COMP2610/6261 - Information Theory

Lecture 21: Computing Capacities, Coding in Practice, & Review

Mark Reid and Aditya Menon

Research School of Computer Science The Australian National University

October 14, 2013

2 Good Codes vs. Practical Codes

3 Linear Codes

4 Coding: Review

2 Good Codes vs. Practical Codes

3 Linear Codes

4 Coding: Review

Recall the definition of capacity for a channel Q with inputs \mathcal{A}_X and ouputs \mathcal{A}_Y

$$C = \max_{\mathbf{p}_X} I(X; Y)$$

How do we actually calculate this quantity?

Recall the definition of capacity for a channel Q with inputs \mathcal{A}_X and ouputs \mathcal{A}_Y

$$C = \max_{\mathbf{p}_X} I(X; Y)$$

How do we actually calculate this quantity?

- **①** Compute the mutual information I(X;Y) for a general $\mathbf{p}_X=(p_0,p_1)$
- ② Determine which choice of p_X maximises I(X; Y)
- Use that maximising value to determine C

Recall the definition of capacity for a channel Q with inputs \mathcal{A}_X and ouputs \mathcal{A}_Y

$$C = \max_{\mathbf{p}_X} I(X; Y)$$

How do we actually calculate this quantity?

- **①** Compute the mutual information I(X;Y) for a general $\mathbf{p}_X = (p_0, p_1)$
- 2 Determine which choice of \mathbf{p}_X maximises I(X; Y)
- Use that maximising value to determine C

Binary Symmetric Channel:

We first consider the binary symmetric channel with $A_X = A_Y = \{0, 1\}$ and flip probability f. It has transition matrix

$$Q = \begin{bmatrix} 1 - f & f \\ f & 1 - f \end{bmatrix}$$

Binary Symmetric Channel - Step 1

The mutual information can be expressed as I(X;Y) = H(Y) - H(Y|X). We therefore need to compute two terms: H(Y) and H(Y|X) so we need the distributions P(y) and P(y|x).

Computing H(Y):

•
$$P(y = 0) = (1 - f)P(x = 0) + fP(x = 1) = (1 - f)p_0 + fp_1$$

•
$$P(y = 1) = (1 - f)P(x = 1) + fP(x = 0) = fp_0 + (1 - f)p_1$$

Binary Symmetric Channel - Step 1

The mutual information can be expressed as I(X;Y) = H(Y) - H(Y|X). We therefore need to compute two terms: H(Y) and H(Y|X) so we need the distributions P(y) and P(y|x).

Computing H(Y):

•
$$P(y = 0) = (1 - f)P(x = 0) + fP(x = 1) = (1 - f)p_0 + fp_1$$

•
$$P(y = 1) = (1 - f)P(x = 1) + fP(x = 0) = fp_0 + (1 - f)p_1$$

In general, $\mathbf{q} := \mathbf{p}_Y = Q\mathbf{p}_X$, so above calculation is just

$$\mathbf{q} = \mathbf{p}_Y = \begin{bmatrix} (1-f) & f \\ f & (1-f) \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix}$$

Binary Symmetric Channel - Step 1

The mutual information can be expressed as I(X;Y) = H(Y) - H(Y|X). We therefore need to compute two terms: H(Y) and H(Y|X) so we need the distributions P(y) and P(y|x).

Computing H(Y):

•
$$P(y = 0) = (1 - f)P(x = 0) + fP(x = 1) = (1 - f)p_0 + fp_1$$

•
$$P(y = 1) = (1 - f)P(x = 1) + fP(x = 0) = fp_0 + (1 - f)p_1$$

In general, $\mathbf{q} := \mathbf{p}_Y = Q\mathbf{p}_X$, so above calculation is just

$$\mathbf{q} = \mathbf{p}_Y = \begin{bmatrix} (1-f) & f \\ f & (1-f) \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix}$$

Using $H_2(q) = -q \log_2 q - (1-q) \log_2 (1-q)$ and letting $q = q_1 = P(y=1)$ we see the entropy

$$H(Y) = H_2(q_1) = H_2(fp_0 + (1 - f)p_1)$$

Binary Symmetric Channel - Step 1

Computing H(Y|X):

