

Internetworking

VPNs and NAT

Literature:

Forouzan: TCP/IP Protocol Suite: Ch 26

Private Networks

- Designed to be used within an organization
- Access to shared resources
- Provides privacy
- Intranet
 - Access to network limited to users within the organization
- Extranet
 - Some resources may be accessed by specific users outside the organization.
- Addressing
 - Global addresses
 - Future proof but are not accessible
 - Private addresses
 - Need NAT to access Internet.

Motivation and challenges for VPNs

- To build a long distance private network by leased lines is expensive
- Could the same service be offered on top of a public network (Internet)?
- This would be cheaper
 - Existing infrastructure can be re-used
- But to build a VPN we need to address:
 - Privacy
 - others cannot see our data
 - Addressing and routing
 - Internal addresses used within private networks
 - External addresses used on the Internet

Tunneling and Privacy

- Encapsulate the private datagram within another datagram
- Privacy: encrypt the private datagram
- Problem: Who can you trust to encrypt the data?
 - only yourself
 - the ISP providing the VPN
 - some third party

Inner Datagram (encrypted)

Outer Datagram (encrypted)

Addressing

- The Internet carries the tunneled datagram from R1 to R2 using public addressing
- R1 encapsulates, R2 decapsulates

Public versus private addressing

VPN Architecture 1

Connect hosts to central server.

VPN Architecture 2

Connect several LAN "islands".

L3 VPN

- LANs connect to a router that routes the datagrams between sites.
- IP/IPsec tunnels
 - Point-to-point
 - Full mesh between peers
- Virtual Routing
 - Separate routing tables
 - Different address domains
- MPLS/BGP
 - RFC 2547"
 - Set up MPLS point-to-point paths over a network
 - Good for Traffic Engineering purposes
 - No need to export customers routing tables into the network

L2VPN

- LAN interconnection may be done by tunneling layer 2 frames (eg Ethernet) over an (IP) network. Most are point-to-point and for dial-up services
- Layer-2 Forwarding (L2F)
- Point-to-point Tunneling Protocol (PPTP)
 - In Windows 95/NT
- Layer Two Tunneling Protocol(L2TP)
 - RFC 2661
 - PPP based
- VPLS
 - Virtual Private LAN Services (IETF PPVPN)
 - Multi LAN

Traffic Engineering

- Many VPN services provides "QoS"
 - To ensure service for internal traffic
- Provider wants to guarantee a service to VPN customers.
 - No delays
 - No packet loss
 - Eg Telephony over IP (VoIP or tunneled E1:s)
- Typical solution use MPLS
 - Fixed path through a network where resources are allocated
 - RSVP-TE
 - Aggregated traffic with bandwidth guarantees
 - OSPF-TE

Network Address Translation (NAT)

- How can we use private addresses and communicate with the global Internet?
- How can we use more addresses than our ISP assigned us?
 - We may only get one or a pool of IPv4 addresses
 - But we have many local machines
- Solution: IPv6
 - Plenty of addresses
- Or NAT/NAPT

Network Address Translation (NAT)

- Internally, there are many hosts with private addresses
- But the outside world sees only one global address
 - Or a set of global addresses
- The NAT router translates between local (private) and global addresses
 - Typically use private IPv4 addresses, eg 10.0.0.0/8.
 - Translate them to global addresses

Address Translation

- Eg, a client accesses a global server
- Dynamic table driven from the inside
- Outgoing packets
 - source private address is replaced by global address
- Incoming packets
 - destination global address is replaced by private address

Extending the mapping: NAPT

- One-to-one address mapping may be too restrictive and static
- Use the L4 port numbers
- Map local address + port global address + port
- Network Address Port Translation
- Extends the address space with 2¹⁶ port numbers
- Limited to TCP/UDP
- Some problems with other protocols and applications

NAPT Example

NAT binding:

10.0.0.2:1400 200.24.5.8:2100

NAPT to access internal servers

- Servers on the inside needs to be accessed from the outside.
 - ssh server at 10.0.0.5
 - http server at 10.0.0.3 (port 8080)

Rewriting of header

Example: TCP packet sent from inside to outside

version	hlen		tos	total length
identification				fragment fields
ttl		ı	protocol	header checksum
src addr				
dst addr				
source port number				destination port number
sequence number				
acknowledgement number				
header length	reser	ved	flags	window size
TCP checksum				urgent pointer

But NATs also filter addresses

- A NAT has also filtering to restrict which external peers can communicate with the internal host
- So other peers can use the "hole" in the NAT opened by an initial communication
- This can be used by peer-to-peer applications to make "NAT-traversal"
 - Otherwise, two hosts behind NATs can never communicate
 - Important for interactive applications eg VoIP
- Only for UDP
 - TCP has state (eg sequence numbers) that can not be reused

Full Cone

Full cone – No filtering

- 32.4.5.6 can use the entry opened by the access to 25.8.2.10

Symmetric NAT

Symmetric NAT

- 32.4.5.6 can not use the entry
- Only 25.8.2.10:80 is accepted as source address

NAPT and Applications

- Problem: address and ports numbers may also be present in payload
 - E.g. FTP and SIP prints the port numbers converted into ASCII in the payload during connection set up

• ICMP

- echo reply: who should get the reply?
- redirect: the gateway (NAT box) has an incorrect route?
- destination unreachable: the payload of the ICMP carries the header from the datagram that could not be delivered.
- Many peer-to-peer applications use special techniques to bypass NAT/NAPT
 - Third party
 - Overloading of well-known ports, eg port 80

IPsec breaks

- eg authentication of addresses/ports that are modified