Politechnika Warszawska

MSI

2. Logika klasyczna - rachunek zdań

Włodzimierz Kasprzak

Wersja 2023

Układ

- 1. Język logiki
- 2. Rachunek zdań
- 3. System wnioskowania
- 4. Postacie normalne
- 5. Wnioskowanie przez rezolucję
- 6. Wnioskowanie "w przód" i "wstecz"
- 7. Jak reprezentować własności zmienne w czasie?

1. Składnia rachunku zdań

Alfabet:

stałe logiczne *True* i *False*, symbole zdaniowe (P, Q, R,...), spójniki logiczne (koniunkcja, alternatywa, implikacja, równoważność, negacja) \land , \lor , \Rightarrow , \Leftrightarrow , \neg , nawiasy okrągłe (,).

Zdania:

- True, False i symbole zdaniowe są zdaniami atomowymi.
- Jeśli A i B są zdaniami to $(A \land B)$, $(A \lor B)$, $(A \Rightarrow B)$ i $(A \Leftrightarrow B)$ są zdaniami.
- Jeśli A jest zdaniem to $\neg A$ jest zdaniem.

Literał to zdanie atomowe lub negacja zdania atomowego.

Własności rachunku zdań

- + Rachunek zdań jest deklaratywny.
- + Rachunek zdań reprezentuje informację: częściową, alternatywną, zanegowaną:
 - inaczej niż większość struktur danych i baz danych.
- + Rachunek zdań jest kompozycyjny:
 - znaczenie $B_{11} \wedge P_{12}$ jest wyprowadzane ze znaczeń B_{11} i P_{12}
- + Znaczenie w rachunku zdań jest niezależne od kontekstu
 - inaczej niż w języku naturalnym, gdzie znaczenie zależy od kontekstu.
- Rachunek zdań ma ograniczone możliwości wyrazu:
 - inaczej niż język naturalny; np. nie można powiedzieć generalnie, że "jamy powodują wiatr w sąsiednich kwadratach" tylko trzeba stworzyć po jednym zdaniu tego typu dla każdego rzeczywistego kwadratu.

2. Semantyka rachunku zdań

Semantyka rachunku zdań może być formalnie ujęta jako struktura algebraiczna: $\langle D, m \rangle$.

- Dziedzina D zbiór faktów do których odnoszą się zdania.
- Interpretacja m funkcja przyporządkowująca symbolom zdaniowym fakty należące do dziedziny i wartościująca zdania jako True lub False.
- Model zdania A interpretacja, w której zdanie A jest prawdziwe.
- Tautologia zdanie prawdziwe w każdej interpretacji (modelu świata).
- Rachunek zdań jest rozstrzygalny, tzn. istnieje algorytm, który dla dowolnego zdania A i interpretacji m stwierdza, czy A jest prawdziwe.

Tabele prawdy dla spójników

P	Q	¬P	P∧Q	P∨Q	P⇒Q	P⇔Q
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Interpretacja spójników:

 $\neg S$ jest prawdziwe wtw. S jest fałszywe $S_1 \wedge S_2$ jest prawdziwe wtw. S_1 jest prawdą i S_2 jest prawdziwe wtw. S_1 jest prawdą lub S_2 jest prawdą $S_1 \Rightarrow S_2$ jest prawdziwe wtw. S_1 jest fałszywe lub S_2 jest prawdą, tzn. jest fałszywe wtw. S_1 jest prawdą i S_2 jest fałszywe $S_1 \Leftrightarrow S_2$ jest prawdziwe wtw. $S_1 \Rightarrow S_2$ jest prawdą i $S_2 \Rightarrow S_1$ jest prawdą

Przykład tautologii

Dzięki tablicy prawdy pokażemy, że zdanie złożone

$$((P \lor H) \land \neg H) \Rightarrow P$$

jest **tautologią**, tzn. **zawsze prawdziwe** niezależnie od modelu dla *P* i *H*:

P	H	P∨H	(P∨H)∧¬H	$((P \lor H) \land \neg H) \Longrightarrow P$
0	0	0	0	1
0	1	1	0	1
1	0	1	1	1
1	1	1	0	1

Ostatnia kolumna reprezentuje nasze zdanie i jest zawsze prawdziwa.

