CS 228 : Logic in Computer Science

Krishna. S

Union of NBA/DBA

Normal Form for ω -regular languages

An ω -regular language $L \subseteq \Sigma^{\omega}$ can be written as $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$, where U_i, V_i are regular languages.

One direction: Assume L is accepted by an NBA/DBA.

- ▶ Define $U_g = \{ w \in \Sigma^* \mid q_0 \stackrel{w}{\rightarrow} g \}$
- ▶ Define $V_g = \{ w \in \Sigma^* \mid g \stackrel{w}{\rightarrow} g \}$
- ▶ Then $L = \bigcup_{g \in G} U_g V_g^{\omega}$, where U_g, V_g are regular
- ▶ Show that U_a , V_a are regular.

Normal Form for ω -regular languages

An ω -regular language $L \subseteq \Sigma^{\omega}$ can be written as $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$, where U_i , V_i are regular languages.

Other direction : Assume $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$. Show that L is accepted by an NBA/DBA.

1. If V is regular, V^{ω} is ω -regular

Normal Form for ω -regular languages

- 1. If V is regular, V^{ω} is ω -regular
 - ▶ Let $D = (Q, \Sigma, q_0, \delta, F)$ be a DFA accepting V
 - ► Construct NBA $E = (Q \cup \{p_0\}, \Sigma, p_0, \Delta, G)$ such that $G = \{p_0\},$
- 2. Show that if U is regular and V^{ω} is ω -regular, then UV^{ω} is ω -regular
 - ▶ $D = (Q_1, \Sigma, q_0, \delta_1, F)$ be a DFA, L(D) = U and $E = (Q_2, \Sigma, q'_0, \delta_2, G)$ be an NBA, $L(E) = V^{\omega}$.
 - ► $A = (Q_1 \cup Q_2, \Sigma, q_0, \delta', G)$ NBA such that $\delta' = \delta_1 \cup \delta_2 \cup \{(q, a, q'_0) \mid \delta_1(q, a) \in F\}$

LTL ModelChecking

- ▶ Given transition system *TS*, and LTL formula φ , does *TS* $\models \varphi$?
- ▶ $Tr(TS) \subseteq L(\varphi)$ iff $Tr(TS) \cap \overline{L(\varphi)} = \emptyset$ Because I don't want the Transition System to accept the words which don't accepted in
- ▶ First construct NBA $A_{\neg \varphi}$ for $\neg \varphi$. L(phi)
- ► Construct product of TS and $A_{\neg \varphi}$, obtaining a new TS, say TS'.

 Why are we doing it? Why

 Check some very simple property on TS', to check $TS \models \varphi$.

An Example $TS \models \varphi$

- Shouldn't it be negation (neg(a) and neg(b)) Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example $TS \models \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example $TS \models \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example : $TS \nvDash \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example : $TS \nvDash \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example : $TS \nvDash \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

Product of TS and NBA

Given TS = (S, Act, I, AP, L) and $A = (Q, 2^{AP}, \delta, Q_0, G)$ NBA. Define $TS \otimes A = (S \times Q, Act, I', AP', L')$ such that

- ▶ $I' = \{(s_0, q) \mid s_0 \in I \text{ and } \exists q_0 \in Q_0, q_0 \stackrel{L(s_0)}{\to} q\}$
- ▶ $AP' = Q, L' : S \times Q \rightarrow 2^Q$ such that $L'((s, q)) = \{q\}$
- ▶ If $s \stackrel{\alpha}{\to} t$ and $q \stackrel{L(t)}{\to} p$, then $(s, q) \stackrel{\alpha}{\to} (t, p)$

Persistence Properties

Let η be a propositional logic formula over AP. A persistence property P_{pers} has the form $\Diamond \Box \eta$. How will you check a persistence property on a TS?

- ▶ For example, $TS \nvDash \Diamond \Box (a \lor b)$
- ▶ For example, $TS \models \Diamond \Box (a \lor (a \to b))$

Persistence Properties

Let η be a propositional logic formula over AP. A persistence property P_{pers} has the form $\Diamond \Box \eta$. How will you check a persistence property on a TS?

- ▶ For example, $TS \nvDash \Diamond \Box (a \lor b)$
- ▶ For example, $TS \models \Diamond \Box (a \lor (a \to b))$
- ► $TS \nvDash P_{pers}$ iff there is a reachable cycle in the TS containing a state with a label which satisfies $\neg \eta$.

10/1

LTL ModelChecking

- ▶ Given *TS* and LTL formula φ . Does *TS* $\models \varphi$?
- ▶ Construct $A_{\neg \varphi}$, and let g_1, \ldots, g_n be the good states in $A_{\neg \varphi}$.
- ▶ Build $TS' = TS \otimes A_{\neg \varphi}$.
- ▶ The labels of TS' are the state names of $A_{\neg \varphi}$.
- ▶ Check if $TS' \models \Diamond \Box (\neg g_1 \land \ldots \neg g_n)$.

LTL ModelChecking

- ▶ Given *TS* and LTL formula φ . Does *TS* $\models \varphi$?
- ▶ Construct $A_{\neg \varphi}$, and let g_1, \ldots, g_n be the good states in $A_{\neg \varphi}$.
- ▶ Build $TS' = TS \otimes A_{\neg \varphi}$.
- ▶ The labels of TS' are the state names of $A_{\neg \varphi}$.
- ▶ Check if $TS' \models \Diamond \Box (\neg g_1 \land \ldots \neg g_n)$.

ModelChecking LTL in TS = Check Persistence in TS'

The following are equivalent.

- $ightharpoonup TS \models \varphi$
- ▶ $Tr(TS) \cap L(A_{\neg \varphi}) = \emptyset$
- ▶ $TS' \models \Diamond \Box (\neg g_1 \land \ldots \neg g_n).$