-1-

SEQUENCE LISTING

<110> Chesnut, Jonathan D.

Carrino, John

Leong, Louis

Madden, Knut

Gleeson, Martin

Fan, James

Brasch, Michael A.

Cheo, David

Hartley, James L.

Byrd, Devon R.N.

Temple, Gary F.

<120> Methods and Compositions for Synthesis of Nucleic Acid Molecules Using Multiple Recognition Sites

<130> 0942.5340002

<140> 10/005,876

<141> 2001-12-07

<150> 60/254,510

<151> 2000-12-08

<150> 60/291,972

<151> 2001-05-21

<150> 60/318,9\$\vec{q}2

<151> 2001-09/14

<150> 60/32**/**5,092

, e,

<151>	2001-09-28
<150>	60/333,124
<151>	2001-11-27
<150>	09/732,914
<151>	2000-12-11
<160>	78
<170>	PatentIn version 3.1
<210>	1
<211>	27
<212>	DNA
<213>	artificial sequence
<220>	
<223>	oligonucleotide primer
<400> tatgta	1 atcat acacatacga tttaggt
<210>	2
<211>	20
<212>	DNA
<213>	artificial sequence
<220>	
<223>	oligonucleotide primer
<400> accgc	2 ctctc cccgcgcgtt

<210> 3

<211>	34	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gttccg	3 aagg gggcgataca gtcaactgtc tttg	34
<210>	4	
<211>	36	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> ttggcd	4 eaagg gtatctagaa gcttctgcag acgcgt	36
<210>	5	
<211>	34	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gttccg	5 gaagg gccaccgtac tcgtcaattc caag	34
<210>	6	
<211>	36	
<212>	DNA	
<213>	artificial sequence	

.

<220>		
<223>	oligonucleotide primer	
<400> ggccaaa	6 aagg gaacttgttt attgcagctt ataatg	36
<210>	7	
<211>	22	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> ctctga	7 cttg agcgtcgatt tt	22
<210>	8	
<211>	32	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> cggaa	8 caagg ggaatteeet gteacegaga ee	32
<210>	9	
<211>	34	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	. 9 Icaagg ggaatteeeg gggatetgga atte	34

<210>	10	
<211>	29	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> tcgaaa	10 gggt cgaggtcgac ctgcagctg	29
<210>	11	
<211>	26	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> aattca	11 acatt gattattgag tagtta	26
<210>	12	
<211>	30	
<212>	AND	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> tcgaa	. 12 lagggt aatggccagc aaaggagaag	30
<210>	. 13	
<211>	> 27	
<212	> DNA	
<213:	> artificial sequence	

<220>		
<223>	oligonucleotide primer	
<400> ggccaag	13 gggt ttgtagagct catccat	27
<210>	14	
<211>	29	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> ggccaa	14 gggt ctgaatgggg ccgcatagt	29
<210>	15	
<211>	20	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> aagcc	15 ataga gecegggeea	20
<210>	16	
<211>	31	
<212>	DNA	
<213>	artificial sequence	
<220>	•	
<223>	oligonucleotide primer	
<400>	> 16 cgaagg gtcgaggtcg acctgcagct g	31

```
<210> 17
<211> 30
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 17
                                                                     30
cggaacaagg gatggccagc aaaggagaag
<210> 18
<211>
      31
<212> DNA
<213> artificial sequence
<220>
 <223> oligonucleotide primer
 <400> 18
                                                                      31
taggccaagg gtttgtagag ctcatccatg c
 <210> 19
 <211> 29
 <212> DNA
 <213> artificial sequence
 <220>
 <223> oligonucleotide primer
 <400> 19
                                                                      29
 ggcctaaagg gtgaatgggg ccgcatagt
 <210> 20
 <211> 50
 <212> DNA
  <213> artificial sequence
```

-7-

<220>		
<223>	oligonucleotide primer	
<400> gaagga	20 gtaa tacgactcac tatagggagc caccatgggc ccttcggaac	50
<210>	21	
<211>	50	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gttccg	21 aagg gcccatggtg gctccctata gtgagtcgta ttactccttc	50
<210>	22	
<211>	21	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gaagga	22 agtaa tacgactcac t	21
<210>	23	
<211>	38	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> ggcct	23 aaagg gtccctttag tgagggttaa ttgcgcgc	38

