University of Tlemcen

Academic year 2023-2024

Faculty of Sciences

(L1 ING-INF)

Department of Informatic

Algebra (First Year)

Worksheet N°2/ "Set - Applications"

Exercise 01: Let $E = \{x, y, z\}$ and $F = \{-2, 2\}$.

- (1) Identifie the power set (ensemble des parties): $\wp(E)$, $\wp(F)$ and $\wp(\wp(F))$.
- (2) Determine 3 example of partition of the set E.
- (3) Add the following symbols: \in, \notin, \subset or $\not\subset$.

xE	$\{y\} \dots E$	3F	${3}F$
$x\wp(E)$	$\{y\}\wp(E)$	$\varnothing\wp(E)$	$\{\varnothing\}\wp(E)$
$\{3\}\wp(F)$	$\{-2,1\}\wp(F)$	$\{-2\}\wp(F)$	$\{\{-2\}\}\wp(F)$
$\{y\} \dots \wp(\wp(E))$	$\{\{y\}\}\wp\left(\wp\left(E\right)\right)$	$\varnothing\wp \left(\wp \left(F\right)\right)$	$\{\varnothing\}\wp(\wp(F))$

Exercise 02: Let E be a nonempty set, A, B and C three sub-sets of E. Prove that:

(1)

$$A \subset B \Leftrightarrow C_E^B \subset C_E^A \Leftrightarrow A \cup B = B.$$

(2)

$$C_E^{A \cup B} = C_E^A \cap C_E^B.$$

(3)

$$A \cap B = A \cap C \Leftrightarrow A \cap C_E^B = A \cap C_E^C$$

(b) Give two assertions equivalent to the following assertion:

$$x \in (A - B) \Rightarrow x \notin A \cap B$$
.

Say if this implication is true or false?

Exercise 03: Let f and g be two defined applications of \mathbb{R} in \mathbb{R} such as:

$$f(x) = x^2 - 3x + 3$$
 et $g(x) = \frac{x^2 - 5}{x^2 + 2}$.

- (1) f and g are they injective? surjective? (Method of definitions)
- (2) Say if the following propositions are true or false?
- (a) $f(\{0\}) = 3$, (b) $0 \in f^{-1}(\{3\})$, (c) $g^{-1}(0) = \frac{-5}{2}$,
- (d) $g^{-1}(\{0\}) = \left\{\frac{-5}{2}\right\}$ and (e) $g^{-1}(\{10\}) = \emptyset$.
- (3) Find $f([0,1]), f^{-1}([0,1]), f(\mathbb{R}), g([0,1])$.

Exercise 04: Let f defined from E in F by $: f(x) = \frac{3x}{x^2 + x - 2}$.

- (1) Find E for f to be an application.
- (2) Study the application f and draw its table of variations.
- (3) Say if f is injective and if it is surjective from E in \mathbb{R} ? (Don't forget to write the definitions and the rationale for your answer).
- (4) Otherwise give examples from the table of variations where f is bijective.
- (5) (Additional) Answer the same questions to: $g(x) = \frac{2}{\sqrt{(x+4)^2+1}} 3$.
- (6) (Additional) Answer the same questions to: $h(x) = \frac{2}{\sqrt{x^2-1}}$.

Exercise 05: (Additional) Let $a, b, c \ d \in \mathbb{R}^*$ and let f be defined as follows:

$$f: A \to B$$

 $x \mapsto f(x) = \frac{ax+c}{bx+d}.$

How should the greatest unknowns A and B and other constants be selected so that f is:

(1) An application? (2) injective? (3) surjective? et (4) bijective?

Sincere wishes you success (MESSIRDI BACHIR)