

XP-002227089

AN - 1995-261292 [34]

AP - JP19930264792 19931022

CPY - ASA

- NIKK-N
- TORI
- TSUR-I

DC - B04 D16 S03

FS - CPI;EPI

IC - A61K39/395 ; C07H21/04 ; C07K16/28 ; C12N5/10 ; C12N15/02 ; C12N15/09 ; C12P21/08 ; G01N33/53 ; G01N33/577

MC - B04-C01G B04-E03F B04-G04 B04-G21 B04-N04B B12-K04A D05-H09 D05-H11A

D05-H12A

- S03-E14H4

M1 - [01] M423 M710 M903 P831 Q233 V600 V611 V901 V902

- [02] M423 M710 M903 Q233 V753

PA - (ASA) ASAHI BREWERIES LTD

- (NIKK-N) NIKKA WHISKEY KK
- (TORI) TORII YAKUHIN KK
- (TSUR-I) TSURA T

PN - JP7165799 A 19950627 DW199534 C07K16/28 020pp

PR - JP19930264792 19931022

XA - C1995-118876

XIC - A61K-039/395 ; C07H-021/04 ; C07K-016/28 ; C12N-005/10 ; C12N-015/02 ; C12N-015/09 ; C12P-021/08 ; G01N-033/53 ; G01N-033/577 ; (C12P-021/08 C12R-001/91)

XP - N1995-201109

AB - J07165799 A novel polypeptide which specifically recognises human high-affinity IgE receptor (Fc-epsilon-RI), is shown by the general formula (I) or (II): FR1-CDR1H-CF2-CDR2H-FR3-CDR3H-FR4 (I) FR5-CDR1L-FR6-CDR2L-RF7-CDR3L-FR8 (II) FR1, FR2, FR3 and FR4 are variable length polypeptides; CDR1H = Asn Tyr Gly Met Ser; CDR2H = Thr Ile Ser Gly Asp Gly Ser Tyr Thr Phe Tyr Pro Asp Ser Val Lys Gly; CDR3H = Leu Phe Tyr Arg Ser Ser Phe Pro Phe; FR5, FR6, FR7 and FR8 are variable length polypeptides; CDR1L = Lys Ala Ser Gln Asp Ile Asn Ser Tyr Leu Ser; CDR2L = Arg Ala Lys Arg Leu Val Asp; CDR3L = Leu Gln Tyr Asp Glu Phe Pro Leu Thr.

- USE - The polypeptide useful in treatment and diagnosis and can specifically recognise human Fc-epsilon-RI. It can be used for elucidation (particularly by CDR) of an antigen-recognizing region of a monoclonal antibody (MAb) against human Fc-epsilon-RI. The DNA sequence can be used in genetic engineering to produce a polypeptide containing the identified antigen-recognizing site of the MAb recognizing human Fc-epsilon-RI.

- (Dwg.0/0)

C - C12P21/08 C12R1/91

IW - NOVEL MONOCLONAL ANTIBODY HUMAN HIGH AFFINITY IGE RECEPTOR DNA FRAGMENT ENCODE SPECIFIC IDENTIFY HUMAN FC EPSILON

IKW - NOVEL MONOCLONAL ANTIBODY HUMAN HIGH AFFINITY IGE RECEPTOR DNA FRAGMENT ENCODE SPECIFIC IDENTIFY HUMAN FC EPSILON

NC - 001

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-165799

(43)公開日 平成7年(1995)6月27日

(51)Int.Cl. ⁶	識別記号	序内整理番号	F I	技術表示箇所
C 07 K 16/28		8318-4H		
C 07 H 21/04	B			
C 12 N 5/10				
	7729-4B	C 12 N 5/00	B	
	9281-4B	15/00	C	
		審査請求 未請求 請求項の数10 O L (全 20 頁) 最終頁に続く		

(21)出願番号 特願平5-264792

(22)出願日 平成5年(1993)10月22日

特許法第30条第1項適用申請有り 平成5年9月30日
日本アレルギー学会発行の「アレルギー 第42巻 第9号」に発表

(71)出願人 592172921

羅 智婧

千葉県千葉市花見川区花園2-14-13

(71)出願人 00000055

アサヒビール株式会社

東京都中央区京橋3丁目7番1号

(71)出願人 591039263

鳥居薬品株式会社

東京都中央区日本橋本町3丁目4番1号

(71)出願人 000110918

ニッカウヰスキー株式会社

東京都港区南青山5丁目4番31号

(74)代理人 弁理士 渡邊 一平 (外1名)

最終頁に続く

(54)【発明の名称】 抗ヒト高親和性IgE受容体モノクローナル抗体に係るアミノ酸配列を有するポリペプチド、及びこれをコードするDNA断片

(57)【要約】

【目的】 抗ヒト抗親和性IgE受容体モノクローナル抗体の抗原認識領域、特にそのCDRを解明し、治療や診断において有用な、ヒト高親和性IgE受容体を特異的に認識することのできるアミノ酸配列を有するポリペプチド、及びそれをコードする塩基配列を提供する。

【構成】 ヒト高親和性IgE受容体を特異的に認識することのできるポリペプチド、及びそれをコードする塩基配列。配列表により特定して大別した10種類のポリペプチドがある。

【効果】 ヒト高親和性IgE受容体を認識するモノクローナル抗体5種類の抗原認識部位が特定され、該認識部位を含有するポリペプチドの遺伝子工学的製造手段が提供された。

1.

【特許請求の範囲】

【請求項1】 下記一般式(1)及び一般式(2)より選択され、ヒトの高親和性IgE受容体を特異的に認識することができるものであることを特徴とするポリペプチド。

FR1-CDR1H-FR2-CDR2H-FR3-CDR3H-FR4…(1)

(上式中のFR1は29～36個の、FR2は10～16個の、FR3は32～35個の、FR4は12～14個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Hは配列表の配列番号1で、CDR2Hは配列表の配列番号2で、CDR3Hは配列表の配列番号3でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

FR5-CDR1L-FR6-CDR2L-FR7-CDR3L-FR8…(2)

(上式中のFR5は23～28個の、FR6は14～16個の、FR7は30～34個の、FR8は9～11個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Lは配列表の配列番号4で、CDR2Lは配列表の配列番号5で、CDR3Lは配列表の配列番号6でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

【請求項2】 請求項1記載のポリペプチドをコードする塩基配列を有するDNA断片。

【請求項3】 下記一般式(3)及び一般式(4)より選択され、ヒトの高親和性IgE受容体を特異的に認識することができるものであることを特徴とするポリペプチド。

FR1-CDR1H-FR2-CDR2H-FR3-CDR3H-FR4…(3)

(上式中のFR1は29～36個の、FR2は10～16個の、FR3は32～35個の、FR4は12～14個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Hは配列表の配列番号7で、CDR2Hは配列表の配列番号8で、CDR3Hは配列表の配列番号9でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

FR5-CDR1L-FR6-CDR2L-FR7-CDR3L-FR8…(4)

(上式中のFR5は23～28個の、FR6は14～16個の、FR7は30～34個の、FR8は9～11個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Lは配列表の配列番号10で、CDR2Lは配列表の配列番号11で、CDR3Lは配列表の配列番号12でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

【請求項4】 請求項3記載のポリペプチドをコードする塩基配列を有するDNA断片。

【請求項5】 下記一般式(5)及び一般式(6)より

2
選択され、ヒトの高親和性IgE受容体を特異的に認識することができるものであることを特徴とするポリペプチド。

FR1-CDR1H-FR2-CDR2H-FR3-CDR3H-FR4…(5)

(上式中のFR1は29～36個の、FR2は10～16個の、FR3は32～35個の、FR4は12～14個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Hは配列表の配列番号13で、CDR2Hは配列表の配列番号14で、CDR3Hは配列表の配列番号15でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

FR5-CDR1L-FR6-CDR2L-FR7-CDR3L-FR8…(6)

(上式中のFR5は23～28個の、FR6は14～16個の、FR7は30～34個の、FR8は9～11個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Lは配列表の配列番号16で、CDR2Lは配列表の配列番号17で、CDR3Lは配列表の配列番号18でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

【請求項6】 請求項5記載のポリペプチドをコードする塩基配列を有するDNA断片。

【請求項7】 下記一般式(7)及び一般式(8)より選択され、ヒトの高親和性IgE受容体を特異的に認識することができるものであることを特徴とするポリペプチド。

FR1-CDR1H-FR2-CDR2H-FR3-CDR3H-FR4…(7)

