+ rekursi

Import modul built-in & eksternal

https://github.com/dudung/sk5003-02-2022-2

Sparisoma Viridi

Master Program in Computational Science, Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia

20230506-v9| https://doi.org/10.5281/zenodo.7903448

Silakan berdiskusi untuk kuliah hari ini di https://github.com/dudung/sk5003-02-2022-2/issues/9

Kerangka

•	SAP dan referensi	4	•	External package:
•	Konsep rekursi	8		matplotlib basics
•	Implementasi rekursi	17	•	External package:
•	Built-in module: math	25		matplotlib plot types
•	Built-in module:		•	Diskusi dan latihan
	random	45		

50

statistics

• Built-in module:

55

66

75

SAP dan referensi

Minggu 7

Minggu	Topik	Subtopik	Capaian Belajar
7	Struktur data, orientasi objek, rekursi dalam Python	Rekursi	Kemampuan untuk memahami dan menguasai rekursi dalam Python

Referensi utama

 Jose M. Garrido, "Introduction to Computational Models with Python", Routledge, 1st edition, 2020,

url https://isbnsearch.org/isbn/9780367575533.

R1

C11

- Introduction
- Recursive approach to problem solving
- Recursive definition of functions

Rekursi

Pendahuluan

- Teknik dan rancangan yang digunakan untuk implementasi tugas repetitif atau definisi sirkular suatu struktur data.
- Dalam suatu fungsi, rekursi melibatkan pendefinisian fungsi itu sendiri, secara teknis adalah memanggil fungsi itu sendiri.
- Pendekatan ini dapat mendeskripsikan permasalahan dengan cara yang lebih sederhana, lebih jelas ketimbang solusi iteratif.
- Dapat digunakan untuk mempartisi problem rumit (menyelesaikannya dan menggabungkannya kembali).

Pendekatan rekursi

Suatu fungsi yang merupakan bagian dari pendekatan rekusi memiliki dua bagian

Bagian 1: Satu atau beberapa kasus yang mendefinisikan kondisi terminasi (penghentian pemanggilan fungsi itu sendiri)

Bagian 2: Satu atau beberapa kasus untuk melakukan pemanggilan fungsi itu sendiri.

Contoh permasalahan

- Menghitung faktorial
- Menghitung jumlah suku-suku deret
- Menghitung produk suku-suku deret
- Mengakses linked list

Menghitung faktorial

Faktorial suatu bilangan bulat n dihitung melalui

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$$

Perumusan rekursi

$$n! = \begin{cases} 1, & n = 0 \\ n \cdot (n-1), & n > 0 \end{cases}$$

Menghitung jumlah suku-suku deret

• Menghitung jumlah suku-suku suatu deret

$$\sum_{i=1}^{n} f(i) = f(n) + f(n-1) + \dots + f(2) + f(1)$$

Perumusan rekursi

$$\sum_{i=1}^{n} f(i) = \begin{cases} 0, & i = 0 \\ f(i) + f(i-1), & i > 0 \end{cases}$$

Menghitung produk suku-suku deret

Menghitung produk suku-suku suatu deret

$$\prod_{i=1}^{n} f(i) = f(n) \cdot f(n-1) \cdot \dots \cdot f(2) \cdot f(1)$$

Perumusan rekursi

$$\prod_{i=1}^{n} f(i) = \begin{cases} 1, & i=0\\ f(i) \cdot f(i-1), & i>0 \end{cases}$$

Pertanyaan

Apa kaitan rumusan ini

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$$

dengan rumusan ini

$$\prod_{i=1}^{n} f(i) = f(n) \cdot f(n-1) \cdot \dots \cdot f(2) \cdot f(1)$$

Memeriksa linked list

- Pada suatu linked list periksa node pertama dan sebelumnya.
- Bila node telah sampai ujung, misalnya tidak ada node lain yang terkait, pemeriksaan selesai.
- Selama pemeriksaan semua node, nilai parameter pada suatu node dapat dicatat dan diakumulasikan.
- Melaporkan hasil pemeriksaan semua node dalam suatu linked list.
- Terminasi, secara teknis, tercapai saat next = None.

