STAT 8320 Spring 2015 Assignment 5

Peng Shao 14221765

April 9, 2015

▶ 1. Solution. (a).

$$f(\lambda|y_i) = \frac{f(y_i|\lambda)f(\lambda)}{f(y_i)}$$

$$= \frac{\frac{\lambda^{y_i+a-1}}{\Gamma(a)b^ay_i!}e^{-\lambda(1+1/b)}}{f(y_i)}$$

$$\propto \frac{\lambda^{y_i+a-1}}{\Gamma(a)b^ay_i!}e^{-\lambda(1+1/b)}$$

$$\propto \lambda^{y_i+a-1}e^{-\lambda(1+1/b)}$$

So $\lambda | y_i \sim \text{GAM}(y_i + a - 1, \frac{1}{1 + 1/b})$, and

$$f(\lambda|y_i) = \frac{\lambda^{y_i + a - 1}}{\Gamma(y_i + a) \left(\frac{b}{1 + b}\right)^{y_i + a}} e^{-\lambda(1 + 1/b)}$$

Thus,

$$f(y_i) = \int_0^\infty f(y_i|\lambda) f(\lambda) d\lambda = \frac{f(y_i|\lambda) f(\lambda)}{f(\lambda|y_i)}$$

$$= \frac{\frac{\lambda^{y_i+a-1}}{\Gamma(a)b^a y_i!} e^{-\lambda(1+1/b)}}{\frac{\lambda^{y_i+a-1}}{\Gamma(y_i+a)\left(\frac{b}{1+b}\right)^{y_i+a}} e^{-\lambda(1+1/b)}}$$

$$= \frac{\Gamma(y_i+a)}{\Gamma(a)y_i!} \left(\frac{1}{1+b}\right)^a \left(\frac{b}{1+b}\right)^{y_i}$$

$$= \binom{a+y_i-1}{a-1} \left(\frac{b}{1+b}\right)^{y_i}$$

We can conclude that $y_i \sim NB(\frac{1}{1+h}, a)$.

- (b) From the theories in generalized linear model, we have already known that negative binomial distribution usually is used to fixed the over-dispersion problem of count data when Poisson distribution assumption or independence assumption are no longer valid. And we also know that in most time the over-dispersion may be caused by the dependence of data, like some repeated measurements in student attendance example. The GLMM essentially takes covariates between dependent data into model, so it also can model the over-dispersed count data. Or in other words, the derivation in part (a) just shows that negative binomial distribution can work well with over-dispersed count data.
- ▶ 2. Solution. (a). Before we fit this nonlinear mixed model, we should firstly plot the profile of the data, trying to acquire some intuitive result from the plot. As the Figure 1 shows, different plants are label as 1 to 6, and number 7 represents the average profile. We can approximately know that the max value is between 150 and 250, and the inflection point should be between 500 and 1000. Without loss of generality, we set the initial value of (β_1, β_2) as (200, 850). Then we can solve the β_3 based on the data, and it is about 350. Next, by using PROC MEANS in SAS, we can get the standard deviations at different time points. Because $1 + e^{-(t_{ij} \beta_2)/\beta_3}$ is relatively large, it is reasonable to assume that the variance of Y is mostly from σ^2 . So we set the initial value of σ^2 as 40. As t_{ij} grows, the denominator becomes smaller and smaller, then the proportion of σ_u^2 in variance of Y becomes larger, and it seems that σ_u^2 should be between 400 to 1600, so we set the initial value of σ_u^2 as 900.

200-100 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 t 1 1 2 3 3 4 5 6 7

Figure 1: Profile of Plant Growth

Then we use the PROC NLIN and PROC NLMIXED to fit the nonlinear model and the nonlinear mixed model respectively. The results about parameters are listed as Figure 2 and Figure 3.

