Generated on 2023-11-22 18:14:05 by gEcon version 1.2.1 (2023-01-18)

Model name: RSW_RP_PERS

1 HIGHREGIME

1.1 Optimisation problem

$$\max_{p!H_t, yH_t, p!H_t, p!H_t^{\text{lag}^1}} UH_t = -0.5 \left(p!tH - p!tCB + p!H_t \right)^2 + \beta E_t \left[UH_{t+1} \right] + \beta \left(1 - pH \right) \left(-E_t \left[UH_{t+1} \right] + E_t \left[UL_{t+1} \right] \right) - 0.5 \kappa \theta^{-1} yH_t^2$$

$$(1.1)$$

s.t.:

$$yH_{t-1} = yH_t - \sigma (iH_{t-1} - piH_t) + (1 - pH) (-yH_t + yL_t) + \sigma (1 - pH) (-piH_t + piL_t) \quad \left(\lambda_t^{\text{HIGHREGIME}^2}\right)$$
(1.3)

1.2 First order conditions

$$-pitH + pitCB - piH_t + \lambda_t^{\mathrm{HIGHREGIME}^1} \left(\beta \left(1 - phipi\right) - \beta \left(1 - phipi\right) \left(1 - pH\right)\right) + \lambda_t^{\mathrm{HIGHREGIME}^2} \left(\sigma - \sigma \left(1 - pH\right)\right) + \left(\beta - \beta \left(1 - pH\right)\right) \left(-\mathrm{E}_t \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^1}\right] + \mathrm{E}_t \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^{\mathrm{PitH}^{\mathrm{lag}^1}}}\right]\right) = (1.4)$$

$$pH\lambda_{t}^{\text{HIGHREGIME}^{2}} + (\beta - \beta (1 - pH)) \left(\kappa E_{t} \left[\lambda_{t+1}^{\text{HIGHREGIME}^{1}} \right] - E_{t} \left[\lambda_{t+1}^{\text{HIGHREGIME}^{2}} \right] \right) - \kappa \theta^{-1} yH_{t} = 0 \quad (yH_{t})$$

$$(1.5)$$

$$-\sigma \left(\beta - \beta \left(1 - pH\right)\right) E_{t} \left[\lambda_{t+1}^{\text{HIGHREGIME}^{2}}\right] = 0 \quad (iH_{t})$$

$$(1.6)$$

$$-\lambda_{t}^{\mathrm{HIGHREGIME}^{\mathrm{piH}^{\mathrm{lag}^{1}}} + p \dot{m} \dot{n} \left(\beta - \beta \left(1 - pH\right)\right) \mathrm{E}_{t} \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^{1}}\right] = 0 \quad \left(p \dot{H}_{t}^{\mathrm{lag}^{1}}\right)$$

$$(1.7)$$

2 LOWREGIME

2.1 Optimisation problem

$$\max_{p:L_{t},yL_{t},iL_{t},p:L_{t}^{\text{Liag}^{1}}} UL_{t} = -0.5 \left(-p i CB + p i L + p i L_{t} \right)^{2} + \beta E_{t} \left[UL_{t+1} \right] + \beta \left(1 - p L \right) \left(E_{t} \left[UH_{t+1} \right] - E_{t} \left[UL_{t+1} \right] \right) - 0.5 \kappa \theta^{-1} y L_{t}^{2}$$

$$(2.1)$$

s.t. :

$$piL_{t-1} = \log \cot pi_{t-1} + \kappa y L_{t-1} + phipi piL_{t-2} + \beta pLpiL_t (1 - phipi) + \beta (1 - phipi) (1 - pL) (piH_t - piL_t) \quad \left(\lambda_t^{\text{LOWREGIME}^1}\right)$$

$$(2.2)$$

$$yL_{t-1} = yL_t - \sigma (iL_{t-1} - piL_t) + (1 - pL) (yH_t - yL_t) + \sigma (1 - pL) (piH_t - piL_t) \quad (\lambda_t^{\text{LOWREGIME}^2})$$
(2.3)

