# DETERMINATION OF MOISTURE CONTENT IN COMPOSITES BY DIELECTRIC MEASUREMENTS

LOCKHEED-GEORGIA COMPANY A Division of Lockheed Corporation Marietta, Georgia 30063

July 1979

TECHNICAL REPORT AFFDL-TR-79-3086 Final Report for Period June 1978 - June 1979

Approved for public release; distribution unlimited.

## Prepared for:

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

#### NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

George B. Senderbyj

GEORGE P. SENDECKYJ, Aero. Engr. Fatigue, Fracture & Reliability Gp. Structural Integrity Branch Structures & Dynamics Division

FOR THE COMMANDER

RALPH L. KUSTER, Chief

Structures & Dynamics Division

DAVEY L. SMITH, Chief Structural Integrity Branch Structures & Dynamics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/FIBE, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/19 May 1981 - 500

| REPORT DOCUMENTATION PAGE                                                             |                                | READ INSTRUCTIONS BEFORE COMPLETING FORM                       |  |  |
|---------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------|--|--|
| 1. REPORT NUMBER                                                                      | 2. GOVT ACCESSION NO.          | 3. RECIPIENT'S CATALOG NUMBER                                  |  |  |
| AFFDL-TR-79-3086                                                                      |                                |                                                                |  |  |
| 4. TITLE (and Subtitle)                                                               | ITCNIT                         | 5. TYPE OF REPORT & PERIOD COVERED                             |  |  |
| DETERMINATION OF MOISTURE CON IN COMPOSITES BY DIELECTRIC MEA                         |                                | Final   1979 - 1979                                            |  |  |
| IN COMPOSITES BY DIEEECIKIC MEA                                                       | SOKEWEITIS                     | June 1978 - June 1979  6. PERFORMING ORG. REPORT NUMBER        |  |  |
|                                                                                       |                                | LG79ER0091                                                     |  |  |
| 7. AUTHOR(s)                                                                          |                                | 8. CONTRACT OR GRANT NUMBER(s)                                 |  |  |
| A. O. Kays                                                                            |                                | F33615-78-C-3216                                               |  |  |
| ***                                                                                   |                                |                                                                |  |  |
| PERFORMING ORGANIZATION NAME AND ADDRESS     Lockheed-Georgia Company                 |                                | 10. PPOGRAM ELEMENT, PROJECT, TASK<br>APEA A WORK UNIT NUMBERS |  |  |
| Marietta, GA 30063                                                                    |                                | Program Element 62201F                                         |  |  |
| Mariena, CA 30000                                                                     |                                | Project 2401/01/29                                             |  |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                               |                                | 12. REPORT DATE                                                |  |  |
| Structures and Dynamics Division (FBE) Air Force Flight Dynamics Laboratory           |                                | July 1979                                                      |  |  |
|                                                                                       |                                | 13. NUMBER OF PAGES                                            |  |  |
| Wright-Patterson AFB, OH 45433  14. MONITORING AGENCY NAME & ADDRESS(II different     | t from Controlling Office)     | 15. SECURITY CLASS. (of this report)                           |  |  |
|                                                                                       |                                | UNCLASSIFIED                                                   |  |  |
|                                                                                       |                                | 15a, DECLASSIFICATION/DOWNGRADING SCHEDULE                     |  |  |
|                                                                                       |                                | SCHEDULE                                                       |  |  |
| 16. DISTRIBUTION STATEMENT (of this Report)                                           |                                |                                                                |  |  |
| Approved for public release; distribution                                             | un unlimited                   |                                                                |  |  |
| Approved for position release, distribution                                           | in omminea.                    |                                                                |  |  |
|                                                                                       |                                |                                                                |  |  |
|                                                                                       |                                |                                                                |  |  |
| 17. DISTRIBUTION STATEMENT (of the abstract entered                                   | in Block 20, if different from | m Report)                                                      |  |  |
| N1/4                                                                                  |                                |                                                                |  |  |
| N/A                                                                                   |                                |                                                                |  |  |
| 18. SUPPLEMENTARY NOTES                                                               |                                |                                                                |  |  |
| TO SOFFEEMENTANT NOTES                                                                |                                |                                                                |  |  |
| N/A                                                                                   |                                |                                                                |  |  |
| 7                                                                                     |                                |                                                                |  |  |
| 19. KEY WORDS (Continue on reverse side if necessary and                              | d identify by block number)    |                                                                |  |  |
| Composites Environment                                                                | tal Exposure                   |                                                                |  |  |
| Capacitance Moisture Co                                                               |                                |                                                                |  |  |
| Dielectric Moisture Distribution                                                      |                                |                                                                |  |  |
| Embedded Sensors                                                                      |                                |                                                                |  |  |
| 20. ABSTRACT (Continue on reverse side if necessary and                               | identify by block number)      |                                                                |  |  |
| This program has been conducted in two                                                | tasks. In Task I,              | three-ply graphite/epoxy lam-                                  |  |  |
| inates with sensors embedded at their midplanes were exposed to various hygrothermal  |                                |                                                                |  |  |
| environments. Moisture content versus                                                 | time was determine             | ed by weight measurements at                                   |  |  |
| discrete times during each exposure cor                                               |                                |                                                                |  |  |
| measured by the sensors at those same t                                               | 100 100 100 100 100            |                                                                |  |  |
| cent change at each time period and compared with the laminate moisture content. From |                                |                                                                |  |  |

## 20. ABSTRACT (continued)

the measured weight gain data, an analytical least squares curve fit program was used to establish the moisture diffusion coefficients necessary to then analytically establish the moisture content at the laminate midplane at the discrete weight and capacitance measurement times. This procedure established a relationship between capacitance and local moisture content. A similar procedure was used in Task II where the graphite/epoxy laminates were thirteen plies thick and six sensors were placed through the thickness. The local moisture content/capacitance relationship with these Task II specimens were evaluated and compared with the results obtained in Task I.

#### **FOREWORD**

The developments reported herein were accomplished under the sponsorship of the Air Force Flight Dynamics Laboratory, Structural Integrity Branch, Wright-Patterson Air Force Base, Ohio 45433. Dr. G. P. Sendeckyj was the Air Force Project Monitor.

The development activities reported herein were performed under the direction of the Advanced Structures Department, Lockheed-Georgia Company, with Mr. A. O. Kays as Program Manager. Other Lockheed-Georgia Company personnel associated with the program and their respective areas of responsibility include:

- R. L. Caruthers, Data Correlation
- S. M. Freeman, Specimen Fabrication
- L. Green, Jr., Dielectric and Weight Measurements
- H. R. Ingle, Jr., Electronics and Sensor Development--Formerly with Lockheed-Georgia Company
- B. E. Pickett, Analytical Moisture Model
- E. V. Vasciannie, Data Correlation

This report is also identified by LG79ER0091 for Lockheed internal control purposes.

## TABLE OF CONTENTS

| Section |       |         |             | Title                                                                         | Page |
|---------|-------|---------|-------------|-------------------------------------------------------------------------------|------|
| 1.0     | INTRO | ODUCTIO | N           |                                                                               | 1    |
| 2.0     | TECH  | NICAL D | ISCUSSION   |                                                                               | 3    |
|         | 2.1   | EXPERI  | MENTAL TE   | ST PROGRAM                                                                    | 3    |
|         |       | 2.1.1   | Materials   | and Equipment                                                                 | 3    |
|         |       |         | 2.1.1.1     | Laminate Material                                                             | 3    |
|         |       |         | 2.1.1.2     | Capacitance Sensor and Meter                                                  | 3    |
|         |       |         | 2.1.1.3     | Environmental Test Equipment                                                  | 5    |
|         |       |         | 2.1.1.4     | Analytical Balance and Support<br>Fixture                                     | 6    |
|         |       | 2.1.2   | Specimen    | and Sensor Configuration and Fabrication                                      | 6    |
|         |       |         | 2.1.2.1     | Sensor Configuration and Fabrication                                          | 6    |
|         |       |         | 2.1.2.2     | Specimen Configuration and Fabrication                                        | 13   |
|         |       | 2.1.3   | Environme   | ntal Testing and Procedures                                                   | 18   |
|         |       |         | 2.1.3.1     | Temperature/Humidity Environmental<br>Testing                                 | 18   |
|         |       |         | 2.1.3.2     | Weighing and Capacitance Measure-<br>ment Procedure                           | 19   |
|         |       | 2.1.4   | Analytical  | Moisture Model                                                                | 21   |
|         | 2.2   | DISCUS  | SION OF T   | EST RESULTS                                                                   | 24   |
|         |       | 2.2.1   | Task   Test | Results                                                                       | 24   |
|         |       |         | 2.2.1.1     | 3-Ply Specimens Exposed to 120°F/<br>98% RH Absorb and 120°F/0% RH<br>Desorb  | 24   |
|         |       |         | 2.2.1.2     | 3-Ply Specimens Exposed to 120°F/<br>50% RH Absorb and 120°F/0% RH<br>Desorb  | 29   |
|         |       |         | 2.2.1.3     | 3-Ply Specimens Exposed to RT/50%<br>RH Absorb and RT/0% RH Desorb            | 34   |
|         |       |         | 2.2.1.4     | 3-Ply Specimens Exposed to 160°F/<br>75% RH Absorb and 160°F/20% RH<br>Desorb | 34   |

# TABLE OF CONTENTS (Continued)

| Section |       |        |             | <u>Title</u>                                                                  | Page |
|---------|-------|--------|-------------|-------------------------------------------------------------------------------|------|
|         |       |        | 2.2.1.5     | 3-Ply Specimens Exposed to 160°F/<br>98% RH Absorb and 160°F/0% RH<br>Desorb  | 39   |
|         |       |        | 2.2.1.6     | 3-Ply Specimens Exposed to 160°F/<br>98% RH Absorb and 160°F/50% RH<br>Desorb | 44   |
|         |       |        | 2.2.1.7     | 3-Ply Specimens Exposed to 160°F/<br>50% RH Absorb and 160°F/0% RH<br>Desorb  | 44   |
|         |       |        | 2.2.1.8     | 3-Ply Specimens Exposed to RT/<br>93% RH Absorb and RT/0% RH Desorb           | 49   |
|         |       |        | 2.2.1.9     | 3-Ply Specimens Exposed to RT/<br>75% RH Absorb and RT/0% RH Desorb           | 49   |
|         |       |        | 2.2.1.10    | 3-Ply Specimens Exposed to 120°F/<br>75% RH Absorb and 120°F/0% RH<br>Desorb  | 53   |
|         |       |        | 2.2.1.11    | Moisture Content/Capacitance<br>Correlation for Task I Specimens              | 57   |
|         |       | 2.2.2  | Task II Tes | t Results                                                                     | 57   |
|         | 2.3   | CONCL  | LUSIONS AN  | nd recommendations                                                            | 83   |
|         |       | 2.3.1  | Conclusion  | ıs                                                                            | 83   |
|         |       | 2.3.2  | Recommend   | dations                                                                       | 84   |
|         | REFER | RENCES |             |                                                                               | 87   |
|         | APPE  | NDIX   |             |                                                                               | 89   |

## LIST OF FIGURES

| Figure | <u>Title</u>                                                            | Page |
|--------|-------------------------------------------------------------------------|------|
| 1      | Capacitance Sensor Detail                                               | 4    |
| 2      | Portable Capacitance Meter                                              | 5    |
| 3      | Environmental Test Equipment                                            | 7    |
| 4      | Descrption Chamber and Temperature Readout                              | 7    |
| 5      | Sensor Fabrication Fixture                                              | 8    |
| 6      | Early Sensor/Specimen Configuration                                     | 9    |
| 7      | Early Specimen and Sensor Installation                                  | 10   |
| 8      | Final Design for Environmental Exposure Specimen and Sensor             | 11   |
| 9      | Sensor Loop and Lead Wire Detail                                        | 12   |
| 10     | Cross Section of the Sensor Final Design                                | 12   |
| 11     | Sensor Installation in Early 3-Ply Specimens                            | 15   |
| 12     | Four Sensor Installations in 13-Ply Laminate A                          | 15   |
| 13     | Two Sensor Installations in 13-Ply Laminate A                           | 16   |
| 14     | Typical Sensor Installations for Specimen C                             | 16   |
| 15     | Close-up of a Typical Sensor Installation of Specimen A                 | 17   |
| 16     | Close-up of a Typical Sensor Installation of Specimen C                 | 17   |
| 17     | Average M <sub>c</sub> versus % $\Delta$ C for Specimens 3B and 6B      | 25   |
| 18     | Local M <sub>c</sub> versus % $\Delta$ C for Specimens 3B and 6B        | 26   |
| 19     | Average $M_{\rm C}$ versus % $\Delta$ C for Specimens 1B, 2A, and 14A   | 27   |
| 20     | Local $M_{\rm c}$ versus % $\Delta$ C for Specimens 1B, 2A, and 14A     | 28   |
| 21     | Cross Section Through Sleeve Area of Specimen 1B                        | 30   |
| 22     | Cross Section Through Sleeve Area of Specimen 2A                        | 30   |
| 23     | Cross Section Through Sleeve Area of Specimen 14A                       | 31   |
| 24     | Average M <sub>c</sub> versus % $\Delta$ C for Specimens 3A and 8B      | 32   |
| 25     | Local M <sub>c</sub> versus % $\Delta$ C for Specimens 3A and 8B        | 33   |
| 26     | Average $M_{\rm c}$ versus % $\Delta$ C for Specimens 4B, 8A, and 8B    | 35   |
| 27     | Local M <sub>c</sub> versus % ∆ C for Specimen 4B                       | 36   |
| 28     | Local M <sub>c</sub> versus % $\Delta$ C for Specimens 8A and 8B        | 37   |
| 29     | Average M <sub>C</sub> versus % $\Delta$ C for Specimens 13, 17, and 21 | 38   |

# LIST OF FIGURES (Continued)

| Figure | <u>Title</u>                                                                  | Page |
|--------|-------------------------------------------------------------------------------|------|
| 30     | Local M <sub>c</sub> versus % $\Delta$ C for Specimens 13 and 17              | 40   |
| 31     | Local M <sub>c</sub> versus % △C for Specimen 21                              | 41   |
| 32     | Average M <sub>C</sub> versus % $\Delta$ C for Specimens 29 and 31            | 42   |
| 33     | Local M <sub>c</sub> versus % △ C for Specimens 29 and 31                     | 43   |
| 34     | Average M <sub>C</sub> versus % $\Delta$ C for Specimens 32 and 33            | 45   |
| 35     | Local M <sub>c</sub> versus <sup>4</sup> % $\Delta$ C for Specimens 32 and 33 | 46   |
| 36     | Average M <sub>C</sub> versus % $\Delta$ C for Specimens 30 and 35            | 47   |
| 37     | Local M <sub>c</sub> versus % $\Delta$ C for Specimens 30 and 35              | 48   |
| 38     | X-Ray Photograph of Type IV Specimens                                         | 50   |
| 39     | Average M <sub>C</sub> versus % $\Delta$ C for Specimens AFD, BFD, and CFD    | 51   |
| 40     | Local M <sub>c</sub> versus % $\Delta$ C for Specimen AFD                     | 52   |
| 41     | Average M <sub>C</sub> versus % $\Delta$ C for Specimens DFD, EFD, and FFD    | 54   |
| 42     | Local M <sub>c</sub> versus % $\Delta$ C for Specimen DFD                     | 55   |
| 43     | Average $M_{\rm C}$ versus % $\Delta$ C for Specimens GFD, HFD, and IFD       | 56   |
| 44     | Local M <sub>c</sub> versus % $\Delta$ C for Specimen GFD                     | 58   |
| 45     | Moisture Content/Capacitance Correlation for Specimen AFD                     | 59   |
| 46     | Moisture Content/Capacitance Correlation for Specimen BFD                     | 60   |
| 47     | Moisture Content/Capacitance Correlation for Specimen CFD                     | 61   |
| 48     | Moisture Content/Capacitance Correlation for Specimen DFD                     | 62   |
| 49     | Moisture Content/Capacitance Correlation for Specimen EFD                     | 63   |
| 50     | Moisture Content/Capacitance Correlation for Specimen FFD                     | 64   |
| 51     | Moisture Content/Capacitance Correlation for Specimen GFD                     | 65   |
| 52     | Moisture Content/Capacitance Correlation for Specimen HFD                     | 66   |
| 53     | Moisture Content/Capacitance Correlation for Specimen IFD                     | 67   |
| 54     | X-Ray Photograph Showing Sensor Installation for Specimens A and B            | 68   |
| 55     | X-Ray Photograph Showing Sensor Installation for Specimens C and D            | 68   |
| 56     | △ Capacitance Versus Moisture Content for 13-Ply Specimen A                   | 70   |
| 57     | △ Capacitance Versus Moisture Content for 13-Ply Specimen B                   | 71   |
| 58     | △ Capacitance Versus Moisture Content for 13-Ply Specimen C                   | 72   |

# LIST OF FIGURES (Continued)

| Figure | <u>Title</u>                                                                               | Page |
|--------|--------------------------------------------------------------------------------------------|------|
| 59     | Δ Capacitance Versus Moisture Content for 13-Ply Specimen D                                | 73   |
| 60     | Local M <sub>C</sub> vs % △ C for Sensor #3 of Specimen A                                  | 74   |
| 61     | Local M vs % △ C for Sensor #4 of Specimen A                                               | 75   |
| 62     | Local M <sub>c</sub> vs % $\Delta$ C for Sensor #2 of Specimen A                           | 76   |
| 63     | Local M vs % △ C for Sensor #5 of Specimen A                                               | 77   |
| 64     | Local M vs % $\Delta$ C for Sensors #1and #6 for Specimen A                                | 78   |
| 65     | Local M vs % $\Delta$ C for Sensors #3 and #4 of Specimen C                                | 79   |
| 66     | Local M vs % $\Delta$ C for Sensors #2 and #5 of Specimen C                                | 80   |
| 67     | Local M vs % $\Delta$ C for Sensors #1 and #6 of Specimen C                                | 81   |
| A-1    | Average Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to RT/50/0    | 147  |
| A-2    | Local Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to RT/50/0      | 148  |
| A-3    | Average Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to RT/75/0    | 149  |
| A-4    | Local Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to RT/75/0      | 150  |
| A-5    | Average Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to RT/93/0    | 151  |
| A-6    | Local Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to RT/93/0      | 152  |
| A-7    | Average Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $120/50/0$ | 153  |
| A-8    | Local Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $120/50/0$   | 154  |
| A-9    | Average Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $120/75/0$ | 155  |
| A-10   | Local Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $120/75/0$   | 156  |
| A-11   | Average Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $120/98/0$ | 157  |
| A-12   | Local Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to 120/98/0     | 158  |

## LIST OF FIGURES (Continued)

| Figure | <u>Title</u>                                                                                                                | Page |
|--------|-----------------------------------------------------------------------------------------------------------------------------|------|
| A-13   | Average Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $160/50/0$                                  | 159  |
| A-14   | Local Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $160/50/0$                                    | 160  |
| A-15   | Average Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $160/75/0$                                  | 161  |
| A-16   | Local Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $160/75/0$                                    | 162  |
| A-17   | Average Moisture Content vs √Time for 3-Ply Specimens Exposed to 160/98/0                                                   | 163  |
| A-18   | Local Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $160/98/0$                                    | 164  |
| A-19   | Average Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $160/98/50$                                 | 165  |
| A-20   | Local Moisture Content vs $\sqrt{\text{Time}}$ for 3-Ply Specimens Exposed to $160/98/50$                                   | 166  |
| A-21   | Average Moisture Content vs $\sqrt{\text{Time}}$ for 13-Ply Specimens Exposed to $160/98/0$                                 | 167  |
| A-22   | Local Moisture Content at Specimen Center vs √ Time<br>for 13-Ply Specimens Exposed to 160/98/0                             | 168  |
| A-23   | Local Moisture Content at 0.0055 Inch from Specimen Center vs $\sqrt{\text{Time}}$ for 13-Ply Specimens Exposed to 160/98/0 | 169  |
| A-24   | Local Moisture Content at 0.0110 Inch from Specimen Center vs $\sqrt{\text{Time}}$ for 13-Ply Specimens Exposed to 160/98/0 | 170  |
| A-25   | Local Moisture Content at 0.0165 Inch from Specimen Center vs $\sqrt{\text{Time}}$ for 13-Ply Specimens Exposed to 160/98/0 | 171  |
| A-26   | Local Moisture Content at 0.0275 Inch from Specimen Center vs √Time for 13-Ply Specimens Exposed to 160/98/0                | 172  |

## LIST OF TABLES

| Table | Title                                                                                          | Page |
|-------|------------------------------------------------------------------------------------------------|------|
| 1     | Environmental Conditions                                                                       | 18   |
| 2     | Environmental Test Sequence                                                                    | 19   |
| A-1   | Cycle No. 1 Exposure to 120°F/98% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 3B          | 90   |
| A-2   | Cycle No. 2 Exposure to 120°F/98% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 3B          | 91   |
| A-3   | Cycle No. 1 Exposure to 120°F/98% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 6B          | 92   |
| A-4   | Cycle No. 2 Exposure to 120°F/98% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 6B          | 93   |
| A-5   | Cycle No. 1 Exposure to 120°F/98% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 1B          | 94   |
| A-6   | Cycle No. 2 Exposure to 120°F/98% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 1B          | 95   |
| A-7   | Cycle No. 1 Exposure to 120°F/98% RH Absorb<br>and 120°F/0% RH Desorb for Spe <b>c</b> imen 2A | 96   |
| A-8   | Cycle No. 2 Exposure to 120°F/98% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 2A          | 97   |
| A-9   | Cycle No. 1 Exposure to 120°F/98% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 14A         | 98   |
| A-10  | Cycle No. 2 Exposure to 120°F/98% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 14A         | 99   |
| A-11  | Initial Absorb Cycle for Specimen 3A Exposed to 120°F/50% RH Absorb and 120°F/0% RH Desorb     | 100  |
| A-12  | Cycle No. 1 Exposure to 120°F/50% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 3A          | 101  |
| A-13  | Cycle No. 2 Exposure to 120°F/50% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 3A          | 102  |
| A-14  | Initial Absorb Cycle for Specimen 8B Exposed to 120°F/50% RH Absorb and 120°F/0% RH Desorb     | 103  |
| A-15  | Cycle No. 1 Exposure to 120°F/50% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 8B          | 104  |
| A-16  | Cycle No. 2 Exposure to 120°F/50% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 8B          | 105  |

# LIST OF TABLES (Continued)

| Table | <u>Title</u>                                                                                | Page |
|-------|---------------------------------------------------------------------------------------------|------|
| A-17  | Initial Absorb Cycle for Specimen 15B Exposed to 120°F/50% RH Absorb and 120°F/0% RH Desorb | 106  |
| A-18  | Cycle No. 1 Exposure to 120°F/50% RH Absorb<br>and 120°F/0% RH Desorb for Specimen 15B      | 107  |
| A-19  | Cycle No. 1 Exposure to RT/50% RH Absorb<br>and RT/0% RH Desorb for Specimen 4B             | 108  |
| A-20  | Cycle No. 1 Exposure to RT/50% RH Absorb<br>and RT/0% RH Desorb for Specimen 8A             | 109  |
| A-21  | Cycle No. 1 Exposure to RT/50% RH Absorb<br>and RT/0% RH Desorb for Specimen 8B             | 110  |
| A-22  | Cycle No. 1 Exposure to 160°F/75% RH Absorb and 160°F/20% RH Desorb for Specimen 13         | 111  |
| A-23  | Cycle No. 2 Exposure to 160°F/75% RH Absorb and 160°F/20% RH Desorb for Specimen 13         | 112  |
| A-24  | Cycle No. 1 Exposure to 160°F/75% RH Absorb and 160°F/20% RH Desorb for Specimen 17         | 113  |
| A-25  | Cycle No. 2 Exposure to 160°F/75% RH Absorb and 160°F/20% RH Desorb for Specimen 17         | 114  |
| A-26  | Cycle No. 1 Exposure to 160°F/75% RH Absorb<br>and 160°F/20% RH Desorb for Specimen 21      | 115  |
| A-27  | Cycle No. 2 Exposure to 160°F/75% RH Absorb<br>and 160°F/20% RH Desorb for Specimen 21      | 116  |
| A-28  | Cycle No. 1 Exposure to 160°F/98% RH Absorb and 160°F/0% RH Desorb for Specimen 29          | 117  |
| A-29  | Cycle No. 2 Exposure to 160°F/98% RH Absorb<br>and 160°F/0% RH Desorb for Specimen 29       | 118  |
| A-30  | Cycle No. 1 Exposure to 160°F/98% RH Absorb<br>and 160°F/0% RH Desorb for Specimen 31       | 119  |
| A-31  | Cycle No. 2 Exposure to 160°F/98% RH Absorb<br>and 160°F/0% RH Desorb for Specimen 31       | 120  |
| A-32  | Cycle No. 1 Exposure to 160°F/98% RH Absorb and 160°F/50% RH Desorb for Specimen 32         | 121  |
| A-33  | Cycle No. 1 Exposure to 160°F/98% RH Absorb and 160°F/50% RH Desorb for Specimen 33         | 122  |

# LIST OF TABLES (Continued)

| Table | <u>Title</u>                                                                           | Page |
|-------|----------------------------------------------------------------------------------------|------|
| A-34  | Cycle No. 1 Exposure to 160°F/50% RH Absorb and 160°F/0% RH Desorb for Specimen 30     | 123  |
| A-35  | Cycle No. 1 Exposure to 160°F/50% RH Absorb and 160°F/0% RH Desorb for Specimen 35     | 124  |
| A-36  | Cycle No. 1 Exposure to RT/93% RH Absorb<br>and RT/0% RH Desorb for Specimen AFD       | 125  |
| A-37  | Cycle No. 2 Exposure to RT/93% RH Absorb<br>and RT/0% RH Desorb for Specimen AFD       | 126  |
| A-38  | Cycle No. 1 Exposure to RT/93% RH Absorb<br>and RT/0% RH Desorb for Specimen BFD       | 127  |
| A-39  | Cycle No. 2 Exposure to RT/93% RH Absorb<br>and RT/0% RH Desorb for Specimen BFD       | 128  |
| A-40  | Cycle No. 1 Exposure to RT/93% RH Absorb<br>and RT/0% RH Desorb for Specimen CFD       | 129  |
| A-41  | Cycle No. 2 Exposure to RT/93T RH Absorb<br>and RT/0% RH Desorb for Specimen CFD       | 130  |
| A-42  | Cycle No. 1 Exposure to RT/75% RH Absorb<br>and RT/0% RH Desorb for Specimen DFD       | 131  |
| A-43  | Cycle No. 2 Exposure to RT/75% RH Absorb<br>and RT/0% RH Desorb for Specimen DFD       | 132  |
| A-44  | Cycle No. 1 Exposure to RT/75% RH Absorb<br>and RT/0% RH Desorb for Specimen EFD       | 133  |
| A-45  | Cycle No. 2 Exposure to RT/75% RH Absorb<br>and RT/0% RH Desorb for Specimen EFD       | 134  |
| A-46  | Cycle No. 1 Exposure to RT/75% RH Absorb<br>and RT/0% RH Desorb for Specimen FFD       | 135  |
| A-47  | Cycle No. 2 Exposure to RT/75% RH Absorb<br>and RT/0% RH Desorb for Specimen FFD       | 136  |
| A-48  | Cycle No. 1 Exposure to 120°F/75% RH Absorb<br>and 120°F/0% RH Desorb for Specimen GFD | 137  |
| A-49  | Cycle No. 2 Exposure to 120°F/75% RH Absorb<br>and 120°F/0% RH Desorb for Specimen GFD | 138  |
| A-50  | Cycle No. 1 Exposure to 120°F/75% RH Absorb<br>and 120°F/0% RH Desorb for Specimen HFD | 139  |

# LIST OF TABLES (Continued)

| Table | <u>Title</u>                                                                                | Page |
|-------|---------------------------------------------------------------------------------------------|------|
| A-51  | Cycle No. 2 Exposure to 120°F/75% RH Absorb and 120°F/0% RH Desorb for Specimen HFD         | 140  |
| A-52  | Cycle No. 1 Exposure to 120°F/75% RH Absorb<br>and 120°F/0% RH Desorb for Specimen IFD      | 141  |
| A-53  | Cycle No. 2 Exposure to 120°F/75% RH Absorb<br>and 120°F/0% RH Desorb for Specimen IFD      | 142  |
| A-54  | Cycle No. 1 Exposure to 160°F/98% RH Absorb<br>and 160°F/0% RH Desorb for 13-Ply Specimen A | 143  |
| A-55  | Cycle No. 1 Exposure to 160°F/98% RH Absorb<br>and 160°F/0% RH Desorb for 13-Ply Specimen B | 144  |
| A-56  | Cycle No. 1 Exposure to 160°F/98% RH Absorb<br>and 160°F/0% RH Desorb for 13-Ply Specimen C | 145  |
| A-57  | Cycle No. 1 Exposure to 160°F/98% RH Absorb<br>and 160°F/0% RH Desorb for 13-Ply Specimen D | 146  |

#### 1.0 INTRODUCTION

It has been shown that high performance resin matrix composite materials are susceptible to degradation in environments to which aircraft are subjected (References 1, 2). Developments in the application of polymeric matrix composites to military aircraft structures have revealed significant changes in the mechanical properties and dimensional shapes of these materials due to the effects of combined moisture and thermal environments (Reference 3). The absorbed moisture in composites causes the resin to swell, inducing internal stresses. Moisture gradients and the resulting nonhomogeneous swelling of the resin can lead to the formation of microcracks and delaminations. Additionally, water acts as a plasticizer in a polymer matrix, reducing the glass-transition temperature, that is, the temperature at which there is a dramatic loss of matrix modulus.

