UNCLASSIFIED

AD NUMBER AD005310 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 05 JAN 1953. Other requests shall be referred to US Naval Ordnance Laboratory, White Oak, MD. **AUTHORITY** USNOL 1tr, 29 Aug 1974

rmed Services Technical Information Agency DOCUMENT SERVICE CENTER

AD-

UNCLASSIFIED

AD No. 523/C ASTIA WITHE COPY

BISMANOL PERMANENT MAGNETS, EVALUATION AND PROCESSING

ET-5

5 January 1953

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND

JNCLASSIFIED NA VOHU Report 2686

BISMANUL PERMANENT MAGNETS, EVALUATION AND PROCESSING

Prepared by:

Edmond Adams William M. Hubbard

ABSTRACT: Mismanol permanent magnets have been evaluated for stability under various operating conditions. The magnets showed a remarkable flux constancy over a wide temperature range after stabilization at low temperatures. There is some decrease in magnetic flux density at the low temperature; the exact flux loss being dependent on the temperature of stabilization. Because of their high coercive force, the magnets are extremely stable magnetically to shock, vibration, centrifugal force and stray magnetic fields. Except for a tendency to chip, bismanol magnets are sufficiently strong physically for most applications. Unprotected bismanol magnets corrode slightly at ordinary temperatures and humidity, and more rapidly at 95 per cent humidity. Magnets with applied protective coatings remained stable at room temperatures and moderate numidities for the six-month test period.

The processing techniques of bismanol magnets have been improved by eliminating magnetic separation. The new technique consists of the separation of excess bismuth from the melt by hot-pressing prior to pulverisation. Since the publication of the previous report, (Navord 2440) bismanol magnets have been made with maximum energy products up to 5.3 x 105 gauss-cersteds. Present maximum value for the coercive force (Hc) is now 3650 cersteds and 4600 gauss for the residual flux density (Br). Various types of pulverising equipment were also evaluated with respect to the magnetic properties of the resulting compacts. The methods of determining percentage purity (MnBi content), alignment and effective particle size in bismanol magnets are discussed.

U. S. MAVAL ORDNANCE LABORATORY White Oak, Silver Spring 19, Maryland

ì

UNCLASSIFIED

5 January 1953

The subject investigation of bismanol permanent magnets was undertaken as part of the broad program of the development of new and improved magnetic materials, Task NUL-Repa-56-1-53. NAVORD Report 2040 dated May 20, 1952 described previous progress in the preparation of bismanol permanent magnets from powdered manganese bismuthide.

EDWARD L. WOUDYARD Captain, USM Commander

D. S. MUZZEY, Jr. By direction

NAVORD Report 2686

1LLUSTRATIONS

	Page
Figure 1.	Temperature Characteristics of Bismanol 2
Figure 2.	Normal and Intrinsic Hysteresis Loops-Bismanol .8
Figure 3.	Photomicrographs of MnHi Powder
Figure 4.	Photomicrographs of Anbi Powder
Flgare 5.	sot-Pressing of Bismanol Magnets with an Aligning Field
Table I.	Results of Shock Tests on Bismanol Magnets
Table II.	Grinding and Melt Evaluation Data6
	REFERENCES
	ud. Chas., Thesis, Jniv. of Strasbourg asbourg, France) 1943
	A. V m. 15 M of 05 /50(1)

NAVORU Report 2586

BISMANOL PERMANENT MAGNETS, EVALUATION AND PROCESSING

INTRODU WILLIAM

l. This report covers six months progress in the development of bismanol permanent magnets since the publication of MavOrd Report 2040, dated May 20, 1952. The first part of this report concerns itself with the evaluation of bismanol magnets under various operating conditions such as, temperature, snock, vibration, centrifugal force, hamidity and salt spray. The second part describes continuing progress in the improvement of bismanol processing techniques.