Implementasi rekursi

Faktorial

$$n! = \begin{cases} 1, & n = 0 \\ n \cdot (n-1), & n > 0 \end{cases}$$

```
n! = \begin{cases} 1, & n = 0 \\ n \cdot (n-1), & n > 0 \end{cases}
n = 0 
if x = 0:
return 1
else:
return x * factorial(x - 1)
                                                                                     Output:
                                                                                     1! = 1
                                                                                     4! = 24
                                                                                     3! = 6
                                                                                     0! = 1
                                           print("1! =", factorial(1))
                                                                                     7! = 5040
                                           print("4! =", factorial(4))
                                                                                     6! = 720
                                          print("3! =", factorial(3))
                                      11 print("0! =", factorial(0))
                                      12 print("7! =", factorial(7))
                                      13 print("6! =", factorial(6))
                                      14
```

https://onecompiler.com/python/3z7qhq6mp

Jumlah suku-suku suatu deret

$$\sum_{i=1}^{n} f(i) = \begin{cases} 0, & i = 0 \\ f(i) + f(i-1), & i > 0 \end{cases}$$

$$i = 0$$

$$j = 0$$

```
Output:
                                n = 3
                                sn = 14
 6 return 0
 7 ▼ else:
    return f(n) + sumf(n-1, f)
   n = 3
11 sn = sumf(n, f)
12 print("n =", n)
13 print("sn =", sn)
```

https://onecompiler.com/python/3z7qhptkh

Produk suku-suku suatu deret

$$\prod_{i=1}^{n} f(i) = \begin{cases}
1, & i = 0 \\
f(i) \cdot f(i-1), & i > 0
\end{cases}$$

$$i = 0$$

$$f(i) \cdot f(i-1), \quad i > 0$$

```
1 * def f(x):
                                       Output:
                                       n = 3
                                       pn = 24
 6 return 1
 7 ▼ else:
     return f(n) * prodf(n-1, f)
   n = 3
11 \operatorname{sn} = \operatorname{prodf}(n, f)
12 print("n =", n)
13 print("pn =", sn)
```

https://onecompiler.com/python/3z7qk9w52

```
class Book:
def __init__(self, title):
self.title = title
self.next = None
self.prev = None
```

Linked list: Book

```
def append(self, book):
8
        if self.next == None:
 9
          self.next = book
10
          book.prev = self
        else:
          last = self.next
13
          while last.next != None:
14
            last = last.next
15
          last.next = book
16
          book.prev = last
```

```
18
      def prepend(self, book):
        if self.prev == None:
19
20
           self.prev = book
21
           book.next = self
22
        else:
23
          first = self.prev
24
           while first.prev != None:
25
            first = first.prev
           first.prev = book
26
27
           book.next = first
28
```

Counting books

```
def count_next(book):
   if book.next == None:
      return 0
   else:
      return 1 + count_next(book.next)
34
```

```
Can you see the recursive functions?
```

```
35 def count_prev(book):
36    if book.prev == None:
37    return 0
38    else:
39    return 1 + count_prev(book.prev)
40
```

```
def count(book):
    prev = count_prev(book)
    next = count_next(book)
    total = 1 + prev + next
    return total, prev, next
```

Use the class Book and count*() functions

```
b1 = Book("Physics")
   b2 = Book("Chemistry")
   b3 = Book("Biology")
   b4 = Book("Medicine")
   b5 = Book("Architecture")
   b6 = Book("Sport")
53
54
    b1.prepend(b2) # b2-b1
    b1.append(b3) # b2-b1-b3
    b3.prepend(b4) # b4-b2-b1-b3
56
    b1.prepend(b5) # b5-b4-b2-b1-b3
   b1.append(b6) # b5-b4-b2-b1-b3-b6
```

```
print("books: b5-b4-b2-b1-b3-b6")
    print("(total, prev, next)")
62
63
    n = count(b1)
64
    print("using b1:", n)
65
    n = count(b2)
    print("using b2:", n)
    n = count(b3)
    print("using b3:", n)
68
69
    n = count(b4)
    print("using b4:", n)
    n = count(b5)
    print("using b5:", n)
    n = count(b6)
7.3
    print("using b6:", n)
74
75
```

Results

```
$ python linked_list.py
books: b5-b4-b2-b1-b3-b6
(total, prev, next)
using b1: (6, 3, 2)
using b2: (6, 2, 3)
using b3: (6, 4, 1)
using b4: (6, 1, 4)
using b5: (6, 0, 5)
using b6: (6, 5, 0)
```

```
$ python linked_list.py books: b5-b4-b2 b1-b3-b6 (total, prev, next) using b1: (6, 3, 2) using b2: (6, 2, 3) using b3: (6, 4, 1) using b4: (6, 1, 4) using b5: (6, 0, 5) using b6: (6, 5, 0)
```

```
$ python linked_list.py
books: b5-b4-b2-b1-b3-b6
(total, prev, next)
using b1: (6, 3, 2)
using b2: (6, 2, 3)
using b3: (6, 4, 1)
using b4: (6, 1, 4)
using b5: (6, 0, 5)
using b6: (6, 5, 0)
```

