Criptografias ElGamal, Rabin e algumas técnicas de ciframento

Adriele Giareta Biase

Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - PROMAT adrielegbiase@yahoo.com.br

Edson Agustini

Universidade Federal de Uberlândia - Faculdade de Matemática Professor Associado I agustini@ufu.br

Resumo: Nesse trabalho apresentamos um estudo de dois dos sistemas criptográficos mais comuns em sistemas de comunicações: os sistemas ElGamal e Rabin, derivados do sistema criptográfico RSA. Também apresentamos algumas técnicas de ciframento, como Criframento de Vigenère, Substituição de Hill, Sistema Merkle-Hellman (MH), Sistema de Rotores e Data Encryption Standard (DES). Para o desenvolvimento desses sistemas criptográficos, introduzimos alguns preliminares de Teoria dos Números, mais precisamente, algoritmos envolvendo números primos e congruências. Procuramos trabalhar com vários exemplos ilustrativos de cada técnica apresentada, com o objetivo de tornar o texto mais compreensivo. Por fim, algumas conclusões são apresentadas.

1 Introdução

Este trabalho é uma extensão do texto "Criptografia, Assinaturas Digitais e Senhas Segmentadas", (1), no qual foi destacada a necessidade moderna de se proteger informações, por meio de criptografia, de modo que alguém indesejável não tenha acesso ao seu conteúdo.

O método mais conhecido de criptografia é o chamado RSA (Rivest, Shamir, Adleman) (7) e seus derivados, como o ElGamal e o Rabin (6), aos quais daremos ênfase nesse trabalho. Além desses, há o método D.E.S. - Data Encryption Standard, (10) e (5), também abordado nesse trabalho.

O texto está dividido em três partes do seguinte modo:

- Preliminares: são alguns resultados de Teoria dos Números, em complemento aos resultados apresentados em (1), que são interessantes para o desenvolvimento das seções subseqüentes.
- Técnicas de Ciframento: onde apresentamos algumas das principais técnicas de ciframento, como a Substituição de Hill, Ciframento de Vigenère, Sistema de Rotores e o Método MH.
- Criptografias: (duas seções) onde apresentamos a Criptografia ElGamal, Criptografia Rabin e a Criptografia D.E.S.

2 Preliminares

Os teoremas e as proposições apresentados nessa seção são básicos e suas demonstrações podem ser encontradas em livros introdutórios de Teoria dos Números como, por exemplo, (2) e (4).

2.1 O Pequeno Teorema de Fermat

Um resultado bastante útil durante os procedimentos de criptografia e deciframento de mensagens é o teorema enuciado abaixo.

Pequeno Teorema de Fermat. Se p > 1 é primo e a é um inteiro positivo não divisível por p, então:

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Demonstração.

Seja a seqüência de números inteiros positivos entre 1 até p-1:

$$1, 2, 3, 4, 5, ..., p - 1.$$

Multiplicando-se cada número dessa seqüência por $a \pmod p$, obtem-se $R = \{x_1, ..., x_{p-1}\}$ um conjunto de resíduos módulo p. Como p não divide a, temos $x_i \neq 0$; i = 1, ..., p = 1. Além disso, $x_1, x_2, ..., x_{p-1}$ são todos distintos. De fato, suponhamos que $x_i \equiv ia \pmod p$ e $x_j \equiv ja \pmod p$ são tais que $x_i = x_j$ e $i \neq j$. Então, $ia \equiv ja \pmod p$, ou seja, $i \equiv j \pmod p$. Como $1 \leq i, j \leq p-1$, teremos i = j, uma contradição.

Portanto, o conjunto R é formado pelo conjunto de inteiros $\{1, 2, 3, ...p - 1\}$ em alguma ordem. Multiplicando todas essas congrüências encontramos:

$$1a.2a.3a...(p-1)$$
 $a \equiv [1.2.3...(p-1)] \pmod{p} \Rightarrow a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$.

Como (p-1)! é relativamente primo com p,

$$a^{p-1} \equiv 1 \pmod{p}$$
,

como queríamos.

Observação.

A congruência $a^p \equiv a \pmod{p}$ é válida quando a é divisível pelo primo p.

De fato, se mdc $(a, p) \neq 1$ e, como p é primo, então a = bp para algum inteiro positivo b. Logo,

$$a^{p} - a = b^{p}p^{p} - bp = (b^{p}p^{p-1} - b) p = kp,$$

ou seja, p divide $a^p - a$, que é equivalente a $a^p - a \equiv 0 \pmod{p}$, que significa

$$a^p \equiv a \pmod{p}$$
.

Exemplo 1: Tomando a = 13 e p = 17 temos:

$$13^2 = 169 \equiv 16 \pmod{17}$$
 $13^8 = 13^4 \cdot 13^4 \equiv 1.1 \equiv 1 \pmod{17}$ $13^4 = 13^2 \cdot 13^2 \equiv 16.16 \equiv 256 \equiv 1 \pmod{17}$ $13^{16} = 13^8 \cdot 13^8 \equiv 1.1 \equiv 1 \pmod{17}$.

Tomando p = 3 e a = 6 temos:

$$a^p = 6^3 = 216 \equiv 6 \pmod{3} \equiv a \pmod{p}$$
.

2.2 O Teorema de Euler

Outro resultado interessante para ciframento e deciframento em criptografia é o Teorema de Euler.

A Função ϕ de Euler

Para que possamos estudar o Teorema de Euler é preciso recorrer a alguns pré-requisitos importantes na Teoria dos Números, como a Função ϕ de Euler, denotada por $\phi(n)$, $n \in \mathbb{N}$, e definida como o número de inteiros positivos menores do que n e que são relativamente primos com n. Por convenção, $\phi(1) = 1$, pois $\phi(1)$ não tem significado, mas é definido para que tenha valor 1.

Exemplo 2: Seja n = 25. Temos $\phi(25) = 20$, pois existem vinte números inteiros positivos menores do que 25 relativamente primos com 25. São eles: 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23 e 24.

Observemos que para todo número primo p, temos $\phi(p) = p - 1$.

Teorema. Seja dois números primos p e q, com $p \neq q$. Então, para n = pq, temos

$$\phi(n) = \phi(pq) = \phi(p)\phi(q) = (p-1)(q-1).$$

Demonstração.

Para mostrar que $\phi(n) = \phi(p)\phi(q)$ consideremos todos os números inteiros positivos menores que n, que é o conjunto $\{1, 2, 3, ..., (pq-1)\}$. Os inteiros desse conjunto que são relativamente primos com n são dados pelos conjuntos:

$$\{p, 2p, 3p, ..., (q-1)p\} \in \{q, 2q, 3q, ..., (p-1)q\}.$$

Assim,

$$\phi(n) = (pq - 1) - [(q - 1) + (p - 1)]$$

$$= pq - 1 - q + 1 - p + 1$$

$$= pq - (q + p) + 1$$

$$= (p - 1) (q - 1)$$

$$= \phi(p)\phi(q),$$

como queríamos.

Teorema de Euler. Se mdc(a, n) = 1, $ent\tilde{a}o \ a^{\phi(n)} \equiv 1 \pmod{n}$.

Demonstração.

Considere o conjunto dos números inteiros positivos menores do que n que são relativamente primos com n, que denotamos por

$$X = \{x_1, x_2, x_3, ..., x_{\phi(n)}\}.$$

Deste modo, $\mathrm{mdc}(x_i, n) = 1$, para $i = 1, ..., \phi(n)$. Mutiplicando cada elemento por $a \pmod n$, temos o conjunto

$$P = \left\{ax_1 \left(\operatorname{mod} n\right), ax_2 \left(\operatorname{mod} n\right), ax_3 \left(\operatorname{mod} n\right), ..., ax_{\phi(n)} \left(\operatorname{mod} n\right)\right\}.$$

Todos os elementos de P são inteiros distintos, relativamente primos com n e menores do que n. De fato, $ax_i \pmod{n}$ é o resto da divisão de ax_i por n, portanto, $ax_i \pmod{n}$ é menor do que n. Além disso, $\mathrm{mdc}(x_i, n) = 1$ significa que x_i e n não possuem fatores $(\neq 1)$ em comum. Do mesmo modo, como $\mathrm{mdc}(a, n) = 1$, então a e n não possuem fatores $(\neq 1)$ em comum. Deste modo, ax_i e n não possuem

Faculdade de Matemática

fatores em comum. Quanto ao fato de serem distintos, temos que se $ax_i \pmod{n} = ax_j \pmod{n}$ com $i \neq j$, então $ax_i \equiv ax_j \pmod{n}$, o que implica

$$x_i \equiv x_j \pmod{n}$$
,

o que não é possível pois

$$x_i \neq x_i \in x_i, x_i < n.$$

Desta forma,

$$\{x_1, ..., x_{\phi(n)}\}$$

e

$$\{ax_1 \pmod{n}, ax_2 \pmod{n}, ax_3 \pmod{n}, ..., ax_{\phi(n)} \pmod{n}\}$$

representam o conjunto de todos os inteiros menores do que n e que são relativamente primos com n. Assim, temos a igualdade entre esses conjuntos e, portanto,

$$\prod_{i=1}^{\phi(n)} x_i = \prod_{i=1}^{\phi(n)} (ax_i \pmod{n}) \Rightarrow
\prod_{i=1}^{\phi(n)} ax_i \equiv \left(\prod_{i=1}^{\phi(n)} x_i\right) \pmod{n} \Rightarrow
a^{\phi(n)} \left(\prod_{i=1}^{\phi(n)} x_i\right) \equiv \left(\prod_{i=1}^{\phi(n)} x_i\right) \pmod{n} \Rightarrow
a^{\phi(n)} \equiv 1 \pmod{n},$$

como queríamos.

Observação.

A congruência

$$a^{\phi(n)+1} \equiv a \pmod{n}$$

é válida independente de a ser relativamente primo com n. De fato, decompondo a em fatores primos temos $a = p_1 p_2 ... p_k$. Logo, pelo Teorema de Euler:

$$\begin{cases} p_1^{\phi(n)} \equiv 1 \pmod{n} \Rightarrow p_1^{\phi(n)+1} \equiv p_1 \pmod{n} \\ p_2^{\phi(n)} \equiv 1 \pmod{n} \Rightarrow p_2^{\phi(n)+1} \equiv p_2 \pmod{n} \\ \vdots \\ p_k^{\phi(n)} \equiv 1 \pmod{n} \Rightarrow p_k^{\phi(n)+1} \equiv p_k \pmod{n} \\ p_1^{\phi(n)+1} p_2^{\phi(n)+1} \dots p_k^{\phi(n)+1} \equiv p_1 p_2 \dots p_k \pmod{n} \Rightarrow \\ a^{\phi(n)+1} \equiv a \pmod{n} . \end{cases}$$

Exemplo 3: Sejam a=5 e n=12. Temos $\phi(12)=4$ e, portanto,

$$a^{\phi(n)} = 5^4 = 625 \equiv 1 \pmod{12} = 1 \pmod{n}$$
.

