Naive Bayes Algorithm: (Binary and Multiclass Classification)

Independent Events:

- Rolling A Dice

Dependent Events: A bog full of different color marches. If we pick one, then we can and compute probability, then there next probability " will be changed fore any marble because the number of marble in the box has been changed.

Bayes Theorem P(A and B) = Pr.(A) * P(BIA)

Bayes theorems

$$\Rightarrow P(A|B) = \frac{P(A) * P(B|A)}{P(B)} \rightarrow Bayes Theorem$$

Suppose, for a dataset, Bayer Theorem would be >

Now,
$$P(y|(x_1,x_2,x_3)) = P(y) + P(x_1,x_2,x_3|y)$$

$$P(x_1,x_2,x_3)$$

$$P(y) + P(x_1|y) + P(x_2|y) + P(x_3|y)$$

$$P(x_1) + P(x_2) + P(x_3)$$

11,
$$y = yes$$

$$P(yes) (x_1, x_2, x_3) = \frac{P(yes) * P(x_1|yes) * P(x_2|yes) * P(x_3|yes)}{P(x_1) * P(x_2) * P(x_3)}$$

Suppose $P(xon(x_1x_2,x_3)) = 0.60$ and $P(Nol(x_1,x_2,x_3)) = 0.40$ for a new data point using the context of (x_1,x_2,x_3) actual points decision would come Yes because Yos has the greater probability. Let's take an example with the real dataset:

Day	Outlook	Temp	Humid	Mmd	Play Termis
DI	Surmy !	Hot my	High	Weak	No
D2	Sunny	Hot ~	·High	Strong '	No.
D3	Diencont	Hot "	High	Weak	Yen
D4	Rain	Mild	High	Weak	Yen
D5	Roin	Cool	Normal	Weak	Yes
16	Rain	cool	Normal	Strong !	No
D7	overeast	Cool	Normal	Strong	Yes
D8 11/6	Sunny	mild	High	Weak	1/0
D9 111	Junny .	Cool	Normal	Weak	Yes
	Rain	Mild	Normal	Weak	offer later
Dio	Sumy,	Mild	Normal	Strong	Yon
	Ovenest	Will -	High	Strong	Yes sold
D12	Overcost	Hot	Normal	Weak	Yen
D13	Rain	Mill	High	Strong	No
V	(1), \$	46 * W	10 5	1	/

1619	Outlook	72/2			E=summy,
·-) · ·	Yes	No	P(El Yen)	P(E/NO)	Overcant,
Sunry	2	3	2/9	3/5	Rein
Overcost	. ر أ	63	49	0	
pain	3	2	319	215	

Temperature 1

Hot
$$\frac{\text{Yes}}{2}$$
 $\frac{\text{No}}{2}$ $\frac{\text{P(EINO)}}{2/9}$ $\frac{\text{P(EINO)}}{2/5}$ $\frac{\text{Nild}}{2}$ $\frac{4}{9}$ $\frac{2}{1}$ $\frac{4}{9}$ $\frac{2}{1}$ $\frac{4}{5}$ $\frac{1}{5}$ $\frac{3}{9}$ $\frac{1}{5}$

For simplicity, let's consider only these too are our to independent feature and play termis is our target feature.

= 0.031

$$P(Nol (surmy, hot)) = P(No) * P(surmy|No) * P(hot|No)$$

$$= \frac{P(Surmy)}{5} * \frac{2}{5} * \frac{2}{5}$$

$$= 0.085$$

P(Yeo)(sumny, hot)) =
$$\frac{0.031}{0.031 + 0.085} = 0.27 = 27\%$$
[We did that to equalize Means to make pencentage values]

So, fore Asumny and hot value preobability of No is greater.

Fore a new olda contains [hot, sunny] preobability will be "No". Or "O"

Means → Person will not play