7 关系

关系是一种特殊的集合,是集合论中继集合概念之后又一个重要的概念。关系的概念在计算机科学中许多的方面(如数据结构、数据库技术、信息检索、知识分类和算法分析等)均有较广泛的应用。本章主要讨论关系的定义、关系的表示、关系的性质及运算等。

7.1 集合的笛卡尔积集

7.1.1 有序二元组

定义7.1:设a和b是两个元素,把a作为第一个元素,把b作为第二个元素,按这个顺序排列的一个二元组,称为有序二元组,简称之为有序对,记为(a, b)。

平面直角坐标系中点的坐标就是有序二元组,例如(1,-1),(2,1),(1,2),(-1,-2),…,都代表坐标系中不同的点。

- 一般有序二元组具有以下特点:
 - (1) 当 $a \neq b$ 时, $(a, b) \neq (b, a)$;
- (2) 两个有序对相等,即(a, b) = (x, y)当且仅当a = x, b = y。

7.1.2 笛卡尔积集

定义7.2:设A和B是两个集合,存在一个集合,它的元素是用A中元素为第一元素,B中元素为第二元素构成的有序二元组。称它为集合A和B的笛卡尔积集记为 $A \times B$ 。即,

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

如, $A = \{ \text{张彬, 李林} \}$, $B = \{ \text{数据结构, 离散数学, 操作系统} \}$,则 $A \times B$

= {(张彬,数据结构),(张彬,离散数学),(张彬,操作系统),(李林,数据结构),(李林,离散数学),(李林,操作系统)}

性质1: 若A和B至少有一个是空集,则它们的笛卡尔积集是空集,即

$$A \times \emptyset = \emptyset \times B = \emptyset$$

性质2: 当 $A \neq B$,且A和B均不是空集时,有

$$A \times B \neq B \times A$$

性质3: 当A, B, C均不是空集时,有

$$A \times (B \times C) \neq (A \times B) \times C$$

例1: 已知 $A = \{\{\emptyset\}, ab\}, B = \{(a, (a, a))\},$ 试求(1) 2^A (2) $B \times 2^A$ 解:

(1)
$$2^A = \{\emptyset, A, \{\{\emptyset\}\}, \{ab\}\}\$$

(2)
$$2^A \times B = \{(\emptyset, (a, (a, a))), (A, (a, (a, a))), (\{\{\emptyset\}\}, (a, (a, a))), (\{ab\}, (a, (a, a)))\}\}$$

例2: A, B, C是 3 个任意的集合,试证明 $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 。

证明:对于任意的 $(x, y) \in A \times (B \cap C)$,由笛卡尔积集的定义知, $x \in A$ 且 $y \in B \cap C$,由交集的定义知 $y \in B$,且 $y \in C$ 。根据笛卡尔积集的定义,由 $x \in A$, $y \in B$ 知 $(x, y) \in A \times B$,由 $x \in A$, $y \in C$ 知 $(x, y) \in A \times C$,从而有 $(x, y) \in (A \times B) \cap (A \times C)$ 。因此, $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$ 。

对于任意的 $(x, y) \in (A \times B) \cap (A \times C)$,则 $(x, y) \in A \times B$,且 $(x, y) \in A \times C$ 。由笛卡尔积集的定义知 $x \in A$, $y \in B$,且 $y \in C$,于是 $y \in B \cap C$,根据笛卡尔积集的定义,由 $x \in A$,且 $y \in B \cap C$ 知 $(x, y) \in A \times (B \cap C)$ 。

因此, $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$ 。

综上可知, $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 。

7.1.3 有序n元组、n个集合的笛卡尔积集

下面我们把有序二元组和两个集合的笛卡尔积集的概念推广到 $n(\geq 3)$ 元组和n重笛卡尔积集。

定义7.3: 一个有序 $n(\geq 3)$ 元组是一个有序二元组,其中第一个元素是一个有序n--1元组。将一个有序n元组,记为 (a_1, a_2, \cdots, a_n) 。即 $(a_1, a_2, \cdots, a_n) = ((a_1, a_2, \cdots, a_{n-1}), a_n)$ 称 a_i 为该有序n元组的第i个元素 $(i = 1, 2, \cdots, n)$ 。

定义7.4: 设 A_1 , A_2 , …, A_n 是n(≥ 3)个集合,存在一个集合,它的元素是由用 A_i 中元素为第i个元素的有序n元组所构成,称之为这n个集合的笛卡尔积集,记作 $A_1 \times A_2 \times \cdots \times A_n$,即

例1: 硬件系统中,a号通道的b号控制器的c号设备,可表示成一个三元组(a, b, c);

例2: 计算机系统的时钟a年b月c日d时e分f秒,可表示为一个六元组 (a, b, c, d, e, f)等。

7.2 二元关系的基本概念

7.2.1 二元关系

定义7.5: 设A,B是两个集合,R是 $A \times B$ 的任意一个子集,即 $R \subseteq A \times B$

则称R为从集合A到集合B的一个二元关系,简称之为从A到B的一个二元关系。

例7.3: 设 $A = \{a, b, c, d, e\}$ 是5个学生的集合, $B = \{$ 数据结构,离散数学,英语,

操作系统,程序设计,计算机导论}是6门课程的集合,笛卡尔积集 $A \times B$ 给出了学生和课程之间的所有可能的配对。

 $R_1 = \{(a, 数据结构), (a, 离散数学), (a, 英语)\}, 表示学生<math>a$ 选择数据结构、离散数学和英语课程:

 R_2

 $R_3 = \{(a, 数据结构), (a, 离散数学), (b, 英语), (c, 数据结构), (d, 英语), (e, 操作系统), (e, 数据结构), (e, 离散数学), (e, 英语)\}, 表示所有学生的选课关系。$

几个特殊的关系

- (1) 若 $R = \emptyset$,称R为空关系。
- (2) $若R = A \times B$,称R为全关系。
- (3) A = B时,称二元关系 $R \subseteq A \times A$ 为A上的二元关系。
- (4) 当A = B时,记 $\Delta_A = \{(x, x) | x \in A\}$,称之为A上的恒等关系。

设R是从A到B的一个二元关系,若 $(x, y) \in R$,也记为xRy,并称元素x与y具有关系R;若 $(x, y) \notin R$,称元素x与y没有关系R。

7.2.2 二元关系的表示

一个二元关系,除了用列出有序二元组的方法表示之外,也可以用表的形式或图的形式来表示。

已知学生的集合 $A = \{a, b, c, d, e\}$,课程的集合B

= {数据结构,离散数学,英语,程序设计,计算机导论,操作系统},学生与课程的 $R = \{(a, 数据结构), (a, 离散数学), (b, 英语), (c, 数据结构), (d, 英语), (d, 操作系统), (e, 数据结构), (e, 离散数学), (e, 程序设计)},它是从A到B的一个二元关系。$

(1) 表格表示

	数据结构	函數数字	英语	操作系统	程序设计	计算机导论
a :	1	√.				
b			1			
c	\mathcal{J}					
d			√	1		
6		V			V	

(2) 图表示

(3) 矩阵表示

上述二元关系*R*还可以用矩阵表示,其中行分别表示学生*a*,*b*,*c*,*d*,*e*,列分别表示课程数据结构,离散数学,英语,操作系统,程序设计,计算机导论。

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

7.2.3 二元关系与数据结构

根据二元关系的定义,*A*上的二元关系可以分为空关系、一对一关系、一对多的关系、多对一关系和多对多关系等关系。

它们可对应四种基本数据结构。

- (1)集合结构:数据元素之间就是"属于同一个集合",除此之外没有任何关系。
 - (2) 线性结构:数据元素之间存在着一对一的线性关系。
 - (3) 树形结构:数据元素之间存在着一对多的层次关系。
 - (4) 图状结构或网状结构:数据元素之间存在着多对多的任意关系。 上述4类基本数据结构的关系图如下图所示。

7.2.4 二元关系的运算

一、关系的交、并、差和对称差

因为二元关系是以有序二元组为元素的集合,所以两个关系的交、两个关系的并、两个关系的差、以及两个关系的对称差等概念,可由集合论中对应的交、并、差、对称差等概念直接引出。 具体地说,令 R_1 和 R_2 是从A到B的二元关系,那么 $R_1 \cap R_2$, $R_1 \cup R_2$, $R_1 - R_2$ 和 $R_1 \oplus R_2$ 也是从A到B的二元关系,它们分别称为 R_1 和 R_2 的交,并,差、对称差。

