

CLTune: A Generic Auto-Tuner for OpenCL Kernels

IEEE MCSoC

September 24, 2015

Cedric Nugteren (presenter), Valeriu Codreanu

Example: convolution

Example: blur filter

Targets:

- GPUs
- Multi-core CPUs
- Other OpenCL-capable devices

OpenCL 2D convolution

each thread: one output pixel

Thread coarsening (2D)?

$$B_{x,y} = w \cdot \sum_{i=-1}^{i \le 1} \sum_{j=-1}^{j \le 1} F_{i,j} A_{x+i,y+j}$$

double for-loop

Unroll loops?

```
OpenCL work-
   #define HFS (3) · · · · · // Half filter size
   #define FS (HFS+HFS+1) // Filter size
                                                               group size?
    __kernel void conv_reference(const int size_x, const int size_y,
                                const __global float* src,
                                __constant float* coeff,
                                __global float* dest) {
                                                         Vector data-types?
     const int tid_x = get_global_id(0);
     const int tid_y = get_global_id(1);
12
     float acc = 0.0f;
     // Loops over the neighbourhood
     for (int fx=-HFS; fx<=HFS; ++fx) {</pre>
       for (int fy=-HFS; fy<=HFS; ++fy) {
         const int index_x = tid_x + HFS + fx;
         const int index_y = tid_y + HFS + fy;
         // Performs the accumulation
         float coefficient = coeff[(fy+HFS)*FS + (fx+HFS)];
         acc += coefficient * src[index_y*size_x + index_x];
24
                                                         Caching in local
26
27
     // Stores the result
                                                              memory?
     dest[tid_y*size_x + tid_x] = acc;
28
29 }
```

Search-space explosion

Why do we need an auto-tuner?

Large search-space:

- Not feasible to explore manually
- Perhaps not even feasible automatically?

Wide variety of devices:

- Different optimal kernels
- Even from the same vendor

vendor and	archi-	compiler	peak	peak	GFLOPS
device name	tecture	and SDK	GFLOPS	GB/s	per GB/s
NVIDIA Tesla K40m	Kepler	CUDA 7.0	4291	288	14.9
NVIDIA GeForce GTX480	Fermi	CUDA 5.5	1345	177	7.6
AMD Radeon HD7970	Tahiti	APP 2.9	4368	288	15.1
Intel Iris 5100	Iris	Apple 2.4.2	832	26	32.5

User-parameter dependent:

 Examples: matrix sizes, image size, filter sizes, etc.

Option 0: Full search

- Finds optimal solution
- Explores all options

Option 0: Full search

Option 1: Random search

© Explores arbitrary fraction

Performance varies

Colours: 3 example runs

Option 0: Full search

Option 1: Random search

Option 2: Simulated annealing

- © Explores arbitrary fraction
- Performance varies
- Meta-parameter
- Cocal optima

Colours: 3 example runs

Option 0: Full search

Option 1: Random search

Option 2: Simulated annealing

Option 3: Particle swarm optimisation

- © Explores arbitrary fraction
- Performance varies
- <a> Meta-parameter
- Cocal optima

Colours: 3 example runs

Line-types: 3 swarms

Search strategies evaluation

Each search: 107 out of 3424 configurations (1/32th)

Search strategies evaluation

device: HD7970

Conclusions:

- Different per device
- PSO performs poorly
- Random search and SA perform well

Convolution case-study

	allowed	GeForce GTX480		
parameter(s)	values	3x3	7x7	11x11
$\overline{X_{wg}, Y_{wg}}$	{8,16,32,64}	64,8	32,8	32,8
X_{wpt}, Y_{wpt}	{1,2,4,8}	1,4	2,8	2,4
L\$	{0,1,2}	0	2	1
VW	{1,2,4,8}	1	2	2
PAD	{0,1}	0	0	0
UNR	{yes,no}	yes	yes	yes

applied to a	best parameters for			
filter of size	3x3	7x7	11x11	
3x3	100%	82%	64%	
7x7	65%	100%	83%	
11x11	66%	75%	100%	

[1]: B. Van Werkhoven, J. Maassen, H.E. Bal, and F.J. Seinstra. Optimizing Convolution Operations on GPUs Using Adaptive Tiling.

Conclusions:

- Different best parameters for different:
 - devices (see paper)
 - filter-sizes
- Performance equal or better than the state-of-the-art [1]

GEMM case-study

	allowed	best parameters per device			
parameter(s)	values	K40m	GTX480	HD7970	Iris
$\overline{M_{wg}, N_{wg}, K_{wg}}$	{16,32,64,128}	128,128,16	64,64,32	128,128,32	64,64,16
M_{dimC} , N_{dimC}	{8,16,32}	16,16	8,16	16,16	8,8
$L\$_A,L\$_B$	{yes,no}	yes, yes	yes, yes	yes, yes	yes, yes
$M_{oldsymbol{dim}A},N_{oldsymbol{dim}B}$	{8,16,32}	32,16	32,32	32,32	8,16
M_{stride},N_{stride}	{yes,no}	yes, no	yes, no	no, yes	yes, yes
$M_{oldsymbol{vec}},N_{oldsymbol{vec}}$	{1,2,4,8}	2,1	2,2	4,4	4,4
$\boldsymbol{K_{wi}}$	{2,8}	8	8	2	8

Conclusions:

- Different best parameters for different devices
- Performance better than cIBLAS, but not as good as assemblytuned cuBLAS

CLTune: A Generic Auto-Tuner for OpenCL Kernels

Auto-tuning OpenCL kernels:

- Large search-space
- Wide variety of devices
- User-parameter dependent

Advanced search strategies:

- Simulated annealing
- Particle swarm optimisation

Case-studies:

- Fastest 2D convolution
- Fast matrix-multiplication

Future: machine-learning [2]

- Train a model on a small subset
- Use the model to predict the remainder

Source-code on GitHub: https://github.com/CNugteren/CLTune

[2]: T.L. Falch and A.C. Elster. Machine Learning Based Auto-tuning for Enhanced OpenCL Performance Portability.