

INTRODUCTION

Problématique: **Air Paradis** souhaite maîtriser sa communication sur Twitter et se prémunir autant que possible de *bad buzzs*.

Solution souhaitée

Il s'agit d'entraîner un modèle prédictif permettant d'évaluer le caractère positif ou négatif d'un tweet qui serait émis par **Air Paradis** sur son compte twitter.

OBJECTIFS DÉTAILLÉS

Entraînement d'un modèle de prédiction :

- modèles simples, avancés, BERT
- dans un environnement MLOps

Développement d'une API de prédiction des tweets:

- conteneurisée (Docker)
- Github CI / CD

Déploiement de l'API

Challenge personnel:
utilisation au maximum d'un
serveur personnel:

- Minimiser la dépendance aux GAFAM.
- Assurer la souveraineté des données.
- Garantir l'indépendance vis-à-vis des infrastructures des grandes entreprises.

SOMMAIRE

- 1.Entraînement de modèles dans un environnement MLOps
 - Méthodologie
 - Travail en environnement MLOps
 - Résultats
- 2. Mise en production d'un modèle sur mesure avancé
 - Développement API

 - Démonstration (prédiction, performances)
- 3. Règles RGPD
- 4. Conclusion et Limites

ENTRAINEMENT DE MODÈLES

JEU DE DONNÉES, KPI, MODÈLES

- BDD: Sentiment140 (1.6M de tweets)
- Entrainement sur Google Collab (GPU), échantillon 100 000-200 000 (downsampling)
- <u>Objectif</u>: Éviter le maximum possible un bad buzz → KPI privilégié : <u>precision</u> : TP/(TP+FP) =/= accuracy : (TP+TN)/total

Approche	Vectorisation / Embedding	Modèle	Forces	Faiblesses
		Naive Bayes	Simple, rapide, interprétable	Ignore le contexte, peu flexible
Classique	BoW ou TF-IDF	SVM	Bon séparateur, robuste	Sensible aux réglages, lent sur petits jeux
Classique		Random Forest	Robuste, peu de surapprentissage	Moins lisible, lourd si gros
		Régression Logistique	Rapide, claire, efficace en linéaire	Limité aux relations simples
Avancée (Deep	Word2Vec ou GloVe (300d)	LSTM	Capte le sens, suit l'ordre des mots	Lent, exigeant, peu interprétable
Learning)				
Contextuelle	DistilBERT embeddings	DistilBERT	Très bon contexte, généralisable	Coûteux, difficile à déployer
(Transformers)	contextuels			

PRÉTRAITEMENT

encodage html

casse

tokens <url>

token <MENTION>

hashtag split

punctuation + special chars

non-printable / control chars

tokenization

lemmatization

stop words (except important)

Just flew w/ @AirParadis 🚀 & I' m in LOVE! Epic service, comfy seats, good prices at https://airparadis.com #bestflight #AirParadis

Just flew w/ @AirParadis 🔗 & I'm in LOVE! Epic service, comfy seats, good prices at https://airparadis.com #bestflight #AirParadis

just flew w/ @airparadis 🔗 & i'm in love! epic service, comfy seats, good prices at https://airparadis.com #bestflight #airparadis

just flew w/ @airparadis 🔗 & i'm in love! epic service, comfy seats, good prices at <URL>. #bestflight #airparadis

just flew w/ <MENTION> 🔗 & i'm in love! epic service, comfy seats, good prices at <URL> #bestflight #airparadis

just flew w/ <MENTION> 🔗 & i'm in love! epic service, comfy seats, good prices at <URL> # bestflight # airparadis

just flew w <MENTION> im in love! epic service comfy seats good prices at <URL> # bestflight # airparadis

just flew w <MENTION> im in love! epic service comfy seats good prices at <URL># bestflight # airparadis

['just', 'flew', 'w', '<', 'MENTION', '>', 'im', 'in', 'love', '!', 'epic', 'service', 'comfy', 'seats', 'good', 'prices', 'at', '<', 'URL', '>', '#', 'bestflight', '#', 'airparadis']

