Signature Gröbner bases over Tate algebras

Xavier Caruso¹ Tristan Vaccon² Thibaut Verron³

- 1. Université de Bordeaux, CNRS, Inria, Bordeaux, France
- 2. Université de Limoges, CNRS, XLIM, Limoges, France
- 3. Johannes Kepler University, Institute for Algebra, Linz, Austria

Seminar Algebra and Discrete Mathematics,

30 January 2020

12 March 2020

26 March 2020

• Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.01X - 1

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.01X 1LT(g)
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix} -100Xg \\ 100X \\ -10000g \\ 10000 \end{pmatrix}$$

- ▶ It terminates, but...
- $g \simeq 1$, but $f \mod g \not\simeq 0$

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.0001X 1LT(g)
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix}
-10000Xg \\
10000X \\
-100000000g \\
100000000$$

- ► It terminates, but...
- ▶ $g \simeq 1$, but $f \mod g \not\simeq 0$

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.000001X 1LT(g)
- ► The usual way:

- ► It terminates, but...
- ▶ $g \simeq 1$, but $f \mod g \not\simeq 0$

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.01X 1LT(g)
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix} -100Xg \\ 100X \\ -10000g \\ 10000 \end{pmatrix}$$

- ► It terminates, but...
- $ightharpoonup g \simeq 1$, but $f \mod g \not\simeq 0$

► Another way?

$$f = X^{2}$$

$$\begin{pmatrix} +X^{2}g \\ 0.01X^{3} \\ +0.01X^{3}g \\ 0.0001X^{4} \\ \end{pmatrix}$$

- It does not terminate, but...
- ► The sequence of reductions tends to 0

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.0001X 1LT(g)
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix}
-10000Xg \\
10000X
\end{pmatrix}$$

$$\begin{pmatrix}
-1000000000g \\
10000000000g
\end{pmatrix}$$

- ► It terminates, but...
- $ightharpoonup g \simeq 1$, but $f \mod g \not\simeq 0$

► Another way?

$$f = X^{2}$$

$$(+X^{2}g)$$

$$0.0001X^{3}$$

$$(+0.0001X^{3}g)$$

$$0.000000001X^{4}$$

$$(...)$$

- It does not terminate, but...
- ► The sequence of reductions tends to 0

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo $g = 0.000\,001X 1$ LT(g)
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix}
-1000000Xg \\
1000000X \\
-1000000000000000g
\end{cases}$$

- ► It terminates, but...
- $ightharpoonup g \simeq 1$, but $f \mod g \not\simeq 0$

► Another way?

$$f = X^{2}$$

$$\left(+X^{2}g\right)$$

$$0.000\ 0.01X^{3}$$

$$\left(+0.000\ 0.01X^{3}g\right)$$

$$0.000\ 0.000\ 0.000\ 0.001X^{4}$$

$$\left(\cdots\right)$$

- ► It does not terminate, but...
- ► The sequence of reductions tends to 0

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo $g = 0.000\,001X 1$
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix} -1000000Xg \\ 1000000X \\ -10000000000000000g \\ 100000000000000000g \end{pmatrix}$$

- ► It terminates, but...
- $ightharpoonup g \simeq 1$, but $f \mod g \not\simeq 0$

Another way?

$$f = X^{2}$$

$$(+X^{2}g)$$

$$0.000001X^{3}$$

$$(+0.000001X^{3}g)$$

$$0.000000000001X^{4}$$

$$(...)$$

- It does not terminate, but...
- ▶ The sequence of reductions tends to 0
- ▶ This work: make sense of this process for convergent power series in $\mathbb{Z}_p[[X]]$

Valued fields and rings: basic definitions

Valuation: function val :
$$k \to \mathbb{Z} \cup \{\infty\}$$
 with:

$$ightharpoonup \operatorname{val}(a+b) \geq \min(\operatorname{val}(a),\operatorname{val}(b))$$

