

ICASSPA

Clock synchronization over networks

using sawtooth models

Pol del Aguila Pla, Ph.D.

https://poldap.github.io.https://github.com/poldap

Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL) Mathematical Imaging Section, Center for Biomedical Imaging (CIBM), Switzerland

ICASSP 2020, May 7, 2020

https://github.com/poldap/clock_sync_and_range

Work done at the KTH Royal Institute of Technology

Clock synchronization

identifiability, estimation theory, sawtooth signals, wireless networks, ranging, synchronization

- Introduction to the sawtooth model
- Cramér-Rao Lower Bounds
- Estimation
- Results

Authors and funding

L. Pellaco

S. Dwivedi

P. Händel

SRA ICT TNG: PITA

T. Oechtering, A. Proutiere, J. Jaldén

Initially proposed in (De Angelis, Dwivedi, Händel, 2013).

Low communication overhead

- Low communication overhead
- Low power consumption

- Low communication overhead
- ► Low power consumption
- ► High measurement accuracy

- Low communication overhead
- ► Low power consumption
- ► High measurement accuracy
- Nodes can measure their own clock period

$$y_{
m det}[n] = \delta_0 + \delta_{\leftrightarrow} + \Delta_n$$
, with $\delta_{\leftrightarrow} = \delta_{
ightarrow} + \delta_{\leftarrow} pprox 2\delta_{
ightarrow}$, and $\Delta_n = \mathcal{T}_{\mathcal{S}} \left(1 - \mathsf{mod}_1 \left[\mathcal{T}_{
m s} f_{
m d} n + rac{\delta_{
ightarrow}}{\mathcal{T}_{\mathcal{S}}} + rac{\phi_{\mathcal{S}}}{2\pi}
ight]
ight)$, with $f_{
m d} = rac{1}{\mathcal{T}_{\mathcal{S}}} - rac{1}{\mathcal{T}_{\mathcal{M}}}$.

Introduction to the sawtooth model (III)

$$y_{ ext{det}}[n] = \delta_{\leftrightarrow} + \delta_0 + \mathcal{T}_{\mathcal{S}} \left(1 - \mathsf{mod}_1 \left[\mathcal{T}_{ ext{s}} f_{ ext{d}} n + rac{\delta_{
ightarrow}}{\mathcal{T}_{\mathcal{S}}} + rac{\phi_{\mathcal{S}}}{2\pi}
ight]
ight)$$

Introduction to the sawtooth model (III)

 $Y[n] = \alpha + W[n] + \psi \operatorname{mod}_1(\beta n + \gamma + V[n])$, with W[n] and V[n] AWGN.

Introduction to the sawtooth model (III)

$$Y[n] = \alpha + W[n] + \psi \mod_1(\beta n + \gamma + V[n])$$
, with $W[n]$ and $V[n]$ AWGN.

- Model derivation
- Estimation theoretic analysis
- Conditions for identifiability
- Exhaustive empirical results
- ► DOI: 10.1109/OJSP.2020.2978762

 $Y[n] = \delta_{\leftrightarrow} + \delta_0 + W[n] + T_{\mathcal{S}} \left[1 - \mathsf{mod}_1 \left(T_{\mathrm{s}} f_{\mathrm{d}} n + \frac{\delta_{\rightarrow}}{T_{\mathcal{S}}} + \frac{\phi_{\mathcal{S}}}{2\pi} + V[n] \right) \right]$

 $Y[n] = \delta_{\leftrightarrow} + \delta_0 + W[n] + T_{\mathcal{S}} \left[1 - \frac{1}{\text{mod}_1} \left(T_{\text{s}} f_{\text{d}} n + \frac{\delta_{\rightarrow}}{T_{\text{c}}} + \frac{\phi_{\mathcal{S}}}{2\pi} + V[n] \right) \right]$

We work on an unwrapped / linearized model Z[n].

 $Z[n] = \delta_0 + \frac{\delta_{\leftrightarrow}}{2} + T_{\mathcal{S}} \left(1 - \frac{\phi_{\mathcal{S}}}{2\pi} \right) - T_{\mathcal{S}} T_{s} f_{d} n + U[n],$

with U[n] a white Gaussian process such that $U[n] \sim \mathcal{N}(0, \sigma^2)$ with $\sigma^2 = \sigma_W^2 + T_S^2 \sigma_V^2$.

