

Internationale Klassifikation: C 07 d 41/08

Gesuchsnummer:

2261/68

Anmeldungsdatum:

15. Februar 1968, 171/4 Uhr

Patent erteilt:

15. Dezember 1970

Patentschrift veröffentlicht:

29. Januar 1971

HAUPTPATENT

CIBA-GEIGY AG, Basel

Verfahren zur Herstellung von Tetrahydroazepinderivaten

Dr. Karl Hoegerle, Basel und Dr. Ernst Habicht, Oberwil (Baselland), sind als Erfinder genannt worden

35

1

SCHWEIZERISCHE EIDGENOSSENSCHAFT

EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

Die vorliegende Erfindung betrifft ein neues Verfahren zur Herstellung von Tetrahydroazepinderivaten und ihren Additionssalzen mit anorganischen oder organischen Säuren.

Für 2, 3, 4, 5-Tetrahydro-1H-3-benzazepine, die im Azepinring keine Substituenten oder beispielsweise Kohlenwasserstoffreste als C-Substituenten aufweisen, ist bis heute kein wirtschaftlich arbeitendes Herstellungsverfahren bekannt geworden. Wohl erhält man das unsubstituierte 2,3,4,5-Tetrahydro-1H-3-benzazepin durch Hochdruckhydrierung von 1,2-Phenyl-diacetonitril in Ammoniak mit einem Nickelkatalysator [P. Ruggli et al., Helv. Chim. Acta. 18, 1934 (1935) und 20, 925 - 927 (1937)] in guter Reinheit, jedoch in schlechter Ausbeute. Eine Übertragung dieses Verfahrens auf 2,3,4,5-Tetrahydro-1H-3- 15 -benzazepine, die im Azepinring Kohlenwasserstoffreste als C-Substituenten aufweisen, ist nicht bekannt und wäre unwirtschaftlich. Die hierfür notwendigen Ausgangsmaterialien wären zudem schwer zugänglich. Da aber in den letzten Jahren solche 2,3,4,5-Tetrahydro-1H-3-benzazepi- 20 ne beträchtliche Bedeutung erlangt haben, wurde es notwendig, ein einfaches und wirtschaftlich arbeitendes Verfahren zur Herstellung dieser und ähnlicher Verbindungen zu entwickeln.

Das erfindungsgemässe Verfahren zur Herstellung von 25 2,3,4,5-Tetrahydro-1H-3-benzazepin der allgemeinen Formel I

$$\begin{array}{c|c} R_1 & R_2 \\ \downarrow & \downarrow \\ CH-CH \\ R_3 & \downarrow \\ R_3 & R_4 \end{array} \hspace{0.5cm} NH \hspace{0.5cm} (I)$$

worin

R₁, R₂, R₃ und R₄ unabhängig voneinander je Wasserstoff, einen niederen Alkylrest mit 1 - 6 Kohlenstoffatomen, vorzugsweise jedoch einen Alkylrest mit 1 - 4 Kohlenstoffatomen und höchstens zwei dieser Symbole einen Cycloalkylrest mit 3 bis 7 Kohlenstoffatomen als Ringglieder oder einen gegebenenfalls durch Halogen bis Atomnummer 35 und/oder niederes Alkyl substituierten Phenylrest, oder

R₃ und R₄ zusammen die Trimethylen- oder Tetramethylengruppe,

R₅ Wasserstoff, Halogen, und

R₅ Wasserstoff, Halogen bis Atomnummer 35, einen niederen Alkylrest, oder die Trifluormethylgruppe bedeuten, wobei, wenn R₁, R₂, R₃, R₄ und R₅ je Wasserstoff bedeuten, R₆ nicht Chlor in 7-Stellung sein kann, dadurch gekennzeichnet, dass man ein Phenäthylaminderivat der allgemeinen Formel II,

in der R_1 bis R_6 die oben angegebenen Bedeutungen haben, und X ein Halogenatom bis Atomnummer 35 bedeutet, oder ein Additionssalz einer solchen Verbindung mit einer anorganischen oder organischen Säure, mit einer Lewis-Säure bei Temperaturen zwischen 100 und 300° umsetzt, isoliert und gewünschtenfalls die so erhaltenen Endprodukte der allgemeinen Formel I mit einer anorganischen oder organischen Säure in ein Additionssalz überführt.

