Sel V: (V, t, lk,)

Análisis Matemático para Inteligencia Artificial

Verónica Pastor (vpastor@fi.uba.ar), Martín Errázquin (merrazquin@fi.uba.ar)

Espacios con Producto Interno: Definición

Sea $\mathbb{V} - \mathbb{K}$ e.v., donde $\mathbb{K} = \mathbb{R}$ o \mathbb{C} , un producto interno sobre \mathbb{V} es una función $\Phi : \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ (o \mathbb{C}) que satisface: 3 = et ib

- **1** Para cada $\alpha \in \mathbb{R}$ (o \mathbb{C}), $u, v, w \in \mathbb{V}$.
 - $\Phi(u+v,w) = \Phi(u,w) + \Phi(v,w)$ $\Phi(\alpha \bullet u,v) = \alpha \bullet \Phi(u,v)$

Notación: $\Phi(u, v) = \langle u, v \rangle$

Definición: A un espacio vectorial real (complejo) provisto de un producto interno se lo llama espacio euclídeo (espacio unitario).

Obs: El p.i. es una generalización del producto escalar en \mathbb{R}^n (o \mathbb{C}^n).

3= a+ i(-b)

También hay otros espacios con productos internos ...

Sea \mathcal{V} el espacio de las funciones continuas de valor real (o complejo) en el intervalo $-1 \le x \le 1$ (se nota $\mathcal{C}([-1,1])$) con p.i.

intervalo
$$-1 \le x \le 1$$
 (se nota $\mathcal{C}([-1,1])$) con p.i. $(f,g) = \int_{-1}^{1} f(x) \overline{g(x)} dx$

 $f(x) = \int_{-1}^{1} f(x) \overline{g(x)} dx$) (f(x)+g(x)).h(x) dx= 5 f(x) - 1/(x) dx + 5 g(x) 1/(x) dx= Verificar que cumple:

Verificar que cumple:

Para cada
$$\alpha \in \mathbb{R}$$
 (o \mathbb{C}), $f, g, h \in \mathbb{C}([-1,1])$.

 $\Phi(f+g,h) = \Phi(f,h) + \Phi(g,h)$
 $\Phi(\alpha \bullet f,g) = \alpha \bullet \Phi(f,g)$

3) $<f, f_7 = \int_{1}^{1} f(x) \cdot \overline{f(x)} dx = \int_{1}^{1} \|f(x)\|^2 dx \ge 0 \quad \forall f \quad = 0 \iff \|f(x)\|^2 = 0$

Definición de Norma

Sea $(\mathbb{V}, \langle .,. \rangle)$ un e.v. real (complejo) con p.i.. Sea $v \in \mathbb{V}$, se define la norma de v asociada a $\langle .,. \rangle$.

Notación:
$$||v|| = \langle v, v \rangle^{1/2}$$

Es la generalización de la longitud de un vector en \mathbb{R}^n (o \mathbb{C}^n).

Def: A partir de un p.i. se puede se puede definir el ángulo w entre dos vectores x, y

Propiedades de la Norma

- 2 Sean $\alpha \in \mathbb{R}(o|\mathbb{C})$, $v \in \mathbb{V}$, $||\alpha \bullet v|| = |\alpha| ||v||$.
- 3 Designaldad de Cauchy Schwartz: si $u, v \in \mathbb{V}$ entonces

$$|\langle u,v\rangle| \leq ||u|| \, ||v|| \cdot 1$$
 $\langle \mu, \nu \rangle = ||u|| \, ||v|| \cdot 1$

1 Desigualdad Triangular: si $u, v \in \mathbb{V}$ entonces

$$||u + v|| \le ||u|| + ||v||$$

Ortogonalidad

Def: $(\mathbb{V}, \langle .,. \rangle)$ un \mathbb{K} -EV (con $\mathbb{K} = \mathbb{R}$ o \mathbb{C}) con p.i. dos vectores $u, v \in \mathbb{V}$ se dicen ortogonales si $\langle u, v \rangle = 0$.

Teorema de Pitágoras: Si $u, v \in \mathbb{V}$ son ortogonales entonces $||u+v||^2 = ||u||^2 + ||v||^2$.

