Certificate Data Science for Managment Introduction to Dimensionality Reduction

X - HEC, Spring 2020

Julien Chiquet

https://github.com/jchiquet/CourseUnsupervisedLearningX

Part I

Introduction

Packages required for reproducing the slides

```
library(tidyverse) # opinionated collection of packages for data manipulation
library(GGally) # extension to ggplot vizualization system
library(FactoMineR) # PCA and oter linear method for dimension reduction
library(factoextra) # fancy plotting for FactoMineR output
# color and plots themes
library(RColorBrewer)
pal <- brewer.pal(10, "Set3")
theme_set(theme_bw())</pre>
```

Machine Learning

Supervised vs Unsupervised Learning

Supervised Learning

- Training data $\mathcal{D}_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, X_i \sim^{\mathsf{i.i.d}} \mathbb{P}$
- Construct a predictor $\hat{f}: \mathcal{X} \to \mathcal{Y}$ using \mathcal{D}_n
- Loss $\ell(y,f(x))$ measures how well f(x) predicts y
- Aim: minimize the generalization error
- Task: Regression, Classification
- \leadsto The goal is clear: predict y based on x (regression, classification)

Unsupervised Learning

- Training data $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- Loss?, Aim?
- Task: Dimension reduction, Clustering
- → The goal is less well defined, and *validation* is questionable

Dimension Reduction?

Figure: source: F. Belardi

- How to view a high-dimensional dataset ?
- High-dimension: dimension larger than 2!
- Projection in a 2D space.

Dimension Reduction?

Figure: source: F. Belardi

- How to view a high-dimensional dataset ?
- High-dimension: dimension larger than 2!
- Projection in a 2D space.

Dimension Reduction?

Figure: source: F. Belardi

- How to view a high-dimensional dataset ?
- High-dimension: dimension larger than 2!
- Projection in a 2D space.

Companion data set: 'crabs'

Morphological Measurements on Leptograpsus Crabs

Description: small data, low-dimensional

The crabs data frame has 200 rows and 8 columns, describing 5 morphological measurements on 50 crabs each of two colour forms and both sexes, of the species *Leptograpsus variegatus* collected at Fremantle, W. Australia.

Figure: A leptograpsus Crab

Companion data set: 'crabs' I

Table header

sex	species		
F:100	B:100		
M:100	O:100		

```
dim(crabs)
## [1] 200 7
```

Companion data set: 'crabs' II

Table header

crabs %>% head(15) %>% knitr::kable("latex")

species	sex	frontal_lob	rear_width	carapace_length	carapace_width	body_depth
В	M	8.1	6.7	16.1	19.0	7.0
В	M	8.8	7.7	18.1	20.8	7.4
В	M	9.2	7.8	19.0	22.4	7.7
В	M	9.6	7.9	20.1	23.1	8.2
В	M	9.8	8.0	20.3	23.0	8.2
В	M	10.8	9.0	23.0	26.5	9.8
В	M	11.1	9.9	23.8	27.1	9.8
В	M	11.6	9.1	24.5	28.4	10.4
В	M	11.8	9.6	24.2	27.8	9.7
В	M	11.8	10.5	25.2	29.3	10.3
В	M	12.2	10.8	27.3	31.6	10.9
В	M	12.3	11.0	26.8	31.5	11.4
В	M	12.6	10.0	27.7	31.7	11.4
В	M	12.8	10.2	27.2	31.8	10.9
В	М	12.8	10.9	27.4	31.5	11.0

Companion data set: 'crabs'

Pairs plot of attributes

ggpairs(crabs, columns = 3:7, aes(colour = species, shape = sex))

→ Pairs plot don't help...

Companion data set: 'crabs'

Correlation matrix

```
crabs %>% select(-species, -sex) %>% cor( ) %>% kable('latex', digits = 3)
```

	frontal_lob	rear_width	carapace_length	carapace_width	body_depth
frontal_lob	1.000	0.907	0.979	0.965	0.988
rear_width	0.907	1.000	0.893	0.900	0.889
carapace_length	0.979	0.893	1.000	0.995	0.983
carapace_width	0.965	0.900	0.995	1.000	0.968
body_depth	0.988	0.889	0.983	0.968	1.000

Very high correlation!

- much redundancy?
- hidden factor?
- → dimension reduction might hem

Another example: 'snp'

Genetics variant in European population

Description: medium/large data, high-dimensional

500, 000 Genetics variants (SNP – Single Nucleotide Polymorphism) for 3000 individuals (1 meter \times 166 meter (height \times width)

SNP: 90 % of human genetic variations

 coded as 0, 1 or 2 (10, 1 or 2 allel different against the population reference)

Figure: SNP (wikipedia)

Summarize 500,000 variables in 2

Figure: PCA output source: Nature "Gene Mirror Geography Within Europe", 2008

→ How much information is lost?

Theoretical argument: dimensionality Curse

High Dimension Geometry Curse

- Folks theorem: In high dimension, everyone is alone.
- Theorem: If x_1, \ldots, x_n in the hypercube of dimension d such that their coordinates are i.i.d then

$$d^{-1/p}\left(\max \|\mathbf{x}_i - \mathbf{x}_{i'}\|_p - \min \|\mathbf{x}_i - \mathbf{x}_{i'}\|_p\right) = 0 + O\left(\sqrt{\frac{\log n}{d}}\right)$$
$$\frac{\max \|\mathbf{x}_i - \mathbf{x}_{i'}\|_p}{\min \|\mathbf{x}_i - \mathbf{x}_{i'}\|_p} = 1 + O\left(\sqrt{\frac{\log n}{d}}\right).$$

 \leadsto When d is large, all the points are almost equidistant Hopefully, the data are not really leaving in d dimension (think of the SNP example)

Dimension reduction: goals summary

Main objective: find a **low-dimensional representation** that captures the "essence" of (high-dimensional) data

Application in Machine Learning

Preprocessing, Regularization

- compression, denoising, anomaly detection
- Reduce overfitting in supervised learning (improve performances)

Application in statistics and data analysis

Better understand the data

- descriptive/exploratory methods
- visualization: difficult to plot and interpret > 3d!

