪素酸化物の魅力である髙容量を効率 よく利用することができ、電池のエネルギー密度を向上 させることが可能となる。同時に、電池の安全性能も高

【図面の簡単な説明】

【図1】本発明の1実施形態を示す図であって、表面に 電子電導性材料の被覆部を有する珪素酸化物粒子の形態 を示す断面図。

【図2】従来の1実施形態を示す図であって、電子導電 性マトリックスに鱗片状黒鉛を用いた時の珪素酸化物の 形態を示す断面図。

【図3】比較のための1実施形態を示す図であって、電 子導電性マトリックスにカーボン微粒子を用いた時の珪 素酸化物の形態を示す断面図。

(4)

特開2002-42806

6

【符号の説明】

1 珪素酸化物粒子2 電子伝導性材料

5

* 3 鱗片状黒鉛

4 カーボン微粒子

*

【図1】

【図2】

【図3】

THIS PAGE BLANK (USPTO)