Коллоквиум по Дискретной математике, 2 курс

Залялов Александр, @bcategorytheory, Солодовников Никита, @applied_memes, Шморгунов Александр, @Owlus Виноградова Дарья, @orange_to_the_wall

26 Игры Эренфойхта

Цель: сформулировать общий критерий элементарной эквивалентности двух интерпретаций некоторой сигнатуры (считаем, что сигнатура содержит только предикатные символы).

Критерий будет сформулирован в терминах некоторой игры, называемой игрой Эренфойхта. В ней участвуют два игрока, называемые Новатором (H) и Консерватором (K). Игра определяется выбранной парой интерпретаций.

В начале игры Новатор объявляет натуральное число k. Далее они ходят по очереди, начиная с H; каждый из игроков делает k ходов, после чего определяется победитель.

На i-м ходу H выбирает элемент в одной из интерпретаций (в любой из двух) и помечает его числом i. В ответ K выбирает некоторый элемент из другой интерпретации и также помечает его числом i.

После k ходов игра заканчивается. При этом в каждой интерпретации k элементов оказываются помеченными числами от 1 до k (мы не учитываем, кто именно из игроков их пометил). Обозначим эти элементы a_1, a_2, \cdots, a_k (для первой интерпретации) и b_1, b_2, \cdots, b_k (для второй). Элементы a_i и b_i (с одним и тем же i) будем называть соответствующими друг другу.

Посмотрим, найдётся ли предикат сигнатуры, который различает помеченные элементы первой и второй интерпретации (то есть истинен на некотором наборе помеченных элементов в одной интерпретации, но ложен на соответствующих элементах другой). Если такой предикат найдётся, то выигрывает Новатор, в противном случае — Консерватор.

Теорема. Интерпретации не элементарно эквивалентны \iff H имеет выигрышную стратегию в этой игре.

Доказательство. Докажем, что если Новатор имеет выигрышную стратегию, то интерпретации не элементарно эквивалентны.

Пусть есть различающая формула. Приведем ее к предваренной форме. Будем последовательно смотреть на кванторы в ее начале. Пусть текущий квантор - это \exists . Значит, есть элемент в M_1 , для которого верна оставшаяся часть формулы, в то время как в M_2 такого нет. Этот элемент и должен выбрать Новатор очередным ходом.

Пусть текущий квантор - это \forall . В таком случае мы можем перейти к отрицанию и поступить аналогично шагу с \exists , только выбирая элемент в M_2 .

Таким образом, за количество шагов, равное количеству кванторов в различающей формуле, Новатор может построить различающие наборы.

27 Семантически полные теории. Критерий семантической полноты теории в терминах элементарной эквивалентности моделей. Аксиоматизация элементарной теории упорядоченного множества целых чисел.

Аксиоматическая теория <math>T - множество замкнутых формул.

Т *семантически полна*, если для любой замкнутой формулы A выполнено одно из двух:

- 1. из Т семантически следует А (А истинно во всех моделях теории)
- 2. из T семантически следует $\neg A$

Лемма. Теория семантически полна \iff любые 2 ее модели элементарно эквивалентны.

Доказательство. ⇒ Элементарная эквивалентность значит, что в обоих моделях любая формула или истинна, или ложна. Тогда если ϕ следует из A, то она истинна для всех моделей, следовательно, для каждой пары. Аналогично для $\neg \phi$

 \Leftarrow От противного: какая-то формула сама не следует и ее отрицание не следует. Значит, есть модели, в одной из которых А истинно, в другой - ложно. Противоречие с элементарной эквивалентностью.

Аксиоматизация множества рациональных чисел

$$M = (Q, =, <)$$

- аксиомы равенства
 - 1. $\forall x \, x = x$
 - 2. $\forall x \forall y \ x = y \rightarrow y = x$

- 3. $\forall x \forall y \forall z \ x = y \land y = z \rightarrow x = z$
- 4. $\forall x_1 \forall x_2 \forall y_1 \forall y_2 \ x_1 = x_2 \land y_1 = y_2 \rightarrow (x_1 = x_2 \rightarrow y_1 = y_2)$
- аксиомы линейного порядка
 - 1. $x < y \land y < z \rightarrow x < z$
 - $2. \neg (x < x)$
 - 3. $\forall x \forall y \ x < y \lor x > y \lor x = y$
- отсутствие наибольшего и наименьшего элемента
- плотность множества $\forall x, y \ (x < y \rightarrow \exists z \ x < z \land z < y)$

Теорема. Т - совместная и семантически полная.

Доказательство. Доказательство аналогично игре Эренфойхта с R и Q. Все выбранные в одной модели элементы идут в том же порядке, что и элементы второй модели. Консерватору достаточно возможности выбрать элемент между любыми двумя и отсутствие наибольшего и наименьшего элемента.

28 Аксиоматизация множества целых чисел.

M = (Z, =, <)

- аксиомы равенства
- аксиомы линейного порядка
- отсутствие наибольшего и наименьшего элемента
- $\forall x \exists y (x < y \land \neg (\exists z \ x < z \land z < y))$
- $\forall x \exists y (x > y \land \neg (\exists z \ x > z \land z > y))$

Теорема. T - coвместная u cемантически nonная.

Доказательство. Как устроены модели T? Это Z, Z+Z или любое множество вида AZ (A - линейно упорядоченное множество, в каждом элементе которого лежит множество целых чисел). Скажем, что элементы эквивалентны, если мы можем получить один из другого за конечное число шагов. Факторизуем по этому отношению эквивалентности.

Лемма. Для любого линейно упорядоченного A $AZ \cong Z$

Доказательство. Доказывается аналогично случаю с Z+Z □