1124_课堂内容

数组的使用方法

数组的使用:

添加元素几种常用方法

- ✓ 直接使用下标进行元素添加 (注: 最好提前声明空间)
- ✓ 元素访问用的是(), 而非我们常见的[]

思考: 第一个元素如何访问

数组的元素下标开始于1,而非我们常用的0!

这种方式机制相同,借助end关键字

- %添加数组元素的一些方法
- A = [1,2,3,4,5,6];
- A = [A,7] % 利用重构的方法
- $A = 1 \times 7$
 - 1 2 3 4 5 6 7

A = [A, [9, 10]]

 $A = 1 \times 9$

2 3 4 5 6 7 9 10

- % 利用下标, 在中间插入元素
- B = [1,2,3,4,5,6];
- B = [B(1:2), 100, B(3:6)]

 $B = 1 \times 7$

2 100

注意效率问题!

1

思考: 哪种添加元素方式的效率最高?

4

涉及移动元素, 效率不高

3

下标赋值,效 率可提升

5

6

预先声明空间, 效率最好(s越 大越明显)

% 访问

A = [1,2,3,4];

A(1)

ans = 1

A(1:3)

ans = 1×3

1 2 3

A(end:-1:1) % 逆序输出 step = -1

ans = 1×4

4 3 2 1

A(end:-2:1) % step = -2

ans = 1×2

A(2:end) % 访问到最后的元素

ans = 1×3

2 3 4

A([1,3]) % 同时访问多个元素

ans = 1×2

1 3

% 赋值

A = [1,2,3,4]

 $A = 1 \times 4$

1 2 3 4

A(2) = 0

 $A = 1 \times 4$

A([1,2])=[0,0]

 $A = 1 \times 4$

0 0 3 4

A([1:3])=5

 $A = 1 \times 4$ 5 5 5 4

A([1:2])=[6,7]

 $A = 1 \times 4$

6 7 5 4

特殊数组**的**创**建**

• 通过冒号创建一维数组

调用格式为 $X=N_1$:step: N_2 , 从第一个元素 N_1 开始,每次递增(step > 0)或递减 step(step < 0),直到最后一个元素与 N_2 差的绝对值小于或等于|step|为止,默 认step为1

- % 通过冒号创建一维数组
- % 注意 -- 中间是 step

A = 1:5

 $A = 1 \times 5$

1 2 3 4 5

B = 3.2:-0.1:0.1

 $B = 1 \times 32$

3.2000 3.1000 3.0000 2.9000 2.8000 2.7000 2.6000 2.5000 ...

C = 3:2:1

C =

空的 1×0 double 行向量

数组的使用:

特殊数组的创建

· logspace建立一维数组

logspace - 生成对数间距向量 此 MATLAS 函数 生成一个由在 10°a 和 10°b (10 的 N 次幕) 之间的 50 个对数间距点组 成的行向量 y。logspace 函数对于创建频率向量特别有用。该函数是 linspace 和:运算符的 对数等价函数。

logspace(a, b): 在[10³, 10⁵]区间内生成50个差值相等的数 longspace(a, b, n): 在[10³, 10⁵]区间内生成n个差值相等的数 longspace(a, pi): 在[10³, pi]区间内生成50个差值相等的数

>> logspace(0, 2, 3)
ans =
1 10 100

注意这块是闭区间!

logspace(0,1,5)

ans = 1×5

1.0000 1.7783 3.1623 5.6234 10.0000

logspace(0,2,3)

ans = 1×3

1 10 100

特殊数组的创建

• linspace建立一维数组

>>> help linspace linspace - 生成线性间距向量 此 MATLAB 函数 返回包含 x1 和 x2 之间的 100 个等间距点的行向量。

>> linspace(1, 5, 0)

linspace(a, b): 第一个元素为a, 最后一个元素为b, 总数为100的等差数列 linspace(a, b, n): 第一个元素为a, 最后一个元素为b, 有n个元素的等差数列

>> linspace(1, 10, 10) ans = 1 2 3 4 5 6 7 8 9 10 >> linspace(1, 2, 1) n < 2时,返回元素b 2

