Actuadores

C2.3 Reto en clase

Circuito temporizador con circuito NE555

Instrucciones

- De acuerdo con la información presentada por el asesor referente al tema, elabore lo que se solicita dentro del apartado desarrollo.
- Toda actividad o reto se deberá realizar utilizando el estilo MarkDown con extension .md y el entorno de desarrollo VSCode, debiendo ser elaborado como un documento single page, es decir si el documento cuanta con imágenes, enlaces o cualquier documento externo debe ser accedido desde etiquetas y enlaces.
- Es requisito que el archivo .md contenga una etiqueta del enlace al repositorio de su documento en Github, por ejemplo Enlace a mi GitHub
- Al concluir el reto el reto se deberá subir a github el archivo .md creado.
- Desde el archivo .md se debe exportar un archivo .pdf con la nomenclatura C2.2_TituloActividad_NombreAlumno.pdf, el cual deberá subirse a classroom dentro de su apartado correspondiente, para que sirva como evidencia de su entrega; siendo esta plataforma oficial aquí se recibirá la calificación de su actividad por individual.
- Considerando que el archivo .pdf, fue obtenido desde archivo .md, ambos deben ser idénticos y mostrar el mismo contenido.
- Su repositorio ademas de que debe contar con un archivo **readme**.md dentro de su directorio raíz, con la información como datos del estudiante, equipo de trabajo, materia, carrera, datos del asesor, e incluso logotipo o imágenes, debe tener un apartado de contenidos o indice, los cuales realmente son ligas o enlaces a sus documentos .md, evite utilizar texto para indicar enlaces internos o externo.
- Se propone una estructura tal como esta indicada abajo, sin embargo puede utilizarse cualquier otra que le apoye para organizar su repositorio.

```
readme.md
blog
 | | C2.1 TituloActividad.md
 | C2.2 TituloActividad.md
| | C2.3_TituloActividad.md
img
 docs
```


Desarrollo

1. Investigue que es la modulación por ancho de pulso y para que sirve.

Qué es PWM y para qué sirve

2. Calcule el valor de C y R para obtener un valor de señal de 5 segundos para el siguiente circuito temporizador mono-estable.

Valor R Valor C

97kohm 0.000047 F

```
Fórmula: Ct = 1.1 * R * C
Cálculo de la resistencia exacta
R = 5s / (1.1 * 0.000047 uF)
R = 96,711 ohms
Resistencia comercial cercana
82komh + 15kohm = 97kohm
Tiempo Calculado
Ct= 1.1 * 97,000ohm * 0.000047F = 5.014s
```

3. Como se podrá observar la imagen anexa corresponde a un circuito temporizador, que terminal se tendría que utilizar para activar el temporizador? Cual terminal se utilizaría si se desea integrar un actuador eléctrico?

```
2 Trigger
```

3 Out para que se mueva de acuerdo con el voltaje que esta recibiendo

Criterios	Descripción	Puntaje
Instrucciones	Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?	20
Desarrollo	Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad?	80

🕮 Ir a mi GitHub