





#### Day 2 Lecture 1

# **Backpropagation**

The state of the s

#### Josep Ramon Morros

ramon.morros@upc.edu

Associate Professor Universitat Politècnica de Catalunya

## Acknowledgements



Xavier Giro-i-Nieto xavier.giro@upc.edu

Associate Professor
Universitat Politecnica de Catalunya
Technical University of Catalonia



Elisa Sayrol elisa.sayrol@upc.edu

Associate Professor ETSETB TelecomBCN Universitat Politècnica de Catalunya





Kevin McGuinness <sup>2</sup> kevin.mcguinness@dcu.ie

Research Fellow
Insight Centre for Data Analytics
Dublin City University

### Loss function - $L(y, \hat{y})$

The **loss function** assesses the performance of our model by comparing its predictions  $(\hat{y})$  to an expected value (y), typically coming from annotations.

<u>Example</u>: the predicted price  $(\hat{y})$  and one actually paid (y) could be compared with the Euclidean distance (also referred as L2 distance or Mean Square Error - MSE):

$$y = w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3 + b = \mathbf{w}^T \cdot \mathbf{x} + b$$

$$\mathcal{L}_2(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$







### Loss function - $L(y, \hat{y})$

<u>Discussion</u>: Consider a model with just one parameter ...

$$\hat{y} = x \cdot w$$

.....and that, given a pair  $(y, \hat{y})$ , we would like to update the current  $w_t$  value to a new  $w_{t+1}$  based on the loss function  $L_w$ .

- (a) Would you increase or decrease w,?
- (b) What operation could indicate which way to go?
- (c) How much would you increase or decrease w₁?



### Gradient Descent (GD)

#### Motivation for this lecture:

if we had a way to estimate the gradient of the loss ( $\nabla L$ )with respect to the parameter(s), we could use gradient descent to optimize them.





#### **Gradient Descent (GD)**

Backpropagation will allow us to compute the **gradients of the loss function** with respect to:

- all model parameters (**w & b**) final goal during training
- input/intermediate data visualization & interpretability purposes.

Gradients will "flow" from the output of the model towards the input ("back")

At each iteration, we expect the loss to decrease





Question: What is the computational graph (operations & order) of this perceptron with a sigmoid activation?

$$\mathbf{x} = [-1,-2]$$
  
 $\mathbf{w} = [2,-3]$   
 $\mathbf{b} = -3$ 























<u>Challenge</u>: How to compute the gradient of the loss function with respect to  $w_1$  or  $w_2$ ?

$$\frac{\partial \mathcal{L}(y, \hat{y})}{\partial w_1} = ?$$

$$\frac{\partial \mathcal{L}(y, \hat{y})}{\partial w_2} = ?$$

$$\frac{\partial \mathcal{L}(y, \hat{y})}{\partial b} = ?$$



$$\hat{y} = g_4(g_3(g_2(g_1(x_1))))$$



Decompose into steps (**forward propagation**):

$$x_2 = g_1(x_1)$$
 $x_3 = g_2(x_2)$ 
 $x_4 = g_3(x_3)$ 
 $\hat{y} = x_5 = g_4(x_4)$ 

Forward pass

$$\hat{y} = g_4(g_3(g_2(g_1(x_1))))$$



Want to find  $\frac{\partial \hat{y}}{\partial x_1}$ . Chain rule:

How does a variation ("difference") on the input affect the prediction?

$$\frac{\partial \hat{y}}{\partial x_1} = \frac{\partial \hat{y}}{\partial x_4} \frac{\partial x_4}{\partial x_3} \frac{\partial x_3}{\partial x_2} \frac{\partial x_2}{\partial x_1}$$

Backward pass



Decompose into steps again. Let  $\delta_k = \frac{\partial \hat{y}}{\partial x_k}$ . Backpropagation:

$$\delta_5 = \frac{\partial \hat{y}}{\partial x_5} = 1$$





Decompose into steps again. Let  $\delta_k = \frac{\partial \hat{y}}{\partial x_k}$ . Backpropagation:





Decompose into steps again. Let  $\delta_k = \frac{\partial \hat{y}}{\partial x_k}$ . Backpropagation:





Decompose into steps again. Let  $\delta_k = \frac{\partial \hat{y}}{\partial x_k}$ . Backpropagation:



It corresponds to how a variation of  $x_5$  affects  $\hat{y}$  ...