X ist als Halogen vorzugsweise Chlor oder Brom. Lewis-Säuren, die für das erfindungsgemässe Verfahren in Betracht kommen, sind beispielsweise: Antimon-(V)-chlorid, Eisen-(III)-chlorid, Tellur-(II)-chlorid, Zinn-(IV)-chlorid, Titan-(IV)-chlorid, Tellur-(IV)-chlorid, Wismuth-(III)-chlorid, Zinkchlorid und insbesondere Aluminiumchlorid, sowie entsprechende Bromide und Jodide, ferner Bortrifluorid oder Bortrichlorid, Fluor-

4

3

wasserstoff, Schwefelsäure, Phosphorpentoxid oder Polyphosphorsäure. Die Lewis-Säure wird gewöhnlich in einer Menge von 0,05-5 Mol-Prozent, vorzugsweise 1-1,5 Mol-Prozent dem Reaktionsgemisch zugesetzt. Die Reaktionstemperaturen mit der Lewis-Säure liegen zwischen 100 und 300°, vorzugsweise zwischen 150 und 250°.

Zur Isolierung der gebildeten 2,3,4,5-Tetrahydro-1H-3-benzazepine wird das Reaktionsgemisch anschliessend mit einer Base versetzt, vorzugsweise mit einer anorganischen Base, zum Beispiel einem Alkalihydroxid, wie Natriumhydroxid, Kaliumhydroxid, oder mit einem Erdalkalioxid.

Im allgemeinen erfordert die Umsetzung einer Verbindung der allgemeinen Formel II mit einer Lewis-Säure keine Lösungs- oder Verdünnungsmittel. Gewünschtenfalls kann aber als solches ein aliphatischer Kohlenwasserstoff, wie Heptan oder Cyclohexan, Nitrokohlenwasserstoffe, wie Nitromethan, Nitrocyclohexan oder Nitrobenzol, oder Halogenkohlenwasserstoffe, wie Tetrachlorkohlenstoff, Äthylenchlorid, Methylenchlorid, o-Dichlor-benzol, und ferner Schwefelkohlenstoff eingesetzt werden.

Ausgangsverbindungen der allgemeinen Formel II können beispielsweise wie folgt hergestellt werden, indem man in an sich bekannter Weise an ein Aziridin-Derivat 25 der allgemeinen Formel III,

in der R₁ bis R₆ die unter Formel I angegebene Bedeutungen haben, ein Halogenwasserstoff anlagert.

Die Verbindungen der allgemeinen Formel III können ihrerseits analog zum deutschen Patent Nr. 830 048 (Aus Herbert Bestian, Ann. 566, S. 238-239) durch Anlagerung von 2,3-Alkyleniminen an Styrole in Gegenwart von Alkalimetall erhalten werden.

Das erfindungsgemässe Verfahren erlaubt es, 2,3,4,5-Tetrahydro-1H-3-benzazepine auf einfachem und billigem Wege in guter Ausbeute und hoher Reinheit herzustellen. Ein besonderer Vorteil liegt darin, dass die hierfür notwendigen Ausgangsstoffe gut zugänglich sind. Die erfindungsgemäss herstellbaren 2,3,4,5-Tetrahydro-1H-3-benzazepine sind zum Teil bekannt (P. Ruggli et al. loc. cit.). Die bekannten und die neuen Verbindungen der allgemeinen Formel I besitzen grosse Bedeutung als Zwischenprodukte für Pharmazeutica.

Verbindungen der allgemeinen Formel I werden z.B. als Zwischenprodukte für die Herstellung von N-Guanidinalkyl-derivate mit antihypertensiven Eigenschaften u. die unsubstituierte 2,3,4,5-Tetrahydro-1H-3-benzazepin-verbindung als Zwischenverbindung für hypoglykämisch wirksame Arylsulfonyl-harnstoffe (orale Anti diabetica) verwendet.

Die unter die allgemeine Formel I fallende, noch nicht bekannte 2-Methyl-7-chlor-2,3,4,5-tetrahydro-1H-3-benzazepin-verbindung und deren Salze weisen bei oraler oder parenteraler Applikation anorexigene Wirkung auf.

