Causal dependence in actuality inferences: the implicativity of *enough/too* predicates

Prerna Nadathur Department of Linguistics The Ohio State University

Chicago Linguistic Society

April 29, 2023

Introduction Implicativity & causality Enough/too predicates Aspect and actuality Conclusions

Causal reasoning and causal language

'Practical' causal intuitions vs. linguistic causation

- causal reasoning draws on complex networks of relationships: causal models
- linguistic causation: typically binary cause-effect relations

An alternative: causal models as discourse parameters

- causal language describes structures in an online language-independent representation
- discourse contributions interact (in familiar ways) with such representations
- model relationships can explicate linguistic effects

(Nadathur & Lauer 2020, Baglini & Bar-Asher Siegal 2021, a.o.)

Today: use this approach to shed light on a longstanding semantic puzzle

Introduction Implicativity & causality Enough/too predicates Aspect and actuality Conclusions

A longstanding puzzle: two kinds of ability?

Tara's typical college week at the dartboard:

(1) In college, Tara was able to hit the bullseye.

FALSE

She might do it once in a while, but she doesn't really have this ability

(loosely based on Thalberg 1972)

Introduction Implicativity & causality Enough/too predicates Aspect and actuality Conclusions

A longstanding puzzle: two kinds of ability?

Tara's last week at the dartboard:

(2) On Thursday, Tara was able to hit the bullseye.

TRUE

She doesn't do it regularly, but she *actually did* it on Thursday.

(loosely based on Thalberg 1972)

Actuality inferences: two kinds of ability?

Ability modals (e.g., Hindi saknaa) in aspect-marking languages: (Bhatt 1999)

- imperfective aspect has the pure ability reading
 - (3) Yusuf havaii-jahaaz uraa sak-taa thaa, lekin us-ne Yusuf air-ship fly can-IMPF.M PST, but 3sg-erg havaii-jahaaz kabhii nahii uraa-yaa.

 air-ship sometime NEG fly-PFV.M

 'Yusuf could fly planes, but he never flew a plane.'
- perfective aspect gives rise to an actuality entailment
 - (4) Yusuf havaii-jahaaz uraa sak-aa, #lekin us-ne Yusuf air-ship fly can-PFV.M, #but 3sg-Erg havaii-jahaaz nahii uraa-yaa. air-ship NEG fly-PFV.M

'Yusuf could fly the plane, #but he didn't fly the plane.'

(also in French, Greek, Russian, ...)

nplicativity & causality Enough/too predicates Aspect and actuality

The problem of actuality

Introduction

- The problem of ability 'Ambiguity' is systematic across languages, ability predicates (ability modals, English be able, Spanish ser capaz, ...)
- 2 The problem of modality Actuality seems to erase the modality (possibility) of ability readings
- The problem of aspect No obvious reason why temporal information or 'viewpoint' aspect should have an actualizing effect

Goal: A univocal treatment of ability attributions that derives the distribution of pure ability and actuality

A starting point: implicative manage

Observation: actualized ability is closer to **managed** than to *did* (Bhatt 1999)

- (5) Yusuf havaii-jahaaz ugaa sak-aa.
 - Yusuf air-ship fly can-PFV.M
 - 'Yusuf could fly the plane.'
 - \equiv Yusuf managed to fly the plane.

Actualized ability in French (pouvoir) is the same:

(Hacquard 2006)

- (6) Marja **a pu** traverser le lac à la nage.
 - 'Marja could-PFV swim across the lake.'
 - \equiv Marja **managed** to swim across the lake.

Introduction

plicativity & causality Enough/too predicates Aspect and actuality

A starting point: implicative manage

Manage shares complement entailments with actualized ability

Hindi:

Introduction

- (3) Yusuf havaii-jahaaz ugaa sak-aa, #lekin us-ne havaii-jahaaz Yusuf air-ship fly can-PFV.M, #but 3sg-erg air-ship nahii ugaa-yaa. NEG fly-PFV.M
 - 'Yusuf could fly the plane, #but he didn't fly the plane.'
- (7) Yusuf managed to fly the plane, #but he didn't fly the plane.

