Optimization in Machine Learning

CMA-ES Algorithm

Learning goals

- CMA-ES strategy
- Estimation of distribution
- Step size control

ESTIMATION OF DISTRIBUTION ALGORITHM

- General algorithmic template
- Instead of population we maintain parameterized distribution to sample offspring from
- **1** Draw λ offsping $\mathbf{x}^{(i)}$ from $p(\mathbf{x}|\boldsymbol{\theta}^{[t]})$
- 2 Evaluate fitness $f(\mathbf{x}^{(i)})$
- **3** Update $\theta^{[t+1]}$ with μ best offspring

Estimation of distribution algorithm. For each iteration i, a "Farandom draw is performed for a population P in a distribution PDu. The distribution parameters PDe are then estimated using the selected points PS. The illustrated example optimizes a continuous objective function (f/2) with a unique optimum O. The sampling (following a normal distribution N) concentrates around the optimum as one goes along unwinding algorithm.

COVARIANCE MATRIX ADAPTATION ES

Sample distribution is multivariate Gaussian

$$\mathbf{x}^{[t+1](i)} \sim \mathbf{m}^{[t]} + \sigma^{[t]} \mathcal{N}(\mathbf{0}, \mathbf{C}^{[t]}) \quad \text{for } i = 1, \dots, \lambda.$$

COVARIANCE MATRIX ADAPTATION ES

Sample distribution is multivariate Gaussian

$$\mathbf{x}^{[t+1](i)} \sim \mathbf{m}^{[t]} + \sigma^{[t]} \mathcal{N}(\mathbf{0}, \mathbf{C}^{[t]})$$
 for $i = 1, \dots, \lambda$

- $\mathbf{x}^{[t+1](i)} \in \mathbb{R}^d$ *i*-th offspring; $\lambda \geq 2$ number of offspring
- $m{o}$ $m{m}^{[t]} \in \mathbb{R}^d$ mean value and $m{C}^{[t]} \in \mathbb{R}^{d \times d}$ covar matrix
- \bullet $\sigma^{[t]} \in \mathbb{R}_+$ "overall" standard deviation/step size

 \rightarrow How to calculate $\mathbf{m}^{[t+1]}$, $\mathbf{C}^{[t+1]}$, $\sigma^{[t+1]}$ for next generation t+1?

- $m{0}$ Initialize $m{m}^{[0]}, \sigma^{[0]}$ problem-dependent and $m{C}^{[0]} = \mathbb{I}_d$
- **3 Sample** from distribution $\mathbf{x}^{[1](i)} = \mathbf{m}^{[0]} + \sigma^{[0]} \mathcal{N}(\mathbf{0}, \mathbf{C}^{[0]})$ multivariate Gaussian

Initial distribution $\mathcal{N}(\mathbf{m}^{[0]}, (\sigma^{[0]})^2 \mathbb{I}_2)$ of generation t = 0.

Sample from distribution $\mathbf{x}^{[1](i)} = \mathbf{m}^{[0]} + \sigma^{[0]} \mathcal{N}(\mathbf{0}, \mathbf{C}^{[0]})$ multivariate normal distribution.

Initial distribution $\mathcal{N}(\mathbf{m}^{[0]}, (\sigma^{[0]})^2 \mathbb{I}_2)$ of generation $t = 0, \lambda = 7$.

2 Selection and recombination of $\mu < \lambda$ best-performing offspring using fixed weights $w_1 \geq \ldots \geq w_{\mu} > 0, \sum_{i=1}^{\mu} w_i = 1.$ $\mathbf{x}_{i:\lambda}$ is *i*-th ranked solution, ranked by $f(\mathbf{x}_{i:\lambda})$.

Calculation of auxiliary variables (
$$\mu = 3$$
 points) $\mathbf{y}_{w}^{[1]} := \sum_{i=1}^{\mu} w_{i} (\mathbf{x}_{i:\lambda}^{[1]} - \mathbf{m}^{[0]}) / \sigma^{[0]} := \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda}^{[1]}$

Update mean

Movement towards the new distribution with mean $\mathbf{m}^{[1]} = \mathbf{m}^{[0]} + \sigma^{[0]} \mathbf{y}_w^{[1]}.$

Update covariance matrix

Roughly: elongate density ellipsoid in direction of successful steps. $C^{[1]}$ reproduces successful points with higher probability than $C^{[0]}$.

Update C using sum of outer products and learning rate c_{μ} (simplified):

$$\mathbf{C}^{[1]} = (1 - c_{\mu})\mathbf{C}^{[0]} + c_{\mu} \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}^{[1]} (\mathbf{y}_{i:\lambda}^{[1]})^{\top}$$
 (rank- μ update).

Sample from distribution for new generation

- **2** Selection and recombination of $\mu < \lambda$ best-performing offspring
- Update mean

Update covariance matrix

● Update step-size exploiting correlation in history of steps. steps point in similar direction ⇒ increase step-size steps cancel out ⇒ decrease step-size

UPDATING C: FULL UPDATE

Full CMA update of C combines rank- μ update with a rank-1 update using exponentially smoothed evolution path $p_c \in \mathbb{R}^d$ of successive steps and learning rate c_1 :

$$m{p}_c^{[0]} = \mathbf{0}, \quad m{p}_c^{[t+1]} = (1-c_1) m{p}_c^{[t]} + \sqrt{\frac{c_1(2-c_1)}{\sum_{i=1}^{\mu} w_i^2}} m{y}_w$$

Final update of C is

$$\boldsymbol{C}^{[t+1]} = (1 - c_1 - c_{\mu} \sum w_j) \boldsymbol{C}^{[t]} + c_1 \underbrace{\boldsymbol{p}_c^{[t+1]} (\boldsymbol{p}_c^{[t+1]})^{\top}}_{\text{rank-1}} + c_{\mu} \underbrace{\sum_{i=1}^{\mu} w_i \boldsymbol{y}_{i:\lambda}^{[t+1]} (\boldsymbol{y}_{i:\lambda}^{[t+1]})^{\top}}_{\text{rank-}\mu}$$

- Correlation between generations used in rank-1 update
- Information from entire population is used in rank- μ update

UPDATING σ **: METHODS STEP-SIZE CONTROL**

- 1/5-th success rule: increases the step-size if more than 20 % of the new solutions are successful, decrease otherwise
- σ-self-adaptation: mutation is applied to the step-size and the better - according to the objective function value - is selected
- Path length control via cumulative step-size adaptation (CSA) Intuition:
 - Short cumulative step-size \triangleq steps cancel \rightarrow decrease $\sigma^{[t+1]}$
 - Long cumulative step-size \triangleq corr. steps \rightarrow increase $\sigma^{[t+1]}$

