# Descriptive Statistics cont.

Measure of Relative Standing and Box Plots

**Two Excel Files** 

Instructor: Qasim Ali

# Graphical Methods in Descriptive Statistics



Line plot



**Combo Charts** 



Pie Chart



Scatter and bubble plot



3D Plot



Surface plot



## Measures in Descriptive Statistics

#### **Measure of Central Location**

- We found the central location in the data
- Mean: Simple average
- Median: Middle value of the data
- Mode: Most frequently occurring value

| μ                | Population Mean        |  |  |  |  |
|------------------|------------------------|--|--|--|--|
| $\bar{x}$        | Sample Mean            |  |  |  |  |
| $\overline{x_i}$ | Values in the data     |  |  |  |  |
| $\overline{N}$   | Total number of values |  |  |  |  |
| $\sigma$         | Standard deviation     |  |  |  |  |

### **Measure of Variability**

- We studied how to measure the spread of a dataset
- *Range:* Difference between the highest and lowest values
- **Standard Deviation:** measures the dispersion of a dataset relative to its mean

Roughly: "Average distance to the mean"

$$\sigma = \sqrt{rac{1}{N}\sum_{i=1}^N (x_i - \mu)^2},$$

$$s = \sqrt{rac{1}{N-1}\sum_{i=1}^{N}\left(x_i - ar{x}
ight)^2}.$$

### Percentile P<sub>k</sub>

- P<sub>k</sub> percentile is a value which describes that k% of the data lies below this value.
- Remaining data that is above  $P_k$  is 100% k%.

### Quartiles

• Quartiles are percentiles that partition the data set into quarters.

Lower Quartile  $Q_L = Q_1 = P_{25}$ Upper Quartile  $Q_{11} = Q_3 = P_{75}$ 

### **Interquartile Range**

Difference between the Upper and Lower Quartile

$$IQR = Q_U - Q_L = Q_3 - Q_1 = P_{75} - P_{25}$$

Let's take an example in <u>excel worksheet</u>.

### Locator of P<sub>k</sub>

• Locator of  $P_k$  percentile in the data is:

$$L_k = \frac{(n+1)k}{100} = W + F$$

where 'n' is the sample size, W is the integer part and F is the decimal part of  $L_k$ 

#### **Percentile Estimation**

$$P_k = x_W + F(x_{W+1} - x_W)$$

- If F = 0 then  $L_k = W$  and  $P_k = x_W = a$  value with the rank of  $L_k$
- If  $F \neq 0$  then  $L_k = W + F$  and  $P_k = x_W + F(x_{W+1} x_W)$

### **Example**

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $x_8$ | $x_9$ | $x_{10}$ |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|
| 6.8   | 7.4   | 7.9   | 8.2   | 8.3   | 8.3   | 8.4   | 8.8   | 9.1   | 9.8      |

We are required to find  $P_{25}$ ?

To find  $P_{25}$ , we use the formula:

$$P_k = x_W + F(x_{W+1} - x_W)$$

We require values of *F* and *W*.

$$L_{25} = \frac{(10+1)*25}{100} = 2.75$$

This implies W = 2 and F = 0.75. Finally,

$$P_{25} = Q_1 = x_2 + 0.75(x_3 - x_2) = 7.8$$

### Find *P*<sub>50</sub>

• 
$$L_{50} = \frac{(10+1)50}{100} = \frac{550}{100} = 5.5$$

• 
$$P_{50} = Q_2 = x_5 + 0.5(x_6 - x_5)$$
  
=  $8.3 + 0.5(8.3 - 8.3)$   
=  $8.3 + 0.5 \times 0$   
=  $8.3$ 

### **Find** *P*<sub>75</sub>

• 
$$L_{75} = \frac{(10+1)75}{100} = \frac{825}{100} = 8.25$$

• 
$$P_{75} = Q_3 = x_8 + 0.25(x_9 - x_8)$$
  
=  $8.8 + 0.25(9.1 - 8.8)$   
=  $8.8 + 0.25 \times 0.3$   
=  $8.875 \approx 8.9$ 

### Answer the following questions:

• Which Measurement of Central Location (Mean, Median or Mode) is equals to 50<sup>th</sup> Percentile or Q2?

 A percentile represents a value that is least amongst the k% of the data

• In locator formula  $L_k = W + F$ , there are W values in a dataset that are less than the value of Percentile.

 Interquartile range is the difference between upper and lower quartile. **Answer:** Median

**Answer:** FALSE

**Answer:** TRUE

**Answer: TRUE** 

## **Box Plot**



## **Box Plot**

### Example

### **Example**

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $x_8$ | $x_9$ | $x_{10}$ |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|
| 6.8   | 7.4   | 7.9   | 8.2   | 8.3   | 8.3   | 8.4   | 8.8   | 9.1   | 9.8      |

$$x_{min} = 6.8, x_{max} = 9.8$$

$$Q_1 = 7.8, Q_2 = \tilde{x} = 8.3, Q_3 = 8.9$$

1.5 Interquartile range = 1.5 IQR

$$= 1.5 \times (Q_3 - Q_1)$$

= 1.65



#### **Inner Fence**:

Lower Limit = 
$$LL = Q_1 - 1.5IQR = 7.8 - 1.65 = 6.15$$

Upper Limit = 
$$UL = Q_3 + 1.5IQR = 8.9 + 1.65 = 10.55$$

## Create a Box Plot in Excel

#### **METHOD 1: EXCEL BOX PLOT OPTION (LINKED TO EXCEL FILE)**

#### **METHOD 2: STEP BY STEP APPROACH**

To create your own box plot chart, the first step is to set up your data.

- Labels are not used in the chart. Let say the data is in column B and C with 13 values each.
- Enter the Box Plot Chart Formulas

#### **Step 1: Calculate the quartile values**

| F4=MIN(B1:B13)        | G4=MIN(C1:C13)        |
|-----------------------|-----------------------|
| F5=QUARTILE(B1:B13,1) | G5=QUARTILE(C1:C13,1) |
| F6=MEDIAN(B1:B13)     | G6=MEDIAN(C1:C13)     |
| F7=QUARTILE(B1:B13,3) | G7=QUARTILE(C1:C13,3) |
| F8=MAX(B1:B13)        | G8=MAX(C1:C13)        |

**Step 2: Calculate quartile differences** 

| =F5    | =G5    |
|--------|--------|
| =F6-F5 | =G6-G5 |
| =F7-F6 | =G7-G6 |
| =F8-F7 | =G8-G7 |
| =F5-F4 | =G5-G4 |

#### **Step 3: Create the Box Plot Chart**

- Create a stacked column chart
- Convert the stacked column chart to the box plot style
- Hide the bottom data series
- Create whiskers for the box plot
- Color the middle areas

https://www.contextures.com/excelboxplotchart.html

## **Box Plot**

Mean

Median

(b)

Skewed Left

### *Answer the following questions:*

Mean

Median

Mode

(a) Symmetric distribution

(no skewness)

What is the basic use of box plot?

Mode Mode Mean Median Negatively Skewed Positively Skewed Skewed Right

**Answer:** Skewness of Data