

# Pulse Field Gel Electrophoresis (PFGE) Protocol for separation of Chlorella chromosomal DNA and Chlorella virus DNA

### Irina Agarkova

## **Abstract**

**Citation:** Irina Agarkova Pulse Field Gel Electrophoresis (PFGE) Protocol for separation of Chlorella chromosomal DNA and Chlorella virus DNA. **protocols.io** 

dx.doi.org/10.17504/protocols.io.essbeee

Published: 27 Apr 2016

## **Guidelines**

#### **Buffers and Solutions**

## **Suspension Buffer (SB):**

25 mM Tris pH 7.5

1 M Sorbitol

25 mM EDTA pH 8.0

## **Digestion Buffer (DB):**

250 mM EDTA pH 9.5

1% N-Lauroylsarcosine

#### 1 × TAE Buffer:

40 mM Tris

20 mM acetic acid

1 mM EDTA

## Formulation of MBBM (Modified Bold's Basal Medium)

#### Stock Solutions:

- 1. 25.0 g NaNO<sub>3</sub>/1L d-H<sub>2</sub>O
- 2. 2.5 g CaCl<sub>2</sub> 2H<sub>2</sub>O /1L d-H<sub>2</sub>O
- 3. 7.5 g MgSO<sub>4</sub> · 7H<sub>2</sub>O /1L d-H<sub>2</sub>O
- 4. 7.5 g K<sub>2</sub>HPO<sub>4</sub>/1L d-H<sub>2</sub>O
- 5. 17.5 g KH<sub>2</sub>PO<sub>4</sub>/1L d-H<sub>2</sub>O
- 6. 2.5 g NaCl /1L d-H<sub>2</sub>O
- 7. 50.0 g disodium EDTA; 31.0 g KOH /1L  $d-H_2O$
- 8. 4.98 g FeSO<sub>4</sub>  $^{\cdot}$  7H<sub>2</sub>O / 1L acidified H<sub>2</sub>O (Acidified H<sub>2</sub>O is 999.0 mL d-H<sub>2</sub>O + 1.0 mL concentrated H<sub>2</sub>SO<sub>4</sub>)
- 9. 11.42 g H<sub>3</sub>BO<sub>3</sub> /1L d-H<sub>2</sub>O
- 10. 8.82 g ZnSO<sub>4</sub>  $^{\cdot}$  7H<sub>2</sub>O; 1.44 g MnCl<sub>2</sub>  $^{\cdot}$  4H<sub>2</sub>O; 0.71 g MoO<sub>3</sub>; 1.57 g CuSO<sub>4</sub>  $^{\cdot}$  5H<sub>2</sub>O; 0.49 g CoNO<sub>3</sub>  $^{\cdot}$  6H<sub>2</sub>O /1L d-H<sub>2</sub>O

## MBBM preparation:

to 950 mL of d-H<sub>2</sub>O add:

- 10.0 mL of stock solutions 1; 2; 3; 4; 5 and 6
- 1.0 mL of stock solutions 7; 8 and 9
- 1.0 mL of stock solution 10
- 1.0 g of bacto-peptone
- 5.0 g of sucrose

# Formulation of FES Medium (for Chlorella Pbi growth)

#### Stock Solutions:

- 1). 10.0 gm MgSO<sub>4</sub>·7H<sub>2</sub>O/1L d-H<sub>2</sub>O
- 2). 1.0 gm KNO<sub>3</sub>/1L d-H<sub>2</sub>O
- 3). 1.0 gm K<sub>2</sub>HPO<sub>4</sub>/1L d-H<sub>2</sub>O
- 4). 50.0 g disodium EDTA; 31.0 g KOH /1L d- $H_2O$
- 5). 4.98 g FeSO<sub>4</sub>  $\cdot$  7H<sub>2</sub>O / 1L acidified H<sub>2</sub>O (Acidified H<sub>2</sub>O is 999.0 mL d-H<sub>2</sub>O + 1.0 mL concentrated H<sub>2</sub>SO<sub>4</sub>)

