

v1.0 2023.08

I. Key EXIF and XMP information in images taken using the Mavic 3M

[EXIF] IFDO					
Key Value example Type Unit Meaning					
Bits Per	40	intono		Number of bits per pixel.	
Sample	16	integer	_	8 or 16.	

[EXIF] GPS					
Key	Value example Type Unit Meaning				
GPS Time	02:47:57	otrin a		CDS time when photo was taken	
Stamp	02.47.57	string	-	GPS time when photo was taken.	
GPS Date	2022-02-00	a tui a a		CDC data when the to was taken	
Stamp	2023:03:09	string		GPS date when photo was taken.	

【XMP】 drone-dji					
Key	Value example	Туре	Unit	Meaning	
Version	1.6	string	-	XMP version.	
Image Source	MS_NIR_CAMERA	string	-	Camera type.	
Gps Status	RTK	string		GPS Status.	
Ops Glatus	KIK	Stillig		"Normal"/"RTK"/"Invalid".	
Altitude Type	RtkAlt	string	-	Elevation type.	
Ailitude Type				"PressureAlt"/"GPSFusionAlt"/"RtkAlt".	
Gps Latitude	22.000000° N	float	-	GPS latitude when photo was taken.	
Gps Longitude	113.000000° E	float	-	GPS longitude when photo was taken.	
Absolute	+50.000	float	meter	Absolute altitude (geodetic altitude) when	
Altitude	+50.000	IIOat	meter	photo was taken.	
Relative	+0.000	float	meter	Relative altitude (relative to the altitude of	
Altitude	+0.000	iloat	meter	takeoff point) when photo was taken.	
Gimbal Roll				Gimbal roll angle when photo was taken	
Degree	+0.00	float	degree	(NED coordinate system, the rotation	
Degree				order is ZYX).	

	I	I	T	
Gimbal Yaw Degree	+0.00	float	degree	Gimbal yaw angle when photo was taken
				(NED coordinate system, the rotation
				order is ZYX).
Gimbal Pitch				Gimbal pitch angle when photo was taken
	+0.00	float	degree	(NED coordinate system, the rotation
Degree				order is ZYX).
El'. La D. II				Aircraft roll angle when photo was taken
Flight Roll	+0.00	float	degree	(NED coordinate system, the rotation
Degree				order is ZYX).
Elia I () (Aircraft yaw angle when photo was taken
Flight Yaw	+0.00	float	degree	(NED coordinate system, the rotation
Degree				order is ZYX).
Eliaba Direl				Aircraft pitch angle when photo was taken
Flight Pitch	+0.00	float	degree	(NED coordinate system, the rotation
Degree				order is ZYX).
	+0.00	float		Flight speed in the north direction when
Flight X Speed			m/s	photo was taken.
	+0.00	float	m/s	Flight speed in the east direction when
Flight Y Speed				photo was taken.
E:: 1.70			,	Flight speed in the elevation direction
Flight Z Speed +0.00 float	float	m/s	when photo was taken.	
	0	integer	-	Whether the camera is in reverse or not.
Cam Reverse				0: Normal, 1:Reverse.
				Fixed 0.
0: 1 1				Whether the gimbal is in reverse or not.
Gimbal	0	integer	-	0: Normal, 1:Reverse.
Reverse				Fixed 0.
Self Data			-	Customized data.
	50			RTK status.
				0: Failed to position.
			-	16: Single point positioning (meter-level
Rtk Flag		integer		accuracy).
				32~49: Floating point solution positioning
				(decimeter-level to meter-level accuracy).
				50: Fixed solution positioning (centimeter-
				level accuracy).
				.5.5. 4004.40)/

Rtk Std Lon	0.01224	float	-	RTK positioning standard longitude deviation.
				RTK positioning standard latitude
Rtk Std Lat	0.01624	float	-	deviation.
Rtk Std Hgt	0.03406	float	-	RTK positioning standard elevation
				deviation.
Rtk Diff Age	1.60000	float	-	RTK difference age (connection age).
NTR IP Mount	MOUNTPOINT_	string	-	Mount point of network RTK.
Point	NAME	"		
NTR IP Port	1234	integer	-	Port of network RTK.
NTR IP Host	123.123.123.123	otring	_	IP address or domain name of network
INTRIF HOSE	123.123.123.123	string	-	RTK.
				Whether the photo is suitable for mapping
				operation or not.
Surveying				0: Not recommended as the accuracy
Mode	1	integer	-	cannot be guaranteed.
				1: Recommended as the accuracy can be
				guaranteed.
	0	integer	-	Whether the camera parameters have
				been dewarped or not.
Dewarp Flag				0: Not dewarped.
				1: Dewarped.
				Fixed 0.
	2022-10-24;			Tixeu o.
	2200.899902343750,			Camera parameters for dewarping.
	2200.219970703125,			(yyyy-mm-dd; fx,fy,cx,cy,k1,k2,p1,p2,k3).
	10.609985351562,			
	,			yyyy-mm-dd: Calibration date.
Dewarp Data	-6.575988769531,	string	-	fx,fy: Calibrated focal length (unit: pixel).
	0.008104680106,	J		cx,cy: Calibrated optical center position
	-0.042915198952, -			(unit: pixel, origin point: photo center).
	0.000333522010,			K1,k2,p1,p2,k3: Radial and tangential
	0.000239991001,			distortion parameters.
	0.00000000000			
Calibrated	2170.000000	float	pixel	Designed focal length of lens (unit: pixel).
Focal Length				4.34[mm] / 2.0[um/pixel] = 2170.0[pixel].

