GBI Definitionen

Inschrift

speichert → Nachricht

Bedeutung → Information (erfordert Interpretation)

Alphabet = endliche Menge von Symbolen

Eigenschaften von Relationen: linkstotal, rechtstotal, linkseindeutig, rechtseindeutig

Funktionen sind linkstotal und rechtseindeutig; Partielle Funktionen nur rechtseindeutig $(f: A \rightarrow B)$

Wörter sind surjektive Abbildungen: $w: \mathbb{G}_n \to A'$ $w \in A^*$ $A' \subseteq A^*$

Vorkommen eines Zeichens:
$$N_x(\varepsilon) = 0$$
 $\forall y \in A: \forall w \in A^*: N_x(yw) = \begin{cases} 1 + N_x(w), & falls \ y = x \\ N_x(w), & falls \ y \neq x \end{cases}$

Konkatenationsabschluss: $A^* = \bigcup_{i=0}^{\infty} A^i$ ϵ -freier Konkatenationsabschluss: $A^+ = \bigcup_{i=1}^{\infty} A^i$

Binäre Operation: $\diamond: M \times M \to M$ (Kommutativität, Assoziativität)

Formale Sprache L: $L \subseteq A^*$ (Konkatenationsabschluss wie bei Wörtern)

Produkt: $L_1 \cdot L_2 = \{w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2\}$ Potenzen: $L^0 = \{\varepsilon\} \quad \forall k \in \mathbb{N}_0 : L^{k+1} = L \cdot L^k$

Algorithmus: (Vollständige Induktion über Schleifeninvariante)

- Endliche Beschreibung
- Elementare Anweisungen
- Determinismus
- Endliche Eingabe -> endliche Ausgabe
- Endlich viele Schritte
- Beliebig große Eingaben möglich
- Verständlich / Nachvollziehbar

Dokument besteht aus: Inhalt, Struktur und Erscheinungsbild

Kontextfreie Grammatiken (Typ-2-Grammatiken), rechtslineare Grammatiken (Typ-3-Grammatiken)

G = (N, T, S, P) (Wichtig: $N \cap T = \emptyset$; $S \in N$; $P \subseteq N \times V^*$ mit $V = N \cup T$)

Ableitung eines Wortes nach einer Grammatik (als Baum oder mit \Longrightarrow bzw. \Longrightarrow^* wobei $R_{\Rightarrow} \subseteq V^* \times V^*$) Von einer Grammatik erzeugte formale Sprache: $L(G) = \{w \in T^* | S \Longrightarrow^* w\}$

Relationen:

Produkt: $R_1 \subseteq M_1 \times M_2, R_2 \subseteq M_2 \times M_3$, $dann: R_2 \circ R_1 = \{(x, z) \in M_1 \times M_3 | \exists y \in M_2: (x, y) \in R_1 \land (y, z) \in R_2\}$

Identische Abbildung: $I_M = \{(x, x) | x \in M\}$

Potenzen: $R^0 = I_M \quad \forall i \in \mathbb{N}_0: R^{i+1} = R^i \circ R$

transitiv-reflexive-Hülle: $R^* = \bigcup_{i=0}^{\infty} R^i$

Ein Byte ≘ 8 Bit

Speicher als Abbildungen: $(a, a' \in Adr; v \in Val; m, m' \in Mem)$

- Gesamtzustand des Speichers: $m: Adr \rightarrow Val$
- Lesen aus dem Speicher: $memread: Val^{Adr} (= Mem) \times Adr \rightarrow Val, (m, a) \mapsto m(a)$
- In den Speicher schreiben: $memwrite: Val^{Adr} \times Adr \times Val \rightarrow Val^{Adr}, (m, a, v) \mapsto m'$

$$m'(a') = \begin{cases} v & falls \ a' = a \\ m(a') & falls \ a' \neq a \end{cases}$$

• 1 Megabyte $\stackrel{\frown}{=} 10^6$ Bytes; 1 Mebibyte $\stackrel{\frown}{=} 1024^2$ Bytes = 2^{20} Bytes

