## Mecânica Clássica Moderna (W.F. Wreszinski, EDUSP, 1997) - Conteúdo e Modificações Previstas

W. F. Wreszinski Instituto de Física, Universidade São Paulo

Recebido em 1998

O livro Mecânica Clássica Moderna (W.F. Wreszinski, EDUSP, 1997) trata os assuntos pertinentes à mecânica clássica em nível de pós-graduação - transformações canônicas (capítulo que inclui os princípios variacionais, equações de Hamilton-Jacobi, variáveis de ângulo-ação, sistemas integráveis e simetrias e o teorema de Liouville-Arnold) e a teoria clássica de perturbações (capítulo que inclui o teorema da média, teoria de perturbações independente do tempo e introdução ao problema de pequenos denominadores, e o teorema adiabático) de forma a enfatizar o ponto de vista geométrico (Arnold). Está também incluída uma discussão da estabilidade de sistemas Hamiltonianos, em particular a estabilidade estrutural dos pontos hiperbólicos, tendo em vista aplicações posteriores à dinâmica caótica. As aplicações ao problema de Kepler também visam uma preparação ao estudo ou problema restrito de três corpos, e à teoria KAM, discutida nos capítulos seguintes.

Os capítulos seguintes são adequados tanto a um curso de tópicos, como a um curso intensivo de um semestre, deixando alguns tópicos de lado como sistemas dissipativos. A idéia é introduzir o aluno ao teorema KAM e problemas correlatos (incluindo pontos homoclínicos e o teorema de Birkhoff-Smale e dinâmica simbólica), alguns aspectos estocásticos do movimento determinístico (incluindo atratores estranhos e medi-

das fractais), e a transição à estocasticidade global (incluindo brevíssima introdução à teoria de Aubry-Mather) através de modelos "solúveis" ou os mais simples possíveis, que preservem ainda a maioria das características estruturais da teoria. Em uma segunda edição, faríamos algumas modificações importantes: discutiríamos "quando é uma trajetória um mínimo da ação" de forma diferente (veja a seguir) e para o teorema KAM usaríamos o trabalho de C. Chande e H. R. Jauslin - A Version of Thirring's Approach to the KAM Theorem for Quadratic Hamiltonians with Degenerate Twist - a aparecer no J. Math. Phys., ainda mais claro e mais simples que o modelo de Thirring usado. Além disso, discutiríamos melhor o modelo de Chirikov-Taylor e a teoria de de Aubry-Mather, seguindo algumas notas de J. Moser.

Finalmente, tentaríamos eliminar os inúmeros erros de impressão, que resistiram a todos os nossos esforços.

## Quando é uma trajetória clássica um mínimo da ação ?

A ação clássica é  $S=Sq(t)=\int_0^T L(q,\dot{q})dt$  calculada ao longo da trajetória q(t) com Lagrangiana L, e com a especificação adicional de que q(0)=a, q(T)=b. Seja  $\eta(t)$  uma função sobre [0,T] com  $\eta(0)=\eta(T)=O$  e considere a expansão de S segundo uma trajetória fixa q(t):

$$S^*(q + \epsilon \eta) = S^*(q) + \epsilon \int_0^T \left( \frac{\partial L}{\partial \dot{q}} \dot{\eta} + \frac{\partial L}{\partial q} \eta \right) dt + \frac{\epsilon^2}{2|} \int_0^T \left[ \frac{\partial^2 L}{\partial \dot{q}^2} \dot{\eta}^2 + \partial \frac{\partial^2 L}{\partial q \partial \dot{q}} \dot{\eta} \eta + \frac{\partial^2 L}{\partial q^2} \eta^2 \right] dt + \dots \equiv S^* + \epsilon \delta S^* + \frac{\epsilon^2}{2|} \delta^2 S^* + \dots$$

W. F. Wreszinski 217

A propriedade de extremo, expressa por  $\delta S^* = 0$ , e uma integração por partes em  $\delta S^*$  conduz às equações de Euler-Lagrange  $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0$ .

Entretanto, para ter alguma informação sobre propriedades de minimização, é necessário considerar derivadas de ordem superior, começando por  $\delta^2 S^*$ .

