

习题 1 设 X 上有一列度量 $\{d_n\}_{n=1}^{\infty}$, 定义

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{d_n(x,y)}{1 + d_n(x,y)}$$

证明 $d \neq X$ 上的度量

证明 验证三条公理

- $(1) \ \mathbb{E} 定性: \ \mathrm{d}(x,y) = 0 \iff \forall n \in \mathbb{N}, \frac{\mathrm{d}_n(x,y)}{1+\mathrm{d}_n(x,y)} = 0 \iff \forall n \in \mathbb{N}, \mathrm{d}_n(x,y) = 0 \iff x = y$
- (2) 对称性:由 $\{d_n\}$ 的对称性保证
- (3) 三角不等式: 首先证明 $\tilde{\mathbf{d}}_n(x,y)\stackrel{\mathrm{def}}{=}\frac{\mathbf{d}_n(x,y)}{1+\mathbf{d}_n(x,y)}$ 满足三角不等式,注意到函数 $t\mapsto\frac{t}{1+t}$ 在 $t\geq 0$ 单调 增,则

$$\tilde{d}_n(x,y) = \frac{d(x,y)}{1 + d(x,y)} \le \frac{d(x,z) + d(z,y)}{1 + d(x,z) + d(z,y)}
\le \frac{d(x,z)}{1 + d(x,z)} + \frac{d(z,y)}{1 + d(z,y)} = \tilde{d}_n(x,z) + \tilde{d}_n(z,y)$$

所以

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \tilde{d}_n(x,y) \le \sum_{n=1}^{\infty} \frac{1}{2^n} [\tilde{d}_n(x,z) + \tilde{d}_n(z,y)]$$
$$= d(x,z) + d(z,y)$$

习题 2 证明: 离散度量空间完备

证明 设 (X, \mathbf{d}) 是离散度量空间, $\{x_n\}_{n=1}^{\infty} \subset X$ 是基本列,则对 $\varepsilon = \frac{1}{2}, \exists N \in \mathbb{N}, \text{s.t. } \forall m, n \geq N, \mathbf{d}(x_m, x_n) < \frac{1}{2}$,而由离散度量的定义知, $\forall m, n \geq N, x_m = x_n = x_N$,所以 $x_n \to x_N$,由 $\{x_n\}_{n=1}^{\infty}$ 的任意性知,离散度量空间完备

习题 3 证明: $T:X\to Y$ 连续 $\iff \forall u\stackrel{\mathrm{fl}_*}{\subset} Y, T^{-1}(u)\stackrel{\mathrm{fl}_*}{\subset} X$

证明 (\Longrightarrow): 设 u 是 Y 中的任意开集,对 $\forall x_0 \in T^{-1}(u)$,由 u 是开集知, $\exists \varepsilon > 0$,s.t. $B(Tx_0, \varepsilon) \subset u$,又因为 $T: X \to Y$ 连续,所以 $\forall \varepsilon > 0$, $\exists \delta > 0$,s.t. $\forall d(x, x_0) < \delta$, $\rho(Tx, Tx_0) < \varepsilon$,这就说明 $B(x_0, \delta) \subset T^{-1}(u)$,由 x_0 的任意性知 $T^{-1}(u)$ 是开集

(秦): 对 $\forall x_0 \in X$,下面证明 T 在 x_0 处连续,对 $\forall \varepsilon > 0$,因为 $B(Tx_0, \varepsilon) \subset Y$ 是开集,所以 $T^{-1}\big(B(Tx_0, \varepsilon)\big)$ 也是开集,而 $x_0 \in T^{-1}\big(B(Tx_0, \varepsilon)\big)$,所以 $\exists \delta > 0$, s.t. $B(x_0, \delta) \subset T^{-1}\big(B(Tx_0, \varepsilon)\big)$,即 $\forall d(x, x_0) < \delta, \rho(Tx, Tx_0) < \varepsilon$,即 $T: X \to Y$ 连续

习题 4 证明 C[0,1] 可分

证明 首先由 Weierstrass 一致逼近定理知

$$\mathcal{P}(0,1)\stackrel{\mathrm{def}}{=} \{[0,1]$$
上的多项式 $\}\stackrel{\mathrm{dense}}{\subset} C[0,1]$

