Chapitre 12

Suites réelles et complexes

Jusqu'au §8, on ne considère que des suites réelles.

1 Généralités

Définition 1.1

Une suite (réelle) est une application

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$
.

On note pour tout entier $n \in \mathbb{N}$ $u_n = u(n)$ et $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles, et la suite u se note $(u_n)_{n \in \mathbb{N}}$ ou (u_n) .

Rappels:

1. On peut ajouter et multiplier deux suites : pour $(u_n), (v_n)v \in \mathbb{R}^{\mathbb{N}}$ et $\lambda \in \mathbb{R}$, on définit pour tout entier n

$$(u+v)_n = u_n + v_n,$$
 $(\lambda \cdot u)_n = \lambda u_n,$ $(uv)_n = u_n v_n.$

2. Rappelons qu'une suite $(u_n)_{n\in\mathbb{N}}$ est croissante si pour tout $n\in\mathbb{N}$, on a $u_{n+1}\geqslant u_n$, et décroissante si pour tout $n\in\mathbb{N}$, on a $u_{n+1}\leqslant u_n$. Dans le cas où la suite est à termes **strictement positifs**, la suite est croissante si et seulement si pour tout $n\in\mathbb{N}$, on a

$$\frac{u_{n+1}}{u_n} \geqslant 1.$$

- 3. La somme de deux suites croissantes (resp. décroissantes) est croissante (resp. décroissante).
- 4. Une suite (u_n) est constante si $u_n = u_{n+1}$ pour tout $n \in \mathbb{N}$, et stationnaire s'il existe $n_0 \in \mathbb{N}$ tel que $u_n = u_{n+1}$ pour tout $n \ge n_0$, i.e. si (u_n) est constante à partir d'un certain rang.
- 5. Les suites constantes sont les seules à être à la fois croissante et décroissante.
- 6. La suite arithmétique de premier terme $a \in \mathbb{R}$ et de raison $r \in \mathbb{R}$ est la suite (u_n) définie pour tout $n \in \mathbb{N}$ par

$$u_{n+1} = u_n + r \quad \text{et} \quad u_0 = a,$$

ou de manière équivalente par

$$u_n = a + nr$$
.

On a

$$\sum_{n=0}^{n} u_n = (n+1) \frac{u_0 + u_n}{2}.$$

Une telle suite est strictement croissante si r > 0, constante si r = 0, et strictement décroissante si r < 0.

7. La suite géométrique de premier terme $a \in \mathbb{R}$ et de raison $q \in \mathbb{R}$ est la suite (v_n) définie pour tout $n \in \mathbb{N}$ par

$$v_{n+1} = qv_n \quad \text{et} \quad v_0 = a,$$

ou de manière équivalente par

$$v_n = aq^n$$
.

On a

$$\sum_{k=0}^{n} v_n = a \frac{q^{n+1} - 1}{q - 1} \text{ si } q \neq 1, \quad (n+1)a \text{ sinon.}$$

Une telle suite est croissante si $a \ge 0$ et $q \ge 1$, décroissante si $a \le 0$ et $q \ge 1$, etc...

8. Une suite (u_n) est majorée (resp. minorée) s'il existe $M \in \mathbb{R}$ tel que $u_n \leqslant M$ (resp. $M \leqslant u_n$) pour tout $n \in \mathbb{N}$. Elle est bornée si elle est à la fois majorée et minorée, ou encore si la suite $(|u_n|)_{n \in \mathbb{N}}$ est majorée.

Définition 1.2

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$. Une suite extraite (ou sous-suite) de (u_n) est une suite (v_n) telle qu'il existe une fonction $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $\forall n \in \mathbb{N}, v_n = u_{\varphi(n)}$.

Remarque.

On note souvent une sous-suite de la façon suivante :

$$(u_{k_n})_{n\in\mathbb{N}},$$

et on a donc $\varphi(n) = k_n$.

Remarque.

Comme φ est strictement croissante, on a $\varphi(n) \ge n$ pour tout entier n.

2 Convergence, divergence et divergence vers l'infini

2.1 Convergence et divergence

Définition 2.1 (Suite convergente)

Une suite $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ est convergente s'il existe $\ell \in \mathbb{R}$ tel que

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \mid \forall n \geqslant N, |u_n - \ell| \leqslant \varepsilon,$$

ou plus formellement :

$$\exists \ell \in \mathbb{R}, \ \forall \varepsilon > 0, \ \exists \ N \in \mathbb{N} \mid \forall \ n \geqslant N, \ |u_n - \ell| \leqslant \varepsilon.$$

Le réel ℓ est alors unique et est la limite de (u_n) , qui est notée $\lim_{n\to+\infty} u_n$.