-8-

<210>	24	
<211>	38	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gcgcgc	24 aatt aaccctcact aaagggaccc tttaggcc	38
<210>	25	
<211>	34	
<212>	AND	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> cggaad	25 caagg gatgatagat cccgtcgttt taca	34
<210>	26	
<211>	32	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> taggc	26 caagg ggaccatttt caatccgcac ct	32
<210>	27	
<211>	32	
<212>	DNA	
<213>	artificial sequence	

-9-

<220>		
<223>	oligonucleotide primer	
<400> taggcca	27 aagg ggaggcactt caccgcttgc ca	32
<210>	28	
<211>	33	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> taggcc	28 aagg gtttgacacc agaccaactg gta	33
<210>	29	
<211>	12	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Vaccinia topoisomerase cleavable sequence	
<400> gccctt	29 tattc cc	12
<210>	30	
<211>	12	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Vaccinia topoisomerase cleavable sequence	
<400>	cttat to	1

-11-

```
<210> 31
<211> 12
<212> DNA
<213> artificial sequence
<220>
<223> Vaccinia topoisomerase cleavable sequence
<400>
      31
                                                                     12
tgtcgccctt at
<210> 32
<211> 12
<212> DNA
<213> artificial sequence
<220>
<223> Vaccinia topoisomerase cleavable sequence
 <400> 32
                                                                     12
gtgtcgccct ta
 <210> 33
 <211> 28
 <212> DNA
 <213> artificial sequence
 <220>
 <223> adapter oligonucleotide, TOPO D1
 <400> 33
                                                                      28
 aattgatccc ttcaccgaca tagtacag
 <210> 34
 <211> 12
 <212> DNA
 <213> artificial sequence
```

<220>		
<223>	adapter oligonucleotide, TOPO D2	
<400> ggtgaag	34 ggga tc	12
<210>	35	
<211>	11	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	adapter oligonucleotide, TOPO D5	
<400> aagggo	35 gagc t	11
<210>	36	
<211>	19	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	adapter oligonucleotide, TOPO D4	
<400> cgccci	36 ttgac atagtacag	19
<210>	37	
<211>	12	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide overhang sequence of TOPO D1 and TOPO D4	
<400>	agtac ag	12

```
<210> 38
<211> 15
<212> DNA
<213> artificial sequence
<220>
<223> annealing oligonucleotide sequence, TOPO D3
<400> 38
                                                                    15
caactgtact atgtc
<210> 39
<211>
       23
<212> DNA
<213> artificial sequence
<220>
<223> adapter oligonucleotide, TOPO H
<400> 39
                                                                      23
agctcgccct tattccgata gtg
<210>
      40
<211> 11
<212> DNA
<213> artificial sequence
<220>
       adapter oligonucleotide, TOPO 16
<223>
<400> 40
                                                                      11
gaataagggc g
 <210> 41
 <211> 23
 <212> DNA
```

<213> artificial sequence

<220>		
<223>	adapter oligonucleotide, TOPO 1	
<400> aattcgc	41 coot tattoogata gtg	23
<210>	42	
<211>	12	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide overhang sequence of TOPO 1	
<400>	42 atag tg	12
400005		
<210>	43	
<211>	15	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	annealing oligonucleotide, TOPO 3	
<400>	43 ctatc ggaat	15
caaca		
<210>	44	
<211>	14	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	DNA sequence of the N-terminus of a theoretical protein	
<400> atgga	. 44 atctga taaa	14

-15-

<213> artificial sequence

```
<210> 45
<211> 14
<212> DNA
<213> artificial sequence
<220>
<223> PCR primer
<400> 45
                                                                     14
accgatctga taaa
<210> 46
<211> 27
<212> DNA
<213> artificial sequence
<220>
<223> DNA sequence of the C-terminus of a theoretical protein
<400> 46
                                                                      27
aagtcggagc actcgacgac ggtgtag
<210> 47
<211> 17
 <212> DNA
 <213> artificial sequence
 <220>
 <223> reverse PCR primer sequence
 <400> 47
                                                                      17
 aaacaccgtc gtcgagt
 <210> 48
 <211> 33
 <212> DNA
```

