Individual Attitudes and Market Dynamics Towards Imprecision

Christoph Huber¹ Julia Rose²

¹Institute for Markets and Strategy, WU Vienna University of Economics and Business

²Erasmus School of Economics, Erasmus University Rotterdam and Tinbergen Institute

International Workshop on Theoretical and Experimental Economics, Osaka University March 19, 2024

INTRODUCTION

•000000

February 2021:

European Centre for Disease Prevention and Control (ECDC) assesses the risk associated with further spread of the SARS-CoV-2 VOC (variant of concern) as "high" to "very high" for the overall population and as "very high" for vulnerable individuals

•000000

- ▶ European Centre for Disease Prevention and Control (ECDC) assesses the risk associated with further spread of the SARS-CoV-2 VOC (variant of concern) as "high" to "very high" for the overall population and as "very high" for vulnerable individuals
- ► In case of an infection:

•000000

- European Centre for Disease Prevention and Control (ECDC) assesses the risk associated with further spread of the SARS-CoV-2 VOC (variant of concern) as "high" to "very high" for the overall population and as "very high" for vulnerable individuals
- In case of an infection:
 - being asymptomatic

•000000

- European Centre for Disease Prevention and Control (ECDC) assesses the risk associated with further spread of the SARS-CoV-2 VOC (variant of concern) as "high" to "very high" for the overall population and as "very high" for vulnerable individuals
- In case of an infection:
 - being asymptomatic
 - mild symptoms

•000000

- European Centre for Disease Prevention and Control (ECDC) assesses the risk associated with further spread of the SARS-CoV-2 VOC (variant of concern) as "high" to "very high" for the overall population and as "very high" for vulnerable individuals
- In case of an infection:
 - being asymptomatic
 - mild symptoms

 - pneumonia
 - acute respiratory distress syndrome, and other complications

•000000

- ▶ European Centre for Disease Prevention and Control (ECDC) assesses the risk associated with further spread of the SARS-CoV-2 VOC (variant of concern) as "high" to "very high" for the overall population and as "very high" for vulnerable individuals
- ► In case of an infection:
 - being asymptomatic
 - mild symptoms
 - · ...
 - pneumonia
 - acute respiratory distress syndrome, and other complications
 - death

Another example

INTRODUCTION 000000

CO_2 scenarios for the climate

Another example

CO_2 scenarios for the climate

A related example

0000000

Hurricanes

- we can observe and measure the frequency of hurricane occurrence ex-post
- but very little insights in how the likelihood of hurricanes in a specific region will be in a couple of years from now

A related example

0000000

Hurricanes

- \blacktriangleright we can observe and measure the frequency of hurricane occurrence ex-post
- but very little insights in how the likelihood of hurricanes in a specific region will be in a couple of years from now
- ▶ Even more concerning: the extent of damage they may cause is very much unclear!

0000000

- many situations in which both a prospects probability of occurrence and its consequences are unknown
- Standard economic models and experiments in this context distinguish between
 - risk, where both a prospects respective probabilities and its consequences are known, and
 - uncertainty, where a prospects consequences are known, but the respective probabilities associated with the consequences are not.

- many situations in which both a prospects probability of occurrence and its consequences are unknown
- Standard economic models and experiments in this context distinguish between
 - risk, where both a prospects respective probabilities and its consequences are known, and
 - uncertainty, where a prospects consequences are known, but the respective probabilities associated with the consequences are not.

But: in many real-life situations there is even higher degree of unknownness

- many situations in which both a prospects probability of occurrence and its consequences are unknown
- Standard economic models and experiments in this context distinguish between
 - risk, where both a prospects respective probabilities and its consequences are known, and
 - uncertainty, where a prospects consequences are known, but the respective probabilities associated with the consequences are not.