Since moisture adversely affects resin-matrix composite materials, it becomes necessary to know how much moisture a given piece of composite structure has absorbed at a certain point in time, whether in the laboratory under controlled conditions, or in actual service under widely varying conditions. This becomes easy enough in the laboratory case (by periodically weighing the specimens) if one accounts for such variables as moisture absorbing end tabs, bonding adhesive, sealant, paint, metal splice plates, and fasteners. However, the problem becomes more difficult if moisture distributions through the specimen thickness are required, since weighing establishes only the average moisture content in the specimen. Also, specimens may be located in the field, away from equipment for weighing; and larger, full-scale aircraft structure, such as a flap, empennage, wing, etc. must be removed from the aircraft for such weighing. Obviously, another method of moisture determination that is accurate and convenient is needed since moisture content and distribution in composite materials in the field must be determined and monitored in order to extend the confidence level in current composite design methods to primary structural components. As a result of independent research and development work at the Lockheed-Georgia Company, a promising new method for determining the moisture content and distribution in composite materials by the use of dielectric measurements has evolved.

The objectives of this program were to quantify the relationship between moisture content and capacitance change in T300/5208 graphite/epoxy material, and to utilize this relationship to determine the moisture distribution in a typical laminate of the same material.

The program was conducted in two tasks. Task I was an empirical and analytical effort conducted on three-ply graphite/epoxy laminates subjected to various environmental exposure conditions. A quantitative relationship between moisture content and capacitance change in the specimens was established. Task II used the results of Task I to verify the use of this methodology for determination of moisture distributions during absorption and desorption of 13-ply laminates. These measured moisture distributions were compared to theoretical values for the same laminate configuration.

## 2.0 TECHNICAL DISCUSSION

## 2.1 EXPERIMENTAL TEST PROGRAM

This program has been conducted in two tasks. In Task I, three-ply graphite/epoxy laminates with sensors embedded at their midplanes were exposed to various hygrothermal environments. Moisture content versus time was determined by weight measurements at discrete times during each exposure condition. In addition, capacitance readings were measured by the sensors at those same times. The capacitance was then converted to percent change at each time period and compared with the laminate moisture content. From the measured weight gain data, an analytical least squares curve fit program was used to establish the moisture diffusion coefficients necessary to then analytically establish the moisture content at the laminate midplane at the discrete weight and capacitance measurement times. This procedure established a relationship between capacitance and local moisture content. A similar procedure was used in Task II except that the graphite/epoxy laminates were thirteen plies thick and six sensors were placed through the thickness as discussed in Paragraph 2.1.2.2. The local moisture content/capacitance relationship with these Task II specimens were evaluated and compared with the results obtained in Task I.

## 2.1.1 Materials and Equipment

- 2.1.1.1 Laminate Material The graphite/epoxy laminate material selected for use throughout the program was T300/5208. This selection was based on its widespread use throughout the aerospace industry.
- 2.1.1.2 Capacitance Sensor and Meter The capacitance sensing probe consisted of a pair of coated parallel 0.003-inch diameter magnet wires as illustrated in Figure 1. They were constructed from Phelps-Dodge armored Poly-Thermalize 2000 40-gauge magnet wire insulated with thermosetting polyester overcoated with a linear amide-imide and were installed in the specimen in intimate contact with each other. The wires acted as the "plates" of a capacitor while the resin between them constituted the moisture tracking dielectric. Extension of the sensor wires beyond the edge of the specimen



Figure 1. Capacitance Sensor Detail

constituted the sensor leads necessary for interconnection to the monitoring instrumentation. An E.C.D. Model 100 digital capacitance meter was used to measure the capacitance at the sensor. The meter is auto-ranging and can very quickly measure capacitance values as low as 0.1 pico-farad (pf). The meter is also highly portable, as shown in Figure 2.



Figure 2. Portable Capacitance Meter

2.1.1.3 Environmental Test Equipment - The absorption chamber was a Blue M FR-256PC-1 Model as shown in Figure 3. The system incorporates a noncycling, constant refrigeration principle and was capable of operating over the ranges required for this program. The system was installed with a stainless steel reservoir and water purification system and therefore operated from tap water. Several sets of precision cams were machined and verified to precisely control the equipment for the various temperature/relative humidity requirements of this program. The equipment incorporated a 3-inch port in the top in order to allow leads from the specimens and sensors to extend out of the chamber to a special hook affixed to the weighing pan of a digital analytical scale in order to weigh the specimens while in the chamber. During non data

taking intervals the port was stoppered with a 3-inch rubber plug. The 0.003-inch probe wires wedge easily between the port walls and the rubber plug. The desorption chamber, shown in Figure 3 and on a larger scale with the temperature readout equipment in Figure 4, was an aluminum chamber with inside dimensions of 6 inches by 4 inches by 6 inches and incorporating an integral thermostatically controlled heating element. The chamber has an airtight removable top with ports, in order to allow weight and capacitance readings to be made while the specimens are still in the chamber. The temperature is monitored with a precise digital thermometer.

2.1.1.4 Analytical Balance and Support Fixture - The analytical balance bought for this program was a Mettler H315 with digital readout. The system operates by the optical tare principle with a weighing range between 0-1000 grams. It has a readability of 0.1 mg and a standard deviation precision of ±0.1 mg. However, since it could not be properly calibrated, it was returned to the factory and a Christian-Beckman analytical balance of equal accuracy was substituted in its place. A special fixturing hook designed to clip on to the weighing pan permits the weighing of specimens outside the weighing chamber and underneath the balance, as shown in Figure 3.

As shown in Figure 3, the digital analytical scales were mounted on a 1-inch thick aluminum plate which is bolted to four Thompson linear bearings. These bearings travel on 1-inch precision ground stock which is mounted on a bridge assembly bolted to a double thick concrete wall. The entire assembly is suspended over the top of the absorption and desorption chambers. This configuration allows the balance to be precisely placed over the ports of the absorption chamber and desorption chamber for weighing of specimens without removal from the chambers. This test setup also reduces the effect on analytical scale readings of vibrations from the humidity cabinet and floor.

## 2.1.2 Specimen and Sensor Configuration and Fabrication

2.1.2.1 Sensor Configuration and Fabrication - Pairs of parallel magnet wire described in Paragraph 2.1.1.2 were strung tightly in a multiple "fiddle bow" type of fixture, shown in Figure 5, to insure a consistent "plate" separation dimension. Each



Figure 3. Environmental Test Equipment



Figure 4. Desorption Chamber and Temperature Readout



Figure 5. Sensor Fabrication Fixture

pair of wires were of sufficient length such that, when cut, they formed two sensors. Since the fixture will hold 12 such pairs, each fixture lay-up provided enough probes for 24 3-inch by 3-inch specimens. Three sections of mylar shrink tubing were slipped concentrically around the wire pairs in such a manner that there was a one-inch monitored section in the center of each fabricated specimen, as shown in Figure 6. The 1-inch monitoring section was thoroughly cleaned and coated with Narmco 5208 resin and oven cured at 350°F.

This sensor and specimen configuration was typical of the early 3-ply specimens and designated Type I. These specimens were numbered with an A or B after the number, e.g. 1B and 2A. Figure 7 shows a typical cross section of the sensor, the shrink tube, and the three graphite/epoxy laminate plies. The problems and difficulties encountered with this configuration during exposure to the various temperature/humidity environments included:

 Cracking and voids in the shrink tube allowing free moisture in the area of the sensors.



Figure 6. Early Sensor/Specimen Configuration



Figure 7. Early Specimen and Sensor Installation

 Moisture accumulating inside the shrink tube causing erratic moisture content calculations.

As a result of the difficulties with the original sensor design, a number of modifications were made in arriving at the final design shown in Figure 8. This design was used in the nine 3-ply specimens, AFD through IFD. In this final design, designated Type IV, two wires were twisted for about a two-inch section and made into a loop which was finally placed in the specimen as shown in Area B of Figure 8. The loop and lead wire details are shown in Figure 9 and then become the Capacitance Sensor. Figure 10 shows a cross section through the loop of one of the sensors showing the four copper wires. The lead wires (from the loop) were prefabricated into the brass tube. The lead wires from the brass tube to the pins that plug into the capacitance meter were premolded with silicone rubber to prevent moisture entry from that end.



Figure 8. Final Design for Environmental Exposure Specimen and Sensor



Figure 9. Sensor Loop and Lead Wire Detail



Figure 10. Cross Section of the Sensor Final Design

Two modifications of the "final design" sensor were used prior to its use in Specimens AFD through IFD. The first modification was used in Specimens 13, 17, and 21 which were exposed to  $160^{\circ} F/75\%$  relative humidity (RH) during absorb and  $160^{\circ} F/20\%$  RH during desorb and which were designated Type II. In this modification, the sensor loop was installed in the specimen with the lead wires emerging from the bag side. Shrink tubing was placed around the lead wires instead of the brass tubing. Another length of shrink tube was placed around the wires from the first shrink tube to the pins instead of the molded silicone rubber.

The second modification was designated Type III and was essentially the same as the first except that an aluminum tube was substituted for the shrink tube on the lead wires emerging from the specimen. The lead wires were potted into the aluminum tube with a silicone rubber. This design was used for the 3-ply Specimens 29, 30, 31, 32, 33, and 35 and for the 13-ply Specimens A, B, C, and D.

2.1.2.2 Specimen Configuration and Fabrication - All 3-ply specimens were fabricated in the orientation of 0, 90, 0 with the sensor placed in the center ply. The sensor configuration did change as discussed in Paragraph 2.1.2.1 above.

The 13-ply Specimens A, B, C, and D were fabricated in two orientations. Specimens A and B were oriented [0,90,0,0,90,0,90,0,90,0,90,0] starting from the tool side. The six sensors were placed in Ply Numbers 2, 5, 7, 8, 10, and 12, starting from the tool side so that four sensors (Numbers 1, 2, 3, and 6) were parallel with and in the 90° Ply Numbers 2, 5, 7, and 12 and two sensors (Numbers 4 and 5) were parallel with and in the 0° Ply Numbers 8 and 10. Specimens C and D were oriented [(0,90)<sub>6</sub>,0]<sub>T</sub>. The six sensors were placed in each of the 90° oriented plies so that the sensors were numbered 1 through 6 corresponding with Ply Numbers 2, 4, 6, 8, 10, and 12, with Ply Number 1 being next to the tool.

Physical properties determined after fabrication of each of the panels were consistent with well fabricated T300/5208 graphite/epoxy laminates. Average physical properties were as follows:

|                         | 3-Ply  | 13-Ply |
|-------------------------|--------|--------|
| Specific Gravity (g/cc) | 1.57   | 1.56   |
| Fiber Volume (%)        | 62.0   | 60.0   |
| Void Content (%)        | <0.1   | <0.1   |
| Per Ply Thickness (in.) | 0.0055 | 0.0056 |

Visual and microscopic examination of the fabricated specimens revealed sound installation of the sensors and very low void content laminates. Figure 7 shows a cross section through the shrink tube, the two-wire sensor, and the three plies of the Type I specimens with a letter following the number. Voids and/or cracks and resin flow into the shrink tube is evident in the Figure 7 photomicrograph. Figure 11 shows a cross section of the same specimen sensor installation at the actual 1-inch sensor measurement area. This cross section shows a sound sensor installation and a sound laminate. Figure 10 shows a cross section through the four wires of the Type IV specimen representative of the nine specimens AFD through IFD. This also shows a sound sensor installation with a well fabricated laminate.

Figure 12 shows the four 4-wire Type III sensor installations located in the 90° plies of the 13-ply Specimen A. The other two 4-wire sensors located in the 0° plies of 13-ply Specimen A are shown in Figure 13. Although the field of view is insufficient to see all six sensors, Figure 14 shows typical installations of part of the six sensors of 13-ply Specimen C. Figure 15 shows a typical close-up of one of the installations for Specimen A and Figure 16 shows a typical close-up of one of the installations for Specimen C. Since Specimens A and B are oriented alike and Specimens C and D are oriented alike, Figures 12 through 16 are representative of the 13-ply Specimens A, B, C, and D. It is evident from these five photomicrographs and the physical property examination described above that the sensor installations are sound and that the laminates are well fabricated.



Figure 11. Sensor Installation in Early 3-Ply Specimens



Figure 12. Four Sensor Installations in 13-Ply Laminate A



Figure 13. Two Sensor Installations in 13-Ply Laminate A



Figure 14. Typical Sensor Installations for Specimen C



Figure 15. Close-up of a Typical Sensor Installation of Specimen A



Figure 16. Close-up of a Typical Sensor Installation of Specimen C

#### 2.1.3 Environmental Testing and Procedures

2.1.3.1 Temperature/Humidity Environmental Testing - The 3-ply specimens were exposed to the temperature/humidity environmental conditions shown in Table 1.

TABLE 1. ENVIRONMENTAL CONDITIONS

| NO. OF | ABSORB                    |    | DESORB    |                 |  |
|--------|---------------------------|----|-----------|-----------------|--|
| CYCLES | Temp。(°F) Humidity (% RH) |    | Temp。(OF) | Humidity (% RH) |  |
| 2      | RT                        | 93 | RT        | 0               |  |
| 2      | RT                        | 75 | RT        | 0               |  |
| 1      | RT                        | 50 | RT        | 0               |  |
| 2      | 120                       | 98 | 120       | 0               |  |
| 2      | 120                       | 75 | 120       | 0               |  |
| 2      | 120                       | 50 | 120       | 0               |  |
| 2      | 160                       | 98 | 160       | 0               |  |
| 2      | 160                       | 75 | 160       | 20              |  |
| 1      | 160                       | 50 | 160       | 0               |  |
| 1      | 160                       | 98 | 160       | 50              |  |

The 13-ply specimens were exposed to one cycle of 160°F/98% RH Absorb and 160°F/0% RH Desorb.

The test sequence, specimen type, and specimen numbers used for each environmental condition are shown in Table 2.

Specimen 8B was the only specimen used for two exposure conditions. The capacitance lead wire broke after 6.25 hours of the second absorb cycle to its first use at  $120^{\circ}\text{F}/50\%$  RH absorb and  $120^{\circ}\text{F}/0\%$  RH desorb. Fortunately, the sensor leads broke far enough away from the specimen that repair was possible. Since its first exposure condition was rather mild at  $120^{\circ}\text{F}/50\%$  RH and the second use was also mild (RT/50% RH), it was decided to allow it to become the third specimen for that exposure condition.

TABLE 2. ENVIRONMENTAL TEST SEQUENCE

| TEMP.<br>(°F) | ABSORB<br>RH | DESORB<br>RH | NO.<br>PLIES | SPEC.<br>TYPE | SPECIMEN NUMBERS TESTED |
|---------------|--------------|--------------|--------------|---------------|-------------------------|
| 120           | 98           | 0            | 3            | 1             | 3B, 6B                  |
| 120           | 50           | 0            | 3            | 1             | 3A, 8B                  |
| 120           | 98           | 0            | 3            | 1             | 1B, 2A, 14A             |
| RT            | 50           | 0            | 3            | 1             | 4B, 8A, 8B              |
| 160           | 75           | 20           | 3            | 11            | 13, 17, 21              |
| 160           | 98           | 0            | 3            | 111           | 29, 31                  |
| 160           | 98           | 50           | 3            | Ш             | 32,33                   |
| 160           | 50           | 0            | 3            | Ш             | 30, 35                  |
| 160           | 98           | 0            | 13           | Ш             | A, B, C, D              |
| RT            | 93           | 0            | 3            | IV            | AFD, BFD, CFD           |
| RT            | 75           | 0            | 3            | IV            | DFD, EFD, FFD           |
| 120           | 75           | 0            | 3            | IV            | GFD, HFD, IFD           |

2.1.3.2 Weighing and Capacitance Measurement Procedure - Weighing and capacitance measurements require approximately 10 minutes for each specimen at each discrete time period. Therefore, each specimen starting time is staggered by 10 minutes so that the exposure time period is the same for each specimen.

Early experiments with taking the weights and the capacitance measurements in the environmental chamber during absorption with the air circulating fan on and off showed better results with the fan on. This procedure was used for the 3-ply specimens of Types I, II, and III. Because of condensation problems encountered caused by using that procedure in combination with condensation in the port area where the capacitance lead wires emerged from the environmental chamber, it was decided to drop the environmental condition below the room temperature dew-point condition during weighing and capacitance measurements. This was accomplished and used on the 13-ply Specimens A, B, C, and D which were exposed to 160°F/98% RH during absorb and the Type IV 3-ply Specimens GFD, HFD, and IFD which were exposed to 120°F/75% RH during absorb. With the environmental chamber environment below the dew point during data taking, best results were obtained with the air circulating fan off.

## Weighing Procedure

- Examine balance to ascertain that it is in proper operating condition to include cleaning and leveling.
- Determine the point of rest (zero point) of the empty balance.
- o Determine and record the tare weight.
- Perform the weighing of the specimen utilizing the restoring to the original point of rest method described below.

Connect the specimen to the center of the aluminum rod adapter (used in place of left pan) and place on the center of the right pan a weight thought to be approximately equal to that of the specimen. Release the adaptor and pan rests. If there is any swinging of the adaptor and pan, arrest this motion by successive application of the pan rests. Slowly lower the beam until the first motion of the pointer indicates whether the applied weight is too large or to small. Systematically, add or remove weights, arresting the beam and pan supports between each change and taking care to prevent oscillation of the adaptor and pan, until the specimen is balanced within the range of the circularly shaped weight mechanism. Visually estimate the point of rest by noting the extremes of the first full swing. From this approximate value of the point of rest and the value of the zero point of rest, make a mental calculation of that position of the circularly shaped weight mechanism which will restore the point of rest to the zero value. Shift the circularly shaped weight control knob to this calculated position and repeat this process until a final point of rest is obtained which is coincident with the zero point of rest within the limits of accuracy desired for the weighing. Raise the beam and release the pan support rests. Repeat this method three times. Disconnect specimen from adaptor and place back in chamber.

o Record the individual weights on the pan and the value of the circularly shaped weight mechanism. Check this list against the weights missing from the weight box. Return the weight to the pan again checking the original list. Add the total value of the weights.

## Capacitance Measurement Procedure

- Examine capacitance measurement meter to ascertain that it is in proper operating condition to include properly charged batteries.
- Calibrate meter to insure the correct zero point, by adjusting the capacitance offset knob to zero.
- o Calibrate meter using a standard 903 pf polystyrene reference capacitor.
- Check specimen to insure it is free from touching other specimens in chamber, to include leads and thermal check-out.
- o Connect specimen leads to meter inlet and press measurement button.
- o Read capacitance digital read-out in meter's window.
- Repeat procedure three times to insure correct reading.

## 2.1.4 Analytical Moisture Model

The one-dimensional Fick diffusion equation

$$\frac{\partial M(z,t)}{\partial t} = D \frac{\partial^2 M(z,t)}{\partial z^2} \tag{1}$$

where

M(z,t) = moisture content (% by weight) at position  $\underline{z}$  in the interior of the laminate and time  $\underline{t}$ 

D = diffusion coefficient

is solved by assuming a solution of the form

$$M(z,t) = [A \sin a_n z + B \cos a_n z] e^{-(a_n^2 Dt)}$$
(2)

where

$$a_n = \frac{(2n+1)}{h} \pi$$

h - laminate thickness

Making this substitution and evaluating boundary and initial conditions leads, after some mathematical manipulation to the solution

$$M(z,t) = M_o + (M_{amb} - M_o) [1 - \sum_{n=0}^{\infty} m_n \cos a_n z]$$
 (3)

where

M = the initial moisture content of the laminate

M<sub>amb</sub> = the ambient (saturated) moisture content

$$m_n = \frac{4}{\pi} \left[ \frac{(-1)^n}{2n+1} e^{-(\alpha_n^2 Dt)} \right]$$

and

Although the cosine series is shown summed to infinity, numerical comparison of results, with the given ranges of initial and boundary conditions, showed that convergence is obtained by taking the first twelve terms. The restriction on the exposure condition is that it must be symmetric, i.e., the same temperature and humidity must be present on both sides of the laminate.

A supplemental program was developed to aid in providing certain input data for the main moisture distribution program. The diffusion coefficient, D, given in the Fick diffusion equation can be expanded as follows:

$$D = D_o e^{\left(-\frac{E}{RT}\right)}$$

where

D is the permeability index of the material

E is the activation energy

R is the universal gas constant

T is the exposure temperature in <sup>o</sup>K

At the present time, there exists some disagreement among researchers as to the proper value of the diffusion coefficient D of various laminate systems. As a result, there can be found in the literature different values of the diffusion coefficient used by different authors for the same material.

It was decided, therefore, to develop a method by which actual test data giving moisture content versus exposure time for a certain laminate could be used to numerically calculate a value for the diffusion coefficient. The Diffusion Coefficient Estimation Program uses as input values of moisture content versus exposure time for a given laminate and exposure conditions. It correlates the measured data with the analytical solution in the least-squared error sense to provide a best fit value of diffusion coefficient for a given laminate.

The diffusion coefficients were determined for the three temperatures (RT, 120°F, and 160°F) from the actual time and weight data generated by the specimens exposed to those environments during this program. Since the capacitance sensors were placed in the center ply of all 3-ply specimens, it is assumed that the local moisture content would be that at the center of the specimen. Therefore, curves were drawn for the average moisture content and the local moisture content, versus the square root of time for each of the environmental conditions shown in Table 1, calculated by this moisture model using the diffusion coefficients as described above. These curves are given in the Appendix as Figures A-1 through A-20. Similar curves were drawn for the 13-ply laminates A, B, C, or D exposed to the environmental conditions of 160°F/98% RH Absorb and 160°F/0% RH Desorb. These 13-ply laminates had six sensors placed through the thickness as described in Paragraph 2.1.2.2. The average moisture content and the local moisture content at five locations were plotted and are shown in Figures A-21 through A-26.

## 2.2 DISCUSSION OF TEST RESULTS

The test results are discussed in the sequence that they were obtained and as tabulated in Table 2, except that the 3-ply specimens of Task I will be discussed prior to the 13-ply specimens of Task II. The specimen weights, sensor capacitances, and times measured during the various exposures are tabulated as raw data in Tables A-1 through A-57 of the Appendix.

