Masimo

Rad-87

Report No. MASI0009 Rev 01

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2008Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Testing: September 17, 2008

Masimo

Model: Rad-87

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Spurious Radiated Emissions	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Spurious Conducted Emissions	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Band Edge Compliance	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Power Spectral Density	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Output Power	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Occupied Bandwidth	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
AC Powerline Conducted Emissions	FCC 15.207:2007	ANSI C63.4:2003	Pass		

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 41 Tesla Ave. Irvine, CA 92618

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada(Site filing #2834B-2).

Approved By:

Don Facteau, IS Manager

NVLAP

NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
01	Corrected cable information	9/24/08	12

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2*)

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

MIC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Party Requesting the Test

Company Name:	Masimo
Address:	40 Parker
City, State, Zip:	Irvine, CA 92618
Test Requested By:	Paul Lewandowski
Model:	Rad-87
First Date of Test:	September 2, 2008
Last Date of Test:	September 17, 2009
Receipt Date of Samples:	September 2, 2008
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

One 802.11a/b/g radio module installed in a Pulse Oximeter that will be connected to hospital wireless network.

Testing Objective:

Seeking to demonstrate compliance under FCC 15.247 for operation in the 2.4 and 5.8 GHz bands.

EUT Photo

Revision 9/21/05

CONFIGURATION 1 MASI0009

Software/Firmware Running during test	
Description	Version
RadioCfg SX-560	1.0.0.1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Pulse CO-Oximeter	Masimo Corporation	RAD-87	J00073

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Cable	Yes	4.0m	No	Pulse CO-Oximeter	AC Mains	
MX-1 Compatible cable	No	2.0m	No	Pulse CO-Oximeter	Unterminated	
Serial Cable	Yes	1.8m	No	Pulse CO-Oximeter	Laptop	
Ground Cable	Yes	2.0m	No	Pulse CO-Oximeter	Ground	
Nurse Call Cable	Yes	4.6m	No	Pulse CO-Oximeter	Unterminated	
PA = Cable is permanent	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 MASI0009

Software/Firmware Running during test	
Description	Version
RadioCfg SX-560	1.0.0.1

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Pulse CO-Oximeter	Masimo Corporation	RAD-87	J00073		

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Laptop	IBM	ThinkPAD 2647	78-NZZ08	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Cable	Yes	4.0m	No	Pulse CO-Oximeter	AC Mains
Serial Cable	Yes	1.8m	No	Pulse CO-Oximeter	Laptop
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
1	9/2/2008	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
2	9/3/2008	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
3	9/4/2008	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
4	9/17/2008	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
5	9/17/2008	Power Spectral Denisty	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
6	9/17/2008	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
7	9/17/208	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was complete.	

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting 802.11(a), 6 Mbps

Tramsmitting 802.11(b/g), 11 Mbps

CHANNELS TESTED

Channel	•
Ob	,

Channel 6 Channel 11

Channel 149

Channel 157

Channel 161

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 40 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Pre-Amplifier	Miteq	JS4-26004000-50-5A	AON	7/14/2008	13
Antenna, Horn	EMCO	3160-10	AHI	NCR	0
EV01 Cables		26-40GHz Standard Gain Horn Cable	EVE	7/14/2008	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	3/3/2008	13
Antenna, Horn	EMCO	3160-09	AHN	NCR	0
OC10 SMA cable for 18026 GHz			OCK	3/3/2008	13
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	2/8/2008	13
Antenna, Horn	EMCO	3160-08	AHK	NCR	0
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVL	2/8/2008	13
Antenna, Horn	ETS	3160-07	AHX	10/25/2007	12
OC11 8-18 GHz Cables a-b-c-e			ocs	2/7/2008	13
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVJ	4/25/2008	13
Antenna, Horn	EMCO	3115	AHB	8/31/2007	24
OC11 1-8 GHz Cables a-b-c-d			OCR	2/7/2008	13
Spectrum Analyzer	Agilent	E4440A	AAX	10/1/2007	12

MEASUREMEN	IT BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
	Measurements were made usin	g the bandwidths and det	ectors specified No video filter	r was used

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

NORTHWEST			SI	PURI	ous	RADI	ATED	EMISS	1018	NS D	ATA S	HEET_			A 2007.0 EMI 2006
EMC	- LIT	D-107	Ŭ.	• • • • • • • • • • • • • • • • • • • •					<i>.</i>	. 0			to the Outlant	That A CLOCOC	
Serial Nun		Rad-87										V		MASI0009	
			Corporat	ion								Te	mperature		
		Eugene											Humidity		
		None										Barom	etric Pres.		
		Mark Ba	aytan					Pow		20VAC/6			Job Site	OC11`	
T SPECIFI 15.247 (D										est Meth NSI C63		B No. 55807	74		
T PARAM enna Heigl			1 - 4					Test Di	stanc	e (m)		3			
MENTS	rt(O)	(111)	1 7					1001 21	otario	C (III)		<u> </u>			
OPERATIONS I	FRON		STANDARI	D											
#			13									An St			
figuration	#		1									17			
ults			Pass								Signature				
80.0	1														_
70.0 -															
60.0 -															
00.0															
50.0 -															
Ę															
40.0 -															
5	•														
30.0 -	-														
	•														
20.0 -	Ť														\exists
10.0 -															
10.0															
0.0															
0.0 -		,		00.000			000.000			400.00	<u> </u>	0000	000	7.	
4900).00()	54	00.000)	59	000.000	MHz		400.00	U	6900.	.000	74	00.00
		ı		ı			T				Т	l più		1	0
Freq (MHz)		Amplitud (dBuV)			zimuth egrees)	Height (meters)	Distance (meters)			Polarity	Detector	Distance Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Compa Spe (dE
7387.756		20.4	8.7		162.0	1.0	0.0	0.0		H-Horn	AV	0.0	29.1	54.0	-24
7390.983		20.4	8.7		151.0	3.3	0.0	0.0		V-Horn	AV	0.0	29.1	54.0	-2

