The Comparison of Local and Global Early Fake News Detection Methods

Maciej Pawlikowski, Hubert Ruczyński, Bartosz Siński, Adrian Stańdo

Main goals

- 1. Comparison of different topic detection models.
- 2. Comparison of **fake news detection** methods.
- 3. Introduction of local fake news detection methods.
- 4. Evaluation of the local approach, and comparison to corresponding global solutions.
- 5. Exploration of models **differences** between the two strategies with the usage of **XAI**.

Proposed solution

- 1. We used SOTA topic detection tools, namely: **K-Means**, **LDA**, **LSI**, and **GSSDMM**, based on **lemmas** and **noun chunks**.
- 2. We evaluated the clustering quality with SOTA approaches mentioned in the Literature Review, namely: Coherence Score, Silhouette Score, and Calinski-Harabsz Index.
- 3. We prepared a **train-test split** with regard to particular clusters (ex. 70% 30%: training testing).
- 4. We prepared a few (5) SOTA solutions for fake news detection methods, namely: **Logistic Regression**, **SVM**, **Random Forest**, **Naive Bayes**, and **DistilBERT**.
- 5. We trained and evaluated them on a global split.
- 6. We trained and evaluated them on **local** clusters.
- 7. We compared the results of global and local models in terms of **performance**.
- 8. We used **eXplainable AI (XAI)** methods to discover the most important indicators for global and local methods.

Proposed solution

Proposed solution

Preprocessing design

EDA

Experimental design

Used Methods

- 1. Classical clustering method with two document representations:
 - a. Doc2Vec + k-means
 - b. TF-IDF + k-means
- 2. Topic modeling method:
 - c. Latent Dirichlet Allocation (LDA)
 - d. Latent Semantic Indexing (LSI)
 - e. Gibbs Sampling Dirichlet Multinomial Mixture (GSSDMM)
- 3. Clustering performed on extracted noun chunks and lemmas.

Choosing number of clusters

Metrics for TF-IDF + LDA clustering

Choosing number of clusters

Metrics for TF-IDF + k-means clustering

Results - lemmas

Clustering Algorithm	Silhouette Score	Calinski-Harabasz Score
TF-IDF + K-Means	0.038	293.9
Doc2Vec + K-Means	0.134	449.6
LDA	0.607	18668.8
TF-IDF + LDA	0.873	91490.7
LSI	-0.320	49.5
TF-IDF + LSI	0.469	1655.9
GSSDMM	0.714	529.4

Results – noun chunks

Clustering Algorithm	Silhouette Score	Calinski-Harabasz Score
TF-IDF + K-Means	0.067	314.1
Doc2Vec + K-Means	0.386	3473.24
LDA	0.883	110432.1
TF-IDF + LDA	0.929	323993.32
LSI	-0.512	132.0
TF-IDF + LSI	-0.290	393.5
GSSDMM	0.867	15681.4

Results

Results

Diving into GSDMM clusters.

Most frequent nouns in cluster 4:

- 1. Trump
- 2. Obama
- 3. people
- 4. Congress
- 5. Republicans
- 6. America
- 7. Donald Trump
- 8. Democrats
- 9. Clinton
- 10. Hillary Clinton

Most frequent nouns in cluster 0:

- 1. Russia
- 2. Syria
- 3. Israel
- 4. people
- 5. Iran
- 6. Iraq
- 7. Europe
- 8. China
- 9. Britain
- 10. ISIS

Experimental design

Tokenization

- Lowering the case of the entire string
- Adding special tokens to mark the start and end of the string
- Splits uncommon words into several tokens

```
"tokenizer" -> "token" + "##izer"
```

- Punktuation removal
- Separating input text into individual sentences
- Removal of unnecessary whitespaces
- Padding and truncating

Model choice

- 1. Statistical models
 - Logistic regression
 - Support Vector Machines
 - Random Forest
 - Naive Bayess
- 2. Transformers
 - DistilBERT

