CV-14 랩업 리포트

-Level-1 Image Classification 대회 리뷰-CV-14 조 팀 SCV

1. Project outline

프로젝트의 큰 목적은 마스크 착용 여부의 검사를 도와주기 위해 카메라로 비춰진 사람의 얼굴 이미지만으로 마스크를 쓰고 있는지, 쓰지 않았는지, 정확히 쓴 것이 맞는지 자동으로 가려낼수 있는 모델을 제작하는 것입니다.

하지만 아래의 프로젝트 데이터 셋을 자세히 살펴보면 우리가 구별해야 하는 Label 의 경우 3 개의 하위 Class (나이, 성별, 마스크)로 구성되어 있으며, 아래의 EDA 를 통해서 확인할 수 있듯이 데이터 셋의 Label 과 Class 가 매우 Imbalance 한 것을 확인할 수 있습니다.

따라서 본 프로젝트의 최종 목적은 다음과 같습니다.

"Imbalance 한 data set 을 활용하여 Multi-task label 을 구별하는 모델을 구성하는 것"

2. Team Members and Roles

Name	Role
김승기	EDA, Hyper Parameter, Augmentation
김준태	EDA, 데이터 전 처리, Modeling
이태경	데이터 전 처리, Augmentation, K-fold
전형우	EDA, Augmentation, Modeling
정호찬	EDA, 데이터 전 처리, Modeling

✓ Team Project Target

- Leader Board 성능 보다는 Robust 한 모델을 위한 설계를 해보자
- 우리가 직접 구현해보고 실험할 수 있는 것들에 시간을 투자하자

3. Project

✓ Detailed Project Contents :

https://bottlenose-oak-2e3.notion.site/wrap-upreport-51cfca5542d243eaaf4ce1e4a62484ad

3.1 EDA

(1) EDA

✓ Label Imbalance

Age, Mask, Gender 의 모든 Label 이 불균형한 상태를 이루고 있었음

- 🏃 Approach :

- 1) 전처리 & 데이터 증강을 통한 해소해보자
- 2) Train/Validation set 을 균형 있게 구성해보자

Single Model Test

Age, Mask, Gender의 Label를 각각 예측하는 Single Model을 구성하여서 어떤 Label을 예측하기 어려운지 난이도를 측정, 측정 결과 Age 가 다른 Mask, Gender 에 비해서 잘 맞추기 못하는 것으로 확인

-- 🏂 Approach :

1) 해결해야 할 주요한 목표는 'Age'예측

Background

이미지 데이터에서 중요한 정보가 있는 인물의 위치는 대부분 정중앙에 위치하고 있음, 또한 인물 뒤에 배경이 데이터 마다 달랐음

- 🏃 Approach:

1) 모델이 과소적합이 되는 경우 Background 를 지워보는 방법이나 CenterCrop을 통해서 해결해볼 수 있을 것 같다

3.2 Data

(1) Data Preprocessing

rembg & deepface

장점: Noise 가 제거되어 학습이 쉬워짐

단점 : 학습 이외에 추가적인 시간 소요, 과적합증가

- Use Deepface and FaceDetect & Crop

장점: Noise 가 제거됨

단점 : 학습 이외에 추가적인 시간 소요

result: (validation Score)

Method	Accuracy	F1 Score
CenterCrop + Resize	0.8704	0.8644
rembg	0.867	0.8628
rembg + Deepface	0.8948	0.918

Rmbg 와 Deepface 를 같이 사용했을 때 Validation, Test Score 가 모두 상승하였음

Remove late 50's

Why Remove?:

- 1) 60 대 경계에 위치한 값들이 60 대 범주보다 분포가 높기 때문에 분류를 방해한다고 파악
- 2) 50 대 후반의 데이터를 60 대 범주로 주는 것은 잘못 Labeling 된 데이터를 증가시키는 것으로 판단하였음, 따라서 이를 제거

result: (validation Score)

Method	Accuracy	F1 Score
Basic Data set	0.8794	0.796
57~59 Remove	0.862	0.8457

- F1 Score 가 Validation, Test 에서 모두 상승

▼ Train / Validation Set

'Random Split' : 모든 데이터를 랜덤적으로 Split - Train/Val
에 동일한 정보 존재 문제

- 'Split By Profile' : 사람 기준으로 데이터를 Split - 데이터가 불균형하게 Split 될 수 있음

- ' Class balance Split By Profile': 사람을 기준으로 class 별 stratify 를 유지하면서 Split – 위의 두 방법을 어느정도 해결

(2) Augmentation

Mix up

60 대 데이터가 상대적으로 적은 불균형 상태를 해결하기 위해 서 Off-line으로 Mix up을 진행하여서 60 대 데이터만 증폭 시켜 줌

result: (validation Score)

Method	Accuracy	F1 Score
Only Basic data set	0.862	0.8457
Use Mix-up data set	0.8746	0.8792

Validation, Test Score 가 상승하였음

하지만 추가적인 Augmentation 을 같이 활용하면 과적합 되는 경우도 있었다. 따라서 이를 옵션적으로 활용하여 **Mix up Data**

