1. We can represent the convolution operation when the kernel is centered on the pixel of interest by? Note that I and K represents the image and the kernel respectively.

A.
$$S_{ij} = \sum_{a=-\lfloor \frac{m}{2} \rfloor}^{\lfloor \frac{m}{2} \rfloor} \sum_{b=-\lfloor \frac{n}{2} \rfloor}^{\lfloor \frac{n}{2} \rfloor} I_{i-a,j-b} K_{a,b}$$

B.
$$S_{ij} = \sum_{a=\lfloor -\frac{m}{2} \rfloor}^{\lfloor \frac{m}{2} \rfloor} \sum_{b=\lfloor -\frac{n}{2} \rfloor}^{\lfloor \frac{n}{2} \rfloor} I_{i-a,j-b} K_{\frac{m}{2}+a,\frac{n}{2}+b}$$

C.
$$S_{ij} = \sum_{a=0}^{m-1} \sum_{b=0}^{n-1} I_{i+a,j+b} K_{a,b}$$

Solution: Option B is the correct answer.

2. What is the output dimension of the resulting image when a 7×7 kernel is applied to a 9×9 image?

A.
$$3 \times 3$$

B.
$$5 \times 5$$

C.
$$2 \times 2$$

Solution: Option A is the correct option.

3. Given a $128 \times 128 \times 3$ image and 6 filters of size $9 \times 9 \times 3$, what will be the dimension of the output volume when a stride of 1 and a padding of 2 is considered?

A.
$$124 \times 124 \times 6$$

B.
$$119 \times 119 \times 6$$

C.
$$121 \times 121 \times 6$$

Solution: Using the formula $W_2 = \frac{W_1 - F + 2P}{S} + 1$ and $H_2 = \frac{H_1 - F + 2P}{S} + 1$, we get $W_2 = H_2 = 128 - 9 + 4 + 1 = 124$ and $D_2 = 6 = \text{no.}$ of filters. Hence, **Option A** is the correct answer.

4. Consider the following Convolutional neural network where all the convolution filters are of size 3×3 . For all the convolution layers, the stride S = 1 and padding P = 1:

- CONV1: convolutional layer which takes an image of size $28 \times 28 \times 1$ as input, and produces 64 outputs (64 filters of size $3 \times 3 \times 1$)
- POOL1: 2×2 max-pooling layer

- CONV2: convolutional layer with 64 inputs, 128 outputs (128 filters of size $3 \times 3 \times 64$)
- POOL2: 2×2 max-pooling layer
- CONV3: convolutional layer with 128 inputs, 256 outputs
- CONV4: convolutional layer with 256 inputs, 256 outputs
- **POOL3**: 2×2 max-pooling layer
- FC1: fully connected layer with 1024 outputs

What is the number of parameters in the FC1 layer?

- A. 256 * 1024
- B. 4096 * 1024
- C. 1024 * 1024

Solution: The number of parameters in the model are :

Layer	Input Size	Output Size	# Parameters
Conv 1	(28,28,1)	(28, 28, 64)	$3 \times 3 \times 64 = 576$
Max Pool 1	(28, 28, 64)	(14,14,64)	0
Conv 2	(14,14,64)	(14,14,128)	$3 \times 3 \times 128 \times 64 = 73728$
Max Pool 2	(14,14,128)	(7,7,128)	0
Conv 3	(7,7,128)	(7,7,256)	$3 \times 3 \times 128 \times 256 = 294912$
Conv 4	(7,7,256)	(7,7,256)	$3 \times 3 \times 256 \times 256 = 589824$
Max Pool 3	(7,7,256)	(4,4,256)	0
FC 1	(4096,1)	(1024,1)	$4096 \times 1024 = 4194304$
FC 2	(1024,1)	(1024,1)	$1024 \times 1024 = 1048576$
Output	(1024,1)	(1024,10)	$1024 \times 10 = 10240$

Therefore, the parameters of FC1 would be 4096 * 1024. Hence, **Option B** is the correct answer.

- 5. Consider the problem where we have a Feed-forward Neural Network (FNN) with 2 layers such that it takes a m-dimensional vector as input and produces an a n-dimensional vector as output. Is it possible to represent this FNN as a Convolutional Neural Network (CNN)?
 - A. No, it is not possible.
 - B. Yes, it is possible, by choosing m filters of size $n \times 1$.
 - C. Yes, it is possible, by choosing n filters of size $m \times 1$.

Solution: Option C is the correct answer.

We choose \mathbf{n} filters, each of size $(\mathbf{m} \ \mathbf{x} \ \mathbf{1})$, with stride as $\mathbf{1}$. We also do not pad the input vector with zeroes as it is not required in this case. The input vector is convolved with each of the \mathbf{n} filters and we will get \mathbf{n} scalars. We can then stack up the \mathbf{n} scalars into a $(\mathbf{n} \ \mathbf{x} \ \mathbf{1})$ vector which is the desired output. The above CNN model actually represents a FNN where we perform a matrix vector multiplication of the input vector of size $(\mathbf{1} \ \mathbf{x} \ \mathbf{m})$ with a weight matrix of size $(\mathbf{m} \ \mathbf{x} \ \mathbf{n})$ to get a $(\mathbf{1} \ \mathbf{x} \ \mathbf{n})$ output vector.

- 6. Is the max-pooling layer differenciable?
 - A. True
 - B. False

Solution: Option A is the correct answer

- 7. In the context of Deep Art, if $V \in \mathcal{R}^{32 \times (128 \times 128)}$ is the activation at a layer, then which of the following captures the style of the image?
 - A. V^{\top}
 - B. $V^{\top}V$
 - C. $V^{-1}V$

Solution: Option B is the correct answer.

8. Consider an image $\in \mathbb{R}^{28 \times 28}$ which is stored as a numpy array of size 28×28 . You can download the numpy array from here :

https://drive.google.com/drive/folders/1JRcAijvg2cngfamBF5tv9m33RqKoxo8D?usp=sharing

What will be the result of applying the following kernel to this image?

$$\begin{bmatrix} 0.053 & 0.110 & 0.054 \\ 0.111 & 0.225 & 0.111 \\ 0.054 & 0.110 & 0.053 \end{bmatrix}$$

A. it will result in a sharpened image

- B. it will result in a blurred image
- C. it will result in an image which contains all the edges in the original image
- D. it will result in a black and white version of the original image

Solution: On plotting the image contained in the .npy file, the original image looks like the following :

You can apply the give filter onto the above image using the following code:

The filtered image looks like the following:

You can clearly see that the filtered image is a blurred version of the original image. Hence, **Option B** is the correct answer.

9. Consider the image shown below:

Figure 1: House Image

What will be the result of applying the following kernel to the above image?

$$\begin{bmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix}$$

Solution: The given kernel acts as a horizontal edge detector i.e on applying the kernel onto the house image, it will detect the horizontal edges. You can also apply verify the above by executing a similar code as mentioned in the previous question. Hence, $\mathbf{Option}\ \mathbf{A}$ is the correct option.