THE UNIVERSITY OF NEW SOUTH WALES

DEPARTMENT OF STATISTICS

MID SESSION TEST - 2016 -Tuesday, 6th September (Week 7)

MATH5905

Time allowed: 75 minutes

1. A preliminary test of a possible carcinogenic compound can be performed by measuring the mutation rate of microorganisms exposed to the compound. An experimenter places the compound in n = 24 petri dishes and records the following number of mutant colonies $(X_1, X_2, ..., X_{24})$:

The number $X_i, i=1,2,\ldots,24$ of mutant colonies is believed to follow a Poisson distribution $(P_{\lambda}(X_i=x)=f(x,\lambda)=\frac{e^{-\lambda}\lambda^x}{x!},x=0,1,2,\ldots)$, with $\lambda>0$ being an unknown parameter.

- a) Use any argument to show that $T = \sum_{i=1}^{n} X_i$ is complete and sufficient for λ .
- b) Suggest a simple unbiased estimator W of the parameter $\tau(\lambda) = \lambda e^{-\lambda} = P(X_1 = 1)$ (i.e., the probability that exactly one colony will emerge). Hence (or otherwise) derive the UMVUE of $\tau(\lambda)$.
- c) What is the MLE $\tau(\lambda)$ of $\tau(\lambda)$? Explain.
- d) For the given data, find the point estimates of the probability $\tau(\lambda)$ by applying the methods in (b) and (c). Compare the two numerical values.
- e) Is the variance of the UMVUE of $\tau(\lambda)$ equal to the variance given by the Cramer-Rao lower bound for an unbiased estimator of $\tau(\lambda)$? Explain.
- f) Using the prior $\tau(\lambda) = \frac{8}{15}\lambda^5 e^{-2\lambda}$, $\lambda > 0$ test the hypothesis $H_0: \lambda \leq 3$ versus the alternative $H_1: \lambda > 3$ using Bayesian hypothesis testing with a zero-one loss. Formulate your conclusion.

Hint: You may use the following numerical values: $76!/26^{77}=210.125, \int_0^3 e^{-26x}x^{76}dx=117.708$. The Gamma density with parameters $\alpha>0$ and $\beta>0$ is

$$g(x) = \begin{cases} \frac{e^{-\frac{x}{\beta}}x^{\alpha-1}}{\beta^{\alpha}\Gamma(\alpha)} & \text{for } x > 0\\ 0 & \text{else} \end{cases}$$

The mean and the variance are $\alpha\beta$ and $\alpha\beta^2$, respectively.

2. Let X_1, X_2, \ldots, X_n be independent random variables, with a density

$$f(x; \theta) = \begin{cases} \frac{2x}{\theta^2}, 0 < x < \theta, \\ 0 \text{ else} \end{cases}$$

where $\theta > 0$ is an unknown parameter. If $Z_n = X_{(n)}$, then

- a) Argue that Z_n is a sufficient statistic for θ .
- b) Find the density of Z_n (Hint: find the cumulative distribution function of Z_n first).
- c) Assuming that Z_n is also complete, find the UMVUE of the parameter θ as a function of Z_n .

1

d) Find the MLE of θ .

Q1.) a) $f(x_1 x_1 = e^{-\lambda} + e^{-\lambda} x_1 e^{-\lambda} x_2 = e^{-\lambda} x_1 e^{-\lambda} x_2 =$ family with a (λ) = e 7, b(x)= t, ((λ)= luλ, d(x)= X.

Hence T = Žd(Xi) = ŽXi is sufficient for d complete
for λ. Longleteners was also shown in the loctures from first principles: we know that To Po(m). Assuming that for certain & (T) we have Eng(T)=0 + 270, implies $e^{-n\lambda} \underset{t=0}{\overset{\mathcal{Z}}{\underset{t=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}}}}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}}{\underset{i=0}{\overset{\mathcal{C}}}}}{\underset{i=0}{\overset{\mathcal{C}}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}}{\underset{i=0}{\overset{\mathcal{C}}}{\underset{i=0}{\overset{\mathcal{C}}}}{\underset{i=0}{\overset{\mathcal{C}}}}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}}}}{\underset{i=0}{\overset{\mathcal{C}}}}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}{\overset{\mathcal{C}}{\underset{i=0}}}}}}{\underset{i=0}{\overset{\mathcal{C}}}}$ This implies that coefficients in front of each power of 2 are 0: $g(t) \frac{\pi}{t!} = 0 + t = 0, 1, 2, --.$ Hence (Since n=0, t! +0) we have g(t)=0 +t=0,1,2--, that is P(g(T) = 0) = 1. B) We take W = IXX=13(X) as an initial unbiased estimeter. Indeed: EW = 1* P(X,=1) = 1e-1= Th) Lehmann-Schoffe Theorem tells us that E(W/T=t) is the unvuE. Hence we have. $E(W|T=t) = |x|P(W=1|T=t) = \frac{P(W=1|T=t)}{P(T=t)} = \frac{P(X_i=1|X_i=t)}{P(X_i=t)}$ $= P(X_{i=1} | P(T=t)) \qquad P(X_{i=1} | t = t)$ $= \lambda e^{-\lambda} e^{-\lambda t} = t$ $= e^{-\lambda} e^{-\lambda t} + \lambda t = t$ $= e^{-\lambda} e^$ = $\frac{1}{n}(1-\frac{1}{n})^{t-1} = |X(1-\frac{1}{n})^{nX-1}|$ being the unvuE C) For Poisson data we have: $L(X_i, T) = \frac{e^{-n\lambda} \lambda_i^{\frac{n}{2}} X_i}{\int_{i=1}^{n} X_i}$ Full(X, λ) = $-n + \frac{2}{2\pi} = V(X_i \lambda) = V(X_i \lambda) = 0$ implies that $\hat{\lambda} = X$ is MLE of λ .