Since P(y|x) is described by the matrix Q, we have

$$H(Y|x=0) = H_2(P(y=1|x=0)) = H_2(Q_{1,0}) = H_2(f)$$

and similarly,

$$H(Y|x=1) = H_2(P(y=1|x=1)) = H_2(Q_{0,1}) = H_2(f)$$

Binary Symmetric Channel - Step 1

Computing H(Y|X):

Since P(y|x) is described by the matrix Q, we have

$$H(Y|x=0) = H_2(P(y=1|x=0)) = H_2(Q_{1,0}) = H_2(f)$$

and similarly,

$$H(Y|x=1) = H_2(P(y=1|x=1)) = H_2(Q_{0,1}) = H_2(f)$$

So,

$$H(Y|X) = \sum_{x} H(Y|x)P(x)$$

Binary Symmetric Channel - Step 1

Computing H(Y|X):

Since P(y|x) is described by the matrix Q, we have

$$H(Y|x=0) = H_2(P(y=1|x=0)) = H_2(Q_{1,0}) = H_2(f)$$
 and similarly.

$$H(Y|x=1) = H_2(P(y=1|x=1)) = H_2(Q_{0,1}) = H_2(f)$$

So,

$$H(Y|X) = \sum_{x} H(Y|x)P(x) = \sum_{x} H_2(f)P(x) = H_2(f)\sum_{x} P(x) = H_2(f)$$

Computing I(X; Y):

Putting it all together gives

$$I(X;Y) = H(Y) - H(Y|X) = H_2(fp_0 + (1-f)p_1) - H_2(f)$$

Binary Symmetric Channel - Steps 2 and 3 $\,$

Binary Symmetric Channel (BSC) with flip probability $f \in [0,1]$:

$$I(X;Y) = H_2(fp_0 + (1-f)p_1) - H_2(f)$$

Binary Symmetric Channel - Steps 2 and 3

Binary Symmetric Channel (BSC) with flip probability $f \in [0,1]$:

$$I(X; Y) = H_2(fp_0 + (1-f)p_1) - H_2(f)$$

Examples:

• BSC (f = 0) and $\mathbf{p}_X = (0.5, 0.5)$: $I(X; Y) = H_2(0.5) - H_2(0) = 1$

Binary Symmetric Channel - Steps 2 and 3

Binary Symmetric Channel (BSC) with flip probability $f \in [0,1]$:

$$I(X; Y) = H_2(fp_0 + (1-f)p_1) - H_2(f)$$

Examples:

- BSC (f = 0) and $\mathbf{p}_X = (0.5, 0.5)$: $I(X; Y) = H_2(0.5) - H_2(0) = 1$
 - $I(X;Y) = H_2(0.5) H_2(0) = 1$
- BSC (f = 0.15) and $\mathbf{p}_X = (0.5, 0.5)$: $I(X; Y) = H_2(0.5) - H_2(0.15) \approx 0.39$

Binary Symmetric Channel - Steps 2 and 3

Binary Symmetric Channel (BSC) with flip probability $f \in [0,1]$:

$$I(X; Y) = H_2(fp_0 + (1-f)p_1) - H_2(f)$$

Examples:

- BSC (f = 0) and $\mathbf{p}_X = (0.5, 0.5)$:
 - $I(X; Y) = H_2(0.5) H_2(0) = 1$
- BSC (f = 0.15) and $\mathbf{p}_X = (0.5, 0.5)$: $I(X; Y) = H_2(0.5) - H_2(0.15) \approx 0.39$
- BSC (f = 0.15) and $\mathbf{p}_X = (0.9, 0.1)$:
 - $I(X;Y) = H_2(0.22) H_2(0.15) \approx 0.15$

Binary Symmetric Channel - Steps 2 and 3

Binary Symmetric Channel (BSC) with flip probability $f \in [0,1]$:

$$I(X; Y) = H_2(fp_0 + (1-f)p_1) - H_2(f)$$

Examples:

- BSC (f = 0) and $\mathbf{p}_X = (0.5, 0.5)$: $I(X; Y) = H_2(0.5) - H_2(0) = 1$
- BSC (f = 0.15) and $\mathbf{p}_X = (0.5, 0.5)$: $I(X; Y) = H_2(0.5) - H_2(0.15) \approx 0.39$
- BSC (f = 0.15) and $\mathbf{p}_X = (0.9, 0.1)$: $I(X; Y) = H_2(0.22) - H_2(0.15) \approx 0.15$

$$I(X; Y) \text{ for } f = 0.15$$

Binary Symmetric Channel - Steps 2 and 3

Binary Symmetric Channel (BSC) with flip probability $f \in [0,1]$:

$$I(X; Y) = H_2(fp_0 + (1-f)p_1) - H_2(f)$$

Examples:

- BSC (f = 0) and $\mathbf{p}_X = (0.5, 0.5)$: $I(X; Y) = H_2(0.5) - H_2(0) = 1$
- BSC (f = 0.15) and $\mathbf{p}_X = (0.5, 0.5)$: $I(X; Y) = H_2(0.5) - H_2(0.15) \approx 0.39$
- BSC (f = 0.15) and $\mathbf{p}_X = (0.9, 0.1)$: $I(X; Y) = H_2(0.22) - H_2(0.15) \approx 0.15$

$$I(X; Y)$$
 for $f = 0.15$

Maximise I(X; Y):

Since I(X; Y) is symmetric in p_1 it is maximised when $p_0 = p_1 = 0.5$ in which case C = 0.39 for BSC with f = 0.15.

Symmetric Channel

A channel with input A_X and outputs A_Y and matrix Q is **symmetric** if A_Y can be partitioned into subsets $Y' \subseteq Y$ so that each sub-matrix Q' containing only rows for outputs Y' has:

- Columns that are all permutations of each other
- Rows that are all permutations of each other

Symmetric Channel

A channel with input A_X and outputs A_Y and matrix Q is **symmetric** if A_Y can be partitioned into subsets $Y' \subseteq Y$ so that each sub-matrix Q' containing only rows for outputs Y' has:

- Columns that are all permutations of each other
- Rows that are all permutations of each other

$$\mathcal{A}_X = \mathcal{A}_Y = \{0,1\}$$

$$Q = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{bmatrix}$$

Symmetric

Subsets: $\{0,1\}$

Symmetric Channel

A channel with input A_X and outputs A_Y and matrix Q is **symmetric** if A_Y can be partitioned into subsets $Y' \subseteq Y$ so that each sub-matrix Q' containing only rows for outputs Y' has:

- Columns that are all permutations of each other
- Rows that are all permutations of each other

$$A_X = A_Y = \{0, 1\}$$
 $A_X = \{0, 1\}, A_Y = \{0, ?, 1\}$

$$Q = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0.7 & 0.1 \\ 0.2 & 0.2 \\ 0.1 & 0.7 \end{bmatrix}$$

Symmetric

Subsets: $\{0,1\}$

Symmetric

Subsets: $\{0,1\}, \{?\}$

Symmetric Channel

A channel with input A_X and outputs A_Y and matrix Q is **symmetric** if A_Y can be partitioned into subsets $Y' \subseteq Y$ so that each sub-matrix Q' containing only rows for outputs Y' has:

- Columns that are all permutations of each other
- Rows that are all permutations of each other

$$A_X = A_Y = \{0, 1\}$$
 $A_X = \{0, 1\}, A_Y = \{0, ?, 1\}$

$$Q = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{bmatrix}$$

Symmetric

Subsets: $\{0,1\}$

$$Q = \begin{bmatrix} 0.7 & 0.1 \\ 0.2 & 0.2 \\ 0.1 & 0.7 \end{bmatrix}$$

Symmetric

Subsets: {0,1}, {?}

$$\mathcal{A}_X = \mathcal{A}_Y = \{0, 1\}$$

$$Q = \begin{bmatrix} 0.9 & 0 \\ 0.1 & 1 \end{bmatrix}$$

Not Symmetric

Symmetric Channel

A channel with input A_X and outputs A_Y and matrix Q is **symmetric** if A_Y can be partitioned into subsets $Y' \subseteq Y$ so that each sub-matrix Q' containing only rows for outputs Y' has:

- Columns that are all permutations of each other
- Rows that are all permutations of each other

$$A_X = A_Y = \{0, 1\}$$
 $A_X = \{0, 1\}, A_Y = \{0, ?, 1\}$

$$Q = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{bmatrix}$$

Symmetric

Subsets: $\{0,1\}$

$$Q = \begin{bmatrix} 0.7 & 0.1 \\ 0.2 & 0.2 \\ 0.1 & 0.7 \end{bmatrix}$$

Symmetric

Subsets: {0,1}, {?}

$$\mathcal{A}_X = \mathcal{A}_Y = \{0, 1\}$$

$$Q = \begin{bmatrix} 0.9 & 0 \\ 0.1 & 1 \end{bmatrix}$$

Not Symmetric

Symmetric Channel

A channel with input A_X and outputs A_Y and matrix Q is symmetric if \mathcal{A}_Y can be partitioned into subsets $Y' \subseteq Y$ so that each sub-matrix Q'containing only rows for outputs Y' has:

- Columns that are all permutations of each other
- Rows that are all permutations of each other

$$A_X = A_Y = \{0, 1\}$$
 $A_X = \{0, 1\}, A_Y = \{0, ?, 1\}$ $A_X = A_Y = \{0, 1\}$

$$Q = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0.1 & 0.9 \end{bmatrix}$$

Symmetric

Subsets: $\{0,1\}$

$$Q = \begin{bmatrix} 0.7 & 0.1 \\ 0.2 & 0.2 \\ 0.1 & 0.7 \end{bmatrix}$$

Subsets: $\{0,1\}, \{?\}$

(Linear codes achieve rates at the capacity of symmetric channels.)

 $Q = \begin{bmatrix} 0.9 & 0 \\ 0.1 & 1 \end{bmatrix}$

Not Symmetric

Symmetric Channels:

If the channel is symmetric, the maximising \mathbf{p}_X – and thus the capacity – can be obtained via the uniform distribution over inputs (Exercise 10.10).

Symmetric Channels:

If the channel is symmetric, the maximising \mathbf{p}_X – and thus the capacity – can be obtained via the uniform distribution over inputs (Exercise 10.10).

Non-Symmetric Channels:

What can we do if the channel is **not** symmetric?

Symmetric Channels:

If the channel is symmetric, the maximising \mathbf{p}_X – and thus the capacity – can be obtained via the uniform distribution over inputs (Exercise 10.10).

Non-Symmetric Channels:

What can we do if the channel is not symmetric?

- We can still calculate I(X; Y) for a general input distribution \mathbf{p}_X
- Finding the maximising \mathbf{p}_X is more challenging

Symmetric Channels:

If the channel is symmetric, the maximising \mathbf{p}_X – and thus the capacity – can be obtained via the uniform distribution over inputs (Exercise 10.10).

Non-Symmetric Channels:

What can we do if the channel is not symmetric?

- We can still calculate I(X; Y) for a general input distribution \mathbf{p}_X
- Finding the maximising \mathbf{p}_X is more challenging

Example (Z Channel with P(y = 0|x = 1) = f):

$$H(Y) = H_2(P(y = 1)) = H_2(0p_0 + (1 - f)p_1)$$

$$= H_2((1 - f)p_1)$$

$$H(Y|X) = p_0H_2(P(y = 1|x = 0)) + p_1H_2(P(y = 0|x = 1))$$

$$= p_0\underbrace{H_2(0)}_{=0} + p_1H_2(f)$$

$$I(X; Y) = H_2((1 - f)p_1) - p_1H_2(f)$$

Symmetric Channels:

If the channel is symmetric, the maximising \mathbf{p}_X – and thus the capacity – can be obtained via the uniform distribution over inputs (Exercise 10.10).

Non-Symmetric Channels:

What can we do if the channel is not symmetric?

- We can still calculate I(X; Y) for a general input distribution \mathbf{p}_X
- Finding the maximising \mathbf{p}_X is more challenging

Example (Z Channel with P(y = 0|x = 1) = f):

$$H(Y) = H_2(P(y = 1)) = H_2(0p_0 + (1 - f)p_1)$$

$$= H_2((1 - f)p_1)$$

$$H(Y|X) = p_0H_2(P(y = 1|x = 0)) + p_1H_2(P(y = 0|x = 1))$$

$$= p_0\underbrace{H_2(0)}_{=0} + p_1H_2(f)$$

$$I(X:Y) = H_2((1 - f)p_1) - p_1H_2(f)$$

$$I(X; Y) = H_2((1-f)p_1) - p_1H_2(f)$$

I(X:Y) for Z channel with f=0.15

What to do once we know I(X; Y)?