Dimension reduction: problem setup

Settings

- Training data : $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \in \mathbb{R}^d$, (i.i.d.)
- Space \mathbb{R}^d of possibly high dimension $(n \ll d)$

Dimension Reduction Map

Construct a map Φ from the space \mathbb{R}^d into a space $\mathbb{R}^{d'}$ of smaller dimension:

$$\Phi: \quad \mathbb{R}^d \to \mathbb{R}^{d'}, d' \ll d$$
$$\mathbf{X} \mapsto \Phi(\mathbf{X})$$

How should we design/construct Φ ?

Criterion

- Geometrical approach
- Reconstruction error
- Relationship preservation

Form of the map Φ

- Linear or non-linear ?
- tradeoff between interpretability and versatility?
- tradeoff between high or low computational resource

Part II

Principal Component Analysis

Some references...

... biased choices!

Analyse en composantes principales, Course AgroParisTech Carine Ruby, Stéphane Robin

http://www.agroparistech.fr/IMG/pdf/AnalyseComposantesPrincipales-AgroParisTech.pdf

- Exploratory Multivariate Analysis by Example using R, Husson, Le, Pages, 2017. Chapman & Hall
- Multiple Factor Analysis by Example using R, J. Pagès 2015. CRC Press
- An Introduction to Statistical Learning G. James, D. Witten, T. Hastie and R. Tibshirani

http://faculty.marshall.usc.edu/gareth-james/ISL/

PCA and classical Linear methods

Principal component Analysis (PCA) is for continuous data

Non continuous data

- Correspondence analysis (CA): contingency table
- Multiple correspondence analysis (MCA): categorical data
- Multiple factor analysis (MFA): multi-table, array data
- → Basic adaptation that build on PCA to deal with non-continuous data
- → smart encoding of non-continuous data to continuous ones

We will focus on PCA, as the mother or most linear (and non-linear) methods.

The data matrix

The data set is a $n \times d$ matrix $\mathbf{X} = (x_{ij})$ with values in \mathbb{R} :

- each row \mathbf{x}_i represents an individual/observation
- ullet each col ${f x}^j$ represents a variable/attribute

anaba % % baad (6) % % lan i + m. . lanbla (11] a + av 11)

crabs %>% head(b) %>% knitr::kable("latex")						
species	sex	frontal_lob	rear_width	carapace_length	carapace_width	body_depth
В	M	8.1	6.7	16.1	19.0	7.0
В	M	8.8	7.7	18.1	20.8	7.4
В	M	9.2	7.8	19.0	22.4	7.7
В	M	9.6	7.9	20.1	23.1	8.2
В	M	9.8	8.0	20.3	23.0	8.2
В	М	10.8	9.0	23.0	26.5	9.8

Objectives

Individual/Observations

- similarity between observations with respect to all the variables
- Find pattern (\sim partition) between individuals

Variables

- linear relationships between variables
- visualization of the correlation matrix
- find synthetic variables

Link between the two

- characterization of the groups of individuals with variables
- specific observations to understand links between variables

Outline

Principal Component Analysis

- 1 Background: high-school algebra
- 2 Geometric approach to PCA
- 3 Principal axes and variance maximization
- 4 Representation and interpretation
- **5** Additional tools and Complements
- 6 Beyond linear methods

Definition and Basics

A vector $\mathbf{x} \in \mathbb{R}^d$ is defined by a d-uplet (x_1, x_2, \dots, x_d) , its coordinates.

Elementary operations

 Addition of two vectors (define a parallelogram)

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_d + y_d \end{pmatrix}$$

 Multiplication by a scalar (streching)

$$\lambda \mathbf{x} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 + c \\ \vdots \\ \lambda x_d \end{pmatrix}, \quad \lambda, c \in \mathbb{R}.$$

Properties

- associativity: $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$
- commutativity: x + y = y + x
- linearity: $\lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$
- $(\lambda_1 + \lambda_2)\mathbf{x} = \lambda_1\mathbf{x} + \lambda_2\mathbf{x}$

Dot/Inner product and norm

Dot product of 2 vectors: sum of the products between each coordinate:

$$\langle \mathbf{x}, \mathbf{y} \rangle \equiv \mathbf{x} \cdot \mathbf{y} \equiv \mathbf{x}^{\top} \mathbf{y} \triangleq \sum_{i=1}^{d} x_i y_j.$$

$$\bullet \ \mathbf{x}^{\top}\mathbf{y} = \mathbf{y}^{\top}\mathbf{x}$$

•
$$\mathbf{x}^{\top}(\mathbf{v} + \mathbf{z}) = \mathbf{x}^{\top}\mathbf{v} + \mathbf{x}^{\top}\mathbf{z}$$

•
$$\lambda(\mathbf{x}^{\top}\mathbf{y}) = (\lambda(\mathbf{x})^{\top}\mathbf{y} = \mathbf{x}^{\top}(\lambda\mathbf{y})$$

• if
$$\mathbf{x} = \mathbf{0}$$
, then $\mathbf{x}^{\mathsf{T}}\mathbf{x} = 0$.

(Euclidean) norm (a.k.a length, magnitude)

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^{\top}\mathbf{x}}$$
. we have $\|\lambda\mathbf{x}\| = |\lambda|\|\mathbf{x}\|$.

Distances and orthogonality

(Euclidean) distance between 2 vectors

$$\mathsf{dist}(\mathbf{x},\mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|.$$

Remark that when ${f x}$ and ${f y}$ are orthogonal and non zero, distances between ${f x}$ and ${f y}$ and ${f x}$ and $(-{f y})$ are the same. Then,

$$(\mathbf{x} - \mathbf{y})^{\top}(\mathbf{x} - \mathbf{y}) = (\mathbf{x} + \mathbf{y})^{\top}(\mathbf{x} + \mathbf{y}) \Leftrightarrow \mathbf{x}^{\top}\mathbf{y} = 0$$

which motivates the following definition of orthornality

Orthogonality

Two vectors $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$ are orthogonal iff $\mathbf{x}^{\mathsf{T}} \mathbf{y} = 0$

Distances and orthogonality

(Euclidean) distance between 2 vectors

$$\mathsf{dist}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|.$$

Remark that when x and y are orthogonal and non zero, distances between x and y and x and (-y) are the same. Then,

$$(\mathbf{x} - \mathbf{y})^{\top}(\mathbf{x} - \mathbf{y}) = (\mathbf{x} + \mathbf{y})^{\top}(\mathbf{x} + \mathbf{y}) \Leftrightarrow \mathbf{x}^{\top}\mathbf{y} = 0,$$

which motivates the following definition of orthornality:

Orthogonality

Two vectors $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$ are orthogonal iff $\mathbf{x}^{\mathsf{T}} \mathbf{y} = 0$.