Def: $(\mathbb{V}, \langle .,. \rangle)$ un \mathbb{K} -EV (con $\mathbb{K} = \mathbb{R}$ o \mathbb{C}) con p.i.. Se dice que $\{v_1, ..., v_r\} \subset \mathbb{V}$ es un conjunto ortogonal si $\langle v_i, v_j \rangle = 0$, $\forall i \neq j$. Si $||v_i|| = 1$, $\forall i$ se dice que es un conjunto ortonormal.

La proyección ortogonal del vector v sobre el vector u es otro vector que notamos como $P_u(v)$, y se define: $P_u(v) = \frac{\langle u, v \rangle}{||u||} \frac{u}{||u||} = \frac{\langle u, v \rangle}{\langle u, u \rangle} u$ $P_u(v) = \frac{\langle u, v \rangle}{||u||} \frac{u}{||u||} = \frac{\langle u, v \rangle}{\langle u, u \rangle} u$

Proceso de Ortogonalización de Gram Schmidt

Def: Una base ortonormal (BON) de un E.V. es una base $B = \{v_1, ..., v_n\}$ que satisface:

$$\langle v_i, v_j \rangle = 0, \ \forall i \neq j$$

 $\langle v_i, v_i \rangle = 1, \ \forall i$

Obs: Si sólo se cumple que $\langle v_i, v_j \rangle = 0$, $\forall i \neq j$ se dice que es una base ortogonal.

Para transformar una base en una base ortonormal usamos el proceso de Gram-Schmidt:

$$k_1 = v_1$$
 $k_2 = v_2 - Proy_{k_1}(v_2) = \sqrt{2} \sqrt{k_1} - \sqrt{2}$
 \vdots
 $k_n = v_n - \sum_{i=1}^{n-1} Proy_{k_i}(v_n)$

Y así, $\tilde{B} = \{k_1, ..., k_n\}$ pidiendo que $||k_i|| = 1$ resulta una BON.

Complemento Ortogonal

Sea $\mathbb V$ un EV de dimensión $n<\infty$ y $S\subset \mathbb V$ un SEV de dimensión m< n. El complemento ortogonal (S^{\perp}) es un SEV de de dimensión n-m que satisface:

Ejemplo:
$$S = \langle (1), (1) \rangle$$

$$S = \langle (1), (1)$$

Distancia

Sea \mathbb{V} - \mathbb{K} , (\mathbb{R} o \mathbb{C}) EV con p.i. $\langle .,. \rangle$ se define la distancia $d: \mathbb{V} \times \mathbb{V} \to \mathbf{K}$ como d(u,v) = ||u-v||.

Propiedades:

$$d(u,v) \geq 0, \ \forall u,v \in \mathbb{V}$$

$$alg d(u, v) = 0 \Leftrightarrow u = v$$

$$d(u,v) = d(v,u), \ \forall u,v \in \mathbb{V}$$

Observación: Existen distancias que no están asociadas a ninguna norma.

Matrices definidas positivas

Una matriz $A \in \mathbb{R}^{n \times n}$ se dice definida positiva si es simétrica y vale que:

$$x^T A x > 0, \ \forall x \in \mathbb{R}^n - \{0\}$$

Si vale que $x^T Ax \ge 0$ se la llama semi definida positiva.

Si vale que
$$x$$
 $Ax \ge 0$ se la flama semi definida positiva.

Ejemplo: $A_{1} \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} \in \mathbb{R}^{2}$
 $A^{1} = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} = A$
 $A^{2} = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 &$

Teorema: Sea \mathbb{V} un EV de dimensión finita, y B una base de \mathbb{V} , vale que es un p.i. sii existe una matriz definida positiva tal que:

$$\langle x, y \rangle = \tilde{x}^T A \tilde{y}$$

donde \tilde{x} , \tilde{y} , son las representaciones de x, y en la base B.

