

Recommender Systems

Overview

- Introduction
 - Collaborative vs Content-based
- How do they work?
 - Ranking by similarity
 - Predicting
 - Evaluation
- Advantages/Disadvantages
- Example using Azure ML

INTRODUCTION

Recommendation Systems

- Automated systems to filter and recommend entities (products, ads, people) based on users' interest and taste.
- Designed to solve the information overload problem

Why recommendation systems?

- For Customers
 - Narrow down the set of choices
 - Discover new, interesting things
 - Save time
- For Business
 - Increase the number of items sold
 - Sell more diverse items
 - Better understand what the user wants

Collaborative vs. Content-based Recommenders

Collaborative vs. Content-based Recommenders

Collaborative

- 'Give me items that people like me enjoy'
- Users, Items, & Ratings
- OUse Ratings of similar Users to recommend unseen Items

Content-Based

- 'Give me items similar to items I like'
- User & Item profiles
- OUse overlap of User and Item characteristics to recommend unseen items

Mind-bending Movies

STANLEY KUBRICK'S

Example: Netflix

Example: Social Media & Search

Example: Pandora

Example: Amazon

Data Structure

- What kind of data?
 - Collaborative
 - Ratings of Items by Users
 - Content-based
 - Characteristic profiles of Users and Items

Data Structure - Collaborative

Alice	5	3	4	4	(5)
Bob	3	1	2	3	3
Chris	4	3	4	3	5
Donna	3	3	1	5	4
Evi	1	5	5	2	1

Data Structure - Content-based

Item/User	Drama?	Comedy?	Adventure?	Romance?
The Godfather	5	1	2	1
Titanic	4	3	2	5
Lord of the Rings	4	2	5	1
Dumb & Dumber	1	5	2	2
Spirited Away	5	3	5	2
Alice	5	4	1	4
Bob	3	1	1	1
Chris	4	2	5	2

Content-based: User Profiles

User Provided

- Ask for preferences
- Needs accounts
- Often low completion rates

Automated Generation

- Cookies follow behavior
- No user persistence (often)

Content-based: Item Profiles

Expert Labeling

- Assign keywords based on content
- May be provided by creators/distributors
- Crowd sourcing?

Automated Indexing

- Used for text documents
- Based on word content of document set
- No expert knowledge involved

SIMILARITY

Similarity Measurements

- Given two vectors \vec{x} and \vec{y} with n components each
 - Ratings of User x and User y
 - Ratings for Item x and Item y
 - Profiles of User x and Item y
- How similar are the Users/Items?

Similarity Measurements

Pearson's Correlation

$$sim(\vec{x}, \vec{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Cosine Similarity

$$sim(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| * |\vec{y}|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

User-Based Collaborative

- Goal: Predict User u's rating on a movie m they haven't seen
 - Find the N most similar Users to u who have seen movie m
 - Use their ratings to predict u's rating for movie m

User-Based Collaborative

Which metric should we use?

Alice	5	3	4	4	?	
Bob	3	1	2	3	3	•
Chris	4	3	4	3	5	•
Donna	3	3	1	5	4	•
Evi	1	5	5	2	1	•

sim = ? sim = ? sim = ? sim = ?

User-Based Collaborative

Pearson's correlation corrects for varied baselines

Alice	5	3	4	4	?	
Bob	3	1	2	3	3	
Chris	4	3	4	3	5	
Donna	3	3	1	5	4	
Evi	1	5	5	2	1	

sim=0.85 sim=0.90 sim=0.70 sim=0.79

Content-based: Similarity

- Goal: Return a recommendation list of items for each user
 - Find similarity of each User to each Item
 - Order Items by similarity

Content-based: Similarity

Item/User	Drama?	Comedy?	Adventure?	Romance?	
The Godfather	5	1	2	1	
Titanic	4	3	2	5	
Lord of the Rings	4	2	5	1	
Dumb & Dumber	1	5	2	2	
Spirited Away	5	3	5	2	
Alice	5	4	1	4	4
Bob	3	1	1	1	
Chris	4	2	5	2	

Content-based: Similarity

Alice	0.83	0.96	0.72	0.79	0.83
Bob	0.99	0.86	0.85	0.59	0.91
Chris	0.87	0.82	0.99	0.69	0.99

- Cosine similarity doesn't erase baselines
- Predicts order, not exact rating

PREDICTIONS

Collaborative: Predictions

- Use "Aggregation Function"
- Choose N nearest neighbors to User u
- Combine each neighbor j's rating on Item i $(r_{j,i})$
- Simple

•
$$r_{u,i} = \frac{1}{N} \sum_{j=1}^{N} r_{j,i}$$

- Weighted & Centered
 - $r_{u,i} = \overline{r_u} + \alpha \sum_{j=1}^{N} sim(j,u)(r_{j,i} \overline{r_j})$

Content-based: Predictions

- Simple
 - Rank in order of similarity
- Information retrieval techniques
 - Well studied, wide diversity of models
 - Classification algorithms

EVALUATION

Evaluating Recommendation

Mean Absolute Error (MAE)
computes the deviation between
predicted ratings and actual
ratings

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

 Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2}$$

Evaluating a Ranker

2

3

8

Recommender – Model 1

2

3

Total MAE = 4/5 = 0.8

Recommender – Model 2

2

3

Total MAE = 15/5 = 3

Which Recommender? – Model 1 or Model 2

2

3

Total MAE = 3

Which Recommender? – Model 1 or Model 2

2

3

Recommender

2

3

Model 1 vs. Model 2

Predictor Model

Lower MAE value

Ranker Model

Follows same ranking as training

Metrics

- Order matters, not exact rating value
- Graded Relevance
 - Have humans assign scores to possible results
 - Ideal results will be ordered by relevance, high to low
- Discounted cumulative gain (DCG)
 - Logarithmic reduction factor

$$DCG_N = rel_1 + \sum_{i=2}^{N} \frac{rel_i}{\log_2 i}$$

Where:

- *N* is the length of the recommendation list
- rel_i returns the relevance of recommendation at position i

10

2

3

8

DCG Example

$$DCG_N = rel_1 + \sum_{i=2}^{N} \frac{rel_i}{\log_2 i}$$

Following the formula above, the DCG for this set of movie ratings is:

$$10 + \frac{8}{\log^2(2)} + \frac{7}{\log^2(3)} + \frac{3}{\log^2(4)} + \frac{2}{\log^2(5)} \approx 24.78$$

Metrics

- Ideal discounted cumulative gain (IDCG)
 - DCG value when items are ordered perfectly

$$IDCG_{N} = rel_{1} + \sum_{i=2}^{N} \frac{rel_{i}}{\log_{2} i}$$

Normalized discounted cumulative gain (nDCG)

$$nDCG_{N} = \frac{DCG_{N}}{IDCG_{N}}$$

Normalized to the interval [0..1]

ADVANTAGES/DISADVANTAGES

Advantages

Collaborative

- Wide applicability
- Serendipity
- Simple

Content-based

- No community needed
- Transparency
- Good cold start

Disadvantages

Collaborative

- Poor cold start
- Grey Sheep
 - Shared accounts
- Shilling
- Poor scaling

Content-based

- Limited profiles
 - New users
 - Cost of expert labeling
- Over-specialization
 - Lack of diversity