例: 已知 $A = \{1, 2, 3, 4\}$,集合A上的二元关系为 $R_1 = \{(1, 1), (1, 2), (2, 3), (3, 4)\}$, $R_2 = \{(1, 1), (1, 4), (2, 3), (3, 4), (3, 2)\}$ 。试求 $R_1 \cap R_2$, $R_1 \cup R_2$, $R_1 \cap R_2$ 和 $R_1 \oplus R_2$ 。

解:
$$R_1 \cap R_2 = \{(1, 1), (2, 3), (3, 4)\}$$

$$R_1 \cup R_2 = \{(1, 1), (1, 2), (2, 3), (3, 4), (1, 4), (3, 2)\}$$

$$R_1 - R_2 = \{(1, 2)\}$$

$$R_1 \oplus R_2 = \{(1, 2), (1, 4), (3, 2)\}$$

则 $R_1 \cap R_2 = \{(x,y) \mid x \cap A, y \cap B, x 去 过 并 喜 欢 y \}$

则 $R_1 \cup R_2 = \{(x,y) \mid x \cup A, y \cup B, x + b \cup y, 或者x喜欢y\}$

则 $R_1-R_2 = \{(x,y) | x \cap A, y \cap B, x 去过但不喜欢y \}$ $= \{(小赵,南京),(小赵,纽约),(小钱,纽约)\}$ $R_2-R_1 = \{(x,y) | x \cap A, y \cap B, x 喜欢但没有去过y \}$ $= \{(小赵,巴黎),(小孙,北京),(小孙,纽约)\}$

R1□ R2 =(R1–R2) ∪ (R2–R1) ={(x,y) | x□ A,y□ B,x去过但不喜欢y,或x喜欢但未去过

二、二元关系的逆运算与复合运算

定义**7.6**: 设A和B是两个集合,R是从A到B的一个二元关系,即 $R \subseteq A \times B$ 。令 $\widetilde{R} = \{(y, x) | (x, y) \in R\}$

则 $\widetilde{R} \subseteq B \times A$ 是从B到A的一个二元关系,称之为R的逆关系。

例: 己知 $A = \{1, 2, 3, 4, 5\}, R = \{(1, 1), (1, 2), (2, 3), (3, 4), (5, 3), (5, 4)\},$ 则

 $\widetilde{R} = \{(1, 1), (2, 1), (3, 2), (4, 3), (3, 5), (4, 5)\}_{\circ}$

定义7.7:设A,B,C是三个任意集合, R_1 是从A到B的一个二元关系, R_2 是从B到C的一个二元关系。记

 $R_1 \circ R_2 = \{(x, z) \in A \times C \mid \text{存在}y \in B, \ \text{使得}(x, y) \in R_1, \ (y, z) \in R_2 \}$ 则 $R_1 \circ R_2 \subseteq A \times C$ 是一个从A到C的二元关系,称之为 $R_1 \hookrightarrow R_2$ 的复合关系。特例,当A = B = C, $R_1 = R_2$ 时, $R_1 \circ R_2$ 记为 R_1^2 ,即, $R_1^2 = R_1 \circ R_1$ 。

例:设 R_1 与 R_2 是自然数集N上的两个二元关系,

$$R_1 = \{(x, y) \mid x, y \in N, \exists y = x^2\};$$

$$R_2 = \{(x, y) \mid x, y \in N, \exists y = x + 1\}$$

试求: $\widetilde{R_1}$, $\widetilde{R_2}$, $R_1 \circ R_2$, $R_2 \circ R_1$, $R_1^2 \circ R_2 \circ R_1$

解:
$$\widetilde{R_1} = \{(y, x) | x, y \in \mathbb{N}, \exists y = x^2\};$$

$$\widetilde{R_2} = \{(y, x) | x, y \in \mathbb{N}, \exists y = x + 1\}$$

$$R_1 \circ R_2 = \{(x, y) | x, y \in \mathbb{N}, \exists y = x^2 + 1\};$$

$$R_2 \circ R_1 = \{(x, y) | x, y \in \mathbb{N}, \exists y = (x+1)^2\};$$

$$R_1^2 = \{(x, y) | x, y \in \mathbb{N}, \exists y = x^4\}$$

定理

定理**7.1**: 设A、B、C、D是四个任意集合, R_1 、 R_2 、 R_3 分别是从A到B、从B到C、从C到D的任意二元关系。则有:

$$(1) R_1 \circ \Delta_B = \Delta_A \circ R_1 = R_1$$

$$(2) \ \widetilde{\widetilde{R_1}} = R_1$$

$$(3) \ \widetilde{R_1 \circ R_2} = \widetilde{R_2} \circ \widetilde{R_1}$$

(4)
$$(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$$

$\Delta_A \circ R_1 = R_1$

证明:

(1) 我们仅证 $\Delta_A \circ R_1 = R_1$ 。

对于任意的x, y, $\Xi(x, y) \in \Delta_A \circ R_1$, 则由复合的定义知,存在 $a \in A$,使得 $(x, a) \in \Delta_A$, $(a, y) \in R_1$,根据恒等关系的定义由 $(x, a) \in \Delta_A$ 知 $(x, y) \in R_1$ 。因此 $(x, y) \in R_1$ 。因此 $(x, y) \in R_1$ 。

另一方面,对于任意的x, y, $\Xi(x, y) \in R_1$, 则根据关系的定义知 $x \in A$, 显然, $(x, x) \in \Delta_A$ 。根据复合的定义,由 $(x, x) \in \Delta_A$, $(x, y) \in R_1$ 知 $(x, y) \in \Delta_A \circ R_1$ 。因此, $R_1 \subseteq \Delta_A \circ R_1$ 。

综上所述, $\Delta_A \circ R_1 = R_1$ 。

$\widetilde{R_1 \circ R_2} = \widetilde{R_2} \circ \widetilde{R_1}$

(3) 对于任意的x, y, 若(x, y) $\in R_1 \circ R_2$, 则由逆关系的定义知(y, x) $\in R_1 \circ R_2$,

进而由复合的定义知,存在 $a \in B$,使得 $(y, a) \in R_1$, $(a, x) \in R_2$,于是 $(x, a) \in \widetilde{R_2}$, $(a, y) \in \widetilde{R_1}$,从而有 $(x, y) \in \widetilde{R_2} \circ \widetilde{R_1}$ 。因此, $R_1 \circ R_2 \subseteq \widetilde{R_2} \circ \widetilde{R_1}$ 。

另一方面,对于任意的x, y, $\Xi(x, y) \in \widetilde{R_2} \circ \widetilde{R_1}$, 则由复合的定义知,存在 $a \in B$,使得 $(x, a) \in \widetilde{R_2}$, $(a, y) \in \widetilde{R_1}$,

根据逆关系的定义知, $(y, a) \in R_1$, $(a, x) \in R_2$,于是 $(y, x) \in R_1 \circ R_2$,从而有 $(x, y) \in \widetilde{R_1 \circ R_2}$ 。因此, $\widetilde{R_2 \circ R_1} \subseteq \widetilde{R_1 \circ R_2}$ 。 综上, $\widetilde{R_1 \circ R_2} = \widetilde{R_2 \circ R_1}$ 。

$(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$

(4) 对于任意的x, $y \in A$, 若 $(x, y) \in (R_1 \circ R_2) \circ R_3$, 则存在 $x_2 \in C$, 使得 $(x, x_2) \in R_1 \circ R_2$, $(x_2, y) \in R_3$ 。

进而由 $(x, x_2) \in R_1 \circ R_2$ 知存在 $x_1 \in B$,使得 $(x, x_1) \in R_1$, $(x_1, x_2) \in R_2$ 。根据复合关系的定义,由 $(x_1, x_2) \in R_2$, $(x_2, y) \in R_3$ 知 $(x_1, y) \in R_2 \circ R_3$;由 $(x, x_1) \in R_1$, $(x_1, y) \in R_2 \circ R_3$ 知 $(x, y) \in R_1 \circ (R_2 \circ R_3)$ 。

因此, $(R_1 \circ R_2) \circ R_3 \subseteq R_1 \circ (R_2 \circ R_3)$ 。

同理可证, $R_1 \circ (R_2 \circ R_3) \subseteq (R_1 \circ R_2) \circ R_3$ 。

综上所述, $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$ 。

Rn

当R为某一集合A上的二元关系时,记 $R \circ R = R^2$ 。由于关系的复合满足结合律,可以定义:

$$R^{0} = \Delta_{A}$$

$$R^{n} = \underbrace{R \circ R \circ \cdots \circ R}_{n \uparrow} = R^{n-1} \circ R = R \circ R^{n-1}$$