则对 $\forall f(x) \in C[0,1], \forall \varepsilon > 0, \exists g(x) = a_m x^m + \dots + a_1 x + a_0 \in \mathcal{P}[0,1], \text{s.t. } d(f,g) = \max_{t \in [0,1]} |f(t) - g(t)| < \frac{\varepsilon}{2}$

定义 $\tilde{\mathcal{P}}[0,1] \stackrel{\mathrm{def}}{=} \{[0,1]$ 上的有理系数多项式},则由有理数的稠密性知, $\exists \{b_i\}_{i=1}^m \subset \mathbb{Q}, \mathrm{s.t.} \ |a_i-b_i| < \frac{\varepsilon}{2m},$ i记 $h(x) = b_m x^m + \dots + b_1 x + b_0 \in \tilde{\mathcal{P}}[0,1]$,则

$$\max_{t \in [0,1]} |g(t) - h(t)| = \max_{t \in [0,1]} \left| \sum_{i=0}^{m} (b_i - a_i) t^i \right| \le \sum_{i=0}^{m} |b_i - a_i| < \frac{\varepsilon}{2m} \cdot m = \frac{\varepsilon}{2}$$

所以 $\operatorname{d}(f,h) \leq \operatorname{d}(f,g) + \operatorname{d}(g,h) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$,由 $f(x) \in C[0,1]$ 的任意性知 $\tilde{\mathcal{P}}[0,1] \overset{\text{dense}}{\subset} C[0,1]$,且 $\tilde{\mathcal{P}}[0,1]$ 与集合 $\{(a_1,\cdots,a_n,\cdots)|a_i\in\mathbb{Q}\}$ 等势,该集合可视为为可数个可数集合之并,故可数,因此我们找到了 C[0,1] 的可数子集,故它可分

习题 5 证明: 以下等价

- (1) A 是闭集 (2) $\overline{A} = A$ (3) $\forall \{x_n\}_{n=1}^{\infty} \subset A$,若 $x_n \to x_0$,则 $x_0 \in A$

证明 $(1) \Longrightarrow (2)$: 因为 A 是闭集, 所以 A^c 是开集, 对 $\forall x \in A^c, \exists \varepsilon > 0, \text{s.t. } B(x, \varepsilon) \subset A^c$, 由接触点和 闭包的定义知, $x \notin \overline{A}$, 即 $A^c \cap \overline{A} = \emptyset \Longrightarrow \overline{A} \subset A$, 由 A 是闭集知, $\overline{A} = A$

- $(2) \Longrightarrow (3)$: 由 $x_n \to x_0$ 知, 对 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{s.t. } \forall n > N, x_n \in B(x_0, \varepsilon)$, 这说明 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{s.t. } \forall n > N, x_n \in B(x_0, \varepsilon)$, 这说明 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{s.t. } \forall n > N, x_n \in B(x_0, \varepsilon)$, 这说明 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{s.t. } \forall n > N, x_n \in B(x_0, \varepsilon)$, 这说明 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{s.t. } \forall n > N, x_n \in B(x_0, \varepsilon)$, 这说明 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{s.t. } \forall n > N, x_n \in B(x_0, \varepsilon)$, 这说明 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{s.t. } \forall n > N, x_n \in B(x_0, \varepsilon)$, 这说明 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{s.t. } \forall n > N, x_n \in B(x_0, \varepsilon)$ $0, B(x_0, \varepsilon) \cap A \neq \emptyset$, $\mathbb{P} x_0 \in \overline{A} = A$
- $(3) \Longrightarrow (1)$: 即证明 A^c 是开集,假设 A^c 不是开集,则 $\exists x_0 \in A^c$, s.t. $B(x_0, \varepsilon) \cap A \neq \emptyset, \forall \varepsilon > 0$,对 $\forall n \in \mathbb{N}, \ \mathbb{R} \ \varepsilon = \frac{1}{n}, \ \mathbb{R} \ x_n \in B(x_0, \frac{1}{n}) \cap A, \ \mathbb{M} \ x_n \to x_0, \ \text{deg } x_0 \notin A, \ \mathcal{F}f$!