

Final Assessment Test - November 2018

Course: PHY1701 - Engineering Physics

Class NBR(s):0934 / 1040 / 1060 / 1066 / 2432 / 2435 /

5647 / 5666 / 5683 / 5755

Time: Three Hours

Slot: C2+TC2 Max. Marks: 100

General Instructions:

ON TELEGRAM

Make use of the following constant values (wherever necessary)
 (Mass of the electron, m_e = 9.1x10⁻³¹ kg; Charge of the electron, e = 1.602x10⁻¹⁹ C; Planck's constant, h = 6.626x10⁻³⁴ Js; Velocity of light, C= 3x10⁸ ms⁻¹; Boltzmann's constant, K_B=1.38x10⁻²³JK⁻¹)

2. Draw diagrams wherever necessary.

Answer any <u>TEN</u> Questions (10 X 10 = 100 Marks)

	(10 × 10 - 100 IVIAI KS)	
1.	Derive the Compton shift for X-rays after colliding with the rest surface electron on a nickel target. What will be the shift if X-rays collide with rest atom on the surface of the target.	[10]
2.	Set up the one dimensional time dependent and independent Schrodinger wave equation.	[5+5]
3,	 a) Derive Eigen function and Eigen values for a particle in one dimensional potential well. b) A particle is moving in one-dimensional potential box of with 50 Å. Calculate the probability of finding the particle within an interval of 10 Å at the center of the box when it is in its state of least energy. 	[7] [3]
4.	What are CNTs? Discuss the types of CNTs. Mention any three properties of CNTs and two applications.	[10]
5.	a) Describe the construction and working of He-Ne laser with necessary diagrams.	[7]
	b) Calculate the population ratio in two states in He-Ne laser that produces light of wavelength 6000Å at 300K.	[3]
6.	a) Define population inversion and two methods of achieving it.	[6]
	b) Calculate the energy and momentum of a photon of CO ₂ laser beam of wavelength 10.6 μm.	[4]
7.	a) Mention the Maxwell's equations in integral as well as differential form.	[4]
	b) Explain the Maxwell's correction to Ampere's law in detail.	[6]
8.	a) Derive electromagnetic wave equation travelling in an isotropic homogeneous dielectric medium.	[5]
1	b) Phase velocity of ocean waves is $\sqrt{\frac{\lambda g}{2\pi}}$. Here, 'g' is the acceleration due to gravity and ' λ ' is the	[5]
1	wavelength. Find the group velocity of ocean waves.	
9.	a) Derive an expression for the acceptance angle of an optical fiber.	[5]
	b) An optical fiber has a numerical aperture of 0.20 and a cladding refractive index of 1.59. Determine: (i) the acceptance angle for the fiber in water which has a refractive index of 1.33. (ii) the critical angle at the core-cladding interface.	[5]
10.	a) Bring out an expression for the time lapse of a relativistic object moving in a relativistic frame of	[5]
		[5]
	 b) An observer on a spacecraft moving at 0.700 c relative to the earth finds that a car takes 40.0 min to make a trip. How long does the trip take to the driver of the car? 	
1	1. a) Define and dia derictics of laser.	[5]
	of what is the coherens to the laser in vacuum if the ballowing.	[5]
1	2. a) what is lunnel effects that the stations of STM.	[6]
	the approximate probability and accelectrons to penetrate the barrier.	[4]
1000		图 图 多 图 2

のむむ