$\mathbf 1$ - Критические пары в $\mathbb Z_p$

Определение 1. Если $A,B\subset \mathbb{Z}_p$ таковы, что $A+B\neq \mathbb{Z}_p,\ |A+B|=|A|+|B|-1,$ то такая пара множеств называется критической.

Теорема 1. Если A, B — критическая пара, то выполнено одно из следующих условий:

- $\min\{|A|, |B|\} = 1$
- $|A + B| = p 1, 2 \le |A| \le p 1, B = \overline{c A}, \{c\} = \mathbb{Z}_p \setminus (A + B)$
- \bullet A,B арифметические прогрессии с одинаковой разностью

Доказательство.

Лемма. Если (A, B) — критическая u | A + B | = |A| + |B| - 1 — арифметическая прогрессия, то <math>B — прогрессия c той же разностью.

Лемма. Если $\min\{|A|, |B|\} = 2$, (A, B) — критическая, то A, B — ариф-метические прогрессии с одинаковой разностью.

Лемма. Если $\min\{|A|,|B|\}\geqslant 2,\; (A,B)-\kappa pumuческая,\; |A+B|=|A|+|B|-1< p-1,\; morda\; (\overline{A+B},-A)-\kappa pumuческая.$

Полагаем, что $\min\{|A|, |B|\} \geqslant 2$, |A+B| = |A| + |B| - 1 .

Лемма. В указанном предположении, если известно, что A+B- арифметическая прогрессия, то A,B- арифметические прогрессии с одинаковой разностью.

Доказательство. A+B — арифметическая прогрессия, значит $\overline{A+B}$ тоже прогрессия с такой же разностью. Тогда по лемме $(\overline{A+B},-A)$ — критическая и так как $\overline{A+B}$ — арифметическая прогрессия, то по другой лемме -A и A — прогрессии с той же разностью (с точностью до знака). Еще одно применение леммы даёт нам то, что A и B — арифметические прогрессии с одинаковой разностью.

Лемма. Если (A,B) — критическая, $0 \in B, |A| = k \geqslant 2, |B| = l \geqslant 3, |A+B| = |A| + |B| - 1 . Тогда найдётся <math>e \in A$, такое что $(A_{(e)}, B_{(e)})$ — критическая пара, такая что $A_{(e)} + B_{(e)} = A + B$ и $2 \leqslant |B_{(e)}| < |B|$.

Доказательство. Возьмём произвольное $e \in A$. $A_{(e)} + B_{(e)} \subset A + B$. По тоереме Копи-Давенпорта $|A_{(e)}| + |B_{(e)}| - 1 \leqslant |A_{(e)} + B_{(e)}| \leqslant |A + B| = |A| + |B| - 1 = |A_{(e)}| + |B_{(e)}| - 1 \Rightarrow |A_{(e)} + B_{(e)}| = |A + B| \Rightarrow A_{(e)} + B_{(e)} = A + B$. $X = \{e \in A : |B_{(e)}| < |B|\}$. Покажем, что $|X| \geqslant 2$. Если $e \in X$, то $B \cap (A - e) \subsetneq B$. Рассмотрим $Y = A \setminus X$. Для $e \in Y$ выполнено $B \subset A - e$. Пусть $Y \neq \emptyset$, иначе все тривиально. Пусть $Y \neq \emptyset$, тогда $\forall e \in A : B + e \subset A$. По теореме Коши-Давенпорта $|Y| + |B| - 1 \leqslant |Y + B| \leqslant |A| = k$. $|Y| + l - 1 = k - |X| + l - 1 \leqslant k \Rightarrow |X| \geqslant l - 1 \geqslant 2$.

Пусть $\forall e \in X, B_{(e)} = 0.$ $B' = B \setminus \{0\}$, тогда $\forall e \in X \to B' \cap (A - e) = \emptyset \Leftrightarrow \forall e \in X \to (B' + e) \cap A = \emptyset.$ Тогда $(B' + X) \cap A = \emptyset(X + B') \subset (A + B) \setminus A.$