Progress Report on Leo-II, an Automatic Theorem Prover for Higher-Order Logic

Christoph Benzmüller

joint project with: L. Paulson, A. Fietzke, F. Theiss

University of Cambridge

(& Universität des Saarlandes)

TPHOLs 2007

Kaiserslautern, Germany, September 11, 2007

The LEO-II project is funded by EPSRC under grant EP/D070511/1

What is LEO-II

- Automatic theorem prover / successor of LEO
 - resolution based higher order theorem prover
 - standalone; implemented in Objective CAML (12K LoC)
 - cooperation with specialist provers, e.g. FO ATPs
 - term sharing and term indexing
 - experimentation with prover architecture(s)
- Interactive proof assistant
- Problem representation language: TPTP THF Syntax

Cooperation with Other Provers

First Experiments with LEO-II

- 1: Intel(R) Pentium(R) 4 CPU 2.80GHz, 1GB, Linux, CPULimit 600s
- ²: Intel(R) Xeon(TM) 4 CPU 2.40GHz, 4GB, Linux, CPULimit 120s
- ³: Intel(R) Pentium(R) 1 CPU 1.60GHz, 1GB, Linux, CPULimit 60s

Problem	Vampire 9.0 ¹	LEO/Vamp. ²	LEO-II/E ³
SET014+4 SET017+1 SET066+1 SET067+1 SET076+1 SET086+1 SET096+1 SET143+3 SET171+3 SET580+3 SET601+3 SET606+3 SET607+3 SET609+3 SET611+3 SET612+3 SET612+3 SET614+3 SET615+3 SET623+3 SET624+3	114.5 1.0 - 4.6 51.3 0.1 5.9 0.1 68.6 0.0 1.6 0.1 1.2 145.2 0.3 111.9 3.7 103.9 - 3.8	2.60 5.05 3.73 0.10 0.97 0.01 7.29 0.31 0.38 0.23 1.18 0.27 0.26 0.49 4.00 0.46 0.41 0.47 2.27 3.29	0.300 0.059 0.029 0.040 0.031 0.028 0.033 0.034 0.030 0.078 0.089 0.033 0.036 0.039 0.125 0.030 0.035 0.035 0.282 0.047
SET630+3	0.1	0.05	0.025

First Experiments with LEO-II_

Problem	Vampire 9.0 ¹	LEO/Vamp. ²	LEO-II/E ³
SET640+3	1.1	0.01	0.033
SET646+3	84.4	0.01	0.032
SET647+3	98.2	0.12	0.037
SET648+3 SET649+3	98.2 117.5	0.12 0.25	0.037 0.037
SET651+3	117.5	0.23	0.029
SET657+3	146.6	0.01	0.028
SET669+3	83.1	0.20	0.041
SET670+3	-	0.14	0.067
SET671+3	214.9	0.47	0.038
SET672+3 SET673+3	217.1	0.23 0.47	0.034 0.042
SET680+3	146.3	2.38	0.035
SET683+3	0.3	0.27	0.053
SET684+3	_	3.39	0.039
SET716+4	_	0.40	0.033
SET724+4	_	1.91	0.032
SET741+4 SET747+4		3.70 1.18	0.042 0.028
SET752+4	_	516.00	0.026
SET753+4	_	1.64	0.037
SET764+4	0.1	0.01	0.032
SET770+4	145.0	_	_

Average time (success) LEO-II = 0.048

(Normal) Multimodal Logic in HOL

- FOL encodings of modal logic well investigated
- HOL encodings of modal logic
 - Harrison's HOL-light primer
 - Hardt and Smolka, 2006
 - **•** • •
 - here we pick-up, extend and explore an idea of Chad Brown; see talk in April 2005 at Loria Nancy, France

http://mathgate.info/cebrown/papers/hybrid-hol.pdf

(Normal) Multimodal Logic in HOL

base type ι:
 certain terms of type ι → o:

set of possible worlds multimodal logic formulas

multimodal logic operators:

$$\neg_{(\iota \to o) \to (\iota \to o)} = \lambda A_{\iota \to o^{\blacksquare}} \lambda X_{\iota^{\blacksquare}} \neg A X
\lor_{(\iota \to o) \to (\iota \to o) \to (\iota \to o)} = \lambda A_{\iota \to o^{\blacksquare}} \lambda B_{\iota \to o^{\blacksquare}} \lambda X_{\iota^{\blacksquare}} A X \lor B X
\square_{R (\iota \to \iota \to o) \to (\iota \to o)} = \lambda R_{\iota \to \iota \to o^{\blacksquare}} \lambda A_{\iota \to o^{\blacksquare}} \lambda X_{\iota^{\blacksquare}} \forall Y_{\iota^{\blacksquare}} R X Y \Rightarrow A Y$$

