

Politechnika Wrocławska

Rozpoznawanie zwłóknienia tkanki wątroby na podstawie zdjęć USG, przy pomocy konwolucyjnych sieci z mechanizmem uwagi

Cyprian Mataczyński 228941 Paweł Oberc 229048

Tematyka projektu

- Zarys problemu Rozpoznanie zwłóknienia wątroby wymaga badania elastografem.
- **Cel projektu** Aplikacja wspomagająca lekarza w rozpoznaniu zwłóknienia na etapie badania USG wątroby.
- Zastosowane metody wspomagania podejmowania decyzji Konwolucyjna sieć neuronowa z mechanizmem atencji.
- Metoda wizualizacji Gradient class activation map

Przykład badania elastografem

F1

F4

Architektura sieci

Wang, Fei, et al. "Residual attention network for image classification." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.

Architektura sieci

Layer	Output Size	Attention-56	Attention-92
Conv1	112×112	7×7 , 64, stride 2	
Max pooling	56×56	3×3 stride 2	
Residual Unit	56×56	$\begin{pmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{pmatrix} \times 1$	
Attention Module	56×56	Attention ×1	Attention ×1
Residual Unit	28×28	$\begin{pmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{pmatrix} \times 1$	
Attention Module	28×28	Attention ×1	Attention ×2
Residual Unit	14×14	$\begin{pmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{pmatrix} \times 1$	
Attention Module	14×14	Attention ×1	Attention ×3
Residual Unit	7×7	$\begin{pmatrix} 1 \times 1, 5 \\ 3 \times 3, 5 \\ 1 \times 1, 2 \end{pmatrix}$	512×3
Average pooling	1×1	7×7 stride 1	
FC,Softmax		1000	
params $\times 10^6$		31.9	51.3
FLOPs×10 ⁹		6.2	10.4
Trunk depth		56	92

Wang, Fei, et al. "Residual attention network for image classification." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.

Proces uczenia

Na zrównoważonych klasowo danych osiągnięto podczas wielu prób nauki wyniki dokładności na zbiorze walidacyjnym:

- Attention-56 (dwa neurony wyjściowe):
 - Dokładność: 82.5%
 - Czas nauki: 7h 34min
- Attention-92 (dwa neurony wyjściowe):
 - Dokładność: 82.7%
 - Czas nauki: 11h 56min
- Attention-56 (jeden neuron wyjściowy):
 - Dokładność: 81.3% Czas nauki: 7h 31min

Wybrano ostatni z modeli w celach lepszej wizualizacji pewności.

Bibliografia

- 1. Wang, Fei, et al. "Residual attention network for image classification." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.
- 2. Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2016). Grad-CAM: visual explanations from deep networks via gradient-based localization. arXiv website. arxiv. org/abs/1610.02391. *Revised March*, *21*.