3. Wnioskowanie

- Procedura sprawdzająca wszystkie modele jest procedurą wnioskowania poprawną i zupełną. Może ona zostać efektywnie zaimplementowana wtedy, gdy formuły dają się uporządkować (np. odpowiednio do odległości miejsca od pozycji startowej agenta, do którego te formuły się odnoszą).
- Np. funkcja WynikanieZTabPrawdy() (na następnej stronie) jest efektywną implementacją procedury wnioskowania. Korzysta ona z rekursywnej funkcji TabPrawdy(), wywoływanej dla częściowego i stopniowo rozszerzanego modelu. Podfunkcja CzyModel() sprawdza poprawność zdania (lub bazy wiedzy) w częściowym modelu a podfunkcja Extend() rozszerza model o wartość dla kolejnego symbolu (zdania).
- Dla WynikanieZTabPrawdy() jej spodziewana **złożoność obliczeniowa** również wynosi $O(2^n)$, przy n symbolach.

Sprawdzanie wszystkich modeli

```
funkcja WynikanieZTabPrawdy(KB, \alpha)
zwraca wynik: true lub false
{ symbole \leftarrow symbole zdaniowe w KB i \alpha;
  return TabPrawdy(KB, \alpha, symbole, []);
funkcja TabPrawdy(KB, \alpha, symbole, model)
zwraca wynik: true lub false
\{ if (symbole == \emptyset) \}
       if CzyModel(KB, model) return CzyModel(\alpha, model);
       else return true;
 } else {
   P \leftarrow Pierwszy(symbole); reszta \leftarrow Reszta(symbole);
   return (TabPrawdy(KB, \alpha, reszta, Rozszerz(P, true, model)
      && TabPrawdy(KB, \alpha, reszta, Rozszerz(P, false, model));
}}
```

Twierdzenia o dedukcji

Wnioskowanie w rachunku zdań

Zdanie jest tautologią wtw. gdy jest prawdziwe we wszystkich modelach. Np.:

True,
$$A \vee \neg A$$
, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$

Tautologia jest powiązana z wnioskowaniem poprzez pierwsze twierdzenie o dedukcji:

- $-KB = \alpha$ wtw. gdy zdanie $(KB \Rightarrow \alpha)$ jest tautologią
- 2. Zdanie jest **spełnialne** wtw. gdy posiada model. Zdanie jest **niespełnialne** wtw. gdy nie posiada żadnego modelu.

Np.: $A \land \neg A$ jest niespełnialne.

Spełnialność jest powiązana z wnioskowaniem poprzez drugie twierdzenie o dedukcji:

 $KB \models \alpha$ wtw. gdy zdanie $(KB \land \neg \alpha)$ jest niespełnialne.

Ta równoważność prowadzi do dowodu przez zaprzeczenie.

Logiczna równoważność

Dwa zdania są logicznie równoważne wtw. gdy są poprawne w tych samych modelach:

$$\alpha \equiv \beta \quad \text{wtw.} \quad (\alpha \models \beta) \text{ i } (\beta \models \alpha)$$

$$(\alpha \land \beta) \equiv (\beta \land \alpha) - \text{przemienność} \land$$

$$(\alpha \lor \beta) \equiv (\beta \lor \alpha) - \text{przemienność} \lor$$

$$((\alpha \land \beta) \land \lambda) \equiv (\alpha \land (\beta \land \lambda)) - \text{łączność} \land$$

$$((\alpha \lor \beta) \lor \lambda) \equiv (\alpha \lor (\beta \lor \lambda)) - \text{łączność} \land$$

$$\neg(\neg \alpha) \equiv \alpha - \text{eliminacja podwójnej negacji}$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) - \text{kontrapozycja}$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) - \text{eliminacja implikacji}$$

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) - \text{eliminacja równoważności}$$

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) - \text{prawo de Morgana}$$

$$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) - \text{prawo de Morgana}$$

$$(\alpha \land (\beta \lor \lambda)) \equiv ((\alpha \land \beta) \lor (\alpha \land \lambda)) - \text{rozdzielczość} \land \text{względem} \lor$$

$$(\alpha \lor (\beta \land \lambda)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \lambda)) - \text{rozdzielczość} \lor \text{względem} \land$$

$$\text{MSI}$$

Reguła wnioskowania

Dla rachunku zdań istnieją zupełne i poprawne procedury wnioskowania (dowodzenia zdań).

