北京邮电大学 2020-2021 学年第一学期 期末考试试题(A卷)

Witt	空间安全	上千仞		-	级_				
姓名					学	号			
起注意	一、学生 场。学生 二、15本 指定位置 三、学生	必须技 :、参 ^注	支照监 约 普资料。	考教师技 、 13包*	肯定座 等与考	位就坐。 试无关	, 的东西	一律症	文到考虑
	场规则》	,有考	场进红	或作弊	行为者	,按相	应规定	已严肃力	处理。
	场规则》。 四、学生	,有考	场进红	或作弊	行为者	,按相	I应规划 E草稿组	已严肃力	处理。 计 无效
項	场规则》 四、学生	,有考	场进红	或作弊 内容做在	行为者	f. 按相 上. 做名	I应规划 E草稿组	程产 湖外	处理。 计 无效
題 号	场规则》 四、学生 一 24	. 有考 必须料	场违约 肾答题》	以作弊 内容做在 四	行为者	f. 按相 上. 做名	I应规划 E草稿组	程产 湖外	处理。 作无效

- 一、填空鹽(共24分,第1 题至第6 题每空2分,第7 题和第8 题每空3分)
- 1. 在单处理机系统中,假设在 1 秒的时间间隔内宏观上有四道程序在同时运行,但微观上,程序是分时交替执行的,这种特性我们称之为_____(并行性或并发性)。
- 为解决大量同步操作分散在各个进程中给系统管理带来的困难,以及因同步操作使用不当导致的系统死锁。

第 1 页共 11 页

	操作系统中采用了	一种舞	折的	进程节	可步	I
	具:					
3,	,线程的实现方式有两种,	一种是	内核:	支持线科	星 5	j~
	种是在用户空间实现,	无需内	核支	持的结	程	称
	为。					
4.	当 OS 采用优先级调度算	法和抢占	方式	时,如	果高	尤先
	级进程(或线程)被低优	先级进	程(3	成线程) 延記	5或
	阻塞,可能产生		现	象。		
5.	在多道程序环境下,采用	可重定	位装,	入方式	将目标	示程
	序装入内存,若地址变换	是在进	程装	入时一	次完成	Ź,
	以后不再改变,这	这种 重	定	位方	式称	2
	为。					
6.	设有两个优先级相同的进	程 P ₁ ,P	2如下	。令信	号量.	S ₁ ,
	S_2 的初值为 0 。试问 P_1 、	P ₂ 并发i	运行后	ξ, y		_0
	进程 P; i	进程 P?				
	y=2;	x=10;				
	$V(S_2)$;	$P(S_2);$				
	$P(S_i);$ $z=$	=x-y;				
	<i>y=z+x</i> ; Ve	(S_i) ;				

--- ME Al

是 D74C (十六进制)时,对应的页号为 (十六进制),页内地址(位移量)为 (十六进制)。

8. 在请求分页存储管理系统中,采用移位寄存器记录页面的使用情况如下表所示。

页号	R7	R6	R5	R4	R3	R2	RI	Ro
0	0	0	1	1	0	0	0	0
1	1	0	0	0	0	0	0	D
2	0	1	0	0	0	0	0	0
3	1	0	1	0	0	0	0	ρ
4	0	0	0	1	1	1	1	1
5	0	0	1	0	0	0	0	1 0
6	0	0	0	0	1	0	1	1

- 二、判斷题(共18分,每题2分,用"\"和"×"符号表示"对"和"错")
- 特洛伊木马属于来自系统外部的攻击类型,而缓存区溢出则是来自系统内部的攻击。()
- 2. 在单任务操作系统中,进程运行多次得到的结果是相同的。()
- 3. 在现代 OS 中, I/O 设备与处理机交换数据时大量采用 缓冲区,在利用内存作为缓冲区时,其结构是一组内 存块的链表。()

第1页共11章

因而比较容易实现信息保护。越界检查是利用环保护 机构来完成的。(

m / mt 个分段在逻辑上得相对独立的

- 5. 引入挂起原语 Suspend 操作后 进程可以由活动就绪 状态转为活动阻塞状态。(
- 最容易形成很多小碎片的可变分区算法是最佳适应簿
 法。()
- 分段存储管理系统中的逻辑地址是个一维地址。
 ()
- 8. 作业在执行中发生了缺页中断,经操作系统处理后, 应让其执行被中断的前一条指令。(
- 9. 在请求分页存储管理中,随着驻留集(分配的物理块数)增大,缺页率逐渐降低,但不会降为0。()三、选择题(每题选项中只有一个答案是正确的,请填在括号中,共18分,每题2分)
- 为了提高搜索空闲分区的速度,在大、中型系统中会 采用基于索引搜索的动态分区分配算法,以下选项中 哪个是目前常用的基于索引搜索的动态分区分配算法:
 ()。
 - A. 最坏适应算法 B. 伙伴系统
 - C. Clock 置换算法 D. 银行家算法

