CO Project Report

Implementing pipelined MIPS processor using Verilog

Group: 46

we divided our work among the team members into stages:

- 1-First of all, we implemented **Single Cycle MIPS Processor**.
- 2-Then, we implemented the **4 Pipeline Register Files** and their test benches.
- 3-After that, we implemented **MEM to MEM forwarding** technique.
- 4-Then, we implemented the **ALU to ALU forwarding** technique.
- 5-Then, we implemented the **Forwarding to ID stage**.
- 6-After That, we implemented **Hazard Detection Unit** and its test bench.
- 7-Then, we implemented the **Branch Prediction Unit**.
- 8-Finally, we edited the **Top module** implemented in the first stage in order to work with the pipelined version.

9 -The **supported** instructions are [**add,sub**,**sw**, **lw**, **sll**, **and**, **or**, **beq**].

Figure 1: This image represents the single cycle processor

Figure 2: This image represents the pipelined processor.

Modules functionality:

ALU: supports operations [addition, subtraction, shift left logical, and ,or]

Alu control: *in case of lw / sw*: tell the alu to add the offset to the address.

In case of beq: tell the alu to subtract two input registers.

In case of R format: the alu control does the operation depending on the function field.

If function =100000=>add

If function =100010=>subtract

If function =100100=>and

If function =100101=>or

If function =000000=>sll

Register file: Save the data in registers faster than the data memory.

Mux: take two inputs and selection, and determines the output depending on the selection.

Control unit: takes op code as an input , and depending on its value it determines all signals of instruction memory , data memory , register file , all muxes , alu control , jumb and determine the branch condition.

Pc: take the current address, and every clock cycle it adds 4 to it, and in case of branch taken jump to the address of label and in case of jump it goes to the jump address.

Shift left logical by 2: it works in case of I format, Taking the immediate and multiply it by 4 to verify the equation: (pc+4)+4*immediate by the help of an adder module.

Adder: It takes 2 inputs and add them.

And: takes the zero flag from the alu, and branch signal from control unit, to determine the branch taken or not.

Sign extension: take 16 bits from the immediate and turns to 32 bits to support negative numbers.

Data memory: it stores large memory, and in case of lw, it reads the word inside it, in case sw it saves the word inside it.

Instruction memory: it stores instructions in binary, in

order to use them to perform their required functions.

Data Hazard detection unit: detects if the instruction lw is followed by R format instruction.it stalls the pc for one cycle, and it preserves the data in the IF/ID pipeline register for another one cycle, and make all control signals equal to zero.

Prediction unit: it compares the values of the two outputs of the register file, to determine whether the branch will be taken or not.

Forwarding: It checks whether there is a dependency between the operands of an instruction, and the result of another one.

Synth result:

Project File:	lala.xise	Parser Errors:	No Errors
Module Name:	Top_pipline	Implementation State:	Placed and Routed
Target Device:	xc7a100t-3csg324	• Errors:	No Errors
Product Version:	ISE 14.7	Warnings:	363 Warnings (5 new)
Design Goal:	Balanced	Routing Results:	All Signals Completely Routed
Design Strategy:	Xilinx Default (unlocked)	Timing Constraints:	All Constraints Met
Environment:	System Settings	Final Timing Score:	0 (Timing Report)

Device Utilization Summary							
Slice Logic Utilization	Used	Available	Utilization	Note(s)			
Number of Slice Registers	226	126,800	1%				
Number used as Flip Flops	226						
Number used as Latches	0						
Number used as Latch-thrus	0						
Number used as AND/OR logics	0						
Number of Slice LUTs	173	63,400	1%				
Number used as logic	155	63,400	1%				
Number using O6 output only	145						
Number using O5 output only	4						
Number using O5 and O6	6						

