1. [12 points] Alice and Bob are using RSA encryption. Alice publishes the following public key.

$$\begin{array}{rcl}
N & = & 35 \\
e & = & 5
\end{array}$$

Bob sends the following ciphertext to Alice.

$$c = 17$$

Use a brute-force approach to extract Alice's private key and determine Bob's plaintext m. Clearly show all steps. There is a multiplication table for $\mathbb{Z}/35\mathbb{Z}$ at the back of the exam packet, so you do not need to do those computations by hand (feel free to detach it for convenient reference).

2. [12 points] Solve the following system of three congruences. Show all steps, and answer in the form of a single congruence $x \equiv \cdots \pmod{\cdots}$ that is satisfied if and only if the original three congruences are satisfied.

$$x \equiv 1 \pmod{2}$$

 $x \equiv 1 \pmod{3}$
 $x \equiv 4 \pmod{13}$

3. [12 points] Samantha is using the Elgamal digital signature algorithm, with public parameters g, p, private key a, and public key A. Here we follow the notation of Table 4.2 (provided at the back of the exam packet). You may also assume that g is a primitive root modulo p (as in the summary table).

Samantha signs a document D, publishing signature (S_1, S_2) . Later, she signs a document D', publishing signature (S'_1, S'_2) . Unfortunately, Samantha has generated her ephemeral keys poorly! Eve notices this by observing that the following congruence holds.

$$S_1' \equiv S_1 \cdot g^2 \pmod{p}.$$

For simplicity, you may also assume that $S_1S_2' - S_1'S_2$ is a unit modulo p-1.

Help Eve steal Samantha's private key, by writing a formula for a that Eve could use to compute a using only published numbers and modular arithmetic.

4. This problem concerns some aspects of the Pohlig-Hellman algorithm. The purpose is to prove some basic facts discussed in describing that algorithm, using some specific numbers.

Suppose that p is a prime number, and $g \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ has order 143. Note that 143 factors as $11 \cdot 13$. Suppose that h is another element of $(\mathbb{Z}/p\mathbb{Z})^{\times}$, and that Eve wishes to find an integer n such that $g^n \equiv h \pmod{p}$.

Define four more elements of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ as follows.

$$g_1 \equiv g^{13} \pmod{p}$$
 $h_1 \equiv h^{13} \pmod{p}$
 $g_2 \equiv g^{11} \pmod{p}$
 $h_2 \equiv h^{11} \pmod{p}$

- (a) [4 points] Prove that $\operatorname{ord}_p(g_1) = 11$. (Similarly, $\operatorname{ord}_p(g_2) = 13$; you do not need to prove this, but you may assume it in part b)
- (b) [6 points] Suppose that $n_1, n_2 \in \mathbb{Z}$ satisfy $g_1^{n_1} \equiv h_1 \pmod{p}$ and $g_2^{n_2} \equiv h_2 \pmod{p}$. Prove that if an integer n satisfies $g^n \equiv h \pmod{p}$ then n must satisfy the following two congruences.

$$n \equiv n_1 \pmod{11}$$

 $n \equiv n_2 \pmod{13}$

(The converse is also true, but you do not need to prove it).

(c) [2 points] Briefly explain why part (b) may be useful to Eve in her attempt to solve $g^n \equiv h \pmod{p}$.

Reference tables

Public parameter creation											
A trusted party chooses and publishes a (large) prime p											
and an integer g having large prime order in \mathbb{F}_p^* .											
Private computations											
Alice Bob											
Choose a secret integer a .	Choose a secret integer b .										
Compute $A \equiv g^a \pmod{p}$.	Compute $B \equiv g^b \pmod{p}$.										
Public excha	nge of values										
Alice sends A to Bob —	\longrightarrow A										
<i>B</i> ←	— Bob sends B to Alice										
Further privat	e computations										
Alice	Alice Bob										
Compute the number $B^a \pmod{p}$. Compute the number $A^b \pmod{p}$											
The shared secret value is $B^a \equiv (g^b)^a \equiv g^{ab} \equiv (g^a)^b \equiv A^b \pmod{p}$.											

Table 2.2: Diffie–Hellman key exchange

Bob	Alice						
Key cı	reation						
Choose secret primes p and q .							
Choose encryption exponent e							
with $gcd(e, (p-1)(q-1)) = 1$.							
Publish $N = pq$ and e .							
Encry	ption						
	Choose plaintext m .						
	Use Bob's public key (N, e)						
	to compute $c \equiv m^e \pmod{N}$.						
	Send ciphertext c to Bob.						
Decry	ption						
Compute d satisfying							
$ed \equiv 1 \pmod{(p-1)(q-1)}.$							
Compute $m' \equiv c^d \pmod{N}$.							
Then m' equals the plaintext m .							

