Evaluation Methodology

J. Savoy Université de Neuchâtel

Ian H. Witten, Eibe Frank, M. A: Hall: Data Mining.
Practical Machine Learning Tools and Techniques. Morgan Kaufmann.

Overview

- Issues: training, testing, tuning
- Predicting performance: confidence limits
- Holdout, cross-validation, bootstrap
- Comparing schemes: the *t*-test
- Predicting probabilities: loss functions
- Cost-sensitive measures
- Evaluating numeric prediction
- The Minimum Description Length (MDL) principle

- How predictive is the model we learned?
- Error on the training data is not a very good indicator of performance on future data
 - Otherwise 1-NN (or table look-up) would be the optimum classifier!
- Simple evaluation approaches that can be used if a lot of (labeled) data is available (e.g., simulation)
 - Usually split data into training and test sets
- However: (labeled) data is usually limited
 - More sophisticated techniques need to be used
 - What is the cost to obtain more labeled data?

- Statistical reliability of estimated differences in performance (→ significance tests)
 Is a performance difference between 45.8 vs. 45.6 really significant (or due to random factors)?
- Choice of performance measure:
 - Number of correct classifications
 - Accuracy of probability estimates (e.g., naïve Bayes)
 - Error in numeric predictions (e.g., regression)
- Costs assigned to different types of errors
 - Many practical applications involve costs
- The Italian seismologists in 2012 (6 years in jail!)

- Natural performance measure for classification problems: error rate
 - Success: instance's class is predicted correctly
 - Error: instance's class is predicted incorrectly
 - Error rate: proportion of errors made over the whole set of instances
- Resubstitution error (apparent error): error rate obtained from training data
- Resubstitution error is (hopelessly) optimistic!

- Test set: independent instances that have played no part in formation of classifier
 - Assumption: both training data and test data are representative samples of the underlying problem
- Test and training data may differ in nature
 - Example: classifiers built using customer data from two different towns A and B

To estimate performance of classifier from town *A* in completely new town *B*

Thus both samples must *representative*But the evolution may change this factor!

Hand, D.J.. (2006). Classifier Technology and the Illusion of Progress. *Statistical Science*, 21(1), 1-14.

- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
 - Stage 1: build the basic structure (training set)
 - Stage 2: optimize parameter settings / do some selections (validation set)
- The test data can't be used for parameter tuning!
 Trump's philosophy: build walls
- In this case, proper procedure uses *three* sets: *training data*, *validation data*, and *test data*
- How much in each case?

- Once evaluation is complete, all the data can be used to build the final classifier
- Generally, the larger the training data the better the classifier (but returns diminish, at some point the gain is minimal)
- The larger the test data the more accurate the error estimate
- Holdout procedure: method of splitting original data into training and test set
 - Dilemma: ideally both training set and test set should be large!

- Assume the estimated error rate is 25%.
 How close is this to the true error rate?
 - Depends on the amount of test data
- Prediction is just like tossing a (biased!) coin
 - head is a success, tail is an error
- In statistics, a succession of independent events like this is called a *Bernoulli process*
 - Statistical theory provides us with confidence intervals for the true underlying proportion

- We can say: p (true proportion) lies within a certain specified interval with a certain specified confidence
- Example: S = 750 successes in N = 1,000 trials
 - Estimated success rate: 75%
 - How close is this to true success rate p?
 - Answer: with 80% confidence p in [73.2, 76.7]
- Another example: S = 75 and N = 100
 - Estimated success rate: 75%
 - With 80% confidence p in [69.1, 80.1]
- Increasing N reduces the uncertainty

- Mean and variance for a Bernoulli trial: p and p(1-p)
- Expected success rate (estimation) f = S/N
- Mean and variance for f: p and p(1-p)/N
- For large enough N, f follows a Normal distribution
- c% confidence interval $[-z \le X \le z]$ for a normal random variable is given by:

$$Prob[-z \le X \le z] = c$$

• With a symmetric distribution:

$$Prob[-z \le X \le z] = 1 - 2 \cdot Prob[X \ge z]$$

Confidence Limits

• Confidence limits for the normal distribution $N(\mu = 0, \sigma = 1)$

Prob [X ≥ z]	0.1%	0.5%	1%	2.5%	5%	10%
Z	3.09	2.58	2.33	1.96	1.65	1.28

- Thus: $Prob[-1.96 \le X \le +1.96] = 95\%$ (or 0.95) $Prob[-2.58 \le X \le +2.58] = 99\%$ (or 0.99)
- To use this we have to reduce our random variable f to have 0 mean and unit variance

