

Ikhlaq Sidhu Chief Scientist & Founding Director, Sutardja Center for Entrepreneurship & Technology IEOR Emerging Area Professor Award, UC Berkeley

Decision Tree Illustration

Illustration Source: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-choice

Decision Tree Illustration

How Are Trees Created?

	Attribut	es			Target
	Hour	Weather	Accident	Stall	Commute
D1	8 AM	Sunny	No	No	Long
D2	8 AM	Cloudy	No	Yes	Long
D3	10 AM	Sunny	No	No	Short
D4	9 AM	Rainy	Yes	No	Long
D5	9 AM	Sunny	Yes	Yes	Long
D6	10 AM	Sunny	No	No	Short
D7	10 AM	Cloudy	No	No	Short
D8	9 AM	Rainy	No	No	Medium
D9	9 AM	Sunny	Yes	No	Long
D10	10 AM	Cloudy	Yes	Yes	Long
D11	10 AM	Rainy	No	No	Short
D12	8 AM	Cloudy	Yes	No	Long
D13	9 AM	Sunny	No	No	Medium

The choice of which feature/attribute to split depends on "entropy"

Example from Jeff Story, source Internet

How Are Trees Created?

	Attributes		Target		
	Hour	Weather	Accident	Stall	Commute
D1	8 AM	Sunny	No	No	Long
D2	8 AM	Cloudy	No	Yes	Long
D3	10 AM	Sunny	No	No	Short
D4	9 AM	Rainy	Yes	No	Long
D5	9 AM	Sunny	Yes	Yes	Long
D6	10 AM	Sunny	No	No	Short
D7	10 AM	Cloudy	No	No	Short
D8	9 AM	Rainy	No	No	Medium
D9	9 AM	Sunny	Yes	No	Long
D10	10 AM	Cloudy	Yes	Yes	Long
D11	10 AM	Rainy	No	No	Short
D12	8 AM	Cloudy	Yes	No	Long
D13	9 AM	Sunny	No	No	Medium

Prediction can be coded

All features might not even be used (Occam's Razor)

```
if hour == 8am
    commute time = long
else if hour == 9am
    if accident == yes
        commute time = long
    else
        commute time = medium
else if hour == 10am
    if stall == yes
        commute time = long
    else
        commute time = short
```

Example from Jeff Story, source Internet

Υ	X1	X2	Х3
0	0	0	1
0	1	0	1
0	0	0	1
0	1	1	1
1	0	1	0
1	1	1	0
1	0	1	0
1	1	0	0

Y = Result output

If you want an efficient tree, which Variable (X1, X2, or X3) will you use as the first branch of the tree.

Υ	X1	X2	Х3
0	0	0	1
0	0	0	1
1	0	1	0
1	0	1	0
0	1	0	1
0	1	1	1
1	1	1	0
1	1	0	0
Sorted X1	and then Y		

	Υ	X1	X2	Х3
	0	0	0	1
	0	1	0	1
	0	0	0	1
	1	1	0	0
	0	1	1	1
	1	0	1	0
	1	1	1	0
	1	0	1	0
sorted X	(2 and t	hen by Y		

Y X1 X2 >	K 3
1 0 1	0
1 1 1	0
1 0 1	0
1 1 0	0
0 0 0	1
0 1 0	1
0 0 0	1
0 1 1	1
Sorted X3 and then by Y	

How much information is in a 'data value' from column, eg 'Y'?

P(Y=1) = .5

Υ	X1	X2	Х3
0	0	0	1
0	1	0	1
0	0	0	1
0	1	1	1
1	0	1	0
1	1	1	0
1	0	1	0
1	1	0	0

How much information is in an observed value In the Y column?

