Задачи по Эконометрике: Категориальные переменные

Н.В. Артамонов (МГИМО МИД России)

Содержание

		егориальные признаки	1
	1.1	diamond equation #1	1
	1.2	diamond equation #2	2
2	Стр	уктурные сдвиги	3
	2.1	Графики	3
	2.2	sleep equation #1	4
	2.3	sleep equation #2	5
	2.4	wage equation #1	6
	2.5	wage equation #2	7

1 Категориальные признаки

1.1 diamond equation #1

1.1.1 Описательные статистики

Для набора данных Diamond вычислите описательные статистики для количественных и категрриальных переменных

carat	colour	clarity	certification	price
Min. :0.1800	D:16	IF :44	GIA:151	Min. : 638
1st Qu.:0.3500	E:44	VS1 :81	HRD: 79	1st Qu.: 1625
Median :0.6200	F:82	VS2 :53	IGI: 78	Median : 4215
Mean :0.6309	G:65	VVS1:52		Mean : 5019
3rd Qu.:0.8500	H:61	VVS2:78		3rd Qu.: 7446
Max. :1.1000	I:40			Max. :16008

1.1.2 Регрессии

Для набора данных Diamond рассмотрим несколько линейных регрессий.

- 1. $log(price) \sim carat + I(carat^2) + colour$
- 2. $log(price) \sim carat + I(carat^2) + certification$
- 3. $log(price) \sim carat + I(carat^2) + colour + certification$

Оцените регрессии и дайте интерпретацию коэффициентам для категрриальных переменных. Ответ округлите до 2 десятичных знаков

(Intercept)	carat	<pre>I(carat^2)</pre>	colourE	colourF	colourG
5.98	5.40	-1.98	-0.07	-0.14	-0.21
colourH	colourI				
-0 30	-0 40				

(Intercept)	carat	<pre>I(carat^2)</pre>	certificationHRD
5.69	5.65	-2.19	0.03
certificationIGI			
0.07			
(Intercept)	carat	I(carat^2)	colourE
5.87	5.67	-2.15	-0.08
colourF	colourG	colourH	colourI
-0.15	-0.23	-0.31	-0.41
certificationHRD	certificationIGI		
0.04	0.09		

1.2 diamond equation #2

1.2.1 Описательные статистики

Для набора данных diamonds вычислите описательные статистики для количественных и категрриальных переменных

carat	cut	color	clarity	depth
	Fair : 1610			_
1st Qu.:0.4000	Good : 4906	E: 9797	VS2 :12258	1st Qu.:61.00
Median :0.7000	Very Good:12082	F: 9542	SI2 : 9194	Median :61.80
	Premium :13791			
3rd Qu.:1.0400	Ideal :21551	н: 8304	VVS2 : 5066	3rd Qu.:62.50
Max. :5.0100			VVS1 : 3655	
			(Other): 2531	
table	price			
Min. :43.00			000 Min. : 0	.000
1st Qu.:56.00	1st Qu.: 950	1st Qu.: 4.7	710 1st Qu.: 4	.720
Median :57.00	Median : 2401	Median: 5.7	700 Median : 5	.710
Mean :57.46	Mean : 3933	Mean : 5.7	731 Mean : 5	.735
3rd Qu.:59.00	3rd Qu.: 5324	3rd Qu.: 6.5	340 3rd Qu.: 6	.540
Max. :95.00	Max. :18823	Max. :10.7	740 Max. :58	.900
Z				
Min. : 0.000				
1st Qu.: 2.910				
Median : 3.530				
Mean : 3.539				
3rd Qu.: 4.040				
Max. :31.800				

1.2.2 Регрессии

Для набора данных diamonds рассмотрим несколько линейных регрессий.

- 1. $log(price) \sim carat + I(carat^2) + cut + x + y + z$
- 2. $log(price) \sim carat + I(carat^2) + color + x + y + z$
- 3. $log(price) \sim carat + I(carat^2) + color + cut + x + y + z$

Оцените регрессии и дайте интерпретацию коэффициентам для категрриальных переменных. Ответ округлите до 2 десятичных знаков

Результаты оценивания

(Intercept) carat I(carat^2) cutGood cutVery Good cutPremium

3.80	2.37	-0.64	0.12	0.17	0.16
cutIdeal	X	У	Z		
0.24	0.38	0.02	0.06		
(Intercept)	carat I	(carat^2)	colorE	colorF	colorG
4.08	2.35	-0.61	-0.03	-0.04	-0.07
colorH	colorI	colorJ	X	У	Z
-0.21	-0.30	-0.43	0.38	0.03	0.05
(Intercept)	carat	I(carat^2)	colorE	colorF	colorG
3.99	2.54	-0.65	-0.03	-0.04	-0.07
colorH	colorI	colorJ	cutGood cut	tVery Good	cutPremium
-0.21	-0.31	-0.43	0.12	0.18	0.16
cutIdeal	X	У	Z		
0.25	0.34	0.01	0.06		

