2009 University/College IC Design Contest

Cell-Based IC Design Category for Graduate Level

Color Transform Engine

1.問題描述

請完成一 Color Transform Engine(後文以 CTE 表示)的電路設計。如圖一,本 CTE 電路功能有二,(1) 將彩色訊號的每個像素(Pixel)之 YUV 訊號轉換成 RGB 訊號,(2)將彩色訊號的每個 Pixel 之 RGB 訊號轉成 YUV 訊號,其詳細規格將描述於後。

本電路各輸入輸出信號的功能說明,請參考表一。每個參賽隊伍必須根據下一節所給的 設計規格及附錄 A 中的測試樣本完成設計驗證。

本次 IC 設計競賽比賽時間為上午 08:30 到下午 20:30。當 IC 設計競賽結束後, CIC 會根據第三節中的評分標準進行評分。為了評分作業的方便,各參賽隊伍應參考附錄 E 中所列的要求,附上評分所需要的檔案。

本題目之測試樣本置於 /usr/cad/icc2009/cb/icc2009cb.tar ,請執行以下指令取得測試樣本:

tar xvf /usr/cad/icc2009/cb/icc2009cb.tar

軟體環境及設計資料庫說明請參考附錄 F 與附錄 G。

圖一、彩色訊號轉換功能之方塊圖

2.設計規格

2.1 系統方塊圖

圖二、系統方塊圖

2.2 輸入/輸出介面

表 1-輸入/輸出訊號

Signal Name	I/O	Width	Simple Description	
allz	clk I 1		本系統為同步於時脈正緣之同步設計。	
CIK			(註: Host 輸入訊號為 clk 負緣時送入資料。)	
rosot	I	1	高位準非同步(active high asynchronous)之系統重置信	
reset	1	1	號。	
			功能切換控制訊號。當為 Low 時,表示進行 YUV 訊	
op_mode	I	1	號轉換成 RGB 訊號之功能。當為 High 時,表示進行	
			RGB 訊號轉換成 YUV 訊號之功能。	
			資料輸入致能控制訊號。當 Host 端有 YUV 或 RGB	
in_en	I	1	訊號要輸入時,該訊號就會一直維持在 High,直到輸	
			入訊號全部輸入完畢,該訊號才會為 Low。	
			CTE 忙碌之控制訊號。當為 High 時,表示系統正處	
huev	0	1	於忙碌階段,告知 Host 端,暫時停止 YUV 或 RGB	
busy	O		訊號的輸入;反之,當為 Low 時,表示告知 Host 端	
			可繼續輸入 YUV 或 RGB 訊號。	
			YUV 三種訊號個別輸入的資料匯流排。YUV 輸入訊	
yuv_in	I	8	號都是8bits,三訊號採個別輸入。只有當in_en為High,	
			busy 為 Low 時,輸入的資料才是有效的。	

			RGB 三種訊號合併輸入的資料匯流排。RGB 輸入訊
rgb_in	т	24	號都是 8bits,三訊號共計 24bits 採合併輸入。只有當
rgo_m	1		in_en 為 High, busy 為 Low 時,輸入的資料才是有效
			的。
ymyy out		8	YUV 三種訊號個別輸出的資料匯流排。YUV 輸出訊
yuv_out O	8	號都是 8bits,三訊號採個別輸出。	
male and		24	RGB 三種訊號合併輸出的資料匯流排。RGB 輸出訊
rgb_out	О	24	號都是 8bits,三訊號共計 24bits 採合併輸出。
			輸出資料有效之控制訊號。當為 High 時,表示目前
out_valid	О	1	YUV 或 RGB 訊號為有效的輸出訊號;反之,當為 Low
			時,表示目前輸出訊號為無效的,即不被採用。

2.3 系統描述

2.3.1 YUV 訊號與 RGB 訊號基本概念

彩色影像的每個 Pixel 是由 R(Red)、G(Green)、B(Blue) 三基色分量的強弱組合來決定一個 Pixel 的顏色,例如:RGB 三基色分量(R,G,B) => (0,0,0)(即都最弱)時,該 Pixel 會呈現黑色,當 RGB 三基色分量(R,G,B) => (255,255,255)(即都最強)時,該 Pixel 會呈現白色,因此調整 RGB 三基色分量的值,可以調出各式各樣的顏色。

