STM32G071RB IoT Project User Manual

Embedded Systems Project

July 6, 2025

Abstract

This user manual provides comprehensive documentation for the STM32G071RB IoT prototype system featuring LoRa wireless communication and BME680 environmental sensor integration. The system enables wireless sensor data transmission, environmental monitoring, and remote command control through dual UART interfaces. This manual covers hardware setup, software configuration, command interface usage, troubleshooting, and development guidelines.

Contents

1	\mathbf{Sys}	System Overview 2				
	1.1	Project Description	2			
	1.2	Key Features	2			
	1.3	Technical Specifications	2			
2	Har	dware Setup	2			
	2.1	Required Components	2			
	2.2	Pin Connections	3			
		2.2.1 STM32G071RB Pinout	3			
		2.2.2 BME680 Sensor Connections	3			
		2.2.3 LoRa Module Connections	3			
	2.3	Wiring Diagram	4			
3	Soft	ware Architecture	4			
	3.1	Project Structure	4			
	3.2	System Initialization Flow	4			
	3.3	Communication Protocols	4			
		3.3.1 I2C Protocol (BME680)	4			
		3.3.2 SPI Protocol (LoRa)	5			
		3.3.3 UART Protocol	5			
4	Con	nmand Interface	5			
	4.1	Getting Started	5			
	4.2	Available Commands	5			
		4.2.1 Sensor Commands	5			
		4.2.2 LoRa Commands	5			
		4.2.3 System Commands	5			
		4.2.4 Math Operations	5			

	4.3	Command Examples	5
		4.3.1 Sensor Data Reading	5
		4.3.2 LoRa Communication	6
5	Trou	bleshooting	7
	5.1	Common Issues and Solutions	7
		5.1.1 BME680 Sensor Issues	7
		5.1.2 LoRa Module Issues	7
		5.1.3 UART Communication Issues	7
	5.2	Diagnostic Commands	7
	5.3	System Status Messages	7
6	\mathbf{Dev}	elopment Guidelines	8
	6.1	Adding New Commands	8
	6.2	Modifying Sensor Configuration	8
	6.3	Modifying LoRa Parameters	9
7	Perf	ormance Characteristics	9
	7.1	Sensor Performance	9
	7.2	LoRa Performance	9
	7.3	System Performance	9
8	$\mathbf{A}\mathbf{d}\mathbf{v}$	anced Features	9
	8.1	Continuous Monitoring	9
	8.2	Sensor Data Broadcasting	10
	8.3	I2C Bus Scanning	10
9	Mai	ntenance and Support	10
	9.1		10
	9.2	g	10
	9.3	Technical Support	11
10	App	endices	11
			11
			11
		•••	12
			12

1 System Overview

1.1 Project Description

The STM32G071RB IoT prototype is an embedded system designed for wireless sensor data transmission and environmental monitoring. The system integrates a BME680 environmental sensor for temperature, pressure, and humidity measurements, and an SX126x LoRa module for long-range wireless communication.

1.2 Key Features

- Environmental Sensing: BME680 sensor for temperature, pressure, and humidity
- Wireless Communication: LoRa (SX126x) for long-range data transmission
- Dual UART Interface: USART2 and USART4 for command and debugging
- I2C Communication: For BME680 sensor interface
- SPI Communication: For LoRa module interface
- Real-time Monitoring: Continuous sensor data acquisition and transmission
- Command Interface: Interactive command system for system control

1.3 Technical Specifications

Parameter	Specification
Microcontroller	STM32G071RBT6
System Clock	16 MHz
Operating Voltage	3.3V
LoRa Frequency	868 MHz
LoRa Spreading Factor	SF7
LoRa Bandwidth	125 kHz
UART Baud Rate	115200 bps
I2C Speed	100 kHz
SPI Speed	8 MHz

Table 1: System Technical Specifications

2 Hardware Setup

2.1 Required Components

- STM32G071RB Nucleo-64 board
- BME680 environmental sensor module
- SX126x LoRa module (e.g., SX1262, SX1268)
- USB-to-UART converter (for USART4)
- Breadboard and jumper wires
- 4.7kOhm pull-up resistors (for I2C)
- Power supply (3.3V)

