Лабораторная работа №5

Модель «хищник-жертва»

Левкович Константин Анатольевич

Содержание

1	Цель работы			
2	Выполнение лабораторной работы			
	2.1	Задание	6	
	2.2	Теоретическое введение	6	
	2.3	Графики	8	
3	Выв	ОДЫ	10	

Список таблиц

Список иллюстраций

2.1	График колебаний изменеия числа популяции хищников и жертв	8
2.2	Зависимость изменения численности хищников от изменения чис-	
	ленности жертв	9

1 Цель работы

- 1. Научиться строить модели «хищник-жертва» на примере модели Лотки-Вольтерры.
- 2. Построить график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв.
- 3. Найти стационарное состояние системы

2 Выполнение лабораторной работы

2.1 Задание

Для модели «хищник-жертва»:

$$\begin{cases} \frac{\partial x}{\partial t} = -0.13x(t) + 0.041x(t)y(t) \\ \frac{\partial y}{\partial t} = 0.31y(t) - 0.042x(t)y(t) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=7, y_0=20$. Найдите стационарное состояние системы.

2.2 Теоретическое введение

Простейшая модель взаимодействия двух видов типа «хищник-жертва» — модель Лотки-Вольтерры. Данная двувидовая модель основывается на следующих предположениях: 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории) 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса (по экспоненциальному закону), при этом число жертв увеличивается, а число хищников падает 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными 4.

Эффект насыщения численности обеих популяций не учитывается 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

$$\begin{cases} \frac{\partial x}{\partial t} = ax(t) + bx(t)y(t) \\ \frac{\partial y}{\partial t} = -cy(t) - dx(t)y(t) \end{cases}$$

В этой модели x – число жертв, y - число хищников. Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (xy). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Математический анализ этой (жесткой) модели показывает, что имеется стационарное состояние (положение равновесия, не зависящее от времени решения). Если начальное состояние будет другим, то это приведет к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени система возвращается в начальное состояние. Стационарное состояние системы будет в точке: $x_0 = \frac{c}{d}$, $y_0 = \frac{a}{b}$

Если начальные значения задать в стационарном состоянии $x(0)=x_0, y(0)=y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей x(0),y(0). Колебания совершаются в противофазе.

2.3 Графики

График колебаний изменеия числа популяции хищников и жертв (рис. 1-@fig:001)

Рис. 2.1: График колебаний изменеия числа популяции хищников и жертв

Зависимость изменения численности хищников от изменения численности жертв с начальными значениями =20, =7. (рис. 2-@fig:002)

Рис. 2.2: Зависимость изменения численности хищников от изменения численности жертв

3 Выводы

- 1. Познакомился с моделью «хищник-жертва» на примере простейшей модели взаимодействия модели Лотки-Вольтерры.
- 2. Построил график зависимости x от y и графики функций x(t),y(t)
- 3. Нашёл стационарное состояние системы.