Multiplex 2 PCR-SSP - CR1(rs3849266; rs2274567; rs4844610; rs12034383)

Gabriela Canalli Kretzschmar, Luana Caroline Oliveira, Angelica Beate Winter Boldt

Abstract

This is a multiplex PCR-SSP for amplification of the follow SNPs of CR1 gene:

rs3849266;

rs2274567;

rs4844610;

rs12034383.

Citation: Gabriela Canalli Kretzschmar, Luana Caroline Oliveira, Angelica Beate Winter Boldt Multiplex 2 PCR-SSP -

CR1(rs3849266; rs2274567; rs4844610; rs12034383). protocols.io

https://www.protocols.io/view/multiplex-2-pcr-ssp-cr1-rs3849266-rs2274567-rs4844-p5sdq6e

Published: 18 Jun 2018

Before start

- 1- Wear clean gloves;
- 2- Clean pipettes and stand with hypochlorite and 70% alcohol;
- 3- Defreeze DNA samples and reagents (exception: Tag polymerase);
- 4- Gently mix the DNA samples and pass the reagents briefly on the vortex.
- 5- Centrifuge the DNA samples and reagents with a spin;
- 6- Keep reagents on ice;
- 7- Leave microtubes ready for preparation of the mix, keep the same ones identified and on ice.
- 8- Leave application plates properly identified.

Materials

- ✓ MgCl2 by Contributed by users
- 1x Coral Buffer by Qiagen
- custom made primers by Contributed by users
- ✓ 20 ng of genomic DNA by Contributed by users
- ✓ Ultrapure Water by Contributed by users
- dNTP mix by Contributed by users
- Tag DNA Polymerase by Invitrogen Thermo Fisher

Protocol

Step 1.

The amounts described in this protocol are for one sample. Multiply them for the number of samples to be investigated.

Remember:

- Each sample shall be tested in all four mix reactions 1, 2, 3 and 4 (4 tubes).
- Always make plus 10% mix.

This means that each sample shall be distributed in 4 microtubes (for 4 reactions).

- Label properly the microtubes for the mixes, identifying them:
 - MIX 1 (in21-rs3849266_C/ ex22-rs2274567_A; in37-rs4844610_A / in37-rs12034383_G)
 - MIX 2 (in21-rs3849266 C/ ex22-rs2274567 G; in37-rs4844610 A / in37-rs12034383 A)
 - MIX 3 (in21-rs3849266 T/ ex22-rs2274567 A; in37-rs4844610 C / in37-rs12034383 G)
 - MIX 4 (in21-rs3849266 T/ ex22-rs2274567 G; in37-rs4844610 C / in37-rs12034383 A)
- Keep these microtubes in ice.

The sizes of the fragments are:

in21-rs3849266 / ex22-rs2274567 = 667bp

in37-rs4844610 / in37-rs12034383 = 1080bp

Step 2.

Add Ultrapure Water to the microtube of each mix

AMOUNT

3.928 µl: for sample

REAGENTS

✓ Ultrapure Water by Contributed by users

Step 3.

Add Coral Buffer to each mix.

The Coral Buffer containing 1.5 mM of MgCl2

■ AMOUNT

 $0.8 \mu l$: for sample

REAGENTS

1x Coral Buffer by Qiagen

Step 4.

Add 0.5 mM MgCl2 to each mix.

(Total of MgCl2 is 2 mM to each mix).

■ AMOUNT

0.32 μl : for sample

REAGENTS

✓ MgCl2 by Contributed by users

Step 5.

Add 0.2 mM dNTP

■ AMOUNT

 $0.8 \, \mu l$: for sample

REAGENTS

✓ dNTP MIX (mM) 0.2 by Contributed by users

Step 6.

Add control primer (forward and reverse) - HGH

0.064 µl for forward

0.064 µl for reverse

5'-3' Sequence:

HGH f

TGCCTTCCCAACCATTCCCTTA

HGH r

CCACTCACGGATTTCTGTTGTGTTTC

The fragment size is: 431bp

■ AMOUNT

 $0.064 \mu l : (0.08 \mu M)$

REAGENTS

Step 7.

Add the specific primers:

- MIX 1 (in21-rs3849266 C/ ex22-rs2274567 A; in37-rs4844610 A / in37-rs12034383 G)
- MIX 2 (in21-rs3849266 C/ ex22-rs2274567 G; in37-rs4844610 A / in37-rs12034383 A)
- MIX 3 (in21-rs3849266 T/ ex22-rs2274567 A; in37-rs4844610 C / in37-rs12034383 G)
- MIX 4 (in21-rs3849266 T/ ex22-rs2274567 G; in37-rs4844610 C / in37-rs12034383 A)

For in21/ex22 - add 0.144 μ l of each primer (F and R) for sample, (0.18 μ M)

For in 37/in 37 - add 0.32 μ l of each primer (F and R) for sample (0.4 μ M)

5'-3' Sequence - rs3849266

CTGATGGCTTGGGGTA**T**

CTGATGGCTTGGGGTAC

5'-3' Sequence - rs2274567 (reverse primer)

CTCAATCTGCATTGATCCA**C**

CTCAATCTGCATTGATCCA**T**

5'-3' Sequence - rs4844610

CTACACAAAACAGCCTTGT**A**

CTACACAAAACAGCCTTGT**C**

5'-3' Sequence - rs12034383 (reverse primer)

AGATGTCCATGCCTTAAC

AGATGTCCATGCCTTAA**T**

✓ Specific Primers Forward and Reverse by Contributed by users

Step 8.

Add an aliquot of DNA sample to each tube.

Kepp the plate cold.

 $1 \mu l$:

✓ DNA sample by Contributed by users

Step 9.

Add the Taq DNA polymerase to the mix. Briefly vortex and centrifuge for some seconds.

0.096 µl: for sample/ 0.3 Units/ul

Tag DNA Polymerase by Invitrogen - Thermo Fisher

Step 10.

Add an aliquot of the mix to each tube.

Remember, each sample shall be tested in all four mix reactions 1, 2, 3 and 4 (4 tubes)

The final volume for each sample is 8 μ l.

■ AMOUNT

 $7 \mu l$: for sample

Step 11.

Close well the tubes and centrifuge for some seconds

Put in the thermocycler

Step 12.

Use:

Thermal cycling begins with 94°C for 5 min and 20 s; followed by 35 cycles, where each cycle began with 94°C for 20 s and ended with 72°C for 40 s. The annealing temperatures were 63°C for the initial 6 cycles, 61°C for the last 11° cycles.

Warnings

Do not leave the Taq polymerase too long outside the freezer