Particle Filtering for Nonlinear State Space Models

Hans-Peter Höllwirth Supervisor: Christian Brownlees

Barcelona Graduate School of Economics

June 29, 2017

(BGSE) Master Project June 29, 2017 1 / 28

Outline

- What I have done
- State Space Models
- Particle Filters
 - Kalman Filter
 - Sequential Importance Resampling (SIR)
 - Continuous Sequential Importance Resampling (CSIR)
 - Importance Sampling Particle Filter
- Evaluation
- Illustration
 - Trivariate Local Level Model
 - Hierarchical Dynamic Poisson Model

(BGSE) Master Project June 29, 2017 2 / 28

State Space Models

(BGSE) Master Project June 29, 2017 3 / 28

Local Level Model

Formulation

observation:
$$y_t = x_t + \epsilon_t$$
, $\epsilon_t \sim N(0, \sigma_{\epsilon}^2)$
state: $x_{t+1} = x_t + \eta_t$, $\eta_t \sim N(0, \sigma_{\eta}^2)$

$$oldsymbol{ heta} = [\sigma_{\eta}^2, \sigma_{\epsilon}^2]^T$$

transition density: $x_{t+1}|x_t, \theta \sim N(x_t, \sigma_{\epsilon}^2)$ measurement density: $y_t|x_t, \theta \sim N(x_t, \sigma_{\eta}^2)$

(BGSE) Master Project June 29, 2017 4 / 28

Local Level Realization

$$\sigma_{\eta}^2=$$
 1.4, $\sigma_{\epsilon}^2=$ 1.0

Latent State Inference

7 / 28

Particle Filtering

(BGSE) Master Project June 29, 2017 8 / 28

Parameters of the dynamic programming algorithm

- State of the system:
 - x_i: yards to the goal line
 - ▶ *y_i*: yards to the first down
 - ▶ *d*: number of downs

(BGSE) Master Project June 29, 2017 9 / 28

Parameters of the dynamic programming algorithm

- State of the system:
 - x_i: yards to the goal line
 - ▶ *y_i*: yards to the first down
 - ▶ d: number of downs
- Policies or actions that players can take:
 - P: pass
 - ► R: run
 - ▶ U: punt
 - K: kick

(BGSE) Master Project June 29, 2017 9 / 28

Parameters of the dynamic programming algorithm

- State of the system:
 - x_i: yards to the goal line
 - y_i: yards to the first down
 - ▶ *d*: number of downs
- Policies or actions that players can take:
 - ► P: pass
 - R: run
 - ▶ U: punt
 - K: kick
- Rewards:
 - ► Touchdown: 6.8
 - ▶ Field goal: 3
 - ► Safety: −2
 - Opposition score $= -\frac{6.8x}{100}$

(BGSE)

Evaluation

(BGSE) Master Project June 29, 2017 10 / 28

Method Comparison

Method Comparison

Filter	Latent state	Parameter	Comment
Kalman	Х	Х	linear Gaussian models only
SIR	X		
CSIR	X	X	univariate models only
IS		X	

Monte Carlo Simulations

3GSE) Master Project June 29, 2017 13 / 28

Illustration

(BGSE) Master Project June 29, 2017 14 / 28

Trivariate Local Level Model

Formulation

observation:
$$\mathbf{y}_t = \mathbf{x}_t + \epsilon_t$$
, $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \sigma_\epsilon^2 I_3)$
state: $\mathbf{x}_{t+1} = \mathbf{x}_t + \eta_t$, $\eta_t \sim \mathcal{N}(\mathbf{0}, \Sigma_\eta)$

$$\Sigma_{\eta} = \begin{bmatrix} \sigma_{\eta 1}^2 & \rho \sigma_{\eta 1} \sigma_{\eta 2} & \rho \sigma_{\eta 1} \sigma_{\eta 3} \\ \rho \sigma_{\eta 1} \sigma_{\eta 2} & \sigma_{\eta 2}^2 & \rho \sigma_{\eta 2} \sigma_{\eta 3} \\ \rho \sigma_{\eta 1} \sigma_{\eta 3} & \rho \sigma_{\eta 2} \sigma_{\eta 3} & \sigma_{\eta 3}^2 \end{bmatrix}$$

$$\boldsymbol{\theta} = [\rho, \sigma_{\eta 1}^2, \sigma_{\eta 2}^2, \sigma_{\eta 3}^2, \sigma_{\epsilon}^2]^T$$

