Arhitectura calculatoarelor și sisteme de operare

Prof. dr. Henri Luchian

Lect. dr. Vlad Rădulescu

Evaluare

- examinare
 - două teste scrise din materia de curs
 - câte unul pentru fiecare jumătate de semestru
 - un test practic la laborator
 - limbaj de asamblare
- condiția pentru susținerea testelor scrise
 - prezenţa la laborator
 - cel mult 2 absențe permise în fiecare jumătate de semestru

Cuprins - prima jumătate

- I. Introducere
- II. Circuite combinaționale și funcții booleene
- III. Circuite secvențiale și automate
- IV. Reprezentări interne
- V. Arhitectura și organizarea calculatorului

I. Introducere

I.1. Evoluţie

Cum definim noțiunea de calcul?

- ce operații se pot realiza?
- evoluţie în timp
 - abacul: adunări
 - roți dințate (Leibniz, Pascal): adunări, înmulțiri
 - Babbage: instrucţiuni încărcate din exterior, calcul ramificat
 - von Neumann: program memorat; execuţie în secvenţă de instrucţiuni; ierarhii de memorii
 - calcul paralel, cuantic etc.

Maşini de calcul universale

- o maşină de calcul universală se poate comporta ca oricare maşină de calcul particulară
 - deci poate rezolva orice problemă pe care o poate rezolva o maşină de calcul particulară
- exemplu calculatorul
 - în funcție de programul executat, rezolvă probleme de: calcul matricial, grafică, tehnoredactare etc.

Scurtă istorie (1)

- scrierea pozițională
 - indieni, arabi
- algebra booleană
 - George Boole, 1854
- teorema de incompletitudine
 - Kurt Gödel, 1935
- legătura între algebra booleană și circuite
 - Claude Shannon, 1938

Scurtă istorie (2)

- calculatorul neumannian
 - John von Neumann, 1946
- tranzistorul
 - Shockley, Brittain, Bardeen, 1947
- circuitele integrate

I.2. Legi empirice

Legi empirice

- în orice domeniu al științei, legile sunt determinate într-un fel sau altul de experiment sau de observații în lumea concretă
- repetabilitatea duce la ideea de legi empirice: adevăruri valabile de cele mai multe ori, conform observaţiilor

Legi empirice în informatică

- legea "90:10" (Donald Knuth)
 - 90% din timpul de execuţie al unui program este utilizat pentru 10% din instrucţiuni
- legea lui Amdahl
 - eficienţa maximă în îmbunătăţirea unui sistem (concret sau abstract) se atinge dacă se optimizează subsistemul cel mai folosit
- legile localizării spațială, temporală

Legea lui Amdahl (1)

- considerăm un sistem (hardware, software) și o anumită componentă a sa
- componenta respectivă lucrează un procentaj f_a din timpul de lucru al sistemului
- și este îmbunătățită, astfel încât lucrează de *a* ori mai rapid decât înainte
- de câte ori mai rapid devine sistemul?

Legea lui Amdahl (2)

$$A(a, f_a) = \frac{1}{(1 - f_a) + \frac{f_a}{a}}$$

- creștere de viteză generală cât mai mare
 - îmbunătățirea pronunțată a componentei (a)
 - îmbunătățirea componentelor cu o pondere (f_a) cât mai mare
 - deci mai des folosite