

GNSS Positioning Module TAU1111

Datasheet V1.3

Notice, Statement and Copyright

ALLYSTAR Technology offers this document as a service to its customers, to support application and engineering efforts that use the products designed by ALLYSTAR Technology. Products and specifications discussed herein are for reference purposes only. Performance characteristics listed in this document do not constitute a warranty or guarantee of product performance.

ALLYSTAR Technology assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this document, including, but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights.

This document contains proprietary technical information which is the property of ALLYSTAR Technology, copying of this document and giving it to others and using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. ALLYSTAR Technology reserves the right to make changes in its products, specifications and other information at any time without notice.

For more recent documents, please visit www.allystar.com.

Copyright © ALLYSTAR Technology (Shenzhen) Co., Ltd. 2021. All rights reserved.

About the Document

■ Basic info

Document applies to	TAU1111
Document type	Datasheet
Revision and date	V1.3/2021-07
Product status	Mass production

■ Product status description

In development	Objective specification. Revision may be released in later status.			
Engineering sample Product specifications tested on early. Revision may be released in later statu				
Droliminom	Product specifications come from small production. Revision may be released in			
Preliminary	later status.			
Mass production	Final product specification to mass market.			

TABLE OF CONTENT

1	SYSTEM OVERVIEW	7
	 1.1 Overview	
2	PIN DESCRIPTION	10
	2.1 Pin Assignment	
3	ELECTRICAL CHARACTERISTICS	12
	3.1 Absolute Maximum Rating	12 12 12
	3.3 DC Characteristics	13
4	HARDWARE DESCRIPTION	14
	4.1 Connecting Power 4.2 Power on/off Sequence 4.2.1 Initial system power on 4.2.2 Main power supply off/on in application	14 12 15
5	MECHANICAL SPECIFICATION	17
6	REFERENCE DESIGN	18
	6.1 Minimal Design	19
7	REFLOW SOLDERING	
8	PRODUCT PACKAGING AND HANDLING	21
	8.1 Packaging	

	8.1	1.1 Tape and Reel	21
	8.1	1.2 Shipment Packaging	22
	8.2	Storage	23
	8.3	ESD Handling	23
	8.3	3.1 ESD Handling Precautions	23
	8.3		
	8.3	3.3 Moisture Sensitivity Level	23
9	LABEL	ING AND ORDERING INFORMATION	24
	9.1	Labeling	24
	9.2	Ordering info	
10	RELAT	TED DOCUMENTS	25
11	DEVIC	ION HISTORY	25
•	ILVIO	ION THIS TON T	23
List	of tables	s	
	Table 1 TAI	.U1111	7
	Table 2 Spe	ecifications	8
	Table 3 Det	tailed pin descriptions	11
	Table 4 Abs	solute rating	12
	Table 5 PR	RRSTX and PRTRG	12
	Table 6 US	SB signal	12
	Table 7 Oth	hers	13
	Table 8 Op	perating conditions	13
	Table 9 Pov	wer consumption	13
		NT_BIAS current range and antenna status	
	Table 11 De	efault message	16
	Table 12 Di	Dimensions	17
	Table 13 Re	leflow profile features	20
	Table 14 Pa	acking hierarchy	21
		abeling content	
	Table 16 O	Ordering codes	24
List	of figure	es	
	Figure 1 TA	AU1111 module photo	7
	Figure 2 Blo	lock diagram	8
	Figure 3 Pi	in assignment (top view)	10
	Figure 4 Ini	itial system power on sequence	14
	Figure 5 Ma	lain power on sequence	15
	Figure 6 Di	imensions	17
	Figure 7 Mi	linimal application diagram	18
	Figure 8 PC	CB Footprint Reference	19

Figure 9 Reflow soldering profile (Refer to IPC/JEDEC J-STD-020E)	. 20
Figure 10 Tape dimensions	. 21
Figure 11 Reel dimensions	. 22
Figure 12 Packaging	. 22

1 SYSTEM OVERVIEW

1.1 Overview

TAU1111 is a GNSS positioning module, which is based on the state of the art CYNOSURE III architecture. It supports GPS, BeiDou, GLONASS, Galileo, and QZSS. TAU1111 integrates efficient power management architecture, while providing high sensitivity and low power GNSS solutions which make it suitable for navigation applications on automotive and consumer electronics, as well as fleet management.

