Colon Cancer

Jose Tamez

2023-05-01

Contents

1 RRPlot and the Colon data set 1.1 The data set	1 2 2 3 27
1.0.1 Libraries	
library(survival) library(FRESA.CAD)	
## Loading required package: Rcpp	
## Loading required package: stringr	
## Loading required package: miscTools	
## Loading required package: Hmisc	
<pre>## ## Attaching package: 'Hmisc' ## The following objects are masked from 'package:base': ## ##</pre>	
## format.pval, units	
## Loading required package: pROC	
<pre>## Type 'citation("pROC")' for a citation. ## ## Attaching package: 'pROC' ## The following objects are masked from 'package:stats': ## ## cov, smooth, var</pre>	
<pre>#library(corrplot) #source("~/GitHub/FRESA.CAD/R/RRPlot.R") #source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R") op <- par(no.readonly = TRUE) pander::panderOptions('digits', 3)</pre>	

```
#pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
```

1.1 The data set

```
data(cancer)
colon <- subset(colon,etype==1)
colon$etype <- NULL
rownames(colon) <- colon$id
colon$id <- NULL
colon <- colon[complete.cases(colon),]
time <- colon$time
status <- colon$status
data <- colon
data$time <- NULL
table(data$status)</pre>
```

0 1 442 446

```
dataColon <- as.data.frame(model.matrix(status~.*age,data))
dataColon$`(Intercept)` <- NULL
dataColon$time <- time/365
dataColon$status <- status
colnames(dataColon) <-str_replace_all(colnames(dataColon),":","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\.","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\","_")
data <- NULL

trainsamples <- sample(nrow(dataColon),0.7*nrow(dataColon))
dataColonTrain <- dataColon[trainsamples,]
dataColonTest <- dataColon[-trainsamples,]</pre>
```

0	1
316	305

pander::pander(table(dataColonTest\$status))

0	1
126	141

1.2 Modeling

```
ml <- BSWiMS.model(Surv(time, status)~1, data=dataColonTrain, NumberofRepeats = 10)
```

```
[++++++++++++++++++++++++]...
```

pander::pander(sm\$coefficients)

Table 3: Table continues below

	Estimate	lower	$_{ m HR}$	upper	u.Accuracy
age_node4	6.05e-03	1.004	1.006	1.009	0.620
\mathbf{age}	-2.07e-02	0.970	0.979	0.989	0.514
$rxLev_5FU_age$	-3.11e-03	0.995	0.997	0.998	0.570
${f rxLev_5FU}$	-2.36e-01	0.696	0.790	0.896	0.570
${f node 4}$	1.81e-01	1.079	1.198	1.330	0.620
${f age_extent}$	4.46e-03	1.002	1.004	1.007	0.525
${f age_nodes}$	1.00e-04	1.000	1.000	1.000	0.622
\mathbf{extent}	1.60e-01	1.061	1.174	1.298	0.548
${f nodes}$	4.24e-02	1.012	1.043	1.076	0.628
differ	7.37e-08	1.000	1.000	1.000	0.533

Table 4: Table continues below

	r.Accuracy	full.Accuracy	u.AUC	r.AUC	full.AUC
age_node4	0.595	0.621	0.616	0.596	0.620
\mathbf{age}	0.612	0.625	0.513	0.609	0.624
$rxLev_5FU_age$	0.630	0.645	0.573	0.627	0.644
${ m rxLev_5FU}$	0.623	0.621	0.573	0.621	0.619
${f node 4}$	0.631	0.642	0.616	0.631	0.640
${f age_extent}$	0.625	0.625	0.526	0.623	0.624
${f age_nodes}$	0.609	0.634	0.619	0.608	0.633
${f extent}$	0.632	0.645	0.554	0.630	0.644
${f nodes}$	0.632	0.645	0.625	0.629	0.644
differ	0.491	0.533	0.527	0.500	0.527