(上式中のFR1は29～36個の、FR2は10～16個の、FR3は32～35個の、FR4は12～14個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Hは配列表の配列番号19で、CDR2Hは配列表の配列番号20で、CDR3Hは配列表の配列番号21でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

FR5-CDR1L-FR6-CDR2L-FR7-CDR3L-FR8…(8)

(上式中のFR5は23～28個の、FR6は14～16個の、FR7は30～34個の、FR8は9～11個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Lは配列表の配列番号22で、CDR2Lは配列表の配列番号23で、CDR3Lは配列表の配列番号24でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

【請求項8】 請求項7記載のポリペプチドをコードする塩基配列を有するDNA断片。

【請求項9】 下記一般式(9)及び一般式(10)より選択され、ヒトの高親和性IgE受容体を特異的に認識することができるものであることを特徴とするポリペ

ブチド。

F R 1 - C D R 1 H - F R 2 - C D R 2 H - F R 3 - C
D R 3 H - F R 4 … (9)

(上式中のF R 1は29～36個の、F R 2は10～16個の、F R 3は32～35個の、F R 4は12～14個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR 1Hは配列表の配列番号25で、CDR 2Hは配列表の配列番号26で、CDR 3Hは配列表の配列番号27でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

F R 5 - C D R 1 L - F R 6 - C D R 2 L - F R 7 - C
D R 3 L - F R 8 … (10)

(上式中のF R 5は23～28個の、F R 6は14～16個の、F R 7は30～34個の、F R 8は9～11個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR 1Lは配列表の配列番号28で、CDR 2Lは配列表の配列番号29で、CDR 3Lは配列表の配列番号30でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

【請求項10】 請求項9記載のポリペプチドをコードする塩基配列を有するDNA断片。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、ヒトの高親和性IgE受容体（以下FcεRIと称することもある）を特異的に認識することができるアミノ酸配列を有するポリペプチド及びこれをコードする塩基配列を有するDNA断片に関する。

【0002】

【従来の技術、及び発明が解決しようとする課題】従来、I型アレルギーの治療には、ステロイドをはじめとした抗炎症剤が広く用いられているが、その非特異性故に副作用の問題があり、そのため、I型アレルギーの特異的な治療法が検討されている。

【0003】ここで、肥満細胞、好塩基球の細胞膜上に発現する高親和性IgE受容体（FcεRI）は、I型アレルギー反応効果相においてこれらの細胞の活性化の生化学的過程を始動させる鍵を握る糖蛋白分子である。FcεRIに結合した抗原特異的IgEが、対応する多価抗原（例えばスギ花粉症の患者ではスギ花粉、ダニアレルギー患者ではダニ抗原）によって架橋されると、このレセプター（FcεRI）は凝集し、シグナル伝達機構が作動し、肥満細胞は初めて活性化される。その結果、アレルギー性炎症を惹起する種々の化学伝達物質、すなわち認め細胞内顆粒に貯えられていたヒスタミンの放出をはじめとして、細胞膜代謝産物であるロイコトリエン、プロスタグランジンなどの新たな合成、放出が爆発的に誘導される。また、FcεRIからのシグナルは一方で核を経由して、アレルギー性炎症に直接、間接に関与するサイトカインの合成を誘導する。

【0004】従って、IgEによって媒介されるI型アレルギーの特異的な治療を考えるとき、I型アレルギー反応効果相を特異的に支配するFcεRIを標的にして、その反応の根幹を遮断するために、IgE-FcεRI結合を特異的に阻害する戦略はきわめて有望である。かかる見地から、IgE結合阻害剤の候補として、可溶化ヒトFcεRI、抗ヒトFcεRI抗体Fab断片、ヒトIgE定常領域（Fcε）、抗ヒトFcε抗体などが考慮され、それぞれ研究が進められている。

【0005】前述のように、抗ヒトFcεRIモノクローナル抗体は、I型アレルギーの特異的な治療薬として期待される。またそれだけでなく、診断薬、さらにはFcεRI発現細胞を標的としたミサイル療法など様々な応用が期待される。そこで、後述するように、まず本発明者らは、抗ヒトFcεRIモノクローナル抗体を產生するマウス・ハイブリドーマを樹立した。しかし、マウス等の異種抗体はヒトにとっては異物であり、ヒトに頻回投与することは投与抗体に対する免疫反応を惹起し、その結果、副作用並びに抗体の治療または予防効果の低下を引き起こす。以上の点から、実際に抗体をヒトに投与する臨床分野を考えると、ヒト型の抗体を用いることが望ましい。

【0006】ここで、抗体の特異性が可変領域の中でもCDRという特定の領域に限定されることは当分野ではなくよく知られていることで、ヒト型の抗体を作製する目的で、マウス等の異種抗体のCDRのアミノ酸配列を抗体遺伝子のクローニングにより明らかにした後、ヒト抗体の可変領域へ移植することが行われている。更に、このような抗体工学と呼ばれる研究分野ではこの他に、二種の異なる抗原特異性を有する双特異キメラ抗体、一本鎖抗体、及び抗体活性を持つ単一CDRに相当するオリゴペプチドなどの開発がなされつつある。

【0007】また、モノクローナル抗体產生細胞株は、一般に継代と共にその抗体產生能の低下することが知られており、この問題を解決するために抗体遺伝子をクローニングした後、遺伝子導入することによって大量発現させることなどが行われている。このように、遺伝子工学的手法による抗体の产生、更に、改良抗体の開発においては、その遺伝子の分離、更にアミノ酸配列を含めた構造の解明は重要であり、特に、CDRのDNA塩基、アミノ酸配列及びCDRをコードするDNA塩基配列の解明は極めて重要である。

【0008】本発明は、このような技術背景の下になされたものであり、その目的とするところは、抗ヒトFcεRIモノクローナル抗体の抗原認識領域、特にそのCDRのアミノ酸配列及びこれをコードするDNA塩基配列を解明し、治療や診断において有用な、ヒトFcεRIを特異的に認識することのできるアミノ酸配列を有するポリペプチド、及びこれをコードする塩基配列を有するDNA断片を提供することにある。

【0009】

【課題を解決するための手段】本発明者らは、抗ヒトFc ϵ R Iモノクローナル抗体生産株について種々検討した結果、5株の抗ヒトFc ϵ R Iモノクローナル抗体生産株を得、更に該抗体のCDRを含む可変領域をコードするcDNAを分離し該DNA塩基配列を解明し、特にCDR領域のアミノ酸配列を特定することにより、上記目的が達成できることを見出し、本発明を完成するに至った。

【0010】従って、本発明のポリペプチドは、それぞれ、下記一般式(1)と(2)、(3)と(4)、(5)と(6)、(7)と(8)、及び(9)と(10)との組み合わせより選択され、ヒトの高親和性IgE受容体を特異的に認識することができるものであることを特徴とする。

FR1-CDR1H-FR2-CDR2H-FR3-CDR3H-FR4…(1)

(上式中のFR1は29~36個の、FR2は10~16個の、FR3は32~35個の、FR4は12~14個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Hは配列表の配列番号1で、CDR2Hは配列表の配列番号2で、CDR3Hは配列表の配列番号3でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

FR5-CDR1L-FR6-CDR2L-FR7-CDR3L-FR8…(2)

(上式中のFR5は23~28個の、FR6は14~16個の、FR7は30~34個の、FR8は9~11個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Lは配列表の配列番号4で、CDR2Lは配列表の配列番号5で、CDR3Lは配列表の配列番号6でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

【0011】FR1-CDR1H-FR2-CDR2H-FR3-CDR3H-FR4…(3)

(上式中のFR1~FR4は上記と同じものであり、CDR1Hは配列表の配列番号7で、CDR2Hは配列表の配列番号8で、CDR3Hは配列表の配列番号9でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

FR5-CDR1L-FR6-CDR2L-FR7-CDR3L-FR8…(4)

(上式中のFR5~FR8は上記と同じものであり、CDR1Lは配列表の配列番号10で、CDR2Lは配列表の配列番号11で、CDR3Lは配列表の配列番号12でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

【0012】FR1-CDR1H-FR2-CDR2H-FR3-CDR3H-FR4…(5)

(上式中のFR1~FR4は上記と同じものであり、C

DR1Hは配列表の配列番号13で、CDR2Hは配列表の配列番号14で、CDR3Hは配列表の配列番号15でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

FR5-CDR1L-FR6-CDR2L-FR7-CDR3L-FR8…(6)

