Cálculo I — Agrupamento I

2016/2017

Soluções da Ficha de Exercícios 1

1. (a)
$$f^{-1}: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{1}{x} - 1$

de contradomínio $\mathbb{R} \setminus \{-1\}$;

(b)
$$f^{-1}:]2, +\infty[\longrightarrow \mathbb{R}$$

 $x \longmapsto -1 + \ln(x-2)$

de contradomínio \mathbb{R} ;

$$\begin{array}{cccc} (c) & f^{-1}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & 2 - 3^x \end{array}$$

de contradomínio] $-\infty, 2[$;

(d)
$$f^{-1}: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto x^3 - 1$

de contradomínio \mathbb{R} .

2. (a)
$$k = \frac{1}{2}$$
; (b) —; (c) $g:]\frac{1}{2}, \frac{3}{2}[\longrightarrow \mathbb{R}$

$$x \longmapsto \frac{1}{\sqrt{-\ln(x-\frac{1}{2})}}$$

de contradomínio \mathbb{R}^+ .

3. (a)
$$x = 0$$
; (b) $x \in]-\infty, -1]$; (c) $x \in]-\infty, 0] \cup [1, +\infty[$; (d) $x \in]0, e^{-2}[$; (e) $x \in]-2, \frac{1}{3}] \cup]2, +\infty[$.

4. —

5. (a)
$$f^{-1}: [-1/2, 1/2] \longrightarrow \mathbb{R}$$

 $x \longmapsto \operatorname{arcsen}(2x) - \pi/2$

de contradomínio $[-\pi, 0]$;

(b)
$$f^{-1}: [\pi/6, 5\pi/6] \longrightarrow \mathbb{R}$$

 $x \longmapsto 1 - \operatorname{sen}(3\pi/4 - 3x/2)$

de contradomínio [0, 2];

(c)
$$f^{-1}: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$

 $x \longmapsto 2 - \frac{\pi}{\operatorname{arctg} x}$

de contradomínio] $-\infty,0[\cup]4,+\infty[;$

(d)
$$f^{-1}: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto 3 + e^{\frac{4x+1}{5}}$

de contradomínio $]3, +\infty[;$

(e)
$$f^{-1}: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{1}{2} - \ln \sqrt{x}$

de contradomínio \mathbb{R} .

```
7. (a) f'(x) = \frac{4}{3\sqrt[3]{2x-1}}, D_{f'} = \mathbb{R} \setminus \{\frac{1}{2}\};
```

(b)
$$f'(x) = 2x e^{x^2} (1 + x^2), D_{f'} = \mathbb{R}$$

(b)
$$f'(x) = 2x e^{x^2} (1 + x^2), D_{f'} = \mathbb{R};$$

(c) $f'(x) = \frac{-2\operatorname{sen}(\log_2(x^2))}{x \ln 2}, D_{f'} = \mathbb{R} \setminus \{0\};$
(d) $f'(x) = \frac{1 - x^2(2\ln x + 1)}{x}, D_{f'} = \mathbb{R}^+.$

(d)
$$f'(x) = \frac{1 - x^2(2\ln x + 1)}{x}$$
, $D_{f'} = \mathbb{R}^+$

8.
$$(f^{-1})'(-3) = \frac{1}{54}$$
.

9.
$$(f^{-1})'(2) = 1$$
.

10. (a)
$$\frac{1}{3\sqrt[3]{x^2}}$$
; (b) 1.

11. (a)
$$\frac{-12x^2\cos(4x^3)}{1+\sin^2(4x^3)}$$
; (b) $f'(x) = \frac{-2}{x\sqrt{x^4-1}} = \frac{-2\sqrt{x^4-1}}{x^5-x}$; (c) $f'(x) = 2x \arctan x + 1$; (d) $f'(x) = \frac{1}{2\sqrt{x-x^2}}$.

- 12. A função f é crescente em $]-\infty,0]$, decrescente em $[0,+\infty[$ e tem máximo f(0)=1 em x=0.
- 13. Verdadeira.
- 14. Sugestão: Utilize o Teorema de Bolzano para garantir que f tem pelo menos uma raiz e o estudo dos zeros da derivada para garantir a unicidade.
- 15. Sugestão: Faça o estudo da primeira derivada de f.
- 16. f tem um zero em]0,1[, um em]1,2[e outro em]-1,0[.
- 17. —
- 18. (a) Sugestão: Considere a função $f(x) = \arcsin x x$ e prove que é positiva no intervalo considerado analisando o comportamento da primeira derivada; (b) —; (c) —.
- 19. x = 0 é um minimizante local; h(0) = 2.
- 20. (a) É contínua em \mathbb{R} ;
 - (b) f não é diferenciável em x = 0;
 - (c) $b = \frac{1}{6}$.
- 21. —
- 22. —

23.
$$\lim_{x \to +\infty} \frac{x - \sin x}{x + \sin x} = 1.$$

- 24. (a) 1/9; (b) não existe; (c) 2/3; (d) -1/2; (e) -1; (f) 0; (g) 1; (h) 0; (i) 1; (j) e^4 ; (k) 0; (l) 1; (m) $\ln 3$; (n) e; (o) e^{-2} ; (p) 0.
- 25. (a) f é contínua em [0, e]; (b) $+\infty$;
 - (c) 0 é mínimo absoluto e 1 é máximo absoluto;
 - (d) $CD_f = [0, 1]$.
- 26. —
- 27. (a) f é contínua em x=0.
 - (b) f não é diferenciável em x=0.
 - (c) f tem mínimo global em x=0.
 - (d) —

 - (f) $g^{-1}: [0, \pi/2] \to \mathbb{R}$ $g^{-1}(x) = -\sqrt{\operatorname{tg} x}, CD_{f^{-1}} = \mathbb{R}_0^-$

29. (a) $D_f = [0, 2]$.

(b) —

(c) Para justificar a existência de máximo e mínimo globais usar o Teorema de Weierstrass. Observar que f'(x) < 0, para todo $x \in]0,2[, f(0) = \frac{\pi}{2} e f(2) = \frac{-\pi}{2}$. Então o mínimo global é $\frac{-\pi}{2}$ e o máximo global é $\frac{\pi}{2}.$

 $(\overset{2}{\mathrm{d}}) CD_f = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$

30. (a) 100; (b) Não; (c) p é estritamente crescente em \mathbb{R}_0^+ ; (d) 1000; (e) $D_{p^{-1}}=[100,1000[,\ p^{-1}(x)=\ln\frac{9x}{1000-x};$ (f) Verdadeira.

31. (a) — ; (b) 10^3 ; (c) $10^{0.75} - 1$, que é aproximadamente 4.62; (d) 9.

32. (a) N é estritamente decrescente em \mathbb{R}_0^+ ;

(b) t = 0 é maximizante absoluto e o máximo absoluto correspondente é N(0) = a;

(c) $CD_N =]0, a];$

(d) 5×10^9 anos.