2 Структурные сдвиги

2.1 Графики

Для набора данных sleep75 рассмотрим линейную регрессию **sleep на totwrk** и подгоним отдельно для south=0, отдельно для south=1 и по полному датасету

Для набора данных sleep75 рассмотрим линейную регрессию **sleep на age, age^2** и подгоним отдельно для south=0, отдельно для south=1 и по полному датасету

2.2 sleep equation #1

Для набора данных sleep 75 рассмотрим линейную регрессию **sleep на totwrk, age, smsa**: исходную и со структурными сдвигами относительно гендерной переменной.

	Зависимая	переменная
	sle	eep
	(1)	(2)
totwrk	-0.150*** (0.017)	-0.143*** (0.026)
age	2.997** (1.393)	1.704 (2.085)
smsa	-73.501** (32.219)	-56.649 (48.902)
male		135.200 (143.832)
totwrk:male		-0.045 (0.036)

Note:	*p<0.1; **p<0	0.05; ***p<0.01
F Statistic	30.527***	14.387***
Residual Std. Error	418.877	417.530
Adjusted R2	0.112	0.117
R2	0.115	0.126
Observations	706	706
	(69.133)	(92.418)
Constant	3498.670***	3486.973***
		(64.938)
smsa:male		-34.735
		(2.825)
age:male		1.500

Для второй регрессии дайте интерпретацию коэффициентов.

2.3 sleep equation #2

Для набора данных sleep 75 рассмотрим линейную регрессию **sleep на totwrk, age, smsa**: исходную и со структурными сдвигами относительно географической переменной.

	Зависимая	переменная
	sleep	
	(1)	(2)
totwrk	-0.150*** (0.017)	-0.161*** (0.018)
age	2.997** (1.393)	1.485 (1.545)
smsa	-73.501** (32.219)	-61.554* (34.856)
south		-407.206** (189.627)
totwrk:south		0.078 (0.050)
age:south		8.267** (3.495)
smsa:south		49.429 (107.111)

Constant	3498.670*** (69.133)	3557.513*** (75.504)
Observations	706	706
R2	0.115	0.131
Adjusted R2	0.112	0.122
Residual Std. Error	418.877	416.341
F Statistic	30.527***	15.039***
=======================================	=========	========
Note:	*p<0.1; **p<0.	05; ***p<0.01

Для второй регрессии дайте интерпретацию коэффициентов.

2.4 wage equation #1

Для набора данных wage2 рассмотрим линейную регрессию log(wage) на age, IQ, urban, married: исходную и со структурными сдвигами относительно географической переменной.

	Зависимая переменная		
	log(wage) (1) (2)		
age	0.022***	0.024*** (0.005)	
IQ	0.009***	0.008*** (0.001)	
urban	0.186***	0.217*** (0.035)	
married	0.198*** (0.041)	0.201*** (0.049)	
south		-0.011 (0.348)	
age:south		-0.007 (0.009)	
IQ:south		0.002 (0.002)	
urban:south		-0.114** (0.057)	
married:south		-0.003 (0.087)	
Constant	4.849***	4.914***	

	(0.163)	(0.204)
Observations	935	935
R2	0.188	0.205
Adjusted R2	0.184	0.197
Residual Std. Error	0.380	0.377
F Statistic	53.799***	26.481***
Note:	*p<0.1; **p<0	.05; ***p<0.01

Для второй регрессии дайте интерпретацию коэффициентов.

2.5 wage equation #2

Для набора данных wage2 рассмотрим линейную регрессию log(wage) на age, IQ, south, married: исходную и со структурными сдвигами относительно места жительства.

	=====================================	
_		
	(1)	(2)
age	0.023***	0.024***
IQ	0.008***	0.008*** (0.002)
south	-0.113*** (0.028)	-0.014 (0.052)
urban		0.237 (0.368)
age:urban		-0.001 (0.009)
IQ:urban		-0.00001 (0.002)
south:urban		-0.117* (0.061)
Constant	5.214*** (0.168)	4.999*** (0.312)
Observations R2 Adjusted R2 Residual Std. Error	935 0.146 0.143 0.390	935 0.182 0.176 0.382

Для второй регрессии дайте интерпретацию коэффициентов.