基於不同的應用,彩色影像的另一種表示方法是由 YUV 模型表示,其中 Y 為明亮度訊號 (Luminance),U 為色調(Hue),V 為飽和度(Saturation)。RGB 彩色模型與 YUV 彩色模型之間關係可以用矩陣(Matrix)型態描述,彼此之間可以互作轉換。YUV 模型特色為,一張影像各Pixel 只需單獨的 Y 訊號分量即可決定出一張灰階影像,至於與顏色有關的 U、V 訊號,會依其分量的強弱來決定該影像之各 Pixel 的色彩。人眼對於彩色訊號之敏銳度較差,因此對於每個 Pixel 的彩色訊號常會使用次取樣(Down Sample)的機制,以節省記憶空間或減少資料的傳送量。

2.3.2 YUV 訊號轉換成 RGB 訊號功能描述

YUV 彩色模型轉換成 RGB 彩色模型,其矩陣表示式如(1)式。本 CTE 電路 Function1,如圖一所示,請完成將 YUV 訊號轉換成 RGB 訊號之功能。

2.3.2.1 Function 1 之輸入端

YUV 都是 8 bits 的一維(1D)輸入訊號,Y、U、V 輸出訊號皆為 8bits,其中 Y 訊號輸入範圍為 $0\sim255$ 的整數值,U 訊號輸入範圍為 $-117\sim+117$ 的整數值,V 訊號輸入範圍為 $-111\sim+111$ 的整數值。主辦單位所提供的 YUV 輸入訊號已事先針對 U、V 訊號作 Down Sample 2 之處理,因此 Y 訊號假設提供 N 筆資料量,則 U、V 訊號提供為各 N/2 筆資料量,Y、U、V 訊號是個別輸入的,其輸入順序採用 UYVY 格式,該格式輸入順序如圖三所示。

(註:所有負數值,都採用2的補數(2's Complement)來表示。)

輸入YUV訊號至CTE電路的順序

圖三、YUV 訊號個別輸入之順序(UYVY 格式)

2.3.2.2 Function 1 之輸出端

R、G、B 訊號皆為 8bits, Function 1 每次可輸出一個 Pixel, 每個 Pixel 是由三個 RGB 訊號所構成,因此合計 24bits, RGB 訊號輸出格式定義如圖四所示。

(一個Pixel由RGB三個基色分量所構成)

圖四、 RGB 訊號輸出格式定義

R、G、B 訊號皆為 8bits,其R、G、B 個別訊號的輸出值範圍皆為 0-255 的整數值,亦即 (1)當輸出值小於 0,輸出為 0,(2)當輸出值大於 255,輸出為 255,(3)當輸出值為 0 到 255 之間,若有小數部分將採取四捨五入法取到整數,其範例如圖五所示。

(注意:四捨五入機制,只有在輸出前才做,計算過程中的小數部分請勿任意作四捨五入!)

(某個Pixel: 計算出的RGB實際值)

(某個Pixel: CTE輸出的正確值)

圖五、 CTE Function 1 正確輸出值之範例

製作 CTE 電路 Function1 時,其計算的規則如圖六所訂定,其涵義為,CTE 電路的第一個輸出 Pixel1,其 R₁G₁B₁ 訊號值是用 Y₁U₁V₁的輸入訊號經由(1)式矩陣運算轉換而來的,同理,第二個輸出為 Pixel2,其 R₂G₂B₂ 訊號值是用 Y₂U₁V₁的輸入訊號經由(1)式矩陣運算轉換而來的,其餘以此類推。

圖六、CTE 電路 Function1 的計算規則

2.3.2.3 Function 1 之矩陣

YUV 轉換成 RGB 訊號時,輸出數值在四捨五入後必須完全符合題目要求,不容許有任何的誤差值發生,Function1 才算正確完成。

2.3.3 RGB 訊號轉換成 YUV 訊號功能描述

RGB 彩色模型轉換成 YUV 彩色模型,其矩陣表示式如(2)式。本 CTE 電路 Function2,如圖一所示,請完成將 RGB 訊號轉換成 YUV 訊號之功能。

Function2
$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.29\overline{09} & 0.63\overline{03} & 0.0\overline{78} \\ -0.1\overline{45} & -0.31\overline{51} & 0.46\overline{06} \\ 0.4\overline{36} & -0.3\overline{87} & -0.0\overline{48} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
 (2)

2.3.3.1 Function 2 之輸入端

 $R \times G \times B$ 訊號皆為 8bits,Function 2 每次可輸入一個 Pixel,每個 Pixel 是由三個 RGB 訊號所構成,因此共計 24bits,RGB 訊號輸入格式定義如圖七所示。 $R \times G \times B$ 訊號皆為 8bits,因此主辦單位所提供的 RGB 個別的輸入訊號範圍值為 0-255 的整數值。

(一個Pixel由RGB三個基色分量所構成)

