FMI, Info, Anul II, 2019-2020 Programare logică

Seminar 4 Forma prenex. Skolemizare. Herbrandizare

Teorie pentru S4.1:

O formulă φ este în **formă rectificată** dacă:

- (i) nici o variabilă nu apare și liberă și legată;
- (ii) cuantificatori distincți leagă variabile distincte.

Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

O formulă prenex este o formulă de forma $Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi$ unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, \dots, n\}, x_1, \dots, x_n$ sunt variabile distincte şi φ nu conține cuantificatori.

Pentru o formulă rectificată putem obține o formulă echivalentă în formă prenex astfel:

• Se înlocuiesc \rightarrow şi \leftrightarrow :

$$\varphi \to \psi \quad \exists \quad \neg \varphi \lor \psi$$
$$\varphi \leftrightarrow \psi \quad \exists \quad (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$$

• Se aplică următoarele echivalențe:

$$\neg\exists x\,\neg\varphi\quad \vdash \forall x\,\varphi\qquad \qquad \forall x\,\varphi \wedge \forall x\,\psi\quad \vdash \forall x\,(\varphi \wedge \psi)$$

$$\neg\forall x\,\neg\varphi\quad \vdash \exists x\,\varphi\qquad \qquad \exists x\,\varphi \vee \exists x\,\psi\quad \vdash \exists x\,(\varphi \vee \psi)$$

$$\neg\exists x\,\varphi\quad \vdash \forall x\,\neg\varphi\qquad \qquad \forall x\,\forall y\,\varphi\quad \vdash \forall y\,\forall x\,\varphi$$

$$\neg\forall x\,\varphi\quad \vdash \vdash \exists x\,\neg\varphi\qquad \qquad \exists x\,\exists y\,\varphi\quad \vdash \vdash \exists y\,\exists x\,\varphi$$

$$\forall x\,\varphi \wedge \psi\quad \vdash \vdash \forall x\,(\varphi \wedge \psi)\,\,\mathrm{dacă}\,\,x\not\in FV(\psi)$$

$$\exists x\,\varphi \wedge \psi\quad \vdash \vdash \exists x\,(\varphi \wedge \psi)\,\,\mathrm{dacă}\,\,x\not\in FV(\psi)$$

$$\exists x\,\varphi \wedge \psi\quad \vdash \vdash \exists x\,(\varphi \wedge \psi)\,\,\mathrm{dacă}\,\,x\not\in FV(\psi)$$

$$\exists x\,\varphi \wedge \psi\quad \vdash \vdash \exists x\,(\varphi \wedge \psi)\,\,\mathrm{dacă}\,\,x\not\in FV(\psi)$$

(S4.1) Considerăm un limbaj de ordinul I cu $\mathbf{R} = \{P, R, Q\}$ cu ari(P) = 1 și ari(R) = ari(Q) = 2. Găsiți formele echivalente prenex pentru următoarele formule:

```
1) \forall x \exists y (R(x,y) \to R(y,x)) \to \exists x R(x,x)
2) \neg P(x) \to \neg \forall y \exists x R(x,y)
3) \exists x R(x,y) \leftrightarrow \forall y Q(x,y)
```