Orthogonal Projection and geometric definition of the dot product

Orthogonal projection of x onto y

It is the vector **z** such that

- $\mathbf{0} \ \mathbf{z} = \lambda \mathbf{y}$
- $\mathbf{2} \ \mathbf{y}$ is orthogonal to $\mathbf{x} \mathbf{z}$

We find
$$\lambda = \mathbf{x}^{\top}\mathbf{y}/\|\mathbf{y}\|^2$$

Thanks to Pythagoras theorem

$$\cos(\theta) = \frac{\|\mathbf{z}\|}{\|\mathbf{x}\|} = \lambda \frac{\|\mathbf{y}\|}{\|\mathbf{x}\|}$$

and then we end with the following geometric definition of the dot product

Dot product: geometric definition

$$\mathbf{x}^{\top}\mathbf{y} = \cos(\theta) \|\mathbf{x}\| \|\mathbf{y}\|$$

Orthogonal Projection and geometric definition of the dot product

Orthogonal projection of x onto y

It is the vector **z** such that

- $\mathbf{0} \ \mathbf{z} = \lambda \mathbf{y}$
- $\mathbf{2} \mathbf{y}$ is orthogonal to $\mathbf{x} \mathbf{z}$

We find
$$\lambda = \mathbf{x}^{\top}\mathbf{y}/\|\mathbf{y}\|^2$$

Thanks to Pythagoras theorem,

$$\cos(\theta) = \frac{\|\mathbf{z}\|}{\|\mathbf{x}\|} = \lambda \frac{\|\mathbf{y}\|}{\|\mathbf{x}\|}$$

and then we end with the following geometric definition of the dot product

Dot product: geometric definition

$$\mathbf{x}^{\top}\mathbf{y} = \cos(\theta) \|\mathbf{x}\| \|\mathbf{y}\|$$

Outline

Principal Component Analysis

- Background: high-school algebra
- 2 Geometric approach to PCA
- 3 Principal axes and variance maximization
- 4 Representation and interpretation
- **5** Additional tools and Complements
- 6 Beyond linear methods

The data matrix

The data set is a $n \times d$ matrix $\mathbf{X} = (x_{ij})$ with values in \mathbb{R} :

- each row \mathbf{x}_i represents an individual/observation
- ullet each col \mathbf{x}^j represents a variable/attribute

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}^{1} & \mathbf{x}^{2} & \dots & \mathbf{x}^{j} & \dots & \mathbf{x}^{d} \\ \mathbf{x}_{1} & x_{11} & x_{12} & \dots & x_{1j} & \dots & x_{1d} \\ \mathbf{x}_{2} & x_{21} & x_{22} & \dots & x_{2j} & \dots & x_{2d} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{x}_{i} & x_{i2} & \dots x_{ij} & \dots & x_{id} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{x}_{n1} & x_{n2} & \dots x_{nj} & \dots & x_{nd} \end{pmatrix}$$

crabs %>% head(3) %>% knitr::kable("latex")

species	sex	frontal_lob	rear_width	carapace_length	carapace_width	body_depth
В	M	8.1	6.7	16.1	19.0	7.0
В	M	8.8	7.7	18.1	20.8	7.4
В	M	9.2	7.8	19.0	22.4	7.7

Cloud of observation in \mathbb{R}^d

Individuals can be represented in the variable space \mathbb{R}^d as a point cloud

Figure: Example in \mathbb{R}^3

Center of Intertia (or barycentrum, or empirical mean)

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} = \begin{pmatrix} \sum_{i=1}^{n} x_{i1}/n \\ \sum_{i=1}^{n} x_{i2}/n \\ \vdots \\ \sum_{i=1}^{n} x_{id}/n \end{pmatrix}$$

We center the cloud ${\bf X}$ around ${\bf x}$ denote this by ${\bf X}^c$

$$\mathbf{X}^{c} = \begin{pmatrix} x_{11} - \bar{x}_{1} & \dots & x_{1j} - \bar{x}_{j} & \dots & x_{1d} - \bar{x}_{d} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{i1} - \bar{x}_{1} & \dots & x_{ij} - \bar{x}_{j} & \dots & x_{id} - \bar{x}_{d} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n1} - \bar{x}_{1} & \dots & x_{nj} - \bar{x}_{j} & \dots & x_{nd} - \bar{x}_{d} \end{pmatrix}$$

Inertia and Variance

Total Inertia: distance of the individuals to the center of the cloud

$$I_T = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^d (x_{ij} - \bar{x}_j)^2 = \frac{1}{n} \sum_{i=1}^n \|\mathbf{x}_i - \bar{\mathbf{x}}\|^2 = \frac{1}{n} \sum_{i=1}^n \mathsf{dist}^2(\mathbf{x}_i, \bar{\mathbf{x}})$$

 I_T is proportional to the total variance

Let $\hat{\Sigma}$ be the empirical variance-covariance matrix

$$I_T = \frac{1}{n} \sum_{j=1}^p \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2 = \sum_{j=1}^n \frac{1}{n} \|\mathbf{x}^j - \bar{x}_j\|^2 = \sum_{j=1}^n \mathbb{V}(\mathbf{x}^j) = \operatorname{trace}(\hat{\boldsymbol{\Sigma}})$$

- → Good representation has large inertia (much variability)
- \leadsto Large dispertion \sim Large distances between points