Figure 2: Parameters of Nonlinear Models

Parameter	Estimate	Approx Std Error	Approximate 95% Confidence Limits		Skewness
beta1	199.7	10.3827	178.9	220.4	0.5330
beta2	797.8	55.1103	687.4	908.1	0.3725
beta3	300.7	42.8631	214.8	386.5	0.4782

Figure 3: Parameters of Nonlinear Mixed Models

		Parameter	Estima	ites			
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	
beta1	199.41	15.2372	5	13.09	<.0001	0.05	
beta2	797.42	14.6250	5	54.52	<.0001	0.05	
beta3	298.48	11.4146	5	26.15	<.0001	0.05	
resvar	49.8315	9.5902	5	5.20	0.0035	0.05	
varu	1346.95	784.96	5	1.72	0.1468	0.05	
		Parameter	Estima	ites			
	Parameter	Lower	Ü	Jpper (Gradient		
	beta1	160.24	23	38.58	4.83E-7		
	beta2	759.82	83	85.01 ·	-3.07E-6		
	beta3	269.14	32	27.82	2.884E-6		
	resvar	25.1791	74.	4838	2.602E-6		
	varu	-670.87	336	54.76 ·	-1.06E-8		

From these output, we can answer the questions like,

1. To test

$$H_0: \beta_3 = 350$$
 v.s. $H_A: \beta_3 \neq 350$

we can easily reject the null hypothesis because the Wald-type confidence intervals of both models do not contain 350, which is equivalent to a Wald test. We also can use the ESTIMATE statement in PROC NLMIXED to estimate $\beta_3 - 350$, as Figure 4

Figure 4: Testing " $\beta_3 = 0$ "

		Additional	Estima	ates					
Label	Estimate	Standard Error	DF	t Value	Pr > t	Alpha			
Beta_3=350?	-51.5207	11.4146	5	-4.51	0.0063	0.05			
	Additional Estimates								
	Label	1	Lower	Upper	2				
	Beta_3	=350? -80	. 8627	-22.1786	3				

It is obviously that we should reject the null hypothesis, which is the same result as above. So β_3 does not equal 350.

2. To test whether the random effect is necessary. Because the method of parameter estimate of mixed model is not based on likelihood, we cannot use likelihood ratio test. So we still use the Wald-type confidence interval. Because the interval contains zero, we cannot reject the null hypothesis, that is, the random effect is not significant. Furthermore, we can see that the estimate of parameters of fixed effect does not change too much, so this also indicates that it is not necessary to introduce random effect into model. Finally, from the plots of prediction and measurements, we can see the cluster-specific prediction curve are almost same, which also indicates that the random effect is slight.

But, we should be cautious about the result, because from the parameter estimates of parameter of nonlinear model, skewness of all parameters is much greater than 0.25, which means all parameters have vary apparent skewness. This makes the inferences unreliable.

Figure 5: Plots of Prediction and Measurements

▶ 3. Solution.

Firstly, we fit the generalize linear model using PROC GENMOD, and parameter estimates are listed as Figure 6 (Because of the limitation of page width, the last column "P-value" of table is not included in page).

Figure 6: Results from PROC GENMOD

				Standard	Wald 95% (Confidence	Wald	
Parameter		DF	Estimate	Error	Limi		Chi-Square]
Intercept		1	-2.2769	0.1048	-2.4823	-2.0714	471.93	
sst*loc	1	1	-1.6597	0.4796	-2.5997	-0.7196	11.97	
sst*loc	2	1	-0.4395	0.6825	-1.7772	0.8981	0.41	
sst*loc	3	1	0.5892	0.6244	-0.6345	1.8129	0.89	
sst*loc	4	1	-1.0846	0.5885	-2.2380	0.0688	3.40	
sst*loc	5	1	-1.5915	0.4924	-2.5566	-0.6264	10.45	
sst*loc	6	1	0.5658	0.6286	-0.6663	1.7979	0.81	
sst*loc	7	1	1.1118	0.5135	0.1055	2.1182	4.69	
sst*loc	8	1	0.5834	0.6254	-0.6424	1.8092	0.87	
sst*loc	9	1	0.9666	0.5461	-0.1037	2.0369	3.13	
sst*loc	10	1	-0.5665	0.6695	-1.8787	0.7458	0.72	
sst*loc	11	1	1.0661	0.5238	0.0395	2.0927	4.14	
sst*loc	12	1	0.3029	0.6692	-1.0088	1.6146	0.20	
sst*loc	13	1	0.1068	0.6885	-1.2426	1.4561	0.02	
sst*loc	14	1	0.2370	0.6769	-1.0897	1.5636	0.12	
sst*loc	15	1	0.1418	0.6858	-1.2024	1.4860	0.04	
sst*loc	16	1	-1.0449	0.5957	-2.2125	0.1226	3.08	
sst*loc	17	1	1.0902	0.5184	0.0742	2.1061	4.42	
sst*loc	18	1	0.6014	0.6221	-0.6179	1.8207	0.93	
sst*loc	19	1	0.0945	0.6893	-1.2565	1.4455	0.02	
sst*loc	20	1	0.4467	0.6489	-0.8250	1.7185	0.47	
Scale		0	1.0000	0.0000	1.0000	1.0000		