Examples: 1
$$\overset{\bullet}{\sigma}$$
 $\overset{\circ}{\circ}$ val $(a) = 3$ $\overset{\bullet}{\circ}$ $a = a_3\pi^3 + a_4\pi^4 + \dots$ $\overset{\bullet}{\circ}$ val $(b) = -3$

$$b = b_{-3}\pi^{-3} + b_{-2}\pi^{-2} + \dots$$

$$\begin{cases} val(b) = -3 \end{cases}$$

Ring K° $\begin{array}{c} Frac \\ \hline \\ val \geq 0 \end{array}$	\Rightarrow Field K	Uniformizer π	Residue field K°/π	Complete
$\mathbb{Z}_{(p)}$	Q	p prime	\mathbb{F}_p	×
\mathbb{Z}_p	\mathbb{Q}_p	p prime	\mathbb{F}_p	\checkmark
$\mathbb{C}[x]_{(x-lpha)}$	$\mathbb{C}(x)$	$x - \alpha$	$\mathbb C$	×
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x - \alpha$	$\mathbb C$	\checkmark

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- ▶ Complete rings and fields: \mathbb{Z}_p , \mathbb{Q}_p , $\mathbb{C}[[x-\alpha]]$, $\mathbb{C}((x-\alpha))$
- In a complete valuation ring, a series is convergent iff its general term goes to 0:

Ring K° $\begin{array}{c} Frac \\ \hline \\ val \geq 0 \end{array}$	\Rightarrow Field K	Uniformizer π	Residue field K°/π	Complete
$\mathbb{Z}_{(p)}$	Q	p prime	\mathbb{F}_p	×
\mathbb{Z}_p	\mathbb{Q}_p	p prime	\mathbb{F}_p	\checkmark
$\mathbb{C}[x]_{(x-lpha)}$	$\mathbb{C}(x)$	$x - \alpha$	$\mathbb C$	×
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x - \alpha$	$\mathbb C$	\checkmark

- Metric and topology defined by "a is small" \iff "val(a) is large"
- Complete rings and fields: \mathbb{Z}_p , \mathbb{Q}_p , $\mathbb{C}[[x-\alpha]]$, $\mathbb{C}((x-\alpha))$
- In a complete valuation ring, a series is convergent iff its general term goes to 0:

→ Field <i>K</i>	Uniformizer π	Residue field K°/π	Complete
\mathbb{Q}	p prime	\mathbb{F}_p	×
\mathbb{Q}_p	p prime	\mathbb{F}_p	\checkmark
$\mathbb{C}(x)$	$x - \alpha$	$\mathbb C$	×
$\mathbb{C}((x-\alpha))$	$x - \alpha$	$\mathbb C$	\checkmark
	\mathbb{Q} \mathbb{Q}_p $\mathbb{C}(x)$	\mathbb{Q} p prime \mathbb{Q}_p p prime $\mathbb{C}(x)$ $x-\alpha$	\mathbb{Q} p prime \mathbb{F}_p \mathbb{Q}_p p prime \mathbb{F}_p $\mathbb{C}(x)$ $x-lpha$ \mathbb{C}

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- ▶ Complete rings and fields: \mathbb{Z}_p , \mathbb{Q}_p , $\mathbb{C}[[x-\alpha]]$, $\mathbb{C}((x-\alpha))$
- In a complete valuation ring, a series is convergent iff its general term goes to 0:

Ring K°	$\xrightarrow{\text{Frac}} \text{Field } K$ $\text{al} \geq 0$	Uniformizer π	Residue field K°/π	Complete
$\mathbb{Z}_{(p)}$	Q	p prime	\mathbb{F}_p	×
\mathbb{Z}_p	\mathbb{Q}_p	p prime	$\mathbb{F}_{ ho}$	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x - \alpha$	\mathbb{C}	×
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-lpha))$	$x - \alpha$	$\mathbb C$	\checkmark

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- ▶ Complete rings and fields: \mathbb{Z}_p , \mathbb{Q}_p , $\mathbb{C}[[x-\alpha]]$, $\mathbb{C}((x-\alpha))$
- In a complete valuation ring, a series is convergent iff its general term goes to 0:

