부력제어 자율무인작수정(BCA

1000미터 항해가 가능한 수중 글라이더의

유압식 부력 제어기 및 선체 개발

(9세부)

김주석 (한국도키멕㈜)

주관기관: 한국해양과학기술원 한국도키멕㈜, 한국해양대학교 LIG넥스원㈜, 오션테크㈜

과제 개요

사업명	무인이동체 원천기술개발사업(내역사업 2 : 통합운용 기술실증기 개발)
과제명	무인수상선-수중자율이동체 복합체계 개발(해양복합연구단)
세부과제명	제09세부: 1,000미터 항해가 가능한 수중글라이더의 유압식 부력 제어기 및 선체개발
연구목표	복합체계임무를 위한 1,000m급 수중글라이더 개발
사업기간	총 연구기간 : 2020. 06. 01 ~ 2027. 05. 31(1, 2단계 총 55개월) 당해(5차)년도 연구기간 : 2024. 01. 01 ~ 2024. 12. 31(12개월)
연구사업비	총 12.41억(국비 9.25억원, 기업 3.16억원)/당해 1.69억원
BCA 총괄 주관기관	한국해양과학기술원
BCA 참여기관	한국도키멕㈜, 한국해양대학교, LIG넥스원㈜, 오션테크㈜

과제 연구목표

○ 최종 목표

1000미터 항해가 가능한 수중 글라이더의 유압식 부력 제어기 및 선체 개발

○ 세부 목표

- 1.유압식 부력 제어기 개발
- 2.자세 제어기 개발
- 3.조향 및 기타 제어기 개발
- 4.내압용기 설계 및 성능 해석 기술 개발
- 5.시제품 제작

과제 연차별 연구개발 목표

○ 연차별 연구목표

단계	연차	연구목표	세부목표
	1차년	부력제어기 핵심 요소 설계 및 제작/ 검증	① 1000m급 부력제어기 개발 설계와 검증 ② 구성품 단위의 시작품 제작과 성능평가
1단계	2차년	수중글라이더 자세,조향,기타제어기 핵심요소 제작/검증	① 수평속도 1kont 대응 할 수 있는 자세,조향제어기 개발 ② 비상상황을 대처하기 위한 부상 장체 설계 ③ 각 구정품 단위의 시작품 시험평가 검증
	3차년	시스템 통합 및 시작품 제작 / 시험	 ① 1000m급 수중 글라이더 동체 개발 ② 내압용기 설계 및 성능해석 기술개발 ③ 선체와 자세/조향 통합시험 ④ 선체의 내압시험 및 제어기 성능평가
	4차년	시제품제작/ 시험 및 보완	① 1000m급 선체 시작품 제작 및 성능평가 ② 각 파트별 보완 및 보완품 성능 평가
	5차년	최종 시제품 제작 / 단일 시험 평가	① 수정 보완된 시작품 제작 ② 수중 글라이더 단일 시험 평가
2단계	6차년		
	7차년		
	8차년		

시제 개발 범위

GigaRF PARTINE COMMENT COMMEN

과제 연구개발로드맵

다게		a CF게			a.E.	나게	
단계		1단계			22	<u></u> 上계	
년도	2020	2021	2022	2023	2024	2025	2026~27
해양복합 연구단 (제8세부)	시스템 요구분석 SRR 단위시스 PDR,		기타 제어기	시제품 제 작 -보완수정 제작 -시험검증	최종 시제품 제작 -통합시험 -수조시험		

