M 441: Homework 5

Nathan Stouffer

Problem 1

Problem. Recall the Power Method algorithm is defined by:

$$\mathbf{y}_n = A\mathbf{x}_n$$

$$\lambda_n = \phi(\mathbf{y}_n)/\phi(\mathbf{x}_n)$$

$$\mathbf{x}_{n+1} = \mathbf{y}_n/\|\mathbf{y}_n\|_2$$

where $\phi(\mathbf{z}) = z_1 + z_2 + \cdots + z_n$ and $\mathbf{z} = (z_1, z_2, ..., z_n)$. For most (but not all) initial guesses x_0, λ_n will approach the dominant eigenvalue λ of A with x_n being an approximation of the associated (unit) eigenvector.

a) Let

$$A = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix} \qquad \mathbf{x}_0 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

Using hand calculations (no decimal approximations) only, compute in sequence \mathbf{y}_0 , λ_0 , \mathbf{x}_1 , \mathbf{y}_1 , λ_1 , \mathbf{x}_2 . You should find $\mathbf{x}_1 = -\mathbf{x}_2$. Is the method converging to the dominat eigenvalue? Give some reasonable explanation.

b) Let

$$A = \begin{bmatrix} 16 & 2 & 4 \\ 1 & 40 & -3 \\ 0 & 3 & 5 \end{bmatrix} \qquad \mathbf{x}_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Use the posted *Power.m* and *phi.m* matlab scripts to approximate the dominant eigenvalue using N = 15 iterates. Include an extra column in the output matrix R as follows.

$$>> R = [x', lambda(k), residual(k), abs(r-edom)] \\$$

where edom is the dominant eigenvalue. You may find this value using the matlab statement

$$>> evals = eig(A)$$

where evals is a vector of all the eigenvalues of A.

Answer.

a) Now we show the computations for $y_0, \lambda_0, x_1, y_1, \lambda_1, x_2$:

$$y_0 = Ax_0 = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 7-9 \\ 3+3 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \end{pmatrix}$$
$$\lambda_0 = \phi(y_0)/\phi(x_0) = \frac{-2+6}{1+-3} = \frac{4}{-2} = -2$$
$$x_1 = \frac{y_0}{\|y_0\|_2} = \frac{1}{\sqrt{2^2+6^2}} \begin{pmatrix} -2 \\ 6 \end{pmatrix} = \frac{1}{2\sqrt{10}} \begin{pmatrix} -2 \\ 6 \end{pmatrix} = \begin{pmatrix} -1/\sqrt{10} \\ 3/\sqrt{10} \end{pmatrix}$$
$$y_1 = Ax_1 = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix} \begin{pmatrix} -1/\sqrt{10} \\ 3/\sqrt{10} \end{pmatrix} = \begin{pmatrix} -7/\sqrt{10} + 9/\sqrt{10} \\ -3/\sqrt{10} - 3/\sqrt{10} \end{pmatrix} = \begin{pmatrix} 2/\sqrt{10} \\ -6/\sqrt{10} \end{pmatrix}$$

$$\lambda_1 = \phi(y_1)/\phi(x_1) = \frac{2/\sqrt{10} - 6\sqrt{10}}{-1/\sqrt{10} + 3/\sqrt{10}} = \frac{-4/\sqrt{10}}{2/\sqrt{10}} = -2$$

$$x_2 = \frac{y_1}{\|y_1\|_2} = \frac{1}{\sqrt{(4/\sqrt{10})^2 + (6/\sqrt{10})^2}} \begin{pmatrix} 2/\sqrt{10} \\ -6/\sqrt{10} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2/\sqrt{10} \\ -6/\sqrt{10} \end{pmatrix} = \begin{pmatrix} 1/\sqrt{10} \\ -3/\sqrt{10} \end{pmatrix}$$

Because $\mathbf{x}_1 = -\mathbf{x}_2 = \binom{-1/\sqrt{10}}{3/\sqrt{10}}$, we can conclude that our initial guess \mathbf{x}_0 was an eignvector. This means that $\lambda_1 = \lambda_2 = -2$ is an eigenvalue. To say whether -2 is the dominant eigenvalue, we will compute the eigenvalues of A: $\det(A - \lambda I) = (7 - \lambda)(-1 - \lambda) - 9 = \lambda^2 - 6\lambda - 16 = (\lambda - 8)(\lambda + 2)$. So the eigenvalues are 8 and -2, therefore -2 is not the dominant eigenvalue. My reasoning as to why -2 is not the dominant eigenvalue for A does not generalize well to higher dimensions since it defeats the whole point of an iterative method (which is supposed to be faster than finding the actual eigenvalues), but it suffices for this example.

