9 Robuste Schätzer

Seien $X_1, \ldots, X_n, X_{n+1} \stackrel{uiv}{\sim} F$, $F \in \mathfrak{F}$: Verteilungsannahme, x_1, \ldots, x_n, x Realisierungen von $X_1, \ldots, X_n, X_{n+1}, X_i$ reellwertig. Sei $\vartheta : \mathfrak{F} \to \mathbb{R}$, $\hat{\vartheta}_n = \vartheta(\hat{F}_n)$ Plug-In-Schätzer für $\vartheta(F)$. $(\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{X_i \leq t\})$

9.1 Definition (Sensitivitätskurve)

$$S(x, \hat{\vartheta}) = \frac{\hat{\vartheta}_{n+1} - \hat{\vartheta}_n}{\frac{1}{n+1}}$$

Dabei: $\hat{\vartheta}_{n+1} = \vartheta(\hat{F}_{n+1})$ basierend auf X_1, \dots, X_n und einer zusätzlichen Beobachtung x.

 $S(x,\hat{\vartheta})$ ist die Änderung von $\hat{\vartheta}$ bei einer zusätzlichen Beobachtung x relativ gesehen zur Masse $\frac{1}{n+1}$ von x.

Beispiele:

a)
$$\vartheta(F) = \int x dF(x), \ \vartheta(\hat{F}_n) = \bar{x}_n$$

$$S(x, \hat{\vartheta}) = \frac{\bar{x}_{n+1} - \bar{x}_n}{\frac{1}{n+1}} = \sum_{i=1}^n x_i + x - \frac{n+1}{n} \sum_{i=1}^n x_i = x - \bar{x}_n$$

linear in $x \Rightarrow$ unbeschränkt in x

Große Änderung von S, falls |x| groß!

b) Sei $\mathfrak{F} = \{F: F \text{ streng monoton wachsend auf } \{x: 0 < F(x) < 1\}\},\ \vartheta(F) = F^{-1}(\frac{1}{2}).$ Sei n = 2r - 1 ungerade.

$$\Rightarrow \vartheta(\hat{F}_n) = x_{(r)} =: x_{r:n}$$

("das r kleinste unter n")

n+1=2r:

$$\hat{F}_{n+1}^{-1}(\frac{1}{2}) = x_{r:n+1}$$

$$\hat{\vartheta}_{n+1}=\vartheta(\hat{F}_{n+1})\in[x_{(r-1)},x_{(r)}]$$

 \Rightarrow S beschränkt in x!

Nachteil der Sensitivitätskurve:

Hängt von Stichprobe ab.

Wünschenswert wäre Abhängigkeit nur von x und F.

9.2 Definition

a) Sei Δ_x die zum Dirac-Maß in x gehörende Verteilungsfunktion, also

$$\Delta_x(y) = \begin{cases} 0, & y < x \\ 1, & y \ge x \end{cases}$$

Die Einflusskurve (*influence curve*) von $\vartheta(F)$ ist

$$\varphi(x,F) = \lim_{t \to 0} \frac{\vartheta((1-t)F + t\Delta_x) - \vartheta(F)}{t}$$
$$= \frac{d}{dt} \vartheta((1-t)F + t\Delta_x)|_{t=0}$$

wobei die Existenz der Ableitung vorausgesetzt wird.

b) $\hat{\vartheta} = \vartheta(\hat{F}_n)$ heißt **robust**, falls $\varphi(x, F)$ beschränkt ist in x.

Bemerkung:

Gegeben:

Stichprobe x_1, \ldots, x_n : Schätze $\vartheta(F)$ durch $\hat{\vartheta}_n = \vartheta(\hat{F}_n)$. Weiterer Wert x: Schätze $\vartheta(F)$ durch $\hat{\vartheta}_{n+1} = \vartheta(\hat{F}_{n+1})$, wobei

$$\hat{F}_{n+1}(y) = \frac{n}{n+1}\hat{F}_n(y) + \frac{1}{n+1}\Delta_x(y)$$

Sei nun $t = \frac{1}{n+1}$, also $1 - t = \frac{n}{n+1}$. Damit gilt:

$$\hat{\vartheta}_{n+1} = \vartheta(\hat{F}_{n+1}) = \vartheta((1-t)\hat{F}_n + t\Delta_x)
= \frac{\vartheta((1-t)\hat{F}_n + t\Delta_x) - \vartheta(\hat{F}_n)}{t}t + \underbrace{\vartheta(\hat{F}_n)}_{=\hat{\vartheta}_n}
\approx \hat{\vartheta}_n + \frac{1}{n+1}\varphi(x,\hat{F}_n)$$

(Diese Approximation setzt voraus, dass $\varphi(x, \hat{F}_n)$ existiert.)

