

My story at Tooploox

Maciej Zięba

My first research project: Learning binary representations in unsupervised manner

Visually similar images

#epicfailure

If we have supervised data

What we need is triplet network...

Binary descriptors

What we need is compact and binary representation for data examples...

Why binary representation is important?

- data compressing,
- effective image retrieval,
- hashing images.

Binary descriptors - unsupervised

What we need is compact and binary representation for data examples...

How can we represent data using binary codes computed with deep nets without the need for costly and imperfect data labelling?

GANs for unsupervised representation learning

Generator G(z) tries to fool the discriminator by generating real-looking images

How to train the GAN?

How to train the GAN?

Discriminator to represent the data

How to get binary codes from discriminator?

Discriminator D(x)
$$L_D = -\mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[\log{(D(\mathbf{x}))}] \\ - \mathbb{E}_{z \sim p_{\mathbf{z}}(\mathbf{z})}[\log{(1 - D(G(\mathbf{z})))}]$$

BinGAN loss
$$L = L_D + \lambda_{BRE} \cdot L_{BRE} + \lambda_{DMR} \cdot L_{DMR}$$

How to get binary codes from discriminator?

Discriminator D(x)

loss

$$egin{aligned} L_D &= -\mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[\log{(D(\mathbf{x}))}] \ &- \mathbb{E}_{z \sim p_{\mathbf{z}}(\mathbf{z})}[\log{(1-D(G(\mathbf{z})))}] \end{aligned}$$

BinGAN loss

$$L = L_D + \lambda_{BRE} \cdot L_{BRE} + \lambda_{DMR} \cdot L_{DMR}$$

Binary Representation Entropy (BRE)

How to get binary codes from discriminator?

Discriminator D(x)

loss

$$egin{aligned} L_D &= -\mathbb{E}_{\mathbf{x} \sim
ho_{data}(\mathbf{x})}[\log{(D(\mathbf{x}))}] \ &- \mathbb{E}_{z \sim
ho_{\mathbf{z}}(\mathbf{z})}[\log{(1-D(G(\mathbf{z})))}] \end{aligned}$$

BinGAN loss

$$L = L_D + \lambda_{BRE} \cdot L_{BRE} + \lambda_{DMR} \cdot L_{DMR}$$

Binary Representation Entropy (BRE) Distance Matching Regularizer (DMR)

BRE Regularizer

BRE Regularizer

BRE Regularizer

Increase diversity for descriptors with M/2 distance

 $\exp\left\{\frac{-|\mathbf{b}_{h,k}^T\mathbf{b}_{h,j}|}{\beta \cdot M}\right\}$

BRE regularizer

$$L_{BRE} = L_{ME} + L_{MAC} = \frac{1}{K} \sum_{k=1}^{K} (\bar{s}_{f,k})^2 + \sum_{k,j=1,k \neq j}^{N} \frac{|\mathbf{s}_{f,k}^T \cdot \mathbf{s}_{f,j}|}{K}$$

DMR Regularizer

Ablation study

Train	Yosemite		Notre Dame		Liberty		Average
Test	Notre Dame	Liberty	Yosemite	Liberty	Notre Dame	Yosemite	FPR@95%
$\lambda_{DMR} = \lambda_{BRE} = 0$	32.72	39.44	39.44	27.92	27.24	50.48	36.21
$\lambda_{DMR} = 0$ $\lambda_{BRE} = 0.01$	30.12	36.28	44.2	24.28	26.44	51.88	35.53
$\lambda_{DMR} = 0.05 \lambda_{BRE} = 0$	24.68	26.96	40.16	27.00	27.28	45.28	31.90
$\lambda_{DMR} = 0.05 \lambda_{BRE} = 0.01$	16.88	26.08	40.80	25.76	27.84	47.64	30.76

Results - image matching

Train	Yosemite		Notre Dame		Liberty		Average
Test	Notre Dame	Liberty	Yosemite	Liberty	Notre Dame	Yosemite	FPR@95%
Supervised							
LDAHash (16 bytes)	51.58	49.66	52.95	49.66	51.58	52.95	51.40
D-BRIEF (4 bytes)	43.96	53.39	46.22	51.30	43.10	47.29	47.54
BinBoost (8 bytes)	14.54	21.67	18.96	20.49	16.90	22.88	19.24
RFD (50-70 bytes)	11.68	19.40	14.50	19.35	13.23	16.99	15.86
Binary L2-Net (32 bytes)	2.51	6.65	4.04	4.01	1.9	5.61	4.12
Unsupervised							
SIFT (128 bytes)	28.09	36.27	29.15	36.27	28.09	29.15	31.17
BRISK (64 bytes)	74.88	79.36	73.21	79.36	74.88	73.21	75.81
BRIEF (32 bytes)	54.57	59.15	54.96	59.15	54.57	54.96	56.23
DeepBit (32 bytes)	29.60	34.41	63.68	32.06	26.66	57.61	40.67
DBD-MQ (32 bytes)	27.20	33.11	57.24	31.10	25.78	57.15	38.59
BinGAN (32 bytes)	16.88	26.08	40.80	25.76	27.84	47.64	30.76

Results - image retrieval

Mean Average Precision (mAP) - top 1000.

		_	
Method	16 bit	32 bit	64 bit
KHM	13.59	13.93	14.46
SphH	13.98	14.58	15.38
SpeH	12.55	12.42	12.56
SH	12.95	14.09	13.89
PCAH	12.91	12.60	12.10
LSH	12.55	13.76	15.07
PCA-ITQ	15.67	16.20	16.64
DH	16.17	16.62	16.96
DeepBit	19.43	24.86	27.73
DBD-MQ	21.53	26.50	31.85
BinGAN	30.05	34.65	36.77

BinGAN for data augmentation?

My involvement in commercial Al projects at Tooploox

Reinforcement Learning

Dynamic System Modeling

SCHEDULE POLICY	TRAINED
-----------------	---------

SCHEDULE STATUS FEASIBLE

Product 1	114.18%			
min 3750 kbbl	4282 kbbl			
Product 2	114.45%			
min 2550 kbbl	2918 kbbl			

LAYCAN \$37,274.21

GLOBAL REWARD \$661,630.25

Generative Models

Makeup transfer

Machine Learning - Classification

Predicting authorisation after phone contact

Call or not?

Thank you