French:

- (8) Marja **a pu** traverser le lac à la nage, #mais elle ne l'a pas traversé. 'Marja could-PFV swim across the lake, #but she did not cross it.'
- (9) Marja managed to swim across the lake, #but she did not cross it.

Implicativity & causality Enough/too predicates Aspect and actuality Conclusion

A starting point: implicative manage

Manage and actualized ability share something more:

- (10) a. Mika was able to breathe normally.
 - b. Mika managed to breathe normally.
 - → breathing normally was ... unexpected? abnormal? unlikely?

Something more **projects** through negation:

- (11) a. Mika was not able to breathe normally.
 - b. Mika did not manage to breathe normally.
 - → breathing normally was ... unexpected? abnormal? unlikely?

Introduction

Actuality as implicativity?

Introduction

Bhatt's hypothesis: $ABLE \equiv manage$

- but: no pure ability reading for manage
- (12) In college, Tara managed to hit the bullseye. $\sim did + \text{non-triviality}$
- even with aspectual modification (French réussir)
 - (13) Marja {réussissait / a réussi} à traverser le lac à la nage, #mais elle n'a pas traversé. 'Marja {managed-IMPF / managed-PFV} to swim across the lake, #but she did not cross it.'

If actuality entailments are implicative entailments: the equivalence is analytical, not lexical (ABLE $\not\equiv$ manage)

Implicativity & causality Enough/too predicates Aspect and actuality Conclusions

From implicativity to actuality: overview

New goal: a unified semantic treatment of implicative and actuality inferences

What we need to get there:

Introduction

- an account of the (lexical) semantic basis of implicative inferences
- a way to take apart and identify the same components (+ sources of variability!) in the ability-aspect interaction

Key addition: a role for causal reasoning

manage, ability make reference to the causal background
 (on which their complements depend)

Outline of the talk

- Introduction
- 2 Implicatives and causal inference
- 3 From implicativity to actuality inferences: the case of *enough* (and *too*)
- Aspect and actuality inferences
- **6** Summary and conclusions

Outline of the talk

- Introduction
- 2 Implicatives and causal inference
- **3** From implicativity to actuality inferences: the case of *enough* (and *too*)
- Aspect and actuality inferences
- **5** Summary and conclusions

The facts about manage

- (A) Two-way pattern of complement entailment:
 - (14) a. Eman managed to solve the riddle. \rightarrow Eman solved the riddle
 - b. Eman did not manage to solve the riddle.
 - ightarrow Eman did not solve the riddle

- (B) Projective inference:
 - (14a-b) → Solving the riddle was (somehow) non-trivial
 - (15) Eman solved the riddle. (no inference)

What semantic components produce this inference pattern?

(assumption: shared with actualized ability)

The presupposition(s) of *manage*

What manage projects is surprisingly hard to pin down:

(Coleman 1975, Karttunen & Peters 1979, Baglini & Francez 2016, a.o.)

- common proposals like intention, difficulty, unlikeliness aren't universal
- - b. By 1998, [...] gun manufacturers had easily managed to bypass the laws by making small alterations [...]
 → intention, → difficulty, ? → unlikelihood
 - c. The Socialdemokratiet **managed** to strengthen their position as Denmark's strongest political force **as expected** [...]
 → intention, ? → difficulty, → unlikelihood

What do these inferences have in common?

Implicativity & causality Enough/too predicates Aspect and actuality

Managing and doing

What do intention, difficulty, unlikeliness inferences share?

