

## FIG.2A

```
RSTHGANIDPTFFLSRTVSNVISSIVFGDRFDYKDKEFLSLLRMMLGIFQFTSTSTGQ CLYEMFSSVMKHLPGPQQQAFQLLQGLEDFIAKKVEHNQRTLDPNSPRDFIDSFLIRMQ 6
                                                                                                                                                                                                                                                                                                                                                                                      IGKNRQPKFEDRAKMPYMEAVIHEIQRFGDVIPMSLARRVKKDTKFRDFFLPKGIEVF
                                                                                                                                                                                                                                                                                                                                                                                                                     PMLGSVLRDLRFFSNPRDFNPQHFLGEKGQFKKRDAFVPFSIRKRNCFGEGLARMELF
                                                                                                                                                                                                                                   NYLQLNTEQMYNSLMKISERYGPVFTIHLGPRRVVVLCGHDAVREALVDOAEEFSGRG
                                                                                                                                                                                                                                                                  EQATFDWVFKGYGVVFSNGERAKQLLRFAIATLRDFGVGKRGIEERIQEESGFLIEAI
                                                                                                                                                                                                                                                                                                                                                         EEEKNPNTEFYLKNLMMSTLNLFIAGTETVSTTLGYGFLLLMKHPEVEAKVHEEIDRV
                                                                                                                                                                                                        /translation=MLASGMLLVALLACLTVMVLMSVWQQRKSKGKLPPGPTPLPFIG
                                                        6308..6489)
                             2499..2659
                                                      ..4398,4873..5060,5577..5718,
                                                                                                                                                                                                                                                                                                                                                                                                                                                   LFFTTVMQNFRLKSSQSPKDIDVSPKHVGFATIPRNYTMSFLPR
                          2115..2264,
                             (791..970, 1237..1399,
                                                                                                                                             product=cytochrome P450"
                                                                                                                                                                        db_xref-PID:g1008462"
                                                                                    gene=CYP2A6V2:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          gene=CYP2A6V2:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               gene=CYP2A6V2:
                                                                                                                codon start=1
                                                       3207..3383,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1237..1399
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2115..2264
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            number=2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   number=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     791..970
5'UTR
CDS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           exon
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    exon
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             exon
```

ORIGIN

|                       |           |          |         |           |          |         |           |          |         |           |          |         |           |          |          |           |          |         | Ţ          |
|-----------------------|-----------|----------|---------|-----------|----------|---------|-----------|----------|---------|-----------|----------|---------|-----------|----------|----------|-----------|----------|---------|------------|
|                       |           |          |         |           |          |         |           |          |         |           |          |         |           |          |          |           |          |         | 1627       |
|                       |           |          |         |           |          |         |           |          |         |           |          |         |           |          |          |           |          |         | g          |
|                       | A6V2:     |          |         | A6V2:     |          |         | A6V2:     |          |         | A6V2:     |          |         | A6V2:     |          |          | A6V2:     |          |         | 1746       |
| /number=3<br>24992659 | gene=CYP2 | number=4 | 2073383 | gene=CYP2 | number=5 | 2564398 | gene=CYP2 | number=6 | 8735060 | gene=CYP2 | number=7 | 5775718 | gene=CYP2 | number=8 | 63086489 | gene=CYP2 | number=9 | 4906744 | 2196 c     |
| 7                     | _         | `        | ~       | _         | _        | 4       | \         | _        | Ţ       | _         | _        | Ŋ       | _         | _        | _        | _         | _        | 9       | Ø          |
|                       |           |          |         |           |          |         |           |          |         |           |          |         |           |          |          |           |          |         | 1646       |
| exon                  |           |          | exon    |           |          | exon    |           |          | exon    |           |          | exon    |           |          | exon     |           |          | 3'UTR   | BASE COUNT |
|                       |           |          |         |           |          |         |           |          |         |           |          |         |           |          |          |           |          |         |            |

