4章 積分の応用

練習問題 2-A

1. 求める面積をSとする.

$$(1) \quad \frac{dx}{dt} = -\sin t$$

求める面積は , $0 \le t \le \frac{\pi}{2}$ における図形の面積の 4 倍であり , この区間では , $-\sin t \le 0$ で , 符号は一定であるから

$$S = 4 \int_0^{\frac{\pi}{2}} |\sin 2t \cdot (-\sin t)| dt$$

$$= 4 \int_0^{\frac{\pi}{2}} |-(2\sin t \cos t) \cdot \sin t| dt$$

$$= 8 \int_0^{\frac{\pi}{2}} |-\sin^2 t \cos t| dt$$

 $0 \le t \le rac{\pi}{2}$ において , $-\sin^2 t \cos t \le 0$ であるから

$$S = 8 \int_0^{\frac{\pi}{2}} \sin^2 t \cos t \, dt$$

$$= 8 \int_0^{\frac{\pi}{2}} (1 - \cos^2 t) \cos t \, dt$$

$$= 8 \int_0^{\frac{\pi}{2}} (\cos t - \cos^3 t) \, dt$$

$$= 8 \left(\int_0^{\frac{\pi}{2}} \cos t \, dt - \int_0^{\frac{\pi}{2}} \cos^3 t \, dt \right)$$

$$= 8 \left(\left[\sin t \right]_0^{\frac{\pi}{2}} - \frac{2}{3} \right)$$

$$= 8 \left(1 - \frac{2}{3} \right)$$

$$= 8 \cdot \frac{1}{3} = \frac{8}{3}$$

(2) 求める面積は , 曲線と , $\theta=0,\;\theta=\frac{\pi}{6}$ で囲まれた部分の 面積の 12 倍であるから

$$t \mid 0 \rightarrow \frac{\pi}{2}$$
よって
$$S = 6 \int_0^{\frac{\pi}{2}} \cos^4 t \cdot \frac{1}{3} dt$$

$$= 2 \int_0^{\frac{\pi}{2}} \cos^4 t dt$$

$$= 2 \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{3}{8} \pi$$

2. それぞれの曲線の長さをlとする.

(1)

$$\dfrac{dx}{dt} = t$$
 $\dfrac{dy}{dt} = t^2$
よって
$$l = \int_0^1 \sqrt{t^2 + (t^2)^2} \, dt$$

$$= \int_0^1 \sqrt{t^2 + t^4} \, dt$$

$$= \int_0^1 |t| \sqrt{1 + t^2} \, dt \qquad (t \ge 0 \text{ & U})$$

$$\sqrt{1 + t^2} = u \text{ & A & A & A}$$

$$\frac{dx}{dt} = \frac{dt}{dt} \qquad (t \ge 0 \text{ & U})$$

$$\sqrt{1 + t^2} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A & A}$$

$$\frac{dt}{dt} = u \text{ & A & A &$$

(2)

$$\begin{split} r' &= 1 \, \, \overline{\text{CBSh}} \text{S} \\ l &= \int_0^{2\pi} \sqrt{r^2 + (r')^2} \, d\theta \\ &= \int_0^{2\pi} \sqrt{\theta^2 + 1} \, d\theta \\ &= \left[\frac{1}{2} \left(\theta \sqrt{\theta^2 + 1} + \log \left| \theta + \sqrt{\theta^2 + 1} \right| \right) \right]_0^{2\pi} \\ &= \frac{1}{2} \left(2\pi \sqrt{4\pi^2 + 1} + \log \left| 2\pi + \sqrt{4\pi^2 + 1} \right| \right) \\ &\qquad \qquad - \frac{1}{2} (0 + \log 1) \\ &= \pi \sqrt{4\pi^2 + 1} + \frac{1}{2} \log \left| 2\pi + \sqrt{4\pi^2 + 1} \right| \\ &= \pi \sqrt{4\pi^2 + 1} + \frac{1}{2} \log (2\pi + \sqrt{4\pi^2 + 1}) \end{split}$$