Sejam a=4 e n=15. Temos $\phi(15)=8$ e, portanto,

$$a^{\phi(n)} = 4^8 \equiv 1 \pmod{15} = 1 \pmod{n}$$
.

2.3 O Algoritmo de Miller-Rabin

Não existe um método eficiente para determinar se um número é primo ou composto. Dentre os algoritmos que auxiliam nessa questão, existe o chamado *Algoritmo de Miller-Rabin*. Esse algoritmo é usado para testar se um número grande é primo.

Para apresentar o algoritmo é necessário lembrar que todo número ímpar maior do que ou igual a 3 pode ser escrito na forma

$$n = 2^k q + 1,$$

com k>0 e q ímpar, sendo, portanto, (n-1) par. Além disso, mais duas proposições sobre números primos são necessárias.

Proposição 1. Se p é primo e a é um inteiro positivo, então $a^2 \equiv 1 \pmod{p}$ se, e somente se,

$$a \equiv 1 \pmod{p}$$
 ou $a \equiv -1 \pmod{p}$.

Demonstração.

 (\Rightarrow) Como $1 \equiv a^2 \pmod{p}$, então

$$p \mid (a^2 - 1) \Rightarrow p \mid (a - 1)(a + 1) \Rightarrow$$
$$p \mid (a - 1) \text{ ou } p \mid (a + 1) \Rightarrow a \equiv 1 \pmod{p} \text{ ou } a \equiv -1 \pmod{p}.$$

 (\Leftarrow) Se $1 \equiv a \pmod{p}$, então

$$1.1 \equiv a.a \pmod{p} \Rightarrow 1 \equiv a^2 \pmod{p}$$
.

Se $-1 \equiv a \pmod{p}$, então

$$(-1)(-1) \equiv a.a \pmod{p} \Rightarrow 1 \equiv a^2 \pmod{p}$$
,

como queríamos.

Proposição 2. Sejam p > 2 um número primo e a um número inteiro tal que 1 < a < p - 1. Então, escrevendo $p - 1 = 2^k q$ com q impar ocorre uma das duas possibilidades:

- (i) $a^q \equiv 1 \pmod{p}$; ou
- (ii) Existe algum inteiro j, $0 \le m < k$, tal que $a^{2^m q} \equiv -1 \pmod{p}$.

Demonstração.

Suponhamos que o item (i) não ocorra.

Pelo Pequeno Teorema de Fermat,

$$a^{p-1} \equiv 1 \, (\bmod \, p) \, .$$

Mas,

$$p-1=2^kq.$$

Logo,

$$a^{p-1} \, (\operatorname{mod} p) = a^{2^k q} \, (\operatorname{mod} p) \equiv 1.$$

Assim, analisando a següência de números

$$a^{q} \pmod{p}, \ a^{2q} \pmod{p}, \ a^{4q} \pmod{p}, \ \dots, \ a^{2^{k-1}q} \pmod{p}, \ a^{2^{k}q} \pmod{p}$$
 (1)

pode-se concluir que o último número da seqüência (1) tem o valor 1. Como cada número na seqüência (1) é o quadrado do número anterior, e o item (i) não ocorre, então o primeiro número da lista não é 1.

Faculdade de Matemática

Seja o menor a^{2^mq} , com $0 \le m < k$, tal que $\left(a^{2^mq}\right)^2 \pmod{p} \equiv 1$, (na pior das hipóteses, m = k - 1). Pela Proposição 1, $a^{2^mq} \pmod{p} \equiv -1$.

A demonstração da Proposição 2 ainda fornece uma informação preciosa no caso do item (ii) ocorrer: como $a^{2^jq} \pmod{p} < p; j = 0, ..., k;$ e p-1 é o único inteiro positivo menor do que p tal que $(p-1) \equiv -1 \pmod{p}$, então $p-1 = a^{2^jq} \pmod{p}$, ou seja, na seqüência (1) existe um elemento igual a p-1.

Conclusão: As considerações feitas acima leva à seguinte situação acerca da Proposição 2: se n for primo, então ou o primeiro elemento da lista de resíduos $\left(a^q,a^{2q},...,a^{2^{(k-1)}q},a^{2^kq}\right) \pmod{n}$; com $n-1=2^kq$; é igual a 1, ou algum elemento da lista é igual a n-1. Caso a tese não ocorra, não ocorre também a hipótese, ou seja, n é composto (contrapositiva da Proposição 2). Esse é, essencialmente, o Algoritmo de Miller-Rabin que descrevemos abaixo.

Convém ressaltar que a tese pode ocorrer sem que a hipótese da Proposição 2 ocorra, pois um número pode ser composto e cumprir a tese, como no exemplo abaixo.

Exemplo 4: Para n = 2047 temos

$$n-1=2^1.(1023)$$
,

ou seja, k = 1 e q = 1023. Tomando a = 2 temos

$$2^{1023} \pmod{2047} \equiv 1,$$

ou seja, $a^q \pmod{n} \equiv 1$. Assim, o número 2047 cumpre a tese da Proposição 2, mas é um número composto, pois $2047 = (23) \cdot (84)$.

Algoritmo de Miller-Rabin

Seja n > 2 um inteiro positivo ímpar.

 1^a Etapa) Escolha inteiros $k \in q$, com q impar, de modo que $(n-1) = 2^k q$;

 2^a Etapa) Escolha um inteiro aleatório
 a, de modo que pertença ao intervalo

1 < a < n - 1;

 3^a Etapa) Se $a^q \pmod{n} \equiv 1$, então escreva INCONCLUSIVO (isto é, não se pode afirmar se n é primo ou composto);

 4^a Etapa) Para j = 0 até k - 1 faça:

Se $a^{2^{j}q} \pmod{n} \equiv n-1$, então escreva INCONCLUSIVO. Caso contrário, escreva COMPOSTO.

3 Criptografias

Conforme introduzido em (1), para criptografar devemos converter uma mensagem em uma seqüência de números. Para efeito de exemplificação, tomemos a seguinte tabela de conversão:

	a	b	(1	2	f	g	h	i	j	1	c	l	m	n	0	p	(q = 1	r
	10	11	1:	$2 \mid 1$	$3 \mid 1$	4	15	16	17	18	19	2	$0 \mid 2$		22	23	24	25	$5 \mid 2$	$6 \mid 2$	27
s		t	u	v	w	x	y		Π_		0	1	2	3	4		5	6	7	8	9
28	3 2	9 3	30	31	32	33	34	35	36	3	7	38	39	40	4	1 4	2 4	43	44	45	46

Tabela 1

O espaço entre palavras será substituído pelo n o . 36. As conversões do texto a ser cifrado será feito sem considerar acentos e letras maiúscula. A vantagem de se utilizar 2 dígitos para representar uma letra reside no fato de que tal procedimento evita a ocorrência de ambigüidades. Por exemplo, se a fosse convertido em 1 e b em 2, teríamos que ab seria 12, mas l também seria 12. Logo, não poderíamos concluir se 12 seria ab ou l.

3.1 A Criptografia Rabin

À semelhança da criptografia RSA, temos que determinar duas chaves para a criptografia Rabin: uma pública e outra privada.

Geração das Chaves na Criptografia Rabin

Na geração das chaves pública e privada da Criptografia Rabin, temos que:

- Escolher dois números primos p e q distintos e grandes de maneira que p seja pr'oximo de q e $p \equiv q \equiv 3 \pmod 4$.
- Calcular n = pq.
- A chave pública (número que deve ser divulgado para o emissor A) é n e a chave privada (números que são mantidos em sigilo pelo receptor B) é (p,q).

Etapa de Ciframento

Nesta etapa o emissor A deverá:

- Obter a chave pública n do receptor B.
- Converter as letras, números e símbolos da mensagem em números m entre 0 e n-1. (exemplo: supondo n > 46, a Tabela 1 pode ser utilizada)
- Para cada número m, obtido nas conversões acima, calcular $c \equiv m^2 \pmod{n}$.
- Enviar a mensagem cifrada composta pelos números c dos cálculos acima para o receptor B.

Etapa de Deciframento

Uma vez que o receptor B recebe a mensagem cifrada composta pelos números c, então ele deverá:

- Encontrar as quatro raízes quadradas m_j com j = 1, 2, 3, 4 de c módulo n.
- O número m, na mensagem original, é um dos m_j .

O receptor B deve determinar qual das quatro possibilidades para os m_j é a mensagem enviada. Se a mensagem é um texto literário, então a tarefa é fácil, pois apenas um dos m_j fará sentido. Entretanto, se o texto não for composto por palavras de um idioma, como por exemplo, uma seqüência aleatória de números e letras, então pode não ser tão fácil determinar o m_j correto. Uma maneira para superar este problema é acrescentar redundâncias binárias na mensagem original convertida para a base binária. Para isto, basta repetir uma quantidade fixa de dígitos no final da mensagem. Assim, o m_j correto irá reproduzir essas redundâncias, enquanto que é altamente improvável que uma das três outras raízes quadradas m_j venha a reproduzir essas redundâncias. Portanto, o receptor B pode escolher corretamente a mensagem enviada.

A demonstração da funcionalidade da Criptografia Rabin pode ser encontrada em (6).

Antes de apresentarmos um exemplo, enunciaremos a proposição que fornece as quatro raízes quadradas de a módulo n = pq, para certos p e q, utilizadas na etapa de deciframento.

Proposição 3. Seja
$$a \in \mathbb{N}$$
 e

$$a \equiv z^2 \pmod{pq}$$

Faculdade de Matemática Criptografias

sendo p e q primos e

$$p \equiv q \equiv 3 \pmod{4}$$
,

então existe somente quatro raízes quadradas de a módulo pq e elas são dadas a seguir:

$$z = \pm xpa^{\frac{q+1}{4}} + yq^{\frac{p+1}{4}}$$
 e $z = \pm xpa^{\frac{q+1}{4}} - yq^{\frac{p+1}{4}}$

sendo que $x, y \in \mathbb{Z}$, podem ser obtidos pelo Algoritmo de Euclides Estendido de modo que

$$xp + yq = 1$$
.

Exemplo 5: Seja $FAMAT_2008$ a mensagem a ser cifrada, tomemos p=179, q=43 e n=pq=7697. Então, n é a chave pública e (179,43) é a chave privada. Vamos criptografar a letra M da FAMAT. Se utilizarmos a TABELA 1, M corresponde ao m=22. Representando 22 na base binária:

$$0.2^{0} + 1.2^{1} + 1.2^{2} + 0.2^{3} + 1.2^{4}$$

então m=10110. Vamos introduzir redundâncias repetindo os quatro últimos digitos, ou seja, temos

$$m' = 101100110,$$

que equivale ao 358 em decimal. Então:

$$c \equiv (m')^2 \pmod{7697} \Rightarrow c \equiv 128164 \pmod{7697} \Rightarrow c = 5012$$

e c é enviado ao receptor.

