CSE 431/531: Algorithm Analysis and Design (Fall 2024) Dynamic Programming

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Outline

- Shortest Paths in Directed Acyclic Graphs
- 2 Matrix Chain Multiplication
- Optimum Binary Search Tree
- 4 Summary
- 5 Summary of Studies Until Oct 30

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without (directed) cycles.

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without (directed) cycles.

Lemma A directed graph is a DAG if and only its vertices can be topologically sorted.

Input: directed acyclic graph G = (V, E) and $w : E \to \mathbb{R}$.

Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then i < j

Output: the shortest path from 1 to i, for every $i \in V$

Input: directed acyclic graph G = (V, E) and $w : E \to \mathbb{R}$.

Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then i < j

Output: the shortest path from 1 to i, for every $i \in V$

ullet f[i]: length of the shortest path from 1 to i

$$f[i] = \begin{cases} i = 1 \\ i = 2, 3, \dots, n \end{cases}$$

ullet f[i]: length of the shortest path from 1 to i

$$f[i] = \begin{cases} 0 & i = 1 \\ i = 2, 3, \dots, n \end{cases}$$

ullet f[i]: length of the shortest path from 1 to i

$$f[i] = \begin{cases} 0 & i = 1\\ \min_{j:(j,i) \in E} \{f(j) + w(j,i)\} & i = 2, 3, \dots, n \end{cases}$$

ullet Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG

```
1: f[1] \leftarrow 0

2: for i \leftarrow 2 to n do

3: f[i] \leftarrow \infty

4: for each incoming edge (j,i) of i do

5: if f[j] + w(j,i) < f[i] then

6: f[i] \leftarrow f[j] + w(j,i)
```

ullet Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG

```
1: f[1] \leftarrow 0

2: for i \leftarrow 2 to n do

3: f[i] \leftarrow \infty

4: for each incoming edge (j,i) of i do

5: if f[j] + w(j,i) < f[i] then

6: f[i] \leftarrow f[j] + w(j,i)

7: \pi(i) \leftarrow j
```

Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG

```
1: f[1] \leftarrow 0
2: for i \leftarrow 2 to n do
3: f[i] \leftarrow \infty
       for each incoming edge (j, i) of i do
4:
5:
             if f[j] + w(j, i) < f[i] then
                 f[i] \leftarrow f[j] + w(j,i)
6:
                 \pi(i) \leftarrow j
7:
```

print-path(t)

```
1: if t = 1 then
2: print(1)
```

return

4: print-path($\pi(t)$)

5: print(",", t)

Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph G = (V, E) and $w : E \to \mathbb{R}$. Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then i < j

Output: the path with the largest weight (the heaviest path) from 1 to n.

• f[i]: weight of the heaviest path from 1 to i

$$f[i] = \begin{cases} i = 1\\ i = 2, 3, \dots, n \end{cases}$$

Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph G=(V,E) and $w:E\to\mathbb{R}$. Assume $V=\{1,2,3\cdots,n\}$ is topologically sorted: if $(i,j)\in E$, then i< j

Output: the path with the largest weight (the heaviest path) from 1 to n.

• f[i]: weight of the heaviest path from 1 to i

$$f[i] = \begin{cases} 0 & i = 1 \\ i = 2, 3, \dots, n \end{cases}$$

Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph G = (V, E) and $w : E \to \mathbb{R}$. Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then i < j

Output: the path with the largest weight (the heaviest path) from 1 to n.

• f[i]: weight of the heaviest path from 1 to i

$$f[i] = \begin{cases} 0 & i = 1\\ \max_{j:(j,i)\in E} \{f(j) + w(j,i)\} & i = 2,3,\dots, n \end{cases}$$

Outline

- 1 Shortest Paths in Directed Acyclic Graphs
- 2 Matrix Chain Multiplication
- Optimum Binary Search Tree
- 4 Summary
- 5 Summary of Studies Until Oct 30

Matrix Chain Multiplication

Matrix Chain Multiplication

Input: n matrices A_1, A_2, \cdots, A_n of sizes

 $r_1 \times c_1, r_2 \times c_2, \cdots, r_n \times c_n$, such that $c_i = r_{i+1}$ for every $i=1,2,\cdots,n-1$.