3. tにいるいるな値を代入すると

t	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
x	0	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{27}{64}$	1
y	0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{9}{16}$	1

$$\frac{dx}{dt} = 3t^2 \ge 0$$

 $\dfrac{dx}{dt} = 3t^2 \geq 0$ よって,求める体積を V とすると

$$V = \pi \int_0^1 y^2 \left| \frac{dx}{dt} \right| dt$$
$$= \pi \int_0^1 (t^2)^2 \left| 3t^2 \right| dt$$
$$= 3\pi \int_0^1 t^6 dt$$
$$= 3\pi \left[\frac{1}{7} t^7 \right]_0^1$$
$$= 3\pi \cdot \frac{1}{7} = \frac{3}{7} \pi$$

4. (1) 与式
$$=\lim_{b o\infty}\int_0^bxe^{-x^2}dx$$
 $-x^2=t$ とおくと, $-2x\,dx=dt$ より, $x\,dx=-\frac{1}{2}\,dt$ また, x と t の対応は $x\mid 0$ \to b

$$\begin{array}{c|ccc} x & 0 & \to & b \\ \hline t & 0 & \to & -b^2 \end{array}$$

与式 =
$$\lim_{b \to \infty} \int_0^{-b^2} e^t \cdot \left(-\frac{1}{2} dt \right)$$

= $-\frac{1}{2} \lim_{b \to \infty} \int_0^{-b^2} e^t dt$
= $\frac{1}{2} \lim_{b \to \infty} \int_{-b^2}^0 e^t dt$
= $\frac{1}{2} \lim_{b \to \infty} \left[e^t \right]_{-b^2}^0$
= $\frac{1}{2} \lim_{b \to \infty} (e^0 - e^{-b^2})$
= $\frac{1}{2} (1 - 0) = \frac{1}{2}$

〔別解〕 (先に置換積分)

$$-x^2=t$$
 とおくと, $-2x\,dx=dt$ より, $x\,dx=-\frac{1}{2}\,dt$ また, x と t の対応は
$$\frac{x \mid 0 \rightarrow \infty}{t \mid 0 \rightarrow -\infty}$$

$$\begin{split} & = \int_0^{-\infty} e^t \cdot \left(-\frac{1}{2} \, dt \right) \\ & = \frac{1}{2} \int_{-\infty}^0 e^t \, dt \\ & = \frac{1}{2} \lim_{b \to -\infty} \int_b^0 e^t \, dt \\ & = \frac{1}{2} \lim_{b \to -\infty} \left[e^t \right]_b^0 \\ & = \frac{1}{2} \lim_{b \to -\infty} (e^0 - e^b) \\ & = \frac{1}{2} (1 - 0) = \frac{1}{2} \end{split}$$

(2) 与式 =
$$\lim_{\varepsilon \to +0} \int_0^{a-\varepsilon} \frac{x}{\sqrt{a^2-x^2}} \, dx$$
 $\sqrt{a^2-x^2} = t$ とおくと, $a^2-x^2 = t^2$ であるから, $-2x\,dx = 2t\,dt$ より, $x\,dx = -t\,dt$ また, x と t の対応は
$$\frac{x \mid 0 \to a - \varepsilon}{t \mid a \to \sqrt{a^2-(a-\varepsilon)^2}}$$
 ここで, $\sqrt{a^2-(a-\varepsilon)^2} = \sqrt{2a\varepsilon-\varepsilon^2}$ であるから 与式 = $\lim_{\varepsilon \to +0} \int_a^{\sqrt{2a\varepsilon-\varepsilon^2}} \frac{1}{t} \cdot (-t\,dt)$
$$= \lim_{\varepsilon \to +0} \left(-\int_a^{\sqrt{2a\varepsilon-\varepsilon^2}} dt\right)$$

$$= \lim_{\varepsilon \to +0} \left[t\right]_{\sqrt{2a\varepsilon-\varepsilon^2}}^a dt$$

$$= \lim_{\varepsilon \to +0} \left[t\right]_{\sqrt{2a\varepsilon-\varepsilon^2}}^a = \lim_{\varepsilon \to +0} (a - \sqrt{2a\varepsilon-\varepsilon^2}) = a$$
 〔別解〕 (先に置換積分)
$$\sqrt{a^2-x^2} = t$$
 とおくと, $a^2-x^2=t^2$ であるから, $-2x\,dx=2t\,dt$ より, $x\,dx=-t\,dt$ また, x と t の対応は $x\mid 0 \to a$

 $\begin{array}{c|ccc} x & 0 & \to & a \\ \hline t & a & \to & 0 \end{array}$

与式 =
$$\int_{a}^{0} \frac{1}{t} \cdot (-t \, dt)$$
$$= \int_{0}^{a} dt$$
$$= \left[t \right]_{0}^{a}$$
$$= a - 0 = a$$

