VOUGHT CORP DALLAS TX HYDRAULIC SYSTEM SEAL DEVELOPMENT.(U) JUN 81 K E WHITFILL F/G 1/3 AD-A103 201 DAAK51-78-C-0028 USAAVRADCOM-TR-81-D-17 NL UNCLASSIFIED 1 of 4 40 A 108, m

USAAVRADCOM-TR-81-D-17

AD A 1 0 3 2 0 1

HYDRAULIC SYSTEM SEAL DEVELOPMENT

Keith E. Whitfill VOUGHT CORPORATION P. O. Box 225907 Dallas, Tex. 75265

June 1981

Final Report for Period September 1978 - October 1980

Approved for public release; distribution unlimited.

Prepared for

APPLIED TECHNOLOGY LABORATORY

U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM)
Fort Eustis, Va. 23604

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

This report has been reviewed by the Applied Technology Laboratory, US Army Research and Technology Laboratory (AVRADCOM), and is considered to be technically sound.

This research effort resulted from the need to reduce or eliminate leakage from hydraulic systems actuators used on military helicopters and other vehicles. Hydraulic fluid leakage has been a continuous and serious problem resulting in increased maintenance costs and in many cases unwarranted down time for helicopters.

This program was to investigate multiple cascaded seals and to develop new and improved seals and seal configurations for hydraulic systems and actuators, thereby favorably impacting hydraulic systems reliability, maintainability, safety, and cost by significantly reducing leakage.

Mr. George Fosdick of the Applied Aeronautics Technical Area, Aeronautical Systems Division, served as Project Engineer for this effort.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or self-any patented invention that may in any way be related thereto

Trade names (Lited in this report do not constitute an official endorsement or approval of the use of such commercial hardward or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Pate Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	SION NO. 3 RECIPIENT'S - ATALOG NUMBER
USAAVRADCOM, IR-81-D-17 (中D ーム)	0 5 101
4 TETLE Famil Subjettles	5 TYPE OF REPORT & PERIOD COVERED
	/ linal Report
HYDRAULIU SYSTEM SEAL DEVELOPMENT	Sep 1978 — Oct 1980
	6. PERFORMING ORG. REPORT NUMBER
7 Author(a)	8 CONTRACT OR GRANT NUMBER(A)
7 AG (MOR(a)	
Keith E. Whitfill	DAAK51-78-C-0028
9 PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS
Yought Corporation	62209A 11.162209AH7600
P. Ö. Box 225907	251 FV
hallas, Texas 75765	12. REFLAT WATE
II CONTROLLING OFFICE NAME AND ADDRESS Applied Technology Laboratory, U.S. Army Rese	
and Technology Laboratories (AVRADCOM)	13 NUMBER OF PAGES
Fort Eustis, Virginia 23604	334
14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling	Office) 15 SECURITY CLASS. (of this report)
	Unclassified
	154 DECLASSIFICATION DOWNGRADING
	SCHEDULE
16 DISTRIBUTION STATEMENT (of this Report)	
17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If di	llferent from Report)
18. SUPPLEMENTARY NOTES	
19 KEY WORDS (Continue on reverse side if necessary and identify by blo	ck number)
Hydraulic Sealing Systems Rotor Feedback	3
Long Life Cascaded Seals	
Dynamic Testing Hydraulic Syst	em Reliability
Multiple Seals Vented Seals	
Surface Finish Unvented Seals 20. ABSTRACT (Continue on reverse olds if necessary and identify by block	k number)
The objectives of this program were to invest to develop new and improved seals and seal co and actuators, thereby favorably impacting hy tainability, safety, and cost by significantly	igate multiple cascaded seals and nfigurations for hydraulic systems draulic systems reliability, main-

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

FOREWORD

This report was prepared by the Vought Corporation division of LTV Inc., Dallas, Texas under U. S. Army Contract DAAK51-78-C-0028 with the Applied Technology Laboratory, U. S. Army Research and Technology Laboratory (AVRADCOM), Fort Eustis, Virginia. Mr. George Fosdick, Applied Aeronautics Technical Area, was Project Engineer.

The author expresses his appreciation to those individuals and companies who supplied materials or specimens for investigation.

Accession For
NITO TIAME
[7]
Sec.
Pistribut 1/
Availabilit di es
77 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dist

TABLE OF CONTENTS

	Page
INTRODUCTION	8
TECHNICAL PROGRAM	9
Task I - Design Investigation	9 24 41
CONCLUSIONS	103
RECOMMENDATIONS	106
Appendix A - Task I Data Seal Evaluation Parameters	110 124 128
Appendix B - Task II Data Task II Seals	130 134 151 157
Appendix C - TASK III Data Task III Seal Performance Summary Measured Critical Dimensions Before and After Task III Test Photographs of Task III Actuator Rods	185 227
and Seals	233

LIST OF ILLUSTRATIONS

F IGURE		Page
1 2 3	Stage 1 Seal Selection Flow Diagram Stage 2, 3 & 4 Seal Selection Flow Diagram Seals Selected for Task II Test	17 18 23
4 5 6 7	Seals Installed at Start of Task II Test Pressurized Friction of Task II Seals	26 30 33 34
8 9 10 11 12	Pressurized Friction of Task III Seals Task III Seal Leakage	99 100 101 102 109
B-1 B-2	Seal Evaluation Test Fixture	149 150

LIST OF TABLES

Table		Page
1 2 3 4 5 6 7 8 9	High Pressure Seal Evaluation Matrix Low Pressure Seal Evaluation Matrix Seal Configurations Rating Matrix for Rod Finishes Task II Tests Summary Unpressurized Friction of Task II Seals Task III Rod Seal Description Task III Test Summary Leakage and Interstage Pressure Data During Endurance Test Leakage and Interstage Pressure Data During Rotor Feedback Test Unpressurized Friction of Task III Seals	13 15 19 22 27 29 35 43 44
12	Recommended Seals	109
A-1 A-2	Seal Evaluation Parameters	110 124
A-3	Seals Selected for Task II Test	128
B-1	Task II Seals	130
B-2	Task II Seal Performance Summary	134
B-3	Measured Critical Dimensions and Finishes Before and (After) Task II Test	179
C-1	Task III Seal Performance Summary	185
C-2	Heasured Critical Dimensions and Finishes Before and (After) Task III Test	227

INTRODUCTION

Modern Army Helicopters utilize single- or two-stage hydraulic actuator rod seals that must be capable of operating over the temperature range of -65°F to +275°F. These actuators are usually exposed to a high concentration of dust during takeoff and/or landing maneuvers and during very low level hover maneuvers. The rotor control actuators are subjected to a large number of small amplitude feedback cycles caused by the load imposed by each rotor blade. Helicopter actuators exposed to the environment described have not provided the desired reliability, maintainability, or safety.

The objective of this program was to investigate and develop new and improved multiple cascaded seal configurations for hydraulic systems and actuators, thereby favorably impacting hydraulic system reliability, maintainability, safety, and cost by significantly reducing seal system leakage.

The program objective was achieved by: (1) devising an Evaluation Matrix that allowed each seal to be rated for performance based on 14 evaluation parameters, (2) testing the seals selected for 2 x 10^6 cycles at high temperature in single-stage, two-stage and three-stage configurations, and (3) performing a 5 x 10^6 cycle endurance test and a 20×10^6 cycle rotor feedback test at high temperature with a contaminated environment, for single-, two-, three- and four-stage seal installations.

The program clearly demonstrated the superiority of the multiple cascaded seal over the single-stage seal and provided data that can be used as a guideline for selection of the optimum number of seals in a given installation.

TECHNICAL PROGRAM

The program contained three major tasks.

Task I - Design Investigation

Task II - Seal Design and Developmental Testing.

Task III - Testing

The second secon

TASK I - DESIGN INVESTIGATION

Task I investigated existing and newly devised hydraulic servo-actuator seals. In order to take advantage of the knowledge and experience of the seal industry, a number of potential seal suppliers were invited to suggest possible configurations. Their proposals furnished several promising seal ideas. Ten different test reports were reviewed to (a) help establish the requirements for long life tests, (b) to locate seal designs that had passed long life and/or 8000 psig tests, and (c) to identify and eliminate those seal designs that had failed similar tests. Significant data from each report was summarized on index cards for use in preparing Seal Evaluation parameters.

After the test report review was completed, 14 parameters were established as being applicable for seal evaluation. Each parameter had a clear rationale so that it could be used to rate a seal as being Excellent, Average, or Poor with a minimum amount of bias from the evaluator. These parameters and the application thesis are listed below. The rationale used for each parameter is shown in Appendix A.

Sealing	-	Is the sealing predictable, with uniform
		loading, have high and low pressure sealing for static and/or dynamic pressure?

Wear - Are the materials wear resistant yet nonabrasive?

Friction - Is friction minimized?

Temperature - Does it meet -65°F to +275°F requirement?

Extrusion Gap - How well does the design bridge the extrusion gap?

Installation - How is the ease of installation compared to an 0-ring installation with two backup rings?

Space - How does space compare to a MIL-G-5514F¹ gland for an O-ring with two backup rings?

¹MIL-G-5514F - Military Specification - Gland Design; Packings, Hydraulic, General Requirements for, dtd 15 January 1969.

Seal Deflection- Does the seal flex or work when pressure changes so that fatigue failures are likely?

Orientation - Can the seal be installed backwards or improperly? Can the proper orientation be easily recognized?

Complexity - Are there parts, few interfaces? Are gland requirements simple?

Compatibility - Are all of the materials compatible with both MIL-H-5606 and MIL-H-83282?

Producibility - Is it producible? Are there an excessive number of close tolerances that must be held?

Pressure Level - Is the configuration suitable for 8000 psi?

Pressure Trap - Does the configuration trap an unacceptable pressure level between seal stages?

Seal Evaluation Matrix

The second secon

After the Seal Evaluation Criteria were established, parameters (Appendix A) were used to rate the seals in a matrix format, shown in Table 1. In this table a rating of Excellent (E) was awarded 3 points, a rating of Average (A) was awarded 2 points and a rating of Poor (P) was awarded 1 point. This natrix assumed that the seals were exposed to high pressure and did not give a realistic rating to elastomeric seals that could be used at low pressure in a vented seal. To give the elastomeric seals a fair rating at low pressure, the seals were all evaluated in Table 2. In this table the wear and friction rating of each elastomeric seal was increased by one level.

Each table has a subtotal rating for the parameters of Sealing, Wear, Friction, and Pressure Trap. These parameters were believed to be the most important for neeting the desired life on a helicopter servo actuator and were used as the main guide for locating each seal in the multi-stage seals. The ratings of the other parameters were totaled (including the subtotal) and this total was used as a tie breaker when necessary. The last row in each table is the estimated cost in dollars for each seal installation.

Seal Selection Flow Diagrams

While establishing the seal evaluation criteria and the seal evaluation matrix, it became apparent that each stage of a multi-stage seal had slightly different requirements and that the requirements were also slightly different, depending upon whether the seal was vented or unvented. For example, a single-stage seal for this program must withstand 3000 to 8000 psig operating pressure while maintaining very low leakage for 25 million cycles without showing excessive wear. The

pressure requirement and the leakage requirement can be met by an 0-ring type seal, but some of the reference material reviewed showed that 5 million cycles of operation produced significant wear when only 3000 psig operating pressure was applied to the 0-ring type seals and the elastomer was simultaneously exposed to rod motion. It was obvious that increasing the number of cycles or the applied pressure would cause the wear to increase substantially. The addition of a pressure- resistant second-stage seal inside of the O-ring type seal would allow leakage from the second-stage seal to be vented to return. This, in turn, would relieve the pressure on the O-ring type seal and improve its wear resistance while maintaining the desired low leakage characteristics. If the vent between the two seals was undesirable, then the individual seal requirements would change again. In the vented case, the second-stage seal could be an asymmetric design since high pressure could only be applied from one direction. In an unvented two-stage seal the second-stage (inside) seal must be symmetrical or pressure resistant so that it would not be damaged at hydraulic system shutdown by the pressure that was trapped between the two stages, which has been shown to be approximately half the cylinder pressure. In both the vented and unvented case, the first-stage (outside) seal can be asymmetric since pressure was applied from only one side, but in the unvented case the O-ring type seal would not provide satisfactory service because of the excessive wear caused by the high trapped pressure. The addition of a second stage would increase friction in both the vented and unvented case. In the unvented case it was desirable to use seals that were self-venting if possible to reduce pressure friction forces during manual reversion. The Bal Seal, Configuration R4 in Table 3 was one example of this design. Other vendors contacted also had self-venting seal designs.

When the third and fourth stages were added inside the second stage, the same arguments shown above for the second stage were applicable. The inside stage would carry most of the pressure load and could be a sacrificial element which could conceivably double the life of the seal assembly.

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW

The requirements for each stage were codified in the form of flow diagrams that are shown in Figures 1 and 2. These diagrams were applied to Tables 1 and 2 to select the seals to be used in this test. The stage selection was done in the following manner.

Selected stage 1 seal for end 1 and end 2 for actuators 1 thru 5 in chronological order using Figure 1.

Selected stage 2 seals for end 1 and end 2 for actuators 2 thru 5 in chronological order using Figure 2.

Selected stage 3 seal for end 2 of actuator 3 and ends 1 and 2 for actuators 4 and 5 in chronological order using Figure 2.

Selected stage 4 seal for end 1 and end 2 of actuator 5 using Figure 2.

Specified seals for actuator 6 to fulfill finish comparison requirements.

For the purpose of selection only, the outside seal was stage 1, with higher stage numbers on the inside. For the rest of this report, the inside stage is stage 1, with the higher number stages added on the outside.

The only exceptions to this process were as follows. Configuration R15 gave unsatisfactory results in a test after only 23,814 cycles so it was dropped from consideration. Configuration R17 was considered similar to R3 so it was not selected for test. Configuration R9 was not selected for test because it was considered similar to R2, which is available in this country. Configuration R14 had a very high rating, but since it cannot withstand long-term exposure at 275°F it was not selected for testing during Task II.

The final seal selections for the Task II Test are shown in Figure 3. Four-stage seals were not selected for Task II tests so that a greater variety of two-stage seals could be tested during Task II tests. Four-stage seals were evaluated during Task III tests.

In Figure 3, as in all successive figures that show the seal installations, the ports into the actuator end caps were identified as A, B, C, and D. The groove adjacent to and outboard from a port had the same letter identification as the port. For example, the innermost groove was adjacent to and outboard from Port A, so that groove was referred to as groove A. Pressure was supplied to ports B, C, and D only if 90 psig was shown at the port. In all other cases the ports were used either to monitor pressure and/or leakage to provide a vent back to the inboard side of the seal groove, or they were not needed and were plugged.

The second secon

TABLE 1. HIGH PRESSURE SEAL EVALUATION MATRIX (SEAL FVALUATION PARAMETERS - APPENDIX A)

		;		1	;					9	3	
COMF I GURATION	3	<u>ح</u>	2	2	R4	2	2	≥	22	R9	2 2	RII
Sealing	2	ш	نبا	¥	V	۷	بيا	LL.	w	w	⋖	۵
Wear	9	م	A	ا ا ا ا نا ا	(і і і ш		-	۵		 	1
Friction	2	<u> </u>	d.	A	A	Α	P -	- d	۵	۵.	Y	1
Pressure Trap	-	d .		¥		Y Y		d.	- -		V	} ! ! ! ! ! !
Subtotal		24	30	34	35	34	30	30	24	30	34	30
Temperature		¥	1 1 1 1	¥	! ! ! !	V	V	A	¥	- V		1
Extrusion Gap	-	 	1 	і ! ! Ш	- - - -	Ш	Ь	 	1 	 	A	}
Installation	-	Y .	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	- - - -	V		- V	 	- V	Р	
Space	-	4	A	ш	d	A	A	A	A	نبا	ш	п
Seal Deflection	-	۵	A	4	A	A		A	4	A	A	
Orientation	-	4	ш		A	Ь	V	A	V	4	V	
Complexity	-	ш	۵	ш	d	ш	ш	ш	يما	ш	ш	LI.
Compatibility	-	ш	ш	سا	u l	i i i i	w	l l l W	 	l l l	! ! ! !	 - - - - - - - -
Producibility	-	4	4	A	A	A	A	A	A .	4	4	d.
Pressure Level	-	۵	۵	LL!	ш	A	ď	۵.	ط	۵	V	A
Total		45	51	09	54	99	49	52	46	53	56	56
ESTIMATED COST PER INSTL		2	Ω	2		2	2		2		2	

TABLE 1. CONTINUED

CONFIGURATION	T.M	R12	R13	R14	R15	R16	P.17	R18	R19	R20	R21	R22
Sealing	2	۵	¥	LL:	A	A	A	æ	LL.I	Ø	⋖	< <
: : : : : : : :	9	<u>.</u>	Ш	A	! ! ! !	lω	! Ш	ш	Α	 	1 1 1 1 1 1	
Friction	2	і ! ! ! ш	¥		A	A	A	Y	d	A	¥	⋖
Pressure Trap	-	lu	٩	 	<u>.</u>	¥	A	A	l L	A	¥	
Subtotal	, , , , ,	32	33	34	35	34	34	34	32	34	34	34
Temperature	-	ш	Y	۵	Y	Y Y		Y	Y = ==	A	4	4
Extrusion Gap	-	i Lu	A	 - - - -	l l l	! !	ļ L	; і ш	l L	Ш	Ш	1 1 1 1 1 1 1 1 1
Installation	-	l Lu	Α		A			A	ط	۵	X	LU
; } 1 1 1 1 1 1 1	-	i i i i Lui	Ш	٠ - م	i i i i i i i	A	! ! ! ! ш	A .	¥	ш	Ø	A
Seal Deflection	-	i 	Y		P -	Y	4	ا ا ا ا لنا ا	A	A	LU LU	LU
Orientation	-	l Lu	A	A	A	(LL!	 	Г I I I	A	4	V	A
Complexity	-	і ! ! !	¥	l L L	Ш	Ш		- -	Ь	<u>a</u>	م	ш
Compatibility	-	ш I	Ш	ш	ш	L L	Lu:	ш	Ш	Ш	ш	FI
Producibility	-	₹	A	A		A	Ą	A	¥	٧	V	A
re Level	_	۷	ď	A	٩	A	¥	ш	۵	4	Ø	A
Total		09	55	56	57	58	58	58	51	54	56	59
ESTIMATED COST PER INSTL		5		2		е	2	4	4	2	4	

TABLE 2. LOW PRESSURE SEAL EVALUATION MATRIX

CONFIGURATION	F.	R1	R2	R3	R4	R5	R6	R)	R8	R9	R10	RTT
Sealing	2	LL I	ш	V	∢	∢	ш	ш	ш	μı	A	۵
Wear	9	A	ш		l L	l l l l	Ш	ļω !	A	u	i l u	1 1 1 1 1 1 1 1 1
Friction	2	V	4	- V	- V	A	A	¥	A	A		A
Pressure Trap		<u>а</u>	۵	A	Ш	A	<u>a</u>	٩	۵	<u>ا</u>	A	1 1 1 1 1 1 1 1 1
Subtotal	! ! ! !	32	38	34	35	34	38	38	32	38	34	30
Temperature	-	A	¥	4	! ! ! Ш	 V		\ \ \ \	, 	A	 	
Extrusion Gap	-	ш	ш	ш	1 1 1 1	I I I	- - -	ш	Ш	نیا	¥	1 1 1 1 1 1 1 1 1 1
Installation	-	4	¥	A	4	A	A	¥	A	A	- - -	
Space	-	A	¥	l L	۵	 V	A	V	A	ш	ш	LU
Seal Deflection	-	۵	Ø	4	A	- V	۵.	 	V	A	V	
Orientation	-	¥	ш	iu l	 	- d	4	4	4	A	V	
Complexity	_	ш	d	ш	۵	ш	ш	ш	ш	ш	ш	LLI.
Compatibility	-	ш	ш	ш	! ! ! ! !	і і і і	і і і		 		 	
Producibility	_	A	4	A	4	A	A	A	A	A	A	<u> </u>
Pressure Level	_	Ь	۵	ш	ш	A	۵	۵	۵	۵	A	A
Total	 	53	59	90	54	56	57	09	54	61	56	56
ESTIMATED COST PER INSTL	 	2	5	2	† † 	2	7	 	2	† 	2	1 f 1 1 1 1 1 1

ABLE 2. CONTINUED

CONFIGURATION	<u>-</u>	R12	213	214	P.15	R16	217	p 18	R19	R20	R21	p22
Sealing	5	۵	Ø	til	Ø	ď	⋖	4	LL?	⋖	Ø	Ø
Wear	9	i 	і 1 1 1 1 1	i i i i	! ! ! ! Lui	i i u	i i i lu j	 	 	1 1 1 1 1	 - 	; ! ! ! ! ! ! ! La!
Friction	2	; 	 	i i i i ta:		A .	- V	 		A A		
Pressure Trap		i i i i i	i a	! ! ! !	! !	A	; ! ! 4	 	; ; ; ; ; ;	¥		
Subtotal	! ! ! !	32	33	42	35	34	34	34	40	34	34	34
Temperature		; ; ; ; ; ; ;	- A	ام	A	A	Y	A	 	¥		
Extrusion Gap	-	i i i f la: f	¥	: ! ! ! !!	 Lu		i i i tu	1 1 1 112 1 112	1	i ! ! ! La:	! ! ! Ш	; ! ! ! ! ! ! [[[]
Installation		 		; ; ; ; <u>t</u> .,	¥			1	ا			; ; ; ; ; ; ;
Space		; } } ! ! (u) !	! ! ! [1]	! ! C.	! ! ! [u]	, \	 	 <(. 4	! ! !!!	A	V
	; ; ; ;	i i i i i	 	A	i i i i i i	- A	ι Ι Ι Δ.) Li 	 4	4	l l l w	t u.
Orientation		 - - - - - - - -	 	4		1 1 1 1 1 1	1 1 1 1 LLI	1 1 (1 14.2 1	1	اما	a a	
Complexity	 	{ } - La.) - - -		i I I W	! ! !!	! ! ! !!!	1 1 1 1 1			<u> </u>		
Compatibility	-	i - - - - - - -	! ! !	; ; ; !	النا	 123	 	 	; 1 1 1 Lau 1	; ! ! LL.	 	
Producibility	-	 	¥	A	A	A			; ; ; {	< < < < < < < < < < < < < < < < < < <	4	
Pressure Level	. –	 		¥		4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> .	4	Æ	⋖
Total		90	55	64	57	58	58	8,1	59	54	56	59
ESTIMATED COST PER INSTL		2		5	, { 	m	2	i i ! ! - ;	4	5	4	

FIGURE 1. STAGE 1 SEAL SELECTION FLOW DIAGRAM

+10.7

FIGURE 2. STAGE 2, 3 & 4 SEAL SELECTION FLOW DIAGRAM

TABLE 3. SEAL CONFIGURATION

Number	Cross Section	Description
R1		MIL-P-83461 O-ring with uncut thick backup ring.
R2		G.T "T" ring with staged backup rings.
R3		Channel seal (double delta)
R 4		Bal Seal (heavy duty)
R5		Foot seal (delta)
R6		0-ring with triangular backup ring
R7		Trapezoidal seal
R8		Square ring with uncut thick backup ring
R9		"L" seal
R10		Shamban Excluder
R11	自	2-piece metal rod seal

TABLE 3. Continued

Number	Cross Section	Description
R12		Step cut Teflon buffer
R13		Hex seal
R14		Urethane "U" seal with backup
R15		Step seal
R16		Plus seal
R17		Slipper seal
R18		Double delta with two backups
R19		Hat Seal
R20		DC Excluder
R21		Delta seal with staged backup ring
R22	[3]	Rubber spring actuated seal

Rod Finish Evaluation

The rod finishes were evaluated in Table 4. The rating rationale used for each parameter is shown in Appendix A. Table 4 shows the tungsten carbide to be the clear winner insofar as performance, but the cost for this finish is approximately ten times the cost of conventional chromium plating and it must be applied by a Detonation Gun. The phosphate coating gives low cost performance, but does not provide an adequate amount of corrosion resistance. The abusively ground chromium plating is expected to cause leakage to increase. All other finishes were judged to provide approximately equal performance.

Materials Evaluation

The material evaluation was aimed primarily at rating physical configurations. Each of the configurations that uses Teflon type non-elastomers can be obtained with the non-elastomer produced from a wide variety of proprietary compounds. Comparative data on these proprietary compounds is generally not available, but the seal manufacturers contacted strongly recommended the use of Teflon blends, bronze-filled Teflon, and graphite-filled Teflon for the capstrip type seals for this test. The same general recommendations were made for the backup rings except that polyimide materials were also recommended. Based on the manufacturers recommendations, the non-elastomers used in this test were Teflon blends and filled Teflon. The particular blend depended upon the manufacturer supplying the seal. Shamban, Fluorocarbon, Parker, Dowty, Hercules, Disogrin, Bal Seal Engineering, American Variseal, Tetrafluor, Conover, and Greene Tweed supplied seals for these tests.

Compounds to be tested were selected just prior to the initiation of the tests. The Navy-sponsored Lightweight Hydraulic System Screening Tests had tested materials at 8000 psig, and the results of those tests were used as the final guide for the material selection for this test.

Table 4. RATING MATRIX FOR ROD FINISHES

Parameter	4 RMS	8 - 16 RMS 4 RMS 8 - 16 RMS Buffed	fed	Abusively Tungsten Ground 16 RMS Carbide	Tungsten Carbide	Iron Phosphate
Cost to Prepare	A	¥	¥	A	⊃	¥
Relative Corrosion Resistance	¥	Y		A		n
Potential For Reducing Leakage	V	A	A	۵	ш	ш.
Wear Resistance	A	¥	A	A	ш	A

FIGURE 3. SEALS SELECTED FOR TASK II TEST

TASK II - SEAL DESIGN AND DEVELOPMENT TESTING

THE RESERVE OF THE PARTY OF THE

Task II included the design and manufacture of test equipment and test seals as well as the test itself. All seals were manufactured by seal vendors that were familiar with the processes and problems involved. One of the seals was designed by G. K. Fling of Vought and one was designed by B. Brent of Bell Helicopter. All of the other seals were vendor designs. The test actuators and test rig were designed and manufactured by Vought. Where possible, commercial parts were used to reduce costs. A gland design per MIL-G-5514-214 was used with the following changes for the seals that used a standard gland.

Item	MIL-G-5514	Test Parts
Rod OD	.998 +.000 002	.998 +.000 001
Groove ID	1.241 +.002 000	1.241 +.001000
Rod Bore	1.000 +.001000	.999 +.001 000
Eccentricity	.002	.001
Groove Angle	0° +5° -0°	0° +/- 1/2°
Groove Edge	Break Edge .005 +.005000	Break Edge .002 +.005000
Rod Finish	16 RMS	2 RMS - 8 RMS

One nonstandard gland was designed and manufactured to accommodate a "Bal Seal" and one was designed to accommodate a Shamban "Excluder". These gland designs were used later in Task III tests using different seals.

The changes in the Rod OD, Groove ID, Rod Bore, and Eccentricity were made as a result of Vought's experience with the 8000 psi hydraulic system design for the U. S. Navy "Lightweight Hydraulic System" program. Vought discovered that a reduced extrusion gap is necessary for good performance at 8000 psi. The groove angle was modified to reduce friction due to pressure and to improve the fit between the seal and/or backup ring and the rod. The groove edge was sharpened to reduce seal extrusion. The rod finish was improved from a maximum of 16 RMS to a maximum of 8 RMS by a machining error, but the change appears to have been beneficial with most of the seals tested.

All of the actuators were produced from 15 - 5 PH CRES that was aged to H925 (170,000 psi). All rods except one were hard chrome plated

and then ground per Vought Spec 208-1-7 (See Appendix B). The grinding process is helieved to be very important in producing a good sealing surface and Vought Spec 208-1-7 was specifically set up to assure proper control of surface grinding of hydraulic actuator parts so that chromium plating cracking caused by the grinding would not occur. The one rod that was not chronium plated had a Tungsten Carbide coating, LW-1N40, applied and ground to a 2 RMS finish by the Linde Division of the Union Carbide Corporation.

During installation of the seals that had been selected for the Task II test it became apparent that some of the seals could not be installed in one-piece glands. Those seals were replaced by alternate seals. The seal configurations that were installed for the Task II test are shown on Figure 4. A seal description for each of the seals is shown in Table B-l in Appendix B. In this table, the innermost groove is designated as groove A, the next groove is labeled groove B and so on. The Seal Evaluation Test Fixture is shown in Figure B-l in Appendix B. The Specimen and Load Hydraulic Systems are shown in Figure B-2 in Appendix B.

The Task II test was performed as shown in Table 5. The long stroke cycles were +/- 1.75 inches with a maximum load of 2318 pounds per actuator. The short stroke cycles were +/- .04 inch with a maximum load of 58 pounds per actuator. The unpressurized friction for the seals is shown in Table 6. The pressurized friction for each seal is shown in Figure 5. The total measured leakage for the seals that survived the test is shown in Figure 6.

The individual results for each seal in the Task II test are given in Appendix B along with the measured critical dimensions, and finishes for each actuator which are given in Table B-2 in Appendix B.

All of the seals that failed the Task II test failed during the high temperature portions of the test. The low pressure Trapezoid Seal (Rod End, Actuator No. 4) failed after 694,111 cycles. The return pressure was removed from the seal and cycling was continued using only the inside two stages. During the remaining 307,582 cycles with MIL-H-5606 hydraulic fluid the two inside stages leaked a total of 28.07 cc. Slight leakage was also shown by the Double Delta Seal (lug end actuator no. 1, lug end actuator no. 4, and rod end actuator no. 6) the Hat Seal (rod end actuator no. 2), the Trapezoid Seal (lug end actuator no. 5) and the Hex Seal (lug end actuator no. 6), but the leakage was well within acceptable limits.

During the test the Bal Seal (rod seal in actuator no. 1) began leaking erratically. The seal would leak on some days, but not on others. During 45,000 cycles, the seal leaked as much as 38 cc in one hour. After a short shutdown, the leakage stopped, but it reoccurred the next day and the seal was designated as a failure.

TABLE 5. TASK II TESTS SUMMARY

Type of Test	Ambient Temperature	Fluid Temperature	Cycles
Acceptance	Room Ambient	Room Ambient	25 LS
Unpressurized Friction	Room Ambient	Room Ambient	
Pressurized Friction MIL-H-5606	Room Ambient	Room Ambient	
Low Temp. 3000 psig test MIL-H-5606	-65°F	-65°F	5 LS
Intermediate Temp 3000 psig test MIL~H-5606	80°F +/- 20°F	160°F +/- 5°F	5,670 LS 96,000 SS
High Temp 3000 psig test MIL-H-5606	80°F +/-20°F for 500,000 cycles 200°-250°F For Remainder	275°F + 0°F -10°F	45,018 LS 855,000 SS
Fluid Change			
Acceptance MIL-H-83282	Room Ambient	Room Ambient	25 LS
Low Temp. 3000 psig test MIL-H-83282	-40°F	-40°F	5 LS

TABLE 5. CONTINUED

Type of Test	Amhient Temperature	Fluid Temperature	Cycles
Intermediate Temp 3000 psig test MIL-H-83282	80°F +/- 25°F	160°F +/- 5°F	3,970 LS 48,000 SS
High Temp 3000 psig test MIL-H-83282	225°F +/- 25°F	275°F + 0° -10° F	22,538 LS 444,150 SS
Static Leakage	Room Ambient	Room Ambient	
Acceptance MIL-H-83282 8000 psig	Room Ambient	Room Ambient	25 LS
Low Temperature MIL-H-83282 8000 psig	-40°F	-4()°F	5 LS
Intermediate Temp MIL-H-83282 8000 psig	80°F +/- 20°F	160°F +/- 5°F	20,450 LS 427,680 SS
High Terp MIL-H-83282 8000 psig	200°F to 275°F	200°F to 250°F	22,500 LS 429,120 SS
Static Leakage MIL-H-83282	Room A mbient	Room Ambient	

TABLE 6. UNPRESSURIZED FRICTION OF TASK II SEALS

1 2	×	END	E.A. I.E.NU	EXTEND RETRACT	EXTEND RETRACT	KE I KAC I
2		×	7.69	8.44	6.28	6.58
	×	×	8.63 15.98	6.01 12.36	5.25 15.40	6.25 11.80
3	×	×	8.48 8.12	7.58	5.16	5.00 7.25
4	×	: : : : :	30.64	25.98 22.64	21.00	27.00
2	×	×	58.96 46.68	34.22 39.30	56.90 43.25	35.50 22.00
9	×	; ×	26.40 14.44	20.88 10.66	27.00*	8.00*

* Erratic

FIGURE 5. PRESSURIZED FRICTION OF TASK II SEALS

Another seal had excessive leakage during this test, but it was not designated as a failure. The Greene, Tweed Seals (rod seal in actuator no. 5) began leaking after 353,897 cycles. This leakage slowly increased until after 988,925 cycles, 135 cc of leakage was measured in one day. This seal used 2 stages that were vented to return, so the return path was shut off and the leakage was dramatically reduced. After 1,001,693 cycles, the actuator was removed from the test setup. It was discovered that the rod had contacted the end cap and the chrome plating had been worn through. It is believed that the rod failure which caused the seal failure was caused by the contact with the end cap and not by the seal itself.

Since the rod in actuator no. 5 was not useable until it could be reworked and the rod end seal in actuator no. 1 had been designated as a failure, the two actuators were combined into a new actuator that was designated as 5A. The lug end cap (-5 S/N 001) from actuator no. 5 was combined with the lug end cap (-5 S/N 007), barrel (-8 S/N 001) and Piston and Rod (012 S/N 007) from actuator no. 1. The combined assembly was installed in the no. 5 actuator position to minimize plumbing changes in the test setup.

After 1,054,811 cycles (53,118 with MIL-H-83282 hydraulic fluid), the drier in the central hot air supply malfunctioned and a large volume of sandy residue was blown into the insulated box. A layer of contaminant approximately 1/4 in. thick was deposited on the actuators. The lab technician saw the dust cloud emerging from the box and turned off the hydraulic pressure to the setup. The box and the test cell were thoroughly contaminated with this substance, but they were thoroughly cleaned before any further cycling was attempted. The contaminant was analyzed and identified as a mixture of silica gel and oil absorber. Both of these substances were from the drier in the hot air source. The hot air source was completely refurbished before any more cycling was attempted.

