MANE 6760 - FEM for Fluid Dyn. - Lecture 06

Prof. Onkar Sahni, RPI

F22: 20th Sep 2022

Regular FE Form: AD equation

Regular/standard FE (Galerkin) form: find $\bar{\phi} \in \bar{\mathcal{S}} \subset \mathcal{S}$ such that

$$a(\bar{w},\bar{\phi})=(\bar{w},s)$$

for all $\bar{w} \in \bar{\mathcal{W}} \subset \mathcal{W}$ Leads to numerically spurious oscillations for an advection-dominated case with high (global) Peclet number, $Pe = Pe^G = |\boldsymbol{a}|L/\kappa$, particular when cell/element Peclet number, $Pe^e = |\boldsymbol{a}|h/(2\kappa)$ is above $\mathcal{O}(1)$ (note for uniform mesh $Pe^e = Pe^G/(2N_e)$)

Stabilized FE Form: AD equation

Stabilized/generalized FE (Galerkin) form: find $\bar{\phi} \in \bar{\mathcal{S}} \subset \mathcal{S}$ such that

$$a(ar{w},ar{\phi})+a_{stab}(ar{w},ar{\phi})=(ar{w},s)$$

for all $\bar{w} \in \bar{\mathcal{W}} \subset \mathcal{W}$ Several options available for $a_{stab}(\cdot, \cdot)$:

- Streamline-upwind Petrov Galerkin/SUPG
- Galerkin least squares/GLS
- Variational multiscale/VMS
- ... others (residual-free bubbles, etc)

A general stabilized FE form:

▶ Consider a general operator $\hat{\mathcal{L}}(\cdot)$ acting on weight function (becomes specific when a particular choice is made for $\hat{\mathcal{L}}(\cdot)$)

$$a(\bar{w}, \bar{\phi}) + a_{stab}(\bar{w}, \bar{\phi}) = (\bar{w}, s)$$
 $a(\bar{w}, \bar{\phi}) + \underbrace{(\hat{\mathcal{L}}(\bar{w}), -\tau R(\bar{\phi}))_{\hat{\Omega}}}_{a_{stab}(\cdot, \cdot)} = (\bar{w}, s)$

where $\hat{\Omega}$ is the element interiors, τ is the stabilization parameter and recall $R(\cdot)$ is the strong-form residual leading to a consistent method in that when $\bar{u}=u$ (i.e., exact solution) then $a_{stab}(\cdot,\cdot)=0$

• Why element interiors? (i.e., $\hat{\Omega}$)

Streamline-upwind Petrov-Galerkin/SUPG form:

$$\hat{\mathcal{L}}(\cdot) = -\mathcal{L}^{adv}(\cdot) = -\boldsymbol{a} \cdot \nabla(\cdot)$$

$$a_{SUPG}(\bar{w}, \bar{\phi}) = (-\mathcal{L}^{adv}(\bar{w}), -\tau R(\bar{\phi}))_{\hat{\Omega}}$$

Why is it referred to as streamline-upwind?

Why is it referred to as Petrov-Galerkin?

Galerkin least squares/GLS form:

$$\hat{\mathcal{L}}(\cdot) = -\mathcal{L}(\cdot) = -\left(\mathcal{L}^{adv}(\cdot) + \mathcal{L}^{diff}(\cdot)\right) = -\left(\boldsymbol{a} \cdot \nabla(\cdot) - \kappa \nabla^{2}(\cdot)\right)$$

$$a_{GLS}(\bar{w}, \bar{\phi}) = (-\mathcal{L}(\bar{w}), -\tau R(\bar{\phi}))_{\hat{\Omega}}$$

Why is it referred to as Galerkin least squares?

Variational multiscale/VMS form:

 $\hat{\mathcal{L}}(\cdot) = \mathcal{L}^*(\cdot) = -\mathcal{L}^{adv}(\cdot) + \mathcal{L}^{diff}(\cdot) = -\boldsymbol{a} \cdot \nabla(\cdot) - \kappa \nabla^2(\cdot)$ (adjoint operator)

$$a_{VMS}(\bar{w}, \bar{\phi}) = (\mathcal{L}^*(\bar{w}), -\tau R(\bar{\phi}))_{\hat{\Omega}}$$

Why is it referred to as variational multiscale?

 Note that all stabilized forms are equivalent when using linear (simplicial) finite elements for steady, linear, scalar advection-diffusion equation

Intentionally Left Blank