(3) 与式 =
$$\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \log x \, dx$$

= $\lim_{\varepsilon \to +0} \left[x \log x - x \right]_{\varepsilon}^{1}$
= $\lim_{\varepsilon \to +0} \left\{ -1 - (\varepsilon \log \varepsilon - \varepsilon) \right\}$
= $\lim_{\varepsilon \to +0} (-1 - \varepsilon \log \varepsilon + \varepsilon)$

ここで,ロピタルの定理より

$$\lim_{\varepsilon \to +0} \varepsilon \log \varepsilon = \lim_{\varepsilon \to +0} \frac{\log \varepsilon}{\frac{1}{\varepsilon}}$$

$$= \lim_{\varepsilon \to +0} \frac{(\log \varepsilon)'}{\left(\frac{1}{\varepsilon}\right)'}$$

$$= \lim_{\varepsilon \to +0} \frac{\frac{1}{\varepsilon}}{-\frac{1}{\varepsilon^2}}$$

$$= \lim_{\varepsilon \to +0} (-\varepsilon) = 0$$
よって、与式 = $-1 - 0 + 0 = -1$

(4) 与式 =
$$\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{\log x}{x} dx$$
 $\log x = t$ とおくと, $\frac{1}{x} dx = dt$ また, x と t の対応は $\frac{x \mid \varepsilon \rightarrow 1}{t \mid \log \varepsilon \rightarrow 0}$

よって

与式 =
$$\lim_{\varepsilon \to +0} \int_{\log \varepsilon}^{0} t \, dt$$

= $\lim_{\varepsilon \to +0} \left[\frac{1}{2} t^{2} \right]_{\log \varepsilon}^{0}$
= $\lim_{\varepsilon \to +0} \left\{ -\frac{1}{2} (\log \varepsilon)^{2} \right\} = -\infty$

したがって,広義積分は存在しない.

〔別解〕 (先に置換積分)

$$\log x = t$$
 とおくと , $\frac{1}{x} dx = dt$

$$\begin{array}{c|ccc} x & 0 & \to & 1 \\ \hline t & -\infty & \to & 0 \end{array}$$

与式 =
$$\int_{-\infty}^{0} t \, dt$$

$$= \lim_{a \to -\infty} \int_{a}^{0} t \, dt$$

$$= \lim_{a \to -\infty} \left[\frac{1}{2} t^{2} \right]_{a}^{0}$$

$$= \lim_{a \to -\infty} \left(-\frac{1}{2} a^{2} \right) = -\infty$$
したがって、広義積分は存在しない.

5. (1) 時刻 t における点 $\mathbf P$ の速度を v(t) , 座標を x(t) とすると

$$x(t) = x(0) + \int_0^t v(t) dt$$
$$= 8 + \int_0^t (12 - 8t) dt$$
$$= 8 + 12t - 4t^2$$

ここで,速度が $\,0\,$ になるのは, $12-8t=0\,$ より, $t=rac{3}{2}\,$

のときであるから , $t=\frac{3}{2}$ における点 ${\bf P}$ の座標は

$$x\left(\frac{3}{2}\right) = 8 + 12 \cdot \frac{3}{2} - 4 \cdot \left(\frac{3}{2}\right)^2$$
$$= 8 + 18 - 9 = 17$$

(2) t=4 における点 P の座標は

$$x(4) = 8 + 12 \cdot 4 - 4 \cdot 4^{2}$$
$$= 8 + 48 - 64 = -8$$

 $v(t) \geq 0$, すなわち $0 \leq t \leq rac{3}{2}$ のときに点 ${
m P}$ が動いた道 のりは , |17-8|=9

v(t) < 0 , すなわち $\frac{3}{2} < t \le 4$ のときに点 ${\bf P}$ が動いた道 のりは , |-8-17|=25

よって , 点 P が実際に動いた道のりは , $9+25=\mathbf{34}$

道のりは,
$$\int_0^4 |v(t)| dt$$
 で求められる.
$$v(t)=12-8t$$
 であるから
$$0 \le t \le \frac{3}{2}$$
 のとき, $|v(t)|=12-8t$
$$\frac{3}{2} < t \le 4$$
 のとき, $|v(t)|=-(12-8t)$ よって,求める道のりは