Table 3.1: RSA key creation, encryption, and decryption

Public parameter creation											
A trusted party chooses and publishes a large prime p											
and primitive root g modulo p .											
Samantha Victor											
Key creation											
Choose secret signing key											
$1 \le a \le p-1$.											
Compute $A = g^a \pmod{p}$.											
Publish the verification key A .											
Sign	ning										
Choose document $D \mod p$.											
Choose random element $1 < k < p$											
satisfying $gcd(k, p - 1) = 1$.											
Compute signature											
$S_1 \equiv g^k \pmod{p}$ and											
$S_2 \equiv (D - aS_1)k^{-1} \pmod{p-1}.$											
Verific	cation										
	Compute $A^{S_1}S_1^{S_2} \mod p$.										
	Verify that it is equal to $g^D \mod p$.										

Table 4.2: The Elgamal digital signature algorithm

Public parameter creation										
A trusted party chooses and publishes a large prime p										
and an element g modulo p of large (prime) order.										
Bob										
reation										
ption										
Choose plaintext m .										
Choose random element k .										
Use Alice's public key A										
to compute $c_1 = g^k \pmod{p}$										
and $c_2 = mA^k \pmod{p}$.										
Send ciphertext (c_1, c_2) to Alice.										
ption										

Table 2.3: Elgamal key creation, encryption, and decryption

Samantha	Victor
Key c	reation
Choose secret primes p and q .	
Choose verification exponent e	
with	
gcd(e, (p-1)(q-1)) = 1.	
Publish $N = pq$ and e .	
Sign	ning
Compute d satisfying	
$de \equiv 1 \pmod{(p-1)(q-1)}.$	
Sign document D by computing	
$S \equiv D^d \pmod{N}$.	
Verifi	cation
	Compute $S^e \mod N$ and verify
	that it is equal to D .

Table 4.1: RSA digital signatures

Public param	neter creation
-	shes large primes p and q satisfying
$p \equiv 1 \pmod{q}$ and an elem	nent g of order q modulo p .
Samantha	Victor
Key cı	reation
Choose secret signing key	
$1 \le a \le q-1$.	
Compute $A = g^a \pmod{p}$.	
Publish the verification key A .	
Sign	ning
Choose document $D \mod q$.	
Choose random element $1 < k < q$.	
Compute signature	
$S_1 \equiv (g^k \mod p) \mod q$ and	
$S_2 \equiv (D + aS_1)k^{-1} \pmod{q}.$	
Verific	cation
	Compute $V_1 \equiv DS_2^{-1} \pmod{q}$ and
	$V_2 \equiv S_1 S_2^{-1} \pmod{q}$.
	Verify that
	$(g^{V_1}A^{V_2} \bmod p) \bmod q = S_1.$

Table 4.3: The digital signature algorithm (DSA)