并可以得到,对于任意自然数m,n,有

$$R^m \circ R^n = R^{m+n}$$
$$(R^m)^n = R^{mn}$$

例: 设 R_1 , R_2 和 R_3 是集合A上的二元关系,试证明,若 $R_1 \subseteq R_2$,则 $R_1 \circ R_3 \subseteq R_2 \circ R_3$ 。证明: 对于任意的x, $y \in A$, 若 $(x, y) \in R_1 \circ R_3$,根据复合关系的定义知司 $x_1 \in A$,使得 $(x, x_1) \in R_1$, $(x_1, y) \in R_3$ 。因为 $R_1 \subseteq R_2$,所以 $(x, x_1) \in R_2$ 。再根据复合关系,由 $(x, x_1) \in R_2$, $(x_1, y) \in R_3$ 得 $(x, y) \in R_2 \circ R_3$ 。故, $R_1 \circ R_3 \subseteq R_2 \circ R_3$ 。

7.3 n元关系及其运算

7.3.1 n元关系

定义7.8: 设 A_1 , A_2 , …, A_n 是n个集合, $A_1 \times A_2 \times \dots \times A_n$ 的子集称为集合 A_1 , A_2 , …, A_n 上的n元关系。其中, A_1 , A_2 , …, A_n 称为关系的域,n称为关系的阶。

例: $R \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ 上的三元关系,且对于 $\forall x, y, z \in \mathbb{N}$, $(x, y, z) \in \mathbb{N}$ 化当且仅当 $x \leq y$ 且 $y \leq z$,那么就有 $(2, 2, 4) \in \mathbb{N}$,但 $(5, 6, 4) \notin \mathbb{N}$ 。

例:关系数据库R由记录组成,这些记录是由域构成的n元组,每一个元代表一个数据项,每一个n元组代表一个记录。表7.2给出了学生选课系统的部分信息。

学生姓名	学号	学院名称	专业	GPA
张彬	1706841501	计算机学院	软件工程	3.1
李红	1707865502	经管院	经济学	2.9
朱小鹏	1706841620	计算机学院	网络工程	3.5
朱瑛	1710680125	自动化	电气工程	3.2
徐姗姗	1715480211	人文学院	人力资源	3.8
赵建	1606841520	计算机学院	智能技术	2.8

由上表可知,5元组(张彬,1706841501,计算机学院,软件工程,3.1) ∈ R,而5元组(张彬,1706841501,自动化,软件工程,3.1) $\notin R$ 等。

7.3.2 n元关系的运算

一、选择运算

定义7.9: 设R是一个n元关系,C是R中元素可能满足的条件,我们把n元关系R限制至R中满足条件C的所有n元组构成的n元关系的运算称为选择运算,记为 S_C 。

例7.11: 对于表7.2所示的n元关系, C_1 是条件学院名称="计算机学院", C_2 是条件 $GPA \geq$ "3.0",采用选择运算 S_{C_1} 得到的n元关系如表7.3所示,采用选择运算 S_{C_2} 得到的n元关系如表7.4所示。

学生姓名	学号	学院名称	专业	GPA
张彬	1706841501	计算机学院	软件工程	3.1
朱小鹏	1706841620	计算机学院	网络工程	3.5
赵建	1606841520	计算机学院	智能技术	2.8

学生姓名	学号	学院名称	专业	GPA
张彬	1706841501	计算机学院	软件工程	3.1
朱小鹏	1706841620	计算机学院	网络工程	3.5
朱瑛	1710680125	自动化	电气工程	3.2
徐姗姗	1715480211	人文学院	人力资源	3.8

二、投影运算

定义7.10: 投影 P_{i_1,i_2,\cdots,i_m} (其中 $1 \le i_1 < i_2 < \cdots < i_m \le n$, $m \le n$),是将n元组 (a_1, a_2, \cdots, a_n) 映射到m元组 $(a_{i_1}, a_{i_2}, \cdots, a_{i_m})$ 的运算。

例7.12:表7.2使用投影 $P_{1,2,5}$ 后的结果如表7.5所示。

表7.5 投影 $P_{1,2,5}$ 后的学生信息表

学生姓名	学号	GPA
张彬	1706841501	3.1
李红	1707865502	2.9
朱小鹏	1706841620	3.5
朱瑛	1710680125	3.2
徐姗姗	1715480211	3.8
赵建	1606841520	2.8

7.4 二元关系的性质

7.4.1 自反性、反自反性、对称性、反对称性、传递性和反传递性设R是集合A上的一个二元关系,即 $R \subseteq A \times A$ 。

定义**7.12**: 对于任意的 $x \in A$,均有 $(x, x) \in R$,则称关系R有自反性,或称R是A上的自反关系。

自反关系用谓词演算公式可表示为: 若 $\forall x(x \in A \to (x, x) \in R)$,则称 R是A 上的自反关系。

例: 已知 $A = \{1, 2, 3, 4, 5\}$,关系 $R_1 = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (4, 5), (2, 1), (3, 5)\}$ 具有自反性;

关系 $R_2 = \{(1, 1), (2, 2), (3, 3), (4, 4), (3, 4), (4, 5)\}$ 不具有自反性。

定义**7.13**: 对于任意的 $x \in A$,均有 $(x, x) \notin R$,则称关系R有反自反性,或称R是A上的反自反关系。

反自反关系用谓词演算公式可表示为: 若 $\forall x(x \in A \rightarrow (x, x) \notin R)$,则称R是A上的反自反关系。

例: 已知 $A = \{1, 2, 3, 4, 5\}$,关系 $R_1 = \{(1, 2), (2, 3), (4, 5), (2, 1), (3, 5)\}$ 具有反自反性;

关系 $R_2 = \{(1, 2), (2, 3), (4, 4), (3, 4), (4, 5)\}$ 不具有反自反性。

定义**7.14**: 对于任意的x, $y \in A$, 若(x, $y) \in R$, 就有(y, $x) \in R$, 则称关系 R有对称性,或称R是A上的对称关系。

对称关系用谓词演算公式可表示为: 若 $\forall x \forall y ((x \in A \land y \in A \land (x, y) \in R) \rightarrow (y, x) \in R)$,则称 $R \not\in A \land (x, y) \in R$),

例: 已知 $A = \{1, 2, 3, 4, 5\}$,关系 $R_1 = \{(1, 1), (2, 2), (1, 2), (2, 1), (2, 3), (3, 2), (3, 5), (5, 3)\}$ 具有对称性;

关系 $R_2 = \{(1, 1), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2), (3, 5)\}$ 不具有对称性。

定义7.15: 对于任意的x, $y \in A$, 若 $(x, y) \in R$, 且 $(y, x) \in R$, 就有x = y, 则称关系R有反对称性,或称R是A上的反对称关系。

反对称关系用谓词演算公式可表示为: 若 $\forall x \forall y ((x \in A \land y \in A \land (x, y) \in R \land (y, x) \in R) \rightarrow x = y)$,则称 $R \not\in A \land (x, y) \in R \land (y, x) \in R$,则称 $R \not\in A \land (x, y) \in R \land (y, x) \in R$,则称 $R \not\in A \land (x, y) \in R \land (y, x) \in R$,则称 $R \not\in A \land (x, y) \in R \land (x, y)$

例: 已知 $A = \{1, 2, 3, 4, 5\}$,关系 $R_1 = \{(1, 1), (2, 2), (3, 3), (2, 1), (2, 3), (3, 5), (4, 3)\}$ 具有反对称性;

关系 $R_2 = \{(1, 1), (3, 3), (1, 2), (2, 1), (2, 3), (3, 5), (4, 5)\}$ 不具有反对称性。

定义7.16: 对于任意的x, y, $z \in A$, 若 $(x, y) \in R$, 且 $(y, z) \in R$, 就有 $(x, y) \in R$, 则称关系R有传递性,或称R是A上的传递关系。

传递关系用谓词演算公式可表示为: 若 $\forall x \forall y \forall z ((x \in A \land y \in A \land z \in A \land (x, y) \in R \land (y, z) \in R) \rightarrow (x, z) \in R)$,则称R是A上的传递关系。

例: 已知 $A = \{1, 2, 3, 4, 5\}$,

关系 $R_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (1, 3), (3, 5), (1, 5), (2, 5)\},$

 $R_2 = \{(2, 1), (3, 4)\}$ 均具有传递性;