In diesem Fall gilt:

$$\varphi(x, \hat{F}_n) \approx \frac{\hat{\vartheta}_{n+1} - \hat{\vartheta}_n}{\frac{1}{n+1}} = S(x, \hat{\vartheta})$$

9.3 Beispiel 69

9.3 Beispiel

Sei $\vartheta(F) = \int y dF(y)$.

$$\Rightarrow \varphi(x,F) = \lim_{t \to 0} \frac{1}{t} [(1-t) \int y dF(y) + t \cdot \int y d\Delta_x(y) - \int y dF(y)]$$
$$= -\int y dF(y) + x$$
$$= x - \vartheta(F)$$

Hier gilt sogar²⁴: $\varphi(x, \hat{F}_n) = x - \bar{x}_n = S(x, \hat{\theta})$.

9.4 Satz (Eigenschaften von $\varphi(x, F)$)

Sei $\varphi(x, F)$ Einflusskurve von $\vartheta(F)$.

- a) Sei $\vartheta(F)=\int hdF=Eh(X),$ wobei $X\sim F$ und $E|h(X)|<\infty.$ Dann gilt: $\varphi(x,F)=h(x)-\vartheta(F)$
- b) Sei $\vartheta(F) = \vartheta_1(F) + \vartheta_2(F)$ mut Einflusskurven $\varphi_1(x, F), \varphi_2(x, F)$. Dann: $\varphi(x, F) = \varphi_1(x, F) + \varphi_2(x, F)$
- c) Sei $I \subset \mathbb{R}$, $\vartheta(F) = \int_I g(s)\varphi_s(x,F)ds$. Ist $\varphi_s(x,F)$ die Einflusskurve von $\vartheta_s(F)$ $(s \in I)$, so gilt (unter Regularität²⁵):

$$\varphi(x,F) = \int_{I} g(s)\varphi_{s}(x,F)ds$$

d) (Kettenregel) Ist g differenzierbar, so ist die Einflusskurve von $g(\vartheta(F))$ gegeben durch

$$q'(\vartheta(F)) \cdot \varphi(x,F)$$

e) (implizit definierter Parameter) $\vartheta(F)$ sei Lösung der Gleichung $h(F,\vartheta(F))=0$, wobei für festes u $\lambda(x,F,u)$ die Einflusskurve von h(F,u) sei und die Ableitung h'(F,u) nach u existiere. Dann gilt:

$$\varphi(x,F) = -\frac{\lambda(x,F,\vartheta(F))}{h'(F,\vartheta(F))}$$

²⁴vergleiche 9.1, Beispiel (a)

²⁵siehe Beweis

Beweis:

$$\overline{\mathrm{Sei}\ F_{t,x}} = (1-t)F + t\Delta_x.$$

a) Aus

$$\vartheta(F_{t,x}) = (1-t) \int h(y)dF(y) + t \cdot h(x)$$

(vergleiche 9.3) folgt:

$$\frac{1}{t}(\vartheta(F_{t,x}) - \vartheta(F)) = h(x) - \vartheta(F)$$

b) Klar.

c)

$$\varphi(x,F) = \frac{d}{dt}\vartheta(F_{t,x})|_{t=0}$$

$$= \frac{d}{dt}\int_{I}g(s)\vartheta_{s}(F_{t,x})ds|_{t=0}$$

$$\stackrel{(*)}{=} \int_{I}g(s)\frac{d}{dt}\vartheta_{s}(F_{t,x})|_{t=0}ds$$

$$= \int_{I}g(s)\varphi_{s}(x,F)ds$$

(*): Vertauschbarkeit vorausgesetzt! (Regularität)

d)