['just', 'flew', 'w', '<', 'MENTION', '>', 'im', 'in', 'love', '!', 'epic', 'service', 'comfy', 'seat', 'good', 'price', 'at', '<', 'URL', '>', '#', 'bestflight', '#', 'airparadis']
['flew', 'w', '<', 'MENTION', '>', 'im', 'love', '!', 'epic', 'service', 'comfy', 'seat', 'good', 'price', '<', 'URL', '>', '#', 'bestflight', '#', 'airparadis']

ENTRAINEMENT : MODÈLES SIMPLES

Pourquoi?

- Établir une baseline
- Modèles à faible coût:
 - o rapides à entrainer
 - o rapides à utiliser
 - o interprétabilité

	1		
Modèle Hyperparamètre		Rôle	
	С	Inverse de la régularisation (\downarrow C = + régularisation)	
Régression Logistique	max_iter	Nb max d'itérations pour convergence	
	solver	Algorithme d'optimisation	
	С	Même rôle que pour la régression logistique	
SVM Linéaire	max_iter	Limite d'itérations	
	dual	formulation duale (utile si n_samples > n_features)	
	n_estimators	Nb d'arbres	
Random Forest	max_depth	Profondeur max des arbres	
	min_samples_split	Min d'échantillons pour un split	
Naive Bayes alpha		Lissage (évite proba nulles)	

Pipeline : Downsampling, prétraitement, split, vectorisation, classification supervisée en cross-validation (refit : precision)

ENTRAINEMENT : MODÈLES SIMPLES

Pourquoi?

- Établir une baseline
- Modèles à faible coût:
 - o rapides à entrainer
 - o rapides à utiliser
 - o interprétabilité

	1		
Modèle Hyperparamètre		Rôle	
	С	Inverse de la régularisation (\downarrow C = + régularisation)	
Régression Logistique	max_iter	Nb max d'itérations pour convergence	
	solver	Algorithme d'optimisation	
	С	Même rôle que pour la régression logistique	
SVM Linéaire	max_iter	Limite d'itérations	
	dual	formulation duale (utile si n_samples > n_features)	
	n_estimators	Nb d'arbres	
Random Forest	max_depth	Profondeur max des arbres	
	min_samples_split	Min d'échantillons pour un split	
Naive Bayes alpha		Lissage (évite proba nulles)	

Pipeline : Downsampling, prétraitement, split, vectorisation, classification supervisée en cross-validation (refit : precision)

ENTRAINEMENT : MODÈLES AVANCÉS

Pourquoi?

- Capture plus fine sémantique
- Meilleure prise en compte du contexte (bidirectionnel local)
- Modèles à coût modéré
- Meilleure précision attendue

Modèle	Composant	Mots-clés / Points clés
Embeddings	Embodding	Word2Vec/GloVe pré-entraînés, non
Embeddings	Embedding	ajustés
	SpatialDropout1D	Régularisation, vecteurs entiers mis à zéro
	LSTM couche 1	Bidirectionnel, contexte local, séquence
	L31W Couche 1	complète
	LSTM couche 2	Bidirectionnel, résumé global, vecteur
	LSTIVI COUCHE 2	unique
LSTM	Dense intermédiaire	Couche dense, extraction, affinage
ESTIVI	Delise intermediane	caractéristiques
	Dropout	Régularisation, évite overfitting
	Dense sortie	Sortie binaire, probabilité sentiment
	Compilation	Loss binaire, optimiseur adaptatif,
	Compilation	métriques métier
	Entraînement & callbacks	Early stopping, ajustement learning rate,
e:	Littlement & Cambacks	sauvegarde meilleur modèle (precision)

Pipeline : downsampling, prétraitement, split (train/val/test), embeddings (Word2Vec/GloVe), classification deep learning (min val_loss, max precision)

ENTRAINEMENT: BERT

Pourquoi?

