CT5102: Programing for Data Analytics

Assignment 1: Atomic Vectors

Combinations of Dice

Sum of two dice

(1,1)	(1,2)	(1,3) (1	,4) (1,5)	(1,6)	(2	2) (3)	(4)	(5)	(6) (7	")
(2,1)	(2,2)	(2,3) (2	,4) (2,5)	(2,6)	(3	3) (4)	(5)	(6)	(7) (8	3)
(3,1)	(3,2)	(3,3) (3	,4) (3,5)	(3,6)	(4	(5)	(6)	(7)	(8) (9	9)
(4,1)	(4,2)	(4,3) $(4$,4) (4,5)	(4,6)	(5	(6)	(7)	(8)	(9) (1)	.0)
(5,1)	(5,2)	(5,3) (5	,4) (5,5]	(5,6)	(6	(7)	(8)	(9)	(10) $(1$.1)
(6,1)	(6,2)	(6,3) (6	,4) (6,5)	(6,6)	(7	(8)	(9)	(10)	(11) $(1$.2)
2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	5	4	3	2	1

The goal of this assignment is to use vectors to perform simulation of two dice rolls, and analyse the data (see table above for combinations, outcomes and expected frequencies). The R features that can be used are:

- The sample() function, to simulate the roll of a dice, assuming each face has an equal chance of being selected.
- Logical subsetting for atomic vectors
- qplot(data, binwidth=1) to view the simulations
- The mean() and sqrt() functions to calculate the root mean square error which captures the distance between the simulation results and the true probabilities (e.g. 6/36 for the number 7 etc)

For sample sizes of 10¹, 10², 10³, 10⁴, 10⁵ and 10⁶:

- Generate the simulation of two dice rolls
- Plot on the screen to visually verify that they distribution looks as expected
- Extract the frequency of the 11 possible outcomes (note the *table* function cannot be used for this analysis, rather a form of logical subsetting should be used), and the results copied into a new atomic vector
- Calculate the RMSE between the simulated dice rolls and the expected outcomes.
- Plot this RMSE value for each of the sample sizes on the x axis, using qplot (x,y)

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