Demonstrație:

```
1)
              \forall x \exists y (R(x,y) \to R(y,x)) \to \exists x R(x,x)
             \forall x \exists y (R(x,y) \to R(y,x)) \to \exists z R(z,z)
                                                                                       (redenumim variabile)
             \neg \forall x \exists y (\neg R(x,y) \lor R(y,x)) \lor \exists z R(z,z)
       \exists x \forall y (R(x,y) \land \neg R(y,x)) \lor \exists z R(z,z)
       \exists z (\exists x \forall y (R(x,y) \land \neg R(y,x)) \lor R(z,z))
       \exists z \exists x (\forall y (R(x,y) \land \neg R(y,x)) \lor R(z,z))
            \exists z \exists x \forall y ((R(x,y) \land \neg R(y,x)) \lor R(z,z))
2)
              \neg P(x) \rightarrow \neg \forall y \exists x R(x,y)
       \exists \neg P(z) \rightarrow \neg \forall y \exists x R(x,y)
                                                            (redenumim variabile)
       \exists P(z) \lor \neg \forall y \exists x R(x,y)
       \exists P(z) \lor \exists y \forall x \neg R(x,y)
       \exists y (P(z) \lor \forall x \neg R(x,y))
       \exists y \forall x (P(z) \vee \neg R(x,y))
3)
              \exists x R(x,y) \leftrightarrow \forall y Q(x,y)
           \exists x R(x, u) \leftrightarrow \forall y Q(v, y)
                                                                                                                       (redenumim variabile)
       \exists x R(x,u) \rightarrow \forall y Q(v,y)) \land (\forall y Q(v,y) \rightarrow \exists x R(x,u))
       \exists x R(x, u) \rightarrow \forall y Q(v, y)) \land (\forall y' Q(v, y') \rightarrow \exists x' R(x', u))
                                                                                                                       (redenumim variabile)
       \exists \quad (\neg \exists x R(x, u) \lor \forall y Q(v, y)) \land (\neg \forall y' Q(v, y') \lor \exists x' R(x', u))
       \exists (\forall x \neg R(x, u) \lor \forall y Q(v, y)) \land (\exists y' \neg Q(v, y') \lor \exists x' R(x', u))
       \exists \forall x \forall y (\neg R(x, u) \lor Q(v, y)) \land \exists y' \exists x' (\neg Q(v, y') \lor R(x', u))
       \exists \forall x \forall y \exists y' \exists x' ((\neg R(x, u) \lor Q(v, y)) \land (\neg Q(v, y') \lor R(x', u)))
```

Teorie pentru S4.2:

Fie φ enunț în formă prenex. Definim φ^{sk} o formă Skolem a lui φ și $\mathcal{L}^{sk}(\varphi)$ astfel:

• dacă φ este liberă de cuantificatori, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,

- dacă φ este universală¹, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c]$, $\mathcal{L}^1 = \mathcal{L} \cup \{c\}$.
- dacă $\varphi = \forall x_1 \dots \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ . Dacă φ^1 este liberă de cuantificatori sau universală, atunci $\varphi^{sk} = \varphi^1$. Dacă φ^1 nu este universală, atunci formăm $\varphi^2, \varphi^3, \ldots$, până ajungem la o formulă universală și aceasta este φ^{sk} .

(S4.2) Consideram un limbaj de ordinul I cu $\mathbf{C} = \{b\}$ şi $\mathbf{R} = \{P, R, Q\}$ cu ari(P) = 1 şi ari(R) = ari(Q) = 2. Găsiți formele Skolem pentru următoarele formule în formă prenex:

- 1) $\forall x \exists y \forall z \exists w (R(x,y) \land (R(y,z) \rightarrow (R(z,w) \land R(w,w))))$
- 2) $\forall x_1 \forall y_1 \exists y_2 \exists x_2 ((\neg R(x_1, y_2) \lor Q(b, y_1)) \land (\neg Q(x_1, y_2) \lor R(x_2, b)))$
- 3) $\exists x_1 \forall y_1 \exists x_2 (P(y_1) \lor R(x_1, x_2))$

Demonstrație:

- 1) $\varphi_1 = \forall x \forall z \exists w (R(x, f(x)) \land (R(f(x), z) \rightarrow (R(z, w) \land R(w, w))))$ $(y \mapsto f(x))$ $\varphi_2 = \forall x \forall z (R(x, f(x)) \land (R(f(x), z) \rightarrow (R(z, g(x, z)) \land R(g(x, z), g(x, z)))))$ $(w \mapsto g(x, z))$
- 2) $\varphi_1 = \forall x_1 \forall y_1 \exists x_2 ((\neg R(x_1, f(x_1, y_1)) \lor Q(b, y_1)) \land (\neg Q(x_1, f(x_1, y_1)) \lor R(x_2, b))) \quad (y_2 \mapsto f(x_1, y_1)) \Leftrightarrow \varphi_2 = \forall x_1 \forall y_1 ((\neg R(x_1, f(x_1, y_1)) \lor Q(b, y_1)) \land (\neg Q(x_1, f(x_1, y_1)) \lor R(g(x_1, y_1), b))) \quad (x_2 \mapsto g(x_1, y_1))$
- 3) $\varphi_1 = \forall y_1 \exists x_2 (P(y_1) \lor R(c, x_2))$ $(x_1 \mapsto c)$ $\varphi_2 = \forall y_1 (P(y_1) \lor R(c, f(y_1)))$ $(x_2 \mapsto f(y_1))$

Teorie pentru S4.3:

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

¹Un enunt se numește **universal** dacă conține doar cuantificatori universali.