<220>		
<223>	DNA sequence of the C-teminus of a theoretical protein	
<400> gcggtta	48 aagt cggagcactc gacgactgca tag	33
<210>	49	
<211>	24	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	sequence of reverse primer without stop codon	
<400> tgcagt	49 cgtc gagtgctccg actt	24
<210>	50	
<211>	27	
<212>	DNA	
<213>	artificial sequence	
<220>	_	
<223>	sequence of reverse primer with stop codon	
<400> ctatg	50 cagtc gtcgagtgct ccgactt	27
<210>	51	
<211>	22	
<212>	AND	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gttga	51 cattg attattgact ag	22

-17-

<210>	52	
<211>	32	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gttccg	52 aagg gttaacgcta gagtccggag gc	32
<210>	53	
<211>	32	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	53 aaagg gaaggtaagc ctatccctaa gg	32
gacco		
<210>	54	
<211>	20	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gcgca	54 gatct gctatggcag	20
<210>	55	
<211>	. 37	
<212>	DNA	
<213	artificial sequence	

<220>		
<223>	oligonucleotide primer	
<400> cggaaca	55 aagg gaccatggag aaaaaaatca ctggata	37
<210>	56	
<211>	36	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> tgagtc	56 aagg gegeeegee etgetgeeae teateg	36
<210>	57	
<211>	41	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide sequence	
<400> gggga	57 caagt ttgtacaaaa aagcaggctt cccttcggaa c	41
<210>	58	
<211>	41	
<212>	DNA	
<213>	artificial sequence	
<220>	•	
<223>	oligonucleotide primer	
<400> gttc	> 58 cgaagg gaagcctgct tttttgtaca aacttgtccc c	41

-19-

```
<210> 59
<211> 40
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 59
                                                                     40
gactcaaagg gacccagctt tcttgtacaa agtggtcccc
<210> 60
<211> 40
<212> DNA
<213> artificial sequence
 <220>
 <223> oligonucleotide primer
 <400> 60
                                                                      40
 ggggaccact ttgtacaaga aagctgggtc cctttgagtc
 <210> 61
 <211> 20
 <212> DNA
 <213> artificial sequence
 <220>
 <223> oligonucleotide primer
 <400> 61
                                                                      20
 cacgacgttg taaaacgacg
 <210> 62
  <211> 22
  <212> DNA
  <213> artificial sequence
```

<220>		
<223>	oligonucleotide primer	
<400> atgtaat	62 tacg actcactata gg	22
<210>	63	
<211>	11	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	nucleotide primer	
<400> cggaac	63 aagg g	11
<210>	64	
<211>	11	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	nucleotide primer	
<400> taggco	64 caagg g	11
<210>	65	
<211>	16	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	amplified end of PCR product	
<400>	cggaa caaggg	16

```
<210> 66
<211> 16
<212> DNA
<213> artificial sequence
<220>
<223> amplified end of PCR product
<400> 66
                                                                      16
cccttggcca taaggg
<210>
       67
<211>
       75
<212> DNA
<213> artificial sequence
<220>
       map of multiple cloning sites in plasmids pcDNAGW-DT9(sc) and pEN
<223>
       TR-DT(sc)
<400> 67
ttgtacaaaa aagcaggctc cgcggccgcc gtactcgaga aagggcgcgc cgacccagct
                                                                      60
                                                                      75
ttcttgtaca aagtg
<210>
      68
<211> 10
 <212> PRT
 <213> artificial sequence
 <220>
 <223> Amino acid sequence for pcDNAGW-DT9(sc) and pENTR-DT(sc)
 <400> 68
 Leu Tyr Lys Lys Ala Gly Ser Ala Ala Ala
 <210> 69
```

```
<211>
      11
<212>
      PRT
<213> artificial sequence
<220>
<223> Amino acid sequence for pcDNAGW-DT9(sc) and pENTR-DT(sc)
<400>
       69
Gly Arg Ala Asp Pro Ala Phe Leu Tyr Lys Val
       70
<210>
       2591
<211>
       DNA
<212>
      artificial sequence
<213>
 <220>
       Nucleotide sequence of plasmid pENTR/D-TOPO
 <223>
 <220>
 <221> Unsure
       (691)..(699)
 <222>
 <223> N can be any nucleotide: a, t, c, g.
 <400> 70
 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga
                                                                        60
 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga
                                                                       120
 gegeccaata egeaaacege eteteceege gegttggeeg atteattaat geagetggea
                                                                       180
 cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc
                                                                       240
 tagccaggaa gagtttgtag aaacgcaaaa aggccatccg tcaggatggc cttctgctta
                                                                       300
 gtttgatgcc tggcagttta tggcgggcgt cctgcccgcc accctccggg ccgttgcttc
                                                                       360
 acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa
                                                                       420
 caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg
                                                                       480
 gcagttccct actctcgcgt taacgctagc atggatgttt tcccagtcac gacgttgtaa
                                                                       540
```

