

ODMB user's manual

Optical DAQ MotherBoard for the ME1/1 stations of the CMS muon endcap detector

Firmware tag: V02-04

ODMB.V2 and ODMB.V3 compatible

Manuel Franco Sevilla, Frank Golf, Guido Magazzù, Tom Danielson, Adam Dishaw, Jack Bradmiiller-Feld UC Santa Barbara

Table of Contents

Front panel	
General	3
Firmware version	3
VME access through the board discrete "emergency" logic	3
Jumpers and test points	4
Device 1: DCFEB JTAG	5
Example: Read DCFEB UserCode	5
Device 2: ODMB JTAG	6
Example: Read ODMB UserCode	6
Device 3: ODMB/DCFEB control	7
Bit specification of ODMB_CTRL and DCFEB_CTRL	7
Information accessible via command "R 3YZC"	8
Device 4: Configuration registers	9
Notes	9
Device 5: Test FIFOs	10
Notes	10
Device 6: BPI Interface (PROM)	11
Device 7: ODMB monitoring	12
Translation into temperatures and voltages	12
Device 8: Low voltage monitoring	13
Device 9: System tests	14
Firmware block diagram	15

Front panel

Push buttons

- HRST: Reloads firmware in PROM onto FPGA
- SRST: Resets registers/FIFOs in FW. LEDs 1-12 blink at different speeds for ~3s
- PB1: Sends L1A and L1A_MATCH to all DCFEBs. Turns on LED 12

LEDs set in firmware

- 1: 4 Hz signal from clock for data → DDU
- 3: 2 Hz signal from clock for data → PC
- 5: 1 Hz signal from internal ODMB clock
- 7: Data taking: ON normal, OFF pedestal
- 9: Triggers: ON external, OFF internal
- 11: Data: ON real, OFF simulated
- 2: Bit 0 of L1A_COUNTER
- 4: Bit 1 of L1A_COUNTER
- 6: Bit 2 of L1A_COUNTER
- 8: Bit 3 of L1A_COUNTER
- 10: Bit 4 of L1A_COUNTER
- 12: Briefly ON when a VME command is received.
 Also ON when PB1 is pressed

LEDs set in hardware

- DDU: Signal Detected on DDU RX
- PC: Signal Detected on PC RX
- ETD: DTACK enable for discrete logic (active low)
- EJD: JTAG enable for discrete logic (active low)
- DON: DONE signal from FPGA. ON when programmed
- INIT: INIT_B signal from FPGA (active low)
- ▶ LOCK: QPLL is locked
- ERR: Error with QPLL
- Bottom 12: Voltage monitoring

General

Firmware version

For a given firmware tag **VXY-ZK**:

- Usercode is XYZKdbdb
- ❖ Firmware version read via "R 4200" is XYZK

VME access through the board discrete "emergency" logic

The FPGA may be accessed via JTAG through the discrete logic as follows

- The VME address is 0xFFFC
- The bit 0 of the data sent is TMS
- * The bit 1 of the data sent is TDI

For example, to read the Usercode, starting from JTAG idle (five TMS = 1 & one TMS = 0), the commands are:

```
W FFFC 1 To Select-DR-Scan
W FFFC 1 To Select-IR-Scan
W FFFC 0 To Capture-IR
W FFFC 0 To Shift-IR
W FFFC 0 Shifting IR (Read UserCode IR = 3C8)
W FFFC 0 Shifting IR
W FFFC 0 Shifting IR
W FFFC 2 Shifting IR
W FFFC 0 Shifting IR
W FFFC 0 Shifting IR
W FFFC 2 Shifting IR
W FFFC 2 Shifting IR
W FFFC 2 Shifting IR
W FFFC 3 Shifting IR and to Exit1-IR
W FFFC 1 To Update-IR
W FFFC 0 To Run Test/Idle
W FFFC 1 To Select-DR-Scan
W FFFC 0 To Capture-DR
W FFFC 0 Shifting DR
R FFFC 0
           Shifting DR (Read bit 0 of UserCode)
```

Since the Usercode register is 32 bits, the last two commands should be repeated 31 more times.