Méthode 2.2

Si une suite $(u_n)_n$ vérifie une proriété P_1 à partir du rang n_1 , et une propriété P_2 à partir du rang n_2 , alors elle vérifie les propriétés P_1 et P_2 à partir du rang $\max(n_1, n_2)$.

Méthode 2.3

Pour démontrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ converge, on utilisera en général les théorèmes qui suivent. Mais parfois, il faut revenir à la définition, et la méthode est alors la suivante.

On essaye de deviner la limite ℓ , puis on choisit un $\varepsilon > 0$ quelconque, et on démontre que pour cet epsilon là, il existe un $N \in \mathbb{N}$ tel que si $n \ge N$, $|u_n - \ell| \le \varepsilon$. La démonstration étant faite pour un epsilon quelconque, elle est valable pour tous les epsilons > 0, donc la suite converge bien vers ℓ .

Remarque.

Il est important de noter que pour montrer qu'une suite converge vers un certain réel, il suffit de montrer la relation de la définition pour tous les $\varepsilon > 0$ plus petit par exemple que 1 (ou $\sqrt{2}$, ou tout réel > 0). Ce sont les "petites" valeurs de ε qui comptent, c'est à dire (par exemple) que si u est une suite et $\ell \in \mathbb{R}$, on a

$$\left(\forall \, \varepsilon > 0, \, \exists \, N \in \mathbb{N} \mid \forall \, n \in \mathbb{N}, \, \, n \geqslant N \Longrightarrow |u_n - \ell| < \varepsilon \right) \iff$$

$$\left(\forall \, \varepsilon \in]0,1], \, \exists \, N \in \mathbb{N} \mid \forall \, n \in \mathbb{N}, \, \, n \geqslant N \Longrightarrow |u_n - \ell| < \varepsilon \right).$$

De même, si $a \in \mathbb{R}_+^*$, on a

$$\left(\forall \, \varepsilon > 0, \, \exists \, N \in \mathbb{N} \mid \forall \, n \in \mathbb{N}, \, n \geqslant N \Longrightarrow |u_n - \ell| < \varepsilon\right) \iff \left(\forall \, \varepsilon > 0, \, \exists \, N \in \mathbb{N} \mid \forall \, n \in \mathbb{N}, \, n \geqslant N \Longrightarrow |u_n - \ell| < a\varepsilon\right).$$

Définition 2.4 (Suite divergente)

Une suite (u_n) est divergente si elle n'est pas convergente, *i.e.* si

$$\forall \ell \in \mathbb{R}, \exists \varepsilon > 0, \forall N \in \mathbb{N}, \exists n \geqslant N, |u_n - \ell| \geqslant \varepsilon.$$

Remarque.

La négation de l'implication donne plutôt

$$\forall \ell \in \mathbb{R}, \exists \varepsilon > 0, \forall N \in \mathbb{N}, \exists n \geqslant N, |u_n - \ell| > \varepsilon.$$

Mais les deux sont équivalents. On utilise en général l'inégalité large.

Proposition 2.5

Soit $\ell \in \mathbb{R}$. Une suite (u_n) converge vers ℓ si et seulement si la suite $(u_n - \ell)$ converge vers 0.

Méthode 2.6

Pour montrer qu'une suite (u_n) converge vers un réel ℓ , on montre (presque) toujours que la suite $(u_n - \ell)$ tend vers 0. Pour cela, on majore $|u_n - \ell|$.

Définition 2.7 (À partir d'un certain rang)

Une suite $(u_n)_{n\in\mathbb{N}}$ vérifie une propriété P à partir d'un certain rang s'il existe $n_0\in\mathbb{N}$ tel que la suite $(u_n)_{n\geq n_0}$ vérifie la propriété P.

Proposition 2.8

Soient $\ell \in \mathbb{R}$ et $(u_n), (v_n) \in \mathbb{R}^{\mathbb{N}}$.

- 1. Si (v_n) converge vers 0 et si $|u_n \ell| \leq v_n$ à partir d'un certain rang, alors (u_n) converge vers ℓ .
- 2. Si (u_n) converge vers ℓ , alors $(|u_n|)$ converge vers $|\ell|$.

Remarque.

La réciproque du 2 est fausse : $((-1)^n)$.

