Added Prognostic Value of 3D Deep Learning-Derived Features from Preoperative MRI for Adult-type Diffuse Gliomas

김민수 (Min Soo Kim)

- 학력사항 한국교통대학교 산업공학과 학사 서울대학교 암연구소 대학원 종양생물학 협동과정 Co-supervisor (예정)
- 경력사항 現 서울대학교병원 영상의학과 AICON 연구원 前 엔씨소프트 금융 AI R&D 시장이해팀 前 엔씨소프트 금융 AI R&D 투자전략팀 前 한국수자원기술원 인턴

주요 성과

- 1. 교모세포종 환자 생존 분석 SCIE 논문 공동저자 (American Society of Neuroradiology)
- 2. 틱데이터 기반 KOSPI 200, KOSDAQ 150 증권시장 ETL 파이프라인 설계
- 3. 전기차 배터리 불량 유형 분류 및 예측 2D 이미지 딥러닝 모델 설계 및 최적화 논문 공동저자

Background

- MRI (Magnentic Resonance Imaging)
- 강력한 자기장과 라디오 파동을 활용하여 수소 원자(Proton)에서 방출되는 신호를 수집하여 이미지로 변환
- T1-weighted (T1-강조영상)
- 뇌의 해부학적 구조에 대해서 파악하기 용이함
- (Fat : White, Water : Dark)
- T2-weighted (T2-강조영상)
- 급성기 병변을 파악하기 용이함
- (Fat : Dark, Water : White)
- Flair
- CSF 신호를 억제시킨 영상, T2-강조영상보다 병변을 파악하기 더욱 용이함
- (Fat : Dark, Water : Dark)

Attention Mechanism

RNN 기반 Seq2seq 모델 한계를 보완하고자 제시되었던 방법론

핵심 : 매 시점마다 현재 시점에서 예측해야 할 값과 연관이 있는 입력 부분을 좀 더 집중해서 봄 (입력 값에 대하여 전부 동일한 비율로 참고하는 것이 아님, 차별성을 두겠다는 것이 메인 포인트)

- 1. RNN의 고질적인 문제 기울기 소실 문제
- -> RNN에서는 주로 활성화 함수로 Hypervolic tanh를 사용하기에 레이어가 많아질수록 오차 역전파 과정에서 문제가 생긴다.
- 2. Seq2Seq에서는 입력된 정보를 고정된 길이의 컨텍스트 벡터에 압축하다보니 정보손실이 발생하며, 시퀀스가 길어질수록 더욱 심해진다.

Attention Score

$$score(s_t,\ h_i) = s_t^T h_i$$

$$e^t = [s_t^T h_1, \dots, s_t^T h_N]$$

Attention Distribution

$$lpha^t = softmax(e^t)$$

모든 값을 합하면 1이 되는 확률 분포 (각각의 값은 Attention Weights)

Attention Value $a_t = \sum_i \alpha_i^t h_i$ 어텐션 값과 디코더의 t 시점의 은닉 상태를 연결한다.(Concatenate)

Preparation

SNUH with Glioma Patients (N=1139)

Model: SE-RESNEXT50 (Internal:SNUH, External:TCGA)

- 1. Duration:OS, Pathology:all (train=1025, valid=114, test=160)
- 2. Duration:OS, Pathology:GBL (train=586, valid=66, test=61)
- 3. Duration: 1yr, Pathology: all (train=1025, valid=114, test=160)
- 4. Duration: 1yr, Pathology: GBL (train=586, valid=66, test=61)

Model: ResNet50-CBAM (Internal:SNUH, External:TCGA)

- 1. Duration:OS, Pathology:all (train=1025, valid=114, test=160)
- 2. Duration:OS, Pathology:GBL (train=586, valid=66, test=61)
- 3. Duration: lyr, Pathology: all (train=1025, valid=114, test=160)
- 4. Duration: 1yr, Pathology: GBL (train=586, valid=66, test=61)

Architecture

ILSVRC 2015

Resnet50-CBAM

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer				
conv l	112×112	7×7, 64, stride 2								
conv2_x	56×56	3×3 max pool, stride 2								
		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	1×1, 64 3×3, 64 1×1, 256	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$				
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128 \end{array}\right]\times2$	3×3, 128 3×3, 128 ×4	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \times 8 \]				
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 6 \]	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 23	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 36				
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3 \]	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \] \times 3	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \] \times 3				
	1×1	average pool, 1000-d fc, softmax								
FLOPs		1.8×10^{9}	3.6×10 ⁹	3.8×10^{9}	7.6×10 ⁹	11.3×10 ⁹				

- 두가지 어텐션 모듈 추가 (Channel Attention, Spatial Attention) -> Intermediate Feature (중간특징)을 효과적으로 강조 및 억제

Channel Attention Module

$$\mathbf{M_c(F)} = \sigma(MLP(AvgPool(\mathbf{F})) + MLP(MaxPool(\mathbf{F})))$$

= $\sigma(\mathbf{W_1(W_0(F_{avg}^c))} + \mathbf{W_1(W_0(F_{max}^c))}),$ (2)

where σ denotes the sigmoid function, $\mathbf{W_0} \in \mathbb{R}^{C/r \times C}$, and $\mathbf{W_1} \in \mathbb{R}^{C \times C/r}$. Note that the MLP weights, $\mathbf{W_0}$ and $\mathbf{W_1}$, are shared for both inputs and the ReLU activation function is followed by $\mathbf{W_0}$.

$$\mathbf{M_s(F)} = \sigma(f^{7\times7}([AvgPool(\mathbf{F}); MaxPool(\mathbf{F})]))$$

$$= \sigma(f^{7\times7}([\mathbf{F_{avg}^s}; \mathbf{F_{max}^s}])), \tag{3}$$

where σ denotes the sigmoid function and $f^{7\times7}$ represents a convolution operation with the filter size of 7×7 .

