

特開昭63-203456 (6)

サ39からの検出信号S_hに基づいて横加速度値Gを算出し、算出された横加速度値Gが、第2図に示されるマップにおける領域Jに含まれている場合には、モータ52に所定の低レベルをとる制御信号S_{c1}を供給する。それにより、円板部材50が、第6図において矢印Rとは反対方向に回転してコントロールワイヤー27がブーリ49から巻き戻されることにより、パークィングブレーキ22L及び22Rによる後輪10L及び10Rに対する制動状態が解除される。

第8図は、本発明に係る自動車の駆動力制御装置の第4の例を概略的に示す。第8図において第1図に示される例に対応する各部には、第1図と共に符号を付して示し、それらについての重複説明は省略される。

第8図に示される例においては、マスターシリング6とブレーキペダル18との間に介在せしめられたブースター60における、ダイヤフラム62によって仕切られた圧力室60a及び60bに、連通路63a及び63bの一端部が連結されてい

る。他の端部、及び、一端部がオイル通路12に連結されたバイパス路74及び一端部がオイル通路13に連結されたバイパス路75の夫々の他端部が連結されている。コントロールバルブ70は、コントローラ68から供給される制御信号S_{c2}によって制御され、例えば、制御信号S_{c2}が所定の高レベルをとるとときオイル通路16とバイパス路74とを連通させ、また、制御信号S_{c2}が所定の低レベルをとるとときオイル通路16とバイパス路75とを連通させる。さらに、制御信号S_{c2}が供給されないときには、オイル通路8とオイル通路72とを連通させるとともに、オイル通路16とオイル通路73とを連通させる。

また、オイル通路12及び13における、バイパス路74及び75との連結部とプロポーショニングバルブ14との間に、コントローラ68によって制御されるコントロールバルブ76が介在せしめられている。コントロールバルブ76は、例えば、コントローラ68から制御信号S_{c3}が供給されるとき、プロポーショニングバルブ14

る。連通路63a及び63bの他端部には、大気開放口64a及び図示されていない真空源に連通せしめられた負圧導入口64bを有するコントロールバルブ64が連結されている。コントロールバルブ64は、コントローラ68によって制御され、例えば、コントローラ68から制御信号S_{c1}が供給されるとき、ブースター60の圧力室60aと大気開放口64aとを連通させるとともに圧力室60bと負圧導入口64bとを連通させて圧力室60b内の圧力を圧力室60a内の圧力に比して小となし、また、制御信号S_{c1}が供給されないとき、ブースター60の圧力室60a及び60bと負圧導入口64bとを連通させて圧力室60aと圧力室60bとの圧力差を零となす。

マスターシリング6に一端部が連結されたオイル通路8及び16の夫々の他端部には、コントロールバルブ70が連結されている。コントロールバルブ70には、一端部がオイル通路4に連結されたオイル通路72及び一端部がプロポーショニングバルブ14に連結されたオイル通路73の夫

とオイル通路12及び13との連通状態を遮断し、また、制御信号S_{c2}が供給されないととき、プロポーショニングバルブ14とオイル通路12及び13とを連通させる。

コントローラ68には、車速センサ38からの検出信号S_v、舵角センサ39からの検出信号S_h及び選択スイッチ40からの検出信号S_iの他に、ブレーキペダル18の踏込操作が行われたか否かを検出するブレーキセンサ78からの検出信号S_bが供給される。

斯かるもとでコントローラ68は、選択スイッチ40によって選択された路面の摩擦状態に応じて、自動車の旋回走行時における車速センサ38からの検出信号S_v及び舵角センサ39からの検出信号S_hに基づいて横加速度値Gを算出し、算出された横加速度値Gが、第2図に示されるマップにおける領域Kに含まれている場合には、コントロールバルブ64に制御信号S_{c1}を供給するとともに、コントロールバルブ76に制御信号S_{c2}を供給する。さらに、コントローラ68は、

舵角センサ39からの検出信号Shに基づいて自動車の旋回方向を検知し、例えば、右旋回である場合には、コントロールバルブ70に所定の高レベルをとる制御信号Scsを供給する。

