Ex Elektriskt System (forts)

Lasning

Strukturering
 Inför lämpliga stödvoriabler.

Minns der mehaniska systemet:
$$\frac{y(s)}{F(s)} = \frac{1/m}{s^2 + \frac{k}{m}s + \frac{k}{m}}$$
, $L \to m$
 $C \to \frac{1}{k}$

Tillständsmodeller

59stem av 1a Ordningens differentialekvationer

Ex Elektrisk krets

Nya variabler: 9 och i =>
$$\frac{dq}{dt} = i$$
 $\frac{dq}{dt} = \frac{1}{L} U_L = \frac{1}{L} (U - U_R - U_C) = \frac{1}{L} (U - Ri - \frac{1}{L} \cdot q)$

$$\dot{x} = f(x, u)$$
 Om tv: Uc 4 i => $y = Uc$
 $y = g(x, u)$ 9 ki => $y = \frac{1}{2}$.

Intern modell

(xy

extern modell

Linjāra System:
$$\dot{x} = Ax + Bu$$

$$\begin{vmatrix} z \\ z \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \end{vmatrix} + \begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \begin{vmatrix} 1 \\$$

Intern modell -> Extern

$$\dot{x} = Ax + Bu \qquad \stackrel{7}{\longleftarrow} > C_1(S)$$
 $\dot{y} = Cx + Du$

$$Y(s) = C(SI-A)^{-1}BU(s) + DU(s) = (C(SI-A)^{-1}B+D)U(s) = G(s)U(s)$$

Ex Elektriskt system

Notera: Systemets poler bestams av det(SI-A) = egenvardena till A.

Linjarisering

$$x = f(x, u)$$

$$\begin{cases} x = Ax + Bu \\ y = g(x, u) \end{cases}$$

$$\begin{cases} x = Ax + Bu \\ y = Cx + Du \end{cases}$$

Ex Funktion au flera Variabler (2 St)

