- **4.1**. Montrer qu'il existe $x \in \mathbf{R}$ tel $x^2 = 2020$. Faire une rédaction précise.
- **4.2**. Montrer que si les deux suites $(x_{2n})_{n=0}^{\infty}$ et $(x_{2n+1})_{n=0}^{\infty}$ convergent vers la même limite ℓ , la suite $(x_n)_{n=0}^{\infty}$ converge vers ℓ .
- **4.3**. On définit la suite de Fibonacci F_n par récurrence comme suit:

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ $(\forall n \ge 2)$.

Prouver cette identité étonnante (connue depuis le dix-huitième siècle déjà):

$$F_n = \frac{(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n}{\sqrt{5}}.$$

Indication: On pourra procéder par récurrence.