このようにして、コントロールバルブ64に制御信号Scsが供給されることにより、ブースター60の圧力室60b内の圧力が圧力室60a内の圧力に比して小とされ、ダイヤフラム62が圧力室60b側に引き込まれてマスター・シリング6が作動せしめられる。また、コントロールバルブ70に制御信号Scsが供給されることにより、オイル通路16とバイパス路74とが連通せしめられる。さらに、コントロールバルブ76に制御信号Scsが供給されることにより、オイル通路12及び13とプロボーショニングバルブ14との連通状態が遮断される。斯かる状態において、マスター・シリング6からオイル通路16に供給される作動オイルは、バイパス路74及びオイル通路12を通じてディスクブレーキ11Lに供給され、その結果、自動車の旋回状態中において外方

側となる後輪10Lに対する制動が行われる。

一方、上述の如くにしてコントロールバルブ64及び76が制御されるとき、自動車が左旋回の状態にある場合には、コントローラ68は、コントロールバルブ70に所定の低レベルをとる制御信号Scsを供給する。これにより、オイル通路16とバイパス路75とが連通せしめられ、マスター・シリング6からオイル通路16に供給される作動オイルは、バイパス路75及びオイル通路13を通じてディスクブレーキ11Rに供給される。その結果、自動車の旋回状態中において外方側となる後輪10Rに対する制動が行われる。

上述の如くにして、後輪10Lもしくは10Rに対する制動が行われる状態において、コントローラ68は、車速センサ38からの検出信号Sv及び舵角センサ39からの検出信号Shに基づいて横加速度値Gを逐次算出し、算出された横加速度値Gが、第2図に示されるマップにおける領域Jに含まれている場合には、コントロールバルブ64に対する制御信号Scsの供給を停止する。

それにより、ブースター60の圧力室60aと圧力室60bとの圧力差が零とされ、オイル通路16を通じてのディスクブレーキ11Lもしくは11Rへの作動オイルの供給が停止され、後輪10Lもしくは10Rに対する制動状態が解除される。

なお、コントローラ68は、ブレーキセンサ78からの検出信号Sbによってブレーキペダル18が操作されたことを検知した場合には、コントロールバルブ64、70及び76に対する制御信号Scs、Scs及びScsの供給を停止する。それにより、オイル通路8及び16が矢印オイル通路72及び73に連通せしめられるとともに、プロボーショニングバルブ14とオイル通路12及び13とが連通せしめられる。その結果、マスター・シリング6からオイル通路8に供給された作動オイルが、オイル通路72及び4を通じてディスクブレーキ3L及び3Rに供給されるとともに、オイル通路16に供給された作動オイルが、オイル通路73、プロボーショニングバルブ14、及び、オイル通路12及び13を通じてディスクブ

レーキ11L及び11Rに供給される。このようにして、前輪2L及び2R、及び、後輪10L及び10Rに対するブレーキペダル18の踏込操作に応じた制動が行われる。

第9図は、本発明に係る自動車の駆動力制御装置の第5の例を概略的に示す。第9図において第1図及び第8図に示される例に対応する各部には、第1図及び第8図と共通の符号を付して示し、それらについての重複説明は省略される。

第9図に示される例においては、前輪2L及び2Rに隣接してパワーステアリング装置80が配されており、パワーステアリング装置80のパワーシーリング81には、ピストン82によって仕切られる油圧室81a及び81bが形成されている。ピストン82は、例えば、ステアリングホイール83が右回りに転舵されるとき油圧室81a側に移動し、ステアリングホイール83が左回りに転舵されるとき油圧室81b側に移動するものとされる。油圧室81a及び81bには、コントローラ79によって制御されるコントロールバルブ8

