CHEMISTRY -THEORY (CYI 101)

Inorganic Chemistry

Instructor: Dr. R P John

Department of Chemistry & Chemical Biology

Evaluation and Study Material

Examination/Class tests/others

- See Academic Calendar
- Will be informed time to time

Course Material

- What the instructor teaches!
- Books: Inorganic chemistry: Huheey, Keiter and Keiter
 Inorganic Chemistry: Housecroft and Sharpe
 Shriver Atkin's Inorganic Chemistry: Atkins, Overton, Rourke, Weller and Armstrong

Color of transition metal complexes

Naturally Occurring Coordination Compounds

d-orbitals

Crystal Field Theory

- 1. This is an electrostatic model for transition metal complexes.
- 2. Ligands are considered as point charge.
- 3. The CFT does not provide for electrons to enter the metal orbitals, i.e. it does not consider any orbital overlap.
- 4. Predicts the pattern of splitting of d-orbitals.
- 5. Used to rationalize spectroscopic and magnetic properties.

Octahedral complex (O_h)

Tetrahedral complex (T_d)

Square planer complex (Sp)

- Six point negative charges (Ligands) representing the ligands are placed in an octahedral array around the central metal ion.
- The ligand and orbitals lie on the same axes.
- These charges interact strongly with the central metal ion.
- 1. The stability of the complex in large part from this attractive interaction between opposite charges.
- 2. There is a much smaller but very important secondary effect arising from the fact that electrons in different d orbitals interact with the ligands to different extents.
- Although this differential interaction is little more than about 10 per cent of the overall metal-ligand interaction energy, it has major consequences for the properties of the complex.

Splitting of *d*-orbital energies in an octahedral field of ligands.

The *d* orbitals split into two groups. The difference in energy between these groups is called the *crystal field splitting energy*, symbol Δ_o .

- The overall stabilization of the t_{2g} orbitals equals the overall destabilization of the e_g set.
- Thus, the two orbitals in the e_g set are raised by 0.6 Δ_o with respect to the Barycentre while the three in the t_{2g} set are lowered by 0.4 Δ_o .
- The magnitude of Δ_0 is determined by the strength of the crystal field, the two extremes being called weak field and strong field.

 Δ_o (Weak field) $< \Delta_o$ (Strong field)

Factors influencing the Magnitude of Δ_o for Octahedral complexes

1. The nature of metal cation:

i) Oxidation state of the metal ion

$$[Ru(H_2O)_6]^{3+}$$
 28600 cm⁻¹
 $[Ru(H_2O)_6]^{2+}$ 19800 cm⁻¹

ii) Different charges on the cation of different metals

$$[V(H_2O)_6]^{2+}$$
 12400 cm⁻¹ 3 d^3
 $[Cr(H_2O)_6]^{3+}$ 17400 cm⁻¹ 3 d^3

iii) Quantum number (n) of the d- orbitals of the central metal ion.

$[Co(NH_3)_6]^{3+}$	23000 cm ⁻¹	3 <i>d</i> ⁶	
$[Rh(NH_3)_6]^{3+}$	34000 cm ⁻¹	4 <i>d</i> ⁶	
$[Ir(NH_3)_6]^{3+}$	41000 cm ⁻¹	5 <i>d</i> ⁶	

 $\Delta_{\rm o}$ increases about 30% to 50% from 3dⁿ to 4dⁿ. And by about same amount again from 4dⁿ to 5dⁿ. The increase down a group reflects the larger size of the 4d and 5d orbitals compared with the compact 3d orbitals and the consequent stronger interactions with the ligands.

Strong and weak ligands: Spectrochemical Series

 $\begin{array}{c} \textbf{Weak Field} \\ \textbf{I}^- < \textbf{Br}^- < \textbf{S}^2 - < \textbf{SCN}^- < \textbf{Cl}^- < \textbf{NO}_3 - < \textbf{F}^- < \textbf{C}_2 \textbf{O}_4^2 - < \\ \textbf{H}_2 \textbf{O} < \textbf{NCS}^- < \textbf{CH}_3 \textbf{CN} < \textbf{NH}_3 < \textbf{en} < \textbf{bipy} < \textbf{phen} < \textbf{NO}_2^- \\ < \textbf{PPh}_3 < \textbf{CN}^- < \textbf{CO} \\ \textbf{Strong Field} \\ \end{array}$

- In Octahedral field, configuration is: $t_{2g}^{x} e_{g}^{y}$
- Net energy of the configuration relative to the average energy of the orbitals is:

=
$$(-0.4x + 0.6y)\Delta_0$$

 $\Delta_0 = 10 \text{ Dq}$

$$d^1 \qquad \stackrel{---e_g}{+---t_{2g}}$$

When the 4^{th} electron is assigned it will either go into the higher energy e_g orbital at an energy cost of Δ_o or be paired at an energy cost of \mathbf{P} , the pairing energy.

 d^4 Weak field = High spin (4 unpaired) $P < \Delta_{c}$ $P > \Delta_c$

Strong field =
Low spin
(2 unpaired)

 $[Mn(H_2O)_6]^{3+}$

Weak Field Complex

the total spin (S) is $4 \times \frac{1}{2} = 2$

High Spin Complex

Weak field d^4

[Mn(CN)₆]³⁻ **Strong field Complex**

total spin (S) is $2 \times \frac{1}{2} = 1$ **Low Spin Complex**

Strong field d^4

Placing electrons in d orbitals

What is the CFSE of $[Fe(CN)_6]^{3-?}$

C.N. =
$$6 : O_h$$
 Fe(III) : d^5

CFSE =
$$5 \times -0.4 \Delta_{oct} + 2P = -2.0 \Delta_{oct} + 2P$$

If the CFSE of $[Co(H_2O)_6]^{2+}$ is -0.8 Δ_o , what spin state is it in?

CFSE = (6 x - 0.4
$$\Delta_{\text{oct}}$$
)
+ (0.6 Δ_{oct}) + P= - 1.8 Δ_{oct} + P

d^n	High-spin = weak field		Low-spin = strong field	
	Electronic configuration	CFSE	Electronic configuration	CFSE
d^1	$t_{2g}^{1}e_{g}^{0}$	$-0.4\Delta_{\rm oct}$		
d^2	$t_{2g}^{2}e_{g}^{0}$	$-0.8\Delta_{\mathrm{oct}}$		
d^3	$t_{2g}^{3}e_{g}^{0}$	$-1.2\Delta_{\mathrm{oct}}$		
d^4	$t_{2g}^{3}e_{g}^{1}$	$-0.6\Delta_{\mathrm{oct}}$	$t_{2g}^{4}e_{g}^{0}$	$-1.6\Delta_{\mathrm{oct}} + P$
d^5	$t_{2g}^{3}e_{g}^{2}$	0	$t_{2g}^{5}e_{g}^{0}$	$-2.0\Delta_{\rm oct} + 2P$
d^6	$t_{2g}^{4}e_{g}^{2}$	$-0.4\Delta_{\rm oct}$	$t_{2g}^{6}e_{g}^{0}$	$-2.4\Delta_{\rm oct} + 2P$
d^7	$t_{2g}^{5}e_{g}^{2}$	$-0.8\Delta_{\rm oct}$	$t_{2g}^{6}e_g^{1}$	$-1.8\Delta_{\mathrm{oct}} + P$
d^8	$t_{2g}^{6}e_{g}^{2}$	$-1.2\Delta_{\rm oct}$		
d^9	$t_{2g}^{6}e_{g}^{3}$	$-0.6\Delta_{\mathrm{oct}}$		
d^{10}	$t_{2g}^{6}e_{g}^{4}$	0		