Background – Heterogeneous Data Integration

Schema Alignment

Align schemata of different sources and map to one another the attributes that have the same semantics

Entity Resolution

Data Fusion

Background – Heterogeneous Data Integration

Schema Alignment

Entity Resolution

Find across the data sources the matching records that represent the same entities

Data Fusion

Background – Heterogeneous Data Integration

Schema Alignment

Entity Resolution

Data Fusion

Merge the records that have been regarded as matching in the previous phase

Background – Query Reverse Engineering

Expert user of DB

Query
select *
from Student
where Name="John"

ID	Name	Age
1	John	19
2	John	37

Non-expert user of DB

Schema Mapping – State of the Art

	Departure	9				
Course 1	Client	Town				
Source 1	John Doe	Milan				
Customer		Ticket		Flight		
Source 2	Name	City of residence	Customer	Departure City	Pilot	Arrival City
	John Doe	Milan	John Doe	Milan	John Doe	Milan

Schema Mapping tools for DB Administrator:

- Require in-dept understanding of the semantics of multiple schemas
- Not suitable when a large number of sources has to be integrated

Interactive Schema Mapping tools for not-technical users:

- Require user interaction
- Prohibitive when the number of sources, or the number of attributes to be integrated is high
- Not suitable for discovering complex mappings

Schema Mapping with QRE

Schema Mapping with QRE

Film

Id	Title	Director	Studios
100	Titanic	James Cameron	<mark>London</mark>
200	Schindler's List	Steven Spielberg	<mark>London</mark>

Finance

Film	Revenue
100	2 mld
200	1.5 mld

select Director, Studios
from Film join Finance on Id=Film
where Revenue>=1.5mld

Crew

Name	Role	Birthplace	Birth_date	
James Cameron	Director	<mark>London</mark>	1954	
Steven Spielberg	Director	<mark>London</mark>	1946	

Movie

Title	Movie_Director	Year	Location	Box_Office
Titanic	James Cameron	1997	<mark>London</mark>	2 mld
Schindler's List	Steven Spielberg	1993	<mark>London</mark>	1.5 mld

select Name, Birthplace
from Crew
where Role='Director' & Birth_date<1955</pre>

select Movie_Director, Location
from Movie
where Box_office>=1.5mld and Year<1998</pre>

Next steps: test of the methodology on two datasets: movie dataset, museum dataset