Scilab Textbook Companion for Electric Machinery by A. E. Fitzgerald, C. Kingsley And S. D. Umans¹

Created by
Dheeraj Agrawal
B.Tech. (pursuing)
Electrical Engineering
Indian Institute of Technology Roorkee
College Teacher
R.P. Maheshwari
Cross-Checked by
Prashant Dave, IIT Bombay

May 17, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electric Machinery

Author: A. E. Fitzgerald, C. Kingsley And S. D. Umans

Publisher: McGraw - Hill

Edition: 5

Year: 1992

ISBN: 0-07-707708-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Magnetic Circuits and Magnetic Materials	6
2	Transformers	10
3	Electromechanical Energy Conversion Principles	14
4	Rotating Machine Basic Concept	17
5	Synchronous Machines in Steady State	18
6	Synchronous Machines A Transient Performance	23
7	Polyphase Induction Machines	26
8	Polyphase Induction Machines Dynamics and Control	29
9	DC Machines in Steady State	30
10	Variable Reluctance Machines	32
11	Fractional and subfractional Horsepower Motors	34

List of Scilab Codes

Exa 1.1	Finding reluctances and flux	6
Exa 1.2	Finding air gap flux	7
Exa 1.4b	Finding Induced voltage of a magnetic circuit	7
Exa 1.5	Finding current from dc magnetization curve	8
Exa 1.6a	Finding applied voltage to the windinds with magnetic	
	core	8
Exa 1.8	Finding minimum magnet volume	9
Exa 2.1	Finding power factor and core loss current	10
Exa 2.3	Finding peak mmf and flux	10
Exa 2.4	Finding regulation	11
Exa 2.5	Finding kVA rating	11
Exa 2.7	Finding current in feeder wires	12
Exa 2.8	Finding per unit system	12
Exa 2.9	Finding current in feeder wires in per unit	13
Exa 3.1	Finding Torque acting on the rotor	14
Exa 3.2	Finding magnetic stored energy	14
Exa 3.3	Finding force on the plunger	15
Exa 3.4	Finding Torque acting on the rotor	15
Exa 3.5	Finding Torue of given system	16
Exa 4.1	Finding peak mmf and flux	17
Exa 5.1	Finding unsaturated value of the synchronous reactance	
	and the SCR ratio	18
Exa 5.2	Finding effective armature resistance	19
Exa 5.3	Finding maximum torque deliver by motor when it is	
	supplied with the power from infinite bus and turbine	
	generator	19
Exa 5.4	Finding efficiency of machine	21

Exa 6.2a	Graph on steady state and transient power angle char-
	acteristics
Exa 6.2b	Graph on steady state and transient power angle char-
	acteristics
Exa 7.1	Finding stator current and efficiency
Exa 7.2	Finding internal torque
Exa 7.3	Finding internal starting torque
Exa 8.3	Finding short circuit current
Exa 9.1	Finding electromagnetic torque
Exa 9.2	Finding terminal voltage
Exa 9.4	Finding speed and output power
Exa 10.1a	Finding maximum inductance for phase 32
Exa 10.4	Finding switching times T on and T off 32
Exa 11.2	Finding efficiency at rated voltage and frequency with
	starting winding open
Exa 11.3d	
Exa 11.6	Finding speed voltage constant

List of Figures

6.1	Graph on steady state and transient power angle characteristics	24
6.2	Graph on steady state and transient power angle characteristics	25

Magnetic Circuits and Magnetic Materials

Scilab code Exa 1.1 Finding reluctances and flux

```
1 // Caption: Finding reluctances and flux
3 clear;
4 close;
5 clc;
6 U_r=70000;
7 U_o=4*\%pi*10^-7;
9 function [R_c]=reluctance_core(1,A)
     R_c=1/(U_r*U_o*A);
10
11 endfunction
12 disp(reluctance_core(.3,9*10^-4),'Reluctance of the
      core=')
13
14 function [R_g]=reluctance_gap(g,A)
     R_g = g/(U_o * A);
15
16 endfunction
17 disp(reluctance_gap(5*10^-4,9*10^-4), 'Reluctance of
      the gap=')
```

