B2 袋の中に9個の玉①②③④⑤⑥⑦⑧⑨が入っている。また、右のように9つの枠の中に1から9の番号が1つずつ書かれたボードがある。袋から無作為に玉を1個取り出して、書かれた番号を確認し、ボードに書かれた同じ番号に○印をつける。この操作を繰り返し、○印が縦、横、ななめのいずれかに3つ並んだ時点で操作を「終了」する。ただし、各操作において取り出した玉は袋に戻さない。

-		
1	2	3
4	5	6
7	8	9

- (1) 1回目に①, 2回目に④, 3回目に⑦を取り出して「終了」する確率を求めよ。
- (2) 3回の操作で①, ④, ⑦を取り出して「終了」する確率を求めよ。また, 3回の操作で 3回目に②を取り出して「終了」する確率を求めよ。
- (3) 3回の操作で3回目に⑤を取り出して「終了」する確率を求めよ。また、このとき、1回目に①を取り出していた条件付き確率を求めよ。 (配点 20)

B3 $\cos \angle ABC = \frac{5}{6}$, AB = 8 である $\triangle ABC$ があり、その外接円の半径は $\frac{15\sqrt{11}}{11}$ である。

- (1) 辺ACの長さを求めよ。 <u>AC = 5</u>
- (2) 辺BCの長さを求めよ。 BC=9
- (3) 辺BC上に BD=3 となるような点 Dをとる。さらに、点 E を直線 BC に対して点 A と反対側に BE:CE=2:1、DE=6 となるようにとる。このとき、線分 CE の長さと $\cos \angle BDE$ の値をそれぞれ求めよ。 $CE=3\sqrt{2}$ 、 $\cos \angle BDE$ $\sim -\frac{3}{4}$ (配点 20)

【選択問題】 数学B受験者は、次のB4 \sim B8 のうちから2題を選んで解答せよ。

 $\mathbf{B4}$ 整式 $P(x) = x^3 + 2(a+1)x^2 + 3ax - 2a$ がある。ただし、a は実数の定数とする。

(1) P(-2) の値を求めよ。 P(-2) = 0

(2) P(x) を因数分解せよ。 $P(x) = (\chi + 2\chi - \chi)$

(3) 方程式 P(x)=0 の解がすべて実数となるような a の値の範囲を求めよ。また,方程式 P(x)=0 が異なる実数解をちょうど 2 個もつような a の値と,そのときの実数解をそれ ぞれ求めよ。 $0 \le -1$ 、 $0 \le 0$ (配点 20)

0 = 0 = -2, 0 0 = -1 = -2, 0 0 = -1 = 7 0 = -2, 1 0 = -1 = 7 0 = -2, 1 0 = -5 = 2, 5

 $\mathbf{B5}$ 座標平面上に円 $K_1: x^2+y^2-8x-6y+9=0$ と,直線 $\ell: 4x-3y+a=0$ (a は正の定数) がある。円 K₁ の中心を A とし、点 A を通り直線 ℓに垂直な直線を m とする。

(1) 円 K_1 の中心Aの座標と半径を求めよ。 A(4.3), 4

- (2) 直線 m の方程式を求めよ。また、点 A と直線 ℓ の距離を d とする。d を a を用いて表 せ。さらに、直線 ℓ が円 K_1 と接するとき、aの値を求めよ。
- (3) (2)のとき,直線 ℓと直線 m の交点を B,直線 ℓ上の x 座標が -1 の点を C,直線 m と x軸の交点を D とする。3点 B, C, D を通る円 K_2 の中心を E とするとき,E の座標を 求めよ。また、△ADEの面積を求めよ。 (配点

(2) 3x+4y-4=0, d= 1/4a

 $(3) E(\frac{3}{2}, \frac{3}{2}) \Delta ADE =$

- $\mathbf{B6}$ 関数 $y = \sin 2\theta + a \cos \theta$ がある。ただし、a は定数とし、 $0 \le \theta < 2\pi$ とする。
 - (1) $\theta = \frac{\pi}{3}$ のとき, yの値を a を用いて表せ。また, $\sin 2\theta$ を $\sin \theta$, $\cos \theta$ を用いて表せ。
 - (2) a=3 のとき, y=0 を満たす θ の値を求めよ。
 - (配点 20) (3) y=0 を満たす θ の値が 4 個となるような α の値の範囲を求めよ。

