Protein secondary structure prediction with machine learning methods

Daniel S. Standage

BCB 569

November 14, 2011

Project focus

Problem

Protein secondary structure prediction

Approach

Machine learning methods

Secondary structure

Secondary structure

- 1 GSHSMRYFYT AMSRPGRGEP RFIAVGYVDD TQFVRFDSDA ASPRTEPRPP EEEEEEEE EE TTSSS EEEEEEEETT EE EEEETTT TT EE SG
- 51 WIEGEGPEYW DRNTQIFKTN TQTYRENLRI ALRYYNQSEA GSHIIQRMYG GGTTTTHHHH HHHHHHHHH HHHHHHHHH HHHHTT TT S EEEEEEE
- 101 CDLGPDGRLL RGHDQSAYDG KDYIALNEDL SSWTAADTAA QITQRKWEAA EEEETTTEE EEEEEEETT EE EEE TTS S EEESSHHH HHHHHHHHTT
- 151 RVAEQLRAYL EGLCVEWLRR YLENGKETLQ RADPPKTHVT HHPVSDHEAT THHHHHHHHH HTHHHHHHH HHHHTHHHHT B EEEEE EEE SSSEEE
- 251 SGEEQRYTCH VQHEGLPKPL TLRWEPHH TTTGGGEEEE EE TTSSS E EE

Statistical methods

- Chou-Fasman
- Garnier, Osguthorpe, Robson (GOR)
- Consensus data mining (CDM)

Statistical methods

HHHHGGGHHH

KTMQQSGTRYFTILTERDSMAHHFDNT

KTMQQSGTR

TMQQSGTRY

MQQSGTRYF

QQSGTRYFT

QSGTRYFTI

SGTRYFTIL

Consensus data mining

Machine learning methods

- Neural network
- Support vector machine (SVM)

Neural network

Support vector machine

Proposed project

- Explore additional machine learning approaches (Bayesian networks, naive Bayes, etc)
- Explore a consensus approach (combine multiple machine learning methods)
- Explore additional features to improve structure prediction