Closed Methods in Finding the root of non-linear system

Bisection

- Determine $x_m = \frac{x_l + x_u}{2}$ Find $f(x_l), f(x_m), f(x_u)$
- Choose new interval (find the interval with 2 different signts (+,-))

Example Problem

Determine the root of $3x^4 + 7x^3 - 15x^2 + 5x = 17$ between [0, 2]. Use Bisection Method for 7 iterations.

\overline{Count}	x_l	x_m	x_u	$f(x_l)$	$f(x_m)$	$f(x_u)$	New
1.	0	1	2	-17	-17	37	[1,2]
2.	1	1.5	2	-17	-4.43750	37	[1.5,2]
3.	1.5	1.75	2	-4.43750	11.46484	37	[1.5, 1.75]
4.	1.5	1.625	1.75	-4.43750	2.47144	11.46484	[1.5, 1.625]
5.	1.5	1.5625	1.625	-4.43750	-1.22432	2.47144	[1.5625, 1.625]
6.	1.5625	1.59375	1.625	-1.22432	0.56087	2.47144	[1.5625, 1.593]
7.	1.5625	1.57813	1.59375	-1.22432	-0.34681	0.56087	[1.57813, 1.59]

First Iteration

$$x_{m} = \frac{x_{l} + x_{u}}{2}$$

$$= \frac{0+2}{2}$$

$$x_{m} = 1$$

$$f(x_{l}) = 3(0)^{4} + 7(0)^{3} - 15(0)^{2} + 5(0) - 17$$

$$= -17$$

$$f(x_{m}) = 3(1)^{4} + 7(1)^{3} - 15(1)^{2} + 5(1) - 17$$

$$= -17$$

$$f(x_{u}) = 3(2)^{4} + 7(2)^{3} - 15(2)^{2} + 5(2) - 17$$

$$= 37$$

 $Second\ Iteration$

$$x_{m} = \frac{x_{l} + x_{u}}{2}$$

$$= \frac{1+2}{2}$$

$$x_{m} = 1.5$$

$$f(x_{l}) = 3(1)^{4} + 7(1)^{3} - 15(1)^{2} + 5(1) - 17$$

$$= -17$$

$$f(x_{m}) = 3(1.5)^{4} + 7(1.5)^{3} - 15(1.5)^{2} + 5(1.5) - 17$$

$$= -4.43750$$

$$f(x_{u}) = 3(2)^{4} + 7(2)^{3} - 15(2)^{2} + 5(2) - 17$$

$$= 37$$

Third Iteration

$$x_{m} = \frac{x_{l} + x_{u}}{2}$$

$$= \frac{1.5 + 2}{2}$$

$$x_{m} = 1.75$$

$$f(x_{l}) = 3(1.5)^{4} + 7(1.5)^{3} - 15(1.5)^{2} + 5(1.5) - 17$$

$$= -4.43750$$

$$f(x_{m}) = 3(1.75)^{4} + 7(1.75)^{3} - 15(1.75)^{2} + 5(1.75) - 17$$

$$= 11.46484$$

$$f(x_{u}) = 3(2)^{4} + 7(2)^{3} - 15(2)^{2} + 5(2) - 17$$

$$= 37$$

Fourth Iteration

$$x_{m} = \frac{x_{l} + x_{u}}{2}$$

$$= \frac{1.5 + 1.75}{2}$$

$$x_{m} = 1.625$$

$$f(x_{l}) = 3(1.5)^{4} + 7(1.5)^{3} - 15(1.5)^{2} + 5(1.5) - 17$$

$$= -4.43750$$

$$f(x_{m}) = 3(1.625)^{4} + 7(1.625)^{3} - 15(1.625)^{2} + 5(1.625) - 17$$

$$= 2.47144$$

$$f(x_{u}) = 3(1.75)^{4} + 7(1.75)^{3} - 15(1.75)^{2} + 5(1.75) - 17$$

$$= 11.46484$$

Fifth Iteration

$$x_m = \frac{x_l + x_u}{2}$$

$$= \frac{1.5 + 1.625}{2}$$

$$x_m = 1.5625$$

$$f(x_l) = 3(1.5)^4 + 7(1.5)^3 - 15(1.5)^2 + 5(1.5) - 17$$

$$= -4.43750$$

$$f(x_m) = 3(1.5625)^4 + 7(1.5625)^3 - 15(1.5625)^2 + 5(1.5625) - 17$$

$$= -1.22432$$

$$f(x_u) = 3(1.625)^4 + 7(1.625)^3 - 15(1.625)^2 + 5(1.625) - 17$$

$$= 2.47144$$

Sixth Iteration

$$x_m = \frac{x_l + x_u}{2}$$

$$= \frac{1.5625 + 1.625}{2}$$

$$x_m = 1.59375$$

$$f(x_l) = 3(1.5625)^4 + 7(1.5625)^3 - 15(1.5625)^2 + 5(1.5625) - 17$$

$$= -1.22432$$

$$f(x_m) = 3(1.59375)^4 + 7(1.59375)^3 - 15(1.59375)^2 + 5(1.59375) - 17$$

$$= 0.56087$$

$$f(x_u) = 3(1.625)^4 + 7(1.625)^3 - 15(1.625)^2 + 5(1.625) - 17$$

$$= 2.47144$$

 $Seventh\ Iteration$

$$x_m = \frac{x_l + x_u}{2}$$

$$= \frac{1.5625 + 1.59375}{2}$$

$$x_m = 1.57813$$

$$f(x_l) = 3(1.5625)^4 + 7(1.5625)^3 - 15(1.5625)^2 + 5(1.5625) - 17$$

$$= -1.22432$$

$$f(x_m) = 3(1.57813)^4 + 7(1.57813)^3 - 15(1.57813)^2 + 5(1.57813) - 17$$

$$= -0.34681$$

$$f(x_u) = 3(1.59375)^4 + 7(1.59375)^3 - 15(1.59375)^2 + 5(1.59375) - 17$$

$$= 0.56087$$