Polar Alignment using Plate Solving

Novel way of doing Polar Alignment

Mark Sproul Springfield Telescope Makers Oct 2021

PDF file of this presentation can be downloaded from https://github.com/msproul/AlpacaPi/tree/main/docs

My Observatory

- 15 foot diameter home built dome
- Pike County Pennsylvania

My Scope

3 Main Scopes 16 inch Newtonian (F4.15) 4 inch refractor (WO102) 3 inch refractor (WO71) Finder scope **Guide Scope** 6 Raspberry Pi's 170 lbs counter weight Total moving mass ~400 pounds German Equatorial Mount with 2.5" shafts

<----

Adjustment Nuts on 1 inch diameter rods

---->

Adjustment Tools

Many ways, tried and true

- Built in polar scope
- Drift method
- QHY Polemaster
- Software
 - K-Stars
 - Lots of others

What DIDN'T work (for me)

- Drift method
 - 8 months working at it, just made it worse
- QHY Polemaster
 - Bought one used, no way to accurately mount it

What to do NEXT???

Figure out WHERE I am pointing????

Theory

 Take a series of pictures while rotating around the RA axis <u>WITHOUT</u> tracking turned on and <u>WITHOUT</u> changing DEC.

Plot the center points of each picture, this should generate an arc

The center of the arc is where RA is pointed

Picture Array

Picture Array

Astrometry.net

on 2021-08-26T00:35:33Z as " E-17-2021-08-25T01_49...16.jpg " (Submission 4925429) under Attribution-NonCommercial 3.0 Unported

publicly visible: yes | no

Job Status

Job 5629977: Success

Calibration

Center (RA, Dec): (282.251, 87.149)
Center (RA, hms): 18^h 49^m 00.350^s
Center (Dec, dms): +87° 08' 57.559"
Size: 31.9 x 24.1 arcmin

Radius: 0.333 deg

Pixel scale: 0.411 arcsec/pixel

Orientation: Up is 305 degrees E of N

WCS file: wcs.fits

New FITS image: new-image.fits

Reference stars nearby (RA,Dec

table):

Stars detected in

rdls.fits

vour images (v v avv fits

Special Objects

- # July 4th, 2021
- C-09 10 7 13.666 89 10 20.873
- C-10 10 26 7.848 89 16 08.653
- C-11 10 3 0.336 89 20 06.477
- C-12 10 17 34.816 89 28 16.307
- C-01 10 3 42.384 89 33 24.364
- C-01a 9 22 32.986 89 38 53.870
- C-01b 8 26 3.155 89 41 17.671
- C-01c 6 11 38.237 89 40 05.569
- C-02 4 58 16.122 89 31 48.547
- C-02a 4 48 50.126 89 23 09.162
- C-02b 5 23 40.917 89 09 39.456
- C-03 5 33 22.312 88 54 41.756

- # Aug 12, 2021
- D-01 3 59 58.709 89 21 45.927
- D-02 4 03 56.111 89 21 53.330
- D-03 3 44 35.271 89 22 32.839
- D-04 3 19 11.633 89 23 22.069
- D-05 2 55 55.243 89 24 09.338
- D-06 2 31 23.711 89 27 50.02
- D-07 1 45 48.602 89 29 16.603
- D-08 0 48 47.696 89 29 3.645
- D-09 23 51 21.394 89 26 54.663
- D-10 23 2 57.408 89 28 25.010
- D-11 21 55 3.401 89 29 2.260
- D-12 21 6 34.346 89 29 7.683
- D-13 20 26 23.988 89 28 37.730
- D-14 19 14 55.178 89 27 32.860
- D-15 17 56 58.162 89 25 39.815
- D-16 17 31 13.109 89 23 20.973

- #Aug 24, 2021
- E-01 4 44 59.254 87 07 3.997
- E-02 4 17 26.036 87 07 48.038
- E-03 3 50 22.011 87 08 39.364
- E-04 3 26 55.760 87 11 49.242
- E-05 2 59 29.684 87 13 19.530
- E-06 2 27 23.428 87 14 7.700
- E-07 1 47 25.186 87 14 59.649
- E-08 1 0 19.140 87 16 9.261
- E-09 0 13 59.637 87 16 46.602
- E-10 23 35 16.183 87 13 50.746
- E-11 22 58 44.322 87 14 2.168
- E-12 22 14 17.611 87 14 18.613
- E-13 21 28 32.173 87 14 42.577
- E-14 20 47 45.622 87 13 50.575
- E-15 20 2 54.672 87 12 45.113
- E-16 19 21 5.467 87 11 30.324
- E-17 18 49 0.350 87 08 57.559

