Drishti Garg Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Coordination Chemistry:

83.	Other than the X-ray diffractions, now could be the following pairs of isomers be distinguished from one another by [Cr(NH ₃) ₆] [Cr(NO ₂) ₆] and [Cr(NO ₂) ₂ (NH ₃) ₄] [Cr(NO ₂) ₄ (NH ₃) ₂] (A) measuring osmotic pressure of solution at same concentration (B) measurement of molar conductance (C) measuring magnetic moments			
4.	Choose incorrect statement(s) regarding following complex ion.			
	$[Fe(ox)_3]^{3-}$ and $[Fe(NO_2)_6]^{3-}$			
	(A) [Fe(ox) ₃] ³⁻ complex ion is more stable than [Fe(NO ₂) ₆] ³⁻ .			
	(B) Both complex ions are optically inactive.			
	(C) Both follow Sidgwick's rule of E.A.N.			
	(D) Both are paramagnetic.			
17.	The "spin-only" magnetic moment [in units of Bohr magneton, (μ_B)] of Ni^{2+} in aqueous			
	solution would be (At. No. Ni= 28)- [AIEEE-2006]			
	(1) 0 (2) 1.73	(3) 2.84	(4) 4.90	
88.	The formula of the purple colour formed in Lassaigne's test for sulphur using sodium			
	nitroprusside is		[JEE MAIN 2022]	
	(1) NaFe [Fe(CN) ₆]	(2) Na[Cr(NH ₃) ₂ (NC	(S) ₄]	
	(3) Na ₂ [Fe(CN) ₅ (NO)]		(4) Na ₄ [Fe(CN) ₅ (NOS)]	
Ans.	(4)	(1) 1 111 2 1 1 1 1 1 1 1	/1	

- 92. For which of the following types of dn configuration, the number of unpaired electrons in octahedral complexes remains same irrespective of the ligand field strength.
 - (A) d³
- (B) d⁴
- (C) d⁵
- (D) d⁶

(D) M₅X₁₄

Solid State:

- 30. If NaCl is dopped with 10⁻³ mol % SrCl₂, what is the numbers of cation vacancies per mole of NaCl?
 - 1.81 Å respectively. Calculate the co-ordination numbers of the cations in the crystals of MgS, MgO and CsCl.

PROBLEMS BASED ON TV AND OV

21. Spinel is a important class of oxides consisting of two types of metal ions with the oxide ions arranged in CCP pattern. The normal spinel has one-eight of the tetrahedral holes occupied by one type of metal ion and one half of the octahedral hole occupied by another type of metal ion. Such a spinel is formed by Zn²⁺, Al³⁺ and O²⁻, with Zn²⁺ in the tetrahedral holes. Give the formulae of spinel.

PROBLEMS BASED ON NaCl STRUCTURE

10. A compound M_pX_q has cubic close packing (ccp) arrangement of X. Its unit cell structure is shown below. The empirical formula of the compound is: [JEE-2012]

(A) MX

- 11. An element crystallizes in a face-centred cubic (fcc) unit cell with cell edge a. The distance between the centres of two nearest octahedral voids in the crystal lattice is: [Jee Main, 2020]
 - (A) $\frac{a}{\sqrt{2}}$
- (B) $\frac{a}{2}$
- (C) a
- (D) √2a