Die nach dem erfindungsgemässen Verfahren erhaltenen 2,3,4,5-Tetrahydro-1H-3-benzazepine werden gewünschtenfalls in üblicher Weise in ihre Additionssalze

mit anorganischen oder organischen Säuren übergeführt. Beispielsweise versetzt man eine Lösung des 2-Methyl-7-Chlor-2,3,4,5-tetrahydro-1H-3-benzazepin in einem organischen Lösungsmittel mit der als Salzkomponente gewünschten Säure oder mit einer Lösung derselben. Vorzugsweise wählt man für die Umsetzung organische Lösungsmittel, in denen das entstehende Salz schwer löslich ist, damit es durch Filtration abgetrennt werden kann. Solche Lösungsmittel sind z.B. Aceton, Methyläthylketon, Aceton-Äthanol, Methanol-Äther oder Äthanol-Äther.

Zur Verwendung als Arzneistoffe kann anstelle der freien Base ein pharmazeutisch annehmbares Säureadditionssalz eingesetzt werden, d.h. Salze mit solchen Säuren, deren Anionen bei den in Frage kommenden Dosierungen nicht toxisch sind. Ferner ist es von Vorteil, wenn die als Arzneistoffe zu verwendenden Salze gut kristallisierbar und nicht oder wenig hygroskopisch sind. Zur Salzbildung mit dem 2-Methyl-7-chlor-2.3,4,5-tetrahydro-1H-3-benzazepin können z.B. die Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Äthansulfonsäure, Phosphorsäure, Methansulfonsäure, Äpfelsäure, Weinsäure, Citronensäure, Milchsäure, Oxalsäure, Bernsteinsäure, Fumarsäure, Mandelsäure und Embonsäure verwendet werden.

Die neuen Wirkstoffe werden peroral, rektal oder parenteral verabreicht. Die täglichen Dosen der freien Basen oder von pharmazeutisch annehmbaren Salzen derselben bewegen sich zwischen 25 und 200 mg für erwachsene Patienten. Geeignete Doseneinheitsformen, wie Dragées, Tabletten, Suppositorien oder Ampullen, enthalten vorzugsweise 5-50 mg des erfindungsgemässen Wirkstoffes oder eines pharmazeutisch annehmbaren Salzes desselben.

Doseneinheitsformen für die perorale Anwendung enthalten als Wirkstoff vorzugsweise zwischen 1-90% des 2-Methyl-7-chlor-2,3,4,5-tetrahydro-1H-3-benzazepin oder ein pharmazeutisch annehmbares Salz dieser Verbindung. Zu ihrer Herstellung kombiniert man den Wirkstoff z.B. mit festen, pulverförmigen Trägerstoffen, wie Lactose, Saccharose, Sorbit, Mannit; Stärken, wie Kartoffelstärke, Maisstärke oder Amylopektin, ferner Laminariapulver oder Citruspulpenpulver; Cellulosederivaten oder Gelatine, gegebenenfalls unter Zusatz von Gleitmitteln, wie Magnesium- oder Calciumstearat oder Polyäthylenglykolen, zu Tabletten oder zu Dragée-Kernen. Letztere überzieht man beispielsweise mit konzentrierten Zuckerlösungen, welche z.B. noch arabischen Gummi, Talk und/oder Titandioxid enthalten können, oder mit einem in leichtflüchtigen organischen Lösungsmitteln oder Lösungsmittelgemischen gelösten Lack. Diesen Überzügen können Farbstoffe zugeführt werden, z.B. zur Kennzeichnung verschiedener Wirkstoffdosen.

Als weitere orale Doseneinheitsformen eignen sich Steckkapseln aus Gelatine sowie weiche, geschlossene Kapseln aus Gelatine und einem Weichmacher, wie Glycerin. Die Steckkapseln enthalten den Wirkstoff vorzugsweise als Granulat, z.B. in Mischung mit Füllstoffen, wie Maisstärke, und/oder Gleitmitteln, wie Talk oder Magnesiumstearat, und gegebenenfalls Stabilisatoren, wie Natriummetabisulfit (Na₂S₂O₅) oder Ascorbinsäure. In weichen Kapseln ist der Wirkstoff vorzugsweise in geeigneten Flüssigkeiten, wie flüssigen Polyäthylenglykolen, gelöst oder suspendiert, wobei ebenfalls Stabilisatoren zugefügt sein können.

Als Doseneinheitsformen für die rektale Anwendung kommen z.B. Suppositorien, welche aus einer Kombination des Wirkstoffes oder eines geeigneten Salzes desselben mit einer Fettgrundlage bestehen, oder auch Gelatine-Rektalkapseln, welche eine Kombination des Wirkstoffes oder eines geeigneten Salzes desselben mit Polyäthylenglykolen enthalten, in Betracht.

