تحليل الحساسية Sensitivity Analysis

- دراسة ما بعد إيجاد الحل الأمثل للبرنامج الخطى.
- مدى حساسية الحل الأمثل للتغير في إحدى معطيات المسألة.
 - إلى أي مدى يمكن زيادة أو إنقاص قيمة أحد:
 - _ معاملات المتغيرات في دالة الهدف
- معاملات المتغيرات في القيود (معاملات الطرف الأيسر للقيود)
 - الموارد المتاحة (الطرف الأيمن للقيود)

ومعرفة تأثير ذلك في القرارات المتخذة و/أو قيمة دالة الهدف؟

ندرس تأثير تغيير قيمة معلم واحد فقط، مع بقاء بقية المعالم ثابتة.

• القيد الرابط:

يكون أحد القيود قيداً رابطاً للحل الأمثل (x_1^*, x_2^*) إذا كان هذا القيد محققاً في صورة مساواة عند قيم متغيرات القرار الأمثل.

• القيد الغير الرابط:

يكون أحد القيود قيداً غير رابطاً للحل الأمثل (x_1^*, x_2^*) إذا كان هذا القيد غير متحقق في صورة مساواة عند قيم متغيرات القرار الأمثل.

- المورد النادر: مورد القيد الرابط يعتبر نادراً، لأنه تم استهلاكه كاملاً.
- المورد المتوفر: مورد القيد غير الرابط يعتبر متوفراً، لأنه لم يتم استهلاكه كاملاً.

مثال: مسألة إنتاج الدهانات التي تم صياغتها سابقاً.

$$\max z = 3000x_1 + 2000x_2$$
 s.t.

$$x_{1} + 2x_{2} \le 6$$

$$2x_{1} + x_{2} \le 8$$

$$-x_{1} + x_{2} \le 1$$

$$x_{2} \le 2$$

$$x_{1}, x_{2} \ge 0$$

$$x_1^* = \frac{10}{3}$$
 and $x_2^* = \frac{4}{3}$ الحل الأمثل:

نقوم بالتعويض في القيود:

$$x_1^* + 2x_2^* = 6$$

$$2x_1^* + x_2^* = 8$$

$$-x_1^*+x_2^*=-2<1$$

$$\chi_2^* = \frac{4}{3} = 1.333 < 2$$

لنفرض أن دالة الهدف $\max z$ وجميع القيود من نوع " \geq " أقل من أو يساوي

- الزيادة في الموارد النادرة ستؤدي إلى تحسين دالة الهدف. السؤال 1: إلى أي مدى يمكن زيادة أحد الموارد النادرة لتحسين دالة الهدف؟
 - النقصان في الموارد المتوفرة سيؤدي إلى توفير الاستهلاك. السؤال 2: إلى أي مدى يمكن إنقاص أحد الموارد المتوفرة دون التأثير على دالة الهدف؟

مثال: مسألة إنتاج الدهانات: المادة الخام B تعتبر مورد نادر. ما مدى تأثير زيادة طن واحد من المادة الخام B على دالة الهدف؟

$$\max \ z = 3000x_1 + 2000x_2$$
 s.t.

$$x_1 + 2x_2 \le 6 \tag{1}$$

$$2x_1 + x_2 \le 8+1 \tag{2}$$

$$-x_1 + x_2 \le 1 \tag{3}$$

$$x_2 \leq 2 \tag{4}$$

$$x_1 \ge 0$$
 و $x_2 \ge 0$

نقطة الحل الأمثل الجديدة ستكون عند تقاطع المستقيمين:

$$x_1 + 2x_2 = 6$$
$$2x_1 + x_2 = 8 + 1 = 9$$

$$x_1^* = 4$$
 , $x_2^* = 1$, $z^* = 14000$

تأثير زيادة طن واحد من المادة الخام B

$$=z_{\text{new}}^* - z_{\text{old}}^* = 14000 - 12666.67 = 1333.34 \text{ SR}$$
 هذه القيمة تسمى سعر الظل للمورد الخام

سؤال: ما مقدار أقصى زيادة اقتصادية من أحد الموارد النادرة لتحسين دالة الهدف؟

زيادة اقتصادية حكافة الكمية المتاحة من المورد تستهلك بدون فائض

الجواب: إيجاد أبعد مسافة يمكن بها إزاحة قيد استهلاك المورد بحيث تحدث تغيراً في منطقة فضاء الحلول.

