11 de Junho de 2019

Nome:			

Nº mecanográfico: __

- Este exame contém 7 questões em 4 páginas e tem uma duração de 2h(+30m).
- Responda às questões no espaço marcado no enunciado.
- Pode usar funções auxiliares e/ou do prelúdio-padrão de Haskell.
- Nas questões 2 a 7, indique sempre o tipo da função definida.
- ${\bf 1.}~~(30\%)$ Responda a cada uma das seguintes questões, indicando ${\bf apenas}$ o resultado de cada expressão.
 - (a) length ([1,2]:[3]:[4,5]:[]) = _____
- (b) take 2 ([1,2]:[3]:[4,5]:[]) = _____
- (c) zipWith (+) [1,3..10] [10,9..1] = _____
- (d) foldr (*) 2 [1,2,3,4,5] = _____
- (e) takeWhile (>=3) [1,2,3,4,5] = _____
- (f) (all (>3) . filter (>=3)) [1,2,3,4,5] = _____
- (g) $[(x^2,y) \mid (x,y) \leftarrow zip [1..6] [1,4..]] =$
- (h) Defina a lista [(1,10),(3,8),(5,6),(7,4),(9,2),(11,0),(13,-2),...]:
- (i) Considere a seguinte definição em Haskell:

```
h _ base [] = base
h op base (x:xs) = h op (op base x) xs
```

A avaliação da expressão h (\x y -> x:y) [] [1,2,3,4,5] tem como resultado:

- (j) Indique um tipo admissível para a (2*).(+2):
- (k) Indique um tipo admissível para [map,filter]:
- (l) Considere as seguintes definições em Haskell:

```
data Arv a = ???
```

$$f (F x) = [x]$$

$$f(N e d) = f e ++ f d$$

Complete a definição do tipo Arv a, para que a função f esteja bem definida:

(m) Indique o tipo mais geral de g p xs = [x | x<-xs, p x]:

- $\mathbf{2}$. (15%) Numa determinada disciplina, consideramos para cada aluno uma lista de notas (de 0 a 20) correspondendo a diferentes componentes da avaliação, assim como uma lista com os pesos (de 0 a 1) de cada componente na nota final. Por exemplo, as seguintes listas respectivas de notas e pesos [11.5,12,15] [0.4,0.3,0.3], indicam que a nota final será 11.5*0.4+12*0.3+15*0.3.
 - (a) Implemente a função notaF que dadas uma lista de notas e a respectiva lista de pesos, calcula a nota final de um aluno.
 - (b) Supondo que cada componente tem uma nota mínima de 8 valores, implemente a função ${\tt rfc}$ que dada uma lista (de listas) com as notas de todos os alunos, determina quantos alunos é que reprovaram por falta de componente.

Nota: pode utilizar funções do prelúdio-padrão e/ou listas em compreensão mas pão deve usar

directamente recursão.				
3. (10%) Considere os seguintes tipos para representar grafos dirigidos:				
<pre>type Vert = Int type Graph = [(Vert, Vert)]</pre>				
A relação expressa pelo grafo é transitiva se e só se, para todos os vértices v_1 , v_2 e v_3 , se (v_1, v_2) e (v_2, v_3) são arcos do grafo, então (v_1, v_3) tão é. Escreva uma função transitiva que verifica se um dado grafo representa uma relação transitiva.				
4. (5%) A função iterate do prelúdio padrão, itera uma função à escolha do utilizador, a partir de um elemento. Por exemplo: iterate (*3) 1 = [1,3,9,27,81,243,]. Implemente a função iterate usando listas em compreensão.				

da li	15%) Defina uma função deleteNth, que dado um inteiro n e uma lista l , remove elementos sta l de n em n posições. Por exemplo: deleteNth 3 "abcdefg"= "abdeg" e deleteNth 3 10] = [1,2,4,5,7,8,10].			
(a) Defina a função deleteNth recursivamente.				
(b)	Defina a função ${\tt deleteNth}$ usando listas em compreensão e/ou ordem superior.			
data	(15%) Considere a seguinte declaração de tipo para árvores binárias: Arv a = Folha No a (Arv a) (Arv a) Defina uma função soma que dada uma árvore de tipo númerico, calcule a soma dos valores na árvore.			
(b)	Defina uma função soma Arv que, para duas árvores de tipo númerico \mathbf{t}_1 e \mathbf{t}_2 , calcula uma nova árvore cujos valores em cada nó são a soma dos valores de \mathbf{t}_1 e \mathbf{t}_2 nos nós respectivos. Assumimos que Folha é o elemento neutro da soma das árvores.			

7. (10%) Responda (apenas) a uma das seguintes alíneas, usando indução matemática. Nota: pode utilizar qualquer propriedade que tenha sido demostrada nas aulas, ou demonstrar qualquer resultado adicional que facilite a prova. (a) Considerando as funções definidas na questão anterior, mostre que para qualquer árvore númerica t, soma (somaArv t t) = 2 * soma t. (b) Considerando as definições das funções foldr, foldl e reverse dadas nas aulas, assim como a função flip do prelúdio, definida como flip f $\,x\,y\,=\,f\,y\,x,$ mostre que para quaisquer f, v e xs: foldl f v xs = foldr (flip f) v (reverse xs).