2.2 First order conditions

$$pitCB - pitL - piL_t + \lambda_t^{\text{LOWREGIME}^1} \left(\beta pL \left(1 - phipi\right) - \beta \left(1 - phipi\right) \left(1 - pL\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma - \sigma \left(1 - pL\right)\right) + \left(\beta - \beta \left(1 - pL\right)\right) \left(-E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] + E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right]\right) = 0$$

$$(2.4)$$

$$pL\lambda_t^{\text{LOWREGIME}^2} + (\beta - \beta (1 - pL)) \left(\kappa E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1} \right] - E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2} \right] \right) - \kappa \theta^{-1} yL_t = 0 \quad (yL_t)$$
(2.5)

$$-\sigma \left(\beta - \beta \left(1 - pL\right)\right) E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2}\right] = 0 \quad (iL_t)$$
(2.6)

$$-\lambda_{t}^{\text{LOWREGIME}^{\text{piL}^{\text{lag}^{1}}}} + p t i p i \left(\beta - \beta \left(1 - p L\right)\right) E_{t} \left[\lambda_{t+1}^{\text{LOWREGIME}^{1}}\right] = 0 \quad \left(p i L_{t}^{\text{lag}^{1}}\right)$$

$$(2.7)$$

3 EXOG

3.1 Identities

$$dqpi_t = e^{\epsilon_t^{\pi} + \phi \log dqpi_{t-1}} \tag{3.1}$$

4 Equilibrium relationships (after reduction)

$$piH_{t-1} - piH_t^{\text{lag}^1} = 0 (4.1)$$

$$pL_{t-1} - pL_t^{\text{lag}^1} = 0 (4.2)$$

$$-\epsilon t q p i_t + e^{\epsilon_t^{\pi} + \phi \log \epsilon t q p i_{t-1}} = 0 \tag{4.3}$$

$$-\lambda_{t}^{\text{HIGHREGIME}^{\text{piH}^{\text{lag}^{1}}}} + p t i p i \left(\beta - \beta \left(1 - p H\right)\right) E_{t} \left[\lambda_{t+1}^{\text{HIGHREGIME}^{1}}\right] = 0$$

$$(4.4)$$

$$-\lambda_{t}^{\text{LOWREGIME}^{\text{piL}^{\text{lag}^{1}}}} + p \dot{\eta} \dot{\eta} \dot{\eta} \left(\beta - \beta \left(1 - pL\right)\right) E_{t} \left[\lambda_{t+1}^{\text{LOWREGIME}^{1}}\right] = 0 \tag{4.5}$$

$$pH\lambda_{t}^{\mathrm{HIGHREGIME^{2}}} + (\beta - \beta (1 - pH)) \left(\kappa \mathbf{E}_{t} \left[\lambda_{t+1}^{\mathrm{HIGHREGIME^{1}}}\right] - \mathbf{E}_{t} \left[\lambda_{t+1}^{\mathrm{HIGHREGIME^{2}}}\right]\right) - \kappa \theta^{-1} yH_{t} = 0 \tag{4.6}$$

$$pL\lambda_t^{\text{LOWREGIME}^2} + (\beta - \beta (1 - pL)) \left(\kappa E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1} \right] - E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2} \right] \right) - \kappa \theta^{-1} yL_t = 0$$
(4.7)

$$-yH_{t-1} + yH_t - \sigma (iH_{t-1} - piH_t) + (1 - pH) (-yH_t + yL_t) + \sigma (1 - pH) (-piH_t + piL_t) = 0$$

$$(4.8)$$

$$-yL_{t-1} + yL_t - \sigma(iL_{t-1} - piL_t) + (1 - pL)(yH_t - yL_t) + \sigma(1 - pL)(piH_t - piL_t) = 0$$

$$(4.9)$$

$$UH_{t} + 0.5\left(pitH - pitCB + piH_{t}\right)^{2} - \beta E_{t}\left[UH_{t+1}\right] - \beta\left(1 - pH\right)\left(-E_{t}\left[UH_{t+1}\right] + E_{t}\left[UL_{t+1}\right]\right) + 0.5\kappa\theta^{-1}yH_{t}^{2} = 0 \tag{4.10}$$

$$UL_{t} + 0.5\left(-pitCB + pitL + piL_{t}\right)^{2} - \beta E_{t}\left[UL_{t+1}\right] - \beta\left(1 - pL\right)\left(E_{t}\left[UH_{t+1}\right] - E_{t}\left[UL_{t+1}\right]\right) + 0.5\kappa\theta^{-1}yL_{t}^{2} = 0 \tag{4.11}$$

