

oin Telegram: @ChalnaayaaaPRE-MEDICAL

INORGANIC CHEMISTRY

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Chemical Bonding

ENGLISH MEDIUM

Chemistry: Chemical Bonding

EXERCISE-I (Conceptual Questions)

OCTET RULE:

- Which among the following shows the limitation of Lewis octet rule?
 - (1) CH₄
- (2) NO
- (3) CO₂
- (4) NH₄⁺

CB0326

- 2. Which of the following is an example of expanded octet?
 - (1) SF₆
- (2) PF₅
- (3) H₂SO₄
- (4) All of these

CB0327

COVALENT BOND:

- 3. The strength of bonds by 2s - 2s, 2p - 2p and 2p -2s overlapping has the order :-
 - (1) s s > p p > s p (2) s s > p s > p p
 - (3) p p > s p > s s (4) p p > s s > p s

CB0003

- 4. In which of the excitation state of chlorine CIF3 is formed:-
 - (1) In ground state
 - (2) In third excitation state
 - (3) In first excitation state
 - (4) In second excitation state

CB0004

- **5**. A sigma bond is formed by the overlapping of :-
 - (1) s-s orbital alone
 - (2) s and p orbitals alone
 - (3) s-s, s-p or p-p orbitals along internuclear axis
 - (4) p-p orbital along the sides

CB0005

- 6. Which overlapping is involved in HCl molecule :-
 - (1) s-s overlap
- (2) p-p overlap
- (3) s-d overlap
- (4) s-p overlap

CB0006

- 7. Which is not characteristic of π -bond:-
 - (1) π bond is formed when a sigma bond already formed
 - (2) π bond are formed from hybrid orbitals
 - (3) π bond may be formed by the overlapping of p-orbitals
 - (4) π -bond results from lateral overlap of atomic orbitals

CB0007

Build Up Your Understanding

- 8. π bond is formed:-
 - (1) By overlapping of hybridised orbitals
 - (2) Overlapping of s s orbitals
 - (3) Head on overlapping of p -p orbitals
 - (4) By p p collateral overlapping

CB0008

- 9. p-p overlapping will be observed in the molecules of:
 - (1) Hydrogen
- (2) Hydrogen bromide
- (3) Hydrogen chloride
- (4) Chlorine

CB0010

- 10. Which compound of xenon is not possible
 - (1) XeF₂
- (2) XeF
- (3) XeF₅
- (4) XeF₆

CB0011

- 11. Higher is the bond order, greater is -
 - (1) Bond dissociation energy
 - (2) Covalent character
 - (3) Bond length
 - (4) Paramagnetism

CB0013

- **12**. Which condition is not favourable for the combination of atomic orbitals :-
 - (1) The combining atomic orbitals nearly have the same energy
 - (2) The combining atomic orbitals must have the same symmetry about the molecular axis
 - (3) The combining orbitals must overlap to the maximum extent
 - (4) The combining orbital must overlap to the minimum extent

CB0328

HYBRIDISATION

- In the protonation of H₂O, change occurs in **13**.
 - (1) Hybridisation state of oxygen
 - (2) Shape of molecule
 - (3) Hybridisation and shape both
 - (4) None

CB0014

14. In the compound

- $(1) sp sp^2$
- (2) $sp^3 sp^3$
- (3) $sp sp^3$
- (4) $sp^2 sp^3$

- Which of the following elements can not exhibit 15. sp³d hybridisation state:-
 - (a) C
- (b) P
- (c) Cl
- (d) B

Correct answer is:-

- (1) a, c
- (2) a, d
- (3) b, c
- (4) b, d

CB0018

- Which of the following species are expected to be planar:-
 - (a) NH₃
- (b) NH₃²⁺
- (c) CH₃
- (d) PCl₂

The correct answer is:-

- (1) b and c
- (2) c and d
- (3) b and d
- (4) a and d

CB0019

- In which following set of compound/ion has **17**. linear shape
 - (1) CH_4 , NH_4^+ , BH_4^-
- (2) CO_3^{-2} , NO_3^- , BF_3
- (3) NO₂, CO₂, XeF₂
- (4) BeCl₂, BCl₃, CH₄

CB0020

- **18.** Which of the following set is not correct:
 - (1) SO₃, O₃, NH₄ all have coordinate bonds
 - (2) H₂O, NO₂, ClO₂, all are 'V' shape molecules
 - (3) I₃⁻, ICl₂⁻, NO₂⁺; all are linear molecules
 - (4) SF₄, SiF₄, XeF₄ are tetrahedral in shape

CB0022

- 19. Shape of a molecule having 4 bond pairs and two lone pairs of electrons, will be :-
 - (1) Square planar
- (2) Tetra hedral
- (3) Linear
- (4) Octa hedral

CB0023

- **20.** The shape of IF_4^+ will be :-
 - (1) Square planar
 - (2) Tetrahedral
 - (3) Pentagonal bipyramidal
 - (4) Distorted tetrahedral

CB0024

- **21.** Which of the following has pyramidal shape?
 - (1) BF₃
- (2) H₂O⁺
- $(3) NO_{3}^{-}$
- (4) CO₃²

CB0025

- A σ bonded molecule MX_3 is T-shaped. The **22**. number of non-bonding pairs of electrons is
 - (1) 0
 - (2) 2
 - (3) 1
 - (4) Can be predicted if atomic number of M is

CB0026

- Amongst $\mathrm{CO_3}^{2\text{-}},\,\mathrm{AsO_3}^{3\text{-}},\,\mathrm{XeO_3}$, $\mathrm{ClO_3}^{-},\!\mathrm{BO_3}^{3\text{-}}$ and SO₃²⁻ the non-planar species are :-
 - (1) XeO₃, ClO₃⁻, SO₃², AsO₃³-
 - (2) AsO₃³⁻, XeO₃, CO₃⁻²
 - (3) BO_3^{3-} , CO_3^{2-} , SO_3^{2-}
 - (4) AsO₃³⁻, BO₃³⁻, CO₃²⁻

CB0027

- 24. The type of hybrid orbitals used by chlorine atom in ClO-, ClO2-, ClO3- and ClO4- is/are :-
 - (1) sp, sp 2 , sp 3 and sp 3 d (2) sp and sp 3
 - (3) Only sp³
- (4) only sp

CB0028

- 25. On the basis of hybridization of one s & one p orbitals they are arrange at :-
 - (1) Two orbitals mutually at 90° angle
 - (2) two orbitals mutually at 180° angle
 - (3) Two orbitals mutually at 120° angle
 - (4) Two orbitals mutually at 150° angle

CB0029

- **26**. Which of the following having a square planar structure is
 - (1) NH₄
- (2) BF_{4}^{-}
- (3) XeF₄
- (4) CCl₄

CB0030

- **27**. When p-character of hybridised orbital (formed by s and p orbitals) increases. Then the bond angle
 - (1) Decreases
- (2) Increases
- (3) Becomes twice
- (4) Remains unaltered

CB0031

- 28. Which orbitals overlap to form bond in OF₂
 - (1) $sp^3 2p$
- (2) $sp^2 2p$
- (3) sp 2p
- (4) p p

- Among the following orbitals/bonds, the angle is **29**. minimum between:
 - (1) sp³ bonds
 - (2) p_y and p_y orbitals
 - (3) H—O—H bond in water
 - (4) sp bonds

- **30**. The AsF₅ molecule is trigonal bipyramidal. The hybrid orbitals used by the As atoms for bonding
 - (1) $d_{x^2-y^2}, d_{z^2}, s, p_x, p_y$ (2) d_{xy}, s, p_x, p_y, p_z
 - (3) $s, p_x, p_y, p_z, d_{z^2}$ (4) $d_{x^2-y^2}s, p_x, p_y$

CB0036

- When the hybridization state of carbon atom changes from $\mbox{sp}^{3},\,\mbox{sp}^{2}$ and $\mbox{sp},$ the angle between the hybridized orbitals.
 - (1) decrease considerably
 - (2) increase progressively
 - (3) decrease gradually
 - (4) all of these

CB0037

- **32**. The hybridization states of the central atoms of the ions I_3^- , ICl_4^- and ICl_2^- are respectively:
 - (1) sp^2 , sp^3d , sp^3
 - (2) sp^3d , sp^3d^2 and sp^3d
 - (3) sp³d, sp³d, sp
 - (4) sp, sp, sp²

CB0038

- Molecular shapes of SF₄, CF₄ and XeF₄ are :-**33**.
 - (1) The same, with 2, 0 and 1 lone pairs of electrons respectively
 - (2) The same, with 1,1 and 1 lone pairs of electrons respectively
 - (3) Different, with 0,1 and 2 lone pairs of electrons respectively
 - (4) Different, with 1,0 and 2 lone pairs of electrons respectively

CB0039

- **34**. Which of the following two are isostructural:-
 - (1) XeF_2 , IF_2^-
- (2) NH₃,BF₃
- (3) CO_3^{2-}, SO_3^{2-}
- (4) PCl₅, ICl₅

CB0040

35. Select the correct matching:

List I			List II	
$A : XeF_{\scriptscriptstyle{4}}$		1.	Pyrami	dal
$B:XeF_{_{6}}$		2.	T-shap	e
$C: XeO_3$		3.	Distort	ed octahedral
$D : XeOF_{\scriptscriptstyle 2}$		4.	Square	planar
Α	В		С	D
(1) 4	3		1	2
(2) 1	2		3	4
(3) 2	1		3	4
(4) 4	1		3	2