- Compréhension fine du contexte (bidirectionnel global)
- Exploite l'attention pour capturer nuances et dépendances

Composant	Paramètre / Valeur	Rôle (mots-clés)		
Modèle distilbert-base-uncased		Modèle BERT allégé, pré-entraîné		
Batch	8 (réel), 16 (effectif)	Limite mémoire, accumulation gradients		
Prétraitement max_length = 128		Troncature/padding des tweets		
Optimisation r = 2e-5		Taux d'apprentissage initial		
	ReduceLROnPlateau	Baisse Ir si val_loss stagne		
Scheduler	patience = 2, facteur = 0.2	Fréquence et intensité de la réduction		
	min_lr = 1e-6	Taux plancher		
EarlyStonning	patience = 7	Stoppe si val_loss stagne		
EarlyStopping	restore_best_weights=True	Recharge les meilleurs poids		
Critère final val_precision		Sauvegarde modèle avec meilleure précision		

Meilleure généralisation

Pipeline : downsampling, prétraitement (léger), split (train, val, test), classification deep learning (DistilBERT), min val_loss / max precision

TRAVAIL EN ENVIRONNEMENT MLOPS

PRINCIPES

Aspect	Machine Learning	Data Engineering	DevOps	MLOps
But principal	Construire et	Préparer et	Automatiser et	Automatiser tout le
	entraîner un modèle	transformer les	fiabiliser les	cycle ML (de la donnée
8		données	déploiements	à la production)
Activités clés	Modélisation,	Collecte, nettoyage,	Gestion du	CI/CD ML, gestion des
	entraînement,	feature engineering,	code, CI/CD,	modèles, surveillance,
	évaluation	pipelines	monitoring,	reproductibilité
W.			infrastructure	
Outils courants	TensorFlow, PyTorch,	DVC, Apache Airflow,	Docker,	MLFlow, Kubeflow,
	scikit-learn, MLFlow	Kafka, Spark, MinIO	Kubernetes,	Seldon Core, Airflow,
			Jenkins, Git,	Prometheus
			Prometheus	
Livrables	Modèle entraîné,	Données prêtes à	Code source,	Modèles déployés,
	métriques de	l'emploi, pipelines	containers,	pipelines
	performance	automatisés	scripts de	d'automatisation,
2			déploiement	monitoring et alertes
Compétences requises	Mathématiques,	Python/SQL, ingénierie	DevOps,	Connaissances en ML,
	statistiques,	des données,	scripting,	DevOps et data
	programmation	architecture cloud	cloud, sécurité	engineering
Cycle de vie	Expérimentation et	Automatisation des	Déploiement	Orchestration
	optimisation	flux de données	et	complète du pipeline
es .			maintenance	ML

TRAVAIL EN ENVIRONNEMENT MLOPS

UTILISATION DE MLFLOW

Grands principes:

- Suivi des expériences (params, métriques, artefacts)
- Comparaison & reproductibilité des runs
- Stockage artefacts via buckets S3
- Packaging & déploiement modèles
- Interface web simple & efficace

Déploiement:

- Docker sur NAS (OpenMediaVault)
- Backend artefacts: MinIO local (S3-like)
- Reverse proxy via SWAG (Nginx + SSL Let's Encrypt)
- Accès réseau local + public sécurisé
- Suivi & gestion centralisée des modèles