After 193,635 additional cycles with MIL-H-83282, the central hot air supply malfunction occurred again and a thin layer of contaminant was deposited in the box. The technician monitoring the test immediately turned off the hydraulic pressure to the setup. The contamination was much less than it was the first time, but since the entire hot air setup had been refurbished after the first incident and the refurbishment did not prevent the second incident, it was decided to use a portable air heater instead of the central hot air source. The contaminant was analyzed and identified as silica gel from the drier in the hot air source. The test setup was thoroughly cleaned and a portable hot air source was installed.

During the Intermediate Temperature Test at 8000 psig with MIL-H-83282, an error resulted in a total of 427,680 two-percent stroke cycles and 20,450 full stroke cycles being run at the intermediate temperature requirements. The test required 47,500 short stroke cycles and 2500 long stroke cycles. The 2 percent stroke cycles and full stroke cycles that were run in excess of the requirements were documented and all

data was recorded, but the additional cycles were not counted toward meeting the 2 x 10^6 total cycle requirements.

During the High Temperature Test at 8000 psig with IILL-H-83282, after 1,975,578 cycles, the single-stage double-delta seal in the rod end of actuator no. 6 failed. The seal was removed and a replacement seal of similar configuration, from C. F. Conover & Co., was installed. The visual inspection summary for each seal is shown in Table B-2 in Appendix B. The seal test summary for the failed seal is shown in Table B-3 in Appendix B. There were no additional seal replacements during the Task II Test.

The seals to be tested in Task III were chosen based on the results of the Task II Test. Since the Shamban Plus Seal had delivered the best performance, it was chosen to be installed in a one-stage seal, a two-stage seal, a three-stage seal and in both a vented and an unvented four-stage seal installation. The Shamban Hat Seal and Double Pelta Seal were chosen to be installed in a two-stage seal. The Conover/Brent Hex Seal was chosen for a three-stage seal and the Conover/Fling Trapezoid backup with an H83461 O-ring was chosen for both a vented and an unvented seal. The Shamban Double Delta seal continued as the baseline for comparison purposes.

All of the pressure loaded lip seal designs were removed from consideration for the Task III test. The Bal Seal was removed because it had shown excessive leakage. The Tetrafluor rod seal showed good leakage characteristics, as did the Variseal, but both caused minor rod scoring. The Greene Tweed Hytrel seal was not considered for further testing because concurrent testing of this seal in the Air Force Dynamic Seals for Advanced Hydraulic Systems program showed the seal to have relatively high leakage. All of the lip seals require a two-piece gland, which complicates actuator design.

Both Greene Tweed and Tetrafluor submitted elastomeric loaded seals that were included in the Task III test. All of the seals used in the Task III test are shown in Figure 7 and described in Table 7.

TASK II SEAL LEAKAGE

FIGURE 6.

BY SECTION AND ADDRESS OF THE PARTY OF THE P

FIGURE 7. SEALS SELECTED FOR TASK III TEST

34

3 B

TABLE 7. TASK III ROD SEAL DESCRIPTION

#

ACT	507	ROD	} }	GR	GROOVE		SFAL NAME &	MANUFACTURER	MATERIAL
NO.	END	END	×	× œ	× \c	2	Plus Seal S30775-214P-19	W. S. Shamban	Turcon with proprietary MoS ₂ filler. Elastomer per MIL-P-83461.
			×	×	×		Backup Ring (2) S33157-214-19	W. S. Shamban	Turcon with proprietary MoSz filler.
						×	Excluder S32925-9P-19	W. S. Shamban	Turcon with proprietary MoSz filler.
						×	0-Ring M83461/1-121	Parker	MIL-P-83461
-		×			×		Double Delta S30650-214-14	W. S. Shamban	Turcon with glass and proprietary MoS ₂ filler
					×		0-Ring M83461/1-214	Parker	MIL-P-83461
					×		Backup Ring (2) S33157-214-14	W. S. Shamban	Turcon with glass and proprietary MoS ₂ filler
						×	Seal Guard S-34-20	Hercules	Bronze with a Nitrile Load Ring

ACT NO.	L UG END	ROD	A	GROOVE B C	OVE C L	SEAL NAME & J PART NUMBER	MANUFACTURER	MATERIAL
2	×		×	×	×	Plus Seal S30775-214P-19	W. S. Shamban	Turcon with proprietary MoS ₂ filler. Elastomer per MIL-P-83461.
			×	×	×	Backup Ring (2) S33157-214-19	W. S. Shamban	Turcon with proprietary MoS ₂ filler.
					^	x Excluder S32925-9P-19	W. S. Shamban	Turcon with proprietary MoSz filler.
					^	x 0-Ring M83461/1-121	Parker	MIL-P-83461
2		×	×			Maxi-Flex Seal TF831M-7214	Tetrafluor	Tetralon 720
			×			0-Ring M83461/1-318	Parker	MIL-P-83461
					^	X Seal Guard S-34-20	Hercules	Bronze with a Nitrile Load Ring

MATERIAL	Turcon with proprietary MoS ₂ filler. Elastomer per MIL-P-83461.	Acetal Resin	Nitrile	Ekanol filled TFE Proprietary Nitrile	Polymyte	
MANUFACTURER	W. S. Shamban	Dowty Seals Limited	Dowty Seals Limited	Greene Tweed	Parker Packing	
SEAL NAME & PART NUMBER	Plus Seal S30775-214P-19	Wiper/Scraper 120-218-1709	0-Ring 100-218-0074	Enercap Seal 595-21400-160 -PX1	Polypak 18701000 <u>7</u> 4651053	
GROOVE A B C D	*	×	*	× ×	×	
ROD				×		
LUG	×					
ACT NO.	e e			m		

Revonoc 6700 Proprietary 70 Durometer Nitrile Revonoc 6200 Revonoc 18158 Turcon with proprietary 1052 filler. Elastomer per HIL-P-83461 Turcon with proprietary MOS2 filler. Acetal Resin	
C. E. Conover & Co. E. Sharthan W. S. Sharthan W. S. Sharthan Dovty Seals Limited Povty Seals Limited	
SFAL HANE & PART HURBER CON-0-Hex CEC 6001-214 Backup Ring CEC5110-214 Scraper CEC5091-998-55 and Spacer Plus Seal S307/5-214P-19 Backup Ring (2) S33157-214-19 Wiper/Scraper 120-218-1709 0-Ring	
GROOVE A B C C D X X X X X X X X X X X X X X X X X	
END X	
ACT LUG HO. EHD	

ACT NO.	LUG	ROD END	W W	BBC	GROOVE B C L	DART NUMBER	MANUFACTURER	MATERIAL
2	×			×	×	Trapezoid Seal CEC5065-214	C. E. Conover	Revonoc 6200
				×	×	0-Ring M83461/1-214	Parker	MIL-P-83461
					×	Seal Guard S-34-20	Hercules	Bronze with a nitrile Load Ring.
5		×		×	×	Trapezoid Seal CEC 5065-214	C. E. Conover	Revonoc 6200
39				×	×	0-Ring M83461/1/214	Parker	MIL-P-83461
					×	Polypak 187010002 4651D53	Parker	Polymyte

6 X X X X Niper/Scraper Dowty Seals Nitrile Noble Delta W. S. Shamban Turcon with propriet M8346/1-214 R8461/1-214 Parker M1L-P-83461 N	ACT NO.	FND	ROD	A	B	GROOVE B C		SEAL NAME & PART NUMBER	MANUFACTURER	MATERIAL
X 0-Ring M83461/1-214 M83461/1-214 Parker X Backup Ring (2) M. S. Shamban S33051-214-19 W. S. Shamban W. S. Shamban B70100024651D53 X X Plus Seal B70100024651D53 Parker Backup Ring (2) M. S. Shamban S30775-214P-19 X X X Wiper/Scraper Dowty Seals 120-218-1709 W. S. Shamban W. S. Shamban S33157-214-19 X X X Wiper/Scraper Dowty Seals 120-218-1709 Limited Dowty Seals 100-218-0074	9	×			×			Double Delta S30650-214-19	W. S. Shamban	Turcon with proprietary MoSz filler.
X Backup Ring (2) 833157-214-19 W. S. Shamban 833051-214-99 X Hat Seal 83051-214-99 W. S. Shamban 830715-214-99 X X Y Polypak 1870100024651D53 Parker S30775-214p-19 W. S. Shamban 830775-214p-19 W. S. Shamban 830775-214p-19 X X X Wiper/Scraper 120-11 100wty Seals 120-218-1709 X X Wiper/Scraper 120-218-1709 Limited					×			0-Ring M83461/1-214	Parker	MIL-P-83461
K Hat Seal S3051-214-99 W. S. Shamban X Polypak 1870100024651D53 Parker 830775-214P-19 W. S. Shamban X X Wiper/Scraper 120-14-19 X Wiper/Scraper 120-218-1709 Dowty Seals 120-218-1709 X O-Ring 100-218-0074 Limited Limited Limited					×			Backup Ring (2) S33157-214-19	W. S. Shamban	Turcon with proprietary MoS ₂ filler.
6 X X X X Plus Seal W. S. Shamban S30775-214P-19 X X X X Backup Ring (2) W. S. Shamban S33157-214-19 X Wiper/Scraper Dowty Seals 120-218-1709 Limited X 0-Ring Dowty Seals 100-218-0074 Limited						×		Hat Seal S33051-214-99	W. S. Shamban	Turcon with MoS ₂ filler.
X X X Backup Ring (2) W. S. Shamban S30775-214P-19 X X X Backup Ring (2) W. S. Shamban S33157-214-19 X Wiper/Scraper Dowty Seals 120-218-1709 Limited X O-Ring Dowty Seals 100-218-0074 Limited	40						×	Polypak 1870100024651D53	Parker	Polymyte
<pre>X</pre>	9		×	×	×	×		Plus Seal S30775-214P-19	W. S. Shamban	Turcon with proprietary MoS2 filler. Elastomer per MIL-P-83461.
Wiper/Scraper Dowty Seals 120-218-1709 Limited 0-Ring Dowty Seals 100-218-0074 Limited				×	×	×		Backup Ring (2) S33157-214-19	W. S. Shamban	Turcon with proprietary MoS ₂ filler.
O-Ring Dowty Seals 100-218-0074 Limited							×	Wiper/Scraper 120-218-1709	Dowty Seals Limited	Acetal Resin
							×	0-Ring 100-218-0074	Dowty Seals Limited	Mitrile

TASK III - TESTING

Task III consisted of a 5 million a cycle endurance test and a 20 million cycle rotor feedback test. A summary of the Task III test is shown in Table 8.

Before the test could be performed, the test actuators were reworked to include press fit bronze inserts that were machined to accept four different kinds of scrapers. All rods were ground to restore the proper finish, and where necessary, replated and ground.

During the Task III test, the 2% stroke cycles at 8.33 Hz were superimposed on the 10% stroke cycles at 1.67 Hz, the 50% stroke cycles at .42 Hz and the full stroke cycles at .15 Hz by electrically combining the two sinusoidal wave forms electronically to form the command signal to the Electro-Hydraulic Servo Actuator that drove the hydraulic servo-valve. During the 2% stroke cycles at 8.33 Hz, a 0.15 Hz, +/-1-inch stroke was superimposed in the same manner to prevent artificially overheating a seal and to more closely simulate flight conditions.

During the endurance test, 5,561,850 cycles were imposed on the seals. Of these, 5000 were full stroke, 25,000 were half stroke, 70,000 were 10% stroke and 5,461,850 were 2% stroke. During the 8000 psi tests the pressure from the pump started to decay during the short stroke cycles. The cause of decay was not known so cycling continued while the setup was monitored and parts were checked to isolace the problem. The pump was finally identified as the problem, so it was replaced on 28 July. An additional 440,500 of the short stroke cycles were run to assure that the test had met all requirements. During the rotor feedback test an additional 20,586,870 cycles were imposed. Of the 20,586,870 cycles, 10,634,940 cycles imposed a compression load and 9,951,930 imposed a tension load. A fully reversing sinusoidal load could not be imposed during rotor feedback because of stroke limitations of the Electro Mechanical Shaker, but the position of the actuators was varied sinusoidally at 0.15 Hz with a 2-inch double amplitude. The load imposed during rotor feedback tests was 33.3 - 966.6 lbs. per actuator, with a stroke of .015 - .02-inch.

The average pressurized friction for the Task III seals is shown in Figure 8. The unpressurized friction for the seals is shown in Table 11. The daily leakage for the seals is shown in Tables 9 and 10. A performance summary for each seal is given in Table C-1 in Appendix C. The measured critical dimensions for each actuator are given in Table C-2 in Appendix C.

All of the seals that failed the Task III test failed during the rotor feedback test. The Double Delta Seal (Rod End, Actuator No. 1) failed after 6,035,850 cycles. It was replaced by an 0-ring with two Tetrafluor backup rings which failed after an additional 4,650,540 cycles. The 0-ring was replaced by a Shamban Plus Seal with no backup rings. At the same time, the Greene Tweed Enercap Seals (rod end,

Actuator No. 3) were replaced because of excessive leakage. They were replaced by a two-stage Ω mni Seal installation. There were no additional failures during the rotor feedback test.

During the performance test at the end of the Task III test, it became obvious that the 25 cycles required would not produce measurable leakage. The technician was instructed to cycle the actuators for 2000 long stroke (+/-1.75 in) cycles. After 1620 cycles the test stand reservoir was depleted by a massive failure of the replacement Plus Seal in the rod end of actuator no. 1. The test was terminated at that point since all requirements had been satisfied. The leakage results for the seals that completed the entire test are shown in Figure 9.

TABLE 8. TASK III TEST SUMMARY

TYPE OF TEST	AMBIENT TEMPERATURE	FLUID TEMPERATURE	CYCLES
Unpressurized Friction	Room Ambient		
Pressurized Friction	Room Ambient		
Acceptance	Room Ambient	Room Ambient	25 LS
High Temp. 3000 psig test MIL-H-5606	60°F to 275°F	225°F+/-25°F	2.56 x 10 ⁶
Performance Test	Room Ambient	Room Ambient	25 LS
Fluid Change	6-24-80		
Performance Test	Room Ambient	Room Ambient	25 LS
High Temp 3000 psig Test MIL-H-83282	60°F to 275°F	225°F+/-25°F	2.0 x 10 ⁶
Performance Test	Room Ambient	Room Ambient	25 LS
High Temp 8000 psig Test MIL-H-83282	60°F to 275°F	225°F +/-25 ° F	998,250
Performance Test	Room Ambient	Room Ambient	25 LS
Rotor Feedback	60°F to 275°F	225°F+/-25°F	20.5 x 10 ⁶
Performance Test	Room Ambient	Room Ambient	1620 LS

LEAKAGE AND INTERSTAGE PRESSURE DATA DURING ENDURANCE TEST TABLE 9.

ACTUATOR NUMBER 1

STROWER CC DROWER B C D CC DROWER TRANSLORE TR	START	OVER		OF CYCLES	END	END NUMBER	: L_F		1000	GNB	NUMBER	2 (ROD)	; _	3E
115000 2500FS 0 0 0 0 0 0 0 0 0	ـ ح	KG.	STROKE	STROKE	⊃l l	DPOPS	2	C (MAA)	D O	CC	DROPS	r PESSU	KE IMAA	7 2 2 2 1
115000		0		500FS 2500HS	0	0	0	90	0	0	0	'	'	
115000	. . L	0	84600	7000TS	0	0	0	90	0	0	0	,	,	,
105000	. . L	0	115000		0	0	0	90	0	0	0	'	,	,
189000 500FS 0 0 90 0 0 0 - <td< td=""><td></td><td>0</td><td>105000</td><td></td><td>0</td><td>0</td><td>0</td><td>06</td><td>0</td><td>0</td><td>0</td><td>'</td><td>,</td><td>'</td></td<>		0	105000		0	0	0	06	0	0	0	'	,	'
50000 5000FS 50000 2500HS 6 7000TS 6 90 0 0 0 - <td></td> <td>0</td> <td>189000</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>90</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>· </td> <td>'</td>		0	189000		0	0	0	90	0	0	0	1	·	'
180000 0 0 0 90 0 0 - </td <td>1</td> <td>0</td> <td>20000 30000</td> <td>500FS 2500HS 7000TS</td> <td>0</td> <td>0</td> <td>0</td> <td>06</td> <td>0</td> <td>0</td> <td>0</td> <td>'</td> <td></td> <td>,</td>	1	0	20000 30000	500FS 2500HS 7000TS	0	0	0	06	0	0	0	'		,
180000 500FS 0 0 0 90 0 0 0 0 10000 2500HS 0 0 0 0 0 0 0 10000 2500HS 0 0 0 0 0 0 0		0	180000	- • - • •	0	0	0	06	0	0	0	, ['	
50000 500FS: 0 0 90 1 10000 2500HS: 0 0 90 1 90 1 1 10000 1 1 1 1 1 1 1 1 1		0	180000	• • • •	0	0	0	90	0	0	0	ı	1	-
		0	10000	500FS 2500HS 7000TS	0	0	0	06	0	0	0	'	1	1
	•	0	202500		0	0	0	06	0	0	0	1	1	

3000 psig Test

FS = Full Stroke HS = Half Stroke TS = 10% Stroke Short Stroke = 2% stroke

TABLE 9. CONTINUED

ACTUATOR NUMBER 1

END	(MAX) PORT (END OF DAY)		0 : 0 : 0	0 0 0	0	0 0 0	*0 0 0	0 0	0 0 0	0	- 1	0 0	0
T (LUG) LE	PPESSURE		06 : 0 :	06 ; 0 ;	06 0	06 ; 0	06 0	06 0	0	06 : 0	- • - •	06 0	06 : 0 :
FND NUMBER	(END OF DAY)		0	0 : 0	0	0	*0 0	0	0	0	•	0	0
OF CYCLES	SHORT : LONG		• - •	. 500FS J : 2500HS	7000TS		500FS 3 2500HS 7000TS				•	500FS: 2500HS	700015
: [1	: 137500	140000	. 50000 : 195000	202500	92500	175000	500000	65000	LUID CHANGE	50000	:122500
	UP : NIGHT		0 ; 82	78° : 0	80° ; 0	81 : 0	82 0	82° : 0	83° : 0	83 : 0	NO CYCLING FLUID CHA	82 : 0	78 0
,	T UATE	.¦ ∷ 	:12 June : 7	13 June : 7	16 June : 8	:17 June : 8	18 June 8	19 June	20 June : 8	.23 June : 8	.24 June : N	.25 June : 8	.26 June : 78

* Some fluid on rod

TABLE 9. CONTINUED

ACTUATOR NUMBER 1

FEMP. LKG. STROKE CC DROPS B C DROPS		START	OVER	OVER NUMBER (OF CYCLES :	END	END NUMBER	11 (101) T	LEAKAGE RF (MAX	PORT	FND OF	NIJMBE R DAY)	2 (RND) PRESSURE	LEAKAGE	F PORT
85 0 190000 500FS 0 0 90 0 83 0 127500 1890HS 0 0 0 90 0 87 0 180000 7000 TS 0 0 90 0 86 0 220000 0 0 0 90 0 84 0 110000 2500 HS 0 0 90 0 84 Rod 6cc;202500 7000 TS 0 0 90 0 84 Rod 2500 HS 0 0 0 90 0 84 3 drops 50000 7000 TS 0 0 90 0 86 Trace 202500 7000 TS 0 0 90 0 85 Trace 157500 0 0 0 0 0 0 85 Trace 157500 0 0 0 0 0<	DATE	TEMP.	LKG.	: STROKE	: STROKE	22	اما	В			22	18	В	1 1	د
e 83 0 127500 1890HS 0 0 0 90 0 87 0 180000 7000 TS 0 0 0 90 0 86 0 200000 500 FS 0 0 0 90 0 84 0 110000 2500 HS 0 0 0 90 0 84 0 162500 7000 TS 0 0 90 0 84 Rod 50000 7000 TS 0 0 90 0 94 Rod 2500 HS 0 0 0 90 0 y 86 Trace 202500 7000 TS 0 0 90 0 y 85 Rod 157500 0 0 0 90 0 y 85 Trace 157500 0 0 0 90 0	1980 27 June	85	0	190000	- • - •	0	0	0	06	0	0	0	,		- · - · ·
87 0 180000 7000 TS 0 0 0 90 0 86 0 200000 500 FS 0 0 0 90 0 84 0 110000 2500 HS 0 0 0 90 0 84 0 162500 7000 TS 0 0 0 90 0 84 Rod 6cc;202500 2500 HS 0 0 0 90 0 84 3 drops 50000 7000 TS 0 0 0 90 0 y 86 Trace 202500 0 0 0 0 0 0 0 y 85 Rod 0 0 0 0 0 0 0 0 y 85 Trace 157500 0 0 0 0 0 0 0	30 June	83	0	127500	500FS: 1890HS:	0	0	0	06	0	0	0	•	'	,
86 0 200000 500 FS 0 0 0 90 0 85 0 110000 2500 HS 0 0 0 90 0 84 0 162500 7000 TS 0 0 0 90 0 84 Rod 6cc:202500 5000 FS 0 0 0 90 0 84 3 drops 50000 7000 TS 0 0 90 0 y 86 Trace 202500 0 0 0 0 0 0 y 85 Rod 157500 0 0 0 0 0 0 0	l July	87	0	180000		0	0	0	96	0	0	0	,	,	· - • - •
85 0 110000 2500 HS 0 0 90 0 84 Rod .6cc 202500 75000 5000 FS 0 0 0 90 0 84 Rod .6cc 202500 500 FS 0 0 0 90 0 84 3 drops 50000 7000 TS 0 0 90 0 y 86 Trace .202500 0 0 0 0 90 0 y 85 Rod 157500 0 0 0 0 0 0 0 y 85 Rod 157500 0 0 0 0 0 0 0	2 July	98	0	200000		0	0	0	06	0	0	0	'	• - •	
84 0 162500 7000 TS 0 0 0 90 0 84 Rod 75000 500 FS 0 0 90 0 y 86 Trace 202500 7000 TS 0 0 0 90 0 y 85 Rod 0 0 0 0 0 0 0 y 85 Rod 157500 0 0 0 0 0 0 0 0	3 July	85	0	.110000		0	0	0	06	0	0	0	,		
84 Rod .6cc 202500 0 0 0 90 0 Rod 2500 HS: 0 0 90 0 y 86 Trace 202500 7000 TS: 0 0 90 0 y 85 Rod 80000 0 0 0 0 0 0 y 85 Trace 157500 0 0 0 0 0 0 0 0	7 July	84	0	162500		0	0	0	06	0	0	0		1	
Rod 25000 HS 2500 HS 0 0 90 0 84 3 drops 50000 7000 TS 0 0 90 0 86 Trace 202500 0 0 0 90 0 85 Rod 157500 0 0 0 90 0 85 Trace 157500 0 0 0 90 0	8 July	84	Rod .6c	c:202500		0	0	0	90	0	0	0		'	,
86 Trace 202500 0 0 0 0 90 0 85 Rod 80000 0 0 0 90 0 85 Trace 157500 0 0 90 0	9 July	84	Rod 3 drops			0	0	0	06	0	0	0	,	1	'
85 Rod 80000 0 0 0 0 90 0 0 85 Trace 157500 0 0 0 90 0	10 July	98	Rod Trace	202500		0	0	0	6	0	0	0	,		·
85 Trace :157500 : 0 : 0 : 90 : 0	11 July	85		80000		0	0	0	6	0	0	0	,		•
		85	. Trace	157500		0	0	0	90	0	0	0	1	- •	

3000 psig Tests

TABLE 9. CONTINUED

ACTUATOR NUMBER 1

	START	OVER	NUMBER OF	OF CYCLES	GNA	END NUMBER	ן (במוש) ר השבעלוושנ	LEAKAGE DE TNAY	Tana	CNE	END NUMBER 2	2 (ROD)) LEAKAGE	יני דיסחט ד
DATE	TEMP.	LKG.	STROKE	STROKE	- 1	1	B	. [ا ا	20	- 1	8	,[٠
1980 17 July		0		500FS	0	0	0	90	0	0	0	1		,
18 July	98	0	20000	7000TS 2500HS	0	0	0	06	0	0	0			,
21 July	86	0	96250		0	0	0	06	0	0	0		1	,
22 July	82	0	30000		0	0	0	96	0	0	0			,
23 July	82	0	157500		0	0	0	90	0	0	0			
24 July	83	0	154000		0	0	0	90	0	0	0	}		
25 July	85	0	00009		0	0	0	96	0	0	0			,
28 July	80	1 Dp Rod: 42500	42500		0	0	0	96	0	0	0			
29 July	80	0	85000		0	0	0	90	0	0	0		}	,
30 July	82			8	Runi	Running -	No cool	No cooling water	<u>.</u>	•				
31 July	83	TR Rod	200000		0	0	0	06	0	0	0		1	,
1 Aug	: 83	0	113000	•-•	0	0	0	. 06	0	0	0			1

8000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 2

	START	OVER	NUMBER OF	OF CYCLES	CEND 0	END NUMBER IND OF DAY)	(LUG) LE	LEAKAGE RE (MAX)	PORT	FND P	END NUMBER ID OF DAY)	2 (ROD)	LEAKAC	PORT
: DATE	TEMP.	LKG.	STROKE	س	22	DROPS	В	٥	د	22	DROPS	8	ا	
1980 29 May	у : 86°	0		500FS 2500HS	0	0	0	0	0	0	0	,	'	,
30 May	y : 79°	0	84600	70007	0	0	0	0	0	0	0		1	
2 June	e : 80°	0	115000	0	0	0	0	0	0	0	0			
3 June	e : 80°	0	105000	0	0	0	0	0	0	0	0	'		
4 June	e : 80°	0	189000	0	0	0	0	0	0	0	0	1	•	
5 June	e : 80°	0	90000	500FS 2500HS 7000TS	0	0	0	0	0	0	0	,	1	1
e June	e : 81°	0	180000		0	0	0	0	0	0	0	1		
9 June	e : 74°	0	180000	·	0	0	0	0	0	0	0			
10 June	ne: 75°	0	10000	500FS 2500HS 7000TS	0	0	0	0	0	0	0	1		,
. 11 Ju	11 June: 76°	0	202500		0	0	0	0	0	0	0	1	; ;	· · - ·
1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, 1 1 1 1 1 1 1 1			; ; ! !	† † † † †	 	 			 	

3000 psig Test

TABLE 9. CONTINUED

The state of the s

ACTUATOR NUMBER 2

	START	OVER		OF CYCLES	FIND	END NUMBER TEND OF DAY)	T (LUG) LE	LEAKAGE RE (MAX)	PORT	END OF	NUMBER NAV)	Z (ROD) 1 PRESSURE) LEAKAGE RE (MAX)	SE TPORT
DATE	TEMP.	LKG.	STROKE	STROKE	23	DROPS	В	<u>ا</u>	c	22		8	٥	٦
1980 12 June: 78°	. 78°	0	137500		0	0	0	0	0	0	0	,	'	,
13 June: 78°	78°	0	140000	500FS 2500HS	0	0	0	0	0	0	0		,	
16 June: 80°	.80	0	50000 95000	700075	0	0	0	0	0	0	0			
17 June: 81°	81°	0	202500		0	0	0	0	0	0	0	1	-	
18 June: 82°	82°	0	92500	500FS 2500HS 7000TS	0	*0	0	0	0	0	0	1	,	1
19 June: 82°	82。	0	175000		0	0	0	0	0	0	0	,	'	,
20 June: 83°	83°	0	200000		0	0	0	0	0	0	0	,	,	
. 23 June: 83	83	0	00059		0	0	0	0	0	0	0			
24 June	NO CYC	24 June: NO CYCLING FLUID CHANGE	D CHANGE		• •			•						
25 June: 82	82	0	20000	500 FS 2500 HS	0	0	0	0	0	0	0	,	,	
26 June: 78	78	0	122500	7000 TS	0	0	0	0	0	0	0			

3000 psig Test

* Some fluid on rod

TABLE 9. CONTINUED

AND THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PART

ACTUATOR NUMBER 2

))	NUMBER OF	OF CYCLES	END	1 c	r (C.UG.)	1		END	$ \alpha $	2 (ROD)	, j [
DATE	TEMP.	LKG.	STROKE	STROKE	CC	DROPS	PPE SSUR	C (MAX)	ZOK ZOK		DROPS	PRESSIPE B	C C C	20X
1980 27 June	85	0	190000		0	0	0	0	0	0	o		,	
30 June	83	0	127500	!!	0	0	0	0	0	0	0	1	,	
ylul!	87	0	180000	610 HS: 7000 TS:	0	٥	O	0	0	0	G	,	,	,
2 July	86	0	200000		0	0	0	0	0	0	0	1	l	
3 July	85	0	50000 110000	500 FS. 2500 HS.	0	0	0	O	0	0	0	1	,	
7 July	84	0	162500	7000 TS	0	0	0	0	0	0	0			,
8 July	84	0	202500		0	0	0	0	0	0	O	,	,	,
g July	84	0	50000	500 FS 2500 HS 7000 TS	0	0	0	0	0	0	0	1	1	,
10 July	98	0	202500		0	0	0	0	0	0	0		,	1
עוחנ וו	. 85	0	80000		0	0	0	0	0	0	0		,	
14 July	85	0	157500		0	0	0	0	0	0	0			

3000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 2

•	J AK!	NIGHT	SHORT	OF CYCLES	TEND (ND OF DAY	PRESSIRE	LEAKAGE RF (MAX)	PORT	TEND	D OF DAY P	Z (ROU) PRESSIBE) LEAKAGE	F PORT
DATE	TEMP.	LKG.	STROKE	STROKE	1	DROPS	8	U	i	22	ρŚ	В	1	,
1980 17 July	- • - •	0		500FS	0	0	0	0	0	0	0	,	'	
18 July	. 86	0	20000	7000TS 2500HS	0	0	0	0	0	0	0			
21 July	. 86	0	96250		0	0	0	0	0	0	0	,	1	,
22 July	82	0	30000		0	0	0	0	0	0	0	'	'	ı
23 July	82	0	157500		0	0	0	0	0	0	0	,	,	
24 July	83	0	154000		0	0	0	0	0	0	0		,	•
	83	0	00009		0	0	0	0	0	0	0	'	,	ı
28 July	80	0	42500		0	0	0	0	0	0	0	,		
29 July	80	0	85000		0	0	0	0	0	0	0		-	•
30 July	82		No Run	Running - No		Cooling water	ا و ا							
31 July	83	0	200000		0	0	0	0	0	0	0	'		
1 Aug	. 83	0	113000	; ;	0	0	0	0	0	c 	0			1

8000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 3

	START	OVER	NUMBER O	OF CYCLES	TEND (NUMBER OF DAY	1 (LUG)	T (LUG) LEAKAGE	PORT	END (FND OF	NUMBER DAY)	2 (ROD)) LEAKAGE RF (MAX)	GE T PORT
DATE	TEMP.	LKG.	STROKE	STROKE	1 1	DROPS	8	2		22	DPOPS	B	1 1	L . L
1980 29 May	.98	0	0	500FS 2500HS	0	9		,	0	0	0	1	0	0
30 May	79°	0	84600	700075	0	0		,	0	0	0	'	0	0
2 June	80。	0	115000	0	0	0	1	,	0	0	0	1	0	0
3 June	80。	0	105000	0	0	0		,	0	0	0	'	0	0
4 June	. 80	0	189000	0	0	0			0	0	0		0	0
5 June	. 80	0	00006 00006	500FS 2500HS 7000TS	0	0	1		0	0	0	ı	0	0
9 June	81°	0	180000		0	0			0	0	0	1	0	0
7 June	74°	0	180000	•-•	0	0		,	0	0	0	,	0	0
10 June: 75°	75°	0	10000	500FS 2500HS 7000TS	0	0		,	0	0	0	1	0	0
11 June: 76°	. 92	0	202500		0	0		1	0	0	0	1	0	0
		1 1 1 1 1 1 1				1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1			*****			

3000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 3

14		START	OVER	NUMBER OF CYCLES	i (END (FND 0	END NUMBER 1	(LUG) PRESSUR) LEAKAGE URE (MAX)	PORT	END A	IUMBER DAY)	Z (ROD) PRESSURI) LEAKAGE RE (MAX)	E PORT
-•	DATE	TEMP.	LKG.	: STROKE :	STROKE !	22	NPOPS	8		۵	23	DROPS	8	ان	۵
	1980 12 June: 78°	78°	0	137500		0	0	'	,	0	0	0		0	0
· !	13 June: 78°	78°	0	140000	500FS. 2500HS.	0	0			0	0	0		0	
- • - • [!]	16 June: 80°	80。	0	95000		0	0	,		0	0	0		0	0
- • - •	17 June: 81°	. 81°	0	202500		0	0	, - ,	,	0	0	0		0	0
- • • • • •	18 June: 82°	82°	0	92500	500FS: 2500HS: 7000TS:	0	0	ı	,	0	0	0	1	0	0
!	19 June: 82°	82°	0	175000	- • - • }	0	0			0	0	0	,	0	0
<u>!</u> 53	20 June: 83°	83°	0	200000		0	0			0	0	0		0	0
•	23 June: 83	83	0	65000	• - •	0	0	1	1	0	0	0		0	0
١.								_				_	_	_	•

3000 psig Test

500 FS: 2500 HS:

: 50000

25 June: 82

24 June: NO CYCLING FLUID CHANGE

: 7000 TS!

