2008~2009 学年第 1 学期

班级	106070201,	106070202	学号	姓名_		考试科目	信号与	系统	<u>B 卷</u>	<u>闭卷</u>	共_	<u>5</u>	瓦
				· 密		· 封 · · · · · ·		线					
					学生答题不	得超过此线							
			题号 分数	- =	三四	五	六	总分 总分人	`				
—, [、填空题 得分	(每题 2 2	分,10 道]]	道题,共 2 0	分)								
•	1.系统对	信号无失真	_ :地传输时	, 系统的系统	的 逐函数在频域中	应满足				0			
	2.周期信	号频谱的特	点是							0			
	3. 已知 f((t)的傅里叶	变换为 <i>F</i> ($oldsymbol{w}$),则 $f_1(t)=$	= f(-at - b)(a >	0, b > 0)的	傅里变换为			<u>o</u> _			
	4.若系统	的单位阶跃	(响应 g(t)=	$= (1 - e^{-t})\mathbf{e}(t)$, 则系统的微分	·方程为				<u> </u>			
					拉斯变换的收敛								
	6.单边 Z 🤄	变换 <i>F</i> (Z)=	$=\frac{2z^2}{(z-1)^2}$]原函数 f(n)	=					0			
	7 . 系统函	数 $H(s) = \frac{1}{(s)}$	$\frac{s+c}{(s+a)(s-b)}$	- 的稳定条件, 	E			_(其中 <i>a,b,c</i>	均为实数	ጀ ኤ			
	8 . ∫ _∞ cos w	$vtdt = \underline{\hspace{1cm}}$			$\underline{\qquad}$; $\int_{-\infty}^{\infty} e^{j\mathbf{w}t} d\mathbf{w}$	'=				o			
	9. 离散系	统的单位阶	`跃响应 g($(n) = \left(-\frac{1}{2}\right)^n \mathbf{e}$	n),则描述该系	系统的差分为	方程是			0			
					; ∫ _∞ 4 sin								
=	、单项选	择题(从名	与小题的	四个备选答	§案中,选出·	一个正确的	勺答案,并	 件将其代号填	真在横线	上,4	ひょう	题 2 分	'n
共 2	20分)		_										
	得分	评卷人											
	1.下列各	表达式中正	确的是:		o								
	(A) $d(2t)$	$(\mathbf{r}) = \mathbf{d}(t)$	B) $d(2t)$	$=\frac{1}{2}\boldsymbol{d}(t) \qquad (\ 0$	$\mathbf{C}) \mathbf{d}(2t) = 2\mathbf{d}(t)$	(D) d	$I(2t) = \mathbf{d}'(t)$						
	2.序列和	$\sum_{k=-\infty}^{\infty} \boldsymbol{d}[k] = \underline{}$		o									
	(A)1		(B) d [k]		(C) e [k]	(D) k e [k]						
	3 . 信号 <i>e^{ji}</i>	$^{2t}\boldsymbol{d}'(t)$ 的傅里	里叶变换为	ɔ:	°								
	(A)-2	(B) $j(w-$	2)	(C) $j(w+2)$	(D)	$2 + j\mathbf{w}$						

2008~2009 学年第 1 学期

班级_106070201、10607020	<u>)1</u> 学号	姓名	考试科目	信号与系统	<u>B 卷</u> 闭卷 共 <u>5</u> 页
	密		封	线	
		学生答题不行	导超过此线		
4 草线性系统的系	(幼乳粉 41(s)S	,若其零状态响应 y _{zs}	$(t) = (1 - a^{-t})$	χ_t) 刚玄纮的输入 t	(·)
	511				(t) 0
		(C) $e^{-2t}\mathbf{e}(t)$			
5.若因果序列 f (n)的 Z 变换为 $F(z)$,	则 $z^{-2}F\left(\frac{z}{2}\right)$ 的 Z 反变	换为	0	
(A) $2^{n+2} f(n+2)$	(B) $f(2n-2)$	(C) $2^{n-2} f(n-2)$	(D) $f(2)$	(2n-4)	
6 . 若 f(t)是实奇区	数,则其傅里叶变	换 <i>F</i> (w)是	0_		
(A)实偶函数	(B) 实奇函数	(C)虚偶函数	(D)虚	奇函数	
7. 卷积积分 t e (t)*	$\left[e^{-t}oldsymbol{e}(t) ight]$ 是	0			
(A) $(t-1+e^{-t})e(t$) (B) $(t+e^{-t})\mathbf{e}(t)$) (C) $(t-1+e^t)e(t)$) (D) (t+	$-e^{t}\mathbf{e}(t)$	
8. 单边拉氏变换 <i>F</i>	$F(s) = \frac{se^{-ps}}{s^2 + 1}$ 的原函数	坟等于	o		
(A) $\cos(t-\boldsymbol{p})\boldsymbol{e}(t)$	(B) $\cos(t-1)\mathbf{e}(t)$	(C) $\cos(t-p)e(t-p)$	p) (D) c	$\cos(t-1)\boldsymbol{e}(t-1)$	
9.序列 $f(n) = \sum_{k=0}^{\infty} (-1)^k$	$(-2)^k \mathbf{d}(n-k)$ 的单边	Z 变换为	<u> </u>		
$(A) \frac{z}{z-2}$	$(B) \frac{z}{z+2}$	(C) $\frac{z}{(z-1)(z-2)}$	(D)	$\frac{2z}{z^2-2}$	
10 . 信号 $f(t) = e(t)$	$-\mathbf{e}(t-2)$ 的单边拉	氏变换 $F(s) = $		<u>) </u>	
(A) $\frac{1}{s}$	(B) $(1-e^{-2s})/s$	(C) $\frac{1}{s}$	$\frac{1}{s+2}$	(D) $\frac{e^{-2s}}{s}$	
 三、简单分析题(1	氢小颗 6 分	30分)			
得分评卷人		30 <i>7</i> 1 <i>7</i>			
1.求信号 $\frac{\sin 2\mathbf{p}(t-2)}{\mathbf{p}(t-2)}$	^{- 2)} 的频谱。)				