من الموارد النادرة: المادة الخام B

سؤال: ما مقدار أقصى زيادة اقتصادية من المادة الخام B لتحسين دالة الهدف؟

الجواب: إيجاد أبعد مسافة يمكن بها إزاحة قيد استهلاك المادة الخواب: الخام B بحيث تحدث تغيراً في منطقة فضاء الحلول.

الحل الأمثل الجديد (عند تقاطع المستقيم (1) مع المستقيم
$$x_1^*=6$$
 , $x_2^*=0$, $z^*=18000$ $2x_1+x_2\leq ?$; B ae : القيد المادة الخام ae ae : ae :

من الموارد النادرة: المادة الخام A

الحل الأمثل الجديد (عند تقاطع المستقيم (2) مع المستقيم (4)):
$$x_1^* = 3 \quad , \quad x_2^* = 2 \quad , \quad z^* = 13000$$
 القيد الجديد للمادة الخام A هو:
$$x_1 + 2x_2 \leq ? \quad ;$$
 القيد كما يلي:
$$x_1^* = 3 \quad , \quad x_2^* = 2)$$
 بتعويض الحل الأمثل الجديد (2) = 7
$$(3) + 2(2) = 7$$
 إذاً القيد الخطي الجديد هو:
$$x_1 + 2x_2 \leq 7 \qquad ;$$
 الحد الأعلى للمادة الخام A عند الحل الأمثل الجديد = 7 طن وأقصى زيادة اقتصادية للمادة الخام $1 = 6 - 7 = A$

أسعار الظل (Shadow Prices)

سعر الظل للمورد = القيمة الاقتصادية للوحدة الإضافية من المورد

$$Z_{\text{new}}^* - Z_{\text{old}}^*$$
 = اکبر زیادة اقتصادیة ممکنة للمورد

 $z_{
m new}^* = z_{
m new}^*$ قيمة دالة الهدف بعد إضافة الوحدات الإضافية من المورد $z_{
m old}^* = z_{
m old}^*$ قيمة دالة الهدف بدون إضافة أي وحدات إضافية من المورد

- زيادة قيمة المورد النادر يحسن قيمة دالة الهدف.
 - سعر الظل للمورد المتوفر = صفر.

أسعار الظل

القيمة الاقتصادية للوحدة الزائدة من المادة الخام A: إذا أمكن شراء وحدات إضافية من المادة الخام A فما هو أعلى سعر شراء ذو منفعة للوحدة الواحدة؟

$$z_{\text{new}}^* = 13000$$
 $z_{\text{old}}^* = 12666.67$

$$\frac{13000 - 12666.67}{1} = A$$
قيمة الوحدة الإضافية للمادة

أسعار الظل

القيمة الاقتصادية للوحدة الزائدة من المادة الخام B: إذا أمكن شراء وحدات إضافية من المادة الخام B فما هو أعلى سعر شراء ذو منفعة للوحدة الواحدة؟

$$z_{\text{new}}^* = 18000$$

 $z_{\text{old}}^* = 12666.67$

$$\frac{18000 - 12666.67}{4} = B$$
 قيمة الوحدة الإضافية للمادة

سوال:

إلى أي مدى يمكن إنقاص المورد الوفير بحيث يبقى الحل الأمثل دون تغيير؟

الجواب:

الحد الأقصى للتناقص في أي مورد من الموارد الوفيرة هو إزاحة القيد الوفير باتجاه نقطة الحل الأمثل حتى يصل إلى نقطة الحل الأمثل.
الأمثل.