Transformed value for f:

 (i.e. subtract the mean and divide by its standard deviation)

$$\frac{f-p}{\sqrt{\frac{p\cdot(1-p)}{N}}}$$

Resulting equation:

$$Prob[-z \le \left(\frac{f-p}{\sqrt{\frac{p \cdot (1-p)}{N}}}\right) \le +z] = c$$

Solving for p:

$$p = \frac{\left(f + \frac{z^2}{2 \cdot N} \pm z \cdot \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4 \cdot N^2}}\right)}{1 + \frac{z^2}{N}}$$

you have two values for p because you have a \pm sign

- f = 75%, N = 1,000, c = 80% (so that z = 1.28): $p \in [0.732, 0.767]$
- f = 75%, N = 100, c = 80% (so that z = 1.28): $p \in [0.691, 0.801]$
- Note that Normal distribution assumption is only valid for large N (i.e. N > 100)
- f = 75%, N = 10, c = 80% (so that z = 1.28): $p \in [0.560, 0.870]$ (should be taken with a grain of salt)

Expected success rate (estimation) f' = (S+2) / (N+4)
 for c = 95%
 Otherwise:

Fig. 1. Standard interval; oscillation phenomenon for fixed p = 0.2 and variable n = 25 to 100. Brown, L.D., Cai, T.T, DasGupta, A. (2001). Interval estimation for a binomial proportion p_6 Statistical Science, 16(2), 101-133

Holdout Estimation

- What to do if the amount of data is limited?
- The holdout method reserves a certain amount for testing and uses the remainder for training
 - Usually: one third for testing, the rest for training
- Problem: the samples might not be representative
 - Example: class might be missing in the test data
- Advanced version uses stratification (e.g. vote prediction)
 - Ensures that each class is represented with approximately equal proportions in both subsets
- Better solution?

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
 - The error rates on the different iterations (err_i) are averaged to yield an overall error rate

$$e\hat{r}r = \frac{1}{k} \cdot \sum_{i=1}^{k} err_i$$

- This is called the repeated holdout method (or random subsampling)
- Still not optimum: the different test sets overlap
 - Can we prevent overlapping?

Comparison of the holdout and repeated holdout method

	Holdout	Random subsampling
Training instances	j	j
Testing instances	n-j	n-j
Iterations	1	k << n

- Cross-validation avoids overlapping test sets
 - First step: split data into k subsets of (roughly) equal size
 - Second step: use each subset in turn for testing, the remainder for training
- Called k-fold cross-validation

Example: 5-fold CV

4 parts for the training, one for the test

iterate five times

1	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4
5	5	5	5	5

err₁ err₂ err₃ err₄ err₅

- Cross-validation avoids overlapping test sets
- Called k-fold cross-validation
- Often the subsets are stratified before the crossvalidation is performed
- The error estimates are averaged to yield an overall error estimate

$$e\hat{r}r = \frac{1}{k} \cdot \sum_{i=1}^{k} err_i$$

- Standard method for evaluation: stratified ten-fold cross-validation
- Why ten?
 - Extensive experiments have shown that this is the best choice to get an accurate estimate
 - There is also some theoretical evidence for this
- Stratification reduces the estimate's variance
- Even better: repeated stratified cross-validation
 - E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

- Leaving-One-Out: a particular form of cross-validation:
 - Set number of folds to number of training instances
 - i.e., for n training instances, build classifier n times train on n-1 instances, evaluate on the nth
- Makes best use of the data
- Involves no random subsampling
- Very computationally expensive
 - (exception: NN)

Leaving-One-Out & CV

Comparison of the leaving-one-out and 10-fold CV

	Leave- one-out	10-fold CV
Training instances	n-1	90%
Testing instances	1	10%
Iterations	n	10

