

https://iaarbook.github.io/img/computer-vision.jpg

RUHR-UNIVERSITÄT BOCHUM

BASICS ON (CONVOLUTIONAL) NEURAL NETWORKS

How to teach a computer numbers

Computational Physics II - 25/07/2022 - Jurek Völp, jurek.voelp@ruhr-uni-bochum.de

Outline

Basics of neural networks

How a machine learns

Convolutional Neural Network

How a machine learns to read numbers

Summary

Basics of neural networks

How a machine learns

Neuron

- Basic part in a neural network
- Mathematical representation:

$$\hat{y} = g\left(\sum_{i} x_{i} w_{i}\right)$$

- $g(z) \cong Activation Function$
 - > Sigmoid
 - > Hyperbolic Tangent
 - > Relu
- $x_i \triangleq Inputs$
- $w_i = Weights$
 - ➤ How important is a certain input?

Neuron – Implementation

```
import numpy as np
     class Neuron:
         def init (self, numberOfInputs, actFunc = "sigmoid"):
             # generate random weigts
             self.weights = 2 * np.random.random(numberOfInputs) - 1
             self.bias = 2 * np.random.random() - 1
             # select the activation function
             if type(actFunc) == str:
                 if actFunc == "sigmoid":
                     self.activation func = lambda z: 1 / (1 + np.exp(-z))
10
                     self.gradActivation func = lambda z: self.activation func(z) * (1 - self.activation func(z))
11
12
                 elif actFunc == "hyperbolicTagent":
13
                     self.activation_func = lambda z: (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
                     self.gradActivation func = lambda z: 1 - self.activation func(z)**2
                 elif actFunc == "relu":
                     self.activation func = lambda z: np.maximum(0, z)
17
                     self.gradActivation func = lambda z: np.heaviside(z,0)
             elif callable(actFunc):
                 self.activation func = actFunc
             else:
                 raise Exception("No valid activation function given.")
         def call (self, input):
             if np.size(input, axis=1) == self.weights.size:
                 return self.activation func(self.bias + np.dot(self.weights, input.T))
25
             else:
                 raise Exception("Input is not in the right size.")
27
```

Neuron – Implementation

```
import numpy as np
     class Neuron:
         def init (self, numberOfInputs, actFunc = "sigmoid"):
             # generate random weigts
             self.weights = 2 * np.random.random(numberOfInputs) - 1
             self.bias = 2 * np.random.random() - 1
             # select the activation function
             if type(actFunc) == str:
                 if actFunc == "sigmoid":
                     self activation func = lambda z: 1 / (1 + np.exp(-z))
10
                  self.gradActivation func = lambda z: self.activation func(z) * (1 - self.activation func(z))
11
                                         ...cragent":
12
                 elit ou
13
                     self.activation_func = lambda z: (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
                     self.gradActivation func = lambda z: 1 - self.activation func(z)**2
                 elif actFunc == "relu":
                     self.activation func = lambda z: np.maximum(0, z)
17
                     self.gradActivation func = lambda z: np.heaviside(z,0)
             elif callable(actFunc):
                 self.activation func = actFunc
             else:
                 raise Exception("No valid activation function given.")
         def call (self, input):
             if np.size(input, axis=1) == self.weights.size:
                 return self.activation func(self.bias + np.dot(self.weights, input.T))
25
             else:
                 raise Exception("Input is not in the right size.")
27
```

- The cost/loss function quantifies how incorrect the prediction is!
 - Function of the weights
 - Examples:
 - Binary Cross Entropy Loss between 0 and 1
 - Mean Squared Error Loss any real number
- Aim of the training: Optimize/Reduce the cost function!
- Gradient descent:
 - > random initial values

http://introtodeeplearning.com, MIT 6.S191

- The cost/loss function quantifies how incorrect the prediction is!
 - Function of the weights
 - Examples:
 - Binary Cross Entropy Loss between 0 and 1
 - Mean Squared Error Loss any real number
- Aim of the training: Optimize/Reduce the cost function!
- Gradient descent:
 - random initial values
 - > compute gradient

http://introtodeeplearning.com, MIT 6.S191

- The cost/loss function quantifies how incorrect the prediction is!
 - Function of the weights
 - Examples:
 - Binary Cross Entropy Loss between 0 and 1
 - Mean Squared Error Loss any real number
- Aim of the training: Optimize/Reduce the cost function!
- Gradient descent:
 - random initial values
 - compute gradient
 - > move in opposite direction

