MULTILEVEL-ANALYSE

18 juni 2024

Training O + S

Elmar Jansen (elmar@elmarjansen.nl)

VANDAAG

- 1. Terugblik
- 2. Geneste Data
- 3. Fixed Effects Model (met dummies)
- 4. Multilevel: Random Intercept Model
- 5. Multilevel: Random Slope Model

DE KOMENDE WEKEN

Bijeenkomst	Onderwerp
Dinsdag 14 mei	Lineaire regressie: de basis
Dinsdag 21 mei	Lineaire regressie vervolg: assumpties en controleren
Donderdag 30 mei	Interacties en dummy-variabelen
Dinsdag 4 juni	Logistische Regressie
Dinsdag 11 juni	Multilevel-analyse

TERUGBLIK

LINEAIRE REGRESSIE

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \varepsilon_i$$

8 GEVAREN VAN REGRESSIE

CONTROLEREN

Door onafhankelijke variabele X_2 toe te voegen aan het model krijgen we het effect van X_1 constant houdend voor X_2 (en viceversa)

DUMMY-VARIABELE

Dichotome variabele met waarden 0 en 1 als onafhankelijke variabele

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

CATEGORIALE ONAFHANKELIJKE VARIABELEN

Categorie A

Categorie B

Categorie C

$$CatB_i = 0$$

 $CatC_i = 0$

$$CatB_i = 1$$

 $CatC_i = 0$

$$CatB_i = 0$$

 $CatC_i = 1$

INTERACTIE-EFFECT

Een effect

van een variabele

op het effect van

een andere variabele

INTERACTIE-EFFECT IN REGRESSIE

Voeg ook altijd het "main"-effect van beide variabelen toe! De interactie is de vermenigvuldiging tussen beide variabelen
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + \varepsilon_i$$

Als je herschikt, zie je dat het effect van X1 nu afhankelijk is van X2:

$$Y_i = eta_0 + eta_1 X_{1i} + arepsilon_i$$
 $Y_i = (eta_0 + eta_2 X_{2i}) + (eta_1 + eta_3 X_{2i}) X_{1i} + arepsilon_i$

Effect van X1 wordt nu zelf beïnvloed door X2

LOGISTISCH REGRESSIE: DUMMY ALS AFHANKELIJKE VARIABELE

INTERPRETEREN: MANIEREN

1. effect op de logged odds:

$$\ln \frac{P_i}{1 - P_i} = \beta_0 + \beta_1 X_i$$

2. effect op de odds:

$$\frac{P_i}{1 - P_i} = e^{\beta_0 + \beta_1 X_i}$$

3. effect op de voorspelde kansen:

$$P_{i} = \frac{e^{\beta_{0} + \beta_{1} X_{i}}}{1 + e^{\beta_{0} + \beta_{1} X_{i}}}$$

GENESTE DATA

WAT IS GENESTE DATA?

Hiërarchisch gestructureerde data

Met andere woorden observaties zijn gegroepeerd in clusters

- Respondenten binnen landen

- Respondenten binnen landen
- Politici binnen partijen

- Respondenten binnen landen
- Politici binnen partijen
- Respondenten binnen enquête-rondes

Surve
y
wave
1965
Surve
y
wave
1975
Surve
y
1985

- Respondenten binnen landen
- Politici binnen partijen
- Respondenten binnen enquête-rondes
- Leerlingen in klassen, klassen in scholen, scholen in buurten, buurten in steden, steden in landen, etc.

- Respondenten binnen landen
- Politici binnen partijen
- Respondenten binnen enquête-rondes
- Leerlingen in klassen, klassen in scholen, scholen in buurten, buurten in steden, steden in landen, etc.
- Individuen in huishoudens

- Respondenten binnen landen
- Politici binnen partijen
- Respondenten binnen enquête-rondes
- Leerlingen in klassen, klassen in scholen, scholen in buurten, buurten in steden, steden in landen, etc.
- Individuen in huishoudens
- Herhaalde metingen binnen respondenten (panel data, experimentele data etc.)

https://elmarjansen.nl/os

OEFENING 1

Geneste data:

in 40 straten

steeds 5 mensen ondervraagd

naar gevoel van veiligheid

Onderzoek: effect van **leeftijd** op **gevoel van veiligheid op straat**

GENESTE DATA ALS PROBLEEM

Waarom clustering lastig is

HET PROBLEEM VAN GENESTE DATA...

