Autoencoder e Predittore di Stati

Presentazione del progetto per il corso di Deep Learning, A.A. 2021/22

Luca Lavazza, Francesco Rossi

Introduzione

- Autoencoder
- Predittore di stati
 - 0 4a1
 - 0 6a1

Indicazioni Generali - Suddivisione dei Dataset

test_x: 3.35. ·10⁴ test_y: 3.35. ·10⁴ val_x: 3.35. ·10⁵

test x: 10⁵

 $test_y: 10^5$

Indicazioni Generali - Metriche

Precision

Circa 1

Recall

Loss

Sotto 0.01

Task 1: Autoencoder classico - Struttura

- 3 livelli interni totali (embedding compreso)
- Attivazione: ReLU
- Ottimizzazione: Adam e Nadam
- Regolarizzazione: Early Stopping e Batch
 Normalization sempre utilizzate.

Dimensione	Dimensione	Dimensione	Dimensione	Dimensione	Accuratezza
340 ———	170	→ 48	170	→ 340 ······	> 69.807%
340 ———	→ 170 —	→ 65 —	→ 170 —	→ 340	⊳ 92.319%
340 ———	→ 170 ←	→ 80 ——	→ 170 —	→ 340	⊳ 99.755%

Task 1: Autoencoder classico - Modello 1

Figure 2: Andamento di recall, precision e loss su train e validation sulla base delle epoche.

Parametri	Tipo	Valori
Kernel inizializer	he_uniform	-
Ottimizatore	Adam	lr=0.0001
Kernel regulizer	L2	10^{-5}
Batch size	_	150

Task 1: Autoencoder classico - Modello 2

Figure 4: Andamento di recall, precision e loss su train e validation sulla base delle epoche.

Parametri	Tipo	Valori
Kernel inizializer	heuniform	-
Ottimizatore	Nadam	lr=0.0007, beta_1=0.95, beta_2=0.999
Kernel regulizer	-	-
Batch size	_	5000

Task 1: Autoencoder classico - Modello 3

Figure 6: Andamento di recall, precision e loss su train e validation sulla base delle epoche.

Parametri	Tipo	Valori
Kernel inizializer	he_uniform	-
Ottimizatore	Nadam	lr=0.001, beta_1=0.9, beta_2=0.999
Kernel regulizer	-	-
Batch size	_	5000

Task 2 - Predittore 4 a 1 - Struttura

- 5 livelli interni totali (embedding compreso)
- Attivazione: ReLU
- Ottimizzazione: Adam e Nadam
- Regolarizzazione: Early Stopping e Batch
 Normalization sempre utilizzate.

Task 2 - Predittore 4 a 1 - Modello 1

Figure 10: Andamento di recall, precision e loss su ${\sf train}$ e validation sulla base delle epoche.

Parametri	Tipo	Valori
Kernel inizializer	he_uniform	-
Ottimizatore	Adam	$lr = 7 \cdot 10^{-5}$
Kernel regulizer	L2	$5 \cdot 10^{-6}$
Batch size	_	50

Task 2 - Predittore 4 a 1 - Modello 2

Figure 12: Andamento di recall, precision e loss su train e validation sulla base delle epoche.

Parametri	Tipo	Valori
Kernel inizializer	he_uniform	-
Ottimizatore	Adam	$lr = 7 \cdot 10^{-5}$
Kernel regulizer	L2	$5 \cdot 10^{-6}$
Batch size	_	50

Task 3 - Predittore 6 a 1 - Struttura

- 3 livelli interni totali (embedding compreso) nel primo caso, 5 nel secondo
- Attivazione: ReLU
- Ottimizzazione: Adam e Nadam
- Regolarizzazione: Early Stopping e Batch
 Normalization sempre utilizzate.

Task 3 - Predittore 6 a 1 - Modello 1

Figure 16: Andamento di recall, precision e loss su train e validation sulla base delle epoche.

Parametri	Tipo	Valori
Kernel inizializer	he_normal	-
Optimizers	Nadam	$lr = 0.009, beta_1 = 0.95$
Kernel regulizer	L2	1e-10
Ratch size	_	400

Task 3 - Predittore 6 a 1 - Modello 2

Figure 18: Andamento di recall, precision e loss su train e validation sulla base delle epoche.

Parametri	Tipo	Valori
Kernel inizializer	he_normal	-
Optimizer	adam	lr = 0.0003700088651332496
Kernel regulizer	L2	1.967657265571901e - 06
Dropout	-	0.05 entrambi
Batch size	_	1000

Recap dei Task e Relativi Risultati

• Task 1: autoencoder tradizionale

In generale ottimi risultati, fino ad una riduzione dell'input di 5 volte (% di vettori ricostruiti esatti >90% sul testset). Oltre, l'accuratezza nella ricostruzione diminuiva drasticamente al diminuire della dimensione dell'embedding.

Task 2: predittore con struttura 4 in-1 out

Le reti illustrate hanno ottenuto risultati soddisfacenti, con un valore di accuratezza di predizione sul test set >90%.

Task 3: predittore con struttura 6 in-1 out

Reti più complesse, task più complesso che ha prodotto risultati inferiori al caso precedente (circa 70% sul testset). Risultati influenzati dall' alto overtitting e dall'elevata sparsità dei dati.