1.2 Features

- Concurrent reception of 5 systems (GPS, BDS, GLONASS, Galileo, and QZSS) to maximize satellites visibility in L1 band
- Provides greater accuracy with more available measurements
- High sensitivity design and low power management
- Smart jammer detection and suppression
- Highly integrated SMD module with cost-effective antenna (L1 only) design

Table 1 TAU1111

			GI	NSS				F	eatui	res			Inte	rface	•	A	ccura	су		Grad	е
Product	Band (S/D/T)	GPS	BDS	GLONASS	Galileo	IRNSS	Built-in LNA	Programmable (flash)	Data logging	D-GNSS	Oscillator	UART	I2C	USB	SPI	Meter	Sub-meter	Centimeter	Standard	Professional	Automotive
TAU1111-1216A00	S	•	•	•	•		•	•	•	•	Т	•	0	0	0	•			•		

T= TCXO

o=Supported upon request with special FW

1.3 Module Photo

Figure 1 TAU1111 module photo

1.4 Block Diagram

Figure 2 Block diagram

1.5 Specifications

Table 2 Specifications

Parameter		Specification			
GNSS tracking channels	40				
	GPS/QZSS: L1C/A				
CNICC recention	BDS: B1I				
GNSS reception	GLONASS: L10F				
	Galileo: E1				
Update rate	10Hz Maximum				
Position accuracy [1]	GNSS	2.5m CEP			
Valacity 9 Time accuracy	GNSS	0.1m/s CEP			
Velocity & Time accuracy	1PPS	20ns			
Time a to First Fig/TTFF	Hot start	1 sec			
Time to First Fix(TTFF)	Cold start	28 secs			
	Cold start	-148dBm			
Consitivity	Hot start	-155dBm			
Sensitivity	Reacquisition	-158dBm			
	Tracking & navigation	-162dBm			
Operating limit	Velocity	515 m/s			
Operating limit	Altitude 18,000 m				
Safety supervision	Antenna open circuit detec	ction and short circuit protection			

Parameter		Specification				
	UART	1				
	I2C ^[2]	1				
Serial interface	USB ^[2]	1				
	SPI ^[2]	1				
	CAN ^[2]	1				
	NMEA 0183 Protocol Ver.	4.00/4.10				
Protocol	RTCM 3.0/3.2/2.3/2.4x ^[3]					
	Cynosure GNSS Receiver Protocol					
	Main voltage	2.0~ 3.6V				
Operating condition	Digital I/O voltage	1.8 ~ 3.6V				
	Backup voltage	1.8 ~ 3.6V				
	GPS+QZSS	25mA@3.3V				
Power consumption	GNSS	35mA@3.3V				
	Standby	12uA				
Operating temperature	-40 °C ~ +85 °C					
Storage temperature	-40 °C ~ +85 °C					
Package	12.2mm x 16.0mm x 2.4m	12.2mm x 16.0mm x 2.4mm 24-pin stamp hole				
Certification	RoHS & REACH					

^{* [1]} Open sky, demonstrated with a good external LNA

^{* [2]} Supported upon request with special FW.

^{* [3]} RTCM 2.3/2.4x are supported upon request with special FW.

2 PIN DESCRIPTION

2.1 Pin Assignment

13	GND	GND	12
14	INT0	RF_IN	11
15	FWD/SPICK	GND	10
16	SPIDO/CAN_TX	ANT_BIAS	9
17	SPIDI/CAN_RX	PRRSTX	8
	TAU1111		
18	I2C_SDA	AVDUSB	7
19	I2C_SCL	USB_DP	6
20	UOUT0	USB_DN	5
21	UIN0	SPEED_CAR	4
22	AVDD_BAK	PPS	3
23	VDD	PRTRG	2
24	GND	SPICX	1*

^{*} Pin 1 aligns to the circular hole on module cover.

Figure 3 Pin assignment (top view)