2.2 Pin Connections

2.2.1 STM32G071RB Pinout

Pin	Function	Connection
PA2	USART2 TX	USB-to-UART RX
PA3	USART2 RX	USB-to-UART TX
PA0	USART4 TX	USB-to-UART RX
PA1	USART4 RX	USB-to-UART TX
PA9	I2C1 SCL	BME680 SCL
PA10	I2C1 SDA	BME680 SDA
PA5	SPI1 SCK	LoRa SCK
PA6	SPI1 MISO	LoRa MISO
PA7	SPI1 MOSI	LoRa MOSI
PA4	SPI1 NSS	LoRa NSS
PC0	GPIO	LoRa RESET
PA8	GPIO	LoRa DIO1

Table 2: STM32G071RB Pin Connections

2.2.2 BME680 Sensor Connections

BME680 Pin	STM32 Pin	Description
VCC	3.3V	Power supply
GND	GND	Ground
SCL	PA9	I2C clock line
SDA	PA10	I2C data line

Table 3: BME680 Sensor Connections

2.2.3 LoRa Module Connections

LoRa Pin	STM32 Pin	Description
VCC	3.3V	Power supply
GND	GND	Ground
SCK	PA5	SPI clock
MISO	PA6	SPI data in
MOSI	PA7	SPI data out
NSS	PA4	SPI chip select
RESET	PC0	Module reset
DIO1	PA8	Interrupt line

Table 4: LoRa Module Connections

3 Software Architecture

3.1 Project Structure

The project follows a modular architecture with the following components:

- main.c: System initialization and main loop
- bme680 interface.c: BME680 sensor driver and interface
- lora interface.c: LoRa communication interface
- command interface.c: Command processing and user interface
- sx126x.c: SX126x LoRa driver (external library)

3.2 System Initialization Flow

- 1. Hardware initialization (GPIO, UART, I2C, SPI)
- 2. BME680 sensor detection and initialization
- 3. LoRa module detection and configuration
- 4. Command interface startup
- 5. Main loop execution

3.3 Communication Protocols

3.3.1 I2C Protocol (BME680)

- Clock Speed: 100 kHz
- Device Address: 0x76 (default) or 0x77
- Data Format: 8-bit data, 7-bit address
- Pull-up Resistors: 4.7kOhm recommended

3.3.2 SPI Protocol (LoRa)

- Clock Speed: 8 MHz
- Mode: SPI Mode 0 (CPOL=0, CPHA=0)
- Data Order: MSB first
- Chip Select: Active low

3.3.3 UART Protocol

- **Baud Rate**: 115200 bps
- Data Bits: 8
- Parity: None
- Stop Bits: 1
- Flow Control: None

4 Command Interface

4.1 Getting Started

1. Connect the hardware according to the wiring diagram

2. Power on the STM32 board

3. Open a terminal application (PuTTY, Tera Term, etc.)

4. Configure the terminal:

• Baud Rate: 115200

Data Bits: 8Parity: NoneStop Bits: 1

• Flow Control: None

5. Connect to the appropriate COM port

6. Type start to begin the command interface

4.2 Available Commands

4.2.1 Sensor Commands

Command	Alias	Description
read temperature	rt	Read temperature from BME680
read pressure	rp	Read pressure from BME680
read humidity	rh	Read humidity from BME680
test sensor	ts	Test BME680 sensor functionality
raw registers	rr	Read raw BME680 registers
raw adc	ra	Read raw BME680 ADC values
calib data	cd	Check BME680 calibration data
scan i2c	si	Scan I2C bus for devices

Table 5: Sensor Commands

4.2.2 LoRa Commands

Command	Alias	Description
lora broadcast	lb	Broadcast sensor data via LoRa
lora config	lc	Show LoRa configuration
lora test	lt	Test LoRa transmission
lora scan	ls	Scan for LoRa signals (5s)
lora monitor	lm	Start continuous monitoring
lora stop	lst	Stop LoRa monitoring
lora rssi	lr	Get current RSSI

Table 6: LoRa Commands

Command	Description
help	Show help menu
start	Start the command interface

Table 7: System Commands

4.2.3 System Commands

4.2.4 Math Operations

Command	Description
sum <num1> <num2></num2></num1>	Add two numbers
sub <num1> <num2></num2></num1>	Subtract num2 from num1
mul <num1> <num2></num2></num1>	Multiply two numbers
div <num1> <num2></num2></num1>	Divide num1 by num2