LVALUATION

TEMPERATURE CHARACTERISTICS

The dependence of the high intrinsic operatve force (Hoi) on a high value of the crystal anisotropy constant (K1) was first established by Guillaud in his study of powdered manganese bismuthide. He also showed that in MnBi, the value for this anisotropy energy decreased with the lowering of temperature, and at 840K would be zero. This effect is due to an inversion of the "easy" and "hard" directions of magnetization along the crystal axes of hexagonal MnBi. Because of the decrease in the anisotropy energy, it is apparent that the coercive force value will be less at low temperatures than at room temperature. The effect of low temperature on bismanol magnets in an open circuit is shown in Figure la. It should be noted. in this open circuit, that although at -56°C there is a 58 percent loss in flux density, the magnets become quite stabilized over a wide temperature range. however, in a closed circuit there is no loss in induction since the lower temperature reduces only the coercive force. Even at -50°C, as shown in Figure 1b, the coercive force of the magnet is still quite high, i.e., 1600 cersteds. In the use of bismanol permanent magnets, therefore, the circuit should be designed for the flux density available at the operating temperature.

VIBRATION

3. Bismanol magnets were vibrated at frequencies of 50, 100 and 500 cycles per sec. for periods of one-half to an hour

NAVORD REPORT 2686

NAVORD Report 2686

at room temperature, 71°C and minus 54°C. No change in magnetic or physical properties was noticed except those due to temperature.

SHUCK

4. The shock tests performed on bismanol magnets were actually drop tests. Table I summarises the results of these tests. As seen from Table I, the magnetic properties of bismanol magnets are not affected by shock except by actual physical damage to the magnet. This is what one would expect from magnets prepared from high anisotropy materials.

CENTRIFUGE TESTS

5. Bismanol magnets were attached to a shaft with a steel band around their periphery. The whole assembly was rotated until they broke. The calculated maximum acceleration at their outer radius was found to be 143,000 G's at the time of fracture. This severe test subjects their possible use as rotors in generator assemblies.

ROOM STABILITY

6. The magnets have been found to be stable, at room temperature (70° 2 10°F) with a relative humidity not exceeding 70 percent, for the six-month period measured. However, unprotected bismanul magnets which received excessive handling became chipped along the edges and corroded at the exposed portions. This is a result of damage to the thin protective coating of bismuth present after hot-pressing.

HIGH HUMIDITY STABILITY

7. Bismanol magnets exposed to relative humidities of 95 percent or greater tend to correde rapidly (72 hrs) with some loss in their magnetic properties. Magnets protected by external coatings, such as nickel, madmium and mine plating, remain stable for somewhat longer periods (1-4 weeks). This problem has not been satisfactorily solved at this time, but preliminary experiments have snown that acid-dipping puts on a protective coating of a bismath salt. Evaluation studies of this type of coating are currently incomplete.

SALT SPRAY STABILITY

3. Bismanol magnets subjected to standard ASTM Salt Spray tests for over 100 hours, exhibit only superficial corresion

7

TABLE I RESULTS OF SHOCK TESTS ON HISMAND HAGNETS

Semple	Feat Dropped	Mo. of Drops	Approx.	Magietis Change	Physical Change
1. on ked	4		000 [†] †	S	Mone
1; on Side	н	N	4000	S	Mond
2. On and	2.17		*	None	Slight Chippin
2, on side	2.17	ai	**	Kone	Slight Chippin
3. Boom sa Tenp.	017	-	# } •	•ac/	Sea of
3. Room att	017	N.	*	•	Hoke
473°G	0†	N	‡ · · · · · · · · · · · · · · · · · · ·	i	Broke
5. Room Temp.	93	н	15,000	Koze	Mone
5. Room Temp.	70	N	15,000	•	Broke

* Not evailable due to lack of calibration

se Mounted in plastic block; all others magnetically attached, urmounted.

MA VORD Report 2686

without any loss of their original magnetic properties.
Apparently, a stable coating of bismuth expendence prevents further corresion. This phenomenon is now being examined as a possible protective coating for bismanol magnets.

STRAY MAGNETIC PIELDS

9. Because of the high coercive force of bismanol magnets, extremely high accidental fields would be necessary to affect the stability of the magnets. Exposure of the magnets to a General Electric Demagnetising Goil Unit at its full capacity of approximately 800 cersteds showed no change in their flux density.