Ring K°	$\xrightarrow{\text{Frac}} \text{Field } K$ $\text{al} \geq 0$	Uniformizer π	Residue field K°/π	Complete
$\mathbb{Z}_{(p)}$	Q	p prime	\mathbb{F}_p	×
\mathbb{Z}_p	\mathbb{Q}_p	p prime	$\mathbb{F}_{ ho}$	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x - \alpha$	\mathbb{C}	×
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-lpha))$	$x - \alpha$	$\mathbb C$	\checkmark

- Metric and topology defined by "a is small" \iff "val(a) is large"
- Complete rings and fields: \mathbb{Z}_p , \mathbb{Q}_p , $\mathbb{C}[[x-\alpha]]$, $\mathbb{C}((x-\alpha))$

Ring $K^{\circ} \stackrel{Frac}{\longleftarrow} val \geq val$	\longrightarrow Field K	Uniformizer π	Residue field K°/π	Complete
$\mathbb{Z}_{(p)}$	$\mathbb Q$	<i>p</i> prime	\mathbb{F}_p	×
\mathbb{Z}_p	\mathbb{Q}_p	p prime	\mathbb{F}_p	\checkmark
$\mathbb{C}[x]_{(x-lpha)}$	$\mathbb{C}(x)$	$x - \alpha$	\mathbb{C}	×
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x - \alpha$	$\mathbb C$	\checkmark

- Metric and topology defined by "a is small" \iff "val(a) is large"
- Complete rings and fields: \mathbb{Z}_p , \mathbb{Q}_p , $\mathbb{C}[[x-\alpha]]$, $\mathbb{C}((x-\alpha))$

Tate Series

$\mathbf{X} = X_1, \ldots, X_n$

Definition

► $K\{X\}^{\circ}$ = ring of series in **X** with coefficients in K° converging for all $\mathbf{x} \in K^{\circ}$ = ring of power series whose general coefficients tend to 0

Motivation

► Introduced by Tate in 1971 for rigid geometry (p-adic equivalent of the bridge between algebraic and analytic geometry over ℂ)

Examples

► Polynomials (finite sums are convergent)

- Not a Tate series: $\sum_{i=0}^{\infty} X^i = 1 + 1X + 1X^2 + 1X^3 + \cdots$
- ▶ $F \in \mathbb{C}[[Y]][[X]]$ is a Tate series $\iff F \in \mathbb{C}[X][[Y]]$

Term ordering for Tate algebras

$$\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$$

- ► Starting from a usual monomial ordering $1 <_m \mathbf{X}^{\mathbf{i}_1} <_m \mathbf{X}^{\mathbf{i}_2} <_m \dots$
- ▶ We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

Term ordering for Tate algebras

$$\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$$

- ▶ Starting from a usual monomial ordering $1 <_m \mathbf{X}^{i_1} <_m \mathbf{X}^{i_2} <_m \dots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term

Term ordering for Tate algebras

$$\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$$

- ▶ Starting from a usual monomial ordering $1 <_m \mathbf{X}^{i_1} <_m \mathbf{X}^{i_2} <_m \dots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term

compatible with the term order

Gröbner bases

▶ Standard definition once the term order is defined:

G is a Gröbner basis of $I \iff$ for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- Standard equivalent characterizations:
 - 1. *G* is a Gröbner basis of *I*
 - 2. for all $f \in I$, f is reducible modulo G
 - 3. for all $f \in I$, f reduces to zero modulo G \exists sequence of reductions converging to 0

Gröbner bases

Standard definition once the term order is defined:

G is a Gröbner basis of $I \iff$ for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- ▶ Standard equivalent characterizations and a surprising one:
 - 1. *G* is a Gröbner basis of *I*
 - 2. for all $f \in I$, f is reducible modulo G
 - 3. for all $f \in I$, f reduces to zero modulo G
- \exists sequence of reductions converging to 0

$$\pi f \in I \implies f \in I$$

4. \overline{G} is a Gröbner basis of \overline{I} in the sense of $\mathbb{F}[\mathbf{X}]$

Gröbner bases

Standard definition once the term order is defined:

G is a Gröbner basis of $I \iff$ for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- Standard equivalent characterizations and a surprising one:
 - 1. *G* is a Gröbner basis of *I*
 - 2. for all $f \in I$, f is reducible modulo G
 - 3. for all $f \in I$, f reduces to zero modulo G

$$\pi f \in I \implies f \in I$$

 \exists sequence of reductions converging to 0

If I is saturated:

- 4. \overline{G} is a Gröbner basis of \overline{I} in the sense of $\mathbb{F}[\mathbf{X}]$
- ▶ Every Tate ideal has a finite Gröbner basis
- ightharpoonup It can be computed using the usual algorithms (reduction, Buchberger, F_4)
- ▶ In practice, the algorithms run with finite precision and without loss of precision

No division by π

Buchberger's algorithm

- 1. $G \leftarrow \{f_1, \ldots, f_m\}$
- 2. $B \leftarrow \{\text{S-pol of } g_1 \text{ and } g_2 \text{ for } g_1, g_2 \in G\}$
- 3. While $B \neq \emptyset$:
- 4. Pop v from B
- 5. $w \leftarrow \text{reduction of } v \text{ modulo } G$
- 6. If w = 0:
- 7. Pass
- 8. Else:
- 9. $B \leftarrow B \cup \{S\text{-pol of } w \text{ and } g \text{ for } g \in G\}$
- 10. $G \leftarrow G \cup \{w\}$
- 11. Return G

What about valued fields?

Recall: K = fraction field of K°

$$\mathbb{Q}_p$$
 \mathbb{Z}_p $\mathbb{C}((X))$ $\mathbb{C}[[X]]$

- ▶ Elements are $\frac{b}{\pi^k}$ with $b \in K^{\circ}$, $k \in \mathbb{N}$
- The valuation can be negative but not infinite
- ► Same metric, same topology as K°

What about valued fields?

Recall: K = fraction field of K°

$$\mathbb{Q}_p$$
 \mathbb{Z}_p $\mathbb{C}((X))$ $\mathbb{C}[[X]]$

- ► Elements are $\frac{b}{\pi^k}$ with $b \in K^{\circ}$, $k \in \mathbb{N}$
- The valuation can be negative but not infinite
- Same metric, same topology as K°
- Tate series can be defined as in the integer case
- Same order, same definition of Gröbner bases
- Main difference: πX now divides X
- Another surprising equivalence
 - 1. G is a normalized GB of I
 - 2. $G \subset K\{X\}^{\circ}$ is a GB of $I \cap K\{X\}^{\circ}$
- ▶ In practice, we emulate computations in $K\{X\}^{\circ}$ in order to avoid losses of precision (and the ideal is saturated)

 $\forall g \in G, LC(g) = 1 \text{ (in part., } G \subset K\{X\}^{\circ})$

Problem: useless and redundant computations, infinite reductions to 0

Example with a S-polynomial

$$p = p_1 f_1 + p_2 f_2 + \dots + p_k f_k + \dots + p_m f_m$$
 $q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + q_m f_m$

$$S\text{-Pol}(p,q) = \mu p - \nu q$$

Problem: useless and redundant computations, infinite reductions to 0

► 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]

Example with a S-polynomial

$$p = p_1 f_1 + p_2 f_2 + \dots + p_k f_k + \dots + p_m f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + q_m f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + q_m f_m$$

$$q = q_1 e_1 + q_2 e_2 + \dots + q_l e_l + \dots + q_m e_m$$

S-Pol
$$(p, q) = \mu p - \nu q$$

S-Pol $(\mathbf{p}, \mathbf{q}) = \mu (p_1 \mathbf{e}_1 + \dots + p_k \mathbf{e}_k + \dots + p_m \mathbf{e}_m) - \nu (q_1 \mathbf{e}_1 + \dots + q_l \mathbf{e}_l + \dots + q_m \mathbf{e}_m)$

