Theorem: (Strong Law of Large Numbers) Assume $1 \times n3_{n=1}^{\infty}$ are iid RVs with finite mean $E(x_n) = \mu$. For each $n \in IN$, let $\overline{X}_n = \frac{S_n}{n}$, where $S_n = X_1 + \dots + X_n$. Then $1 \times n3_{n=1}^{\infty}$ Converges almost surely to μ .

Proof: We finish step 10 from last time. For each $k \in IN$, define n_k such that $u_{n_k} \le k \in U_{n_k+1}$. Then

 $\frac{S_{u_{n_k}}}{u_{n_{k+1}}} \leq \frac{S_k}{k} \leq \frac{S_{u_{n_{k+1}}}}{u_{n_k}} = \frac{S_{u_{n_{k+1}}}}{u_{n_{k+1}}} \cdot \frac{u_{n_{k+1}}}{u_{n_k}} \longrightarrow \mu \cdot \lambda$

Thus, $\limsup_{k\to\infty} \frac{S_k}{k} \leq \alpha \mu$ a.s. true for all $\alpha > 1$, so $\limsup_{k\to\infty} \frac{S_k}{k} \leq \mu$ a.s.

Similarly, on the left side,

 $\frac{S_{unk}}{u_{nk}} \cdot \frac{u_{nk}}{u_{nk+1}} \longrightarrow \mu \cdot \frac{1}{a} \quad \text{So liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad \text{so liminf } \frac{S_k}{k} \geq \frac{\mu}{a} \quad \text{a.s.} \quad$

Corollary: Assume $\frac{1}{2} \times \frac{300}{1}$ are iid RVs with $\frac{1}{2} \times \frac{1}{2} \times \frac{300}{1}$ converges in probability to μ .

Distributions of RVs

Definition: Let X be a RV on (Ω, \mathcal{F}, P) . The distribution or law of X is the probability measure μ_X on $(IR, \mathcal{B}(IR))$ defined by

 $\mu_X(A) = P(X \in A) = P(X^{-1}(A))$ for $A \in \mathcal{B}(IR)$.

We refer to μx as $\mathcal{L}(X)$ or PX^{-1}

Notation: The notation $X \sim \mu$ to denote μ is a distribution

of X.

Definition: The cumulative distribution function (cdf) of X

is the function $F_X : \mathbb{R} \to [0,1]$ by

 $F_X(t) = P(X \le t)$ $t \in \mathbb{R}$

Proposition: Let X be a RV, $X \sim \mu$, $F_X : IR \rightarrow [0,1]$ be the cdf of X.

(i) Fx is non decreasing

(ii) Fx is right-continuous

(iii) lim Fx (t) = 0

(iv) tao Fx H) = 1

Proof: See Measure Theory Assignment 1.

Proposition: Let X and Y be RVs. Then $\mu_X = \mu_Y$ if and only if $F_X = F_Y$.

Theorem: For a RV X on (Ω, \mathcal{F}, P) , we get another probability space (IR, 33, μ_x) and it satisfies

 $E_{p}(g(X)) = E_{\mu_{X}}(g)$ for every Borel $g: \mathbb{R} \rightarrow \mathbb{R}$.

In particular

 $E_{\rho}(g(x)) = \int_{\Omega} g(x) dP = \int_{1R} g d\mu_{x} = E_{\mu_{\rho}}(g)$

Example: For the probability space being the uniform (Lebesgue) measure on (011), $X(w) = -\ln(w)$. For $t \in IR$

 $F_X(t) = P(X \le t) = 0$ if $t \le 0$. Otherwise if to

 $F_X(t) = P(-\ln(\omega) \le t) = P(\ln(\omega) \ge -t) = P(\omega > e^{-t})$

Example:
$$X = -\ln(\omega)$$
 on $(0,1)$, Let $g(x) = x^2$.
 $E_p(g(x)) = \int_0^1 \ln^2(\omega) d\omega = E_{\mu_x}(g) = \int_{\mathbb{R}} g(s) f_x(s) ds$

$$= \int_0^\infty s^2 e^{-s} ds = \Gamma(3) = 2$$

Proposition: Let X be a RV that has pdf fx. Then for all

$$g: \mathbb{R} \to \mathbb{R}$$

$$E_{p}(q(x)) = \int_{-\infty}^{\infty} g(s) f_{x}(s) ds$$

Example: On
$$(\Omega_*, \sigma_E, P_E)$$
 let $Y(w) = 0, 1, 2, 3$.
 $P(Y = K) = \begin{cases} \binom{3}{k} 2^{-3} & K \in \{0, 1, 2, 3\} \\ O & \text{otherwise} \end{cases}$

$$P(Y \in A) = \sum_{k=0}^{3} {3 \choose k} 2^{-3} \delta_k(A) \text{ where}$$

$$\delta_k(A) = \begin{cases} 1 & \text{if } k \in A \\ 0 & \text{if } k \notin A. \end{cases}$$

(The point-mass measure)