### 5/59

## FIG.2A CONT. BASE COUNT

|            |            |            |            |            |            |            | •          |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| gatggcagtg | tctgggcatc | ctgggctgct | aaactccaca | ggaatcccc  | cacagccaca | acccccagat | caagtgctcc | ctcctaaatc | ccctctctg  | ctaggcagga | agccaaagtc | tctatcatcc | gcctgactgt | ctccgggacc | tgtacaactc | tgcctagttg | aatggagttt | ctgtgagaac | agagtggagg | tggccccgtg | tgccgtcagg |
| caatgaagaa | caatgaggat | ggacccagtg | ctcctcccag | ccatatgcct | cccctaaatg | ctcccctgga | atccaaagcc | ctgttgccc  | gtctggaggc | gtgtcccaag | ttatgtaatc | gccgtcacca | ttgctggcct | gggaagctgc | acagagcaga | gggtgggggc | agtcttagga | agctccctga | ggccccattc | gtgagcgcta | gtggacatga |
| ctccccttgc | tctgaggttc | gtcagcccct | ctacacactc | actttcaagt | caacagaaga | ttggattcct | cagaccccaa | tacagcttat | cacagattta | cttgctggct | aatgaggtaa | aaccacccca | tctggtggcc | gaagagcaag | gcagctgaac | gggtgtctcg | tgtggaccaġ | tgggatgtcc | ctcggtgctg | catcagatca | gtggtgctgt |
| tctggtcttc | ctggcctcac | gctaaatcaa | gctgggcttg | tagccccgag | gcatcctcca | acccagacct | ttctcactct | tcctcagttc | cctgaagtac | cttatcctcc | tgggaggtga | tataaaggca | cagggatgct | ggcagcagag | gaaactacct | acagggagat | ggttgaccag | gacaggatct | cacatgacat | cacccacctc | ccggcgggtc |
| gaaatatggc | ggcagccatc | tctgggcaaa | ggagaacgcc | tgggtcttcc | ccttaaccct | ccctaataaa | ttggggtgca | tattccaaac | cggcacccct | ctggggtccc | ggcatgtagt | tttcaggcag | atgctggcct | atgtctgttt | cccttcattg | gtgtcccaag | tgtggcaggg | gcatcagaaa | agcatcccag | taaccactcc | acttggggcc |
| aagttcccct | gaggttctat | aagagacagc | gggctttctg | cccacagccc | ttcctgagac | ctttgtctta | ccgcacaact | cctatgcaaa | cacagccctg | $\circ$    | ttcatggtgg | catccctct  | ctctaccacc | gatggtcttg | caccccattg | cctcatgaag | gctggggctt | tggagtttca | ctgggtgcga | gttctccctc | ttcaccattc |
| ↔          | 61         | 121        | $\infty$   | 241        | 0          | 9          | 421        | 481        | 541        | 601        | 661        | 721        | 781        | 841        | 901        | 961        | 1021       | 1081       | 1141       | 1201       | 1261       |

