- ♦ 전체 : 선택형 16문항(70점) 서답형 6문항(30점)
- ♦ 배점 : 문항 옆에 배점 표시
- ♦ 선택형은 답안 카드에 컴퓨터용 사인펜으로 정확히 마킹하 고, 서답형은 반드시 검정볼펜으로 기입하시오.

선택형

- 1. 다음 극한값의 계산 중 옳지 않은 것은? [3.7점]
- $(2) \lim_{n \to \infty} \left(\frac{1}{2} n + 1 \right) = \infty$
- $(3) \lim_{n \to \infty} \left\{ 2 \left(-\frac{1}{3} \right)^n \right\} = 2$
- $4 \lim_{n \to \infty} \frac{2n^2 + n 4}{3n^2 2n + 1} = \frac{2}{3}$
- (5) $\lim_{n \to \infty} (\sqrt{n+2} \sqrt{n-1}) = 1$

- 2. $\lim_{n\to\infty} \frac{3\times 2^n + 3^{n+1}}{2^n + a\times 3^n} = 3$ 이 성립할 때, a의 값은? [3.9점]
- \bigcirc 1
- (2) 2
- (3) 3
- (5) 5

- **3.** 자연수 n에 대하여 $\sqrt{n^2+3n+2}$ 의 소수부분을 a_n 이라고 할 때, $\lim_{n\to\infty} a_n$ 의 값은? [5점] ① 0 ② $\frac{1}{2}$ ③ 1 ④ $\frac{3}{2}$

- (5)2

4. 다음 그림과 같이 [1단계]에서 한 변의 길이가 1이 정 삼각형의 중점을 연결하여 네 개의 정삼각형을 만들고, 그중 가운데 삼각형을 제거한다. [2단계]에서는 [1단계] 에서 남아 있는 정삼각형에 대하여 같은 방법으로 각각 네 개의 정삼각형을 만들고 그중 가운데 삼각형을 제거 한다. 위 과정을 한없이 반복할 때, [n단계]에서 남아 있 는 정삼각형의 넓이의 합을 a_n 이라고 할 때, $\lim_{n\to\infty} a_n$ 의 값은? [4.3점]

- (1) 0
- (2) 1
- (3) 2
- (4)3
- (5) 4

- **5.** 자연수 n에 대하여 6^n 의 양의 약수의 총합을 A(n)이라고 할 때, $\lim_{n\to\infty} \frac{A(n)}{6^{n-1}}$ 의 값은? [5.5점]
- (1)6
- (2) 12
- (3) 18
- (4) 24
- (5) 30

- 6. 다음 중 수렴하는 급수는? [4.1점]

 - (3) 2 4 + 8 16 + 32 64 + \cdots
 - $\bigoplus_{n=1}^{\infty} \frac{1}{(3n-1)(3n+2)}$

- 7. 등비급수 $1 \frac{x}{2} + \frac{x^2}{4} \frac{x^3}{8} + \cdots$ 이 수렴하기 위한 정수 x값의 개수는? [4.1점]
 - $\widehat{1}$ 1
- (2) 2
- (3) 3
- (4) 4
- (5)5

8. 수열 $\{a_n\}$, $\{b_n\}$ 에 대한 <보기>의 설명 중 옳은 것만 을 고르면? [5.4점]

<보기>

ㄱ. $a_n < b_n$ 이고 $\{a_n\}$, $\{b_n\}$ 에 모두 수렴하면,

 $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$ 이다. ㄴ. $S_n = \sum_{k=1}^n a_k$ 에 대해 수열 $\{S_n\}$ 이 수렴하면

 $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n \circ | \mathcal{F}|.$

- $c. 수열 \{|a_n|\}$ 이 수렴하면 수열 $\{a_n\}$ 도 수렴한다.
- ㄹ. $\lim_{n=1}^{\infty} \frac{1}{a_n}$ 이 수렴하면 $\sum_{n=1}^{\infty} a_n$ 도 수렴한다.
- (1)
- (2) L
- (3) 7,L

