IT/PC/B/T/411

Machine Learning

Neural Networks

Dr. Pawan Kumar Singh

Department of Information Technology Jadavpur University

pawankrsingh.cse@gmail.com

+91-6291555693

Artificial Neural Networks

- Computational models inspired by the human brain:
 - Algorithms that try to mimic the brain
 - Massively parallel, distributed system, made up of simple processing units (neurons)
 - Synaptic connection strengths among neurons are used to store the acquired knowledge.
 - Knowledge is acquired by the network from its environment through a learning process

History

- late-1800's Neural Networks appear as an analogy to biological systems
- 1960's and 70's Simple neural networks appear
 - Fall out of favor because the perceptron is not effective by itself, and there were no good algorithms for multilayer nets
- 1986 Backpropagation algorithm appears
 - Neural Networks have a resurgence in popularity
 - More computationally expensive

Applications of ANNs

Punction approximation

Associative memory

Properties

- Inputs are flexible Im
 - e and real values
 - Highly correlated or independent
- Target function may be discrete-valued, real-valued, or vectors of discrete or real values
 - Outputs are real numbers between 0 and 1
- Resistant to errors in the training data
- Long training time
- Fast evaluation
- The function produced can be difficult for humans to interpret

When to consider neural networks

- Input is high-dimensional discrete or raw-valued
- Output is discrete or real-valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of the result is not important

Examples:

- Speech phoneme recognition | W
- Image classification Digit Classification
- Financial prediction

 The n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping

Perceptron

- Basic unit in a neural network
- Linear separator
- Parts
 - N inputs, $x_1 ... x_n$
 - Weights for each input, w₁ ... w_n
 - χ bias input x_0 (constant) and associated weight w_0
 - Weighted sum of inputs, $y = w_0 x_0 + w_1 x_1 + ... + w_n x_n$
 - A threshold function or activation function.

e 1 if
$$y > t$$
, -1 if $y <= t$

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

Perceptron Model

$$Y = I(\sum_{i} w_{i} x_{i} - t)$$
 or

$$Y = sign(\sum_{i} w_{i} x_{i} - t)$$

Types of connectivity

- Feedforward networks
 - These compute a series of transformations
 - and the last layer is the input
- Recurrent networks
 - These have directed cycles in their connection graph. They can have complicated dynamics.
 - More biologically realistic.

- Single layer feed-forward networks
 - Input layer projecting into the output layer

Multi-layer feed-forward networks / ge wy

 One or more hidden layers. Input projects only from previous layers onto a layer.

Mhalticlass chasicfron

> 2-layer or 1-hidden layer fully connected network

Multi-layer feed-forward networks

- Recurrent networks
 - A network with feedback, where some of its inputs are connected to some of its outputs (discrete time).

Recurrent network

Algorithm for learning ANN

• Initialize the weights $(w_0, w_1, ..., w_k)$

- of ANN is consistent with class labels of training examples
 - Error function:

$$E = \sum_{i} \left[Y_i - f(w_i, X_i) \right]^2$$

- Find the weights w's that minimize the above error function
 - e.g., gradient descent, backpropagation algorithm

Optimizing concave/convex function

Maximum of a concave function = minimum of a convex function — \

Gradient ascent (concave) / Gradient descent (convex)

Gradient:

$$\nabla_{\mathbf{w}} l(\mathbf{w}) = \left[\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_d}\right]'$$

Update rule:

/ Learning rate, η>0

$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i} \bigg|_t$$
 Gradient ascent rule

GRADIENT DESCENT

Suppose we have a scalar function

$$f(w): \Re \to \Re$$

We want to find a local minimum.

Assume our current weight is w

GRADIENT DESCENT RULE:

$$w \leftarrow w - \eta \frac{\partial}{\partial w} f(w)$$

 η is called the LEARNING RATE. A small positive number, e.g. $\eta = 0.05$

Gradient Descent in "m" Dimensions

 $f(\mathbf{w}): \mathfrak{R}^m \to \mathfrak{R}$ Given

$$\nabla f(\mathbf{w}) = \begin{pmatrix} \frac{\partial}{\partial w_1} f(\mathbf{w}) \\ \vdots \\ \frac{\partial}{\partial w_m} f(\mathbf{w}) \end{pmatrix} \text{ points in direction of steepest ascent.}$$

 $|\nabla f(w)|$ is the gradient in that direction

GRADIENT DESCENT RULE: $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla f(\mathbf{w})$

Equivalently

$$w_j \leftarrow w_j - \eta \frac{\partial}{\partial w_i} f(w)$$
where w_j is the j th weight "Just like a linear feedback system"

Linear Perceptrons

They are multivariate linear models:

$$Out(x) = w^{T}x$$

And "training" consists of minimizing sum-of-squared residuals by gradient descent.

$$E = \sum_{k} (\text{Out}(\mathbf{x}_{k}) - y_{k})^{2}$$

$$= \sum_{k} (\mathbf{w}^{T} \mathbf{x}_{k} - y_{k})^{2}$$

QUESTION: Derive the perceptron training rule.