Méthode 2.9

Soit une suite (u_n) , un entier $n_0 \in \mathbb{N}$, un réel ℓ et un réel $\lambda \in [0,1[$ tels que, pour tout $n \ge n_0$, $|u_{n+1} - \ell| \le \lambda |u_n - \ell|$. On montre alors par récurrence sur $n \ge n_0$ que $|u_n - \ell| \le \lambda^{n-n_0} |u_{n_0} - \ell|$, et donc que $u_n \xrightarrow[n \to +\infty]{} \ell$.

Proposition 2.10

Soient $a, \ell \in \mathbb{R}$ et $(u_n)_n$ une suite convergente vers ℓ . Si $\ell > a$ (resp. $\ell < a$), alors $u_n > a$ (resp. $u_n < a$) à partir d'un certain rang.

Corollaire 2.11

Soit $(u_n)_n$ une suite convergente vers un réel ℓ . Si $\ell > 0$ (resp. $\ell < 0$), la suite $(u_n)_n$ est minorée à partir d'un certain rang par un réel > 0 (resp. majorée à partir d'un certain rang par un réel < 0). En particulier, si $\ell \neq 0$, la suite $(|u_n|)_n$ est minorée à partir d'un certain rang par un réel > 0.

Remarques.

- 1. Attention, le résultat est faux si $\ell = 0$, comme le prouve l'exemple de la suite $(1/n)_{n \in \mathbb{N}^*}$.
- 2. Il faut bien faire la différence entre

$$\forall n \in \mathbb{N}, u_n > 0$$

et

$$\exists a > 0, \ \forall n \in \mathbb{N}, \ u_n \geqslant a.$$

La deuxième affirmation implique la première, mais la réciproque est fausse, comme le prouve l'exemple de la suite $(1/n)_{n\in\mathbb{N}^*}$.

En particulier, dans le deuxième cas, on pourra étudier la limite de $(1/u_n)$.

Corollaire 2.12

Toute suite convergente est bornée.

Remarque.

La réciproque est évidemment fausse, comme le prouve l'exemple de la suite $((-1)^n)_{n\in\mathbb{N}}$.

2.2 Suites divergentes vers l'infini

Définition 2.13

Une suite $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ tend vers $+\infty$ si

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N} \mid \forall n \geqslant N, u_n \geqslant A,$$

et elle tend vers $-\infty$ si

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N} \mid \forall n \geqslant N, u_n \leqslant A.$$

Remarque.

Dans le cas de $+\infty$, on peut remplacer " $A \in \mathbb{R}$ " par " $A \ge 0$ " ou " $A \ge a$ " où a et un réel fixé, et dans le cas de $-\infty$, on peut remplacer " $A \in \mathbb{R}$ " par " $A \le 0$ " ou " $A \le a$ " où a et un réel fixé.

Proposition 2.14

Une suite divergente vers $+\infty$ (resp. $-\infty$) est minorée (resp. majorée).

3 Opérations sur les limites

3.1 Combinaisons linéaires et produit

Proposition 3.1

- 1. Le produit d'une suite bornée par une suite convergente vers 0 est une suite convergente vers 0.
- 2. En particulier, Le produit d'une suite convergente par une suite convergente vers 0 est une suite convergente vers 0.

Proposition 3.2

- 1. Les combinaisons linéaires et les produits de suites bornées sont des suites bornées.
- 2. Les combinaisons linéaires et les produits de suites convergentes vers 0 sont des suites convergentes vers 0.
- 3. Les combinaisons linéaires et les produits de suites convergentes sont des suites convergentes. De plus, si $(u_n)_n$ et $(v_n)_n$ sont des suites convergentes, et $\lambda, \mu \in \mathbb{R}$, on a

$$\lim_{n \to +\infty} (\lambda u_n + \mu v_n) = \lambda \lim_{n \to +\infty} u_n + \mu \lim_{n \to +\infty} v_n \quad \text{et} \quad \lim_{n \to +\infty} (u_n v_n) = (\lim_{n \to +\infty} u_n) (\lim_{n \to +\infty} v_n).$$

Proposition 3.3

La somme d'une suite convergente et d'une suite divergente est une suite divergente.

Remarque.

La somme ou le produit de deux suites divergentes est indéterminé. Par exemple, si $u_n = (-1)^n$, $v_n = (-1)^{n+1}$, la suite $(u_n) + (u_n)$ est divergente et la suite $(u_n) + (v_n)$ est convergente.

