Алгоритм автопереключения этажей

Основа алгоритма описана в ГуглДоке (https://docs.google.com/document/d/14-eeRuD7uKcdSLBYyXT-B3fKs9Ota3S_AvvU4GdkTkQ/edit?usp=sharing proposed by Alexey Grechnev) – алгоритм №1.

Для проверки алгоритма в коридоре возле офиса Каа было повешено 2 маяка (см. рис. 1-2, обозначены черными окружностями). Далее было записано 4 лога: 2 лога — движение из коридора в офис, и 2 — из офиса в коридор. Для контроля точного момента переключения карт, параллельно с записью логов, записывалось и видео движения по траектории (https://drive.google.com/drive/folders/1K1au-kofWG8rXJTi-zfx_QWI82sih5GL?usp=sharing). Как результат, в Таблице 1 приведены значения моментов времени, когда в идеальном случае должно произойти переключение карт.

Рис. 1 – Траектория движения из коридора в офис

Рис. 2 – Траектория движения из офиса в коридор

Таблица 1 – Моменты времени переключения карт

Лог	Случай	Видеофайл	Момент
			переключения
2018-05-30_16-43-39_ble_logger.json	«Коридор-	«IMG_0823.mov»	20 сек.
(тест 1а)	офис»		
2018-05-30_16-44-36_ble_logger.json	«Коридор-	«IMG_0824.mov»	14-15 сек.
(тест 1б)	офис»		

2018-05-30_16-45-13_ble_logger.json	«Офис-	«IMG_0825.mov»	13-14 сек.
(тест 2а)	коридор»		
2018-05-30_16-46-08_ble_logger.json	«Офис-	«IMG_0826.mov»	14 сек.
(тест 2б)	коридор»		

В Таблице 2 приведены результаты, полученные модификацией исходного алгоритма (добавлен feedback-фильтр с коэффициентом 0,9 и вектором весов [7 5 3 1] – **алгоритм №2**).

Таблица 2 – Моменты времени переключения карт (алгоритм №2)

Тестовые случаи	Случай	Момент переключения по видео	Момент переключения по алгоритму №2	Ложные срабатывания
Тест 1а	«Коридор-офис»	20 сек.	22,36	1 раз, одиночное
Тест 1б	«Коридор-офис»	14-15 сек.	15,93	нет
Тест 2а	«Офис-коридор»	13-14 сек.	24,46	нет
Тест 2б	«Офис-коридор»	14 сек.	24	нет

К особенностям можно отнести довольно малую задержку (около 2 сек.) при переключении для случаев «Коридор-офис» и значительную задержку (около 10 сек.) для случаев «Офис-Коридор». К особенностям можно отнести довольно малую задержку (около 2 сек.) при переключении для случаев «Коридор-офис» и гораздо меньшую, чем в предыдущем случае, задержку (около 3,5-4,5 сек.) для случаев «Офис-Коридор».

А на рис. 3-6 для сравнения приведены графики исходных значений функций максимального правдоподобия для офиса и коридора, а также их отфильтрованные значения. Слева приведены результаты для конфигурации (0,9 и [7 5 3 1], Табл. 2), справа – (0,83 и [7 2 1], Табл. 3, **алгорити №3**).

Таблица 3 – Моменты времени переключения карт (алгоритм №3)

Тестовые случаи	Случай	Момент переключения по видео	Момент переключения по алгоритму №3	Ложные срабатывания
Тест 1а	«Коридор-офис»	20 сек.	22,81	1 раз, одиночное
Тест 1б	«Коридор-офис»	14-15 сек.	16,8	1 раз, два подряд
Тест 2а	«Офис-коридор»	13-14 сек.	18,59	нет
Тест 2б	«Офис-коридор»	14 сек.	17,28	1 раз, два подряд

Feedback-фильтр:

$$MLF_{filt}(t) = MLF_{filt}(t-1) * C_{filt} + MLF_{raw}(t) * (1-C_{filt})$$

где $MLF_{raw}(t)$ – текущее значение функции максимального правдоподобия для заданного этажа;

 $\mathsf{MLF}_\mathsf{filt}(\mathsf{t})$ — текущее отфильтрованное значение функции максимального правдоподобия для заданного этажа;

C_{filt} – коэффициент фильтра (от 0 до 1).

Рис. 5 - Тест 2a, случай «Офис-коридор»

Рис. 6 - Тест 2б, случай «Офис-коридор»

Как видно из результатов в Таблицах 2-3, лучшие (стабильные) результаты показывает **алгоритм №3** (см. также рис. 3-6, справа). Однако в трех из четырех тестовых случаях у данного подхода есть несколько ложных срабатываний, что не приемлемо для практического решения.