Calibrated				
	4000 00000	d a set		X coordinate of the designed optical
Optical Center	1296.000000	float	pixel	center position (unit: pixel).
X Calibrated				
	072 000000	floot	nivol	Y coordinate of the designed optical
Optical Center Y	972.000000	float	pixel	center position (unit: pixel).
UTC At	2023:03:09			
Exposure	02:47:57.725671	string	-	UTC when the camera is exposed.
Laposure	02.47.37.723071			Shutter type.
Shutter Type	Electronic	string	-	Fixed "Electronic".
Camera Serial				FIXED Electronic .
Number	5J4O3AIRBAD00F	string	-	Camera serial number.
Drone Model	M3M	string	_	Aircraft model.
Drone Serial	1581F5FKD229N0010	String	_	All Clark House.
Number	056	string	-	Aircraft serial number.
Number	3377fb05b357448fb87	UUID		
Capture UUID	7023daebbaed3	V4	-	Unique label for one capture.
Relative	7023daebbaed3	V -		
Optical Center	0.000000	float	pixel	Disparity on X direction relative to NIR
X	0.00000	lioat	PIACI	band.
Relative				
Optical Center	0.00000	float	pixel	Disparity on Y direction relative to NIR
Υ		lGat	PIXO	band.
	1.716200,			
	0.000000,			
	415.752014,			
	0.000000,			Designed homography matrix from
Dewarp	1.716200,	string	_	designed image plane into designed RGB
HMatrix	309.813995,			image plane.
	0.000000,			
	0.000000,			
	1.000000			
	9.891065e-01,			
	1.740813e-02,			
Calibrated	-1.592078e+01,	string	-	Calibrated homography matrix from real
HMatrix	-1.568817e-02,			image plane into designed image plane.
	9.885082e-01,			
	1		1	1

	3.766531e+01,			
	1.083204e-06,			
	5.127963e-07,			
	1.000000e+00			
				Vignetting compensation flag.
Vignetting Flag	0	integer	-	0: Disabled, 1: Enabled.
				Fixed 0.
	-0.000070832,			
	1.829488e-06,			
Vignetting	-5.307911e-09,			Coefficients of vignetting compensation.
Data	8.820567e-12,	string	-	(k[0], k[1], k[2], k[3], k[4], k[5]).
	-6.663875e-15,			
	1.885447e-18			
LS_type	1	integer	-	Sunsensor type. Fixed to 1.
				Sunsensor status.
	2			0: Invalid state due to insertion of USB
LS_status		integer	_	dongle.
_				1: Valid state.
				2: Valid and compensating state.
				Sequence number of captured Sunsensor
Package_idx	165	integer	-	data.
Cfg_cnt	1	integer	_	For Sunsensor calibration usage.
0.19_0.11	11682.000 10389.000	Intogor		Sunsensor raw values.
Raw Data	12836.000 9945.000	string	-	Order: Green, Red, RedEdge, NIR.
	12000.000 3343.000			Band name.
Band Name	NIR	string	-	
				Green/Red/RedEdge/NIR.
B. J. F	860(+/-26)nm			Narrow band wavelength.
Band Freq		string	-	Format is "Central wavelength(+/-
				HWHM)nm".
Irradiance	2000.000	float	_	Sunsensor value after compensation by
				built-in algorithm.
Sensor Gain	1.044	float	-	Gain coefficient of the multispectral image
2000. 00		illat		sensor.
Exposure	1000	integer	micro-	Exposure time of the multispectral image
Time		integer	second	sensor.

Sensor Gain Adjustment	1.002	float	-	Gain compensation coefficient of the multispectral image sensor relative to standard NIR module.
Sensor index	4	integer	-	Green:1, Red:2, RedEdge:3, NIR:4
Black Level	3200	integer	-	Black level. 3200@16bit or 12@8bit.
Drone ID	1581F5FKD229N0010 056	string	-	Same as Drone Serial Number.

