High-Dimensional Probability

December 8, 2023

Contents

U	Appetizer	4
1	Preliminaries on random variables	2
2	Concentration of sums of independent random variables	2
3	Random vectors in high dimensions	4
4	Random matrices	5
5	Concentration without independence	7
6	Quadradic forms, symmetrization, contraction	9
7	Random processes	10
8	Chaining	11

Reference High-Dimensional Probability: An Introduction with Applications in Data Science (Roman Vershynin)

0 Appetizer

- Convex combination: For $z_1, z_2, \dots, z_m \in \mathbb{R}^n$, the form of $\sum_{i=1}^m \lambda_i z_i$ with $\lambda_i \geq 0, \sum_{i=1}^m \lambda_i = 1$. Convex hull of $T \subset \mathbb{R}^n$: conv $(T) = \{\text{convex combinations of } z_1, \dots, z_m \in T, m \in \mathbb{N}\}.$
- Caratheodory's theorem: Every point in the convex hull of a set $T \subset \mathbb{R}^n$ can be expressed as a convex combination of at most n+1 points from T.
- Approximate Caratheodory's theorem: Consider $T \subset \mathbb{R}^n$, diam $(T) = \sup\{\|s t\|_2, s, t \in T\} < 1$. Then for any $x \in \text{conv}(T)$ and any k, one can find points $x_1, x_2, \dots, x_k \in T$ such that $\|x \frac{1}{k} \sum_{i=1}^k x_i\|_2 \leq \frac{1}{\sqrt{k}}$ (repetition is allowed).

Proof WLOG assume
$$||t||_2 \le 1, \forall t \in T$$
. Fix $x \in \text{conv}(T), x = \sum_{i=1}^m \lambda_i z_i, z_i \in T$. Define $Z, \mathbb{P}(Z = z_i) = \lambda_i, \mathbb{E}Z = x$. Consider i.i.d. Z_1, Z_2, \cdots of $Z, \frac{1}{n} \sum_{j=1}^n Z_j \to x$ a.s. $n \to +\infty$. $\mathbb{E}||x - \frac{1}{k} \sum_{j=1}^k Z_j||_2^2 = \frac{1}{k^2} \sum_{j=1}^k \mathbb{E}||Z_j - x||_2^2 = \frac{1}{k^2} \sum_{j=1}^k (\mathbb{E}||Z_j||^2 - \|\mathbb{E}Z_j\||_2^2) \le \frac{1}{k} \Rightarrow \exists \text{ a realization of } Z_1, \cdots, Z_k \text{ such that } ||x - \frac{1}{k} \sum_{j=1}^k Z_j||_2 \le \frac{1}{\sqrt{k}}$.

• Corollary (Covering polytopes by balls): P is a polytope in \mathbb{R}^n with N vertices, diam $(P) \leq 1$. Then P can be covered by at most $N^{\lfloor 1/\epsilon^2 \rfloor}$ Euclidean balls of radii $\epsilon > 0$.

1 Preliminaries on random variables

- Jensen's inequality: convex ϕ , $\phi(\mathbb{E}X) \leq \mathbb{E}\phi(X)$. $\Rightarrow \|X\|_{L^p} \leq \|X\|_{L^q}$ for $p \leq q$.
- Minkowski inequality: $p \ge 1, ||X + Y||_{L^p} \le ||X||_{L^p} + ||Y||_{L^p}$.
- Cauchy-Schwarz inequality: $\mathbb{E}|XY| \leq ||X||_{L^2}||Y||_{L^2}$.
- Holder inequality: $p, q \in (1, +\infty), \frac{1}{p} + \frac{1}{q} = 1 \text{ or } p = 1, q = \infty, \mathbb{E}||XY|| \le ||X||_{L^p}||Y||_{L^q}.$
- $X \ge 0$, then $\mathbb{E}X = \int_0^{+\infty} \mathbb{P}(X > t) dt$.
- Markov inequality: $X \ge 0, t > 0, \mathbb{P}(X \ge t) \le \frac{\mathbb{E}X}{t}$.
- LLN: X_1, \dots, X_n, \dots i.i.d., $\mathbb{E}X_i = \mu, \operatorname{Var}(X_i) = \sigma^2, S_N = X_1 + X_2 + \dots + X_N$. Then: (WLLN) $\mathbb{P}(|\frac{S_N}{N} \mu| > \epsilon) \to 0, \forall \epsilon > 0$; (SLLN) $\mathbb{P}(\frac{S_N}{N} \to \mu, N \to +\infty) = 1$.
- CLT: $Z_N = \frac{S_N \mathbb{E}S_N}{\sqrt{\operatorname{Var}(S_N)}} \xrightarrow{d} \mathcal{N}(0, 1).$
- $X_{N,i}, 1 \leq i \leq N$ independent $\operatorname{Ber}(p_{N,i}), \max_{i \leq N} p_{N,i} \to 0, S_N = \sum_{i=1}^N X_{N,i}, \mathbb{E}S_N \to \lambda < +\infty$. Then $S_N \xrightarrow{d} \operatorname{Poisson}(\lambda)$.

2 Concentration of sums of independent random variables

- Question: N times, $\mathbb{P}(\text{head} \geq \frac{3}{4}N) = ?$ Let S_N be the number of heads, $\mathbb{E}S_N = \frac{N}{2}$, $\text{Var}(S_N) = \frac{N}{4}$. (1) Chebyshev's inequality: $\mathbb{P}(S_N \geq \frac{3}{4}N) \leq \mathbb{P}(|S_N \frac{N}{2}| \geq \frac{N}{4}) \leq \frac{4}{N}$; (2) $Z_N = \frac{S_N \frac{N}{2}}{\sqrt{N/4}}$, expect: $\mathbb{P}(Z_N \geq \sqrt{N/4}) \approx \mathbb{P}(g \geq \sqrt{N/4}) \leq \frac{1}{\sqrt{2\pi}}e^{-N/8}$ where $g \sim \mathcal{N}(0, 1)$.
- For all t > 0, $(\frac{1}{t} \frac{1}{t^3}) \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \le \mathbb{P}(g \sim \mathcal{N}(0, 1) \ge t) \le \frac{1}{t} \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$.
- Berry-Esseen bound: $|\mathbb{P}(Z_N \geq t) \mathbb{P}(g \geq t)| \leq \frac{\rho}{\sqrt{N}}$ where $\rho = \mathbb{E}|X_1 \mu|^3/\sigma^3$. And in general, no improvement since $\mathbb{P}(S_N = \frac{N}{2}) \sim \frac{1}{\sqrt{N}} \Rightarrow \mathbb{P}(Z_N = 0) \sim \frac{1}{\sqrt{N}}$ but $\mathbb{P}(g = 0) = 0$.
- Hoeffding's inequality: X_1, \dots, X_N i.i.d. symmetric Bernoulli $(\mathbb{P}(X=1) = \mathbb{P}(X=-1) = \frac{1}{2}), a = (a_1, \dots, a_N) \in \mathbb{R}^N$. Then $\forall t \geq 0, \mathbb{P}(\sum_{i=1}^N a_i X_i \geq t) \leq e^{-t^2/2\|a\|_2^2}, \mathbb{P}(|\sum_{i=1}^N a_i X_i| \geq t) \leq 2e^{-t^2/2\|a\|_2^2}$.

Proof WLOG,
$$||a||_{2}^{2} = 1$$
. For $\lambda > 0$, $\mathbb{P}(\sum_{i=1}^{N} a_{i}X_{i} \geq t) = \mathbb{P}(e^{\lambda \sum a_{i}X_{i}} \geq e^{\lambda t}) \leq e^{-\lambda t}\mathbb{E}e^{\lambda \sum_{i=1}^{N} a_{i}X_{i}} = e^{-\lambda t}\prod_{i=1}^{N}\mathbb{E}e^{\lambda a_{i}X_{i}} = e^{-\lambda t}\prod_{i=1}^{N}e^{\lambda^{2}a_{i}^{2}/2} = e^{-\lambda t + \frac{\lambda^{2}}{2}} \Rightarrow \mathbb{P}(\sum_{i=1}^{N} a_{i}X_{i} \geq t) \leq \inf_{\lambda \geq 0}e^{-\lambda t + \frac{\lambda^{2}}{2}} = e^{-\frac{t^{2}}{2}}(\lambda = t)$.

CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES

- Bounded r.v.s: X_1, \dots, X_N independent, $X_i \in [m_i, M_i]$. Then $\forall t \geq 0, \mathbb{P}(\sum_{i=1}^N (X_i \mathbb{E}X_i) \geq t) \leq e^{-\frac{2t^2}{\sum_{i=1}^N (M_i m_i)^2}}$.
- Chernoff's inequality: $X_i \sim \text{Ber}(p_i)$ independent, $S_N = \sum_{i=1}^N X_i, \mu = \mathbb{E}S_N \Rightarrow \forall t > \mu, \mathbb{P}(S_N \geq t) \leq e^{-\mu} (\frac{e\mu}{t})^t$. $Proof \ \mathbb{P}(S_N \geq t) \leq e^{-\lambda t} \prod_{i=1}^N \mathbb{E}e^{\lambda X_i}. \ \mathbb{E}e^{\lambda X_i} = e^{\lambda}p_i + (1-p_i) = 1 + (e^{\lambda}-1)p_i \leq e^{(e^{\lambda}-1)p_i} \Rightarrow \mathbb{P}(S_N \geq t) \leq e^{-\lambda t}e^{(e^{\lambda}-1)\mu}.$ Take $\lambda^* = \log(t/\mu)$.
- d = (n-1)p is the expected degree. There is an absolute constant C s.t. for G(n,p), $d \ge C \log n$. Then with high prob (for example 0.9), all vertices of G have degrees between 0.9d and 1.1d.

Proof Ex 2.3.5 $\Rightarrow \mathbb{P}(|d_i - d| \ge \delta d) \le 2e^{-c\delta^2 d}$. Union bound: $\mathbb{P}(\exists i, |d_i - d| \ge \delta d) \le n \cdot 2e^{-c\delta^2 d} \le n \cdot 2 \cdots n^{-Cc\delta^2} = 2n^{1-Cc\delta^2} \le 1-p^*$ (let $Cc\delta^2 > 1$).

• Sub-gaussian properties: The following are equivalent: (i) $\mathbb{P}(|X| \geq t) \leq 2e^{-t^2/k_1^2}$ for all $t \geq 0$; (ii) $\|X\|_{L^p} = (\mathbb{E}|X|^p)^{1/p} \leq k_2\sqrt{p}$ for all $p \geq 1$; (iii) $\mathbb{E}e^{\lambda^2X^2} \leq e^{k_3^2\lambda^2}$ for all λ s.t. $|\lambda| \leq \frac{1}{k_3}$; (iv) $\mathbb{E}e^{X^2/k_4^2} \leq 2$; (v) $\mathbb{E}e^{\lambda X} \leq e^{k_5^2\lambda^2}$, for all $\lambda \in \mathbb{R}$ (if $\mathbb{E}X = 0$).

 $Proof \text{ (i)} \Rightarrow \text{ (ii): WLOG } k_1 = 1. \ \mathbb{E}|X|^p = \int_0^{+\infty} \mathbb{P}(|X| \geq t) p t^{p-1} \mathrm{d}t \leq \int_0^{+\infty} 2e^{-t^2} p t^{p-1} \mathrm{d}t = p \Gamma(\frac{p}{2})^{\Gamma(x) \leq 3x^x \text{ for } x \geq \frac{1}{2}} 3p(\frac{p}{2})^{p/2} \Rightarrow \|X\|_p \leq \frac{1}{\sqrt{2}} (3p)^{1/p} p^{1/2} \leq 3\sqrt{p}.$

(ii) \Rightarrow (iii): WLOG $k_2 = 1$. $\mathbb{E}e^{\lambda^2 X^2} = \mathbb{E}\left[1 + \sum_{p=1}^{+\infty} \frac{(\lambda^2 X^2)^p}{p!}\right]$. $\mathbb{E}|X|^{2p} \leq (2p)^p, p! \geq (\frac{p}{e})^p \Rightarrow \mathbb{E}e^{\lambda^2 X^2} \leq 1 + \sum_{p=1}^{+\infty} \frac{(2\lambda^2 p)^p}{(\frac{p}{e})^p} = \frac{1}{1-2e\lambda^2}$ (if $2e\lambda^2 < 1$) $\leq e^{4e\lambda^2}$ (if $2e\lambda^2 \leq 1/2 \Leftrightarrow \lambda \leq \frac{1}{2\sqrt{e}}$).

(iii) \Rightarrow (iv): trivial.