를 활용할 때는 다른 Augmentation을 사용해주지 않음

Cut mix

과적합을 피하기 위해서 Cut mix 를 추가적으로 활용 Validation Score 는 증가하였지만 Test Score 는 하락 -과적합이 되었음

따라서 Label 정보를 어느정도 보존해주면서 과적합을 방지할 수 있게 세로로 5:5로 나누어 Custom Cut mix 진행

result: (validation Score)

Method	Accuracy	F1 Score
Basic Augmentation	0.8704	0.8644
Basic Cutmix	0.8906	0.8999
Custom Cutmix	0.8929	0.8953

Custom Cutmix 가 Basic Cutmix 와 사용하지 않았을 때 보다 Validation, Test Score 가 모두 상승

3.3 Modeling

(1) Modeling

✓ Hyper Parameter

Loss, Optimizer, Lr 는 경험적 실험 결과, 비슷한 성능을 보여서 아래와 같이 고정

- Loss: Focal Loss - 데이터 불균형을 해소하기 위해서

Optimizer : AdamLr : 0.0001

☑ Base Model : EfficientnetB4

Why EfficientnetB4: Transformer 계열의 경우 많은 양의 데이터가 필요하다 하지만 우리가 갖고 있는 데이터의 수는 충분하지 않다. 이를 Pretrained 된 모델의 가중치를 가져와서 해결해 볼 수 있지만 우리가 갖고 있는 데이터와 Pretrained 에 활용되는 데 이터의 유사도가 적기 때문에 Transformer 계열은 효과적이지 않을 수 있다. 또한 서비스를 제공하는 관점에서도 Transformer 계열의 경우 학습/추론에 많은 시간이 소요되기때문에 효과적인 학습과 적은 데이터에서도 괜찮은 성능을 내기위해서 CNN 계열의 모델로 방향을 잡았고

CNN 계열의 Denseent, Resnet, Efficientnet 을 비교한 결과 Efficientnet 이 꾸준하게 좋은 성능을 보여서 Efficientnet 계열을 선택하였다

Model	Accuracy	F1 Score
EfficientnetB4	0.8651	0.7073
Resnet101	0.6857	0.7526
Densenet161	0.6931	0.7226

Efficientnet 논문에 나오는 그래프를 참고하여서 B4 이전까지는 성능 향상이 급격하지만 B4 이후에는 큰 성능 차이가 없다는 점을 고려하였고 Efficientnet 모델 별 실험을 통해서 B4 모델이 좋은 성능을 보여서 Base Model로 채택하였다

Model	Accuracy	F1 Score
EfficientnetB0	0.6836	0.7265
EfficientnetB2	0.6894	0.7531
EfficientnetB4	0.8651	0.7073

Modeling

Modeling 은 크게 3가지 방식으로 나누어 진행하였다

-Model A: One Way Model 로 18 개의 Single Label 를 예측

-Model B : Three Way Shallow Model, 3 개의 Shallow 한 Branch 를 적용하여 Multi Label 를 예측

-Model C : Three Way Deep Model, 3 개의 Deep 한 Branch 를 적용하여 Multi Label 을 예측

result: (validation Score)

Method	Accuracy	F1 Score
Model A	0.8929	0.8953
Model B	0.8942	0.8842
Model C	0.9058	0.9254

Model A 와 Model B 의 경우 성능차이를 보이지 않음 Model C 의 경우 Validation Score 가 가장 높았으나 Test Score 는 가장 낮았음 - 과적합 된 것 같음

- ♣ Plus Solution: Model A 중 가장 높은 Test 점수를 기록한 Model 을 가져와서 Freeze 한 다음 Model C의 Branch 만 학습

result: (validation Score)

Method	Accuracy	F1 Score
Model A + C	0.8854	0.8884

Model A 와 Model B 와 비교했을 때 Validation Score 는 차이를 보이지 않았지만 Test Score 는 높았음

(2) Ensemble

▼ Test Score 를 기준 Ensemble

Test Score 를 기준으로 3 개의 모델을 선택해서 Hard Voting 진행

선택한 모델

- Model A +57~59 Remove + Mix-up data
- (Same Above) + Split By Profile
- Model C + 17~20, 57~59 Remove
- ▼ Validation 예측 분포를 기준으로 Robust 예측을 하는 모델

을 선택하여서 Hard Voting 진행

선택한 모델

- Model A +57~59 Remove + Mix-up data
- Model A +57~59 Remove + Custom Cutmix
- Model $(A + C) + 57 \sim 59$ Remove + rembg & deepface

결과: (Test Score 기준)

Method	Accuracy	F1 Score
Ensemble 1	0.8126	0.7596
Ensemble 2	0.8261	0.7868

Ensemble 2 가 1 보다 높은 Test Score 를 보임

조금 더 Robust 한 모델이 만들어지지 않았나 추론

4. Final Score

✓ 최종결과

- Public Score

- Private Score

Public Score 에 비해서 Private Score 가 소폭 감소하였지만

"최종순위 1위 기록"