- I(X; Y) is concave in $\mathbf{p}_X \implies$ single maximum
- For binary inputs, just look for stationary points (not for $|\mathcal{A}_X| > 2$) i.e., where $\frac{d}{dp}I(X;Y) = 0$ for $\mathbf{p}_X = (1-p,p)$

What to do once we know I(X; Y)?

- I(X; Y) is concave in $\mathbf{p}_X \implies$ single maximum
- For binary inputs, just look for stationary points (not for $|\mathcal{A}_X| > 2$) i.e., where $\frac{d}{dp}I(X;Y) = 0$ for $\mathbf{p}_X = (1-p,p)$

Example (Z Channel):

Showed earlier that $I(X; Y) = H_2((1 - f)p) - pH_2(f)$ so solve

$$\frac{d}{dp}I(X;Y) = 0 \iff (1-f)\log_2\left(\frac{1-(1-f)p}{(1-f)p}\right) - H_2(f) = 0$$

$$\iff \frac{1-(1-f)p}{(1-f)p} = 2^{H_2(f)/(1-f)}$$

$$\iff p = \frac{1/(1-f)}{1+2^{H_2(f)/(1-f)}}$$

For f = 0.15, we get $p = \frac{1/0.85}{1...001/0.85} \approx 0.44$ and so $C = H_2(0.38) - 0.44H_2(0.15) \approx 0.685$

What to do once we know I(X; Y)?

- I(X; Y) is concave in $\mathbf{p}_X \implies$ single maximum
- For binary inputs, just look for stationary points (not for $|\mathcal{A}_X| > 2$) i.e., where $\frac{d}{dp}I(X;Y) = 0$ for $\mathbf{p}_X = (1-p,p)$

Example (Z Channel):

Showed earlier that $I(X; Y) = H_2((1 - f)p) - pH_2(f)$ so solve

$$\frac{d}{dp}I(X;Y) = 0 \iff (1-f)\log_2\left(\frac{1-(1-f)p}{(1-f)p}\right) - H_2(f) = 0$$

$$\iff \frac{1-(1-f)p}{(1-f)p} = 2^{H_2(f)/(1-f)}$$

$$\iff p = \frac{1/(1-f)}{1+2^{H_2(f)/(1-f)}}$$

For f = 0.15, we get $p = \frac{1/0.85}{1+0.61/0.85} \approx 0.44$ and so $C = H_2(0.38) - 0.44H_2(0.15) \approx 0.685$

Homework: Show that $\frac{d}{dp}H_2(p) = \log_2 \frac{1-p}{p}$

Theory and Practice

The difference between theory and practice is that, in theory, there is no difference between theory and practice but, in practice, there is.

— Jan L. A. van de Snepscheut

Theory and Practice

The difference between theory and practice is that, in theory, there is no difference between theory and practice but, in practice, there is.

— Jan L. A. van de Snepscheut

Theory vs. Practice

- The NCCT theorem tells us that good block codes exist for any noisy channel (in fact, most random codes are good)
- However, the theorem is non-constructive: it does not tell us how to create practical codes for a given noisy channel
- The construction of practical codes that achieve rates up to the capacity for general channels is ongoing research

Types of Codes

When we talk about types of codes we will be referring to schemes for creating (N, K) codes for any size N. MacKay makes the following distinctions:

• Very Good: Can achieve arbitrarily small error at any rate up to the channel capacity (i.e., for any $\epsilon > 0$ a very good coding scheme can make a code with K/N = C and $p_{BM} < \epsilon$)

Types of Codes

When we talk about types of codes we will be referring to schemes for creating (N, K) codes for any size N. MacKay makes the following distinctions:

- **Very Good**: Can achieve arbitrarily small error at any rate up to the channel capacity (i.e., for any $\epsilon > 0$ a very good coding scheme can make a code with K/N = C and $p_{BM} < \epsilon$)
- **Good**: Can achieve arbitrarily small error up to some maximum rate strictly less than the channel capacity (i.e, for any ϵ a good coding scheme can make a code with $K/N=R_{max}< C$ and $p_{BM}<\epsilon$)