Afhankelijk van de mate van correlatie binnen de clusters, is dit valsspelen:

je krijgt **te lage standaardfouten**, door de N kunstmatig hoog te maken en dus zijn je gevonden effecten te snel significant

- vooral een probleem als clustering voortkomt uit je onderzoeksontwerp / je manier van dataverzameling
- extra problematisch als clusters niet allemaal even groot zijn

LEERLINGEN UIT DRIE KLASSEN

GEMIDDELDEN VAN DRIE KLASSEN

LEERLINGEN UIT DRIE KLASSEN

8 GEVAREN VAN REGRESSIE

NIET ONAFHANKELIJKE RESIDUEN

Residu van de ene observatie mag geen informatie geven over het residu van een andere observatie

Anders gezegd: een stel observaties mag niet, door de manier waarop de steekproef is getrokken, meer op elkaar lijken dan andere observaties

WAAROM IS DAT EEN PROBLEEM?

Geen willekeurige steekproef meer

als observaties binnen een cluster meer op elkaar lijken...

brengt een nieuwe observatie geen volledig nieuwe informatie meer

GEVAAR 6 NIET-ONAFHANKELIJKE RESIDUEN

De gegevens moeten uit een echte aselecte steekproef komen

Alle observaties moeten dus onafhankelijk van elkaar zijn

Technische definitie: het residu van de ene observatie mag nooit al iets prijsgeven over het residu van een andere variabele

Gevaar

Onjuiste (te lage) standaard-fouten: onderschatting van onzekerheid

Opsporen van problemen

Nadenken! Geen statistische manier om achter te komen

Oplossingen? Niet met normale (OLS) -regressie

Andere methoden.

- Tijd-series
- Multilevel-analyse
- Paired samples T-test
- Dummies voor groepen ("Fixed effects model")

OPLOSSEN MET DUMMIES

Fixed Effects-model

FIXED EFFECTS MODEL

- > Oplossing: voeg dummies toe voor alle clusters
 - > Je controleert zo voor je clusters
 - Met andere woorden: je bestudeert het effect "constant houdend voor" de clusters
 - Variatie tussen de clusters wordt op deze manier helemaal niet meer meegenomen

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \beta_2 cluster 1_j + \beta_3 cluster 2_j + \dots + \varepsilon_{ij}$$

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \sum_{k=1}^K \gamma_k cluster_{kj} + \varepsilon_{ij}$$
 is indicated in the proof of t

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \gamma_j + \varepsilon_{ij}$$

i is individuele observatie j is cluster <u>K is aa</u>ntal clusters

LEERLINGEN UIT DRIE KLASSEN

https://elmarjansen.nl/os

OEFENING 2

Geneste data:

in 40 straten

steeds 5 mensen ondervraagd

naar gevoel van veiligheid

Onderzoek: effect van leeftijd op gevoel van veiligheid op straat Met dummy-controle voor straat

FIXED EFFECTS ALS BOTTE (MAAR EFFECTIEVE) BIJL

Voordelen

- Heel veilige (conservatieve) aanpak: alle variatie tussen clusters weg-gecontroleerd
- ➤ Is **eenvoudig** model: kan met "gewone" OLS-regressie door dummies toe te voegen
- Op zijn best bij klein aantal clusters of wanneer clusters "bekende" categorieën zijn

Nadelen

- Aanpak kost veel power
 - je gebruikt groot deel van de informatie niet: alle variatie tussen clusters wordt weggezogen door dummies
 - door al die controlevariabelen neemt de onzekerheid toe
 - > standaardfouten worden dus groter
- Weinig effectief als clusters klein zijn
- > Je kunt niets meer modelleren of verklaren op het hogere-niveau

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \gamma_j + \varepsilon_{ij}$$

OPLOSSEN MET RANDOM EFFECTS

Mixed-effects-model (oftewel: multilevel-analyse)

RANDOM / MIXED EFFECTS MODEL ("MULTILEVEL")

- Oplossing: voeg een residu toe op het niveau van de clusters
 - We zien nu de clusters ook als een willekeurige steekproef
 - We laten het model niet alle cluster-afwijkingen schatten met dummies, maar we schatten in het algemeen de variatie tussen clusters
 - Deze variatie tussen clusters kunnen we eventueel verder verklaren met onafhankelijke variabelen

