ASSIGNMENT 1

CS41001: Theory of Computation Autumn, 2021 Deadline: 2 October 2021, 23:59 Total Marks: 100

Solve all problems. Stick to notation used in the classes. Write solutions on white paper, scan and then upload a single pdf file. Make sure that the file size does not exceed 20 MB.

Any format other than pdf is not acceptable.

1. Does a generalisation of Rice's theorem hold for partial recursive functions? That is, can you show that any non-trivial property of the set of partial recursive functions is undecidable?

10

- 2. Let L be the set of Turing machines \mathcal{M} with input alphabet $\{0,1\}$ such that \mathcal{M} writes the symbol 1 at some point on its tape. Show that L is undecidable.
- 3. Let \mathscr{P} be a non-trivial property of r.e. sets over Σ . Let

$$S_{\mathscr{P}} = \{ A \subseteq \Sigma^* \mid A \text{ is } r.e. \text{ and } \mathscr{P}(A) = \top \}$$

and

$$T_{\mathscr{P}} = \{ \mathcal{M} \mid \mathcal{M} \text{ is a TM and } \mathscr{P}(L(\mathcal{M})) = \top \}.$$

Note that $T_{\mathscr{P}}$ contains descriptions of precisely those Turing machines that accept sets in $S_{\mathscr{P}}$.

Show that $T_{\mathscr{P}}$ is r.e. if and only if the following conditions hold.

- (a) \mathscr{P} is monotone.
- (b) If A is an infinite language in $S_{\mathscr{P}}$, then there is a finite subset of A in $\S_{\mathscr{P}}$.
- (c) The set of finite languages in $S_{\mathscr{P}}$ is enumerable.

You may break up the proof into several parts, as hinted below.

- \neg (a) implies $T_{\mathscr{P}}$ not r.e.
- \neg (b) implies $T_{\mathscr{P}}$ not r.e.
- $T_{\mathscr{P}}$ is r.e. implies (c).
- (a),(b) & (c) imply $T_{\mathscr{P}}$ is r.e..

20

- 4. Consider a variant of PCP where all strings (in the two sets) are of length exactly 5. Is this variant decidable? Justify.
- 5. Prove that $\{G: G \text{ is a CFG and } L(G) = L(G)^{\mathbb{R}}\}$ is undecidable.

10

5

6. If \mathcal{M} is a TM making at least 3 moves, then for any x, VALCOMPS $_{\mathcal{M}} = \bigcup_{x \in \Sigma^*} \text{VALCOMPS}_{\mathcal{M},x}$ is a CFL if and only if $\mathcal{L}(\mathcal{M})$ is finite.

Hint: Pumping lemma for CFLs.

7. Show that there exists an *r.e.* list of Turing machines such that every machine on the list accepts a recursive set and every recursive set is represented by some machine on the list. (Note that the machines need not be total.)

15

|20|

8. Let $Th^+(\mathbb{N})$ be the set of true sentences in the language of first-order number theory without the multiplication operator (and the corresponding identity 1). Show that $Th^+(\mathbb{N})$ is decidable. (That is, the problem of determining whether a given sentence involving only addition operator is true is recursive.)