Y =
$$\begin{cases}
1 \text{ w p= 1/2} & \text{Suppose} \\
\text{outcome} \\
\text{= 1}
\end{cases}$$

$$Y = \begin{cases}
1 \text{ w p = 1} \\
0 \text{ w p=0}
\end{cases}$$
Suppose outcome = 1

We can use "Entropy" as a Measure of Information

A Measure of a distribution P(X)

Examples:

X = 1 with p = .5

$$H(X) = .5 \log_2 (1/.5) + .5 \log_2 (1/.5) = 1 \text{ bits}$$

X = 1 with p = 1/4

$$H(X) = 1/4 \log_2 (4) + 3/4 \log_2 (4/3) = 0.811 \text{ bits}$$

X = 1 with p = 1/10

$$H(X) = .1 \log_2 (10) + 0.9 \log_2 (10/9/3) = .46 \text{ bits}$$

X=1 w p = 0

$$H(X) = 0 \log_2 (1/0^+) + 1 \log_2 (1) = 0 \text{ bits}$$

- Find H(Y) = Entropy of Outcome
- Then try each possible feature.
 Variable: X1, X2, and X3
- Calculate the Conditional Entropy of Y given a choice of either X1, X2 or X3
 H(Y|X)
- Information Gained =
- I(Y;X) = H(Y) H(Y|X)
- Choose the variable X1, X2, X3 that leads to the most information gained.

Υ	X1	X2	Х3
0	0	0	1
0	0	0	1
1	0	1	0
1	0	1	0
0	1	0	1
0	1	1	1
1	1	1	0
1	1	0	0
Sorted	X1 and then Y		

X1

$$H(Y|X1=0)$$
 $H(Y|X1=1)$
= 1 = 1

$$H(Y|X) = 1 \times .5 + 1 \times .5 = 1.0$$

Info Gained =
$$H(Y) - H(Y|X) = 1 - 1 = 0$$

Υ	X1	X2	Х3
0	0	0	1
0	1	0	1
0	0	0	1
1	1	0	0
0	1	1	1
1	0	1	0
1	1	1	0
1	0	1	0
sorted X2	2 and then by Y		

$$P(Y=1|X2=0)$$
 $P(Y=1|X2=1)$ = 3/4

$$H(Y|X1=0)$$
 $H(Y|X1=1)$
= $\frac{1}{100}$ = $\frac{3}{400}$ = $\frac{3}{400}$ = $\frac{1}{400}$ = 0.81

$$H(Y|X) = 0.81 \times 0.5 + 0.81 \times 0.5 = 0.81$$

Info Gained = $H(Y) - H(Y|X) = 1 - 0.81 = 0.19$

Y	X1	X2	Х3
0	0	0	1
0	1	0	1
0	0	0	1
0	1	1	1
1	0	1	0
1	1	1	0
1	0	1	0
1	1	0	0

$$Y=1 \text{ w/p}=.5$$

Х3

Y=1 w/ p=1

$$Y=1 \text{ w/ } p=0$$

Lets Understand Entropy

Entropy is a measure of Information in a source (or transmitted, lost or received)

Example:

- 4 Symbols: A, B, C, D
- P(A) = 6/12, P(B) = 3/12, P(C) = 2/12, P(D) = 1/12

Possibly transmitted in this sequence: AABA ABBC CAAD ... \rightarrow "?"

Q: How many bits of information is in A, B, C, D and the "next missing random symbol"

Claude Shannon,
"the father of
information theory"

Lets First Understand Entropy

Entropy is a measure of Information in a source (or transmitted, lost or received)

Example:

- 4 Symbols: A, B, C, D
- P(A) = 6/12, P(B) = 3/12, P(C) = 2/12, P(D) = 1/12

Possibly transmitted in this sequence: AABA ABBC CAAD ... → "?"

