

Roll No: Subject Code: KAS203

BTECH (SEM II) THEORY EXAMINATION 2021-22 MATHEMATICS II

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

2*10 = 20

Printed Page: 1 of 2

Q.	Questions	CO
No.		
(a)	Solve $((D + 1)^3 y = 2e^{-x})$	1
(b)	What are the roots of the indicial equation for the power series solution	1
	of the differential equation $2x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - 3)y = 0$	
(c)	Find the volume of hemisphere.	2
(d)	Examine the convergence of improper integral $\int_2^\infty \frac{1}{(x \log x)} dx$	2
(e)	If $f(x) = 1$, $0 < x < \pi$ is expanded in half range sine series then find the value of b_n .	3
(f)	Discuss the convergence of sequence $(1, 2^1, 2^2, 2^3, 2^4, \dots)$.	3
(g)	Define Harmonic function.	4
(h)	Find the points of invariant of the transformation $w = \frac{2z+3}{z+2}$.	4
(i)	State Cauchy integral theorem.	5
(j)	Discuss the singularity of $\sin(\frac{1}{z-a})$.	5

SECTION B

2. Attempt any *three* of the following:

10*3 = 30

Q. No	Questions	CO
No		
(a)	Solve $x \frac{d^2y}{dx^2} + (4x^2 - 1)\frac{dy}{dx} + 4x^3y = 2x^3$	1
(b)	Show that $\Gamma(m)$. $\Gamma(m + \frac{1}{2}) = \frac{\sqrt{\pi}}{(2)^{2m-1}} \Gamma(2m)$ where m is positive.	2
(c)	Obtain Fourier series for $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(2-x), & 1 \le x \le 2 \end{cases}$	3
(d)	Examine the nature of the function $f(z) = \begin{cases} \frac{x^2 y^5 (x+iy)}{x^4 + y^{10}}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ in the region including the origin.	4
(e)	Evaluate $\frac{1}{2\pi i} \oint_C \frac{z^2 - z + 1}{z - 2} dz$, where $C \equiv z - 1 = \frac{1}{2}$	5

Roll No: Subject Code: KAS203

Koli No:						
BTEC	H					

(SEM II) THEORY EXAMINATION 2021-22 MATHEMATICS II

SECTION C

3. Attempt any *one* part of the following:

1	0*1	1 =	10
	''	_	

Printed Page: 2 of 2

Q.	Questions	CO
No		
(a)	Solve by change of independent variable method	1
	$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos\log(1+x)$	
(b)	Solve the equations $t\frac{dy}{dt} + x = 0 \text{ and } t\frac{dx}{dt} + y = 0 \text{ given } x (0)=1 \text{ and } y(-1) = 0$	1

4. Attempt any *one* part of the following:

$$10 *1 = 10$$

(a)	Analyze the volume contained in the solid region in the 1 st octant of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ by applying Dirichlet's Integral	2
(b)	Establish the relation between Beta and Gamma function.	2

5. Attempt any *one* part of the following:

$$10*1 = 10$$

(a)	Find half range Fourier sine series for $f(x) = \begin{cases} x, & 0 < x < \pi/2 \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$	3
(b)	Examine the series for convergence or divergence	3
	$1 + \frac{x}{2} + \frac{2!}{3^2}x^2 + \frac{3!}{4^3}x^3 + \dots \dots \dots$	

6. Attempt any *one* part of the following:

$$10*1 = 10$$

(a)	Define an analytic function. If $f(z) = u + i \dot{x}$ an analytic function	4
	find f(z) in terms of z if $u - v = e^x(cosy - siny)$.	
(b)	Find the image of the circle $ z - 1 = 1$ in the complex plane under the	4
	mapping $w = 1/Z$.	

7. Attempt any *one* part of the following:

$$10*1 = 10$$

(a)	Find Laurent series expansion of $\frac{1-\cos z}{z^3}$ about the point $z = 0$ is	5
(b)	Find residue at each pole of the function $\frac{4+3Z}{(Z-2)(Z-3)}$ and hence using Cauchy residue theorem evaluate integral $\oint_C \frac{4+3Z}{(Z-2)(Z-3)} dZ$, where C: $ z = 1$	5