目次

		n-Stieltjes 積分	2
		7在	
1.2		D一樣収束	
		一様収束の性質	
		コンパクトー様収束	
		一様収束と積分	
	1.2.4	一様収束と導関数	3
	1.2.5	一様収束の判定法	3
第2章	参考文献		5
参考文献			6

第1章

Riemann-Stieltjes 積分

Lebesgue 積分とは違って,ℝの順序構造に強く依存した,Euclid 空間上にオーダーメイドの積分が定義できる.これについての古典論を復習する.

1.1 定義と存在

定義 **1.1.1** ((Riemann-)Stieltjes integral). I:=[a,b] を閉区間とし, $f:[a,b]\to\mathbb{R}$ を有界関数, $\alpha:[a,b]\to\mathbb{R}$ を単調増加関数とする.

- (1) 分割 P とは , [a,b] の有限集合 $P = \{a = x_0 \leqslant x_1 \leqslant \cdots \leqslant x_n = b\}$ をいう .
- (2) 各分割 $P \in P([\alpha,b])$ に対して, $\Delta \alpha_i := \alpha(x_i) \alpha(x_{i-1})$ と表し,

$$M_i(P) := \sup_{x \in [x_{i-1}, x_i]} f(x), \qquad m_i(P) := \inf_{x \in [x_{i-1}, x_i]} f(x) \ (i \in [n])$$

とし,

$$U(P,f,lpha) := \sum_{i=1}^n M_i(P) \Delta lpha_i, \qquad \qquad L(P,f,lpha) := \sum_{i=1}^n m_i(P) \Delta lpha_i$$

とする.これを用いて,

$$\overline{\int_a^b} f d\alpha := \inf_{P \in P([a,b]), |P| < \infty} U(P,f,\alpha), \qquad \qquad \underline{\int_a^b} f d\alpha = \sup_{P \in P([a,b]), |P| < \infty} L(P,f,\alpha).$$

として得る実数を,上/下 Stieltjes 積分と呼ぶ.

(3) 上積分と下積分が一致するとき, Stieltjes 可積分であるといい, $f \in \mathcal{R}([a,b],\alpha)$ と表す.

1.2 関数列の一様収束

復習する.

定義 1.2.1. $E \subset \mathbb{C}$ 上の関数列 (f_n) が一様収束するとは , $\forall_{\epsilon>0}$ $\exists_{n_0\in\mathbb{N}}$ $\forall_{n\geqslant n_0}$ $\forall_{x\in E}$ $|f_n(x)-f(x)|<\epsilon$ を満たすことをいう .

定理 1.2.2 (可積分性の特徴付け). 関数 $f:[a,b]\to\mathbb{R}$ について,次の 2 条件は同値.

- (1) $f \in \mathcal{R}(\alpha)$.
- (2) $\forall_{\epsilon>0} \exists_{P \in P([a,b])} |P| < \infty \land U(P,f,\alpha) L(P,f,\alpha) < \epsilon$.

定理 1.2.3 (可積分条件). 関数 $f:[a,b] \to \mathbb{R}$ は,

- (1) 連続ならば $f \in \mathfrak{R}(\alpha)$.
- (2) 単調ならば, α が連続ならば $f \in \mathcal{R}(\alpha)$.
- (3) 有界であり,[a,b] 上に高々有限の不連続点をもち,その任意の点で α は連続であるならば, $f \in \mathfrak{R}(\alpha)$.

1.2.1 一様収束の性質

定理 1.2.4 (一様収束は連続性を保つ). (f_n) を $E\subset\mathbb{C}$ 上の連続関数列とし,極限 f に一様収束するとする.このとき,f は連続で ある.

[証明]. 任意の $x_0 \in E$ と $\epsilon > 0$ をとる.

- (1) f は (f_n) の一様収束極限だから, $\exists_{n\in\mathbb{N}}\ orall_{x\in E}\ |f_n(x)-f(x)|<\epsilon/3$.
- (2) f_n は連続だから , $\exists_{\delta>0}\ \forall_{x\in E}\ |x-x_0|<\delta \Rightarrow |f_n(x_0)-f_n(x)|<\epsilon/3$.

以上より, 任意の $|x-x_0| < \delta$ を満たす $x \in E$ に対して,

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)| < \epsilon.$$

定理 1.2.5. $E\subset S$ を距離空間 S の部分集合とし, $x\in S$ をその集積点とする. (f_n) が f に一様収束するとき, $(\lim_{t\to\infty}f_n(t))_{n\in\mathbb{N}}$ は収 束し,

$$\lim_{n\to\infty}\lim_{t\to x}f_n(t)=\lim_{t\to x}\lim_{n\to\infty}f_n(t)$$

1.2.2 コンパクトー様収束

-方で,連続関数の列が連続関数に収束するとき,そのモードが一様収束であるとは限らない.

定理 1.2.6. (f_n) をコンパクト集合 K 上の連続関数の列とする.このとき,

- (1) (f_n) はある連続関数 f に各点収束する.
- (2) (f_n) は広義単調減少列である.

ならば $,(f_n)$ は f に一様収束する .

1.2.3 一様収束と積分

定理 1.2.7. 単調増加関数 $lpha: [lpha,b] o \mathbb{R}$ に関して,[lpha,b] 上の可積分関数の列 $\{f_n\} \subset \mathfrak{R}(lpha)$ が,ある f に一様収束しているとす る.このとき,

(1)
$$f \in \mathcal{R}(\alpha)$$

(1)
$$f \in \mathcal{R}(\alpha)$$
.
(2) $\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_{n} d\alpha$.

系 1.2.8 (項別積分).可積分列 $\{f_n\}\subset \mathscr{R}(lpha)$ が定める級数は各点収束しているとする: $orall_{x\in[a,b]}f(x)=\sum^{\infty}f_n(x)$.このとき,

$$\int_a^b f d\alpha = \sum_{n=1}^\infty \int_a^b f_n d\alpha.$$

1.2.4 一様収束と導関数

定理 ${f 1.2.9.}$ [a,b] 上の可微分関数の列 (f_n) は,ある $x_0\in [a,b]$ において各点収束するとする.導関数が定める列 (f'_n) が一様収束 するならば,元の列 (f_n) も一様収束し,極限と微分が可換になる: $orall_{x\in[a,b]}f'(x)=\lim_{n\to\infty}f'(x)$.

1.2.5 一様収束の判定法

命題 1.2.10 (一様収束の判定法). (f_n) を E 上の関数の列で , 各点収束極限 f を持つとする .

- (1) (fn) は一様収束する.
- $\text{(2) (Cauchy criterion)} \ \forall_{\epsilon>0} \ \exists_{n_0\in\mathbb{N}} \ \forall_{m,n\geqslant n_0} \ \forall_{x\in E} \ |f_n(x)-f_m(x)|<\epsilon \ .$
- (3) $||f_n f||_{\infty} \rightarrow 0$.

命題 **1.2.11** (Weierstrass M-test). 関数列 (f_n) は収束する優級数 $\{M_n\}\subset\mathbb{C}$ を持つとする: $\forall_{n\in\mathbb{N}}\ \|f_n\|_\infty\leqslant |M_n|$, $\sum_{n\in\mathbb{N}}M_n\in\mathbb{C}$.このとき,級数列 $(i=1)^nf_i$ は一様収束する.

第2章

参考文献

参考文献

[1] Walter Rudin - Principles of Mathematical Analysis