Содержание

1	Определения, первые наблюдения	2
2	Простые структурные теоремы	2
3	е-преобразование и теорема Коши-Давенпорта	3
4	\mathbf{K} ритические пары в \mathbb{Z}_p	4
5	Неравенство Плюннеке-Руже	5

1 Определения, первые наблюдения

Обозначения:

- будем считать, что A подниножество (конечное, непустое) абелевой группы или коммутативного кольца R.
- $A + B = \{a + b \mid a \in A, b \in B\}$, аналогично произведение.

Элементарные оценки:

- $|A| \le |A + A| \le \frac{|A|(|A|+1)}{2}$.
- $\max\{|A|, |B|\} \le |A+B| \le |A||B|$.
- $|A| \leqslant |A + \ldots + A| \leqslant \overline{C}_{|A|}^k$.

2 Простые структурные теоремы

Пусть |A+B|=|A| в абелевой группе G. Если $0\in B$, то $A\subset A+B\Rightarrow A+B=A$. Иначе возьмём $b_0\in B$ и рассмотрим $|A+(B-b_0)|=|A+B|=|A|\Rightarrow A+B=b_0+A$.

Определим $H = Sym(A) = \{h \in G \mid h+A=A\}$. Это, очевидно, подгруппа, называется она группой симметрии A. Пусть теперь $(g+H) \cap A \neq \emptyset$ для $g \in G$. Тогда $a \in A \cap (g+H) \Rightarrow a = g+h, h \in H$. По определению $a+H \subset A$, но тогда g+h+H=g+H.

Теорема 1. Если |A + B| = |A|, $H = \{h \in G \mid h + A = A\}$, то B является подмножеством смежного класса по H, а A — объединением смежных классов по H.

В частности для $\mathbb R$ получаем, что $|A+B|=|A|\Rightarrow |B|=1$.

Для \mathbb{Z}_p точно также получаем, что либо H=0, либо $H=\mathbb{Z}_p$, отсюда $|A+B|=|A|\Rightarrow A=\mathbb{Z}_p$ или |B|=1.

Утверждение 1. Для любых подмножеств $A,B\subset\mathbb{R}$ выполнено $|A+B|\leqslant |A|+|B|-1.$

Доказательство. Запишем $A = \{a_0 < \ldots < a_{k-1}\}, B = \{b_0 < \ldots < b_{l-1}\}.$ Тогда легко предъявить цепочку элементов A + B: $a_0 + b_0 < a_0 + b_1 < a_0 + b_2 < \ldots < a_0 + b_{l-1} < a_1 + b_{l-1} < \ldots < a_{k-1} + b_{l-1}$. В ней k + l - 1 элемент.

Теорема 2. $|A+A|=2|A|-1 \Leftrightarrow A-$ арифметическая прогрессия.

Доказательство. $A = \{a_0 < \ldots < a_{k-1}\}$. Предъявим цепочку $2a_0 < a_0 + a_1 < 2a_1 < a_1 + a_2 < \ldots < 2a_{k-2} < a_{k-2} + a_{k-1} < 2a_{k-1}$, ясно, что других элементов быть не может.

С другой стороны $a_{i-1}+a_i < a_{i+1}+a_{i-1} < a_i+a_{i+1}$, значит $a_{i+1}+a_{i-1}=2a_i$, значит в самом деле это прогрессия.

Теорема 3. Пусть $A, B \subset \mathbb{R}, |A| = |B|, morda |A + B| = |A| + |B| - 1 \Leftrightarrow A, B$ — арифметические прогрессии с одинаковой разностью.

Доказательство. Пусть для начала |A| = |B| = k. Предъявим цепочку $a_0 + b_0 < a_0 + b_1 < a_1 + b_1 < \ldots < a_{k-1} + b_{k-1}$, других элементов быть не может.

С другой стороны $a_i+b_i < a_{i+1}+b_i < a_{i+1}+b_{i+1}$, значит $a_{i+1}+b_i=a_i+b_{i+1}\Rightarrow a_{i+1}-a_i=b_{i+1}-b_i$.

Также $a_{i-1}+b_i < a_{i-1}+b_{i+1} < a_i+b_{i+1}$, значит $a_{i-1}+b_{i+1}=a_i+b_i \Rightarrow a_i-a_{i-1}=b_{i+1}-b_i$, что доказывает теорему в этом частном случае.

