CS5014 Machine Learning

Lecture 2 Maths background review

Lei Fang

School of Computer Science, University of St Andrews

21 Jan 2021

So why this review session?

Maths is useful

- rigorous and concise way of communicating results
- help us understand why and why not algorithms work
- be able to derive your own model and algorithms!

Refresher on essential concepts

- only a refresher; we expect you have learnt them
 - don't expect to know everything after this lecture
- not complete and not rigorous

Self-assessment for yourself

- identify rusty area
- do self studies afterwards
- maths learning should be never-ending :-)

So why this review session?

Maths is useful

- rigorous and concise way of communicating results
- help us understand why and why not algorithms work
- be able to derive your own model and algorithms!

Refresher on essential concepts

- only a refresher; we expect you have learnt them
 - don't expect to know everything after this lecture
- not complete and not rigorous

Self-assessment for yourself

- identify rusty area
- do self studies afterwards
- maths learning should be never-ending :-)

So why this review session?

Maths is useful

- rigorous and concise way of communicating results
- help us understand why and why not algorithms work
- be able to derive your own model and algorithms!

Refresher on essential concepts

- only a refresher; we expect you have learnt them
 - don't expect to know everything after this lecture
- not complete and not rigorous

Self-assessment for yourself

- identify rusty area
- do self studies afterwards
- maths learning should be never-ending :-)

Mathematics for machine learning

Linear algebra

- leap forward from elementary algebra: 1-d to multi-dimensional
- number line to a number plane (space)

Probability theory and statistics

- study of uncertainty: uncertainty is the norm
 - e.g. rain tomorrow? blood pressure measurement (reading error)?
- how to generalise your results
 - from one sample to the universe: vaccine trial

- study of continuous (real-valued) functions (using approximation, say polynomial)
 - y = sin(x) is well approximated by y = x when $x \approx 0$
- useful when we do optimisation

Mathematics for machine learning

Linear algebra

- leap forward from elementary algebra: 1-d to multi-dimensional
- number line to a number plane (space)

Probability theory and statistics

- study of uncertainty: uncertainty is the norm
 - e.g. rain tomorrow? blood pressure measurement (reading error)?
- how to generalise your results
 - from one sample to the universe: vaccine trial

- study of continuous (real-valued) functions (using approximation, say polynomial)
 - y = sin(x) is well approximated by y = x when $x \approx 0$
- useful when we do optimisation

Mathematics for machine learning

Linear algebra

- leap forward from elementary algebra: 1-d to multi-dimensional
- number line to a number plane (space)

Probability theory and statistics

- study of uncertainty: uncertainty is the norm
 - e.g. rain tomorrow? blood pressure measurement (reading error)?
- how to generalise your results
 - from one sample to the universe: vaccine trial

- study of continuous (real-valued) functions (using approximation, say polynomial)
 - y = sin(x) is well approximated by y = x when $x \approx 0$
- useful when we do optimisation

Useful textbook and references (read the italic entries!)

Linear algebra

- Learning from Data Supplementary Mathematics (Vector and Linear Algebra) by David Barber;
 https://api.semanticscholar.org/CorpusID:18857001
- Chapter 2 of Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville https://www.deeplearningbook.org/contents/linear_algebra.html
- Introduction to Linear Algebra by Gilbert Strang; http://math.mit.edu/~gs/linearalgebra/
- The Matrix Cookbook by Kaare Brandt Petersen, Michael Syskind Pedersen;
 - https://www2.imm.dtu.dk/pubdb/pubs/3274-full.html
 - useful as a reference manual

Probability theory

- Chapter 2.1-2.3 Information Theory, Inference, and Learning Algorithms by David J.C. MacKay http://www.inference.org.uk/itprnn/book.pdf
- Chapter 3.1-3.9 of Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville https://www.deeplearningbook.org/contents/prob.html
- Introduction to Probability Models by Sheldon Ross
 - chapter 1; chapter 2.1-2.5, 2.8; chapter 3.1-3.5

