Congratulations! You passed!

Grade received 100% **Latest Submission Grade** 100% **To pass** 80% or higher

Go to next item

1. Consider the toy key exchange protocol using an online trusted 3rd party

1 / 1 point

(TTP) discussed in <u>Lecture 9.1</u>. Suppose Alice, Bob, and Carol are three

users of this system (among many others) and each have a secret key

with the TTP denoted k_a, k_b, k_c respectively. They wish to

generate a group session key k_{ABC} that will be known to Alice,

Bob, and Carol but unknown to an eavesdropper. How

would you modify the protocol in the lecture to accommodate a group key

exchange of this type? (note that all these protocols are insecure against

active attacks)

igcirc Alice contacts the TTP. TTP generates a random k_{ABC} and sends to Alice

$$E(k_a, k_{ABC}), \quad ext{ticket}_1 \leftarrow E(k_b, k_{ABC}), \quad ext{ticket}_2 \leftarrow E(k_c, k_{ABC}).$$

Alice sends k_{ABC} to Bob and k_{ABC} to Carol.

lacktriangle Bob contacts the TTP. TTP generates random k_{ABC} and sends to Bob

$$E(k_b, k_{ABC}), \quad ext{ticket}_1 \leftarrow E(k_a, k_{ABC}), \quad ext{ticket}_2 \leftarrow E(k_c, k_{ABC}).$$

Bob sends $ticket_1$ to Alice and $ticket_2$ to Carol.

igcup Bob contacts the TTP. TTP generates a random k_{AB} and a random k_{BC} . It sends to Bob

$$E(k_a,k_{AB}), \quad ext{ticket}_1 \leftarrow E(k_a,k_{AB}), \quad ext{ticket}_2 \leftarrow E(k_c,k_{BC}).$$

Bob sends $ticket_1$ to Alice and $ticket_2$ to Carol.

igcirc Alice contacts the TTP. TTP generates a random k_{ABC} and sends to Alice

$$E(k_a, k_{ABC})$$
, ticket₁ $\leftarrow E(k_c, E(k_b, k_{ABC}))$, ticket₂ $\leftarrow E(k_b, E(k_c, k_{ABC}))$.

Alice sends k_{ABC} to Bob and k_{ABC} to Carol.

✓ Correct

The protocol works because it lets Alice, Bob, and Carol

obtain k_{ABC} but an eaesdropper only sees encryptions

of k_{ABC} under keys he does not have.

2. Let G be a finite cyclic group (e.g. $G=\mathbb{Z}_p^*$) with generator g.

Suppose the Diffie-Hellman function $\mathrm{DH}_g(g^x,g^y)=g^{xy}$ is difficult to compute in G. Which of the following functions is also difficult to compute?

As usual, identify the f below for which the contra-positive holds: if $f(\cdot,\cdot)$ is easy to compute then so is $\mathrm{DH}_g(\cdot,\cdot)$. If you can show that, then it will follow that if DH_g is hard to compute in G then so must be f.

 $lacksquare f(g^x,g^y)=(g^{3xy},g^{2xy})$ (this function outputs a pair of elements in G)

⊘ Correct

an algorithm for calculating $f(\cdot,\cdot)$ can

easily be converted into an algorithm for

calculating $DH(\cdot, \cdot)$.

Therefore, if f were easy to compute then so would $\mathrm{DH},$

contrading the assumption.

- - **⊘** Correct

an algorithm for calculating $f(g^x,g^y)$ can

easily be converted into an algorithm for

calculating $DH(\cdot, \cdot)$.

Therefore, if f were easy to compute then so would $\mathrm{DH},$

contrading the assumption.

- $\bigcap f(g^x, g^y) = g^{x+y}$
- 3. Suppose we modify the Diffie-Hellman protocol so that Alice operates

1/1 point

as usual, namely chooses a random a in $\{1,\ldots,p-1\}$ and

sends to Bob $A \leftarrow g^a$. Bob, however, chooses a random b

in $\{1,\ldots,p-1\}$ and sends to Alice $B \leftarrow g^{1/b}$. What

shared secret can they generate and how would they do it?

 $igotimes ext{secret} = g^{a/b}.$ Alice computes the secret as B^a

and Bob computes $A^{1/b}$.

 \bigcirc secret $=g^{ab}$. Alice computes the secret as B^a

and Bob computes A^b .

 \bigcirc secret $=g^{a/b}$. Alice computes the secret as $B^{1/b}$

and Bob computes A^a .

 \bigcirc secret $= g^{ab}$. Alice computes the secret as $B^{1/a}$

and Bob computes A^b .

✓ Correct

This is correct since it is not difficult to see that

4.	Consider the toy key exchange protocol using public key encryption described in Lecture 9.4.

1/1 point

Suppose that when sending his reply $c \leftarrow E(pk,x)$ to Alice, Bob appends a MAC t:=S(x,c) to the ciphertext so that what is sent to Alice is the pair (c,t). Alice verifies the tag t and rejects the message from Bob if the tag does not verify.