We want to test

 H_0 : All $\beta_{1,i}$ equal 0 v.s. H_A : At least one $\beta_{1,i}$ not equal 0

From the output, I can see that the P-value for the slope at location 1 is 0.0005, which means that $\beta_{1,1}$ is significantly not equal to 0. So we can say that $\beta_{1,i}$ are significant. This means that SST effect is important to predict the tornado occurrence.

Then we fit the mixed models with random intercept and/or slope. Using PROC GLIMMIX, some results are listed in the Appendix B. Firstly, from Figure 9, 13 and 17, the type III tests show that the fixed effect of interaction between interaction and SST is significant, which support the result that $\beta_{1,i}$ are significant. Then to test the random effect, using COVTEST statement in PROC GLMMIX, the results which are showed in Figure 10, 14 and 18 indicate that we cannot reject the null hypothesis of no random effect, neither random intercept nor random slope.

▶ 4. Solution. (a)

$$Y = \begin{pmatrix} X_1 \\ X_3 \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix} \end{pmatrix}$$

(b)
$$\mathbf{Y}|X_2 \sim \mathcal{N}\left(\begin{pmatrix} -3\\2 \end{pmatrix} + \begin{pmatrix} \frac{x_2}{2} - \frac{1}{2}\\ \frac{x_2}{2} - \frac{1}{2} \end{pmatrix}, \begin{pmatrix} 3.5 & -0.5\\ -0.5 & 2.5 \end{pmatrix} \right)$$

$$= \mathcal{N}\left(\begin{pmatrix} \frac{x_2}{2} - \frac{7}{2}\\ \frac{x_2}{2} + \frac{3}{2} \end{pmatrix}, \begin{pmatrix} 3.5 & -0.5\\ -0.5 & 2.5 \end{pmatrix} \right)$$

(c)

$$X_{2}|\mathbf{Y} \sim N\left(2 + \begin{pmatrix} 1 & 1 \end{pmatrix}\begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{3} \end{pmatrix}\begin{pmatrix} x_{1} + 3 \\ x_{3} - 2 \end{pmatrix}, 2 - \begin{pmatrix} 1 & 1 \end{pmatrix}\begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{3} \end{pmatrix}\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right)$$
$$= N\left(\frac{1}{4}x_{1} + \frac{1}{3}x_{3} + \frac{13}{12}, \frac{17}{12}\right).$$

