See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231645861

Unusual Behavior of a Novel Heterogeneous Chiral Dimer Cr(III)—Salen Complex in the Epoxidation/Epoxide Ring-Opening Reaction of trans-Methylcinnamate Ester†

ARTICLE in THE JOURNAL OF PHYSICAL CHEMISTRY C · JANUARY 2011

Impact Factor: 4.77 · DOI: 10.1021/jp106281z

CITATIONS READS
11 10

8 AUTHORS, INCLUDING:

Loredana Protesescu

Empa - Swiss Federal Laboratories for Materi...

SEE PROFILE

Stefan Neatu

The National Institute of Materials Physics

13 PUBLICATIONS 176 CITATIONS

SEE PROFILE

Maria Nicoleta Grecu

The National Institute of Materials Physics

63 PUBLICATIONS 243 CITATIONS

SEE PROFILE

Simona M. Coman

University of Bucharest

84 PUBLICATIONS 850 CITATIONS

SEE PROFILE

Unusual behaviour of a novel heterogeneous chiral dimer CrIII-salen complex in the epoxidation/epoxide ring-opening reaction of *trans*-methylcinnamate ester

Loredana Protesescu[†], Madalina Tudorache[†], Stefan Neatu[†], Maria Nicoleta Grecu[§],

Erhard Kemnitz[‡], Petru Filip[&], Vasile I. Parvulescu^{†*}, Simona M. Coman^{†*}

[†]Department of Chemical Technology and Catalysis, Faculty of Chemistry, University of Bucharest, Bdul Regina Elisabeta, 4-12, Bucharest 030016, Romania

[&] "Costin D. Nenițescu" Institute of Organic Chemistry of the Romanian Academy, Spl. Independentei 202B, 71141 Bucharest, Romania

§ National Institute of Materials Physics, Atomistilor Str. 105 bis, PO Box MG 7, Magurele-Bucharest, Bucharest 077125, Romania

[‡] Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, D-12489 Berlin, Germany

* Corresponding authors electronic addresses: <u>vasile.parvulescu@g.unibuc.ro</u>; <u>simona.coman@g.unibuc.ro</u>

I. The characterization of the salen structure and the intermediates from its synthesis.

Molar ratio **2** : **5** = 3 : 2

Figure 1S. ¹H-NMR spectra of the (2+5) mixture and the compound (5)

Figure 2S. ¹H-NMR spectra of the compound (3)

Figure 3S. ¹H-NMR spectra of the salen dimer (**4**)

Figure 4S. The DRIFT spectra of the dimer-salen complex (4)

Figure 5S. The Raman spectra of the dimer-salen complex (4)

${\bf II.}$ The characterization of the dimer ${\bf Cr(III)}\text{-salen}$ structure.

Figure 6S. The DRIFT spectra of the Cr(III)dimer-salen complex (A), the free dimersalen (B) and Cr(III) acetate (C)

Figure 7S. The Raman spectra of the of the Cr(III) dimer-salen complex (A), the free dimer-salen (B) and Cr(III) acetate (C)

III. The analysis and characterization of the reaction products

Figure 8S. The UPLC analysis of the reaction products corresponding to entry 1 and entry 2, Table2

Figure 9S. UPLC analysis for the reaction products corresponding to entry 1, Table 2 and by co-adding of pure commercial (R,S)-diol (Aldrich)

Figure 10S. DRIFT spectra of trans-methylcinnamate ester and azido-alcohol (the DRIFT spectra correspond to the GC analysis from Figure YS and to entry 12, Table 2)

Figure 11S. The GC chromatograms for methylcinnamate ester, azido-alcohol and diol (the chromatogram with azido-alcohol corresponds to entry 12, Table 2)