Analiza matematyczna 2 MAT1697 Wydział Matematyki, Matematyka Stosowana, Politechnika Wrocławska Wykładowca: dr hab. inż. Agnieszka Jurlewicz, Prof. uczelni

Wykład 1:

Ciągi i szeregi funkcyjne - zbieżność jednostajna.

Tw. 5 Kryterium Weierstrassa jednostajnej zbieżności szeregu funkcyjnego

Jeżeli
$$\forall n \ \forall x \in E \quad |f_n(x)| \leq A_n$$

i szereg liczbowy $\sum_{n=0}^{\infty} A_n$ jest zbieżny,

to
$$\sum_{n=0}^{\infty} f_n(x)$$
 jest bezwzględnie i jednostajnie zbieżny na E .

$$\sum\limits_{n=0}^{\infty}A_{n}$$
 jest zbieżny i $A_{n}\geq0$ \forall $n\Rightarrow$

$$\sum_{n=0}^{\infty} A_n \text{ jest zbieżny i } A_n \geq 0 \ \forall \ n \Rightarrow$$

$$\forall \ \varepsilon > 0 \ \exists \ N_0 \ \forall \ n \geq N_0 \ \forall \ p \in \mathbb{N} \ \ 0 \leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

$$\sum_{n=0}^{\infty} A_n \text{ jest zbieżny i } A_n \geq 0 \ \forall \ n \Rightarrow$$

$$\forall \, \varepsilon > 0 \, \exists \, N_0 \, \forall \, n \geq N_0 \, \forall \, p \in \mathbb{N} \, 0 \leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

Stąd i z założenia Tw.5

$$\forall \varepsilon > 0 \ \exists \ N_0 \ \forall \ n \geq N_0 \ \forall \ p \in \mathbb{N} \ \forall \ x \in E$$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| \le |f_{n+1}(x)| + \ldots + |f_{n+p}(x)|$$

$$\sum_{n=0}^{\infty} A_n \text{ jest zbieżny i } A_n \geq 0 \ \forall \ n \Rightarrow$$

$$\forall \, \varepsilon > 0 \, \exists \, N_0 \, \forall \, n \geq N_0 \, \forall \, p \in \mathbb{N} \, 0 \leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

Stąd i z założenia Tw.5

$$\forall \, \varepsilon > 0 \, \exists \, N_0 \, \forall \, n \geq N_0 \, \forall \, p \in \mathbb{N} \, \forall \, x \in E$$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| \le |f_{n+1}(x)| + \ldots + |f_{n+p}(x)| \le$$

$$\leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

$$\sum_{n=0}^{\infty} A_n \text{ jest zbieżny i } A_n \geq 0 \ \forall \ n \Rightarrow$$

$$\forall \, \varepsilon > 0 \, \exists \, N_0 \, \forall \, n \geq N_0 \, \forall \, p \in \mathbb{N} \, 0 \leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

Stąd i z założenia Tw.5

$$\forall\,\varepsilon>0\;\exists\;N_0\;\forall\;n\geq N_0\;\forall\;p\in\mathbb{N}\;\forall\,x\in E$$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| \le |f_{n+1}(x)| + \ldots + |f_{n+p}(x)| \le$$

$$\leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

Z Tw. 4 (warunku Cauchy'ego zbieżności jednostajnej szeregu funkcyjnego) otrzymujemy tezę.■

 $\sum_{n=0}^{\infty} A_n$ jest zbieżny i $A_n \ge 0 \ \forall \ n \Rightarrow$

$$\forall \varepsilon > 0 \; \exists \; N_0 \; \forall \; n \geq N_0 \; \forall \; p \in \mathbb{N} \; \; 0 \leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

Stąd i z założenia Tw.5

$$\forall \, \varepsilon > 0 \, \exists \, N_0 \, \forall \, n \geq N_0 \, \forall \, p \in \mathbb{N} \, \forall \, x \in E$$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| \le |f_{n+1}(x)| + \ldots + |f_{n+p}(x)| + |f_{n+p}(x$$

$$\leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

$$\leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

Z Tw. 4 (warunku Cauchy'ego zbieżności jednostajnej szeregu funkcyjnego) otrzymujemy tezę.■

