# An application of Bayesian variable selection for finite mixture model of linear regressions

Francesco Fabbri 22 marzo 2018

## 1. Introduction

# 2. Data

# 3. Model

#### 3.1 Priors

Looking at the priors of the model, we can define the initialized parameters of our Gibbs-sampling.

#### 3.1.1 Mixture proportions.

First, we define the vector  $\rho_0$  of the mixture proportions: it's built sampling the values from a conjugate Dirichlet prior distribution:

$$\rho \sim Dirichlet(\alpha_1, ..., \alpha_M)$$

Where M is the number of the possible sub-populations. In the case of M=2, we choose a not-informative value equal to 2 for each  $\alpha$ .

```
initialize_rho = function(k, n_subpop){
   arr = c()
   for(x in 1:n_subpop){
      arr = c(arr, n_subpop)
      }
   vec = rdirichlet(k,arr)
   return(vec)
}
```

#### 3.1.2 Latent indicator variable r.

In each mixture component of the regression model, the prior distributions of the indicator variables  $r_{mj}$  are assumed to be independent  $Bernoulli(d_{mj})$  for j = 1, ..., p. So, looking at the joint distribution of  $r_m$ :

$$\pi(r_m) = \prod_{j=1}^{p} d_{mj} (1 - d_{mj})^{1 - r_{mj}}$$

We can sample the initial value of each  $r_{mj}$  from a non-informative Bernoulli(0.5).

#### 3.1.3 Latent indicator variable z.

Each  $z_i$  is generated from a multinomial distribution, i.e.  $z_i \sim Multinomial(\rho_1, ..., \rho_M)$ 

#### **3.1.4** Priors definition for $\beta$ and $\sigma_m$

The prior of each  $\beta_m(r_m)$  is assumed to be the following g-prior:

$$\beta_m(r_m) \sim N\left(\hat{\beta}_m^{\lambda_m}(r_m), g_m \sigma_m^2 [X_m'(r_m) X_m(r_m)]^{-1}\right)$$

where:

- $\hat{\beta}_m^{\lambda_m}(r_m) = w_m(r_m)X_m'(r_m)Y_m$
- $g_m$  is a positive arbitrary number to fix. It's usually equal to  $n_m$ , which is the size of the sub-population m.
- $w_m(r_m) = [X'_m(r_m)X_m(r_m) + \lambda_m I]^{-1}$
- $\lambda_m$  is the ridge parameter: it's used when we cannot derive the inverse of  $X'_m(r_m)X_m(r_m)$ . With  $\lambda_m = 0$  we have  $w_m(r_m) = [X'_m(r_m)X_m(r_m)]^{-1}$
- $\sigma_m^2 \sim IG(\frac{a_{m_0}}{2}, \frac{b_{m_0}}{2})$ . We could assign to  $a_{m_0}$  and  $b_{m_0}$  some non-informative values (i.e. both equals to 0.01) or we could even fix it equals to 1, in order to avoid uncontrolled values sampled of  $\sigma_m$ .

```
# initialize w_m
w_m_inv_0 = list()
for(idx_m in 1:n_subpop){
  # define X_m(r_m)
  x_m_rm_0 = as.matrix(x_matrix[which(vector_z_0[,idx_m] == 1),
                                which(vector_r_0[idx_m,] == 1),
                                drop=FALSE])
  # check if the matrx X_m(r_m)'*X_m(r_m) is singular or not
  if(is.singular.matrix(t(x m rm 0)%*%x m rm 0)){
    \# w_m(r_m)^{(-1)} = (X_m(r_m)'*X_m(r_m) + lambda_m*I)
    \# lambda_m = 1/p (p is the number of covariates)
    one_{w_m_inv} = t(x_m_rm_0)%*%x_m_rm_0 + (1/dim(x_m_rm_0)[2])*diag(dim(x_m_rm_0)[2])
    }
  else{
    \# w_m(r_m)^{(-1)} = (X_m(r_m)'*X_m(r_m))
    one_w_m_inv = t(x_m_rm_0)%*%x_m_rm_0
  # add inverse of w_m(r_m) to vector
  w_m_inv_0[[idx_m]] = one_w_m_inv
# initialize beta_hat, beta and sigma
vector_beta_hat_0 = list()
vector_beta_0 = list()
vector_sigma_0 = list()
for(idx_m in 1:n_subpop){
  \# beta_hat = [X_m(r_m)'*X_m(r_m)]^{(-1)} * X_m(r_m)'*Y_m
  x_m_rm_0 = as.matrix(x_matrix[which(vector_z_0[,idx_m] == 1),
                                which(vector_r_0[idx_m,] == 1),
                                drop=FALSE])
  w_m = solve(w_m_inv_0[[idx_m]])
  selected_y = y[which(vector_z_0[,idx_m] == 1), drop=F]
  beta_hat_0 = w_m%*%t(x_m_rm_0)%*%selected_y
  # now build the variance of beta, beta_variance = q_m * sigma_m^2 * w_m(r_m)
  \# q_m
  g_m = sum(vector_z_0[,idx_m])
  # sigma_0 - selected value equals to 1 in order to avoid
  sigma_0 = 1 \#rinvgamma(1, 0.1, 0.1)
  # beta variance
  var beta m 0 = g m*sigma 0*solve(w m inv 0[[idx m]])
  # sample of beta m(r m)
  beta_m_0 = mvrnorm(n = 1, mu = beta_hat_0, Sigma = var_beta_m_0)
  # update arrays of beta, beta_hat and sigma
  vector_beta_hat_0[[idx_m]] = as.matrix(beta_hat_0)
  vector_beta_0[[idx_m]] = as.matrix(beta_m_0)
  vector_sigma_0[[idx_m]] = sigma_0
}
```