목표 성능

○ BCA 목표 성능

붉은 색 표기 = 대표 목표 성능

항 목	목표 성능	달성 성능	상세 정의	ИП
최대 잠항 수심	<mark>말항 수십</mark> 1,000m 이상 1,200		BCA의 최대 운용 수심 제원	동체 개선품 제작 후 자체 시험 수행
속도	평균 1.0kn 이상	평균 1.0kn 이상	BCA의 평균 수평이동속도 제원	수치 산출
ווב ד	D230 X L2,351 X W990 mm 01 Ly	D220 X L2,252 X W980 mm	최대 크기 제원	제작품 크기 측정
중량	85kg Olðl	80kg 0 ð	최대 중량 제원	설계 사양 및 부분 제작품 중량 측정
부력 제어기 중량	15kg Olðl	9kg 0 ðł	부력 제어기의 최대 중량 제원	기구 제작 후 중량 측정
부력 제어기 소비전력	150W 이하	80W 017H	부력 제어기의 최대 소비전력 제원 (유압 최대 사양)	소비전력 시험
부력 제어량	1L 내외 (오차 ±30%)	1.02L	부력 제어기의 부력 제어량 제원	공인 시험
자세 제어기 정밀도	± 2% 이 내	0.3% 이내	자세 제어기의 기구 정밀도	공인 시험
조향 제어기 정밀도	± 2% 이 내	1% 이내	조향 제어기의 기구 정밀도	공인 시험
운용 시간	2개월 이상	2개월 이상	BCA의 최대 임무 수행 기간	수치 산출 및 배터리 팩 제작
자료 전송	RF	2km 이상	RF의 최대 통신 가능 거리	수치 산출 및 통신 시험 수행
선택적 탑재 센서	7종 센서	7종 센서	CTD, ADCP, CO2, Ph, 메탄, 지자기, 탁도 센서 센서 탑재 모듈 Plug & Play 기능 수심 1,000m 이상 해양학 데이터 수집	7종 센서가 탑재 가능한 시나리오 및 센서 탑재 모듈 제작
연동	통신 및 네트워킹 연동	-	USV, PCA / 내역 사업 1과 통신 및 네트워킹으로 연동	설계에 반영 (2단계 검증)
진단	자체 진단 기능	-	BCA 자체 진단	설계에 반영 (2단계 검증)
관제 시스템	DB, 통신중계서버, 관제서버 기능	-	DB서버 - 수집된 데이터 저장 통신중계서버 - 위성통신에서 제공하는 중계서버 관제서버 - 장비운용, 데이터 가공, 저장 및 가시화 처리	설계에 반영 (2단계 검증)
진수	USV에서 자동 진수 가능	-	독자 진수대를 이용한 USV에서 자동 진수 가능	제작 진행 중
보조 장치	육상 보관/운반/이동 보조장치	-	육상에서 보관/운반/이동이 용이한 보조장치	2단계에서 설계 및 제작

○ 1,000m급 수중글라이더 구동부 및 선체 개발 (9세부: 한국도키멕)

▶ 유압식 부력제어기 개발

- 유압회로를 구성한 시스템 설계 완성
- 유압 회로 검증 및 테스트 완료
- 소비전력 150W이내 (약 80W) 제작 및 검증
- 부력제어기의 제어부의 신호출력 및 위치제어
- 1000M (100BAR) 에서 작동 및 기능 확인
- 진공 및 수압, 유압등 각부분의 Sealing 선정 및 검증

[유압회로 시스템]

[소비전력 측정]

[외압100BAR 검증]

○ 1,000m급 수중글라이더 구동부 및 선체 개발 (9세부: 한국도키멕)

▶ 자세 제어기 개발

- 베터리팩 이송을 위한 제어기 제작
- 배터리팩 이송을 위한 적정 토크 선정
- 배터리팩 이송시 ±2% 이내 위치 정밀도 확인
- 행정거리 80mm 만족 (공인시험완료)

[자세제어기 시제]

▶ 조향 제어기 개발

- 수평속도 1Knot를 대응할수 있는 제어기 제작
- 제어 각도 ±30°의 정밀도 ±2% 이내 제작 및 시험평가 완료
- 마그네트 커플링(비접촉 동력전달) 설계 및 제작
- 조향 제어측 내외부 Sealing 선정 및 검증

[조향 제어기 시제]

○ 1,000m급 수중글라이더 구동부 및 선체 개발 (9세부: 한국도키멕)

- 내압용기내압 용기 설계 제작 , 성능 해석 기술 개발
 - 1000M 급 수중 글라이더용 동체 개발
 - 탄소 섬유 소재의 외압용 동체 제작 기술 확보
 - 동체 및 라이너 부분의 이상적인 접합 개발 및 검증

[진공테스트]

[RT 시험 크렉 확인]

[탄소 복합소재 동체]

