Math 1501 E, Fall 2013

Exam #1

Name:	Rubric	
Section: _		

- You will have 50 minutes to complete the exam.
- No calculators, books, or notes allowed.
- Partial credit will be given. However, **no** credit will be given for a problem in which no work is shown, whether the answer is correct or not. Hence, show all applicable work.

Question:	1	2	3	4	5	Total
Points:	9	6	9	3	7	34
Score:						

(a) (4 points) Draw the secant line connecting the points at
$$x = 1$$
 and $x = 5$ on this curve. Then, find the average rate of change of $f(x)$ over the x interval $[1,5]$, and explain how this quantity is related to the secant line you drew.

Average rate of charge =
$$\frac{\Delta y}{\Delta x} = \frac{f(3) - f(1)}{5 - 1} = \frac{(5.5 - 5^2) - (5.1 - 1^2)}{5 - 1}$$

This average rate of charge is the slope of the Secont line.

(b) (5 points) Now, draw the tangent line to the function f(x) at x = 2. Find the equation of this line. Do not use techniques not presented in Chapter 2 in this class.

Supe of the target line 15
$$\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{[5(2+h) - (2+h)^2] - [5 \cdot 2 - 2^2]}{h} = \lim_{h \to 0} \frac{[5(2+h) - (2+h)^2] - [5 \cdot 2 - 2^2]}{h} = \lim_{h \to 0} \frac{[5(2+h) - (2+h)^2] - [5 \cdot 2 - 2^2]}{h} = \lim_{h \to 0} \frac{[5(2+h) - (2+h)^2] - [5 \cdot 2 - 2^2]}{h} = \lim_{h \to 0} \frac{[5(2+h) - (2+h)^2] - [5 \cdot 2 - 2^2]}{h} = \lim_{h \to 0} \frac{[5(2+h) - f(2)]}{h} = \lim_{h \to 0} \frac{[5(2+h)$$

2. Consider the function y = f(x), where f(x) = 2x + 1. In this question, we will use the precise definition of a limit to prove that $\lim_{x\to 0} f(x) = 1$.

(a) (3 points) On the "graph paper" below, draw a plot of f(x) over the interval [-1,1]. Then, indicate graphically the range of x values for which f(x) is within $\epsilon > 0$ of 1.

(b) (3 points) Now, algebraically determine an expression for $\delta > 0$ such that, if x is within δ of x = 0, then f(x) is within $\epsilon > 0$ of 1.

Need $|f_{(x)}-L| L_{2} \Rightarrow |2x+1-L| L_{2$

3. Evaluate the following limits, or explain why they do not exist. Do not use techniques we have not yet covered in this class.

(a) (3 points)
$$\lim_{x\to 2} \frac{x^2 + 2x - 8}{x^2 - 4}$$

Rewrite $\frac{x^2 + 2x - 8}{x^2 - 4} = \frac{(x + 4)(x - 2)}{(x + 2)(x - 2)}$, Gave $(x + 2)(x - 2)$, Gave $(x + 2)(x - 2)$

(b) (3 points) $\lim_{\theta \to 0} \frac{1 - \cos(2\theta)}{\theta^2}$. Hint: You may use $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$.

Pewr. te ° Cos(26) = $\cos^2 6 - \sin^2 6$; since $\cos^2 6 + \sin^2 6 = 1$, $\cos(26) = 1 - 2\sin^2 6 \Rightarrow 1 - \cos(26) = 2\sin^2 6 \Rightarrow 3\cos^2 6$ $\cos^2 6 \Rightarrow 3\cos^2 6 \Rightarrow 3\cos^$

(c) (3 points) $\lim_{x\to 0^+} x^3 \cos\left(\frac{2}{x}\right)$. **Hint**: Use the sandwich theorem, starting with the fact that $-1 \le \cos\left(\frac{2}{x}\right) \le 1$.

Since × Gus(2) is sandwiched between -x3 al x3, and both of there have limit 0 as x >0t, [Im x3/45/2] = 0/, too

4. (3 points) A continuous function $y = f(x)$ is known to be negative at
x = 0 and positive at $x = 1$. Explain why the equation $f(x) = 0$ must have at least one solution (an x value for which the equation is true)
between $x = 0$ and $x = 1$. Illustrate with a sketch.
The intermediate value theorem says that a Continuous function
fix and take an all values between fras and fibs an
a finte internal Cabo E his are, train = t/0) & O
(1)= f(1)>0 50, SINGE (1) (3 between +(0) and +(1))
fix rust equal tero in the copy of
from rust equal zero in the [U,1] interval at least are. diagram -> fiofo must ariss x axis at least are at flowed 5. (7 points) Find any vertical and horizontal asymptotes of the function
at last one at flue o
5. (7 points) Find any vertical and horizontal asymptotes of the function $2x + 3$ Express these asymptotes as limits of the function
$f(x) = \frac{1}{x+5}$. Express these asymptotes as limits of the function.
$f(x) = \frac{2x+3}{x+5}.$ Express these asymptotes as limits of the function. $f(x) = \frac{2x+3}{x+5}.$ Express these asymptotes as limits of the function. $f(x) = \frac{2x+3}{x+5}.$ Express these asymptotes as limits of the function. $f(x) = \frac{2x+3}{x+5}.$ Express these asymptotes as limits of the function. $f(x) = \frac{2x+3}{x+5}.$ Express these asymptotes as limits of the function. $f(x) = \frac{2x+3}{x+5}.$
$\lim_{\lambda \to -\omega} f(x) = \lim_{\lambda \to -\omega} \frac{2+\frac{3}{x}}{ f } = \sqrt{2} = 15$
10/ +(x) = 10/ f = x
So, hurizantal camptobe at [5=2]
Di voir Zanio de grande
betial cayophlic's my our when devoning to zero = of >=-
Vertical chympious of ray allow took to $\frac{2\times +3}{\times +5} = \frac{-10+3}{0+} = \frac{-7}{0+} = -7$
Check by Evaluatings x=-5+ x=-5+
$\lim_{x \to -5} f_{\infty} = \lim_{x \to -5} \frac{-10+3}{5} = -\frac{7}{5} = +\infty $
2-7-5
So, yes, vertical asympthe at [x=-5]
,