3.2 Somme/produit avec une suite divergente vers l'infini

Proposition 3.4

Soient $(u_n)_n, (v_n)_n$ deux suites telle que $u_n \xrightarrow[n \to +\infty]{} +\infty$ et (v_n) minorée. Alors $u_n + v_n \xrightarrow[n \to +\infty]{} +\infty$.

Corollaire 3.5

Soient $(u_n)_n, (v_n)_n$ deux suites telle que $u_n \xrightarrow[n \to +\infty]{} +\infty$ et (v_n) convergente. Alors $u_n + v_n \xrightarrow[n \to +\infty]{} +\infty$.

Proposition 3.6

Soient $(u_n)_n, (v_n)_n$ deux suites telles que $u_n \xrightarrow[n \to +\infty]{} +\infty$ et (v_n) minorée un réel strictement positif. Alors $u_n v_n \xrightarrow[n \to +\infty]{} +\infty$.

Corollaire 3.7

Soient $(u_n)_n, (v_n)_n$ deux suites telles que $u_n \underset{n \to +\infty}{\longrightarrow} +\infty$ et (v_n) convergente vers un réel strictement positif. Alors $u_n v_n \underset{n \to +\infty}{\longrightarrow} +\infty$.

Méthode 3.8

- 1. Lorsqu'on a affaires à une suite (u_n) divergente vers $-\infty$, on peut considérer $(-u_n)$ pour appliquer les propositions précédentes.
- 2. On peut aussi utiliser cette proposition avec la suite $(|u_n|)_n$ lorsque celle-ci tend vers $+\infty$.

3.3 Inverse d'une suite

Proposition 3.9 (Inverse d'une suite)

Soit $(u_n)_n$ une suite convergente vers un réel $\ell \neq 0$. Alors la suite $(u_n)_n$ ne s'annule pas à partir d'un certain rang n_0 , et la suite

$$\left(\frac{1}{u_n}\right)_{n\geqslant n_0}$$

est convergente vers $1/\ell$.

Proposition 3.10

Soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$.

- 1. Si $(u_n)_n$ diverge vers $+\infty$ ou vers $-\infty$, la suite $(1/u_n)_n$ est bien définie à partir d'un certain rang et converge vers 0.
- 2. Si la suite $(u_n)_n$ est > 0 (resp < 0) à partir d'un certain rang, et converge vers 0, la suite $(1/u_n)_n$ est bien définie à partir d'un certain rang et tend vers $+\infty$ (resp. $-\infty$).
- 3. Si la suite (u_n) ne s'annule pas à partir d'un certain rang et converge vers 0, alors la suite $(1/|u_n|)_n$ est dien définie à partir d'un certain rang et converge vers $+\infty$.

Remarque.

Si $(u_n)_n$ tend vers 0 mais n'est pas de signe constant, on ne peut rien dire. Par exemple, si $u_n = (-1)^n/n$, $1/u_n = (-1)^n n$ qui ne tend ni vers $-\infty$, ni vers $+\infty$.

3.4 Compatibilité avec les inégalités

Proposition 3.11 (Conservation des inégalités larges par passage à la limite)

Soient $(u_n)_n$ et $(v_n)_n$ deux suites convergentes telles que $u_n \geqslant v_n$ à partir d'un certain rang. Alors

$$\lim_{n \to +\infty} u_n \geqslant \lim_{n \to +\infty} v_n.$$

Remarques.

1. C'est faux pour les inégalités strictes, puisque par exemple pour tout n > 0, on a

$$\frac{1}{n} > 0$$
 mais $\lim_{n \to +\infty} \frac{1}{n} = 0$.

2. Quand on utilise cette proposition, on dit qu'"on passe à la limite dans l'inégalité".

Méthode 3.12

Soient $(u_n \text{ et } (v_n) \text{ deux suites convergentes telles que } u_n < v_n \text{ à partir d'un certain rang. On veut montrer que } \lim_{n \to +\infty} u_n < \lim_{n \to +\infty} v_n$. ATTENTION : on ne peut pas passer à la limite dans une inégalité stricte.

- On peut montrer que $\lim_{n\to+\infty} u_n \neq \lim_{n\to+\infty} v_n$. Comme on sait que $\lim_{n\to+\infty} u_n \leqslant \lim_{n\to+\infty} v_n$, on aura le résultat voulu.
- On peut montrer qu'il existe a > 0 tel que pour tout $n \in \mathbb{N}$, $u_n + a \leqslant v_n$. On aura alors $\lim_{n \to +\infty} u_n + a \leqslant \lim_{n \to +\infty} v_n$, donc $\lim_{n \to +\infty} u_n < \lim_{n \to +\infty} v_n$.