(d)
$$Z \sim N(-3+3\cdot 1, 4+3^3\cdot 2+2\cdot 3\cdot 1) = N(0, 28)$$

▶ 5. Solution. (a). The hypotheses are

 $H_0: \mu_{11} = \mu_{12} = \mu_{13}$ v.s. $H_a:$ at least two means are not equal

or we can write null hypothesis as

$$H_0: \boldsymbol{C}_1\boldsymbol{\mu}_1 = \boldsymbol{0}$$

where

$$\boldsymbol{C}_1 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

The statistics are

$$T^{2} = n_{1}(\mathbf{C}\bar{\mathbf{y}})'(\mathbf{C}\mathbf{S}\mathbf{C}')^{-1}(\mathbf{C}\bar{\mathbf{y}}) = 111.4286$$

$$F = \frac{n_{1} - c}{(n_{1} - 1)c}T^{2} = 53.3929 \sim f_{c,n_{1} - c}$$

where c = 2 and $n_1 = 25$. The critical value of F statistic is $f_{0.95,2,23} = 3.422$, so $F > f_{0.95,2,23}$ and P-value is $2.28E^{-09}$. We will reject the null hypothesis, that is, the mean concentrations are significantly different at three time points.

(b).

i The common covariance is

$$\mathbf{S}_{pool} = \frac{(n_1 - 1)\mathbf{S} + (n_2 - 1)\mathbf{W}}{(n_1 - 1) + (n_2 - 1)} = \begin{pmatrix} 28.4 & 10.8 & 12.4 \\ 10.8 & 15.8 & 5.6 \\ 12.4 & 5.6 & 39.4 \end{pmatrix}$$

where $n_2 = 17$. The degree of freedom is 25+17-2=40.

ii The hypotheses are

$$H_0: \Sigma_A = \Sigma_B$$
 v.s. $H_A: \Sigma_A \neq \Sigma_B$

The statistic is

$$M = (n_1 + n_2 - 2) \log |\mathbf{S}_{pool}| - (n_1 - 1) \log |\mathbf{S}| - (n_2 - 1) \log |\mathbf{W}| = 1.1948$$

$$C^{-1} = 1 - \frac{2 \times 3^2 + 3 \times 3 - 1}{6 \times (3 + 1) \times (2 - 1)} \left\{ \frac{1}{n_1 - 1} + \frac{1}{n_2 - 1} - \frac{1}{n_1 + n_2 - 2} \right\} = 0.9142$$

$$MC^{-1} = 1.1948 \times 0.9142 = 1.0923 \sim \chi_6^2$$

Because $MC^{-1} = 0.9142 < \chi^2_{0.95,6} = 12.592$ and P-value is 0.9819, we cannot reject the null hypothesis, which means that the assumption of same population covariance are reliable.

iii The squared Mahalanobis distance between y-z is

$$T^2 = (\boldsymbol{y} - \boldsymbol{z})' \left[\boldsymbol{S}_{pool} \left(\frac{1}{n_1} + \frac{1}{n_2} \right) \right]^{-1} (\boldsymbol{y} - \boldsymbol{z}) = 18.03155$$

iv The hypotheses are

$$H_0: y - z = 0$$
 v.s. $H_A: y - z = 0$

The statistic can be computed from the Mahalanobis distance from part (iii)

$$F = \frac{n_1 + n_2 - 3 - 1}{(n_1 + n_2 - 2) \times 3} T^2 = 5.70999 \sim f_{3,38}$$

Because $F = 5.70999 > f_{0.95,3,38} = 2.851$ with P-value=0.0025. We will reject the null hypothesis, so drug A and drug B do not have equal means.

v To test the parallel profiles, the hypotheses are

 $H_0: \mu_{11}-\mu_{21}=\mu_{12}-\mu_{22}=\mu_{13}-\mu_{23}$ v.s. $H_A:$ at least two difference not equal or we can rewrite the null hypothesis as

$$H_0: C_2(y-z) = 0$$

where
$$C_2 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
.

The statistics are

$$T^{2} = \frac{n_{1}n_{2}}{n_{1} + n_{2}} (\boldsymbol{C}(\bar{\boldsymbol{y}} - \bar{\boldsymbol{z}}))'(\boldsymbol{C}\boldsymbol{S}\boldsymbol{C}')^{-1} (\boldsymbol{C}(\bar{\boldsymbol{y}} - \bar{\boldsymbol{z}})) = 14.2658$$
$$F = \frac{n_{1} + n_{2} - c - 1}{(n_{1} + n_{2} - 2)c} T^{2} = 6.7849 \sim f_{c,n_{1} + n_{2} - c - 1}$$

Because $F = 6.7849 > f_{0.95,2,39} = 3.238$ with P-value=0.0030. We will reject the null hypothesis, so there is a significant interaction between drug and time.