aacgacggcc agtcttaagc tcgg				600
ctgttcgttg caacaaattg atga	gcaatg cttttttata	atgccaactt (tgtacaaaaa	660
agcaggctcc gcggccgccc cttc	accatg nnnnnnnnna	agggtgggcg	cgccgaccca	720
gctttcttgt acaaagttgg catt	ataaga aagcattgct	tatcaatttg	ttgcaacgaa	780
caggtcacta tcagtcaaaa taaa				840
gagtcgtatt acatggtcat agct				900
tgatgttaca ttgcacaaga taaa	aatata tcatcatgaa	caataaaact	gtctgcttac	960
ataaacagta atacaagggg tgtt	atgagc catattcaac	gggaaacgtc	gaggccgcga	1020
ttaaattcca acatggatgc tgat	ttatat gggtataaat	gggctcgcga	taatgtcggg	1080
caatcaggtg cgacaatcta tcgc	ettgtat gggaagcccg	atgcgccaga	gttgtttctg	1140
aaacatggca aaggtagcgt tgcc	caatgat gttacagatg	agatggtcag	actaaactgg	1200
ctgacggaat ttatgcctct tccc				1260
tggttactca ccactgcgat ccc				1320
gattcaggtg aaaatattgt tga				1380
cctgtttgta attgtccttt taa				1440
cgaatgaata acggtttggt tga				1500
gttgaacaag tctggaaaga aat				1560
actcatggtg atttctcact tga				1620
attgatgttg gacgagtcgg aat	cgcagac cgataccagg	atcttgccat	cctatggaac	1680
tgcctcggtg agttttctcc ttc	attacag aaacggcttt	ttcaaaaata	tggtattgat	1740
aatcctgata tgaataaatt gca	gtttcat ttgatgctcg	g atgagttttt	ctaatcagaa	1800
ttggttaatt ggttgtaaca ctg	gcagagc attacgctga	a cttgacggga	cggcgcaagc	1860
tcatgaccaa aatcccttaa cgt	gagttac gcgtcgttcc	actgagcgtc	agaccccgta	1920
gaaaagatca aaggatcttc ttg				1980
acaaaaaaac caccgctacc ago				2040
tttccgaagg taactggctt cag				2100
ccgtagttag gccaccactt caa	agaactct gtagcaccg	c ctacatacct	: cgctctgcta	2160
atcctgttac cagtggctgc tgc				2220
agacgatagt taccggataa gg				2280
cccagcttgg agcgaacgac cta				2340
agcgccacgc ttcccgaagg ga				2400

acaggagage geacgaggga gettecaggg ggaaaegeet ggtatettta tagteetgte	2460
gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc	2520
ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt	2580
gctcacatgt t	2591
<210> 71	
<211> 2607	
<212> DNA	
<213> artificial sequence	
<220>	
<223> Nucleotide sequence of plasmid pENTR/SD/D-TOPO	
<220>	
<221> Unsure	
<222> (710)(715)	
<223> N can be any nucleotide: a, t, c, g.	
<400> 71 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga	60
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga	120
gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca	180
	240
cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc	300
tagecaggaa gagtttgtag aaacgcaaaa aggccateeg teaggatgge ettetgetta	360
gtttgatgcc tggcagttta tggcgggcgt cctgcccgcc accctccggg ccgttgcttc	420
acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa	480
caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg	540
gcagttccct actctcgcgt taacgctagc atggatgttt tcccagtcac gacgttgtaa	
aacgacggcc agtcttaagc tcgggcccca aataatgatt ttattttgac tgatagtgac	600
ctgttcgttg caacaaattg atgagcaatg cttttttata atgccaactt tgtacaaaaa	660
agcaggetee geggeegeet tgtttaaett taagaaggag eeetteaeen nnnnnaaggg	720
tgggcgcgcc gacccagctt tcttgtacaa agttggcatt ataagaaagc attgcttatc	780
to the state of th	840