Para decifrar, precisamos de encontrar as quatros raízes quadradas de c=5012 módulo 7697. Utilizando a Proposição 3, pelo Algoritmo de Euclides Estendido encontramos x e y de modo que:

$$xp + yq = 1$$
,

que, neste caso corresponde a:

$$(-6)(179) + (25)(43) = 1,$$

ou seja, x = -6 e y = 25. Como c = 5012, temos

$$m_1 \equiv \left(-1074.5012^{11} + 1075.5012^{45}\right) \pmod{7697}$$

$$m_2 \equiv -\left(-1074.5012^{11} + 1075.5012^{45}\right) \pmod{7697}$$

$$m_3 \equiv \left(1074.5012^{11} - 1075.5012^{45}\right) \pmod{7697}$$

$$m_4 \equiv -\left(1074.5012^{11} - 1075.5012^{45}\right) \pmod{7697}$$

Usando o Método dos Quadrados Repetidos (ver (1)), segue que:

$$358 \equiv 5012^{11} \pmod{7697}$$

 $537 \equiv 5012^{45} \pmod{7697}$.

Logo,

$$m_1 \equiv (-1074.358 + 1075.537) \equiv 358 \pmod{7697}$$

 $m_2 \equiv -358 \equiv 7339 \pmod{7339}$
 $m_3 \equiv (1074.358 - 1075.537) \equiv 7339 \pmod{7697}$
 $m_4 \equiv -7339 \equiv 358 \pmod{7697}$

ou seja,

$$m_1 = m_4 = 358 \text{ e } m_2 = m_3 = 7339.$$

Suas representações binárias são:

$$m_2 = m_3 = 1110010101011$$
 e $m_1 = m_4 = 101100110$.

Logo, duas raízes apresentaram redundâncias: m_1 e m_4 . Mas $m_1 = m_4$ e, tirando as redundâncias dessas raízes e passando para a base decimal, voltamos para a mensagem original, ou seja, o número 22 que corresponde à letra M.

3.2 A Criptografia ElGamal

A Geração de Chaves na Criptografia ElGamal

Na geração das chaves da Criptografia ElGamal, temos que:

- Escolher um número primo grande p e um gerador α do grupo multiplicativo \mathbb{Z}_{n}^{*} .
- Selecionar ao acaso um número natural a < p-1 e calcular $\alpha^a \pmod{p}$.
- A chave pública é (p, α, α^a) e a chave privada é a.

Etapa de Ciframento

Nesta etapa o emissor A deverá:

- Obter a chave pública (p, α, α^a) de B.
- Converter as letras, números e símbolos da mensagem um números m entre 0 e p-1. (exemplo: supondo p>46, a TABELA 1 pode ser utilizada)
- Escolher ao acaso um número natural b, tal que b .
- Para cada m obtido acima, calcular

$$\beta \equiv \alpha^b \pmod{p}$$
 e $\gamma \equiv m (\alpha^a)^b \pmod{p}$

• Enviar o ciframento $c = (\beta, \gamma)$ de m para B.

Etapa de Deciframento

Uma vez que o receptor B recebe a mensagem cifrada c, então deverá:

• Usar a chave privada para calcular

$$\beta^{p-1-a} \pmod{p}$$
.

- Decifrar m calculando $\beta^{-a}\gamma \pmod{p}$.
- Temos

$$\beta^{-a}\gamma \equiv \alpha^{-ab} m \alpha^{ab} \equiv m \pmod{p}$$

devido ao Teorema de Fermat.

Faculdade de Matemática Criptografias

A demonstração da funcionalidade da Criptografia ElGamal pode ser encontrada em (6).

Exemplo 6: Seja a frase $FAMAT_2008$. Tomemos p=1999 e escolhamos um gerador $\alpha=7$ de \mathbb{Z}_{1999}^* . O destinatário B escolhe a chave privada a=117.

Usando a Criptografia ElGamal vamos fazer o ciframento e deciframento da letra M da mensagem, que corresponde a m=22 na Tabela 1. Suponha que o emissor A escolha b=503. Para cifrar o emissor A, deve calcular

$$\alpha^a \pmod{p} = 7^{117} \pmod{1999}.$$

Usando o Algoritmo dos Quadrados Repetidos, encontramos $\alpha^a=54$.

Depois calculamos

$$\beta \equiv \alpha^b \pmod{p} = 7^{503} \pmod{1999}.$$

Usando o Algoritmo dos Quadrados Repetidos, encontramos $\beta=300.$

Em seguida calculamos

$$\gamma \equiv m \left(\alpha^a\right)^b \left(\text{mod } p\right) = 22 \left(54\right)^{503} \left(\text{mod } 1999\right).$$

Usando também o Algoritmo dos Quadrados Repetidos, encontramos $\gamma = 77$. Logo, A envia $(\beta, \gamma) = (300, 77)$ para B.

Para decifrar, B deve:

Calcular

$$\beta^{p-1-a} = 300^{1999-1-117} \pmod{1999} = 300^{1881} \pmod{1999}$$
.

Usando o Algoritmo dos Quadrados Repetidos, encontramos $\beta^{p-1-a} = 857$.

Finalmente, B calcula m, de modo que:

$$m = \beta^{-a} \gamma \equiv 857 \times 77 \pmod{1999}.$$

Ao resolver a congruência acima, encontramos m=22, o que corresponde à letra M da mensagem inicial enviada.

4 Algumas Técnicas de Ciframento

Alguns algoritmos de ciframento fazem uso de três técnicas: transposições, substituições e ciframentos compostos.

Transposições

Essa técnica de ciframento consiste simplesmente em uma mudança nas letras da mensagem a ser enviada, de acordo com um critério fixo estabelecido.

Exemplo 7: Suponha que a mensagem seja dividida em blocos de 5 letras e que, em cada um desses blocos, as letras sejam misturadas de acordo com uma permutação, previamente estabelecida. Suponha que esta permutação seja dada por:

$$\sigma = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 2 & 5 \end{array}\right).$$

Temos então:

Texto: $FAMAT_2008$.

Texto dividido em blocos de 5 letras: FAMAT 2008.

Texto cifrado: MFAAT 0 028.

Esse tipo de técnica de ciframento não é aconselhavél, pois a frequência das letras apresentadas no texto cifrado é igual à frequência das letras do texto original. Quanto menor o bloco mais fácil de descobrir o ordenamento quebrando esse sistema de ciframento.

Substituições

Nessa técnica de ciframento ocorre apenas a substituição dos símbolos do texto original por outros (ou por números, de acordo com um algoritmo ou uma tabela como, por exemplo, a TABELA 1) mantendo a posição dos símbolos do texto original.

A substituição pode ser monoafabética ou polialfabética. No primeiro caso, símbolos iguais da mensagem original são sempre substituídos por um mesmo símbolo. Por exemplo, toda letra A é sempre substituída pela letra T. No segundo caso, símbolos iguais da mensagem original podem ser substituídos por símbolos diferentes. Por exemplo, uma letra A da mensagem é substituída pela letra Z e uma outra letra A da mesma mensagem é substituída pela letra J.

Substituições monoalfabéticas não são técnicas muito eficientes, pois textos literários cifrados com essa técnica podem ser facilmente decifrados. Isso se deve ao fato de que a freqüencia média com que cada letra é usada em uma língua é mais ou menos constante. Por exemplo, na língua portuguesa, as vogais são mais usadas que as consoantes sendo que a vogal a aparece com mais freqüência. Temos ainda que, quando se tem monossílabo no texto, a probalilidade de ser vogal é maior. Por fim, as consoantes s e m aparecem com mais frenqüência.

Exemplo 8: (i) Substituindo símbolos por números.

Tomemos o texto FAMAT 2008. Utilizando a TABELA 1, temos o texto cifrado

15 10 22 10 29 36 39 37 37 45.

(ii) O Ciframento de César: Substituindo símbolo por símbolo.

O Ciframento de César de ordem k é uma substituição monoalfabética que consiste em trocar um símbolo da mensagem original pelo símbolo que está k posições depois do símbolo que se deseja trocar.

Por exemplo, se k=2, então FAMAT-2008 é substituída por HCOCV1422A.

A ordem com que as letras são posicionadas é a usual, ou seja:

 $ABCDEFGHIJKLMNOPQRSTUVWXYZ \quad 0123456789ABCDE...$

Ciframentos Compostos

O ciframento composto é monoafabético e é obtido por uma mistura das técnicas de transposição e substituição, isto é depende da letra original e também da sua posição no texto.

Mesmo que o ciframento composto seja formado de substituições e transposições, este sistema ainda não é seguro. Para um texto grande a dificuldade de quebrar o sistema é maior, mas se o texto for pequeno, essa técnica de ciframento torna-se fácil de ser decifrada.

Exemplo 9: Vamos supor que o texto original seja dividido em blocos de comprimento 7, como na técnica de transposição, sendo a permutação dada por

$$\sigma = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 5 & 2 & 1 & 6 & 4 \end{array}\right).$$

Caso seja necessário, completamos o último bloco com espaços em branco, representados pelo símbolo

Além da permutação σ , vamos usar também a técnica de substituição, de acordo com a TABELA 1. Temos então:

Texto: $FAMAT_2008$.

Texto dividido em blocos de 7 letras: $FAMAT_2$ 008_ _ _ _ .

Texto permutado:

$$2MTAF_A$$
 $_8_00__.$

Texto cifrado:

39222910153610 36453637373636.

4.1 Criptografia por Substituição de Hill

A Substituição de Hill é polialfabética e assimétrica, ou seja, o algoritmo de ciframento é diferente do algoritmo de deciframento. Neste sistema criptográfico escolhemos um valor n, por exemplo n=3. Dividimos o texto em blocos de 3 letras, completando o último bloco, caso seja necessário, com espaços em branco, representados pelo símbolo . Ilustraremos esse método por meio de um exemplo.

Exemplo 10: Texto: FAMAT 2008.

Etapa de ciframento:

Vamos dividir o texto em blocos de 3 letras: FAM $AT_{_}$ 200 8 $_{_}$.

A cada letra dos blocos devemos associar os números correspondentes entre 10 e 46 de acordo com uma tabela de substituição como, por exemplo, a Tabela 1. Assim, obtemos o equivalente numérico ao texto:

15 10 22 10 29 36 39 37 37 45 36 36.

Escolhemos uma matriz $T_{n\times n}$, cujos coeficientes sejam todos inteiros e de modo que

$$mdc(\det T, k) = 1,$$

no qual k é a quantidade de substituições possíveis de acordo com a TABELA 1 que, neste caso, é k=37.