(BGSE) Master Project June 29, 2017 15 / 28

Trivariate Local Level Realization

$$\boldsymbol{\theta} = [\rho = 0.7, \sigma_{\eta 1}^2 = 4.2, \sigma_{\eta 2}^2 = 2.8, \sigma_{\eta 3}^2 = 0.9, \sigma_{\epsilon}^2 = 1.0]^T$$

BGSE) Master Project June 29, 2017 16 / 28

Latent State Inference

Kalman filter

17 / 28

Latent State Inference

SIR particle filter

Log-likelihood plots for $\sigma_{\eta 2}^2$ and ρ

Results

	$\sigma_{\eta 1}^2$	$\sigma_{\eta 2}^2$	$\sigma_{\eta 3}^2$	ρ	true $\log \mathcal{L}$	$MLElog\mathcal{L}$
True	4.20	2.80	0.90	0.70		
Kalman	4.96	3.10	1.01	0.73	-307.712	-307.459
SIR	2.27	1.53	1.29	0.52	-313.466	-336.291
IS	2.69	2.09	1.06	0.42		

Hierarchical Dynamic Poisson Model

Formulation

observation:

 $y_{m,n} \sim \mathsf{Poisson}(\lambda_{m,n})$ $\log \lambda_{m,n} = \log \lambda_m^{(D)} + \log \lambda_m^{(I)} + \log \lambda_n^{(P)}$ state:

$$\begin{array}{lll} \text{daily:} & \log \lambda_{m+1}^{(D)} &= \phi_0^{(D)} + \phi_1^{(D)} \log \lambda_m^{(D)} + \eta_m^{(D)} & \eta_t \sim \textit{N}(0, \sigma_{(D)}^2) \\ \text{intra-daily:} & \log \lambda_{m,n+1}^{(I)} &= \phi_1^{(I)} \log \lambda_{m,n}^{(I)} + \eta_{m,n}^{(I)} & \eta_{m,n} \sim \textit{N}(0, \sigma_{(I)}^2) \\ \text{periodic:} & \log \lambda_n^{(P)} &= \phi_1^{(P)} \sin(\pi(n-1)/\textit{M}) \end{array}$$

$$\boldsymbol{\theta} = [\phi_0^{(D)}, \phi_1^{(D)}, \sigma_{(D)}^2, \phi_1^{(I)}, \sigma_{(I)}^2, \phi_1^{(P)}]^T$$

(BGSE) June 29, 2017 21 / 28

Hierarchical Dynamic Poisson Realization

N = 5, M = 20

$$\boldsymbol{\theta} = [\phi_0^{(D)} = 0.7, \phi_1^{(D)} = 0.6, \sigma_{(D)}^2 = 0.6, \phi_1^{(I)} = 0.3, \sigma_{(I)}^2 = 0.2, \phi_1^{(P)} = 0.8]^T$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からで

(BGSE) Master Project June 29, 2017 22 / 28

Hierarchical Dynamic Poisson Realization

Components

$$\boldsymbol{\theta} = [\phi_0^{(D)} = 0.7, \phi_1^{(D)} = 0.6, \sigma_{(D)}^2 = 0.6, \phi_1^{(I)} = 0.3, \sigma_{(I)}^2 = 0.2, \phi_1^{(P)} = 0.8]^T$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (^)

(BGSE) Master Project June 29, 2017 23 / 28

Latent State Inference

SIR particle filter

Log-likelihood plots for $\phi_1^{(D)}$

(RR2F)

Log-likelihood plots for $\sigma_{(D)}^2$

(RC2F)

Results

	$\phi_0^{(D)}$	$\phi_1^{(D)}$	$\sigma^2_{(D)}$	$\phi_1^{(I)}$	$\sigma_{(I)}^2$	$\phi_1^{(P)}$
True	0.70	0.60	0.30	0.80	0.60	0.20
SIR	0.76	0.56	0.85	0.48	0.83	1.13
IS	0.65	0.59	0.40	0.63	0.35	0.31

Q & A

(BGSE) Master Project June 29, 2017 28 / 28