CB0041

- Which one of the following pair is a correct with **36**. respect to molecular formula of xenon compound and hybridization state of xenon in it:
 - (1) XeF_4 , sp^3
- (2) XeF₂,sp

Chemistry: Chemical Bonding

- (3) XeF₂,sp³d
- (4) XeF_4 , sp^2

CB0042

- **37**. The molecule does not have bent shape:-
 - (1) SO₂
- (2) O_3
- (3) H_2O
- (4) NH₄

CB0329

- 38. Which among the given choices does not have the same hybridisation and geometry of (PCl₆)⁻?
 - $(1) (SiF_6)^{2-}$
 - (2) XeF₆
 - (3) SF_6
 - (4) $[Al(H_2O)_6]^{3+}$

CB0330

- **39**. Incorrect regarding the hybridisation is :-
 - (1) The number of hybrid orbitals are equal to the number of the atomic orbitals that get hybridised
 - (2) The hybrid orbital are always equivalent in energy and shape
 - (3) The hybrid orbitals are more effective in forming stable bonds than the pure atomic orbitals
 - (4) Overlapping and hybridisation are same phenomenon

CB0331

- The percent s-character in CH₄ is :-
 - (1) 100%
- (2) 45%
- (3) 75%
- (4) 25%

DIPOLE MOMENT

- Which statement is correct:-
 - (1) All the compounds having polar bonds, have dipole moment
 - (2) SO₂ is non-polar
 - (3) H_oO molecule is non polar, having polar
 - (4) PH₃ is polar molecule having non polar bonds

CB0044

- BeF₂ has zero dipole moment where as H₂O has a dipole moment because :-
 - (1) Water is linear
 - (2) H₂O is bent
 - (3) F is more electronegative than O
 - (4) Hydrogen bonding is present in H₂O

CB0045

- **43.** Which of the following molecule have zero dipole moment:-
 - (1) BF₃

(2) CH₂Cl₂

(3) NF_3

(4) SO₂

CB0047

- The dipole moment of NH₃ is:-
 - (1) Less than dipole moment of NCl₃
 - (2) Higher than dipole moment of NCl₃
 - (3) Equal to the dipole moment of NCl,
 - (4) None of these

CB0048

- **45.** Which set of molecules is polar :-
 - (1) XeF₄, IF₇, SO₃
- (2) PCl₅, C₆H₆, SF₆
- (3) SnCl₂, SO₂, NO₂
- (4) CO₂, CS₂, C₂H₆

CB0050

- **46.** Which of the following has symmetrical structure:
 - (1) PCl₃

(2) CH₂Cl₂

(3) CHCl₃

(4) CCl₄

CB0051

- **47.** Species having zero dipole moment :-
 - (1) XeF₄
 - (2) 1,2,4 trichloro benzene
 - $(3) SF_4$
 - (4) CH₂Cl₂

CB0052

- What conclusion can be drawn from the fact that BF₃ has no dipole moment but PF₃ does
 - (1) BF_3 is not symmetrical but PF_3 is
 - (2) BF₃ molecule must be linear
 - (3) Atomic radius of P is larger than that of B
 - (4) BF₃ molecule must be planar triangular

CB0053

- **49**. PCl₅ is non polar because :-
 - (1) P Cl bond is non-polar
 - (2) Its dipole moment is zero
 - (3) P Cl bond is polar
 - (4) P & Cl have equal electronegativity

CB0054

- **50**. Dipole moment of CO₂ is zero which implies that:
 - (1) Carbon and oxygen have equal electronegativities
 - (2) Carbon has no polar bond
 - (3) CO₂ is a linear molecule
 - (4) Carbon has bond moments of zero value

CB0055

- **51**. The correct order of dipole moment is:
 - (1) $CH_4 < NF_3 < NH_3 < H_2O$
 - (2) $NF_3 < CH_4 < NH_3 < H_9O$
 - (3) $NH_3 < NF_3 < CH_4 < H_2O$
 - $(4) H_2O < NH_3 < NF_3 < CH_4$

CB0056

- **52**. Which of the following has the highest value of dipole moment:
 - (1) HCl
- (2) HF
- (3) HI
- (4) HBr

CB0058

- **53**. Which compounds have permanent dipole moment:-
 - (A) BF₃
- (B) SiF₄
- (C) SF_4
- (D) XeF₄

- (E) XeF,
- (F) CHCl₃
- (1) A & B (2) C & D
- (3) D, E & F (4) C & F

CB0333

- **54**. Which molecule has largest dipole moment :-
 - (1) CH₄
- (2) CHCl₃
- (3) CCl₄
- (4) CHI₃ **CB0334**
- **55.** Which of the following is the most polar :-
 - (1) CCl₄
- (2) CHCl₃
- (3) CH₂Cl₂

(3) BF₃

- (4) CH₃Cl **CB0335**
- **56**. The molecule does not have zero dipole moment :-
 - (1) CO₂
- (2) CCl₄
- (4) HCl **CB0336**
- **57**. Which of the following compound possess dipole moment :-
 - (1) Water
- (2) Boron trifluoride
- (3) Benzene
- (4) Carbon tetra chloride

MOLECULAR ORBITAL THEORY

The ion that is isoelectronic with CO and having same bond order is :-

(1) CN-

(2) O_2^+

(3) O_2^-

(4) N_2^+

CB0059

59. Which of the following is paramagnetic:-

(1) O_2^-

(2) CN⁻

(3) CO

(4) NO⁺

CB0060

60. In the following which of the two are paramagnetic

(a) N_a

(b) CO

(c) B₂

(d) NO₂

Correct answer is :-

(1) a and c

(2) b and c

(3) c and d

(4) b and d

CB0061

The bond order of CO molecule on the basis of **61**. molecular orbital theory is

(1) Zero

(2) 2

(3) 3

 $(4)\ 1$

CB0062

The no. of antibonding electron pair in O_2^- is

(2) 3

(3) 8

CB0064

63. Which of the following species will have the minimum bond energy

 $(1) N_{2}$

(2) N_{2}^{-}

(3) N_{2}^{+}

(4) N_2^{-2}

CB0065

Which of the following ion do not have bond order of 2.5?

(1) O_{2}^{-}

(2) O_2^+

(3) N_2^+

 $(4) N_2^-$

CB0066

65. The electron adds to which one of the following orbitals during change of N_2 to N_2^- .

(1) σ orbital

(2) σ^* orbital

(3) π^* orbital

(4) π orbital

CB0338

In which of the following species removal of electron exhibit a decrease in paramagentic behavior?

 $(1) F_{2}$

(2) N_2

(3) C_2

 $(4) B_{2}$

CB0339

67. Pick the wrong statement w.r.t. molecular orbital theory (MOT).

> (1) Participation of orbitals of comparable energies takes place.

> (2) The electron is under the influence of two or more than two nuclie.

> (3) The molecular orbital formed is equal to the number of atomic orbitals combined.

(4) The probablity of electron distribution in a molecule is given by atomic orbitals only.

CB0340

68. Which among the following species is does not exist?

(1) He₂+

(2) H_{2}^{+}

(3) H_{2}^{-}

(4) Be₃

CB0341

69. Which of the given statements is not correct?

> (1) Electron density in a bonding molecular orbital is located between the bonded atoms.

> (2) Electron cloud is located away from the space between the nuclei in anti-bonding molecular orbital

> (3) In anti-bonding molecular orbital there is always a nodal plane

> (4) The total energy of the molecular orbitals varies from the original energies of atomic

> > **CB0342**

The given species not having the same bond order as of other three :-

(1) He₂+

(2) H_{a}^{+}

 $(3) H_{2}^{-}$

(4) Li₂

CB0343

The minimum bond length will be observed in :-

 $(1) O_{2}$

(2) O_{0}^{-}

(3) O₀⁺

(4) O_0^{2-} **CB0344**

Which among the given pair of molecules consists only of $Pi(\pi)$ bonds?

(1) B_2 and F_2

(2) B_2 and C_2

(3) N_2 and O_2

(4) C_2 and N_2

CB0345

Which molecule does not exist :-**73**.

(1) He₂

(2) O_{2}

(3) N_2

(4) B₂

CB0346 Which is correct electronic configuration for C₂ molecule according to M.O.T.

