Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

Carlos Andres Delgado

Carlos.andres.delgado@correounivalle.edu.co

- * Definición de función
- * Dominio, Codominio y Rango
- * Funciones inyectivas, sobreyectivas y biyectivas
- * Función inversa
- * Composición de funciones
- * Funciones piso y techo
- * Funciones característica

Noción de función

 Una función permite representar la relación entre dos conjuntos

Noción de función

 Una función permite representar la relación entre dos conjuntos

A = {Arias, Benavides, Calero, Cardona, Navarrete}

 $B = \{1.2, 2.9, 4.5, 4.9, 5.0\}$

Noción de función

• Una función permite representar la relación entre dos

conjuntos

Noción de función

 Una función permite representar la relación entre dos conjuntos

Noción de función

 Una función permite representar la relación entre dos conjuntos

Función

Función

Función

• Dados dos conjuntos A y B, una función f de A a B, denotada como f: $A \rightarrow B$, asigna a cada elemento de A exactamente un elemento de B

No es función porque z debe tener un valor asignado en B

Función

Función

Función

Función

• Dados dos conjuntos A y B, una función f de A a B, denotada como f: $A \rightarrow B$, asigna a cada elemento de A exactamente un elemento de B

No es función porque debe asignarse exactamente un elemento de B

Función

Indique si la siguiente relación entre los conjuntos $A=\{w,x,y,z\}$ y $B=\{1,2,3,4\}$ es una función.

$$f(w)=3$$
, $f(x)=4$, $f(y)=4$, $f(z)=3$

Indique si la siguiente relación entre los conjuntos $A=\{w,x,y,z\}$ y $B=\{1,2,3,4\}$ es una función.

$$f(w)=3$$
, $f(x)=4$, $f(y)=4$, $f(z)=3$

Es función

Indique si la siguiente relación entre los conjuntos $A=\{a,b,c,d\}$ y $B=\{a,b,c,d\}$ es una función.

Indique si la siguiente relación entre los conjuntos $A=\{a,b,c,d\}$ y $B=\{a,b,c,d\}$ es una función.

$$f(c)=d$$
, $f(a)=c$, $f(b)=a$, $f(c)=b$, $f(d)=c$

No es función

Las funciones se pueden especificar por medio de fórmulas, por ejemplo, f(x)=x+1, de Z a Z

Las funciones se pueden especificar por medio de fórmulas, por ejemplo,

$$f(x)=x+1$$
, de Z a Z

Las funciones se pueden especificar por medio de fórmulas, por ejemplo,

$$f(x)=x+1$$
, de Z a Z

Indique si cada f es, o no, una función de R en R:

•
$$f(x)=\sqrt{x}$$
 • \sqrt{x} $\times <0$ $\sqrt{x} \in \mathbb{C}$ NO CJ

•
$$f(x)=\pm x$$
 • $\pm x$ $x=2$ $F(\pm x)=-2$, \geq NO (S

Indique si cada f es, o no, una función de R en R:

- f(x)=1/x. no es una función porque f(0) no está definida
- $f(x)=\sqrt{x}$. no es una función porque f(-1) no está definida
- $f(x)=\pm x$. no es una función porque asigna dos valores a x
- $f(x)=x^2+1$. si es una función

Dominio, Codominio y Rango

Si f es una función de A a B, se dice que: $A \longrightarrow B$

- A es el dominio
- B es el codominio Rogo (B) (Cod
- El rango de f es el conjunto de todas las imágenes de los elementos de A. Si f(a)=b se dice que b es la imagen de a

- Dominio={x,y}
- Codominio={1,4,8}
- Rango={1,4}

- Dominio={x,y,z}
- Codominio={a,b,c,d,e}
- Rango={a,c,e}

Indique el rango de la siguiente función:

• $f(x)=x^2$, de los reales a los reales

Indique el rango de la siguiente función:

- $f(x)=x^2$, de los reales a los reales
 - Dominio=R
 - Codominio=R
 - Rango=R⁺∪0

