Vehicle Analysis

https://www.kaiandkaro.com/

Introduction

Data Scrapped form https://www.kaiandkaro.com/

```
library(tidyverse)
library(pander)
library(broom)

all_vehicles_data <- read_csv('vehicles_data_202412141810.csv')</pre>
```

Data

```
1
   analysis_data <- all_vehicles_data %>%
     select(where(\sim100*sum(is.na(.x))/length(.x) < 0.01)) >
     select(price, source, current_location, mileage, mileage_unit,
             annual_insurance_currency, annual_insurance, year_of_manufacture,
             availability, purchase_status, model_make_name, model_make_vehicle_type) |>
     mutate(
       current_location = str_replace_all(
          current_location, c("[[:punct:]]" = '', 'Port of' = '')) |>
9
         str_to_lower() |> trimws()
10
     ) |>
11
12
     mutate(
       price = as.numeric(price),
13
       mileage = as.numeric(mileage),
14
       annual_insurance = as.numeric(annual_insurance),
15
       current_location = str_replace_all(
16
          current_location,
^{17}
           c(
             "nairobi kenya"= "kenya", "nairobi" = "kenya",
19
             "mombasa" = "kenya", "kenyakenya" = "kenya",
20
             "enroute" = "overseas", "high seas" = "overseas"
21
       )),
22
       model_make_name = str_replace_all(
23
         model_make_name, c("[[:punct:]]" = '', 'Port of' = '')) |>
24
         str_to_lower() |> trimws()
25
     ) |>
26
     mutate(
       mileage = case_when(
```

```
mileage_unit == "Miles" ~ mileage*1.6094,
                               .default = mileage
30
                        )
31
32
                 select(-mileage_unit, -annual_insurance_currency)
34
         glimpse(analysis_data)
        Rows: 2,819
  2 Columns: 10
                                                                                               <dbl> 7990000, 2299000, 1850000, 570000, 7990000, 14~
  3 $ price
  4 $ source
                                                                                               <chr> "Kenyan Used", "Kenyan Used", "Kenyan Used", "~
  5 $ current location
                                                                                               <chr> "kenya", "kenya", "kenya", "kenya", "~
                                                                                               <dbl> 27000, 69362, 56909, 145000, 154307, 153000, 1~
  6 $ mileage
  7  $ annual_insurance
                                                                                              <dbl> 330000, 84000, 74000, 30000, 316000, 60000, 58~
                                                                                              <dbl> 2023, 2015, 2012, 2004, 2014, 2006, 2011, 2005~
  8 $ year of manufacture
                                                                                               <chr> "available", "available", "available", "availa-
  9 $ availability
                                                                                               <chr> "Available", "Available", "Available", "Availa~
10 $ purchase_status
                                                                                               <chr> "toyota", "toyota", "volkswagen", "bmw", "land~
11 $ model_make_name
        $ model_make_vehicle_type <chr> "Automobile", "Automo
```

EDA

```
mile_price_source_plot = analysis_data |>
     ggplot(aes(x = mileage, y = price, colour = source)) +
     geom_point() +
3
     labs(
4
       x = "Mileage",
       y = "Price",
       title = "Price ~ Milage by source",
       caption = "https://github.com/akhapwoyaco"
     ) +
     scale_y_continuous(
10
       labels = scales::unit_format(unit = 'KSH')
11
     ) +
12
     scale_x_continuous(
       labels = scales::unit format(unit = 'kms')
14
15
     theme_bw() +
16
```

```
theme(
   plot.title = element_text(face = 'bold', hjust = 0.5),
   legend.title = element_blank(),
   legend.position = 'inside',
   legend.position.inside = c(0.6, 0.5),
   legend.background = element_blank()
   )
   mile_price_source_plot
```



```
x = "Mileage",
       y = "Price",
       title = "Price ~ Milage by availability",
       caption = "https://github.com/akhapwoyaco"
     ) +
10
     scale_y_continuous(
11
       labels = scales::unit_format(unit = 'KSH')
12
     ) +
13
     scale_x_continuous(
       labels = scales::unit_format(unit = 'kms')
15
16
     theme_bw() +
17
     theme(
18
       plot.title = element_text(face = 'bold', hjust = 0.5),
19
       legend.title = element_blank(),
       legend.position = 'inside',
       legend.position.inside = c(0.6, 0.5),
       legend.background = element_blank()
23
24
   mile_price_availability_plot
```



```
ggsave("mile_price_availability_plot.png",plot = mile_price_availability_plot,
       width = 22, height = 15, unit = "cm", dpi = 450)
```

```
mile_price_make_plot = analysis_data |>
    ggplot(aes(x = mileage, y = price, colour = model_make_vehicle_type)) +
    geom_point() +
    scale_color_brewer(palette = 'Dark2') +
4
    labs(
```

```
x = "Mileage",
       y = "Price",
       title = "Price ~ Milage by vehicle type",
       caption = "https://github.com/akhapwoyaco"
     ) +
10
     scale_y_continuous(
11
       labels = scales::unit_format(unit = 'KSH')
12
     ) +
13
     scale_x_continuous(
       labels = scales::unit_format(unit = 'kms')
15
16
     theme_bw() +
17
     theme(
18
       plot.title = element_text(face = 'bold', hjust = 0.5),
19
       legend.title = element_blank(),
       legend.position = 'inside',
       legend.position.inside = c(0.6, 0.5),
       legend.background = element_blank()
23
24
   mile_price_make_plot
```



```
ggsave("mile_price_make_plot.png",plot = mile_price_make_plot,
width = 22, height = 15, unit = "cm", dpi = 450)
```