...multiplied by how a variation near the input  $x_4$  affects the output  $g_4(x_4)$ .



The same reasoning can be iteratively applied until reaching  $\frac{\partial \hat{y}}{\partial x_1}$ :

$$\delta_{5} = \frac{\partial \hat{y}}{\partial x_{5}} = 1$$

$$\delta_{4} = \frac{\partial \hat{y}}{\partial x_{4}} = \frac{\partial \hat{y}}{\partial x_{5}} \frac{\partial x_{5}}{\partial x_{4}} = \delta_{5} g_{4}'(x_{4})$$

$$\delta_{3} = \frac{\partial \hat{y}}{\partial x_{3}} = \frac{\partial \hat{y}}{\partial x_{4}} \frac{\partial x_{4}}{\partial x_{3}} = \delta_{4} g_{3}'(x_{3})$$

$$\delta_{2} = \frac{\partial \hat{y}}{\partial x_{2}} = \frac{\partial \hat{y}}{\partial x_{3}} \frac{\partial x_{3}}{\partial x_{2}} = \delta_{3} g_{2}'(x_{2})$$

$$\delta_{1} = \frac{\partial \hat{y}}{\partial x_{1}} = \frac{\partial \hat{y}}{\partial x_{2}} \frac{\partial x_{2}}{\partial x_{1}} = \delta_{2} g_{1}'(x_{1})$$

Backward pass



In order to compute  $\ \delta_k = rac{\partial \hat{y}}{\partial x_k}$  , we must:

- 1) Find the derivative function  $\rightarrow g'_{i}(\cdot)$
- 2) Evaluate  $g'_{i}(\cdot)$  at  $x_{i} \rightarrow g'_{i}(x_{i})$
- 3) Multiply  $g'_{i}(x_{i})$  with the backpropagated gradient  $(\delta_{k})$ .

$$\delta_{5} = \frac{\partial \hat{y}}{\partial x_{5}} = 1$$

$$\delta_{4} = \frac{\partial \hat{y}}{\partial x_{4}} = \frac{\partial \hat{y}}{\partial x_{5}} \frac{\partial x_{5}}{\partial x_{4}} = \delta_{5} g'_{4}(x_{4})$$

$$\delta_{3} = \frac{\partial \hat{y}}{\partial x_{3}} = \frac{\partial \hat{y}}{\partial x_{4}} \frac{\partial x_{4}}{\partial x_{3}} = \delta_{4} g'_{3}(x_{3})$$

$$\delta_{2} = \frac{\partial \hat{y}}{\partial x_{2}} = \frac{\partial \hat{y}}{\partial x_{3}} \frac{\partial x_{3}}{\partial x_{2}} = \delta_{3} g'_{2}(x_{2})$$

$$\delta_{1} = \frac{\partial \hat{y}}{\partial x_{1}} = \frac{\partial \hat{y}}{\partial x_{2}} \frac{\partial x_{2}}{\partial x_{1}} = \delta_{2} g'_{1}(x_{1})$$



Question: What are the derivatives of the function involved in the computational graph of a perceptron?

- SIGMOID (σ)
- SUM (+)
- PRODUCT (x)



We can now estimate the sensitivity of the output y with respect to each input parameter w<sub>i</sub> and x<sub>i</sub>.



# Gradient weights for sigmoid $\sigma$

$$\frac{\partial \sigma(x)}{\partial x} = \frac{\partial}{\partial x} \left( \frac{1}{1 + e^{-x}} \right) = \frac{-1}{(1 + e^{-x})^2} \frac{\partial (1 + e^{-x})}{\partial x} = \frac{-1}{(1 + e^{-x})^2} \frac{\partial (e^{-x})}{\partial x}$$

(\*) 
$$f(x) = \frac{g(x)}{h(x)}$$
  $f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{h^2}$ 

$$\frac{\partial \sigma(x)}{\partial x} = \frac{-1}{(1+e^{-x})^2}(-e^{-x}) = \frac{e^{-x}}{(1+e^{-x})^2}$$

