Sentiment Analysis on Food Reviews

Pietro Colombo **793679** Marco Fagioli **808176**

Obiettivi del progetto

- Sentiment Analysis delle reviews
 - o correlazione polarità voto stelle
- Classificazione con machine learning
 - positività/negatività delle review
- Aspect-Based Sentiment Analysis
 - divisione per topic differenti
 - sentiment per ogni topic

Dataset

Il dataset contiene 35172 differenti review provenienti da amazon

Le **feature** presenti sono:

- productid
- userid

- score (valutazione da 1 a 5)
- text

	productid	userid	score	text
0	B001E4KFG0	A3SGXH7AUHU8GW	5.0	I have bought several of the Vitality canned d
1	B00813GRG4	A1D87F6ZCVE5NK	1.0	Product arrived labeled as Jumbo Salted Peanut
2	B000LQOCH0	ABXLMWJIXXAIN	4.0	This is a confection that has been around a fe
3	B000UA0QIQ	A395BORC6FGVXV	2.0	If you are looking for the secret ingredient i
4	B006K2ZZ7K	A1UQRSCLF8GW1T	5.0	Great taffy at a great price. There was a wid

Distribuzione dei voti delle recensioni

Data preprocessing

Creazione **nuovo campo di testo** con:

- trasformazione tutto in minuscolo;
- rimozione tag HTML;
- rimozione stopword (nltk stopwords);
- rimozione punteggiatura;
- stemming (nltk LancasterStemmer).

df['text'] — df['clean_text']

Creazione **sentiment** da voto stelle:

- 4 o 5 stelle → 'positive'
- 3 stelle → 'neutral'
- 1 o 2 stelle → 'negative'

df['score'] — df['sentiment']

Dataset filtrato

	productid	userid	score	text	clean_text	sentiment
0	B001E4KFG0	A3SGXH7AUHU8GW	5	i have bought sev	bought several vitalit	positive
1	B00813GRG4	A1D87F6ZCVE5NK	1	product arrived labe	product arrived labe	negative
2	B000LQOCH0	ABXLMWJIXXAIN	4	this is a confectio	confection around	positive
3	B000UA0QIQ	A395BORC6FGVXV	2	if you are lookin	looking secret ing	negative
4	B006K2ZZ7K	A1UQRSCLF8GW1T	5	great taffy at a g	great taffy great pric	positive

Distribuzione del sentiment sulle recensioni

Graphical User Interface

Sentiment Analysis con TextBlob

Approccio naive tramite il metodo TextBlob:

 calcolo polarità di ogni review sul testo 'filtrato'

- correlazione con polarità
 - stelle votate nelle review;
 - sentiment associato alle review

GUI per TextBlob

Correlazione polarità-voto stelle

Distribuzione polarità-voto stelle

Correlazione polarità-sentiment

Distribuzione polarità-sentiment

Risultati correlazione TextBlob

Come mostrato dai grafici non
esiste correlazione tra la
votazione in stelle data dall'utente
e il sentiment associato al corpo
del testo.

Classificazione con sklearn

Classificazione **positività** o **negatività** delle review tramite machine learning supervisionato sul testo:

- divisione del dataset in
 - 80% train
 - 20% test

- uso di due differenti modelli
 - LogisticRegression
 - O RandomForest

GUI per sklearn

Classificazione con sklearn

Tramite l'interfaccia vengono scelti il **modello** da usare, il **campo** su cui applicarlo e la **normalizzazione** o meno dell matrici di confusione.

- Divisione del dataset nella parte di train e di test
- Creazione e training del modello scelto
 - Necessaria una preparazione dell'input
- **Predizione** sul test dataset

Matrici di confusione

Confronto classificazione voto stelle

(LogisticRegression vs RandomForest)

LogisticRegression

RandomForest

Confronto classificazione sentiment

(LogisticRegression vs RandomForest)

LogisticRegression - 0.8 0.88 0.07 0.06 positive -- 0.7 - 0.6 Predicted label - 0.5 0.35 0.42 0.23 neutral - 0.4 - 0.3 0.17 0.15 0.68 0.2 negative 0.1

True label

RandomForest

Confronto risultati classificazione sentiment

Entrambi i modelli hanno una **accuracy** tra **l'80% e l'85%** in base all'esecuzione LogisticRegression RandomForest

- precision media
- recall media

sentiment	precision	recall
positive	0.88	0.95
neutral	0.42	0.21
negative	0.68	0.57
valore medio	0.66	0.58

- precision alta
- recall bassa

sentiment	precision	recall
positive	0.81	1.00
neutral	0.91	0.09
negative	0.90	0.28
valore medio	0.87	0.46

Aspect-Based SA con Gensim LDA

 Applicato sui singoli prodotti data la grande eterogeneità del dataset

- Suddivisione delle reviews in topic
 - scelta numero topic ottimale

 Calcolo della polarità per ogni topic

GUI per gensim LDA

Aspect-Based SA con Gensim LDA

Tramite l'interfaccia viene scelto il prodotto su cui fare l'analisi.

- Viene applicato il modello variando il numero di topic fra 2 e 10 compresi:
 - vengono salvati temporaneamente i modelli;
 - o per ogni modello viene calcolata e memorizzata la **coerenza**.

• Il modello con il **miglior** valore di coerenza è quello scelto.

Aspect-Based SA con Gensim LDA

• Il modello con miglior coerenza viene **preparato** per la visualizzazione con pyLDAvis.

Per ogni topic individuato viene calcolata la polarità associata.

Tramite pyLDAvis viene mostrato, su browser, il modello generato

Polarità per topic

Per **topic** è stata calcolata la polarità:

- 100 parole per ogni topic;
- per ogni parola calcolo della polarità pesata;
 - necessaria una normalizzazione del peso per le parole con sentiment;
- somma delle polarità delle parole con sentiment.

Grafico polarità per topic

Grazie per l'attenzione!

Pietro Colombo Marco Fagioli