System rekomendacji filmów

Marcin Starzak, Michał Cyran

Celem projektu było opracowanie systemu rekomendacji filmów, który umożliwia przewidywanie ocen filmów na podstawie preferencji użytkowników. System opiera się na danych z bazy Movie Lens Small Latest Dataset (kaggle.com/datasets/...), która zawiera informacje o ocenach filmów, ich tagach oraz gatunkach. W projekcie wykorzystano kombinację metod znajdowania najbliższego wektora cech filmów oraz dekompozycji macierzy metodą Singular Value Decomposition (SVD), aby stworzyć efektywny i jak najbardziej dokładny model rekomendacji.

Model operuje na liście ostatnich *n* ocenionych przez użytkownika filmów jako wejściu. Na tej podstawie, model generuje teoretyczny profil filmu oparty na uśrednionych cechach tagów, a następnie wybiera film, który ma najbliższy wektor cech (o najmniejszej normie) do tego teoretycznego profilu. Kolejnym krokiem jest przekazanie *k* najbardziej zbliżonych filmów do algorytmu SVD, który dokonuje predykcji ocen dla każdego z tych filmów. Proces ten ma na celu ocenę, czy proponowany film pasuje do dotychczasowych preferencji ocenianych przez użytkownika oraz innych użytkowników o podobnych gustach.

Uzasadnienie Wyboru Techniki/Modelu

Wybraliśmy kombinację metod znajdowania najbliższego wektora cech filmów oraz SVD ze względu na ich komplementarne zalety:

• Znajdowanie najbliższego wektora cech filmów:

- Bezpośredniość: Metoda ta pozwala bezpośrednio porównywać filmy na podstawie ich cech, takich jak tagi i gatunki.
- Skalowalność: Algorytm jest skalowalny i może być łatwo dostosowany do dużych zbiorów danych.
- Szybkość obliczeń: Metoda ta jest szybka w obliczeniach, co jest kluczowe dla systemów rekomendacji działających w czasie rzeczywistym.

• SVD (Singular Value Decomposition):

- Redukcja wymiarowości: SVD pozwala na zredukowanie wymiarowości danych, co zmniejsza złożoność obliczeniową i zwiększa szybkość modelu.
- Wysoka dokładność: SVD jest znane z wysokiej dokładności w przewidywaniu brakujących wartości w macierzach użytkownik-film.
- Elastyczność: Technika ta dobrze radzi sobie z danymi o różnej gęstości i jest w stanie efektywnie przewidywać oceny nawet dla użytkowników z niewielką ilością ocen.
- Dodatkowo, wzorowaliśmy się pracą <u>Application of Dimensionality Reduction in</u> <u>Recommender System -- A Case Study</u>

Opis Danych Wejściowych

Dane wejściowe pochodzą z bazy MovieLens, zawierającej trzy główne pliki:

- ratings.csv: Zawiera oceny filmów przez użytkowników.
- **movies.csv**: Zawiera informacje o filmach, takie jak tytuły i gatunki.
- tags.csv: Zawiera tagi przypisane filmom przez użytkowników.

Przed przetwarzaniem danych dokonano następujących operacji:

- **Czyszczenie danych**: Usunięto zbędne kolumny (timestamp i userld) oraz tagi pojawiające się tylko raz.
- **Przygotowanie tagów**: Każdemu tagowi przypisano unikalny ID i utworzono macierz tagów dla każdego filmu.
- **Normalizacja ocen**: Oceny zostały znormalizowane przez zastąpienie brakujących ocen średnią oceną filmu oraz odjęcie średniej oceny użytkownika.

Testowanie modelu

Niestety, z powodu braku odpowiednich danych, nie przeprowadzono testów modelu na dedykowanym zestawie testowym. Wymagałoby to odpowiedniej grupy testerów, którzy ocenialiby przedstawione propozycje. W efekcie, nie posiadamy wartości RMSE ani innych miar oceny jakości modelu.

Przeprowadzaliśmy jednak praktyczne testy, które skutkowały propozycjami filmów o dobrych ocenach i gatunkowo zbliżonych do filmów wejściowych.

Analiza Wyników

Model oparty na kombinacji metod znajdowania najbliższego wektora cech filmów oraz SVD ma potencjał osiągnięcia zadowalających wyników, jednak konieczne jest przeprowadzenie testów na dedykowanym zestawie testowym w celu oceny jego dokładności i skuteczności. Dalsze badania mogą również obejmować optymalizację hiperparametrów oraz eksplorację innych zaawansowanych technik uczenia maszynowego.

Propozycje Dalszych Kroków

- Przeprowadzenie testów: Konieczne jest przeprowadzenie testów modelu na dedykowanym zestawie testowym w celu dokładnej oceny jego wydajności.
- **Optymalizacja hiperparametrów**: Eksperymentowanie z różnymi wartościami parametrów modelu może pomóc w poprawie jego dokładności i skuteczności.
- **Eksploracja zaawansowanych technik**: Wprowadzenie zaawansowanych metod uczenia maszynowego, takich jak głębokie sieci neuronowe, może dalsze zwiększyć efektywność modelu rekomendacji filmów.