# Introduction to Reinforcement Learning

CS 294-112: Deep Reinforcement Learning
Sergey Levine

#### Class Notes

- 1. Homework 1 is due next Wednesday!
  - Remember that Monday is a holiday, so no office hours
- 2. Remember to start forming final project groups
  - Final project assignment document and ideas document released

### Today's Lecture

- 1. Definition of a Markov decision process
- 2. Definition of reinforcement learning problem
- 3. Anatomy of a RL algorithm
- 4. Brief overview of RL algorithm types
- Goals:
  - Understand definitions & notation
  - Understand the underlying reinforcement learning objective
  - Get summary of possible algorithms

## Terminology & notation



#### Imitation Learning





Images: Bojarski et al. '16, NVIDIA

#### Reward functions



which action is better or worse?

 $r(\mathbf{s}, \mathbf{a})$ : reward function

tells us which states and actions are better





high reward



low reward

Markov chain

$$\mathcal{M} = \{\mathcal{S}, \mathcal{T}\}$$

 $\mathcal{S}$  – state space

 $\mathcal{T}$  – transition operator

why "operator"?

states  $s \in \mathcal{S}$  (discrete or continuous)

$$p(s_{t+1}|s_t)$$

let  $\mu_{t,i} = p(s_t = i)$ 

let 
$$\mathcal{T}_{i,j} = p(s_{t+1} = i | s_t = j)$$



**Andrey Markov** 

 $\vec{\mu}_t$  is a vector of probabilities

then 
$$\vec{\mu}_{t+1} = \mathcal{T}\vec{\mu}_t$$

 $\mathbf{s}_1$  $p(\mathbf{s}_{t+1}|\mathbf{s}_t)$ 

Markov property independent of  $\mathbf{s}_{t-1}$ 

Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

 $\mathcal{S}$  – state space

states  $s \in \mathcal{S}$  (discrete or continuous)

 $\mathcal{A}$  – action space

actions  $a \in \mathcal{A}$  (discrete or continuous)

 $\mathcal{T}$  – transition operator (now a tensor!)

let 
$$\mu_{t,j} = p(s_t = j)$$

let 
$$\xi_{t,k} = p(a_t = k)$$

$$\mu_{t,i} = \sum_{j,k} \mathcal{T}_{i,j,k} \mu_{t,j} \xi_{t,k}$$

let 
$$\mathcal{T}_{i,j,k} = p(s_{t+1} = i | s_t = j, a_t = k)$$





Andrey Markov



Richard Bellman

Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

 $\mathcal{S}$  – state space

states  $s \in \mathcal{S}$  (discrete or continuous)

 $\mathcal{A}$  – action space

actions  $a \in \mathcal{A}$  (discrete or continuous)

 $\mathcal{T}$  – transition operator (now a tensor!)

r – reward function

 $r: \mathcal{S} imes \mathcal{A} o \mathbb{R}$ 

 $r(s_t, a_t)$  – reward



**Andrey Markov** 



Richard Bellman

partially observed Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{E}, r\}$$

 $\mathcal{S}$  – state space

states  $s \in \mathcal{S}$  (discrete or continuous)

 $\mathcal{A}$  – action space

actions  $a \in \mathcal{A}$  (discrete or continuous)

 $\mathcal{O}$  – observation space

observations  $o \in \mathcal{O}$  (discrete or continuous)

 $\mathcal{T}$  – transition operator (like before)

 $\mathcal{E}$  – emission probability  $p(o_t|s_t)$ 

r – reward function

 $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ 



### The goal of reinforcement learning



$$p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^T \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$p_{\theta}(\tau)$$

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

### The goal of reinforcement learning





## The goal of reinforcement learning





## Finite horizon case: state-action marginal

$$\begin{split} \theta^{\star} &= \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \\ &= \arg\max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})} [r(\mathbf{s}_{t}, \mathbf{a}_{t})] \qquad p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) \quad \text{state-action marginal} \end{split}$$



## Infinite horizon case: stationary distribution

$$\theta^* = \arg\max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)} [r(\mathbf{s}_t, \mathbf{a}_t)]$$

what if  $T = \infty$ ?

does  $p(\mathbf{s}_t, \mathbf{a}_t)$  converge to a stationary distribution?

 $\mu = \mathcal{T}\mu$  stationary = the same before and after transition

$$(\mathcal{T} - \mathbf{I})\mu = 0$$

 $\mu$  is eigenvector of  $\mathcal{T}$  with eigenvalue 1!