Ampullen zur parenteralen, insbesondere intramuskulären Verabreichung enthalten vorzugsweise ein wasserlösliches Salz des Wirkstoffes in einer Konzentration von vorzugsweise 0,5-5%, gegebenenfalls zusammen mit geeigneten Stabilisierungsmitteln und Puffersubstanzen, in wässriger Lösung.

Die nachfolgenden Vorschriften sollen die Herstellung von Tabletten und Dragées näher erläutern:

- a) 250 g 2-Methyl-7-chlor-2,3,4,5-tetrahydro-1H-3-benzazepin-hydrochlorid werden mit 175,80 g Lactose und 169,70 g Kartoffelstärke vermischt, die Mischung mit einer alkoholischen Lösung von 10 g Stearinsäure befeuchtet und durch ein Sieb granuliert. Nach dem Trocknen mischt man 160 g Kartoffelstärke, 200 g Talk, 2,50 g Magnesiumstearat und 32 g kolloidales Silicium-dioxid zu und presst die Mischung zu 10 000 Tabletten von je 100 mg Gewicht und 25 mg Wirkstoffgehalt, die gewünschtenfalls mit Teilkerben zur feineren Anpassung der Dosierung versehen sein können.
- b) Aus 250 g 2-Methyl-7-chlor-2,3,4,5-tetrahydro-1H-3-benzazepin-hydrochlorid, 175,90 g Lactose und der alkoholischen Lösung von 10 g Stearinsäure stellt man ein Granulat her, das man nach dem Trocknen mit 56,60 g kolloidalem Siliciumdioxid, 165 g Talk, 20 g Kartoffelstärke und 2,50 g Magnesiumstearat mischt und zu 10 000 Dragée-Kernen presst. Diese werden anschliessend mit einem konzentrierten Sirup aus 502,28 g krist. Saccharose, 6 g Schellack, 10 g arabischem Gummi, 0,22 g Farbstoff und 1,5 g Titandioxid überzogen und getrocknet. Die erhaltenen Dragées wiegen je 120 mg und enthalten je 25 mg Wirkstoff.

Die folgenden Beispiele beschreiben die erfindungsgemässe Herstellung von Verbindungen der allgemeinen Formel I. Die Temperaturen sind in Celsiusgraden angegeben.

Beispiel 1

a) 389 g N-[(2-Chloräthyl)-phenäthylamin]-hydrochlorid werden fein pulverisiert, mit 470 g Aluminium-chlorid vermischt und im Ölbad unter Rühren langsam auf 180° (Badtemp.) erhitzt und anschliessend 12 Stunden lang bei dieser Temperatur gehalten. Nach dem Abkühlen auf ca. 100° wird die Schmelze auf Eis gegossen. Die entsprechende Lösung wird unter Rühren mit 2000 ml konzentrierter, wässriger Natriumhydroxid-Lösung versetzt und nach Auflösung des Niederschlages mit Äther extrahiert. Die ätherische Lösung wird über Magnesiumsulfat/Kaliumcarbonat getrocknet, das Trokkenmittel abfiltriert und der Äther verdampft. Der Rückstand wird im Vakuum fraktioniert. Das erhaltene 2,3, 4,5-Tetrahydro-1H-3-benzazepin hat den Sdp. 65°/0,1 Torr (Smp. ~ 10°); n_D²⁰ = 1,565.

Das Hydrochlorid schmilzt bei 248-250°.

Die Ausgangssubstanz, N-[(2-Chlor-äthyl)-phenäthylamin]-hydrochlorid, wird wie folgt erhalten:

b) Zu 745 g Äthylenimin und 9 g metallischem Natrium werden unter Rühren 900 ml Styrol zugetropft; 100 ml davon lässt man rasch zutropfen, während die restlichen 800 ml so zugetropft werden, dass die Tempe-

ratur des Reaktionsgemisches $40\text{-}45^\circ$ beträgt. Nach beendetem Zutropfen wird das Gemisch über Nacht bei Raumtemperatur gerührt. Das unumgesetzte Natrium wird mechanisch entfernt und das überschüssige Äthylenimin unter vermindertem Druck abdestilliert. Der Rückstand wird im Vakuum fraktioniert. Das so erhaltene 1-Phenyl-2-(N-aziridinyl)-äthan hat den Sdp. $48^\circ/0,1$ Torr; $n_D^{20}=1,5205$.

