Concept drift adaptation

Author: Ward Schodts

Dozent: Pieter-Jan Kindermans

Hot Topics in Machine Learning Technische Universität Berlin

July 18, 2016

Agenda

Introduction

Adaptive Learning Algorithms

Methods for concept drift adaptation

Memory

Change Detection

Learning

Loss Estimation

Evaluation

Conclusion

Total volume of data generated: > 3 zetabytes

► Traditionally all this data is processed in an *offline* mode

- ► Traditionally all this data is processed in an *offline* mode
- ▶ Due to the big amount of data
- ► And the expansion in forms of streams

- ► Traditionally all this data is processed in an offline mode
- Due to the big amount of data
- And the expansion in forms of streams
- ▶ We can't do this anymore if we want to keep up.

- ► Traditionally all this data is processed in an offline mode
- Due to the big amount of data
- And the expansion in forms of streams
- We can't do this anymore if we want to keep up.
- → We need an online solution

Agenda

Introduction

Adaptive Learning Algorithms

Methods for concept drift adaptation

Memory

Change Detection

Learning

Loss Estimation

Evaluation

Conclusion

Adaptive Learning Algorithms

Adaptive Learning Algorithm:

can be seen as advanced incremental learning algorithms that are able to adapt to evolution of the data-generating process over time.

It needs to be able to:

- 1. detect concept drift (and adapt if needed) as soon as possible;
- distinguish drifts from noise and be adaptive to changes, but robust to noise; and
- 3. operate in less than example arrival time and use not more than a fixed amount of memory for any storage.

Online Adaptive Learning Procedure

1. *Predict.* When new example X_t arrives, a prediction $\hat{y_t}$ is made using the curren model L_t .

Online Adaptive Learning Procedure

- 1. *Predict.* When new example X_t arrives, a prediction $\hat{y_t}$ is made using the curren model L_t .
- 2. *Diagnose*. After some time, the true label y_t is received and we can estimate the loss as $f(\hat{y_t}, y_t)$.

Online Adaptive Learning Procedure

- 1. *Predict.* When new example X_t arrives, a prediction $\hat{y_t}$ is made using the curren model L_t .
- 2. *Diagnose.* After some time, the true label y_t is received and we can estimate the loss as $f(\hat{y_t}, y_t)$.
- 3. *Update.* We can use the example (X_t, y_t) for the model update to obtain L_{t+1} .

Concept drift I

Concept drift:

Formally, concept drift between time point t_0 and time point t_1 can be defined as:

$$\exists X: p_{t_0}(X,y) \neq p_{t_1}(X,y)$$

where p_{t_0} denotes the joint distribution at time t_0 between the set of input variables X and the target variable y.

Concept drift II

$$\exists X: p_{t_0}(X,y) \neq p_{t_1}(X,y)$$

Real concept drift:

refers to changes in p(y|X). Such changes can happen either with or without change in p(X). It's also called concept shift or conditional change.

Virtual concept drift:

happens if the distribution of the incoming data chagnes (i.e., p(X) changes) without affecting p(y|X).

Example: real vs. virtual drift

Circles represent instances.

Different colors represent different classes.

of people in the KU Leuven libraries

Sum of people in all KU Leuven libraries

Task: predict the total amount of people in all libraries If same amount of people go to different libraries:

Sum of people in all KU Leuven libraries

Task: predict the total amount of people in all libraries If same amount of people go to different libraries: \rightarrow virtual drift

Sum of people in all KU Leuven libraries

Task: predict percentage of people in a specific library on a monday If some people go to different libraries:

Sum of people in all KU Leuven libraries

Task: predict percentage of people in a specific library on a monday If some people go to different libraries: \rightarrow real drift

Changes in drift over time

Changes in drift over time

Changes in drift over time

Changes in drift over time: library example

Illustrative Applications

Management and strategic planning

- Personal assistance and information
- ► Ubiquitous environment applications

Illustrative Applications

- Management and strategic planning
- ► Personal assistance and information

Ubiquitous environment applications

Illustrative Applications

- Management and strategic planning
- Personal assistance and information
- ► Ubiquitous environment applications

Agenda

Introduction

Adaptive Learning Algorithms

Methods for concept drift adaptation

Memory

Change Detection

Learning

Loss Estimation

Evaluation

Conclusion

Methods for concept drift adaptation

Methods for concept drift adaptation

Agenda

Introduction

Adaptive Learning Algorithms

Methods for concept drift adaptation Memory

Change Detection Learning Loss Estimation

Evaluation

Conclusion

Memory in concept drift Adaptation

Data Management

Often is assumed that the most recent data is the most informative.

- Single example: almost no memory needed, more error prone.
 Sometimes necessary because of speed and memory constraints (e.g. in online learning and streaming)
- Multiple examples: a set of recent examples:
 - Fixed size: often used as baseline
 - Variable size: depending on idication of a change detector

Forgetting mechanism

- Abrupt forgetting: a window considered for learning.
- Gradual forgetting: examples are not really discarded, they are associated with weights.