Por exemplo, tomemos a matriz

$$T = \left[\begin{array}{ccc} 5 & 11 & 0 \\ 9 & 1 & 3 \\ 17 & 4 & 2 \end{array} \right].$$

Assim,

$$mdc(det T, k) = mdc(313, 37) = 1.$$

Vamos considerar cada um dos n blocos do texto como sendo um vetor t_i ; i=1,...,n; em \mathbb{Z}_{37}^3 e cifrar o vetor t_i pelo resultado do produto matricial $c_i = T.t_i \pmod{37}$. Continuando o exemplo, temos: Para t_1 :

$$c_1 = \begin{bmatrix} 5 & 11 & 0 \\ 9 & 1 & 3 \\ 17 & 4 & 2 \end{bmatrix} \begin{bmatrix} 15 \\ 10 \\ 22 \end{bmatrix} \pmod{37} = \begin{bmatrix} 0 \\ 26 \\ 6 \end{bmatrix}.$$

Para t_2 :

$$c_2 = \begin{bmatrix} 5 & 11 & 0 \\ 9 & 1 & 3 \\ 17 & 4 & 2 \end{bmatrix} \begin{bmatrix} 10 \\ 29 \\ 36 \end{bmatrix} \pmod{37} = \begin{bmatrix} 36 \\ 5 \\ 25 \end{bmatrix}.$$

Para t_3 :

$$c_3 = \begin{bmatrix} 5 & 11 & 0 \\ 9 & 1 & 3 \\ 17 & 4 & 2 \end{bmatrix} \begin{bmatrix} 39 \\ 37 \\ 37 \end{bmatrix} \pmod{37} = \begin{bmatrix} 10 \\ 18 \\ 34 \end{bmatrix}.$$

Para t_4 :

$$c_4 = \begin{bmatrix} 5 & 11 & 0 \\ 9 & 1 & 3 \\ 17 & 4 & 2 \end{bmatrix} \begin{bmatrix} 45 \\ 36 \\ 36 \end{bmatrix} \pmod{37} = \begin{bmatrix} 29 \\ 31 \\ 19 \end{bmatrix}.$$

O texto cifrado é constituído pelos blocos c_1, c_2, c_3 e c_4 . No exemplo:

0 26 6 36 5 25 10 18 34 29 31 19.

Etapa de deciframento

Para decifrar o texto temos que calcular o produto matricial $T^{-1}.c_i \pmod{37}$.

O cálculo da matriz inversa $T^{-1} \pmod{37}$ pode ser feito de acordo com o seguinte roteiro:

(1) Achar a inversa de T (sem congruências);

No exemplo, temos que a inversa de T é: $\frac{1}{313}\begin{bmatrix} -10 & -22 & 33 \\ 33 & 10 & -15 \\ 19 & 167 & -94 \end{bmatrix}$.

(2) Na matriz inversa encontrada acima, temos na primeira entrada $a_{11} = \frac{a}{d}$; Precisamos de

$$b \equiv \frac{a}{d} \pmod{37} \Leftrightarrow bd \equiv a \pmod{37} \Leftrightarrow bd - a \equiv 0 \pmod{37} \Leftrightarrow bd - a = 37k,$$

sendo $k \in \mathbb{Z}$.

No exemplo temos $a_{11} = \frac{-10}{313}$. Assim, b.313 + 10 = 37k, que terá solução quando b = 19, que, neste caso, corresponde a k = 161.

Fazendo o procedimento análogo para cada entrada da matriz, teremos que T^{-1} (mod 37) é:

$$\left[\begin{array}{ccc}
19 & 27 & 15 \\
15 & 18 & 10 \\
12 & 12 & 1
\end{array}\right].$$

e, portanto,

$$\begin{bmatrix} 5 & 11 & 0 \\ 9 & 1 & 3 \\ 17 & 4 & 2 \end{bmatrix} \cdot \begin{bmatrix} 19 & 27 & 15 \\ 15 & 18 & 10 \\ 12 & 12 & 1 \end{bmatrix} \pmod{37} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Deste modo, o deciframento é feito do seguinte modo:

$$t_1 = T^{-1}.c_1 \pmod{37} \Rightarrow$$

$$t_1 = \begin{bmatrix} 19 & 27 & 15 \\ 15 & 18 & 10 \\ 12 & 12 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 26 \\ 6 \end{bmatrix} \pmod{37} = \begin{bmatrix} 792 \\ 528 \\ 318 \end{bmatrix} \pmod{37} = \begin{bmatrix} 15 \\ 10 \\ 22 \end{bmatrix}.$$

De modo análogo, encontramos t_2, t_3 e t_4 que correspondem ao texto original.

4.2 Ciframento de Vigenère

O Ciframento de Vigenère é polialfabético e assimétrico, ou seja, o algoritmo de ciframento é diferente do algoritmo de deciframento. Nesse ciframento, escolhemos uma chave que é um vetor $k = (k_0, k_1, ..., k_{n-1})$ em \mathbb{Z}_{37}^n , isto é, um vetor com n coordenadas inteiras variando de 0 a 37. As letras do texto são numeradas : $t_0, t_1, t_2, ... t_l$.

Para cifrar o texto, a primeira letra é deslocada de k_0 posições e, assim por diante. Ou seja, o Ciframento de Vigenère é feito substituindo cada letra do texto $t_0t_1t_2,...t_l$, por uma letra c_i , onde

$$c_i = 10 + (t_i + k_{i \pmod{n}}) \pmod{S},$$
 (2)

sendo S o número de símbolos correspondente a uma tabela de codificação. Nesse caso tomando a Tabela 1, como referência, temos S=37.

Exemplo 11: Texto: *FAMAT*_2008.

Substituindo cada letra do texto por uma sequência de números, de acordo com a Tabela 1 temos:

F	A	M	A	T	_	2	0	0	8	
t_0	t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t_9	
15	10	22	10	29	36	39	37	37	45	

Escolhendo uma chave para o ciframento, por exemplo: k = (10, 15, 20, 7, 18).

Começemos cifrando $t_0 \equiv F$.

Como $t_0 = 15$, aplicando (2), temos:

$$c_0 = 10 + (t_0 + k_{0 \pmod{5}}) \pmod{37}$$

$$c_0 = 10 + (15 + 10) \pmod{37}$$

$$c_0 = 10 + 25 \pmod{37}$$

$$c_0 = 35.$$

Logo, $F \equiv Z$, de acordo com a Tabela 1.

Fazendo analogamente para o restante do texto, então o ciframento ficará:

$$FAMAT 2008 \equiv ZZFRKJRUH$$

Note que nessa criptografia, podemos ter duas letras diferentes do texto levando em duas letras iguais no ciframento. No caso acima, o F e o primeiro A do texto são ambos cifrados como Z. Do mesmo modo duas letras iguais do texto podem ser levadas em letras diferentes no ciframento, é o caso do A, que se repete duas vezes no texto, e quando cifrados correspondem a letras diferentes. O primeiro A do texto corresponde à letra Z e o segundo à letra R.

O Ciframento de Vigenère não é muito eficiente, pois para que o sistema seja seguro, é preciso que a mensagem seja grande e a chave aleatória que a cifra também. Isto significa que nos dias atuais os computadores teriam que trocar milhões de dígitos de chaves por dia, o que requer um gasto muito grande de tempo.

4.3 Sistemas de Rotores

Os sistemas de rotores são equipamentos elétricos compostos por discos (rotores) que tem por finalidade realizar uma substituição mais sofisticada. Essa criptografia é polialfabética e simétrica, ou seja, o algoritmo de ciframento e de deciframento são os mesmos. Cada rotor é construído de modo que corresponda, matematicamente, a uma substituição monoalfabética. Nesses rotores são distribuídas, sob a forma de furos, todas as letras, algarismos e símbolos de um determinado alfabeto, de modo que esses furos estejam distribuidos como vértices de polígonos regulares inscritos nos rotores. Esses rotores podem ser girados de k posições, ou seja, girados de um ângulo de $k\frac{2\pi}{n}$ radianos, sendo n a quantidade total de símbolos do alfabeto.

Figura 1: Três rotores. (http://pt.wikipedia.org/wiki/Máquina_Enigma)

Figura 2: Interior da máquina Enigma, utilizada durante a II Guerra Mundial e que utiliza o Sistema de Rotores. (http://users.telenet.be/d.rijmenants/pics/ EnigmaInside.jpg)

Para facilitar a construção do equipamento, a mensagem a ser cifrada é dividida em blocos de 1000 símbolos. Em cada bloco, denotamos por t_i o símbolo que está na i-ésima posição, i = 0, ..., 999. Além disso, indicamos por i_1, i_2 e i_3 as unidades, dezenas e centenas de i. Por exemplo, t_{23} corresponde a $i = 23, i_1 = 3, i_2 = 2$ e $i_3 = 0$.

Quando o sistema é girado de k posições em um determinado sentido (horário ou anti-horário), temos uma substituição monoalfabética que pode ser descrita como:

$$S' = -k + S(t_i + k),$$

sendo S uma substituição monoalfabética e t_i é um símbolo a ser cifrado, ou ainda

$$S'' = k + S(t_i - k)$$

se o giro for em sentido contrário.

Deste modo, todos os cálculos são feitos com mod n.

Para exemplificar, suponhamos que temos três rotores nos quais:

- (i) S_1, S_2 e S_3 sejam as substituições monoalfabéticas com os três rotores em suas posições iniciais;
- (ii) $t = t_0 t_1 t_2 \cdots t_{r-1}$ o texto a ser cifrado.
- (iii) $c = c_0 c_1 c_2 \cdots c_{r-1}$ o texto cifrado;

Consideremos ainda uma substituição monoalfabética inicial que chamaremos de IP e uma substituição monoalfabética R de ordem 2, ou seja, uma transposição ($R = R^{-1}$). Assim, o ciframento pode ser feito pela seguinte operação:

$$c_{i} = IP^{-1}C_{-i_{1}}S_{1}^{-1}C_{i_{1}-i_{2}}S_{2}^{-1}C_{i_{2}-i_{3}}S_{3}^{-1}C_{i_{3}}RC_{-i_{3}}S_{3}C_{i_{3}-i_{2}}S_{2}C_{i_{2}-i_{1}}S_{1}C_{i_{1}}IP(t_{i}),$$

$$(3)$$

sendo C_m é uma Substituição de César de ordem m.

A chave do segredo do sistema de rotores compõem-se:

- · Pela substituição IP;
- · Pelas substituições S_1 , S_2 , S_3 e R;
- · Pelas posições iniciais dos rotores;

Observação: Pela construção, R é uma involução, ou seja, R^2 é a identidade. Deste modo, no esquema acima, cifrar e decifrar é uma só operação.

Exemplo 12: Sejam as substituições monoalfabéticas S_1 , S_2 e S_3 , descritas na Tabela 2. Suponhamos que a palavra FAMAT 2008 se encontre na posição

$$\cdots t_{352}, t_{353}, t_{354}, t_{355}, t_{356}, t_{357}, t_{358}, t_{359}, t_{360}, t_{361} \cdots$$

e queremos criptografá-la usando os rotores. Assim, para cifrar a primeira letra teremos os seguintes passos:

 $F=t_{352},$ então $i_1=2,\ i_2=5$ e $i_3=3.$ Aplicando a função (3), teremos os respectivos passos para cifrar:

1)
$$IP(t_{352}) = IP(F) = H$$
.

2)
$$C_{i_1}(H) = C_2(H) = J$$
.

3)
$$S_1(J) = B$$
.

4)
$$C_{i_2-i_1}(B) = C_{5-2}(B) = C_3(B) = E$$
.

5)
$$S_2(E) = K$$
.

6)
$$C_{i_3-i_2}(K) = C_{3-5}(K) = C_{-2}(K) = I$$
.

7)
$$S_3(I) = C$$
.

$$8)C_{-i_3}(C) = C_{-3}(C) = 9.$$

9)
$$R(9) = K$$
.

