Глава 9

Транспониране на детерминанта. Основни свойства на детерминантите. Развитие на детерминанта по ред и по стълб.

Да забележим, че $(-1)^{[2,3,1]+[3,2,1]}a_{23}a_{32}a_{11} = -a_{11}a_{23}a_{32}$ е събираемо на детерминантата (8.2). В сила е следната по-обща

Твърдение 9.1. Нека j_1, \ldots, j_n и k_1, \ldots, k_n са пермутации на $1, \ldots, n$ $c~[j_1,\ldots,j_n],$ съответно $[k_1,\ldots,k_n]$ инверсии. Тогава

$$\alpha = (-1)^{[j_1, \dots, j_n] + [k_1, \dots, k_n]} \quad a_{j_1, k_1} a_{j_2, k_2} \dots a_{j_n, k_n}$$

 $\alpha = (-1)^{[j_1,\dots,j_n]+[k_1,\dots,k_n]} \quad a_{j_1,k_1}a_{j_2,k_2}\dots a_{j_n,k_n}$ е събираемо на детерминантата $\det(a_{i,j})_{i,j=1}^n$ на матрицата

Доказателство. За произволни $1 \leq p < q \leq n$ прилагането на транспозицията (j_p,j_q) към j_1,\ldots,j_n и на транпозицията (k_p,k_q) към k_1,\ldots,k_n трансформира α в

$$\beta = (-1)^{[j_1, \dots, j_q, \dots, j_p, \dots, j_n] + [k_1, \dots, k_q, \dots, k_p, \dots, k_n]} \quad a_{j_1, k_1} \dots a_{j_q, k_q} \dots a_{j_p, k_p} \dots a_{j_n, k_n}.$$

Умножението в F е комутативно, така че

$$a_{j_1,k_1} \dots a_{j_p,k_p} \dots a_{j_q,k_q} \dots a_{j_n,k_n} = a_{j_1,k_1} \dots a_{j_q,k_q} \dots a_{j_p,k_p} \dots a_{j_n,k_n}$$

Прилагането на транспозицията (j_p, j_q) към j_1, \ldots, j_n променя четността на тази пермутация и

$$(-1)^{[j_1,\ldots,j_q,\ldots,j_p,\ldots,j_n]} = -(-1)^{[j_1,\ldots,j_p,\ldots,j_q,\ldots,j_n]}.$$

Аналогично, прилагането на транспозицията (k_p, k_q) към k_1, \ldots, k_n променя четността на тази пермутация, така че

$$(-1)^{[k_1,\dots,k_q,\dots,k_p,\dots,k_n]} = -(-1)^{[k_1,\dots,k_p,\dots,k_q,\dots,k_n]}$$

$$(-1)^{[j_1,\ldots,j_q,\ldots,j_p]+[k_1,\ldots,k_q,\ldots,k_p,\ldots,k_n]}=(-1)^{[j_1,\ldots,j_p,\ldots,j_q,\ldots,j_n]+[k_1,\ldots,k_p,\ldots,k_q,\ldots,k_n]}$$
 и $\beta=\alpha.$

С подходяща последователност от транспозиции свеждаме j_1,\ldots,j_n към пермутацията $1, \ldots, n$. По-точно, ако $j_s = 1$, то разменяме j_s с j_1 , така че получената пермутация да започва с 1. После преместваме числото 2 на втора позиция чрез транспозиция на j_2 с $j_t=2$ и т.н., докато получим пермутацията $1,\ldots,n$. Съответните транспозиции свеждат пермутацията k_1, \ldots, k_n на $1, \ldots, n$ към пермутация i_1, \ldots, i_n . Това дава възможност да представим

$$\alpha = (-1)^{[1,\dots,n]+[i_1,\dots,i_n]} \ a_{1,i_1}\dots a_{n,i_n} = (-1)^{[i_1,\dots,i_n]} \ a_{1,i_1}\dots a_{n,i_n},$$

като събираемо на

$$\det(a_{i,j})_{i,j=1}^n = \sum_{i_1,\dots,i_n} (-1)^{[i_1,\dots,i_n]} a_{1,i_1}\dots a_{n,i_n}.$$

Определение 9.2. Нека $A \in M_{m \times n}(F)$ е матрица с m реда и n стълба. Разменяйки редовете и стълбовете на А, получаваме транспонираната матрица $A^t \in M_{n \times m}(F)$ с елементи

$$(A^t)_{i,j} := A_{j,i}$$
 за всички $1 \le i \le n$ и $1 \le j \le m$.