Our model is not differentiable, so one can not define the CRLBs.

$$Y[n] = \delta_{\leftrightarrow} + \delta_0 + W[n] + T_{\mathcal{S}} \left[1 - \mathsf{mod_1}(T_{\mathrm{s}}f_{\mathrm{d}}n + \frac{\delta_{\rightarrow}}{T_{\mathcal{S}}} + \frac{\phi_{\mathcal{S}}}{2\pi} + V[n]) \right]$$

We work on an unwrapped / linearized model Z[n],

$$Z[n] = \delta_0 + rac{\delta_{\leftrightarrow}}{2} + T_{\mathcal{S}} \left(1 - rac{\phi_{\mathcal{S}}}{2\pi}
ight) - T_{\mathcal{S}} T_{
m s} f_{
m d} n + \mathit{U}[n] \,,$$

with U[n] a white Gaussian process such that $U[n] \sim \mathcal{N} \left(0, \sigma^2 \right)$ with $\sigma^2 = \sigma_w^2 + \mathcal{T}_\mathcal{S}^2 \sigma_v^2$.

Caveats of the approach

▶ Not the same model (but provides a linearized intuition)

Our model is not differentiable, so one can not define the CRLBs.

$$Y[n] = \delta_{\leftrightarrow} + \delta_0 + W[n] + T_{\mathcal{S}} \left[1 - \frac{1}{1} - \frac{\delta_{\rightarrow}}{T_{\mathcal{S}}} + \frac{\delta_{\rightarrow}}{T_{\mathcal{S}}} + \frac{\delta_{\rightarrow}}{2\pi} + V[n] \right]$$

We work on an unwrapped / linearized model Z[n],

$$Z[n] = \delta_0 + \frac{\delta_{\leftrightarrow}}{2} + T_S \left(1 - \frac{\phi_S}{2\pi}\right) - T_S T_{\rm s} f_{
m d} n + U[n],$$

with U[n] a white Gaussian process such that $U[n] \sim \mathcal{N} \left(0, \sigma^2 \right)$ with $\sigma^2 = \sigma_w^2 + T_\mathcal{S}^2 \sigma_v^2$.

Caveats of the approach

- ▶ Not the same model (but provides a linearized intuition)
- Non-identifiability of ϕ_S and δ_{\leftrightarrow} (but we can suppose we know the respective other when deriving the lower bound)

Our model is not differentiable, so one can not define the CRLBs.

$$Y[n] = \delta_{\leftrightarrow} + \delta_0 + W[n] + T_{\mathcal{S}} \left[1 - \operatorname{\mathsf{mod}}_{\mathbf{1}} (T_{\operatorname{s}} f_{\operatorname{d}} n + \frac{\delta_{\rightarrow}}{T_{\mathcal{S}}} + \frac{\phi_{\mathcal{S}}}{2\pi} + V[n]) \right]$$
 We work on an unwrapped / linearized model $Z[n]$,

$$Z[n] = \delta_0 + rac{\delta_{\leftrightarrow}}{2} + T_{\mathcal{S}} \left(1 - rac{\phi_{\mathcal{S}}}{2\pi}
ight) - T_{\mathcal{S}} T_{
m s} f_{
m d} n + U[n] \, ,$$

with U[n] a white Gaussian process such that $U[n] \sim \mathcal{N}(0, \sigma^2)$ with $\sigma^2 = \sigma_w^2 + T_S^2 \sigma_v^2$.

Caveats of the approach

- ▶ Not the same model (but provides a linearized intuition)
- ▶ Non-identifiability of ϕ_S and δ_{\leftrightarrow} (but we can suppose we know the respective other when deriving the lower bound)
- lacktriangle Dependence of σ^2 on $f_{
 m d}=rac{1}{T_{\cal S}}-rac{1}{T_{\cal M}}$ (but that is covered by standard results)

Estimation - Periodogram and correlation peaks (PCP)

$$Y[n] = \alpha + W[n] + \psi \mod_1(\beta n + \gamma + V[n])$$
, with $\psi < 0$ known when β is known

Estimate $|\beta|$ as the highest peak in the periodogram of the L-1-times zero-padded, zero-mean data, i.e., $|\hat{\beta}| = \arg\max_k |\mathrm{DFT}_{NL}\left(\tilde{y}[n]\right)[k]|^2/(NL)$

Estimation - Periodogram and correlation peaks (PCP)

$$Y[n] = \alpha + W[n] + \psi \mod_1(\beta n + \gamma + V[n])$$
, with $\psi < 0$ known when β is known

- ▶ Generate two single-period templates $p_{\pm}[n]$ for $\pm \beta$ and circularly correlate them with the first period of the max-normalized zero-mean data
- Estimate the sign of β by the largest correlation and the phase γ from the index at which it happens, i.e., $\hat{\gamma} = \text{mod}_1(\hat{\beta} n^{\text{opt}})$

Estimation - Periodogram and correlation peaks (PCP)

$$Y[n] = \alpha + W[n] + \psi \mod_1(\beta n + \gamma + V[n])$$
, with $\psi < 0$ known when β is known