- Use your book of choice; read multivariate calculus part as well
- Appendix of Bayesian Reasoning and Machine Learning by David Barber
 - http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/200620.pdf

Linear algebra: Basic concepts

- vectors
- norms and distances
- linear independence, span, subspace
- matrices, linear transformation
- matrix operations
- rank

Vector

A vector is a collection of n salars

- $a \in \mathbb{R}^n$, default option is column vector i.e. $n \times 1$
- represents a **displacement** in Rⁿ

• e.g.
$$\mathbf{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 (or $\mathbf{a} = [2, 1]^T$ to save space)

Some 3-d vectors
$$\mathbf{c} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$
, $\mathbf{d} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{e} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$

Vector addition

$$m{a} + m{b} = egin{bmatrix} a_1 \ a_2 \ dots \ a_d \end{bmatrix} + egin{bmatrix} b_1 \ b_2 \ dots \ b_d \end{bmatrix} = egin{bmatrix} a_1 + b_1 \ a_2 + b_2 \ dots \ a_d + b_d \end{bmatrix}$$

- generalisation from scalar arithmetics; remember 2+1 on a number axis?
- parallelogram rule

Machine Learning, University of St Andrews, Spring 2021

Vector scaling/multiplication

$$k \cdot \mathbf{a} = k \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_d \end{bmatrix} = \begin{bmatrix} k \times a_1 \\ k \times a_2 \\ \vdots \\ k \times a_d \end{bmatrix}, k \in R \text{ or a scalar}$$

- geometrically, scaling means shrinking or streching a vector
 - the direction does not change but length changes
- and obviously $n \cdot a = a + \ldots + a = \sum_{n} a$
- \bullet $0 \cdot a = 0$ က α

Inner product

$$\boldsymbol{a}^{T}\boldsymbol{b} = [a_1, a_2 \dots, a_d] \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_d \end{bmatrix} = \sum_{i=1}^{d} a_i \times b_i$$

- $a^T b = b^T a$ and the result is a scalar
- $a^T(b+c) = a^Tb + a^Tc$
- $(k\mathbf{a})^T\mathbf{b} = \mathbf{a}^T(k\mathbf{b}) = k(\mathbf{a}^T\mathbf{b})$
- $a^Ta = \sum_{i=1}^d a_i^2$ is squared Euclidean distance between a and 0
- $\mathbf{a}^T \mathbf{a} \geq 0$ and $\mathbf{a} = \mathbf{0}$ if and only if $\mathbf{a}^T \mathbf{a} = 0$

Another interpretation:

- θ is the angle between a, b
 - $\mathbf{a}^T \mathbf{b} = 0$ if and only if $\mathbf{a} \perp \mathbf{b}$
- $\|a\|\cos\theta$ is the projected length of **a** on **b**
- $\| \boldsymbol{b} \| \cos \theta$ is the projected length of \boldsymbol{b} on \boldsymbol{a}
- $P(\mathbf{b}, \mathbf{a})$ denotes the projected vector of \mathbf{b} to \mathbf{a}
 - so $\|\boldsymbol{b}\|\cos\theta = \|P(\boldsymbol{b},\boldsymbol{a})\|$
- and (prove it or convince yourself!)

$$P(\boldsymbol{b}, \boldsymbol{a}) = \|\boldsymbol{b}\|\cos\theta * \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|} = \frac{\boldsymbol{a}^T\boldsymbol{b}}{\boldsymbol{a}^T\boldsymbol{a}}\boldsymbol{a}$$

Matrix

A rectangular array of real numbers $A \in R^{m \times n}$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} | & | & & | \\ \mathbf{a}_{1} & \mathbf{a}_{2} & \dots & \mathbf{a}_{n} \\ | & | & & | \end{bmatrix} = \begin{bmatrix} - & \tilde{\mathbf{a}}_{1} & - \\ \vdots & \vdots & \vdots \\ - & \tilde{\mathbf{a}}_{m} & - \end{bmatrix}$$

