VARIANCE:

Definition: Suppose X is a r.v., then the variance of X is defined to be

$$Var(X) = \sigma^2 = \sigma_X^2 = E(X - E(X))^2$$
$$= E(X)^2 - \{E(X)\}^2 \text{ (after simplification)}$$

STANDARD DEVIATION:

The positive square root of the variance of X is defined to be the standard deviation of X and is denoted as σ or σ_X .

Examples

1. Suppose a continuous r.v. X has the pdf
$$f(x) = \begin{cases} \frac{1}{4}e^{-x/4}, & x > 0\\ 0 & elsewhere \end{cases}$$

Find the mean and variance.

Solution: We have,

Mean =
$$E(X) = \int_{-\infty}^{\infty} xf(x)dx$$

= $\int_{0}^{\infty} x(\frac{1}{4}e^{-x/4})dx$
= $\frac{1}{4} \left(x(\frac{e^{-x/4}}{(-1/4)}) - (1(\frac{e^{-x/4}}{(-1/4)^2}))_{0}^{\infty} \right)$
= $\frac{1}{4}(16)$
= 4

We have,

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx$$

$$= \int_{0}^{\infty} x^{2} (\frac{1}{4} e^{-x/4}) dx$$

$$= \frac{1}{4} \left(x^{2} (\frac{e^{-x/4}}{(-1/4)}) - (2x(\frac{e^{-x/4}}{(-1/4)^{2}}) + (2(\frac{e^{-x/4}}{(-1/4)^{3}})) \right)_{0}^{\infty}$$

$$= \frac{1}{4} (2(64))$$

$$= 32$$

Therefore

Variance =
$$\sigma^2 = E(X^2) - (E(X))^2$$

= 32-16
= 16

2. A continuous r.v. X has the pdf $f(x)=ke^{-x}x^2$, $x \ge 0$ Find k and the mean and variance of X.

Solution: To find k:

Since f(x) is a pdf, we have,

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

$$\Rightarrow \int_{0}^{\infty} ke^{-x}x^{2} dx = 1$$

$$\Rightarrow k \left[x^{2} \frac{e^{-x}}{-1} - 2x \left(\frac{e^{-x}}{(-1)^{2}} \right) + 2 \left(\frac{e^{-x}}{(-1)^{3}} \right) \right]_{0}^{\infty} = 1$$

$$\Rightarrow k = \frac{1}{2}$$

Therefore we have $f(x) = \frac{1}{2}e^{-x}x^2$, $x \ge 0$

Mean=
$$E(X) = \int_{-\infty}^{\infty} xf(x)dx$$

$$= \int_{0}^{\infty} x(\frac{1}{2}e^{-x}x^{2})dx$$

$$= \frac{1}{2} \left(x^{3}(\frac{e^{-x}}{(-1)}) - (3x^{2}(\frac{e^{-x}}{(-1)^{2}})) + (6x(\frac{e^{-x}}{(-1)^{3}})) - (6(\frac{e^{-x}}{(-1)^{4}})) \right)_{0}^{\infty}$$

$$= \frac{1}{2}(6)$$

$$= 3$$

We have,

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx$$

$$= \int_{0}^{\infty} x^{2} (\frac{1}{2} e^{-x} x^{2}) dx$$

$$= \frac{1}{2} \left(x^{4} (\frac{e^{-x}}{(-1)}) - (4x^{3} (\frac{e^{-x}}{(-1)^{2}})) + (12x^{2} (\frac{e^{-x}}{(-1)^{3}})) - (24x (\frac{e^{-x}}{(-1)^{4}})) + (24(\frac{e^{-x}}{(-1)^{5}})) \right)_{0}^{\infty}$$

$$= \frac{1}{2} (24)$$

$$= 12$$

Therefore

Variance =
$$\sigma^2 = E(X^2) - (E(X))^2$$

= $12-9$
= 3