Isomorfimos y Subanillos

ejercicio 1

Sea $h:A\to A'$ un isomorfismo de anillos, demuestre que:

- 1. Si A es un dominio entero, también lo es A'.
- 2. Si en A todo elemento no nulo tiene inverso, entonces igualmente ocurre en A'.

Solución. Veamos la primera proposición. Supongamos entonces que A es un dominio entero y supongamos además que existen $a,b\in A'$, ambos distintos de cero, tales que ab=0. Como h es sobreyectiva, han de existir $x,y\in A$, distintos de cero¹, tales que h(x)=a y h(y)=b. Entonces se tiene que

$$h(x)h(y) = h(xy) = 0,$$

pero por la inyectividad de h, xy = 0; lo cual es imposible pues A es un dominio entero. Finalmente, no existen $a, b \in A'$, ambos distintos de cero, tales que ab = 0 y A' es un dominio entero.

Consideremos ahora la segunda proposición y supongamos que todo elemento no nulo de A es invertible. Sea $a \in A'$ distinto de cero, entonces existe un $x \in A$ tal que h(x) = a. Como todo elemento de A es invertible, entonces existe x^{-1} . Hagamos $h(x^{-1}) = b$, entonces

$$ab = h(x)h(x^{-1}) = h(xx^{-1}) = h(1_A) = 1_{A'}.$$

El caso de $ba = 1_{A'}$ se prueba de forma análoga. Por lo tanto, todo $a \in A'$ es invertible.

ejercicio 2

Sea A un anillo conmutativo con identidad e y sea f: $\mathbb{Z} \to A$, dada por f(n) = ne, para todo $n \in \mathbb{Z}$. Pruebe que f es un homomorfismo, además demuestre que el siguiente conjunto

$$f(\mathbb{Z}) = \{ f(n) : n \in \mathbb{Z} \} = \{ ne \in A : n \in \mathbb{Z} \}.$$

es un subanillo de A.

Solución. Veamos primero que f es un homomorfismo.

Sean $a, b \in \mathbb{Z}$, entonces

$$f(a + b) = (a + b)e$$

$$= \underbrace{(e + e + \dots + e)}_{a + b \text{ veces}}$$

$$= \underbrace{(e + e + \dots + e)}_{a \text{ veces}} + \underbrace{(e + e + \dots + e)}_{b \text{ veces}}$$

$$= ae + be$$

$$= f(a) + f(b).$$

Por otro lado,

$$f(ab) = (ab)e$$

$$= \underbrace{(e + e + \dots + e)}_{ab \text{ veces}}$$

$$= \underbrace{(e + e + \dots + e)}_{a \text{ veces}} \underbrace{(e + e + \dots + e)}_{b \text{ veces}}$$

$$= (ae)(be)$$

$$= f(a)f(b).$$

Luego, $f: \mathbb{Z} \to A$ es un homomorfismo.

Veamos ahora que el conjunto $f(\mathbb{Z})$ es un subanillo de A. Primero, sean n_1, n_2 dos enteros, entonces

$$n_1e + n_2e = \underbrace{(e + e + \dots + e)}_{n_1 \text{ veces}} + \underbrace{(e + e + \dots + e)}_{n_2 \text{ veces}}$$
$$= \underbrace{(e + e + \dots + e)}_{n_1 + n_2 \text{ veces}}$$
$$= (n_1 + n_2)e.$$

Si $n \in \mathbb{Z}$ y -n es su opuesto, entonces es claro que

$$-ne = \underbrace{(-e - e - \dots - e)}_{\text{n veces}}$$

es un elemento de $f(\mathbb{Z})$. Por las dos cosas anteriores, $f(\mathbb{Z})$ es un subgrupo de A.

Queda por ver si es cerrado bajo el producto. Sean $n_1, n_2 \in \mathbb{Z}$, entonces

$$(n_1e)(n_2e) = \underbrace{(e+e+\cdots+e)}_{n_1 \text{ veces}} \underbrace{(e+e+\cdots+e)}_{n_2 \text{ veces}}$$
$$= \underbrace{(e+e+\cdots+e)}_{n_1n_2 \text{ veces}}$$
$$= (n_1n_2)e$$

y tenemos que $f(\mathbb{Z})$ es cerrado bajo el producto. Por todo lo anterior, $f(\mathbb{Z})$ es un subanillo de A.

 $^{^{1}}$ Por la invectividad de h

ejercicio 3

Sea $x \in A$, con A un anillo, demuestre que el siguiente conjunto es un subanillo de A

$$c(x) = \{x \in A : ax = xa\}.$$

Solución. Sean $a, b \in c(x)$, entonces

$$(a-b)x = ax - bx = xa - xb = x(a-b)$$

donde las igualdades se siguen la distributividad en A y del hecho de que $a, b \in c(x)$. Se tiene entonces que $(a - b) \in c(x)$.