Например, транспонираната на матрицата

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right)$$

е

$$A^t = \left(\begin{array}{cc} a_{11} & a_{21} \\ a_{12} & a_{22} \end{array} \right)$$

И

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} = \begin{vmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{vmatrix} = \det(A^t).$$

Следващото твърдение доказва, че детерминантата на произволна матрица съвпада с детерминантата на нейната транспонирана.

TВЪРДЕНИЕ 9.3. Tранспонирането на квадратна матрица A $M_{n\times n}(F)$ не променя нейната детерминанта.

Доказателство. Ако $A=(A_{i,j})_{i,j=1}^n\in M_{n\times n}(F)$ е матрица с елементи $A_{i,j}\in F$, то транспонираната матрица $A^t\in M_{n\times n}(F)$ има елементи

$$(A^t)_{i,j} = A_{i,i}, \quad 1 < i, j < n.$$

По определение,

$$\det(A^t) = \sum_{i_1, \dots, i_n} (-1)^{[i_1, \dots, i_n]} (A^t)_{1, i_1} \dots (A^t)_{n, i_n} =$$

$$= \sum_{i_1, \dots, i_n} (-1)^{[i_1, \dots, i_n]} A_{i_1, 1} \dots A_{i_n, n},$$

където сумирането е по всички пермутации i_1, \ldots, i_n на числата $1, \ldots, n$, а $[i_1, \ldots, i_n]$ е броят на инверсиите в пермутация i_1, \ldots, i_n . Всяко събираемо

$$(-1)^{[i_1,\dots,i_n]}A_{i_1,1}\dots A_{i_n,n} = (-1)^{[i_1,\dots,i_n]+[1,\dots,n]}A_{i_1,1}\dots A_{i_n,n}$$

на $det(A^t)$ е събираемо на

$$\det(A) = \sum_{i_1, \dots, i_n} (-1)^{[i_1, \dots, i_n]} A_{1, i_1} \dots A_{n, i_n}$$

съгласно Твърдение 9.1. Следователно $\det(A^t)$ и $\det(A)$ съвпадат, защото имат един и същи брой събираеми - n!.

Нека $A \in M_{n \times n}(F)$ е квадратна матрица с редове

$$r_s = (a_{s,1}, a_{s,2}, \dots, a_{s,j}, \dots, a_{s,n}) \in M_{1 \times n}(F), \quad 1 \le s \le n.$$

Линейността на детерминантата относно своите редове дава

$$(i) \det \begin{pmatrix} r_1 \\ \dots \\ r'_p + r''_p \\ \dots \\ r_n \end{pmatrix} = \det \begin{pmatrix} r_1 \\ \dots \\ r'_p \\ \dots \\ r_n \end{pmatrix} + \det \begin{pmatrix} r_1 \\ \dots \\ r''_p \\ \dots \\ r_n \end{pmatrix}$$

И

$$(ii) \det \begin{pmatrix} r_1 \\ \dots \\ \lambda r_p \\ \dots \\ r_n \end{pmatrix} = \lambda \det \begin{pmatrix} r_1 \\ \dots \\ r_p \\ \dots \\ r_n \end{pmatrix}.$$

Освен това

$$(iii) \det \begin{pmatrix} r_1 \\ \dots \\ r_p \\ \dots \\ \lambda r_p \\ \dots \\ r_n \end{pmatrix} = \lambda \det \begin{pmatrix} r_1 \\ \dots \\ r_p \\ \dots \\ r_p \\ \dots \\ r_n \end{pmatrix} = \lambda 0 = 0,$$

