Homework

Ding Yaoyao, 516030910572

2017-12-15

Exercise 4-1

5

Beacuse f and g are nonzero polynomials, we have

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m,$$

where $a_n \neq 0$ and $b_m \neq 0$. So deg(f) = n and deg(g) = m. The coefficient of x^r item of f(x)g(x) is

$$c_r = \sum_{i=0}^r a_i b_{r-i}.$$

When r = n + m, c_r is $a_n b_m$, which is not 0 beacuse R is an integral domain and $a_n \neq 0, b_m \neq 0$. So $deg(fg) \geq deg(f) + deg(g)$.

When r > n + m, c_r is 0 beacuse one of a_i and b_{r-i} is 0. So $deg(fg) \le deg(f) + deg(g)$.

Then when $f(x) \neq 0$ and $g(x) \neq 0$, we have deg(fg) = deg(f) + deg(g).

When R is not an integral domain, the conclusion doesn't hold. For example, when R is Z_4 , f(x) = g(x) = 2, deg(f) = deg(g) = 0 and $deg(fg) = -\inf$.

Exercise 4-3

1

(4)

Beacuse $x^3 + 1 = (x+1)(x^2 - x + 1) = (x+1)(x^2 + x + 1)$, thus $\beta \mid \alpha$.

(6)

If $\alpha = \beta \gamma$, we replace x with $2 \in Z_5[x]$, we can get $\alpha(x = 2) = 0$. But we replace x directly in α we can get $\alpha(x = 2) = 2 \neq 0$. So $\beta \nmid \alpha$.

19

Let $R = \mathbb{Z}[\sqrt{-3}]$ and $a = 4, b = 2(1+\sqrt{-3})$. We can get that all the divisors of a are $\{1, 2, 1+\sqrt{-3}, 1-\sqrt{-3}, -1, -2, -1-\sqrt{-3}, -1+\sqrt{-3}\}$ and all the divisors of b are $\{1, 2, 1+\sqrt{-3}, -1, -2, -1-\sqrt{-3}\}$. Both 2 and $1+\sqrt{-3}$ are maximal common divisors, but they don't correlate with each other. So a and b have no greatest common divisor. (The method to get the divisor of a or b is to reduce $\frac{a}{r+s\sqrt{-3}}$ in $\mathbb C$ field where $r, s \in \mathbb Z$, then we can get the restrictions on r and s and know all the divisors).

Exercise 4-4

1

(1)

• \Rightarrow : If d is a unit, we have $dd^{-1} = 1$, then

$$\sigma(1) = \sigma(dd^{-1}) \ge \sigma(d) \ge \sigma(d \cdot 1) \ge \sigma(1),$$

so $\sigma(1) = \sigma(d)$.

• \Leftarrow : If $\sigma(1) = \sigma(d)$, because D is an Euclidean Domain, we have

$$1 = dc + r$$

where $\sigma(r) < \sigma(d)$ or r = 0. Beacuse $\sigma(r) \ge \sigma(1) = \sigma(d)$, r must be 0. Then we have dc = 1, which means d is a unit.

(2)

For all $d \in D$, we have $\sigma(d) = n = \sigma(1)$, by (1), then d is a unit. Then every element of D has a multiplicative inverse, thus Euclidean Domain D is a field.

(3)

If a = 0, then a = b = 0.

If $a \neq 0$, we have b = ac where c is a unit, then $b \neq 0$. Then we have $\sigma(b) = \sigma(ac) \geq \sigma(a)$. Similarly, $\sigma(a) \geq \sigma(b)$, so $\sigma(a) = \sigma(b)$.

In conclusion, $a \sim b \Rightarrow a = b = 0$ or $\sigma(a) = \sigma(b)$.

7

(1)

By the Correspondence Theorem For Rings, any ideal of D/I has the form J/I, where J is an ideal of D containing I. Beacuse D is a PID, J = (a) where

 $a \in D$. Then J/I = (a)/I = (a+I), which means all the ideals of D/I are principal.

D/I is an integral domain iff I is a prime ideal of D, but it's not necessary. For example, let D be $\mathbb Z$ and I be (6), then D/I is not an integral beacuse (2+I)(3+I)=I where $(2+I) \neq I$ and $3+I \neq I$.

(2)

Similar with (1), any ideal of D/I has the form that J/I, where J is an ideal of D containing I. Beacuse D is a PID, we can assume I=(a) and J=(b). Beacuse we have $I\subseteq J$, then $b\mid a$. Beacuse D is also a UFD, then a has finite divisor that don't correlate with each other. Then there are finite number of b that don't correlate with each other, which means there are finite ideals of D/I.