

The Watson System

— Introduction, Overview and Discussion —

Christoph Benzmüller

Freie Universität Berlin, Germany

June 25, 2013

Chess champions: IBM's Deep Blue vs Kasparov

[Source: wikipedia.de, License: CC-BY]

Deep Blue, a computer similar to this one defeated chess world champion Garry Kasparov in May 1997. It is the first computer to win a match against a world champion. (126 million positions per second).

[Source: afflictor.com]

Chess champions: IBM's Deep Blue vs Kasparov

The 1996 match

Game #	White	Black	Result	Comment
1	Deep Blue	Kasparov	1-0	
2	Kasparov	Deep Blue	1-0	
3	Deep Blue	Kasparov	1/2-1/2	Draw by mutual agreement
4	Kasparov	Deep Blue	1/2-1/2	Draw by mutual agreement
5	Deep Blue	Kasparov	0–1	Kasparov offered a draw after the 23rd move.
6	Kasparov	Deep Blue	1-0	
	Resi	ult: Kaspar	ov-Dee	p Blue: 4-2

The 1997 rematch

Game #	White	Black	Result	Comment
1	Kasparov	Deep Blue	1-0	
2	Deep Blue	Kasparov	1-0	
3	Kasparov	Deep Blue	1/2-1/2	Draw by mutual agreement
4	Deep Blue	Kasparov	1/2-1/2	Draw by mutual agreement
5	Kasparov	Deep Blue	1/2-1/2	Draw by mutual agreement
6	Deep Blue	Kasparov	1-0	
	Result	t: Deep Blu	e-Kasp	parov: 31/2-21/2

[Source: wikipedia.org]

This lecture: Let's play Jeopardy!

[Source: stackoverflow.com]

- famous U.S. quiz show (since 1964)
- answers are presented in natural language
- different categories provide hints
- matching questions are to be provided by contestants

THE "GU"	CODE Names	NAME THE Namespace	HELLO World	MOVIES	BEFORE & AFTER
\$200	\$200	\$200	\$200	\$200	\$200
\$400	\$400	\$400	\$400	\$400	\$400
\$600	\$600	\$600	\$600	\$600	\$600
\$800	\$800	\$800	\$800	\$800	\$800
\$1000	\$1000	\$1000	\$1000	\$1000	\$1000

[Source: channel9.msdn.com]

L.A.'s SILVERSUN
PICKUPS GOT THEIR
NAME FROM A STORE
AT THE CORNER OF
SILVER LAKE BLVD. &
THIS ONE WITH
A FAMOUS "STRIP!"

[Source: blogs.laweekly.com]

This lecture: Let's play Jeopardy!

[Source: stackoverflow.com]

- ► famous U.S. quiz show (since 1964)
- answers are presented in natural language
- different categories provide hints
- matching questions are to be provided by contestants

THE "GU"	CODE Names	NAME THE NAMESPACE	HELLO WORLD	MOVIES	BEFORE & AFTER
\$200	\$200	\$200	\$200	\$200	\$200
\$400	\$400	\$400	\$400	\$400	\$400
\$600	\$600	\$600	\$600	\$600	\$600
\$800	\$800	\$800	\$800	\$800	\$800
\$1000	\$1000	\$1000	\$1000	\$1000	\$1000

[Source: channel9.msdn.com]

L.A.'S SILVERSUN PICKUPS GOT THEIR NAME FROM A STORE AT THE CORNER OF SILVER LAKE BLVD. & THIS ONE WITH A FAMOUS "STRIP!"

[Source: blogs.laweekly.com]

Answer: What is Sunset Boulevard?

Jeopardy!

- six categories / five clues each (incrementally valued)
- ▶ question → contestants buzz in (if confident)
- lacktriangledown correct answer ightarrow money added & select next question
- lacktriangleright incorrect answer ightarrow money subtracted, others may answer

Double Jeopardy!

▶ like above, but values are doubled

Daily Double

- one in each round above (Jeopardy! and Double Jeopardy!)
- contestants wager (between 5 dollars and their total score)

- barriers between players (they can't see each other anymore)
- single question
- all three contestant write answer down
- beforehand they wager (between 5 dollars and their total score)

Jeopardy!