26 June: 78

TABLE 9. CONTINUED

ACTUATOR NUMBER 3

	START	OVER	NUMBER OF	OF CYCLES :	END 7FND (END NUMBER	T (LUG) LE	LEAKAGE RF (MAX)	PORT	FND OF	IUMBER DAY)	2 (ROD) I) LEAKAGE RF (MAX)	SE) PORT
DATE	TEMP.	LKG.	: STROKE	E.		DROPS	B	C		22	DROPS	В		:
1980 27 June	. 85	0	000061;		0	0	l		0	0	0		0	0
30 June	83	0	127500	500 FS:	0	0	l - • - •		0	0	0		0	0
1 July	87	0	180000	7000 TS:	0	0			0	0	0		0	0
2 July	98	0	200000		0	0			0	0	0	'	0	0
3 July	. 85	0	50000 110000	500 FS: 2500 HS:	0	0			0	0	0	,	0	0
ylut 7:	84	0	162500	7000 TS	0	0			0	0	0		0	0
.8 July	. 84	0	202500		0	0			0	0	0		0	0
9 July	84	0	75000	500FS: 2500HS: 7000TS:	0	0	l 	- • - • - • · · · · · · · · · · · · · ·	0	0	0		0	0
10 July	98	0	202500	- • - •	0	0	, ,		0	0	0	,	0	0
11 July	85		80000		0	0	,	,	0	0	0	,	0	0
14 July	. 85	0	157500	•	0	0			0	0	0		0	0

3000 psig Test

TABLE 9. CONTINUED

THE RESERVE OF THE PARTY OF THE

ACTUATOR NUMBER 3

	START	OVER	NUMBER OF CYCLES	CYCLES	END	END NUMBER	ו (בנוסב בבנוסב הספר בבנוסב	LEAKAGE	חשעו	FND	NUMBER	2 (ROD)) LEAKAGE	GE Pro
DATE	TEMP.	. LKG.	: STROKE	: STROKE	200	DROPS	B		_ i .	202	DROPS	B		. !
1980 17 July		0		200	0	0	,		0	0	0		0	0
18 July	98	0	50000	7000	0	0	1	'	0	0	0	,	0	0
21 July	86	LUG	96250		0	0		'	0	0	0		0	0
22 July	85	0	30000	••••	0	0	ı 		. 0	0	0	1	0	0
23 July	82	TR LUG TR ROD	157500		0	0	,	-	0	0	0	1	0	0
24 July	83	0	154000		0	0	,	1	0	0	0	1	0	0
g 25 July	85	0	00009		0	0			0	0	0		0	0
28 July	80	0	42500		0	0	,	1	0	0	0		0	0
29 July	80	0	85000		0	0		1	0	0	Э		0	0
30 July		•-•	No Running	ning - No	Cooling	ng water	· • • •			• •	-			
31 July	83	TRACE ROD	200000		0	0	,	1	0	0	0	,	0	٥
.1 Aug	83	0	113000		<u></u>	C	l • - •		0		 	,	C	· · ·

8000 psig Test

TABLE 9. CONTINUED

The state of the s

ACTUATOR NUMBER 4

DATE TEMP. LKG. STROKE STROKE CC. DROPS B C D CC 29 May 86° 0 0 2500HS 0 - 0	 		START UP	OVER NIGHT	NUMBER OF SHORT	OF CYCLES :	END (END (END NUMBER ND OF DAY)	T (LUG) LE PRESSURE	LEAKAGE RE (MAX)	PORT	(END O	UMBER NAY)	Z (ROD) L PRESSURE) LEAKAGE RE (MAX)	F PORT
29 May 86° 0 0 2500HS 0 - 0 0 0 0 0 0 - 0 <	DATE		TEMP.	LKG.	STROKE	STROKE	1 1	DROPS	8	اد		22		В	ပ	c
30 May 79° 0 84600 7000TS; 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0	29 4	اقاد	.98	0	0	2500HS	0	0		0	0	0	0		0	0
2 June 80° 0 115000 <	30	lay	79°	0	84600	7000TS	0	0		0	0	0	0	,	0	0
3 June 80° 0 105000 0 0 - 0 <	2 Ju	ıne	80 °	0	115000	0	0	0		0	0	0	0		0	0
4 June 80° 0 189000 <	3 Ju	••-•∤	80。	0	105000	0	0	0		0	0	0	0	,	0	0
5 June 80° 0 90000 2500HS 0 0 - 0 0 0 0 0 - 0 6 June 81° 0 180000 0 2500HS 0 0 - 0 0 0 0 0 0 0 6 June 81° 0 180000 0 0 0 0 0 0 0 0 0 0 0 0 10 June 75° 0 10000 2500HS 0 0 - 0 0 0 0 0 0 0 0 11 June 76° 0 202500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 4 Ju		8 0°	0	189000	0	0	0		0	0	o 	0	,	0	0
81° 0 180000 0<	5 Ju	1	80。	0	00006	500FS: 2500HS: 7000TS:	0	0		0	0	0	0	,	0	0
74° 0 180000 500FS 0 0 - 0 0 0 0 0 - 0 75° 0 10000 2500HS 0 0 - 0 0 0 0 0 0 - 0 7000TS 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<i></i>	<u> </u>	81°	0	180000		0	0		0	0	0	0		0	0
75° 0 10000 2500HS; 0 0 - 0 0 0 0 0 - 0 0 0 0 7000TS; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60/9	1/80	74°	0	180000	• • •	0	0	1	0	0	0	0	1	0	0
76° 10	JO J	une	75°	0	50000 10000	500FS: 2500HS: 7000TS:	0	0		0	0	0	0	,	0	0
	נון:	une	.9/	0	202500		0	0	1	0	0	0	0	,	0	0

3000 psig Test

TABLE 9. CONTINUED

The second secon

ACTUATOR NUMBER 4

DATE TEMP LKG STROKE STROKE CC DROPS B C D CC DROPS B C 13 June 78° 0 137500 0		START	OVER		OF CYCLES :	END	END NUMBER	1 (LUG) LE	LEAKAGE	PURT	TEND NUMBE		2 (ROD)) LEAKAGE	SE PORT
1980 1980 1980 0	DATE	TEMP.		STROKE	• - •	ااد	DROPS	8			22	. [2]	8	1 1	1 '
° 0 140000 2500HS 0 <th< td=""><td>1980 12 June</td><td>78°</td><td></td><td>137500</td><td>• • •</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>,</td><td>0</td><td>0</td></th<>	1980 12 June	78°		137500	• • •	0	0		0	0	0	0	,	0	0
16 June 80° 0 95000 <	13 June	78°	0	140000	500FS: 2500HS:	0	0	1	0	0	0	0		0	0
17 June; 81° 202500 500FS; 0 - 0 0 0 0 0 - 0 0 <td>l6 June</td> <td>80。</td> <td>0</td> <td>95000</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>,</td> <td>0</td> <td>0</td>	l6 June	80。	0	95000		0	0		0	0	0	0	,	0	0
18 June 82° 0 92500 2500HS 0	17 June	81°	•-•	202500	• • •	0	0	1	0	0	0	0	,	0	0
19 June 82° 0 175000 0	18 June	82°	0	92500	500FS: 2500HS: 7000TS:	0	0	1	0	0	0	0	,	0	0
20 June: 83* 0 200000 0	19 June	.88			••-•	0	0		0	0	0	0		0	0
CYCLING FLUID CHANGE 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		83°	0	200000		0	0	,	0	0	0	0		0	0
CYCLING FLUID CHANGE 500 FS: NO CYCLING 0 50000 2500 HS: 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0	23 June		0	65000		0	0	1	0	0	0	0	,	0	0
0 : 50000 : 2500 HS: 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	24 June	NO CYCI	LING FLUIT		1			NO CYC	LING						
: LUG END: : TRACE :122500 : 7000 TS: 0 : 0 : 0 : 0 : 0 : 0 : -	25 June	82	0	20000		0	0		0	0	0	0	,	0	0
	26 June	78	_	122500	7000 TS:	0	0	1	0	0	0	0	1	0	0

3000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 4

0 127500 500 FS 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		E	OVER			FIND	END NOMBER 1	(901)	1	A WW	END		2 (POD) 1	LEAKAGE	S.E. DATE
0 190000 500 FS 0 - 0 <td< th=""><th> •</th><th>UP TEMP.</th><th>NICHT</th><th>SHORT</th><th>LONG</th><th></th><th>DROPS</th><th>PRESSUR</th><th>(E (MAX)</th><th>DIR</th><th>CC</th><th>DPOPS</th><th>B</th><th></th><th>ا م</th></td<>	•	UP TEMP.	NICHT	SHORT	LONG		DROPS	PRESSUR	(E (MAX)	DIR	CC	DPOPS	B		ا م
0 127500 1890 HS: 0 - 0 <		85	C	190000	1	0	0	• • •	0	0	0	0	ı	0	0
0 180000 510 HS 0 - 0 <td< td=""><td></td><td>83</td><td>0</td><td>127500</td><td>500 FS:</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>ı</td><td>0</td><td>0</td></td<>		83	0	127500	500 FS:	0	0	1	0	0	0	0	ı	0	0
0 200000 500 FS 0 - 0 <td< td=""><td></td><td>87</td><td>0</td><td>180000</td><td></td><td>0</td><td>0</td><td>•</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td></td<>		87	0	180000		0	0	•	0	0	0	0		0	0
0 110000 500 FS 0 - 0 <td< td=""><td></td><td>86</td><td>0</td><td>200000</td><td></td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>ı</td><td>c</td><td>0</td></td<>		86	0	200000		0	0	1	0	0	0	0	ı	c	0
0 162500 7000 TS 0 0 - 0 0 0 0 0 202500 500 FS - 0 0 0 0 0 0 0 0 50000 7000 TS 0 0 - 0 0 0 0 0 0 202500 0 0 0 - 0 0 0 0 0 0 0 0 157500 0 0 0 - 0		85	0	50000 110000	500 FS 2500 HS]	0		0	0	0	0		0	0
0 202500 0 0 - 0 <td></td> <td>84</td> <td>0</td> <td>162500</td> <td>7000 TS</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td>		84	0	162500	7000 TS	0	0		0	0	0	0		0	0
0 500 PS: 0 50000 7000 TS: 0 - 0 0 0 0 202500 0 0 0 0 0 0 0 157500 0 0 0 0 0 0		84	0	202500		0	0	1	0	0	0	0	ı	0	0
0 202500 0 <td></td> <td>84</td> <td>0</td> <td>75000</td> <td>500 FS: 2500 HS: 7000 TS:</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>,</td> <td>0</td> <td>0</td>		84	0	75000	500 FS: 2500 HS: 7000 TS:	0	0	1	0	0	0	0	,	0	0
80000 0 0 0 0 0 0 0 157500 0 0 0 0 0 0		98	0	202500		C	0	1	0	0	0	0	ı	0	0
0 0 0 - 0 0 0 0 0 0 00251: 0		85		80000		0	0		0	0	0	0	1	0	0
		85	0	157500	• - •	C	0		0	0	0	0		0	0

3000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 4

	START	OVER NUMBER		OF CYCLES	QNJ	END NUMBER 1	1 (1001)	LEAKAGE	PABT	END TEND	NUMBER	2 (ROD)) LEAKAGE	3E
DATE	TEMP.	LKG.	STROKE	STROKE		ROPS	B B	1 1	ے او	CC	DROPS	B	, ,	1 1
1980 17 July	,	0		500FS	0	0	í	0	0	0	0	,	0	0
18 July	86	0	20000	7000TS 2500HS	0	0	,	0	0	0	0	1	0	0
21 July	86	0	96250		0	0		0	0	0	0		0	0
22 July	82	0	30000		0	0	,	0	0	0	0		0	0
23 July	82	0	157500		С	0	,	0	0	0	0	,	0	0
24 July	83	0	154000		0	0	,	0	0	0	0	,	0	0
25 July	85	0	00009		0	0	1	0	0	0	0	1	0	0
28 July	80	0	42500		0	0		0	0	0	0	,	0	0
29 July	80	0	85000		0	0	•	0	0	0	0	1	0	0
30 July	82		NO	Running	- No C	Cooling w	water							
31 July	83	0	200000		0	0		0	0	0	0	,	0	0
:1 Aug	. 83		113000		0	0		0	0	0	0	'	0	0

8000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 5

	START	OVER	NUMBER OF	OF CYCLES	END	END NUMBER		(LUG) LEAKAGE	PART	END	UMBER	2 (ROD) PRESSIBE) LEAKAGE	SE PORT
DATE	EMD.	LKG.	STROKE	STROKE	22	DROPS	8	J		22	DROPS	B	Γ	
1980 29 May	. 86	0		500FS: 2500HS:	0	0	,	90	,	0	0		0	0
30 May	70°	0	84600	700075	0	0		96	,	0	0		0	0
2 June	. 80	0	115000		0	0	1	96		0	0		0	0
3 June	. 80	0	105000		0	0		06	,	0	0		0	0
. 4 June	. 80	0	189000	••••	0	0		8	1	0	0		0	0
5 June	. 80	0	00006	500FS: 2500HS: 7000TS:	0	0		06	ı	0	0	,	0	0
o June	81°	0	180000		0	0		06	•	0	0	,	0	0
9 June	74°	0	180000	• = •	0	0		06	1	0	0		0	0
10 June: 75°	75°	0	100000	500FS: 2500HS: 7000TS:	0	0	1	06	1	0	0	,	0	0
11 June: 76°	.92	0	202500	• • •	0	0		06	1	0	0	 	0	0
f 1 1 1 1 1 5	; ; ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ; ; ; ; ; ;	; ; ; ; ; ;	! !	1 () 1 1 1 1	; ; ; ; ;	1 1 1 1 1	1 1 1 1 1 1		; ; ; ;	; 	1)

3000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 5

	START	OVER	NUMBER OF	OF CYCLES	END (END C	END NUMBER ND OF DAY)	T (LUG) LE PRESSURE	LEAKAGE (MAX)	PORT	END (TEND O	END NUMBER	2 (ROD) PRESSURE) LEAKAGE	SE PORT
DATE	TEMP.	LKG.	STROKE	<u>ال</u> ا	ည	DROPS	В	اد		22	DROPS	8	2	
1980 12 June	78°	0	137500	• = •	0	0	,	90	,	0	0	,	0	0
13 June: 78°	. 78°	0	140000	500FS: 2500HS:	0	0	,	90	1	0	0	,	0	0
. 16 June: 80°	. 80	0	50000 195000		0	0		06	,	0	0		0	0
17 June: 81°	81°	0	202500	• •	0	0	1	90		0	0	'	0	0
18 June: 82°	82°	0	92500	500FS: 2500HS: 7000TS:	0	0	1	06		0	*0	,	0	0
19 June: 82°	.88	0	175000		0	0	,	90	1	0	0	'	0	0
. 20 June: 83°	83°	0	200000	• - •	0	0	'	06	,	0	0	,	0	0
. 23 June. 83	. 83	0	65000		0	0	,	06	,	0	0	,	0	0
24 June	NO CYC	24 June: NO CYCLING FLUID CHANGE	D CHANGE	- 1	•			• - •						
. 25 June: 82	82	0	20000	500 FS. 2500 HS.	0	0		6	,	0	0	,	0	0
. 26 June: 78	78	0	122500	700015	0	0		06	,	0	0		0	0

3000 psig Test

* Some fluid on rod.

TABLE 9. CONTINUED

ACTUATOR NUMBER 5

ļ		STARI	OVER	NUMBER O	OF CYCLES	TEND	NUMBER OF DAY	T (LUG)) LEAKAGE URE (MAX)	PORT	TEND OF	NUMBER DAY)	Z (ROD) PRESSURI) LEAKAGI RE (MAX)	J PORT
٠	DATE	TEMP.	LKG.	: STROKE	STROKE	3	, nROPS	8	2	d	22	PS	В	ر	٥
<u></u>	77	8.F	C	0000011		<u> </u>			6	•			C		0
إذ		3	, -	2000	- EMM - E	, 	,	•	:						
:30	30 June	. 83	0	:127500		o'	0	1	06	•	0	0	0	0	0
	July	87	0	180000	. 610 HS	0	0		06	ı	0	0	0	0	0
.2.	July	98	0	500000		0	0		06		0	0	0	0	0
<u> </u>	July	85	0	.110000	500 FS 2500 HS	0	0	, - • <i>-</i> •	06	۱ ا	0	0	0	0	0
	July	84	0	162500	7000 TS	0	0		90	١	0	0	0	0	0
<u>l .s.</u>	July	84	0	202500	ļ	0	0	1	06	1	0	0	0	0	0
62	July	84	0	75000	2500 FS 2500 HS 7000 TS	0	0	,	06	1	0	0	0	0	0
[.음	10 July	98	0	202500	• • •	0	0	1	06	1	0	0	0	0	0
L. E.I	11 July	85	0	80000		0	0		90	-	0	0	0	0	0
	14 July	85	0	157500		0	0		06	,	0	0	0	0	0

3000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 5

<u>[</u>	·-·[·		. I	Ī	· - · · ·		··ī			Ī	• - •
POR	0	0	0	0	0	0	0	0			0	0
) LEAKAGE RE (MAX)	0	0	0	0	0	0	0	0	0		0	0
PRESSURE	,	,	,	,	,	,	,	,	,		,	1
DAY)	0	0	0	0	0	0	0	0	0		0	0
CC CC	0	0	0	0	0	0	0	0	0		0	0
PORT	'		'	1	,	'	,	'	'		,	,
LEAKAGE (F (MAX)	90	96	06	06	96	06	06	90	06		06	
PRESSURE B	1	'		'	'	'	,	'	'	٠ · ·	'	
OF DAY) DRCPS	0	0	0	0	0	0	0	0	0	No Cooling water	0	0
(END OF DAY) CC : DRCFS	0	0	0	0	0	0	0	0	0	0 0001	0	0
UF CTCLES LONG STROKE	500FS	7000TS 2500HS								Running - N		• • •
SHORT STROKE	• - •	50000	96250	30000	157500	154000	00009	42500	85000	No Ru	20000	113000
OVEK NIGHT LKG.	0	0	0	0	0	0	0	0	0	• • •	0	0
UP UP TEMP	1	98	98	82	82	83	85	80	80	82	83	83
DATE	1980 17 July	18 July	21 July	22 July	23 July	24 July	25 July	28 July	29 July	30 July	31 July	1 Aug

8000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 6

		START	OVER	NUMBER OF	OF CYCLES	END	END NUMBER	1 (LUG)	T (LUG) LEAKAGE	PORT	FND OF DAY	α	2 (PON) LEAKAL) LEAKAGE PF (MAX)	JE J PORT
• - •	DATE	TEMP.	LKG.	: STROKE	STROKE	1	ادما	В	U	a	22	15	В	اں	
- • - • '	1980 29 May	,98	0	0	500FS 2500HS	0	0		96	0	0	0	0	0	0
• :	30 May	°62	0	84600	70007	0	0		06	0	0	0	0	0	0
- • - • \	2 June	80	0	115000	0	0	0		06	0	0	0	0	0	0
- • • '	3 June	80	0	105000	0	0	0	1	06	0	0	0	0	0	0
- • - •	*4 June	. 80	0	189000	0	0	0		06	0	0	0	0	0	ا ا د
!	5 June	80°	0	90000	500FS 2500HS 7000TS	0	0		06	0	0	0	0	0	9
64	6 June	81°	0	180000		0	0		06	0	0	0	0	0	0
- • - •	3 June	74°	0	18000		0	0		90	0	0	0	0	0	0
	10 June	75°	0	10000	500FS 2500HS 7000TS	0	0		06	0	0	0	0	0	0
	11 June: 76°	. 92	0	: 202500		0	0		06	0	0	0	0	0	0
. ස	3000 psig Test	Test	; ; ; ; ;	· f	! ! ! !	1) 	 	1 ! ! ! ! !	 	, 1 1 1 1 1	! ! ! !	, ; ; ; ;	; } f f	

TABLE 9. CONTINUED

ACTUATOR NUMBER 6

	START	OVER INIGHT		OF CYCLES :	END (END)	END NUMBER ND OF DAY)	T (LUG) LE	LEAKAGE RE (MAX)	PORT	END TEND OF	NUMBER DAY)	2 (ROD) PRESSURE	LEAKAGE RE (MAX)	SE PORT
DATE	TEMP.	LKG.	STROKE	w	23	DROPS	В	٥	c	23	S dOdu	8	1 1	
: 12 June: 78°	. 18°	0	137500		0	0	• - •	90	0	0	0	0	0	0
13 June: 78°	. 78°	0	140000	: 500FS: : 2500HS:	0	0		06	0	0	0	0	0	0
16 June:	. 80	0	50000 195000	7000TS:	0	0		06	0	0	0	0	0	0
17 June: 81°	81°	0	202500		0	0	'	90	0	0	0	0	0	0
18 June: 82°	. 85°	0	92500	500FS: 2500HS: 7000TS:	0	0		06	0	0	0	0	0	0
6/19/80: 83	83°	0	175000		0	0		06	0	0	0	0	0	0
6/20/80: 83	83°	0	200000		0	0	1	90	0	0	0	0	0	0
June 23	83	0	65000	1	0	0	,	06	0	0	0	0	0	0
24 June	NO CYC	NO CYCLING FLUID CHANGE	D CHANGE					-•~•						
25 June	82	0	50000	500 FS:	0	0		90	0	0	0	0	0	0
26 June	78	0	122500	7000 TS	0	0		06	0	0	0	0	0	0

3000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 6

	START : OVER INUMBER	OVER	1 1	OF CYCLES :	END	END NUMBER 1	(1,00)	LEAKAGE	1 [END	END NUMBER 2	2 (ROD)	LEAKAGE	يبا
-•	ď	: NIGHT	SHOPT	SNOT	(END C	F DAY)	PRFSSURE	(E (MAX)	PORT	(END O		PRESSURE	R MAX) PORT
: DATE	: TEMP.	: LKG.	: STROKE :	STROKE :	22	OROPS .	8	ပ	C	၁၁	DROPS.	æ.	၁	۵
1980 27 June	85	0	190000		0	0	- • - • 	90	0	0	0	၁	0	0
30 June	83	0	127500	1	0	0	•	06	0	0	0	0	0	0
עושה ו:	87	0	180000	610 HS: 7000 TS:	0	0	'	06	0	٥	0	0	0	0
2 July	86	0	300000		0	0	•	90	0	0	0	0	0	0
3 July : 85	85	0	50000	500 FS. 2500 HS.	0	0		06	0	0	0	0	0	0
7 July	84	0	162500	7000 TS:	0	0	1	90	0	0	0	0	0	0
i8 July	84	0	202500		0	0	- • - •	90	0	0	0	0	0	0
9 July	84	0	75000 50000	500 FS 2500 HS 7000 TS	0	0	1	06	0	0	0	0	0	0
10 July	98	0	202500		0	0		90	0	0	0	0	0	0
ylub II.	85	0	80000		0	0		90	0	0	0	0	0	0
14 July	85	0	157500		0	0		90	0	0	0	0	0	0

3000 psig Test

TABLE 9. CONTINUED

ACTUATOR NUMBER 6

	2 d	NIGHT	NUMBER OF	F CYCLES	(FND)	NO OF DAY	I (LUG) L PRESSIBE	LEAKAGE RF (MAX)	PORT	TEND OF	DAY)	Z (ROD) PRESSURE) LEAKAGE RE (MAX)	SE PORT
DATE	TEMP.	LKG.	STROKE	STROKE		10	В	1 - 1	((22	DROPS	B) 1	3 1
1980 17 July		0	- • - • ·	500FS	0	0		90	0	0	0	0	0	0
18 July	86	0	20000	/000TS 2500HS	0	0	1	8	0	0	0		0	0
21 July	86	0	96250		0	0	1	06	0	0	0	0	0	0
22 July	82	0	30000		0	0	1	8	0	0	0	0	0	0
23 July	82	0	157500		0	0		06	0	0	0	0	0	0
24 July	83	0	154000		0	0	1	96	0	0	0	0	0	0
25 July	85	0	00009		0	0	1	06	0	0	0	0	0	0
28 July	80	0	42500		0	0	1	90	0	0	0	0	0	0
29 July	80	0	85000		0	0		06	0	0	0	0	0	0
30 July	82		No. R	Running - N	No Coo	Cooling water	er							
31 July	83	0	200000		0	0	,	8	0	0	0	0	0	0
1 Aug	. 83	0	113000	• - • •	0	0		06	0	0	0	0	0	0

8000 psig Test

TABLE 10. LEAKAGE AND INTERSTAGE PRESSURE DATA DURING ROTOR FEEDBACK TEST

THE RESERVE THE PROPERTY OF TH

ACTUATOR NUMBER 1

1	PORT				,	1						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LEAKAG (MAX)	<u></u>	•-•	•					• - •		• - • }	• - •
, ,	2 (ROD) PRESSURE	<u>ω</u>	,	•-•}						•		• - •
1 1 1 1 1 1	JUMBER DAY)	DROPS	0	0	0	0	0	0	0	0	TR	0
,	END N	2	0	35+	30	0	0	0	0	0	0	0
,	PORT		0	0	0	0	0	0	0	0	0	0
מווטרה י	AKAGE (MAX)	υ 	06	06	06	06	06	06	06	06	06	96
ACTUALOR NOFIDER	T (LUG) LE	8	0	0	0	0	0	0	0	0	0	0
- 1	l~ L	40	0	0	0	0	TR	0	0	0	0	0
1 1	END NUMBER	8	0	0	0 ATOR #1	0	0	0	0	0	0	0
1	CYCLES CYCLES	CUMUL	117000	470400	474000 : 0 IN ACTUATOR	000096	*.1443600	*:1952400	*.2040000	#.2486250	3123750	3780000
1	ROTOR FEEDB CYCLES	DATLY	* 000711	353400 *	3600 *: D END SEAL	* 00098t	* :483000 *:	\sim 1		446250 #	637500	656250
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-·	DATE T980	25 Aug *	26 Aug *	27 Aug * : 360C REPLACED ROD END	28 Aug * :486000	29 Aug * .4	2 Sept * :508800	3 Sept *#: 87600	7	4 Sept :	5 Sept :
- '			. • - • -	!	!	- • - • !	6	8	• !-	!		•-•'

* 10 Hertz # Change to negative load

TABLE 10. CONTINUED

The second secon

ACTUATOR NUMBER 1

2 (ROD) LEAKAGE PRESSURE (MAX) POR	1	-	,	 	1	1	1			1	
END NUMBER 2 ID OF DAY) :PR		0	0	0	0	꼰	0	0	<u>د</u> ا	۲-۰	. • -
CEND (0	0	0	0	0	0	0	0	5	0	. • -
SE X) PORT D	0	0	0	0	0	0	0	0			;
) LEAKAGE JRE (MAX	90	06	06	06	06	06	90	96	96	96	
T (LUG) L PRESSURE	0	0	0	0	0	0	0	0	b 	0	:
END NUMBER ND OF DAY) C : DROPS	0	0	0	0	0	0	0	0	Ы	0	:
END (END (0	0	0	0	0	0	0	0:0	D	0	- • •
REEDBACK CYCLES CYCLES CUMUL	4322250	4989750	5782710	6589110	7390710	8065590	8825910	9638070	0/916201;	10686390	
ROTOR FI CYC DATLY	542250	967500	792960	806400	801600	:674880	760320	1812160	:/53600	:294720	
DATE	8 Sept	9 Sept **:667500	10 Sept ##:792960	11 Sept	12 Sept	15 Sept * :674880	16 Sept	: 17 Sept	18 Sept	19 Sept	

** Change to positive load ## Change to 16.0 Hertz

TABLE 10. CONTINUED

ACTUATOR NUMBER 1

PORT					,		.		.	
LEAKAGE E (MAX)	ы	'	'	1		•	,	•	1	•
2 (ROD) L PRESSURE	E		'	-	'	'	'-'	'	•	1
E C	DROPS	-	0	≃	0	ا	0	0	0	0
END NUMB (END OF DAY	3	0	0	0	0	0	0	0	0	0
PORT		0	0	0	0	0	0	0	0	0
LEAKAGE E (MAX)			06	06	06	06	06	06	8	8
(LUG) L Pessure	E	0	0	0	0	0	0	0	0	0
NUMBER 1 OF DAY) P	DROPS	TR	TR	TR	0	0	0	0	0	·-·
END NU	†• †•	0	0	0	0	0	0	0	0	· - · 0
R FEEDBACK CYCLES	ADE.	1338230	12210870:	13065270	13914870.	14679990	15511350	15828150	16197750:	16576950
ROTOR FEEDB CYCLES	DATLY	651840	872640	_	849600	765120	831360	316800	369600	379200
- • - •	DATE 1980		26 Sept :8	29 Sept ** :854400	30 Sept :8	1 Oct .7	2 Oct :8	3 Oct :3	6 Oct	7 Oct

Change to Negative LoadChange to Positive Load

TABLE 10. CONTINUED

ACTUATOR NUMBER 1

	ROTOR F	FEEDBACK :	END		(100)	mi.		END	END NUMBER 2 (ROD)	2 (ROD)	[크].	F.
	DATEY	CYCLES	CC CC	DE DAY)	PRESSURE B	RE (MAX)	20%	CC DRO	DAY)	RESSURE B	C (MAX)	2 2 2 2 2
	403200	16980 50	0	ن • • • • • • • • • • • • • • • • • • •	0	06	0	0	0	1	1	1
	412800	17392950	0	0	0	06	0	0	0	'		,
	395520	17788470	0	0	0	06	0	0	0	1		•
	398400	18186870	0	0	0	06	0	0	0	ı	1	1
	86400	18273270	0	0	0	06	0	D	0			1
*	86400	18359670	0	ت	0	36	0	0	0			
•	456000	18815679	5	0	0	66	0	0	2	,	1	
	441600	19257270	0	0	٥	90	0	0	0	,		
-	446400	19703670	0	ວ ່	٥.	06	0	7	Э	1		ſ

** Change to positive load

TABLE 10. CONTINUED

ACTUATOR NUMBER 1

	: ROTOR FEEDBACK	END:	END NUMBER T	T (LUG) LEAKAGE	EAKAGE		END	END NUMBER 2 (ROD) LEAKAGE	2 (ROD)	LEAKAG	
	S	(END	OF DAY)	(END OF DAY) PRESSURE (MAX) PORT	(MAX)	PORT	(END OF	(END OF DAY) PRESSURE (MAX) PORT	PRESSUR	(MAX)	PORT
DATE	DAILY CUMUL	3	CC : DROPS	8	ن	۵	23	DROPS	8	اد	n L
20 Oct	446400 :20150070: 0	0	0	0	06	0	0	4	,	- • - • •	,
21 Oct	436800 :20586870: (0	0	0	06	0	0	0	ı	' - '	•
21 Oct	: 1620LS: 0	0	8	0	90	0	35+	0	•	'	۱
TOTAL	20586870: + 1620LS: + 141480:+/-1.0 STROKE	TROKE								- • - • - • - •	• • • • • • • • • •

TABLE 10. CONTINUED

ACTUATOR NUMBER 2

PORT D	•		,	•		,	•			,
LEAKAGE E (MAX)		'	1	'		'	'	'	-	
2 (ROD) 1 PRESSURE B	-	'	'	'	1	1	'	'	-	1
S	0	0	0	0	0	0	0	0	0	0
END NUMB (END OF DAY CC : DRO	0	0	0	0	0	0	0	0	0	0
PORT	0	0	0	0	0	0	0	0	0	0
LEAKAGE RE (MAX)	0	0	0	0	0	0	0	0	0	0
PRESSURE	0	0	0	0	0	0	0	0	0	0
END NUMBER IND OF DAY)	0	0	0	0	TR	0	0	0	0	0
END NUMBER	0	0	O IATOR #1	0	0	0	0	0	0	0
FEEDBACK YCLES CUMUL	117000	470400	*: 474000 : 0 SEAL IN ACTUATOR	000096	*:1443600	*:1952400	*:2040000	#:2486250	3123750	3780000
ROTOR FEE	117000 *:	* :353400 *:	3600 *:	* 486000 *	483000 *:1		- 1	446250 #12	637500	656250
	*	*	D ROI	*	*	* - • - • · ·	**	. , = ,		
DATE 1980	25 Aug	26 Aug	27 Aug * 3600 REPLACED ROD END	28 Aug	29 Aug	2 Sept * :508800	3 Sept *#: 87600		4 Sept	5 Sept

* 10 Hertz # Change to negative load

TABLE 10. CONTINUED

Name Sept
9 Sept **: 10 Sept **: 11 Sept :: 12 Sept :: 14 Sept :: 15 Sept :: 16 Sept :: 17 Sept :: 18 Sept :: 19 Sept :: 10 Sept ::

Change to positive load Change to 16.0 Hertz Change to negative load * * *

TABLE 10. CONTINUED

The second secon

ACTUATOR NUMBER 2

1	PORT		· - · [<u>-</u>		 			
	AGE X) P([- 	• - • }	••••	}							
	LEAKAGE (MAX)			,	1	,		0		•	-	•
; ; ;	2 (ROD) PRESSURE	m	•	'	'			0		'	'	'
	E _	DROPS	•-•	0	0	0	0	0	0	T.	0	0
1 1 1	END NUMB	23	• - •	0	0	0	0	0	0	0	0	0
, i	<u>٠</u> ٠٠		•		• - •		}	•	}		• - • }	
וויייי	PORT		NO. 3	0	0	0	0	0	0	0	0	0
	LEAKAGE RE (MAX)	L)	AND ACT. NO.	0	0	0	0	0	0	0	0	0
	(LUG) LE PRESSURE	œ		0	0	0	0	0	0	0	0	0
	END NUMBER T	NROPS	ACT. N	0	0	0	0	0	0	0	0	0
		<i>├∙</i> ¦	· N	· · - •	• • • •	••-•					•-•	••-•
į	END	밁	EAL	0	0	0	0	0	0	0	0	0
	FEEDBACK CYCLES	CUMUL	ROD END	11338230	12210870	13065270	13914870	14679990	15511350	15828150	16197750	16576950
	ROTOR FI	DATLY	REPLACED	651840	872640		849600	765120	831360	316800	369600	379200
1		DATE 1980	22-24 Sept :REPLACED ROD END SEALS IN ACT. NO. 1	25 Sept	26 Sept	29 Sept ** :854400	30 Sept	1 Oct	2 Oct	3 Oct*	6 Oct	7 Oct
-	٠	- • - • -	!	!	!	!	[!	!	- • - • !	!	1

* Change to negative Load ** Change to positive Load

TABLE 10. CONTINUED

ACTUATOR NUMBER 2

, F		ROTOR	FEEDBACK VOLES	END	END NUMBER	1 (LUG) LE	LUG) LEAKAGE	PORT	END NUMBE	NUMBER	2 (ROD) LI	END NUMBER 2 (ROD) LEAKAGE	PORT
·	DATE 1980	DAILY	CUMUL		DROPS					DROPS	B		
	8 Oct	403200	16980150	0	0	0	0	0	0	0	•		
• •	9 Oct	412800	17392950	0	0	0	0	0	0	0	,		
	10 Oct	395520	17788470	0	0	0	0	0	0	0			
	13 Oct	398400	18186870	0	0	0	0	0	0	0	•	1	
	14 Oct	86400	18273270	0	0	0	0	0	0	0	,		
76	* *	86400	18359670	0	0	0	0	0	0	0	•		-
	15 Oct	456000	18815670	0	0	0	0	0	0	0	1		•
• -	16 Oct	441600	19257270	0	0	0	0	0	0	0		'	
	17 Oct	446400	19703670	0	0	0	0	0	0	0			