(1) $H = \frac{13}{5} + \frac{a}{2}$, $\sin 2\theta = 2\sin \theta \cos \theta$

$$(2) \quad \theta = \frac{\pi}{2}, \quad \frac{3\pi}{2}$$

 $(3) -2<\alpha<2$

 $\mathbf{B7}$ 等差数列 $\{a_n\}$ があり、 $a_2=8$ 、 $a_5=26$ を満たしている。また、初項が 3、公比がr (r>0) である等比数列 $\{b_n\}$ があり、 $b_2+b_3=60$ を満たしている。

- (1) 数列 {a_n} の一般項 a_n を n を用いて表せ。
- (2) rの値を求めよ。また、数列 $\{b_n\}$ の初項から第n項までの和 S_n に対し、 $T_n = S_n S_1$ とおく。 T_n を n を用いて表せ。
- (3) (2)の T_n に対して、 T_1 、 T_2 、 T_3 、…、 T_n 、… の一の位の数をそれぞれ c_1 、 c_2 、 c_3 、…、 c_n 、… とする。このとき、 c_{10} を求めよ。また、数列 $\{a_n\}$ の初項から第 n 項 までの和を U_n とするとき、 $\sum_{k=1}^{2n} c_k U_k$ (n=1, 2, 3, …) を n を用いて表せ。(配点 20) \mathbb{C} \mathbb{C}

$$(2) \gamma = 4, \quad T_{n} = 4^{n} - 4$$

$$(3) C_{10} = 2, \quad 2_{n}(n+1)(4n+1)$$

 $oxed{B8}$ OA=3, OB=2, $\angle AOB=60^\circ$ の $\triangle OAB$ があり、辺 AB を 3:4 に内分する点を P とする。また、 $\overrightarrow{OA}=\overrightarrow{a}$ 、 $\overrightarrow{OB}=\overrightarrow{b}$ とする。

- (1) \overrightarrow{OP} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また、内積 $\overrightarrow{a} \cdot \overrightarrow{b}$ の値を求めよ。
- (2) 辺 OB 上に $\overrightarrow{OH} = k \overrightarrow{OB}$ (k は $0 \le k \le 1$ を満たす実数) となる点 H をとる。 \overrightarrow{PH} を k, \overline{a} , \overline{b} を用いて表せ。また,直線 PH が直線 OB と垂直になるとき,k の値を求めよ。
- (3) 辺ABを 6:1 に内分する点を Q とする。(2)で求めた k の値における点 H に対し、線分 PH 上に PR: RH=s:(1-s)(s は 0< s<1 を満たす実数)となる点 R をとるとき、 \overline{OR} を s, \overline{a} , \overline{b} を用いて表せ。さらに、点 R が線分 OQ 上にあるとき、s の値を求めよ。 (配点 20)

(1) $\overrightarrow{OP} = \frac{4\vec{a}+3\vec{b}}{\eta}$, $\vec{a}\cdot\vec{b} = 3\cdot 2\cdot \frac{1}{2} = 3$ (2) $\overrightarrow{PH} = \overrightarrow{OH} - \overrightarrow{OP} = \overrightarrow{EP} - \frac{4\vec{a}+3\vec{b}}{\eta} = -\frac{4\vec{a}+3\vec{b}}{\eta} = -\frac{4\vec{a}+3\vec{b}+3\vec{b}}{\eta} = -\frac{4\vec{a}+3\vec{b}$

$$\frac{12}{-\eta} + (\xi - \frac{3}{\eta}) = 0 \qquad \xi = \frac{6}{\eta}$$
(3)
$$\frac{1}{000} = \frac{1}{\eta} + \frac{4}{\eta} = 0 \qquad \xi = \frac{6}{\eta} = \frac{4}{\eta} = \frac{4}{\eta} = \frac{3}{\eta} = \frac{4}{\eta} = \frac{3}{\eta} = \frac{4}{\eta} = \frac$$