- can be viewed as a collection of n column vectors
 - $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n];$
- or row vectors $\mathbf{A} = [\mathbf{\tilde{a}}_1^T, \mathbf{\tilde{a}}_2^T, \dots, \mathbf{\tilde{a}}_m^T]^T$
- sometimes written as $\mathbf{A} = (a_{ij})$ $i = 1, \dots, m, j = 1, \dots, n$

Matrix operations

- addition: $\mathbf{A} + \mathbf{B} = \mathbf{C} = (c_{ij})$ where $c_{ij} = a_{ij} + b_{ij}$
- scaling: $k\mathbf{A} = \mathbf{C}$ where $c_{ij} = k * a_{ij}$
- transpose: $\boldsymbol{A}^T = \boldsymbol{C}$ where $c_{ij} = a_{ji}$
- multiplication: Let $\mathbf{A} \in R^{m \times s}$, $\mathbf{B} \in R^{s \times n}$

$$AB = C, C \in R^{m \times n}$$

where

$$c_{ij} = \sum_{k=1}^{s} a_{ik} b_{jk}$$

or
$$c_{ij} = \tilde{\boldsymbol{a}}_i^T \boldsymbol{b}_j$$

- A(BC) = (AB)C
- $AB \neq BA$
- $(AB)^T = B^T A^T$
- I identity matrix: IA = A or AI = A
- inverse (only applies to square matrix): $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$

Examples

$$\begin{bmatrix} 2 & 3 \\ 6 & 4 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 5 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix} = ?$$

it is not allowed as the dimensions do not match

$$\begin{bmatrix} 2 & 3 \\ 6 & 4 \\ 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 2 & 6 & 1 \\ 3 & 4 & 1 \end{bmatrix}$$

Examples

$$\begin{bmatrix} 2 & 3 \\ 6 & 4 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 5 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix} = ?$$

it is not allowed as the dimensions do not match

$$\begin{bmatrix} 2 & 3 \\ 6 & 4 \\ 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 2 & 6 & 1 \\ 3 & 4 & 1 \end{bmatrix}$$

Example

$$\begin{bmatrix} 2 & 3 \\ 6 & 4 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 5 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 \times 5 + 3 \times 1 \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 \\ 6 & 4 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 5 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 13 & 7 & 10 \\ 34 & 16 & 20 \\ 6 & 3 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 5 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & 3 \\ 6 & 4 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 24 & 25 \\ 10 & 9 \end{bmatrix}$$

Example

The inverse of
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$$
 is $\mathbf{A}^{-1} = \begin{bmatrix} 1/3 & 0 \\ 0 & 1/5 \end{bmatrix}$ as $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$

The inverse of I is itself $I^{-1} = I$

Span, linear independence

- linear combination is just sum of some scaled vectors
 - $\lambda_1 \cdot \boldsymbol{a}_1 + \lambda_2 \cdot \boldsymbol{a}_2 + \ldots + \lambda_n \boldsymbol{a}_n$, $\boldsymbol{a}_i \in R^m$ for $i = 1, \ldots, n$
 - a_i are vectors (of the same length) and λ_i are the scalars
- span is the set of all possible linear combination

$$\mathsf{Span}(\{\boldsymbol{a}_1,\boldsymbol{a}_2,\ldots,\boldsymbol{a}_n\}) = \left\{\sum_{i=1}^n \lambda_i \boldsymbol{a}_i | \lambda_i \in R, i = 1,\ldots,n\right\}$$

- what is the span of {[1,0]^T, [0,1]^T}?
 how about {[2,1]^T, [0,1]^T}?
- how about $\{[2,1]^T, [4,2]^T\}$?
- how about $\{[2,1,0]^T, [0,1,0]^T\}$?
 - \triangleright it is a **subspace** (bottom plane) in R^3