Problem: useless and redundant computations, infinite reductions to 0

- ▶ 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- ▶ 2nd idea: the largest term of the representation is enough [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$p = p_1 f_1 + p_2 f_2 + \dots + p_k f_k + \dots + 0 f_m$$

$$\mathbf{p} = p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2 + \dots + p_k \mathbf{e}_k + \dots + 0 \mathbf{e}_m$$

$$= \mathsf{LT}(p_k) \mathbf{e}_k + \mathsf{smaller terms}$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + 0 f_m$$

$$\mathbf{q} = q_1 \mathbf{e}_1 + q_2 \mathbf{e}_2 + \dots + q_l \mathbf{e}_l + \dots + 0 \mathbf{e}_m$$

$$= \mathsf{LT}(q_l) \mathbf{e}_l + \mathsf{smaller terms}$$

S-Pol
$$(p, q) = \mu p - \nu q$$

S-Pol $(\mathbf{p}, \mathbf{q}) = \mu (p_1 \mathbf{e}_1 + \dots + p_k \mathbf{e}_k + \dots + 0 \mathbf{e}_m) - \nu (q_1 \mathbf{e}_1 + \dots + q_l \mathbf{e}_l + \dots + 0 \mathbf{e}_m)$
 $= \mu \mathsf{LT}(p_k) \mathbf{e}_k - \nu \mathsf{LT}(q_l) \mathbf{e}_l + \mathsf{smaller terms}$

Problem: useless and redundant computations, infinite reductions to 0

- ▶ 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- 2nd idea: the largest term of the representation is enough [Faugère 2002; Gao, Volny, Wang 2010; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$p = p_1 f_1 + p_2 f_2 + \dots + p_k f_k + \dots + 0 f_m$$

$$p = p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2 + \dots + p_k \mathbf{e}_k + \dots + 0 \mathbf{e}_m$$

$$= \mathsf{LT}(p_k) \mathbf{e}_k + \mathsf{smaller terms}$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + 0 f_m$$

$$\mathbf{q} = q_1 \mathbf{e}_1 + q_2 \mathbf{e}_2 + \dots + q_l \mathbf{e}_l + \dots + 0 \mathbf{e}_m$$

$$= \mathsf{LT}(q_l) \mathbf{e}_l + \mathsf{smaller terms}$$

S-Pol
$$(p, q) = \mu p - \nu q$$

S-Pol $(\mathbf{p}, \mathbf{q}) = \mu (p_1 \mathbf{e}_1 + \dots + p_k \mathbf{e}_k + \dots + 0 \mathbf{e}_m) - \nu (q_1 \mathbf{e}_1 + \dots + q_l \mathbf{e}_l + \dots + 0 \mathbf{e}_m)$
 $= \mu \mathsf{LT}(p_k) \mathbf{e}_k - \nu \mathsf{LT}(q_l) \mathbf{e}_l + \mathsf{smaller terms}$
 $= \mu \mathsf{LT}(p_k) \mathbf{e}_k + \mathsf{smaller terms}$ if $\mu \mathsf{LT}(p_k) \mathbf{e}_k \geq \nu \mathsf{LT}(q_l) \mathbf{e}_l$

Problem: useless and redundant computations, infinite reductions to 0

- ▶ 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- 2nd idea: the largest term of the representation is enough [Faugère 2002; Gao, Volny, Wang 2010; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$p = p_1 f_1 + p_2 f_2 + \dots + p_k f_k + \dots + 0 f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + 0 f_m$$

$$q = q_1 e_1 + q_2 e_2 + \dots + q_l e_l + \dots + 0 e_m$$

$$= LT(p_k) e_k + \text{smaller terms}$$

$$q = q_1 e_1 + q_2 e_2 + \dots + q_l e_l + \dots + 0 e_m$$

$$= LT(q_l) e_l + \text{smaller terms}$$

$$\mathfrak{s}(p) =$$
 signature of p

S-Pol
$$(p, q) = \mu p - \nu q$$

S-Pol $(\mathbf{p}, \mathbf{q}) = \mu (p_1 \mathbf{e}_1 + \dots + p_k \mathbf{e}_k + \dots + 0 \mathbf{e}_m) - \nu (q_1 \mathbf{e}_1 + \dots + q_l \mathbf{e}_l + \dots + 0 \mathbf{e}_m)$
 $= \mu \mathsf{LT}(p_k) \mathbf{e}_k - \nu \mathsf{LT}(q_l) \mathbf{e}_l + \mathsf{smaller terms}$
 $= \mu \mathsf{LT}(p_k) \mathbf{e}_k + \mathsf{smaller terms}$ if $\mu \mathsf{LT}(p_k) \mathbf{e}_k \geq \nu \mathsf{LT}(q_l) \mathbf{e}_l$ Regular S-polynomial