съгласно (ii) и анулирането на детерминанта с равни редове. Използвайки (i) и (iii) получаваме, че умножението на ред с число и прибавянето му към друг ред не променя детерминантата, т.е.

$$(iv) \det \begin{pmatrix} r_1 \\ \dots \\ r_p + \lambda r_q \\ \dots \\ r_q \\ \dots \\ r_n \end{pmatrix} = \det \begin{pmatrix} r_1 \\ \dots \\ r_p \\ \dots \\ r_q \\ \dots \\ r_n \end{pmatrix} + \det \begin{pmatrix} r_1 \\ \dots \\ \lambda r_q \\ \dots \\ r_q \\ \dots \\ r_n \end{pmatrix} = \det \begin{pmatrix} r_1 \\ \dots \\ r_p \\ \dots \\ r_q \\ \dots \\ r_n \end{pmatrix}.$$

Аналогично, (i) и (iii) дават анулирането на детерминанта с линейно зависими редове,

$$(v) \det \begin{pmatrix} r_1 \\ \dots \\ \sum\limits_{\forall q \neq p} \alpha_q r_q \\ \dots \\ r_q \\ \dots \\ r_n \end{pmatrix} = \sum\limits_{\forall q \neq p} \det \begin{pmatrix} r_1 \\ \dots \\ \alpha_q r_q \\ \dots \\ r_q \\ \dots \\ r_n \end{pmatrix} = 0.$$

От анти-симетричността на детерминантата относно своите редове получаваме, че размяната на редове променя знака на детерминанта,

$$(vi) \det \begin{pmatrix} r_1 \\ \cdots \\ r_q \\ \cdots \\ r_p \\ \cdots \\ r_n \end{pmatrix} = -\det \begin{pmatrix} r_1 \\ \cdots \\ r_p \\ \cdots \\ r_q \\ \cdots \\ r_n \end{pmatrix}.$$

Аналогични свойства са в сила относно стълбовете на детерминанта. Те се извеждат чрез транспониране, прилагане на съответните свойства по редове и повторно транспониране. Нека $A \in M_{n \times n}(F)$ е квадратна матрица със стълбове

$$c_s = \begin{pmatrix} a_{1s} \\ a_{2s} \\ \dots \\ a_{ns} \end{pmatrix} \in M_{n \times 1}(F), \quad 1 \le s \le n,$$

така че

$$A = (c_1 \dots c_s \dots c_n).$$

Използвайки Определение 9.2 за транспониране на матрица, Твърдение 9.3,

$$(c'_p + c''_p)^t = \begin{pmatrix} a'_{1p} + a''_{1p} \\ \dots \\ a'_{np} + a''_{np} \end{pmatrix}^t = (a'_{1p} + a''_{1p}, \dots, a'_{np} + a''_{np}) =$$

$$= (a'_{1p}, \dots, a'_{np}) + (a''_{1p}, \dots, a''_{np}) = \begin{pmatrix} a'_{1p} \\ \dots \\ a'_{np} \end{pmatrix}^t + \begin{pmatrix} a''_{1p} \\ \dots \\ a''_{np} \end{pmatrix}^t = (c'_p)^t + (c''_p)^t$$

и свойство (і) на детерминантата относно нейните редове, получаваме свойство

$$(i)' \det(c_{1} \dots c'_{p} + c''_{p} \dots c_{n}) = \det(c_{1} \dots c'_{p} + c''_{p} \dots c_{n})^{t} =$$

$$= \det\begin{pmatrix} c_{1}^{t} & & & \\ & \ddots & & \\ & (c'_{p} + c''_{p})^{t} & & \\ & \ddots & & \\ & c_{n}^{t} & & \end{pmatrix} = \det\begin{pmatrix} c_{1}^{t} & & \\ & (c'_{p})^{t} + (c''_{p})^{t} & \\ & \ddots & \\ & c_{n}^{t} & & \end{pmatrix} =$$