	IDI	NRI	z.IDI	z.NRI	Delta.AUC	Frequency
age_node4	0.02955	0.4220	4.90	6.14	0.023108	1.0
\mathbf{age}	0.02207	0.1873	4.23	2.35	0.015136	1.0
$rxLev_5FU_age$	0.01911	0.2930	4.08	3.97	0.016553	1.0
${f rxLev_5FU}$	0.01574	0.2930	3.67	3.97	-0.001565	1.0
${f node 4}$	0.01328	0.3635	3.47	5.38	0.009490	1.0
${f age_extent}$	0.01388	0.1295	3.33	2.30	0.000977	1.0
age_nodes	0.01328	0.2245	3.23	2.93	0.024832	1.0
extent	0.01233	0.0673	3.12	1.07	0.013901	1.0
${f nodes}$	0.00827	0.1884	2.76	2.45	0.014472	1.0
differ	0.00656	0.1089	1.85	1.80	0.027215	0.4

1.3 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

1.3.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

Cumulative vs. Observed: Raw Train: Colon Cancer

Decision Curve Analysis: Raw Train: Colon Cancer

Relative Risk: Raw Train: Colon Cancer

ROC: Raw Train: Colon Cancer

Time vs. Events: Raw Train: Colon Cancer

Kaplan-Meier: Raw Train: Colon Cancer

1.3.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$keyPoints),caption="Threshold values")

Table 6: Threshold values

	@:0.9	@MAX_BACC	@MAX_RR	@SPE100
Thr	0.502	0.361	0.204	0.105
$\mathbf{R}\mathbf{R}$	1.685	1.832	4.768	1.000
\mathbf{SEN}	0.292	0.548	0.987	1.000
\mathbf{SPE}	0.896	0.747	0.104	0.000
\mathbf{BACC}	0.594	0.647	0.546	0.500

pander::pander(t(rrAnalysisTrain\$0ERatio),caption="0/E Ratio")

Table 7: O/E Ratio

est	lower	upper
0.998	0.889	1.12

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 8: O/E Ratio

mean	50%	2.5%	97.5%
1.39	1.39	1.36	1.41

pander::pander(t(rrAnalysisTrain\$OAcum95ci), caption="0/Acum Ratio")

Table 9: O/Acum Ratio

mean	50%	2.5%	97.5%
1.27	1.27	1.26	1.27

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.67	0.67	0.638	0.699

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 11: ROC AUC

est	lower	upper
0.699	0.659	0.74

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 12: Sensitivity

est	lower	upper
0.292	0.241	0.346

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 13: Specificity

est	lower	upper
0.899	0.86	0.93

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 14: Probability Thresholds

90%	at_max_BACC	at_max_RR	atSPE100
0.502	0.361	0.204	0.105

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 15: Risk Ratio

est	lower	upper
1.71	1.48	1.98

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 16: Logrank test Chisq = 69.007475 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	500	216	264.8	9.0	69
class=1	121	89	40.2	59.3	69

1.3.3 Cox Calibration

h0	Gain	DeltaTime
0.651	1.48	2.97

1.3.4 The RRplot() of the calibrated model

Cumulative vs. Observed: Calibrated Train: Colon

Decision Curve Analysis: Calibrated Train: Colon

Relative Risk: Calibrated Train: Colon

Time vs. Events: Calibrated Train: Colon

Kaplan-Meier: Calibrated Train: Colon

1.3.5 Calibrated Train Performance

pander::pander(t(rrAnalysisTrain\$keyPoints), caption="Threshold values")

Table 18: Threshold values

	@:0.9	@MAX_BACC	@MAX_RR	@SPE100
Thr	0.643	0.484	0.286	0.151
$\mathbf{R}\mathbf{R}$	1.685	1.844	4.768	1.000
\mathbf{SEN}	0.292	0.551	0.987	1.000
\mathbf{SPE}	0.896	0.747	0.104	0.000
\mathbf{BACC}	0.594	0.649	0.546	0.500

pander::pander(t(rrAnalysisTrain\$0ERatio),caption="0/E Ratio")

