12) Multifaceted Investigation of the Causal Effect

Vitor Kamada

August 2018

Mincer (1974): Schooling, Experience, and Earnings

$$\ln Y_i = \alpha + \rho S_i + \beta_1 X_i + \beta_2 X_i^2 + e_i$$

$$\ln Y_i = \alpha + .070 S_i + e_i$$

$$\ln Y_i = \alpha + .107 S_i + .081 X_i - .0012 X_i^2 + e_i$$

2 / 15

Vitor Kamada ECO 6100 Econometrics August 2018

Griliches (1977): Ability Bias

$$\ln Y_i = \alpha^l + \rho^l S_i + \gamma A_i + e_i$$

$$\rho^s = \rho^l + \underbrace{\delta_{AS} \gamma}_{\text{ability bias}},$$

IQ as proxy for ability and controlling for potential experience:

$$\rho^{l} = .059$$
 $\rho^{s} = .068$

How Bad Control Creates Selection Bias

	Potential occupation		Potential earnings		Average earnings by occupation		
Type of worker	Without college (1)	With college (2)	Without college (3)	With college (4)	Without college (5)	With college (6)	
Always Blue (AB)	Blue	Blue	1,000	1,500	Blue	Blue 1,500	
Blue White (BW)	Blue	White	2,000	2,500	1,500	White 3,000	
Always White (AW)	White	White	3,000	3,500	White 3,000		

Angrist & Pischke (2014)

4/15

Twins Analysis

$$\ln Y_{if} = \alpha^{l} + \rho^{l} S_{if} + \lambda A_{if} + e_{if}^{l}$$

$$\ln Y_{1,f} = \alpha^{l} + \rho^{l} S_{1,f} + \lambda A_{f} + e_{1,f}^{l}$$

$$\ln Y_{2,f} = \alpha^{l} + \rho^{l} S_{2,f} + \lambda A_{f} + e_{2,f}^{l}$$

$$\ln Y_{1,f} - \ln Y_{2,f} = \rho^l \left(S_{1,f} - S_{2,f} \right) + e^l_{1,f} - e^l_{2,f}$$

4□ > 4□ > 4 = > 4 = > = 90

Classical Measurement Error

$$Y_i = \alpha + \beta S_i^* + e_i$$

$$S_i = S_i^* + m_i$$

$$E[m_i] = 0$$

 $C(S_i^*, m_i) = C(e_i, m_i) = 0.$

Attenuation Bias

$$\beta = \frac{C(Y_i, S_i^*)}{V(S_i^*)}.$$

$$\beta_b = \frac{C(Y_i, S_i)}{V(S_i)}$$

$$= \frac{C(\alpha + \beta S_i^* + e_i, S_i^* + m_i)}{V(S_i)}$$

$$= \frac{C(\alpha + \beta S_i^* + e_i, S_i^*)}{V(S_i)} = \beta \frac{V(S_i^*)}{V(S_i)}$$

Returns to Schooling for Twinsburg Twins

10	Dependent variable				
	Log wage	Difference in log wage (2)	Log wage	Difference in log wage (4)	
Years of education	.110 (.010)		.116 (.011)		
Difference in years of education		.062 (.020)		.108 (.034)	
Age	.104 (.012)		.104 (.012)		
Age squared/100	106 (.015)		106 (.015)		
Dummy for female	318 (.040)		316 (.040)		
Dummy for white	100 (.068)		098 (.068)		
Instrument education with twin report	No	No	Yes	Yes 340	
Sample size	680	340	680	340	

8 / 15

Vitor Kamada ECO 6100 Econometrics August 2018

Returns to Schooling Using Child Labor Law Instruments

	Dependent variable				
	Years of schooling		Log wee	kly wages	
	(1)	(2)	(3)	(4)	
A. First-stage a	nd reduced	d-form estim	ates		
Child labor law req. 7 years	.166 (.067)	024 (.048)	.010 (.011)	013 (.011)	
Child labor law req. 8 years	.191 (.062)	.024 (.051)	.013 (.010)	.005	
Child labor law req. 9 years or more	.400 (.098)	.016 (.053)	.046 (.017)	.000	
B. Seco	nd-stage e	stimates		(.014)	
Years of education			.124 (.036)	.399 (.360)	
State of birth dummies × linear year of birth trends	No	Yes	No	Yes	
Vitor Kamada EC	O 6100 Econo	ometrics		August	

August 2018 9/15

The Quarter of Birth First Stage

The Quarter of Birth Reduced Form

Returns to Schooling Using a Single Quarter of Birth Instrument

	Born in quarters 1–3	Born in quarter 4	Difference S	(2014)
Log weekly wage	5.8983	5.9051		
Years of education	12.7473	12.8394	(.0132)	& Pischke
IV estimate of the returns to schooling			.074 (.028)	Angrist

Vitor Kamada ECO 6100 Econometrics August 2018 12 / 15

Returns to Schooling Using Alternative Quarter of Birth Instruments

	OLS	2SLS	OLS	2SLS	2SLS	•
	(1)	(2)	(3)	(4)	(5)	
Years of education	.071	.074	.071	.075	.105	(2014)
	(.0004)	(.028)	(.0004)	(.028)	(.020)	
First-stage F-statistic		48		47	33	Pischke
Instruments	None	Quarter 4	None	Quarter 4	3 quarter dummies	-
Year of birth controls	No	No	Yes	Yes	Yes	Ang

13 / 15

Vitor Kamada ECO 6100 Econometrics August 2018

Last-Chance Exam Scores and Texas Sheepskin

Fuzzy RD first stage of nearly .5

Dummy for passing the exit exam as an IV for the effect of diploma receipt on earnings

The Effect of Last-Chance Exam Scores on Earnings

Diploma Effect = \$52 and SE = \$630

(ロ) (個) (重) (重) (回) (の)

15 / 15