

SCALING REVENUE THROUGH DATA SCIENCE

Joseph Roberts

Matt Rubino

Che Guan

https://github.com/mids-w205/project-3-joethequant

Acme Gourmet Meals (AGM) is an innovative food company that offers healthy, seasonal pre-made meals. It delivers to customers in the Greater Bay Area, focusing on young professionals that are too busy to cook or grocery shop.

01 BACKGROUND

A VISION FOR THE FUTURE

DATA SCIENCE

Problem Statement: How can AGM optimize delivery and pickup capabilities in the Bay Area to better serve their customers today while positioning the company for long-term growth and success?

Continuous Learning through Data Science: The innovative management team is focused on expanding its store footprint, optimizing delivery in the Bay Area, and iterating on its successes with help of the data science team to drive new ideas, insights, and intuition. It believes the use of data science can lead to an improved margin profile, increased TAMs, and take rates.

- What is our target market from the perspective of customer demographics? What are their ages, genders, income levels and primary places of residence?
- What times during the day and week tend to lead to peak sales generation? What can we learn from the surrounding areas at such times?
- What features will be the best predictor for increasing sales?
- Does Betweenness make sense as a variable to optimize?
- How will we test and roll out new ideas?
- Can we optimize our inventory more efficiently?

Questions of Interest

Features

- Degree Centrality
 - Measures number of relationships a node has in a graph: incoming, outgoing
- Closeness Centrality
 - Measures average of the shortest path distances between a node and all other nodes
- Betweenness Centrality
 - Find all pairs shortest paths (weighted)
- Triangle Count
 - Number of triangles that pass through a node
- Clustering Coefficient
 - Probability that neighbors of a node are connected to each other
- Louvain Modularity
 - Creates a hierarchy of group at different scales
- Population within X miles of a zip code
- Number of Stations within X miles of a zip code

	node	degree	closeness	betweenness	triangle_count	clustering_coefficient	community
0	12th Street	3	0.2333	1116	1	0.3333	29
1	16th Street Mission	2	0.1712	720	0	0.0000	10
2	19th Street	2	0.2195	1088	0	0.0000	46
3	24th Street Mission	2	0.1663	656	0	0.0000	10
4	Antioch	1	0.1069	0	0	0.0000	31
5	Ashby	2	0.1986	440	0	0.0000	2

zip	latitude	longitude	city	state	population	area	density	time_zone	within_1m_station	within_2m_station	within_3m_station
90011	34.0071	-118.2587	Los Angeles	CA	109414	4.5137	24240.49	America/Los_Angeles	0.0	0.0	0.0
90650	33.9069	-118.0826	Norwalk	CA	105886	9.8416	10759.07	America/Los_Angeles	0.0	0.0	0.0
91331	34.2556	-118.4208	Pacoima	CA	105799	9.0328	11712.71	America/Los_Angeles	0.0	0.0	0.0
90201	33.9707	-118.1708	Bell Gardens	CA	102433	6.0050	17057.93	America/Los_Angeles	0.0	0.0	0.0
92335	34.0872	-117.4655	Fontana	CA	99284	18.0598	5497.51	America/Los_Angeles	0.0	0.0	0.0

STRATEGY IMPLEMENTATION TIMELINE

BART

Target Bart Stations that have a high population and high betweenness with other stations.

Additional Delivery Systems

Drones can be used from remote delivery in suburban areas while robots can be used for more urban settings that do not have immediate

Bart locations

STORE FOOTPRINT EXPANSION & ITERATE

Targeting densely populated areas with no access to stores or trains currently

CONTINUOUS SUPPLY CHAIN OPTIMIZATION

Leverage software stacks including Neo4j, MongoDB, Redis and SQL to optimize the supply chain on a live basis

PHASE 1: BART

O 1 . POWELL STREET

- (i) High population with 140k people located within one mile.
- (ii) Central connector between other stations.
- (iii) Added benefit of being located in business district.

02. FRUITVALE STATION

- (i) High population with 52k people located within one mile.
- (ii) Central connector between other stations.

TARGET

Bart Stations that have a high population and high betweenness with other stations.