$$\int_{0}^{4} |v(t)| dt = \int_{0}^{\frac{3}{2}} (12 - 8t) dt + \int_{\frac{3}{2}}^{4} \{-(12 - 8t)\} dt$$

$$= 4 \int_{0}^{\frac{3}{2}} (3 - 2t) dt - 4 \int_{\frac{3}{2}}^{4} (3 - 2t) dt$$

$$= 4 \left[3t - t^{2}\right]_{0}^{\frac{3}{2}} - 4 \left[3t - t^{2}\right]_{\frac{3}{2}}^{4}$$

$$= 4 \left(\frac{9}{2} - \frac{9}{4}\right)$$

$$- 4 \left\{(12 - 16) - \left(\frac{9}{2} - \frac{9}{4}\right)\right\}$$

$$= 4 \cdot \frac{9}{4} - 4 \left(-4 - \frac{9}{4}\right)$$

$$= 9 + 16 + 9 = 34$$

練習問題 1-B

1. (1)

$$riangle \mathrm{OP_1P_2}$$
 において,余弦定理により

$$(P_1P_2)^2 = r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)$$
$$= r_1^2 + r_2^2 - 2r_1r_2\cos\{-(\theta_1 - \theta_2)\}$$
$$= r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_1 - \theta_2)$$

 $P_1P_2 > 0$ であるから

$$P_1P_2 = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_1 - \theta_2)}$$

極座標を直交座標で表すと

 $P_1(r_1\cos\theta_1, r_1\sin\theta_1)$

 $P_2(r_2\cos\theta_2, r_2\sin\theta_2)$

$$P_{1}P_{2} = \sqrt{(r_{1}\cos\theta_{1} - r_{2}\cos\theta_{2})^{2} + (r_{1}\sin\theta_{1} - r_{2}\sin\theta_{2})^{2}}$$

$$= \sqrt{(r_{1}^{2}\cos^{2}\theta_{1} - 2r_{1}r_{2}\cos\theta_{1}\cos\theta_{2} + r_{2}^{2}\cos^{2}\theta_{2})}$$

$$+ (r_{1}^{2}\sin^{2}\theta_{1} - 2r_{1}r_{2}\sin\theta_{1}\sin\theta_{2} + r_{2}^{2}\sin^{2}\theta_{2})$$

$$= \sqrt{r_{1}^{2}(\cos^{2}\theta_{1} + \sin^{2}\theta_{1}) + r_{2}^{2}(\cos^{2}\theta_{2} + \sin^{2}\theta_{2})}$$

$$- 2r_{1}r_{2}(\cos\theta_{1}\cos\theta_{2} + \sin\theta_{1}\sin\theta_{2})$$

$$= \sqrt{r_{1}^{2} \cdot 1 + r_{2}^{2} \cdot 1 - 2r_{1}r_{2}\cos(\theta_{1} - \theta_{2})}$$

$$= \sqrt{r_{1}^{2} + r_{2}^{2} - 2r_{1}r_{2}\cos(\theta_{1} - \theta_{2})}$$

(2) 図のように,O'(1, 0)とする.

$$\mathrm{PO'} = 1$$
 であるから ,(1) より

$$PO' = \sqrt{r^2 + 1^2 - 2 \cdot r \cdot 1 \cos(\theta - 0)}$$

= $\sqrt{r^2 + 1 - 2r \cos \theta} = 1$

よって

$$r^2 + 1 - 2r\cos\theta = 1$$

$$r^2 - 2r\cos\theta = 0$$

$$r(r - 2\cos\theta) = 0$$

これより , $r=0\cdots$ ① または , $r=2\cos\theta\cdots$ ②

ここで , ② において , $\theta=\frac{\pi}{2}$ とすれば , r=0 となるの で,②は,①の条件を含む.

よって , $r=2\cos heta$

逆にこの式を満たす点は,円周上にある.

〔別解〕

図のように, A(2, 0) とする.

$$\triangle {
m OAP}$$
 において , $\angle {
m OPA}=90^\circ$ であるから $\cos \theta = {
m OP \over OA} = {r \over 2}$

$$\cos \theta = \frac{OP}{OA} = \frac{r}{2}$$

すなわち , $r=2\cos heta$

逆にこの式を満たす点は,円周上にある.