Jumpers and test points

Place the **jumpers** marked in **red** in the diagram. The signals sent to the **test points** marked in **blue** are:

TP12	RAW_LCT(1)	TP13	L1A_MATCH(1)
TP14	RAW_LCT(2)	TP15	L1A_MATCH(2)
TP16	RAW_LCT(3)	TP17	L1A_MATCH(3)
TP18	RAW_LCT(4)	TP19	L1A_MATCH(4)
TP20	RAW_LCT(5)	TP21	L1A_MATCH(5)
TP22	RAW_LCT(6)	TP23	L1A_MATCH(6)
TP24	RAW_LCT(7)	TP25	L1A_MATCH(7)
TP26	L1A	TP27	DDU_DATA_VALID
TP28	OTMBDAV	TP29	ALCTDAV

TP30	Defined by TP_SEL	TP31	
TP32		TP33	
TP34	Defined by TP_SEL	TP35	
TP36		TP37	
TP38	Defined by TP_SEL	TP39	
TP40		TP41	
TP42		TP43	
TP44		TP45	
TP46	DCFEB_TDI	TP47	2.5V
TP48	DCFEB_TMS	TP49	Defined by TP_SEL

Device 1: DCFEB JTAG

"Y" refers to the number of bits to be shifted

Inst	ruction	Description						
W	1Y00	Shift Data; no TMS header; no TMS tailer						
W	1Y04	Shift Data with TMS header only						
W	1Y08	Shift Data with TMS tailer only						
W	1Y0C	Shift Data with TMS header & TMS tailer						
R	1014	Read TDO register						
W	1018	Resets JTAG protocol to IDLE state (data sent with this command is disregarded)						
W	1Y1C	Shift Instruction register						
W	1020	Select DCFEB, one bit per DCFEB						
R	1024	Read which DCFEB is selected						

Example: Read DCFEB UserCode

DCFEB registers are set and read via JTAG. The following procedure reads the 32-bit USERID of DCFEB 3:

```
W 1020 4 Select DCFEB 3 (one bit per DCFEB)

W 191c 3C8 Set instruction register to 3C8 (read UserCode)

W 1F04 0 Shift 16 lower bits

R 1014 0 Read last 16 shifted bits (DBDB)

W 1F08 0 Shift 16 upper bits

R 1014 0 Read last 16 shifted bits (XYZK)
```

Device 2: ODMB JTAG

"Y" refers to the number of bits to be shifted

Inst	truction	Description
W	2¥00	Shift Data; no TMS header; no TMS tailer
W	2Y04	Shift Data with TMS header only
W	2Y08	Shift Data with TMS tailer only
W	2Y0C	Shift Data with TMS header & TMS tailer
R	2014	Read TDO register
W	2018	Resets JTAG protocol to IDLE state (data sent with this command is disregarded)
W	2Y1C	Shift Instruction register
W	2020	Change polarity of V6_JTAG_SEL

Example: Read ODMB UserCode

Read FPGA UserCode:

```
W 291c 3C8 Set instruction register to 3C8 (read UserCode)
W 2F04 0 Shift 16 lower bits
R 2014 0 Read last 16 shifted bits (DBDB)
W 2F08 0 Shift 16 upper bits
R 2014 0 Read last 16 shifted bits (XYZK)
```

Device 3: ODMB/DCFEB control

Inst	ruction	Description				
W/R	3000	ODMB_CTRL register				
W/R	3010	DCFEB_CTRL register				
W/R	3020	TP_SEL register (selects which signals are sent to TP27, TP28, TP41, TP42)				
W/R	3100	LOOPBACK: 0 → no loopback, 1 or 2 → internal loopback				
W/R	3110	DIFFCTRL (TX voltage swing): 0 → minimum ~100 mV, F → maximum ~1100mV				
R	3120	Read DONE bits from DCFEBs (7 bits)				
R	3124	Read if QPLL is locked				
R	3YZC	Read ODMB_DATA corresponding to selection YZ (see below)				