- (iv) \Rightarrow (i): $\mathbb{P}(|X| \ge t) = \mathbb{P}(e^{X^2} \le e^{t^2}) \le e^{-t^2} \mathbb{E}e^{X^2} \le 2e^{-t^2}$.
- (iii) \Rightarrow (v): WLOG $k_3 = 1$. If $|\lambda| \le 1$, then $\mathbb{E}e^{\lambda X} \le \mathbb{E}(\lambda X + e^{\lambda^2 X^2}) = \mathbb{E}e^{\lambda^2 X^2} \le e^{\lambda^2}$. If $|\lambda| \ge 1$, then $\mathbb{E}e^{\lambda X} \le e^{\frac{\lambda^2}{2}} \mathbb{E}e^{\frac{X^2}{2}} e^{\frac{\lambda^2}{2}} e^{\frac{1}{2}} \le e^{\lambda^2}$.
- $(v) \Rightarrow (i)$: mimic the proof of $(iv) \Rightarrow (i)$.
- Sub-gaussian r.v.: satisfy the above sub-gaussian properties. $||X||_{\psi_2} = \inf\{t > 0 : \mathbb{E}e^{X^2/t^2} \le 2\}$. Thus $\mathbb{P}(|X| \ge t) \le 2e^{-ct^2/||X||_{\psi_2}^2}$; $||X||_{L^p} \le C||X||_{\psi_2}\sqrt{p}$; if $\mathbb{E}X = 0$ then $\mathbb{E}e^{\lambda X} \le e^{C\lambda^2||X||_{\psi_2}^2}$.
- Let X_1, \dots, X_N be independent and mean zero sub-gaussian, then $\|\sum_{i=1}^N X_i\|_{\psi_2}^2 \leq C \cdot \sum_{i=1}^N \|X_i\|_{\psi_2}^2$. Proof $\forall \lambda \in \mathbb{R}, \mathbb{E}e^{\lambda \sum_{i=1}^N X_i} = \prod_{i=1}^N \mathbb{E}e^{\lambda X_i} \leq \prod_{i=1}^N e^{c\lambda^2 \|X_i\|_{\psi_2}^2} = e^{c\lambda^2 \sum_{i=1}^n \|X_i\|_{\psi_2}^2}$
- Centering: X is sub-gaussian $\Rightarrow X \mathbb{E}X$ is sub-gaussian and $\|X \mathbb{E}X\|_{\psi_2} \le C\|X\|_{\psi_2}$.

 $Proof \ \|\mathbb{E}X\|_{\psi_2} \le C_1 \|\mathbb{E}X\| \le C_1 \mathbb{E}|X| = C_1 \|X\|_{L^1} \le C_1 C_2 \|X\|_{\psi_2}.$

• Sub-exponential properties: The following are equivalent: (1) $\mathbb{P}(|X| \geq t) \leq 2e^{-t/k_1}, \forall t \geq 0$; (2) $||X||_{L^p} \leq k_2 p, p \geq 1$; (3) $\mathbb{E}e^{\lambda|X|} \leq e^{k_3\lambda}$ for all $0 \leq \lambda \leq \frac{1}{k_3}$; (4) $\mathbb{E}e^{|X|/k_4} \leq 2$; (5) if $\mathbb{E}X = 0, \mathbb{E}e^{\lambda X} \leq e^{k_5^2\lambda^2}$ for $|\lambda| \leq \frac{1}{k_5}$.

Proof (2) \Rightarrow (5): $k_2 = 1$, $\mathbb{E}e^{\lambda X} = 1 + \sum_{p=2}^{+\infty} \frac{\lambda^p \mathbb{E}X^p}{p!} \le 1 + \sum_{p=2}^{+\infty} \frac{\lambda^p p^p}{(p/e)^p} = 1 + \frac{(e\lambda)^2}{1-e\lambda} (|e\lambda| < 1)$. If $|e\lambda| \le \frac{1}{2}$, $1 + \frac{(e\lambda)^2}{1-e\lambda} \le 1 + 2e^2\lambda^2 \le e^{2e^2\lambda^2}$, i.e. $k_5 = 2e$.

- $(5) \Rightarrow (1): k_5 = 1, |x|^p \le p^p(e^x + e^{-x}) \Rightarrow \mathbb{E}|X|^p \le p^p(\mathbb{E}e^X + \mathbb{E}e^{-X}) \le 2ep^p.$
- $||X||_{\psi_1} = \inf\{t > 0 : \mathbb{E}e^{|X|/t} \le 2\}$. X is sub-gaussian $\Leftrightarrow X^2$ is sub-exponential. $||X^2||_{\psi_1} = ||X||_{\psi_2}^2$.
- X, Y are sub-gaussian $\Rightarrow XY$ is sub-exponential and $||XY||_{\psi_1} \leq ||X||_{\psi_2} ||Y||_{\psi_2}$.

Proof WLOG $||X||_{\psi_2} = ||Y||_{\psi_2} = 1$. $\mathbb{E}e^{XY} \le \mathbb{E}e^{\frac{X^2 + Y^2}{2}} = \mathbb{E}\left[e^{\frac{X^2}{2} + \frac{Y^2}{2}}\right] \le \frac{1}{2}(\mathbb{E}e^{X^2} + \mathbb{E}e^{Y^2}) = 2$.

- Orlicz function/space: $\psi: [0, +\infty) \to [0, +\infty)$, convex, increasing, $\psi(0) = 0$, $\psi(x) \to +\infty$, $x \to +\infty$. $||X||_{\psi} := \inf\{t > 0 : \mathbb{E}\psi(|X|/t) \le 1\}$. $L_{\psi} := \{X : ||X||_{\psi} < +\infty\}$ is Banach space. Examples: (1) $L_p : \psi(x) = x^p, p \ge 1$; (2) $L_{\psi_2} : \psi_2(x) = e^{x^2} 1, L_{\infty} \subset L_{\psi_2} \subset L_p$.
- Bernstein's inequality: X_1, \dots, X_N independent, mean zero and sub-exponential. Then for $t \geq 0, \mathbb{P}(|\sum_{i=1}^N X_i| \geq t) \leq 2e^{-c\min(\frac{t^2}{\sum_{i=1}^N \|X_i\|_{\psi_1}^2, \frac{t}{\max_i \|X_i\|_{\psi_1}})}$.

RANDOM VECTORS IN HIGH DIMENSIONS

 $Proof \ \ S = \sum_{i=1}^N X_i. \ \ \mathbb{P}(S \geq t) \leq e^{-\lambda t} \prod_{i=1}^N \mathbb{E} e^{\lambda X_i}. \ \ \mathbb{E} e^{\lambda X_i} \leq e^{c\lambda^2 \|X_i\|_{\psi_1}^2} \ \ \text{if} \ |\lambda| \leq \frac{c}{\max \|X_i\|_{\psi_1}}. \ \ \text{Then} \ \ \mathbb{P}(S \geq t) \leq e^{-\lambda t + c\lambda^2 \sigma^2} \ \ \text{where}$ $\sigma^2 := \sum_{i=1}^N \|X_i\|_{\psi_1}^2. \ \ \text{The following is to find the minimum of a quadratic function with the restriction} \ |\lambda| \leq \frac{c}{\max \|X_i\|_{\psi_1}}.$

- Corollary 1: $\mathbb{P}(|\sum_{i=1}^{N} a_i X_i| \ge t) \le 2e^{-c \min(\frac{t^2}{K^2 ||a||_2^2}, \frac{t}{K ||a||_{\infty}})}$ where $K = \max_i ||X_i||_{\psi}$.
- Corollary 2: $|X_i| \leq K$, then $\mathbb{P}(|\sum_{i=1}^N X_i| \geq t) \leq 2\exp(-\frac{t^2/2}{\sigma^2 + Kt/3})$ where $\sigma^2 = \sum_{i=1}^N \mathbb{E} X_i^2$.

3 Random vectors in high dimensions

- $X \in \mathbb{R}^n$, independent sub-gaussian coordinate X_i , $\mathbb{E}X_i^2 = 1$. Then $\|\|X\|_2 \sqrt{n}\|_{\psi_2} \le CK^2$, $K = \max_i \|X_i\|_{\psi_2}$. $Proof \ \mathbb{E}X_i^2 = 1 \Rightarrow K \ge 1$. $\|X_i^2 - 1\|_{\psi_1} \le C\|X_i^2\|_{\psi_1} = C\|X_i\|_{\psi_2}^2 \le CK^2$. Bernstein's inequality: $\mathbb{P}(|\frac{1}{n}\|X\|_2^2 - 1| \ge u) = \mathbb{P}(|\frac{1}{n}\sum_{i=1}^n (X_i^2 - 1)| \ge u) \le 2e^{-cn\min(\frac{u^2}{K^4}, \frac{u}{K^2})} \le 2e^{-\frac{cn}{K^4}\min(u^2, u)}$. For any $\delta > 0$, $\mathbb{P}(|\frac{1}{\sqrt{n}}\|X\|_2 - 1| \ge \delta) \le \mathbb{P}(|\frac{1}{n}\|X\|_2^2 - 1| \ge \max(\delta, \delta^2)) \le 2e^{-\frac{cn}{K^4}\delta^2} \Rightarrow \mathbb{P}(|\|X\|_2 - \sqrt{n}| \ge t) \le 2e^{-ct^2/K^4}$.
- Isotropy: $\Sigma(X) = \mathbb{E}XX^T = I$. If $\Sigma \neq I_n$, then let $Z = \Sigma^{-1/2}X$. X is isotropic $\Leftrightarrow \mathbb{E}\langle X, x \rangle^2 = ||x||_2^2$ for any $x \in \mathbb{R}^n$.

$$Proof \ \mathbb{E}\langle X, x \rangle^2 = \mathbb{E}(x^T X X^T x) = x^T (\mathbb{E}X X^T) x. \ \|x\|_2^2 = x^T I_n x. \Rightarrow \mathbb{E}X X^T = I_n.$$

• X is isotropic $\Rightarrow \mathbb{E}||X||_2^2 = n$. If X, Y are independent and isotropic $\Rightarrow \mathbb{E}\langle X, Y \rangle^2 = n$.

Proof
$$\mathbb{E}||X||_2^2 = \mathbb{E}(X^T X) = \mathbb{E}(\operatorname{tr}(X^T X)) = \operatorname{tr}(\mathbb{E}XX^T) = n$$
.
 $\mathbb{E}\langle X, Y \rangle^2 = \mathbb{E}(X^T Y Y^T X) = \mathbb{E}(\operatorname{tr}(X^T Y Y^T X)) = \mathbb{E}(\operatorname{tr}(X X^T Y Y^T)) = \operatorname{tr}((\mathbb{E}XX^T)(\mathbb{E}YY^T)) = n$.

- Examples: $X \sim U(\sqrt{n}\mathbb{S}^{n-1}), X \sim U(\{-1,1\}^n), X = (X_1, \dots, X_n) \text{ i.i.d.}, \mathbb{E}X_i = 0, \text{Var}(X_i) = 1 \text{ are all isotropic.}$
- $g \sim \mathcal{N}(0, I_n)$, then $\mathbb{P}(|\|g\|_2 \sqrt{n}| \ge t) \le 2e^{-ct^2}$.
- Frame: $\{u_i\}_{i=1}^N \subset \mathbb{R}^n$, Approximate Parseval's identity: $A\|x\|_2^2 \leq \sum_{i=1}^N \langle u_i, x \rangle^2 \leq B\|x\|_2^2$. A, B: frame bounds. A = B: tight frame $(\Leftrightarrow \sum_{i=1}^N u_i u_i^T = AI_n)$ and in this case, $\sum_{i=1}^N \langle u_i, x \rangle u_i = Ax$.
- (a) Tight frame $\{u_i\}_{i=1}^N$, $A = B, X = \text{Unif}\{u_i, i = 1, 2, \dots, N\}$, then $(\frac{N}{A})^{1/2}X$ is isotropic. (b) X is isotropic, $\mathbb{P}(X = x_i) = p_i, i = 1, 2, \dots, N$. Then $u_i = \sqrt{p_i}x_i$ form a tight frame with A = B = 1.
- Isotropic convex sets: $X \sim \mathrm{Unif}(K), K \subset \mathbb{R}^n$ convex, bounded, non-empty interior (convex body). Assume $\mathbb{E}X = 0, \Sigma = \mathrm{Cov}(X)$. Then $Z = \Sigma^{-1/2}X$ is isotropic and $Z \sim \mathrm{Unif}(\Sigma^{-1/2}K)$.
- $X \in \mathbb{R}^n$ is sub-gaussian $\Leftrightarrow \forall X \in \mathbb{R}^n, \langle X, x \rangle$ are sub-gaussian. $\|X\|_{\psi_2} = \sup_{x \in \mathbb{S}^{n-1}} \|\langle X, x \rangle\|_{\psi_2}$.
- $X = (X_1, \dots, X_n)$ independent, mean zero, sub-gaussian coordinate. Then X is sub-gaussian with $||X||_{\psi_2} \le C \max_{i \le n} ||X_i||_{\psi_2}$.

$$Proof \ \|\langle X, x \rangle\|_{\psi_2}^2 = \|\sum X_i x_i\|_{\psi_2}^2 \le C \sum_{i=1}^n x_i^2 \|X_i\|_{\psi_2}^2 \le C \max_{i \le n} \|X_i\|_{\psi_2}^2.$$

- Gaussian dist: $X \sim \mathcal{N}(0, I_n), ||X||_{\psi_2} \leq C$.
- Discrete dist: $X \sim \text{Unif}\{\sqrt{n}e_i, i = 1, 2, \dots, n\}, \|X\|_{\psi_2} \simeq \sqrt{\frac{n}{\log n}}$.
- Uniform dist: $X \sim \text{Unif}\{\sqrt{n}\mathbb{S}^{n-1}\}$, $\|X\|_{\psi_2} \leq C$. $Proof \ g \sim \mathcal{N}(0, I_n), X \stackrel{d}{=} \frac{\sqrt{n}g}{\|g\|_2}. \ p(t) := \mathbb{P}(|X_1| \geq t) = \mathbb{P}(\frac{|g|}{\|g\|_2} \geq \frac{t}{\sqrt{n}}). \ \|\|g\|_2 \sqrt{n}\|_{\psi_2} \leq C \Rightarrow \mathbb{P}(\|g\|_2 \leq \frac{\sqrt{n}}{2}) \leq 2e^{-cn}. \ \text{Need to show that all one-dimensional marginals } \langle X, x \rangle \text{ are sub-gaussian. By rotation invariance, we may assume that } x = (1, 0, \cdots, 0).$ $\text{Let } \mathcal{E} = \{\|g\|_2 \geq \frac{\sqrt{n}}{2}\} \Rightarrow p(t) \leq \mathbb{P}(\frac{|g|}{\|g\|_2} \geq \frac{t}{\sqrt{n}}, \mathcal{E}) + \mathbb{P}(\mathcal{E}) \leq \mathbb{P}(|g_1| \geq \frac{t}{2}, \mathcal{E}) + 2e^{-cn} \leq 2e^{-t^2/8} + 2e^{-cn} \stackrel{t \leq \sqrt{n}}{\leq} 4e^{-ct^2}.$
- Grothendieck's inequality: $A = \{a_{ij}\}_{m \times n}$ of real numbers. Assume $\forall x_i, y_i \in \{-1, 1\}$, we have $|\sum_{i,j} a_{ij} x_i y_j| \leq 1$. Then for any Hilbert space \mathscr{H} , any $u_i, v_j \in \mathscr{H}$ satisfying $||u_i|| = ||v_j|| = 1$, we have $|\sum_{i,j} a_{ij} \langle u_i, v_j \rangle| \leq K$ with $K \leq 1.783$.

RANDOM MATRICES

- *Proof* (1) Reduction. For any $u_i, v_j \in \mathbb{R}^N$ s.t. $||u_i||_2 = ||v_j||_2 = 1, K_{u,v} := \sum_{i,j} a_{ij} \langle u_i, v_j \rangle, K = \sup_{||u||_2 = ||v||_2 = 1} K_{u,v}$.
- (2) Introduce randomness. $g \sim \mathcal{N}(0, I_N), U_i = \langle g, u_i \rangle, V_j = \langle g, v_j \rangle, \mathbb{E}U_iV_j = \langle u_i, v_j \rangle.$ $K_{u,v} = \mathbb{E}(\sum_{i,j} a_{ij}U_iV_j) \Rightarrow K_{u,v} \leq R^2$ if $|U_i| \leq R, |V_j| \leq R$.
- (3) Truncation. Given $R \ge 1, U_i = U_i^- + U_i^+, U_i^- = U_i \mathbb{1}_{\{|U_i| \le R\}}, V_j = V_j^- + V_j^+, |U_i^-| \le R, |V_j^-| \le R.$ $||U_i^+||_{L^2}^2 \le 2(R + \frac{1}{R}) \frac{1}{\sqrt{2\pi}} e^{-R^2/2} < \frac{4}{R^2} (R > 1).$
- (4) Breaking up the sum. $\mathbb{E} \sum a_{ij} U_i V_j = \mathbb{E} \sum a_{ij} U_i^- V_j^- + \mathbb{E} \sum a_{ij} U_i^+ V_j^- + \mathbb{E} \sum a_{ij} U_i^- V_j^+ + \mathbb{E} \sum a_{ij} U_i^+ V_j^+ := S_1 + S_2 + S_3 + S_4.$ $S_1 \leq R^2, S_2 \leq K \max \|U_i^+\|_2 \max \|V_j^-\|_2 \leq K \frac{2}{R}, S_3 \leq K \frac{2}{R}, S_4 \leq K \frac{4}{R^2}.$
- (5) Putting everything together. $K_{u,v} \leq R^2 + \frac{4K}{R} + \frac{4K}{R^2} \Rightarrow K \leq R^2 + \frac{4K}{R} + \frac{4K}{R^2} \Rightarrow K \leq \frac{R^2}{1 \frac{4}{R} \frac{4}{R^2}}$.
- Remark: The assumption can be equivalently stated as $|\sum_{i,j} a_{ij} x_i y_j| \le \max_i |x_i| \max_j |y_j|$. The conclusion can be equivalently stated as $|\sum_{i,j} a_{ij} \langle u_i, v_j \rangle| \le K \max_i ||u_i|| \max_j ||v_j||$.
- Semidefinite programming: $\max \langle A, X \rangle$ s.t. $X \succeq 0, \langle B_i, X \rangle = b_i, A, B_i \, n \times n, b_i$ real number, $\langle A, X \rangle = \operatorname{tr}(A^T X) = \sum_{i,j=1}^n A_{ij} X_{ij}$.
- Semidefinite relaxation: $\max \sum_{i,j=1}^n A_{ij} x_i x_j, x_i = \pm 1, A n \times n$ symmetric matrix. Relax to $\max \sum_{i,j=1}^n A_{ij} \langle X_i, X_j \rangle, \|X_i\|_2 = 1, X_i \in \mathbb{R}^n.$
- A positive semidefinite, $INT(A) := \max \sum_{i,j=1}^n A_{ij} x_i x_j, x_i = \pm 1, SDP(A) := \max \sum_{i,j=1}^n A_{ij} \langle X_i, X_j \rangle, ||X_i||_2 = 1.$ Then $INT(A) \leq SDP(A) \leq 2K \cdot INT(A)$.
- Maximum cut: G = (V, E) finite simple, $V \to V_1 + V_2$, cut number of edges crossing between V_1 and V_2 . MAX-CUT(G): NP-hard. Adjacency matrix $A = \{A_{ij}\}_{n \times n}, A_{ij} = \begin{cases} 1, & i \leftrightarrow j \\ 0, \text{ otherwise} \end{cases}$. Partition: $X = (x_i)_{n \times 1}, x_i = \pm 1$. CUT $(G, X) = \frac{1}{4} \sum_{i,j=1}^{n} A_{ij} (1 x_i x_j)$. MAX-CUT $(G) = \frac{1}{4} \max\{\sum_{i,j} A_{ij} (1 x_i x_j) : x_i = \pm 1\}$.
- 0.5-approximation algorithm: Partition at random, $\mathbb{E}CUT(G, X) = 0.5|E| \ge 0.5MAX-CUT(G)$.
- 0.878-approximation algorithm: SDP(G) = $\frac{1}{4}$ max{ $\sum_{i,j=1}^{n} A_{ij}(1 \langle X_i, X_j \rangle), x_i \in \mathbb{R}^n, \|X_i\|_2 = 1$ }. $X_1, \dots, X_n \to x_1, \dots, x_n : g \sim \mathcal{N}(0, I_n), x_i := \operatorname{sgn}(\langle X_i, g \rangle)$. $\mathbb{E}\operatorname{CUT}(G, X) \geq 0.878\operatorname{SDP}(G) \geq 0.878\operatorname{MAX-CUT}(G)$. Proof $\mathbb{E}\operatorname{CUT}(G, X) = \frac{1}{4}\sum_{i,j=1}^{n} A_{ij}(1 - \mathbb{E}x_i x_j)$ and $1 - \mathbb{E}x_i x_j = 1 - \mathbb{E}\operatorname{sgn}\langle g, X_i \rangle \operatorname{sgn}\langle g, X_j \rangle = 1 - \frac{2}{\pi}\operatorname{arcsin}\langle X_i, X_j \rangle \geq 0.878(1 - \langle X_i, X_j \rangle)$.
- $u, v \in \mathbb{S}^{n-1}$, $\mathbb{E}\operatorname{sgn}(\langle g, u \rangle)\operatorname{sgn}(\langle g, v \rangle) = \frac{2}{\pi} \arcsin\langle u, v \rangle$.
- There exists a Hilbert space \mathcal{H} and $\phi, \psi : \mathbb{S}^{n-1} \to \mathbb{S}(\mathcal{H})$ s.t. $\frac{2}{\pi} \arcsin\langle \phi(u), \psi(v) \rangle = \beta \langle u, v \rangle$ for all $u, v \in \mathbb{S}^{n-1}$ and $\beta = \frac{2}{\pi} \log(1 + \sqrt{2})$.

 $Proof \ \langle \phi(u), \psi(v) \rangle = \sin(\frac{\beta \pi}{2} \langle u, v \rangle). \ \text{Ex } 3.7.6 \Rightarrow \exists \mathcal{H}, \phi, \psi. \ \sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} + \cdots, \sinh t = t + \frac{t^3}{3!} + \frac{t^5}{5!}, \|\phi(u)\|_2^2 = \|\psi(u)\|_2^2 = \sinh(\frac{\beta \pi}{2}) = 1 \ \text{for all } u \in \mathbb{S}^{n-1} \Rightarrow \beta = \frac{2}{\pi} \log(1 + \sqrt{2}).$

Proof of Grothendieck's inequality with $K \leq \frac{1}{\beta} \approx 1.783$ WLOG $u_i, v_j \in \mathbb{S}^{N-1}$, then $\frac{2}{\pi} \arcsin \langle u_i', v_j' \rangle = \beta \langle u_i, v_j \rangle$, $\mathcal{H} = \mathbb{R}^M$, $g \sim \mathcal{N}(0, I_M)$. $\beta \sum a_{ij} \langle u_i, v_j \rangle = \sum_{i,j} a_{ij} \frac{2}{\pi} \arcsin \langle u_i', v_j' \rangle = \sum_{i,j} a_{ij} \mathbb{E} \operatorname{sgn} \langle g, u_i' \rangle \operatorname{sgn} \langle g, v_j' \rangle \leq 1$.

4 Random matrices

- Singular vector decomposition: $A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T = \sum_{i=1}^n s_i U_i V_i^T, \Sigma = \text{diag}(s_1, s_2, \dots, s_r), s_i \ge 0$ sigular values. $s_i = \sqrt{\lambda_i(AA^T)} = \sqrt{\lambda_i(A^TA)}$. If A is symmetric, $s_i = |\lambda_i(A)|$.
- Courant-Fisher's min-max theorem: $\lambda_i(A) = \max_{\dim E = i} \min_{x \in \mathbb{S}(E)} \langle Ax, x \rangle, s_i(A) = \max_{\dim E = i} \min_{x \in \mathbb{S}(E)} \|Ax\|_2.$
- Operator norm/spectral norm: $||A|| = \max_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||Ax||_2}{||x||_2} = \max_{x \in \mathbb{S}^{n-1}} ||Ax||_2 = s_1(A)$. Or equivalently, $||A|| = \max_{x \in \mathbb{S}^{n-1}, y \in \mathbb{S}^{m-1}} \langle Ax, y \rangle$.
- $s_n(A) > 0 \Leftrightarrow m \ge n = \operatorname{rank}(A), s_n(A) = \frac{1}{\|A^+\|}$ where A^+ is pseudo-inverse (the norm of A^{-1} restriction to the image of A).

