Métodos Numéricos

1er Cuatrimestre 2024

Práctica 1

Elementos de Álgebra Lineal

Nota: \mathbb{R}^n está formado por vectores columna. Cuando se escriben por filas es por comodidad tipográfica.

- 1. Dadas las matrices $A = (a_{ij}) \in \mathbb{R}^{n \times m}$, $B = (b_{ij}) \in \mathbb{R}^{m \times n}$, $D = (d_{ij}) \in \mathbb{R}^{m \times m}$ y los vectores columna $x = (x_i), z = (z_i) \in \mathbb{R}^n$, $y = (y_i), w = (w_i) \in \mathbb{R}^m$ (donde la notación a_{ij} representa el elemento que está en la fila i y en la columna j de la matriz A y la notación x_i representa el elemento i-esimo del vector x), decidir si las siguientes afirmaciones son verdaderas o falsas y en este último caso justificar por qué lo son.
 - a) $x^t A z = \sum_{i=1}^n \sum_{j=1}^m x_i a_{ij} z_j$
 - b) $xz^t = \sum_{i=1}^n x_i z_i$
 - c) $(ADw)_i = \sum_{j=1}^m \sum_{k=1}^m a_{ij} d_{jk} w_k$
 - d) $(B^t D^{-1} y)_i = \sum_{j=1}^m \sum_{k=1}^m b_{ji} d_{jk}^{-1} y_k$ donde $d_{jk}^{-1} = (D^{-1})_{jk}$
 - 2. Sean las siguientes matrices de 3 × 3:

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 0 & 1 \\ 2 & 0 & 2 \end{pmatrix} \quad C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

Para cada una de las particiones en bloques mencionadas a continuación, indicar si es realizable el producto C = AB en bloques. En caso de ser realizable, calcular cada bloque C_{ij} indicando sus dimensiones.

a)
$$A_{11} = [a_{11}], \ A_{12} = [a_{12}, \ a_{13}], \ A_{21} = \begin{bmatrix} a_{21} \\ a_{31} \end{bmatrix}, \ A_{22} = \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix}$$

 $B_{11} = [b_{11}], \ B_{12} = [b_{12}, \ b_{13}], \ B_{21} = \begin{bmatrix} b_{21} \\ b_{31} \end{bmatrix}, \ B_{22} = \begin{bmatrix} b_{22} & b_{23} \\ b_{32} & b_{33} \end{bmatrix}$

b)
$$A_{11} = \begin{bmatrix} a_{11} & a_{12} \end{bmatrix}$$
, $A_{12} = \begin{bmatrix} a_{13} \end{bmatrix}$, $A_{21} = \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$, $A_{22} = \begin{bmatrix} a_{23} \\ a_{33} \end{bmatrix}$
 $B_{11} = \begin{bmatrix} b_{11} \end{bmatrix}$, $B_{12} = \begin{bmatrix} b_{12} & b_{13} \end{bmatrix}$, $B_{21} = \begin{bmatrix} b_{21} \\ b_{31} \end{bmatrix}$, $B_{22} = \begin{bmatrix} b_{22} & b_{23} \\ b_{32} & b_{33} \end{bmatrix}$

c)
$$A_{11} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$
, $A_{12} = \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix}$, $A_{21} = [a_{31}]$, $A_{22} = [a_{32} \ a_{33}]$
 $B_{11} = [b_{11}]$, $B_{12} = [b_{12} \ b_{13}]$, $B_{21} = \begin{bmatrix} b_{21} \\ b_{31} \end{bmatrix}$, $B_{22} = \begin{bmatrix} b_{22} & b_{23} \\ b_{32} & b_{33} \end{bmatrix}$

¿Qué otras particiones válidas son posibles?

3. Sean $A \in \mathbb{R}^{n \times n}$ una matriz con columnas a_1, \ldots, a_n , y $B \in \mathbb{R}^{n \times n}$ una matriz con filas b_1^t, \ldots, b_n^t . Probar que:

- \sqrt{a} Si $\forall x \in \mathbb{R}^n : Ax = Bx$, entonces A = B.
- $\sqrt{\ }$ b) $AB = \sum_{i=1}^{n} a_i \, b_i^t$.
- 4. Exhibir $n \in \mathbb{N}$ y $A, B \in \mathbb{R}^{n \times n}$ para los cuales $AB \neq BA$. Idem para que $tr(AB) \neq tr(A)tr(B)$, siendo $tr(A) = \sum_{i} a_{ii}$ la traza de A.
- $\sqrt{ }$ (5. Sean $A \in \mathbb{R}^{m \times n}$ y $B \in \mathbb{R}^{n \times r}$ tales que AB = 0 ¿Será cierto que A = 0 o B = 0?
- $\int \int 6$. Sean $A \in \mathbb{R}^{n \times n}$ no nula y $B, C \in \mathbb{R}^{n \times m}$ tales que AB = AC ¿Será cierto que B = C?
- 7. Sean $A, B \in \mathbb{R}^{n \times n}$. Dar condiciones necesarias y suficientes sobre A y B para que valga la igualdad $(A+B)^2 = A^2 + 2AB + B^2$. Idem para que $(A+B)(A-B) = A^2 B^2$
- √ [8. Sea $A \in \mathbb{R}^{n \times n}$ y $m \in \mathbb{N}$, probar la igualdad $(I A)(I + A + \ldots + A^m) = (I + A + \ldots + A^m)(I A) = I A^{m+1}$
- 9. Determinar si los siguientes conjuntos de \mathbb{R}^n son linealmente independientes. Cuando no lo sean, escribir uno de sus elementos como combinación lineal del resto.
 - \checkmark a) $C = \{(1, 2, 1, 0), (2, 1, 3, 0), (3, 2, 4, 1)\} \subseteq \mathbb{R}^4$
 - \checkmark b) $C = \{(3, 3, 3), (2, 1, 0), (7, 5, 3)\} ⊆ \mathbb{R}^3$
- 10. Hallar dos bases distintas de los siguientes subespacios de \mathbb{R}^n . Extender las bases propuestas a bases de \mathbb{R}^n .
 - ✓ a) $S = \langle (1, 2, 0), (1, 3, 6), (1, 7, 30) \rangle \subseteq \mathbb{R}^3$
 - \checkmark b) $S = \langle (1, 2), (4, 8) \rangle \subseteq \mathbb{R}^2$
- 7 // 11. Demostrar:
 - 'a) Sea $\lambda \in \mathbb{R}$, $\lambda \neq 0$. El conjunto $\{v_1, \dots, v_i, \dots, v_m\} \subseteq \mathbb{R}^n$, con $m \leq n$, es linealmente independiente si y solo si el conjunto $\{v_1, \dots, \lambda v_i, \dots, v_m\}$ es linealmente independiente.
 -) Sea $\lambda \in \mathbb{R}$. El conjunto $\{v_1, \dots, v_i, \dots, v_j, \dots, v_m\} \subseteq \mathbb{R}^n$, con $m \leq n$, es linealmente independiente si y solo si el conjunto $\{v_1, \dots, v_i + \lambda v_j, \dots, v_j, \dots, v_m\}$ es linealmente independiente.
 - Relacionar estas dos propiedades con el método clásico de triangulación de matrices (Eliminación Gaussiana).
 - 1 12. Sea $A \in \mathbb{R}^{m \times n}$. Demostrar que T(x) = Ax es una transformación lineal.
 - $\sqrt{\left(13. \text{ Sea } A = \begin{pmatrix} 2 & 0 \\ 1 & -2 \end{pmatrix}} \text{ y sea } T(x) = Ax. \text{ Sean } x = (-1, -1) \text{ e } y = (2, 1) \text{ dos puntos del plano. ¿Cuál es la imagen del segmento que tiene por extremo a dichos puntos? Justificar.}$
 - $\sqrt{ }$ (14. Demostrar el punto anterior considerando $A \in \mathbb{R}^{m \times n}$ y x e y dos puntos cualquiera de \mathbb{R}^n .
 - \checkmark (15. Hallar la transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^2$ asociada a la siguiente matriz $A \in \mathbb{R}^{2 \times 3}$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 4 & 3 \end{pmatrix}$$

 \checkmark (16. Hallar la matriz $A \in \mathbb{R}^{3\times 3}$ asociada a la siguiente transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$f(x_1, x_2, x_3) = (x_1 + 2x_2 + 3x_3, 2x_1 + 3x_3, 3x_2)$$

 \checkmark 17. Hallar la matriz $A \in \mathbb{R}^{3\times 3}$ asociada a la siguiente transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$f(x_1, x_2, x_3) = (-x_1, 2x_3, 3x_2)$$

¿Cómo esta transformación lineal mueve los ejes de coordenadas?