Appendices

A SAS Code for Problem 3

```
libname da2 'C:\Users\psy6b\Desktop\8320 datasets';
ods graphics on;
options 1s=70 ps=35;
```

/*To reading the data*/
data da2.h5q31;

```
infile 'C:\Users\psy6b\Desktop\8320 datasets\ssttornado532001.dat';
   retain ss1-ss49;
   array ss{49} ss1-ss49;
   if N_=1 then do;
      input ss1-ss49;
   end;
   loc+1;
   drop ss1-ss49;
   do t=1 to 49;
      sst=ss{t};
      input torn @;
      output;
   end;
run;
data da2.h5q32;
   infile 'C:\Users\psy6b\Desktop\8320 datasets\MOtornlatlon.dat';
   loc+1;
   input lat lon;
   run;
proc sql;
   create table da2.h5q3
   as select * from da2.h5q31 as a, da2.h5q32 as b
   where a.loc=b.loc;
   run;
quit;
/*Fitting different models*/
proc genmod data=da2.h5q3;
   class loc;
   model torn = sst*loc / dist=poisson link=log;
   output out=h5q3out1 resraw=Residual pred=Predicted lower=Lower
      upper=Upper;
proc glimmix data=da2.h5q3 noitprint;
   class loc;
   model torn = sst sst*loc / dist=poisson link=log ddfm=betwithin
      solution;
   random intercept / subject=loc type=sp(exp)(lon lat);
```

```
nloptions tech=newrap;
   covtest 'Random Int.' indep;
   output out=h5q3out2 pred(ilink)=predicted lcl(ilink)=lower
      ucl(ilink)=upper residual(ilink)=Residual;
run;
proc glimmix data=da2.h5q3 noitprint;
   class loc;
   model torn = sst sst*loc / dist=poisson link=log ddfm=betwithin
      solution;
   random sst / subject=loc type=sp(exp)(lon lat);
   nloptions tech=newrap;
   covtest 'Random Coef.' indep;
   output out=h5q3out3 pred(ilink)=predicted lcl(ilink)=lower
      ucl(ilink)=upper residual(ilink)=Residual;
run;
proc glimmix data=da2.h5q3 noitprint;
   class loc;
  model torn = sst sst*loc / dist=poisson link=log ddfm=betwithin
      solution;
   random intercept sst / subject=loc type=sp(exp)(lon lat);
   nloptions tech=newrap;
   covtest 'Random Int. & Coef.' indep;
   output out=h5q3out4 pred(ilink)=predicted lcl(ilink)=lower
      ucl(ilink)=upper residual(ilink)=Residual;
run;
/*Processing output*/
proc sort data=h5q3out1;
   by loc;
run;
data h5q3eval1;
   set h5q3out1;
   by loc;
  keep loc torn predicted residual lat lon;
   retain sumtorn sumpred sumres;
   if first.loc then do;
      sumtorn=0;
```

```
sumpred=0;
      sumres=0;
   end;
   sumtorn+torn;
   sumpred+predicted;
   sumres+residual;
   if last.loc then do;
      torn=sumtorn;
      predicted=sumpred;
      residual=sumres;
      output;
   end;
run;
proc sort data=h5q3out2;
   by loc;
run;
data h5q3eval2;
   set h5q3out2;
   by loc;
   keep loc torn predicted residual lat lon;
   retain sumtorn sumpred sumres;
   if first.loc then do;
      sumtorn=0;
      sumpred=0;
      sumres=0;
   end;
   sumtorn+torn;
   sumpred+predicted;
   sumres+residual;
   if last.loc then do;
      torn=sumtorn;
      predicted=sumpred;
      residual=sumres;
      output;
   end;
proc sort data=h5q3out3;
   by loc;
```

```
run;
data h5q3eval3;
   set h5q3out3;
   by loc;
   keep loc torn predicted residual lat lon;
   retain sumtorn sumpred sumres;
   if first.loc then do;
