	NATURE OF ROOTS of for quadratics parabolas
	For graduatics / parabola)
	From the quadratic formula:
	t = 1 to fam.
	$x = -b \pm \sqrt{b^2 - 4ac}$ from form $axc^2 + bx + c = 0$
	290
	The content under the square root can be called
	the discriminant
	This is shown by the symbol 8 or a some textbooks
	will call this
	$\therefore D = b^2 - 4ac$ delta
	The discriminant delta tells us about the roots of
	a function in the Following ways:
	U U
	O are the roots real or imaginary (non-real)
	2) are the roots rational or irrational
	3 are the roots equal (one root) or unequal (two roots)
	root
	real imaginary (non-real)
	8 only equations
	rational irrational with real roots
	can be solved
	by factorisation.
	equal unequal
_	one root) (two roots)
	one root) (LWU 100ts)

- 1 b2-49C <0 ___ D non-real/imaginary roots
- 2) b2-49c 70 real roots imaginary
- 3) 62-4ac = perfect square rational and unequal LD not including 0

 b^2 - 4ac = 0 - rational and equal

Lo zerois a perfect square.

5) b2-4ac 70; but not a perfect square

- Irrational and unequal

Classify the roots of the following using the discriminant.

(a)
$$5x^2 - 2x + 1 = 0$$

(b)
$$7x^2 - 3x - 4 = 0$$

$$(2)4x^2-12x+9=0$$

$$3x^2 + 5x + 1 = 0$$

ANSWERS.

$$\Delta = b^2 - 4ac$$

When $ax^2 + bx + C = 0$

 $9) 5x^2 - 2x + 1 = 0$

$$\Delta = (-2)^{2} - 4(5)(1)$$

$$= -16$$
CHECK: (ALCULATOR
$$2^{+}\sqrt{(-2)^{2} - 4(5)(1)}$$

$$= -16$$

$$7.(5)$$

·· roots are imaginary | non-real = error.

$$D = (-3)^2 - 4 = 0$$

$$D = (-3)^2 - 4(7)(-4)$$

CHeck:
$$(7x+4)(x-1)$$

$$\Delta = (-3)^2 - 4(7)(-4)$$
= 121

·· \(\sis \) is positive perfect square

' roots are real rational and unequal

$$6)4x^2-12x+9=0$$

$$\Delta = (-12)^2 - 4(4)(9)$$

$$x = \frac{3}{2}$$

: roots are real, rational & equal

$$3x^2 + 5x + 1 = 0$$

$$\Delta = 5^2 - 4(3)(1)$$

= 13

i dis positive but not a perfect square x = -0.23 de x = -1.43

: roots are real, irrational, unequal