综合练习-1

一、小蓝本平面几何

例 1. (P14, 习题 6) $\triangle ABC$ 的内心为 I ,过 B 作 $l_B \perp CI$,过 C 作 $l_C \perp BI$, D 是 l_B , l_C 的 交点。若 l_B 交 AC 于点 N , l_C 交 AB 于点 M , 线段 BN , CM 的中点分别为 E , F 。 求证: $EF \perp AI$ 。

例 2. (P14, 习题 8) 设 H 为锐角 $\triangle ABC$ 的垂心,过点 H 作垂直于 BH 的直线交 AB 于点 D,过点 H 作垂直于 CH 的直线交 AC 于点 E,过点 C 作垂直于 BC 的直线交 DE 于点 F 。 求证: FH = FC 。

例 3. (P15, 习题 11) $\odot O$ 的一条弦 AB 将圆分成两部分,M,N 分别是两段弧的中点,以B 为旋转中心,将弓形 AMB 按顺时针方向旋转一个角度形成弓形 $A_{\rm l}M_{\rm l}B$ 。若 $AA_{\rm l}$ 的中点为P, $M_{\rm l}N$ 的中点为Q,求证: $M_{\rm l}N=2PQ$ 。

例 4. (P15, 习题 15) 圆 ω 与 ΔABC 的边AC, AB相切,圆 Ω 与边AC 和 AB 的延长线相切,且与 ω 相切于边BC上的L点。直线AL分别与圆 ω 和 Ω 第二次相交于点K和M。已知 $KB/\!\!/CM$,求证: ΔLCM 是等腰三角形。

例 5. (P16, 习题 16) PA,PB为 $\odot O$ 的切线,点C 在劣弧 AB 上(不含点A,B)。过点C 作 PC 的垂线 l ,与 $\angle AOC$ 的平分线交于点 D ,与 $\angle BOC$ 的平分线交于点 E 。求证: CD=CE 。

例 6. (P16, 习题 17) 设 $M, N \neq ABC$ 内部的两个点, 且满足 $\angle MBA = \angle NBC$,

 $\angle MAB = \angle NAC$ 。 求证: $\frac{AM \cdot AN}{AB \cdot AC} + \frac{BM \cdot BN}{BA \cdot BC} + \frac{CM \cdot CN}{CA \cdot CB} = 1$ 。

二、数列练习

例 7. (1) 数列
$$\{a_n\}_{n\geq 1}$$
满足 $a_1=2$, $n\geq 1$ 时, $a_{n+1}=\frac{2(n+2)}{n+1}\cdot a_n$, 求 a_{100} 。

(2) 数列
$$\{a_n\}_{n\geq 1}$$
 满足 $a_1=2$, $n\geq 1$ 时, $a_n+a_{n+1}=1$ 。设 $S_n=\sum_{i=1}^n a_i$,求 $S_{1001}-2S_{1000}+S_{999}$ 。

例 8. (1) 数列 $\{a_n\}_{n\geq 1}$ 满足 $a_1=3$, $n\geq 1$ 时, $a_{n+1}=2a_n+3$, 求 $\{a_n\}$ 的通项。

- (2) 数列 $\{a_n\}_{n\geq 1}$ 满足 $a_1=1, a_2=3$,且对任意正整数 n ,都有 $a_{n+2}\leq a_n+3\cdot 2^n$ 且 $a_{n+1}\geq 2a_n+1$,求 $\{a_n\}$ 的通项。
- (3) 数列 $\{a_n\}_{n\geq 1}$ 满足 $a_1=2$,且 $n\geq 1$ 时, $a_{n+1}=4a_n+2^{n+1}$,求 $\{a_n\}$ 的通项。
- (4) 数列 $\{a_n\}_{n\geq 1}$ 满足 $a_1=2$,且 $n\geq 1$ 时, $a_{n+1}=2a_n^3$,求 $\{a_n\}$ 的通项。

例 9. (1) 数列 $\{a_n\}_{n\geq 1}$ 中, $a_1=1$, $n\geq 2$ 时, $a_n=\frac{n}{n-1}a_{n-1}+2n\cdot 3^{n-2}$, 求 $\{a_n\}$ 的通项。

(2) 数列 $\{a_n\}_{n\geq 1}$ 中, $a_1=2$, $n\geq 1$ 时, $(n+1)a_{n+1}=a_n+n$,求 $\{a_n\}$ 的通项。

例 10. 已知数列 $\{a_n\}_{n\geq 1}$ 满足 $a_1=rac{1}{2}$, $n\geq 1$ 时, $a_{n+1}=rac{na_n}{(n+1)(na_n+1)}$,求 $\{a_n\}$ 的通项 。

例 11. 设正数数列 $\{a_n\}_{n\geq 0}$ 满足 $a_0=a_1=1$, $n\geq 2$ 时, $\sqrt{a_na_{n-2}}-\sqrt{a_{n-1}a_{n-2}}=a_{n-1}$,求 $\{a_n\}$ 的通项。

例 12. 已知数列 $\{a_n\}_{n\geq 1}$ 满足 $a_1=0$, $n\geq 1$ 时, $a_{n+1}=a_n+1+2\sqrt{1+a_n}$, 求 $\{a_n\}$ 的通项。

例 13. 设数列 $\{a_n\}_{n\geq 0}$ 满足 $a_1=2$, $a_{m+n}+a_{m-n}-m+n=\frac{1}{2}\cdot(a_{2m}+a_{2n})$, 其中 m,n 为任意 满足 $m\geq n$ 的 自然 数 。 求证: 对任意 $n\geq 0$,都有 $a_{n+2}=2a_{n+1}-a_n+2$; (2) $\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{1000}}<1$ 。