aatttgttgc aacgaacagg tcactatcag tcaaaataaa atcattattt gccatccagc 840

	
tgatatcccc tatagtgagt cgtattacat ggtcatagct gtttcctggc agctctggcc	900
cgtgtctcaa aatctctgat gttacattgc acaagataaa aatatatcat catgaacaat	960
aaaactgtct gcttacataa acagtaatac aaggggtgtt atgagccata ttcaacggga	1020
aacgtcgagg ccgcgattaa attccaacat ggatgctgat ttatatgggt ataaatgggc	1080
togogataat gtogggcaat caggtgogac aatotatogo ttgtatggga agocogatgo	1140
gccagagttg tttctgaaac atggcaaagg tagcgttgcc aatgatgtta cagatgagat	1200
ggtcagacta aactggctga cggaatttat gcctcttccg accatcaagc attttatccg	1260
tactcctgat gatgcatggt tactcaccac tgcgatcccc ggaaaaacag cattccaggt	1320
attagaagaa tatcctgatt caggtgaaaa tattgttgat gcgctggcag tgttcctgcg	1380
coggttgcat togattootg titgtaattg toottttaac agogatogog tatttogtot	1440
cgctcaggcg caatcacgaa tgaataacgg tttggttgat gcgagtgatt ttgatgacga	1500
gcgtaatggc tggcctgttg aacaagtctg gaaagaaatg cataaacttt tgccattctc	1560
accggattca gtcgtcactc atggtgattt ctcacttgat aaccttattt ttgacgaggg	1620
gaaattaata ggttgtattg atgttggacg agtcggaatc gcagaccgat accaggatct	1680
tgccatccta tggaactgcc tcggtgagtt ttctccttca ttacagaaac ggctttttca	1740
aaaatatggt attgataatc ctgatatgaa taaattgcag tttcatttga tgctcgatga	1800
gtttttctaa tcagaattgg ttaattggtt gtaacactgg cagagcatta cgctgacttg	1860
acgggacggc gcaagctcat gaccaaaatc ccttaacgtg agttacgcgt cgttccactg	1920
agogtoagac coogtagaaa agatoaaagg atottottga gatoottttt ttotgogogt	1980
aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt tgccggatca	2040
agagctacca actettttte egaaggtaae tggetteage agagegeaga taccaaatae	2100
tgtccttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag caccgcctac	2160
ataccteget etgetaatee tgttaecagt ggetgetgee agtggegata agtegtgtet	2220
taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg	2280
gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga gatacctaca	2340
gcgtgagcat tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca ggtatccggt	2400
aagoggoagg gtoggaacag gagagogoac gagggagott coagggggaa acgootggta	2460
totttatagt cotgtogggt ttogocacot otgacttgag ogtogatttt tgtgatgoto	2520
gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc	2580
cttttgctgg ccttttgctc acatgtt	2607

```
<210>
      72
       5543
<211>
<212>
       DNA
<213> artificial sequence
<220>
       Nucleotide sequence of plasmid pcDNA3.2/V5/GWD-TOPO
<223>
```

Unsure

<220>

<221>

<222> (958)..(966)

<223> N can be any nucleotide: a, t, c, g.

gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg <400> 72 60 cegeatagtt aagecagtat etgeteeetg ettgtgtgtt ggaggteget gagtagtgeg 120 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180 ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420 attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600 tegetattae catggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg 660 actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780 gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagt 900 taagctatca acaagtttgt acaaaaaagc aggctccgcg gccgccctt caccatgnnn 960 nnnnnaagg gtgggcgcgc cgacccagct ttcttgtaca aagtggttga tctagagggc 1020 cegeggtteg aaggtaagee tateeetaae eeteteeteg gtetegatte taegegtaee 1080 ggttagtaat gagtttaaac gggggaggct aactgaaaca cggaaggaga caataccgga 1140

aggaacccgc gctatgacgg caataa	aaag acagaataaa	acgcacgggt c	ıttgggtcgt	1200
ttgttcataa acgcggggtt cggtcc				1260
cccattgggg ccaatacgcc cgcgtt				1320
gtgaaggeee agggetegea geeaac				1380
gcagctgggg ctctaggggg tatccc				1440
gtgtggtggt tacgcgcagc gtgacc				1500
tegetttett ceetteettt etegee				1560
ggggcatccc tttagggttc cgattt				1620
attagggtga tggttcacgt agtggg				1680
cgttggagtc cacgttcttt aatag				1740
ctatctcggt ctattctttt gattt				1800
aaaatgagct gatttaacaa aaatt				1860
agggtgtgga aagtccccag gctcc				1920
ttagtcagca accaggtgtg gaaag				1980
catgcatctc aattagtcag caacc				2040
aactccgccc agttccgccc attct				2100
agaggccgag gccgcctctg cctct				2160
aggcctaggc ttttgcaaaa agctc				2220
agagacagga tgaggatcgt ttcgc				2280
ggccgcttgg gtggagaggc tatto				2340
tgatgccgcc gtgttccggc tgtca				2400
cctgtccggt gccctgaatg aactg			\	2460
gacgggcgtt ccttgcgcag ctgtg				2520
gctattgggc gaagtgccgg ggcag				2580
agtatccatc atggctgatg caate				2640
attcgaccac caagcgaaac atcg				2700
tgtcgatcag gatgatctgg acga				2760
caggeteaag gegegeatge eega				2820
cttgccgaat atcatggtgg aaaa				2880
gggtgtgggg gaccgctatc agga				2940
tggcggcgaa tgggctgacc gctt				3000

gcgcatcgcc	ttctatcgcc	ttcttgacga (gttcttctga	gcgggactct	ggggttcgcg	3060
		cccaacctgc				3120
		ggaatcgttt				3180
		ttcttcgccc				3240
		atcacaaatt				3300
		ctcatcaatg				3360
		tcatggtcat				3420
		cgagccggaa				3480
		attgcgttgc				3540
		tgaatcggcc				3600
		ctcactgact				3660
		gcggtaatac				3720
		ggccagcaaa				3780
		cgccccctg				3840
		ggactataaa				3900
		accctgccgc				3960
		caatgctcac				4020
		gtgcacgaac				4080
					ctggcagcag	4140
					ı ttcttgaagt	4200
					: ctgctgaagc	4260
					accgctggta	4320
					a tctcaagaag	4380
					a cgttaaggga	4440
					t taaaaatgaa	4500
					c caatgcttaa	4560
					t gcctgactcc	4620
					t gctgcaatga	4680
					g ccagccggaa	4740
					t attaattgtt	4800
					t gttgccattg	4860
900999445	,		-			

ctacaggcat cgtggtgtc	a cgctcgtcgt	ttggtatggc	ttcattcagc	tccggttccc	4920
aacgatcaag gcgagttad	a tgatccccca	tgttgtgcaa	aaaagcggtt	agctccttcg	4980
gtcctccgat cgttgtcag	ya agtaagttgg	ccgcagtgtt	atcactcatg	gttatggcag	5040
cactgcataa ttctctta	ct gtcatgccat	ccgtaagatg	cttttctgtg	actggtgagt	5100
actcaaccaa gtcattct	ga gaatagtgta	tgcggcgacc	gagttgctct	tgcccggcgt	5160
caatacggga taataccg	eg ccacatagca	gaactttaaa	agtgctcatc	attggaaaac	5220
gttcttcggg gcgaaaac	c tcaaggatct	taccgctgtt	gagatccagt	tcgatgtaac	5280
ccactcgtgc acccaact	ga tcttcagcat	cttttacttt	caccagcgtt	tctgggtgag	5340
caaaaacagg aaggcaaa	at gccgcaaaaa	agggaataag	ggcgacacgg	aaatgttgaa	5400
tactcatact cttccttt	tt caatattatt	gaagcattta	tcagggttat	tgtctcatga	5460
gcggatacat atttgaat	gt atttagaaaa	ataaacaaat	aggggttccg	cgcacatttc	5520
cccgaaaagt gccacctg	ac gtc				5543