# 1321 gaggetetgg tggaccagge tgaggagtte agegggegag gegageaage caeettegae

| ט ט                       | ,,       |            | , ,        | ,          |            | , ma       | <i>r</i>   | <i>T</i> \ |            |            |            | ι          | ಹ          | <i>(</i> ) | 75         | g          | 7          |            | Ø          | Ö          | Ö          |
|---------------------------|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| cacgaaggtc                | gtc      | tccctcacct | ccttattctc | tgggtttctg | ttctgggctt | taggatgcca | ctcttccttc | cttaagaatc | cccaccctcc | atccaatgga | ctgggtaata | tcctgcgctt | agcgcatcca | aggggaccc  | gttctgcctg | tggcgctgg  | ctctgagttg | atcccacctt | accgctttga | tccagttcac | ttaccaaaa  |
| gcaggtgga                 | aggataa  | tccatgtgta | tgccccacct | ctccatctct | ccctcttagc | tcctctgtct | gtaacagtct | tccagctcag | atctcactac | tgcggacgcg | ctggccgtac | gccaagcagc | ggcatcgagg | cacggtgagc | acccgcgcgc | ccctggagtc | ctcctcagac | gccaatatcg | gtctttgggg | ctaggaatct | gtgaaggccc |
| agcagaaggtg<br>ggggaaggtg | tgacaact | ttggggcctc | tgactatata | teceetetet | gtctttgagg | tctcaattct | ccatctcctg | aactctctgc | atctccccat | cccactgccc | atctctctgt | cggggagcgc | gggcaagcga | ccggagcacg | aggacgagga | gcacttccag | aattctgact | acccggaggc | cagctccatt | gcgcatgatg | agcccggccc |
| tgaccaagag<br>tgaccaagag  | tgactct  | tctccctaca | gattcctccc | teceetetet | gtctacatga | cggatccctt | tcttcaggct | ctcaatatta | ctccacccag | tctttctctc | agctatgtgc | tattcagcaa | acttcggggt | tcgaggccat | gaaaacaccc | aaaggcgccc | tgcctcctgg | ctcccgacat | ccaatgtcat | tgtcactgtt | taatggttgc |
| lygallayyl<br>aaggetatgg  | ccttc    | tccctcccca | gccctgtcct | gtctcctctt | ctgggtctct | ctcatctctc | tacttccaca | ctgtttctat | agaggatgtc | tccatcactc | aatgccgtga | ctaggcgtgg | accctgaggg | ggcttcctca | gcaggagaag | ctaggtgggg | aacaaggccc | caaccccctt | cgcacagtct | aaagagttcc | acggggcagg |
| gaggicicigg<br>tgggtcttca | ಹ        | agtctggtct | tctccagc   | tctcactgga | tttaccagcc | ctctgggttt | gggttattcc | cagaccctct | tcacaccaag | atcctctgcc | gtgtggagct | acctgatcga | tgccatcgcc | ggaggagtcg | gtgcggg    | g          | aatttggctc | actctctccc | cttcctgagc | ctataaggac | gtcaacctcc |
| ى ر                       | 1441     | 50         | 56         | 62         | 68         | 74         | 80         | 86         | 92         | 98         | 04         | 10         | 16         | 22         | 28         | 34         | 40         | 46         | 52         | 58         | 2641       |

gattgcttga taagaaaaa gtcagcaagg ctgtaatccc gaccagcctg catggtggcg gtctgggtga attcaaatta ttcatagcca ttcattgact atgcaaagcc tgtccttccc atgaaacacc gattagttcc tcagttcctt aagggctgg gctcccaaa ggcacgtgtt ttcttgaata gtgagcctg ccccggacag agacccggg caagtcagta cggacagatg taaaaagtaa gagtcagggc ggctaacagc aggagttcga attagttggg ttgcactcca gaggctggag acacaggccc tgcctttaac ccgtgacagc gctggaggac cccacgggac ctgcggggag ctcttcggtg tacccaggtc aaactttaga teccaeegee gagtggaacc cacaacagat tctcaccctg tgataattga gcaacgccag tcaggaggct gatcacggca atcacttgtt ttagcaagac tgggtgccgt acctgaggtc aaatccaaaa ccagcagcca caggcagatg tgctgcaagg atcccaattc agctcagctc ggagaccaga agctcctgcc ggccccaaat caaattggca accgggatag agatgctcc atgagatgt ccttcctgt ctccagctac cctgtgcaac acagctaagt agcattgggg aaaaaatta caggtggatc tctctactaa aatgagccaa cgcacgctgg gaggtacacc gggagtgggg cacaattggc gcctttcagt gggtacctaa cctaaccacc cattcccatc cccagctct ggggaaggg ctccagggac gcataccctc aatttctaac ccgatttggg gagaaggaag cagaggttgc gcatgtgcag tggcgtccgg aaaaagctg ccctgtgtca aaatcagtct taataatcct gaggccgagg tcaaaccccg ctctctgcaa gcagcaacag gcacaaccag ccgcatgcag aaacaaatcc ctctgaaata ttcccctacc aaatcagtcc atcccctgct acttaccggt cggaaaccct ctggcaggat taacgaaggt atggtcatgc gctcaggagt aaaaacaaa cgaagggggg cagaatgagg ttcccatcct agaaggtgga aggcagaggg acctcatca agcactttgg gccaacatgg tgccaggacc ccttctcat tatccggccc ccttgctatg acagagcctg cccatcccca tttaacacc cggcaaattg tgtcccctca tggttgtcca 961 3781 841 901 3661 3181 3241 3301 3241 3481 3541 3601 3061 3361 3001 941