      sumtorn=0;
      sumpred=0;
      sumres=0;
   end;
   sumtorn+torn;
   sumpred+predicted;
   sumres+residual;
   if last.loc then do;
      torn=sumtorn;
      predicted=sumpred;
      residual=sumres;
      output;
   end;
run;
proc sort data=h5q3out4;
  by loc;
run;
data h5q3eval4;
   set h5q3out4;
   by loc;
  keep loc torn predicted residual lat lon;
   retain sumtorn sumpred sumres;
   if first.loc then do;
      sumtorn=0;
      sumpred=0;
      sumres=0;
   end;
   sumtorn+torn;
   sumpred+predicted;
   sumres+residual;
   if last.loc then do;
```

```
torn=sumtorn;
      predicted=sumpred;
      residual=sumres;
      output;
   end;
run;
data h5q3eval;
   set h5q3eval1(in=a) h5q3eval2(in=b) h5q3eval3(in=c)
      h5q3eval4(in=d);
   length model $23;
   if a then do;
      model='Independent';
   end;
   if b then do;
      model='Random Int.';
   end;
   if c then do;
      model='Random Coef.';
   end;
   if d then do;
      model='Random Int. & Coef.';
   end;
   label torn='Actual Measurements';
run;
/*Evaluating models*/
proc sort data=h5q3eval;
   by torn;
run;
proc sgpanel data=h5q3eval noautolegend;
   panelby model/columns=2 rows=2 spacing=5;
   scatter x=torn y=predicted/ datalabel=loc;
   series x=torn y=torn;
   keyword "Observations" "Reference Line";
run;
proc sql;
```

```
title 'Model Comparation';
   select model, sum(residual*residual) label='Model Type' as SSR
      label='Sum of Squared Residual'
   from h5q3eval
   group by model;
quit;
/*Plotting the profile*/
data panelplot2;
   set h5q3out2;
   length type $20;
   keep loc t type resp;
   t=t+1952;
   type='measurement';
   resp=torn;
   output;
   type='cluster-specific';
   resp=predicted;
   output;
   type='lower bound';
   resp=lower;
   output;
   type='upper bound';
   resp=upper;
   output;
   run;
proc sgpanel data=panelplot2;
   where loc le 4 and loc ge 1;
   panelby loc/rows=2 columns=2 spacing=5;
   vline t/response=resp group=type;
   colaxis fitpolicy=thin alternate;
   rowaxis alternate;
run;
proc sgpanel data=panelplot2;
   where loc le 8 and loc ge 5;
   panelby loc/rows=2 columns=2 spacing=5;
   vline t/response=resp group=type;
   colaxis fitpolicy=thin alternate;
```

```
rowaxis alternate;
run;
proc sgpanel data=panelplot2;
   where loc le 12 and loc ge 9;
   panelby loc/rows=2 columns=2 spacing=5;
   vline t/response=resp group=type;
   colaxis fitpolicy=thin alternate;
   rowaxis alternate;
run;
proc sgpanel data=panelplot2;
   where loc le 16 and loc ge 13;
   panelby loc/rows=2 columns=2 spacing=5;
   vline t/response=resp group=type;
   colaxis fitpolicy=thin alternate;
   rowaxis alternate;
run;
proc sgpanel data=panelplot2;
   where loc le 20 and loc ge 17;
   panelby loc/rows=2 columns=2 spacing=5;
   vline t/response=resp group=type;
   colaxis fitpolicy=thin alternate;
   rowaxis alternate;
run;
```

B Some Outputs for Promblem 3

Figure 7: Results of Random Intercept Model

```
Fit Statistics

-2 Res Log Pseudo-Likelihood 5209.11

Generalized Chi-Square 1158.20

Gener. Chi-Square / DF 1.21
```

