命题 A: a+c=10.

命题 $B: b \in \mathbb{Z}$.

命题 C: c = bd.

命题 $D: d = a^2$.

命题 E: e = d.

命题
$$F: \max\{a,b,...,f\} - \min\{a,b,...,f\} = 7, f > \frac{10}{3}$$
.

已知 a,b,...,f 均为整数、一位小数或两位小数,满足 $a,b,...,f \in (0,20]$, a+b+c+d+e+f=20, $\max\{a,b,...,f\}=c$, 命题 A,B,...,F 中恰有一个假命题, 求假命题对应的字母所对应的数.

解:

① 命题 A 为假命题.

设
$$a = a, b = n \ (n \in \mathbb{N}^*, n \in [1,9])$$
, 则 $c = na^2, d = a^2, e = a^2$.

若
$$a < 1$$
 则 $c = na^2 < n = b$, 与 $c = \max\{a, b, ..., f\}$ 矛盾.

$$\therefore a \ge 1$$
. $\therefore a \le a^2 \le na^2$, $n \le na^2$.

$$X f > \frac{10}{3} > \min\{a, b, ..., f\}.$$

i) $\min\{a,b,...,f\} = n$.

由命题
$$F$$
 得 $n+7=na^2$. $\therefore \sqrt{1+\frac{7}{n}}=a\in \mathbb{Q}$, 无符合条件的解, 舍.

ii) $\min\{a, b, ..., f\} = a$.

由命题
$$F$$
 得 $a+7=na^2$. : $na^2-a-7=0$.

$$\sqrt{\Delta} = \sqrt{28n+1} \in \mathbb{Q}$$
, 当且仅当 $n = 6$ 或 $n = 8$ 时满足.

$$n = 6$$
 时, $(6a - 7)(a + 1) = 0$, $a = \frac{7}{6}$, 舍.

$$n = 8$$
 时, $(8a + 7)(a - 1) = 0$, $a = 1$.

此时
$$a = d = e = f = 1, c = d = 8, 与 f > \frac{10}{3}$$
 矛盾, 舍.

② 命题 B 为假命题.

设
$$a = a$$
, $b = b$, 则 $c = a^2b = 10 - a$, $d = a^2$, $e = a^2$.

$$\therefore a^2b + a = 10, b = \frac{10 - a}{a^2}.$$

若 a < 1, 则 c = 10 - a > 9, c - a > 7 与命题 F 矛盾.

$$\therefore a \ge 1, \therefore a \le a^2 \le c, b \le c.$$

$$\mathbb{X} f > \frac{10}{3} > \min\{a, b, ..., f\}.$$

i) $\min\{a,b,...,f\} = a$.

由命题
$$F$$
 得 $a+7=10-a$, $a=1.5$, $b=\frac{10-1.5}{1.5^2}=\frac{34}{9}$, 舍.

ii)
$$\min\{a,b,...,f\} = b$$
.
由命题 F 得 $\frac{10-a}{a^2} + 7 = 10-a$,

整理得 $a^3 - 3a^2 - a + 10 = 0$, 无正数解, 舍.

③ 命题 C 为假命题.

设
$$a=a, b=n$$
 $(n \in \mathbb{N}^*, n \in [1,9])$, 则 $c=10-a, d=a^2, e=a^2$. 若 $a<1$, 则 $c=10-a>9, c-a>7$ 与命题 F 矛盾.

$$\therefore a \ge 1, \therefore a \le a^2 \le c, n \le c.$$

$$\mathbb{X} f > \frac{10}{3} > \min\{a, b, ..., f\}.$$

i) $\min\{a,b,...,f\} = n$.

由命题
$$F$$
 得 $n+7=10-a$. $\therefore a+n=3$. $\therefore n=1$.

解得
$$a = 2, b = 1, c = 8, d = 4, e = 4, f = 1$$
 与 $f > \frac{10}{3}$ 矛盾, 舍.

ii) $\min\{a, b, ..., f\} = a$.

由命题
$$F$$
 得 $a+7=10-a$, $a=1.5$,

$$\therefore$$
 $a = 1.5, c = 8.5, d = 2.25, e = 2.25, b + f = n + f = 5.5.$

$$n = 2$$
 时, $f = 3.5$ 成立.

$$n \ge 3$$
 时, $f < \frac{10}{3}$, 舍.

④ 命题 D 为假命题.