$$= \det\begin{pmatrix} c_{1}^{t} & & & \\ & (c'_{p})^{t} & & \\ & (c'_{p})^{t} & & \\ & \ddots & & \\ & c_{n}^{t} & & \end{pmatrix} + \det\begin{pmatrix} c_{1}^{t} & & \\ & (c''_{p})^{t} & \\ & \ddots & \\ & c_{n}^{t} & & \end{pmatrix} =$$

$$= \det(c_{1} \dots c'_{p} \dots c_{n})^{t} + \det(c_{1} \dots c''_{p} \dots c_{n})^{t} =$$

$$= \det(c_{1} \dots c'_{p} \dots c_{n}) + \det(c_{1} \dots c''_{p} \dots c_{n})^{t} =$$

на детерминантата относно нейните стълбове. Аналогично, от

$$(\lambda c_p)^t = \begin{pmatrix} \lambda a_{1p} \\ \dots \\ \lambda a_{np} \end{pmatrix}^t = (\lambda a_{1p}, \dots, \lambda a_{np}) =$$
$$= \lambda (a_{1p}, \dots, a_{np}) = \lambda \begin{pmatrix} a_{1p} \\ \dots \\ a_{np} \end{pmatrix}^t = \lambda c_p^t,$$

Определение 9.2 за транспониране на матрица, Твърдение 9.3 и свойство (ii) на детерминантата относно нейните редове получаваме

$$(ii)' \det(c_1 \dots \lambda c_p \dots c_n) = \det(c_1 \dots \lambda c_p \dots c_n)^t = \det \begin{pmatrix} c_1^t \\ \dots \\ (\lambda c_p)^t \\ \dots \\ c_n^t \end{pmatrix} =$$

$$\det \begin{pmatrix} c_1^t \\ \dots \\ \lambda c_p^t \\ \dots \\ c_n^t \end{pmatrix} = \lambda \det \begin{pmatrix} c_1^t \\ \dots \\ c_p^t \\ \dots \\ c_n^t \end{pmatrix} = \lambda \det(c_1 \dots c_p \dots c_n)^t = \lambda \det(c_1 \dots c_p \dots c_n),$$

В сила е

$$(iii)' \det(c_1 \dots c_p \dots \lambda c_p \dots c_n) = \det(c_1 \dots c_p \dots \lambda c_p \dots c_n)^t =$$

$$= \det \begin{pmatrix} c_1^t \\ \dots \\ c_p^t \\ \dots \\ (\lambda c_p)^t \\ \dots \\ c_p^t \end{pmatrix} = \det \begin{pmatrix} c_1^t \\ \dots \\ c_p^t \\ \dots \\ \lambda c_p^t \\ \dots \\ c_n^t \end{pmatrix} = 0$$

благодарение на Определение 9.2 за транспониране на матрица, Твърдение 9.3 и свойство (iii) на детерминантата относно нейните редове.

Свойства (i)', (ii)' и (iii)' показват, че детерминантата е полилинейна функция на своите стълбове, която се анулира за два равни стълба. Съгласно Твърдение 7.5, детерминантата е антисиметрична функция на своите стълбове.

Използвайки (і)' и (ііі)', получаваме

$$(iv)' \det(c_1 \dots c_p + \lambda c_q \dots c_q \dots c_n) = \det(c_1 \dots c_p \dots c_q \dots c_n) + \det(c_1 \dots \lambda c_q \dots c_q \dots c_n) = \det(c_1 \dots c_p \dots c_q \dots c_q \dots c_n)$$

И

$$(v)' \det(c_1 \dots \sum_{\forall q \neq p} \alpha_q c_q \dots c_q \dots c_n) = \sum_{q \neq p} \det(c_1 \dots \alpha_q c_q \dots c_q \dots c_n) = 0.$$

Антисиметричността на детерминантата относно нейните стълбове гласи

$$(vi)' \det(c_1 \dots c_q \dots c_p \dots c_n) = -\det(c_1 \dots c_p \dots c_q \dots c_n).$$

Определение 9.4. Нека $\det(a_{ij})_{i,j=1}^n \in M_{n \times n}(F)$ е детерминанта от n-ти ред с елементи от поле F, а $1 \le p, q \le n$ са естествени числа. Ако от събираемите на $\det(a_{ij})_{i,j=1}^n$, които са кратни на a_{pq} изнесем пред скоби a_{pq} , то това което остава в скобата са нарича адюнгирано количество на a_{pq} и се бележи с A_{pq} .