2

$$-pitH + pitCB - piH_t + \lambda_t^{\text{HIGHREGIME}^1} \left(\beta \left(1 - phip\right) - \beta \left(1 - phip\right) \left(1 - pH\right)\right) + \lambda_t^{\text{HIGHREGIME}^2} \left(\sigma - \sigma \left(1 - pH\right)\right) + (\beta - \beta \left(1 - pH)\right) \left(-\text{E}_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^1}\right] + \text{E}_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^{\text{piH}^{\text{lag}^1}}}\right]\right) = 0$$

$$(4.12)$$

$$pitCB - pitL - piL_t + \lambda_t^{\text{LOWREGIME}^1} \left(\beta pL \left(1 - phip\right) - \beta \left(1 - phip\right) \left(1 - pL\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma - \sigma \left(1 - pL\right)\right) + (\beta - \beta \left(1 - pL\right)) \left(-\text{E}_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] + \text{E}_t \left[\lambda_{t+1}^{\text{LOWREGIME}^{\text{piH}^{\text{lag}^1}}}\right]\right) = 0$$

$$-piH_{t-1} + \log dapi_{t-1} + \kappa yH_{t-1} + phipipH_{t-1}^{\text{lag}^1} + \beta pH_t \left(1 - phip\right) + \beta \left(1 - phip\right) \left(1 - pH\right) \left(-pH_t + piL_t\right) = 0$$

$$-piL_{t-1} + \log dapi_{t-1} + \kappa yL_{t-1} + phipipL_{t-1}^{\text{lag}^1} + \beta pLpL_t \left(1 - phip\right) + \beta \left(1 - phip\right) \left(1 - pL\right) \left(pH_t - piL_t\right) = 0$$

$$-\sigma \left(\beta - \beta \left(1 - pH\right)\right) \text{E}_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2}\right] = 0$$

$$(4.16)$$

$$-\sigma \left(\beta - \beta \left(1 - pH\right)\right) \text{E}_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2}\right] = 0$$

$$(4.17)$$

5 Steady state relationships (after reduction)

$$pH_{ss} - pH_{ss}^{lag^1} = 0 ag{5.1}$$

$$pL_{\rm ss} - pL_{\rm ss}^{\rm lag^1} = 0 \tag{5.2}$$

$$-dqi_{ss} + e^{\phi \log dqi_{ss}} = 0 ag{5.3}$$

$$-\lambda_{\rm ss}^{\rm HIGHREGIME^{\rm piH^{\rm lag^{1}}}} + p i p i \lambda_{\rm ss}^{\rm HIGHREGIME^{1}} \left(\beta - \beta \left(1 - p H\right)\right) = 0 \tag{5.4}$$

$$-\lambda_{\rm ss}^{\rm LOWREGIME^{piL^{\rm lag}^{1}}} + p \dot{\eta} \dot{\eta} \dot{\lambda}_{\rm ss}^{\rm LOWREGIME^{1}} \left(\beta - \beta \left(1 - pL\right)\right) = 0 \tag{5.5}$$

$$pH\lambda_{\rm ss}^{\rm HIGHREGIME^2} + (\beta - \beta (1 - pH)) \left(-\lambda_{\rm ss}^{\rm HIGHREGIME^2} + \kappa \lambda_{\rm ss}^{\rm HIGHREGIME^1} \right) - \kappa \theta^{-1} yH_{\rm ss} = 0 \tag{5.6}$$

$$pL\lambda_{\rm ss}^{\rm LOWREGIME^2} + (\beta - \beta (1 - pL)) \left(-\lambda_{\rm ss}^{\rm LOWREGIME^2} + \kappa \lambda_{\rm ss}^{\rm LOWREGIME^1} \right) - \kappa \theta^{-1} yL_{\rm ss} = 0 \tag{5.7}$$