Information:

- Increases with less likelihood
- Additive for combinations
 Options A x B -> H(A) + H(B)
- An event with p = 0 has no info

Q: How many bits of information is in A, B, C, D and the "next missing random symbol"

Answer relates to Entropy

- Info Content: $h(p) = p \log_2(1/p)$ for a symbol with probability p
- $h(A) = log_2(2) = 1 bit$, $h(B) = log_2(4) = 2 bits$, $h(C) = log_2(6)$, $h(D) = log_2(12)$
- $H(S) = \frac{1}{2} \log_2(2) + \frac{1}{4} \log_2(4) + \frac{1}{6} \log_2(6) + \frac{1}{12} \log_2(12) = 1.72 \text{ bits}$

$$H(x) = \sum_{x} p(x) \log \left(\frac{1}{p(x)}\right)$$

Entropy Related to the Information Contained in the Symbol (or Table)

Entropy is a measure of Information in a source (or transmitted, lost or received)

Example:

- P(A) = 6/12
- P(B) = 3/12
- P(C) = 2/12
- P(D) = 1/12
- Possibly transmitted in this sequence: AABA ABBC CAAD ... → "?"

Source Coding Theorem:

The H(S) is the smallest codeword length that is theoretically possible for signal 'S'

Theoretically smallest code is 1.72 bits per symbol

Sample Coding Schemes

Example:

D (.083)

- 4 Symbols: A, B, C, D
- Suppose each is "encoded" in 4 bits, ie A = '0001'
- P(A) = 6/12, P(B) = 3/12, P(C) = 2/12, P(D) = 1/12

.25

We could code in 2 bits (00, 01, 10, 11)

1

• Most famous prefix free coding is called a Huffman Code:

A prefix free code:

A: 0

B: 10

C: 110

D: 111

B (.25)

C (.16)

O

A prefix free code:

A: 0

A prefix free code:

A: 0

B: 10

C: 110

D: 111

Ave length: 0.5(1) + 0.25(2) + 0.16(3) + .083(3)

= 2.5

(theoretically best would be 1.72)

1

Examples with Tables, Trees and Entropy

Entropy Example

• Entropy = $\sum_{i} -p_{i} \log_{2} p_{i}$

 \boldsymbol{p}_{i} is the probability of class \boldsymbol{i}

Compute it as the proportion of class i in the set.

16/30 are green circles; 14/30 are pink crosses $log_2(16/30) = -.9$; $log_2(14/30) = -1.1$ Entropy = -(16/30)(-.9) - (14/30)(-1.1) = .99

Source Internet

2-Class Cases:

 What is the entropy of a group in which all examples belong to the same class?

$$-$$
 entropy = $-1 \log_2 1 = 0$

not a good training set for learning

 What is the entropy of a group with 50% in either class?

$$-$$
 entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

good training set for learning

Maximum impurity

Source Internet

Calculating Information Gain

Information Gain = entropy(parent) – [average entropy(children)]

(Weighted) Average Entropy of Children =
$$\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$$

7

Information Gain = 0.996 - 0.615 = 0.38 for this split

Golf Example

Start with table of experiences

- Distribution: P(golf) = 9 yes, 5 no14 observations
- We calculate entropy of distribution: playing golf
- Need to calculate entropy of each next possible decision (Outlook, Temp, Humidity, and Windy)
- Information gained is E(Golf) E(Subset, Golf),
- We choose the next branch to be the decision with the highest information gained for the next branch

Golf Example

Predictors

Target

Top Level Play Golf Distribution

9/14	5/14

$E(G) = 9/14 \log_2 1/(9/14)$
+ 5/14 log ₂ 1/(5/14)
= 0.94

- Distribution: P(golf) = 9 yes, 5 no14 observations
- We calculate entropy of distribution: playing golf
- Need to calculate entropy of each next possible decision (Outlook, Temp, Humidity, and Windy)
- Information gained is E(Golf) E(Subset, Golf),
- We choose the next branch to be the decision with the highest information gained for the next branch

Ø

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

Top Level Play Golf Distribution

$$H(G) = 9/14 \log_2 1/(9/14) + 5/14 \log_2 1/(5/14) = 0.94$$

Next Level: Play Golf with Outlook

H(G,OL) = P(Sunny) H(G,OL) + P(OV)H(G,OV) + P(Rainy) H(G,Rainy)