Table 19: O/E Ratio

est	lower	upper
0.799	0.712	0.894

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 20: O/E Ratio

mean	50%	2.5%	97.5%
0.973	0.973	0.956	0.991

pander::pander(t(rrAnalysisTrain\$0Acum95ci),caption="0/Acum Ratio")

Table 21: O/Acum Ratio

mean	50%	2.5%	97.5%
1.01	1.01	1	1.01

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.67	0.67	0.641	0.698

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 23: ROC AUC

est	lower	upper
0.699	0.659	0.74

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 24: Sensitivity

est	lower	upper
0.292	0.241	0.346

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 25: Specificity

est	lower	upper
0.899	0.86	0.93

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 26: Probability Thresholds

90%	at_max_BACC	at_max_RR	atSPE100
0.643	0.484	0.286	0.151

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 27: Risk Ratio

est	lower	upper
1.71	1.48	1.98

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 28: Logrank test Chisq = 69.007475 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	500	216	264.8	9.0	69
class=1	121	89	40.2	59.3	69

1.3.6 Evaluating on the test set

The calibrated h0 and timeinterval were estimated on the training set

Cumulative vs. Observed: Test: Colon Cancer

Decision Curve Analysis: Test: Colon Cancer

Relative Risk: Test: Colon Cancer

Time vs. Events: Test: Colon Cancer

Kaplan-Meier: Test: Colon Cancer

1.3.7 Test Performance

pander::pander(t(rrAnalysisTest\$keyPoints),caption="Threshold values")

Table 29: Threshold values (continued below)

	@: 0.64303803374701	@: 0.483598597950569	@:0.286109857686596
Thr	0.645	0.483	0.2861
$\mathbf{R}\mathbf{R}$	1.619	1.437	2.1833
\mathbf{SEN}	0.277	0.482	0.9716
\mathbf{SPE}	0.905	0.706	0.0952
\mathbf{BACC}	0.591	0.594	0.5334

@: 0.15130951853827	$@MAX_BACC$	$@MAX_RR$	@SPE100
0.1879	0.466	0.289	0.1879
21.4449	1.648	1.966	21.4449
1.0000	0.603	0.965	1.0000
0.0317	0.659	0.103	0.0317
0.5159	0.631	0.534	0.5159
	0.1879 21.4449 1.0000 0.0317	0.1879 0.466 21.4449 1.648 1.0000 0.603 0.0317 0.659	0.1879 0.466 0.289 21.4449 1.648 1.966 1.0000 0.603 0.965 0.0317 0.659 0.103

pander::pander(t(rrAnalysisTest\$0ERatio), caption="0/E Ratio")

Table 31: O/E Ratio

est	lower	upper
0.839	0.707	0.99

pander::pander(t(rrAnalysisTest\$0E95ci),caption="0/E Ratio")

Table 32: O/E Ratio

mean	50%	2.5%	97.5%
1.01	1.01	0.984	1.03

pander::pander(t(rrAnalysisTest\$OAcum95ci),caption="0/Acum Ratio")

Table 33: O/Acum Ratio

mean	50%	2.5%	97.5%
1.03	1.03	1.02	1.04

pander::pander(rrAnalysisTest\$c.index\$cstatCI, caption="C. Index")

mean.C Index	median	lower	upper
0.619	0.618	0.573	0.663

pander::pander(t(rrAnalysisTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 35: ROC AUC

est	lower	upper
0.651	0.585	0.716

pander::pander((rrAnalysisTest\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 36: Sensitivity

est	lower	upper
0.277	0.205	0.358

pander::pander((rrAnalysisTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 37: Specificity

est	lower	upper
0.905	0.84	0.95

pander::pander(t(rrAnalysisTest\$thr_atP), caption="Probability Thresholds")

Table 38: Probability Thresholds

90%	at_max_BACC	at_max_RR	atSPE100	at_max_BACC	at_max_RR	atSPE100
0.643	0.484	0.286	0.151	0.466	0.289	0.188

pander::pander(t(rrAnalysisTest\$RR_atP),caption="Risk Ratio")

