부틸고무의 수열분해특성에 대한 연구

전수영, 김용남

저분자량부틸고무는 기체투과성이 낮고 내열성과 내후성이 좋은것으로 하여 케블과 전 자기구, 수감부들을 위한 방수 및 방습재료와 보호재료로 널리 쓰이고있다.[4]

저분자량부틸고무는 소련법, 산화환원법, 수열법[2] 등으로 부틸고무를 분해하여 얻는다. 그러나 부틸고무의 분해에 수열법을 적용한 연구자료는 적다.

우리는 수열법으로 저분자량부틸고무를 얻기 위한 기초연구로서 부틸고무의 수열분해 특성을 고찰하였다.

리론적기초

초기고분자물질의 분해가 무질서한 열분해물림새로 진행되는 경우에 생성되는 고분자의 수평균중합도와 분해시간사이의 관계는 다음과 같다.[1]

$$\ln(1 - 1/\overline{p}) = \ln(1 - 1/\overline{p}_0) - kt \tag{1}$$

여기서 \bar{p}_0 과 \bar{p} 은 각각 초기 및 t시간후의 수평균중합도, k는 겉보기반응속도상수이다.

한편 초기고분자물질의 분해로 생성되는 고분자의 수평균분자량 $(\overline{M}_{\mathrm{n}})$ 은 수평균중합도 와 다음의 관계에 있다.

$$\overline{M}_{\rm n} = M_{\rm m} \, \overline{p} \tag{2}$$

여기서 $M_{\rm m}$ 은 구조단위의 분자량이다.

식 (1)과 (2)로부터 다음식이 얻어진다.

$$\ln(1 - M_{\rm m} / \overline{M}_{\rm n}) = \ln(1 - M_{\rm m} / \overline{M}_{\rm n, 0}) - kt$$

여기서 $\overline{M}_{\mathrm{n,0}}$ 은 초기순간에 고찰하는 고분자의 수평균분자량이다.

고분자물질의 분자량이 감소함에 따라 점도평균분자량은 수평균분자량에 근사해지므로 웃식은 다음과 같이 쓸수 있다.

$$\ln(1-M_{\mathrm{m}}/\overline{M}_{\eta}) \approx \ln(1-M_{\mathrm{m}}/\overline{M}_{\eta,0}) - kt$$

여기서 \overline{M}_n 은 점도평균분자량이다.

이 식으로부터 초기고분자물질의 분해가 무질서한 열분해물림새로 진행되는 경우에는 분해시간과 $\ln(1-M_{\mathrm{m}}/\overline{M}_{\eta})$ 사이에 근사적으로 선형관계가 있다는것을 알수 있다.

실험 방법

수열분해된 부틸고무의 점도평균분자량은 다음과 같이 결정하였다. 먼저 크기가 5mm 이하인 부틸고무쪼각시료 5g과 130g의 탈이온수를 수열분해장치에 넣고 밀폐시킨 후 일정한 온도 및 시간조건에서 반응계를 유지하는 방법으로 부틸고무를 수열분해시켰다. 수열분해된 부틸고무를 건조시키고 0.125g을 분취하여 25mL의 벤졸에 용해시켰다. 그리고 얻어진 고분자용액의 상대점도를 우벨로드점도계를 리용하여 25℃에서 측정한 다음 식[5]

$$\eta_{\rm lim} = \sqrt{2(\eta_{\rm s} - \ln \eta_{\rm r})} / C$$

로부터 극한점도를 구하고 식[5]

$$\overline{M}_{\eta} = \sqrt[\alpha]{\eta_{\lim}/k}$$

에 따라 점도평균분자량을 결정하였다. 여기서 $\eta_{\rm lim}$ 과 $\eta_{\rm s}=\eta_{\rm r}-1,~\eta_{\rm r},~C=0.005{\rm g/mL}$ 는 각각 주어진 고분자용액의 극한점도와 비점도, 상대점도, 농도이며 $\alpha=0.504$ 와 k=0.1은 주어진 고분자용액과 측정온도(25°C)에서 상수이다.[3]

실험결과 및 고찰

수열분해온도와 시간에 따르는 부틸고무의 점도평균분자량은 표와 같다.

온도/K 점도평균분자량(시간/h) 553 26 961.5(3) 16 494.1(5) 8 601.2(10) 5 991.5(15) 4 681.1(20) 4 493.6(10) 563 15 752.8(2.5) 8 198.8(5) 3 265.0(15) 2 575.3(21) 568 9 284.8(3) 5 890.8(5) 3 346.1(10) 2 512.5(15) 2 114.6(20) 573 7 965.9(2.5) 4 403.9(5) 2 604.0(10) 2 042.5(15) 1 747.8(21) 578 6 953.9(2.5) 3 558.4(5) 2 550.1(8) 2 225.4(10) 1 925.8(13)

표. 수열분해온도와 시간에 따르는 부틸고무의 점도평균분자량

표의 자료에 기초하여 얻은 $\ln(1-M_{\rm m}/\overline{M}_n)-t$ 관계곡선은 그림 1과 같다.

그림 1에서 보는바와 같이 분해시간과 $\ln(1-M_{\rm m}/\overline{M}_{\eta})$ 사이에 선형관계가 성립되므로 부틸고무의 수열분해가 무질서한 열분해물림새로 진행된다는것을 알수 있다.

그림 1의 각곁수로부터 각이한 온도에서의 겉보기반응속도상수를 계산하고 그 값에 기초하여 얻은 $\ln k - T^{-1}$ 관계곡선은 그림 2와 같다.

그림 1. $\ln(1-M_{\rm m}/\overline{M}_{\eta})-t$ 관계곡선 1-5는 온도가 각각 553, 563, 568, 573, 578K인 경우

그림 2. $lnk - T^{-1}$ 관계곡선

이 관계곡선의 각곁수로부터 식

$$\ln k = -\frac{E^*}{R} \cdot \frac{1}{T} + \ln A$$

에 따라 결정한 수열분해반응의 겉보기활성화에네르기 (E^*) 는 182.8kJ/mol이다. 여기서 R는 기체상수, A는 빈도인자이다.