Correlation and Linear Regressions

ADS2 - Week 2.6

Lecturer: Zhaoyuan Fang & Samano Hugo

March 18th, 2024

20-Year Lag Time Between Smoking and Lung Cancer

Learning Objectives

After this lecture you will be able to:

- know the concepts of correlation and linear regressions
- explore different datasets to apply these concepts
- use the relevant R functions to perform data analyses

Ideal height and weight

om	en (kg)	Men (kg)
	49	52
	51	54
	52	56
	54	58
	56	60
	57	62
	59	63
	61	65
	63	67
	64	69
	66	71
	68	73

If height increases, weight increases

If height decreases, weight decreases

Ideal height and weight

Height (cm)	Women (kg)	Men (kg)	
152	49	52	
155	51	54	
157	52	56	
160	54	58	
163	56	60	
165	57	62	
168	59	63	
170	61	65	
173	63	67	
175	64	69	
178	66	71	
180	68	73	

Are height and weight values varying in a similar way?

Distributions are not centred

Ideal height and weight

Height (cm)	Women (kg)	Men (kg)
152	49	52
155	51	54
157	52	56
160	54	58
163	56	60
165	57	62
168	59	63
170	61	65
173	63	67
175	64	69
178	66	71
180	68	73

Are height and weight values varying in a similar way?

Centred distributions

$$(X-X)$$

166.64	58.55	62.73	Mean

Height and Weight Variance and Covariance

Ideal height and weight

Height (cm)	Women (kg)	Men (kg)
152	49	52
155	51	54
157	52	56
160	54	58
163	56	60
165	57	62
168	59	63
170	61	65
173	63	67
175	64	69
178	66	71
180	68	73

166.64 58.55 62.73 Mean

We can calculate the variance and covariance

Centred distributions

$$(X-X)$$

Height and Weight Variance and Covariance

We can calculate the variance and covariance

ight (cm)	Women (kg)	Men (kg)
152	49	52
155	51	54
157	52	56
160	54	58
163	56	60
165	57	62
168	59	63
170	61	65
173	63	67
175	64	69
178	66	71
180	68	73

Variance of Height (S_x^2):

$$S_{x}^{2} = \frac{\Sigma(X-X)^{2}}{n-1} = 92.05$$

Variance of Weight (S_y^2):

$$S_y^2 = \frac{\Sigma (Y-Y)^2}{n-1} = 41.47$$

Covariance of height and weight (Cov(x, y)):

$$Cov(x,y) = \frac{\Sigma(X-X)(Y-Y)}{n-1} = 61.72$$

Sample Correlation Coefficient

$$S_x^2 = \frac{\Sigma (X - X)^2}{n - 1} = 92.05$$

$$S_y^2 = \frac{\Sigma (Y - Y)^2}{n - 1} = 41.47$$

$$Cov(x,y) = \frac{\Sigma(X-X)(Y-Y)}{n-1} = 61.72$$

Sample Correlation Coefficient

$$S_x^2 = \frac{\Sigma (X - X)^2}{n - 1} = 92.05$$

$$S_y^2 = \frac{\Sigma (Y - Y)^2}{n - 1} = 41.47$$

$$Cov(x,y) = \frac{\sum (X-X)(Y-Y)}{n-1} = 61.72$$

Given these three values, we define the sample correlation coefficient (r) as:

$$r = \frac{Cov(x,y)}{\sqrt{S_x^2 S_y^2}} = 0.9989$$

Sample correlation coefficient ranges from -1 to +1

The coefficient quantifies the **direction** and **strength** of the linear association between the two variables

Sample Correlation Coefficient

Guess the Correlation Coefficient

http://guessthecorrelation.com

DET COME
TOO PLATERS
SCORE BOORD
ABOUT
SETTINGS

Guess the Correlation Coefficient

http://guessthecorrelation.com

Guess the Correlation Coefficient

http://guessthecorrelation.com

Ideal height and weight

Height (cm)	Women (kg)	Men (kg)
152	49	52
155	51	54
157	52	56
160	54	58
165	57	62
168	59	63
170	61	65
173	63	67
175	64	69
178	66	71
180	68	73

 $r_{\text{m}} = 0.9986$ $r_{\text{w}} = 0.9989$

Can we predict the weight corresponding to 163 cm?

