Spazio delle variabili e delle osservazioni Analisi Esplorativa

Aldo Solari

1 Spazio delle variabili

2 Spazio delle osservazioni

3 Appendice: vettori

Interpretazione geometrica

Spazio delle variabili

• del vettore delle medie (trasposto) $\bar{x}'_{1 \times p} = [\bar{x}_1, \dots, \bar{x}_j, \dots, \bar{x}_p]$ come baricentro delle n unità statistiche $x_i' = u_i'$, $i = 1, \dots, n$, interpretate come n punti p-dimensionali

Spazio delle osservazioni

- della devianza ns_{jj} , $j=1,\ldots,p$ come quadrato della lunghezza del vettore \tilde{x}_j scarto dalla media, ovvero $\parallel \tilde{x}_j \parallel^2 n\times 1$
- della codevianza ns_{jk} , $j\neq k=1,\ldots,p$ come prodotto $\langle \tilde{x}_j, \tilde{x}_k \rangle = \sum\limits_{1 \times n^{n \times 1}} \tilde{x}_k$
- della correlazione r_{jk} , $j \neq k = 1, \ldots, p$ come coseno dell'angolo formato dai vettori \tilde{x}_j e \tilde{x}_k

Esempio

	Altezza	Peso
Tizio	180	70
Caio	160	50

Spazio delle variabili

Spazio delle osservazioni

Matrice X

$$X_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1j} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2j} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & x_{i2} & \cdots & x_{ij} & \cdots & x_{ip} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nj} & \cdots & x_{np} \end{bmatrix}$$

Outline

1 Spazio delle variabili

2 Spazio delle osservazioni

3 Appendice: vettori

Spazio delle variabili: n punti p-dimensionali

$$X_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1j} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2j} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & x_{i2} & \cdots & x_{ij} & \cdots & x_{ip} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nj} & \cdots & x_{np} \end{bmatrix} = \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_i \\ \vdots \\ x'_i \\ \vdots \\ x'_n \end{bmatrix} = \begin{bmatrix} u'_1 \\ u'_2 \\ \vdots \\ u'_i \\ \vdots \\ u'_n \end{bmatrix}$$

dove
$$x_i' = u_i' = [x_{i1} \cdots x_{ij} \cdots x_{in}]$$
 è l' i -simo vettore riga $1 \times p \quad 1 \times p$

L'i-sima riga di X contiene il profilo dell'i-sima unità statistica

Vettore delle medie \bar{x}

Vettore delle medie:

$$\bar{x}_{p \times 1} = \begin{bmatrix} \bar{x}_1 \\ \dots \\ \bar{x}_j \\ \dots \\ \bar{x}_p \end{bmatrix}$$

Il vettore delle medie trasposto

$$\bar{x}'_{1\times p} = [\bar{x}_1 \cdots \bar{x}_j \cdots \bar{x}_p]$$

può essere interpretato come il baricentro di n punti p-dimensionali

3 punti 2-dimensionali e baricentro

	variabile 1	variabile 2
unità 1	4	1
unità 2	-1	3
unità 3	3	5

$$X_{3\times 2} = \begin{bmatrix} 4 & 1\\ -1 & 3\\ 3 & 5 \end{bmatrix}$$

$$\bar{x}'_{1\times 2} = \left[\begin{array}{cc} 2 & 3 \end{array} \right]$$

3 punti 2-dimensionali e baricentro

Outline

1 Spazio delle variabili

2 Spazio delle osservazioni

3 Appendice: vettori

Spazio delle osservazioni: p vettori n-dimensionali

$$X_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1j} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2j} & \cdots & x_{2p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & x_{i2} & \cdots & x_{ij} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & x_{n2} & \cdots & x_{nj} & \cdots & x_{np} \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_j & \cdots & x_p \\ x_1 & x_2 & \cdots & x_j & \cdots & x_p \\ x_{n+1} & x_{n+1} & x_{n+1} & \cdots & x_{n+1} \end{bmatrix}$$

dove
$$x_j = \begin{bmatrix} x_{1j} \\ \dots \\ x_{ij} \\ \dots \\ x_{ni} \end{bmatrix}$$
 è il j -simo vettore colonna