5. Cooperation

A. 협업 방법

- i. Notion 과 Wandb 를 통한 프로젝트 진행 과정 및 실험 결과를 공유
- ii. Git 과 Git hub 를 활용하여서 개인이 작성한 코드를 공유하고 서로 리뷰
- iii. Zoom을 활용하여 실시간으로 소통하면서 협업진행

B. 개발 환경 및 Tool

i. 개발언어: Python

ii. 개발환경: V100 32GB GPU

iii. Frame Work: Pytorch

iv. 협업툴: Wandb, Slack, Notion, Git

6. 팀 회고 및 개선방안

☑ 잘했던 점

- 팀원들끼리 자유로운 아이디어의 공유가 좋았다
- 대회에 익숙하지 않은 팀원들도 잘 적응할 수 있었다
- 성능에 집착하지 않았다
- 가설을 세우고 이를 검증하면서 모델링을 진행한 것이 좋았다
- 회의를 통해서 역할을 분담하고 체계적으로 진행한 것이 좋았다

☑ 아쉬웠던 점

- 개인마다 진행 속도가 차이가 나서 아쉬웠다
- Git 과 같은 협업툴을 적극적으로 활용하지 못해서 아쉬웠다
- 실험 공유에 Convention을 정하지 못해서 아쉬웠다
- Python Code 버전 관리를 하지 못해서 동일한 조건을 맞추기 힘들었고 새로 구현한 기능의 호환성을 맞추기 힘들었다

7. 개인 회고

🤓 김승기

- 내 개인적인 학습 목표

: 저는 먼저 프로젝트 workflow 를 이해하고 협업 문화를 경험하는 것이 첫 목표였습니다. 첫 프로젝트인 만큼, 어떤 흐름으로 진행이 되고 팀원들과 정보를 공유하면서 커뮤니케이션을 경험해보려고 노력했습니다. 두 번째 목표는 지금까지 배운 기초 CV 지식들을 프로젝트를 통해 한번 적용해보면서 이론과 실전 사이의 차이를 느껴보려고 노력했습니다

- 내 학습 목표를 달성하기 위해 한일

1. baseline code 이해 및 customize

저는 주어진 baseline code 의 train.py 와 dataset.py 를 위주로 데이터 파이프라인을 이해 하려고 했습니다. 또한 실험의 편의성을 위해 CV 기초 프로젝트 강의를 참고해서 config parser 를 이용하는 방법을 적용해봤습니다. 마지막으로 실험의 자동화를 위해 쉘 스크립트를 구현했습니다.

2. EDA

데이터를 파악하기 위해 클래스의 분포를 확인해서 특정 클래스의 imbalance 를 파악했습니다. 시각화를 통해 파악한 데이터를 직업 육안으로 확인하면서 어떤 관계나 특징을 파악하려고 노력했습니다.

3. Hyperparameter 실험

Optimizer, scheduler, criterion 그리고 learning rate 에 대한 실험을 진행했습니다. 변인 통제를 한 실험을 통해 성능이 좋은 것을 골라서 모델에 적용했습니다.

4. Augmentation 실험

Augmentation 이 적용되지 않은 base augmentation 을 다양한 augmentation 기법들을 따로따로 그리고 묶어서 실험을 진행해서 성능을 비교했습니다. 특정 augmentation 을 적용할 경우 성능이 올라가기도 하지만, 대체로 여러가지 적용할 경우 학습 난이도가 올라가서 특정 validation accuracy 에 도달하기 위해서 더 많은 epoch 이 필요하거나 아예 도달하지 못 할 수도 있다는 것을 확인했습니다

- 학습 목표를 달성하기 위한 과정 중 깨달은 점

프로젝트를 진행하면서 협업이 정말 중요하다는 것을 깨달았습니다. 혼자서 하는 일을 여러 명이 힘을 합치면 훨씬 일을 효율적으로 처리 할 수 있다는 것이 가슴에 와 닿았습니다. 지금 생각해보니 모델링, 데이터 처리 아니면 베이스라인 코드셋업 같은 것은 어떻게든 혼자서 노력해서 공부할 수 있는 것이지만, 협업은 기회가 주어졌을 때 열심히 경험해봐야겠다는 생각이 들었습니다.

- 마주한 한계

머신러닝 기법이나 통계적인 추론을 통해 문제 해결에 도움이 될만한 insight 를 얻을 수도 있을 것 같았지만 기본기가 부족하다 보니 시도 해볼 수 있는 방법론의 범위가 많이 좁아졌던 것 같습니다.

- 아쉬웠던 점

1. 실험과 git 에 대한 convention 부족

기능 별로 브랜치 관리를 하고 commit 에 대한 convention 을 정하고 진행했으면 좋았을 것 같습니다. 실험의 경우에도 naming 이 통일 되지 않아서 파악하기가 어려웠습니다

2. 시간 부족

시도해보고 싶은 것들은 많았지만 시간이 부족해서 다 해보지 못한 것이 아쉽습니다.