c) Unter Rühren werden 500 ml Methanol vorgelegt und im Eisbad mit Chlorwasserstoff-Gas gesättigt. Dazu tropft man bei einer Temperatur von 10-15° 100 g 1-Phenyl-2-(N-aziridinyl)-äthan, gelöst in 100 ml Methanol. Anschliessend wird die Lösung zur Trockne eingeengt und der Rückstand im Trockenschrank getrocknet. Das entstandene N-[(2-Chloräthyl)-phenäthylamin]-hydrochlorid hat, aus Äthanol-Eisessig umkristallisiert, den Smp. 188 - 190°.

Beispiel 2

- a) 234 g N-[(2-Chloräthyl)-β-methyl-phenäthylamin]-hydrochlorid werden zusammen mit 200 g Aluminiumchlorid 15 Stunden lang auf 170° erhitzt. Das Reaktionsgemisch wird heiss auf Eis gegossen und mit 2000 ml 30% iger wässriger Natriumhydroxid-Lösung alkalisch gemacht. Es scheidet sich ein braunes Öl ab. Die alkalische Lösung wird mehrmals mit Äther extrahiert. Die vereinigten Ätherauszüge werden über Kaliumcarbonat/Magnesiumsulfat getrocknet, der Äther wird abdestilliert und der ölige Rückstand wird fraktioniert. Das so erhaltene 5-Methyl-2,3,4,5-tetrahydro-1H-3-benzazepin hat den Kp: 72° bei 0,6 Torr (n_D²⁰ = 1,5580).
- b) 281 g 1-Phenyl-1-methyl-2-(1'-aziridinyl)-äthan (hergestellt nach Beispiel 1b) aus α-Methylstyrol und Äthylenimin) werden in 800 ml mit Chlorwasserstoffgas gesättigten Äthylalkohol gegeben. Das Reaktionsgemisch erwärmt sich auf 30° und es bildet sich ein kristalliner Niederschlag, dessen Ausfällung durch Zusatz von Diäthyläther vervollständigt wird. Der Niederschlag wird abfiltriert und mehrmals mit Äther gewaschen. Das entstandene N-[(2-Chloräthyl)-β-methyl-phenäthylamin]-hydrochlorid hat den Smp. 178-180°.

Beispiel 3

15 g Polyphosphorsäure werden auf 150° erwärmt und 1 g N-[(β-Chlor-β-phenäthyl)-phenäthylamin]-hydrochlorid portionenweise zugegeben und nach beendeter Zugabe noch eine halbe Stunde bei 150° gehalten. Die klare Lösung wird auf 15 g Eis gegossen, wobei ein Niederschlag entsteht. Unter Kühlen wird mit 30% iger NaOH alkalisch gestellt und das abgeschiedene öl in Methylenchlorid aufgenommen. Nach Abdestillieren des Methylenchlorids wird das 1-Phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin im Hochvakuum bei 140-150° destilliert.

Beispiel 4

Auf die in den Beispielen 1-4 beschriebenen Weisen werden aus den entsprechenden in der 1. Kolonne der nachstehenden Tabelle aufgeführten Phenäthylamin-hydrochloriden hergestellt in analoger Weise aus den Aziridinderivaten (Deutsche Patentschrift Nr. 830 048 und Herbert Bestian, Ann. 566, S. 238-239) die in der 3. Kolonne aufgeführten 2,3,4,5-Tetrahydro-1H-3-benzazepine erhalten:

Phenäthylaminhydrochlorid	Smp.	2,3,4,5-Tetrahydro-1H-3-benzazepin	Physikalische Daten
N-[(1'-Methyl-2'-chloräthyl)phenäthylamin]-hydrochlorid	160-165°	2-Methyl-2,3,4,5-tetrahydro- -1H-3-benzazepin	Kp. 60°/0,2 Torr
N-[(β-Chlor-β-phenäthyl)-phenäthylamin]-hydrochlorid	168-1 7 0°	1-Phenyl-2,3,4,5-tetrahydro- -1H-3-benzazepin	Kp. $140-150^{\circ}/0.01$ Torr $n_{D}^{20} = 1.4670$
N-[(2-Chlorcyclohexyl)-phenäthylamin]-hydrochlorid	165-167°	2,3,4,4a,5,6,7,11b-Octahydro- -1H-dibenz-[b,d]-azepin	Kp. 150-155°/0,01 Torr
N-[(2'-Chloräthyl)-\alpha-methyl-phenäthylamin]-hydrochlorid	149-151°	4-Methyl-2,3,4,5-tetrahydro- -1H-3-benzazepin	Kp. $64^{\circ}/0.2$ Torr $n_{D}^{20} = 1.5507$
N-[(2'-Chloräthyl-β-methyl- -4-isopropylphenäthylamin]- -hydrochlorid	184-186°	5-Methyl-8-isopropyl-2,3,4,5-tetrahydro-1H-3-benzazepin	Kp. 71-72 $^{\circ}$ /0,2 Torr $n_D^{20} = 1,5554$

