Linear Algebra Worksheet 2

Jonny Evans

Here is a list \mathcal{V} of vectors

$$u = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \qquad v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \qquad w = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}, \qquad \xi = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

Exercise 2.1. For every vector in \mathcal{V} , find its length and write down a vector orthogonal to it.

Exercise 2.2. Find the angle between u and v. Find the angle between w and ξ .

Here is a list \mathcal{M} of matrices.

$$A = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix}, \quad B = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & \frac{1}{2}\sqrt{\frac{3}{2}} \\ \frac{1}{4} & \frac{3}{4} & -\frac{1}{2}\sqrt{\frac{3}{2}} \\ -\frac{1}{2}\sqrt{\frac{3}{2}} & \frac{1}{2}\sqrt{\frac{3}{2}} & \frac{1}{2} \end{pmatrix}, \quad C = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} + \frac{1}{\sqrt{3}} & -\frac{1}{3} + \frac{1}{\sqrt{3}} \\ \frac{1}{3} - \frac{1}{\sqrt{3}} & \frac{1}{3} & -\frac{1}{3} - \frac{1}{\sqrt{3}} \\ -\frac{1}{3} - \frac{1}{\sqrt{3}} & \frac{1}{3} & -\frac{1}{3} + \frac{1}{\sqrt{3}} & \frac{1}{3} \end{pmatrix}.$$

Exercise 2.3. Which matrices $M \in \mathcal{M}$ are orthogonal matrices? (Hint: There should be two!)

Exercise 2.4. The orthogonal matrices from \mathcal{M} are actually rotation matrices. In each case, find the axis and angle of rotation.

Here is a list \mathcal{N} of matrices

$$D = \begin{pmatrix} 1 & 2 & 0 & 1 & 3 \\ 0 & 0 & 1 & 2 & 1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad F = \begin{pmatrix} 2 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \qquad G = \begin{pmatrix} 1 & 0 & 8 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercise 2.5. Which of the matrices $N \in \mathcal{N}$ are in echelon form? Which are in reduced echelon form?

Exercise 2.6. For each $N \in \mathcal{N}$ which is in reduced echelon form, state (a) for which vectors b the equation Nv = b has a solution and (b) the dimension of the space of solutions to Nv = b, assuming that b is chosen so that there is a solution.

Exercise 2.7. For each system of simultaneous equations below, write it in matrix form, put the augmented matrix into reduced echelon form using row operations. Determine if the system has a solution and, if it does, give the general solution.

Exercise 2.8. Put the following matrices into reduced echelon form using row operations. In each case, what is the number of free indices?

$$X = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}, \quad Y = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}.$$

Exercise 2.9. Let A, B, C be m-by-n, n-by-p and p-by-q matrices respectively. Write out the matrix products A(BC) and (AB)C in index notation and check that they give the same answer (this shows that matrix multiplication is associative).

Exercise 2.10. Suppose that A is an n-by-n matrix whose columns are the vectors v_1, \ldots, v_n . Show that A is an orthogonal matrix (i.e. $A^T A = I$) if and only if

$$v_i \cdot v_j = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases} \text{ for all } i, j.$$

In other words, the columns of A are orthogonal to one another (this is where the name "orthogonal matrix" comes from).

Exercise 2.11. We say that a matrix M is symmetric if $M^T = M$ and antisymmetric if $M^T = -M$.

- 1. Show that if N is an m-by-n matrix then MM^T is a symmetric m-by-m matrix and M^TM is a symmetric n-by-n matrix.
- 2. Show that, given any *n*-by-*n* matrix C, the matrix $A = C + C^T$ is symmetric and the matrix $B = C C^T$ is antisymmetric. Deduce that C can be written as the sum of a symmetric and an antisymmetric matrix (called the *symmetric* and *antisymmetric* parts of C respectively).

Exercise 2.12. A system of m equations in n unknowns is called *underdetermined* if m < n and overdetermined if m > n. As rules of thumb, underdetermined equations tend to have general solutions with m-n free parameters, and overdetermined equations tend to have no solutions. Give counterexamples to these rules of thumb (e.g. an underdetermined system with no solutions and an overdetermined system with a solution).

3 Assessed problems for Week 2

Total marks available: 20.

Question 3.1. Find the angle between the vectors $v = \begin{pmatrix} \frac{1}{2\sqrt{6}}(3+\sqrt{2}) \\ \frac{1}{2\sqrt{6}}(-3+\sqrt{2}) \\ \frac{1}{2\sqrt{3}} \end{pmatrix}$ and $w = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$. Find a vector u which is orthogonal to both of them.

4 marks

Question 3.2. The matrix $A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix}$ is a 3-d rotation matrix. Check that A is orthogonal. Find the axis and angle of rotation.

8 marks

Question 3.3. Write the system of simultaneous equations

$$3x + 2y + z = 0$$
$$3x + y + 2z = 3$$
$$-x - y = 1$$

as a matrix equation. Using row operations, put the augmented matrix in reduced echelon form, and hence find the general solution of the system of equations.

8 marks

Total/20 mark