Will this additional step prevent the man in the middle attack described in the lecture?

- no
- it depends on what MAC system is used.
- it depends on what public key encryption system is used.
- O yes
 - ✓ Correct

an active attacker can still decrypt $E(pk^\prime,x)$ to recover x

and then replace (c,t) by (c^{\prime},t^{\prime})

where $c' \leftarrow E(pk,x)$ and $t \leftarrow S(x,c')$.

5. The numbers 7 and 23 are relatively prime and therefore there must exist integers a and b such that 7a+23b=1.

1/1 point

Find such a pair of integers (a,b) with the smallest possible a>0.

Given this pair, can you determine the inverse of 7 in \mathbb{Z}_{23} ?

Enter below comma separated values for a, b, and for 7^{-1} in \mathbb{Z}_{23} .

10,-3,10

✓ Correct

$$7 \times 10 + 23 \times (-3) = 1.$$

Therefore 7 imes 10 = 1 in \mathbb{Z}_{23} implying

that $7^{-1}=10$ in \mathbb{Z}_{23} .

6. Solve the equation 3x + 2 = 7 in \mathbb{Z}_{19} .

1/1 point

8

$$x = (7-2) \times 3^{-1} \in \mathbb{Z}_{19}$$

7.	How many elements are there in \mathbb{Z}_{35}^*	-
	110W many elements are there in 2235	٠

1/1 point

24

$$igotimes$$
 Correct $|\mathbb{Z}_{35}^*|=arphi(7 imes5)=(7-1) imes(5-1).$

8. How much is $2^{10001} \mod 11$?

1/1 point

Please do not use a calculator for this. Hint: use Fermat's theorem.

2

⊘ Correct

By Fermat $2^{10}=1$ in \mathbb{Z}_{11} and therefore

$$1=2^{10}=2^{20}=2^{30}=2^{40}$$
 in $\mathbb{Z}_{11}.$

Then $2^{10001} = 2^{10001 \bmod 10} = 2^1 = 2$ in \mathbb{Z}_{11} .

9. While we are at it, how much is $2^{245} \mod 35$?

1/1 point

Hint: use Euler's theorem (you should not need a calculator)

32

✓ Correct

By Euler $2^{24}=1$ in \mathbb{Z}_{35} and therefore

$$1 = 2^{24} = 2^{48} = 2^{72}$$
 in \mathbb{Z}_{35} .

Then $2^{245} = 2^{245 \bmod 24} = 2^5 = 32$ in \mathbb{Z}_{35} .

10. What is the order of 2 in \mathbb{Z}_{35}^* ?

1/1 point

12

⊘ Correct

 $2^{12}=4096=1$ in \mathbb{Z}_{35} and 12 is the

smallest such positive integer.

generator of \mathbb{Z}_{13}^* ?

- \bigcirc Correct correct, 7 generates the entire group \mathbb{Z}_{13}^{*}
- \bigcirc Correct correct, 6 generates the entire group \mathbb{Z}_{13}^*

- \square 10, $\langle 10 \rangle = \{1, 10, 9, 12, 3, 4\}$
- **12.** Solve the equation $x^2+4x+1=0$ in \mathbb{Z}_{23} .

Use the method described in <u>Lecture 10.3</u> using the quadratic formula.

5,14

- \bigcirc Correct

 The quadratic formula gives the two roots in \mathbb{Z}_{23} .
- **13.** What is the 11th root of 2 in \mathbb{Z}_{19} ?

-1/11 ---

(i.e. what is $2^{1/11}$ in $\mathbb{Z}_{19})$

Hint: observe that $11^{-1}=5$ in $\mathbb{Z}_{18}.$

13

- **14.** What is the discete log of 5 base 2 in \mathbb{Z}_{13} ?

(i.e. what is $\mathrm{Dlog}_2(5)$)

Recall that the powers of 2 in \mathbb{Z}_{13} are $\langle 2 \rangle = \{1,2,4,8,3,6,12,11,9,5,10,7\}$

9

 \bigcirc Correct $2^9=5$ in \mathbb{Z}_{13} .

1/1 point

1/1 point

1/1 point

- $\bigcirc \sqrt{p}$
- igotimes arphi(p-1)
- $\bigcirc (p+1)/2$
- $\bigcirc \varphi(p)$

⊘ Correct

The answer is arphi(p-1). Here is why. Let g be some generator of \mathbb{Z}_p^* and let $h=g^x$ for some x.

It is not difficult to see that h is a generator exactly when we can write g as $g=h^y$ for some integer y (h is a generator because if $g=h^y$ then any power of g can also be written as a power of h).

Since $y=x^{-1} \mod p-1$ this y exists exactly when x is relatively prime to p-1. The number of such x is the size of \mathbb{Z}_{p-1}^* which is precisely $\varphi(p-1)$.