Uma condição necessária para q(t) ser um mínimo de  $S^*$  é que a forma quadrática  $\delta^2 S^*$  seja positiva definida. Considere a função

A contribuição dominante a  $\delta^2 S^*$  vem de  $\dot{\eta}^2$ , pois

$$\int \eta_{\sigma\tau}^2 = 0(\sigma^2) \int \eta_{\sigma\tau} \dot{\eta}_{\sigma\tau} = 0(\sigma) \int \dot{\eta}_{\sigma\tau}^2 = 0(1)(\sigma \to 0)$$

Como isso é verdade  $\forall \tau$  e para arbitrariamente pequeno, obtemos a condição de Legendre

$$\frac{\partial^2 L}{\partial \dot{q}^2} \tag{1}$$

que é uma condição necessária.

No caso do Lagrangiano

$$L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}m\omega^2 x^2$$

temos

$$\delta^2 S^* = \frac{m}{2} \int_0^T dt (\dot{\eta}^2 - \omega^2 \eta^2)$$

$$Seja \ b = \frac{x_1 - x_0 \cos \omega T}{\sin \omega T}$$

 $Ent \tilde{a} o$ 

e

$$L = \frac{1}{2}m(\dot{x}^2 - \omega^2 x^2) = \frac{1}{2}m\omega^2((b^2 - a^2)\cos 2\omega t - 2ab\sin 2\omega t).$$

$$S^* = \int_0^T L dt = \frac{1}{2} m\omega ((b^2 - a^2) \sin 2\omega T + 2ab \cos 2\omega T - 1)).$$

Após algumas operações

$$S^* = m\omega \frac{(x_1^2 + x_0^2)\cos\omega T - 2x_1x_0}{2\sin\omega T}$$
 (4)

como  $\eta(O) = \eta(T) = 0$ 

$$\eta = \sum_{n \ge 1} C_n \eta_n(t)$$

$$\eta_n(t) = \sqrt{\frac{2}{T}} \sin \frac{n\pi t}{T}$$

 $\epsilon$ 

$$\delta^2 S^* = \frac{1}{2} m \sum_{n>1} \left( \frac{n^2 \pi^2}{T^2} - \omega^2 \right) C_n^2 \tag{2}$$

e a ação Lagrangiana será mínima desde que

$$\omega T < \pi$$
 (3)

O valor limite  $T=\pi/\omega$ , que corresponde ao semiperíodo do movimento, é chamado de PONTO CON-JUGADO ou PONTO FOCAL. (Em geral, o problema de achar os  $\eta_n$  tais que

$$\delta^2 S^* = \sum_n \frac{1}{2} \lambda_n C_n^2$$

implica em resolver o problema de Sturm-Liouville associado, que é  $-m\ddot{\eta}_n + \frac{\partial^2 L}{\partial x^2}\eta_n = \lambda_n\eta_n$ ).

Voltemos ao caso do oscilador harmônico e ao cálculo da sua ação Lagrangiana. Partindo da solução geral

 $x = a\cos\omega t + b\sin\omega t$ 

temos

$$x_0 = a$$

$$x_1 = x_0 \cos \omega T + b \sin \omega T$$

Para  $\omega T << 1, S^*$  tende à ação de uma partícula livre,

$$m\frac{(x_1-x_0)^2}{2T}.$$

Para  $T=2x_1x_0/(x_1^2+x_0^2)_1S^*$  passa por zero, e para  $\omega T \to \pi$ ,  $S^* \to -\infty$ . Observe que, para um sistema geral, considerando as trajetórias tais que  $x(0)=x_0=a$ ,, rotuladas pelos momentos  $p:x(p,t),\,x(p,0)=a,\,\forall p$ , e se quisermos considerar a maneira como extremos próximos desviam um do outro, obtemos uma equação característica (equação de Jacobi). Considere a quantidade

$$J(p,t) = \frac{\partial x(p,t)}{\partial p} \tag{5}$$

A diferença entre duas trajetórias é

$$x(p+\epsilon,t) - x(p,t) = \epsilon J(p,t) + O(\epsilon^2)$$



Como x(p,t) satisfaz a

$$\frac{d}{dt} \left( \frac{\partial L}{\partial x} \right) - \frac{\partial L}{\partial x} = 0 \tag{6}$$

derivamos (6) com respeito a p:

$$\frac{d}{dt} \left( \frac{\partial^2 L}{\partial \dot{x}^2} \dot{J} \right) + \left[ \frac{d}{dt} \left( \frac{\partial^2 L}{\partial x \partial \dot{x}} \right) - \frac{\partial^2 L}{\partial x^2} \right] J = 0 \tag{7}$$

que é a equação de Jacobi. Temos

$$J(p,0) = 0 \tag{8}$$

e, como  $m\dot{x}(p,0)=p$ ,

$$\frac{\partial \dot{x}(p,0)}{\partial p} = \frac{1}{m} \Rightarrow \frac{\partial J(p,0)}{\partial t} = \frac{1}{m} \tag{9}$$

Pontos conjugados ocorrem quando

$$J(p,T) = 0 (10)$$

e implicam em <u>reconvergência</u> no ponto b, conforme a figura; por isso b é denominado ponto focal. Em mais de uma dimensão definindo  $J_{ik}(p,t) = \frac{\partial x_i(p,t)}{\partial p_k}$ , vem o análogo det  $J_{ik}(p,T) = 0$  quando  $x_i(T)$  é um ponto focal, e pode-se mostrar que eles são partes de superfícies geométricas denominadas superfícies <u>cáusticas</u>.

Quando os pontos extremais variam ligeiramente a ação S(b,T;a) também variará ligeiramente, e  $p(0) = -\frac{\partial S^*}{\partial a} | b, T \text{ (porque?)}.$ 

Temos  $D \equiv \frac{1}{J} = \frac{\partial p}{\partial b} = -\frac{\partial^2 S^*}{\partial a \partial b}$  (em mais dimensões o análogo é  $D = \det J_{ik}^{-1}(p,t) = \det \left[\frac{\partial^2 S}{\partial a_i \partial b_k}\right]$ . Em um ponto focal D é infinito e J = 0. Assim, muitas trajetórias terão reconfluído em b (exercício). Finalmente, usando (4), vê-se que os pontos focais correspondem a meios- períodos e, também, por (2), vemos que esses pontos correspondem a  $\lambda_1(T) = 0$  (instabilidade da 2a. variação).

É interessante observar que a existência de pontos focais não é o único motivo de existência de diversas trajetórias clássicas ligando dois pontos dados em um dado intervalo de tempo. No caso de potenciais rígidos i.e., que tendem ao infinito quando  $x \to \pm \infty$  rapidamente, isso tende a ocorrer devido a "múltiplas reflexões".

Para o poço de potencial com paredes rígidas em x=0 e x=a temos o exercício: mostrar que as ações para as trajetórias com número par de reflexões nas paredes são dadas por

$$S(x,t;y,0) = m\left(\frac{x - y + 2na^2}{2t}\right) \quad (n \in \mathbb{Z})$$

e com número ímpar

$$S(x,t;y,0) = \frac{m(x - y + 2na)^2}{2t} \quad (n \in Z)$$

onde m é a massa da partícula.

Sabemos que a solução da equação de Hamilton-Jacobi é única. Entretanto, a ação Lagrangiana também satisfaz a uma equação de Hamilton-Jacobi, cuja solução, em geral, <u>não</u> é única (!), por se relacionar a um problema de contorno diferente. A existência de pontos focais já demonstra esse fato. Um outro aspecto interessante é o seguinte: para que potenciais lisos ocorre o mesmo fenômenos visto acima com as duas paredes (em x = 0 e x = a)? Esse fenômeno foi estudado por Ph. Chocquard - Traitement Semi Classique des Forces Générales daus la Représentation de Feynman - Helv. Phys. Acta 28, 89-157 (1955).

