CS 412 Office Hour

Apr 24, 2019

Why Pattern-Based Classification?

- The Role of Patterns in Classification Models
 - Rule based classifier using patterns (Associative Classification)
 - Feature construction
 - □ Higher order, often has more discriminative power e.g., single word → phrase (apple pie, Apple iPad)
 - Complex data modeling such as graphs, sequences

Pattern-Based Classification on Graphs

Classification Rule Mining

- Association Rule Mining
 - Mining rules between itemsets
 - Every rule is associated with frequency and confidence
- Classification Rule Mining
 - Mining rules between attributes and the class label
 - A path from root to leaf on a decision tree can be seen as a classification rule

Rule 1: Outlook=rain \land Windy =False \Rightarrow Play=True

Rule 2: Outlook=rain \land Windy =True \Rightarrow Play=False

Rule 3: Outlook=overcast \Rightarrow Play=True

Rule 4: Outlook=sunny \land Humidity <=70 \Rightarrow

Play=True

Rule 5: Outlook=sunny \land Humidity >70 \Rightarrow Play=False

A decision tree defines a constrained set of rules: attributes that appear on parent nodes must appear before child nodes, e.g. rule "Windy=False ∧ Humidity <=70 ⇒ Play=True" will conflict with this set of rules.

CBA: Classification Based on Associations

- Mine high-confidence, high-support class association rules
 - LHS: Conjunctions of attribute-value pairs; RHS: Class labels $p_1 \land p_2 \dots \land p_l \rightarrow \text{``A}_{class-label} = C'' \text{ (confidence, support)}$
- Rank rules in descending order of confidence and support
 - Classification: Apply the first rule that matches a test case; otherwise, apply the default rule
- Effectiveness:More accurate than single decision tree
 - Why? Exploring high confident associations among multiple attributes may overcome some constraints introduced by considering one attribute at a time
 - Drawback: the number of possible association rules is often large

CMAR: Classification Based on Multiple Association Rules

- Rule pruning whenever a rule is inserted
 - Given two rules R_1 and R_2 , if the antecedent of R_1 is more general than that of R_2 and $conf(R_1) \ge conf(R_2)$, then prune R_2
 - Prunes rules for which the rule antecedent and class label are not positively correlated based on the χ^2 test of statistical significance
- Classification based on generated/pruned rules
 - If only *one rule* satisfies tuple X, assign the class label of the rule
 - If a rule set S satisfies X
 - Divide S into groups according to class labels
 - Use a weighted χ^2 measure to find the strongest group of rules based on the statistical correlation of rules within a group
 - Assign X the class label of the strongest group
- CMAR improves model construction efficiency and classification accuracy

Discriminative Pattern-Based Classification

- Discriminative patterns as features for classification (Cheng et al., ICDE'07)
- Principle: Mining discriminative frequent patterns as high-quality features and then apply any classifier
- Framework (PatClass)
 - Feature construction by frequent itemset mining
 - Feature selection (e.g., using Maximal Marginal Relevance (MMR))
 - Select discriminative features (i.e., that are relevant but minimally similar to the previously selected ones)
 - Remove redundant or closely correlated features
 - Model learning
 - Apply a general classifier, such as SVM or C4.5, to build a classification model

On the Power of Discriminative Patterns

- K-itemsets are often more informative than single features (1-itemsets) in classification
- Computation on real datasets shows: The discriminative power of k-itemsets (for k > 1 but often ≤ 10) is higher than that of single features

Information Gain vs. Pattern Length

Information Gain vs. Pattern Frequency

- Computation on real datasets shows: Pattern frequency (but not too frequent) is strongly tied with the discriminative power (information gain)
- Information gain upper bound monotonically increases with pattern frequency

Information Gain Formula: $IG(C \mid X) = H(C) - H(C \mid X)$ Conditional entropy of

Entropy of given data

$$H(C) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$H(C | X) = \sum_{j} P(X = x_{j}) H(Y | X = x_{j})$$

study focus

Mining Concise Set of Discriminative Patterns

Frequent pattern mining, then getting discriminative patterns: Expensive, large model

DDPMine (Cheng et al., ICDE'08): Direct mining of discriminative patterns: Efficient

DPClass (Shang et al., SDM'16): A better solution (see the next page)—efficient, effective & generating a very limited number of (such as only 20 or so) patterns

DPClass: Discriminative Pattern-Based Classification

Input: A feature table for training data

- Adopt every prefix path in an (extremely) random forest as a candidate pattern
- □ The split points of continuous variables are automatically chosen by random forest → No discretization!
- Run top-k (e.g., top-20) pattern selection based on training data
- ☐ Train a generalized linear model (e.g., logistic regression) based on "bag-of-patterns" representations of training data

Explanatory Discriminative Patterns: Generation

- Example: For each patient, we have several uniformly sampled features as follows
 - ☐ Age (A): Positive integers no more than 60
 - ☐ Gender (G): Male or female
 - □ Lab Test 1 (LT1): Categorical values from (A, B, O, AB)
 - □ Lab Test 2 (LT2): Continuous values in [0..1]
- ☐ The positive label of the hypothetical disease will be given when at least one of the following rules holds
 - \square (age > 18) and (gender = Male) and (LT1 = AB) and (LT2 \ge 0.6)
 - \square (age > 18) and (gender = Female) and (LT1 = 0) and (LT2 \ge 0.5)
 - \square (age \leq 18) and (LT2 \geq 0.9)
- \square Training: 10^5 random patients + add 0.1% noise
 - ☐ Flip the binary labels with 0.1% probability
- \Box Testing: 5×10^4 random patients in test

Explanatory Discriminative Patterns: Evaluation

- Accuracy:
 - DPClass 99.99% (perfect)
 - DDPMine 95.64% (reasonable)
- Top-3 Discriminative Patterns:
 - DPClass generates a high quality model here:
 - \Box (age > 18) and (gender = Female) and (LT1 = O) and (LT2 ≥ 0.496)
 - \Box (age ≤ 18) and (LT2 ≥ 0.900)
 - \Box (age > 18) and (gender = Male) and (LT1 = AB) and (LT2 ≥ 0.601)
 - DDPMine generates a relatively poor quality model here:
 - \Box (LT2 > 0.8)
 - \square (gender = Male) and (LT1 = AB) and (LT2 \ge 0.6) and (LT2 < 0.8)
 - \Box (gender = Female) and (LT1 = O) and (LT2 ≥ 0.6) and (LT2 < 0.8)