Young Tableaux: una implementazione

Candidato: Alessandro Campagni

Relatore: Marco Maggesi

Diagramma di Young

$$11 = 4 + 3 + 2 + 1 + 1$$

(i) lunghezza delle righe non crescente

Young tableau

1	1	2	5
2	4	5	6
4	7	7	
6	8		
7		•	

(i)
$$T_j^i \leq T_{j+1}^i$$

(i)
$$T_{j}^{i} \leq T_{j+1}^{i}$$

(ii) $T_{j}^{i} < T_{j}^{i+1}$

Row bumping

1	1	1	5	
2	4	5	6	← 2
4	7	7		
6	8			
7				

1	1	1	5	
2	2	5	6	
4	7	7		← 4
6	8			
7				

Prodotto di tableaux

1	1	2	2	1	3
2	4	5	5		•
4	6	7			
6	7				
7	8				

1	1	1	2	3
2	2	5	5	
4	4	7		
6	6			
7	7			
8				

Monomio di un tableau

1	1	2	5	
2	4	5	6	
4	7	7		
6	8			
7				х

$$x_1^2 x_2^2 x_4^2 x_5^2 x_6^2 x_7^3 x_8$$

$$x^T = \prod_{i=1}^m x_i^{c(i)}$$

dove $c(i) = \#$ occorrenze
di i nel tableau T

$$s_{\lambda}(x_1,\ldots,x_m) = \sum\limits_{T \; ext{tableau su} \; \lambda} x^T$$

- (i) i polinomi di Schur sono simmetrici
- (ii) i polinomi di Schur di grado n in m indeterminate formano una base per i polinomi simmetrici omogenei di grado n in m indeterminate

fl_better_yschur_polynomial_rows ([1,3,3], 3)

$$\rightarrow x_1 x_2^3 x_3^3 + x_1^2 x_2^2 x_3^3 + x_1^3 x_2 x_3^3 + x_1^2 x_2^3 x_3^2 + x_1^3 x_2^2 x_3^2 + x_1^3 x_2^3 x_3$$

fl_better_yschur_polynomial_rows ([1,3,3], 3)

$$\rightarrow x_1 x_2^3 x_3^3 + x_1^2 x_2^2 x_3^3 + x_1^3 x_2 x_3^3 + x_1^2 x_2^3 x_3^2 + x_1^3 x_2^2 x_3^2 + x_1^3 x_2^3 x_3$$

fl_better_yschur_polynomial_rows ([1,3,3], 3)

$$\rightarrow x_1 x_2^3 x_3^3 + x_1^2 x_2^2 x_3^3 + x_1^3 x_2 x_3^3 + x_1^2 x_2^3 x_3^2 + x_1^3 x_2^2 x_3^2 + x_1^3 x_2^3 x_3$$

fl_better_yschur_polynomial_rows ([1,3,3], 3)

$$\rightarrow x_1 x_2^3 x_3^3 + x_1^2 x_2^2 x_3^3 + x_1^3 x_2 x_3^3 + x_1^2 x_2^3 x_3^2 + x_1^3 x_2^2 x_3^2 + x_1^3 x_2^3 x_3$$

fl_better_yschur_polynomial_rows ([1,3,3], 3)

$$\rightarrow x_1 x_2^3 x_3^3 + x_1^2 x_2^2 x_3^3 + x_1^3 x_2 x_3^3 + x_1^2 x_2^3 x_3^2 + x_1^3 x_2^2 x_3^2 + x_1^3 x_2^3 x_3$$

fl_better_yschur_polynomial_rows ([1,3,3], 3) $\rightarrow x_1 x_2^3 x_3^3 + x_1^2 x_2^2 x_3^3 + x_1^3 x_2 x_3^3 + x_1^2 x_2^3 x_3^2 + x_1^3 x_2^2 x_3^2 + x_1^3 x_2^3 x_3$

1	2	3
1	2	
1	2	

$$\begin{array}{l} s_{(1,3,3)}(x_1,x_2,x_3) = \\ x_1 x_2^3 x_3^3 + x_1^2 x_2^2 x_3^3 + x_1^3 x_2 x_3^3 + x_1^2 x_2^3 x_3^2 + x_1^3 x_2^2 x_3^2 + x_1^3 x_2^3 x_3 \end{array}$$

"Contare" i prodotti di tabelle

$$\begin{split} s_{\lambda}(x_1,\ldots,x_m) \cdot s_{\mu}(x_1,\ldots,x_m) &= \sum_{\nu} c_{\lambda\mu}^{\nu} s_{\nu}(x_1,\ldots,x_m) \\ \text{dove } c_{\lambda\mu}^{\nu} &= \textit{card}\left(\{(T,U) \mid V = T \cdot U; T, U \text{ tableaux su } \lambda \text{ e } \mu \text{ risp.}\}\right) \end{split}$$

Problema

Metodo per calcolare i numeri di Littlewood-Richardson.

Skew tableaux di Littlewood-Richardson

- (i) skew tableau T
- (ii) w(T) reverse lattice word

skew tableau su $\nu/\lambda=(4,4,3,2,1)/(3,2)$ contenuto $\mu=(3,3,1,1)$

Calcolo dei numeri di Littlewood-Richardson

Proposizione

Il numero di skew tableaux di Littlewood-Richardson che riempiono lo skew diagram ν/λ con contenuto μ è $c_{\lambda\mu}^{\nu}$.