Stosują one reguły wnioskowania o ogólnej postaci:

Jeśli w bazie wiedzy spełniony jest warunek dany poprzednikiem reguły to wnioskowana jest poprawność następnika.

Reguła wnioskowania β jest **poprawna**, jeśli zdanie β jest prawdziwe w każdej interpretacji, w której prawdziwe są zdania: $\alpha_1, \alpha_2, \dots, \alpha_n$.

Typowe reguły wnioskowania

Przykłady poprawnych reguł wnioskowania:

• Reguła **odrywania** (*modus ponens*):
$$\frac{lpha, \quad lpha \Rightarrow eta}{eta}$$

• Reguła **eliminacji koniunkcji**:
$$\frac{\alpha_1 \wedge \cdots \wedge \alpha_n}{\alpha_i}$$

• Regula wprowadzania koniunkcji:
$$\frac{\alpha_1, \cdots, \alpha_n}{\alpha_1 \wedge \cdots \wedge \alpha_n}$$

• Reguła **rezolucji**:
$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

Przykład: poprawność reguły rezolucji

Sprawdzamy za pomocą tablicy prawdy poprawność reguły rezolucji:

$$\frac{\alpha \vee \beta, \quad \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

Wyróżniono wiersze dla których spełniony jest poprzednik tej reguły:

α	β	γ	$\alpha \vee \beta$	$\neg \beta \lor \gamma$	α∨γ
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Następnik reguły też jest wtedy zawsze spełniony → poprawna reguła.

Złożoność wnioskowania

- Problem pokazania (dowiedzenia), że określone zdanie jest tautologią jest NP-zupełny, czyli nie oczekujemy aby istniał algorytm wnioskowania w rachunku zdań mający złożoność wielomianową.
- Jednak w wielu przypadkach dowód może zostać przeprowadzony efektywnie, ponieważ wynikowe zdanie zwykle nie zależy od wszystkich zdań w KB i takie nadmiarowe zdania mogą zostać zignorowane. Ta własność wnioskowania jest rezultatem monotoniczności.
- Monotoniczność: jeśli formuła A wynika ze zbioru formuł X to A wynika również z każdego nadzbioru zbioru X:

Jeśli
$$X \models A$$
 to $(X, B) \models A$

Oznacza to, że można zastosować regułę wnioskowania, jeśli tylko poprzednik jest spełniony przez (część) formuł w bazie danych, bez względu na to, co jeszcze zawiera *KB*.

MSI 2. Logika klasyczna

4. Postacie normalne

 Postać kanoniczna Horna: pojedynczy literał; lub (koniunkcja pozytywnych literałów) ⇒ pozytywny literał .

"Pozytywny" oznacza "nie zanegowany". Np.:

$$KB = \{ C, (B \Rightarrow A), (C \land D \Rightarrow B) \}$$

- Klauzula Horna jest to równoważna postać alternatyw literałów, w z których jeden jest pozytywny a pozostałe – zanegowane. Np. (¬C∨¬D∨B).
- Reguła odrywania (Modus Ponens) stosowana jest dla KB wyrażonej w postaci kanonicznej Horna:

$$\alpha_1, \ldots, \alpha_n, \qquad \alpha_1 \wedge \ldots \wedge \alpha_n \Longrightarrow \beta$$
 β

 Z reguły odrywania korzystają procedury wnioskowania: progresywna (wprzód) lub regresywna (wstecz).