= 5/14* 0.971+4/14*0 + 5/14*.971 = 0.693

Info Gained = H(G) - H(G,OL) = 0.94 - 0.693 = 0.247

Do the same with Temp (.29), Windy(.048), and Humidity(.152): Choose next node to be the one with the most info gained

Random Forrest

Trees Can be Extended with Bagging

Explain bagging and Random Forrest

```
from sklearn.ensemble import RandomForestClassifier

random_forest =
RandomForestClassifier(n_estimators=1000)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)

# Error
acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
acc_random_forest

# or compare Y_pred with Y_test
```


Random Forest – A type of bagging/ensemble approach

Advantages: One of most accurate Efficient prediction over large data

Disadvantages: Overfit and Training time

Our experiment with the Titanic Data Set

Model	Score
Random Forest	86.76
Decision Tree	86.76
KNN	84.74
Support Vector Machines	83.84
Logistic Regression	80.36
Linear SVC	79.01
Perceptron	78.00
Naive Bayes	72.28
Stochastic Gradient Decent	72.28

More Accuracy Generally more training time More risk of overfitting

Less Accuracy Generally less computation

Boosting

Boosting as in AdaBoost

- Motivation a procedure that combines the outputs of many "weak" classifiers to produce a powerful "committee"
- A machine learning algorithm
- Perform supervised learning
- Increments improvement of learned function
- Forces the weak learner to generate new hypotheses that make less mistakes on "harder" parts.
- Freund & Schapire (1995) AdaBoost
 - strong practical advantages over previous boosting algorithms

We set a new problem for which the previous weak classifier performs at chance again

ha atrana (non linear) alconifice is built on the south

General Concept of Boosting

- Train a set of weak hypotheses: h₁,, h_T.
- The combined hypothesis H is a **weighted** majority vote of the T weak hypotheses.
 - → Each hypothesis h, has a weight α,.

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Boosting as in AdaBoost

Boosting

- Binary classification problem
- Training data:

$$(x_1, y_1), ..., (x_m, y_m), where x_i \in X, y_i \in Y = \{-1,1\}$$

- $D_t(i)$: the weight of x_i at round t. $D_1(i)=1/m$.
- A learner L that finds a weak hypothesis h_t: X → Y given the training set and D_t
- The error of a weak hypothesis h_t:

$$\varepsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i] = \sum_{i: h_t(x_i) \neq y_i} D_t(i)$$

AdaBoost Algorithm

- **Given** $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X$, $y_i \in \{-1, +1\}$
- Initialise weights $D_1(i) = 1/m$
- **Iterate** *t*=1,...,*T*:
 - ☐ Train weak learner using distribution *Dt*
 - □ Get weak classifier $(h_t: X \to R)$
 - \Box Choose $\alpha_t \epsilon R$
 - Update: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
 - where Z_t is a normalization factor (chosen so that Dt+1 will be a distribution), and $\alpha_{t:}$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right) > 0$$

Output – the final classifier

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

AdaBoost Algorithm

Discrete AdaBoost - Algorithm

- **Given** $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X$, $y_i \in \{-1, +1\}$
- Initialise weights $D_1(i) = 1/m$
- Iterate *t*=1,...,*T*:
 - \Box Find $h_t = \arg\min_{h_j} \epsilon_j$ where $\epsilon_j = \sum\limits_{i=1}^m D_t(i) \llbracket h_t(x_i) \neq y_i \rrbracket$ \Box Set
 - □ Set

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

- □ Update: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z}$
- Output the final classifier

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

AdaBoost – Pros and Contras

- Pros:
 - □ Very simple to implement
 - □ Fairly good generalization
 - □ The prior error need not be known ahead of time
- Contras:
 - □ Suboptimal solution
 - ☐ Can over fit in presence of noise

End of Section

