CS 1501: Algorithm Implementation Fall 2019

Practice Midterm Examination

October 2019	Suggested: 60 minutes
Name:	Username (abc123):
Instructions:	

• This is a closed-book, closed-notes practice exam. It is recommended that you take it

without using any outside resources, print or electronic.

Problem 1: Carefully read each prompt and select the best answer for each question.

- i. Which of the following is a stable sorting algorithm?
 - (a) LZW
 - (b) Radix sort
 - (c) Heapsort
 - (d) None of the above
- ii. Which of the following is a property shared by all of the tries we discussed?
 - (a) Tied values always maintain their relative ordering
 - (b) Worst case height is guaranteed to be $O(\log n)$
 - (c) Keys are implicitly stored as paths from root to leaf
 - (d) Nodes are tuned to be 1 disk block in size
- iii. Which of the following cannot be used to implement a symbol table?
 - (a) Rabin-Karp
 - (b) A B-tree
 - (c) A binary search tree
 - (d) All of the above can be used to implement a symbol table
- iv. Assume that f(x) is $O(x^2)$ and f(x) is $\Omega(\log(x))$. Which of the following must be true?
 - (a) f(x) is $\Theta(x)$
 - (b) f(x) is $O(x^3)$
 - (c) f(x) is $\Omega(x^3)$
 - (d) None of the above
- v. Which of the following is a property of a good hash function?
 - (a) Utilizes most of the key
 - (b) Produces a normal distribution of hash values
 - (c) Produces the same output for every input
 - (d) Exploits differences between keys

Problem 2: The following code is used in the book's implementation of LSD Radix sort. Fill in the blanks so that the code works properly.

```
public static void sort(String[] a, int w) {
  int n = a.length;
  int R = 256;
             // extend ASCII alphabet size
  String[] aux = new String[n];
  for (int d = w-1; d >= 0; d--) {
     // sort by key-indexed counting on dth character
     // compute frequency counts
     int[] count = _____;
     for (int i = 0; i < n; i++) {
          _____;
     }
     // compute cumulates
     for (int r = 0; r < R; r++) {
          _____;
     }
     // move data
     for (int i = 0; i < n; i++) {
         -----;
     }
     // copy back
     for (int i = 0; i < n; i++) {
        a[i] = aux[i];
     }
  }
}
```

Problem 3: Consider using Huffman encoding to compress the following string.

DONTTELLMEILLTELLYOU

Show the following:

- The Huffman tree
- $\bullet\,$ The codeword/character pairs

State any assumptions that you make.

Problem 4: Use separate chaining to insert the following numeric keys into a hash table and show the resulting data structure. Insert the keys in the order shown (from left to right). Use the hash function provided.

 $h(x) = x \bmod 7$ Values to insert: 14, 5, 3, 7, 15, 17, 6, 23

Problem 5: Consider the alphabet {A, B, E, N}.

Construct a de la Briandais trie over this alphabet containing the following words:

BEE, NAB, BEAN, BAN, BEEN, BAE

Be sure to make the details clear, such as how complete keys are differentiated from prefixes, and how references are organized in the node.

Problem 6: Consider the alphabet $\{R, S, T, U\}$, represented by the 2-bit block codes $\{0, 1, 2, 3\}$, respectively. Expand the LZW-compressed string represented by the following sequence of (4-bit) codewords:

0 3 1 2 2 3 2 6 4 11 5 2

For each codeword processed, show the output character(s) and the new codeword added to the codebook.

Problem 7: Consider the following B-tree.

Figure 1: An example B-tree

i. Show the B-tree that would result from inserting 115 into the B-tree shown in Figure 1.

ii. Sh	now the B-tree	e that would re	esult from ren	moving 12 from	m the B-tree sho	own in Figure 1.
iii. W	hat is the ord	ler of the B-tre	e shown in F	igure 1?		