Buez Exercises: Gauge Transformations

80. Check that if $\phi: \mathbb{R}^4 \to \mathbb{C}^3$ is a solution of $(\mathcal{Y}^4)_{\mu} + m^2 + \lambda \phi^i \phi_i \phi = 0$, so is any $U_i(g) \phi$ for any $g \in SU(2)$

 $\phi^i \phi_i$ is the inner product in \mathcal{C}^3 , and as such is invariant under unitary transformations like $U_1(g)$. Further, since g doesn't depend on x^M , $\partial_\mu U_1(g) = 0$ and therefore

$$\left(\partial^{M} \partial_{\mu} + m^{2} + \lambda \phi^{i} \dot{\phi}_{i}^{i} \right) \phi^{i} = \left(\partial^{M} \partial_{\mu} + m^{2} + \lambda \phi^{i} \dot{\phi}_{i} \right) \phi^{i}$$

$$= U_{1}(g) \left(\partial^{M} \partial_{\mu} + m^{2} + \lambda \phi^{i} \dot{\phi}_{i} \right) \phi = 0.$$

- 81. Partition of unity...
- 82. Show that gauge transformations form a group.

Suppose $f, h \in T$ live in G. This means $[p, v] \xrightarrow{f} [p, gv]_{\alpha}$ for $g_f \in G$ and similarly for h and $g_h \in G$.

The product is defined by fh(p) = f(p)h(p) and so we get $fh : [p, v]_{\alpha} \longrightarrow [p, gfhv]_{\alpha}$ for $gfh = gfgh \in G$. When $h = f^{-1}$ we have a trivial action, so $e = gfh = gfgf^{-1}$ and thus $gf = gf^{-1}$.