- Disadvantage of Leave-One-Out: stratification is not possible
 - It guarantees a nonstratified sample because there is only one instance in the test set!
- Time needed to compute / learn
- Extreme example: random dataset split equally into two classes
 - Best inducer predicts majority class
 - 50% accuracy on fresh data
 - Leave-One-Out-CV estimate is 100% error!
 (because if we have 50% in one case, and 50% in the other, the majority in the training set will always be in the wrong class)

- CV uses sampling without replacement
 - The same instance, once selected, cannot be select again for a particular training/test set
- The general idea behind the bootstrap can be used to estimate the standard error of various statistics (e.g., median, correlation coef.)
- If we have a sample $X = \{x_1, x_2, ..., x_i, ..., x_n\}$, we can use it to generate with replacement other sample (with the same size n) and putting the probability 1/n on each observed value x_i (non-parametric bootstrap).

$$\widehat{F} \to \mathbf{x}^* = (x_1^*, x_2^*, \cdots, x_n^*)$$

Procedure

1. Select B independent bootstrap samples $\mathbf{x}^{*1}, \mathbf{x}^{*2}, \dots, \mathbf{x}^{*B}$ each consisting of n data values drawn with replacement from \mathbf{X} (B is in the range 25 - 2,000)

$$\hat{F} \to \mathbf{x}^{*i} = (x_1^*, x_2^*, \cdots, x_n^*)$$

 Evaluate the bootstrap replication corresponding to each bootstrap sample

$$\widehat{\theta}^*(b) = s(\mathbf{x}^{*b})$$
 with $b = 1, 2, \dots, B$

where θ is the statistics of interest computed using the appropriate function s() (e.g., the median)

Procedure

3. Estimate the standard error $se_F(\widehat{\theta})$ by the sample standard deviation of the B replications

$$\hat{se}_B = \sqrt{\sum_{b=1}^{B} \left[\hat{\theta}^*(b) - \hat{\theta}^*(.)\right]^2 / (B-1)}$$

with
$$\hat{\theta}^*(.) = 1/B \cdot \sum_{b=1}^B \hat{\theta}^*(b)$$

and knowing that
$$\lim_{B\to \inf} \widehat{se}_B = se_{\widehat{F}} = se_{\widehat{F}}(\widehat{\theta}^*)$$

Example

$$\widehat{se}_B = \sqrt{\sum_{b=1}^B \left[\widehat{\theta}^*(b) - \widehat{\theta}^*(.)\right]^2 / (B - 1)}$$

with
$$\hat{\theta}^*(.) = 1/B \cdot \sum_{b=1}^B \hat{\theta}^*(b)$$

- In our context, the bootstrap uses sampling with replacement to form the training set
 - Sample a dataset of n instances n times with replacement to form a new dataset of n instances
 - Use this data as the training set
 - Use the instances from the original dataset that don't occur in the new training set for testing

- Also called the 0.632 bootstrap
- A particular instance has a probability 1/n of being picked
- Thus an instance has a probability of 1–(1/n) of not being picked
- Thus its probability of ending up in the test data is:

$$\left[1 - \frac{1}{n}\right]^n \approx e^{-1} \approx 0.368$$

 This means that the training data will contain approximately 63.2% of the instances

- The error estimate on the test data will be very pessimistic
 - Trained on just ~63% of the instances
- Therefore, combine it with the resubstitution error:

$$err = 0.632 \cdot e_{test\ instances} + 0.368 \cdot e_{training\ instances}$$

- The resubstitution error gets less weight than the error on the test data
- Repeat process several times with different replacement samples; average the results

Bootstrap estimators

	Bootstrap
Training instances	n (with j unique)
Testing instances	n-j
Iterations	200

Efron b., & Tibshirani R.J.: An Introduction to the Bootstrap, Chapman & Hall, New York, 1993

- Frequent question: which of two learning schemes performs better?
- Note: this is domain dependent!
- Obvious way: compare 10-fold CV estimates
- Generally sufficient in applications
- However, what about machine learning research?
 - Need to show convincingly that a particular method works better

- Want to show that scheme A is better than scheme B in a particular domain
 - For a given amount of training data
 - On average, across all possible training sets
- Let's assume we have an infinite amount of data from the domain:
 - Sample infinitely many dataset of specified size
 - Obtain cross-validation estimate on each dataset for each scheme
 - Check if mean accuracy for scheme A is better than mean accuracy for scheme B

Which one is the best?
Why?

n = 10

By intuition?

