INDUSTRIAL AUTOMATION AT INTEL

Core and Visual Computing Group, Intel®

BENEFITS OF AUTOMATION

- Increased Yields
- Improved Yield Quality
- Reduced Machine Down Time
- Improved Safety
- Increased Operational Flexibility

1980S

- No Robotic Material Transport
- "Run Cards" on wafer boxes
- Basic Equipment Standards
- Basic Equipment Control
- Basic Manufacturing Execution System

19908

- Early Robotic Transport
- Automated Statistical Controls
- Improved Automation Standards
- Improved Equipment Control
- Improved Manufacturing Execution Systems
- Automated Decision Making

TODAY

- Pervasive Robotic Transport
- Advanced Process Controls
- Real-Time Excursion
- Advanced Manufacturing Execution Systems
- Advanced Decision Making
- Predicative Maintenance
- Big Data Repository
- SEMI Standards

STANDARDS

- Standard HMI and Software Interfaces
- Semiconductor Equipment
 Communications Standard / Generic
 Equipment Model (SECS/GEM) protocol
 for all material handling
- Standardized Data Format
- Tool interoperability across vendors

DATA

- Current State: Real-Time Process control, alerts, anomalies
- Historical State: Previous yields, sensor data, errors
- Future State: Predictive maintenance, process optimization, quality improvement

INTEL FACTORY FLOOR

INTEL'S IOT FAB: HIGHLY INSTRUMENTED & HIGHLY CONNECTED

Real-Time Process Control

Responsive factory = higher quality

Optimized Factory Flow

Aligned with supply chain needs

Predictive Maintenance

Optimizing equipment utilization

Pervasive Robotics and Tool Control

Accelerating production speed

INTEL'S FULLY AUTOMATED AND OPTIMIZED FACTORIES ANALYZE OVER 1 PB OF DATA A DAY

Data Collection

Data Aggregation & Actions

Data Scoring, Analytics & Model Updates

Business Intelligence Result Sharing

- 2,000+ thick clients (all Intel® x86 64-bit desktop platforms)
- 1,000-2,000 production semiconductor tools
- 200,000+ feet of Ethernet cable
- 100+ access switches and WAP

- Robotic delivery and storage systems
- 150+ high speed interbay robotic delivery vehicles
- Covers 400k sq ft of cleanroom space
- 5+ miles of vehicle track on the ceiling; 200+ overhead robotic delivery vehicles
- 200+ high-intensity power distribution panels

- 600+ servers (all Intel x86 64-bit)
- 200+ routers, switches, firewalls
- >1PB of centralized storage
- MS Windows* and Linux* OS
- 150,000+ feet of fiber
- 200+ routers, switches, firewalls

Security End to End

*Other names and brands may be claimed as the property of others.

Lessons learned

- Raw IOT data on it own is next to useless ... context creates value.
- Management of data volumes is crucial. Systems are easily overwhelmed by IOT data volumes
- Smart data association improves performance dramatically.
- End to End solutions offer productivity and efficiency benefits that allow engineers to exploit data in ways that are not possible with traditional data warehousing approaches.
- Almost every IOT data source is uniquely structured. Transformation into a standardised form allows handling of the variety of IOT sources available.
- Service Orientated Architecture (SOA) design is well aligned to IOT environments as it is based on the exchange of data structures in a loosely coupled manner.
- Machine learning has achieved accurate predictions using for critical Fab parameters.
- The next challenge: AI technically possible but psychologically difficult as it requires release of control.

Intel Auto Manufacturing

OS/Application Layer

Hypervisor Layer

CPU Layer

Peripheral Layer

Device/IO Layer