- 1,000m급 수중글라이더 구동부 및 선체 개발 (9세부: 한국도키멕)
 - ▶ 기타 수중글라이더 부품 개발
 - 노즈콘, 카울링 개발
 - 경량화 및 유선형 설계 제작
 - 특수재질 선정 및 제작 내구성 확인
 - 각 타입별 장착 가능항 페이로드 설계 제작
 - 유선형 설계 및 경량화 제작
 - AIR BLADDER, ANOD, WING
 - 해수 및 1000M에서 운행 가능한 각 부품 제작

[노즈콘]

[카울링]

[각종 블래더]

[타입별 페이로드]

[부품류]

○ 1,000m급 수중글라이더 구동부 및 선체 개발 (9세부: 한국도키멕)

▶ 시제품 제작

- 각 파트별 조립성 확인
- 각 파트별 씰링부 확인 및 점검
- 각 파트별 간섭 확인 및 1차 수정

[크기 및 내부 구성품]

[시제 설계 안]

[시제 제작품]

대표 성과

○ 대표 산출물 (건수)

	기술	니게프 기술 논문				허	WI TO	
시제품 기술 자료		국외논문	국외발표	국내논문	국내발표	출원	등록	пIT
4	7	0	0	0	0	-	-	

○ 대표 산출물 (리스트)

순번	시제품	기술자료	미교
1	부력 제어기	- 설계 도면 1부 - 공인 시험 성적서 1부	
2	자세 제어기	- 설계 도면 1부 - 공인 시험 성적서 1부	
3	조향 제어기	- 설계 도면 1부 - 공인 시험 성적서 1부	
4	동체 및 페이로드부	- 설계 도면 1부	

5차년도 연구목표

❖ 5차년도 연구목표

- ① 최종 시제품 제작
 - 시작품 개선 및 보완
 - ✓ 시작품 조립시 보완 사항 재 설계 및 제작
 - ✓ 시작품 운영시 문제점 보완 및 반영
 - 섹션별 외압 테스트 및 검증
 - ✓ 선체 외압 공인 시험
 - ✓ 부품별 내구성 및 압력 테스트

중간 결과

연구 진행 사항 (1/2)

◆ 시작품 개선 및 보완 [완료 3월 ~ 8월]

- 러더부분 간섭 개선 수정
- 부력제어부 커플링 개선
- 부력제어부 모터 고정축 휨 수정
- 페이로드부 유선형 제작
- 헐파이프 부분 길이 변경
- 동체 타이로드 부분 길이 연장 수정
- 조향 제어부 PCB 기판 간섭 수정
- 조향 제어부 CAP 간섭부 개선
- 마그넷 커플러 자석 신규제작
- 마그넷 커플러 조립부 관련 수정
- 조향 제어 기구부 심 제작
- 조향 제어 위치 감지부 자석 두께 수정
- 조향 제어 PCB 볼트 머리 간섭 수정

중간 결과

연구 진행 사항 (2/2)

외압 시험 [완료, 6월]

- · 선체 외압 시험을 위한 자체 수압용 챔버 제작 (500mm * 1000mm * 180bar)
- · 선체 및 구성품 외압 시험 수행 (120bar, 약 30분)
- · 특별한 이상없이 성공적으로 외압 시험 완료

[선체(동체부) 외압 시험]

파트별 외압 시험 [완료, 6~9월]

- · 파트별 외압 테스트 진행 및 검증
- ·이상 부분 확인 > 구조 변경 및 재 검증

[파트(러더부) 외압 시험]

시험 계획

이 시험 계획

▶ 공인인증 시험 계획[~10월]

평가항목	연차	목표	일정	상황
(정성) 유압식 부력 제어기 및선 체개발	5차년 (최종)	수중글라이더 단일 시험 평가 요구 성능의100% 만족		통합 시험 실시
(정량) 부력 제어기 소비 전력	5차년 (최종)	< 150w (부하 100bar, 부력제어량 1L에 대해 유압 최대 사양으로 10회시험하여 시제품 평균 소비전력측정	23년 완료	
(정량) 자세 제어 정밀도	5차년 (최종)	< ±2% (배터리 최대무게에서 지정된 자세 제어 정밀도를 <mark>수조에서 실험</mark> , 센서 장착 비 교값 산출	10월 예정	수조 제작 및 지그 준비 중
(정량) 선체외압	5차년 (최종)	선체 외압120bar 수조에서 안전율 고려한 외 압시험 실시하여 내부로 수분 침투 여부 확 인	10월 예정	준비 완료 검사 일정 조 율
(정량) 조향 제어 정 밀도	5차년 (최종)	< ±2% (지정된 조향 제어 정밀도를 <mark>수조에서 실험</mark> , 센서 장착 비교값 산출	10월 예정	수조 제작 및 지그 준비중