- ▶ But: in many real-life situations there is even higher degree of unknownness
 - we often have some idea about consequences in the form of a range of potential outcomes
 - but we rarely have a clear idea of all potential outcomes, let alone the likelihood of each of them materializing

INTRODUCTION

0000000

▶ Many decisions have to be made under ambiguity/imprecision: the probability that a particular outcome realizes is not precisely known (Knight, 1921)

- Many decisions have to be made under ambiguity/imprecision: the probability that a particular outcome realizes is not precisely known (Knight, 1921)
- ▶ At the same time, there are often situations that are guided by a two-dimensional uncertainty, e.g. in financial markets:
 - probabilities over realizations are uncertain

- Many decisions have to be made under ambiguity/imprecision: the probability that a particular outcome realizes is not precisely known (Knight, 1921)
- ▶ At the same time, there are often situations that are guided by a two-dimensional uncertainty, e.g. in financial markets:
 - probabilities over realizations are uncertain
 - actual outcome realizations are also uncertain

000000

Related findings

Mixed results for ambiguity/imprecision in probabilities in asset market studies (Camerer & Kunreuther, 1989; Weber, 1989; Sarin & Weber, 1993; Bossaerts et al., 2010; Kocher & Trautmann, 2013; Füllbrunn et al., 2014)

000000

Related findings

- Mixed results for ambiguity/imprecision in probabilities in asset market studies (Camerer & Kunreuther, 1989; Weber, 1989; Sarin & Weber, 1993; Bossaerts et al., 2010: Kocher & Trautmann, 2013: Füllbrunn et al., 2014)
- For individual decision making: evidence for imprecision neutrality in probabilities, and imprecision seeking for imprecision in outcomes (using a similar task as ours - Du & Budescu, 2005)

Related findings

- Mixed results for ambiguity/imprecision in probabilities in asset market studies (Camerer & Kunreuther, 1989; Weber, 1989; Sarin & Weber, 1993; Bossaerts et al., 2010: Kocher & Trautmann, 2013: Füllbrunn et al., 2014)
- For individual decision making: evidence for imprecision neutrality in probabilities, and imprecision seeking for imprecision in outcomes (using a similar task as ours - Du & Budescu, 2005)

Aim of our study

1. Disentangle the effect of uncertain probabilities and uncertain outcomes

Related findings

- Mixed results for ambiguity/imprecision in probabilities in asset market studies (Camerer & Kunreuther, 1989; Weber, 1989; Sarin & Weber, 1993; Bossaerts et al., 2010: Kocher & Trautmann, 2013: Füllbrunn et al., 2014)
- For individual decision making: evidence for imprecision neutrality in probabilities, and imprecision seeking for imprecision in outcomes (using a similar task as ours - Du & Budescu, 2005)

Aim of our study

- 1. Disentangle the effect of uncertain probabilities and uncertain outcomes
- 2. Relate investors individual attitudes towards imprecision to market outcomes

Theoretical Framework

Experimental Design

INTRODUCTION

▶ between-subjects design with 4 treatments

- ▶ between-subjects design with 4 treatments
- ▶ 2 tasks per treatment:
 - 1. Individual decision task: elicitation of certainty equivalents (CEs) under risk and different types of uncertainty
 - 2. Market: analyze market prices for assets with risky/uncertain buyback prices of the asset at the end of trading period

- between-subjects design with 4 treatments
- ▶ 2 tasks per treatment:
 - 1. Individual decision task: elicitation of certainty equivalents (CEs) under risk and different types of uncertainty
 - 2. Market: analyze market prices for assets with risky/uncertain buyback prices of the asset at the end of trading period
 - continuous double auction, single-unit trading, open order book
 - ▶ 8 traders per market, endowed w/ 800 Taler, 5 assets
 - 3 minutes of trading

- between-subjects design with 4 treatments
- ▶ 2 tasks per treatment:
 - 1. Individual decision task: elicitation of certainty equivalents (CEs) under risk and different types of uncertainty
 - 2. Market: analyze market prices for assets with risky/uncertain buyback prices of the asset at the end of trading period
 - continuous double auction, single-unit trading, open order book
 - ▶ 8 traders per market, endowed w/ 800 Taler, 5 assets
 - ▶ 3 minutes of trading
- ▶ 320 subjects, 1 hour, average payment €13.10

Results

Treatment	Outcome Realizations	Probabilities	
NI	58 158	50% otherwise	

Treatment	Outcome Realizations	Probabilities
NI	58 158	50% otherwise
IP	58 158	[0%; 100%] otherwise

Treatment	Outcome Realizations	Probabilities	
NI	58 158	50% otherwise	
IP	58 158	[0%; 100%] otherwise	
IO	[8, 108] [108, 208]	50% otherwise	

INTRODUCTION

Treatment	Outcome Realizations	Probabilities	
NI	58 158	50% otherwise	
IP	58 158	[0%; 100%] otherwise	
Ю	[8, 108] [108, 208]	50% otherwise	
IOP	[8, 108] [108, 208]	[0%; 100%] otherwise	