PROCESSING TECHNIQUES

RESIGNMENT OF THE ALLOY

10. In order to prepare a magnet with the highest remanence (Br), it is essential to prepare an alloy with the highest percentage of the magnetic phase, ranganese bismuthide. Since the amount of MnBi in a melt is limited by its peritectic nature, all attempts to increase the purity were made after the preparation of the melt. The purification was accomplished by one of two methods:

Method (A): This method, previously described in MAYORD Report 2440, consists of the separation of the magnetic and non-magnetic portion by means of a magnetic separator after pulyerization.

Method (B): In this new process, the excess bismuth in the impure melt is squeezed out by hot pressing, before pulverisation, at 25 tsi at 350°C in a loose fitting die. Adoption of Method (B) has considerably speeded up the processing of bismanol magnets by eliminating the slower process of magnetic separation.

PULVERIZATION

11. It has been previously snown by Guillaud that by reducing the particle size of MnBi to about 3 microns, one can obtain an intrinsic coercive force (Hci: as high as 12,000 cersteds. In order to increase the operaive force of bismanol magnets, various methods of grinding were evaluated. Table II shows typical magnetic data on bismanol magnets compacted from MnBi powder pulverized by various means.

GRINDING AND MELT EVALUATION DATA Table II

ì,

	101		Partiole				問	Effective	Pero	19
Grinding Method	No. Type	Mesh Sise	3120 1/ Bkr /*/	Dane- 1ty	Gauss	38	HOIX BOIX	Partiole Sise A	A11gp-	Paries
Mikro-Pulv.2/	77.7	-325	ľ	8.0	4360	3430	4°3	•	:	•
Mikro-Pulv. Plus Coll. Mill 3/	777	As Ground	. :	8.1	3800	3675	3.9		· 8	19
Mikro-Pulv.	134	As Ground	1.8	8.3	4.775	1190	2.3	46.5	96	72
Mikro-Pulv. Plus Coll. Mill	131	As Ground	1.0	7.8	3880	3750	3.7	Φ.	18	11
Mikro-Atom. 2/	15B	As Ground	0. 5	9.5	3550	3175	3.3	9.5	:	:
Ball-#illed	19 MnB1 Oryst	F-50/H	:	8.7	4700	3250	6. +	•	%	\$
Mikro Pulv. 14	188	As Ground		2.9	4800	3650	5.3	9.5	8	8
1/ As determined by Mational B	c by Ma	ttonal Bur	presu of Sta	Stendards	1°6	1,9 in. dia.	ia., al	all others are . thy in. dia.	भूतिः १	la. dia.
2/ Mikropulverizer mfgd by Pulverizing Machinery Go	verizer mfg rerising Maci	d hinery Co.	•					•		

Summit, Mew Jersey

Colloid Mill migd by Eppeabach Inc. Long Island City, NoY.

6

- 12. It is apparent from Table II that most bismanol magnets with the highest (Ho) values have a corresponding lower (Hr) value. Conversely, magnets with a high (Br) show a lower (Ho) value. Because of the large number of variables involved, conflicting data makes it impossible to determine the exact explanation. However, it is known that finer particles have a larger surface area, increasing their tendency to exidise, thus decreasing the purity. Small particles are also more difficult to align during pressing because of their lower magnetic moment.
- 13. Of the various grinding equipment evaluated, a high speed hasmer mill of the "Mikropulverizer" type has proven the most satisfactory from a practical standpoint. Wet colloid milling yielded MnBi powder of extremely small particle size, but the decrease in (Br) values reduced the maximum energy product values. (Table II).
- lu. Powders ground from melts of Method (A) gave higher coercive force values, because the effective particle size is smaller than their apparent size due to the associated bismuth of the particles. Pulverization of Method (B) melts yielded powders requiring no magnetic separation. However, more efficient grinding was usually necessary to reduce the particle size small enough to obtain higher coercive force values.
- 15. It has been pointed out by Hoselitz² that the greatest improvement in (BH) max values for magnets where (Ho) = 0.45 x Br comes from increasing the value for (Br). This is a consequence of the geometry of the demagnetization curve. For magnets where (Ho) = (Br), this curve must be a straight line with a slope approaching unity. For a high coercive magnet, such as bismanol, it is impossible to have a fuller demagnetization curve, otherwise the B-H curve would show that the magnetization would rise with a decreasing field. This, of course, is not possible. Figure 2 shows a typical normal and intrinsic hysteresis loop for a bismanol magnet.

