Examen

Nom:	Prenom:	No SCIPER :	

Consignes:

- Indiquer votre nom et/ou numero SCIPER sur chaque feuille de votre copie et les numeroter.
- Utiliser une nouvelle feuille pour chaque nouvel exercice.
- A la fin de l'examen retourner votre copie dans la feuille A3 pliée.
- Les notes de cours et les notes d'exercices ne sont pas autorisées.
- Le formulaire standard est autorisé.
- Une calculette simple (sans display graphique) est autorisée.
- Sauf mention explicite du contraire on a le droit d'admettre un résultat d'un autre exercice ou d'une question précédente du même exercice pour répondre à une question.
- Dans tout le texte, "symétrie" signifie "symétrie orthogonale".
- Les angles seront représentés sous forme de nombres complexes de modules 1.
- L'examen est long mais il n'est pas nécéssaire de le faire correctement intégralement pour obtenir la note maximale.

Soit G un groupe et $A \subset G$ un sous-ensemble. On rappelle que le sous-groupe enqendré par A dans G, noté $\langle A \rangle$, est de manière équivalente :

- Le plus petit sous-groupe de G contenant A.
- L'ensemble des éléments de G qui s'écrivent comme un produit fini (pour la loi de groupe) d'éléments de A ou de leurs inverse.

Si

$$\langle A \rangle = G$$

on dit que G est engendré par A.

Exercice 1. (Questions de cours)

- 1. (Critère de morphisme de groupes) Soit G, H deux groupes et $\varphi : G \to H$ une application de G vers H. Enoncer un critère garantissant que φ est un morphisme de groupes (ce critère ne doit PAS être la définition originelle d'un morphisme de groupes).
- 2. Dire si ces affirmations sont vraies ou fausses (donner les réponses sur votre copie et pas sur le texte de l'examen) :
 - (a) Le groupe des isométries spéciales de la figure 1 (dernière page) est d'ordre 5.
 - (b) Pour tout groupe fini d'isométries de \mathbb{R}^2 , il existe un point $\mathbf{P} \in \mathbb{R}^2$ invariant par tout les éléments du groupe.
 - (c) La composée de deux symétries affines glissées a toujours au moins un point fixe.
 - (d) L'application affine

$$\varphi(x,y) = (y+1, x+1)$$

est une isométrie d'ordre fini.

Exercice 2. Soit s la symétrie d'axe la droite d'équation y - x = 1/2. Pour chacune des translations $t_{\vec{v}}$ de vecteur $\vec{v} = (1, 1), (2, 0)$, soit l'isométrie composée $s_{\vec{v}} = s \circ t_{\vec{v}}$.

- 1. Pour $(x,y) \in \mathbb{R}^2$, calculer (X,Y) := s(x,y) en fonction de (x,y).
- 2. Déterminer la nature de $s_{\vec{v}}$ et ses éléments caractéristiques (points fixes etc...).

Exercice 3. Soit φ defini par

$$\varphi(x,y) = \left(-\frac{3}{5}x - \frac{4}{5}y + \frac{4}{5}, -\frac{4}{5}x + \frac{3}{5}y + \frac{2}{5}\right)$$

- 1. Montrer que φ est une symetrie par rapport à une droite D qu'on precisera.
- 2. Soit r la rotation de centre (0,1) et d'angle $\omega = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$ et D' = r(D). Soit $s_{D'}$ la symetrie par rapport a D'. Montrer que

$$s_{D'} = r \circ s_D \circ r^{-1}.$$

(On pourra considérer des ensembles de points fixes).

- 3. Soient β , β' les paramètres complexes des parties linéaires de s_D et $s_{D'}$. Calculer β' en fonction β et de ω .
- 4. Montrer que $r' := s_{D'} \circ s_D$ est une rotation dont on calculera l'angle.
- 5. Que vaut r'^{2017} ?.

Exercice 4. On considere le plan complexe \mathbb{C} identifié avec \mathbb{R}^2 de la manière usuelle. Pour $\nu \in \mathbb{C}$ un nombre complexe on notera t_{ν} la translation de \mathbb{C}

$$t_{\nu}: z \mapsto z + \nu.$$

Le groupe des translations sera note $T(\mathbb{C})$.

