Sistemas Operativos 1 Procesos

Edwin Salvador

15 de octubre de 2015

Sesión 3

¿En que consiste la buena educación?

Esto debe detenerse!!

- Conceptos básicos
- 2 Núcleo del Sistema operativo
 - Tipos
- 3 El intérprete de comandos
- 4 Características de un proceso
 - El bloque de control de proceso
 - Traza de un proceso
- Ejecución de instrucciones
 - Interrupciones
 - Trap
 - Las llamadas al sistema

Elementos de un SO

Procesos

Definición

Un proceso para un SO en un conjunto de **instrucciones** que atraviesa dinámicamente un conjunto de **estados** y le solicita al sistema los **recursos** que le son necesarios para funcionar.

- Son los programas en ejecución de cualquier SO.
- Una acción u orden específica le indica al SO que debe empezar a ejecutar un programa.
- Un proceso tiene períodos de ejecución activa y de espera.
- ¿Por qué debe esperar un proceso generalmente? por la terminación de actividades de E/S.
- Cuando un proceso está inactivo o en espera, el SO puede planificar la ejecución de otros procesos.

Procesos

- Un proceso puede ser asignado y ejecutado por el procesador, pero el SO será quien controle su evolución y registrará los cambios que se produzcan en estos.
- Cada proceso dispone de atributos como: estado actual, unidad de planificación, derechos de acceso, prioridad, etc.
- El SO planifica y gestiona los procesos para conseguir que su utilización sea lo más óptima posible.
- Tenemos varios tipos de procesos y los podemos clasificar en: procesos de usuario y procesos de sistema.
- Procesos de usuario aquel creado por el sistema operativo como respuesta a una acción del usuario o de una aplicación ejecutada por este.
- Procesos de sistema forman parte del propio SO y desempeña alguna de sus características. Ej. la elección del siguiente proceso a ejecutar o bien acceder a un recurso de E/S.

Requisitos mínimos de un SO

- Todos los SO actuales están basados en procesos.
- Un SO debe cumplir algunos requisitos mínimos para trabajar con procesos:
 - debe ser capaz de intercalar la ejecución de procesos (mayor utilización de CPU mejor tiempo de respuesta)
 - debe asignar los recursos disponibles a los procesos de manera óptima (evitar interbloqueos).
 - debe dar soporte a la comunicación entre procesos y ofrecer mecanismos para su creación.

Proceso vs Programa

Programa	Proceso		
Estático.	Dinámico.		
No tiene contador de programa.	Tiene un contador de programa.		
Existe desde que se instala hasta que se borra.	Su ciclo de vida comprende desde que se activa hasta que termina.		

Un proceso se puede considerar como una instancia de un programa. Un programa puede estar compuesto de varios procesos.

- Conceptos básicos
- 2 Núcleo del Sistema operativo
 - Tipos
- 3 El intérprete de comandos
- Características de un proceso
 - El bloque de control de proceso
 - Traza de un proceso
- Ejecución de instrucciones
 - Interrupciones
 - Trap
 - Las llamadas al sistema

Núcleo del Sistema operativo

- Conocido como kernel.
- Su función principal es interactuar directamente con el hardware para gestionar el procesador, la memoria, la E/S y el resto de recursos disponibles.
- Controla todas las operaciones de los procesos.
- Generalmente, es solo una pequeña parte del SO pero es la más utilizada.
- Son diseñados para realizar el mínimo posible de procesamiento en cada interrupción y dejar que el resto lo realice proceso apropiado, de esta manera el núcleo queda libre para realizar otras operaciones.

Funciones del núcleo

- Gestionar la memoria
- Administrar el sistema de archivos
- Asignar recursos entre los procesos de usuarios
- Administrar los servicios de E/S
- Cambiar el estado de procesos
- Apoyar ciertas funciones de contabilidad del sistema.

Capas de un núcleo

- **Nivel 1. Gestión de memoria:** proporciona facilidades a bajo nivel para la gestión de memoria secundaria para ejecutar procesos.
- Nivel 2. Procesos: activa los contadores de tiempo para cada uno de los procesos, creando interrupciones de hardware cuando no son respetadas.
- Nivel 3. E/S: proporciona las facilidades para poder utilizar dispositivos E/S requeridos por los procesos.
- Nivel 4. Información, aplicación o interprete de lenguajes: facilita la comunicación con los lenguajes y el SO para aceptar las órdenes en cada una de las aplicaciones.
- Nivel 5. Control de archivos: proporciona la facilidad para el almacenamiento a largo plazo y la manipulación de archivos con nombre. Asigna espacio y acceso de datos en la memoria.