Results Before topic detection

Logistic regression

Accuracy = 0.598

SVM

Accuracy = 0.518

Results Before topic detection

Random forest

Accuracy = 0.491

Naive Bayes

Accuracy = 0.444

Results Before topic detection

DistilBert

Accuracy = 0.710

Results Clustering results

Weighted accuracy = accuracy * size / sum(size)

Predicted lab

															accuracy w/o	
	bias		clickbait	conspiracy	fake	hate	junksci	political	reliable	rumor	satire	unknown	unreliable	accuracy	political	size
0		0.44	0.61	0.41	0.49	0.61	0.61	0.38	0.74	0.77	0.51	0.41	0.50	0.54	0.58	2995
1		0.29	0.60	0.46	0.42	0.36	0.74	0.28	0.68	0.78	0.49	0.40	0.46	0.50	0.55	2862
2		0.47	0.58	0.45	0.53	0.52	0.63	0.33	0.68	0.79	0.56	0.42	0.51	0.53	0.59	2981
3		0.29	0.62	0.38	0.57	0.68	0.75	0.28	0.76	0.81	0.38	0.27	0.46	0.52	0.59	3162

Results LDA clustering

Logistic regression

Weighted accuracy = 0.523

	bias		clickbait	conspiracy	fake	hate	junksci	political	reliable	rumor	satire	unknown	unreliable		accuracy without political	size
С		0.44	0.61	0.41	0.49	0.61	0.61	0.38	0.74	0.77	0.51	0.41	0.50	0.54	0.58	2995
1		0.29	0.60	0.46	0.42	0.36	0.74	0.28	0.68	0.78	0.49	0.40	0.46	0.50	0.55	2862
2		0.47	0.58	0.45	0.53	0.52	0.63	0.33	0.68	0.79	0.56	0.42	0.51	0.53	0.59	2981
3		0.29	0.62	0.38	0.57	0.68	0.75	0.28	0.76	0.81	0.38	0.27	0.46	0.52	0.59	3162

DistilBERT

Weighted accuracy = 0.619

	bias		clickbait	conspiracy	fake	hate	junksci	political	reliable	rumor	satire	unknown	unreliable		accuracy without political	size
0	0).53	0.70	0.53	0.92	0.71	0.78	0.52	0.60	0.87	0.54	0.49	0.63	0.65	0.70	2995
1	0).37	0.74	0.61	0.89	0.55	0.80	0.17	0.72	0.82	0.71	0.57	0.47	0.63	0.69	2862
2	0	.49	0.64	0.56	0.82	0.57	0.80	0.34	0.65	0.76	0.70	0.43	0.46	0.59	0.67	2981
3	0	.30	0.79	0.33	0.88	0.74	0.91	0.54	0.78	0.78	0.37	0.48	0.43	0.61	0.71	3162

Results GSDMM clustering

Logistic regression

	bias	clickbait	conspiracy	fake	hate	junksci	political	reliable	rumor	satire	unknown	unreliable		accuracy without political	size
0	0.69	0.33	0.36	0.50	0.60	0.00	0.32	0.45	0.73	0.45	0.32	0.41	0.52	0.54	1393
1	0.21	0.25	0.69	0.56	0.52	0.55	0.33	0.61	0.58	0.41	0.25	0.25	0.49	0.54	1296
2	0.80	0.41	0.56	0.88	0.25	0.33	0.10	0.79	0.96	0.57	0.00	0.63	0.70	0.75	951
3	0.10	0.53	0.32	0.63	0.30	0.73	0.28	0.72	0.83	0.49	0.14	0.15	0.54	0.58	1028
4	0.14	0.74	0.26	0.28	0.43	0.20	0.61	0.42	0.00	0.57	0.44	0.10	0.46	0.52	1766
5	0.15	0.70	0.68	0.40	0.50	0.45	0.05	0.80	0.84	0.61	0.23	0.41	0.58	0.63	1057
6	0.40	0.53	0.24	0.35	0.72	0.86	0.27	0.72	0.74	0.30	0.38	0.76	0.55	0.61	4509

