

Instituto Tecnológico de Estudios Superiores de Monterrey

Modelación en Sistemas Multiagentes con Gráficas Computacionales Gpo (302)

Revisión 3 - Avance al 60%

Equipo 4

Integrantes:

Carlos Alan Gallegos Espíndola	A01751117
Jorge Rojas Rivas	A01745334
Omar Rodrigo Talavera Becerra	A01752221
Paulina Guadalupe Alva Martínez	A01750624

Tutores:

Jorge Adolfo Ramírez Uresti

Octavio Navarro Hinojosa

Descripción detallada del medio ambiente

Para la realización de este modelo se nos solicita que refleje el comportamiento del tránsito vehicular dentro de un modelo 3D, para esto la programación de nuestro agente estará desarrollada con la librería mesa de Python, en la cual se verá como es el tránsito de los automóviles representados por círculos azules que se moverán alrededor del grid, para poder crear una representación más entendible se importaron 2 documentos donde se establecen las direcciones de las calles y una lista en JSON para definir el significado de las direcciones en palabras. Otros datos como lo son los edificios representados en mesa como cuadros color negro, las calles que tiene un color gris y los semáforos son los cuadros blancos que también cuentan con un patrón de color que irá cambiando cada 10 steps son descritos dentro del modelo y servidor de mesa. Para el automóvil le será accesible la dirección de las calles y el estado del semáforo para identificar en que comento avanzar y cuándo detenerse, pero esta información estará limitada por su rango de visión el cual es 1 cuadro a su alrededor, por lo que su ambiente es parcialmente accesible, también se puede decir que será medio determinístico porque a pesar de tener condiciones para avanzar y respetar la dirección de las calles, factores como otros autos o lo que no está a su vista también influyen en sus decisiones por lo que su siguiente movimiento queda incierto hasta poder avanzar y tener una nueva visión de su entorno. No tiene estados o actividades marcadas, el agente auto solo se moverá a través del grid leyendo los datos a su alrededor, por lo que no es episódico, pero si continuo, ya que en cada paso de tiempo el agente auto recibe la información de la dirección de las calles, su posición anterior y la nueva, además de sí se encuentra algún semáforo cercano a él

En esta simulación se aprecia el movimiento de 5 autos que aparecen en posiciones aleatorias, cada uno recorre el plano leyendo la dirección de las calles donde se encuentra y evaluando si se encuentra cerca de un semáforo o de algún tipo de esquina, ya que tiene un movimiento aleatorio asignado dependiendo de cada caso, todo este comportamiento es dinámico, puesto que el agente se encuentra conviniendo activamente con su medio ambiente.

Diagramas de Agentes

Por ahora solo se tiene un agente automóvil que tiene comportamientos asignados y existe una interacción con su medio ambiente, pero se tiene pensado mejorar el funcionamiento de los semáforos para que exista una comunicación entre ellos y puedan detectar la posiciones de los automóviles

Automovil

Group: Agentes **Role:** Conducir

Events:

- Detectar semaforo
- Detectar tipo de esquina
- Detenerse
- Avanzar
- Grirar
- -Estacionarse
- -Leer direccion de calle

Events - Action:

Detecta semaforo en rojo - Detenerse Detecta semaforo en verde - Avanzar Lee direccion recta - Avanza Lee direccion ala izquieda - Gira a la

izquierda Lee direccion a la derecha - Gira a la

derecha Detecta un tipo de esquina - Gira aleatoriamente

Llega a su destino - Estacionarse

Diagramas de Protocolos de Interacción

Ya que por el momento solo existe un tipo de agente y que dicho agente no tiene una interacción programada entre los distintos agentes de su mismo grupo, no es posible el diseñar un diagrama de protocolos de interacción, así que se optó por agregar un diagrama de cómo reacciona el agente automóvil a su medio ambiente.

Interacción del agente Auto

Plan de trabajo

Actividad	Responsable	Estatus	Fecha Estimada	Fecha Finalizada	Comparación	Nivel de esfuerzo
Documentación	Alan Paulina Jorge	Terminada	27/11/22	28/11/22	1 día de diferencia	Bajo
Codigo Mesa (Avance)	Alan	Terminado	28/11/22	28/11/22	Fecha cumplida	Alto
Diseño Unity (Avance)	Omar	Terminado	28/11/22	27/11/22	1 día antes	Medio
Terminar código mesa	Alan Jorge	Pendiente	30/11/22			Alto
Finalizar diseño Unity	Omar Paulina	Pendiente	30/11/22			Medio
Servidor Flask	Alan	Pendiente	1/12/22			Medio
Simulación visual	Omar Alan	Pendiente	1/12/22			Alto
Funcionamiento semáforos (Modelo y luces Unity)	Paulina	Pendiente	1/12/22			Medio
Documentación final	Jorge Paulina	Pendiente	1/12/22			Bajo

Aprendizaje adquirido

El conocimiento que se ha adquirido durante el desarrollo del código ha sido mayormente del manejo y funcionamiento de agentes y multiagentes. El tener que diseñar diagramas de sus interacciones, funcionamiento y descripción nos ha dado un visón más certera de lo que conocemos en entornos de programación, esto debido a que lo más cercano que hemos trabajado escolarmente ha sido con objetos, pero el hecho que los agentes sean más autónomos que un mismo objeto da pauta a establecer normas de movimiento, normas de interacción, normas de comportamiento, etc.

De igual manera, el funcionamiento de vectores es un factor importante para el desarrollo de la simulación, pues Unity expresa los valores de formas diferentes al cómo los expresa Python, pues el hecho que Unity use C# para creación de scripts genera un comportamiento distinto y algo que se aprendió durante la ejecución son los distintos tiempos de ejecución

que toman dichos lenguajes. Otro dato importante de mencionar es que las escalas con manejo de matrices requieren alta importancia a la hora de ejecución, pues afecta directamente con la simulación y puede que esta no tenga sentido por las distintas escalas asignadas.