- multimodal logic propositions:
 - each constant $p_{\iota \to o} \in \Sigma$ is an atomic proposition
 - if φ and ψ are propositions, then so are $\neg \varphi$, $\varphi \lor \psi$ and $\square_R \varphi$
- \Rightarrow , \Leftrightarrow , \Diamond_r , etc. defined as usual

(Normal) Multimodal Logic in HOL

We can also encode the notions of validity, satisfiability, etc.

$$\text{valid} = \lambda A_{\iota \to o^{\blacksquare}} \forall W_{\iota} \land W$$

$$\text{satisfiable} = \lambda A_{\iota \to o^{\blacksquare}} \exists W_{\iota} \land W$$

$$\text{countersatisfiable} = \lambda A_{\iota \to o^{\blacksquare}} \exists W_{\iota} \lnot A W$$

$$\text{invalid} = \lambda A_{\iota \to o^{\blacksquare}} \forall W_{\iota} \lnot A W$$

Automation in LEO-II

problem	LEO-II+E (sec)
$\overline{\text{valid}(\Box_{r}\;T)}$	0.025
$valid(\square_r a \Longrightarrow \square_r a)$	0.026
$valid(\square_r a \Rightarrow \square_s a)$	_
$\mathtt{valid}(\square_{s}(\square_{r}a \Longrightarrow \square_{r}a))$	0.026
$\texttt{valid}(\Box_r (\texttt{a} \land \texttt{b}) \Leftrightarrow (\Box_r \texttt{a} \land \Box_r \texttt{b}))$	0.044
$\mathtt{valid}(\lozenge_r(a \mathop{\Rightarrow} b) \mathop{\Rightarrow} \Box_ra \mathop{\Rightarrow} \lozenge_rb)$	0.030
$\mathtt{valid}(\neg\lozenge_ra \Rightarrow \square_r(a \Rightarrow b))$	0.029
$\mathtt{valid}(\square_rb \Rightarrow \square_r(a \Rightarrow b))$	0.026
$\mathtt{valid}((\lozenge_r a \mathop{\Rightarrow} \Box_r b) \mathop{\Rightarrow} \Box_r (a \mathop{\Rightarrow} b))$	0.027
$\mathtt{valid}((\lozenge_r a \mathop{\Rightarrow} \Box_r b) \mathop{\Rightarrow} (\Box_r a \mathop{\Rightarrow} \Box_r b))$	0.029
$valid((\lozenge_r a \Rightarrow \Box_r b) \Rightarrow (\lozenge_r a \Rightarrow \lozenge_r b))$	0.030

Automation in LEO-II

Can we also automate reasoning about (normal) multimodal logics?

Example:

$$S4 = K + T + 4$$

with

$$T \qquad \Box_R A \Rightarrow A$$

$$4 \qquad \Box_{\mathsf{R}} \, \mathsf{A} \Rightarrow \Box_{\mathsf{R}} \, \Box_{\mathsf{R}} \, \mathsf{A}$$

Proving Properties of K_

Essential properties of K are the necessitation rule N and the distribution axiom D:

N If A is a theorem of K, then so is $\square_R A$

 $0.027sec \quad \forall R. \forall A. valid(A) \Rightarrow valid(\Box_R A)$

 $\Box_{\mathsf{R}} (\mathsf{A} \Rightarrow \mathsf{B}) \Rightarrow (\Box_{\mathsf{R}} \mathsf{A} \Rightarrow \Box_{\mathsf{R}} \mathsf{B})$

