GIAB Tandem Repeat Benchmark

Adam English
Human Genome Sequencing Center
Baylor College of Medicine

Repeat Motif >= 2bp Variant Sequence (INDEL) >= 5bp

An insertion/deletion represents repeat expansion/contraction

Neurological Disorders

Amyotrophic lateral sclerosis and/or frontotemporal dementia

Dentatorubral-pallidoluysian atrophy

Episodic ataxia

Friedreich ataxia

Hereditary essential tremor type 6

Huntington's disease

Myotonic dystrophy 1

Neuronal intranuclear inclusion disease

Spinocerebellar ataxia

Spinal and bulbar muscular atrophy

Panhypopituitarism and Growth Hormone Deficiency

X-linked mental retardation with isolated growth hormone

X-linked panhypopituitarism

Muscular Dystrophies

Duchenne muscular dystrophy
Oculopharyngeal muscular dystrophy

* Deduped/Grouped by ChatGPT

Known Pathogenic Tandem Repeats

Epilepsy and Seizure Disorders

Developmental and epileptic encephalopathy Familial adult myoclonic epilepsy Mental retardation, FRA12A type

Ophthalmological Disorders

Blepharophimosis, ptosis, and epicanthus inversus syndrome

Fuchs endothelial corneal dystrophy-3

Cardiovascular Disorders

Tetralogy of Fallot

Myopathy

CANVAS syndrome

Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome

Oculopharyngodistal myopathy 1

Connective Tissue Disorders

Cleidocranial dysplasia

Desbuquois dysplasia-2

Multiple epiphyseal dysplasia

Pseudoachondroplasia

Synpolydactyly

Interesting TR properties

- <10% of GRCh38 is tandem repeats
- Fewer TRs in Protein Coding Regions
- More TRs in Protein Coding Promoters
- TRs are highly polymorphic

Variant counts from 86 long-read assemblies

Size	Total	Within TR	Percent
SNP	106,410,565	19,448,255	18.28%
[1,5)	14,421,648	3,750,268	26.00%
[5,50)	3,138,977	2,192,451	69.85%
SV	763,953	567,553	74.29%

p-value: 0.0099

numOverlaps

UCSC Simple Repeat Track <50kbGENCODEV43 (1kbp for promoters) – RegionR

TR Benchmark Goals

Build a benchmark for Tandem Repeats in HG002

Three main components:

- Regions Where are tandem repeats in the reference
- Variants Which regions have tandem repeats expansions/contractions
- Tools How to compare variants

TR Regions

The GIAB TR group provided 'seeds' for tandem repeat regions.

Processing:

- Span between 10bp, 50kbp
- Add 25bp slop, intra-merge bed
- Inter-merge bed files
- Run TRF/RepeatMasker
- Simplify annotations

	TR region
TR annotation	ATACATACATACATACATACATACATACATACATACATA

Name	Source	Count	~Genome Cov
GIAB	FTP	1,269,585	4.42%
Baylor	UCSC Genome Browser	652,137	2.54%
UCSC1	Ensembl	1,738,251	1.20%
UCSC2	Github	10,259	0.02%
TRGT	Github	163,400	0.15%
pbsv	Github	316,944	4.55%
Illumina	Github	163,355	0.15%
USC	<u>Pre-print</u>	467,104	1.62%
pCGG	<u>Paper</u>	5,765	0.01%

TR Regions Summary

Total of 1,784,803 regions spanning 237.9 Mbp. ~8% of GRCh38.

Tandem Repeat Catalog

- Simplify annotations per-region
- Give descriptions of the regions
 - Are the region's repeat(s) complex?
 - Do we have a decent buffer of non-TR sequence? (aiming for ±25bp)
 - o Is there "contamination" of interspersed repeats?
- Other information that may assist stratification or interesting summaries
 - CODIS 53 sites
 - Known Pathogenic Repeats 66 sites
 - o Genes Ensembl v105

Overlapping Repeat Motifs

chr1	72120	72163	16	2.7	59	1.47	ATATATACATACACAC
chr1	72124	72164	12	3.3	62	1.49	ATATATACATAC
chr1	72128	72163	4	8.8	52	1.48	ATAC

>chr1:72120-72164

ATATATACATACACACATATATACATACACACATATACATA

ATACATACATACATACATACATACATACATACATAC

ATACATACATACATACATACATACATACATA

Simplifying TR Annotations

Classify region annotations for filtering into four classes based on motif and overlap with other annotations.