Screenshot - Individual Task

INTRODUCTION

WICHTIG Bille Destatigen Sie ihre Eingabe erst dann mit OK , wenn Sie das Feld entsprechend ausgefüllt haben.					
Lotterie		Ihre Entscheidung			
Ein Betrag im Intervall von [8;108] Talern Ein Betrag im Intervall von [100;208] Talern	mit 50% Wahrscheinlichkeit anderenfalls		Hilfe		
[100;200] Tasern					
			ОК		

Screenshot - Market

INTRODUCTION

Theoretical Framework

Illustration

Theoretical Framework

▶ Theoretical framework serves as a benchmark - based on expected utility (NI) and α -MEU (IP and IO)

Theoretical Framework

▶ Theoretical framework serves as a benchmark - based on expected utility (NI) and α -MEU (IP and IO)

Theoretical Framework

0000000000

► Allows us to do data fitting

- \blacktriangleright two possible states, a low payoff $x_L = 58$ and a high payoff $x_H = 158$
- \triangleright two objective probabilities associated with the possible outcomes, p_L and p_H , with $p_H = (1 - p_L)$, in our experiment $p_L = p_H = 0.5$

- \blacktriangleright two possible states, a low payoff $x_L = 58$ and a high payoff $x_H = 158$
- \triangleright two objective probabilities associated with the possible outcomes, p_L and p_H , with $p_H = (1 - p_L)$, in our experiment $p_L = p_H = 0.5$
- we assume Expected Utility (EU)

- two possible states, a low payoff $x_L = 58$ and a high payoff $x_H = 158$
- two objective probabilities associated with the possible outcomes, p_L and p_H , with $p_H = (1 p_L)$, in our experiment $p_L = p_H = 0.5$
- ▶ we assume Expected Utility (EU)
- ▶ then under EU, a decision maker evaluates the prospect by

$$EU_{ni} = p_L u(x_L) + (1 - p_L) u(x_H)$$

$$= \frac{u(x_L) + u(x_H)}{2}$$
(1)

Theoretical Framework

000000000000

Theoretical Framework IP and IO

▶ For IP and IO we assume:

Theoretical Framework IP and IO

- For IP and IO we assume:
 - references are represented by a generalization of the multiple prior model (Maxmin Expected Utility, MEU) of Gilboa & Schmeidler (1989) i.e., we assume α -MEU

Theoretical Framework IP and IO

- For IP and IO we assume:
 - ▶ preferences are represented by a generalization of the multiple prior model (Maxmin Expected Utility, MEU) of Gilboa & Schmeidler (1989) i.e., we assume α -MEU
 - \triangleright there is Bernoulli utility function u which is twice differentiable, strictly increasing, and concave

INTRODUCTION

Model - IP

▶ Let P denote the set of priors for the probabilities associated with the low outcome $x_L = 58,$

Theoretical Framework

000000000000

Let P denote the set of priors for the probabilities associated with the low outcome $x_L = 58$, and let π_L denote the subjective probability associated with the low outcome.

Theoretical Framework

00000 000000

- Let P denote the set of priors for the probabilities associated with the low outcome $x_L = 58$, and let π_L denote the subjective probability associated with the low outcome.
- Then a decision maker with α -MEU preferences evaluates the prospect by

$$\alpha - \text{MEU}_{IP} = \alpha \min_{\pi_L \in P} [\pi_L u(x_L) + (1 - \pi_L) u(x_H)] + (1 - \alpha) \max_{\pi_L \in P} [\pi_L u(x_L) + (1 - \pi_L) u(x_H)]$$
(2)

- Let P denote the set of priors for the probabilities associated with the low outcome $x_L = 58$, and let π_L denote the subjective probability associated with the low outcome.
- ▶ Then a decision maker with α -MEU preferences evaluates the prospect by

$$\alpha - \text{MEU}_{IP} = \alpha \min_{\pi_L \in P} [\pi_L u(x_L) + (1 - \pi_L) u(x_H)] + (1 - \alpha) \max_{\pi_L \in P} [\pi_L u(x_L) + (1 - \pi_L) u(x_H)]$$
(2)

ightharpoonup coefficient α measures the degree of aversion to imprecision in probabilities ("ambiguity aversion")

