幾何学 I 演習 4. 群作用と商多様体

1. 前回の問題 3 のように \mathbb{R}^n の一次独立なベクトル e_1, \dots, e_n に対して

$$\Gamma = \{ m_1 e_1 + \dots + m_n e_n \mid m_1, \dots, m_n \in \mathbf{Z} \}$$

とおくと, Γ は ${f R}^n$ に,平行移動として作用する.商空間を $T^n={f R}^n/\Gamma$ とする.

(1) 射影を $p: \mathbf{R}^n \to T^n$ として, $x,y \in T^n$ に対して, $p(x_0) = x$, $p(y_0) = y$ となる $x_0,y_0 \in \mathbf{R}^n$ をとり,

$$d(x,y) = \min_{g \in \Gamma} ||x_0 - gy_0||$$

と定義する.dによって, T^n は距離空間となることを示せ.

- (2) 上の距離によって, T^n は局所的にユークリッド空間の開球と合同であることを示せ.
- 2. ${\bf C}^{n+1}-\{0\}$ に同値関係 \sim を以下のように定義する $x\sim y$ とは , 0 でない複素数 λ があって , $y=\lambda x$ となることとする . この同値関係による商空間を ${\bf C}P^n$ で表し , 複素射影空間とよぶ .
- (1) $\mathbf{C}P^n$ は 2n 次元可微分多様体の構造をもつことを示せ.
- (2) $\mathbf{C}P^1$ は S^2 と微分同相であることを示せ.
- (3) $\mathbf{C}P^n$ を S^{2n+1} に対する S^1 の作用による商多様体として表せ.
- 3. 行列式が1のn+1次の直交行列全体SO(n+1)の S^n への自然な作用を考える.
- (1) S^n の点 x における固定部分群 G_x を決定せよ .
- (2) 商空間 $SO(n+1)/G_x$ は, S^n と微分同相であることを示せ.