4が介在せしめられたオイル通路85a及び85bの一端部が連結されており、オイル通路85a及び85bの他端部は、夫々、油圧シリング86の油圧室86a及び油圧シリング87の油圧室87aに連結されている。油圧シリング86及び87は、夫々、ピストンによって油圧室86a及び87aと仕切られる油圧室86b及び87bを有しており、油圧シリング86の油圧室86b及び油圧シリング87の油圧室87bは、夫々、オイル通路90及び91を介してオイル通路12及び13に連結している。また、オイル通路12及び13における、オイル通路90及び91との連結部とプロポーショニングバルブ14との間には、コントローラ79からの制御信号Scz'によって制御されるコントロールバルブ77が介在せしめられている。

コントロールバルブ84は、例えば、コントローラ79から制御信号Scz'が供給されるときオイル通路85a及び85bを開通させ、パワーシリング81の油圧室81aと油圧シリング86

の油圧室86a、及び、パワーシリング81の油圧室81bと油圧シリング87の油圧室87aとを連通させ、また、コントローラ79から制御信号Scz'が供給されないとき、オイル通路85a及び85bを閉塞する。

斯かるもとでコントローラ79は、選択スイッチ40によって選択された路面の摩擦状態に応じて、自動車の旋回走行時における車速センサ38からの検出信号Sv及び舵角センサ39からの検出信号Shに基づいて横加速度値Gを算出し、算出された横加速度値Gが、第2図に示されるマップにおける領域Kに含まれている場合には、コントロールバルブ84及び77に制御信号Scz'及びScz'を供給する。

これにより、パワーシリング81の油圧室81aと油圧シリング86の油圧室86a、及び、パワーシリング81の油圧室81bと油圧シリング87の油圧室87aが夫々連通せしめられる。このとき、例えば、自動車が右旋回の状態にある場合には、ステアリングホイール83が右回りに転

舵されているので、パワーシリング81内のピストン82は油圧室81a側に移動せしめられており、斯かるピストン82の移動によって作動オイルが油圧室81aからオイル通路85aを通じて油圧シリング86の圧力室86a内に供給される。斯かる作動オイルの供給により、油圧シリング86内のピストンが圧力室86b側に移動せしめられ、圧力室86b内の作動オイルがオイル通路90及び12を通じてディスクブレーキ11Rに供給される。その結果、自動車の旋回状態中において外方側となる後輪10Lに対する制動が行われる。

一方、上述の如くにしてコントロールバルブ84及び77が制御される状態において、例えば、自動車が左旋回の状態にある場合には、ステアリングホイール83が左回りに転舵されているので、パワーシリング81内のピストン82は油圧室81b側に移動しており、作動オイルが油圧室81bからオイル通路85bを通じて油圧シリング87の圧力室87a内に供給される。斯かる作動オ

イルの供給により、油圧シリング87内のピストンが圧力室87b側に移動せしめられ、圧力室87b内の作動オイルがオイル通路91及び13を通じてディスクブレーキ11Lに供給される。その結果、自動車の旋回状態中において外方側となる後輪10Rに対する制動が行われる。

なお、コントローラ79は、ブレーキセンサ78からの検出信号Sbによってブレーキペダル18が操作されたことを検知した場合には、コントロールバルブ84及び77に対する制御信号Scz'及びScz'の供給を停止する。それにより、前輪2L及び2R、及び、後輪10L及び10Rに対するブレーキペダル18の踏込操作に応じた制動が行われる。

第10図は、本発明に係る自動車の駆動力制御装置の第6の例を示す。第10図において第1図に示される例に対応する各部には、第1図と共に符号を付して示し、それらについての重複説明は省略される。

第10図に示される例は、自動車の走行時にお

いて車輪にスリップが生じたとき駆動輪に対する制動を行うようにされ、路面と車輪とが常に適正な摩擦状態を保つようにされた、所謂、トラクション制御装置が装備された自動車に適用されている。

第10図において、前輪2L及び2R、及び、後輪10L及び10Rには、夫々の回転数を検出する回転数センサ101、102、103及び104が配されている。マスターシリンダ6に配されたリザーバ106にはオイル通路108の一端部が連結されている。オイル通路108の他端部はコントロールバルブ110に連結されており、オイル通路108にはポンプ112が介在せしめられている。コントロールバルブ110には、マスターシリンダ6の一端部が連結されたオイル通路108の他端部が連結されるとともに、ディスクブレーキ11L及び11Rに夫々の一端部が連結されたオイル通路12及び13の他端部が連結されており、オイル通路12及び13にはコントロールバルブ114が介在せしめられている。また、