Postać normalna CNF i reguła rezolucji

- Conjunctive Normal Form (CNF): koniunkcja alternatyw literałów. Np.: $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$
- Reguła rezolucji (dla CNF):

$$\frac{\ell_i\vee\ldots\vee\ell_k, \qquad m_1\vee\ldots\vee m_n}{\ell_i\vee\ldots\vee\ell_{i-1}\vee\ell_{i+1}\vee\ldots\vee\ell_k\vee m_1\vee\ldots\vee m_{j-1}\vee m_{j+1}\vee\ldots\vee m_n}$$
gdzie ℓ_i i m_i są komplementarnymi literałami.

Np.:
$$P_{13} \vee P_{22}$$
, $\neg P_{22}$

Poprawność reguły rezolucji

1) Zakładamy, że zachodzi poprzednik:

Równoważność implikacji: $\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$

$$\neg(\ell_{i} \vee \ldots \vee \ell_{i-1} \vee \ell_{i+1} \vee \ldots \vee \ell_{k}) \Rightarrow \ell_{i}$$

$$\neg m_{j} \Rightarrow (m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n})$$

2) $l_i = \neg m_j$ i z przechodniości implikacji $\alpha \Rightarrow \beta \Rightarrow \gamma$ wynika:

$$\neg(\ell_{i}\vee\ldots\vee\ell_{i-1}\vee\ell_{i+1}\vee\ldots\vee\ell_{k})\Rightarrow(m_{1}\vee\ldots\vee m_{j-1}\vee m_{j+1}\vee\ldots\vee m_{n})$$

3) Ponownie z równoważności implikacji otrzymujemy:

$$l_i \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_k \vee m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_n$$

Konwersja zdania do CNF

Przykład. Dane jest zdanie: $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$

1. Usuwamy \Leftrightarrow , zamieniając $\alpha \Leftrightarrow \beta$ na $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

2. Usuwamy \Rightarrow , zamieniając $\alpha \Rightarrow \beta$ na $\neg \alpha \lor \beta$.

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

 Wprowadzamy – do środka nawiasów stosując reguły de Morgana i ewent. eliminujemy podwójną negację:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Stosujemy prawo rozdzielczości (∧ nad ∨) i rozpisujemy:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

Uwaga: Przed dodaniem zdania do KB stosujemy jeszcze regułę eliminacji koniunkcji (jeśli iloczyn klauzul jest spełniony to spełniona jest każda klauzula z osobna) i dodajemy zbiór klauzul.

5. Wnioskowanie przez rezolucję

Procedury wnioskowania (dowodzenia) formuł stosujące regułę rezolucji prowadzą dowód przez zaprzeczenie, tzn. aby dowieść, że

$$KB \models \alpha$$

pokazują one, że zdanie

$$(KB \land \neg \alpha)$$

jest niespełnialne.

Rezolucja w rachunku zdań

```
funkcja Rezolucja (KB, \alpha)
zwraca wynik: true lub false
{ formuly \leftarrow zbiór podformul (KB \wedge \neg \alpha) alternatyw literalów;
 nowe \leftarrow formuly;
 while (true) { aktualne \leftarrow \emptyset;
     for each (Ci \in nowe, Cj \in formuly) {
         rezolwenty \leftarrow KrokRezolucji(Ci, Cj);
         if (rezolwenty zawierają zdanie puste) return true;
         aktualne \leftarrow aktualne \cup rezolwenty;
     if (aktualne \subseteq formuly) return false;
    formuly \leftarrow formuly \cup aktualne; nowe \leftarrow aktualne;
```

Funkcja Rezolucja() - komentarz

- Zdania CNF w bazie wiedzy rozszerzonej o negację zapytania (KB ∧¬α) rozdzielane są na zbiory klauzul – zdań o postaci alternatyw literałów.
- 2) Następnie w pętli, dla każdej odpowiedniej pary klauzul, funkcja KrokRezolucji() generuje *rezolwentę* swoich 2 argumentów, tzn. połączone zdania poprzednika reguły rezolucji pozbawione par komplementarnych symboli.
- 3) Są możliwe dwa sposoby zakończenia procedury:
 - nie można dodać nowych zdań → α jest fałszywe w modelu M(KB).
 - 2. w wyniku rezolucji powstaje puste zdanie, co jest sprzecznością uzyskaną w warunkach zanegowanego zapytania, stąd → α jest prawdziwe w modelu M(KB).