### 8/59

| gtctcccaaa | tggaccccat | tagaaggaca | aactcctgcc | aggtcccca  | cagaaatctc | 34         |
|------------|------------|------------|------------|------------|------------|------------|
| gtcataggga | tcggccttt  | ccctttccat | aacagaagcc | tatcttaaga | ccaaacttcc |            |
| acacatgttc | ggagaatcaa | ctttgtgtca | tctccagact | gtcctgcatc | acactcctga | 22         |
| ttccacttag | cgttccacct | ccaccacatc | acttccccaa | gtcaaaaaag | ccctcaatca | 16         |
| ctgtcccact | tttctagacc | cattagaagc | atcccaccca | tgtccccagc | ccctctctg  | 10         |
| gggactccag | ccagactacg | cccccaccc  | gtgctatccg | cctccctaag | gggatttctt | 04         |
| accaagtttc | caaaaaggac | cccgcagagt | atgagtttgg | cgtgatcccc | ggag       | 98         |
| gagatccaaa | agtgatccac | acatggaggc | aagatgccct | ggaccgggcc | ccaagtttga | 92         |
| aaccggcagc | gatcggcaag | ttgacagagt | catgaggaga | agccaaggtc | ctcctcccc  | 86         |
| cacattcccc | gatacctaaa | gagaccccta | ttcctgctct | ggactatcat | ttgcctatcc | 80         |
| ccaccccatt | ggcatttcat | cataggcgga | acttccgtct | tgaatgctct | gttctgt    | 74         |
| gggtgatgtc | caatgcgaat | cctactccaa | ttaacaggat | cacaacctgg | gtgattctgg | 68         |
| tgcctcccct | ttcctccctg | atcccctaag | ccaccgggtc | actgcccgtt | ctgagtgccc | 62         |
| cccaagccca | tcacttctgt | gattggtcag | tgtctgcact | atattgaaaa | agatattaaa | 56         |
| gagtctcatt | ggcatcagct | tcagctggta | agggcaacat | gtccagagac | gtgacttgct | 50         |
| accctgagac | agatcccggg | cacctgtccc | gcaatgtccc | ttcgactggt | aaaattcccc | <b>4</b> 4 |
| ccagaccctc | gtggagggcc | ggggacggaa | aaggctggag | ggtggagggt | agcacccaga | 38         |
| ctgctcatga | tggcttctta | ccctgcacta | gtcagcacca | caccgagacg | tcattgcagg | 32         |
| ttgaacctct | gatgagcacg | agaacctgat | ttctacttga | caacacggag | agaagaaccc | 26         |
| cttcaggagg | cccctctcc  | tgtcctaaag | ggagtgaggt | aggtcaagca | tggtgccctg | 20         |
| aacccctaga | ccatggggtg | agtggaagat | tgaacctaag | cccattggtc | cctcttgacc | 14         |
| cttggggtcc | ctgtgtagat | agactcgagt | ggattgcgct | gagggtgctg | aagagaggtc | 08         |
| tcttgcccca | caccctgcgg | ccctcttctc | gatctagggc | agtctggtag | tcctagagcg | $\circ$    |