(上式中のFR5~FR8は上記と同じものであり、CDR1Lは配列表の配列番号16で、CDR2Lは配列表の配列番号17で、CDR3Lは配列表の配列番号18でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

【0013】FR1-CDR1H-FR2-CDR2H-FR3-CDR3H-FR4…(7)

(上式中のFR1~FR4は上記と同じものであり、CDR1Hは配列表の配列番号19で、CDR2Hは配列表の配列番号20で、CDR3Hは配列表の配列番号21でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

FR5-CDR1L-FR6-CDR2L-FR7-CDR3L-FR8…(8)

(上式中のFR5~FR8は上記と同じものであり、CDR1Lは配列表の配列番号22で、CDR2Lは配列表の配列番号23で、CDR3Lは配列表の配列番号24でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

【0014】FR1-CDR1H-FR2-CDR2H-FR3-CDR3H-FR4…(9)

(上式中のFR1~FR4は上記と同じものであり、CDR1Hは配列表の配列番号25で、CDR2Hは配列表の配列番号26で、CDR3Hは配列表の配列番号27でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

FR5-CDR1L-FR6-CDR2L-FR7-CDR3L-FR8…(10)

(上式中のFR5~FR8は上記と同じものであり、CDR1Lは配列表の配列番号28で、CDR2Lは配列表の配列番号29で、CDR3Lは配列表の配列番号30でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。)

【0015】また、本発明のDNA断片は、上記各ポリペプチドをコードする塩基配列を有することを特徴とする。

【0016】以下、本発明を詳細に説明する。本発明のポリペプチド及びDNA断片、並びにこれらと関連する抗ヒトFc ϵ R Iモノクローナル抗体生産株及びモノクローナル抗体は、下記の方法により得ることができる。即ち、まず、例えば、羅らの報告した方法(インターナショナル・イムノロジー(International Immunology)、第5巻、第47~54頁(1993))により調製した可溶化ヒトFc ϵ R I α 鎖を抗原として、抗ヒトF

$c\epsilon R I$ モノクローナル抗体生産株（ミエローマ細胞及び脾細胞より得られるハイブリドーマ）を得る。この生産株から、例えばバイオテクニックス（Bio Techniques）、第6巻、第114-116頁（1988）に記載の方法で、mRNAを調製することができる。

【0017】次いで、得られたmRNAを逆転写することによりcDNAを調製し、マウス抗体重（H）鎖可変領域あるいは軽（L）鎖可変領域のN末端をコードするプライマー及びC末端をコードするプライマーを用いて、PCR法（S. サイキ（S. Saikii）ら、サイエンス（Science）、第230巻、第1350-1354頁（1985））によりマウス抗体H鎖可変領域あるいはL鎖可変領域のcDNAを特異的に増幅することができる。例えば、ファルマシア社のscFv moduleキット等を利用してcDNAの合成及びPCR法によるマウス抗体H鎖可変領域遺伝子及びL鎖可変領域遺伝子の増幅を行うことができる。

【0018】しかる後、増幅されたDNAを、例えばアガロースゲル電気泳動した後、ゲルから切り出し、精製後、プランティングキット（宝酒造社）を用いて末端を平滑化し、例えばプラスミドベクターpUC119のSmaIサイトにサブクローニングし、ジデオキシ法によりシーケンシングすることによりその塩基配列を決定することができる。その塩基配列よりマウス抗体H鎖可変領域及びL鎖可変領域のアミノ酸配列を決定し、さらにCDR領域のアミノ酸配列を特定することができる。

【0019】本発明は、上述のようにして明らかにした下記①～⑤に示す5種類のマウス抗ヒトFc ϵ RIモノクローナル抗体のH鎖可変領域のCDR及びL鎖可変領域のCDRを含むポリペプチド、及び①～⑤に示すポリペプチドをコードするDNA塩基配列に関するものである。ここで、①に示したポリペプチドは、CRA1と命名されたハイブリドーマ細胞が產生するマウス抗ヒトFc ϵ RIモノクローナル抗体のH鎖可変領域のCDR及びL鎖可変領域のCDRを含むポリペプチドである。同様に、②～⑤に示したポリペプチドは、それぞれ、CRA2～CRA5と命名されたハイブリドーマ細胞が產生するマウス抗ヒトFc ϵ RIモノクローナル抗体のH鎖可変領域のCDR及びL鎖可変領域のCDRを含むポリペプチドである。

【0020】① 下記一般式（1）及び一般式（2）より選択され、ヒトの抗親和性IgE受容体を特異的に認識することができるものであることを特徴とするポリペプチド。

FR1-CDR1H-FR2-CDR2H-FR3-CDR3H-FR4…(1)

上式中において、FR1は29～36個の、FR2は10～16個の、FR3は32～35個の、FR4は12～14個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Hは配列表の配列番号1で、C

DR2Hは配列表の配列番号2で、CDR3Hは配列表の配列番号3でそれぞれ表される。また、この場合、アミノ酸Cysは酸化状態において架橋を形成していることがある。そして、FRはフレームワークであり各FRは天然に存在するアミノ酸及び修飾されたアミノ酸で構成されていればよいが、一般式（1）により選択されるポリペプチドとしては、配列表の配列番号31で示されるポリペプチドが最も好ましい。

FR5-CDR1L-FR6-CDR2L-FR7-CDR3L-FR8…(2)

上式中において、FR5は23～28個の、FR6は14～16個の、FR7は30～34個の、FR8は9～11個のそれぞれアミノ酸から構成されるポリペプチド残基であり、CDR1Lは配列表の配列番号4で、CDR2Lは配列表の配列番号5で、CDR3Lは配列表の配列番号6でそれぞれ表され、アミノ酸Cysは酸化状態において架橋を形成していることがある。FRはフレームワークであり各FRは天然に存在するアミノ酸及び修飾されたアミノ酸で構成されていればよいが、一般式（2）により選択されるポリペプチドとしては、配列表の配列番号32で示されるポリペプチドが最も好ましい。

【0021】② 下記一般式（3）及び一般式（4）より選択され、ヒトの高親和性IgE受容体を特異的に認識することができるものであることを特徴とするポリペプチド。

FR1-CDR1H-FR2-CDR2H-FR3-CDR3H-FR4…(3)

上式中、FR1～FR4は上記と同じものであり、CDR1Hは配列表の配列番号7で、CDR2Hは配列表の配列番号8で、CDR3Hは配列表の配列番号9でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。FRは上記の場合と同様であるが、一般式（3）により選択されるポリペプチドのうち最も好ましいのは、配列表の配列番号33で示されるポリペプチドである。

FR5-CDR1L-FR6-CDR2L-FR7-CDR3L-FR8…(4)

上式中、FR5～FR8は上記と同じものであり、CDR1Lは配列表の配列番号10で、CDR2Lは配列表の配列番号11で、CDR3Lは配列表の配列番号12でそれぞれ表され、ここでアミノ酸Cysは酸化状態において架橋を形成していることがある。FRは上記と同様であり、最も好ましい一般式（4）により選択されるポリペプチドは、配列表の配列番号34で示されるポリペプチドである。

【0022】③ 下記一般式（5）及び一般式（6）より選択され、ヒトの高親和性IgE受容体を特異的に認識することができるものであることを特徴とするポリペプチド。

9

F R 1 - C D R 1 H - F R 2 - C D R 2 H - F R 3 - C
D R 3 H - F R 4 ... (5)

上式中、F R 1 ~ F R 4 は上記と同じものであり、CD R 1 H は配列表の配列番号 1 3 で、CD R 2 H は配列表の配列番号 1 4 で、CD R 3 H は配列表の配列番号 1 5 でそれぞれ表され、ここでアミノ酸 C y s は酸化状態において架橋を形成していることがある。F R は上記と同様であり、最も好ましい一般式 (5) により選択されるポリペプチドは、配列表の配列番号 3 5 で示されるポリペプチドである。

F R 5 - C D R 1 L - F R 6 - C D R 2 L - F R 7 - C
D R 3 L - F R 8 ... (6)

上式中、F R 5 ~ F R 8 は上記と同じものであり、CD R 1 L は配列表の配列番号 1 6 で、CD R 2 L は配列表の配列番号 1 7 で、CD R 3 L は配列表の配列番号 1 8 でそれぞれ表され、ここでアミノ酸 C y s は酸化状態において架橋を形成していることがある。F R は上記と同様であり、最も好ましい一般式 (6) により選択されるポリペプチドは、配列表の配列番号 3 6 で示されるポリペプチドである。

