1. Suppose that V is a finite dimensional vector space. Show that any linear transformation on a subspace of V can be extended to a linear transformation on V. In other words, show that if U is a subspace of V and $S \in \mathcal{L}(U, W)$, then there is $T \in \mathcal{L}(V, W)$ such that Tu = Su for all $u \in U$.

Define $T \in \mathcal{L}(V, W)$ as

$$T(v) = \begin{cases} S(v) & \text{if } v \in U \\ v & \text{otherwise} \end{cases}$$

$$\begin{array}{c|cccc} u,v \in U & u \in U,v \in V \backslash U & u,v \in V \backslash U \\ \hline T(u+v) = S(u+v) & T(u+v) = S(u) + T(v) & T(u+v) = T(u) + T(v) \\ = S(u) + S(V) \in U & = S(u) + v \in V & = u+v \in V \end{array}$$

2. Let $V = \mathcal{M}_{n \times n}(F)$, and let B be fixed matrix in V. Show that $T: V \mapsto V$ defined by T(A) = AB - BA is a linear transformation.

What happens in T when you add C and D?

$$T(C+D) = (C+D)B - B(C+D)$$

= $CB + DB - BC - BD$ distributive law of matrix multiplication
= $CB - BC + DB - BD$
= $T(C) + T(D)$

and scalar multiplication?

$$T(cA) = (cA)B - B(cA)$$
$$= c(AB) - c(BA)$$
$$= c(AB - BA)$$
$$= cT(A)$$

- **3.a)** Recall that \mathbb{C} is a real vector space. Find $T:\mathbb{C}\mapsto\mathbb{C}$ which is a \mathbb{R} -linear transformation which is not a \mathbb{C} -linear transformation.
- b) Find a linear transformation $T: V \mapsto V$ where the range and nullspace of T are identical.
- c) Find T and U on \mathbb{R}^2 such that TU = 0 but $UT \neq 0$.
- **4.** Let T and U be two linear operators on \mathbb{R}^2 defined by $T(x_1, x_2) = (x_2, x_1)$ and $U(x_1, x_2) = (x_1, 0)$.
- a) Give a geometric interpretation for T and U.
- **b)** Give rules for U + T, UT, TU, T^2 , and U^2 .

Extra Questions

- **1.** Let A be an $m \times n$ matrix over F of rank k. Show that there exist a $m \times k$ matrix B and a $k \times n$ matrix C, both with rank k, where A = BC. Conclude that A has rank 1 if and only if $A = xy^t$ where $x \in F^m$ and $y \in F^n$.
- **2.** Let W be the vector space of 2×2 complex Hermitian matrices. Note that W is a vector space over \mathbb{R} but not over \mathbb{C} . Let $T : \mathbb{R}^4 \mapsto W$ be the map defined by

$$(x,y,z,t)\mapsto \left(egin{array}{ccc} t+x & y+iz \ y-iz & t-x \end{array}
ight).$$

Show that T is an isomorphism.

3. We will consider the vector space $V = \mathcal{P}^{(n)}(\mathbb{R})$ of polynomials at most degree n. Let

$$[x]_k := x(x-1)(x-2)\cdots(x-k+1)$$

for $k \ge 1$ and $[x]_0 = 1$.

- a) Show that $([x]_0, [x]_1, [x]_2, \dots, [x]_n)$ is a basis of V. [Hint: argue that $[x]_k = x^k + a(k, k-1)x^{k-1} + \dots + a(k, 1)x + a(k, 0)$ where a(k, j) are integers. Construct the $(n + 1) \times (n + 1)$ matrix which expresses each $[x]_k$ in the basis $(1, x, x^2, \dots, x^n)$. Show that this matrix is invertible].
- **b)** Now prove that $x^k = \sum_{j=0}^k S(k,j)[x]_j$ where S(k,j) are integers.
- c) Show that S(k,0) = 0 for $k \ge 1$. Also show that S(k,k) = 1 for $k \ge 0$.
- d) Prove that if $1 \le j \le k-1$ then

$$S(k, j) = jS(k-1, j) + S(k-1, j-1).$$

The above exercise shows that S(k, j) are nonnegative integers. They are called *Stirling numbers of the second kind*.