Number using O5 output only	4			
Number using O5 and O6	6			
Number used as ROM	0	·	100	
Number used as Memory	8	19,000	1%	
Number used as Dual Port RAM	0	75,000	170	
Number used as Single Port RAM	0	70		
Number used as Shift Register	8		155	
Number using O6 output only	8			
	0			
Number using 05 output only				
Number using O5 and O6	0		(6)	
Number used exclusively as route-thrus	10	_		
Number with same-slice register load	8	-		
Number with same-slice carry load	2			
Number with other load	0			
Number of occupied Slices	79	15,850	1%	
Number of LUT Flip Flop pairs used	268			
Number with an unused Flip Flop	56	268	20%	
Number with an unused LUT	95	268	35%	
Number of fully used LUT-FF pairs	117	268	43%	
Number of unique control sets	2			
Number of slice register sites lost to control set restrictions	6	126,800	1%	
Number of bonded <u>IOBs</u>	138	210	65%	
Number of RAMB36E1/FIFO36E1s	0	135	0%	
Number of RAMB18E1/FIFO18E1s	3	270	1%	
Number using RAMB18E1 only	3	8		
Number using FIFO 18E1 only	0			
Number of BUFG/BUFGCTRLs	1	32	3%	
Number used as BUFGs	1			
Number used as BUFGCTRLs	0			
Number of IDELAYE2/IDELAYE2_FINEDELAYs	0	300	0%	
Number of ILOGICE2/ILOGICE3/ISERDESE2s	0	300	0%	
Number of ODELAYE2/ODELAYE2_FINEDELAYs	0			
Number of OLOGICE2/OLOGICE3/OSERDESE2s	0	300	0%	
Number of PHASER_IN/PHASER_IN_PHYs	0	24	0%	
Number of PHASER_OUT/PHASER_OUT_PHYs	0	24	0%	
Number of BSCANs	0	4	0%	
Number of BUFHCEs	0	96	0%	
Number of BUFRs	0	24	0%	
Number of CAPTUREs	0	1	0%	
Number of DNA PORTs	0	1	0%	
Number of DSP48E1s	0	240	0%	

Number of FRAME_ECCs	0	1	0%	
Number of IBUFDS_GTE2s	0	4	0%	
Number of ICAPs	0	2	0%	
Number of IDELAYCTRLs	0	6	0%	
Number of IN_FIFOs	0	24	0%	
Number of MMCME2_ADVs	0	₩ 6	0%	
Number of OUT_FIFOs	0	24	0%	
Number of PCIE_2_1s	0	1	0%	
Number of PHASER_REFs	0	6	0%	
Number of PHY_CONTROLs	0	6	0%	
Number of PLLE2_ADVs	0	6	0%	
Number of STARTUPs	0	1	0%	
Number of XADCs	0	1	0%	
Average Fanout of Non-Clock Nets	2.75			

Performance Summary					
Final Timing Score:	0 (Setup: 0, Hold: 0)	Pinout Data:	Pinout Report		
Routing Results:	All Signals Completely Routed	Clock Data: Clock Report			
Timing Constraints:	All Constraints Met				

Detailed Reports							
Report Name	Status	Generated	Errors	Warnings	Infos		
Synthesis Report	Current	Thu Dec 7 21:53:48 2017	0	223 Warnings (5 new)	25 Infos (0 new)		
Translation Report	Current	Thu Dec 7 21:53:57 2017	0	0	0		
Map Report	Current	Thu Dec 7 21:55:54 2017	0	140 Warnings (0 new)	5 Infos (0 new)		
Place and Route Report	Current	Thu Dec 7 21:56:27 2017	0	0	3 Infos (0 new)		
Power Report							
Post-PAR Static Timing Report	Current	Thu Dec 7 21:56:49 2017	0	0	4 Infos (0 new)		
Bitgen Report							

Secondary Reports				
Report Name	Status	Generated		

Date Generated: 12/07/2017 - 23:43:05

Test Cases.

1-Pipeline Without Hazards.

2-Data hazard.

3- ALU to ALU forwarding.

4-Beq not taken.

5-Hazard and forwarding together.

```
## test5.txt - Notepad

| File | Edit | Format | View | Help |
| Iw | $50,32($t0) |
| add | $t1,$s0,$s1 |
| sub | $t2,$t2,$t2 |
| sw | $t1,36($t0) |
```

VSIM 4> run					
#	100 1	16	21	x	x
force -freeze	sim:/TB_top_pipl	ine/clk 1 0	, 0 {50 ns}	-r 100	
VSIM 5> run					
#	200 0	21	22	48	x
run					
#	300 0	21	22	70	x
run					
#	400 0	18	18	x	10
run					
#	500 2	16	16	0	x
run					
#	600 x	x	x	x	x
run					
#	700 x	x	x	x	x
run					
MOTING CS					

6-Memory to Memory forwarding.

Mem-to-Mem-	Forwarding	g.txt - N	Notepad			
File Edit Format	View I	Help				
add \$s3, \$t1, lw \$s1, 0(\$t2) sw \$s1, 0(\$t3) sub \$s2, \$t4,))	·				
run						
#	100	0	16	16	x	x
run						
#	200	1	18	22	32	x
run		_				
#	300	2	19	22	18	x
run #	400	2	19	22	37	х
run						
#	500	0	20	25	56	x
run						
# VSIM 14> run	600	X	х	x 429	4967291	х
#	700	x	х	x	x	x