Linear Perceptron Training Rule

$$E = \sum_{k=1}^{R} (y_k - \mathbf{w}^T \mathbf{x}_k)^2$$

Gradient descent tells us we should update **w** thusly if we wish to minimize *E*:

$$w_j \leftarrow w_j - \eta \frac{\partial E}{\partial w_j}$$

So what's
$$\left(\frac{\partial E}{\partial w_j}\right)$$
?

Linear Perceptron Training Rule

$$E = \sum_{k=1}^{R} (y_k - \mathbf{w}^T \mathbf{x}_k)^2$$

Gradient descent tells us we should update **w** thusly if we wish to minimize *E*:

$$w_j \leftarrow w_j - \eta \frac{\partial E}{\partial w_j}$$

So what's $\frac{\partial E}{\partial w_i}$?

$$\frac{\partial E}{\partial w_{j}} = \sum_{k=1}^{R} \frac{\partial}{\partial w_{j}} (y_{k} - \mathbf{w}^{T} \mathbf{x}_{k})^{2}$$

$$= \sum_{k=1}^{R} 2(y_{k} - \mathbf{w}^{T} \mathbf{x}_{k}) \frac{\partial}{\partial w_{j}} (y_{k} - \mathbf{w}^{T} \mathbf{x}_{k})$$

$$= -2 \sum_{k=1}^{R} \delta_{k} \frac{\partial}{\partial w_{j}} \mathbf{w}^{T} \mathbf{x}_{k}$$
...where...
$$\mathbf{x}_{k} = y_{k} - \mathbf{w}^{T} \mathbf{x}_{k}$$

$$= -2 \sum_{k=1}^{R} \delta_{k} \frac{\partial}{\partial w_{j}} \sum_{i=1}^{m} w_{i} x_{ki}$$

$$= -2 \sum_{k=1}^{R} \delta_{k} x_{kj}$$

Linear Perceptron Training Rule

$$E = \sum_{k=1}^{R} (y_k - \mathbf{w}^T \mathbf{x}_k)^2$$

Gradient descent tells us we should update **w** thusly if we wish to minimize *E*:

$$w_j \leftarrow w_j - \eta \frac{\partial E}{\partial w_j}$$

...where...

$$\frac{\partial E}{\partial w_j} = -2\sum_{k=1}^R \delta_k x_{kj}$$

$$w_j \leftarrow w_j + 2\eta \sum_{k=1}^R \delta_k x_{kj}$$

We frequently neglect the 2 (meaning we halve the learning rate)

The "Batch" perceptron algorithm

- 1) Randomly initialize weights $w_1 w_2 ... w_m$
- Get your dataset (append 1's to the inputs if you don't want to go through the origin).

for i = 1 to R

$$\delta_i := y_i - \mathbf{W}^{\mathrm{T}} \mathbf{X}_i$$

4) for j = 1 to m

$$w_j \leftarrow w_j + \eta \sum_{i=1}^R \delta_i x_{ij}$$

if $\sum \delta_i^2$ stops improving then stop. Else loop back to 3.

A RULE KNOWN BY
MANY NAMES

The LMS Rule

The delta rule

Classical conditioning

The adaline rule

The Widrow Hoff rule

Perceptrons and Boolean Functions

Can learn any disjunction of literals

e.g.
$$X_1 \wedge \sim X_2 \wedge \sim X_3 \wedge X_4 \wedge X_5$$

Can learn majority function

$$f(x_1, x_2 \dots x_n) = 1$$
 if $n/2$ x_i 's or more are = 1
0 if less than $n/2$ x_i 's are = 1

What about the exclusive or function?

$$f(x_1, x_2) = x_1 \forall x_2 = (x_1 \land \sim x_2) \lor (\sim x_1 \land x_2)$$

Decision surface of a perceptron

- Decision surface is a hyperplane
 - Can capture linearly separable classes
- Non-linearly separable
 - Use a network of them

Multilayer Networks

The class of functions representable by perceptrons is limited

$$Out(\mathbf{x}) = g\left(\mathbf{w}^{\mathrm{T}}\mathbf{x}\right) = g\left(\sum_{j} w_{j} x_{j}\right)$$

$$Out(\mathbf{x}) = g\left(\sum_{j} W_{j} g\left(\sum_{k} w_{jk} x_{jk}\right)\right)$$

This is a nonlinear function

Of a linear combination

Of non linear functions

Of linear combinations of inputs

A 1-HIDDEN LAYER NET

OTHER NEURAL NETS

"JUMP" CONNECTIONS

Multi-layer Networks

- Linear units inappropriate
 - No more expressive than a single layer
- Introduce non-linearity
 - Threshold not differentiable
 - Use sigmoid function