## 2.2.1 Task | Test Results

## Specimens 3B and 6B were the initial exposure specimens. The environmental conditions were $120^{\circ}F/98\%$ RH Absorb and $120^{\circ}F/0\%$ RH Desorb. The tabulated weight, capacitance and time data are given in Tables A-1 through A-4 for the two cycles. Figure 17 shows the average moisture content versus the percent capacitance change, and Figure 18 shows the local moisture content versus the percent capacitance change. As noted in

3-Ply Specimens Exposed to 120°F/98% RH Absorb and 120°F/0% RH Desorb -

Figures 17 and 18, capacitance during both absorption cycles was erratic and high. Capacitance during both desorption cycles was much more consistent. It was determined that the erratic readings were caused by moisture condensing and absorbing on the test leads. A length of Mylar shrink tubing encasing the entire length of the test leads improved this condition. Fifteen-pound test nylon monofilament was also encased in

this length of shrink tube to add more rigidity to the leads for weighing.

Because of the erratic data observed from Specimens 3B and 6B, three additional specimens, 1B, 2A, and 14A, were modified as described above and exposed to this environmental condition of 120°F/98% RH Absorb and 120°F/0% RH Desorb. The tabulated weight, capacitance, and time data are shown in Tables A-5 through A-10 for the two cycles of each specimen. Figure 19 shows the average moisture content versus the percent capacitance change for all three specimens, and Figure 20 shows the local moisture content versus the percent capacitance change for the three specimens.

The data shows a different behavior for Specimen 1B than it does for Specimens 2A and 14A. Specimen 1B had a reasonable capacitance change with the laminate moisture (1) Open symbols designate absorb and closed symbols designate desorb in all moisture/capacitance curves.









content. Specimens 2A and 14A had abnormally high capacitance changes with the higher moisture contents. This may be explained at least in part by examination of the three photomicrographs shown in Figures 21, 22, and 23. Figure 21 is a photomicrograph at approximately 100X magnification showing a cross section through the sensor installation in the sleeve area of Specimen 1B. Resin flow into the sleeve is evident. Although voids are evident between the resin and sleeve areas and even in the resin itself, the resin in the vicinity of the two wires is free of voids. Any change in capacitance should, therefore, be caused by a capacitance change in the resin such as the moisture content change in resin. However, in Figures 22 and 23, voids between the two wires are clearly evident. If moisture would therefore get between the two wires, the sensor would be measuring (at least along part of the sensor length) free moisture which would be expected to be a large capacitance.

The above supposition is further verified by an examination of the data in Table A-7. At 22 hours an extremely large increase in capacitance was noted, and it kept rising until the end of the absorption environment. During desorb it gradually decreased until a large jump at 23.25 hours, then a more gradual decrease until the end of desorb. This same condition was noted in the second cycle for Specimen 2A and for both cycles of Specimen 14A.

Prior to this microscopic examination, specimens of this Type I configuration were exposed to two other environmental conditions. These two conditions were  $120^{\circ}F/50\%$  RH Absorb with  $120^{\circ}F/0\%$  RH Desorb and RT/50% RH Absorb with RT/0% RH Desorb. These two conditions are discussed in the next two paragraphs.

2.2.1.2 3-Ply Specimens Exposed to 120°F/50% RH Absorb and 120°F/0% RH Desorb - Specimens 3A, 8B, and 15B were exposed to the environmental conditions of 120°F/50% RH Absorb and 120°F/0% RH Desorb. The tabulated weight, capacitance, and time data are shown in Tables A-11 through A-18. Figure 24 shows the average moisture content versus the percent capacitance change for Specimens 3A and 8B, and Figure 25 shows the local moisture content versus percent capacitance change for those two specimens. As shown in Tables A-11, A-14, and A-17, an attempt was made to turn the



Figure 21. Cross Section Through Sleeve Area of Specimen 1B



Figure 22. Cross Section Through Sleeve Area of Specimen 2A



Figure 23. Cross Section Through Sleeve Area of Specimen 14A





environmental fan off during the reading times. This caused erratic weight and capacitance data and, therefore, the data is not plotted on the capacitance/moisture content correlation curves. Desorb Cycle Number 1 was started after this time period; then after completion of Desorb #1, Absorb #1 was started. As noted in Table A-17, the leads from Specimen 15B broke during the initial absorb cycle and also was not plotted on the capacitance/moisture correlation curves.

As shown in Tables A-12, A-15, and A-18, the environmental chamber condenser fan broke after 6.25 hours of the first absorb cycle. These specimens were placed in the desorb chamber and then started into the Absorb Number 2 cycle when the condenser fan was fixed.

In spite of the equipment difficulties experienced during this environmental condition testing, good capacitance/moisture content correlation was obtained as shown in Figures 24 and 25.

2.2.1.3 3-Ply Specimens Exposed to RT/50% RH Absorb and RT/0% RH Desorb—
Tables A-19, A-20, and A-21 show the tabulated weight, capacitance, and time data for Specimens 4B, 8A, and 8B exposed to one cycle of the environmental conditions of RT/50% RH Absorb and RT/0% RH Desorb. Figure 26 shows the average moisture content versus the percent capacitance change for all three specimens. Figure 27 shows the local moisture content versus the percent capacitance change for Specimen 4B, and Figure 28 shows the local moisture content versus the percent capacitance change for Specimens 8A and 8B. From the three figures, it is obvious that data for Specimen 4B shows abnormally high capacitance readings indicating a condition similar to that described for Specimens 2A and 14A in paragraph 2.2.1.1 above. The moisture content/capacitance correlation for Specimens 8A and 8B is fair.

2.2.1.4 3-Ply Specimens Exposed to 160°F/75% RH Absorb and 160°F/20% RH Desorb — Tables A-22 through A-27 show the tabulated weight, capacitance, and time data for Specimens 13, 17, and 21 exposed to two cycles of 160°F/75% RH Absorb and 160°F/20% RH Desorb. Figure 29 shows the average moisture content versus the percent









capacitance change for all three specimens. Figure 30 shows the local moisture content versus the percent capacitance change for Specimens 13 and 17, and Figure 31 shows the local moisture content versus the percent capacitance change for Specimen 21.

Although the capacitance change versus local moisture content data is very erratic for Specimens 13 and 17 during absorb, it is much better during desorb. The local moisture content data versus percent capacitance change is fair for Specimen 21 except for the first desorb cycle.

This series is the Type II specimens. Since the capacitance leads were encased in Mylar shrink tubing and from the long length of lead to the pins with Teflon shrink tube, some of the erratic readings may be accounted for by moisture condensing on the leads and specimens from the environmental port opening during the data taking and from moisture entry inside the shrink tube through the cracked tubes or improper seal at the tube ends.

2.2.1.5 3-Ply Specimens Exposed to 160°F/98% RH Absorb and 160°F/0% RH Desorb - The weight, capacitance, and time data for Specimens 29 and 31 exposed to two cycles of 160°F/98% RH Absorb and 160°F/0% RH Desorb are tabulated in Tables A-28 through A-31. These two specimens are the Type III specimens as discussed in paragraph 2.1.2.2. Figure 32 shows the average moisture content versus the percent capacitance change for both specimens during the desorb portion of the two cycles only. Figure 33 shows the local moisture content versus the percent capacitance change during desorb of the two specimens.

As noted in Tables A-28 through A-31, abnormally high weight readings were observed during the absorb part of both cycles for both specimens indicating an extremely high moisture content. The capacitance readings, although somewhat high, were better behaved than the weight indications. However, Specimen 29 had high enough weight reading to go off scale early during absorb cycle Number 2 and returned only after 25 hours of the second desorb cycle indicating a free moisture capacitance measurement. This free moisture may be even inside the tube. The excessive high weights were caused by excessive moisture condensation on the specimens and on the sensor leads; and, as indicated above, free moisture may possibly exist inside the aluminum tube or Teflon shrink tube.









2.2.1.6 3-Ply Specimens Exposed to 160°F/98% RH Absorb and 160°F/50% RH Desorb -The weight, capacitance, and time data for Type III Specimens 32 and 33 exposed to one cycle of 160°F/98% RH Absorb and 160°F/50% RH Desorb are tabulated in Tables A-32 and A-33. Figure 34 shows the average moisture content versus the percent capacitance change for only part of the desorb cycle, and Figure 35 shows the local moisture content versus percent capacitance change for those same points. As noted on the tables, the air circulation blower motor and associated assembly on the humidity chamber malfunctioned at the end of the Absorb Cycle Number 1. Since it was not possible to attain the temperature/humidity conditions of 160°F/50% RH required for desorption, these specimens were maintained at ambient conditions while the humidity chamber was repaired. The specimens were then exposed to a second absorb cycle prior to desorption after the repair was completed. The moisture content during the absorption portion was erratically high for Specimens 32 and 33, as was the case for Specimens 29 and 31 previously described. In addition, the capacitance for Specimen 32 was both high and erratic during both absorb and desorb. This again indicates free moisture as previously described. Though erratic, the capacitance readings of Specimen 33 behaved in a more normal manner, although the final moisture content (after desorb) was as expected for Specimen 32 and lower than expected for Specimen 33.

2.2.1.7 3-Ply Specimens Exposed to 160°F/50% RH Absorb and 160°F/0% RH Desorb—
The weight, capacitance, and time data for Type III Specimens 30 and 35 exposed to one cycle of 160°F/50% RH Absorb and 160°F/0% RH Desorb are shown in Tables A-34 and A-35. Figure 36 shows the average moisture content versus the percent capacitance change, and Figure 37 shows the local moisture content versus the percent capacitance change for the two specimens during both absorb and desorb. Since this environmental condition was much milder than the two previously discussed conditions, both the moisture content and capacitance change behaved more nearly as expected. Both the moisture content and capacitance was somewhat higher than expected.









2.2.1.8 3-Ply Specimens Exposed to RT/93% RH Absorb and RT/0% RH Desorb - Specimens AFD, BFD, and CFD were exposed for two cycles to the environmental conditions of RT/93% RH during absorb and RT/0% RH during desorb. The absorption environment for these specimens was created by placing a solution of 500 grams of ammonium dihydrogen phosphate and 250 ml of water in the bottom of a desiccator and allowing this salt solution to settle for 24 hours prior to placing the specimens above the salt solution. The desorption environment was created by replacing the salt solution with a desiccant. These three specimens were Type IV as discussed in Section 2.1.2 above. Each specimen was 4 inches by 4 inches and contained two sensors in the middle ply as shown in the X-ray photograph of Figure 38.

The weight, capacitance, and time data for the three specimens exposed to two cycles of this environment is tabulated in Tables A-36 through A-41. The average moisture content versus percent capacitance change for the two sensors of each of the three specimens for Cycle Number 1 is shown in Figure 39. Cycle Number 2 plots essentially on top of Cycle Number 1 and, therefore, was not plotted. Figure 40 shows the local moisture content versus percent capacitance change for one of the sensors of Specimen AFD for the two cycles. The data for the other sensor of Specimen AFD and for the other two specimens was very nearly the same and therefore was not plotted. As seen from Figures 39 and 40, a good moisture content/capacitance correlation was obtained for their environmental test condition.

2.2.1.9 3-Ply Specimens Exposed to RT/75% RH Absorb and RT/0% RH Desorb - Specimens DFD, EFD, and FFD were exposed for two cycles to the environmental conditions of RT/75% RH absorb and RT/0% RH desorb. This absorptive environment was created by placing a solution of 500 grams of sodium chloride and 250 ml of water in the bottom of a desiccator and allowing this salt solution to settle for 24 hours prior to placing the specimens above the salt solution. As stated in paragraph 2.2.1.8, the desorption environment was created by replacing the salt solution with a desiccant. These three specimens were also Type IV as were the three specimens discussed in paragraph 2.2.1.8 above.



Figure 38. X-ray Photograph of Type IV Specimens





The weight, capacitance, and time data for the three specimens exposed to two cycles of this environment is tabulated in Tables A-42 through A-47. The average moisture content versus percent capacitance change for the two sensors of each of the three specimens for Cycle Number 1 is shown in Figure 41. Cycle Number 2 plots essentially on top of Cycle Number 1 and, therefore, was not plotted. Figure 42 shows the local moisture content versus percent capacitance change for both cycles of one of the sensors from DFD as typical of all three specimens exposed to this environment. As evident from Figures 41 and 42, good correlation between moisture content and capacitance change was obtained for this environmental test condition.

2.2,1.10 3-Ply Specimens Exposed to 120°F/75% RH Absorb and 120°F/0% Desorb - Specimens GFD, HFD, and IFD were exposed for two cycles to the environmental conditions of 120°F/75% RH Absorb and 120°F/0% RH Desorb. The environmental test equipment described in paragraph 2.1.1.3 was used for these specimens as was the case for all the previously discussed 3-ply specimens except those discussed in paragraphs 2.2.1.8 and 2.2.1.9. However, because of the moisture condensation problems experienced with the previously discussed 3-ply specimens during the data taking times, the environment inside the environmental chamber was changed to an environment below the room temperature dew point prior to and during the weight and capacitance measurement periods. This procedure was worked out experimentally with the help of the Blue M Company and was previously used successfully on the Task II 13-ply specimens discussed in Section 2.2.2 below.

The weight, capacitance, and time data for the three specimens exposed to two cycles of this environment is tabulated in Tables A-48 through A-53. The average moisture content versus percent capacitance change for the average capacitance of the two sensors of each of the three specimens for both cycles is shown in Figure 43. As seen in Figure 43, Specimens HFD and IFD showed a higher moisture content with essentially the same percent capacitance change as Specimen GFD. However, during the second cycle, all three specimens behaved essentially the same. It is believed that this excessive moisture content was caused by experimentation of the environmental fan being left on or turned off during the data taking time periods as shown in Tables A-48,







A-50, and A-52. It was determined that the more consistent data was observed with the environmental fan turned off.

Figure 44 shows the local moisture content versus percent capacitance change for both cycles of one of the sensors from Specimen GFD as typical of all three specimens exposed to this environment. A good moisture content/capacitance correlation is shown in Figure 44, and this correlation is consistent with that shown in Figure 42. This indicates that the moisture content/capacitance correlation curve is more a function of percent relative humidity than of temperature, at least for room temperature and 120°F.

2.2.1.11 Moisture Content/Capacitance Correlation for Task I Specimens - The most consistent moisture content/capacitance data for the Task I specimens were demonstrated by the nine specimens AFD through IFD discussed in the three previous paragraphs, 2.2.1.8, 2.2.1.9 and 2.2.1.10. As seen in Figures 39, 41 and 43, two separate curves may be drawn through the data points, one for the data obtained during absorption and the other for the data obtained during desorption. However, if the average percent moisture content were defined as the percent moisture gain during absorption and the percent moisture loss during desorption, the test data would collapse into one curve as seen in Figures 45 through 53. The continuous curve is the same in each of the nine figures, and the data points represent the moisture content and capacitance observed for each specimen during two absorption and desorption cycles to their respective temperature and humidity environments.

## 2.2.2 Task II Test Results

The Task II specimens were the four Type III 13-ply Specimens A, B, C, and D with six sensors in each specimen as discussed in Section 2.1.2. Also discussed in that section was the sensor configuration, specimen configuration, sensor placement through the thickness, and specimen orientation. Figure 54 is an X-ray photograph of Specimen A which is typical of both Specimens A and B showing the sensor placement, sealant over the bleeder where the sensors emerge from the specimen, and installation of the aluminum tube on the specimen. Figure 55 is an X-ray photograph of Specimen D which is typical of both Specimens C and D showing the sensor placement, sealant over the





Figure 45. Moisture Content/Capacitance Correlation for Specimen AFD



Figure 46. Moisture Content/Capacitance Correlation for Specimen BFD



Figure 47. Moisture Content/Capacitance Correlation for Specimen CFD



Figure 48. Moisture Content/Capacitance Correlation for Specimen DFD



Figure 49. Moisture Content/Capacitance Correlation for Specimen EFD



Figure 50. Moisture Content/Capacitance Correlation for Specimen FFD



Figure 51. Moisture Content/Capacitance Correlation for Specimen GFD



Figure 52. Moisture Content/Capacitance Correlation for Specimen HFD



Figure 53. Moisture Content/Capacitance Correlation for Specimen IFD



Figure 54. X-Ray Photograph Showing Sensor Installation for Specimens A and B



Figure 55. X-Ray Photograph Showing Sensor Installation for Specimens C and D

bleeder where the sensors emerge from the specimen, and installation of the aluminum tube on the specimens. It may be noted that the sealant area is much darker in Figure 55 than in Figure 54 indicating a greater thickness of sealant on Specimens C and D than for Specimens A and B. These four specimens were exposed to one cycle of the environmental conditions of  $160^{\circ}F/98\%$  RH Absorb and  $160^{\circ}F/0\%$  RH Desorb in the environmental test equipment described in paragraph 2.1.1.3.

As discussed in paragraph 2.2.1.10 above, the absorption environment inside the environmental test equipment was changed to an environment below the room temperature dew point during the weight and capacitance measurement time periods. However, the environmental fan was left turned on during data taking.

The weight, capacitance, and time data, including the capacitance for each of the six sensors of each of the four specimens exposed to one cycle of the environmental condition of  $160^{\circ}$  F/98% RH absorb and  $160^{\circ}$  F/0% RH desorb, are tabulated in Tables A-54 through A-57. In general, an examination of the tables shows more consistent data for Specimens A and B than for C and D. This may be accounted for by the X-rays as described above. Figures 56 through 59 show the moisture content versus the capacitance change in pico-farads. Figures 56 and 57 show the expected behavior even though the moisture content is high at saturation. By taking into account the known weight of sealant around the sensor emerging area and the potting of the aluminum tube, this 2.1 to 2.3 percent moisture content at saturation reduces to approximately 1.4 which is the expected amount. Specimens C and D are more erratic although the desorb cycles seem to fall back in line. This behavior is again explained by the larger amount of sealant at the sensor exit points.

The local moisture content versus percent capacitance change for the five different thickness locations for Specimens A and B is shown in Figures 60 through 64. The local moisture content versus percent capacitance change for the three different thicknesses for Specimens C and D is shown in Figures 65, 66, and 67. The local moisture is based on distance from the center; therefore, the sensor locations are as follow:



Figure 56.  $\Delta$  Capacitance Versus Moisture Content for 13-Ply Specimen A  $^{70}$ 



Figure 57. Δ Capacitance Versus Moisture Content for 13-Ply Specimen B



Figure 58. A Capacitance Versus Moisture Content for 13-Ply Specimen C



Figure 59.  $\triangle$  Capacitance Versus Moisture Content for 13-Ply Specimen D

















| Distance From Center (Inch) | Specimen Nos. | Sensor Nos. |
|-----------------------------|---------------|-------------|
| 0.0000                      | A & B         | 3           |
| 0.0055                      | A & B         | 4           |
| 0.0110                      | A & B         | 2           |
| 0.0165                      | A & B         | 5           |
| 0.0275                      | A & B         | 1 & 6       |
| 0.0055                      | C & D         | 3 & 4       |
| 0.0165                      | C & D         | 2 & 5       |
| 0.0275                      | C & D         | 1 & 6       |

From the local moisture content versus percent capacitance change shown in Figures 60 through 64 which are representative of Specimens A and B, it is concluded that the shape of each of the curves is alike and that a good correlation is indicated except for Sensors #1 and #6 which are located the closest to the surface. The general shape of this curve is the same as the others, and the percent capacitance is high only at the extreme steep portion of the curve as shown in Figure 64.

From the local moisture content versus percent capacitance change shown in Figures 65, 66, and 67 which are representative of Specimens C and D, it is concluded that the data is erratic and that the capacitance is too high. This condition indicates that free moisture may be getting into the sensors or the sealant used for these specimens is allowing extra moisture to enter the specimen.

#### 2.3 CONCLUSIONS AND RECOMMENDATIONS

#### 2.3.1 Conclusions

It has been demonstrated during this program that parallel wire sensors acting as capacitors may be placed at various positions through the thickness of graphite/epoxy composites and measure the capacitance at the plane of that sensor. It was shown that this capacitance changes as the moisture content in the composite changes and that, for at least three of the ten environmental conditions tested, a good correlation was demonstrated between the composite's moisture content at the sensor location and the percent capacitance change during two absorb and two desorb cycles at each of the three conditions. These three environmental conditions included both room temperature and 120°F and both 93% RH and 75% RH during absorption. The 75% RH was at both temperatures; and, from the 75% RH data at those two temperatures, it was concluded that the correlation of moisture content and percent capacitance change was not a function of the temperature at least for those two temperatures. The change in relative humidity does not appear to change the shape of the moisture content/capacitance correlation curve.

The good correlation discussed above was obtained with the Type IV 3-ply specimens of Task I. In addition, a good moisture content/percent capacitance change correlation was obtained for the Type III, six sensors, 13-ply Specimens A and B of Task II, as shown in the local moisture content/percent capacitance change curves. However, Sensors 1 and 6 of those specimens had higher readings at saturation than the other four sensors. This may be accounted for by those sensors being nearest the surface of the specimen and nearer complete saturation. Since the moisture content/capacitance curve is extremely steep near the saturation point, a very small moisture content change can produce a large capacitance change.

Other conclusions reached during this program include:

o Both erratic moisture content and capacitance was experienced from condensation around the environmental chamber port area allowing moisture to condense on the specimens and the lead wires during data taking time periods.

- Extremely high capacitance readings were experienced from the sensors detecting free moisture believed to have been caused by cracks in shrink tubing and from improperly sealed ends and connecting points of tubing.
- Moisture content/capacitance correlation was better in all conditions tested, where erratic readings were apparent, for the desorb part of the cycle than for the absorb part.
- o In situ weight and capacitance readings in the environmental chamber were more consistent with the environmental fan turned on during data taking until it was decided to reduce the humidity and temperature conditions inside the environmental chamber below the room temperature dew point during the data taking time period. With that dry condition inside the environmental chamber, the most consistent data was experienced by turning the environmental fan off.
- o Type IV specimens produced the most consistent data.
- The structural integrity and durability of the composite containing the embedded sensors was not evaluated during this program.

### 2.3.2 Recommendations

Recommendations for further work to improve the moisture content/capacitance correlation in composites include:

- o Further work in sensor/specimen design and development to include improved isolation and insulation of lead wires from sensors to the tips, restricting the dielectric to the intended sensor area only.
- Extend moisture content/capacitance correlation to the remaining environmental conditions where correlation was doubtful.
- o Extend moisture content/capacitance correlation to other graphite/resin composites, other fiber-reinforced resin composites, and to hybrid composites.

- Conduct program to determine the structural integrity and durability of composites containing the embedded sensors.
- o Conduct flight service program to verify experimental data.

#### REFERENCES

- Browning, C. E., "The Effects of Moisture on the Properties of High Performance Epoxy Resins and Composites," AFML-TR-72-94, 1972.
- Hertz, J., "Investigation into the High-Temperature Strength Degradation of Fiber-Reinforced Resin Composites During Ambient Aging," Report No. GDCA-DGB73-005, Contract NAS 8-27435, June 1973.
- Shirrell, C. D., Halpin, J. C., and Browning, C. E., "Moisture An Assessment of Its Impact on the Design of Resin Based Advanced Composites," NASA TM X-3377, 1976.

#### **APPENDIX**

This appendix contains the raw data of time, capacitance, and weight of each specimen and each cycle exposed to the various environmental conditions used during this program as Tables A-1 through A-57. In addition, the analytical local moisture content versus the square root of time for each of the sensor locations used in this program are included as Figures A-1 through A-26.

The percent moisture content is computed from the readings shown in the tables as follows:

$$\% M_{c} = \frac{Wt. at Discrete Times - Tare Wt. - Dry Wt.}{Dry Wt.}$$

The tare includes the weight of the sensors, the sensor leads, connector pins, molded elastomer, and brass tubes filled with silicone rubber as shown in Figure 8 for the Type IV specimen.

# TABLE A-1. CYCLE NO. 1 EXPOSURE TO 120°F/98% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 3B

| Condition:   | 120°F/98% RH      | Absorb;       | 120°F/0% RH     | Desorb                |
|--------------|-------------------|---------------|-----------------|-----------------------|
| Tare 0.6777  | g Dry Weight      | 3.5129 g      | Dry Capaci      | tance26.5_ pf         |
| Specimen No. | 3B /              | Absorb No     | 1 S             | tart Date 8/31/78     |
| Time (hours) |                   | Weight (g)    |                 | Capacitance (pf)      |
| 0.0          |                   | 3.9355 🗥      |                 | 61.2                  |
| 1.0          |                   | 3.9665 🛆      |                 | -                     |
| 2.0          |                   | 3.9735 🛆      |                 | 76.9                  |
| 3.0          |                   | 3.9806 🗥      |                 | 73.4                  |
| 20.0         |                   | 3.9732 🖄      |                 | 76.5                  |
| 22.5         |                   | 3.9765 🖄      |                 | 77.0                  |
| 23.5         |                   | 3.9788 🖄      |                 | 78.7                  |
| 27.5         |                   | 3.9814 🖄      |                 | 76.5                  |
| A Heataray   | woight 0 4203 ams | Also readings | were taken with | environmental chamber |

① Use tare weight 0.4203 gms. Also readings were taken with environmental chamber fan off.