Модификация алгоритма №3 - устранение ложных срабатываний

Идея модификации (**алгоритм №4**) в том, что переключать карту надо только в том случае, когда исходный алгоритм последовательно *N* раз (по умолчанию *N*=3) выдает новый этаж в качестве текущего. Для каждой карты здания вводится счетчик «*mapSwitchCounter*», который обнулен при старте.

Пример для случая двух карт – CORRIDOR и OFFICE. Первые 20 секунд исходный алгоритм выдавал в качестве текущего значения (переменной «currentMap») этажа карту CORRIDOR. На 21й секунде алгоритм выдал текущей карту OFFICE (переключения карты при этом нет, но mapSwitchCounter++). На следующем timestamp – снова алгоритм выдал карту OFFICE (переключения карты все еще нет, mapSwitchCounter++ и становится равным 2). На следующем timestamp – снова выдается карта OFFICE и только срабатывает переключение здесь карты, T.K. после инкремента mapSwitchCounter карты OFFICE достиг числа N. Если в данной ситуации на третьем timestamp алгоритм выдает карту CORRIDOR, то счетчик mapSwitchCounter карты OFFICE сбрасывается в 0.

Варианты обработки частных случаев:

- В начале работы счетчики «mapSwitchCounter» для всех карт обнулены;
- Текущее значение карты, переменная currentMap, устанавливается в то значение (можем использовать, например, ID карты), которое исходный алгоритм детектирования этажа покажет для данных в первом timestamp (не уверен в том, что это решение хорошо сработает на практике, так как часто пакеты от близлежащих маяков приходят с опозданием; скорее всего, подкорректируем эту

часть после тестов; например, введем задержку для определения карты в 1 сек., т.е. будем показывать карту по результату алгоритма только на третий *timestamp*);

- Если на старте системы (в первый момент времени) максимальные значения ФМП на выходе исходного алгоритма равны, то в качестве текущей карты выбираем первую по ID (либо не по ID, а по какому-либо другому значению) и записываем это значение в переменную *currentMap*;
- Если максимальные значения ФМП на выходе исходного алгоритма равны в произвольный момент времени И «mapSwitchCounter»==2 (для той карты, которая имеет равное значение ФМП с текущей), то переключаем карту (меняем значение переменной currentMap); если «mapSwitchCounter»!=2, то ничего не делаем и оставляем карту без изменений и не увеличиваем счетчик ни одной из карт.

Минус данной модификации: появляется задержка в переключении карты, примерно в 1 сек., если N=3.

Плюс данной модификации: устраняются переключения карт из-за ложных срабатываний алгоритма (по крайней мере, на тех логах, которые есть в моем распоряжении на данный момент); решение становится приемлемым для практического использования.

Сравнительный анализ времени переключения карт для четырех тестовых случаев приведен в Табл. 4.

Таблица 4 – Сравнительный анализ времени переключения карт для четырех тестовых случаев (**алгоритм №**4)

Тестовые	Случай	Реальный	Момент	Момент
случаи		момент	переключения	переключения по
		переключения по исходному		модификации
		(по видео)	алгоритму	алгоритма
Тест 1а	«Коридор-офис»	20 сек.	22,81	23,67
Тест 1б	«Коридор-офис»	14-15 сек.	16,8	17,7
Тест 2а	«Офис-коридор»	13-14 сек.	18,59	19,46
Тест 2б	«Офис-коридор»	14 сек.	17,28	18,18

Дальнейшие модификации алгоритма: отключение фильтрации значений функции МП, различные значения параметра N

Идея модификации в том, что отключаем feedback-фильтр, однако оставляем счетчик «*mapSwitchCounter*» и проверяем работу алгоритма для различных значений N (по умолчанию N=3).

Алгоритм №5 – фильтр выключен, N=3.

Алгоритм №6 – фильтр выключен, N=4.

Алгоритм №7 – фильтр выключен, N=5.

Таблица 5 – Сравнительный анализ различных модификаций алгоритмов

Тестовые	Момент	Момент	Момент	Момент	Момент
случаи	переклю- чения (по	переключения / false det.	переключения / false det.	переключения / false det.	переключения / false det.
	видео)	/ тагѕе чет.	7 тагѕе чет. (алгоритм №5)	7 тагѕе чет. (алгоритм №6)	тагѕе чет. (алгоритм №7)
Тест 1а	20 сек.	22,81 / 0	23,24 / 0	23,67 / 0	24,12 / 0
Тест 1б	14-15 сек.	16,80 / 0	17,70 / <mark>2</mark>	18,17 / <mark>2</mark>	18,61 / 0
Тест 2а	13-14 сек.	18,59 / 0	18,12 / 0	18,59 / 0	19,02 / 0
Тест 2б	14 сек.	17,28 / 0	13,57 / 0	14,19 / 0	14,61 / 0

Выводы: 1) модификации №5 и №6 не подходят, так как есть ложные переключения;

2) особого улучшения или лучших результатов от модификации №7 не видно: ложных переключений нет, но значительно увеличилась задержка для трех из четырех случаев.

