ECO 82800

Panel Econometrics

Final Exam

25 May 2017, 9:30am – 11:30pm

This exam is a closed-book, closed-notes exam. Calculators without matrix functions are allowed. The exam consists of seven questions, most of them with parts. Points per question are as indicated; parts are weighted equally. The total is 102 points. Budget your time. You may answer the questions in any order, but *label them clearly and keep parts of a question together*.

- 1. (21 points)
- a. Define the model that is the basis for the Hausman-Taylor estimator.
- b. Describe the instrument matrix that Breusch, Mizon and Schmidt proposed as a substitute for the Hausman-Taylor instrument matrix.
- c. Motivate why the instruments in the BMS matrix are proper within the context of the HT estimator.
- 2. (15 points)
- a. What are the Null and Alternative Hypotheses of the LLC (Levin, Lin and Chu) test?
- b. What are the Null and Alternative Hypotheses of the IPS (Im, Pesaran and Shin) test?
- c. What paradigm shift is reflected in the difference between the LLC and IPS tests?

3. (21 points)

Let I denote real gross investment of a firm; let F be the real value of the outstanding shares of the firm; and let K be the real value of the capital stock. We are interested in the model

$$I_{it} = \beta_0 + \beta_1 F_{it} + \beta_2 K_{it} + \mu_i + \nu_{it}$$

where there might be serial correlation in v_{it} , captured as $v_{it} = \rho v_{i,t-1} + \epsilon_{it}$. The following table provides estimates of a random effects model without and with this serial correlation feature.

	Model 1		Model 2	
	Estimate	S.E.	Estimate	S.E.
β_0	-57.863	29.904	-44.381	26.975
eta_1	0.110	0.011	0.095	0.008
β_2	0.308	0.017	(0.320)	0.026
$\sigma_{\!\mu}$	87.359		74.517	
σ_{ν} or σ_{ϵ}	53.752		41.482	
ρ	n.a.		0.672	

- a. Both of these sets of estimates are generated with FGLS. So, prior to doing the GLS step, several parameters must be estimated first, including ρ . How would you propose to estimate ρ ?
- b. Especially in panel data with a small T, μ_i and $\rho v_{i,t-1}$ might capture the same thing and thus are difficult to distinguish. Explain why. And is this evident in this table?
- c. Based on these results, by how much do you predict I to rise when K increases by 10 units?

4. (20 points)

Consider a sample of data defined as $\{(y_{it}, X_{it}), i = 1, ..., N, t = 1, ..., T\}$ where X_{it} is a vector of k variables not including a constant term. Let the regression model be written as $y_{it} = X'_{it}\beta + \lambda'_i F_t + v_{it}$, where λ_i and F_t are $m \times 1$ vectors of parameters for i = 1, ..., N and t = 1, ..., T, respectively. Let us designate this model as M.

- a. Show that the familiar two-way fixed effects model is a special case of model M.
- b. Show that a model that explains y_{it} by means of X_{it} and a time trend t is a special case of model M with m = 2.
- c. In what way is model M with m = 2 more flexible than a model that explains y by means of X and a time trend (as in part b)?
- d. How does one estimate model M with m = 3?

5. (25 points)

Consider the model $y_{it} = \delta y_{i,t-1} + \mu_i + \nu_{it}$ for i = 1, ..., N and t = 1, ..., T. Presume that y_{i0} is observed for all i. Assume that $\mu_i \sim iid(0, \sigma_\mu^2)$ and $\nu_{it} \sim iid(0, \sigma_\nu^2)$. Define $\Delta y_{it} = y_{it} - y_{i,t-1}$. Let A_i be the instrument matrix for observation i (stacking over all applicable t) that is constructed in preparation of GMM estimation. Let the matrix A stack these A_i matrices for all i.

- a. Write down the Arellano-Bond instrument matrix A_i . What dimensions does it have?
- b. Motivate why this instrument matrix is appropriate.
- c. An initial Arellano-Bond estimator is given by

$$\hat{\delta}_{(1)} = \left(\Delta y'_{(-1)} A (A'(I_N \otimes G)A)^{-1} A' \Delta y_{-1}\right)^{-1} \Delta y'_{(-1)} A (A'(I_N \otimes G)A)^{-1} A' \Delta y$$

Derive this matrix G. What dimensions does it have?

- d. Arellano and Bond have suggested a two-step estimator $\hat{\delta}_{(2)}$ that builds on information gained with the aid of the first-step estimator $\hat{\delta}_{(1)}$. Explain why this two-step estimator might be preferred in some circumstances.
- e. Explain what contribution did Windmeijer make to the literature on the Arellano-Bond estimator.