- six categories / five clues each (incrementally valued)
- ▶ question → contestants buzz in (if confident)
- lacktriangleright correct answer ightarrow money added & select next question
- lacktriangleright incorrect answer ightarrow money subtracted, others may answer

Double Jeopardy!

like above, but values are doubled

Daily Double

- one in each round above (Jeopardy! and Double Jeopardy!)
- contestants wager (between 5 dollars and their total score)

- barriers between players (they can't see each other anymore)
- ► single question
- all three contestant write answer down
- beforehand they wager (between 5 dollars and their total score)

Jeopardy!

- six categories / five clues each (incrementally valued)
- lacktriangledown question ightarrow contestants buzz in (if confident)
- lacktriangleright correct answer ightarrow money added & select next question
- lacktriangleright incorrect answer ightarrow money subtracted, others may answer

Double Jeopardy!

like above, but values are doubled

Daily Double

- one in each round above (Jeopardy! and Double Jeopardy!)
- contestants wager (between 5 dollars and their total score)

- barriers between players (they can't see each other anymore)
- single question
- ▶ all three contestant write answer down
- beforehand they wager (between 5 dollars and their total score)

Jeopardy!

- six categories / five clues each (incrementally valued)
- ▶ question → contestants buzz in (if confident)
- lacktriangledown correct answer ightarrow money added & select next question
- lacktriangleright incorrect answer ightarrow money subtracted, others may answer

Double Jeopardy!

like above, but values are doubled

Daily Double

- one in each round above (Jeopardy! and Double Jeopardy!)
- contestants wager (between 5 dollars and their total score)

- barriers between players (they can't see each other anymore)
- single question
- all three contestant write answer down
- beforehand they wager (between 5 dollars and their total score)

Jeopardy! — Humans or Machines?

Ken Jennings and Brad Rutter

- ► Ken Jennings: 74 wins in a row; \$3,172,700 price money
- ▶ Brad Rutter: winner of Jeopardy! ultimate tournament of champions (2005); \$3,470,102 price money

IBM's Watson

- open-domain question-answering (DeepQA) program
- named after Thomas J. Watson the founder of IBM
- developed since 2007; team of ~25 members
- project leader D.A. Ferruci

Jan 14, 2011 (broadcasted on TV on Jan 14-16, 2011)

- one million dollar game
- received major public interest in the U.S. media

Jeopardy! — Humans or Machines?

Ken Jennings and Brad Rutter

- ► Ken Jennings: 74 wins in a row; \$3,172,700 price money
- ▶ Brad Rutter: winner of Jeopardy! ultimate tournament of champions (2005); \$3,470,102 price money

IBM's Watson

- open-domain question-answering (DeepQA) program
- named after Thomas J. Watson the founder of IBM
- developed since 2007; team of ~25 members
- project leader D.A. Ferruci

Jan 14, 2011 (broadcasted on TV on Jan 14-16, 2011)

- one million dollar game
- received major public interest in the U.S. media

Jeopardy! — Humans or Machines?

Ken Jennings and Brad Rutter

- ► Ken Jennings: 74 wins in a row; \$3,172,700 price money
- ▶ Brad Rutter: winner of Jeopardy! ultimate tournament of champions (2005); \$3,470,102 price money

IBM's Watson

- open-domain question-answering (DeepQA) program
- named after Thomas J. Watson the founder of IBM
- developed since 2007; team of ~25 members
- project leader D.A. Ferruci

Jan 14, 2011 (broadcasted on TV on Jan 14-16, 2011)

- one million dollar game
- received major public interest in the U.S. media

Jeopardy! — Introduction Movie

Let's watch a short introduction movie: watson.mpeg

- approx. 10 min
- thanks to Julian Röder

Here is another movie showing Watson in action:

http://www.youtube.com/watch?v=o6oS64Bpx0g

Here is a presentation by D.A. Ferruci

http://www.youtube.com/watch?v=UBM5JRyaoXw

And here is an article on Watson by Prof. Rojas:

http://www.heise.de/tp/artikel/36/36578/1.html

Further Reading

The slides for this lecture have been prepared from

- Building Watson: An Overview of the DeepQA Project. Al Magazine, Vol.31, No.3, 2010
- This is Watson. Journal of Research and Development, Vol.56, No.3/4, 2012

This Is Watson

See also http://www.christoph-benzmueller.de/2012-Watson

Some standard examples

Category: General Science

Clue: When hit by electrons, a phosphor gives off

electromagnetic energy in this form.