• linear independence: $\{a_1, \ldots, a_n\}$ is linear independent if there exist no $\lambda_1, \ldots, \lambda_n$ (except all being 0) such that

$$\lambda_1 \cdot \boldsymbol{a}_1 + \lambda_2 \cdot \boldsymbol{a}_2 + \ldots + \lambda_n \boldsymbol{a}_n = \boldsymbol{0}$$

- how about $\{[2,3]^T, [4,6]^T\}$?
- are $\{[1,0]^T,[0,1]^T\}$ LI?
- essentially a way to tell whether there is any redundant vectors in the set
- rank of a matrix is defined as the maximum number of linearly independent column vectors

Example

The column vectors of the matrix

$$[\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3] = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

are not linearly independent, as

$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \lambda_3 \mathbf{a}_3 = \mathbf{0}$$

holds for $\lambda_1=\lambda_2=1, \lambda_3=-2.$ In other words, one of them is redundant. And rank($\bf A$) = 2

Matrix vector multiplication

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} | & | & & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \\ | & | & & | \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} = x_1 \begin{bmatrix} | \\ \mathbf{a}_1 \\ | \end{bmatrix} + x_2 \begin{bmatrix} | \\ \mathbf{a}_2 \\ | \end{bmatrix} + \dots + x_n \begin{bmatrix} | \\ \mathbf{a}_n \\ | \end{bmatrix}$$

- another view of the multiplication
- linear combination of the column vectors of A
 - $x_1 \cdot a_1 + x_2 \cdot a_2 + \ldots + x_n a_n$
 - **a**_i are the column vectors and x are the scalars
- so . . . $\mathbf{A}\mathbf{x} = \mathbf{y}$ essentially solves for what ?

Matrix vector multiplication

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} | & | & & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \\ | & | & & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} | \\ \mathbf{a}_1 \\ | \end{bmatrix} + x_2 \begin{bmatrix} | \\ \mathbf{a}_2 \\ | \end{bmatrix} + \dots + x_n \begin{bmatrix} | \\ \mathbf{a}_n \\ | \end{bmatrix}$$

- another view of the multiplication
- linear combination of the column vectors of A
 - $x_1 \cdot a_1 + x_2 \cdot a_2 + \ldots + x_n a_n$
 - a_i are the column vectors and x are the scalars
- so ... Ax = y essentially solves for what ?
 - y is in the column space of A or not ...
 - if not, then there is no solution
 - if yes, there will be some solution(s)? unique solution or?

Matrix vector multiplication (some interpretations)

So $\boldsymbol{A}\boldsymbol{x}$ is a linear transformation: $\boldsymbol{x} \to \boldsymbol{y}$

ullet Rotation: rotate ${m x}$ anti-clockwise by ${m heta}$

$$R\mathbf{x} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.71 & -0.71 \\ 0.71 & 0.71 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

say $\theta = \pi/4$

- \mathbf{R} is a rotation or orthogonal matrix if $\mathbf{R}^T = \mathbf{R}^{-1}$ (what does it imply?)
 - $\mathbf{R}^T \mathbf{R} = \mathbf{R} \mathbf{R}^T = \mathbf{I}$

reserves length $(Rx)^T(Rx) = x^T R^T Rx = x^T x$

Matrix vector multiplication (some interpretations)

So $\boldsymbol{A}\boldsymbol{x}$ is a linear transformation: $\boldsymbol{x} \rightarrow \boldsymbol{y}$

ullet Rotation: rotate ${m x}$ anti-clockwise by ${m heta}$

$$R\mathbf{x} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.71 & -0.71 \\ 0.71 & 0.71 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

say $\theta=\pi/4$

- \mathbf{R} is a rotation or orthogonal matrix if $\mathbf{R}^T = \mathbf{R}^{-1}$ (what does it imply?)
 - $\mathbf{R}^T \mathbf{R} = \mathbf{R} \mathbf{R}^T = \mathbf{I}$

reserves length $(\mathbf{R}\mathbf{x})^T(\mathbf{R}\mathbf{x}) = \mathbf{x}^T \mathbf{R}^T \mathbf{R}\mathbf{x} = \mathbf{x}^T \mathbf{x}$