Scilab code Exa 1.2 Finding air gap flux

```
1 // Caption: Finding air gap flux
2 clear;
3 close;
4 clc;
5 N=1000;
6 I=10;
7 U_o=4*%pi*10^-7;
8 A_g=.2;
9 g=.01;
10 phy=(N*I*U_o*A_g)/(2*g);
11 disp(phy, 'flux=')
12 B_g=phy/A_g;
13 disp(B_g, 'flux density=')
```

Scilab code Exa 1.4b Finding Induced voltage of a magnetic circuit

```
1 // Caption: Finding Induced voltage of a magnetic
      circuit
2
3 close;
4 clc;
5 syms t
```

```
7 w=2*%pi*60//angular frequency
8
9 B=1.0*sin(w*t);
10 N=500;
11 A=9*10^-4;
12 e=N*A*diff(B,t);
13
14 disp(e, 'Induced Voltage = ');
```

Scilab code Exa 1.5 Finding current from dc magnetization curve

Scilab code Exa 1.6a Finding applied voltage to the windinds with magnetic core

```
1 // Finding applied voltage to the windinds with
         magnetic core
2 close;
3 clc;
4 syms t
5
6 w=377; // angular frequency
```

Scilab code Exa 1.8 Finding minimum magnet volume

```
// Caption: Finding minimum magnet volume
clear;
close;
close;
function [A_m]=area(B_g,B_m)
A_m=2*B_g/B_m;
endfunction
a=area(0.8,1.0);//from fig
L_m=-0.2*0.8/(4*%pi*10^-7*-40*10^3);
volume=a*L_m;//minimum magnet volume
disp(volume, 'minimum magnet volume in cm cube');
```

Transformers

Scilab code Exa 2.1 Finding power factor and core loss current

```
// Caption: Finding power factor, core loss current
clear;
close;
close;
clc;
alpha=acos(16/20);
pf=cos(alpha);//power factor
disp(pf, 'power factor=');

J_e=20/194;//exciting current
L_c=16/194;//core loss component
L_m=I_e*0.6;//magnetizing componentminimum magnet volume
```

Scilab code Exa 2.3 Finding peak mmf and flux

```
1 // Caption: Finding peak mmf and flux
2 clear;
3 close;
```

```
4 clc;
5 function [F_peak]=mmf(k,N,m,I)
6 F_peak=(1.5*4*k*N*I)/(%pi*2*m);
7 endfunction
8
9 f=mmf(.92,45,3,700);
10 U_o=4*%pi*10^-7;
11 B_peak=U_o*8.81*10^3/.01;//flux density
12 vel=25*0.5;//in m/s
```

Scilab code Exa 2.4 Finding regulation

```
1 // Caption: Finding regulation
2 clear;
3 close;
4 clc;
5 \text{ Z_eq} = 48/20.8;
6 R_eq=617/20.8^2;
7 X_{eq}=sqrt(Z_{eq}^2-R_{eq}^2); //in ohms
8 I_h=50000/2400; // full load high tension current
9 Loss=I_h^2*R_eq;
10 Input = 40000 + 186 + Loss; //in watts
11 Efficiency=1-803/Input;
12 disp(Efficiency, 'efficiency is=');
13
V_1h = 2400 + (20.8*(0.8-0.6*\%i)*(1.42+1.82*\%i));
15 Reg=((2446-2400)/2400)*100;
16 disp(Reg, 'percentage regultion=')
```

Scilab code Exa 2.5 Finding kVA rating

```
1 // Caption: Finding kVA rating
2 clear;
```

```
3 close;
4 clc;
5 I_h=50000/240;
6 V_h=2640;
7 kva=V_h*I_h/1000;
8 disp(kva, 'kVA rating of transformer=')
9
10 eff=1-803/(0.8*550000);//from ex 2.4
11 disp(eff, 'efficiency is=')
```