- Conceptos básicos
- 2 Núcleo del Sistema operativo
 - Tipos
- 3 El intérprete de comandos
- 4 Características de un proceso
 - El bloque de control de proceso
 - Traza de un proceso
- Ejecución de instrucciones
 - Interrupciones
 - Trap
 - Las llamadas al sistema

Monolíticos

- Abarcan todos los servicios del sistema (sistema de archivos, controladores de dispositivos, redes, planificación, gestión de memoria, etc).
- Ej: Unix, Linux

Micronúcleos (microkernel)

- Rendimiento inferior al del monolítico.
- Menos complejos.
- Descentralización de fallos.
- Facilidad de crear y depurar controladores de dispositivos.
- Proporcionan conjunto mínimo de llamadas para implementar servicios básicos (planificación, comunicación de procesos, etc)
- Los demás procesos se ejecutan como procesos de servidores en espacio de usuario.

Micronúcleo Kernel TPC Servers Software

Híbridos

- Basados en los micronúcleos.
- Incluyen código adicional en el espacio del núcleo para que su ejecución sea más rápida que si estuviera en espacio de usuario.
- La mayoría de SO actuales como Windows o Mac OS X tienen este tipo de núcleos.

Exonúcleos

• Permiten el uso de bibliotecas lo que incrementa su funcionalidad al tener acceso casi directo al hardware.

- Conceptos básicos
- 2 Núcleo del Sistema operativo
 - Tipos
- 3 El intérprete de comandos
- 4 Características de un proceso
 - El bloque de control de proceso
 - Traza de un proceso
- Ejecución de instrucciones
 - Interrupciones
 - Trap
 - Las llamadas al sistema

El intérprete de comandos

- Conocido como shell .
- Un programa que interpreta las órdenes del usuario y las convierte en llamadas al sistema.
- No es parte del SO.
- Es fundamental para el funcionamiento del SO ya que este lo utiliza para ejecutar órdenes básicas para el manejo.

Ejemplos de shell

- **Command.com** de MS-DOS, Win 95/98/Me. Puede ejecutarse en modo interactivo o por lotes (secuencia de comandos).
- cmd.exe Evolución del Command.com. XP, Server 2003, Vista, 7, 8 y ¿10?).
- Bash Por defecto de la mayoría de distribuciones Linux. Consiste en un intérprete de órdenes de Unix escrito para el proyecto GNU.
- Ksh korn shell de Unix. Interpreta órdenes por línea. En algunas distribuciones de GNU/Linux. Bajo licencia GPL.
- Bourne Shell usado en primeras versiones Unix.

Ejemplo del uso de Shell

- En Windows
- En Ubuntu

- Conceptos básicos
- 2 Núcleo del Sistema operativo
 - Tipos
- 3 El intérprete de comandos
- Características de un proceso
 - El bloque de control de proceso
 - Traza de un proceso
- Ejecución de instrucciones
 - Interrupciones
 - Trap
 - Las llamadas al sistema

Elementos que caracterizan a un proceso

Un proceso tiene algunos elementos que lo caracterizan:

- Identificador: un identificador único asociado al proceso para distinguirlo del resto.
- Estado: Puede estar en diferentes estados. Si está actualmente corriendo entonces será en ejecución. Veremos los posibles estados más adelante.
- **Prioridad**: Una prioridad relativa al resto de procesos para determinar cuando debe ser ejecutado.
- Contador de programa (PC): Indica la dirección de la siguiente instrucción que debe ejecutarse.
- Punteros a memoria: Los punteros al código de programa y los datos asociados al proceso además de los bloques de memoria compartidos con otros procesos.

Elementos que caracterizan a un proceso

- Datos de contexto: los datos presentes en los registros del procesador cuando el proceso está corriendo.
- Información de estado de E/S: incluye los dispositivos E/S asignados al proceso, las peticiones de E/S pendientes, lista de ficheros en uso por el proceso, etc.
- Información de auditoría: la cantidad de tiempo de procesador y tiempo de reloj utilizados por el proceso.

