Documentation for Audio Analysis with Librosa

Overview:

This Python script leverages the **Librosa** library to process and analyze an audio file (in this case, a music file). It performs various operations like:

- Loading the audio file.
- Generating a Mel Spectrogram.
- Calculating the Chromagram.
- Detecting Onset Strength and Tempo.
- Separating harmonic and percussive components of the audio.

The output includes visualizations such as the Mel spectrogram and Chromagram, along with the tempo and beat information extracted from the audio.

Libraries Used:

Google Colab (google.colab):

Used to mount Google Drive to access datasets stored on Google Drive.

2. Librosa:

 A Python package for music and audio analysis. It provides functions for loading audio files, generating various audio features, and performing time-domain and frequency-domain analysis.

3. Matplotlib:

 A Python library used for plotting and visualizing data, including waveforms, spectrograms, and other audio features.

4. IPython.display:

 Used to display audio and other multimedia in Jupyter notebooks and Google Colab.

Code Explanation:

Mounting Google Drive:

from google.colab import drive drive.mount('/content/drive')

1.

 This code mounts Google Drive to the Colab environment so that files stored in Google Drive can be accessed. The user is prompted to authenticate.

Installing Librosa:

!pip install librosa==0.6.0

2.

 This installs a specific version (0.6.0) of the Librosa library required for audio processing.

Importing Libraries:

import numpy as np import matplotlib.pyplot as plt import matplotlib.style as ms import librosa.display ms.use('seaborn-muted') %matplotlib inline import IPython.display as ipd import librosa

3.

- Various libraries are imported:
 - NumPy for numerical computations.
 - Matplotlib for plotting.
 - **Librosa** for audio processing.
 - **IPython.display** for audio display.

Loading the Audio File:

```
data, sr = librosa.load('/content/drive/MyDrive/Datasets/Music.mp3') print(data.shape)
```

4.

- The audio file Music.mp3 from Google Drive is loaded using librosa.load(), which returns the audio data (data) and the sample rate (sr).
- o print(data.shape) outputs the dimensions of the audio data.

Mel Spectrogram:

```
S = librosa.feature.melspectrogram(data,sr)
log_S = librosa.power_to_db(S,ref = np.max)
plt.plot(log_S)
plt.show()
```

5.

- A Mel spectrogram is computed using librosa.feature.melspectrogram().
- The spectrogram is then converted to decibels using librosa.power_to_db().
- The resulting log Mel spectrogram is plotted using matplotlib.

Chromagram:

```
chromagram = librosa.feature.chroma_stft(y = data,sr = sr)
plt.figure(figsize = (15,5))
librosa.display.specshow(chromagram,x_axis = 'time',y_axis = 'chroma')
```

6.

- A Chromagram is computed using librosa.feature.chroma_stft(),
 which represents the 12 different pitch classes in the audio signal.
- The Chromagram is displayed as a heatmap using librosa.display.specshow().

Onset Strength and Tempo Detection:

```
onset_env = librosa.onset.onset_strength(data,sr=sr)
tempo = librosa.beat.tempo(onset_env,sr=sr)
```

7.

 The Onset Strength is calculated with librosa.onset.onset_strength(), which detects changes in the audio signal that may indicate a musical onset (like a beat).

 Tempo is estimated using librosa.beat.tempo(), which computes the beats per minute (BPM) from the onset envelope.

Harmonic and Percussive Separation:

```
y_harmonic, y_percussive = librosa.effects.hpss(data)
```

8.

 The Harmonic/Percussive Source Separation (HPSS) method is applied to the audio signal, which separates the harmonic (melodic) and percussive (rhythmic) components of the audio.

Beat Tracking:

```
tempo, beats = librosa.beat.beat_track(y = y_percussive,sr=sr)
print(tempo)
print(beats)
```

9.

- The librosa.beat.beat_track() function is used to track the beats in the percussive component of the audio. It returns:
 - **Tempo** (beats per minute).
 - Beats (indices of the detected beats).

Outputs:

- **Mel Spectrogram Plot**: Visual representation of the Mel frequency spectrogram in decibels.
- **Chromagram Plot**: Visual representation of the chromagram over time.
- **Tempo**: The estimated beats per minute (BPM) of the music.
- **Beats**: A list of the indices where the beats occur in the audio.

Example Output:

• For the Music.mp3 file, the tempo might be calculated as 120.0 beats per minute, with corresponding beat positions listed.

Notes:

- The audio file used should be available on Google Drive and accessible to Colab.
- The version of Librosa is fixed to 0.6.0 due to compatibility reasons.