Indique el rango de la siguiente función:

• $f(x)=x^2+4$ de los reales a los reales

$$\times \in \mathbb{R} \wedge \times \geq 4$$

Indique el rango de la siguiente función:

- $f(x)=x^2+4$ de los reales a los reales
 - Dominio=R
 - Codominio=R
 - Rango=Reales mayores o iguales a 4

XERNXZY

Sea f la función que toma cualquier cadena de 3 bits y devuelve la cantidad de 1's. Indique el dominio y el rango

Sea f la función que toma cualquier cadena de 3 bits y devuelve la cantidad de 1's. Indique el dominio y el rango

Sea f la función que toma cualquier cadena de 3 bits y asigna el valor absoluto de la diferencia entre la cantidad de 1's y 0's Indique el dominio y el rango

Tipos de funciones

- Inyectiva
- Sobreyectiva
- Biyectiva

Función inyectiva

Función inyectiva

Función inyectiva

Función inyectiva

Función inyectiva

Función inyectiva

Función inyectiva

Indique cuáles de las siguientes funciones son inyectivas:

- f de {a,b,c,d} a {1,2,3,4,5} donde f(a)=4, f(b)=5, f(c)=1 y f(d)=3 \mathbb{S}_{\perp}
- $f(x)=x^2$ de los enteros a los enteros f(z)=f(z)=f(z)
- f(x)=x+1 de los enteros a los enteros $\leftarrow 57$

f de $\{a,b,c,d\}$ a $\{1,2,3,4,5\}$ donde f(a)=4, f(b)=5, f(c)=1 y f(d)=3

Es inyectiva

• $f(x)=x^2$ de los enteros a los enteros, **no es inyectiva** porque f(1)=f(-1)=1

• f(x)=x+1 de los enteros a los enteros, si es inyectiva porque cada x tiene un solo y asignado, x+1

Función sobreyectiva

• Una función f es sobreyectiva, si y solo si, para cada elemento $b \in B$ (codominio), existe un elemento $a \in A$ tal que f(a)=b

Codominio = rango

Función sobreyectiva

- Una función f es sobreyectiva, si y solo si, para cada elemento $b \in B$ (codominio), existe un elemento $a \in A$ tal que f(a)=b
- Una función es sobreyectiva si el codominio es igual al rango

Función sobreyectiva

Función sobreyectiva

Es sobreyectiva

Función sobreyectiva

Función sobreyectiva

• Una función f es sobreyectiva, si y solo si, para cada elemento $b \in B$, existe un elemento $a \in A$ tal que f(a)=b

No es sobreyectiva porque 10 no está en el rango

Función sobreyectiva

Función sobreyectiva

Función sobreyectiva

Función sobreyectiva

Indique cuáles de las siguientes funciones son sobreyectivas:

- f de {a,b,c,d} a {1,2,3} donde f(a)=3, f(b)=2, f(c)=1 y f(d)=3 SI
- f(x)=x² de los enteros a los enteros
- f(x)=x+1 de los enteros a los enteros S_{\perp}

f de $\{a,b,c,d\}$ a $\{1,2,3\}$ donde $\{a,b,c,d\}$ a $\{a,b,c,d\}$ a

Es sobreyectiva

• $f(x)=x^2$ de los enteros a los enteros, **no es sobreyectiva** porque -1 que está en el codominio no está en el rango

• f(x)=x+1 de los enteros a los enteros, si es sobreyectiva porque cada y del codominio es una imagen

Función biyectiva

Función biyectiva

Función biyectiva

Función biyectiva

Función biyectiva

· Una función f es biyectiva si es inyectiva y sobreyectiva

No es biyectiva porque no es inyectiva

Función biyectiva

· Una función f es biyectiva si es inyectiva y sobreyectiva

Función biyectiva

· Una función f es biyectiva si es inyectiva y sobreyectiva

No es biyectiva porque no es sobreyectiva

Indique si la función f de $\{a,b,c,d\}$ a $\{1,2,3,4\}$ donde f(a)=4, f(b)=2, f(c)=1, f(d)=3 es biyectiva