2.2 Detailed Pin Descriptions

Table 3 Detailed pin descriptions

Function	Symbol	No.	1/0	Description
	VDD	23	Power	Main supply input.
Power	GND	10, 12, 13, 24	VSS	Ground
Powei	AVDD_BAK	22	Power	Backup supply input.
	AVDUSB	7	Power	USB power input. To use the USB interface, connect this pin to 3.0-3.6V.
Antonno	RF_IN	11	I	RF signal input. Use a controlled impedance of 50Ω for the routing from RF_IN pin to the antenna or the antenna connector.
Antenna	ANT_BIAS	9	0	RF section output voltage. Used to power the external active antenna. The current is limited below 35mA.
LIADT	UOUT0	20	0	UARTO serial data output.
UARI	UIN0	21	I	UARTO serial data input.
USB_DN		5	1/0	USB I/O line. USB bidirectional communication pin.
036.	USB_DP	6	I/O	Leave it floating if not used.
	SPICX	1	0	SPI chip select. Leave it floating if not used.
	FWD/SPICK	15	0	SPI clock. Leave it floating if not used.
SPI ^[1]	SPIDO/CAN_TX	16	0	SPI data or CAN data output. Leave it floating if not used.
	SPIDI/CAN_RX	17	I	SPI data or CAN data input. Leave it floating if not used.
10.0[1]	I2C_SDA	18	1/0	I ² C data.
12C ¹¹	I2C_SCL	19	1/0	I ² C clock.
	PRTRG	2	I	Mode selection, or the trigger input in deep sleep mode to wake up the system
	PRRSTX	8	I	External reset, low level active
Ought	PPS	3	0	Time pulse output (PPS)
System	SPEED_CAR ^[1]	4	I	Speed pulse. Leave it floating if not used. Default GPIO.
UART USB ^[1] SPI ^[1] System	INT0	14	I	External interrupt input. Leave it floating if not used. Default GPIO.

^{* [1]} Supported upon request with special FW.

3 ELECTRICAL CHARACTERISTICS

3.1 Absolute Maximum Rating

Table 4 Absolute rating

Symbol	Parameter	Min.	Max.	Unit
VDD	Power input for the main power domain	-0.5	3.63	V
AVDD_BAK	Power input for the backup power domain	-0.5	3.63	V
AVDUSB	USB supply voltage	-0.5	3.63	V
VI _{max}	Voltage input of I/O pin	-0.5	3.63	V
T _{storage}	Storage temperature	-40	85	°C
T _{solder}	Solder reflow temperature		260	°C
ESD sensitivity	НВМ	-	2000	V

3.2 IO Characteristics

3.2.1 PRRSTX and PRTRG

Table 5 PRRSTX and PRTRG

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{IZ}	Input leakage current				+/-1	uA
V _{IH}	Input high voltage		AVDD_BAK*0. 7		AVDD_BAK	V
V _{IL}	Input low voltage		0		AVDD_BAK*0.3	V
Ci	Input capacitance				10	pF
R _{PU}	Pull-up resistance		18		84	ΚΩ

3.2.2 USB I/O

Table 6 USB signal

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{IZ}	Input leakage current				+/-10	uA
V _{IH}	Input high voltage		AVDUSB*0.9		AVDUSB	V
V _{IL}	Input low voltage		0		AVDUSB*0.1	V
V _{OH}	Output high voltage	I _{OH} =10 mA, AVDUSB=3.3V	2.35			V
V _{OL}	Output low voltage	I _{OL} =10 mA, AVDUSB=3.3V	-		0.5	V
R _{PUIDEL}	Pull-up resistance, idle state	-	0.9		1.575	kΩ
R _{PUACTIVE}	Pull-up resistance, active state		1.425		3.09	kΩ

3.2.3 Others

Table 7 Others

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{IZ}	Input leakage current				+/-1	uA
V _{IH}	Input high voltage		VDD*0.7		VDD	V
V _{IL}	Input low voltage		0		VDD*0.3	٧
V _{OH}	Output high voltage	I _{OH} =11.9 mA, VDD=3.3V	2.64		-	٧
V_{OL}	Output low voltage	I _{OL} =7.9 mA, VDD=3.3V			0.4	V
Ci	Input capacitance				11	pF
R _{PU}	Pull-up resistance		35		84	ΚΩ

3.3 DC Characteristics

3.3.1 Operating Conditions

Table 8 Operating conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Power input for the main power domain	2.0	3.3	3.6	V
AVDD_BAK	Power input for the backup power domain	1.8	3.3	3.6	V
AVDUSB	USB supply voltage	3.0	3.3	3.6	٧
I _{ANT_BIAS}	ANT_BIAS output current	-	-	35	mA
V _{ANT_BIAS}	ANT_BIAS output voltage	-	VDD-0.2	-	٧
ICC _{max}	Maximum operating current @ VDD		-	200	mA
T _{env}	T _{env} Operating temperature		-	85	°C

3.3.2 Power Consumption

Table 9 Power consumption

Symbol	Parameter	Measure Pin	Тур.	Unit
I _{CCRX1}	Average tracking current (GPS+QZSS)	VDD [1]	25	mA
I _{CCRX2}	Average tracking current (GNSS)	VDD [1]	35	mA
Іссовм	Standby mode	AVDD_BAK [2]	12	uA

^{* [1]} Condition: VDD=3.3V@Room Temperature; All Pins Open.

