King Saud University

College of Science

Department of Mathematics

151 Math Exercises

(5.3)

$Isomorphic\ Graphs$

Malek Zein AL-Abidin

<u>1443ھ</u> 2022

الرسومات المتماثلة ISOMORPHIC GRAPHS

تعريف

لــيكن G = (V(G), E(G)) و G = (V(G), E(G)) رسمين بسيطين، G = (V(G), E(G)) بسيطين، وليكن G = (V(G), E(G)) تطبيقاً . نقول إن G = (V(G), E(G)) وليكن G = (V(G), E(G)) تطبيق متباين وشامل (أي G = (V(G), E(G)) تقابل).

رب) لکـــل (G) نـــان $(x,y) \in E(G)$ إذا وفقـــط إذا کـــان $(x,y) \in E(G)$ إذا وفقـــط إذا کـــان $(x,y) \in E(G)$ $\Rightarrow \{f(x),f(y)\} \in E(H)\}$. $G \cong H$ ن هذه الحالة نقول إن G و G متماثلان ونكتب $G \cong H$

مثال

بيّن ما إذا كان الرسمان التاليان متماثلين أم لا وعلل إحابتك:

الحل

 $V(G) \rightarrow V(H)$ نعرف التطبيق $f:V(G) \rightarrow V(H)$ كما يلي:

ν	а	b	C	d	g
f(v)	Y	v	7	,	"

یستطیع القساری آن یسری بسهولهٔ آن f تماثل من G إلى H وبالتالي، فإن

 $\square G \cong H$

مثال

بيّن ما إذا كان الرسمان التاليان متماثلين أم لا وعلل إحابتك.

الحل

نعرف التطبیق $f:V(G) \to V(H)$ كما يلي:

X	a	b	С	d	g	h
f(x)	2	1	6	3	4	5

 \square $G \cong H$ وبالتالي فإن G إلى G إلى G وبالتالي فإن

مبرهنة المعنط المسلط G ألى الرسم البسيط G إلى الرسم البسيط G إلى الرسم البسيط G ألى البسيط G ألى المرسم البسيط G ألى المرسم البسيط G ألى الم

عندئذ:

- $|E(G)| = |E(H)| \quad |V(G)| = |V(H)| \quad (1)$
 - . $x \in V(G)$ لکل degf(x) = deg x (ب)
- (ج) عدد الرؤوس التي درجة كل منها m في G يساوي عدد الرؤوس التي درجة كل منها m في m
 - (د) عدد الدورات التي طول كل منها l في G يساوي عدد الدورات التي طول كل منها l في H .
 - (هـ) عدد مركبات الرسم G يساوي عدد مركبات الرسم H . $^{\circ}$

بّين ما إذا كان الرسمان التاليان متماثلين أم لا وعلل إحابتك:

الحل

 \square لا يماثل H، لأن G و y_2 اينما لا يوجد رأس في G درجته G

مثال

حـــد جميع الرسومـــات ثنائية التجزئة التامة غير المتماثلة التي عدد رؤوس كل

منها 6 . الحل

عدد رؤوس الرسم $K_{m,n}$ يساوي m+n إذن، m+n وبالتالي فإن الرسوم المطلوبة هي: $K_{3,3}$ ، $K_{2,4}$ ، $K_{1,5}$

تعريف

على (complement of G) G متمم G=(V,E) على لیکن G=(V,E) رسماً بسیطاً. یعرف متمم $G=(V,\overline{E})$ فإن: أنه الرسم $\overline{G}=(V,\overline{E})$ حیث لکل $\overline{G}=(V,\overline{E})$ فإن: $\{x,y\}\in\overline{E}$

مثال: الشكل أدناه يبين الرسم G ومتممه \overline{G}

Theorem: $|E(G_1)| + |E(G_1)| = |E(K_1)| = \frac{n(n-1)}{2}$.

نقول إن الرسم البسيط $G \cong \overline{G}$ ذاتي التنميم (self-complementary) إذا كان $G \cong \overline{G}$.