** Change to positive load

TABLE 10. CONTINUED

ACTUATOR NUMBER 2

ROTOR		FEEDBACK	END	END NUMBER T (LUG) LEAKAGE	1 (1.06)	LEAKAGE		GNE	NUMBER	2 (ROD	END NIMBER 2 (ROD) I FAKAGE	
	G	CYCLES	(END ((END OF DAY)	PRESSURE (MAX) PORT	RE (MAX.	PORT	(END OF	(END OF DAY) :PRESSURE	PRESSUI	RE (MAX)	PORT
UAIE	DAILY	CUMUL	၁၂	DROPS	8	اد	G.	23	TROPS	В		
20 Oct	446400	:20150070:	0	0	0	0	0	0	0			
21 Oct	436800	20586870	0	0	0	0	0	0	0			,
21 Oct		: 1620LS:	0	0	0	0	0	0	0			
TOTAL	20586870 + 1620LS											
	:+ 141480	:+ 141480:+/-1.0 STROKE	ROKE	- 		• - • - •			• - • -	• • • •	• • - • -	••-•-
						,	•	•	•	•	•	•

TABLE 10. CONTINUED

ACTUATOR NUMBER 3

11	ROTOR FI	FEEDBACK	END	END NUMBER	ו (בעה)	(LUG) LEAKAGE		END	TUMBER	2 (ROD)	LEAKAGE	
DATE	-L	YCLES CUMUL	CEND CC	OF DAY)	PRE SSUR B	PRESSURE (MAX)	70K	(E110 UF	DROPS	B B	KE (MAX)	
ļ								- • - •	- • - • 		- • - •	- • - •
	* 117000 *	117000	0	0	,	,	0	0	0		0	0
1	26 Aug * :353400 *	470400	0	0			0	0	0	1	0	0
··ō	27 Aug * 3600 * REPLACED ROD END SE/	*: 474000 : 0 : SEAL IN ACTUATOR #1	0 JATOR #	0 1	,	1	0	0	0	1	0	0
4	* :486000 *	000096	0	0		,	0	0	0		0	0
- • - • }	* :483000 *	*:1443600	0	TR	'	,	0	1.5	0		225	0
-•-•	2 Sept * :508800 *	*:1952400	0	┸		,	0	1.3	0	-	1500	0
- • - • j	3 Sept *#: 87600 *	*:2040000	0	0		,	0	0.7	0		1500	0
- • - • }	446250 #	#.2486250	0	0	'	,	0		0	1	1500	0
- › - • -	637500	3123750	0	0	,	,	0	0.0		1	1500	0
• • - •	.656250	3780000	0	0		'	0	11.0	0		1500	0

* 10 Hertz # Change to negative load

TABLE 10. CONTINUED

GE) PORT	0	0	0	0	0	0	0	0	0	0
OD) LEAKAGE URE (MAX)	1500	1500	1300	1300	1300	1300	1850	1850	No Data	No Data:
ER 2 (ROD) 1 1 PRESSURE PS: B	, 	•	}				,			
END NUMBER 2 (END OF DAY) :PR CC : DROPS:	0	19.25: 0	0	25: 0	0	5: 0	5: 0	0	0	0
PORT TEN	0 13.0		10.0	14.25	16.0	17.25	11.25	89	61.9	6
EAKAGE (MAX) P	٠-،					0	0			0
ACTUATOR NUMBER 3 R 1 (LUG) LEAKAGE J:PRESSURE (MAX) S:B C.	•	·	·	·}•.		-,}	<u>'</u>	·}.	· - -	
	0 0	· · -		· } }	· - · -		· · · -		· · · · ·	
	0	0	0	0	1	1	0		·}·-·	
FEEDBACK CVCLES CUMUL	4989750	5782710	6589110	7390710	8065590	8825910	9638070	10391670	10686390	
'	.1667500	792960	:806400	801600	*:674880	760320	:812160	753600	294720	4
DATE DATEY	9 Sept **:667500	10 Sept ##;792960	11 Sept	12 Sept	15 Sept *	16 Sept	17 Sept	18 Sept	1	
		<u>-1</u> .	=1.	12	79	16	-[-	2	. 19 Sept	

Change to positive load Change to 16.0 Hertz Change to negative load * * *

TABLE 10. CONTINUED

ACTUATOR NUMBER 3

}		ROTOR FE	FEEDBACK .	END	END NUMBER	1 (LUG)	(LUG) LEAKAGE	PORT	END NUMBE	10° L	2 (ROD)	LEAKAGE	PORT
• - • -	DATE	DATLY	COMOL	3	DROPS	8	u		22	12	8	1 1	ł '.
• - • - •	22-24 Sept : REPLACED ROD END SEALS IN ACT. NO. 1 AND ACT.	REPLACED	ROD END SE	EALS I	N ACT.	: NO. 1 AI		NO. 3	• - •				
1 ~ • - •	25 Sept	651840	11338230	0	0		-	0	0		1	0	0
	26 Sept	:872640	12210870:	0	TR		1	0	0	Ξ	1	0	0
!	29 Sept ** :854400		13065270	0	0			0	0	31	,	0	0
- • - • !	30 Sept	849600	13914870	0	0	1	'	0	0.4			0	0
80	1 Oct	765120	14679990	0	0			0	3.2		1	0	0
!	2 Oct	.831360	15511350	4.	0		'	Э	0.9			0	0
!	3 Oct *	316800	15828150	0	0	,	1	0	5.8		,	0	0
. • - • !	6 Oct	369600	16197750	0	0			0	1.2	0	,	9	0
· • • • ¹	7 Oct	379200	16576950	0	0			0	2.6	0	,	0	0
l													

Change to negative Load Change to positive Load * *

TO TO SEE

TABLE 10. CONTINUED

ACTUATOR NUMBER 3

,		ROTOR F	FEEDBACK CYCLES	END (END (END NUMBER	1 (LUG)	(LUG) LEAKAGE PRESSUPE (MAX)	PORT	END NUMBE		END NUMBER 2 (ROD) LO OF DAY) PRESSURE	LEAKAGE (MAX)	PORT:
	DATE 1980	DATLY	CUMUL	 	NROPS		D)		12	\sim	B	~ 1	E
	8 Oct	403200	16980150	0	0	,	1	0		0	1	0	0
	9 Oct	412800	17392950	0	0	1	,	0	3.55	0	1	0	0
	10 Oct	395520	117788470	0	0		,	Э	1.55	0	1	0	0
	13 Oct	398400	18186870	0	0	,		0	3.3	0	1	0	0
	14 Oct	86400	18273270	0	0			0	6.0	0		0	0
81	*	86400	18359670	0	0	1	,	0	,	1	'	0	0
	15 Oct	456000	13815670	0	0	,		0	0	e	1	0	0
	16 Oct	441600	19257270	0	0			0	1.2	0		0	0
	17 Oct	446400	19703670	0	0	,		0	1.2	0	•	0	0

** Change to positive load

TABLE 10. CONTINUED

ACTUATOR NUMBER 3

	: ROTOR F	Υ.	ENID	HUMBER	(50.7)	LEAKAGE			END NUMBER 2 (ROD) LEAKAGE	2 (ROD)	LEAKAS	-
DATE	CY DATLY	CYCLES	TEND (DE DAY)	PRESSUR B	CC : DROPS : B : T : D	PORT		(END OF DAY) PRESSURE (MAX) PORT	PRESSUP B	F TMAX	PORT
20 Oct	446400	20150070 0	0	0			0	0	10	1	0	0
21 Oct	436800	20586870: (0	0	1	- • - •	0	0,	0	1	0	0
21 Oct		1620LS: 0	0	5		. ,	0	0	5		0	0
TOTAL	20586870 + 1620LS + 141480	20586870 + 1620LS + 141480:+/-1.0 STROKE	ROKE :						- • - • - • • - •	- • - • - • - • - •		

TABLE 10. CONTINUED

ACTUATOR NUMBER 4

1	<u> [2]</u>	Ţ.,		·	· • • • • • • • • • • • • • • • • • • •	· · - · į	· · - · ·	· · · · · · · · · · · · · · · · · · ·	· - · -	· • • • • • • • • • • • • • • • • • • •	Ī	
1	GE) PORT		0	0	0	0	0		0		0	
1 1 1	LEAKAGE	>	0	0	0	0	0	0	0	0	0	0
,	2 (ROD) PRESSURE	٥	'	,	1	,	,	'	,	'	,	
1	END NUMBER 2 ID OF DAY) :PR	ONO.	0	0	0	0	0	0	0	0	0	0
	END (END OF	3	0	0	0	0	0	0	0	0	0	0
1	P00PT	- -	0	0	0	0	0	0	0	0	0	0
	LEAKAGE RE (MAX)	 ع	0	0	0	0	0	0	0	0	0	0
	(LUG) L PRESSURE				. • - • - •		- • - •					1
	F-		0	0	0	0	TR	0	0	0	0	0
1 1	(END OF DAY)		0	0	0 ATOR #1	0	0		0	0		0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FEEDBACK YCLES	COMOL	117000	470400	*: 474000 : 0 SEAL IN ACTUATOR	000096	*:1443600	*:1952400	*:2040000	#:2486250	3123750	3780000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1~PL	DAILT	117000 *:	353400 *		* 00098	* :483000 *:1		1	446250 #:2	637500	:656250
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- · - · -	1980	25 Aug * :1	26 Aug * 353400	27 Aug * 3600 REPLACED ROD END	28 Aug * :486000	29 Aug * 4	2 Sept * :508800	3 Sept *#: 87600	4:	4 Sept :6	5 Sept :6
-'-	ا	٠	- !	!	· · - · - ·	!	ا . ـ . ا		!	!	!	'

* 10 Hertz # Change to negative load

TABLE 10. CONTINUED

The second second second

ACTUATOR NUMBER 4

E PORT		0	0	0	0	0	0	0	0	0	- · · -
(MAX)	<u>'</u> اد	0	0	0	0	0	0	0	0	0	-•- -
2 (ROD) L	<u> </u>	•		1						1	- - -
ICC I	DROPS	0	0	0	0	0	0	0	0	0	-•- -
END N (END OF	! 3	0	0	0	0	0	0	0	0	0	- . -
7 40 d	- -	0	0	0	0	0	0	0	0	0	- . -
(MAX)	۔ ا ا	0	0	0	0	0	0	0	0	0	-•- c
UG) SSUR	 	•-•		' '	' -	•			• - • •		•
	nROPS	0	0	0	0	0	0	0	0	0	- . -
END N (END OF		0	0	0	0	0	0	0	0	0	··-
	CUMUL	4322250	4989750	5782710	6589110	7390710	8065590	8825910:	9638070	10391670.	106863901
1-101	IMILY	542250			806400	. 801600	674880	760320	812160	753600	1294720
 	DAIL	8 Sept	9 Sept **:667500	10 Sept ##!792960	ll Sept	12 Sept	15 Sept *:674880	16 Sept	17 Sept	18 Sept	19 Sent
· · · · ·				!			84	!			 •

** Change to positive load
Change to 16.0 Hertz
* Change to negative load

TABLE 10. CONTINUED

ACTUATOR NUMBER 4

SE) PORT		0	0	0	0	0	0	0	0	0
LEAKAGE (MAX)		0	0	0	0	0	0	0	0	0
END NUMBER 2 (ROD) 10 OF DAY) :PRESSURE 10 NROPS: B		,	1		1	1		•	•	•
12 K	•-•}	0	0	0	0	0	0	0	0	0
CEND NUMBE	•	0	0	0	0	0	0	0	0	0
Pript	NO. 3	0	0	0	0	0	0	0	0	0
E (MAX)	ACT.	0	0	0	0	0	0	0	0	0
(LUG) L PRESSURE	NO. 1 AND	•-•	1				• • • •			•-•
	IN ACT. NO	0	0	0	0	0	0	0	0	0
END NUMBER (END OF DAY) CC NROPS	SEALS IN	0	0	0	0	0	0	0	0	0
ACK MUL	ROD END SE	11338230	12210870:	13065270	13914870.	14679990	.15511350:	15828150	16197750	16576950
ROTOR FEEDB CYCLES DATLY CU		651840	872640		849600	765120	831360	316800	369600	379200
PATE 1980	22-24 Sept : REPLACED	25 Sept	26 Sept	29 Sept ** :85440C	30 Sept	l Oct	2 Oct	3 Oct *	6 Oct	7 Oct

* Change to negative Load** Change to positive Load

TABLE 10. CONTINUED

ACTUATOR NUMBER 4

MUL CC DROPS B C D CC DROPS B C 80150 0 0 0 0 0 0 - 0 92950 0 0 - 0 0 0 - 0 88470 0 0 - 0 0 0 - 0 73270 0 0 - 0 0 0 - 0 59670 0 0 - 0 0 0 - 0 15670 0 - 0 0 0 - 0 57270 0 - 0 0 0 - 0 65770 0 - 0 0 0 - 0 57270 0 - 0 0 0 0 - 0 603670 0 - 0 0 0	F • -	ROTOR	1 F.	FEEDBACK	END	END NUMBER	1 (LUG) LE	LEAKAGE	PUBT	END TEND	NUMBER	END NUMBER 2 (ROD) I	LEAKAGE	SE PART
8 Oct 403200 16980150 0 0 - 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0	- - •	DATE	DATLY	CUMUL	5 I I	DROPS	B		~ L ~ '	33	. K	B		. 1 .
8 Oct 403200 16980150; 0 0 - 0 0 0 - 9 Oct 412800 17392950; 0 0 - 0 0 0 0 - 10 Oct 395520 17788470; 0 0 - 0 0 0 0 - 13 Oct 398400 18186870; 0 0 - 0 0 0 0 - 14 Oct 86400 18273270; 0 0 - 0 0 0 0 - 15 Oct 456000 18815670; 0 0 - 0 0 0 0 0 - 16 Oct 441600 19257270; 0 0 - 0 0 0 0 0 - 17 Oct 446400 19703670; 0 0 - 0 0 0 0 0 0 -		1980		- • -			- • -	- • -						
9 Oct 412800 17392950 0 0 0 - 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0	- 	8 Oct	403200	16980150	0	0		0	0	0	0	,	0	0
10 Oct 395520 17788470 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- • - • -	9 Oct	412800	17392950	0	0	,	0	0	0	0	,	0	0
13 Oct 398400 18186870 0 0 - 0 0 0 0 - 14 Oct 86400 18273270 0 0 - 0 0 0 0 - 15 Oct 456000 18815670 0 0 - 0 0 0 - - 16 Oct 441600 19257270 0 0 - 0 0 0 0 - 17 Oct 446400 19703670 0 0 - 0 0 0 0 -	• -	10 Oct	395520	17788470		0		0	0	0	0		0	0
14 Oct 86400 18273270 0 0 - 0 0 0 0 - ** 86400 18359670 0 0 - 0 0 0 0 - 15 Oct 456000 18815670 0 0 - 0 0 0 0 - 16 Oct 441600 19257270 0 0 - 0 0 0 0 - 17 Oct 446400 19703670 0 0 - 0 0 0 0 -		13 Oct	398400	18186870	0	0		0	0	0	0		0	0
** 86400 18359670 0 0 - 0 0 0 0 0 - 1 15 0ct 456000 18815670 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		14 Oct	86400	18273270	0	0		0	0	0	0		0	0
456000 [18815670] 0 0 0 0 0 0 0 0 - 441600 [19703670] 0 0 - 0 0 0 0 -	86	*	86400	18359670	0	0		0	0	0	0	1	0	0
441600 :19257270: 0 0 0 - 0 0 0 - 446400 :19703670: 0 0 0 - 0 0 0 -		15 Oct	456000	18815670	0	0	1	0	0	0	0	,	0	0
446400 19703670: 0		16 Oct	441600	19257270		0		0	0	0	0		0	0
		17 Oct	446400	19703670		0		0	0	0	0	1	0	0

** Change to positive load

TABLE 10. CONTINUED

ACTUATOR NUMBER 4

30108	: 1~	FFFDBACK	FND	NUMBER	T (LUG) LEAKAGE	LEAKAGE		END	END NUMBER 2 (ROD) LEAKAGE	2 (ROD)	LEAKAG	
• -	À	 1	(FND)	(FND OF DAY)	PRESSURE (MAX) PORT	E (MAX)	PORT	E	DAY)	PRESSUR	E (MAX)	PORT.
DATE	DATLY	H	55	DROPS	В	C	c		DROPS	ല	اد	
20 Oct	446400	446400 ;20150070; 0	0	0		0	0	0	0		0	0
21 Oct	436800	436800 ;20586870; 0	0	0	'	0	0	0	0	•	0	0
21 0ct		1620LS: 0	0	0		0	0	0	0		0	0
TOTAL	120586870	}						- • - • - •		- • - • - •		. • - • - •
	+ 141480:	.80:+/-1.0 STROKE	ROKE					• - •				

TABLE 10. CONTINUED

ACTUATOR NUMBER 5

ROTOR	DATE DATE	25 Aug * :11	26 Aug * 35.	27 Aug * : REPLACED ROD !	28 Aug * :486000	29 Aug * :483000	2 Sept * :508800	3 Sept *#: 87600	44.	4 Sept :63	5 Sept :650
	DATLY	117000 *	353400 *	3600 ×	* 0009	Į.	- 1	1	446250 #	637500	656250
R FEEDBACK CYCLES	CUMUL	117000	470400	*: 474000 : 0 SEAL IN ACTUATOR	000096	*:1443600	*:1952400	*:2040060	#.2486250	3123750	3780000
END C	2	0	0	0 JATOR #	0	0	0	0	0	0	0
END NUMBER ND OF DAY)	DROPS	0	0	0	0	0	0	0	0	0	0
1 (LUG) LE PRESSURE	<u>ω</u>			1	ا		,	1	'		
LEAKAGE RE (MAX)	υ	96	06	06	90	90	90	90	90	90	06
PORT		•		•	ı			ı			,
END NUMBE	ස ස	0	0	0	0	0	0	0	0	0	0
<u>~</u> _	DROPS	0	0	0	0	0	0	0	0	0	0
2 (POD) L PRESSURE	B		,	1	1	,	,		,	,	,
LEAKAGE	ادا	0	0	0	0	0	0	0	0	0	0
PORT		•		•	.	•					

^{* 10} Hertz * Change to negative load

TABLE 10. CONTINUED

The second secon

ACTUATOR NUMBER 5

** Change to positive load
Change to 16.0 Hertz
* Change to negative load

TABLE 10. CONTINUED

ACTUATOR NUMBER 5

ļ	ROTOR		FEEDBACK	FND	END NUMBER	T (LUG) LE	LEAKAGE	PART	FND OF	END NUMBER 2	2 (ROD)) LEAKAGE	E POPT
•	DATE	DATEY	CUMUL		DROPS	В		, ,	22	: NROPS	•	\square	۵
_ · ·	1980	- • -					- • - ·		- • - ·		-•-	_ • _ •	- • - ·
•	22-24 Sept REPLACED ROD END	REPLACED		EALS]	SEALS IN ACT.	NO. 1 AN	AND ACT.	NO. 3					
- · - · ·	25 Sept	651840	11338230	0	0		06		0	0		0	,
	26 Sept	872640	12210870	0	0	'	06	1	0	0	1	0	
•	29 Sept ** :854400	854400	13065270	0	0		06	,	0	0		0	,
- · - •	30 Sept	849600	13914870	0	0		96	,	0	0		0	
90	1 Oct	765120	14679990	0	0		06	1	0	0	1	0	
	2 Oct	.831360	15511350	0	0		96	,	0	0		0	
	3 Oct *	316800	15828150	0	0		96	-	0	0		0	
	6 Oct	369600	16197750	0	0	1	06		0	0		0	0

Change to negative Load Change to positive Load * *

TABLE 10. CONTINUED

ACTUATOR NUMBER 5

	ROTOR F	FEEDBACK CYCLES	END (END NUMBER (END OF DAY)	T (LUG) LE	LEAKAGE	PORT	END (END OF	END NUMBER 2 ID OF DAY) PR	2 (ROD) PRESSURE) LEAKAGE RE (MAX)	E PORT
DATE 1980	DATLY	CUMUL	8	DROPS	B	, w		23	[2]	<u>α</u>	U L	<u> </u>
7 Oct	379200	16576950	0	0	'	90	•	0	0	,	0	0
8 Oct	403200	16980150	0	0	,	06		0	0	,	0	0
9 Oct	412800	17392950	0	0		90	1	0	0	•	0	0
10 Oct	395520	17788470	0	0		06		0	0	,	0	0
13 Oct	398400	18186870	0	0		06	,	0	0	1	0	0
14 Oct	86400	18273270	0	0	'	90		0	0	,	0	0
* *	86400	18359670	0	0	1	6	1	0	0	1	0	0
15 Oct	456000	18815670	0	0		6		0	0	,	0	
16 Oct	441600	19257270	0	0		06	•	0	0	'	0	
17 Oct	446400	19703670	0	0	'	90		0	0		0	0

** Change to positive load

TABLE 10. CONTINUED

ACTUATOR NUMBER 5

	T BOTOB E	CEENBACK	END	FND NIMBER 7 (1.11G) LEAKAGE	(1)(1)	LEAKAGE		END	NUMBER	END NUMBER 2 (ROD) LEAKAGF	LEAKAG	
• -	KO I OR	CYCLES	END	(END OF MAY) PRESSURE (MAX) PORT	PRESSUR	RE (MAX)	PORT	(END OF	DAY)	(END OF DAY) PRESSURE (MAX) PORT	E (MAX)	PORT
DATE	DATLY	COMOL	22	: DROPS	æ	اں	۵	22	DROPS	2	اد	
20 Oct	446400	00 :20150070: (0	0		96	•	0	0		0	· - · [
21 0c+	436800	436800 20586870	0	0		06	1	0	0		0	· - ·
21 00+		16201 5. 0	0	0		66		0	0		0	
1014	20586870	ļ										
	+ 1620LS + 141480	1.S: 180:+/-1.0 STROKE	ROKE									

TABLE 10. CONTINUED

ACTUATOR NUMBER 6

1	PORT				,			,	,]		
1	AGE X) P					}	• - • }	• }	• - • }	}		
1	LEAKAGE	د اد	0	0	0	0	0	0	0	0	0	0
,	2 (ROD) PRESSURE	6 2	0	0	0	0	0	0	0	0	0	0
	NUMBE P	DROPS	0	0	0	0	0	0	0	0	0	0
1 1 1 1	END I	2	0	0	0	0	0	0	0	0	0	0
1	PORT		'		,	1	'	•	1	,		
1 1 1 1	LEAKAGE (RE (MAX)	U	06	96	06	06	06	06	90	96	06	96
1 1 1	(LUG) LE PRESSURE	m	1		1		1	1	1			1
* + * + * 1 1 1	END NUMBER 1	DROPS	0	0	0	0	0	0	0	0	0	0
1 1 3	END I	23	0	0	0 ATOR #1	0	0	0	0	0	0	0
1 1 1 1 1 1 1 1 1 1	FEEDBACK :	CUMUL	117000	470400	474000 : 0 L IN ACTUATOR	000096	*:1443600	*:1952400	*.2040000	#:2486250	3123750	3780000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ROTOR FE	DATLY	117000 *	353400 *	3600 *:	* :486000 *:	* 483000 *:	i	- 1	446250 #	637500	656250
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	} • '~ •	DATE 1980	25 Aug * 1	26 Aug *	27 Aug * 3600 REPLACED ROD END	28 Aug * 14	29 Aug * 14	2 Sept * :508800	3 Sept *#: 87600	7	4 Sept	5 Sept :6
-'		!		!	- • - • - •	!	• '	! 33	· • - • !	- • - • !	- • - • •	!

* 10 Hertz # Change to negative load

TABLE 10. CONTINUED

ACTUATOR NUMBER 6

:	1 10	<u> </u>	Ī			Ī	[·	Ī	١١	·ī	
į	SE DODT				<u>'</u>	<u>'</u>	ا' ا ا	<u>'</u>				
1	LEAKAG	¥ 1	0	0	0	0	0	0	0	0	0	0
1 1 1	2 (ROD) L	B	0	0	0	0	0	0	0	0	0	0
1 1	1941	_ K'1	0	0	0	0	0	0	0	0	0	0
1 1	END NUMBE	בננות מ	0	0	0	0	0	0	0	0	0	0
; ; ; ;	<u> </u>	•-•			•-•	- • - • }		'	1		1	•
יייייייייייייייייייייייייייייייייייייי	AKAGE	L L	06	90	06	06	06	06	06	06	06	06
ACTUALOR NOMBER O	(LUG) LEAKAGE	B				• • • •	· • - •		1	'	••••	'
AC I		-10	0	0	0	0	0	0	0	0	0	0
	END N	CC : DROP	0	0	0	0	0	0	0	0	0	0
	EDBACK	CUMUL	4322250	4989750	5782710	6589110	7390710	8065590	8825910	9638070	10391670	10686390
	ROTOR FEEDBACK	DATLY CU	542250			806400	801600	674880	760320	812160	753600	294720
		DATE	8 Sept	9 Sept **:667500	10 Sept ##:792960	Sept	12 Sept	15 Sept *:674880	16 Sept	17 Sept	18 Sept	19 Sept
-	i.l.	[!	!			!		!	!		

Change to positive load Change to 16.0 Hertz Change to negative load * # *

TABLE 10. CONTINUED

ACTUATOR NUMBER 6

CUMUL CC DROPS B C D CC DROPS B COD END SEALS IN ACT. NO. 1 AND ACT. NO. 3 C210870 0 - 90 - 0 0 0 2210870 0 0 - 90 - 0 0 0 3065270 0 0 - 90 - 0 0 0 4679990 0 0 - 90 - 0 0 0 5511350 0 0 - 90 - 0 0 0 6197750 0 0 - 90 - 0 0 0 6197750 0 0 - 90 - 0 0 0 6676950 0 0 - 90 - 0 0 0		ROTOR FEE	DBACK	END	END NUMBER 1	TOUC) LE	(LUG) LEAKAGE	PART	TEND I	NUMBER NAV	END NUMBER 2 (ROD)	LEAKAGE	E PABT
ED ROD END SEALS IN ACT. NO. 1 AND ACT. NO. 3 11338230 0 0 - 90 - 0 0 0 0 12210870 0 0 - 90 - 0 0 0 13914870 0 0 - 90 - 0 0 0 14679990 0 0 - 90 - 0 0 0 15511350 0 0 - 90 - 0 0 0 15828150 0 0 - 90 - 0 0 0 1 6197750 0 0 - 90 - 0 0 0 1 16576950 0 0 - 90 - 0 0 0	1	DATLY	COMOL		DROPS	B		,		DROPS	E	1 1	
11338230: 0 0 - 90 - 0 0 0 0 112210870: 0 0 - 90 - 0 0 0 0 113065270: 0 0 - 90 - 0 0 0 0 113914870: 0 0 - 90 - 0 0 0 0 114679990: 0 0 - 90 - 0 0 0 0 15511350: 0 0 - 90 - 0 0 0 0 16576950: 0 0 - 90 - 0 0 0 0 0 0 0 - 90 - 0 0 0 0 15511350: 0 0 - 90 - 0 0 0 0 0 0 0 - 90 - 0 0 0 0 0 0 -	إبد	REPLACED		EALS I				NO. 3					
12210870: 0 0 - 90 - 0 0 0 0 13065270: 0 0 - 90 - 0 0 0 0 13914870: 0 0 - 90 - 0 0 0 0 14679990: 0 0 - 90 - 0 0 0 15511350: 0 0 - 90 - 0 0 0 16828150: 0 0 - 90 - 0 0 0 16576950: 0 0 - 90 - 0 0 0	1	:651840	11338230	0	0		96		0	0	0	0	•
13065270: 0 0 - 90 - 0	1	:872640	12210870	0	0		06	•	0	0	0	0	-
13914870: 0 0 - 90 - 0 0 0 0 14679990: 0 0 - 90 - 0 0 0 0 15511350: 0 0 - 90 - 0 0 0 15828150: 0 0 - 90 - 0 0 0 16576950: 0 0 - 90 - 0 0 0	*	- (.13065270	0	0		06		0	0	0	0	
14679990: 0 0 - 90 - 0 0 0 0 15511350: 0 0 - 90 - 0 0 0 15828150: 0 0 - 90 - 0 0 0 16197750: 0 0 - 90 - 0 0 0 0 16576950: 0 0 - 90 - 0 0 0			13914870	0	0		06	-	0	0	0	0	•
15511350: 0 0 - 90 - 0 0 0 0 15828150: 0 0 - 90 - 0 0 0 0 16197750: 0 0 - 90 - 0 0 0 0 16576950: 0 0 - 90 - 0 0 0	ļ	j	14679990	0	0		06	1	0	0	0	0	,
15828150: 0 0 - 90 - 0 0 0 0: 16197750: 0 0 - 90 - 0 0 0 0: 16576950: 0 0 - 90 - 0 0 0	ļ	Į.	15511350	0	0		90	-	0	0	0	0	,
16197750: 0 0 0 0 0 0 16576950: 0 0 0 0 0 0 0		316800	15828150	0	0		90		0	0	0	0	1
16576950; 0 ; 0 ; - ; 90 ; - ; 0 ; 0 ; 0 ;	,		16197750	0	0		90	-	0	0	0	0	•
			16576950	0	0		06	•	0	0	0	0	-

Change to negative LoadChange to positive Load

TABLE 10. CONTINUED

ACTUATOR NUMBER 6

-	ROTOR FI	FEEDBACK .	END	END NUMBER	1 (106)	1. 7.1	17.00	GNB	END NUMBER 2	2 (ROD		3.E
DATE	DATLY	CUMUL	ON LO	DROPS	PRESSURE B	(E (MAX)	z z	CC CC	DROPS	MESSUM B	T (MAX	- LOX
086	- • <i>-</i> •	- • - •				· • • •						
8 Oct	403200	:16980150:	0	0		96		0	0	2	0	
9 Oct	412800	17392950	0	0	-	90	1	0	0	0	0	,
10 Oct	395520	17788470	0	0	-	90	1	0	Э	0	0	,
13 Oct	398400	18186870	0	0		90	,	9	0	0	0	
14 Oct	86400	18273270	0	0	,	96	,	0	0	0	0	
*	86400	18359670	0	0	,	06	1	0	0	0	0	
15 Oct	455000	18815670	0	0		06	1	0	0	0	0	
16 Oct	441600	19257270	0	0	,	06		0	0	0	0	
17 Oct	446400	19703670	0	0		06		5	ס	0	0	;

** Change to positive load

VOUGHT CORP DALLAS TX HYDRAULIC SYSTEM SEAL DEVELOPMENT.(U) JUN 81 K E WHITFILL F/G 1/3 AD-A103 201 DAAK51-78-C-0028 USAAVRADCOM-TR-81-D-17 NL UNCLASSIFIED 20F4 46F4 153207

TABLE 10. CONTINUED

ACTUATOR NUMBER 6

The second secon

1 0 0 0 0 0 (END OF DAY) 0 0 0 0 0 0 PORT END NUMBER 1 (LUG) LEAKAGE (ND OF DAY) PRESSURE (MAX) 90 96 90 (END OF DAY) 0 0 0 :20586870: :+ 1620LS: :+ 141480:+/-1.0 STROKE 0 0 446400 :20150070: 436800 :20586870: 162015 CYCLES Y : CUMUL DATLY 21 Oct 20 Oct DATE 2] Oct TOTAL

TABLE 11. UNPRESSURIZED FRICTION OF TASK III SEALS

FRICTION LB	19.0	19.9	15.2	16.0	10.4	24.6
RETRACT	16.2	10.0	19.2	18.8	22.0	26.8
	25 92	5 5	15	16	10	24 26
AVG. RUNNING	19.6	21.0	15.4	18.8	9.2	27.0
EXTEND	17.8		19.6	20.2	19.8	27.2
FRICTION LB	27.1	28.6	27.0	26.8	16.8	39.5
RETRACT	22.1	15.5	36.3	40.8	38.6	42.5
AVG. BREAKOUT	33.7	35.5	29.6	33.8	17.2	44.8
EXTEND	24.2	17.0	37.2	43.6	36.4	41.4
ROD END	×	×	×	×	×	×
LUG	×	×	×	×	×	×
ACTUATOR NUMBER	_	5	т	4	S	9

7 B

FIGURE 8. PRESSURIZED FRICTION OF TASK III SEALS

12.4

FIGURE 9. TASK III SEAL LEAKAGE

FIGURE 10. COMPARISON OF SEAL FAILURES BY STAGE

FIGURE 11. COMPARISON OF VENTED AND UNVENTED SEAL FAILURES

CONCLUSIONS

SURFACE FINISH

The Task III test has shown that plastic seals have good leakage performance when the surface finish is better than the 8-16 RMS finish that is usually specified for elastomeric seals. The rods used in the Task III test had surface finishes that ranged from 2 RMS to 6 RMS at the start of the test. After 25×10^{0} cycles, with daily applications of Arizona coarse road dust directly onto the rods, the surface finishes were in the range of 2 RMS to 12 RMS. The leakage of the seals on these rods during a 1620 long stroke (+/-1.75 in.) test at the end of the Task III test varied from zero leakage for 8 seals to a maximum of 1 drop per 324 cycles.

MATERIALS

The Task III test has also shown the importance of selecting a seal material that has good wear resistance and is not abrasive. The glass-filled materials used in Task II were almost all deleted from the Task III tests since they showed rod abrasion on the chromium plated rods during only 2 x 10^6 cycles. The Shamban backup rings and one of the Double Delta seals were changed from a material that had 15% glass to the same material with no glass to reduce abrasiveness. The new material, Shamban Composition 19, showed very good results in all except scraper applications although there was some liberation of MoS2. The Conover backup rings were changed from Revonoc 18158 to Revonoc 6200 to improve wear resistance. The Revonoc 6200 material showed very good results in all applications.

The Ekanol-filled TFE used in the Greene Tweed Enercap and the polymer-filled Tetrafluor Maxi Flex seal did not provide adequate life. The Enercap seal failed during the rotor feedback tests and the Maxi Flex seal was on the verge of failure at the end of the test.

The only glass-filled TFE in the Task III test was the single-stage Double Delta seal in Actuator No. 1, rod end. This seal, which used 15% glass and was tested on a Tungsten Carbide rod, was the first seal to fail in the test.

Most of the elastomers used in this test were 0-rings per M83461/1-XXX, or specially shaped elastomers per MIL-P-83461. These elastomers performed well in this test. The 0-ring used with the Dowty scraper was a proprietary compound that took a severe permanent set. The proprietary nitrile elastomer used with the Hercules scraper performed well in this test. The addition of aluminum bronze inserts in both ends of each actuator was apparently beneficial. Although there was some evidence of hard contact between the actuator rods and the end caps in some of the actuators, as shown by wearing away of the aluminum bronze, there were no failures of the chrome plating on the rod as had been the case in the Task II test.