$$\frac{1}{t}(g(\vartheta(F_{t,x})) - g(\vartheta(F))) = \underbrace{\frac{g(\vartheta(F_{t,x})) - g(\vartheta(F))}{\vartheta(F_{t,x}) - \vartheta(F)}}_{\overset{t \to 0}{\to} g'(\vartheta(F)), \text{ da } \vartheta(F_{t,x}) \overset{t \to 0}{\to} \vartheta(F)}_{\overset{t \to 0}{\to} \varphi(x,F)}$$

$$\cdot \underbrace{\frac{\vartheta(F_{t,x}) - \vartheta(F)}{t}}_{\overset{t \to 0}{\to} \varphi(x,F)}$$

e)
$$0 = \frac{1}{t} \underbrace{\left[h(F_{t,x}, \vartheta(F_{t,x})) - h(F, \vartheta(F))\right]}_{=0} = 0$$

$$= \frac{1}{t} \left[h(F_{t,x}, \vartheta(F_{t,x})) - h(F_{t,x}, \vartheta(F))\right]$$

$$+ \underbrace{\frac{1}{t} \left[h(F_{t,x}, \vartheta(F)) - h(F, \vartheta(F))\right]}_{t \to 0 \lambda(x, F, \vartheta(F))}$$

$$= \underbrace{\frac{h(F_{t,x}, \vartheta(F_{t,x})) - h(F_{t,x}, \vartheta(F))}{h(F, \vartheta(F_{t,x})) - h(F, \vartheta(F))}}_{t \to 0} \cdot \underbrace{\frac{h(F, \vartheta(F_{t,x})) - h(F, \vartheta(F))}{\vartheta(F_{t,x}) - \vartheta(F)}}_{t \to 0 h'(F, \vartheta(F)) \to \varphi(x, F)} + \underbrace{\frac{1}{t} \left[h(F_{t,x}, \vartheta(F)) - h(F, \vartheta(F))\right]}_{t \to 0}$$

Also:

$$h'(F, \vartheta(F)) \cdot \varphi(x, F) + \lambda(x, F, \vartheta(F)) = 0$$

 $\overset{h'\neq 0}{\Rightarrow} \overset{\text{(Forderung)}}{\Rightarrow} \text{ Behauptung.}$

9.5 Bemerkung (Einflusskurven-Heuristik)

Sei $\varphi(x,F)$ Einflusskurve von $\vartheta(F),\ X\sim F$ Oft gilt:

(i)
$$E[\varphi(X,F)] = \int \varphi(x,F)dF(x) = 0$$

(ii)
$$\vartheta(\hat{F}_n) - \vartheta(F) = \int \varphi(x, F) d(\hat{F}_n(x) - F(x)) + R_n$$
, wobei $\sqrt{n}R_n \stackrel{n \to \infty}{\to} 0$ [wird oft als erfüllt angenommen]

(iii)
$$0 < \tau^2(F) = E[\varphi^2(X, F)] < \infty$$

Dann gilt:

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) = \sqrt{n}(\vartheta(\hat{F}_n) - \vartheta(F)) \stackrel{D}{\to} \mathcal{N}(0, \tau^2(F))$$

Beweis:

Mit (i) und (ii) gilt:

$$\vartheta(\hat{F}_n) - \vartheta(F) = \frac{1}{n} \sum_{i=1}^n \varphi(X_i, F) + R_n$$

$$\Rightarrow \sqrt{n}(\hat{\vartheta}_n - \vartheta) = \underbrace{\frac{1}{\sqrt{n}} \sum_{i=1}^n \varphi(X_i, F)}_{\stackrel{P}{\to} \mathcal{N}(0, \tau^2(F))} + \underbrace{\sqrt{n} R_n}_{\stackrel{P}{\to} 0}$$

Lemma von Slutzky \Rightarrow Behauptung

9.6 Beispiel (Median)

Sei F stetig mit Dichte f = F'. f(x) > 0 für $\{x : 0 < F(x) < 1\}$, $X \sim F$ Median

$$\vartheta(F) = F^{-1}(\frac{1}{2})$$

bzw.
$$F(\vartheta(F)) - \frac{1}{2} = 0 \Leftrightarrow h(F, \vartheta(F)) = 0$$
 mit

$$h(F,u) = F(u) - \frac{1}{2}$$

$$= \int \underbrace{(\mathbf{1}\{x \le u\} - \frac{1}{2})}_{=:\widetilde{h}_u(x)} dF(x)$$