 $R_3 = \{(1, 1), (3, 3), (1, 2), (2, 1), (2, 3), (3, 5), (4, 5)\}$

具有传递性。

定义7.17: 对于任意的x, y, $z \in A$, 若(x, $y) \in R$, 且(y, $z) \in R$, 就有(x, $z) \notin R$, 则称关系R有反传递性,或称R是A上的反传递关系。

反传递关系用谓词演算公式可表示为: 若 $\forall x \forall y \forall z ((x \in A \land y \in A \land z \in A \land x \in A \land y \in R \land (y, z) \in R) \rightarrow (x, z) \notin R)$,则称 $R \not \in R \land (y, z) \in R \land (y, z) \notin R$ 。

例: 已知 $A = \{1, 2, 3, 4, 5\},$

关系 $R_1 = \{(1, 2), (2, 1), (2, 3), (3, 5), (4, 5)\},$

 $R_2 = \{(2, 1), (1, 4)\}$ 均具有反传递性;

关系 $R_3 = \{(1, 1), (2, 3), (3, 5), (4, 5)\}$ 不具有反传递性。

根据关系的定义知,

A上的全关系 $A \times A$ 具有自反性,对称性和传递性。

A上的恒等关系 Δ_A 具有自反性、对称性、反对称性和传递性。

A上的空关系 \emptyset 具有反自反性、对称性、反对称性、传递性和反传递性。

```
例:设A = \{1, 2, 3, 4\},令 R_1 = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (2, 3), (3, 4), (2, 4)\}; R_2 = \{(1, 2), (2, 3), (2, 4)\}; R_3 = \{(1, 1), (1, 2), (2, 3), (3, 4), (1, 4)\}。问R_1、R_2、R_3具有哪些性质?答R_1具有自反性;R_2具有反自反性、反对称性和反传递性;R_3具有反对称性。
```

7.4.2 二元关系性质的判定定理

下面我们给出集合A上二元关系的每一个性质的判定定理。

定理7.2: R是集合A上的一个二元关系,则

- (1) R有自反性当且仅当 $\Delta_A \subseteq R$ 。
- (2) R有反自反性当且仅当 $\Delta_A \cap R = \emptyset$ 。
- (3) R有对称性当且仅当 $\tilde{R} = R$ 。
- (4) R有反对称性当且仅当 $\tilde{R} \cap R \subseteq \Delta_A$ 。
- (5) R有传递性当且仅当 $R \circ R \subseteq R$ 。
- (6) R有反传递性当且仅当($R \circ R$) $\cap R = \emptyset$ 。

(3) 对于任意的x, $y \in A$, 若 $(x, y) \in R$, 因为R有对称性。所以 $(y, x) \in R$ 。又由逆关系的定义知 $(x, y) \in \widetilde{R}$,故 $R \subseteq \widetilde{R}$ 。

对于任意的x, $y \in A$, 若 $(x, y) \in \widetilde{R}$, 则由逆关系的定义知 $(y, x) \in R$, 因为R有对称性,所以 $(x, y) \in R$, 故 $\widetilde{R} \subseteq R$ 。

综上, $\widetilde{R} = R$ 。

(4) 对于任意的x, $y \in A$, 若 $(x, y) \in \widetilde{R} \cap R$, 则有 $(x, y) \in \widetilde{R}$, 且 $(x, y) \in R$ 。由逆关系的定义知 $(y, x) \in R$ 。因为R有反对称性,所以由 $(x, y) \in R$, $(y, x) \in R$ 知x = y,从而有 $(x, y) = (x, x) \in \Delta_A$ 。故, $\widetilde{R} \cap R \subseteq \Delta_A$ 。

对于任意的x, $y \in A$, 若 $(x, y) \in R$ 且 $(y, x) \in R$,由逆关系的定义知 $(x, y) \in \widetilde{R}$,由交集的定义知 $(x, y) \in \widetilde{R} \cap R$ 。因为 $\widetilde{R} \cap R \subseteq \Delta_A$,所以 $(x, y) \in \Delta_A$,从而有x = y。

故, R具有反对称性。

(5) 对于任意的x, $y \in A$, 若 $(x, y) \in R \circ R$, 则由复合的定义知,存在 $z \in A$, 使得 $(x, z) \in R$, $(z, y) \in R$ 。因为R有传递性,所以 $(x, y) \in R$ 。由于集的定义知 $R \circ R \subseteq R$ 。

对于任意的x, y, $z \in A$, 若 $(x, y) \in R$ 且 $(y, z) \in R$, 由复合的定义知 $(x, z) \in R \circ R$ 。因为 $R \circ R \subseteq R$,所以 $(x, z) \in R$,故R具有传递性。

(6) 设($R \circ R$) $\cap R \neq \emptyset$,则存在(x, y) \in ($R \circ R$) $\cap R$,由交集的定义知 (x, y) \in R,且(x, y) \in R \circ R,根据复合的定义,存在 $z \in A$,使得(x, z) \in R,(z, y) \in R。因为R有反传递性,所以(x, y) \notin R。与(x, y) \in R矛盾,故 ($R \circ R$) \cap $R = \emptyset$ 。

对于任意的x, $y \in A$, 若 $(x, y) \in R$, 且 $(y, z) \in R$, 则 $(x, z) \in R \circ R$ 。设 $(x, z) \in R$,则由交集的定义知 $(x, z) \in (R \circ R) \cap R \neq \emptyset$,与已知矛盾,所以 $(x, z) \notin R$ 。

因此,R有反传递性。

例:设 R_1 和 R_2 是集合A上两个二元关系, R_1 和 R_2 均具有传递性,问下列各式中哪些仍具有传递性?若有,证明之;若没有举反例说明之。

- (1) $R_1 \cup R_2$;
- (2) $R_1 \cap R_2$;
- (3) $R_1 R_2$;

解:

- (1) $R_1 \cup R_2$ 没有传递性。例如, $R_1 = \{(1, 2), (2, 3), (1, 3)\}$, $R_2 = \{(3, 4)\}$ 有传递性,而 $R_1 \cup R_2 = \{(1, 2), (2, 3), (1, 3), (3, 4)\}$ 没有传递性。
 - (2) $R_1 \cap R_2$ 有传递性。

对于任意的x, y, $z \in A$, 若 $(x, y) \in R_1 \cap R_2$ 且 $(y, z) \in R_1 \cap R_2$,则 $(x, y) \in R_1$, $(x, y) \in R_2$ 且 $(y, z) \in R_1$, $(y, z) \in R_2$ 。因为 R_1 、 R_2 有传递性,所以由 $(x, y) \in R_1$ 和 $(y, z) \in R_1$ 知 $(x, z) \in R_1$; 由 $(x, y) \in R_2$ 和 $(y, z) \in R_2$ 知 $(x, z) \in R_2$,从而有 $(x, z) \in R_1 \cap R_2$ 。

故 R_1 ∩ R_2 有传递性。

(3) $R_1 - R_2$ 没有传递性。例如, $R_1 = \{(1, 2), (2, 3), (1, 3)\}$, $R_2 = \{(1, 3)\}$ 有传递性,而 $R_1 - R_2 = \{(1, 2), (2, 3)\}$ 没有传递性。

7.5 二元关系的闭包运算

7.5.1 自反闭包、对称闭包和传递闭包

设A是一个非空集合,R是A上的一个二元关系,假定P是关系的某一性质。R未必具有性质P,可以在R中添加一些有序二元组而构成新的具有性质P的关系 R',但又不希望R'变得"过大",最好具有一定的最小性。我们将这种包含了关系 R且具有性质P的最小集合R'称为R的具有性质P的闭包。关于性质P,仅限于讨论自反性、对称性、传递性。

定义**7.18**: A是一个非空集合,R是A上的一个二元关系。若一个关系 $R' \subseteq A \times A$ 满足以下三个条件:

- (1) R'是自反(对称、传递)的;
- (2) $R \subseteq R'$;
- (3) 对任意关系R'',若 $R \subseteq R''$ 且R''具有自反(对称、传递)性,则 $R' \subseteq R''$ 。则称R'为R的自反(对称、传递)闭包,分别用r(R),s(R),t(R)分别表示R的自反闭包、对称闭包、传递闭包。

例7.24: 设 $A = \{a, b, c, d\}$, $R = \{(a, a), (b, b), (b, c), (c, d)\}$ 。 以 $r(R) = \{(a, a), (b, b), (c, c), (d, d), (b, c), (c, d)\}$; $s(R) = \{(a, a), (b, b), (b, c), (c, d), (c, b), (d, c)\}$; $t(R) = \{(a, a), (b, b), (b, c), (c, d), (b, d)\}$ 。