- Definim universul Herbrand al formulei φ , notat $T(\varphi)$, astfel:
 - dacă c este o constantă care apare în φ atunci $c \in T(\varphi)$,
 - dacă φ nu conține nicio constantă atunci alegem o constantă arbitrară c și considerăm că $c \in T(\varphi)$,
 - dacă f este un simbol de funcție care apare în φ cu ari(f) = n și $t_1, \ldots, t_n \in T(\varphi)$ atunci $f(t_1, \ldots, t_n) \in T(\varphi)$.
- Definim expansiunea Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in T(\varphi) \}.^2$$

(S4.3) Considerăm un limbaj de ordinul I cu $\mathbf{F} = \{f, g\}$ cu ari(f) = 2 și ari(g) = 1, $\mathbf{C} = \{b, c\}$, $\mathbf{R} = \{P, Q\}$ cu ari(P) = 3, ari(Q) = 2 și următoarele formule:

- 1) $\varphi := \forall x \forall y P(c, f(x, b), g(y))$
- 2) $\psi := \forall x \forall y (Q(x, b) \lor Q(x, g(y)))$
- (a) Descrieți termenii din universul Herbrand.
- (b) Descrieți formulele din expansiunea Herbrand a următoarelor formule:
- (c) Cercetați satisfiabilitatea formulelor φ și ψ .

Demonstrație: (a) Universul Herbrand

$$T(\varphi) = \{b, c, g(b), g(c), g(g(b)), g(g(c)), \dots, f(b, c), f(b, g(b)), f(b, g(c)), f(g(c), b), f(g(c), g(c)), \dots\}$$
$$T(\psi) = \{b, g(b), g(g(b)), g(g(g(b))), g(g(g(b))), \dots\}$$

(b) Expansiunea Herbrand

$$\mathcal{H}(\varphi) = \{ P(c, f(b, b), g(b)), P(c, f(b, b), g(c)), P(c, f(c, b), g(b)), P(c, f(g(b), b), g(g(g(b)))), \ldots \}$$

$$\mathcal{H}(\psi) = \{ Q(b, b) \lor Q(b, g(b)), Q(b, b) \lor Q(b, g(g(b))), Q(g(b), b) \lor Q(g(b), g(b)), Q(g(b), b) \lor Q(g(b), g(b)), \ldots \}$$

(c) Ştim că o formulă este satisfabilă dacă expansiunea Herbrand este satisfiabilă, adică dacă putem defini relațiile P şi Q în universul Herbrand astfel încât expansiunea formulei să aibă un model Herbrand.

1) Definim $P^{\mathcal{H}} = \{(c, f(t_1, b), g(t_2)) \mid t_1, t_2 \in T(\varphi)\}.$

2) Definim
$$Q^{\mathcal{H}} = \{(t,b) \mid t \in T(\psi)\}$$

²Reamintim că $\psi[x/t]$ este formula obținută înlocuind în ψ toate aparițiile libere ale lui x cu t.

(S4.4) Considerăm următoarea formulă în logica de ordinul I:

$$\varphi = \forall y \, \forall z \, ((\neg P(f(a)) \vee Q(y)) \wedge P(z) \wedge \neg Q(b))$$

Construiți expansiunea Herbrand și arătați că formula nu este satisfiabilă.

$$\begin{split} \mathbf{Demonstraţie:} \quad T(\varphi) &= \{a,b,f(a),f(b),f(f(a)),f(f(b)),\cdots\} \\ \mathcal{H}(\varphi) &= \{ (\neg P(f(a)) \lor Q(a)) \land P(a) \land \neg Q(b), \\ \quad & (\neg P(f(a)) \lor Q(f(a))) \land P(f(a)) \land \neg Q(b), \\ \quad & (\neg P(f(a)) \lor Q(b)) \land P(f(a)) \land \neg Q(b),\cdots \} \end{split}$$

Observăm că $(\neg P(f(a)) \lor Q(b)) \land P(f(a)) \land \neg Q(b)$ e nesatisfiabilă, deci $\mathcal{H}(\varphi)$ este nesatisfiabilă.

5