EE324 Control Systems Lab

Problem Sheet 4

Prakhar Diwan, Roll no. 180100083

1. Problem 1

1.1. Part (a)

Figure 1: System A

The three blocks are in series, so simply a product of three transfer functions leads to equivalent transfer function along forward path. Using standard equation for feedback we get the transfer function of the system.

Using Scilab, we obtain:

Figure 2: Input-Output Transfer Function obtained for System A

```
s = poly(0, 's');
S_1 = 1/(s^2);
S_2 = (50*s)/(s^2+s+100);
S_3 = s-2;
G = S_1*S_2*S_3;// combination of 3 blocks
T = G/(1+G); // Upon solving
```

1.2. Part (b)

Figure 3: System B

Upon simplifying the block diagram and writing the equations we get:

$$sC(s) = (R(s) - 2sC(s))(s^2 + 1/s)$$
$$\Longrightarrow C(s)(2s^3 + s + 2) = R(s)(s^2 + 1/s)$$

Using Scilab, we obtain:

Figure 4: Input-Output Transfer Function for Part b

```
s = poly(0, 's');
S_1 = s^2 + (1/s);
S_2 = 2*s^3 + s + 2;
T = S_1/S_2; // Upon solving
```

1.3. Part (c)

Upon simplifying the block diagram and writing the equations we get:

$$2s(R(s) - C(s)) - 5C(s) + (3s^2/(s+1))(R(s) - C(s)) = (s+1)C(s)$$

which finally leads to:

$$\implies C(s)(3s+6+(3s^2/(s+1))) = R(s)((3s^2/(s+1))+2s)$$

Using Scilab, we obtain:

```
s = poly(0, 's');
S_1 = 2*s + ((3*s^2)/(s+1));
S_2 = ((3*s^2)/(s+1)) + 6 + 3*s;
T = S_1/S_2; // Upon solving
```

2. Problem 2

The transfer of the system is given by:

$$H(s,K) = \frac{KG(s)}{1 + KG(s)}$$

where,
$$G(s) = \frac{10}{s(s+2)(s+4)}$$

2.1. Part (a)

For K = 5, we obtain the closed-loop transfer function as: (K value can be changed as required)

```
s = poly(0, 's');
G = 10/(s*(s+2)*(s+4));
K = 5; //Proportionality gain
C_tf = (G*K)/(1+(G*K)); // Closed loop transfer function
C_tf = syslin('c',C_tf);
disp(C_tf);
```

2.2. Part (b)

For plotting the loccii of the closed-loop poles we use evans() function from Scilab, with maximum gain value (K) as 100. The following plot is obtained:

Figure 5: Loci of Closed-loop poles

Scilab Code

```
s = poly(0, 's');
G = 10/(s*(s+2)*(s+4));
G = syslin('c',G);
// evans finds root-locii of 1+K*G(s)
evans(G, 100); // constructing root locus
sgrid('red');
```

2.3. Part (c)

The code from part b was used here as well, so we obtain that the value of K < 4.8 are stable, as all poles in LHP. The plot with the critical point marked is shown below:

Figure 6: Critical points marked

2.4. Part (d)

To confirm our answer, we display the number of sign changes for $K_c - 0.1$, K_c , $K_c + 0.1$. As expected, we see no sign change in $H(s, K_c - 1)$ and a sign change in $H(s, K_c)$ and $H(s, K_c + 0.1)$. The routh tables obtained for each of them are shown below:

```
1. 8.
6. 47.
0.1666667 0.
47. 0.
```

Figure 7: Routh Table for $K_c - 0.1$

```
r =

1. 8.
6. 48.
-8.882D-15 0.
48. 0.
```

Figure 8: Routh Table for K_c

```
r =

1. 8.
6. 49.
-0.1666667 0.
49. 0.
```

Figure 9: Routh Table for $K_c + 0.1$

These confirm the results obtained in Part c.

```
s = poly(0, 's');
G = 10/(s*(s+2)*(s+4));
K = 4.8; // K_c
Tf = (K*G)/(1+K*G);
[r,num] = routh_t(Tf.den); // r is the routh table
disp(num); // num is the number of sign changes
```

3. Problem 3

3.1. Part (a)

$$P(s) = s^5 + 3s^4 + 5s^3 + 4s^2 + s + 3$$

Figure 10: Routh Table

3.2. Part (b)

$$P(s) = s^5 + 6s^2 + 5s^2 + 8s + 20$$

1	6	8
1	1	1
eps	5	20
1	1	1
	_	
-5 + 6eps	-20 + 8eps	0
27.5	ern e	1
eps 2	eps	-
_	20	
-25 + 50eps - 8eps	20	0
-5 + 6eps	1	1
2		
-2.274D-13 - 160eps - 64eps	0	0
2		
-25 + 50eps - 8eps	1	1
20	0	0
1	1	1

Figure 11: Routh Table

3.3. Part (c)

Figure 12: Routh Table

3.4. Part (d)

Figure 13: Routh Table

```
// Part a
s = poly(0, 's');
G = s^5 + 3*s^4 + 5*s^3 + 4*s^2 + s + 3;
[r,num] = routh_t(G); // r is the routh table
disp(r);
                 // num is the number of sign changes
//Part b
clear;
s = poly(0, 's');
G = s^5 + 6*s^3 + 5*s^2 + 8*s + 20;
[r,num] = routh_t(G); // r is the routh table
disp(r);
                 // num is the number of sign changes
//Part c
clear;
s = poly(0, 's');
G = s^5 - 2*s^4 + 3*s^3 - 6*s^2 + 2*s - 4;
[r,num] = routh_t(G); // r is the routh table
                 // num is the number of sign changes
disp(r);
//Part d
clear;
s = poly(0, 's');
G = s^6 + s^5 - 6*s^4 + s^2 + s - 6;
[r,num] = routh_t(G); // r is the routh table
disp(r);
                  // num is the number of sign changes
```

4. Problem 4

4.1. Part (a)

Construct a degree 6 polynomial whose R-H table has its entire row corresponding to s^3 to be zero.

s^6	1	4	7	4
s^5	2	6	8	0
s^4	1	3	4	0
s^3	0	0	0	0

$$P(s) = s^6 + 2s^5 + 4s^4 + 6s^3 + 7s^2 + 8s + 4$$

4.2. Part (b)

Repeat Part (a) with a polynomial of degree 8 and having the entire row corresponding to s^3 to be zero.

s^8	1	7	17	19	4
s ⁷	1	6	13	12	0
s^6	1	4	7	4	0
s^5	2	6	8	0	0
s^4	1	3	4	0	0
s^3	0	0	0	0	0

$$P(s) = s^8 + s^7 + 7s^6 + 6s^5 + 17s^4 + 13s^3 + 19s^2 + 12s + 4$$

4.3. Part (c)

Construct a degree 6 polynomial whose R-H table has the first entry in its row corresponding to s^3 to be zero.

$$P(s) = s^6 + 2s^5 + 4s^4 + 6s^3 + \frac{15}{2}s^2 + 9s + 4$$