

Basics of Computer Graphics: Exercise Set 1

Goal: The aim of this exercise is to implement an animation of Sun, Earth and Moon.

Task 1 Implement the following two auxiliary methods

(1) $p_{\text{new}} = \text{rotate_around_point}(p_{\text{old}}, a, b, \phi)$

Input:

- a point p_{old} represented via homogeneous coordinates
- numbers a, b and an angle ϕ (in radians)

Output: homogeneous coordinates of the point obtained by rotating p_{old} around the point (a; b) by ϕ

Test cases:

- rotate_around_point([2;5;1], 6, 9, pi/2) gives [10;5;1]
- rotate_around_point([-2;8;1], 5, 7, pi) gives [12; 6; 1]
- (2) $[p1_{\text{new}}, p2_{\text{new}}, p3_{\text{new}}, p4_{\text{new}}] = \text{rotate_tuple}(p1_{\text{old}}, p2_{\text{old}}, p3_{\text{old}}, p4_{\text{old}}, a, b, \phi),$ which applies the rotation described in (1) to each of the 4 input-points separately.

Task 2 Complete the program earth_sun1 (which can be found via Material/Part2 - Computer Graphics/Code on olat) to run an animation of an Earth (modeled by a point) orbiting a Sun (modeled by an asterisk in the origin).

Task 3 Adapt the program earth_sun1 such that the Earth is represented by a square with a mark in its center.

Name your program earth_sun2.

Task 4 Modify earth_sun2 such that the Earth also spins on its center. Name the resulting program earth_sun3.

Task 5 (optional) Adapt earth_sun3 such that it also contains a Moon (represented by a square with a mark in its center) which

- orbits the Earth, and
- spins on its center.

Name the resulting program earth_sun_moon.