Project 1: part A and B

first name and T.Z. numbers second name and T.Z. numbers

Part A:

• Dataset:

Class	Number samples					
Test						
-1	498					
1	502					
Train						
-1	513					
1	487					

• Classification report:

	Precision	Recall	F1-score	Support
-1	0.99	0.99	0.99	498
1	0.99	0.99	0.99	502
accuracy			0.99	1000
macro avg	0.99	0.99	0.99	1000
weighted avg	0.99	0.99	0.99	1000

• Heatmap:

• Accuracy score: 99.2%

• Test illustration:

• Train illustration:

• Discussions:

What can you conclude about your results?

According to our work, the algorithm is capable of finding a line separating two classes. We will see that it cannot in part B.

Does the accuracy of the result depend on the training set? Yes,

~50 (1) / ~50(-1) and a train set of 1000 data points, accuracy score: 99.2%

• 10 (1) / 90 (-1) and a train set of 1000 data points, accuracy score: 98.0%

• ~50 (1) / ~50(-1) and a train set of 500 data points, accuracy score: 97.4%

Training sample size has a very strong influence on accuracy score. A series of experiments were conducted both in terms of the amount of data and in terms of the percentage of classes, and every time the result was different.

How well we train our algorithm depends on the size of the training sample. Since the size of the test sample helps us check the accuracy of our algorithm, we aren't too concerned with the size. As a result, we are satisfied that it includes all possible options, which can be less or more than the size of the training sample.

Code:

```
import random
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.metrics import classification_report, confusion_matrix,
accuracy score
from mlxtend.plotting import plot_decision_regions
max limit = 10000
min_limit = -10000
num_samples = 1000
def generateDataset():
    one samples = 0
    zero_samples = 0
    data = []
    while (one_samples + zero_samples ) < num_samples:</pre>
        n = random.randint(min limit, max limit)
        m = random.randint(min_limit, max_limit)
        if (n/100 > 1):
            one samples += 1
            data.append([m/100, n/100, 1])
            zero samples += 1
            data.append([m/100, n/100, -1])
    return data
def datasetIllustration(X, y, resolution=0.02):
   # setup marker generator and color map
   markers = ('s', 'x', 'o', '^', 'v')
   colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
   cmap = ListedColormap(colors[:len(np.unique(y))])
   # plot the decision surface
   x1_{min}, x1_{max} = X[:, 0].min() - 1, X[:, 0].max() + 1
   x2_{min}, x2_{max} = X[:, 1].min() - 1, <math>X[:, 1].max() + 1
   xx1, xx2 = np.meshgrid(np.arange(x1 min, x1 max, resolution),
   np.arange(x2 min, x2 max, resolution))
```

```
plt.xlim(xx1.min(), xx1.max())
  plt.ylim(xx2.min(), xx2.max())
  # plot class samples
  for idx, cl in enumerate(np.unique(y)):
      plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
      alpha=0.8, c=cmap(idx),
      marker=markers[idx], label='class ' + str(cl))
class ADAptiveLInearNEuron(object):
   ADALINE classifier.
   Parameters
   eta - learning rate (between 0.0 and 1.0). The default value is 0.01.
   n_iter - the actual number of iterations before reaching the stopping
criterion. The default value is 15.
   def init (self, eta = 0.01, n iter = 15):
       self.eta = eta
        self.n_iter = n_iter
   def fit(self, X, y):
        Fit training data (Gradient Descent).
        Parameters
       X - training data.
       y - target values.
        Attributes
       weights - the weight vector.
        errors - number of misclassifications in every epoch.
        Returns
        Returns an instance of self.
        self.weights = np.zeros(1 + X.shape[1])
        for _ in range(self.n_iter):
           output model = self.net input(X)
```

```
errors = (y - output_model)
            # update rule
            self.weights[1:] += self.eta * X.T.dot(errors)
            self.weights[0] += self.eta * errors.sum()
        return self
   def net input(self, X):
        Calculate net input, sum of weighted input signals.
        y = SUM(X*w) + theta [https://en.wikipedia.org/wiki/ADALINE]
        Parameters
        X - the input vector.
        Attributes
        weights - the weight vector.
        weights[0] (theta) - some constant.
        Returns
        Return the output of the model.
        return np.dot(X, self.weights[1:]) + self.weights[0]
   def activation(self, X):
        """ Compute linear activation """
        return self.net input(X)
   def predict(self, X):
        """ Return class label after unit step """
        return np.where(self.activation(X) >= 0.0, 1, -1)
if name == " main ":
    # generate dataset for train and test
   train_data = generateDataset()
   test_data = generateDataset()
   df_train = pd.DataFrame(train_data, columns = ['x', 'y', 'label'])
   df_train.to_csv('out_train.csv', index=False)
    df_test = pd.DataFrame(test_data, columns = ['x', 'y', 'label'])
    df test.to csv('out test.csv', index=False)
```

```
X_train = np.stack([df_train['x'], df_train['y']]).T
    y_train = np.stack(df_train['label'])
    X_test = np.stack([df_test['x'], df_test['y']]).T
    y_test = np.stack(df_test['label'])
    # illustration
    figure one = plt.figure(1)
    datasetIllustration(X_train, y_train)
    plt.title('Train dataset')
    plt.xlabel('X')
    plt.ylabel('Y')
    plt.legend(loc='upper left')
    figure_one.show()
    input("Enter any char to continue: ")
    figure two = plt.figure(2)
    datasetIllustration(X test, y test)
    plt.title('Test dataset')
    plt.xlabel('X')
    plt.ylabel('Y')
    plt.legend(loc='upper left')
    figure two.show()
    input("Enter any char to continue: ")
    # start algorithm
    aln clf = ADAptiveLInearNEuron(n iter=3)
    aln clf.fit(X train, y train)
    aln_predictions = aln_clf.predict(X_test)
    # results
    accuracy = accuracy score(y test, aln predictions)
    print("accuracy score: {0:.2f}%".format(accuracy*100))
    print(classification_report(y_test, aln_predictions))
    figure_three = plt.figure(3)
    cf_matrix = confusion_matrix(y_test, aln_predictions)
    heatmap = sns.heatmap(cf_matrix, annot=True, cmap='Blues', fmt='g',
xticklabels=np.unique(y_test), yticklabels=np.unique(y test))
    plt.title('Heatmap')
    figure_three.show()
    input("Enter any char to continue: ")
```

```
figure_four = plt.figure(4)
fig = plot_decision_regions(X=X_test, y=y_test, clf=aln_clf, legend=2)
figure_four.show()
input("Enter any char to finish: ")
```

