CAPES Remise à niveau — TDs

Ivan Lejeune

26août2025

Table des matières

TD1 — Graphes														2
Graphes .														2

TD1 — Graphes

Graphes

Exercice 1.1 Exercice 2. Calculez les paramètres n (nombre de sommets), m (nombre d'arcs ou d'arêtes), δ (degré min), Δ (degré max), D (diamètre du graphe) des graphes suivants :

- 1. B_d (les arbres binomiaux de dimension d),
- 2. C_n (cycle à n sommets),
- 3. K_n (graphe complet à n sommets),
- 4. $GR_{p\times q}$ (grille $p\times q$),
- 5. $TR_{p\times q}$ (tore $p\times q$),
- 6. H_d (hypercube de dimension d).

Dessinez les graphes suivants :

- 1. B_3
- 2. K_5
- 3. $GR_{4\times4}$
- 4. $TR_{4\times4}$
- $5. H_2$
- 6. H_3
- 7. H_4

Solution. On a pour : (faire sous forme de tableau, c'est mieux) diametre = plus longue des plus courtes distances, facile a completer

 $\Delta, \delta, n, m, DGr - > *(p-1) * q + (q-1) * p, p + qTr - >, 4, 4, 2pq, p/2 + q/2$

- 1. B_d , $n = 1 + 2^d$, $m = 2^n$, $\delta = 1$, $\Delta = 3$, D = unknown,
- 2. C_n , n = n, m = n, $\delta = 2$, $\Delta = 2$, D
- 3. K_n , $\Delta = \delta = n 1$, n = n, $m = \frac{n(n-1)}{2}$, D = 1 graphe regulier = tous les sommets ont le meme degré
- 4. $GR_{p\times q}$
- 5. $TR_{p\times q}$
- 6. H_d

Exercice 1.2 Exercice 10. Un n-cube ou (hypercube de dimension n) est un graphe dont les sommets représentent les éléments de $\{0,1\}^n$ et deux sommets sont adjacents si et seulement si les n-uplets correspondants diffèrent en exactement une composante. Montrer que :

- 1. Le n-cube possède 2^n sommets,
- 2. Le *n*-cube est *n*-régulier,
- 3. Le nombre d'arêtes est $n \cdot 2^{n-1}$.

Représenter le 1-cube, le 2-cube et le 3-cube

- **Solution.** 1. Il y a exactement 2^n *n*-uplets dans $\{0,1\}^n$ donc un *n*-cube a exactement 2^n sommets.
 - 2. Il y a exactement n n-uplets qui diffèrent d'un sommet en exactement une composante (il suffit d'inverser une de ses composantes).
 - 3. Chaque sommet a n voisins et chaque arête est comptée 2 fois donc $n*2^n/2=n2^{n-1}$.
 - 4. le 1 cube est une ligne reliant 2 points le 2 un carré et le 3 un cube.

Exercice 1.3 Exercice 7. Les nombres $\delta(G)$ et $\Delta(G)$ représentent respectivement les degrés minimum et maximum d'un graphe G=(X,E) (X représente l'ensemble des sommets et E celui des arêtes) où n=|X| et m=|E|. Montrer que $\delta(G) \leq 2\frac{m}{n} \leq \Delta(G)$.

Solution. On sait que pour tout sommet d, on a

$$\delta \le d_i \le \Delta$$

Si on fait la somme des distances pour tous les sommets, on obtient alors

$$\delta \le 2m/n \le \Delta$$

Exercice 1.4 Exercice 1. Combien y-a-t'il de graphes simples non isomorphes avec 4 sommets? Dessiner chacun de ces graphes.

Solution. Il y a exactement 11 graphes simples non isomorphes avec 4 sommets, les voici :

Exercice 1.5 Exercice 8. Montrer que si un graphe biparti $G = (X_1, X_2, E)$ est k-régulier (avec k > 0) alors $|X|_1 = |X|_2$.

Solution. Il y a n_1 sommets à gauche et n_2 à droite. Il y a donc kn_1 arêtes qui sortent de la partie à gauche et qui vont à droite, et vice versa. Alors $kn_1 = kn_2$ et donc $n_1 = n_2$.

Exercice 1.6 Exercice 9. Montrer que tout graphe simple possède au moins deux sommets de même degré

Solution. Supposons que tous les sommets ont des degrés différents. Alors, comme le degré maximal est n-1, on a

$$d(x_n) = n - 1, d(x_{n-1}) = n - 2, \dots, x_2 = 1, x_1 = 0$$

Or, x_n est relié à tous les sommets, donc en particulier à x_1 , mais celui-ci est de degré 0. Il y a donc contradiction et il existe au moins deux sommets de même degré

Exercice 1.7 Exercice 11. Montrer que tout arbre d'ordre n > 1 a au moins 2 sommets pendants (un sommet pendant est un sommet de degré 1).

Solution. Raisonner sur le degré des sommets sur la chaine maximale (les sommets les plus distants). On peut aussi raisonner sur la somme des degrés et montrer qu'il faut forcement 2 de degre 1 pour la formule

Exercice 1.8 Exercice 16. Soient $G_1 = (X_1, A_1)$ et $G_2 = (X_2, A_2)$ les graphes suivants : Repondre aux questions suivantes :

- 1. Donner $\Gamma^+(x)$ (la liste des successeurs), $\Gamma^-(x)$ (la liste des prédécesseurs), $\Gamma(x)$, $d^+(x)$, $d^-(x)$ et d(x) pour tout $x \in X_2$.
- 2. Donner les matrices d'adjacence de G_1 et G_2 .
- 3. Etant donné un graphe orienté G = (X, A) ayant n sommets et m arcs, sa matrice d'incidence est une matrice $n \times m$, notée $P = (p_{ie})$ telle que $p_{ie} = 1$ si et seulement si le sommet i est l'origine de l'arc e, $p_{ie} = -1$ si et seulement si le sommet i est l'extrêmité de l'arc e et $p_{ie} = 0$ sinon. Donner la matrice d'incidence des graphes G_1 et G_2 .
- 4. Représenter les deux graphes par leurs listes d'adjacence (les sommets d'une liste d'adjacence sont rangés consécutivement dans un tableau.)

Solution. A completer

- Exercice 1.9 Exercice 17. a completer, penser à rajouter les packages pour faire des algorithmes
- **Solution.** Exercice solution

Exercice 1.10 Notions de base. Soit la matrice binaire ou matrice d'adjacence M associée au graphe orienté G=(S,U) telle que

$$M = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- 1. Tracer le graphe représentatif de cette matrice.
- 2. Donner la matrice d'incidence sommets-arcs de ce graphe.
- 3. Calculer M^2, M^3, M^4 . Que pouvez-vous en dire?
- 4. Calculer

$$A = I + M + M^2 + M^3 + M^4$$
.

Interpréter A.

- 5. Appliquer l'algorithme de Roy Warshall. Que constatez-vous?
- **Solution.** Exercice solution
- **Exercise 1.11 Optional title 2.** Exercise 2 content
- **Solution.** Exercice solution
- **Exercise 1.12 Optional title 2.** Exercise 2 content
- **Solution.** Exercice solution