تمارين (1) . في التمارين من (1) إلى (33)، بيّن ما إذا كان الرسمان المعطيان متماثلين أم لا و علل إجابتك . Q.Show that the graphs G = (V, E) and H = (W, F), displayed in the Figure, are isomorphic.

G have 3 vertices of degree 2 but H have only 2 Vertice of degree 2

Gi have 2 Cycles of C3 - but H doesn't have.

G

 C_{4} C_{4

Grhave only # Cycles of C4 but H have 6 of 64

(11)

.....

151 ريض نظرية الرسومات (الرسومات المتماثلة) مالك عبدالرحمن زين العابدين (جامعة الملك سعود _ قسم الرياضيات) س2 : عين جميع الرسومات الثنائية التجزئة التامة غير المتماثلة و التي عدد رؤوس كل منها 7 ؟ س2 . List all nonisomorphic complete bipartite graphs with 7 total vertices ?

$$|V(K_{m,n})| = M+N=7$$

 $1+6=7 \Rightarrow K_{1,6} \neq$
 $2+5=7 \Rightarrow K_{2,5} \neq$
 $3+4=7 \Rightarrow K_{3,4} \neq$

س4: عين جميع الرسومات البسيطة ذاتية التتميم التي عدد رؤوس كل منها 5. Q.Set all simple self complementary graphs with 5 vertices

س5: عين جميع الرسومات البسيطة غير المتماثلة التي عدد رؤوس كل منها 5 و عد أضلاع كل منها 3 . Q. . List all nonisomorphic simple graphs with 5 vertices and 3 edges?

ا 151 ريض نظرية الرسومات (الرسومات المتماثلة) مالك عبدالرحمن زين العابدين (جامعة الملك سعود – قسم الرياضيات) من نظرية الرسومات (الرسومات المتماثلة) مالك عبدالرحمن زين العابدين (جامعة الملك سعود – قسم الرياضيات) من \overline{G} هو 80 فاحسب \overline{G} هو 80 فاحسب \overline{G} . Let G Be a simple graph with \overline{G} vertices and 56 edges. If \overline{G} have 80 edges , find the value of \overline{G} ?

$$|E|+|E| = |N(N-1)| \Rightarrow 56 + 80 = |N(N-1)| \Rightarrow N=0$$

$$272 = N^2 - N \Rightarrow N^2 - N - 272 = 0$$

$$(N-17)(N+16) = \frac{11}{N} = \frac{1}{N}$$

س7: جد مع التعليل عدد أضلاع الرسم المتمم للرسم $K_{10,14}$.

Q. Find the number of edges for the complementary graph of $K_{10,14}$. Explain the answer?

س8: عين جميع الرسومات البسيطة غير المتماثلة التي عدد رؤوس كل منها 4 و عد أضلاع كل منها 3 . **Q.** List all *nonisomorphic* simple graphs with 4 vertices and 3 edges?

$$H.W$$
 وضّح اجابتك و يحقق $G\cong G$ وضّح اجابتك . G وضّح اجابتك . G وضّح اجابتك . G وضّح اجابتك . G وضّح و يحقق G و وصّع و يحقق G وصّع و يحقق G و وصّع و يحقق G و وصّع و يحقق G و وصّع و يحقق وصّع

Exami(main multiple of east act act act act and series and 5 edges, find the double edges of \overline{G} ?

Exami(main multiple of edges of \overline{G} ?)

Q. Let G be a graph with the degree sequence 2,2,2,3,3,4. Find the number of edges of \overline{G} ? A degree A and A are A and A are A are A and A are A are A and A are A and A are A are A and A are A are A and A are A and A are A are A and A are A are A and A are A and

س12: إذا كان G رسماً بسيطاً عدد رؤوسه n و عدد أضلاعه 36 . جد n إذا علمت أن عدد أضلاع الرسم المتمم \overline{G} يساوي 42 .

Q. Let G be a graph with n vertices an 36 edges. Find value of n if \overline{G} have 42 edges?

$$|E|+|E|=36+42=\frac{n(n-1)}{2}$$
?