(1) $KK(\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p_s^2 = \pi 2p_s^2)$

(2) $KK(\sigma 2s^2) (\sigma^* 2s)^2 (\pi 2p_x^1 = \pi 2p_y^1) \sigma 2p_z^2$

(3) $KK(\sigma^*2s^2) (\sigma 2s)^2 (\pi 2p_v^2 = \pi 2p_v^2)$

(4) $KK(\sigma 2s^2) (\sigma^* 2s^2)^2 \sigma 2p_z^2 (\pi 2p_x^1 = \pi 2p_y^1)$

CB0347

75. The molecule/species having highest bond order :-

(1) O_2

(2) O_2^- (3) O_2^+

(4) O_2^{-2}

CB0348

76. The calculated bond order in H_2^- ion is :-

(1) 0

(2) $\frac{1}{2}$ (3) $-\frac{1}{2}$

Join Telegram: @Chalnaayaaar

- 77. O₂ molecule is paramagnetic due to :-
 - (1) it contains 2 unpaired electrons in $\pi^*2p_{_x}$ and $\pi^*2p_{_u}$ molecular orbitals
 - (2) it contains no unpaired electrons in π^*2p_x and π^*2p_y molecular orbitals
 - (3) it contains 2 paired electrons in σ 2s orbital
 - (4) it contains 1 unpaired electrons in σ 2s orbital

CB0350

- **78.** Which is not correct according to M.O.T.
 - (1) $N_b > N_a$ Positive bond order
 - (2) $N_b < N_a$ Negative bond order
 - (3) $N_b = N_a$ Zero bond order
 - (4) $N_{\scriptscriptstyle h} > N_{\scriptscriptstyle a}$ Negative bond order

CB0351

- **79.** The molecule having bond order 3 is :-
 - $(1) H_2$
- (2) N_2
- (3) O_2
- (4) He₂+

CB0352

- **80.** Which is correct electronic configuration for singly positive nitrogen molecule:-
 - (1) $\sigma 1s^2 \ \sigma^* 1s^2 \ \sigma 2s^2 \ \sigma^* 2s^2 \ \pi 2p_y^2 \ \pi 2p_y^2 \ \sigma 2p_z^1$
 - (2) $\sigma 1s^2 \ \sigma^* 1s^2 \ \sigma 2s^2 \ \sigma^* 2s^2 \ \sigma 2p_{\nu}^2 \ \pi 2p_{\nu}^2 \ \pi^* 2p_{\nu}^2$
 - (3) $\sigma 1s^2 \ \sigma^* 1s^2 \ \sigma 2s^2 \ \sigma^* 2s^2 \ \sigma 2p_x^2 \ \pi 2p_x^2 \ \pi 2p_y^2$
 - (4) $\sigma 1s^2 \ \sigma^* 1s^2 \ \sigma 2s^2 \ \sigma^* 2s^2 \ \sigma 2p_a^2 \ \pi 2p_a^1 \pi 2p_a^1$

CB0353

- **81.** Two nodal planes are present in :-
 - (1) π^*2p_y
- (2) $\sigma^{2}p_{z}$
- (3) $\pi 2p$
- (4) $\pi 2p_{y}$

CB0354

- **82.** Which is the most stable :-
 - (1) N_2
- (2) N_2^+
- (3) N_2
- (4) N_2^{-2}

CB0355

- **83.** Which set of molecules having same sequence of energy levels.
 - (1) B_2 , O_2 , N_2
- (2) O₂, Be₂, F₂
- (3) B_2 , C_2 , N_2
- $(4) N_2, O_2, B_2$

CB0356

COORDINATE BOND

- **84.** In Co-ordinate bond, the acceptor atoms must essentially contain in its valence shell an orbital:-
 - (1) With paired electron
- (2) With single electron
 - (3) With no electron
- (4) With three electron

CB0068

- **85.** The bonds present in N_2O_5 are :-
 - (1) Only ionic
 - (2) Covalent & coordinate
 - (3) Only covalent
 - (4) Covalent & ionic

CB0069

- **86.** Dative bond is present in
 - (1) SO₃
- (2) NH_{3}
- (3) K₂CO₃
- (4) BF₃

CB0070

- **87.** The compound containing co-ordinate bond is :
 - (1) H₂SO₄
- (2) O_3
- (3) SO_{3}
- (4) All of these

CB0072

WEAK FORCES

- **88.** Intermolecular hydrogen bonds are not present in:-
 - (1) CH₃CH₂OH
- (2) CH₃COOH
- (3) C₂H₅NH₂
- (4) CH₃OCH₃

CB0074

89. In which of the following molecule, the shown hydrogen bond is not possible:-

CB0075

- **90.** Correct order of volatility is:-
 - (1) HF > HCl > HBr > HI
 - (2) HCl > HBr > HI > HF
 - (3) HI > HBr > HCl > HF
 - (4) HBr < HCl < HI < HF

- 91. The correct order of volatility is:-
 - (1) $NH_3 < H_2O$
 - (2) p- nitro phenol < o- nitro phenol
 - $(3) CH_3OH > CH_3 O CH_3$
 - (4) HF > HCl

CB0077

- **92**. The incorrect order of decreasing boiling points is
 - (1) $NH_3 > AsH_3 > PH_3$
 - (2) $H_{9}O > H_{9}Se > H_{9}S$
 - (3) $Br_2 > Cl_2 > F_2$
 - (4) $CH_4 > GeH_4 > SiH_4$

CB0078

- 93. Acetic acid exists as dimer in benzene due to:-
 - (1) Condensation reaction
 - (2) Hydrogen bonding
 - (3) Presence of carboxyl group
 - (4) None of the above

CB0079

- 94. Maximum no. of hydrogen bonds formed by a water molecule in ice is
 - (1) 4
- (2) 3
- (3) 2
- $(4)\ 1$

CB0080

- **95.** Strongest hydrogen bond is shown by :
 - (1) Water
- (2) Ammonia
- (3) Hydrogen fluoride
- (4) Hydrogen sulphide

CB0081

- **96.** Density of ice is less than that of water because of
 - (1) presence of hydrogen bonding
 - (2) crystal modification of ice
 - (3) open cage like structure of ice due to hydrogen bonding
 - (4) different physical states of these

CB0082

- 97. NH₃ has abnormally high boiling point because it has:
 - (1) Alkaline nature
- (2) Distorted shape
- (3) sp³ Hybridisation
- (4) Hydrogen bonding

CB0083

- **98.** Which of the following is soluble in water?
 - (1) CS₂
- (2) C₂H₅OH
- (3) CCl₄
- (4) CHCl₃

CB0084

- 99. KF combines with HF to form KHF₂. The compound contains the species:
 - (1) K^+ , F^- and H^+
- (2) K^+ , F^- and HF
- (3) K^{\dagger} and $[HF_2]^{-}$
- (4) $[KHF]^+$ and F_2

CB0085

IONIC BOND

- **100.** Which one is the correct statement with reference to solubility of MgSO₄ in water:
 - (1) Hydration energy of MgSO₄ is higher in comparison to its lattice energy

Chemistry: Chemical Bonding

- (2) Ionic potential of Mg²⁺ is very low
- (3) SO_4^{2-} ion mainly contributes towards hydration energy
- (4) Size of Mg²⁺ and SO₄²⁻ are similar

CB0088

- **101.** Conditions for ionic bond formation is/are:
 - (a) Small cation, large anion
 - (b) Low IP of cation, high electron affinity of
 - (c) Large cation, small anion and less charge
 - (d) Less lattice energy

Correct answer is:

- (1) a, d
- (2) b, c and d
- (3) b and c
- (4) a, b

CB0089

- 102. The force responsible for dissolution of ionic compound in water is -
 - (1) Dipole dipole forces
 - (2) Ion dipole force
 - (3) Ion ion force
 - (4) Hydrogen bond

CB0091

CB0092

- **103.** Born Haber cycle is mainly used to determine
 - (1) Lattice energy
- (2) Electron affinity
- (3) Ionisation energy
- (4) Electronegativity
- **104.** An ionic compound A⁺ B⁻ is most likely to be formed when -
 - (1) Ionization energy of A is low
 - (2) Electron affinity of B is high
 - (3) Electron affinity of B is low
 - (4) Both (1) and (2)

CB0093

- **105.** Highest melting point would be of
 - (1) AlCl₃
- (2) LiCl
- (3) NaCl
- (4) BeCl₂

CB0096

- **106.** As compared to covalent compounds electrovalent compounds generally possess
 - (1) High m.p. and high b.p.
 - (2) Low m.p. and low b.p.
 - (3) Low m.p. and high b.p.
 - (4) high m.p. and low b.p.

- **107.** The electronic configuration of metal M is 1s² 2s² 2p⁶ 3s¹. The formula of its oxide will be:
 - (1) MO
- (2) M_oO
- $(3) M_{2}O_{3}$
- (4) MO₂

- 108. Which of the following does not show electrical conduction?
 - (1) diamond
 - (2) graphite
 - (3) sodium chloride (fused)
 - (4) potassium

CB0102

- **109.** The most covalent halide is:-
 - (1) AlF₃
- (2) AlCl₃
- (3) AlBr₃
- (4) AlI₃

CB0103

- **110.** Ionic potential (ϕ) of electropositive element will be highest in which of the following compound:-
 - (1) CsCl
- (2) MgCl₂
- (3) AlF₃
- (4) SF₆

CB0104

- 111. LiCl is soluble in organic solvent while NaCl is not because :-
 - (1) Lattice energy of NaCl is less than that of
 - (2) Ionisation potential of Li is more than that of Na
 - (3) Li⁺ has more hydration energy than Na⁺ ion
 - (4) LiCl is more covalent compound than that NaCl

CB0105

- **112.** The most stable carbonate is
 - (1) Li₂CO₃
- (2) BeCO₃
- (3) CaCO₃
- (4) BaCO₃

CB0106

- 113. Correct order of covalent character of alkaline earth metal chloride in
 - (1) BeCl₂ < MgCl₂ < CaCl₂ < SrCl₂
 - (2) $BeCl_2 < CaCl_2 < SrCl_2 < MgCl_2$
 - (3) $BeCl_2 > MgCl_2 > CaCl_2 > SrCl_2$
 - (4) $SrCl_{2} > BeCl_{2} > CaCl_{2} > Mg Cl_{3}$

CB0107

- 114. Which of the compound is least soluble in water
 - (1) AgF
- (2) AgCl
- (3) AgBr
- (4) AgI

CB0108

- **115.** CCl₄ is more covalent than LiCl because:
 - (1) There is more polarization of Cl in CCl₄
 - (2) There is more polarization of Cl in LiCl
 - (3) CCl₄ has more weight
 - (4) None of above