Пусть теперь $|A| = k \leqslant l = |B|$. Пусть $1 \leqslant t \leqslant l - k$ — произвольный параметр. Разобьём $B = B_1 \sqcup B_2 \sqcup B_3$ на три части $B_1 = \{b_0 < \ldots < b_{t-1}\}, B_2 = \{b_t < \ldots < b_{k+t-1}\}, B_3 = \{b_{k+t} < \ldots < b_{l-1}\}.$

 $A+B\subset (a_0+B_1)\sqcup (A+B_2)\sqcup (a_{k-1}+B_3)$. С другой стороны $|a_0+B_1|=t, |A+B_2|\geqslant 2k-1, |a_{k-1}+B_3|=l-k-t,$ поэтому $|A+B_2|=2k-1, |A|=|B_2|=k\Rightarrow A, B_2$ — это арифметические прогрессии с равным шагом. В силу произвольности параметра, получаем утверждение теоремы.

3 е-преобразование и теорема Коши-Давенпорта

Пусть $A,B\subset G,e\in G$, тогда определим преобразование пары множеств $A_{(e)}=A\cup (B+e), B_{(e)}=B\cap (A-e).$

Чтобы B было непустым, нужно $b \in B \Rightarrow b = a - e, a \in A \Rightarrow e = a - b \in A - B$.

Свойства:

- Пусть $a \in A_{(e)} \Rightarrow a \in A$ или $a \in B + e$. Тогда $a + B_{(e)} \subset A + B$ в том и другом случае.
- По формуле включения исключения $|A_{(e)}| = |A| + |B| |A \cap (B+e)| = |A| + |B| |B_{(e)}| + e| \Rightarrow |A_{(e)}| + |B_{(e)}| = |A| + |B|.$
- $B_{(e)} \subset B, A \subset A_{(e)}$.

Теорема 4 (Коши-Давенпорта). *Пусть* $A, B \subset \mathbb{Z}_p$, $mor\partial a |A+B| \geqslant \min\{|A|+|B|-1,p\}$.

Доказательство. Проведём индукцию по мощности |B|. База |B|=1 очевидна. Докажем переход $k\Rightarrow k+1$.

Пусть $e \in A-B$ — произвольный элемент и выполнено $|B_e|<|B|$, тогда по индукции $|A+B|\geqslant |A_{(e)}+B_{(e)}|\geqslant \min\{|A_{(e)}+B_{(e)}-1,p\}=\min\{|A|+|B|-1,p\}$. Осталось показать, что найдётся такое e, что $B_{(e)}\neq B$.

Пусть $B_{(e)} = B \Leftrightarrow B \subset A - e \Leftrightarrow B + e \subset A$ для всех e. Таким образом $A + B - B \subset A$. Так как $0 \in B - B$, то A + B - B = A и по структурной теореме $B - B \subset H$, где H — группа симметрии множества A. Тогда либо B - B = 0, то есть |B| = 1, либо $A = \mathbb{Z}_p$, то есть так или иначе шаг доказан.

Все наши утверждения допускают следующее обобщение.

Теорема 5 (Кнезер). Пусть G- абелева группа, A,B- её конечные непустые подмножества, H=Sym(A+B). Тогда $|A+B|\geqslant |A+H|+|B+H|-|H|$.

4 Критические пары в \mathbb{Z}_p

Определение 1. Если $A,B\subset \mathbb{Z}_p$ таковы, что $A+B\neq \mathbb{Z}_p,\ |A+B|=|A|+|B|-1,$ то такая пара множеств называется критической.

Теорема 6 (Воспер). Если A, B — критическая пара, то выполнено одно из следующих условий:

- $\min\{|A|, |B|\} = 1$
- $|A+B|=p-1, 2 \leqslant |A| \leqslant p-1, B=\overline{c-A}, \{c\}=\mathbb{Z}_p \setminus (A+B)$
- A, B арифметические прогрессии с одинаковой разностью

Доказательство.

Лемма. Если (A, B) — критическая u | A + B | = |A| + |B| - 1 — арифметическая прогрессия, то <math>B — прогрессия c той же разностью.

Лемма. Если $\min\{|A|, |B|\} = 2$, (A, B) — критическая, то A, B — ариф-метические прогрессии с одинаковой разностью.

Лемма. Если $\min\{|A|, |B|\} \ge 2$, $(A, B) - \kappa pumuческая, <math>|A + B| = |A| + |B| - 1 , тогда <math>(\overline{A + B}, -A) - \kappa pumuческая$.

Полагаем, что $\min\{|A|, |B|\} \ge 2$, |A + B| = |A| + |B| - 1 .

Лемма. В указанном предположении, если известно, что A+B- арифметическая прогрессия, то A,B- арифметические прогрессии c одинаковой разностью.

Доказательство. A+B — арифметическая прогрессия, значит $\overline{A+B}$ тоже прогрессия с такой же разностью. Тогда по лемме $(\overline{A+B},-A)$ — критическая и так как $\overline{A+B}$ — арифметическая прогрессия, то по другой лемме -A и A — прогрессии с той же разностью (с точностью до знака). Еще одно применение леммы даёт нам то, что A и B — арифметические прогрессии с одинаковой разностью.