- 다음 프로젝트에서 해보고 싶은 것들

- 1. git 협업 git-flow, trunk-based flow, github flow 등 특정 workflow 를 정해서 프로젝트를 진행해보고 싶습니다.
- 2. mixed precision Mixed precision 을 적용해서 실험 시간을 단축 할 것 입니다.
- 3. 다양한 방법론 시도 공부하는 입장이기 때문에 결과에 좋지 않다는 판단이 들어도 다양한 방법론을 시도 해 볼 것입니다.

🤓 김준태

- 프로젝트 학습 목표

- 1. 인공지능 분야에서 처음 경험하는 협업 프로젝트였기 때문에 활발한 의사소통을 통해 팀원들의 의견을 조율하고 효율적인 협업을 통해 문제를 해결하며 프로젝트를 수행하면서 앞으로 있을 협업 활동에도 익숙해 질 수 있도록 하는 것이 목표였다.
- 2. 주어진 문제에 대해 문제를 정의하고 배웠던 이론적인 지식을 기반으로 세운 가설을 세우고 실험을 통해 검증하는 경험을 하여 많은 인사이트를 얻는 것이 개인적인 학습 목표였다

- 나는 내 학습 목표를 달성하기 위해 무엇을 어떻게 했는가?

- 1. 팀원들의 EDA 결과를 종합하여 공유하고 팀원들의 의견을 수렴하여 어떠한 방향으로 팀이 나아갈 지 목표를 설정했다.
- 2. 활발한 의사소통을 위해 팀 회의에 적극적으로 참여하였고 나의 실험 내용과 얻은 인사이트를 팀 노션을 통해 공유하였다.
- 3. 학습한 모델 결과를 Confusion matrix 를 이용하여 나의 가설을 증명하기 위해 의도한 대로 학습이 되었는지 검증해보는 과정을 거쳤다. 이를 통해 test score 없이도 실험 결과에 대한 인사이트를 얻을 수 있었다.

- 마주한 한계는 무엇이며, 아쉬웠던 점은 무엇인가?

1. 프로젝트 후반부에 Score 를 올리고자 집착한 것 같고, 부족한 시간을 활용하기 위해 체계적인 실험을 하지 못했다. 미리 시간을 효율적으로 활용할 수 있는 도구와 방법을 이용해 많은 실험을 해 놓았어야 했다고 생각했다.

- 2. 나의 개인적인 학습 목표를 위한 실험 내용이 팀의 전체적인 프로젝트 진행 상황과 맞지 않았다. 팀원 간의 경험적인 차이가 있었기 때문에 프로젝트 진행 속도가 달랐고 이를 극복하기 위한 방법을 찾기가 어려웠다.
- 3. 주어진 문제와 관련된 논문이나 프로젝트 내용을 찾아서 참고 했다면 우리의 실험적인 결과만으로 결정하기 어려운 내용을 의사 결정 시 많은 도움이 되었을 것 같다

- 나는 어떤 방식으로 모델을 개선했는가?

- 1. Data imbalance 문제를 해결하기 위해 60 대 나이 over sampling, 그 외 데이터 under sampling 하여 Data 의 balance 를 맞추려고 하였다. 결과적으로 60 대와 구별하기 힘들다고 생각한 50 대 후반의 데이터를 사용하지 않는 방법이 많은 성능 향상을 기록했다.
- 2. 주어진 Data 를 봤을 때 Class 를 예측하기 위해선 인물의 얼굴 위치 정보가 중요하다고 생각했기 때문에 rembg 라이브러리를 활용하여 배경을 제거하였고 deepface 라이브러리를 활용하여 인물의 얼굴을 추출하는 전 처리 과정을 사용했다.
- 3. Classification 문제에서 유용한 방법론인 Cutmix 방법 활용시기존 방법처럼 Random 한 bbox 를 이용하여 mix 한다면 label 의 정보가 온전히 남아있기 힘들다고 판단하여 label 의정보를 살릴 수 있도록 5:5 비율을 유지하며 세로방향으로 mix 하는 방법을 사용했다.
- 4. mask, gender, age 에 대한 분류를 3 개의 branch 를 가진 모델을 활용하여 분류 성능을 높이도록 하였다. 하지만 branch 의 추가로 모델 파라미터 수가 증가 하여 overfitting 되는 경향이 보였고 이를 해결하기 위해 epoch 와 lr 을 줄였다. 그리고 branch 학습에 도움을 주기 위해 우리의 데이터로 학습한 좋은 성능을 내는 single model 의 가중치를 활용했다.

- 내가 해본 시도 중 어떠한 실패를 경험했는가? 실패의 과정에서 어떠한 교훈을 얻었는가?

- 1. Data imbalance 문제를 해결하기 위해 imbalanced sampler 를 train loader 에 활용해 봤지만 overfitting 되는 경향이 있었다.
- 2. Data imbalance 문제를 해결하기 위해 60 대 데이터들을 서로 mix up 한 데이터를 학습에 활용해서 소폭 성능향상이 있었지만 overfitting 문제가 발생되기 쉬웠고 근본적인 문제 해결을 하기에는 어려웠다.
- 3. overfitting 문제는 metric 과 loss 만으로 구별하기가 어려웠기 때문에 신뢰도 있는 validation set 을 구성하던가

혹은 따로 test set 을 만들어서 검증하는 방법을 활용해야겠다고 생각했다.