Załóżmy, że $f_n \stackrel{E}{\Longrightarrow} g$,

Załóżmy, że $f_n \stackrel{E}{\Longrightarrow} g$,

 x_0 jest punktem skupienia zbioru E (tzn. każde otoczenie punktu x_0 zawiera punkt z E)

Załóżmy, że $f_n \stackrel{E}{\Longrightarrow} g$,

 x_0 jest punktem skupienia zbioru E (tzn. każde otoczenie punktu x_0 zawiera punkt z E)

oraz $\forall n$ istnieje granica właściwa $\lim_{x \to x_0} f_n(x) = A_n$.

Załóżmy, że
$$f_n \stackrel{E}{\Longrightarrow} g$$
,

 x_0 jest punktem skupienia zbioru E (tzn. każde otoczenie punktu x_0 zawiera punkt z E)

oraz $\forall n$ istnieje granica właściwa $\lim_{x \to x_0} f_n(x) = A_n$.

Wówczas istnieje granica właściwa

$$\lim_{x\to x_0} g(x) = \lim_{x\to x_0} \lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \lim_{x\to x_0} f_n(x) = \lim_{n\to\infty} A_n.$$

Z Tw. 3
$$f_n \stackrel{L}{\Longrightarrow} g \Leftrightarrow$$

 $\forall \varepsilon > 0 \exists N_0 \forall n, m \ge N_0 \forall x \in E \quad |f_n(x) - f_m(x)| \le \varepsilon$

Z Tw. 3
$$f_n \stackrel{\mathcal{E}}{\Rightarrow} g \Leftrightarrow$$

 $\forall \varepsilon > 0 \exists N_0 \forall n, m \geq N_0 \forall x \in E \quad |f_n(x) - f_m(x)| \leq \varepsilon$
 $\Rightarrow \forall \varepsilon > 0 \exists N_0 \forall n, m \geq N_0 \quad |A_n - A_m| \leq \varepsilon$
(gdy przejdziemy do granic przy $x \to x_0$)

Z Tw. 3
$$f_n \stackrel{E}{\Longrightarrow} g \Leftrightarrow$$

 $\forall \varepsilon > 0 \exists N_0 \forall n, m \ge N_0 \forall x \in E \quad |f_n(x) - f_m(x)| \le \varepsilon$
 $\Rightarrow \forall \varepsilon > 0 \exists N_0 \forall n, m \ge N_0 \quad |A_n - A_m| \le \varepsilon$
(gdy przejdziemy do granic przy $x \to x_0$)

Ciąg $\{A_n\}$ spełnia warunek Cauchy'ego, więc jest zbieżny do pewnej granicy właściwej. Oznaczmy $\lim_{n\to\infty}A_n=A$.

Dla dowolnego ustalonego n i $x \in E$ mamy $|g(x) - A| \le |g(x) - f_n(x)| + |f_n(x) - A_n| + |A_n - A|$.

Dla dowolnego ustalonego n i $x \in E$ mamy $|g(x) - A| \le |g(x) - f_n(x)| + |f_n(x) - A_n| + |A_n - A|$.

$$f_n \stackrel{E}{\Longrightarrow} g \text{ i } A_n \to A \Leftrightarrow$$

 $\forall \varepsilon > 0 \exists N_0 \ \forall x \in E \quad |f_{N_0}(x) - g(x)| \leq \frac{\varepsilon}{3} \text{ i } |A_{N_0} - A| \leq \frac{\varepsilon}{3}$

Dla dowolnego ustalonego n i $x \in E$ mamy $|g(x) - A| \le |g(x) - f_n(x)| + |f_n(x) - A_n| + |A_n - A|$.

$$f_n \stackrel{E}{\Longrightarrow} g \text{ i } A_n \to A \Leftrightarrow \\ \forall \varepsilon > 0 \exists N_0 \forall x \in E \quad |f_{N_0}(x) - g(x)| \leq \frac{\varepsilon}{3} \text{ i } |A_{N_0} - A| \leq \frac{\varepsilon}{3}$$