- Homopolymer: polyN repeat
- Isolated: repeat is by itself
- Parent/Nested: repeats within a repeat
- Staggered: repeat overlapping repeats

Simplifying TR Annotations

- Homopolymer: removed
- Isolated: kept (these are the best)
- Parent/Nested:
 - The longest spanning parent and annotations within its copies are kept
- Staggered:
 - Abbutting annotations that are 'copy adjacent' are kept

After Simplifying:

- n_annos = 7
- n_subregions = 3

Simplification Results

- Remove regions with only homopolymer annotations
 - 386,985 regions removed from 2,171,789 (17.8%)
- Remaining 1,784,803 regions cover 237,865,075 bp (~8.13% of GRCh38)
 - Started with 3,626,555 annotations
 - Collapsed 1,781,487 annotations (49.1%)
 - End with 1,845,068 annotations

Per-region annotation summary

	mean	std	min	25%	50%	75%	max
n_annos	1.64	1.96	1	1	1	2	296
n_subregions	1.46	1.05	1	1	1	2	191

Overlap Flag Summary

	Bit			Region Count	Percent of Regions											
isolated	nested	parent	staggered_dn	staggered_up												
isolated					1,160,810	68.91%										
			staggered_dn	-	5,202	0.31%										
				staggered_up	22,926	1.36%										
		parent			103,958	6.17%										
													staggered_dn	-	6,429	0.38%
				staggered_up	19,407	1.15%										
	nested	parent		-	13,233	0.79%										
							staggered_dn	-	6,130	0.36%						
				staggered_up	13,394	0.80%										
		parent		-	284,165	16.87%										
					staggered_dn	-	1,513	0.09%								
				staggered_up	163	0.01%										
	nested	parent		-	36,228	2.15%										
									staggered_dn	-	10,501	0.62%				
				staggered_up	384	0.02%										

Regions with "simple" annotations: 1,548,933 (91.95%)

v1.1 Available -> https://github.com/ACEnglish/adotto/

chr/start/end region coordinates (3 columns)

	region economicates (o columno)
ovl_flag	overlap categories of annotations inside the region
up_buff	number of bases upstream of the first annotation's start that are non-TR sequence
dn_buff	number of bases downstream of the last annotation's end that are non-TR sequence
hom_pct	percent of region's range annotatable as homopolymer
n_filtered	number of annotations removed from the region
n_annos	number of annotations remaining in the region
n_subregions	number of subregions in the region
mu_purity	average purity of annotations in region
pct_annotated	percent of the region's range (minus buffer) annotated
interspersed	name of interspersed repeat class found within region by RepeatMasker
patho	name of gene affected by a pathogenic tandem repeat in region
codis	name of codis site contained in region
gene_flag	gene features intersecting region (Ensembl v105)
biotype	comma separated gene biotypes intersecting region (Ensembl v105)
annos	JSON of TRF annotations in the region (list of dicts with keys: motif, entropy, ovl_flag, etc)

TR Benchmark Goals

Build a benchmark for Tandem Repeats in HG002

Three main components:

- Regions Where are tandem repeats in the reference
- Variants Which regions have tandem repeats expansions/contractions
- Tools How to compare variants

Variants - Sample Data

Collected haplotype resolved long-read assemblies from multiple projects covering multiple individuals.