Table 8: Math Operations

4.3 Command Examples

4.3.1 Sensor Data Reading

Listing 1: Reading Sensor Data

4.3.2 LoRa Communication

Listing 2: LoRa Communication

5 Troubleshooting

5.1 Common Issues and Solutions

5.1.1 BME680 Sensor Issues

Problem	Cause	Solution
Sensor not detected	Wrong I2C address	Check SDO pin connection
Communication errors	Missing pull-up resistors	Add 4.7kOhm resistors to SCL/SDA
Invalid readings	Power supply issues	Ensure 3.3V stable supply
I2C bus errors	Wiring issues	Verify SCL/PA9 and SDA/PA10 connections

Table 9: BME680 Troubleshooting

5.1.2 LoRa Module Issues

Problem	Cause	Solution
Module not detected	SPI wiring issues	Check SCK, MISO, MOSI, NSS connections
Transmission failures	Antenna not connected	Connect proper LoRa antenna
Low signal strength	Wrong frequency	Verify 868 MHz configuration
Communication errors	SPI speed too high	Reduce SPI clock frequency

Table 10: LoRa Troubleshooting

5.1.3 UART Communication Issues

Problem	Cause	Solution
No communication	Wrong COM port	Check Device Manager for correct port
Garbled text	Wrong baud rate	Set to 115200 bps
Missing characters	Flow control enabled	Disable hardware flow control
Connection drops	Driver issues	Update USB-to-UART driver

Table 11: UART Troubleshooting

5.2 Diagnostic Commands

Use these commands to diagnose system issues:

- scan i2c: Check I2C bus for connected devices
- raw registers: Read raw BME680 registers for debugging
- lora config: Verify LoRa module configuration
- lora rssi: Check signal strength

5.3 System Status Messages

The system provides status messages during initialization:

Listing 3: System Initialization Messages

6 Development Guidelines

6.1 Adding New Commands

To add new commands to the system:

- 1. Add command handler in command_interface.c
- 2. Update help menu with new command description
- 3. Implement command functionality
- 4. Test with both USART2 and USART4 interfaces

6.2 Modifying Sensor Configuration

To modify BME680 sensor settings:

Listing 4: BME680 Configuration Example

6.3 Modifying LoRa Parameters

To modify LoRa communication parameters:

Listing 5: LoRa Configuration Example

7 Performance Characteristics

7.1 Sensor Performance

Parameter	Range	Accuracy
Temperature	$-40\mathrm{C}\ \mathrm{to}\ +85\mathrm{C}$	$+/-0.5{ m C}$
Pressure	300 hPa to 1100 hPa	+/-1 hPa
Humidity	0% to 100%	+/-3%

Table 12: BME680 Performance Specifications

7.2 LoRa Performance

Parameter	Value	Description
Frequency	868 MHz	Operating frequency
Range	Up to 15 km	Line of sight
Data Rate	5.47 kbps	With SF7, 125 kHz BW
TX Power	14 dBm	Maximum output power

Table 13: LoRa Performance Specifications

7.3 System Performance

• Command Response Time: < 100 ms

• Sensor Read Time: < 50 ms

• LoRa Transmission Time: < 200 ms

• Power Consumption: 50 mA (active mode)

8 Advanced Features

8.1 Continuous Monitoring

The system supports continuous LoRa monitoring for detecting signals from other devices:

```
> lm
Starting continuous LoRa monitoring...
Monitoring for signals...
RSSI: -87 dBm
Packet received: {"temp":24.1,"press":1012.8,"hum":48.2,"node":"Node2"}
RSSI: -92 dBm
Signal detected (no packet)
> lst
Monitoring stopped.
```

Listing 6: Continuous Monitoring

8.2 Sensor Data Broadcasting

Automatic broadcasting of sensor data in JSON format:

```
> 1b
Broadcasting sensor data via LoRa...
Message sent: {"temp":23.45,"press":1013.25,"hum":45.67,"node":"STM32"}
```

Listing 7: Sensor Data Broadcast

8.3 I2C Bus Scanning

Automatic detection of I2C devices:

```
1 > si
2 Scanning I2C bus for devices...
3 Device found at address: 0x76
4 Total devices found: 1
```

Listing 8: I2C Bus Scan

9 Maintenance and Support

9.1 Regular Maintenance

- Check physical connections monthly
- Verify sensor calibration annually
- Update firmware as needed
- Monitor system logs for errors