Scilab code Exa 2.7 Finding current in feeder wires

```
1 // Caption: Finding current in feeder wires
2 clear;
3 close;
4 clc;
5 V_s=2400/sqrt(3);
6 X_eqs=2.76/3;//per phase
7 X_eqr=1.82/3;//at recieving end
8 total_X=X_eqs+X_eqr+0.8;
9 I_win=594/sqrt(3);//at 2400V windings
10 I_feeder=1385/2.33;//at 2400V feeder
```

Scilab code Exa 2.8 Finding per unit system

```
1 // Caption: Finding per unit system
2 clear;
3 close;
4 clc;
5 Z_baseH=2400/20.8;
6 Z_baseX=240/208;
7
8 I_x=5.41/208; // per unit at low voltage side
```

```
9
10 Z_eqH=(1.42+%i*1.82)/115.2;//per unit
11 disp(Z_eqH, 'equivalent impedence referred to high voltage side')
```

Scilab code Exa 2.9 Finding current in feeder wires in per unit

```
// Caption: Finding current in feeder wires in per
    unit
clear;
close;
close;
clc;
V_base=2400/sqrt(3);//for 2400V feeder and line to
    neutral
I_base=50000/1385;//phase Y
Z_base=V_base/I_base;//phase Y
X_feeder=0.8/Z_base;//per unit

SC_current=1.00/.0608;// short circuit current in
    per unit
disp(SC_current, 'short circuit current in per unit='
)
```

Electromechanical Energy Conversion Principles

Scilab code Exa 3.1 Finding Torque acting on the rotor

```
// Caption: Finding Torque acting on the rotor

close;
close;
clc;
syms alpha;
I=10;//current
B_o=0.5;//magnetic field
R=0.1;
I=0.6;

T=2*I*B_o*R*l*sin(alpha);

disp(T,'Torque acting on the rotor=');
```

Scilab code Exa 3.2 Finding magnetic stored energy

```
// Caption: Finding magnetic stored energy

close;
clc;
syms x d;
constt=0.5*1000^2*4*%pi
    *10^-7*0.15*0.1*10^2/(2*0.002);

W_fld=constt*(1-x/d);//in joules

disp(W_fld, 'magnetic stored energy=');
```

Scilab code Exa 3.3 Finding force on the plunger

```
1 // Caption: Finding force on the plunger
2 clear;
3 close;
4 clc;
5 U_o=4*%pi*10^-7;
6
7 function [f]=force(N,1,g,i)
8 f=-(N^2*U_o*1*i^2/(4*g));
9 endfunction
10
11 f_fld=force(1000,0.1,0.002,10);//force in N
12
13 disp(f_fld,'force on the plunger when current=10A');
```

Scilab code Exa 3.4 Finding Torque acting on the rotor

```
1 // Caption: Finding Torque acting on the rotor
2 clear;
3 close;
```

```
4 clc;
5
6 U_o=4*%pi*10^-7;
7
8 function [T]=torque(B,h,g,r)
9    T=(B^2*g*h*(r+g*.5))/U_o;
10 endfunction
11
12   T_fld=torque(2,0.02,0.002,0.02);//Maximum torque
        in N.m
13
14 disp(T_fld,'Torque acting on the rotor');
```

Scilab code Exa 3.5 Finding Torue of given system

```
// Caption: Finding Torue of given system
clear;
close;
clc;
syms x i1 i2
L_11=(3+cos(2*x))*10^(-3);
L_12=0.1*cos(x);
L_22=30+10*cos(2*x);
W=0.5*L_11*i1^2+L_12*i1*i2+0.5*L_22*i2^2;
T=diff(W,x);
disp(T, 'Torque = ');
i1=1;//in Ampere
i2=0.01;//in Ampere
k=eval(T);
disp(k, 'Torue of given system = ');
```