设
$$a = a, b = n \ (n \in \mathbb{N}^*, n \in [1,9]), d = d, 则 c = 10 - a = nd, e = d.$$
 又 $f > \frac{10}{3} > \min\{a,b,...,f\}.$

i) $\min\{a,b,...,f\} = n$.

由命题
$$F$$
 得 $n+7=10-a$: $a+n=3$: $n=1$.

解得
$$a = 2$$
, $b = 1$, $c = 8$, $d = 8$, $e = 8$, $f < 0$ 舍.

ii) $\min\{a, b, ..., f\} = a$.

$$\therefore 10 - a = c = nd$$
. $\therefore a = 10 - nd$.

由命题
$$F$$
 得 $10 - nd + 7 = nd$.

$$c = nd = 8.5, a = 1.5.$$

$$d = \frac{8.5}{n}$$
, 当且仅当 $n = 1$ 或 $n = 2$ 或 $n = 5$ 时满足.

$$n = 1$$
 时, $c = d = e = 8.5$, 舍.

$$n=2$$
 时, $d=e=4.25$, $f<0$, 舍.

$$n=5$$
 时, $d=e=1.7$, $f=1.6$ 与 $f>\frac{10}{3}$ 矛盾, 舍.

iii) $\min\{a,b,\ldots,f\}=d$.

由命题
$$F$$
 得 $d+7=nd$.

$$d = \frac{7}{n-1}.$$

$$n = 2$$
 时, $d = 7 > n$, 舍.

$$n = 3$$
 时, $d = 4.5 > n$, 舍.

$$n = 4$$
 时, $d = \frac{7}{3}$, 舍.

$$n = 5$$
 时, $d = 1.75$, $a = 10 - nd = 1.25 < d$, 舍.

$$n = 6$$
 时, $d = 1.4$, 解得 $a = 1.6$, $b = 6$, $c = 8.4$, $d = e = 1.4$, $f = 1.2 < d$, 舍.

$$n = 7$$
 时, $d = \frac{7}{6}$, 舍.

$$n = 8$$
 时, $d = 1$, 解得 $a = 2$, $b = 8$, $c = 8$, $d = e = 1$, $f = 0$, 舍.

$$n = 9$$
 时, $d = 0.875$, 舍.

⑤ 命题 E 为假命题.

设
$$a = a, b = n \ (n \in \mathbb{N}^*, n \in [1,9])$$
, 则 $c = 10 - a = na^2, d = a^2$.

$$10 - a = na^2$$
. $na^2 + a - 10 = 0$.

$$\sqrt{\Delta} = \sqrt{40n+1} \in \mathbf{Q}$$
, 当且仅当 $n=2$ 或 $n=3$ 或 $n=9$ 时满足.

$$n=2$$
 时, $(a-2)(2a+5)=0$, $a=2$, 解得 $a=2$, $b=2$, $c=8$, $d=4$, $e+f=4$. $f>\frac{10}{3}$, $c<\frac{2}{3}$

 $\therefore c - e > 7$, 与命题 F 矛盾, 舍.

$$n=3$$
 时, $(a+2)(3a-5)=0$, $a=\frac{5}{3}$, 舍.

$$n = 9$$
 时, $(a - 1)(9a + 10) = 0$, $a = 1$, 解得 $a = 1$, $b = 9$, $c = 9$, $d = 1$, $e + f = 0$, 舍.

⑥ 命题 F 为假命题.

设
$$a = a, b = n \ (n \in \mathbb{N}^*, n \in [1,9])$$
, 则 $c = 10 - a = na^2, d = a^2, e = a^2$.

$$\therefore 10 - a = na^2$$
. $\therefore na^2 + a - 10 = 0$.

$$\sqrt{\Delta} = \sqrt{40n+1} \in \mathbb{Q}$$
, 当且仅当 $n=2$ 或 $n=3$ 或 $n=9$ 时满足.

$$n=2$$
 时, $(a-2)(2a+5)=0$, $a=2$, 解得 $a=2$, $b=2$, $c=8$, $d=4$, $e=4$, $f=0$, 舍.

$$n=3$$
 时, $(a+2)(3a-5)=0$, $a=\frac{5}{3}$, 舍.

$$n=9$$
 时, $(a-1)(9a+10)=0$, $a=1$, 解得 $a=1$, $b=9$, $c=9$, $d=1$, $e+f=0$, 舍.

综上, 假命题为命题 C, c=8.5, 当且仅当 a=1.5, b=2, c=8.5, d=2.25, e=2.25, f=3.5 时成立.

by Frank