4. 프로젝트 후반부에 부족한 시간에 score 를 올리고자 ablation study 방식으로 실험을 진행하지 못하였고 이로 인하여 실험 내용 정리가 어렵고 명확한 인사이트를 얻기가 굉장히 힘들어 졌다. 이전 실험 내용들을 미리 정리를 해 놓지 않은 상태에서 많은 실험이 쌓이면서 최종 모델을 선택하는 것이 어려웠다.

- 협업 과정에서 잘된 점/ 아쉬웠던 점은 어떤 점이 있는가?

좋았던 점

- 오프라인으로 만나게 되어 팀원들끼리 많이 친해졌고 덕분에 의사소통도 더 활발히 진행될 수 있었던 것 같다.
- 가설이나 실험 결과에 대해 공유하고 토론해 보면서 다양한 관점에서의 문제를 해결하려는 생각들을 알게될 수 있어서 좋았다.
- 혼자 해결하기 어려웠던 코딩 이슈나 사용해보지 못했던 방법론에 대해 알려줘서 시간이 오래걸릴 수 있는 문제를 빠르게 해결할 수 있어서 좋았다.

아쉬운 점

• 팀원 간 의사소통은 활발하게 되었지만 실험 내용, 코드를 정리하여 공유하는 것이 잘 되지 않았다. 따라서 프로젝트가 진행 될 수록 개인간의 격차가 커져서 프로젝트 진행 상황을 하나로 모으기 힘들었다.

- 한계/교훈을 바탕으로 다음 프로젝트에서 시도해보고 싶은 점은 무엇인가?

- 프로젝트 진행 전 충분한 회의와 의사 소통을 통해 팀의목표를 설정할 것이다.
- 클린 코드를 만들고 협업 도구를 많이 활용하여 팀원들과 같이 프로젝트를 진행할 것이다.
- 실험 내용을 미리 정리하고 공유하여 다양한 관점을 통해 앞으로의 실험 내용을 정할 것이다.
- 리더보드 순위에 연연하지 않고 효율적인 프로젝트 진행을 통해 컨디션 관리를 할 것이다.

❤️ 이태경

- 개인적인 감상

- 너무 힘들었다.
- 팀원들에게 도움을 주지 못한게 많이 아쉽다.
- 아직 코딩 실력이 많이 부족하다는 걸 느꼈다
- 아는 모델이 많지 않아 모델 선정에 어려움을 느꼈으므로 모델에 대한 지식을 늘렸으면 좋겠다.
- 여러 공부를 많이 해봐야겠다는 생각을 했고 앞으로 많은 대회를 하게 될 것이기 때문에 멘탈 관리에 집중해야겠다는 생각을 했다.
- 체계적인 실험이 부족했다.

EDA 단계에서 어떤 실험들을 할지에 대해 알아봐야겠다

- 나는 내 학습 목표를 달성하기 위해 무엇을 어떻게 했는가?

- 처음 경험해보는 대회이므로 프로젝트의 전체적인 흐름과 협업의 과정에 대해 배워야겠다고 생각했다.
- baseline code 에 대한 전반적인 이해를 확실하게 하기 위해 코드를 열심히 뜯어봤다. 이후 코드를 짜는 데에 도움을 많이 얻었다.

- 마주한 한계는 무엇이며, 아쉬웠던 점은 무엇인가?

- 커뮤니케이션은 원만했으나 생각보다 협업이 원활하게 이루어지지 못했던 것 같다. 협업 툴도 많이 사용하지 않았다.
- 다른 사람들을 따라잡기 위해 노력하다보니 페이스가 많이 무너졌다.

- 한계/교훈을 바탕으로 다음 프로젝트에서 시도해보고 싶은 점은 무엇인가?

- 모델에 대해 많이 알지 못해 모델 선택에 어려움이 많았으므로 앞으로 꾸준히 논문을 읽으며 이에 대한 지식을 미리 알아놔야겠다.
- 다음 프로젝트때는 깃허브를 적극적으로 활용하며 여러팀원들의 피드백을 들을 수 있는 기회가 있으면 좋겠다.
- 프로젝트 초기에 협업 툴의 규칙을 정확하게 만들어놓자

• 사람마다 속도가 다 다르므로 나의 페이스를 지키는 것을 목표로 하자.

- 나는 어떤 방식으로 모델을 개선했는가?

- 60 대의 데이터 분포가 많이 부족하여 해당 데이터들을 mixup 하여 데이터 수를 늘리는 작업을 진행했다.
- on line 상에서 데이터의 분포를 조정하기에는 여러가지 어려움이 있어 off line 으로 진행을 했는데 이 것이 오히려 과적합을 야기하는 경우도 발생했다

- 내가 해본 시도 중 어떠한 실패를 경험했는가? 실패의 과정에서 어떠한 교훈을 얻었는가?

