Solution

Section 1.5 - Continuity

Exercise

Given the graphed function f(x)

- a) Does f(-1) exist?
- b) Does $\lim_{x \to -1^+} f(x)$ exist?
- c) Does $\lim_{x \to -1^+} f(x) = f(-1)$?
- d) Is f continuous at x = -1?
- e) Does f(1) exist?
- f) Does $\lim_{x \to 1} f(x)$ exist?
- g) Does $\lim_{x \to 1} f(x) = f(1)$?
- h) Is f continuous at x = 1?

Solution

- *a*) Yes f(-1) = 0
- **b)** Yes, $\lim_{x \to -1^+} f(x) = 0$
- *c*) Yes
- d) Yes
- *e*) Yes, f(1) = 1
- f) Yes, $\lim_{x \to 1} f(x) = 2$
- **g**) No
- **h)** No

Exercise

At what points is the function $y = \frac{1}{x-2} - 3x$ continuous?

Solution

The function is continuous everywhere except when $x - 2 = 0 \Rightarrow x = 2$

At what points is the function $y = \frac{x+3}{x^2 - 3x - 10}$ continuous?

Solution

The function is continuous everywhere except when $x^2 - 3x - 10 = 0 \Rightarrow x = -2$, 5

Exercise

At what points is the function $y = |x-1| + \sin x$ continuous?

Solution

The function is continuous everywhere

Exercise

At what points is the function $y = \frac{x+2}{\cos x}$ continuous?

Solution

The function is continuous everywhere except when $\cos x = 0 \Rightarrow x = \frac{\pi}{2} + n\pi$, $n \in \mathbb{Z}$

Exercise

At what points is the function $y = \tan \frac{\pi x}{2}$ continuous?

<u>Solution</u>

The function is continuous everywhere except when x = 2n - 1, $n \in \mathbb{Z}$

Exercise

At what points is the function $y = \frac{x \tan x}{x^2 + 1}$ continuous?

Solution

The function is continuous everywhere except when $x = (2n-1)\frac{\pi}{2}$, $n \in \mathbb{Z}$

Exercise

At what points is the function $y = \frac{\sqrt{x^4 + 1}}{1 + \sin^2 x}$ continuous?

Solution

The function is continuous everywhere

At what points is the function $y = \sqrt{2x+3}$ continuous?

Solution

The function is continuous on the interval $2x + 3 \ge 0 \rightarrow x \ge -\frac{3}{2} \Rightarrow \left[-\frac{3}{2}, \infty \right)$, and discontinuous when $x < -\frac{3}{2}$

Exercise

At what points is the function $y = \sqrt[4]{3x-1}$ continuous?

Solution

The function is continuous on the interval $3x - 1 \ge 0 \to \left[\frac{1}{3}, \infty\right]$, and discontinuous when $x < \frac{1}{3}$

Exercise

At what points is the function $y = (2 - x)^{1/5}$ continuous?

Solution

The function is continuous everywhere $\forall x$

Exercise

Find $\lim_{x\to\pi} \sin(x-\sin x)$, then is the function continuous at the point being approached?

Solution

$$\lim_{x \to \pi} \sin(x - \sin x) = \sin(\pi - \sin \pi)$$

$$= \sin(\pi - 0)$$

$$= \sin(\pi)$$

$$= 0$$
The function is continuous at $x = \pi$

Exercise

Find $\lim_{x\to 0} \tan\left(\frac{\pi}{4}\cos\left(\sin x^{1/3}\right)\right)$, then is the function continuous at the point being approached?

Solution

$$\lim_{x \to 0} \tan\left(\frac{\pi}{4}\cos\left(\sin x^{1/3}\right)\right) = \tan\left(\frac{\pi}{4}\cos\left(\sin\left(0\right)^{1/3}\right)\right)$$
$$= \tan\left(\frac{\pi}{4}\cos\left(0\right)\right)$$

$$= \tan\left(\frac{\pi}{4}\right)$$
= 1 | The function is continuous at $x = 0$

Find $\lim_{t\to 0} \cos\left(\frac{\pi}{\sqrt{19-3\sec 2t}}\right)$, then is the function continuous at the point being approached?

Solution

$$\lim_{t \to 0} \cos\left(\frac{\pi}{\sqrt{19 - 3\sec 2t}}\right) = \cos\left(\frac{\pi}{\sqrt{19 - 3\sec 2(0)}}\right)$$

$$= \cos\left(\frac{\pi}{\sqrt{19 - 3}}\right)$$

$$= \cos\left(\frac{\pi}{\sqrt{16}}\right)$$

$$= \cos\left(\frac{\pi}{4}\right)$$

$$= \frac{\sqrt{2}}{2}$$

 \therefore The function is continuous at t = 0

Exercise

Explain why the equation $\cos x = x$ has at least one solution.

