Market Data

- Each OHLC chart is 5/20/60 business days of data
 - o Each day 3pixels wide
 - Eg: Total image for 20 days == 60x64
 pixels wide
- Returns scaled so the largest price is the top
 of the image
- o Three types of information in image
 - Direction stock movements
 - Volatility data
 - o SMA (5/20/60)

CNN Architecture

- Goal for CNN is to balance tradeoff between complex pattern recognition and interpretability
- o Why CNN?
 - Alternative to the time series format that can uncover complex patterns
 - Technical traders have long relied on geometry and SMA's (cognition) to make trading decisions
 - CNN designed to solve positionality,
 scale etc... and may require less
 parameterization than NNs

Figure 3: Diagram of CNN Models

Architecture Highlights

- o Loss Funct:
 - o Adam, .0001
- 50% dropout to fully connected layer
- Stopping after 2 consecutive epochs of higher error
- 70% train 30% validation from 1993-2000 and testing from 2001-2019
- 9 separate models (combinations of I5, I20, I60)

Evaluation

- Prediction is most potent (accurate) in the 5 day period
 after the image is observed
 - Sharpe ratios exceed 5 in a High Low portfolio
 sorted by decile (High-Low)(10-1)
- Outperforms Momentum and Short Term Reversal with no parameterization needed
- Predictions are context independent
 - Work well in international markets as well as varying time periods
- Volatility surprisingly low

I-Images / R-Prediction

							Equal	Weight						
	I5/R5		I20/R5		I60/R5		MOM/R5		STR/R5		WSTR/R5		TREND/R5	
	Ret	SR	Ret	SR	Ret	SR	Ret	SR	Ret	SR	Ret	SR	Ret	SR
Low	-0.28	-1.92	-0.32	-1.94	-0.21	-1.10	0.15	0.44	-0.01	-0.03	-0.08	-0.34	-0.11	-0.46
2	-0.04	-0.27	-0.04	-0.21	0.02	0.12	0.10	0.44	0.06	0.35	0.04	0.24	0.01	0.05
3	0.03	0.15	0.04	0.20	0.07	0.35	0.10	0.50	0.09	0.58	0.08	0.48	0.05	0.30
4	0.08	0.41	0.08	0.43	0.11	0.58	0.10	0.57	0.10	0.67	0.09	0.58	0.08	0.50
5	0.09	0.48	0.12	0.65	0.14	0.75	0.10	0.63	0.11	0.68	0.09	0.60	0.10	0.64
6	0.14	0.70	0.15	0.80	0.16	0.88	0.12	0.76	0.11	0.70	0.11	0.65	0.11	0.71
7	0.17	0.84	0.19	0.97	0.17	0.93	0.13	0.83	0.11	0.64	0.13	0.75	0.13	0.78
8	0.22	1.06	0.23	1.19	0.20	1.08	0.14	0.90	0.12	0.62	0.14	0.72	0.16	0.85
9	0.30	1.48	0.27	1.40	0.22	1.23	0.15	0.91	0.16	0.68	0.18	0.81	0.23	1.04
High	0.54	2.89	0.52	2.76	0.33	1.85	0.16	0.78	0.38	1.19	0.46	1.56	0.48	1.58
H-L	0.83***	7.15	0.84***	6.75	0.54***	4.89	0.02	0.07	0.39***	1.76	0.53***	2.84	0.59***	2.92
Turnover	690%		667%		619%		123%		341%		660%		499%	

Evaluation (Cont.)

- Return becomes less significant when we ask the model to predict monthly or quarterly returns
 (20,60), but still above the benchmarks (MOM, WSTR) due to lower volatility
- When restricted to largest 500 stocks, returns are less potent
 - o Is the CNN just learning to pick volatility?
- Highest correlated feature with the CNN is Short Term Reversal (-34%)
- O CNN performs better than ~96% of all (7,846) technical trading strategies

Figure 6: Prediction Accuracy By Decile

Sensitivity

Data Augmentation

- O Volume and MA bar seem to contribute to noise for I5, but very useful for I20, I60
- o Removing smaller stocks (due to volatility/swings) leaves model unchanged
- Changing pixel representation (centered, top) results in similar scores (sharpe ratio & return)

Model selection

 Changing number of convolution layers, dropout rate, dilation, degrades model performance or leaves results largely unchanged