Inertia with respect to an axix

The Inertia of the cloud wrt axe Δ is the sum of the distances between all points and their orthogonal projection on Δ .

$$I_{\Delta} = \frac{1}{n} \sum_{i=1}^{n} \mathsf{dist}^2(\mathbf{x}_i, \mathsf{proj}_{\Delta}(\mathbf{x}_i))$$

Figure: Projection of \mathbf{x}_i onto a line Δ passing through $\bar{\mathbf{x}}$

Decomposition of total Inertia (1)

Let Δ^{\perp} the orthogonal subspace Δ is \mathbb{R}^n

Theorem (Huygens)

A consequence of the above (Pythagoras Theorem) is the decomposition of the following total inertia:

$$I_T = I_{\Delta} + I_{\Delta^{\perp}}$$

By projecting the cloud ${\bf X}$ onto Δ , with loss the inertia measured by Δ^{\perp}

Decomposition of total Inertia (2)

Consider only subspaces with dimension 1 (that is, lines or axes). We can decompose \mathbb{R}^p the sum of p othogonal axis.

$$\mathbb{R}^p = \Delta_1 \oplus \Delta_2 \oplus \cdots \oplus \Delta_n$$

→ These axes form a new basis for representing the point cloud.

Theorem (Huygens)

$$I_T = I_{\Delta_1} + I_{\Delta_2} + \dots + I_{\Delta_p}$$

Outline

Principal Component Analysis

- Background: high-school algebra
- 2 Geometric approach to PCA
- 3 Principal axes and variance maximization
- 4 Representation and interpretation
- **5** Additional tools and Complements
- 6 Beyond linear methods

Finding the best axis (1)

Definition of the problem

- The best axis Δ_1 is the "closest" to the point cloud
- ullet Inertia of Δ_1 measures the distance between the data and Δ_1
- Δ_1 is defined by the director vector \mathbf{u}_1 , such as $\|\mathbf{u}_1\| = 1$
- Δ_1^{\perp} is defined by the normal vector \mathbf{u}_1 , such as $\|\mathbf{u}_1\|=1$
- \rightsquigarrow The best axis Δ_1 is the one with the minimal Inertia.

Finding the best axis (2)

Stating the optimization problem

Since
$$\Delta_1\oplus\Delta_1^\perp=\mathbb{R}^p$$
 and $I_T=I_{\Delta_1}+I_{\Delta_1^\perp}$, then

$$\underset{\mathbf{u} \in \mathbb{R}^p: \|\mathbf{u}\|=1}{\operatorname{minimize}} \; I_{\Delta_1} \Leftrightarrow \underset{\mathbf{u} \in \mathbb{R}^p: \|\mathbf{u}\|=1}{\operatorname{maximize}} \; I_{\Delta_1^\perp}$$

Finding the best axis (3)

Stating the problem (algebraically)

Find $\mathbf{u}_1; \|\mathbf{u}_1\| = 1$ that minimizes

$$\begin{split} I_{\Delta_1^{\perp}} &= \frac{1}{n} \sum_{i=1}^n \mathsf{dist}(x_i, \Delta_1^{\perp})^2 \\ &= \frac{1}{n} \sum_{i=1}^n \mathbf{u}_1^{\top} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^{\top} \mathbf{u}_1 \\ &= \mathbf{u}_1^{\top} \left(\sum_{i=1}^n \frac{1}{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^{\top} \right) \\ &= \mathbf{u}_1^{\top} \hat{\boldsymbol{\Sigma}} \mathbf{u}_1 \end{split}$$

Figure: Geometrical insight

Finding the best axis (4)

We solve a simple constraint maximization problem with the method of Lagrange multipliers:

$$\underset{\mathbf{u}_1:\|\mathbf{u}_1\|=1}{\text{maximize}}\,\mathbf{u}_1^{\top}\hat{\boldsymbol{\Sigma}}\mathbf{u}_1 \Leftrightarrow \underset{\mathbf{u}_1\in\mathbb{R}^p,\lambda_1>0}{\text{maximize}}\,\mathbf{u}_1^{\top}\hat{\boldsymbol{\Sigma}}\mathbf{u}_1 - \lambda_1(\|\mathbf{u}_1\|-1)$$

By straightforward (vector) differentiation, an using that $\mathbf{u}_1^{ op}\mathbf{u}_1=1$

$$\begin{cases} 2\hat{\mathbf{\Sigma}}\mathbf{u}_1 - 2\lambda_1\mathbf{u}_1 = 0 \\ \mathbf{u}_1^{\top}\mathbf{u}_1 - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} \hat{\mathbf{\Sigma}}\mathbf{u}_1 = \lambda_1\mathbf{u}_1 \\ \mathbf{u}_1^{\top}\hat{\mathbf{\Sigma}}\mathbf{u}_1 = \lambda_1\mathbf{u}_1^{\top}\mathbf{u}_1 = \lambda_1 = I_{\Delta_1}^{\perp} \end{cases}$$

- \mathbf{u}_1 is the first eigen vector of $\hat{\mathbf{\Sigma}}$
- λ_1 is the first eigen value of $\hat{\Sigma}$
- $\leadsto \Delta_1$ is defined by the first eigen vector of $\hat{\Sigma}$
- \leadsto Variance "carried" by Δ_1 is equal to the largest eigen value of $\hat{\Sigma}$

Finding the following axes

Second best axis

Find Δ_2 with dimension 1, director vector \mathbf{u}_2 orthogonal to Δ_1 solving

$$\underset{\mathbf{u}_2 \in \mathbb{R}^p}{\text{maximize}} \, I_{\Delta_2^\perp} = \mathbf{u}_2^\top \hat{\mathbf{\Sigma}} \mathbf{u}_2, \quad \text{with} \, \, \|\mathbf{u}_2\| = 1, \mathbf{u}_1^\top \mathbf{u}_2 = 0.$$

 $\leadsto \mathbf{u}_2$ is the second eigen vector of $\hat{oldsymbol{\Sigma}}$ with eigen value λ_2