【0023】④ 下記一般式 (7) 及び一般式 (8) より選択され、ヒトの高親和性 I g E 受容体を特異的に認識することができるものであることを特徴とするポリペプチド。

F R 1 - C D R 1 H - F R 2 - C D R 2 H - F R 3 - C
D R 3 H - F R 4 ... (7)

上式中、F R 1 ~ F R 4 は上記と同じものであり、CD R 1 H は配列表の配列番号 1 9 で、CD R 2 H は配列表の配列番号 2 0 で、CD R 3 H は配列表の配列番号 2 1 でそれぞれ表され、ここでアミノ酸 C y s は酸化状態において架橋を形成していることがある。F R は上記と同様で、最も好ましい一般式 (7) により選択されるポリペプチドは配列表の配列番号 3 7 で示されるポリペプチドである。

F R 5 - C D R 1 L - F R 6 - C D R 2 L - F R 7 - C
D R 3 L - F R 8 ... (8)

上式中、F R 5 ~ F R 8 は上記と同じものであり、CD R 1 L は配列表の配列番号 2 2 で、CD R 2 L は配列表の配列番号 2 3 で、CD R 3 L は配列表の配列番号 2 4 でそれぞれ表され、ここでアミノ酸 C y s は酸化状態において架橋を形成していることがある。F R は上記と同様で、最も好ましい一般式 (8) により選択されるポリペプチドは配列表の配列番号 3 8 で示されるポリペプチドである。

【0024】⑤ 下記一般式 (9) 及び一般式 (10) より選択され、ヒトの高親和性 I g E 受容体を特異的に認識することができるものであることを特徴とするポリペプチド。

F R 1 - C D R 1 H - F R 2 - C D R 2 H - F R 3 - C
D R 3 H - F R 4 ... (9)

50 (実施例1) 抗ヒト F c ε R I モノクローナル抗体生産

10

上式中、F R 1 ~ F R 4 は上記と同じものであり、CD R 1 H は配列表の配列番号 2 5 で、CD R 2 H は配列表の配列番号 2 6 で、CD R 3 H は配列表の配列番号 2 7 でそれぞれ表され、ここでアミノ酸 C y s は酸化状態において架橋を形成していることがある。F R は上記と同様であり、最も好ましい一般式 (9) により選択されるポリペプチドは、配列表の配列番号 3 9 で示されるポリペプチドである。

F R 5 - C D R 1 L - F R 6 - C D R 2 L - F R 7 - C
D R 3 L - F R 8 ... (10)

上式中、F R 5 ~ F R 8 は上記と同じものであり、CD R 1 L は配列表の配列番号 2 8 で、CD R 2 L は配列表の配列番号 2 9 で、CD R 3 L は配列表の配列番号 3 0 でそれぞれ表され、ここでアミノ酸 C y s は酸化状態において架橋を形成していることがある。F R は上記と同様で、最も好ましい一般式 (10) により選択されるポリペプチドは、配列表の配列番号 4 0 で示されるポリペプチドである。

【0025】次に、本発明のポリペプチドをコードする塩基配列を有するDNA断片としては、本発明のポリペプチドをコードするDNA塩基配列を有するものであればどのような塩基配列でもよい。ここで、上記一般式 (1) で表されるポリペプチドをコードする一例の塩基配列を、配列表の配列番号 4 1 に示す。同様に、上記一般式 (2) ~ (10) で表されるポリペプチドをコードする一例の塩基配列を、それぞれ配列表の配列番号 4 2 ~ 5 0 に示す。

【0026】本発明のポリペプチドをコードするDNAあるいは例えば部位特異的変異導入法等で改変した変異体DNAは、これに遺伝子工学的手法を施すことにより、ベクター例えばp SV 2型ベクターに組み込むことができ、次いで、発現細胞、例えばCHO細胞を形質転換し、該ポリペプチド誘導体を得ることができる。また、同様な手法で全遺伝子を決定し、本発明のポリペプチドを含む抗体を生産することもできる。

【0027】更に、本発明に係るポリペプチドの誘導体としては、ヒト F c ε R I への認識特異性を保有している断片、例えば、一価の F a b 断片、及び二価の (F a b') 2 断片、マウス-ヒトキメラモノクローナル抗体、ヒト化抗体 (CDR移植抗体)、一本鎖抗体、酵素、蛍光マーカー、金属キレート、細胞増殖抑制物質または細胞毒性物質、アビシン、ビオチン、抗炎症剤、抗アレルギー剤、免疫抑制剤等との接合体、並びに放射能ラベル化抗体等を例示でき、これらは、それぞれ公知の方法で調製し、目的に応じて使用することができる。

【0028】

【実施例】以下、本発明を実施例により、更に詳細かつ具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。

株の取得

1) 培地

RPMI 1640倍地に、リラシリン $100\mu\text{g}/\text{ml}$ 、ストレプトマイシン $100\mu\text{g}/\text{ml}$ 、グルタミン 2mM 、炭酸水素ナトリウム $1.6\text{g}/\text{ml}$ を加えた後、二酸化炭素を吹き込み、pH 7.2前後とし牛胎児血清(FCS)を10%になるように加えて使用した。

【0029】 2) ミエローマ細胞株

Balb/cマウス由来の骨髄細胞MOP-PC-21の株化細胞δアザグアニン耐性のP3-X63-Ag-δU/(P3U1)を用いた。

【0030】 3) 抗原感作

羅らの報告した方法(インターナショナル・イムノロジー(International Immunology)、第5巻、第47-54頁(1993))により調製した可溶化ヒトFcεRIα鎖を、フロイント完全アジュバンドと混合した抗原をBalb/cマウスに一匹あたり $0.25\text{mg}/0.5\text{ml}$ ずつ腹腔に接種し、一次感作した。5週間後、更に上記抗原を $0.5\text{mg}/0.5\text{ml}$ ずつ尾静脈に接種し、二次感作した。その4日後の脾臓細胞を上記ミエローマ細胞株と下記4)のようにして細胞融合させた。

【0031】 4) 細胞融合法

ミエローマ細胞、脾細胞共に食塩リン酸緩衝液(PBS: 10 mMリン酸緩衝液pH 7.5、0.9%食塩)で3回洗浄後、RPMI 1640、10%FCSに浮遊し細胞数を算定した。 1×10^6 個のP3U1に対して $7.5 \sim 10 \times 10^8$ 個の脾細胞を2~3週間培養した。次に、RPMI 1640で遠心洗浄してFCSを除き、ガラススピッツ遠心管に細胞を集め。上清を完全に取り去った後、ベレット状の細胞をほぐし、予め37℃に温めておいたポリエチレン glycole液(PEG)を 0.5ml 加え、室温で1分間反応させた後、37℃のRPMI 1640(1ml)を30秒毎に10回加えた。その間、試験官をゆっくり回転し続ける。こうして細胞融合した細胞を遠心洗浄し、P3U1細胞数が、 $5 \sim 10 \times 10^6$ 個/mlになるようにRPMI 1640、10%FCSを加える。その後、 0.2ml をマイクロタイターブレートに分注した。24時間培養して上清を半量捨て、HAT(ヒポキサンチン、アミノブテリン及びチミジンを含有)倍地を加える。以後、この操作を48時間毎に2週間繰り返す。ミエローマ細胞及び脾細胞共にHAT倍地中では増殖できないので、増殖していく細胞はハイブリドーマと考えられる。従って、10~14日後、増殖してきたハイブリドーマの認められる培養液について抗体活性を調べた。

【0032】 5) 抗体活性のスクリーニング

抗体活性のスクリーニングは次に示すようなエンザイムイムノアッセイによった。

① PBSに溶解した抗原($1\text{mg}/\text{ml}$)を $50\mu\text{l}$ とり、マイクロタイターブレート(96穴、Falco 50)ある。

n 3129)に吸着させた(4℃、一晩)。

② 抗原溶液を除き、0.05%Tween 20を含んだPBS(PBST)により4回洗浄した後、5%牛アルブミン(BSA)を含んだPBSを $100\mu\text{l}$ 加え37℃1時間放置した。

③ BSA溶液を除いた後、PBSTにより4回洗浄する。次に、ハイブリドーマの培養上清を $50\mu\text{l}$ 加え、2時間反応させた。

④ PBSTで4回洗浄した後、1%BSAを含むPBSで1000倍に希釈したベルオキシダーゼ結合抗マウスIgG抗体を $50\mu\text{l}$ 加え、37℃で2時間反応させた。