<210> 73

<211> 5173

<212> DNA

<213> artificial sequence

<220>

<223> Nucleotide sequence of plasmid pcDNA6.2/V5/GWD-TOPO

<220>

<221> Unsure

<222> (958)..(966)

<223> N can be any nucleotide: a, t, c, g.

 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420 attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt 480 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600 tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 660 actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780 gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagt 900 taagctatca acaagtttgt acaaaaaagc aggcteegeg geegeeett caccatgnnn 960 nnnnnnaagg gtgggcgcgc cgacccagct ttcttgtaca aagtggttga tctagagggc 1020 ccgcggttcg aaggtaagcc tatccctaac cctctcctcg gtctcgattc tacgcgtacc 1080 ggttagtaat gagtttaaac gggggaggct aactgaaaca cggaaggaga caataccgga 1140 aggaacccgc gctatgacgg caataaaaag acagaataaa acgcacgggt gttgggtcgt 1200 ttgttcataa acgcggggtt cggtcccagg gctggcactc tgtcgatacc ccaccgagac 1260 1320 gtgaaggccc agggctcgca gccaacgtcg gggcggcagg ccctgccata gcagatctgc 1380 gcagctgggg ctctaggggg tatccccacg cgccctgtag cggcgcatta agcgcggcgg 1440 gtgtggtggt tacgcgcagc gtgaccgcta cacttgccag cgccctagcg cccgctcctt 1500 tegetttett ecetteettt etegecaegt tegeaggett teecegteaa getetaaate 1560 ggggcatccc tttagggttc cgatttagtg ctttacggca cctcgacccc aaaaaacttg 1620 attagggtga tggttcacgt agtgggccat cgccctgata gacggttttt cgccctttga 1680 cgttggagtc cacgttcttt aatagtggac tcttgttcca aactggaaca acactcaacc 1740 ctatctcggt ctattctttt gatttataag ggattttggg gatttcggcc tattggttaa 1800 aaaatgagct gatttaacaa aaatttaacg cgaattaatt ctgtggaatg tgtgtcagtt 1860 agggtgtgga aagtccccag gctccccagc aggcagaagt atgcaaagca tgcatctcaa 1920 ttagtcagca accaggtgtg gaaagtcccc aggctcccca gcaggcagaa gtatgcaaag 1980 catgcatete aattagteag caaccatagt ceegeceeta aeteegecea teeegeeeet 2040 aacteegeee agtteegeee atteteegee eeatggetga etaatttttt ttatttatge 2100 agaggccgag gccgcctctg cctctgagct attccagaag tagtgaggag gcttttttgg 2160 aggcctaggc ttttgcaaaa agctcccggg agcttgtata tccattttcg gatctgatca 2220

