

Image Pyramids

SUBRAHMANYAM MURALA
CVPR Lab
School of Computer Science and Statistics
Trinity College Dublin, Ireland

a b

FIGURE 7.3

Two image pyramids and their histograms:

- (a) an approximation pyramid;
- (b) a prediction residual pyramid.

• Re-scale the image multiple times! Do correlation on every size!

• Idea: Throw away every other row and column to create a 1/2 size image

1/8

1/4

• Why does this look so crufty?

Interpolation

Interpolation

- \Box What is the intensity value of f(3.4, 7.9)?
- The most simple form of interpolation is called zeroth-order interpolation. It rounds off to the value of the nearest possible pixel, i.e., $f(3.4, 7.9) \rightarrow f(3, 8)$.
- A better, but also more computational demanding, approach is to apply first-order interpolation (a.k.a. bilinear interpolation), which weights the intensity values of the four nearest pixels according to how close they are.

Nearest Neighbor Interpolation

Simply replicate the value from neighboring pixels

1	0	1
1	1	0
1	0	1

1 0	1
1 1	0
1 0	1

Nearest Neighbor Interpolation

Simply replicate the value from neighboring

pixels

1	0		1	1	1	0	0	0	1	1
				1	1	0	0	0	1	1
				1	1	1	1	1	0	0
1	1		0	1	1	1	1	1	0	0
				1	1	1	1	1	0	0
				1	1	0	0	0	1	1
1	0		1	1	1	0	0	0	1	1

Nearest Neighbor Interpolation

Simply replicate the value from neighboring pixels

1	0	1
1	1	0
1	0	1

1		0		0	1	1
1	1	0	0	0	1	1
1	1	1	1	1	0	0
1	1	1	1	1	0	0
1	1		1		0	0
1	1	0	0	0	1	1
1	1	0	0	0	1	1

Linear Interpolation Formula

Heuristic: the closer to a pixel, the higher weight is assigned Principle: line fitting to polynomial fitting (analytical formula)

$$f(n+a)=(1-a)\times f(n)+a\times f(n+1),$$
0

Note: when a=0.5, we simply have the average of two

Linear Interpolation Formula

- Normalization
- Model: $f(x) = a_1 x^1 + a_0 x^0$
- Solve: a_0, a_1

$$\begin{cases} f(0) = a_1 \cdot 0 + a_0 \cdot 1 \\ f(1) = a_1 \cdot 1 + a_0 \cdot 1 \end{cases}$$

Linear Interpolation Formula

$$\begin{cases} f(0) = a_1 \cdot 0 + a_0 \cdot 1 \\ f(1) = a_1 \cdot 1 + a_0 \cdot 1 \end{cases}$$

• Let
$$\mathbf{y} = \begin{bmatrix} f(0) & f(1) \end{bmatrix}^{\mathrm{T}}$$
, $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $\mathbf{a} = \begin{bmatrix} a_1 & a_0 \end{bmatrix}^{\mathrm{T}}$

- ullet Then the equations can be written as ${f y}={f B}{f a}$
- Thus $f(x) = \mathbf{ba} = \mathbf{bB}^{-1}\mathbf{y}$, where $\mathbf{b} = \begin{bmatrix} x^1 & x^0 \end{bmatrix}$
- Example:

$$f(0.5) = \begin{bmatrix} 0.5^1 & 0.5^0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^{-1} \mathbf{y}$$

$$= \begin{bmatrix} 0.5 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{y}$$

$$= \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \mathbf{y}$$

$$= \frac{1}{2} f(0) + \frac{1}{2} f(1)$$

Numerical Examples

```
f(n)=[0,120,180,120,0]
```

Interpolate at 1/2-pixel

f(x)=[0,60,120,150,180,150,120,60,0], x=n/2

Interpolate at 1/3-pixel

Bilinear Interpolation

The assigned value is an intermediate value between the four nearest pixels:

Bilinear interpolation

What about in 2D?

Interpolate in x, then in y

Example

We know the red values
Linear interpolation in x between
red values gives us the blue values
Linear interpolation in y between
the blue values gives us the
answer

http://en.wikipedia.org/wiki/ Bilinear interpolation

Bilinear interpolation

$$\begin{split} f(x,y) &\approx \frac{f(Q_{11})}{(x_2-x_1)(y_2-y_1)}(x_2-x)(y_2-y) \\ &+ \frac{f(Q_{21})}{(x_2-x_1)(y_2-y_1)}(x-x_1)(y_2-y) \\ &+ \frac{f(Q_{12})}{(x_2-x_1)(y_2-y_1)}(x_2-x)(y-y_1) \\ &+ \frac{f(Q_{22})}{(x_2-x_1)(y_2-y_1)}(x-x_1)(y-y_1). \end{split}$$

http://en.wikipedia.org/wiki/ Bilinear interpolation

Cubic Interpolation

Cubic Interpolation

Let

•
$$\mathbf{y} = \begin{bmatrix} f(-1) & f(0) & f(1) & f(2) \end{bmatrix}^{\mathrm{T}}$$

• $\mathbf{B} = \begin{bmatrix} (-1)^3 & (-1)^2 & (-1)^1 & (-1)^0 \\ 0^3 & 0^2 & 0^1 & 0^0 \\ 1^3 & 1^2 & 1^1 & 1^0 \\ 2^3 & 2^2 & 2^1 & 2^0 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 1 \end{bmatrix}$
• $\mathbf{a} = \begin{bmatrix} a_3 & a_2 & a_1 & a_0 \end{bmatrix}^{\mathrm{T}}$

- Then the equations can be written as y = Ba
- Thus $f(x) = \mathbf{ba} = \mathbf{bB}^{-1}\mathbf{y}$, where $\mathbf{b} = \begin{bmatrix} x^3 & x^2 & x^1 & x^0 \end{bmatrix}$
- Example:

Example:
$$f(0.5){=}\begin{bmatrix} 0.5^3 & 0.5^2 & 0.5^1 & 0.5^0 \end{bmatrix} \begin{bmatrix} -0.167 & 0.5 & -0.5 & 0.167 \\ 0.5 & -1 & 0.5 & 0 \\ -0.333 & -0.5 & 1 & -0.167 \\ 0 & 1 & 0 & 0 \end{bmatrix} \mathbf{y}$$

$$= \begin{bmatrix} -0.0625 & 0.5625 & 0.5625 & -0.0625 \end{bmatrix} \mathbf{y}$$

$$= \frac{1}{16} \begin{bmatrix} -1 & 9 & 9 & -1 \end{bmatrix} \mathbf{y}$$

Bicubic Interpolation

The assign value is a weighted sum of the 4x4 nearest pixels:

$$v(s,t) = \sum_{i,j=0}^{3} a_{ij} s^{i} t^{j}$$

Comparison of Interpolation Approaches

Nearest Neighbor

Bi-Linear

Bi-Cubic

Image Segmentation

K-Means Clustering

K-Means Algorithm

- assume K clusters C_1, C_2, \ldots, C_K with means m_1, m_2, \ldots, m_K .
- least squares error measure measures how close the data are to their assigned clusters

$$D = \sum_{k=1}^{K} \sum_{x_i \in C_k} ||x_i - m_k||^2.$$

- could consider *all* possible partitions into K clusters and select the one that minimizes D
- \bullet is K known in advance?

K-Means Examples

Greylevel histogram-based segmentation

Semantic Segmentation