圖七、 RGB 訊號輸入格式定義

2.3.3.2 Function 2 之輸出端

YUV 都是 8 bits 的一維(1D)輸出訊號,U、V 訊號也採用 Down Sample 為 2 的機制,因此 CTE 電路輸出 U、V 訊號前,需自行作 Down Sample 為 2 的動作(亦即 Y 訊號假設輸出 N 筆資料量,U、V 訊號則會輸出各 N/2 筆的資料量),Y、U、V 訊號是個別輸出的,其輸出順序採用 UYVY 格式,該格式輸出順序如圖八所示。

YUV訊號從CTE電路輸出的順序

圖八、YUV 訊號個別輸出之順序(UYVY 格式)

 $Y \cdot U \cdot V$ 輸出訊號皆為 8bits, Y 訊號輸出範圍為 $0 \sim 255$ 的整數值,U 訊號輸出範圍為 $-117 \sim +117$ 的整數值,V 訊號輸出範圍為 $-111 \sim +111$ 的整數值,當計算數值超出其輸出範圍時,必須自動修正為範圍邊界值。(註:所有負數值,都採用 2's Complement 來表示。)

當Y、U、V 訊號的輸出有小數點,處理方法為:

- 1. 若為正數,採用四捨五入法取到整數。
- 2. 若為負數,採用五捨六入法取到整數。

範例如圖九所示。

圖九、 CTE Function 2 正確輸出值之範例

製作 CTE 電路 Function2 時,其計算的規則如圖十所訂定,其涵義為,CTE 電路的輸出訊號 $Y_1U_1V_1$ 訊號值,可由 $R_1G_1B_1$ 的輸入訊號經由(2)式矩陣運算轉換而來的,而 Y_2 訊號值可由 $R_2G_2B_2$ 的輸入訊號經由(2)式矩陣運算轉換而來,其餘的 YUV 訊號依此類推。

YUV訊號從CTE電路輸出的順序

圖十、CTE 電路 Function2 的計算規則

2.3.3.3 Function 2 之矩陣

在(2)式中,矩陣的係數用符號"—"來表示循環小數,例如:-0.387 讀作-0.387,87 的循環,亦即-0.387 => $-0.387878787\cdots$ 。由於(2)式矩陣中的係數皆為循環小數,因此轉換成YUV 訊號時,可容許有誤差值的發生,但其誤差值與 Golden Pattern 比對差異越大者,分數將會越低分。

2.4 時序規格

2.4.1 CTE Function1: YUV 訊號轉換成 RGB 訊號時序圖

圖十一、YUV 訊號轉換成 RGB 訊號時序圖

- T1 時間點, in_en 為 High, op_mode 為 Low, 系統開始進行 YUV 轉 RGB 之運算,此時 busy 為 Low, 因此 Host 端便從 yuv_in 送出第一筆 U1 訊號。
- 2. T2 時間點,假設參賽者可能需要在此點開始的幾個 CYCLE 內作一些處理或計算,而希望 Host 暫時停止運送新的資料進來,可以在 clk 負緣來之前(即新一筆資料要輸入前)先將 busy 訊號拉為 High。在 T2 時間點, Host 發現 busy 為 High,便停止下一筆的訊號輸入,但由於 Host 端的資料尚未送完,因此 in_ en 仍維持在 High。 (註:在圖中看到藍色的線及字,都是主要觀察 busy 的訊號。)
- 3. T3 時間點, busy 訊號為 Low,表示告知 Host 可以再送下一筆資料 Y2 進來。
- 4. T4 時間點,第一筆 RGB 訊號算完並將其輸出至 rgb_out, out_valid 要 High 一個 CYCLE 的時間。(註:在圖中看到紅色的線及字,都是在觀察 out_valid 及 rgb_out 的訊號。)
- 5. 如此反覆地輸入及輸出,直到所有資料處理完畢為止。
- 6. T5 時間點, in_en 為 Low 表示 500 個 Piexls 的資料量全數輸入完成。