⑤ PBSTにより4回洗浄した後、0.5Mクエン酸 1.22ml 、0.5Mリン酸二ナトリウム 2.56ml 、オルトフェニレンジアミン 10mg 、30%過酸化水素 $10\mu\text{l}/25\text{ml}$ を $50\mu\text{l}$ 加え発色させた。十分発色させた後、2M硫酸を $50\mu\text{l}$ 加え発色を停止させる。

⑥ 発色はイムノリーダーにより光学的に測定した。

⑦ 抗原に特異的な抗体を産生している細胞のうち5株を分離し、クローニング操作を重ね、抗ヒトFcεRIモノクローナル抗体を産生するハイブリドーマ細胞株5株を樹立した。それぞれCRA1、CRA2、CRA3、CRA4、そしてCRA5と命名した。

【0033】 6) ヒトIgE結合阻害実験

樹立したハイブリドーマ細胞株5株が産生する抗ヒトFcεRIモノクローナル抗体が、ヒトIgEのヒトFcεRIへの結合を阻害するかどうかを競争阻害実験により確認した。ヒトFcεRIα鎖をマイクロタイターブレートに吸着させておき、そこにヨウ素125で標識したヒトIgEと、標識していないモノクローナル抗体あるいはヒトIgEを同時に加えた。反応後、洗浄し、マイクロタイターブレートに固定化したヒトFcεRIα鎖に結合したヨウ素125標識ヒトIgEの放射能をシンチレーションカウンターで測定した。ここで、標識していないモノクローナル抗体あるいはヒトIgEの量は変化させてあり、放射能がヨウ素125で標識したヒトIgEのみを反応させた際の50%になると、標識していないモノクローナル抗体あるいはヒトIgEの量を、IC₅₀とした。得られた結果を表1に示した。

【0034】 CRA2、CRA3、及びCRA4由来のモノクローナル抗体は、そのIC₅₀の値がヒトIgEで阻害したときよりも小さく、それぞれのIgE結合阻害剤としての有効性が確認された。一方、IC₅₀の値の大きいCRA1及びCRA5はIgE結合阻害剤としては有効ではないと推定することもできるが、ヒトFcεRIへの特異的な結合能を有する故、CRA2、CRA3、及びCRA4と同様、診断及びミサイル療法などIgE結合阻害が必ずしも要求されない場合に十分有効である。

【0035】

* * 【表1】

inhibitor	human IgG	CRA1	CRA2	CRA3	CRA4	CRA5
IC ₅₀ (μg/ml)	1.2	> 200	0.2	0.5	0.1	37

【0036】(実施例2) 抗ヒトFcεRIモノクローナル抗体遺伝子の取得及び解折

1) mRNAの調製

上記ハイブリドーマ細胞約5×10⁷個の細胞より、J. E. バッドレイ (J.E.Badley) らの方法 (バイオテクニックス(Bio Techniques), 第6巻, 第114-116頁 (1988) に従い、ポリAを有するRNAを下記の如く精製した。該ハイブリドーマ細胞をPBS 30mMで遠心洗浄し、10mlのリシス・バッファ (200mM NaCl、200mM TrisCl pH7.5、0.15mM MgCl₂、2% SDS、0.2mg/ml プロテイネースK) に懸濁させた。この懸濁液を18Gの注射針に5回、21Gの注射針に1回通して細胞を破碎した後、45℃の水浴上で緩徐に振動させながら2時間放置した。この間にオリゴdTセルロース担体 (コラボレイティブ・リサーチ社) 0.1gを10mlのエルーション・バッファ (10mM TrisCl pH7.5) で一回、10mlのパインディング・バッファ (10mM TrisCl pH7.5、500mM NaCl) で3回、遠心洗浄した。このオリゴdTセルロース担体に先の細胞抽出液及び600μlの5M-NaClを加え、室温で20分間種やかに攪拌した。続いて10mlのパインディング・バッファで5回、遠心洗浄した後、カラムに充填した。カラムに計3mlのエルーション・バッファを少量づつ加え、溶出液を10滴づつ分画した。各画分の一部を取り、エチジウム・プロマイドを添加後、UV照射し、よく光る画分を回収した。回収画分をエタノール沈殿し、25μlの滅菌水に再溶解させた。

【0037】2) 相補鎖DNA(cDNA)の合成及びPCR法によるクローニング

1) 精製したmRNAを鉢型として、ファルマシア社のscFv moduleキットを利用してcDNAの合成及びPCR法によりマウス抗体H鎖可変領域あるいはL鎖可変領域のcDNAを特異的に増幅した。アガロースゲル電気泳動により、約350塩基対のH鎖可変領域のcDNA、あるいは約325塩基対のL鎖可変領域のcDNAが特異的に増幅していることを確認した。

【0038】3) 塩基配列の決定

増幅されたDNAを1%アガロースゲル電気泳動後、ゲルから切り出し、マーメイド (BIO 101社) を用いて精製した後、プランティングキット (宝酒造社) を用いて末端を平滑化した。このDNA断片をプラスミドベクターpUC119のSmaIサイトにサブクローニングし、ジデオキシ法によりシーケンシングすることによりその塩基配列を決定した。このようにして配列表の配

列番号41～50で示した塩基配列を決定した。配列表の配列番号41、43、45、47及び49に、それぞれハイブリドーマ細胞株CRA1、CRA2、CRA3、CRA4及びCRA5からクローニングしたH鎖可変領域のcDNAの塩基配列を示した。配列表の配列番号42、44、46、48及び50に、それぞれハイブリドーマ細胞株CRA1、CRA2、CRA3、CRA4及びCRA5からクローニングしたL鎖可変領域のcDNAの塩基配列を示した。

【0039】4) 超可変領域の決定

3) で決定した塩基配列よりマウス抗体H鎖可変領域及びL鎖可変領域のアミノ酸配列を決定し、更にCDR領域のアミノ酸配列を特定した。配列表の配列番号31、33、35、37、及び39に、それぞれハイブリドーマ細胞株CRA1、CRA2、CRA3、CRA4及びCRA5からクローニングしたH鎖可変領域のcDNAの塩基配列より決定したアミノ酸配列を示した。配列表の配列番号32、34、36、38、及び40に、それぞれハイブリドーマ細胞株CRA1、CRA2、CRA3、CRA4及びCRA5からクローニングしたL鎖可変領域のcDNAの塩基配列より決定したアミノ酸配列を示した。なお、CDR領域のアミノ酸配列を、それぞれ配列表に説明した。

【0040】

【発明の効果】以上説明したように、本発明によれば、抗ヒトFcεRIモノクローナル抗体の抗原認識領域、特にそのCDRを解明し、治療や診断において有用な、ヒトFcεRIを特異的に認識することのできるアミノ酸配列を有するポリペプチド、及びこれをコードする塩基配列を有するDNA断片を提供することができる。即ち、本発明により、ヒトFcεRIを認識するモノクローナル抗体の抗原認識部位が特定され、該認識部位を含有するポリペプチドの遺伝子工学的製造手段が提供された。

【0041】

【配列表】配列番号：1

配列の長さ：5

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA1

配列

Asn Tyr Gly Met Ser

1

5

【0042】配列番号：2

15

配列の長さ：17
配列の型：アミノ酸
鎖の数：一本鎖

配列

Thr	Ile	Ser	Gly	Asp	Gly	Ser	Tyr	Thr	Phe	Tyr	Pro	Asp	Ser	Val
1								10						15
Lys Gly														

