11.1 3,10,2,9	
$h_1(x) = x./5$ $h_2(x) = 7x./.8$	
open addressing (a) oa (n,i) = (h,n) +; $\forall h_2(u)$ $\forall .5$	
Oa (3.0) = (h(3) 0.h2(3))-1.5 = 3.	0
)=3.	J.
0 a (10,0) = 0	
10 3	
$O_{A}(2,0)=2$	
10/ /2/3/	
Oa(4,0) = 4 collision. $Oa(4,1) = h(4) + 1 \cdot h_2(4) \cdot 1.5 = 4 + 7.479 = 4 collision$	
$O_{\alpha}(4,2) = (4+2,4)/. \xi = 2$ collision. $O_{\alpha}(4,3) = (4+3,4)/. \xi = 1$	
0123	•

112a						
2- (0,	.7) leng 5) 1=	5				
	10) 1=			//		
1	234	5 6	7 8 9	10		
3						
Optimed 5	southin 2	, 3 .		Τ ,		
gredy alg	hich elimi	nating	offer 2	ach -1+	es.	