Ideal height and weight

Height (cm)	Women (kg)	Men (kg)
152	49	52
155	51	54
157	52	56
160	54	58
165	57	62
168	59	63
170	61	65
173	63	67
175	64	69
178	66	71
180	68	73

Can we predict the weight corresponding to 163 cm?

Ideal height and weight

Height (cm)	Women (kg)	Men (kg)	
152	49	52	
155	51	54	
157	52	56	
160	54	58	
165	57	62	
168	59	63	
170	61	65	
173	63	67	
175	64	69	
178	66	71	
180	68	73	

Can we predict the weight corresponding to 163 cm?

Ideal height and weight

Height (cm)	Women (kg)	Men (kg)	
152	49	52	
155	51	54	
157	52	56	
160	54	58	
165	57	62	
168	59	63	
170	61	65	
173	63	67	
175	64	69	
178	66	71	
180	68	73	

Can we predict the weight corresponding to 163 cm?

A simple linear regression describes the association between an independent variable and a dependent one

The regression will follow the expression:

$$Y = b_0 + b_1 \cdot X$$
intercept slope

Given (x_1, y_1) and (x_2, y_2) we fit it in a straight line:

$$Y = b_0 + b_1 \cdot X$$

$$y_1 = b_0 + b_1 \cdot x_1$$

$$y_2 = b_0 + b_1 \cdot x_2$$

$$b_0 = y_1 - \frac{y_2 - y_1}{x_2 - x_1} x_1$$

$$b_1 = \frac{y_2 - y_1}{x_2 - x_1}$$

Given (x_1, y_1) and (x_2, y_2) we fit it in a straight line:

$$Y = b_0 + b_1 \cdot X$$

$$y_1 = b_0 + b_1 \cdot x_1$$

$$y_2 = b_0 + b_1 \cdot x_2$$

$$b_0 = y_1 - \frac{y_2 - y_1}{x_2 - x_1} x_1$$

$$b_1 = \frac{y_2 - y_1}{x_2 - x_1}$$

What if we have more than 2 points?

We estimate b₀ and b₁ by minimising the sum of the squared differences between the observed and the predicted values of the outcome

i.e. the minimisation of $\Sigma(Y-Y)^2$

The differences obtained by Y-Y are called residuals (or residual errors)

Linear Regression: Residuals

$$\hat{Y} = b_0 + b_1 \cdot X$$

The linear regression minimises the sum of the residuals

bo and b1 Estimation

Using least squares we can estimate b₀ and b₁

$$b_1 = r \frac{S_y}{S_x}$$

and

$$b_0 = Y - b_1 X$$

Where r is the sample correlation coefficient,

 S_{y} is the square root of the variance of the dependent variable

and S_{χ} is the square root of the variance of the independent variable

Linear Regression: Residuals

Ordinary least squares regression relies on some assumptions:

- The residuals are normally distributed and homoscedastic
- The errors are independent
- The relationships are linear

Goodness of Fit

In a simple linear regression with a perfect fit $\Sigma(Y-Y)^2=0$

70(65(9x u) High (in cm)

100

Height (in cm)

Y: predicted value

 \overline{Y} : mean of y values

Therefore, some linear regressions are better than

others

Residual Standard Error = $\sqrt{\frac{\Sigma residuals^2}{\# Observations-\# Coeff cients}}$

$$R^{2} = 1 - \frac{\Sigma residuals^{2}}{\Sigma (Y - \overline{Y})^{2}}$$

$$R^{2} = 1 - \frac{\Sigma residuals^{2}}{\Sigma (Y - \overline{Y})^{2}}$$

 R^2 or R-squared represents the proportion of the variance of the dependent variable that it is explained by the independent variable in the regression model