2.4.2 CTE Function2: RGB 訊號轉換成 YUV 訊號時序圖

圖十二、RGB 訊號轉換成 YUV 訊號時序圖

- 1. T1 時間點, in_en 為 High, op_mode 為 High, 系統開始進行 RGB 轉 YUV 之運算, 此時 busy 為 Low, 因此 Host 端便從 rgb_in 送出第一筆 R₁G₁B₁ 訊號。
- 2. T2 時間點,假設參賽者可能需要在此點開始的幾個 CYCLE 內作一些處理或計算,而希望 Host 暫時停止運送新的資料進來,可以在 clk 負緣來之前(即新一筆資料要輸入前)先將 busy 訊號拉為 High。在 T2 時間點, Host 發現 busy 為 High,便停止下一筆的訊號輸入,但由於 Host 端的資料尚未送完,因此 in_ en 仍維持在 High。(註:在圖中看到藍色的線及字,都是主要觀察 busy 的訊號。)
- 3. T3 時間點,第一筆訊號 U1 輸出至 yuv_out, out_valid 要 High 一個 CYCLE 的時間。當然,如果緊接著下一個 CYCLE 要連續輸出 YUV 之訊號,每輸出一筆到 yuv_out, out_valid 就要維持 High 一個 CYCLE 時間。(註:在圖中看到紅色的線及字,都是在觀察 out_valid 及 yuv_out 的訊號。)
- 4. T4 時間點, busy 訊號為 Low,表示告知 Host 可以再送下一筆 RGB 訊號進來。
- 5. 如此反覆地輸入及輸出,直到所有資料處理完畢為止。
- 6. T5 時間點, in_en 為 Low 表示 500 個 Piexls 的資料量全數輸入完成。

3.評分標準

各參賽隊伍必須做到"完成設計",即完成下列四項要求。倘若達成"完成設計"的組數太少,主辦單位才會考慮依這四項要求,來進行同級完成度的評分排名,完成越多項目之隊伍成績越佳。注意,完成本設計請按照 a、b、c、d 的要求順序完成。另外,主辦單位的評分人員將依照參賽者提供之週期時間(CYCLE TIME)來進行模擬及驗證設計之正確性,各參賽隊伍請先確認所給定的 CYCLE TIME 完全沒有設置與保持時間(setup/hold time)的問題。

◆ "完成設計"的四項要求:

- a、 YUV 訊號轉換成 RGB 訊號, RTL 模擬必須與正確結果(golden pattern)完全一樣。
- b、 RGB 訊號轉換成 YUV 訊號, RTL 模擬與 golden pattern 比對, 依誤差值進行評分。
- c、 完成 Synthesis, 且 Gate-Level Pre-layout Simulation 有達到 a、b 項之要求。
- d、 完成 APR, DRC、LVS 驗證無誤,且 Gate-Level Post-layout Simulation 有達到 a、b 項之要求。

◆ 依"誤差值"進行第一階段評分:

主辦單位在 Test Bench 檔案裡,已加入(3)式來計算"RGB 訊號轉換成 YUV 訊號之誤差值",依據此誤差值進行評分排名,共區分六個等級如下:

error =
$$\frac{\sum (Y - Y')^2 + \sum (U - U')^2 + \sum (V - V')^2}{\sum Y^2 + \sum U^2 + \sum V^2}$$
 (3)

註: Y、U、V :主辦單位所提供 golden pattern 之訊號值。

Y'、U'、V':參賽隊伍所設計的 CTE 電路,其 YUV 訊號實際輸出值。

A級:error < 0.0000002

B 級: $0.0000002 \le error < 0.0000005$

C級: $0.0000005 \le error < 0.0000010$

D 級 : $0.0000010 \le error < 0.0000050$

E級: $0.0000050 \le error < 0.0000300$

F級: $error \ge 0.0000300 => 主辦單位視F級為Function2$ 是錯誤的(Fail),請注意! 註:Function2 有三組測試樣本,三個都要模擬,分數是三個模擬結果中,取最差的一個。

◆ 依"Cost"作第二階段評分:

根據上述等級,主辦單位會將同等級之隊伍依(4)式,作二度的評分,Cost 越低成績越佳。

$$Cost = (T1 + T2) * Area$$
 (4)

T1:YUV 訊號轉換成 RGB 訊號,完成所有轉換之實際模擬時間(Real Simulation Time)

T2: RGB 訊號轉換成 YUV 訊號,完成所有轉換之實際模擬時間(Real Simulation Time)

Area: APR 之後, layout 實際面積大小(單位:um²)

◆ 實際模擬時間(Real Simulation Time)之補充:

範例 1: CTE Function1 的 T1 值

假設參賽者作 CTE Function1 之模擬結果如下:

ncsim> run
Congratulations! All data have been generated successfully!
PASS
Simulation complete via \$finish(1) at time 8635 NS + 0 ./testfixture1.v:126 #(`CYCLE/2); \$finish;

在本例中, T1 = 8635ns。

••••••••••••••••••

範例 2: CTE Function2 的 T2 值

假設參賽者作 CTE Function2 之模擬結果如下:

在本例中, T2 = 13244ns。

附錄

附錄 A 為主辦單位所提供各參賽者的設計檔說明; 附錄 B 為主辦單位提供的測試樣本說明; 附錄 C 為設計驗證說明; 附錄 D 為評分用檔案,亦即參賽者必須繳交的檔案資料; 附錄 E 則為設計檔案壓縮整理步驟說明; 附錄 F 中說明本次競賽之軟體環境; 附錄 G 中說明本次競賽使用之設計資料庫。

附錄 A 設計檔(For Verilog or VHDL)

1. 下表為主辦單位所提供各參賽者的設計檔

表 2、設計檔案說明

表 2、設計檔案說明		
檔名	說明	
CTE.v	參賽者所使用的設計檔,已包含系統輸/出入埠之宣	
	告	
testfixture1.v	測試樣本檔 1。用來驗證 CTE Function1:YUV 轉換	
	成 RGB 訊號功能是否正確。參賽者請自行調整本檔	
	案定義之 CYCLE 值,確保在沒有 Setup/Hold Time	
	的問題下,花最少實際模擬時間,完成所有驗證測	
	試。	
testfixture2.v	測試樣本檔 2。用來驗證 CTE Function2: RGB 轉換	
	成 YUV 訊號功能是否正確。參賽者請自行調整本檔	
	案定義之 CYCLE 值,確保在沒有 Setup/Hold Time	
	的問題下,花最少實際模擬時間,完成所有驗證測	
	試。	
	註: Function2 的測試樣本有三組,參賽者請自行修	
	改檔名,共計三次模擬。注意三次模擬之對應關係。	
	模擬 1: pattern_rgb1.dat => golden_yuv1.dat	
	模擬 2: pattern_rgb2.dat => golden_yuv2.dat	
	模擬 3: pattern_rgb3.dat => golden_yuv3.dat	
pattern_yuv.dat	提供一組測試樣本,提供 500 個 Pixels 資料量作為	
	CTE Function1 的 Input Pattern。採 UYVY 順序輸入,	
	其中 U、V 訊號已作 DownSample2。(YUV 訊號以	
	16 進位表示)	
golden_rgb.dat	CTE Function1: YUV 訊號轉換成 RGB 訊號之正確	
	結果。(以 16 進位表示)	
pattern_rgb1.dat	提供三組測試樣本,皆為500個Pixels資料量作為	
pattern_rgb2.dat	CTE Function2 的 Input Pattern。每次輸入為一個	
pattern_rgb3.dat	Pixel 的 R_G_B 訊號,故每筆合計 24bits。	
	(RGB 訊號以 16 進位表示)	

141-4-4	担从一加测计样子为工办从用此空、从为 CTC
golden_yuv1.dat	提供三組測試樣本之正確結果檔案,作為 CTE
golden_yuv2.dat	Function2: RGB 訊號轉換成 YUV 訊號之正確結
golden_yuv3.dat	果。(以 16 進位表示)
	註:因轉換矩陣系數為循環小數,在此正確結果意
	指使用真實數值計算後四捨五入(負數為五捨六入)
	成 8 位元的結果。
.synopsys_dc.setup	使用 Design Compiler 作合成之初始化設定檔。參賽
	者請依 Library 實際擺放位置,自行填上 Search Path
	的設定。
CTE_DC.sdc	使用 Design Compiler 作合成之 sdc 檔。參賽者可自
	行調整最佳之 cycle 值。
CTE_SOCE.sdc	使用 SOC Encounter 作 Layout 之 sdc 檔。參賽者可
	自行調整最佳之 cycle 值。
CTE_Astro.sdc	使用 Astro 作 Layout 之 sdc 檔。參賽者可自行調整
	最佳之 cycle 值。

請使用 CTE.v, 進行 Color Transform Engine 之設計。其模組名稱、輸出/入埠宣告如下所示:

```
module\ CTE\ (\ clk,\ reset,\ op\_mode,\ in\_en,\ yuv\_in,\ rgb\_in,\ busy,\ out\_valid,\ rgb\_out,\ yuv\_out);
```

```
clk;
input
input
       reset;
       op_mode;
input
input
       in_en;
output busy;
output out_valid;
input
       [7:0]
               yuv_in;
output [23:0] rgb_out;
input
       [23:0] rgb_in;
output [7:0]
               yuv_out;
```

endmodule

2. 主辦單位提供 testfixture1. v 及 testfixture2. v , 分別作為測試 CTE Function1 及 Function2 之用。Function1 有一組 Pattern 要測試,Function2 有三組要測試,請注意。 Function2 有三組樣本要測試,請先開啟 testfixture2.v 檔再修改,修該方法如下:

第一組 Function2 模擬:

```
`define PAT "./pattern_rgb1.dat"
`define EXP "./golden_yuv1.dat"
```

第二組 Function2 模擬:

`define PAT "./pattern_rgb2.dat"
`define EXP "./golden_yuv2.dat"

第三組 Function2 模擬:

`define PAT "./pattern_rgb3.dat"
`define EXP "./golden_yuv3.dat"

因此 Function2 有三組樣本要模擬,分數是三個模擬結果中,取最差的一組,請注意。設計過程中若欲透過 Waveform 作 Debug,可以從 test module 底下的 i 訊號得知目前是第幾筆 Pattern 輸入, exp_num 訊號得知目前是第幾筆 Pattern 輸出。

附錄 B 測試樣本

為了讓參賽者看完題目後,更能確定題意,在此分別針對 CTE Function1 及 Function2 各提供前 16 組的 Input Pattern 及 Golden Pattern 讓參賽者試算用。

測試樣本一

CTE Function1				
YUV Input Signal		RGB Output Signal		
Order	Signal	Order	Signal	
U1	1C	R1_G1_B1	FB_2C_AA	
Y1	72	KI_OI_DI	FD_2C_AA	
V1	54	R2_G2_B2	FF_7B_F9	
Y2	C1	KZ_OZ_DZ	11'_/D_1'9	
U3	0	R3_G3_B3	DD_7A_99	
Y3	99	K3_O3_D3	DD_/A_99	
V3	2A	R4_G4_B4	EC_89_A8	
Y4	A8	K4_U4_D4	EC_09_A0	
U5	D1	R5_G5_B5	8F_F7_70	
Y5	CE	K3_G3_D3	01'_1'7_70	
V5	D9	R6_G6_B6	13_7B_00	
Y6	52	K0_00_b0	15_7B_00	
U7	10	R7_G7_B7	22_14_3B	
Y7	1B	K1_U1_D1	ZZ_14_JD	
V7	4	R8_G8_B8	BC_AE_D5	
Y8	B5	Ro_Oo_Do	DC_AL_D3	

U7	FF			
		R9_G9_B9	DE_5E_84	
Y7	86			
V7	36	R10_G10_B10	D0_50_76	
Y8	78	K10_O10_D10	00_30_70	
U7	FB	R11_G11_B11	D6_2F_59	
Y7	63	KII_OII_DII	D0_21 ⁻ _39	
V7	47	R12_G12_B12	94_00_17	
Y8	21	K12_U12_D12	94_00_17	
U7	16	R13_G13_B13	62_28_6A	
Y7	3E	K13_U13_D13	02_20_0A	
V7	16	R14_G14_B14	BE_84_C6	
Y8	9A	K14_U14_D14	DE_04_C0	
U7	10	R15_G15_B15	27_4E_64	
Y7	44	K13_U13_D13	21_4E_04	
V7	EE	D16 C16 D16	50, 90, 06	
Y8	76	R16_G16_B16	59_80_96	

測試樣本二

CTE Function2			
RGB Input	YUV Output Signal		
Order	Signal	Order	Signal
R1_G1_B1	3D_A5_C5	U1	1E
KI_OI_DI	JD_AJ_CJ	Y1	89
R2_G2_B2	27_8F_AF	V1	D1
KZ_UZ_DZ	21_01'_A1'	Y2	73
R3_G3_B3	E3_53_DE	U3	2B
K3_U3_D3	E3_33_DE	Y3	88
R4_G4_B4	C0_30_BB	V3	38
K4_U4_D4	C0_30_bb	Y4	65
R5_G5_B5	9A_63_A0	U5	14
K3_O3_D3	9A_03_A0	Y5	78
R6_G6_B6	E5 AE ED	V5	15
K0_U0_D0	E5_AE_EB	Y6	C3
R7_G7_B7	E9_E3_37	U7	В0
K/_U/_D/	E9_E3_31	Y7	D7
R8_G8_B8	73_6D_00	V7	0B
K0_U0_D0		Y8	66

R9_G9_B9	4B_AD_72	U7	F3
K9_U9_D9	4D_AD_72	Y7	8C
R10_G10_B10	1E_80_45	V7	D8
K10_O10_D10	112_00_43	Y8	5F
R11_G11_B11	4B_F3_49	U7	CA
KII_OII_DII	TD_1 3_T/	Y7	B5
R12_G12_B12	33_DB_31	V7	BF
K1Z_O1Z_D1Z	33_DD_31	Y8	9D
R13_G13_B13	0D_35_2F	U7	3
K15_O15_D15	0D_33_21 ⁻	Y7	29
R14_G14_B14	52_7A_74	V7	EF
K14_O14_D14	J2_IA_I4	Y8	6E
R15_G15_B15	35_92_F0	U7	39
K15_O15_D15	33_92_10	Y7	7E
R16_G16_B16	1C_79_D7	V7	D3
K10_G10_D10	IC_19_D1	Y8	65