Finally, we can define the main function, used to initialize the parameters useful for running the algorithm below.

#### 4.1 Posterior

Given the following likelihood, combined with the described priors:

$$l(y,z|\theta) = \prod_{i=1}^n \rho_{z_i} f(y_i|\theta_{z_i}) = \prod_{i=1}^M \rho_m^{n_m} \bigg[ \prod_{i \in G_m} f(y_i|\theta_{z_i}) \bigg]$$

We can compose the posterior given by:

$$p(\theta, z|y) \propto \prod_{i=1}^{M} \rho_m^{n_m} \left[ \prod_{i \in G_m} f(y_i|\theta_{z_i}) \right] \pi(\theta)$$

#### 5.1 Gibbs Sampling

Given the posterior obtained by the combination of the priors and the likelihood we provide the **full conditional distributions** from which the algorithm samples the posterior parameters.

• 1. Update latent variable Z. We update the values of the latent variable z which determines the structure of each group. To do this, for each observation we sample the z value form the following conditional distribution:

$$P(z_i = m|\theta, y) = \frac{\rho_m f(y_i|\theta_m)}{\sum_{m=1}^{M} \rho_m f(y_i|\theta_m)}$$

In other words, for each sub-population we compute the probability to assign a specific observation to it, then we sample the value of z from each distribution. The density function at the numerator corresponds to the normal density related to y, where:

$$[y_i|\theta_m] \sim N\bigg(x_i(r_m)\beta_m(r_m),\sigma_m^2\bigg)$$

Where  $\theta_m = (\beta_m, \sigma_m^2, \rho_m, r_m)$ .

```
# Update Z (GetPosterior, UpdateArrayZ) -----
GetPosteriorZ = function(obs, theta_array, n_subpop){
  num = c()
  for(idx_m in 1:n_subpop){
    selected_beta = theta_array[['beta']][[idx_m]]
   label_beta = rownames(selected_beta)
    one_x = obs[label_beta]
   mu_normal = one_x[label_beta]%*%selected_beta
    sigma_m = theta_array[['sigma']][[idx_m]]
   f_norm = dnorm(x = obs[1], mean = mu_normal, sd = sqrt(sigma_m))
   rho_m = theta_array[['rho']][[idx_m]]
   prod_f_rho = rho_m*f_norm
   num = c(num, prod_f_rho)
  prob_z = num/sum(num)
  vec values = 1:3
  return(sample(x = vec_values, size=1, prob = prob_z))
}
UpdateArrayZ = function(theta_array, dataset){
  vector z = c()
  for(idx_obs in 1:dim(dataset)[1]){
    obs = dataset[idx_obs,]
    vector_z = c(vector_z, GetPosteriorZ(obs, theta_array, n_subpop))
  #vector_z = c(rep(0,60), rep(1, 140))
  return(vector_z)
}
```

• 2. Update  $\rho$ . The conditional distribution of  $\rho$ , given z, is the following:

$$\rho \sim Dirichlet(n_1 + \alpha_1, ..., n_M + \alpha_M)$$

Where  $n_1, n_2, ..., n_M$  are the cardinality of each sub-population.

```
UpdateRho = function(z_array, n_subpop){
  vector_n_proportion = colSums(z_array) + n_subpop
  vector_rho = rdirichlet(1, vector_n_proportion)
  return(vector_rho)
}
```

• 3. Update sub-populations. At each iteration we update the sub-populations, looking at the two latent variables z and r.