$$(1 - pH)(-yH_{ss} + yL_{ss}) - \sigma(iH_{ss} - piH_{ss}) + \sigma(1 - pH)(-piH_{ss} + piL_{ss}) = 0$$
(5.8)

$$(1 - pL)(yH_{ss} - yL_{ss}) - \sigma(iL_{ss} - piL_{ss}) + \sigma(1 - pL)(piH_{ss} - piL_{ss}) = 0$$
(5.9)

$$UH_{ss} + 0.5 \left(pitH - pitCB + piH_{ss} \right)^2 - \beta UH_{ss} - \beta \left(1 - pH \right) \left(-UH_{ss} + UL_{ss} \right) + 0.5\kappa \theta^{-1} yH_{ss}^2 = 0$$

$$(5.10)$$

$$UL_{ss} + 0.5\left(-pitCB + pitL + piL_{ss}\right)^{2} - \beta UL_{ss} - \beta (1 - pL)\left(UH_{ss} - UL_{ss}\right) + 0.5\kappa\theta^{-1}yL_{ss}^{2} = 0$$
(5.11)

$$-pitH+pitCB-piH_{ss}+\lambda_{ss}^{\mathrm{HIGHREGIME}^{1}}\left(\beta\left(1-phip\right)-\beta\left(1-phip\right)\left(1-pH\right)\right)+\lambda_{ss}^{\mathrm{HIGHREGIME}^{2}}\left(\sigma-\sigma\left(1-pH\right)\right)+\left(\beta-\beta\left(1-pH\right)\right)\left(-\lambda_{ss}^{\mathrm{HIGHREGIME}^{1}}+\lambda_{ss}^{\mathrm{HIGHREGIME}^{1}}+\lambda_{ss}^{\mathrm{HIGHREGIME}^{1}}\right)=0$$

$$(5.12)$$

. .

$$-piH_{ss} + \log etapi_{ss} + \kappa yH_{ss} + phipipiH_{ss}^{lag^{1}} + \beta piH_{ss} (1 - phipi) + \beta (1 - phipi) (1 - pH) (-piH_{ss} + piL_{ss}) = 0$$

$$(5.14)$$

$$-piL_{ss} + \log etapi_{ss} + \kappa yL_{ss} + phipipiL_{ss}^{lag^{1}} + \beta pLpiL_{ss} (1 - phipi) + \beta (1 - phipi) (1 - pL) (piH_{ss} - piL_{ss}) = 0$$

$$(5.15)$$

$$-\sigma \lambda_{\rm ss}^{\rm HIGHREGIME^2} \left(\beta - \beta \left(1 - pH\right)\right) = 0 \tag{5.16}$$

$$-\sigma \lambda_{\rm ss}^{\rm LOWREGIME^2} \left(\beta - \beta \left(1 - pL\right)\right) = 0 \tag{5.17}$$

6 Parameter settings

$$\beta = 0.99 \tag{6.1}$$

$$\kappa = 0.2465 \tag{6.2}$$

$$\phi = 0.95 \tag{6.3}$$

$$phipi = 0.8 ag{6.4}$$

$$piH = 0 (6.5)$$

$$pitCB = 0 (6.6)$$

$$piL = 2 (6.7)$$

$$pH = 0.99 \tag{6.8}$$

$$pL = 0.99 \tag{6.9}$$

$$\sigma = 1 \tag{6.10}$$

$$\theta = 6 \tag{6.11}$$

7 Steady-state values

	Steady-state value
etapi	1
$i\!H$	-0.0207
$i\!L$	-1.9792
$\lambda^{ ext{HIGHREGIME}^1}$	0.0027
$\lambda^{ m HIGHREGIME^2}$	0
$\lambda^{ ext{LOWREGIME}^1}$	-0.0082
$\lambda^{ m LOWREGIME^2}$	0
$\lambda^{ m HIGHREGIME^{piH^{ m lag}^1}}$	0.0021
$\lambda^{ ext{LOWREGIME}^{ ext{piL}^{ ext{lag}^1}}}$	-0.0064
piH	0
piL	-1.9999
$p\!i\!H^{\mathrm{lag}^1}$	0
$p\!i\!H^{\mathrm{lag}^1} \ p\!i\!L^{\mathrm{lag}^1}$	-1.9999
$y\!H$	0.0161
yL	-0.0484
UH	-0.0019
UL	-0.0034

