import Data.List (sort)
import Data.Char (toLower)

Carlos Encarnación encarnacion.carlos@gmail.com

November 7, 2014

Lecture 2: Numbers and lists

Numbers

2 Lists

Built-in number types

```
Haskell has the following number types
         Int limited-precision integers
     Integer arbitrary-precision integers
```

Float single-precision floating-point numbers

Double double-precision floating-point numbers

Complex complex numbers

Declaration

The prelude define the type class Num as follows

class
$$(Eq \ a, Show \ a) \Rightarrow Num \ a \ where$$

 $(+), (-), (*) :: a \rightarrow a \rightarrow a$
 $negate \qquad :: a \rightarrow a$
 $abs, signum \qquad :: a \rightarrow a$
 $fromInteger \qquad :: Integer \rightarrow a$

Notice that according to the declaration of Num we have that

- Any two numbers can be compared for equality.
- Any number can be printed.
- Any number can be added to, substracted from or multiplied by another number.
- 4 Any number can be negated.

Other numeric type classes

The type class Real

class (Num a, Ord a) \Rightarrow Real a where toRational :: a \rightarrow Rational

The type class Fractional

class (Num a) \Rightarrow Fractional a where (/) :: $a \rightarrow a \rightarrow a$ fromRational :: Rational $\rightarrow a$

Other numeric type classes

The type class integral

class (Real a, Enum a) \Rightarrow Integral a where $divMod :: a \rightarrow a \rightarrow (a, a)$ $toInteger :: a \rightarrow Integer$

Problem

Write a function *floor* that given a *Float* number x compute the largest integer n not exceeding x, or

$$n \le x < n + 1$$

Hence, the type of *floor* is as follows

$$floor :: Float \rightarrow Integer$$

For example

floor
$$3.14 = 3$$

and

floor
$$(-3.14) = -4$$

Loop

Consider the following function

$$\begin{array}{ll} \textit{until} & :: (\textit{a} \rightarrow \textit{Bool}) \rightarrow (\textit{a} \rightarrow \textit{a}) \rightarrow \textit{a} \rightarrow \textit{a} \\ \textit{until p f x} \mid \textit{p x} & = x \\ \mid \textit{otherwise} = \textit{until p f (f x)} \end{array}$$

The function *until* returns the first element of the list

$$[x, f x, f (f x), \dots]$$

such that p y = True

Solution 1

```
floor' :: Float \rightarrow Integer

floor' x \mid x \geqslant 0 = until (x'lt') (+1) 0 - 1

| otherwise = until ('leq'x) ('subtract'1) 0

where subtract x \mid y = x - y

It x \mid y = x < fromInteger y
```

 $leq x y = fromInteger x \leq y$

Solution 2

```
floor'' :: Float \rightarrow Integer
floor'' x = fst (until unit (shrink x) (bound x))
  where unit (m, n) = (m + 1) \equiv n
```

Solution 2: defining shrink

```
type Interval = (Integer, Integer)

shrink :: Float \rightarrow Interval \rightarrow Interval

shrink \times (m, n) = \mathbf{if} \ p \ 'leq' \times \mathbf{then} \ (p, n) \ \mathbf{else} \ (m, p)

where p = choose \ (m, n)
```

Solution 2: defining choose

choose :: Interval
$$\rightarrow$$
 Integer choose $(m, n) = (m + n)$ 'div' 2

Solution 2: Proof

Proof that (m + n) 'div' 2 implies m + 1 < n

```
m < (m+n) 'div' 2 < n

= { ordering on integers }

m+1 \le (m+n) 'div' 2 < n

= { (m+n) 'div' 2 = \lfloor (m+n)/2 \rfloor }

m+1 \le (m+n)/2 < n

= { algebra }

m+2 < n \land m < n

= { algebra }

m+1 < n
```

Solution 2: defining bound

```
bound :: Float \rightarrow Interval
bound x = (lower \ x, upper \ x)
lower :: Float \rightarrow Integer
lower x = until ('leq'x) (2*) (-1)
upper :: Float \rightarrow Integer
upper x = until (x'lt') (2*) 1
```

Declaration

$$data Nat = Zero \mid Succ Nat$$

Nat could be an instance of Eq

instance Eq Nat where

```
Zero \equiv Zero = True

Zero \equiv Succ \_ = False

Succ \_ \equiv Zero = False

Succ m \equiv Succ n = m \equiv n
```