Projection (an example): project x to a

$$P(x, a) = ||x|| \cos \theta * \frac{a}{||a||} = \frac{a^T x}{a^T a} a$$
$$= \frac{a \cdot a^T x}{a^T a} = \frac{a a^T}{a^T a} x$$

- $P = \frac{aa^T}{a^Ta}$ is a projection matrix (what is the shape of P?);
- it transforms x to its projection
- what if we project it again (and again and again ...) ? i.e. P(Px)
 - it remains unchanged, PPx = Px

or
$$PP = P$$

$$\frac{aa^{T}}{a^{T}a} \frac{aa^{T}}{a^{T}a} = \frac{aa^{T}aa^{T}}{(a^{T}a)^{2}} = \frac{aa^{T}}{a^{T}}$$

mathematics is the subject of making sense :-)

• Projection (an example): project x to a

$$P(x, a) = ||x|| \cos \theta * \frac{a}{||a||} = \frac{a^T x}{a^T a} a$$
$$= \frac{a \cdot a^T x}{a^T a} = \frac{a a^T}{a^T a} x$$

- $P = \frac{aa^T}{a^T a}$ is a projection matrix (what is the shape of P?);
- it transforms x to its projection
- what if we project it again (and again and again ...) ? i.e.
 P(Px)
 - it remains unchanged, PPx = Px
 - or PP = P $\frac{aa^T}{a^Ta} \frac{aa^T}{a^Ta} = \frac{aa^Taa^T}{(a^Ta)^2} = \frac{aa^T}{a^Ta}$
 - mathematics is the subject of making sense :-)

Probability theory

- Random variable
- Probability distribution
- Probability mass function and density function
- Probability rules
- Expectation, variance, covariance
- Conditional expectation

Random variable and probability distribution

Random variable X associates with a probability distribution P(X)

- formally, a r.v. is a mapping from sample space Ω to a target space ${\mathcal T}$
- e.g. toss a fair coin twice, r.v. X is the number of heads turned up
 - the sample space is $\Omega = \{HH, TT, HT, TH\}$
 - target space is $T = \{0, 1, 2\}$
 - · the probability distribution is

$$P(X) = \begin{cases} 0.25 & X = 0 \\ 0.5 & X = 1 \\ 0.25 & X = 2 \end{cases}$$

• the distribution P must satisfy

$$P(X = x) > 0$$
, and $\sum_{x \in T} P(X = x) = 1$

Random variable - discrete r.v.

If r.v. X's target space \mathcal{T} is discrete

- X is called discrete random variable
- the probability distribution P is called probability mass function (p.m.f.)
- and

$$0 \le P(X = x) \le 1, \text{ and } \sum_{x \in T} P(X = x) = 1$$

Example - discrete r.v.

Bernoulli distribution Tossing a coin, T = H, T,

$$P(X = H) = p, P(X = T) = 1 - p, 0 \le p \le 1$$

Binomial distribution Tossing a coin N times, the r.v. X that the number of head shows up is

$$P(X = k) = \binom{N}{k} \cdot p^k (1-p)^{N-k}$$

(convince yourself why)

Multinoulli distribution Throw a fair 6-facet die, $\mathcal{T}=1,2,\ldots,6$, the distribution is

$$P(X=i)=1/6$$

Verify the above Ps satisfy the requirements of p.m.f.

Random variable - continuous r.v.

If r.v. X's target space $\mathcal T$ is continuous

- X is called **continuous random variable**
- the probability distribution p is called probability density function (p.d.f.)
- and satisfies

$$p(x) \ge 0$$
, and $\int_{x \in T} p(x) dx = 1$

- pdf is not probability as p(x) can be greater 1;
- for $\forall x \ P(X=x)=0$
- calculate probability over an interval: e.g.

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

Example - continuous r.v.