(toy-sided
for demo only!)

obs.	Xi	Yi
1	0.84	0.88
2	0.78	0.97
3	0.67	0.74
4	0.87	0.80
5	0.80	0.87
6	0.78	0.90
7	0.78	0.90
8	0.79	0.86
9	0.82	0.84
10	0.81	0.78
sum	7.94	8.54

A scientific methodology

Paired t-Test

- In practice we have limited data and a limited number of estimates for computing the mean
- Student's t-test tells whether the means of two samples are significantly different
- In our case the samples are cross-validation estimates for different datasets from the domain
- Use a paired t-test because the individual samples are paired
- The same splitting for the two CV

William Gosset (1876 - 1937) (working for Guiness)

- If we have $x_1, x_2, ... x_k$ and $y_1, y_2, ... y_k$ are the 2k samples for the k-different datasets
- ullet and the means $ar x_x$ and $ar x_y$
- With enough samples, the mean of a set of independent samples is normally distributed
- Estimated variances of the means are σ_x^2/k and σ_y^2/k
- If μ_x and μ_y are the true means then

$$\frac{\bar{x}_x - \mu_x}{\sigma_x / \sqrt{k}} \quad and \quad \frac{\bar{x}_y - \mu_y}{\sigma_y / \sqrt{k}} \quad \text{with} \qquad \hat{\sigma}_x^2 = \frac{\sum_{i=1}^k (x_i - \bar{x}_x)^2}{k - 1}$$

are approximately normally distributed with mean 0, standard deviation 1

- With small samples (*k* < 100) the mean follows Student's distribution with *k*–1 degrees of freedom
- Confidence limits:

Prob [X ≥ lim]	t (9 dof)	t (10 dof)	t (20 dof)	Normal
0.05%	4.781	4.587	3.850	3.29
0.5%	3.250	3.169	2.845	2.58
1%	2.821	2.764	2.528	2.33
2.5%	2.262	2.228	2.086	1.96
5%	1.833	1.812	1.725	1.65
10%	1.383	1.3372	1.325	1.28

- Let $\bar{x}_d = \bar{x}_x \bar{x}_y$ with $d_i = x_i y_i$
- The difference of the means (\bar{x}_d) also has a Student's distribution with k–1 degrees of freedom
- Let σ_d^2 be the variance of the difference
- The standardized version of \bar{x}_d is called the *t*-statistic:

$$t_{obs} = \frac{\bar{x}_d}{\hat{\sigma_d}/\sqrt{k}} \quad \text{with} \quad \hat{\sigma}_d = \sqrt{\frac{\sum_{i=1}^k d_i^2 - \frac{\left(\sum_{i=1}^k d_i\right)^2}{k}}{k-1}}$$

• We use t_{obs} to perform the t-test (k-1 dof)

- Fix a significance level
 - If a difference is significant at the α % level, there is a $(100-\alpha)$ % chance that the true means differ
- Divide the significance level by two because the test is two-tailed
 - i.e. the true difference can be +v or –v
- Look up the value for z that corresponds to $\alpha/2$
- If $t_{obs} \le -z$ or $t_{obs} \ge z$ then the difference is significant
 - i.e. the null hypothesis (that the difference is zero) can be rejected

Student's Distribution

The Student distribution is symmetric.

Example with $\alpha = 5\%$

1) Prob[
$$-t_{lim} < T_{df=1} < t_{lim}$$
] = 0.05

2) Prob[
$$-t_{lim} < T_{df=7} < t_{lim}$$
] = 0.05

3) Prob[
$$-t_{lim} < T_{df=50} < t_{lim}$$
] = 0.05

$$\rightarrow$$
 t_{lim df=1} = 12.71

$$\rightarrow t_{\text{lim df}=7} = 2.365$$

$$\rightarrow t_{\text{lim df}=50} = 2.009$$

$$n = 10$$
 (or k = 10)

obs.	Xi	Yi	X _i -Y _i	$(X_i-Y_i)^2$
1	0.84	0.88	-0.04	0.0016
2	0.78	0.97	-0.19	0.0361
3	0.67	0.74	-0.07	0.0049
4	0.87	0.80	0.07	0.0049
5	0.80	0.87	-0.07	0.0049
6	0.78	0.90	-0.12	0.0144
7	0.78	0.90	-0.12	0.0144
8	0.79	0.86	-0.07	0.0049
9	0.82	0.84	-0.02	0.0004
10	0.81	0.78	0.03	0.0009
sum	7.94	8.54	-0.60	0.0874