The Sigmoid

$$g(h) = \frac{1}{1 + \exp(-h)}$$

Now we choose w to minimize

$$\sum_{i=1}^{R} [y_i - \text{Out}(\mathbf{x}_i)]^2 = \sum_{i=1}^{R} [y_i - g(\mathbf{w}^T \mathbf{x}_i)]^2$$

Sigmoid Unit

 $\sigma(x)$ is the sigmoid function/activation function (also linear, threshold)

$$\frac{1}{1 + e^{-x}}$$

Nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$ Differentiable

We can derive gradient decent rules to train

- One sigmoid unit
- Multilayer networks of sigmoid units \rightarrow Backpropagation

Backpropagation

$$Out(\mathbf{x}) = g\left(\sum_{j} W_{j} g\left(\sum_{k} w_{jk} x_{k}\right)\right)$$

Find a set of weights $\{W_j\}, \{w_{jk}\}$ to minimize

$$\sum_{i} (y_i - \text{Out}(x_i))^2$$

by gradient descent.

That's it!

That's the backpropagation algorithm.

Backpropagation

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- squared error between the network's prediction and the actual target
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"
- Steps
 - Initialize weights (to small random #s) and biases in the network
 - Propagate the inputs forward (by applying activation function)
 - Backpropagate the error (by updating weights and biases)
 - Terminating condition (when error is very small, etc.)

function BACK-PROP-LEARNING(examples, network) returns a neural network inputs: examples, a set of examples, each with input vector x and output vector y network, a multilayer network with L layers, weights $w_{i,j}$, activation function glocal variables: Δ , a vector of errors, indexed by network node repeat

for each weight $w_{i,j}$ in network do $w_{i,j} \leftarrow$ a small random number

for each example (x, y) in examples do

/ * Propagate the inputs forward to compute the outputs */ for each node i in the input layer do

$$a_i \leftarrow x_i$$
.

for $\ell = 2$ to L do

for each node j in layer ℓ do

$$in_j \leftarrow \sum_i w_{i,j} \ a_i$$

 $a_i \leftarrow g(in_j)$

/ * Propagate deltas backward from output layer to input layer */

for each node j in the output layer do

$$\Delta[j] \leftarrow g'(in_j) \times (y_j - a_j)$$

for $\ell = L - 1$ to 1 do

for each node i in layer ℓ do

$$\Delta[i] \leftarrow g'(in_i) \sum_j w_{i,j} \Delta[j]$$

/* Update every weight in network using deltas */

for each weight $w_{i,j}$ in network do

$$w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]$$

until some stopping criterion is satisfied return network

How A Multi-Layer Neural Network Works?

- The inputs to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although usually only one
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction
- The network is feed-forward in that none of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform nonlinear regression:
 Given enough hidden units and enough training samples, they can closely approximate any function

Defining a Network Topology

- First decide the network topology: # of units in the input layer, # of hidden layers (if > 1), # of units in each hidden layer, and # of units in the output layer
- Normalizing the input values for each attribute measured in the training tuples to [0.0—1.0]
- One input unit per domain value, each initialized to 0
- Output, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

Backpropagation and Interpretability

- Efficiency of backpropagation: Each epoch (one interation through the training set) takes O(|D| * w), with |D| tuples and w weights, but # of epochs can be exponential to n, the number of inputs, in the worst case
- Rule extraction from networks: network pruning
 - Simplify the network structure by removing weighted links that have the least effect on the trained network
 - Then perform link, unit, or activation value clustering
 - The set of input and activation values are studied to derive rules describing the relationship between the input and hidden unit layers
- Sensitivity analysis: assess the impact that a given input variable has on a network output. The knowledge gained from this analysis can be represented in rules

Neural Network as a Classifier

Weakness

- Long training time
- Require a number of parameters typically best determined empirically, e.g., the network topology or "structure."
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network

Strength

- High tolerance to noisy data
- Ability to classify untrained patterns
- Well-suited for continuous-valued inputs and outputs
- Successful on a wide array of real-world data
- Algorithms are inherently parallel
- Techniques have recently been developed for the extraction of rules from trained neural networks

Artificial Neural Networks (ANN)

X ₁	X ₂	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$
where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

Linear Perceptrons

They are multivariate linear models:

$$Out(x) = w^Tx$$

And "training" consists of minimizing sum-of-squared residuals by gradient descent.

$$E = \sum_{k} (Out(x_k) - y_k)^2$$
$$= \sum_{k} (w^{T}x_k - y_k)^2$$

QUESTION: Derive the perceptron training rule.

A Multi-Layer Feed-Forward Neural Network

General Structure of ANN

