STATISTICAL PATTERN RECOGNITION ASSIGNMENT 2

Ali Gholami

Department of Computer Engineering & Information Technology Amirkabir University of Technology

 $http://ceit.aut.ac.ir/\sim aligholamee \\ aligholamee@aut.ac.ir$

Abstract

In this assignment, we'll be focusing on the *Bayes Classifier*. We'll work with *Bayesian Discriminators* and *Bayes Error*. The *Bhattacharyya* error bound is also analyzed as an upper bound for the *Bayes Classifier* error. The detailed computations of *Bayesian Discriminators* are also given in an exact definition. Finally, we'll be going through a more practical example of a linear discriminator by classifying the flowers in the *Iris* dataset.

Keywords. Linear Discriminator, Quadratic Discriminator, Bayes Classification, Bayes Error, Optimal Classification, Bhattacharyya Distance, Bhattacharyya Upper Bound, Iris Dataset, Iris Classification.

1 Quadratic & Linear Discriminant Analysis

We consider a classification problem in dimension d=2, with k=3 classes where:

$$p(x \mid w_i) \sim N(\mu_i, \Sigma_i), i = 1, 2, 3$$

and

$$\mu_1 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \mu_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \ \mu_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_i = \Sigma \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{bmatrix},$$

- (a) Calculate the discriminant function $g_i(x)$ for each class.
- (b) Express your discriminant functions in the form of linear discriminant functions.
- (c) Determine and plot the decision boundaries.

Solution

(a) The general form of a Bayesian discriminator is given in.

$$g_i(\underline{x}) = \tag{1.1}$$