ROD COATINGS

The rod coatings tested in this program were Chromium plating and Tungsten Carbide which were applied by a detonation gun. The Chromium plated rods, used with aluminum bronze bearing surfaces, gave the lowest leakage and the longest seal life if the seal material was not abrasive. The Tungsten Carbide coated rod was almost indestructible, but every seal that was tested on the Tungsten Carbide coated rod for any length of time failed by excessive wear. The rods were examined with a 40X microscope and the Tungsten Carbide coating appeared to be significantly smoother than the Chromium plating. Since the measured surface roughness on the Tungsten Carbide coating was the same as the measured surface roughness on some of the Chromium plated rods, the seal failures may be caused by a lack of "wetability" on the part of the Tungsten Carbide coating.

VENTED AND UNVENTED SEALS

Vented and unvented seals were tested during this program. The vented seal installations had a slightly higher failure rate than the unvented seal installations, as shown in Figure 11, but there was only one failure of each type, so the failure rate is somewhat misleading. Pressure buildup between stages in unvented installations was infrequent and sporadic. The maximum pressure observed between stages was 50% of the system pressure. There was no evidence of seal damage caused by pressure buildup between stages. Based upon the data from this test, it is not necessary to vent the cavity between seals in an actuator if the seal installations are self venting or protected by a backup ring on the upstream side. This type of installation is exemplified by the two-stage seal on the rod end of Actuator No. 4 in Figure 9. The 1st-stage seal has backup rings on both sides of the Plus Seal.

SINGLE-STAGE VERSUS MULTI-STAGE SEALS

The advantage of multi-stage seals over single-stage seals has been clearly demonstrated by this test. The failure pattern of multi-stage seals in the Task III test has shown that the seal exposed to high pressure will have the most wear. The inside seal will fail and pressure will be applied to the next stage seal, which will fail and so on. This type of failure was demonstrated by the two-stage seal in the rod end of Actuator No. 3. The inside stage failed at 5,561,850 endurance plus 1,443,600 Rotor Feedback cycles; the second-stage did not fail until 5,561,850 endurance plus 10,391,670 Rotor Feedback cycles. The life increase from 7,005,450 cycles to 15,953,520 cycles shows a 127% increase in life that can be attributed to the addition of a second-stage seal.

Since none of the three- or four-stage seals tested in Task III failed, the further proof of this failure pattern was not as complete as desired, but the wear on the seals did provide supporting evidence. If the before and after dimensions of the Shamban backup rings on the downstream side are added and are averaged for the 1st-stage, 2ng-stage

and third-stage seals (no BU used in 4th stage), the change in ID is as shown below

	<u>1st Stage</u>	2nd Stage	3rd Stage	4th Stage
Delta I.D.	.01192	.00185	.0024	.0139

This data indicates that the 1st stage has experienced significantly more wear than the 2nd and third stages, which are almost equal. The fourth stage data, which represents scraper 10 change instead of backup ring ID change, shows the most change, but this stage was exposed to daily applications of Arizona coarse road dust and more wear would be expected there.

The additional life provided by the multi-stage seals can also be seen in the failure data for the seals in the Task II and Task III tests as shown below.

No.	No. o	f Samples_	No. of	Failures	- F	ailures
Of Stages	Task II	Task III	Task II	Task III	Task II	Task III
1	3	3	2	1*	66.7	33.3
2	7	5	1	1	14.3	20
3	2	2	0**	0	0	0
4	0	2	0	0	0	0

- * One single-stage seal was on the verge of failure, but it did not fail during the test.
- ** The outer stage of one three-stage seal failed, but if the return line had a check valve installed, there would have been no system leakage.

The multiple stage installations have been much more reliable than the single-stage installations tested. The improvements in rod finish, rod clearances, groove angle, and seal materials have combined so favorably that it appears possible to design and build a hydraulic actuator that will last the life of the helicopter without removals due to leakage. A slight weight and cost penalty is exacted for these benefits, but the reduction in downtime and overhaul costs would be significant.

RECOMMENDATIONS

Based on the results of this effort, it is recommended that:

ROD SEALS

- 1. Rod seals in all new hydraulic actuators have a minimum of two unvented seals. If the actuator is to be used with a manual reversion system, vented seals should be used. If life, or leakage requirements are severe, three or more seals should be used. The space between seal stages should have a "catch basin" for wear particles.
- 2. The surface finish on rods for plastic seals be in the 2-8 RMS range. The rod surface should be ground in accordance with Process Specification 208-1-7 (Appendix B) or equivalent.
- 3. The end cap material that contacts the rod be relatively soft like the aluminum bronze used in this test.
- 4. Rod to bore clearances be reduced from those specified in MIL-G-5514 to prevent seal extrusion. The diametral rod-bore clearance specified for this test and recommended for future use is .001 .003 inch.
- 5. The sides of the 0-ring grooves be as near perpendicular to the rod as is economically possible. The sides of the 0-ring grooves in this test were perpendicular to the rod within $\pm 1/2^\circ$.
- 6. The edge of the 0-ring groove be sharper than the .005-inch minimum break specified in MIL-G-5514 to help prevent extrusion. The minimum edge break specified for the test was .002 inch.
- 7. Plastic Seals be made from a nonabrasive material. Conover's Revonoc 6200 and Shamban's Compositions 19 and 99 have proven to be both nonabrasive and wear resistant. All plastic seals should have a positive interference with the rod. The seals in this test had positive interference with the rod of from .004 to .014 inch. Recommended seals are shown in Table 12. All seals should be used with backup rings.
- 8. Backup rings be uncut and of the same material as the plastic seal. The backup rings should be installed as shown in Figure 12. The outside seal should have both backup rings on the outside. The inside seals should have a backup ring on each side. If the Con-O-Hex seal is used, the triangular backup ring takes the place of one regular backup ring. All backup rings should have a positive interference with the rod. The trapezoid backup ring is recommended for use with O-rings.

9. 0-rings always be the "dynamic" size, and be the largest cross-section possible. The .070 inch cross-section 0-ring, or its equivalent in another seal, should never be used since this size seal takes too much compression set. 0-ring squeeze should be 5% minimum except that the groove should not be so shallow that the backup ring will be mashed when the rod is against the side of the bore. 0-ring squeeze should always be calculated using the worst possible combination of 0-ring cross-section and stretch, rod bore, rod size and groove size. If worst-case conditions are used to assure proper squeeze, some wear can occur without causing leakage. The 0-rings used in this test were almost exclusively .139 inch cross-section, but one .210-inch cross-section 0-ring was used with Maxi-Flex seal.

The O-ring material should be per MIL-P-83461 if hydraulic fluid per MIL-H-5606 or MIL-H-83282 is used.

SCRAPERS

THE PROPERTY OF THE PROPERTY O

1. Plastic scrapers be used rather than metallic scrapers. The plastic scrapers produced less rod wear and provide better dirt exclusion than the metallic scrapers.

Scrapers must have a positive interference with the rod and with the scraper groove inside diameter at all operating temperatures so that contamination cannot enter the actuator. All of the plastic scrapers tested met this requirement when new, but the Conover scraper was the only scraper that met this requirement at the end of the test.

It is desirable to have a scraper that can also act as a seal. The Conover scraper and the Shamban D. C. Excluder both provided this service.

QUALIFICATION TESTS

1. All future actuator qualification tests for Helicopter Rotor Control Actuators include a realistic Rotor Feedback Test. The Rotor Feedback Cycles and Endurance Cycles should be applied in blocks of cycles at realistic operating temperatures. Each block of cycles should be followed by a full stroke test, preferably 1000 cycles, at $80^{\circ}F$ +/- $20^{\circ}F$ to show useable leakage data. It would be desirable to perform a 5-cycle test at low temperature, - $40^{\circ}F$ or - $65^{\circ}F$, depending upon the fluid chosen, at the end of each block of cycles. Measurable leakage during any of these tests should be considered to be a failure of the actuator.

ADDIT!ONAL TESTS

1. Additional multiple seal tests be performed under the conditions stated above until all seals in the test fail, so that the true value of the multiple-stage seal can be demonstrated. This type of testing should concentrate on a single-seal design in any given test so that the increased life/stage can be measured.

2. Additional scraper tests be performed with all competing scrapers designed to fit a standard groove. At the present time many vendors use unique groove and test costs increase with each nonstandard groove required. Scrapers should be tested at realistic operating temperatures and must be tested in a setup that will allow measurement of the quantity of contaminant that bypasses the scraper.

Pressure

Two Stage

Three Stage

Four Stage

FIGURE 12. RECOMMENDED INSTALLATION OF BACKUP RINGS

	TABLE 12. RECOI	111ENDED SEALS	
	Name	Manufacturer	Material
Press.	Con-0-Hex	C. E. Conover	Revonoc 6200
	Trapezoid Seal	C. E. Conover	Revonoc 6200
	Plus Seal	W. S. Shamban	Comp 19
	Double Delta with 1183461/ 1-XXX O-ring	W. S. Shamb an	Comp 19
	Hat Seal	W. S. Shamban	Comp 19
	Maxi-Flex* with M83461/ 1-XXX O-ring	Tetrafluor	Tetralon 720

^{*} Requires a two-piece groove

APPENDIX A TASK I DATA

TABLE A.1. SEAL EVALUATION PARAMETERS

SEALING

Sealing - Predictable, uniform, high- and low-pressure sealing, static and/or dynamic.

Excellent - One or more continuous elastomer sealing surfaces in contact with the rod surface.

Average - One or more Teflon or other non-elastomer continuous sealing surface in contact with the rod surface.

Poor - One or more interrupted sealing surface in contact with the rod surface.

JUSTIFICATION - The principal purpose of the program is to prevent leakage.

WEAR

Wear - Are the materials wear resistant yet nonabrasive.

Excellent - No elastomer exposed to high pressure is in contact with the rod. Not abrasive.

Average - Elastomer is exposed to high pressure and contacts the rod but is partially supported by non-elastomer. May be mildly abrasive.

Poor - Elastomer is exposed to high pressure, contacts the rod, and may be abrasive.

NOTE: Elastomer contacting rod may be acceptable at system return pressure (100 psi or less), five million cycle life has been demonstrated.

JUSTIFICATION - Seal tests have shown that elastomers exposed to both high pressure and rod motion have a shorter life than non-elastomers exposed to the same conditions. Wear resistant materials are necessary for long life.

FRICTION

Excellent - Wirgin Teflon in contact with rod. No elastomer contact with rod.

Average - Blended Teflon or other non-elastomer in contact with rod. No elastomer contact with rod.

Poor - Elastoner in contact with rod.

JUSTIFICATION -

Material	Static Friction Coefficient	Dynamic Friction Coefficient	Source
Buna-N	1.35	1.20	Greene, Tweed Catalogue
Teflon	.15	.05	Shamban Catalog and "Journal of Teflon"
	.05	.04	Bal Seal Data
Teflon Blend	.12	.10	Bal Seal Data
Turcon (Teflon Blend)	40 percent of Buna-N O-ring (.54 calculated)	40 percent of Buna-N O-ring (.48 calculated)	Shamban Catalog

PRESSURE TRAP

Pressure Trap - Does the configuration trap an unacceptable pressure level between seal stages.

Excellent - Seal does not trap pressure.

Average - Seal traps pressure but the pressure does not have an

adverse effect on the seal.

Poor - Seal traps pressure that can cause seal damage.

Pressure must be relieved by an auxiliary vent.

JUSTIFICATION - Some asymmetric seals can be damaged by high pressure on the downstream side. (Reverse Pressurization)

TEMPERATURE

Temperature - Meets -65°F to +275°F requirement.

Excellent - Exceeds -65°F to +275°F temperature range.

Average - Meets -65°F to +275°F temperature range

Poor - Does not meet -65°F to +275°F temperature range, but could be considered for use where that requirement is not strictly applicable.

JUSTIFICATION - Temperature requirements should be met unless outstanding capability can be shown at a useable temperature range that is slightly deficient.

EXTRUSION GAP

Extrusion Gap - How well does the design bridge the extrusion gap. Virgin Teflon thicker than .17 in. or other material Excellent at (material shear stress)/4.0 or less (applied) at 275°F. Virgin Teflon thicker than .145 in. or other material Average at (material shear stress)/3.38 or less (applied) at 275°F. Virgin Teflon thicker than .120 in.or other material Poor at (material shear stress)/2.76 or less (applied) at 275°F (this should give the same performance as an MS28774 backup ring at 3000 psi). - Extrusion can cause seal failure for a rod moved to **JUSTIFICATION** the limit of its radial motion.

INSTALLATION

Installation	-	Ease of installation compared to an O-ring installation
		with two backup rings.

Excellent - Easier to install than an O-ring with two backup rings. One-piece gland. No special tools.

Average - Equivalent installation difficulty as an O-ring with two backup rings. One-piece gland. No special tools.

Poor - Installation more difficult than an O-ring with two backup rings or uses a two-piece gland. Special tools may be required.

JUSTIFICATION - Cascaded seals require more installation time than a single 0-ring with two backup rings.

SPACE

Space - Space required compared to MIL-G-5514F gland for an O-ring with two backup rings.

Excellent - Requires less space than two backup groove.

Average - Requires same space as two backup groove.

Poor - Requires more space than two backup groove.

JUSTIFICATION - Cascaded seals should occupy as little space as is practical.

SEAL DEFLECTION

Seal Deflection - Does the seal flex or work when pressure changes so that fatigue failures are likely.

Excellent - After initial pressure application little or no deflection is required. Seal cross-section does not change its basic shape as pressure changes. Example: Metal rod seal.

Average - After initial pressure application some deflection is required. Seal cross-section may undergo slight change in its basic shape as pressure changes. Example: GT Seal.

Poor - After initial pressure application the seal cross-section changes shape to conform to seal gland. Example: O-ring.

JUSTIFICATION - The 25 million cycle requirement mandates that seal deflection be minimized.

ORIENTATION

Orientation - Can the seal be installed backwards or improperly?
Can the proper orientation be easily recognized?

Excellent - Seal is symmetrical or if not improper orientation is not possible.

Average - Seal can be installed improperly but improper orientation can be observed by visual inspection after installation.

Poor - Seal can be installed improperly. Orientation is difficult to check visually and may require partial

JUSTIFICATION - Improper installation of nonsymmetrical seals will cause leakage failure.

disassembly to verify.

COMPLEXITY

Complexity - Few parts, few interfaces, simple gland requirements.

Excellent - One or two pieces to install in a one-piece gland.

Average - Three separate pieces to install in a one-piece gland.

Poor - More than three separate pieces to install or uses a two-piece gland.

JUSTIFICATION - A two-piece gland complicates and penalizes a design.
A complex seal is more easily damaged than a simple seal during installation.

COMPATIBILITY

Compatibility - Are all of the materials compatible with both MIL-H-5606 and MIL-H-83282.

Excellent - All materials are compatible with both fluids.

Average - All materials are compatible with one fluid and marginal with the other.

Poor - Materials are not compatible with either fluid.

JUSTIFICATION - The seals must be tested in both MIL-H-5606 and MIL-H-83282.

NOTE: Fluid compatibility will be estimated if it is unknown.

PRODUCIBILITY

Producibility - Is it producible? Is there an excessive number of close tolerances that must be held?

Excellent - Rod, Rod bore, and groove surfaces and tolerances are more liberal than MIL-G-5514F. Seal tolerances are more liberal than MS28775.

Average - Rod, rod bore, and groove surfaces and tolerances are equivalent to those in MIL-G-5514F. Seal tolerances are equivalent to those in MS28775.

Poor - Rod, rod bore, and groove surfaces and tolerances stricter than MIL-G-5514F. Seal tolerances stricter than MS28775.

JUSTIFICATION - MIL-G-5514F and MS28775 are recognized standards in Aerospace Industry and provide a good baseline for purposes of comparison.

For A - 214 seal MIL-G-5514F specifies & MS28775 specifies +.001
Rod hore -.000 ID +/- .006
+.000
Rod -.002 16/ T +/- .004
+.002
Groove -.000 32/

PRESSURE LEVEL

Pressure Level - Is the configuration suitable for 8000 psi?

Excellent - Seal has been tested at 8000 psi and has demonstrated

its capability.

- Seal has been tested at 3000 psi and appears to be good for $8000\ \mathrm{psi}$. Average

Poor - Seal has been tested at 3000 psi but appears to be

marginal for 8000 psi.

JUSTIFICATION - All seals tested will be exposed to 8000 psi for 25

percent of the test cycles.

TABLE A.2. ROD FINISH EVALUATION PARAMETERS

COST TO PREPARE

Excellent

- Cost is less than that necessary to produce a 16 on a chromium-plated rod.

Average

- Cost is approximately the same as that necessary to produce a 16 on a chromium-plated rod.

Poor

- Cost is greater than that necessary to produce a 16 on a chromium-plated rod.

UNACCEPTABLE - Cost is significantly greater than that necessary to produce a 1b on a chromium-plated rod.

RELATIVE CORROSION RESISTANCE

Excellent - Corrosion resistance is better than a chromium plated rod.

Average - Corrosion resistance is approximately the same as a chromium-plated rod.

Poor - Corrosion resistance is less than a chromium-plated rod.

UNACCEPTABLE - Corrosion resistance is inadequate for normal environmental exposure.

POTENTIAL FOR REDUCING LEAKAGE

- Surface cracks are smaller and less numerous than a normal 16 chromium-plated rod.

- Surface cracks are approximately the same size and number as those in a normal 16 chromium-plated rod.

- Surface cracks are larger and/or more numerous than those in a normal 16 chromium-plated rod.

Street St

WEAR RESISTANCE

Excellent - Provides better wear resistance than a chromium-plated rod.
 Average - Provides approximately the same wear resistance as a chromium-plated rod.
 Poor - Provides less wear resistance than a chromium-plated rod.

TABLE A-3. SEALS SELECTED FOR TASK !! TEST

SEAL MATERIAL (ELASTOMER) Graphite filled Teflon - spring loaded.	Filled Teflon (MIL-P-83461 O-Ring)	Filled Teflon (MIL-P-83461 Elastomer)	Filled Teflon (MIL-P-83461 Elastomer)	Filled Teflon ps (MIL-P-83461 O-ring)	Filled Teflon ps (MIL-P-8346l O-ring)	Filled Teflon (MIL-P-83461 O-ring)	Filled Teflon (ML-P-83461 O-ring)	Filled Teflon (MIL-P-8346! ∩-ring)	al Filled Teflon (MIL-P-83461 Elastomer)	Filled Teflon (Proprietary Compound)
SEAL DESIGNATION Bal Seal	Double Delta	Plus Seal	Hat Seal	Double Delta with two backups	Nouble Nelta with two backups	Foot Seal	Excluder	Double Delta Staged Backups	Trapezodial Seal	Hex Seal
SEAL CONFIGURATION R4	R3	R16	R19	R18	R18	R5	R10	R21	P.7	R13
STAGE NO.	-	1,2	_	2	1,2	1,2,3	_	2,3	_	2,3
	2	_	2	2	-	2	_	_	2	2
ACTUATOR NO.	-	2	2	2	м	м	4	4	4	4

TABLE A-3. CONTINUED

SEAL MATERIAL (ELASTOMER)	Filled Teflon (MIL-P-83461 Elastomer)	Filled Teflon (Proprietary Elastomer)	Hytrel (Proprietary Elastomer)	Filled Teflon (Proprietary Elastomer)	Filled Teflon (MIL-P-83461 O-ring)
SEAL DESIGNATION	Trapezoidal Seal	GT "T" Ring	Rubber Spring Actuated Seal	Hex Seal	Double Delta
SEAL CONFIGURATION	R.7	R2	R22	R13	R3
STAGE NO.	2,3	- -	2	1,2	
END NO.	-	2	2	_	2
ACTUATOR END S NO. NO.	2	Ŋ	5	9	9

APPENDIX B TASK II DATA

TABLE 8-1. TASK II SFALS

ACT	LUG	ROD		CROOVE	NF		SEAL HAIF &	
≘	E	EF.	A	E2	ان، ان،	T PART NUMBER	HAHUFACTURER	MATERIAL
	×				×	Pouble Pelta \$30650-214-14	V. S. Shanban	Turcon with glass, and Proprietary NoS2 filler
					×	0-Ring 183461/1-214	Parker	[[[_P-R346]
					×	Backup Ring (2) S33012-214-14	N. S. Shamban	Turcon with glass and Proprietary NoS ₂ filler
-		×	×			Bal Seal 2A1H506-0321	Bal Seal Fng. Co.	Graphite-Carbon Glass Teflon
2	×			×	×	Plus Seal S30775-214p-19	W. S. Shamban	Turcon with proprietary NoS2 Filler
2		×		×		Double Delta S30650-214-14	W. S. Shamban	Turcon with glass and Proprietary MoSz filler
				×		0-Ring N8:461/1-214	Parker	111L-P-83461
				×		Backup Pirg (2) S33012-214-14	W. S. Shamban	Turcon vith glass and Proprietary NoS ₂ filler
					×	Hat Seal S33050-214P-14	W. S.Shanban	Turcon with glass and Proprietary MoS ₂ filler

TABLE B-1. CONTINUED

MATERIAL	Glass filled TFE	MIL-P-83461	Revonoc 18158	Turcite 42, glass reinforced PTFE	Turcite 57, bronze reinforced PTFE	MIL-P-83461	Revonoc 18158
MANUFACTURER	Tetrafluor	Parker	Conover	American Variseal Corp		Parker	C. E. Conover & Co.
SEAL NAME & PART NUMBER	Rod Seal TF-1009-214	0-Ring M83461/1-214	Backup Ring (2) CEC5065-214 Uncut	Varipak M S61200	Cam Ring S61202	0-Ring M83461/1-214	Backup Ring (2) CEC5055-214 Uncut
GROOVE B C D		×	×			×	×
A	×			×	×		
G ROD END				×			
ACT LUG NO. END	×						
Z Z	က			ω			

Table B-1. CONTINUED

MATERIAL	Turcon with glass and Proprietary MoS ₂ filler	MIL-P-83461	Turcon with glass and Proprietary MoS ₂ filler	Turcon with bronze	MIL-P-83461	Revonoc 18158 Revonoc 6200 Proprietary Nitrile	Revonoc 18158	Revonoc 18158 MIL-P-83461 (Elastomer)	Revonoc 18158 MIL-P-83461 (Elastomer)
MANUFACTURER	W. S. Shamban	Parker	W. S. Shamban	W. S. Shamban	Parker	C. E. Conover & Co.	C. E. Conover & Co.	C. E. Conover & Co.	C. E. Conover
SEAL NAME & PART NUMBER	Double Delta S30650-214-14	0-Ring M83461/1-214	Backup Ring (2) S33012-214-14	Excluder S30395-9G-8	0-Ring M83461/1-121	Con-0-Hex CEC6001-214	Backup Ring CEC5065-214	Trapezoid Seal CEC5056-214	Trapezoid Seal CEC5056-214
				×	×				
GROOVE B C	×	×	×			\ ×	×	×	×
A	×	×	×			×	×		
ROD						×			
LUG	×								×
NO.	4					4			22

Table B-1. CONTINUED

MATERIAL	Hytrel	Proprietary Nitrile Compound	Revonoc 18158 Revonoc 6200 Proprietary Nitrile	Revonoc 18158	Turcon with glass and Molybdenum Disulfide	MIL-P-83461
MANUFACTURER	Greene Tweed	Greene Tweed	C. E. Conover & Co.	C. E. Conover & Co.	W. S. Shamban	Parker
SEAL NAME & PART NUMBEP	RSA Seal, 3694- -00998-0122-0304	G. T. Ring 7214FT-000-P3	Con-0-Hex CEC6001-214	Backup Ring CEC5065-214	Double Delta S30650-214-14	O-Ring M83461/1-214
GROOVE A B C D	×	×	× ×	× ×	×	×
ROD	×				×	
END.			*			
ACT NO.	5	1	9		9	

TABLE B-2. TASK II SEAL PERFORMANCE SUMMARY

#1 Rod End

COMMENTS	This seal was removed for leakage after 1 x 10 ⁶ cycles. The seal appeared to be in good condition. The sealing lips had been mashed flat with the adjacent surfaces. The seal ID showed light wear, but the seal cavity had many seal wear particles.
SATI SFACTORY PERFORMANCE	 O <u>N</u>
NESIGNER/ SUPPLIER	2A1H506-0321 Bal Seal Eng. Co. No `
PART NUMBER	2A1H506-0321
CONFIGURATION SKETCH	Q

Single-Stage Seal Installation

TABLE 8-2. CONTINUED

#2 Rod End

CONFIGURATION SKFICH	PART NUMBER	DESIGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS
	S30775-214P Plus Seal	Shamban	Yes	No leakage in 2.4 × 10 ⁶ cycles. In a 2-stage unvented installation, the Plus Seal
INSIDE SEAL in a 2-stage unvented instl	S33012-214-14 Backup on inside modified as a spacer	Ð		extruded approx .15 inch under the backup ring and had minor axia! wear on the I.D. There was no visible extrusion of the backup ring. Elastomer was in excellent condition.
a	\$30775-214P Plus Seal	Shamban	νη 1 2	Faint axial wear on ID of plus seal, but no extrusion. Elastomer was in excellent condition. The chromium rod
				had been discolured and solished by the seals.
OUTSIDE SFAL in a 2-stage unvented instl	\$33012-214-14 Backup rings (2) on insidemodified as			

TABLE 8-2, CONTINUED

#2 Lug End

COMMENTS	One drop total rod leakage in 2.4 x 10 ⁶ cycles in a 2-stage vented installation. The outside	backup ring extruded approxus- inch. The Double Delta seal inside backup ring and O-ring were in excellent condition	Turcon parts were in excellent condition. Elastomer was in good condition but had a 120-degree circumferential crack on the ID in the lip just inside of the flat section.
SATISFACTORY PERFORMANCE	Yes		, √e s
DESIGNER/ SUPPLIER	Shamban	Parker	4 Shamban
PART NUMBER	S30650-214-14 Shamban Double Delta	S33012-214-14 Backup ring M83461/1-214 O-ring	S33050-214P-14 Shamban Hat Seal
CONFIGURATION PART SKETCH NUMB		INSIDE SEAL in a 2-Stage Vented Instl. (90 psi.)	OUTSIDE SEAL in a 2-stage vented instl. (90 psi)

TABLE B-2. CONTINUED

#3 Lug End

COMMENTS	This seal instl. leaked 18 drops at the rod in 2.4 x 10 ⁶ cycles. This seal instl. was exceptionally clean and free of wear particles. The outside backup ring had approx. an .03 inch extrusion (The spacers were accidently installed as Backup Rings)	The O-ring shows some wear from passing over a damaged area on the rod, but it shows no sign of nibbling. It had taken a slight permanent set. The 2 backup rings had fused together. The outside ring shows very light extrusion. The inside backup ring has a slightly concave shape where it contacted the O-ring. The rod showed light wear but a fragment of the chrome plate had flaked off.
SATISFACTORY PERFORMANCE	Yes	Yes
DESIGNER/ SUPPLIER	Tetrafluor	Parker
PART NUMBER	TF-1009-214 Rod Seal CEC 5065-214 Qty 2, Backup Ring modified as spacers	M83461/1-214 O-Ring CEC 5065-214 Backup ring Qty 2
CONFIGURATION SKETCH	INSIDE STAGE in a 2-Stage unvented instl.	OUTSIDE STAGE in a 2-Stage unvented instl

TABLE 8-2. CONTINUED

#3 Rod End

CONFIGURATION SKETCH	PART NUMBER	DESIGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS
P 1571	S61200 Varipak M	American Variseal	Conditionally Yes	Conditionally This seal instl. leaked only 18 drops at the rod in 2.4 x 10 ⁶ cycles, but the bronze particles worn off of the cam ring might cause
INSIDE STAGE of a 2-stage unvented instl.	S61202 Cam Ring			problems in some applications. The OD & ID lips on the Varipak M are now almost flat surfaces.
	M83461/1-214 Parker 0-Ring	. Parker	Yes	The O-ring has been nibbled slightly and shows some wear. It has taken a
OUTSIDE STAGE of a 2-stage unvented instl	CEC5065-214 Conover Backup rings	Conover		permanent set. The two backup rings had fused together and were coated with bronze particles.

The rod shows moderate wear and scoring.

TABLE 8-2. CONTINUED

#4 Lug End

CONFIGURATION SKETCH	PART NUMBER	DESIGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS
	S30650-214-14 Double Delta	Shamban	Conditionally Yes	This seal instl had 7 drops total rod leakage in 2.4×10^6 cycles. Inside backup ring is in excellent condition. Double delta shows minor wear but is
TAST STAGE OF	M83461/1-214 0-ring	Parker	The seals look good but the chrome finish	in good condition. O-ring has taken a permanent set but is in good condition. The
inside Sidae or a 3-stage unvented seal instl.	S33012-214-14 Backup ring Qty. 2	Shamban	on the rod was moderately worn with light axial scratches	outside backup ring is in good condition, but has extruded approx06 inch.
	S30650-214-14 Double Delta	Shamban	Conditionally Yes	Both backup rings are in good condition. No extrusion is visible. The double delta seal
CENTER STAGE of a 3-Stage	M83461/1-214 O-ring	Parker	The seals look good but the chrome finish	shows minor wear but is in good condition. The O-ring has taken a permanent set but is in good
Unvented Seal Instl.	\$33012-214-24 Backup Ring Qty. 2	Shamban	on the rod was moderately worn with light axial scratches	condición.

TABLE B-2. CONTINUED

#4 Lug End Continued

COMMENTS	The excluder is in good condition. The wear pattern is on the outside edge as desired. Bronze particles	have separated from the Turcon and are present in the seal cavity. The O-ring has taken a permanent set but is in good condition.
DESIGNER/ SATISFACTORY SUPPLIER PERFORMANCE	Conditionally Yes	The seals look good but the chrome finish on the rod was moderately worn with light axial
DESIGNER/ SUPPLIER	Shamban	Parker
PART NUMBER	\$30395-9G-8 Excluder	M83461-121 0-Ring
CONFIGURATION SKETCH	d a	OUTSIDE STAGE of a 3-Stage Unvented Seal Instl.

TABLE B-2. CONTINUED

#4 Rod End

CONFIGURATION SKETCH	PART NUMBER	DESTGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS
INSIDE STAGE in a 3-Stage Vented Instl.	СЕС6001-214 Соп-О-Нех СЕС5065-214 Васкир Ring	Bob Brent/ Conover	Yes, but outside stage failed	This seal leaked 69.9 cc in 2.4 x 106 cycles because the outside seal failed. For the last 1.4 x 106 cycles, return pressure was removed from the outside seal and rod leakage was 9.23 cc. The seal cavity was clean but wear particles from the 18158 Revonoc were present in the fluid collection grooves. The inside backup ring showed wear, but no extrusion. The special cap strip showed slight wear, but
				was in good condition. The hex shaped elastomer was in excellent condition. The outside triangular backup was in good condition but had approx. an .02 inch extrusion.
d	CEC6001-214 Con-0-Hex	Bob Brent/ Conover		The inside backup was flattened on the OD prior to instl so that it would act as a spacer. It showed
CENTER STAGE in a 3-Stage Vented Instl.	CEC5065-214 Backup Ring modified as a spacer		Yes, but outside stage failed	condition. The hex shaped elastomer was in excellent condition. The outside triangular backup was in excellent condition.

TABLE B-2. CONTINUED

#4 Rod End Continued

DESIGNER/ SATISFACTORY COMMENTS	No The trapezoid shaped elastomer failed in a delamination manner. The trapezoid shaped backup showed minor wear but no extrusion and was in good condition
DESIGNER/ SUPPLIER	G. K. Fling No /Conover
PART	5-214 oid Seal
CONFIGURATION SKFTCH	OUTSIDE STAGE in a 3-Stage Vented Instl.

TABLE 8-2. CONTINUED

2	
ū	
b	
œ	
#2	

PART DESIGNER/ SATISFACTORY COMMENTS	3694-00998- Greene No. Friction This seal instl. was removed for 0122-0304 Tweed was excessive leakage after 1 x 10 ⁶ cycles. It was Aiscovered that the chrome plating on the rod had flaked. The seal ID showed heavy wear from passing over the damaged rod	7214FT-000-P3 Greene No. Friction The inside backup ring was in good Tweed was excessive condition and showed only light wear. The elastopher showed heavy wear on the outside edge by the rod. The outside backup showed light wear but was extruded approx02 inch.
PART NUMBER	3694-00998 0122-0304 RSA Seal	7214FT-000
CONFIGURATION SKETCH	INSIDE STAGE of a Two-Stage Vented Seal Instl. (90 psig)	OUTSIDE STAGE of a Two-Stage Vented Seal Instl. (90 psi)

The second secon

COMMENTS	This seal instl leaked 24 cc in 2.4 x 10 ⁶ cycles. This installation was yery clean. The inside backup ring	was in excellent condition. The double delta seal was in good condition with light wear but had approx. a .02 inch	extrusion. The O-ring had taken a slight permanent set but was in good condition. The outside backup ring was in good condition but had approx. a .04 inch extrusion.	
DESIGNER/ SATISFACTORY SUPPLIER PERFORMANCE	Yes			
DESIGNER/ SUPPLIER	Shamban	Parker	Shamban	
PART NUMBER	S30650-214-14 Double Delta	M83461/1-214 O-Ring	\$33012-214-14 Backup Ring Qty. 2	
CONFIGURATION SKETCH			N.	

TABLE B-2. CONTINUED

CEC5056-214 Trapezoid Seal	DESIGNER/ SUPPLIER G.K.Fling /Conover	SATISFACTORY PERFORMANCE Yes x i	This seal instl. leaked 1.83 cc in 2.4 x 106 cycles. This was the only seal instl that used an elastomer that was exposed to high pressure and the moving rod surface. The transpoid
			shaped elastomer had a partial failure that did not affect the sealing surface. A small piece of elastomer had separated from the back of the seal. There was light nibbling close to the rod. The trapezoid shaped backup had experienced a considerable amount of wear on one side and had extruded approx .05 inch.
CEC5056-214 (Trapezoid Seal	G.K.Fling /Conover	Yes	The elastomer had some circumferential cracking at approx. 50% axial depth on the ID. There was some very light
			nibbling. The backup ring was in good condition. There was no extrusion, but there was minor wear on the 1.D.
			These seals were cycled 1 \times 106 cycles on the lug end of Act. No. 5 and 1.4 \times 106 cycles on the rod end of Act. No. 5A. The leakage rate was lowest on the tungsten carbide rod in 5A.

