

Extra Class

Introduction to Transformer

Nguyen Quoc Thai

CONTENT

- (1) Attention
- (2) Transformer-Encoder
- (3) Text Classification
- (4) Vision Transformer

(!

RNNs Model

Sequence-to-Sequence Architecture

Encoder: encoding the inputs into state (thought vector)

Decoder: the state is passed into the decoder to generate the output

(!

(!

(!

(!

(!

(!

!

Scaled Dot-Product Attention - Example

Attention(Q, K, V) = softmax
$$\left(\frac{QK^T}{\sqrt{d_k}}\right)$$
 V; K = V

 q_3

 q_4

 k_1

 k_3

1 – Attention

Scaled Dot-Product Attention - Example 1.00 Attention 0.83 output 0.72 distribution Attention Attention 0.44 Attention(Q, K, V) = $\operatorname{softmax}\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$; K = V 0.28 0.16 0.28 0.28 0.5 0.5 0.5 0.0 Encoder

 q_1

 q_2

 q_3

 q_4

(!

Scaled Dot-Product Attention - Example

Scaled Dot-Product Attention - Demo

```
query = torch.randint(
    high=2,
    size=(1, 4, 4), # batch_size x seq_len x embedding_dim
    dtype=torch.float32
query
tensor([[[0., 1., 0., 0.],
         [0., 1., 0., 0.],
         [0., 1., 0., 0.],
         [0., 0., 1., 0.]])
key = torch.randint(
    high=2,
    size=(1, 4, 4),
    dtype=torch.float32
key
tensor([[[1., 1., 1., 0.],
         [1., 0., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 0., 0.]])
```

```
value = key
value
tensor([[[1., 1., 1., 0.],
         [1., 0., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 0., 0.]]])
attentionn_weight = F.scaled_dot_product_attention(
    query=query,
    key=key,
    value=value
attentionn_weight
tensor([[[1.0000, 0.8318, 0.7227, 0.4455],
         [1.0000, 0.8318, 0.7227, 0.4455],
         [1.0000, 0.8318, 0.7227, 0.4455],
         [1.0000, 0.7227, 0.8318, 0.5545]]])
```


Transformer

- Architecture:
 - N Encoder Layer
 - N Decoder Layer
- Core technique: attention
- Loss function: cross-entropy

(!

Transformer-Encoder

- Input Embedding
- Positional Encoding
- Multi-Head Attention
- Feed Forward
- ♦ Add & Norm

!

Input Embedding

Input Embedding: Embedding Layer

QUERY – KEY – VALUE ?

(!

Self-Attention

QUERY = KEY = VALUE = EMBEDDED

!

!

[

!

Self-Attention

0.7 0.9 0.7

!

!

!

[!

Self-Attention

To learn the relationship between word in the sentence

Ignore the order of words in the sentence?

(!

Positional Encoding

- The position of a token in a sentence as unique representation each position is mapped to a vector
- Methods: Sinusoid; Learned positional embedding (as learned input embedding)

Positional Encoding – Demo

```
class TokenAndPositionEmbedding(nn.Module):
    def __init__(self, vocab_size, embed_dim, max_length, device='cpu'):
        super(). init ()
        self.device = device
        self.word_emb = nn.Embedding(
            num_embeddings=vocab_size,
            embedding_dim=embed_dim
        self.pos_emb = nn.Embedding(
            num embeddings=max length,
            embedding_dim=embed_dim
    def forward(self, x):
        N, seq_len = x.size()
        positions = torch.arange(0, seq_len).expand(N, seq_len).to(self.device)
        output1 = self.word emb(x)
        output2 = self.pos_emb(positions)
        output = output1 + output2
        return output
```

```
vocab_size = 10000
embed dim = 200
max_length = 50
embedding = TokenAndPositionEmbedding(
    vocab_size,
    embed_dim,
    max_length
batch_size = 32
input = torch.randint(
    high=2,
    size=(batch_size, max_length),
    dtype=torch.int64
embedded = embedding(input)
embedded.shape
```

torch.Size([32, 50, 200])

!

Multi-Head Attention

Split into the multiple attention heads (process independently) => self-attention => concat

Multi-Head Attention – Demo

```
batch size = 1
seq_len = 50
embedding_dim = 200
input = torch.randint(
    high=2,
    size=(batch_size, seq_len, embedding_dim),
    dtype=torch.float32
input
tensor([[[0., 1., 1., ..., 0., 1., 1.],
         [0., 1., 0., \ldots, 0., 0., 0.]
         [1., 0., 1., ..., 1., 1., 1.],
         [0., 0., 0., \ldots, 1., 0., 0.],
         [1., 0., 1., ..., 0., 1., 1.],
         [0., 1., 1., ..., 1., 1., 1.]])
```

```
embedding dim = 200
num heads = 5
att_layer = nn.MultiheadAttention(
    embed_dim=embedding_dim,
    num heads=num heads,
    batch_first=True
attn_output, attn_output_weights = att_layer(
    query=input,
    key=input,
    value=input
attn_output.shape
torch.Size([1, 50, 200])
attn_output_weights.shape
torch.Size([1, 50, 50])
```


[

Transformer-Encoder

!