$$= \int \widetilde{h}_u(x) dF(x)$$

$$\stackrel{9.4(a)}{\Rightarrow} \lambda(x, F, u) = \widetilde{h}_u(x) - h(F, u) = \mathbf{1}\{x \le u\} - F(u)$$

$$\stackrel{9.4(c)}{\Rightarrow} \varphi(x,F) = -\frac{\lambda(x,F,\vartheta(F))}{h'(F,\vartheta(F))}$$

$$= -\frac{\mathbf{1}\{x \leq \vartheta(F)\} - F(\vartheta(F))}{f(\vartheta(F))}$$

$$= \frac{\frac{1}{2} - \mathbf{1}\{x \leq \vartheta(F)\}}{f(\vartheta(F))}$$

$$= \begin{cases} -\frac{1}{2f(\vartheta(F))}, & x \leq \vartheta(F) \\ +\frac{1}{2f(\vartheta(F))}, & x > \vartheta(F) \end{cases}$$

Bemerkungen:

- (i) $\hat{\vartheta}$ ist robust
- (ii) \hat{F}_n ist Treppenfunktion $\Rightarrow \varphi(x, \hat{F}_n)$ existiert nicht \Rightarrow Bemerkung nach 9.2 ist hier nicht zutreffend

(iii)
$$E[\varphi(X,F)] = \frac{\frac{1}{2} - P(X \le \vartheta(F))}{f(\vartheta(F))} = 0$$

$$\tau^{2}(F) = E[\varphi^{2}(X,F)] = \frac{1}{4f^{2}(\vartheta(F))}$$

$$\stackrel{9.5}{\Rightarrow} \sqrt{n}(\hat{\vartheta}_{n} - \vartheta) \stackrel{D}{\rightarrow} \mathcal{N}(0, \frac{1}{4f^{2}(\vartheta(F))})$$

Konkret:

$$X_1, \dots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \ \vartheta(F) = \mu$$

$$\Rightarrow \sqrt{n}(\hat{\vartheta}_n - \mu) \stackrel{D}{\to} \mathcal{N}(0, \frac{\pi\sigma^2}{2})$$

$$f(\mu) = \frac{1}{\sqrt{2\pi}\sigma} \cdot 1$$

$$\hat{\vartheta}_n \sim AN(\mu, \underbrace{\frac{\pi\sigma^2}{2n}}_{\tau_1^2})$$

$$\bar{X} \sim \mathcal{N}(0, \underbrace{\frac{\sigma^2}{n}}_{\tau_2^2})$$

 $(\bar{X} \text{ UMVUE})$

$$\frac{\tau_1^2}{\tau_2^2} = \frac{\pi}{2} \approx 1,57$$

Einflusskurve des Medians $\vartheta(F)=F^{-1}(\frac{1}{2})$ ist also

$$\varphi_{\frac{1}{2}}(x,F) = \frac{\frac{1}{2} - \mathbf{1}\{x \le \vartheta(F)\}}{f(\vartheta(F))}$$

Ganz analog: Einflusskurve von $F^{-1}(p)$ ist

(*)
$$\varphi_p(x,F) = \frac{p-\mathbf{1}\{x \le F^{-1}(p)\}}{f(F^{-1}(p))}, \ 0$$

9.7 Beispiel (α -getrimmtes Mittel)

Sei F stetig, $F'=f,\ f(x)>0$ für $\{x:0< F(x)<1\}.$ f symmetrisch mit Zentrum $\mu=EX.$ Für $0<\alpha<\frac{1}{2}$ heißt

$$\mu_{\alpha}(F) = \frac{1}{1 - 2\alpha} \int_{F^{-1}(\alpha)}^{F^{-1}(1 - \alpha)} x \ dF(x) = \frac{1}{1 - 2\alpha} \int_{\alpha}^{1 - \alpha} F^{-1}(p) dp$$

α -getrimmtes Mittel.