Agenda

Introduction

Adaptive Learning Algorithms

Methods for concept drift adaptation

Memory

Change Detection

Learning

Loss Estimation

Evaluation

Conclusion

Change detection

- Sequential analysis: detectors use sequential analysis e.g. Sequential Probability Ratio Test
- Statistical Process Control (SPC): standard statistical techniques to predict change.
- Monitoring distributions on two different time windows:

Change detection

- Sequential analysis: detectors use sequential analysis e.g. Sequential Probability Ratio Test
- Statistical Process Control (SPC): standard statistical techniques to predict change.
- Monitoring distributions on two different time windows:
 - one fixed reference window (summarizes the past information)
 - one sliding window over the the most recent examples
 - distributions are compared using statistical tests

Change detection

- Sequential analysis: detectors use sequential analysis e.g.
 Sequential Probability Ratio Test
- ► Statistical Process Control (SPC): standard statistical techniques to predict change.
- Monitoring distributions on two different time windows:
- Contextual approaches: a learning technique that identifies intervals with stable hidden context

Agenda

Introduction

Adaptive Learning Algorithms

Methods for concept drift adaptation

Memory

Change Detection

Learning

Loss Estimation

Evaluation

Learning

Learning mode

If new labeled examples are available the model might be updated:

► **Retraining:** start from scratch, using bufferd data.

Learning mode

If new labeled examples are available the model might be updated:

- Retraining: start from scratch, using bufferd data.
- Incremental: update the model using most recent data:
 - Incremental: modify and update statistics in the model upon arrival from new examples (can still have acces to old values)
 - Online: update the current model with most recent example → errorprone if last example is misclassified
 - Streaming: are online algorithms for a high-speed continious flow of data. Limited memory and normally only one pass over the data.

Adaption Methods

- Manage the adaptation of the predictive model
 - Blind: without explicit detection of changes. (fixed-size sliding windows)
 - Informed: action depend triggers:
 - Global Replacement: the model is rebuild (linear regression, naive Bayes...)
 - Local Replacement: if the model is modular (e.g. a decision tree) only a part (e.g. a subtree) is replaced

Adaption Methods

- ► Single model: only a single model is used
- Ensemble: multiple models are used together and do voting

Agenda

Introduction

Adaptive Learning Algorithms

Methods for concept drift adaptation

Memory
Change Detection
Learning

Loss Estimation

Evaluation

Loss estimation in concept drift Adaptation

Loss estimation in concept drift Adaptation

Model Dependent

- Estimator needs to learn from the current model
- e.g. Klinkenbeg and Joachims [4] use it in SVM

Loss estimation in concept drift Adaptation

Model Independent

- Can be applied immediately
- Sliding Window: one small (quick) and one large (slower) together
- Fading Factor: a small FF detects change earlier

Agenda

Introduction

Adaptive Learning Algorithms

Methods for concept drift adaptation Memory Change Detection Learning

Evaluation

Evaluation

For any machine-learning technique we want to evaluate we need:

 Performance evaluation metrics chosen according to the goal of a learning task

Evaluation

For any machine-learning technique we want to evaluate we need:

- Performance evaluation metrics chosen according to the goal of a learning task
- 2. A methodology allowing to compute the coresponding estimates (here in the streaming setting)

Performance evaluation metrics

- Traditional accuracy measures can be used:
 - Precision and recall
 - Weighted average
 - Mean absolute sclaed errors
- Use baseline approaches for some settings:
- Evaluating change detection methods:

Performance evaluation metrics

- Traditional accuracy measures can be used:
- ► Use baseline approaches for some settings:

Evaluating change detection methods:

Performance evaluation metrics

- Traditional accuracy measures can be used:
- Use baseline approaches for some settings:
- Evaluating change detection methods:
 - Probability of true change detection
 - Probability of false alarms
 - Delay of detection

Experimental Design

- Cross-validation is not directly applicable
- Taking snapshots at different times
- Other techniques needed

Evaluation of Time-Ordered Data

- ► Holdout: keeping a subset
- Interleaved Test-Then-Train: check every instance first
- Controlled Permutations: run multiple test with permutated copies of the data
 - (averaging accuracy might mask adaptation properties)

Agenda

Introduction

Adaptive Learning Algorithms

Methods for concept drift adaptation

Memory

Change Detection

Learning

Loss Estimation

Evaluation

Conclusion

► Concept drift is present in different application domains!

- Concept drift is present in different application domains!
- Concept drift is not only studied in machine learning and data mining or pattern recognition (e.g. processmining).

- Concept drift is present in different application domains!
- Concept drift is not only studied in machine learning and data mining or pattern recognition (e.g. processmining).
- ► Next challenges:
 - Scalability
 - Robustness & reliability
 - Moving from black-box adaptation to a more interpretable interpretation.
 - Reducing dependence on timely and acurate feedback

Thank you for your attention

Questions?

References I

- João Gama et al. "A survey on concept drift adaptation". In: ACM Computing Surveys (CSUR) 46.4 (2014), p. 44.
- Blue Ridge Global. Demand Forecasting. URL: http://blueridgeglobal.com/wp-content/uploads/2012/09/demand-forecasting.png.
- Harvard. Data and Cloud computing. URL: http://gking.harvard.edu/files/gking/files/dataandcloudcomputing.jpg?m=1430186249.
- Ralf Klinkenberg and Thorsten Joachims. "Detecting Concept Drift with Support Vector Machines". In: In Proceedings of the Seventeenth International Conference on Machine Learning (ICML. Morgan Kaufmann, 2000, pp. 487–494.

References II

MIT. Cheetah. URL: http://cdn.phys.org/newman/gfx/news/hires/2014/1-mitengineers.jpg.

Netflix. Netflix logo. URL: http://lifehacking.nl/wp-content/uploads/netflix-logo.png.