Лабораторная работа №3

Дисциплина: Сетевые технологии

Жибицкая Евгения Дмитриевна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выводы	17
Сг	Список литературы	

Список иллюстраций

2.1	ipconfig	6
2.2	ipconfig /all	7
2.3	Содержимое кэша сопоставителя DNS	8
2.4	МАС-адрес	8
2.5	Установка wireshark	9
2.6	Установка winpcap	9
2.7	Запуск программы	10
2.8	ipconfig	10
2.9	Команда ping	11
2.10	Пакеты arp or icm	11
2.11	Эхо-запрос	12
2.12	Эхо-ответ	12
2.13	Кадры протокола ARP	13
2.14	Запрос	13
2.15	Ответ	14
2.16	HTTP	14
2.17	DNS	15
2.18	QUIC	15
2.19	Просмотр перехвата	16
2.20	График потока	16

Список таблиц

1 Цель работы

Знакомство с Wireshark, изучение с его помощью кадров Ethernet, анализ PDU протоколов транспортного и прикладного уровней стека TCP/IP

2 Выполнение лабораторной работы

Для начала введем ipconfig, получив информацию об устройстве, воспользуемся опциями для более подробного вывода(рис. 2.1 и (рис. 2.2) и (рис. 2.3)) узнаем МАС-адрес устройства(рис. 2.4).

```
× Windows PowerShell
     edzhibitskaya
PS C:\Users\janes> ipconfig
łастройка протокола IP для Windows
Адаптер беспроводной локальной сети Беспроводная сеть 2:
    Состояние среды. . . . . . . : Среда передачи недоступна. DNS-суффикс подключения . . . . :
Адаптер беспроводной локальной сети Беспроводная сеть 3:
    Состояние среды. . . . . . . : Среда передачи недоступна. DNS-суффикс подключения . . . . . :
Адаптер беспроводной локальной сети Беспроводная сеть 4:
     Состояние среды. . . . . . . : Среда передачи недоступна.
    DNS-суффикс подключения . . . . :
Адаптер Ethernet outline-tap0:
    Состояние среды. . . . . . . : Среда передачи недоступна. DNS-суффикс подключения . . . . :
Адаптер беспроводной локальной сети Беспроводная сеть:
    DNS-суффикс подключения . . . . : IGD_MGTS
IPv6-адрес. . . . . . . . . . : 2a00:1370:8178:119b:379:dab3:a
 00:6f21
   Временный IPv6-адрес. . . . . . : 2a00:1370:8178:119b:d06f:dc5e:
    Локальный IPv6-адрес канала . . . : fe80::b9ce:7dcd:1e71:b97a%13

      IPv4-адрес.
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      <t
    192.168.1.1
```

Рис. 2.1: ipconfig

Рис. 2.2: ipconfig /all

```
× Windows PowerShell
edzhibitskaya
PS C:\Users\janes> ipconfig /displaydns
Настройка протокола IP для Windows
   fe3cr.delivery.mp.microsoft.com
   Имя записи. . . . . : fe3cr.delivery.mp.microsoft.com
   Тип записи. . . . . : 5
Срок жизни. . . . . : 81912
   Длина данных. . . . : 8
   Раздел. . . . . . . : Ответ
   CNAME-запись. . . . : fe3.delivery.mp.microsoft.com
   Имя записи. . . . . : fe3.delivery.mp.microsoft.com
   Тип записи. . . . . : 5
   CNAME-запись. . . . : glb.cws.prod.dcat.dsp.trafficmanager.net
   Имя записи. . . . . :
                          glb.cws.prod.dcat.dsp.trafficmanager.net
   Тип записи. . . . . :
                          81912
   Срок жизни. . . . . :
   Длина данных. . . . :
                          16
   Раздел. . . . . . . :
                          Ответ
   АААА-запись . . . . : 2603:1030:408:7::3d
```

Рис. 2.3: Содержимое кэша сопоставителя DNS

Рис. 2.4: МАС-адрес

Проанализируем MAC-адрес 38-D5-7A-F6-60-DD

Он состоит из нескольких частей и содержит следующую информацию:

OUI (идентификатор производителя): 38-D5-7A

Идентификатор сетевого интерфейса(уникальная часть: F6-60-DD Тип адреса:

Индивидуальный (Unicast): Младший бит первого байта (38 -> 00111000) равен 0.

Глобально администрируемый (UAA): Второй младший бит первого байта равен 0.