RÉSULTATS

UTILISATION DE MLFLOW

RÉSULTATS

UTILISATION DE MLFLOW : MEILLEUR MODÈLE AVANCÉ

RÉSULTATS

UTILISATION DE MLFLOW : MEILLEUR MODÈLE AVANCÉ

MISE EN PRODUCTION

DÉVELOPPEMENT API

MLFLOW: MEILLEUR MODÈLE AVANCÉ

mlf/ow 3.0.0 Experiments Models P	Prompts				■ C GitHub Docs
Registered Models Share and manage machine learning models. Learn more					Create Model
Filter registered models by name or tags	Q				
Name ≘ [†]	Latest version	Staging Production	Created by	Last modified	Tags
SentimentAnalysisLSTM	Version 12	Version 10 Version 12		07/06/2025, 09:38:2	. –
mlf/ow 3.0.0 Experiments Models P	Prompts				■ C GitHub Docs
Registered Models > SentimentAnalysisLSTM					:
Created Time: 07/03/2025, 03:22:52 PM		Last Modified: 07/06/2025, 09	:38:26 PM		
> Description Edit					
> Tags					
∨ Versions					
					New model registry UI
Version	Registered at =	Created by	Stage	Description	
O Version 12	07/06/2025, 09:38:25 PM		Production		
	07/04/2025, 11:36:06 PM		Archived		ı
	07/04/2025, 11:12:06 PM		Staging		
O Version 9	07/04/2025, 10:59:08 PM		Staging		
✓ Version 8	07/04/2025, 10:32:53 PM		Archived		
	07/04/2025, 10:17:48 PM		Archived		
	07/04/2025, 11:40:13 AM		Archived		
✓ Version 5	07/04/2025, 11:02:56 AM		Archived		
✓ Version 4	07/03/2025, 06:59:52 PM		Archived		
					1

DÉVELOPPEMENT API

CONSTRUCTION DE SENTIMENT API

- FastAPI:
 - o requête du modèle le plus récent (MLFlow) + téléchargement
 - o gestion de plusieurs requêtes (prédiction)
 - o journalisation des erreurs
 - o envoi de rapports d'erreur (mail, 3 erreurs en moins de 5 minutes)
- Streamlit:
 - o interface graphique
 - échange de requêtes vers FastAPI
- NGinx reverse proxy: gestion des 2 services sur un seul port

CI/CD

DESCRIPTION DE LA PIPELINE

- Dockerisation de l'application
- Github workflow CI/CD:
 - Validation de tests unitaires
 - Conteneurisationautomatique etpush vers dockerhub

CI/CD

DESCRIPTION DE LA PIPELINE

- Déploiement sur NAS:
 - Installation via Docker-Compose (configuration yaml)
 - Surveillance et mise à jour via Watchtower

RÉCAPITULATIF

CI/CD

ARRIVÉE SUR LE SITE

PRÉDICTION:

Sentiment Analysis - Air Paradis

Prompt your tweet here:

We've changed... our loyalty program! Now you can enjoy a third flight at 50% off after your second booking! The perfect opportunity to treat yourself and enjoy a new trip for new adventures!

Analyze the sentiment

Sentiment: Positive

Positive tweet probability: 0.64

Report a wrong prediction

ERREUR 1:

Sentiment Analysis - Air Paradis Prompt your tweet here: Don't forget to subscribe to the "enhanced life jacket" to ensure your safety! There's a 50% discount for the next two days! Happy Flight! 🦺 🛟 📈 Analyze the sentiment Sentiment: Positive Positive tweet probability: 0.68 Thanks for your report.

ERREUR 2:

Sentiment Analysis - Air Paradis Prompt your tweet here: We are very proud to announce that our flight and pricing policy has changed: from now on, you can subscribe to a "skip-the-line" toilets option! 🤩 Analyze the sentiment Sentiment: Positive Positive tweet probability: 0.67 Thanks for your report.

ERREUR 3 + RAPPORT D'ERREUR:

Sentiment Analysis - Air Paradis

Prompt your tweet here:

I just learned that my important flight today was cancelled, but @Air Paradis gave me \$10 compensation so I could buy a Twix and go to the swimming pool: THANK YOU SO MUCH!!!!

Analyze the sentiment

Sentiment : Positive

Positive tweet probability: 0.53

Thanks for your report.

A complete report has been sent to the website administrator.