Multiplication table modulo 35:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
3	0	3	6	9	12	15	18	21	24	27	30	33	1	4	7	10	13	16
4	0	4	8	12	16	20	24	28	32	1	5	9	13	17	21	25	29	33
5	0	5	10	15	20	25	30	0	5	10	15	20	25	30	0	5	10	15
6	0	6	12	18	24	30	1	7	13	19	25	31	2	8	14	20	26	32
7	0	7	14	21	28	0	7	14	21	28	0	7	14	21	28	0	7	14
8	0	8	16	24	32	5	13	21	29	2	10	18	26	34	7	15	23	31
9	0	9	18	27	1	10	19	28	2	11	20	29	3	12	21	30	4	13
10	0	10	20	30	5	15	25	0	10	20	30	5	15	25	0	10	20	30
11	0	11	22	33	9	20	31	7	18	29	5	16	27	3	14	25	1	12
12	0	12	24	1	13	25	2	14	26	3	15	27	4	16	28	5	17	29
13	0	13	26	4	17	30	8	21	34	12	25	3	16	29	7	20	33	11
14	0	14	28	7	21	0	14	28	7	21	0	14	28	7	21	0	14	28
15	0	15	30	10	25	5	20	0	15	30	10	25	5	20	0	15	30	10
16	0	16	32	13	29	10	26	7	23	4	20	1	17	33	14	30	11	27
17	0	17	34	16	33	15	32	14	31	13	30	12	29	11	28	10	27	9
18	0	18	1	19	2	20	3	21	4	22	5	23	6	24	7	25	8	26
19	0	19	3	22	6	25	9	28	12	31	15	34	18	2	21	5	24	8
20	0	20	5	25	10	30	15	0	20	5	25	10	30	15	0	20	5	25
21	0	21	7	28	14	0	21	7	28	14	0	21	7	28	14	0	21	7
22	0	22	9	31	18	5	27	14	1	23	10	32	19	6	28	15	2	24
23	0	23	11	34	22	10	33	21	9	32	20	8	31	19	7	30	18	6
24	0	24	13	2	26	15	4	28	17	6	30	19	8	32	21	10	34	23
25	0	25	15	5	30	20	10	0	25	15	5	30	20	10	0	25	15	5
26	0	26	17	8	34	25	16	7	33	24	15	6	32	23	14	5	31	22
27	0	27	19	11	3	30	22	14	6	33	25	17	9	1	28	20	12	4
28	0	28	21	14	7	0	28	21	14	7	0	28	21	14	7	0	28	21
29	0	29	23	17	11	5	34	28	22	16	10	4	33	27	21	15	9	3
30	0	30	25	20	15	10	5	0	30	25	20	15	10	5	0	30	25	20
31	0	31	27	23	19	15	11	7	3	34	30	26	22	18	14	10	6	2
32	0	32	29	26	23	20	17	14	11	8	5	2	34	31	28	25	22	19
33	0	33	31	29	27	25	23	21	19	17	15	13	11	9	7	5	3	1
34	0	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18

Multiplication table modulo 35, continued:

	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
2	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33
3	19	22	25	28	31	34	2	5	8	11	14	17	20	23	26	29	32
4	2	6	10	14	18	22	26	30	34	3	7	11	15	19	23	27	31
5	20	25	30	0	5	10	15	20	25	30	0	5	10	15	20	25	30
6	3	9	15	21	27	33	4	10	16	22	28	34	5	11	17	23	29
7	21	28	0	7	14	21	28	0	7	14	21	28	0	7	14	21	28
8	4	12	20	28	1	9	17	25	33	6	14	22	30	3	11	19	27
9	22	31	5	14	23	32	6	15	24	33	7	16	25	34	8	17	26
10	5	15	25	0	10	20	30	5	15	25	0	10	20	30	5	15	25
11	23	34	10	21	32	8	19	30	6	17	28	4	15	26	2	13	24
12	6	18	30	7	19	31	8	20	32	9	21	33	10	22	34	11	23
13	24	2	15	28	6	19	32	10	23	1	14	27	5	18	31	9	22
14	7	21	0	14	28	7	21	0	14	28	7	21	0	14	28	7	21
15	25	5	20	0	15	30	10	25	5	20	0	15	30	10	25	5	20
16	8	24	5	21	2	18	34	15	31	12	28	9	25	6	22	3	19
17	26	8	25	7	24	6	23	5	22	4	21	3	20	2	19	1	18
18	9	27	10	28	11	29	12	30	13	31	14	32	15	33	16	34	17
19	27	11	30	14	33	17	1	20	4	23	7	26	10	29	13	32	16
20	10	30	15	0	20	5	25	10	30	15	0	20	5	25	10	30	15
21	28	14	0	21	7	28	14	0	21	7	28	14	0	21	7	28	14
22	11	33	20	7	29	16	3	25	12	34	21	8	30	17	4	26	13
23	29	17	5	28	16	4	27	15	3	26	14	2	25	13	1	24	12
24	12	1	25	14	3	27	16	5	29	18	7	31	20	9	33	22	11
25	30	20	10	0	25	15	5	30	20	10	0	25	15	5	30	20	10
26	13	4	30	21	12	3	29	20	11	2	28	19	10	1	27	18	9
27	31	23	15	7	34	26	18	10	2	29	21	13	5	32	24	16	8
28	14	7	0	28	21	14	7	0	28	21	14	7	0	28	21	14	7
29	32	26	20	14	8	2	31	25	19	13	7	1	30	24	18	12	6
30	15	10	5	0	30	25	20	15	10	5	0	30	25	20	15	10	5
31	33	29	25	21	17	13	9	5	1	32	28	24	20	16	12	8	4
32	16	13	10	7	4	1	33	30	27	24	21	18	15	12	9	6	3
33	34	32	30	28	26	24	22	20	18	16	14	12	10	8	6	4	2
34	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1