Weighted accuracy = 0.540

Results GSDMM clustering

DistilBERT

	bias		clickbait	conspiracy	fake	hate	junksci	political	reliable	rumor	satire	unknown	unreliable	accuracy	accuracy without political	size
0		0.71	0.00	0.47	0.81	0.29	0.00	0.00	0.05	0.92	0.83	0.46	0.21	0.50	0.54	1393
1		0.00	0.42	0.55	0.97	0.67	0.97	0.60	0.63	0.75	0.27	0.11	0.00	0.57	0.64	1296
2		0.76	0.14	0.00	0.89	0.00	0.00	0.00	0.78	0.95	0.69	0.00	0.00	0.58	0.59	951
3		0.00	0.86	0.27	0.76	0.17	0.89	0.06	0.61	0.70	0.73	0.00	0.00	0.55	0.60	1028
4		0.22	0.76	0.10	0.81	0.50	1.00	0.81	0.05	0.00	0.52	0.55	0.17	0.53	0.67	1766
5		0.15	0.77	0.65	0.67	0.50	0.20	0.00	0.90	0.77	0.69	0.00	0.00	0.57	0.61	1057
6		0.45	0.68	0.47	0.94	0.76	0.85	0.38	0.73	0.64	0.58	0.60	0.79	0.67	0.75	4509

Weighted accuracy = 0.593

Results Comparison of DistilBERTs

Accuracy w/o clustering = 0.710

Weighted accuracy LDA = 0.619

Weighted accuracy GSDMM = 0.593

Experimental design

Explanations

- 1. The best model turned out to be the fine-tuned DistilBERT.
- 2. Consequently, only these models will be used to create explanations.
- 3. The explanation method is based on Integrated Gradients (IG). It is given by the following formula, where i label, x input, x' baseline input.

$$IntegratedGrads_i(x) ::= (x_i - x_i') imes \int_{lpha = 0}^1 rac{\partial F(x' + lpha imes (x - x'))}{\partial x_i} dlpha$$

4. The equality of explanations will be determined by running the Wilcoxon statistical test with FDR correction.

Explanations

[CLS] donald trump welcomed the new england patriots to the white house wednesday afternoon to cong ##rat ##ulate them for their historic comeback victory and fifth super bowl championship for the franchise. the president addressed the patriots players , coaches and owner robert kraft on the south lawn in recognition of their thrilling comeback win in which they overcame a - deficit to push the game into overtime and take home another lombard ##i trophy . (video : rob gr ##on ##kowski crashes white house press briefing) " with your backs against the wall - and

Global model

[CLS] donald trump welcomed the new england patriots to the white house wednesday afternoon to cong ##rat ##ulate them for their historic comeback victory and fifth super bowl championship for the franchise . the president addressed the patriots players , coaches and owner robert kraft on the south lawn in recognition of their thrilling comeback win in which they overcame a - deficit to push the game into overtime and take home another lombard ##i trophy . (video : rob gr ##on ##kowski crashes white house press briefing) " with your backs against the wall - and

Local model

Explanations

Heatmap of reject rate ($\alpha = 0.05$) of the hypothesis of the equality of explanations for the topic clustering GSS

Conclusions

- 1. We trained a variety of models. The best ones turned out to be DistilBert.
- 2. We split the input dataframe by using topic detection methods. Further, we trained models to detect classes in each of the clusters.
- 3. The performance of models trained on the specific clusters turned out to be, unfortunately, worse. This could be a result of similar concept (topics) inside clusters or smaller amount of data per model.
- 4. The models were compared also based on the explainability technique Integrated Gradients. This approach proved that topic-specific models put focus on different words than a global model. Moreover, the Wilcoxon test results showed that the differences are real.

Further Works

- 1. The local approach proves to be ineffective for now. To fix this we plan to enhance the amount of data (5 times), and reduce numer of fake news types (end up with 2 and 4 classes).
- 2. To gain more time for training we will limit ourselves to the DistilBERT at first.
- 3. If the approach works, we plan to try a new, bigger model (maybe some LLM).
- 4. We want to introduce a new clustering method of BERTopic, which may contribute positively to the final results, as BERTopic is easily interpretable.

