This quiz contains 2 questions. Write neatly and show all your work.

1. Find the center and radius of the sphere
$$4x^2 + 4y^2 + 4z^2 - 8x + 4z + 1 = 0$$
. [3]

$$\Rightarrow x^2 + y^2 + z^2 - 2x + z + \frac{1}{4} = 0$$

$$\Rightarrow (x^2 - 2x) + y^2 + (z^2 + z) = -\frac{1}{4}$$

$$\Rightarrow (x^2 - 2x + 1) + y^2 + (z^2 + z + \frac{1}{4}) = -\frac{1}{4} + 1 + \frac{1}{4}$$

$$\Rightarrow (x - 1)^2 + (y - 0)^2 + (z + \frac{1}{2})^2 = 1^2$$

$$\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = \langle 2, -2, 1 \rangle - \langle 1, 0, -1 \rangle$$

= $\langle 1, -2, 2 \rangle$

$$|\overrightarrow{PQ}| = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{q} = 3$$
Unit vector in the direction of \overrightarrow{PQ} = $\frac{1}{|\overrightarrow{PQ}|} = \frac{1}{|\overrightarrow{PQ}|} = \frac{1}{$

(b) Find the scalar component of \overrightarrow{PR} in the direction of \overrightarrow{PQ} .

Scalar component of PR in the direction of PR
$$= \overrightarrow{PR} \cdot \frac{\overrightarrow{PR}}{|\overrightarrow{PR}|}$$

$$= \langle -1, 1, 0 \rangle \cdot \langle \frac{1}{3}, -\frac{2}{3}, \frac{2}{3} \rangle$$

$$= -\frac{1}{3} - \frac{2}{3} + 0 = -\frac{3}{3} = -1.$$

 $\overrightarrow{PR} \times \overrightarrow{PR}$ is a vector perpendicular to the plane of $\triangle PRR$. $|\overrightarrow{PR} \times \overrightarrow{PR}| = |\overrightarrow{I} | \overrightarrow{J} | \overrightarrow{K} | = |-2 | 2 | \overrightarrow{I} - | 1 | 2 | \overrightarrow{J} + | 1 | -2 | \overrightarrow{K} | = (0-2) \overrightarrow{I} - (0+2) \overrightarrow{J} + (1-2) \overrightarrow{K}$

= -27 - 27 - 7

(d) Find the area of
$$\triangle PQR$$
. = $\frac{1}{2} |PR| \times PR|$ [1.5]
= $\frac{1}{2} \sqrt{(-2)^2 + (-1)^2}$
= $\frac{1}{2} \sqrt{9}$
= $\frac{3}{2}$