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
7387.756	20.4	8.7	162.0	1.0	0.0	0.0	H-Horn	AV	0.0	29.1	54.0	-24.9	
7390.983	20.4	8.7	151.0	3.3	0.0	0.0	V-Horn	AV	0.0	29.1	54.0	-24.9	
7388.315	33.1	8.6	151.0	3.3	0.0	0.0	V-Horn	PK	0.0	41.7	74.0	-32.3	
4922.321	17.9	3.5	153.0	1.0	0.0	0.0	H-Horn	AV	0.0	21.4	54.0	-32.6	
4926.366	17.9	3.5	222.0	1.4	0.0	0.0	V-Horn	AV	0.0	21.4	54.0	-32.6	
7388.524	32.8	8.6	162.0	1.0	0.0	0.0	H-Horn	PK	0.0	41.4	74.0	-32.6	
4922.926	30.9	3.5	153.0	1.0	0.0	0.0	H-Horn	PK	0.0	34.4	74.0	-39.6	
4922.365	30.7	3.5	222.0	1.4	0.0	0.0	V-Horn	PK	0.0	34.2	74.0	-39.8	

NORTHWEST EMC	SPURIOUS RADIATED E	MISSIC	ONS DATA SH	IEET	PSA 2007.05.07 EMI 2006.4.26			
EUT:	Rad-87			Work Order:	MASI0009			
Serial Number:	Date: 09/02/08							
Customer:	r: Masimo Corporation Temperature: 21.88							
Attendees:	Eugene Kim			Humidity:	53%			
Project:	None			Barometric Pres.:	1011.7			
	Mark Baytan	Power:	120VAC/60Hz	Job Site:	OC11			
TEST SPECIFICATI	ONS		Test Method					
FCC 15.247 (DTS):2	2007		ANSI C63.4:2003 KDE	3 No. 558074				

TEST PARAMETERS

Antenna Height(s) (m) 1 - 4
COMMENTS Test Distance (m) 3

Channel 1. 11 Mbps.

EUT OPERATING MODES

Transmitting.
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	15
Configuration #	1
Results	Pass

Signature

 $12300.000\ 12310.000\ 12320.000\ 12330.000\ 12340.000\ 12350.000\ 12360.000\ 12370.000\ 12380.000\ 12390.000\ 12390.000$ MHz

ſ							External			Distance			Compared to
١	Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	12304.540	35.3	-10.0	322.0	1.0	0.0	0.0	V-Horn	AV	0.0	25.3	54.0	-28.7
	12309.250	35.2	-10.0	334.0	1.0	0.0	0.0	H-Horn	AV	0.0	25.2	54.0	-28.8
	12312.900	48.0	-10.0	322.0	1.0	0.0	0.0	V-Horn	PK	0.0	38.0	74.0	-36.0
	12309.060	47.9	-10.0	334.0	1.0	0.0	0.0	H-Horn	PK	0.0	37.9	74.0	-36.1

FUT D. JOT		ONS DATA SHE	ET	EMI 2006.4.26
EUT: Rad-87			Work Order:	MASI0009
Serial Number: J00073			Date:	09/02/08
Customer: Masimo Corporat	tion		Temperature:	21.88
Attendees: Eugene Kim			Humidity:	53%
Project: None			Barometric Pres.:	1011.7
Tested by: Mark Baytan	Power:	120VAC/60Hz	Job Site:	OC11
TEST SPECIFICATIONS		Test Method		
FCC 15.247 (DTS):2007		ANSI C63.4:2003 KDB No	o. 558074	
TEST PARAMETERS				

Antenna Height(s) (m)
COMMENTS
Channel 6. 11Mbps. Test Distance (m) 1 - 4

EUT OPERATING MODES
Transmitting.
DEVIATIONS FROM TEST STANDARD

No deviations.