Codierung: $\operatorname{num}_n(x) \cong \operatorname{Bedeutung} \operatorname{von} x$, $\operatorname{Num}_n(w) \cong \operatorname{Bedeutung} \operatorname{des} \operatorname{Wort} w$ ($n \in \mathbb{N}$), $\operatorname{Repr}_n(w) \cong \operatorname{Num}_n(w)$ aber ohne führende Nullen, $\operatorname{Trans}_{n,m} = \operatorname{Repr}_n \circ \operatorname{Num}_m$, $\operatorname{Sem} \cong \operatorname{Menge} \operatorname{von}$ Bedeutungen

$$\begin{split} \operatorname{Bsp.:} Z_2 &= \{0,1\} & num_2(0) = 0, num_2(1) = 1, Num_2(\varepsilon) = 0 \\ &\forall w \in Z_2^* \forall x \in & Z_2 : Num_2(wx) = 2 \cdot Num_2(w) + num_2(x) \\ f \colon L_1 &\longrightarrow L_2 \text{ heißt Übersetzung, wenn: } \forall w \in L_a : sem_A(w) = sem_B(f(w)) \text{ und f injektiv ist.} \end{split}$$

Homomorphismus: A, B Alphabete $h^{**}(\varepsilon) = \varepsilon \quad \forall w \in A^*: \forall x \in A: h^{**}(wx) = h^{**}(w)h(x)$

$$\text{Präfixfreie Decodierung: } u(w) = \begin{cases} \varepsilon & falls \ w = \varepsilon \\ xu(w') & falls \ w = h(x)w'f \ \text{\"{u}}r \ ein \ x \in A \\ \bot & sonst \end{cases}$$

Huffman-Codierung ist eine Abbildung $h:A^* \longrightarrow Z_2^*$ die ein ϵ -freier Homomorphismus ist

Graphen:
$$G = (V,E) \text{ mit } E \subseteq V \times V \text{ und } |V| \text{ endlich}$$

Teilgraph $G'=(V',E') \text{ mit } V' \subseteq V \text{ und } E' \subseteq E \cap V' \times V'$

Pfade: $p=(v_0,...,v_n)$ ist Pfad wenn $\forall i \in \mathbb{G}_n$: $(v_i,v_{i+1}) \in E$, n=|p|-1 heißt Länge des Pfads, ist $v_0=v_n$ so heißt der Pfad geschlossen bzw. ist ein Zyklus (ist er wiederholungsfrei, so nennt man ihn einfachen Zyklus). Ein Graph heißt streng zusammenhängend, wenn $\forall (x,y) \in V^2$: $\exists \ ein \ Pfad \ p \ von \ x \ nach \ y$ ($\Leftarrow E^* = V \times V$). Ein Baum ist ein Graph mit einem Knoten $r \in V$: $\forall x \in V$ gibt es genau einen Pfad von r nach x.

Eingangsgrad:
$$d^-(y) = |\{x | (x, y) \in E\}|$$
, Ausgangsgrad: $d^+(x) = |\{y | (x, y) \in E\}|$

 G_1 ist Isomorph zu $G_2 \Leftrightarrow$ es existiert eine bijektive Abbildung $f: V_1 \to V_2$ mit $\forall x \in V_1: \forall y \in V_1: (x,y) \in E_1 \Leftrightarrow (f(x),f(y)) \in E_2$

Grad eines Knoten in ungerichteten Graphen: $d(x) = |\{y | y \neq x \land \{x, y\} \in E\}| + \begin{cases} 2 & falls \{x, x\} \in E \\ 0 & sonst \end{cases}$

Adjazenzmatrix:
$$A \in K^{n \times n}$$
 $A_{ij} = \begin{cases} 1 & falls\ (i,j) \in E \\ 0 & falls\ (i,j) \notin E \end{cases}$

Erreichbarkeitsrelation
$$E^* = \bigcup_{i=0}^{n-1} E^i$$
 Wegematrix: $W \in K^{n \times n}$ $W_{ij} = \begin{cases} 1 & falls\ (i,j) \in E^* \\ 0 & falls\ (i,j) \notin E^* \end{cases}$

(zur Berechnung siehe Skript und Algorithmus von Warshall)

Im Folgenden seien g und f Funktionen mit $f, g: \mathbb{N}_0 \to \mathbb{R}_0^+$