And so on

PCA is roughly a matrix factorisation problem

$$\hat{\mathbf{\Sigma}} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}, \quad \mathbf{U} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2, & \dots & \mathbf{u}_p \end{pmatrix}, \quad \mathbf{\Lambda} = \mathsf{diag}(\lambda_1, \dots, \lambda_p)$$

- U is an orthogonal matrix of normalized eigen vectors.
- Λ is diagonal matrix of ordered eigen values

Finding the following axes

Second best axis

Find Δ_2 with dimension 1, director vector \mathbf{u}_2 orthogonal to Δ_1 solving

$$\underset{\mathbf{u}_2 \in \mathbb{R}^p}{\text{maximize}} \, I_{\Delta_2^\perp} = \mathbf{u}_2^\top \hat{\mathbf{\Sigma}} \mathbf{u}_2, \quad \text{with} \, \, \|\mathbf{u}_2\| = 1, \mathbf{u}_1^\top \mathbf{u}_2 = 0.$$

 $\leadsto \mathbf{u}_2$ is the second eigen vector of $\hat{oldsymbol{\Sigma}}$ with eigen value λ_2

And so on!

PCA is roughly a matrix factorisation problem

$$\hat{oldsymbol{\Sigma}} = \mathbf{U} oldsymbol{\Lambda} \mathbf{U}^{ op}, \quad \mathbf{U} = egin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2, & \dots & \mathbf{u}_p \end{pmatrix}, \quad oldsymbol{\Lambda} = \mathsf{diag}(\lambda_1, \dots, \lambda_p)$$

- U is an orthogonal matrix of normalized eigen vectors.
- ullet Λ is diagonal matrix of ordered eigen values.

Interpretation in \mathbb{R}^p

 ${f V}$ describes a new orthogonal basis and a rotation of data in this basis \leadsto PCA is an appropriate rotation on axes that maximizes the variance

$$\left\{ \begin{array}{cccc} \Delta_1 & \oplus & \dots & \oplus & \Delta_p \\ \mathbf{u}_1 & \bot & \dots & \bot & \mathbf{u}_2 \\ \lambda_1 & > & \dots & > & \lambda_p \\ I_{\Delta_1^{\perp}} & > & \dots & > & I_{\Delta_p^{\perp}} \end{array} \right.$$

Outline

Principal Component Analysis

- 1 Background: high-school algebra
- 2 Geometric approach to PCA
- 3 Principal axes and variance maximization
- 4 Representation and interpretation
 - Quality of the reconstruction Individuals point of view Variables point of view
- 6 Additional tools and Complements
- 6 Beyond linear methods

Outline

Principal Component Analysis

- 1 Background: high-school algebra
- 2 Geometric approach to PCA
- 3 Principal axes and variance maximization
- Representation and interpretation Quality of the reconstruction Individuals point of view Variables point of view
- **5** Additional tools and Complements
- 6 Beyond linear methods

Contribution of each axis and quality of the representation

 Δ_k is carrying inertia/variance defined by its orthogonal, thus

$$I_T = I_{\Delta_1^{\perp}} + \dots + I_{\Delta_p^{\perp}} = \lambda_1 + \dots + \lambda_p$$

Relative contribution of axis k

$$\operatorname{contrib}(\Delta_k) = \frac{\lambda_k}{\sum_{k=1}^p \lambda_j} = \frac{\lambda_k}{\operatorname{trace}(\hat{\Sigma})} \times 100$$

Percentage of explained inertia/variance explained

Global quality of the representation on the first k axes

$$\operatorname{contrib}(\Delta_1, \dots, \Delta_k) = \frac{\lambda_1 + \dots + \lambda_k}{\operatorname{trace}(\hat{\Sigma})} \times 100$$

A few axes may explain a large proportion of the total variance.
→ This paves the way for dimension reduction

Contribution of each axis and quality of the representation

 Δ_k is carrying inertia/variance defined by its orthogonal, thus

$$I_T = I_{\Delta_1^{\perp}} + \dots + I_{\Delta_p^{\perp}} = \lambda_1 + \dots + \lambda_p$$

Relative contribution of axis k

$$\operatorname{contrib}(\Delta_k) = \frac{\lambda_k}{\sum_{k=1}^p \lambda_j} = \frac{\lambda_k}{\operatorname{trace}(\hat{\Sigma})} \times 100$$

Percentage of explained inertia/variance explained

Global quality of the representation on the first k axes

$$\operatorname{contrib}(\Delta_1, \dots, \Delta_k) = \frac{\lambda_1 + \dots + \lambda_k}{\operatorname{trace}(\hat{\Sigma})} \times 100$$

A few axes may explain a large proportion of the total variance.

→ This paves the way for dimension reduction

Contribution of each axis and quality of the representation

 Δ_k is carrying inertia/variance defined by its orthogonal, thus

$$I_T = I_{\Delta_1^{\perp}} + \dots + I_{\Delta_p^{\perp}} = \lambda_1 + \dots + \lambda_p$$

Relative contribution of axis k

$$\operatorname{contrib}(\Delta_k) = \frac{\lambda_k}{\sum_{k=1}^p \lambda_j} = \frac{\lambda_k}{\operatorname{trace}(\hat{\Sigma})} \times 100$$

→ Percentage of explained inertia/variance explained

Global quality of the representation on the first k axes

contrib
$$(\Delta_1, \dots, \Delta_k) = \frac{\lambda_1 + \dots + \lambda_k}{\operatorname{trace}(\hat{\Sigma})} \times 100$$

A few axes may explain a large proportion of the total variance.

→ This paves the way for dimension reduction

Scree plot: 'crabs'

```
crabs_pca <- select(crabs, -species, -sex) %>% FactoMineR::PCA(graph = FALSE)
fviz_eig(crabs_pca)
```


 \rightsquigarrow We will see during labs why everything is carried by the first axis

Outline

Principal Component Analysis

- 1 Background: high-school algebra
- ② Geometric approach to PCA
- 3 Principal axes and variance maximization
- Representation and interpretation Quality of the reconstruction Individuals point of view Variables point of view
- **5** Additional tools and Complements
- 6 Beyond linear methods

Individuals: representation in the new basis

Projection of point x_i axis k

The projection of \mathbf{x}_i onto axis Δ_k is $c_{ik}\mathbf{u}_k$, with

$$c_{ik} = \mathbf{u}_k^{\mathsf{T}} (\mathbf{x}_i - \bar{\mathbf{x}}),$$

the coordinate of i in the basis \mathbf{u}_k (along axis Δ_k).