Лемма. Если (A,B) — критическая, $0 \in B, |A| = k \geqslant 2, |B| = l \geqslant 3, |A+B| = |A| + |B| - 1 < p-1$. Тогда найдётся $e \in A$, такое что $(A_{(e)}, B_{(e)})$ — критическая пара, такая что $A_{(e)} + B_{(e)} = A + B$ и $2 \leqslant |B_{(e)}| < |B|$.

Доказательство. Возьмём произвольное $e \in A$. $A_{(e)} + B_{(e)} \subset A + B$. По тоереме Коши-Давенпорта $|A_{(e)}| + |B_{(e)}| - 1 \leqslant |A_{(e)} + B_{(e)}| \leqslant |A + B| = |A| + |B| - 1 = |A_{(e)}| + |B_{(e)}| - 1 \Rightarrow |A_{(e)} + B_{(e)}| = |A + B| \Rightarrow A_{(e)} + B_{(e)} = A + B$.

 $X = \{e \in A : |B_{(e)}| < |B|\}$. Покажем, что $|X| \geqslant 2$. Если $e \in X$, то $B \cap (A - e) \subsetneq B$. Рассмотрим $Y = A \setminus X$. Для $e \in Y$ выполнено $B \subset A - e$. Пусть $Y \neq \emptyset$, иначе все тривиально. Пусть $Y \neq \emptyset$, тогда $\forall e \in A : B + e \subset A$. По теореме Коши-Давенпорта $|Y| + |B| - 1 \leqslant |Y + B| \leqslant |A| = k$. $|Y| + l - 1 = k - |X| + l - 1 \leqslant k \Rightarrow |X| \geqslant l - 1 \geqslant 2$.

Пусть $\forall e \in X, B_{(e)} = 0.$ $B' = B \setminus \{0\}$, тогда $\forall e \in X \to B' \cap (A - e) = \emptyset \Leftrightarrow \forall e \in X \to (B' + e) \cap A = \emptyset$. Тогда $(B' + X) \cap A = \emptyset \Rightarrow (X + B') \subset (A + B) \setminus A.$ $|X| + l - 2 \leqslant |X| + |B'| - 1 \leqslant |A + B| - |A| = |B| - 1 = l - 1.$ $|X| + l - 2 \leqslant l - 1 \Rightarrow |X| \leqslant 1$, противоречие.

Индукция по |B|. База |B| = 2 следует из леммы.

Переход: $|B|=k+1\geqslant 3$. Сдвинем B на элемент b_0 и будем считать, что без ограничения общности $0\in B$. По лемме, $\exists e\in A: (A_{(e)},B_{(e)})$ — критическая, $A_{(e)}+B_{(e)}=A+B, 2\leqslant |B_{(e)}|<|B|$. По предположению индукции, $A_{(e)},B_{(e)}$ — арифметические прогессии с одинаковой разностью, значит A+B — тоже. Тогда по доказанной лемме, A,B — арифметические прогрессие с одинаковой разностью.

5 Неравенство Плюннеке-Руже

Теорема 7 (Неравенство треугольника Руже). Для любых конечных непустых $A,B,C\subset G$ выполнено $|A-B|\leqslant \frac{|A-C||B-C|}{|C|}$.

Доказательство. $A = \{a_0, \dots, a_{k-1}\}, B = \{b_0, \dots, b_{l-1}\}$. Пусть $e \in A - B$, определим $a_{(e)}$ — наименьший по номеру элемент A, который может давать e. Рассмотрим $f: (e,c) \mapsto (a_{(e)}-c,c-b_{(e)})$. Если $f(e_1,c_1) = f(e_2,c_2)$, то $a_{(e_1)}-c_1 = a_{(e_2)}-c_2, c_1-b_{(e_1)} = c_2-b_{(e_2)}$, тогда $a_{(e_1)}-b_{(e_1)} = a_{(e_2)}-b_{(e_2)} \Rightarrow e_1 = e_2 \Rightarrow c_1 = c_2$. Стало быть, это инъекция. Значит $|A-B||C| \leqslant |A-C||C-B|$.

Как следствие $|A - A| \leqslant \frac{|A+A|^2}{|A|}$.

Теорема 8 (Неравенство Плюннеке-Руже). Пусть $A, B \subset G$ — конечные нупустые, $|A+B| \leqslant \alpha |A|$. Тогда $\exists \varnothing \neq X \subset A$, такое что $|X+kB| \leqslant \alpha^k |A|$.

Доказательство. Пусть $\varnothing \neq X \subset A: \forall \varnothing \neq Z \subset A \rightarrow \frac{|X+B|}{|X|} \leqslant \frac{|Z+B|}{|Z|}.$