Linear Algebra

Matrix

Principal Diagonal: In a square matrix all elements a_{ij} for which $i = j_{ar_{\theta}}$ elements of principal diagonal.

Matrices

- 1. Upper Triangular matrix: A square matrix in which all the elements below the principle diagonal are zero.
- 2. Lower Triangular Matrix: A square matrix in which all the elements above the principle diagonal are zero.
- 3. Diagonal Matrix: A square matrix in which all the elements other than the elements of principle diagonal are zero.
- **4. Scalar Matrix:** *A* diagonal matrix with all elements of principle diagonal being same.
- 5. Idempotent Matrix: 'A' is square matrix $\ni A^2 = A$.
- **6.** Involutary Matrix: 'A' is square matrix $\ni A^2 = I$.
- 7. Nilpotent Matrix: 'A' is square matrix $\ni A^m = 0$ where m is the least positive integer and m is also called as Index of class of Nilpotent matrix A.
- 8. Transpose Matrix: A^T is transpose matrix of matrix A. A^T can be obtained by switching the rows as columns and columns as rows of A.
- 9. Symmetric Matrix: 'A' is a square matrix $\ni A^T = A$.
- 10. Skew-Symmetric Matrix: 'A' is a square matrix $\ni A^T = -A$.
- **11. Orthogonal Matrix:** 'A' is a orthogonal matrix $\ni A^T = A^{-1}$ or $AA^T = I = A^TA$.
- 12. Conjugate Matrix of A (\overline{A}) or ($\sim A$): 'A' is any matrix, by replacing the elements by corresponding conjugate complex numbers the matrix obtained is conjugate of 'A'.

Example:

$$A = \begin{bmatrix} 2+3i & 4+7i & 5 \\ 2i & 3 & 9-i \end{bmatrix} \implies \overline{A} = \begin{bmatrix} 2-3i & 4-7i & 5 \\ -2i & 3 & 9+i \end{bmatrix}$$

13. Transpose Conjugate Matrix (A^{θ}) or (A^{\star}): $(\overline{A})^{T}$.

14. Hermitian Matrix: 'A' is a square matrix $\ni A^{\theta} = A$ All diagonal elements of hermitian matrix are real number and all offdiagonal elements above and below the principle diagonal must be conjugate of each other. i.e. $a_{ii} = \overline{a_{ii}}$.

Example: $\begin{bmatrix} 2 & 3-4i \\ 3+4i & 5 \end{bmatrix}$

15. Skew-Hermitian Matrix: 'A' is a square matrix $\ni A^{\theta} = -A$ All diagonal elements of Skew-Hermitian matrix are purely imaginary or zero and all off-diagonal elements above and below the principle diagonal must be conjugate of each other with opposite sign. i.e. $a_{ii} = -a_{ji}$.

Example: $\begin{bmatrix} 2i & 3-4i \\ -3-4i & 5i \end{bmatrix}$

- **16.** Unitary Matrix: 'A' is a square matrix $\ni A^{\theta} = A^{-1}$ or $A A^{\theta} = I = A^{\theta} A$
- 17. Boolean Matrix: Any matrix with only elements '0' or '1'
- 18. Sparse Matrix: A matrix 'A' in which more number of elements are zeros.
- 19. Dense Matrix: A matrix which is not sparse.
- 20. Singular and Non-singular Matrix: A square matrix 'A' is singular if |A| = 0, and non singular if $|A| \neq 0$. Only non-singular matrices have
- 21. Adjoint Matrix: Transpose of cofactors matrix. i.e. Adj $(A) = (Cof(A))^t$

Properties of Matrices

- A + B = B + A (Commutative)
- (A + B) + C = A + (B + C) (Associative)
- AB≠BA (Not commutative)
- (AB) C = A(BC) (Associative)
- A(B + C) = AB + AC (Distributive)
- $A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A A^T)$
- $A(Adj A) = (Adj A) A = |A|I_n$
- Adj(AB) = (Adj B). (Adj A)

$$\bullet \quad A^{-1} = \frac{Adj A}{|A|}; |A| \neq 0$$

- $(A^{-1})^{-1} = A$ and $(A^{-1})^T = (A^T)^{-1}$
- $(AB)^{-1} = B^{-1} A^{-1}$.
- If A is a square matrix of order n then $|AdjA| = (\det A)^{n-1} = |A|^{n-1} \operatorname{ar}_{\mathfrak{A}}$ $|Adj(AdjA)| = |A|^{(n-1)^2}$

