CHAPITRE 2: COMBINATOIRE ET DENOMBREMENT

I. Premières définitions

<u>Définition</u>: Un ensemble E est une « collection d'objets distincts » x, qu'on appelle éléments. On dit alors que x appartient à E (respectivement n'appartient pas à E) et on note $x \in E$ (resp. $x \notin E$)

Exemples:

- $E = \{a; b; c\}$ est un ensemble fini à 3 éléments.

Condinal(E) = 3

Les ensembles $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ et \mathbb{R} ont une infinité d'éléments.

<u>Définition</u>: On appelle k-uplet ou k-liste d'un ensemble E une collection ordonnée de k éléments de E. Un k-uplet s'écrit avec des parenthèses.

Remarque:

Un 2-uplet est appelé un couple. Un 3-uplet est appelé un triplet.

Exemples:

- On considère le triplet (a,b,c). L'ordre intervient (a,b,c) \neq (b,a,c).

- Les objets peuvent être identiques. Par exemple le couple (a,a) (ex : coordonnées d'un point)

Définition: On dit que deux ensembles sont disjoints s'ils n'ont aucun élément en commun.

E={3e=2h; & eZ} F={5c=2h+1; keZ} EnF=Ø

<u>Définition</u>: Soit 2 ensembles finis E_1 et E_2

L'ensemble noté $E_1 \times E_2$, appelé produit cartésien, est l'ensemble des couples (a_1, a_2) où $a_1 \in E_1$ et $a_2 \in E_2$.

Exemple:

Soit 2 ensembles E et F tels que $E = \{a; b; c\}$ et $F = \{f; g\}$. E et F sont **disjoints**.

Alors l'ensemble $E \times F = \{(a, f); (a, g); (b, f); (b, g); (c, f); (c, g)\}$

II. Dénombrement dans un ensemble fini

Dénombrer, c'est compter le nombre d'éléments que contient un ensemble fini.

<u>Définition</u>: On appelle partie d'un ensemble E (ou sous-ensemble de E), un ensemble F tel que tous les éléments de F appartiennent aussi à E.

On note $F \subset E$. (F est <u>inclus</u> dans E)

Exemple:

Soit 2 ensembles E et F tels que $E = \{a; b; c; d; e\}$ et $F = \{b; e\}$.

Tous les éléments de F appartiennent à E donc F est un sous-ensemble de E E = lettre de l'olphabet E = lettre de l'olphabet

Propriété: Principe additif

Soit 2 ensembles finis E et F disjoints tels que E contient n éléments et F contient p éléments.

Alors l'ensemble $E \cup F$ contient n + p éléments.

Exemple:

Soit $E_1 = \{a ; b ; c ; d\}$ à 4 éléments et $E_2 = \{\alpha ; \beta ; \gamma\}$ à 3 éléments

Alors $E_1 \cap E_2 = \emptyset$ donc E_1 et E_2 sont disjoints

donc l'ensemble $E_1 \cup E_2$ contient 4 + 3 = 7 éléments.

En effet $E_1 \cup E_2 = \{a \; ; b \; ; c \; ; d ; \alpha ; \beta ; \gamma \}$

Remarque:

Le principe additif s'applique plus généralement pour la réunion de k ensembles finis disjoints, avec k entier supérieur ou égal à 2.

Méthode: Dénombrer en utilisant un diagramme

Dans une classe, deux options sont proposées : latin et théâtre.

On sait que, 16 élèves pratiquent le latin, 14 le théâtre, 5 pratiquent les deux options et 8 n'en pratiquent aucune.

Calculer le nombre d'élèves de cette classe.

16+14-5+8=33

Propriété: Principe multiplicatif

Soit 2 ensembles finis E et F tels que E contient n éléments et F contient p éléments.

Alors l'ensemble $E \times F$ contient $n \times p$ éléments.

Remarque:

Le principe multiplicatif s'applique plus généralement pour le produit cartésien de k ensembles finis, avec k entier supérieur ou égal à 2.

Méthode: Appliquer le principe multiplicatif pour dénombrer

Enoncé 1:

Vidéo https://youtu.be/wzo1XXXaaqY

Un restaurant propose sur sa carte 3 entrées, 4 plats de résistance et 2 desserts.

a) Combien de menus différents composés d'une entrée, d'un plat et d'un dessert peut-on constituer ?

b) Même question si le dessert est une tarte aux pommes imposée.

Enoncé 2:

On lance deux dés à six faces. Combien y a-t-il d'issues possibles ?

Ex: capacités 2 et 3 p15, 51, 52, 53, 55, 57 p28-29

III. Arrangements et permutations

1) Nombre de k-uplets d'un ensemble à n éléments

Propriété : Le nombre de k-uplets d'éléments d'un ensemble à n éléments est n^k

Exemple:

Soit un ensemble E tel que $E = \{a, b\}$. Tous les triplets (3-uplets) possibles des éléments de E sont :

(a, a, a), (a, a, b), (a, b, a), (b, a, a), (b, b, a), (b, a, b), (b, b, b), (a, b, b)

Donc il y 8 « 3-uplets » des 2 éléments de E. Donc 2³ triplets.