Uniform distribution $\mathcal{T} = [0,1]$, X has equal chance to take any value between 0 and 1; the pdf is

$$p(x) = \begin{cases} 1 & x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

Easy to verify $\int_0^1 p(x)dx = \int_0^1 dx = 1$

What's the probability that 0 < X < 0.5?

Example - continuous r.v.

Gaussian distribution T = R, or $X \in R$ the pdf is

$$p(x) = \mathcal{N}\left(x; \mu, \sigma^2\right) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

 $(\frac{x-\mu}{\sigma})^2$ is a distance measure: how far x is away from μ (measured by σ as a unit)

Machine Learning, University of St Andrews, Spring 2021

Probability theory, 31/39

Question

Calculate quickly:

$$\int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} dx = ?$$

For $X \sim \mathcal{N}(\mu, \sigma)$, what is $P(X < \mu) = ?$

Joint distribution

- r.v. $\boldsymbol{X} = [X_1, X_2, \dots, X_n]^T$ can be multidimensional (each X_i is r.v.)
 - essentially a random vector
- Still satisfies the same requirements

$$\forall \mathbf{x}, 0 < P(\mathbf{X} = \mathbf{x}) < 1, \ \sum_{x_1} \sum_{x_2} \dots \sum_{x_n} P(\mathbf{X} = [x_1, x_2, \dots, x_n]) = 1$$

or

$$\forall \boldsymbol{x}, p(\boldsymbol{X} = \boldsymbol{x}) > 0, \int \int \dots \int p(\boldsymbol{X} = \boldsymbol{x}) dx_1 dx_2 \dots dx_n = 1$$

• for bivariate case, i.e. n = 2, X_1, X_2 are **independent** if $P(\mathbf{X}) = P(X_1)P(X_2)$ (e.g. rolling two dice independently)

Example: discrete joint distribution

The joint distribution of X snow or not, $Y \in \{\text{spring, summer, autumn, winter}\}$ represents the season that x belongs to :

	y = Spring	y = Summer	y = Autumn	y = winter
x = F	0.05	0.25	0.075	0
x = T	0.2	0	0.175	0.25

It is easy to verify that

$$\sum_{x}\sum_{y}p(x,y)=1$$

Example: continuous joint distribution

If X, Y's joint p.d.f is

$$p(x,y) = \frac{1}{2\pi\sigma_x\sigma_y}e^{-\frac{1}{2}\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 + \left(\frac{y-\mu_y}{\sigma_y}\right)^2\right]}$$

X, Y are bivariate Gaussian distributed (X,Y are independent).

Probability rules

There are only two probability rules (use integration instead of sum for continuous r.v.):

1. Product rule:

$$p(x,y) = p(y|x)p(x) = p(x|y)p(y)$$

2. Sum rule (marginalisation):

$$p(x) = \sum_{y} p(x, y), \ p(y) = \sum_{x} p(x, y)$$

Conditional probability

Conditional probability (distribution) by product rule:

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

ullet probability distribution of x conditional on the value of y

	y = Spring	y = Summer	y = Autumn	y = winter
x = F	0.05	0.25	0.075	0
x = T	0.2	0	0.175	0.25

•
$$P(Y = \text{Spring})$$
 ? use sum rule $P(Y = \text{Spring}) = \sum_{X=\{T,F\}} P(X = T, Y = \text{Spring}) = 0.05 + 0.2 = 0.25$

•
$$P(X = T | Y = Spring)$$
 ?
 $P(x = T | y = Spring) = \frac{P(x = T, y = Spring)}{P(y = Spring)} = \frac{0.05}{0.25} = 0.2$

Expectation and variance

Expection of a r.v. is defined as

$$E[X] = \sum_{x} xP(x) \text{ or } E[X] = \int xP(x)dx$$

Variance of a r.v. is defined as

$$var[X] = \sum_{x} xP(x) \text{ or } E[X] = \int xP(x)dx$$

Reference