```
In [1]: #import libraries
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
In [2]: #Import the dataset
        import sklearn.svm as svm
In [3]: dataset = pd.read_csv(r'C:\Users\HP\Desktop\car_data.csv')
        dataset.head()
Out[3]:
            User ID Gender Age AnnualSalary Purchased
         0
               385
                     Male
                            35
                                     20000
                                                   0
               681
         1
                     Male
                            40
                                     43500
                                                   0
               353
         2
                     Male
                            49
                                     74000
                                                   0
         3
               895
                     Male
                            40
                                    107500
                                                   1
               661
                     Male
                            25
                                     79000
                                                   0
In [4]: dataset.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 5 columns):
             Column
                            Non-Null Count Dtype
              _ _ _ _ _ _
                            _____
                                            ____
         0
             User ID
                            1000 non-null
                                             int64
         1
             Gender
                            1000 non-null
                                             object
         2
                            1000 non-null
                                             int64
             Age
         3
             AnnualSalary 1000 non-null
                                             int64
         4
             Purchased
                            1000 non-null
                                             int64
        dtypes: int64(4), object(1)
        memory usage: 39.2+ KB
In [5]: dataset['Gender'].value_counts()
Out[5]: Female
                   516
        Male
                   484
        Name: Gender, dtype: int64
In [6]: #Converting gender values from object values to numerical values
        #A sign Female to (0) and Male to (1)
        convert = {"Gender": {"Female":0, "Male":1}}
In [7]: | dataset = dataset.replace(convert)
```

In [8]: #dataset after convert the gender to numerical values
 #data analysis
 dataset

Out[8]:

	User ID	Gender	Age	AnnualSalary	Purchased
0	385	1	35	20000	0
1	681	1	40	43500	0
2	353	1	49	74000	0
3	895	1	40	107500	1
4	661	1	25	79000	0
995	863	1	38	59000	0
996	800	0	47	23500	0
997	407	0	28	138500	1
998	299	0	48	134000	1
999	687	0	44	73500	0

1000 rows × 5 columns

In [9]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
dataset['Purchased'] = le.fit_transform(dataset['Purchased'])
dataset.head(100)

Out[9]:

	User ID	Gender	Age	AnnualSalary	Purchased
0	385	1	35	20000	0
1	681	1	40	43500	0
2	353	1	49	74000	0
3	895	1	40	107500	1
4	661	1	25	79000	0
95	485	0	33	151500	1
96	960	1	45	75500	1
97	233	0	26	17000	0
98	191	1	30	87000	0
99	471	1	38	60500	0

100 rows × 5 columns

Out[10]: Text(0.5, 1.0, 'Correlation On Purchased Car Classes')


```
In [11]: #Execute the following code to split the data into training and test sets
from sklearn.model_selection import train_test_split
```

```
In [13]: #Data processing
X = dataset.drop(columns = ['Purchased'])
Y = dataset['Purchased']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.25)
```

support	f1-score	recall	precision	
	0.01	0.04		
146	0.91	0.91	0.90	0
104	0.87	0.87	0.87	1
250	0.89			accuracy
250	0.89	0.89	0.89	macro avg
250	0.89	0.89	0.89	weighted avg

[[133 13] [14 90]] Accuracy is 0.892

In []: