Laboratorio Lenguajes formales y de programación Sección B

GUÍA GLC A AUTÓMATA DE PILA AUX: DANILO URÍAS COC

Autómata de pila a partir de una gramática libre del contexto

Teorema 2.2

Para cada gramática independiente del contexto, existe un autómata de pila M tal que L(G)=L(M).

Dada una gramática Gindependiente del contexto es posible construir un autómata de pila M de la manera siguiente:

- 1. <u>Designe el alfabeto del autómata M</u> como los <u>símbolos terminales de G</u>, y los <u>símbolos</u> <u>de pila de M</u> como los <u>símbolos terminales y no terminales de G</u>, junto con el símbolo especial #.
- 2. Designe los estados del autómata **M** como **i,p,q,f** donde **i** es el estado inicial y **f** es el único estado de aceptación.
- 3. Introduzca la **transición (i, λ, λ;p,#)**
- 4. Introduzca la transición (p, λ, λ;q,S) donde <u>S es el símbolo inicial de G.</u>
- Introduzca una transición de la forma (q,λ,N;q,w) para cada regla de reescritura N→w en G.
- 6. Introduzca una transición de la forma (q, x, x; q, λ) para cada terminal de x de G (es decir, para cada símbolo del alfabeto de M).
- 7. Introduzca la transición $(q, \lambda, \#; f, \lambda)$

```
Sea la gramática G:

S→ A

A→ aAa

| B

B→ bBb

| C

C→ zC

| z
```

Paso 1

Designe el alfabeto del autómata **M** como los símbolos terminales de **G**, y los símbolos de pila de **M** como los símbolos terminales y no terminales de **G**, junto con el símbolo especial **#**.

Paso 1

Designe el alfabeto del autómata **M** como los símbolos terminales de **G**, y los símbolos de pila de **M** como los símbolos terminales y no terminales de **G**, junto con el símbolo especial **#**.

Alfabeto de M: {a,b,z}

Símbolos de pila de M: {a,b,z,S,A,B,C,#}

Paso 2

Designe los estados del autómata M como i,p,q,f donde i es el estado inicial y f es el único estado de aceptación.

Alfabeto de M: {a,b,z}

Paso 3

Introduzca la transición (i, λ, λ;p,#)

Alfabeto de M: {a,b,z}

Paso 4

Introduzca la transición $(p, \lambda, \lambda; q, S)$ donde S es el símbolo inicial de G.

Sea la gramática G: S→ A A→ aAa | B B→ bBb | C C→ zC | z

Alfabeto de M: {a,b,z}

Paso 5

Introduzca una transición de la forma $(q, \lambda, N; q, w)$ para cada regla de reescritura $N \rightarrow w$ en G.

Sea la gramática G:

 $S \rightarrow A$

 $A \rightarrow aAa$

| B

 $B \rightarrow bBb$

|C|

 $C \! \to \ zC$

Alfabeto de M: {a,b,z}

Paso 6

Introduzca una transición de la forma (q, x, x; q, λ) para cada terminal de x de G (es decir, para cada símbolo del alfabeto de M).

Sea la gramática G:

 $S \rightarrow A$

 $A \rightarrow aAa$

| B

 $B \rightarrow bBb$

|C|

 $C \rightarrow zC$

Alfabeto de M: {a,b,z}

Paso 7

Introduzca la transición (q, λ ,#;f, λ)

Sea la gramática G:

 $S \rightarrow A$

 $A \rightarrow aAa$

| B

 $B \rightarrow bBb$

IC

 $C \rightarrow zC$

Alfabeto de M: {a,b,z}

Autómata equivalente final:

Sea la gramática G:

 $S \rightarrow A$

 $A \rightarrow aAa$

| B

 $B \rightarrow bBb$

| C

 $C \rightarrow zC$

| Z

Reconociendo una cadena

Pila	Entrada	Transiciones
	abzba	$(i, \lambda, \lambda; p, \#)$
#	a bzba	$(p, \lambda, \lambda; q, S)$
S#	a bzba	$(q, \lambda, S; q, A)$
A#	a bzba	(q, λ <mark>,Α</mark> ;q <mark>,aAa</mark>)
aAa#	a bzba	$(q,a,a;q,\lambda)$
Aa#	a <mark>b</mark> zba	$(q,\lambda,A;q,B)$
Ba#	a <mark>b</mark> zba	$(q,\lambda,B;q,bBb)$
bBba#	a <mark>b</mark> zba	$(q, b, b; q, \lambda)$
Bba#	abzba	$(q, \lambda, B; q, C)$
Cba#	abzba	$(q, \lambda, C; q, z)$
zba#	abzba	$(q, z,z;q, \lambda)$
ba#	abz <mark>b</mark> a	$(q, b,b;q, \lambda)$
a#	abzba	$(q, a, a; q, \lambda)$
#	Abzba	$(q, \lambda, \#; f, \lambda)$
λ	Λ	f

Alfabeto de M: {a,b,z} Símbolos de pila de M: {a,b,z,S,A,B,C,#}

Gracias por su atención