Fuzzy fitness assignment in an Interactive Genetic Algorithm for a cartoon face search

Authors:

Kenichi Nishio, Masayuki Murakami Eiji Mizutani, Nakaji Honda

Presented by: Ehsan Nazerfard

nazerfard@eecs.wsu.edu

10/08/2009

Outline

- About the paper
- What is an IGA?
- Cartoon face space
- Facial difference
- Fuzzy fitness assignment
- Experimental results
- Summary

About the paper

Authors:

- Kenichi Nishio, Sony Corp., Kitashinagawa, Shinagawa, Tokyo, Japan
- Masayuki Murakami, Dept. of Communications and Systems, Univ. of Electro Communications, Chofugaoka, Chofu, Tokyo, Japan
- Eiji Mizutani, Kansai Paint Co., Ltd., Fushimimachi, Chuo, Osaka, Japan
- Nakaji Honda, Depat. of Communications and Systems, Chofugaoka, Chofu, Tokyo, Japan
- It is published in "Advances in Fuzzy Systems Application and Theory", Vol. 7, 1997

Editors:

- Elie Sanchez
- Takanori Shibata
- Lotfi A. Zadeh

What is an IGA?

- IGA stands for Interactive Genetic Algorithm
- An IGA is a GA whose fitness is determined with human intervention.
 - Searching for a target according to user's subjective factors
- Applications
 - Criminal suspect search
 - Cartoon face search

> ...

Cartoon face space

- Each face has 12 parameters corresponding to facial components (eyes, hair, mouth, ...)
- Each component has 3 bits of variable range
- A face F can be assigned to a point in the 12 dimensional face-space:

$$ightharpoonup F = (f_0, f_1, f_2, ..., f_{11}) (f_{min} <= f_i <= f_{max})$$

Origin of the space:

$$\rightarrow$$
 O = (o₀, o₁, o₂, ..., o₁₁) (o_i = [f_{min}+f_{max}]/2)

Cartoon face space (cont.)

■ Extreme faces, i.e. F_{min} and F_{max}

Average face, i.e. O (the origin of the space)

Facial difference: Distance

Any two faces, A and B, can be connected by a straight line; the length of the line is the Euclidean distance:

$$\overline{AB} = |A - B| = \sqrt{\sum (a_i - b_i)^2}$$

It is used to rank "similarity" between faces.

Facial difference: Angle

To stipulate more facial differences, we use the angle between two faces:

$$\overline{AOB} = \cos^{-1} \frac{(A-O) \cdot (B-O)}{\overline{AOBO}}$$

In addition to distance, angle is also used to rank "similarity" between faces.

Example: Angle between faces

Fitness assignment

- Experiments show that it is tiresome for the user to rate all the faces.
- Therefore, the user needs to identify just the closest face (winner face) to the target face.

$$fitness = \begin{cases} 1.0 & the face selected by the user \\ ? & the other faces \end{cases}$$

Fuzzy fitness assignment

Fuzzy fitness assignment strategy is used to rate the other faces:

Sample fuzzy rule:

If (*Distance* is *small*) and (*Angle* is *small*) and (*Gen.* is *any*) Then (*Fitness* is *large*)

Sample fuzzy rule set

■ The bar symbol "-" is a symbol that matches any of linguistic labels.

Input			Output
Distance	Angle	Generation	Fitness
small	small	_	large
small	medium	small	medium-large
small	medium	medium	medium
small	medium	large	medium-small
small	large	small	medium
small	large	medium	medium-small
small	large	large	small
large	large	small	medium-small
large	large	medium	small
large	large	large	small

Fuzzy membership functions

 Fuzzy membership functions set up for three inputs (distance, angle and generation), and singleton output functions.

Fuzzy membership functions

 Fuzzy membership functions set up for three inputs (distance, angle and generation), and singleton output functions.

GA parameters

The Genetic Algorithm parameters used in experiments:

GA parameters			
Population number	10		
Chromosome length	36		
Crossover method	Simplex ¹⁰		
Simplex crossover rate	0.9		
Mutation rate	0.05		
Number of elites to survive	1		

Sample results

■ 10th generation

30th generation

Summary

