

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto – UFOP Departamento de Ciências Exatas e Aplicadas Campus João Monlevade

RELATÓRIO DE PRÁTICA

Tema:

Espectro de Frequência

Alunos:

Bruno Afonso da Conceição
Hugo Geraldo Fonseca
Matrícula: 14.1.8172
Matrícula 14.1.8358
Franklin Marinho
Matrícula: 14.1.8256
Paulo Furiat Jr
Hondemberg Ferreira
Amanda Ferreira de Castro
Matrícula: 13.2.8178
Matrícula: 12.1.8200

Disciplina: Fundamentos de Comunicações Curso: Engenharia Elétrica

Prof. Sarah Negreiros de Carvalho Leite

Data: jul. 2017

INTRODUÇÃO

Na aula prática do dia 06/06/2017, foram realizados experimentos sobre o espectro de frequência. Os sinais podem ser analisados tanto no domínio do tempo, quanto no domínio da frequência. A análise pode se basear em métodos matemáticos como as séries e transformadas de Fourier. As análises de sinais através destas ferramentas permite-nos compreender o comportamento de sinais periódicos ao longo do tempo.

OBJETIVO

Analisar sinais periódicos no tempo, com o auxílio do osciloscópio e do analisador de espectro, além de familiarizar o uso do analisador de espectro em frequência.

MATERIAIS OU INSTRUMENTOS UTILIZADOS

Gerador de função, Osciloscópio Digital de Fósforo, Analisador de Espectro e cabos de conexão.

ESTUDO PRELIMINAR

Escalas dB, dBm, dBmV, dBuV:

Unidade dB (Decibel) é uma relação de potência em termos de uma notação logarítmica. A utilização deste tipo de notação permite identificar os ganhos em um sistema simplificando a análise do sistema, através da soma de varias etapas do sistema ao invés de multiplicá-la. Esta unidade é utilizada para quantificar os níveis de ruídos gerados por equipamentos, ou também compreender o funcionamento do ouvido humano.

Unidade dBm é uma variação do dB é utilizado em sistemas de telecomunicação, é definido pela relação de potência de uma parte de um sistema com um valor fixo de 1 mW (mili Watts), este valor foi definido a partir da análise de impedância de uma linha de transmissão telefônica, desta forma 1 dBm é igual a 1 mW.

Unidade dBmV e dBuV relacionam o comas tensão de um sistema. A relação é obtida através da tensão de 0,775 V da entrada e a tensão do ponto a ser analisado do sistema. Estas unidades são muito utilizadas em telecomunicações, principalmente na área de áudio.

Diferença entre as janelas retangular, Hamming, Hanning, Blackman:

A janela retangular possui lóbulo principal de largura estreita, entretanto os lóbulos laterais decaem de maneira lenta com o aumento da frequência, já a janela Blackman possui um lóbulo principal com uma largura maior, entretanto o decaimento dos lóbulos laterais é mais acelerado com o aumento da frequência, o Hanning e Hamming são tipos intermediários aos outros dois. A diferença entre essas janelas está nas características do tamanho dos lóbulos principais e o decaimento dos secundários.

PROCEDIMENTOS PRÁTICOS

Onda Senoidal

Ajustou-se o gerador de funções de acordo com o solicitado pelo roteiro prático. A figura 1 abaixo apresenta a onda senoidal no domínio do tempo.

A FFT deste sinal apontou no osciloscópio a Frequência de 100kHz e Amplitude de 340mV no primeiro harmônico.

Figura I: Onda Senoidal

Onda Quadrada

A FFT deste sinal apontou no osciloscópio a Frequência de 100kHz e Amplitude de 440mV no primeiro harmônico, Frequência de 300kHz e Amplitude de 140mV no segundo harmônico, Frequência de 500kHz e Amplitude de 90mV no terceiro harmônico.

FIGURA II: Onda Quadrada

Onda Triangular

A FFT deste sinal apontou no osciloscópio a Frequência de 100kHz e Amplitude de 230mV no primeiro harmônico, Frequência de 300kHz e Amplitude de 30mV no segundo harmônico, Frequência de 500kHz e Amplitude de 10mV no terceiro harmônico.

FIGURA III: Onda triangular

Pulsos

A FFT deste sinal apontou no osciloscópio a Frequência de 100kHz e Amplitude de 135mV no primeiro harmônico, Frequência de 300kHz e Amplitude de 130mV no segundo harmônico, Frequência de 500kHz e Amplitude de 120mV no terceiro harmônico, Frequência de 700kHz e Amplitude de 105mV no quarto harmônico, Frequência de 700kHz e Amplitude de 90mV no quinto harmônico, Frequência de 1100kHz e Amplitude de 70mV no sexto harmônico, Frequência de 1300kHz e Amplitude de 50mV no sétimo harmônico, Frequência de 1500kHz e Amplitude de 45mV no oitavo harmônico e Frequência de 1700kHz e Amplitude de 15mV no nono harmônico.

FIGURA IV: Pulsos

Sinc

A onda Sinc apresentou uma FFT com a semelhança de uma onda quadrada entretanto não tão perfeita quanto a onda quadrada a Amplitude da FFT variou entre 34 e 40 mV. Como apresentado na figura a seguir:

FIGURA V: Sinc

ANALISADOR DE ESPECTRO

Durante a realização do experimento cumpriu-se os passos indicados no roteiro prático para a familiarização com o equipamento, modificou-se as escalas, alterouse os parâmetros solicitados afim de compreender os funcionamento do equipamento, a figura a seguir ilustra um dos passos feitos durante a realização da prática.

Figura VI: Analisador de espectro

CONCLUSÃO

Após todas as medições, análises, inclusive a plotagem destes sinais utilizando MatLab, percebeu-se que os gráficos gerados e as FTT's obtidas condisseram com os valores medidos experimentalmente com os plotados pelo software, inclusive os harmonicos. Constatou-se ainda, as diferenças entre as escalas utilizadas na medição de sinais e também a sua importância nas telecomunicações. Um dos cuidados que se deve tomar ao fazer essa atividade é estar atento ao risco de provocar um curto circuito ou receber uma descarga elétrica, o que provocar lesões como queimaduras, além disso, é fundamental saber como conectar os cabos nos equipamentos de forma correta, além de entender o funcionamento dos componentes para obtenção de resultados precisos. Ao fim desta prática nos sentimos satisfeitos, pois alcançamos todos os objetivos propostos pelo roteiro prático.

REFERÊNCIAS

LATHI. B. P. Modern Digital and Analog Communications Systems - 4ª edição.

HAYKIN. S. & MOHER. M.Introduction to Analog and Digital COmmunications - 2ª edição.