TABLE 8-2. CONTINUED

S30650-214-14 Double Delta

PART NUMBER

CONFIGURATION SKETCH

The second secon

7.00

#6 Rod End

COMMENTS	The seal failed the leakage requirement after 1.9 \times 10 ⁶ cycles. The backup rings were flattened prior to instilt overve	as spacers. They were in good condition. The outside lip of the delta seal had been worn away over	a 60-degree continuous arc. The double delta had extruded approx05 inch in two places on either side of the arc. The elastomer had come into contact with the rod in that arc and approx. 20% of the outside thickness of the elastomer had been worn away. The rod was in good condition.
DESIGNER/ SATISFACTORY SUPPLIER PERFORMANCE	ON		
DESIGNER/ SUPPLIER	Shamban	Parker	Conover

CEC5065-214 Backup Ring (Spacer) Qty. 2

146

M83461/1-214 O-Ring

COMMENTS	The seal instl leaked 2 drops in 2.4 x 10 ⁶ cycles. The seal cavity was very clean. The inside backup ring was in excellent condition with no visible wear.	condition with light wear. The hex- shaped elastomer was in excellent condition. The triangular-shaped backup ring was in good condition but had approx. a .03 inch extrusion.	The inside backup ring was flattened prior to instl. so that it could be used as a spacer. It was in	excellent condition with no visible wear. The special cap was in good condition but showed a slight accumulation of contamination under its thickest section. The hexshaped elastomer was in excellent condition. The outside triangular-shaped backup ring was in excellent condition.
SATISFACTORY PERFORMANCE	Yes		Yes	
DESTGNER/ SUPPLIER	Bob Brent /Conover		Bob Brent Yes /Conover	
PART NUMBER	CEC6001-214 Con-0-Hex	CEC5065-214 Backup Ring	CEC6001-214 Con-0-Hex	CEC5065-214 Backup Ring modified as a spacer
CONFIGURATION SKETCH	a a	INSIDE STAGE of a Two Stage Unvented Instl.		OUTSIDE STAGE of a Two Stage Vented Instl

TABLE B-2. CONTINUED

#6 Rod End

SATISFACTORY PERFORMANCE	COMMENTS
Yes	This seal instl. was very clean.
	This was a replacement seal and
	leaked 13.7 cc in 444,537 cycles at
	8000 psig. The cap strip was in
	good condition and showed slight
	wear. The O-ring had taken a
	permanent set but was in good
	condition. The two backup rings
	had fused together and were in good
	shape, but the one on the outside
	had extruded annrox .04 inch.

Conover

CEC5058-214

DESIGNER/ SUPPLIER

PART NUMBER

CONFIGURATION SKETCH

FIGURE 8-1. SEAL EVALUATION TEST FIXTURE

The second second

FIGURE B-2. SPECIMEN AND LOAD HYDRAULIC SYSTEMS

PROCESS SPECIFICATION 208-1-7

STEEL PARTS, UNPLATED AND CHROME PLATED, GRINDING OF

1. SCOPE - This specificate procedures for grinding of unplated a	tion establishes the requirements and and chrome plated steel parts.
2. APPLICABLE DOCUMENTS	
2.1 The applicable provision incorporated herein by reference:	ons of the following documents are
SPECIFICATIONS	
MILITARY	
MIL-I-6868	Inspection Process, Magnetic Particles
MIL-C-16173	Corrosion Preventive Compound, Solvent Cutback, Cold Application
VSD	
CVA 1-372	Heat Treatment of Steels
CVA 9-96	Corrosion Preventives, Temporary for Metallic Parts Application of
CVA 13-23	Nital Etching for Carbon and Low Alloy Steels
208-13-40	Peening, Shot and Glass Bead
2.2 In the event this spec requirements of any applicable gover specification shall take precedence	
3. MATERIALS AND EQUIPMEN	Т
3.1 MATERIALS	

GRINDING COOLANTS - Water soluble, commercial grade.

CORROSION PREVENTIVE COMPOUND - MIL-C-16173, Grade II.

3.1.1

3.1.2

3.2

EQUIPMENT

- 3.2.1 Ovens for baking and stress relieving, controlled in accordance with CVA 1-372.
- 3.2.2 Grinding Wheels.
- 4. REQUIREMENTS
- 4.1 GRINDING EQUIPMENT
- 4.1.1 GRINDING MACHINES Grinding machines shall be capable of maintaining grinding speed, work speed (spindle or traverse), cross feed and down feed in increments necessary to avoid surface degradation of the part. Provisions shall be made to supply a constant application of coolant to the working surface of the wheel.
- 4.1.2 COOLING The machine shall be capable of continuously supplying coolant to the work area at a rate of 2 gallons per minute per inch of wheel width. The coolant nozzle shall be of a configuration which shall flood the entire width of the wheel with coolant and shall direct the coolant at the point of contact between the grinding wheel and the work piece in the direction of motion of the grinding wheel.
- 4.1.2.1 GRINDING COOLANTS A suitable coolant shall be used which does not have an adverse effect on the part being ground. Recirculated coolants shall be either gravity separated of contaminants or continuously filtered to minimize recycling grinding residue.
- 4.2 GRINDING WHEELS

The track of the second second

- 4.2.1 MARKING Grinding wheels shall be labeled or numbered as to abrasive type and grade, grit size, bond type, density and wheel hardness.
- 4.2.2 CHARACTERISTICS Unless otherwise specified, aluminum oxide grinding wheels having a grit size of 46 to 90, a grade or hardness designation between G and K, a structural density between 6 and 12, and a vitrified bond shall be used for all grinding operations.
- 4.3 PROCESSING
- 4.3.1 CLEANING Protective coatings and other foreign materials shall be removed from parts prior to grinding to preclude contamination of coolant and wheels. Coolants and grinding residuals that have a deleterious effect on the part shall be removed after grinding. Cleaning materials shall not corrode or otherwise degrade the surfaces of the part. Where process delay time is such that corrosion might occur, parts shall be adequately protected after cleaning.

- 4.3.2 WHEEL DRESSING AND TRUING Wheel dressing and truing shall be performed as required in the specific grinding requirements.
 - (a) The dressing or truing operation shall simulate the actual grinding as far as wheel speed and use of coolant are concerned.
 - (b) The edges of the wheel shall be rounded off with a hard stone or precision tool to prevent chipping the wheel edges.
 - (c) The nib in the diamond shall be turned frequently to present a sharp edge for dressing.
 - (d) The cross feed of the nib shall be 7 to 15 inches per minute when dressing the wheel.
 - (e) Each time the wheel is dressed, the dressing infeed shall total 0.003 inch, accomplished in controlled infeeds of 0.0005 inch per pass plus four multidirection sparkout passes after the last infeed pass.

4.3.3 GRINDING

THE RESERVE OF THE PARTY OF THE

- (a) The grinding process shall be controlled so as to result in low stress grinding.
- (b) Dry grinding or grinding with the side of the grinding wheel is prohibited.
- (c) Parts shall be traversed for high spots in order to avoid inadvertent violation of the down feed requirements of this specification.
- (d) There shall be no contact between a rotating grinding wheel and a non-rotating cylindrical part.
- (e) Parts shall meet all previous operation requirements before grinding is attempted.
- (f) Finish ground parts and parts in process where processing delay time is such that surface corrosion might occur shall be protected with MIL-C-16173, Grade II corrosion preventive compound per CVA 9-96.

5. PROCEDURES

- 5.1 GRINDING PROCESS The grinding process shall be performed in accordance with Table I to result in metallurgically sound parts. All feeds, speeds, and stock removal parameters are actual and not necessarily machine or indicator readings.
- 5.2 POST GRINDING PROCESSING
- 5.2.1 UNPLATED STEEL PARTS
 - (a) Nital etch parts in accordance with CVA 13-23.
 - (b) Stress relieve parts in accordance with CVA 1-372.
 - (c) Vapor blasting or dry blasting using 120 grit aluminum oxide at 40 psi pressure may be used to remove the scale produced by the baking operation. This method of scale removal also removes 0.00006 to 0.00015 inch of base metal.
 - (d) Magnetic particle inspect in accordance with MIL-I-6868.
 - (e) Parts heat treated to 260,000 psi and above and those required to be shot peened in accordance with the Engineering drawing shall be shot peened in accordance with 208-13-40 after they have been nital etched, stress relieved and magnetic particle inspected.
- 5.2.2 CHROME PLATED STEEL PARTS
 - (a) Bake parts for 3 hours at 375°F +25°F.
 - (b) Magnetic particle inspect in accordance with MIL-I-6868.
- QUALITY ASSURANCE PROVISIONS
- 6.1 QUALIFICATION Vought Quality Assurance shall determine and control qualification of Vought personnel, equipment and grinding process. A Quality Assurance program shall be developed and implemented to ensure that all requirements of this specification are met.
- 6.2 PROCESS CONTROL

6.2.1 WORK INSTRUCTIONS - Detailed instructions (shop planning) shall be written for each part number for use by the operator and inspector. They shall incorporate all parameters required for a controlled operation, as directed in this specifiction.

6.3 INSPECTION

The second secon

- 6.3.1 FINAL INSPECTION
- 6.3.1.1 After grinding, all parts shall be inspected as follows:
 - (a) Visually inspect for cracks, chatter marks, or other obvious discrepant conditions.
 - (b) Dimensionally inspect in accordance with the applicable Engineering drawing. In cases where the final part is chrome plated, the following additional data shall be taken:
 - (1) Measure and record unplated steel part dimensions after completion of final grinding operation performed prior to plating.
 - (2) After grinding, measure and record final plated part dimensions.
 - (3) Compare (1) and (2) to assure compliance with required chrome plate thickness.
 - (4) Compliance with chrome plating thickness requirements shall be verified using suitable nondestructive instruments, such as Accudern, Magnegage, Dermitron, etc.
 - (c) Nital etch inspect for grinder burns (unplated parts) in accordance with CVA 13-23.
 - (d) After each finish grind operation, prior to and following chrome plate, magnetic particle inspect for cracks in accordance with MIL-I-6868.

TABLE I. Grinding Parameters

	95	RECOMMENDED GRINDING WHE	NDED WHEEL	MAX. WHEEL	WORK	CROSS FEED OR	MAXIMUM DOWN	NMOC	MIN. STOCK LEFT FOR
GRINDING METHOD	\mathbf{c}	CHARACTERIS	RISTICS	SPEEDS	RANGE	TRANSVERSE	(IN) FEED	ED	FINISH
	GR17 A1203	GRADE	** STRUCTURE	S.F.M.	S.F.M.	WHEEL WIDTH	ROUGH	FINISH	FINISH ((PER SURFACE)
SURFACE (FLAT) BARE STEEL	46/80	. Y	K 6 - 12	6500	30 - 100	30 - 100 1/8 - 1/2 .001"	.001	.0000.	.003
CYLINDRICAL BARE STEEL	46/80	1 29	K 6 - 12	6500	30 - 100	1/8 - 1/4* .001"	.001	5000.	
INTERNAL RARE STEEL	46/80	- G - K	K 6 - 12	0059	30 - 200	1/8 - 1/4*	.0005"	.0002	"100.
SURFACE (FLAT) CHROME PLATED	46/90	¥ - 9 -	K 6 - 12	6500	30 - 200	1/8 - 1/4	.0005	.2000.	100.
CYLINDRICAL CHROME PLATED	46/120) G - K	K 6 - 12	0059	30 - 200	30 - 200 1/8 - 1/4* .0005"	į.	.0003	.001
INTERNAL CHROME PLATED	46/120	5	K 1 6 - 12	12000	30 - 300	30 - 300 1/8 - 1/4 .0005"	1,,5000.	.2000.	100.

THESE CHARACTERISTICS REFER TO THE INDUSTRY STANDARD DESIGNATORS FOR GRINDING WHEELS.

RG** Bond Type V Bond (Verified) 9** Structure 32** A 100 H Type Abrasive Abrasive Grain Size Grade Examples:

* Per Part Revolution
** May vary with manufacturer (code symbol not standardized)

TASK III TEST PLAN

1.0 INTRODUCTION

The objectives of this program are to investigate multiple cascaded seals and to develop new and improved seals and seal configurations for hydraulic systems and actuators, thereby favorably impacting hydraulic system reliability, maintainability, safety and cost by significantly reducing leakage. The test plan for all Yought Corporation testing will be included in this report and will be divided into the following sections:

- I. Acceptance Tests
- II Seal Development Tests
- 2.0 REFERENCES
- 2.1 Contract No. DAAK51-78-C-0028.
- 2.2 Report No. 2-51700-C/8R-3527, Hydraulic System Seal Development Task II Test Report, Vought Corporation.
- 3.0 LIST OF ILLUSTRATIONS
- 3.1 List of Tables
- 3.1.1 Measured Critical Dimensions and Finishes
- 3.1.2 Leakage and interstage pressure data.
- 3.1.3 Rod seal description
- 3.2 List of Figures.
- 3.2.1 Seal Evaluation Test Figure Sketch.
- 3.2.2 Specimen and Loading Actuator Hydraulic Schematic.
- 3.2.3 Rod Seal Configurations to be Tested.
- 3.2.4 Critical Dimensions and Finishes.
- 3.2.5 Pressurized Friction Test Set-Up.
- 4.0 TEST PLAN
- 4.1 Seal Development Program.

4.1.1 Test Requirements and Objectives.

Requirements for these tests are established by Section F of Reference 2.1. The purpose of this program is to test seals, seal combinations and rod finishes to determine the best rod seals and finishes for use in actuators designed for a 3,000 psig or an 8,000 psig hydraulic system. To accomplish this Vought will evaluate the best known seal combinations, as indicated by Reference 2.2 and approved by the Contracting Officer under adverse but controlled, test environments.

4.1.2 Test Specimens

The seals will be tested in six double ended cylinders that were designed and manufactured especially for this program. Both ends of each cylinder have multiple rod seal grooves. The space between each set of grooves is equipped with a port so that pressure and/or leakage can be nonitored. The rod seals to be tested and the ports are identified in Figure 3.2.3. The scrapers shown in this figure were the best performers in recent contamination tests at Vought at the time this test plan was written. The scraper tests were performed under Contract No. F33615-78-C-2027, Project 3145, Dynamic Seals for Advanced Hydraulic Systems.

4.1.3 Test Set-Up.

The second secon

The housings of the six specimen actuators will be grounded to a test fixture with each piston rod tied to a common output. The output bellcrank will in turn be loaded by a load actuator so that realistic loads will be imposed on the test specimens during each stroking cycle. A shaker will replace the load actuator to simulate rotor feedback loads. A sketch of the general arrangement of the test fixture is shown in Figure 3.2.1. A schematic of the hydraulic system used in cycling the test specimen actuators is shown in Figure 3.2.2.

4.1.4 Test Procedures

4.1.4.1 <u>Inspection.</u> The critical dimensions of each actuator not measured in Reference 2.2 will be measured and recorded (scraper groove dimensions). All critical dimensions recorded will be shown in the final report.

4.1.4.2 Friction.

- 4.1.4.2.1 Unpressurized Friction. Each seal assembly will be checked for static and dynamic unpressurized friction prior to final cylinder assembly. For this test the cylinder will be assembled with rod seals in one end only and with no piston seals. The rod/piston will be moved 5 times in each direction. The static and dynamic friction in each direction will be recorded.
- 4.1.4.2.2 Pressurized Friction. Each seal assembly will be checked for breakout friction at 100, 1500, 3000 and 4800 psig. For this test the cylinder will be assembled with the Shamban Double Delta Seal in one end and the test seal configuration in the other end. The set-up for this test is shown in Figure 3.2.5. Friction shall be measured as follows.
 - a. Pressurize both ends to 100 psig.
- b. Slowly decrease the pressure at End 1 until the rod moves. Record the delta pressure.
 - c. Repeat a.
- d. Slowly decrease the pressure at End 2 until the rod moves. Record the delta pressure.
 - e. Repeat a through d for a total of 5 sets of data.
- f. Repeat a through e with the test pressure at 1500 psig.
- $\,$ g. Repeat a through e with the test pressure at 3000 psig.
- h. Repeat a through e with the test pressure at 4800 psig.
 - j. Repeat a through h for all seal configurations.
- k. Subtract tare breakout pressure and calculate the average breakout friction at each pressure level.

4.1.4.3 Acceptance Test.

- 4.1.4.3.1 Static Leakage. Apply static pressures of 5 psig, 90 psig, and 3000 psig to both cylinder ports for 5 minutes. There shall be no leakage from the external rod seal. Each seal vent shall be opened (one at a time) and the leakage checked for 3 minutes after a two minute wait. Temperature shall be 80 degrees F. +/- 20 degrees F.
- 4.1.4.3.2 <u>Dynamic Leakage and Operation.</u> Each cylinder will be cycled through at least 25 complete cycles with 3000 psig fluid to demonstrate satisfactory operation and leakage characteristics. Leakage at external rod seals shall not exceed 1 drop per 25 cycles. All leakage values will be recorded.

4.1.4.3.3 Proof Test.

- 4.1.4.3.3.1 3000 psig Proof [est. Apply 4500 psig to both cylinder ports for five minutes. There shall be no evidence of external leakage.
- 4.1.4.3.3.2 8000 psig Proof Test. Apply 12,000 psig to both cylinder ports for five minutes. There shall be no evidence of external leakage.
- 4.1.4.4 Development Testing. The cylinders will be placed in a test fixture (Figure 3.2.1) that uses a load actuator to simulate the actual cylinder loading. The fixture will be equipped with an insulated box so that the ambient temperature for the cylinders can be varied and controlled from test cell ambient to 275 degrees F. The actuators will be controlled by a servo-valve that is driven by an electro-hydraulic actuator through a scissors linkage.

Any seals that exhibit an external leakage of more than 1 drop per 25 cycles at full load and stroke, 1 drop per 50 cycles at 50% load and stroke, 1 drop per 250 cycles at 10% load and stroke, or 1 drop per hour at 2% load and stroke will be replaced with alternate seals at the first opportunity. If the seals in both ends of a cylinder fail that cylinder will be removed from the test. The total number of cycles to failure will be recorded for each seal. Leakage will be measured at the start and end of each day. The cylinders will be cycled at the rates shown in Paragraph 4.1.4.4.1.2. This rate will be reduced if seal temperatures become excessive or if max. fluid temperature cannot be met.

During all development tests the following parameters will be periodically monitored and their results recorded.

- specimen actuator cycles
- actuator strokes
- loads
- gland rod seal area temperatures
- specimen actuator fluid temperatures
- pump suction (pressure and temperature)
- · pump discharge (pressure and temperature).
- pump case drain (pressure and temperature)
- specimen actuator rod end leakage
- specimen actuator pressures between seals
- elapsed test time
- specimen actuator pressures

4.1.4.4.1 3000 psig Tests.

4.1.4.4.1.1 <u>High Temperature, 3,000 psig Test, MIL-H-5606.</u> Cycle the actuators through 2.5×10^{0} input cycles. Ambient temperature shall be 60 degrees F to 275 degrees F as required to obtain a fluid temperature at the test actuators of 225 degrees F +/- 25 degrees F. This cycling shall be performed in 5 blocks. Block definition is shown in 4.1.4.4.1.2. At

the start of each day 9 ML of AC coarse Arizona road dust will be placed on each rod to simulate a soil laden environment. Cycling will be started with the insulated box at test cell ambient temperature so that the dust will not be blown from the rods by the hot air that is used for heat. After 5 to 10 minutes of cycling, the hot air will be introduced into the insulated box to allow the fluid temperature to stabilize at 225 degrees F. +/- 25 degrees F.

4.1.4.4.1.2 Block Definition.

Input Cycles	Description	Approximate Rate
500 cycles 2500 cycles 7000 cycles 490000 cycles	Full stroke and load 50% stroke and load 10% stroke and load 2% stroke and load (+/04 in)	9 - 15 cpm 18 - 30 cpm 60 - 90 cpm 240 - 500 cpm

During the 2% cycling a .15 Hz, +/- 1-inch stroke shall be superimposed by electronically combining the two signals to prevent artificially overheating the seal.

- 4.1.4.4.1.3 Performance Test. Rerun tests of paragraph 4.1.4.3.1 and 4.1.4.3.2.
- 4.1.4.4.1.4 Fluid Change. The entire test set-up, including the lines and cylinders, shall have all MIL-H-5606 fluid removed by draining. After all of the MIL-H-5606 fluid has been removed, the entire test set-up shall be filled with MIL-H-83282 hydraulic fluid. The system will be cycled until it is free of air.
- 4.1.4.4.1.4.1 Performance Test. Rerun tests of paragraphs 4.1.4.3.1 and 4.1.4.3.2.
- 4.1.4.4.1.5 High Temperature, 3,000 psig Test, MIL-H-83282. Cycle the actuators through 2 x 10° input cycles. Ambient temperature shall be 60 degrees F. to 275 degrees F. as required to obtain a fluid temperature at the test actuators of 225 degrees F +/- 25 degrees F. This cycling shall be performed in 4 blocks. Block definition is shown in 4.1.4.4.1.2. At the start of each day 9 ML of AC coarse Arizona road dust will be placed on each rod to simulate a soil laden environment. Cycling will be started with the insulated box at test cell ambient temperature so that the dust will not be blown from the rods by the hot air that is used for heat. After 5 to 10 minutes of cycling the hot air will be introduced into the insulated box to allow the fluid temperature to stabilize at 225 degrees F. +/- 25 degrees F.

4.1.4.4.1.6 Performance Test.

- 4.1.4.4.1.6.1 Static Leakage. Apply static pressures of 5 psig, 90 psig, 3,000 psig and 8,000 psig to both cylinder ports for 5 minutes. There shall be no leakage from the external rod seal. Each seal vent shall be opened (one at a time) and the leakage will be checked for 3 minutes after a two minute wait. Temperature shall be the test cell ambient temperature.
- 4.1.4.4.1.6.2 <u>Dynamic Leakage and Operation</u>. Each cylinder will be cycled through at least 25 complete cycles with 8,000 psig fluid to demonstrate satisfactory operation and leakage characteristics. Leakage at the external rod seal shall not exceed 1 drop per 25 cycles. All leakage values will be recorded.

- 4.1.4.4.2 High Temperature, 8,000 psig Test, MIL-H-83282. Cycle the actuator through 500,000 input cycles. Ambient temperature shall be 60 degrees F. to 275 degrees F. as required to obtain a fluid temperature at the test actuators of 225 degrees F. +/- 25 degrees F. This cycling shall be performed in one block. Block definition is shown in 4.1.4.4.1.2. At the start of each day 9 ML of AC coarse Arizona road dust will be placed on each rod to simulate a soil laden environment. Cycling will be started with the insulated box at test cell ambient temperature so that the dust will not be blown from the rods by the hot air that is used for heat. After 5 to 10 minutes of cycling, the hot air will be introduced into the insulated box to allow the fluid temperature to stabilize at 225 degrees F. +/- 25 degrees F.
- 4.1.4.4.3 Performance Test. Rerun tests of paragraph 4.1.4.4.1.6.1 and 4.1.4.4.1.6.2.

11

4.1.4.5 Rotor Feedback Test. Replace the load actuator with an electromechanical shaker and apply 20×10^6 output feedback cycles at a rate of 16 +/- 3 CPS.. System pressure for this test shall be MIL-H-83282 hydraulic fluid at 3000 psig. Ambient temperature in the insulated box shall be 60 degrees F. to 275 degrees F. as required to obtain a fluid temperature at the test actuators of 225 degrees F. +/- 25 degrees F. The amplitude of the feedback cycles will be .010 +/- .005 in. The output of the actuators will be 800 +/- 200 pounds. At the start of each day 9 ML of AC coarse Arizona road dust will be placed on each rod to simulate a soil laden environment. Cycling will be started with the insulated box at test cell ambient temperature so that the dust will not be blown from the rods by the hot air that is used for heat. After 5 to 10 minutes of cycling, the hot air will be introduced into the insulated box to allow the fluid temperature to stabilize at 225 degrees F.

Rod position shall be varied sinusoidally at .15 Hz +/- .05 Hz with a 2-inch double amplitude to simulate helicopter loads and to reduce rod wear.

4.1.4.6 Performance Test. For those actuators that survive all cycling tests, rerun tests of paragraph 4.1.4.3.1 and 4.1.4.3.2.

4.1.5 <u>Disassembly and Final Inspection</u>. Following all tests the cylinders will be disassembled and all seal conditions evaluated and recorded. Photographs will be taken to show each seal configuration that is tested. The data on Tables 3.1.1 and 3.1.3 will be recorded.

5.0 TEST PARAMETERS

Unless otherwise specified the test parameters shall be as follows.

5.1 Test Fluid.

Fluid shall be filtered by a non-bypassing 3 or 5 micron absolute filter in the pressure line immediately downstream of the pump.

5.2 Temperature.

Unless otherwise specified the ambient temperature shall be 175 degrees +/- 100 degrees F. (as required to control the fluid temperature). Test fluid temperatures at the test actuator shall be 225 degrees F. +/- 25 degrees F.

5.3 Pressures.

Test pressures are specified for each test

5.4 Tolerances.

Temperature - as specified for each test.

Pressure - +/- 2% of the full scale reading.

FIGURE 3.2.1. SEAL EVALUATION TEST FIGURE SKETCH

FIGURE 3.2.2. SPECIMEN AND LOAD HYDRAULIC SYSTEMS

THE PROPERTY OF THE PARTY OF TH

FIGURE 3.2.3. ROD SEAL CONFIGURATIONS TO BE TESTED

FIGURE 3.2.4A ROD CRITICAL DIMENSIONS

THE PARTY OF THE P

FIGURE 3.2.48. END CAP CRITICAL DIMENSIONS
168

PRESSURIZED FRICTION SET-UP FIGURE 3.2.5

TABLE 3.1.1
MEASURED CRITICAL DIMENSIONS AND FINISHES

Actuator No.____

DIMENSION	PISTON & ROD MEASUREMENT	LUG END CAP MEASUREMENT	ROD END CAP MEASUREMENT
A DIA B DIA			
B RMS			
B TIR C DIA			
C RMS			
C TIR			
D DIA			
D RMS			
E DIA			
F DIA			
F RMS			
FTIR			
H J DIA			
K DIA			
K RMS			
K TIR			
M			
N DIA			
N RMS			
P			
R DIA			
R RMS			
R TIR			
T DIA T RMS			
TTIR			

TABLE 3.1.1A

MEASURED CRITICAL DIMENSIONS AND FINISHES AFTER TEST Actuator No.

DIMENSION	PISTON & ROD MEASUREMENT	LUG END CAP MEASUREMENT	ROD END CAP MEASUREMENT
B Dia.			
B RMS Finish			
C Dia.			
C RMS Finish			
D Dia.			
N Dia.			

TABLE 3.1.2 LEAKAGE AND INTERSTAGE PRESSURE DATA ACTUATOR NUMBER

11:7:11	
PORT D	
Z Z Z Y	
B RES	
24	
AAV ROP	
END NUTBER 2 (ROD) LEAKAGE (TEND OF DAY): PRESSURE (HAX) CC: DROPS: B: C	
PORT	
PRESSURF (TAX)	
191 192 193 193 193 193 193 193 193 193 193 193	
END NUMBER 1 (LI (END OF DAY): PRES (CC : DROPS B	
SI Ä	
100 PT	
6	
RT O	
NUMBER OF CYCLES : SHORT : LONG : STROKE : STROKE :	
OVER NIGHT LKG.	
657	
R. P.	
START UP TEMP.	
START OVER HUMBE UP NIGHT SHOR DATE TEMP LKG. STRO	

TABLE 3.1.3 ROD SEAL DESCRIPTION

#

ACT	1.06	ROD		GRC	GROOVE		SEAL NAME &		
NO.	END	END	Ø	œ	ပ	c	PART NUMBER	MANUFACTURER	MATERIAL
-	×		×	×	×		Plus Seal S30775-214P-19	W. S. Shamban	Turcon with proprietary MoS2 Filler. Elastomer per MIL-P-83461.
			×	×	×		Back-up Ring (2) S33157-214-19	W. S. Shamban	Turcon with proprietary MoS ₂ Filler.
						×	Excluder S32925-9P-19	W. S. Shamban	Turcon with proprietary MoS ₂ Filler.
						×	0-Ring M83461/1-121	Parker	MIL-P-83461
-		×			×		Double Delta S30650-214-14	W. S. Shamban	Turcon with glass and Proprietary MoS ₂ Filler
					×		0-Ring M83461/1-214	Parker	M1L-P-83461
					×		Back-Up Ring (2) S33157-214-14	W. S. Shamban	Turcon with glass and Proprietary MoS ₂ Filler
						×	Seal Guard S-34-20	Hercules	Bronze with a Nitrile Load Ring

TABLE 3.1.3 ROD SEAL DESCRIPTION

ACT NO.	LUG	ROD	V V	GROOVE B C	CC	16	SEAL NAME & PART NUMBER	MANUFACTURER	MATERIAL
2	×		×	×	×		Plus Seal S30775-214P-19	W. S. Shamban	Turcon with proprietary MoS ₂ Filler. Elastomer per MIL-P-83461.
			×	×	×		Backup Ring (2) S33157-214-19	W. S. Shamban	Turcon with proprietary MoS2 Filler.
						×	Excluder S32925-9P-19	W. S. Shamban	Turcon with proprietary MoS ₂ Filler.
1						×	0-Ring M83461/1-121	Parker	MIL-P-83461
~ 174		×	×				Maxi-Flex Seal TF831M-7214	Tetrafluor	Tetralon 720
			×				0-Ring M83461/1-318	Parker	MIL-P-83461
						×	Seal Guard S-34-20	Hercules	Bronze with a Nitrile Load Ring

MATERIAL	Turcon with Proprietary MOS2 Filler. Elastomer per MIL-P-83461.	Acetal Resin	Nitrile	Ekanol filled TFE Proprietary Nitrile	Polymyte
MANUFACTURER	W. S. Shamban	Dowty Seals Limited	Dowty Seals Limited	Greene Tweed	Parker Packing
SEAL NAME & PART NUMBER	Plus Seal S30775-214P-19	Wiper/Scraper 120-218-1709	0-Ring 100-218-0074	Enercap Seal 595-21400-160 -PX1	Polypak 1870100024651D53
GROOVE A B C D	*	×	*	× ×	*
ROD				×	
LUG	×				
AC NO.	e .			ا ا ا ا	

TABLE 3.1.3 ROD SEAL DESCRIPTION

7#

RFR MATERIAL	er Revonoc 6200 Proprietary 70 Durometer Hitrile	er Revonoc 6200	er Revonoc 18158	an Turcon with proprietary MoS ₂ Filler. Elastomer per MIL-P-83461	an Mineral Filled TFE Comp 18016	, Acetal Resin	Nitrile
MAHUFACTURER	C. F. Conover & Co.	C. F. Conover & Co.	C. E. Conover & Co.	W. S. Skanban	W. S. Shamban	Powty Seals Limited	Powty Seals Limited
SFAL MANF & PART MUMBER	Con-0-Nex CFC 6001-214	Backup Ring CFC5110-214	Scraper CEC5091-998-55 and Spacer	Plus Seal S30775-214P-19	Backup Ring (2) S33157-214-19	Wiper/Scraper 120-218-1709	0-Ring 100-218-0074
c			×			×	×
GEOOVE B	×	×		× ×	× ×		
A	×	×					
ROD END				×			
LUG END	×						
ACT NO.	4			176			

TABLE 3.1.3

MATEPIAL	Peyondo 6200	41: -p-83461	Sronze with a nitrile Load Ping.	Revonoc 6200	MIL-P-83461	Polymyte
MANI FACT DE P	C. F. GROVAN	panker	Hemoules	C. F. Comover	Parker	Parker
TEAL MAME &	Trapezoid Packup Seal CECHU560-214	0-Ring M83461/1-214	Seal Guard S-34-20	Trapezcid Backup Seal CEC 50565-214	0-Ping M83461/1/214	Polypak 187010007 4651053
SROAVE A B C S	*	> ×	*	. ×	× ×	×
ROD				 ×		
END	×					
AC.	5			5		

TABLE 3.1.3 ROD SEAL DESCRIPTION

9#

TO THE REPORT OF THE PARTY OF T

1	1					1
MATERIA	Turcon with Proprietary MoS2 Filler.	MIL-P-83461	Turcon with Proprietary MoS ₂ Filler.	Turcon with MoS ₂ Filler	Polymyte	Turcon with Proprietary MoS ₂ Filler. Elastomer per MIL-P-83461.
MANIJEACTIJRER	W. S. Shamban	Parker	W. S. Shamban	W. S. Shamban	Parker	W. S. Shamban
SEAL NAME & PART NIMBER	Nouble Delta S30650-214-19	0-Ring M83461/1-214	Backup Ring (2) S33157-214-19	Hat Seal S33051-214-99	Polypak 1870100024651D53	Plus Seal S30775-214P-19
GROOVE A B C D		×	×	*	×	× × ×
ROD						×
END	×					
ACT NO.	9					9

Turcon with Proprietary MoS₂ Filler.

W. S. Shamban

Backup Ring (2) S33157-214-19

×

178

Acetal Resin

Dowty Seals Limited

Wiper/Scraper 120-218-1709 Nitrile

Dowty Seals Limited

0-Ring 100-218-0074

1.2 B

TABLE B-3

MEASURED CRITICAL DIMENSIONS AND FINISHES
BEFORE AND (AFTER) TASK II TEST

PISTON & ROD -12 S/N 007 DIMENSION* MEASUREMENT		LUG END CAP -5 S/N 001 MEASUREMENT	ROD END CAP -2 S/N 001 MEASUREMENT
A DIA	1.488		
B DIA	.998 (.9975)	and many cash	
3 RMS	6 (4)		
B TIR	.000		
C DIA	.997 (.9972)		
C RMS	2 (4)		
C TIR	.000	~~~	
D DIA	~	1.0004	1.0006
		(1.0005)	(1.0004)
D RMS		16	16
E DIA		NA	NA
F DIA		1.241	1.241
f RMS		32	32
F TIR		.0002	.0002
H		.305	.3118
J DIA		1.0005	1.0007
K DIA	~~-	1.241	1.241
K RMS		32	32
K TIR		.0002	.0001
М		.304	.3106
N DIA		1.0006	1.0003
		(1.0005)	(1.00115)
N RMS		16	16
P		.312	.3084
R DIA		1.241	1.3965
r RMS		32	32
R TIR	~~-	.0002	Not Recorded
T DIA		1.930	1.930
T RMS		32	32
T TIR		.0002	Not Recorded

^{*} See Figures 3.2.4A and 3.2.4B in Task III Test Plan.