Station Betweenness and Population within 1 Mile

Drones & Robots

PHASE 2: ADDITIONAL DELIVERY SYSTEMS

(i) To cater to the Non-Bart population, we propose using drones and delivery bots so as to maximize efficiencies and speed time to delivery

(i) Drones can be used from remote delivery in suburban areas while robots can be used for more urban settings that do not have immediate Bart locations

PHASE 2: COST OF ALTERNATIVE DELIVERY SYSTEMS

DRONES

- (i) We estimate each drone delivery to cost around \$5 per package
- (ii) To begin building and testing a fleet, we recommend buying 3 camera drones, which cost about \$400 per drone

ROBOTS

(i) We recommend purchasing a mix of both long range and short range robots, which we project to incur costs of \$2.5k to \$5k per robot

Population of Zip Codes, Station Greater Than 2 Miles Away

- Two-pronged approach to store footprint expansion:
 - Seeking densely populated areas with no train access and limited store alternatives

PHASE 3: STORE FOOTPRINT EXPANSION & ITERATE

INVENTORY TRACKING

Reduce manual error, minimize order cancellations, and identify inventory shrinkage

INVENTORY OPTIMIZATION

Extending the working capital and cash conversion cycle through forecasting

PHASE 4: CONTINUOUS SUPPLY CHAIN OPTIMIZATION THROUGH LIVE DATABASES

ROUTE OPTIMIZATION

Modelling for shortest delivery times and minimal interference

LIVE DELIVERY TRACKING

The logistics team and customers can be informed on live deliveries through our enhance delivery systems (drones and bots)

Leveraging a full suite of technology stacks to drive innovation

LEVERAGING TECHNOLOGIES

Measuring connections and characteristics of stores, BART stations and alternative delivery systems

Analytical dashboards to drive business viewpoints, capital allocation, and mix shifts

Highly normalized transactional database for all operations.

Real time date based on inventory, wait times, and sales

- Relational databases aren't designed to capture rich relationship information. Applications are missing out on critical connections essential for today's high-stakes, data-driven decisions.
- Neo4j graph data science makes it easier to unlock answers as it
 puts relationships first. It also allows one to use graph queries and
 algorithms to further investigate data and prepare features for ML
 models to use.

Graph Technology in Financial Services

Stay Agile in Risk & Compliance

Fraud Detection

Capture a 360 Customer View

Leverage Data across Team

A Business Use Case: Identifying First-Party Fraud

- An individual or group of people may misrepresent their identity or use false information when applying for a financial product or service. An estimated 80% of all credit card fraud losses stem from this synthetic identity fraud which results in major losses for financial institutions.
- To detect such first-party fraud efficiently and effectively, Neo4j allows one to use graph queries and algorithms to investigate data, get a sense of its structure and discover patterns and anomalies.
- One can use Neo4j Bloom to visually explore results and verify first-party fraud. A more advanced approach is to apply neo4j graph algorithm to create features and use them to machine learning model to identify more fraud faster.

Redis is an open source, in-memory data structure server which leverages key-value pairs. The Redis stack permits the real time building of applications with searchable JSON, time series and graph data models, as well as high performance probabilistic data structures.

SECURE USER LOGINS

Protecting against cyberattacks with no way for others to reverse passwords

INFORMATION ACCESS

USE CASE

Once logged in, users can access a full list of inventory, delivery pipeline and routes

LIVE USAGE DASHBOARD

Showing performance, memory, activity metrics

OPTIMAL SCALE OUT

Sequentially copying of the file system of the master container into the newly created nodes

- Scaling out a NoSQL database that holds username and passwords for secure log-ins to protect against cyberattacks
- (ii) Post log-in, users would have the ability to see a full product list, delivery routes, and other alternative data
- (iii) A stateful web server because it can track and hold session data for every transaction, allowing for optimal scale out

Mango is an open source, data structure server which leverages a json like structure to store and retrieve data. The MangoDB creates a highly efficient way to access specific analytical views of our data.

Example: Store and Retrieve all data about each of our customers.

```
{
   "_id": "5cf0029caff5056591b0ce7d",
   "firstname": "Jane",
   "lastname": "Wu",
   "address": {
        "street": "1 Circle Rd",
        "city": "Los Angeles",
        "state": "CA",
        "zip": "90404"
   },
   "hobbies": ["surfing", "coding"]
}
```

Customers

Name Address Email Payment Details

Stores

Location Employees Inventory Sales

Applications

Online and Stores Executive Dashboards Research Datastore Engagement Surveys Sales Forecasting Employee Specific

Transactions

Customer Sales Employee Store Order Details

Analytics

Sales Trends Inventory Mgmt. Predictions Customer Scores

mongoDB_®

FINANCIAL PROJECTIONS

- An investment in the data science team represents a significant opportunity from a business perspective
- Driving increased sales growth, longer-run operating margins in excess of 40%, and the ability to scale efficiently
- Perception of AGM as a technology-enabled company could lead to multiple re-rating