| aagagtagta | ttatgctatg | aacccttaca | agaggaagga | agctgggatg | ggtgcttccg | 99   |
|------------|------------|------------|------------|------------|------------|------|
| accttgataa | ggctcagttc | aaacagaagc | ggaagagaag | gtggctagag | aaggggc    | 09   |
| ggcggaaagg | cag        | gctaagactg | gagggcgca  | gggcttggga | g          | 54   |
| gaaagggcag | cggggccagg | gtctggtggg | gccggtgaag | cgagggctgt | ccccgctgag | 6481 |
| gagcttcctg | actacaccat | atcccacgaa | ctttgccacg | aacacgtggg | gtgtccccca | 42   |
| ggacattgac | agtcacctaa | aagtcctccc | cttccgcctc | tcatgcagaa | ttcaccaccg | 36   |
| cttctcttc  | gaatggagct | ggcctggcca | tttcggagaa | agcggaactg | tcctcaggaa | 30   |
| ccgcctctcc | tccacccctc | gggcttcacc | cactgagagt | ggcgaggctg | teggtactgg | 24   |
| cagctggagg | gggagagccg | cttcctccct | atattccacc | tcagggccat | ¥          | 18   |
| aggctccctc | gagggtcaag | tgaggtcaag | tcaaggaaac | tttgggtcac | ttggtcatct | 12   |
| accccatctt | gcatcgatca | tggacacctg | cctcccattg | ggatcttaaa | gggggaagg  | 90   |
| gttcttatct | atatttggga | acagcaggtc | agatgacggc | cctaaaaagg | cttcagcatc | 00   |
| acaggagatt | ctagggtcac | atttatttcc | agaatcagag | aaggccagag | g          | 94   |
| tcagaggcgg | catacccctt | aaggaaacat | ggcaaaagga | cctgtgccca | gcacc      | 88   |
| taactaccaa | gatactccct | gccaccaggt | ctaccgtcga | tgttagcaat | ggcaagttcc | 82   |
| tccccagctt | gcctagtatt | ctgccgtgta | gttcccctct | cccttaccca | gcaggggcc  | 9 /  |
| actcacacca | caggcttact | tgtttggtgc | aagagaccac | ctccatcagt | ىد         | 70   |
| cgtgatgctt | gtttaagaag | agaaggggca | ttcctgggtg | tccccagcac | gggacttcaa | 64   |
| tccaacccc  | caggttcttc | tgagagacct | ggctccgtgc | ccctatgttg | tagaagtgtt | 58   |
| tcccagggca | tactactaca | acatacacct | ccgcctcatc | atcccccaac | actctcaaca | 52   |
| gcccctgtgt | tececeteca | gcaccctagt | cctcaccggg | tgccacttcc | ttcccatgcc | 46   |
| aggtccccaa | cctccctcag | cccccaaggt | aaccttctat | cagagatgtg | cttcctgtt  | 5401 |

cagataaggc acatacaggg ctgtccgggg gcccacactc cccattttac taagtgccca aaaagcacc caaaaaccat tgcttgctac ggcgttcatg tcacaaaaca acagattett ctgaacatcc ctgcacacat acatgactgg cacctttgtt gtgtaatctg acccccgtgt ctctgatgtc atcacatggc cctgccttca acacaacgag ccttcgaagg agccttctag gggtggttgc gactacccgg ctgagcacgt cacaaaaccc agaaagttgt ctgtgcccat ttagtataga cagcccaggg ctcttatttc cattcagagt cctaatttgc gagacctggg aacatgctgt actgaggctt gaacacagat gcaaaacagt aacaa ataatagcag. gagttcccca cactgtagcc tcagtccatt tgcacgctca gaaaatctgc tattcctcac tcacctactc acgtgacaaa 7021 7081 7141 6781 6841 6901 6961

Location/Qualifiers

FEATURES

## =1G.2B

| • |                                                                         |     | •                                          |              |                                                          |                                                |                     |             |                   |                                                              |                                                               |                                             |                     |         |               |                                             |                                              |          |                                                           |                                  |                                              |
|---|-------------------------------------------------------------------------|-----|--------------------------------------------|--------------|----------------------------------------------------------|------------------------------------------------|---------------------|-------------|-------------------|--------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|---------------------|---------|---------------|---------------------------------------------|----------------------------------------------|----------|-----------------------------------------------------------|----------------------------------|----------------------------------------------|
|   | 29-MAY-1992                                                             |     |                                            |              | Chordata;                                                | minidae; Homo.                                 |                     |             |                   | ancer Research Fund, 🖸                                       |                                                               |                                             | -                   |         | P450IIB6 gene |                                             |                                              |          | cDNA clones. **map:                                       |                                  | J.S.                                         |
|   | HSP452B6 1415 bp RNA<br>Human MRNA FOR CYTOCHROME P-450IIVB6.<br>X13494 | •   | Cytochrome; cytochrome P450IIB6.<br>human. | Homo sapiens | Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata; | Vertebrata; Eutheria; Primates; Catarrhini; Ho | 1 (bases 1 to 1415) | Miles, J.S. | Direct Submission | Submitted (10-NOV-1988) Miles J.S., Imperial Cancer Research | Lab of Molecular Phrmacology and Drug Metabolism, Hugh Robson | Building, George Square, Edinburgh, EH8 9XD | 2 (bases 1 to 1415) |         |               | generates a high level of aberrant messages | Nucleic Acids Res. 17 (20), 8241-8255 (1989) | 90045947 | The sequence is a compilation of genomic and cDNA clones. | chromosomal location=19q12-13.2; | Data kindly reviewed (13-NOV-1989) by Miles, |
|   | LOCUS<br>DEFINITION<br>ACCESSION                                        | NID | KEYWORDS<br>SOHRCE                         | ORGANISM     |                                                          |                                                | REFERENCE           | AUTHORS     | TITLE             | JOURNAL                                                      |                                                               |                                             | REFERENCE           | AUTHORS | TITLE         |                                             | JOURNAL                                      | MEDLINE  | COMMENT                                                   |                                  |                                              |

