Supervised Learning

Regression Models

Diego Campos Sobrino

Table of contents

1 Linear Regression

2 Bayesian Linear Regression

3 Evaluation of Regression Models

Linear Regression Regression Models

In regression problems, we take input variables and try to fit the output onto a continuous expected result function.

$$\mathbf{x} \in \mathbb{R}^n$$
 $\mathbf{y} \in \mathbb{R}$ $f: \mathbb{R}^n \to \mathbb{R}$

Linear Regression Linear models

A linear model makes a prediction by simply computing a weighted sum of the input features, plus a constant called the *bias* or *intercept*.

$$\hat{\mathbf{y}} = \theta_0 + \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_n \mathbf{x}_n$$

where:

- \hat{y} is the predicted value.
- *n* is the number of features.
- x_i is the i^{th} feature value.
- θ_i is the j^{th} model parameter (weights).

Linear Regression Vectorized form

In Machine Learning we usually use the vectorized form of the equation

$$\hat{y} = h_{\theta}(\mathbf{x}) = \mathbf{\theta}^{\mathsf{T}}\mathbf{x}$$

where:

- θ is the parameter vector containing θ_0 to θ_n
- x is the feature vector containing x_0 to x_n with $x_0 = 1$
- h_{θ} is the hypothesis function using model parameters θ

$$oldsymbol{ heta} = egin{bmatrix} heta_0 \ heta_1 \ heta_2 \ dots \ heta_n \end{bmatrix} \qquad oldsymbol{x} = egin{bmatrix} 1 \ x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$

$$oldsymbol{ heta}^{\mathsf{T}} oldsymbol{x} = egin{bmatrix} heta_0 & heta_1 & heta_2 & \dots & heta_n \end{bmatrix} egin{bmatrix} hint X_1 \ imes_2 \ dots \ hint X_2 \ dots \ hint X_n \end{bmatrix}$$

$$\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x} = \theta_0 + \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_n \mathbf{x}_n$$

Linear Regression Univariate Linear Regression (ULR)

- Predict a single output value y from a single input value x.
- The input can be seen as the cause and the output the effect.
- We are looking for a function called h_{θ} that tries to map the input data (the x's) to the output data (the y's).

$$\hat{y} = h_{\theta}(x) = \theta_0 + \theta_1 x$$

- This is like the equation of a straight line with θ_0 as the intercept (bias) and θ_1 as the slope.
- The values of θ_0 and θ_1 define the specific line used to make predictions.
- We give to $h_{\theta}(x)$ the value of x and receive and estimated output \hat{y} .

Linear Regression Example

Suppose we have the following set of training data:

X	У
0	4
1	7
2	7
3	8

We can make a random guess about our h_{θ} function with $\theta_0 = 2$ and $\theta_1 = 2$, then the hypothesis function becomes $h_{\theta}(x) = 2 + 2x$.

- What would be the predictions \hat{y} 's for our x's with this model?
- How far off are our predictions \hat{y} 's from the actual y's?
- Can we do better?

We can try different combinations of θ_0 and θ_1 to find the straight line that "fit" better our data points.

Linear Regression Cost function for ULR

- Measures the accuracy of our hypothesis function.
- Average-ish of all the results of the hypothesis \hat{y} 's compared to actual y's.

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

- θ_0 and θ_1 are the parameters of the model.
- *m* is the number of examples (observations) in the data.
- \hat{y}_i is the predicted value of the i-th example.
- y_i is the actual value of the i-th example.
- Mean Squared Error (MSE) halved as convenience for computation (more on that later).
- Since $\hat{y}_i = h_{\theta}(x_i)$ sometimes is written as:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

Linear Regression Minimizing the cost function

Ordinary Least Squares (OLS) method to estimate the unknown parameters.

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

- The best possible line will be such so that the average squared vertical distances of the scattered points from the line will be the least.
- The differences between predicted and actual values are called residuals $e_i = \hat{y}_i y_i$.
- If the line pass through all points of the training set then $J(\theta_0, \theta_1) = 0$.

Linear Regression Estimating the parameters

To find the value of θ_0 and θ_1 that minimizes *J* there is a closed-form solution.

For univariate linear regression:

$$\overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\overline{y} = \frac{1}{m} \sum_{i=1}^{m} y_i$$

$$S_{xx} = \frac{1}{m} \sum_{i=1}^{m} (x_i - \overline{x})(x_i - \overline{x})$$

$$S_{xy} = \frac{1}{m} \sum_{i=1}^{m} (x_i - \overline{x})(y_i - \overline{y})$$

$$\theta_1 = \frac{S_{xy}}{S_{xx}}$$

$$\theta_0 = \overline{y} - \theta_1 \overline{x}$$

$$\hat{\mathbf{y}} = \theta_0 + \theta_1 \mathbf{x}$$

Later we'll see how to solve θ for multivariate data (normal equation).