RANDOM MATRICES

- Frobenius norm: $||A||_F = (\sum_{i=1}^n \sum_{j=1}^n A_{ij}^2)^{\frac{1}{2}} = (\sum_{i=1}^n s_i^2(A))^{\frac{1}{2}}$.
- Low-rank approximation: $\operatorname{rank}(A) = r, k < r, A_k := \sum_{i=1}^k s_i u_i v_i^T, ||A A_k|| = \min_{\operatorname{rank}(A') \le k} ||A A'|| \text{ (holds for } ||\cdot||, ||\cdot||_F).$
- Approximate isometries: $m||x||_2 \le ||Ax||_2 \le n||x||_2$ where $m = s_n(A)$, $n = s_1(A)$, or $s_n||x y||_2 \le ||Ax Ay||_2 \le s_1||x y||_2$.
- $A_{m \times n}, \delta > 0$. If $||A^T A I_n|| \le \max(\delta, \delta^2)$, then $(1 \delta)||x||_2 \le ||Ax||_2 \le (1 + \delta)||x||_2$ for all x. Proof WLOG $||x||_2 = 1$. $|||Ax||_2^2 - 1| = |\langle (A^T A - I_n)x, x \rangle| \le \max(\delta, \delta^2) \Rightarrow \max(|||Ax||_2 - 1|, (||Ax||_2 - 1)^2) \le \max(\delta, \delta^2) \Rightarrow |||Ax||_2 - 1| \le \delta$.
- $Q_{n \times m}, QQ^T = I_n \Leftrightarrow P = Q^TQ$ is an orthogonal proj in \mathbb{R}^m onto a subspace with dim n.
- ϵ -net: (T, d) a metric space, $K \subset T$, $\epsilon > 0$. $\mathcal{N} \subset K$ is an ϵ -net of K if $\forall x \in K$, $\exists x_0 \in \mathcal{N}$ s.t. $d(x, x_0) \leq \epsilon$. Covering number: smallest $|\mathcal{N}| = |\mathcal{N}(K, d, \epsilon)|$.
- Compactness: $\mathcal{N}(K, d, \epsilon) < +\infty$ for all $\epsilon > 0$.
- ϵ -separated: $\mathcal{P} \subset T$ is ϵ -separated if $d(x,y) > \epsilon$ for all $x,y \in \mathcal{P}$. Packing number: largest $|\mathcal{P}| = |\mathcal{P}(K,d,\epsilon)|$.
- \mathcal{P} is a maximal ϵ -separated subset $\Rightarrow \mathcal{P}$ is a ϵ -net of K.
- $\mathcal{P}(K, d, 2\epsilon) \leq \mathcal{N}(K, d, \epsilon) \leq \mathcal{P}(K, d, \epsilon)$.

Proof The upper bound follows from the previous lemma. For the lower bound, choose an 2ϵ -separated subset $\mathcal{P} = \{x_i\}$ in K and an ϵ -net $\mathcal{N} = \{y_j\}$ of K. $\forall x_i, \exists y_j \in \mathcal{N}$, s.t. $|x_i - y_j| < \epsilon$. $\forall y_j$, there exists at most a $x_j \in \mathcal{P}$ s.t. $|x_i - y_j| < \epsilon$.

- Minkowski sum: $A, B \in \mathbb{R}^n, A + B := \{a + b, a \in A, b \in B\}.$
- $K \subset \mathbb{R}^n$, $\epsilon > 0$, $\frac{|K|}{|\epsilon B_2^n|} \le \mathcal{N}(K, \epsilon) \le \mathcal{P}(K, \epsilon) \le \frac{|K + \frac{\epsilon}{2} B_2^n|}{|\frac{\epsilon}{2} B_2^n|}$ where $|\cdot|$ denotes the volume in \mathbb{R}^n , B_2^n denotes the unit Euclidean ball in \mathbb{R}^n .
- Corollary: Let $K = B_2^n$. $|\epsilon B_2^n| = \epsilon^n |K|, |K + \frac{\epsilon}{2} B_2^n| = (1 + \frac{\epsilon}{2})^n |K| \Rightarrow (\frac{1}{\epsilon})^n \leq \mathcal{N}(B_2^n, \epsilon) \leq (1 + \frac{2}{\epsilon})^n$. $\epsilon \in (0, 1] \Rightarrow (\frac{1}{\epsilon})^n \leq \mathcal{N}(B_2^n, \epsilon) \leq (\frac{3}{\epsilon})^n$.
- Hamming cubde: $x, y \in \{0, 1\}^n, d_H(x, y) := \#\{i : x(i) \neq y(i)\}.$
- (T,d) a metric space, $K \subset T$, $\mathcal{C}(K,d,\epsilon)$ the smallest number of bits sufficient specify every points $x \in K$ with accuracy ϵ in the metric d. Then $\log_2 \mathcal{N}(K,d,\epsilon) \leq \mathcal{C}(K,d,\epsilon) \leq \log_2 \mathcal{N}(K,d,\frac{\epsilon}{2})$. $\log_2 \mathcal{N}(K,\epsilon)$ is often called the metric entropy of K.

Proof Lower bound. Assume $C(K, d, \epsilon) \leq N$. There exists a transformation of $x \in K$ into bit strings of length N. A partition of K into at most 2^N subsets.

Upper bound. Assume $\log_2 \mathcal{N}(K, d, \frac{\epsilon}{2}) \leq N$. There exists an $\frac{\epsilon}{2}$ -net \mathcal{N} with $|\mathcal{N}| \leq 2^N$. To every point $x \in K$, assign a point $x_0 \in \mathcal{N}$ that is closest to x. The encoding $x \mapsto x_0$ represents points in K with accuracy ϵ .

- Error correcting code: Fix integers k, n and r. Encoder $\{0, 1\}^k \to \{0, 1\}^n$, Decoder $\{0, 1\}^n \to \{0, 1\}^k$, D(y) = x if $x \in \{0, 1\}^k$, $y \in \{0, 1\}^n$ and $d_H(E(x), y) \le r$.
- If $\log_2 \mathcal{P}(\{0,1\}^n, d_H, 2r) \geq k$, then there exists an error correcting code, k bits $\to n$ bits, correct r error. $Proof \ \exists \mathcal{P} \in \{0,1\}^n, |\mathcal{P}| = 2^k \text{ s.t closed balls centered at } \mathcal{P} \text{ with radii } r \text{ are disjoint. } E: \{0,1\}^k \to \mathcal{N} \text{ one to one; } D: \{0,1\}^n \to \{0,1\}^k \text{ nearest-neighbor decodes.}$
- If $n \ge k + 2r \log_2(\frac{en}{2r})$, then there exists an error correcting code that encodes k-bit strings into n-bit strings and can correct r errors.

Proof
$$\mathcal{P}(\{0,1\}^n, d_H, 2r) \ge \mathcal{N}(\{0,1\}^n, d_H, 2r) \ge \frac{2^n}{\sum_{k=0}^{2r} C_n^k} \ge 2^n (\frac{2r}{en})^{2r} \ge 2^k$$
.

CONCENTRATION WITHOUT INDEPENDENCE

• $A_{m \times n}, \epsilon \in [0, 1)$. Then for any ϵ -set \mathcal{N} of \mathbb{S}^{n-1} , $\sup_{x \in \mathcal{N}} ||Ax||_2 \le ||A|| \le \frac{1}{1-\epsilon} \sup_{x \in \mathcal{N}} ||Ax||_2$.

Proof Fix $x \in \mathbb{S}^{n-1}$, $||A|| = ||Ax||_2$. $\exists x_0 \in \mathcal{N}$, $||x - x_0||_2 \le \epsilon$, $||Ax - Ax_0||_2 \le ||A|| ||x - x_0||_2 \le \epsilon ||A|| \Rightarrow ||Ax_0||_2 \ge ||Ax||_2 - ||A(x - x_0)||_2 \ge ||A|| - \epsilon ||A||$.

• $A_{m\times n} = \{A_{ij}\}, A_{ij}$ independent mean zero sub-gaussian, $K = \max_{i,j} \|A_{ij}\|_{\psi_2}$. Then for any t > 0, $\mathbb{P}(\|A\| \le CK(\sqrt{m} + \sqrt{n} + t)) \ge 1 - 2e^{-t^2}$.

Proof Step 1: Approximation. Choose $\epsilon = 1/4$ and ϵ -net \mathcal{N} of \mathbb{S}^{n-1} , ϵ -net \mathcal{M} of \mathbb{S}^{m-1} with $|\mathcal{N}| \leq 9^n$, $|\mathcal{M}| \leq 9^m$. Ex 4.4.3 $\Rightarrow ||A|| \leq 2 \max_{x \in \mathcal{N}, y \in \mathcal{M}} \langle Ax, y \rangle$.

Step 2: Concentration. $\langle Ax,y\rangle = \sum_{i,j} A_{ij}x_iy_j, \|\langle Ax,y\rangle\|_{\psi_2}^2 \leq C\sum_{i,j} \|A_{ij}\|_{\psi_2}^2 x_i^2 y_j^2 \leq CK^2 \Rightarrow \mathbb{P}(\langle Ax,y\rangle \geq u) \leq 2e^{-cu^2/K^2}$.

Step 3: Union bound. $\mathbb{P}(\max_{x \in \mathcal{N}, y \in \mathcal{M}} \langle Ax, y \rangle \ge u) \le \sum_{x \in \mathcal{N}, y \in \mathcal{M}} \mathbb{P}(\langle Ax, y \rangle \ge u) \le 9^{n+m} 2e^{-cu^2/K^2}$. Take $u = CK(\sqrt{m} + \sqrt{n} + t)$, $u^2 \ge C^2K^2(m+n+t^2)$. C sufficiently large s.t. $cu^2/K^2 \ge 3(n+m+t^2)$.

• $A_{n\times n}$ symmetric, $A_{ij}, i \leq j$ independent mean zero sub-gaussian. Then for $t \geq 0, \mathbb{P}(\|A\| \leq CK(\sqrt{n} + t)) \geq 1 - 4e^{-t^2}$.

 $\begin{aligned} & \textit{Proof } \ \ A = \underbrace{A^+ + A^-}_{\text{upper + lower triangular matrix}}, \mathbb{P}(\|A^+\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-4t^2} \geq 1 - 2e^{-t^2}, \mathbb{P}(\|A^-\| \leq CK(\sqrt{n} + t)) \geq 1 - 2e^{-t^2},$

- Stochastic block model (SBM): G(n, p, q), p > q, n vertices, two community of size n/2, $x, y \in$ same community $\Rightarrow \mathbb{P}(x \sim y) = p$, otherwise $\mathbb{P}(x \sim y) = q$. $A = \{A_{ij}\}, A_{ij} = 1 \text{ if } i \sim j \text{ otherwise } 0$. $A = \mathbb{E}A + R := D + R, ||D|| = \frac{p+q}{2} \cdot n, \mathbb{P}(||R|| \leq C\sqrt{n}) \geq 1 4e^{-n}$.
- Weyl's inequality: Symmetric matrices S and T with same dim, $\max_i |\lambda_i(S) \lambda_i(T)| \le ||S T||$.
- Davis-Kahan: Fix i, $\min_{j \neq i} |\lambda_i(S) \lambda_j(S)| = \delta > 0$. Then $\sin \angle (v_i(S), v_i(T)) \le \frac{2\|S T\|}{\delta} \Rightarrow \exists \theta \in \{-1, 1\}, \|v_i(S) \theta v_i(T)\|_2 \le \frac{\|S T\|}{\delta} \cdot 2^{3/2}$.
- Spectual clustering: Recall SBM A = D + R and let S = D, T = A = D + R in Davis-Kahan. $\delta = \min(\lambda_2, \lambda_2 \lambda_1) = \min(\frac{p-q}{2}, q)n := \mu n$. $\mathbb{P}(\|R\| = \|T S\| \le C\sqrt{n}) \ge 1 4e^{-n} \Rightarrow \exists \theta \in \{\pm 1\}, \|v_2(D) \theta v_2(A)\| \le \frac{C}{\mu\sqrt{n}}$. Let $u_2(D) = (1, 1, \dots, 1, -1, -1, \dots, -1) \Rightarrow \|u_2(D) \theta u_2(A)\| \le \frac{C}{\mu} \Rightarrow \sum_{j=1}^n |u_2(D)_j \theta u_2(A)_j|^2 \le \frac{C}{\mu^2}$. Thus the number of disagreeing signs between $u_2(D)$ and $u_2(A)$ must be bounded by $\frac{C}{\mu^2}$.
- $A_{m \times n}$, rows A_i independent mean zero sub-gaussian, isotropic. Then for any $t \geq 0$, $\sqrt{m} CK^2(\sqrt{n} + t) \leq s_n(A) \leq s_1(A) \leq \sqrt{m} + CK^2(\sqrt{n} + t)$ with prob $\geq 1 2e^{-t^2}$. Here $K = \max_i ||A_i||_{\psi_2}$.