8 The solution of the 1st order perturbation

Matrix P

	$etapi_{t-1}$	iH_{t-1}	iL_{t-1}	$pi\!H_{t-1}$	$p\!i\!L_{t-1}$	$p\!i\!H_{t-1}^{\mathrm{lag}^1}$	$p\!i\!L_{t-1}^{\mathrm{lag}^1}$	yH_{t-1}	yL_{t-1}
$etapi_t$	(0.95)	0	0	0	0	0	0	0	0
iH_t	-8109.1373	-7.0346	7.121	5967.7856	-163.955	-5522.7592	132.0006	-32.7973	1.1574
iL_t	-86.4454	0.0008	-7.1	-0.8717	127.6919	0.7026	-117.9682	0.0041	-1.0523
piH_t	-5.05	0	0	5.102	-0.1041	-4.0816	0.0833	-0.0202	0.0006
$p\!i\!L_t$	-2.5512	0	0	-0.026	5.1541	0.0208	-4.1233	0.0001	-0.0307
$piH_t^{\log^1}$	0	0	0	1	0	0	0	0	0
$piL_t^{\operatorname{lag}^1}$	0	0	0	0	1	0	0	0	0
yH_t	314.385	1.3009	-1.2573	-317.6261	6.4817	254.1009	-5.1854	2.2679	-0.0693
yL_t	105.5163	-0.0044	41.3501	1.0767	-213.1706	-0.8614	170.5364	-0.0077	2.2807)

$\mathbf{Matrix}\ Q$

$$\begin{array}{c} \epsilon tapi \\ iH \\ iH \\ iL \\ piH \\ piL \\ piH^{\mathrm{lag}^1} \\ piL^{\mathrm{lag}^1} \\ yH \\ yL \end{array} \begin{array}{c} 1 \\ -1355.9943 \\ -14.3033 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$$

Matrix R

	$dqpi_{t-1}$	iH_{t-1}	iL_{t-1}	$p\!i\!H_{t-1}$	piL_{t-1}	$p\!i\!H_{t-1}^{\mathrm{lag}^{\mathtt{l}}}$	$p\!i\!L_{t-1}^{\mathrm{lag}^{\mathtt{l}}}$
$\lambda_t^{ ext{HIGHREGIME}^1}$	$\left(-753292.161 \right)$	-553.6177	1083.6189	579732.8846	-26093.2637	-532367.5156	22299.2884
$\lambda_t^{ m HIGHREGIME^2}$	83.0178	0.0625	-0.1218	-63.5359	2.8921	58.4868	-2.4731
$\lambda_t^{ ext{LOWREGIME}^1}$	-260586.2362	3.8616	-18155.8024	-4425.8716	402055.8445	3782.3863	-368655.41
$\lambda_t^{ m LOWREGIME^2}$	85.5602	-0.0013	6.1044	1.4612	-131.2999	-1.2495	120.6755
$\lambda_t^{ ext{HIGHREGIME}^{ ext{piH}^{ ext{lag}^1}}}$	-124226.593	-92.4713	181.4621	94997.2441	-4332.2135	-87486.2434	3704.9419
$\lambda_t^{ ext{LOWREGIME}^{ ext{piL}^{ ext{lag}^1}}}$	-42534.3851	0.6399	-3000.8484	-727.1404	65221.6942	621.8577	-59969.532
UH_t	13.9888	0	0.0744	-0.2786	-1.9913	1.1001	1.7864
UL_t	-34.3598	0	0.0008	0.0022	1.0317	-0.0011	-3.8714

