CSE 548: Analysis of Algorithms

Lecture 5
(Divide-and-Conquer Algorithms:
The Master Theorem)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2017

A Useful Recurrence

Consider the following recurrence:

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise}; \end{cases}$$

where, $a \ge 1$ and b > 1.

Arises frequently in the analyses of divide-and-conquer algorithms.

Consider the following recurrences from previous lectures.

Karatsuba's Algorithm: $T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n)$

Strassen's Algorithm: $T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$

Fast Fourier Transform: $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise}. \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) \qquad \qquad \downarrow$$

$$f(n) + aT\left(\frac{n}{b}\right)$$

<u>The Master Theorem</u>

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise } (a \geq 1, b > 1). \end{cases}$$

Case 1: $f(n) = O(n^{\log_b a^{-\epsilon}})$ for some constant $\epsilon > 0$

$$T(n) = \Theta(n^{\log_b a})$$

Case 2: $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.

$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$

Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ and $af\left(\frac{n}{b}\right) \le cf(n)$ for constants $\epsilon > 0$ and c < 1.

$$T(n) = \Theta(f(n))$$

Example Applications of Master Theorem

Example 1: $T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n)$

Master Theorem Case 1: $T(n) = \Theta(n^{\log_2 3})$

Example 2: $T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$

Master Theorem Case 1: $T(n) = \Theta(n^{\log_2 7})$

Example 3: $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$

Master Theorem Case 2: $T(n) = \Theta(n \log n)$

Assuming that we have an infinite number of processors, and each recursive call in example 2 above can be executed in parallel:

Example 4: $T(n) = T\left(\frac{n}{2}\right) + \Theta(n^2)$

Master Theorem Case 3: $T(n) = \Theta(n^2)$

Recurrences not Solvable using the Master Theorem

Example 1: $T(n) = \sqrt{n} T\left(\frac{n}{2}\right) + n$ $a = \sqrt{n}$ is not a constant

Example 2: $T(n) = 2T\left(\frac{n}{\log n}\right) + n^2$

 $b = \log n$ is not a constant

Example 3: $T(n) = \frac{1}{2}T\left(\frac{n}{2}\right) + n^2$ $a = \frac{1}{2}$ is not ≥ 1

Example 4: $T(n) = 2T\left(\frac{4n}{3}\right) + n$ $b = \frac{3}{4}$ is not > 1.

Example 5: $T(n) = 3T(\frac{n}{2}) - n$ f(n) = -n is not positive

Example 6: $T(n) = 2 T\left(\frac{n}{2}\right) + n^2 \sin n$

violates regularity condition of case 3

Example 7: $T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$

 $f(n) = O(n^{\log_b a})$, but $\neq O(n^{\log_b a - \epsilon})$ for any constant $\epsilon > 0$

Example 8: $T(n) = T\left(\frac{n}{2}\right) + 2T\left(\frac{n}{4}\right) + n$

a and b are not fixed