Адюнгираното количество A_{pq} има (n-1)! събираеми от вида

$$(-1)^{[i_1,\dots,i_{p-1},q,i_{p+1},\dots,i_n]}a_{1i_1}\dots a_{p-1i_{p-1}}a_{p+1i_{p+1}}\dots a_{ni_n},$$

защото пермутациите $i_1, \ldots i_n$ на $1, \ldots, n$ с $i_p = q$ са (n-1)! на брой.

Твърдение 9.5. Нека $(a_{ij})_{i,j=1}^n \in M_{n\times n}(F)$ е квадратна матрица от ред n с елементи от поле F, а $1 \le p,q \le n$ са естествени числа между 1 и n. Тогава:

- 1 и n. Тогава: (i) $\sum_{s=1}^{n} a_{ps} A_{ps} = \det(a_{ij})_{i,j=1}^{n}$ (развитие на детерминанта по ред) ;
- $(ii) \sum_{s=1}^n a_{sq} A_{sq} = \det(a_{ij})_{i,j=1}^n$ (развитие на детерминанта по стълб), където $A_{i,j}$ е адюнгираното количество на $a_{i,j}$.

Доказателство. (i) Всяко събираемо на A_{ps} е от вида

$$(-1)^{[i_1,\ldots,i_{p-1},s,i_{p+1},\ldots,i_n]}a_{1i_1}\ldots a_{p-1i_{p-1}}a_{p+1i_{p+1}}\ldots a_{ni_n}.$$

Следователно всяко събираемо на $a_{p,s}A_{p,s}$ е от вида

$$(-1)^{[i_1,\ldots,i_{p-1},s,i_{p+1},\ldots,i_n]}a_{1i_1}\ldots a_{p-1i_{p-1}}a_{p,s}a_{p+1i_{p+1}}\ldots a_{ni_n}$$

и е събираемо на

$$\det(a_{i,j})_{i,j=1}^n = \sum_{i_1,\dots,i_n} (-1)^{[i_1,\dots,i_n]} a_{1i_1} \dots a_{p-1i_{p-1}} a_{pi_p} a_{p+1i_{p+1}} \dots a_{n,i_n}.$$

Адюнгираното количество A_{ps} има (n-1)! събираеми, защото това е броят на пермутациите $i_1,\ldots,i_{p-1},s,i_{p+1},\ldots,i_n$ на $1,\ldots,n$ с фиксирано $i_p=s$. Сумата $\sum_{s=1}^n a_{ps}A_{ps}$ и детерминантата $\det(a_{ij})_{i,j=1}^n$ имат един и същи брой събираеми, т.е. n(n-1)!=n! и съвпадат.

(ii) Всяко събираемо на A_{sq} е от вида

$$(-1)^{[i_1,\dots,i_{s-1},q,i_{s+1},\dots,i_n]}a_{1i_1}\dots a_{s-1i_{s-1}}a_{s+1i_{s+1}}\dots a_{ni_n}$$

Следователно всяко събираемо на $a_{sq}A_{sq}$ е от вида

$$(-1)^{[i_1,\dots,i_{s-1},q,i_{s+1},\dots,i_n]}a_{1i_1}\dots a_{s-1i_{s-1}}a_{sq}a_{s+1i_{s+1}}\dots a_{ni_n}$$