2 vettori 3-dimensionali

	variabile 1	variabile 2
unità 1	4	1
unità 2	-1	3
unità 3	3	5

$$X_{3\times2} = \begin{bmatrix} 4 & 1\\ -1 & 3\\ 3 & 5 \end{bmatrix}$$

2 vettori 3-dimensionali

Vettore scarto dalla media

Consideriamo il vettore scarto dalla media \tilde{x}_j :

$$\tilde{x}_{j} = \begin{bmatrix} x_{1j} - \bar{x}_{j} \\ \dots \\ x_{ij} - \bar{x}_{j} \\ \dots \\ x_{ni} - \bar{x}_{i} \end{bmatrix} = \begin{bmatrix} x_{1j} \\ \dots \\ x_{ij} \\ \dots \\ x_{ni} \end{bmatrix} - \begin{bmatrix} \bar{x}_{j} \\ \dots \\ \bar{x}_{j} \\ \dots \\ \bar{x}_{i} \end{bmatrix} = x_{j} - \bar{x}_{j} \frac{1}{n \times 1}$$

dove $\underset{n\times 1}{1}$ è il vettore unitario

Vettore scarto dalla media

l vettori $\underset{n \times 1}{\tilde{x}_j}$ e $\bar{x}_j \underset{n \times 1}{1}$ sono perpendicolari

$$\langle \bar{x}_{j} \underset{n \times 1}{1}, \tilde{x}_{j} \rangle = \bar{x}_{j} \underset{1 \times n}{1'} \tilde{x}_{j} = \bar{x}_{j} \sum_{i=1}^{n} (x_{ij} - \bar{x}_{j}) = 0$$

Due vettori a e b sono perpendicolari se $\langle a,b\rangle=a'$ b b = 0; vedi Appendice

$$X_{2\times 2} = \begin{bmatrix} 4 & 1 \\ -1 & 3 \end{bmatrix}$$

$$\tilde{x}_{1} = x_{1} - \bar{x}_{1} \frac{1}{2\times 1} = \begin{bmatrix} 4 \\ -1 \end{bmatrix} - \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 2.5 \\ -2.5 \end{bmatrix}$$

$$\tilde{x}_{2} = x_{2} - \bar{x}_{2} \frac{1}{2\times 1} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

 $\tilde{x}_1_{2\times 1}$ e $\bar{x}_1 \underset{2\times 1}{1}$ sono perpendicolari

$$\langle \bar{x}_1 \underset{1 \times 2}{1}, \tilde{x}_1 \rangle = \bar{x}_1 \underset{1 \times 2}{1'} \tilde{x}_1 = \begin{bmatrix} 1.5 & 1.5 \end{bmatrix} \begin{vmatrix} 2.5 \\ -2.5 \end{vmatrix} = 3.75 - 3.75 = 0$$

2 vettori 2-dimensionali

$$X_{3\times 2} =
\begin{bmatrix}
4 & 1 \\
-1 & 3 \\
3 & 5
\end{bmatrix}$$

$$\tilde{x}_1 = x_1 - \bar{x}_1 \frac{1}{3 \times 1} = \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$$

$$\tilde{x}_2 = x_2 - \bar{x}_2 \frac{1}{3 \times 1} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$$

 \tilde{x}_1 e $\bar{x}_1 \frac{1}{3 \times 1}$ sono perpendicolari

$$\bar{x}_1 \frac{1}{1 \times 3} \tilde{x}_1 = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix} = 4 - 6 + 2 = 0$$

2 vettori 3-dimensionali

Vettori scarto dalla media

Devianza e codevianza

II quadrato della lunghezza di \tilde{x}_j è la **devianza** $\underset{n \times 1}{\inf}$

Il prodotto di \tilde{x}_j e \tilde{x}_k è la **codevianza** $\underset{n \times 1}{\text{nv}}$

$$\langle \tilde{x}_j, \tilde{x}_k \rangle = \begin{bmatrix} \tilde{x}_j' & \tilde{x}_k \\ 1 \times n^{n \times 1} \end{bmatrix} = \sum_{i=1}^n (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k) = ns_{jk}$$

