

Generation IV reactors

A sustainable future for nuclear power

Janne Wallenius & Alejandria Pérez

Nuclear Engineering, KTH

Intended learning outcomes

Generation IV reactors are intended to:

Increase fuel resources by a factor of 100

Reduce long term radiotoxic inventory of spent fuel by a factor of 100

Increase operational temperature, thus improving conversion factors

After this course, you will be able to make design choices making Gen-IV reactors sustainable, safe and reasonably economical. The objective is achieved if you show you are able to

- Assess breeding performance for potentials fuels and coolants
- Analyse reactor safety of fast neutron reactors with MA bearing fuels
- Select fuels and structural materials meeting design & safety criteria

Learning activities

- 14 course meetings:
- Presentations by teacher/facilitator (10 meetings) and students (4 meetings), followed by feedback
- Group discussions and exercises
- Learning material: Lecture notes, Text book chapters
- Meeting evaluations
- 3 home assignments made groupwise, presented individually
- Conference paper with the title "Safety of a fast neutron Generation IV reactor with coolant A, fuel B and cladding C", written and presented together with co-authors.
- Individual interview on the intended learning outcomes (constitutes basis for grading)

Generation IV objectives

- By the end of the last century major nuclear nations considered that a novel approach to developing the next generation of nuclear reactors, that would address public concerns related to
 - Sustainability
 - Economy
 - Safety
 - Non-proliferation
- Generation IV International Forum was created to define refined criteria for meeting the aforementioned concerns, to identify so called "Generation-IV reactors" that could meet such criteria, and to promote R&D and the eventual commercial implementation of the same

Sustainability criteria

1) Resource utilisation

Generation IV nuclear energy systems will provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilisation for worldwide energy production.

2) Waste minimization and management

Generation IV nuclear energy systems will minimise and manage their nuclear waste and notably reduce the long-term stewardship burden, thereby improving protection for the public health and the environment.

Economic criteria

3) Life cycle cost

Generation IV nuclear energy systems will have a clear life-cycle cost advantage over other energy sources.

4) Financial risk

Generation IV nuclear energy systems will have a level of financial risk comparable to other energy projects.

Safety criteria

5) Operational safety and reliability

Generation IV nuclear energy systems operations will excel in safety and reliability.

6) Core damage

Generation IV nuclear energy systems will have a very low likelihood and degree of reactor core damage.

7) Off-site emergency response

Generation IV nuclear energy systems will eliminate the need for offsite emergency response.

Non-proliferation criterion

8) Proliferation resistance and physical protection

Generation IV nuclear energy systems will increase the assurance that they are a very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased physical protection against acts of terrorism.

Gen-IV systems

Six reactor types were selected by GIF as **having the**potential to meet the criteria for Generation-IV systems

- 1. Sodium-cooled fast reactors
- 2. Lead-cooled fast reactors
- 3. Gas-cooled fast reactors
- 4. Very high temperature reactors
- 5. Super-critical water reactors
- 6. Molten salt reactors

There is/was no Gen-IV reactor in operation!

Sodium-cooled fast reactors

- 23 Na and NaK-cooled reactors have operated since 1951
- Total of 200 years of operational experience
- 6 sodium-cooled reactors are operating
- 2 are producing power on commercial basis (BN-600 & BN-800)
- 4 reactors are under construction (MBIR, PFBR & XIAPU I & II)

Major issues observed:

- Steam generator corrosion
- Sodium-water interaction
- Sodium fires
- Fuel reloading machine failures

Under construction: XIAPU I & II

Sodium-cooled fast reactors, developed by CIAE.

- Model: CFR-600
- 640 MWe per unit
- Under construction in Xiapu, Chine
- Coolant temperature: 380 550°C
- Fuel form: UO₂
- Date for commissioning: 2023 & 2025

Lead-cooled reactors

- Eleven PbBi-cooled reactors have operated since 1959
- Total of 80 years of operational experience (≈ 5 full power years)
- 1 reactor is under construction (BREST-300)

Major issues to be addressed:

- Formation of lead-oxide in the coolant
- Corrosion of stainless steel
- Erosion of pump impeller
- High temperature maintenance

Under construction: BREST-300

Lead-cooled fast reactor, developed by NIKIET

- 300 MWe
- Under construction in Tomsk-region, Russia
- Coolant temperature: 420 650°C
- Fuel form: (U,Pu)N
- Recycle of minor actinides foreseen. First true Gen-IV system!
- Structural steel: EP-823 (Fe-12Cr-2Si)
- Date for commissioning: 2026

Gas-cooled reactors

- No gas-cooled fast reactor has operated
- Nine He-cooled high-temperature reactors (HTRs) have operated
- Four He-cooled HTRs are in operation (HTTR, HTR-10, 2 x HTR-PM)

Major issues to be addressed:

- Costly fuel production
- Leakage of highly mobile and costly helium
- Mechanical properties of structural materials at high temperature
- Large size (and associated costs) of secondary system
- Activation of nitrogen impurities in graphite
- Recycle of fuel extremely difficult and costly

In operation: HTR-PM

He-cooled high temperature reactor, developed by Tsinghua University

- 210 MWe (2 x 250 MWth)
- Built in Shidaowan, Shandong province
- Pressure vessel dimensions: 5.7 x 25 m
- Coolant temperature: 250 750°C
- Fuel form: TRISO coated UO₂ particle pebble bed
- Fuel enrichment: 8.5%
- Fuel residence time: 35 months
- Connected to grid in December 2021.

Molten salt reactors

- Four molten salt reactors have operated (USA & China)
- One is under construction (TMSR-LF1)

Major issues to be addressed:

- Corrosion of structural materials
- Reduced number of boundaries for fission product release
- Shut-down margin
- Precipitation of actinides & fission products
- Delayed neutron source distribution

Under construction: TMSR-LF1

Fluoride molten salt reactor, developed by SINAP.

- 2 MWth
- Under construction in Wuwei, China
- Fuel temperature: 630 660°C
- Fuel form: U-F-Li-Be (20% enriched in U-235)
- Date for commissioning: 2023