7.5.2 闭包的判定定理

下面我们给出r(R)的结构定理。

定理7.3: 设R是集合A上的二元关系,则 $r(R) = R \cup \Delta_A$ 。

证明:用 $R \cup \Delta_A$ 满足自反闭包的定义来证明。记 $R' = R \cup \Delta_A$,显然 $R \subseteq R'$ 。

对于任意的x,若 $x \in A$,则 $(x, x) \in \Delta_A$,从而有 $(x, x) \in R \cup \Delta_A$ 。

故R'有自反性。

设R''是任意一个包含关系R、且具有自反性的二元关系。对于任意的x, $y \in A$,若 $(x, y) \in R' = R \cup \Delta_A$,则 $(x, y) \in R$ 或者 $(x, y) \in \Delta_A$ 。

若 $(x, y) \in R$,因为 $R \subseteq R''$,所以 $(x, y) \in R''$;若 $(x, y) \in \Delta_A$,则 $x = y \in A$,因为R''有自反性,所以 $(x, y) = (x, x) \in R''$ 。

综上所述, $R' \subseteq R''$ 。

因此,由自反闭包定义知,R'为自反闭包,故 $r(R) = R \cup \Delta_A$ 。

定理7.4 s(R)=R∪R

定理7.4: 设s(R)是集合A上的二元关系,则 $s(R) = R \cup \widetilde{R}$ 。

证明: 先证 $R \cup \widetilde{R} \subseteq s(R)$ 。

对于任意的x, $y \in A$, 若 $(x, y) \in R \cup \widetilde{R}$, 则 $(x, y) \in R$, 或 $(x, y) \in \widetilde{R}$ 。

若 $(x, y) \in \widetilde{R}$ 时,则 $(y, x) \in R$,因为 $R \subseteq s(R)$,所以 $(y, x) \in s(R)$,又因为s(R)有对称性,所以 $(x, y) \in s(R)$ 。

因此, $R \cup \widetilde{R} \subseteq s(R)$ 。

再证 $s(R) \subseteq R \cup \widetilde{R}$,不直接从元素着手,可由s(R)具有的第三条性质而得。因为 $R \subseteq R \cup \widetilde{R}$,且 $R \cup \widetilde{R} = R \cup \widetilde{R}$,所以 $R \cup \widetilde{R}$ 是包含了R,且具有对称性的二元关系,因此,根据对称闭包的定义知, $s(R) \subseteq R \cup \widetilde{R}$ 。

综上所述, $s(R) = R \cup \widetilde{R}$ 。

定理7.5:设R是集合A上的一个二元关系,则

$$t(R) = \bigcup_{i=1}^{\infty} R^i$$

特例:

设R是集合A上的一个二元关系,|A|=n,则

$$t(R) = \bigcup_{i=1}^{n} R^{i}$$

7.6 等价关系和集合的划分

7.6.1 等价关系和等价类

定义7.19: A是一个非空集,R是A上的一个二元关系,若R满足自反性,对称性,传递性,则称R是A上的等价关系。

定义7.20: 若R是A上的等价关系,a是A中任意一个元素,称集合{ $x \in A | (x, a) \in R$ }或{ $x \in A | (a, x) \in R$ }为集合A关于关系R的一个等价类,记为[a] $_R$,即

$$[a]_R = \{x \in A | (x, a) \in R\} = \{x \in A | (a, x) \in R\}$$

其中a叫代表元。

```
例: 设A = \{a, b, c, d, e\}, R = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (b, a), (c, d), (d, c)\}, 显然R是A上的一个等价关系。  [a]_R = \{a, b\}; \\ [b]_R = \{a, b\}; \\ [c]_R = \{c, d\}; \\ [d]_R = \{c, d\}; \\ [e]_R = \{e\}, \\ 可以看出[a]_R = [b]_R, [c]_R = [d]_R, 说明同一个等价类可以选取不同的代表元。
```

例1: 已知 R_1, R_2, \cdots, R_n 均为A上的等价关系,试证明 $R_1 \cap R_2 \cap \cdots \cap R_n$ 也为A上的等价关系。

证明:

- (1) 自反性: 对于任意的 $x \in A$,因为 R_1, R_2, \cdots, R_n 均为A上的自反关系,所以 $(x,x) \in R_1, (x,x) \in R_2 \cdots (x,x) \in R_n$,从而有 $(x,x) \in R_1 \cap R_2 \cap \cdots \cap R_n$ 。
- (2) 对称性: 对于任意的 $x,y \in A$,若 $(x,y) \in R_1 \cap R_2 \cap \cdots \cap R_n$,则对于 $i \in \{1,2,\cdots n\},(x,y) \in R_i$ 。因为 R_i 有对称性,所以 $(y,x) \in R_i$ 从而有 $(y,x) \in R_1 \cap R_2 \cap \cdots \cap R_n$
- (3) 传递性: 对于任意的 $x, y, z \in A$, 若 $(x, y) \in R_1 \cap R_2 \cap \cdots \cap R_n$, $(y, z) \in R_1 \cap R_2 \cap \cdots \cap R_n$ 则对于 $i \in \{1, 2, \cdots n\}$, $(x, y) \in R_i$. $(y, z) \in R_i$ 因为 R_i 有传递性,所以 $(x, z) \in R_i$,从而有 $(x, z) \in R_1 \cap R_2 \cap \cdots \cap R_n$ 综上, $R_1 \cap R_2 \cap \cdots \cap R_n$ 也为A上的偏序关系。

例2: Z是整数集,在Z上定义一个二元关系R: 对于任意的x, $y \in Z$, $(x, y) \in R$ 当且仅当x与y被6除余数相同。证明R是Z上的等价关系。

证明:显然x与y被6除同余的充要条件是6|x-y。这里,对于两个整数a,b,符号a|b表示a整除b。

- (1) 对于任意的 $x \in \mathbb{Z}$, 显然,6|x-x, 即 $(x, x) \in \mathbb{R}$, 所以, \mathbb{R} 有自反性。
- (2) 对于任意的x, $y \in Z$, 若 $(x, y) \in R$, 即6|x y, 则显然有6|y x, 也即 $(y, x) \in R$, 所以,R有对称性。
- (3) 对于任意的x, y, $z \in Z$, 若 $(x, y) \in R$, 且 $(y, z) \in R$, 即6|x y, 且6|y z, 则6|x y + y z, 即6|x z, 也即 $(x, z) \in R$ 。所以,R有传递性。综上所述,R是Z上的等价关系。

下面考察各元素的等价类。

$$[0]_R = \{x \in Z | \exists n \in Z, x = 6n\}; [1]_R = \{x \in Z | \exists n \in Z, x = 6n + 1\};$$
 $[2]_R = \{x \in Z | \exists n \in Z, x = 6n + 2\}; [3]_R = \{x \in Z | \exists n \in Z, x = 6n + 3\};$ $[4]_R = \{x \in Z | \exists n \in Z, x = 6n + 4\}; [5]_R = \{x \in Z | \exists n \in Z, x = 6n + 5\}.$ 显然, $\{[0]_R, [1]_R, [2]_R, [3]_R, [4]_R, [5]_R\}$ 是R所有等价类的集合。

例3: 设 R_1 是A上的等价关系,设 R_2 是B上的等价关系,且 $A \neq \emptyset$, $B \neq \emptyset$ 。关系R满足: $((x_1, y_1), (x_2, y_2)) \in R$ 当且仅当 $(x_1, x_2) \in R_1$ 且 $(y_1, y_2) \in R_2$ 。证明R为 $A \times B$ 上的等价关系。

证明:

- (1) 自反性:对于任意的 $(x,y) \in A \times B$,则 $x \in A$, $y \in B$,因为 R_1 为A上的自反关系, R_2 为B上的自反关系,所以 $(x,x) \in R_1$, $(y,y) \in R_2$.由R的定义知 $((x,y),(x,y)) \in R$.
- (2)对于任意的 (x_1, y_1) , $(x_2, y_2) \in A \times B$, 若 $((x_1, y_1), (x_2, y_2)) \in R$ 由R的定义知, $(x_1, x_2) \in R_1 \perp (y_1, y_2) \in R_2$ 。因为 R_1 , R_2 有对称性,所以 $(x_2, x_1) \in R_1 \perp (y_2, y_2)$, $(x_1, y_1) \in R_2$,由R的定义知, $((x_2, y_2), (x_1, y_1)) \in R$.
- (3) 对于任意的(x_1 , y_1), (x_2 , y_2), (x_3 , y_3) $\in A \times B$, 若((x_1 , y_1), ((x_2 , y_2)) $\in R$ 且((x_2 , y_2), ((x_3 , y_3)) $\in R$,则由R的定义知, (x_1 , x_2) $\in R_1$ 且(y_1 , y_2) $\in R_2$, (x_2 , x_3) $\in R_1$ 且(y_2 , y_3) $\in R_2$, 因为 R_1 , R_2 有传递性,所以(x_1 , x_3) $\in R_1$ 且(y_1 , y_3) $\in R_2$, 由R的定义知, ((x_1 , y_1), ((x_3 , y_3)) $\in R$.