<sup>△</sup> Use tare weight 0.4226 gms. Readings were taken with environmental chamber fan on.

| Desorb No1   |            | Start Date 9/6/78 |
|--------------|------------|-------------------|
| Time (hours) | Weight (g) | Capacitance (pf)  |
| 0.0          | 4.2125     | 30.6              |
| 1.0          | 4.2082     | 30.1              |
| 2.0          | 4.2066     | 29.7              |
| 3.0          | 4.2039     | 30.1              |
| 4.0          | 4.2014     | 29.5              |
| 22.0         | 4.1965     | 30.3              |
| 23.0         | 4.1965     | 30.1              |
| 26.0         | 4.1965     | 29.1              |
| 28.0         | 4.1952     | 29.7              |
| 45.0         | 4.1911     | 29.8              |

TABLE A-2. CYCLE NO. 2 EXPOSURE TO 120°F/98% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 3B

| Condition:     | 120°F/98% RH | Absorb;    | 120°F/0% RH | Desorb            |
|----------------|--------------|------------|-------------|-------------------|
| Tare 0.6777    | g Dry Weigh  | t 3.5129 g | Dry Capa    | citance 26.5 pf   |
| Specimen No.   | 3B           | Absorb No. | 2           | Start Date 9/8/78 |
| Time ( hours ) |              | Weight (g) |             | Capacitance (pf)  |
| 0.0            |              | 4.2042     |             | 58.3              |
| 1.0            |              | 4.2314     |             | 82.3              |
| 2.0            |              | 4.2413     |             | 85.6              |
| 3.0            |              | 4.2439     |             | 72.0              |
| 69.0           |              | 4.2477     |             | 75.4              |
| 93.0           |              | 4.2371     |             | 79.0              |

| Desorb No. 2 | _          | Start Date 9/12/78 |
|--------------|------------|--------------------|
| Time (hours) | Weight (g) | Capacitance (pf)   |
| 0.0          | 4.2146     | 30.8               |
| 1.0          | 4.2119     | 29.5               |
| 2.0          | 4.2099     | 28.7               |
| 3.0          | 4.2081     | 28.4               |
| 21.0         | 4.1954     | 27.7               |
| 22.0         | 4.1954     | 28.1               |
| 25.0         | 4.1933     | 27.2               |
| 27.5         | 4.1933     | 26.6               |
| 44.5         | 4.1918     | 26.8               |
| 49.5         | 4.1918     | 26.6               |
| <b>52.</b> 5 | 4.1918     | 26.3               |
| 68.5         | 4.1909     | 26.5               |

TABLE A-3. CYCLE NO. 1 EXPOSURE TO 120°F/98% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 6B

| Condition:   | 120°F/98% RH    | Absorb;    | 120°F/0% RH | Desorb           |
|--------------|-----------------|------------|-------------|------------------|
| Tare 0.5814  | g Dry Weight    | 3.5499 g   | Dry Capacit | ance 36.7 pf     |
| Specimen No. | 6B /            | Absorb No  | 1 St        | art Date 8/31/78 |
| Time (hours) |                 | Weight (g) |             | Capacitance (pf) |
| 0.0          |                 | 3.8734 🗥   |             | 65.7             |
| 1.0          |                 | 3.8860 🛆   |             | -                |
| 2.0          |                 | 3.9325 🗥   |             | 73.2             |
| 3.0          |                 | 3.9115 🛕   |             | 76.0             |
| 20.0         |                 | 3.9128 2   |             | 86.3             |
| 22.0         |                 | 3.9128 2   |             | 91.2             |
| 23.0         |                 | 3.9156 2   |             | 91.9             |
| 26.0         |                 | 3.9200 (2) |             | 97.1             |
| △ Tare 0.323 | 5 gms。 Fan off. |            |             |                  |
| ★ Tare 0.323 | 5 gms. Fan on.  |            |             |                  |

| Desorb No1   |            | Start Date 9/6/78 |
|--------------|------------|-------------------|
| Time (hours) | Weight (g) | Capacitance (pf)  |
| 0.0          | 4.1488     | 44.6              |
| 1.167        | 4.1474     | 42.2              |
| 2.167        | 4.1452     | 44.0              |
| 3.167        | 4.1441     | 43.1              |
| 4.167        | 4.1433     | 40.7              |
| 22.167       | 4.1362     | 41.7              |
| 23.0         | 4.1362     | 41.6              |
| 26.0         | 4.1362     | 41.7              |
| 28.0         | 4.1346     | 40.4              |
| 45.0         | 4.1315     | 38.9              |

TABLE A-4. CYCLE NO. 2 EXPOSURE TO 120°F/98% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 6B

| Condition:    | 120°F/98% RH | Absorb;    | 120°F/0% RH | Desorb           |
|---------------|--------------|------------|-------------|------------------|
| Tare 0.5814   | g Dry Weight | 3.5499 g   | Dry Capaci  | tance36.7 pf     |
| Specimen No.  | 6B           | Absorb No  | S           | tart Date 9/8/78 |
| Time (hours ) |              | Weight (g) |             | Capacitance (pf) |
| 0.0           |              | 4.1476     |             | 48.3             |
| 1.0           |              | 4.1666     |             | 62.3             |
| 2.0           |              | 4.1690     |             | 83.3             |
| 3.0           |              | 4.1708     |             | 91.2             |
| 69.0          |              | 4.2040     |             | 82.3             |
| 93.0          |              | 4.1908     |             | 88.5             |

| Desorb No. 2  | _          | Start Date9/12/78 |
|---------------|------------|-------------------|
| Time (hours ) | Weight (g) | Capacitance (pf)  |
| 0.0           | 4.1537     | 41.9              |
| 1.0           | 4.1511     | 40.1              |
| 2.0           | 4.1486     | 39.6              |
| 3.0           | 4.1477     | 39.1              |
| 21.5          | 4.1345     | 39.6              |
| 22.5          | 4.1345     | 39.5              |
| 25.5          | 4.1334     | 38.4              |
| 27.5          | 4.1334     | 39.4              |
| 44.5          | 4.1315     | 38.9              |
| 49.5          | 4.1315     | 38.8              |
| 52.0          | 4.1315     | 38.3              |
| 68.0          | 4.1315     | 36.7              |

## TABLE A-5. CYCLE NO. 1 EXPOSURE TO 120°F/98% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 1B

| Condition: _ | 120°F/98% RH | Absorb;    | 120°F/0% RH | Desorb              |
|--------------|--------------|------------|-------------|---------------------|
| Tare 0.7485  | g Dry Weight | 3.4482 g   | Dry Capa    | citance 37.6 pf     |
| Specimen No. | 1B           | Absorb No  | 1           | Start Date 10/11/78 |
| Time (hours) |              | Weight (g) |             | Capacitance (pf)    |
| 0.00         |              | 4.1967     |             | 37.6                |
| 0.25         |              | 4.2133     |             | 47.4                |
| 1.00         |              | 4.2213     |             | 51.9                |
| 2.25         |              | 4.2243     |             | 57.4                |
| 4.00         |              | 4.2251     |             | 59.1                |
| 6.25         |              | 4.2272     |             | 62.7                |
| 22.25        |              | 4.2307     |             | 75.9                |
| 25.00        |              | 4.2334     |             | 78.7                |
| 27.60        |              | 4.2353     |             | 79.9                |
| 30.25        |              | 4.2374     |             | 83.1                |
| 40.25        |              | 4.2442     |             | Shorted             |
| 50.25        |              | 4.2427     |             | -                   |
| 54.25        |              | 4.2446     |             | -                   |
| 119.25       |              | 4.2692     |             | -                   |

| Desorb No. 1 | _          | Start Date10/16/78 |
|--------------|------------|--------------------|
| Time (hours) | Weight (g) | Capacitance (pf)   |
| 0.00         | 4.2692     | -                  |
| 0.25         | 4.2265     |                    |
| 1.00         | 4.2238     | -                  |
| 2.25         | 4.2227     | -                  |
| 4.00         | 4.2216     | -                  |
| 6.25         | 4.2142     | : <del>-</del>     |
| 23.25        | 4.2034     | -                  |
| 25.00        | 4.2027     | -                  |
| 27.60        | 4.2023     | 27                 |
| 30.25        | 4.2016     | -                  |
| 47.25        | 4.2006     | -                  |
| 52.25        | 4.2000     | •                  |
| 71.25        | 4.1973     | -                  |

TABLE A-6. CYCLE NO. 2 EXPOSURE TO 120°F/98% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 1B

| The state of the s | 120°F/98% RH Absorb;                                               | 120°F/0% RH | Desorb                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|----------------------------------------------|
| Tare 0.7485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g Dry Weight 3.4482 g                                              | Dry Capa    | citance 37.6 pf                              |
| Specimen No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1B Absorb No.                                                      | 2           | Start Date 10/19/78                          |
| Time (hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight (g)                                                         |             | Capacitance (pf)                             |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.1973                                                             |             | 45.8                                         |
| 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2212                                                             |             | 46.4                                         |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2240                                                             |             | 55.5                                         |
| 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2257                                                             |             | 56.3                                         |
| 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2294                                                             |             | 58.9                                         |
| 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2336                                                             |             | 60.2                                         |
| 25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.2403                                                             |             | 68.5                                         |
| 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.2484                                                             |             | 69.6                                         |
| 30.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.2526                                                             |             | 70.5                                         |
| 95.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.2991                                                             |             | 76.4                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |             |                                              |
| Desorb No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                  | Star        | rt Date 10/23/78                             |
| Desorb No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weight (g)                                                         | Star        | t Date 10/23/78  Capacitance (pf)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5000 JKD 25 (50) St                                                | Star        |                                              |
| Time (hours )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weight (g)                                                         | Sta         | Capacitance (pf)                             |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weight (g)<br>4.2991                                               | Sta         | Capacitance (pf) 76.4                        |
| 0.00<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight (g) 4.2991 4.2376                                           | Sta         | Capacitance (pf) 76.4 72.3                   |
| 0.00<br>0.25<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weight (g) 4.2991 4.2376 4.2238                                    | Sta         | 76.4<br>72.3<br>53.8                         |
| 0.00<br>0.25<br>1.00<br>2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight (g) 4.2991 4.2376 4.2238 4.2221                             | Star        | 76.4<br>72.3<br>53.8<br>50.1                 |
| 0.00<br>0.25<br>1.00<br>2.25<br>4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weight (g) 4.2991 4.2376 4.2238 4.2221 4.2193                      | Sta         | 76.4<br>72.3<br>53.8<br>50.1<br>48.4         |
| 0.00<br>0.25<br>1.00<br>2.25<br>4.00<br>6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight (g) 4.2991 4.2376 4.2238 4.2221 4.2193 4.2185               | Sta         | 76.4<br>72.3<br>53.8<br>50.1<br>48.4<br>47.9 |
| 0.00<br>0.25<br>1.00<br>2.25<br>4.00<br>6.25<br>47.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weight (g) 4.2991 4.2376 4.2238 4.2221 4.2193 4.2185 4.2078        | Sta         | 76.4 72.3 53.8 50.1 48.4 47.9 34.0           |
| 0.00<br>0.25<br>1.00<br>2.25<br>4.00<br>6.25<br>47.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weight (g) 4.2991 4.2376 4.2238 4.2221 4.2193 4.2185 4.2078 4.2029 | Sta         | 76.4 72.3 53.8 50.1 48.4 47.9 34.0 34.0      |

TABLE A-7. CYCLE NO. 1 EXPOSURE TO 120°F/98% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 2A

| Condition:    | 120°F/98 | 3% RH Absor    | b; <u>120</u> | °F/0% RH   | Desorb             |
|---------------|----------|----------------|---------------|------------|--------------------|
| Tare 0.9545   | g [      | Dry Weight 3.3 | 980 g         | Dry Capaci | dance 32.5 pf      |
| Specimen No.  | 2A       | Absorb         | No1           | S          | tart Date 10/11/78 |
| Time (hours ) |          | Weight         | (g)           |            | Capacitance (pf)   |
| 0.00          |          | 4.358          | 6             |            | 32.5               |
| 0.25          |          | 4.365          |               |            | 35.6               |
| 1.00          |          | 4.369          |               |            | 36.3               |
| 2.25          |          | 4.372          |               |            | 38.0               |
| 4.00          |          | 4.373          | 4             |            | 39.4               |
| 6.00          |          | 4.386          | 4             |            | 41.5               |
| 22.00         |          | 4.391          | 9             |            | 148.2              |
| 25.00         |          | 4.396          | 8             |            | 156.1              |
| 27.60         |          | 4.397          | 2             |            | 160.2              |
| 30.00         |          | 4.40           |               |            | 178.2              |
| 46.00         |          | 4.403          | 3             |            | 185.8              |
| 50.00         |          | 4.41           |               |            | 208.0              |
| 54.00         |          | 4.41           |               |            | 219.0              |
| 119.00        |          | 4.41           |               |            | 222.0              |

| Desorb No. 1   | _          | Start Date10/16/78 |
|----------------|------------|--------------------|
| Time (hours)   | Weight (g) | Capacitance (pf)   |
| 0.00           | 4.4150     | 222.0              |
| 0.25           | 4.3951     | 183.1              |
| 1.00           | 4.3933     | 180.2              |
| 2.25           | 4.3874     | 175.0              |
| 4.00           | 4.3839     | 174.7              |
| 6.25           | 4.3769     | 165.0              |
| 23.25          | 4.3631     | 65.1               |
| 25.00          | 4.3629     | 58.3               |
| 27.60          | 4.3625     | 41.7               |
| 30.25          | 4.3610     | 40.7               |
| 47.25          | 4.3591     | 37.8               |
|                | 4.3588     | 37.5               |
| 52.25<br>71.25 | 4.3571     | 37.1               |

TABLE A-8. CYCLE NO. 2 EXPOSURE TO 120°F/98% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 2A

| Condition:    | 120°F/98% RH Absorb;  | 120°F/0% RH Desorb      |
|---------------|-----------------------|-------------------------|
| Tare 0.9545   | g Dry Weight 3.3980 g | Dry Capacitance 32.5 pf |
| Specimen No.  | 2A Absorb No          | 2 Start Date 10/19/78   |
| Time (hours ) | Weight (g)            | Capacitance (pf)        |
| 0.00          | 4.3571                | 37.1                    |
| 0.25          | 4.3756                | 50.6                    |
| 1.00          | 4.3898                | 101.2                   |
| 2.25          | 4.3902                | 118.3                   |
| 4.00          | 4.3986                | 203.2                   |
| 6.25          | 4.3992                | 217.0                   |
| 23.25         | 4.4085                | 224.0                   |
| 25.00         | 4.4144                | 245.0                   |
| 27.60         | 4.4151                | 254.0                   |
| 30.25         | 4.4198                | 265.0                   |
| 97.25         | 4.4233                | 266.0                   |
|               |                       |                         |
| Desorb No     | 2                     | Start Date 10/23/78     |
| Time (hours)  | Weight (g)            | Capacitance (pf)        |
| 0.00          | 4.4233                | 266.0                   |
| 0.25          | 4.4035                | Shorted                 |
| 1.00          | 4.3936                |                         |
| 2.25          | 4.3889                | -                       |
| 4.00          | 4.3883                | -                       |
| 6.25          | 4.3862                | -                       |
| 47.25         | 4.3585                | -                       |
| 71.25         | 4.3556                | -                       |
| 76.25         | 4.3556                | -                       |
| 96.25         | 4.3533                | -                       |
| 168.25        | 4.3525                | -                       |
|               |                       |                         |

TABLE A-9. CYCLE NO. 1 EXPOSURE TO 120°F/98% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 14A

| Condition:   | 120°F/98% RH Absorb; | 120°F/0% RH Desorb        |
|--------------|----------------------|---------------------------|
| Tare 0.9484  | g Dry Weight 3,5631  | g Dry Capacitance 21.9 pf |
| Specimen No. | 14A Absorb No.       | 1 Start Date 10/11/78     |
| Time (hours) | Weight (g)           | Capacitance (pf)          |
| 0.00         | 4.5126               | 33.1                      |
| 0.25         | 4.5245               | 34.0                      |
| 1.00         | 4.5263               | 34.5                      |
| 2.25         | 4.5338               | 35.4                      |
| 4.00         | 4.5371               | 37.6                      |
| 20.00        | 4.5393               | 118.3                     |
| 25.00        | 4.5492               | 134.1                     |
| 27.60        | 4.5514               | 134.6                     |
| 43.60        | 4.5551               | 149.9                     |
| 47.60        | 4.5568               | 151.8                     |
| 51.60        | 4.5571               | 151.9                     |
| 116.60       | 4.5591               | 157.3                     |
| Desorb No    | 1                    | Start Date 10/16/78       |
| Time (hours) | Weight (g)           | Capacitance (pf)          |
| 0.00         | 4.5591               | 157.3                     |
| 0.25         | 4.5363               | 153.9                     |
| 1.00         | 4.5359               | 153.5                     |
| 2.25         | 4.5356               | 152.6                     |
| 4.00         | 4.5325               | 151.1                     |
| 6.25         | 4.5294               | 148.8                     |
| 23.25        | 4.5179               | 76.2                      |
| 25.00        | 4.5173               | 65.5                      |
| 27.60        | 4.5168               | 52.2                      |
| 30.25        | 4.5151               | 49.0                      |
| 47.25        | 4.5139               | 37.0                      |
| 52.25        | 4.5133               | 36.8                      |
| 71.25        | 4.5116               | 36.7                      |

TABLE A-10. CYCLE NO. 2 EXPOSURE TO 120°F/98% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 14A

| Condition:     | 120°F/98% RH | Absorb;    | 120°F/0% RH | Desorb     | ĺ        |
|----------------|--------------|------------|-------------|------------|----------|
| Tare 0.9484    | g Dry Weight | 3.5631 g   | Dry Capac   | itance     | 21.9 pf  |
| Specimen No.   | 14A          | Absorb No  | 2           | Start Date | 10/19/78 |
| Time (hours)   | 2            | Weight (g) |             | Capacita   | nce (pf) |
| 0.00           |              | 4.5116     |             | 34         | .7       |
| 0.25           |              | 4.5393     |             | 41.        | .9       |
| 1.00           |              | 4.5408     |             | 42         | .5       |
| 2.25           |              | 4.5421     |             | 58         | .8       |
| 4.00           |              | 4.5457     |             | 66.        | .3       |
| 6.25           |              | 4.5489     |             | 77         | .1       |
| 23.25          |              | 4.5608     |             | 145.       | . 9      |
| 25.00          |              | 4.5615     |             | 146.       | .8       |
| 27.60          |              | 4.5649     |             | 149        | .6       |
| 30.25          |              | 4.5678     |             | 150        | .0       |
| 95.25          |              | 4.5923     |             | 156.       | . 2      |
|                |              |            |             |            |          |
| Desorb No      | 2            |            | Star        | t Date10/  | /23/78   |
| Time ( hours ) | 7            | Weight (g) |             | Capacita   | nce (pf) |
| 0.00           |              | 4.5923     |             | 156.       | .2       |
| 0.25           |              | 4.5462     |             | 148.       | .1       |
| 1.00           |              | 4.5408     |             | 145.       | .5       |
| 2.25           |              | 4.5394     |             | 144.       | 6        |
| 4.00           |              | 4.5350     |             | 143.       | 2        |
| 6.25           |              | 4.5338     |             | 141.       | 9        |
| 47.25          |              | 4.5292     |             | 39.        | 4        |
| 71.25          |              | 4.5227     |             | 31.        | 3        |
| 76.25          |              | 4.5224     |             | 31.        | 1        |
| 96.25          |              | 4.5138     |             | 28.        | 2        |
| 168.25         |              | 4.5115     |             | 21.        | 9        |

TABLE A-11. INITIAL ABSORB CYCLE FOR SPECIMEN 3A EXPOSED TO 120°F/50% RH ABSORB AND 120°F/0% RH DESORB

| Condition:    | 120°F/50% RH | Absorb;    | 120°F/0% RH | Desorb           |
|---------------|--------------|------------|-------------|------------------|
| Tare 0.4419   | g Dry Weight | 3.4028 g   | Dry Capa    | citance 40.5 pf  |
| Specimen No.  | 3A A         | bsorb No   | Initial     | Start Date       |
| Time (hours ) | <u>v</u>     | Veight (g) |             | Capacitance (pf) |
| 0.0 1         |              | 3.8668     |             | 41.1             |
| 1.0 🛆         |              | 3.8691     |             | 45.1             |
| 2.0 🛆         |              | 3.8702     |             | 48.3             |
| 20.0 🛆        |              | 3.8709     |             | 48.7             |
| 21.0 🛆        |              | 3.8709     |             | 47.9             |
| 22.5          |              | 3.8677     |             | 46.5             |
| 25.5          |              | 3.8671     |             | 47.4             |
| 44.0          |              | 3.8685     |             | 47.2             |
| 51.5          |              | 3.8688     |             | 47.8             |
| 116.5         |              | 3.8690     |             | 47.9             |
| 122.5         |              | 3.8690     |             | 48.2             |
| 140.5         |              | 3.8692     |             | 48.2             |
| 164.5         |              | 3.8697     |             | 48.3             |
| 170.5         |              | 3.8697     |             | 48.3             |
| 191.0         |              | 3.8702     |             | 48.5             |

TABLE A-12. CYCLE NO. 1 EXPOSURE TO 120°F/50% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 3A

| Condition:   | 120°F/50% RH | Absorb; 120 | 0°F/0% RH      | esorb         |
|--------------|--------------|-------------|----------------|---------------|
| Tare 0.4419  | g Dry Weight | 3.4028 g    | Dry Capacitano | e40.5pf       |
| Specimen No. | 3A           | Absorb No1  | Start          | Date 10/2/78  |
| Time (hours) |              | Weight (g)  | Сар            | acitance (pf) |
| 0.00         |              | 3.8447      |                | 40.5          |
| 0.25         |              | 3.8530      |                | 42.8          |
| 1.00         |              | 3.8541      |                | 44.2          |
| 2.25         |              | 3.8555      |                | 44.7          |
| 4.00         |              | 3.8560      |                | 45.1          |
| 6.25         |              | 3.8574      |                | 45.2          |

Condenser fan broke. Specimens placed in desorb and used as Absorb Cycle  $^{\#}2$  when fixed.

| Desorb No1     |            | Start Date 9/28/78 |
|----------------|------------|--------------------|
| Time ( hours ) | Weight (g) | Capacitance (pf)   |
| 0.00           | 3.8702     | 48.5               |
| 1.00           | 3.8661     | 48.0               |
| 2.00           | 3.8628     | 47.2               |
| 3.00           | 3.8621     | 46.8               |
| 4.50           | 3.8609     | 46.4               |
| 21.50          | 3.8506     | 44.4               |
| 26.50          | 3.8506     | 43.5               |
| 28.50          | 3.8504     | 42.2               |
| 93.50          | 3.8447     | 40.5               |

# TABLE A-13. CYCLE NO. 2 EXPOSURE TO 120°F/50% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 3A

| Condition:    | 120°F/50% RH | Absorb;    | 120°F/0% RH Desorb      |  |
|---------------|--------------|------------|-------------------------|--|
| Tare 0.4419   | g Dry Weigh  | t 3.4028 g | Dry Capacitance 40.5 pf |  |
| Specimen No.  | 3A           | Absorb No. | 2 Start Date 10/5/78    |  |
| Time (hours ) |              | Weight (g) | Capacitance (pf)        |  |
| 0.00          |              | 3.8472     | 41.3                    |  |
| 0.25          |              | 3.8558     | 42.0                    |  |
| 1.00          |              | 3.8564     | 44.1                    |  |
| 2.25          |              | 3.8573     | 44.9                    |  |
| 23.00         |              | 3.8618     | 45.9                    |  |
| 25.00         |              | 3.8618     | 45.9                    |  |
| 27.60         |              | 3.8632     | 46.2                    |  |
| 30.25         | 30.25        |            | 46.2                    |  |
| 95.25         |              | 3.8691     | 47.3                    |  |
| 98.25         |              | 3.8691     | 47.3                    |  |
| Desorb No     | 2            |            | Start Date10/9/78       |  |
| Time (hours ) |              | Weight (g) | Capacitance (pf)        |  |
| 0.00          |              | 3.8691     | 47.3                    |  |
| 0.25          |              | 3.8619     | 45.7                    |  |
| 1.00          |              | 3.8609     | 45.1                    |  |
| 2.25          |              | 3.8591     | 43.9                    |  |

TABLE A-14. INITIAL ABSORB CYCLE FOR SPECIMEN 8B EXPOSED TO 120°F/50% RH ABSORB AND 120°F/0% RH DESORB

| Condition:   | 120°F/50% RH | Absorb;    | 120°F/0% RH | Desorb             |
|--------------|--------------|------------|-------------|--------------------|
| Tare 0.4617  | g Dry Weight | 3.5300 g   | Dry Capa    | citance 38.6 pf    |
| Specimen No. | 8B           | Absorb No. | Initial     | Start Date 9/20/78 |
| Time (hours) |              | Weight (g) |             | Capacitance (pf)   |
| 0.0 🛆        |              | 4.0001     |             | 40.6               |
| 1.0 🛆        |              | 4.0041     |             | 41.7               |
| 2.0 🛆        |              | 4.0052     |             | 42.7               |
| 20.0 🛆       |              | 4.0087     |             | 41.9               |
| 21.0 🛆       |              | 4.0087     |             | 43.3               |
| 22.5         |              | 4.0055     |             | 43.0               |
| 25.5         |              | 4.0071     |             | 43.4               |
| 44.0         |              | 4.0084     |             | 44.5               |
| 51.5         |              | 4.0091     |             | 45.3               |
| 116.5        |              | 4.0124     |             | 45.5               |
| 122.5        |              | 4.0124     |             | 45.4               |
| 140.5        |              | 4.0131     |             | 45.5               |
| 164.5        |              | 4.0139     |             | 45.4               |
| 170.5        |              | 4.0139     |             | 45.4               |
| 191.0        |              | 4.0142     |             | 45.4               |

⚠ Environmental Fan turned off during readings.