Reasoning about non-triviality:

- P is non-trivial if you can't **just** do P
- something additional (and prior) is required in order to do P
 (alternatively: some obstacle must be overcome en route to P) (Karttunen 2014)

Manage to P presupposes the existence of a causal prerequisite for P

Implicative presuppositions

Most implicatives characterize their prerequisites:

- (18)**English dare:** boldness, courage
 - a. Ria dared to open the door. \rightarrow Ria opened the door b. Ria did not dare to open the door. \rightarrow Ria did not open the door
 - → Opening the door required Ria to act bravely.
- Finnish hennoa: emotional fortitude, hard-heartedness, ruthlessness (19)
 - a. Sampo henno-i tappa-a kissa-n. Sampo have heart-PST.3SG kill-INF cat-GEN/ACC

'Sampo had the heart to kill the cat. \rightarrow Sampo killed the cat

- b. Sampo e-i henno-nut tappa-a kissa-a. Sampo NEG-3SG have heart-PP.SG kill-INF cat-PART 'Sampo didn't have the heart to kill the cat.'
 - → Sampo didn't kill the cat

The implicative semantic template

- Prerequisite relevance is presupposed (projective, not at issue)
 - (18) Ria { dared / did not dare } to open the door.
 → Opening the door required Ria to act bravely
- 2 Assertion resolves prerequisite status (at issue)
 - (18) a. Ria dared to open the door. \rightarrow Ria acted bravely b. Ria did not dare to open the door. \rightarrow Ria did not act bravely
- **3** Complement entailments are derived as causal consequences
 - (18a) \sim Ria's bravery resulted in her opening the door sufficiency
 - (18b) \sim Ria's lack of bravery stopped her opening the door necessity

Implicativity & causality Enough/too predicates Aspect and actuality

The implications of manage

Manage follows the same template:

- causal necessity and causal sufficiency derive complement entailments
- underspecification of the causal prerequisite captures non-triviality

Causal background knowledge fills in details:

- (19) Nur managed to meditate yesterday.
 - Context. Nur is extremely busy with work lately
 - → Finding/making time was required

(Finnish joutaa)

- $(19) \rightarrow \text{Nur made the time (and consequently meditated)}$
- similarly: patience (Finnish malttaa), strength (mahtua), warmth (tarjeta)

Implicativity & causality Enough/too predicates Aspect and actuality Conclusions

Causal network models (Pearl 2000)

Background. Captain Dreyfus was wrongly accused of spying for the Germans.

Relevant causal dependencies:

- Collecting secrets requires treasonous intent
- 2 Spying (sharing secrets) requires treasonous intent, secret collection, risk-taking

A causal model for the Dreyfus affair:

(finite graph + structural equations)

- SECRETS := INTENT
- ② SPY := INTENT ∧ SECRETS ∧ NERVE

Reasoning with causal models

Use background information to reason out causal consequences:

If INTENT, NERVE are on:

INTENT turns SECRETS on:

Which turns **SPY on** in turn:

Implicativity & causality

Causal dependence relations

Causal necessity, sufficiency are labels for different structural configurations:

 given a background situation s, a cause C is causally necessary for an effect E iff there's no (consistent) path from s to E which does not flip C

If we know that **INTENT** is **on**, **NERVE** is **necessary** for **SPY**

- SECRETS := INTENT
- SPY := INTENT ∧ SECRETS ∧ NERVE

Implicativity & causality

Causal dependence relations

Causal necessity, sufficiency are labels for different structural configurations:

 given a background situation s, a cause C is causally sufficient for an effect E iff adding C to s guarantees E

If **INTENT** is **on**, **NERVE** is sufficient for SPY

- SECRETS := INTENT
- SPY := INTENT \(\times \) SECRETS \(\times \) NERVE

ction Implicativity & causality Enough/too predicates Aspect and actuality Conclusion

Causal dependence relations

Causal necessity, sufficiency are labels for different structural configurations:

 given a background situation c, a cause C is causally sufficient for an effect E iff adding C to c guarantees E

If INTENT is on,
NERVE is sufficient for SPY

This is the right kind of context for dare:

- (20) a. Dreyfus dared to spy for the Germans.
 - b. Dreyfus did not dare to spy for the Germans.