Rotating Machine Basic Concept

Scilab code Exa 4.1 Finding peak mmf and flux

Synchronous Machines in Steady State

Scilab code Exa 5.1 Finding unsaturated value of the synchronous reactance and the SCR ratio

```
1 // Caption: Finding unsaturated value of the
      synchronous reactance and the SCR ratio
2 // Example 5.1
3
4 clear;
5 close;
6 clc;
7 E_af_ag=202/3^.5; //voltage to neutral on air-gap
     line at 2.20A
8 I_asc=118; //at 2.20A
9 X_s_ag=E_af_ag/I_a_sc;//Reactance per phase
10 disp(X_s_ag, 'Reactance in ohm per phase=')
11 I_a_r = 45000/(3^{.5*220}); //Rated Ia
12 I_a_sc=118/I_a_r;//per unit
13 E_af_ag=202/220; // per unit
14 X_s_ag=E_af_ag/I_a_sc;//per unit
15 disp(X_s_ag, 'reactance per unit=')
16 X_s=220/3<sup>.5*152</sup>;//per phase
```

```
disp(X_s, 'saturated reactance per phase=')
I_a_sc_dash=152/118; //per unit
X_s=1.00/I_a_sc_dash; //per unit
CCR=2.84/2.20;
disp(SCR, 'short circuit ratio=')
// Result
// Reactance in ohm per phase=0.9883454
// reactance per unit=0.9189162
// saturated reactance per phase=19306.593
// short circuit ratio=1.2909091
```

Scilab code Exa 5.2 Finding effective armature resistance

```
1 // Caption: Finding effective armature resistance
2 // Example 5.2
3
4 clear;
5 close;
6 clc;
7 L_loss_sc=1.8/45; //per unit
8 I_a=1.00; //per unit
9 R_a_eff=L_loss_sc/I_a^2; //per unit
10 disp(R_a_eff, 'effective armature resistance in per
     unit=')
11 R_a=ff=1800/((118^2)*3);/per phase
12 disp(R_a_eff, 'effective armature resistance in ohms
     per phase=')
13 // Result
14 //effective armature resistance in per unit=0.04
15 // effective armature resistance in ohms per phase
     =0.0430911
```

Scilab code Exa 5.3 Finding maximum torque deliver by motor when it is supplied with the power from infinite bus and turbine generator

```
1 // Caption: Finding maximum torque deliver by motor
      when it is supplied with the power from a)
      infinite bus b) turbine generator
2 // Example 5.3
3
4 clear;
5 close;
6 clc;
7 kVA_r = 1500/3; //per phase
8 V_ta=2300/sqrt(3);//per phase
9 I_r=500000/V_ta;//per phase
10 X_sm=1.95;
11 I_a_X_sm=I_r*X_sm;//syn-reactance V-drop
12 E_afm=sqrt(V_ta^2+I_a_X_sm^2);
13 p_max=(V_ta*E_afm)/X_sm;//per phase
14 P_{max}=3*p_{max}; //power in 3 phase
15 \ W_s = 2 * \%pi * 4;
16 T_{max}=P_{max}/W_{s}; //torque-max
17 disp(T_max, 'Maximum torque in newton-meteres=')
18 //Result
19 //Maximum torque in newton-meteres = 123341.2
20
21 V_ta=2300/sqrt(3);//per phase
22 I_r=500000/V_ta;//per phase
23 X_sm=1.95; X_sg=2.65; //synchronous reactance of motor
       ang generator
24 I_a_X_sg=I_r*X_sg;//syn-reactance V-drop
25 E_afg=sqrt(V_ta^2+I_a_X_sg^2);
26 p_max = (E_afg*E_afm)/(X_sm+X_sg); //per phase
27 P_max=3*p_max; //power in 3 phase
28 \ W_s = 2 * \%pi * 4;
29 T_{max}=P_{max}/W_s; //torque_{max}
30 disp(T_max, 'Maximum torque in newton-meteres=')
31 //Result
32 //Maximum torque in newton-meteres = 65401.933
```

```
33
34     I_a=sqrt(E_afm^2+E_afg^2)/(X_sg+X_sm);
35     alpha=acos(E_afm/(I_a*(X_sg+X_sm)));
36
37     V_ta=E_afm-I_a*X_sm*cos(alpha)+%i*I_a*X_sm*sin(alpha);
38     disp(V_ta, 'terminal voltage=')
39     //Result
40     //terminal voltage=874.14246 + 704.12478i
```