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + u_j + \varepsilon_{ij}$$

i is individuele observatie j is cluster

LEERLING-VERGELIJKING

KLAS-VERGELIJKINGEN

$$score_{ij} = \beta_{0j} + \beta_{1j}tijd_{ij} + \varepsilon_{ij}$$

algemene intercept voor alle klassen

afwijking (residu) van class j tov. algemene intercept

$$\beta_{0j} = \gamma_{00} + u_{0j}$$

Intercept in klas j

$$\beta_{1j} = |\gamma_{10}|$$

effect is gelijk in alle klassen

Effect van oefentijd in klas j

GECOMBINEERDE VERGELIJKING

$$score_{ij} = \beta_{0j} + \beta_{1j}tijd_{ij} + \varepsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + u_{0j}$$

$$\beta_{1j} = \gamma_{10}$$

$$score_{ij} = \gamma_{00} + \gamma_{10}tijd_{ij} + u_{0j} + \varepsilon_{ij}$$

GECOMBINEERDE VERGELIJKING

RANDOM INTERCEPT-MODEL

IN R EN SPSS

In R met Ime4 package

 er zijn nog talloze andere packages voor multilevel / mixed effects, maar deze is het eenvoudigst en meest gebruikt

In SPSS met "Mixed Models"

is even beetje wennen aan het schermpje :)

Geschat worden:

- de *waardes* van γ_{00} en γ_{10}
- de *variantie* (of s.d.) van u_{0j} en ε_{ij}

$$score_{ij} = \gamma_{00} + \gamma_{10}tijd_{ij} + u_{0j} + \varepsilon_{ij}$$

https://elmarjansen.nl/os

OEFENING 3

Geneste data:

in 40 straten

steeds 5 mensen ondervraagd

naar gevoel van veiligheid

Onderzoek: effect van leeftijd op gevoel van veiligheid op straat Met random intercept voor straat

MULTILEVEL EFFECTS ALS SUBTIELERE (EN GEVOELIGERE) OPLOSSING

Voordelen

- Kost weinig power: er wordt maar één parameter geschat (de variatie van u_{ii})
- Is veelzijdig: je kunt nog steeds verklarende variabelen op alle niveaus meenemen
- Op zijn best bij groot aantal kleine clusters
- Modelleert ook de onzekerheid doordat clusters ook "maar" een steekproef zijn

Nadelen

- Ongeschikt bij klein aantal clusters (N < 10)</p>
- Aanname: clusters zijn willekeurige steekproef
- Vereist complexere modellen dan OLS (die vaak ook technische problemen geven bij het schatten)

$$y_{ij} = \gamma_{00} + \gamma_{10} x_{ij} + u_{0j} + \varepsilon_{ij}$$

RANDOM SLOPE TOEVOEGEN

Mixed-effects-model (oftewel: multilevel-analyse)

RANDOM / MIXED EFFECTS MODEL ("MULTILEVEL")

We kunnen nu ook de helling (slope) laten variëren tussen clusters

LEERLING-VERGELIJKING

KLAS-VERGELIJKINGEN

$$score_{ij} = \beta_{0j} + \beta_{1j}tijd_{ij} + \varepsilon_{ij}$$

algemene intercept voor alle klassen

afwijking (residu) van klas j tov. algemene intercept

$$\beta_{0j} = \gamma_{00} + u_{0j}$$

Intercept in klas j

$$\beta_{1j} = \gamma_{10} + u_{0j}$$

Effect van oefentijd in klas j

algemeen effect van oefentijd

afwijking (residu) van effect van oefentijd in klas j

GECOMBINEERDE VERGELIJKING

$$score_{ij} = \beta_{0j} + \beta_{1j}tijd_{ij} + \varepsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + u_{0j}$$

$$\beta_{1j} = \gamma_{10} + u_{1j}$$

$$score_{ij} = \gamma_{00} + \gamma_{10}tijd_{ij} + u_{0j} + u_{1j}tijd_{ij} + \varepsilon_{ij}$$

RANDOM INTERCEPT-MODEL

https://elmarjansen.nl/os

OEFENING 4

Geneste data:

in **40 straten** steeds **5 mensen ondervraagd** naar gevoel van veiligheid

Onderzoek: effect van **leeftijd** op **gevoel van veiligheid op straat**

Met random intercept en slope voor straat

DANK JULLIE WEL!!

MULTILEVEL-ANALYSE

18 juni 2024

Training O + S

Elmar Jansen (elmar@elmarjansen.nl)