Then using the invariance property of the MIE we have $\lambda e^{-\lambda} = |\overline{x}e^{-\overline{x}}|$ being the MIE of $\overline{t}(A)$. d) Here $\sum_{i=1}^{24} \chi_i = 71 \rightarrow \overline{\chi} = \frac{71}{24} = 2.958$ The MIE: Le "MIE = 2.958 exp(-2.958) = 0.1536 The unvue : $2.998\left(\frac{23}{24}\right)^{70} = 0.1504$ so both estimators are very close. e/ Since $V = -n + \frac{1}{\omega_1} \frac{\chi_i}{\lambda} = \frac{ne^2(\chi e^{-\lambda} - \lambda e^{-\lambda})}{\lambda}$ and $Xe^{-\lambda}$ is not an estimator (involves the unknown parameter) -> CR Bound is not attainable. f) We need to calculate 3 $P(\lambda \leq 3/X) = \int_{0}^{\infty} h(\lambda | X) d\lambda$ and compare it to the threshold of 1/2. Now $h(\lambda | X) \propto \lambda^{71+5} e^{-(24+2)\lambda} = \lambda^{76} e^{-26\lambda}$ identifies h(\(\lambda/X\)) as Gamma (77, \(\frac{1}{26}\)), and \(\Gamma\)(77)=761. Hence we need to calculate $\frac{26^{77}}{76!} = \frac{26}{3} = \frac{26}{3} \times \frac{76}{3} = \frac{117.708}{210,125} = .56$ Since this is $> \frac{1}{2}$, we accept to $\frac{Q2}{Q2}$ a) We can write $f(x_1\theta) = \frac{2x}{Q^2} I_{Q_1}(x)$ Then $L(X_i, \theta) = \frac{2^n \prod_{i=1}^n X_i}{1 - 1} \prod_{i=1}^n (Q_i, \theta)(X_i) = \frac{2^n \prod_{i=1}^n X_i}{1 - 1} \prod_{i=1}^n (Q_i, \theta)(X_i)$ Hence we can foctorize $L(X_i\theta) = g(\theta, X_m) \cdot h(X)$ with, e.g., $g(\theta, X_{(n)}) = \frac{1}{\theta^{2n}} I(0, 0) (X_{(n)})$ and $h(X) = 2^n f(X_i)$ Hence $X_{(n)}$ is sufficient

B) First, we find the cdf of a single observation via integration of the density: $F(x) = \begin{cases} 0 & \text{if } x < \theta \\ \frac{x}{2} & \text{if } 0 < x < \theta \end{cases}$ Then $t_{Z_n}(x) = P(X_n \le x) = P(X_n \le x) = P(X_n \le x)$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ $= \begin{cases} P(X_n \le x) = P(X_n \le x) \\ P(X_n \le x) = P(X_n \le x) \end{cases}$ Then the density is the derivative of the colf => Hence $f_{En}(x) = \begin{cases} 2nx^{2n-1} & \text{if } 0 < x < 0 \\ 0 & \text{else} \end{cases}$ c) We first colculate the expected value of Z_n : $\overline{E}Z_n = \int_{0}^{\infty} \frac{2n \chi^{2n-1}}{Q^{2n}} dx = \frac{2n}{2n+1} \frac{Q^{2n+1}}{Q^{2n}} = \frac{2n}{2n+1} \frac{Q}{Q^{2n+1}}$ This shows that Zn is brased but can be easily bias - corrected. We get 2n+1 Zn being unbiased and a function of complete

and Sufficient Statistic - hence Lehmann-Scheffe =>it is the unvue of 6. $L(X, \theta) = \frac{2^n \prod x_i}{Q^{2n}} I_{(Q, \theta)}(X_{(N)})$ d) 12(X,0) is O before X(n) and is monotonically decreasing after X(m) as a function of O. Hence it is maximized at Xm= Zn I that is, Zn is the MLE.