Tamagawa Numbers (in the Function Field Case)
Function Field Case)
Sourced from a q. in number theory (tady's
Focus).
Quadratic Forms -
When are two equivalent via a linear
Change of Variables?
x+y x-y Can take over any ring R
ring R
P.D. N.D.
Two methods for invariants
· Take R=R] Is this all you need2.
Reduce mod n

Def. Let all forms be P.D.; two
Forms 9,9 are in the same gunu iff they are equivalent mod N VN:
iff they are equivalent mod N YN:
Let q be a Z-form, R & CommRings.
$\hat{Q}_{q}(R) = \left\{ A \in GL(n,R) \mid q \cdot A = q \right\}$
Mass(q) = Oq(Z) $q' of genus$ $equal to q$
equal to q

Defn Unimodular iff non degunerate mod p & p \in P.

$$= \times : \times + y^2 = (x + y)^2 \mod 2$$

$$\Rightarrow \text{degenerate.}$$

Also have

 $M_{ass}(q) = 3(\frac{n}{2}) \cdot \frac{3(2) \cdot 3(4) \cdot \cdot \cdot 3(n-2)}{vol s' \cdot vol s^2 \cdot \cdot \cdot \cdot vol s^{n+1}}$

N=8: RHS= 1 14 5 2 Weil group of W(E8) Exceptional group of lie type E8

=> Only one unimodular form in 8 vars!

Attempt to prove all g.f.s of same genus are equivalent.

Let q, q' be of genus g and equiv., so 9, = 9, 0 AN W/ ANEGLIN, Z/nZ) Let $\hat{Z} = \lim_{P \in P} \mathbb{Z}/N\mathbb{Z} = \prod_{P \in P} \mathbb{Z}_{P}$

Then
$$q = q \circ A \implies q \sim q'$$
 over all \mathbb{Z}_p

Hasse $= q \circ Q = q' \circ A \implies q \sim q'$ over $\mathbb{Z}_p = \mathbb{Z}_p =$

Look at Special orthog. SOg(A)
Has a canonical Hoar measure (que rally only defined up to scalar mult) called the Tamagawa Measure.

Z Mass (a) = M (SOLD / SONA) SON DXR

SOg (A) is a smooth mfd, can take top form but also a linear algebraic gp., so do AE over Q

Let $V_R =$ { translation-invariant } top forms on SOq(R)}

Liternines Va = Salgebraic top forms Space measures M

SOq (Qp) p-adic analytic Lie group

Yields the Tamagawa measure

Min, Qp × Mw, R

WH-5W H>5M H>5M

Mass Formula (Tamagawa-Weil Version)

 $u\left(\frac{SO_{q}(A)}{SO_{q}(Q)}\right) = 2$

to has double cover Sping.

Conjecture

G Simply connected, semisimple alg.
group over Q. Then

 $M_{Tam}(G(A)/G(Q))=1$

Rest of the week-function field analog.