【0043】配列番号：3

配列の長さ：9
配列の型：アミノ酸
鎖の数：一本鎖

トポロジー：直鎖状
配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA1

配列

Leu	Phe	Tyr	Arg	Ser	Ser	Phe	Pro	Phe
1								5

【0044】配列番号：4

配列の長さ：11
配列の型：アミノ酸
鎖の数：一本鎖

トポロジー：直鎖状
配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA1

配列

Lys	Ala	Ser	Gln	Asp	Ile	Asn	Ser	Tyr	Leu	Ser
1									10	

【0045】配列番号：5

配列の長さ：7
配列の型：アミノ酸
鎖の数：一本鎖

トポロジー：直鎖状
配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA1

配列

Arg	Ala	Lys	Arg	Leu	Val	Asp
1						5

【0046】配列番号：6

配列の長さ：9
配列の型：アミノ酸

16
* トポロジー：直鎖状
配列の種類：ペプチド

* 起源 細胞の種類：マウスハイブリドーマ細胞CRA1

※鎖の数：一本鎖

トポロジー：直鎖状

10 配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA1

配列

Leu	Gln	Tyr	Asp	Glu	Phe	Pro	Leu	Thr
1							5	

【0047】配列番号：7

配列の長さ：5

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

20 配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA2

配列

Thr	Tyr	Pro	Met	Ser
1				5

【0048】配列番号：8

配列の長さ：17

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

30 配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA2

配列の長さ：9

※40

配列の長さ：8
配列の型：アミノ酸
鎖の数：一本鎖

トポロジー：直鎖状
配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA2

配列

His	Asn	Tyr	Gly	Gly	Met	Asp	Tyr
1						5	

【0050】配列番号：10

50 配列の長さ：15

17

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列

Arg	Ala	Ser	Glu	Ser	Val	Asp	Ser	Tyr	Gly	Asn	Ser	Phe	Met	His
1														

【0051】配列番号：11

配列の長さ：7

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA2

配列

Leu	Ala	Ser	Asn	Leu	Glu	Ser
1						

【0052】配列番号：12

配列の長さ：9

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA2

配列

Gln	Gln	Asn	Asn	Glu	Asp	Pro	Tyr	Thr
1								

【0053】配列番号：13

配列の長さ：5

*

配列

Tyr	Ile	Ser	Asn	Arg	Gly	Gly	Ser	Thr	Tyr	Tyr	Pro	Asp	Thr	Ile
1														

Met Gly

【0055】配列番号：15

配列の長さ：8

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA3

※配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

10 配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA2

配列

Thr	Tyr	Pro	Met	Ser
1				

【0054】配列番号：14

配列の長さ：17

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

20 配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA3

配列

Gln	Gln	Asn	Asn	Glu	Asp	Pro	Tyr	Thr
1								

【0053】配列番号：13

配列の長さ：5

※

配列

Tyr	Ile	Ser	Asn	Arg	Gly	Gly	Ser	Thr	Tyr	Tyr	Pro	Asp	Thr	Ile
1														

Met Gly

★配列の長さ：15

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA3

配列

His	Asn	Tyr	Gly	Gly	Met	Asp	Tyr
1							

40

【0056】配列番号：16

★

配列

Arg	Ala	Ser	Glu	Ser	Val	Asp	Ser	Tyr	Gly	Asn	Ser	Phe	Met	His
1														

5

10 トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA3

配列の長さ：7

配列の型：アミノ酸

鎖の数：一本鎖

50

19

配列

Leu Ala Ser Asn Leu Glu Ser

1 5

【0058】配列番号：18

配列の長さ：9

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA3

配列

Gln Gin Asn Asn Glu Asp Pro Tyr Thr

1 5

【0059】配列番号：19

配列の長さ：5

配列の型：アミノ酸

鎖の数：一本鎖

20

* トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA4

配列

Ser Tyr Tyr Ile His

1 5

【0060】配列番号：20

配列の長さ：17

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA4

*

配列

Trp Ile Tyr Pro Lys Asn Val Asn Thr Lys Tyr Asn Glu Arg Phe

1 5 10 15

Lys Gly

【0061】配列番号：21

配列の長さ：9

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA4

配列

Thr Ala Arg Ala Thr Ala Met Asp Tyr

1 5

30

【0062】配列番号：22

配列の長さ：11

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA4

配列

Arg Ala Ser Glu Asn Ile Tyr Ser Asn Leu Ala

1 5 10

40

【0063】配列番号：23

配列の長さ：7

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA4

配列

Ala Ala Thr Asn Leu Ala Asp

1 5

【0064】配列番号：24

配列の長さ：9

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA4

配列

Gln His Phe Trp Gly Thr Pro Trp Thr

1 5

【0065】配列番号：25

配列の長さ：5

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA5

配列

Asp Tyr Tyr Met Phe

1 5

【0066】配列番号：26

配列の長さ：17

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

50 配列の種類：ペプチド

21

起源 細胞の種類：マウスハイブリドーマ細胞CRA5

配列

Tyr	Ile	Ser	Asp	Gly	Asp	Ile	Ser	Thr	Tyr	Tyr	Pro	Asp	Thr	Val
1						10					15			

Lys Gly

【0067】配列番号：27

配列の長さ：11

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA5

配列

Gly	Asn	Tyr	Arg	Tyr	Gly	Tyr	Ala	Val	Asp	Tyr
1	5					10				

【0068】配列番号：28

配列の長さ：12

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA5

配列

Ser	Ala	Ser	Ser	Ser	Ile	Ser	Ser	Asn	Tyr	Leu	His
1	5										

【0069】配列番号：29

配列の長さ：7

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA5 *

配列

Gln	Val	Lys	Leu	Gln	Glu	Ser	Gly	Gly	Gly	Leu	Val	Lys	Pro	Gly
1						10				15				

Gly	Ser	Leu	Lys	Leu	Ser	Cys	Val	Ala	Ser	Glu	Phe	Thr	Phe	Ser
20							25			30				

Asn	Tyr	Gly	Met	Ser	Trp	Val	Arg	Gln	Thr	Pro	Glu	Lys	Arg	Leu
35								40			45			

Glu	Trp	Val	Ala	Thr	Ile	Ser	Gly	Asp	Gly	Ser	Tyr	Thr	Phe	Tyr
50							55			60				

Pro	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala
65								70			75			

Lys	Asn	Asn	Leu	Tyr	Leu	Gln	Met	Ser	Ser	Leu	Arg	Ser	Glu	Asp
80								85			90			

Thr	Ala	Leu	Tyr	Phe	Cys	Ile	Ser	Leu	Phe	Tyr	Arg	Ser	Ser	Phe
95							100			105				

Pro	Phe	Trp	Gly	Gln	Gly	Thr	Thr	Val	Thr	Val	Ser	Ser	
110								115					

【0072】配列番号：32

22

(12)

特開平7-165799

配列

Tyr	Ile	Ser	Asp	Gly	Asp	Ile	Ser	Thr	Tyr	Tyr	Pro	Asp	Thr	Val
1						10					15			

*

配列

Arg	Thr	Ser	Asn	Leu	Ala	Ser
1				5		

【0070】配列番号：30

配列の長さ：9

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA5

配列

Gln	Gln	Gly	Ser	Ser	Ile	Pro	Leu	Thr
1					5			

【0071】配列番号：31

配列の長さ：118

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA1

配列の特徴 31-35 S CDR領域

50-66 S CDR領域

99-107 S CDR領域

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

23

24

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

*起源 細胞の種類：マウスハイブリドーマ細胞CRA 1

配列の特徴 21-31 S CDR領域

47-53 S CDR領域

* 86-94 S CDR領域

配列

Met	Thr	Gln	Ser	Pro	Ser	Ser	Met	Tyr	Ala	Ser	Leu	Gly	Glu	Arg
1														
														15
Val	Thr	Ile	Thr	Cys	Lys	Ala	Ser	Gln	Asp	Ile	Asn	Ser	Tyr	Leu
														30
Ser	Trp	Phe	His	Gln	Lys	Pro	Gly	Lys	Ser	Pro	Lys	Thr	Leu	Ile
														45
Tyr	Arg	Ala	Lys	Arg	Leu	Val	Asp	Gly	Val	Pro	Ser	Arg	Phe	Ser
														60
Gly	Ser	Gly	Ser	Gly	Gln	Asp	Tyr	Ser	Leu	Thr	Ile	Ser	Ser	Leu
														75
Glu	Tyr	Glu	Asp	Met	Gly	Ile	Tyr	Tyr	Cys	Leu	Gln	Tyr	Asp	Glu
														90
Phe	Pro	Leu	Thr	Phe	Gly	Ala	Gly	Thr	Lys	Leu	Glu	Ile	Lys	
														100
95														