Matrix S

	ϵ^{π}
$\lambda^{ m HIGHREGIME^1}$	/-107127.1888
$\lambda^{ m HIGHREGIME^2}$	12.0579
$\lambda^{ ext{LOWREGIME}^1}$	-36724.1369
$\lambda^{ m LOWREGIME^2}$	12.3099
$\lambda^{\mathrm{HIGHREGIME^{piH^{lag}^{1}}}}$	-18088.9945
$\lambda^{ m LOWREGIME^{piL^{ m lag}^1}}$	-6134.7786
UH	12.1022
UL	-33.6196

9 Model statistics

9.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
etapi	1	0.1303	0.017	Y
$i\!H$	-0.0207	191.9455	36843.0774	Y
$i\!L$	-1.9792	2.0269	4.1082	Y
$\lambda^{ ext{HIGHREGIME}^1}$	0.0027	10335.6952	106826594.4718	Y
$\lambda^{ m HIGHREGIME^2}$	0	1.1627	1.3519	N
$\lambda^{ ext{LOWREGIME}^1}$	-0.0082	3542.6886	12550642.2407	Y
$\lambda^{ m LOWREGIME^2}$	0	1.187	1.409	N
$\lambda^{ m HIGHREGIME^{piH^{lag}^1}}$	0.0021	1737.9387	3020431.0324	Y
$\lambda^{ ext{LOWREGIME}^{ ext{piL}^{ ext{lag}^1}}}$	-0.0064	589.4457	347446.2292	Y
$pi\!H$	0	0.5011	0.2511	N
$p\!i\!L$	-1.9999	0.2531	0.0641	Y
$p\!i\!H^{\mathrm{lag}^1}$	0	0.5011	0.2511	N
$p\!i\!L^{\mathrm{lag}^1}$	-1.9999	0.2531	0.0641	Y
$y\!H$	0.0161	144.362	20840.3795	Y
yL	-0.0484	48.4503	2347.4304	Y
UH	-0.0019	1.5297	2.3399	Y
UL	-0.0034	4.2417	17.9917	Y

9.2 Correlation matrix

	etapi	$i\!H$	iL	$\lambda^{\mathrm{HIGHREGIME^1}}$	$\lambda^{ m HIGHREGIME^2}$	$\lambda^{ ext{LOWREGIME}^1}$	$\lambda^{ ext{LOWREGIME}^2}$	$\lambda^{ m HIGHRI}$
etapi	1	-0.117	-0.116	-0.499	0.436	-0.498	0.436	_
$i\!H$		1	1	0.593	-0.716	0.595	-0.716	0
iL			1	0.592	-0.715	0.594	-0.715	0
$\lambda^{ ext{HIGHREGIME}^1}$				1	-0.986	1	-0.986	0
$\lambda^{ m HIGHREGIME^2}$					1	-0.986	1	-(
$\lambda^{ ext{LOWREGIME}^1}$						1	-0.986	0
$\lambda^{ m LOWREGIME^2}$							1	-(
$\lambda^{ m HIGHREGIME^{piH^{lag}^1}}$								
$\lambda^{ ext{LOWREGIME}^{ ext{piL}^{ ext{lag}^1}}}$								
piH								
$p\!i\!L$								
$p\!i\!H^{\mathrm{lag}^1}$								
$p\!i\!H^{\mathrm{lag}^1} \ p\!i\!L^{\mathrm{lag}^1}$								
$y\!H$								
$y\!L$								
UH								
UL								