Nat could be an instance of Show

```
instance Show Nat where
  show Zero = "Zero"
  show (Succ Zero) = "Succ Zero"
  show (Succ (Succ n)) = "Succ (" ++ show (Succ n) ++ ")"
```

Deriving instances

Nat could be an instance of Num

instance Num Nat where

```
m + Zero = m
m + Succ n = Succ (m + n)
m * Zero = Zero
m * (Succ n) = m * n + m
abs n
     = n
signum Zero = Zero
signum (Succ n) = Succ Zero
m - Zero = m
Zero - Succ n = Zero
Succ m - Succ n = m - n
from Integer x \mid x \leq 0 = Zero
           | otherwise = Succ (fromInteger (x-1))
```

General remarks

- The type [a] denote a list of elements of type a.
- 2 The empty list is denoted by [].

As examples

The operator cons

List notation, such as [1,2,3], is in fact an abbreviation for a more basic form

The operator (:) :: $a \rightarrow [a] \rightarrow [a]$, pronounced *cons*, is a constructor for lists. Notice that since it associates to the right parentheses are not required.

Lists as a recursive data type

Lists can be introduced as a Haskell recursive data type as follows

data
$$List \ a = Nil \mid Cons \ a \ (List \ a)$$

where we have the following equivalences

$$Nil \equiv []$$

$$List \ a \equiv [a]$$

Kinds of list

Every list of [a] takes one of three forms

- **1** The undefined list $\perp : [a] :: [a]$.
- ② The empty list [] :: [*a*].
- **3** A list of the form x : xs where x :: a and xs :: [a].

As a result there are three kinds of list

- 4 A finite list, which is built from (:) and [].
- A partial list, which is built from (:) and undefined.
- 3 An infinite list, which is built from (:) alone.

Infinite lists

Consider the following function

iterate ::
$$(a \rightarrow a) \rightarrow a \rightarrow [a]$$

iterate $f \times = x$: iterate $f (f \times x)$

$$perfect1 = head (filter perfect [1..])$$

where $perfect = n \equiv sum (divisors n)$

$$until\ p\ f = head \circ filter\ p \circ iterate\ f$$

Notation

When m and n are integers we can write

- **1** [m..n] for the list [m, m+1,...,n]
- 2 [m..] for the infinite list [m, m+1, m+2,...]
- **1** [m, n ... p] for the list [m, m + (n m), m + 2 (n m), ..., p]
- [m, n.] for the infinite list [m, m+(n-m), m+2, (n-m), ...]

Numbers are not special, also we can write

Indeed, any instance of the type class *Enum* can use the notation.

Notation

A list comprehension has the form

$$[e | q_1, ..., q_n]$$

where the q_i qualifiers are either

- generators of the form p ← e where p is a pattern of type t
 and e is an expression of type [t]
- local bindings let expressions
- boolean guards, which are arbitrary expressions of type Bool

List comprehensions

Examples

divisors
$$n = [x \mid x \leftarrow [2 ... n], n \text{ `mod'} x \equiv 0]$$

map, filter and concat in terms of list comprehension

$$map \ f \ xs = [f \ x \mid x \leftarrow xs]$$

filter
$$p xs = [x \mid x \leftarrow xs, p]$$

concat
$$xss = [x \mid xs \leftarrow xss, x \leftarrow xs]$$

Some basic operations

Recursive definition of the function null

```
null :: [a] \rightarrow Bool

null [] = True

null (x:xs) = False
```

Some basic operations

Recursive definition of the function head

head ::
$$[a] \rightarrow a$$

head $(x: _) = x$

Recursive definition the function tail

tail ::
$$[a] \rightarrow [a]$$
 tail $(_: xs) = xs$

Recursive definition the function *last*

```
last :: [a] \rightarrow a
last(x:[]) = x
last(_:xs) = last xs
```