- $g(n) \in \Theta(f(n)) \Leftrightarrow \exists c, c' \in \mathbb{R}_+: \exists n_0 \in \mathbb{N}_0: \forall n \geq n_0: cf(n) \leq g(n) \leq c'f(n) \Leftrightarrow f = g$ $\Theta(f) = \{g | g = f\}$ g wächst größenordnungsmäßig genau so schnell wie f
- $g(n) \in O(f(n)) \Leftrightarrow \exists c \in \mathbb{R}_+: \exists n_0 \in \mathbb{N}_0: \forall n \geq n_0: g(n) \leq cf(n) \Leftrightarrow f \geq g$ $O(f) = \{g | g < f\}$ g wächst asymptotisch höchstens so schnell wie f
- $g(n) \in \Omega(f(n)) \Leftrightarrow \exists c \in \mathbb{R}_+: \exists n_0 \in \mathbb{N}_0: \forall n \geq n_0: g(n) \geq cf(n) \Leftrightarrow f \leq g$ $\Omega(f) = \{g | g \geq f\}$ g wächst asymptotisch mindestens so schnell wie f

Rechenregeln:

- $\bullet \quad \forall f \colon \mathbb{N}_0 \longrightarrow \mathbb{R}_0^+ \forall a,b \in \mathbb{R}_+ \colon a \cdot f(n) \asymp b \cdot f(n) \Leftrightarrow \Theta \big(a f(n) \big) = \Theta \big(b f(n) \big)$
- $g(n) \in O(f(n)) \Leftrightarrow f(n) \in \Omega(g(n))$
- $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n)) \iff g = f \iff g \leq f \land g \geq f$

- $0(f_1) + 0(f_2) = 0(f_1 + f_2)$
- $g_1 \leq f_1 \land g_1 \approx g_2 \land f_1 \approx f_2 \Longrightarrow g_2 \leq f_2$
- $g \leq f \Rightarrow O(g) \subseteq O(f)$ und O(g+f) = O(f)

Mastertheorem: $T(n) = aT\left(\frac{a}{b}\right) + f(n)$

- 1. $f(n) \in O(n^{\log_b a \varepsilon}), \varepsilon > 0$ $\Rightarrow T(n) \in \Theta(n^{\log_b a})$
- 2. $f(n) \in \Theta(n^{\log_b a})$ $\Rightarrow T(n) \in \Theta(n^{\log_b a} \cdot \log(n))$
- 3. $f(n) \in \Omega(n^{\log_b a + \varepsilon}), \varepsilon > 0 \land \exists 0 < d < 1 \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : af\left(\frac{n}{b}\right) \le df(n)$ $\Rightarrow T(n) \in \Theta(f(n))$

Mealy-Automat (endlich): $A=(Z,z_0,X,f,Y,g)$ mit endlicher Zustandsmenge Z, Anfangszustand $z_0\in Z$, Eingabealphabet X, Ausgabealphabet Y, Zustandsüberführungsfunktion $f:Z\times X\to Z$, Ausgabefunktion $g:Z\times X\to Y^*$

Moore-Automat: $A = (Z, z_0, X, f, Y, h)$ mit Ausgabefunktion $h: Z \to Y^*$, Rest wie bei Mealy-Automat

Zustandsfunktionen:

$$f^*: Z \times X^* \longrightarrow Z \qquad f^*(z, \varepsilon) = z, \quad \forall w \in X^*: \forall x \in X: f^*(z, wx) = f(f^*(z, w), x)$$
$$f^{**}: Z \times X^* \longrightarrow Z^* \qquad f^{**}(z, \varepsilon) = z, \quad \forall w \in X^*: \forall x \in X: f^{**}(z, wx) = f^{**}(z, w) \cdot f(f^*(z, w), x)$$

Ausgabefunktionen:

$$g^*: Z \times X^* \longrightarrow Y^* \qquad g^*(z,\varepsilon) = \varepsilon, \quad \forall w \in X^*: \forall x \in X: \\ g^*(z,wx) = g(f^*(z,w),x) \\ g^{**}: Z \times X^* \longrightarrow Y^* \qquad g^{**}(z,\varepsilon) = \varepsilon, \quad \forall w \in X^*: \forall x \in X: \\ g^{**}(z,wx) = g^{**}(z,w) \cdot g^*(z,wx) \\ \text{Moore-Automaten: } g^* = h \circ f^* \left[\Longleftrightarrow g^*(z,w) = h \big(f^*(z,w) \big) \right] \\ \text{und } g^{**} = h^{**} \circ f^{**}$$

Endlicher Akzeptor: $A = (Z, z_0, X, f, F)$ mit Menge $F \subseteq Z$ akzeptierender Zustände, Rest wie bei Moore-Automaten