 $r=2\cos\vartheta$ において ,例えば $heta=rac{3}{4}\pi$ とすると , $r=-\sqrt{2}$ となり,r < 0となってしまいます。

このとき , 点 $(r,\; \theta)$ は , 点 $(-r,\; \theta+\pi)$ を表すと約束する

ことがあります。この場合では
$$\left(-\sqrt{2},\ \frac{3}{4}\pi\right)\longrightarrow\left(\sqrt{2},\ \frac{7}{4}\pi\right)$$

2. t のいろいろな値に対する x, y の値を求めると

t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
x	a	$\frac{3\sqrt{3}}{8}a$	$\frac{\sqrt{2}}{4}a$	$\frac{1}{8}a$	0
		0.65a	0.35a	0.13a	
y	0	$\frac{1}{8}a$	$\frac{\sqrt{2}}{4}a$	$\frac{3\sqrt{3}}{8}$	a
		0.13a	0.35a	0.65a	

t	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	
x	$-\frac{1}{8}a$	$-\frac{\sqrt{2}}{4}a$	$-\frac{3\sqrt{3}}{8}a$	-a	
	-0.13a	-0.35a	-0.65a		
y	$\frac{3\sqrt{3}}{8}a$	$\frac{\sqrt{2}}{4}a$	$\frac{1}{8}a$	0	
	0.65a	0.35a	0.13a		

 $\pi < t \le 2\pi$ は省略 .

(1) 求める面積をSとする.

$$\frac{dx}{dt} = 3a\cos^2 t \cdot (-\sin t) = -3a\cos^2 t \sin t$$

求める面積は , $0 \leq t \leq \frac{\pi}{2}$ における図形の面積の 4 倍で あり,この区間では, $-3a\cos^2t\sin t \leq 0$ で,符号は一定で あるから

$$S = 4 \int_0^{\frac{\pi}{2}} |a\sin^3 t \cdot (-3a\cos^2 t \sin t)| dt$$

$$= 4 \int_0^{\frac{\pi}{2}} |-3a^2 \sin^4 t \cos^2 t| dt$$

$$= 12 \int_0^{\frac{\pi}{2}} |-a^2 \sin^4 t \cos^2 t| dt$$

 $-a^2\sin^4t\cos^2t \le 0$ であるから

$$S = 12 \int_0^{\frac{\pi}{2}} a^2 \sin^4 t \cos^2 t \, dt$$

$$= 12a^2 \int_0^{\frac{\pi}{2}} \sin^4 t (1 - \sin^2 t) \, dt$$

$$= 12a^2 \int_0^{\frac{\pi}{2}} (\sin^4 t - \sin^6 t) \, dt$$

$$= 12a^2 \left(\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} - \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \right)$$

$$= 12a^2 \left(\frac{3}{16} \pi - \frac{5}{32} \pi \right)$$

$$= 12a^2 \cdot \frac{1}{32} \pi = \frac{3}{8} \pi a^2$$

(2) 求める曲線の長さをlとする.

$$\frac{dx}{dt} = 3a\cos^2 t \cdot (-\sin t) = -3a\cos^2 t \sin t$$
$$\frac{dy}{dt} = 3a\sin^2 t \cdot \cos t = 3a\sin^2 t \cos t$$

求める曲線の長さは , $0 \leq t \leq \frac{\pi}{2}$ における曲線の長さ 4倍であるから

$$\begin{split} l &= 4 \int_0^{\frac{\pi}{2}} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \\ &= 4 \int_0^{\frac{\pi}{2}} \sqrt{(-3a\cos^2t\sin t)^2 + (3a\sin^2t\cos t)^2} \, dt \\ &= 4 \int_0^{\frac{\pi}{2}} \sqrt{9a^2\cos^4t\sin^2t + 9a^2a\sin^4t\cos^2t} \, dt \\ &= 4 \int_0^{\frac{\pi}{2}} \sqrt{9a^2\cos^2t\sin^2t(\cos^2t + \sin^2t)} \, dt \\ &= 4 \int_0^{\frac{\pi}{2}} \sqrt{9a^2\cos^2t\sin^2t} \, dt \\ &= 4 \int_0^{\frac{\pi}{2}} |3a\cos t\sin t| \, dt \\ &= 4 \int_0^{\frac{\pi}{2}} |3a\cos t\sin t| \, dt \\ &= 4 \int_0^{\frac{\pi}{2}} |3a\cos t\sin t| \, dt \\ &= 12a \int_0^{\frac{\pi}{2}} \cos t\sin t \, dt \\ &= 12a \int_0^{\frac{\pi}{2}} \sin 2t \, dt \\ &= 6a \int_0^{\frac{\pi}{2}} \sin 2t \, dt \\ &= 6a \left[-\frac{1}{2}\cos 2t \right]_0^{\frac{\pi}{2}} \\ &= -3a(\cos\pi - \cos 0) \\ &= -3a(-1-1) = \mathbf{6}a \end{split}$$