Height (cm)	Women (kg)	Men (kg)	80-								11
152	49	52			Men_predicted					100	
155	51	54			Women_predicted				9.00	·*	10 M
157	52	56	70-					100	•		
160	54	58	(G				. **	.*	2000		
165	57	62	Weight (in kg)					100	•		
168	59	63	Weigh				•				
170	61	65	60 -		94	graff og	6				
173	63	67			• • • • • • • • • • • • • • • • • • • •						
175	64	69									
178	66	71		. 6	0.00						
180	68	73	50-		*						
			-		155 160	165	170 Height (in cm)	175	180	185	190

```
Residual Standard Error = \sqrt{\frac{\Sigma residuals^2}{\# Observations-\# Coeffcients}} (Multiple) R^2=1-\frac{\Sigma residuals^2}{\Sigma (Y-\overline{Y})^2}
```

```
>head(handw, 3)
                           Height_in_centimeters Women_in_kilograms Men_in_kilograms
                                                                   54
>cor(handw$Height in centimeters, handw$Women in kilograms)
>(lm women <- lm(Women in kilograms ~ Height in centimeters,
                          data = handw))
                      Call:
                      lm(formula = Women_in_kilograms ~ Height_in_centimeters, data = handw)
                      Coefficients:
                             (Intercept) Height_in_centimeters
                               -53.1763
>predict(lm women,
            data.frame(Height in centimeters = c(163, 185, 190))
                                     56.10745 70.85740 74.20966
>residuals(lm women)
                 0.18803081 -0.15287379 -0.16423069 0.49486470
>summary(lm women)
                     lm(formula = Women_in_kilograms ~ Height_in_centimeters, data = handw)
                     Residuals:
                     -0.45971 -0.15855 -0.08473 0.22778 0.49486
                     Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)
                                                                             Significance
                                             1.77414 -29.97 2.5e-10 ***
                                     -53.17628
                     (Intercept)
                     Height_in_centimeters 0.67045
                                              0.01063 63.07 3.2e-13 ***
                     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                     Residual standard error: 0.3225 on 9 degrees of freedom
                     Multiple R-squared: 0.9977, Adjusted R-squared: 0.9975
                     F-statistic: 3977 on 1 and 9 DF, p-value: 3.196e-13
```

Is Your Model the Best Fit for Your Data?

STATISTIC	CRITERION
R-Squared	Higher the better (> 0.70)
Adj R-Squared	Higher the better
F-Statistic	Higher the better
Std. Error	Closer to zero the better
t-statistic	Should be greater 1.96 for p-value to be less than 0.05
AIC	Lower the better
BIC	Lower the better
Mallows cp	Should be close to the number of predictors in model
MAPE (Mean absolute percentage error)	Lower the better
MSE (Mean squared error)	Lower the better
Min_Max Accuracy => mean(min(actual, predicted)/max(actual, predicted))	Higher the better

Outliers

The Cook's distance: To identify data points that negatively affect your regression model (influential outliers)

The calculation is similar to follow a leave-one-out approach

$$D_i = \frac{\sum_{j=1}^{n} (\hat{Y}_j - \hat{y}_{j(i)})^2}{(p+1)S^2}$$

 $y_{j(i)}$ fitted response value when excluding i p number of regression coefficients S^2 mean squared error of the regression model