TABLE B-3. Continued

Actuator No. 2

DIMENS ION	PISTON & ROD -1 S/N 007 MEASUREMENT	LUG END CAP -5 S/N 008 MEASUREMENT	ROD END CAP -5 S/N 003 MEASUREMENT
A DYA	1 400		
A DIA	1.488		
B DIA	.9975 (.998)		
B RMS	6		
	(8)		
B TIR	.000		
C DIA	.997		
	(.9972)		
C RMS	6		
C T10	(8)		
C TIR	.000	~-~	
D DIA	at an	1.0004	1.0005
		(1.00075)	(1.0004)
D RIAS		16	16
E DIA		NA	NA .
F DIA		1.241	1.241
F RMS		16	32
FTIR		.0001	.0002
4		.3041	.3058
J DIA		1.0006	1.0008
K DIA		1.241	1.241
K RMS		32	32
K TIR		.0002	.0002
М		. 3041	.304
N DIA		1.0004	1.0005
		(1.00075)	(1.0004)
N RMS		32	16
P		. 307	.3084
R DIA		1.241	1.2412
R RMS		32	32
RTIR		.0003	.0002
T DIA		1.930	Not Recorded
T RMS		32	32
T TIR		.0002	.0002

TABLE B-3. Continued

DIMENS ION	PISTON & ROD -1 S/N 002 MEASUREMENT	LUG END CAP -5 S/N 004 MEASUREMENT	ROD END CAP -5 S/N 005 MEASUREMENT
A DIA	1.488		
B DIA	•9975 (•9975)		
B RMS	6 (6)	- -	
B TIR	.000		
C DIA	.9980 (.9972)		
C RMS	6 (8)		~~~
C TIR	.000		
D DIA		1.0003	1.0004
		(1.0004)	(1.0010)
D RMS		16	16
E DIA		NA	NA
F DIA		1.241	1.241
F RMS		32	32
F TIR		.0002	.0002
H		.3041	. 306
J DIA		1.0006	1.0006
K DIA		1.241	1.241
k RMS		32	32
K TIR		.0002	.0002
M		.3048	. 304
N DIA		1.0006 (1.0004)	1.0005 (1.0006)
N RMS		16	16
P		.3094	.311
R DIA		1.2412	1.2415
R RMS		32	32
RTIR		.0002	.0002
T DIA		1.930	1.930
T RMS		32	32
T TIR		.0002	.0002

TABLE 8-3. Continued

	PISTON & ROD	LUG END CAP	ROD END CAP
	-1 S/N 003	-6 S/N 001	-5 S/N 006
DIMENSION	MEASUREMENT	MEASUREMENT	MEASUREMENT
A DIA	1.489		
B DIA	.9977		
D DIM	(.9970)		
B RMS	4		
	(16)		
B TIR	.001		
C DIA	.998		
	(.9975)		
C RMS	4		
- · · · · ·	(4)		
C TIR	.000		
D DIA		1.0007	1.0004
U DIA		(1.0006)	(1.0004)
D RMS		16	16
E DIA		1.275	NA
F DIA		1.242	1.2413
F RMS	_	16	32
			.0002
F TIR		Not Recorded	
H		.310	.305
J DIA		1.0006	1.0006
K DIA		1.241	1.2413 32
K RMS		16	
K TIR		.0001	.0002
M		.3084	.3059
N DIA		1.0004	1.0005
		(1.00055)	(1.0004)
N RMS		16	16
P		.3143	.3075
R DIA		1.2412	Not Recorded
R RMS		16	32
R TIR		.0001	.0002
T DIA		1.930	1.930
T RMS		32	32
T TIR		.0001	.0001

TABLE B-3. Continued

	PISTON & ROD	LUG END CAP	ROD END CAP
	-1 S/N 004	-5 S/N 007	-5 S/N 008
DIMENSION	MEASUREMENT	MEASUREMENT	MEASUREMENT
A DIA	1.4888		
B DIA	.998	en 40 mi	
B RMS	4		
BTIR	.000		
C DIA	.998		
C RMS	4	ar	
C TIR	.000		
D DIA		1.0004 (1.0032)	1.0003 (1.00075)
D RMS		16	16
E DIA	~ ~ ~	NA	NA
F DIA		1.2415	1.2415
F RMS	PRI sed way	32	32
FTIR	··	.0003	.0002
Н	~ - ~	.3065	.3063
J DIA	منه بنيه بنية	1.0005	1.0005
K DIA		1.2413	1.243
K RMS	w	32	32
K TIR		.0003	.0002
M		.3051	.3065
N DIA		1.0006	1.0006
11 547		(1.00055)	(1.0004)
N RMS		16	16
P		.3135	.3136
R DIA	· 	1.2412	1.2416
R RMS		32	32
RTIR		.0003	.0002
T DIA		1.930	1.930
T RMS		32	32
T TIR		.0003	
i IIK		• 0003	.0003

TABLE B-3. Continued

DIMENSION	PISTON & ROD -1 S/N 005 MEASUREMENT	LUG END CAP -5 S/N 009 MEASUREMENT	ROD END CAP -5 S/N 010 MEASUREMENT
A DIA B DIA	1.4885 .998		
D DIA	(.9980)		
B RMS	4 (4)		
B TIR	.000		~
C DIA	.998 (.9976)		
C RMS	4 (4)		
C TIR	.000		
D DIA		1.0006	1.0004
		(1.00055)	(1.00078)
) RMS		16	16
E DIA		NA	NA
F DIA		1.242	1.243
F RMS		32	32
FTIR		.0001	.0002
H		.3055	. 3051
J DIA		1.0007	1.0007
K DIA		1.242	1.243
K RMS		32	32
K TIR		.0001	.0002
М		.3083	. 304
N DIA		1.0008 (1.00065)	1.0007 (1.00083)
N RMS		16	16
Р		.3111	.3078
R DIA		1.2416	1.2415
R RMS	~ ~ ~	32	32
RTIR		.0001	.0002
T DIA		1.930	1.930
T RMS		32	32
T TIR		.0001	.0002

APPENDIX C TASK III DATA

TABLE C-1. TASK III SEAL PERFORMANCE SUMMARY

CONNENTS	Cap Strip and backup rings are in good condition. Outside backup ring has approximately .O4 in. extrusion. Elastomer has minor deformation away from pressure. The seal survived the entire test.	Inside Cap Outside Bu I.D. Bu I.D. Bu I.D. Bu I.D. Bu I.D. Used .994 .994 .994 1.0042 Rod Dia Rod Finish Used .99749978 4-7 RMS
SATISFACTORY PERFORMANCE	Yes 3 drops total rod leakage	
DESTGMER/ SUPPLIER	W. S. Shamban Yes 3 dr rod	بيا
CONFIGURATION PART SKETCH NUMBER	S30775-214P-19 Plus Seal S33157-214-19 Backup Ring (2)	FIRST-STAGE SEAL IN A FOUR-STAGE VEHTED INSTALLATION NO. 1 LUG, GROOVE "A"

TABLE C-1. CONTINUED

CONFIGURATION PART SKETCH NUMBER	α.	DESIGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS
830775 Plus S	S30775-214P-19 Plus Seal	W. S. Shamban Yes 3 di rod	Yes 3 drops total rod leakage	Cap strip and backup rings are in very good condition. Elastomer has minor deformation away from pressure. This seal
S33157 Backup	S33157-214-19 Backup Ring (2)			survived the entire test.
SECOND-STAGE SEAL IN A FOUR STAGE VENTED INSTALLATION NO. 1 LUG GROOVE "B"	A FOUR STA	(GE		Inside Cap Outside Bu I.D. Ru I.D. New .9903 IT.982 .9903 Used .994 .9903 .994
				Rod Dia Rod Finish New .998 3 RMS Used .99749978 4-7 RMS

TABLE C-1. CONTINUED

The second secon

CONFIGURATION PART SKETCH NUMBER	DESIGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS
S30775-214P-19	W. S. Shamban Yes 3 dr Rod	Yes 3 drops total Rod Leakage	Cap strip and backup rings are in very good condition. Elastomer has minor deformation away from pressure. This seal
S33157-214-19 Backup Ring (2)			survived the entire test.
THIRD-STAGE SEAL IN A FOUR- STAGE VENTED INSTALLATION NO. 1 LUG, GROOVE "C"			Inside Cap Outside Bu I.D. I.D. Bu I.D. New .9903 IT.982 .9903 Used .994 .9903 .994
			Rod Dia Rod Finish 3 RMS Used .99749978 4-7 RMS

TABLE C-1. CONTINUED

COMMENTS	Both I.D. crowns of the Excluder show contact and wear, with the most wear under the O-ring. Contaminant was trapped in the "V" aroove.		New .9903 Used 1.0042	The wear exhibited by this excluder would prevent it acting as a seal or as an effective scraper. The contaminant trapped by the Excluder scratched the rod.	New .998 Rod Finish 3 PMS Used .99749978 4-7 RMS
SATISFACTORY PERFORMANCE	No Excessive Wear				
DESIGNER/ SUPPLIER	W. S. Shamban	Parker	FOUR-STAGE		
CONFIGURATION PART SKETCH NUMBER	\$32925-9P-19 Excluder	M83461/1-121 0-Ring	FOURTH-STAGE SEAL/SCRAPER IN A FOUR-STAGE VENTED INSTALLATION. NO. 1 LUG GROOVE "D".		
CONFIGUR			FOURTH-ST VENTED IN NO. 1 LUG		

TABLE C-1. CONTINUED

CONFIGURATION SKETCH	N PART NUMBER	DESIGNER/ SUPPLIEP	SATISFACTOPY PERFOPMANCE	COMMENTS
	S30650-214-14 Double Delta	W. S. Shamban Mo. The Seal Fai	No. The Seal Failed	This seal failed during the rotor feedback test. The
	M83461/1-214 O-ring	Parker		10 ⁶ endurance cycles and 474,000 rctor feedback cycles
	S33157-214-14 Backup Ring (2)	W. S. Shamban		The outside lin of the double
SINGLE-STAGE : NO. 1 ROD, GRO	SINGLE-STAGE SEAL INSTALLATON NO. 1 ROD, GROOVE "C".			delta had been worn away and the O-ring wear area had a polished appearance.
				This seal was tested on a tungsten carbide coated rod. All seals tested on the tungsten carbide coated rod failed.

TABLE C-1. CONTINUED

The scraper was in good condition but it had allowed a significant quantity of dirt to bypass it on the rod.
NO
Hercules
P S-34-20 Seal Guard

SCRAPER FOR A SINGLE-STAGE SEAL INSTALLATION NO. 1 ROD, GROOVE "D".

TABLE C-1. CONTINUED

COMMENTS	Cap strip and inside backup ring are in very good condition. The outside backup ring has approx04 in. extrusion, but is in good condition. The elastomer has minor deformation away from pressure. The seal survived the entire test.	Inside Cap Outside Bu I.D. B
SATISFACTORY PERFORMANCE	W. S. Shamban Yes, zero C leakage during r entire test r r mm	New Use
DESIGNER/ SUPPLIER	W. S. Shamban	μ _e
CONFIGURATION PART SKFTCH NUMBER	1	FIRST-STAGE SEAL IN A FOUR-STAGE UNVENTED INSTALLATION NO. 2 LIG, GROOVE "A"

TABLE C-1. CONTINUED

THE RESERVE OF THE PARTY OF THE

SKETCH	SKETCH NUMBER	DESTGNER/ SUPPLIFP	SATISFACTOPY PEPFOPMANCE	COMMENTS
D D D	\$30775-214P-19 Plus Seal	W. S. Shamban	W. S. Shamban Yes, zero Teakage during	Cap strip and backup rings are in very good condition with no extrusion. Elastomer has minor
	533157-214-19 Backup Ring (2)		ر م د	deflection away from pressure.
SECOND-STAGE S STAGE NVENTED NO. 2 U.G. GPO	SECOND-STAGE SEAL IN A FOUR- STAGE INVENTED INSTALLATION NO. 2 EPG, GPOOVE "R".			Inside Cap Outside Ru I.D. Ru I.D. Ru I.D. Ru I.D. Ru I.D. Ru I.D. Gad Gad
			حض سنا	New .998 Pod Finish 2 RMS Ped .99739979 2-3 RMS

TABLE C-1. CONTINUED

CONFIGURATION PART	DESIGNER/	SATISFACTORY	SHIPTIMO
	SUPPLIER	Z E K F UKMANO F	CUMMENIS
P S30775-214P-19 Plus Seal	W. S. Shamban	W. S. Shamban Yes, zero Jeakage during	Cap strips and backup rings are in very good condition.
\$33157-214-19 Backup Ring (2)		test	Elastomer has minor deformation away from pressure.
THIRD-STAGE SEAL IN A FOUR-STAGE UNVENTED INSTALLATION NO. 2 LUG, GROOVE "C".	щ		Inside Cap Outside Bu I.D. I.D. Bu I.D. 1994 LT 982 994 Used .994 .994
		Z S	New .998 2-3 RMS

TABLE C-1. CONTINUED

COMMENTS	Both ID crowns of the Excluder show contact and wear with the	cost wear under the O-ring. Contaninant was trapped in the "V" groove.	Excluder 1.D9903 Used 1.0042	The wear exhibited by this Excluder would prevent it	acting as a seal or as an effective scraper. The	contaninant trapped by the excluder scratched the rod.	The rod under the scraper had a blue appearance as if it had	been overheated.	Rod Dia Rod Finish 2 RMS 2-3 RMS 2-3 RMS
SAT1SFACTORY PERFORIANCE	SSive	Wear Co	ž		ac	Ŭ ô	<u> </u>	9 9	неи Used
DESIGNER/ SUPPLIER	W. S. Shamban	Parker	E						
I PART HULIBER	S32925-9P-19 Excluder	1183461/1-121 0-ring	FOURTH-STAGE SEAL/SCRAPER IN A	10VE "D".					
CONFIGURATION PART SKETCH NUNBER	a a		FOURTH-STAGE SI	NO. 2 LUG, GRO					

TABLE C-1. CONTINUED

	rough on f the p strip has	in. on the ircum- jis	downstream downstream dived the	ę		Rod Finish 2 RMS 3-5 RMS
COMMENTS	Cap strip is worn through on approximately 200° of the outside lip. The cap strip has	extruded approx06 in. on the entire down-stream circum-ference. The O-ring is	abraded over an area approx20 in. wide on the downstream side. The seal survived the	entire test with zero measurable leakage.	Cap 1.D. New LT .982 Used .994	Rod Dia . 998 Used . 9976 9978
SATISFACTORY PERFORMANCE	No. Seal was on the verge of failure	despite zero lkg during the test.				
DESIGNER/ SUPPLIER	Tetrafluor	Parker				
CONFIGURATION PART SKETCH NUMBER	TF831M-7214 Maxi-Flex	M83461/1-318 0-ring		SINGLE-STAGE SEAL INSTALLATION NO. 2 ROD, GROOVE "A"		

TABLE C-1. CONTINUED

DRY CE COMMENTS	The scraper was in good condition but it had allowed a significant quantity of contamination to bypass it on the rod.	Scraper I.D. 994 Used .998 Rod Finish Rod Finish 2 RMS Used .99769978 3-5 RMS
SATISFACTORY PERFORMANCE	O	
DESIGNER/ SUPPLIER	Hercules	
CONFIGURATION PART SKFTCH NUMBER		SCRAPER FOR A SINGLE STAGE SEAL INSTALLATION NO. 2 ROD, GROOVE "D".

TABLE C-1. CONTINUED

CONFIGURATION PART SKETCH NUMBER	DESIGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS
P S30775-214P-19 Plus Seal	W. S. Shamban	W. S. Shamban Yes; 17 drops leakage during the test.	The cap strip and inside backup ring were in very good condition. The outside backup
S33157-214-19 Backup Ring (2)			ring was in good condition but had approx02 in. extrusion. This seal survived the entire test.
SINGLE-STAGE SEAL INSTALLATION NO. 3 LUG, GROOVE "C".			Inside Cap Outside Bu I.D. 1.D. Bu I.D. New LT .982 .9903 .9903 Used .994 1.0042 1.0042
			Rod Dia Rod Finish 6 RMS 6 RMS 6-11 RMS

TABLE C-1. CONTINUED

COMMENTS	The scraper was in good condition, but had allowed the passage of a small amount of dirt on the rod.The 0-ring had taken a permanent set. This scraper survived the entire test.	Scraper I.D. New .982 Used .998 This scraper could not be removed without damage from a one-piece gland, and it was difficult to install in a one-piece gland. Rod Dia Rod Finish New .9975 Rod Dia Rod Finish one-piece gland.	6/66:-3/66.
SATISFACTORY PERFORMANCE	Yes		
DESIGNER/ Supplier	Dowty Seals Limited Dowty Seals Limited		
CONFIGURATION PART SKETCH NUMBER	P 120-218-1709 Wiper/Scraper 100-218-0074 0-ring	SCRAPER FOR A SINGLE- STAGE SEAL INSTALLATION NO. 3 (LUG) GROOVE D	

TABLE C-1. CONTINUED

COMMENTS	The cap strip cracked through axially and the downstream side wore away. This seal did not survive the test. The approximate failure point for this seal was after 16,248,240 cycles. The elastomer was in good condition.	Cap Strip I.D.	New .982 Used Could not be measured because of cracks in the cap strip.	Rod Dia Rod Finish New .9975 3 RMS Used .99729976 3-5 RMS
SATISFACTORY PERFORMANCE	O _N			
DESIGNER/ SUPPLIER	Greene Tweed		36	
CONFIGURATION PART SKETCH NUMBER	p 595-21400- 160-PX1 Enercap	•	FIRST-STAGE SEAL IN A TWO-STAGE UNVENTED INSTALLATION NO. 3 ROD, GROOVE "B"	

TABLE C-1. CONTINUED

CONFIGURATION PART SKETCH NUMBER	DESIGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS
p 595-21400- 160-px1 Enercap	Greene Tweed	, ON	The cap strip cracked through axially and the downstream side wore away. This seal did not survive the test. This seal failed after 16,248,240 cycles. The elastomer was in good condition.
SECOND-STAGE SEAL IN A TWO-STAGE UNVENTED INSTALLATION NO. 3 ROD, GROOVE "C"	JAGE		New .982 Used Could not be measured because of crack in the cap strip.
			New .0975 3 RMS Used .99729976 3-5 RMS

TABLE C-1. CONTINUED

	lition pass. le		Rod Finish 3 RMS 3-5 RMS
COMMENTS	Scraper was in good condition but allowed some dirt to pass. This scraper survived the entire test.	Scraper I.D	Rod Dia Ro New .9975 3 Used .99729976 3-
SATISFACTORY PERFORMANCE	Yes		
DESIGNER/ SUPPLIFR	Parker Packing		
CONFIGURATION PART SKETCH NUMBER	P [4] 18701000Z 4651053 Polypak	SCRAPER FOR A TWO-STAGE SEAL UNVENTED INSTALLATION NO. 3 ROD, GROOVE "D"	

TABLE C-1. CONTINUED

COMMENTS	This seal produced no visible wear particles. The inside backup ring, cap and elastomer look very good. The outside triangular backup has approx02 in. extrusion. This seal survived the entire test.	Inside Cap Outside Bu I.D. 1.D. Bu I.D. New .9903 .998 .998+ Rod Dia Rod Finish New .9975 3-4 RMS
SATISFACTORY PERFORMANCE	Yes; zero leakage during test	
DESIGNER/ SUPPLIER	C. E Conover & Co.	STAGE
CONFIGURATION PART SKETCH NUMBER	P CEC6001-214 Con-0-Hex CEC5110-214 Backup Ring	FIRST-STAGE SEAL IN A THREE-STAGE UNVENTED INSTALLATION NO. 4 LUG, GROOVE "B"

TABLE C-1. CONTINUED

Con-O-Hex & Co. CEC5110-214 Backup Ring SEAL IN A THREE-STAGE	r Yes; zero leakage during the test	seal produced no vi particles. Both ba sty, the cap, and the stomer were in very g lition. This seal su entire test. Inside Cap Ou Bu I.D. I.D. Bu 19907 IT.982
UNVENTED INSTALLATION NO. 4 LUG, GROOVE "C"		Rod Dia Rog 3 3 - 1986 3 3 - 19975 3

TABLE C-1. CONTINUED

DESIGNER/ SATISFACTORY SUPPLIER PEPFORMANCE COMMENTS	This scraper did not allow contaminant to bypass on the coraper to bypass on the rod. It produced the least visible rod wear of all scrapers tested.	Scraper I.D. New LT 982 Used .9903 Rod Dia Rod Finish New .9975 3-4 RMS
DESIGNER/ SUPPLIER	C. E. Conover	¥.
CONFIGURATION PART SKETCH NUMBER		THIPD-STAGE SEAL/SCRAPER IN A THREE-STAGE UNVENTED INSTALLATION NO. 4 LUG, GROOVE "D"
N02	۵	THIP

TABLE C-1. CONTINUED

COMMENTS	Backup rings are in good condition. Outside backup ring has approx04 in. extrusion. Cap strip is in very good condition.	deformation away from pressure. This seal survived the entire test.	Inside Cap Outside Bu I.D. I.D. Bu I.D. New <u>.9903 </u>	New .9975 3 RMS Used .99729973 2-4 RMS
SATI SFACTORY PERFORMANCE	Yes; zero leakage during test			
DESIGNER/ SUPPLIER	W. S. Shamban Yes; zero duri			
CONFIGURATION PART SKETCH NUMBER	P S30775-214P-19 Plus Seal	S33157-214-19 Backup Ring (2)	FIRST-STAGE SEAL IN A TWO-STAGE UNVENTED INSTALLATION NO. 4 ROD, GROOVE "B"	

TABLE C-1. CONTINUED

COMMENTS	Both backup rings and the cap strip are in very good condition. The elastomer has	minor deformation awdy irom pressure. This seal survived the entire test.	Inside Cap Outside Bu I.D. I.D. Bu I.D. New LT .982 .9903 .9903 Used .9903 .9903 .9903	New .9975 3 RMS Used .99729973 2-4 RMS
SATISFACTORY PERFORMANCE	Yes; zero leakage during test			
DESIGNER/ SUPPLIER	W. S. Shamban Yes; zero duri		ы	
CONFIGURATION PART SKFTCH NUMBER		S33157-214-19 Backup Ring (2)	SECOND-STAGE SEAL IN A TWO-STAGE UNVENTED INSTALLATION NO. 4 ROD. GROOVE "C"	

TABLE C-1. CONTINUED

New .9975 3 RMS Used .99729973 2-4 RMS.

TABLE C-1. CONTINUED

CONFIGURATION PART SKETCH NUMBER	DESIGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS
P CEC5056C-214 Trapezoid Backup Ring	6. K. Fling/ Yes; C. E. Conover zero durin	Yes; zero leakage during test	The O-ring was in very good condition with no nibbling. The trapezoidal backup ring was in very good condition with no
M83461/1-214 0-Ring	Parker		visible wear particles. This seal survived the entire test
FIRST-STAGE SEAL IN A TWO-STAGE VENTED INSTALLATION MO. 5 LUG, GROOVE "B".			New .982 .9903 Used .994 1.0042
			New .998 Rod Finish TRMS Used .99769979 5-9 RMS

TABLE C-1. CONTINUED

CONFIGURATION PART SKETCH NUMBER	DESTGMERS SUPPLIER	CATISEACTORY PERFORMANCE	COMMENTS
P CEC5056C-214 Trapezoid Backup Ring	G. K. Fling/ C. E. Conover	ves, Zero leakage during test	The C-ring was in very good condition with no nibbling. The trapezoidal backup ring was in
M83a61/1-214 0-Ring	Parker		very gond condition with no visible wear particles. This seal survived the entire test.
SECOND-STAGE SEAL IN A TWO-STAGE VENTED INSTALLATION NO ELHG GDOOVE "C"	:0E		Mew .986 .9903 Used .994 .998
			Rod Dia Rod Finish 4 RMS 3sed .99769979 5-9 RMS

TABLE C-1. CONTINUED

COMMENTS	The scraper was in good condition but it had allowed contamination to bypass it on the rod. The rod had a frosted appearance.	New .994 Used .994+	New .998 A RMS Used .99769979 5-9 RMS
SATISFACTORY PERFORMANCE	ON.		
DESIGNER/ SUPPLIER	Hercules		
N PART NUMBER	S-34-20 Seal Guard		TWO-STAGE LATION OOVE "D"
CONFIGURATION PART SKETCH NUMBE	a		SCRAPER FOR A TWO-STAGE VENTED INSTALLATION NO. 5 LUG, GROOVE "D"

TABLE C-1. CONDITION

CONFIGURATION PART	FAFE	DESIGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS	
P CEC	CEC5056C-214 Trapezoid Backup Ring	G. K. Fling/ C. E. Conover	Yes; zero leakage during test	The O-ring was in very good condition with no nibbling. The trapezoidal backup ring was in very good condition with no	ry good bbling. The ing was in with no
M83	M83461/1-214	Parker		visible wear particles. Inis seal survived the entire test.	es. Inis tire test.
	gn r -0			0-Ring I.D. New .986 Used .998	Backup I.D
FIRST-STAGE SEAL IN A TWO-STAGE UNVENTED INSTALLATION NO. 5 ROD, GROOVE "B"	IN A TWO-STAGE FION "B"	LLI.		Rod Dia New .9978 Used .99729976	Rod Finish 6 RMS 8-10 RMS

TABLE C-1. CONTINUED

CONFIGURATION PART SKETCH NUMBER	PART NUMBER	DESIGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS
	CEC5056C-214 Trapezoid Backup Ring M83461/1-214 O-ring	G. K. Fling/ Conover	Yes; zero leakage during test	The O-ring was in very good condition with no nibbling. The trapezoid backup ring was in very good condition with no visible wear particles. This seal survived the entire test.
				New .982 .9903 .9903 Used .994 .998
SECOND-STAGE S UNVENTED INSTAI NO. 5 ROD, GRO	SECOND-STAGE SEAL IN A TWO-STAGE UNVENTED INSTALLATION NO. 5 ROD, GROOVE "C"	GE		New .9978 Rod Finish 6 RMS Used .99729976 8-10 RMS

TABLE C-1. CONTINUED

COMMENTS	Scraper was in good condition, but allowed some contamination to pass. This scraper survived the entire test	New LT .982 Used .994	New .9978
PERFORMANCE	Yes		
DESIGNER/ SUPPLIER	Parker Packing		
CONFIGURATION PART	p G 18701000Z 4651D53 Polypak		SCRAPER FOR A TWO-STAGE UNVENTED INSTALLATION NO. 5 ROD, GROOVE "D".

TABLE C-1. CONTINUED

A STATE OF THE PARTY OF THE PAR

SATISFACTORY PERFORMANCE COMMENTS	Yes; Zero leakage rings are in very good condition.			Inside Cap Outside Bu I.D. I.D. Ru I.D. New LT .982 .994 .994 Used .9903 1.0042 1.0042	New .9977 3 RMS Used .99739975 3 RMS-4 RMS
SATI PERF	Yes; zero	3			
DESIGNER/ SUPPLIER	W. S. Shamban Yes; zero		Parker		
PART NUMBER	\$30650-214-19 Double Delta	S33157-214-19 Backup Ring (2)	M83461/1-214 O-Ring	FIRST-STAGE SEAL IN A TWO-STAGE VENTED INSTALLATION NO. 6 LUG, GROOVE "B"	
CONFIGURATION PART SKETCH NUMB				FIRST-STAGE SEA VENTED INSTALLA NO. 6 LUG, GROO	

TABLE C-1. CONTINUED

The state of the s

CONFIGURATION PART SKETCH NUMBER	DESIGNER/ SUPPLIER	SATI SFACTORY PERFORMANCE	COMMENTS
P 5	W. S. Shamban Yes; zero duri	Yes; zero leakage during test	The cap strip and elastomer are in very good condition. This seal survived the entire test.
			Cap I.D. Elastomer I.D. New .994 LT .982 Used .994+ LT .982
SECOND-STAGE SEAL IN A TWO-STAGE VENTED INSTALLATION NO. 6 LUG, GROOVE "C"	AGE		New .9977 3 RMS Used .99739975 3 RMS-4 RMS

TABLE C-1. CONTINUED

TABLE C-1. CONTINHED

CONFIGUPATION PART SKETCH NUMBER	DESIGNEP/ SUPPLIEP	SATISFACTOPY PERFORMANCE	COMMENTS
\$30775-214P-19 Plus Seal \$33157-214-19 Backup Ring (2)	W. S. Shamban	Yes; zero leakage during test	The inside backup ring was in very good condition. The Plus Seal was in good condition but had approx02 in. extrusion. The outside backup ring was in good condition, but had approx01 in. extrusion. The elastomer was in good condition, but had minor deformation away from pressure. This seal survived the entire test
FIRST-STAGE SEAL IN A THREE-STAGE UNVENTED INSTALLATION NO 6 ROD, GROOVE "A"	,GE		Inside Cap Outside Bu I.D. I.D. Bu I.D. New .9903 LT.982 .9903 Used .9904 .9903 .998 Rod Dia Rod Finish Used .99759975 3-10 RMS

Ļ

TABLE C-1. CONTINUED

COMMENITS	Both backup rings and the cap were in very good condition. The elastomer was in good condition but had minor deformation away from pressure. This seal survived the entire test.	Inside Cap Outside Bu I.D. I.D. Bu I.D. New .9903 LT.982 .9903 Used .994 .9903 .994	New .9975 3-10 RMS Used .99739975 3-10 RMS
SATISFACTORY PERFORMANCE	Yes; zero leakage during test		
DESIGNER/ SUPPLIER	W. S. Shamban Yes; zero duri		TAGE
CONFIGURATION PART SKETCH NUMBER	P S30775-214P-19 Plus Seal S33157-214-19 Backup Ring (2)		SECOND-STAGE SEAL IN A THREE-STAGE UNVENTED INSTALLATION. NO. 6 ROD, GROOVE "B"

TABLE C-1. CONTINUED

CONFIGURATION PART SKETCH NUMBER	DESTGNER/ SUPPLIER	SATISFACTORY PERFORMANCE	COMMENTS
\$30775-214P-19 Plus Seal \$33157-214-19 Backup Ring (2)	\$30775-214P-19 W. S. Shamban Plus Seal \$33157-214-19 \$ackup Ring (2)	Yes; zero leakage during test	Both backup rings and the cap were in very good condition. The elastomer was in good condition but had minor deformation away from pressure. This seal survived the entire test.
			Inside Cap Outside Bu I.D. 1.D. Ru I.D. New .9903 LT.982 .9903 Used .994 .9903
SECOND-STAGE SEAL IN A THREE-STAGE UNVENTED INSTALLATION. NO. 6 ROD, GROOVE "B"	TAGE		New .9975 3-10 RMS Used .99739975 3-10 RMS

TABLE C-1. CONTINUED

COMMENTS	Both backup rings and the cap were in very good condition. The elastomer was in good condition but had minor deformation away from pressure. This seal survived the entire test	Inside Cap Outside Bu I.D. Bu I.D. Bu I.D. 1.D. 9903 .9903 .994 .994 Sed Finish Red Finish Sed Fish Sed Fish
SATISFACTORY PERFORMANCE	Yes; zero leakage during test	
DESIGNER/ SUPPLIER	w. S Shamban	STAGE
CONFIGURATION PART SKETCH NUMBER	P S30775-214P-19 Plus Seal S33157-214-19 Backup Ring (2)	THIRD-STAGE SEAL IN A THREE-STAGE UNVENTED INSTALLATION NO. 6 ROD, GROOVE "C"

TABLE C-1. CONTINUED

S	owed a small nination to od. This	.	·O	Pod Finish 3 RMS 3-10 RMS
COMPLENTS	This scraper allowed a snall amount of contamination to bypass on the rod. This	scraper survived the entire test.	Scraper I.D. 982 Used .9903	Pod Dia .9975 Used .99739975
SATISFACTORY PERFORMANCE	Yes			
DESIGNER/ SUPPLIER	Dowty Seals Limited			
V PART NUMBER	120-218-1709 Wiper/Scraper	100-218-0074 0-ring	THREE-STAGE ALLATION OOVE "D"	
CONFIGURATION PART SKETCH NUMBI			SCRAPER FOR A THREE-ST UNVENTED INSTALLATION NO. 6 ROD, GROOVE "D"	

TABLE C-1. CONTINUED

}	50,540 and	area ocal	
COMMENTS	The seal failed after 4,650,540 cycles of rotor feedback.	rolled over approx. 150° of outer surface. The worn area had a polished look. The backup rings had medium local wear caused by the 0-Ring getting on top.	No seal measurements were taken.
SA LISTAL LORI PERFORMANCE	No; seal failed	carbide rod	
DESTGNER/ SUPPLIER	Tetrafluor	Parker	MENT)
I PART NUMBER	TF830-214-2 Backup Ring (2)	M83461/1-214 O-Ring	SINGLE-STAGE SEAL (1ST REPLACEMENT) ACT. NO. 1, ROD, GROOVE "C".
COMFIGURATION SKFTCH			SINGLE-STAGE S ACT. NO. 1, RC

TABLE C-1. CONTINUED

COMMENTS	The scraper was in good condition, but it had allowed contamination to bypass it on the rod.	Scraper I.D. New Not measured Used Could not be measured because of distortion at disassembly.
SATISFACTORY PEPFORMANCE	0 N	
DESTGNER/ SUPPLIER	Hercules	ב "ם" "ם"
CONFIGURATION PART SKETCH NUMBER	Seal Guard	FOR THE 1ST REPLACEMENT ACT NO. 1, ROD, GROOVE "D"
CONFTGU SKET	<u>~</u>	SCRAPER FOR THE SEAL IN ACT NO.

TABLE C-1. CONTINUED

The second secon

COMMENTS	The seal failed after 15,462,330 rotor feedback cycles and 1620 long stroke cycles. The outer lip of the cap was worn away	over a 90 arc. The elastomer was exposed to the rod and worn heavily in the same area.
SATISFACTORY PERFORMANCE	No; seal failed on tungsten carbide rod	
DESIGNER/ SUPPLIER	W. S. Shamban	:MENT)
CONFIGURATION PART SKETCH NUMBER	P S30775-214P-19 W. S. Shamban No; seal Plus Seal on teath	SINGLE-STAGE SEAL (2ND REPLACEMENT) ACT NO. 1 ROD, GROOVE "C"

TABLE C-1. CONTINUED

COMMENTS	The scraper was in good condition, but it had allowed contamination to bypass it on the rod.	No measurements were taken.
SATISFACTORY PERFORMANCE	No	
DESTGNER/ SUPPLIER	Hercules	MENT OVE "D".
CONFIGURATION PART SKETCH NUMBER	P S-34-20 Seal Guard	SCRAPER FOR THE 2ND REPLACEMENT SEAL IN ACT. NO. 1 ROD, GROOVE "D".