Picture Array

The equation of the circle is described by the equation:

$$Ax^2 + Ay^2 + Bx + Cy + D = 0$$

After substituting the three given points which lies on the circle we get the set of equations that can be described by the determinant:

$$\begin{vmatrix} x^2 + y^2 & x & y & 1 \\ x_1^2 + y_1^2 & x_1 & y_1 & 1 \\ x_2^2 + y_2^2 & x_2 & y_2 & 1 \\ x_3^2 + y_3^2 & x_3 & y_3 & 1 \end{vmatrix} = 0$$

http://ambrsoft.com/TrigoCalc/Circle3D.htm

$$A = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \qquad B = - \begin{vmatrix} x_1^2 + y_1^2 & y_1 & 1 \\ x_2^2 + y_2^2 & y_2 & 1 \\ x_3^2 + y_3^2 & y_3 & 1 \end{vmatrix} \qquad C = \begin{vmatrix} x_1^2 + y_1^2 & x_1 & 1 \\ x_2^2 + y_2^2 & x_2 & 1 \\ x_3^2 + y_3^2 & x_3 & 1 \end{vmatrix} \qquad D = - \begin{vmatrix} x_1^2 + y_1^2 & x_1 & y_1 \\ x_2^2 + y_2^2 & x_2 & y_2 \\ x_3^2 + y_3^2 & x_3 & y_3 \end{vmatrix}$$

$$A = x_1(y_2 - y_3) - y_1(x_2 - x_3) + x_2y_3 - x_3y_2$$

$$B = (x_1^2 + y_1^2)(y_3 - y_2) + (x_2^2 + y_2^2)(y_1 - y_3) + (x_3^2 + y_3^2)(y_2 - y_1)$$

$$C = (x_1^2 + y_1^2)(x_2 - x_3) + (x_2^2 + y_2^2)(x_3 - x_1) + (x_3^2 + y_3^2)(x_1 - x_2)$$

$$D = (x_1^2 + y_1^2)(x_3y_2 - x_2y_3) + (x_2^2 + y_2^2)(x_1y_3 - x_3y_1) + (x_3^2 + y_3^2)(x_2y_1 - x_1y_2)$$

$$x = \frac{(x_1^2 + y_1^2)(y_2 - y_3) + (x_2^2 + y_2^2)(y_3 - y_1) + (x_3^2 + y_3^2)(y_1 - y_2)}{2(x_1(y_2 - y_3) - y_1(x_2 - x_3) + x_2y_3 - x_3y_2)} = -\frac{B}{2A}$$

$$y = \frac{(x_1^2 + y_1^2)(x_3 - x_2) + (x_2^2 + y_2^2)(x_1 - x_3) + (x_3^2 + y_3^2)(x_2 - x_1)}{2(x_1(y_2 - y_3) - y_1(x_2 - x_3) + x_2y_3 - x_3y_2)} = -\frac{C}{2A}$$

$$r = \sqrt{(x - x_1)^2 + (y - y_1)^2} = \sqrt{\frac{B^2 + C^2 - 4AD}{4A^2}}$$

• BUT.....

All of this is in Cartesian coordinates.

And, we have polar coordinates with the "center" at the equator......

- So...
- R = 90.0 DEC makes coordinates relative to the north pole
- Theta = RA (converted from Hours to Degrees/Radians)
- Convert to Cartesian $(x = R \cos (theta)) y = R \sin (theta)$
- Do the 3 point math
- Find the Average (in Cartesian coordinates)
- Convert all back to Polar
 - remember to adjust back for equator relative
- Plot on the sky

D05 plate solved w/ Polaris visible

TO-DO List

- Obviously I have a few more adjustments to make
- Add plate solving to my software
- Add some automation to the process

How To

- With the exception of the plate solving, this could be done on manual charts.
- Plate solving
 - https://nova.astrometry.net/
- My software
 - https://github.com/msproul/AlpacaPi

Intermission / Questions

Part 2

AlpacaPi software, what is it and how does it fit in today's computer controlled environment

- Suite of software I wrote in C++
- Targeted to run on Raspberry-Pi's
 - Will run on most any Linux
- 131,000 lines of code
- Planetarium code adapted from code Clif Ashcraft wrote for the Commodore 64 in the early 80s (SkyTravel - 7000, lines of code)

- All open source
- Utilizes Alpaca protocol to implement a distributed observatory control system.