Ponieważ $\lim_{x\to x_0} f_{N_0}(x) = A_{N_0}$,

$$\exists \, \delta > 0 \, \forall \, x \in E \, |x - x_0| \leq \delta \Rightarrow |f_{N_0}(x) - A_{N_0}| \leq \frac{\varepsilon}{3}$$

Dla dowolnego ustalonego n i $x \in E$ mamy $|g(x) - A| \le |g(x) - f_n(x)| + |f_n(x) - A_n| + |A_n - A|$.

$$f_n \stackrel{E}{\Longrightarrow} g \text{ i } A_n \to A \Leftrightarrow \\ \forall \varepsilon > 0 \exists N_0 \forall x \in E \quad |f_{N_0}(x) - g(x)| \leq \frac{\varepsilon}{3} \text{ i } |A_{N_0} - A| \leq \frac{\varepsilon}{3}$$

Ponieważ $\lim_{x\to x_0} f_{N_0}(x) = A_{N_0}$,

$$\exists \, \delta > 0 \, \forall \, x \in E \, |x - x_0| \le \delta \Rightarrow |f_{N_0}(x) - A_{N_0}| \le \tfrac{\varepsilon}{3}$$

Zatem

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in E \ |x - x_0| \le \delta \Rightarrow |g(x) - A| \le \varepsilon$$

$$tzn. \lim_{x \to x_0} g(x) = A. \blacksquare$$

Załóżmy, że

Załóżmy, że

 $\forall n$ funkcja $f_n(x)$ jest określona i różniczkowalna na [a, b],

Załóżmy, że

 \forall n funkcja $f_n(x)$ jest określona i różniczkowalna na [a,b], ciąg f_n jest zbieżny w przynajmniej jednym punkcie $c \in [a,b]$

Załóżmy, że $\forall n$ funkcja $f_n(x)$ jest określona i różniczkowalna na [a,b], ciąg f_n jest zbieżny w przynajmniej jednym punkcie $c \in [a,b]$ oraz $f_n' \stackrel{[a,b]}{\Rightarrow} g$.

Załóżmy, że

 $\forall n$ funkcja $f_n(x)$ jest określona i różniczkowalna na [a,b], ciąg f_n jest zbieżny w przynajmniej jednym punkcie $c \in [a,b]$ oraz $f_n^{'} \stackrel{[a,b]}{\Longrightarrow} g$.

Wówczas $f_n \stackrel{f}{\Longrightarrow} f$ dla pewnej funkcji f takiej, że $f' = (\lim_{n \to \infty} f_n)' = \lim_{n \to \infty} f'_n = g$ na [a, b].

Ciąg liczbowy $\{f_n(c)\}$ jest zbieżny oraz $f_n^{'} \stackrel{[a,b]}{\Longrightarrow} g$

Ciąg liczbowy $\{f_n(c)\}$ jest zbieżny oraz $f_n \stackrel{[a,b]}{\Longrightarrow} g \Leftrightarrow \text{spełnione}$ są odpowiednie warunki Cauchy'ego, tzn.

$$\forall \varepsilon > 0 \exists N_0 \forall n, m \ge N_0 \quad |f_n(c) - f_m(c)| \le \frac{\varepsilon}{2}$$
$$i \forall x \in [a, b] |f'_n(x) - f'_m(x)| \le \frac{\varepsilon}{2(b-a)},$$

Ciąg liczbowy $\{f_n(c)\}$ jest zbieżny oraz $f_n^{'} \stackrel{[a,b]}{\Longrightarrow} g \Leftrightarrow$ spełnione są odpowiednie warunki Cauchy'ego, tzn.

$$\begin{array}{l} \forall \, \varepsilon > 0 \, \exists \, N_0 \, \forall \, n, m \geq N_0 \quad |f_n(c) - f_m(c)| \leq \frac{\varepsilon}{2} \\ \mathrm{i} \, \forall \, x \in [a,b] \, |f_n'(x) - f_m'(x)| \leq \frac{\varepsilon}{2(b-a)}, \end{array}$$

a wtedy także
$$|(f_n - f_m)(x) - (f_n - f_m)(y)| \stackrel{(*)}{=} |(f_n - f_m)'(\xi)||_{X} - y| \le \frac{\varepsilon}{2(b-a)} \cdot |x-y| \le \frac{\varepsilon}{2(b-a)} \cdot (b-a) = \frac{\varepsilon}{2}$$
 dla dowolnego $y \in [a,b]$, w tym $y=c$, $[(*) \xi$ to punkt pośredni pomiędzy x a y ; korzystamy tu z tw. Lagrange'a dla funkcji $f_n - f_m$]