• 4. Update  $w_m(r_m)$ . As for the previous step, we need to update the matricies involved in our algoritm: in this case, we update the  $p \times p$  matrix  $w_m(r_m)$ . At each iteration we check whether the updated matrix  $X'_m(r_m)X_m(r_m)$  is singular or not: in the first case, the ridge parameter  $\lambda_m$  is added to the computed matrix otherwise not. This parameter is equal to 1/p, where p is the number of covariates used in the specific sub-population. Adding  $\lambda_m$  we have  $w_m(r_m) = \left(X'_m(r_m)X_m(r_m) + \lambda_m I\right)^{-1}$ 

```
# check if the matrix X_m_rm'X_m_rm is singular
UpdateW_inv = function(theta_array, covariates, n_subpop){
    for(idx_m in 1:n_subpop){
        x_product = t(covariates[[idx_m]])%*%covariates[[idx_m]]
        if(is.singular.matrix(x_product)){
            lambda_m = (1/dim(covariates[[idx_m]])[2])
            identity_matrix = diag(dim(covariates[[idx_m]])[2])
            one_w_m_inv = x_product + lambda_m*identity_matrix
        }
        else{
            one_w_m_inv = x_product
        }
        theta_array$w_m_inv[[idx_m]] = one_w_m_inv
    }
    return(theta_array)
}
```

• 5. Update  $\sigma_m$  and  $\hat{\beta}_m(r_m)$ . In order to sample  $\sigma_m^2$  we need first to update the parameter  $\hat{\beta}_m^{\lambda_m}(r_m)$ ,

$$\hat{\beta}_m^{\lambda_m}(r_m) = w_m(r_m) X_m'(r_m) Y_m$$

So now, we need to sample the variance of each subpoulation, updating first the parameters of the full conditional, which is an inverse gamma:

$$\sigma_m^2 \sim IG\left(\frac{a_m}{2}, \frac{b_m}{2}\right)$$

We have:

- $a_m = n_m + q_m + a_{m_0}$ , where  $q_m = \sum_{i=1}^{p} r_{m_i}$ , i.e. the number of active covariariates in the sub-population
- $b_m = [Y_m X_m(r_m)\beta_m(r_m)]'[Y_m X_m(r_m)\beta_m(r_m)] + \frac{[\beta_m(r_m) \beta_m^{\lambda_m}(r_m)]'w_m^{-1}(r_m)[\beta_m(r_m) \beta_m^{\lambda_m}(r_m)]}{n_m} + b_{m_0}$

In this case, the sampled parameters depends on  $z, r_m, \beta_m$ 

```
# Update sigma and BetaHat ----
# function for updating Beta Hat
UpdateBetaHat = function(theta_array, z_array, covariates){
```

```
vector_beta_hat = list()
  for(idx_m in 1:length(theta_array$beta)){
   w_m = solve(theta_array$w_m_inv[[idx_m]])
   y_m = y[which(z_array[,idx_m] == 1)]
   beta_hat = w_m%*%t(covariates[[idx_m]])%*%y_m
    vector_beta_hat[[idx_m]] = beta_hat
 return(vector_beta_hat)
}
### update sigma (a and b)
UpdateSigma = function(theta_array,z_array,covariates){
  \# update a_m, b_m and sigma_m
  vector_q = rowSums(theta_array[['r']])
  vector_n_proportion = colSums(z_array)
  ### update a ###
  vector_a = vector_n_proportion + vector_q + 0.001
  # update beta-hat
  theta_array[['beta_hat']] = UpdateBetaHat(theta_array, z_array, covariates)
  # update_b
  vector b = c()
  for(idx_m in 1:length(theta_array$beta)){
    selected_beta = theta_array[['beta']][[idx_m]]
   x_m_beta_m = covariates[[idx_m]]%*%selected_beta
   num_b = y[which(z_array[,idx_m] == 1)] - x_m_beta_m
   num_b = t(num_b)%*%num_b
   selected_beta_hat = theta_array[['beta_hat']][[idx_m]]
   diff_beta_beta_hat = selected_beta - selected_beta_hat
   w_m_inv = theta_array$w_m_inv[[idx_m]]
   frac_num = t(diff_beta_beta_hat)%*%w_m_inv%*%diff_beta_beta_hat
   second_term = frac_num/vector_n_proportion[[idx_m]]
   one_b = num_b + second_term + 0.001
   vector_b = c(vector_b, one_b)
  }
  # sample sigma m
  vector_sigma = c()
  for(idx_m in 1:length(theta_array$beta)){
    sigma_sample = rinvgamma(n = 1, shape = vector_a[idx_m]/2, scale = vector_b[idx_m]/2)
   vector_sigma = c(vector_sigma, sigma_sample)
  theta_array$sigma = vector_sigma
  return(theta_array)
}
```