Answer: Light (or Photons)

Category: Lincoln Blogs

Clue: Secretary Chase just submitted this to me for the third time; guess what, pal. This time I'm accepting it.

Answer: his resignation

Category: Head North

Clue: They're the two states you could be reentering

if you're crossing Florida's northern border.

Answer: Georgia and Alabama

Examples requiring decomposition

Category: Diplomatic Relations

Clue: Of the four countries in the world that the United States does not have diplomatic relations with, the one that's farthest north.

Inner subclue: The four countries in the world that the United States does not have diplomatic rela-

tions with (Bhutan, Cuba, Iran, North Korea).

Outer subclue: Of Bhutan, Cuba, Iran, and North

Korea, the one that's farthest north.

Answer: North Korea

Puzzles

Category: Before and After Goes to the Movies

Clue: Film of a typical day in the life of the Beatles, which includes running from bloodthirsty zombie fans in a Romero classic.

Subclue 2: Film of a typical day in the life of the Beatles.

Answer 1: (A Hard Day's Night)

Subclue 2: Running from bloodthirsty zombie fans in a Romero classic.

Answer 2: (Night of the Living Dead)

Answer: A Hard Day's Night of the Living Dead

Category: Rhyme Time

Clue: It's where Pele stores his ball.

Subclue 1: Pele ball (soccer)

Subclue 2: where store (cabinet, drawer, locker, and so on)

Answer: soccer locker

Other types of questions

multiple choice

BUSY AS A BEAVER: Of 1, 5, or 15, the rough maximum number of minutes a beaver can hold its breath underwater.

Other types of questions

multiple choice

BUSY AS A BEAVER: Of 1, 5, or 15, the rough maximum number of minutes a beaver can hold its breath underwater.

(Answer: 15)

Other types of questions

multiple choice

BUSY AS A BEAVER: Of 1, 5, or 15, the rough maximum number of minutes a beaver can hold its breath underwater. (Answer: 15)

constraint bearing

ARE YOU A FOOD "E"?: Escoffier says to leave them in their shells & soak them in a mixture of water, vinegar, salt, and flour.

Other types of questions

multiple choice

BUSY AS A BEAVER: Of 1, 5, or 15, the rough maximum number of minutes a beaver can hold its breath underwater.

(Answer: 15)

constraint bearing

ARE YOU A FOOD "E"?: Escoffier says to leave them in their shells & soak them in a mixture of water, vinegar, salt, and flour.

(Answer: Escargots)

Other types of questions

multiple choice

BUSY AS A BEAVER: Of 1, 5, or 15, the rough maximum number of minutes a beaver can hold its breath underwater. (Answer: 15)

constraint bearing

ARE YOU A FOOD "E"?: Escoffier says to leave them in their shells & soak them in a mixture of water, vinegar, salt, and flour.

(Answer: Escargots)

lexical constraint, decomposable, fill-in-the blank ONLY ONE VOWEL: Proverbially, you can be "flying" this or be this "and dry".

Other types of questions

multiple choice

BUSY AS A BEAVER: Of 1, 5, or 15, the rough maximum number of minutes a beaver can hold its breath underwater. (Answer: 15)

constraint bearing

ARE YOU A FOOD "E"?: Escoffier says to leave them in their shells & soak them in a mixture of water, vinegar, salt, and flour.

(Answer: Escargots)

lexical constraint, decomposable, fill-in-the blank ONLY ONE VOWEL: Proverbially, you can be "flying" this or be this "and dry". (Answer: high)

Jeopardy! — Lexical Answer Types (LAT)

LAT: a word in the clue that indicates the type of the answer, independent of assigning semantics to that word.

[Source: Ferrucci et al., Building Watson, Al Magazine, Vol 31, No 3]

Important hint for searching and verifying answer candidates!

Jeopardy! — How good are the human champs?

Figure 3. Champion Human Performance at Jeopardy.

[Source: Ferrucci et al., Building Watson, Al Magazine, Vol 31, No 3]

e.g. rightmost dot – a Ken Jennings game: 81% of questions answered; 88% of these with a correct answer (Precision@70% became an important measure)

Jeopardy! — Importance of Confidence Estimation

- perfect confidence estimation (40% accuracy assumed)
- no confidence estimation (40% accuracy assumed)

Jeopardy! — What do you think are the challenges?

Discussion:

What skills are required for playing Jeopardy!

