Common Laplace Transforms and Properties

f(t)	$F(s) = \mathcal{L}\left\{f(t)\right\}$
1	$\left \frac{1}{s}, s > 0 \right $
e^{at}	$\frac{1}{s-a}, \ s > a$
$t^n, \ n=1,2,\dots$	$\frac{n!}{s^{n+1}}, \ s > 0$
$\sin(bt)$	$\frac{b}{s^2 + b^2}, \ s > 0$
$\cos(bt)$	$\frac{s}{s^2 + b^2}, \ s > 0$
$e^{at}t^n, \ n=1,2,\dots$	$\frac{n!}{(s-a)^{n+1}}, \ s > a$
$e^{at}\sin\left(bt\right)$	$\frac{b}{(s-a)^2+b^2}, \ s>a$
$e^{at}\cos\left(bt\right)$	$\frac{s-a}{(s-a)^2+b^2}, \ s>a$

Properties:

L.1 $\mathcal{L}\{cf(t)\}=c\mathcal{L}\{f(t)\}\$, where c is a constant.

L.2
$$\mathcal{L}\{f_1(t) + f_2(t)\} = \mathcal{L}\{f_1(t)\} + \mathcal{L}\{f_2(t)\}$$

L.3 If $F(s) = \mathcal{L}\{f(t)\}$ exists for all $s > \alpha$, then $\mathcal{L}\{e^{at}f(t)\} = F(s-a)$ for all $s > \alpha + a$.

L.4 If $F(s) = \mathcal{L}\{f(t)\}$ exists for all $s > \alpha$, then for all $s > \alpha$,

$$\mathscr{L}\left\{f^{(n)}(t)\right\} = s^n \mathscr{L}\left\{f(t)\right\} - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$

L.5 If
$$F(s) = \mathcal{L}\{f(t)\}$$
 exists for all $s > \alpha$, then $\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n F}{ds^n}$ for all $s > \alpha$.

Explain in Words:

1. Describe properties 3, 4, and 5 in words. For example in property 3, multiplying f(t) by e^{at} and then taking the Laplace transform has what affect on $\mathcal{L}\{f(t)\}$?

Solving Diff. Eqs. with Inverse Laplace Transforms

- 2. Solve y'' y = -t with y(0) = 0 and y'(0) = 1.
 - (a) Using the properties, apply the Laplace transform to both sides:

$$\mathscr{L}\{y''-y\}=\mathscr{L}\{-t\}.$$

(b) Using your answer in 2a, solve for $\mathscr{L}\{y(t)\} = Y(s)$.

(c) Use the table of common Laplace transforms to identify what function y(t) has $\mathcal{L}\{y(t)\} = Y(s)$.

In 2c, we are apply the **Inverse Laplace Transform** to Y(s) in order to identify $y(t) = \mathcal{L}^{-1}\{Y(s)\}$.

Section 6.1: Inverse Laplace Transforms

Given F(s), if there is a function f(t) that is continuous on $[0, \infty)$ and satisfies $\mathcal{L}\{f\} = F(s)$, then we say f(t) is the **inverse Laplace transform** of F(s) which is denoted by

$$\mathbf{f}(\mathbf{t}) = \mathscr{L}^{-1}\{\mathbf{F}(\mathbf{s})\}.$$

3. Determine whether the inverse Laplace transform is of the form t^n , $\cos(bt)$, $\sin(bt)$, or e^{at} .

(a)
$$F(s) = \frac{1}{s^2}$$

(b)
$$F(s) = \frac{2}{s^2 + 4}$$

(c)
$$F(s) = \frac{4s}{s^2 + 9}$$

(d)
$$F(s) = \frac{2}{s+6}$$

- 4. Find the inverse Laplace transform of $F(s) = \frac{s+2}{s^2+4s+11}$ by answering the questions below.
 - (a) Complete the square for the expression in the denominator of F(s) to express $s^2+4s+11=(s-a)^2+b$.
 - (b) Use the table of common Laplace transforms to identify $\mathscr{L}^{-1}\{F(s)\}.$

5. Find the inverse Laplace transform of the function.

(a)
$$F(s) = \frac{5s - 10}{s^2 - 3s - 4}$$

(b)
$$F(s) = \frac{3s - 15}{2s^2 - 4s + 10}$$

(c)
$$F(s) = \frac{-5s - 36}{(s+2)(s^2+9)}$$