и е събираемо на детерминантата $\det(a_{ij})_{i,j=1}^n$. Броят на събираемите на A_{sq} е равен на броя (n-1)! на пермутациите i_1,\ldots,i_n на $1,\ldots,n$ с фиксирано $i_s=q$. Оттук $\sum\limits_{s=1}^n a_{sq}A_{s,q}$ и $\det(a_{ij})_{i,j=1}^n$ имат равен брой събираеми - n(n-1)!=n! и

$$\sum_{s=1}^{n} a_{sq} A_{s,q} = \det(a_{ij})_{i,j=1}^{n}.$$

Твърдение 9.6. Нека $(a_{ij})_{i,j=1}^n \in M_{n \times n}(F)$ е квадратна матрица от ред $n, 1 \le p, q \le n$ са естествени числа, а A_{pq} е адюнгираното количество на a_{pq} . Тогава

$$A_{pq} = (-1)^{p+q} \Delta_{p,q}$$

се изразява чрез минора

$$\Delta_{p,q} = \begin{vmatrix} a_{1,1} & \dots & a_{1,q-1} & a_{1,q+1} & \dots & a_{1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{p-1,1} & \dots & a_{p-1,q-1} & a_{p-1,q+1} & \dots & a_{p-1,n} \\ a_{p+1,1} & \dots & a_{p+1,q-1} & a_{p+1,q+1} & \dots & a_{p+1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n,1} & \dots & a_{n,q-1} & a_{n,q+1} & \dots & a_{n,n} \end{vmatrix}$$

от (n-1)-ви ред, който се получава от $\det(a_{ij})_{i,j=1}^n$ чрез премахване на реда с номер p и стълба с номер q.

Доказателство. Всяко събираемо на A_{pq} е от вида

$$\alpha = (-1)^{[i_1, \dots, i_{p-1}, q, i_{p+1}, \dots, i_n]} a_{1i_1} \dots a_{p-1i_{p-1}} a_{p+1i_{p+1}} \dots a_{ni_n}.$$

Прилагайки транспозициите $(i_{p-1},q),(i_{p-2},q),\dots,(i_1,q)$ променяме p-1 пъти знака на α и получаваме

$$\alpha = (-1)^{p-1}(-1)^{[q,i_1,\dots,i_{p-1},i_{p+1},\dots,i_n]}a_{1i_1}\dots a_{p-1i_{p-1}}a_{p+1i_{p+1}}\dots a_{ni_n}.$$

Изпускането на q от пермутацията $q,i_1,\ldots,i_{p-1},i_{p+1},\ldots,i_n$ премахва инверсиите на q със стоящите след него числа $q-1,\ldots,2,1,$ по-малки от q, така че

$$\alpha = (-1)^{p-1}(-1)^{q-1}(-1)^{[i_1, \dots, i_{p-1}, i_{p+1}, \dots, i_n]}a_{1i_1} \dots a_{p-1i_{p-1}}a_{p+1i_{p+1}} \dots a_{n, i_n}.$$

Да забележим, че

$$\beta:=(-1)^{[i_1,\ldots,i_{p-1},i_{p+1},\ldots,i_n]}a_{1i_1}\ldots a_{p-1i_{p-1}}a_{p+1i_{p+1}}\ldots a_{ni_n}$$

е събираемо на $\Delta_{p,q}$. Следователно

$$\alpha = (-1)^{p+q-2}\beta = (-1)^{p+q}\beta$$

е събиремо на $(-1)^{p+q}\Delta_{p,q}$. Броят (n-1)! на събираемите на A_{pq} съвпада с броя на събираемите на $(-1)^{p+q}\Delta_{p,q}$, така че $A_{pq}=(-1)^{p+q}\Delta_{p,q}$.

Комбинирайки Твърдение 9.5 с Твърдение 9.6 получаваме следното

Следствие 9.7. Нека $(a_{ij})_{i,j=1}^n \in M_{n \times n}(F)$ е квадратна матрица от ред n с елементи от поле F, а $1 \le p, q \le n$ са естествени числа. Тогава:

- $(i) \sum_{s=1}^{n} a_{ps} (-1)^{p+s} \Delta_{p,s} = \det(a_{ij})_{i,j=1}^{n}$ (развитие на детерминанта по ped);
- (ii) $\sum_{s=1}^{n} a_{sq}(-1)^{s+q} \Delta_{s,q} = \det(a_{ij})_{i,j=1}^{n}$ (развитие на детерминанта по столб), кодето $\Delta_{i,j}$ е детерминантата на матрицата, получена от $(a_{ij})_{i,j=1}^{n}$ чрез премахване на i-ти ред и j-ти столб.

