Problem Set 8

Daniel Halmrast

November 27, 2017

PROBLEM 1

Show that $\frac{\sin(x)}{x}$ is not in $L^1((0,\infty),\lambda^1)$.

Proof. We wish to evaluate

$$\int_{(0,\infty)} \frac{|\sin(x)|}{x} d\lambda^1(x)$$

and show that it diverges. To do so, we split the integral into half-cycles

$$\int_{(0,\infty)} \frac{|\sin(x)|}{x} d\lambda^{1}(x) = \sum_{n=0}^{\infty} \int_{(n\pi,(n+1)\pi)} \frac{|\sin(x)|}{x} d\lambda^{1}(x)$$

Now, we know that on each half-cycle,

$$\frac{|\sin(x)|}{x} \ge \frac{|\sin(x)|}{(n+1)\pi}$$

so we have a lower bound for the integral:

$$\sum_{n=0}^{\infty} \int_{(n\pi,(n+1)\pi)} \frac{|\sin(x)|}{x} d\lambda^{1}(x) \ge \sum_{n=0}^{\infty} \int_{(n\pi,(n+1)\pi)} \frac{|\sin(x)|}{(n+1)\pi} d\lambda^{1}(x)$$

Now, since each half-cycle is either entirely positive or entirely negative, we know that

$$\int_{(n\pi,(n+1)\pi)} \frac{|\sin(x)|}{(n+1)\pi} d\lambda^{1}(x) = \left| \int_{(n\pi,(n+1)\pi)} \frac{\sin(x)}{(n+1)\pi} d\lambda^{1}(x) \right|$$

And finally, we can evaluate the integral directly:

$$\sum_{n=0}^{\infty} \left| \int_{(n\pi,(n+1)\pi)} \frac{\sin(x)}{(n+1)\pi} d\lambda^{1}(x) \right| = \sum_{n=0}^{\infty} \left| \frac{1}{(n+1)\pi} [\cos(x)]_{n\pi}^{(n+1)\pi} \right|$$
$$= \sum_{n=0}^{\infty} \frac{2}{(n+1)\pi}$$
$$= \infty$$

Thus, since

$$\int_{(0,\infty)} \frac{|\sin(x)|}{x} d\lambda^1(x) \ge \sum_{n=0}^{\infty} \left| \int_{(n\pi,(n+1)\pi)} \frac{\sin(x)}{(n+1)\pi} d\lambda^1(x) \right| = \infty$$

the integral diverges, and $\frac{\sin(x)}{x}$ is not in $L^1((0,\infty),\lambda^1)$.

Problem 2

Prove that L^p for $1 \le p \le \infty$ is complete. Note that case p = 1 has already been covered in class.

Proof. To begin with, let $p < \infty$.

PROBLEM 3

Part 1: Notes 3.11

Prove that ℓ_n^p , ℓ^p , $1 \le p \le \infty$ are Banach. Prove that $\ell^{p_1} \subset \ell^{p_2}$ for $1 \le p_1 \le p_2 \le \infty$, and that

$$||x||_{p_2} \le ||x||_{p_1}$$

Proof. We first note that ℓ_n^p is isomorphic (as vector spaces) with \mathbb{R}^n , by the canonical identification $(x^i) \mapsto (x^i)$ (where x^i is the i^{th} point in the sequence, and the i^{th} component of the vector). Furthermore, since all norms on a finite dimensional vector space are equivalent, the ℓ^p norm applied to $\ell_n^p \cong \mathbb{R}^n$ is equivalent to the standard 2-norm on \mathbb{R}^n . Now, since \mathbb{R}^n is complete with this norm, it follows that ℓ_n^p is complete as well.

For the case of ℓ^p , we note that $\ell^p = L^p(\mathbb{N}, 2^{\mathbb{N}}, \mu_c)$. By Problem 2, we know that L^p spaces are complete, so it follows that ℓ^p is complete as well.

Now, we will prove the norm inequality. Without loss of generality, we will let $(x_n) \in \ell^{p_1}$ such that $\|(x_n)\|_{p_1} = 1$ (i.e. scale the sequence by its norm, which will not change the inequality).

Now, we wish to show that

$$\left(\sum_{n=1}^{\infty} |x_n|^{p_2}\right)^{\frac{1}{p_2}} \le \left(\sum_{n=1}^{\infty} |x_n|^{p_1}\right)^{\frac{1}{p_1}} (=1)$$

We observe first that since $||(x_n)||_{p_1} = 1$ and $p_1 \ge 1$, it must be that each x_n is less than 1. Thus, we have that for each n,

$$|x_n|^{p_2} \le |x_n|^{p_1}$$

since $p_2 \ge p_1$, and each term $x_n < 1$.

Thus, we have that

$$\sum_{n=1}^{\infty} |x_n|^{p_2} \le \sum_{n=1}^{\infty} |x_n|^{p_1}$$

$$\implies \left(\sum_{n=1}^{\infty} |x_n|^{p_2}\right)^{\frac{1}{p_2}} \le 1$$

as desired.

Thus, if $(x_n) \in \ell^{p_1}$, we have that $\|(x_n)\|_{p_2} \leq \|(x_n)\|_{p_1} < \infty$, and so (x_n) is in ℓ^{p_2} as well. Thus, $\ell^{p_1} \subset \ell^{p_2}$ as desired.

Part 2: Notes 3.13

Prove that $L^{p_1}(\Omega,\mu) \subset L^{p_2}(\Omega,\mu)$ when $\mu(\Omega) < \infty$. To do so, establish the inequality for the average integral

$$||f||_{\bar{p_1}} \le ||f||_{\bar{p_2}}$$

where the barred norm is the average norm defined in the notes.

Furthermore, prove that this does not hold in the case $\mu(\Omega) = \infty$.

Proof.