CB0109

- 116. The correct order of decreasing polarisable ions
 - (1) Cl⁻, Br⁻, I⁻, F⁻
- (2) F⁻, I⁻, Br⁻, Cl⁻
- (3) F⁻, Cl⁻, Br⁻, I⁻
- (4) I⁻, Br⁻, Cl⁻, F⁻

CB0111

- **117**. Ionic conductances of hydrated M⁺ ions are in the order -
 - (1) $\text{Li}^+(\text{ag}) > \text{Na}^+(\text{ag}) > \text{K}^+(\text{ag}) > \text{Rb}^+(\text{ag}) > \text{Cs}^+(\text{ag})$
 - (2) $Li^{+}(aq) > Na^{+}(aq) < K^{+}(aq) < Rb^{+}(aq) < Cs^{+}(aq)$
 - (3) $Li^{+}(ag) > Na^{+}(ag) > K^{+}(ag) > Rb^{+}(ag) < Cs^{+}(ag)$
 - (4) $\text{Li}^+(\text{aq}) < \text{Na}^+(\text{aq}) < \text{K}^+(\text{aq}) < \text{Rb}^+(\text{aq}) < \text{Cs}^+(\text{aq})$

CB0112

- **118**. Which of the following does not give an oxide on heating -
 - (1) MgCO₃ (2) Li₂CO₃
- (3) ZnCO₃
- (4) K₂CO₃ **CB0114**
- **119**. Which decomposes on heating
 - (1) NaOH
- (2) KOH
- (3) LiOH
- (4) RbOH

CB0115

- **120.** Which of the following forms metal oxide on heating
 - (1) Na₂CO₃
- (2) Li₂CO₃
- (3) K₂SO₄
- (4) NaHCO₃
 - **CB0116**
- **121.** Increasing order of stability of
 - I. K₂CO₃
- II.MgCO₃
- III Na₂CO₃ (2) II < III < I
- (1) I < II < III(3) II < I < III
- (4) I < III < II
 - **CB0117**
- **122**. Which of the following carbonate will not decompose on heating :-
 - (1) $BaCO_3$
- (2) $ZnCO_3$
- (3) Na₂CO₃
- (4) Li₂CO₃

CB0118

- **123.** Correct order of melting point is?
 - (1) SnCl₂ > SnCl₄
- (2) $SnCl_4 > SnCl_9$
- (3) $SnCl_2 = SnCl_4$
- (4) None of these

Chemistry: Chemical Bonding

Pre-Medica

 ${\bf 124.}$ Which of the following suffers a weight loss on

heating:-

(1) Li₂CO₃

(2) Washing soda

(3) both (1) & (2)

(4) None

CB0358

125. On heating Na₂CO₃ gives :-

(1) $Na_2O + CO_2$

(2) $Na_2 + CO_3$

(3) Na + CO₂

(4) None

CB0359

126. Correct order of melting point is :-

(1) $NaF < MgF_2 < AlF_3$

(2) $AlF_3 > NaF > MgF_2$

(3) $MgF_2 < NaF < AlF_3$

(4) None

ΕY	EXERCISE-I (Conceptual Questions) ANSWER'S KEY														
EXERCISE-1 (Conceptual Questions)															
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	4	3	3	3	4	2	4	4	3	1	4	2	4	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	3	4	1	4	2	2	1	3	2	3	1	1	2	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	2	2	4	1	1	3	4	2	4	4	4	2	1	2	3
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	1	4	2	3	1	2	4	2	4	4	1	1	1	3
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	3	2	4	1	3	4	4	4	4	4	3	2	1	1	3
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	2	1	4	2	1	1	1	3	3	2	1	4	4	3	2
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	2	4	2	1	3	3	4	2	3	1	3	2	1	4	3
Que.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	1	2	1	4	4	4	4	3	4	1	4	4	4	3	2
Que.	121	122	123	124	125	126									
Ans.	2	3	1	3	4	1									

AIPMT/NEET

EXERCISE-II (Previous Year Questions)

AIPMT-2006

- 1. The number of unpaired electrons in a paramagnetic diatomic molecule of an element with atomic number 16 is
 - (1) 1
- (2) 2
- (3) 3
- (4) 4

CB0120

- 2. Which of the following species has a linear shape:
 - (1) O_3
- (2) NO_{2}^{-}
- (3) SO₂
- (4) NO_{2}^{+}

CB0121

- 3. Which of the following is not isostructural with
 - (1) NH₄
- (2) SCl₄
- (3) SO_4^{2-}
 - (4) PO_4^{3-}

CB0122

- 4. The electronegativity difference between N and F is greater than that between N and H yet the dipole mement of NH_3 (1.5 D) is larger than that of $NF_3(0.2 D)$. This is because
 - (1) in NH₃ the atomic dipole and bond dipole are in the opposite directions whereas in NF₃ these are in the same direction
 - (2) in NH₃ as well as in NF₃ the atomic dipole and bond dipole are in the same direction
 - (3) in NH₃ the atomic dipole and bond dipole are in the same direction whereas in NF3 these are in opposite directions
 - (4) in NH₃ as well as NF₃ the atomic dipole and bond dipole are in opposite directions

CB0123

- 5. In which of the following molecules are all the bonds not equal:-
 - (1) NF₃
- (2) CIF₃
- (3) BF₃
- (4) AlF₃

CB0124

AIPMT-2007

- The correct order of increasing thermal stability 6. of K₂CO₃, MgCO₃ CaCO₃ and BeCO₃ is
 - (1) $BeCO_3 < MgCO_3 < CaCO_3 < K_2CO_3$
 - (2) $MgCO_3 < BeCO_3 < CaCO_3 < K_2CO_3$
 - (3) K₂CO₃ < MgCO₃ < CaCO₃ < BeCO₃
 - (4) $BeCO_3 < MgCO_3 < K_2CO_3 < CaCO_3$

CB0125

- 7. In which of the following pairs the two species are iso-structural
 - (1) SO_3^{-2} and NO_3^- (2) BF_3 and NF_3
 - (3) BrO_3^- and XeO_3 (4) SF_4 and XeF_4

CB0126

- 8. The correct order of C-O bond length among CO, CO_3^{-2} , CO_2 is
 - (1) $CO < CO_3^{-2} < CO_3$
 - (2) $CO_3^{-2} < CO_2 < CO$
 - (3) $CO < CO_2 < CO_3^{-2}$
 - (4) $CO_2 < CO < CO_3^{-2}$

CB0127

- In which of the following hydration energy is higher than lattice energy
 - (1) MgSO₄
- (2) CaSO₄
- (3) BaSO₄
- (4) SrSO₄

CB0128

- Which one of the following orders correctly 10. represents the increasing acid strengths of the given acids:
 - (1) HOClO₃ < HOClO₂ < HOClO < HOCl
 - (2) HOCl < HOClO < HOClO₂ < HOClO₃
 - (3) HOClO < HOCl < HOClO₃ < HOClO₉
 - (4) HOClO₂ < HOClO₃ < HOClO < HOCl

CB0129

AIPMT-2008

11. Four diatomic species are listed below in different sequences. Which of these presents the correct order of their increasing bond order:

(1)
$$C_2^{2-} < He_2^+ < NO < O_2^-$$

(2)
$$He_2^+ < O_2^- < NO < C_2^{2-}$$

(3)
$$O_2^- < NO < C_2^{2-} < He_2^+$$

(4)
$$NO < C_2^{2-} < O_2^- < He_2^+$$

CB0130

- **12**. The angular shape of ozone molecule (O₃) consists of
 - (1) 1 sigma and 1 pi bonds
 - (2) 2 sigma and 1 pi bonds
 - (3) 1 sigma and 2 pi bonds
 - (4) 2 sigma and 2 pi bonds

CB0131

- **13**. The correct order of increasing bond angles in the following triatomic species is:-
 - (1) $NO_2^+ < NO_2^- < NO_2^-$ (2) $NO_2^+ < NO_2^- < NO_2^-$
 - (3) $NO_2^- < NO_2^+ < NO_2^-$ (4) $NO_2^- < NO_2^+ < NO_2^+$

AIPMT-2009

- In which of the following molecules/ions BF₃, NO₂, NH₂ and H₂O, the central atom is sp² hybridized:
 - (1) BF_3 and NO_2^-
- (2) NO_2^- and NH_2^-
- (3) NH_2^- and H_2O
- (4) NO_2^- and H_2O

CB0133

- According to MO theory which of the following lists ranks the nitrogen species in terms of increasing bond order:
 - (1) $N_2^- < N_2^{2-} < N_2$ (3) $N_2^{2-} < N_2^- < N_2$
- (2) $N_2^- < N_2^- < N_2^{2-}$ (4) $N_2^- < N_2^{2-} < N_2^{-}$

- 16. In the case of alkali metals, the covalent character decreases in the order:
 - (1) MI > MBr > MCl > MF
 - (2) MCl > MI > MBr > MF
 - (3) MF > MCl > MBr > MI
 - (4) MF > MCl > MI > MBr

CB0135

- 17. What is the dominant intermolecular force or bond that must be overcome in converting liquid CH₂OH to a gas:
 - (1) London or dispersion force
 - (2) Hydrogen bonding
 - (3) Dipole-dipole interaction
 - (4) Covalent bonds

CB0136

AIPMT-2010

- Some of the properties of the two species, NO₃ and H₃O⁺ are described below. Which one of them is correct :-
 - (1) Isostructural with same hybridization for the central atom.
 - (2) Isostructural with different hybridization for the central atom.
 - (3) Similar in hybridization for the central atom with different structures.
 - (4) Dissimilar in hybridization for the central atom with different structures.