ポンプ112は、例えば、コントローラ120から制御信号S_pが供給されるとき作動する。また、スロットルアクチュエータ119は、例えば、コントローラ120から制御信号S_cが供給されるとき、スロットルバルブ118の開度を小となすべく作動する。

コントローラ120には、回転数センサ101、102、103及び104からの検出信号S₁、S₂、S₃及びS₄、舵角センサ39からの検出信号S_h、選択スイッチ40からの検出信号S_i、及び、ブレーキセンサ78からの検出信号S_bが供給される。

斯かるもとでコントローラ120は、例えば、回転数センサ101～104からの検出信号S₁～S₄に基づいて後輪10L及び10Rにスリップが生じていることを検知した場合には、コントロールバルブ110及びポンプ112に制御信号S_c、S_pを供給するとともに、スロットルアクチュエータ119に制御信号S_aを供給する。それにより、マスターシリンダ6に配された

前輪2L及び2R側に配置されたエンジン117の吸気通路内にはスロットルバルブ118が配されており、スロットルバルブ118に関連してその開度を調整するためのスロットルアクチュエータ119が設けられている。

コントロールバルブ110及び114、ポンプ112、及び、スロットルアクチュエータ119はコントローラ120によって制御される。コントロールバルブ110は、例えば、コントローラ120から制御信号S_c、S_pが供給されるとき、オイル通路108とオイル通路12及び13とを連通させ、また、制御信号S_c、S_pが供給されないとき、オイル通路16とオイル通路12及び13とを連通させる。コントロールバルブ114は、例えば、コントローラ120から供給される制御信号S_c、S_pが所定の高レベルをとるときオイル通路12のみを開通させ、また、制御信号S_c、S_pが所定の低レベルをとるときオイル通路13のみを開通させ、さらに、制御信号S_c、S_pが供給されないときオイル通路12及び13を開通さ

リザーバ106内の作動オイルが、ポンプ112の作動によってオイル通路108、12及び13を通じてディスクブレーキ11L及び11Rに供給され、後輪10L及び10Rに対する制動が行われるとともに、スロットルバルブ118の開度が小とされてエンジン117の出力が低下せしめられる。このようにして、自動車の走行時における後輪10L及び10Rのスリップを回避することにより路面と車輪とが常に適正な摩擦状態を保つようになすトラクション制御が行われる。

また、自動車の旋回走行時において、コントローラ120は、選択スイッチ40によって選択された路面の摩擦状態に応じて、回転数センサ101からの検出信号S₁及び舵角センサ39からの検出信号S_hに基づいて横加速度値Gを算出し、算出された横加速度値Gが、第2図に示されるマップにおける領域Kに含まれている場合には、コントロールバルブ110に制御信号S_c、S_pを供給するとともに、ポンプ112に制御信号S_pを供給する。さらに、コントローラ120は、舵角

センサ39からの検出信号Shに基づいて自動車の旋回方向を検出し、例えば、右旋回である場合には、コントロールバルブ114に所定の高レベルをとる制御信号Scz*を供給する。

このようにして、ポンプ112が作動するとともに、オイル通路108とオイル通路12及び13が遮断せしめられることにより、リザーバ106内の作動オイルがオイル通路108、12及び13を通じてコントロールバルブ114に導入される。そして、斯かる作動オイルは、コントロールバルブ114からオイル通路12を通じてディスクブレーキ11しのみに供給され、その結果、自動車の旋回状態中において外方側となる後輪10Lに対する制動が行われる。

一方、上述の如くにしてコントロールバルブ110及びポンプ112が制御されると、例えば、自動車が左旋回の状態にある場合には、コントローラ120は、コントロールバルブ114に所定の低レベルをとる制御信号Scz*を供給する。それにより、オイル通路13のみが開通せしめら