Méthode 3.13

- Si (u_n) est croissante et convergente, et il faut montrer que $\lim_{n\to+\infty} u_n > a$ (où $a\in\mathbb{R}$), il suffit de montrer que $u_0 > a$.
- Si (u_n) est strictement croissante et convergente, alors $\lim_{n\to+\infty}u_n>u_0$, et même, pour tout $n_0\in\mathbb{N}, \lim_{n\to+\infty}u_n>u_{n_0}$.

Proposition 3.14

Soient a < b des réels et $(u_n)_{n \in \mathbb{N}}$ une suite convergente d'éléments de [a, b]. Alors $\lim_{n \to +\infty} u_n \in [a, b]$.

Théorème 3.15 (Théorème d'encadrement)

Soient $(u_n)_n, (w_n)_n$ deux suites convergentes ayant même limite $\ell \in \mathbb{R}$, et $(v_n)_n$ une suite telle que

$$u_n \leqslant v_n \leqslant w_n$$

à partir d'un certain rang. Alors la suite $(v_n)_n$ est convergente et converge vers ℓ .

Théorème 3.16 (Théorème de comparaison)

Soient $(u_n)_n, (v_n)_n$ deux suites telles que, à partir d'un certain rang, $u_n \geqslant v_n$.

- 1. Si $v_n \xrightarrow[n \to +\infty]{} +\infty$, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$.
- 2. Si $u_n \xrightarrow[n \to +\infty]{} -\infty$, alors $v_n \xrightarrow[n \to +\infty]{} -\infty$.

3.5 Suites extraites d'une suite convergente ou divergente vers l'infini

Proposition 3.17

Soit (u_n) une suite convergente vers $\ell \in \mathbb{R}$. Alors toute suite extraite de (u_n) est convergente vers ℓ .

Remarques.

- 1. La réciproque est fausse, comme le prouve l'exemple de la suite $((-1)^n)_{n\in\mathbb{N}}$, dont les suites extraites d'indices pairs et impairs sont convergentes.
- 2. On utilise souvent cette proposition pour montrer qu'une suite n'est pas convergente, en exhibant une sous-suite qui ne converge pas ou des sous-suites convergentes vers des limites différentes. Par exemple, si $u_n = \sin(n\pi/2)$, la sous-suite d'indices impairs ne converge pas, donc (u_n) ne converge pas.

Proposition 3.18

Soit (u_n) une suite dont les sous-suites d'indices pairs et impairs sont convergentes et ont même limite $\ell \in \mathbb{R}$. Alors (u_n) converge vers ℓ .

Proposition 3.19

Soit (u_n) une suite divergente vers $+\infty$ (resp. $-\infty$). Toute suite extraite de (u_n) diverge vers $+\infty$ (resp. $-\infty$).

4 Suites particulières

4.1 Suites arithmetico-géométriques

Définition 4.1 (Suites arithmetico-géométriques)

Une suite $(u_n) \in \mathbb{R}^{\mathbb{N}}$ est une suite arithmetico-géométrique s'il existe $a, b \in \mathbb{R}$ tels que :

$$\forall n \in \mathbb{N}, \ u_{n+1} = au_n + b.$$

On fixe une telle suite dans ce qui suit.

Proposition 4.2

- 1. Si a = 1, la suite (u_n) est arithmétique.
- 2. Si b = 0, la suite (u_n) est géométrique.

Méthode 4.3 (Étude d'une suite arithmético-géométrique)

On suppose $a \neq 1$.

- 1. On résout l'équation x = ax + b d'inconnue $x \in \mathbb{R}$. On note $\ell = \frac{b}{1-a}$ l'unique solution.
- 2. On considère la suite (v_n) définie par $v_n = u_n \ell$. On montre qu'elle est géométrique de raison a.
- 3. On en déduit une expression de u_n en fonction de n, a et b.

Proposition 4.4

Avec les notations précédentes, la suite (u_n) converge si et seulement si l'une des trois conditions suivantes est vérifiée :

- 1. |a| < 1, et sa limite est $\frac{b}{1-a}$.
- 2. $a \neq 1$ et $u_0 = \frac{b}{1-a}$: la suite est constante.
- 3. a = 1 et b = 0: la suite est constante.

