Mardi 4 juin 2019

- 1. Oraux 2018 MP*4 XP4 La résolution de l'exercice était-elle complète ou pas ?
- 2. a. Une charge ponctuelle est placée à l'origine O de l'axe Oz. Calculer le flux du champ électrique à travers un disque d'axe Oz en fonction de θ .
 - b. Des charges ponctuelles sont toutes placées sur l'axe Oz. Montrer que les lignes de champ électrique sont des courbes planes d'équation $\sum q_i \cos \theta_i = C^{te}$.
 - c. Proposer une répartition de la transparence d'une feuille pour qu'en en superposant deux exemplaires la figure de moiré obtenue dessine les lignes de champ d'un dipôle (ou plutôt d'un doublet).

3. Oraux 2018 MP*4 ECP18

4. Couplage de deux puits infinis par un « pic de Dirac »

Une particule est soumise au potentiel V(x) dont le graphe figure ci-contre. La barrière de potentiel de hauteur V_0 a une largeur ε faible. On s'intéresse aux états stationnaires.

a. Dans le cas où V_0 est infini, quelles sont les énergies des états stationnaires ? Quelle est la dégénérescence de chaque énergie (nombre de fonctions d'onde linéairement indépendantes associées à l'énergie étudiée) ?

On se place pour toute la suite dans le cas limite $\varepsilon \to 0$, $V_0 \to \infty$ avec $\varepsilon V_0 = b$ maintenu constant (« pic de Dirac » de « masse » b.

5. On s'intéresse à l'équilibre homogène en phase gazeuse : 2 SO₂ + O₂ = 2 SO₃ Δ_rH^o_(700 K) = -198 kJ· mol⁻¹ La réaction se déroule dans un réacteur adiabatique, à pression constante P₀. À l'état initial, à la température initiale de 700 K, on met en présence 10 mol de SO₂, 10 mol de O₂ et 40 mol de N₂. On obtient 9 mol de SO₃ à l'équilibre.

a. Calculer la constante de l'équilibre à la température finale.

Illiale.						
b. Déterminer	la	température	finale	du	système	à
l'équilibre.						

	SO_2	O_2	SO ₃	N ₂
$C_P^{ m o} \Big(\ \operatorname{J} \cdot \operatorname{mol}^{-1} \cdot \operatorname{K}^{-1} \Big)$	39,9	29,4	50,7	29,1

6. Miroir de Lloyd.

On dispose d'un miroir plan horizontal et d'une source monochromatique émettant un rayonnement de longueur d'onde λ , située à une distance b audessus du miroir. Le récepteur est : situé à une distance a, considéré comme ponctuel, de masse m, et suspendu à un ressort vertical de raideur k.

- a. Montrer que ce système se comporte comme des « quasi-trous d'Young ».
- b. Étudier la figure d'interférence sur l'axe du mouvement du capteur.
- c. On place le ressort de telle sorte que la position d'équilibre du récepteur corresponde à un maximum d'éclairement. On lâche sans vitesse initiale le récepteur d'une abscisse z_0 , puis d'une abscisse z_1 . On donne dans les deux cas l'éclairement en fonction du temps. En déduire z_0 , z_1 et k.

