1. 函数的极值

极值定理 假设函数 f 定义在开区间 (a,b) 内,并且点 c 在 (a,b) 区间内. 如果点 c 为函数的局部最大值或最小值,那么点 c 一定为该函数的临界点. 也就是说, f'(c)=0 或 f'(c) 不存在.

求解闭区间 [a, b] 内的全局最大值和最小值步骤:

- (1) 求出 f'(x), 并列出在 (a,b) 中 f'(x) 不存在或 f'(x) = 0 的点. 也就是说, 列出在开区间 (a,b) 内所有的临界点.
- (2) 把端点 x = a 和 x = b 放入列表.
- (3) 对于上述列表中的每个点, 将它们带入 y = f(x) 求出对应函数值.
- (4) 找出最大的函数值以及它所对应的 x 值, 得到全局最大值.
- (5) 类似于 (4), 得到全局最小值.

2. 罗尔定理

罗尔定理 假设函数 f 在闭区间 [a,b] 内连续, 在开区间 (a,b) 内可导. 如果 f(a)=f(b), 那么在开区间 (a,b) 内至少存在一点 c, 使得 f'(c)=0.

3. 中值定理

中值定理 假设函数 f 在闭区间 [a,b] 内连续, 在开区间 (a,b) 内可导, 那么在开区间 (a,b) 内至少有一点 c 使得

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$

如果对于在定义域 (a,b) 内的所有 x, 都有 f'(x) = 0, 那么函数 f 在开区间 (a,b) 内为常数函数.

如果对于任意实数 x 都有 f'(x) = g'(x), 那么有 f(x) = g(x) + C(C) 为常数).

4. 二阶导数与图像

如果 x = c 点是函数 f 的拐点, 则有 f''(c) = 0.

如果 f''(c) = 0, 则 c 点不一定都是函数 f 的拐点.

5. 导数为零的汇总

纯 1 阶导数分析 - 假设 f'(c) = 0, 此时情况如下:

- (1) 如果从左往右通过 c 点, f'(x) 的符号由正变负, 那么 c 点为局部最大值;
- (2) 如果从左往右通过 c 点, f'(x) 的符号由负变正, 那么 c 点为局部最小值;
- (3) 如果从左往右通过 c 点, f'(x) 的符号不发生变化, 那么 c 点为水平拐点.

1/2 阶导数综合分析 - 假设 f'(x) = 0, 则有:

- (1) 如果 f''(c) < 0, 那么 x = c 为局部最大值;
- (1) 如果 f''(c) > 0, 那么 x = c 为局部最小值;
- (1) 如果 f''(c) = 0, 那么无法判断, 需借助纯 1 阶分析