第4更共11页

2. 下述计算机中的()资源不会引起死锁。	S1: a = x+2;
A. 不可抢占性 B. 可抢占性	82: b = y+3;
C. 可消耗性 D. 不可消耗性	S3: $c = a+b$;
3. 在内存分配存储管理方式中,需要用到"紧凑"功能的存	S4: d = a+c;
储管理方式是()	下列说法正确的是()。
A. 动态分区分配	A. SI 和 S2 不能并发执行
B. 固定分区分配	B. S1 和 S3 之间存在前驱关系
C. 动态可重定位分区分配	C. S2 和 S4 可以并发执行
D. 分页存储管理	D. S4 是 S3 的前驱
4. 在进程调度机制中,应具有三个基本功能,分别是排	7. 在段页式管理中、每取一次数据、要访问()次
队器、分派器和()。	内存。
A. 上下文切換器	A.1 B. 2 C. 3 D. 4
B. 程序计数器 PC	8. 在虚拟存储系统中,若进程在内存中占 4 块(开始时
C. 进程控制块 PCB	为空),采用先进先出页面淘汰算法。当执行访问页号
D. 重定位寄存器	序列为:1、2、3、4、1、2、5、1、2、3、4、5、6时。
5. 进程通信是指进程之间的信息交换。以下属于通信机	将产生()次缺页中断。
制的是()。	A.10 B. 11 C. 7 D. 12
A. 进程互斥 B.进程同步	9. 一作业 9 点到达系统,估计运行时间为 2 小时。若 11
C. 信号量机制 D. 管道	点开始执行该作业,其按照高响应比优先调度算法调
6. 对于具有下述四条语句的程序段:	度的优先级是()。
	A.2 B.3 C.4 D.1
第5页共11页	第6 英扶 11 页

四:问答题(共40分)

1. 设三个进程 P1、P2、P3 互斥使用一个包含 N(N>0) 个单元的缓冲区。P1 每次用 produce()生成一个正整数并用 put()送入缓冲区某一空单元中; P2 每次用 getodd()从该缓冲区取出一个奇数并用 countodd()统计奇数个数; P3 每次用 geteven()从该缓冲区中取出一个偶数并用 counteven()统计偶数个数。请用信号量机制实现这三个进程的同步与互斥活动,并说明所定义的信号量的含义。要求用伪代码描述。(10分)

2. 有下述四个进程,按照多级反馈调度算法进行调度。设每个进程的到达时间和服务时间如下表所示,分别描述当时间片长度 P=1 和 P=2'(本题采用三级反馈调度)时,各个时间片的执行情况,并计算每个进程的结束时间、周转时间和带权周转时间。(10分)说明:多级反馈调度算法在执行过程中,如果出现在执行第i级队列时,有新进程进入更高优先级队列,那么当前执行的进程将放回第i级队列末尾,CPU 执行优先级更高的进程。

进程	到达时间	服务时间
Α	0	4
В	1	5
C	3	7
D	7	2

3. 设在一个实时系统中有两个周期性实时任务 A 和 B ,任务 A 要求每 10ms 执行一次,执行时间为 5ms,任务 B 要求每 25ms 执行一次,执行时间为 15ms。任务 A 和 B 每次必须完成的时间分别是 A₁、A₂、A₃、…和 B₁、B₂、B₃…,如下图所示。请采用最低松弛度优先 LLF 的抢占调度策略对任务 A 和任务 B 进行调度,要求写出至少 3 个周期的分析过程,并画图说明这两个周期性实时任务的调度情况。(5分)

4 假设段表如下图。

段号	段基址	段长
0	300	600
1	1800	500 300
2	2500	
3	9800	100
4	7200	1200
5	6200	50
б	5000	68

请计算逻辑地址是(5,32)对应的物理地址是多少?判断逻辑地址(6,200)对应的物理地址是否越界?(5分)

-

- 5. 系统中有 4 类资源(A,B,C,D)和 5 个进程 P0~P4,F60 时刻的系统状态如下表所示,系统采用银行家算法实施死锁避免策略。请回答问题:
- ① 系统中的 4 类资源总量分别是多少?
- ② T0 状态是否安全?为什么?
- ③ 在 TO 状态的基础上 , 若进程 P2 提出请求 Request (1.1,0)
- 1),系统能否将资源分配给它?请说明理由。
- ④ 在 TO 状态的基础上, 若进程 PI 提出请求 Request (1,1,2,
- 0), 系統能否将资源分配给它?请说明理由。(10分)

Process	Allocation	Need	Available
P0	1,2,3,4	0.0,1,2	1,2,2,3
PI	1,0,0,0	1,7,5,0	
P2	0,2,1,0	2,3,5,6	
Р3	0,2,1,0	0.6.5,8	
P4	1,0,1,1	0.6,5,7	