2008~2009 学年第 1 学期

班级 106070201、106070201	学号	 考试科目	信号与系统	<u>B 卷 闭卷</u>	共 <u>5</u> 页
	密	 . 封	线		

学生答题不得超过此线

2 . 某一阶 LTI 离散系统,其初始状态为 f(0) ,已知当激励为 f(n)时,其全响应为: $y_1(n) = \mathbf{e}(n)$;若起始状态仍为 f(0) ,激励为 -f(n)时,其全响应为: $y_2(n) = \left[2\left(\frac{1}{3}\right)^n - 1\right]\mathbf{e}(n)$;求若起始状态为 2f(0) ,激励为 3f(n)时系统的全响应 $y_3(n)$ 。

3. 已知信号 f(t)的波形如图所示,试画出信号 $y(t)=f\left(-2t-2\right)$ 的波形。

4. 已知函数 $f_1(t)$, $f_2(t)$ 的波形如图所示,求 $y(t) = f_1(t) * f_2(t)$ 与 y(6)。

5. 周期信号 $f(t) = 1 + \frac{1}{2}\cos\left(\frac{\boldsymbol{p}}{4}t + \frac{\boldsymbol{p}}{3}\right) + \frac{1}{4}\sin\left(\frac{\boldsymbol{p}}{3}t - \frac{\boldsymbol{p}}{6}\right)$,试求该周期信号的基波周期 T 及基波角频率 \boldsymbol{w} ,并画出它的单边频谱

图。

2008~2009 学年第 1 学期

班级 106070201、	106070201	学号	姓名	考试科目	信号与系统	<u>B 卷</u>	<u>闭卷</u>	共 <u>5</u> 页
		密		封	线			

学生答题不得超过此线

四、综合计算题 (每小题 10 分,共 30 分)

得分	评卷人

1.如图所示电路处于稳态,t=0时开关 K 由" 1"打到" 2", 试求输出电压u(t)的零输入响应 $u_{zi}(t)$,零状态响应 $u_{zs}(t)$ 和全响应u(t)。

2.一线性时不变离散系统系统函数 H(z)的零极点分布如图,且已知某单位脉冲响应 h[n]的初值 h[0]=1,求该系统的单位脉冲响应 h[n],且写描述该系统的差分方程。

2008~2009 学年第 1 学期

班级 106070201、106070201	学号 姓名	考试科目	信号与系统	<u>B 卷</u> 闭卷	共 <u>5</u> 页
	密	······封 ········	线		
	学生往	答题不得超过此线			
3.为了通信保密,可将i	语音信号在传输前进行倒频,	接收端收到倒频信号	計后,再设法恢复原数	频谱。图(b)是-	−倒频系统。
如输入带限信号 $f(t)$ 的频谱如	图(a)所示,其最高角频率	为 \mathbf{w}_m 。已知 $\mathbf{w}_b > \mathbf{w}_m$,图(b)中 HP 是	理想高通滤波器 ,	其截止角频
率为 \mathbf{w}_{b} ,即					
	$H_1(v)$	$\mathbf{v} = \begin{cases} K_1, \mathbf{w} > \mathbf{w}_b \\ 0, \mathbf{w} < \mathbf{w}_b \end{cases}$			
图(b)中 LP 为理想低通滤波	$oldsymbol{\mathrm{g}}$ 皮器,截止角频率为 $oldsymbol{w}_{\!\scriptscriptstyle{m}}$,即				
	$H_2(\mathbf{r}$	$\mathbf{w}) = \begin{cases} K_2, \mathbf{w} < \mathbf{w}_m \\ 0, \mathbf{w} > \mathbf{w}_m \end{cases}$			
画出 <i>x(t)</i> , <i>y(t)</i> 的频谱图。					
	$F(\omega)$ $O \qquad \omega_m \qquad \omega$ (a)	$H_{1}(\omega)$ HP $\cos(\omega_{b}t)$ $\cos[(\alpha + i)]$ (b)	$H_{2}(\omega)$ LP $V(t)$ $D_{b}+\omega_{m})t]$		