PARTICLE SHAPE AND SIZE

16. The quantitative determination of the average particle size and distribution range of MnBi powder has not been made. It would be desirable to have such data but due to the large number of parameters involved, only a qualitative study was made. Figures 3 and 4 are photomicrographs of MnBi powder pulverised by various attrition mills. Except for sample (5), the particle size distribution appears to be unequal, usually

FIG. 3 PHOTOMICROGRAPHS OF MINBI POWDER

12

ندوا تعر

FIG. 4 PHOTOMICROGRAPHS OF MABU POWDER

N FOCUS

- agglomerated large magnetic particles in a background of extremely fine non-magnetic particles. This background material, shown in focus in sample (f), may be chiefly bismuth or small Mubi particles below domain size or insufficient magnetic mass to agglomerate. A typical alignment of loose Mubi particles into agglomerated chains with equidistant spacing is shown in sample (e).
- 17. The results of particle size estimations by surface area determinations wade by the SET nitrogen adsorption method are shown in Table II. The values appear much lower than those observed by other methods. This in part may be due to the presence of extremely fine particles in an abnormal particle distribution curve or errors in the BET method dependent on the knowledge of the exact value for the nitrogen adsorption coefficient of MnBi.
- 18. A semi-quantitative examination of a typical sample of MnBi powder with an electron microscope* shows a few small round particles ranging in size from 0.1 0.5 microns and a few subic twin crystals from 0.2 0.3 microns in diameter. The bulk of the powder consists of irregular crystal fragments and clusters ranging in size from 0.1 10 microns.
- 19. Because of the various discrepancies in the particle size determinations, the method finally adopted consisted of directly comparing the intrinsic operative force of bismanol magnets (compacted under standard conditions) with the curve of particle size versus operative force as experimentally determined by Guilland. Assuming that these measurements were correct this gives an approximate value of the effective particle size.

COMPACTION

- 20. The dependence of the magnetic properties of biamanol magnetic on the compacting pressure, temperature and the strength of the aligning field was established early. It was determined that the optimum compacting pressure at 300°C with an aligning field of 10,000 12,000 certicals was 6,000 10,000 psi. A lower compacting pressure gives a lower density with slightly higher (Ho) and lower (Br) values. However, as previously shown, for high (Ho) magnets, such as bismanol, a higher (Br) value is more important for a high maximum
 - * Determined by the National Bureau of Standards

HAVORD Report 2686

energy product. The temperature of pressing can vary between 300 - 32500. Higher temperatures tend to sinter the particles thus reducing the (He) value. For this reason, such a combination of pressure and temperature was experimentally determined to produce magnets of optimum density, (Br), and (Ho).

21. The die-body material in which the magnets are compacted must be of non-magnetic material. Manganese-bronse, beryllium-copper and austenitic stainless steel alloys were found to be preferable, in the same order. The inside of the die was plated with chronium in order to prevent the adherence of bigmith to the walls. The rams were constructed of chromium-plated hardened carbon steel. Ferro-magnetic rams were used in order to concentrate the aligning field and close the magnetic circuit. This is illustrated in Figure 5. The filling fastor for compaction in the die was approximately 5 to 1, varying somewhat with the apparent density of the MnBi powder. Bismanol magnets almost 2, inches in diameter with (BH) max values up to 5.3 x 100 have been compacted using the techniques described. (Table II). Magnets compacted in dies, where the pressing direction is perpendicular to the applied field, did not improve the quality of magnets.

PARTICLE ALIGNOLIT, PURITY AND REFLECTIVE PARTICLE SIZE

22. In order to determine the degree of particle alignment and percent purity, it is necessary to know the saturation magnetisation $(C)_g$ per gram. This value is obtained by measuring and plotting (B)vs (H) at (H) values from 7,000 to 14,000 corsteds. Then the value of (B-H) is found for each point and (B-H) vs (H) is plotted. The value (B-H)s can then be estimated by estimating the point where this curve is flattening out or by actually subtracting (Hg) from the (B)max value. From the relation (B = H + 4 π II), (Ig) is equal to $\frac{(B-H)s}{L}$. Since (Ig) is the saturation magnetisation

per ec, to obtain (σ) s per gram, it is necessary to divide (I_s) by the density; $\sigma = I_s$.