Ciąg liczbowy $\{f_n(c)\}$ jest zbieżny oraz $f_n^{'} \stackrel{[a,b]}{\Longrightarrow} g \Leftrightarrow$ spełnione są odpowiednie warunki Cauchy'ego, tzn.

$$\begin{array}{l} \forall \, \varepsilon > 0 \, \exists \, N_0 \, \forall \, n, m \geq N_0 \quad |f_n(c) - f_m(c)| \leq \frac{\varepsilon}{2} \\ \mathrm{i} \, \forall \, x \in [a,b] \, |f_n'(x) - f_m'(x)| \leq \frac{\varepsilon}{2(b-a)}, \end{array}$$

Cauchy'ego jednostajnej zbieżności dla ciągu $\{f_n\}$.

a wtedy także
$$|(f_n-f_m)(x)-(f_n-f_m)(y)|\stackrel{(*)}{=}$$
 $|(f_n-f_m)'(\xi)||x-y|\leq \frac{\varepsilon}{2(b-a)}\cdot |x-y|\leq \frac{\varepsilon}{2(b-a)}\cdot (b-a)=\frac{\varepsilon}{2}$ dla dowolnego $y\in [a,b]$, w tym $y=c$, $[(*)\ \xi$ to punkt pośredni pomiędzy x a y ; korzystamy tu z tw. Lagrange'a dla funkcji f_n-f_m] i $|f_n(x)-f_m(x)|\leq |(f_n-f_m)(x)-(f_n-f_m)(c)|+$ $+|f_n(c)-f_m(c)|\leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$, czyli spełniony jest warunek

Z Tw. 3 $f_n \stackrel{[a,b]}{\Longrightarrow} f$ dla pewnej funkcji f. Trzeba jeszcze pokazać, że f' = g na [a,b].

Z Tw. 3 $f_n \stackrel{[a,b]}{\Longrightarrow} f$ dla pewnej funkcji f. Trzeba jeszcze pokazać, że f' = g na [a,b]. Skorzystamy z Tw. 6.

Z Tw. 3 $f_n \stackrel{[a,b]}{\Longrightarrow} f$ dla pewnej funkcji f. Trzeba jeszcze pokazać, że f' = g na [a,b].

Skorzystamy z Tw. 6.

Weźmy dowolne ustalone $x_0 \in [a,b]$ i dla $n \in \mathbb{N}$ oznaczmy

$$\varphi_n(x) := \frac{f_n(x) - f_n(x_0)}{x - x_0} \text{ dla } x \in E = [a, b] \setminus \{x_0\}.$$

Z Tw. 3 $f_n \stackrel{[a,b]}{\Longrightarrow} f$ dla pewnej funkcji f. Trzeba jeszcze pokazać, że f' = g na [a,b].

Skorzystamy z Tw. 6.

Weźmy dowolne ustalone $x_0 \in [a,b]$ i dla $n \in \mathbb{N}$ oznaczmy

$$\varphi_n(x) := \frac{f_n(x) - f_n(x_0)}{x - x_0} \text{ dla } x \in E = [a, b] \setminus \{x_0\}.$$

Mamy
$$\lim_{x\to x_0} \varphi_n(x) = f'_n(x_0) (= A_n),$$

Z Tw. 3 $f_n \stackrel{[a,b]}{\Longrightarrow} f$ dla pewnej funkcji f. Trzeba jeszcze pokazać, że f' = g na [a,b].

Skorzystamy z Tw. 6.