(3) 求める体積をVとする.

$$\frac{dx}{dt} = 3a\cos^2 t \cdot (-\sin t) = -3a\cos^2 t \sin t$$

求める体積は, $0 \le t \le \frac{\pi}{2}$ における曲線を x 軸のまわりに回転してできる回転体の体積の 2 倍であり,この区間では, $-3a\cos^2t\sin t \le 0$ で,符号は一定であるから

$$V = 2\pi \int_0^{\frac{\pi}{2}} y^2 \left| \frac{dx}{dt} \right| dt$$

$$= 2\pi \int_0^{\frac{\pi}{2}} (a\sin^3 t)^2 \left| -3a\cos^2 t \sin t \right| dt$$

$$= 2\pi \int_0^{\frac{\pi}{2}} a^2 \sin^6 t \cdot (3a\cos^2 t \sin t) dt$$

$$= 6\pi a^3 \int_0^{\frac{\pi}{2}} \sin^7 t \cos^2 t dt$$

$$= 6\pi a^3 \int_0^{\frac{\pi}{2}} \sin^7 t (1 - \sin^2 t) dt$$

$$= 6\pi a^3 \int_0^{\frac{\pi}{2}} (\sin^7 t - \sin^9 t) dt$$

$$= 6\pi a^3 \left(\frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} - \frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} \right)$$

$$= 6\pi a^3 \left(\frac{16}{35} - \frac{128}{315} \right)$$

$$= 6\pi a^3 \cdot \frac{16}{315} = \frac{32}{105} \pi a^3$$

3. (1) θ のいろいろな値に対する r の値を求めると

θ	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π	$\frac{5\pi}{2}$	3π	$\frac{7\pi}{2}$	4π
r	$\frac{4}{\pi}$	$\frac{2}{\pi}$	$\frac{1}{\pi}$	$\frac{2}{3\pi}$	$\frac{1}{2\pi}$	$\frac{2}{5\pi}$	$\frac{1}{3\pi}$	$\frac{2}{7\pi}$	$\frac{1}{4\pi}$
	1.27	0.63	0.32	0.21	0.16	0.13	0.11	0.09	0.08

(2) 曲線の長さをlとする.

$$r'=-rac{1}{ heta^2}$$
 であるから $r^2+(r')^2=\left(rac{1}{ heta}
ight)^2+\left(-rac{1}{ heta^2}
ight)^2 =rac{ heta^2+1}{ heta^4}$ よって $l=\int_{rac{\pi}{4}}^{4\pi}\sqrt{r^2+(r')^2}\,d heta$ $=\int_{rac{\pi}{4}}^{4\pi}\sqrt{rac{ heta^2+1}{ heta^4}}\,d heta$

$$= \int_{\frac{\pi}{4}}^{4\pi} \frac{1}{\theta^2} \sqrt{\theta^2 + 1} \, d\theta$$
$$= \int_{\frac{\pi}{4}}^{4\pi} \left(-\frac{1}{\theta} \right)' \sqrt{\theta^2 + 1} \, d\theta$$

$$= \left[-\frac{1}{\theta} \sqrt{\theta^2 + 1} \right]_{\frac{\pi}{4}}^{4\pi} - \int_{\frac{\pi}{4}}^{4\pi} \left(-\frac{1}{\theta} \right) (\sqrt{\theta^2 + 1})' d\theta$$
$$= \left[-\frac{1}{\theta} \sqrt{\theta^2 + 1} \right]_{\frac{\pi}{4}}^{4\pi} + \int_{\frac{\pi}{4}}^{4\pi} \frac{1}{\theta} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{\theta^2 + 1}} \cdot 2\theta d\theta$$

