INTRO TO DATA SCIENCE HW 1

Ben Green

Contents

Question	1																		1
1a																			1
1b																			1
1c																			1
1d																			1
1e																			1
1f																			2
1g																			2
1h																			2
1i																			2
Question	2																		3
Question	3																		3
3a																			3
3b																			3
Question	4																		3
4a																			3
4b																			3
Question	5																		3
Question	J																		
5a																			3
•																			$\frac{3}{3}$

Green, Ben Page 1

Question 1

1a.

Feature Name	Feature Type
producer	nominal
release_to_review_time	interval
used_real_name	binary
verified_purchase	binary
rating	ordinal
helpfulness	ratio
number_of_votes	ratio
length_of_review_text	ratio

1b.

The mode of producer is Apple, with 4480 entries.

1c.

5077/9585, or 53% of reviewers used their real name and had a verified purchase.

1d.

5077/13989, or 36% of reviews with a verified purchase had a reviewer who used their real name.

1e.

Measure	Value
min	-537
q1	74
median	144
q3	290
max	11686
interquartile	215

These numbers can be displayed conveniently in a boxplot.

Green, Ben Page 2

1f.

1g.

Yes, the distribution of length_of_review_text is heavily skewed towards the shorter end. There are outliers of 18275, 22492, and 26332.

1h.

The Pearson correlation value between length_of_review_text and helpfulness is approximately .25. This indicates that there is a slight positive correlation between these two variables.

1i.

Green, Ben Page 3

Question 2

Question 3

3a.

```
Sketch of vector u = [1.25, -1.75, 1.75]
Sketch of vector v = [0.95, -0.95, 1.35]
Sketch of vector w = [-0.35, 1.65, 1.85]
```

The sketches were constructed by taking the dot products of each vector with each randomly generated vector.

3b.

$$\arccos \frac{u \cdot v}{\|u\| \cdot \|v\|} = 0.318 \tag{1}$$

$$\arccos \frac{u \cdot w}{\|u\| \cdot \|w\|} = ? \tag{2}$$

Question 4

4a.

The Mahalanobis distance reduces to the Euclidian distance when the covariance matrix is the identity matrix.

4b.

The Mahalanobis distance reduces to the Euclidian distance when the covariance matrix is a diagonal matrix.

Question 5

5a.

5b.

5c.