Фильтрация значений функции МП и нормировка ненулевых значение функций МП на среднее геометрическое значение

Идея модификации в том, что feedback-фильтр включен. Однако решение о текущем этаже принимается не по отфильтрованным значениям ФМП, а по нормированным отфильтрованным значениям вида. Нормировка осуществляется на среднее геометрическое ненулевых значений ФМП:

$$\widehat{MLF_{raw}^1}(t) = MLF_{raw}^1(t) / \sqrt[n]{MLF_{raw}^1(t) * MLF_{raw}^2(t)}$$

где $MLF_{raw}^{1}(t)$ – функция МП для 1го этажа для t-го момента времени.

Счетчик «*mapSwitchCounter*» остается, проверяем работу алгоритма для различных значений N (по умолчанию N=3).

Алгоритм №8 – фильтр включен, нормировка ФМП, N=3, (0,83 и [7 2 1]). **Алгоритм №9** – фильтр включен, нормировка ФМП, N=3, (0,83 и [7 5 3 1]). **Алгоритм №10** – фильтр включен, нормировка ФМП, N=4, (0,83 и [7 2 1]).

Таблица 6 – Сравнительный анализ различных модификаций алгоритмов

Тестовые	Момент	Момент	Момент	Момент	Момент
случаи	переклю-	переключения	переключения	переключения	переключения /
	чения (по	/ false det.	/ false det.	/ false det.	false det.
	видео)	(алгоритм №4)	(алгоритм №8)	(алгоритм №9)	(алгоритм №10)
Тест 1а	20 сек.	22,81 / 0	26,34 / 0	23,67 / 0	26,93 / 0
Тест 1б	14-15 сек.	16,80 / 0	18,61 / 0	16,80 / 0	19,04 / 0
Тест 2а	13-14 сек.	18,59 / 0	19,02 / 0	20,48 / 0	19,46 / 0
Тест 2б	14 сек.	17,28 / 0	16,39 / 0	24,09 / 0	16,82 / 0

Выводы: 1) в модификациях №8-10 отсутствуют ложные переключения, однако задержки в трех из четырех случаев увеличились по сравнению с алгоритмом №4;

2) алгоритм №4 по-прежнему считаю наиболее предпочтительным.

Нормировка весов одинаковых значений RSSI

Согласно исходному алгоритму, если RSSI значения входной выборки совпадают, то этим сигналам присваиваются одинаковые веса. Идея модификации в том, чтобы нормировать одинаковые веса на их количество. Т.е., если есть схема весов [7 5 3 1]. По входной выборке получили следующий вектор весов: [7 7 7 5 5 3 1]. Далее, делим одинаковые веса на число одинаковых RSSI, т.е. [7/3 7/3 7/3 5/2 5/2 3 1]. По мнению Алексея это может дать более "непрерывные по времени" функции, если мы все же фильтруем ФМП.

Алгоритм №11 – фильтр включен, одинаковые веса нормируются, N=3, (0,83 и [7 2 1]).

Алгоритм №12 – фильтр включен, одинаковые веса нормируются, N=3, (0,83 и [7 5 3 1]).

Алгоритм №13 — фильтр включен, нормировка ФМП, одинаковые веса нормируются, N=3, (0,83 и [7 2 1]).

Таблица 7 – Сравнительный анализ различных модификаций алгоритмов

Тестовые случаи	Момент переклю- чения (по видео)	Момент переключения / false det. (алгоритм №4)	Момент переключения / false det. (алгоритм №11)	Момент переключения / false det. (алгоритм №12)	Момент переключения / false det. (алгоритм №13)
Тест 1а	20 сек.	22,81 / 0	23,67 / 0	21,06 / 3	26,34 / 0
Тест 1б	14-15 сек.	16,80 / 0	17,70 / 0	16,80 / 0	18,61 / 0
Тест 2а	13-14 сек.	18,59 / 0	19,46 / 0	20,93 / 0	19,02 / 0
Тест 2б	14 сек.	17,28 / 0	18,18 / 0	24,09 / 0	16,39 / 0

Выводы: 1) алгоритм №4 по-прежнему считаю наиболее предпочтительным, так как алгоритмы №11 и 13 работают хуже с точки зрения задержки переключения.