Proof Only need to prove $\|\frac{1}{m}A^TA - I_n\| \le \epsilon := K^2 \max\{\delta, \delta^2\}, \delta = C(\frac{\sqrt{n}}{\sqrt{m}} + \frac{t}{\sqrt{m}}).$

Step 1: Approximation. Find an $\frac{1}{4}$ -net \mathcal{N} of the unit space \mathbb{S}^{n-1} , $|\mathcal{N}| \leq 9^n$. $\|\frac{1}{m}A^TA - I_n\| \leq 2 \max_{x \in \mathcal{N}} |\langle (\frac{1}{m}A^TA - I_n)x, x \rangle| = 2 \max_{x \in \mathcal{N}} |\frac{1}{m}\|Ax\|_2^2 - 1|$.

Step 2: Concentration. $X_i := \langle A_i, x \rangle$ independent, mean zero, $||X_i||_{\psi_2} \leq K$, $\mathbb{E}X_i^2 = 1$. $\mathbb{P}(|\frac{1}{m}||Ax||_2^2 - 1| \geq \frac{\epsilon}{2}) \leq 2e^{-c_1\delta^2 m} \leq 2e^{-c_1C^2(n+t^2)}$.

Step 3: Union bound. $\mathbb{P}(|\frac{1}{m}||Ax||_2^2 - 1| \ge \frac{\epsilon}{2}) \le 9^n \cdot 2e^{-c_1C^2(n+t^2)} \le 2e^{-t^2}$.

• $X \in \mathbb{R}^n$ sub-gaussian. $\mathbb{E}X = 0, \Sigma = \mathbb{E}XX^T, X_i \stackrel{\mathrm{d}}{=} X \text{ i.i.d.}, \Sigma_m = \frac{1}{m} \sum_{i=1}^m X_i X_i^T$. Assume there exists $K \ge 1$ s.t. $\|\langle X, x \rangle\|_{\psi_2}^2 \le K^2 \|\langle X, x \rangle\|_{L^2}^2$. Then for m, $\mathbb{E}\|\Sigma_m - \Sigma\| \le CK^2(\sqrt{\frac{n}{m}} + \frac{n}{m})\|\Sigma\|$.

 $Proof \ \ Z_i = \Sigma^{-1/2} X_i, Z = \Sigma^{-1/2} X, \\ \mathbb{E} Z_i Z_i^T = I_n, \\ \|Z\|_{\psi_2} \leq K, \\ \|Z_i\|_{\psi_2} \leq K. \ \ \text{Then} \ \|\Sigma_m - \Sigma\| = \|\Sigma^{1/2} R_m \Sigma^{1/2}\| \leq \|R_m\| \|\Sigma\| \ \ \text{where} \\ R_m = \frac{1}{m} \sum_{i=1}^m Z_i Z_i^T - I. \ \ \text{Consider an } m \times n \text{ random matrix } A \text{ whose rows are } Z_i^T. \\ \mathbb{E} \|R_m\| = \mathbb{E} \|\frac{1}{m} A^T A - I\| \leq C K^2 (\sqrt{\frac{n}{m}} + \frac{n}{m}). \\ \square$

5 Concentration without independence

- $(X, d_X) \xrightarrow{f} (Y, d_Y), d_Y(f(u), f(v)) \leq L \cdot d_x(u, v), \forall u, v \in X$. The infimum of all L in this definition is called the Lipschitz norm of f and is denoted $||f||_{\text{Lip}}$.
- $\epsilon > 0, A_{\epsilon} = A + \epsilon B_2^n, A \subset \mathbb{R}^n, \min_A \text{ volume of } A_{\epsilon} \text{ with column } A \text{ fixed is achieved when } A \text{ is a ball.}$

CONCENTRATION WITHOUT INDEPENDENCE

- $\sigma_{n-1}(A)$ normalized area on \mathbb{S}^{n-1} , $\epsilon > 0$. With given $\sigma_{n-1}(A)$, $\min_A \sigma_{n-1}(A_{\epsilon})$ is achieved when A is a spherical cap.
- $A \subset \sqrt{n}\mathbb{S}^{n-1}$. If $\sigma(A) \geq \frac{1}{2}$, then $\forall t \geq 0, \sigma(A_t) \geq 1 2e^{-ct^2}$.

 Proof Let $H = \{x \in \sqrt{n}\mathbb{S}^{n-1}, x_1 \leq 0\}$. $\sigma(A) \geq \frac{1}{2}\sigma(H)$. Thm $5.1.6 \Rightarrow \sigma(A_t) \geq \sigma(H_t) = \mathbb{P}(X \in H_t)$. $H_t \supset \{x \in \sqrt{n}\mathbb{S}^{n-1}, x_1 \leq \frac{t}{\sqrt{2}}\} \Rightarrow \sigma(H_t) \geq \mathbb{P}(X_1 \leq \frac{t}{\sqrt{2}})$. $\|X_1\|_{\psi_2} \leq C \Rightarrow \mathbb{P}(X_1 \leq \frac{t}{\sqrt{2}}) \geq 1 2e^{-ct^2}$.
- $X \sim \text{Unif}(\sqrt{n}\mathbb{S}^{n-1}), f: \sqrt{n}\mathbb{S}^{n-1} \to \mathbb{R}$. Then $||f(X) \mathbb{E}f(X)||_{\psi_2} \leq C||f||_{\text{Lip}}$. Proof WLOG $||f||_{\text{Lip}} = 1$, $\mathbb{P}(f(X) \geq M) \geq \frac{1}{2}$, $\mathbb{P}(f(X) \leq M) \geq \frac{1}{2}$. $A := \{x \in \sqrt{n}\mathbb{S}^{n-1} : f(x) \leq M\}$. $\mathbb{P}(X \in A) \geq \frac{1}{2} \Rightarrow \mathbb{P}(A_t) \geq 1 - 2e^{-ct^2} \Rightarrow \mathbb{P}(f(X) \leq M + t) \geq 1 - 2e^{-ct^2}$. By centering, $f(X) - \mathbb{E}f(X) = f(X) - M - (\mathbb{E}f(X) - M)$ is sub-gaussian. \square
- $X \sim \mathcal{N}(0, I_n), \gamma_n(A) = \mathbb{P}(X \in A), \epsilon > 0, \gamma_n(A)$ given, half spaces minimize $\gamma_n(A_{\epsilon})$.
- $X \sim \mathcal{N}(0, I_n), f : \mathbb{R}^n \to \mathbb{R}, ||f||_{\text{Lip}} < \infty.$ Then $||f(X) \mathbb{E}f(X)||_{\psi_2} \le C||f||_{\text{Lip}}.$
- Hamming cube, $d(x,y) = \frac{1}{n} |\{i : x_i \neq y_i\}|, \mathbb{P}(A) = \frac{|A|}{2^n}. \|f(X) \mathbb{E}f(X)\|_{\psi_2} \leq \frac{C\|f\|_{\text{Lip}}}{\sqrt{n}}.$
- $S_n: n!$ permutation of n symbols. $d(\pi, \rho) = \frac{1}{n} |\{i: \pi(i) \neq \rho(i)\}|, \mathbb{P}(A) = \frac{|A|}{n!}. ||f(X) \mathbb{E}f(X)||_{\psi_2} \leq \frac{C||f||_{\text{Lip}}}{\sqrt{n}}.$
- Special orthogonal group $\mathrm{SO}(n)$, determinant = 1, $d = \|\cdot\|_F$, $\mathbb P$ is uniform measure. $\|f(X) \mathbb E f(X)\|_{\psi_2} \leq \frac{C\|f\|_{\mathrm{Lip}}}{\sqrt{n}}$.
- $G_{n,m}$ all m-dim subspaces of \mathbb{R}^n ($\simeq P_{G_{n,m}}$ orthogonal projections), $d(E,F) = \|P_E P_F\|$, \mathbb{P} is uniform measure. A random subspace E can be constructed by computing the column span (i.e. the image) of a random $n \times m$ Gaussian random matrix G with i.i.d. $\mathcal{N}(0,1)$ entries. $\|f(X) \mathbb{E}f(X)\|_{\psi_2} \leq \frac{C\|f\|_{\text{Lip}}}{\sqrt{n}}$.
- A random vector X in \mathbb{R}^n with density $p(x) = e^{-U(x)}$, Hess $U(x) \succeq \kappa I_n$. $||f(X) \mathbb{E}f(X)||_{\psi_2} \leq \frac{C||f||_{\text{Lip}}}{\sqrt{\kappa}}$.
- $X = (X_1, \dots, X_n)$ independent coordinates, $|X_i| \le 1$ a.s., f convex and Lipschitz. $||f(X) \mathbb{E}f(X)||_{\psi_2} \le C||f||_{\text{Lip}}$.
- $E \sim \text{Unif}(G_{n,m}), z \in \mathbb{R}^n, \epsilon > 0$. Then (a) $(\mathbb{E}\|P_E z\|_2^2)^{\frac{1}{2}} = \sqrt{\frac{m}{n}}\|z\|_2$; (b) $\mathbb{P}(\|P_E z\|_2 \sqrt{\frac{m}{n}}\|z\|_2) \le \epsilon \sqrt{\frac{m}{n}}\|z\|_2$) $\ge 1 2e^{-c\epsilon^2 m}$.

Proof (a): WLOG $||z||_2 = 1$. Rotational invariance: $\mathbb{P}(E \in A) = \mathbb{P}(U(E) \in A)$ where U is $n \times n$ orthogonal \Rightarrow The dist. of $P_E z$ is the same if we fix $E, z \in \mathrm{Unif}(\mathbb{S}^{n-1})$. WLOG $Pz = (z_1, \dots, z_m, 0, \dots, 0)$. $\mathbb{E}||Pz||_2^2 = m\mathbb{E}z_i^2 = \frac{m}{n}$.

(b):
$$f: z \to ||Pz||_2, ||f||_{\text{Lip}} = 1 \Rightarrow ||||Pz||_2 - \mathbb{E}||Pz||_2||_{\psi_2} \leq \frac{C}{\sqrt{n}}$$

• Johnson-Lindenstrauss lemma: \mathcal{X} a set of N points in \mathbb{R}^n , $\epsilon > 0$, $m \ge \frac{C}{\epsilon^2} \log N$, $E \sim \text{Unif}(G_{n,m})$, $Q = \sqrt{\frac{n}{m}} P_E$. Then $\mathbb{P}(|||Qx - Qy||_2 - ||x - y||_2| \le \epsilon ||x - y||_2$ for any $x, y \in \mathcal{X}) \ge 1 - 2e^{-c\epsilon^2 m}$.

Proof Let $\mathcal{X} - \mathcal{X} := \{x - y : x, y \in \mathcal{X}\}$. The latest lemma $\Rightarrow \forall z, \mathbb{P}\left((1 - \epsilon)\sqrt{\frac{m}{n}}\|z\|_2 \le \|Pz\|_2 \le (1 + \epsilon)\sqrt{\frac{m}{n}}\|z\|_2\right) \ge 1 - 2e^{-c\epsilon^2 m}$. Union bound: $\mathbb{P}(\cdots, for any z \in \mathcal{X} - \mathcal{X}) \ge 1 - N^2 \cdot 2e^{-c\epsilon^2 m} \ge 1 - 2e^{-c'\epsilon^2 m}$.

- $f: \mathbb{R} \to \mathbb{R}, X = \sum_{i=1}^n \lambda_i u_i u_i^T$, define $f(X) = \sum_{i=1}^n f(\lambda_i) u_i u_i^T$.
- P.S.D. order: $X \succeq 0, X \succeq Y$ if $X Y \succeq 0$.
- Golden-Thompson inequality: $\operatorname{tr}(e^{A+B}) \leq \operatorname{tr}(e^A e^B)$.
- Lieb's inequality: $H: n \times n$ symmetric matrix, X P.D., $f(X) = \operatorname{tr}(e^{H + \log X})$. Then f is concave.
- X is a random P.D. matrix $\Rightarrow \mathbb{E}f(X) \le f(\mathbb{E}X)$. $X = e^Z$, Z symmetric. Then $\mathbb{E}\operatorname{tr}(e^{H+Z}) \le \operatorname{tr}(e^{H+\log \mathbb{E}e^Z})$.
- X_1, \dots, X_N independent mean zero $n \times n$ symmetric random matrices, $||X_i|| \leq K$ a.s. for all i. Then for $\forall t \geq 0$, $\mathbb{P}(||\sum_{i=1}^N X_i|| \geq t) \leq 2ne^{-\frac{t^2/2}{\sigma^2 + Kt/3}}$ where $\sigma^2 = ||\sum_{i=1}^N \mathbb{E}X_i^2||$.