Transformaciones

Sea $T: \mathbb{V} \to \mathbb{W}$ una transformación, donde \mathbb{V} , \mathbb{W} son dos conjuntos arbitrarios. Se dice que T es: $(V_*, \gamma_*) = V_* \times (V_*, \gamma_*) \times ($

- Inyectiva: si $\forall x, y \in \mathbb{V} : T(x) = T(y) \rightarrow x = y$
- Survectiva: si $T(\mathbb{V}) = \mathbb{W}$ $T(\mathbb{V}) \in \{T(\mathcal{A}) \ \forall \ \mathsf{v} \in \mathbb{V}\}$
- Biyectiva: si es inyectiva y suryectiva.

Transformaciones Lineales

Sean $\mathbb{V},\ \mathbb{W}$ dos EV, $L:\mathbb{V}\to\mathbb{W}$ es una transformación lineal si:

$$L(\alpha x + \beta y) = \alpha L(x) + \beta L(y) \ \forall \alpha, \beta \in \mathbb{K}, \ \forall x, y \in \mathbb{V}$$

- Isomorfismo: $L: \mathbb{V} \to \mathbb{W}$ es lineal y biyectiva.
- Endomorfismo: si $L : \mathbb{V} \to \mathbb{V}$ es lineal.
- Automorfismo: $L: \mathbb{V} \to \mathbb{V}$ es lineal y biyectiva.

Representaciones

Teorema: Sea \mathbb{V} y \mathbb{W} , dos espacios vectoriales de dimensión finita son un isomorfismo sii $dim(\mathbb{V}) = dim(\mathbb{W})$.

Teorema: Sea $\mathbb V$ un EV, $dim(\mathbb V)=n<\infty$ tiene un isomorfismo con $\mathbb R^n$. Si consideramos la base $B=\{v_1,...,v_n\}$, todo $v\in\mathbb V$ puede escribirse como $v=\alpha_1v_1+...+\alpha_nv_n$. Luego las coordenadas de v en la base B resulta:

$$\alpha = (\alpha_1, ..., \alpha_n)^T \in \mathbb{R}^n$$

$$\beta = (\alpha_1, ..., \alpha_n)^T \in \mathbb{R}^n$$

Núcleo e Imagen de una transformación

Sea $L: \mathbb{V} \to \mathbb{W}$, se define:

- Núcleo (o Kernel) $Nu(L) = \{v \in \mathbb{V} : L(v) = 0_W\},$
- Imagen $Im(L) = L(\mathbb{V}) = \{ w \in \mathbb{W} : \exists v \in \mathbb{V}, w = L(v) \}$

Teorema: Toda transformación lineal se puede representar de forma matricial.

• Espacio Nulo de A: es un subespacio de \mathbb{R}^n formado por todas las soluciones del sistema lineal homogéneo Av = 0, $A \in \mathbb{R}^{m \times n}$.

- Espacio columna de A: es el subespacio de \mathbb{R}^m generado por los n vectores columna de A: $A : \left(\begin{array}{c} A : \\ A :$

Veamos un ejemplo...

$$\frac{\left(\frac{1}{2} - \frac{1}{2} \right)^{2}}{\left(\frac{1}{2} - \frac{1}{2} - \frac$$

Seguimos con el ejemplo...

$$A: L_{A}TL \Rightarrow \exists A \in \mathbb{R}^{2\times 2} / L(v) \in A: v$$

$$L(\binom{2}{3}) = \binom{2}{2} = \binom{2}{3} = \binom{2}$$

Conclusiones ...

Teorema: Sea $A \in \mathbb{R}^{m \times n}$, dim(EC(A)) = dim(EF(A)) = r(A). Donde r(A) se denomina rango de la matriz.

Definición: Se denomina nulidad de una matriz A a la dimensión de su espacio nulo N(A), n(A) = dim(N(A)), siendo $N(A) = \{v \in \mathbb{R}^n, Av = 0\}$ Teorema de Rango-Nulidad: Para toda matriz $A \in \mathbb{R}^{m \times n}$ se verifica:

$$r(A) + n(A) = n$$
Adim # dim

mapados "pordidos" en trada

$$(ri L_{A} TL \quad (: V > V)$$

$$dim(V) = dim(Tm(L)) + dim(Nu(L))$$