La lunghezza del vettore $a \atop n imes 1$ è definita come $\|a \atop n imes 1\| = \sqrt{a' \atop 1 imes n n imes 1}$; vedi Appendice II prodotto dei vettori $a \atop n imes 1$ e $b \atop n imes 1$ è definito come $a' \atop 1 imes n n imes 1$ = $\sum_{i=1}^n a_i b_i$; vedi Appendice

Correlazione

Abbiamo

$$\langle \tilde{x}_j, \tilde{x}_k \rangle = \underbrace{\tilde{x}_j'}_{1 \times n^{n \times 1}} \underbrace{\tilde{x}_k}_{1 \times n^{n \times 1}} \sqrt{\underbrace{\tilde{x}_k'}_{1 \times n^{n \times 1}}} \underbrace{\cos(\theta_{jk})}$$

dove θ_{jk} è l'angolo formato dai due vettori \tilde{x}_j e \tilde{x}_k , quindi risulta che $n\times 1$ $n\times 1$

$$\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k) = \sqrt{\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2} \sqrt{\sum_{i=1}^{n} (x_{ik} - \bar{x}_k)^2} \cos(\theta_{jk})$$

Il coseno dell'angolo θ_{ab} formato da due vettori $\underset{n\times 1}{a}$ e $\underset{n\times 1}{b}$ è definito da

$$\cos(\theta_{ab}) = \begin{pmatrix} a' & b \\ 1 \times nn \times 1 \end{pmatrix} / \left(\sqrt{\frac{a'}{1 \times nn \times 1}} \sqrt{\frac{b'}{1 \times nn \times 1}} \right); \text{ vedi Appendice}$$

Correlazione

La correlazione r_{jk} è il coseno dell'angolo θ_{jk} formato dai due vettori \tilde{x}_j e $\sum_{n \times 1}$

$$\tilde{x}_k$$
: $_{n \times 1}$:

$$r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}}\sqrt{s_{kk}}} = \cos(\theta_{jk})$$

Esempio

$$\begin{split} X_{3\times 2} &= \begin{bmatrix} 4 & 1 \\ -1 & 3 \\ 3 & 5 \end{bmatrix}, \ \tilde{x}_1 = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}, \ \tilde{x}_2 = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \text{ quindi} \\ & \|\tilde{x}_1\|^2 = \tilde{x}_1' \ \tilde{x}_1 = 14 = 3s_{11} \\ & \|\tilde{x}_2\|^2 = \tilde{x}_2' \ \tilde{x}_2 = 8 = 3s_{22} \\ & \langle \tilde{x}_1, \tilde{x}_2 \rangle = \tilde{x}_1' \ \tilde{x}_2 = -2 = 3s_{12} \\ & \langle \tilde{x}_1, \tilde{x}_2 \rangle = \frac{s_{12}}{1 \times 33 \times 1} = -189 \\ & \theta^\circ = \arccos(-.189) \frac{180^\circ}{\pi} = 100.89^\circ \end{split}$$

Outline

1 Spazio delle variabili

Spazio delle osservazioni

3 Appendice: vettori

Prodotto di due vettori

Siano dati due vettori colonna
$$a = \begin{bmatrix} a_1 \\ \dots \\ a_i \\ \dots \\ a_n \end{bmatrix}$$
 e $b = \begin{bmatrix} b_1 \\ \dots \\ b_i \\ \dots \\ b_n \end{bmatrix}$.

Il prodotto (inner product) di $\underset{n \times 1}{a}$ e $\underset{n \times 1}{b}$ è definito come

$$\begin{array}{c}
 a' \\
 a_{1 \times nn \times 1} = \begin{bmatrix} a_1 & \cdots & a_i & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ \cdots \\ b_i \\ \cdots \\ b_n \end{bmatrix} = a_1 b_1 + \ldots + a_n b_n = \sum_{i=1}^n a_i b_i$$

Si noti che vale $a' b_{1 \times nn \times 1} = b' a_{1 \times nn \times 1}$.