CB0137

- **19.** In which of the following molecules the central atom does not have sp³ hybridization:
 - $(1) SF_4$
- (2) BF_{1}
- (3) NH₄
- (4) CH₄

CB0138

- **20**. Which one of the following species does not exist under normal conditions:
 - (1) Li₂
- (2) Be₂⁺
- (3) Be₂
- $(4) B_{2}$

CB0139

- In which of the following pairs of molecules/ions, the central atoms have sp² hybridization:
 - (1) BF_3 and NH_2^-
- (2) NO_2^- and NH_3
- (3) BF_3 and NO_2
- (4) NH_2^- and H_2O

Chemistry: Chemical Bonding

CB0140

- **22**. Which of the following alkaline earth metal sulphates has hydration enthalpy higher than the lattice enthalpy:
 - SrSO₄
- (2) CaSO₄
- (3) BeSO₄
- (4) BaSO₄

CB0141

- **23**. In which one of the following species the central atom has the type of hybridisation which is not the same as that present in the other three:
 - (1) PCl₅
- (2) SF₄

 $(3) I_3^-$

(4) SbCl₅²

CB0142

- 24. Property of the alkaline earth metals that increases with their atomic number :-
 - (1) Electronegativity
 - (2) Solubility of their hydroxides in water
 - (3) Solubility of their sulphates in water
 - (4) Ionization energy

CB0143

AIPMT Pre-2011

- **25**. Considering the state of hybridization of carbon atoms, find out the molecule among the following which is linear:
 - (1) CH₃-CH=CH-CH₃
 - (2) CH₃-C≡C-CH₃
 - (3) CH₂=CH-CH₂-C≡CH
 - (4) CH₃-CH₂-CH₂-CH₃

CB0144

- **26**. Which of the following has the minimum bond length:
 - (1) O_2^+

- (2) O_2^- (3) O_2^{2-} (4) O_2

CB0145

- **27**. Which of the two ions from the list given below that have the geometry that is explained by the same hybridization of orbitals, $NO_{2}^{-},\,NO_{3}^{-},\,NH_{2}^{-},\,NH_{4}^{+},\,SCN^{-}$:
 - (1) NO_2^- and NO_3^-
- (2) NH_4^+ and NO_3^-
- (3) SCN $^-$ and NH $^-_2$ (4) NO $^-_2$ and NH $^-_2$

CB0146

- Which of the following compounds has the 28. lowest melting point:
 - (1) CaCl₂
- (2) CaBr₂
- (3) Cal₂
- (4) CaF,

Which of the following structures is the most preferred and hence of lowest energy for SO₃:

CB0148

AIPMT Pre-2012

- **30**. Which one of the following pairs is isostructural (i.e. having the same shape and hybridization):
 - (1) $[NF_3 \text{ and } BF_3]$
- (2) $\left[BF_{4}^{-} \text{ and } NH_{4}^{+} \right]$
- (3) [BCl₃ and BrCl₃]
- (4) $[NH_3 \text{ and } NO_3^-]$

CB0151

- 31. Which of the following species contains three bond pairs and one lone pair around the central atom:
 - (1) NH_{2}^{-}
- (2) PCl₃
- (3) H₂O
- (4) BF₃

CB0152

- **32**. The pair of species with the same bond order is:
 - (1) NO, CO
- (2) N_2 , O_2
- (3) O_2^{2-} , B_2
- (4) O₂+, NO+

CB0153

- **33**. Bond order of 1.5 is show by:
 - (1) O_{2}^{2-}
- (2) O₂
- $(3) O_{2}^{+}$
- $(4) O_{2}^{-}$

CB0154

AIPMT Mains-2012

- During change of O_2 to O_2^- ion, the electron adds on which one of the following orbitals:
 - (1) σ^* orbital
- (2) σ orbital
- (3) π^* orbital
- (4) π orbital

CB0155

- Four diatomic species are listed below. Identify the correct order in which the bond order is increasing in them:
 - (1) $C_2^{2-} < He_2^+ < O_2^- < NO$ (2) $He_2^+ < O_2^- < NO < C_2^{2-}$

 - (3) NO < O₂⁻ < C₂²⁻ < He₂ (4) O₂⁻ < NO < C₂²⁻ < He₂

CB0156

NEET-UG-2013

- **36**. Which one of the following molecules contains no π bond :
 - (1) NO₂
- (2) CO₂
- (3) H₂O
- (4) SO₂

CB0157

- **37**. XeF₂ is isostructural with :-
 - (1) BaCl₂
- (2) TeF₂
- (3) ICl₂
- (4) SbCl₃

CB0158

- **38**. Dipole induced dipole interactions are present in which of the following pairs :-
 - (1) SiF₄ and He atoms
- (2) H₂O and alcohol
- (3) Cl₂ and CCl₄
- (4) HCl and He atoms

CB0159

- **39**. Which of the following is a polar molecule:
 - (1) XeF₄
- (2) BF₃
- $(3) SF_4$

CB0160

- **40**. Which of the following is paramagnetic:
 - (1) NO+
- (2) CO
- (3) O_{2}^{-}
- (4) CN⁻

CB0161

- Identify the correct order of solubility in aqueous medium:
 - (1) $Na_2S > ZnS > CuS$
- (2) $CuS > ZnS > Na_{\circ}S$
- (3) $ZnS > Na_2S > CuS$
- (4) $Na_{9}S < CuS > ZnS$

CB0162

AIPMT-2014

- 42. Which of the following molecules has the maximum dipole moment:
 - (1) CO₂
- (2) CH₄
- (3) NH₃
- (4) NF₃ **CB0164**
- 43. Which one of the following species has plane triangular shape:
 - (1) N_3^-
- (2) NO_{3}^{-}
- $(3) NO_{2}^{-}$
- (4) CO₂

CB0165

AIPMT-2015

- 44. The correct bond order in the following species is:-
- (1) $O_2^{2+} < O_2^- < O_2^+$ (2) $O_2^+ < O_2^- < O_2^{2+}$ (3) $O_2^- < O_2^+ < O_2^{2+}$ (4) $O_2^{2+} < O_2^+ < O_2^-$

CB0167

- Which of the following pairs of ions are **45**. isoelectronic and isostructural:
 - (1) ClO_3^-, CO_3^{2-}
- (2) SO_3^{2-} , NO_3^{-}
- (3) ClO₃,SO₃²⁻
- (4) CO_3^{2-} , SO_3^{2-}

CB0168

- Which of the following options represents the correct bond order:
 - (1) $O_2^- < O_2 < O_2^+$
 - (2) $O_2^- > O_2 < O_2^+$
 - (3) $O_2^- < O_2 > O_2^+$
 - (4) $O_2^- > O_2^+ > O_2^+$

47. Solubility of the alkaline earth's metal sulphates in water decreases in the sequence :-

(1) Ca > Sr > Ba > Mg

(2) Sr > Ca > Mg > Ba

(3) Ba > Mg > Sr > Ca

(4) Mg > Ca > Sr > Ba

CB0170

48. Maximum bond angle at nitrogen is present in which of the following:

(1) NO_{2}^{-}

(2) NO_2^+

(3) NO_3^-

(4) NO₂

CB0171

RE-AIPMT-2015

On heating which of the following releases CO₂ **49**. most easily:

 $(1) \text{ MgCO}_3$

(2) CaCO₃

(3) K₂CO₃

(4) Na₂CO₃

CB0172

50. Decreasing order of stability of O_2 , O_2^- , O_2^+ and O_2^-

 $(1) O_2 > O_2^+ > O_2^{2-} > O_2^-$

(2) $O_2^- > O_2^{2-} > O_2^+ > O_2$

(3) $O_2^+ > O_2^- > O_2^- > O_2^2$

 $(4) O_2^{2-} > O_2^{-} > O_2 > O_2^{+}$

CB0173

51. In which of the following pairs, both the species are not isostructural:

(1) NH₃, PH₃

(2) XeF₄, XeO₄

(3) SiCl₄, PCl⁺₄

(4) Diamond, silicon carbide

CB0174

52. The variation of the boiling points of the hydrogen halides is in the order HF > HI > HBr > HCl.

> What explains the higher boiling point of hydrogen fluoride?

- (1) The bond energy of HF molecules is greater than in other hydrogen halides
- (2) The effect of nuclear shielding is much reduced in fluorine which polarises the HF molecule
- (3) The electronegativity of fluorine is much higher than for other elements in the group.
- (4) There is strong hydrogen bonding between HF molecules

CB0175

NEET-I 2016

Chemistry: Chemical Bonding

53. Consider the molecules CH₄, NH₃ and H₂O. Which of the given statements is false?

> (1) The H -C-H bond angle in CH_4 , the H-N-Hbond angle in NH3, and the H-O-H bond angle in H₂O are all greater than 90°

(2) The H-O-H bond angle in H₂O is larger than the H-C-H bond angle in CH₄.

(3) The H-O-H bond angle in H₂O is smaller than the H-N-H bond angle in NH₃.

(4) The H–C–H bond angle in CH₄ is larger than the H-N-H bond angle in NH₃.

CB0181

54. Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules?

(1) $I_2 > Br_2 > Cl_2 > F_2$ (2) $Cl_2 > Br_2 > F_2 > I_2$

(3) $Br_2 > I_2 > F_2 > Cl_2$ (4) $F_2 > Cl_2 > Br_2 > I_2$

CB0182

55. Predict the correct order among the following:

(1) lone pair-lone pair > lone pair - bond pair > bond pair - bond pair

(2) lone pair - lone pair > bond pair - bond pair > lone pair - bond pair

(3) bond pair - bond pair > lone pair - bond pair > lone pair - lone pair

(4) lone pair - bond pair > bond pair - bond pair > lone pair - lone pair

CB0183

56. Match the compounds given in column I with the hybridisation and shape given in column II and mark the **correct** option.