- mixup 과정을 off-line 으로 구현을 하니 dataset 과 validation 에 데이터의 합친 결과와, 재료가 각각 존재할 수 있다는 것을 간과했다.
- 이를 고려하면, 현재 주어진 데이터들에 과적합될 수 있다는 생각을 하여 on-line 에서 구현하려고 노력했지만 끝내 해결하지 못했다.
- 이를 통해 코딩 실력이 아직 많이 부족하다는 점과, 미리이러한 점에 대해 알 수 있었다면 시간 단축을 할 수 있었을 것같다.
- 또한 K-fold 를 구현하기 위해 많은 시간을 투자했지만 data loader 부분이 복잡해서 실패했다.
- 복잡한 코드에 대한 명확한 이해 또는 baseline code 를 쉽게 쓸 수 있게 만들어보는 작업도 필요할 것 같다

- 협업 과정에서 잘된 점/ 아쉬웠던 점은 어떤 점이 있는가?

- 아이디어를 제시하고 받아드리는 데에 거리낌이 없었다는 점이 팀원 모두가 협업에 적극적이였다.
- 하지만 github, wandb, notion 등 협업 툴을 통한 실험 과정과 실험 진행, 결과 등에 대해 공유가 많지 않아서 팀원들이 어떤 실험을 어느 정도까지 진행을 했는지, 앞으로 해야할 실험은 무엇인지가 체계적이지 않아 실시간 피드백이 어려워 팀으로써의 장점이 퇴색된 것 같다.
- 팀 내 자신의 역할, 프로젝트에서 사용한 자신의 기술 및 지식, 모델링 및 성능 개선 등 프로젝트 전 과정에서 자신이 기여한 내용과 개인의 구체적 성과를 정리

- 팀원들이 제시하는 아이디어들에 대해 검증과 예상되는 단점에 대해 토론
- 60 대의 데이터 분포가 적으므로 데이터 분포를 늘리기 위해 mixup 을 통해 60 대 데이터의 분포를 늘렸다.
- 기초적인 모델은 중복된 데이터들로 인해 과적합이 많이 이루어졌지만, Robust 한 모델에는 1~5 퍼센트 가량 성능 향상에 도움이 됐다.
- 프로젝트 뿐만 아니라 동료를 통해서 내가 어떤 것을 배웠고, 프로젝트 과정에서 내가 마주한 어떤 어려움을 어떻게 극복했는지 등 자신의 이야기가 온전히 담길 수 있도록 작성해 주세요
- 여러 아이디어를 공유하며 시야가 넓어지는 경험을 했다.
- 협업을 하기 위한 협업툴의 기반 다지기가 필요하다고 생각했다.
 - o 처음에 규칙을 잘 다져놓으면 팔로워가 따라가기 쉬울 것 같다.
 - o 또한 리더들도 이후 코드 수정 등에 불편함을 생각한다면 이와 같은 방식이 효율적이라고 생각이 된다.
- 프로젝트에 대한 경험을 쌓는다는 생각을 하면서 참여를 했지만 프로젝트를 진행하면서 팀원들에게 큰 도움을 주지 못한 것 같아 멘탈적으로 많이 흔들렸다.
 - o 이를 해결하기 위해 여러가지 자기 암시를 많이 했다.
 - o 그러고 나니 몸은 힘들어도 마음은 그렇게 힘들지 않게 됐다.

🤓 전형우

- 개인적 감상

- 모든게 낯설었다
- 팀에게 도움이 되지 못하고 있는 것 같아 조급한 순간이 많았다.
- 다음에는 이것보다 무조건 잘해야지 하는 생각을 많이 했다.
- 주도적으로 내가 할 일을 찾아나가는 것이 중요하다는 생각을 했다.
- 체계적으로 내 실험에 대한 관리를 해야겠다고 느꼈다.

- 나는 내 학습 목표를 달성하기 위해 무엇을 어떻게 했는가?

- 낯선 환경에서 최대한 팀과 비슷한 환경을 맞추고, 베이스라인 코드에 대한 이해를 기반으로 천천히 건드려보려고 최대한노력했다.
- 내가 맡은 역할인 모델 별 비교를 하기 위해 다양한 모델에 대한 이론을 정리하고, 코드에 사용하는 모델과 loss 등에 대한 공부를 진행해 '알고 쓰자'의 마인드로 접근했다.
- 팀에게 도움이 되지 못해도 방해는 되지 말자는 생각으로 팀원의 작업을 이해하려고 노력했다.

- 마주한 한계는 무엇이며, 아쉬웠던 점은 무엇인가?

- 내가 수행할 수 있는 코딩이 많지 않다는 것을 느껴서 베이스 라인 코드에 대한 많은 수정을 하지 못한 것이 아쉬웠다.
- 첫 협업인데 깃을 쓰는 것이 두려워 거의 쓰지 않았고 브랜치 관리 등 여러 말을 잘 못 알아들어 아쉬웠다

- 한계/교훈을 바탕으로 다음 프로젝트에서 시도해보고 싶은 점은 무엇인가?