Ex code fin

2) Permutations

<u>Définition</u>: On appelle <u>permutations</u> d'un ensemble à *n* éléments tous les ordres possibles dans les *n*-uplets constitués des éléments de l'ensemble

Exemple:

Soit E={Bleu; Blanc; Rouge}

Les permutations des triplets (3-uplets) possibles sont :

(bleu,blanc,rouge), (blanc,bleu,rouge), (bleu,rouge,blanc), (rouge,blanc,bleu), (rouge,bleu,blanc), (blanc,rouge,bleu)

=> Il y a donc 6 permutations possibles.

<u>Propriété</u>: Le nombre de permutations d'un ensemble à n éléments s'écrit n!, se lit « factorielle n » et est défini par $n! = 1 \times 2 \times 3 \times ... \times n$

Exemple:

Dans l'exemple précédent, l'ensemble E a 3 éléments donc il y a :

 $3! = 1 \times 2 \times 3 = 6$ permutations dans cette ensemble.

3) Arrangements

Définition : Soit E un ensemble à n éléments. Et $k \le n$.

Un arrangement de k éléments de E est un k-uplet d'éléments distincts de E.

for de refetation

Propriété: Dans un arrangement l'ordre des éléments compte et les éléments ne se répètent pas.

Exemples:

On considère l'ensemble $E = \{a; b; o; p; r\}$.

- Les triplets (b, o, a) et (r, a, p) sont des arrangements à 3 éléments de E.

Et (p, a, r) est un arrangement à 3 éléments de E différent de (r, a, p). L'ordre des éléments est à prendre en compte.

- Le quintuplet (p, r, o, b, a) est un arrangement à 5 éléments de E.
- Le sextuplet (b, a, r, b, a, r) n'est pas un arrangement de E car des éléments se répètent.

Propriété:

Le nombre d'arrangements de k éléments de E est égal à :

$$n \times (n-1) \times (n-2) \times ... \times (n-k+1) = \frac{n!}{(n-k)!}$$

Exemple : On prolonge l'exemple précédent pour calculer le nombre d'arrangements à 3 éléments de E.

- Il existe 5 choix pour la 1^{ère} lettre.

- La 1^{ère} lettre étant fixée, il existe 4 choix pour la 2^e lettre. Car il n'y a pas répétition d'éléments.

- Les deux premières lettres étant fixées, il existe 3 choix pour la 3^e lettre.

En appliquant le principe multiplicatif, le nombre d'arrangements à 3 éléments de E est égal à : $5 \times 4 \times 3 = 60$

$$= \frac{5!}{(5-3)!} \qquad \frac{5!}{(5-3)!} = \frac{1 \times 2 \times 3 \times 4 \times 5}{1 \times 2}$$

Méthode: Dénombrer des ensembles simples

- 1. On lance 7 fois une pièce de 1€ pour jouer à Pile ou Face. Déterminer le nombre de résultats possibles.
- 2. Deux joueurs jouent aux dominos, chacun recevant 7 dominos au hasard parmi les 28 dominos composant le jeu. Combien de distributions possibles y a-t-il?
- 3. On dispose de 4 gâteaux différents. Chacun leur tour, les 4 invités en choisit un pour le manger.

Combien de distributions possibles y a-t-il? 2) 28! E={dominos} 181:28 (for desupetition) 3) 4! E={64,62,63,64} 1E1=21

<u>Ex</u>: capacités 4, 5 p17; 25, 27, 31 p27; 59, 60, 61, 62 p29

IV. Combinaisons

1) Nombre de combinaisons

Définition : Soit E un ensemble à n éléments. Et $k \le n$.

Une **combinaison** de k éléments de E est une partie (ou un sous-ensemble) de E.

haglet de E ou l'ordre ne compte pos (a, h, c) = (c, a, h)

Propriété : Soit *E* un ensemble à *n* éléments.

Le nombre de combinaisons de k éléments de E est égal à :

 $\frac{n \times (n-1) \times (n-2) \times \dots \times (n-k+1)}{k!} = \frac{n!}{k! (n-k)!}$

Ce nombre se note : $\binom{n}{k}$ et se lit « k parmi n »

Exemple: On considère l'ensemble $E = \{1; 2; 3; 4; 5\}$.

Le sous-ensemble $\{1; 2; 3\}$ est appelée une combinaison de E à 3 éléments.

Le sous-ensemble $\{2;5\}$ est appelée une combinaison de E à 2 éléments.

Pour une combinaison, l'ordre n'a pas d'importance.

Ainsi $\{1; 2\}$ et $\{2; 1\}$ correspondent à la même combinaison de E.

 $\binom{n}{0} = 1$ Cas particuliers: Pour tout entier naturel n: = n

Méthode: Dénombrer des combinaisons

Enoncé 1:

Au bridge, chaque joueur possède une main de 13 cartes extraites d'un jeu de 52 cartes.