Es uno a uno entonces es INYECTIVA Codominio {1,2,3,4} Rango {1,2,3,4} es SOBREYECTIVA

Por lo tanto, es BIYECTIVA

Indique si la función f de $\{a,b,c,d\}$ a $\{1,2,3,4\}$ donde f(a)=4, f(b)=2, f(c)=1, f(d)=3 es biyectiva

Es biyectiva

Clasifique cada una de las siguientes funciones como inyectiva, sobreyectiva o biyectiva

Inyectiva pero no sobreyectiva

¿Es inyectiva? NO f(a) = f(d) ¿Es sobreyectiva? SI

Por lo tanto, NO ES SOBREYECTIVA

Sobreyectiva pero no inyectiva

Biyectiva

Ni inyectiva ni sobreyectiva

No es función

Función inversa

Dada una función $f:A \rightarrow B$, la función inversa de f, denotada por f^{-1} , asigna a un elemento $b \in B$ un solo elemento $a \in A$ tal que f(a)=b

Función inversa

Dada una función $f:A \rightarrow B$, la función inversa de f, denotada por f^{-1} , asigna a un elemento $b \in B$ un solo elemento $a \in A$ tal que f(a)=b

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{a,b,c,d\}$, $B=\{1,2,3,4\}$ y f(a)=2, f(b)=3, f(c)=1, f(d)=4

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{a,b,c,d\}$, $B=\{1,2,3,4\}$ y f(a)=2, f(b)=3, f(c)=1, f(d)=4

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y,z\}$, $B=\{a,b\}$ y f(x)=a, f(y)=a, f(z)=b

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y,z\}$, $B=\{a,b\}$ y f(x)=a, f(y)=a, f(z)=b

 La relación que hay de B→A no es una función f⁻¹(a)=x f⁻¹(a)=y

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y,z\}$, $B=\{a,b\}$ y f(x)=a, f(y)=a, f(z)=b

NO ES IN YECTIVA

 La relación que hay de B→A no es una función f⁻¹(a)=x f⁻¹(a)=y

f-1 no está definida cuando f no es inyectiva

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y\}$, $B=\{a,b,c\}$ y f(x)=a, f(y)=b

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y\}$, $B=\{a,b,c\}$ y f(x)=a, f(y)=b

• La relación que hay de $B \rightarrow A$ no es una función porque no se tiene $f^{-1}(c)$

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y\}$, $B=\{a,b,c\}$ y f(x)=a, f(y)=b

• La relación que hay de $B \rightarrow A$ no es una función porque no se tiene $f^{-1}(c)$

f-1 no está definida cuando f no es sobreyectiva

Función inversa

Una función $f:A \rightarrow B$ es invertible si es biyectiva

Indique cuáles de las siguientes funciones son invertibles.

Indique cuáles de las siguientes funciones son invertibles. f:R→R

- f(x)=2x+1, es invertible
- $f(x)=x^2+1$, no es invertible. f(-1)=f(1)=1 no es inyectiva
- $f(x)=x^3$, es invertible
- $f(x)=(x^2+1)/(x^2+2)$, no es invertible. no es inyectiva [f(-1)=f(1)=2/3], ni sobreyectiva (1 no es imagen en f)

Determine si las siguientes funciones, de R a R, son invertibles: f(-3.2) = [-1.6] = -1

•
$$f(x)=[x/2]$$
• $f(x)=[x/2]$
• $f(x)=[x/2]$
• $f(x)=3x^2+7$
• $f(x)=3x^2+7$
• $f(x)=(x+1)/(x+2)$
• $f(x)=x^5+1$
• $f(x)=x^5+1$
• $f(x)=x^5+1$
• $f(x)=x^5+1$

Determine si las siguientes funciones, de R a R, son invertibles:

- $f(x)=\lceil x/2 \rceil$. no, no es inyectiva. f(1)=f(2)=1
- $f(x)=3x^2+7$. **no**, no es inyectiva. f(1)=f(-1)=10
 - o es imagen
- f(x)=(x+1)/(x+2). **no**, no es sobreyectiva. 1 no es imagen
- $f(x)=x^5+1$. si

Dadas las siguientes funciones de los enteros a los enteros, complete la tabla indicando si cumple, o no, cada propiedad

•
$$f_1(x) = x^2 - 1$$

•
$$f_2(x) = 5x - 8$$

	Inyectiva	Sobreyectiva	Biyectiva
f_1			
f ₂			

Justifique solamente las propiedades que no se cumplen

Composición de funciones

Dadas dos funciones $f: A \rightarrow B y g: B \rightarrow C$ se denomina composición de g con f, como la función f o $g: A \rightarrow C$ tal que:

$$fo g = \{(a,c) | \underline{a} \in A \land c \in C \land \exists b \mid b \in B : \underline{agb} \land bfc\}$$
$$= \{(a,c) | \underline{a} \in A \land c \in C \land \exists b \mid b \in B : \underline{b} = \underline{g(a)} \land \underline{c} = \underline{f(b)}\}$$

Composición de funciones

Sea
$$g = \{a,b,c\} \rightarrow \{a,b,c\} + \{a,b,c$$

Sea
$$f = \{a,b,c\} \rightarrow \{1,2,3\}$$
 tal que $f(a) = 3$, $f(b) = 2$, $f(c) = 1$

Estudiemos fog

$$f(g(a)) = f(b) = 2$$

$$f(g(b)) = f(c) = 1$$

$$f(g(c)) = f(a) = 3$$

$$9((2)) = 9(3)$$

 $9(3)$
 $9(4)$

Observe que g o f

$$g(f(a)) = f(3) = ????$$

f o g está bien definida sii rango $g \subseteq dominio de f$

Composición de funciones

Sea
$$g: \mathbb{Z} \to \mathbb{Z}$$
 tal que $g(y) = 3y + 2$
Sea $f: \mathbb{Z} \to \mathbb{Z}$ tal que $f(x) = 2x + 3$
fog $(z) = f(g(z)) = f(3z + 2) = 2(3z + 2) + 3 = 6z + 7$
g of $(z) = g(f(z)) = g(2z + 3) = 3(2z + 3) + 2 = 6z + 11$

La composición no es conmutativa

Funciones piso y techo

La función entera piso asigna a un número real x el mayor entero que es menor o igual que x. Se denota así:

|x|

La función entera techo o función de parte entera por exceso, asigna a un número real x el mayor entero que es mayor o igual que x. Se denota así:

Funciones piso y techo

Funciones piso y techo

Sean k y n enteros positivos. Entonces el número de múltiplos de k entre 1 y n está dado por $\left\lfloor \frac{n}{k} \right\rfloor$

Ejemplo, Sea $A = \{1,2,3,...,100\}$, con k = 2, el número de multiplos es $\left\lfloor \frac{100}{2} \right\rfloor = \lfloor 50 \rfloor$

Ejemplo, Sea $A = \{1,2,3,...,100\}$, ¿Cuantos números son divisibles entre 3 o por 5? Pista: Aqui aplica la propiedad de union de conjuntos.

$$| \frac{100}{3} | + | \frac{100}{5} | - | \frac{100}{18} | 33+20-6=47$$

Función característica

La función caracteristica de un subconjunto A con respect al Universal $U = \{u_1, u_2, ..., u_n\}$ Se define así

$$f_a(u_i) \begin{cases} 1 \text{ Si } u_i \in A \\ 0 \text{ Si } u_i \notin A \end{cases}$$

Ejemplo: Si
$$\overline{A} = \{4,7,9\}$$
 y U = $\{1,2,3,...,10\}$ Entonces $f_A(2) = 0$, $f_A(4) = 1$, $f_A(7) = 1$ y $f_A(12) = 0$