Run#	16
Configuration #	1
Results	Pass

Signature

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
7310.912	38.5	8.4	198.0	1.0	3.0	0.0	V-Horn	AV	0.0	46.9	54.0	-7.1
4873.985	37.8	3.3	235.0	1.0	3.0	0.0	V-Horn	AV	0.0	41.1	54.0	-12.9
7311.009	29.8	8.4	183.0	1.4	3.0	0.0	H-Horn	AV	0.0	38.2	54.0	-15.8
7310.907	44.6	8.4	198.0	1.0	3.0	0.0	V-Horn	PK	0.0	53.0	74.0	-21.0
4873.854	28.9	3.3	0.0	1.2	3.0	0.0	H-Horn	AV	0.0	32.2	54.0	-21.8
7310.916	41.0	8.4	183.0	1.4	3.0	0.0	H-Horn	PK	0.0	49.4	74.0	-24.6
4873.918	44.1	3.3	235.0	1.0	3.0	0.0	V-Horn	PK	0.0	47.4	74.0	-26.6
4873.857	40.9	3.3	0.0	1.2	3.0	0.0	H-Horn	PK	0.0	44.2	74.0	-29.8

NORTHWEST EMC	SPURIOUS RAI	DIATED EMISSIONS DATA SH	IEET	PSA 2007.05.0 EMI 2006.4.20
EUT:	Rad-87		Work Order:	MASI0009
Serial Number:	J00073		Date:	09/02/08
Customer:	Masimo Corporation		Temperature:	21.88
Attendees:	Eugene Kim		Humidity:	53%
Project:	None		Barometric Pres.:	1011.7
Tested by:	Mark Baytan	Power: 120VAC/60Hz	Job Site:	OC11
TEST SPECIFICATI	ONS	Test Method		
FCC 15.247 (DTS):2	007	ANSI C63.4:2003 KDE	3 No. 558074	

TEST PARAMETERS

Antenna Height(s) (m) 1 - 4
COMMENTS Test Distance (m) 3

Channel 6. 11Mbps.

EUT OPERATING MODES

Transmitting.
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	16
Configuration #	1
Results	Pass

Signature

 $12100.000\ 12110.000\ 12120.000\ 12130.000\ 12140.000\ 12150.000\ 12160.000\ 12170.000\ 12180.000\ 12190.000\ 12200.000$ MHz

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
12184.870	49.9	-10.5	249.0	1.0	3.0	0.0	V-Horn	AV	0.0	39.4	54.0	-14.6
12184.880	48.7	-10.5	280.0	1.0	3.0	0.0	H-Horn	AV	0.0	38.2	54.0	-15.8
12184.810	53.7	-10.5	249.0	1.0	3.0	0.0	V-Horn	PK	0.0	43.2	74.0	-30.8
12184.910	53.4	-10.5	280.0	1.0	3.0	0.0	H-Horn	PK	0.0	42.9	74.0	-31.1
	(MHz) 12184.870 12184.880 12184.810	(MHz) (dBuV) 12184.870 49.9 12184.880 48.7 12184.810 53.7	(MHz) (dBuV) (dB) 12184.870 49.9 -10.5 12184.880 48.7 -10.5 12184.810 53.7 -10.5	(MHz) (dBuV) (dB) (degrees) 12184.870 49.9 -10.5 249.0 12184.880 48.7 -10.5 280.0 12184.810 53.7 -10.5 249.0	(MHz) (dBuV) (dB) (degrees) (meters) 12184.870 49.9 -10.5 249.0 1.0 12184.880 48.7 -10.5 280.0 1.0 12184.810 53.7 -10.5 249.0 1.0	(MHz) (dBuV) (dB) (degrees) (meters) (meters) 12184.870 49.9 -10.5 249.0 1.0 3.0 12184.880 48.7 -10.5 280.0 1.0 3.0 12184.810 53.7 -10.5 249.0 1.0 3.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) 12184.870 49.9 -10.5 249.0 1.0 3.0 0.0 12184.880 48.7 -10.5 280.0 1.0 3.0 0.0 12184.810 53.7 -10.5 249.0 1.0 3.0 0.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity 12184.870 49.9 -10.5 249.0 1.0 3.0 0.0 V-Horn 12184.880 48.7 -10.5 280.0 1.0 3.0 0.0 H-Horn 12184.810 53.7 -10.5 249.0 1.0 3.0 0.0 V-Horn	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (meters) Polarity Detector 12184.870 49.9 -10.5 249.0 1.0 3.0 0.0 V-Horn AV 12184.880 48.7 -10.5 280.0 1.0 3.0 0.0 H-Horn AV 12184.810 53.7 -10.5 249.0 1.0 3.0 0.0 V-Horn PK	Freq (MHz) Amplitude (dBuV) Factor (dBuV) Azimuth (degrees) Height (degrees) Distance (meters) Attenuation (dB) Polarity Detector (dB) Adjustment (dB) 12184.870 49.9 -10.5 249.0 1.0 3.0 0.0 V-Horn AV 0.0 12184.880 48.7 -10.5 280.0 1.0 3.0 0.0 H-Horn AV 0.0 12184.810 53.7 -10.5 249.0 1.0 3.0 0.0 V-Horn PK 0.0	(MHz) (dBuV) (dB) (degrees) (meters) (meters) (dB) V-Horn AV 0.0 39.4 12184.870 49.9 -10.5 249.0 1.0 3.0 0.0 V-Horn AV 0.0 39.4 12184.880 48.7 -10.5 280.0 1.0 3.0 0.0 H-Horn AV 0.0 38.2 12184.810 53.7 -10.5 249.0 1.0 3.0 0.0 V-Horn PK 0.0 43.2	Freq (MHz) Amplitude (dBuV) Factor (dBuV) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment (dB) Adjustment (dB) Spec. Limit (dB) 12184.870 49.9 -10.5 249.0 1.0 3.0 0.0 V-Horn (DF) AV 0.0 39.4 54.0 12184.880 48.7 -10.5 280.0 1.0 3.0 0.0 H-Horn (DF) AV 0.0 38.2 54.0 12184.810 53.7 -10.5 249.0 1.0 3.0 0.0 V-Horn (DF) PK 0.0 43.2 74.0