れ、リザーバ106内の作動オイルは、オイル通路108及び13を通じてディスクブレーキ11Rのみに供給される。その結果、自動車の旋回状態中において外方側となる後輪10Rに対する制動が行われる。

上述の如くにして、後輪10Lもしくは10Rに対する制動が行われる状態において、コントローラ120は、車速センサ38からの検出信号Sv及び舵角センサ39からの検出信号Shに基づいて横加速度値Gを逐次算出し、算出された横加速度値Gが、第2図に示されるマップにおける領域Jに含まれている場合には、ポンプ112に対する制御信号Spの供給を停止する。それにより、オイル通路108を通じてのディスクブレーキ11Lもしくは11Rへの作動オイルの供給が停止され、後輪10Lもしくは10Rに対する制動状態が解除される。

なお、コントローラ120は、ブレーキセンサ78からの検出信号Sbによってブレーキペダル18が操作されたことを検知した場合には、コン

トロールバルブ110、114及びポンプ112に対する制御信号Scz*、Scz*及びSpの供給を停止する。それにより、オイル通路16とオイル通路12及び13とが遮断せしめられるとともに、オイル通路12及び13が開通せしめられる。その結果、ブレーキペダル18の操作に応じて作動するマスター・シリング6からの作動オイルが、オイル通路8及び4を通じてディスクブレーキ3L及び3Rに供給されるとともに、オイル通路16、12及び13を通じてディスクブレーキ11L及び11Rに供給される。このようにして、前輪2L及び2R、及び、後輪10L及び10Rに対するブレーキペダル18の踏込操作に応じた制動が行われる。

また、上述の例においては、後輪10L及び10Rが駆動輪とされた後輪駆動車に本発明に係る駆動力制御装置が適用されているが、例えば、前輪2L及び2Rが駆動輪とされる前輪駆動車に適用されてもよい。

(発明の効果)

以上の説明から明らかな如く、本発明に係る自動車の駆動力制御装置によれば、自動車の旋回走行時において、自動車の前後方向における車体中心線が特定の方角に対してなす角度の変化量が所定値以上となるとき、もしくは、自動車に作用する横加速度が所定値以上となるとき、少なくとも自動車の旋回状態中において外方側となる旋回外方に位置するものとなる駆動輪に対する制動が行われることにより、自動車の進行方向への荷重移動が比較的小なるもとで車速が低減されるので、車輪がスキッドを生じる事態を確実に回避することができ、自動車の旋回走行時における走行安定性をより向上させることができる。

4. 図面の簡単な説明

第1図は本発明に係る自動車の駆動力制御装置の一例を示す概略構成図、第2図は第1図に示される例に用いられるコントローラのメモリに記憶されたマップの説明に供される図、第3図は第1図に示される例に用いられるコントローラの他の例を示す図、第4図及び第5図は本発明の第2及

び第3の例を示す概略構成図、第6図及び第7図は第5図に示される例に用いられる制動機構の構成の説明に供される側面図、第8図、第9図及び第10図は本発明の第4、第5及び第6の例を示す概略構成図である。

図中、2L及び2Rは前輪、3L、3R、11L及び11Rはディスクブレーキ、10L及び10Rは後輪、22L及び22Rはパーキングブレーキ、28、28L、28R及び60はブースター、33、33L、33R、64、70、76、77、84、110及び114はコントロールバルブ、36、36'、37、41、68、79及び120はコントローラ、38は車速センサ、39は舵角センサ、42はヨー角センサ、46は制動機構、80はパワーステアリング装置である。

特許出願人 マツダ株式会社
代理人 弁理士 神原貞昭

第2図

第3図

第4図

第6図

第10図

⑯ 公開特許公報 (A)

平1-101238

⑯ Int.Cl.⁴

B 60 K 31/00
 B 60 T 8/24
 8/58
 F 02 D 29/02

識別記号

311

府内整理番号

Z-8108-3D
 7626-3D
 A-8510-3D

⑯ 公開 平成1年(1989)4月19日

B-7604-3G 審査請求 未請求 発明の数 1 (全3頁)