•	3 Projects	<u>Replicates</u>	
	o HPRC (47)	HG00733	3
	o Eichler (34)	NA19240	2
	o Li (4)	NA24385	3
	172 haplotypes	HG03486	2
•	86 samples	HG02818	2
	78 individuals	NA12878	2

Variant Calling Pipeline

- Built a pVCF from haplotype-resolved long-read assemblies.
- Choosing alignment parameters for minimap2

Parameter Performance GIAB HG002 SV v0.6 (hg19)

	_	True-pos	-					_
Project	Params	baseline	call	Faise-pos	False-neg	Precision	Recall	F-measure
li	giab	9,273	10,516	1,093	368	0.906	0.962	0.933
li	tru	9,251	10,477	945	390	0.917	0.960	0.938
li	cust	9,338	10,595	890	303	0.923	0.969	0.945
li	pan	9,335	10,647	712	306	0.937	0.968	0.953
eich	giab	9,241	10,448	1,053	400	0.908	0.959	0.933
eich	tru	9,217	10,403	935	424	0.918	0.956	0.936
eich	pan	9,316	10,590	700	325	0.938	0.966	0.952

Haplotype Coverage

Intersecting TR Regions with Assembly Coverage

- When selecting the regions for the HG002 benchmark, we need to have confident coverage (1x per-hap) from the HPRC haplotype-resolved assembly.
- Analyze minimap2 alignment coverage
 - adotto
 - Maximize variant representation consistency with v0.6 SV
 - dipcall + NIST curation
 - Maximize alignment continuity + masking of 'problematic' regions
 - How much of the genome is covered confidently?
 - How many TRregions are covered confidently?

Genome

	Span Count	Span Total BP	Genome %
dipcall	48,624	2,778,450,120	95.03%
adotto	328	2,668,392,630	91.27%
Both	45,870	2,615,712,814	89.47%

TRregions

	Count	Span	Genome %	TRr Count %	TRr Span %
Total TRr	1,784,804	237,865,075	8.14%		
dipcall	1,707,318	212,853,127	7.28%	95.66%	89.48%
adotto	1,701,194	217,607,408	7.44%	95.32%	91.48%
Both	1,645,456	203,578,939	6.96%	92.19%	85.59%

Patho/Codis

	Patho	Patho %	Codis	Codis %
Total TRr	62		51	
dipcall	50	80.65%	44	86.27%
adotto	52	83.87%	24	47.06%
Both	42	67.74%	23	45.10%

Self-Organizing Map

- Built a SOM with Kmer Featurization of sequence spanned by TRregions
- k=3; n features = 64; frequency normalized
- Hyperparameters:
- Shape 25x25; sigma=1.5; learning_rate=1; topology='hexagonal'; neighborhood_function='gaussian'; activation_distance='euclidean'
- Map Patho, Codis, and 100 randomly sampled 'interspersed' TRregions

Resulting SOM

- 54 Patho TRr in 5 neighborhoods
- Interspersed TRr concentrated in two neighborhoods

Neighborhood	Motif	Count
	CGG	10
	CCG	10
	CNG	7
	CTG	7
_	GCN	2
A	ACCTCGCTGTG CCGCTGCCG	1
	GGCCTG	1
	CGCGGGGCGG GG	1
	CCCCGG	1
В	AGC	6
С	AAAAT	3
D	AAAAG	1
	AAG	1
E	TTTTA	3

What types of TRr are in these dipcall 'dryspots'?

SegDups

73,736 regions

Microsatellites 40,225 regions

Gaps 1,333 regions

Homopolymers

The 'dry' spots often have regions with imperfect homopolymers at the edge of SINEs. We exclude these from our benchmark regions even though they are covered by the assembly because we exclude perfect or imperfect homopolymers longer than 30bp due to higher error rates

HG002 HPRC Assembly Covered TR Regions' Variants

- 1,645,456 (92%) of TR regions covered
- ~90% are homozygous reference
 - Negative controls

Туре	Count (>=5bp)	
Insertion	74,256	
Deletion	65,061	
Total	139,317	

TR Benchmark Goals

Build a benchmark for Tandem Repeats in HG002

Three main components:

- Regions Where are tandem repeats in the reference
- Variants Which regions have tandem repeats expansions/contractions
- Tools How to compare variants

Method | Open Access | Published: 27 December 2022

Truvari: refined structural variant comparison preserves allelic diversity

Adam C. English , Vipin K. Menon, Richard A. Gibbs, Ginger A. Metcalf & Fritz J. Sedlazeck