(always exists under some regularity conditions)

state-action transition operator

stationary distribution

$$\left(egin{array}{c} \mathbf{s}_{t+1} \ \mathbf{a}_{t+1} \end{array}
ight) = \mathcal{T} \left(egin{array}{c} \mathbf{s}_t \ \mathbf{a}_t \end{array}
ight) \ \left(egin{array}{c} \mathbf{s}_{t+k} \ \mathbf{a}_{t+k} \end{array}
ight) = \mathcal{T}^k \left(egin{array}{c} \mathbf{s}_t \ \mathbf{a}_t \end{array}
ight)$$

 $\mu = p_{\theta}(\mathbf{s}, \mathbf{a})$ 

## Infinite horizon case: stationary distribution

$$\theta^* = \arg\max_{\theta} \frac{1}{T} \sum_{t=1}^{T} E_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)} [r(\mathbf{s}_t, \mathbf{a}_t)] \to E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})} [r(\mathbf{s}, \mathbf{a})]$$
(in the limit as  $T \to \infty$ )

what if  $T = \infty$ ?

does  $p(\mathbf{s}_t, \mathbf{a}_t)$  converge to a stationary distribution?

 $\mu = \mathcal{T}\mu$  stationary = the same before and after transition

$$(\mathcal{T} - \mathbf{I})\mu = 0$$

 $\mu$  is eigenvector of  $\mathcal{T}$  with eigenvalue 1!

(always exists under some regularity conditions)

state-action transition operator

 $\mu = p_{\theta}(\mathbf{s}, \mathbf{a})$  stationary distribution

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

#### Expectations and stochastic systems

$$\theta^{\star} = \arg\max_{\theta} E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})}[r(\mathbf{s}, \mathbf{a})] \qquad \qquad \theta^{\star} = \arg\max_{\theta} \sum_{t=1}^{I} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})}[r(\mathbf{s}_{t}, \mathbf{a}_{t})]$$
 infinite horizon case

#### In RL, we almost always care about expectations



$$p_{ heta}( ext{fall}) = heta$$
  $r( ext{fall}) - not ext{ smooth}$   $E_{p_{ heta}}[r( ext{fall})] - smooth ext{ in } heta!$ 

## Algorithms

## The anatomy of a reinforcement learning algorithm



#### A simple example





$$J(\theta) = E_{\pi} \left[ \sum_{t} r_{t} \right] \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t} r_{t}^{i}$$

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

#### Another example: RL by backprop



#### Simple example: RL by backprop



collect data

update the model f

update the policy with backprop



#### Which parts are expensive?

 $J(\theta) = E_{\pi} \left[ \sum_{t} r_{t} \right] pprox \frac{1}{N} \sum_{i=1}^{N} \sum_{t} r_{t}^{i}$  trivial, fast

real robot/car/power grid/whatever:

1x real time, until we invent time travel

MuJoCo simulator: up to 10000x real time



### Why is this not enough?



- Only handles deterministic dynamics
- Only handles deterministic policies
- Only continuous states and actions
- Very difficult optimization problem
- We'll talk about this more later!

#### How can we work with stochastic systems?

#### Conditional expectations

$$\sum_{t=1}^{T} E_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)} [r(\mathbf{s}_t, \mathbf{a}_t)]$$

 $E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)}$ 

what if we knew this part?

$$Q(\mathbf{s}_{1}, \mathbf{a}_{1}) = r(\mathbf{s}_{1}, \mathbf{a}_{1}) + E_{\mathbf{s}_{2} \sim p(\mathbf{s}_{2}|\mathbf{s}_{1}, \mathbf{a}_{1})} \left[ E_{\mathbf{a}_{2} \sim \pi(\mathbf{a}_{2}|\mathbf{s}_{2})} \left[ r(\mathbf{s}_{2}, \mathbf{a}_{2}) + ... | \mathbf{s}_{2} \right] | \mathbf{s}_{1}, \mathbf{a}_{1} \right]$$

$$E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)} \left[ E_{\mathbf{a}_1 \sim \pi(\mathbf{a}_1|\mathbf{s}_1)} \left[ Q(\mathbf{s}_1, \mathbf{a}_1) | \mathbf{s}_1 \right] \right]$$

easy to modify  $\pi_{\theta}(\mathbf{a}_1|\mathbf{s}_1)$  if  $Q(\mathbf{s}_1,\mathbf{a}_1)$  is known!

example: 
$$\pi(\mathbf{a}_1|\mathbf{s}_1) = 1$$
 if  $\mathbf{a}_1 = \arg\max_{\mathbf{a}_1} Q(\mathbf{s}_1, \mathbf{a}_1)$ 

#### Definition: Q-function

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: total reward from taking  $\mathbf{a}_t$  in  $\mathbf{s}_t$ 

#### Definition: value function

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t]$$
: total reward from  $\mathbf{s}_t$ 

$$V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$$

 $E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)}[V^{\pi}(\mathbf{s}_1)]$  is the RL objective!

#### Using Q-functions and value functions

Idea 1: if we have policy  $\pi$ , and we know  $Q^{\pi}(\mathbf{s}, \mathbf{a})$ , then we can improve  $\pi$ :

```
set \pi'(\mathbf{a}|\mathbf{s}) = 1 if \mathbf{a} = \arg \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})
```

this policy is at least as good as  $\pi$  (and probably better)!

and it doesn't matter what  $\pi$  is

Idea 2: compute gradient to increase probability of good actions a:

if 
$$Q^{\pi}(\mathbf{s}, \mathbf{a}) > V^{\pi}(\mathbf{s})$$
, then **a** is better than average (recall that  $V^{\pi}(\mathbf{s}) = E[Q^{\pi}(\mathbf{s}, \mathbf{a})]$  under  $\pi(\mathbf{a}|\mathbf{s})$ )

modify  $\pi(\mathbf{a}|\mathbf{s})$  to increase probability of  $\mathbf{a}$  if  $Q^{\pi}(\mathbf{s},\mathbf{a}) > V^{\pi}(\mathbf{s})$ 

These ideas are *very* important in RL; we'll revisit them again and again!