10)
$$C_{i_3}(K) = C_3(K) = N$$
.

11)
$$S_3^{-1}(N) = J$$
.

12)
$$C_{i_2-i_3}(J) = C_{5-3}(J) = C_2(J) = L$$
.

13)
$$S_2^{-1}(L) = N$$
.

14)
$$C_{i_1-i_2}(N) = C_{2-5}(N) = C_{-3}(N) = K$$
.

15)
$$S_1^{-1}(K) = A$$
.

16)
$$C_{-i_1} = C_{-2}(A) = 8.$$

17)
$$(IP)^{-1}(8) = J$$
.

S	S_1	S_2	S_3	IP	R
$10 \longleftrightarrow A$	K	Q	P	S	2
$11 \longleftrightarrow B$	F	$Q \over W$	0	K	N
$12 \longleftrightarrow C$	L	F	Y	2	Z
$13 \longleftrightarrow D$	Z		6	G	6
$14 \longleftrightarrow E$	1	K	A	0	0 T
$15 \longleftrightarrow F$	J I	V	M	Н	T
$16 \longleftrightarrow G$		3	9	V	1
$17 \longleftrightarrow H$	S	J	K	Q	8
$18 \longleftrightarrow I$	0	R	C	W	8 R
$19 \longleftrightarrow J$	B	$egin{array}{c} U \ C \ Z \end{array}$	N	8	S 9 V W
$20 \longleftrightarrow K$	W	C	T Z	A 5	9
$21 \longleftrightarrow L$	P	Z	2	5	V
$22 \longleftrightarrow M$	7 H	2 L	Z	F	
$23 \longleftrightarrow N$	H	L	8	R	B
$24 \longleftrightarrow O$	X T	5	S	P	4
$25 \longleftrightarrow P$	T	D	H	Z	5 - I
$26 \longleftrightarrow Q$	C	S	X	I	_
$27 \longleftrightarrow R$	C 4	8	В	P Z I C 4	I
$28 \longleftrightarrow S$	M	G	B I	4	J F 7 L
$29 \longleftrightarrow T$	G	N	O	<i>J</i> 9	F
$30 \longleftrightarrow U$	8 - A	E 4	1 D	9	7
$31 \longleftrightarrow V$	_	4	D	U	
$32 \longleftrightarrow W$		T 1	F	E	M
$33 \longleftrightarrow X$	N	1	U	6	$\begin{array}{c c} X \\ \hline 3 \\ \hline C \\ Q \\ \hline E \end{array}$
$34 \longleftrightarrow Y$	2 V O	$\mid H \mid$	3	L	3
$35 \longleftrightarrow Z$	V	7	5	X	C
$36 \longleftrightarrow -$		M	Q	T B Y N O	Q
$37 \longleftrightarrow 0$	3	I	E	B	E
$38 \longleftrightarrow 1$	R	9 Y	V 4	Y	G A Y
$39 \longleftrightarrow 2$	6	Y	4	N	A
40 ←→ 3	D	X	G	0	Y
$41 \longleftrightarrow 4$	Y	6	W	M	О
$42 \longleftrightarrow 5$	Q	A	J	_	P
$43 \longleftrightarrow 6$	5	0	_	7	D
$44 \longleftrightarrow 7$	E	0	R	D	U
$45 \longleftrightarrow 8$	9	B	7	1	Н
$46 \longleftrightarrow 9$	U	P	L	3	K
	T_{Δ}	BELA	2		

Tabela 2

Logo, o ciframento da letra F é o J. Para decifrar basta aplicar a mesma função (3) . Vejamos o exemplo:

- 1) $IP(c_{352}) = IP(J) = 8$.
- 2) $C_{i_1}(8) = A$.
- 3) $S_1(A) = K$.
- 4) $C_{i_2-i_1}(K) = C_{5-2}(K) = C_3(K) = N.$
- 5) $S_2(N) = L$.
- 6) $C_{i_3-i_2}(L) = C_{3-5}(L) = C_{-2}(L) = J.$
- 7) $S_3(J) = N$.
- 8) $C_{-i_3}(N) = C_{-3}(N) = K$.
- 9) R(K) = 9.

- 10) $C_{i_3}(9) = C_3(9) = C$. 11) $S_3^{-1}(C) = I$.
- 12) $C_{i_2-i_3}(I) = C_{5-3}(I) = C_2(I) = K.$ 13) $S_2^{-1}(K) = E.$
- 14) $C_{i_1-i_2}(E) = C_{2-5}(E) = C_{-3}(E) = B.$ 15) $S_1^{-1}(B) = J.$
- 16) $C_{-i_1} = C_{-2}(J) = H$. 17) $(IP)^{-1}(H) = F$.

Logo ao aplicar a função (3), acontece o deciframento voltando ao texto original, como era esperado. De modo análogo fazemos isto para o restante da mensagem a ser criptografada e obtemos os seguintes

Cifrando o texto:

$$FAMAT_2008 \rightarrow JAICIX7ESY.$$

E deciframento o texto:

$$JAICIX7ESY \rightarrow FAMAT$$
 2008.

4.4 O Método MH (Merkle e Hellman)

Esse método é monoalfabético e assimétrico pois o algoritmo de ciframento é diferente do algoritmo de deciframento.

A segurança do Método MH (Merkle e Hellman) se baseia na dificuldade do chamado Problema da Mochila.

O Problema da Mochila

Dado o vetor $a = (a_1, a_2, ..., a_n)$ de coordenadas naturais e b também natural, o problema da mochila consiste em saber se existe $X = (x_1, x_2, ..., x_n)$ onde cada x_i é 0 ou 1, tal que:

$$\sum_{i=1}^{n} a_i x_i = b.$$

Exemplo 13: Sejam n = 6, b = 14 e $a_1 = 2$, $a_2 = 3$, $a_3 = 5$, $a_4 = 7$, $a_5 = 8$ e $a_6 = 12$. Logo, a solução deste problema será dado por $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, $x_4 = 1$, $x_5 = 0$ e $x_6 = 0$, pois

$$\sum_{i=1}^{n} a_i x_i = b \Rightarrow 2.1 + 3.0 + 5.1 + 7.1 + 8.0 + 12.0 = 14.$$

Definimos a chave pública de cada destinatário no Método MH pelo vetor

$$P = (c_1, c_2, ..., c_n)$$

de naturais, onde $n \approx 100$.

Para cifrar uma mensagem e enviar ao destinatário, o emissor deve consultar a chave pública P = $(c_1, c_2, ..., c_n)$ do destinatário, conveter cada símbolo da mensagem original em números naturais mmenores do que 2^n e escrevê-lo na base binária, isto é,

$$m = \left[m_1 m_2 ... m_n\right]_2,$$

sendo $m_i = 0$ ou 1. Então, calcula-se

$$P(m) = \sum_{i=1}^{n} m_i c_i.$$

Assim, o trabalho do destinatário em decifrar P(m) é determinar a solução do problema da mochila sabendo-se

$$P = (c_1, c_2, ..., c_n) \in P(m).$$

Para que o problema da mochila seja de fácil resolução, a chave pública não pode ser qualquer. Deste modo, para decifrar a mensagem o destinatário deve inicialmente, antes de divulgar a sua chave pública, criar uma seqüência de números naturais

$$s = (s_1, s_2, ..., s_n) \tag{4}$$

e também t e k tais que

$$\sum_{i=1}^{r} s_i < s_{r+1} < t$$

para $1 \le r < n - 1$ e mdc(k, t) = 1.

Assim, a sequência $s = (s_1, s_2, ..., s_n)$ é essencial para a solução do problema da mochila.

O destinatário mantém o vetor s e os valores de t e k secretos e publica o vetor c, dado por

$$c_i = ks_i \pmod{t}$$
,

com $1 \le i \le n$. Além disso, o emissor escolhe e mantém secreto o número l que deve satisfazer a equação:

$$lk \pmod{t} = 1.$$

Algoritmo para a Resolução do Problema da Mochila

Algoritmo da mochila

Entrada: $(n, (s_1, s_2, ..., s_n), d)$, onde

$$s = (s_1, s_2, ..., s_n)$$

é a seqüência (4) e

$$d \equiv l.P(m) \pmod{t}$$
.

Saída: m.

Etapa 1: Faça y = d.

Etapa 2: Para cada $i=n,\,n-1,\,n-2,\,...1$, ou seja, para os valores de i serão atribuídos uma seqüência decrescente de n até 1, faça:

- (1) Se $y < s_i$, então, $m_i = 0$.
- (2) Se $y \ge s_i$, então faça $y = y s_i$ e tome $m_i = 1$.

Etapa 3:

- (1) Se y = 0, então retorne o vetor:
- $m = (m_1, m_2, ..., m_n)$.
 - (2) Se $y \neq 0$, então o problema da mochila não tem solução.

Exemplo 14: Seja a mensagem $FAMAT_2008$. Associando a mensagem ao números correspondentes na TABELA 1, temos a sequência de números:

Passando para a base binária a sequência de números acima, temos:

$$\begin{array}{llll} 15 = \begin{bmatrix} 0011111 \end{bmatrix}_2 & 22 = \begin{bmatrix} 010110 \end{bmatrix}_2 & 29 = \begin{bmatrix} 011101 \end{bmatrix}_2 & 39 = \begin{bmatrix} 100111 \end{bmatrix}_2 & 37 = \begin{bmatrix} 100101 \end{bmatrix}_2 \\ 10 = \begin{bmatrix} 001010 \end{bmatrix}_2 & 10 = \begin{bmatrix} 001010 \end{bmatrix}_2 & 36 = \begin{bmatrix} 100100 \end{bmatrix}_2 & 37 = \begin{bmatrix} 100101 \end{bmatrix}_2 & 45 = \begin{bmatrix} 101101 \end{bmatrix}_2 \end{array}$$

Precisamos agora de determinar a chave pública que será o vetor $P = (c_1, c_2, ..., c_n)$. Para o destinátario determinar a chave pública, primeiro ele deverá escolher uma seqüência s como em (4). Além disso, k e t, de modo que $\sum_{i=1}^{n} s_i < t$ e mdc (k, t) = 1. Para o exemplo escolhemos a sequência:

$$s = (5, 7, 14, 27, 55, 109)$$

e k = 50 e t = 229, pois mdc (50, 229) = 1 e t > 5 + 7 + ... + 109 = 217. Temos então a expressão:

$$50l \pmod{229} = 1 \Rightarrow 229x + 50l = 1.$$

Calculemos o valor de l a partir do Algoritmo Euclidiano Estendido. Colocando os valores em uma tabela:

i	Restos	Quocientes	x_i	y_i
-1	229	*	1	0
0	50	*	0	1
1	29	4	1	-4
2	21	1	-1	5
3	8	1	2	-9
4	5	2	-5	23
5	3	1	7	-32
6	2	1	-12	55
7	1	1	19	-87

Temos

$$l = y_7 = -87.$$

Mas não nos interessa trabalhar com valores de l negativos, para isso temos o algoritmo derivado do Teorema da Solução Geral de uma Equação Diofantina que encontra um valor positivo para l (ver (1)):

Etapa 1) Calcular o valor de l normalmente.