- Let P denote the set of priors for the probabilities associated with the low outcome $x_L = 58$, and let π_L denote the subjective probability associated with the low outcome.
- Then a decision maker with α -MEU preferences evaluates the prospect by

$$\alpha - \text{MEU}_{IP} = \alpha \min_{\pi_L \in P} [\pi_L u(x_L) + (1 - \pi_L) u(x_H)] + (1 - \alpha) \max_{\pi_L \in P} [\pi_L u(x_L) + (1 - \pi_L) u(x_H)]$$
(2)

- coefficient α measures the degree of aversion to imprecision in probabilities ("ambiguity aversion")
 - $\alpha = 1 \rightarrow \text{imprecision-in-probabilities aversion}$
 - $\alpha = 0 \rightarrow \text{imprecision-in-probabilities seeking}$

INTRODUCTION

 \triangleright Crucial assumption, that restricts the set of subjective prior probabilities P:

- \triangleright Crucial assumption, that restricts the set of subjective prior probabilities P:
 - ightharpoonup objective "best" and "worst" case scenarios are in P

Results

- \triangleright Crucial assumption, that restricts the set of subjective prior probabilities P:
 - ightharpoonup objective "best" and "worst" case scenarios are in P
- ▶ this is in accordance with the design of our experiment, where we explicitly describe that the possible probabilities for the realization of outcomes are in the set {0%, 5%, 10%, 15%, ..., 85%, 90%, 95%, 100%}, and thus the respective minimum and maximum values are explicitly highlighted

- \triangleright Crucial assumption, that restricts the set of subjective prior probabilities P:
 - \triangleright objective "best" and "worst" case scenarios are in P
- ▶ this is in accordance with the design of our experiment, where we explicitly describe that the possible probabilities for the realization of outcomes are in the set {0%, 5%, 10%, 15%, ..., 85%, 90%, 95%, 100%}, and thus the respective minimum and maximum values are explicitly highlighted
- ▶ The "worst" case scenario corresponds to $\pi_L = 1$, and the "best" case scenario corresponds to $\pi_L = 0$. We can then rewrite

$$\alpha - \text{MEU}_{IP} = \alpha \min_{\pi_L \in P} [\pi_L u(x_L) + (1 - \pi_L) u(x_H)] + (1 - \alpha) \max_{\pi_L \in P} [\pi_L u(x_L) + (1 - \pi_L) u(x_H)]$$

$$= \alpha u(x_L) + (1 - \alpha) u(x_H)$$
(3)

assumption: objective worst $(\pi_L = 1)$ and best $(\pi_H = 1)$ case scenario is in the set of subjective prior probabilities

- ▶ assumption: objective worst $(\pi_L = 1)$ and best $(\pi_H = 1)$ case scenario is in the set of subjective prior probabilities
- ▶ then, we can rewrite

$$\alpha - \text{MEU}_{IP} = \alpha u(x_L) + (1 - \alpha)u(x_H) \tag{4}$$

- ▶ assumption: objective worst $(\pi_L = 1)$ and best $(\pi_H = 1)$ case scenario is in the set of subjective prior probabilities
- ▶ then, we can rewrite

$$\alpha - \text{MEU}_{IP} = \alpha u(x_L) + (1 - \alpha)u(x_H)$$
(4)

Important: in case the decision maker is neutral towards imprecision in probabilities (ambiguity neutral, $\alpha = 0.5$), then the expression is identical to NI:

- assumption: objective worst $(\pi_L = 1)$ and best $(\pi_H = 1)$ case scenario is in the set of subjective prior probabilities
- then, we can rewrite

$$\alpha - \text{MEU}_{IP} = \alpha u(x_L) + (1 - \alpha)u(x_H) \tag{4}$$

Important: in case the decision maker is neutral towards imprecision in probabilities (ambiguity neutral, $\alpha = 0.5$), then the expression is identical to NI:

$$\alpha - \text{MEU}_{IP} = \alpha u(x_L) + (1 - \alpha)u(x_H) = \frac{u(x_L) + u(x_H)}{2} = \text{EU}_{NI}$$
 (5)

- ▶ modeled as a two-stage lottery (as in experimental design)
- \blacktriangleright two possible outcome ranges, $[x_{L_1},...,x_{L_n}]$ and $[x_{H_1},...,x_{H_n}]$

Theoretical Framework

000000000000

- ▶ modeled as a two-stage lottery (as in experimental design)
- \blacktriangleright two possible outcome ranges, $[x_{L_1},...,x_{L_n}]$ and $[x_{H_1},...,x_{H_n}]$
- two objective probabilities associated with the possible outcome ranges, p_L and p_H , with $p_H = (1 p_L)$