Proof Step 1: Reduction to MGF. $S := \sum_{i=1}^{N} X_i$. $||S|| = \max_i |\lambda_i(S)| = \max(\lambda_{\max}(S), \lambda_{\max}(-S))$. $\mathbb{P}(\lambda_{\max}(S) \geq t) \leq e^{-\lambda t} \mathbb{E} e^{\lambda \lambda_{\max}(S)}$. $E := \mathbb{E} e^{\lambda \lambda_{\max}(S)} = \mathbb{E} \lambda_{\max}(e^{\lambda S}) \Rightarrow E \leq \mathbb{E} \operatorname{tr}(e^{\lambda S})$.

 $\text{Step 2: Apply Lieb's inequality. } \mathbb{E} \text{tr}(e^{\lambda S}) = \mathbb{E} \text{tr}(e^{\sum_{i=1}^{N-1} \lambda X_i + \lambda X_N}) \leq \mathbb{E} \text{tr}(e^{\sum_{i=1}^{N-1} \lambda X_i + \log \mathbb{E} e^{\lambda X_N}}) \leq \text{tr}(e^{\sum_{i=1}^{N} \log \mathbb{E} e^{\lambda X_i}}).$

Step 3: Lemma: X is an $n \times n$ symmetric mean zero random matrix, $||X|| \leq K$ a.s. Then $e^{\lambda X} \leq e^{g(\lambda)\mathbb{E}X^2}$ where $g(\lambda) = \frac{\lambda^2/2}{1-|\lambda|K/3}, |\lambda| < 3/K$.

QUADRADIC FORMS, SYMMETRIZATION, CONTRACTION

Proof $e^z \le 1 + z + \frac{1}{1 - |z|/3} \frac{z^2}{2}$ if |z| < 3. $z = \lambda x$. If $|x| \le K, |\lambda| < \frac{3}{K}, e^{\lambda x} \le 1 + \lambda x + g(\lambda)x^2$. (b) of Ex. 5.4.5 \Rightarrow If $||X|| \le K, |\lambda| < 3/K, \mathbb{E}e^{\lambda X} \le I + g(\lambda)\mathbb{E}X^2 \text{ (since } \mathbb{E}X = 0) \le e^{g(\lambda)\mathbb{E}X^2}.$ Step 4: $E \leq \operatorname{tr}(e^{\sum_{i=1}^{N} \log \mathbb{E} e^{\lambda X_i}})$. The latest lemma + (g) of Ex.5.4.5 $\Rightarrow \log \mathbb{E} e^{\lambda X_i} \leq g(\lambda) \mathbb{E} X_i^2 \Rightarrow \sum_{i=1}^{N} \log \mathbb{E} e^{\lambda X_i} \leq g(\lambda) \cdot Z$ where $Z := \sum_{i=1}^{N} \mathbb{E}X_i^2$ and $\sigma^2 = ||Z||$. (e) of Ex.5.4.5 $\Rightarrow \operatorname{tr}(e^{\sum_{i=1}^{N} \log \mathbb{E}e^{\lambda X_i}}) \leq \operatorname{tr}(e^{g(\lambda Z)}) \Rightarrow E \leq \operatorname{tr}(e^{g(\lambda Z)}) \leq n\lambda_{\max}(e^{g(\lambda Z)}) = n\lambda_{\max}(e^{g(\lambda Z)})$ $ne^{g(\lambda)||Z||} = ne^{g(\lambda)\sigma^2}$. Minimize for λ as a function of t with $0 < \lambda < 3/K$.

• $X \in \mathbb{R}^n, \Sigma = \mathbb{E}XX^T, \Sigma_m = \frac{1}{m} \sum_{i=1}^m X_i X_i^T, X_i \overset{\text{i.i.d.}}{\sim} X, \|X\|_2 \le K(\mathbb{E}\|X\|_2^2)^{\frac{1}{2}} \text{ a.s.. Then } \mathbb{E}\|\Sigma_m - \Sigma\| \le C(\sqrt{\frac{K^2 n \log n}{m}} + \frac{1}{2})^{\frac{1}{2}} \mathbb{E}(X_i - X_i) + \frac{1}{2} \mathbb{E}($

 $Proof \ \mathbb{E}||X||_2^2 = \mathbb{E}X^TX = \mathbb{E}\operatorname{tr}(X^TX) = \mathbb{E}\operatorname{tr}(XX^T) = \operatorname{tr}(\Sigma) \Rightarrow ||X||_2^2 \leq K^2\operatorname{tr}(\Sigma) \text{ a.s..} \quad \text{Ex } 5.4.11 \Rightarrow \mathbb{E}||\Sigma_m - \Sigma|| = \mathbb{E}\operatorname{tr}(XX^T) = \mathbb{$ $\frac{1}{m}\mathbb{E}\|\sum_{i=1}^m(X_iX_i^T-\Sigma)\|\lesssim \frac{1}{m}(\sigma\sqrt{\log n}+M\log n) \text{ where } \sigma^2=\|\sum_{i=1}^m\mathbb{E}(X_iX_i^T-\Sigma)^2\|=m\|\mathbb{E}(XX^T-\Sigma)^2\| \text{ and } M \text{ is chosen s.t.}$ $\|XX^T - \Sigma\| \leq M \text{ a.s.. Then } \mathbb{E}(XX^T - \Sigma)^2 = \mathbb{E}(XX^T)^2 - \Sigma^2 \leq \mathbb{E}(XX^T)^2 = \mathbb{E}(\|X\|_2^2 XX^T) \leq K^2 \mathrm{tr}(\Sigma)\Sigma \Rightarrow \sigma^2 \leq K^2 m \mathrm{tr}(\Sigma)\|\Sigma\|.$ $||XX^T - \Sigma|| \le ||X||_2^2 + ||\Sigma|| \le K^2 \operatorname{tr}(\Sigma) + ||\Sigma|| \le 2K^2 \operatorname{tr}(\Sigma) := M \text{ (since } K \ge 1 \text{ and } ||\Sigma|| \le \operatorname{tr}(\Sigma)).$ Substitute our bounds for σ^2 and M into the previous bound $\frac{1}{m}(\sigma\sqrt{\log n} + M\log n)$.

Quadradic forms, symmetrization, contraction

• $Y \perp Z, \mathbb{E}Z = 0$, then $\mathbb{E}F(Y) \leq \mathbb{E}F(Y + Z)$.

 $Proof \ \ F(y) = F(\mathbb{E}(y+Z)) \leq \mathbb{E}F(y+Z) \Rightarrow \mathbb{E}F(Y) = \mathbb{E}(\mathbb{E}(F(Y+\mathbb{E}Z)|Y)) = \mathbb{E}(\mathbb{E}(F(\mathbb{E}(Y+Z))|Y)) \leq \mathbb{E}(\mathbb{E}(F(Y+Z)|Y)) = \mathbb{E}(\mathbb{E}(F(Y+Z)|Y)) =$ $\mathbb{E}F(Y+Z)$.

• Decoupling: $A_{n\times n}$ diagonal-free(i.e. the diagonal entries of A equal zero), $X=(X_1,\cdots,X_n)$ independent mean zero. Then for every convex function $F: \mathbb{R} \to \mathbb{R}$, $\mathbb{E}F(X^TAX) \leq \mathbb{E}F(4X^TAX')$ where $X' \stackrel{\mathrm{d}}{=} X, X' \perp X$.

 $Proof \ \delta_1, \dots, \delta_n \overset{\text{i.i.d.}}{\sim} \text{Ber}(1, \frac{1}{2}), I = \{i : \delta_i = 1\}, \mathbb{E}\delta_i(1 - \delta_j) = \frac{1}{4}, X^T A X = \sum_{i \neq j} a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a_{ij} X_i X_j = 4\mathbb{E}_{\delta} \sum_{i,j} \delta_i(1 - \delta_j) a$ $4\mathbb{E}_{I} \sum_{(i,j) \in I \times I^{c}} a_{ij} X_{i} X_{j} \Rightarrow \mathbb{E}_{X} F(X^{T} A X) = \mathbb{E}_{X} F(4\mathbb{E}_{I} \sum_{(i,j) \in I \times I^{c}} a_{ij} X_{i} X_{j}) \leq \mathbb{E}_{I} \mathbb{E}_{X} F(4\sum_{(i,j) \in I \times I^{c}} a_{ij} X_{i} X_{j}). \text{ There exists an } \mathbb{E}_{X} F(X^{T} A X) = \mathbb{E}_{X} F(X^{T}$ $I \text{ s.t. } \mathbb{E}_X F(4\sum_{(i,j)\in I\times I^c} a_{ij}X_iX_j') = \mathbb{E}_X F(4\sum_{(i,j)\in I\times I^c} a_{ij}X_iX_j) \geq \mathbb{E}F(X^TAX). \text{ LHS} \leq \mathbb{E}_X F(4\sum_{i,j} a_{ij}X_iX_j') \text{ by the latest}$ lemma since $\mathbb{E}[(\sum_{(i,j)\in I\times I} + \sum_{(i,j)\in I^c\times I^c} + \sum_{(i,j)\in I^c\times I})a_{ij}X_iX_j']\big|\{X_i,i\in I\},\{X_j',j\in I^c\}=0.$

• $X, X' \sim \mathcal{N}(0, I_n), X \perp X'$, then $\mathbb{E}e^{\lambda X^T A X'} \leq e^{C\lambda^2 \|A\|_F^2}, |\lambda| \leq \frac{c}{\|A\|}$.

 $Proof \ A = \sum_{i} s_{i} u_{i} v_{i}^{T}, X^{T} A X' = \sum_{i} s_{i} \underbrace{\langle u_{i}, X \rangle}_{:=g_{i}} \underbrace{\langle v_{i}, X' \rangle}_{:=g_{i}} \cdot (g_{1}, \cdots, g_{n}) \perp (g'_{1}, \cdots, g'_{n}) \sim \mathcal{N}(0, I_{n}) \Rightarrow \mathbb{E}e^{\lambda X^{T} A X} = \prod_{i=1}^{n} \mathbb{E}e^{\lambda s_{i} g_{i} g'_{i}} = \prod_{i=1}^{n} \mathbb{E}e^{\lambda^{2} s_{i}^{2} g'_{i}/2} \leq \prod_{i=1}^{n} e^{C\lambda^{2} s_{i}^{2}} (\lambda^{2} s_{i}^{2} \leq c) \leq e^{C\lambda^{2} \|A\|_{F}^{2}} (\lambda^{2} \leq \frac{c}{\max_{i} s_{i}^{2}} = \frac{c}{\|A\|^{2}}).$

• X, X' independent sub-gaussian mean zero, $\|X\|_{\psi_2} \leq K, \|X'\|_{\psi_2} \leq K, g, g' \sim \mathcal{N}(0, I_n), g \perp g'$. Then $\mathbb{E}e^{\lambda X^T A X'} \leq K$ $\mathbb{E}e^{CK^2\lambda g^TAg'}$

 $Proof \ \ \text{Conditioned on } X', \mathbb{E}_X e^{\lambda X^A X'} \leq e^{C\lambda^2 K^2 \|AX'\|_2^2}, \mathbb{E}_g e^{\mu g^T A X'} = e^{\frac{\mu^2 \|AX'\|_2^2}{2}}. \ \ \mu = \sqrt{2c} K\lambda \Rightarrow \mathbb{E}_X e^{\lambda X^T A X'} \leq \mathbb{E}_g e^{\sqrt{2c} K\lambda g^T A X'} \Rightarrow \mathbb{E}_g e^{\lambda X^T A X'} \leq \mathbb{E}_g e^{\lambda X^T A$ $\mathbb{E}e^{\lambda X^T A X'} < \mathbb{E}e^{\sqrt{2c}K\lambda g^T A X'} < \mathbb{E}e^{2cK^2\lambda g^T A g'}$

• Hanson-Wright inequality: $X = (X_1, \dots, X_n)$ independent mean zero sub-gaussian, then $\mathbb{P}(|X^TAX - \mathbb{E}X^TAX| \geq$ $t) \le 2e^{-c\min(\frac{t^2}{K^4 \|A\|_F^2}, \frac{t}{K^2 \|A\|})}$

Proof WLOG K=1. $X^TAX=\sum_{i,j}a_{ij}X_iX_j$, $\mathbb{E}X^TAX=\sum_ia_{ii}\mathbb{E}X_i^2$, $X^TAX-\mathbb{E}X^TAX=\sum_ia_{ii}(X_i^2-\mathbb{E}X_i^2)+\sum_{i\neq j}a_{ij}X_iX_j$. $p := \mathbb{P}(X^T A X - \mathbb{E}X^T A X \ge t) \le \mathbb{P}(\sum_{i=1}^{\infty} a_{ii}(X_i^2 - \mathbb{E}X_i^2) \ge \frac{t}{2}) + \mathbb{P}(\sum_{i \ne j} a_{ij} X_i X_j \ge \frac{t}{2}) := p_1 + p_2.$

 $\text{Step 1: } \|X_i^2 - \mathbb{E}X_i^2\|_{\psi_1} \lesssim 1. \text{ Bernstein} \Rightarrow p_1 \leq e^{-c\min(\frac{t^2}{\sum a_{ii}^2}, \frac{t}{\max_i |a_{ii}|})} < e^{-c\min(\frac{t^2}{\|A\|_F^2}, \frac{t}{\|A\|})}.$

Step 2: $S := \sum_{i \neq j} a_{ij} X_i X_j$. $p_2 \leq e^{-\frac{\lambda t}{2}} \mathbb{E} e^{\lambda S}$, $\mathbb{E} e^{\lambda S} \leq \mathbb{E} e^{4\lambda X^T A X'} \leq \mathbb{E} e^{c_1 \lambda g^T A g'} \leq e^{C\lambda^2 \|A\|_F^2}$ (with $\lambda \leq \frac{c}{\|A\|}$).