⑯ 発明の名称 速度制御装置

⑯ 特 願 昭62-258936

⑯ 出 願 昭62(1987)10月14日

⑯ 発明者 林 孝 行 大阪府門真市大字門真1006番地 松下電器産業株式会社内
 ⑯ 出願人 松下電器産業株式会社 大阪府門真市大字門真1006番地
 ⑯ 代理人 弁理士 中尾 敏男 外1名

明 細 書

1、発明の名称

速度制御装置

2、特許請求の範囲

本体を移動する移動手段と、前記本体を制動する制動手段と、前記本体の進行方向に対して略々直角平面内の振動を検出する振動検出手段と、前記振動検出手段からの検出信号が一定値以上になった時に、前記制動手段を駆動して前記本体の速度を減少させるように制御する制御手段とからなる速度制御装置。

3、発明の詳細な説明

産業上の利用分野

本発明は、自動車等の速度を制御する速度制御装置に関するものである。

従来の技術

近年、エレクトロニクス技術の発展に伴い、自動車等においても、その技術が応用されるようになっている。しかしながら自動車の運転は、個人の運転能力に差があり、その個人差をカバーす

るだけの安全対策はとられていない。そこで、運転者にとって、運転の助成機能や、危険回避機能の付加された安全な自動車が望まれている。

発明が解決しようとする問題点

自動車を運転する際、特にカーブを曲る時に車体が傾き運転者が運転しづらいという問題点と、速度の出し過ぎによる反対車線へのみだしや、急カーブでのハンドルのきりすぎによる転覆などでは、その回避行動は、運転者自信によるしかなく、現状ではその対策はとられていないという問題点があった。

問題点を解決するための手段

上記問題を解決するために本発明は、本体を移動する移動手段と、前記本体を制動する制動手段と、前記本体の進行方向に対して略々直角平面内の振動を検出する振動検出手段と、前記振動検出手段からの検出信号が一定値以上になった時に、前記制動手段を駆動して前記本体の速度を減少させるように制御する制御手段とから構成したものである。

作用

本発明は、上記した構成により、カーブを曲る際のスピードの出し過ぎによる車体の傾きや、車線からの飛び出しを防止するために、車体のカーブ時の角速度を検出して、その時の角速度を積分することにより車両の傾き角を求め、その傾き角に応じて、車速を抑制することにより、運転者が運転しやすくなる状態の防止、また車線からの飛び出しや、転覆を防止して、危険時の回避を自動的に行うことのできる速度制御装置を提供するものである。

実施例

以下、本発明の一実施例の速度制御装置について図面を参照しながら説明する。第1図は本発明の速度制御装置の制御ブロック図、第2図、第3図は本発明の速度制御装置の動作説明図である。

第1図において、車体1は、シャーシ(図示せず)に固定されており、この車体1を移動するためにタイヤ2、3、4、5は、複数部材(図示せず)を介してシャーシ(図示せず)に駆動されて

いる。またタイヤ2、3、4、5には車体1の移動速度を減速するためのブレーキ6、7、8、9を各々設けており、ブレーキ装置10により各々のブレーキ6、7、8、9へ油圧により駆動力を伝達して、車体1の移動速度を減速するようにしている。

また、車体1を移動するには、エンジン11の駆動力を伝達装置(図示せず)により各々のタイヤ2、3、4、5に駆動力を伝達して車体1を移動させる。

車体1には、走行方向に対して直角平面内の角速度を検出するための角速度センサー12を固定しており、この角速度センサー12の出力を制御回路13により積分して車体の傾き角度を求めて一定値以上になった時にこの制御回路13からブレーキ装置10に信号を送り車体1の移動速度を減速するように制御する。