TABLE A-15, CYCLE NO. 1 EXPOSURE TO 120°F/50% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 8B

| Condition:   | 120°F/50% RH | Absorb; 12 | 0°F/0% RH Des   | orb         |
|--------------|--------------|------------|-----------------|-------------|
| Tare 0.4617  | g Dry Weight | 3.5300 g   | Dry Capacitance | 38.6 pf     |
| Specimen No. | 8BA          | bsorb No   | Start Da        | te 10/2/78  |
| Time (hours) | <u>v</u>     | Veight (g) | Capac           | itance (pf) |
| 0.00         |              | 3.9917     | 3               | 38.6        |
| 0.25         |              | 3.9966     |                 | 39.2        |
| 2.25         |              | 4.0027     |                 | 41,6        |
| 4.00         |              | 4.0031     |                 | 41.9        |
| 6.00         |              | 4.0035     |                 | 42.3        |

Condenser fan broke. Specimen placed in desorb and used as Absorb Cycle  $^{\#}2$  when fixed.

| Desorb No. 1   | _          | Start Date 9/28/78 |
|----------------|------------|--------------------|
| Time ( hours ) | Weight (g) | Capacitance (pf)   |
| 0.0            | 4.0142     | 45.4               |
| 1.0            | 4.0113     | 44.4               |
| 2.0            | 4.0101     | 44.1               |
| 3.0            | 4.0092     | 43.7               |
| 4.5            | 4.0078     | 43.2               |
| 21.5           | 3.9996     | 41.7               |
| 26.5           | 3.9995     | 40.9               |
| 28.5           | 3.9995     | 40.8               |
| 93.5           | 3.9917     | 38.6               |

## TABLE A-16. CYCLE NO. 2 EXPOSURE TO 120°F/50% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 8B

| Condition:     | 120°F/50% RH                      | Absorb; 120 | °F/0% RH    | Desorb           |
|----------------|-----------------------------------|-------------|-------------|------------------|
| Tare 0.4617    | g Dry Weight                      | 3.5300 g    | Dry Capacit | ance 38.6 pf     |
| Specimen No.   | 8BA                               | bsorb No. 2 | St          | art Date 10/5/78 |
| Time ( hours ) | <u>v</u>                          | Veight (g)  |             | Capacitance (pf) |
| 0.00           |                                   | 3.9953      |             | 38.1             |
| 0.25           |                                   | 4.0007      |             | 39.5             |
| 1.00           |                                   | 4.0015      |             | 40.4             |
| 2.25           |                                   | 4.0031      |             | 40.8             |
| 4.00           |                                   | 4.0041      |             | 41.1             |
| 6.25           |                                   | 4.0048      |             | 41.2             |
| 23.00          | Capacitance lead capacitance were |             | weight and  |                  |

TABLE A-17. INITIAL ABSORB CYCLE FOR SPECIMEN 15B EXPOSED TO 120°F/50% RH ABSORB AND 120°F/0% RH DESORB

| Condition:1   | 20°F/50% RH | Absorb;    | 120°F/0% RH | Desorb            |  |
|---------------|-------------|------------|-------------|-------------------|--|
| Tare0.5402 g  | Dry Weight  | 3.5179 g   | Dry Capac   | citance 38.5 pf   |  |
| Specimen No   | 15B A       | bsorb No   | Initial     | Start Date9/20/78 |  |
| Time (hours ) | <u>\</u>    | Veight (g) |             | Capacitance (pf)  |  |
| 0.0 🛆         |             | 4.0581     |             | 38.5              |  |
| 1.0 🛆         |             | 4.0611     |             | 40.3              |  |
| 2.0 🛆         |             | 4.0635     |             | 41.6              |  |
| 20.0 🛆        |             | 4.0676     |             | 43.1              |  |
| 21.0 🛆        |             | 4.0676     |             | 43.5              |  |
| 22.5          | 22.5        |            | 44.0        |                   |  |
| 25.5          |             | 4.0651     |             | 44.4              |  |
| 44.0          |             | 4.0664     |             | Leads Broke       |  |
| 51.5          |             | 4.0668     |             | 1                 |  |
| 116.5         |             | 4.0703     |             |                   |  |
| 122.5         |             | 4.0703     |             |                   |  |
| 140.5         |             | 4.0705     |             |                   |  |
| 164.5         |             | 4.0712     |             |                   |  |
| 170.5         |             | 4.0712     |             | <b>↓</b>          |  |
| 191.0         |             | 4.0718     |             | Leads Broke       |  |

⚠ Environmental fan turned off during readings.

TABLE A-18. CYCLE NO. 1 EXPOSURE TO 120°F/50% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN 15B

| Condition:   | 120°F/50% RH | _ Absorb;  | 120°F/0% RH | Desorb           |
|--------------|--------------|------------|-------------|------------------|
| Tare 0.5402  | g Dry Weigh  | 3.5179 g   | Dry Capacit | ance 38.5 pf     |
| Specimen No. | 15B          | Absorb No. | 1 St        | art Date 10/2/78 |
| Time (hours) |              | Weight (g) |             | Capacitance (pf) |
| 0.00         |              | 4.0461     |             | Leads Broke      |
| 0.25         |              | 4.0533     |             | <b>†</b>         |
| 1.00         |              | 4.0544     |             |                  |
| 2.25         |              | 4.0556     |             |                  |
| 4.00         |              | 4.0563     |             | 1                |
| 6.00         |              | 4.0574     |             | Leads Broke      |

Condenser fan broke. Specimen was discontinued since capacitance readings could not be taken.

| Desorb No. 1  | _          | <b>Start Date</b> 9/28/78 |
|---------------|------------|---------------------------|
| Time (hours ) | Weight (g) | Capacitance (pf)          |
| 0.0           | 4.0718     | Leads Broke               |
| 1.0           | 4.0681     | <b>†</b>                  |
| 2.0           | 4.0636     |                           |
| 3.0           | 4.0630     |                           |
| 4.5           | 4.0614     |                           |
| 21.5          | 4.0530     |                           |
| 26.5          | 4.0530     |                           |
| 28.5          | 4.0529     |                           |
| 93.5          | 4.0461     | Leads Broke               |

TABLE A-19. CYCLE NO. 1 EXPOSURE TO RT/50% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN 4B

| 0% RH Absorb;      | RT/0% RH Desorb                                                                                                                                                                                                  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry Weight3.4179 g | Dry Capacitance 33.4 pf                                                                                                                                                                                          |
| B Absorb No        | 1 Start Date 10/26/78                                                                                                                                                                                            |
| Weight (g)         | Capacitance (pf)                                                                                                                                                                                                 |
| 4.3639             | 33.4                                                                                                                                                                                                             |
| 4.3654             | 35.0                                                                                                                                                                                                             |
| 4.3663             | 48.8                                                                                                                                                                                                             |
| 4.3679             | 84.1                                                                                                                                                                                                             |
| 4.3778             | 93.9                                                                                                                                                                                                             |
| 4.3806             | 95.6                                                                                                                                                                                                             |
| 4.3814             | 97.9                                                                                                                                                                                                             |
| 4.3825             | 100.3                                                                                                                                                                                                            |
| 4.3836             | 101.9                                                                                                                                                                                                            |
| 4.3845             | 102.5                                                                                                                                                                                                            |
|                    |                                                                                                                                                                                                                  |
|                    |                                                                                                                                                                                                                  |
|                    | Start Date 11/14/78                                                                                                                                                                                              |
| Weight (g)         | Capacitance (pf)                                                                                                                                                                                                 |
| 4.3845             | 102.5                                                                                                                                                                                                            |
| 4.3816             | 102.4                                                                                                                                                                                                            |
| 4.3812             | 101.8                                                                                                                                                                                                            |
| 4.3742             | 101.6                                                                                                                                                                                                            |
| 4.3719             | 101.1                                                                                                                                                                                                            |
| 4.3652             | 86.5                                                                                                                                                                                                             |
| 4.3635             | 82.8                                                                                                                                                                                                             |
| 4.3631             | 91.8                                                                                                                                                                                                             |
| 4.3626             | 85.0                                                                                                                                                                                                             |
| 4.3624             | 84.9                                                                                                                                                                                                             |
|                    | Dry Weight 3.4179 g  Absorb No.  Weight (g)  4.3639  4.3654  4.3663  4.3679  4.3778  4.3806  4.3814  4.3825  4.3836  4.3845   Weight (g)  4.3845  4.3816  4.3812  4.3742  4.3719  4.3652  4.3635  4.3631  4.3626 |

TABLE A-20. CYCLE NO. 1 EXPOSURE TO RT/50% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN 8A

| Condition:    | RT/50% RH | Absorb;      | RT/0% RH | Desorb              |
|---------------|-----------|--------------|----------|---------------------|
| Tare 0.9398   | g Dry We  | ight3.5234 g | Dry Cap  | acitance 23.6 pf    |
| Specimen No.  | A8        | Absorb No    | 1        | Start Date 10/26/78 |
| Time (hours ) |           | Weight (g)   |          | Capacitance (pf)    |
| 0.0           |           | 4.4632       |          | 23.6                |
| 17.0          |           | 4.4646       |          | 24.4                |
| 100.0         |           | 4.4753       |          | 28.2                |
| 196.0         |           | 4.4800       |          | 28.9                |
| 289.0         |           | 4.4810       |          | 30.8                |
| 361.0         |           | 4.4819       |          | 31.1                |
| 433.0         |           | 4.4827       |          | 31.3                |
| 458.0         |           | 4.4835       |          | 31.4                |

| Desorb No1   | _          | Start Date 11/14/78 |
|--------------|------------|---------------------|
| Time (hours) | Weight (g) | Capacitance (pf)    |
| 0.0          | 4.4835     | 31.4                |
| 1.0          | 4.4821     | 31.2                |
| 4.0          | 4.4817     | 27.3                |
| 27.0         | 4.4814     | 26.9                |
| 72.25        | 4.4784     | 26.2                |
| 144.0        | 4.4723     | 25.8                |
| 196.0        | 4.4714     | 25.3                |
| 333.0        | 4.4698     | 25.3                |
| 408.0        | 4.4691     | 25.2                |
| 480.0        | 4,4687     | 25.2                |

TABLE A-21. CYCLE NO. 1 EXPOSURE TO RT/50% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN 8B

| Condition:     | RT/50% RH | Absorb;    | RT/0% RH Desorb         |
|----------------|-----------|------------|-------------------------|
| Tare 0.9430    |           | 3.5377 g   | Dry Capacitance 30.7 pf |
| Specimen No.   | 88        | Absorb No  | 1 Start Date 10/26/78   |
| Time (hours)   |           | Weight (g) | Capacitance (pf)        |
| 0.0            |           | 4.4807     | 30.7                    |
| 1.0            |           | 4.4824     | 32.1                    |
| 4.0            |           | 4.4830     | 37.5                    |
| 25.0           |           | 4.4851     | 40.2                    |
| 100.0          |           | 4.4932     | 41.3                    |
| 196.0          |           | 4.4965     | 41.5                    |
| 289.0          |           | 4.4971     | 41.6                    |
| 361.0          |           | 4.4979     | 41.8                    |
| 433.0          |           | 4.4988     | 42.0                    |
| 458.0          |           | 4.4994     | 42.1                    |
| Desorb No.     | 1         |            | Start Date11/14/78      |
| Time ( hours ) |           | Weight (g) | Capacitance (pf)        |
| 0.0            |           | 4.4994     | 42.1                    |
| 1.0            |           | 4.4971     | 42.0                    |
| 4.0            |           | 4.4969     | 41.9                    |
| 27.0           |           | 4.4965     | 41.5                    |
| 72.25          |           | 4.4933     | 41.3                    |
| 144.0          |           | 4.4899     | 40.8                    |
| 196.0          |           | 4.4882     | 40.3                    |
| 333.0          |           | 4.4854     | 39.9                    |
| 408.0          |           | 4.4850     | 39.5                    |
| 480.0          |           | 4.4847     | 39.4                    |

TABLE A-22. CYCLE NO. 1 EXPOSURE TO 160°F/75% RH ABSORB AND 160°F/20% RH DESORB FOR SPECIMEN 13

| Condition:   | 160°F/75% RH Absorb;  | 160°F/20% RH Desorb     |
|--------------|-----------------------|-------------------------|
| Tare 1.1307  | g Dry Weight 3.6791 g | Dry Capacitance 31.6 pf |
| Specimen No. | 13 Absorb No.         | 1 Start Date 11/16/78   |
| Time (hours) | Weight (g)            | Capacitance (pf)        |
| 0.0          | 4.8098                | 31.6                    |
| 0.25         | 4.8127                | 32.5                    |
| 1.0          | 4.8168                | 33.8                    |
| 2.25         | 4.8179                | 43.3                    |
| 4.0          | 4.8191                | 50.6                    |
| 5.0          | 4.8196                | 57.8                    |
| 25.0         | 4.8105                | 39.1                    |
| 27.6         | 4.8117                | 42.7                    |
| 29.0         | 4.8123                | 43.4                    |
| 94.0         | 4.8431                | 42.9                    |
|              |                       |                         |
| Desorb No.   | 1                     | Start Date 11/20/78     |
| Time (hours) | Weight (g)            | Capacitance (pf)        |
| 0.0          | 4.8372                | 37.4                    |
| 0.25         | 4.8346                | 37.1                    |
| 1.0          | 4.8305                | 35.1                    |
| 2.25         | 4.8272                | 34.9                    |
| 20.0         | 4.8247                | 34.1                    |
| 24.0         | 4.8235                | 33.7                    |
| 26.0         | 4.8220                | 32.6                    |
| 43.0         | 4.8216                | 32.1                    |
| 50.0         | 4.8211                | 31.9                    |
|              |                       |                         |

TABLE A-23. CYCLE NO. 2 EXPOSURE TO 160°F/75% RH ABSORB AND 160°F/20% RH DESORB FOR SPECIMEN 13

| Condition:    | 160°F/75% RH Absorb;  | 160°F/20% RH Desorb     |
|---------------|-----------------------|-------------------------|
| Tare 1.1307   | g Dry Weight 3.6791 g | Dry Capacitance 31.6 pf |
| Specimen No.  | 13 Absorb No          | 2 Start Date 11/27/78   |
| Time (hours ) | Weight (g)            | Capacitance (pf)        |
| 0.0           | 4.8108                | 63.4                    |
| 0.25          | 4.8133                | 65.5                    |
| 1.0           | 4.8178                | 68.7                    |
| 2.25          | 4.8195                | 74.5                    |
| 4.0           | 4.8210                | 74.8                    |
| 6.25          | 4.8243                | 79.2                    |
| 25.0          | 4.8261                | 82.7                    |
| 27.6          | 4.8268                | 83.2                    |
| 30.25         | 4.8277                | 84.1                    |
| 49.0          | 4.8304                | 85.7                    |
| 56.0          | 4.8318                | 86.3                    |
| 72.0          | 4.8438                | Lead broke              |
| Desorb No     | 2                     | Start Date              |
| Time (hours)  | Weight (g)            | Capocitance (pf)        |
| 0.0           | 4.8296                | -                       |
| 0.25          | 4.8272                | -                       |
| 1.0           | 4.8259                | -                       |
| 2.25          | 4.8220                | -                       |
| 4.0           | 4.8197                | -                       |
| 25.0          | 4.8139                | .=                      |
| 27.6          | 4.8133                | -                       |
| 95.0          | 4.8111                | -                       |

TABLE A-24. CYCLE NO. 1 EXPOSURE TO 160°F/75% RH ABSORB AND 160°F/20% RH DESORB FOR SPECIMEN 17

| Condition: _  | 160°F/75% RH | Absorb; 160  | 0°F/20% RH [   | Desorb         |
|---------------|--------------|--------------|----------------|----------------|
| Tare 1.0484   | g Dry Weight | 3.7270 g     | Dry Capacitano | e 35.8 pf      |
| Specimen No.  | 17A          | Absorb No. 1 | Start          | Date 11/16/78  |
| Time (hours ) | V            | Veight (g)   | Cap            | pacitance (pf) |
| 0.0           |              | 4.7754       |                | 35.8           |
| 0.25          |              | 4.7828       |                | 53.9           |
| 1.0           |              | 4.7943       |                | 52.9           |
| 2.25          |              | 4.7952       |                | 45.6           |
| 4.0           |              | 4.7960       |                | 41.6           |
| 5.0           |              | 4.7965       |                | 44.2           |
| 25.0          |              | 4.8100       |                | 46.9           |
| 27.6          |              | 4.8108       |                | 48.2           |
| 29.0          |              | 4.8125       |                | 54.7           |
| 94.0          |              | 4.8356       |                | 55.2           |
|               |              |              |                |                |
| Desorb No.    | 1            |              | Start Date     | e 11/20/78     |
| Time (hours ) | Y            | Weight (g)   | Ca             | pacitance (pf) |
| 0.0           |              | 4.8147       |                | 50.8           |
| 0.25          |              | 4.8116       |                | 50.2           |
| 1.0           |              | 4.8086       |                | 43.8           |
| 2.25          |              | 4.8057       |                | 42.0           |
| 20.0          |              | 4.7884       |                | 36.5           |
| 24.0          |              | 4.7875       |                | 36.3           |
| 26.0          |              | 4.7869       |                | 35.8           |
| 43.0          |              | 4 70/0       |                | 35.3           |
| 45.0          |              | 4.7863       |                |                |

TABLE A-25. CYCLE NO. 2 EXPOSURE TO 160°F/75% RH ABSORB AND 160°F/20% RH DESORB FOR SPECIMEN 17

| Condition:    | 160°F/75% RH | Absorb; 16 | 0°F/20% RH    | Desorb            |
|---------------|--------------|------------|---------------|-------------------|
| Tare 1.0484   | g Dry Weight | 3.7270 g   | Dry Capacitan | ce <u>35.8</u> pf |
| Specimen No.  | 17 A         | bsorb No2  | Start         | Date 11/27/78     |
| Time (hours)  | <u>v</u>     | Veight (g) | Co            | pacitance (pf)    |
| 0.0           |              | 4.8069     |               | 45.6              |
| 0.25          |              | 4.8103     |               | 47.6              |
| 1.0           |              | 4.8143     |               | 48.0              |
| 2.25          |              | 4.8173     |               | 50.4              |
| 4.0           |              | 4.8225     |               | 51.1              |
| 6.25          |              | 4.8247     |               | 59.2              |
| 25.0          |              | 4.8259     |               | 60.3              |
| 27.60         |              | 4.8263     |               | Shorted           |
| 30.25         |              | 4.8269     |               | -                 |
| 49.0          |              | 4.8298     |               | -                 |
| 56.0          |              | 4.8309     |               | -                 |
| 72.0          |              | 4.8326     |               | -                 |
| Desorb No.    | 2            |            | Start Do      | ite               |
| Time (hours ) | <u> </u>     | Weight (g) | <u>c</u>      | apacitance (pf)   |
| 0.0           |              | 4.8180     |               | -                 |
| 0.25          |              | 4.8135     |               | -                 |
| 1.0           |              | 4.8121     |               | -                 |
| 2.25          |              | 4.8084     |               | -                 |
| 4.0           |              | 4.8070     |               | -                 |
| 25.0          |              | 4.8003     |               | -                 |
| 27.6          |              | 4.7921     |               | -                 |
| 95.0          |              | 4.7903     |               | -                 |

TABLE A-26. CYCLE NO. 1 EXPOSURE TO 160°F/75% RH ABSORB AND 160°F/20% RH DESORB FOR SPECIMEN 21

| Condition:    | 160°F/75% RH Absorb; | 160°F/20% RH Desorb |
|---------------|----------------------|---------------------|
| Tare 1.1101   |                      |                     |
| Specimen No.  |                      |                     |
| Time (hours)  | Weight (g)           | Capacitance (pf)    |
| 0.0           | 4.6171               | 46.8                |
| 0.25          | 4.6360               | 56.3                |
| 1.0           | 4.6449               | 60.6                |
| 2.25          | 4.6454               | 62.3                |
| 4.0           | 4.6459               | 64.1                |
| 5.0           | 4.6463               | 65.3                |
| 25.0          | 4.6702               | 70.1                |
| 27.6          | 4.6713               | 79.4                |
| 29.0          | 4.6720               | 83.1                |
| 94.0          | 4.6749               | 83.9                |
| Desorb No.    | 1                    | 5 5 11/20/70        |
| Time (hours ) |                      | Start Date 11/20/78 |
| 0.0           | Weight (g)<br>4.6464 | Capacitance (pf)    |
| 0.25          |                      | 42.4                |
| 1.0           | 4.6442               | 40.2                |
|               | 4.6343               | 39.4                |
| 2.25          | 4.6335               | 39.2                |
| 20.0          | 4.6284               | 36.4                |
| 24.0          | 4.6268               | 36.0                |
| 26.0          | 4.6259               | 35.9                |
| 43.0          | 4.6254               | 35.6                |
| 50.0          | 4.6251               | 35.4                |

TABLE A-27. CYCLE NO. 2 EXPOSURE TO 160°F/75% RH ABSORB AND 160°F/20% RH DESORB FOR SPECIMEN 21

| Condition:    | 160°F/75% RH | _ Absorb;  | 160°F/20% RH | Desorb             |
|---------------|--------------|------------|--------------|--------------------|
| Tare 1.1101   | g Dry Weight | 3.5070 g   | Dry Capacito | nce <u>46.8</u> pf |
| Specimen No.  | 21           | Absorb No  | Sto          | rrt Date 11/27/78  |
| Time (hours ) |              | Weight (g) | 9            | Capacitance (pf)   |
| 0.0           |              | 4.6606     |              | 49.8               |
| 0.25          |              | 4.6622     |              | 54.8               |
| 1.0           |              | 4.6679     |              | 58.8               |
| 2.25          |              | 4.6691     |              | 60.9               |
| 4.0           |              | 4.6705     |              | 61.3               |
| 6.25          |              | 4.6729     |              | 61.7               |
| 25.0          |              | 4.6741     |              | 62.1               |
| 27.6          |              | 4.6746     |              | 63.4               |
| 30.25         |              | 4.6751     |              | 63.6               |
| 49.0          |              | 4.6767     |              | 94.1               |
| 56.0          |              | 4.6775     |              | 96.3               |
| 72.0          |              | 4.6794     |              | 98.2               |
| Desorb No.    | 2            |            | Start [      | Date               |
| Time (hours ) | )            | Weight (g) |              | Capacitance (pf)   |
| 0.0           | •            | 4.6480     |              | 86.2               |
| 0.25          |              | 4.6472     |              | 84.6               |
| 1.0           |              | 4.6459     |              | 81.1               |
| 2.25          |              | 4.6422     |              | 79.7               |
| 4.0           |              | 4.6409     |              | 73.8               |
| 25.0          |              | 4,6359     |              | 69.4               |
| 27.6          |              | 4.6351     |              | 61.2               |
| 95.0          |              | 4.6331     |              | 58.0               |
|               |              |            |              |                    |

TABLE A-28. CYCLE NO. 1 EXPOSURE TO 160°F/98% RH ABSORB AND 160°F/0% RH DESORB FOR SPECIMEN 29

| Condition:    | 160°F/98% RH | Absorb;    | 160°F/0% RH  | _ Desorb         |
|---------------|--------------|------------|--------------|------------------|
| Tare 3.5404   | g Dry Weight | 3.5144 g   | Dry Capacito | nce30.5 pf       |
| Specimen No.  | 29A          | Absorb No  | 1 Sto        | rrt Date 12/7/78 |
| Time (hours ) | 7            | Weight (g) | 2            | Capacitance (pf) |
| 0.0           |              | 7.0548     |              | 30.5             |
| 1.0           |              | 7.1870     |              | 62.4             |
| 4.0           |              | 7.1791     |              | 94.3             |
| 22.0          |              | 7.3256     |              | 136.2            |
| 25.0          |              | 7.3288     |              | 138.2            |
| 27.6          |              | =          |              | 140.8            |
| 93.0          |              | -          |              | 191.8            |

| Desorb No. 1  |            | Start Date 12/11/78 |
|---------------|------------|---------------------|
| Time (hours ) | Weight (g) | Capacitance (pf)    |
| 0.0           | 7.1322     | 144.8               |
| 1.0           | 7.1096     | 126.4               |
| 4.0           | 7.0863     | 121.6               |
| 6.25          | 7.0787     | 114.2               |
| 25.0          | 7.0642     | 63.2                |
| 27.6          | 7.0633     | 52.8                |
| 30.25         | 7.0623     | 50.4                |
| 49.0          | 7.0596     | 43.0                |
| 55.0          | 7.0593     | 41.9                |
| 96.0          | 7.0543     | 40.3                |

TABLE A-29. CYCLE NO. 2 EXPOSURE TO 160°F/98% RH ABSORB AND 160°F/0% RH DESORB FOR SPECIMEN 29

| Condition: 10 | 60°F/98% RH | Absorb;    | 160°F/0% RH  | _ Desorb           |
|---------------|-------------|------------|--------------|--------------------|
| Tare 3.5404 g | Dry Weight  | 3.5144 g   | Dry Capacito | nce <u>30.5</u> pf |
| Specimen No.  | 29          | Absorb No  | 2 Sto        | ort Date 12/15/78  |
| Time (hours ) | 2           | Weight (g) | 9            | Capacitance (pf)   |
| 0.0           |             | 7.0543     |              | 40.3               |
| 1.0           |             | 7.1428     |              | Off Scale          |
| 4.0           |             | 7.1950     |              | Off Scale          |
| 6.25          |             | 7.1994     |              | Off Scale          |
| 71.0          |             | 7.2251     |              | Off Scale          |

| Desorb No2   |            | Start Date 12/18/78 |
|--------------|------------|---------------------|
| Time (hours) | Weight (g) | Capacitance (pf)    |
| 0.0          | 7.1739     | Off Scale           |
| 1.0          | 7.1360     | Off Scale           |
| 4.0          | 7.1016     | Off Scale           |
| 6.25         | 7.0964     | Off Scale           |
| 25.0         | 7.0686     | 55.2                |
| 27.6         | 7.0652     | 52.0                |
| 30.25        | 7.0643     | 50.7                |
| 49.0         | 7.0631     | 41.9                |
| 55.0         | 7.0618     | 40.7                |
| 72.0         | 7.0591     | 38.5                |
| 78.25        | 7.0585     | 36.1                |
|              |            |                     |

TABLE A-30. CYCLE NO. 1 EXPOSURE TO 160°F/98% RH ABSORB AND 160°F/0% RH DESORB FOR SPECIMEN 31

| Condition:    | 160°F/98% RH | Absorb;    | 160°F/0% RH | Desorb             |
|---------------|--------------|------------|-------------|--------------------|
| Tare 3.4287   | g Dry Weigh  | 3.4921 g   | Dry Capac   | itance 31.7 pf     |
| Specimen No.  | 31           | Absorb No  | 1           | Start Date 12/7/78 |
| Time (hours ) |              | Weight (g) |             | Capacitance (pf)   |
| 0.0           |              | 6.9208     |             | 31.7               |
| 1.0           |              | 7.0378     |             | 50.3               |
| 4.0           |              | 7.0197     |             | 71.0               |
| 22.0          |              | 7.1020     |             | 115.5              |
| 25.0          |              | 7.1584     |             | 148.1              |
| 27.25         |              | -          |             | 157.2              |
| 93.0          |              | -          |             | 163.4              |

| Desorb No1     |            | Start Date12/11/78 |
|----------------|------------|--------------------|
| Time ( hours ) | Weight (g) | Capacitance (pf)   |
| 0.0            | 6.9655     | 98.3               |
| 1.0            | 6.9524     | 72.0               |
| 4.0            | 6.9406     | 67.1               |
| 6.25           | 6.9371     | 56.3               |
| 25.0           | 6.9238     | 47.5               |
| 27.6           | 6.9232     | 41.3               |
| 30.25          | 6.9227     | 40.2               |
| 49.0           | 6.9220     | 39.4               |
| 55.0           | 6.9218     | 36.1               |
| 96.0           | 6.9211     | 32.6               |