Implicatives and causal dependence

In actuality, Dreyfus was loyal to France:

(20) ??Dreyfus dared to spy.

requires: NERVE is causally necessary, sufficient for SPY

in context: NERVE is insufficient

(21) ??Dreyfus managed to spy.

requires: condition/s jointly causally necessary, sufficient for SPY

in context: no set of sufficient conditions

Implicativity & causality Enough/too predicates Aspect and actuality

Interim summary: unpacking implicativity

Three key components work together to derive implicative inferences:

- presupposition:
 the existence of an unresolved jointly necessary & sufficient condition (or set thereof) for the complement
- 2 assertion: determines the truth value of the necessary & sufficient condition
- modal flavour: necessity & sufficiency are causal

If actuality entailments are (analytically) implicative:

the components emerge compositionally for actualized ability

```
ABLE + PFV \equiv manage
```

we need a way to look 'inside' ability: enough/too constructions

Outline of the talk

- Introduction
- 2 Implicatives and causal inference
- 3 From implicativity to actuality inferences: the case of *enough* (and *too*)
- Aspect and actuality inferences
- **5** Summary and conclusions

Implicativity & causality Enough/too predicates Aspect and actuality Conclusions

Enough predicates

Enough (and too) constructions license inferences in the implicative pattern:

- (22) a. Juno was fast enough to win the race. \sim Juno won the race.
 - b. Juno was not fast enough to win the race.
 - \rightarrow Juno did not win the race.
- (23) a. Ria was brave enough to open the door.
 → Ria opened the door
 - b. Ria was not brave enough to open the door.
 - ightarrow Ria did not open the door

Compare be brave enough to dare

- (24) a. Ria dared to open the door. \rightarrow Ria opened the door
 - b. Ria **did not dare** to open the door. \rightarrow Ria did not open the door

plicativity & causality Enough/too predicates Aspect and actuality Conclusion

Enough and actuality

Enough actuality inferences are aspect sensitive

(Hacquard 2005)

- actuality entailments with perfective:
 - (25) Juno a été assez rapide pour gagner la course, #mais elle n'a pas gagné.
 - 'Juno was-PFV fast enough to win the race, #but she didn't win.'
- ability/capacity reading with imperfective
 - (26) Juno était assez rapide pour gagner la course, mais elle n'a jamais gagné.
 - 'Juno was-IMPF fast enough to win the race, but she never won.

(compare with French ability modal pouvoir under aspectual modification)

mplicativity & causality Enough/too predicates Aspect and actuality Conclusions

Enough/too predicates: the basics

Enough constructions attribute specific abilities:

(27) Juno is fast enough to win the race.
∼ Juno can win the race, in view of her speed

The ability attribution breaks into (variable) components:

Paraphrase:

Juno's actual speed is as great as it needs to be in order for her to win the race \sim Juno's actual speed makes it possible that she wins the race

Composition: (modalized) degree comparison

- matrix adjective picks out an individual's allotment of some property (in sets of degrees)
 - (28) Juno is d-fast \sim Juno has at least degree d of speed [fast] $:= \lambda w \lambda d \lambda x. \text{speed}(x)(w) \geq d$ Juno's actual set of
- enough compares an actual degree allocation to the allocation in worlds where the complement is realized (von Stechow et al 2004)
 - (29) Juno is ADJ enough to P \sim Juno's actual ADJ allocation is at least as big as the smallest allocation compatible with P

$$[[enough]] := \lambda w \lambda P \lambda A \lambda x.$$
$$\{d : A(d)(x)(w)\} \supseteq \{d : \forall w' \in ACC(w)[P(x)(w') \to A(d)(x)(w')]\}$$

Composition

[Juno is fast enough to win the race] $^{w^*}$ =

 $\{d : \operatorname{speed}(J)(w^*) \ge d\} \supseteq \{d : \forall w \in \operatorname{ACC}(w^*) [\operatorname{win}(J)(w) \to \operatorname{speed}(J)(w) \ge d]\}$