gaatteegee etgeaceeat gaeegeetee caeeagggee eegeeetetg eeettttgg

| :      | រី<br>រ                          | u.                     |                   |                        |                        |                    |                         |                       |                          | Н            | 316 t            |        |
|--------|----------------------------------|------------------------|-------------------|------------------------|------------------------|--------------------|-------------------------|-----------------------|--------------------------|--------------|------------------|--------|
| -      | omo sapie                        | 1, partial"            | 2 "               | 3 "                    | 4 "                    | 5 "                | , 9                     | ,, L                  | 8                        | 9", coding   | 328 g            |        |
| 11415  | /organism="Homo sapiens"<br>9110 | /note=exon 1<br>111273 | /note=exon 274423 | /note=exon 3<br>424584 | /note=exon 4<br>585761 | /note=exon 5762903 | /note=exon (<br>9041091 | /note=exon 7 10921233 | /note=exon 8<br>12341415 | /note=exon 9 | a 430 c          |        |
| source | misc-feature                     | misc-feature           | misc-feature      | misc-feature           | misc-feature           | misc-feature       | misc-feature            | misc-feature          | misc-feature             |              | BASE COUNT 341 a | ORIGIN |

### 13/59

|            |            |            |            |            | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | )        |
|------------|------------|------------|------------|------------|-----------------------------------------|----------|
|            |            | actaa      | ttactacac  | ccadatccac | でしたでしてし                                 | ~        |
| ggcaaaatac | gtgtggtgtg | cacccagga  | atcgatctga | cccagaagac | gccccgtggc                              | 32       |
| tccatggcca | ccagaacttc | ccaccatcct | ctcttcttca | ggaattgttc | tcgcccgagc                              | 26       |
| ggtgaaggca | gatttgtctt | tagggaagcg | cccttctcct | agcttttatc | aaaagactga                              | 1201     |
| ggggcactga | ggatgccaat | accactttct | ttcaatcctg | accagacgcc | actttgaaaa                              | 14       |
| gacccacact | tgctctccat | tcctgagcac | gtatttctca | ggacacagaa | tcatccccaa                              | $\infty$ |
| cgagggtaca | caccagcttc | tcacccaaca | ccccacattg | catgggtgtg | accttctccc                              | 02       |
| agattttccg | tgagattcag | cagtcatcta | tacacagagg | caaaatgcca | atgaccgagc                              | 9        |
| ccagagcttc | acatcgccct | tgattggccc | attgaacagg | ctacagggag | cagagagagt                              | 0        |
| cctcatgttg | gctcaaatac | tcctgctcat | cgctacggct | caccactctc | agaccaccag                              | ゼ        |
| gctggcactg | gctcttcttt | acacgctctc | ctcaacctca | ccaccagaac | gtgaattcag                              | $\infty$ |
| aacgcacaca | agagaaatcc | acatggaaaa | tacctgctcc | catcgacacc | ccaaggacct                              | $\sim$   |
| cccagcgccc | aaccctggac | agcaccgtga | agtgtggaga | cattggccac | tcaatgctta                              | 9        |
| ctgcaggaaa | ttacaaaaac | acaggcaagt | cctggggcac | gaaatacttt | ctggcttctt                              | 0        |
| gagctcttct | ccagctgttt | ctgtattcgg | ctcatcagct | gactttttca | tgttctacca                              | ゼ        |
| atgctgaact | gttcctgaag | aagatcaaga | ttccactacc | tggaaaacga | ccatcgtctt                              | $\infty$ |
| atcatctgct | taccgccaac | tccagtccat | accttcctct | catggacccc | agggggccct                              | $\sim$   |
| cggaaatcca | agaggagctt | agtgtctgat | gaggaggete | gcggattcag | gtgtggagga                              | 9        |
| ggaaagcgga | cttcgggatg | ctatgaggga | tctgtgacca | teggegatte | ggaaggtgct                              | 0        |
| ggaaaccgct | ctttgccaat | atggtgtgat | ttccggggat | cgacccattc | tcgccatggt                              | <b>T</b> |
| cggggaaaaa | cttctctggc | aggctgaggc | cttgtggaca | acgggaggcc | tagaggccat                              | 181      |
| ctgtgtggag | cgtggtcatg | gacccaggcc | gtacacctgg | cgtcttcacg | aatatgggga                              | $\sim$   |
| ttccgagaga | ctttctgagg | tactcaaatc | agaagaggcc | gcagatggat | gaaaccttct                              | 61       |