- (4) L, C
- (5) に, ਦ

9. 한 변의 길이가 2인 정사각형 R_1 이 있다. 다음 그림과 같이 R_1 에 한 변에 직각이등변삼각형 T_1 을 붙이고, 다시 T_1 의 빗변이 아닌 한 변에 정사각형 R_2 를 붙인다. 이와 같이 T_2 , R_3 , T_3 , R_4 ,…를 계속 붙여나갈 때, 모든 정사각 형 R₁, R₂, R₃, cdots의 넓이의 합은? [5.2점]

- (1)4
- (2)6
- (3) 8
- **4**) 10
- (5) 12

10. $a_1 = 2$, $a_n = \sum_{k=1}^{n-1} a_k$ (단, $n = 2, 3, 4, \cdots$) 을 만족하는 $| 12. \sin \alpha = \frac{1}{2}, \cos \beta = -\frac{1}{3}$ 일 때, $\cos(\alpha - \beta)$ 의 값은? (단, $0 < \alpha < \frac{\pi}{2}, \pi < \beta < \frac{3\pi}{2}$)[4.3점] ① $\frac{1}{2}$ ② 1 ③ $\frac{3}{2}$ ④ 3 ⑤ $\frac{5}{2}$ ① $\frac{-\sqrt{3}}{6} - \frac{\sqrt{2}}{3}$ ② $\frac{\sqrt{3}}{6} - \frac{\sqrt{2}}{3}$ ③ 0

11. 다음 함수의 미분 중 옳지 않은 것은? [3.5점]

 $(1) (3^{x+1})' = 3^{x+1} \ln 3$

- (2) $(x^3e^x)' = (3x^2 + 3x^3)e^x$
- (3) $(x \ln x)' = \ln x + 1$
- $(4) (\sin x + 3\cos x)' = \cos x 3\sin x$
- $(5) (e^x \cos x) = (\sin x \cos x)e^x$

- $4 \frac{\sqrt{3}}{6} + \frac{\sqrt{2}}{3}$ $5 \frac{\sqrt{3}}{6} + \frac{\sqrt{2}}{3}$

13. $\sqrt{5}\sin\theta + 2\cos\theta = r\sin(\theta + \alpha)$ 의 꼴로 나타냈을 때, 실수 r, α 에 대하여 $r^2 \cos 2\alpha$ 의 값은?

 $(단, r > 0, 0 \le \alpha < 2\pi)$ [5.2점]

- ① $\frac{1}{9}$ ② $\frac{1}{3}$ ③ 1
- (4)3
- (5)9

14. 두 직선 y = 3x + 1, y = x - 1이 이루는 예각의

크기를 θ 라고 할 때, $\tan \theta$ 의 값은? [4.5점]

① 0

- $2\frac{1}{8}$ $3\frac{1}{4}$ $4\frac{1}{2}$ 51

서답형

단답형 1. 극한 $\lim_{x\to 0} \frac{\sin x}{x}$ 의 값을 구하시오. [3점]

단답형 2. 극한 $\lim_{x\to 0} \frac{e^{5x}-1}{\ln(1+2x)}$ 의 값을 구하시오. [3점]

15. $\lim_{x \to a} \frac{b \cos x}{x - a} = 1$ 일 때, ab의 값은? (단, $\pi \le a < 2\pi$) [5.4점]

- ① $\frac{1}{2}$ ② 1 ③ $\frac{3}{2}$ ④ $\frac{\pi}{2}$ ⑤ $\frac{3}{2}\pi$

단답형 3. 극한 $\lim_{x\to 0} \frac{3x + \sin x}{\tan x}$ 의 값을 구하시오. [4점]

서술형 1. 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여 $8n^2 - 3x + 2 \le 2n^2a_n \le 8n^2 + 2n + 5$ 를 만족시킬 때, $\lim_{n \to \infty} a_n$ $\sum_{n=1}^{\infty} a_n$ 의 합을 구하시오. [7점] 의 값을 구하시오. [5점]

서술형 3. 함수 $f(x) = \begin{cases} ax + b & (-1 < x < 0) \\ & \circ \mid x = 0 \text{ odd} \end{cases}$ 서 미분가능할 때, 상수 a, b의 값을 각각 구하시오. [8점]