Report on the Neural Network Model

Victoria Giles

Module 21 Challenge

Overview

The nonprofit foundation Alphabet Soup wants a tool that can help it select the applicants for funding with the best chance of success in their ventures. With my knowledge of machine learning and neural networks, I used the features in the provided dataset to create a binary classifier that can predict whether applicants will be successful if funded by Alphabet Soup.

From Alphabet Soup's business team, I received a CSV containing more than 34,000 organisations that have received funding from Alphabet Soup over the years. Within this dataset are a number of columns that capture metadata about each organisation, such as:

- EIN and NAME Identification columns
- APPLICATION_TYPE Alphabet Soup application type
- AFFILIATION Affiliated sector of industry
- **CLASSIFICATION** Government organization classification
- **USE_CASE** Use case for funding
- **ORGANIZATION** Organization type
- STATUS Active status
- **INCOME AMT** ncome classification
- **SPECIAL_CONSIDERATIONS** Special consideration for application
- ASK_AMT Funding amount requested
- IS_SUCCESSFUL Was the money used effectively

THE PROCESS

Data Preprocessing

NAME from the input data because they are neither targets nor features. The target variable used for the model was IS_SUCCESSFUL which displayed a value of 1 if the funding was successful or 0 if it was not.

The feature variables used for the model are listed below;

- APPLICATION_TYPE
- AFFILIATION
- CLASSIFICATION
- USE_CASE
- ORGANIZATION
- STATUS
- INCOME_AMT
- SPECIAL_CONSIDERATIONS
- ASK_AMT

REPORT TITLE PAGE 3

Compiling, Training, and Evaluating the Model

The first model I built with the parameters of;

- Two hidden layers
- With 80, 30 neurons split
- Hidden layer activation function of 'relu'

Compile, Train and Evaluate the Model

```
# Define the model - deep neural net, i.e., the number of input features and hidden nodes for each layer.
number_input_features = len(X_train_scaled[0])
nn = tf.keras.models.Sequential()
# First hidden layer
nn.add(tf.keras.layers.Dense(units=80, activation="relu", input_dim = number_input_features))
# Second hidden layer
nn.add(tf.keras.layers.Dense(units=30, activation="relu"))
# Output layer
nn.add(tf.keras.layers.Dense(units= 1, activation="sigmoid"))
# Check the structure of the model
nn.summary()
```

The model performance was below 75% accuracy which is not satisfactory.

```
# Evaluate the model using the test data to determine the loss and accuracy
model_loss, model_accuracy = nn.evaluate(X_test_scaled,y_test,verbose=2)
print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")

268/268 - 0s - loss: 0.5628 - accuracy: 0.7290 - 234ms/epoch - 873us/step
Loss: 0.5628108382225037, Accuracy: 0.7289795875549316
```

So to increase model performance, I experimented with changing other parameters, such as dropping an additional two ID columns (SPECIAL_CONSIDERATIONS and USE CASE) and increasing nodes and neurons in the two hidden layers.

```
# Define the model - deep neural net, i.e., the number of input features and hidden nodes for each layer.
number_input_features = len(X_train_scaled[0])
nn = tf.keras.models.Sequential()
# First hidden layer
nn.add(tf.keras.layers.Dense(units=90, activation="relu", input_dim = number_input_features))
# Second hidden layer
nn.add(tf.keras.layers.Dense(units=50, activation="relu"))
# Output layer
nn.add(tf.keras.layers.Dense(units= 1, activation="sigmoid"))
# Check the structure of the model
nn.summary()
```

Despite this, the second model also returned a below 75% accuracy score

```
# Evaluate the model using the test data to determine the loss and accuracy
model_loss, model_accuracy = nn.evaluate(X_test_scaled,y_test,verbose=2)
print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")

268/268 - 0s - loss: 0.5628 - accuracy: 0.7289 - 406ms/epoch - 2ms/step
Loss: 0.5628221035003662, Accuracy: 0.728863000869751
```

REPORT TITLE PAGE 4

Summary

The models I worked on, before and after optimisation, were only able to achieve around 73% accuracy. I tested several models, changing the number of hidden layers, nodes, epochs and activation functions. The optimisation changes to the model only made slight improvements in accuracy.

Unfortunately, I was not able to reach the target performance of 75%. Each model tested would not get an accuracy rate higher than about 73%. I would recommend to work on a larger dataset and finding the optimal number of nodes and hidden layers, as well as the best activation function for each hidden layer.

REPORT TITLE PAGE 5