NORTHWEST			SPL	JRIOUS	RADIA	ATED E	MISSIC	ONS DA	ATA SH	HEET			SA 2007.0 EMI 2006.
CIVIC		Rad-87								W	ork Order	MASI0009	
Serial Nu												09/02/08	
			Corporation	1						Ter	nperature:		
		Eugene	Kim							_	Humidity:		
		None					D	1400)/40/0	NI I -	Barome	etric Pres.:		
T SPECIF		Jaemi Su	un				Power:	120VAC/60 Test Metho			Job Site:	OC11	
: 15.247 (DTS):2	2007						ANSI C63.	4:2003 KDI	B No. 55807	4		
T PARAN							IT Di-t-	(
enna Heig MMENTS	jnt(s)	(m)	1 - 4				Test Dista	nce (m)	3	3			
	TING N	MODES	TANDARD										
leviation: #			17							augh			
figuratioı ults	n #		1 Pass	4					Signature	(0)			
uits			ass						Signature				
80.0	_												
70.0													
70.0													
60.0													
00.0													
	+												
50.0	•												_
_	*												8
W/Ang 40.0	•												
4 0.0	1												
뿡	•												
30.0													
30.0													
20.0	1												
_0.0													
10.0	+												
0.0													
0.0				000	= -	100 00-		0.400 ===		25	222		00.55
490	0.000)	5400	.000	59	900.000	MHz	6400.000	1	6900.	000	74	00.00
				1			External			Distance			Compar
Freq		Amplitude		Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spe
(MHz)	2	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	1111	A \ /	(dB)	dBuV/m	dBuV/m	(dB
7385.94 7385.93		37.7 36.7	8.6 8.6	283.0 273.0	1.0 1.0	0.0 0.0	0.0 0.0	H-Horn V-Horn	AV AV	0.0 0.0	46.3 45.3	54.0 54.0	-7. -8.
4923.95		38.5	3.5	273.0	1.0	0.0	0.0	V-Horn V-Horn	AV	0.0	45.3 42.0	54.0 54.0	-8. -12
4923.90		32.8	3.5	201.0	1.4	0.0	0.0	H-Horn	AV	0.0	36.3	54.0	-17
7385.78		44.2	8.6	283.0	1.0	0.0	0.0	H-Horn	PK	0.0	52.8	74.0	-21
7385.82		44.1	8.6	273.0	1.0	0.0	0.0	V-Horn	PK	0.0	52.7	74.0	-21
4924.03	^	44.8	3.5	235.0	1.0	0.0	0.0	V-Horn	PK	0.0	48.3	74.0	-25

V-Horn H-Horn

PK PK

0.0

74.0 74.0

48.3 46.0

-25.7 -28.0

3.5 3.5

235.0 201.0

1.0 1.4 0.0

0.0

44.8 42.5

4924.036 4923.675

NORTHWEST EMC	SPURIOUS RADIATED EMISSIONS DATA SHEET PSA 2007.05.07 EMI 2006.4.26					
EUT:	Rad-87		Work Order:	MASI0009		
Serial Number:	J00073	Date:	09/02/08			
Customer:	Masimo Corporation	Temperature:	21.88			
Attendees:	Eugene Kim	Humidity:	53%			
Project:	None		Barometric Pres.:	1011.7		
Tested by:	Mark Baytan	Power: 120VAC/60Hz	Job Site:	OC11		
TEST SPECIFICATI	ONS	Test Method				
FCC 15.247 (DTS):2	2007	B No. 558074				

TEST PARAMETERS

Antenna Height(s) (m) 1 - 4
COMMENTS Test Distance (m) 3

Channel 11. 11 Mbps.

EUT OPERATING MODES

Transmitting.
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	17
Configuration #	1
Results	Pass

Signature

 $12300.000\ 12310.000\ 12320.000\ 12330.000\ 12340.000\ 12350.000\ 12360.000\ 12370.000\ 12380.000\ 12390.000\ 12390.000$ MHz

Compared to
ec. Limit Spec.
lBuV/m (dB)
54.0 -15.3
54.0 -15.5
74.0 -30.8
74.0 -31.2

NORTHWEST EMC	SPURIOUS RADIATED EMISSIONS DATA SHEET PSA 2007.05.07 EMI 2006.4.26					
EUT:	Rad-87		Work Order:	MASI0009		
Serial Number:	J00073	Date:	09/02/08			
Customer:	Masimo Corporation	Temperature:	21.88			
Attendees:	Eugene Kim		Humidity:	53%		
Project:	None		Barometric Pres.:	1011.7		
	Jaemi Suh	Power: 120VAC/60Hz	Job Site:	OC11		
TEST SPECIFICATI	ONS	Test Method				

FCC 15.247 (DTS):2007

ANSI C63.4:2003 KDB No. 558074

TEST PARAMETERS

Antenna Height(s) (m) Test Distance (m) 3

COMMENTS

Channel 149. 11 Mbps.