Un esempio

- (i) $\lambda = (1, 2, 3), \mu = (1, 3, 3)$
- (ii) u diagramma di Young costruito a partire da λ
- (iii) numero di skew tableaux di Littlewood-Richardson su ν/λ con contenuto μ

Verifica

```
s_{(1,2,3)}(x_1,x_2,x_3,x_4) \cdot s_{(1,3,3)}(x_1,x_2,x_3,x_4) = \\ = s_{(3,3,3,2,1,1)}(x_1,x_2,x_3,x_4) + s_{(3,3,3,2,2)}(x_1,x_2,x_3,x_4) + s_{(3,3,3,3,1)}(x_1,x_2,x_3,x_4) + s_{(4,3,2,2,1,1)}(x_1,x_2,x_3,x_4) + \\ + s_{(4,3,2,2,2)}(x_1,x_2,x_3,x_4) + s_{(4,3,3,1,1,1)}(x_1,x_2,x_3,x_4) + 3s_{(4,3,3,2,1)}(x_1,x_2,x_3,x_4) + s_{(4,3,3,3)}(x_1,x_2,x_3,x_4) + \\ + s_{(4,4,2,1,1,1)}(x_1,x_2,x_3,x_4) + 2s_{(4,4,2,2,1)}(x_1,x_2,x_3,x_4) + 2s_{(4,4,3,1,1)}(x_1,x_2,x_3,x_4) + 2s_{(4,4,3,2)}(x_1,x_2,x_3,x_4) + \\ + s_{(4,4,4,1)}(x_1,x_2,x_3,x_4) + s_{(5,3,2,1,1,1)}(x_1,x_2,x_3,x_4) + 2s_{(5,3,3,2,1)}(x_1,x_2,x_3,x_4) + 2s_{(5,3,3,2)}(x_1,x_2,x_3,x_4) + \\ + 2s_{(5,3,3,2)}(x_1,x_2,x_3,x_4) + s_{(5,4,1,1,1,1)}(x_1,x_2,x_3,x_4) + 3s_{(5,4,2,1,1)}(x_1,x_2,x_3,x_4) + 2s_{(5,4,2,2)}(x_1,x_2,x_3,x_4) + \\ + 3s_{(5,4,3,1)}(x_1,x_2,x_3,x_4) + s_{(5,4,4)}(x_1,x_2,x_3,x_4) + s_{(5,5,1,1,1)}(x_1,x_2,x_3,x_4) + s_{(5,5,2,1)}(x_1,x_2,x_3,x_4) + \\ + s_{(5,5,3)}(x_1,x_2,x_3,x_4) + s_{(5,2,2,1,1)}(x_1,x_2,x_3,x_4) + s_{(6,3,2,2)}(x_1,x_2,x_3,x_4) + s_{(6,5,1,1)}(x_1,x_2,x_3,x_4) + \\ + s_{(6,4,1,1,1)}(x_1,x_2,x_3,x_4) + 2s_{(6,4,2,1)}(x_1,x_2,x_3,x_4) + s_{(6,4,3)}(x_1,x_2,x_3,x_4) + s_{(6,5,1,1)}(x_1,x_2,x_3,x_4) + \\ + s_{(6,5,2)}(x_1,x_2,x_3,x_4) + 2s_{(6,4,2,1)}(x_1,x_2,x_3,x_4) + s_{(6,4,3)}(x_1,x_2,x_3,x_4) + s_{(6,5,1,1)}(x_1,x_2,x_3,x_4) + \\ + s_{(6,5,2)}(x_1,x_2,x_3,x_4) + 2s_{(6,4,2,1)}(x_1,x_2,x_3,x_4) + s_{(6,4,3)}(x_1,x_2,x_3,x_4) + s_{(6,5,1,1)}(x_1,x_2,x_3,x_4) + \\ + s_{(6,5,2)}(x_1,x_2,x_3,x_4) + 2s_{(6,4,2,1)}(x_1,x_2,x_3,x_4) + s_{(6,4,3)}(x_1,x_2,x_3,x_4) + s_{(6,5,1,1)}(x_1,x_2,x_3,x_4) + \\ + s_{(6,5,2)}(x_1,x_2,x_3,x_4) + 2s_{(6,4,2,1)}(x_1,x_2,x_3,x_4) + s_{(6,4,3)}(x_1,x_2,x_3,x_4) + s_{(6,5,1,1)}(x_1,x_2,x_3,x_4) + \\ + s_{(6,5,2)}(x_1,x_2,x_3,x_4) + 2s_{(6,4,2,1)}(x_1,x_2,x_3,x_4) + s_{(6,4,3)}(x_1,x_2,x_3,x_4) + s_{(6,5,1,1)}(x_1,x_2,x_3,x_4) + \\ + s_{(6,5,2)}(x_1,x_2,x_3,x_4) + 2s_{(6,4,2,1)}(x_1,x_2,x_3,x_4) + s_{(6,4,3)}(x_1,x_2,x_3,x_4) + s_{(6,5,1,1)}(x_1,x_2,x_3,x_4) + \\ + s_{(6,5,2)}(x_1,x_2,x_3,x_4) + s_{(6,3,2)
```