Von einem Akzeptor akzeptierte formale Sprache: $L(A) = \{w \in X^* | f^*(z_0, w) \in F\}$

Reguläre Ausdrücke: $G=(\{R\},\{|,(,),*,\phi\}\cup A,R,P)$ mit $P=\{R\longrightarrow \phi|(R|R)|(RR)|(R*)\}\cup \{R\longrightarrow x|x\in A\}$, A Alphabet

Beschriebene formale Sprache: $\langle \phi \rangle = \{ \}, \langle x \rangle = \{x\} \ (x \in A), \langle R_1 | R_2 \rangle = \langle R_1 \rangle \cup \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle, \langle R_1 R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle$

Für jede formale Sprache L sind die folgenden drei Aussagen äquivalent:

- L kann von einem endlichen Akzeptor erkannt werden.
- L kann durch einen regulären Ausdruck beschrieben werden.
- L kann von einer rechtslinearen Grammatik erzeugt werden.

 $\text{Kantorowitsch- (/Regex-) B\"{a}ume: } h(T) = \begin{cases} 0 & falls \ die \ Wurzel \ Blatt \ ist \\ 1 + max_i h(U_i) & falls \ die \ U_i \ alle \ Unterb\"{a}ume \ von \ T \ sind \end{cases}$

Strukturelle Induktion: siehe Skript S.154

Turingmaschinen: $T=(Z,z_0,X,f,g,m)$ mit Zustandsmenge Z, Anfangszustand $z_0\in Z$, Bandalphabet X, partielle Zustandsüberführungsfunktion $f\colon Z\times X \to Z$, partielle Ausgabefunktion $g\colon Z\times X \to X$, partielle Bewegungsfunktion $m\colon Z\times X \to \{-1,0,1\}$!!!Achtung: Eingabealphabet A einer Turingmaschine: $A\subseteq X\setminus\{\Box\}$

Konfiguration: (Gesamtzustand zu einem Zeitpunkt) $c_i = (z,b,p)$ $z \in Z$ Zustand der Steuereinheit, $b: \mathbb{Z} \to X$ aktuelle Bandbeschriftung, $p \in \mathbb{Z}$ Position des Kopfs

Konfiguration nach t Schritten:
$$\Delta_0 = I \quad \forall t \in \mathbb{N}_+: \Delta_{t+1} = \Delta_1 \circ \Delta_t \qquad \Delta_*: C_T \longrightarrow C_T$$

Von Turingmaschinen erkennbare Sprachen heißen aufzählbare Sprachen, von TM akzeptierte Sprachen heißen entscheidbare Sprachen, wenn die TM für jede Eingabe hält. Eine TM kann man codieren.

Zeitkomplexität:
$$time_T: A^+ \longrightarrow \mathbb{N}_+ \ mit \ time_T(w) = t, sodass \ \Delta_t \big(c_0(w) \big) = \Delta_* \big(c_0(w) \big)$$

$$Time_T: \mathbb{N}_+ \longrightarrow \mathbb{N}_+ \ mit \ Time_T(n) = max\{time_T(w) | w \in A^n\}$$

Raumkomplexität: $space_T: A^+ \to \mathbb{N}_+ \ mit \ space_T(w) = Anzahl \ der \ "besuchten" \ Felder$

 $Space_T: \mathbb{N}_+ \longrightarrow \mathbb{N}_+ \ mit \ Space_T(n) = max\{space_T(w) | w \in A^n\}$

Es gilt: $space(w) \le max(|w|, 1 + time(w))$

Komplexitätsklassen: Es gilt: $P \subseteq PSPACE$

- P: Menge der Entscheidungsprobleme die eine TM in polynomieller Zeitkomplexität entscheiden kann
- PSPACE: Menge aller Entscheidungsprobleme die eine TM in polynomieller Raumkomplexität entscheiden kann

Es gibt Probleme die eine TM nicht entscheiden kann (z.B. Halteproblem siehe S.172).