EUT OPERATING MODES

Transmitting.
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	18
Configuration #	1
Results	Pass

Signature

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
11489.890	61.7	-11.7	197.0	1.0	3.0	0.0	H-Horn	AV	0.0	50.0	54.0	-4.0
11489.880	45.6	-11.7	249.0	1.5	3.0	0.0	V-Horn	AV	0.0	33.9	54.0	-20.1
11489.840	63.0	-11.7	197.0	1.0	3.0	0.0	H-Horn	PK	0.0	51.3	74.0	-22.7
11489.800	53.2	-11.7	249.0	1.5	3.0	0.0	V-Horn	PK	0.0	41.5	74.0	-32.5

MHz

NORTHWEST EMC	SPURIOUS RADIATED EN	IISSIONS DATA SH	IEET	PSA 2007.05.07 EMI 2006.4.26		
EUT:	Rad-87		Work Order:	MASI0009		
Serial Number:	er: J00073 Date: 09/03/08					
Customer:	Masimo Corporation	Temperature:	21.88			
Attendees:	Eugene Kim		Humidity:	53%		
Project:	None		Barometric Pres.:	1011.7		
Tested by:	Jaemi Suh	Power: 120VAC/60Hz	Job Site:	OC11		
TEST SPECIFICATI	ONS	Test Method				
FCC 15.247 (DTS):2	007	ANSI C63.4:2003 KDE	3 No. 558074			

TEST PARAMETERS

Antenna Height(s) (m) 1 - 4

Test Distance (m) 3

COMMENTS

Channel 157. 11 Mbps.

EUT OPERATING MODES

Transmitting.
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	19
Configuration #	1
Results	Pass

Signature

External Distance Compared to Freq Amplitude Factor Azimuth Height Distance Polarity Detector Adjusted Spec. Limit Attenuation Adjustment Spec. (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) 37.8 11571.320 49.3 -11.5 291.0 1.0 0.0 H-Horn AV 54.0 -16.2 0.0 0.0 11571.210 54.0 47.1 -11.5 229.0 1.0 0.0 0.0 V-Horn AV 0.0 35.6 -18.4 11568.780 62.1 -11.5 291.0 1.0 0.0 0.0 H-Horn PΚ 0.0 50.6 74.0 -23.4 11571.350 60.4 -11.5 229.0 1.0 0.0 0.0 V-Horn PΚ 0.0 48.9 74.0 -25.1

MHz

	NORTHWEST	0011010110 04014750 5	ODUDIOUS DADIATED EMISSIONS DATA SUITET					
	EMC	SPURIOUS RADIATED EMISSIONS DATA SHEET EMI 2006.4.3						
	EUT:	Rad-87		Work Order:	MASI0009			
	Serial Number:	J00073	Date:	09/03/08				
	Customer:	Masimo Corporation	Temperature:	21.88				
	Attendees:	Eugene Kim		Humidity:	53%			
	Project:	None		Barometric Pres.:	1011.7			
	Tested by:	Jaemi Suh	Power: 120VAC/60Hz	Job Site:	OC11			
TE	ST SPECIFICAT	IONS	Test Method					

FCC 15.247 (DTS):2007

ANSI C63.4:2003 KDB No. 558074

TEST PARAMETERS

Antenna Height(s) (m) 1 - 4 Test Distance (m) 3

COMMENTS

Channel 149. 6 Mbps.

EUT OPERATING MODES

Transmit Mode
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	29
Configuration #	1
Results	Pass

Signature

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	External Attenuation (dB)	Polarity	Detector	Distance Adjustment (dB)	Adjusted unknown units	Spec. Limit unknown units	Compared to Spec. (dB)
22980	47.9	0.1	289.0	1.0	0.0	0.0	H-High Horr	AV	0.0	48.0	54.0	-6.0
22980	44.8	0.1	273.0	1.0	0.0	0.0	V-High Horr	AV	0.0	44.9	54.0	-9.1
22980	61.9	0.1	289.0	1.0	0.0	0.0	H-High Horr	PK	0.0	62.0	74.0	-12.0
22980	59.7	0.1	273.0	1.0	0.0	0.0	√-High Horr	PK	0.0	59.8	74.0	-14.2

Spurious Radiated Emissions

Spurious Radiated Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT										
Description	Manufacturer	Model	ID	Last Cal.	Interval					
Spectrum Analyzer	Agilent	E4440A	AAX	10/1/2007	12					