Для дальнейшего выполнения лабораторной работы нам необходимо утановить Wireshark. Используем для этого Chocolatey(рис. 2.5). Также понадобится еще один пакет, который мы и установим(рис. 2.6)

```
PS C:\Users\janes> choco install wireshark
Chocolatey v2.5.1
Installing the following packages:
wireshark
By installing, you accept licenses for the packages.
Downloading package from source 'https://community.chocolatey.org/ap:/v2/'

chocolatey-windowsupdate.extension v1.0.5 [Approved]
chocolatey-windowsupdate.extension package files install completed. Fee forming other installation steps.
```

Рис. 2.5: Установка wireshark

```
PS C:\Users\janes> choco install winpcap
Chocolatey v2.5.1
Installing the following packages:
winpcap
By installing, you accept licenses for the packages.
Downloading package from source 'https://community.chocolatey.org/api/v2/'
Progress: Downloading WinPcap 4.1.3.20161116... 100%
WinPcap v4.1.3.20161116 [Approved] - Likely broken for FOSS users (du
```

Рис. 2.6: Установка winpcap

Далее запускаем Wireshark, выбираем активный на устройстве интерфейс и смотрим, что начался захват трафика(рис. 2.7)

Рис. 2.7: Запуск программы

Далее командой ipconfig определим IP-адрес устройства и шлюз по умолчанию(рис. 2.8)

Рис. 2.8: ipconfig

Затем пропингуем шлюз по умолчанию, клавишами остановим процесс(рис. 2.7)

Рис. 2.9: Команда ping

После остановим захват трафика в Wireshark, пропишем фильтр arp or icm и убедимся что в списке пакетов видны только пакеты ARP или ICMP(рис. 2.10)

Рис. 2.10: Пакеты arp or icm

Изучим эхо-запрос и эхо-ответ ICMP – На панели списка пакетов (верхний раздел) выберим первый указанный кадр ICMP — эхо-запрос(рис. 2.11)

Рис. 2.11: Эхо-запрос

– На панели списка пакетов (верхний раздел) выберем второй указанный кадр ICMP — эхо-ответ. (рис. 2.12)

Рис. 2.12: Эхо-ответ

Длина кадров составляет 74 байта, тип - Ethernet 2, MAC-адреса - 38:d5:7a:f6:60:dd (UAA, Unicast) и 58:18:5c:6b:35:5f (UAA, Unicast), IP-адреса - 192.168.1.35 и 192.168.1.1

Также изучим кадры данных протокола ARP(рис. 2.13)

Рис. 2.13: Кадры протокола ARP

Начнем новый процесс захвата и пропингуем любой другой адрес, например, VK, изучим данные по нему.

МАС назначения 38:d5:7a:fc:60:dd Unicast, UAA. это устройство. МАС источника 58:48:5c:6b:35:5f Unicast, UAA. Маршрутизатор (шлюз, ір - 87.240.129.133) (рис. 2.14 и рис. 2.15). При обмене пакетами с внешними сетями (интернетом) МАС-адреса источника и назначения в кадре Ethernet всегда принадлежат устройствам локальной сети (отправителю и шлюзу). МАС-адреса устройств из глобального интернета тут не видны.

Рис. 2.14: Запрос

Рис. 2.15: Ответ

Проанализируем также протоколы транспортного уровня.

Начнем захват трафика, перейдем на сайт, работающий по протоколу НТТР.

В Wireshark в строке фильтра укажем http и проанализируем информацию по протоколу TCP в случае запросов и ответов, аналогично для DNS и QUIC(рис. 2.16, рис. 2.17 и рис. 2.18).

Можно увидеть, что используются tcp протоколы, сетевые протоколы ipv4/6 В качестве DNS-сервера используется маршрутизатор (fe80::5af8:5cff:fe60:355f), который ретранслирует запросы на внешние DNS-серверы и возвращает ответы. Запросы отправляются на Microsoft-серверы.

Для QUIC запросов используется UDP протокол, ipv6, видны типы пактов - initial(с основными данными), handshake.

Рис. 2.16: НТТР

Рис. 2.17: DNS

Рис. 2.18: QUIC

Проанализируем отдельно handshake protocol TCP.

Также захватим трафик, используем HTTP соединения и посмотрим на данные(рис. 2.19). TCP Handshake (3-way):

Клиент → Сервер: SYN (запрос на соединение)

Сервер → Клиент: SYN-ACK (подтверждение + свой запрос)

Клиент → Сервер: АСК (подтверждение). Соединение установлено.

Пакет №1176 (после handshake):

Seq=3927 — клиент уже отправил 3926 байт данных.

Ack=7034 — клиент подтвердил получение 7033 байт от сервера.

TCP Retransmission — этот пакет был отправлен повторно, так как первый раз потерялся.

Рис. 2.19: Просмотр перехвата

Далее просмотрим график потока в меню статистика и ознакомимся с информацией(рис. 2.20). Остановим захват.

- 1. Установление соединения (Handshake) Пакет 1 -3 обмены в обе стороны
- 2. Передача данных
- 3. Разрыв соединения и прекращение обмена данными

Рис. 2.20: График потока

3 Выводы

В ходе работы было произведено знакомство с Wireshark, были изучены с его помощью кадры Ethernet, произведенр анализ PDU протоколов транспортного и прикладного уровней стека TCP/IP

Список литературы

[ТУИС] (https://esystem.rudn.ru/pluginfile.php/2858360/mod_resource/content/3/003-lab_datalink-layer-WSh.pdf)