• 6. Update  $\beta$ . The conditional distribution of  $\beta_m$  is given by a multivariate normal distribution (MVN). Indeed, we have:

$$\beta_m(r_m) \sim MVN\left(\mu_m, \Omega_m\right)$$

Where:

```
• \mu_m = \Omega_m \left( \frac{n_m X_m(r_m) Y_m' + w_m' - 1)(r_m) \hat{\beta}_m^{\lambda_m}(r_m)}{n_m \sigma_m^2} \right) (p \times 1 \text{ vector})
  • \Omega_m^{-1} = \left[\frac{n_m X_m'(r_m) X_m(r_m) + w_m^{-1}(r_m)}{n_m \sigma_m^2}\right] \left(p \times p \text{ matrix}\right)
# Update Beta ----
UpdateBeta = function(z_array,covariates,theta_array){
  # initialization: Omega, n_m, w_m
  vector_omega = list()
  # update beta
  for(idx_m in 1:length(theta_array$beta)){
    proportion = sum(z_array[,idx_m])
    cov_multiplied = t(covariates[[idx_m]])%*%covariates[[idx_m]]
    w_m_inv = theta_array$w_m_inv[[idx_m]]
    num_omega = proportion*cov_multiplied + w_m_inv
    sigma_m = theta_array$sigma[[idx_m]]
    one_inverse_omega = num_omega/(proportion*sigma_m)
    omega = solve(one_inverse_omega)
    vector omega[[idx m]] = omega
  theta_array$omega = vector_omega
  # mu
  vector_mu = list()
  for(idx_m in 1:length(theta_array$beta)){
    proportion = sum(z_array[,idx_m])
    x_y_multiplied = t(covariates[[idx_m]])%*%y[which(z_array[,idx_m] == 1)]
    first_term = proportion*x_y_multiplied
    w_m_inv = theta_array$w_m_inv[[idx_m]]
    beta_hat = theta_array$beta_hat[[idx_m]]
    second_term = w_m_inv%*%beta_hat
    one_omega = vector_omega[[idx_m]]
    sigma_m = theta_array$sigma[[idx_m]]
    mu = one_omega%*%(first_term + second_term)
    mu = mu/(proportion*sigma_m)
    vector_mu[[idx_m]] = mu
  # sample of beta
  vector_beta = list()
  for(idx_m in 1:length(theta_array$beta)){
    estimate = as.matrix(mvrnorm(n=1,
                                     mu =vector_mu[[idx_m]],
                                     Sigma = vector_omega[[idx_m]]))
    vector_beta[[idx_m]] = estimate
    for(cov name in rownames(estimate)){
      theta_array$old_beta[[idx_m]][cov_name,1] = estimate[cov_name,1]
    }
  }
  #print('Vector beta')
  #print(vector_beta)
  theta_array$beta = vector_beta
  return(theta_array)
```

• 7 Update r. In the case of the 2nd latent variable, which addressess the task to select the right covariates for each subgroup, we have the following probability distribution:

$$p(r_{mj} = 1 | \theta_m) = \frac{1}{1 + \exp\{l_n(\theta_m | r_{mj} = 0) - l_n(\theta_m | r_{mj} = 1)\}}$$