#### Review

- Definitions
  - Markov chain
  - Markov decision process
- RL objective
  - Expected reward
  - How to evaluate expected reward?
- Structure of RL algorithms
  - Sample generation
  - Fitting a model/estimating return
  - Policy Improvement
- Value functions and Q-functions



#### Break

### Types of RL algorithms

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

- Policy gradients: directly differentiate the above objective
- Value-based: estimate value function or Q-function of the optimal policy (no explicit policy)
- Actor-critic: estimate value function or Q-function of the current policy, use it to improve policy
- Model-based RL: estimate the transition model, and then...
  - Use it for planning (no explicit policy)
  - Use it to improve a policy
  - Something else

## Model-based RL algorithms



#### Model-based RL algorithms

improve the policy

a few options

- 1. Just use the model to plan (no policy)
  - Trajectory optimization/optimal control (primarily in continuous spaces) essentially backpropagation to optimize over actions
  - Discrete planning in discrete action spaces e.g., Monte Carlo tree search
- 2. Backpropagate gradients into the policy
  - Requires some tricks to make it work
- 3. Use the model to learn a value function
  - Dynamic programming
  - Generate simulated experience for model-free learner (Dyna)

#### Value function based algorithms



#### Direct policy gradients



#### Actor-critic: value functions + policy gradients



# Tradeoffs

## Why so many RL algorithms?

- Different tradeoffs
  - Sample efficiency
  - Stability & ease of use
- Different assumptions
  - Stochastic or deterministic?
  - Continuous or discrete?
  - Episodic or infinite horizon?
- Different things are easy or hard in different settings
  - Easier to represent the policy?
  - Easier to represent the model?



## Comparison: sample efficiency

- Sample efficiency = how many samples do we need to get a good policy?
- Most important question: is the algorithm off policy?
  - Off policy: able to improve the policy without generating new samples from that policy
  - On policy: each time the policy is changed, even a little bit, we need to generate new samples



## Comparison: sample efficiency



Why would we use a *less* efficient algorithm? Wall clock time is not the same as efficiency!

### Comparison: stability and ease of use

- Does it converge?
- And if it converges, to what?
- And does it converge every time?

#### Why is any of this even a question???

- Supervised learning: almost always gradient descent
- Reinforcement learning: often not gradient descent
  - Q-learning: <u>fixed point iteration</u>
  - Model-based RL: model is not optimized for expected reward
  - Policy gradient: is gradient descent, but also often the least efficient!

### Comparison: stability and ease of use

- Value function fitting
  - At best, minimizes error of fit ("Bellman error")
    - Not the same as expected reward
  - At worst, doesn't optimize anything
    - Many popular deep RL value fitting algorithms are not guaranteed to converge to anything in the nonlinear case
- Model-based RL
  - Model minimizes error of fit
    - This will converge
  - No guarantee that better model = better policy
- Policy gradient
  - The only one that actually performs gradient descent (ascent) on the true objective

### Comparison: assumptions

- Common assumption #1: full observability
  - Generally assumed by value function fitting methods
  - Can be mitigated by adding recurrence
- Common assumption #2: episodic learning
  - Often assumed by pure policy gradient methods
  - Assumed by some model-based RL methods
- Common assumption #3: continuity or smoothness
  - Assumed by some continuous value function learning methods
  - Often assumed by some model-based RL methods







## Examples of specific algorithms

- Value function fitting methods
  - Q-learning, DQN
  - Temporal difference learning
  - Fitted value iteration
- Policy gradient methods
  - REINFORCE
  - Natural policy gradient
  - Trust region policy optimization
- Actor-critic algorithms
  - Asynchronous advantage actor-critic (A3C)
  - Soft actor-critic (SAC)
- Model-based RL algorithms
  - Dyna
  - Guided policy search

We'll learn about most of these in the next few weeks!

## Example 1: Atari games with Q-functions

- Playing Atari with deep reinforcement learning, Mnih et al. '13
- Q-learning with convolutional neural networks



### Example 2: robots and model-based RL

- End-to-end training of deep visuomotor policies, L.\*, Finn\* '16
- Guided policy search (model-based RL) for image-based robotic manipulation



## Example 3: walking with policy gradients

- High-dimensional continuous control with generalized advantage estimation, Schulman et al. '16
- Trust region policy optimization with value function approximation

#### Iteration 0



## Example 4: robotic grasping with Q-functions

- QT-Opt, Kalashnikov et al. '18
- Q-learning from images for real-world robotic grasping