History

- ASCOM developed by Bob Denny 20 years ago.
- Group in UK now controls the published standard
- Most hardware vendors support ASCOM
- Lots of commercial and free software support for ASCOM
- ASCOM only runs on Windows!!!
- April 2019, ASCOM group announced Alpaca

- Networked version of ASCOM for ALL platforms
- Client / server model that uses:
 - HTTP Hyper Text Transport Protocol
 - Used by web browsers to talk to web servers
 - Can be use for other purposes
 - JSON Java Script Object Notation
 - Plain text format for keyword / value pairs. Much simpler than XML

- Data and Commands are identical to ASCOM
- Transport method changed to HTTP and JSON (ASCOM uses COM on Windows)
- ASCOM limited to single computer
- Alpaca is network based allowing for a fully distributed system
- Backwards compatible with ASCOM via software bridge on Windows

WINDOWS IS NOT REQUIRED!!!!!!!!

HTTP

- HTTP to web server
 - GET /index.html
 - GET /subdirectory/index.php
 - GET /imagedirectory/image.jpg
- Alpaca HTTP
 - GET /api/v1/camera/0/camerastate
 - GET /api/v1/camera/0/pixelsizex
 - PUT /api/v1/camera/0/startexposure
 - PUT /api/v1/dome/0/closeshutter

JSON

```
GET /api/v1/camera/0/pixelsizex
  returns
     "Device": "WO102-ZWO ASI1600MM Pro",
     "Command":"pixelsizex",
     "Value":3.800000,
     "ClientTransactionID":4,
     "ServerTransactionID":15074,
     "ErrorNumber":0,
     "ErrorMessage":""
```

Command Line

Alpaca commands can be sent from a unix command line, no programming required. This allows very easy automation.

curl -X PUT "http://192.168.1.22:6800/api/v1/dome/0/closeshutter"

Back to AlpacaPi

- AlpacaPi is a collection of drivers and clients that implements Alpaca on Linux.
- IMPORTANT NOTE: You can use your existing ASCOM client on Windows to talk to any of my Linux Alpaca drivers.

AlpacaPi software suite

- Drivers
 - Camera
 - Focuser
 - Rotator
 - Filterwheel
 - Dome
 - Calibration
 - Switch

- Clients
 - Controllers for all the drivers
 - Planetarium with full integration to all of the drivers.

ip-address : port	/etc/hosts	type	name
192.168.1.177:6800	calib	Camera	calib-ZWO ASIO34MC
192.168.1.146:6800	door	Camera	Door-ZWO ASIO34MC
192.168.1.165:6800	finder	Camera	FINDER-ZWO ASI120MC
192.168.1.165:6800	finder	Camera	FINDER-ZWO ASI120MC-S
192.168.1.164:6800	newt16	Camera	NEWT16-ZWO ASI1600MC Pro
192.168.1.173:6800	wo102	Camera	W0102-ZWO ASI1600MM Pro
192.168.1.173:6800	wo102	Camera	W0102-ZWO ASI290MM
192.168.1.161:6800	wo71	Camera	WO71-ZWO ASI120MC-S
192.168.1.177:6800	calib	CoverCalibrator	CoverCalibration-Raspberry-Pi
192.168.1.223:6800	dome	Dome	AlpacaPi-Dome
192.168.1.164:6800	newt16	Filterwheel	ZWO EFW-5
192.168.1.173:6800	wo102	Filterwheel	ZWO EFW-8
192.168.1.166:6800	gyro	Focuser	Moonlite
192.168.1.161:6800	wo71	Focuser	NiteCrawler Focuser
192.168.1.164:6800	newt16	Focuser	NiteCrawler Focuser
192.168.1.173:6800	wo102	Focuser	NiteCrawler Focuser
192.168.1.165:6800	finder	Multicam	MultiCam
192.168.1.161:6800	wo71	Rotator	NiteCrawler Rotator
192.168.1.164:6800	newt16	Rotator	NiteCrawler Rotator
192.168.1.173:6800	wo102	Rotator	NiteCrawler Rotator
192.168.1.146:6800	door	Shutter	Arduino-shutter
192.168.1.164:6800	newt16	SlitTracker	SlitTracker
192.168.1.146:6800	door	Switch	Switch-Raspberry-Pi
192.168.1.165:6800	finder	Switch	Switch-Raspberry-Pi
192.168.1.153:6800		Telescope	Telescope-LX200

Telescope Control

Filter Wheel Control

Double click on any filter to move to that position.

Clicking the RED LED switch turns on some lights.

AlpacaPi supported hardware

- Cameras
 - ZWO
 - ATIK
 - SVBONY
 - QHY
 - Touptech
 - FLIR
 - SONY

- Focusers
 - Moonlite Nitecrawler
 - Moonlite HiRes
- Filterwheel
 - ZWO
 - ATIK
- Rotator
 - Moonlite Nitecrawler

AlpacaPi supported hardware

- Dome
 - Raspberry-Pi using motor control boards for Dome
 - Raspberry-Pi using relay board for Roll Off Roof
- Switch
 - Raspberry-Pi using relay board

- Calibration
 - Raspberry-Pi using motor control board to adjust brightness of flat panel

AAVSO

AAVSO - American Association of Variable Star Observers puts out observations alerts on a regular basis.

