

TD2, Automatique

Objectifs

Le but de ce TD est de montrer la nécessité d'utiliser un contrôle en boucle fermée afin de stabiliser un système autour d'un point d'équilibre.

Le dernier exercice est une sensibilisation à la notion de contrôle PID (Proportionnel, Intégral, Dérivé).

 \triangleright **Exercice 1** (Sontag 1.4, page 9). On considère le système contrôlé suivant (pendule inversé linéarisé où on contrôle le couple moteur et avec g = l)

$$\ddot{\theta}(t) - \theta(t) = u(t),$$

avec $\theta(0) = 1$ et $\dot{\theta}(0) = -2$.

1.1. Écrire le système sous la forme

$$(IVP) \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ x(0) = x_0. \end{cases}$$

- **1.2.** Calculer e^{tA} à l'aide de la définition.
- **1.3.** Résoudre (*IVP*) avec le contrôle en boucle ouverte $u(t) = 3e^{-2t}$.
- 1.4. Résoudre le système homogène

$$\begin{cases} \dot{x}(t) = Ax(t) \\ x(0) = x_0, \end{cases}$$

avec comme condition initiale $\theta(0) = 0$ et $\dot{\theta}(0) = \varepsilon$. En déduire la solution de (IVP) avec $\theta(0) = 1$, $\dot{\theta}(0) = -2 + \varepsilon$ et toujours pour le contrôle $u(t) = 3e^{-2t}$.

- 1.5. Quel commentaire pouvez-vous faire sur la stabilisation du système?
- **1.6.** On prend maintenant $u(t) = k_1 \theta(t) + k_2 \dot{\theta}(t)$. Quelles relations doivent vérifier les constantes k_1 et k_2 afin que $x_e = (0,0)$ soit un point d'équilibre asymptotiquement stable pour le système bouclé?
- 1.7. On considère maintenant le système perturbé

$$\ddot{\theta}(t) - \theta(t) = u(t) + d(t)$$

Automatique TD2

avec

$$d(t) = \begin{cases} \varepsilon & \text{si } t \in [1, 2] \\ 0 & \text{sinon.} \end{cases}$$

On considère toujours le contrôle par retour d'état $u(t) = k_1\theta(t) + k_2\dot{\theta}(t)$ avec k_1 et k_2 vérifiant les relations de la question précédente. Montrer, pour le système bouclé, que θ et $\dot{\theta}$ approchent 0 en temps infini quelque soit la condition initiale.

$$\begin{cases} \ddot{\theta}(t) - \theta(t) = u(t) + e \\ \theta(0) = 1, \ \dot{\theta}(0) = -2, \end{cases}$$

où e est une constante.

2.1. On considère $k_1 < -1$, $k_2 < 0$ et $u(t) = k_1 \theta(t) + k_2 \dot{\theta}(t)$. Montrer que pour tout $e \neq 0$ on ne stabilise plus le système à l'origine.

2.2. On introduit une variable supplémentaire représentant la primitive de θ nulle en t=0. Ceci correspond à considérer le système suivant :

$$\begin{cases} \dot{x}_0(t) = x_1(t) \\ \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = x_1(t) + u(t) + e \\ x_0(0) = 0, \ x_1(0) = 1, \ x_2(0) = -2. \end{cases}$$

On note $x = (x_0, x_1, x_2)$ l'état du système et on considère le contrôle en boucle fermée $u(t) = k_0 x_0(t) + k_1 x_1(t) + k_2 x_2(t)$.

a) Calculer les valeurs de k_0 , k_1 et k_2 afin que les valeurs propres de A telle que

$$\dot{x}(t) = Ax(t) + \begin{pmatrix} 0 \\ 0 \\ e \end{pmatrix}$$

soient -1, -2 et -3.

b) Montrer que pour un tel cas on a

$$\lim_{t \to +\infty} x(t) = (-e/k_0, 0, 0).$$

c) Quel commentaire pouvez-vous faire sur la stabilisation du système?

Remarque. On dit que l'on a un régulateur ou correcteur ou contrôle Proportionnel-Intégral-Dérivé (PID) :

$$u(t) = k_1 \theta(t) + k_0 \int_0^t \theta(s) ds + k_2 \dot{\theta}(t).$$