- Conceptos básicos
- Núcleo del Sistema operativo
 - Tipos
- 3 El intérprete de comandos
- 4 Características de un proceso
 - El bloque de control de proceso
 - Traza de un proceso
- 5 Ejecución de instrucciones
 - Interrupciones
 - Trap
 - Las llamadas al sistema

El Bloque de control de proceso (BCP)

- Todos los elementos de la lista anterior son almacenados en una estructura de datos llamada bloque de control de proceso (BCP).
- El BCP es creado y gestionado por el SO y contiene información suficiente para que el proceso pueda ser interrumpido y luego se lo pueda restaurar como si no hubiera existido ninguna interrupción.
- Es gracias al BCP que el SO puede soportar la multiprogramación.
- En un computador monoprocesador solo un proceso puede estar en estado en ejecución en un instante determinado.

- Conceptos básicos
- Núcleo del Sistema operativo
 - Tipos
- 3 El intérprete de comandos
- Características de un proceso
 - El bloque de control de proceso
 - Traza de un proceso
- 5 Ejecución de instrucciones
 - Interrupciones
 - Trap
 - Las llamadas al sistema

Trazas

- Se puede caracterizar el comportamiento de un proceso, listando su secuencia de instrucciones ejecutadas. A esta lista se la conoce como traza del proceso.
- Se puede observar el comportamiento de un procesador mostrando como las trazas de varios procesos se entrelazan.

Ilustración de trazas y trazas combinadas

5000	8000	12000
5001	8001	12001
5002	8002	12002
5003	8003	12003
5004		12004
5005		12005
5006		12006
5007		12007
5008		12008
5009		12009
5010		12010
5011		12011
(a) Traza del Proceso A	(b) Traza del Proceso B	(c) Traza del Proceso C

5000 = Dirección de comienzo del programa del Proceso A.

8000 = Dirección de comienzo del programa del Proceso B.

12000 = Dirección de comienzo del programa del Proceso C.

Activador: Intercambia el procesador de un proceso a otro.

Contador de programa: indica la dirección de la siguiente instrucción a ejecutar.

Ilustración de trazas y trazas combinadas

1	5000	27	12004	
2	5001	28	12005	
3	5002			Temporización
4	5003	29	100	
5	5004	30	101	
6	5005	31	102	
	Temporización		103	
7	100	33	104	
8	101	34	105	
9	102	35	5006	
10	103	36	5007	
11	104	37	5008	
12	105	38	5009	
13	8000	39	5010	
14	8001	40	5011	
15	8002			— Temporización
16	8003	41	100	
	Petición de E/S	42	101	
17	100	43	102	
18	101	44	103	
19	102	45	104	
20	103	46	105	
21	104	47	12006	
22	105	48	12007	
23	12000	49	12008	
24	12001	50	12009	
25	12002	51	12010	
26	12003	52	12011	
				— Temporización

^{100 =} Dirección de comienzo del programa activador.

Las zonas sombreadas indican la ejecución del proceso de activación;

la primera y la tercera columna cuentan ciclos de instrucciones;

la segunda y la cuarta columna las direcciones de las instrucciones que se ejecutan

- Conceptos básicos
- 2 Núcleo del Sistema operativo
 - Tipos
- 3 El intérprete de comandos
- 4 Características de un proceso
 - El bloque de control de proceso
 - Traza de un proceso
- 5 Ejecución de instrucciones
 - Interrupciones
 - Trap
 - Las llamadas al sistema

Ejecución de instrucciones

Ciclos de instrucción

- El procesamiento de una instrucción se denomina ciclo de instrucción
- Este consta de dos etapas: ciclo de captación y ciclo de ejecución.
- La ejecución de un programa solo se detiene si la máquina se desconecta, se produce algún error irrecuperable o ejecuta una instrucción del programa que lo detiene.

Ejecución de instrucciones

- El procesador capta la instrucción y el contador de programa (PC) aumenta secuencialmente. (instrucción en posición 300 seguirá 301, 302)
- La instrucción captada se almacena en el registro de instrucción (IR).
- El procesador interpreta instrucción y puede llevar a cabo una o varias de las siguientes acciones:
 - Procesador-memoria datos desde procesador a memoria o viceversa.
 - **Procesador-E/S** datos desde E/S o viceversa.
 - Procesamiento de datos operaciones aritméticas o lógicas.
 - Control Controla las alteraciones en las secuencias de ejecución de instrucciones.