MODELS

Individual Variables

```
# model of numerics
model_1 <- lm(
price~mileage+annual_insurance+year_of_manufacture,
data = analysis_data)
glance(model_1) |> t() |> pander()
```

$\mathbf{r.squared}$	0.9246
adj.r.squared	0.9245
\mathbf{sigma}	1571028
${f statistic}$	11508
p.value	0
\mathbf{df}	3
$\log \! \mathrm{Lik}$	-44217
\mathbf{AIC}	88445
BIC	88474
deviance	6.948e + 15
df.residual	2815
nobs	2819

• mileage vs price:

Table 2: Fitting linear model: as.formula(paste(i, "~", j))

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	118435	1332	88.92	0
\mathbf{price}	-0.00435	0.0001793	-24.26	3.014e-118

$\bullet \ \ annual_insurance \ vs \ price:$

Table 3: Fitting linear model: as.formula(paste(i, "~", j))

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	4548	1606	2.833	0.004649
price	0.03967	0.0002161	183.5	0

• year_of_manufacture vs price:

Table 4: Fitting linear model: as.formula(paste(i, "~", j))

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	2014	0.08806	22868	0
price	3.244e-07	1.186e-08	27.36	2.292e-146

All Variables

```
multi_lm = lm(price~., data = analysis_data)
# summary(multi_lm)

multi_lm |>
pander::pander()
```

Table 5: Fitting linear model: price \sim . (continued below)

	Estimate	Std. Error	t value
(Intercept)	-156183145	22762448	-6.861
sourceForeign Used	1199081	2569832	0.4666
$\mathbf{source}\mathbf{Kenyan}\ \mathbf{Used}$	1181957	2572212	0.4595
current_locationjapan	-1465129	669939	-2.187
current_locationkenya	-1038502	907699	-1.144
current_locationoverseas	-1122312	918705	-1.222
current_locationsouth africa	109981	938246	0.1172
${\it current_locationthail}$	-1499363	939413	-1.596
current_locationunited kingdom	-178932	683347	-0.2618
mileage	-1.904	0.7034	-2.706
annual_insurance	19.8	0.1996	99.22
year_of_manufacture	77732	11173	6.957
availabilitydirect_import_stock	821233	614448	1.337
availabilitysell_on_behalf	233645	104526	2.235
$purchase_statusReserved$	-409821	862568	-0.4751
${f purchase_statusSold}$	-21912	142930	-0.1533
model_make_nameashok leyland	-366413	2096438	-0.1748
${f model_make_nameaudi}$	112773	1484186	0.07598
${f model_make_namebentley}$	3344541	1543944	2.166
${f model_make_namebmw}$	352250	1486420	0.237
$model_make_namechevrolet$	411631	2100050	0.196
${f model_make_namecitreon}$	-413447	1709651	-0.2418
${f model_make_namedaihatsu}$	-460683	1552473	-0.2967
${f model_make_namedodge}$	523763	2096053	0.2499
${f model_make_namefaw}$	-156344	2094586	-0.07464
${f model_make_nameferrari}$	4313724	1823576	2.366
${f model_make_nameford}$	29054	1505960	0.01929
${f model_make_namehino}$	308023	2096683	0.1469
${f model_make_namehonda}$	-201179	1490946	-0.1349
model_make_namehyundai	-317642	1623277	-0.1957