Computer Vision Models

- O CNN v. HOG v. HAAR
 - CNN outperforms for I5
 - o CNN mostly outperforms for I20, I60
 - HAAR feature selection using
 Adaboost as too many features
 (100Million+)

Table IA11: Sensitivity to Model Structure and Estimation, I20/R20

		Sharpe Ratio			
		EW	VW		
Baseline		2.16	0.49		
Filters (64)	32 128	$\frac{2.00}{1.85}$	$0.28 \\ 0.40$		
Layers (3)	2 4	$1.77 \\ 2.14$	$0.33 \\ 0.22$		
Dropout (0.50)	0.00 0.25 0.75	2.14 2.31 1.47	$0.59 \\ 0.51 \\ 0.16$		
BN (yes)	no	2.33	0.51		
Xavier (yes)	no	2.08	0.44		
Activation (LReLU)	ReLU	1.49	0.23		
Max-pool Size (2×1)	(2×2)	1.62	0.32		
FilterSize (5×3)	(3×3) (7×3)	$\frac{1.53}{1.84}$	$0.16 \\ 0.09$		
Dilation/Stride $(2,1)/(3,1)$	(2,1)/(1,1) (1,1)/(3,1) (1,1)/(1,1)	2.20 2.00 1.80	$0.26 \\ 0.30 \\ 0.25$		

Technical Patterns/Transfer Learning

Technical Patterns

Model extended to predict probability of different technical patterns producing positive
 20-day return based on 10K trained images

Transfer Learning

- The paper also explores transfer learning with other markets, both on trained and untrained (transfer) models
 - Transferring the trained model produces high Sharpe in most other markets
 - When data is insufficient in other markets (stock count) this could be beneficial →
 Arbitrages

Table IA19: CNN Predictions on Simulated Charts

	Sign	20-Day Images Mean Std		60-Day Images Mean Std			Sign	$\begin{array}{c c} \underline{\text{20-Day Images}} \\ \hline \text{Mean} & \text{Std} \end{array}$		60-Day Images Mean Std	
Noise (Brownian motion) Cup And Handle	+	48.6 46.7	(4.0) (2.5)	50.7 51.3	(4.2) (2.8)	Descending Triangle Ascending Triangle	- +	42.1 54.9	(2.3) (2.0)	46.5 57.5	(3.3) (2.8)
Head And Shoulders Top Head And Shoulders Bottom	_ +	56.3 49.3	(2.3) (2.0)	55.5 54.8	(3.6) (3.6)	Rounding Top Rounding Bottom	_ +	54.6 36.8	(1.9) (1.8)	51.4 43.4	(2.5) (2.8)
Broadening Top Broadening Bottom	_ +	45.7 52.0	(2.1) (2.6)	$52.4 \\ 47.1$	(2.8) (3.0)	Triple Top Triple Bottom	_ +	62.0 53.9	(2.1) (2.0)	60.3 55.9	(3.5) (3.7)
Triangle Top Triangle Bottom	_ +	44.6 51.4	(2.3) (2.2)	$48.7 \\ 55.3$	(3.4) (3.0)	Bearish Flag Bullish Flag	_ +	55.8 53.6	(2.4) (2.1)	56.4 58.7	(3.8) (3.4)
Double Top Double Bottom	_ +	55.6 50.1	(2.1) (2.1)	56.0 54.3	(3.4) (3.7)	Bearish Pennant Bullish Pennant	_ +	$51.2 \\ 50.3$	(2.5) (2.1)	$53.5 \\ 54.4$	(3.7) (3.2)
Rising Wedge Falling Wedge	- +	49.1 40.0	(1.9) (2.1)	48.2 41.6	(1.9) (2.2)	Diamond Top Diamond Bottom	- +	59.3 56.2	(2.1) (2.0)	62.4 57.5	(3.5) (3.6)

Thoughts

- This paper implies credibility to financial technical analysis, and takes the human out of the equation
- I am unsure of train/test though process
 - o train and validation on 1993-2000 data. Markets may have fundamentally changed since then?
 - O Why not sample different time periods from data?
- Paper made good effort to experiment with sensitivity of model parameters, possibly more can be experimented with...
- Sharpe ratios degraded slightly when stocks are limited to 500 largest cap, implying maybe more volatile picks when unrestricted (smaller and more illiquid stocks)..