>> linspace(1, 2, 1) 思考: 该式的输出是什么

空的 1×0 double 行向量

12

linspace(1,10,100)

ans = 1×100

1.0000 1.0909 1.1818 1.2727 1.4545 1.5455 1.6364 ... 1.3636

linspace(1,2,1)

ans = 2

linspace(1,2,0)

ans =

空的 1×0 double 行向量

常见运算

A = [1,2,3,4];

B = [5,6,7,8];

A + B

ans = 1×4

8 6 10 12

A - B

ans = 1×4

-4 -4 -4 -4

A + 1

ans = 1×4

3 2 4 5

% C = [9,10]

% A + C -- 大小不兼容

数组的运算:

算术运算

加、减、乘、左除、右除和乘方

通过格式".*"或者"./"可实现数组乘除,要求数组维度相同

如: A./ B= B.\ A, 其中A是被除数, B是除数

✓ 允许对于单一数操作

ans = 1×4 5 12 21 32

A./B

ans = 1×4

0.2000 0.3333

0.4286

0.5000

B.\A

ans = 1×4

0.2000

0.3333

0.4286

0.5000

算术运算

加、减、乘、左除、右除和乘方

通过乘方格式".^"实现数组乘方运算,包括数组间、数组与某个值的乘方预算

✓ 注意操作符中的"."

错误使用 ___ (第 51 行) 用于对矩阵求幂的维度不正确。请检查并确保矩阵为方阵并且幂为标量。要执行按元素矩阵求幂,请使用''。'。

16

ans = 1×4

1 64 2187 65536

算术运算

加、减、乘、左除、右除和乘方

一般与dot函数等价,运算规则要求数组A和数组B维数相同

dot(A, B): 返回内积结果 dot(A, B, dim): 返回内积结果, dim指定计算的维度


```
A = [1,2,3,4];
B = [5,6,7,8];
% dot(A,B) 返回内积结果
% dot(A,B,dim) 返回内积结果, dim 指定计算的维度
dot(A,B)
```

ans = 70

dot(A,B,1)

ans = 1×4 5 12 21 32

关系运算

6种数组关系运算符:小于<、小于等于<=、大于>、大于等于>=、恒等于==、

不等于~=

运算规则: ✓ 当两个标量比较时,直接比较两个数大小,返回0或1

✓ 当两个维度相等的数组比较时,逐一比较两个数组相同位置元素,

A<B

A = [1,2,3];B = [4,5,6];

>> A > 2 ans = 1×3 <u>logical</u> 数组

0 0 1

思考: 这个式子的结果?

ans = 1×3 logical 数□ 1 1 1

逻辑运算

3种逻辑运算符,与(&)或(|)非(~),运算规则如下:

- 非零元素为真 (1表示) , 零元素为假 (0表示)
- 两个比较量是维度相等的数组时,注意比较两个位置元素,给出比较结果,返回与输入数组维度相同的逻辑数组(元素为0/1)

```
>> A = [1 0 1];
                    >> A|B
                                        >> ~A
>> B = [0 1 0];
                    ans =
                                                           >> A&&B
                                                           逻辑 "与" (&&)和 "或" (||)运算符的操作数必须可转换为标量逻辑值。
ans =
                     1×3 <u>logical</u> 数组
                                          1×3 <u>logical</u> 数组
                                                                      没有快速逻辑运算
                      1 1 1
 1×3 <u>logical</u> 数组
                                        0 1 0
                                                                                                19
0 0 0
```

```
A = [1,0,1];
B = [0,1,0];
A&B

ans = 1×3 logical 数□
0 0 0

A|B

ans = 1×3 logical 数□
1 1 1
```

