60Hz Hum-Removal from Single-Channel Audio

A Fully Explained Report

Laura Gomezjurado

July 25, 2025

Contents

1	Foundations 1.1 Why the decibel (dB) scale?	
	1.4 From Convolutions to the U-Net	
2	Dataset Construction2.1 Source material	4 4 5
3	Model Architecture 3.1 Input dimensionality	
4	Training Objective and Optimisation 4.1 Dual-domain loss	6
5	Evaluation Metrics5.1 Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)5.2 Peak Signal-to-Noise Ratio (PSNR)	6
6	Experimental Commands	7
7	Results 7.1 Quantitative 7.2 Qualitative	7 7 7
8	Key Design Decisions Recap	8
9	Reproducibility & Deployment	8

10 Future Work 8

1 Foundations

1.1 Why the decibel (dB) scale?

Power and amplitude vary over many orders of magnitude in audio. The *decibel* is a logarithmic unit that compresses this range. If P_{in} and P_{out} are two power levels,

$$Gain_{dB} = 10 \log_{10} \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right) \tag{1}$$

For amplitude (e.g. voltage or waveform samples), power is proportional to the square of amplitude, so a 20 dB change corresponds to *tenfold* amplitude. This non-linear mapping matches human loudness perception.

1.2 Signal-to-Noise Ratio (SNR)

When mixing a clean waveform $x_c[n]$ with a noise waveform $x_n[n]$, we want to control the ratio of their powers:

$$SNR_{dB} = 10 \log_{10} \left(\frac{P_{x_c}}{P_{x_n}} \right)$$

where $P_x = \frac{1}{N} \sum_{n=0}^{N-1} x[n]^2$. Re-arranging gives the *scale factor* applied to the noise so that the mixture meets a desired SNR:

$$scale = \sqrt{\frac{P_{x_c}}{10^{SNR_{dB}/10} P_{x_n}}}$$
 (2)

Equation (2) is implemented verbatim in our dataset builder.:contentReference[oaicite:10]index=10

1.3 Time–Frequency Analysis: the STFT

A real-world signal is localised in both time and frequency: speech contains rapidly-changing vowels and consonants as well as slowly-varying pitch. The **Short-Time Fourier Transform** (STFT) captures this duality by:

- 1. windowing the signal into overlapping frames of length $N_{\rm FFT}$ (here 1024 samples, 23 ms at 44.1 kHz);
- 2. multiplying each frame by a smooth Hann window to reduce spectral leakage; and
- 3. applying the discrete Fourier transform (DFT) to obtain *complex* coefficients X[k, t] where k indexes frequency bins and t indexes frame number.

The magnitude |X[k,t]| describes "how much" energy exists at each time–frequency point, while the phase $\angle X[k,t]$ is crucial for reconstruction but *hard* to model statistically. We therefore learn a $mask \ \hat{M}[k,t] \in [0,1]$ and leave the phase untouched.

1.4 From Convolutions to the U-Net

Convolutional neural networks (CNNs) learn spatially-local filters. In an image, neighbouring pixels are related; in a spectrogram the same holds for frequency bands that are near each other and for times that are close together. A **U-Net** augments a CNN with symmetric down-sampling and up-sampling paths plus skip connections so that information lost during pooling can be re-introduced later. This is ideal for audio denoising:

- Deep layers view broad time ranges, recognising the periodic structure of mains hum.
- Shallow layers preserve fine detail, ensuring speech consonants remain crisp.

2 Dataset Construction

2.1 Source material

Draw clean instrument segments and pure hum signal at 60 Hz from the open dataset released for the *Neo Scholars* take-home assignment. Using dataset/build_dataset.py I sliced both into individual .wav files, then mix each pair at a random SNR chosen from the set $\{0, 5, 10, 15\}$ dB.

2.2 Mixing procedure step by step

- 1. Compute the root-mean-square (RMS) power of the clean sample.
- 2. Draw an SNR value uniformly from the predefined list.
- 3. Compute the RMS of the raw noise sample.
- 4. Evaluate equation (2) to obtain the scaling factor.
- 5. Multiply the *noise* waveform by this factor.
- 6. Sum the scaled noise and clean signals sample by sample.