RÉCEPTION DE RAPPORT D'ERREUR

ණ Répondre ණ Répondre à tous 🗸 🕫 Transférer 😭 Archiver 🖒 Indésirable 🛅 Supprimer Autres 🗸 🈭
Air Paradis Monitor @etik.com
Pour@etik.com @ 15:28
Rapport d'erreurs - Prédictions sentiments (11/07/2025 13:28)
Hello.
A new error report has been generated for the Air Paradis sentiment prediction API.
W Report date : 11/07/2025 à 13:28
<pre>Report summary :</pre>
 Tweet: "Don't forget to subscribe to the "enhanced life jacket" to ensure your safety! There's a 50% discoun" Prediction reported as incorrect: POSITIVE (P = 0.68)
 Tweet: 'We are very proud to announce that our flight and pricing policy has changed: from now on, you can s" Prediction reported as incorrect: POSITIVE (P = 0.67)
 Tweet: "I just learned that my important flight today was cancelled, but @Air Paradis gave me \$10 compensati" Prediction reported as incorrect: POSITIVE (P = 0.53)
M COMPLETE DATA (JSON) :
<pre>"json { "report_generated_on": "2025-07-11T13:28:21.752693". "reports_amount": 3, "reports': {</pre>
"tweet": "Don't forget to subscribe to the "enhanced life jacket" to ensure your safety! There's a 50% discount for the next two days! Happy Flight! #0%". "incorrect_prediction": "positive (p = 0.68) ". "tweet_length": 143 }.
"id": 2, "tweet": "We are very proud to announce that our flight and pricing policy has changed: from now on, you can subscribe to a "skip-the-line" toilets option ! ** "incorrect_prediction": "positive (p = 0.67) ", "tweet_length": 148
}. { "id": 3,
"tweet": "I just learned that my important flight today was cancelled, but @Air Paradis gave me \$10 compensation so I could buy a Twix and go to the swimming pool: THANK YOU SO MUCH!!!!", "incorrect_prediction": "positive (p = 0.53) ", "tweet_length": 175
}], "metadata": { "model": "SentimentAnalysisLSTM", "api_version": "1.0", "reporting_threshold": 3 }
}

RESPECT RGPD

RESPECT RGPD

Contexte : déploiement sur NAS (serveur personnel / petit serveur d'entreprise)

Principe RGPD	Mesures mises en place		
Licéité, loyauté, transparence	API publique, pas d'info perso collectée, usage clair		
Limitation des finalités	Prédiction sentiment, rapport erreurs anonyme		
Minimisation des données	Logs erreurs (anonymes), pas d'info utilisateur stockée		
Exactitude des données	Traitement temps réel, retours utilisateurs en cas d'erreur		
Sécurité et confidentialité	SSL (Let's Encrypt), NAS sécurisé, accès privé modèles		

Reported wrong predictions help improve the model. Please avoid including personal information.

CONCLUSION ET PERSPECTIVES

CONCLUSION

- Entrainement de **modèles prédictifs** dans un environnement MLFlow assurant le suivi des performances et le déploiement des meilleurs modèles.
- Déploiement d'une <u>API publique</u> de prédiction de sentiments basée sur le meilleur modèle "Avancé" (Word2Vec + LSTM, sample_size = 200 000, precision ≃ 80%) avec suivi des performances
- Intégration et déploiement continus : commit + push → tests unitaires + construction docker → dockerhub → NAS (updates: watchtower)
- Travail général dans un environnement MLOps
- (Utilisation maximale de solutions souveraines, respect RGPD)

PERSPECTIVES

- Prétraitement perfectible :
 - Correction orthographique
 - Casse (perte d'infos émotionnelles)
 - Emojis (emoji.demojize())
 - features numériques (longueur, ponctuation, emojis, liens, hashtags)
- Modèles explorés :
 - GRU et TextCNN non testés
 - Entraînement précision pure
 - DistilBERT (88% précision) non déployé

• Divers:

- Détection du sarcasme/ironie : limite intrinsèque, nécessite finetuning spécifique ou approches avancées
- Suivi et monitoring : journalisation basique (emails erreurs), absence de base de logs et dashboard (SQL, Grafana)
- Étude réponses à nos tweets
- Dérive du modèle ?