**SUBSTITUTE SHEET (RULE 26)** 





## BEST AVAILABLE COPY

20/59







**SUBSTITUTE SHEET (RULE 26)** 





## CYP2A6 Antisense Knockdown in HepG2 Cells



Oligodeoxynucleotide Treatment

FIG.12



26/59



75 100 30 K20 K27 L18 L19 L20 L23 L24 L25 L26 L27 15



75 100 30 L29 L30 L31 L32 L33 L34 L36 L38 L39 L40 15



F16.14 C.

L41 L43 L44 L45 L47 L60 L61 L62 L63 L64







**SUBSTITUTE SHEET (RULE 26)** 



**SUBSTITUTE SHEET (RULE 26)** 



**SUBSTITUTE SHEET (RULE 26)** 



**SUBSTITUTE SHEET (RULE 26)** 





**SUBSTITUTE SHEET (RULE 26)** 

### 35/59

FIG.23A

### SUBSTITUTE SHEET (RULE 26)

36/59

$$C_2H_5$$
  $C_1H_1$   $CH_2$   $CH_3$ 

Pilocarpine

**Nicotine** 

$$\begin{array}{c|c} \text{CI} & \text{CI} \\ \text{H}_2\text{N} - \begin{array}{c} \text{CH}_2 - \begin{array}{c} \text{CI} \\ \text{NH}_2 \end{array} \end{array}$$

4,4'-Methylene bis[2-chloroaniline

6-Aminochrysene

 $\alpha$ -Naphthoflavone

FIG.23B

About 80% activity left at 0.05 mM concentration

Dicumarol

70% inhibition at 0.5 mM concentration

SM-12502

[(CH<sub>3</sub>)<sub>2</sub>N]<sub>3</sub>P(O)

Hexamethylphosphoramide

(CH<sub>3</sub>)<sub>2</sub> NNO

N-Nitrosodimethylamine

FIG.23C

| < | ι |
|---|---|
| 7 | Ŧ |
| C | V |
|   | • |
| C | 5 |
| - | _ |
| L | 乚 |

The SAS System Pharmacokinetics of nicotine Experiment BC1;

|                                                                 |                           |           | F Value Pr > F<br>4.66 0.0397 |                    | AUC Mean<br>90876.07 | Value Pr > F<br>5.43 0.0294<br>0.09 0.7690 |                  |          |                             |
|-----------------------------------------------------------------|---------------------------|-----------|-------------------------------|--------------------|----------------------|--------------------------------------------|------------------|----------|-----------------------------|
| re-assays                                                       | <br>                      |           |                               |                    |                      | ഥ                                          |                  |          | ٠                           |
|                                                                 | COTININE                  | Mean      | Square 151124745              | 0/06#0#70/0        | Root MSE<br>18001.38 | Mean Square<br>1758023983<br>30588081      | Means            | AUC      | 92354.2010<br>89397.9447    |
| sed analysis of kinetics based on<br>Does treatment affect AUC? | Compound assayed=COTININE | Jo mnS    | od o                          | 12523030000        | C.V.<br>19.80871     | Type I SS<br>10548143898<br>30588081       | Least Squares Me |          | Methoxsalen10-50<br>Placebo |
| Revised analy<br>Do                                             | Соп                       | AUC       | DF<br>7                       | 13                 | R-Square<br>0.844742 | DF<br>6                                    | I                | TREATMNT | Methoxs<br>Placebo          |
| K.                                                              |                           | Variable: |                               | Total              |                      |                                            |                  |          |                             |
|                                                                 | ;<br>;<br>;<br>;<br>;     | Dependent | Source<br>Model               | Error<br>Corrected |                      | Source<br>SUBJ<br>TREATMNT                 |                  |          |                             |

