CS6135 VLSI Physical Design Automation

Homework 1: P&R Tool

1. 112062525 蔡品棠

2. Comparison Table

core utilization: 0.6, clock period: 6ns

	(congestion-driven, timing-driven)							
	(L, off)	(L, on)	(M, off)	(M, on)	(H, off)	(H, on)		
slack	0.011	0.025	0.010	0.001	0.010	0.001		
total wire length (um)	111462.1050	112174.9700	112002.9350	113266.4600	112002.9350	113266.4600		

- (1)在此 design 中,congestion-driven 對 slack 的影響比 timing-driven 多 從 timing-driven 設定相同時來看,congestion-driven 程度越高,slack 的 值便越低;而 congestion-driven 設定相同時,則有開啟 timing-driven 時 會增加 slack。但 congestion-driven level 為 Medium 和 High 時,因減少的 slack 比 timing-driven 增加的要多,才會呈現 timing-driven = off 時 slack 反而較高的現象。
- (2) timing-driven 會較明顯增加 total wire length congestion-driven 程度越高雖然也會增加 total wire length,但從 M和 H 的 total wire length 相同可以知道影響程度較小;然而 timing-driven 有開啟的話就一定會增加 total wire length。

3. The difference(s) between the congestion-driven placement and timingdriven placement

congestion-driven placement: 主要目標是減少或最小化 chip 上的擁擠,確保 components 的放置和連線不會導致過多的交叉、過度擁擠的區域或無法滿足設計規格。

timing-driven placement: 目標是滿足時序要求,確保設計在 clock period 內能夠正確操作,並優化 critical path delays。

4. Why we insert filler cells

主要是為了解決 layout 階段中的製造相關問題。比如在 VLSI 設計中, 晶片的外型和尺寸通常是固定的,但內部的電路佈局和連線可能會產生 不均勻的空間分佈,此時加入 filler cells 可以用來均勻化晶片的 layout, 來確保所有區域都能被充分利用,並緩解擁擠問題。另外雖然 filler cells 增加了晶片的面積,但可以幫助減少不良晶片或低良率的狀況發生,進而有助於降低製造成本。

5. Best result

Set	ting	Result			
Clock period	8 ns	Slack	0.001		
Core utilization	0.75	Total wire length	106149.1350 um		
Congestion-driven	Low	Total area of chip	13787.525 um ²		
Timing-driven	off	DRC violation	0		

clock period = 8 ns

core utilization = 0.75

congestion-driven = low, timing-driven = off

slack time = 0.169

≡ apr.tcl		≣ timii	ng.rpt	×			
≣ timing.rpt 14 Analysis View: generic view							
14	Analysi	s view:	gene	rıc _.	_view		
15	Other End Arrival Time					0.000	
16	- Setup					0.173	
17	+ Phase Shift				8.000		
18	= Required Time				7.827		
19	- Arrival Time					7.659	
20	= Slack	Time				0.169	

total wire length = 106149.1350 um

total area of chip = 13787.525 um^2

0 drc violations

6. The final layout