b) Using *Power.m* and *phi.m*, I found an approximation for the dominant eigenvalue as 39.839856538994297. Here is the output matrix *R* from matlab:

eigenvector			eigenvalue	residual	absolute error
1.0000000000000000	1.0000000000000000	1.0000000000000000	-	-	-
0.492921786443043	0.851410358401620	0.179244285979288	22.66666666666668	14.751171305567953	17.173349870446248
0.288650126609190	0.952545417810325	0.096635042386555	31.352941176470587	8.514642897746276	8.487075360642329
0.177791416892457	0.980306869857993	0.085957274204090	36.141651031894931	3.925083655344991	3.698365505217986
0.129984672450642	0.987858078096879	0.085090554508944	38.303760998780064	1.661447031042967	1.536255538332853
0.110508604618063	0.990216709359014	0.085198103333200	39.215720501528395	0.679404750869178	0.624296035584521
0.102696155271591	0.991048657684767	0.085299811216993	39.589054515969927	0.273690124388765	0.250962021142989
0.099577137816148	0.991362763435785	0.085347905055174	39.739652038687048	0.109532584310219	0.100364498425868
0.098333871704795	0.991485123035684	0.085368029580514	39.799973167105179	0.043712123870553	0.040043370007737
0.097838568980598	0.991533420743819	0.085376167446719	39.824056566750471	0.017423731934735	0.015959970362445
0.097641285388108	0.991552587293665	0.085379423861936	39.833658239997888	0.006941658824055	0.006358297115028
0.097562711262609	0.991560209754089	0.085380722669200	39.837483927715994	0.002765001745509	0.002532609396923
0.097531417599642	0.991563243776705	0.085381240164471	39.839007837873581	0.001101261844997	0.001008699239335
0.097518954420133	0.991564451842739	0.085381446290237	39.839614800735262	0.000438602067464	0.000401736377654
0.097513990787375	0.991564932927385	0.085381528385413	39.839856538994297	0.000174680576074	0.000159998118619

Here is a larger version of the above table with only the eigenvalue approximation and the absolute error.

eigenvalue	absolute error		
-	-		
22.666666666666	17.173349870446248		
31.352941176470587	8.487075360642329		
36.141651031894931	3.698365505217986		
38.303760998780064	1.536255538332853		
39.215720501528395	0.624296035584521		
39.589054515969927	0.250962021142989		
39.739652038687048	0.100364498425868		
39.799973167105179	0.040043370007737		
39.824056566750471	0.015959970362445		
39.833658239997888	0.006358297115028		
39.837483927715994	0.002532609396923		
39.839007837873581	0.001008699239335		
39.839614800735262	0.000401736377654		
39.839856538994297	0.000159998118619		

Here is the matlab code used to generate the above tables.

```
Power Method: Define problem here
응
       A = matrix
응
      x0 = initial (dominant) eigenvector guess
응
           define as a column vector.
응
응
             r = current estimate of dominant eigenvalue
응
             x = current estimate of unit eigenvector
             N = number of iterates
응
응
      lambda(k) = k-th approximate value of dom. e-val
  residual(k) = 2-norm of Ax-rx at k-th iterate
응
응
        R(k,:) = k-th \text{ approximate e-vector, lambda(k),}
응
                 residual(k), absolute error of for dom. eval
응
format long
A=[16,2,4;1,40,-3;0,3,5];
x0=[1;1;1];
evals=eig(A);
edom=evals(1);
N=15;
R(1,:) = [x0',0,0,0];
x=x0;
for k=2:N
 y=A*x;
 r=phi(y)/phi(x);
 x=y/norm(y);
 lambda(k)=r;
 residual(k)=norm(A*x-r*x,2);
 R(k, :) = [x', lambda(k), residual(k), abs(r-edom)];
end;
disp('
      ′)
disp('
disp('
       eigenvector - lambda - residual - absolute error')
disp(' ')
R
```

Problem 2

Problem. Recall that the steepest descent algorithm for approximating the solution of Ax = b (when $A = A^T$ is positive definite) is

$$\mathbf{r}_n = A\mathbf{x}_n - \mathbf{b}$$

$$\alpha_n = \frac{\mathbf{r}_n^T \mathbf{r}_n}{\mathbf{r}_n^T A \mathbf{r}_n}$$

$$\mathbf{r}_{n+1} = \mathbf{x}_n - \alpha_n \mathbf{r}_n$$

where \mathbf{r}_n is the residual vector and \mathbf{x}_n is the approximation of the solution Ax = b.