• $B_{m \times n}, X \in \mathbb{R}^n, \{X_i\}$ independent mean-zero, unit-variance, sub-gaussian. Then $\|\|BX\|_2 - \|B\|_F\|_{\psi_2} \le CK^2\|B\|$, $K = \max_i \|X\|_{\psi_2}.$

 $Proof \ A = B^T B, X^T A X = \|BX\|_2^2, \mathbb{E}X^T A X = \|B\|_F^2, \|A\| = \|B\|^2, \|A\|_F = \|B^T B\|_F \le \|B^T\| \|B\|_F = \|B\| \|B\|_F. \text{Thus } \forall u \ge 0,$ $\mathbb{P}(|\|BX\|_2^2 - \|B\|_F^2| \ge u) \le e^{-\frac{c}{K^4}\min(\frac{u^2}{\|B\|^2\|B\|_F^2}, \frac{u}{\|B\|^2})}. \text{ Let } u = \epsilon \|B\|_F^2, \mathbb{P}(|\|BX\|_2^2 - \|B\|_F^2) \le 2e^{-c\min(\epsilon^2, \epsilon)\frac{\|B\|_F^2}{K^4\|B\|^2}}. \text{ Let } u = \epsilon \|B\|_F^2, \mathbb{P}(|\|BX\|_2^2 - \|B\|_F^2) \le 2e^{-c\min(\epsilon^2, \epsilon)\frac{\|B\|_F^2}{K^4\|B\|^2}}.$ $\delta^2 = \min(\epsilon^2, \epsilon), \text{ then } \epsilon = \max(\delta, \delta^2), |||BX|| - ||B||_F| \ge \delta ||B||_F \Rightarrow |||BX||_2^2 - ||B||_F^2| \ge \epsilon ||B||_F^2 \Rightarrow \mathbb{P}(|||BX||_2 - ||B||_F| \ge \delta ||B||_F) \le \delta ||B||_F \Rightarrow ||BX||_2^2 - ||B||_F^2| \ge \epsilon ||B||_F^2 \Rightarrow ||BX||_2^2 - ||B||_F^2| \ge \delta ||B||_F \Rightarrow |$ $2e^{-c\delta^2 \frac{\|B\|_F^2}{K^4 \|B\|^2}}$

RANDOM PROCESSES

- Symmetrization: X_1, X_2, \dots, X_N independent, mean zero in a normed space, $\epsilon_1, \epsilon_2, \dots, \epsilon_N$ a sequence of independent symmetric Bernoulli random variables. Then $\frac{1}{2}\mathbb{E}\|\sum_{i=1}^N \epsilon_i X_i\| \leq \mathbb{E}\|\sum_{i=1}^N X_i\| \leq 2\mathbb{E}\|\sum_{i=1}^N \epsilon_i X_i\|$.

 Proof Upper bound. $X' \perp X, X' \stackrel{\text{d}}{=} X$. $p = \mathbb{E}\|\sum_{i=1}^N X_i\| \leq \mathbb{E}\|\sum_{i=1}^N X_i \sum_{i=1}^N X_i'\| = \mathbb{E}\|\sum_{i=1}^N \epsilon_i (X_i X_i')\| \leq \mathbb{E}\|\sum_{i=1}^N \epsilon_i X_i\| + \mathbb{E}\|\sum_{i=1}^N \epsilon_i X_i'\| = 2\mathbb{E}\|\sum_{i=1}^N \epsilon_i X_i\|.$
- $A_{n\times n}$ symmetric independent mean zero. Then $\mathbb{E}||A|| \leq C\sqrt{\log n}\mathbb{E}\max||A_i||_2$ where A_i is *i*-th row of A.

$$Proof \ \ A = \sum_{i \leq j} Z_{ij} \ \text{ independent mean zero symmetric where} \ Z_{ij} = \begin{cases} A_{ij} (e_i e_j^T + e_j e_i^T), & i \leq j \\ A_{ii} e_i e_i^T & i = j \end{cases} \\ \Rightarrow \mathbb{E} \|A\| \leq 2\mathbb{E} \|\sum_{i \leq j} \epsilon_{ij} Z_{ij}\|.$$
 Ex 5.4.3(a) \Rightarrow Conditioned on $\{Z_{ij}\}, \mathbb{E}_{\epsilon} \|\sum_{i \leq j} \epsilon_{ij} Z_{ij}\| \leq C\sqrt{\log n} \|\sum_{i \leq j} Z_{ij}^2\|^{\frac{1}{2}} \\ \Rightarrow \mathbb{E} \|\sum_{i \leq j} \epsilon_{ij} Z_{ij}\| \leq C\sqrt{\log n} \mathbb{E} \|\sum_{i \leq j} Z_{ij}^2\|^{\frac{1}{2}},$
$$\sum_{i \leq j} Z_{ij}^2 = \sum_{i=1}^n (\sum_{j=1}^n A_{ij}^2) e_i e_i^T = \sum_{i=1}^n \|A_i\|_2^2 e_i e_i^T \\ \Rightarrow \|\sum_{i \leq j} Z_{ij}^2\|^{\frac{1}{2}} = \max \|A_i\|_2.$$

- Matrix completion: $X_{n\times n}$, $\operatorname{rank}(X) = r << n, Y_{ij} = \delta_{ij}X_{ij}, \delta_{ij} \sim \operatorname{Ber}(p), p = \frac{m}{n^2}, \hat{X} = \arg\min_{\operatorname{rank}(A') \leq r} \|p^{-1}Y A'\|$. Then $\mathbb{E}\frac{1}{n}\|\hat{X} X\|_F \leq C\sqrt{\frac{rn\log n}{m}}\|X\|_{\infty}$.
 - $\begin{aligned} & Proof \ \ \text{Step 1.} \ \|\hat{X} X\| \leq \|\hat{X} p^{-1}Y\| + \|p^{-1}Y X\| \leq 2\|p^{-1}Y X\| = \frac{2}{p}\|Y pX\|. \ \ (Y pX)_{ij} = (\delta_{ij} p)X_{ij} \ \text{independent mean zero, Ex } 6.5.2 \Rightarrow \mathbb{E}\|Y pX\| \leq C\sqrt{\log n}(\mathbb{E}\max_i \|(Y pX)_i\|_2 + \mathbb{E}\max_j \|(T pX)^j\|_2). \ \ \|(Y pX)_i\|_2^2 = \sum_{j=1}^n (\delta_{ij} p)^2 X_{ij}^2 \leq \sum_{j=1}^n (\delta_{ij} p)^2 \|X\|_\infty^2. \end{aligned}$ $\sum_{j=1}^n (\delta_{ij} p)^2 \|X\|_\infty^2. \ \ \text{Ex } 6.6.2 \Rightarrow \mathbb{E}\max_i \sum_{j=1}^n (\delta_{ij} p)^2 \leq Cpn \Rightarrow \frac{2}{p}\|Y pX\| \leq C\sqrt{\frac{n\log n}{p}}\|X\|_\infty.$

Step 2.
$$\operatorname{rank}(X) \leq r, \operatorname{rank}(\hat{X}) \leq r, \operatorname{rank}(\hat{X} - X) \leq 2r. \|\hat{X} - X\|_F \leq \sqrt{2r} \|\hat{X} - X\| \Rightarrow \mathbb{E} \|\hat{X} - X\|_F \leq C \sqrt{\frac{rn \log n}{p}} \|X\|_{\infty}.$$

• Contraction principle: X_1, \dots, X_N vectors in some normed space, $a = (a_1, \dots, a_N) \in \mathbb{R}^N$. Then $\mathbb{E}\|\sum_{i=1}^N a_i \epsilon_i X_i\| \le \|a\|_{\infty} \mathbb{E}\|\sum_{i=1}^N \epsilon_i X_i\|$.

Proof WLOG
$$||a||_{\infty} \leq 1$$
, $f(a) = \mathbb{E}||\sum_{i=1}^{N} a_i \epsilon_i X_i||$ is convex, which implies the maximum of f is attained at the boundary. Thus $f(a) \leq f(a^*) = \mathbb{E}||\sum_{i=1}^{N} \epsilon_i X_i||$ with $a_i^* = 1$ or -1 .

• Symmetrization with gaussians: X_1, \dots, X_N independent mean zero, $g_1, \dots, g_N \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1), \frac{C}{\sqrt{\log N}} \mathbb{E} \| \sum_{i=1}^N g_i X_i \| \le \mathbb{E} \| \sum_{i=1}^N X_i \| \le 3 \mathbb{E} \| \sum_{i=1}^N g_i X_i \|.$

 $Proof \ \ \text{Upper: } \mathbb{E}\|\sum_{i=1}^{N}X_i\| \leq 2\mathbb{E}\|\sum_{i=1}^{N}\epsilon_iX_i\| = 2\sqrt{\frac{\pi}{2}}\mathbb{E}_{X,\epsilon}\|\sum_{i=1}^{N}\epsilon_i\mathbb{E}_g|g_i|X_i\| \leq 2\sqrt{\frac{\pi}{2}}\mathbb{E}\|\sum_{i=1}^{N}\epsilon_i|g_i|X_i\| = 2\sqrt{\frac{\pi}{2}}\mathbb{E}\|\sum_{i=1}^{N}g_iX_i\|.$ $\text{Lower: } \mathbb{E}\|\sum_{i=1}^{N}g_iX_i\| = \mathbb{E}\|\sum_{i=1}^{N}\epsilon_ig_iX_i\| \leq \mathbb{E}_g\mathbb{E}_X(\|g\|_{\infty}\mathbb{E}_{\epsilon}\|\sum_{i=1}^{N}\epsilon_iX_i\|) = \mathbb{E}_g\|g\|_{\infty}\mathbb{E}_{X,\epsilon}\|\sum_{i=1}^{N}\epsilon_iX_i\| \leq 2\mathbb{E}_g\|g\|_{\infty}\mathbb{E}_X\|\sum_{i=1}^{N}X_i\| \leq C\sqrt{\log N}\mathbb{E}_X\|\sum_{i=1}^{N}X_i\|.$

