第8章椭圆曲线&第7章有限域参考答

案

计算证明

1.(15分)已知 $E_{11}(1,6)$ 上一点 G(2,7), 求 2G 到 13G 的所有值.

解 $E_{11}(1,6): y^2 = x^3 + x + 6 \pmod{11}$, 对点 G = (2,7) 有:

(1)
$$2G = G + G$$
: $k = \frac{3 \times 2^2 + 1}{2 \times 7} = 8 \pmod{11}$

$$\begin{cases} x_3 = k^2 - 2x_1 = 5 \pmod{11} \\ y_3 = k(x_1 - x_3) - y_1 = 2 \pmod{11} \end{cases}$$

$$2G = (5, 2)$$

(2)
$$3G = 2G + G$$
: $k = \frac{7-2}{2-5} = 2 \pmod{11}$

$$\begin{cases} x_3 = k^2 - x_1 - x_2 = 8 \pmod{11} \\ y_3 = k(x_1 - x_3) - y_1 = 3 \pmod{11} \end{cases}$$

$$3G = (8,3)$$

同理可得,4G=(10,2),5G=(3,6),6G=(7,9),7G=(7,2),8G=(3,5),9G=(10,9),10G=(8,8),11G=(5,9),12G=(2,4),13G=O.

2. (15分)已知 $E_{17}(3,1)$ 上一点 $Q=(15,y_Q)$, 求 Q 坐标及 Q 的阶.

 $extbf{\textbf{\textit{p}}} \ E_{17}(3,1): y^2 = x^3 + 3x + 1 \pmod{17}.$ 将 Q 代入得到: $y_Q^2 = 4$,解得 $y_Q = 2,15 \pmod{17}$.

则 Q = (15, 2) 或 Q = (15, 15).

(1)
$$Q = (15, 2)$$
:

$$2Q = Q + Q$$
: $k = \frac{3 \times 15^2 + 3}{2 \times 2} = 8 \pmod{17}$

$$\begin{cases} x_3 = k^2 - 2x_1 = 0 \pmod{17} \\ y_3 = k(x_1 - x_3) - y_1 = 16 \pmod{17} \end{cases}$$

$$2Q = (0, 16)$$

$$3Q = 2Q + Q$$
: $k = \frac{16 - 2}{-15} = 7 \pmod{17}$

$$\begin{cases} x_3 = k^2 - x_1 - x_2 = 0 \pmod{17} \\ y_3 = k(x_1 - x_3) - y_1 = 1 \pmod{17} \end{cases}$$

$$3Q = (0,1)$$

则 5Q = 2Q + 3Q = O. 易知, $4Q \neq O$. 则 $\operatorname{ord} Q = 5$.

(2) Q = (15, 15) = -(15, 2), \mathbb{N} ord Q = 5.

综上, Q = (15, 2) 或 Q = (15, 15). ord Q = 5.

- 3. 由多项式 $p(x)=x^4+x+1$ 定义的域 \mathbb{F}_{2^4} ,选取生成元 g=(0010) (表示多项式 x):
- (1) (15分) 求 \mathbb{F}_{2^4} 上椭圆曲线: $y^2 + xy = x^3 + g^4x^2 + 1$ 上的所有点;
- (2) (10分) 验证 $P_1=(g^6,g^8)$, $P_2=(g^3,g^{13})$ 是椭圆曲线上的点,并求 P_1+P_2 和 $2P_1$.
- **解** (1) 由生成元 g 易得: $\mathbb{F}_{2^4}=\{0,1,g,g^2,g^3,g^4,g^5,g^6,g^7,g^8,g^9,g^{10},g^{11},g^{12},g^{13},g^{14}\}$

