

60 dérniure la mohice cinematica

Scallo come pold i punto A e essevote che pli ossi dei due camelli posti in B e (
componenti come:

$$\begin{cases} \tilde{n} = \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{cases}$$

$$\begin{cases} \tilde{m} = \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{cases}$$

Computando il numero des grade de liberta osservionne de sous numericomente pou elle moltoplicité dei vincoli

M = M = 3.

il sistemal et line naticamente DEGENERE paiché gli cost del convelle comvergeure tult.

Impalande il pustablema einamatice:

dove :

AER, 9ER ed SER3

dove in questé eosé

per via dell'ossenze di cedimenti mella struttura.

Adesse 2 moliamé à costrurer les matrice einematres, pertenté anoliame à seriere:

. 0.																								
Infil	me	pei	lo	kno	9 9	puo	rion	ne (eli (inc	oli	5 :												
									—	•														
									ų	•	m	. =	0											
Gam	•									_1		->												
							q	<u> </u>	= 9	UA	+	ð	×	AD										
)		(u	4 A	で×	A	Ď)	. 6	w =	= 0										
							\																	
dove	•																							
Gove	•						7	- Ā	C +	CO		J?	۱4	(-	E.	22.	F	S (j \					
								•											1					
									\frac{5}{25}	00	, ,	/ 3	El	+ Q	7 /									
									5		7		2		JS									
		. •			•																			
opero	mds	Q	pr	del	ю 2	COL	wa	•																+
							.			[)	•											_
						1	Å.	m	+ 7	y x	. At) · (m :	- 0										_
																								_
che	div	rent	a :											_ >										
							6	40 -	Jz	1)0		M		44	AD		O							
							25 6	M -	2	P) T	11,4	~	V •		$\overline{}$								
							J2 q	<i>A</i> -	2	YPI	1	11,30	*											
ukJ	live	nolo	le	fho	pie																			
ukJ	live	ndo	le	. Pho	pie	fol (all	p	sde	He	, α	wist	₽.								7			
ukJ	liwe	nolo	le	fhe	pie	fol (all	p	sde	He	, α	wist	₽.						2 + 4)3				
ukJ	live	nolo	le	Sho	pie	fol (all	p		He	, α	wist	₽.						2 + 4	2)3				
ukJ	liwe	nolo	le	. Pro	pie	fol (\ \lambda \frac{5}{12}	p.	sde Se	He	, α	wist	₽.						2 + 4)3				
ukJ	liwe	nolo	le	\$\omega_{\text{in}}	pie	fol (\ \lambda \frac{5}{12}	p	sde Se	He	, α	wist	₽.						2 + 4					
						3-0-1	- Jan	ρ. Σε (20.	S)	×	wist	· [2 + 4					
aHen						3-0-1	- Jan	ρ. Σε (20.	S)	×	wist	· [2 + 4					
						1 05	olol Sz	Je (sods 20.	S	x o	wist Uk	e		<u>S</u> 2	2.6	+ (2 + 4					
						1 05	olol Sz	Je (20.	S	x o	wist Uk	e		<u>S</u> 2	2.6	+ (2 + 4					
						1 05	olol Sz	Je (20.	3)	x (vist	8. Sz 2		<u>S2</u> (2	26 -	+ (2 + 4					
						1 05	olol Sz	Je (sods 20.	3)	x (vist	8. Sz 2		<u>S2</u> (2	26 -	+ (2 + 4					
						1 05	olol Sz	Je (20.	3)	x (vist	8. Sz 2		<u>S2</u> (2	26 -	+ (2 + 4					
8Hen	nend	5 09				40°	100 Je	Je (2 0.	3)	in.	wist ok	8 : Sz 2		<u>S2</u> (2	26 -	+ (2 + 4					
8Hen	nend	5 09				40°	100 Je	Je (2 0.	3)	in.	wist ok	8 : Sz 2		<u>S2</u> (2	26 -	+ (2 + 4					
8Hen	nend	5 09				40°	100 Je	Je (2 0.	3)	in.	wist Vk	6. Sz 2		<u>S2</u> (2	26 -	+ (
8Hen	nend	5 09				40°	100 Je	Je (2 0.	3)	in.	wist ok	6. Sz 2		<u>S2</u> (2	26 -	+ (
a Hen	nend	S es	kiva			405 de 1	olol Je Lori	Je (2)		Se i	ind VA	wist Vk	6. S2 2	di	S2 (2	26 -	+ (\$2.0 2						
a Hen	nend	S es	kiva			405 de 1	olol Je Lori	Je (2)		Se i	ind VA	wist Vk	6. S2 2	di	S2 (2	26 -	+ (\$2.0 2						

$$\frac{q}{q} = \begin{pmatrix} u_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} u_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R}^{3}$$

$$\frac{q}{2} = \begin{pmatrix} v_{A} \\ v_{A} \end{pmatrix} \quad \text{doa} \quad q \in \mathbb{R$$