Column-I		Column-II		
(a)	XeF ₆	(i)	Distorted	
			octahedral	
(b)	XeO ₃	(ii)	Square	
			planar	
(c)	XeOF ₄	(iii)	pyramidal	
(d)	XeF ₄	(iv)	Square	
			pyramidal	

Code:-

	(a)	(b)	(c)	(d)
(1)	(i)	(iii)	(iv)	(ii)
(2)	(i)	(ii)	(iv)	(iii)
(3)	(iv)	(iii)	(i)	(ii)
(4)	(iv)	(i)	(ii)	(iii)

NEET-II 2016

- **57.** The correct geometry and hybridization for XeF_4 are:
 - (1) Planar triangle, sp³d³
 - (2) square planar, sp³d²
 - (3) octahedral, sp³d²
 - (4) trigonal bipyramidal, sp³d

CB0185

- **58.** Among the following which one is a wrong statement?
 - (1) SeF₄ and CH₄ have same shape
 - (2) I_3^+ has bent geometry
 - (3) PH₅ and BiCl₅ do not exist
 - (4) $p\pi$ -d π bonds are present in SO₂

CB0186

- **59.** The hybridizations of atomic orbitals of nitrogen in NO_2^+ , NO_3^- and NH_4^+ respectively are
 - (1) sp, sp² and sp³
 - (2) sp², sp and sp³
 - (3) sp, sp³ and sp²
 - (4) sp², sp³ and sp

CB0187

- **60.** Which of the following fluoro-compounds is most likely to behave as a Lewis base ?
 - (1) CF₄
- (2) SiF₄
- (3) BF₃
- (4) PF₃

CB0188

- **61.** Which of the following pairs of ions i isoelectronic and isostructural?
 - (1) SO_3^{2-} , NO_3^{-}
 - (2) ClO_3^- , SO_3^{2-}
 - (3) CO_3^{2-} , NO_3^{-}
 - (4) ClO₃⁻, CO₃²

CB0189

NEET(UG) 2017

- **62.** Ionic mobility of which of the following alkali metal ions is lowest when aqueous solution of their salts are put under an electric field?
 - (1) K
- (2) Rb
- (3) Li
- (4) Na

CB0198

63. Match the interhalogen compounds of column-I with the geometry in column II and assign the correct. code.

Co	Column-I		Column-II
(a)	XX'	(i)	T-shape
(b)	XX' ₃	(ii)	Pentagonal
			bipyramidal
(c)	XX' ₅	(iii)	Linear
(d)	XX' ₇	(iv)	Square-Pyramidal
		(v)	Tetrahedral

Code:

	(a)	(b)	(c)	(d
(1)	(iii)	(i)	(iv)	(ii)
(2)	(v)	(iv)	(iii)	(ii)
(3)	(iv)	(iii)	(ii)	(i)
(4)	(iii)	(iv)	(i)	(ii)

CB0199

- **64.** Which of the following pairs of compounds is isoelectronic and isostructural?
 - (1) Tel₂, XeF₂
- (2) IBr₂⁻, XeF₂
- (3) IF₃, XeF₂
- (4) BeCl₂, XeF₂

CB0200

- **65.** The species, having bond angles of 120° is :-
 - (1) CIF₃
- (2) NCl₃
- (3) BCl₃
- (4) PH₃

CB0201

- **66.** Which of the following pairs of species have the same bond order?
 - (1) O₂, NO⁺
- (2) CN⁻, CO
- (3) N_2 , O_2^-
- (4) CO, NO

CB0202

NEET(UG) 2018

- **67.** Among CaH₂, BeH₂, BaH₂, the order of ionic character is
 - (1) $BeH_9 < CaH_9 < BaH_9$
 - (2) $CaH_2 < BeH_2 < BaH_2$
 - (3) $BeH_{2} < BaH_{2} < CaH_{2}$
 - (4) $BaH_2 < BeH_2 < CaH_2$

- **68.** Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is 1s² 2s² 2p³, the simplest formula for this compound is
 - (1) Mg_2X_3

(2) MgX₂

- (3) Mg₂X
- (4) Mg_3X_2

CB0208

69. Consider the following species:

CN⁺, CN⁻, NO and CN

Which one of these will have the highest bond order?

- (1) NO
- (2) CN⁻
- (3) CN⁺
- (4) CN

CB0209

- **70.** Which one of the following elements is unable to form MF_6^{3-} ion ?
 - (1) Ga
- (2) AI
- (3) B
- (4) In

CB0210

- **71.** In the structure of CIF₃, the number of lone pairs of electrons on central atom 'Cl' is
 - (1) one
- (2) two
- (3) four
- (4) three

CB0211

NEET(UG) 2019

- **72.** The number of sigma (σ) and pi (π) bonds in pent-2-en-4-yne is :-
 - (1) 10σ bonds and 3π bonds
 - (2) 8σ bonds and 5π bonds
 - (3) 11 σ bonds and 2π bonds
 - (4) 13 σ bonds and no π bond

CB0362

- 73. Which of the following diatomic molecular species has only π bonds according to Molecular Orbital Theory ?
 - (1) O_2
- (2) N_2
- (3) C_2
- (4) Be₂

CB0363

- **74.** Which of the following species is **not** stable?
 - (1) $[SiF_6]^{2-}$
 - (2) [GeCl₆]²⁻
 - (3) $[Sn(OH)_6]^{2-}$
 - (4) [SiCl₆]²⁻

CB0364

- **75.** Identify the **incorrect** statement related to PCl₅ from the following:-
 - (1) Three equatorial P–Cl bonds make an angle of 120° with each other

Chemistry: Chemical Bonding

- (2) Two axial P–Cl bonds make an angle of 180° with each other
- (3) Axial P–Cl bonds are longer than equatorial P–Cl bonds
- (4) PCl₅ molecule is non-reactive

CB0365

76. Match the Xenon compounds in **Column–I** with its structure in **Column–II** and assign the **correct** code:-

Column-I	Column-II
Column-I	Column-II

- (a) XeF₄
- (i) pyramidal
- (b) XeF₆
- (ii) square planar
- (c) XeOF₄
- (iii) distorted octahedral
- (d) XeO₃
- (iv) square pyramidal

Code :

- (a) (b)
- (c)
- (1) (i)
- (iii)
 - ii) (iv)

(d)

(i)

(iv)

(ii)

- (2) (ii)
- (iii)

(ii)

- (iv)
- (3) (ii) (iii)
- (i)
- (4) (iii) (iv)
- (i)
- CB0366
- **77.** Which is the **correct** thermal stability order for $H_{\nu}E$ (E=O, S, Se, Te and Po)?

(1)
$$H_2S < H_2O < H_2Se < H_2Te < H_2Po$$

- (2) $H_2O < H_2S < H_2Se < H_2Te < H_2Po$
- (3) $H_{9}Po < H_{9}Te < H_{9}Se < H_{9}S < H_{9}O$
- (4) $H_9Se < H_9Te < H_9Po < H_9O < H_9S$

CB0367

NEET(UG) 2019 (ODISHA)

- **78.** Which of the following is paramagnetic?
 - (1) N_2

(2) H_{2}

(3) Li₂

(4) O_{2}

- **79.** Which of the following is the correct order of dipole moment?
 - (1) $NH_3 < BF_3 < NF_3 < H_2O$
 - (2) $BF_3 < NF_3 < NH_3 < H_2O$
 - (3) $BF_3 < NH_3 < NF_3 < H_2O$
 - (4) $H_2O < NF_3 < NH_3 < BF_3$

- **80.** The number of hydrogen bonded water molecule(s) associated with CuSO₄.5H₂O is :-
 - (1) 3

(2) 1

(3) 2

(4)5

CB0370

NEET(UG) 2020

- **81.** Identify a molecule which does not exist.
 - (1) O₂
- (2) He₂

- (3) Li₂
- (4) C_{2}

CB0526

- **82.** Which of the following set of molecules will have zero dipole moment?
 - (1) Boron trifluoride, beryllium difluoride, carbon dioxide, 1,4-dichlorobenzene
 - (2) Ammonia, beryllium difluoride, water, 1,4-dichlorobenzene
 - (3) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
 - (4) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene

CB0527

NEET(UG) 2020(COVID-19)

- **83.** Among the compounds shown below which one revealed a linear structure?
 - (1) NO₂
- (2) HOCl
- (3) O_3
- (4) N₂O

CB0528

84. Match the compounds of Xe in column I with the molecular structure in column II.

Column-I	Column-II
(a) XeF ₂	(i) Square planar
(b) XeF ₄	(ii) Linear
(c) XeO ₃	(iii) Square pyramidal
(d) XeOF ₄	(iv) Pyramidal
(1) (a)-(ii) (b)-(i) (c)-(iii)	(d)-(iv)
(2) (a)-(ii) (b)-(iv) (c)-(iii)	(d)-(i)
(3) (a)-(ii) (b)-(iii) (c)-(i)	(d)-(iv)
(4) (a)-(ii) (b)-(i) (c)-(iv)	(d)-(iii)

CB0529

85. Match the coordination number and type of hybridisation with distribution of hybrid orbitals in space based on Valence bond theory.