Estimate Std. Error t value				
model make nameisuzu	-21412	1570062	-0.01364	
model_make_namejaguar	100571	1518006	0.06625	
model_make_namejeep	216888	1504735	0.1441	
model_make_namejincheng	-1047549	2347353	-0.4463	
model make namekawasaki	-402824	2569082	-0.1568	
model make namekia	263551	2094416	0.1258	
model_make_namelamborghini	9426409	1646766	5.724	
model_make_nameland rover	1206211	1488446	0.8104	
${f model_make_namelexus}$	1232991	1494426	0.8251	
model_make_namemazda	-213200	1483581	-0.1437	
$model_make_namemercedes$	559383	1484414	0.3768	
model_make_namemini	64201	1621645	0.03959	
${f model_make_namemitsubishi}$	35806	1492778	0.02399	
${f model_make_namenissan}$	-70984	1484327	-0.04782	
${f model_make_name}{f peugeot}$	-380289	1495026	-0.2544	
${f model_make_nameporsche}$	893136	1493410	0.5981	
${f model_make_namerenault}$	-288928	1582694	-0.1826	
${f model_make_namerolls\ royce}$	11865689	2148642	5.522	
${f model_make_nameskygo}$	-755729	2569850	-0.2941	
${f model_make_namesmart}$	-342408	1600042	-0.214	
${f model_make_namesubaru}$	-73936	1485278	-0.04978	
${f model_make_namesuzuki}$	-386423	1501395	-0.2574	
${f model_make_nametata}$	-214402	2095159	-0.1023	
${f model_make_nametoyota}$	45346	1482557	0.03059	
${f model_make_namevolkswagen}$	-128076	1485554	-0.08621	
$model_make_namevolvo$	3381	1490084	0.002269	
$model_make_vehicle_typeMotorbike$	-97024	1491151	-0.06507	

	$\Pr(> t)$
(Intercept)	8.383e-12
${f source}$ For eign ${f U}{f sed}$	0.6408
${f source Kenyan\ Used}$	0.6459
${f current_location}$ japan	0.02883
$\operatorname{current_locationkenya}$	0.2527
${\tt current_locationoverseas}$	0.222
${\it current_locations outh\ africa}$	0.9067
${ m current_locationthail}$	0.1106
$current_location united kingdom$	0.7935
${f mileage}$	0.006848

	$\Pr(> t)$
annual_insurance	0
$year_of_manufacture$	4.313e-12
availabilitydirect_import_stock	0.1815
availabilitysell_on_behalf	0.02548
$purchase_statusReserved$	0.6347
$purchase_statusSold$	0.8782
model_make_nameashok leyland	0.8613
${f model_make_nameaudi}$	0.9394
${f model_make_name}$	0.03038
model_make_namebmw	0.8127
${f model_make_namechevrolet}$	0.8446
${f model_make_namecitreon}$	0.8089
${f model_make_namedaihatsu}$	0.7667
${f model_make_namedodge}$	0.8027
${f model_make_namefaw}$	0.9405
${f model_make_name ferrari}$	0.01807
$model_make_nameford$	0.9846
model_make_namehino	0.8832
${f model_make_namehonda}$	0.8927
model_make_namehyundai	0.8449
${f model_make_nameisuzu}$	0.9891
$f model_make_namejaguar$	0.9472
${f model_make_namejeep}$	0.8854
${f model_make_namejincheng}$	0.6554
${f model_make_namekawasaki}$	0.8754
${f model_make_namekia}$	0.8999
${f model_make_namelamborghini}$	1.151e-08
$model_make_nameland\ rover$	0.4178
${f model_make_namelexus}$	0.4094
${f model_make_namemazda}$	0.8857
${\bf model_make_name} {\bf mercedes}$	0.7063
${f model_make_namemini}$	0.9684
${f model_make_namemitsubishi}$	0.9809
${f model_make_namenissan}$	0.9619
${f model_make_name}$	0.7992
${f model_make_nameporsche}$	0.5499
${f model_make_namerenault}$	0.8552
$model_make_namerolls\ royce$	3.655 e-08
${f model_make_nameskygo}$	0.7687
$model_make_namesmart$	0.8306
$model_make_namesubaru$	0.9603

	$\Pr(> t)$
model_make_namesuzuki	0.7969
${f model_make_nametata}$	0.9185
${f model_make_nametoyota}$	0.9756
${f model_make_namevolkswagen}$	0.9313
${f model_make_namevolvo}$	0.9982
$model_make_vehicle_typeMotorbike$	0.9481