9.2 Calibration

The BME680 sensor includes factory calibration data. For high-precision applications:

- Use reference instruments for comparison
- Apply offset corrections in software
- Consider environmental factors
- Document calibration procedures

9.3 Technical Support

For technical support and questions:

- Check this user manual first
- Review troubleshooting section
- Verify hardware connections
- Test with known good components

10 Appendices

10.1 Appendix A: Pin Definitions

```
1 // UART Pins
2 #define UART2_TX_PIN GPIO_PIN_2
3 #define UART2_TX_PORT GPIOA
4 #define UART2_RX_PIN GPIO_PIN_3
5 #define UART2_RX_PORT GPIOA
7 #define UART4_TX_PIN GPIO_PIN_O
8 #define UART4_TX_PORT GPIOA
9 #define UART4_RX_PIN GPIO_PIN_1
10 #define UART4_RX_PORT GPIOA
11
12 // I2C Pins
13 #define I2C1_SCL_PIN GPIO_PIN_9
14 #define I2C1_SCL_PORT GPIOA
15 #define I2C1_SDA_PIN GPIO_PIN_10
  #define I2C1_SDA_PORT GPIOA
16
17
18 // SPI Pins
19 #define SPI1_SCK_PIN GPI0_PIN_5
20 #define SPI1_SCK_PORT GPIOA
21 #define SPI1_MISO_PIN GPIO_PIN_6
22 #define SPI1_MISO_PORT GPIOA
23 #define SPI1_MOSI_PIN GPIO_PIN_7
24 #define SPI1_MOSI_PORT GPIOA
25 #define SPI1_NSS_PIN GPIO_PIN_4
26 #define SPI1_NSS_PORT GPIOA
28 // LoRa Control Pins
29 #define LORA_RESET_PIN GPIO_PIN_O
30 #define LORA_RESET_PORT GPIOC
31 #define LORA_DIO1_PIN GPIO_PIN_8
32 #define LORA_DIO1_PORT GPIOA
```

Listing 9: Pin Definitions in main.h

10.2 Appendix B: Configuration Constants

```
// LoRa Configuration
  #define LORA_FREQUENCY_HZ
                                      868000000
  #define LORA_TX_POWER_DBM
                                      14
  #define LORA_SYNC_WORD
                                      0 \times 12
5 #define LORA_PAYLOAD_LENGTH
                                      64
  // BME680 Configuration
8 #define BME68X_I2C_ADDR_LOW
                                     0x76
9 #define BME68X_I2C_ADDR_HIGH
                                      0 x 77
10 #define BME68X_CHIP_ID
                                      0x61
12 // System Configuration
13 #define CMD_BUFFER_SIZE
                                      128
                                      16000000
14 #define SYSTEM_CLOCK_HZ
```

Listing 10: Configuration Constants

Error Code	Description	Action
BME68X_OK	Operation successful	None
BME68X_E_COM_FAIL	Communication failure	Check I2C connections
BME68X_E_DEV_NOT_FOUND	Device not found	Check sensor power and address
SX126X_STATUS_OK	LoRa operation successful	None
SX126X_STATUS_ERROR	LoRa operation failed	Check SPI connections
HAL_OK	HAL operation successful None	
HAL_ERROR	HAL operation failed	Check hardware connections

Table 14: Error Codes and Descriptions

10.3 Appendix C: Error Codes

10.4 Appendix D: Command Reference

Command	Alias	Description
start	-	Start command interface
help	-	Show help menu
read temperature	rt	Read temperature (C)
read pressure	rp	Read pressure (hPa)
read humidity	rh	Read humidity (%)
test sensor	ts	Test BME680 sensor
raw registers	rr	Read raw registers
raw adc	ra	Read raw ADC values
calib data	cd	Check calibration data
scan i2c	si	Scan I2C bus
lora broadcast	lb	Broadcast sensor data
lora config	lc	Show LoRa config
lora test	lt	Test LoRa transmission
lora scan	ls	Scan for signals (5s)
lora monitor	lm	Start monitoring
lora stop	lst	Stop monitoring
lora rssi	lr	Get RSSI
sum <n1> <n2></n2></n1>	-	Add numbers
sub <n1> <n2></n2></n1>	-	Subtract numbers
mul <n1> <n2></n2></n1>	-	Multiply numbers
div <n1> <n2></n2></n1>	-	Divide numbers