Weźmy dowolne ustalone $x_0 \in [a,b]$ i dla $n \in \mathbb{N}$ oznaczmy

$$\varphi_n(x) := \frac{f_n(x) - f_n(x_0)}{x - x_0} \text{ dla } x \in E = [a, b] \setminus \{x_0\}.$$

Mamy
$$\lim_{x\to x_0} \varphi_n(x) = f'_n(x_0) (= A_n),$$

dla
$$x \in E$$
 $\lim_{n \to \infty} \varphi_n(x) = \frac{f(x) - f(x_0)}{x - x_0} =: \varphi(x)$

Z Tw. 3 $f_n \stackrel{[a,b]}{\Longrightarrow} f$ dla pewnej funkcji f. Trzeba jeszcze pokazać, że f' = g na [a,b].

Skorzystamy z Tw. 6.

Weźmy dowolne ustalone $x_0 \in [a,b]$ i dla $n \in \mathbb{N}$ oznaczmy

$$\varphi_n(x) := \frac{f_n(x) - f_n(x_0)}{x - x_0} \text{ dla } x \in E = [a, b] \setminus \{x_0\}.$$

Mamy
$$\lim_{x\to x_0} \varphi_n(x) = f'_n(x_0) (= A_n),$$

dla
$$x \in E$$
 $\lim_{n \to \infty} \varphi_n(x) = \frac{f(x) - f(x_0)}{x - x_0} =: \varphi(x)$

oraz
$$\lim_{x\to x_0} \varphi(x) = f'(x_0)$$
.

Z wcześniejszych rozważań $\forall \varepsilon > 0 \exists N_0 \forall n, m \geq N_0$ $\forall x \in E \ |\varphi_n(x) - \varphi_m(x)| = \frac{|(f_n - f_m)(x) - (f_n - f_m)(x_0)|}{|x - x_0|} \leq \frac{\varepsilon}{2(b-a)} \cdot |x - x_0| \cdot \frac{1}{|x - x_0|} = \frac{\varepsilon}{2(b-a)},$

wiec z Tw. 3 $\varphi_n \Longrightarrow \varphi$.

Z wcześniejszych rozważań $\forall \varepsilon > 0 \exists N_0 \forall n, m \geq N_0$ $\forall x \in E \ |\varphi_n(x) - \varphi_m(x)| = \frac{|(f_n - f_m)(x) - (f_n - f_m)(x_0)|}{|x - x_0|} \leq \frac{\varepsilon}{2(b-a)} \cdot |x - x_0| \cdot \frac{1}{|x - x_0|} = \frac{\varepsilon}{2(b-a)},$

Tw. 7 - Dowód, c.d.:

Z wcześniejszych rozważań
$$\forall \, \varepsilon > 0 \, \exists \, N_0 \, \forall \, n, \, m \geq N_0$$
 $\forall \, x \in E \, |\varphi_n(x) - \varphi_m(x)| = \frac{|(f_n - f_m)(x) - (f_n - f_m)(x_0)|}{|x - x_0|} \leq \frac{\varepsilon}{2(b-a)} \cdot |x - x_0| \cdot \frac{1}{|x - x_0|} = \frac{\varepsilon}{2(b-a)},$ więc z Tw. 3 $\varphi_n \stackrel{E}{\Rightarrow} \varphi$. Korzystając z Tw. 6 otrzymujemy, że $f'(x_0) = \lim_{x \to x_0} \varphi(x) = \frac{1}{|x - x_0|} = \frac{\varepsilon}{2(b-a)}$

 $\lim_{x\to x_0}\lim_{n\to\infty}\varphi_n(x)=\lim_{n\to\infty}\lim_{x\to x_0}\varphi_n(x)=\lim_{n\to\infty}f_n'(x_0)=g(x_0). \blacksquare$

Tw. 8 Jeżeli

Tw. 8 Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest ciągła na } E$,

Tw. 8 Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest ciągła na } E$,

a szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na E,

Tw. 8 Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest ciągła na } E$,

a szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na E,

to suma szeregu $\sum_{n=0}^{\infty} f_n(x)$ jest funkcją ciągłą na E.