ABLE CAT CONTINUED

COMMENTS	This seal was tested for 15,462,330 rotor feedback cycles and 1620 long stroke cycles. Leakage was 43.56 cc.	Seal 1.D. New .982 Used .9903
SATISFACTORY PERFORMANCE	No; excessive leakage	
DESIGNEP/ SUPPLIER	Fluorocarbon	UNVENTED
ON PART NUMBER		FIRST-STAGE SEAL IN A TWO-STAGE UNVENTED REPLACEMENT INSTALLATION ACT. HO. 3 ROD, GROOVE "A".
CONFIGURATION SKETCH	a d	FIRST-STAGE REPLACEMENT ACT. HO. 3 P.

TABLE C-1. CONTINUED

CONFIGURATION PART	DESIGNER/	SATISFACTORY			
SKETCH NUMBER	SUPPL IER	PEPFORMANCE	COMMENTS	NTS	
P P Rod Seal	Fluorocarbon	No	This seal was tested for 15,462,330 rotor feedback	tested for or feedbac	; ;
CEC5056-214 Backup Ring (2)	C. E. Conover Yes	Yes	cycles and long stroke cycles. Leakage was excessive and the elastomer cracked and nibbled. The backup rings were in good condition.	g stroke cressive and ked and backup rin	/cles. d the gs were
			Seal	i de	Outside Ru I.D.
SECOND-STAGE SEAL IN A TWO-STAGE UNVENTED REPLACEMENT INSTALLATION ACTUATOR NO. 3 ROD, GROOVE "C"	TAGE UNVENTED C"		New <u>LT.98</u> 2 Used LT.982	9903	.9903+

TABLE C-2. MEASURED CRITICAL DIMENSIONS AND FINISHES BEFORE AND (AFTER) TASK III TEST

DIMENSION**	PISTON & ROD	LUG END CAP	ROD END CAP
	-12 S/N 007	-5C S/N 001	-5A S/N 003
	MEASUREMENT	MEASUREMENT	MEASUREMENT
B Dia Lug End B RMS	.998 (.99749978) 3 (4 - 7)		
C Dia Rod End C RMS	.9975 (.99729975) 2 (3 - 12)		
D Dia		.9998	.9998
Outside Seal		(1.0126)	(1.0036)
N Dia		1.0005	1.0004
Inside Seal		(1.0007)	(1.0025)

ROD CLEARANCE	START	END	DIAMETRAL
	OF TEST	OF TEST	WEAR
Lug End Inside Seal	.0025	.0031	.0006
Outside Seal	.0018	.0148	.013*
Rod End Inside Seal	.0029	.0051	.0022*
Outside Seal	.0023	.0062	.0039*

^{*} Almost exclusively end cap wear

^{**} See Figure 3.2.4A and 3.2.4B in Task III Test Plan.

TABLE C-2. CONTINUED

DIMENSION	PISTON & ROD	LUG END CAP	ROD END CAP
	-1 S/N 001	-5C S/N 002	-2A S/N 001
	MEASUREMENT	MEASUREMENT	MEASUREMENT
B Dia Lug End B RMS	.998 (.99739979) 2 (2 - 4)	PIEASUREIJEW	HEASONLILAT
C Dia Rod End C RMS	.998 (.99769978) 2 (3 - 5)		
D Dia		.9996	.9995
Outside Seal		(.9995)	(1.0008)
N Dia		1.0005	1.00115
Inside Seal		(1.0005)	(1.0007)

ROD CLEARANCE	START	END	DIAMETRAL
	OF TEST	OF TEST	WEAR
Lug End Inside Seal Outside Seal	.0025 .0016	.0030	.0005
Rod End Inside Seal	.00315	.00345	.0003
Outside Seal	.0015	.0032	.0017*

^{*}Almost Exclusively End Cap Wear

TABLE C-2. CONTINUED

	PISTON & ROD	LUG END CAP	ROD END CAP
DIMENSION	-1 S/N 002	-5D S/N 004	-5B S/N 005
	MEASUREMENT	MEASUREMENT	MEASUREMENT
B Dia Lug End B RMS	.9975 (.99729973) 6 (5 - 11)		
C Dia. Rod End C RMS	.9975 (.99729975) 3 (3 - 5)		
D Dia	(.9996	.9996/.9997
Outside Seal		(1.0013)	(.9995)
N Dia		1.0004	1.0006
Inside Seal		(1.0004)	(1.0003)

ROD CLEARANCE	START	END	DIAMETRAL
	OF TEST	OF TEST	WEAR
Lug End Inside Seal	.0029	.0032	.0003
Outside Seal	.0021		.0019*
Rod End Inside Seal	.0031	.0033	.0002
Outside Seal	.0020	.0020	

^{*}Almost exclusively End Cap Wear

TABLE C-2. CONTINUED

DIMENSION	PISTON & ROD	LUG END CAP	ROD END CAP
	-1 S/N 003	-6C S/N 001	-5D S/N 006
	MEASUREMENT	MEASUREMENT	MEASUREMENT
B Dia Lug End B RIIS	.9975 (.99739975) 3 (3-4)		
C Dia Rod End C RMS	.9975 (.99729973) 3 (2-4)		
D Dia		.9996	.9996
Outside Seal		(.9996)	(.9996)
N Dia		1.00055	1.0004
Inside Seal		(1.0008)	(1.0007)

ROD CLEARANCE	START	END	DIAMETRAL
	OF TEST	OF TEST	WEAR
Lug End Inside Seal Outside Seal	.00305	.00340	.00035
Rod End Inside Seal	.0029	.0035	.0006
Outside Seal	.0021	.0023	.0002

TABLE C-2. CONTINUED

DIMENSION	PISTON & ROD	LUG END CAP	ROD END CAP
	-1 S/N 004	-5A S/N 007	-5B S/N 008
	MEASUREMENT	MEASUREMENT	MEASUREMENT
B Dia Lug End B RMS	.998 (.99769979) 4 (5-9)		
C Dia Rod End C RMS	.9978 (.99729976) 6 (8-10)		
D Dia		1.0017	.9997
Outside Seal		(1.0005)	(.9997)
N Dia		1.0013	1.00075
Inside Seal		(1.0014)	(1.0008)

ROD CLEARANCE	START	END	DIAMETRAL
	OF TEST	OF TEST	WEAR
Lug End Inside Seal	.0033	.0038	.0005
Outside Seal	.0037	.0039	.0002
Rod End Inside Seal	.00295	.0033	.00035
Outside Seal	.0019	.0021	.0002

TABLE C-2. CONTINUED

DIMENSION	PISTON & ROD	LUG END CAP	ROD END CAP
	-1 S/N 005	-5B S/N 009	-5A S/N 010
	MEASUREMENT	MEASUREMENT	MEASUREMENT
B Dia Lug End B RMS	.9977 (.99739975) 3 (3-4)		
C Dia Rod End C RMS	.9975 (.99729976) 3 (4-10)		
D Dia		.9997	.9995
Outside Seal		(.9995)	(.9999)
N Dia		1.00065	1.00083
Inside Seal		(1.0006)	(1.0008)

ROD CLEARANCE	START	END	DIAMETRAL
	OF TEST	OF TEST	WEAR
Lug End Inside Seal	.0029!.	.00315	.0002
Outside Seal	.0020		.0004
Rod End Inside Seal	.00333	.00363	.0003
Outside Seal	.0020	.0026	

ACTUATOR NG. 1, LUG END ROR AT COMCLIMION OF TASK III TEST

というできないというできないというできない。

ACTUATOR NO. 1, ROD END ROD AT CONCLUSION OF TASK III TESTS

ACTUATOR HO. 2, POD END ROD AT COMCLUSION OF TASK !!! TESTS

ACTUATOR NO. 3, LUG END ROD AT CONCLUSION OF TASK III TESTS

238

239

240

241

ACTUATOR NO. 5, ROD END ROD AT CONCLUSION OF TASK III TESTS

243

244

ACTUATOR NO. 1, PISTON AND ROD AT CONCLUSION OF TASK III TESTS (ROD END IS ON THE RIGHT).

ACTUATOR NO. 2, PISTON AND ROD AT CONCLUSION OF TASK III TESTS (ROD END IS ON THE RIGHT).

ACTUATOR NO. 3, PISTON AND ROD AT CONCLUSION OF TASK III TESTS (ROD END IS ON THE RIGHT).

ACTUATOR NO. 4, PISTON AND ROD AT CONCLUSION OF TASK III TESTS (ROD END IS ON THF PIGHT).

ACTUATOP NG. 5, PISTON AND ROD AT CONCLUSION OF TASK III TESTS (ROD ENE IS ON THE RIGHT).

A CONTRACT OF THE PARTY OF THE

ACTUATOR NO. 6, PISTON AND ROD AT CONCLUSION OF TASK III TESTS (ROD END IS ON THE RIGHT).

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

	GLAND A B C D	GLAND A B C D				Backup Ring (2)	Vi. S. Shamban	533157-714-19	Turcon with proprietary NoS2 filler
ACTUATOR NO. 1	ROD END	LUG FND X	TOTAL STAGES 4	TOTAL ROD LEAKAGE 3 Prups	SEAL DATA	SEAL NAIE Plus Seal	SFAL MFG. W. S. Shamban	SEAL P/H \$30775-214P-19	MATEPIAL Turcon with proprietary MAS2 filler, Flastoner per MIL-P-83461

HYDRAULIC SYSTEM SFAL DEVELOPMENT SEAL DATA

ACTUATOP NO. 1 POD END X LUG END X TOTAL STAGES 4 TOTAL ROD LEAKAGE 3 Drops	GLAND A	œ œ	J ()	C C	
SEAL DATA SEAL NAME Plus Seal SEAL MFG. W. S. Shamban SEAL P/N S30775-214P-19 MATERIAL Turcon with proprietary MoS2 Filler, Elastomer per MIL-P-83451	Backup Ring (2) W. S. Shamban S33157-214-19 Turcon with proprietary MoS2 Filler	19 (2) 10 (2) 1-19 th propr	ietar	<u> </u>	

PLUS SEAL (ACT NO. 1, LUG END, GROOVE B)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 1			
ROD END	GLAND A B	۵ ی	
LIIG END X	GLAND A B	ا م	
TOTAL STAGES 4			
TOTAL ROD LEAKAGE 3 Drops			
SEAL DATA			
SEAL NAME Plus Seal	Backup Ring		
SEAL MFG. W. S. Shamban	W. S. Shamban		
SEAL P/N S30775-214P-19	533157-214-19		
MATERIAL Turcon with proprietary MoS ₂ filler Elastomer per MIL-P-83461	Turcon with proprietary MoSz filler	tary	

PLUS SEAL (ACT NO. 1, LUG END, GROOVF C)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 1						
RUD END	GLAND	⋖	æ	ပ	۵	
LUG END X	GLAND	⋖	8	ပ	٥	
TOTAL STAGES 4						
TOTAL ROD LEAKAGE 3 Drops]				
SEAL DATA						
SEAL NAME U. C. Excluder	0-Ring				1	
SEAL MFG. W. S. Shamban	Parker				1	
SEAL P/N S32925-9P-19	M83461/1-121	1-12		Ì		
MATERIAL Turcon with proprietary	MIL-P-83461	3461			-	
Mosz IIIer						

D. C. EXCLUDER (ACT. NO. 1, LUG END, GROOVE D)

17 B

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

	Backup Ring (2) W. S. Shamban S33157-214-14 Turcon with glass and proprietary MoS2 filler
ACTUATOR NO. 1 CLAND A B C D ROD FND RLAND A B C D LUG END GLAND A B C D TOTAL STAGES 1 1 TOTAL ROD LEAKAGE 65 cc - Failed at 6,035,850 cycles (474000 Rotor Feedback Cycles)	SEAL DATA SEAL NAME houble helta SEAL NFG. W. S. Shamban SEAL P/N S30650-214-14 NATERIAL Turcon with glass and proprietary MoS2 filler

DOUBLE DELTA (ACT. NO. 1, ROD END, GROOVE C)

HYPRAULIC SYSTEM SFAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 1 ROD END LUG END TOTAL STAGES 1 TOTAL ROD LEAKAGE 65 cc - Seal Failed at 6,035,850 cycles (474000 Rotor Feedback cycles)	SEAL NAME Seal Guard	SEAL MFG. Hercules	SEAL P/N S-34-20	MATERIAL Bronze with a nitrile load ring
	261			

RO

SEAL GUARD (ACT. NO. 1, ROD END, GROOVE D)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

THE PROPERTY OF THE PARTY OF TH

د	ں ی						etary
В	В			ing (2)	amban	14-19	Turcon with proprietary MoS ₂ filler
GLAND	GLAND A	ē		Backup Ring (2)	W. S. Shamban	533157-214-19	Turcon with MoS ₂ filler
ACTUATOR NO. 2	LUG END X	TOTAL STAGES 4	SEAL DATA	SEAL NAME Plus Seal	SEAL MFG. W. S. Shamban	SEAL P/N S30775-214P-19	MATERIAL Turcon with proprietary MoS2 filler Elastomer per MIL-P-83461

Turcon with proprietary MoS₂ filler

Turcon with proprietary MoS₂ filler Elastomer per MIL-P-83461

533157-214-19

SEAL P/N S30775-214P-19

MATERIAL

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

The state of the s

ACTUATOR NO. 2						
ROD END	GLAND A	V	æ	ပ	Q	
LUG END X	GLAND A	4	В	ن	۵	
TOTAL STAGES 4						
TOTAL ROD LEAKAGE NO Measurable Leakage						
SEAL DATA						
SEAL NAME Plus Seal	Backup Ring (2)	Ring	(2)		1	j
SEAL MFG. W. S. Shamban	W. S. Shamban	hamb	ng B		1	1

PLUS SEAL (ACT. NO. 2, LUG END, GROOVE B)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

	GLAND A B C D	GLAND A B C D		age		Backup Ring (2)	W. S. Shamban	533157-214-19	Turcon with proprietary MoS ₂ filler
ACTUATOR NO. 2	ROD END	LUG END X	TOTAL STAGES 4	TOTAL ROD LEAKAGE NO Measurable Leakage	SEAL DATA	SEAL NAME Plus Seal	SEAL MFG. W. S. Shamban	SEAL P/N S30775-214P-19	MATERIAL Turcon with proprietary MoS2 filler Elastomer per MIL-P-83461

PLUS SEAL (ACT. NO. 2, LUG END, GROOVE C)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

GLAND A B C D K X GLAND A B C D	TOTAL STAGES 4 TOTAL ROD LEAKAGE NO Measurable Leakage		SEAL NAME D. C. Excluder 0-ring	SEAL MFG. W. S. Shamban	SEAL P/N S32925-9P-19 M83461/1-121	MATERIAL Turcon with proprietary MIL-P-83461 MoS2 filler
ACTUATOR NO. ROD END LUG END	TOTAL STAGES	SEAL DATA	SEAL NAME	SEAL MFG.	SEAL P/N	MATERIAL

D. C. EXCLUDER (ACT. NO. 2, LUG END, GROOVE D)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

GLAND A B C D GLAND A B C D sakage, but the seal was on the	0-Ring Parker M83461/1-318 MIL-P-83461
ACTUATOR NO. 2 ROD END X GLAND A B C D LUG END GLAND A B C D TOTAL STAGES 1 TOTAL STAGES 1 TOTAL ROD LEAKAGE No measurable leakage, but the seal was on the verge of failure	SEAL DATA SEAL NAME Maxi-Flex SEAL MFG. Tetrafluor SEAL P/N TF831M-7214 MATERIAL Tetralon 720

2 KA

The second secon

MAXI-FLEX (ACT. NO. 2, ROD END, GROOVE A)

HYDPAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 2 ROD END X GLAND A B C D LUG END GLAND A B C D	TOTAL STAGES 1 TOTAL ROD LEAKAGE No measurable leakage	SEAL DATA	SEAL NAME Seal Guard	SEAL MFG. Hercules	SEAL P/N S-34-20	MATERIAL Bronze with a Witrile Load Ring
		27	2			

2 R D

SEAL GUARD (ACT. NO. 2, ROD END, GROOVE D)

1 8 B

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 3 ROD END LUG END X TOTAL STAGES 1 TOTAL ROD LEAKAGE 1.13 cc (17 drops) SEAL DATA	GLAND	4 4	ന ന	ں ں	0	
SEAL NAME Plus Seal	Backup Ring (2)	Ring	(2)			
SEAL MFG. W. S. Shamban	W. S. Shamban	hamba	٥		}	
SEAL P/N S30775-214P-19	533157-214-19	-214-1	6			
MATERIAL Turcon with proprietary MoS2 filler Elastomer per MIL-P-83461	Turcon with proprietary MoS ₂ filler	with iller	prop	rieta	<u>~</u>	

PLUS SEAL (ACT. NO. 3, LUG END, GROOVE C)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

	0-ring	Dowty Seals Ltd.	100-218-0074	Proprietary Nitrile	
SEAL DATA	SEAL NAME Wiper/Scraper	SEAL MFG. Dowty Seals Ltd.	SEAL P/N 120-218-1709	MATERIAL Acetal Resin	

The scraper was broken during removal.

WIPER/SCRAPER (ACT. NO. 3, LUG END, GROOVE D)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

3 NO. 3	ROD END X GLAND A B C D	LUG END GLAND A B C D	TOTAL STAGES 2	TOTAL ROD LEAKAGE 255.4 cc - Failed at 16,248,240 cycles	SEAL DATA	SEAL NAME Enercap	SEAL MFG. Greene Tweed	SEAL P/N 595-21400-160-PX1	MATERIAL Ekanol Filled TFE Proprietary Nitrile

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 3 ROD END X GLAND A B C D	LUG END GLAND A B C D	TOTAL STAGES 2	TOTAL ROD LEAKAGE 255.4 cc - Failed at 16,248,240 cycles (10,686,390 cycles of rotor feedback)	SEAL DATA	SEAL NAME Enercap	SEAL MFG. Greene Tweed	SEAL P/N 595-21400-160-PX1	MATERIAL Ekanol Filled TFE	Proprietary Nitrile

ENERCAP (ACT. NO. 3, ROD END, GROOVE C)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 3 ROD END X GLAND A B C D LUG END GLAND A B C D TOTAL STAGES 2 TOTAL STAGES 2 TOTAL STAGES 25.4 cc - Seal failed at 16,248,240 cycles. This scraper survived the entire test. (10,686,390 cycles of rotor feedback) SEAL DATA SEAL NAME Polypak SEAL NAME Polypak SEAL NAME Polypak SEAL P/N 1870 100024651053 MATERIAL Polymyte								
AGES 2 AGES 2 Survived the entire test. FA TA TA TA TA TA TA TA TA TA	0 0 8		,248,240 cycles. This cycles of rotor feedback)					
ACTUATOR NO. 3 ROD END X LUG END TOTAL STAGES 2 TOTAL ROD LEAKAGE 255.4 cc - See scraper survived the entire test scraper survived the entire test scraper hame Polypak SEAL DATA SEAL DATA SEAL NAME Polypak SEAL NFG. Parker Packing SEAL NFG. Parker Packing SEAL NFG. Parker Packing MATERIAL Polymyte			4-1-1		1			
		LUG END	TOTAL ROD LEAKAGE 255.4 cc - Sea scraper survived the entire test	SEAL DATA	SEAL NAME POLYPAK	SEAL MFG. Parker Packing	SEAL P/N 1870 1000Z4651D53	MATERIAL Polymyte

HYDRAULIC SYSTEM SFAL DEVELOPMENT SEAL DATA

	0 0	O O					ler		<u> </u>
	A B	A 8				Backup Ring	C. E. Conover	CEC5110-214	Dovonor 6200
	GLAND	GLAND		leakage		Вас	ان	CEC	Q
ACTUATOR NO. 4	ROD END	LUG END X	TOTAL STAGES 3	TOTAL ROD LEAKAGE No measurable leakage	SEAL DATA	SEAL NAME Con-0-Hex	SEAL MFG. C. E. Conover	SEAL P/N CEC6001-214	MATERIAL Revonos 6200

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

A STATE OF THE STA

GLAND A B C D GLAND A B C D	Backup Ring C. E. Conover CEC 5110-214 Revonoc 6200
ACTUATOR NO. 4 ROD END LUG END X GLAND TOTAL STAGES 3 TOTAL ROD LEAKAGE NO measurable leakage	SEAL DATA SEAL NAME Con-O-Hex SEAL MFG. C. E. Conover SEAL P/N CEC6001-214 MATERIAL Revonoc 6200

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 4						
OD END	GLAND A	4	8	ပ	D	
UG END X	GLAND A	4	В	U	د	
OTAL STAGES 3						
OTAL ROD LEAKAGE 0		(

SEAL DATA	SEAL NAME Scraper	SEAL MFG. C. E. Conover	SEAL P/N CEC5091-998-55	MATERIAL Revonoc 18158	

14 B

The second secon

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 4					
ROD END X	GLAND A		a	ပ	Q
LUG END	GLAND A	¥	~	ပ	D
TOTAL STAGES 2					
TOTAL ROD LEAKAGE No measurable leakage	leakage				

	Backup Ring (2)	W. S. Shamban	533157-214-19	Turcon with proprietary MoS2 filler
SEAL DAIA	SEAL NAME Plus Seal	SEAL MFG. W. S. Shamban	SEAL P/N S30775-214P-19	MATERIAL Turcon with proprietary MoS2 filler Elastomer per MIL-P-83461

Turcon with proprietary MoSz filler

Turcon with proprietary MoS₂ filler Elastomer per MIL-P-83461

MATERIAL

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

						,		
	GLAND A B C D	GLAND A B C D]eakage		Backup Ring	W. S. Shamban	<u>S33157-214-19</u>
ACTUATOR NO. 4	ROD END X	LUG END	TOTAL STAGES 2	TOTAL ROD LEAKAGE No measurable leakage	SEAL DATA	SEAL NAME Plus Seal	SEAL MFG. W. S. Shamban	SEAL P/N S30775-214P-19

The second secon

PLUS SEAL (ACT. NO. 4, ROD END, GROOVE C)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 4					
OD END X	GLAND A	∢	ω	ပ	0
UG END	GLAND A	¥	8	ပ	۵
OTAL STAGES 2					
OTAL ROD LEAKAGE No measurable leakage	leakage				

0-ring	Dowty Seals Ltd	100-218-0074	Proprietary Nitrile
Wiper/Scraper	Dowty Seals Ltd.	120-218-1709	MATFRIAL Acetal Resin
SEAL NAME	SEAL MFG.	SEAL P/N	MATERIAL
	SEAL NAME Wiper/Scraper 0-ring	, j	, p;

THE SCRAPER WAS BROKEN DURING REMOVAL.

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

					·	<u></u>			
c	a	C			said subject to the said	3			
ر	د	<i>ن</i>			40.0	Sack	ver	14	00
c	۵	ω			7.	0	C. E. Conover	CEC5056C-214	Revonoc 6200
<	₹	¥		af	0	apez	انا	:0505	vono
2	GLARI	GLAND A		le leakag	ŕ	=	ان	51	Re
		×	2 2	TOTAL ROD LEAKAGE No measurable leakage	, , , , , , , , , , , , , , , , , , ,	0-ring	Parker	SEAL P/N M83461/1-214	MATERIAL MIL-P-83461
	KUD END	LUG END	TOTAL STAGES_	TOTAL ROD L	SEAL MANE	SEAL NAME U-FING	SEAL MFG. Parker	SEAL P/N	MATERIAL

O-RING AND TRAPEZOID BACK-UP RING (ACT. NO. 5, LUG END, GROOVE B)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ı										
	GLAND A B C D	GLAND A B C D		Leakage		Trapezoid Backup Ring	C. E. Conover	CEC5056C-214	Revonoc 6200	
ACTUATOR NO. 5	ROD END	LUG END X	TOTAL STAGES 2	TOTAL ROD LEAKAGE No measurable Leakage	SEAL DATA	SEAL NAME O-Ring	SEAL MFG. Parker	SEAL P/N M83461/1-214	MATERIAL MIL-P-83461	

O-RING AND TRAPEZOID BACK-UP RING (ACT. NO. 5, LUG END, GROOVE C)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

SEAL GUARD (ACT. NO. 5, LUG END, GROOVE D)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

				1						
	GLAND A B C D	GLAND A B C D		leakage		Trapezoid backup ring	C. E. Conover	CEC5056C-214	Revonoc 6200	
ACTUATOR NO. 5	ROD END X	LUG END	TOTAL STAGES 2	TOTAL ROD LEAKAGE No measurable leakage	SEAL DATA	SEAL NAME O-ring	SEAL MFG. Parker	SEAL P/N M83461/1-214	MATERIAL MIL-P-83461	

S R B

THE REAL PROPERTY AND ADDRESS OF THE PARTY O

O-RING AND TRAPEZOID BACK-UP RING (ACT. NO. 5, ROD END, GROOVE B)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

	0	د ی				Trapezoid backup ring	ver	14	00	
	GLAND A B	GLAND A B		eakage		Trapezoid	C. E. Conover	CEC5056C-214	Revonoc 6200	
5	×		SS	TOTAL ROD LEAKAGE No measurable leakage		0-ring	Parker	SEAL P/N M83461/1-214	MIL-P-83461	
ACTUATOR NO	ROD END	LUG END	TOTAL STAGES_	TOTAL ROD L	SEAL DATA	SEAL NAME 0-ring	SEAL MFG. Parker	SEAL P/N	MATERIAL	

SRC

O-RING AND TRAPEZOID BACK-UP RING (ACT. NO. 5, ROD END, GROOVE C)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

a J						
GLAND A B	e leakage					
S ×	TOTAL STAGES 2 TOTAL ROD LEAKAGE No measurable leakage		Polypak	SEAL MFG. Parker Packing	SEAL P/N 1870100024651053	Polymyte
ACTUATOR NO. ROD END	TOTAL STAGES	SEAL DATA	SEAL NAME POlypak	SEAL MFG.	SEAL P/N	MATERIAL Polymyte

SRD

POLYPAK (ACT. NO. 5, ROD END, GROOVE D)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 6					
ROD END	GLAND A	⋖	ω	ပ	۵
LUG END X	GLAND A	⋖	ري ه	C	۵
TOTAL STAGES 2					
TOTAL ROD LEAKAGE No measurable leakage	leakage				

	Backup ring (2)	W. S. Shamban	833157-214-19	Turcon with proprietary MoS2 filler
	0-ring	Parker	MB3461/1-214	MIL-P-83461
	SEAL NAME Double Delta	SEAL MFG. W. S. Shamban	SEAL P/N S30650-214-19	MATERIAL Turcon with proprietary MoS2 filler
SEAL DATA	SEAL NAME	SEAL MFG.	SEAL P/N	MATERIAL

DOUBLE DELTA (ACT. NO. 6, LUG END, GROOVE B)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

	D	0							
	ပ	ا							
	6 0	æ							
	GLAND A	GLAND A		ble leakage					tary -83461
9		×	2	No measura		al	Shamban	-214-99	Turcon with proprietary MoS ₂ filler Elastomer per MIL-P-83461
ACTUATOR NO.	ROD END	LUG END	TOTAL STAGES	TOTAL ROD LEAKAGE No measurable leakage	SEAL DATA	SEAL NAME Hat seal	SEAL MFG. W. S. Shamban	SEAL P/N S33051-214-99	MATERIAL Turcon with MoS ₂ filler Elastomer pe

ソ し 9

HAT SEAL (ACT. NO. 6, LUG END, GROOVE C)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

	0								
	ပ	S							
	മ	മ							
	⋖	∢						}	}
	GLAND	GLAND		ole leakage		-	ŀ	1	1
0		×	ES2	TOTAL ROD LEAKAGE No measurable leakage		Polypak	SEAL MFG. Parker Packing	SEAL P/N 18701000Z4651n53	Polymyte
ACTUATOR NO.	ROD END	LUG END	TOTAL STAGES_	TOTAL ROD I	SEAL DATA	SEAL NAME Polypak	SEAL MFG.	SEAL P/N	MATERIAL Polymyte

POLYPAK (ACT. NO. 6, LUG END, GROOVE D)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 6					
ROD END X	GLAND A	4	8	ပ	C
LUG END	GLAND A	⋖	80	ပ	0
TOTAL STAGES 3					
TOTAL ROD LEAKAGE No measurable leakage	leakage			}	

	Backup ring (2)	W. S. Shamban	533157-214-19	Turcon with proprietary	MoS ₂ filler	ı	
SEAL DATA	SEAL NAME Plus seal	SEAL MFG. W. S. Shamban	SEAL P/N S30775-214P-19	MATERIAL Turcon with proprietary	MoS ₂ filler	Elastomer per MIL-P-83461	

PLUS SEAL (ACT. NO. 6, ROD END, GROOVE A)

Turcon with proprietary MoSz filler

MATERIAL Turcon with proprietary MoS2 filler Elastomer per MIL-P-83461

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

6 R B

PLUS SEAL (ACT. NO. 6, ROD END, GROOVE B)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 6	ļ				
ROD END X	GLAND A	ء ۔	8	اد	Q
LUG END	GLAND A		82	ပ	Q
TOTAL STAGES 3					
TOTAL ROD LEAKAGE No measurable leakage	neasurable leaka	ge			

	Backup ring (2)	W. S. Shamban	533157-214-19	Turcon with proprietary MoS2 filler
SEAL DATA	SEAL NAME Plus seal	SEAL MFG. W. S. Shamban	SEAL P/N S30775-214P-19	MATERIAL Turcon with proprietary MoS2 filler Elastomer per MIL-P-83461

6RC

PLUS SEAL (ACT. NO. 6, ROD END GROOVE C)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

	1					
ACTUATOR NO.	9					
ROD END	×	GLAND A	82	ပ	C	
LUG END		GLAND A	89	S	c	
TOTAL STAGES	m					
TOTAL ROD LEAK	TOTAL ROD LEAKAGE No measurable leakage	leakage				
SEAL DATA						
SEAL NAME Wiper/Scraper	oer/Scraper	-0	0-ring			
SEAL WFG. Dowty Seals Ltd	vty Seals Ltd	Do	Dowty Seals Ltd	s Ltd		
SEAL P/N 120-218-1709	0-218-1709	92	100-218-0074	174		1
MATERIAL Acetal Resin	etal Resin	Pro	Proprietary Nitrile	y Nit	rile	

6 R D

WIPER SCRAPER (ACT. NO. 6, ROD END, GROOVE D)

21 F

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

					leak
ļ					massive
l					•
					cycles
		0	D		꽁
		0 0 8	ပ		feedba
		∞	80		rotor
		⋖	⋖		\$
		GLAND A	GLAND A		650,5
		9	Ю		4
	1	1	1	ı	after
					led
					Fa
		~			
	ACTUATOR NO.			TOTAL STAGES	TOTAL ROD LEAKAGE Failed after 4,650,540 rotor feedback cycles - massive leak
	TOR	오'	오'	S	8
	Z	ū	ıū	₹	Æ
	AC	ROD END	LUG END	101	10

	Backup ring (2)	Tetrafluor	TF830-214-2		
SEAL DATA	SEAL NAME 0-ring	SEAL MFG. Parker	SEAL P/N M83461/1-214	MATERIAL MIL-P-83461	

RG

O-RING AND TWO BACKUP RINGS (REPLACEMENT SEAL IN ACT. NO. 1, ROD END, GROOVE C).

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

	GLAND A B C D	GLAND A B C D		TOTAL ROD LEAKAGE Single stage seal inside the scraper failed after 4,650,540 rotor feedback cycles						
ACTUATOR NO. 1	ROD END X	LUG END	TOTAL STAGES 1	TOTAL ROD LEAKAGE Single stage seal inside the 4,650,540 rotor feedback cycles	SEAL DATA	SEAL NAME Seal Guard	SEAL MFG. Hercules	SEAL P/N S-34-20	MATERIAL Bronze with a nitrile load ring	

R DR

THE RESERVE OF THE PARTY OF THE

SEAL GUARD (REPLACEMENT SCRAPER IN ACT. NO. 1, ROD END, GROOVE D)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

ACTUATOR NO. 3	ROD END X GLAND A B C D	LUG END GLAND A B C D	TOTAL STAGES 2	TOTAL ROD LEAKAGE 43.56 cc in 9,900,480 rotor feedback cycles	and 1020 long stroke cycles	SEAL DATA	SEAL NAME Omni Seal	SEAL MFG. Fluorocarbon	SEAL P/N AR10103-214P11	MATERIAL Filled TFE	
						32	7				

3 RAR

OMNI SFAL (REPLACEMENT SEAL IN ACT. NO. 3, ROD END, GROOVF A)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

	Q	0		cycles						
	اں	ပ		feedback			Backup Ring (2)	214	C. E. Conover	6200
	₩.	8		otor	 		kup R	CEC5056-214	E. C.	Revonoc 6200
	⋖	⋖		7 2			Bac	띪	ان	<u>§</u>
	GLAND	GLAND		1 9,900,480 g stroke cy			-1	-1	-1	
10.	×		ies	TOTAL ROD LEAKAGE 43.56 cc in 9,900,480 rotor feedback cycles and 1620 long stroke cycles			Rod Seal	SEAL MFG. Fluorocarbon	SEAL P/N AR141337	MATERIAL Spring loaded
ACTUATOR NO.	ROD END	LUG END	TOTAL STAGES	TOTAL ROD		SEAL DATA	SEAL NAME Rod Seal	SEAL MFG.	SEAL P/N	MATERIAL

3RCR

ROD SEAL (REPLACEMENT SEAL IN ACT. NO. 3, ROD END, GROOVE C)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

1						ļ 1						
		Q	0		ck cycles and	ık		No backup rings were used				
		ပ	ပ		edpac	e Tea		ings				
		8	&		tor fe	Massive Teak		kup r				
		⋖	⋖		ro.			bac				
		GLAND	GLAND		,900,480	cycles		ž	1	1		1
•	ACTUATOR NO. 1	ROD END X	LUG END	TOTAL STAGES 1	TOTAL ROD LEAKAGE Failed after 9,900,480 rotor feedback cycles and	1620 long stroke cycles.	SEAL DATA	SEAL NAME Plus Seal	SEAL MFG. W. S. Shamban	SEAL P/N S30775-214P-19	MATERIAL Mineral Filled TFE	Comp 19 Elastomer per MIL-P-83461

RBR

PLUS SEAL (SECOND REPLACEMENT SEAL IN ACT. NO. 1, ROD END, GROOVE B)

HYDRAULIC SYSTEM SEAL DEVELOPMENT SEAL DATA

RDR

SEAL GUARD (SECOND REPLACEMENT SCRAPER IN ACT. NO. 1, ROD FND, GROOVE D)