Przykład wnioskowania metodą rezolucji

Niech fragment bazy wiedzy agenta to:

(KB zawiera m.in.) $(B_{11} \Leftrightarrow (P_{1,2} \lor P_{2,1})), \neg B_{11}$

Chcemy dowieść, że zachodzi: $\alpha = \neg P_{12}$.

1. Zamieniamy zdania na postać CNF (jeśli nie są jeszcze w tej postaci) a następnie zastępujemy je zbiorem klauzul o postaci alternatyw literałów. Zbiór "formuły" jest identyczny z "nowe(1)":

2. Wynik po pierwszej iteracji generowania rezolwent:

Przykład wnioskowania metodą rezolucji (2)

3. Wynik po drugiej iteracji:

- Aktualne(1): rezolwenty par zdań ze zbioru nowe(1) zawierających komplementarne literały.
- Kolejny wynik "aktualne(2)", m.in. zawiera dwukrotnie zdanie puste powstałe z rezolucji par P_{12} i $\neg P_{12}$ oraz B_{11} i $\neg B_{11}$ (w rachunku zdań wystarczy wygenerowanie pierwszego zdania pustego). Dowodzi to, że zapytanie wynika z bazy wiedzy: $KB \models \alpha$.

6. Wnioskowanie "w przód" i "wstecz"

- Procedury wnioskowania stosujące regułę odrywania (Modus Ponens) korzystają z ograniczonej postaci zdań, tzw. postaci kanonicznej (klauzul) Horna.
- Reguła odrywania (Modus Ponens) w rachunku zdań:

$$\alpha_1, \ldots, \alpha_n, \qquad (\alpha_1 \wedge \ldots \wedge \alpha_n) \Rightarrow \beta$$
 β

- Z reguły odrywania korzystają procedury wnioskowania:
 - progresywna (w przód) generowanie zdań i
 - regresywna (wstecz) dowód wprost.

Wnioskowanie "w przód"

Idea procedury wnioskowania progresywnego ("w przód"):

- wykonaj każdą regułę, której warunek (poprzednik) jest spełniony w KB,
- 2. dodaj wynik wyprowadzenia (następnik reguły) do KB,
- 3. kontynuuj kroki 1-2 aż do znalezienia zdania zapytania lub niemożliwości wygenerowania nowych zdań.

Progresywna procedura wnioskowania jest poprawna i zupełna dla KB o postaci klauzul Horna.

Przykład wnioskowania "w przód" (1)

Dane są formuły w KB w postaci klauzul Horna:

$$p \Rightarrow q$$

$$m \wedge n \Rightarrow p$$

$$Ewa \land m \Rightarrow n$$

$$Ala \land p \Rightarrow m$$

$$Ala \wedge Ewa \Rightarrow m$$

Ala

Ewa

Przykład wnioskowania "w przód" (2)

Każdy węzeł typu I posiada etykietę – odpowiada ona liczbie warunków w poprzedniku reguły pozostających jeszcze do spełnienia.

(1) Początkowe etykiety (2) Dodajemy symbol "Ala" Ewa MSI 2. Logika klasyczna

Przykład wnioskowania "w przód" (3)

Przykład wnioskowania "w przód" (4)

Przykład wnioskowania "w przód" (5)

Wnioskowanie "wstecz"

- Funkcja rozpoczyna pracę od zdania zapytania (celu) q.
- Aby sprawdzić prawdziwość q procedura sprawdza, czy q już występuje a jeśli nie, to sprawdza czy istnieje przynajmniej jedna implikacja wyprowadzająca zdanie q. Jeśli tak, to literały stanowiące warunek tej implikacji stają się "pod-celami" i ich prawdziwość z punktu widzenia KB badana jest rekurencyjnie tak, jak poprzednio główny cel.
- Unikanie zapętleń: procedura sprawdza, czy aktualny "podcel" nie znajduje się już na stosie wygenerowanych "podcelów".
- Unikanie powielania przejść: sprawdza, czy nowy "pod-cel" został już sprawdzony i dowiedziono, że jest prawdziwy lub fałszywy.