Für symmetrische Verteilungen gilt:

$$\mu_{\alpha}(F) = \mu$$

(Denn:)

$$\frac{1}{1 - 2\alpha} \int_{F^{-1}(\alpha)}^{F^{-1}(1 - \alpha)} \mu dF(x) = \mu$$

$$\Rightarrow \mu_{\alpha}(F) - \mu = \frac{1}{1 - 2\alpha} \int_{F^{-1}(\alpha)}^{F^{-1}(1 - \alpha)} (x - \mu) dF(x) = 0$$

Der Plug-In Schätzer für $\mu_{\alpha}(F)$ ist

$$\mu_{\alpha}(\hat{F}_n) = \frac{1}{1 - 2\alpha} \int_{0}^{1 - \alpha} \hat{F}_n^{-1}(p) dp$$

wobe
i $\hat{F}_n^{-1}(t) = X_{(i)},$ falls $\frac{i-1}{n} < t \leq \frac{i}{n}.$ (Aufgabe 16)

In der Praxis wird der (asymptotisch gelichwertige) Schätzer

$$\bar{X}_{n,\alpha} = \frac{1}{n - 2[\alpha n]} \sum_{k=[\alpha n]+1}^{n-[\alpha n]} X_{(k)}$$

verwendet.

Einflusskurve von $\mu_{\alpha}(F)$: 9.4(c) \Rightarrow

$$(**) \qquad \varphi^{\alpha}(x,F) \quad = \quad \frac{1}{1-2\alpha} \int_{\alpha}^{1-\alpha} \varphi_p(x,F) dp$$

$$\stackrel{(*)}{=} \quad \frac{1}{1-2\alpha} \int_{\alpha}^{1-\alpha} \frac{p-\mathbf{1}\{x \leq F^{-1}(p)\}}{f(F^{-1}(p))} dp$$

Nun sei $F(x) < \alpha$. Dann:

$$(**) = \frac{1}{1 - 2\alpha} \int_{\alpha}^{1 - \alpha} (p - 1) \underbrace{\frac{1}{f(F^{-1}(p))}}_{\text{Dichte von } F^{-1}} dp$$

$$= \frac{1}{1 - 2\alpha} \int_{\alpha}^{1 - \alpha} \underbrace{(p - 1)}_{G} dF^{-1}(p)$$

$$\stackrel{(+)}{=} \frac{1}{1 - 2\alpha} [\underbrace{((1 - \alpha) - 1)}_{=G(b)} \cdot F^{-1}(1 - \alpha) - \underbrace{(\alpha - 1)}_{=G(a)} \cdot F^{-1}(\alpha)$$

$$- \underbrace{\int_{\alpha}^{1 - \alpha}}_{=(1 - 2\alpha) \cdot \mu} F^{-1}(p) dp]$$

$$= \frac{1}{1 - 2\alpha} [(-\alpha) \underbrace{(F^{-1}(1 - \alpha) + F^{-1}(\alpha))}_{=2\mu} + F^{-1}(\alpha) - (1 - 2\alpha)\mu]$$

$$= \frac{F^{-1}(\alpha) - \mu}{1 - 2\alpha}$$

(+): partielle Integration (Stochastik II), F weiterhin symmetrisch

Ähnliche Überlegungen für $F(x) > 1 - \alpha$ bzw. $\alpha \le F(x) \le 1 - \alpha$ ergeben:

$$\varphi^{\alpha}(x,F) = \begin{cases} \frac{F^{-1}(\alpha) - \mu}{1 - 2\alpha} , & x < F^{-1}(\alpha) \\ \frac{x - \mu}{1 - 2\alpha} , & F^{-1}(\alpha) \le x \le F^{-1}(1 - \alpha) \\ \frac{F^{-1}(1 - \alpha) - \mu}{1 - 2\alpha} , & x > F^{-1}(1 - \alpha) \end{cases}$$

Insbesondere ist $\varphi^{\alpha}(x, F)$ beschränkt in x.

$$\Rightarrow \bar{X}_{n,\alpha} = \frac{1}{n - 2[\alpha n]} \sum_{k=[\alpha n]+1}^{n-[\alpha n]} X_{(k)}$$

ist robust.

Einflusskurven-Heuristik ergibt:

$$\sqrt{n}(\bar{X}_{n,\alpha}-\mu_{\alpha}) \xrightarrow{D} \mathcal{N}\left(0, \frac{1}{(1-2\alpha)^2} \left[2\alpha(F^{-1}(\alpha)-\mu)^2 + \int_{F^{-1}(\alpha)}^{F^{-1}(1-\alpha)} (x-\mu)^2 dF\right]\right)$$