Tw. 9 Jeżeli

 $\forall n$ funkcja $f_n(x)$ jest różniczkowalna na [a, b],

Tw. 9 Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest różniczkowalna na } [a, b],$ szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny w przynajmniej jednym punkcie

 $c \in [a, b]$

Tw. 9 Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest różniczkowalna na } [a, b],$

szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny w przynajmniej jednym punkcie

 $c \in [a, b]$

oraz szereg $\sum_{n=0}^{\infty} f'_n(x)$ jest zbieżny jednostajnie na [a, b],

Tw. 9 Jeżeli

 $\forall n$ funkcja $f_n(x)$ jest różniczkowalna na [a,b], szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny w przynajmniej jednym punkcie

 $c \in [a, b]$

oraz szereg $\sum_{n=0}^{\infty} f'_n(x)$ jest zbieżny jednostajnie na [a, b],

to suma szeregu $\sum_{n=0}^{\infty} f_n(x)$ jest funkcją różniczkowalną na

$$[a,b]$$
 oraz $\left(\sum_{n=0}^{\infty} f_n(x)\right)' = \sum_{n=0}^{\infty} f'_n(x) \ \forall x \in [a,b].$

Tw. 9 Jeżeli

 $\forall n$ funkcja $f_n(x)$ jest różniczkowalna na [a, b],

szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny w przynajmniej jednym punkcie $c \in [a, b]$

oraz szereg $\sum_{n=0}^{\infty} f'_{n}(x)$ jest zbieżny jednostajnie na [a, b],

to suma szeregu $\sum_{n=1}^{\infty} f_n(x)$ jest funkcją różniczkowalną na

[a,b] oraz $\left(\sum_{n=0}^{\infty} f_n(x)\right)' = \sum_{n=0}^{\infty} f'_n(x) \ \forall x \in [a,b].$ Innymi słowy, przy powyższych założeniach można

różniczkować szereg wyraz po wyrazie.

Jeżeli

Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest ciągła na } [a, b],$

Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest ciągła na } [a, b],$

a szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na [a, b],

Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest ciągła na } [a, b],$

a szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na [a, b],

to
$$\int_{a}^{b} \sum_{n=0}^{\infty} f_n(x) dx = \sum_{n=0}^{\infty} \int_{a}^{b} f_n(x) dx.$$

Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest ciągła na } [a, b],$

a szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na [a,b],

to
$$\int_a^b \sum_{n=0}^\infty f_n(x) dx = \sum_{n=0}^\infty \int_a^b f_n(x) dx$$
.
Innymi słowy, przy powyższych założeniach można całkować

szereg wyraz po wyrazie.

Tw. 10 - Dowód:

▶ $\forall n \int_{a}^{b} f_n(x) dx$ dobrze określona, bo $f_n(x)$ ciągła na [a, b].

Tw. 10 - Dowód:

- ▶ $\forall n \int_{a}^{b} f_n(x) dx$ dobrze określona, bo $f_n(x)$ ciągła na [a, b].
- ▶ $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na [a,b], wyrazy szeregu ciągłe ⇒ suma tego szeregu jest funkcją ciągłą na [a,b] i $\int_a^b \sum_{n=0}^{\infty} f_n(x) dx$ jest dobrze określona;

Tw. 10 - Dowód:

- ▶ $\forall n \int_{a}^{b} f_n(x) dx$ dobrze określona, bo $f_n(x)$ ciągła na [a, b].
- $ightharpoonup \sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na [a,b], wyrazy n=0 szeregu ciągłe ⇒ suma tego szeregu jest funkcją ciągłą na [a, b] i $\int_{a}^{b} \sum_{n=0}^{\infty} f_n(x) dx$ jest dobrze określona;
- ▶ $\forall \varepsilon > 0 \exists N_0 \forall k \ge N_0 \forall x \in [a, b] \left| \sum_{n=k}^{\infty} f_n(x) \right| \le \varepsilon \text{ i stąd}$ $\left| \int_a^b \sum_{n=0}^{\infty} f_n(x) dx \sum_{n=0}^{k-1} \int_a^b f_n(x) dx \right| = \left| \int_a^b \sum_{n=k}^{\infty} f_n(x) dx \right| \le \varepsilon (b-a). \blacksquare$