Versuchsbericht zu

O6 - Optische Abbildungen und digitale Kamera

Gruppe 14Mo

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 09.07.2018 betreut von Robert Schneider

Inhaltsverzeichnis

1	Kurzfassung	3
2	Methoden	3
3	Ergebnisse und Diskussion 3.1 Beobachtung und Datenanalyse	3
	3.2 Diskussion	3
4	Schlussfolgerung	3

1 Kurzfassung

2 Methoden

3 Ergebnisse und Diskussion

3.1 Beobachtung und Datenanalyse

3.1.1 Unsicherheiten

Die Unsicherheiten werden gemäß GUM ermittelt. Außerdem wird für Unsicherheitsrechnungen die Python-Bibliothek "uncertainties" verwendet.

Winkelmessung:

Spannungsmessung:

3.1.2 Untersuchung der Schärfentiefe

Theoretische Berechnung

Die Schärfentiefe S ergibts sich aus der Entfernung zwischen Nah- und Fernpunkt. Also $S = |d_h - d_f|$. Mit den in der Einführung gegebenen Formeln:

$$d_n = \frac{g \cdot (d_h - f)}{(d_h - f) + (g - f)} \tag{1}$$

$$d_f = \frac{g \cdot (d_h - f)}{(d_h - f) + (f - g)} \tag{2}$$

wobei d_h die hyperfokale Entfernung ist:

$$d_h = \frac{f^2}{k \cdot Z} + f \tag{3}$$

Es folgt also eine Schärfentiefe von:

$$S = \left| \frac{2f^2gkZ(f-g)}{f^4 - k^2Z^2(f-g)^2} \right| \tag{4}$$

3.2 Diskussion

4 Schlussfolgerung