Output: the order of computing $A_1 A_2 \cdots A_n$ with the minimum number of multiplications

Fact Multiplying two matrices of size $r \times k$ and $k \times c$ takes $r \times k \times c$ multiplications.

• $A_1: 10 \times 100$, $A_2: 100 \times 5$, $A_3: 5 \times 50$

- $(A_1A_2)A_3$: $10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$
- $A_1(A_2A_3)$: $100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000$

• $A_1: 10 \times 100$, $A_2: 100 \times 5$, $A_3: 5 \times 50$

- $(A_1A_2)A_3$: $10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$
- $A_1(A_2A_3)$: $100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000$

• Assume the last step is $(A_1A_2\cdots A_i)(A_{i+1}A_{i+2}\cdots A_n)$

- Assume the last step is $(A_1A_2\cdots A_i)(A_{i+1}A_{i+2}\cdots A_n)$
- Cost of last step: $r_1 \times c_i \times c_n$

- Assume the last step is $(A_1A_2\cdots A_i)(A_{i+1}A_{i+2}\cdots A_n)$
- Cost of last step: $r_1 \times c_i \times c_n$
- Optimality for sub-instances: we need to compute $A_1A_2\cdots A_i$ and $A_{i+1}A_{i+2}\cdots A_n$ optimally

- Assume the last step is $(A_1A_2\cdots A_i)(A_{i+1}A_{i+2}\cdots A_n)$
- Cost of last step: $r_1 \times c_i \times c_n$
- Optimality for sub-instances: we need to compute $A_1A_2\cdots A_i$ and $A_{i+1}A_{i+2}\cdots A_n$ optimally
- ullet opt[i,j] : the minimum cost of computing $A_iA_{i+1}\cdots A_j$

- Assume the last step is $(A_1A_2\cdots A_i)(A_{i+1}A_{i+2}\cdots A_n)$
- Cost of last step: $r_1 \times c_i \times c_n$
- Optimality for sub-instances: we need to compute $A_1A_2\cdots A_i$ and $A_{i+1}A_{i+2}\cdots A_n$ optimally
- ullet opt[i,j] : the minimum cost of computing $A_iA_{i+1}\cdots A_j$

$$opt[i, j] = \begin{cases} 0 & i = j \\ \min_{k:i \le k < j} (opt[i, k] + opt[k+1, j] + r_i c_k c_j) & i < j \end{cases}$$

```
matrix-chain-multiplication(n, r[1..n], c[1..n])
 1: let opt[i, i] \leftarrow 0 for every i = 1, 2, \dots, n
 2: for \ell \leftarrow 2 to n do
         for i \leftarrow 1 to n - \ell + 1 do
 3:
           i \leftarrow i + \ell - 1
 4:
              opt[i,j] \leftarrow \infty
 5:
              for k \leftarrow i to j-1 do
 6:
                  if opt[i,k] + opt[k+1,j] + r_i c_k c_j < opt[i,j] then
 7:
                       opt[i, j] \leftarrow opt[i, k] + opt[k+1, j] + r_i c_k c_j
 8:
 9: return opt[1, n]
```

Recover the Optimum Way of Multiplication

```
matrix-chain-multiplication(n, r[1..n], c[1..n])
 1: let opt[i, i] \leftarrow 0 for every i = 1, 2, \dots, n
 2: for \ell \leftarrow 2 to n do
         for i \leftarrow 1 to n - \ell + 1 do
 3:
             i \leftarrow i + \ell - 1
 4:
              opt[i, j] \leftarrow \infty
 5:
              for k \leftarrow i to j-1 do
 6:
                   if opt[i,k] + opt[k+1,j] + r_i c_k c_j < opt[i,j] then
 7:
                        opt[i, j] \leftarrow opt[i, k] + opt[k + 1, j] + r_i c_k c_i
 8:
                       \pi[i, j] \leftarrow k
 9:
10: return opt[1, n]
```