- The cost/loss function quantifies how incorrect the prediction is!
 - Function of the weights
 - Examples:
 - Binary Cross Entropy Loss between 0 and 1
 - Mean Squared Error Loss any real number
- Aim of the training: Optimize/Reduce the cost function!
- Gradient descent:
 - random initial values
 - compute gradient
 - move in opposite direction
 - > repeat until convergence

How to learn/train - Implementation

- mean squared error loss function
 - hand calculated!
 - special case: one neuron neural network

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(y^{(i)} - f(x^{(i)}; \mathbf{W})\right)^{2}}_{\text{Actual}}$$
Actual Predicted

```
import numpy as np
def singleNeuronGradientMeanSquaredErrorLoss(numberOfInputs, input, real output, predicted output, neuron):
   Hand calculated gradient of the mean squared error loss
   n = real output.size
    input = np.array(input)
    grad = np.zeros(numberOfInputs + 1)
   # weights gradient
   for j in range(numberOfInputs):
       sum = 0
       for i in range(n):
            sum += (real output[i] - predicted output[i]) * neuron.gradActivation func(np.dot(neuron.weights, input[i,:])) * input[i,j]
       grad[j] = -2 / n * sum
   # bias gradient
    for i in range(n):
       sum += (real output[i] - predicted output[i]) * neuron.gradActivation func(np.dot(neuron.weights, input[i,:]))
       grad[-1] = -2 / n * sum
    return grad
```

A simple neural network

One neuron with three Inputs

Data:

x_1	x_2	x_3	y_1		
0	0	1	0		
0	1	1	0		Training data
1	0	1	1		Training data
1	1	1	1	J	
1	0	0	1	}	Testing data
				. –	

A simple neural network – Implementation

```
numberOfTrainingIterations = 10000
train_input = np.array([[0, 0, 1],
                        [1, 1, 1],
                        [1, 0, 1],
                        [0, 1, 1]])
train_output = np.array([0, 1, 1, 0])
test_input = np.array([[1, 0, 0]])
test output = np.array([1])
learing_rate = 1.
neuron = Neuron(3, actFunc="sigmoid")
for index in range(numberOfTrainingIterations):
    pred output = neuron(train input)
   grad = singleNeuronGradientMeanSquaredErrorLoss(3, train_input, train_output, pred_output, neuron)
    neuron.weights -= learing rate * grad[0:-1]
    neuron.bias -= learing rate * grad[-1]
print("Result: ", neuron(test_input))
print("Weights: ", neuron.weights)
print("Bias: ", neuron.bias)
```

A simple neural network – Implementation

```
numberOfTrainingIterations = 10000
train input = np.array([[0, 0, 1],
                        [1, 1, 1],
                        [1, 0, 1],
                        [0, 1, 1]])
train output = np.array([0, 1, 1, 0])
test input = np.array([[1, 0, 0]])
test output = np.array([1])
learing rate = 1.
neuron = Neuron(3, actFunc="sigmoid")
for index in range(numberOfTrainingIterations):
    pred output = neuron(train input)
   grad = singleNeuronGradientMeanSquaredErrorLoss(3, train_input, train_output, pred_output, neuron)
    neuron.weights -= learing rate * grad[0:-1]
    neuron.bias -= learing rate * grad[-1]
print("Result: ", neuron(test input))
print("Weights: ", neuron.weights)
print("Bias: ", neuron.bias)
```

```
Result: [0.98828371]
Weights: [ 8.88557619 -0.12700066 -2.06464961]
Bias: -4.450586368204799
```

Compare with real solution: [1]

We can look at weights and bias → supervised learning

Convolutional Neural Network

How a machine learns to see numbers

- Mathematical definition: $(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\tau)g(x \tau)d\tau$
 - interpretation: weighting a function $g(x \tau)$ with $f(\tau)$
- Application in image processing:
 - using 2d filters to detect specific structures
 - example:

lmage		0	0	0				Ou	tp	ut	
1 1 0 1	Filter	0	1	1	0	1		1			
0 0 1 0	1 0 1	0	0	0	1	0	<u> </u>				
0 1 0 1	T 0 1 0 7		0	1	0	1	3.——3				
0 0 0 0	$1 \mid 0 \mid 1$		0	0	0	0					