Твърдение 9.8. Нека $(a_{ij})_{i,j=1}^n \in M_{n \times n}(F)$ е квадратна матрица от ред $n, 1 \leq p, q \leq n$ и $r \in \{1, \dots, n\} \setminus \{p, q\}$. Тогава:

- $(i) \sum_{s=1}^{n} a_{ps} A_{rs} = \sum_{s=1}^{n} a_{ps} (-1)^{r+s} \Delta_{r,s} = 0$ (фалииво развитие на детерминанта по ped);
- (ii) $\sum_{s=1}^{n} a_{sq} A_{sr} = \sum_{s=1}^{n} a_{sq} (-1)^{s+r} \Delta_{s,r} = 0$ (фалшиво развитие на детерминанта по стълб), където A_{ij} е адгонгираното количество на a_{ij} , а $\Delta_{i,j}$ е детерминантата на матрицата, получена от $(a_{ij})_{i,j=1}^{n}$ чрез премахване на i-ти ред u j-ти стълб.

Доказателство. (i) Заменяйки r-тия ред на матрицата $(a_{ij})_{i,j=1}^n \in M_{n\times n}(F)$ с нейния p-тия ред (a_{p1},\ldots,a_{pn}) , получаваме детерминанта

$$\Delta' = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{p1} & \dots & a_{pn} \\ \dots & \dots & \dots \\ a_{p1} & \dots & a_{pn} \\ \dots & \dots & \dots \\ a_{11} & \dots & a_{1n} \end{vmatrix}$$

с два равни реда, която се анулира съгласно свойство (iii). Развитието на Δ' по r-ти ред е

$$0 = \Delta' = \sum_{s=1}^{n} a_{ps} A'_{r,s} = \sum_{s=1}^{n} (-1)^{p+s} a_{ps} \Delta'_{r,s},$$

където $\Delta'_{r,s}$ е детерминантата, получена от Δ' чрез премахване на реда с номер r и стълба с номер s. Детерминантите $\Delta = \det(a_{ij})_{i,j=1}^n$ и Δ' имат едни и същи редове с номера, различни от r, така че минорите $\Delta_{r,s} = \Delta'_{r,s}$, получени от Δ и Δ' чрез премахване на редовете с номера r и стълбовете с номера s съвпадат. Оттук, адюнгираните количества $A'_{r,s} = A_{r,s}$ съвпадат и

$$\sum_{s=1}^{n} a_{ps} A_{ps} = \sum_{s=1}^{n} (-1)^{r+s} a_{ps} \Delta_{r,s} = \Delta' = 0.$$

(ii) Ако заменим r-тия стълб на $(a_{ij})_{i,j=1}^n \in M_{n \times n}(F)$ с нейния q-тия стълб

$$\begin{pmatrix} a_{1q} \\ \cdots \\ a_{nq} \end{pmatrix}$$
,

получаваме детерминанта

$$\Delta'' = \begin{vmatrix} a_{11} & \dots & a_{1,q} & \dots & a_{1q} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{nq} & \dots & a_{nq} & \dots & a_{nn} \end{vmatrix} = 0,$$

която има два равни стълба и се анулира съгласно съгласно свойство (iii)'. Развитието на Δ'' по r-тия стълб е

$$0 = \Delta'' = \sum_{s=1}^{n} a_{sq} A''_{s,r} = \sum_{s=1}^{n} (-1)^{s+r} a_{sq} \Delta''_{s,r} =$$
$$= \sum_{s=1}^{n} (-1)^{s+r} a_{sq} \Delta_{s,r} = \sum_{s=1}^{n} a_{sq} A_{sq},$$

защото детерминантите $\Delta''_{s,r} = \Delta_{s,r}$ получени от Δ'' и $\Delta = \det(a_{ij})_{i,j=1}^n$ чрез премахване на s-тия ред и r-тия стълб съвпадат. Причина за това е съвпадението на стълбовете на Δ и Δ'' номера, различни от r.

