НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Дисциплина: «Теория вероятностей и математическая статистика»

Домашнее задание 3 Вариант 15

Выполнила: Карнаухова Алена, студентка группы 172

Преподаватель: Горяинова Е.Р., доцент департамента матматики факультета экономических наук

Задача 1.

Случчайная величина (ξ,η) распределена по нормальному закону с мат. ожиданием (μ_1,μ_2) и ковариационной матрицей $\sum = \begin{pmatrix} \sigma_\xi^2 & cov(\xi;\eta) \\ cov(\eta;\xi) & \sigma_\eta^2 \end{pmatrix}$. Найти: $P\{\eta>2\xi\}$ при $(\mu_1,\mu_2)=(2;7), \sum = \begin{pmatrix} 4 & -1 \\ -1 & 16 \end{pmatrix}$.

$$P\{\eta > 2\xi\} = P\{2\xi - \eta < 0\} = ?$$

Случайная величина $(2\xi - \eta)$ распределена нормально, так как является алгебраической суммой случайных величин, распределенных нормально.

$$E(2\xi - \eta) = 2E\xi - E\eta = 2 \cdot 2 - 7 = -3;$$

$$D(2\xi - \eta) = 4D\xi + D\eta + 2cov(2\xi, -\eta) = 4D\xi + D\eta - 4cov(\xi, \eta) = 4 \cdot 4 + 16 - 4 \cdot (-1) = 36;$$

Откуда:

$$(2\xi - \eta) \sim N(-3, 6^2).$$

$$P\{2\xi - \eta < 0\} = \Phi(\frac{0 - (-3)}{6}) = \Phi(\frac{1}{2}) = 0, 5 + \Phi_0(\frac{1}{2}) = 0, 5 + 0, 1915 = 0,6915.$$

Ответ: 0,6915;

Задача 2.

- 1)построите вариационный ряд выборки;
- 2) пользуясь формулой Стерджесса, определите количество интервалов разбиения выборки;
- постройте таблицу статистического ряда, в первой строке которой указаны интервалы разбиения, а во второй-частоты попадания элементов выборки в соответствующие интервалы;
- 4) постройте гистограмму;
- 5) найдите реализации точечных оценок математического ожидания и дисперсии;
- на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения наблюдаемой случайной величины.

Процентное содержание лавсанового волокна в хлопко-лавсановой пряже (данные чулочно-носочной фабрики им. В.Н.Ногина), %

13,39	13,43	13,54	13,64	13,40	13,55	13,40	13,26	13,42	13,50
13,32	13,31	13,28	13,52	13,46	13,63	13,38	13,44	13,52	13,53
13,37	13,33	13,24	13,13	13,53	13,53	13,39	13,57	13,51	13,34
13,39	13,47	13,51	13,48	13,62	13,58	13,57	13,33	13,51	13,40
13,30	13,48	13,40	13,57	13,51	13,40	13,52	13,56	13,40	13,34
13,23	13,37	13,48	13,48	13,62	13,35	13,40	13,36	13,45	13,48
13,29	13,58	13,44	13,56	13,38	13,20	13,54	13,62	13,46	13,47
13,59	13,29	13,43	13,30	13,56	13,51	13,47	13,40	13,29	13,20
13,46	13,44	13,42	13,29	13,41	13,39	13,50	13,48	13,53	13,34
13,45	13,42	13,29	13,38	13,45	13,50	13,56	13,33	13,32	13,69
13,46	13,32	13,48	13,29						

1. Вариационный ряд:

13.13, 13.20, 13.20, 13.23, 13.24, 13.26, 13.28, 13.29, 13.29, 13.29, 13.29, 13.29, 13.29, 13.30, 13.30, 13.31, 13.32, 13.32, 13.32, 13.33, 13.33, 13.33, 13.34, 13.34, 13.34, 13.35, 13.36, 13.37, 13.38, 13.38, 13.38, 13.39, 13.39, 13.39, 13.39, 13.40, 13.40, 13.40, 13.40, 13.40, 13.40, 13.42, 13.42, 13.42, 13.43, 13.43, 13.44, 13.44, 13.44, 13.45, 13.45, 13.46, 13.46, 13.46, 13.46, 13.47, 13.47, 13.47, 13.48, 13.48, 13.48, 13.48, 13.48, 13.48, 13.50, 13.50, 13.50, 13.51, 13.51, 13.51, 13.51, 13.51, 13.52, 13.52, 13.52, 13.53, 13.53, 13.53, 13.54, 13.54, 13.55, 13.56, 13.56, 13.56, 13.56, 13.57, 13.57, 13.57, 13.58, 13.58, 13.59, 13.62, 13.62, 13.62, 13.63, 13.64, 13.69.

2. Количество интервалов разбиения выборки по формуле Стерджесса:

$$n = 1 + 3,322 \cdot lgN$$

где N - это размер выборки.

$$n = 1 + 3,322 \cdot [log_{10}104] = 7$$

3. Таблица сатистического ряда

13	3,13 - 13,20	13,21 - 13,28	13,29 - 13,36	13,37 - 13,44	13,45 - 13,52	13,53 - 13,60	13,61 - 13,69
	3	10	16	27	29	13	6

4. Гистограмма частот.

Гистограмма частот

5. Реализации точечных оценок мат. ожидания и деспирсии.

Мат. ождидание:

$$E = \frac{1}{n} \sum_{i=1}^{n} x_i = 13,435.$$

Дисперсия:

$$D = \frac{1}{n} \sum_{i=1}^{n} (E - x_i)^2 = 0,1097.$$

6. По виду гистограммы можно сделать предположение о том, что

случайная величина распределена нормально.