 \triangleright Let Q_L denote the set of priors for the probabilities associated with all potential outcomes in the low outcome space as denoted by $\{x_{1L},...,x_{nL}\}$,

Let Q_L denote the set of priors for the probabilities associated with all potential outcomes in the low outcome space as denoted by $\{x_{1L}, ..., x_{nL}\}$, and let Q_H denote the set of priors for the probabilities associated with all potential outcomes in the high outcome space as denoted by $\{x_{1H}, ..., x_{nH}\}$.

Let Q_L denote the set of priors for the probabilities associated with all potential outcomes in the low outcome space as denoted by $\{x_{1L}, ..., x_{nL}\}$, and let Q_H denote the set of priors for the probabilities associated with all potential outcomes in the high outcome space as denoted by $\{x_{1H}, ..., x_{nH}\}$. Let μ_{iL} denote the subjective probability associated with outcome i in the low outcome space, and μ_{iH} denote the subjective probability associated with outcome i in the high outcome space. Then, a decision maker with α -MEU preferences evaluates the prospect by

 \triangleright Let Q_L denote the set of priors for the probabilities associated with all potential outcomes in the low outcome space as denoted by $\{x_{1L},...,x_{nL}\}$, and let Q_H denote the set of priors for the probabilities associated with all potential outcomes in the high outcome space as denoted by $\{x_{1H},...,x_{nH}\}$. Let μ_{iL} denote the subjective probability associated with outcome i in the low outcome space, and μ_{iH} denote the subjective probability associated with outcome i in the high outcome space. Then, a decision maker with α -MEU preferences evaluates the prospect by

$$\alpha - \text{MEU}_{IO} = p_L \left[\alpha \min_{\mu_{iL} \in Q_L} \text{EU}(\mu_{1L} : x_{1L}, ..., \mu_{nL} : x_{nL}) + (1 - \alpha) \max_{(\mu_{iL} \in Q_L)} \text{EU}(\mu_{1L} : x_{1L}, ..., \mu_{nL} : x_{nL}) \right] + (1 - p_L) \left[\alpha \min_{\mu_{iH} \in Q_H} \text{EU}(\mu_{1H} : x_{1H}, ..., \mu_{nH} : x_{nH}) + (1 - \alpha) \max_{\mu_{iH} \in Q_H} \text{EU}(\mu_{1H} : x_{1H}, ..., \mu_{nH} : x_{nH}) \right]$$

$$(6)$$

INTRODUCTION

 \triangleright Assumptions similar to those in the model for IP, restricting Q_L and Q_H .

- ▶ Assumptions similar to those in the model for IP, restricting Q_L and Q_H .
- ▶ this reflexts our experimental design; instructions: "[...] payment of the lottery lies, with equal probability, either in the range [8:108] Taler or [108:208] Taler. That is, with a probability of 50% you receive an amount between 8 and 108 Taler, and with the complementary probability of 100% − 50% = 50% you receive an amount between 108 and 208 Taler. [...]"

- \triangleright Assumptions similar to those in the model for IP, restricting Q_L and Q_H .
- ▶ this reflexts our experimental design; instructions: "[...] payment of the lottery lies, with equal probability, either in the range [8:108] Taler or [108:208] Taler. That is, with a probability of 50% you receive an amount between 8 and 108 Taler, and with the complementary probability of 100% − 50% = 50% you receive an amount between 108 and 208 Taler. [...]"
- The "worst" case scenario corresponds to a probability distribution that assigns a probability of 1 to the lowest possible outcome in the respective outcome range $(\mu_{1L} = 1, \mu_{2L}, ..., \mu_{nL} = 0)$ for low outcome range, $\mu_{1H} = 1, \mu_{2H}, ..., \mu_{nH} = 0)$,
- and the "best" case scenario corresponds to a probability distribution that assigns a probability of 1 to the highest possible outcome in the respective outcome range $(\mu_{1L},...,\mu_{(n-1)L}=0, \mu_{nL}=1 \text{ for low outcome range}, \mu_{1H},...,\mu_{(n-1)H},\mu_{nH}=0)$

