EECS 127/227AT Optimization Models in Engineering Spring 2020

Discussion 0

1. Least squares and Gram-Schmidt

Consider the least squares problem,

$$\vec{x}^* = \arg\min_{\vec{x} \in \mathbb{R}^n} \left\| A\vec{x} - \vec{b} \right\|_2^2,$$

where $A \in \mathbb{R}^{m \times n}$, $\vec{b} \in \mathbb{R}^m$ and assume A is full column rank. One way to solve this least-squares problems is to use Gram-Schmidt Orthonormalization (GSO). Using GSO, the matrix A can be written as,

$$A = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix},$$

where Q is an orthonormal (orthogonal) matrix and R is an upper-triangular matrix.

The columns of Q_1 form an an orthonormal basis for the range $\mathcal{R}(A)$ and columns of Q_2 form an orthonormal basis for the range $\mathcal{R}(A)^{\perp}$. Moreover, R_1 is upper triangular and invertible.

1. Show that the squared norm of the residual is given by

$$\|\vec{r}\|_{2}^{2} \triangleq \|\vec{b} - A\vec{x}\|_{2}^{2} = \left\| \left(Q_{1}^{\top} \vec{b} - R_{1} \vec{x} \right) \right\|_{2}^{2} + \left\| Q_{2}^{\top} \vec{b} \right\|_{2}^{2}.$$
 (1)

Solution: We have,

$$\begin{split} \|r\|_2^2 &\triangleq \|\vec{b} - A\vec{x}\|_2^2 \\ &= \left\|\vec{b} - Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix} \vec{x} \right\|_2^2. \end{split}$$

Since multiplying by an orthonormal matrix does not change the ℓ_2 -norm of a vector we can multiply by Q^{\top} to get,

$$\begin{split} \|\vec{r}\|_2^2 &= \left\| Q^\top \left(\vec{b} - Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix} \vec{x} \right) \right\|_2^2 \\ &= \left\| \begin{bmatrix} Q_1^\top \vec{b} \\ Q_2^\top \vec{b} \end{bmatrix} - \begin{bmatrix} R_1 \vec{x} \\ 0 \end{bmatrix} \right\|_2^2 \\ &= \left\| \begin{bmatrix} Q_1^\top \vec{x} - R_1 \vec{x} \\ Q_2^\top \vec{b} \end{bmatrix} \right\|_2^2 \\ &= \left\| \left(Q_1^\top \vec{b} - R_1 \vec{x} \right) \right\|_2^2 + \left\| Q_2^\top \vec{b} \right\|_2^2. \end{split}$$

2. Find \vec{x}^* such that the squared norm of the residual in Equation (1) is minimized. Your expression for \vec{x}^* should only use some or all of the following terms: Q_1, Q_2, R_1, \vec{b} .

Solution: We have,

$$\|\vec{r}\|_{2}^{2} = \left\| \left(Q_{1}^{\top} \vec{b} - R_{1} \vec{x} \right) \right\|_{2}^{2} + \left\| Q_{2}^{\top} \vec{b} \right\|_{2}^{2}.$$

Since we have no control over the term $\|Q_2^{\top}\vec{b}\|_2^2$, the optimal \vec{x}^* is one which minimizes $\|(Q_1^{\top}\vec{b} - R_1\vec{x})\|_2^2$ and using the fact that R_1 is invertible we have $\vec{x}^* = R_1^{-1}Q_1^{\top}\vec{b}$.

3. Check if the expression for \vec{x}^* obtained in the previous part is equivalent to the one obtained by the formula, $\vec{x}^* = (A^{\top}A)^{-1}A^{\top}\vec{b}$.

Solution: We have $A = QR = Q_1R_1$ (Block multiplication for matrices). Substituting,

$$\vec{x}^* = (R_1^{\top} R_1)^{-1} R_1^{\top} Q_1^{\top} \vec{b}.$$

Check that $(R_1^{\top}R_1)^{-1}R_1^{\top}$ is the inverse of R_1 by both left-multiplying and right-multiplying by R_1 . The equivalence between the two forms for \vec{x}^* follows.

2. Eigenvalues

Let $A \in \mathbb{R}^{n \times n}$ have the eigendecomposition $P\Lambda P^{-1}$ where Λ is a diagonal matrix with entries consisting of the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Note that this is equivalent to stating that A is diagonalizable via the transformation,

$$P^{-1}AP = \Lambda.$$

1. Show that $A^m = P\Lambda^m P^{-1}$, for integer $m \ge 1$.

Solution:

$$A^{m} = (P\Lambda P^{-1})(P\Lambda P^{-1})\dots(P\Lambda P^{-1}) \quad (m \text{ times})$$
$$= P\Lambda(P^{-1}P)\Lambda(P^{-1}P)\dots\Lambda(P^{-1}P)\Lambda P^{-1}$$
$$= P\Lambda^{m}P^{-1}$$

The last equality follows from the repeated application of the identity $P^{-1}P = I$.

2. Show that determinant of A is the product of its eigenvalues, i.e.

$$\det(A) = \prod_{i=1}^{n} \lambda_i.$$

Hint: We have the identity det(XY) = det(X) det(Y).

Solution:

Write down eigendecomposition of A and use properties of determinant given in the hint.

$$\det(A) = \det(P\Lambda P^{-1})$$

$$= \det(P) \det(\Lambda) \det(P^{-1})$$

$$= \det(PP^{-1}) \det(\Lambda)$$

$$= \det(\Lambda)$$

$$= \prod_{i=1}^{n} \lambda_{i}$$