✓ (18. Para las siguientes matrices $A \in \mathbb{R}^{m \times n}$ hallar Nu(A), Im(A), su rango fila, su rango columna y comprobar que n = dim(Nu(A)) + dim(Im(A))

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 3 & 4 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{4 \times 3} \quad A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 7 \\ 0 & 6 & 30 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

- \checkmark (19. Para cualquier $u, v \in \mathbb{R}^n$, sea $A = uv^t$.
 - ✓ a) Hallar Im(A) y dim(Nu(A)).
 - \checkmark b) Probar que $A^2 = tr(A) \cdot A$.
- \checkmark (20. Sean $A, B \in \mathbb{R}^{n \times n}$. Probar:
 - \checkmark a) $Nu(B) \subseteq Nu(AB)$.
 - \checkmark b) $Im(AB) \subseteq Im(A)$.
 - \checkmark c) Si AB = 0 entonces $Im(B) \subseteq Nu(A)$.
- 7 (21. Sea $A \in \mathbb{R}^{m \times n}$. Supongamos que dim(Nu(A)) = k y sea $B_1 = \{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$ una base del subespacio Nu(A). Además sea $B_2 = \{v_{k+1}, \dots, v_n\} \subseteq \mathbb{R}^n$ una base tal que $B_1 \cup B_2 = \{v_1, \dots, v_n\}$ es una base de \mathbb{R}^n .
 - ✓ a) Probar que cualquier vector $y \in Im(A)$ se puede escribir como una combinación lineal de $\{Av_{k+1}, \ldots, Av_n\} \subseteq \mathbb{R}^m$.
 - b) Probar que los vectores del conjunto $\{Av_{k+1}, \ldots, Av_n\} \subseteq \mathbb{R}^m$ son linealmente independientes.
 - \checkmark c) Deducir el Teorema de la dimensión: dim(Nu(A)) + dim(Im(A)) = n.
 - (22. Sea $A \in \mathbb{R}^{n \times n}$. Demostrar que las siguientes condiciones son equivalentes (es decir, si una de ellas vale, todas valen).
 - \checkmark a) A es inversible.
 - \checkmark b) No existe $x \in \mathbb{R}^n, x \neq 0$, tal que Ax = 0.
 - $oldsymbol{\mathcal{J}}$ c) Las columnas de A son linealmente independientes.
 - \checkmark d) Las filas de A son linealmente independientes.
 - \checkmark (23. Sean $A \in \mathbb{R}^{n \times n}$ inversible y $B, C \in \mathbb{R}^{n \times m}$. Probar:

- $\int (a) AB = AC \text{ entonces } B = C.$
- \int b) AB = 0 entonces B = 0.
- \checkmark c) Si m = n y si $\forall D \in \mathbb{R}^{m \times m}$: tr(BD) = tr(CD), entonces B = C.
- ✓ d) Si m = n entonces $tr(B) = tr(ABA^{-1})$ (Sug.: demostrar primero que tr(CD) = tr(DC)).
- \bigvee 24. Sean $A, B \in \mathbb{R}^{n \times n}$ probar:
 - ✓ a) Si A es inversible entonces A^{-1} es inversible y $(A^{-1})^{-1} = A$.
 - ✓ b) Si A, B son inversibles entonces AB es inversible y $(AB)^{-1} = B^{-1}A^{-1}$.
 - \checkmark c) Si A es inversible entonces A^t es inversible y $(A^t)^{-1} = (A^{-1})^t$.
- \checkmark (25. Sean $A, B \in \mathbb{R}^{n \times n}$. Probar mediante inducción en la dimensión de la matriz:
 - √ a) Si A y B son triangulares inferiores (superiores) entonces el producto AB es triangular inferior (superior).
 - \checkmark b) Si A es inversible y triangular inferior (superior) entonces A^{-1} es triangular inferior (superior).
- $\sqrt{ }$ 26. Una matriz $A \in \mathbb{R}^{n \times n}$ se dice nilpotente si $A^k = 0$ para algún $k \in \mathbb{N}$. Probar que si A es nilpotente entonces:
 - \checkmark a) A no es inversible.
 - \int b) I A es inversible.
 - $\sqrt{(27. \text{ Sea } x \in \mathbb{R}^n. \text{ Demostrar que } ||x||_2, ||x||_1, ||x||_{\infty} \text{ son normas vectoriales.}}$
- ✓ (28. Graficar los siguientes conjuntos de puntos:
 - a) $A = \{x \in \mathbb{R}^2 / ||x||_2 = 1\}$
 - b) $B = \{x \in \mathbb{R}^2 / ||x||_1 = 1\}$
 - c) $C = \{x \in \mathbb{R}^2 / ||x||_{\infty} = 1\}$
- \checkmark (29./a) Probar la desigualdad de Cauchy-Schwarz-Bunyakovski $|x^ty| \le ||x||_2 ||y||_2$.
 - \checkmark b) Probar que si $x \in y$ son linealmente dependientes, entonces vale la igualdad.
- √(30. Mostrar con un contraejemplo que la desigualdad de C-S-B no se cumple para la norma infinito.
 - \checkmark ¿ Se cumple la desigualdad para la norma uno? Justificar la respuesta.
- \checkmark (31. Probar que si $x \in \mathbb{R}^n$ entonces $\lim_{p \to \infty} ||x||_p = ||x||_{\infty}$.