附錄 C 設計驗證說明

參賽者繳交資料前應完成 RTL, Gate-Level 與 Physical 三種階段驗證,以確保設計正確性。

- ▶ RTL與 Gate-Level 階段:參賽者必須進行 RTL simulation 及 Gate-Level simulation,模 擬結果必須於題目所定義的系統時脈下,輸出結果正確且無 setup/hold time 的問題。
- ▶ Physical 階段,包含三項驗證重點:
- 1. 完成最後 layout,
 - i. Marco layout,不含 IO Pad。
 - ii. VDD 與 VSS power ring 寬度請各設定為 2um。
- 2. 完成 post-layout simulation: 參賽者必須使用 P&R 軟體**寫出之 netlist 檔與 sdf 檔完成** post-layout gate-level simulation,以下分為 Astro 及 SOC Encounter 兩軟體說明 netlist 與 sdf 寫出步驟。
 - i. 使用 Synopsys Astro 者,執行步驟如下: 在 Astro 視窗底下點選
 - "Timing > SDF Out"

C		
Specify Version	Version 2.1	
Operation Mode	Normal SDF	
File Name	CTE_pr.sdf	

按OK。

" Cell > Hierarchical Verilog Out "

CTE.CEL
CTE_pr.v
Enable
Disable
Disable
Enable
Disable

按 OK。

ii. 使用 Cadence SOC Encounter 者,執行步驟如下:

在 SOC Encounter 視窗下點選:

" Design → Save → Netlist..."

Netlist File	CTE_pr.v	
All other options	Default value	

接OK。

" Timing → Calculate Delay..."

存成 CTE_pr.sdf, 按 OK。

註:如果發現 Calculate Delay 功能是灰色的(無法點選),請先將目前結果存檔後離開 Encounter,再重新進入 Encounter 並 Restore 回原本 Design 即可。

- 3. 完成 DRC 與 LVS 驗證: 參賽者必須以其所使用之 P&R 軟體內含之 DRC 與 LVS 驗證功能完成 DRC 與 LVS 驗證,以下分為 Astro 及 SOC Encounter 說明執行步驟。
 - i. 使用 Synopsys Astro 者,驗證 DRC 與 LVS 步驟如下: 在 Astro 視窗底下點選

" Verify > DRC"

List Error Summary Immediately	Enable
All other options	Default value

按OK。

將跳出來的 DRC report 存成 DRC.report 檔。

"Verify > LVS" Default 值,按 OK。

List Error Summary Immediately	Enable
All other options	Default value

將跳出來的 LVS report 存成 LVS.report 檔。

ii. 使用 Cadence SOC Encounter 者,驗證 DRC 與 LVS 步驟如下:

在 SOC Encounter 視窗下點選

"Verify → Verify Connectivity..." Default 值,按 OK。

"Verify → Verify Geometry..." Default 值,按 OK。

"Verify → Violation Browser..."

將 Verify 的結果存成 CTE.viols.rpt

附錄 D 評分用檔案

評分所須檔案可以下幾個部份:(1)RTL design,即各參賽隊伍對該次競賽設計的 RTL code,若設計採模組化而有多個設計檔,請務必將合成所要用到的各 module 檔放進來,以免評審進行評分時,無法進行模擬;(2)Gate-Level design,即由合成軟體所產生的 gate-level netlist,以及對應的 SDF檔;(3)Physical design,使用 Synopsys Astro者,請記得將 Astro整個相關的 design library,壓縮成一個檔案。使用 Cadence SOC Encounter者,請將 SOC Encounter相關的 design library(包含一個.enc檔及一個.dat 目錄),壓縮成一個檔案。壓縮的檔案格式如下:假設參賽者的 design library 目錄名稱為"your_lib",請執行底下的 UNIX 指令,最後可以得到"your_name.tar"的檔案。

> tar cvf your_name.tar your_lib

在執行以上的指令之前,請確定將你使用的 P&R Tool 儲存後關閉,再執行以上的指令,否則在壓縮的過程會出現錯誤。

表 3

RTL category			
Design Stage	File	Description	
N/A	N/A	Design Report Form	
RTL Simulation	*.v or *.vhd	Verilog (or VHDL) synthesizable RTL code	
Gate-Level category			
Design Stage	File	Description	
Pre-layout	*	Verilog gate-level netlist generated by Synopsys	
Gate-level	*_syn.v	Design Compiler	