Bit specification of ODMB_CTRL and DCFEB_CTRL

- ODMB CTRL[3:0] Selects CAL TRGEN (calibration mode).
- ► ODMB_CTRL[4] Selects CAL_MODE (calibration mode).
- ODMB_CTRL[5] Selects CAL_TRGSEL (calibration mode).
- ODMB_CTRL[7] Selects DCFEB data path: 0 → real data, 1 → dummy data.
- ODMB_CTRL[8] Resets FPGA registers/FIFOs and LEDs 1-12 blink for ~3s. Bit is auto-reset.
- ODMB_CTRL[9] Selects L1A and LCTs: 0 → from CCB, 1 → internally generated.
- ODMB_CTRL[10] Selects LVMB: 0 → real LVMB, 1 → dummy LVMB.
- ► ODMB_CTRL[11] Kills L1A.
- ► ODMB_CTRL[12] Kills L1A_MATCH.
- ODMB CTRL[13] 0 → normal, 1 → pedestal (L1A MATCHes sent to DCFEBs for each L1A).
- ODMB_CTRL[14] 0 → normal, 1 → pedestal (OTMB data requested for each L1A, needs spec. OTMB FW).

▶ DCFEB CTRL[0] - Reprograms the DCFEBs. Bit is auto-reset.

- ▶ DCFEB CTRL[1] Resynchronizes the L1A COUNTER of ODMB and DCFEBs. Bit is auto-reset.
- ► DCFEB_CTRL[2] Sends INJPLS signal to DCFEBs. Bit is auto-reset.
- ▶ DCFEB CTRL[3] Sends EXTPLS signal to DCFEBs. Bit is auto-reset.
- ▶ DCFEB_CTRL[4] Sends test L1A and L1A_MATCH to all DCFEBs. Bit is auto-reset.
- ▶ DCFEB_CTRL[5] Sends LCT request to OTMB. Bit is auto-reset.
- ► DCFEB_CTRL[6] Sends external trigger request to OTMB. Bit is auto-reset.
- ► DCFEB_CTRL[7] Resets the optical transceivers. Bit is auto-reset.

Information accessible via command "R 3YZC"

- YZ = 3F: Least significant 16 bits of L1A COUNTER
- ► YZ = 21-29: Number of L1A_MATCHes for given DCFEB, OTMB, ALCT
- ▶ YZ = 31-37: Gap (in number of bunch crossings) between the last LCT and L1A for given DCFEB
- ▶ YZ = 38: Gap (in number of bunch crossings) between the last L1A and OTMBDAV
- ➤ YZ = 39: Gap (in number of bunch crossings) between the last L1A and ALCTDAV
- ➤ YZ = 41-49: Number of packets stored for given DCFEB, TMB, or ALCT
- YZ = 4A: Number of packets sent to the DDU
- YZ = 4B: Number of packets sent to the PC
- YZ = 51-59: Number of packets shipped to DDU and PC for given DCFEB, TMB, or ALCT
- ► YZ = 61-67: Number of data packets received with good CRC for given DCFEB
- ► YZ = 71-77: Number of LCTs for given DCFEB
- ► YZ = 78: Number of available OTMB packets
- ► YZ = 79: Number of available ALCT packets
- ► YZ = 5A: Read last CCB_CMD[5:0] + EVTRST + BXRST strobed
- ► YZ = 5B: Read last CCB_DATA[7:0] strobed
- ► YZ = 5C: Read toggled CCB_CAL[2:0] + CCB_BX0 + CCB_BXRST + CCB_L1ARST + CCB_L1A + CCB_CLKEN + CCB_EVTRST + CCB_CMD_STROBE + CCB_DATA_STROBE
- YZ = 5D: Read toggled CCB_RSV signals

Device 4: Configuration registers

Insti	ruction	Description			
W/R	4000	LCT_L1A_DLY[5:0] → Set to LCT/L1A gap - 100			
W/R	4004	OTMB_DLY[4:0] → Set to L1A/OTMBDAV gap			
W/R	400C	ALCT_DLY[4:0] → Set to L1A/ALCTDAV gap			
W/R	4010	INJ_DLY[4:0] - Delay: 12.5*INJ_DLY [ns]			
W/R	4014	EXT_DLY[4:0] - Delay: 12.5*EXT_DLY [ns]			
W/R	4018	CALLCT_DLY[3:0] - Delay: 25*CALLCT_DLY [ns]			
W/R	401C	KILL[9:1] (ALCT + TMB + 7 DCFEBs)			
W/R	4020	CRATEID[6:0]			
W/R	4028	Number of words generated by dummy DCFEBs, OTMB, and ALCT			
R	4100	Read ODMB unique ID			
R	4200	Read firmware version			
R	4300	Read firmware build			
R	4400	Read month/day firmware was synthesized			
R	4500	Read year firmware was synthesized			

Notes

1. If unique ID not set, request UCSB to write it.

Device 5: Test FIFOs

Z refers to FIFO: 1 → PC TX, 2 → PC RX, 3 → DDU TX, 4 → DDU RX, 5 → OTMB, 6 → ALCT

Inst	ruction	Description
R	5000	Read one word of selected DCFEB FIFO
R	500C	Read numbers of words stored in selected DCFEB FIFO
W/R	5010	Select DCFEB FIFO
W	5020	Reset DCFEB FIFOs (7 bits, one per FIFO, which are auto-reset)
R	5 Z 00	Read one word of FIFO
R	5Z0C	Read numbers of words stored in FIFO
W	5 Z 20	Reset FIFO

Notes

- 1. All these FIFOs can hold a maximum of 2,000 18-bit words (36 kb)
- 2. The OTMB, ALCT, and 7 DCFEB FIFOs store the data as it arrives in parallel to the standard data path
 - They can hold a maximum of 3 OTMB, 4 ALCT, and 2 DCFEB data packets
- 3. The **DDU TX FIFO** stores DDU packets just before being transmitted
 - They include the DDU header (4 words starting with 9, 4 starting with A), ALCT data, TMB data, DCFEB data, and trailer (4 words starting with F, 4 starting with E)
- 4. The PC TX FIFO stores DDU packets wrapped in ethernet frames just before being transmitted
 - They include the ethernet header (4 words) and trailer (4 words)
 - They need to be at least 32 words long
- 5. The **DDU** and **PC RX FIFOs** can be used for loopback tests

Device 6: BPI Interface (PROM)

Important: Instruction 6000 takes ~1 second, during which Device 4 and 6 write commands are ignored

Inst	ruction	Description
W	6000	Write configuration registers to PROM
W	6004	Set configuration registers to retrieved values from PROM
W	6020	Reset BPI interface state machines
W	6024	Disable parsing commands in command FIFO while filling FIFO with commands (no data)
W	6028	Enable parsing commands in the command FIFO (no data)
W	602C	Write one word to command FIFO
R	6030	Read one word from read-back FIFO
R	6034	Read number of words in read-back FIFO
R	6038	Read BPI Interface Status Register
R	603C	Read Timer (16 LSBs)
R	6040	Read Timer (16 MSBs)

12

Device 7: ODMB monitoring

Reads output of the ADC inside the FPGA

Inst	ruction	Description				
R	7000	FPGA temperature				
R	7100	LV_P3V3: input to FPGA regulators				
R	7110	P5V: input to PPIB regulator and level for 5V chips				
R	7120	THERM2: board temperature at the center-top				
R	7130	P3V3_PP: voltage level for PPIB				
R	7140	P2V5: voltage level for FPGA and 2.5V chips				
R	7150	THERM1: board temperature close to the LVMB connector				
R	7160	P1V0: voltage level for FPGA				
R	7170	P5V_LVMB: voltage level for LVMB				

Translation into temperatures and voltages

The output of the 7YZ0 commands is a 12-bit number that we call RYZ. The measurement is:

 • The FPGA temperature is
$$T_{FPGA} = \frac{R_{00} \times 503.975}{4096} - 273.15 \ \ [^{\circ}\ C]$$

• The temperature of the thermistors THERM1, THERM2 is given by

R _{XY}	377	455	55A	687	7DD	959	AF8	CB5	E87	FFF
T [° C]	15	20	25	30	35	40	45	50	55	60

 $\bullet \ \, \text{The voltage levels are} \ \, V_{YZ} = \frac{R_{YZ}}{2048} \times V_{YZ,Nom} \, \, [V] \text{, where $V_{YZ,Nom}$ is the nominal voltage level for that register. That is, $V_{10,Nom} = V_{13,Nom} = 3.3V$, $V_{11,Nom} = V_{17,Nom} = 5V$, $V_{14,Nom} = 2.5V$, and $V_{16,Nom} = 1V$. }$

Device 8: Low voltage monitoring

Inst	ruction	Description						
W	8000	Send control byte to ADC						
R	8004	Read ADC						
W	8010	Select DCFEBs/ALCT to be powered on (8 bits, ALCT + 7 DCFEBs)						
R	8018	Read which DCFEBs/ALCT are powered on						
W	8020	Select ADC to be read, 0 to 6						
R	8024	Read which ADC is to be read						

Table 1. Control-Byte Format

BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (LSB)
START	SEL2	SEL1	SEL0	RNG	BIP	PD1	PD0

PD1	PD0	MODE	
0	0	Normal operation (always on), internal clock mode.	
0	1	Normal operation (always on), external clock mode.	
1	0	Standby power-down mode (STBYPD), clock mode unaffected.	
1	1	Full power-down mode (FULLPD), clock mode unaffected.	

INPUT RANGE	RNG	BIP
0 to +5V	0	0
0 to +10V	1	0
±5V	0	1
±10V	1	1

Device 9: System tests

Instruction		Description		
W	9000	Test the DDU TX/RX with a given number of PRBS 27-1 sequences		
R	900C	Read number of errors during last DDU PRBS test		
W	9100	Test the PC TX/RX with a given number of PRBS 27-1 sequences		
R	910C	Read number of errors during last PC PRBS test		
W	9200	Check N*10000 bits from the PRBS pattern sent by the DCFEB		
W/R	9204	Select DCFEB fiber to perform PRBS test		
R	9208	Read number of error edges during last DCFEB PRBS test		
R	920C	Read number of bit errors during last DCFEB PRBS test		
W/R	9300	Set PRBS type for DCFEB: 1 → PRBS-7, 2 → PRBS-15, 3 → PRBS-23, 4 → PRBS-31		
W	9400	Check N*10000 bits from the PRBS pattern sent by the OTMB		
R	9404	Read number of enables sent by the OTMB		
R	9408	Read number of good 10000 bits sent by the OTMB		
R	940C	Read number of bit errors during last OTMB PRBS test		
W	9410	Reset number of errors in OTMB counter		

Firmware block diagram

The firmware can be downloaded from http://github.com/odmb/odmb_ucsb_v2

ODMB_UCSB_V2 - Top of the design/FPGA → Control **→** Data LVMB_MUX ODMB_VME - MBV **Dummy LVMB** LVDBMON - Device 8 LVMB2 SYSTEM_MON - Device 7 COMMAND - VME protocol BPI_PORT- Device 6 **TEST FIFOs TESTFIFOS – Device 5 VME** DCFEB V6 VMECONFREGS - Device 4 **Dummy DCFEBs** VMEMON - Device 3 DMB_RECEIVER **ODMBJTAG - Device 2 DCFEBs RX for DCFEBs** CFEBJTAG - Device 1 ОТМВ ODMB_CTRL - MBC **CCB CALIBTRG** – Calibration ALCT_TMB_DATA_GEN **Dummy ALCT/OTMB** TRGCNTRL - Trigger control **OTMB DATA FIFOs CAFIFO** – Event manager GIGALINK_DDU DDU TX/RX for DDU **CONTROL - DDU packets GIGALINK PC** PC PCFIFO - PC packets TX/RX for PC