Etapa 2) Se l < 0, então faça:

$$\bar{l} = l + 229i$$

para j inteiro de tal modo que $\bar{l} > 0$.

Etapa 3) Faça l = l.

Logo, para o exemplo anterior:

$$\bar{l} = -87 + 229j$$
, para $j = 1$
 $\bar{l} = 229 - 87 \Rightarrow \bar{l} = 142 \Rightarrow l = \bar{l} = 142$.

Deste modo, após encontrar o novo valor de l (positivo), então continua-se o ciframento e o deciframento do Método de MH.

Deste modo o destinátario pública o vetor $c = (c_1, c_2, ..., c_n)$, onde n = 6 e cujo:

$$c_i = ks_i \pmod{t}$$
.

Assim temos que a chave pública é

$$P = (21, 121, 13, 205, 2, 183).$$

Logo, a primeira letra da mensagem, que é F, que corresponde a $15 = [001111]_2$ é cifrada em

$$P(15) = \sum_{i=1}^{n} m_i c_i = 0.21 + 0.121 + 1.13 + 1.205 + 1.2 + 1.183 = 403.$$

Procedendo de modo análogo com os demais símbolos da mensagem, temos

$$403 \quad 2 \quad 328 \quad 2 \quad 522 \quad 226 \ 411 \quad 409 \quad 409 \quad 422.$$

Para decifrar a mensagem o destinatário deve primeiro determinar os valores de

$$d = l.P(m) \pmod{t}$$
.

Para o exemplo vamos ter:

```
Para P(15) então d=205. Para P(10) então d=55. Para P(22) então d=89. Para P(36) então d=32. Para P(37) então d=141. Para P(45) então d=155.
```

Continuando o deciframento do Método MH, vamos começar decifrando a primeira letra da nossa mensagem utilizando para isso o Algoritmo da Mochila.

```
Temos: (n, (s_1, s_2, ..., s_n), d), que corresponde a (6, (5, 7, 14, 27, 55, 109), 205).
Etapa 1: Faça y = 205.
Etapa 2:
   Para i = 6:
   Como y \ge s_6, ou seja, y \ge 109 então faça y = 205 - 109 = 96 e tome m_6 = 1.
   Para i = 5:
   Como y \ge s_5, ou seja, y \ge 55 então faça y = 96 - 55 = 41 e tome m_5 = 1.
   Para i=4:
   Como y \ge s_4, ou seja, y \ge 27 então faça y = 41 - 27 = 14 e tome m_4 = 1.
   Para i = 3:
   Como y \ge s_3, ou seja, y \ge 14 então faça y = 14 - 14 = 0 e tome m_3 = 1.
   Para i=2:
   Como y < s_2, ou seja, y < 7 então tome m_2 = 0.
   Para i = 1:
   Como y < s_1, ou seja, y < 5 então tome m_1 = 0.
Etapa 3: Como y = 0, então
```

que corresponde à letra F.

De modo análogo, utilizando o Algoritmo da Mochila para os demais símbolos da mensagem, encontramos os respectivos resultados:

 $m = [001111]_2 = 15,$

```
 \left[000010\right]_{2}, \left[010110\right]_{2}, \left[000010\right]_{2}, \left[011101\right]_{2}, \left[100100\right]_{2}, \left[100111\right]_{2}, \left[100101\right]_{2}, \left[100101\right]_{2}, \left[101101\right]_{2}, \left[101101\right]_
```

$$m = 10, m = 22, m = 10, m = 29, m = 36, m = 39, m = 37, m = 37, m = 45.$$

Formando a mensagem inicial FAMAT 2008.

5 Criptografia D.E.S. - Data Encryption Standard

O D.E.S. consiste de um algoritmo de criptografia simétrico e polialfabético com entrada e saída binárias. Sendo assim, uma mensagem a ser enviada deve ser convertida em uma seqüência binária. Assim como em qualquer esquema de criptografia, o algoritmo precisa de duas entradas: a mensagem a ser enviada e, portanto, codificada e a chave, que é a "senha" que irá manter a transmissão sigilosa. A mensagem original convertida em uma seqüência binária é dividida em blocos M que podem ser de 64 dígitos cada.

Consideremos a função I que permuta a posição dos 64 dígitos do bloco M. Geralmente I é definida por uma tabela.

Para efeito de compreensão do algoritmo, chamemos a imagem I(M) de N_0 e descrevamos uma rodada do algoritmo (geralmente são realizadas 16 rodadas):

- (i) Dividamos o bloco N_0 de 64 dígitos em duas partes: a parte "esquerda", que chamaremos de E_0 e a parte "direita" que chamaremos de D_0 .
- (ii) Consideremos a função X que expande o bloco D_0 , de 32 dígitos, para um bloco $X(D_0)$ de 48 dígitos. Além da expansão, nessa etapa temos também uma permutação de dígitos, uma vez que, à semelhança de I, X é dada por uma tabela.
- (iii) Consideremos um bloco aleatório de 48 dígitos binários que denotaremos por K_1 . Esse bloco é parte das chaves do sistema criptográfico (para cada rodada há uma chave).
- (iv) Uma soma binária dígito a dígito entre $X(D_0)$ e K_1 é realizada.
- (v) O bloco $X(D_0) + K_1$ é dividido em blocos $B_1, ..., B_8$ de 6 dígitos cada e, utilizando 8 funções redutoras $S_1, ..., S_8$. Essas funções transformam B_i de 6 dígitos em blocos B'_i de 4 dígitos. De um modo geral, essas funções redutoras são dadas por tabelas e a manipulação dessas tabelas será exemplificada abaixo. Deste modo, o bloco $X(D_0) + K_1$ é transformado em um bloco S de 32 dígitos.
- (vi) Uma outra permutação de dígitos P é aplicada ao bloco S.
- (vii) Uma outra soma binária dígito a dígito é feita entre o bloco P(S) e o bloco E_0 . Essa soma é chamada de D_1 .
- (viii) Definimos o bloco E_1 como sendo o bloco D_0 .
- (ix) Um novo bloco N_1 é formado pela junção do bloco E_1 com o bloco D_1 formado acima.

O bloco N_1 é submetido a uma nova rodada conforme descrito acima e obtemos N_2 , N_3 até N_{16} . Após as 16 rodadas, é realizada uma troca de lados em N_{16} entre os blocos E_{16} e D_{16} . Chamemos essa troca de T. Assim, $T(E_{16}) = D'_{16}$ e $T(D_{16}) = E'_{16}$ e, temos um novo bloco $T(N_{16}) = N'_{16}$. Por fim, a inversa da função permutação I, ou seja, I^{-1} é aplicada em N'_{16} e este é o bloco cifrado, que chamaremos de C. Assim, $I^{-1}(N'_{16}) = C$.

Simplificando, temos a seguinte composta:

$$I\left(M\right) = N_0 = E_0 D_0 \Rightarrow X \circ I\left(M\right) = E_0 X\left(D_0\right) \Rightarrow \\ K_1 \circ X \circ I\left(M\right) = E_0 \left[X\left(D_0\right) + K_1\right] = E_0 \left[B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8\right] \Rightarrow \\ S \circ K_1 \circ X \circ I\left(M\right) = E_0 \left[S_1 \left(B_1\right) S_2 \left(B_2\right) ... S_7 \left(B_7\right) S_8 \left(B_8\right)\right] \\ S \circ K_1 \circ X \circ I\left(M\right) = E_0 \left[B_1' B_2' B_3' B_4' B_5' B_6' B_7' B_8'\right] \Rightarrow S \circ K_1 \circ X \circ I\left(M\right) = E_0 S \\ \Rightarrow P \circ S \circ K_1 \circ X \circ I\left(M\right) = E_0 P\left(S\right) \Rightarrow E_0 \circ P \circ S \circ K_1 \circ X \circ I\left(M\right) = \left[E_0 + P\left(S\right)\right] \Rightarrow \\ D_0 \circ E_0 \circ P \circ S \circ K_1 \circ X \circ I\left(M\right) = D_0 \left[E_0 + P\left(S\right)\right] \Rightarrow D_0 \circ E_0 \circ P \circ S \circ K_1 \circ X \circ I\left(M\right) = D_0 D_1 \Rightarrow \\ D_0 \circ E_0 \circ P \circ S \circ K_1 \circ X \circ I\left(M\right) = E_1 D_1 \Rightarrow D_0 \circ E_0 \circ P \circ S \circ K_1 \circ X \circ I\left(M\right) = N_1.$$

Chamando $D_0 \circ E_0 \circ P \circ S \circ K_1 \circ X = Z_1$, temos:

$$Z_1 \circ I(M) = N_1.$$

Aplicando 16 rodadas, temos:

$$Z_{16} \circ \dots \circ Z_{1} \circ I\left(M\right) = N_{16} \Rightarrow T \circ Z_{16} \circ \dots \circ Z_{1} \circ I\left(M\right) = N_{16}' \Rightarrow I^{-1} \circ T \circ Z_{16} \circ \dots \circ Z_{1} \circ I\left(M\right) = C.$$

Chamando $I^{-1} \circ T \circ Z_{16} \circ ... \circ Z_1 \circ I = DES$, temos:

$$DES(M) = C.$$

Como o algoritmo é simétrico, para decifrar C, basta aplicá-lo novamente, ou seja:

$$DES(C) = M.$$

Exemplo 15: Consideremos as seguintes tabelas para construção da criptografia D.E.S.:

59_{1}	51_{2}	43_{3}	35_{4}	27_{5}	196	117	038
579	4910	4111	3312	25_{13}	17_{14}	0915	0116
60_{17}	5218	44_{19}	3620	28_{21}	20_{22}	12_{23}	0424
58_{25}	5026	42_{27}	34_{28}	26_{29}	1830	10_{31}	02_{32}
6433	5634	48_{35}	40_{36}	32_{37}	2438	1639	0840
6241	5442	46_{43}	38_{44}	30_{45}	22_{46}	14_{47}	0648
6349	5550	4751	39_{52}	3153	23_{54}	15_{55}	0756
6157	5358	45_{59}	3760	2961	2162	1363	0564

Tabela 3: Função permutação I

161	32_{2}	83	244	645	48_{6}	56_{7}	40_{8}
15_{9}	3110	711	23_{12}	63_{13}	47_{14}	55_{15}	39_{16}
14_{17}	3018	6_{19}	22_{20}	62_{21}	46_{22}	54_{23}	38_{24}
1325	29_{26}	5_{27}	2128	6129	45_{30}	5331	3732
1233	28_{34}	4_{35}	20_{36}	60_{37}	44_{38}	52_{39}	36_{40}
1141	27_{42}	3_{43}	19_{44}	59_{45}	43_{46}	51_{47}	35_{48}
1049	26_{50}	2_{51}	18_{52}	58_{53}	42_{54}	50_{55}	34_{56}
957	25_{58}	1_{59}	1760	57_{61}	41_{62}	49_{93}	33_{64}

Tabela 4: Função permutação I^{-1}

15_{1}	162	173	184	32_{5}	16
19_{7}	208	219	22_{10}	2_{11}	312
23_{13}	24_{14}	25_{15}	26_{16}	4_{17}	5_{18}
2719	28_{20}	29_{21}	3022	623	7_{24}
31_{25}	32_{26}	127	228	829	930
3 ₃₁	432	5_{33}	634	10_{35}	1136
737	838	939	10_{40}	12_{41}	1342
11_{43}	12_{44}	13_{45}	1446	14_{47}	15_{48}

TABELA 5: função expansão X

25_{1}	26_{2}	27_{3}	15_{4}	165	176	28_{7}	29_{8}
19	1810	1911	2_{12}	20_{13}	2114	315	416
1317	1418	3019	31_{20}	32_{21}	822	923	10_{24}
22_{25}	2326	24_{27}	11_{28}	12_{29}	5_{30}	631	7_{32}
		m .	0 D	~	, ~		

Tabela 6: Função permutação P

Também consideremos as tabelas dispostas na posição vertical nas duas próximas páginas, que são rotuladas de Tabelas 7: Caixas S.

