```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
training = pd.read_csv('/content/drive/MyDrive/train.csv')
test = pd.read_csv('/content/drive/MyDrive/test(1).csv')
training['train test'] = 1
test['train_test'] = 0
test['Survived'] = np.NaN
all_data = pd.concat([training,test])
all_data = pd.concat([training,test])
all_data.columns
dtype='object')
training.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 13 columns):
 # Column Non-Null Count Dtype
---
                -----
                              int64
     PassengerId 891 non-null
 0
 1
   Survived 891 non-null int64
   Pclass 891 non-null int64
Name 891 non-null object
Sex 891 non-null object
 2
 3
 4
 5 Age
               714 non-null float64
   SibSp
               891 non-null int64
 6
 7
   Parch
               891 non-null int64
               891 non-null object
891 non-null float64
 8
   Ticket
 9 Fare
               204 non-null object
 10 Cabin
 11 Embarked
               889 non-null object
 12 train_test 891 non-null
                               int64
dtypes: float64(2), int64(6), object(5)
memory usage: 90.6+ KB
```

training.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	train_test
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	891.0
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	1.0
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	0.0
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	1.0
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	1.0
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	1.0
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	1.0
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	1.0

```
df_num = training[['Age','SibSp','Parch','Fare']]
df_cat = training[['Survived','Pclass','Sex','Ticket','Cabin','Embarked']]
```

```
for i in df_num.columns:
  plt.hist(df_num[i])
  plt.title(i)
  plt.show()
```


[] sns.heatmap(df_num.corr())


```
pd.pivot_table (training, index = 'Survived', values = ['Age','SibSp','Parch','Fare'])
                            Fare
                                     Parch
                                               SibSp
                 Age
 Survived
     0
           30.626179 22.117887 0.329690 0.553734
     1
           28.343690 48.395408 0.464912 0.473684
print(pd.pivot_table(training, index = 'Survived', columns = 'Pclass',values = 'Ticket' ,aggfunc ='count'))
print()
print(pd.pivot_table(training, index = 'Survived', columns = 'Sex',values = 'Ticket' ,aggfunc ='count'))
print(pd.pivot_table(training, index = 'Survived', columns = 'Embarked', values = 'Ticket' ,aggfunc ='count'))
Pclass
          1 2
Survived
0
         80 97 372
        136 87 119
        female male
Sex
Survived
            81
                 468
           233
                109
1
Embarked
        C Q
Survived
        75 47 427
        93 30 217
df cat.Cabin
training['cabin_multiple'] = training.Cabin.apply(lambda x: 0 if pd.isna(x)
else len(x.split(' ')))
training['cabin_multiple'].value_counts()
0
      687
1
      180
       16
2
3
        6
        2
Name: cabin_multiple, dtype: int64
pd.pivot_table(training, index = 'Survived', columns = 'cabin_multiple', values = 'Ticket' ,aggfunc = 'count')
 cabin multiple
                        1
                            2
      Survived
               481.0 58.0 7.0 3.0 NaN
       1
               206.0 122.0 9.0 3.0 2.0
```

```
training ['cabin_adv'] =training.Cabin.apply(lambda x: str(x)[0])
print(training.cabin_adv.value_counts())
pd.pivot_table(training,index='Survived',columns='cabin_adv', values = 'Name', aggfunc='count')
    687
n
C
     59
     47
В
     33
Ε
     32
Α
     15
F
     13
G
     4
Name: cabin_adv, dtype: int64
              B C D
                             E F G T
cabin_adv A
 Survived
    0
        8.0 12.0 24.0 8.0 8.0 5.0 2.0 1.0 481.0
          7.0 35.0 35.0 25.0 24.0 8.0 2.0 NaN 206.0
```

Master 7 Dr Rev 6 Mlle 2 Major 2 Col 2 the Countess 1 Capt 1 Ms 1 Sir 1 Lady 1 Mme 1 Don 1 Jonkheer 1

Name: name_title, dtype: int64