Optimization Theory

Lecture 05

Fudan University

luoluo@fudan.edu.cn

Outline

Second-Order Characterization

Examples and Applications

Outline

Second-Order Characterization

2 Examples and Applications

Second-Order Characterization

Theorem (Smoothness and Convexity)

Let $f(\cdot)$ be a twice differentiable function defined on \mathbb{R}^d

- **1** It is L-smooth if and only if $-L\mathbf{I} \leq \nabla^2 f(\mathbf{x}) \leq L\mathbf{I}$ for all $\mathbf{x} \in \mathbb{R}^d$.
- ② It is convex if and only if $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^d$.
- **3** It is μ -strongly-convex if and only if $\nabla^2 f(\mathbf{x}) \succeq \mu \mathbf{I}$ for all $\mathbf{x} \in \mathbb{R}^d$.

Sometimes, we say $f(\cdot)$ is ℓ -weakly convex if the function

$$g(\mathbf{x}) = f(\mathbf{x}) + \frac{\ell}{2} \|\mathbf{x}\|_2^2$$

is convex for some $\ell > 0$.

Second-Order Characterization

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable function. Suppose that $\nabla^2 f(\cdot)$ is continuous in an open neighborhood of $\mathbf{x}^* \in \mathbb{R}^d$.

• If \mathbf{x}^* is a local minimizer of $f(\cdot)$, then it holds that

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*) \succeq \mathbf{0}$.

If it holds that

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*) \succ \mathbf{0}$,

then the point \mathbf{x}^* is a strict local minimizer of $f(\cdot)$.

Outline

Second-Order Characterization

Examples and Applications

Examples

For unconstrained quadratic problem

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \triangleq \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x},$$

where $\mathbf{A} \in \mathbb{R}^{d \times d}$. We have $\nabla^2 f(\mathbf{x}) = \mathbf{A}$.

For regularized generalized linear model

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \triangleq \frac{1}{n} \sum_{i=1}^n \phi_i(\mathbf{a}^\top \mathbf{x}) + \frac{\lambda}{2} \|\mathbf{x}\|_2^2.$$

where $\phi_i: \mathbb{R}^d \to \mathbb{R}$ is twice differentiable. We have

$$\nabla f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \phi'_i(\mathbf{a}_i^{\mathsf{T}} \mathbf{x}) \mathbf{a} + \lambda \mathbf{x}$$

and

$$\nabla^2 f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \phi_i''(\mathbf{a}_i^\top \mathbf{x}) \mathbf{a}_i \mathbf{a}_i^\top + \lambda \mathbf{I}.$$

Applications in Matrix Approximation

Given a symmetric positive-definite matrix $\mathbf{K} \in \mathbb{R}^{d \times d}$ and we sample a subset of columns $\mathbf{C} \in \mathbb{R}^{d \times m}$, where m < d.

We want to establish the estimator of K by the formulation

$$\min_{\mathbf{U} \in \mathbb{R}^{m \times m}, \, \delta \in \mathbb{R}} f(\mathbf{U}, \delta) \triangleq \left\| \mathbf{K} - (\mathbf{CUC}^\top + \delta \mathbf{I}_d) \right\|_F^2.$$

It has global solution

$$\mathbf{U}^{\mathrm{ss}} = \mathbf{C}^{\dagger} \mathbf{K} (\mathbf{C}^{\dagger})^{\top} - \delta^{\mathrm{ss}} (\mathbf{C}^{\top} \mathbf{C})^{\dagger}$$

and

$$\delta^{\mathrm{ss}} = rac{1}{d-m} \left(\mathrm{tr}(\mathbf{K}) - \mathrm{tr}(\mathbf{C}^{\dagger}\mathbf{KC}) \right).$$

Applications in Matrix Approximation

We can show that

$$\mathbf{C}\mathbf{U}^{\mathrm{ss}}\mathbf{C}^{\top} + \delta^{\mathrm{ss}}\mathbf{I}_d \succ \mathbf{0}$$

and

$$\begin{split} &(\mathbf{Q}\mathbf{U}^{\mathrm{ss}}\mathbf{Q}^{\top} + \delta^{\mathrm{ss}}\mathbf{I}_{d})^{-1} \\ = &(\delta^{\mathrm{ss}})^{-1}\mathbf{I}_{n} - (\delta^{\mathrm{ss}})^{-2}\mathbf{Q}(\mathbf{I}_{m} + (\delta^{\mathrm{ss}})^{-1}\mathbf{U}^{\mathrm{ss}})^{-1}\mathbf{U}^{\mathrm{ss}}\mathbf{Q}^{\top}. \end{split}$$

is well-defined, where $\mathbf{Q} \in \mathbb{R}^{d \times m}$ is the orthogonal bias of $\mathbf{C} \in \mathbb{R}^{d \times m}$.