+	0	1	g	g^2	g^3	g^4	g^5	g^6	g^7	g^8	g^9	g^{10}	g^{11}	g^{12}	g^{13}	g^{14}
0	0	1	g	g^2	g^3	g^4	g^5	g^6	g^7	g^8	g^9	g^{10}	g^{11}	g^{12}	g^{13}	g^{14}
1	-	0	g^4	g^8	g^{14}	g	g^{10}	g^{13}	g^9	g^2	g^7	g^5	g^{12}	g^{11}	g^6	g^3
g	-	-	0	g^5	g^9	1	g^2	g^{11}	g^{14}	g^{10}	g^3	g^8	g^6	g^{13}	g^{12}	g^7
g^2	-	-	-	0	g^6	g^{10}	g	g^3	g^{12}	1	g^{11}	g^4	g^9	g^7	g^{14}	g^{13}
g^3	-	-	-	-	0	g^7	g^{11}	g^2	g^4	g^{13}	g	g^{12}	g^5	g^{10}	g^8	1
g^4	-	-	-	-	-	0	g^8	g^{12}	g^3	g^5	g^{14}	g^2	g^{13}	g^6	g^{11}	g^9
g^5	-	-	-	-	-	-	0	g^9	g^{13}	g^4	g^6	1	g^3	g^{14}	g^7	g^{12}
g^6	-	-	-	-	-	-	-	0	g^{10}	g^{14}	g^5	g^7	g	g^4	1	g^8
g^7	-	-	-	-	-	-	-	-	0	g^{11}	1	g^6	g^8	g^2	g^5	g
g^8	-	-	-	-	-	-	-	-	-	0	g^{12}	g	g^7	g^9	g^3	g^6
g^9	-	-	-	-	-	-	-	-	-	-	0	g^{13}	g^2	g^8	g^{10}	g^4
g^{10}	-	-	-	-	-	-	-	-	-	-	-	0	g^{14}	g^3	g^9	g^{11}
g^{11}	-	-	-	-	-	-	-	-	-	-	-	-	0	1	g^4	g^{10}
g^{12}	-	-	-	-	-	-	-	-	-	-	-	-	-	0	g	g^5
g^{13}	-	-	-	-	-	-	-	-	-	-	-	_	-	-	0	g^2
g^{14}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0

表 1: \mathbb{F}_{2^4} 上的加法群表

 $y^2 + xy = x^3 + g^4x^2 + 1$ 在 \mathbb{F}_{2^4} 上的所有点:

x	y	点 (x,y)
_	_	O
0	1	(0, 1)
1	g^6,g^{13}	$(1, g^6), (1, g^{13})$
g	无解	_
g^2	无解	_
g^3	g^8,g^{13}	$(g^3,g^8),(g^3,g^{13})$

综上, 共有 16 个点, 分别是: O, (0,1), $(1,g^6)$, $(1,g^{13})$, (g^3,g^8) , (g^3,g^{13}) , (g^5,g^3) , (g^5,g^{11}) , (g^6,g^8) , (g^6,g^{14}) , (g^9,g^{10}) , (g^9,g^{13}) , (g^{10},g) , (g^{10},g^8) , $(g^{12},0)$, (g^{12},g^{12}) .

(2) 由 (1) 易知, P₁, P₂均在该椭圆曲线上.

易 知 , \mathbb{F}_{2^4} 上 椭 圆 曲 线 方 程 $y^2+xy=x^3+g^4x^2+1$ 是 一般 形 式 的 Weierstrass 方 程 $a_1=a_6=1,\ a_3=a_4=0,\ a_2=g^4$ 的情况.

$$\text{ or } \begin{cases} x_3 = k^2 + k + g^4 + x_1 + x_2 \\ y_3 = k(x_1 + x_3) + x_3 + y_1 \end{cases}, \quad k = \begin{cases} \frac{y_2 + y_1}{x_2 + x_1}, & x_1 \neq x_2 \\ \frac{x_1^2 + y_1}{x_1}, & x_1 = x_2 \end{cases}$$

i. $P_1 + P_2$:

$$k = \frac{g^{13} + g^8}{g^3 + g^6} = \frac{g^3}{g^2} = g$$

$$\begin{cases} x_3 = g^2 + g + g^4 + g^6 + g^3 = 1 \\ y_3 = g(g^6 + 1) + 1 + g^8 = g^{13} \end{cases}$$

ii. $2P_1$:

$$k = rac{(g^6)^2 + g^8}{g^6} = rac{g^9}{g^6} = g^3$$

$$\begin{cases} x_3 = g^6 + g^3 + g^4 + 0 = g^{10} \\ y_3 = g^3(g^6 + g^{10}) + g^{10} + g^8 = g^8 \end{cases}$$