TABLE A-31. CYCLE NO. 2 EXPOSURE TO 160°F/98% RH ABSORB AND 160°F/0% RH DESORB FOR SPECIMEN 31

| Condition:   | 160°F/98% RH | Absorb;    | 160°F/0% RH  | _ Desorb          |
|--------------|--------------|------------|--------------|-------------------|
| Tare 3.4287  | g Dry Weight | 3.4921 g   | Dry Capacito | ance31.7_ pf      |
| Specimen No. | 31 /         | Absorb No  | 2 Std        | art Date 12/15/78 |
| Time (hours) |              | Weight (g) | 9            | Capacitance (pf)  |
| 0.0          |              | 6.9211     |              | 32.6              |
| 1.0          |              | 7.0230     |              | 68.8              |
| 4.0          |              | 7.0640     |              | 107.5             |
| 6.25         |              | 7.0687     |              | 108.3             |
| 71.0         |              | 7.1305     |              | 167.1             |
|              |              |            |              |                   |

| Desorb No. 2 |            | Start Date 12/18/78 |
|--------------|------------|---------------------|
| Time (hours) | Weight (g) | Capacitance (pf)    |
| 0.0          | 7.0400     | 130.2               |
| 1.0          | 7.0025     | 109.6               |
| 4.0          | 6.9844     | 63.3                |
| 6.25         | 6.9786     | 61.0                |
| 25.0         | 6.9587     | 42.6                |
| 27.6         | 6.9575     | 36.4                |
| 30.25        | 6.9562     | 35.8                |
| 49.0         | 6.9505     | 33.9                |
| 55.0         | 6.9473     | 32.6                |
| 72.0         | 6.9426     | 31.9                |
| 78.25        | 6.9419     | 31.7                |
|              |            |                     |

TABLE A-32. CYCLE NO. 1 EXPOSURE TO 160°F/98% RH ABSORB AND 160°F/50% RH DESORB FOR SPECIMEN 32

| Condition:    | 160°F/98% RH Absorb;               | 160°F/50% RH Desorb     |
|---------------|------------------------------------|-------------------------|
| Tare 3.4288   | g Dry Weight 3.6352 g              | Dry Capacitance 58.2 pf |
| Specimen No.  |                                    | 1 Start Date 12/7/78    |
| Time (hours ) | Weight (g)                         | Capacitance (pf)        |
| 0.0           | 7.0640                             | 58.2                    |
| 1.0           | 7.1788                             | 70.1                    |
| 4.0           | 7.1637                             | 104.5                   |
| 22.0          | 7.2343                             | 162.6                   |
| 25.0          | 7.3123                             | 224.0                   |
| 27.6          | -                                  | 1342.0                  |
| 93.0          | -                                  | 1455.0                  |
|               | on humidity chamber broke; restart |                         |
| 0.0           | 7,1026                             | 68.5                    |
| 1.0           | 7.2168                             | 136.8                   |
| 4.0           | 7.2345                             | Off Scale               |
| 6.25          | 7.2397                             | Off Scale               |
| 71.0          | 7.2597                             | Off Scale               |
| Desorb No     | 1                                  | Start Date12/18/78      |
| Time (hours)  | Weight (g)                         | Capacitance (pf)        |
| 0.0           | 7.1194                             | 535.0                   |
| 1.0           | 7.0980                             | 331.0                   |
| 4.0           | 7.0874                             | 324.0                   |
| 6.0           | 7.0851                             | Off Scale               |
| 25.0          | 7.0842                             | Off Scale               |
| 27.6          | 7.0839                             | 221.0                   |
| 30.0          | 7.0837                             | 218.0                   |
| 49.0          | 7.0836                             | 218.0                   |
| 55.0          | 7.0835                             | 217.0                   |

7.0833

72.0

Off Scale

TABLE A-33. CYCLE NO. 1 EXPOSURE TO 160°F/98% RH ABSORB AND 160°F/50% RH DESORB FOR SPECIMEN 33

| Condition:   | 160°F/98% RH         | Absorb;160°       | F/50% RH De     | sorb         |
|--------------|----------------------|-------------------|-----------------|--------------|
| Tare 3.4164  | g Dry Weight         | 3.6644 g          | Dry Capacitance | 34.5 pf      |
| Specimen No. | Ab                   | sorb Noi          | Start De        | ate 12/7/78  |
| Time (hours) | We                   | eight (g)         | Capa            | citance (pf) |
| 0.0          | 7                    | .0808             |                 | 34.5         |
| 1.0          | 7                    | .1814             |                 | 47.6         |
| 4.0          | 7                    | .1548             |                 | 79.9         |
| 22.0         | 7                    | .2438             |                 | 97.4         |
| 25.0         | 7                    | .3268             |                 | 98.2         |
| 27.5         |                      |                   |                 | 115.4        |
| 93.0         |                      |                   |                 | 192.6        |
| Fan or       | humidity chamber bro | ke; restarted Abs | orb 12/15/78.   |              |
| 0.0          | 7                    | .1211             |                 | 50.6         |
| 1.0          | 7                    | .1789             |                 | 119.4        |
| 4.0          | 7                    | .2450             |                 | Off Scale    |
| 6.25         | 7                    | .2484             |                 | Off Scale    |
| 71.0         | 7                    | .2659             | C               | Off Scale    |
| Desorb No    | 1                    |                   | Start Date _    | 12/18/78     |
| Time (hours) | We                   | ight (g)          | Capac           | itance (pf)  |
| 0.0          | 7                    | . 1253            |                 | Off Scale    |
| 1.0          | 7                    | .0984             | C               | Off Scale    |
| 4.0          | 7                    | .0887             | C               | Off Scale    |
| 6.0          | 7                    | .0868             | C               | Off Scale    |
| 25.0         | 7                    | .0861             |                 | 68.5         |
| 27.6         | 7                    | .0854             |                 | 68.1         |
| 30.0         | 7                    | .0850             |                 | 67.9         |
| 49.0         | 7                    | .0848             |                 | 93.7         |
| 55.0         | 7                    | .0848             |                 | 69.2         |
| 72.0         | 7                    | .0846             |                 | 66.2         |

TABLE A-34. CYCLE NO. 1 EXPOSURE TO 160°F/50% RH ABSORB AND 160°F/0% RH DESORB FOR SPECIMEN 30

| Condition:    | 160°F/50% RH | Absorb;    | 160°F/0% RH  | Desorb           |
|---------------|--------------|------------|--------------|------------------|
| Tare 3.4720 g | Dry Weight   | 3.6609 g   | Dry Capacita | nce 68.9 pf      |
| Specimen No   | 30           | Absorb No  | 1 Sta        | rt Date 12/18/78 |
| Time (hours ) | 7            | Veight (g) | 9            | Capacitance (pf) |
| 0.0           |              | 7.1329     |              | 68.9             |
| 1.0           |              | 7.1456     |              | 108.7            |
| 4.0           |              | 7.1520     |              | 114.3            |
| 6.0           |              | 7.1590     |              | 115.4            |
| 25.0          |              | 7.1651     |              | 116.8            |
| 27.6          |              | 7.1659     |              | 119.3            |
| 30.0          |              | 7.1667     |              | 121.1            |
| 47.0          |              | 7.1678     |              | 123.2            |

| Desorb No1     | _          | Start Date12/20/78 |
|----------------|------------|--------------------|
| Time ( hours ) | Weight (g) | Capacitance (pf)   |
| 0.0            | 7.1526     | 95.3               |
| 1.0            | 7.1461     | 88.4               |
| 4.0            | 7.1417     | 83.0               |
| 6.25           | 7.1371     | 74.2               |
| 25.0           | 7.1332     | 71.3               |
| 27.6           | 7.1323     | 70.9               |
| 30.25          | 7.1318     | 69.6               |
| 49.0           | 7.1316     | 67.8               |
|                |            |                    |

TABLE A-35. CYCLE NO. 1 EXPOSURE TO 160°F/50% RH ABSORB AND 160°F/0% RH DESORB FOR SPECIMEN 35

| Condition:   | 160°F/50% RH | Absorb;    | 160°F/0% RH | Desorb               |
|--------------|--------------|------------|-------------|----------------------|
| Tare 3.5692  | g Dry Weight | 3.6186 g   | Dry Capacii | tance <u>54.7</u> pf |
| Specimen No. | 35 A         | Absorb No  | 1 St        | tart Date 12/18/78   |
| Time (hours) | <u> </u>     | Weight (g) |             | Capacitance (pf)     |
| 0.0          |              | 7.1878     |             | 54.7                 |
| 1.0          |              | 7.1934     |             | 64.9                 |
| 4.0          |              | 7.1973     |             | 65.4                 |
| 6.0          |              | 7.2041     |             | 66.7                 |
| 25.0         |              | 7.2178     |             | 67.5                 |
| 27.6         |              | 7.2184     |             | 68.3                 |
| 30.0         |              | 7.2192     |             | 70.1                 |
| 47.0         |              | 7.2199     |             | 71.6                 |

| Desorb No1   |            | Start Date 12/20/78 |
|--------------|------------|---------------------|
| Time (hours) | Weight (g) | Capacitance (pf)    |
| 0.0          | 7.2097     | 64.7                |
| 1.0          | 7.2053     | 58.8                |
| 4.0          | 7.2001     | 57.9                |
| 6.25         | 7.1978     | 56.3                |
| 25.0         | 7.1931     | 54.5                |
| 27.6         | 7.1917     | 53.7                |
| 30.25        | 7.1911     | 52.8                |
| 49.0         | 7.1899     | 51.2                |

### TABLE A-36. CYCLE NO. 1 EXPOSURE TO RT/93% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN AFD

| Condition:    | RT/93% RH    | Absorb; .  | RT/0% RH   | Desor       | b "        |
|---------------|--------------|------------|------------|-------------|------------|
| Tare 3.3107   | g Dry Weight | 6.6936 g   | Dry Cap    | acitance 20 | 2, 19.5 pf |
| Specimen No.  | AFD          | Absorb No  | 1          | Start Date  | 2/12/79    |
| Time ( Days ) | <u>\</u>     | Weight (g) |            |             | ance (pf)  |
|               |              |            |            | Sensor #1   | Sensor #2  |
| 0.00          |              | 10.0043    |            | 20.6        | 20.5       |
| 0.25          |              | 10.0255    |            | 20.2        | 19.5       |
| 1.00          |              | 10.0427    |            | 21.1        | 20.3       |
| 2.25          |              | 10.0566    |            | 21.3        | 20.6       |
| 4.00          |              | 10.0714    |            | 21.9        | 21.2       |
| 8.00          |              | 10.0816    |            | 22.9        | 22.4       |
| 11.25         |              | 10.0878    |            | 23.1        | 22.7       |
| 14.00         |              | 10.0884    |            | 23.6        | 23.0       |
| 18.00         |              | 10.0896    |            | 23.7        | 23.1       |
| 21.00         |              | 10.0911    |            | 23.9        | 23.3       |
|               |              |            |            |             |            |
| Desorb No.    | 1            |            | Sto        | rt Date     | 3/5/79     |
| Time ( Days ) | V            | Veight (g) | <u>. l</u> | Capacita    | ance (pf)  |
|               |              |            | Se         | ensor #1    | Sensor #2  |
| 0.00          |              | 10.0911    |            | 23.9        | 23.3       |
| 0.25          |              | 10.0726    |            | 23.7        | 23.1       |
| 1.00          |              | 10.0560    |            | 23.1        | 22.5       |
| 2.25          |              | 10.0434    |            | 22.4        | 22.1       |
| 4.00          |              | 10.0322    |            | 21.3        | 20.8       |
| 7.00          |              | 10.0210    |            | 20.9        | 20.4       |
| 9.00          |              | 10.0190    |            | 20.6        | 20.0       |
| 11.00         |              | 10.0175    |            | 20.4        | 19.8       |
| 16.00         |              | 10.0159    |            | 20.4        | 19.8       |
| 18.00         |              | 10.0130    |            | 20.4        | 19.8       |
| 21.00         |              | 10.0091    |            | 20.3        | 19.6       |

### TABLE A-37. CYCLE NO. 2 EXPOSURE TO RT/93% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN AFD

| Condition:    | RT/93% RH    | Absorb;    | RT/0% RH | Desor!                   | b #0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|--------------|------------|----------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tare 3.3107   | g Dry Weight | 6.6936 g   | Dry Ca   | pacitance $\frac{n}{20}$ | 2, 19.5 pf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Specimen No.  | AFD A        | Absorb No  | 2        | Start Date               | 3/26/79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Time ( Days ) |              | Weight (g) |          | Capacita                 | The same of the sa |
|               |              |            |          | Sensor #1                | Sensor #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.00          |              | 10.0091    |          | 20.3                     | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.25          |              | 10.0304    |          | 20.5                     | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00          |              | 10.0471    |          | 20.6                     | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.25          |              | 10.0627    |          | 21.3                     | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.00          |              | 10.0764    |          | 21.8                     | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.00          |              | 10.0894    |          | 23.3                     | 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9.00          |              | 10.0926    |          | 23.8                     | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11.25         |              | 10.0930    |          | 24.0                     | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16.00         |              | 10.0949    |          | 24.1                     | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 22.00         |              | 10.0956    |          | 24.1                     | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |              |            |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Desorb No.    | 2            |            | S        | tart Date                | 4/16/79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Time ( Days ) |              | Weight (g) |          | Capacita                 | ance (pf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               |              |            |          | Sensor #1                | Sensor #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.00          |              | 10.0956    |          | 24.1                     | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.25          |              | 10.0710    |          | 23.5                     | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00          |              | 10.0577    |          | 23.0                     | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.25          |              | 10.0436    |          | 22.4                     | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.25          |              | 10.0261    |          | 21.1                     | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9.00          |              | 10.0211    |          | 20.8                     | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13.00         |              | 10.0162    |          | 20.5                     | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16.00         |              | 10.0153    |          | 20.3                     | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21.00         |              | 10.0140    |          | 20.0                     | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24.00         |              | 10.0140    |          | 20.0                     | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# TABLE A-38. CYCLE NO. 1 EXPOSURE TO RT/93% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN BFD

| Condition:    | RT/93% RH Absorb;            | RT/0% RH | Desgrb        | #4        |
|---------------|------------------------------|----------|---------------|-----------|
| Tare 3.3333   | g Dry Weight <u>6.9330</u> g | Dry Cap  | acitance 21.1 | , 21.9 pf |
| Specimen No.  | BFD Absorb No.               | 1        | Start Date    | 2/12/79   |
| Time ( Days ) | Weight (g)                   |          | Capacita      | nce (pf)  |
|               |                              |          | Sensor #3     | Sensor #4 |
| 0.00          | 10.2663                      |          | 22.1          | 23.3      |
| 0.25          | 10.2879                      |          | 21.1          | 21.9      |
| 1.00          | 10.3054                      |          | 21.9          | 22.7      |
| 2.25          | 10.3194                      |          | 22.3          | 23.3      |
| 4.00          | 10.3349                      |          | 22.7          | 23.9      |
| 8.00          | 10.3441                      |          | 23.3          | 24.7      |
| 11.25         | 10.3503                      |          | 23.8          | 25.1      |
| 14.00         | 10.3508                      |          | 24.6          | 26.2      |
| 18.00         | 10.3522                      |          | 24.7          | 26.3      |
| 21.00         | 10.3536                      |          | 25.0          | 26.5      |
|               |                              |          |               |           |
| Desorb No.    | 1                            | Sto      | art Date      | 3/5/79    |
| Time ( Days ) | Weight (g)                   | _        | Capacita      | nce (pf)  |
|               |                              | Se       | ensor #3      | Sensor #4 |
| 0.00          | 10.3536                      |          | 25.0          | 26.5      |
| 0.25          | 10.3352                      |          | 24.9          | 26.3      |
| 1.00          | 10.3184                      |          | 24.3          | 25.7      |
| 2.25          | 10.3062                      |          | 23.9          | 25.2      |
| 4.00          | 10.2948                      |          | 22.7          | 23.9      |
| 7.00          | 10,2829                      |          | 22.4          | 23.5      |
| 9.00          | 10,2803                      |          | 21.8          | 22.9      |
| 11.00         | 10.2778                      |          | 21.2          | 22.3      |
| 16.00         | 10.2764                      |          | 21.2          | 22.3      |
| 18.00         | 10.2743                      |          | 21.2          | 22.1      |
| 21.00         | 10,2707                      |          | 21.2          | 22.1      |
|               |                              |          |               |           |

## TABLE A-39. CYCLE NO. 2 EXPOSURE TO RT/93% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN BFD

| Condition:    | RT/93% RH    | Absorb;    | RT/0% RH | Desor          | b #,       |
|---------------|--------------|------------|----------|----------------|------------|
| Tare 3.3333   | g Dry Weight | 6.9330 g   | Dry Cap  | acitance $21.$ | 1, 21.9 pf |
| Specimen No.  | BFD A        | Absorb No  | 2        | Start Date     | 3/26/79    |
| Time ( Days ) |              | Weight (g) |          |                | ance (pf)  |
|               |              |            |          | Sensor #3      | Sensor #4  |
| 0.00          |              | 10.2707    |          | 21.2           | 22.1       |
| 0.25          |              | 10.2922    |          | 21.4           | 22.4       |
| 1.00          |              | 10.3090    |          | 21.7           | 22.7       |
| 2.25          |              | 10.3246    |          | 22.3           | 23.5       |
| 4.00          |              | 10.3396    |          | 22.7           | 23.9       |
| 7.00          |              | 10.3531    |          | 24.2           | 25.5       |
| 9.00          |              | 10.3564    |          | 24.7           | 26.0       |
| 11.25         |              | 10.3568    |          | 25.1           | 26.3       |
| 16.00         |              | 10.3589    |          | 25.1           | 26.4       |
| 22.00         |              | 10.3596    |          | 25.4           | 26.7       |
|               |              |            |          |                |            |
| Desorb No.    | 2            |            | Si       | tart Date      | 4/16/79    |
| Time ( Days ) |              | Weight (g) |          |                | ance (pf)  |
| Time ( Days 7 |              | Holgin (g) |          | Sensor #3      | Sensor #4  |
| 0.00          |              | 10.3596    |          | 25.4           | 26.7       |
| 0.25          |              | 10.3342    |          | 24.9           | 26.1       |
| 1.00          |              | 10.3213    |          | 24.3           | 25.6       |
| 2.25          |              | 10.3070    |          | 23.6           | 24.9       |
| 6.25          |              | 10.2899    |          | 22.4           | 23.6       |
| 9.00          |              | 10.2845    |          | 22.1           | 23.4       |
| 13.00         |              | 10.2790    |          | 21.7           | 23.0       |
| 16.00         |              | 10.2783    |          | 21.5           | 22.7       |
| 21.00         |              | 10.2771    |          | 21.2           | 22.4       |
| 24.00         |              | 10.2771    |          | 21.2           | 22.3       |

#### TABLE A-40. CYCLE NO. 1 EXPOSURE TO RT/93% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN CFD

| Condition:    | RT/93% RH    | Absorb;    | RT/0% RH | Desorb         |                    |
|---------------|--------------|------------|----------|----------------|--------------------|
| Tare 3.3893   | g Dry Weight | 6.9691 g   | Dry Capo | acitance $32.$ | 9 <u>, 18.7</u> pf |
| Specimen No.  | CFDA         | Absorb No  | 1        | Start Date     | 2/12/79            |
| Time ( Days ) | ,            | Weight (g) |          | Capacita       | nce (pf)           |
|               | λ.=          |            |          | Sensor #5*     | Sensor #6          |
| 0.00          |              | 10.3584    |          | 32.9           | 18.7               |
| 0.25          |              | 10.3766    |          | 33.5           | 18.9               |
| 1.00          |              | 10.3952    |          | 34.5           | 20.1               |
| 2.25          |              | 10.4094    |          | 35.5           | 20.4               |
| 4.00          |              | 10.4263    |          | 42.8           | 20.5               |
| 8.00          |              | 10.4361    |          | 43.1           | 21.3               |
| 11.25         |              | 10.4423    |          | 43.3           | 21.5               |
| 14.00         |              | 10.4429    |          | 44.9           | 22.9               |
| 18.00         |              | 10.4442    |          | 45.0           | 22.9               |
| 21.00         |              | 10.4456    |          | 45.3           | 23.1               |

<sup>\*</sup>The initial readings on this sensor were believed to be erratic signifiying a possible bad sensor.

| Desorb Nol    |            | Start Date | 3/5/79           |  |  |
|---------------|------------|------------|------------------|--|--|
| Time ( Days ) | Weight (g) | Capacit    | Capacitance (pf) |  |  |
|               |            | Sensor #5  | Sensor #6        |  |  |
| 0.00          | 10.4456    | 45.3       | 23.1             |  |  |
| 0.25          | 10.4265    | 45.1       | 22.9             |  |  |
| 1.00          | 10.4104    | 44.5       | 22.3             |  |  |
| 2.25          | 10.3983    | 43.8       | 21.7             |  |  |
| 4.00          | 10.3869    | 42.3       | 20.4             |  |  |
| 7.00          | 10.3755    | 41.8       | 19.9             |  |  |
| 9.00          | 10.3727    | 35.3       | 19.7             |  |  |
| 11.00         | 10.3702    | 34.1       | 19.2             |  |  |
| 16.00         | 10.3685    | 32.4       | 19.2             |  |  |
| 18.00         | 10.3667    | 32.3       | 19.1             |  |  |
| 21.00         | 10.3627    | 32.3       | 19.1             |  |  |
|               |            |            |                  |  |  |

### TABLE A-41. CYCLE NO. 2 EXPOSURE TO RT/93% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN CFD

| Condition:        | RT/ <b>9</b> 3% RH | Absorb;                                                                     | RT/0% RH | Desor!                                                     |                                                            |
|-------------------|--------------------|-----------------------------------------------------------------------------|----------|------------------------------------------------------------|------------------------------------------------------------|
| Tare 3.3893       | g Dry Weight       | 6.9641 g                                                                    | Dry Cap  | oacitance 32                                               | 5 #6<br>9,18,7pf                                           |
| Specimen No.      | CFD A              | Absorb No                                                                   | 2        | Start Date                                                 | 3/26/79                                                    |
| Time ( Days )     | 7                  | Weight (g)                                                                  |          | Capacito                                                   |                                                            |
|                   |                    |                                                                             |          | Sensor #5                                                  | Sensor #6                                                  |
| 0.00              |                    | 10.3627                                                                     |          | 32.3                                                       | 19.1                                                       |
| 0.25              |                    | 10.3845                                                                     |          | 33.1                                                       | 19.3                                                       |
| 1.00              |                    | 10.4015                                                                     |          | 33.4                                                       | 19.4                                                       |
| 2.25              |                    | 10.4204                                                                     |          | 35.2                                                       | 20.3                                                       |
| 4.00              |                    | 10.4344                                                                     |          | 35.5                                                       | 20.6                                                       |
| 7.00              |                    | 10.4457                                                                     |          | 37.7                                                       | 21.7                                                       |
| 9.00              |                    | 10.4493                                                                     |          | 38.2                                                       | 22.3                                                       |
| 11.25             |                    | 10.4497                                                                     |          | 38.9                                                       | 22.9                                                       |
| 16.00             |                    | 10.4518                                                                     |          | 38.9                                                       | 22.9                                                       |
|                   |                    |                                                                             |          |                                                            |                                                            |
| 22.00             |                    | 10.4524                                                                     |          | 40.2                                                       | 23.0                                                       |
| 22.00             |                    | 10.4524                                                                     |          | 40.2                                                       | 23.0                                                       |
| 22.00  Desorb No. | 2                  | 10.4524                                                                     | St       | 40.2 rart Date                                             | 23.0<br>4/16/79                                            |
| Desorb No         |                    |                                                                             | St       | art Date                                                   |                                                            |
|                   |                    | 10,4524<br>Weight (g)                                                       | St       | art Date                                                   | 4/16/79                                                    |
| Desorb No         |                    |                                                                             | St       | art Date                                                   | 4/16/79<br>ance (pf)                                       |
| Desorb No         |                    | Weight (g)                                                                  | St       | Capacito                                                   | 4/16/79<br>ance (pf)<br>Sensor #6                          |
| Desorb No         |                    | Weight (g)<br>10.4524                                                       | St       | Capacito Sensor #5 40.2                                    | 4/16/79<br>ance (pf)<br>Sensor #6<br>23.0                  |
| Desorb No         |                    | Weight (g) 10.4524 10.4272                                                  | St       | Capacito Sensor #5 40.2 38.5                               | 4/16/79<br>ence (pf)<br>Sensor #6<br>23.0<br>22.6          |
| Desorb No         |                    | Weight (g)  10.4524  10.4272  10.4139                                       | St       | Capacita Sensor #5 40.2 38.5 37.3                          | 4/16/79  Sensor #6  23.0  22.6  21.6                       |
| Desorb No         |                    | Weight (g)  10.4524  10.4272  10.4139  10.3997                              | St       | Capacite Sensor #5 40.2 38.5 37.3 36.7                     | 4/16/79  Sensor #6 23.0 22.6 21.6 20.9                     |
| Desorb No         |                    | Weight (g)  10.4524  10.4272  10.4139  10.3997  10.3826                     | St       | Capacite Sensor #5 40.2 38.5 37.3 36.7 34.2                | 4/16/79  Sensor #6 23.0 22.6 21.6 20.9 20.2                |
| Desorb No         |                    | Weight (g)  10.4524  10.4272  10.4139  10.3997  10.3826  10.3775            | St       | Capacite Sensor #5 40.2 38.5 37.3 36.7 34.2 33.9           | 4/16/79  Sensor #6 23.0 22.6 21.6 20.9 20.2 19.9           |
| Desorb No         |                    | Weight (g)  10.4524  10.4272  10.4139  10.3997  10.3826  10.3775  10.3721   | St       | Capacite Sensor #5 40.2 38.5 37.3 36.7 34.2 33.9 33.6      | 4/16/79  Sensor #6 23.0 22.6 21.6 20.9 20.2 19.9 19.6      |
| Desorb No         |                    | Weight (g)  10.4524 10.4272 10.4139 10.3997 10.3826 10.3775 10.3721 10.3712 | St       | Capacite Sensor #5 40.2 38.5 37.3 36.7 34.2 33.9 33.6 33.4 | 4/16/79  Sensor #6 23.0 22.6 21.6 20.9 20.2 19.9 19.6 19.4 |