- 다음 프로젝트에서는 적극적으로 실패를 두려워하지 않고 코드를 변경해봐야겠다.
- 협업에서의 깃을 쓰는 방법을 열심히 배우고 익숙해져야겠다.
- 팀에게 도움이 못 된다고 조급해하지 말고 천천히 내가 할 수 있는 것을 찾아 새로운 아이디어로 팀에게 도움이 되어야겠다.

- 나는 어떤 방식으로 모델을 개선했는가?

- 다양한 모델에 대해 버전마다 어떤 차이가 있는지 생각해내고 각 모델마다 학습을 진행해 성능 비교를 수행했다.
- Transformer 를 사용한 모델을 사용해보고 이와 기존 CNN 모델과의 성능을 비교했다.

- 내가 해본 시도 중 어떠한 실패를 경험했는가? 실패의 과정에서 어떠한 교훈을 얻었는가?

• Inference.py 에서 무언가 잘못되어 내 output 이 아예 이상하게 나오는 현상을 결국 수정하지 못했다. 따라서 모델 학습에 대한 흥미가 많이 떨어졌다.

- 도저히 수정 불가능한 오류가 있을땐 차라리 빠르게라도 초기화를 수행해서 다시 처음부터 빠르게 쫓아가자는 생각을 해야겠다.
- dataset, dataloader 의 코드를 잘 이해하지 못해 건드릴 엄두를 내지 못했다. os, listdir 등 path 와 관련된 여러 코드에 대한 공부가 부족했던 것 같다.
- 세팅 환경에 대한 이해가 오래 걸렸던 것 같다.

- 협업 과정에서 잘된 점/ 아쉬웠던 점은 어떤 점이 있는가?

- 오프라인 만남에서 팀원들과 가까워질 수 있었고, 이 때회의를 통해 각자가 맡을 역할을 빠르게 나눠 진행이 빨랐다.
- 각자 맡은 위치에서의 역할을 너무 잘 해주었고, 이에 대한 공유와 병합도 빨랐다.
- 깃을 사용한 병합이 아닌 줌에서 코드를 공유하고, 노션에 파일을 올리는 등 깃을 통한 실시간 commit 이 이루어지지 않은 것은 아쉬웠다.

- 팀 내 자신의 역할, 프로젝트에서 사용한 자신의 기술 및 지식, 모델링 및 성능 개선 등 프로젝트 전 과정에서 자신이 기여한 내용과 개인의 구체적 성과를 정리

- 어떤 모델을 써야할지 판단하는 근거를 팀원들에게 제공했다.
- 현재의 CNN 계열 SOTA 모델인 EfficientNet 에 대해 공부할 수 있었고, 이 지식을 토대로 어떤 모델이 좋을 지 판단했다.

- 프로젝트 뿐만 아니라 동료를 통해서 내가 어떤 것을 배웠고, 프로젝트 과정에서 내가 마주한 어떤 어려움을 어떻게 극복했는지 등 자신의 이야기가 온전히 담길 수 있도록 작성해 주세요

- 가장 중요하다고도 볼 수 있는 모델을 정하기 위해 열심히 성능 비교를 했지만 결국 기존에 쓰던 EfficientB4 를 쓰게 되어 내가 한일이 없는 것 같아 아쉬웠다. 이런 경우 모델에 대한 튜닝을 수행해 더 성능이 좋은 모델을 만들어보려고 노력하는 것이 필요할 것 같다.
- 생전 처음 겪어보는 대회 환경에서 적응하기 위한 시간이 너무 오래 걸렸던 것 같다. 내가 뭘 해야할 지 몰라서 붕 뜨는 시간에 내가 뭘 할 수 있는지 찾아내고 그걸 일단 헤딩해보는 것이 내 성장에 더 도움이 될 것 같다

🤓 정호찬

- 개인적인 감상

- 다양한 방식으로 문제접근을 해보고 EDA 를 기반으로 가설 - 추론 - 검증의 단계로 프로젝트를 진행하여서 개인적으로 많은 교훈을 얻을 수 있었다
- 처음부터 Multi Label 문제로 편견을 갖고 접근했던 것이 조금 아쉽다 - 더 다양한 접근방식이 필요했던 것 같다
- 엄청나게 어려운 난이도의 문제는 아니었지만 그럼에도 불구하고 Data Imbalance 문제를 처음 접하다 보니까 어떤방식으로 해결해야할지 확신이 생기지 않았다
- 그래도 부스트캠프 과정에서 새롭게 배운 내용과 프로젝트를 진행하면서 새롭게 공부한 내용을 실전에 적용해볼 수 있어서 많은 발전을 할 수 있었다
- 또한 협업이라는 어려운 문제를 다루면서 나의 한계점도 느낄 수 있었고 이를 통해서 개선방향도 탐색할 수 있었다

- 나는 내 학습 목표를 달성하기 위해 무엇을 어떻게 했는가?

