Dozator de apa Proiect D.E.M.

Realizat de Cotoc Daniel Facultatea de automatică si calculatoare, UPT

Scopul lucrării

Scopul acestui proiect
este de a crea un
dozator automat de apă
care să ofere o soluție
eficientă, igienică și
precisă pentru
umplerea controlată a
recipientelor cu apă.

Unul dintre obiectivele principale ale dozatorului de apă este să faciliteze obținerea rapidă a cantităților dorite de apă, eliminând nevoia de a turna manual apă dintr-un recipient în altul.

Dozatorul de apă are și rolul de a asigura o utilizare economică a apei, evitând risipa și eliminând supra umplerea recipientelor.

Etapele de realizare

Cercetare și proiectare:

În această etapă, s-au identificat nevoile și cerințele utilizatorilor și s-a realizat un design general al dozatorului de apă, luând în considerare aspecte precum dimensiuni, materiale și interfețe de control.

Asamblare hardware:

Pentru construcția dozatorului de apă, s-a utilizat o placă Arduino ca sistem central de control, care a fost conectată la senzorii ultrasonici pentru a măsura nivelul de apă din rezervor și pentru a detecta prezența recipientului.

Etapele de realizare

Programare software:

S-a dezvoltat codul necesar în limbajul Arduino pentru a asigura funcționalitatea dozatorului de apă. Acesta a inclus algoritmi de măsurare și control, precum și gestionarea interacțiunii cu utilizatorul prin intermediul afișajului LED.

Testare și optimizare:

S-au efectuat teste riguroase pentru a verifica funcționalitatea și performanța dozatorului de apă. Pe baza rezultatelor obținute, s-au realizat ajustări și optimizări pentru a asigura un sistem eficient și precis.

A. PARTEA SOFTWARE

Software-ul dozatorului de apă a fost dezvoltat în limbajul Arduino, oferind o interfață de comunicare între componente și un control precis al funcționalității.

Principalele funcții ale software-ului includ măsurarea nivelului de apă în rezervor utilizând datele furnizate de senzorii ultrasonici, detectarea prezenței recipientului și determinarea capacității acestuia, controlul pompei de apă pentru umplerea controlată a recipientului și afișarea stării de umplere prin intermediul afișajului LED.

Prezentarea codului folosit:

```
.e ECHO SENS1 A2 // iesire semnal senzor ultrasonic
  fine TRIG SENS1 A3 // intrare semnal senzor ultrasonic
define ECHO SENS2 A5 //iesire semnal senzor ultrasonic
#define TRIG SENS2 A4 // intrare semnal senzor ultrasonic
#define W LED R 3 // led de functionare a aparatului
#define W LED G 5 // led de functinare pompa activa
#define W LED B 6 // led albastru
#define BUZZ 4 // pin pt buzzer
#define GLASS ECHO SENS A0 // iesire senzor pahar
#define GLASS TRIG SENS A1 //intrare senzor pahar
#define PUMP 2 // pin pompa apa
LiquidCrystal lcd(7, 8 , 9, 10, 11, 12);//pentru conectarea ecranului LCD
// UNITATE DE MASURA: centimetrii
// EROARE SENZOR: 3mm = 0.3cm
long duration; // citire sezor
float distance; // distanta de la senzor la nivelul apei
float distance2; // dinstata de la sensorul cand se umple pajarul
int volume; // volum actual de apa in ml si vol anterior
const int min dist = 3; // distanta minima pana cand e umplut paharul
const int dist glass = 7; // distanta de activare cand e pahararul pus in zona de umplere
const int min water = 3; // minimul de apa la care se activa rezervor gol
const int bottle height = 23; //cm inaltimea sticlei
const int bottle width = 7.50; //cm latura sticlei (patrat)
const float sens dist = 2; // cm distanta la care e amplasat senzorul
 nst float sens error = 0.3; // cm, eroarea senzorului
      water lvl; //cm de apa din sticla
```

Selectarea pinilor de pe placa Arduino

> Atribuire valori măsurate

Prezentarea codului folosit:

Verificare distanța de la senzor la nivelul apei

Afișare cantitate de apă din rezervor

```
_____ = readUltrasonicDistance(TRIG SENS1, ECHO SENS1); // citim senzorii
stance = duration / 58; // calculam distanta
water_lvl = bottle_height - (distance - sens_dist); // cantitate actuala de apa
volume = bottle width * bottle width * water lvl ;// volumul de apa in ml (convertire din cm in ml)
// volumul = aria * inaltime (cm cub = ml)
// aria = 1 * 1:
// verificare nivel de apa
if(water lvl <= min water)</pre>
 lcd.setCursor(0,1);
 lcd.print(" REZERVOR GOL ");
  analogWrite(W LED R, LOW); //oprire LED ROSU
  tone (BUZZ, 262, 150);
  delay(2000);
  noTone (BUZZ);
else if (water lvl < bottle height - sens error)
   analogWrite(W LED R, HIGH); //PORNIRE LED ROSU
   lcd.setCursor(0,1);
   lcd.print(" ");
   lcd.print(volume);
   lcd.print(" ml ");
   lcd.setCursor(0,1);
   lcd.print(" REZERVOR PLIN");
   analogWrite(W_LED_R, HIGH); //PORNIRE LED ROSU
```

Prezentarea codului folosit:

```
while ((distance <= dist glass) && (water lvl > sens error + min water) && (distance2 > min dist))
 analogWrite(W LED R, LOW); // oprire led rosu
 lcd.setCursor(0,0);
 lcd.print(" ALIMENTARE ");
 lcd.setCursor(0,1);
 lcd.print(" RECIPIENT
 analogWrite(W LED G, HIGH); // LED VERDE FUNCTIONARE POMPA
 delay(500);
 digitalWrite(PUMP, HIGH); // pornim pompa
 delay(150);
 duration = readUltrasonicDistance(TRIG SENS1, ECHO SENS1); // citim senzorii
 distance = duration / 58; // calculam distanta
 water lvl = bottle height - (distance - sens dist); // cantitate actuala de apa
 duration = readUltrasonicDistance(GLASS TRIG SENS, GLASS ECHO SENS); // citim sensorul
 distance = duration / 58:
 duration = readUltrasonicDistance(TRIG SENS2, ECHO SENS2);
 distance2 = duration / 58:
digitalWrite (PUMP, LOW); // oprim pompa
delay(100);
analogWrite(W LED G, LOW); //oprim led
analogWrite(W LED R, HIGH); // PORNIM LED ROSU - APARAT FUNCTIONAL
cd.setCursor(0,0);
```

Dacă este detectat un pahar și în rezervorul conține apa va porni pompa

Dacă nu mai este apa în rezervor, sau dacă s-a umplut paharul, pompa se va opri

B. PARTEA HARDWARE

- Placa Arduino reprezintă componenta centrală a sistemului, asigurând controlul și comunicarea între toate celelalte componente hardware.
- Senzorii ultrasonici sunt utilizați pentru a măsura nivelul de apă din rezervor, furnizând date precise pentru a determina momentul umplerii sau golirii acestuia.
- Pompă de apă este responsabilă de furnizarea apei în recipientul dorit. Aceasta este controlată de placa Arduino în funcție de instrucțiunile primite din software.
- Afișajul LED oferă o indicație vizuală a stării de umplere a recipientului, permițând utilizatorului să monitorizeze procesul de umplere.

Cei doi senzori care detectează dacă este prezent un recipient și dacă paharul este plin

Componentele
folosite:
Placa Arduino, 3
senzori, un releu
(comutare pompa
on/off), sursă
alimentare pompă
ecran LCD, buzzer

Concluzii

În viitor, se pot adăuga îmbunătățiri, cum ar fi integrarea unei interfețe de utilizator mai avansate, cu ecrane tactile și opțiuni de programare personalizate. De asemenea, se poate dezvolta o aplicație mobilă pentru control și monitorizare la distanță a dozatorului de apă. Aceste îmbunătățiri vor crește funcționalitatea și comoditatea sistemului.