Table 39: Risk Ratio

est	lower	upper
1.6	1.3	1.97

pander::pander(rrAnalysisTest\$surdif,caption="Logrank test")

Table 40: Logrank test Chisq = 25.920753 on 2 degrees of freedom, p = 0.000002

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	163	74	93.5	4.0691	12.1407
class=1	53	28	28.6	0.0147	0.0184
class=2	51	39	18.8	21.5536	25.1518

1.4 Cross-Validation

Here we will cross validate the training set and evaluate also on the testing set. The h0 and the timeinterval are the ones estimated on the calibration process

Cumulative vs. Observed: CV Test: Colon Cancer

Decision Curve Analysis: CV Test: Colon Cancer

Relative Risk: CV Test: Colon Cancer

Time vs. Events: CV Test: Colon Cancer

Kaplan-Meier: CV Test: Colon Cancer

1.4.1 CV Test Performance

pander::pander(t(rrAnalysisCVTest\$keyPoints),caption="Threshold values")

Table 41: Threshold values (continued below)

	@: 0.64303803374701	@: 0.483598597950569	@: 0.286109857686596
Thr	0.643	0.483	0.2864
$\mathbf{R}\mathbf{R}$	1.691	1.650	3.5767
\mathbf{SEN}	0.309	0.487	0.9933
\mathbf{SPE}	0.891	0.758	0.0407
\mathbf{BACC}	0.600	0.622	0.5170

@: 0.15130951853827	$@MAX_BACC$	$@MAX_RR$	@SPE100
0.227	0.481	0.322	0.227
1.000	1.682	2.322	1.000
1.000	0.502	0.960	1.000
0.000	0.753	0.138	0.000
0.500	0.628	0.549	0.500
	0.227 1.000 1.000 0.000	0.227 0.481 1.000 1.682 1.000 0.502 0.000 0.753	0.227 0.481 0.322 1.000 1.682 2.322 1.000 0.502 0.960 0.000 0.753 0.138

pander::pander(t(rrAnalysisCVTest\$0ERatio), caption="0/E Ratio")

Table 43: O/E Ratio

est	lower	upper
0.78	0.709	0.856

pander::pander(t(rrAnalysisCVTest\$0E95ci),caption="0/E Ratio")

Table 44: O/E Ratio

mean	50%	2.5%	97.5%
0.958	0.958	0.944	0.972

pander::pander(t(rrAnalysisCVTest\$OAcum95ci),caption="0/Acum Ratio")

Table 45: O/Acum Ratio

mean	50%	2.5%	97.5%
0.997	0.997	0.994	1

pander::pander(rrAnalysisCVTest\$c.index\$cstatCI, caption="C. Index")

mean.C Index	median	lower	upper
0.645	0.644	0.619	0.67

pander::pander(t(rrAnalysisCVTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 47: ROC AUC

est	lower	upper
0.672	0.637	0.707

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 48: Sensitivity

est	lower	upper	
0.309	0.267	0.355	

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 49: Specificity

est	lower	upper		
0.891	0.859	0.919		

pander::pander(t(rrAnalysisCVTest\$thr_atP),caption="Probability Thresholds")

Table 50: Probability Thresholds

90%	at $_{\rm max}$ BACC	at_max_RR	atSPE100	at $_{\rm max}$ BACC	at $_{\rm max}$ RR	atSPE100
0.643	0.484	0.286	0.151	0.481	0.322	0.227

pander::pander(t(rrAnalysisCVTest\$RR_atP),caption="Risk Ratio")

Table 51: Risk Ratio

est	lower	upper	
1.7	1.51	1.91	

pander::pander(rrAnalysisCVTest\$surdif,caption="Logrank test")

Table 52: Logrank test Chisq = 108.473827 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	565	229	316.6	24.25	84.33
class=1	137	79	63.6	3.72	4.34
class=2	186	138	65.8	79.35	93.93