And, obviously:

$$p(r_{mj} = 0|\theta_m) = 1 - p(r_{mj} = 1|\theta_m)$$

Now,  $l_n(\theta_m|.)$  is the log-likelihood of our model and there are two possible scenarios that affect the values of this function. Looking at a single  $r_{mj}$ , if at the time of the computation of the probability the covariate j in the sub-group m is active, then we can build easily the 2 log-likelihood. The first  $(l_n(\theta_m|1))$  would be computed just using all the active covariates, while for the second one  $(l_n(\theta_m|0))$  we just need to remove the  $\beta_j$  from the computation. In details:

• 
$$l_n(\theta_m|r_{mj}=1) = \sum_{i \in G_m} f\left(y_i \middle| x_i(r_m)\beta_m(r_m), \sigma_m^2\right)$$

• 
$$l_n(\theta_m | r_{mj} = 0) = \sum_{i \in G_m} f\left(y_i \middle| x_i(r_{m(-j)}) \beta_{m(-j)}(r_{m(-j)}), \sigma_m^2\right)$$

Where m(-j) imposes to take all the covariates but j considered in the sub-population m.

Instead, when a covariate j is already deactivated, we need to compute  $l_n(\theta_m|r_{mj}=1)$  using an "older value" of the  $\beta_{mj}$ . In other words, we use the last active beta computed during the run. We have:

$$l_n(\theta_m|r_{mj}=1) = \sum_{i \in G_m} f\left(y_i|x_i(r_m)\beta_m^*(r_m), \sigma_m^2\right)$$