Layer Normalization

$$\mu_i = rac{1}{m} \sum_{j=1}^m x_{ij}$$

$$\sigma_i^2 = rac{1}{m} \sum_{j=1}^m (x_{ij} - \mu_i)^2$$

$$\hat{x}_{ij} = rac{(x_{ij} - \mu_i)}{\sqrt{\sigma_i^2 + \epsilon}}$$

Feed Forward

2 FC Layer

Transformer-Encoder – Demo

```
class TransformerEncoder(nn.Module):
    def __init__(self, embed_dim, num_heads, ff_dim, dropout=0.1):
        super(). init ()
        self.attn = nn.MultiheadAttention(
            embed_dim=embed_dim,
           num_heads=num_heads,
            batch first=True
        self.ffn = nn.Sequential(
           nn.Linear(in_features=embed_dim, out_features=ff_dim, bias=True),
           nn.ReLU(),
           nn.Linear(in features=ff dim, out features=embed dim, bias=True)
        self.layernorm_1 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
        self.layernorm 2 = nn.LayerNorm(normalized shape=embed dim, eps=1e-6)
        self.dropout 1 = nn.Dropout(p=dropout)
        self.dropout_2 = nn.Dropout(p=dropout)
    def forward(self, query, key, value):
        attn_output, _ = self.attn(query, key, value)
        attn_output = self.dropout_1(attn_output)
        out_1 = self.layernorm_1(query + attn_output)
        ffn output = self.ffn(out 1)
        ffn output = self.dropout 2(ffn output)
        out_2 = self.layernorm_2(out_1 + ffn_output)
        return out_2
```

```
encoder_layer = TransformerEncoder(
    embed dim=200,
    num heads=5,
    ff_dim=1024
embedded.shape
torch.Size([32, 50, 200])
encoded = encoder_layer(embedded, embedded, embedded)
encoded.shape
torch.Size([32, 50, 200])
```


3 – Text Classification

(!

NTC-SCV Dataset

Sentiment Analysis

Positive Example	Negative Example
Mình được 1 cô bạn giới_thiệu đến đây, tìm địa_chỉ khá dễ. Menu nước uống chất khỏi nói. Mình muốn cũng đc 8 loại nước ở đây, món nào cũng ngon và bổ dưỡng cả.	uớp rất dở, sò Lông ko tươi, nước_chấm ko
Mỗi lần thèm trà sữa là làm 1 ly . Quán dễ kiếm, không gian lại rộng rãi . Nhân viên thì dễ thương gần gũi . Nói chung thèm trà sữa là mình ghé Quán ở đây vì gần nhà .	Quán này thấy khá nhiều người bảo mình nên mình đã đi ăn thử, nhưng thực_sự ăn xong

3 – Text Classification

[

Modeling

3 – Text Classification

[

Modeling – Demo

```
class TransformerEncoder(nn Module):
   def __init__(self, embed_dim, num_heads, ff_dim, dropout=0.1):
        super(). init ()
        self.attn = nn.MultiheadAttention(
            embed_dim=embed_dim,
           num heads=num heads,
           batch_first=True
        self.ffn = nn.Sequential(
            nn.Linear(in features=embed dim, out features=ff dim, bias=True),
           nn.ReLU(),
           nn.Linear(in_features=ff_dim, out_features=embed_dim, bias=True)
        self.layernorm_1 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
        self.layernorm_2 = nn.LayerNorm(normalized_shape=embed_dim, eps=1e-6)
        self.dropout 1 = nn.Dropout(p=dropout)
        self.dropout 2 = nn.Dropout(p=dropout)
   def forward(self, query, key, value):
        attn_output, _ = self.attn(query, key, value)
        attn_output = self.dropout_1(attn_output)
        out_1 = self.layernorm_1(query + attn_output)
        ffn_output = self.ffn(out_1)
        ffn output = self.dropout 2(ffn output)
        out_2 = self.layernorm_2(out_1 + ffn_output)
        return out_2
```


3 – Text Classification

(!

Training

* Testing: 83.66%

! ViT

Transformers are so successful in NLP, Can we use them for images?

(!

From text to image

From text to image

Can we tokenize an image?

From text to image

Can we tokenize an image?

[

From text to image

Can we tokenize an image?

Flattening

! ViT Architecture

! Patch embedding

!