Simulation	*_syn.sdf	Pre-layout gate-level sdf		
Physical category				
Design Stage	File	Description		
P&R	*.tar	archive of the design library directory		
	*.gds	GDSII layout		
	DRC/LVS	For Astro: DRC.report; LVS.report		
	report	For SOC Encounter: CTE.viols.rpt		
Post-layout	* ~~ 11	Verilog gate-level netlist generated by Cadence		
Gate-level	*_pr.v	SOC Encounter or Synopsys Astro		
Simulation	*_pr.sdf	Post-layout gate-level sdf		

附錄 E 檔案整理步驟

當所有的文件準備齊全如表 3 所列,請按照以下的步驟指令,提交相關設計檔案,將所有檔案複製至同一個資料夾下,步驟如下:

- 1. 在自己的 home directory 建立一個新目錄,名稱叫做"result"例如:
 - > mkdir ~/result
- 2. 將附錄 D 要求的檔案複製到 result 這個目錄。例如:
 - > cp CTE.v ~/result/
 - > cp CTE_syn.v ~/result/
 -
- 3. 在 Design Report Form 中,填入所需的相關資訊。

附錄 F 軟體環境

- 1. 軟體環境設定檔: /usr/cad/cshrc/env.cshrc
- 2. 設定軟體環境,請在登入後,開啟 terminal 視窗並依以下步驟執行:

cp /usr/cad/cshrc/env.cshrc .cshrc source .cshrc

3. 此 cshrc 所設定好的軟體環境包括:

NC-Verilog

NC-VHDL

SOC Encounter

Verdi

Laker

ModelSim

Design Vision

Astro

joe

textedit nedit vim gvim

xv

EDA 軟體所須使用的 license 皆已設定完成,不須額外設定,且每組限定每個軟體只能使用一套 license。

附錄 G 設計資料庫

設計資料庫位置: /usr/cad/icc2009/CBDK_IC_Contest_v2.0

目錄架構

Astro/ tsmc13gfsg_fram/ Astro core library tsmc13_CIC.tf Astro technology layer mapping file macro.map SOCE/ lef/ tsmc13fsg_8lm_cic.lef LEF for core cell antenna 8.lef LEF for antenna lib/ fast.lib best case for core cell slow.lib worst case for core cell typical.lib typical case for core cell streamOut.map Layout map for GDSII out SynopsysDC/ db/ fast.db Synthesis model (fast) slow.db Synthesis model (slow) Synthesis model (typical) typical.db lib/ fast.lib timing and power model slow.lib timing and power model timing and power model typical.lib Verilog/ tsmc13_neg.v Verilog simulation model VHDL/ tsmc13.vhd VHDL simulation model

Design Report Form

隊號(Team number):							
RTL category							
Design Stage	Description		File Name				
RTL	使用之 HDL 名稱						
Simulation	(請塡入 Verilog 或 VHDL)						
RTL	RTL 檔案名稱						
Simulation	(RTL Netlist file	name)					
	Gate-Level	l category					
Design Stage	Description		File Name				
	Gate-Level 檔案	名稱					
Pre-layout	(Gate-Level Netlist f	file name)					
Gate-level	Pre-layout sdf 檔	案名稱					
Simulation	Gate-Level simulation	n, 所使用最	,	\			
	小的 CYCLE Tin	me	() ns			
	Physical of	category					
Design Stage	Descritpion		File Name or V	alue			
	使用之 P&R Too	ol					
	(請塡入 Astro 或 SOC Encounter)						
	設計資料庫檔案名稱(Library name)						
	佈局檔檔案名稱(GDSII file name)						
	佈局面積(layout area)	() um X () um			
P&R		左下角座標點	片(Lower-Left Coordina	ate):			
	佈局座標點	XLB =	YLB =				
		右上角座標點	后上角座標點(Upper-Right Coordinate):				
		XRT =	YRT =				
	DRC report fi	le					
	LVS report file						
	Post-layout Gate-Leve	el 檔案名稱					
	Post-layout sdf 檔案名稱						
Post-layout	Gate Level simulation,所使用最小的 CYCLE Time (小數點只有一位)		Function1:() ns			
Gate-level			Function2:() ns			
Simulation	Gate Level simulation, 完成所有		T1: () ns			
	運算所需的時間		T2: () ns			
其他說明事項(Any other information you want to specify:(如設計特點)							
如寫不下可寫於背面							