Coordination	Distribution
number and	of hybrid
type of	orbitals
hybridisation	in space
(a) 4 , sp^3	(i) trigonal
	bipyramidal
(b) 4, dsp ²	(ii) octahedral
(c) 5, sp ³ d	(iii) tetrahedral
(d) 6 , d^2sp^3	(iv) square planar

Select the correct option:

- (1) (a)-(ii) (b)-(iii) (c)-(iv) (d)-(i)
- (2) (a)-(iii) (b)-(iv) (c)-(i) (d)-(ii)
- (3) (a)-(iv) (b)-(i) (c)-(ii) (d)-(iii)
- (4) (a)-(iii) (b)-(i) (c)-(iv) (d)-(ii)

CB0530

86. Identify the wrongly matched pair.

Molecule	Shape or geometry
	of molecule
(1) PCl ₅	Trigonal planar
(2) SF ₆	Octahedral
(3) BeCl ₂	Linear
(4) NH ₃	Trigonal pyramidal

87. The potential energy (y) curve for H_2 formation as a function of internuclear distance (x) of the H atoms is shown below.

The bond energy of H_2 is:

- (1) (b a)
- (2) $\frac{(c-a)}{2}$
- (3) $\frac{(b-a)}{2}$
- (4) (c a)

CB0532

NEET(UG) 2021

- $\begin{tabular}{ll} \bf 88. & BF_3 \ is \ planar \ and \ electron \ deficient \ compound. \\ & Hybridization \ and \ number \ of \ electrons \ around \\ & the \ central \ atom, \ respectively \ are: \\ \end{tabular}$
 - (1) sp^3 and 4
- (2) sp^{3} and 6
- (3) sp^2 and 6
- $(4) \text{ sp}^2 \text{ and } 8$

CB0533

89. Match List - I with List - II.

List-I	List-II
(a) PCl ₅	(i) Square pyramidal
(b) SF ₆	(ii) Trigonal planar
(c) BrF ₅	(iii) Octahedral
(d) BF ₃	(iv) Trigonal bipyramidal

Choose the **correct** answer from the options given below.

- (1) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
- (4) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)

CB0534

- **90.** Which of the following molecules is non-polar in nature?
 - (1) POCl₃
- (2) CH₂O
- (3) SbCl₅
- (4) NO₂

CB0535

- **91.** From the following pairs of ions which one is not an iso-electronic pair?
 - (1) O²⁻, F⁻
- (2) Na+, Mg²⁺
- (3) Mn²⁺, Fe³⁺
- (4) Fe²⁺, Mn²⁺

CB0536

NEET (UG) 2021 (Paper-2)

92. Match the columns.

_		_
- 1		T
	.161	

List II

- a. IF₂^Θ
- i. sp
- b. HCN
- ii. sp³d
- c. PCl₄+
- iii. sp^3d^2
- d. XeF₄
- iv. sp³
- (1) a i, b iv, c ii, d iii
- (2) a ii, b i, c iv, d iii
- (3) a iii, b ii, c i, d iv
- (4) a iv, b iii, c ii, d i

CB0537

- **93.** Which of the following has greater bond length?
 - (1) P O
- (2) S O
- (3) Cl O
- (4) O = O

CB0538

- **94.** Amongst sodium halides (NaF, NaCl, NaBr and Nal), NaF has the highest melting point because of
 - (1) highest oxidising power
 - (2) lowest polarity
 - (3) maximum ionic character
 - (4) minimum ionic character

CB0539

- **95.** In SiF_6^{2-} and $SiCl_6^{2-}$ which one is known and why?
 - (1) ${\rm SiF_6}^{2-}$ because of small size of F
 - (2) ${\rm SiF_6}^{2-}$ because of large size of F
 - (3) ${\rm SiCl_6}^{2-}$ because of small size of Cl
 - (4) SiCl₆²⁻ because of large size of Cl

CB0540

NEET(UG) 2022

- **96.** Which amongst following is **incorrect** statement?
 - (1) C_2 molecule has four electrons in its two degenerate π molecular orbitals.
 - (2) H_2^+ ion has one electron
 - (3) O_2^+ ion is diamagnetic.
 - (4) The bond orders of O_2^+, O_2^-, O_2^- and $O_2^{2^-}$ are 2.5, 2, 1.5 and 1, respectively.

- 97. Amongst the following which one will have maximum 'lone pair-lone pair' electron repulsions? $(1) IF_{5}$
 - (2) SF₄
 - (3) XeF₂ (4) ClF₃

NEET(UG) 2022 (OVERSEAS)

- 98. Which one of the following statements is true about the structure of CO_3^{2-} ion?
 - (1) Out of the three C-O bonds, two are longer and one is shorter.
 - (2) It has three sigma and three π -bonds.
 - (3) All three C-O bonds are equal in length with a bond order in between 1 and 2.
 - (4) It can be explained by considering sp³ hybridization.

CB0543

- **99.** LiF is sparingly soluble in water because it has
 - (1) small electronegativity.
 - (2) high lattice enthalpy.
 - (3) low hydration enthalpy.
 - (4) partial covalent character.

CB0544

- **100.** What is the **correct** order for boiling points of the following compounds?
 - (1) $BiH_3 > SbH_3 > NH_3 > AsH_3 > PH_3$
 - (2) $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$
 - (3) $PH_3 > NH_3 > AsH_3 > SbH_3 > BiH_3$
 - (4) $AsH_3 > PH_3 > NH_3 > SbH_3 > BiH_3$

CB0545

- 101. Which one of the following is the correct order of decreasing bond enthalpies for the given species?
 - (1) $N_2 > O_2 > O_2^{2-} > O_2^{-}$
 - (2) $N_2 > O_2 > O_2^- > O_2^{2-}$
 - (3) $O_2 > N_2 > O_2^- > O_2^{2-}$
 - (4) $O_2^{2-} > O_2^- > O_2 > N_2$

CB0546

Re-NEET(UG) 2022

- **102.** The correct order of bond angles in the following compounds/species is:
 - (1) $H_2O < NH_3 < NH_4 < CO_2$
 - (2) $H_2O < NH_4 < NH_3 < CO_2$
 - (3) $H_2O < NH_4 = NH_3 < CO_2$
 - $(4) CO_9 < NH_3 < H_9O < NH_4$

CB0547

103. Match List-I with List-II:

	List-I		List-II
	(Molecules)		(Shape)
(a)	NH_3	(i)	Square pyramidal
(b)	ClF ₃	(ii)	Trigonal
			bipyramidal
(c)	PCl ₅	(iii)	Trigonal pyramidal
(d)	BrF ₅	(iv)	T-shape

Choose the **correct answer** from the options given below:

- (1) (a) (ii), (b) (iii), (c) (iv), (d) (i)
- (2) (a) (iii), (b) (iv), (c) (ii), (d) (i)
- (3) (a) (iv), (b) (iii), (c) (i), (d) (ii)
- (4) (a) (iii), (b) (iv), (c) (i), (d) (ii)

CB0548

ANSWER'S KEY **EXERCISE-II** (Previous Year Questions) Que. Ans. Que. Ans. Que. Ans. Que. Ans. Que. 2,3 Ans. Que. Ans. Que. Ans.

EXERCISE-III (Analytical Questions)

- The thermal stability of alkaline earth metal carbonates MgCO₃, CaCO₃, BaCO₃ and SrCO₃ decreases as:
 - (1) $CaCO_3 > SrCO_3 > MgCO_3 > BrCO_3$
 - (2) $BaCO_3 > SrCO_3 > MgCO_3 > CaCO_3$
 - (3) $BaCO_3 > SrCO_3 > CaCO_3 > MgCO_3$
 - (4) $MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$

CB0224

- **2.** Which of the following are iosoelectronic and isostructural NO_3^- , CO_3^{-2} , CIO_3^- , SO_3
 - (1) NO₃-, CO₃-2
- (2) SO₃, NO₃
- (3) ClO₃⁻, CO₃⁻²
- (4) CO₃⁻², SO₃

CB0225

- **3.** According to molecular orbital theory which of the following statement about the magnetic character and bond order is correct regarding O_2^+ ?
 - (1) paramagnetic and bond order $< O_2$
 - (2) paramagnetic and bond order $> O_2$
 - (3) diamagnetic and bond order $< O_2$
 - (4) diamagntic and bond order $> O_2$

CB0226

- **4.** Number of σ and π bond in SO_4^{-2} are :-
 - (1) 4, 2
- (2) 4, 3
- (3) 4, 4
- (4) 2, 3

CB0228

- **5.** The paramagnetic property of the oxygen molecule is due to the presence of unpaired electrons present in :-
 - (1) $(\sigma^2 p_y)^1$ and $(\sigma^* 2 p_y)^1$
- (2) $(\sigma 2p_{s})^{1}$ and $(\pi 2p_{s})^{1}$
- (3) $(\pi^*2p_n)^1$ and $(\pi^*2p_n)^1$
- (4) $(\pi*2p_1)^1$ and $(\pi2p_1)^1$

CB0229

- **6.** What is the hybridization of oxygen atom in an alcohol molecule?
 - (1) sp^3
- (2) sp
- (3) sp^2
- (4) $sp^{3}d$

CB0233

- **7.** In which of the following ionisation processes, the bond order has increased and the magnetic behaviour has changed
 - (1) NO \rightarrow NO⁺
- (2) $O_2 \to O_2^+$
- (3) $N_2 \rightarrow N_2^+$
- $(4) C_2 \rightarrow C_2^+$