Resolver en computadora

✓ i Dados $x_1, ..., x_n$ una muestra de una variable aleatoria, implementar rutinas que calculen la media y la varianza utilizando operaciones vectoriales.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$\| \chi - \bar{\chi} \|_2^2$$


```
\checkmark ii Sea A \in \mathbb{R}^{m \times n}.
```

- \checkmark a) Demostrar que A^tA y AA^t son simétricas.
- ✓ b) Implementar una rutina que dada una matriz cuadrada verifique si la misma es simétrica.
- \checkmark c) Analizar la función implementada en el item anterior con la matriz B generada de la siguiente forma:

```
from numpy.random import rand
>> A = rand(4,4);
>> B = A.T@A*0.1/0.1;
```

Analizar el resultado, revisar la implementación y (eventualmente) reimplementar la función.

iii Sean $A, B \in \mathbb{R}^{n \times n}$, con n par y B triangular inferior.

- ✓ a) Realizar la multiplicación AB por bloques, partiendo ambas matrices en bloques de tamaño n/2.
- ✓ b) Implementar una rutina que realice la multiplicación por bloques, evitando cuentas innecesarias.

Funciones útiles

A continuación incluimos ejemplos para crear y operar con matrices y vectores usando Python+Numpy y Matlab/Octave.

• Inicializar matrices y vectores usando distintas sintaxis en Numpy. Tener en cuenta que Numpy maneja como tipos de datos básicos tanto array multidimensional como matrix; para operaciones de álgebra lineal se recomienda usar esta última.

```
from numpy import *
from numpy.linalg import *
# Distintas maneras de inicializar una matriz
A = matrix([[1, 2], [3, 4]])
B = matrix('1_2; 3_4')
C = matrix('1_2;_3_4', float)
# Para los vectores usamos matrices columna
v = matrix([[4],[5]])
w = matrix('4; 5')
\# Crear matrices especiales
I = asmatrix(eve(3))
                                    \# Identidad de 3x3
D = \operatorname{asmatrix}(\operatorname{diag}([1,2])) \quad \# \operatorname{Matriz} \operatorname{diagonal}
N = \operatorname{asmatrix}(\operatorname{zeros}((3,3))) \# \operatorname{Matriz} \operatorname{nula} \operatorname{de} 3x3
# Construir una matriz de 4x4 usando las matrices A,B,C,D como bloques
E = bmat([[A,B],[C,D]])
```

• Operaciones básicas entre las matrices y vectores definidos anteriormente en Numpy

```
\# Suma
A + B
A - B
          \# Resta
A * B
          # Producto de matrices
A * v
          # Producto de matriz por vector
3.2 * A
          # Producto por escalar
A ** 2
          \# Potencia
A.t
          \# Traspuesta
          \# Inversa
inv(A)
```

• Inicializar matrices y vectores en Matlab/Octave, por defecto se inicializan con tipo de dato double.

```
% Distintas maneras de inicializar una matriz
A = [1,2;3,4]
A = [1 \ 2 \ ; 3 \ 4]
C = [[1 \ 2]; [3, 4]]
% Para los vectores usamos matrices columna
v = [4 ; 5]
% Crear matrices especiales
I = eye(3)
                   % Identidad de 3x3
D = \mathbf{diag}([1,2])
                  % Matriz diagonal
N = zeros(3,3)
                  % Matriz nula de 3x3
% Construir una matriz de 4x4 usando las matrices A,B,C,D como bloques
E = [A,B;C,D]
E = [[A,B]; [C,D]]
E = [[A B]; [C D]]
```

• Operaciones básicas entre las matrices y vectores definidos anteriormente en Matlab/Octave

```
A + B
          % Suma
A - B
          % Resta
A * B
          % Producto de matrices
A * v
         % Producto de matriz por vector
3.2 * A
        % Producto por escalar
A^2
          % Potencia
Α'
          % Traspuesta
inv(A)
          % Inversa
```

Referencias

[1] Serge Lang. Linear Algebra. Addison-Wesley Publishing Company, 1986.

- [2] C. Meyer. *Matrix Analysis and Applied Linear Algebra*. Society for Industrial and Applied Mathematics, 2000.
- $[3]\,$ G. Strang. Algebra lineal y sus aplicaciones. Ed. Paraninfo, 2007.