Jeopardy! — What do you think are the challenges?

Relevant skills include

- question-answering
 - natural language processing (NLP)
 - ▶ information retrieval (IR)
 - knowledge representation and reasoning (KR&R)
 - machine learning (ML)
 - human computer interfaces (HCIs)
 - •
- other important aspects
 - speed
 - confidence estimation
 - clue selection
 - betting strategy

Jeopardy! — How good were machines in 2007?

[Source: Ferrucci et al., Building Watson, Al Magazine, Vol 31, No 3]

Performance of PIQUANT baseline system (developed by 4-person team for 6 years prior to taking on the Jeopardy Challenge).

Massive parallelism

Exploit massive parallelism in the consideration of multiple interpretations and hypotheses.

Many experts

Facilitate the integration, application, and contextual evaluation of a wide range of loosely coupled probabilistic question and content analytics.

Pervasive confidence estimation

No component commits to an answer; all components produce features and associated confidences, scoring different question and content interpretations. An underlying confidence-processing substrate learns how to stack and combine the scores.

Integrate shallow and deep knowledge

Balance the use of strict semantics and shallow semantics, leveraging many loosely formed ontologies.

Massive parallelism

Exploit massive parallelism in the consideration of multiple interpretations and hypotheses.

Many experts

Facilitate the integration, application, and contextual evaluation of a wide range of loosely coupled probabilistic question and content analytics.

Pervasive confidence estimation

No component commits to an answer; all components produce features and associated confidences, scoring different question and content interpretations. An underlying confidence-processing substrate learns how to stack and combine the scores.

Integrate shallow and deep knowledge

Balance the use of strict semantics and shallow semantics, leveraging many loosely formed ontologies.

Massive parallelism

Exploit massive parallelism in the consideration of multiple interpretations and hypotheses.

Many experts

Facilitate the integration, application, and contextual evaluation of a wide range of loosely coupled probabilistic question and content analytics.

Pervasive confidence estimation

No component commits to an answer; all components produce features and associated confidences, scoring different question and content interpretations. An underlying confidence-processing substrate learns how to stack and combine the scores.

Integrate shallow and deep knowledge

Balance the use of strict semantics and shallow semantics, leveraging many loosely formed ontologies.

Massive parallelism

Exploit massive parallelism in the consideration of multiple interpretations and hypotheses.

Many experts

Facilitate the integration, application, and contextual evaluation of a wide range of loosely coupled probabilistic question and content analytics.

Pervasive confidence estimation

No component commits to an answer; all components produce features and associated confidences, scoring different question and content interpretations. An underlying confidence-processing substrate learns how to stack and combine the scores.

Integrate shallow and deep knowledge

Balance the use of strict semantics and shallow semantics, leveraging many loosely formed ontologies.

Watson's performance development (2007-2011)

Figure 2

Incremental progress in answering precision on the Jeopardy! challenge: June 2007 to November 2011.

[Source: Ferrucci et al., This is Watson, IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 1]

Watson's system architecture

Figure 1

DeepQA architecture.

[Source: Ferrucci et al., This is Watson, IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 1]

Watson's base platform: UIMA

Unstructured Information Management Architecture (UIMA)

- built from 2001 to 2006
- software architecture and framework providing a common platform for integrating diverse collections of text (or speech and image) analytics
- independent of algorithmic approach, programming language, or underlying domain model
- supports cooperating software programs
- ▶ in 2006, IBM contributed UIMA to Apache

Open Advancement of QA (OAQA) initiative

- directly engage researchers to replicate, reuse, contribute research results
- foster rapid advancement of the state of the art in QA

Watson — Development Strategy

Overall development strategy for Watson:

- start with baseline system
- analyze former Jeopardy games, use them as test corpus
- apply the AdaptWatson approach
 - run system over and over
 - approx. 8000 documented experiments
 - analyze errors and try to learn from them
 - adapt, replace, add, remove, improve system components

Watson's components: Knowledge Base/Corpus

Content acquisition (manual and automatic steps)

- initial analysis of example questions
 - lead to a selection of a baseline corpus of 3.5 million Wikipedia articles
- iterative process (AdaptWatson)
 - error analysis
 - source acquisition: new content
 - source transformation: extract information from sources (as a whole or in part), represent it in a form that the system can use
 - source expansion: increase the coverage by adding new information, includes lexical and syntactic variations
- different kinds of sources
 - encyclopedias, dictionaries, thesauri, newswire articles, literary works, . . . (unstructured)
 - taxonomies and ontologies such as DBpedia, Wordnet, Yago, Cyc, ... (semi-structured/structured)