- assumption: the objective "worst" and "best" case scenarios are in set of subjective prior probabilities
- We can now rewrite to

$$\alpha - \text{MEU}_{IO} = p_L[\alpha u(x_{L1}) + (1 - \alpha)u(x_{Ln})] + (1 - p_L)[\alpha u(x_{H1}) + (1 - \alpha)u(x_{Hn})]$$
 (7)

Theoretical Framework

- ▶ assumption: the objective "worst" and "best" case scenarios are in set of subjective prior probabilities
- ▶ We can now rewrite to

$$\alpha - \text{MEU}_{IO} = p_L[\alpha u(x_{L1}) + (1 - \alpha)u(x_{Ln})] + (1 - p_L)[\alpha u(x_{H1}) + (1 - \alpha)u(x_{Hn})]$$
(7)

• in case the decision maker is neutral towards imprecision in outcomes ($\alpha = 0.5$) and has linear utility, then the expression is identical to NI with our calibration in the experiment:

- assumption: the objective "worst" and "best" case scenarios are in set of subjective prior probabilities
- We can now rewrite to

$$\alpha - \text{MEU}_{IO} = p_L[\alpha u(x_{L1}) + (1 - \alpha)u(x_{Ln})] + (1 - p_L)[\alpha u(x_{H1}) + (1 - \alpha)u(x_{Hn})]$$
(7)

 \triangleright in case the decision maker is neutral towards imprecision in outcomes ($\alpha = 0.5$) and has linear utility, then the expression is identical to NI with our calibration in the experiment:

$$\alpha - \text{MEU}_{IO} = p_L \left[\frac{x_{L1} + x_{Ln}}{2} \right] + (1 - p_L) \left[\frac{x_{H1} + x_{Hn}}{2} \right] = \frac{x_L + x_H}{2} = \text{EU}_{NI}$$
 (8)

 \blacktriangleright Larger fraction above 108 in IO (p=0.006, Wilxocon signed-rank test)

For our parameter estimations, we find:

For NI estimating the model with power utility $u(x) = x^r$, we cannot reject linear utility with r = 0.356, p = 0.098, Wald-test

Individual Task

- For NI estimating the model with power utility $u(x) = x^r$, we cannot reject linear utility with r = 0.356, p = 0.098, Wald-test
- ▶ For the degree of imprecision aversion, we find
 - ▶ IP: $\alpha = 0.536$, we cannot reject imprecision neutrality (p = 0.333, Wald-test)

Individual Task

- For NI estimating the model with power utility $u(x) = x^r$, we cannot reject linear utility with r = 0.356, p = 0.098. Wald-test
- For the degree of imprecision aversion, we find
 - ▶ IP: $\alpha = 0.536$, we cannot reject imprecision neutrality (p = 0.333, Wald-test)
 - ▶ IO: $\alpha = 0.443$, we also cannot reject imprecision neutrality (p = 0.130, Wald-test)

Individual Task

- For NI estimating the model with power utility $u(x) = x^r$, we cannot reject linear utility with r = 0.356, p = 0.098. Wald-test
- For the degree of imprecision aversion, we find
 - ▶ IP: $\alpha = 0.536$, we cannot reject imprecision neutrality (p = 0.333, Wald-test)
 - ▶ IO: $\alpha = 0.443$, we also cannot reject imprecision neutrality (p = 0.130, Wald-test)
 - ▶ But: we find that $\alpha_{IP} > \alpha_{IO}$ with p = 0.038

We compute market deviations MD_m^i per market and interval, dependent on the price P_m^i and expected value EV:

$$MD_m^i = \frac{P_m^i - EV}{EV} = \frac{P_m^i - 108}{108}$$

We compute market deviations MD_m^i per market and interval, dependent on the price P_m^i and expected value EV:

$$MD_m^i = \frac{P_m^i - EV}{EV} = \frac{P_m^i - 108}{108}$$

	Interval 1				Interval 6			
Treatment	Mean	S.d.	p	Mean	S.d.	p		
NI	0.078	(0.496)	0.846	0.100^{*}	(0.182)	0.093		
IP	0.054	(0.370)	0.553	-0.145^{*}	(0.174)	0.051		
IO	0.368*	(0.573)	0.075	-0.041	(0.353)	0.953		

For our parameter estimations, we find:

For NI estimating the model with power utility $u(x) = x^r$, we cannot reject linear utility with r = 1.25, p = 0.797, Wald-test