4.2 Suites récurrentes linéaires d'ordre 2

Définition 4.5

Une suite (u_n) est une suite récurrente linéaire d'ordre 2 s'il existe $a, b \in \mathbb{R}, b \neq 0$, tels que :

$$\forall n \in \mathbb{N}, \ u_{n+2} = au_{n+1} + bu_n.$$

L'équation $x^2-ax-b=0$ d'inconuue $x\in\mathbb{C}$ est l'équation caractéristique de la suite.

Proposition 4.6

Soient $a, b \in \mathbb{R}$, $b \neq 0$, et (u_n) une suite telle que pour tout entier n, on ait

$$u_{n+2} = au_{n+1} + bu_n.$$

Soit (E) son équation caractéristique.

1. Si (E) admet deux solutions réelles distinctes r_1 et r_2 , alors il existe $x, y \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N}, u_n = xr_1^n + yr_2^n.$$

2. Si (E) admet une solution double r, il existe $x, y \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N}, u_n = (x + yn)r^n.$$

3. Si P admet deux solutions complexes non réelles conjuguées $re^{\pm i\theta}$ $(r \in \mathbb{R}_+^*)$, il existe $x, y \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N}, u_n = r^n(x\cos(n\theta) + y\sin(n\theta)).$$

5 Caractérisations séquentielles

5.1 Caractérisation séquentielle des bornes supérieures/inférieures

Proposition 5.1

Soit A un sous-ensemble non vide de \mathbb{R} . Alors

- 1. $M \in \mathbb{R}$ est la borne supérieure de A si et seulement si M est un majorant de A et s'il existe une suite convergente $(u_n)_{n\in\mathbb{N}}$ d'éléments de A telle que $\lim_{n\to+\infty}u_n=M$.
- 2. $m \in \mathbb{R}$ est la borne inférieure de A si et seulement si m est un minorant de A et s'il existe une suite convergente $(u_n)_{n\in\mathbb{N}}$ d'éléments de A telle que $\lim_{n\to+\infty}u_n=m$.

Proposition 5.2

Soit A un sous-ensemble non vide de \mathbb{R} . Alors A n'est pas majoré (resp. minoré) si et seulement s'il existe une suite (u_n) d'éléments de A qui diverge vers $+\infty$ (resp. $-\infty$).

Remarque.

On aurait pu faire les deux propositions 5.1 et 5.2 en même temps en parlant de bornes supérieure et inférieure dans $\overline{\mathbb{R}}$.

5.2 Caractérisation séquentielle de la densité

Proposition 5.3

Un sous-ensemble $A \subset \mathbb{R}$ est dense si, et seulement si, pour tout $x \in \mathbb{R}$, il existe une suite (u_n) d'éléments de A qui converge vers x.

6 Théorèmes de convergence

6.1 Suites monotones

Définition 6.1 (Borne supérieure/inférieure d'une suite)

Soit (u_n) une suite réelle. Les bornes supérieure et inférieure de (u_n) sont les bornes supérieure et inférieure de l'ensemble $\{u_n \mid n \in \mathbb{N}\}$. On les note sup u_n et inf u_n .

Remarque.

Elles existent toujours, mais sup u_n peut valoir $+\infty$, et inf u_n peut valoir $-\infty$.

Proposition 6.2

Une suite réelle $(u_n)_n$ est majorée (resp. minorée) si et seulement si sup $u_n < +\infty$ (resp. inf $u_n > -\infty$).

Théorème 6.3 (Théorème de la limite monotone)

Soit (u_n) une suite croissante (resp. décroissante). Alors (u_n) est convergente si et seulement si elle est majorée, et alors sa limite est

$$\sup_{n}(u_n) \quad \left(\text{resp.} \quad \inf_{n}(u_n)\right).$$

Sinon,

$$\lim_{n \to +\infty} u_n = +\infty \quad \text{(resp. } -\infty\text{)}.$$

Méthode 6.4

Soit (u_n) une suite réelle à termes positifs. Alors la suite (S_n) de terme général $\sum_{k=0}^n u_k$ est croissante.

Pour montrer qu'elle converge, on peut utiliser les techniques vues au chapitre 5 pour montrer qu'elle est majorée.

6.2 Suites adjacentes

Définition 6.5 (Suites adajcentes)

Deux suites $(u_n), (v_n)$ sont adjacentes si

- 1. Les suites (u_n) et (v_n) sont monotones de sens contraire.
- 2. La suite $(v_n u_n)$ converge vers 0.