Part B:

• Dataset:

Class	Number samples					
Test						
-1	900					
1	100					
Train						
-1	900					
1	100					

• Classification report:

	Precision	Recall	F1-score	Support
-1	0.90	0.50	0.64	900
1	0.10	0.51	0.17	100
accuracy			0.50	1000
macro avg	0.50	0.50	0.40	1000
weighted avg	0.82	0.50	0.59	1000

• Heatmap:

• Accuracy score: 49.8%

Test illustration:

• Train illustration:

• Discussions:

What are the best results you obtain using an Adaline?

The best result was 49.8%.

Does the quality of the results change if you use more data?

According to the Vapnik-Chervonenkis dimension, no. As an example, in Part A we considered the problem of dividing points on a plane into two classes by a straight line - this is known as a linear classifier. If you have three points that are not on a straight line, then you can divide them into two classes in all possible ways by a straight line, but there is no way to decompose a group of over four points.

• 300 (1) / 700(-1), accuracy score: 49.7%

• 200 (1) / 1800(-1), accuracy score: 50.9%

Code:

```
import random
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.metrics import classification_report, confusion_matrix,
accuracy score
from mlxtend.plotting import plot_decision_regions
max limit = 10000
min limit = -10000
num_samples = 1000
def generateDataset():
    one_samples = 0
    zero samples = 0
    data = []
    while (one samples + zero samples ) < num samples:</pre>
        n = random.randint(min_limit, max_limit)
        m = random.randint(min_limit, max_limit)
        x = m/100
        y = n/100
        circle = pow(x, 2) + pow(y, 2)
        if (circle <= 9 and circle >= 4):
            one samples += 1
            data.append([x, y, 1])
        elif zero_samples < 900:</pre>
            zero samples += 1
            data.append([x, y, -1])
    return data
def datasetIllustration(X, y, show_circle=False, resolution=0.02):
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])
    # plot the decision surface
```

```
x1_{min}, x1_{max} = X[:, 0].min() - 1, X[:, 0].max() + 1
   x2_{min}, x2_{max} = X[:, 1].min() - 1, X[:, 1].max() + 1
   xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
   np.arange(x2 min, x2 max, resolution))
   plt.xlim(xx1.min(), xx1.max())
   plt.ylim(xx2.min(), xx2.max())
   # plot class samples
   for idx, cl in enumerate(np.unique(y)):
       plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
       alpha=0.8, c=cmap(idx),
       marker=markers[idx], label='class ' + str(cl))
   # circles
   if show circle:
       circle9 = plt.Circle((0, 0), 2, color='black', fill=False)
       circle4 = plt.Circle((0, 0), 3, color='green', fill=False)
       plt.gca().add patch(circle4)
       plt.gca().add_patch(circle9)
class ADAptiveLInearNEuron(object):
   ADALINE classifier.
   Parameters
   eta - learning rate (between 0.0 and 1.0). The default value is 0.01.
   n_iter - the actual number of iterations before reaching the stopping
criterion. The default value is 15.
   def init (self, eta = 0.01, n iter = 15):
       self.eta = eta
       self.n_iter = n_iter
   def fit(self, X, y):
       Fit training data (Gradient Descent).
       Parameters
       X - training data.
       y - target values.
       Attributes
```

```
weights - the weight vector.
    errors - number of misclassifications in every epoch.
   Returns
   Returns an instance of self.
    self.weights = np.zeros(1 + X.shape[1])
    for _ in range(self.n_iter):
        output model = self.net input(X)
        errors = (y - output_model)