ILSVRC 2017 SE-RESNEXT50

Figure 1: A Squeeze-and-Excitation block.

Squeeze

$$z_c = F_{sq}\left(u_c
ight) = rac{1}{H imes W} \sum_{i=1}^H \sum_{j=1}^W u_c(i,j)$$

각 채널들의 중요 정보 추출

Excitation

$$s = F_{ex}(z, W) = \sigma(W_2\delta(W_1z))$$

논문에서 저자들은

채널 간 관계성을 파악하기 위한 방법으로 의도적으로 채널을 r만큼 수축시킨 후 Relu를 활용하여 채널간의 관계를 살폈음

- 어느 네트워크에도 바로 부착가능 연산량 증가 대비 모델 성능 향상도가 매우 큼

계산 복잡도 결과 (0.26% 증가) (SE-NET 논문 인용)

Resnet 50 : ~3.86 GFLOPs SE-Resnet 50 :~3.87 GFLOPs

Figure 3: The schema of the original Residual module (left) and the SE-ResNet module (right).

DenseNet-121

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264			
Convolution	112 × 112	7 × 7 conv, stride 2						
Pooling	56 × 56	3 × 3 max pool, stride 2						
Dense Block (1)	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$			
Transition Layer	56 × 56	1 × 1 conv						
(1)	28 × 28	2 × 2 average pool, stride 2						
Dense Block (2)	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$			
Transition Layer (2)	28 × 28	1 × 1 conv						
	14 × 14	2 × 2 average pool, stride 2						
Dense Block (3)	14 × 14	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 64$			
Transition Layer	14 × 14	1 × 1 conv						
(3)	7 × 7	2 × 2 average pool, stride 2						
Dense Block (4)	7×7	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$			
Classification	1 × 1	7 × 7 global average pool						
Layer		1000D fully-connected, softmax						

Table 1: DenseNet architectures for ImageNet. The growth rate for all the networks is k = 32. Note that each "conv" layer shown in the table corresponds the sequence BN-ReLU-Conv.

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

ResNet, DenseNet 차이점

Resnet

-> Summation (Feature) → Axis=Channel

DenseNet

->Concatenation (Feature) → Axis = Channel

	SE-ResNext50				ResNet50-CBAM			
	OS,all	OS,GBL	1yr,all	1yr,GBL	OS,all	OS,GBL	1yr,all	1yr,GBL
Civil	0.722	0.554	0.000	0.55	0.763	0.625	0.7061	0.65
C-index	0.733 [0.7124, 0.7540]	0.551 [0.5174, 0.5807]	0.606 [0.5665, 0.6459]	0.55 [0.5073, 0.5918]	0.763 [0.7430, 0.7818]	0.625 [0.5952, 0.6528]	0.7961 [0.7676, 0.8255]	0.65 [0.6066, 0.6909]
Brier Score	0.148	0.201	0.164	0.199	0.147	0.204	0.14	0.213

Results

grad-CAM (ResNet-CBAM (OS,ALL), C-index = 0.704 [0.6302, 0.7716], Brier Score = 0.106

misclassified

misclassified

Discussion

1. 환자 별 grad-CAM 2d-plot을 확인한 결과,

상대적으로 Axial (가로면)보다 Coronal, Sagittal (관상면, 시상면)에서 Tumor를 잘 인식하여 클래스를 잘 분류하는 것을 알 수 있었음.

2. 사용자 관점에서 초기에 사용할 때,

새로운 Dataset (SNUH 1100 Patients with gliomas)을 활용한 "CustomNet"의 Inference 성능이 좋지 못하였으나

각 전처리 파이프라인을 거친 이미지 Shape, Model Input으로 사용되는 labling 값과 같은 중간값들을 지속적으로 확인 후 수정하였고

모델 성능이 눈에 띄게 개선되었음. (1-year Survival and Overall Survival All pathology)

- 3. GBL (WHO Grade 4), High grade glioma (WHO Grade 3), Low grade glioma (WHO Grade 1,2) 정보가 모두 주어졌을 때 성능이 Dramatic하게 높지만 Filtering을 거친 후, GBL 데이터만 제공된 모델의 성능은 상대적으로 좋지 않은 것을 확인할 수 있었음.
- 4. 향후 모델 성능 향상 방안으로

IDH 유전자 변이 여부에 따른 **추가적인 뇌교종 타입 정보**를 제공할 예정임. (Diffuse glioma, Oligodendro glioma, Astrocytoma, OligoAstrocytoma, GBL)

5. 최적화 된 하이퍼파라미터를 찾기 위하여,

SE-RESNEXT를 활용한 Medical 분야 및 Glioma Classification Task에서 성능을 발휘한 해외 논문 및 레퍼런스에서 사용한 하이퍼파라미터 값들을 참고하여 우리 모델에 적용하여 각 하이퍼파라미터 별 모델 결과값을 비교할 예정임.