Patch embedding

```
1 class PatchEmbedding(nn.Module):
       def init (self, embed dim=512, patch size=16, image size=224):
           self.conv1 = nn.Conv2d(in channels=3, out channels=embed dim, kernel size=patch size, stride=patch size, bias=False)
      def forward(self, x):
           x = self.conv1(x) # shape = [*, width, grid, grid]
           x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
           x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
10
           return x
 1 patch embedding = PatchEmbedding()
 2 x = \text{torch.randn}(1, 3, 224, 224)
 4 out = patch embedding(x)
 5 print(out.shape)
torch.Size([1, 196, 512])
```


!

Patch embedding

1	2	4	2	2	3	3	2
1	0	2	1	2	1	1	1
2	2	3	4	3	4	1	3
2	1	3	0	0	2	3	0
3	3	4	0	2	0	2	2
1	4	4	3	4	0	4	0
1	2	0	0	0	3	2	3
4	1	4	1	0	0	0	0

1	0	0	1			
0	1	1	0			
1	0	0	1			
1	1	0	1			

Patch size: 4

1	1	0	0
0	0	1	0
0	1	0	0
1	1	0	0

11 9

Positional embedding

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	34 7	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63//	64	65	66	6 7	68	69	70_
71	72	73	74	75	761	77	78	76	80

!

Positional embedding

```
1 class PatchPositionEmbedding(nn.Module):
            def init (self, embed dim=512, patch size=16, image size=224):
                super(). init ()
                self.conv1 = nn.Conv2d(in channels=3, out channels=embed dim, kernel size=patch size, stride=patch size, bias=False)
      4
                scale = embed dim ** -0.5
      6
                self.positional embedding = nn.Parameter(scale * torch.randn((image size // patch size) ** 2, embed dim))
      8
            def forward(self, x):
                x = self.conv1(x) # shape = [*, width, grid, grid]
     10
              x - x reshape(x shape[0], x shape[1], -1) # shape - [*, width, grid ** 2]
     11
                x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
     12
     13
                x = x + self.positional_embedding.to(x.dtype)
     14
     15
                return x
[36] 1 patchpos embedding = PatchPositionEmbedding()
      2 x = torch.randn(1, 3, 224, 224)
      4 \text{ out} = \text{patchpos embedding}(x)
      5 print(out.shape)
     torch.Size([1, 196, 512])
```


[

Positional embedding

[CLS] Token

!

[CLS] Token – Why?

Alternatives?

- Global Average Pooling
- Max Pooling

- ...

!

[CLS] Token – Demo

```
1 class PatchPositionEmbedding(nn.Module):
      def init (self, embed dim=512, patch size=16, image size=224):
          super(). init ()
          self.conv1 = nn.Conv2d(in channels=3, out channels=embed dim, kernel size=patch size, stride=patch size, bias=False)
          scale = embed dim ** -0.5
          self.class embedding = nn.Parameter(scale * torch.randn(embed dim))
          self.positional embedding = nn.Parameter(scale * torch.randn((image size // patch size) ** 2 + 1, embed dim))
 8
      def forward(self, x):
10
          x = self.conv1(x) # shape = [*, width, grid, grid]
11
          x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
12
          x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
13
14
          # expanding the CLS embedding
          cls embs = self.class embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device)
15
          x = torch.cat([cls embs, x], dim=1) # shape = [*, grid ** 2 + 1, width]
16
17
          x = x + self.positional embedding.to(x.dtype)
18
19
           return x
```


!

Modeling

```
1 class VisionTransformerCls(nn.Module):
                                          def init (self,
                                                       image size, embed dim, num heads, ff dim,
                                                       dropout=0.1, device='cpu', num classes = 10, patch size=16
                                              ):
                                              super(). init ()
 Change Token
                                              self.embd layer = PatchPositionEmbedding(
 Embedding with
                                                  image size=image size, embed dim=embed dim, patch size=patch siz€
 Patch Embedding
                                              self.transformer layer = IransformerEncoder
                                   10
                                                  embed dim, num heads, ff dim, dropout
                                   11
                                   12
                                              # self.pooling = nn.AvgPool1d(kernel size=max length)
                                   13
                                              self.fc1 = nn.Linear(in features=embed dim, out features=20)
                                   14
                                   15
                                              self.fc2 = nn.Linear(in features=20, out features=num classes)
                                              self.dropout = nn.Dropout(p=dropout)
                                   16
                                              self.relu = nn.ReLU()
                                   17
                                          def forward(self, x):
                                   18
                                              output = self.embd_layer(x)
[CLS] token instead
                                                     - self.transformer_layer(output, output, output)
                                   20
of pooling (can still
                                   21
                                              output = output[:, 0, :]
                                              output = self.dropout(output)
                                   22
use pooling)
                                              output = self.fc1(output)
                                   23
                                   24
                                              output = self.dropout(output)
                                              output = self.fc2(output)
                                   25
                                              return output
                                   26
```


!

Training

Thanks! Any questions?