Proteins

Enzyme catalysis: space-filling model of an enzyme

Defense: venom

Transport: hemoglobin

Support: keratin

Motion: actin and myosin

Regulation: insulin

Storage: colcium

Peptide/polypeptides formation and properties

PEPTIDE/POLYPEPTIDES

- -Peptides are polymers of amino acids.
- Peptides are small condensation products of amino acids
- -Their structure and functions depend upon
 - Nature of amino acids present in them,
 - -Sequence of amino acids,
 - -Spatial relationship of amino acids.
- -Many peptides are formed from breakdown of proteins

Peptide- Peptides are relatively small polymers, 2-10 amino acid unit. If 2 amino acids were involved then called Dipeptide viz, tripeptide for 3 amino acid unit and Decapeptide for 10 unit.

Oligopeptide :a few amino acids

Polypeptide- big peptides are called polypeptides more than 50 amino acids

Polypeptide: many amino acids

Peptide bonds occur between amino acids

 The COOH group of 1 amino acid binds to the NH2 group of another amino acid

Forms a peptide bond!

Features of peptide bond

- ❖ Peptide bond is an amide linkage formed **between carboxyl group and amino group** by removal of water molecule. The reaction is called **condensation** reaction.
- Covalent bonding interactions leading to the stability of protein structure.
- The peptide bond is rigid and planar and the atoms in the peptide bond are Cα-C-N-Cα.
- The peptide bond is coplanar, this indicated a resonance or partial sharing of two pairs of electrons between the carbonyl oxygen and the amide nitrogen.
- ❖ The 4 atoms of the peptide group (C, H, O, and N) lie in a single plane, in such a way that the oxygen atom of the carbonyl group and the hydrogen atom of the amide nitrogen are **trans** to each other.
- ❖ Peptide bond has a partial double bond character and shows the resonance feature which makes the peptide bond strong and rigid and limits the rotation about this bond.

Peptide bond resonance

• Peptide bonds have *partial* double bond character due to resonance that limits rotation about this bond:

Peptide bond resonance structures

Resonating structures are formed due to delocalization of electrons in atoms

Polypeptide formation

- Condensation reaction to join 2 amino acid
- Requires:
 - Carboxyl group
 - Amine
- Peptide bond: links between amino acids

Polypeptide chain

Naming of peptides

- The amino acid suffixes –ine (glycine), -an (tryptophan), -ate
 (glutamate) are changed to –yl with the exception of C-terminal
 amino acid
- E.g, Glutamyl-cysteinyl-glycine

```
+H<sub>3</sub>N -glutamate - cysteine - glycine - COO - Amino acids
in a peptide

E - C - G One letter symbols
Glu - Cys - Gly Three letter symbols
Glutamyl - cysteinyl - glycine Peptide name
```

Features of polypeptide chain

- Polarity: Because of different ends- amino end (-NH₃ ⁺) and a carboxyl end (-COO⁻), polypeptide chain is polar.
- Amino end is the beginning of a polypeptide chain.
- Repeating part is the main chain or backbone, whereas the variable part is the side chain.
- Hydrogen bonding potential of the backbone. Carboxyl group is a good hydrogen bond acceptor.
- Polypeptides containing more than 50 residues are called proteins.
- Pentapeptide means 5 amino acids linked by 4 peptide bonds. Similarly, tripeptide (3 aa + 2 peptide bond), tetrapeptide (4 aa + 3 peptide bond) etc.

What is trans and cis configuration in a polypeptide chain?

• *trans* configuration: the two Cα- carbon atoms are on opposite side of a peptide bond.

• *cis* configuration: the two Cα- carbon atoms are on the same side of a peptide bond.

TRANS IS GENERALLY FAVORED OVER CIS:

- Because trans configuration of peptides experience minimum steric interaction from the R groups.
- Cis –peptides are energetically extremely unfavourable because of steric clashes between the R groups attached to C-alpha carbon atoms

Rotation about bonds in a polypeptide chain

- The structure of each amino acid in a polypeptide can be adjusted by rotation about two single bonds.
- Phi (φ) is the angle of rotation about the bond between the nitrogen and the alpha carbon atom.
- Psi (ψ) is the angle of rotation about the bond between the alpha carbon atom and the carbonyl carbon atom.
- Phi and Psi angles determine the path of polypeptide chain. This freedom of rotation of amino acids allows proteins to fold in many ways.
- Phi and Psi angles are also called as **rotation angles or torsional angles or dihedral** angles. The angle lies between -180 and +180.

Ramachandran plot

 Glycine and proline are not included in Ramachandran plot

- A Ramachandran plot is a way to visualize backbone dihedral angles ψ against φ of amino acid residues in protein structure.
- A Ramachandran plot can be used to show which values, or conformations, of the ψ and φ angles are possible for an aminoacid residue in a protein and to show the empirical distribution of datapoints observed in a single structure.
- The darkest areas correspond to the "core" regions representing the most favorable combinations of phi-psi values.

Disulphide bonds between cysteine residues

- Pairs of sulphydryl groups may come together to form disulphide bonds.
- Disulphide bonds plays important role in Stabilizing proteins.
- Tertiary structure of a protein is stabilized by disulphide bond.

Functions or Role of peptides

- Hormones and pheromones
 - insulin (sugar uptake)
 - oxytocin (childbirth)
 - sex-peptide (fruit fly mating)
- Neuropeptides
 - substance P (pain mediator)
- Antibiotics:
 - polymyxin B (for Gram bacteria)
 - bacitracin (for Gram + bacteria)
- · Protection, e.g. toxins
 - amanitin (mushrooms)
 - conotoxin (cone snails)
 - chlorotoxin (scorpions)

Biologically important peptides

Glutathione

Thyrotropin releasing hormone (TRH)

Oxytocin

Vasopressin

Angiotenins

Bradykinin

Methionine enkephalin

Sample questions

1. Amino acids are

- a) building blocks of carbohydrates
- b) building blocks of nucleic acids
- c) building blocks of lipids
- d) building blocks of proteins

2. Amino acids has

- a) both amino group and carboxyl group
- b) both amino group and keto group
- c) amino group only
- d) carboxyl group only

3. Which of the following is an α -imino acid

- a) Serine
- b) Threonine
- c) Valine
- d) Proline

4. The naturally occurring form of amino acid in proteins

- a) L-amino acids only
- b) D-amino acids only
- c) both L and D amino acids
- d) none of these

5. Sulphur containing amino acids are

- a) Cysteine and methionine
- b) b) Methionine and threonine
- c) c) Cysteine and threonine
- d) d) Cysteine and serine

6. Aromatic amino acids include

- a) Phenylalanine, tyrosine and tryptophan
- b) Phenylalanine, serine and tryptophan
- c) Threonine, tyrosine and tryptophan
- d) Asparagine, tyrosine and tryptophan

7. Peptide bond is a _____

- a) Covalent bond
- b) Ionic bond
- c) Metallic bond
- d) Hydrogen bond

8. A tripeptide has _____

- a) 3 amino acids and 1 peptide bond
- b) 3 amino acids and 2 peptide bonds
- c) 3 amino acids and 3 peptide bonds
- d) 3 amino acids and 4 peptide bonds

9. Which of the following is not the classified form of conjugated proteins?

- a) Lipoproteins
- b) Glycoproteins
- c) Metalloproteins
- d) Complete proteins

10. Which part of the amino acid gives it uniqueness?

- a) Amino group
- b) Carboxyl group
- c) Side chain
- d) None of the mentioned

11. Amino acids are

- a) Amphipathic
- b) Amphiprotic/amphoteric

12. Which amino acid absorbs UV light?

- a) Tryptophan
- b) Valine
- c) Isoleucine
- d) Serine