Coordinates of i in the new basis

Coordinates of i in the new basis $\{\mathbf{u}1,\ldots,\mathbf{u}_d\}$ is thus

$$\mathbf{c}_i = (\mathbf{U}^{\top}(\mathbf{x}_i - \bar{\mathbf{x}}))^{\top} = (\mathbf{x}_i - \bar{\mathbf{x}})^{\top}\mathbf{U} = \mathbf{X}_i^c\mathbf{U}, \quad \tilde{\mathbf{x}}_i \in \mathbb{R}^p.$$

- U are often the called the loadings, or weights
- ullet $ilde{\mathbf{c}}_i$ are the **scores** or **coordinates** in the new space for the individuals

Individual visualization: projection in the new basis (1)

fviz_pca_ind(crabs_pca, col.ind = paste(crabs\$species, crabs\$sex), palette = pal)

Individual visualization: projection in the new basis (2)

fviz_pca_ind(crabs_pca, axes = c(2,3), col.ind = paste(crabs\$species, crabs\$sex),]

Warning: about distances after projection

Close projection doesn't mean close individuals!

Figure: Same projections but different situations (source: E. Matzner)

→ Only work when individuals are well represented in the lower space

Individual: quality of the representation

Property

- An individual i is well represented by Δ_k if it is close to this axis.
- In other word, vector $\mathbf{x}_i \bar{\mathbf{x}}$ and \mathbf{u}_k are close to collinear

We use the cosine of the angle θ_{ik} between $\mathbf{x}_i - \bar{\mathbf{x}}$ and \mathbf{u}_k to measure the degree of co-linearity:

$$\cos 2(\theta_{ik}) = \frac{\left(\mathbf{u}_k^{\top}(\mathbf{x}_i - \bar{\mathbf{x}})\right)^2}{\|\mathbf{x}_i - \bar{\mathbf{x}}\|^2 \|\mathbf{y}_k\|^2}$$

factoextra::get_pca_ind(crabs_pca)\$cos2 %>% head(3) %>% kable("latex")

Dim 1	Dim 2	Dim 3	Dim 4	Dim 5
0.9961694	0.0029565	0.0006132	6.29e-05	1.98e-04
0.9994582	0.0004598	0.0000800	1.60e-06	5.00e-07
0.9980940	0.0016699	0.0000663	8.50e-05	8.48e-05

Individual: contribution to an axis

Property

- ullet Inertia "explained" by Δ_k is inertia of Δ_k^\perp
- $I_{\Delta_k^\perp} = n^{-1} \sum_{i=1}^n \mathrm{dist}^2(\Delta_k^\perp, \mathbf{x}_i)$

Contribution of \mathbf{x}_i to axis Δ_k is the proportion of variance/inertia carried by individual i:

$$\operatorname{contr}(\mathbf{x}_i) = \frac{n^{-1} \operatorname{dist}^2(\Delta_k^{\perp}, \mathbf{x}_i)}{I_{\Delta_k^{\perp}}} = \frac{\left(\mathbf{u}_k^{\top}(\mathbf{x}_i - \bar{\mathbf{x}})\right)^2}{n\lambda_k}$$

factoextra::get_pca_ind(crabs_pca)\$contr %>% head(3) %>% kable("latex")

Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
2.535166	0.2375409	0.1602617	0.0688010	1.4097141
2.008687	0.0291717	0.0165027	0.0013421	0.0027214
1.779751	0.0940074	0.0121362	0.0651696	0.4231593

Outline

Principal Component Analysis

- Background: high-school algebra
- ② Geometric approach to PCA
- 3 Principal axes and variance maximization
- Representation and interpretation Quality of the reconstruction Individuals point of view Variables point of view
- 5 Additional tools and Complements
- 6 Beyond linear methods

Cloud of variables in \mathbb{R}^n

Direct equivalence between geometry and statistics (collinearity \equiv correlation)

$$\cos(\theta_{kl}) = \frac{\langle \mathbf{x}^k, \mathbf{x}^\ell \rangle}{\|\mathbf{x}^k\| \|\mathbf{x}^\ell\|} = \rho(\mathbf{x}^k, \mathbf{x}^\ell)$$

Principal Components

Dual representation

A symmetric reasoning can be made in \mathbb{R}^n for the variables, like with the individuals in \mathbb{R}^p .

 \sim New axes are linear combinason of the original variables, which can be seen as **new variables** in the new latent space

Principal component

It is the linear combinason formed by the orginal variables with weights given by the loadings \mathbf{u}_k

$$\mathbf{f}_k = \sum_{j=1}^p \mathbf{u}_k(\mathbf{x}^j - \bar{x}_j) = \mathbf{X}^c \mathbf{u}_k, \quad \mathbf{f}_k \in \mathbb{R}^n$$

Sometimes called "factors" in factor analysis, as latent (hidden) variables.

Variable representation in the new space

Connection with original variables

- essential for interpretation
- answer to the question: how reading the axis of the individual map
- use correlation to measure connection to original variable

$$\mathbb{V}(\mathbf{f}_k) = \mathbb{V}(\mathbf{X}^c \mathbf{u}_k) = \mathbf{u}_k^{\top} (\mathbf{X}^c)^{\top} \mathbf{X}^c \mathbf{u}_k = \lambda_k \mathbf{u}_k^{\top} \mathbf{u}_k = \lambda_k$$
$$\operatorname{cov}(\mathbf{f}_k, (\mathbf{x}^j - \bar{x}_j)) = \mathbf{u}_k \top \mathbf{X}^{c \top} \mathbf{X}^c e_j = \mathbf{u}_k \lambda_k e_j = \lambda_k \mathbf{u}_{kj}$$
$$\operatorname{cor}(\mathbf{f}_k, (\mathbf{x}^j - \bar{x}_j)) = \sqrt{\frac{\lambda_k}{\mathbb{V}(\mathbf{x}^j)}} \mathbf{u}_{kj}$$

Variable vizualisation: correlation circle (1)

fviz_pca_var(crabs_pca)

Variable vizualisation: correlation circle (2)

fviz_pca_var(crabs_pca, axes = c(2,3))

Warning: about angle after projection

Close projection doesn't mean close variable!

