UPAAA 2025

Triangles

Mathematics

Lecture - 02

By - Ritik Sir

Converse of Basic Proportionality Theorem

Lese Rahamid-team Exams?

- A) B.B \ 32.1.
- B. Bekar 25%
- c) hus nahi 36%
 - D) Alayein. . S. .

DELIBC 1000x 0/2000. B

CONVERSED BIPIT

B C

G AB = AE C

Hon, DEIIBC

Const: EFLAD, DGLAE

G. DE/IBC

TO b: AD = AE FC

Const: EFLAD, DGLAE

H.DDEC = 7 X ECXDQ -(2)

Emaz with no relipons of the same box and blue sand beauth ask equal passes in asks in asks in ALDEC = A.DOER).

Now From ear 6 and 3

A.DADE = A.DADE A.DDEC A.DDEB

> AE AD EC DB

> > HP.P

Topic: Theorem 1

(Basic Proportionality Theorem or Thales Theorem)

If a line a drawn parallel to one side of a triangle intersecting the other two sides, then it is divides the two sides in the same ratio.

Topic: Theorem 2

(Converse of Basic Proportionality Theorem)

If a line divides any two sides of a tringle in the same ratio, then the line must be

product to the third side.

Poosf: Sut DF//BC

Exam (1) and

This moons E'and F' Coincides.

EF 110R

#Q. Let X be any point on the side BC of a triangle ABC. If XM XN are drawn parallel to BA and CA meeting CA, BA in M, N respectively; MN meets BC produced in T, prove that $TX^2 = TB \times TC$.

$$|xN|/CA$$
 $|xN|/BN$
=) $|xN|/CM$ =) $|xM|/BN$

Impostant Concept.

B C Angles OPP

Angles opp. to equal sides.

Hence Dis isosceles)

[NCERT]

(g). Dand E are mid. points of AB and Ac respectively

Job: DE | BC.

Pooof: D mid point of AB

E mid-point & AC AE = ECXI

From 122

AD - AF

DB FC

By C Of 8-P.T

By

#Q. ABCD is a trapezium in which AB || DC and its diagonal intersect each other

Since FOLLDC

also, ABIIDC

AE

EO//AB

Bu B.P.T

<u>E</u>O=

OB

at the point O. Show that $\frac{AO}{BO} = \frac{CO}{DO}$

Const: FOI/DC

Pooof'

FOLLDC

From OandO

$$=) \frac{OA}{OB} = \frac{OC}{OD}$$

HP

#Q. The diagonals of a quadrilateral ABCD intersect each other at the point O

such that $\frac{AO}{BO} = \frac{CO}{DO}$. ABCD is a trapezium.

G:
$$\frac{A0}{B0} = \frac{C0}{D0}$$

TOP: ABCD is a toapezium

(ons:): (1011 DC) (3)

POOF: Since JollDC

By B.PT,

form (1) and (2)

$$\frac{AI}{10} = \frac{OB}{OD}$$

By C'ON B.P.T

Foom @ and (1)

ABILDC

=) ABCD is a toal pesium.

#Q. If D and E are points on side AB and AC respectively of a \triangle ABC such that DE || BC and BD = CE. Prove that \triangle ABC is isosceles. [CBSE 2007, 2009]

#Q. In figure, If AD = 6 cm, DB = 9 cm, AE = 8 cm and EC = 12 cm and \angle ADE = 48°. Find \angle ABC. [CBSE SQP, 2018-19]

#Q. ABCD is a parallelogram, P is a point on side BC and DP when produced meets AB produced at L. Prove that $\frac{DP}{PL} = \frac{DC}{BL}$.