故, $R为A \times B$ 上的等价关系。

例4: 设R是A上的一个二元关系,对于任意的x, y, $z \in A$,若(x, y) $\in R$ 且(y, z) $\in R$,均有(z, x) $\in R$,则称R是A上的循环关系,试证明R是A上的自反和循环关系当且仅当R是A上的等价关系。

证明: 必要性:

- (1) 自反性已知
- (2) 对称性:对于任意的x, $y \in A$, 若 $(x, y) \in R$, 因为R是A上的自反关系,所以 $(x, x) \in R$ 。又因为R是A上的循环关系,所以由 $(x, x) \in R$, $(x, y) \in R$ 得 $(y, x) \in R$,故R有对称性。
 - (3) 传递性:对于任意的x, y, $z \in A$, 若(x, y) $\in R$ 且(y, z) $\in R$, 因为R是A上的循环关系,所以(z, x) $\in R$ 。又因为R有对称性,所以(x, z) $\in R$,故R有传递性。综上,R是A上的等价关系。

充分性: 自反性显然。

对于任意的x, y, $z \in A$, 若 $(x, y) \in R$ 且 $(y, z) \in R$, 因为R有传递性,所以 $(x, z) \in R$ 。又因为R有对称性,所以 $(z, x) \in R$ 。

由循环关系的定义知,R是A上的循环关系。

例5:设R和S是A上的二个等价关系,试证明 $S \circ R$ 是A上的等价关系当且仅当 $R \circ S = S \circ R$ 。

证明:必要性:

对于 $\forall x, y \in A$, 若 $(x, y) \in R \circ S$, 则存在 $x_1 \in A$, 使得 $(x, x_1) \in R$, 且 $(x_1, y) \in S$ 。

因为R和S是A上的对称关系,所以 $(y, x_1) \in S$,且 $(x_1, x) \in R$,

于是 $(y, x) \in S \circ R$ 。

因为 $S \circ R$ 有对称性,所以 $(x, y) \in S \circ R$,因此, $R \circ S \subseteq S \circ R$ 。

对于 $\forall x, y \in A$,若 $(x, y) \in S \circ R$,因为 $S \circ R$ 有对称性,所以 $(y, x) \in S \circ R$,由复合关系定义知,存在 $x_1 \in A$,使得 $(y, x_1) \in S$,且 $(x_1, x) \in R$ 。

因为R和S是A上的对称关系,所以 $(x, x_1) \in R$ 且 $(x_1, y) \in S$,于是 $(x, y) \in R \circ S$ 。因此, $S \circ R \subseteq R \circ S$ 。

综上, $R \circ S = S \circ R$ 。

充分性:

- (1) 自反性: 对于 $\forall x \in A$,因为R和S是A上的自反关系,所以 $(x, x) \in S$, $(x, x) \in R$ 。由复合关系定义知 $(x, x) \in S \circ R$ 。
- (2) 对称性: 因为R和S是A上的对称关系,所以由对称关系的判定定理、关系的性质和已知条件知, $S \circ R = \tilde{R} \circ \tilde{S} = R \circ S = S \circ R$ 。因此, $S \circ R$ 为A上的对称关系。
- (3) 传递性: 对于 $\forall x$, y, $z \in A$, 若 $(x, y) \in S \circ R$, 且 $(y, z) \in S \circ R$, 则 存在 x_1 , $x_2 \in A$, 使得 $(x, x_1) \in S$, $(x_1, y) \in R$, $(y, x_2) \in S$, $(x_2, z) \in R$ 。

根据复合关系的定义,由 $(x_1, y) \in R$, $(y, x_2) \in S$ 知 $(x_1, x_2) \in R \circ S = S \circ R$,于是存在 $x_3 \in A$ 使得 $(x_1, x_3) \in S$, $(x_3, x_2) \in R$ 。

因为R和S是A上的传递关系,所以由 $(x_3, x_2) \in R$ 和 $(x_2, z) \in R$ 得 $(x_3, z) \in R$; 由 $(x, x_1) \in S$ 和 $(x_1, x_3) \in S$ 得 $(x, x_3) \in S$ 。于是,由 $(x, x_3) \in S$ 和 $(x_3, z) \in R$ 得 $(x, z) \in S \circ R$ 。

综上, $S \circ R$ 是A上的等价关系。

7.6.2 商集合

定义7.21: 设A是一个非空集合,R是A上的一个等价关系,称集合 $\{[x]_R|x\in A\}$ 为集合A的商集合,记为A/R。即

$$A/R = \{ [x]_R | x \in A \}$$

在例7.31中,由定义知, $Z/R = \{[0]_R, [1]_R, [2]_R, [3]_R, [4]_R, [5]_R\}$ 。

定理7.7:设A是一个非空集合,R是A上的一个等价关系,则有

$$(1) \bigcup_{x \in A} [x]_R = A$$

(2) 对于任意的x, $y \in A$, 若 $[x]_R \cap [y]_R \neq \emptyset$, 则 $[x]_R = [y]_R$ 。 证明: (1) 显然,对于任意的 $x \in A$,由等价类的定义知 $[x]_R \subseteq A$,所以

$$\bigcup_{x \in A} [x]_R \subseteq A$$

对于任意的 $x \in A$,因为R有自反性,所以 $(x,x) \in R$,从而有 $x \in [x]_R$,即

$$x \in \bigcup_{x \in A} [x]_R$$

因此, $\bigcup_{x \in A} [x]_R = A$ 。

(2) 对于任意的x, $y \in A$, 若 $[x]_R \cap [y]_R \neq \emptyset$, 则存在 $a \in [x]_R \cap [y]_R$, 从而有 $a \in [x]_R \perp a \in [y]_R$ 。由 $a \in [x]_R$ 得 $(x, a) \in R$;由 $a \in [y]_R$ 得 $(y, a) \in R$ 。根据 $(x, a) \in R$ 的传递性,由 $(x, a) \in R$, $(x, y) \in R$ 。再根据 $(x, y) \in R$ 的传递性,由 $(x, a) \in R$, $(x, y) \in R$ 。

对于任意的 $z \in [x]_R$,即 $(z, x) \in R$,根据R的传递性,由 $(z, x) \in R$, $(x, y) \in R$ 得 $(z, y) \in R$ 。故 $z \in [y]_R$,于是 $[x]_R \subseteq [y]_R$ 。

同理可以证明 $[y]_R \subseteq [x]_R$ 。

所以, $[x]_R = [y]_{R^\circ}$

7.6.3 集合的划分

定义7.22: 设A是一个非空集合,称子集族 $\pi = \{A_{\alpha} | \alpha \in B, \ \emptyset \neq A_{\alpha} \subseteq A\}$ (其中B为下标集)为A的一个划分。若

$$\bigcup_{\alpha \in B} A_{\alpha} = A$$

(2) 对于任意的 α , $\beta \in B$, $\overline{A}_{\alpha} \cap A_{\beta} \neq \emptyset$, 则 $A_{\alpha} = A_{\beta}$ 。

```
例如,A=\{1,2,3,4,5,6,7\},\pi=\{A_1,A_2,A_3\},其中,B=\{1,2,3\} A_1=\{1,2,3\} A_2=\{4,5,6\} A_3=\{7\}
```

例: 设R是集合A上的一个等价关系, $\{A_1, A_2, ..., A_n\}$ 是A的子集的集合,对于 $\forall i, j \in \{1, 2, ..., n\}$,当 $i \neq j$ 时, $A_i \not\subseteq A_j$ 。对于任意 $a, b \in A$, $(a, b) \in R$ 当且仅当3 $i \in \{1, 2, ..., n\}$,使得 $(a, b) \in A_i$ 。试证 $\{A_1, A_2, ..., A_n\}$ 是A的一个划分。

证明:

- (1) 对于 $\forall i \in \{1, 2, \dots, n\}$, $A_i \neq \emptyset$ 。否则, $\exists j \in \{1, 2, \dots, n\}$, $j \neq i$, 有 $A_i = \emptyset \subseteq A_j$, 与已知矛盾。
 - (2) 因为 $\{A_1, A_2, \dots, A_n\}$ 是A的子集的集合,所以 $\forall i \in \{1, 2, \dots, n\}, A_i \subseteq A$ 。
- (3)因为 $\{A_1, A_2, ..., A_n\}$ 是A的子集的集合,所以 $\forall i \in B = \{1, 2, ..., n\}, A_i \subseteq A$,根据并集的定义知

$$\bigcup_{\alpha \in B} A_{\alpha} \subseteq A$$

对于任意的 $x \in A$,因为R为A上的自反关系,所以 $(x, x) \in R$ 。,由定义知, $\exists i \in \{1,2,\cdots,n\}$,使得

$$x \in A_i \subseteq \bigcup_{\alpha \in B} A_\alpha$$

综上,

$$A = \bigcup_{\alpha \in B} A_{\alpha}$$

(4) 对于任意的 α , $\beta \in \{1, 2, ..., n\}$, $\overline{A}A_{\alpha} \cap A_{\beta} \neq \emptyset$, 则 $\exists x \in A_{\alpha}$, 且 $x \in A_{\beta}$ 。 设 $\alpha \neq \beta$,由定义知, $A_{\alpha} \nsubseteq A_{\beta}$ 且 $A_{\beta} \nsubseteq A_{\alpha}$ 。根据子集的定义知 $\exists a \in A_{\alpha}$,但 $a \notin A_{\beta}$; $\exists b \in A_{\beta}$,但 $b \notin A_{\alpha}$ 。根据R的定义,由x, $a \in A_{\alpha}$ 知(x, $a) \in R$; 由 b, $x \in A_{\beta}$ 知(b, $x) \in R$ 。因为R有传递性,所以由(b, $x) \in R$,(x, $a) \in R$ 得 (b, $a) \in R$,再由R定义知a, $b \in A_{\alpha}$,与 $b \notin A_{\alpha}$ 矛盾。因此, $\alpha = \beta$,从而有 $A_{\alpha} = A_{\beta}$ 。

综上, $\{A_1, A_2, ..., A_n\}$ 是A的一个划分。

定理: 设A是一个非空集合, π 是A上的一个划分, $\pi = \{A_{\alpha} | \alpha \in B, \emptyset \neq A_{\alpha} \subseteq A\}$ (其中B为下标集)。在A上定义一个二元关系R: 对于任意的x, $y \in A$,若 $(x,y) \in R$ 当且仅当存在 $\alpha \in B$,使得x, $y \in A_{\alpha}$ 。则R是A上一个等价关系,并且 $A/R = \pi = \{A_{\alpha} | \alpha \in B, \emptyset \neq A_{\alpha} \subseteq A\}$ 。

证明: 先证R是A上的等价关系。

- (1) 自反性: 对于任意的 $x \in A$,由 $A = \bigcup_{\alpha \in B} A_{\alpha}$ 知,存在 $\alpha \in B$,使得 $x \in A_{\alpha}$,所以有x, $x \in A_{\alpha}$,由R的定义知 $(x, x) \in R$ 。
- (2) 对称性: 对于任意的x, $y \in A$, 若 $(x, y) \in R$, 则存在 $\alpha \in B$, 使得 x, $y \in A_{\alpha}$, 即有y, $x \in A_{\alpha}$, 所以由R的定义知 $(y, x) \in R$ 。
- (3) 传递性: 对于任意的x, y, $z \in A$, 若 $(x, y) \in R$, 且 $(y, z) \in R$, 则存在 α , $\beta \in B$, 使得x, $y \in A_{\alpha}$, y, $z \in A_{\beta}$, 于是 $y \in A_{\alpha} \cap A_{\beta} \neq \emptyset$ 。因为 π 是A上的一个划分,所以 $A_{\alpha} = A_{\beta}$,从而有x, $z \in A_{\alpha}$ 。由R的定义知 $(x, z) \in R$ 。

综上, R是A上的等价关系。

下面证明 $A/R = \pi$ 。我们证明二个集合互相包含。

先证 $A/R \subseteq \pi$ 。对于任意的 $[x]_R \in A/R$,因为 $x \in A$,所以由知 $\bigcup_{\alpha \in B} A_{\alpha} = A$,存在 $\alpha \in B$ 使得 $x \in A_{\alpha}$ 。

下面证明 $[x]_R = A_\alpha$ 。

对于任意的 $a \in A_{\alpha}$,由 $x \in A_{\alpha}$ 知a, $x \in A_{\alpha}$,由R的定义知 $(a, x) \in R$,则 $a \in [x]_R$,故有 $A_{\alpha} \subseteq [x]_R$ 。

对于任意的 $a \in [x]_R$,由等价类的定义知 $(a, x) \in R$,于是存在 $\beta \in B$,使得 $a, x \in A_\beta$ 。从而有 $x \in A_\alpha \cap A_\beta \neq \emptyset$,根据划分的定义知 $A_\alpha = A_\beta$,从而有 $a \in A_\alpha$,故有 $[x]_R \subseteq A_\alpha$ 。

因此, $[x]_R = A_\alpha$,所以 $[x]_R \in \pi$,即有 $A/R \subseteq \pi$ 。

再证π \subseteq A/R。。对于任意的 $A_{\alpha} \in \pi$,因为 $A_{\alpha} \neq \emptyset$,所以存在 $x \in A_{\alpha}$ 。可以仿上类似地证明 $A_{\alpha} = [x]_R$,所以 $A_{\alpha} \in A/R$,即有π $\subseteq A/R$ 。

综上, $A/R = \pi$ 。

给定集合A上的一个划分 π ,我们称由定理7.8所定义的二元关系R为划分 π 所对应的等价关系R。

一般地,设 $\{A_1, A_2, \dots, A_n\}$ 是集合A的划分,则由该划分构造的等价关系为 $R = (A_1 \times A_1) \cup (A_2 \times A_2) \cup \dots \cup (A_n \times A_n)$ 。

例如,设 $A = \{1, 2, 3, 4, 5, 6\}$,A的一个划分为 $\{\{1, 2, 3\}, \{4, 5\}, \{6\}\}$,则该划分对应的等价关系为:

 $R = \{1, 2, 3\} \times \{1, 2, 3\} \cup \{4, 5\} \times \{4, 5\} \cup \{6\} \times \{6\}$

 $= \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 2), (2, 3), (1, 3), (2, 1), (3, 2), (3, 1), (4, 5), (5, 4)\}$

7.7 偏序关系和格

7.7.1 偏序关系和偏序集

定义7.24: 设A是一个非空集合,R是A上的一个二元关系,若R满足自反性、反对称性、传递性,则称R是A上的一个偏序关系,并称(A,R)是一个偏序集。

例: 设 $A = \{a, b, c, d\}$, $R = \{(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d), (b, d)\}$ 。显然,R是A上一个偏序关系。

例: 已知 R_1 , R_2 , …, R_n 是A上的偏序关系,试证明 $R_1 \cap R_2 \cap \cdots \cap R_n$ 也为A上的偏序关系。

证明:

- (1) 自反性: 对于 $\forall x \in A$,因为 R_1 , R_2 ,…, R_n 是A上的自反关系,所以 $(x, x) \in R_1$, $(x, x) \in R_2$,…, $(x, x) \in R_n$,从而有 $(x, x) \in R_1 \cap R_2 \cap \cdots \cap R_n$ 。
- (2) 反对称性: 对于 $\forall x, y \in A$,若 $(x, y) \in R_1 \cap R_2 \cap \cdots \cap R_n$,且 $(y, x) \in R_1 \cap R_2 \cap \cdots \cap R_n$,则 $(x, y) \in R_1$, $(x, y) \in R_2$,…, $(x, y) \in R_n$, $(y, x) \in R_1$, $(y, x) \in R_2$,…, $(y, x) \in R_n$ 。因为 R_1 , R_2 ,…, R_n 是A上的反对称关系,所以由 $(x, y) \in R_1$ 和 $(y, x) \in R_1$ 知x = y;由 $(x, y) \in R_2$ 和 $(y, x) \in R_2$ 知x = y;…,由 $(x, y) \in R_n$ 和 $(y, x) \in R_n$ 和 $(y, x) \in R_n$ 和
- (3) 传递性: 对于 $\forall x, y, z \in A$,若 $(x, y) \in R_1 \cap R_2 \cap \cdots \cap R_n$,且 $(y, z) \in R_1 \cap R_2 \cap \cdots \cap R_n$,则 $(x, y) \in R_1$, $(x, y) \in R_2$,…, $(x, y) \in R_n$, $(y, z) \in R_1$, $(y, z) \in R_2$,…, $(y, z) \in R_n$ 。因为 $(y, z) \in R_n$ 。因为 $(y, z) \in R_n$ 。因为 $(x, y) \in R_n$,由 $(x, y) \in R_n$ 和 $(y, z) \in R_n$ 和 $(x, z) \in R_n$;由 $(x, y) \in R_n$ 和 $(x, z) \in R_n$ 和 $(x, z) \in R_n$,因此, $(x, z) \in R_1 \cap R_2 \cap \cdots \cap R_n$ 。综上, $(x, z) \in R_n$ 和也为 $(x, z) \in R_n$ 和