When need to compute the value t_{obs} according to your data $t_{obs} = \frac{\bar{x}_d}{\sigma_d/\sqrt{k}}$

And then the estimated standard deviation

$$\widehat{\sigma}_d = \sqrt{\frac{\sum_{i=1}^k d_i^2 - \frac{\left(\sum_{i=1}^k d_i\right)^2}{k}}{k-1}}$$

$$k = 10$$

$$\widehat{\sigma}_d = \sqrt{\frac{\sum_{i=1}^k d_i^2 - \frac{\left(\sum_{i=1}^k d_i\right)^2}{k}}{k-1}} = 0.07557$$

$$t_{obs} = \frac{\bar{x}_d}{\sigma_d/\sqrt{k}} = -0.06 / (0.07557/\sqrt{10}) = -2.51$$

Theoretical limit Student 9 dof, α = 5% t_{lim} = 2.262

Decision: Reject H₀

Another test: (unpaired) t-test $t_{obs} = -2.231$

Another View: Excel

A	В	С
1	X	Y
2	0.84	0.88
3	0.78	0.97
4	0.67	0.74
5	0.87	8.0
6	8.0	0.87
7	0.78	0.9
8	0.78	0.9
9	0.79	0.86
10	0.82	0.84
11	0.81	0.78

Α	D	E
1		
2	paired	3.33%
3	normal	~ 3.86%
4		

Return the p-value, probability of having the corresponding tobs value or larger

- Performance measure so far: success rate
- Also called 0-1 loss function:

$$\sigma_i = \begin{cases} 0 & \text{if prediction is correct} \\ 1 & \text{if prediction is incorrect} \end{cases}$$

- Most classifiers produces class probabilities
- Depending on the application, we might want to check the accuracy of the probability estimates
- 0-1 loss is not the right thing to use in those cases

- p₁, p₂, ..., p_k are probability estimates for an instance (e.g., naïve Bayes)
- c is the index of the instance's actual class
- The actual class a_i $a_1, ..., a_k = 0$, except for a_c which is 1
- Quadratic loss is:

$$\sum_{j=1}^{k} (p_j - a_j)^2 = \sum_{j \neq c} p_j^2 + (a - p_c)^2$$

We want to minimize

$$E\left[\sum_{j=1}^{k} (p_j - a_j)^2\right]$$

• Can show that this is minimized when $p_j = p^*_{j}$, the true probabilities

Informational Loss Function

- The informational loss function is
 - $-\log_2(p_c)$ where *c* is the index of the instance's actual class
- Number of bits required to communicate the actual class
- Let $p_1^*, p_2^*, \dots, p_k^*$ be the true class probabilities
- Then the expected value for the loss function is:

$$-p_1^* \cdot \log_2(p_1^*) - p_2^* \cdot \log_2(p_2^*) \dots - p_k^* \cdot \log_2(p_k^*)$$

- Justification: minimized when $p_j = p_j^*$
- Difficulty: zero-frequency problem

- Which loss function to choose?
 - Both encourage honesty
 - Quadratic loss function takes into account all class probability estimates for an instance
 - Informational loss focuses only on the probability estimate for the actual class
 - Quadratic loss is bounded: $1 + \sum_{j=1}^{k} p_j$ it can never exceed 2
 - Informational loss can be infinite
- Informational loss is related to MDL principle

- In practice, different types of classification errors often incur different costs
- Examples:
 - Terrorist profiling
 "Not a terrorist" correct 99.99% of the time
 - Loan decisions
 - Oil-slick detection
 - Fault diagnosis
 - Promotional mailing

• The confusion matrix

		Predicted	class
		Yes (R+)	No (R-)
True state of nature	Yes (C+)	True Positive (TP)	False Negative (FN)
	No (C-)	False Positive (FP)	True Negative (TN)

The lie detector (US)"Do you tell the true?"