【0073】配列番号：33

配列の長さ：117

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

20※配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA 2

配列の特徴 31-35 S CDR領域

50-66 S CDR領域

※ 98-106 S CDR領域

配列

Gln	Val	Gln	Leu	Gln	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly
1														
														15
Gly	Ser	Leu	Lys	Leu	Ser	Cys	Thr	Ala	Ser	Gly	Phe	Thr	Phe	Ser
														30
Thr	Tyr	Pro	Met	Ser	Trp	Val	Arg	Gln	Thr	Pro	Glu	Lys	Arg	Leu
														45
Glu	Trp	Val	Ala	Phe	Ile	Ser	Asn	Arg	Gly	Gly	Ser	Thr	Tyr	Tyr
														60
Pro	Asp	Thr	Val	Lys	Gly	Arg	Phe	Thr	Val	Ser	Arg	Asp	Asn	Ala
														75
Lys	Asn	Ile	Leu	Tyr	Leu	Gln	Met	Thr	Ser	Leu	Lys	Ser	Glu	Asp
														90
Thr	Ala	Met	Tyr	Tyr	Cys	Ala	Arg	His	Asn	Tyr	Gly	Gly	Met	Asp
														105
Tyr	Trp	Gly	Gln	Gly	Thr	Thr	Val	Thr	Val	Ser	Ser			
														115
110														

【0074】配列番号：34

配列の長さ：112

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA 2

配列の特徴 24-38 S CDR領域

54-60 S CDR領域

92-101 S CDR領域

配列

Asp	Ile	Gln	Met	Pro	Gln	Ser	Pro	Ala	Ser	Leu	Ala	Val	Ser	Leu
1														
														15
Gly	Gln	Arg	Ala	Thr	Ile	Ser	Cys	Arg	Ala	Ser	Glu	Ser	Val	Asp

25

26

20	25	30
Ser Tyr Gly Asn Ser Phe Met His Trp Tyr Gln Gln Lys Pro Gly		
35	40	45
Gln Ser Pro Lys Leu Leu Met Tyr Leu Ala Ser Asn Leu Glu Ser		
50	55	60
Gly Val Pro Ala Arg Phe Thr Gly Ser Gly Ser Arg Thr Asp Phe		
65	70	75
Thr Leu Thr Ile Asp Pro Val Glu Ala Asp Asp Ala Ala Thr Tyr		
80	85	90
Tyr Cys Gln Gln Asn Asn Glu Asp Pro Tyr Thr Phe Gly Gly Gly		
95	100	105
Thr Lys Leu Glu Ile Lys Arg		
110		

【0075】配列番号：35

配列の長さ：117

配列の型：アミノ酸

鎖の数：一本鎖

トポロジー：直鎖状

*配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA3

配列の特徴 31-35 S CDR領域

50-66 S CDR領域

* 99-106 S CDR領域

配列

Gln Val Lys Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly		
1	5	10
Gly Ser Leu Lys Val Ser Cys Thr Ala Ser Gly Phe Thr Phe Ser		
20	25	30
Thr Tyr Pro Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu		
35	40	45
Glu Trp Val Ala Tyr Ile Ser Asn Arg Gly Gly Ser Thr Tyr Tyr		
50	55	60
Pro Asp Thr Ile Met Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala		
65	70	75
Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Lys Ser Glu Asp		
80	85	90
Thr Ala Met Tyr Tyr Cys Ala Arg His Asn Tyr Gly Gly Met Asp		
95	100	105
Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser		
110	115	

【0076】配列番号：36

配列の長さ：112

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA3

配列の特徴 24-38 S CDR領域

54-60 S CDR領域

93-101 S CDR領域

40

配列

Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu		
1	5	10
Gly Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Asp		
20	25	30
Ser Tyr Gly Asn Ser Phe Met His Trp Tyr Gln Gln Lys Pro Gly		
35	40	45
Gln Pro Pro Lys Leu Leu Met Tyr Leu Ala Ser Asn Leu Glu Ser		
50	55	60
Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Arg Thr His Phe		

27

28

65	70	75
Thr Leu Thr Ile Asp Pro Val Glu Ala Asp Asp Ala Ala Thr Tyr		
80	85	90
Tyr Cys Gln Gln Asn Asn Glu Asp Pro Tyr Thr Phe Gly Gly Gly		
95	100	105
Thr Lys Leu Glu Ile Lys Arg		
110		

【0077】配列番号：37

配列の長さ：118

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

* 起源 細胞の種類：マウスハイブリドーマ細胞CRA4

配列の特徴 31-35 S CDR領域

10 50-66 S CDR領域

99-107 S CDR領域

*

配列

Gln Val Lys Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly			
1	5	10	15
Ala Ser Val Arg Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr			
20	25	30	
Ser Tyr Tyr Ile His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu			
35	40	45	
Glu Trp Ile Gly Trp Ile Tyr Pro Lys Asn Val Asn Thr Lys Tyr			
50	55	60	
Asn Glu Arg Phe Lys Gly Lys Ala Thr Leu Thr Thr Asp Lys Ser			
65	70	75	
Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp			
80	85	90	
Ser Ala Val Tyr Phe Cys Ala Leu Thr Ala Arg Ala Thr Ala Met			
95	100	105	
Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser			
110	115		

【0078】配列番号：38

配列の長さ：108

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

30 起源 細胞の種類：マウスハイブリドーマ細胞CRA4

配列の特徴 24-34 S CDR領域

50-56 S CDR領域

89-97 S CDR領域

配列

Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Val			
1	5	10	15
Gly Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Glu Asn Ile Tyr			
20	25	30	
Ser Asn Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro Gln			
35	40	45	
Leu Leu Val Tyr Ala Ala Thr Asn Leu Ala Asp Gly Val Pro Ser			
50	55	60	
Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Tyr Ser Leu Lys Ile			
65	70	75	
Asn Ser Leu Gln Ser Glu Asp Phe Gly Ser Tyr Tyr Cys Gln His			
80	85	90	
Phe Trp Gly Thr Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu			
95	100	105	
Ile Lys Arg			

29

【0079】配列番号：39

配列の長さ：118

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

30

*起源 細胞の種類：マウスハイブリドーマ細胞CRA5

配列の特徴 29-33 S CDR領域

48-64 S CDR領域

97-107 S CDR領域

*

配列

Gln	Val	Lys	Leu	Gln	Gln	Ser	Gly	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly
1				5			10				15				
Gly	Ser	Leu	Lys	Leu	Ser	Cys	Ala	Thr	Ser	Gly	Phe	Thr	Asp	Tyr	
					20			25			30				
Tyr	Met	Phe	Trp	Val	Arg	Gln	Thr	Pro	Glu	Lys	Lys	Leu	Glu	Trp	
					35			40			45				
Val	Ala	Tyr	Ile	Ser	Asp	Gly	Asp	Ile	Ser	Thr	Tyr	Tyr	Pro	Asp	
					50			55			60				
Thr	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn	
					65			70			75				
Thr	Leu	Tyr	Leu	Gln	Met	Ser	Arg	Leu	Lys	Ser	Glu	Asp	Thr	Ala	
					80			85			90				
Met	Tyr	Tyr	Cys	Ala	Arg	Gly	Asn	Tyr	Arg	Tyr	Gly	Tyr	Ala	Val	
					95			100			105				
Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Thr	Val	Thr	Val	Ser	Ser			
					110			115							

【0080】配列番号：40

配列の長さ：109

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：ペプチド

起源 細胞の種類：マウスハイブリドーマ細胞CRA5

配列の特徴 24-35 S CDR領域

51-57 S CDR領域

90-98 S CDR領域

配列

Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Thr
Thr	Met	Ala	Ala	Ser	Pro			
1				5				
10					15			
Gly	Glu	Lys	Ile	Thr	Ile	Thr	Cys	Ser
Ala	Ser	Ser	Ser	Ile	Ser			
				20				
	25				30			
Ser	Asn	Tyr	Leu	His	Trp	Tyr	Gln	Gln
Lys	Pro	Gly	Phe	Ser	Pro			
				35				
	40				45			
Lys	Leu	Leu	Ile	Tyr	Arg	Thr	Ser	Asn
Leu	Ala	Ser	Gly	Val	Pro			
				50				
	55				60			
Ala	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly
Thr	Ser	Tyr	Ser	Leu	Thr			
				65				
	70				75			
Ile	Gly	Thr	Met	Glu	Ala	Glu	Asp	Val
Ala	Thr	Tyr	Tyr	Cys	Gln			

33

34

GAC ATC CAG ATG CCC CAG TCT CCA GCT TCT TTG GCT GTG TCT CTA	45
GGG CAG AGG GCC ACC ATA TCC TGC AGA GCC AGT GAA AGT GTT GAT	90
AGT TAT GGC AAC AGT TTT ATG CAC TGG TAC CAG CAG AAA CCA GGA	135
CAG TCA CCC AAA CTC CTC ATG TAT CTT GCA TCC AAC CTA GAA TCT	180
GGG GTC CCT GCC AGG TTC ACT GGC AGT GGG TCT AGG ACA GAC TTC	225
ACC CTC ACC ATT GAT CCT GTG GAG GCT GAT GAT GCT GCA ACC TAT	270
TAC TGT CAG CAA AAT AAT GAG GAT CCG TAC ACG TTC GGA GGG GGG	315
ACC AAG CTG GAA ATC AAA CGG	336