Concatenation

Definition

(#) ::
$$[a] \rightarrow [a]$$

(#) $[] ys = ys$
(#) $(x : xs) ys = x : (xs + ys)$

Numbers 0000000000000000000 Concatenation

Understanding concatenation

Concatenation

Associative

$$xs + (ys + zs) = (xs + ys) + zs$$

concat

```
concat :: [[a]] \rightarrow [a]

concat [] = []

concat (xs : xss) = xs + concat xss
```

map

map
$$:: (a \rightarrow b) \rightarrow [a] \rightarrow [b]$$

map $f[] = []$
map $f(x:xs) = f(x:map) f(xs)$

concat, map and filter

filter in terms of concat and map

```
filter :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]
filter p = concat \circ map test
   where test x = if p then [x] else []
```

$$map \ id = id \\ map \ (g \circ f) = map \ g \circ map \ f$$

Functor type class

class Functor f where $fmap :: (a \rightarrow b) \rightarrow f \ a \rightarrow f \ b$

Tree is an instance of the class functor

```
data Tree a = Tip \ a \mid Fork \ (Tree \ a) \ (Tree \ a)
  deriving (Eq. Ord, Show)
```

instance Functor Tree where

$$fmap \ g \ (Tip \ x) = Tip \ (g \ x)$$

 $fmap \ g \ (Fork \ u \ v) = Fork \ (fmap \ g \ u) \ (fmap \ g \ v)$

map

```
\begin{split} f \circ head &= head \circ map \ f \\ map \ f \circ tail &= tail \circ map \ f \\ map \ f \circ concat &= concat \circ map \ (map \ f) \end{split}
```

concat, map and filter

filter

filter
$$p \circ map \ f = map \ f \circ filter \ (p \circ f)$$

The functions zip and zipWith

zip

$$zip :: [a] \rightarrow [b] \rightarrow [(a,b)]$$

$$zip (x : xs) (y : ys) = (x,y) : zip xs ys$$

$$zip _ = []$$

zipWith

zipWith ::
$$(a \rightarrow b \rightarrow c) \rightarrow [a] \rightarrow [b] \rightarrow [c]$$

zipWith f $(x : xs) (y : ys) = f \times y : zipWith f \times s ys$
zipWith _ _ = []

zip in terms of zipWith

$$zip = zipWith(,)$$

```
nondec :: (Ord \ a) \Rightarrow [a] \rightarrow Bool

nondec [] = True

nondec [x] = True

nondec (x : y : xs) = (x \leqslant y) \land nondec (y : xs)
```

$$nondec'$$
 :: $(Ord\ a) \Rightarrow [a] \rightarrow Bool$
 $nondec'\ xs = and\ (zipWith\ (\leqslant)\ xs\ (tail\ xs))$

and ::
$$[Bool] \rightarrow Bool$$

and $[]$ = True
and $(x : xs) = x \land (and xs)$

position

position ::
$$(Eq \ a) \Rightarrow a \rightarrow [a] \rightarrow Int$$

position $x \ xs = head ([j \mid (j,y) \leftarrow zip \ [0 . .] \ xs, x \equiv y] + [-1])$

Common words

```
type Text = [Char] type Word = [Char]
```

```
commonWords :: Int \rightarrow Text \rightarrow Text commonWords n = concat \circ map showRun \circ take <math>n \circ sortRuns \circ countRuns \circ sortWords \circ words \circ map toLower
```

Which functions we have to define? showRun, sortRuns, countRuns, sortWords

Defining showRun

showRun ::
$$(Int, Word) \rightarrow [Char]$$

showRun $(n, w) = w + ": " + show n + "\n"$

The prelude define the function span with the following type

$$span :: (a \rightarrow Bool) \rightarrow [a] \rightarrow ([a], [a])$$

hence we can define

countRuns ::
$$[Word] \rightarrow [(Int, Word)]$$

countRuns $[]$ = $[]$
countRuns $(w : ws) = (1 + length us, w) : countRuns vs$
where (us, vs) = $span (\equiv w)$ ws

renning sort vvorus

The module *Data.List* define the function *sort* with the following type

sort ::
$$(Ord \ a) \Rightarrow [a] \rightarrow [a]$$

thus we can define

$$sortWords :: [Word] \rightarrow [Word]$$

 $sortWords = sort$

Defining sortRuns

```
How can we define sortRuns?
```

First, recall the type

```
\textit{sortRuns} :: [(\textit{Int}, \textit{Word})] \rightarrow [(\textit{Int}, \textit{Word})]
```

```
sortRuns :: [(Int, Word)] \rightarrow [(Int, Word)]
sortRuns = reverse \circ sort
```

Common words, completed

The end

Yes, we've finished!