Where  $\beta_m^*(r_m) = [\beta_1, ..., \beta_j^*..., \beta_p]$  with  $\beta_j^*$  which is the last non-zero value of the coefficient j in the subgroup m computed by the algorithm.

```
# Update r (and LogLike) ----
### Generate LogLike
ComputeProb = function(theta_array,vector_z, idx_m,single_label){
  # compute the prob of having active a specific variable in a sub-population
  active_covariates = labels(which(theta_array$r[idx_m,] == 1))
  if(single label %in% active covariates){
    ### 1st case: we can compute easily l_n(0) and l_n(1)
    # create loglike with 0 and 1
   mu \ vector = c()
   for(idx_obs in which(vector_z[,idx_m] == 1)){
      specific_covariates = x_matrix[idx_obs,active_covariates ,drop = F]
      beta_m = theta_array$beta[[idx_m]]
      mu = specific_covariates%*%beta_m
      mu_vector = c(mu_vector, mu)
    one_y = y[which(vector_z[,idx_m] == 1)]
    sigma_m = theta_array$sigma[[idx_m]]
    prob_1 = dnorm(x = one_y,
                   mean = mu vector,
                   sd=sqrt(sigma_m))
   prob 1 = sum(log(prob 1))
```

```
# prob0
  without_label = active_covariates[active_covariates!= single_label]
 mu_vector = c()
  for(idx_obs in which(vector_z[,idx_m] == 1)){
    specific_covariates = x_matrix[idx_obs,without_label ,drop = F]
    beta_m_without_j = theta_array$beta[[idx_m]][without_label,]
   mu = specific_covariates%*%beta_m_without_j
   mu_vector = c(mu_vector, mu)
 }
  one_y = y[which(vector_z[,idx_m] == 1)]
  sigma_m = theta_array$sigma[[idx_m]]
 prob_0 = dnorm(x = one_y,
                 mean = mu_vector,
                 sd=sqrt(sigma m))
 prob_0 = sum(log(prob_0))
 probab = c(prob_0, prob_1)
 res = probab
else{
 ### 2nd case: we need to re-activate the variable,
 ### using the last non-zero value computed before
  #prob0
 mu_vector = c()
 for(idx_obs in which(vector_z[,idx_m] == 1)){
    specific covariates = x matrix[idx obs,active covariates ,drop = F]
   beta_m = theta_array$beta[[idx_m]]
   mu = specific_covariates%*%beta_m
   mu_vector = c(mu_vector, mu)
  one_y = y[which(vector_z[,idx_m] == 1)]
  sigma_m = theta_array$sigma[[idx_m]]
  prob_0 = dnorm(x = one_y,
                 mean = mu_vector,
                 sd=sqrt(sigma_m))
 prob_0 = sum(log(prob_0))
  # prob1
 mu vector = c()
  # add the deactivated covariate j, taking its last computed value (beta*)
 beta_m = theta_array$beta[[idx_m]]
 last_value_computed = as.matrix(theta_array$old_beta[[idx_m]][single_label,])
 reactivated = rbind(beta_m, last_value_computed)
  # order by names
 reactivated = as.matrix(reactivated[order(rownames(reactivated)),])
 labels_reactivated = rownames(reactivated)
 for(idx_obs in which(vector_z[,idx_m] == 1)){
   mu = x_matrix[idx_obs,labels_reactivated,drop = F]%*%reactivated
   mu_vector = c(mu_vector, mu)
 }
 one_y = y[which(vector_z[,idx_m] == 1)]
  sigma_m = theta_array$sigma[[idx_m]]
```

```
prob_1 = dnorm(x = one_y,
                   mean = mu_vector,
                   sd=sqrt(sigma_m))
   prob_1 = sum(log(prob_1))
    # define the probabilities
   probab = c(prob_0, prob_1)
   res = probab
 return(res)
}
# Update r ---
UpdateR = function(theta_array, vector_z){
  # initialize r
 old_r_array = theta_array$r
  new_r_array = theta_array$r
  n_subpop = dim(theta_array$r)[1]
  for(idx_m in 1:n_subpop){
    # append the likelihood in a matrix
    # compute probabilities and sample r
   for(single_label in colnames(theta_array$r)){
      if(single_label!='intercept'){
        likelihood = ComputeProb(theta array, vector z, idx m, single label)
        one_prob = 1/(1 + exp(likelihood[1] - likelihood[2]))
        probability = c(1- one prob, one prob)
        one_r = sample(x = 0:1, size = 1, prob = probability)
       new_r_array[idx_m,single_label] = one_r
        # update label (keep (1) or discard (0))
     }
   }
   ### at this point we need to: activate/deactive the covariates (changing beta values)
    # reactivate beta by r
   new active = c()
   for(single_label in colnames(theta_array$r)){
      if((old_r_array[idx_m,single_label] == 0) & (new_r_array[idx_m,single_label] == 1)){
        new_active = c(new_active, single_label)
        beta_m = theta_array$beta[[idx_m]]
       last_value = as.matrix(theta_array$old_beta[[idx_m]][single_label,] )
        reactivated = rbind(beta_m, last_value)
       reactivated = as.matrix(reactivated[order(rownames(reactivated)),])
        theta_array$beta[[idx_m]] = reactivated
     }
   }
  }
  # deactivate the beta by r
  theta_array$r = new_r_array
  for(idx_m in 1:length(theta_array$beta)){
```

```
active_labels = names(which(theta_array$r[idx_m,]==1))
   theta_array$beta[[idx_m]] = as.matrix(theta_array$beta[[idx_m]][active_labels,])
}
return(theta_array)
}
```

### 5.2 Variable selection for the 2 latent variables

After a sufficient number of samples of parameters are drawn from the posterior distribution by the Gibbs sampler, they are used for posterior inference.

**Laten variable r.** In order to determine the active variables of the linear regression model of each subpopulation, we collect the posterior samples of  $r_{mj}$ 's and adopt the **median probability criterion**. So, we decide to activate or not a variable j in a specific subpopulation m computing the following probability:

$$p(r_{mj}|y) = \frac{1}{K} \sum_{k=1}^{K} I\{r_{mj}^{(k)}\} \ge \frac{1}{2}$$

**Latent variable z.** Looking at the variable z, we assign an observation  $y_i$  to the mth sub-population if:

$$p(z_i = m|y) = \max_{g \in 1,..M} \sum_{k=1}^{K} I\{z_i^{(k)} = g\}$$

# 6. Simulation

## 6.1 Setting

We choose to simulate our model generating 200 observations from a mixture model of two linear regressions (M = 2), given by:

$$y \sim \rho N(x'\beta_1, 1) + (1 - \rho)N(x'\beta_2, 1)$$

Each observation of the independent variable x is generated by a 5-dimensional multivariate normal distribution with mean vector 0 and covariance matrix  $\Sigma$ . Let  $\Sigma(i,j)$  denote the (i,j) entry of  $\Sigma$ , where  $\Sigma(i,j) = \pi^{|ij|}$  where  $\pi = 0.5$ . Then, the regression coefficients are set to be  $\beta_1 = (1,0,0,3,0)$  and  $\beta_2 = (1,2,0,0,3)$ .

```
### DATA ###

# Simulated data ----
# 2 subpopulations
n_obs = 200
n_coeff = 5
rho1 = 0.2
rho2 = 0.3
rho3 = 0.5

true_proportions = c(rho1, rho2, rho3)*n_obs

intercept_beta = 0.5
beta1 = c(1,-2,3,0,0)
beta2 = c(-1,0,0,0,-2)
```

```
beta3 = c(0,0,-3,2,-1)
# build covariance matrix
covariance_matrix = matrix(0.5, nrow = length(beta1), ncol = (length(beta1)))
for(i in 1:length(beta1)){
  for(j in 1:length(beta1)){
    covariance_matrix[i,j] = covariance_matrix[i,j]^abs(i - j)
  }
}
dataset = data.matrix(data.frame(mvrnorm(n = n_obs,
                                         mu = rep(0,length(beta1)),
                                         Sigma = covariance_matrix)))
dataset = cbind(1, dataset)
colnames(dataset)[1] = 'intercept'
beta1 = c(intercept_beta,beta1)
beta2 = c(intercept_beta,beta2)
beta3 = c(intercept_beta,beta3)
y = c()
# beta1
for(i in 1:true_proportions[1]){
 new_y = dataset[i,]%*%beta1
 y = c(y, new_y)
# beta2
for(i in (true_proportions[1]+1): (true_proportions[1]+true_proportions[2])){
 new_y = dataset[i,]%*%beta2
 y = c(y, new_y)
# beta3
for(i in (1 + true_proportions[1]+true_proportions[2]):n_obs){
 new_y = dataset[i,]%*%beta3
 y = c(y, new_y)
# add error
for(i in 1:length(y)){
  y[i] = rnorm(1,0,1) + y[i]
dataset = cbind(y, dataset)
#dim(dataset)
\#summary(lm(y \sim -1+., data=as.data.frame(dataset[1:60,])))
```

```
#colnames(dataset)
### sim ----
# Initialization variables
TIMES = 10000
n_{subpop} = 3
x_matrix = as.matrix(dataset[,-1])
x_matrix = as.matrix(x_matrix[,order(colnames(x_matrix))])
head(x_matrix)
##
       intercept
                                    X2
                                                ХЗ
                                                           Х4
         1 0.5870943 -0.6866642 0.36450394 2.5194345 0.2777575
## [1,]
## [2,]
              1 -0.6261642 -0.6414254 -0.99550359 -1.3095030 -0.3471621
## [3,]
              1 0.4605938 -1.7463163 -0.02019866 1.6385955 1.0537906
              1 -0.4716788 -0.3511484 0.25505741 -0.3066640 0.3028659
## [4,]
              1 -0.3911880 0.7450888 -0.54551268 0.2352803 -0.6847200
## [5,]
               1 0.7598042 0.3713170 -0.56802578 0.2113438 -0.4127169
## [6,]
initialized = Initialization(x_matrix, y, n_subpop)
theta_array= initialized$theta
\#beta\ test1 = as.matrix(beta1)
#row.names(beta_test1) = row.names(theta_array$beta[[1]])
\#beta\_test2 = as.matrix(beta2)
#row.names(beta_test2) = row.names(theta_array$beta[[2]])
#theta_array$beta[[1]] = beta_test1
#theta_array$beta[[2]] = beta_test2
z_array = initialized$vector_z
history_theta = list()
history_z = list()
# Run -----
# 1-4 / 1-2-5
for(i in 1:TIMES){
  #print('-----
  #print('Iteration:')
  #print(i)
  #print('z')
  new_z = UpdateArrayZ(theta_array, dataset)
  history_z[[i]] = new_z
  for(idx_m in 1:n_subpop){
   z_array[which(new_z==idx_m),idx_m] = 1
   z_array[which(new_z!=idx_m),idx_m] = 0
   }
  #print('rho')
  theta_array$rho = UpdateRho(z_array,n_subpop)
  #print('subpop')
  covariates = UpdateSubPop(theta_array,z_array, x_matrix, n_subpop)
  #print('W_m inv')
  theta_array = UpdateW_inv(theta_array, covariates, n_subpop)
```

```
#print('sigma')
#print(theta_array$sigma)
theta_array = UpdateSigma(theta_array, z_array,covariates)
#print('beta')
theta_array = UpdateBeta(z_array,covariates,theta_array)
#print(theta_array$sigma)
#print('r')
theta_array = UpdateR(theta_array, z_array)
#print(theta_array$r)
history_theta[[i]] = theta_array
}

print("number_of_iterations:")
## [1] "number_of_iterations:"
print(TIMES)
## [1] 10000
```