Seja a mensagem $FAMAT_2008$. Suponhamos que o emissor A, queira enviar essa mensagem ao receptor B usando a criptografia D.E.S. Assim, A associa a mensagem aos números correspondentes na TABELA 1, obtendo a seqüencia de números:

15 10 22 10 29 36 39 37 37 45,

que, respectivamente, na base binária são:

Agrupando a seqüência de bits em blocos de 64 bits temos:

Note que tínhamos apenas 60 bits. Os bits que ficaram faltando para completar um bloco de 64 bits foram obtidos acrescentando-se 4 zeros ao final da seqüência.

Logo, para o início do processo, a mensagem passa pela primeira fase que é a função permutação I, a partir da TABELA 3, no qual é obtida pela seqüência a seguir:

O n-ésimo bit de (6) é o m-ésimo bit de (5), sendo que m e n estão relacionados de acordo com a entrada m_n da Tabela 3. Por exemplo, se n = 1, a Tabela 3 fornece m = 59. Logo, o 1°. bit de (6) é o 59°. bit de (5) e assim, por diante.

Separando (6) em blocos de 32 bits, obtemos dois blocos. Chamaremos os primeiros 32 bits de bloco da "esquerda" e denotaremos por " E_0 " e os outros 32 bits restantes de bloco da "direita" e denotaremos por " D_0 ". Assim,

$$E_0 = 0010101111110011011001001101111000$$

$$D_0 = 001100100110110100110000010101$$
(7)

Para o bloco D_0 faremos uma expansão usando a TABELA 5, dada anteriormente. Assim, essa seqüência de 32 bits será transformada em uma nova seqüência com 48 bits, dada por:

O n-ésimo bit de (8) é o m-ésimo bit de (7), sendo que m e n estão relacionados de acordo com a entrada m_n da Tabela 5.

Por exemplo, se n = 1, a TABELA 5 fornece m = 15. Logo, o 1°. bit de (8) é o 15°. bit de (7) e assim, por diante.

Consideremos uma sequência binária de 48 bits, que será a chave (que deve ser mantida em sigilo pelos comunicantes):

Fazendo a soma binária, dígito a dígito, dos 48 bits do bloco $X(D_0)$ com a chave K_1 , temos a nova seqüência:

Usaremos agora, as Caixas S (Tabelas 7) para comprimir a seqüência acima de 48 bits para 32 bits binários. Primeiramente, dividiremos a seqüência anterior em blocos de 6 bits obtendo: B_1 o primeiro bloco, B_2 o segundo bloco até o oitavo bloco:

$$\underbrace{001011}_{B_1} \quad \underbrace{100111}_{B_2} \quad \underbrace{010000}_{B_3} \quad \underbrace{110110}_{B_4} \quad \underbrace{010110}_{B_5} \quad \underbrace{100101}_{B_6} \quad \underbrace{000010}_{B_7} \quad \underbrace{111000}_{B_8}.$$

Os blocos B_i serão reduzidos a quatro bits cada utilizando-se as Caixas S_i do seguinte modo: O primeiro e último dígitos de B_i formam, em decimal, um número x de 0 a 3, que corresponde a uma das quatro linhas de S_i . Os quatro dígitos intermediários de B_i formam, em decimal, um número y de 0 a 15, que corresponde a uma das 16 colunas de S_i . Assim, localizamos o número $s_{x,y}$ na Tabela S_i . O número s é um número de 0 a 15, que em binário, corresponde a uma seqüência B_i' de quatro dígitos que será colocada no lugar de B_i .

			S_4				S_3				S_2				S_1
$13_{3,0}$	$14_{2,0}$	$6_{1,0}$	$9_{0,0}$	$14_{3,0}$	$1_{2,0}$	$4_{1,0}$	$0_{0,0}$	83,0	$14_{2,0}$	$7_{1,0}$	$1_{0,0}$	$0_{3,0}$	$9_{2,0}$	$7_{1,0}$	$1_{0,0}$
$3_{3,1}$	$0_{2,1}$	$8_{1,1}$	$14_{0,1}$	$5_{3,1}$	$12_{2,1}$		$9_{0,1}$	$2_{3,1}$	$5_{2,1}$	$10_{1,1}$	$10_{0,1}$	$9_{3,1}$	$0_{2,1}$	$10_{1,1}$	
$15_{3,2}$	$3_{2,2}$	$9_{1,2}$	$0_{0,2}$	$10_{3,2}$	$7_{2,2}$	$9_{1,2}$	$4_{0,2}$	$14_{3,2}$	$7_{2,2}$	$0_{1,2}$	$11_{0,2}$	$2_{3,2}$	$15_{2,2}$	$2_{1,2}$	$9_{0,2}$
$0_{3,3}$	$6_{2,3}$	$3_{1,3}$	$13_{0,3}$	$2_{3,3}$	$10_{2,3}$	$3_{1,3}$	$2_{0,3}$	$9_{3,3}$	$11_{2,3}$	$5_{1,3}$	$7_{0,3}$	$12_{3,3}$	$1_{2,3}$		$5_{0,3}$
$1_{3,4}$	52,4	$10_{1,4}$	$15_{0,4}$	83,4	$4_{2,4}$	$5_{1,4}$	$11_{0,4}$	$15_{3,4}$	$13_{2,4}$	$6_{1,4}$	$2_{0,4}$	$10_{3,4}$	$2_{2,4}$	141,4	$10_{0,4}$
$9_{3,5}$		$15_{1,5}$	$3_{0,5}$	$9_{3,5}$	$15_{2,5}$	$13_{1,5}$	$7_{0,5}$	$5_{3,5}$	$0_{2,5}$	$1_{1,5}$	$14_{0,5}$	$8_{3,5}$	$10_{2,5}$	$3_{1,5}$	$15_{0,5}$
$14_{3,6}$	$9_{2,6}$	$0_{1,6}$	$5_{0,6}$	$0_{3,6}$	$9_{2,6}$	$14_{1,6}$	$1_{0,6}$	$6_{3,6}$	$2_{2,6}$	$11_{1,6}$	$8_{0,6}$	$15_{3,6}$	$3_{2,6}$	$11_{1,6}$	$6_{0,6}$
$8_{3,7}$	$15_{2,7}$		$8_{0,7}$	$11_{3,7}$		$6_{1,7}$	$12_{0,7}$	$11_{3,7}$	$8_{2,7}$	$2_{1,7}$	$15_{0,7}$	$3_{3,7}$	$11_{2,7}$		$2_{0,7}$
	$8_{2,8}$		$6_{0,8}$	$12_{3,8}$	$3_{2,8}$	$15_{1,8}$	$13_{0,8}$	73,8	$10_{2,8}$	$13_{1,8}$	$6_{0,8}$	73,8	42,8	$15_{1,8}$	
$ 4_{3,9} $	$7_{2,9}$		$11_{0,9}$	$3_{3,9}$	$8_{2,9}$	$11_{1,9}$	$6_{0,9}$	$12_{3,9}$	$1_{2,9}$	$12_{1,9}$	$9_{0,9}$	$11_{3,9}$	52,9	$0_{1,9}$	$11_{0,9}$
53,10	$13_{2,10}$	$7_{1,10}$	$10_{0,10}$	$1_{3,10}$		$1_{1,10}$	$14_{0,10}$			$3_{1,10}$	$12_{0,10}$	$6_{3,10}$	$13_{2,10}$	$4_{1,10}$	$4_{0,10}$
$6_{3,11}$	$10_{2,11}$	$4_{1,11}$	$7_{0,11}$	$6_{3,11}$	$11_{2,11}$	7 _{1,11}	$8_{0,11}$	$0_{3,11}$	$15_{2,11}$	$8_{1,11}$	$0_{0,11}$	$1_{3,11}$	62,11	$12_{1,11}$	$14_{0,11}$
	$11_{2,12}$	$12_{1,12}$	$1_{0,12}$		$0_{2,12}$	$10_{1,12}$	50,12	ı	$3_{2,12}$		$5_{0,12}$	$4_{3,12}$	$12_{2,12}$	$1_{1,12}$	$7_{0,12}$
$12_{3,13}$	$1_{2,13}$	$2_{1,13}$	$4_{0,13}$	73,13	$14_{2,13}$	$12_{1,13}$	$3_{0,13}$	$14_{3,13}$	62,13	$9_{1,13}$	$3_{0,13}$	$13_{3,13}$	l .	$5_{1,13}$	$12_{0,13}$
	$2_{2,14}$	$11_{1,14}$	$12_{0,14}$	43,14		81,14	$10_{0,14}$	$10_{3,14}$	$9_{2,14}$	$4_{1,14}$	$13_{0,14}$	$5_{3,14}$	ı	$3_{1,14}$	$12_{0,13}$ $13_{0,14}$
$11_{3,15}$	42,15	$14_{1,15}$	$2_{0,15}$	$13_{3,15}$	$5_{2,15}$	$0_{1,15}$	$15_{0,15}$	$3_{3,15}$	$12_{2,15}$	$15_{1,15}$	$4_{0,15}$	$14_{3,15}$	$8_{2,15}$	$13_{1,15}$	$2_{0,15}$