Figure 8: Results of Random Intercept Model

	Covariance Parameter Estimates								
Cov F	Parm Subject	Estimate	Standard Error						
Varia SP(E)		0.1122 1.0000	0.09420						

Figure 9: Results of Random Intercept Model

TJ	pe III Test	ts of Fi	xed Effects		
Effect	Num DF	Den DF	F Value	Pr > F	
sst sst*loc	1 19	940 940	0.19 2.04	0.6607 0.0053	

Figure 10: Results of Random Intercept Model

Tests of Covariance Parameters Based on the Residual Pseudo-Likelihood								
Label	DF -2	Res Log P-Like	ChiSq	Pr > ChiSq	Note			
Random Int.	2	5212.01	2.89	0.2352				
: Standard	: Standard test with unadjusted p-values.							

Figure 11: Results of Random Coefficient Model

Estimated G matrix is not positive	ve definite.
Fit Statistics	
-2 Res Log Pseudo-Likelihood	5271.30
Generalized Chi-Square	1252.02
Gener. Chi-Square / DF	1.31

Figure 12: Results of Random Coefficient Model

(Covariance Parameter Estimates								
	Standard								
Cov Par	m Subject	Estimate	Error						
Variand	ce loc	0							
SP(EXP)	loc	1.0000							

Figure 13: Results of Random Coefficient Model

	Type III Test	s of Fi	xed Effects		
Effect	Num DF	Den DF	F Value	Pr > F	
	DI.				
sst	1	940	0.31	0.5781	
sst*loc	19	940	2.16	0.0028	

Figure 14: Results of Random Coefficient Model

Tests of Covariance Parameters
Based on the Residual Pseudo-Likelihood

Label DF -2 Res Log P-Like ChiSq Pr > ChiSq Note

Random Coef. 2 2854.49 . 1.0000 -
--: Standard test with unadjusted p-values.

Figure 15: Results of Random Int. and Coef. Model

Estimated G matrix is not positiv	ve definite.
Fit Statistics	
-2 Res Log Pseudo-Likelihood	5209.11
Generalized Chi-Square	1158.20
Gener. Chi-Square / DF	1.21

Figure 16: Results of Random Int. and Coef, Model

Cova	Covariance Parameter Estimates								
Cov Parm	Standard Cov Parm Subject Estimate Error								
Variance SP(EXP)	loc loc	0.1122 1.0000	0.09420						

Figure 17: Results of Random Int. and Coef. Model

	Гуре III Test	s of Fi	xed Effects		
Effect	Num DF	Den DF	F Value	Pr > F	
Lifect	DI	DI	1 varue		
sst	1	940	0.15	0.6975	
sst*loc	19	940	1.97	0.0077	

Figure 18: Results of Random Int. and Coef. Model

	Tests of Cova	riance Parameters	 S				
Based on the Residual Pseudo-Likelihood							
Label	DF -2 1	Res Log P-Like	ChiSq	Pr > ChiSq			
Random Int. & Coef	. 2	2854.49		1.0000			
	Pa: Based on	f Covariance rameters the Residual -Likelihood					
	Label	Note					
	Random Int	. & Coef					
: Standard test	with unadjusted	d p-values.					

Figure 19: Goodness of Fit of Independent Model

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value	Value/DF			
Deviance	959	530.4118	0.5531			
Scaled Deviance	959	530.4118	0.5531			
Pearson Chi-Square	959	1252.0239	1.3056			
Scaled Pearson X2	959	1252.0239	1.3056			
Log Likelihood		-346.7726				
Full Log Likelihood		-365.5408				
AIC (smaller is better)		773.0817				
AICC (smaller is better)		774.0462				
BIC (smaller is better)		875.7203				

 $\label{eq:Figure 20: Scatterplot: Predication v.s. Measurements}$

Figure 21: Plots of Prediction and Measurements

Figure 22: Plots of Prediction and Measurements

Figure 23: Plots of Prediction and Measurements

Figure 24: Plots of Prediction and Measurements

Figure 25: Plots of Prediction and Measurements