...which can be re-arranged as...

$$\frac{\partial \sigma(x)}{\partial x} = \frac{e^{-x}}{(1+e^{-x})^2} = \frac{e^{-x}}{(1+e^{-x})} \frac{1}{(1+e^{-x})}$$

$$\frac{\partial \sigma(x)}{\partial x} = \left(\frac{1 + e^{-x}}{1 + e^{-x}} - \frac{1}{1 + e^{-x}}\right) \sigma(x)$$

$$\frac{\partial \sigma(x)}{\partial x} = (1 - \sigma(x)) \, \sigma(x) \quad {}^{\mathrm{b}}$$



0.6



Even more details: Arunava, "Derivative of the Sigmoid function" (2018)

Figure: Andrei Karpathy

$$\frac{\partial \sigma(x)}{\partial x} = (1 - \sigma(x)) \, \sigma(x)$$





**Sum:** Distributes the gradient to both branches.

$$\frac{\partial(a+b)}{\partial a} = 1$$

$$\frac{\partial(a+b)}{\partial b} = 1$$



**Product:** Switches gradient weight values.

$$\frac{\partial(a\cdot b)}{\partial a} = b$$

$$\frac{\partial(a\cdot b)}{\partial b} = a$$



Normally, we will be interested only on the weights (w<sub>i</sub>) and biases (b), not the inputs (x<sub>i</sub>). The weights are the parameters to learn in our models.



#### (bonus) Gradients weights for MAX & SPLIT

**Max:** Routes the gradient only to the higher input branch (not sensitive to the lower branches).



**Split:** Branches that split in the forward pass and merge in the backward pass, add gradients



## (bonus) Gradient weights for ReLU

$$ReLU(x) = \left\{ \begin{array}{ll} x & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{array} \right\}$$

$$\frac{\partial ReLU(x)}{\partial x} = u(x) = \left\{ \begin{array}{ll} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{array} \right\}$$





#### Backpropagation across layers

Gradients can flow across stacked layers of neurons to estimate their parameters.



#### Watch more



Gilbert Strang, <u>"27. Backpropagation: Find Partial Derivatives"</u>. MIT 18.065 (2018)



Creative Commons, <u>"Yoshua Bengio Extra</u> <u>Footage 1: Brainstorm with students"</u> (2018)

#### Learn more

#### **READ**

- Chris Olah, "Calculus on Computational Graphs: Backpropagation" (2015).
- Andrej Karpathy,, <u>"Yes, you should understand backprop"</u> (2016), and his <u>"course notes</u> at Stanford University CS231n.

#### **THREAD**



What are the clearest explanations of backprop on the web? The two that I happily point students to are...

cs231n.github.io/optimization-2/colah.github.io/posts/2015-08-...

#### Any others?

Tradueix el tuit 9:47 p. m. · 16 jul. 2019 · Twitter Web App

#### **Problem**

Consider a perceptron with a ReLU as activation function designed to process a single-dimensional inputs x.

- a) Draw the computational graph of the perceptron, drawing a circle around the parameters that need to be estimated during training.
- b) Compute the partial derivative of the output of the perceptron (y) with respect to each of its parameters for the input sample x=2. Consider that all the trainable parameters of the perceptron are initialized to 1.
- c) Modify the results obtained in b) for the case in which all the trainable parameters of the perceptron are initialized to -1.
- d) Briefly comment and compare the results obtained in b) and c).

### Problem (solved)

- a) Draw the computational graph of the perceptron, drawing a circle around the parameters that need to be estimated during training.
- b) Compute the partial derivative of the output of the perceptron (y) with respect to each of its parameters for the input sample x=2. Consider that all the trainable parameters of the perceptron are initialized to 1.



#### Problem (solved)

- c) Modify the results obtained in b) for the case in which all the trainable parameters of the perceptron are initialized to -1.
- d) Briefly comment and compare the results obtained in b) and c).



d) While in case b) the gradients can flow until the trainable parameters  $w_1$  and b, in case c) gradients are "killed" by the ReLU.