[자세 제어기 정밀도 시험 수조]

[조향제어기 정밀도 시험 수조]

추진체계

❖ 주요연구내용

- 부력제어시스템 개발
- 조향.자세제어 시스템 개발
- 복합소재 동체 개발
- ㆍ 검증 및 테스트

추진일정

실증 방안

○ BCA 시제 시험/검증 방안

2단계 개발 항목	시험 내용	시험/검증 목표	시험예상일자		
		수중글라이더 단일 시험 평가	24년 9월 경		
	(정성) 복합체계 임무를 위한 수중글라이더 개발	복합체계 운용 성능 시험	6차년도		
		복합체계 종합 연동 시험	7-8차년도(최종)		
(8세부)		≥ 2개월, 단위시간 기준 수조 실험에 근거	24년 9월 경		
전력 및 제어시스템	(정량) 수중글라이더 운용 기간	≥ 2개월, 단위시간 기준 수조 실험에 근거	6차년도		
개발		≥ 2개월, 해상 실험에 근거, Sea state 301내	7-8차년도(최종)		
		≥ 2km, 연안-육지 2km 범위내, Ses state 20 내	24년 10월 경		
	(정량) 수중글라이더 RF 통신 거리	≥ 2km, 연안-육지 2km 범위내, Ses state 3이내	6차년도		
		≥ 2km, 해상 실험에 근거, Ses state 3이내	7-8차년도(최종)		
	(정성) 유압식 부력 제어기 및 선체 개발	수조 시험 시의 문제점을 보완하여 최종 시제품 제작, 단일 시험 평가 요구 성능 목표의 100% 만족	24년 10월 경		
(9세부)	(정량) 부력 제어기 소비전력	≤150W (부하 100bar, 부력 제어량 1L에 대해 유압 최대 사양으로 10회 시험하여 시제품 평균 소비전력 측정)	23년 11월 검증 완료		
유압식 부력 제어기 및 선체 개발	(정량) 자세 제어 정밀도	≤ ±2% (배터리 최대 무게에서 지정된 자세 제어 정밀도를 수조에서 실험, 센서장착 비교값 산출)	24년 10월 경		
	(정량) 선체 외압	선체 외압 120bar 수조에서 안전을을 고려한 외압시험 실시하여 내부로 수분 침투 여부 확인	24년 10월 경		
	(정량) 조향 제어 정밀도	< ±2%[지정된 조향 제어 정밀도를 수조에서 실험, 센서장착 비교값 산출]	24년 10월 경		
(10세부) 자율 제어 기술 개발	(정성) 수중글라이더의 실해역 운항실험 및 데이터 취득	수중글라이더 수조 센서 테스트 수중글라이더 실해역 실험 및 운용 테스트 시뮬레이션 결과와 실험 테이터 분석	24년 10월 경		
(11세부) 항법 기술 개발	(정성) 1000급 수중글라이더의 위치추정 항법 기술 개발	수중글라이더 시험 평가 적용	24년 10월 경		
(12세부) 센서 탑재 모듈 기술	(정성) 해양관측용 센서 탑재 모듈 기술 개발	센서모듈 등합성능시험 및 보완	24년 10월 경		
개발	(정량) 센서모듈 Plug & play 기능 개발	Plug & Play 통합성능시험 및 보완 - 모듈 2개 이상 시험(통합 시험)	24년 10월 경		
과학기술정보통신부 NRF 한국연구제단 수 무인이동체·민족선통사업단 KRISO 선박해양플랜트연구소 선박해양플랜트연구소 선박해양플랜트연구소 선박해양플랜트연구소 선박해양플랜트연구소 선박해양플랜트연구소 선택하는 한국연구제단 수 한국조선해양기자재연구원 KAIST 한국연구제단 수 한국조선해양기자재연구원 KAIST 한국연구제단 수 한국조선해양기자재연구원 KAIST 한국대학교 선택하는 전략에 Augustum Header Institute William Header Institute Willia					

2024년도 무인이동체원천기술개발사업 통합기술워크샵

감사합니다.