7 Random processes

- Basic concepts: $\{X_t\}_{t \in T \subset \mathbb{R}^n}$, $\mathbb{E}X_t = 0$, $\forall t \in T$, $\Sigma(t, s) = \text{Cov}(X_t, X_s) = \mathbb{E}X_t X_s$, $d(t, s) = \|X_t X_s\|_{L^2} = (\mathbb{E}(X_t X_s)^2)^{\frac{1}{2}}$ (increments).
- Gaussian process: $T_0 \subset T, |T_0| < \infty, \{X_t\}_{t \in T_0}$ has normal distribution.
- Y is a mean zero Gaussian r.v. in \mathbb{R}^n . Then there exists $t_1, \dots, t_n \in \mathbb{R}^n$ s.t. $Y \stackrel{\mathrm{d}}{=} (\langle g, t_i \rangle)_{i=1}^n, g \sim \mathcal{N}(0, I_n)$.
- Gaussian integration by parts: $X \sim \mathcal{N}(0,1)$. Then for f differentiable, $\mathbb{E}f'(X) = \mathbb{E}Xf(X)$. Proof f has bounded support: $\mathbb{E}f(X) = \int_{\mathbb{R}} f'(x)\phi(x)dx = -\int_{\mathbb{R}} f(x)\phi'(x)dx$. General $f: f_n \to f$.
- $X \sim \mathcal{N}(0, \Sigma), f : \mathbb{R}^n \to \mathbb{R}$. Then $\mathbb{E}X f(X) = \Sigma \cdot \mathbb{E}\nabla f(X)$.
- $X \sim \mathcal{N}(0, \Sigma^X), Y \sim \mathcal{N}(0, \Sigma^Y), X \perp Y, Z(u) = \sqrt{u}X + \sqrt{1 u}Y, u \in [0, 1]$. Then $f : \mathbb{R}^n \to \mathbb{R}$ twice-differentiable, $\frac{d}{du}\mathbb{E}f(Z(u)) = \frac{1}{2}\sum_{i,j=1}^n (\Sigma_{ij}^X \Sigma_{ij}^Y)\mathbb{E}[\frac{\partial^2 f}{\partial x_i \partial x_j}(Z(u))].$

$$Proof \frac{d}{du}\mathbb{E}f(Z(u)) = \frac{1}{2}\sum_{i=1}^{n}\mathbb{E}\frac{\partial f}{\partial x_{i}}(Z(u))(\frac{X_{i}}{\sqrt{u}} - \frac{Y_{i}}{\sqrt{1-u}}). \sum_{i=1}^{n}\frac{1}{\sqrt{u}}\mathbb{E}X_{i}\frac{\partial f}{\partial x_{i}}(Z(u)) := \sum_{i=1}^{n}\frac{1}{\sqrt{u}}\mathbb{E}X_{i}g_{i}(X) \text{ (conditioned on } Y) \text{ where } g_{i}(X) := \frac{\partial f}{\partial x_{i}}(\sqrt{u}X + \sqrt{1-u}Y). \quad \mathbb{E}X_{i}g_{i}(X) = \sum_{j=1}^{n}\sum_{ij}^{X}\mathbb{E}\frac{\partial g_{i}}{\partial x_{j}}(X) = \sum_{j=1}^{n}\sum_{ij}^{X}\mathbb{E}\frac{\partial^{2} f}{\partial x_{i}x_{j}}(\sqrt{u}X + \sqrt{1-u}Y)\sqrt{u}. \quad \Box$$

- $\mathbb{E}X_i^2 = \mathbb{E}Y_i^2$, $\mathbb{E}(X_i X_j)^2 \le \mathbb{E}(Y_i Y_j)^2$, $\frac{\partial^2 f}{\partial x_i \partial x_j} \ge 0$, $\forall i \ne j$. Then $\mathbb{E}f(X) \ge \mathbb{E}f(Y)$.
- Slepian's inequality: Let $\{X_t\}_{t\in T}$ and $\{Y_t\}_{t\in T}$ be two mean zero Gaussian processes. Assume $\mathbb{E}X_t^2 = \mathbb{E}Y_t^2$, $\mathbb{E}(X_t X_s)^2 \leq \mathbb{E}(Y_t Y_s)^2$. Then for every $t \in \mathbb{R}$, $\mathbb{P}(\sup_{t \in T} X_t \geq t) \leq \mathbb{P}(\sup_{t \in T} Y_t \geq t)$ and $\mathbb{E}\sup_{t \in T} X_t \leq \mathbb{E}\sup_{t \in T} Y_t$.

Proof Let $f(x) \approx 1_{\{\max x_i < t\}} = \prod_{i=1}^n 1_{\{x_i < t\}}$ and use the latest lemma.

• Sudakov-Fernique's inequality: Let $\{X_t\}_{t\in T}$ and $\{Y_t\}_{t\in T}$ be two mean zero Gaussian processes. Assume $\mathbb{E}(X_t - X_s)^2 \leq \mathbb{E}(Y_t - Y_s)^2$. Then $\mathbb{E}\sup_{t\in T} X_t \leq \mathbb{E}\sup_{t\in T} Y_t$.

Proof Let
$$f(x) = \frac{1}{\beta} \log \sum_{i=1}^{n} e^{\beta x_i}$$
. $f(x) \to \max x_i$ as $\beta \to \infty$. $\frac{\partial^2 f}{\partial x_i \partial x_i} \le 0$.

• $A_{m \times n}$ independent $\mathcal{N}(0,1)$ entries. Then $\mathbb{E}||A|| \leq \sqrt{m} + \sqrt{n}$.

```
Proof \max_{u \in \mathbb{S}^{n-1}, v \in \mathbb{S}^{m-1}} \langle Au, v \rangle := \max_{(u,v) \in T} X_{uv} where T = \mathbb{S}^{n-1} \times \mathbb{S}^{m-1} and X_{uv} \sim \mathcal{N}(0,1). \mathbb{E}(X_{uv} - X_{wz})^2 = \mathbb{E}(\langle Au, v \rangle - \langle Aw, z \rangle)^2 = \mathbb{E}(\sum_{i,j} A_{ij}(u_j v_i - w_j z_i)^2)^2 = \sum_{i,j} (u_j v_i - w_j z_i)^2 = \|uv^T - wz^T\|_F \leq \|u - w\|_2^2 + \|v - z\|_2^2. Define Y_{uv} = \langle g, u \rangle + \langle h, v \rangle, g \sim \mathcal{N}(0, I_n), h \sim \mathcal{N}(0, I_m), g \perp h. \mathbb{E}(Y_{uv} - Y_{wz})^2 = \|u - w\|_2^2 + \|v - z\|_2^2. Then \mathbb{E}\|A\| = \mathbb{E}\sup_{(u,v) \in T} X_{uv} \leq \mathbb{E}_{(u,v) \in T} Y_{uv} = \mathbb{E}\sup_{u \in \mathbb{S}^{n-1}} \langle g, u \rangle + \mathbb{E}\sup_{v \in \mathbb{S}^{m-1}} \langle g, v \rangle = \mathbb{E}\|g\|_2 + \mathbb{E}\|h\|_2 \leq \sqrt{n} + \sqrt{m}.
```

• $\mathbb{P}(\|A\| \ge \sqrt{m} + \sqrt{n} + t) \le 2e^{-ct^2}$.

Proof
$$A \sim \mathcal{N}(0, I_{nm}), f(A) = ||A|| \le ||A||_2 \Rightarrow ||f||_{\text{Lip}} \le 1 \Rightarrow ||f(A) - \mathbb{E}f(A)||_{\psi_2} \le C.$$

- Sudakov's minoration inequality: $\{X_t\}_{t\in T}$ mean zero Gaussian process. $\forall \epsilon > 0, \mathbb{E}\sup_{t\in T} X_t \geq C\epsilon\sqrt{\log \mathcal{N}(T,d,\epsilon)}$. Proof Assume $\mathcal{N}(T,d,\epsilon) = N < \infty$. Let \mathscr{N} be a maximal ϵ -separated subset of T. $|\mathscr{N}| \geq N$. It suffices to show $\mathbb{E}\sup_{t\in\mathscr{N}} X_t \geq C\epsilon\sqrt{\log N}$. $Y_t := \frac{\epsilon}{\sqrt{2}}g_t, g_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$. $\mathbb{E}(X_t - X_s)^2 = d(t,s)^2 \geq \epsilon^2 = \mathbb{E}(Y_t - Y_s)^2 \Rightarrow \mathbb{E}\sup_{t\in\mathscr{N}} X_t \geq \mathbb{E}\sup_{t\in\mathscr{N}} Y_t = C\epsilon\sqrt{\log N}$.
- $X_t = \langle g, t \rangle, g \sim \mathcal{N}(0, I_n), d(s, t) = ||t s||_2, \mathbb{E} \sup_{t \in T} \langle g, t \rangle \ge C\epsilon \sqrt{\log \mathcal{N}(T, \epsilon)}.$
- P a polytope in \mathbb{R}^n with N vertices, diameter is bounded by 1. Then for $\epsilon > 0, \mathcal{N}(P, \epsilon) \leq N^{c/\epsilon^2}$.

Proof
$$x_1, x_2, \dots, x_N$$
 vertices of P , $\mathbb{E} \sup_{t \in P} \langle g, t \rangle = \mathbb{E} \sup_{i \le N} \langle g, x_i \rangle \le C \sqrt{\log N}$.

- Gaussian width: $\omega(T) := \mathbb{E} \sup_{x \in T} \langle g, x \rangle, g \sim \mathcal{N}(0, I_n).$
- Properties of Gaussian width: (a) $\omega(T) < \infty \Leftrightarrow T$ is bounded; (b) For every orthogonal matrix U and vector y, $\omega(UT+y) = \omega(T)$; (c) $\omega(\operatorname{conv}(T)) = \omega(T)$; (d) $\omega(T+S) = \omega(T) + \omega(S), \omega(aT) = |a|\omega(T)$; (e) $\omega(T) = \frac{1}{2}\omega(T-T) = \frac{1}{2}\mathbb{E}\sup_{x,y\in T}\langle g, x-y\rangle$; (f) $\frac{1}{\sqrt{2\pi}}\operatorname{diam}(T) \leq \omega(T) \leq \frac{\sqrt{n}}{2}\operatorname{diam}(T)$.

 $Proof \ \ (\mathrm{e}): \ \omega(T) = \tfrac{1}{2}(\omega(T) + \omega(T)) = \tfrac{1}{2}(\omega(T) + \omega(-T)) \stackrel{\mathrm{(d)}}{=} \tfrac{1}{2}\omega(T-T).$

(f): Lower bound. Fix $x, y \in T, x - y, y - x \in T - T, \omega(T) \ge \frac{1}{2}\mathbb{E}\max(\langle x - y, g \rangle, \langle y - x, g \rangle) = \frac{1}{2}\mathbb{E}|\langle x - y, g \rangle| = \sqrt{\frac{1}{2\pi}}||x - y||_2$.

Upper bound. $\omega(T) = \frac{1}{2}\mathbb{E}\sup_{x,y\in T}\langle g, x-y\rangle \leq \frac{1}{2}\mathbb{E}\sup_{x,y\in T}\|g\|_2\|x-y\|_2 = \frac{1}{2}\mathbb{E}\|g\|_2 \operatorname{diam}(T) \text{ and } \mathbb{E}\|g\|_2 \leq (\mathbb{E}\|g\|^2)^{\frac{1}{2}} = \sqrt{n}.$

- Spherical width: $\omega_{\mathbb{S}}(T) = \mathbb{E} \sup_{x \in T} \langle \theta, x \rangle, \theta \sim \text{Unif}(\mathbb{S}^{n-1}).$
- $(\sqrt{n} C)\omega_{\mathbb{S}}(T) \le \omega(T) \le (\sqrt{n} + C)\omega_{\mathbb{S}}(T)$.

 $Proof \ g = \|g\|_2 \cdot \frac{g}{\|g\|_2} := r \cdot \theta, r \perp \theta. \ \omega(T) = \mathbb{E} \sup_{x \in T} \langle r\theta, x \rangle = \mathbb{E} r \mathbb{E} \sup_{x \in T} \langle \theta, x \rangle = \mathbb{E} \|g\|_2 \omega_{\mathbb{S}}(T). \ \text{Ex } 3.1.4 \Rightarrow |\mathbb{E} \|g\|_2 - \sqrt{n}| \leq C.\square$

- Squared version of the Gaussian width: $h(T)^2 = \mathbb{E} \sup_{t \in T} \langle g, t \rangle^2, g \sim \mathcal{N}(0, I_n).$
- Stable dimension: bounded $T \subset \mathbb{R}^n, d(T) = \frac{h(T-T)^2}{\operatorname{diam}^2(T)} \asymp \frac{\omega^2(T)}{\operatorname{diam}^2(T)}$
- $d(T) \leq \dim(T)$.

Proof Let $\dim(T) = k$ and $T \subset \mathbb{R}^k$. $h(T-T)^2 = \mathbb{E}\sup_{x,y \in T} \langle g, x-y \rangle^2$. $x-y = \operatorname{diam}(T) \cdot z$ for some $z \in B_2^k$. $\therefore h(T-T)^2 \leq \operatorname{diam}^2(T)\mathbb{E}\sup_{z \in B_2^k} \langle g, z \rangle^2 = \operatorname{diam}^2(T)\mathbb{E}\|g\|_2^2 = \operatorname{diam}^2(T) \cdot k$.

- Stable rank: $A_{m \times n}, r(A) := \frac{\|A\|_F^2}{\|A\|^2} = d(AB_2^n) \le \text{rank}(A) = \dim(AB_2^n).$
- Gaussian complexity: $\gamma(T) := \mathbb{E} \sup_{x \in T} |\langle g, x \rangle|, g \sim \mathcal{N}(0, I_n).$
- $T \subset \mathbb{R}^n$, \mathcal{P} project to a random m-dim subspace. $\forall m \leq n$, with prob at least $1 2e^{-m}$, diam $(\mathcal{P}T) \leq C[\omega_{\mathbb{S}}(T) + \sqrt{\frac{m}{n}} \operatorname{diam}(T)]$.

8 Chaining