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

Serial Number:	Rad-87 J00073	OUS CONDUCTED EMISSIONS	Work Order: MASI000 Date: 09/17/08)
	Masimo Corporation Eugene Kim		Temperature: 21.88°C Humidity: 53% Barometric Pres.: 1011.7	
Tested by: ST SPECIFICATI	Mark Baytan	Power: 120V/60Hz Test Method	Job Site: OC11	
C 15.247 (DTS):2	2007	ANSI C63.4:2003 KDB No. 558	8074	
MMENTS ne				
VIATIONS FROM Deviations.	M TEST STANDARD			
nfiguration #	2	Signature 4+5+		
.11(a), 6 Mbps		Value	Limit	Resul
	Low Channel 0 - 12.5 GHz 12.4 - 24 GHz	<-40 dBc <-40 dBc		Pass
	23.5 - 31 GHz 30.5 - 40 GHz	< -40 dBc < -40 dBc < -40 dBc	≤ -20dBc	Pas:
	Mid Channel 0 - 12.5 GHz 12.4 - 24 GHz	<-40 dBc <-40 dBc	≤ -20dBc ≤ -20dBc	Pass
	23.5 - 31 GHz 30.5 - 40 GHz	< -40 dBc < -40 dBc	: ≤ -20dBc	Pass
	High Channel 0 - 12.5 GHz 12.4 - 24 GHz	< -40 dBc < -40 dBr		Pass
	23.5 - 31 GHz 30.5 - 40 GHz	< -40 dBc < -40 dBc	≤ -20dBc	Pass Pass
.11(a), 36 Mbps	Low Channel 0 - 12.5 GHz	<-40 dBc	: ≤ -20dBc	Pass
	12.4 - 24 GHz 23.5 - 31 GHz	< -40 dBc < -40 dBc	≤ -20dBc ≤ -20dBc	Pass Pass
	30.5 - 40 GHz Mid Channel 0 - 12.5 GHz	< -40 dBc	≤ -20dBc	Pass
	12.4 - 24 GHz 23.5 - 31 GHz	< -40 dBc < -40 dBc	≤ -20dBc ≤ -20dBc	Pass Pass
	30.5 - 40 GHz High Channel 0 - 12.5 GHz	<-40 dBc		Pas
	12.4 - 24 GHz 23.5 - 31 GHz	< -40 dBc < -40 dBc	≤ -20dBc ≤ -20dBc	Pass
.11(a), 54 Mbps	Low Channel	<-40 dBc	: ≤-20dBc	Pass
	0 - 12.5 GHz 12.4 - 24 GHz	< -40 dBc < -40 dBc	≤ -20dBc	Pass Pass
	23.5 - 31 GHz 30.5 - 40 GHz Mid Channel	< -40 dBc < -40 dBc	≤ -20dBc ≤ -20dBc	Pass Pass
	0 - 12.5 GHz 12.4 - 24 GHz	< -40 dBc < -40 dBc	≤ -20dBc	Pass Pass
	23.5 - 31 GHz 30.5 - 40 GHz High Channel	< -40 dBc < -40 dBc		Pass Pass
	0 - 12.5 GHz 12.4 - 24 GHz	< -40 dBc < -40 dBc	≤ -20dBc	Pass Pass
4400 4100-	23.5 - 31 GHz 30.5 - 40 GHz	< -40 dBc < -40 dBc	≤ ≤ -20dBc ≤ -20dBc	Pass Pass
.11(b), 1 Mbps	Low Channel 0 - 12.5 GHz	< -40 dBc	: ≤-20dBc	Pass
	12.4 - 24 GHz 23.5 - 31 GHz	< -40 dBc < -40 dBc	≤ -20dBc ≤ -20dBc	Pass Pass
	30.5 - 40 GHz Mid Channel 0 - 12.5 GHz	< -40 dBc		Pass
	12.4 - 24 GHz 23.5 - 31 GHz	< -40 dBc < -40 dBc	≤ -20dBc	Pass
	30.5 - 40 GHz High Channel 0 - 12.5 GHz	<-40 dBc		Pass
	12.4 - 24 GHz 23.5 - 31 GHz 30.5 - 40 GHz	< -40 dBc < -40 dBc < -40 dBr	≤ -20dBc ≤ -20dBc	Pass Pass
.11(b), 11 Mbps	30.5 - 40 GHz	< -40 dBc	: ≤-20dBc	Pass
	0 - 12.5 GHz 12.4 - 24 GHz	< -40 dBc < -40 dBc	≤ -20dBc	Pass
	23.5 - 31 GHz 30.5 - 40 GHz Mid Channel	< -40 dBc < -40 dBc		Pass
	0 - 12.5 GHz 12.4 - 24 GHz	< -40 dBc < -40 dBc	: ≤ -20dBc	Pass Pass
	23.5 - 31 GHz 30.5 - 40 GHz High Channel	< -40 dBc < -40 dBc	≤ -20dBc ≤ -20dBc	Pass Pass
	0 - 12.5 GHz 12.4 - 24 GHz	< -40 dBc < -40 dBc	≤ -20dBc	Pass
.11(g), 6 Mbps	23.5 - 31 GHz 30.5 - 40 GHz	< -40 dBc < -40 dBc		Pass
	0 - 12.5 GHz	< -40 dBc		Pass
	12.4 - 24 GHz 23.5 - 31 GHz 30.5 - 40 GHz	< -40 dBc < -40 dBc < -40 dBc	: ≤ -20dBc	Pass Pass Pass
	Mid Channel 0 - 12.5 GHz	<-40 dBc	: ≤ -20dBc	Pass
	12.4 - 24 GHz 23.5 - 31 GHz 30.5 - 40 GHz	< -40 dBc < -40 dBc < -40 dBc	≤ -20dBc	Pass Pass Pass
	High Channel 0 - 12.5 GHz 12 4 - 24 GHz	<-40 dBc	: ≤-20dBc	Pass
	12.4 - 24 GHz 23.5 - 31 GHz 30.5 - 40 GHz	<-40 dBc <-40 dBc <-40 dBc	≤ -20dBc	Pass Pass Pass
.11(g), 36 Mbps	Low Channel			
	0 - 12.5 GHz 12.4 - 24 GHz 23.5 - 31 GHz	< -40 dBc < -40 dBc < -40 dBc	≤ -20dBc ≤ -20dBc	Pass Pass Pass
	30.5 - 40 GHz Mid Channel 0 - 12.5 GHz	< -40 dBc	≤ -20dBc	Pass
	12.4 - 24 GHz 23.5 - 31 GHz	< -40 dBc < -40 dBc	≤ -20dBc ≤ -20dBc	Pass
	30.5 - 40 GHz High Channel	< -40 dBc		Pass
	0 - 12.5 GHz 12.4 - 24 GHz 23.5 - 31 GHz	< -40 dBc < -40 dBc < -40 dBc	≤ -20dBc ≤ -20dBc	Pass Pass Pass
.11(g), 54 Mbps	30.5 - 40 GHz	< -40 dBc	≤ -20dBc	Pas
	0 - 12.5 GHz 12.4 - 24 GHz	< -40 dBc < -40 dBc		Pass Pass
	23.5 - 31 GHz 30.5 - 40 GHz	< -40 dBc < -40 dBc	≤ -20dBc	Pass
	Mid Channel 0 - 12.5 GHz 12.4 - 24 GHz	< -40 dBc < -40 dBc	≤ -20dBc	Pass Pass
	23.5 - 31 GHz 30.5 - 40 GHz	< -40 dBc < -40 dBc < -40 dBc	≤ -20dBc	Pass Pass Pass
	High Channel 0 - 12.5 GHz	< -40 dBc	≤ -20dBc	Pass
	12.4 - 24 GHz 23.5 - 31 GHz 30.5 - 40 GHz	< -40 dBc < -40 dBc < -40 dBc	≤ -20dBc	Pass Pass