Figure: Same angle but different situations (source: J. Josse)

→ Only work when variables are well represented in the latent space

Variable: quality of the representation

Same story as for individuals

Property

- An variable j is well represented by Δ_k if its projection is close to \mathbf{f}_k .
- High collinearity means high absolute correlation and high cosine.
- use cosine to the square of the angle between the original and new variables.

 \leadsto The projection of j must be close to the boundardy of the correlation circle

factoextra::get_pca_var(crabs_pca)\$cos2 %% head(3) %>% kable("latex")

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
frontal_lob	0.9785672	0.0028712	0.0131372	0.0054085	0.0000159
rear_width	0.8775551	0.1223552	0.0000067	0.0000780	0.0000051
carapace_length	0.9835409	0.0109140	0.0044722	0.0000000	0.0010728

Variable: contribution to an axis

Similarly to individuals, we can measure the contribution of the original variables to the construction of the new ones.

factoextra::get_pca_var(crabs_pca)\$contr %>% kable("latex")

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
frontal_lob	20.43435	1.892860	28.171511	48.5702186	0.9310620
rear_width	18.32502	80.663877	0.014350	0.7006226	0.2961274
carapace_length	20.53821	7.195170	9.590266	0.0002087	62.6761450
carapace_width	20.35027	3.261487	42.584703	0.7954467	33.0080946
body_depth	20.35215	6.986605	19.639170	49.9335034	3.0885710

→ What do you think of the first axe?

Outline

Principal Component Analysis

- Background: high-school algebra
- ② Geometric approach to PCA
- 3 Principal axes and variance maximization
- 4 Representation and interpretation
- **5** Additional tools and Complements
- 6 Beyond linear methods

Unifying view of variables and individuals

Principal components

The full matrix of principal component connects individual coordinates to latent factors:

$$PC = \mathbf{X}^{c}\mathbf{U} = \begin{pmatrix} \mathbf{f}_{1} & \mathbf{f}_{2} & \dots & \mathbf{f}_{d} \end{pmatrix} = \begin{pmatrix} \mathbf{c}_{1}^{\top} \\ \mathbf{c}_{2}^{\top} \\ \dots \\ \mathbf{c}_{d}^{\top} \end{pmatrix}$$

- new variables (latent factor) are seen column-wise
- new coordinates are seen row-wise
- → Everything can be interpreted on a single plot, called the biplot

Biplot (1)

```
FactoMineR::PCA(select(crabs, -species, -sex), scale.unit = FALSE, graph = FALSE) ?
factoextra::fviz_pca_biplot(
    axes = c(1,2), col.ind = paste(crabs$species, crabs$sex), palette = pal
)
```


Biplot (2)

```
FactoMineR::PCA(select(crabs, -species, -sex), scale.unit = FALSE, graph = FALSE) factoextra::fviz_pca_biplot(
    axes = c(2,3), col.ind = paste(crabs$species, crabs$sex), palette = pal
)
```


Reconstruction formula

Recall that $\mathbf{F}=(\mathbf{f}_1,\ldots,\mathbf{f}_d)$ is the matrix of Principal components. Then,

- $\mathbf{f}_k = \mathbf{X}^c \mathbf{u}_k$ for projection on axis k
- $\mathbf{F} = \mathbf{X}^c \mathbf{U}$ for all axis.

Using orthogonality of U, we get pack the original data as follows, without loss (U^T performs the inverse rotation of U):

$$\mathbf{X}^c = \mathbf{F}\mathbf{U}^{\top}$$

We obtain an approximation \mathbf{X}^c (compression) of the data \mathbf{X}^c by considering a subset \mathcal{S} of PC, typically $\mathcal{S}=1,\ldots,K$ with $K\ll d$.

$$ilde{\mathbf{X}}^c = \mathbf{F}_{\mathcal{S}} \mathbf{U}_{\mathcal{S}}^ op = \mathbf{X}^c \mathbf{U}_{\mathcal{S}} \mathbf{U}_{\mathcal{S}}^ op$$

 \leadsto This is a rank K approximation of $\mathbf X$ of the data the information capture by the first K axes.

Reconstruction formula

Recall that $\mathbf{F}=(\mathbf{f}_1,\ldots,\mathbf{f}_d)$ is the matrix of Principal components. Then,

- $\mathbf{f}_k = \mathbf{X}^c \mathbf{u}_k$ for projection on axis k
- $\mathbf{F} = \mathbf{X}^c \mathbf{U}$ for all axis.

Using orthogonality of U, we get pack the original data as follows, without loss (U^T performs the inverse rotation of U):

$$\mathbf{X}^c = \mathbf{F}\mathbf{U}^{\top}$$

We obtain an approximation $\tilde{\mathbf{X}}^c$ (compression) of the data \mathbf{X}^c by considering a subset \mathcal{S} of PC, typically $\mathcal{S}=1,\ldots,K$ with $K\ll d$.

$$\tilde{\mathbf{X}}^c = \mathbf{F}_{\mathcal{S}} \mathbf{U}_{\mathcal{S}}^{\top} = \mathbf{X}^c \mathbf{U}_{\mathcal{S}} \mathbf{U}_{\mathcal{S}}^{\top}$$

 \leadsto This is a rank K approximation of $\mathbf X$ of the data the information capture by the first K axes.