a) Let

$$A = \begin{bmatrix} 2 & 1/4 \\ 1/4 & 1/2 \end{bmatrix} \qquad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

First prove A is positive definite and then use hand calculations (no decimal approximations) to compute in sequence \mathbf{r}_0 , α_0 , \mathbf{x}_1 , \mathbf{r}_1 , α_1 , \mathbf{x}_2 .

b) Use the code steepest.m to approximate the solution of Ax = b where $A \in \mathbb{R}^{50 \times 50}$ is the tri-diagonal matrix defined on the assignment sheet. The iterat output in steepest.m is stored in the matrix R.

$$R(n,:) = [n, xn', norm(en, 2)];$$

The last comlumn of R is the 2-norm of the absolute error. Plot this absolute error versus iteration number for N=3000 iterates. Use matlab to do this.

Answer.

a) Now we show the computations for $\mathbf{r}_0, \alpha_0, \mathbf{x}_1, \mathbf{r}_1, \alpha_1, \mathbf{x}_2$:

$$\mathbf{r}_{0} = A\mathbf{x}_{0} - \mathbf{b} = \begin{bmatrix} 2 & 1/4 \\ 1/4 & 1/2 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$\alpha_{0} = \frac{\mathbf{r}_{0}^{T} \mathbf{r}_{0}}{\mathbf{r}_{0}^{T} A \mathbf{r}_{0}} = \frac{\begin{pmatrix} -1 & -2 \end{pmatrix} \begin{pmatrix} -1 \\ -2 \end{pmatrix}}{\begin{pmatrix} -1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 1/4 \\ 1/4 & 1/2 \end{pmatrix} \begin{pmatrix} -1 \\ -2 \end{pmatrix}} = \frac{1+4}{\begin{pmatrix} -1 & -2 \end{pmatrix} \begin{pmatrix} -5/2 \\ -5/4 \end{pmatrix}} = \frac{5}{5/2+5/2} = 5/5 = 1$$

$$\mathbf{x}_{1} = \mathbf{x}_{0} - \alpha_{0} \mathbf{r}_{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - 1 \begin{pmatrix} -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\mathbf{r}_{1} = A\mathbf{x}_{1} - \mathbf{b} = \begin{bmatrix} 2 & 1/4 \\ 1/4 & 1/2 \end{bmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5/2 \\ 5/4 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3/2 \\ -3/4 \end{pmatrix}$$

$$\alpha_{1} = \frac{\mathbf{r}_{1}^{T} \mathbf{r}_{1}}{\mathbf{r}_{1}^{T} A \mathbf{r}_{1}} = \frac{\begin{pmatrix} 3/2 & -3/4 \end{pmatrix} \begin{pmatrix} 3/2 \\ -3/4 \end{pmatrix}}{\begin{pmatrix} 3/2 & -3/4 \end{pmatrix} \begin{pmatrix} 3/2 \\ -3/4 \end{pmatrix}} = \frac{9/4 + 9/16}{\begin{pmatrix} 3/2 & -3/4 \end{pmatrix} \begin{pmatrix} 45/16 \\ 0 \end{pmatrix}} = \frac{45/16}{3/2 * 45/16} = 2/3$$

$$\mathbf{x}_{2} = \mathbf{x}_{1} - \alpha_{1} \mathbf{r}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - 2/3 \begin{pmatrix} 3/2 \\ -3/4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ -1/2 \end{pmatrix} = \begin{pmatrix} 0 \\ 5/2 \end{pmatrix}$$

b) Using *steepest.m*, I found an approximation an approximation for x in Ax = b where A is the 50×50 tridiagonal matrix defined on the assignment sheet. Here is the plot matlab generated for error vs the number of iterates. The code that I used is on the next page.

Figure 1: Error vs Number of iterates

```
% Steepest descent method:
             Ax = b
clear all;
format long
M = 50;
a=2;
am=-1;
ap = -1;
A=diag(a*ones(1,M))+diag(ap*ones(1,M-1),1)+diag(am*ones(1,M-1),-1);
xbar=ones(M,1); % exact solution
b=A*xbar;
xn=zeros(M,1); % initial guess
N=3000;
for n=1:N
    rn=A*xn-b;
    an=(rn'*rn)./(rn'*(A*rn));
    xnp=xn-an*rn;
    en=xn-xbar;
    R(n,:) = [n, xn', norm(en, 2)];
    xn=xnp;
end
len=length(R(1,:));
plot(R(:,len));
```