Genome Biology 23, Article number: 271 (2022) Cite this article

	CallerC	CallerB	CallerA
TP-base	88,239	39,220	64,489
TP-comp	88,532	39,227	65,379
FP	52,134	6,166	11,138
FN	51,133	100,152	74,883
precision	0.629	0.864	0.854
recall	0.633	0.281	0.463
f1	0.631	0.425	0.600
base cnt	139,372	139,372	139,372
comp cnt	140,666	45,393	76,517

Variant Representation - Example 1

14bp DEL

chr1:157585342

REF: CTCTCTTTCTT

ALT: C

FN:

GT: 1/0

FP:

chr1:157585346

Chr1:15/585346

PctSizeSimilarity=1

PctSeqSimilarity=0.4615

ALT: TTCTTTCTTTCTTTCTTTCTTTCTTTCT

GT: 0/1

14bp DEL

Variant Representation - Example 2

- Identical HPRC HG002 input assembly
- Different minimap2 alignment parameters

Truvari phab Variant Harmonization with Multiple Sequence Alignment

Phab Output - Example 1

				Base	Comp
chr1	157585342	CTCTCTTTCTTTCTTTCTT	C	0/1	0/1
chr1	157585343	TCTCTTTCTTT	Т	1/0	1/0
chr1	157585395	С	Τ	1/1	1/1

100% Sequence and Size Similarity

Phab Output - Example 2

Phab Output - Example 2

New Problems: Counting and Speed

Variant Count by State:

Alignments: 1 FN, 3 FP

Harmonized: 4 TP

Region Count by State:

Alignments: 1 FP/FN

Harmonized: 1 TP

Truvari refine

Automated benchmark result refinement with phab

- Find regions with at least one FP or one FN
- Runs regions through `phab`
- Re-runs 'truvari bench' on harmonized variants
- Recalculate performance metrics

```
$ truvari bench ... -o result/
$ truvari refine --reference $REF result/
```

```
result/
  [ .. bench files .. ]
  refine.variant_summary.json
  refine.region_summary.json
  refine.regions.txt
  phab.output.vcf.gz
  phab_bench/
```

Truvari refine results on 'strawman' benchmark

Variant Summary			
	Caller1	Caller2	Caller3
TP-base	39,792	139,477	68,735
TP-comp	39,798	140,455	69,642
FP	5,620	16,727	6,225
FN	100,599	9,186	71,075
precision	0.876	0.894	0.918
recall	0.283	0.938	0.492
f1	0.428	0.915	0.640
base cnt	140,391	148,663	139,810
comp cnt	45,418	157,182	75,867

Refine - Bench Summary Difference			
precision	0.012	0.265	0.064
recall	0.002	0.305	0.029
f1	0.003	0.284	0.040

Region Summary				
	Caller1	Caller2	Caller3	
TP	31,314	94,836	55,340	
TN	1,537,514	1,529,488	1,535,837	
FP	5,159	15,054	6,037	
FN	72,993	6,790	48,611	
base P	104,701	104,249	104,607	
base N	1,540,755	1,541,207	1,540,849	
comp P	37,757	111,327	62,711	
comp N	1,607,699	1,534,129	1,582,745	
• PPV	0.829	0.852	0.882	
• TPR	0.299	0.910	0.529	
(specificity) TNR	0.998	0.992	0.997	
NPV	0.956	0.997	0.970	
ACC	0.953	0.987	0.967	
ВА	0.648	0.951	0.763	
F1	0.440	0.880	0.661	

Summary

- Regions Where are tandem repeats in the reference
- Variants Which regions have tandem repeats expansions/contractions
- Tools How to compare variants
- Remaining Work
 - Internal Review of a 'Strawman' benchmark
 - 5bp INDEL not necessarily a TR expansion/contraction
 - More curation of regions on HPRC HG002 specifically
 - Additional tooling for stratifications/reporting
 - Documentation
 - Do it all again against CHM13

Acknowledgements

Tandem Repeat Benchmark Group

- Fritz Sedlazeck
- Justin Zook
- Egor Dolzhenko
- Mark Chaisson
- Justin Wagner
- Helya neh Ziaei-jam
- Jonghun Park
- Nathanael Olson
- Nathan Dwarshuis
- Wouter De Coster
- Michael Eberle
- Don Freed