つぎに、第2図、第3図を用いてその動作を説明する。

車体1が矢印1方向に曲ろうとすると、遠心力

により車体1が矢印J方向に傾く、この車体1の傾きが大きいと運転者は、恐怖感を抱き正確な運転動作(ハンドリング)が行いづらくなり、車線からはみだしたりする。この時車体1に設けた角速度センサー12及び制御回路13により傾きを検出し、運転者が正確な運転動作が行える傾き範囲を超えた時、もしくは超えようとした時に車体1の移動速度をブレーキ装置10を駆動して減少させる。その結果車体1の傾き角度も減少して、常に運転者が正確な運転動作が行える傾き範囲におさえるようになる。

以上のように本実施例によれば、本体を移動する移動手段と、前記本体を制動する制動手段と、前記本体の進行方向に対して略々直角平面内の振動を検出する振動検出手段と、前記振動検出手段からの検出信号が一定値以上になった時に、前記制動手段を駆動して前記本体の速度を減少させるように制御する制御手段とから構成したことにより、カーブを曲る際のスピードの出し過ぎによる車体の傾きや、車線からの飛び出しの防止また、車体の傾きを運転者の正確な運転動作が可能な範囲におさえることができ安心して運転ができるようになる。

4、図面の簡単な説明

第1図は本発明の速度制御装置の制御ブロック図、第2図、第3図は本発明の速度制御装置の動作説明図である。

1……車体、2、3、4、5……タイヤ、6、

特開平1-101238 (3)

7、8、9……ブレーキ、10……ブレーキ装置。
12……角速度センサー、13……制御回路。
代理人の氏名 弁理士 中尾敏男 ほか1名

第1図

第2図

第3図

⑩ 日本国特許庁 (JP)

⑪ 特許出願公開

⑫ 公開特許公報 (A) 平2-171373

⑬ Int. Cl. 5

B 60 T 8/58

識別記号

序内整理番号

⑭ 公開 平成2年(1990)7月3日

A 8510-3D

審査請求 未請求 請求項の数 1 (全6頁)

⑮ 発明の名称 車両用ブレーキ装置

⑯ 特願 昭63-325971

⑰ 出願 昭63(1988)12月26日

⑱ 発明者 松本 真次 神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社
内

⑲ 発明者 山口 博嗣 神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社
内

⑳ 発明者 井上 秀明 神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社
内

㉑ 発明者 波野 淳 神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社
内

㉒ 出願人 日産自動車株式会社 神奈川県横浜市神奈川区宝町2番地

㉓ 代理人 弁理士 杉村 晓秀 外1名

明細書

1. 発明の名称 車両用ブレーキ装置

2. 特許請求の範囲

1. 車両旋回時に、その旋回状態を検知して出力するセンサ群と、そのセンサ群からの出力により安定した旋回が可能な限界を計算して推定し、その旋回状態が安定した旋回が可能な限界に近づいた場合に応動して出力する手段と、その手段の出力により車両を減速させる手段とを備えることを特徴とする車両用ブレーキ装置。

3. 発明の詳細な説明

(産業上の利用分野)

この発明は、車両が常に安定した旋回ができるようにした車両用ブレーキ装置に関するものである。

(従来の技術)

従来の車両用ブレーキ装置としては、例えば特開昭59-137245号公報等に開示されているものがある。

また、運転者がブレーキをかけない場合に、積

極的にブレーキをかける例としては、トラクションコントロールシステム（特開昭60-4313号）などがある。

（発明が解決しようとする課題）

しかしながら、前者（特開昭59-137245号）のような従来の車両用ブレーキ装置にあっては、運転者がブレーキをかけないとブレーキが作動しないようになっていたため、運転者の予想に反してコーナーのカーブが急であった場合などの状況下においてオーバースピードでコーナーに突入したときには、運転者の急ブレーキ操作や、急ハンドル操作によって車両が不安定になってしまうという問題点があった。

また後者（特開昭60-4313号）のようなトラクションコントロールシステムは、車に駆動輪のスリップを抑えることにより、その車輪の慣力を確保して車両の安定性を保つシステムであり、前記のようなオーバースピードでコーナーに突入した場合や、旋回中に舵をきり増すことにより、車両の安定性が限界に近づいた場合などにお