Beispiel 5

7

a) 30 g 1-(p-Chlorphenyl)-2-(2-chloräthylamino)-propan Hydrochlorid werden fein pulverisiert, mit 33,2 g Aluminiumchlorid vermischt und im Ölbad unter Rühren langsam auf 170-180° (Badtemperatur) erhitzt und anschliessend 12 Stunden bei dieser Temperatur gehalten. Nach dem Abkühlen auf 100° giesst man die Schmelze auf Eis. Die entstandene Lösung wird unter Rühren mit 200 ml 30% iger wässriger Natriumhydroxidlösung versetzt und nach Auflösung des Niederschlages mit Methylenchlorid extrahiert. Man trocknet die Methylenchlorid-Lösung über Magnesiumsulfat, filtriert und dampft sie ein. Der Rückstand wird im Vakuum fraktioniert. Das erhaltene 2-Methyl-7-chlor-2,3,4,5-tetrahydro-1H-3-benzazepin siedet bei ca. 137°/14 Torr; n_D²⁰ = 1,5635.

Das Hydrochlorid, aus Acetonitril umkristallisiert, schmilzt bei 216-218°.

Die Ausgangssubstanz, das 1-(p-Chlorphenyl)-2-(2--chloräthylamino)-propan Hydrochlorid, wird wie folgt erhalten:

b) Zu einer Lösung von 56,3 g Chlorbenzol in 200 ml Schwefelkohlenstoff werden 150 g Aluminium-chlorid zugefügt. Die Mischung wird am Rückfluss zum Sieden gebracht und 79 g Propionsäureanhydrid zugefügt, worauf eine Stunde am Rückfluss gekoeht wird. Der Schwefelkohlenstoff wird abdestilliert, der Rückstand auf 600 g Eis und 300 g konzentrierte Salzsäure gegossen und das sich separierende Öl mit Benzol extrahiert. Die vereinigten Benzolextrakte werden mit Wasser, Natriumhydroxid Lösung und wiederum mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingedampft. Der Rückstand wird destilliert und ergibt p-Chlorpropiophenone vom Siedepunkt 120°/10 mm Hg.

c) Zu einer Mischung von 8,9 g Natriumborhydrid und zwei Pillen Kaliumhydroxid in 150 ml Methanol wird unter Rühren bei ca. 15-20° innerhalb 30 Minuten eine Lösung von 57 g p-Chlorpropiophenon in 200 ml Methanol zugefügt. Die Mischung wird zwei Stunden bei 25-30° gerührt, über Nacht bei Raumtemperatur aufbewahrt, worauf 125 ml 2-n. Salzsäure zugegeben werden. Die saure Mischung wird eingedampft und der Rückstand mit Benzol extrahiert. Der Benzolextrakt wird über Natriumsulfat getrocknet, filtriert und eingedampft. Der Rückstand wird destilliert und ergibt 1-(p-Chlorphenyl)-propanol vom Siedepunkt 128-130°/13 mm Hg, $n_D^{20} = 1,5368$.

d) Zu 5 g trockenem, auf 220 bis 230° erhitztes Natriumhydrogensulfat wird unter einem Vakuum von 100-110 mm Hg inncrhalb 3 Stunden 54 g 1-(p-Chlorphenyl)-propanol gegeben. Die Reaktionsmischung wird unter einem Druck von ca. 14 mm Hg destilliert und das Destillat mit Diäthyläther extrahiert. Der Ätherextrakt wird über Magnesiumsulfat u. Natriumbicarbonat getrocknet, filtriert und eingedampft. Der Rückstand wird im Vakuum destilliert und ergibt p-Chlor- β -methyl-styrol vom Siedepunkt 80-82°/15 mm Hg, $n_{\rm p}^{20}=1,5660$.