Influential outliers by Cook's distance

World Bank Dataset

```
>head(WBd <- read.csv("WDI.tsv", sep = "\t"))</pre>
                                  Gross domestic product per capita
                                                                              Fertility rate (Births Life expectancy)
                                                                                                              Individuals
                                                                       Total
                                   based on purchased power parity
                                                                     population
                                                                                                   at birth
                                                                                                             using internet
                                                                                  per woman)
                                   Country.Name Country.Code GDP_PPP_PC malaria_incidence
                                                                              tpop fertility lifeexpectancy internetusers
                                                   AFG 2058.384
                                                                     27.07227 36296400
                                   Afghanistan
                                                                                     4.633
                                                                                                64.130
                                                                                                         13.5000
                                                                          NA 2873457
                                                                                     1.638
                                                                                                78.333
                                       Albania
                                                   ALB 13037.010
                                                                                                         71.8470
                                                                      0.00000 41389198
                                                   DZA 11737.409
                                                                                                76.499
                                                                                                         47.6911
                                4 American Samoa
                                                                              77001
                                                                                                         91.5675
                                       Andorra
                                                   AGO 7310.902
                                                                    228.90894 29816748
                                                                                                         14.3391
                                       Angola
>ggpubr::ggscatter(WBd, x = "malaria incidence", y = "lifeexpectancy", add = "reg.line",
                             add.params = list(color = "blue", fill = "lightgray"), conf.int = TRUE) +
  labs(x = "Malaria incidence", y = "Life expectancy at birth", colour = "")
                                                        80 -
                                                                                                    95% confidence interval
                                                                                                      Residuals:
                                                                                      400
                                                                                                                 1Q Median
                                                                         Malaria incidence
                                                                                                       -13.1803 -3.0089 -0.0516 3.5594 15.8892
                                                                                                      Coefficients:
                                                                                                                    Estimate Std. Error t value Pr(>|t|)
                                                                                                                    71.18129
                                                                                                                            0.57398 124.013 < 2e-16 ***
>summary(lm(lifeexpectancy ~ malaria incidence, WBd))
                                                                                                       (Intercept)
                                                                                                      Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                                                      Residual standard error: 4.965 on 105 degrees of freedom
                                                                                                        (110 observations deleted due to missingness)
                                                                                                      Multiple R-squared: 0.4722, Adjusted R-squared: 0.4671
                                                                                                      F-statistic: 93.93 on 1 and 105 DF, p-value: 3.02e-16
```



```
>head(WBd <- read.csv("WDI.tsv", sep = "\t"))</pre>
                                  Gross domestic product per capita
                                                                               Fertility rate (Births Life expectancy)
                                                                                                              Individuals
                                                                       Total
                                   based on purchased power parity
                                                                                                   at birth
                                                                                                             using internet
                                                                     population
                                                                                  per woman)
                                   Country.Name Country.Code GDP_PPP_PC malaria_incidence
                                                                               tpop fertility lifeexpectancy internetusers
                                                   AFG 2058.384
                                                                     27.07227 36296400
                                   Afghanistan
                                                                                                64.130
                                                                                                          13.5000
                                                                          NA 2873457
                                                                                     1.638
                                                                                                78.333
                                       Albania
                                                   ALB 13037.010
                                                                                                          71.8470
                                                                      0.00000 41389198
                                                   DZA 11737.409
                                                                                                76.499
                                                                                                         47.6911
                                4 American Samoa
                                                                              77001
                                                                                                         91.5675
                                       Andorra
                                                                    228.90894 29816748
                                                   AGO 7310.902
                                                                                                         14.3391
                                       Angola
>ggpubr::ggscatter(WBd, x = "malaria incidence", y = "lifeexpectancy", add = "reg.line",
                             add.params = list(color = "blue", fill = "lightgray"), conf.int = TRUE) +
  labs(x = "Malaria incidence", y = "Life expectancy at birth", colour = "")
                                                        80 -
                                                                                                       Residuals:
                                                                                      400
                                                                                                                  10 Median
                                                                         Malaria incidence
                                                                                                       -13.1803 -3.0089 -0.0516 3.5594 15.8892
                                                                                                       Coefficients:
                                                                                                                    Estimate Std. Error t value Pr(>|t|)
                                                                                                                    71.18129
                                                                                                                            0.57398 124.013 < 2e-16 ***
>summary(lm(lifeexpectancy ~ malaria incidence, WBd))
                                                                                                       (Intercept)
                                                                                                       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                                                       Residual standard error: 4.965 on 105 degrees of freedom
                                                                                                        (110 observations deleted due to missingness)
                                                                                                       Multiple R-squared: 0.4722, Adjusted R-squared: 0.4671
                                                                                                       F-statistic: 93.93 on 1 and 105 DF, p-value: 3.02e-16
```



```
>head(WBd <- read.csv("WDI.tsv", sep = "\t"))</pre>
                                   Gross domestic product per capita
                                                                                 Fertility rate (Births Life expectancy)
                                                                                                                 Individuals
                                                                         Total
                                    based on purchased power parity
                                                                       population
                                                                                                                using internet
                                                                                                     at birth
                                                                                    per woman)
                                    Country.Name Country.Code GDP_PPP_PC malaria_incidence
                                                                                 tpop fertility lifeexpectancy internetusers
                                                                       27.07227 36296400
                                                                                       4.633
                                                                                                  64.130
                                                                                                            13.5000
                                                     AFG 2058.384
                                                                                       1.638
                                                                                                  78.333
                                                                                                            71.8470
                                        Albania
                                                     ALB 13037.010
                                                                            NA 2873457
                                                     DZA 11737.409
                                                                       0.00000 41389198
                                                                                       3.045
                                                                                                  76.499
                                                                                                            47.6911
                                 4 American Samoa
                                                                                55620
                                                                                77001
                                                                                                            91.5675
                                        Andorra
                                                     AGO 7310.902
                                                                                                            14.3391
                                                                      228.90894 29816748
                                                                                                  60.379
                                         Angola
># Removing rows with NAs
                                                                                                                                           malaria incidence
>withNAs <- apply(WBd[ , 3:8], 1, function(x){
   sum(is.na(x))
> } )
>corrplot::corrplot(cor(WBd[withNAs == 0, 3:8]), order = "AOE",
                                                                                                                                                 fertility
   method = "ellipse", type = "upper")
                                                                                                       tpop
                                                                                                                                                         8.0
                                                                                                    lifeexpectancy
                                                                                                                                                         0.2
                                                                                                            internetusers
                                                                                                                                                         -0.2
                                                                                                                     malaria_incidence
```



```
>head(WBd <- read.csv("WDI.tsv", sep = "\t"))</pre>
                               Gross domestic product per capita
                                                                        Fertility rate (Births) Life expectancy
                                                                                                     Individuals
                                                                 Total
                                based on purchased power parity
                                                               population
                                                                                           at birth
                                                                                                    using internet
                                                                           per woman)
                                Country.Name Country.Code GDP_PPP_PC malaria_incidence
                                                                        tpop fertility lifeexpectancy internetusers
                              1 Afahanistan
                                               AFG 2058.384
                                                               27.07227 36296400
                                                                              4.633
                                                                                        64.130
                                                                                                 13.5000
                                                                                        78.333
                                    Albania
                                               ALB 13037.010
                                                                    NA 2873457
                                                                              1.638
                                                                                                 71.8470
                                               DZA 11737.409
                                                                0.00000 41389198
                                                                                        76.499
                                                                                                 47.6911
                                    Algeria
                                                                              3.045
                              4 American Samoa
                                                                       55620
                                                                                                 91.5675
                                    Andorra
                                                                       77001
                                               AGO 7310.902
                                                               228.90894 29816748
                                                                                        60.379
                                                                                                 14.3391
                                    Angola
># Removing rows with NAs
>withNAs <- apply(WBd[ , 3:8], 1, function(x){
   sum(is.na(x))
> )
>corrplot::corrplot(cor(WBd[withNAs == 0, 3:8]), order = "AOE",
  method = "ellipse", type = "upper", tl.pos = "d")
>corrplot::corrplot(cor(WBd[withNAs == 0, 3:8]), order = "AOE",
  add = TRUE, method = "number", type = "lower", diag = FALSE,
                                                                                                   tpop
   tl.pos = "n", cl.pos = "n")
                                                                                                         0.73 ternetuse
                                                                                                               0.77 PPPP PC
```