802.11(a), 6 Mbps, Low Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 6 Mbps, Low Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 6 Mbps, Low Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 6 Mbps, Mid Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 6 Mbps, Mid Channel, 12.4 - 24 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20dBc

802.11(a), 6 Mbps, Mid Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 6 Mbps, Mid Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 6 Mbps, High Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 6 Mbps, High Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 6 Mbps, High Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 6 Mbps, High Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 36 Mbps, Low Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 36 Mbps, Low Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 36 Mbps, Low Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 36 Mbps, Low Channel, 30.5 - 40 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20dBc

802.11(a), 36 Mbps, Mid Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 36 Mbps, Mid Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 36 Mbps, Mid Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 36 Mbps, Mid Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 36 Mbps, High Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 36 Mbps, High Channel, 12.4 - 24 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20dBc

802.11(a), 36 Mbps, High Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 36 Mbps, High Channel, 30.5 - 40 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20dBc

802.11(a), 54 Mbps, Low Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 54 Mbps, Low Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 54 Mbps, Low Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 54 Mbps, Low Channel, 30.5 - 40 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20dBc

802.11(a), 54 Mbps, Mid Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 54 Mbps, Mid Channel, 12.4 - 24 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20dBc

802.11(a), 54 Mbps, Mid Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 54 Mbps, High Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 54 Mbps, High Channel, 12.4 - 24 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20dBc

802.11(a), 54 Mbps, High Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(a), 54 Mbps, High Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 1 Mbps, Low Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 1 Mbps, Low Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 1 Mbps, Low Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 1 Mbps, Low Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 1 Mbps, Mid Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 1 Mbps, Mid Channel, 12.4 - 24 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20dBc

802.11(b), 1 Mbps, Mid Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 1 Mbps, Mid Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 1 Mbps, High Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 1 Mbps, High Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 1 Mbps, High Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 1 Mbps, High Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 11 Mbps, Low Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 11 Mbps, Low Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 11 Mbps, Low Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 11 Mbps, Low Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 11 Mbps, Mid Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 11 Mbps, Mid Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 11 Mbps, Mid Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 11 Mbps, High Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 11 Mbps, High Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(b), 11 Mbps, High Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 6 Mbps, Low Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 6 Mbps, Low Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 6 Mbps, Low Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 6 Mbps, Mid Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 6 Mbps, Mid Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 6 Mbps, Mid Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 6 Mbps, Mid Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 6 Mbps, High Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 6 Mbps, High Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 6 Mbps, High Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 6 Mbps, High Channel, 30.5 - 40 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20dBc

802.11(g), 36 Mbps, Low Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 36 Mbps, Low Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 36 Mbps, Low Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 36 Mbps, Low Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 36 Mbps, Mid Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 36 Mbps, Mid Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 36 Mbps, Mid Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 36 Mbps, High Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 36 Mbps, High Channel, 12.4 - 24 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20dBc

802.11(g), 36 Mbps, High Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 36 Mbps, High Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 54 Mbps, Low Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 54 Mbps, Low Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 54 Mbps, Low Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 54 Mbps, Low Channel, 30.5 - 40 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20dBc

802.11(g), 54 Mbps, Mid Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 54 Mbps, Mid Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 54 Mbps, Mid Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 54 Mbps, Mid Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 54 Mbps, High Channel, 0 - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 54 Mbps, High Channel, 12.4 - 24 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 54 Mbps, High Channel, 23.5 - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

802.11(g), 54 Mbps, High Channel, 30.5 - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20dBc

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT										
Description	Manufacturer	Model	ID	Last Cal.	Interval					
Spectrum Analyzer	Agilent	E4440A	AAX	10/1/2007	12					

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The requirements of FCC 15.247(d) for emissions at least 20dB below the carrier in any 100kHz bandwidth outside the allowable band was measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 10 MHz below the band edge to 10 MHz above the band edge.

