1-4 正弦、餘弦函數的圖形

一、週期函數

在座標平面上,假設x為 θ 角的弧度、f(x)為其三角函數值。

若函數f(x)恆有f(x+p) = f(x)發生,則稱f(x)為「週期函數」,其中p為函數f(x)的週期。

二、函數的圖形

1. 特別角的函數值

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin \theta$								
$\cos \theta$								
$\tan \theta$								

※遞增情形:

(1) 當
$$0 < \theta < \frac{\pi}{4}$$
時, $\sin \theta$ ___cos θ 。

(2) 當
$$\frac{\pi}{4}$$
 < θ < $\frac{\pi}{2}$ 時, $\sin \theta$ ___cos θ 。

(3) 當
$$0 < \theta < \frac{\pi}{2}$$
時, $\sin \theta$ ___tan θ 。

2. 正弦函數(____)的圖形

(1) 圖形:

- (2) 性質
 - ① 定義域:
 - ② 值域:
 - ③ 當x在第__、__象限時,為遞增函數;在第__、__象限時,為遞減函數。
 - ④ 為連續函數。

3. 餘弦函數()的圖形

(1) 圖形:

(2) 性質

- ① 定義域:
- ② 值域:
- ③ 當x在第__、___象限時,為遞增函數;在第__、___象限時,為遞減函數。
- ④ 為連續函數。

4. 正切函數()的圖形

(1) 圖形:

(2) 性質

- ① 定義域:
- ② 值域:
- ③ 恆為遞增函數。
- ④ 不是連續函數。
- ⑤ 漸進線方程式為_____(n為整數)。

5. 函數圖形的變化

考慮函數 $y = a \sin(bx + c) + d$,則:

(1) 振幅變為_____倍: $\begin{cases} a > 0 : 同向伸縮 \\ a < 0 : 反向伸縮 \end{cases}$

(2) 週期變為____。

(3) 當c > 0時,圖形___移c單位;當c < 0時,圖形___移c單位。

(4) 當d>0時,圖形___移d單位;當d<0時,圖形___移d單位。