Santiago Novoa Pérez 000125089

Desigualdad de Kantorovich: Sea H una matriz simétrica definida positiva de dimensión nxn, para cualquier vector x se satisface:

$$\frac{(x^T x)^2}{(x^T H x)(x^T H^{-1} x)} \ge \frac{4\lambda_{min}\lambda_{max}}{(\lambda_{min} + \lambda_{max})^2} = \text{L.D.}$$

donde λ_{min} y λ_{max} son, respectivamente, el valor propio menor y mayor de H.

Prueba

Se utilizaran los siguientes resultados:

- 1. $\forall H$ matriz simétrica $\exists P$ ortogonal tal que $H = P^T D P$. Sea x = P y, entonces $y^T H y = y^T P^T D P y = x^T D x = \sum_{i=1}^n \lambda_i x_i^2$ con λ_i los valores propios de H(y de D).
- 2. Si λ_i 's son los valores propios de H no-singular (por ejemplo, S.P.D.), entonces $\frac{1}{\lambda_i}$'s son los valores propios de H^{-1} . Además, $y^T H^{-1} y = x^T D^{-1} x = \sum_{i=1}^n \frac{x_i^2}{\lambda_i}$
- 3. Sea f una función convexa $(\frac{d^2f}{dx^x} > 0$ si existe o $f(tx + (1-t)y) \le tf(x) + (1-t)f(y) \quad \forall t \in [0,1]$), entonces se cumple que $f(z) \le \sum_{i=1}^n \alpha_i f(x_i)$ donde z es la combinación convexa de x_i $(\sum_{i=1}^n \alpha_i x_i)$
- 4. $x^* = \sum_{i=1}^n \alpha_i x_i$ es una combinación convexa de x_i 's si $\alpha_i \in [0,1]$ y $\sum_{i=1}^n \alpha_i = 1$
- 5. Si H es S.P.D, todos sus valores propios son mayores que cero, además, $\lambda_i = t\lambda_1 + (1-t)\lambda_n$ con algún $t \in [0,1]$, y λ_1, λ_n los valores propios más chicos y más grandes respectivamente.

Sean $y \in \mathbb{R}^n$ y $H \in \mathbb{R}^{n \times n}$ tales que H es S.P.D. Por (1) y (2) se tiene que:

$$L.I. = \frac{(y^T y)^2}{(y^T H y)(y^T H^{-1} y)} = \frac{(x^T x)^2}{(x^T D x)(x^T D^{-1} x)} = \frac{(\sum_{i=1}^n x_i^2)^2}{(\sum_{i=1}^n x_i^2 \lambda_i)(\sum_{i=1}^n \frac{x_i^2}{\lambda_i})}$$

Por comodidad y para facilitar la manipulación algebrica, se tomará la siguiente expresión:

$$L.I. = \frac{\sum x_i^2}{\sum \lambda_i x_i^2} / \frac{\sum \frac{x_i^2}{\lambda_i}}{\sum x_i^2}$$

Por el mismo motivo, se define $\xi_i = \frac{x_i^2}{\sum_{i=1}^n xi^2}$. Notar que por (4) ξ_i forma una combinación convexa de λ_i 's para el numerador y otra de $\frac{1}{\lambda_i}$'s para el denominador.

$$L.I. = \left[\sum \frac{1}{\xi_i \lambda_i}\right] / \left[\sum \frac{\xi_i}{\lambda_i}\right]$$

Nota: Lo que se busca con esto es encontrar una expresión de L.I. tal que L.I \leq L.D. Para hacer esto, se pasará por ecuaciones más simples intermedias, empezando por funciones convexas.