Enough and necessity

(27) Juno is fast enough to win the race.

result: Juno's actual (max) speed ≥ Juno's max speed in slowest win world

Main takeaway: enough builds in a necessity condition

(27)
$$\equiv$$
 Juno's actual speed $\geq d_{\rm n}$

where $d_{\rm n}$ is the minimum speed required for Juno to win the race

$$\iota d_{n} : \forall w \in ACC(w^{*})[\operatorname{speed}(J)(w) < d_{n} \to \neg \operatorname{win}(J)(w)]$$

Enough predicates in the implicative perspective

Like lexical implicatives (e.g., dare):

- (a) Enough predicates presuppose necessity
 a minimum degree d_n of ADJ is required to realize the complement
 id_n: ∀w ∈ ACC(w*)[ADJ(x)(w) < d_n → ¬P(x)(w)]
- **2** Enough predicates assert satisfaction of the prerequisite the sentence subject actually has at least degree d_n of ADJ $_{ADJ}(x)(w^*) \geq d_n$

Table: Components of implicativity

	presupposition	assertion	modal flavour
dare	bravery nec & suff	√ bravery	causal

Enough predicates in the implicative perspective

Unlike lexical implicatives:

- 1 (b) Enough predicates don't presuppose sufficiency
 - missing: having degree d_n of ADJ guarantees the complement $\forall w \in ACC(w^*)[ADJ(x)(w) \ge d_n \to P(x)(w)]$
- 3 Enough constructions vary the modal flavour of necessity
 - (22a) Juno was fast enough to win the race circumstantial necessity Calculate d_n using worlds where most circumstances are the same and Juno wins the race
 - (30) Amira was old enough to drink alcohol. **deontic** necessity

 Calculate d_n using worlds where Amira drinks legally

Correct prediction: no implicative inferences in cases like (30)

plicativity & causality Enough/too predicates Aspect and actuality Conclusions

Circumstantial *enough* and actuality inferences

Actuality inferences arise with circumstantial *enough*:

- (22) a. Juno was fast enough to win the race.
 → Juno won the race.
 - b. Juno was not fast enough to win the race. \rightarrow Juno did not win the race.
 - we predict the necessity-based inference in (22b)
 - absent sufficiency, no actuality entailment for (22a)
 ✓ for English, under imperfective in French
 - but: perfective enough has an actuality entailment
 - (25) Juno a été assez rapide pour gagner la course, #mais elle n'a pas gagné. 'Juno was-PFV fast enough to win the race, #but she didn't win.'

▲ Implicative approach: we need perfective to introduce sufficiency

Sufficiency and perfective aspect?

A Implicative approach: we need perfective to introduce sufficiency

This isn't a priori plausible:

'Viewpoint' aspect: PFV yields complete events by containing runtime

$$[\![\mathrm{PFV}]\!] = \lambda w \lambda t \lambda P_{\epsilon}. \exists e[\tau(e) \subseteq t \land P(e)(w)] \qquad (\mathsf{Kratzer\ 1998,\ a.o.})$$

- **expect:** Juno was-PFV fast enough to win the race
 - \rightarrow bounds time at which Juno had (at least) the necessary speed d_n

Enough/too predicates

Two kinds of circumstantial *enough*

Actuality entailments are also sensitive to the **matrix adjective**:

- circumstantial enough with static adjectives lack actuality inferences
 - (31)Nima was tall enough to touch the branch, but he didn't even reach for it.
- so far as be tall + PFV is acceptable, aspect makes no difference
 - ??Nima a été assez grand pour toucher la branche, mais il ne l'a pas touché.

'Nima was-PFV tall enough to touch the branch, but he did not touch it.'