 $0.029sec \qquad \forall R \ \forall A \ \forall B \ valid(\Box_R (A \Rightarrow B) \Rightarrow (\Box_R A \Rightarrow \Box_R B))$

Exploring Modal Logics in LEO-II+E

Is axiom T is valid in K?

$$\forall R. \forall A. valid(\Box_R A \Rightarrow A)$$
 no proof

Is there a relation R such that for all A axiom T is valid in K?

$$\exists R. \forall A. valid(\Box_R A \Rightarrow A)$$
 0.539 sec

R ← equality

Is axiom T indeed equivalent to reflexivity of R in K?

$$\forall R_{\bullet}(\forall A_{\bullet} \text{valid}(\Box_{R} A \Rightarrow A) \Leftrightarrow \text{refl}(R))$$
 0.039 sec

Exploring Modal Logics in LEO-II+E

Is axiom 4 valid in K?

$$\forall R \cdot \forall A \cdot valid(\Box_R A \Rightarrow \Box_R \Box_R A)$$
 no proof

Is there a relation R such that for all A axiom 4 is valid in K?

$$\exists R \ \forall A \ valid(\Box_R A \Rightarrow \Box_R \Box_R A)$$
 0.057 sec

R ← inequality

Is axiom 4 equivalent to transitivity of R in K?

$$\forall R_{\bullet}(\forall A_{\bullet} \text{valid}(\Box_R A \Rightarrow \Box_R \Box_R A)) \Leftrightarrow \text{trans}(R)$$
 0.195 sec

Exploring Modal Logics in LEO-II+E

Are T and 4 equivalent to reflexivity and transitivity of R in K?

$$\begin{split} \forall R_{\bullet} (\forall A_{\bullet} \, \text{valid}(\square_R \, A \Rightarrow A) \wedge \text{valid}(\square_R \, A \Rightarrow \square_R \, \square_R \, A)) \\ \Leftrightarrow (\text{refl}(R) \wedge \text{trans}(R)) & \textbf{2.262 sec} \end{split}$$

LEO-II passes 70 clauses / E generates 21769 clauses

Better:

 \Rightarrow in 0.045 seconds

← in 0.048 seconds

Summary _

- Did not talk much about LEO-II come to poster!
- LEO-II appears to be suited for:
 reasoning within and about (normal) multimodal logics
- We have already extended the encoding to
 - normal first order quantified multimodal logics
 - normal higher order quantified multimodal logics
- Many future work directions, including

LEO-II as a framework for exploring (normal) propositional and quantified multimodal logics

(Normal) FO Quantif. Multimodal Logic LE

- 1. Λ_1^{mm} -terms are defined as (base type $\mu \neq \iota$):
 - Each constant $c_{\mu} \in \Sigma$ and variable $X_{\mu} \in \Sigma$ is a $Λ_1^{mm}$ -term.
 - If $t^1_{\mu}, \ldots, t^n_{\mu}$ are Λ_1^{mm} -terms and $f_{\mu \to \ldots \to \mu \to \mu} \in \Sigma$ is an n-ary (curried) function symbol, then $(f t^1 \ldots t^n)_{\mu}$ is a Λ_1^{mm} -term.
- 2. The modal operators \neg , \lor , \square_r are defined as before.
- 3. $\forall X_{\mu} \varphi_{\iota \to o}$ defined as $\lambda w_{\iota} \forall X_{\mu} \varphi w$
- 4. Λ_1^{mm} -propositions are defined by:
 - If $t^1_{\mu}, \ldots, t^n_{\mu}$ are Λ^{mm}_1 -terms and let $p_{\mu \to \ldots \to \mu \to (\iota \to o)} \in \Sigma$, then $(p t^1 \ldots t^n)_{\iota \to o}$ is an atomic Λ^{mm}_1 -proposition.
 - If φ and ψ be Λ_1^{mm} -propositions, then so are $\neg \varphi$, $\varphi \lor \psi$ and $\Box_r \varphi$, where \neg , \lor , \Box_r are defined as above.
 - If $X_{\mu} \in \Sigma$ is a variable of type μ and $\varphi_{\iota \to o}$ is a Λ_1^{mm} -proposition, then $\forall X_{\bullet} \varphi$ is a Λ_1^{mm} -proposition.