Course Code: ESC106A Course Title: Construction Materials and Engineering Mechanics

Lecture No. 21: Free Body Diagram & Lami's Theorem

Delivered By: Deepthi M V

Lecture Intended Learning Outcomes

At the end of this lecture, students will be able to:

- Define free body diagram
- Define and derive Lami's theorem
- Sketch the free body diagram for different structures in equilibrium

Contents

Free body diagram, Lami's theorem

Free body diagram

• It is a sketch or a diagram in which a body is shown with all external forces acting on by making it free or detached or isolated from its surrounding bodies.

Free body diagram

Free body diagram

Free Body Diagram for few Typical Cases

Ball

Ball

FBD

Free Body Diagram for few Typical Cases

Ladder

FBD

Lami's theorem

• "If a body is in equilibrium under the action of three forces, each force is proportional to the sine of angle between the other forces."

$$\frac{P}{\sin\alpha} = \frac{Q}{\sin\beta} = \frac{R}{\sin\gamma}$$

$$\frac{AB}{\sin x} = \frac{BC}{\sin y} = \frac{CA}{\sin z}$$

$$\sin x = \sin (180 - \alpha) = \sin \alpha$$

$$\sin y = \sin (180 - \beta) = \sin \beta$$

$$\sin z = \sin (180 - \gamma) = \sin \gamma$$

$$\frac{P}{\sin \alpha} = \frac{Q}{\sin \beta} = \frac{R}{\sin \gamma} = \text{constant}$$

Example Problem

 Two smooth pipes, each having a mass of 300 kg. arc supported by the forked tines of the tractor in Fig. Draw the free body diagrams for each pipe and both pipes together

Example Problem

(a)

(b)

Summary

- Free body diagram is a sketch or a diagram in which a body is shown with all external forces acting on by making it free or detached or isolated from its surrounding bodies
- Lami's Theorem states that if a body is in equilibrium under the action of three forces, each force is proportional to the sine of angle between the other forces

