Proposition

Let X_i be a collection of size n of random variables with means $\gamma_i \mu$, where γ_i are some arbitrary known constants, and $i \in {1, 2, ..., n}$. Also let $\widehat{\mu}$ be some other estimator for the mean, such that

$$\widehat{\mu} = rac{1}{k} \sum_{i}^{n} c_{i} X_{i},$$

where c_i , k are some other arbitrary constants. Then $\widehat{\mu}$ is an **unbiased estimator** of μ if and only if

$$k = \sum_{i}^{n} c_{i} \gamma_{i}.$$

Proof

Let X_i be a collection of size n of random variables with means $\gamma_i \mu$, where γ_i are some arbitrary known constants, and $i \in {1, 2, ..., n}$. Also let $\widehat{\mu}$ be some other estimator for the mean, such that

$$\widehat{\mu} = rac{1}{k} \sum_{i}^{n} c_{i} X_{i},$$

where c_i , k are some other arbitrary constants.

It is known that if $\widehat{\mu}$ is an unbiased estimator of μ , then

$$E(\widehat{\mu}) = \mu.$$

Therefore it must be that

$$egin{aligned} \mu &= Eigg\{rac{1}{k}\sum_{i}^{n}c_{i}X_{i}igg\} \ &= rac{1}{k}Eigg\{\sum_{i}^{n}c_{i}X_{i}igg\} \ k\mu &= E\{c_{1}X_{1}+\cdots+c_{n}X_{n}\} \ &= E(c_{1}X_{1})+\cdots+E(c_{n}X_{n}) \ &= c_{1}E(X_{1})+\cdots+c_{n}E(X_{n}) \ &= c_{1}\gamma_{1}\mu+\cdots+c_{n}\gamma_{n}\mu \ k\mu &= \mu(c_{1}\gamma_{1}+\cdots c_{n}\gamma_{n}) \ k &= \sum_{i}^{n}c_{i}\gamma_{i}. \end{aligned}$$

Examples

(1)

Each of the independent random variables X_1 , X_2 and X_3 has mean μ .

Consider the estimator

$$\widehat{\mu} = rac{1}{8}(2X_1 + 3X_2 + 4X_3),$$

Is $\widehat{\mu}$ an unbiased estimator of μ ?

(Practice quiz 7, q2)

For $\widehat{\mu} = \frac{1}{k} \sum_{i}^{n} c_{i} X_{i}$ to be an unbiased estimator of μ , it must be that

$$k=\sum_{i}^{n}c_{i}\gamma_{i}.$$

Here, let $c_i=2,3,4$, $\gamma_i=1$, and k=8. Then

$$2(1) + 3(1) + 4(1) = 9 \neq 8.$$

Therefore $\widehat{\mu}$ is not an unbiased estimator, as $k \neq \sum c_i \gamma_i$.

(2)

Suppose that X_1 , X_2 and X_3 independent random variables such that $X_1 \sim N(\theta, \sigma^2)$, $X_2 \sim N(2\theta, \sigma^2)$ and $X_3 \sim N(3 heta, \sigma^2).$ Consider the estimator

$$\hat{ heta} = rac{1}{3}(X_1 + X_2 + X_3),$$

Is $\hat{\theta}$ an unbiased estimator of θ ?

For $\hat{\theta} = \frac{1}{k} \sum_{i=1}^{n} c_i X_i$ to be an unbiased estimator of θ , it must be that

$$k = \sum_i^n c_i \gamma_i.$$

Here, let $c_i=1$, $\gamma_i=1,2,3$, and k=3. Then

$$1(1) + 1(2) + 1(3) = 6 \neq 3.$$

Therefore $\hat{ heta}$ is not an unbiased estimator, as $k
eq \sum c_i \gamma_i$.

(3)

Three independent random variables, X, Y and Z, are such that the mean of X is 4θ , the mean of Yis 2θ , and the mean of Z is θ .

Consider the estimator

$$\hat{ heta}=rac{1}{8}(X+Y+2Z),$$

Is $\hat{\theta}$ an unbiased estimator of θ ?

For $\hat{\theta} = \frac{1}{k} \sum_{i=1}^{n} c_i X_i$ to be an unbiased estimator of θ , it must be that

$$k = \sum_i^n c_i \gamma_i.$$

Here, let $c_i = 1, 1, 2$, $\gamma_i = 4, 2, 1$, and k = 8. Then

$$1(4) + 1(2) + 2(1) = 8 = 8.$$

Therefore $\hat{\theta}$ is an unbiased estimator, as $k = \sum c_i \gamma_i$.