Hackathon Project Phases Template

Project Title:

Advancing Nutrition Science through GeminiAl

Team Name:

Dextures

Team Members:

- T. Sai Teja
- G. Uday Kumar
- C. Varun Yadav
- B.Nikhil

Phase-1: Brainstorming & Ideation

Objective:

To develop an Al-driven system that utilizes GeminiAl to analyze and optimize personalized nutrition plans based on user health data, dietary preferences, and scientific research.

Key Points:

1. Problem Statement:

The growing need for personalized nutrition guidance often lacks accurate and data-driven recommendations. Many individuals struggle with selecting optimal diets that align with their health conditions, lifestyle, and scientific research.

2. Proposed Solution:

- Develop an Al-powered system leveraging GeminiAl to analyze userspecific data such as dietary habits, health conditions, and nutritional goals.
- The system will provide real-time, evidence-based dietary recommendations personalized to users.
- It will process user inputs locally without relying on cloud storage or external databases.

3. Target Users:

- o Individuals looking for personalized diet recommendations
- Nutritionists and dietitians
- Healthcare professionals
- Fitness enthusiasts
- Researchers in nutritional science

4. Expected Outcome:

- An Al-powered nutrition assistant that provides customized meal plans, tracks user progress, and adapts to evolving health conditions.
- The system will reduce nutritional deficiencies, promote healthier lifestyles, and support dietary adherence through Al-driven recommendations.

Phase-2: Requirement Analysis

Objective:

To define the technical and functional requirements, ensuring alignment with user needs and industry standards.

Key Points:

- 1. Technical Requirements:
 - Programming Language: Python
 - Backend: GeminiAl API. StreamLit
 - Processing: On-device Al model execution

2. Functional Requirements:

- Al-based meal and nutrition recommendations
- Real-time diet tracking and progress analysis
- User input processing without cloud dependency

3. Constraints & Challenges:

- Ensuring high accuracy in Al-generated meal plans
- Handling large datasets efficiently on local storage

Providing dynamic recommendations without cloud resources

Phase-3: Project Design

Objective:

To create a structured system architecture and user experience flow.

Key Points:

- 1. System Architecture Diagram: (Flowchart illustrating how GeminiAl processes data and generates nutrition recommendations)
- 2. Data Flow:
 - User inputs health and dietary preferences
 - Al analyzes data and provides recommendations
 - User tracks meals and updates progress
 - System refines suggestions based on ongoing data

Phase-4: Project Planning (Agile Methodologies)

Objective:

To divide development tasks into manageable sprints and allocate responsibilities. Key Points:

- 1. Sprint Planning:
 - Sprint 1: Al Model Setup
 - Sprint 2: Backend Development
 - Sprint 3: Data Processing and Storage Implementation
 - Sprint 4: Testing and Refinements
- 2. Task Allocation:
 - Al Model Development
 - Backend & API Integration
 - Data Processing & Optimization

Phase-5: Project Development

Objective:

To build and integrate all components of the project.

Key Points:

- 1. Technology Stack Used:
 - Python, streamLit, GeminiAl API
- 2. Development Process:
 - o Implement Al-based recommendation logic
 - Process user input using local file storage
 - Optimize Al model execution for real-time results
- 3. Challenges & Fixes:
 - Optimizing Al-generated recommendations for accuracy
 - Handling data efficiently without cloud storage

Phase-6: Functional & Performance Testing

Objective:

To ensure the project functions as expected and meets all requirements. Key Points:

- 1. Test Cases Executed:
 - Al meal recommendations accuracy
 - Data processing from local file storage
- 2. Bug Fixes & Improvements:
 - Fixed incorrect diet suggestions for specific health conditions
 - Improved performance of local data handling
- 3. Final Validation:
 - Ensured alignment with initial problem statement and objectives