38/59

|   | L | 1 |
|---|---|---|
| 4 | ∀ | ۲ |
| C | ` | J |
|   | _ | 3 |
|   | 1 | ) |
|   | - | - |
| L | ı | _ |

The SAS System Experiment BC1; Pharmacokinetics of nicotine Revised analysis of kinetics based on re-assays Does treatment affect AUC?

39/59





**SUBSTITUTE SHEET (RULE 26)** 











**SUBSTITUTE SHEET (RULE 26)** 

Inhibition of Nicotine to Cotinine Metabolism by various Compounds

| Inhibitor                  | Ŋ                                       | % Inhibition at 10 uM | % Inhibition at 100 uM                  | % Inhibition at 150 uM |   |
|----------------------------|-----------------------------------------|-----------------------|-----------------------------------------|------------------------|---|
| coumarin                   | 2 uM (n+4)                              | 65 (n=1)              | 90 (n=1)                                | 85 +/- 11 (SD, n=31)   |   |
| 7-methoxycoumarin          | 2.5 uM (n=1)                            | 40 (n=1)              | 60 (n=3)                                |                        |   |
| 7-methylcoumarin           | 15 uM⁴                                  | 20 (n=1)              | 70 (n=3)                                |                        |   |
| 7-ethoxycoumarin           | >100 uM*                                | 10 (n=1)              | 20 (n=3)                                |                        |   |
| 7-hydroxycoumarin          | 200 uM                                  |                       | 25 (n+1                                 |                        | • |
| diethyldithiocarbamic acid | 14.5 uM (n=1)                           |                       |                                         |                        |   |
| pilocarpine                | 0.1 uM                                  |                       |                                         |                        | · |
| naringenin                 | 4.3 uM (n=1)                            | 30 (n=1)              | 70 (n=3)                                |                        |   |
| methoxsalen                | 0.02 uM (n=1)                           |                       |                                         |                        |   |
| naringin                   | .100 uM*                                |                       | 10 (n=1)                                |                        |   |
| bupropion                  |                                         | 20 (n=1)              | 30 (n=1)                                |                        |   |
| orphenadrine               | *************************************** |                       | *************************************** | 20 +/- 16 (SD, n=30)   |   |
| troleandomycin             |                                         |                       |                                         | 3 +/- 11 (SD, n=30)    |   |

all nicotine concentrations were at the Km value for cotinine formation in their respective livers \* estimated from screening studies with 10 and 100 uM inhibitor concentrations

FIG.30A

FIG.30B

| the CYP2A6 Substrate Coumarin to 7-Hydroxycoumarin Metabolism by various compound |              |                                        |
|-----------------------------------------------------------------------------------|--------------|----------------------------------------|
| strate Coumarin to 7-H                                                            | Monkey liver | 1.69 uM<br>24.1 uM<br>0.9 uM           |
|                                                                                   | Human liver  | 0.29 uM<br>100.1 uM<br>0.9 uM          |
| Ki Values for the Inhibition of                                                   | Inhibitor    | methoxsalen<br>nicotine<br>pilocarpine |

**SUBSTITUTE SHEET (RULE 26)** 

49/59

Effect of Various Compounds on Cotinine Formation % control cotinine formation

| Inhibitor         | 10 uM | 100 uM |
|-------------------|-------|--------|
| coumarin          | 35    | 10     |
| naringenin        | 70    | 30     |
| 7-methylcoumarin  | 80    | 30     |
| 7-methoxycoumarin | 60    | 40     |
| bupropion         | 80    | 70     |
| 7-ethoxycoumarin  | 90    | 80     |

FIG.30C



SUBSTITUTE SHEET (RULE 26)













## Comparsison Between Morning and Afternoon Testing Sessions