- 6). 11.42 g H<sub>3</sub>BO<sub>3</sub> /1L d-H<sub>2</sub>O
- 7). 8.82 g ZnSO $_4$  · 7H $_2$ O; 1.44 g MnCl $_2$  · 4H $_2$ O; 0.71 g MoO $_3$ ; 1.57 g CuSO $_4$  · 5H $_2$ O;

0.49 g CoNO<sub>3</sub> · 6H<sub>2</sub>O /1L d-H<sub>2</sub>O

FES preparation:

to 950 mL of d-H<sub>2</sub>O add:

20.0 mL of stock solutions 1, 2, and 3.

1.0 mL of stock solutions 4, 5 and 6.

2.0 mL of stock solution 7

1.0 g of bacto-peptone

2.0 gm of Oxoid Lab-Lemco Powder

5.0 g of sucrose

## **Protocol**

## Step 1.

Harvest Chlorella NC64A (or Pbi) cells from 4 day old cultures (1.2 - 2.0 x  $10^7$  cells/ml) by centrifugation at 4000 x g for 5 minutes.

© DURATION

00:05:00

#### Step 2.

Re-suspend in MBBM (NC64A cells) or FES (Pbi cells) at concentration of 8.6 x  $10^7$  cells/mL.

#### Step 3

Add chlorella virus to a multiplicity of infection (MOI) = 10 plague-forming units (pfu)/cell.

## Step 4.

Add 3.1 ml of 37% formaldehyde into 40 ml centrifuge tubes and place them on ice.

## Step 5.

Sample infected chlorella cells (25 mL) into prepared centrifuge tubes with formaldehyde (the final formaldehyde concentration is 4%) and place on ice.

#### Step 6.

Centrifuge at 4000 x g for 5 minutes.

**O** DURATION

00:05:00

#### Step 7.

Wash samples by re-suspending them in 10 mL of MBBM amended with 50 mM EDTA and following centrifugation at 4000 x g for 5 minutes. Repeat wash step 3 times.

### Step 8.

Re-suspend washed infected cells in 0.5 mL of SB.

### Step 9.

Add to the cells 0.5 mL of 2% low melting point agarose (BioRad) in SB (kept at 45°C), mix well (work quickly, try not to generate any air bubbles), and pour the mix into BioRad plug molds.

## **Step 10.**

Place plug molds in refrigerator for 15 minutes to solidify.

© DURATION

00:15:00

## **Step 11.**

Carefully remove agarose blocks from mold and place them into 2 mL of DB amended with 1mg/mL Proteinase K.

## **Step 12.**

Incubate agarose blocks for 24 hrs at 50°C

### Step 13.

After incubation, wash agarose blocks for 30 minutes with DB 4 times. Cut blocks in small pieces to fit gel wells.

**O DURATION** 

00:30:00

#### **Step 14.**

Prepare 1% agarose gel (PFGE grade) in 1× TAE buffer using BioRad casting stand.

#### **Step 15.**

Load agarose blocks into gel wells and seal them with melted (45°C) 1% low melting point agarose in running buffer.

## **Step 16.**

The chromosomes of *Hansenula wingei* (1.05-3.13 Mbp), cat#170-3667; Schizosaccharomyces (3.5-5.7 Mbp), cat#170-3633 (Bio-Rad, Hercules, CA, USA), and Yeast Chromosome PFG Marker (225-1,900 Kbp), cat#N0345S (New England Biolabs, Beverly, MA, USA) are used as molecular weight markers.

#### **Step 17.**

Separate chromosomal DNA in CHEF-DR (BioRad, Hercules, CA) electrophoresis unit with 1X TAE running buffer. Run electrophoresis at 3 V/cm (100 V) with pulse time ramping from 250 to 900 seconds for 60 hrs. Change buffer every 24 hrs.

© DURATION

00:00:00

## **Step 18.**

Stain gel with 0.5 mg/L ethidium bromide for 20.

## NOTES

### Irina Agarkova 19 Apr 2016

Alternatively, Sybr-Gold (Molecular Probes, Eugene, OR).