Proposition 6.6

Soient (u_n) et (v_n) deux suites adjacentes avec (u_n) croissante. Pour tout $n \in \mathbb{N}$, on a $u_n \leqslant v_n$.

Théorème 6.7

Deux suites adjacentes $(u_n), (v_n)$ sont convergentes et ont même limite. De plus, si $\ell \in \mathbb{R}$ est cette limite commune, et (u_n) est croissante, on a pour tout $n \in \mathbb{N}, u_n \leq \ell \leq v_n$.

Remarque.

On en déduit que, pour tout $n \in \mathbb{N}$, u_n et v_n sont des valeurs approchées de la limite ℓ , resp. par défaut et par excès, et que l'erreur commise est majorée en valeur absolue par $v_n - u_n$.

Méthode 6.8

Si (u_n) est une suite décroissante qui converge vers 0, la suite (S_n) de terme général $S_n = \sum_{k=0}^{n} (-1)^k u_k$ s'étudie en considérant les sous-suites (S_{2n}) et (S_{2n+1}) , qui sont adjacentes.

6.3 Théorème de Bolzano-Weierstrass

Théorème 6.9 (Théorème des segments emboités)

Soit $(I_n)_{n\in\mathbb{N}}$ une suite de segments de \mathbb{R} dont la longueur tend vers 0 et telle que $I_{n+1} \subset I_n$ pour tout entier $n \in \mathbb{N}$. Alors l'intersection $\bigcap_{n\in\mathbb{N}} I_n$ est non vide et réduite à un point. De plus, si $\bigcap_{n\in\mathbb{N}} I_n = \{\ell\}$ et si une suite $(u_n)_{n\in\mathbb{N}}$ est telle que pour tout $n\in\mathbb{N}$, $u_n\in I_n$, la suite (u_n) converge vers ℓ .

Remarque.

C'est faux lorsque les intervalles ne sont pas des segments. L'exemple des intervalles]0, 1/n] le prouve. Si leur intersection était non vide, elle ne pourrait contenir que 0, qui est la limite de la suite des 1/n. Mais 0 n'est dans aucun de ces intervalles. Le problème ici est que les inégalités strictes ne sont pas conservées par passage à la limite.

Théorème $6.10~({\bf Bolzano\text{-}Weierstrass})$

Toute suite réelle bornée admet une sous-suite convergente.

7 Suites récurrentes

Dans ce paragraphe, on étudie les suites définies par une relation de récurrence du type $u_{n+1} = f(u_n)$.

7.1 Définitions

Définition 7.1 (Intervalle stable par une fonction)

Soit f une fonction définie sur un intervalle I de \mathbb{R} . L'intervalle I est stable par f si $f(I) \subset I$.

Définition 7.2 (Point fixe d'une fonction)

Soit f une fonction définie sur un intervalle I de \mathbb{R} . Un point fixe de f est un réel $x \in I$ tel que f(x) = x.

Proposition 7.3 (Suite récurrente)

Soit f une fonction définie sur un intervalle I de \mathbb{R} , stable par f. La suite (u_n) définie par

$$u_0 \in I$$
, $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$

est bien définie, et pour tout $n \in \mathbb{N}$, $u_n \in I$.

Remarques.

- 1. Ne pas confondre avec les suites du type $u_n = f(n)$.
- 2. La fonction f s'appelle la fonction d'itération de (u_n) .

Dans toute la suite du paragraphe 7, on fixe une fonction f définie sur un intervalle I stable par f, et une suite (u_n) définie par $u_0 \in I$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

7.2 Propriétés générales

Proposition 7.4

Si I est borné, la suite (u_n) est bornée.

Proposition 7.5

On suppose que f est **continue** sur I.

- 1. Si la suite (u_n) est convergente vers $\ell \in I$, alors ℓ est un point fixe de f.
- 2. Si I est un segment et si (u_n) converge, alors sa limite ℓ est un point fixe de f.

Proposition 7.6

- Si $f(x) x \ge 0$ pour tout $x \in I$, la suite (u_n) est croissante.
- Si $f(x) x \leq 0$ pour tout $x \in I$, la suite (u_n) est décroissante.

7.3 Cas d'une fonction croissante

Proposition 7.7

Si f est croissante, la suite (u_n) est monotone. Plus précisément :

- si $u_0 \leqslant u_1$, (u_n) est croissante.
- si $u_0 \geqslant u_1$, (u_n) est décroissante.