字符串

ans = 1×3 logical 数口 0 1 0

```
% 单引号和双引号的区别
'a'+'b'
ans = 195
```

```
"a"+"b"
```

ans = "ab"

```
% 数据类型不同 -- 同样的运算符处理结果也不同

% 拼接
s1='we';
s2='do';
s3='not';
s4='have';
s5='example';
s7=[s1,' ',s2,' ',s3,' ',s4,' ',s5]
```

s7 =
'we do not have example'

```
% 逻辑运算
 s5 == "example"
 ans = logical
   1
 s5 == 'e'
 ans = 1×7 logical 数□
    1 0 0 0 0 0 1
 % 借助位置进行元素修改
 s5(s5=='e') = 'Z';
 s5
 s5 =
 'ZxamplZ'
• 可以进行逻辑操作
                    >> s4 == 'e'
                                       >> s5(s4 == 'e') = 'X'
                                                        思考该式的输出结果
 >> s2 = 'do';
                     ans =
 >> s3 = 'not';
                                       >> s5(s4 == 'e') = 'X'
 >> s4 = 'have';
                      1×4 <u>logical</u> 数组
>> s5 = 'example';
                      0 0 0 1
```

• MATLAB中的字符串也可以使用数组的思维进行理解,利用下标进行访问和修改

'exaXple'

- 注意"'与''的区别,引起数据类型的差异
- 能够进行逻辑运算,获得对应的下标进行运算/修改

student(1).name = 'Rita';
student(1).gender = 'F';
student(1).ID = 21312222;
student(1).major = 'CS';
student(1).grade = [100,99,98];

student(2).name = 'Sam';
student(2).gender = 'M';
student(2).ID = 21313333;
student(2).major = 'CC';
student(2).grade = [97,99,98];
student

student = 包含以下字段的 struct

字段	name	gender	ID	major	grade	other_info
1	'Rita'	'F'	21312222	'CS'	[100,99,	[]
2	'Sam'	'M'	21313333	'CC'	[97,99,98]	1×1 struct

- 结构体中存放数据的部分可称为"域", 能够存放任何类型、任何大小的数组和字符串等数据; 使用点号.进行创建和访问
- 不同结构的同名域可以存放不同(类型)内容(内存地址不同)
- 结构体数组可以有一维、二维、更高维, 但一维用的最多

```
% 一个结构体中某一元素为结构体
my_student.name = 'Sam';
my student.gender = 'M';
my_student.ID = 21313333;
my student.major = 'CC';
my_student.grade = [97,99,98];
my_student.other_info.idx1=1;
my_student.other_info.idx2=3;
my_student
my_student = 包含以下字段的 struct:
        name: 'Sam'
      gender: 'M'
          ID: 21313333
       major: 'CC'
       grade: [97 99 98]
   other_info: [1x1 struct]
MATLAB中提供了struct函数用于创建结构数组,调用格式为:
s = struct('field1', values1, 'field2', values2, ...), 其中field表示字段名, value
表示对应的字段值
s = struct('field1', {}, 'field2', {},...),用指定字段field1、field2建立一个空结
构体 (没有数据)
s = struct([]), 建立一个没有字段的空结构
s = struct(obj), 讲对象obj转换为它的等价结构体
field = 'test1';
values = {'123',[4,5,6]};
s = struct(field, values);
S
s = 包含以下字段的 struct
字段
       test1
    '123'
    [4,5,6]
```

s.test1

```
ans = 123' ans = 1 \times 3 4 5 6
```

可用的函数操作

函数	说明
deal	将输入分配给输出
isfield	测试是否是结构数组的字段
struct2cell	将结构数组转换为单元数组
fieldnames	得到结构的字段名
isstruct	是否为结构(1-是; 0-否)
struct	建立结构数组

注意值的问题思考该式的输出

• 示例

```
C = {"A","B","C"};
[a,b,c] = deal(C{:}) % 将输入分配给输出
```

a =
"A"
b =
"B"
c =
"C"

其他函数操作

cell2struct	Convert cell array to structure array	
fieldnames	Field names of structure, or public fields of object	
getfield	Field of structure array	
isfield	Determine whether input is structure array field	
isstruct	Determine whether input is structure array	
orderfields	Order fields of structure array	
rmfield	Remove fields from structure	
setfield	Assign values to structure array field	
struct	Create structure array	
struct2cell	Convert structure to cell array	
structfun	Apply function to each field of scalar structure	