- 대회의 리더보드의 순위보다는 Robust 한 모델을 구성하는 능력을 달성 목표로 삼았다
- 또한 팀원들과 협업을 통해서 협업 능력을 향상시키는 것을 목표로 삼았다
- 이를 위해서 데이터적인 방식으로 모델링에 접근하였고 내가하고 있는 연구 내용과 의견을 시간이 있을 때 마다 서로 공유하면서 수정하고 검토하였다
- Loss, Optimizer, Lr 과 같이 직접적으로 구현하지 않는 하이퍼 파라미터 실험에 많은 시간을 소모하기보다는 직접 커스텀할 수 있는 Modeling, Augmentation, 전처리에 많은 집중을 하였다

- 마주한 한계는 무엇이며, 아쉬웠던 점은 무엇인가?

- 인공지능에 대한 지식과 프로그래밍에 대한 지식이 개인마다 차이가 있었기 때문에 이를 하나의 흐름으로 통합하는 것이 힘들었다
- 결국 프로젝트 초반에는 어느 정도 비슷한 속도로 흘러갔지만 중반 이후부터는 격차가 벌어지는 것 같았다
- 막상 대회 후반부로 갈 수록 리더보드 점수에 쫓겨서 처음에 설정했던 목표를 벗어난 것 같다

• 서로 이해하고 있는 부분을 완벽하게 알 수가 없어서 통합 방법이 어려웠던 것 같다

- 나는 어떤 방식으로 모델을 개선했는가?

- Three Way 방식을 통해서 3 개의 Label 을 각각 구별하고 Loss 를 계산하는 방식으로 모델을 수정하였다
- 깊은 Layer 로 구성된 Three Way 방식의 경우 과적합의 문제가 있었기 때문에 기존에 Pretrained 된 모델을 불러와 Freeze 시키고 branch 만 학습시키는 방법으로 Modeling 을 시도하였다
- Cutmix 를 활용하여서 모델의 과적합을 해소하려고 하였다
- 50 대 후반의 경계값을 제거하고, 데이터에서 압도적으로 많은 분포를 보였던 18~20 대 데이터를 undersampling 하여서 data imbalance 문제를 해결하려고 하였다
- Age 의 범주를 변경하여서 data imbalance 문제를 해결하려고 하였다

- 내가 해본 시도 중 어떠한 실패를 경험했는가? 실패의 과정에서 어떠한 교훈을 얻었는가?

- 생각보다 One Way 모델과 Three Way 모델의 성능차이가 크지 않았으며, 조금더 깊은 Layer 로 구성한 Three Way 의 경우 파라미터 수가 증가하였고 일부 데이터에 과적합 되는 결과를 보였다
- 가장 기본적인 Validation Set 구성에 신경을 많이 쓰지 못해서 객관적으로 모델링의 결과를 평가할 수단이 부족했던 것 같다
- Age 의 범주를 세분화하여서 예측 해야하는 Class 의 Imbalance 를 해결해보았지만 오히려 세분화로 인해서 예측해야 할 차원이 늘어나 모델 성능이 하락하였다
- 생각보다 Cutmix 가 오히려 성능이 하락하는 결과를 낳았다 - 하지만 팀원과 함께 랜덤적으로 Cutmix 된 데이터가 일부 Label 정보를 손실할 수 있다고 판단하여서 사진을 반으로 나눠 합쳐 Label 을 보존하는 방식으로 개선하였다
- 또한 이러한 실패를 기반으로 새로운 Solution 을 생각할 수 있었고 팀원들과 함께 교류를 하면서 내가 생각하지 못했던 점을 보완할 수 있었다

- 협업 과정에서 잘된 점/ 아쉬웠던 점은 어떤 점이 있는가?

좋았던 점

- 서로가 생각하고 있는 연구방향을 공유하면서 자유롭게 의견을 나누며 수정하면서 더 좋은 방향을 선정할 수 있었던 것 같다
- 서로 적극적으로 프로젝트에 참여하여서 문제를 해결하려는 의지가 좋았고 이를 통해서 프로젝트에서 좋은 성적을 낼 수 있었던 것 같다

아쉬운 점

- Git 과 같이 코드적인 부분의 협업툴을 적극적으로 활용하지 못했고 버전관리도 통합적으로 하지 못해서 동일한 조건에서 실험을 하지 못해 효율적인 비교가 부족했던 것 같다
- 코드를 모듈화 하지 못해서 새롭게 구현한 기능의 호환성 문제도 존재했던 것 같다

- 한계/교훈을 바탕으로 다음 프로젝트에서 시도해보고 싶은 점은 무엇인가?

- 코드를 모듈화 하여서 어느 환경에서도 동일한 조건의 실험을 진행하여 쉽게 비교할 수 있는 버전 관리를 시도해야겠다
- 팀원들이 진행하고 있는 내용을 실시간으로 파악하고 이를 통합적으로 관리하여서 모두가 함께 가는 방향으로 팀을 운영 해보아야겠다
- Git 과 같이 협업툴을 적극적으로 활용하여서 코드 버전을 잘 관리할 수 있는 협업 능력도 향상 시켜야겠다
- 체계적으로 역할을 배분하고 이를 통해서 결과를 내는 프로세스를 적용 해보아아겠다