Aussagen über Zahlen

Lösungserwartung:

Jede reelle Zahl ist eine komplexe Zahl.	X
Jede natürliche Zahl ist eine reelle Zahl.	\boxtimes

Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn ausschließlich die beiden laut Lösungserwartung richtigen Aussagen angekreuzt sind.

Lösungen einer quadratischen Gleichung

Lösungserwartung:

2	
$\frac{p^2}{4} + 3 < 0$	\square
4 10 10	الاسكا

Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn für jede der beiden Lücken ausschließlich der laut Lösungserwartung richtige Satzteil angekreuzt ist.*

^{*} Anmerkung zum Lösungsschlüssel: Die konkrete Form der Diskriminante lässt einen negativen Wert nicht auftreten. Formal-logisch folgt daraus, dass alle drei Satzteile aus der ersten Tabelle mit dem mittleren Satzteil der zweiten Tabelle vereinbar sind. Diese drei Kombinationen sind daher als korrekt zu werten.

Gleichungssystem

Lösungserwartung:

$$b = \frac{9}{2} \approx 4\sqrt{5}$$

$$c = \frac{21}{2} \approx 40\sqrt{5}$$

Lösungsschlüssel:

Ein Punkt für die Angabe der korrekten Werte von b und c. Andere korrekte Schreibweisen der Ergebnisse sind ebenfalls als richtig zu werten.

Normalvektoren

Lösungserwartung:

$$z_b = -9$$

Lösungsschlüssel:

Ein Punkt für die richtige Lösung.

Vektoren in der Ebene

Lösungserwartung:

Lösungsschlüssel:

Ein Punkt für eine korrekte Darstellung von \vec{c} , wobei der gesuchte Vektor auch von anderen Ausgangspunkten aus gezeichnet werden kann.

Standseilbahn Salzburg

Lösungserwartung:

$$\sin(\alpha) = \frac{96.6}{198.5} \Rightarrow \alpha \approx 29.12^{\circ}$$

Lösungsschlüssel:

Ein Punkt für die richtige Lösung, wobei die Einheit *Grad* nicht angeführt sein muss. Eine korrekte Angabe in einer anderen Einheit ist ebenfalls als richtig zu werten.

Toleranzintervall: [29°; 30°]

Funktionstypen

Lösungserwartung:

$f(x) = a \cdot \sin(b \cdot x)$	Е
$f(x) = a \cdot b^{x}$	А
$f(x) = a \cdot \sqrt{x} + b$	F
$f(x) = a \cdot x + b$	В

Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn jeder der vier Funktionsgleichungen ausschließlich der laut Lösungserwartung richtige Buchstabe zugeordnet ist.

Gleichung einer Funktion

Lösungserwartung:

$$f(x) = -2x + 12$$

Lösungsschlüssel:

Ein Punkt für eine korrekte Funktionsgleichung. Äquivalente Funktionsgleichungen sind ebenfalls als richtig zu werten.

Parameter reeller Funktionen

Lösungserwartung:

b > d	\boxtimes
a > 0	\boxtimes

Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn ausschließlich die beiden laut Lösungserwartung richtigen Aussagen angekreuzt sind.

Exponentialfunktion

Lösungserwartung:

Mögliche Vorgehensweise:

$$f(x) = c \cdot a^x \Rightarrow f(0) = c = 12$$

$$f(4) = 12 \cdot a^4 = 192 \implies a = 2$$

$$f(x) = 12 \cdot 2^x$$

Lösungsschlüssel:

Ein Punkt für eine korrekte Funktionsgleichung. Äquivalente Funktionsgleichungen sind als richtig zu werten.

Die Aufgabe ist auch dann als richtig gelöst zu werten, wenn bei korrektem Ansatz das Ergebnis aufgrund eines Rechenfehlers nicht richtig ist.

Eigenschaften einer Exponentialfunktion

Lösungserwartung:

Die Funktion f ist im Intervall [0; 5] streng monoton steigend.	X
Der Funktionswert $f(x)$ ist positiv für alle $x \in \mathbb{R}$.	\boxtimes
Wenn man den Wert des Arguments x um 1 vergrößert, wird der zugehörige Funktionswert um 97 % größer.	\boxtimes

Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn ausschließlich alle laut Lösungserwartung richtigen Aussagen angekreuzt sind.

Parameter einer Sinusfunktion

Lösungserwartung:

Lösungsschlüssel:

Ein Punkt für eine korrekte Skizze, wobei der Verlauf des Graphen der Funktion s_1 mit der Funktionsgleichung $s_1(x) = 2 \cdot \sin(x)$ erkennbar sein muss.

Mittlere Geschwindigkeit

Lösungserwartung:

Die mittlere Geschwindigkeit des Körpers im Zeitintervall [2 s; 4 s] beträgt ca. 20 m/s.

Lösungsschlüssel:

Ein Punkt für die richtige Lösung, wobei die Einheit nicht angeführt sein muss. Toleranzintervall: [19 m/s; 21 m/s]

Reelle Funktion

Lösungserwartung:

$$f'(x) = 12x^2 - 4x + 5$$

Lösungsschlüssel:

Ein Punkt für eine korrekte Funktionsgleichung der Ableitungsfunktion f'. Äquivalente Funktionsgleichungen sind ebenfalls als richtig zu werten.

Sinusfunktion und Cosinusfunktion

Lösungserwartung:

f'(x) = g(x)	\boxtimes

Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn ausschließlich die laut Lösungserwartung richtige Gleichung angekreuzt ist.

Differenzieren einer Exponentialfunktion

Lösungserwartung:

 $\lambda = -0.5$

Lösungsschlüssel:

Ein Punkt für die richtige Lösung. Toleranzintervall: [-0,55; -0,45]

Stammfunktion

Lösungserwartung:

$F(x) = \frac{e^{2\cdot x}}{2} + \frac{1}{2}$	\boxtimes

Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn ausschließlich die laut Lösungserwartung richtige Antwortmöglichkeit angekreuzt ist.

Flächeninhaltsberechnung

Lösungserwartung:

$A = \int_{-3}^{0} (f(x) - g(x)) dx + \int_{0}^{3} (g(x) - f(x)) dx$	\boxtimes
$A = \int_{-3}^{0} (f(x) - g(x)) dx + \left \int_{0}^{3} (f(x) - g(x)) dx \right $	\boxtimes

Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn ausschließlich die beiden laut Lösungserwartung richtigen Gleichungen angekreuzt sind.

$$0_{1}/x = 132_{1}08$$

$$1 = 132_{1}08$$

$$1 = 132_{1}08$$

$$1 = 2903_{1}09$$

24)
$$4 = \alpha + \ell + c$$
 $3 = 4\alpha + 2\ell + c$
 $-5 = 4\alpha + 2\ell + c$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$
 $-6 = 4 = 4$

a=4-2-3=-1

101=-2+2

£(x)=-x2+2x+3 2