^{* [2]} Condition: AVDD_BAK=3.3V@Room Temperature; All Pins Open.

4 HARDWARE DESCRIPTION

4.1 Connecting Power

TAU1111 has two power supply pins: VDD and AVDD_BAK. The main power is supplied through the VDD pin, and the backup power is supplied through the AVDD_BAK pin. In order to ensure the positioning performance, please control the ripple of the module power supply less than 50m Vpp. It is recommended to use the LDO above 200mA current.

If the power for VDD pin is off, the real-time clock (RTC) and battery backed RAM (BBR) are supplied through the AVDD_BAK pin. Thus, orbit information and time can be maintained and will allow a Hot or Warm start. If no backup battery is connected, the module will perform a cold start at every power-up if no aiding data are sent to the module.

Note: If no backup supply is available, connect AVDD_BAK pin to VDD or leave it floating.

4.2 Power on/off Sequence

TAU1111 has two independent power domains (backup and main domain). In data backup mode, main power supply can be completely shut down for further power reduction for ultra-low power application.

4.2.1 Initial system power on

When both backup and main supply power on from their off state, external reset (PRRSTX) must be active and hold more than 5ms after both backup supply and main supply reach the minimum operating voltage. Initial system power on sequence is illustrated in Figure 4.

Figure 4 Initial system power on sequence

4.2.2 Main power supply off/on in application

If application intends to shut down main power supply (VDD) while keep backup power supply (AVDD_BAK) alive to save backup data, the following rules should be applied:

External reset (PRRSTX) must be active when main power supply is under power off. In this case, external reset must be hold active more than 5ms after main power supply resumes to minimum operating voltage. Main power on sequence in application is illustrated in Figure 5.

Figure 5 Main power on sequence

4.3 Antenna Design

There is built-in LNA and SAW in the GNSS module. It is recommended to use an active antenna with gain less than 36dB and the noise figure less than 1.5dB.

The module has built-in short circuit detection and open circuit detection functions, which can detect the status of normal connection and send out antenna status prompt message in NMEA data.

- Short circuit protection
 - » The module includes internal short circuit antenna detection. Once an overcurrent is detected at the ANT_BIAS port, the module will restrict current output automatically to protect from damages.
- Open circuit detection
 - The module can detect an open circuit in the antenna. Users can judge it from antenna status messages.

Table 10 ANT_BIAS current range and antenna status

Antenna status	Status output	ANT_BIAS current range
Open circuit	OPEN	0< ANT_BIAS ≤ 1mA
Regular circuit or open circuit	OK or OPEN	1mA< ANT_BIAS ≤ 2mA
Regular circuit	OK	2mA< ANT_BIAS ≤ 40±5mA ^[1]
Short circuit	SHORT	40±5mA ^[1] < ANT_BIAS < 55mA

^{* [1] ±5}mA are differences between product batches.

TIPs:

- 1. Pulse width of the minimum detectable overshoot current should be more than 10uS.
- 2. NMEA message of antenna status output:
- OPEN: \$GNTXT,01,01,01,**ANT_OPEN***40
- OK: \$GNTXT,01,01,01,ANT_OK*50
- SHORT: \$GNTXT,01,01,01,ANT_SHORT*06

4.4 Reset and Mode Control

The operation mode of GNSS module is controlled by PRRSTX (nRESET) and PRTRG (BOOT) pin. While the module works in normal operation, leave PRRSTX and PRTRG pins floating if there is no upgrading or reset demands, or others.

- Keep PRTRG pin floating during system power-up or the external reset (PRRSTX from low to high), and the module will enter User Normal Mode.
- When the module powers up or PRRSTX from low to high, the module will execute an external
 reset. (If the power for AVDD_BAK is always on, the external reset will not affect the ephemeris
 data in the backup domain)
- Drive PRTRG pin to low or connect PRTRG to GND directly (not by pull-down resistance) during
 system power-up or the external reset (PRRSTX from low to high), and the system enters
 BootROM Command Mode at PRTRG pin being released from low to floating state, and ready for
 firmware upgrading command.
- When connecting PRRSTX and PRTRG to any host IO, DO NOT use the pull-up or pull-down resistance.