مورد القيد الثالث متوفر:

$$x_1^* = \frac{10}{3}$$
 and $x_2^* = \frac{4}{3}$
- $x_1^* + x_2^* = -2 < 1$ (3)

يمكن للطرف الأيمن أن ينقص

$$(1-(-2)=3)$$
 : 3 بمقدار

ليصبح القيد:

$$-x_1^* + x_2^* \le -2$$

مورد القيد الرابع متوفر:

$$x_1^* = \frac{10}{3} \text{ and } x_2^* = \frac{4}{3}$$

 $x_2^* = \frac{4}{3} = 1.33 < 2$ (4)

يمكن للطرف الأيمن أن ينقص

$$(2-\frac{4}{3}=\frac{2}{3}):\frac{2}{3}$$
 بمقدار

ليصبح القيد:

$$x_2^* \leq \frac{4}{3}$$

. ميل المستقيم
$$a,b,c$$
 هو $\frac{-a}{b}$ هو $ax_1+bx_2=c$ ثوابت
$$(b\neq 0)$$

. مستقیم دالة الهدف: c_1 , c_2 أن c_2 حیث أن c_2 ثوابت

$$(c_2 \neq 0)$$
 $\frac{-c_1}{c_2}$:ميل مستقيم دالة الهدف

التغير في قيمة أحد المعالم c_1 أو c_2 التغير في ميل دالة الهدف

قاعدة 1:

عند ضرب أو قسمة طرفي متراجحة بعدد سالب، نعكس اتجاه المتراجحة. a, b : a, b

$$-1 X (a \le b) \Rightarrow -a \ge -b$$

$$-1 X (a \ge b) \Rightarrow -a \le -b$$

$$-1 \ \mathsf{X} \ (-1 \le -a \le 2) \Rightarrow 1 \ge a \ge -2$$
 عثال: $-2 \le a \le 1$ وتكافئ: $-2 \le a \le 1$

قاعدة 2:

لأي ثوابت حقيقية a,b,c,d ، بحيث تكون جميعها موجبة أو جميعها

سالبة، إذا قلبنا (عكسنا) طرفي المتراجحة ، نعكس اتجاه المتراجحة:

$$\frac{a}{b} \le \frac{c}{d} \quad \Leftrightarrow \quad \frac{b}{a} \ge \frac{d}{c}$$

أمثلة:

$$\frac{3}{4} \leq \frac{3}{2} \quad \Leftrightarrow \quad \frac{4}{3} \geq \frac{2}{3}$$

$$-2 \leq -\frac{1}{4} \quad \Leftrightarrow \quad -\frac{1}{2} \geq -4$$

سنكتفي بحالة عندما تكون القيود الرابطة ذات ميل سالب

سوال:

 c_2 وأ c_1 الذي يمكن أن يتغير فيه قيمة أحد المعالم الذي المثل أن يتغير الحل المثل.

الجواب

لا يتغير الحل الأمثل إذا كان ميل دالة الهدف محصور بين ميل القيود الرابطة عند الحل الأمثل.

• التغير في أحد معالم دالة الهدف \Leftrightarrow التغير في ميل دالة الهدف x_{2}

مثال الدهانات:

لا يتغير الحل الأمثل $x_2^* = \frac{4}{3}$, $x_2^* = \frac{4}{3}$ مع تغير الأسعار إذا كان ميل دالة الهدف محصور بين ميل القيد (1) وميل القيد (2).

$$-\frac{3}{2}=-\frac{3000}{2000}=3000x_1+2000x_2$$
 ميل دالة الهدف
$$-\frac{1}{2}=x_1+2x_2:(1)$$
 ميل القيد
$$-\frac{2}{1}=2x_1+x_2:(2)$$
 ميل القيد (2)

$$-2 \le slope z \le -\frac{1}{2}$$

لا يتغير القرار الأمثل إذا كان:

$$z = 3000x_1 + 2000x_2$$
 :دالة الهدف

(سعر الطن من الدهان الخارجي) $c_1=3000$

(سعر الطن من الدهان الداخلي) $c_2 = 2000$

سوال:

- أ) حدد المجال الذي يمكن أن يتغير فيه المعلم c_1 فقط دون أن يتغير الحل المثل.
- ب حدد المجال الذي يمكن أن يتغير فيه المعلم c_2 فقط دون أن يتغير الحل المثل.