		Person	
		Truth (R+)	Lier (R-)
State of nature	True (C+)	True Positive (TP)	False Negative (FN)
	Lie (C-)	False Positive (FP)	True Negative (TN)

- Different measures can be used
- Accuracy = (TP+TN) / ((C+) + (C-))
- Sensitivity = TP / C+
 (the ability to correctly classify patients that actually have the disease, e.g. AIDS)
- Specificity = TN / C-(the ability to correctly classify patients that actually do not have the disease)
- Predictive value (+) = TP / R+
- Predictive value (-) = TN / R-
- There are many other types of cost!
 - e.g.: cost of collecting training data

- Percentage of detected examples as positive that are really positive: Precision = TP / (TP+FP)
- Percentage of positive examples that are detected as positive: Recall = TP / (TP+FN)
- Precision/recall curves have hyperbolic shape (If one increases, the other decreases)
- Trivial acceptor (always "yes") (FN = TN = 0)
 Recall = TP / (TP + 0) = 100%
- Need both high recall and high precision!

- Percentage of detected examples as positive that are really positive: Precision = TP / (TP+FP)
- Percentage of positive examples that are detected as positive: Recall = TP / (TP+FN)
- Mix the two measures as:
- Measure the performance using one single value, the F-measure
- F-measure =
 F₁ = (2 × recall × precision) / (recall + precision)

- Example: The lie detector (polygraph) can detect lies by considering biological measurements (blood pressure, respiration rhythm, heart frequency, ...)
- Hypothesis: stress indicates a lie
- Performance: 83% to 89% lies are detected!
- But: 53% to 75% innocents correctly detected??
- Error: 12% to 47% (Vrij, 2008)
- Are you convince by the lie detector?

Example

• The lie detector (US) "Do you tell the true?"

	Person		
		Truth (R+)	Lier (R-)
State of nature	True (C+)	53% 75%	17% 11%
	Lie (C-)	47% 25%	83% 89%

When with have more than two classes

		Predicted	class
	Class k	Yes	No
True state of nature	Yes	True Positive (TP_k)	False Negative (FN _k)
	No	False Positive (FP _k)	True Negative (TN _k)

- Precision, Recall and F₁ measures must be given for each of the m classes
- For a single overall performance measure?
- Macro-averaging: one category = one vote

$$Prec = \sum_{k=1}^{m} \frac{Prec_k}{m}$$

$$Recall = \sum_{k=1}^{m} \frac{Recall_k}{m}$$
 • Micro-averaging:

one decision = one vote

Prote
$$Prec = \frac{TP}{TP + FP} = \frac{\sum_{k=1}^{m} TP_k}{\sum_{k=1}^{m} (TP_k + FP_k)}$$
 $Prec = \frac{TP}{TP + FN} = \frac{\sum_{k=1}^{m} TP_k}{\sum_{k=1}^{m} (TP_k + FN_k^{62})}$

Example

Evaluation of a given learning scheme with four different datasets (macro-averaging)

Dataset	Precision	Recall	F ₁
Iris	0.7	0.5	0.6
cars	0.5	0.6	0.55
TC 1	0.9	0.3	0.6
TC 2	0.7	0.5	0.6

Two cost matrices:

	Predicted class		class			Pre	dicted c	lass
		yes	no			а	b	c
Actual	yes	0	1		а	0	1	1
class	no	1	0	Actu class	ıl b	1	0	1
					c	1	1	0

- Success rate is replaced by average cost per prediction
 - Cost is given by appropriate entry in the cost matrix

- Can take costs into account when making predictions
 - Basic idea: only predict high-cost class when very confident about prediction
- Given: predicted class probabilities
 - Normally we just predict the most likely class
 - Here, we should make the prediction that minimizes the expected cost
 - Expected cost: dot product of vector of class probabilities and appropriate column in cost matrix
 - Choose column (class) that minimizes expected cost