gcacgtgttg acaattaatc atcggcatag tatatcggca tagtataata cgacaaggtg aggaactaaa ccatggccaa gcctttgtct caagaagaat ccaccctcat tgaaagagca 2340 acggctacaa tcaacagcat ccccatctct gaagactaca gcgtcgccag cgcagctctc 2400 tctagcgacg gccgcatctt cactggtgtc aatgtatatc attttactgg gggaccttgt 2460 gcagaactcg tggtgctggg cactgctgct gctgcggcag ctggcaacct gacttgtatc 2520 gtcgcgatcg gaaatgagaa caggggcatc ttgagcccct gcggacggtg ccgacaggtg 2580 cttctcgatc tgcatcctgg gatcaaagcc atagtgaagg acagtgatgg acagccgacg 2640 gcagttggga ttcgtgaatt gctgccctct ggttatgtgt gggagggcta agcacttcgt 2700 ggccgaggag caggactgac acgtgctacg agatttcgat tccaccgccg ccttctatga 2760 aaggttgggc ttcggaatcg ttttccggga cgccggctgg atgatcctcc agcgcgggga 2820 teteatgetg gagttetteg eccaececaa ettgtttatt geagettata atggttacaa 2880 ataaagcaat agcatcacaa atttcacaaa taaagcattt ttttcactgc attctagttg 2940 tggtttgtcc aaactcatca atgtatctta tcatgtctgt ataccgtcga cctctagcta 3000 gagettggeg taateatggt catagetgtt teetgtgtga aattgttate egeteacaat 3060 tecacacaac atacgageeg gaageataaa gtgtaaagee tggggtgeet aatgagtgag 3120 ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa acctgtcgtg 3180 ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttgggcgctc 3240 ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc 3300 agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa 3360 catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt 3420 tttccatagg ctccgcccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg 3480 gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg 3540 ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag 3600 egtggegett teteataget eacgetgtag gtateteagt teggtgtagg tegttegete 3660 caagetggge tgtgtgeacg aacceeecgt teageeegae egetgegeet tateeggtaa 3720 ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg 3780 taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc 3840 taactacggc tacactagaa gaacagtatt tggtatctgc gctctgctga agccagttac 3900 cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggttt 3960 ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat 4020 cttttctacg gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat 4080 gagattatca aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc 4140 aatctaaagt atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc 4200 acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta 4260 gataactacg atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga 4320 cccacgctca ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg 4380 cagaagtggt cctgcaactt tatccgcctc catccagtct attaattgtt gccgggaagc 4440 tagagtaagt agttcgccag ttaatagttt gcgcaacgtt gttgccattg ctacaggcat 4500 cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag 4560 gcgagttaca tgatccccca tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat 4620 cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa 4680 ttctcttact gtcatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa 4740 gtcattctga gaatagtgta tgcggcgacc gagttgctct tgcccggcgt caatacggga 4800 taataccgcg ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg 4860 4920 gcgaaaactc tcaaggatct taccgctgtt gagatccagt tcgatgtaac ccactcgtgc 4980 acccaactga tottcagcat ottttacttt caccagcgtt totgggtgag caaaaacagg aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact 5040 cttccttttt caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat 5100 5160 atttgaatgt atttagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaagt 5173 gccacctgac gtc

<210> 74

<211> 69

<212> DNA

<213> artificial sequence

<220>

<223> Partial sequence of pENTR/SD-dTOPO

<220>

<221> Unsure

<222> (64)..(69)

<223> N can be any nucleotide: a, t, c, g.

<400> ttgtaca	74 aaaa aagcaggcte egeggeegee ttgtttaact ttaagaagga geeette	57
accatgr	nnnn nn	69
<210>	75	
<211>	52	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Nucleotide sequence of TOPO-D71	
<400> ggccgc	75 cttg tttaacttta agaaggagee etteacegae tatgtacagtt g	52
<210>	76	
<211>	31	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Nucleotide sequence of TOPO-D73	
<400> ggccgc	76 cccc ttcaccgact atgtacagtt g	31
<210>	77	
<211>	28	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Nucleotide sequence of TOPO-D75	
<400> cgcgc	77 ccacc cttgacatag tacagttg	28
<210>	78	

•

```
<211> 14
<212> PRT
<213> artificial sequence
<220>
      Partial amino acid sequence of pENTR-dTOPO and pcDNAGW-dTOPO
<223>
<400> 78
Leu Tyr Lys Lys Ala Gly Ser Ala Ala Pro Phe Thr Met
<210>
       79
<211>
       13
<212> PRT
<213> artificial sequence
<220>
<223> Partial amino acid sequence of pENTR/SD-dTOPO, pENTR-dTOPO, and
             pcDNAGW-dTOPO
<400> 79
Lys Gly Gly Arg Ala Asp Pro Ala Phe Leu Tyr Lys Val
 <210>
       80
 <211> 15
 <212> DNA
 <213> artificial sequence
 <220>
       Product of binding a topoisomerase to part of a nucleic acid molecule
 <223>
 <220>
 <221> Unsure
       (13)..(15)
 <222>
 <223> N can be any nucleotide: a, t, c, g.
```

<400> 80 cccttcacca tgnnn

£ . . .

15

- '