A Handbook on Computer Science

- If $|A| \neq 0$ then $|A^{-1}| = \frac{1}{|A|}$
- If $A_{n \times n}$ matrix then $|KA| = K^n |A|$
- If A is square matrix then
 - (i) $A + A^T$ is always symmetric
 - (ii) $A A^T$ always skew-symmetric
- If A and B are symmetric then
 - (i) A + B is also symmetric.
 - (ii) A B is also symmetric.
 - (iii) AB + BA is symmetric
 - (iv) AB BA is skew-symmetric
 - (v) A^n and B^n are symmetric
- If A and B are skew-symmetric then,
 - (i) A + B is also skew-symmetric.
 - (ii) A B is also skew-symmetric.
 - (i) A^n and B^n are symmetric, if 'n' is even
 - (ii) A^n and B^n are skew-symmetric, if 'n' is odd
- The determinant of orthogonal matrix and unitary matrix A has absolute value '1'.
- If $A_{m \times n}$ and $B_{n \times p}$ then product of AB requires
 - (i) mnp multiplications
 - (ii) m(n-1)p additions
 - (iii) for each entry, n multiplications and (n-1) additions.
- $(A^T)^T = A$, $(kA)^T = k(A^T)$
- $(A + B)^T = A^T + B^T$, $(AB)^T = B^T A^T$

- Rank of Matrix (r(A)): It is the order of its largest non-vanishing (non-zero) minor of the matrix.
- Rank is equal to the number of linearly independent rows or columns in the matrix.
- The system of linear equation AX = B has a solution (consistent) iff rank of $A = \text{Rank of } (A \mid B)$
- The system AX = B has
 - (i) A unique solution iff Rank (A) = Rank (A|B) = Number of variables
 - (ii) Infinitely many solutions \Leftrightarrow Rank (A) = Rank (A|B) < number of variables
 - (iii) No solution if Rank (A) \neq Rank (A|B) i.e. Rank (A) < Rank (A|B)
- The system AX = 0 has
 - (i) Unique solution (zero solution or trivial solution) if Rank (A) = number of variables
 - (ii) Infinitely many number of solutions (non-trivial solutions) if Rank (A) < number of variables
- If Rank (A) = r, and number of variables = n then, the number of linearly independent infinite solutions of AX = 0 is (n - r)
- In the system of homogenous linear equation AX = 0
 - (i) If A is singular then the system possesses non-trivial solution (i.e. infinite solution)
 - (ii) If A is non-singular then the system possesses trivial (zero) solution (i.e. unique solution)
- Rank of a diagonal matrix = Number of non-zero elements in diagonal.
- If A and B are two matrices
 - (i) $r(A+B) \le r(A) + r(B)$
 - (ii) $r(A-B) \ge r(A) r(B)$
 - (iii) $r(AB) \le \min \{r(A), r(B)\}$
- If a matrix A has rank 'R', then A contains 'R' linearly independent vectors (row/column)
- The system of homogeneous linear equations such that number of unknowns (or variables) exceeds the number of equations necessarily possesses a non-zero solution.

Eigen Value

Let 'A' be a square matrix of order n and λ be a scalar then $|A - \lambda I| = 0$ is the characteristic equation of A. The roots of characteristic equation are called eigen values/lantent roots/Characteristic roots.

- The set of eigen values of matrix is called "spectrum of matrix"
- A matrix of order n will have n latent roots. not necessarily distinct.

Eigen Vector

Corresponding to each eigen value λ , there exists a non-zero solution χ such that $(A - \lambda I)X = 0$ then X is eigen vector/latent/vector/characteristic vector of A.

Properties of Eigen Values

 Sum of eigen values of a matrix = sum of elements of principal diagonal (trace).

$$\Sigma \lambda_i = \lambda_1 + \lambda_2 + \lambda_3 + \ldots + \lambda_n = \text{Trace of } A$$

• Product of eigen values = Determinant of matrix.

$$\Pi \lambda_i = \lambda_1 \cdot \lambda_2 \cdot \ldots \cdot \lambda_n = |A|$$

- If λ is eigen value of A then $\frac{1}{\lambda}$ is eigen value of A^{-1} . (provided $\lambda \neq 0$ i.e. A is non-singular).
- Eigen values of A and A^T are same
- If λ is eigen value of orthogonal matrix then $\frac{1}{\lambda}$ is also its eigen value $[\because A^T = A^{-1}]$
- If $\lambda_1, \lambda_2, \dots, \lambda_n$ are eigen values of matrix 'A', then
 - (i) $\lambda_1^m, \lambda_2^m, \lambda_n^m$ are eigen values of matrix A^m .
 - (ii) $\lambda_1 + K$, $\lambda_2 + K$, ..., $\lambda_n + K$ are eigen values of A + KI
 - (iii) $(\lambda_1 K)^2$, $(\lambda_2 K)^2$, ..., $(\lambda_n K)^2$ are eigen values of $(A KI)^2$
 - (iv) $K\lambda_1, K\lambda_2, \ldots, K\lambda_n$ are eigen values of KA.
- The eigen values of symmetric matrix are real.
- The eigen values of skew-symmetric matrix are either purely imaginary or zero.
- The modulus of the eigen values of orthogonal and unitary matrices = 1
- If a matrix is either lower or upper triangular or diagonal then the principal diagonal elements themselves are the eigen values.
- Zero is eigen value of a matrix iff the matrix is singular.