- Estimate $|\beta|$ as the highest peak in the periodogram of the L-1-times zero-padded, zero-mean data, i.e., $|\hat{\beta}| = \arg\max_k |\mathrm{DFT}_{NI}\left(\tilde{v}[n]\right)[k]|^2/(NL)$
- ▶ Generate two single-period templates $p_{\pm}[n]$ for $\pm \beta$ and circularly correlate them with the first period of the max-normalized zero-mean data
- Estimate the sign of β by the largest correlation and the phase γ from the index at which it happens, i.e., $\hat{\gamma} = \text{mod}_1(\hat{\beta}n^{\text{opt}})$
- Estimate ψ through its known relation with β , and α by the closed-form minimum prediction mean squared error solution assuming $\hat{\beta}$, $\hat{\psi}$ and $\hat{\gamma}$ are correct, i.e.,

$$\hat{\alpha}_{\hat{\beta},\hat{\gamma}} = \sum_{n=0}^{N-1} y[n] - \sum_{m=0}^{N-1} \hat{\psi}_{\hat{\beta}} \operatorname{mod}_{1} \left[\hat{\beta} m + \hat{\gamma} \right].$$

Estimation - Grid Search, either local (LGS), or global (GGS)

Define a grid $\mathcal{G} \times \mathcal{B}$ in $\left[-\frac{1}{2}, \frac{1}{2}\right] \times [0, 1]$, and estimate the point in the grid that minimizes the prediction mean squared error, i.e.,

 $\min_{(\beta,\gamma)\in\mathcal{G}\times\mathcal{B}}\left\{\sum_{n=0}^{N-1}\left(y[n]-\hat{\alpha}_{\beta,\gamma}-\hat{\psi}_{\beta}\,\mathrm{mod}_{1}[\beta n+\gamma]\right)^{2}\right\},$

$$(\beta,\gamma)\in\mathcal{G}\times\mathcal{B}\left(\sum_{n=0}^{\infty}\left(1-\frac{1}{n}\right)^{n}\right)$$
 where $\hat{\alpha}_{\beta,\gamma}$ is the closed form solution as above, and $\hat{\psi}_{\beta}$ is the known amplitude given the frequency.

Estimation - Grid Search, either local (LGS), or global (GGS)

Define a grid $\mathcal{G} \times \mathcal{B}$ in $\left[-\frac{1}{2}, \frac{1}{2}\right) \times [0, 1)$, and estimate the point in the grid that minimizes the prediction mean squared error.

 $ightharpoonup \mathcal{G} imes \mathcal{B}$ can be chosen global, resulting on a very irregular function landscape [dB]

Estimation - Grid Search, either local (LGS), or global (GGS)

Define a grid $\mathcal{G} \times \mathcal{B}$ in $\left[-\frac{1}{2}, \frac{1}{2}\right) \times [0, 1)$, and estimate the point in the grid that minimizes the prediction mean squared error.

- $ightharpoonup \mathcal{G} imes \mathcal{B}$ can be chosen global, resulting on a very irregular function landscape
- or local, around the result of PCP, where smoother behavior is expected and better estimates are likely due to a finer gridding if the PCP was close to the right solution

Empirical results

300 Monte Carlo repetitions, $f_d = 73$ Hz, $\phi_S = 3\pi/4$, $\delta_{\leftrightarrow} = 2\rho/c$, $\rho = 2$ m, $1/\sigma_V^2 = 40 \text{ dB}, \ \psi^2/\sigma_W^2 = 20 \text{ dB}, \ T_M = 10 \text{ ns}, \ T_S = 0.1 \text{ ms}, \text{ and } \delta_0 = 5 \ \mu\text{s}.$ m^2 [dB] $--\operatorname{MSE}(\hat{\rho}_{\operatorname{PCP}}) --\operatorname{MSE}(\hat{\rho}_{\operatorname{LGS}})$ $---\operatorname{CRLB}_{n}(\rho) --- 1 \text{ cm}$ - CRLB_u(ρ) -- 1 cm -10----0.1 cm -20-30-40-500.5k1k 3k 1.5k 2k 2.5k 3.5k 4.5k 5k

Empirical results

Empirical results

ICASSP2

Clock synchronization over networks

using sawtooth models

Pol del Aguila Pla, Ph.D.

https://poldap.github.io.https://github.com/poldap

Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL) Mathematical Imaging Section, Center for Biomedical Imaging (CIBM), Switzerland

ICASSP 2020, May 7, 2020

DOI: 10.1109/ICASSP40776.2020.9054426

https://github.com/poldap/clock_sync_and_range

Work done at the KTH Royal Institute of Technology