Задача 9.9. Да се намери адюнгираното количество $A_{2,3}$ на

$$\Delta = \left| \begin{array}{ccccc} 0 & a_{12} & a_{13} & 0 & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & 0 & a_{33} & a_{34} & 0 \\ 0 & a_{42} & a_{43} & 0 & a_{45} \\ a_{51} & 0 & a_{53} & a_{54} & 0 \end{array} \right|.$$

Решение: Използваме Твърдение 9.6 и развиваме последователно по адюнгирани количества

$$A_{23} = (-1)^{2+3} \begin{vmatrix} 0 & a_{12} & 0 & a_{15} \\ a_{31} & 0 & a_{34} & 0 \\ 0 & a_{42} & 0 & a_{45} \\ a_{51} & 0 & a_{54} & 0 \end{vmatrix} =$$

$$= -\left[(-1)^{1+2}a_{12} \begin{vmatrix} a_{31} & a_{34} & 0 \\ 0 & 0 & a_{45} \\ a_{51} & a_{54} & 0 \end{vmatrix} + (-1)^{1+4}a_{15} \begin{vmatrix} a_{31} & 0 & a_{34} \\ 0 & a_{42} & 0 \\ a_{51} & 0 & a_{54} \end{vmatrix} \right] =$$

$$= a_{12}(-1)^{2+3}a_{45} \begin{vmatrix} a_{31} & a_{34} \\ a_{51} & a_{54} \end{vmatrix} + a_{15}(-1)^{2+2}a_{42} \begin{vmatrix} a_{31} & a_{34} \\ a_{51} & a_{54} \end{vmatrix} =$$

$$= (-a_{12}a_{45} + a_{15}a_{42}) \begin{vmatrix} a_{31} & a_{34} \\ a_{51} & a_{54} \end{vmatrix} = (-a_{12}a_{45} + a_{15}a_{42})(a_{31}a_{54} - a_{34}a_{51}).$$

Задача 9.10. Да се пресметне детерминантата

$$\Delta_5 = \left| egin{array}{cccccc} 3 & -2 & 1 & 2 & 3 \ -2 & 1 & 3 & 2 & 1 \ 1 & -1 & 2 & 1 & 4 \ 3 & 1 & -1 & 2 & 1 \ 1 & -1 & 2 & 3 & 4 \end{array}
ight|.$$

Решение: Запазваме последния ред и прибваяме подходящи негови кратни към предишните редове, за да получим нули навсякъде във втори стълб над пети ред:

$$\Delta_5 = \left| egin{array}{ccccc} 1 & 0 & -3 & -4 & -5 \ -1 & 0 & 5 & 5 & 5 \ 0 & 0 & 0 & -2 & 0 \ 4 & 0 & 1 & 5 & 5 \ 1 & -1 & 2 & 3 & 4 \ \end{array}
ight|.$$

Развиваме по втори стълб и после по трети ред, за да получим

$$\Delta_5 = (-1)^{5+2}(-1) \begin{vmatrix} 1 & -3 & -4 & -5 \\ -1 & 5 & 5 & 5 \\ 0 & 0 & -2 & 0 \\ 4 & 1 & 5 & 5 \end{vmatrix} = (-1)^{3+3}(-2) \begin{vmatrix} 1 & -3 & -5 \\ -1 & 5 & 5 \\ 4 & 1 & 5 \end{vmatrix}.$$

Запазваме първия ред и прибавяме подходящи негови кратни към следващите редове, така че да анулираме елементите от първи стълб под първи ред. Това

дава

$$\Delta_5 = -2 \left| \begin{array}{ccc} 1 & -3 & -5 \\ 0 & 2 & 0 \\ 0 & 13 & 25 \end{array} \right|.$$

Развиваме по втори ред и пресмятаме, че

$$\Delta_5 = (-2)(-1)^{2+2}.2 \begin{vmatrix} 1 & -5 \\ 0 & 25 \end{vmatrix} = (-4).25 = -100.$$