You can sign up to receive this via emal OR

Go online and find them

https://filtergraph.com/aavso/api/index#

Supports full API for access

Star Object List

About

AAVSO List

AlertID	Star Name	Right As	cension Declination	Org RA/DEC
754	1SWASP J022916.91-39590	1.4 2:30:08.9	-39:53:16.2	2:29:16.9/-39:59:01.6
754	KR Aur	6:17:06.4	28:34:37.5	6:15:43.9/ 28:35:08.6
754	V442 Oph	17:33:30.3	-16:16:13.5	17:32:15.1/-16:15:22.1
754	GS Pav	-3:49:39.1	-69:45:06.3	20:08:07.6/-69:48:58.8
754	V794 Aql	-3:41:17.8	-3:35:44.4	20:17:33.9/ -3:39:51.0
754	VY ScI	0:29:50.6	-29:39:34.9	23:29:00.5/-29:46:46.0
754	1RXS J233801.0+430852	0:20:56.6	43:16:04.0	23:37:59.2/ 43:08:51.0
754	V704 And	0:13:57.5	43:38:36.4	23:44:57.5/ 43:31:22.3
754	HS 0220+0603	2:24:10.3	6:22:41.9	2:23:01.7/ 6:16:49.6
754	WX Ari	2:48:46.6	10:41:00.7	2:47:36.2/ 10:35:37.7
754	V1024 Cep	5:11:57.2	83:20:58.6	5:06:48.3/ 83:19:23.3
754	LN UMa	10:06:13.3	66:22:53.2	10:04:34.7/ 66:29:14.9
754	V380 Oph	17:51:17.3	6:05:11.8	17:50:13.6/ 6:05:29.3
754	V425 Cas	0:55:16.0	53:24:17.0	23:03:46.7/ 53:17:14.9
753	DO Dra	11:44:51.2	71:34:06.6	11:43:38.5/ 71:41:20.5
753	DW Cnc	8:00:07.2	16:13:08.8	7:58:53.1/ 16:16:45.4
753	V515 And	0:56:33.9	46:19:59.0	0:55:19.9/ 46:12:57.0
753	V1223 Sgr	-5:03:33.9	-31:08:04.9	18:55:02.3/-31:09:49.6
753	V1025 Cen	12:39:27.0	-38:49:54.5	12:38:16.3/-38:42:45.8
753	AO Psc	-1:03:34.8	-3:03:41.9	22:55:18.0/ -3:10:40.0
753	1RXS J213344.1+510725	-2:25:31.1	51:13:14.5	21:33:43.6/ 51:07:24.7
752	RS Oph	17:51:23.3	-6:42:46.0	17:50:13.2/ -6:42:28.6
751	RU Lup	15:58:08.4	-37:52:57.2	15:56:42.3/-37:49:15.5
751	BP Tau	4:20:37.2	29:09:30.7	4:19:15.8/ 29:06:26.8
750	T CrB	16:00:24.7	25:51:35.1	15:59:30.2/ 25:55:12.6
749	N Vul 2021	-3:37:58.8	29:18:21.0	20:21:07.7/ 29:14:09.1
748	SSTc2d J160000.6-422158	16:01:30.3	-42:25:33.0	16:00:00.6/-42:21:56.8
748	NSV 20468	16:02:00.3	-41:47:12.4	16:00:31.0/-41:43:37.0
747	V627 Peg	-2:20:55.0	26:25:50.8	21:38:06.6/ 26:19:56.0
746	rho Cas	0:04:31.2	57:37:12.6	23:54:23.0/ 57:29:57.8
745	N Her 2021	-5:01:30.8	16:55:28.5	18:57:31.0/ 16:53:39.6
744	V1117 Her	16:40:08.5	9:45:25.9	16:39:06.4/ 9:47:55.3
743	V603 AqI	-5:09:58.9	0:36:36.1	18:48:54.6/ 0:35:02.9
742	N Cas 2021	0:34:13.5	61:18:24.8	23:24:47.7/ 61:11:14.8
Total stars	-294	Export to CSV		

Future

- One major hardware vendor already building Alpaca into the device itself.
- At least one major planetarium program is working on Alpaca support
- I predict that ASCOM will be barely breathing in 5 years, replaced entirely by Alpaca

Future

- Imagine, NO USB cables, only Power Over Ethernet
- Gigabit speeds
- No cable length restrictions like USB3
- Completely Operating System independent. Mix and match any way you like.
- Remote operation very easy to implement.

Questions