On note \mathcal{C} le carré formé des points 1, i, -1, -i. On note $G_{\mathcal{C}}$ le groupe (fini) des isométries préservant ce carré et $G_{\mathcal{C}}^+$ le sous-groupe des rotations .

Soit

$$G = \langle G_{\mathcal{C}}, t_1 \rangle \subset \operatorname{Isom}(\mathbb{R}^2)$$

le groupe des isométries affines engendré par le groupe $G_{\mathcal{C}}$ et par la translation par le nombre complexe $1, t_1 : z \mapsto z + 1$.

On notera $G_0 \subset \text{Isom}(\mathbb{R}^2)_0$ l'ensemble des parties linéaires des éléments de G et $T_G = T(\mathbb{C}) \cap G$, l'ensemble des translations contenues dans G. L'objectif est de calculer T_G et G_0 .

- 1. Montrer que T_G est un sous-groupe distingué de G.
- 2. Exprimer les 8 éléments de $G_{\mathcal{C}}$ sous forme de transformation sur les nombres complexes (on pourra commencer par les éléments de $G_{\mathcal{C}}^+$, ceux d'un élément de $G_{\mathcal{C}} G_{\mathcal{C}}^+$ et trouver tous les autres).
- 3. Montrer que G_0 est un groupe. Montrer que $G_0 = G_{\mathcal{C}}$ (on pourra écrire un élément de G comme produit fini d'éléments de $G_{\mathcal{C}}$ et de t_1 ou t_{-1}).
- 4. Montrer que tout élément $\varphi \in G$ s'écrit de manière unique sous la forme

$$\varphi = t \circ \varphi_0$$

avec $t \in T_G$ et $\varphi_0 \in G_{\mathcal{C}}$ et que $t = t_{\varphi(0)}$.

5. Montrer que l'ensemble (dit des entiers de Gauss)

$$\mathbb{Z} + i\mathbb{Z} = \{ \nu = m + in, \ m, n \in \mathbb{Z} \} \subset \mathbb{C}$$

est stable par les éléments de G :

$$\forall \varphi \in G, \ \forall \nu \in \mathbb{Z} + i\mathbb{Z}, \ \varphi(\nu) \in \mathbb{Z} + i\mathbb{Z}.$$

(on pourra commencer par montrer la stabilité pour les éléments de $G_{\mathcal{C}}$.)

- 6. Montrer que $T_G \subset T(\mathbb{Z} + i\mathbb{Z}) := \{t_{\nu}, \ \nu \in \mathbb{Z} + i\mathbb{Z}\}.$
- 7. A l'aide d'une conjugaison adéquate montrer que T_G contient t_i puis que

$$T_G = T(\mathbb{Z} + i\mathbb{Z}).$$

Figure 1 -

Exercice 5. Le but de cet exercice est de montrer une partie du résultat de théorie des groupes suivant :

Théorème. Soit G un groupe fini d'ordre 2p ou p est un nombre premier > 2 alors G est soit cyclique soit dihedral.

Soit G un groupe d'ordre 2p. On notera le produit de deux éléments g, g' de G, g.g' et pour g' = g, g.g sera aussi noté g^2 ; e_G désignera l'élément neutre.

- 1. Quels sont a priori les ordres possibles des éléments de G?
- 2. Montrer que si G n'est pas commutatif alors G n'a pas d'élément d'ordre 2p.
- 3. Montrer que si tous les éléments de G vérifient

$$g^2 = e_G$$

alors G est commutatif (pour cela on calculera sous cette hypothèse, les commutateurs $[g, g'] = g.g'.g^{-1}.g'^{-1}$ pour $g, g' \in G$).

- 4. On suppose dans toute la suite que G n'est pas commutatif. Montrer que G admet au moins un élément d'ordre p. On notera r un tel élément. Soit $R = r^{\mathbb{Z}}$ le sous-groupe engendre par r. Quels sont les ordres des autres éléments non-triviaux de R.
- 5. Soit G R l'ensemble des éléments de G qui n'appartiennent pas a R. Montrer que G R est non-vide et que pour tout $s \in G R$ on a

$$G - R = s.R = R.s.$$

- 6. Montrer que $s^2 \in R$ puis que $s^2 = e_G$ (on pourra utiliser la question 2.) Pour tout $s' \in G R$ que vaut s'^2 ?
- 7. Montrer que $G = \langle r, s \rangle$ est un groupe dihedral.