        # update rule
        self.weights[1:] += self.eta * X.T.dot(errors)
        self.weights[0] += self.eta * errors.sum()
    return self
def net_input(self, X):
   Calculate net input, sum of weighted input signals.
   y = SUM(X*w) + theta [https://en.wikipedia.org/wiki/ADALINE]
   Parameters
   X - the input vector.
   Attributes
   weights - the weight vector.
   weights[0] (theta) - some constant.
   Returns
   Return the output of the model.
    return np.dot(X, self.weights[1:]) + self.weights[0]
def activation(self, X):
    """ Compute linear activation """
    return self.net_input(X)
def predict(self, X):
```

```
""" Return class label after unit step """
        return np.where(self.activation(X) >= 0.0, 1, -1)
if name == " main ":
    # generate dataset for train and test
    train_data = generateDataset()
    test data = generateDataset()
    df_train = pd.DataFrame(train_data, columns = ['x', 'y', 'label'])
    df_train.to_csv('out_train.csv', index=False)
    df_test = pd.DataFrame(test_data, columns = ['x', 'y', 'label'])
    df test.to csv('out test.csv', index=False)
    X train = np.stack([df train['x'], df train['y']]).T
    y_train = np.stack(df_train['label'])
    X_test = np.stack([df_test['x'], df_test['y']]).T
    y_test = np.stack(df_test['label'])
    df_test_filtered = df_test[df_test['label'] == 1]
    coordinates_test = np.stack([df_test_filtered['x'],
df_test_filtered['y']]).T
    labels_test = np.stack(df_test_filtered['label'])
    df_train_filtered = df_train[df_train['label'] == 1]
    coordinates_train = np.stack([df_train_filtered['x'],
df train filtered['y']]).T
    labels_train = np.stack(df_train_filtered['label'])
    # illustration
    figure one = plt.figure(1)
    datasetIllustration(X_train, y_train)
    plt.title('Train dataset')
    plt.xlabel('X')
    plt.ylabel('Y')
    plt.legend(loc='upper left')
    figure one.show()
    input("Enter any char to continue: ")
    figure two = plt.figure(2)
    datasetIllustration(coordinates train, labels train, show circle=True)
    plt.title('Train dataset')
    plt.xlabel('X')
    plt.ylabel('Y')
    plt.legend(loc='upper left')
```

```
figure two.show()
    input("Enter any char to continue: ")
   figure three = plt.figure(3)
   datasetIllustration(X_test, y_test)
   plt.title('Test dataset')
   plt.xlabel('X')
   plt.ylabel('Y')
   plt.legend(loc='upper left')
   figure_three.show()
   input("Enter any char to continue: ")
   figure four = plt.figure(4)
   datasetIllustration(coordinates test, labels test, show circle=True)
   plt.title('Test dataset')
   plt.xlabel('X')
   plt.ylabel('Y')
   plt.legend(loc='upper left')
   figure four.show()
    input("Enter any char to continue: ")
   # start algorithm
   aln_clf = ADAptiveLInearNEuron(eta = 0.01, n_iter = 15)
   aln_clf.fit(X_train, y_train)
   aln predictions = aln clf.predict(X test)
   # results
   accuracy = accuracy_score(y_test, aln_predictions)
   print("accuracy score: {0:.2f}%".format(accuracy*100))
   print(classification_report(y_test, aln_predictions))
   figure five = plt.figure(5)
   cf matrix = confusion matrix(y test, aln predictions)
   heatmap = sns.heatmap(cf_matrix, annot=True, cmap='Blues', fmt='g',
xticklabels=np.unique(y test), yticklabels=np.unique(y test))
   plt.title('Heatmap')
   figure five.show()
   input("Enter any char to continue: ")
   figure six = plt.figure(6)
   fig = plot_decision_regions(X=X_test, y=y_test, clf=aln_clf, legend=2)
   figure six.show()
   input("Enter any char to finish: ")
```