8

e) Zu einer Lösung von 50 g trockenem Äthylenimin und ca. 500 mg metallischem Natrium wird unter Rühren bei Raumtemperatur tropfenweise 33 g p-Chlor-β-methyl-styrol eingegeben. Wenn die Temperatur nach ungefähr zwei Stunden zu steigen beginnt, wird sie durch äussere Kühlung bei ungefähr 30° gehalten. Wenn die Reaktion zu Ende ist, wird bei ca. 25° für etwa 30 Minuten weitergerührt. Nicht umgesetztes Natrium wird mechanisch entfernt und Überschuss Äthylenimine im Vakuum entfernt. Der Rückstand wird im Vakuum fraktioniert und ergibt 1-(p-Chlorphenyl)-2-(1-aziridinyl)-propan vom Siedepunkt 120-121°/14 mm Hg, n_D²⁰ = 1,5272.

f) Eine Lösung von 39,5 g 1-(p-Chlorphenyl)-2-(1-aziridinyl)-propan in 100 ml Äthanol wird bei 5° innerhalb 15 Minuten zu 150 ml einer gesättigten äthanolischen Chlorwasserstoff Lösung gegeben. Die Reaktionsmischung wird eingedampft bis Kristallisation beginnt und abgekühlt. Die Kristalle werden abfiltriert und aus Äthanol umkristallisiert. Das erhaltene 1-(p-Chlorphenyl)-2-(2-chloräthylamino)-propan hat einen Schmelzpunkt von 189-191°.

PATENTANSPRUCH

Verfahren zur Herstellung von 2,3,4,5-Tetrahydro--1H-3-benzazepinen der allgemeinen Formel I,

in welcher

R₁, R₂, R₃ und R₄ unabhängig voneinander je Wasserstoff, einen niederen Alkylrest mit 1 - 6 Kohlenstoffatomen, vorzugsweise jedoch einen Alkylrest mit 1 - 4 Kohlenstoffatomen und höchstens zwei dieser Symbole einen Cycloalkylrest mit 3 bis 7 Kohlenstoffatomen als Ringglieder oder einen gegebenenfalls durch Halogen bis Atomnummer 35 und/oder niederes Alkyl substituierten Phenylrest, oder

R₃ und R₄ zusammen die Trimethylen- oder Tetramethylengruppe,,

10

20

R₅ Wasserstoff, Halogen, und

R₆ Wasserstoff, Halogen bis Atomnummer 35, einen niederen Alkylrest, oder die Trifluormethylgruppe bedeuten, wobei, wenn R₁, R₂, R₃, R₄ und R₅ je Wasserstoff bedeuten, R₆ nicht Chlor in 7-Stellung sein kann, dadurch gekennzeichnet, dass man ein Phenäthylaminderivat der allgemeinen Formel II,

$$R_{5} \longrightarrow \begin{array}{c} R_{1} & R_{2} \\ CH - CH \\ \\ R_{5} \longrightarrow \begin{array}{c} NH \\ \\ R_{5} \longrightarrow \\ R_{5} & R_{4} \end{array}$$
 (II)

in der R_1 bis R_6 die oben angegebenen Bedeutungen haben, und X ein Halogenatom bis Atomnummer 35 bedeutet, oder ein Additionssalz einer solchen Verbindung mit einer anorganischen oder organischen Säure, mit einer Lewis-Säure bei Temperaturen zwischen 100 und 300° umsetzt, isoliert und gewünschtenfalls die so erhaltenen Endprodukte der allgemeinen Formel I mit einer anorganischen oder organischen Säure in ein Additionssalz überführt.

UNTERANSPRUCH

Verfahren nach Patentanspruch zur Herstellung von 2,3,4,5-Tetrahydro-1H-3-benzazepinen der allgemeinen Formel I, worin R_1 , R_2 , R_3 und R_4 als niedere Alkylreste unabhängig voneinander niedere Alkylreste von 1-4 Kohlenstoffatomen bedeuten.

CIBA-GEIGY AG

Anmerkung des Eidg. Amtes für geistiges Eigentum:

Sollten Teile der Beschreibung mit der im Patentanspruch gegebenen Definition der Erfindung nicht in Einklang stehen, so sci daran crinnert, dass gemäss Art. 51 des Patentgesetzes der Patentanspruch für den sachlichen Geltungsbereich des Patentes massgebend ist.