Lunghezza di un vettore

La lunghezza (norma, modulo) di un vettore
$$a = \begin{bmatrix} a_1 \\ \cdots \\ a_i \\ \cdots \\ a_n \end{bmatrix}$$
 è definita

come

$$\|a_{n\times 1}\| = \sqrt{a_1^2 + \ldots + a_n^2} = \sqrt{\sum_{i=1}^n a_i^2} = \sqrt{a_1' a_{n\times 1}}$$

Lunghezza di un vettore

La lunghezza di
$$a$$
 = $\begin{bmatrix} 4 \\ -1 \end{bmatrix}$ è
$$\|a$$
_{2×1} = $\sqrt{4^2 + (-1)^2} = \sqrt{17} = 4.123106$ La lunghezza di a _{3×1} = $\begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix}$ è
$$\|a$$
_{3×1} = $\sqrt{4^2 + (-1)^2 + 3^2} = \sqrt{26} = 5.09902$

Vettore unitario

Il vettore unitario $\underset{n\times 1}{1}$ è definito come

$$\begin{array}{c}
1\\
1\\
\dots\\
1\\
\dots\\
1
\end{array}$$

Siano dati due vettori
$$\underset{2\times 1}{a} = \left[\begin{array}{c} a_1 \\ a_2 \end{array} \right]$$
 e $\underset{2\times 1}{b} = \left[\begin{array}{c} b_1 \\ b_2 \end{array} \right]$

Dalla figura, l'angolo θ può essere rappresentato come differenza tra gli angoli θ_b e θ_a . Per definizione

$$\cos(\theta_a) = \frac{a_1}{\|\frac{a}{2\times 1}\|}, \quad \cos(\theta_b) = \frac{b_1}{\|\frac{b}{2\times 1}\|}$$
$$\sin(\theta_a) = \frac{a_2}{\|\frac{a}{2\times 1}\|}, \quad \sin(\theta_b) = \frac{b_2}{\|\frac{b}{2\times 1}\|}$$

e ricordiamo la formula di sottrazione di archi:

$$\cos(\theta) = \cos(\theta_b - \theta_a) = \cos(\theta_b)\cos(\theta_a) + \sin(\theta_b)\sin(\theta_a)$$

Di conseguenza l'angolo θ tra due vettori $\underset{2\times 1}{a}$ e $\underset{2\times 1}{b}$ è dato da

$$\cos(\theta) = \cos(\theta_2 - \theta_1)$$

$$= \frac{b_1}{\|\frac{b}{2\times 1}\|} \frac{a_1}{\|\frac{a}{2\times 1}\|} + \frac{b_2}{\|\frac{b}{2\times 1}\|} \frac{a_2}{\|\frac{a}{2\times 1}\|}$$

$$= \frac{a_1b_1 + a_2b_2}{\|\frac{a}{2\times 1}\|\|\frac{b}{2\times 1}\|}$$

$$= \frac{a'b}{1\times 22\times 1}$$

$$= \frac{a'b}{\|\frac{a}{2\times 1}\|\|\frac{b}{2\times 1}\|}$$

$$= \frac{a'b}{1\times 22\times 1}$$

$$= \frac{a'b}{1\times 22\times 1}$$

In generale, dati due vettori $\underset{n \times 1}{a} \ \mathbf{e} \ \underset{n \times 1}{b}$,

$$\cos(\theta) = \frac{a' b}{\|\underset{n \times 1}{a}\|\|\underset{n \times 1}{b}\|} = \frac{a' b}{\sqrt{\underset{1 \times nn \times 1}{a' a}} \sqrt{\underset{1 \times nn \times 1}{b' b}}}$$

Si noti che poichè

•
$$\cos(90^\circ) = \cos(270^\circ) = 0$$

•
$$\cos(\theta) = 0$$
 solo se $a' b_{1 \times nn \times 1} = 0$

i vettori $\underset{n\times 1}{a}$ e $\underset{n\times 1}{b}$ sono perpendicolari quando $\underset{1\times nn\times 1}{a'}$ b=0

Il coseno dell'angolo tra
$$a = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$
 e $b = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ è dato da

$$\cos \theta = \frac{4 \cdot 1 + (-1) \cdot 3}{\sqrt{4^2 + (-1)^2} \sqrt{1^2 + 3^2}} = \frac{1}{\sqrt{17} \sqrt{10}} = 0.0766965$$

quindi $\theta = \arccos(0.0766965) = 1.494024$ misurato in radianti.

In gradi, abbiamo $\theta=1.494024\cdot\frac{180^\circ}{\pi}=85.60129^\circ$, ricordando che l'angolo in gradi è uguale all'angolo in radianti per $180^\circ/\pi$