Buchberger's algorithm, with signatures

- 1. $G \leftarrow \{(\mathbf{e}_1, f_1), \dots, (\mathbf{e}_m, f_m)\}$
- 2. $B \leftarrow \{S\text{-pol of } p_1 \text{ and } p_2 \text{ for } p_1, p_2 \in G\}$
- 3. While $B \neq \emptyset$:
- 4. Pop (\mathbf{u}, \mathbf{v}) from B with smallest \mathbf{u}
- 5. $w \leftarrow \text{regular reduction of } (\mathbf{u}, v) \text{ modulo } G$
- 6. If w = 0:
- 7. Pass
- 8. Else:
- 9. $B \leftarrow B \cup \{\text{regular S-pol of } (\mathbf{u}, w) \text{ and } p \text{ for } p \in G\}$
- 10. $G \leftarrow G \cup \{(\mathbf{u}, w)\}$
- 11. Return G

Buchberger's algorithm, with signatures

```
1. G \leftarrow \{(\mathbf{e}_1, f_1), \dots, (\mathbf{e}_m, f_m)\}
2. B \leftarrow \{S\text{-pol of } p_1 \text{ and } p_2 \text{ for } p_1, p_2 \in G\}
3. While B \neq \emptyset:
            Pop (\mathbf{u}, \mathbf{v}) from B with smallest \mathbf{u}
4.
5.
```

Need to order the signatures!

- $w \leftarrow \text{regular reduction of } (\mathbf{u}, v) \text{ modulo } G$
- If w=0: 6.
- Pass 7.
- 8. Else:
- $B \leftarrow B \cup \{\text{regular S-pol of } (\mathbf{u}, w) \text{ and } p \text{ for } p \in G\}$ 9.
- $G \leftarrow G \cup \{(\mathbf{u}, w)\}$ 10.
- 11. Return G

Signature orderings

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances

Examples (polynomial case):

- $\mu \mathbf{e}_i <_{\text{pot}} \nu \mathbf{e}_j \iff i < j, \text{ or if equal, } \mu < \nu$ $Position \quad \text{over} \quad \text{Term}$
- $\mu \mathbf{e}_i <_{\text{top}} \nu \mathbf{e}_j \iff \mu < \nu, \text{ or if equal, } i < j$ Term over Position
- $\mu \mathbf{e}_i <_{\text{dopot}} \nu \mathbf{e}_j \iff \deg(p) < \deg(q), \text{ or if equal, } i < j, \text{ or if equal, } \mu < \nu$ Degree over Position over Term

Signature orderings

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances

Examples (polynomial case):

 $\blacktriangleright \mu \mathbf{e}_i <_{\text{pot}} \nu \mathbf{e}_i \iff i < j$, or if equal, $\mu < \nu$ Position over Term

- ► Theoretically convenient
- Incremental
- Rarely the most efficient

- $\blacktriangleright \mu \mathbf{e}_i <_{\text{top}} \nu \mathbf{e}_i \iff \mu < \nu$, or if equal, i < jTerm
 - over Position
- ► Better in practice
- ► Theoretically complicated
- $ightharpoonup \mu \mathbf{e}_i <_{\text{dopot}} \nu \mathbf{e}_j \iff \deg(p) < \deg(q), \text{ or if equal, } i < j, \text{ or if equal, } \mu < \nu$ Degree Position Term over over
 - ► "F5-ordering" for homogeneous systems and degree order
 - ► Avoid going too high in degree, still incremental
 - Best of both worlds

