Coleta e Busca de Entidades Estruturadas em um Domínio

Violões Lucas Melo, Mário Wessen, Mateus Gonçalves

Tarefa 2: Detectar Páginas com Instâncias

2.1 Rotular Exemplos Positivos e Negativos

2.2 Criação de Conjunto de Features

Bag of Words

Criação de Bag of Words: Filtros

BoW_plaintext	18.067 palavras
BoW_lowercase	18.067 palavras
BoW_noStopwords (lowercase + noStopwords)	15.968 palavras
BoW_noStopwords (lowercase + noStopwords + stemming)	15.220 palavras

2.3 Classificadores Utilizados

Gaussian Naive Bayes

Multinomial Naive Bayes

Logistic Regression

Multilayer Perceptron

Random Forest

Decision Tree

Support Vector Machines

Medições

Gaussian NB

	Accuracy	Precision	Recall	Training Time
bow_plain	0.91	0.92	0.93	0.31249 s
bow_lowercase	0.92	0.92	0.94	0.07812 s
bow_nostopword	0.92	0.92	0.94	0.07812 s
bow_stemming	0.90	0.91	0.92	0.09297 s
bow_vectorizer	0.96	0.96	0.96	0.24414 s

Multinomial NB

	Accuracy	Precision	Recall	Training Time
bow_plain	0.89	0.88	0.94	0.03125 s
bow_lowercase	0.88	0.88	0.92	0.08583 s
bow_nostopword	0.85	0.87	0.88	0.03124 s
bow_stemming	0.82	0.87	0.81	0.10331 s
bow_vectorizer	0.79	0.83	0.79	0.01562 s

Multilayer Perceptron

	Accuracy	Precision	Recall	Training Time
bow_plain	0.88	0.91	0.89	8.00461 s
bow_lowercase	0.91	0.92	0.94	3.01587 s
bow_nostopword	0.92	0.91	0.94	3.58022 s
bow_stemming	0.93	0.93	0.95	1.72491 s
bow_vectorizer	0.86	0.89	0.86	6.81927 s

Logistic Regression

	Accuracy	Precision	Recall	Training Time
bow_plain	0.93	0.92	0.98	0.15590 s
bow_lowercase	0.95	0.93	0.98	0.50960 s
bow_nostopword	0.92	0.90	1.0	0.12539 s
bow_stemming	0.93	0.90	1.0	0.38176 s
bow_vectorizer	0.88	0.89	0.88	0.09374 s

Random Forest

	Accuracy	Precision	Recall	Training Time
bow_plain	0.92	0.95	0.96	1.15658 s
bow_lowercase	0.92	0.94	0.96	0.32847 s
bow_nostopword	0.92	0.94	0.96	0.32812 s
bow_stemming	0.89	0.89	0.96	0.31249 s
bow_vectorizer	0.96	0.96	0.96	0.44086 s

Decision Tree

	Accuracy	Precision	Recall	Training Time
bow_plain	0.89	0.86	0.84	0.16350 s
bow_lowercase	0.90	0.91	0.85	0.17511 s
bow_nostopword	0.89	0.88	0.83	0.10937 s
bow_stemming	0.92	0.90	0.86	0.09375 s
bow_vectorizer	1.0	1.0	1.0	0.21874 s

Support Vector Machines

	Accuracy	Precision	Recall	Training Time
bow_plain	0.94	0.93	0.99	0.44316 s
bow_lowercase	0.94	0.92	0.98	0.49111 s
bow_nostopword	0.92	0.89	0.99	0.36505 s
bow_stemming	0.93	0.91	0.99	1.06472 s
bow_vectorizer	0.97	0.97	0.97	0.09375 s

Gráficos

Accuracy

Precision

Recall

Training Time

2.4 Avaliação dos Resultados

- Métodos utilizados apresentaram resultados relativamente semelhantes para a maioria das Bag of Words.
- Com exceção do Multinomial Naive Bayes que teve desempenho inferior tanto em Acurácia quanto em Precisão e Recall.
- Multilayer Perceptron apresentou, como esperado, tempo de treinamento maior para todos as Bag of Words.

Tarefa 3: Extrair informações

3.1 Técnicas Utilizadas

- Tags diretas
- Redução de espaço de procura
- Stopwords

3.2 Problemas

- Sites que mudam de template
- Sites desestruturados
- Atualização de página

3.3 Resultados

	Recall	Precision	F-Measure
Mil Sons	0.95	0.70	0.80
Nova Music	0.33	0.27	0.30
Mundo Max	0.80	0.86	0.83
Made in Brazil	1.00	0.40	0.57
Playtech	0.00	0.00	0.00
Multisom	0.56	0.58	0.57
Walmart	0.92	0.92	0.92
Casas Bahia	1.00	0.60	0.75

3.4 Avaliação dos Resultados

- A redução de espaço de busca funcionou muito bem, na maioria dos casos
- Técnica de PLN + RegEx se encaixou no domínio que escolhemos
- Técnica de classificação para redução de espaço