Diszkrét matematika 2 - Minta ZH1

2015 tavasz

Gráfok

- 1. Van-e olyan 7 pontú egyszerű gráf, melyben a csúcsok foka rendre
 - (a) 4, 4, 4, 3, 3, 3, 3;
 - (b) 6, 3, 3, 2, 2, 2, 0;
 - (c) 5, 5, 5, 4, 4, 2, 2;
 - (d) 5, 5, 5, 2, 2, 2, 1;
- 2. Igazoljuk, hogy ha egy hurokélt nem tartalmazó véges gráf minden pontjának foka 4, akkor élei színezhetők piros és kék színekkel úgy, hogy minden szögponthoz két piros és két kék él illeszkedjen.
- 3. Bizonyítsuk be, hogy ha egy véges összefüggő gráf K köréből egy élt eltörölve a gráf egy leghosszabb útját kapjuk, akkor K Hamilton–köre a gráfnak.

Csoportok

- 4. Legyen n rögzített pozitív egész szám. Lássuk be, hogy az \$n\$-edik egységgyökök halmaza a szorzásra nézve csoportot alkot.
- 5. Legyen n=50 és jelölje D_n a szabályos \$n\$-szög egybevágó leképezéseit ahol a ε az óramutató forgásának ellentétes irányba (\circlearrowleft) $\frac{2\pi}{n}$ radiánnal való forgatást a τ pedig a függőleges szimmetria tengelyre való tükrözést jelöli.
 - (a) Soroljuk fel D_n elemeit.
 - (b) Hogy lehetne a $\varphi \circ \tau \circ \varphi^2 \circ \tau \circ \varphi$ elemet egyszerűbben kifejezni.
 - (c) Mi az előző pontban szereplő elem rendje és generátuma?
 - (d) Mi az előző pontban szereplő generátum szerinti mellék osztályok?
- 1. A komplex számok $\mathbb C$ halmazában a * és o műveleteket az alábbi módon értelmezzük: $a*b=a+b+1, \ a\circ b=a+b+i$. Igazoljuk, hogy a $(\mathbb C,*)$ és a $(\mathbb C,\circ)$ struktúrák csoportok. Igazoljuk, hogy az $\varphi:a\to ai$ leképezés izomorfizmust létesít a $(\mathbb C,*)$ és a $(\mathbb C,\circ)$ csoportok között.