Types of Codes

When we talk about types of codes we will be referring to schemes for creating (N, K) codes for any size N. MacKay makes the following distinctions:

- **Very Good**: Can achieve arbitrarily small error at any rate up to the channel capacity (i.e., for any $\epsilon > 0$ a very good coding scheme can make a code with K/N = C and $p_{BM} < \epsilon$)
- **Good**: Can achieve arbitrarily small error up to some maximum rate strictly less than the channel capacity (i.e, for any ϵ a good coding scheme can make a code with $K/N = R_{max} < C$ and $p_{BM} < \epsilon$)
- **Bad**: Cannot achieve arbitrarily small error, or only achieve it if the rate goes to zero (i.e., either $p_{BM} \to a > 0$ as $N \to \infty$ or $p_{BM} \to 0 \implies K/N \to 0$)

Types of Codes

When we talk about types of codes we will be referring to schemes for creating (N, K) codes for any size N. MacKay makes the following distinctions:

- **Very Good**: Can achieve arbitrarily small error at any rate up to the channel capacity (i.e., for any $\epsilon > 0$ a very good coding scheme can make a code with K/N = C and $p_{BM} < \epsilon$)
- **Good**: Can achieve arbitrarily small error up to some maximum rate strictly less than the channel capacity (i.e, for any ϵ a good coding scheme can make a code with $K/N=R_{max}< C$ and $p_{BM}<\epsilon$)
- **Bad**: Cannot achieve arbitrarily small error, or only achieve it if the rate goes to zero (i.e., either $p_{BM} \to a > 0$ as $N \to \infty$ or $p_{BM} \to 0 \implies K/N \to 0$)
- **Practical**: Can be coded and decoded in time that is polynomial in the block length *N*.

Random Codes

During the discussion of the Noisy-Channel Coding Theorem we saw how to construct very good **random codes** via expurgation and typical set decoding.

Properties:

- Very Good: Rates up to C are achievable with arbitrarily small error
- Construction is easy
- Not Practical:
 - ▶ The 2^K codewords have no structure and must be "memorised"
 - ► Typical set decoding is expensive

Computing Capacities

2 Good Codes vs. Practical Codes

- 3 Linear Codes
- 4 Coding: Review

Linear Codes

(N, K) Block Code

An (N, K) block code is a list of $S = 2^K$ codewords $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(S)}\}$, each of length N. A signal $s \in \{1, 2, \dots, 2^K\}$ is encoded as $\mathbf{x}^{(s)}$.

Linear Codes

(N, K) Block Code

An (N, K) block code is a list of $S = 2^K$ codewords $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(S)}\}$, each of length N. A signal $s \in \{1, 2, \dots, 2^K\}$ is encoded as $\mathbf{x}^{(s)}$.

Linear (N, K) Block Code

A **linear** (N,K) **block code** is an (N,K) block code where s is first represented as a K-bit binary vector $\mathbf{s} \in \{0,1\}^K$ and then encoded via multiplication by an $N \times K$ binary matrix \mathbf{G}^\top to form $\mathbf{t} = \mathbf{G}^\top \mathbf{s}$ modulo 2.

Here linear means all $S = 2^K$ messages can be obtained by "adding" different combinations of the K codewords $\mathbf{t}_i = \mathbf{G}^{\top} \mathbf{e}_i$ where \mathbf{e}_i is K-bit string with single 1 in position i.

Linear Codes

(N, K) Block Code

An (N, K) block code is a list of $S = 2^K$ codewords $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(S)}\}$, each of length N. A signal $s \in \{1, 2, \dots, 2^K\}$ is encoded as $\mathbf{x}^{(s)}$.

Linear (N, K) Block Code

A **linear** (N,K) **block code** is an (N,K) block code where s is first represented as a K-bit binary vector $\mathbf{s} \in \{0,1\}^K$ and then encoded via multiplication by an $N \times K$ binary matrix \mathbf{G}^\top to form $\mathbf{t} = \mathbf{G}^\top \mathbf{s}$ modulo 2.

Here linear means all $S = 2^K$ messages can be obtained by "adding" different combinations of the K codewords $\mathbf{t}_i = \mathbf{G}^{\top} \mathbf{e}_i$ where \mathbf{e}_i is K-bit string with single 1 in position i.