Generalization: enough actuality entailments also require dynamic adjectives (e.g., fast)

(25)Juno a été assez rapide pour gagner la course, #mais elle n'a pas gagné. 'Juno was-PFV fast enough to win the race, #but she didn't win.'

olicativity & causality Enough/too predicates Aspect and actuality Conclusions

Causal reasoning again

Static and dynamic enough constructions are causally differentiated:

- calculate necessary degree d_n by looking at worlds where Nima touches the branch, Juno wins the race, ...
- implicitly: circumstantial modality limits attention to worlds where complement is realized in a normal way
- **no magic:** an event *P* is realized in a normal world if its enabling and causing conditions are satisfied

Static enough: height is **not the proximate cause** of reaching the branch

- (31) Nima was tall enough to touch the branch, but he didn't even reach for it.
 - having height d_n works in tandem with a causally sufficient and necessary action, but no inherent connection

olicativity & causality Enough/too predicates Aspect and actuality Conclusions

Causal reasoning again

Static and dynamic enough constructions are causally differentiated:

- calculate necessary degree d_n by looking at worlds where Nima touches the branch, Juno wins the race, ...
- implicitly: circumstantial modality limits attention to worlds where complement is realized in a normal way
- no magic: an event P is realized in a normal world if its enabling and causing conditions are satisfied

Dynamic *enough*: speed **characterizes the proximate cause** of race-winning

- (22a) Juno was fast enough to win the race
 - ullet speed only matters after other conditions are satisfied (registered, at start, ...)
 - then: running at speed d_n is causally sufficient (and necessary) for winning

- (a) Dynamic, circumstantial enough presuppose necessity
 - a minimum degree d_n of ADJ is required to realize the complement $\iota d_{\mathsf{n}} : \forall w \in \mathrm{CIRC}(w^*)[\mathrm{ADJ}(x)(w) < d_{\mathsf{n}} \to \neg P(x)(w)]$
 - (b) and background contingent sufficiency **instantiating** degree d_n of ADJ is causally sufficient for complement $\forall w \in CIRC(w^*)[INST(ADJ(x)(w) > d_n) \xrightarrow{causal} P(x)(w)]$
- 2 Enough predicates assert satisfaction of the (necessary) prerequisite

the sentence subject actually has at least degree d_n of ADJ $ADJ(x)(w^*) > d_n$

Dynamic *enough* and actuality inferences

Dynamic circumstantial enough differs minimally from implicative assertions:

- implicatives assert that their prerequisites were satisfied
 - (18a) Ria dared to open the door.

 \rightarrow Ria acted bravely

dynamic enough instead establish the possibility of satisfaction

Juno is d fast \sim Juno is capable of instantiating speed d $speed(J)(w^*) > d \sim \exists w \in CIRC(w^*)[INST(speed(J)(w^*) > d)]$ Enough/too predicates

Dynamic *enough* and actuality inferences

Dynamic circumstantial enough differs minimally from implicative assertions:

- Latent attribution is good enough for English (and French imperfective)
 - (22a) Juno is fast enough to win the race. ~ Juno can instantiate (run at) the race-winning speed
- to get actuality entailments, we need the instantiation
 - Juno a été assez rapide pour gagner la course, #mais elle n'a pas gagné. 'Juno was-PFV fast enough to win the race, #but she didn't win.'

Implicative approach: we need **perfective** to activate **causal** sufficiency by forcing instantiation

Outline of the talk

- Introduction
- 2 Implicatives and causal inference
- **3** From implicativity to actuality inferences: the case of *enough* (and *too*)
- Aspect and actuality inferences
- **5** Summary and conclusions

Dynamic properties and aspect

In English, dynamic capacity attributions are systematically ambiguous:

- (32) Juno was loud.
 - a. stative: Juno had the capacity to do loud things.
 - b. eventive: Juno did something loud(ly).
- (22) Juno was fast enough to win the race.
 - a. **stative:** Juno could (had the capacity to) run at speed d_n
 - b. eventive: Juno ran at a speed of at least d_n thereby bringing it about that she won the race