Built-in module: math

∂ pi


```
e = 2.718281828459045
$ python e.py
e = 2.718281828459045
import math
print("e =", math.e)
```

sqrt

$y = \sqrt{x}$

```
$ ../../../scripts/mdpy.sh sqrt.md
Х
       0.0
       1.0
       1.4142135623730951
       1.7320508075688772
       2.0
        2.23606797749979
       2.449489742783178
        2.6457513110645907
       2.8284271247461903
        3.0
```

```
import math

nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

print("x", "y", sep='\t')
for x in nums:
    y = math.sqrt(x)
    print(x, y, sep='\t')
```


$z=x^y$

```
$ python pow.py
           z=x^y
           1.0
     4 16.0
        27.0
     2 16.0
5
     1 5.0
           1.0
100
     0.5 10.0
10
     -1 0.1
     2.5
           32.0
```

import math

```
x = [1, 2, 3, 4, 5, 6, 100, 10, 4]
y = [5, 4, 3, 2, 1, 0, 0.5, -1, 2.5]
n = min(len(x), len(y))

print("x\ty\tz=x^y")
for i in range(n):
   z = math.pow(x[i], y[i])
   print(x[i], y[i], z, sep='\t')
```

sin

\boldsymbol{x}	\boldsymbol{y}
0	0
$\frac{1}{6}\pi$	$\frac{1}{2}$
$\frac{1}{3}\pi$	$\frac{1}{2}\sqrt{3}$
$\frac{1}{2}\pi$	1

```
y=\sin x $ python sin.py
```

```
θ(°)
        \theta(rad) sin \theta
        0.000\pi 0.000
0
30
        0.167\pi 0.500
60
        0.333\pi 0.866
90
        0.500\pi 1.000
120
        0.667\pi 0.866
        0.833\pi 0.500
150
180
        1.000\pi 0.000
210
        1.167\pi -0.500
240
        1.333\pi -0.866
270
        1.500\pi -1.000
        1.667\pi -0.866
300
        1.833\pi -0.500
330
```

(1)

```
import math

angs = [(i / 12) * 2 * math.pi for i in range(12)]

print("θ(°)", "θ(rad)", "sin θ", sep='\t')
for x in angs:
    c1 = f"{(x / math.pi * 180):.0f}"
    c2 = f"{(x / math.pi):.3f}π"
    c3 = f"{math.sin(x):.3f}"
    print(c1, c2, c3, sep='\t')
```


$$y = \cos x \tag{1}$$

\boldsymbol{x}	y
0	1
$\frac{1}{6}\pi$	$\frac{1}{2}\sqrt{3}$
$\frac{1}{3}\pi$	$\frac{1}{2}$
$\frac{1}{2}\pi$	0

```
$ python cos.py
θ(°)
        \theta(\text{rad}) \cos \theta
0
         0.000\pi
                 1.000
        0.167\pi 0.866
30
        0.333\pi 0.500
60
90
         0.500\pi 0.000
         0.667\pi -0.500
120
150
         0.833\pi - 0.866
180
         1.000\pi -1.000
         1.167\pi -0.866
210
240
         1.333\pi -0.500
270
         1.500\pi
                 -0.000
300
         1.667\pi 0.500
330
         1.833\pi 0.866
```

```
import math

angs = [(i / 12) * 2 * math.pi for i in range(12)]

print("θ(°)", "θ(rad)", "cos θ", sep='\t')

for x in angs:
    c1 = f"{(x / math.pi * 180):.0f}"
    c2 = f"{(x / math.pi):.3f}π"
    c3 = f"{math.cos(x):.3f}"
    print(c1, c2, c3, sep='\t')
```

$y = \tan x$

\boldsymbol{x}	y
0	0
$\frac{1}{6}\pi$ $\frac{1}{3}\pi$	$\frac{1}{3}\sqrt{3}$
	$\sqrt{3}$
1_	~ -~

```
(1)
                          for x in angs:
$ python tan.py
θ(°)
         \theta(\text{rad}) tan \theta
         0.000π
                  0.000
        0.167\pi 0.577
30
60
        0.333\pi 1.732
         0.500\pi 16331239353195370.000
90
120
         0.667\pi -1.732
         0.833\pi - 0.577
150
180
         1.000\pi
                 -0.000
210
         1.167\pi 0.577
240
         1.333\pi 1.732
270
         1.500\pi 5443746451065123.000
300
         1.667\pi -1.732
         1.833\pi -0.577
330
```

```
import math
angs = [(i / 12) * 2 * math.pi for i in range(12)]
print("\theta(^{\circ})", "\theta(\text{rad})", "tan \theta", sep='\t')
  c1 = f"{(x / math.pi * 180):.0f}"
  c2 = f''\{(x / math.pi):.3f\}\pi''
  c3 = f''\{math.tan(x):.3f\}''
  print(c1, c2, c3, sep='\t')
```

asin

$$y = \sin x \tag{0}$$

$$x = \sin^{-1} y \equiv \sin y \tag{1}$$

```
$ python asin.py

sin x x(rad) x(°)

0 0.000 0.0

0.25 0.253 14.5

0.5 0.524 30.0

0.75 0.848 48.6

1 1.571 90.0
```

```
import math

x = [0, 0.25, 0.5, 0.75, 1]

print("sin x\tx(rad)\tx(°)")

for s in x:
   rad = math.asin(s)
   deg = math.degrees(rad)
   print(f"{s}\t{rad:.3f}\t{deg:.1f}")
```


$$y = \cos x \tag{0}$$

$$x = \cos^{-1} y \equiv a \cos y \tag{1}$$

```
$ python acos.py

cos x x(rad) x(°)

0 1.571 90.0

0.25 1.318 75.5

0.5 1.047 60.0

0.75 0.723 41.4

1 0.000 0.0
```

```
import math

x = [0, 0.25, 0.5, 0.75, 1]

print("cos x\tx(rad)\tx(°)")

for s in x:
   rad = math.acos(s)
   deg = math.degrees(rad)
   print(f"{s}\t{rad:.3f}\t{deg:.1f}")
```

atan

$$y = \tan x \tag{0}$$

$$x = \tan^{-1} y \equiv \tan y \tag{1}$$

```
$ python atan.py

tan x x(rad) x(°)

0 0.000 0.0

0.25 0.245 14.0

0.5 0.464 26.6

0.75 0.644 36.9

1 0.785 45.0

1.333 0.927 53.1
```

```
import math

x = [0, 0.25, 0.5, 0.75, 1, 1.333]

print("tan x\tx(rad)\tx(°)")

for s in x:
   rad = math.atan(s)
   deg = math.degrees(rad)
   print(f"{s}\t{rad:.3f}\t{deg:.1f}")
```


$$y = e^x \tag{1}$$

```
$ python exp.py
x     y=e^x
0     1.0
1     2.718281828459045
2     7.38905609893065
3     20.085536923187668
4     54.598150033144236
```

```
import math

nums = [0, 1, 2, 3, 4]

print("x", "y=e^x", sep='\t')
for x in nums:
    y = math.exp(x)
    print(x, y, sep='\t')
```

∂ log

```
(1)
              y = \log x \equiv \ln x
$ python log.py
x 	 y = log(x)
1.000 0.0
                                          import math
2.718 1.0
7.389 2.0
                                          e = math.exp(1)
20.086 3.0
                                          nums = [e^{**0}, e^{**1}, e^{**2}, e^{**3}, e^{**4}]
54.598 4.0
                                          print("x", "y=log(x)", sep='\t')
                                          for x in nums:
                                            y = math.log(x)
                                            print(f"{x:.3f}", y, sep='\t')
```

₽ log10

$$y = {}^{10}\log x \equiv \log x \tag{1}$$

```
$ python log10.py

x y=log10(x)

10000 4.0

1000 3.0

100 2.0

10 1.0

1 0.0
```

```
import math

nums = [10000, 1000, 100, 10, 1]

print("x", "y=log10(x)", sep='\t')
for x in nums:
    y = math.log10(x)
    print(x, y, sep='\t')
```

fabs

$$y = |x| \tag{1}$$

```
python fabs.py

x     y=|x|
-10     10.0

10.3     10.3
-2.5     2.5

4     4.0

0.12     0.12
-0.85     0.85
```

```
import math

nums = [-10, 10.3, -2.5, 4, 0.12, -0.85]

print("x\ty=|x|")
for x in nums:
    y = math.fabs(x)
    print(x, y, sep='\t')
```

∂ ceil

$$y = \lceil x \rceil \tag{1}$$

```
Q
$ python ceil.py
Х
-3.2
    -3
-2.7 -2
-1.5 -1
-0.5
0
0.7
1.2 2
2.5
      3
```

```
import math

nums = [-3.2, -2.7, -1.5, -0.5, 0, 0.7, 1.2, 2.5]

print("x", "y", sep='\t')

for x in nums:
    y = math.ceil(x)
    print(x, y, sep='\t')
```

floor

$$y = \lfloor x \rfloor$$
 (

```
$ python floor.py

x y
-3.2 -4
-2.7 -3
-1.5 -2
-0.5 -1
0 0
0.7 0
1.2 1
2.5 2
```

```
import math

(1) nums = [-3.2, -2.7, -1.5, -0.5, 0, 0.7, 1.2, 2.5]

print("x", "y", sep='\t')
for x in nums:
    y = math.floor(x)
    print(x, y, sep='\t')
```

trunc

$$[x], \quad x < 0$$
 $0, \quad x = 0$
 $[x], \quad x > 0$
 $y = [x]$ (2)

```
Ç
$ python trunc.py
X
-3.2 -3
-2.7 -2
-1.5 -1
-0.5
0
0.7
1.2
2.5
```

```
import math

nums = [-3.2, -2.7, -1.5, -0.5, 0, 0.7, 1.2, 2.5]

print("x", "y", sep='\t')

for x in nums:
    y = math.trunc(x)
    print(x, y, sep='\t')
```

radians

$$y \left(\text{rad} \right) = \left(\frac{\pi}{180} \right) x \left(^{\circ} \right) \tag{1}$$

```
$ python radians.py
x(°)
       y(rad)
0
        0.0
                                           import math
30
        0.5235987755982988
45
        0.7853981633974483
                                           x = [0, 30, 45, 60, 90, 120, 135, 150, 180]
60
        1.0471975511965976
90
        1.5707963267948966
                                           print("x(°)\ty(rad)")
120
        2.0943951023931953
                                           for degs in x:
135
        2.356194490192345
                                             rads = math.radians(degs)
150
        2.6179938779914944
                                             print(degs, rads, sep='\t')
180
        3.141592653589793
```

degrees

$$y(^{\circ}) = \left(\frac{180}{\pi}\right) x \text{ (rad)}$$
 (1)

```
$ python
degrees.py
                                      import math
x(rad) y(^{\circ})
0.0000 0.0
                                      pi = math.pi
0.5236 30.0
1.0472 60.0
                                      nums = [0, pi/6, pi/3, pi/2, 2*pi/3, 5*pi/6, pi]
1.5708 90.0
2.0944 120.0
                                      print("x(rad)\ty(°)")
2.6180 150.0
                                      for x in nums:
3.1416 180.0
                                        y = math.degrees(x)
                                        print(f"{x:.4f}", f"{y:.1f}", sep='\t')
```

copysign

```
.....
                                              11
       import math
 2
                                              12
                                                      $ python copysign.py
 3
       nums = [-1.2, 2.3, -3.4, 4.5]
                                              13
                                                                       copysign(n,s)
                                                      n
                                                               S
 4
       sign = [20.2, 100.9, -30.7, -59.2]
                                              14
                                                      -1.2
                                                              20.2
                                                                       1.2
 5
                                                               100.9
                                              15
                                                      2.3
 6
                                              16
                                                      -3.4
                                                               -30.7
                                                                       -3.4
       print("n\ts\tcopysign(n,s)")
                                              17
                                                      4.5
                                                               -59.2 -4.5
       for n, s in zip(nums, sign):
                                              18
                                                      .....
 8
         cps = math.copysign(n, s)
 9
         print(n, s, cps, sep='\t')
10
```

Built-in module: random

1	import random as r		1	import random as r
2			2	
3	<pre>for i in range(10):</pre>		3	for i in range(10):
4	x = r.random()		4	r.seed(0)
5	<pre>print(x)</pre>		5	x = r.random()
6			6	<pre>print(x)</pre>
7			7	
8	***		8	
9	<pre>\$ python random_float.</pre>	py	9	
10	0.42689830565807474		10	<pre>\$ python random_seed.py</pre>
11	0.05603614535818047		11	0.8444218515250481
12	0.09834931748713582		12	0.8444218515250481
13	0.29663851125029317		13	0.8444218515250481
14	0.9426737300225886		14	0.8444218515250481
15	0.6874368918582094		15	0.8444218515250481
16	0.4968107188175743		16	0.8444218515250481
17	0.6234078659578437		17	0.8444218515250481
18	0.5405964599822057		18	0.8444218515250481
19	0.785189895099332		19	0.8444218515250481
20			20	0.8444218515250481
SK5003 Pemrograman dalam Sains		2023-05-06 40132 +62	21	

```
1
                                                                 import random as r
1
       import random as r
 2
                                                                 for i in range(20):
 3
       for i in range(20):
                                                                   x = r.randint(3, 5)
 4
         x = r.randrange(0, 8, 2)
                                                                   print(x, end=' ')
 5
         print(x, end=' ')
                                                           6
                                                                 print()
       print()
 6
                                                           8
       for i in range(20):
 8
                                                                  .....
                                                           9
         x = r.randrange(7, 10)
 9
         print(x, end=' ')
                                                          10
                                                                 $ python randint.py
10
                                                          11
                                                                 5 4 3 4 5 3 3 5 3 5 4 4 5 4 4 3 4 3 3 5
11
       print()
                                                                  .....
                                                          12
12
13
       .....
14
15
       $ python randrange.py
16
       20226000404002622640
       9 9 9 8 8 9 7 7 8 8 9 7 8 7 8 8 8 7 7 9
17
18
       .....
```

```
import random as r
                                                  import random as r
 2
 3
       x = ["A", "B", "C", "D", "E"]
                                                  x = ["A", "B", "C", "D", "E"]
 4
                                           4
 5
       for i in range(20):
                                                  for i in range(1, 10):
 6
         y = r.choice(x)
                                                    y = r.choices(x, weights=[1, 10, 1, 1, 1], k=i)
                                           6
         print(y, end='')
                                                    print('-'.join(y))
                                                                                         .....
                                                                                 11
 8
       print()
                                           8
                                                  print()
                                                                                 12
                                                                                        $ python choices.py
 9
                                                                                 13
                                                                                         В
10
                                                                                 14
                                                                                        B-E
        .....
11
                                                                                        B-B-B
                                                                                 15
12
       $ python choice.py
                                                                                 16
                                                                                        B-B-A-B
13
       CEACCBCBCCECBCACEDAB
                                                                                        A-B-C-C-E
                                                                                 17
        .....
14
                                                                                 18
                                                                                        B-B-E-B-A-B
                                                                                 19
                                                                                        B-E-B-B-B-B
                                                                                 20
                                                                                        B-B-C-B-B-B-C-B
                                                                                        B-B-B-B-B-B-C-B
                                                                                 21
                                                                                         .. .. ..
                                                                                 22
```

```
1
       import random as r
 2
 3
       for i in range(10):
 4
         x = r.uniform(10, 15)
         print(f"{x:.3f}", end=' ')
 5
       print()
 6
 8
 9
       for i in range(10):
10
         x = r.uniform(20, 23)
11
         print(f"{x:.3f}", end=' ')
12
       print()
13
14
       ....
       $ python uniform.py
15
16
       13.673 13.185 14.458 10.358 13.173 11.644 10.203 12.709 13.410 13.778
       21.047 22.892 20.234 22.613 21.671 20.894 20.637 21.438 20.921 22.389
17
18
        .....
```

Built-in module: statistics

```
1
       import statistics as s
 2
 3
       x = [1, 2, 3, 4, 5, 6, 7]
 4
       mean = s.mean(x)
 5
       print(x)
 6
       print("mean =", mean)
 7
 8
       print()
 9
10
       y = [1, 2, 3, 4, 5, 6]
11
       mean = s.mean(y)
12
       print(y)
13
       print("mean =", mean)
```

```
15
16
        .....
17
       $ python mean.py
18
       [1, 2, 3, 4, 5, 6, 7]
19
       mean = 4
20
21
       [1, 2, 3, 4, 5, 6]
22
       mean = 3.5
23
        .....
```

14

```
1
       import statistics as s
2
 3
       x = [1, 2, 3, 4]
       fmean = s.fmean(x)
4
5
       print(x)
6
       print("fmean =", fmean)
8
       print()
9
10
       y = [1, 2, 3, 4, 5]
11
       fmean = s.fmean(y)
12
       print(y)
13
       print("fmean =", fmean)
```

```
15
        .....
16
17
       $ python fmean.py
18
       [1, 2, 3, 4]
19
       fmean = 2.5
20
21
       [1, 2, 3, 4, 5]
       fmean = 3.0
22
        .....
23
```

14

```
16
 1
       import statistics as s
                                                   17
                                                          z = [1, 2, 3, 3, 80, 100]
 2
                                                   18
                                                           median = s.median(z)
 3
       x = [1, 2, 3, 4, 5, 6, 7]
                                                           print(z)
                                                   19
       median = s.median(x)
 4
                                                   20
                                                           print("median =", median)
 5
       print(x)
                                                   21
 6
       print("median =", median)
                                                   22
                                                           .....
                                                   23
 8
       print()
                                                   24
                                                          $ python median.py
 9
                                                   25
                                                           [1, 2, 3, 4, 5, 6, 7]
       y = [1, 1, 3, 3, 4, 8, 10]
10
                                                   26
                                                          median = 4
11
       median = s.median(v)
                                                   27
12
       print(y)
                                                          [1, 1, 3, 3, 4, 8, 10]
                                                   28
13
       print("median =", median)
                                                          median = 3
                                                   29
14
                                                   30
15
       print()
                                                          [1, 2, 3, 3, 80, 100]
                                                   31
16
                                                   32
                                                          median = 3.0
                                                           .....
                                                   33
```

```
import statistics as s
       x = [3, 1, 1, 3, 2, 2, 2]
       mode = s.mode(x)
       print(x)
       print("median =", mode)
 9
        .....
       $ python mode.py
10
11
       [3, 1, 1, 3, 2, 2, 2]
       median = 2
12
13
        .....
```

External package: matplotlib basics

min_loc

minimum lines of code

```
import matplotlib.pyplot as plt
x = [1, 9]
y = [9, 1]
plt.plot(x, y, 'o-')
plt.show()
```

```
$ python min_loc.py
```


series

```
import matplotlib.pyplot as plt
x1 = [1, 9]
y1 = [9, 1]
x2 = [1, 8]
y2 = [7, 3]
plt.plot(x1, y1, x2, y2)
plt.show()
```

\$ python series.py

legend

```
import matplotlib.pyplot as
x1 = [1, 9]
y1 = [9, 1]
x2 = [1, 8]
y2 = [7, 3]
x3 = [1, 5]
y3 = [8, 7]
legends = ['data 1', 'data 1
```


line_color

```
import matplotlib.pyplot as plt
x1 = [1, 9]
y1 = [9, 1]
x2 = [1, 8]
y2 = [7, 3]
x3 = [1, 5]
y3 = [8, 7]
legends = ['red', 'green', 'blue']
plt.plot(x1, y1, 'r', x2, y2, 'g', x3, y3, 'b')
plt.legend(legends)
plt.show()
```



```
$ python line_color.py
```

'line_style

```
import matplotlib.pyplot as plt
x1 = [1, 9]
y1 = [9, 1]
x2 = [1, 8]
y2 = [7, 3]
x3 = [1, 5]
y3 = [8, 7]
legends = ['red', 'green', 'blue']
plt.plot(x1, y1, 'r-', x2, y2, 'g--', x3, y3, 'b:')
plt.legend(legends)
plt.show()
```


marker

```
import matplotlib.pyplot as plt
x1 = [1, 9]
y1 = [9, 1]
x2 = [1, 8]
y2 = [7, 3]
x3 = [1, 5]
y3 = [8, 7]
legends = ['red', 'green', 'blue']
plt.plot(x1, y1, 'ro-', x2, y2, 'gs--', x3, y3, 'bd:')
plt.legend(legends)
plt.show()
```


\$ python marker.py

grid

```
import matplotlib.pyplot as plt
x1 = [1, 9]
y1 = [9, 1]
x2 = [1, 8]
y2 = [7, 3]
x3 = [1, 5]
y3 = [8, 7]
legends = ['red', 'green', 'blue']
plt.plot(x1, y1, 'ro-', x2, y2, 'gs--', x3, y3, 'bd:')
plt.legend(legends)
plt.grid()
plt.show()
```



```
$ python grid.py
```

axis_label

```
import matplotlib.pyplot as plt
x1 = [1, 9]
y1 = [9, 1]
x2 = [1, 8]
y2 = [7, 3]
x3 = [1, 5]
y3 = [8, 7]
legends = ['red', 'green', 'blue']
plt.plot(x1, y1, 'ro-', x2, y2, 'gs--', x3, y3, 'bd:')
plt.legend(legends)
plt.grid()
plt.xlabel("x")
plt.ylabel("y")
plt.show()
```



```
$ python axis_label.py
```

marker_only

```
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 4.5, 5, 6, 7, 8]
y = [1, 3, 5, 6, 6.2, 6, 5, 3, 1]
plt.plot(x, y, 'ro')
plt.grid()
plt.xlabel("x")
plt.ylabel("y")
plt.show()
```


\$ python marker_only.py

line_marker_only

```
import matplotlib.pyplot as plt
r = 20
x = [*range(-r, r+1)]
y = [(r*r - i*i)**0.5 \text{ for } i \text{ in } x]
z = [-i \text{ for } i \text{ in } y]
plt.plot(x, y, 'b-', x, z, 'ro')
plt.grid()
plt.xlabel("x")
plt.ylabel("y")
plt.show()
```


\$ python line_marker_only.py

External package: matplotlib plot types

ø style_subplots

```
import matplotlib.pyplot as plt
plt.style.use(" mpl-gallery")
X = []
y = []
fig, ax = plt. subplots()
plt.show()
```

\$ python style_subplots.py

ø subplots_plot

```
import matplotlib.pyplot as plt
import math as m
plt.style.use("_mpl-gallery")
x = [m.cos(m.radians(i*10)) for i in range(37)]
y = [m.sin(2 * m.radians(i*10)) for i in range(37)]
fig, ax = plt. subplots()
ax.plot(x, y, linewidth=2.5)
plt.show()
```



```
$ python subplots_plot.py
```

subplots_scatter

```
import matplotlib.pyplot as plt
import math as m
plt.style.use("_mpl-gallery")
x = [m.cos(m.radians(i*10)) for i in range(37)]
y = [m.sin(2 * m.radians(i*10)) for i in range(37)]
fig, ax = plt. subplots()
ax.scatter(x, y, c='r', s=10)
plt.show()
```



```
$ python subplots_scatter.py
```

ø subplots_bar

```
import matplotlib.pyplot as plt
import random as r
plt.style.use(" mpl-gallery")
x = [i \text{ for } i \text{ in range}(10)]
y = [r.randint(10, 20) for i in x]
fig, ax = plt. subplots()
ax.bar(x, y, width=1, edgecolor="white")
plt.show()
```



```
$ python subplots_bar.py
```

ø subplots_stem ø

```
import matplotlib.pyplot as plt
import random as r
plt.style.use(" mpl-gallery")
x = [i \text{ for } i \text{ in } range(10)]
y = [r.randint(10, 20) for i in x]
fig, ax = plt. subplots()
ax.stem(x, y)
plt.show()
```



```
$ python subplots_stem.py
```

subplots_step

```
import matplotlib.pyplot as plt
import random as r
plt.style.use("_mpl-gallery")
x = [i \text{ for } i \text{ in range}(10)]
y = [1, 1, 4, 4, 3, 2, 1, 5, 1, 5]
fig, ax = plt. subplots()
ax.step(x, y)
plt.show()
```


subplots_fill_between

```
import matplotlib.pyplot as plt
plt.style.use(" mpl-gallery")
x = [i \text{ for } i \text{ in range}(10)]
y1 = [1, 2, 3, 3, 4, 5, 5, 6, 6, 7]
y2 = [7, 5, 4, 4, 5, 6, 6, 8, 7, 9]
fig, ax = plt. subplots()
ax.fill between(x, y1, y2, alpha=0.7, linewidth=4)
plt.show()
```



```
$ python subplots_fill_between.py
```

subplots_stackplot

```
import matplotlib.pyplot as plt
plt.style.use("_mpl-gallery")
x = [i \text{ for } i \text{ in } range(10)]
y1 = [1, 2, 3, 3, 4, 5, 5, 6, 6, 7]
y2 = [7, 5, 4, 4, 5, 6, 6, 8, 7, 9]
fig, ax = plt. subplots()
alpha = 0.7
ax.stackplot(x, y1, y2, colors=['g', (0.7, 0.3, 0.3, alpha)])
plt.show()
```

```
$ python subplots_stackplot.py
```

Diskusi dan latihan

Tugas sebelum dan setelah kuliah

- Isi kehadiran di SIX.
- Kerjakan tugas yang tersedia di Issue 8.

Diskusi

- Silakan bila ada pertanyaan.
- Setelah kuliah pertanyaan dapat diajukan secara asinkron di url https://github.com/dudung/sk5003-02-2022-2/issues/9

Terima kasih

-