А. А. Горшков, С. В. Востоков, С. М. Власьев РЕГУЛЯРНЫЕ ФОРМАЛЬНЫЕ МОДУЛИ В ПОЛНЫХ МНОГОМЕРНЫХ ПОЛЯХ

Введение

При исследовании нормальных расширений без высшего ветвления возникла задача описания всех неразветвленных расширений локального поля, которые вместе с основным полем являются регулярными, т.е не содержащими нетривиальных р-х корней из 1 (где р — характеристика поля вычетов локального поля). Основное локальное поле при этом называется вполне регулярным. Эта задача была решена З.И. Боревичем в работе [3]. Основной результат этой работы, доказательство которого было упрощено Д.К. Фадеевым, является следующим.

Teopema~0.1.~(3.И.~Боревич,~1962).~Для того, чтобы локальное поле K было вполне регулярным, необходимо и достаточно, чтобы показатель ветвления e расширения K/\mathbb{Q}_p не делился на p-1.

Встает естественный вопрос — является ли ограничение на индекс ветвления исходного поля, которое не является регулярным, т.е. содержит нетривиальный корень степени p из 1, достаточным для того, чтобы круговое расширение $K(\zeta_{p^n})$, $n \ge 2$, было бы неразветвлено. Этот вопрос решается в первом параграфе работы.

Задача о регулярных и вполне регулярных полях возникает в арифметике формальных модулей и она решается во втором параграфе настоящей работы.

1 Пример поля K, которое содержит ζ_p , но $K(\zeta_{p^2})/K$ вполне разветвлено

K — локальное поле (конечное расширение \mathbb{Q}_p),

 ζ_{p^m} — первообразный корень степени p^m из 1,

e — абсолютный индекс ветвления поля K,

 \mathfrak{R} — мультипликативная система Тейхмюллера в поле K,

 $\mathfrak O$ — кольцо целых подполя инерции T в $K/\mathbb Q_p,$

 $E(f(X)) = exp(1 + \frac{\Delta}{p} + \frac{\Delta^2}{p^2} + \ldots)(f(X))$, где $\Delta f(X) = f(X^p)$, для $f(X) \in \mathbb{Z}_p[[X]]X$. Считаем, что $\zeta_p \in K$ и индекс ветвления делится на p.

Докажем, что существуют поля, для которых расширение $K(\zeta_{p^2})$ будет вполне разветвленным над K.

Пусть $K_0 = \mathbb{Q}_p(\zeta_p)$ и $K = K_0(\sqrt[p]{\pi})$, где $\pi = 1 - \zeta_p$. Пусть $\Pi = \sqrt[p]{\pi}$.

Теорема 1.1. Расширение $K(\zeta_{p^2})/K$ вполне разветвлено.

Доказательство. В нашем случае $e=e(K/\mathbb{Q}_p)=p(p-1)$. Рассмотрим разложение корня ζ_p по образующим мультипликативной группы K^* . Пусть $a\in\mathbb{Z}_p$ и $\omega(a)=E(a(\underline{\zeta}^p-1))|_{X=\Pi}$, где $\zeta(X)=(1-X^p)^p$.

В работе [3] было доказано, что $\omega(a) - p$ — примарный элемент поля K (т.е. расширение $K(\sqrt[p]{\omega(a)})/K$ неразветвлено), и при этом значение символа Гильберта в поле K, $(,)_p:K^*\times K^*\to \langle\zeta_p\rangle$ на паре $\Pi,\omega(a)$ равно $(\Pi,\omega(a))=\zeta_p^a$.

Образующими K^* будут элементы $\{\Pi, \omega(a), 1-\theta\pi^b \mid \theta \in \mathfrak{R}, 1 \leq b < p^2, p \nmid b\}$ и корень ζ_p , тем самым, раскладывается в виде

$$\zeta_p = \omega(a)^{\beta} \prod_{\substack{p \nmid b \\ 1 \leqslant b \leqslant p^2}} (1 - \theta \Pi^b)^{\alpha_{\theta,b}}, \tag{1}$$

где $\beta, \alpha_{\theta,b} \in \mathbb{Z}_p$.