Watson's components: Knowledge Base/Corpus

Content acquisition (manual and automatic steps)

- initial analysis of example questions
 - lead to a selection of a baseline corpus of 3.5 million Wikipedia articles
- iterative process (AdaptWatson)
 - error analysis
 - source acquisition: new content
 - source transformation: extract information from sources (as a whole or in part), represent it in a form that the system can use
 - source expansion: increase the coverage by adding new information, includes lexical and syntactic variations
- different kinds of source
 - encyclopedias, dictionaries, thesauri, newswire articles, literary works, . . . (unstructured)
 - taxonomies and ontologies such as DBpedia, Wordnet, Yago, Cyc, ... (semi-structured/structured)

Watson's components: Knowledge Base/Corpus

Content acquisition (manual and automatic steps)

- initial analysis of example questions
 - lead to a selection of a baseline corpus of 3.5 million Wikipedia articles
- iterative process (AdaptWatson)
 - error analysis
 - source acquisition: new content
 - source transformation: extract information from sources (as a whole or in part), represent it in a form that the system can use
 - source expansion: increase the coverage by adding new information, includes lexical and syntactic variations
- different kinds of sources
 - encyclopedias, dictionaries, thesauri, newswire articles, literary works, . . . (unstructured)
 - taxonomies and ontologies such as DBpedia, Wordnet, Yago, Cyc, ... (semi-structured/structured)

[Source: Ferrucci et al., This is Watson, IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 1]

Question Analysis:

Try to understand question and determine a processing strategy

- Question classification
 - ▶ identify type: standard, puzzle, multiple-choice, maths, . . .
 - ▶ identify puns, constraints, components, subclues, . . .
- Focus and LAT detection
- Relation detection
- Decomposition

- Question classification
- Focus and LAT detection
 - ► THEATRE: A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.
 - ▶ POETS & POETRY: <u>He</u> was a bank clerk in the Yukon before he published "Songs of a Sourdough" in 1907.
 - foci: underlined text
 - foci headwords: bold text
 - LATs in this question: he, poet, clerk
 - different kinds of clues require different detection mechanisms
- Relation detection
- Decomposition

- Question classification
- Focus and LAT detection
- Relation detection
 - ► They're the two states you could be reentering if you're crossing Florida's northern border.
 - contained relation: borders(Florida,?x,north)
 - such relations are used by various components of Watson
- Decomposition

- Question classification
- Focus and LAT detection
- Relation detection
- Decomposition
 - break question into subquestions (if applicable)
 - ▶ BEFORE & AFTER: The "Jerry Maguire" star who automatically maintains your vehicle's speed. (Answer: Tom Cruise control)
 - ► FICTIONAL ANIMALS: The name of this character, introduced in 1894, comes from the Hindi for "bear". (Answer: Baloo)
 - answer processing (e.g. combination or synthesis)

Watson — Hypothesis Generation

[Source: Ferrucci et al., This is Watson, IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 1]

Hypothesis Generation:

Use the results of analysis step to generate candidate answers

Watson — Hypothesis Generation

Hypothesis Generation has two phases

- Primary Search (distinguish from 'Evidence Gathering')
 - goal: find as much as possible answer-bearing content
 - uses multiple text search engines, knowledge base search on triple stores, other techniques
 - ► for 85% of the questions the correct answer is amongst top 250 ranked candidates
- Candidate Answer Generation

Watson — Hypothesis Generation

Hypothesis Generation has two phases

Primary Search (distinguish from 'Evidence Gathering')

- goal: find as much as possible answer-bearing content
- uses multiple text search engines, knowledge base search on triple stores, other techniques
- ► for 85% of the questions the correct answer is amongst top 250 ranked candidates

Candidate Answer Generation

- results from Primary Search are processed to generate candidate answers
- examples: use title of Wikipedia document, apply named entity detection to text passages, simple answer extraction from triple stores
- Watson typically generates several hundred candidate answers
- important: at this stage the correct answer needs to be among the generated candidates (otherwise no success)

[Source: Ferrucci et al., This is Watson, IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 1]

Hypothesis and Evidence Scoring:

Filter candidate answers, evaluate and score the remaining ones

Hypothesis and Evidence Scoring

- Soft Filtering (lightweight)
 - reduces the candidate set to about 100 entries (parameterizable)
 - examples: compute likelihood of a candidate answer to be an instance of the LAT(s)
 - result is a soft filtering score for each candidate answer
 - candidates above a threshold are passed on for further scoring
- Resource Intensive Hypothesis and Evidence Scoring

Hypothesis and Evidence Scoring

- Soft Filtering (lightweight)
- Resource Intensive Hypothesis and Evidence Scoring
 - Evidence Retrieval:
 - search for additional supporting evidence
 - e.g. passage search: candidate answer is added to the primary search query, this retrieves passages that contain the candidate answer used in the context of the original question terms
 - e.g. search in triple stores
 - retrieved supporting evidence is routed to the deep evidence scoring components
 - Scoring

Hypothesis and Evidence Scoring

- Soft Filtering (lightweight)
- ► Resource Intensive Hypothesis and Evidence Scoring
 - Evidence Retrieval:
 - Scoring
 - here the main "deep content analysis" is done: determine degree of certainty that retrieved evidence supports the candidate answers
 - many different, very heterogeneous, components (software agents, exchanging information)
 - many different scoring components (probabilities, counting, etc., in un- & semistructured text, and triple stores)
 - employ spatial and temporal relationships, taxonomic classification, lexical and semantic relations, . . .
 - no dominance!
 - individual scores are combined into an overall evidence profile
 - evidence dimensions include: taxonomic, geospatial (location), temporal, source reliability, gender, name consistency,
 - result: feature vector

Watson — Synthesis

[Source: Ferrucci et al., This is Watson, IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 1]

Synthesis:

- merge different values for one feature
- combine results for decomposed problems

[Source: Ferrucci et al., This is Watson, IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 1]

Final Confidence Merging and Ranking:

- evaluate hundreds of hypotheses (hundreds of thousands scores)
- identify best-supported answer, estimate confidence in correctness

Final Confidence Merging and Ranking

- Answer Merging
 - candidate answers may be equivalent despite different surface forms
 - example: Abraham Lincoln and Honest Abe
 - scores need to be combined
- Ranking and Confidence Estimation

Final Confidence Merging and Ranking

- Answer Merging
- Ranking and Confidence Estimation
 - machine-learning approach (system trained with questions with known answers)
 - different phases, hierarchically structured
 - Watson's meta-learner uses multiple trained models to handle different question classes
 - e.g. certain scores that may be crucial to identifying the correct answer for a factoid question may not be as useful on puzzle questions

Figure 1

First four phases of merging and ranking in DeepQA.

[Source: Ferrucci et al., This is Watson, IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 14]

Watson — Now Watson can bet on its answer!

Figure 1

DeepQA architecture.

[Source: Ferrucci et al., This is Watson, IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 1]

Watson — Betting Strategy

Strategic game play is required

- When to attempt an answer (buzz in)?
- What squares to select?
- Wagering on Daily Doubles
- Wagering in Final Jeopardy

Different techniques:

simulation (millions of simulated matches were played), game playing, Bayesian inference, machine-learning, Monte Carlo methods, . . .

Watson — needs to be very fast!

Figure 2

Major components in the Jeopardy! system.

[Source: Ferrucci et al., This is Watson, IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15]

Watson — Possible Application Directions

Medicine:

assist physicians in diagnosing and treatment of patients

Big Data

- assist CEO's in decision making
- assist in controlling the financial sector
-

What else?

well, just think about Prism and Tempora

Watson — Possible Application Directions

Medicine:

assist physicians in diagnosing and treatment of patients

Big Data:

- assist CEO's in decision making
- assist in controlling the financial sector
- **•** . . .

What else?

well, just think about Prism and Tempora

Watson — Possible Application Directions

Medicine:

assist physicians in diagnosing and treatment of patients

Big Data:

- assist CEO's in decision making
- assist in controlling the financial sector
- **.** . . .

What else?

well, just think about Prism and Tempora

Related Systems

The following systems are related

(their focus is more on structured, formal knowledge sources):

- Wolfram Alpha: http://www.wolframalpha.com
- ► Evi (formerly TrueKnowledge): http://www.evi.com

Related Systems

WatsonWolframAlpha.jpg

Discussion

Is Watson intelligent?