7.7.2 哈斯 (Hasse) 图

设 (A, \leq) 是一个偏序集,A是一个有限集,|A|=n,对于任意的x, $y \in A$,且 $x \neq y$,若 $x \leq y$,且 $\forall z \in A$, $x \leq z$,且 $z \leq y$,就一定推出z=x或z=y,那么称y覆盖x。

可以用一个图形来表示偏序集 (A, \leq) ,这个图形有n个顶点,每一个顶点表示A中一个元素,二个顶点x与y,若有y覆盖x,则x在下方,y在上方,且二点之间有一条直线相连结。表示一个偏序关系的这样的图形称为哈斯(Hasse)图。

反之,给出一个偏序集的哈斯图,也能很快得出这个偏序集。例如, $A = \{a, b, c, d, e\}$, $\leq = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (b, c), (c, d), (a, e), (e, d), (a, c), (a, d), (b, d)\}$ 。 (A, \leq) 是图(b)所代表的偏序集。

7.7.3 极大元、极小元、最大元和最小元

设 (A, \leq) 是一个偏序集。 $a \in A$,若A中不存在任何元素b,使得 $b \neq a$,且 $a \leq b$,则称a为极大元。 $d \in A$,若A中不存在任何元素b,使得 $b \neq d$,且 $b \leq d$,则称d为极小元。若A中存在一个元素a,对于任意的 $x \in A$, $x \leq a$,则称a为最大元。若A存在一个元素a,对于任意的 $x \in A$, $a \leq x$,则称a为最小元。

一个有限的偏序集,一定有极大元和极小元,但不一定有最大元和最小元,例如图(a)中1是最小元,也是极小元,3和4是极大元,无最大元。

7.7.4 上界、下界、最小上界和最大下界

设(A, ≼)是一个偏序集。图7.6给出了一些偏序集的哈斯图。

设a和b是集合A中的两个元素,一个元素c (\in A),若有c \leq a,且c \leq b,则称c是a和b的下界。如果c是a和b的下界,且对于a和b的任何下界d,均有d \leq c,则称c是a和b的最大下界,记为g1b{a, b} = c。例如,在图7.6(d)的偏序集中,a和c都是e和g的下界,但e2 是e和g的最大下界。

7.7.5 链、反链、全序集

设(A, \leq)是一个偏序集,对于任意的x, $y \in A$, 若 $x \leq y$ 或者 $y \leq x$, 称x与y可比,否则称x与y不可比。例如,在图7.5(b)中,b与c是可比的,b与e是不可比的。

设(A, \leq)是一个偏序集, $B \subseteq A$,若B中任意两个元素均可比,则称B是一条<mark>链</mark>。例如,在图7.5(b)中, $B = \{a, b, c, d\}$ 就是一条链。我们通常把一个链的元素个数称为该链的长度。例如,链B的长度为4。

设 (A, \leq) 是一个偏序集, $B \subseteq A$,若B中任意两个不同的元素均不可比,则称B是一条 <mark>反链</mark>。例如,在图7.5(b)中, $B = \{b, e\}$ 就是一个反链。

设 (A, \leq) 是一个偏序集,若A本身就是一条链,那么称 (A, \leq) 为全序集。

定理**7.10**: 设(A, \leq)是一个偏序集,若A中最长链的长度为n,那么A中的元素能划分为n条不相交的反链。

证明:我们用归纳法来证明这个定理。

当n = 1,则A中任何两个不同元素都不可比,显然,A中所有元素组成一条 反链。

假定当一个偏序集里最长链的长度为n-1时,定理成立。设(A, \leq)是一个偏序集,它的最长链的长度为n。设M是A中极大元的集合,显然M是一条非空的反链。考虑偏序集(A-M, \leq),因为在A-M 中不存在长度为n的链,所以它的最长链的长度最多为n-1。另一方面,如果A-M中的最长链的长度小于n-1,那么M中必有两个或两个以上的元素在同一条链上,这显然是不可能的。因此,A-M的最长链的长度为n-1。根据归纳假设知A-M可以划分为n-1条互不相交的反链,由于M是一条反链,故A可以划分为n条互不相交的反链。

7.7.6 格

下面我们建立一个新的概念。

定义: A是一个非空集, (A, \leq) 是一个偏序集,若对于任意的元素a和b属于A,在A中存在a和b的最小上界及最大下界,则称 (A, \leq) 是一个格。

7.7.7 拓扑排序

假设一个软件项目由12个任务构成。某些任务只能在其它任务完成后才能开始。我们对软件项目构建偏序模型,使得 $x \le y$ 当且仅当项目x完成后项目y才能开始。该软件项目对应的哈斯图如图7.7所示。为了安排该软件项目,需要给出12个任务的开发顺序。

定义:从一个偏序构造一个相容的全序的过程称为拓扑排序。

定理7.11: 任意一个非空有穷偏序集(A, ≼)至少有一个极小元。

证明:选择A的任意一个元素 a_0 。如果 a_0 不是极小元,那么一定存在元素 a_1 ,满足 $a_1 < a_0$;如果 a_1 不是极小元,那么一定存在元素 a_2 ,满足 $a_2 < a_1$;继续该过程,如果 a_{n-1} 不是极小元,那么一定存在元素 a_n ,满足 $a_n < a_{n-1}$ 。因为A为有穷集,所以这个过程一定会结束并且具有极小元 a_n 。命题得证。为了在偏序集 (A, \leq) 上定义一个全序,首先选择一个极小元 a_1 ,由定理7.11知,这样的元素一定存在。考察偏序集 $(A - \{a_1\}, \leq)$,若 $A - \{a_1\}$ 非空,选择该偏序集的极小元 a_2 ;考察偏序集 $(A - \{a_1, a_2\}, \leq)$,若 $A - \{a_1, a_2\}$ 非空,选择该值序集的极小元 a_3 ;继续该过程,直至偏序集为空。由于A为有穷集,所以这过程一定终止。最终产生一个全序序列

$$a_1 \prec a_2 \prec a_3 \prec \cdots \prec a_n$$

这个全序序列与初始偏序相容。上述求解过程实际上是一个拓扑排序的过程 ,算法**1**给出了拓扑排序的伪代码。

```
算法1 拓扑排序
```

```
完成
procedure topologicalsort((A,\preccurlyeq): 有穷偏序集){
                                                                              A测试
                                                                                    模块集成
 k \coloneqq 1;
                                                                         B测试
                                                                                  开发模块2
                                                                  开发模块1
 while A \neq \emptyset
                                                                                      开发模块3
                                                                     写文档•
   a_k: = A的极小元;
                                                                                   >设置测试点
   A := A - \{a_k\};
                                                                      开发系统需求
   k \coloneqq k + 1;
                                                                              写出功能需求
  endwhile
                                                                             ●确定用户需求
 return a_1, a_2, a_3, …, a_n; //{a_1, a_2, a_3, …, a_n是与A相容的全序}
确定用户需求 < 写出功能需求 < 开发系统需求 < 写文档 < 开发模块1 < 开发模块2
  \prec 开发模块3 \prec 模块集成 \prec 设置测试点 \prec B测试 \prec A测试 \prec 完成。
```

例7.39: 已知某软件公司开发某管理系统需要完成8个任务,任务的集合为 $\{a, b, c, d, e, f, g, h\}$ 。其中某些任务只能在其它任务完成后方能开始。即如果任务A在任务B完成后方能开始,则任务A <任务B。这8个任务对应的哈斯图如图7.8所示。

解:我们通过执行一个拓扑排序得到一个8个任务的排序序列。排序过程如图7.9所示。排序结果a < b < c < d < e < g < f < h,给出了一种任务的可行次序。