Buchberger's algorithm, incremental variant

```
1. Q \leftarrow (f_1, \ldots, f_m)
 2. G \leftarrow \emptyset
 3. For f \in Q
     G \leftarrow G \cup \{f\}
 5. B \leftarrow \{S\text{-pol of } f \text{ and } g \text{ for } g \in G\}
 6.
     While B \neq \emptyset:
 7.
                 Pop v from B
                 w \leftarrow \text{reduction of } v \text{ modulo } G
 8.
 9.
            If w=0:
10.
                       Pass
11.
                 Else:
                       B \leftarrow B \cup \{S\text{-pol of } w \text{ and } g \text{ for } g \in G\}
12.
13.
                      G \leftarrow G \cup \{w\}
14. Return G
```

Signature orderings for Tate series

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances

Orders for Tate series:

- $\mu \mathbf{e}_i <_{\mathrm{pot}} \nu \mathbf{e}_j \iff i < j$, or if equal, $\mu < \nu$ Position over Term
- $\mu \mathbf{e}_i <_{\text{top}} \nu \mathbf{e}_j \iff \mu < \nu, \text{ or if equal, } i < j$ Term over Position

- ► Theoretically convenient
- Incremental
- ► Rarely the most efficient
- ► Better in practice
- ► Theoretically complicated

Signature-based algorithm, PoT ordering

```
1. Q \leftarrow (f_1, \ldots, f_m)
 2. G \leftarrow \emptyset
 3. For f \in Q
          G_S \leftarrow \{(0,g) : g \in G_S\} \cup \{1,f\}\}
 4.
 5. B \leftarrow \{\text{S-pol of } (1, f) \text{ and } p \text{ for } p \in G_S\}
       While B \neq \emptyset:
 6.
 7.
                 Pop (u, v) from B with smallest u
 8.
                 w \leftarrow \text{regular reduction of } (u, v) \text{ modulo } G_S
           If w=0:
 9.
                      Pass
10.
                Else:
11.
                      B \leftarrow B \cup \{\text{regular S-pol of } (u, w) \text{ and } p \text{ for } p \in G_S\}
12.
                      G_S \leftarrow G_S \cup \{(u, w)\}
13.
           G \leftarrow \{v : (u, v) \in G_S\}
14.
15. Return G
```

Signature-based algorithm, PoT ordering

- 1. $Q \leftarrow (f_1, \ldots, f_m)$
- 2. $G \leftarrow \emptyset$
- 3. For $f \in Q$
- 4. $G_S \leftarrow \{(0,g): g \in G_S\} \cup \{1,f\}\}$ Incremental order: only the last coefficient matters
- 5. $B \leftarrow \{\text{S-pol of } (1, f) \text{ and } p \text{ for } p \in G_S\}$
- 6. While $B \neq \emptyset$:
- 7. Pop (u, v) from B with smallest u
- 8. $w \leftarrow \text{regular reduction of } (u, v) \text{ modulo } G_S$
- 9. If w = 0:
- 10. Pass
- 11. Else:
- 12. $B \leftarrow B \cup \{\text{regular S-pol of } (u, w) \text{ and } p \text{ for } p \in G_S\}$
- 13. $G_S \leftarrow G_S \cup \{(u, w)\}$
- 14. $G \leftarrow \{v : (u, v) \in G_S\}$ Throwing away the signatures
- 15. Return *G*

Signature orderings for Tate series

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances

Orders for Tate series:

 $\blacktriangleright \mu \mathbf{e}_i <_{\text{pot}} \nu \mathbf{e}_i \iff i < j$, or if equal, $\mu < \nu$ Position over Term

- ► Theoretically convenient
- ► Incremental
- Rarely the most efficient
- $\blacktriangleright \mu \mathbf{e}_i <_{\text{top}} \nu \mathbf{e}_i \iff \mu < \nu$, or if equal, i < j \blacktriangleright Better in practice