How to calculate NDVI values using images and multispectral sunlight sensor values from the Mavic 3M?

The general formula to calculate the Normalized Difference Vegetation Index (NDVI) is

$$NDVI = \frac{NIR_{ref} - Red_{ref}}{NIR_{ref} + Red_{ref}} \quad (Eq. 1)$$

Where X_{ref} represents the reflectance value of the X band, NIR_{ref} and Red_{ref} are the reflectance values of the NIR and Red bands, respectively.

If we define $X_{reflected}$ and $X_{incident}$ as the reflected light and incident light of the X band, then,

$$NIR_{ref} = \frac{NIR_{reflected}}{NIR_{incident}}, Red_{ref} = \frac{Red_{reflected}}{Red_{incident}}$$
.

Multispectral cameras capture the reflected light of the target in the form of multispectral images, and the sunlight sensor captures the incident light to record sunlight sensor signal values. Hence,

$$NIR_{ref} = \frac{NIR_{reflected}}{NIR_{incident}} = \frac{NIR_{camera}}{NIR_{LS}} \times \rho_{NIR}$$
 (Eq. 2)

$$Red_{ref} = \frac{Red_{reflected}}{Red_{incident}} = \frac{Red_{camera}}{Red_{LS}} \times \rho_{Red}$$
 (Eq. 3)

Here, X_{camera} is the signal value obtained from multispectral images of the X band, while X_{LS} is the signal value obtained from the sunlight sensor of the same band. ρ_X is the conversion parameter between the camera and sunlight sensor signal values. When converting between these two signal values, make sure that the reflected light (i.e. the signal value of the multispectral sunlight sensor) and the incident light (i.e. the signal value of the camera images) are in the same unit. Also, the multispectral sunlight sensor and cameras should have the same photosensitivity, which means that the signal values of the multispectral images and sunlight sensor should be the same under the same lighting conditions. The camera and the sunlight sensor values have a linear relationship, therefore they can be converted from one to the other using ρ_X .

In addition, because the sensitivity can be different for each camera within the array and between different sunlight sensors, calibrations are required to ensure that cameras of different bands and different sunlight sensors have the same signal value under the same lighting conditions. *All bands are calibrated against the standard NIR band*. The calibration parameters are $pCam_x$ and pLS_x , respectively.

Since
$$\rho_x = \rho_{NIR} \times \frac{pCam_x}{pLS_x}$$
, then,

$$NIR_{ref} = \frac{NIR_{reflected}}{NIR_{incident}} = \frac{Red_{camera}}{Red_{LS}} \times \rho_{NIR} \times \frac{pCam_{NIR}}{pLS_{NIR}} = \frac{NIR_{camera} \times pCam_{NIR}}{NIR_{LS} \times pLS_{NIR}} \times \rho_{NIR}$$
 (Eq. 4)

$$Red_{ref} = \frac{{}^{Red_reflected}}{{}^{Red_incident}} = \frac{{}^{Red}_{camera}}{{}^{Red}_{LS}} \times \rho_{NIR} \times \frac{{}^{pCam_{Red}}}{{}^{pLS}_{Red}} = \frac{{}^{Red}_{camera} \times pCam_{Red}}{{}^{Red}_{LS} \times pLS_{Red}} \times \rho_{NIR} \text{ (Eq. 5)}$$

Therefore, we can use Eq. 6 to calculate NDVI.

$$\text{NDVI} = \frac{NIR_{ref} - Red_{ref}}{NIR_{ref} + Red_{ref}} = \\ \left(\frac{NIR_{camera} \times pCam_{NIR}}{NIR_{LS} \times pLS_{NIR}} - \frac{Red_{camera} \times pCam_{Red}}{Red_{LS} \times pLS_{Red}} \right) / \left(\frac{NIR_{camera} \times pCam_{NIR}}{NIR_{LS} \times pLS_{NIR}} + \frac{Red_{camera} \times pCam_{Red}}{Red_{LS} \times pLS_{Red}} \right) \text{ (Eq. 6)}$$

The following section will explain how NDVI is calculated using multispectral images from the Mavic 3M's NIR and Red bands.

