PointCNN

On Feature Learning from Point Cloud Data

Motivation

Lack of regular grids poses the challenge of sorting the points into canonical orders

- CNNs are successful by picking-up on spatially-local correlations
- Point clouds (ii, iii, iv) are irregular and unordered
- Directly convolving against point cloud/features will lose shape information and be variant to the ordering
- Can we learn a transformation to first permute the points to some canonical order?

Challenges Applying CNNs

- Conv(K, [...]) is simply an element-wise product followed by a sum
- By directly applying Conv(K, [...]) we,
 - 1. Lose shape information $(f_{ii} = f_{iii})$
 - 2. Become variant to the ordering $(f_{iii} \neq f_{iv})$

X-Transformation

- Learns a K x K transformation with an MLP to weight and permute the input features
- Then apply the typical convolution on the transformed features
- $X = MLP(p_1, p_2, ..., p_K)$

$$f_{ii} = Conv(\mathbf{K}, X_{ii} \times [f_a, f_b, f_c, f_d]^T),$$

$$f_{iii} = Conv(\mathbf{K}, X_{iii} \times [f_a, f_b, f_c, f_d]^T),$$

$$f_{iv} = Conv(\mathbf{K}, X_{iv} \times [f_c, f_a, f_b, f_d]^T),$$

Hierarchal Convolution (for Images)

- $F_2 = Conv(K, F_1)$
 - **F**₁: R₁ x R₁ x C₁
 - **F**₂: R₂ x R₂ x C₂
 - $C_2 > C_1$ (deeper)
 - $R_2 < R_1$ (lower-rez)

- Applied recursively
- Producing feature maps in fewer and fewer spatial resolution
- But deeper and deeper channels

Hierarchal Convolution (X-Conv)

• $\mathbf{F}_{p} = X\text{-Conv}(\mathbf{K}, p, \mathbf{P}, \mathbf{F})$ = $Conv(\mathbf{K}, MLP(\mathbf{P} - p) \times [MLP_{\delta}(\mathbf{P} - p), \mathbf{F}])$

- (P' ← P p) Since X-Conv is designed to work on local regions take point p as origin and look at K neighbouring points
- $(\mathbf{F}_{\delta} \leftarrow MLP_{\delta}(\mathbf{P'}))$ Lift the coordinates into a higher dimensional/abstract representation
- (F_{*} ← [F_δ, F]) Then combine w/ associated features

Architecture

- Receptive field defined by K/N
 - K: # of selected neighbouring points (in prev. layer)
 - N: # of points (in prev. layer)
 - K/N = 1 = "global view of entire shape"
- Used dilation rate D = 2, sampling K points from (K x D) / N
- For segmentation used Conv-DeConv (reverse: more points, fewer channels)
- ELU activations, batch normalization, dropout, ADAM optimizer
- Randomly sample + shuffle input points per batch was crucial in training

X-Conv(N = 10, C = C₄, K = 3)

 \mathcal{X} -Conv(N = 7, C = C_3 , K = 3)

 \mathcal{X} - $Conv(N = 7, C = C_1, K = 4)$

Experiments & Results

Method	Input		ModelNet40	ScanNet
MVCNN [Su et al. 2015]	Images	2D Conv	90.1	-
FPNN [Li et al. 2016]	3D Dist. Field	1D Conv	87.5	-
Vol. CNN [Qi et al. 2016]	Voxels	3D Conv	89.9	74.9
O-CNN [Wang et al. 2017]	Octree Voxels	Sparse 3D Conv	90.6	-
PointNet [Qi et al. 2017a]	Point Cloud	Pointwise MLP	89.2	-
PointNet++ [Qi et al. 2017b]	Point Cloud	Multiscale Pointwise MLP	90.7	76.1
PointCNN	Point Cloud	X-Conv	91.7	77.9

Table 1: Comparisons of classification accuracy (%) on ModelNet40 [Wu et al. 2015b] and ScanNet [Dai et al. 2017].

Method	ShapeNet Parts	S3DIS	ScanNet
PointNet [Qi et al. 2017a]	83.7	47.6	73.9
PointNet++ [Qi et al. 2017b]	85.1	-	84.5
SyncSpecCNN [Yi et al. 2017a]	84.74	-	-
Pd-Network [Klokov and Lempitsky 2017]	85.49	-	-
SSCN [Graham et al. 2017]	85.98	-	-
SegCloud [Tchapmi et al. 2017]	-	48.92	-
SPGraph [Landricu and Simonovsky 2017]	-	54.06	-
PointCNN	86.13 ²	62.74 (54.1, w/o RGB)	85.1

Table 2: Segmentation comparisons on ShapeNet Parts [Yi et al. 2016] in part averaged IoU (%), S3DIS [Armeni et al. 2016] in mean IoU (%), and ScanNet [Dai et al. 2017] in per voxel accuracy (%).

Experiments & Results

Method	TU-Berlin	Quick Draw
Sketch-a-Net [Yu et al. 2017]	77.95	-
AlexNet [Krizhevsky et al. 2012]	68.60	-
PointNet++ [Qi et al. 2017b]	66.53	51.58
PointCNN	67.72	56.75

Table 3: Accuracy (%) comparisons on Tu-Berlin [Eitz et al. 2012] and Quick Draw [Ha and Eck 2017] classification.

	PointCNN	w/o X	w/o X (wider)	w/o X (deeper)
Core Layers	X-Conv ×4	Conv × 4	$Conv \times 4$	$Conv \times 6$
# Parameter	0.45M	0.23M	0.49M	0.4M
Accuracy (%)	91.7	89.1	86.1	88.3

Table 4: Ablation test of PointCNN variants on ModelNet40 classification. X-Conv is the key to PointCNN performance.

Experiments & Results

Stress test on few number of points