### TABLE A-42. CYCLE NO. 1 EXPOSURE TO RT/75% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN DFD

| Condition:    | RT/75% RH    | Absorb;    | RT/0% RH | Desorb                 | #-              |
|---------------|--------------|------------|----------|------------------------|-----------------|
| Tare 3.3677   | g Dry Weight | 6.6699 g   | Dry Cap  | acitance 17.8          | #8<br>, 19.7 pf |
| Specimen No.  | DFD          | Absorb No. | 1        | Start Date             | 2/12/79         |
| Time ( Days ) |              | Weight (g) |          | Capacitan<br>Sensor #7 | Sensor #8       |
| 0.00          |              | 10.0376    |          | 17.8                   | 19.7            |
| 0.25          |              | 10.0544    |          | 17.8                   | 19.8            |
| 1.00          |              | 10.0656    |          | 18.3                   | 20.6            |
| 2.25          |              | 10.0779    |          | 18.7                   | 20.7            |
| 4.00          |              | 10.0902    |          | 18.9                   | 21.0            |
| 8.00          |              | 10.0969    |          | 19.2                   | 21.4            |
| 11.25         |              | 10.1029    |          | 19.8                   | 22.0            |
| 14.00         |              | 10.1032    |          | 20.3                   | 22.9            |
| 18.00         |              | 10.1035    |          | 20.3                   | 22.9            |
| 21.00         |              | 10.1038    |          | 20.6                   | 23.1            |
|               |              |            |          |                        |                 |
| Desorb No.    | 1            |            | Sto      | art Date3/             | 5/79            |
| Time ( Days ) |              | Weight (g) | _        | Capacitan              | ce (pf)         |
|               |              |            | <u>S</u> | ensor #7               | Sensor #8       |
| 0.00          |              | 10.1038    |          | 20.6                   | 23.1            |
| 0.25          |              | 10.0907    |          | 20.6                   | 23.1            |
| 1.00          |              | 10.0793    |          | 20.2                   | 22.7            |
| 2.25          |              | 10.0700    |          | 19.9                   | 22.4            |
| 4.00          |              | 10.0404    |          | 19.4                   | 21.9            |
| 7.00          |              | 10.0520    |          | 18.6                   | 20.8            |
| 9.00          |              | 10.0501    |          | 18.6                   | 20.8            |
| 11.00         |              | 10.0482    |          | 18.2                   | 20.5            |
| 16.00         |              | 10.0478    |          | 18.2                   | 20.5            |
| 18.00         |              | 10.0459    |          | 18.2                   | 20.4            |
| 21.00         |              | 10.0406    |          | 18.2                   | 20.4            |

## TABLE A-43. CYCLE NO. 2 EXPOSURE TO RT/75% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN DFD

| Condition:    | RT/75% RH    | Absorb;    | RT/0% RH | Desort        | b<br>#0    |
|---------------|--------------|------------|----------|---------------|------------|
| Tare 3.3677   | g Dry Weight | 6.6699 g   | Dry Cap  | pacitance 17. | 8, 19.7 pf |
| Specimen No.  | DFD A        | Absorb No  | 2        | Start Date    | 3/26/79    |
| Time ( Days ) | <u> </u>     | Weight (g) |          | Capacita      |            |
|               |              |            |          | Sensor #7     | Sensor #8  |
| 0.00          |              | 10.0406    |          | 18.2          | 20.4       |
| 0.25          |              | 10.0556    |          | 18.2          | 20.4       |
| 1.00          |              | 10.0684    |          | 18.4          | Lead Broke |
| 2.25          |              | 10.0809    |          | 18.5          | Ī          |
| 4.00          |              | 10.0916    |          | 18.9          |            |
| 7.00          |              | 10.1023    |          | 19.9          |            |
| 9.00          |              | 10.1055    |          | 20.2          |            |
| 11.25         |              | 10.1058    |          | 20.5          |            |
| 16.00         |              | 10.1075    |          | 20.5          | <b>↓</b>   |
| 22.00         |              | 10.1076    |          | 20.5          | Lead Broke |
|               |              |            |          |               |            |
| Desorb No.    | 2            |            | S        | tart Date     | 4/16/79    |
| Time ( Days ) |              | Weight (g) |          |               | ance (pf)  |
|               |              |            |          | Sensor #7     | Sensor #8  |
| 0.00          |              | 10.1076    |          | 20.5          | Lead Broke |
| 0.25          |              | 10.0910    |          | 20.3          | Ī          |
| 1.00          |              | 10.0832    |          | 20.0          |            |
| 2.25          |              | 10.0725    |          | 19.6          |            |
| 6.25          |              | 10.0559    |          | 18.9          |            |
| 9.00          |              | 10.0545    |          | 18.7          |            |
| 13.00         |              | 10.0491    |          | 18.4          |            |
| 16.00         |              | 10.0487    |          | 18.3          |            |
| 21.00         |              | 10.0472    |          | 18.0          | 1          |
| 24.00         |              | 10.0472    |          | 18.0          | Lead Broke |
|               |              |            |          |               |            |

TABLE A-44. CYCLE NO. 1 EXPOSURE TO RT/75% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN EFD

| Condition:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RT/75% RH | Absorb;            | RT/0% RH | Desorb      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tare 3.1688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                    |          | citance 16. | #10<br>4, 18.3 pf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Specimen No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EFD Ab    | osorb No           | 1        | Start Date  | 2/12/79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Time ( Days )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W         | eight (g)          |          | Capacita    | the state of the s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _         |                    |          | Sensor #9   | Sensor #10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         | 0.0973             |          | 16.4        | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         | 0.1123             |          | 16.7        | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | j         | 0.1236             |          | 16.9        | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         | 0.1363             |          | 17.3        | 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         | 0.1509             |          | 17.5        | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         | 0.1575             |          | 17.9        | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         | 10.1644            |          | 18.2        | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         | 10.1651            |          | 18.8        | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         | 10.1652            |          | 18.9        | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         | 10.1653            |          | 19.0        | 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                    |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Desorb No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         |                    | Sta      | rt Date     | 3/5/79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Time ( Days )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W         | eight (g)          |          | Capacita    | nce (pf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                    | Se       | ensor #9    | Sensor #10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 10.1653            |          | 19.0        | 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 10.1526            |          | 19.0        | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 10.1413            |          | 18.5        | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 10.1303            |          | 18.3        | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 10,1212            |          | 17.8        | 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 10,1127            |          | 17.0        | 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 10,1100            |          | 17.0        | 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                    |          | 16.7        | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C. 131 C. 152 C. |           | 10.1080            |          | 10.7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 10.1080<br>10.1077 |          | 16.7        | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                    |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### TABLE A-45. CYCLE NO. 2 EXPOSURE TO RT/75% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN EFD

| Condition:                                                           | RT/75% RH    | Absorb;                                                                              | RT/0% RF | Desort                                       |                                                                            |
|----------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------|----------|----------------------------------------------|----------------------------------------------------------------------------|
| Tare 3.1688                                                          | g Dry Weight | 6.9285 g                                                                             | Dry C    | apacitance 16.                               | #10<br>4, 18.3 pf                                                          |
| Specimen No.                                                         | EFD A        | Absorb No                                                                            | 2        | Start Date                                   | 3/26/79                                                                    |
| Time (Days )                                                         | 7            | Weight (g)                                                                           |          | Capacita                                     | ince (pf)                                                                  |
| 0.00                                                                 |              | 10.1006                                                                              |          | Sensor #9<br>16.7                            | Sensor #10<br>18.2                                                         |
| 0.25                                                                 |              | 10.1160                                                                              |          | 16.8                                         | 18.3                                                                       |
|                                                                      |              |                                                                                      |          | 16.9                                         | 18.4                                                                       |
| 1.00                                                                 |              | 10.1286                                                                              |          |                                              |                                                                            |
| 2.25                                                                 |              | 10.1421                                                                              |          | 17.2                                         | 18.7                                                                       |
| 4.00                                                                 |              | 10.1530                                                                              |          | 17.6                                         | 19.2                                                                       |
| 7.00                                                                 | *)           | 10.1633                                                                              |          | 18.7                                         | 20.4                                                                       |
| 9.00                                                                 |              | 10.1665                                                                              |          | 18.9                                         | 20.7                                                                       |
| 11.25                                                                |              | 10.1669                                                                              |          | 19.2                                         | 21.0                                                                       |
| 16.00                                                                |              | 10.1684                                                                              |          | 19.2                                         | 21.0                                                                       |
| 22.00                                                                |              | 10.1686                                                                              |          | 19.2                                         | 21.0                                                                       |
|                                                                      |              |                                                                                      |          |                                              |                                                                            |
| 22.00                                                                |              |                                                                                      |          |                                              |                                                                            |
| Desorb No.                                                           | 2            |                                                                                      |          | Start Date                                   | 4/16/79                                                                    |
| Desorb No.                                                           |              | Weight (g)                                                                           |          | Start Date                                   | ance (pf)                                                                  |
|                                                                      |              | Veight (g)                                                                           |          |                                              | 2. 172                                                                     |
| Desorb No.                                                           |              | <b>Veight (g)</b><br>10.1686                                                         |          | Capacito                                     | ance (pf)                                                                  |
| Desorb No                                                            |              |                                                                                      |          | Capacito<br>Sensor #9                        | Sensor #10                                                                 |
| Desorb No                                                            |              | 10.1686                                                                              |          | Sensor #9                                    | Sensor #10<br>21.0                                                         |
| Desorb No                                                            |              | 10.1686<br>10.1528                                                                   |          | Sensor #9<br>19.2<br>18.6                    | Sensor #10<br>21.0<br>20.7                                                 |
| Desorb No                                                            |              | 10.1686<br>10.1528<br>10.1436                                                        |          | Sensor #9 19.2 18.6 18.2                     | Sensor #10<br>21.0<br>20.7<br>20.3                                         |
| Desorb No                                                            |              | 10.1686<br>10.1528<br>10.1436<br>10.1331                                             |          | Sensor #9 19.2 18.6 18.2 17.8                | Sensor #10<br>21.0<br>20.7<br>20.3<br>19.9                                 |
| Desorb No.  Time ( Days )  0.00 0.25 1.00 2.25 6.25                  |              | 10.1686<br>10.1528<br>10.1436<br>10.1331<br>10.1170                                  |          | Sensor #9 19.2 18.6 18.2 17.8                | Sensor #10<br>21.0<br>20.7<br>20.3<br>19.9                                 |
| Desorb No.  Time ( Days )  0.00 0.25 1.00 2.25 6.25 9.00             |              | 10.1686<br>10.1528<br>10.1436<br>10.1331<br>10.1170<br>10.1157                       |          | Sensor #9 19.2 18.6 18.2 17.8 17.1 16.9      | Sensor #10<br>21.0<br>20.7<br>20.3<br>19.9<br>19.1<br>18.9                 |
| Desorb No.  Time ( Days )  0.00 0.25 1.00 2.25 6.25 9.00 13.00       |              | 10.1686<br>10.1528<br>10.1436<br>10.1331<br>10.1170<br>10.1157<br>10.1100            |          | Sensor #9 19.2 18.6 18.2 17.8 17.1 16.9 16.7 | Sensor #10<br>21.0<br>20.7<br>20.3<br>19.9<br>19.1<br>18.9<br>18.7         |
| Desorb No.  Time ( Days )  0.00 0.25 1.00 2.25 6.25 9.00 13.00 16.00 |              | 10.1686<br>10.1528<br>10.1436<br>10.1331<br>10.1170<br>10.1157<br>10.1100<br>10.1096 |          | Sensor #9 19.2 18.6 18.2 17.8 17.1 16.9 16.7 | Sensor #10<br>21.0<br>20.7<br>20.3<br>19.9<br>19.1<br>18.9<br>18.7<br>18.6 |

### TABLE A-46. CYCLE NO. 1 EXPOSURE TO RT/75% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN FFD

| Condition:                                                    | RT/75% RH   | Absorb;                                                                                         | RT/0% R | H Desor                                                              |                                                                                    |
|---------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Tare 3.3659                                                   | g Dry Weigh | 6.765 g                                                                                         | Dry C   | apacitance $\frac{\#1}{21}$                                          | 1 #12<br>.7, 21.5 pf                                                               |
| Specimen No.                                                  | FFD         | Absorb No.                                                                                      | 1       | Start Date                                                           | 2/12/79                                                                            |
| Time ( Days )                                                 |             | Weight (g)                                                                                      |         |                                                                      | ance (pf)                                                                          |
|                                                               |             |                                                                                                 |         | Sensor #11                                                           | Sensor #12                                                                         |
| 0.00                                                          |             | 10.1309                                                                                         |         | 21.7                                                                 | 21.5                                                                               |
| 0.25                                                          |             | 10.1459                                                                                         |         | 21.7                                                                 | 21.6                                                                               |
| 1.00                                                          |             | 10.1574                                                                                         |         | 22.2                                                                 | 21.5                                                                               |
| 2.25                                                          |             | 10.1699                                                                                         |         | 22.3                                                                 | 22.0                                                                               |
| 4.00                                                          |             | 10.1826                                                                                         |         | 22.8                                                                 | 22.3                                                                               |
| 8.00                                                          |             | 10.1891                                                                                         |         | 23.4                                                                 | 22.8                                                                               |
| 11.25                                                         |             | 10.1960                                                                                         |         | 23.8                                                                 | 23.3                                                                               |
| 14.00                                                         |             | 10.1968                                                                                         |         | 24.6                                                                 | 24.5                                                                               |
| 18.00                                                         |             | 10.1969                                                                                         |         | 24.6                                                                 | 24.5                                                                               |
| 21.00                                                         |             | 10.1970                                                                                         |         | 24.7                                                                 | 24.6                                                                               |
|                                                               |             |                                                                                                 |         |                                                                      |                                                                                    |
|                                                               |             |                                                                                                 |         |                                                                      |                                                                                    |
| Desorb No                                                     | 1           |                                                                                                 | 9       | Start Date                                                           | 3/5/79                                                                             |
| Desorb No.  Time ( Days )                                     | 1           | Weight (g)                                                                                      | 9       | Start Date                                                           |                                                                                    |
|                                                               | 1           | Weight (g)                                                                                      | ř.      |                                                                      |                                                                                    |
|                                                               | 1           | Weight (g)                                                                                      | ř.      | Capacito                                                             | ince (pf)                                                                          |
| Time ( Days )                                                 | 1           |                                                                                                 | ř.      | Capacito<br>Sensor #11                                               | Sensor #12                                                                         |
| Time ( Days )                                                 | 1           | 10.1970                                                                                         | ř.      | Capacito<br>Sensor #11<br>24.7                                       | Sensor #12<br>24.6                                                                 |
| 0.00<br>0.25                                                  | 1           | 10.1970<br>10.1841                                                                              | ř.      | Capacito<br>Sensor #11<br>24.7<br>24.7                               | Sensor #12<br>24.6<br>24.6                                                         |
| 0.00<br>0.25<br>1.00                                          |             | 10.1970<br>10.1841<br>10.1730                                                                   | ř.      | Capacito Sensor #11 24.7 24.7 24.3                                   | Sensor #12<br>24.6<br>24.6<br>24.2                                                 |
| 0.00<br>0.25<br>1.00<br>2.25                                  | 1           | 10.1970<br>10.1841<br>10.1730<br>10.1624                                                        | ř.      | Capacito Sensor #11 24.7 24.7 24.3 24.1                              | Sensor #12<br>24.6<br>24.6<br>24.2<br>23.9                                         |
| 0.00<br>0.25<br>1.00<br>2.25<br>4.00                          | 1           | 10.1970<br>10.1841<br>10.1730<br>10.1624<br>10.1533                                             | ř.      | Capacito Sensor #11 24.7 24.7 24.3 24.1 23.6                         | Sensor #12<br>24.6<br>24.6<br>24.2<br>23.9<br>23.4                                 |
| 0.00<br>0.25<br>1.00<br>2.25<br>4.00<br>7.00                  | 1           | 10.1970<br>10.1841<br>10.1730<br>10.1624<br>10.1533<br>10.1453                                  | ř.      | Capacito Sensor #11 24.7 24.7 24.3 24.1 23.6 22.7                    | Sensor #12<br>24.6<br>24.6<br>24.2<br>23.9<br>23.4<br>22.4                         |
| 0.00<br>0.25<br>1.00<br>2.25<br>4.00<br>7.00<br>9.00          | 1           | 10.1970<br>10.1841<br>10.1730<br>10.1624<br>10.1533<br>10.1453<br>10.1424                       | ř.      | Capacito Sensor #11 24.7 24.7 24.3 24.1 23.6 22.7 22.4               | Sensor #12<br>24.6<br>24.6<br>24.2<br>23.9<br>23.4<br>22.4<br>21.9                 |
| Time ( Days )  0.00 0.25 1.00 2.25 4.00 7.00 9.00 11.00       | 1           | 10.1970<br>10.1841<br>10.1730<br>10.1624<br>10.1533<br>10.1453<br>10.1424<br>10.1398            | ř.      | Capacito  Sensor #11  24.7  24.7  24.3  24.1  23.6  22.7  22.4  22.1 | Sensor #12<br>24.6<br>24.6<br>24.2<br>23.9<br>23.4<br>22.4<br>21.9<br>21.5         |
| Time ( Days )  0.00 0.25 1.00 2.25 4.00 7.00 9.00 11.00 16.00 |             | 10.1970<br>10.1841<br>10.1730<br>10.1624<br>10.1533<br>10.1453<br>10.1424<br>10.1398<br>10.1395 | ř.      | Capacito  Sensor #11  24.7  24.7  24.3  24.1  23.6  22.7  22.4  22.1 | Sensor #12<br>24.6<br>24.6<br>24.2<br>23.9<br>23.4<br>22.4<br>21.9<br>21.5<br>21.4 |

### TABLE A-47. CYCLE NO. 2 EXPOSURE TO RT/75% RH ABSORB AND RT/0% RH DESORB FOR SPECIMEN FFD

| Condition:    | RT/75% RH    | _ Absorb;      | RT/0% RH | Desort                       | , ,,       |
|---------------|--------------|----------------|----------|------------------------------|------------|
| Tare 3.3659   | g Dry Weight | <u>6.765</u> g | Dry Cap  | pacitance $\frac{\pi}{21}$ . | 7, 21.5 pf |
| Specimen No.  | FFD          | Absorb No      | 2        | Start Date                   | 3/26/79    |
| Time ( Days ) |              | Weight (g)     |          | Capacita                     |            |
|               |              |                |          | Sensor #11                   | Sensor #12 |
| 0.00          |              | 10.1323        |          | 22.1                         | 21.5       |
| 0.25          |              | 10.1476        |          | 22.1                         | 21.5       |
| 1.00          |              | 10.1606        |          | 22.1                         | 21.6       |
| 2.25          |              | 10.1737        |          | 22.4                         | 22.0       |
| 4.00          |              | 10.1848        |          | 22.9                         | 22.5       |
| 7.00          |              | 10.1949        |          | 24.3                         | 23.8       |
| 9.00          |              | 10.1979        |          | 24.7                         | 24.1       |
| 11.25         |              | 10.1982        |          | 25.0                         | 24.5       |
| 16.00         |              | 10.1999        |          | 25.0                         | 24.5       |
| 22.00         |              | 10.2000        |          | 25.0                         | 24.5       |
|               |              |                |          |                              |            |
| Desorb No.    | 2            |                | St       | art Date 4                   | /16/79     |
| Time ( Days ) |              | Weight (g)     |          | Capacita                     | nce (pf)   |
|               |              |                |          | Sensor #11                   | Sensor #12 |
| 0.00          |              | 10.2000        |          | 25.0                         | 24.5       |
| 0.25          |              | 10.1837        |          | 24.7                         | 23.9       |
| 1.00          |              | 10.1749        |          | 24.3                         | 23.5       |
| 2.25          |              | 10.1644        |          | 23.9                         | 23.0       |
| 6.25          | 2            | 10.1474        |          | 23.1                         | 22.3       |
| 9.00          |              | 10.1465        |          | 22.9                         | 22.1       |
| 13.00         |              | 10.1408        |          | 22.6                         | 21.8       |
| 16.00         |              | 10.1405        |          | 22.4                         | 21.7       |
| 21.00         |              | 10.1390        |          | 22.0                         | 21.3       |
| 24.00         |              | 10.1390        |          | 22.0                         | 21.3       |

# TABLE A-48. CYCLE NO. 1 EXPOSURE TO 120°F/75% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN GFD

| Condition: 120°F/75%         | RH Absorb;    | 120°F/09 |                |                       |
|------------------------------|---------------|----------|----------------|-----------------------|
| Tare 9.3327 g Dry            | Weight6.8272g | Dry      | Capacitance 39 | 3, #14<br>.7, 39.3 pf |
| Specimen No. GFD             | Absorb No     | 1        | Start Date     | 2/21/79               |
| Time (Days )                 | Weight (g)    |          | Capacit        | ance (pf)             |
|                              |               |          | Sensor #13     | Sensor #14            |
| 0.00                         | 16.1642       |          | 39.7           | 39.3                  |
| 3 min. @ 120 with Fan On     | 16.1723       |          | 41.6           | 41.0                  |
| 0.1 Day @ Dewpoint - Fan On  | 16.2087       |          | 42.1           | 41.7                  |
| 0.1 Day @ Dewpoint - Fan Off | 16.1866       |          | 42.3           | 41.8                  |
| 0.25 - Fan On                | 16.2143       |          | 42.5           | 42.0                  |
| 0.25 - Fan Off               | 16.1955       |          | 42.6           | 42.2                  |
| 1.00 - Fan On                | 16.2217       |          | 44.7           | 45.1                  |
| 1.00 - Fan Off               | 16.2171       |          | 42.9           | 43.5                  |
| 1.25 ↑                       | 16.2241       |          | 43.0           | 43.5                  |
| 2.00                         | 16.2301       |          | 43.3           | 43.7                  |
| 2.25                         | 16.2305       |          | 43.4           | 43.7                  |
| 5.00                         | 16.2312       |          | 44.1           | 44.4                  |
| 6.00 ↓                       | 16.2318       |          | 44.4           | 44.6                  |
| 7.00 - Fan Off               | 16.2323       |          | 44.5           | 44.7                  |
| Desorb No1                   |               |          | Start Date     | 2/28/79               |
| Time (Days )                 | Weight (g)    |          | Capacita       | ance (pf)             |
|                              |               |          | Sensor #13     | Sensor #14            |
| 0.00                         | 16.2323       |          | 44.5           | 44.7                  |
| 0.25                         | 16.1908       |          | 43.7           | 43.1                  |
| 1.00                         | 16.1739       |          | 42.2           | 42.0                  |
| 1.25                         | 16.1728       |          | 42.1           | 41.8                  |
| 2.00                         | 16.1669       |          | 41.5           | 41.3                  |
| 5.00                         | 16.1622       |          | 40.9           | 40.7                  |
| 6.00                         | 16.1604       |          | 40.6           | 40.4                  |
| 7.00                         | 16.1559       |          | 40.6           | 40.4                  |

## TABLE A-49. CYCLE NO. 2 EXPOSURE TO 120°F/75% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN GFD

| Condition:    | 120°F/75% RH | Absorb;    | 120°F/0% RF | 1 Desorb              | #                         |
|---------------|--------------|------------|-------------|-----------------------|---------------------------|
| Tare 9.3327   | g Dry Weight | 6.8272 g   | Dry Cap     | #13<br>pacitance 39.7 | #14<br>7 <u>, 39.3</u> pf |
| Specimen No.  | GFD /        | Absorb No  | 2           | Start Date            | 3/7/79                    |
| Time ( Days ) | 2            | Weight (g) | _           | Capacitar             | nce (pf)                  |
|               |              |            | 9           | Sensor #13            | Sensor #14                |
| 0.00          |              | 16.1599    |             | 40.6                  | 40.4                      |
| 0.25          |              | 16.1984    |             | 43.1                  | 42.7                      |
| 1.00          |              | 16.2174    |             | 43.9                  | 43.4                      |
| 1.25          |              | 16.2221    |             | 44.2                  | 43.6                      |
| 2.00          |              | 16.2247    |             | 44.7                  | 44.2                      |
| 2.25          |              | 16.2248    |             | 44.7                  | 44.2                      |
| 5.00          |              | 16.2294    |             | 44.9                  | 44.5                      |
| 7.00          |              | 16.2305    |             | 45.2                  | 44.8                      |
|               |              |            |             |                       |                           |

| Desorb No. 2  |            | Start Date | 3/14/79    |
|---------------|------------|------------|------------|
| Time ( Days ) | Weight (g) | Capacit    | ance (pf)  |
|               |            | Sensor #13 | Sensor #14 |
| 0.00          | 16.2305    | 45.2       | 44.8       |
| 0.25          | 16.2018    | 44.4       | 43.6       |
| 1.00          | 16.1821    | 43.1       | 42.2       |
| 1.25          | 16.1800    | 42.7       | 41.8       |
| 2.00          | 16.1704    | 41.9       | 41.1       |
| 5.00          | 16.1664    | 41.0       | 40.3       |
| 6.00          | 16.1662    | 40.8       | 40.3       |
| 7.00          | 16.1662    | 40.8       | 40.3       |

