RPROGRAMING

Text Mining

INTRODUCTIONS

Who is this guy?

3/451° (Kroger)

SETTING THE EXPECTATIONS

- Introduction to R
- Intermediate R
- Text Mining with R

- Applied Analytics with R
- Machine Learning with R (May 14-15)

†A modified version of Hadley Wickham's analytic process

SETTING THE EXPECTATIONS

Day I

- Understanding the tidyverse
- Regular expressions
- Organizing unstructured text
- Frequency analysis

Day 2

- Sentiment analysis
- Word association
- Topic modeling
- Predictive modeling

organize & clean

describe & predict

You will be overwhelmed!

My Teaching Philosophy

THIS IS MEANT TO BE A DISCUSSION

YOURTURN!

Lots of hands-on coding exercises

Strong proponent of collaborative work!

YOURTURN!

Introduce yourself to your neighbors:

Who are you and what is your experience with R?

Regarding the topics that will be covered what are your strengths? Weaknesses?

WARM-UPS

Enough chit-chatting, time to code!

VECTOR EXERCISES

- 1. check out the built-in vector state.region
- 2. what type of data does this contain?
- 3. Subset for only north central states. How many north central states are there?
- 4. Change state.name to a character variable, add **state.region** values as names to the **state.name** vector, subset for north central states.

MATRIX EXERCISES

- 1. check out the built-in VADeaths matrix data
- 2. what attributes does VADeaths have?
- 3. Calculate averages for each column and row
- 4. Can you figure out how to add these averages to your table so the output looks like:

	Rural Male	Rural Female	Urban Male	Urban Female	Avg_by_Age
50-54	11.70	8.70	15.40	8.40	11.050
55-59	18.10	11.70	24.30	13.60	16.925
60-64	26.90	20.30	37.00	19.30	25.875
65-69	41.00	30.90	54.60	35.10	40.400
70-74	66.00	54.30	71.10	50.00	60.350
Avg_by_Local	32.74	25.18	40.48	25.28	30.920

DATA FRAME EXERCISES

- 1. Load the nycflights13 package
- 2. Using the flights data, select the first 1000 rows and the following columns: month, dep_delay, carrier, distance, time_hour. Save this as small_flights
- 3. Look at the structure and summary of small_flights
- 4. Rename the columns of small_flights to "Month", "Delay", "Carrier", "Distance", "Date-Time"
- 5. Look at the first and last 15 rows

LIST EXERCISES

1. Create this this regression model:

- 2. What list items does flight_lm contain?
- 3. Extract the residuals from the flight_lm list
- 4. What is the min, max, median, and mean of these residuals?