NORTHWEST EMC		Band Edge	Compliance			XMit 2007.06.13		
	T: Rad-87				Work Order: MASI0009)		
Serial Number					Date: 09/17/08			
Customer	r: Masimo Corporation			Т	emperature: 21.88°C			
	s: Eugene Kim				Humidity: 53%			
	t: None			Baro	metric Pres.: 1011.7			
	/: Jaemi Suh		Power: 120V/60Hz		Job Site: OC11			
TEST SPECIFICAT			Test Method					
FCC 15.247 (DTS)	:2006		ANSI C63.4:2003 KDB No. 558074					
COMMENTS								
None								
DEVIATIONS FRO	M TEST STANDARD							
No Deviations								
Configuration #	2	Signature						
				Value	Limit	Results		
802.11(a), 6 Mbps								
	Low Channel			-39.10 dB	≤ -20 dBc	Pass		
	High Channel			-44.28 dB	≤ -20 dBc	Pass		
802.11(a), 36 Mbps								
	Low Channel			-37.74 dB	≤ -20 dBc	Pass		
000 44() 54 14	High Channel			-46.76 dB	≤ -20 dBc	Pass		
802.11(a), 54 Mbps	s Low Channel			-38.41 dB	≤ -20 dBc	Pass		
	High Channel			-35.41 dB -45.16 dB	≤ -20 dBc ≤ -20 dBc	Pass		
802.11(b), 1 Mbps	riigii Channei			- 4 5.10 db	2 -20 abc	rass		
002.11(b), 1 Mbp3	Low Channel			-38.46 dB	≤ -20 dBc	Pass		
	High Channel			-49.72 dB	≤ -20 dBc	Pass		
802.11(b), 11 Mbps								
(-)	Low Channel			-40.69 dB	≤ -20 dBc	Pass		
	High Channel			-51.25 dB	≤ -20 dBc	Pass		
802.11(g), 6 Mbps								
	Low Channel			-27.22 dB	≤ -20 dBc	Pass		
	High Channel			-43.64 dB	≤ -20 dBc	Pass		
802.11(g), 36 Mbps								
	Low Channel			-42.90 dB	≤ -20 dBc	Pass		
000 44() 54:::	High Channel			-46.32 dB	≤ -20 dBc	Pass		
802.11(g), 54 Mbps				07.00 ID	1 00 ID			
	Low Channel High Channel			-27.98 dB	≤ -20 dBc	Pass		
	nigii Channei			-43.70 dB	≤ -20 dBc	Pass		

802.11(a), 6 Mbps, Low Channel

Result: Pass Value: -39.10 dB Limit: ≤ -20 dBc

802.11(a), 6 Mbps, High Channel

Result: Pass Value: -44.28 dB Limit: ≤ -20 dBc

802.11(a), 36 Mbps, Low Channel

Result: Pass Value: -37.74 dB Limit: ≤ -20 dBc

802.11(a), 36 Mbps, High Channel

Result: Pass Value: -46.76 dB Limit: ≤ -20 dBc

802.11(a), 54 Mbps, Low Channel

Result: Pass Value: -38.41 dB Limit: ≤ -20 dBc

802.11(a), 54 Mbps, High Channel

Result: Pass Value: -45.16 dB Limit: ≤ -20 dBc

802.11(b), 1 Mbps, Low Channel

Result: Pass Value: -38.46 dB Limit: ≤ -20 dBc

802.11(b), 1 Mbps, High Channel

Result: Pass Value: -49.72 dB Limit: ≤ -20 dBc

802.11(b), 11 Mbps, Low Channel

Result: Pass Value: -40.69 dB Limit: ≤ -20 dBc

 Result:
 Pass
 Value:
 -51.25 dB
 Limit:
 ≤ -20 dBc

802.11(g), 6 Mbps, Low Channel

Result: Pass Value: -27.22 dB Limit: ≤ -20 dBc

 802.11(g), 6 Mbps, High Channel

 Result: Pass
 Value: -43.64 dB
 Limit: ≤ -20 dBc

802.11(g), 36 Mbps, Low Channel

Result: Pass Value: -42.90 dB Limit: ≤ -20 dBc

802.11(g), 36 Mbps, High Channel

Result: Pass Value: -46.32 dB Limit: ≤ -20 dBc

802.11(g), 54 Mbps, Low Channel

Result: Pass Value: -27.98 dB Limit: ≤ -20 dBc

802.11(g), 54 Mbps, High Channel

Result: Pass Value: -43.70 dB Limit: ≤ -20 dBc

