Total No. of Questions: 8]	9	SEAT No. :
P269		[Total No. of Page
	[6003]-347	

T.E. (Computer Engineering) THEORY OF COMPUTATION (2019 Pattern) (Semester-I) (310242)

Time: 2½ Hours]	[Max. Marks : 70

Instructions to the candidates:

- Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- Neat diagrams must be drawn wherever necessary. 2)
- 3) Figures to the right side indicate marks.
- Assume suitable data, if necessary.
- Give a Context Free Grammar for the following language. **Q1)** a) [9] i) L1= $\{a^i b^j c^k | i = j + k\}$ such that i, j, k > 0ii) L2= $\{a^i b^j c^k | j = i + k\}$ such that i, j, k > 0Reduce the following grammar to Greibach Normal form.
 - [9] $S \rightarrow SS$, $S \rightarrow 0S1$ 01

 $S \rightarrow a$ C > b

orm (CN. Convert the following grammar to Chomsky Normal Form (CNF). $G=(\{S\}, \{a,b\}, P,S)$

 $P=\{S \rightarrow aSa \mid bSb \mid a \mid b \mid aa \mid bb\}$

Consider the following grammar. E -> E + E | E - E | id

Derive the string id-id*id using

- i) Leftmost derivation
- ii) Rightmost derivation
- Find the transition rules of PDA for accepting a language $L=\{w \mid \{a,b\}^* \mid w\}$ **Q3**) a) is of the $a^n b^n$ with $n \ge 1$ through both empty stack and final state and demonstrates the stack operation for the string aaabbb. [9]

[6]

	b)	Design a push down automation to recognize the language generated by
		the following
		grammar:
		$S \rightarrow S + S \mid S \mid S \mid 4 \mid 2$ Show the acceptance of the fourtation $2 + 2*4$ by this DDA
		Show the acceptance of the input string 2+2*4 by this PDA. [8]
04)	`	OR NIDDA C 41 4 C 11 4 C 11
<i>Q4)</i>	a)	What is NPDA? Construct a NPDA for the set of all strings over {a,b}
	1. \	with odd length palindrome. [9]
	b)	Design a push down automation to recognize the language generated by
		the following. [8]
		$S \rightarrow S + S \mid S \mid S \mid 4 \mid 2$ Shows the acceptance of the innext string $2 + 2*4$ by this DDA
		Show the acceptance of the input string 2+2*4 by this PDA.
Q5)	a)	Design a Turing Machine for the following language by considering
~ /	,	transition table and diagram. [9]
		i) TM that erases all non blank symbols on the tape where the sequence
		of non blank symbols does not contain any blank symbol B in
	0	between.
	×	ii) TM that find 2's complement of a binary machine.
	b)	What is TM? Design TM to check well formedness of parenthesis. Expand
		the transition for $(())()$ [9]
		OR
Q6)	a)	How turing machine can be use to compute the functions? Design turing
		machine for multiplication of two numbers. [9]
	b)	Elaborate the following terms. [9]
		i) Universal Turing Machine (UTM)
		ii) Recursively Enumerable Languages
		iii) Halting problem of Turing Machine
Q7)	a)	Define and Compare Class P and Class NP Problem with suitable diagram.
Q/)	a)	[9]
	b)	What do you mean by polynomial time reduction? Explain with suitable
	0)	example. [8]
		OR [6]
<i>Q8)</i>	a)	Explain Satisfiability Problem and SAT Problem and comment on NP
~ /	,	Completeness of the SAT Problem. [9]
	b)	What makes a problem NP-Complete? How do we prove a problem is
		NP-complete? Are all decision problems NP-complete? [8]