DEPARTAMENTO DE MATEMÁTICA E APLICAÇÕES

21 /06/ 2013

Duração:	90	minutos	

Teste de Análise Matemática EE - versão C

Nome:	Nr.:	Curso:

GRUPO I (7 valores)

Em cada uma das perguntas seguintes, assinale a resposta correcta no quadrado correspondente. Cada resposta correcta vale 1 valor.

1. Considere a função real $f(x,y) = xy - 5 \ln x$. Então f satisfaz a relação:

fn = y - 5 1 fny = 1

$$x^2 \frac{\partial^2 f}{\partial x_1 \partial x_2} - x \frac{\partial f}{\partial x_2} = 0$$

- Nenhuma das anteriores.
- 2. Considere a função real f(x,y) definida e diferenciável no seu domínio. A função gradiente de f é dada

$$\overrightarrow{\nabla} f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

- Nenhuma das anteriores
- 3. Considere a função real f(x,y) definida e diferenciável no seu domínio. A taxa de variação de f no ponto (x_0, y_0) do seu domínio, na direção do vetor \vec{u} é dada por:

- Nenhuma das anteriores.
- 4. Considere a função real dada $f(x,y)=xy^2$ onde $x=t+\ln t^2$ e $y=e^tu$, com $t\neq 0$. A expressão de $\frac{\partial^2 f}{\partial u^2}$ f = 2xy f = 2xy f = 2xy f = 2xy

$$\sum 2xe^{2t}$$

$$\boxed{ 2u[e^{2t}(t+\ln t^2)]}$$

 $f\left(\frac{11}{y}\right) = \sqrt{2} \qquad f\left(\frac{1}{x}\right) = \sqrt{2} \qquad f\left(\frac{1}{x}\right) = \sqrt{2} \qquad f\left(\frac{1}{x}\right) = -8enx$ $f\left(\frac{11}{y}\right) = \sqrt{2} \qquad f\left(\frac{1}{x}\right) = \sqrt{2} \qquad f\left(\frac{1}{x}\right) = -8enx$ $f\left(\frac{1}{y}\right) = -8enx \qquad f\left(\frac{1}{x}\right) = -8enx \qquad$

- - $P_2(x,y) = 2 + x + y \frac{1}{2}(x \frac{\pi}{4})^2 (y + \frac{\pi}{4})^2$
 - $P_2(x,y) = \frac{\sqrt{2}}{2} [x + y + (x \frac{\pi}{4})^2 + (y + \frac{\pi}{4})^2]$
 - $P_2(x,y) = x + y + (x \frac{\pi}{4})^2 + (y + \frac{\pi}{4})^2$
 - $P_2(x,y) = \frac{\sqrt{2}}{2} [2 + x + y \frac{1}{2}(x \frac{\pi}{4})^2 \frac{1}{2}(y + \frac{\pi}{4})^2]$
 - Nenhum dos anteriores.
- 6. Considere o integral duplo $\iint_R dA$ definido na região sombreada na figura abaixo, limitada pelas curvas $y = x e = 2 - y^2$. Qual dos seguintes integrais iterados representa o integral duplo?

- $\int_0^2 \int_x^{2-x^2} dy dx$
- $\bigcup_{0}^{1} \int_{y}^{1} dx dy$
- $\int_0^1 \int_0^{2-y^2} dx dy$
- Nenhum dos anteriores.
- 7. Considere a região sombreada na figura abaixo. A área da região sombreada é dada no seguinte integral iterado em coordenadas polares:

- $\searrow \int_2^3 \int_0^{\pi/4} r. \ d\theta dr$
- $\int_2^3 \int_0^{\pi/2} d\theta dr$
- Nenhuma das anteriores.

GRUPO II (13 valores)

Apresente todos os cálculos efectuados.

- 1. Considere a função $f(x, y) = x^2 4x + 2y^2 + 4y 1$.

(2,-1) → pt cutio.

(a) Determine os pontos críticos de f. $\begin{cases}
f_{\chi} = 2\chi - 4 = 0 & \chi = 2 \\
f_{\chi} = 4y + 4 = 0 & \chi = -1
\end{cases}$

- 2. Considere-se que, num determinado período de tempo, o número de unidades de produto produzidas quando se usa x unidades de trabalho e y unidades de material é $f(x,y) = 10x^{1/2}y^{1/4}$.
 - (a) Se considerarmos 25 unidades de trabalho e 16 unidades de material, quantas unidades de produto são produzidas?

(b) Determina o valor de $\frac{\partial f}{\partial x}(25, 16)$ e $\frac{\partial f}{\partial y}(25, 16)$.

$$\frac{\partial f}{\partial x}(x,y) = 5 y'' y, \frac{1}{x} / 2 \Rightarrow f_{x}(25,16) = 5 \sqrt[4]{16} = 2$$

Significa que greado se feeu 25 unidados de trobello e 16 unidados de resolucidos de resolucidos de trobello entero havera elma affereção 2h nos unidados de proderto podertidos. fais f(25+h,16)-f(25,16) ≈ 2 .

3. Usando diferenciais, obtenha um valor aproximado de $\sqrt{1.001^2 + 0.003^2}$. Considerado $f(x_1y) = \sqrt{x^2 + y^2}$, protesde se determina um valor proximado de f (1.001,0,003) \approx f (1,0)+df (0,001,0,003)

ne o produto máximo de três números cuia soma é 24. $dx + \frac{1}{\sqrt{x^2 + x^2}} dx = \frac{1}{\sqrt{1001}} 0.001 + 0$ $45x ex , f(1.001, 0.003) \approx 1.001$

4. Determine o produto máximo de três números cuja soma é 24.

3 Necessos xy, z , cerfo somo z zy : x+y+z=z y (=) z=zy-x-y.

Haximizar xy z=xy (zy-x-y) \rightarrow frocurar os eva xilinos dorte f(n,y) 3

(0.5. f.f.)