 - ► Theoretically complicated
- $\blacktriangleright \mu \mathbf{e}_i <_{\text{vopot}} \nu \mathbf{e}_i \iff \text{val}(p) < \text{val}(q), \text{ or if equal, } i < j, \text{ or if equal, } \mu < \nu$ Valuation Position over over Term
 - Analogue of the F5 ordering for the valuation
 - ► Allows to delay (or avoid) high valuation computations

Signature-based algorithm, VoPoT ordering

- 1. $Q \leftarrow (f_1, \ldots, f_m)$
- 2. $G \leftarrow \emptyset$
- 3. While $\exists f \in Q$ with smallest valuation:
- 4. $G_S \leftarrow \{(0,g) : g \in G_S\} \cup \{1,f\}\}$
- 5. $B \leftarrow \{\text{S-pol of } (1, f) \text{ and } p \text{ for } p \in G_S\}$
- 6. While $B \neq \emptyset$:
- 7. Pop (u, v) from B with smallest u
- 8. $w \leftarrow \text{regular reduction of } (u, v) \text{ modulo } G_S$
- 9. If val(w) > val(f):
- 10. $Q \leftarrow Q \cup \{w\}$
- 11. Else:
- 12. $B \leftarrow B \cup \{\text{regular S-pol of } (u, w) \text{ and } p \text{ for } p \in G_S\}$
- 13. $G_S \leftarrow G_S \cup \{(u, w)\}$
- 14. $G \leftarrow \{v : (u, v) \in G_S\}$
- 15. Return *G*

Signature-based algorithm, VoPoT ordering

```
1. Q \leftarrow (f_1, \ldots, f_m)
 2. G \leftarrow \emptyset
 3. While \exists f \in Q with smallest valuation:
                                                                       Order by valuation first
           G_S \leftarrow \{(0,g) : g \in G_S\} \cup \{1,f\}\}
                                                                       then incremental
 4.
        B \leftarrow \{\text{S-pol of } (1, f) \text{ and } p \text{ for } p \in G_S\}
 5.
         While B \neq \emptyset:
 6.
 7.
                 Pop (u, v) from B with smallest u
 8.
                 w \leftarrow \text{regular reduction of } (u, v) \text{ modulo } G_S
            If val(w) > val(f):
 9.
                      Q \leftarrow Q \cup \{w\}
10.
                 Else:
11.
12.
                      B \leftarrow B \cup \{\text{regular S-pol of } (u, w) \text{ and } p \text{ for } p \in G_S\}
                      G_{\varsigma} \leftarrow G_{\varsigma} \cup \{(u, w)\}
13.
           G \leftarrow \{v : (u, v) \in G_S\}
14.
15. Return G
```

Conclusion and perspectives

What we presented here

- ► Tate series = formal power series appearing in algebraic geometry
- Definitions of Gröbner bases for Tate series
- ► Algorithms for computing and using those Gröbner bases (also with signatures)
- ▶ Data structure and algorithms implemented in Sage (version 8.5, 22/12/2018)

Extensions

► Tate series with convergence radius different from 1 (integer or rational log)

Perspectives

► Faster reduction: algorithms for local monomial orderings and standard bases (Mora)

Conclusion and perspectives

What we presented here

- ► Tate series = formal power series appearing in algebraic geometry
- Definitions of Gröbner bases for Tate series
- ▶ Algorithms for computing and using those Gröbner bases (also with signatures)
- ▶ Data structure and algorithms implemented in Sage (version 8.5, 22/12/2018)

Extensions

► Tate series with convergence radius different from 1 (integer or rational log)

Perspectives

► Faster reduction: algorithms for local monomial orderings and standard bases (Mora)

Thank you for your attention!

More information and references:

- Xavier Caruso, Tristan Vaccon and Thibaut Verron (2019). 'Gröbner bases over Tate algebras'. In: ISSAC'19, arXiv:1901.09574. arXiv: 1901.09574 [math.AG]
- Xavier Caruso, Tristan Vaccon and Thibaut Verron (Feb. 2020). 'Signature-based algorithms for Gröbner bases over Tate algebras'. In: URL: https://hal.archives-ouvertes.fr/hal-02473665 [preprint]