1. Combien de mains peut-on distribuer?

15(53) 13 yeld, order ne comple pos sous rejectation > combinaison 52 2) 12 yeld, combinaison [E1: 52-13: 39:39(13): 39! x13

Enoncé 2:

Dans une classe du lycée, on interroge au hasard 20 élèves.

14 déclarent aimer les maths, 7 déclarent aimer la physique et enfin 4 déclarent aimer les 2 matières. (On pourra utiliser un diagramme pour représenter la situation).

On choisit au hasard 4 de ces élèves parmi les 20 élèves.

Parmi tous les choix possibles :

- 1. Combien comporte 4 élèves qui aiment les maths?
- 2. Combien comportent exactement 2 élèves qui n'aiment que les maths et 2 autres qui n'aiment que la

physique?

The proof of the groupe
$$3 \cdot 4 = \binom{20}{4}$$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof of the groupe $3 \cdot 4 = \binom{20}{4}$

The proof

3) Coefficients binomiaux

Le nombre $\binom{n}{k}$ de combinaisons de k parmi n porte également le nom de **coefficient binomial** en référence à une loi de probabilité : la loi binomiale qui est définie à l'aide des coefficients $\binom{n}{k}$. Celle-ci sera étudiée dans un chapitre ultérieur.

Propriété de symétrie: Pour tout entier naturel p tel que $0 \le k \le n$: $\binom{n}{n-k} = \binom{n}{k}$ $\binom{3}{3} : \binom{3}{4}$

Propriété du triangle de Pascal : Pour tout entier naturel p tel que $0 \le k \le n$: $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \qquad \binom{5}{2} + \binom{5}{3} = \binom{5}{3}$

$$\frac{D\text{émonstration au programme:}}{\binom{n}{k}} + \binom{n}{k+1} = \frac{n!(k+1)!}{(k+1)!(n-k+1)!} + \frac{n!(n-k)!}{(k+1)!(n-k-1)!} + \frac{n!(n-k)!}{(k+1)!(n-k-1)!} + \frac{n!(n-k)!}{(k+1)!(n-k-1)!} + \frac{n!(n-k)!}{(k+1)!(n-k)!} + \frac{n!(n-k)!}{(k+1)!$$

Méthode: Calculer des coefficients binomiaux

Vidéo https://youtu.be/-gvlrfFdaS8

Calculer: a)
$$\binom{25}{24}$$
 : $\binom{25}{3}$ = 25

Vidéo https://youtu.be/mfcBNlUuGaw

b)
$$\binom{4}{2} : \binom{3}{2} + \binom{3}{4} : \binom{3}{4} + \binom{3}{4} : 343 = 6$$

Avec la calculatrice :

Il est possible de vérifier les résultats à l'aide d'une calculatrice. La fonction se nomme "combinaison" ou "nCr". Pour calculer $\binom{25}{24}$, on saisit : 25combinaison24 ou 25nCr24 suivant le modèle de calculatrice.

3) Triangle de Pascal

Le tableau qui suit se complète de proche en proche comme combinaisons répondant à la propriété du triangle de Pascal.

Le triangle de Pascal peut être utilisé par exemple pour déterminer rapidement les coefficients binomiaux.

n k	0	1 1	2	3	4	5	6			
0	1				- FACTURED		WAS DAY			
1	1	1								
2	1_	2	1							
3	1	3	3	1						
4	1000	4	6	4	1					
5	1	5	10	10	5	1				
6	1	6	15	20	15	6	1			
7	1	7	21	35	35	21	7	7]	_	-
- G	4) Part	ies d'un	2 & ensembl	e 56	70	56	24	8 /	7	

Propriété : Soit E un ensemble à n éléments.

Le nombre de sous-ensemble de E est égal à :

$$\sum_{k=0}^{n} {n \choose k} = {n \choose 0} + {n \choose 1} + {n \choose 2} + \dots + {n \choose n} = 2^{n}$$

Démonstration au programme :

- Le nombre de sous-ensemble de E est égal à la somme des sous-ensembles à 0 éléments, à 1 éléments, à 2 éléments, ..., à n éléments.

éléments, ..., à
$$n$$
 éléments.
Soit : $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n}$

- Par ailleurs, pour construire un sous-ensemble de E, on considère n étapes où à chaque élément de E, on décide de le choisir ou de ne pas le choisir pour l'inclure dans le sous-ensemble.

Il y a donc deux possibilités par étape et il y a n étapes.

Il y a donc $2 \times 2 \times ... \times 2$ (n facteurs) possibilités de construire un sous-ensemble de E, soit 2^n .

Exemple:

Soit : $E = \{1, 2, 3\}.$

Alors toutes les parties de E sont :

Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}.

Elles sont au nombre de 8 et en effet : $2^3 = 8$.

Ex : capacités 6, 7 p19 ; 35, 36 (oral), 38 p27 ; 69, 71, 72, 73, 75, 81, 84 p31-32 Exo synthèse : capacité 9 p21 ; 90, 92, 95, 99 p32-33, sujets D, E, G p45