$$= \left[-\frac{1}{\theta} \sqrt{\theta^2 + 1} \right]_{\frac{\pi}{4}}^{4\pi} + \int_{\frac{\pi}{4}}^{4\pi} \frac{1}{\sqrt{\theta^2 + 1}} d\theta$$
$$= \left[-\frac{1}{\theta} \sqrt{\theta^2 + 1} \right]_{\frac{\pi}{4}}^{4\pi} + \left[\log \left| \theta + \sqrt{\theta^2 + 1} \right| \right]_{\frac{\pi}{4}}^{4\pi}$$

$$= -\frac{1}{4\pi}\sqrt{16\pi^2 + 1} + \frac{1}{\frac{\pi}{4}}\sqrt{\frac{\pi^2}{16} + 1}$$

$$=-rac{1}{4\pi}\sqrt{16\pi^2+1}+rac{4}{\pi}\sqrt{rac{\pi^2}{16}+1}$$

$$+\log(4\pi+\sqrt{16\pi^2+1}) - \log\left(rac{\pi}{4}+\sqrt{rac{\pi^2}{16}+1}
ight)$$

4. i) k=1 のとき

与式 =
$$\int_0^1 \frac{dx}{x}$$

$$= \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 \frac{dx}{x}$$

$$= \lim_{\varepsilon \to +0} \left[\log|x| \right]_{\varepsilon}^1$$

$$= \lim_{\varepsilon \to +0} (-\log \varepsilon) = \infty$$

よって,この広義積分は存在しない.

ii) k ≠ 1 のとき

与式 =
$$\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{dx}{x^{k}}$$

= $\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} x^{-k} dx$
= $\lim_{\varepsilon \to +0} \left[\frac{1}{1-k} x^{1-k} \right]_{\varepsilon}^{1}$
= $\lim_{\varepsilon \to +0} \frac{1}{1-k} (1-\varepsilon^{1-k})$

ここで ,1-k<0 ,すなわち k>1 のとき , $\lim_{arepsilon o +0} arepsilon^{1-k}=\infty$

であるから

$$\lim_{arepsilon o +0}rac{1}{1-k}(1-arepsilon^{1-k})=\infty$$
 $1-k>0$, すなわち , $k<1$ のとき , $\lim_{arepsilon o +0}arepsilon^{1-k}=0$ であ

るから

$$\lim_{arepsilon o +0}rac{1}{1-k}(1-arepsilon^{1-k})=rac{1}{1-k}$$
よって, $0< k < 1$ のとき, $\int_0^1rac{dx}{x^k}=rac{1}{1-k}$

 $k \geq 1$ のとき , $\int_0^1 \frac{dx}{x^k} = \infty$ であるから , 積分の値は存在しない .

 $k \leq 0$ のときは,普通の積分になる.

5. i) k=1 のとき

与式 =
$$\int_{1}^{\infty} \frac{dx}{x}$$

$$= \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x}$$

$$= \lim_{b \to \infty} \left[\log |x| \right]_{1}^{b}$$

$$= \lim_{b \to \infty} \log b = \infty$$

よって,この広義積分は存在しない.

ii) $k \neq 1$ のとき

与式 =
$$\lim_{b \to \infty} \int_1^b \frac{dx}{x^k}$$

= $\lim_{b \to \infty} \int_1^b x^{-k} dx$
= $\lim_{b \to \infty} \left[\frac{1}{1-k} x^{1-k} \right]_1^b$
= $\lim_{b \to \infty} \frac{1}{1-k} (b^{1-k} - 1)$

 $=\lim_{b o\infty}rac{1}{1-k}(b^{1-k}-1)$ ここで,1-k<0,すなわち k>1 のとき, $\lim_{b o\infty}b^{1-k}=0$

であるから

$$\lim_{b o\infty}rac{1}{1-k}(b^{1-k}-1)=rac{1}{1-k}\cdot(-1)=rac{1}{k-1}$$
 $1-k>0$, すなわち , $k<1$ のとき , $\lim_{b o\infty}b^{1-k}=\infty$ であ

るから

$$\lim_{b\to\infty}\frac{1}{1-k}(b^{1-k}-1)=\infty$$
 よって, $k>1$ のとき, $\int_1^\infty\frac{dx}{x^k}=\frac{1}{k-1}$ $0< k\le 1$ のとき, $\int_1^\infty\frac{dx}{x^k}=\infty$ であるから,積分の値は存在しない.

 $k \leq 0$ のときは , 積分の値は存在しない .