Modéliser le comportement géométrique des systèmes mécaniques

Révision 1 - Modélisation géométrique - Lois entrées-sorties

Sciences
Industrielles de

l'Ingénieur

Application 01

Micromoteur d'un avion de modélisme

Xavier Pessoles

Savoirs et compétences :

Mise en situation

La mise en mouvement d'une certaine catégorie d'avions de modélisme est assurée par un moteur thermique. La figure ci-dessous propose un éclaté d'un modèle 3D ainsi que le schéma cinématique associé.

On appelle:

- (0) la bâti lié à la voilure de l'avion;
- (1) le vilebrequin, solidaire de l'hélice de l'avion;
- (2) la bielle;
- (3) le piston.

Objectif

- Déterminer la loi de position et de vitesse du piston pour avoir un taux de rotation du moteur de 9000 trmin⁻¹.
- Vérifier que l'accélération est inférieure à $10\,000\,\mathrm{m\,s^{-2}}$.

Modélisation

La modélisation par schéma cinématique est donnée dans le schéma ci-dessous.

On appelle:

1

- $\mathcal{R}_0 = (A, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ le repère lié au bâti (0);
- $\mathcal{R}_1 = (A, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$ le repère lié au vilebrequin (1) avec $\alpha(t) = (\overrightarrow{x_0}, \overrightarrow{x_1})$;
- $\Re_2 = (B, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0})$ le repère lié à la bielle (2) avec $\beta(t) = (\overrightarrow{x_1}, \overrightarrow{x_2})$ avec $\overrightarrow{AB} \cdot \overrightarrow{x_1} = e$ et e = 5.25 mm;
- $\mathcal{R}_3 = (C, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_0})$ le repère lié au piston (3) avec $\gamma(t) = (\overrightarrow{x_2}, \overrightarrow{x_3})$ avec $\overrightarrow{BC} = L\overrightarrow{x_2}$ et $\overrightarrow{AC} \cdot \overrightarrow{y_0} = \lambda(t)$ et L = 23.9 mm.

Les figures planes de changement de repère sont données ci-dessous :

Question 1 Tracer le graphe de structure. Définir le nombre de cycles, la mobilité du mécanisme et le nombre de degrés de liberté de chacune des liaisons en 2D et en 3D.

Question 2 Préciser la variable d'entrée ainsi que la variable de sortie du système.

Question 3 Déterminer la loi entrée-sortie géométrique du système.

Question 4 Déterminer la loi entrée-sortie cinématique du système.

Question 5 Tracer l'allure de la loi de vitesse du piston.

Une simulation réalisée sous Méca3D permet d'obtenir l'évolution de l'accélération du piston :

Question 6 Conclure vis-à-vis du cahier des charges.