- For NI estimating the model with power utility $u(x) = x^r$, we cannot reject linear utility with r = 1.25, p = 0.797, Wald-test
- ▶ For the degree of imprecision aversion, we find
 - ▶ IP: $\alpha = 0.530$, we cannot reject imprecision neutrality (p = 0.72, Wald-test)

- For NI estimating the model with power utility $u(x) = x^r$, we cannot reject linear utility with r = 1.25, p = 0.797, Wald-test
- ► For the degree of imprecision aversion, we find
 - ▶ IP: $\alpha = 0.530$, we cannot reject imprecision neutrality (p = 0.72, Wald-test)
 - ▶ IO: $\alpha = 0.386$, we also cannot reject imprecision neutrality (p = 0.30, Wald-test)

- For NI estimating the model with power utility $u(x) = x^r$, we cannot reject linear utility with r = 1.25, p = 0.797, Wald-test
- ► For the degree of imprecision aversion, we find
 - ▶ IP: $\alpha = 0.530$, we cannot reject imprecision neutrality (p = 0.72, Wald-test)
 - ▶ IO: $\alpha = 0.386$, we also cannot reject imprecision neutrality (p = 0.30, Wald-test)
 - we also cannot reject $\alpha_{IP} = \alpha_{IO} \ (p = 0.26)$

INTRODUCTION

Individual parameters (medians), individual task and markets

Treatment	NI		IP		IP		
	individual	\max ket	individual	\max ket	individual	\max	
r	1.00	1.23					
	(0.93)	(0.68)					
α			0.50	0.55	0.50	0.39	
			(0.33)	(0.26)	(0.33)	(0.33)	
<i>p</i> -value	0.569		0.952		0.487		

INTRODUCTION

Trading Behavior: Market Volume, Volatility, and Dispersion of Final Asset Holdings

	VOLUME			VOLA			DISPERSION		
	<i>p</i> -value			p-value			p-value		
	mean	IP	IO	mean	IP	IO	mean	IP	IO
NI	25.8	0.342	0.896	0.59	0.248	0.280	3.68	0.211	0.072
	(8.97)			(0.56)			(0.74)		
IP	22.9		0.403	0.36		0.063	3.29		0.565
	(11.77)			(0.19)		0.003	(0.85)		
Ю	26.1			0.81			3.48		
	(11.84)			(0.70)			(1.68)		

$$r=0.119,\,p=0.056$$

$$r = 0.145$$
, $p = 0.020$

imprecision in probabilities

$$r=0.200,\,p=0.002$$

$$r = 0.298$$
, $p < 0.001$

imprecision in outcomes

$$r=0.148,\,p=0.017$$

$$r = 0.139$$
, $p = 0.025$

Summary

- we analyzed different dimensions of imprecision and their impact on individual choice and market dynamics
- ▶ findings support the importance of distinguishing between imprecision in probabilities and imprecision in outcomes
 - \rightarrow preference for imprecision in outcomes in individual task
 - \rightarrow higher prices with imprecision in outcomes vs. imprecision in probabilities
- ▶ parameter estimates align with observed market dynamics, indicating a translation of individual attitudes into market behavior

Appendix References

References

Bossaerts, P., Ghirardato, P., Guarnaschelli, S., & Zame, W. R. (2010). Ambiguity in asset markets: Theory and experiment. The Review of Financial Studies, 23(4), 1325–1359.

Camerer, C., & Kunreuther, H. (1989). Experimental markets for insurance. Journal of Risk and Uncertainty, 2(3), 265–299.

Du, N., & Budescu, D. V. (2005). The effects of imprecise probabilities and outcomes in evaluating investment options. Management Science, 51(12), 1791–1803.

Füllbrunn, S., Rau, H. A., & Weitzel, U. (2014). Does ambiguity aversion survive in experimental asset markets? Journal of Economic Behavior & Organization, 107, 810–826.

Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal of Mathematical Economics, 18(2), 141-153.

Knight, F. (1921). Risk, Uncertainty and Profit. Hougthon Mifflin (Boston).

Kocher, M. G., & Trautmann, S. T. (2013). Selection into auctions for risky and ambiguous prospects. Economic Inquiry, 51(1), 882–895.

Sarin, R., & Weber, M. (1993). Effects of ambiguity in market experiments. Management Science, 39, 602-615.

Weber, M. (1989). Ambiguität in Finanz- und Kapitalmärkten. Zeitschrift für betriebswirtschaftliche Forschung, 41, 447–471.