CB0235

Master Your Understanding

- **8.** Which of the following hydrogen bonds is the strongest
 - (1) F-H ····· F
- (2) O-H ···· O
- (3) O-H ····· F
- (4) O-H ···· N

CB0236

- **9.** Which of the following species exhibits the diamagnetic behaviour
 - (1) O_2^+
- (2) O_{2}
- (3) NO
- (4) O_2^{2-}

CB0237

- **10.** The charge/size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species, K⁺, Ca⁺², Mg⁺², Be⁺²
 - (1) Be⁺² < K⁺ < Ca⁺² < Mg⁺²
 - (2) $K^+ < Ca^{+2} < Mg^{+2} < Be^{+2}$
 - (3) $Ca^{+2} < Mg^{+2} < Be^{+2} < K^{+}$
 - (4) $Mg^{+2} < Be^{+2} < K^+ < Ca^{+2}$

CB0238

- **11.** Which one of the following constitutes a group of the isoelectronic species?
 - (1) C_2^{2-}, O_2^-, CO, NO
 - (2) $NO^+, C_2^{2-}, CN^-, N_2$
 - (3) $CN^-, N_2, O_2^{2-}, C_2^{2-}$
 - (4) N_2, O_2^-, NO^+, CO

CB0239

- **12.** Which of the following pairs of species have the same bond order?
 - (1) CN⁻ and NO⁺
- (2) CN⁻ and CN⁺
- (3) O_2^- and CN^-
- (4) NO⁺ and CN⁺

CB0240

- **13.** Among the following, the molecule with highest dipole moment is:-
 - (1) CH₂Cl
- (2) CH₂Cl₂
- (3) CHCl₃
- (4) CCl₄

CB0241

- **14.** Which one of the following molecules is expected to exhibit diamagnetic behaviour?
 - (1) C_{2}
- (2) N_{2}^{-}
- (3) O₂
- $(4) S_{2}$

- **15.** Which one of the following order is correct for the bond energies of halogen molecules:
 - (1) $I_2 > Cl_2 > Br_2$
- (2) $Br_2 > Cl_2 > I_2$
- (3) $I_2 > Br_2 > Cl_2$
- (4) $Cl_2 > Br_2 > I_2$

- **16.** The boiling point of ICl is nearly 40° C higher than that of Br₂ although the two substances have the same relative molecular mass. This is bacasue:-
 - (1) ICl is ionic compound
 - (2) I-Cl bond is stronger than Br Br bond
 - (3) ICl is polar covalent molecule while Br₂ is non polar
 - (4) IP of Iodine is less than that of Br.

CB0246

- 17. Nitrogen does not form NF₅ because
 - (1) Nitrogen is member of V group
 - (2) It contains no empty d-orbital
 - (3) The bond energy of N = N is very high
 - (4) Inert pair effect exists in the molecule

CB0247

- **18.** CO₂ is a gas, while SiO₂ is a solid but both are-
 - (1) Covalent containing π -bond
 - (2) Molecules having $p\pi d\pi$ bonding
 - (3) Acidic
 - (4) Discrete molecules

CB0248

- **19.** Dipole moment is shown by
 - (1) 1, 4 dichlorobenzene
 - (2) Cis 1, 2-dichloro ethene
 - (3) Trans-1, 2- dichloro ethene
 - (4) benzene

CB0250

- **20.** Experiment shows that H₂O has a dipole moment where as CO₂ has not. Point out the structures which best illustrate these facts
 - (1) O = C = O, H = O = H

(3)
$$O = C = O$$
, H

$$(4) C=0, O-H$$

CB0251

- **21.** In which of the species, bond order increases on removing one electron:-
 - (a) NO
- (b) CN
- (c) O₂
- (d) CO
- Correct answer is -
- (1) b and d
- (2) a and c
- (3) b, d and c
- (4) b and c

CB0252

- **22.** Increasing order of bond length in NO, NO⁺ and NO⁻ is :-
 - (1) $NO > NO^{-} > NO^{+}$
 - (2) $NO^+ < NO < NO^-$
 - (3) $NO < NO^+ < NO^-$
 - (4) $NO < NO^+ = NO^-$

CB0253

- **23.** N_2 and O_2 are converted into monoanions, N_2^- and O_2^- respectively. Which of the following statements is wrong ?
 - (1) In N_2^- , N-N bond weakens
 - (2) In O₂⁻, O-O bond order increases
 - (3) In O_2^- , O-O bond order decreases
 - (4) N₂ becomes pagamegnetic

CB0254

- **24.** N_2 and O_2 are converted into monocations, N_2^+ and O_2^+ respectively. Which of the following is wrong ?
 - (1) In N₂⁺, N-N bond weakens
 - (2) In O_2^+ , the O-O bond order increases
 - (3) In O₂⁺, paramagnetism decreases
 - (4) N₂⁺ becomes diamagnetic

CB0255

- **25.** Glycerol is more viscous than glycol the reason is :-
 - (1) Higher molecular wt.
 - (2) More covalent
 - (3) More extent of hydrogen bonding
 - (4) Complex structure

CB0258

- **26.** Incorrect order of viscosity:
 - $(1) H_2SO_4 > HNO_3$
 - (2) $H_2O > CH_3OH$
 - (3) o-nitro phenol > p-nitro phenol
 - (4) Glycol > ether

CB0259

- **27.** Which of the following does not form a hydrogen bond with water
 - (1) (CH₃)₂CO
- (2) CH₃CN
- (3) CH₃OH
- $(4) C_2 H_6$

28. Lithium chloride is highly soluble in -

(1) C_6H_6

(2) H₂O

(3) D₂O

(4) All

CB0264

29. Which of the following molecule contains net π -bond only

(1) B_{2}

(2) C_2

(3) C_2^{-2}

(4) Both 1 & 2

CB0266

30. Pick out the incorrect statement :-

(1) sp^3d hybridisation involves $d_{x^2-v^2}$ orbital

(2) Hybridised orbital form σ -bond when overlaps with other orbitals.

(3) ${\rm SF}_2$ molecule is more polar than ${\rm CS}_2$

(4) o-nitrophenol is more volatile than p-nitrophenol.

CB0267

31. The group of substances in which at melting point covalent bond becomes weak:-

(1) NaCl, KCl, CaCl,

(2) I₂(s), CH₄(s), dry ice

(3) B₄C, diamond, SiC

(4) All of the above

CB0268

32. The incorrect statement is :-

(1) π^* p have two nodal planes

(2) Bond order of HeH⁺ is 0.5

(3) In NCO⁻, C is sp hybridised

(4) O₃ is polar while O₂ is non polar

CB0269

33. Solid CH₄ is

(1) Molecular solid

(2) Ionic solid

(3) Covalent solid

(4) None of these

CB0270

34. Which compound has the weakest bond

(1) Diamond

(2) Neon(solid)

(3) KCl

(4) water (ice)

CB0271

35. Which of the following order is not correct?

(1) $SF_2 > SF_4 > SF_6$ (ionic character)

(2) AlF₃ < Al₂O₃ < AIN (covalent character)

(3) CaCl₂ < SnCl₂ < CdCl₂ (covalent character)

(4) ZnCl₂ < CdCl₂ < HgCl₂ (ionic character)

CB0274

36. Match the column :-

(A) $NO_{3}^{-} + HCl$

(p) Keesom attraction

(B) $Xe + H_2O$

(q) Debye attraction

(C) $CH_3 - C - CH_3 + CH_3 - C = N$

(r) London force

(D) $CO_2 + CS_2$

(s) Ion-dipole attraction

(1) A-s, B-q, C-p, D-r

(2) A-q, B-s, C-p, D-r

(3) A-s, B-p, C-q, D-r

(4) A-s, B-q, C-r, D-p

CB0275

37. Which of the following statement is not correct?

(1) NO has one unpaired electron in ABMO.

(2) N-H bond length is higher in N_2H_4 as compared to N_2H_2

(3) Both PF₅ and IF₅ have identical shape

(4) Both SO₂ and BrF₃ are polar and planar

CB0277

38. Which of the following follow octet rule?

(1) BeH₂(s)

(2) $B_{2}H_{6}$

(3) BeCl₂(s)

(4) None

CB0371

39. Total no. of 90° angles in IF_5 molecule?

(1) 4

(2) 8

(3) 0

(4) 6

CB0372

40. Which is most nonpolar compound :-

(1) PCl₅

(2) PCl₃

(3) CH₃Cl

(4) ClF₃

CB0373

41. C_2 molecule consists of both π bonds due to :-

(1) The presence of four electrons in two π molecular orbitals

(2) The absence of any electrons in two π molecular orbitals

(3) The presence of 2 electrons in one σ molecular orbital

(4) The presence of 4 electrons in one σ molecular orbital

- **42.** Which is incorrect for both H_2^{Θ} and He_2^{\oplus} ions :-
 - (1) both have same bond order
 - (2) both have same number of electrons in antibonding M.O.
 - (3) both have similar stability
 - (4) both have different bond order

- **43.** Incorrect about PCl₅ molecule is :-
 - (1) Three P-Cl bond lie in equatorial plane
 - (2) Two P-Cl bond lie in axial plane
 - (3) Axial bond pairs suffer more repulsive interaction from the equatorial bond pair
 - (4) Equatorial bonds are longer than the axial bonds

CB0376

- **44.** Incorrect about C₂ is :-
 - (1) It contain 2π bond
 - (2) It contain $KK(\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2P_x^2 = \pi 2P_y^2)$
 - (3) It contains four electrons in 2 pi molecular orbitals
 - (4) It contains 6 electrons in bonding molecular orbital