- episodic contexts privilege eventive and thus actualized interpretation
- actuality is defeasible because nothing fixes the eventive interpretation

Dynamic properties and aspect

Overt aspect forces a choice between readings:

- PFV selects for eventives, can compose with statives via aspectual coercion (Moens & Steedman 1988, de Swart 1998)
 - Jupiter **a aimé** Europa. (33)'Jupiter loved-PFV Europa.'

```
Interpretation: Jupiter fell in love with Europa
                  stative love + PFV \xrightarrow{\text{coercion}} eventive INCHOATIVE
```

Instantiation is the natural reinterpretation for **dynamic capacity attributions**:

- (34) Juno a été rapide. 'Juno was-PFV fast.'
 - Interpretation: Juno did something fast stative be fast + PFV $\xrightarrow{\text{coercion}}$ eventive INSTANTIATIVE
 - coercion operator INST provides a 'witnessing' event(ive) for the capacity

Dynamic properties and aspect

Aspect-governed actuality inferences for French dynamic enough:

- IMPF composes with the stative: ability, not actuality
 - (26) Juno était assez rapide pour gagner la course ... 'Juno was-IMPF fast enough to win the race, ...'
 - ✓... but she did not participate.
 - ✓... but something always went wrong.
- instantiative coercion with PFV makes dynamic enough implicative
 - (25) Juno a été assez rapide pour gagner la course. 'Juno was-PFV fast enough to win the race.'
 - a. asserts: Juno instantiated speed d_n sufficiency condition
 - b. causal consequence: Juno won the race $(\text{because she ran at speed } d_n)$

Outline of the talk

- Introduction
- Implicatives and causal inference
- 3 From implicativity to actuality inferences: the case of enough (and too)
- Aspect and actuality inferences
- **5** Summary and conclusions

Conclusions

mplicativity & causality Enough/too predicates Aspect and actuality Conclusions

Summary

Semantic components of implicativity:

- implicatives **presuppose** the existence of a **necessary and sufficient condition** *A* for their complements
- 2 implicatives assert that condition A is satisfied
- implicatives invoke causal reasoning via modal flavour of necessity and sufficiency

Implicative entailments are derived as causal consequences when presupposition and assertion are taken together

plicativity & causality Enough/too predicates Aspect and actuality Conclusions

Summary

Enough predicates have actuality entailments only where the same components arise compositionally:

- baseline semantics for enough encode a necessity presupposition, but modal flavour varies
- we get sufficiency only with dynamic adjectives, which characterize the proximate (sufficient) cause of the enough complement
- with necessity and contingent causal sufficiency, perfective aspect is needed to produce an implicative assertion
 - ... forcing instantiation of the causally sufficient condition
 - ... and deriving actuality entailments as causal consequences

Conclusion: enough predicates' actuality entailments are implicative

luction Implicativity & causality Enough/too predicates Aspect and actuality Conclusions

A unified account of actuality inferences

Ability modals pattern with dynamic adjective enough constructions:

- (35) a. Marja **a pu** traverser le lac à la nage, #mais elle ne l'a pas traversé. 'Marja could-PFV swim across the lake, #but she did not cross it.'
 - Marja pouvait traverser le lac à la nage, mais elle ne l'a jamais traversé.
 'Marja could-IMPF swim across the lake, but she never crossed it.'

Towards a unified implicative analysis:

(Nadathur 2019, 2021)