4. (1) (5分)求 \mathbb{F}_2 上的三次本原多项式 , 并据此给出域 \mathbb{F}_8 的矩阵表示;

- (2) (5分)验证对其加法和乘法运算满足域结构的定义;
- (3) (5分)计算 \mathbb{F}_8 上所有元素的阶.
- **解** (1) $\mathbb{F}_2[x]$ 中三次不可约多项式有两个: $f(x)=x^3+x+1$, $g(x)=x^3+x^2+1$. 在 \mathbb{F}_{2^3} 上验证可知, ord $f(x)=\operatorname{ord} g(x)=7$, 则 f(x), g(x) 均为 \mathbb{F}_2 上的三次本原多项式. 可以由 f(x) 得到其伴随矩阵为:

$$A=egin{pmatrix} 0 & 0 & 1 \ 1 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix}$$
,可以得到 $\mathbb{F}_8=\{0,I=A^7,A,A^2,A^3,A^4,A^5,A^6\}$.即:

$$\mathbb{F}_8 = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \right\}$$

- (2) 略(首先验证 \mathbb{F}_8 是幺环. 无零因子是应为除零元外,行列式都为1. 逆元易知. 交换需要逐次验证.)
- (3) (注意这里的阶是对乘法而言) 零元0的阶没有意义,对乘法运算 \mathbb{F}_8^* 是循环群,则 ord I=1, ord $A=\operatorname{ord} A^2=\operatorname{ord} A^3=\operatorname{ord} A^4=\operatorname{ord} A^5=\operatorname{ord} A^6=7$.

编程练习(基于C/C++)

(30分)实现基本的 Z_p 上的椭圆曲线 $E_p(a,b)$ 的计算,平台可以是Windows/Linux/macOS,具体如下:

1. 功能要求:

- 给定参数 p,a,b, 判断 $E_p(a,b)$ 是否为椭圆曲线;
- 判断给定的点 P,Q 是否在椭圆曲线 $E_p(a,b)$ 上;
- 对在椭圆曲线 $E_p(a,b)$ 上的两点 P,Q , 计算 P+Q;
- 对在椭圆曲线 $E_p(a,b)$ 上的点 P , 使用倍加-和算法计算 mP;
- 对在椭圆曲线 $E_p(a,b)$ 上的点 P , 计算阶ord(P);
- 对在椭圆曲线 $E_p(a,b)$, 计算阶#E;
- 对在椭圆曲线 $E_p(a,b)$, 计算所有点;
- 其他功能的进一步扩展......

2. 编程要求:

- 不允许使用第三方的库;
- 按照面向对象的编程思想, 封装类, 调用公有接口实现;
- 符合一定的编程规范;
- 利用之前的知识模块解耦实现:如扩展Euclid算法求逆、二次互反律求Legendre符号、群的一些基础知识等;
- 在实现功能的基础上,尽可能提高计算的效率等.
- 3. 示例演示:

```
## Spin P(1,7) | Spin P(1,7) | Spin P(1,7) |

| Spin P(1,7) | Spin P(1,7) |
|
```

4. 提交要求:

- 源码文件: *.cpp、*.h
- PE文件: .exe等
- 演示说明视频: <3min, 包含对写好的测试样例的演示和对核心部分的讲解说明
- 实验报告: 2123456张三椭圆曲线编程练习报告.doc 或 2123456张三椭圆曲线编程练习报告.pdf