Each resulting trio $(x_{\text{noisy}}, x_{\text{clean}}, \text{SNR}_{\text{dB}})$ is written to disk and its path stored in a manifest CSV. Table 1 summarises the final split.

Table 1: Dataset statistics

Split	# Clips	Duration	Storage
Train	2621	\approx 72 hour	$8.8\mathrm{GB}$
Validation	562	$\approx 15 \text{hour}$	$1.9\mathrm{GB}$
Test	188	$\approx 5 \text{hour}$	$0.6\mathrm{GB}$

2.3 Training-time augmentation

Even with 72 hours of audio, more apparent variation improves generalisation. Therefore a RandomCropWrapper:

- 1. selects a 1s window (44 100 samples) at a random starting index;
- 2. zero-pads clips that are shorter than one second;
- 3. peak-normalises the window to the range [-1, 1].

Cropping guarantees fixed-size tensors for batching while delivering effectively ten times more unique examples per epoch.

3 Model Architecture

3.1 Input dimensionality

Each STFT magnitude spectrogram has shape (1, F, T) where the single channel corresponds to mono audio, $F = \frac{N_{\text{FFT}}}{2} + 1 = 513$ frequency bins, and T is the number of frames in the clip. I added a batch dimension so PyTorch sees (batch, 1, F, T).

3.2 Down-sampling (encoder) blocks

A down-sampling block consists of:

- 1. two 3×3 convolutions, each followed by batch normalisation and a ReLU;
- 2. a 2×2 max-pool that halves both frequency and time resolution.

3.3 Up-sampling (decoder) blocks

The decoder mirrors the encoder:

- 1. bilinear up-sample by a factor of two in both dimensions;
- 2. concatenate with the corresponding skip tensor;
- 3. apply two 3×3 convolution-BN-ReLU layers.

Finally a 1×1 convolution reduces the channel count to one, and a *sigmoid* squashes values to [0, 1] to form the soft mask. Table 2 enumerates channel widths.

Table 2: Channel progression through the U-Net

Stage	Down 1	Down 2	Down 3	Down 4 / Bottleneck
Channels	32	64	128	$256 \rightarrow 512$

3.4 Why a mask rather than direct regression?

The human ear is highly sensitive to phase errors, yet small inaccuracies in phase do not drastically affect perception if magnitude is correct. Predicting a mask means we *reuse* the original noisy phase and only estimate *how much* of each complex coefficient belongs to the clean signal. This strategy has been repeatedly shown to converge faster and demand fewer training examples than end-to-end waveform regression.

4 Training Objective and Optimisation

4.1 Dual-domain loss

Let x_n be the noisy waveform, x_c the clean waveform, STFT(·) the complex short-time Fourier transform, and \hat{M} the predicted mask. We construct

$$\mathcal{L}_{\text{spec}} = \left\| \hat{M} \odot |\text{STFT}(x_n)| - |\text{STFT}(x_c)| \right\|_{1}$$
 (3)

$$\mathcal{L}_{\text{wave}} = \left\| \text{ISTFT}(\hat{M} \odot \text{STFT}(x_n)) - x_c \right\|_1 \tag{4}$$

and combine them as

$$\mathcal{L} = 0.7 \, \mathcal{L}_{\rm spec} + 0.3 \, \mathcal{L}_{\rm wave}$$

The spectral component forces frequency-wise precision; the waveform component safeguards overall amplitude and prevents isolated frequency bins from dominating.

4.2 Optimiser and learning-rate schedule

I used **AdamW** with weight decay $\lambda = 10^{-2}$ (decoupled from the gradient) and an initial learning rate of $\eta_0 = 3 \times 10^{-4}$. A cosine annealing schedule gradually reduces η to zero over 50 epochs: this provides a smooth optimisation trajectory without manual "step" drops.

4.3 Mixed precision

PyTorch's torch.cuda.amp performs matrix multiplications in 16-bit floating point while keeping accumulations in 32-bit. This halves GPU memory usage, allowing a batch size of 16 on a consumer-grade RTX 3060.