0.8

0.6

Outliers in Life Expectancy vs Fertility Rate

Life Expectancy as the Outcome

Fertility rate and Life expectancy correlate

Life expectancy correlates with Wealth (GDP PC)

Fertility rate correlates with Poverty (1 / GDP PC)

Is Life expectancy a function of both Fertility and Wealth?

 $LifeExpectancy = f(Fertility, GDP) = b_0 + b_1Fertility + b_2GDP$

Multiple Linear Regression

```
>lm le fe GDP <- lm(lifeexpectancy ~ fertility + GDP PPP PC, WBd)
>summary(lm le fe GDP)
                                                                                                lm(formula = lifeexpectancy ~ fertility + GDP_PPP_PC, data = WBd)
# Is malaria incidence a predictor of Life expectancy?
                                                                                                Residuals:
                                                                                                                0.2578
                                                                                                Coefficients:
                                                                                                           Estimate Std. Error t value Pr(>|t|)
                                                                                                fertility -3.8801390 0.2606233 -14.888 < Ze-16 ***
                                                                                                GDP_PPP_PC 0.0001062 0.0000151 7.028 4.18e-11 ***
                                                                                                Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
                                                                                                Residual standard error: 3.665 on 180 degrees of freedom
                                                                                                 (34 observations deleted due to missingness)
                                                                                                Multiple R-squared: 0.7692, Adjusted R-squared: 0.7666
  31
                                                                                                F-statistic: 300 on 2 and 180 DF, p-value: < 2.2e-16
```


