Teoria de Números Computacional

folha 6

1. Verifique se $x^2 \equiv a \mod p$ tem solução, com

- (a) p = 431, a = 5
- (b) p = 419, a = 74
- (c) p = 337, a = 153
- (d) p = 373, a = 177
- (e) p = 463, a = 15
- (f) p = 317, a = 147
- (g) p = 379, a = 195
- (h) p = 397, a = 230
- (i) p = 461, a = 397
- (j) p = 331, a = 184
- (k) p = 467, a = 66
- (1) p = 307, a = 218
- (m) p = 409, a = 203
- (n) p = 449, a = 147

2. Use o Lema de Gauss para calcular o símbolo de Legendre $\left(\frac{a}{p}\right)$, com

- (a) a = 2, n = 11
- (b) a = 4, n = 11
- (c) a = 6, n = 43
- (d) a = 8, n = 23
- (e) a = 2, n = 17
- (f) a = 6, n = 13
- (g) a = 5, n = 41
- (h) a = 4, n = 23
- (i) a = 10, n = 13
- (j) a = 8, n = 23
- (k) a = 7, n = 11
- (1) a = 3, n = 37

(m)
$$a = 10, n = 11$$

(n)
$$a = 10, n = 23$$

(o)
$$a = 8, n = 29$$

(p)
$$a = 10, n = 37$$

(q)
$$a = 5, n = 29$$

(r)
$$a = 4, n = 41$$

(s)
$$a = 4, n = 31$$

3. Calcule o símbolo de Jacobi $\left(\frac{a}{n}\right)$, com

(a)
$$a = 275, n = 591$$

(b)
$$a = 295, n = 591$$

(c)
$$a = 200, n = 513$$

(d)
$$a = 214, n = 447$$

(e)
$$a = 2, n = 295$$

(f)
$$a = 30, n = 343$$

(g)
$$a = 124, n = 363$$

(h)
$$a = 7, n = 589$$

(i)
$$a = 172, n = 507$$

(j)
$$a = 129, n = 269$$

(k)
$$a = 69, n = 281$$

(l)
$$a = 32, n = 259$$

(m)
$$a = 92, n = 505$$

(n)
$$a = 138, n = 331$$

(o)
$$a = 10, n = 91$$

(p)
$$a = 178, n = 449$$

(q)
$$a = 92, n = 205$$

(r)
$$a = 15, n = 121$$

(s)
$$a = 203, n = 495$$

(t)
$$a = 199, n = 423$$

(u)
$$a = 222, n = 545$$

(v)
$$a = 23, n = 601$$

(w)
$$a = 107, n = 397$$

(x)
$$a = 284, n = 587$$

(y)
$$a = 5, n = 167$$

- (z) a = 269, n = 571
- 4. Verifique se n passa o teste de Solovay-Strassen na base a, com
 - (a) n = 679, a = 623
 - (b) n = 253, a = 115
 - (c) n = 801, a = 639
 - (d) n = 867, a = 183
 - (e) n = 539, a = 413
 - (f) n = 925, a = 735
 - (g) n = 747, a = 339
 - (h) n = 201, a = 111
 - (i) n = 533, a = 377