- So far we haven't taken costs into account at training time
- Most learning schemes do not perform cost-sensitive learning
 - They generate the same classifier no matter what costs are assigned to the different classes
 - Example: standard decision tree learner
- Simple methods for cost-sensitive learning:
 - Resampling of instances according to costs
 - Weighting of instances according to costs
- Some schemes can take costs into account by varying a parameter, e.g. naïve Bayes

- Same strategies: independent test set, cross-validation, significance tests, etc.
- Difference: error measures
- Actual target values: a₁, a₂, ..., a_n
- Predicted target values: $p_1, p_2, ..., p_n$
- Most popular measure: mean-squared error

$$\frac{(p_1-a_1)^2+(p_2-a_2)^2+\ldots+(p_n-a_n)^2}{n}$$

Easy to manipulate mathematically

• The root mean-squared error:

$$\sqrt{\frac{(p_1-a_1)^2+(p_2-a_2)^2+\ldots+(p_n-a_n)^2}{n}}$$

 The mean absolute error is less sensitive to outliers than the mean squared error:

$$\frac{|p_1 - a_1| + |p_2 - a_2| + \ldots + |p_n - a_n|}{n}$$

 Sometimes relative error values are more appropriate (e.g. 10% for an error of 50 when predicting 500)

- How much does the scheme improve on simply predicting the average?
- The relative squared error is:

$$\frac{(p_1 - a_1)^2 + (p_2 - a_2)^2 + \dots + (p_n - a_n)^2}{(\bar{a} - a_1)^2 + (\bar{a} - a_2)^2 + \dots + (\bar{a} - a_n)^2}$$

The relative absolute error is:

$$\frac{|p_1 - a_1| + |p_2 - a_2| + \dots + |p_n - a_n|}{|\bar{a} - a_1| + |\bar{a} - a_2| + \dots + |\bar{a} - a_n|}$$

 Measures the statistical correlation between the predicted values and the actual values

$$\hat{\rho} = \frac{\hat{\sigma}_{pa}}{\sqrt{\hat{\sigma}_{p}\hat{\sigma}_{a}}} \qquad \hat{\sigma}_{pa} = \frac{\sum_{i=1}^{n} (p_{i} - \bar{p}) \cdot (a_{i} - \bar{a})}{n-1}$$

$$\widehat{\sigma}_p = \frac{\sum_{i=1}^n (p_i - \overline{p})^2}{n-1} \text{ and } \widehat{\sigma}_a = \frac{\sum_{i=1}^n (a_i - \overline{a})^2}{n-1}$$

- Scale independent, between –1 and +1
- Good performance leads to large values!

- Best to look at all of them
- Often it doesn't matter
- Example:

Error
Root mean-squared
Mean absolute
Root rel squared
Relative absolute

Correlation coefficient

	D the best
•	C the second-best

D the best

Α	В	С	D
67.8	91.7	63.3	57.4
41.3	38.5	33.4	29.2
42.2%	57.2%	39.4%	35.8%
43.1%	40.1%	34.8%	30.4%
0.88	0.88	0.89	0.91

The MDL Principle

- MDL stands for minimum description length
- The description length is defined as:

space required to describe a theory

- + space required to describe the theory's mistakes
- In our case the theory is the classifier and the mistakes are the errors on the training data
- Aim: we seek a classifier with minimal DL
- MDL principle is a model selection criterion

- Model selection criteria attempt to find a good compromise between:
 - The complexity of a model
 - Its prediction accuracy on the training data
- Reasoning: a good model is a simple model that achieves high accuracy on the given data
- Also known as Occam's Razor:
- the best theory is the smallest one that describes all the facts

William of Ockham (about 1285-1348), the most influential philosopher of the 14th century

- Theory 1: very simple, elegant theory that explains the data almost perfectly
- Theory 2: significantly more complex theory that reproduces the data without mistakes
- Theory 1 is probably preferable
- Classical example: Kepler's three laws on planetary motion

- Have two sets, a training and a test set
- Holdout, a first solution, 10-fold Cross-validation is better
- Give a confidence interval
- Use the *t*-test or better the paired *t*-test
- Take account of the error cost (if needed)
- Other measures: Precision, Recall, F₁
- Many measures for numerical prediction
- Take the complexity of the model into account (Occam's razor)