Tabela 7

			S_8				S_7				S_6				S_5
$13_{3,0}$	$1_{2,0}$	$10_{1,0}$	$15_{0,0}$	$15_{3,0}$	$0_{2,0}$	$2_{1,0}$	$10_{0,0}$	$11_{3,0}$	$8_{2,0}$	$2_{1,0}$	$7_{0,0}$	$15_{3,0}$	$0_{2,0}$	$14_{1,0}$	$6_{0,0}$
$2_{3,1}$	$4_{2,1}$	$6_{1,1}$	$12_{0,1}$	$3_{3,1}$	$7_{2,1}$	$12_{1,1}$	$6_{0,1}$	$6_{3,1}$	$5_{2,1}$	$9_{1,1}$	$12_{0,1}$	$11_{3,1}$	$4_{2,1}$	$12_{1,1}$	$8_{0,1}$
83,2	$11_{2,2}$	$9_{1,2}$	$8_{0,2}$	$10_{3,2}$	$13_{2,2}$	$0_{1,2}$	$9_{0,2}$	$5_{3,2}$	$3_{2,2}$	$14_{1,2}$	$0_{0,2}$	$4_{3,2}$	$10_{2,2}$	$0_{1,2}$	$2_{0,2}$
	$13_{2,3}$	$0_{1,3}$	$2_{0,3}$	$2_{3,3}$	$8_{2,3}$	$3_{1,3}$	$13_{0,3}$	3 3,3	$15_{2,3}$	$0_{1,3}$	$5_{0,3}$	$8_{3,3}$	$5_{2,3}$	$2_{1,3}$	$12_{0,3}$
	$12_{2,4}$	$12_{1,4}$	$4_{0,4}$	$8_{3,4}$	$6_{2,4}$	$10_{1,4}$	$5_{0,4}$	$0_{3,4}$	$13_{2,4}$	$11_{1,4}$	$14_{0,4}$	$13_{3,4}$	$13_{2,4}$	$6_{1,4}$	$3_{0,4}$
$15_{3,5}$	$3_{2,5}$	$11_{1,5}$	$9_{0,5}$	$9_{3,5}$	$1_{2,5}$	$14_{1,5}$	$4_{0,5}$	$9_{3,5}$	$10_{2,5}$	$6_{1,5}$	$3_{0,5}$	$6_{3,5}$	$6_{2,5}$	$11_{1,5}$	$7_{0,5}$
$11_{3,6}$	$7_{2,6}$	$7_{1,6}$	$1_{0,6}$	$4_{3,6}$	$9_{2,6}$	$4_{1,6}$	$14_{0,6}$	$12_{3,6}$	$6_{2,6}$	$5_{1,6}$	$9_{0,6}$	$0_{3,6}$	$15_{2,6}$	$4_{1,6}$	$0_{0,6}$
$1_{3,7}$	$14_{2,7}$	$13_{1,7}$	$7_{0,7}$	$14_{3,7}$	$3_{2,7}$	$13_{1,7}$	$0_{0,7}$	$15_{3,7}$	$0_{2,7}$	$12_{1,7}$	$10_{0,7}$	$12_{3,7}$	$2_{2,7}$	81,7	$15_{0,7}$
$10_{3,8}$	$10_{2,8}$	$15_{1,8}$	50,8	53,8	$10_{2,8}$	$9_{1,8}$	$8_{0,8}$	$13_{3,8}$	$2_{2,8}$	$4_{1,8}$	$1_{0,8}$	53,8	$7_{2,8}$	$10_{1,8}$	$9_{0,8}$
$9_{3,9}$	152,9	$1_{1,9}$	$11_{0,9}$	$12_{3,9}$	$2_{2,9}$	$11_{1,9}$	$1_{0,9}$	83,9	$14_{2,9}$	$7_{1,9}$	$11_{0,9}$	$14_{3,9}$	$12_{2,9}$	$9_{1,9}$	$1_{0,9}$
			$3_{0,10}$	$7_{3,10}$	$14_{2,10}$	$6_{1,10}$	$11_{0,10}$	$10_{3,10}$	$12_{2,10}$	$3_{1,10}$	$15_{0,10}$	$2_{3,10}$	$3_{2,10}$	$5_{1,10}$	$11_{0,10}$
$14_{3,11}$	82,11	$14_{1,11}$	$14_{0,11}$	$1_{3,11}$	42,11	$15_{1,11}$	$7_{0,11}$	$4_{3,11}$	$9_{2,11}$	$10_{1,11}$	$6_{0,11}$	$9_{3,11}$	$14_{2,11}$	$15_{1,11}$	$4_{0,11}$
	$0_{2,12}$	$5_{1,12}$	$10_{0,12}$ $0_{0,13}$			$1_{1,12}$	$15_{0,12}$	$14_{3,12}$	$1_{2,12}$	$8_{1,12}$	$4_{0,12}$	$1_{3,12}$	82,12	7 _{1,12}	$14_{0,12}$
$0_{3,13}$	52,13	$2_{1,13}$	$0_{0,13}$	$0_{3,13}$		51,13	$12_{0,13}$	73,13	42,13	$13_{1,13}$	$8_{0,13}$	$3_{3,13}$	$11_{2,13}$	$3_{1,13}$	50,13
$ 12_{3,14} 7_{3,15}$		$8_{1,14}$	$6_{0,14}$	$13_{3,14}$	$11_{2,14}$	71,14	$2_{0,14}$		$11_{2,14}$	$15_{1,14}$	$2_{0,14}$	$10_{3,14}$	$9_{2,14}$	$1_{1,14}$	$13_{0,14}$ $10_{0,15}$
73,15	$2_{2,15}$	$4_{1,15}$	$13_{0,15}$	63,15		$8_{1,15}$	$3_{0,15}$	$2_{3,15}$	$7_{2,15}$	$1_{1,15}$	$13_{0,15}$	$10_{3,14}$ $7_{3,15}$	$15_{2,15}$	$13_{1,15}$	$10_{0,15}$

Tabela 7

Por exemplo, no primeiro bloco

$$B_1 = 001011,$$

temos que o primeiro e o último dígitos, 0 e 1, formam o número binário 01, que em decimal é o número 1, ou seja, temos a segunda linha de S_1 . Os quatro dígitos do meio de B_1 formam o número binário 0101, que em decimal é o número 5, que corresponde à sexta coluna de S_1 . Logo, localizamos $s_{x,y}=3_{1,5}$, ou seja, s=3, que em binário é 0011. Assim $B_1=001011$ é substituído por $B_1'=0011$. De modo analógo para o restante dos blocos vamos obter:

$$B_2' = 1001, B_3' = 1101, B_4' = 1010, B_5' = 0100, B_6' = 0101, B_7' = 0110, B_8' = 0000.$$

Juntando todos os blocos B'_i , para i = 1, 2, ... 8, em uma só seqüência obtemos:

$$S = 001110011101101001000101011100000.$$

Usando a Tabela 6, fazemos uma nova permutação da seqüência acima à semelhança da que fizemos na seqüência (5) a qual chamaremos de P(S):

$$P(S) = 01110000010000111000011110101100.$$

Fazendo a soma binária de $E_0 + P(S)$ temos:

$$D_1 = E_0 + P(S) = 01011011101001010100111000010100.$$

Juntando, respectivamente, as seqüências D_0 e D_1 temos:

Aplicando a troca T dos blocos de 32 dígitos dos lados esquerdo e direito temos:

Para finalizar a criptografia vamos utilizar a Tabela 4 e aplicar a permutação I^{-1} na seqüencia anterior:

Logo essa sequencia, é a mensagem criptografada. Assim o emissor A envia essa mensagem para o receptor B.

Para decifrar a sequência recebida o receptor B deverá proceder de modo análogo ao processo de criframento.

O receptor B aplicará a função I a partir da TABELA 3, que é a primeira fase, e obterá a sequência a seguir:

Separando a seqüência anterior em blocos de 32 bits, obtemos dois blocos. Chamaremos os primeiros 32 bits de bloco da "esquerda", que denotaremos por " E_0 " e os outros 32 bits restantes de bloco da "direita", que será denotado por " D_0 ":

$$E_0 = 01011011101001010100111000010100$$

$$D_0 = 00110010011010110100110000010101$$

Para o bloco D_0 faremos a expansão usando a TABELA 5. Assim, a seqüência de 32 bits será transformada em uma nova seqüência com 48 bits:

Usando a mesma chave K_1 de 48 bits que usamos para cifrar a mensagem, dada a seguir:

Fazemos a soma binária desses 48 bits com o bloco da direita D_0 e obtemos uma nova seqüência:

Utilizando as Caixas S e fazendo os mesmos procedimentos adotados no ciframento, separemos a seqüência em blocos de 6 bits:

$$B_1 = 001011$$
 $B_2 = 100111$ $B_3 = 010000$ $B_4 = 110110$ $B_5 = 010110$ $B_6 = 100101$ $B_7 = 000010$ $B_8 = 111000$

Teremos a seguinte redução de 6 bits para 4 bits dada a seguir:

$$B_1' = 0011, B_2' = 1001, B_3' = 1101, B_4' = 1010, B_5' = 0100, B_6' = 0101, B_7' = 0110, B_8' = 0000.$$

Juntando todos os blocos B'_i , para i=1,2,...8, em uma só seqüência obtemos:

$$S = 0011100111011010010001010110100000.$$

Usando a TABELA 6, da função permutação, na seqüência acima obtemos a seqüência a seguir a qual chamaremos de P(S):

$$P(S) = 01110000010000111000011110101100.$$

Fazendo a soma binária de $E_0 + P(S)$ temos:

$$D_1 = E_0 + P(S) = 0010101111110011011001001101111000.$$

Juntando, respectivamente, as seqüências D_0 e D_1 temos:

Aplicando T:

Para finalizar o deciframento vamos aplicar a função I^{-1} na seqüência anterior chegando em:

Logo, essa seqüência, é a mensagem decifrada. Ou seja, separando essa seqüência em blocos de 6 bits e passando para a base decimal, obtemos os números:

que corresponde a mensagem original FAMAT 2008.

Nesse exemplo, para simplificar, usamos uma única rodada, mas isso é inseguro. Para oferecer maior segurança e resistência à criptoanálise o ideal é que se realizem várias rodadas, no caso 16 rodadas é o tamanho típico para a criptografia D.E.S.

Observação: Tipicamente, na criptografia D.E.S., há um procedimento algorítmico de geração das chaves $K_1, ..., K_{16}$ a partir de uma única chave K fornecida pelos comunicantes. Neste trabalho não abordamos tal algoritmo. No entanto, o leitor interessado pode encontrá-lo em (10).

Referências Bibliográficas

- [1] BIASE, A. G. & AGUSTINI, E. Criptografia, Assinaturas Digitais e Senhas Segmentadas. (to appear in "FAMAT em Revista")
- [2] COUTINHO, S. C. Números Inteiros e Criptografia RSA. Rio de Janeiro, RJ: IMPA SBM. Série de Computação e Matemática. 1997.
- [3] Domingues, H. H. Álgebra Moderna. São Paulo, SP: Atual Editora. 1982.
- [4] Domingues, H. H. Fundamentos de Aritmética. São Paulo, SP: Atual Editora. 1991.
- [5] LUCCHESI, C. L. Introdução à Criptografia Computacional. Campinas-SP: Editora da Unicamp. 1986.
- [6] MOLLIN, R. A. An Introduction to Cryptography. New York: Chapman & Hall. 2001.
- [7] RIVEST, M,; SHAMIR, A. & ADLEMAN, L. "A method for obtaining digital signatures and public-key cryptosystems". Comm. ACM, 21 (1978), 120-126.
- [8] Santos, J. P. O. *Introdução à Teoria dos Números*. Rio de Janeiro, RJ: Publicação do Inst. de Mat. Pura e Aplicada (IMPA). Coleção Matemática Universitária. 1998.
- [9] SINGH, S. O Livro dos Códigos. Rio de Janeiro: Editora Record. 2001.
- [10] STALLINGS, W. Criptografia e Segurança de Redes. 4ª. ed. São Paulo: Peason Prentice Hall. 2007.