Sea

$$f(\lambda): [\lambda_1, \lambda_n] \longrightarrow \mathbb{R}$$

la función

$$f(\lambda) = \frac{1}{\lambda}$$

Es fácil notar que f es convexa en \mathbb{R}^+ . Por lo anterior y por (5), f es convexa en $[\lambda_1, \lambda_n]$. Por (3) se tiene que $f(z) \leq \sum \alpha_i f(x_i)$. En particular, para $\lambda = \sum \xi_i \lambda_i$. Entonces, $f(\lambda) \leq \sum \xi_i f(\lambda_i)$. Por (5), $f(\lambda_i) = f(t\lambda_1 + (1-t)\lambda_n) \implies f(\lambda) \leq \sum \xi_i (\frac{t}{\lambda_i} + \frac{(1-t)}{\lambda_n})$

Lo que se acaba de lograr es encontrar una expresión que va a ayudar a simplificar el L.I. Es fácil notar que, para λ_i , t toma el siguiente valor:

$$\lambda_{i} = t\lambda_{1} + (1 - t)\lambda_{n}$$

$$\iff t = \frac{\lambda_{i} - \lambda_{n}}{\lambda_{1} - \lambda_{n}}$$

$$\therefore f(\lambda) \leq \sum \xi_{i} \left[\frac{\lambda_{i} - \lambda_{n}}{\lambda_{1} - \lambda_{n}} (\frac{1}{\lambda_{1}}) - \frac{\lambda_{1} - \lambda_{i}}{\lambda_{1} - \lambda_{n}} (\frac{1}{\lambda_{n}}) \right]$$

$$= \sum \xi_{i} \frac{\lambda_{1} + \lambda_{n} - \lambda_{i}}{\lambda_{1} \lambda_{n}} \tag{6}$$

De hecho, se puede ver que el numerador $(f(\lambda))$ siempre será menor o igual al denominador $(\sum \xi_i f(\lambda_i))$ por lo que para toda λ_* , su punto en la curva $(f(\lambda_*))$ será menor o igual a la combinación convenza de los puntos en la curva. $\therefore L.I. \geq \frac{1}{\lambda} * \frac{1}{\sum \xi_i f(\lambda_i)}$. Volviendo a la expresión del L.I. se tiene la siguiente equivalencia:

$$\frac{\frac{1}{\sum \xi_i \lambda_i}}{\sum \frac{\xi_i}{\lambda_i}} \ge \frac{\frac{1}{\lambda}}{\sum \xi_i f(\lambda_i)} = \frac{1}{\lambda} \frac{1}{\sum \xi_i f(\lambda_i)} \dots g(\lambda)$$

Ya llegado a este punto, se intentará minimizar la expresión anterior (derivable) para terminar la demostración.

$$\frac{d}{d\lambda}g = 0 \iff \frac{d}{d\lambda^*}\lambda^*(\lambda_1 + \lambda_n - \lambda^*)^{-1} = 0$$

$$\iff \lambda_1 + \lambda_n - 2\lambda^* = 0$$

$$\iff \lambda^* = \frac{\lambda_1 + \lambda_n}{2}$$

Revisando la segunda derivada
(porque $\frac{d}{d\lambda}$ es derivable), se encuentra que:

$$\frac{d^2}{d\lambda}g(\lambda^*) = 2\lambda_1\lambda_n \left[\frac{\lambda_1 + \lambda_n}{2}(\frac{\lambda_1 + \lambda_n}{2})\right]^{-2} > 0$$

 $\therefore \lambda^*$ minimiza la función g Es decir,

$$\frac{(y^T y)^2}{(y^T H y)(y^T H^{-1} y)} = \frac{(\sum_{i=1}^n x_i^2)^2}{(\sum_{i=1}^n x_i^2 \lambda_i)(\sum_{i=1}^n \frac{x_i^2}{\lambda_i})}$$

$$\geq \frac{1}{\lambda} \left(\frac{1}{\sum \frac{\xi_i}{\lambda_i}}\right)$$

$$\geq \min \frac{1}{\lambda(\frac{\lambda_1 + \lambda_n - \lambda}{\lambda_1 \lambda_n})}$$

$$= \frac{\lambda_1 \lambda_n}{(\frac{\lambda_1 + \lambda_n}{2})(\lambda_1 + \lambda_n - (\frac{\lambda_1 + \lambda_n}{2}))}$$

$$= \frac{4\lambda_1 \lambda_n}{\lambda_1^2 + 2\lambda_1 \lambda_n + \lambda_2^2}$$

$$= \frac{4\lambda_1 \lambda_n}{(\lambda_1 + \lambda_n)^2} \quad \Box$$