

Desenvolvimento de Sistemas Software

Aula Teórica 10: Modelação de comportamento / Máquinas de Estado (II)

António Nestor Ribeiro, José Creissac Campos, F. Mário Martins Desenvolvimento de Sistemas Software

Resumo da aula anterior

António Nestor Ribeiro, José Creissac Campos, F. Mário Martins Desenvolvimento de Sistemas Software

Resumo da notação (até agora)

apagada	Estado
arcesa after(2h) em descanso entry / turnOff after(5m)	Estado composto
em descanso	Estado submáquina
•	Pseudoestado incial
→	Estado final
after(2h)	Transição (evento [condição] / acção)
on	Transição para o próprio (evento [condição] / acção)

Transições vs. actividades internas

Transições locais vs. transições externas

Transições locais

Transições externas

(sub-estado para super-estado)

Exemplo

Pseudoestados de História

 Permitem modelar interrupções — actividade da máquina é retomada no estado em que se encontrava aquando da última saída

Pseudoestado de Escolha

- Ramificação condicional (dinâmica!) em função do valor de uma expressão.
- Decisão pode ser uma função de acções anteriores.
- · Caso mais que uma guarda verdadeira, a escolha é não deterministica.
- Se nenhuma guarda for verdadeira, o modelo está mal formado ([else]!)

DME: Estado com Concorrência

Quando se entra neste estado, os dois subdiagramas são executados de forma concorrente. O comportamento termina quando terminarem os 2.

Estados com concorrência...

- Um estado pode ser dividido em "regiões" ortogonais
- Cada região contém um sub-diagrama
- Os diagramas das regiões são executados de forma concorrente

Pseudoestado de terminação

- · Indica que a execução da máquina de estados termina.
- Não são executadas acções de saída a não ser as da transição para o estado de terminação

Pseudoestados fork e join

- · Permitem gerir concorrência.
- Fork divide uma transição de entrada em duas ou mais transições
 - Transições de saída têm que terminar em regiões ortogonais distintas

- Join funde duas ou mais transições de entrads numa só transiçãod e saída
 - Transições de entradatêm que originar em regiões ortogonais distintas

Pontos de entrada e saída

- Como fazer para "esconder os detalhes" do estado Tracking?
- Transição a partir do sub-estado Testing levanta problemas...

DME: Estados Sub-Máquinas

Pseudoestados Ponto de entrada e Ponto de saída

- . Ponto de entrada
- O
- Permite definir um ponto de entrada numa máquina de estados ou num estado composto
- O ponto de entrada é identificado por nome
- O ponto de entrada transita para um estado interno que poderá ser diferente do definido pelo estado inicial

Ponto de saída

- Permite definir um ponto de saída alternativo ao estado final
- O ponto de saída é identificado por nome

Universidade do Minho Departamento de Informática

DME: Submáquinas

Submáquina CheckPIN

Pseudo-estado de Junção

- Ramificação condicional (estática!) em função do valor de uma expressão.
- · Caso mais que uma guarda verdadeira, a escolha é não deterministica.
- Se nenhuma guarda for verdadeira, o modelo está mal formado ([else]!)

Diagramas de Estado permitem-nos descrever o comportamento de uma entidade importante do sistema de forma completa, ou seja, trazendo para um único diagrama o comportamento que em geral está especificado de forma dispersa em vários UC ou DS.

□ Os diagramas de actividade também permitem uma visão mais sistémica, pois permitem especificar fluxos importantes de actividades que envolvem vários objectos, use cases e até actores.

Diagramas de Estado não são adequados para descrever ou analisar colaborações entre entidades/objectos.

Diagramas de Estado não são usados para descrever todas as classes do sistema, mas aquelas que exibam comportamento interessante ou complexo. Alguns autores usam DMEs para especificar a Interface com Utilizador.

Diagramas de Estado (Statecharts)

Sumário

- Mais sobre transições
- Transições vs. actividades internas
- Regiões concorrentes
- Mais pseudoestados: História, Escolha, Fork, Join, Terminação, Pontos de Entrada e Saída, Junção