151 ريض نظرية الرسومات (الرسومات المتماثلة) مالك عبدالرحمن زين العابدين (جامعة الملك سعود – قسم الرياضيات) س13: إذا كان G رسماً بسيطاً منتظماً من النوع r و عدد رؤوسه n . أثبت أن الرسم المتمم \overline{G} منتظم أيضاً

Q13. Let G be a simple regular graph of r degree and n vertices. Show that \overline{G} is also a regular, and

H.W.

Q13. Let G be a simple regular graph of r degree and n vertices. Show that
$$\overline{G}$$
 is also a find the number of edges?

 $|E| + |E| = \frac{n(n-1)}{2} \implies \frac{$

Explain the answer?

|V|=n=6, |E|=7 => |E|=?

 $K_{4.7}$ الرسم المتمم للرسم عدد أضلاع الرسم المتمم للرسم U.W.

Q15. Find the number of edges of the complementary of $K_{4.7}$?

151 ريض نظرية الرسومات (الرسومات المتماثلة) مالك عبدالرحمن زين العابدين (جامعة الملك سعود - قسم الرياضيات) س16: إذا كانت المصفوفة التالية هي مصفوفة التجاور للرسم G ، فبيّن فيما إذا كان G ذاتي التتميم .

Q16. Let A be the given adjacency matrix of the graph G. Decide that G is self

complementary? is it Parbat?

	a	0	C	ď
a	0	1	1	1
ط	1	0	0	ا ا 0
c	1	0	0	0
a b c d	1	0	0	0 0

O

 $G \not\equiv \overline{G}$ Cause Gi have C3 Cycle, but Gi doesn't have

. $K_{7,13}$ للرسم المتمم $\overline{K_{7,13}}$ للرسم المتمم 17: أوجد عدد أضلاع الرسم المتمم H.W. Q17. Find the number of edges of $\overline{K_{7,13}}$ (the complementary graph of $K_{7,13}$)

 \mathcal{H}, \mathcal{W} ، اوجد عدد أضلاع الرسم المتمم للرسم $K_{12,8}$ ثم بين فيما إذا كان الرسم $K_{12,8}$ ذاتي التتميم $K_{12,8}$ Q18. Find the number of edges of the complementary graph of $K_{12,8}$? Decide whether $K_{12,8}$ is self complementary?

Q19. Let A be the given adjacency matrix of the graph G. Find the number of edges?

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
 يساوي: $A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ يساوي: $A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ (a) $A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ (b) $A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ (c) $A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 &$

Q20. Let G be a regular graph of degree 4 with 8 vertices . show that \bar{G} is a simple graph of degree : 200: $7 \frac{7}{G}$ هو رسم بسیط منتظم من النوع 4 و عدد رووسه 8 فإن متم \bar{G} هو رسم بسیط منتظم من النوع:

$$|E| + |E| = \frac{N(N-1)}{2} \Rightarrow \frac{8(4)}{2} + |E| = \frac{8(7)}{2} \Rightarrow \frac{8(4)}{2} + |E| = \frac{8(7)}{2} \Rightarrow \frac{8(4)}{2} \Rightarrow \frac{8$$

 $\stackrel{ extsf{.}}{L}$ أوجد عدد أضلاع الرسم المتمم $\stackrel{ extsf{.}}{L}$ للرسم $\stackrel{ extsf{.}}{L}$

Decide whether the graph G is ? التميم فيما إذا كان الرسم L ذاتي التتميم و لماذا (ب) self complementary?

151 ريض نظرية الرسومات (الرسومات المتماثلة) مالك عبدالرحمن زين العابدين (جامعة الملك سعود – قسم الرياضيات)

رسماً بسيطاً ممثلاً بمصفوفة التجاور المقابلة : G

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

Draw \overline{G} (the complementary of G) (G الرسم المتمم للرسم G) (G الرسم المتمم للرسم G ذاتي التمميم أم G بين فيما إذا كان الرسم G ذاتي التمميم أم G ذاتي self complementary ?