Na ação Lagrangiana figura o problema de contorno

$$\vec{q} = \vec{q}(\vec{q}_1, t_1, \vec{q}_2, t_2, t).$$

Considere o oscilador <u>anarmônico</u> dado pelo Hamiltoniano

W. F. Wreszinski

$$H = \frac{p^2}{2m} + \frac{1}{4}\gamma q^4$$

com  $\gamma>0.~$  A equação de Hamilton-Jacobi para esse oscilador é

$$\frac{\partial S^*}{\partial tt} + \frac{1}{2m} \left( \frac{\partial S^*}{\partial q} \right)^2 + \frac{1}{4} \gamma q^4 = 0$$

O sistema sendo conservativo, t é variável cíclica e

$$S^* - S_0^* = F(E, q) - Et$$

onde F é a ação reduzida de Maupertuis. De fato, para F resulta

$$\frac{1}{2m} \left( \frac{dF}{dq} \right)^2 + \frac{1}{4} \gamma q^4 = E$$

de onde

$$F(q, q_0, E) = \int_{q_0}^{q} dx \sqrt{2m \left(E - \frac{1}{4}\gamma x^4\right)}$$

com

$$E = E(p_0, q_0) = \frac{p_0^2}{2m} + \frac{1}{4}\gamma q_0^4$$

A energia estando fixada pelas condições iniciais, temos em seguida

$$t = \sqrt{\frac{m}{2}} \int_{q_0}^{q} dx \sqrt{\frac{1}{E - \frac{1}{4}\gamma x^4}} = \frac{\partial F}{\partial E}$$

Quanto à ação Lagrangiana  $S^*(1,2) = \int_1^2 L(\vec{q}(1,2,t),\vec{q}(1,2,t)).dt$  ela é solução de

$$\frac{\partial S^*}{\partial t_2} + \frac{1}{2m} \left( \frac{\partial S^*}{\partial q_2} \right)^2 + \frac{1}{4} \gamma q^4 = 0$$

$$-\frac{\partial S^*}{\partial t_1^-} + \frac{1}{2m} \left(\frac{\partial S^*}{\partial q_1}\right)^2 + \frac{1}{4} \gamma q_1^4 = 0$$

Podemos também achar as soluções pelo Ansatz

$$S^*(1,2) = F(1,2.E) - E(t_2 - t_1)$$

$$= \int_{q_1}^{q_2} dx \sqrt{2m\left(E - \frac{1}{4}\gamma x^4\right)} - E(t_2 - t_1)$$

com a condição

$$t_2 - t_1 = \sqrt{\frac{m}{2}} \int_{q_1}^{q_2} dx \sqrt{\frac{1}{E - \frac{1}{4}\gamma x^4}}$$

que substitui  $E=E(p_0,q_0)=\frac{p_0^2}{2m}+\frac{1}{4}\gamma q_0^4$ . A multiplicidade possível de soluções aparece aqui. Dado  $\tau=t_2-t_1$  assim como  $q_1$  e  $q_2$ , a energia E não é fixada pelas condições iniciais como em S, mas é necessário resolver a equação anterior  $\tau=\tau(q_1,q_2,E)$ , encontrando  $E=E(q_1,q_2,\tau)$ .

Damo-nos conta de que podemos ligar  $q_1$  a  $q_2$  em um tempo dado, adaptando a energia de forma a executar um número crescente, de reflexões intermediárias nos pontos de retorno onde V=E. A multiplicidade de soluções é devida ao fato de que o período T do movimento depende da energia (exercício!). Assim, há quatro famílias de trajetórias conforme a figura. Para a família caracterizada por n períodos além do movimento direto de  $q_1$  a  $q_2$ , temos

$$\tau = \tau_0(E_n) + nT(E_n) =$$

$$= \sqrt{\frac{m}{2}} \int_{q_1}^{q_2} \frac{dx}{\sqrt{E_n - \frac{1}{4}\gamma x^4}} + n\sqrt{\frac{m}{2}} \frac{dx}{\sqrt{E_n - \frac{1}{4}\gamma x^4}}$$

e a ação reduzida de Maupertuis fica

$$F_n = \int_{q_0}^q dx \sqrt{2m\left(E_n - \frac{1}{4}\gamma x^4\right)} + n \oint dx \sqrt{2m\left(E_n - \frac{1}{4}\gamma x^4\right)}$$

com ação Lagrangiana final.

$$S_n^* = S_0^*(1,2) + n \left( \oint dx \sqrt{2m \left( E_n - \frac{1}{4} \gamma x^4 \right)} - T E_n \right)$$

Essa multiplicidade está excluída no caso harmônico (potencial "mole") porque o período do movimento independe da energia: lá a multiplicidade de soluções só ocorre para intervalos de tempo correspondentes aos múltiplos do meio-período (pontos focais).

