Problem Set #01

October 29, 2019

4. **Define:** UNUSED_{TM} as the set of $\langle M, q \rangle$ such that M is a tm and q is a state of M and there does

WTS: whether $UNUSED_{TM}$ is decidable, r.e. but not decidable, co-r.e., but not r.e. or none of the above.

Intuition: UNUSED_{TM} isn't r.e. or decideable, but co is r.e.

not exist a string w such that M enters q while processing w.

Proof by contradiction: We can show that UNUSED_{TM} is decidable and that TM R decides it. Therefore since R solves UNUSED_{TM}, we can leverage R to check if q_{accept} is unused in E_{TM} . Intuitively we know that q_{accept} is only unused iff $L(M) = \emptyset$. We create a TM S that decides E_{TM} using R as a subroutine:

 $S = \text{on input } \langle M \rangle$, where M is a TM

- 1. Run TM R on $\langle M, q_{accept} \rangle$
- 2. If R accepts, accept, if R rejects, reject

Therefore we have built a decider for E_{TM} , however this is a contradiction! We know that E_{TM} is undecidable, therefore there cannot not exist a TM that decides $UNUSED_{TM}$

We can prove that the complement of $UNUSED_{TM}$ is r.e.:

WTS: $USED_{TM}$ is r.e.

Proof by construction:

Build E an enumerator: (must output in canonical order)

- 1. Simulate $USED_{TM}$ on tape 1
- 2. For each string s in canonical order
 - a. Run USED $_{TM}$ on s
 - b. If we pass through state q accept.
 - c. else, continue

Since we know we can find q in a finite amount of time or it keeps looping we know that this is $USED_{TM}$ r.e. We know then that since $UNUSED_{TM}$ is undecidable and $USED_{TM}$ is r.e. that $UNUSED_{TM}$ must not be r.e.