Instructions for XFOIL Analysis of Wind Turbine Geometry

1 Prerequisites

- 1. T-Blade3 executables (tblade3, techop) can be installed following the instructions in the documentation available at gtsl.ase.uc.edu/t-blade3/T-Blade3_v1.2_ReadMe.pdf.
- 2. XFOIL source code and documentation are available at https://web.mit.edu/drela/Public/web/xfoil. Only the executable xfoil is needed for this analysis.

2 Geometry Generation

Run the following command based on the location of the T-Blade3 executables:

\$ /path/to/executables/tblade3 3dbgbinput.1.dat

3 XFOIL Analysis

This analysis was carried out with a (u,v) blade section with unit chord such that the LE is at u=0 and the TE is at u=1. Such a file is not printed out by T-Blade3 by default. While the analysis can be carried out with a (m',θ) blade section (contained in the file blade.1.1.MOGA_TD3), it is recommended that the accompanying file wind_turbine_geometry.dat be used. This file was generated by combining the T-Blade3 output files topcurve.1.1.MOGA_TD3 and botcurve.1.1.MOGA_TD3.

- 1. Launch XFOIL by running the following command:
 - \$ xfoil wind_turbine_geometry.dat
- 2. Enter airfoil name as wind_turbine_blade. This opens the top-level xfoil menu.
- 3. Enter *ppar* at the prompt.
- 4. This opens the *ppar* menu along with a XWindow instance showing the current panelling of the blade. In the *ppar* menu:
 - (a) Set the number of panel nodes by entering *N 351* at the prompt. Hit enter again to escape to the *ppar* menu. The XWindow instance now shows the new panelling of the blade surface.
 - (b) Hit enter to escape to the top-level xfoil menu.
- 5. Enter *oper* at the prompt.
- 6. This opens the *oper* menu. In the *oper* menu:
 - (a) Enter *Visc* at the prompt to move from inviscid to viscous mode.
 - (b) Enter Reynolds number as 9.5e5.
 - (c) Next, enter *vpar* at the prompt. This opens the *vpar* menu.
 - (d) In the *vpar* menu, enter N 6.0 to change N_{crit} .
 - (e) Hit enter to escape to the *oper* menu.
 - (f) Next, enter $Cl\ 0.95$ at the prompt to set C_l and run XFOIL.
- 7. Once XFOIL converges, the previously opened XWindow instance will show C_p distribution for the boundary conditions set above.
- 8. Enter *hard* to save the current plot in a postscript file plot.ps.
- 9. Hit enter to escape to the top-level xfoil menu.
- 10. Enter *quit* at the prompt to exit XFOIL.