# 6.2 Diagnostics

Now, we want to evaluate the performance of our simulation applying the techniques described in the section **5.2**, but first, we look at the distributions of the estimated parameters  $\theta_m = (\beta_m, \sigma_m^2, \rho_m, r_m)$ 

```
### beta ###
n_{covariates} = 5
summary_parameters = data.frame(matrix(ncol = n_covariates+1, nrow = n_subpop))
colnames(summary_parameters) = row.names(theta_array$old_beta[[1]])
beta_estimates = list()
for(idx_m in 1:n_subpop){
  for(theta in history_theta){
    beta_estimates[[toString(idx_m)]] = rbind(beta_estimates[[toString(idx_m)]], theta$beta[[idx_m]])
  }
}
# plot - lines
for(idx_m in 1:length(beta_estimates)){
  print('Subpopulation n:')
  print(idx_m)
  par(mfrow=c(2,3))
  list_covariates = sort(unique(row.names(beta_estimates[[idx_m]])))
  for(one_cov in list_covariates){
    values = beta_estimates[[idx_m]][which(row.names(beta_estimates[[idx_m]])==one_cov),]
    one_median = median(values)
    summary_parameters[idx_m,one_cov] = one_median
    plot(values, type = 'l', main = one_cov)
```

}





## [1] "Subpopulation n:"
## [1] 2





```
## [1] "Subpopulation n:"
## [1] 2
                  intercept
                                                                  X1
                                                                                                              X2
                                                                                            9
                                                 100 150
     300
                                           Frequency
                                                                                       Frequency
Frequency
                                                                                            40
                                                                                            20
     100
                                                 20
     0
                                                 0
          0.0 0.2 0.4 0.6 0.8
                                                        -0.2
                                                                   0.2 0.4 0.6
                                                                                                    -0.2
                                                                                                                0.2 0.4 0.6
                                                                values
                    values
                                                                                                            values
                                                                 X4
                      Х3
                                                                                                              X5
                                                 900
     200 400 600
                                           Frequency
                                                 400
Frequency
                                                                                       Frequency
                                                                                            100
                                                 200
                                                 0
                                                                                            0
                    -3.0
                           -2.5
                                 -2.0
                                                           1.0
                                                                       2.0
                                                                             2.5
                                                                                                       -1.2
                                                                                                              -0.8
                                                                                                                      -0.4
             -3.5
                                                    0.5
                                                                 1.5
                                                                                                -1.6
                    values
                                                                                                            values
                                                                values
## [1] "Subpopulation n:"
## [1] 3
```

## intercept X1 X2 X3 X4 X5 ## 1 0.9868597 1.1041566 -1.93786800 2.893594 0.097560112 0.3309032 ## 2 0.4364465 0.1696263 0.06095156 -3.172707 2.026674640 -0.8445177 ## 3 0.6195591 -1.0873061 0.07359522 NA 0.001514447 -1.8119057





Now, we compute the probabilities related to z and r in order to see which groups and covariates are selected by the algorithm. For the z we just look at the probabilities of the 1st group in order to see if the displayed values look reasonable.

#### ### z ###

Now, we compute the probabilities of r for each sub-population.

```
prob_r = c()
  for(one_sample_r in history_theta){
    prob_r = cbind(prob_r, one_sample_r$r )
}

par(mfrow=c(3,1))
for(idx_m in 1:dim(prob_r)[1]){
    one_vec = c()
    list_covariates = sort(unique(colnames(prob_r)))
    list_covariates = list_covariates[2:length(list_covariates)]
    for(one_cov in list_covariates){
        one_p = sum(prob_r[idx_m, which(colnames(prob_r)==one_cov)])/length(history_theta)
        one_vec = c(one_vec, one_p)
}
barplot(one_vec, ylim = c(0,1), names.arg = list_covariates)
    abline(0.5, 0)
}
```