Solution

$$\cos x - x = 0$$

$$\begin{cases} if & x = -\frac{\pi}{2} \longrightarrow \cos\left(-\frac{\pi}{2}\right) - \left(-\frac{\pi}{2}\right) > 0 \\ if & x = \frac{\pi}{2} \longrightarrow \cos\left(\frac{\pi}{2}\right) - \left(\frac{\pi}{2}\right) < 0 \end{cases}$$

$$\Rightarrow \cos x - x = 0$$

for some x between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$

According to the Intermediate Value Theorem, and the function $\cos x = x$ is continuous and has at least one solution.

Show that the equation $x^3 - 15x + 1 = 0$ has three solutions in the interval [-4, 4]

Solution

$$f(-4) = (-4)^3 - 15(-4) + 1 = -3$$

$$f(-2) = (-2)^3 - 15(-2) + 1 = 23$$

$$f(-1) = (-1)^3 - 15(-1) + 1 = 15$$

$$f(1) = (1)^3 - 15(1) + 1 = -13$$

$$f(4) = (4)^3 - 15(4) + 1 = 5$$

By the Intermediate Value Theorem, f(x) = 0 for some x in each of the intervals -4 < x < -1,

-1 < x < 1, and 1 < x < 4. Thus, $x^3 - 15x + 1 = 0$ has three solutions in [-4, 4]. Since the polynomial of degree 3 can have at most 3 solutions, these are the solutions.

Exercise

Show that the equation has three solutions in the given interval $x^3 + 10x^2 - 100x + 50 = 0$; (-20, 10)

Solution

x	у
-19	-1299
-18	-742
-17	-273
-16	114
-15	425
-14	666
-13	962
-12	1029
-10	1050
-9	1031
-8	978
-7	897
-6	794
-5	675
-4	546

-3	413
-2	282
-1	159
0	50
1	-39
2	-102
3	-133
4	-126
5	-75
6	26

By the Intermediate Value Theorem, f(x) = 0 for some x in each of the intervals -17 < x < -16, 0 < x < 1, and 5 < x < 6.

Show that the equation has three solutions in the given interval $70x^3 - 87x^2 + 32x - 3 = 0$; (0, 1)

Solution

x	y
.05	-1.6
.1	-0.6
.15	0.08
.2	.48
.25	.656
.3	.66
.35	.543
.4	.36
.45	.161
.5	0
.55	07
.6	0
.65	.266
.7	.78
.75	1.6
.8	2.76
.85	4.33
.9	6.36
.95	8.9

By the Intermediate Value Theorem, f(x) = 0 for some x in each of the intervals 0.1 < x < 0.15, 0.5 < x < 0.55, and 0.55 < x < 0.6.

Show that the equation has three solutions in the given interval $x^3 - 3x - 1 = 0$; [-2, 2]

Solution

X	У
-2	-3.0
-1.75	-1.109
-1.5	0.125
-1.25	0.797
-1.0	1
-0.75	0.828
-0.5	0.375
-0.25	-0.266
0	-1.0
0.25	-1.73
0.5	-2.375
0.75	-2.828
1.0	-3.0
1.25	-2.797
1.5	-2.12
1.75	-0.89
2.	1.0

By the Intermediate Value Theorem, f(x) = 0 for some x in each of the intervals -1.75 < x < -1.5, -0.5 < x < -0.25, and 1.75 < x < 2.

Show that the equation has six solutions in the given interval $x^6 - 8x^4 + 10x^2 - 1 = 0$; [-3, 3]

Solution

x	у
-3.0	170.0
-2.5	-6.86
-2.0	-25.0
-1.5	-7.61
-1.0	2.0
-0.5	1.02
0.0	-1.0
0.5	1.01
1.0	2.0
1.5	-7.6
2.0	-25.0
2.5	-6.86
3.0	170.0

By the Intermediate Value Theorem, f(x) = 0 for some x in each of the intervals -3.0 < x < -2.5, -1.5 < x < -1.0, $-0.5 \le x \le 0$, $-0.0 \le x \le 0.5$, $1.0 \le x \le 1.5$ and 2.5 < x < 3.0.

If functions f(x) and g(x) are continuous for $0 \le x \le 1$, could $\frac{f(x)}{g(x)}$ possibly be discontinuous at a point of [0, 1]? Give reason for your answer.

Solution

Yes, if we can get a value of g(x) is between [0, 1], $x = \frac{1}{2} \implies g(x) = 2x - 1$ and f(x) = x.

Then
$$\frac{f(x)}{g(x)} = \frac{x}{2x-1} \implies \frac{f(x)}{g(x)}$$
 is discontinuous at $x = \frac{1}{2}$

Exercise

Suppose that a function f is continuous on the closed interval [0, 1] and that $0 \le f(x) \le 1$ for every x in [0, 1]. Show that there must exist a number c in [0, 1] such that f(c) = c (c is called a *fixed point* of f).

