周报

2025年3月11日

摘要

- XMSS 树结构的并行实现优化
- 论文的写作

XMSS 树并行实现优化

XMSS 树是 HT 签名的基本组件,是签名中最耗时的部分。

两层次并行技术

- 节点级并行
 - 同一层次的节点并行计算
 - 二级并行实现 [WDC+25]
- WOTS 级并行
 - 单个节点内的 WOTS 链并 行计算
 - 三级并行实现 [WDC+25]

动态调度与 GPU 优化

- 运行期间动态调整线程数
- 结合 GPU 特性进行性能优化

实验结果

操作	执行时间	性能提升
PKGEN 串行实现 [WDC+25]	31.382 ms	基准
PKGEN 二级并行 [WDC+25]	3.844 ms	8.16×
PKGEN 二级并行 + 动态调度	3.822 ms	8.21x
PKGEN 二三级并行 [WDC ⁺ 25]	0.220 ms	142.65×
PKGEN 二三级并行 + 动态调度 +GPU 优化	0.197 ms	159.30×

关键发现:

- 二级并行中动态调度提升有限 (8.16x → 8.21x)
- 三级并行中动态调度效果显著 (142.65x → 159.30x)
- 执行时间优化: 0.220ms → 0.197ms (10.9%提升)

论文写作

- 核心理论基础: 动态调度作为性能提升的理论依据
- 关键发现: 不同核函数 g 存在最优线程数 t 使性能达到最大
- 数学模型:
 - 签名过程表示为运行序列 $((g_1, t_1), ..., (g_n, t_n))$
 - 目标: 构建映射函数F: G→T
 - 为每个核函数 gi 分配最优线程配置 ti
- 最优线程配置映射函数 F
 - 基于核函数特性自动确定最优线程数
 - 减少人工调优需求,提高通用性
- ② 完整调度实现机制
 - 运行时线程分配与管理
 - 针对不同签名组件的专用优化
 - 最大化 GPU 资源利用率

老师评语

继续加快推进,特别写作

反复打磨论文写作

下周计划

- 最优线程配置映射函数 F 写作
- ② 拓展动态调度实现到 FORS 等组件

参考文献

Ziheng Wang, Xiaoshe Dong, Heng Chen, Yan Kang, and Qiang Wang.

Cuspx: Efficient gpu implementations of post-quantum signature sphincs < sup > + < /sup >.

IEEE Transactions on Computers, 74(1):15–28, 2025.