Curs 9

Ecuații diferențiale de ordinul *n* liniare și neomogene cu coeficienți constanți (continuare)

5. Funcția f este de forma $f(t) = e^{\alpha t} (P_1(t) \cos \beta t + P_2(t) \sin \beta t)$

Fie

$$f(t) = e^{\alpha t} \left(P_1(t) \cos \beta t + P_2(t) \sin \beta t \right) \tag{1}$$

unde $\alpha, \beta \in \mathbb{R}$, iar $P_1(t)$ și $P_2(t)$ sunt polinoame.

În această situație, în funcție de valorile lui α și β , avem următoarele cazuri posibile:

Dacă $\alpha + i\beta$ nu este rădăcină a ecuației caracteristice, atunci ecuația (1) are o soluție particulară de forma

$$x_p = e^{\alpha t} \left(Q_1(t) \cos \beta t + Q_2(t) \sin \beta t \right),\,$$

unde $Q_1(t)$ şi $Q_2(t)$ sunt polinoame de gradul $m = max\{gradP_1(t), gradP_2(t)\}$, ai căror coeficienți se determină prin identificare înlocuind soluția x_p în ecuația (1).

Dacă $\alpha + i\beta$ este rădăcină multiplă de ordinul p a ecuației caracteristice, atunci ecuația (1) are o soluție particulară de forma

$$x_p = t^p e^{\alpha t} \left(Q_1(t) \cos \beta t + Q_2(t) \sin \beta t \right),\,$$

unde $Q_1(t)$ și $Q_2(t)$ sunt polinoame de gradul $m = max\{gradP_1(t), gradP_2(t)\}$, ai căror coeficienți se determină prin identificare înlocuind soluția x_p în ecuația (1).

Exemple

a) Să se afle soluția generală a ecuației

$$x'' - 5x' + 6x = e^{2t}(\sin t + t\cos t).$$

b) Să se afle soluția generală a ecuației

$$x'' + 9x = t\sin 3t + \cos 3t.$$

6. Funcția f este de forma $f(t) = f_1(t) + f_2(t) + ... + f_m(t)$

Dacă funcția f este de forma $f(t) = f_1(t) + f_2(t) + ... + f_m(t)$, unde $f_1(t)$, $f_2(t)$, ..., $f_m(t)$ sunt funcții care au una din formele prezentate în secțiunile anterioare, atunci se determină pentru fiecare f_i , $i \in \{1, 2, ..., m\}$, o soluție particulară $x_{p_1}, x_{p_2}, ..., x_{p_m}$. Soluția generală a ecuației nemomogene este $x(t) = x_o + x_{p_1} + x_{p_2} + ... + x_{p_n}$.

Exemple

Să se afle soluția generală a ecuației

$$x'' - 9x = e^{3t}\cos t + te^{-3t} + t^2.$$