- Conceptos básicos
- Núcleo del Sistema operativo
 - Tipos
- 3 El intérprete de comandos
- 4 Características de un proceso
 - El bloque de control de proceso
 - Traza de un proceso
- 5 Ejecución de instrucciones
 - Interrupciones
 - Trap
 - Las llamadas al sistema

Interrupciones

- Mecanismo que permite interrumpir la secuencia normal de procesamiento de la CPU ante condiciones particulares.
- Mejoran el eficiencia del procesador.
- Permiten al procesador ejecutar otras instrucciones mientras otra operación con un dispositivo más lento está en curso.
- Ejemplo: Los dispositivos de E/S son más lentos por lo tanto el procesador tendría que esperar hasta que el dispositivo de E/S (impresora) complete su operación de escritura. Lo cual podría tomar miles de ciclos de instrucción que sería un derroche del uso del procesador.
- El procesador y el SO son los encargados de detener el programa de usuario y después permitir que siga en el mismo punto.

Interrupciones

- Conceptos básicos
- Núcleo del Sistema operativo
 - Tipos
- 3 El intérprete de comandos
- 4 Características de un proceso
 - El bloque de control de proceso
 - Traza de un proceso
- 5 Ejecución de instrucciones
 - Interrupciones
 - Trap
 - Las llamadas al sistema

Trap

 Similar a una interrupción pero asociada a la ejecución de la instrucción actual (condición de error o excepción, operación que implica una llamada de E/S como abrir un archivo).

- Conceptos básicos
- Núcleo del Sistema operativo
 - Tipos
- 3 El intérprete de comandos
- 4 Características de un proceso
 - El bloque de control de proceso
 - Traza de un proceso
- 5 Ejecución de instrucciones
 - Interrupciones
 - Trap
 - Las llamadas al sistema

Las llamadas al sistema

Definición

Las llamadas al sistema constituyen la interfaz entre el sistema operativo y los procesos.

- Los programas utilizan las llamadas del sistema para solicitar servicios del SO.
- A cada llamada del sistema le corresponde un procedimiento de la biblioteca que puede llamar a los programas del usuario.
- Se la hace por medio de lenguajes ensambladores, aunque en algunos casos existen facilidades que permiten que se realicen desde lenguajes de alto nivel.

Llamadas al sistema

- Se las realiza por medio de instrucciones de máquina *Trap*.
- Se guarda el contador de programa y la palabra estado del procesador (PSW).
- Se carga un nuevo contador de programa y una nueva PSW.
- El nuevo contador de programa contiene una dirección de memoria donde reside un programa de SO que ejecuta el servicio solicitado.
- Al finalizar el servicio se indica si hubo éxito o fracaso y se ejecuta una instrucción *return from trap*.
- Se restaura el contador de programa y la PSW original y continúa la ejecución.
- Las llamadas al sistema se ejecutar de manera similar en distintos SO.

Categorías de llamadas al sistema

- Control de procesos finalizar, abortar, cargar, ejecutar, crear, terminar, establecer y obtener atributos del proceso, esperar un tiempo, señalar y esperar evento, asignar y liberar memoria.
- Manipulación de archivos crear, eliminar, abrir, cerrar, leer, escribir, reposicionar, obtener y establecer atributos de archivo.
- Manipulación de dispositivos solicitar, liberar, leer, escribir, reposicionar, obtener y establecer atributos del dispositivo.
- Mantenimiento de información obtener fecha y hora, datos del sistema y atributos.
- **Comunicaciones** crear, eliminar conexión de comunicación, enviar y recibir mensajes, transferir información de estado, etc.

Llamadas al sistema para gestión de archivos

- Muchas de las llamadas al sistema tienen relación con el sistema de archivos.
- Al abrir un archivo se genera una llamada: O_RDONLY, O_WRONLY, O_RDWR.
- Las más utilizadas son read y write.
- O_CREAT para crear un archivo.
- close cerrar archivo.
- La mayoría de programas leen y escriben en forma secuencial. Pero la llamada Lseek modifica el valor del apuntador y permite que las llamadas read o write lean o escriban en cualquier punto del archivo.