Scilab code Exa 5.4 Finding efficiency of machine

```
1 // Caption: Finding efficiency of machine
2 // Example 5.4
4 clear;
5 close;
6 clc;
7 I_a=45000/(sqrt(3)*230*.8);//armature current
8 R_f = 29.8*((234.5+75)/(234.5+25)); // field resistance
      at 75 degree celsius
9 R_a=0.0335*((234.5+75)/(234.5+25)); // armature dc
      resistance at 75 degree celsius
10 I_f = 5.5;
11 L_f = (I_f^2 * R_f) / 1000; // field loss
12 L_a=(3*I_a^2*R_a)/1000; // armature loss
13 V_i = 230/sqrt(3) - I_a*(.8+\%i*.6)*R_a; //internal
      voltage
14 L_s=.56; //stray load loss
15 L_c=1.2; //open circuit core loss
16 L_w=.91; // frictional and winding loss
17 L_t=L_f+L_a+L_s+L_c+L_w//total losses
18 Input = 46.07;
19 Eff=1-L_t/Input;
20 disp(Eff*100, 'efficiency of the system is (\%) ')
```

```
21 //Result  
22 //efficiency of the system is (\%) 86.683487
```

Synchronous Machines A Transient Performance

Scilab code Exa 6.2a Graph on steady state and transient power angle characteristics

```
1 clear
2 clc
3 xset('window',1)
4 xtitle("My Graph","radians","power per unit")
5 x=linspace(0,%pi,100)
6 y=6.22*sin(x)
7
8 plot(x,y)
```

Scilab code Exa 6.2b Graph on steady state and transient power angle characteristics

```
1 clear
```


Figure 6.1: Graph on steady state and transient power angle characteristics

Figure 6.2: Graph on steady state and transient power angle characteristics

```
2 clc
3 xset('window',1)
4 xtitle("My Graph","radians","power per unit")
5 x=linspace(0,%pi,100)
6 y=1.77*sin(x)+0.67*sin(2*x)
7 plot(x,y)
```

Polyphase Induction Machines

Scilab code Exa 7.1 Finding stator current and efficiency

```
// Caption: Finding stator current and efficiency
clear;
close;
clc;
V_app=220/sqrt(3);//applied voltage to neutral
L_s=127/6.75;//stator current
pf=cos(.565);//in radians

speed=120/6;// synchronous speed in r/s
S_r=(1-.02)*speed*60;//rotor spped in r/min
P_g=3*18.8^2*5.41;
P=.98*5740;//internal mechanical power

eff=1-830/6060;
disp(eff,'efficiency=')
```

Scilab code Exa 7.2 Finding internal torque

```
1 // Caption: Finding internal torque
2 clear;
3 close;
4 clc;
5 V_a=122.3;
6 I_two= V_a/sqrt(5.07^2+0.699^2);//load component of
      stator current
7 T=3*23.9^2*4.8/125.6; //internal torque
8 P=3*23^2*4.8*.97; //internal power
10 // at maximum torque point
11 s_max = 0.144/0.75;
12 speed=(1-s_max)*1200; //speed in r/min
13 T_{max}=(0.5*3*122.3^2)/(125.6*(0.273+0.750));//
     maximum internal torque
14
15 T_{start=3*150.5^2*0.144/125.6}; //starting torque in N
     -mFinding stator current and efficiency
```

Scilab code Exa 7.3 Finding internal starting torque

```
1 // Caption: Finding internal starting torque
2 clear;
3 close;
4 clc;
5 P_r=380-3*5.7^2*0.262;
6 //from test 1
7 Z_nl=219/(sqrt(3)*5.7);//phase Y
8 R_nl=380/(3*5.7^2);
9
10 //from test 2
11 Z_bl=26.5/(sqrt(3)*18.57);//phase at 15 hz
12 R_bl=675/(3*18.75^2)//
13
14 //internal starting torque
```

```
15 P_g=20100-3*83.3^2*0.262; // air gap power
16
17 T_start=P_g/188.5; // starting torque in N-m
```