Firstly, the multispectral images from the Mavic 3M need to be corrected and aligned due to vignetting, lens distortion, slight difference in position, optical accuracy and exposure time between different bands. Here is how:

• Step 1: Vignetting correction

We apply the vignetting correction model shown in Eq. 7 to the input image $I_{(x,y)}$.

$$I_{(x,y)} \times (k[5] \cdot r^6 + k[4] \cdot r^5 + \dots + k[0] \cdot r + 1.0)$$
 (Eq. 7)

r is the distance between pixel (x, y) and the center of the vignette in pixels, which can be obtained by

$$r = \sqrt{(x - \text{Center}X)^2 + (y - \text{Center}Y)^2}$$
 (Eq. 8)

CenterX and CenterY are coordinates of center of the vignette, which can be found from the items [Calibrated Optical Center X] and [Calibrated Optical Center Y] in [XMP: drone-dji] in the metadata.

Matrix k shows the polynomial coefficients for vignetting correction, which can be found from [Vignetting Data] in [XMP: drone-dji] in the metadata.

• Step 2: Distortion correction

Distortion correction is a regular process in image processing. The Mavic 3M has parameters for distortion correction in the metadata, which can be found in [Dewarp Data] in [XMP: drone-dji]. [k1, k2, p1, p2, k3] are the polynomial coefficients for the correction, and fx, fy, cx, cy are the intrinsic parameters of camera. These 4 intrinsic parameters and the 2 parameters obtained in the vignetting correction step above (CenterX, CenterY) make up the camera matrix [(fx, 0, CenterX+cx), (0, fy, CenterY+cy), (0, 0, 1)] for distortion correction. For more information on distortion correction, please refer to the "undistort()" function in OpenCV. https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.html

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.html

Please note that changing the camera matrix in the "undistort()" function with "newcameramtx"

• Step 3: Alignment of the phase and rotation differences caused by different camera locations and

should be avoided in order to obtain good results in subsequent steps.

optical accuracy.

In the XMP[drone-dji] of each band image file, find [Calibrated HMatrix]. This item represents the 3x3 transformation matrix for projective transformation from the individual physical image plane to the designed ideal image plane. Doing so is sufficient in correcting any differences in position and rotation between images for different bands captured in hover mode. For more information on the perspective transformation, please refer to the "warpPerspective()" function in OpenCV.

https://docs.opencv.org/4.0.1/da/d54/group_imgproc_transform.html#gaf73673a7e8e18ec696382774e6a94b87

Step 4: Alignment of the difference caused by different exposure times.
 Before aligning, we recommend smoothing the images using a filter such as a histogram smoothing or a Gaussian filter, etc.

Either of the two alignment methods outlined below would work:

- Method 1. Apply an edge detection filter (ex. Sobel filter) to detect edge lines from the
 two images that need to be aligned. Then, apply an alignment algorithm such as the
 Enhanced Correlation Coefficient (ECC) Maximization to the images. For more
 information on the ECC maximization algorithm, please refer to the following URL
 https://docs.opencv.org/3.0-
 - beta/modules/video/doc/motion analysis and object tracking.html
- Method 2. A traditional way for alignment includes feature point detection and matching. Feature point detection can be performed by using algorithms such as SIFT (Scaled Invariance Feature Transform), AKAZE, etc. An alignment matrix can be computed by using several pairs of matched feature points, and then applying the matrix to the to-bealigned images.

NDVI can be calculated after correcting and aligning the NIR and RED images.

We will introduce how to obtain each factor in Eq. 6 using the NIR band as an example. Firstly, obtain two camera related values: NIR_{camera} and $pCam_{NIR}$.

$$NIR_{camera} = {(I_{NIR} - I_{BlackLevel}) / (NIR_{gain} * \frac{NIR_{etime}}{1e6})}$$
 (Eq. 9)

Here,

- I_{NIR} and I_{Blacklevel} are the normalized raw pixel value and normalized black level value, respectively. Since the bit number of the multispectral images can be found in [EXIF: Bits Per Sample] in the metadata, the normalization here is to divide the original number by 2^{bitnum}. The black level value can be found in [Black Level] in [XMP: drone-dji] in the metadata.
- NIR_{gain} is the sensor gain setting (similar to the sensor ISO) which can be found as [SensorGain] in [XMP: drone-dji] in the metadata.
- NIR_{etime} is the camera exposure time, which can be found as [ExposureTime] in [XMP: drone-dji] in the metadata.

We can obtain the image signal value NIR_{camera} by following the steps above. Further, parameter $pCam_{NIR}$ can be found in [Sensor Gain Adjustment] in [XMP: drone-dji].

Then, we need to obtain signal values relevant to the sunlight sensor, NIR_{LS} and pLS_{NIR} , and calculate their product $NIR_{LS} \times pLS_{NIR}$. The product of $NIR_{LS} \times pLS_{NIR}$ is saved as [Irradiance] in [XMP: drone-dji] in the metadata, which can be used in Eq. 6.

These are the steps for obtaining the desired information of the NIR band. The same steps can be used for the Red band. Finally, NDVI can be calculated using Eq. 6.