Corollaire 7.8

On suppose f **continue** et **croissante**. Alors

- Si (u_n) est bornée, elle est convergente.
- Si l'intervalle I est borné, la suite (u_n) est convergente.

7.4 Cas d'une fonction décroissante

Proposition 7.9

Si f est décroissante, les suites extraites (u_{2n}) et (u_{2n+1}) sont monotones. Plus précisément,

- Si $u_0 \leq u_2$, alors (u_{2n}) est croissante et (u_{2n+1}) est décroissante.
- Si $u_0 \geqslant u_2$, alors (u_{2n}) est décroissante et (u_{2n+1}) est croissante.

Proposition 7.10

Si f est [continue] et [décroissante], et si (u_n) est bornée, les suites extraites (u_{2n}) et (u_{2n+1}) sont convergentes vers des limites qui sont des points fixes de $f \circ f$, et (u_n) est convergente si et seulement si $\lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} u_{2n+1}$.

Méthode 7.11 (Plan d'étude)

On considère une suite (u_n) comme ci-dessus. On l'étudie ainsi :

- 1. On montre que la fonction f est continue. On fait une étude rapide, et on trace son graphe.
- 2. On détermine un intervalle I stable par f, qui contient u_0 (ou u_1, u_2).
- 3. On résout l'équation f(x) = x d'inconuue $x \in I$. Si on peut, on étudie la signe de f(x) x (parfois, il faut faire une étude de fonction).
- 4. Si on connait le signe de f(x) x, on connait le signe de $u_{n+1} u_n$, donc on peut savoir si (u_n) est monotone. Si elle est bornée, elle est convergente, sinon, elle est divergente.
- 5. Si f est croissante, on peut montrer par récurrence que (u_n) est monotone suivant que $u_0 \leq u_1$ ou $u_1 \leq u_0$. On finit alors comme ci-dessus.
- 6. Si f est décroissante, on peut montrer que les suites (u_{2n}) et (u_{2n+1}) sont monotones par récurrence. Si elles sont bornées, on sait qu'elles convergent. Il faut alors savoir si elles ont même limite pour savoir si (u_n) converge.

8 Suites complexes

Il n'y a a pas de grande différences avec les suites réelles. On remplace la valeur absolue par le module. Notons qu'il n'y a par contre pas de notion de suite monotone.

Pour toute suite complexe (u_n) , on définit les suites Re(u), Im(u) et \overline{u} par

$$\forall n \in \mathbb{N} (\operatorname{Re}(u))_n = \operatorname{Re}(u_n), \quad (\operatorname{Im}(u)_n = \operatorname{Im}(u_n), \quad (\overline{u})_n = \overline{u_n},$$

et la suite (u_n) converge vers $\ell \in \mathbb{C}$ si et seulement si ses parties réelle et imaginaire sont convergentes respectivement vers $\text{Re}(\ell)$ et $\text{Im}(\ell)$.. En effet, pour tout $n \in \mathbb{N}$, on a

$$\max \left(\left| \operatorname{Re}(u_n) - \operatorname{Re}(\ell) \right|, \left| \operatorname{Im}(u_n) - \operatorname{Im}(\ell) \right| \right) \leqslant |u_n - \ell| \leqslant \left| \operatorname{Re}(u_n) - \operatorname{Re}(\ell) \right| + \left| \operatorname{Im}(u_n) - \operatorname{Im}(\ell) \right|.$$

On remarquera que:

1. Il n'y a pas de théorème de comparaison, ni de théorème d'encadrement, puisqu'il n'y a pas de relation d'ordre dans \mathbb{C} compatible avec les opérations algébriques.

- 2. La suite $(|u_n|)$ est réelle, et si (u_n) converge, alors $(|u_n|)$ aussi, et si la limite de (u_n) est non nulle, $(|u_n|)$ est minorée à partir d'un certain rang par un réel > 0.
- 3. Le théorème de Bolzano-Weierstrass est valable pour les suites complexes : toute suite complexe bornée (au sens du module) admet une sous-suite convergente.

9 Compétences

- 1. Savoir montrer "à la main" qu'une suite converge vers un réel donné, i.e. savoir "trouver le η qui va bien avec le ε ".
- 2. Savoir déterminer la borne supérieure/inférieure d'un ensemble/d'une fonction à l'aide des suites.
- 3. Connaître les différentes techniques pour montrer qu'une suite est convergente.
- 4. Dans le cas d'une suite récurrente définie à l'aide d'une fonction continue, connaître l'enchainement des raisonnements à faire.