Constructing Optimal Solution

```
Print-Optimal-Order(i, j)

1: if i = j then

2: print("A"_i)

3: else

4: print("(")

5: Print-Optimal-Order(i, \pi[i, j])

6: Print-Optimal-Order(\pi[i, j] + 1, j)

7: print(")")
```

$$\begin{aligned} opt[1,2] &= opt[1,1] + opt[2,2] + 3 \times 5 \times 2 = 30, & \pi[1,2] &= 1 \\ opt[2,3] &= opt[2,2] + opt[3,3] + 5 \times 2 \times 6 = 60, & \pi[2,3] &= 2 \\ opt[3,4] &= opt[3,3] + opt[4,4] + 2 \times 6 \times 9 = 108, & \pi[3,4] &= 3 \\ opt[4,5] &= opt[4,4] + opt[5,5] + 6 \times 9 \times 4 = 216, & \pi[4,5] &= 4 \\ opt[1,3] &= \min\{opt[1,1] + opt[2,3] + 3 \times 5 \times 6, & opt[1,2] + opt[3,3] + 3 \times 2 \times 6\} \\ &= \min\{0 + 60 + 90, 30 + 0 + 36\} &= 66, & \pi[1,3] &= 2 \\ opt[2,4] &= \min\{opt[2,2] + opt[3,4] + 5 \times 2 \times 9, & opt[2,3] + opt[4,4] + 5 \times 6 \times 9\} \\ &= \min\{0 + 108 + 90, 60 + 0 + 270\} &= 198, & \pi[2,4] &= 2, \end{aligned}$$

$$\begin{aligned} opt[3,5] &= \min\{opt[3,3] + opt[4,5] + 2 \times 6 \times 4, \\ &opt[3,4] + opt[5,5] + 2 \times 9 \times 4\} \\ &= \min\{0 + 216 + 48, 108 + 0 + 72\} = 180, \\ \pi[3,5] &= 4, \\ opt[1,4] &= \min\{opt[1,1] + opt[2,4] + 3 \times 5 \times 9, \\ &opt[1,2] + opt[3,4] + 3 \times 2 \times 9, \\ &opt[1,3] + opt[4,4] + 3 \times 6 \times 9\} \\ &= \min\{0 + 198 + 135, 30 + 108 + 54, 66 + 0 + 162\} = 192, \\ \pi[1,4] &= 2, \end{aligned}$$

$$\begin{aligned} opt[2,5] &= \min\{opt[2,2] + opt[3,5] + 5 \times 2 \times 4, \\ &opt[2,3] + opt[4,5] + 5 \times 6 \times 4, \\ &opt[2,4] + opt[5,5] + 5 \times 9 \times 4\} \\ &= \min\{0 + 180 + 40, 60 + 216 + 120, 198 + 0 + 180\} = 220, \\ opt[1,5] &= \min\{opt[1,1] + opt[2,5] + 3 \times 5 \times 4, \\ &opt[1,2] + opt[3,5] + 3 \times 2 \times 4, \\ &opt[1,3] + opt[4,5] + 3 \times 6 \times 4, \\ &opt[1,4] + opt[5,5] + 3 \times 9 \times 4\} \\ &= \min\{0 + 220 + 60, 30 + 180 + 24, \\ &66 + 216 + 72, 192 + 0 + 108\} \\ &= 234, \end{aligned}$$

 $\pi[1,5]=2.$

17/36

matrix	A_1	A_2	A_3	A_4	A_5
size	3×5	5×2	2×6	6×9	9×4

opt, π	j = 1	j=2	j=3	j=4	j=5
i = 1	0, /	30, 1	66, 2	192, 2	234, 2
i=2		0, /	60, 2	198, 2	220, 2
i=3			0, /	108, 3	180, 4
i=4				0, /	216, 4
i=5					0, /

opt, π	j=1	j=2	j=3	j=4	j=5
i = 1	0, /	30, 1	66, 2	192, 2	234, 2
i=2		0, /	60, 2	198, 2	220, 2
i=3			0, /	108, 3	180, 4
i=4				0, /	216, 4
i=5					0, /

```
Print-Optimal-Order(1,5)
```

Print-Optimal-Order(1, 2)

Print-Optimal-Order(1, 1)

Print-Optimal-Order(2, 2)

Print-Optimal-Order(3, 5)

Print-Optimal-Order(3, 4)

Print-Optimal-Order(3, 3)

Print-Optimal-Order(4, 4)

Print-Optimal-Order(5, 5)

Optimum way for multiplication: $((A_1A_2)((A_3A_4)A_5))$