Busy-Beaver-Funktion: TM mit n+1 Zuständen, Bandalphabet $X = \{\Box, 1\}$, startet auf leerem Band und hält nach endlich vielen Schritten an. $bb: \mathbb{N}_+ \to \mathbb{N}_+$ bb(n) = maximale Anzahl an Einsen die eine n -Biebermaschine auf dem Band hinterlässt

Es gilt: $f: \mathbb{N}_+ \to \mathbb{N}_+$ berechenbar $\implies \exists n_0 \in \mathbb{N}: \forall n \geq n_0: bb(n) > f(n)$ und bb(n) ist nicht berechenbar

Eine Relation R heißt Äquivalenzrelation ⇔ R ist reflexiv, symmetrisch und transitiv Eine Relation R heißt Kongruenzrelation ⇔ R ist Äquivalenzrelation und mit allen gerade interessierenden Funktionen f verträglich bzw. mit allen gerade interessierenden binären Relationen o verträglich.

f ist verträglich mit R \Leftrightarrow Es gilt für $\sim \ddot{A}qivalenzrelation$, M Menge, $f: M \rightarrow M$ Abbildung: $\forall x_1, x_2 \in$ $M: x_1 \sim x_2 \Longrightarrow f(x_1) \sim f(x_2)$

 \diamond ist verträglich mit R \Leftrightarrow Es gilt für \diamond binäre Relation, M Menge: $\forall x_1, x_2 \in M \forall y_1, y_2 \in M : x_1 \sim x_2 \land$ $y_1 \sim y_2 \Longrightarrow x_1 \diamond y_1 \sim x_2 \diamond y_2$

 $R \subseteq M \times M$ heißt Halbordnung \Leftrightarrow R ist reflexiv, antisymmetrisch $(\forall x, y \in M: xRy \land yRx \Longrightarrow x = y)$ und transitiv

Halbordnungen lassen sich in einem Hasse-Diagramm H_R darstellen (gerichteter azyklischer Graph), sodass H_R mit der reflexiv-transitiven Hülle wieder die ursprüngliche Halbordnung ist $(H_R = (R \setminus I) \setminus (R \setminus I)^2$ und $H_R^* = R$).

Es sei (M, \sqsubseteq) eine halbgeordnete Menge und $T \subseteq M$:

- $x \in T$ heißt maximales Element von $T \Leftrightarrow \exists y \in T : x \sqsubseteq y \land x \neq y$
- $x \in T$ heißt minimales Element von $T \Leftrightarrow \exists y \in T : y \sqsubseteq x \land y \neq x$
- $x \in T$ heißt größtes Element von T $\Leftrightarrow \forall y \in T : y \sqsubseteq x$ $x \in T$ heißt kleinstes Element von T $\Leftrightarrow \forall y \in T : x \sqsubseteq y$ $x \in M$ heißt obere Schranke von T $\Leftrightarrow \forall y \in T : y \sqsubseteq x$ $x \in M$ heißt untere Schranke von T $\Leftrightarrow \forall y \in T : x \sqsubseteq y$
- Das kleinste Element der Menge oberer Schranken heißt Supremum. Bezeichnung: $\sqcup T$ oder sup (T)
- Das größte Element der Menge unterer Schranken heißt Infimum.

Eine aufsteigende Kette ist eine abzählbare unendliche Folge $(x_0, x_1, x_2, ...), x_i \in halbgeordneter$ *Menge* und es gilt: $\forall i \in \mathbb{N}_0$: $x_i \subseteq x_{i+1}$.

In einer vollständigen Halbordnung besitzt jede aufsteigende Kette ($x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots$) ein kleinstes Element (\perp) und ein Supremum ($\sqcup_i x_i$).

 \sqsubseteq sei eine Halbordnung auf M: $f: M \to M$ heißt monotone Abbildung $\iff \forall x, y \in M: x \sqsubseteq y \implies f(x) \sqsubseteq$ f(y). $f: M \to M$ heißt stetige Abbildung \Leftrightarrow für jede aufsteigende Kette gilt: $f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i)$

Sei $f: D \to D$ eine monotone, stetige Abbildung auf einer vollständigen Halbordnung (D, \sqsubseteq) mit $x_0 = \perp und \ \forall i \in \mathbb{N}_0: x_{i+1} = f(x_i) \Longrightarrow x_i$ bilden eine Kette, Supremum $x_f = \sqcup_i x_i$ dieser Kette ist Fixpunkt $(f(x_f) = x_f)$ und x_f ist kleinster Fixpunkt von f: Wenn $f(y_f) = y_f$, dann $x_f \sqsubseteq y_f$.

Eine Halbordnung $R \subseteq M \times M$ ist eine (totale) Ordnung, wenn gilt: $\forall x, y \in M$: $xRy \lor yRx$