LE_Fe: Adj $R^2 = 0.713$

LE Fe GDP: Adj $R^2 = 0.767$

Life Expectancy as the Outcome

Fertility rate and Life expectancy correlate

Life expectancy correlates with Wealth (GDP PC)

Fertility rate correlates with Poverty (1 / GDP PC)

Is Life expectancy a function of Fertility, Wealth and Malaria?

LifeExpectancy = f(Fertility, GDP, Malariaincidence)

```
>lm le fer GDP Mal <-
                             lm(lifeexpectancy ~ fertility + GDP PPP PC + malaria incidence, WBd)
>summary(lm le fer GDP Mal)
                                                       Coefficients:
                                                                        Estimate Std. Error t value Pr(>|t|)
                                                       (Intercept)
                                                                       7.778e+01 1.693e+00 45.943 < Ze-16 ***
                                                       fertility
                                                                       -2.881e+00 4.837e-01 -5.957 4.23e-08 ***
                                                       GDP_PPP_PC
                                                                       1.267e-04 4.322e-05
                                                       malaria_incidence -1.105e-02 4.077e-03 -2.710 0.00797 **
                                                       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                       Residual standard error: 3.706 on 96 degrees of freedom
                                                        (117 observations deleted due to missingness)
                                                       Multiple R-squared: 0.7137, Adjusted R-squared: 0.7047
                                                       F-statistic: 79.75 on 3 and 96 DF, p-value: < 2.2e-16
```


LE Fe: Adj $R^2 = 0.713$

LE Fe GDP: Adj $R^2 = 0.767$


```
>ggpubr::ggscatter(WBd, x = "internetusers", y = "GDP_PPP_PC",
   add = "reg.line",
   add.params = list(color = "blue", fill = "lightgray"),
   conf.int = TRUE) +
   labs(x = "Individuals using the Internet (% of population)",
        y = "GDP per capita (PPP)", colour = "")
```



```
>WBd$log10GDP <- log10(WBd$GDP PPP PC)
>cor(WBd$log10GDP, WBd$internetusers, use = "complete.obs")
                                                           [1] 0.9018969
>lm log10GDP <- lm(log10GDP ~ internetusers, WBd)
                                                           5.0 -
  Call:
  lm(formula = log10GDP ~ internetusers, data = WBd)
                                                         () 4.5 -
  Residuals:
              1Q Median
  -0.53951 -0.12952 -0.02846 0.11727 0.74365
                                                         capita (PPP;
  Coefficients:
             Estimate Std. Error t value Pr(>|t|)
  (Intercept) 3.176032 0.035377 89.78 <2e-16 ***
  internetusers 0.016520 0.000577 28.63 <2e-16 ***
  Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
  Residual standard error: 0.2187 on 188 degrees of freedom
   (27 observations deleted due to missingness)
  Multiple R-squared: 0.8134, Adjusted R-squared: 0.8124
  F-statistic: 819.6 on 1 and 188 DF, p-value: < 2.2e-16
```


100

Individuals using the Internet (% of population)

Applications

The accumulated mutations in SARS CoV-2 strains compared with early reference strain since January 2021 shows an approximate of **one new mutation** every 29 days.

Wu, A., et al. (2021) One Year of SARS-CoV-2 Evolution. *Cell Host and Microbe*

Nagase, L., et al. (2015) Dramatic increase in SHP2 binding activity of *Helicobacter pylori* Western CagA by EPIYA-C duplication: its implications in gastric carcinogenesis. *Scientific Reports*.

Kinetics of binding between the recombinant monoclonal antibody mAb7899 and PfGARP-A measured at two antibody concentrations.

Raj, D.K., et al. (2020) Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. *Nature*.

[-1, 1]

Simple Linear Regression

Multiple Linear Regression

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots$$

least squares

Goodness of Fit

residuals

Residual Standard Error

 \mathbb{R}^2

F-statistic