

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen VI

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Rafael Ortega Ríos.

Descripción Convocatoria Ordinaria

Fecha 10 de enero de 2024.

Ejercicio 1. Resuelve el problema de valores iniciales siguiente, indicando si la solución está definida en todo \mathbb{R} :

$$x' = -\frac{x}{x+t}, \quad x(0) = -1.$$

Ejercicio 2. Se considera la transformación

$$\varphi: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2$$
$$(t,x) \quad \longmapsto \quad (s,y) = (-2e^x, e^{-3t})$$

Determina $\Omega = \varphi(\mathbb{R}^2)$ y prueba que φ define un difeomorfismo entre \mathbb{R}^2 y Ω . Se considera la ecuación diferencial

$$x' = f(t, x)$$

con $f: \mathbb{R}^2 \to \mathbb{R}$ continua. ¿Bajo qué condiciones sobre f se puede asegurar que el difeomorfismo es admisible para esta ecuación? Encuentra la ecuación transportada al dominio Ω .

Ejercicio 3. Se considera la ecuación

$$x'' + a(t)x = 0$$

donde $a:I\to\mathbb{R}$ es una función continua en un intervalo abierto I. Se supone que φ es una solución que cumple

$$\varphi(t) > 0 \quad \forall t \in I.$$

1. Demuestra que existe una única función $\psi: I \to \mathbb{R}$ que cumple

$$W(\varphi, \psi)(t) = 7, \quad t \in I, \quad \psi(0) = 0.$$

2. Demuestra que la pareja φ, ψ forma un sistema fundamental de la ecuación de partida.

Ejercicio 4. Responda a las siguientes cuestiones:

1. Calcula e^A para la matriz

$$A = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix},$$

con $a, b, c \in \mathbb{R}$.

2. Encuentra una matriz fundamental del sistema

$$x'_1 = x_1 + ax_2 + bx_3,$$

 $x'_2 = x_2 + cx_3,$
 $x'_3 = x_3.$