Remove size effect I

Carried by the 1st principal component

First component

$$\mathbf{f}_1 = \mathbf{X}^c \mathbf{u}_1.$$

We extract the best rank-1 approximation of \mathbf{X} to remove the *size effect*, carried by the first axis, and return to the original space,

$$\tilde{\mathbf{X}}^{(1)} = \mathbf{f}_1 \mathbf{u}_1^\top.$$

```
attributes <- select(crabs, -sex, -species) %>% as.matrix()
u1 <- eigen(cov(attributes))$vectors[, 1, drop = FALSE]
attributes_rank1 <- attributes %*% u1 %*% t(u1)
crabs_corrected <- crabs
crabs_corrected[, 3:7] <- attributes - attributes_rank1</pre>
```

ightharpoonup Axis 1 explains a latent effect, here the size in the case at hand, common to all attributes.

Remove size effect II

Carried by the 1st principal component

ggpairs(crabs_corrected, columns = 3:7, aes(colour = species, shape = sex))

PCA on corrected data (1)

crabs_pca_corrected <- select(crabs_corrected, -species, -sex) %>% FactoMineR::PCA
fviz_eig(crabs_pca_corrected)

PCA on corrected data (2)

fviz_pca_ind(crabs_pca_corrected, col.ind = paste(crabs_corrected\$species, crabs_col.ind)

PCA on corrected data (3)

```
fviz_pca_var(crabs_pca_corrected, col.var = 'cos2')
```


PCA on corrected data (3)

fviz_pca_biplot(crabs_pca_corrected, col.ind = paste(crabs_corrected\$species, crabs

Choosing the number of components

Various solutions, open question

Scree plot, test on eigenvalues, confidence interval, cross-validation, generalized cross-validation, etc.

- Interpretation
- Separate structure and noise
- Data compression

Supplementary information

- continuous variables: projection (correlation with dimensions)
- observations: projection
- categorical variables: projection of the categories at the barycentre of the observations which take the categories

Outline

Principal Component Analysis

- Background: high-school algebra
- 2 Geometric approach to PCA
- 3 Principal axes and variance maximization
- 4 Representation and interpretation
- **5** Additional tools and Complements
- 6 Beyond linear methods

Reconstruction error point of view Relation preservation point of view

Outline

Principal Component Analysis

- Background: high-school algebra
- 2 Geometric approach to PCA
- 3 Principal axes and variance maximization
- 4 Representation and interpretation
- 6 Additional tools and Complements
- 6 Beyond linear methods
 Reconstruction error point of view
 Relation preservation point of view

Reconstruction error approach

1 Construct a map Φ from the space \mathbb{R}^d into a space $\mathbb{R}^{d'}$ of smaller dimension:

$$\Phi: \mathbb{R}^d \to \mathbb{R}^{d'}, d' \ll d$$
$$\mathbf{x} \mapsto \Phi(\mathbf{x})$$

- **2** Construct $\widetilde{\Phi}$ from $\mathbb{R}^{d'}$ to \mathbb{R}^d (reconstruction formula)
- 3 Control an error between ${\bf x}$ and its reconstruction $\tilde{\Phi}(\Phi({\bf x}))$, e.g

$$\sum_{i=1}^{n} \left\| \mathbf{x}_{i} - \tilde{\Phi}(\Phi(\mathbf{x}_{i})) \right\|^{2}$$

Reconstruction error and PCA

PCA Model

Linear model assumption

$$\mathbf{x} \simeq oldsymbol{\mu} + \mathbf{F}_{1:d'} \mathbf{U}_{1:d'}^{ op}$$

with U orthonormal and no constraint on F

Reconstruction error

In the case of PCA, then

$$\begin{split} \Phi(\mathbf{x}) &= (\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{U} \quad \text{and} \quad \tilde{\Phi}(\mathbf{F}) = \boldsymbol{\mu} + \mathbf{F} \mathbf{U}^{\top} \\ &\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - (\boldsymbol{\mu} + (\mathbf{x}_i - \boldsymbol{\mu}) \mathbf{U} \mathbf{U}^{\top} \|^2 \end{split}$$

Explicit solution: $\mu = \bar{x}$ the empirical mean and U is an orthonormal basis of the space spanned by the d' first eigenvectors of the empirical covariance matrix

Non linear extensions

Two directions

- 1 Non linear transformation of x before PCA: kernel-PCA
- ${f 2}$ Other constrains on weigths ${f U}$ or loadings ${f F}$: ICA, NMF, ...

Kernel PCA

Linear assumption after transformation, with ${\bf U}$ orthonormal and no constraint on ${\bf F}$

$$\Psi(\mathbf{x} - \boldsymbol{\mu}) \simeq \mathbf{F}_{1:d'} \mathbf{U}_{1:d'}^{\top}$$

Non negative Matrix factorisation

Linear model assumption with ${\bf U}$ non-negative and ${\bf F}$ non-negative

$$\mathbf{x} \simeq \boldsymbol{\mu} + \mathbf{F}_{1:d'} \mathbf{U}_{1:d'}^{ op}$$

Auto-encoders Find Φ and $\tilde{\Phi}$ with a neural-network! \rightsquigarrow Fit \mathbf{U}, \mathbf{F} with some optimization algorithms (much more complex!)

Outline

Principal Component Analysis

- 1 Background: high-school algebra
- 2 Geometric approach to PCA
- 3 Principal axes and variance maximization
- 4 Representation and interpretation
- 6 Additional tools and Complements
- 6 Beyond linear methods
 Reconstruction error point of view
 Relation preservation point of view

Pairwise Relation

Focus on pairwise relation $\mathcal{R}(\mathbf{x}_i, \mathbf{x}_{i'})$.

Distance Preservation

• Construct a map Φ from the space \mathbb{R}^d into a space $\mathbb{R}^{d'}$ of smaller dimension:

$$\Phi: \quad \mathbb{R}^d \to \mathbb{R}^{d'}, d' \ll d$$
$$\mathbf{x} \mapsto \Phi(\mathbf{x})$$

such that $\mathcal{R}(\mathbf{x}_i, \mathbf{x}_{i'}) \sim \mathcal{R}'(\mathbf{x}_i', \mathbf{x}_{i'}')$

Multidimensional scaling

Try to preserve inner product related to the distance (e.g. Euclidean)

t-SNE - Stochastic Neighborhood Embedding

Try to preserve relations with close neighbors with Gaussian kernel