	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Phase 1 Revenue Model										
Local Population Exposure	192,500	192,500	192,500	192,500	192,500	192,500	192,500	192,500	192,500	192,500
% Daily Sales	0.4%	0.6%	0.9%	1.4%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
Orders	281,050	421,575	632,363	948,544	1,422,816	1,422,816	1,422,816	1,422,816	1,422,816	1,422,816
Average Daily Orders	770	1,155	1,733	2,599	3,898	3,898	3,898	3,898	3,898	3,898
Average Order Size	\$15	\$15	\$15	\$15	\$15	\$15	\$15	\$15	\$15	\$15
Phase 1 Sales	4,215,750	6,323,625	9,485,438	14,228,156	21,342,234	21,342,234	21,342,234	21,342,234	21,342,234	21,342,234
Phase 2 Revenue Model										
Local Population Exposure				800,000	800,000	800,000	800,000	800,000	800,000	800,000
% Daily Sales				0.4%	0.6%	0.9%	1.4%	2.0%	2.0%	2.0%
Orders				1,168,000	1,752,000	2,628,000	3,942,000	5,913,000	5,913,000	5,913,000
Average Daily Orders				3,200	4,800	7,200	10,800	16,200	16,200	16,200
Average Order Size				\$64	\$64	\$64	\$64	\$64	\$64	\$64
Phase 2 Sales				75,008,960	112,513,440	168,770,160	253,155,240	379,732,860	379,732,860	379,732,860
Phase 3 Revenue Model										
Local Population Exposure						800,000	800,000	800,000	800,000	800,000
% to Sales						0.4%	0.6%	0.9%	1.4%	2.0%
Number of Sales						1,168,000	1,752,000	2,628,000	3,942,000	5,913,000
Average Order Size						\$64	\$64	\$64	\$64	\$64
Phase 3 Sales						74,752,000	112,128,000	168,192,000	252,288,000	378,432,000
Total Orders	281,050	421,575	632,363	2,116,544	3,174,816	5,218,816	7,116,816	9,963,816	11,277,816	13,248,816
Total Sales	4,215,750	6,323,625	9,485,438	89,237,116	133,855,674	264,864,394	386,625,474	569,267,094	653,363,094	779,507,094
Cost of Revenue	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Number Bart Locations	3	3	3	3	3	6	6	6	6	6
Bart Rent (locations *12 * \$2000)	(72,000)	(72,000)	(72,000)	(72,000)	(72,000)	(144,000)	(144,000)	(144,000)	(144,000)	(144,000)
Drones and Robots Cost (Orders * \$5)	-	-	-	(5,840,000)	(8,760,000)	(13,140,000)	(19,710,000)	(29,565,000)	(29,565,000)	(29,565,000)
Phase 3 Locations						3	3	3	3	3
Phase 3 Rents (Locations * 12 * \$5000)	-	-	-	-	-	(180,000)	(180,000)	(180,000)	(180,000)	(180,000)
Cost of Goods Sold (Sales * 20%)	(843,150)	(1,264,725)	(1,897,088)	(17,847,423)	(26,771,135)	(52,972,879)	(77,325,095)	(113,853,419)	(130,672,619)	(155,901,419)
Other Costs	/1 264 725\	(1 007 000)	(2.04F.C21)	/26 771 125\	/40 156 703\	/70 4F0 319\	/115 007 (42)	(170 700 120)	/10/ 000 020\	/222 052 120\
Other Costs	(1,264,725)	(1,897,088)	(2,845,631)	(26,771,135)	(40,156,702)	(79,459,318)	(115,967,042)	(170,780,128)	(196,008,928)	(233,852,128)
Server Budget	(60,000)	(72,000)	(86,400)	(103,680)	(124,416)	(149,299)	(179,159)	(214,991)	(257,989)	(309,587)
# DS Employees	3	4	5	6	7	8	10	12	14	17
Data Science Team (\$500,000 annual)	(1,500,000)	(2,000,000)	(2,500,000)	(3,000,000)	(3,500,000)	(4,000,000)	(5,000,000)	(6,000,000)	(7,000,000)	(8,500,000)
Net Revenue	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Total Operating Costs	(3,739,875)	(5,305,813)	(7,401,119)	(53,634,238)	(79,384,253)	(150,045,496)	(218,525,896)	(320,737,538)	(363,828,536)	(428,452,134)
Net Revenue	475,875	1,017,813	2,084,319	35,602,878	54,471,421	114,818,898	168,099,578	248,529,556	289,534,558	351,054,960
Operating Margin	11%	16%	22%	40%	41%	43%	43%	44%	44%	45%

Questions?