Thomas Studer

Fall Semester 2019

People

Lecture

Prof. Dr. Thomas Studer thomas.studer@inf.unibe.ch

Exercises

Nenad Savic
nenad.savic@inf.unibe.ch

Background

Prerequisite: propositional logic

Major subject?

Organizational

Ilias:

Repository \to Weitere Institutionen; Weiterbildungen und Studiengänge \to BeNeFri Joint Master in Computer Science \to HS2019

Lecture notes: Boxes and Diamonds

Exam: Tuesday, December 17, 2019

Organizational (2)

Lecture will start at 9:20

Exercises each week, starting in two weeks

Next week: no lecture

Registration

JMCS students

```
Registration for teaching units (see http://mcs.unibnf.ch/admin)
Registration for exams (see http://mcs.unibnf.ch/admin)
Reimbursement of travel expenses
(see http://www.unifr.ch/benefri)
```

Hosted JMCS students

```
Additionally, request for Academia access (at https://mcs.unibnf.ch/organization/request-for-academia-access/)
```

Modal logic adds \textbf{new} connectives \square and \lozenge to the language of logic
$\Box A$ means A is necessary
$\lozenge A$ means A is possible
Semantically, modal logic introduces possible worlds $\Box A$ holds if A is true in all possible worlds $\Diamond A$ holds if A is true in some possible worlds
\square and \lozenge are dual operators
$\triangle A$ holds if $\neg \Box \neg A$ holds

Other readings

Epistemic
$\square A$ means A is known or A is believed
Temporal
$\square A$ means always A
$\lozenge A$ means eventually A
Deontic
$\square A$ means A is obligatory
$\lozenge A$ means A is permitted
D. CTI.
Proof Theoretic
$\Box A$ means A is provable

Basic properties of \square

$$\Box(A \to B) \land \Box A \to \Box B$$

$$\Box A \to A$$

$$\Box A \to \Box \Box A$$

If A is provable, so is $\square A$.