# TABLE A-50. CYCLE NO. 1 EXPOSURE TO 120°F/75% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN HFD

| Condition: 120°F/75%         | RH Absorb;      | 120°F/0% RH | Desort     |                  |
|------------------------------|-----------------|-------------|------------|------------------|
| Tare 9.8939 g Dry            | Weight 6.5786 g | Dry Capac   | itance 44. | #16<br>3,40.7 pf |
| Specimen No. HFD             | Absorb No.      | 1 :         | Start Date | 2/21/79          |
| Time ( Days )                | Weight (g)      |             | Capacita   | nce (pf)         |
|                              |                 | Se          | nsor #15   | Sensor #16       |
| 0.00                         | 16.5028         |             | 44.3       | 40.7             |
| 3 min. @ 120°F with Fan On   | 16.5121         |             | 48.4       | 43.6             |
| 0.1 Day @ Dewpoint - Fan On  | 16.5440         |             | 49.0       | 43.7             |
| 0.1 Day @ Dewpoint - Fan Off | 16.5257         |             | 49.0       | 43.7             |
| 0.25 - Fan On                | 16.6315         |             | 49.2       | 43.9             |
| 0.25 - Fan Off               | 16.5505         |             | 49.2       | 43.9             |
| 1.00 - Fan On                | 16.5893         |             | 49.9       | 44.7             |
| 1.00 - Fan Off               | 16.5714         |             | 50.1       | 44.9             |
| 1.25                         | 16.5783         |             | 50.2       | 44.9             |
| 2.00                         | 16.5817         |             | 50.6       | 45.1             |
| 2.25                         | 16.5819         |             | 50.6       | 45.2             |
| 5.00                         | 16.5822         |             | 50.9       | 45.4             |
| 6.00 ↓                       | 16.5825         |             | 51.3       | 45.7             |
| 7.00 - Fan Off               | 16.5826         |             | 51.5       | 45.8             |
| Desorb No1                   |                 | Start       | Date 2/    | 28/79            |
| Time ( Days )                | Weight (g)      |             | Capacitar  | nce (pf)         |
|                              |                 | Ser         | nsor #15   | Sensor #16       |
| 0.00                         | 16.5826         |             | 51.5       | 45.8             |
| 0.25                         | 16.5150         |             | 50.5       | 45.0             |
| 1.00                         | 16.4961         |             | 48.8       | 43.7             |
| 1.25                         | 16.4948         |             | 48.4       | 43.3             |
| 2.00                         | 16.4902         |             | 47.9       | 42.8             |
| 5.00                         | 16.4852         |             | 46.9       | 41.7             |
| 6.00                         | 16.4830         |             | 46.6       | 41.4             |
| 7.00                         | 16.4826         |             | 46.5       | 41.4             |

TABLE A-51. CYCLE NO. 2 EXPOSURE TO 120°F/75% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN HFD

| Tare 9.8939 g Dry Weight 6.5786 g Dry Capacitance 44.3, 40.7 pf  Specimen No. HFD Absorb No. 2 Start Date 3/7/79 |    |
|------------------------------------------------------------------------------------------------------------------|----|
| Specimen No. HFD Absorb No. 2 Start Date 3/7/79                                                                  |    |
|                                                                                                                  | _  |
| Time ( Days ) Weight (g) Capacitance (pf)                                                                        | _  |
| Sensor #15 Sensor #                                                                                              | 16 |
| 0.00 16.4826 46.5 41.4                                                                                           |    |
| 0.25 16.5189 47.9 42.4                                                                                           |    |
| 1.00 16.5373 48.8 43.3                                                                                           | ŝ  |
| 1.25 16.5409 49.2 43.7                                                                                           | ř. |
| 2.00 16.5419 50.1 44.6                                                                                           |    |
| 2.25 16.5419 50.1 44.7                                                                                           | 9  |
| 5.00 16.5449 50.8 45.5                                                                                           |    |
| 7.00 16.5451 51.2 45.9                                                                                           |    |

| Desorb No2    |            | Start Date | 3/14/79    |
|---------------|------------|------------|------------|
| Time ( Days ) | Weight (g) | Capaci     | tance (pf) |
|               |            | Sensor #15 | Sensor #16 |
| 0.00          | 16.5451    | 51.2       | 45.9       |
| 0.25          | 16.5072    | 50.4       | 45.2       |
| 1.00          | 16.4883    | 49.7       | 44.5       |
| 1.25          | 16.4857    | 48.9       | 44.0       |
| 2.00          | 16.4765    | 48.1       | 43.2       |
| 5.00          | 16.4727    | 46.6       | 41.9       |
| 6.00          | 16.4725    | 46.5       | 41.9       |
| 7.00          | 16.4725    | 46.6       | 41.9       |

TABLE A-52. CYCLE NO. 1 EXPOSURE TO 120°F/75% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN IFD

| Condition: 120°F/75%          | RH Absorb; 120°F/0  | % RH Desorb                          |
|-------------------------------|---------------------|--------------------------------------|
| Tare 9.9087 g Dry             | Weight 6.5966 g Dry | #17 #18<br>Capacitance 37.4, 37.8 pf |
| Specimen NoIFD                | Absorb No. 1        | Start Date 2/21/79                   |
| Time ( Days )                 | Weight (g)          | Capacitance (pf)                     |
|                               |                     | Sensor #17 Sensor #18                |
| 0.00                          | 16.5177             | 37.4 38.1                            |
| 3 min. @ 120°F with Fan On    | 16.5263             | 38.6 39.9                            |
| 0.1 Day at Dewpoint - Fan On  | 16.5531             | 39.1 40.3                            |
| 0.1 Day at Dewpoint - Fan Off | 16.5377             | 40.2 40.4                            |
| 0.25 - Fan On                 | 16.5879             | 40.7 40.8                            |
| 0.25 - Fan Off                | 16.5711             | 40.9 40.8                            |
| 1.00 - Fan On                 | 16.5994             | 41.4 41.0                            |
| 1.00 - Fan Off                | 16.5919             | 41.2 41.1                            |
| 1.25                          | 16.5990             | 41.4 41.2                            |
| 2.00                          | 16.6041             | 41.6 41.5                            |
| 2.25                          | 16.6043             | 41.6 41.5                            |
| 5.00                          | 16.6048             | 43.0 42.2                            |
| 6.00 ♦                        | 16.6049             | 43.6 42.5                            |
| 7.00 - Fan Off                | 16.6049             | 43.8 42.8                            |
| Desorb No1                    |                     | Start Date2/28/79                    |
| Time ( Days )                 | Weight (g)          | Capacitance (pf)                     |
|                               |                     | Sensor #17 Sensor #18                |
| 0.00                          | 16.6049             | 43.8 42.8                            |
| 0.25                          | 16.5370             | 42.5 41.3                            |
| 1.00                          | 16.5226             | 40.9 39.7                            |
| 1.25                          | 16.5214             | 40.6 39.4                            |
| 2.00                          | 16.5149             | 40.0 38.9                            |
| 5.00                          | 16.5105             | 39.3 38.2                            |
| 6.00                          | 16.5088             | 38.9 37.9                            |
| 7.00                          | 16.5084             | 38.8 37.8                            |

### TABLE A-53. CYCLE NO. 2 EXPOSURE TO 120°F/75% RH ABSORB AND 120°F/0% RH DESORB FOR SPECIMEN IFD

| °F/0% RH | Desorb                | #18                              |
|----------|-----------------------|----------------------------------|
| Dry Ca   | pacitance <u>37.4</u> | , 37.8 pf                        |
| 2        | Start Date _          | 3/7/79                           |
|          | Capacitan             | nce (pf)                         |
| 9        | Sensor #17            | Sensor #18                       |
|          | 38.8                  | 37.8                             |
|          | 40.4                  | 39.9                             |
|          | 41.1                  | 40.5                             |
|          | 41.8                  | 40.9                             |
|          | 42.9                  | 41.7                             |
|          | 42.9                  | 41.7                             |
|          | 43.4                  | 42.3                             |
|          | 43.8                  | 42.8                             |
|          | Dry Ca                | Dry Capacitance 37.4  Start Date |

| Desorb No. 2  |            | Start Date       | 3/14/79    |  |  |  |
|---------------|------------|------------------|------------|--|--|--|
| Time ( Days ) | Weight (g) | Capacitance (pf) |            |  |  |  |
|               |            | Sensor #17       | Sensor #18 |  |  |  |
| 0.00          | 16.5726    | 43.8             | 42.8       |  |  |  |
| 0.25          | 16.5391    | 42.6             | 41.3       |  |  |  |
| 1.00          | 16.5205    | 42.1             | 40.7       |  |  |  |
| 1.25          | 16.5179    | 41.2             | 40.2       |  |  |  |
| 2.00          | 16.5090    | 39.7             | 38.7       |  |  |  |
| 5.00          | 16.5054    | 38.7             | 37.8       |  |  |  |
| 6.00          | 16.5054    | 38.7             | 37.8       |  |  |  |
| 7.00          | 16.5053    | 38.7             | 37.8       |  |  |  |

TABLE A-54. CYCLE NO. 1 EXPOSURE TO 160°F/98% RH ABSORB AND 160°F/0% RH DESORB FOR 13-PLY SPECIMEN A

| Condition:     | 160°F/98% RH Absorb; | 160  | 0°F/0% R | Н       | Desorb  |        |      |
|----------------|----------------------|------|----------|---------|---------|--------|------|
| Tare 14.4071 g | Dry Weight 16.9170   | g    | Dry Cap  | acitan  | се      | *p     | f    |
| Specimen No.   | A Absorb No.         | 1    |          | Start   | Date    | 1/4/79 |      |
| Time ( Days )  | \\\\-:\!\\-\\        |      |          | Capacit | ance (p | f)     |      |
| Time ( Ddys )  | Weight (g)           | \$1  | 52       | S3      | S4      | S5     | S6   |
| 0.00           | 31.3241              | 39.3 | 33.8     | 40.9    | 34.9    | 44.1   | 31.1 |
| 0.25           | 31.4033              | 44.1 | 37.5     | 43.5    | 36.9    | 44.2   | 39.9 |
| 1.00           | 31:4759              | 46.2 | 42.3     | 45.7    | 42.8    | 45.0   | 40.4 |
| 4.00           | 31.5231              | 50.7 | 43.0     | 48.0    | 43.9    | 48.3   | 43.2 |
| 8.00           | 31.5625              | 61.7 | 43.5     | 50.2    | 48.3    | 59.3   | 47.0 |
| 15.00          | 31.6080              | 63.5 | 47.9     | 54.3    | 54.0    | 60.2   | 51.7 |
| 20.25          | 31.6590              | 69.3 | 48.5     | 55.9    | 54.4    | 61.9   | 60.2 |
| 25.00          | 31.6827              | 84.1 | 66.3     | 75.3    | 56.8    | 64.8   | 64.7 |
| 32.00          | 31.6883              | 87.9 | 66.8     | 77.8    | 61.1    | 65.1   | 66.4 |
| 36.00          | 31.6941              | 89.3 | 68.3     | 80.1    | 67.4    | 67.0   | 67.7 |
| 40.00          | 31.6982              | 93.6 | 71.4     | 81.5    | 67.9    | 72.2   | 74.6 |
| 42.00          | 31.7001              | 94.1 | 71.7     | 81.7    | 68.2    | 72.6   | 75.0 |

<sup>\*</sup>Capacitance readings are shown for six sensors numbered S1 through S6.

| Desorb No1           |            |           | Sta       | rt Date   | 2/15/79   | 9         | 8         |
|----------------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Time ( Days )        | Weight (g) |           |           | Саро      | citance   | (pf)      |           |
|                      |            | <u>S1</u> | <u>S2</u> | <u>S3</u> | <u>54</u> | <u>S5</u> | <u>S6</u> |
| 0.00                 | 31,7001    | 94.1      | 71.7      | 81.7      | 68.2      | 72.6      | 75.0      |
| 0.21                 | 31.5948    | 75.9      | 60.1      | 59.2      | 43.6      | 53.0      | 49.8      |
| 1.00                 | 31.5505    | 51.3      | 48.3      | 53.7      | 41.1      | 42.8      | 40.9      |
| 5.00                 | 31.4815    | 45.6      | 40.4      | Short     | 39.5      | Short     | 35.1      |
| 8.00                 | 31,4573    | 43.2      | 38.8      | -         | 38.9      | -         | 34.7      |
| 13.25 <sup>(1)</sup> | 31,4266    | 42.1      | 37.2      | -         | 37.1      | -         | 33.2      |
| 20.25 <sup>(2)</sup> | 31.4131    | 41.5      | 36.7      | -         | 36.9      | -         | 32.6      |
| 25.00 <sup>(1)</sup> | 31,3983    | Short     | 36.1      | -         | 36.3      | -         | 31.9      |
| 29.00 <sup>(2)</sup> | 31.3956    | -         | Short     | -         | 35.9      | -         | 31.5      |
| 36.00                | 31.3937    | -         | -         | _         | Broke     | -         | 31.3      |
| 46.25                | 31.3905    | _         | -         | -         | -         | -         | 31.3      |

<sup>(1)</sup> Change condition to 120°F/0% RH

<sup>(2)</sup> Return condition to 160°F/0% RH

TABLE A-55. CYCLE NO. 1 EXPOSURE TO 160°F/98% RH ABSORB AND 160°F/0% RH DESORB FOR 13-PLY SPECIMEN B

| Condition:    | 160°F/98% RH | Absorb; _ | 160° | F/0% RF | 1       | Desorb           |        |      |
|---------------|--------------|-----------|------|---------|---------|------------------|--------|------|
| Tare 12.8570  | g Dry Weight | 17.4644   | 9    | Dry Cap | acitano | e                | * pf   |      |
| Specimen No.  | B A          | bsorb No. | 11   |         |         | Date<br>ance (pt | 1/4/79 | _    |
| Time ( Days ) | Weight (g)   |           | 51   | _S2_    | S3      | 54               | S5     | 56   |
| 0.00          | 30.3214      |           | 33.4 | 29.7    | 32.8    | 31.5             | Broke  | 21.6 |
| 0.25          | 30.3904      |           | 37.7 | 34.1    | 35.1    | 35.0             | - 1    | 23.8 |
| 1.00          | 30.4505      |           | 44.2 | 38.4    | 43.0    | 41.3             |        | 29.6 |
| 4.00          | 30.5027      |           | 48.1 | 42.0    | 47.9    | 45.5             |        | 31.4 |
| 8.00          | 30.5459      |           | 52.8 | 45.1    | 48.1    | 45.9             |        | 33.8 |
| 15.00         | 30.6113      |           | 63.9 | 47.2    | 52.2    | 46.0             | -      | 34.4 |
| 20.25         | 30.6579      |           | 65.8 | 50.0    | 53.5    | 47.6             |        | 35.7 |
| 25.00         | 30.6720      |           | 76.3 | 67.0    | 58.1    | 49.3             |        | 36.3 |
| 32.00         | 30.6784      |           | 78.7 | 68.4    | 59.2    | Broke            |        | 37.6 |
| 36.00         | 30.6840      |           | 81.5 | 71.3    | 60.7    |                  |        | 39.4 |
| 40.00         | 30.6911      |           | 83.1 | 72.4    | 64.6    | 1                |        | 40.9 |
| 42.00         | 30.6934      |           | 83.6 | 72.5    | 64.7    | +                | +      | 41.1 |

<sup>\*</sup>Capacitance readings are shown for six sensors numbered S1 through S6.

| Desorb No1           |            |      | Star             | t Date _ | 2/15/7    | 79         |           |  |
|----------------------|------------|------|------------------|----------|-----------|------------|-----------|--|
| Time ( Days )        | Weight (g) |      | Capacitance (pf) |          |           |            |           |  |
|                      |            | 51   | <u>\$2</u>       | _\$3_    | <u>S4</u> | <u>\$5</u> | <u>S6</u> |  |
| 0.00                 | 30.6934    | 83.6 | 72.5             | 64.7     | -         | -          | 41.1      |  |
| 0.21                 | 30.5944    | 70.1 | 57.3             | 50.3     | -         | -          | 37.5      |  |
| 1.00                 | 30.5342    | 47.8 | 42.9             | 45.3     | -         | -          | 33.8      |  |
| 5.00                 | 30.4273    | 38.9 | 36.7             | 43.8     | -         | -          | 31.4      |  |
| 8.00                 | 30.4005    | 37.4 | 35.2             | 43.1     | -         | -          | 27.6      |  |
| 13.25 <sup>(1)</sup> | 30.3675    | 36.6 | 34.3             | 40.5     | =         | -          | 25.4      |  |
| 20.25 <sup>(2)</sup> | 30.3542    | 35.3 | 33.1             | 39.7     | -         | -          | 24.1      |  |
| 25.00 <sup>(1)</sup> | 30.3394    | 34.7 | 32.8             | 39.0     | -         | -          | 23.7      |  |
| 29.00 <sup>(2)</sup> | 30.3373    | 34.3 | Short            | 38.8     | -         | -          | 23.4      |  |
| 36.00                | 30.3353    | 34.1 | -                | Broke    | -         | -          | 23.0      |  |
| 42.25                | 30.3321    | 33.9 | -                | -        | -         | -          | 22.6      |  |

<sup>(1)</sup> Change condition to 120°F/0% RH

<sup>(2)</sup> Return condition to 160°F/0% RH

TABLE A-56. CYCLE NO. 1 EXPOSURE TO 160°F/98% RH ABSORB AND 160°F/0% RH DESORB FOR 13-PLY SPECIMEN C

| Condition:    | 160°F/ | ′98% RH    | Absorb;   | 160°F    | /0% RH  | D        | esorb     |        |         |
|---------------|--------|------------|-----------|----------|---------|----------|-----------|--------|---------|
| Tare 15.0688  | _ g    | Dry Weight | 17.1529 g | 1        | Dry Cap | acitance | **        | pf     |         |
| Specimen No.  | c      | A          | bsorb No  | 1        |         | Start [  | _         | 1/4/79 | n       |
| Time ( Days ) |        | W . I. /   | ,         |          |         | apacita  |           |        |         |
| Time ( Days ) |        | Weight (g  | <u>)</u>  | 51       | S2_     | S3       | <u>S4</u> | _\$5_  | _S6_    |
| 0.00          |        | 32.2217    |           | 33.9     | 32.0    | 22.2     | 32.1      | 32.2   | 18.1    |
| 0.25          |        | 32.3035    |           | 39.0     | 35.5    | 28.4     | 54.1      | 34.5   | 20.2    |
| 1.00          |        | 32.3653    |           | 43.6     | 38.4    | 33.9     | 55.2      | 36.9   | 22.1    |
| 4.00          |        | 32.4152    |           | 79.9     | 45.2    | 45.0     | 66.6      | 43.1   | 28.8    |
| 8.00          |        | 32.4563    |           | 85.5     | 47.1    | 51.4     | 68.3      | 45.1   | 31.9    |
| 15.00         |        | 32.5226    |           | Off      | 50.2    | 87.4     | 79.9      | 49.8   | 32.6    |
| 20.25         |        | 32.5765    |           | Scale    | 81.9    | 97.4     | 81.0      | 51.2   | 34.6    |
| 25.00         |        | 32.5963    |           |          | 88.8    | Off      | 82.3      | 65.8   | 36.1    |
| 32.00         |        | 32.6024    |           |          | 96.7    | Scale    | 83.6      | 73.1   | 106.4** |
| 36.00         |        | 32.6073    |           |          | 97.7    |          | 85.1      | 78.5   | 70.2    |
| 40.00         |        | 32.6118    |           |          | 99.8    |          | 85.9      | 78.8   | 71.0    |
| 42.00         |        | 32.6139    |           | <b>\</b> | 101.1   | +        | 86.3      | 82.8   | 71.4    |

<sup>\*</sup>Capacitance readings are shown for six sensors numbered S1 through S6.

\*\*Apparently an erroneous high reading.

| Desorb No. 1         | _          |              | Start | Date _       | 2/15/  | 79   |      |
|----------------------|------------|--------------|-------|--------------|--------|------|------|
| Time ( Days )        | Weight (g) |              |       | Сарас        | itance | (pf) |      |
|                      |            | <b>S1</b>    | S2    | \$3          | S4     | S5   | 56   |
| 0.00                 | 32.6139    | Off<br>Scale | 101.1 | Off<br>Scale | 86.3   | 82.8 | 71.4 |
| 0.21                 | 32.4911    | 85.1         | 72.4  | 98.0         | 69.4   | 65.8 | 52.6 |
| 1.00                 | 32,4209    | 53.0         | 48.3  | 59.6         | 47.9   | 42.2 | 36.9 |
| 5.00                 | 32.3088    | 42.3         | 37.1  | 41.5         | 34.7   | 38.1 | 29.7 |
| 8.00                 | 32.2842    | 35.6         | 34.9  | 40.9         | 34.4   | 37.5 | 24.0 |
| 13.25 <sup>(1)</sup> | 32,2621    | 35.2         | 34.4  | 39.5         | 34.1   | 36.8 | 22.1 |
| 20.25 <sup>(2)</sup> | 32,2561    | 33.8         | 33.3  | Short        | 32.4   | 33.5 | 19.2 |
| 25.00 <sup>(1)</sup> | 32,2516    | 33.3         | 32.9  | -            | 31.8   | 32.7 | 18.8 |
| 29.00 <sup>(2)</sup> | 32,2483    | 32.6         | 32.5  | -            | 31.8   | 32.5 | 18.3 |
| 36.00                | 32,2246    | 32.3         | Broke | -            | 29.9   | 32.3 | 18.1 |
| 42.25                | 32.2219    | 32.2         | -     | -            | 29.6   | 32.3 | 18.1 |

<sup>(1)</sup> Change condition to 120°F/0% RH

<sup>(2)</sup> Return condition to 160°F/0% RH

TABLE A-57. CYCLE NO. 1 EXPOSURE TO 160°F/98% RH ABSORB AND 160°F/0% RH DESORB FOR 13-PLY SPECIMEN D

| Condition:   | 160°F    | /98% RH                | Absorb; _ | 160°  | F/0% R | Н       | Desorb   |        |      |
|--------------|----------|------------------------|-----------|-------|--------|---------|----------|--------|------|
| Tare 15.2813 | 3_g      | Dry Weight             | 17.2422   | g     | Dry Ca | pacitan | ce       | p      | f    |
| Specimen No  |          | D A                    | bsorb No. | - 1   |        | Start   | Date _   | 1/4/79 |      |
| T: / D       | 1        | \\\ · 1 + \( \ \ \ \ \ |           |       | (      | Capacit | ance (pf | )      |      |
| Time ( Days  | <u>/</u> | Weight (g)             |           | S1    | S2     | 53      | S4       | S5     | S6   |
| 0.00         |          | 32.5235                |           | 37.5  | 65.8   | 62.6    | 67.2     | 26.7   | 33.6 |
| 0.25         |          | 32.5880                |           | 44.1  | 57.2   | 54.8    | 89.1     | 30.6   | 36.2 |
| 1.00         |          | 32.6501                |           | 48.5  | 78.0   | 60.1    | 91.6     | 31.1   | 45.3 |
| 4.00         |          | 32.7042                |           | 64.3  | 82.6   | 73.2    | 117.4    | 44.2   | 55.2 |
| 8.00         |          | 32.7442                |           | Off   | 83.4   | 74.6    | 119.6    | 46.0   | 58.3 |
| 15.00        |          | 32.8295                |           | Scale | 123.4  | 79.7    | 119.9    | 51.9   | 63.7 |
| 20.25        |          | 32.8856                |           |       | 148.1  | 81.6    | 148.6    | 52.3   | 69.4 |
| 25.00        |          | 32.9017                |           |       | 149.7  | 83.4    | 149.6    | 58.2   | 76.5 |
| 32.00        |          | 33.0690                |           |       | 206.1  | 91.4    | 210.0    | 60.1   | 79.3 |
| 36.00        |          | 33,0726                |           |       | 214.3  | 113.1   | 217.7    | 67.4   | 83.6 |
| 40.00        |          | 33.0758                |           |       | 224.1  | 128.2   | 228.6    | 73.8   | 88.3 |
| 42.00        |          | 33.0776                |           | +     | 226.4  | Broke   | 229.0    | 82.3   | 89.6 |

<sup>\*</sup>Capacitance readings are shown for six sensors numbered S1 through S6.

| Desorb No. 1         |            |       | Sta              | rt Date | e2/15 | /79       |           |  |  |
|----------------------|------------|-------|------------------|---------|-------|-----------|-----------|--|--|
| Time ( Days )        | Weight (g) |       | Capacitance (pf) |         |       |           |           |  |  |
| **                   |            |       | _S2_             | 53      | _54_  | <u>S5</u> | <u>S6</u> |  |  |
| 0.00                 | 33,0776    | Broke | 226.4            | -       | 229   | 82.3      | 89.6      |  |  |
| 0.21                 | 32.8877    | -     | 134.4            | -       | 127.5 | 63.4      | 66.1      |  |  |
| 1.00                 | 32,8021    | -     | 82.8             | -       | 110.3 | 56.4      | 48.6      |  |  |
| 5.00                 | 32,7027    | _     | 80.2             | -       | 90.6  | 49.1      | 42.8      |  |  |
| 8.00                 | 32.6753    | -     | 78.1             | -       | 89.3  | 47.4      | 38.9      |  |  |
| 13.25 <sup>(1)</sup> | 32.6540    | -     | 77.8             | -       | 88.7  | 43.7      | 37.1      |  |  |
| 20.25 <sup>(2)</sup> | 32.6435    | -     | 77.0             | -       | 88.3  | Short     | 36.3      |  |  |
| 25.00 <sup>(1)</sup> | 32.6358    | -     | 76.9             | -       | 88.3  | -         | 35.7      |  |  |
| 29.00 <sup>(2)</sup> | 32.6318    | -     | 76.9             | -       | 88.1  | -         | 35.2      |  |  |
| 36.00                | 32.6037    | -     | 76.9             | -       | 88.0  | -         | 33.4      |  |  |
| 42.25                | 32,6006    | _     | 76.7             | -       | 87.4  | -         | 33.2      |  |  |

<sup>(1)</sup> Change condition to 120°F/0% RH

<sup>(2)</sup> Return condition to 160°F/0% RH



















