4.5 Default Serial Interfaces

Table 11 Default message

Interface	Settings
	115200 baud, 8 data bits, no parity bit, 1 stop bit
LIADT output	Configured to transmit both NMEA and HD Binary protocols, but only the following
UART output	NMEA (and no HD Binary sentence) messages have been activated at start-up:
	GGA, GSA, GSV, RMC, ZDA, TXT-ANT
	115200 baud, 8 data bits, no parity bit, 1 stop bit, autobauding disabled
LIADT input	Automatically accepts following protocols without need of explicit configuration:
UART input	HD binary sentence, NMEA, RTCM
	The GNSS receiver supports interleaved HD binary and NMEA messages.
Timepluse	1 pulse per accord synchronized at riging edge pulse length 100mg
(1Hz Nav)	1 pulse per second, synchronized at rising edge, pulse length 100ms

^{*} Refer to GNSS_Protocol_Specification for information about other settings.

When the module is applied to the specific application, users can shut off the main power in order to further reduce the power consumption. To avoid the high level in serial interface influencing the normal operation, it is highly suggested to cut off the serial port when shut off the main power.

Otherwise, please set the serial port to input mode or high impedance state with pull-down resistor.

5 MECHANICAL SPECIFICATION

Figure 6 Dimensions

Table 12 Dimensions

Symbol	Min.(mm)	Typ.(mm)	Max.(mm)
Α	12.0	12.2	12.4
В	15.8	16.0	16.2
С	2.2	2.4	2.6
D	0.9	1.0	1.3
Е	1.0	1.1	1.2
F	2.9	3.0	3.1
Н		0.8	
K	0.4	0.5	0.6
М	0.8	0.9	1.0
N	0.7	0.8	0.9

6 REFERENCE DESIGN

6.1 Minimal Design

This is a minimal design for a TAU1111 GNSS module. The 82nH inductor is used only when an active antenna is connected, and no need with a passive antenna. The characteristic impedance from RF_IN pin to the antenna connector should be 50Ω .

Figure 7 Minimal application diagram

6.2 PCB Footprint Reference

Figure 8 PCB Footprint Reference

6.3 Layout Notes

- (1) A decoupling capacitor should be placed close to VDD pin of the module, and the width of power routing should be more than 0.5mm.
- (2) The width of RF routing between RF port to antenna interface should be wider than 0.2mm. The characteristic impedance of RF routing between RF port to antenna interface should be controlled to 50Ω .
- (3) It is recommended that the routing from RF port to antenna interface refers to the second layer, and no routing are recommended on the layer.
- (4) Do not place the module close to any EMI source, like antenna, RF routing, DC/DC or power conductor, clock signal or other high-frequency switching signal, etc.

7 REFLOW SOLDERING

Table 13 Reflow profile features

Profile Feature	Pb-Free Assembly
Preheat/Soak	
Temperature Min (T _{smin})	150 °C
Temperature Max (T _{smax})	200 °C
Time (ts) from (Tsmin to Tsmax)	60-120s
Ramp-up rate (TLto Tp)	3 °C/second max.
Liquidous temperature (TL)	217 °C
Time (tL) maintained above TL	60-150s
Peak package body temperature (Tp)	must not exceed the Classification temp $T_c^{[1]}$
Time (t _P)* within 5 °C of the specified classification	30* seconds ^[2]
temperature (T _c)	30" Seconds -
Ramp-down rate (Tp to TL)	6 °C/second max.
Time 25 °C to peak temperature	8 minutes max.

- * [1] T_c=260°C.
- * [2] The time above 255 °C must not exceed 30 seconds.

Figure 9 Reflow soldering profile (Refer to IPC/JEDEC J-STD-020E)

8 PRODUCT PACKAGING AND HANDLING

8.1 Packaging

TAU1111 is a Moisture Sensitive Device (MSD) and Electrostatic Sensitive Device (ESD). During the packing and shipping, it is strictly required to take appropriate MSD handling instructions and precautions. The table below shows the general packing hierarchy for the standard shipment.

Table 14 Packing hierarchy

Module	Reel	Sealed bag	Shipping carton
The state of the s			

8.1.1 Tape and Reel

TAU1111 is delivered as hermetically sealed, reeled tapes in order to enable efficient production, production lot set-up and tear-down. The figure below shows the tape dimensions.

Figure 10 Tape dimensions

TAU1111 is deliverable in quantities of 1000pcs on a reel. The figure below shows the dimensions of the reel.

Figure 11 Reel dimensions

8.1.2 Shipment Packaging

The reels are packed in the sealed bags and shipped by shipping cartons. Up to five sealed bags (5000pcs in total) can be packed in one shipping carton.