ABLE: manage:: be brave enough: dare

- ability as hypothetical guarantee:
 x can_{ability} P ~ x has the capacity to realize proximate cause of P(x)
- PFV activates implicative structure: ABLE is subject to instantiative coercion
- key ingredient: background causal reasoning

olicativity & causality Enough/too predicates Aspect and actuality Conclusions

Selected references

- 1 Baglini & Francez 2016. The implications of managing. *JSem* 33.
- 2 Bhatt 1999. Covert modality in non-finite contexts. Ph.D., UPenn.
- **3** Hacquard 2005. Aspects of *too* & *enough* constructions. *SALT* 15.
- 4 Homer 2021. Actualistic interpretations in French. S&P 14.
- **5** Karttunen 1971. Implicative verbs. *Language* 47.
- 6 Karttunen & Peters. 1979. Conventional implicature. Syntax & Semantics 11.
- **7** Kaufmann 2013. Causal premise semantics. *Cognitive Science* 37.
- Moens & Steedman. 1988. Temporal ontology & temporal reference. CompLing 14.
- Nadathur 2019. Causality, aspect, & modality in actuality inferences. Ph.D., Stanford.
- Nadathur 2021. Causality & SALT 30.
- Nadathur & Lauer. 2020. Causal necessity, causal sufficiency, & the implications of causative verbs. Glossa 5.
- Pearl 2000. Causality. Cambridge University Press.
- von Stechow, Krasikova, & Penka. 2004. The meaning of German um/zu. Handout.
- de Swart 1998. Aspect shift & coercion. NLLT 16.

Appendix: Instantiative coercion

Aspectual coercion theories propose formal coercion operators: (Bary 2009)

- **inchoative coercion:** from a stative to its initiation (transition) point, often lexically triggered
- (1) Soudain, Anne a été triste. \rightarrow Anne became sad suddenly. 'Suddenly, Anne was-PFV sad.' + INCH
- maximal coercion: a maximal instance of states (cessation inferences)
 - (2) Marie a été belle. \sim Marie is no longer beautiful. '[In those days], Marie was-PFV beautiful.' + MAX
- type mismatch between input predicate and PFV's selectional restrictions inserts coercion (repair) operator (de Swart 1998)

$$PFV(P_{stative}) \xrightarrow{mismatch!} PFV(C_{stative \rightarrow eventive}(P_{stative}))$$

• the specific choice of $C_{\text{stative} \rightarrow \text{eventive}}$ depends on context, predicate properties

Appendix: Instantiative coercion

Instantiative coercion is novel: (but see Goldsmith & Woisetschlaeger 1982, de Swart)

- here: applies only to predicates that hold of individuals in view of capacity for action characterized by a particular property
- one option: meaning postulate establishes 'witness' relationship
 - (3) $[[fast_{stative}]] := \lambda w \lambda e \lambda x.$ $[\lozenge \exists e' [e' \sqsubseteq e \land fast_{eventive}(w)(e') \land AGENT(e') = THEME(e) = x]]$
- INST ($C_{\text{stative} \rightarrow \text{eventive}}$) introduces a witness event (underspecified)
 - (4) $[INST] := \lambda w \lambda S \lambda R \lambda e$. $[\exists e'[e \sqsubseteq e' \wedge R(e)(w) \wedge QUANT(R) \wedge S(e')(w) \wedge WITNESS(R, S)]]$
- if we privilege a different coercion operator, actuality entailment goes away:
 - (5) Olga a soudain pu soulever un frigo, mais elle ne l'a pas fait.
 'Olga could-PFV suddenly lift a fridge, but she did not do it.'

(5) not possible in Hindi!

Conclusions

duction Implicativity & causality Enough/too predicates Aspect and actuality Conclusions

Appendix: Instantiative vs. actualistic coercion

Homer (2011, 2021) suggests a (related) actualistic coercion operator:

- (6) a. La maison a coûté 100,000 euro. \rightarrow The house was bought. 'The house cost-PFV 100,000 euro.'
 - b. La maison coûtait 100,000 euro. \rightarrow The house was bought. 'The house cost-IMPF 100,000 euro.'
- ACT is less restricted than INST, no meaning postulate required
- **Homer:** ACT directly realizes ability modals' complements, by selecting a (salient) eventive which temporally overlaps the stative possibility
- but: this incorrectly predicts actuality entailments from perfective static-adjective enough constructions (ACT can select the enough complement to realize)
- INST avoids this because actuality entailments are (causal) consequences of coerced events