Tutorial

Solutions to linear system of equations using sparse QR decomposition

November 20, 2019

Q.(1) (a) Consider a vector $\mathbf{v} = [v(1), v(2)]^T \in \mathbb{R}^2$ and an angle θ . Note that the matrix M given by $M = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$, where $c = \cos(\theta)$ and $s = \sin(\theta)$ rotates the vector \mathbf{v} by θ radians in the clockwise direction. Use M to construct a function $\mathrm{rot}(\mathbf{v}, \mathrm{theta})$ that rotates the vector \mathbf{v} by an angle of theta radians in the clockwise direction. Use the following function $\mathrm{vec_rot}(\mathbf{v}, \mathrm{theta})$ to plot the vectors \mathbf{v} and $\mathrm{rot}(\mathbf{v}, \mathrm{theta})$ in the same figure.

```
function out = vec_rot(v,theta)
    v_th = rot(v,theta);
    figure(1)
    quiver(0,0,v(1),v(2),'r');
    hold on;
    quiver(0,0,v_th(1),v_th(2),'b');
```

- (b) Construct a function TD_angle(v) to find the angle between v and x-axis. Check TD_angle(rot(v,theta)). Plot v and rot(v,TD_angle(v)) using vec_rot. Observe that the rotated vector is aligned with the x-axis.
- (c) Compute $\|\mathbf{v}\|$ and $\|\mathsf{rot}(\mathsf{v},\mathsf{theta})\|$. Check whether the norm is changed or not.
- Q.(2) (a) Use the GNU-Octave (Scilab) command $\mathbf{v} = [\mathbf{v}(1); \dots; \mathbf{v}(m)]$ to input a vector $\mathbf{v} = [v(1), \dots, v(m)]^{\mathrm{T}}$. Find the angle θ_j between the vector $[\mathbf{v}(1) \ \mathbf{v}(j)]^{\mathrm{T}}$ and positive x-axis using the function $\mathrm{TD_angle}([\mathbf{v}(1) \ \mathbf{v}(j)])$ from Q.(1)a.
 - (b) Use the 2×2 Givens rotation matrix $M_j = \begin{bmatrix} \cos(\theta_j) & \sin(\theta_j) \\ -\sin(\theta_j) & \cos(\theta_j) \end{bmatrix}$ to construct the $m \times m$ Givens rotation matrix Q_{1j} . You can employ the commands $Q_1j = eye(m)$; $Q_1j((1,j],[1,j])) = M_j$ for this. Verify that the transformed vector $Q_{1j}\boldsymbol{v}$ has the properties $(Q_{1j}\boldsymbol{v})(j) = 0$, $(Q_{1j}\boldsymbol{v})(1) = \|[v(1) \ v(j)]^T\|_2$ and $(Q_{1j}\boldsymbol{v})(i) = \boldsymbol{v}(i)$ for $i \neq 1, j$.
 - (c) Write a function given_vec(v) that transforms a vector $\mathbf{v} = [v(1), \dots, v(m)]^{\mathrm{T}}$ into $[*, 0, \dots, 0]^{\mathrm{T}}$ using Givens rotations.
- Q.(3) (a) Consider a matrix $A_{m \times n}$. Each column of A is an $m \times 1$ vector. Let the j^{th} column of A be A_j . Construct a matrix Q_{ij} using the following commands for i > j.

```
 \begin{aligned} & Q_{-}ij = eye(n,n) \\ & theta_{-}ij = TD_{-}angle([A(j,j),A(i,j)]) \\ & M_{-}ij = [cos(theta) sin(theta); -sin(theta) cos(theta)] \\ & Q_{-}ij([i,j],[i,j]) = M_{-}ij \end{aligned}
```

Observe the transformed matrix $Q_{ij}A$. What can you conclude from the values of $(Q_{ij}A)(j,j)$ and $(Q_{ij}A)(i,j)$.

(b) Run the the following loop

```
for j = 1:n
    for i = j+1:m
        Q = eye(m, m);
        theta = TD_angle([A(j,j), A(i,j)]);
        M = [cos(theta) sin(theta);-sin(theta) cos(theta)];
        Q([j,i],[j,i]) = M;
        A = Q*A
    end
end
```

Note that each element A_{ij} with i > j is zero now.

- (c) A has the structure $A = \begin{bmatrix} R \\ \hline 0 \end{bmatrix}$. Check A^TA and R^TR are equal.
- Q.(4) Consider the system of equations $A\mathbf{X} = \mathbf{b}$. Transform A into form $\left[\frac{R}{0}\right]$ using Givens rotations, where R is an upper triangular matrix and then use backward-forward substitution to find \mathbf{X} . Check $||A\mathbf{X} \mathbf{b}||_2$. Is it zero? What if you take \mathbf{b} in the column space of A? What can you conclude from these results?
- Q.(5) (a) Consider m data points $\{(t_i, f(t_i))\}_{i=1,\dots,m}$ from an experiment. Use the command $M_t = [t_1, \dots, t_m]$ and $M_f = [f(t_1), \dots, f(t_m)]$ to enter this information in an octave file $M_data.m$. Plot the data using the command $plot(M_t, M_ft, '*')$.
 - (b) Let $P_n(t)$ be the n^{th} (m > n) degree polynomial such that the error $\frac{1}{2} \sum_{i=1}^{m} \|f(t_i) P_n(t_i)\|_2$ is the least. Note that this error is equal to $\|A\boldsymbol{x} \boldsymbol{b}\|_2$, where A is the

Vandermonde matrix
$$A = \begin{bmatrix} 1 & t_1 & t_1^2 & \dots & t_1^n \\ 1 & t_2 & t_2^2 & \dots & t_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & t_m & t_m^2 & \dots & t_m^n \end{bmatrix}, \boldsymbol{x} = \begin{bmatrix} x_1, x_2, \dots, x_{n+1} \end{bmatrix}^T \text{ and } \boldsymbol{b} = \begin{bmatrix} f(t_1), f(t_2), \dots, f(t_m) \end{bmatrix}^T.$$

(c) Use the Given's rotations and the QR decomposition to find the values $x_1, x_2, \ldots, x_{n+1}$. Your code must be in a function file format with the name best_fit(M_t, M_ft,n). Plot the polynomial $P_n(t)$ for $t \in [\min(t_i)_i, \max(t_i)_i]$ along with the plot in Q.(5a).