Solution

Let $f(x) = x \implies f(0) = 0$ or f(1) = 1. In these cases, c = 0 or c = 1.

Let f(0) = a > 0 and f(1) = b < 1 because $0 \le f(x) \le 1$.

Define $g(x) = f(x) - x \Rightarrow g$ is continuous on [0, 1].

$$\Rightarrow \begin{cases} g(0) = f(0) - 0 = a > 0 \\ g(1) = f(1) - 1 = b - 1 < 0 \end{cases}$$

By the Intermediate Value Theorem there is a number c in [0, 1] such that

$$g(c) = 0 \Rightarrow f(c) - c = 0 \Rightarrow f(c) = c$$

Exercise

Use the Intermediate Value Theorem to show that the equation $x^5 + 7x + 5 = 0$ has a solution in the interval (-1, 0).

Solution

$$f(-1) = -1 - 7 + 5 = -3 < 0$$

$$f(0) = 5 > 0$$

By Intermediate value theorem, the function has a solution in (-1, 0)

The amount of an antibiotic (in mg) in the blood t hours after an intravenous line is opened is given by

$$m(t) = 100(e^{-0.1t} - e^{-0.3t})$$

- a) Use the Intermediate Value Theorem to show that the amount of drug is 30 mg at some time in the interval [0, 5] and again at some time in the interval [5, 15]
- b) Estimate the times at which m = 30 mg
- c) Is the amount of drug in the blood ever 50 mg?

Solution

a)
$$m(0) = 100(1-1) = 0$$

$$m(5) \approx 38.34 > 30$$

$$m(15) \approx 21.2 < 30$$

30 is an intermediate value between for both [0, 5] and [5, 15].

b)
$$m(t) = 100(e^{-0.1t} - e^{-0.3t}) = 30$$

$$e^{-0.1t} - e^{-0.3t} = 0.3 \quad \xrightarrow{software} \quad \begin{cases} t_1 \approx 2.4 \\ t_2 \approx 10.8 \end{cases}$$

c) No, peak is 38.5 (using the graph)

Determine whether the following functions are continuous at a. $f(x) = \frac{1}{x-5}$; a=5

Solution

$$f(5)$$
 $\not\equiv$

The function is continuous everywhere except @ x = 5

Exercise

Determine whether the following functions are continuous at a. $h(x) = \sqrt{x^2 - 9}$; a = 3

Solution

$$\lim_{x \to 3^{-}} h(x) \not \exists \quad \therefore \text{ } h \text{ is discontinuous } @ 3$$

Exercise

Determine whether the following functions are continuous at a. $g(x) = \begin{cases} \frac{x^2 - 16}{x - 4} & \text{if } x \neq 4 \\ 9 & \text{if } x = 4 \end{cases}$; a = 4

Solution

$$\lim_{x \to 4} g(x) = \lim_{x \to 4} \frac{(x-4)(x+4)}{x-4} = \lim_{x \to 4} (x+4) = 8 \neq 9 = g(4)$$

 \therefore g is discontinuous @ 4

Exercise

Find the intervals on which the following functions are continuous. Specify right- or left- continuity at the endpoints $f(x) = \sqrt{x^2 - 5}$

Solution

$$\sqrt{x^2 - 5 \ge 0} \quad \Rightarrow \quad x \le -5 \& x \ge 5$$

The function is continuous at -5 to the left and right of x = 5

Exercise

Find the intervals on which the following functions are continuous. Specify right- or left- continuity at the endpoints $f(x) = e^{\sqrt{x-2}}$

Solution

The function is continuous at and to the right of x = 2

Find the intervals on which the following functions are continuous. Specify right- or left- continuity at the endpoints $f(x) = \frac{2x}{x^3 - 25x}$

Solution

The function is continuous everywhere except at x = 0, ± 5

The function is continuous to the left of -5, then to the right of -5 to the left of 0, then to the right of 0 thru the left of 5 then to the tight of 5.

Exercise

Find the intervals on which the following functions are continuous. Specify right- or left- continuity at the endpoints $f(x) = \cos e^x$

Solution

The function is continuous everywhere.

Exercise

Let
$$g(x) = \begin{cases} 5x-2 & \text{if} \quad x < 1 \\ a & \text{if} \quad x = 1 \\ ax^2 + bx & \text{if} \quad x > 1 \end{cases}$$

Determine values of the constants a and b for which g(x) is continuous at x = 1

Solution

$$\lim_{x \to 1^{-}} g(x) = g(1)$$

$$= 5 - 2$$

$$= 3 = a$$

$$\lim_{x \to 1^{-}} g(x) = g(1)$$

$$= a + b$$

$$= 3 + b = 3$$

$$\rightarrow \underline{b=0}$$