23. According to Guillaud¹, pure MnBi should have a magnetic moment per gram (7 " = 66 at room temperature. Therefore, the ratio between the two values determines the fraction of MnBi in bismanol magnets.

-X-Y-

- 24. The ratio between (B-H) at (H) = 0 and (B-H)s gives the fraction of the elementary MnBi domains aligned in the preferred direction of magnetisation, because for 100 per cent alignment the (B-H) curve would be a straight line from (H) = 0 to (H) = sat.
- 25. The (B-R) curve is drawn down far enough to intercept the (k) axis giving the intrinsic coercive force (Hoi). As previously stated, a comparison of this (Hoi) value with the curve showing the dependance of the coercive force on particle size as determined by Guillaud give an approximate value of the effective particle size ir the pressed magnets. Table II shows values for alignment, purity and effective particle size on some bismanol magnets.

CONCLUSION

- 26. Bismanol augmets, after low temperature stabilization, exhibit a magnetic flux constancy over a wide temperature range with some loss in original available energy.
- 27. The magnet: were found to be extremely stable magnetically to shock, vibration, centrifugal force and stray magnetic fields.
- 28. The application of some protective coating is indicated to prevent corrosion in stmospheres of high relative humidity.
- 29. By squeezing out excess bismuth from the bismuth-rich melt prior to pulverisation, the slower procedure of magnetic separation has been eliminated.
- 30. A high speed hammer mill of the "Mikropul veriser" type was found to be the most satisfactory of the various types of attrition mills evaluated.
- 31. Bismanol magnets up to 2 inches in dismeter have been compacted with various thicknesses. Such magnets are ideally suited to applications requiring high magnetic flux density, e.g., loudspeakers.

ACKNOWLET GLMB HT

32. Acknowledgement is made to the Technical Evaluation Department, especially J. T. Lamb, for conducting the evaluation studies on bismanol. Work on the improvement of processing techniques was conducted by A. M. Syeles

and V. Glickman. The development of techniques for electroplating metallic coatings on bismanol magnets was done by J. Gilfrich. The magnetic data on the magnets was obtained by M. Pasnak and Mrs. G. Karol under the direction of D. I. Gordon. Surface area determinations of MnBi powder and electron photomicrograph studies were made by G. M. Huns and Max Swerdlow of the Mational Bureau of Standards.

MA FORD Report 2686

DISTRIBUTION

						Ę) 0]	? 16 8
BuO:d Chief, Bureau of Crinapse H. B. Rez (Reij-3) Library Consulting Engineer Branch (Rec)	•			•		÷		111
Buships Ohief, Bureau of Ships		•	•	•	•	•	•	1
Chief of Maval Material	•	•	•	•	•	•	•	1
Chief, Office of Haval Research	•	•	•	•	•	•	•	2.
Wesley Heath		•	•	•	•	•	•	1
J. A. Osborn (421)	•	•	•	•	•	•	•	1
Minerals and Metals Advisory Board Mational Research Council Mational Academy of Sciences 2101 Constitution Avenue Washington 25, D. C. W. J. Harris, Jr., Executive Secretar Dr. F. H. Buttner	· ·	•	•	• •	•	• (•	1
Squire Signal Laboratory Fort Monmouth, New Jersey Eberhard Both	•	•	•	•	•	• •		1

	Cobies
Director	
Commanding Officer	1
H. C. Fisk	1
Commanding Officer and Director	1
U. S. Coast and Geodetic Survey	. 1
Commanding General	. 1
Department of Defense Production	. 1
Mr. Phillip Zirk	. 1

med Services Technical Information Agenc DOCUMENT SERVICE CENTER

KNOTT BUILDING, DAYTON, 2, OHIO

5310

UNCLASSIFIED