【0085】配列番号：45

配列の長さ：351

配列の型：核酸

鎖の数：二本鎖

*トポロジー：直鎖状

10 配列の種類：cDNA to mRNA

起源 細胞の種類：マウスハイブリドーマ細胞CRA3

*

配列

CAG GTG AAG CTG CAG GAG TCA GGG GGA GGT TTA GTG CAG CCT GGA	45
GGG TCC CTG AAA GTC TCC TGT ACA GCC TCT GGA TTC ACT TTC AGT	90
ACC TAT CCC ATG TCC TGG GTT CGC CAG ACT CCA GAG AAG AGG CTG	135
GAG TGG GTC GCA TAC ATA ACT AAT CGT GGT GGT AGC ACC TAC TAT	180
CCA GAC ACT ATA ATG GGC CGA TTC ACC ATC TCC AGA GAC AAT GCC	225
AAG AAC ACC CTG TAC CTA CAA ATG AAC AGT CTG AAG TCT GAG GAC	270
ACG GCC ATG TAT TAC TGT GCA AGA CAT AAC TAT GGA GGG ATG GAC	315
TAC TGG GGC CAA GGG ACC ACG GTC ACC GTC TCC TCA	351

【0086】配列番号：46

配列の長さ：336

配列の型：核酸

鎖の数：二本鎖

*トポロジー：直鎖状

配列の種類：cDNA to mRNA

起源 細胞の種類：マウスハイブリドーマ細胞CRA3

※

配列

GAC ATC CAG ATG ACG CAG TCT CCA GCT TCT TTG GCT GTG TCT CTA	45
GGG CAG AGG GCC ACC ATA TCC TGC AGA GCC AGT GAA AGT GTT GAT	90
AGT TAT GGC AAT AGT TTT ATG CAC TGG TAC CAG CAG AAA CCA GGA	135
CAG CCA CCC AAA CTC CTC ATG TAT CTT GCA TCC AAC CTA GAA TCT	180
GGG GTC CCT GCC AGG TTC ACT GGC AGT GGG TCT AGG ACA CAC TTC	225
ACC CTC ACC ATT GAT CCT GTG GAG GCT GAT GAT GCT GCA ACC TAT	270
TAC TGT CAG CAA AAT AAT GAG GAT CCG TAC ACG TTC GGA GGG GGG	315
ACC AAG CTG GAA ATC AAA CGG	336

【0087】配列番号：47

配列の長さ：354

配列の型：核酸

鎖の数：二本鎖

★トポロジー：直鎖状

配列の種類：cDNA to mRNA

起源 細胞の種類：マウスハイブリドーマ細胞CRA4

★

配列

CAG GTG AAA CTG CAG CAG TCA GGA CCT GAG CTG GTG AAG CCT GGG	45
GCT TCA GTG AGG ATA TCC TGC AAG GCT TCT GGC TAC ACC TTC ACA	90
ACC TAC TAT ATA CAC TGG GTG AAG CAG AGG CCT GGA CAG GGA CTT	135
GAG TGG ATT GGA TGG ATT TAT CCT AAA AAT GTT AAT ACT AAG TAC	180
AAT GAG AGG TTC AAG GGC AAG GCC ACA CTG ACT ACA GAC AAA TCC	225
TCC ACC ACA GCC TAC ATG CAG CTC AGC AGC CTG ACC TCT GAG GAC	270
TCT GCG GTC TAT TTC TGT GCG CTT ACA GCT CGG GCT ACG GCT ATG	315
GAC TAC TGG GGC CAA GGG ACC ACG GTC ACC GTC TCC TCA	354

【0088】配列番号：48

鎖の数：二本鎖

配列の長さ：324

トポロジー：直鎖状

配列の型：核酸

50 配列の種類：cDNA to mRNA

35

36

起源 細胞の種類：マウスハイブリドーマ細胞CRA4

配列

GAC ATC CAG ATG ACT CAG TCT CCA GCC TCC CTA TCT GTA TCT GTG	45
GGA GAA ACT GTC ACC ATC ACA TGT CGA GCA AGT GAG AAT ATT TAC	90
AGT AAT TTA GCA TGG TAT CAG CAG AAA CAG GGA AAA TCT CCT CAG	135
CTC CTG GTC TAT GCT GCA ACA AAC TTA GCA GAT GGT GTG CCA TCA	180
AGG TTC ACT GGC AGT GGA TCA GGC ACA CAG TAT TCC CTC AAG ATC	225
AAC AGC CTG CAG TCT GAA GAT TTT GGG AGT TAT TAC TGT CAA CAT	270
TTT TGG GGT ACT CCG TGG ACG TTC GGT GGA GGC ACC AAG CTG GAA	315
ATC AAA CGG	324

【0089】配列番号：49

*トポロジー：直鎖状

配列の長さ：351

配列の種類：cDNA to mRNA

配列の型：核酸

起源 細胞の種類：マウスハイブリドーマ細胞CRA5

鎖の数：二本鎖

*

配列

CAG GTG AAG CTG CAG CAG TCT GGG GGA GGC TTA GTG CAG CCT GGA	45
GGG TCC CTG AAA CTC TCC TGT GCA ACC TCT GGA TTT ACT GAC TAT	90
TAC ATG TTT TGG GTT CGC CAG ACT CCA GAG AAG AAG CTG GAG TGG	135
GTC GCA TAC ATT AGT GAT GGT GAT ATT AGC ACC TAT TAT CCA GAC	180
ACT GTC AAG GGC CGA TTC ACC ATC TCC AGA GAC AAT GCC AAG AAC	225
ACC CTG TAC CTG CAA ATG AGC CGT CTG AAG TCT GAG GAC ACA GCC	270
ATG TAT TAC TGT GCA AGA GGA AAC TAT AGG TAC GGC TAT GCT GTG	315
GAC TAC TGG GGC CAA GGG ACC ACG GTC ACC GTC TCC TCA	354

【0090】配列番号：50

トポロジー：直鎖状

配列の長さ：327

配列の種類：cDNA to mRNA

配列の型：核酸

起源 細胞の種類：マウスハイブリドーマ細胞CRA5

鎖の数：二本鎖

配列

GAC ATC CAG ATG ACC CAG TCT CCA ACC ACC ATG GCT GCA TCT CCC	45
GGG GAG AAG ATC ACT ATC ACC TGC AGT GCC AGC TCA AGT ATA AGT	90
TCC AAT TAC TTG CAT TGG TAT CAG CAG AAG CCA GGA TTC TCC CCT	135
AAA CTC TTG ATT TAT AGG ACA TCC AAT CTG GCT TCT GGA GTC CCA	180
GCT CGC TTC AGT GGC AGT GGG TCT CGG ACC TCT TAC TCT CTC ACA	225
ATT GGC ACC ATG GAG GCT GAA GAT GTT GCC ACT TAC TAC TGC CAG	270
CAG GGT AGT AGT ATA CCA CTC ACG TTC GGT GCT GGG ACC AAG CTG	315
GAG CTG AAA CGG	327

フロントページの続き

(51) Int. Cl. 6	識別記号	序内整理番号	F I	技術表示箇所
C 1 2 N 15/02				
15/09	ZNA			
C 1 2 P 21/08		9161-4B		
G 0 1 N 33/53	D			
33/577	B			
// A 6 1 K 39/395	A B F			
(C 1 2 P 21/08				
C 1 2 R 1:91)				
	9281-4B	C 1 2 N 15/00	ZNA A	

(72)発明者 羅 智靖
千葉県千葉市花見川区花園2-14-13
(72)発明者 奥村 康
千葉県千葉市中央区松波1-14-9
(72)発明者 高井 敏朗
東京都大田区大森北2-13-1 アサヒビ
ール株式会社中央研究所内

(72)発明者 奥村 康
東京都大田区大森北2-13-1 アサヒビ
ール株式会社中央研究所内
(72)発明者 佐藤 恵士
千葉県千葉市緑区高田町396-24 シティ
一ハイムユートピア Y-102
(72)発明者 渋谷 一郎
千葉県柏市増尾字松山967番地 ニッカウ
キスキー株式会社生産技術研究所内