Veamos ahora que ocurre con el producto. Sean $a, b \in c(x)$, entonces

$$(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab)$$

de donde $(ab) \in c(x)$.

Por las dos condiciones anteriores queda demostrado que c(x) es un subanillo de A.

ejercicio 4

Para un conjunto $X \neq \emptyset$,

- 1. Pruebe que el conjunto de partes de *X*, junto con la diferencia simétrica y la intersección, es un anillo.
- 2. Halle un subanillo de partes de X que sea isomorfo a \mathbb{Z} o a \mathbb{Z}_p con p primo.

Solución. Veamos primero que el conjunto $\mathcal{P}(X)$ es un anillo con las operaciones dadas. Comencemos con que es un grupo abeliano con la diferencia simétrica.

Primero que nada, es evidente que $\mathcal{P}(X) \neq \emptyset$ dado que $\emptyset \in \mathcal{P}(X)$. Ahora, sean $A, B, C \in \mathcal{P}(X)$, entonces

$$A \triangle B = (A - B) \cup (B - A)$$

$$= \{x \in X : (x \in A \ y \ x \notin B) \ o \ (x \in B \ y \ x \notin A)\}.$$

Como $A, B \in \mathcal{P}(X)$, necesariamente A - B y B - A también lo están; de donde se sigue que $A \triangle B$ esta en $\mathcal{P}(X)$.

Por otro lado, usando la doble contención, se puede ver que

$$(A \triangle B) \triangle C = A \triangle (B \triangle C),$$

de donde la diferencia simétrica es asociativa.

El conjunto Ø es el elemento neutro, en efecto

$$A \triangle \emptyset = (A - \emptyset) \cup (\emptyset - A) = A \cup \emptyset = A,$$

y también,

$$\emptyset \land A = (\emptyset \land A) \cup (A \land \emptyset) = \emptyset \cup A = A.$$

En lo que respecta a los inversos, cada elemento es su inverso, como se puede ver por

$$A \wedge A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset$$

por último, la conmutatividad viene dada por

$$A \triangle B = (A - B) \cup (B - A) = (B - A) \cup (A - B) = B \triangle A.$$

Con todo lo anterior, el conjunto $\mathcal{P}(X)$ con la diferencia simétrica es un grupo abeliano.

Veamos ahora que ocurre con la intersección en $\mathcal{P}(X)$. Este conjunto es cerrado bajo la interseccion, en efecto, sean $A, B, C \in \mathcal{P}(X)$ como antes, se tiene que

$$A \cap B = \{x \in X : x \in A \land x \in B\} \subset X \to (A \cap B) \in \mathcal{P}(X).$$

Como la intersección de dos conjuntos siempre es asociativa, en particular lo es para elementos en $\mathcal{P}(X)$.

Por ultimo, veamos que la intersección se distribuye respecto de la diferencia simétrica

$$(A \triangle B) \cap C = ((A - B) \cup (B - A)) \cap C$$

$$= ((A - B) \cap C) \cup ((B - A) \cap C)$$

$$= ((A \cap C) - (B \cap C)) \cup ((B \cap C) - (A \cap C))$$

$$= (A \cap C) \triangle (B \cap C).$$

En el caso de $C \cap (A \triangle B)$ se procede de forma análoga. Y por todo lo dicho anteriormente, el conjunto $\mathcal{P}(X)$ con la diferencia simétrica y la intersección es un anillo.

Consideremos ahora la parte 2. Sea $A \in \mathcal{P}(X)$, y tomemos el siguiente conjunto

$$\mathcal{C} = \{A, \emptyset\}.$$

Entonces $\mathcal C$ es un subanillo de $\mathcal P(X)$, más aún, $\mathcal C$ es isomorfo a $\mathbb Z_2$.

Veamos primero que \mathcal{C} es un subanillo de $\mathcal{P}(X)$, esto no es muy complicado debido a que

$$A \triangle \emptyset = A$$
 y $A \cap \emptyset = \emptyset \cap A = \emptyset$.

Por otro lado, para ver que \mathcal{C} es isomorfo a \mathbb{Z}_2 solo hace falta considerar la función, $\phi: \mathcal{P}(X) \to \mathbb{Z}_2$, definida por

$$\phi(\emptyset) = 0$$
 y $\phi(A) = 1$.

y

El que ϕ es biyectiva es inmediato. Solo queda ver que ϕ es en efecto un homomorfismo:

$$\phi(A \triangle \emptyset) = \phi(A) = 1 = 1 + 0 = \phi(A) + \phi(\emptyset)$$

$$\phi(A \cap \emptyset) = \phi(\emptyset) = 0 = 01 = \phi(\emptyset)\phi(A).$$