Докажем сперва, что

$$\beta \equiv 0 \mod p. \tag{2}$$

Для этого подсчитаем значение символа Гильберта на паре Π, ζ_p . Нетрудно видеть, что из соотношения Стейнберга $(\alpha, 1 - \alpha) = 1, \ \alpha \neq 0$ для символа Гильберта следует равенство

$$(\Pi, 1 - \theta \Pi^b) = 1, p \nmid b. \tag{3}$$

Действительно, $1 = (\theta \Pi^b, 1 - \theta \Pi^b) = (\theta, 1 - \theta \Pi^b) \cdot (\Pi, 1 - \theta \Pi^b)^b$. При этом $\theta = \theta_1^p$ при некотором $\theta_1 \in \mathfrak{R}$, так как группа \mathfrak{R} p-делима. Значит, $(\Pi, 1 - \theta \Pi^b)^b = 1$, откуда $(\Pi, 1 - \theta \Pi^b) = 1$, так как, если $(\Pi, 1 - \theta \Pi^b) = \zeta^k$ при некотором $1 \le k \le p - 1$, то $\zeta^{bk} = 1$, что противоречит $p \nmid bk$.

Из равенства (3) следует

$$(\Pi, \zeta_p) = (\Pi, \omega(a))^{\beta} \cdot \prod_{\substack{p \nmid b \\ 1 \leqslant b \leqslant p^2}} (1 - \theta \Pi^b)^{\alpha_{\theta, b}} =$$

$$= (\Pi, \omega(a))^{\beta} = \zeta_p^{a\beta}, \text{то есть}$$

$$(\Pi, \zeta_p) = \zeta_p^{a\beta}. \tag{4}$$

Подсчитаем теперь значение (Π, ζ_p) по явной формуле для символа Гильберта (см. [?, 12]). Пусть l(1+f(X))) — обратная функция к функции Артина-Хассе E(f(X)). Она была определена в [?, §1, п. 1].: $l(1+f(X)) = (1-\frac{\Delta}{p})\log(1+f(X))$ для $f(X) \in X\mathbb{Z}_p[[X]]$ и $\Delta f(X) = f(X^p)$.

f(X)) для $f(X) \in X\mathbb{Z}_p[[X]]$ и $\Delta f(X) = f(X^p)$. Тогда имеет место формула $(\Pi, \zeta_p) = \zeta_p^{res_X X^{-1} l(\underline{\zeta})/((1-\underline{\zeta}^p)^p-1)}$. Вычислим для $\underline{\zeta} = \underline{\zeta}(X) = 1 - X^p \ res_X X^{-1} l(\underline{\zeta})/((1-\underline{\zeta}^p)^p-1)$ тоо p. Ясно, что

$$(1 - \underline{\zeta}^p)^p - 1 \equiv -\underline{\zeta}^{p^2} \mod p \tag{5}$$

Кроме того, $l(\underline{\zeta})=(1-\frac{\Delta}{p})\log(1-X^p)=\sum\limits_{p\nmid m}\frac{X^{pm}}{m}+\sum\limits_{m\geqslant 1}\frac{X^{p^{m+1}}-X^{p^m}}{p^m}=$

 $\sum\limits_{p\nmid m}\frac{X^{p^m}}{m}.$ Среди степеней $X^{pm},\,p\nmid m$ нет степени $p^2,$ значит

 $(\Pi, \zeta_p) = 1$. Отсюда и из (4) следует (2). Значит $\zeta_p = \prod_{p \nmid b} (1 - \theta \Pi^b)^{\alpha_{\theta,b}} \mod K^{*p}$. Пусть степень

b — наименьшая, для которой $lpha_{ heta,b} \not\equiv 0 \mod p$. Если такой нет, то это означает, что $\zeta_p \in K^{*p}$, что невозможно. Тогда $\zeta_p=1-c\Pi^b,$ где c — некоторая единица поля K, то есть $c = c_0 + c_1 \Pi + c_2 \Pi^2 + \dots, c_i \in \mathbb{Z}_p \text{ if } p \nmid c_0, 1 \leqslant b < \frac{pe}{p-1}, p \nmid b.$ Несложно видеть (!!!!!!! доказать !!!!!!!), что расширение $K(\zeta_{p^2})/K$ вполне разветвлено.

Список литературы

- [1] Fesenko I.B., Vostokov S.V, Local Fields and Their Extensions, Second edition, 2002.
- [2] Востоков С.В, Волков П.П., Пак Г.К, Символ Гильберта для многочленных формальных групп, Зап. науч. сем. ПОМИ, том 400, 2012, стр. 127-132.
- [3] Боревич З.И., О регулярных локальных полях, Вестник ЛГУ, 1962, стр. 142-145.
- [4] Бенуа Д.Г., Востоков С.В. Арифметика группы точек формальной группы, Зап. научн. сем. ЛОМИ, 191 (1991), стр. 9–23.
- [5] Zhukov I. B., Higher dimensional local fields, Invitation to higher local fields, 2000, ctp. 5-18.
- [6] Honda T., On the theory of commutative formal groups, J. Math Soc. Japan, 1970, стр. 213-246.
- [7] Hazewinkel M., Formal groups and applications, Academic Press, New York, 1978.