9.3 Cross correlations with the reference variable (iH)

					` ,						
	$\sigma[\cdot]$ rel. to $\sigma[iH]$	$ iH_{t-5} $	iH_{t-4}	iH_{t-3}	iH_{t-2}	iH_{t-1}	iH_t	iH_{t+1}	iH_{t+2}	iH_{t+3}	iH
$ extit{etapi}_t$	0.001	0.042	0.036	-0.019	-0.113	0.435	-0.117	-0.098	-0.081	-0.065	-0.0
$i\!H_t$	1	-0.002	0.009	0.043	0.04	-0.576	1	-0.576	0.04	0.043	0.0
$i\!L_t$	0.011	-0.002	0.009	0.043	0.04	-0.575	1	-0.577	0.04	0.043	0.0
$\lambda_t^{ ext{HIGHREGIME}^1}$	53.847	-0.015	0.003	0.073	0.141	-0.71	0.593	0.093	-0.007	-0.021	-0.0
$\lambda_t^{ m HIGHREGIME^2}$	0.006	0.013	-0.005	-0.072	-0.129	0.733	-0.716	0.017	0.017	0.016	0.0
$\lambda_t^{ ext{LOWREGIME}^1}$	18.457	-0.015	0.003	0.073	0.141	-0.71	0.595	0.092	-0.008	-0.021	-0.0
$\lambda_t^{ ext{LOWREGIME}^2}$	0.006	0.013	-0.005	-0.072	-0.129	0.733	-0.716	0.017	0.017	0.016	0.0
$\lambda_t^{ ext{HIGHREGIME}^{ ext{piH}^{ ext{lag}^1}}}$	9.054	-0.014	0.004	0.073	0.135	-0.728	0.657	0.055	-0.03	-0.024	-0.0
$\lambda_t^{ ext{LOWREGIME}^{ ext{piL}^{ ext{lag}^1}}}$	3.071	-0.014	0.004	0.073	0.135	-0.728	0.657	0.054	-0.03	-0.024	-0.0
$pi\!H_t$	0.003	-0.017	-0.017	0	0.071	0.149	-0.667	0.466	0.177	0.016	-0.0
$p\!i\!L_t$	0.001	-0.017	-0.017	0	0.071	0.149	-0.667	0.466	0.176	0.016	-0.
$p\!i\!H_t^{\mathrm{lag}^1}$	0.003	-0.014	-0.017	-0.017	0	0.071	0.149	-0.667	0.466	0.177	0.0
$p\!i\!L_t^{\mathrm{lag}^1}$	0.001	-0.014	-0.017	-0.017	0	0.071	0.149	-0.667	0.466	0.176	0.0
$y\overset{\circ}{H}_t$	0.752	-0.012	-0.011	0.004	0.062	0.098	-0.744	0.868	-0.156	-0.091	-0.0
yL_t	0.252	-0.012	-0.011	0.004	0.062	0.098	-0.743	0.868	-0.157	-0.091	-0.0
$U\!H_t$	0.008	0.04	0.033	-0.026	-0.124	0.46	-0.003	-0.389	0.067	-0.004	-0.0
UL_t	0.022	-0.041	-0.035	0.023	0.121	-0.457	0.049	0.28	-0.012	0.028	0.0

9.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
etapi	0.713	0.471	0.271	0.11	-0.016
$i\!H$	-0.576	0.04	0.043	0.009	-0.002
iL	-0.576	0.04	0.043	0.009	-0.002
$\lambda^{ m HIGHREGIME^1}$	0.08	-0.085	-0.096	-0.085	-0.074
$\lambda^{ m HIGHREGIME^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
$\lambda^{ ext{LOWREGIME}^1}$	0.079	-0.085	-0.096	-0.085	-0.074
$\lambda^{ m LOWREGIME^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
$\lambda^{ m HIGHREGIME^{piH^{ m lag}^1}}$	-0.005	-0.109	-0.083	-0.065	-0.055
$\lambda^{\mathrm{LOWREGIME^{piL^{lag}^{1}}}}$	-0.006	-0.109	-0.083	-0.065	-0.056
$pi\!H$	0.226	-0.072	-0.122	-0.114	-0.1
$p\!i\!L$	0.225	-0.072	-0.122	-0.114	-0.1
$p\!i\!H^{\mathrm{lag}^1}$	0.226	-0.072	-0.122	-0.114	-0.1
$p\!i\!L^{{ m lag}^1}$	0.225	-0.072	-0.122	-0.114	-0.1
yН	-0.317	-0.138	-0.011	0.015	0.012
yL	-0.317	-0.138	-0.011	0.015	0.012
UH	0.566	0.206	0.258	0.182	0.064
UL	0.644	0.326	0.279	0.164	0.037

10 Impulse response functions

Figure 1: Impulse responses $(i\!H,i\!L,p\!i\!H,p\!i\!L,y\!H)$ to ϵ^π shock

Figure 2: Impulse response $(y\!L)$ to ϵ^π shock