Przykład wnioskowania "wstecz" (1)

Baza danych zawiera 2 fakty: "Ala" i "Ewa". Formuła zapytania to "q". (1) Cel: q (2) Sprawdź: q

Przykład wnioskowania "wstecz" (2)

Przykład wnioskowania "wstecz" (3)

Przykład wnioskowania "wstecz" (4)

Przykład wnioskowania "wstecz" (5)

"W przód" a "wstecz"

- Procedura progresywna jest sterowana danymi jest to automatyczne, "nieświadome" przetwarzanie.
 - Np. rozpoznawanie obiektów, rutynowe decyzje.
- Może wykonywać "nadmiarową" pracę, która nie zmierza bezpośrednio do celu.
- Procedura regresywna jest sterowana celem jest to odpowiednie dla rozwiązywania zadanego problemu.
 - Np. dostarczenie odpowiedzi na pytanie: "Gdzie są moje klucze?"
- Złożoność procedury regresywnej może w praktyce być poniżej liniowej względem rozmiaru KB.

7. Jak reprezentować własności zmienne w czasie?

Wprowadzamy symbole $L_{\rm i,j}$ dla oznaczenia, że agent w 2-wymiarowym "świecie Wumpusa" znajduje się w kratce o współrzędnych [i,j]. Wtedy możliwym akcjom odpowiadałyby zdania typu: $L_{\rm 1,1} \wedge ZwróconyWPrawo \wedge RuchWPrzód \Rightarrow L_{\rm 2,1}$

Jednak to nie prowadzi do prawidłowego wnioskowania. Po wykonaniu akcji oba zdania $L_{1,1}$ i $L_{2,1}$ będą w bazie danych uważane za prawidłowe, tymczasem już tak nie jest, gdyż świat zmienia się wraz z upływem czasu.

Jak reprezentować te zmiany w rachunku zdań? Jedynym sposobem jest odpowiednie indeksowanie symboli. Np.:

$$\begin{split} L^{1}_{1,1} \wedge Zwr\acute{o}conyWPrawo^{1} \wedge RuchWPrz\acute{o}d^{1} \Rightarrow L^{2}_{2,1} \\ Zwr\acute{o}conyWPrawo^{1} \wedge Obr\acute{o}tWLewo^{1} \Rightarrow Zwr\acute{o}conyWG\acute{o}re^{2} \end{split}$$

Ograniczenia rachunku zdań

- Baza wiedzy (KB) zawiera zdania związane z "fizycznym" miejscem świata (np. kratką w "świecie Wumpusa"). Nie ma możliwości wyrażenia w zwarty sposób wspólnej własności wszystkich "fizycznych" miejsc.
- W celu reprezentacji akcji musimy wprowadzić osobne zdania dla każdej chwili czasu t i każdego miejsca [x,y]. Np. w "świecie Wumpusa" dla każdego kierunku, każdej kratki i czasu zawsze musiałoby istnieć zdanie postaci

$$L^{t}_{x,y} \wedge Zwr\acute{o}conyWPrawo^{t} \wedge RuchWPrz\acute{o}d^{t} \Longrightarrow L^{t+1}_{x+1,y}$$

 Efektem jest "eksplozja" liczby zdań w bazie wiedzy przy rosnącym rozmiarze świata i liczbie wykonanych akcji.

Pytania

- 1. Omówić elementy składni rachunku zdań.
- 2. Wyjaśnić semantykę rachunku zdań.
- 3. Przedstawić dwa twierdzenia o **dedukcji** (poprawnym wnioskowaniu)
- 4. Przedstawić typowe **reguły** wnioskowania.
- 5. Jakie są postacie **normalne** zdań?
- 6. Omówić wnioskowanie przez **rezolucję**.
- 7. Omówić wnioskowanie "w przód" i "wstecz".
- 8. Przedstawić problem reprezentacji własności zmiennych w czasie i wspólnych własności miejsc.