Example: Suppose (N, K) = (7, 4). To send s = 3, first create $\mathbf{s} = 0011$ and send $\mathbf{t} = \mathbf{G}^{\top}\mathbf{s} = \mathbf{G}^{\top}(\mathbf{e}_0 + \mathbf{e}_1) = \mathbf{G}^{\top}\mathbf{e}_0 + \mathbf{G}^{\top}\mathbf{e}_1 = \mathbf{t}_0 + \mathbf{t}_1$ where $\mathbf{e}_0 = 0001$ and $\mathbf{e}_1 = 0010$.

Linear Codes: Examples

(7,4) Hamming Code

$$\mathbf{G}^{ op} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 1 & 1 & 0 \ 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \end{bmatrix}$$

For s = 0011.

$$\mathbf{G}^{\top}\mathbf{s}(\mod 2) = [0\ 0\ 1\ 1\ 1\ 0\ 0]^{\top}$$

(6,3) Repetition Code

$$\mathbf{G}^ op = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

For
$$s = 010$$
,

$$\mathbf{G}^{\top}\mathbf{s} (\bmod 2) = [0\ 1\ 0\ 0\ 1\ 0]^{\top}$$

Decoding

We can construct codes with a relatively simple encoding but how do we decode them? That is, given the input distribution and channel model Q how do we find the posterior distribution over \mathbf{x} given we received \mathbf{y} ?

Decoding

We can construct codes with a relatively simple encoding but how do we decode them? That is, given the input distribution and channel model Q how do we find the posterior distribution over \mathbf{x} given we received \mathbf{y} ?

Simple! Just compute

$$P(\mathbf{x}|\mathbf{y}) = \frac{P(\mathbf{y}|\mathbf{x})}{\sum_{\mathbf{x}' \in \mathcal{C}} P(\mathbf{y}|\mathbf{x}) P(\mathbf{x})}$$

But:

- the number of codes $\mathbf{x} \in \mathcal{C}$ is 2^K so, naively, the sum is expensive
- linear codes provide structure that the above method doesn't exploit

Types of Linear Code

Many commonly used codes are linear:

- ullet Repetition Codes: e.g., 0 o 000 ; 1 o 111
- Convolution Codes: Linear coding plus bit shifts
- Concatenation Codes: Two or more levels of error correction
- Hamming Codes: Parity checking
- Low-Density Parity-Check Codes: Semi-random construction

Types of Linear Code

Many commonly used codes are linear:

- \bullet Repetition Codes: e.g., 0 \rightarrow 000 ; 1 \rightarrow 111
- Convolution Codes: Linear coding plus bit shifts
- Concatenation Codes: Two or more levels of error correction
- Hamming Codes: Parity checking
- Low-Density Parity-Check Codes: Semi-random construction

An NCCT can be proved for linear codes (i.e., "there exists a linear code" replacing "there exists a code") but the proof is still non-constructive.

Types of Linear Code

Many commonly used codes are linear:

- ullet Repetition Codes: e.g., 0 o 000 ; 1 o 111
- Convolution Codes: Linear coding plus bit shifts
- Concatenation Codes: Two or more levels of error correction
- Hamming Codes: Parity checking
- Low-Density Parity-Check Codes: Semi-random construction

An NCCT can be proved for linear codes (i.e., "there exists a linear code" replacing "there exists a code") but the proof is still non-constructive.

Practical linear codes:

- Use very large block sizes N
- Based on semi-random code constructions
- Apply probabilistic decoding techniques
- Used in wireless and satellite communication

Computing Capacities

2 Good Codes vs. Practical Codes

3 Linear Codes

4 Coding: Review

Coding: Review

Source Coding for Compression

- Shrink sequences
- Identify and remove redundancy
- Size limited by entropy
- Source Coding Theorems (Block & Variable Length)

Channel Coding for Reliability

- Protect sequences
- Add known form of redundancy
- Rate limited by capacity
- Noisy-Channel Coding Theorem

Why "Entropy"?

Why "Entropy"?

You should call it entropy... no one really knows what entropy really is, so in a debate you will always have the advantage.

— J. von Neumann to C. Shannon

Why "Entropy"?

You should call it entropy... no one really knows what entropy really is, so in a debate you will always have the advantage.

— J. von Neumann to C. Shannon

Thanks!