- Mathematical definition: $(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\tau)g(x \tau)d\tau$
 - interpretation: weighting a function $g(x \tau)$ with $f(\tau)$
- Application in image processing:
 - using 2d filters to detect specific structures
 - example:

	lm	ag	e						
	1	1	0	1		Filt	ter		ı
	0	0	1	0		1	0	1	
	<u></u>	1	<u> </u>	1	+	0	1	0	\rightarrow
	0	7	0	7		1	0	1	
1									l

0	0	0		Output										
1	1	0	1		1	2								
0	0	1	0	_										
0	1	0	1	_										
0	0	0	0											

- Mathematical definition: $(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\tau)g(x \tau)d\tau$
 - interpretation: weighting a function $g(x \tau)$ with $f(\tau)$
- Application in image processing:
 - using 2d filters to detect specific structures
 - example:

lm	ag	e						
1	1	0	1		Fili	ter	-	1
0	0	1	0		1	0	1	
0	1	0	1	+	0	1	0	\rightarrow
0	7	~	7		1	0	1	
U	U	U	U					

Inp	0	0	0		Output								
1	1	0	1		1	2	0						
0	0	1	0	_									
0	1	0	1	_									
0	0	0	0										

- Mathematical definition: $(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\tau)g(x \tau)d\tau$
 - interpretation: weighting a function $g(x \tau)$ with $f(\tau)$
- Application in image processing:
 - using 2d filters to detect specific structures
 - example:

lm	ag	e						
1	1	0	1		Filt	ter	-	1
0	0	1	0		1	0	1	
n	1	0	1	+	0	1	0	\rightarrow
5	<u> </u>	0	<u> </u>		1	n	1	
l ()	l 0	U	l 0			U		

Input			0	0	0	Output							
	1	1	0	1	0	1	2	0	2				
	0	0	1	0	0								
	0	1	0	1									
	0	0	0	0									

- Mathematical definition: $(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\tau)g(x \tau)d\tau$
 - interpretation: weighting a function $g(x \tau)$ with $f(\tau)$
- Application in image processing:
 - using 2d filters to detect specific structures
 - example:

Image		Inp	out	•			Ou	ıtp	ut	
1 1 0 1	Filter	1	1	0	1		1	2	0	2
0 0 1 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0	1	0	_	2	1	5	0
0 1 0 1	0 1 0	0	1	0	1	_				
0 0 0 0	$1 \mid 0 \mid 1$	0	0	0	0					

- Mathematical definition: $(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\tau)g(x \tau)d\tau$
 - interpretation: weighting a function $g(x \tau)$ with $f(\tau)$
- Application in image processing:
 - using 2d filters to detect specific structures
 - example:

lm	ag	e						Inp	out	•			Οι	ıtp	ut	
1	1	0	1	Filt	er	1	1	1	1	0	1		1	2	0	2
0	0	1	0	 느	0	1		0	0	1	0	_	2	1	5	0
0	1	0	1	 0	1	0		0	1	0	1	_	0	2	0	2
0	0	0	0		U	1		0	0	0	0					

- Mathematical definition: $(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\tau)g(x \tau)d\tau$
 - interpretation: weighting a function $g(x \tau)$ with $f(\tau)$
- Application in image processing:
 - using 2d filters to detect specific structures
 - example:

Image	Inp	out	•			Οι	ıtp	ut	
1 1 0 1 Filter	1	1	0	1		1	2	0	2
$0 \ 0 \ 1 \ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ $	0	0	1	0	_	2	1	5	0
$0 \ 1 \ 0 \ 1$	0	1	0	1		0	2	0	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0		1	0	2	0

Convolutional Neural Network

- Engine: TensorFlow
- Deep neural network = a lot of neurons, in many layers
 - 2 convolutional layer with 16 and 36 neurons and one 5x5 filter each
 - > the optimal filters are generated here
 - 2 fully connected layer with 128 and 10 neurons
 - > the classification takes place here
- Data: MNIST database, a lot of handwritten numbers
- Credits: Magnus Erik Hvass Pedersen, [1]

[1] https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/02_Convolutional_Neural_Network.ipynb

Convolutional Neural Network

https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/02 Convolutional Neural Network.ipynb

Now let's look at the results!

Summary

- Neural networks...
 - ...are not that complicated
 - ...can be written from scratch
- Convolutional neural networks are quite good in computer vision. (Better than "normal" neural networks, 91 % vs 99 %)
- Supplementary material can be found here: https://github.com/jurvo/cp2-nn-exam
 - Jupyter Notebooks on:
 - the simple neural network with dummy data
 - the simple neural network with titanic data (to play around)
 - the convolutional neural network