5 Evaluation Metrics

5.1 Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)

Given a reference signal s and an estimate \hat{s} , first remove any global gain mismatch:

$$\tilde{s} = \frac{\langle \hat{s}, s \rangle}{\|s\|^2} s$$

Then define

$$SI-SDR = 10 \log_{10} \left(\frac{\|\tilde{s}\|^2}{\|\hat{s} - \tilde{s}\|^2} \right)$$

Because the scale factor is optimally chosen, SI-SDR ignores volume differences and focuses on waveform *shape*.

5.2 Peak Signal-to-Noise Ratio (PSNR)

Traditionally used for images but still informative for audio:

$$PSNR = 10 \log_{10} \left(\frac{P_{\text{max}}^2}{\text{MSE}} \right)$$

where $P_{\text{max}} = 1$ after normalisation and MSE = $\|\hat{s} - s\|^2/N$

Both metrics are implemented in utils/metrics.py and computed per-file before averaging across the test set.

6 Experimental Commands

```
# Training
python train_spectrogram_unet.py \
    --dataset dataset --batch 16 --epochs 50 --lr 3e-4 \
    --crop 44100 --save_dir checkpoints --wandb

# Evaluation on the test split
python evaluate.py --dataset dataset --split test \
    --checkpoint checkpoints/best.pt --batch 8
```

For convenience, scripts/evaluate_models.py loops over multiple baselines in a single call. All random seeds can be fixed for strict reproducibility by setting the -seed flag.

7 Results

7.1 Quantitative

Table 3 compares three systems on the held-out test set.

Table 3: Denoising performance on the test split

Method	SI-SDR↑	PSNR↑
Identity (no processing)	$7.50\mathrm{dB}$	$44.24\mathrm{dB}$
Fixed notch filter	$7.04\mathrm{dB}$	$43.93\mathrm{dB}$
Spectrogram U-Net (ours)	$26.30\mathrm{dB}$	$62.79\mathrm{dB}$

The 18.8 dB absolute SI-SDR gain corresponds to roughly a 75-fold reduction in residual noise power—a difference that is *clearly audible*.

7.2 Qualitative

Figure 1 shows a time–frequency plot (spectrogram) of a representative music clip.

Figure 1: Left—noisy recording; centre—output of our model; right—clean ground truth. Vertical stripes at 60 Hz and harmonics are dramatically attenuated, while the oboe's legitimate harmonics remain.

Audio examples are included in the samples/ directory and linked from the project webpage.

8 Key Design Decisions Recap

- 1. Mask-based U-Net: exploits multi-scale context without phase regression.
- 2. **Dual-domain loss**: couples perceptual sharpness (spectrogram) and waveform integrity.
- 3. Random crops: multiply dataset variability; act as regularisation.
- 4. AdamW & cosine LR: stable optimisation with minimal hyper-tuning.
- 5. SI-SDR: aligns with subjective listening tests better than vanilla SDR.

9 Reproducibility & Deployment

9.1 Version control

- All code, manifests, checkpoints, and result CSVs are tracked in git.
- Training and evaluation logs are synchronised to Weights & Biases.

10 Future Work

- Phase estimation: predicting a complex mask might further improve speech naturalness.
- Model compression: pruning and quantising could enable deployment on microcontrollers.
- Data diversity: augment the clean corpus with music genres beyond speech to improve robustness.

References

- [1] Oh, J., Kim, D. and Yun, S. (2018). Spectrogram-channels U-Net: A source separation model viewing each channel as the spectrogram of each source. arXiv preprint arXiv:1810.11520.
- [2] Zhang, Y. and Li, J. (2023). BirdSoundsDenoising: Deep Visual Audio Denoising for Bird Sounds. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3164–3173.
- [3] Babaev, N., Tamogashev, K., Saginbaev, A., Shchekotov, I., Bae, H., Sung, H., Lee, W., Cho, H.-Y., and Andreev, P. (2024). FINALLY: fast and universal speech enhancement with studio-like quality. In Advances in Neural Information Processing Systems (NeurIPS).
- [4] Zhang, Y. and Li, J. (2023). Complex Image Generation SwinTransformer Network for Audio Denoising. In Proceedings of INTERSPEECH 2023, Dublin, Ireland.