Distance Sampling Simulations

Overview

- Why simulate?
- How it works
- Automated survey design
 - Coverage probability
 - Which design?
 - Design trade-offs
- Defining the population
 - Population description
 - Detectability
- Example Simulations

Why Simulate?

- Surveys expensive, simulations cheap!
- Test different survey designs
- Test survey protocols
- Investigate analysis properties
- Investigate violation of assumptions

How it works

- Blue rectangles indicate information supplied by the user.
- Green rectangles are objects created by DSsim in the simulation process.
- Orange diamonds indicate the processes carried out by DSsim.

How it works

Assess:

- Bias
- Precision
- Cl coverage

Across different designs/scenarios

Automated Survey Design

- Generate random sets of transects according to an algorithm
 - Assess design properties
 - Generate multiple transect sets for simulations

Automated Survey Design

- Coverage Probability
 - Uniform coverage probability, $\pi = 1/3$
 - Uniform coverage probability, $\pi = 1/3$
 - Uneven coverage for any given realisation

Which Design?

- Uniformity of coverage probability
- Even-ness of coverage within any given realisation
- Overlap of samplers
- Cost of travel between samplers
- Efficiency when density varies within the region

Design Trade-Offs

Population Definition

- True population size?
- Occur as individuals or clusters?
- Covariates which will affect detectability?
- How is the population distributed within the study region?
 - Ideally have a previously fitted density surface Otherwise test over a range of plausible distributions

- Distance needs:
 - shape and scale parameters on the natural scale
 - covariate parameters on the log scale

Golftees project

 $\exp(0.268179) = 1.307581$

```
Detection Fct/Summary
Summary for ds object
Number of observations :
Distance range
                          0 - 4
AIC
                       : 428.572
Detection function:
 Malf-normal key function
Detection function parameters
Scale coefficient(s):
              estimate
(Intercept) 0.26817900 0.27140001
            0.09314751 0.08176431
sex1
            0.69600047 0.29401571
                       Estimate
                                         SE
                                                    CV
                      0.6882835 0.05258548 0.07640090
Average p
N in covered region 235.3681131 21.00939868 0.08926187
```

In simulation:

 $\exp(\log(1.307581) + 0.696) = 2.622633$

 $\exp(\log(2.622)-0.696) = 1.307265$

Analysis

- Data Filter must specify a right truncation distance
- Model Definition must be either MRDS or MA
 - MRDS for fitting a specific model
 - MA for model selection (Note: MA model definitions require the creation of analyses)

Any questions so far...

Example Simulations

- To bin or not to bin?
- Testing pooling robustness in relation to truncation distance.
- Comparison of subjective and random designs.

To Bin or Not to Bin?

Simulation:

- Generated 999 datasets
- Added multiplicative measurement error
 - Distance = True Distance * R
 - R = (U + 0.5), where U~Beta(θ , θ)¹
 - No error, ~15% CV ($\theta = 5$), ~30% CV ($\theta = 1$)
- Analysed them in difference ways
 - Exact distances, 5 Equal bins, 5 Unequal bins, 3 Equal bins
- Model selection on minimum AIC
 - Half-normal v Hazard rate

¹Marques T. (2004) Predicting and correcting bias caused by measurement error in line transect sampling using multiplicative error models Biometrics **60**:757--763

To Bin or Not to Bin Results

	Exact Distances	5 Equal Bins	5 Unequal Bins	3 Equal Bins
No Erro	-1.16% bias	-1.11% bias	-0.16% bias	-0.19% bias
	210 SE	217 SE	221 SE	255 SE
15% CV	0.48% bias	o.5% bias	1.36% bias	1.72%bias
	214 SE	221 SE	221 SE	264 SE
30% CV	6.66% bias	6.61% bias	7.43% bias	8.20% bias
	237 SE	250 SE	262 SE	338 SE

DSsim vignette

- Rectangular study region
- Systematic parallel transects with a spacing of 1000m

DSsim vignette

Density Surface with Example Population

- Uniform density surface
- Population size of 200
- 50% male, 50% female

DSsim vignette

- Half-normal shape for detectability
- Scale parameter of 120 for the females
- Scale parameter of ~540 for the males

DSsim vignette

 $\exp(\log(120)+1.5) = 537.8$

- Half-normal shape for detectability
- Scale parameter of 120 for the females
- Scale parameter of ~540 for the males

DSsim vignette

- Two types of analyses:
 - hn v hr
 - hn ~ sex
- Selection criteria: AIC

Histogram of data from covariate simulation with manually selected candidate truncation distances.

Results HN v HR:

Truncation	mean n	mean Ñ	mean se	$SD(\hat{N})$	%Bias	RMSE	% CI Coverage
200	66	197	34.27	34.05	-1.32	34.13	97.5
400	102	190	31.06	34.79	-5.13	36.25	87.9
600	128	190	34.04	35.27	-5.24	36.77	81.9
800	144	190	34.31	36.61	-5.10	37.99	77.1
1000	154	184	30.93	39.49	-7.76	42.42	68.1

Example Simulation

Subjective survey design

Random Designs

Coverage probability

Systematic Parallel Design

Equal Spaced Zigzag Design

Simulation

- Generates a realisation of the population based on a fixed N of 1500
- Generates a realisation of the design
 - Different each time for the random designs
 - The same each time for the subjective design
- Simulates the detection process
- Analyses the results
 - Half-normal
 - Hazard-rate
- Repeats a number of times

Practical

- Now attempt the DSsim practical:
 - R version subjective design and parallel v zig zag
 - Distance version parallel v zig zag only
- You will need the library shapefiles.