I - les conditions pour obtenir des interférences lumineuses

Au point M étudié, soit $s_1(M,t) = a_1(M)\cos(\omega t - \phi_1(M))$, $s_2(M,t) = a_2(M)\cos(\omega t - \phi_2(M))$ les deux signaux. On sait que le terme d'interférences est

$$2\sqrt{\mathcal{E}_1(M)\mathcal{E}_2(M)}(<\cos((\omega_1+\omega_2)t - (\phi_1+\phi_2)) > + <\cos((\omega_1-\omega_2)t - (\phi_1-\phi_2)) >)$$
 (1)

I.A - pulsation temporelle

Il faux que les deux signaux soient de même pulsation : $\overline{\omega_1 = \omega_2}$, sinon, equation(1) vaut 0 : pas de interférences. (car la valeur moyenne d'une équation cosinusoïdal de pulsation non nulle dans une période vaut 0). On le note S. Ainsi, équation(1) devient

$$2\sqrt{\mathcal{E}_1(M)\mathcal{E}_2(M)} < \cos(\Delta\phi_{2/1}(M)) > \tag{2}$$

où $\Delta \phi_{2/1}(M) = \phi_2(M) - \phi_1(M)$, le déphasage entre les deux signaux.

I.B - source

Il faut que les deux signaux issus de même source. Sinon, selon le modèle des trains d'ondes, équation(2) vaut 0 (car $\Delta\phi_{2/1}(M)$ change aléatoirement, sa valeur moyenne vaut 0)

I.C - longueur de cohérence

selon le modèle des trains d'ondes, les deux signaux doit être associés à le même train d'onde. Il faut que $\frac{|(SM)_2 - (SM)_1|}{c} < \tau_c$, avec τ_c le temps de cohérence. On a donc $\overline{|\delta_{2/1}(M)| < l_c}$, avec $l_c = c * \tau_c$ la longueur de cohérence, $\delta_{2/1}(M) = (SM)_2 - (SM)_1$ la différence de marche.

I.D - éclairement comparable

En notant $C=2\frac{\sqrt{r}}{r+1}$, où $r=\frac{\mathcal{E}_1(M)}{\mathcal{E}_2(M)}$, l'éclairement totale

$$\begin{split} \mathcal{E}(M) &= \mathcal{E}_1(M) + \mathcal{E}_2(M) + 2\sqrt{\mathcal{E}_1(M)\mathcal{E}_2(M)} < \cos(\Delta\phi_{2/1}(M)) > \\ &= \mathcal{E}_1(M) + \mathcal{E}_2(M))(1 + C < \cos(\Delta\phi_{2/1}(M)) > \end{split}$$

lorsque $\mathcal{E}_1(M) \gg \mathcal{E}_2(M)$ ou $\mathcal{E}_1(M) \ll \mathcal{E}_2(M)$, $C \to 0$, on a $\mathcal{E}(M) \sim \mathcal{E}_1(M) + \mathcal{E}_2(M)$, les interférences sont invisibles. Donc les éclairements doivent être comparables.