AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*,†, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*, Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*,†

*equal technical contribution, †equal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

ETRI, Artificial Intelligence, Seungeun Han

Contents

- 1. Introduction
- 2. Vision Transformer(ViT)
- 3. Experiments
- 4. Results
- 5. Conclusions

1. Introduction

• "Transformers" become the state of the art method in many NLP (Natural Language Processing) tasks.

Attention is all you need

```
<u>A Vaswani, N Shazeer, N Parmar</u>... - Advances in neural ..., 2017 - proceedings.neurips.cc ... the number of attention heads and the attention key and value dimensions, keeping the amount of computation constant, as described in Section 3.2.2. While single-head attention is 0.9 ... ☆ 저장 切 인용 57192회 인용 관련 학술자료 전체 46개의 버전 ≫
```

- However, In computer vision, Convolutional architectures remain dominant. (CNN)
- So, the idea is that if we apply a standard Transformer directly to images with the fewest modifications, it will be better than CNN.

1. Introduction

- Split an image into patches.
- The patches ≈ tokens (words) in an NLP

Provide the sequence of linear embeddings of these patches.

2. Vision Transformer(ViT)

2. Vision Transformer(ViT)

2. Vision Transformer(ViT)

$$\mathbf{z}_{0} = [\mathbf{x}_{\text{class}}; \mathbf{x}_{p}^{1}\mathbf{E}; \mathbf{x}_{p}^{2}\mathbf{E}; \cdots; \mathbf{x}_{p}^{N}\mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^{2} \cdot C) \times D}, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$
(1)

Classification token

Image sequence

Position embedding

$$\mathbf{z'}_{\ell} = \underline{\mathrm{MSA}}(\underline{\mathrm{LN}}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \qquad \qquad \ell = 1 \dots L$$
 Multi-head Layer Normalization Attention

$$\mathbf{z}_{\ell} = \underline{\mathrm{MLP}}(\mathrm{LN}(\mathbf{z'}_{\ell})) + \mathbf{z'}_{\ell},$$

Multi Layer Perceptron

$$\frac{\mathbf{y}}{\mathsf{T}} = \mathrm{LN}(\mathbf{z}_L^0)$$

Predicted class

$$\ell = 1 \dots L \tag{3}$$

3. Experiments

Datasets

- ILSVRC-2012 ImageNet dataset
 - : 1k classes and 1.3M images
- JFT
 - : 18k classes and 303M high-resolution images
- ImageNet
- CIFAR-10/100
- Oxford-IIIT Pets
- Oxford Flowers-102

3. Experiments

ResNet(CNN)
 ViT
 ViS
 Hybrid

19-task VTAB classification

Model Variants

Model	Layers	${\it Hidden size } D$	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

- ViT-L/16: the "Large" variant with 16x16 input patch size

3. Experiments

- Metrics
- Fine-tuning Accuracy
 - : captures the performance of each model after fine-tuning it on the respective dataset.
- Few-shot Accuracy
 - : obtained by solving a regularized least-squares regression problem.

- Mainly using fine-tuning accuracy.
- But, sometimes using few-shot accuracy for fast evaluation.

Comparison to state of the art

Pre-trained dataset

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

By this, we can see computational burden.

- ViT-H/14 improves the performance on ImageNet, CIFAR-100, and the VTAB suite.
- ViT-L/16 model pre-trained on the public ImageNet-21k dataset performs well on most datasets too, while taking fewer resources to pre-train.

how crucial is the dataset size?

- The CNN outperforms ViT on ImageNet, but with the larger datasets, ViT overtakes.

Scaling Study

- 1. Vision Transformers dominate ResNets on the performance/compute trade-off.
- 2. Hybrids slightly outperform ViT at small, but the difference vanishes for larger models.
- 3. Vision Transformers appear not to saturate and can be scaled.

- How the Vision Transformer processes image data
 - Similarity of position embeddings

Input patch column

- Closer patches tend to have more similar position embeddings.
- Same row/column patches have similar embeddings.
- 3. The 1D position embeddings learn to represent 2D image topology

- How the Vision Transformer processes image data
 - Mean attention distance

- Attention distance ≈ receptive field size in CNN
- Self-attention allows ViT to integrate information across the entire image even in the lowest layers.

5. Conclusion

- On large dataset, ViT is better than state-of-the-art CNN.
- While requiring lower computational resources.
- Simple, Scalable

 Thus, Vision Transformer exceeds the state of the art on many image classification datasets, being relatively cheap to pre-train.