جواب:

أ) فترة التغير السعري للطن من الدهان الخارجي c_1 (مع بقاء بقية المعالم ثابتة) بحيث يبقى الحل الأمثل ثابتا هو:

$$-2 \le -\frac{c_1}{2000} \le -\frac{1}{2}$$

$$2 \ge \frac{c_1}{2000} \ge \frac{1}{2}$$

 $4000 \ge c_1 \ge 1000$

 $1000 \le c_1 \le 4000$ وتكتب عادة:

جواب:

 c_2 فترة التغير السعري للطن من الدهان الخارجي c_2 (مع بقاء بقية المعالم ثابتة) بحيث يبقى الحل الأمثل ثابتا هو:

$$-2 \le -\frac{3000}{c_2} \le -\frac{1}{2}$$

$$2 \ge \frac{3000}{c_2} \ge \frac{1}{2}$$

$$\frac{1}{2} \le \frac{c_2}{3000} \le 2$$

$$1500 \le c_2 \le 6000$$

$$a \leq slope z \leq b$$

$$a \le -\frac{c_1}{c_2} \le b$$

ونحصل على:

$$-bc_2 \le c_1 \le -ac_2$$

$$-\frac{1}{a}c_1 \le c_2 \le -\frac{1}{b}c_1$$

$$-2 \le slope z \le -0.5$$

$$-2 \le -\frac{c_1}{c_2} \le -0.5$$

ونحصل على:

$$0.5c_2 \le c_1 \le 2c_2 \longrightarrow 1000 \le c_1 \le 4000$$

$$0.5c_1 \le c_2 \le 2c_1 \longrightarrow 1500 \le c_2 \le 6000$$

مثال: للبرنامج الخطي التالي:

$$\max z = 800x_1 + 500x_2$$

s.t.

$$3x_1 + 2x_2 \le 40$$
 (1) القيد

$$x_1 + 0.5x_2 \le 8$$
 (2) القيد

$$2x_1 + x_2 \le 24$$
 (3) القيد

$$x_1 + x_2 \le 10$$
 القيد $x_1, x_2 \ge 0$

أوجد تحليل الحساسية لمعاملات دالة الهدف وللطرف الأيمن للقيود الخطية وأسعار الظل.

الحل الأمثل:

$$x_1^* = 6$$
 , $x_2^* = 4$, $z^* = 6800$

ويقع عند تقاطع القيدين الثاني والرابع.

$$-2 = -\frac{1}{0.5} = (2)$$
ميل القيد

$$-1 = -\frac{1}{1} = (4)$$
میل القید

$$-2 \leq -\frac{c_1}{c_2} \leq -1$$
 :تحليل حساسية معاملات دالة الهدف

$$500 \le c_1 \le 1000$$

$$400 \le c_2 \le 800$$

لمعرفة الموارد النادرة والمتوفرة:

نعوض بقيم الحل الأمثل $x_2^*=6$, $x_2^*=4$ في متراجحات القيود.

$$3x_1^* + 2x_2^* = 26 < 40$$

$$x_1^* + 0.5x_2^* = 8 = 8$$

$$2x_1^* + x_2^* = 16 < 24$$

$$x_1^* + x_2^* = 10 = 10$$

الموارد النادرة: القيد (2)

 $x_1^* = 10$, $x_2^* = 0$, $z^* = 8000$:الحل الأمثل الجديد سيكون

 $x_1 + 0.5x_2 \le 10$ نستطيع إزاحة القيد (2) ليصبح: $\mathbf{2} = (2)$ أقصى زيادة اقتصادية ممكنة لمورد القيد

سعر الظل لمورد القيد (2) =

القيمة الاقتصادية لسعر الوحدة الإضافية من مورد القيد (2) =

$$600 = \frac{8000 - 6800}{10 - 8}$$

الموارد النادرة: القيد (4)

 $x_1^* = 0$, $x_2^* = 16$, $z^* = 8000$:الحل الأمثل الجديد سيكون

 $x_1 + x_2 \le 16$ نستطيع إزاحة القيد (4) ليصبح: 6 = (4) أقصى زيادة اقتصادية ممكنة لمورد القيد

سعر الظل لمورد القيد (4) = القيمة الاقتصادية لسعر الوحدة الإضافية من مورد القيد (4) =

$$200 = \frac{8000 - 6800}{16 - 10}$$

الموارد المتوفره:

يمكن إزاحة (إنقاص) القيد (1) ليصبح:

$$3x_1 + 2x_2 \le 26$$

مقدار التوفير الاقتصادي في مورد القيد (1) = 14

يمكن إزاحة (إنقاص) القيد (3) ليصبح:

$$2x_1 + x_2 \le 16$$

8 = (1)مقدار التوفير الاقتصادي في مورد القيد

سعر الظل لمورد القيد (1) ولمورد القيد (3) = صفر.