In [1]:

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

Out[4]:

	Pregnancies	Glucose	blood pressure	skin thickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
0	6	148	72	35	0	33.6	0.627	50
1	1	85	66	29	0	26.6	0.351	31
2	8	183	64	0	0	23.3	0.672	32
3	1	89	66	23	94	28.1	0.167	21
4	0	137	40	35	168	43.1	2.288	33
5	5	116	74	0	0	25.6	0.201	30
6	3	78	50	32	88	31.0	0.248	26
7	10	115	0	0	0	35.3	0.134	29
8	2	197	70	45	543	30.5	0.158	53
9	8	125	96	0	0	0.0	0.232	54
10	4	110	92	0	0	37.6	0.191	30
4								>

In [3]: ▶ data.shape

Out[3]: (768, 9)

Out[6]: False

```
In [7]: ## Correlation
   import seaborn as sns
   import matplotlib.pyplot as plt
   #get correlations of each features in dataset
   corrmat = dataset.corr()
   top_corr_features = corrmat.index
   plt.figure(figsize=(20,20))
   #plot heat map
```


	Pregnancies	Glucose	blood pressure	skin thickness	Insulin	ВМІ	Di
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	
blood pressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	
skin thickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	

```
In [27]:

    print("total number of rows : {0}".format(len(data)))

             print("number of rows missing Glucose: {0}".format(len(data.loc[data['Glucose
             print("number of rows missing Glucose: {0}".format(len(data.loc[data['Glucose
             print("number of rows missing blood pressure: {0}".format(len(data.loc[data['
             print("number of rows missing skin thickness: {0}".format(len(data.loc[data['
             print("number of rows missing Isulin: {0}".format(len(data.loc[data['Insulin'
             print("number of rows missing BMI: {0}".format(len(data.loc[data['BMI'] == 0]
             print("number of rows missing DiabetesPedigreeFunction: {0}".format(len(data.
             print("number of rows missing Age: {0}".format(len(data.loc[data['Age'] == 0]
             total number of rows: 768
             number of rows missing Glucose: 5
             number of rows missing Glucose: 5
             number of rows missing blood pressure: 35
             number of rows missing skin thickness: 227
             number of rows missing Isulin: 374
             number of rows missing BMI: 11
             number of rows missing DiabetesPedigreeFunction: 0
             number of rows missing Age: 0
          In [35]:
In [36]:
            import numpy as np
          from sklearn.impute import SimpleImputer
             imputer = SimpleImputer(missing values=np.nan, strategy='mean')
             fill values = SimpleImputer(missing values=0, strategy="mean", fill value=Nor
             X train = fill values.fit transform(X train)
             X_test = fill_values.fit_transform(X_test)
In [40]:
          ## Apply Algorithm
             from sklearn.ensemble import RandomForestClassifier
             random forest model = RandomForestClassifier(random state=0)
             random_forest_model.fit(X_train, y_train.ravel())
   Out[40]: RandomForestClassifier(random state=0)
In [46]:
            ## RANDOM FOREST
             predict_train_data = random_forest_model.predict(X_test)
             from sklearn import metrics
             print("Accuracy = {0:.3f}".format(metrics.accuracy_score(y_test, predict_trai
             Accuracy = 0.766
```


Accuracy: 77.0

C:\Users\TinkuBablu\anaconda3\lib\site-packages\sklearn\utils\validation.p
y:63: DataConversionWarning: A column-vector y was passed when a 1d array w
as expected. Please change the shape of y to (n_samples,), for example usi
ng ravel().

return f(*args, **kwargs)

In []: ▶