Figure 12 Packaging

8.2 Storage

In order to prevent moisture intake and protect against electrostatic discharge, TAU1111 is packaged together with a humidity indicator card and desiccant to absorb humidity.

8.3 ESD Handling

8.3.1 ESD Handling Precautions

TAU1111 which contains highly sensitive electronic circuitry is an Electrostatic Sensitive Device (ESD). Observe precautions for handling! Failure to observe these precautions may result in severe damage to the GNSS module!

- Unless there is a galvanic coupling between the local GND (i.e. the workbench) and the PCB GND, then the first point of contact when handling the PCB must always be between the local GND and PCB GND.
- Before mounting an antenna patch, connect ground of the device.
- When handling the RF pin, do not come into contact with any charged capacitors and be careful when contacting materials that can develop charges (e.g. patch antenna ~10 pF, coax cable ~50 80 pF/m, soldering iron ...)
- To prevent electrostatic discharge through the RF input, do not touch any exposed antenna area.
 If there is any risk that such exposed antenna area is touched in non ESD protected work area, implement proper ESD protection measures in the design.
- When soldering RF connectors and patch antennas to the module's RF pin, make sure to use an ESD safe soldering iron (tip).

8.3.2 ESD Protection Measures

The GNSS positioning modules is sensitive to static electricity. Whenever handling the module, particular care must be exercised to reduce the risk of electrostatic charges. In addition to standard ESD safety practices, the following measures should be taken into account.

- Adds ESD Diodes to the RF input part to prevent electrostatics discharge.
- Do not touch any exposed antenna area.
- Adds ESD Diodes to the UART interface.

8.3.3 Moisture Sensitivity Level

The Moisture Sensitivity Level (MSL) of the GNSS module is MSL4.

9 LABELING AND ORDERING INFORMATION

Labeling and ordering information help customers get more about Allystar products.

9.1 Labeling

Table 15 Labeling content

Symbol	Explanation	Instance			
TAUXXXX	Product model	TAU1111			
	1216 represents the product size.	1216A00			
10164004	A00 means the product type.				
1216A00A	Second A refers to sales area code. Different code for	C (for Europa market)			
	different sales area.	E (for Europe market)			
aaayybbbssss	ssss Serial number 351190010				

9.2 Ordering info

Table 16 Ordering codes

Ordering No.	Product
TAU1111-1216A00E	Concurrent GNSS LCC Module, TCXO, ROM, 12.2*16mm, 1000 pieces/reel,
TAUTITI-12TOAUUE	Europe market.
TAU1111-1216A00H	Concurrent GNSS LCC Module, TCXO, ROM, 12.2*16mm, 1000 pieces/reel,
TAUTITI-1210AUUH	India market.
TALI1111 1016 A00D	Concurrent GNSS LCC Module, TCXO, ROM, 12.2*16mm, 1000 pieces/reel,
TAU1111-1216A00R	Russia market.

10 RELATED DOCUMENTS

- [1] Satrack User Manual
- [2] Allystar Common Commands
- [3] GNSS_Protocol_Specification

11 REVISION HISTORY

Revision	Date	Reviser	Status / Comments	
V1.0	2019-10-24	Vita Wu	First released.	
V1.1	2020-06	Vita Wu	Updates Section 6.3 Layout note Adds built-in choke design (C00); Updates reference design; Simplifies Pin description;	
V1.2	2020-12	Vita Wu	Updates MSL. Deletes SBAS support. Fixes I/O type of INTO to be I. Clarifies power on/off sequence. Updates AVDD_BAK connectivity description in Section 4.1. Improves mechanical specification. Localization. Improves wordings. Improves layout notes in Section 6.3. Deletes 1K resistor in the minimal design diagram. Updates description about short circuit protection.	
V1.3	2021-07	Vita Wu	Adds labeling and ordering info. Details default settings. Adds related document list. Adds document info section. Removes C00 design. Updates main voltage range to be 2.0V~3.6V.	

www.allystar.com

info.gnss@allystar.com

Headquarters

Allystar Technology (Shenzhen) Co., Ltd.

Address: 5F, Building No.4, Winlead Intelligent Park, No.3, FaDa road (middle), Bantian Subdistrict, LongGang District, Shenzhen City, Guangdong Province, China.

Calgary Office

Allystar Technology (Canada) Ltd.

Address: Unit 288, 3553 31 Street NW Calgary, Alberta, Canada T2L 2K7

