ERL Mode of S-DALINAC: Design and Status*

M. Arnold, C. Burandt, C. Eschelbach¹, T. Kürzeder², M. Lösler¹, J. Pforr, N. Pietralla

- ¹ Labor für Industrielle Messtechnik, Frankfurt University of Applied Sciences
- ² Helmholtz-Institut Mainz

*Work supported by DFG through RTG 2128, INST163/383-1/FUGG and INST163/384-1/FUGG

Content

- Overview S-DALINAC
- Design of third recirculation / ERL
- Status of commissioning

S-DALINAC - Old

TECHNISCHE UNIVERSITÄT DARMSTADT

Superconducting-Darmstadt-Linear-Accelerator

- Built in the 1980s
- First beam in 1987
- 1991 first recirculated beam

<u>General parameters:</u>

Modus: cw-operation

Operating frequency: 3 GHz

S-DALINAC - New

TECHNISCHE UNIVERSITÄT DARMSTADT

Superconducting-**Da**rmstadt-**Lin**ear-**Ac**celerator

Thrice recirculating operation

Energy gain injector: 7.6 MeV

Energy gain LINAC: 30.4 MeV

Beam current: approx. 20 μA

S-DALINAC as ERL

S-DALINAC as ERL

S-DALINAC as ERL

Design of Third Recirculation / ERL

Field quality in "good field region" (GFR)

- Deflecting properties
- Homogeneity of field (transversal, longitudinal) $\leq 1 \cdot 10^{-3}$
- Multipole components $\leq 1 \cdot 10^{-3}$

Field quality in "good field region" (GFR)

- Deflecting properties
- Homogeneity of field (transversal, longitudinal) $\leq 1 \cdot 10^{-3}$
- Multipole components $\leq 1 \cdot 10^{-3}$

Additionally

Spacial limitation

Field quality in "good field region" (GFR)

- Deflecting properties
- Homogeneity of field (transversal, longitudinal) $\leq 1 \cdot 10^{-3}$
- Multipole components $\leq 1 \cdot 10^{-3}$

Additionally

- Spacial limitation
- Energy ratio fixed

Field quality in "good field region" (GFR)

- Deflecting properties
- Homogeneity of field (transversal, longitudinal) $\leq 1 \cdot 10^{-3}$
- Multipole components $\leq 1 \cdot 10^{-3}$

Additionally

- Spacial limitation
- Energy ratio fixed
- Existing beam lines

→ Fixation of one recirculation beam line possible

Field quality in "good field region" (GFR)

- Deflecting properties
- Homogeneity of field (transversal, longitudinal) $\leq 1 \cdot 10^{-3}$
- Multipole components $\leq 1 \cdot 10^{-3}$

Additionally

- Spacial limitation
- Energy ratio fixed
- Existing beam lines
- ERL exit

- → Fixation of one recirculation beam line possible
- → Beam dynamics simulations F, S, T, E

Final Design

 B_{Design} : 0.65 T at 130 MeV

Mirror plates as key elements

Pole gap: 30 mm

C yoke

Beam Dynamics

Recirculation S

- Horizontal (x) in mm
- Vertical(y) in mm

- Dipole magnet
- Quadrupole magnet

Beam Dynamics

Recirculation S

Quadrupole magnet

Dipole magnet

 Twice recirculating ERL under investigation

 Twice recirculating ERL under investigation

Simulation by J. Pforr

Simulation by J. Pforr

- Exchange of transversal phase space to increase BBU limit
- Five skew quadrupole magnets

150

- Exchange of transversal phase space to increase BBU limit
- Five skew quadrupole magnets

Simulation by J. Pforr

R13

R14 in m/rad

Installation

Precision Achieved

Position in mm (1D-Residues)			
Туре	Horizontal (x)	Vertical (y)	Beam Axis (z)
Dipole	0.27 ± 0.12	0.20 ± 0.14	0.17 ± 0.13
Quadrupole Typ 1	0.27 ± 0.11	0.19 ± 0.12	0.23 ± 0.18
Quadrupole Typ 2	0.32 ± 0.16	0.21 ± 0.17	0.28 ± 0.23
Sextupole	0.33 ± 0.18	0.29 ± 0.22	0.15 ± 0.11

Precision of measurement-method, no target position used and thus no residues to it

Туре	Tilt in ° around x and z
Dipole	0.020 ± 0.019
Quadrupole Typ 1 und 2	0.057 ± 0.051
Sextupole	0.104 ± 0.084

Pathlength Adjustment System

Adjusting the phase of the beam re-entering the main LINAC

Pathlength Adjustment System

- Adjusting the phase of the beam re-entering the main LINAC
- Existing systems in old recirculation beam lines
 - Stroke F measured: 33.76 mm
 - Stroke T measured: 30.62 mm

Pathlength Adjustment System

- Adjusting the phase of the beam re-entering the main LINAC
- Existing systems in old recirculation beam lines
 - Stroke F measured: 33.76 mm
 - Stroke T measured: 30.62 mm
- New systems are capable of full RF wavelength adjustment
 - Stroke measured: (50.21 + 50.57) mm = 100.78 mm

Status of Commissioning

Success 1

- Powering of separation dipole → deflection of beam at gun
- Unexpected Helium compressor maintenance
- ~ 9 weeks

Success 1

Challenge 1

completed

Challenge 2

- Leak in LN₂ shielding of cryostat
- \sim 4 weeks

Transmission of ~35 %

beam line and twice through
main LINAC! (May 2017)

~ 6 weeks (estimation)

Commissioning continues beginning of July 2017

Take Home Massage

- Magnet design separation dipole was challenging
- Beam dynamics for lattice and different modes calculated
- Installation of beam line finished
- Alignment of lattice conducted
- Functionality of pathlength adjustment systems proven
- Challenges and successes during commissioning experienced

Thanks a lot for your attention!

Thanks to...

- ... the whole accelerator group and both workshops!
- ... Florian Hug (KPH Mainz) for his great support!
- ... Ulrich Römer (TEMF) for helping with the design of the separation dipole!
- ... Cornelia Eschelbach and Michael Lösler (FH FFM) for their help with the alignment!
- ... Philipp Winkemann (FH FFM) for his work with the laserscanner!