Polyphase Induction Machines Dynamics and Control

Scilab code Exa 8.3 Finding short circuit current

DC Machines in Steady State

Scilab code Exa 9.1 Finding electromagnetic torque

```
// Caption: Finding electromagnetic torque
clear;
close;
close;
v_t=128;
E_a=125;
R_a=.02;
I_a=(V_t-E_a)/R_a;//armature current

P_t=V_t*I_a;//terminal power;
P_e=E_a*I_a;//electromagnetic power;
T=P_e/(100*%pi);//torque
disp(T,'electromagnetic torque=');
```

Scilab code Exa 9.2 Finding terminal voltage

```
1 // Caption: Finding terminal voltage
2 clear;
```

```
3 close;
4 clc;
5 V=274; // voltage when Ia=0
6 E_a=274*1150/1200; // actual emf
7 V_t=E_a-405*(0.025+0.005); // terminal voltage
```

Scilab code Exa 9.4 Finding speed and output power

```
1 // Caption: Finding speed and output power
2 clear;
3 close;
4 clc;
5 E_ao=250*1200/1100; //at 1200 r/min
6 E_a=250-400*.025; //at Ia=400A
7 n=240*1200/261; //actual spped
8 P_em=240*400;
9 disp(P_em, 'electromagnetic power=')
```

Variable Reluctance Machines

Scilab code Exa 10.1a Finding maximum inductance for phase

```
// Caption: Finding maximum inductance for phase
clear;
close;
close;
U_co=4*%pi*10^-7;
alpha=%pi/3;
R=3.8*10^-2;
D=0.13;
g=2.54*10^-4;
L_max=N^2*U_o*alpha*R*D/(2*g);
disp(L_max, 'maximum inductance for phase 1=')
```

Scilab code Exa 10.4 Finding switching times T on and T off

```
1 // Caption: Finding switching times T on and T off 2 clear;
```

```
3 close;
4 clc;
5 //off time at i=Imin
6 T_off=-0.25*log(10/12)/2.5;
7 
8 //on time
9 T_on=-0.25*log((12-20)/(10-20))/5;//in seconds
10
11 disp(T_on, 'On time=')
```

Fractional and subfractional Horsepower Motors

Scilab code Exa 11.2 Finding efficiency at rated voltage and frequency with starting winding open

```
1 // Caption: Finding efficiency at rated voltage and
     frequency with starting winding open
2 clear;
3 close;
4 clc;
5 s=0.05;
6 //rotor speed
7 speed=(1-s)*1800; //in r/min
8 //torque
9 T=147/179; // in N.m
10
11 // Efficiency
12 op=244; //output
13 ip=147; //input
14 eff=ip/op;
15 disp(eff, 'Efficiency=')
```

Scilab code Exa 11.3d Finding internal mechanical power

```
// Caption: Finding internal mechanical power
clear;
close;
close;
clc;
I_f=11.26;
R_f=16.46;
//power delivered to forwaed field
P_gf=2*I_f^2*R_f;
I_b=4;
R_b=0.451;
//power delivered to the backward field
P_gb=2*I_b^2*R_b;
P=gb=2*I_b^2*R_b;

Here is a mechanical power=')
```

Scilab code Exa 11.6 Finding speed voltage constant

```
1 // Caption: Finding speed voltage constant
2 clear;
3 close;
4 clc;
5 V_t=50;
6 I_a=1.25;
7 R_a=1.03;
8 E_a=V_t-I_a*R_a;
9
10 W=220; //rad/s
11 K_m=E_a/W; // V/rad/s
12
```

```
13  //At 1700 r/min
14  W_m=1700*2*%pi/60; //rad/s
15  E_anew=K_m*W_m;
16
17  I_anew=(48-E_anew)/1.03;
18  P_shaft=E_anew*I_anew;
19  P=P_shaft-61;
20
21  disp(P,'output power=')
```