正規行列

エルミート行列の対角化について議論するために、エルミート行列・ユニ タリ行列を含むより包括的な概念として正規行列を導入する

■ 正規行列 複素正方行列 A が次を満たすとき、A を正規行列という

$$AA^* = A^*A$$

ref: 図で整理!例題で 納得!線形空間入門 p197~200

ref: 長岡亮介 線形代数 入門講義 p287~292 ref: 行列と行列式の基

礎 p209

正規行列の例

A をエルミート行列とすると、 $A^* = A$ なので、

$$AA^* = A^2$$
$$A^*A = A^2$$

となり、正規行列の定義を満たす

♣ エルミート行列の正規行列性 エルミート行列は正規行列である

また、A をユニタリ行列とすると、 $A^* = A^{-1}$ なので、

$$AA^* = AA^{-1} = E$$
$$A^*A = A^{-1}A = E$$

となり、こちらも正規行列の定義を満たす

♣ ユニタリ行列の正規行列性 ユニタリ行列は正規行列である

正規行列の性質

北 正規行列と随伴によるノルム保存性 複素正方行列 A が正規行列であることは、任意の $oldsymbol{v}\in\mathbb{C}^n$ に対し、

$$||A\boldsymbol{v}|| = ||A^*\boldsymbol{v}||$$

が成り立つことと同値である

[Todo 1: ref: 行列と行列式の基礎 p262 問 6.9 (1)]

・ 正規行列における固有ベクトルの随伴対応 A を正規行列とするとき、 \boldsymbol{v} が A の固有値 α の固有ベクトルならば、 \boldsymbol{v} は A^* の固有値 $\overline{\alpha}$ の固有ベクトルであるすなわち、

$$A\mathbf{v} = \alpha\mathbf{v} \Longrightarrow A^*\mathbf{v} = \overline{\alpha}\mathbf{v}$$

証明

[Todo 2: ref: 行列と行列式の基礎 p262 問 6.9 (2)]

正規行列の対角化

A の固有値 α に属する線型独立な固有ベクトルがちょうど k 個存在することは、

$$\dim\{\boldsymbol{x} \mid A\boldsymbol{x} = \alpha\boldsymbol{x}\} = k$$

と表せる

これは、固有値 α の<mark>固有空間</mark>の次元が k であること、噛み砕くと、固有値 α の固有ベクトル α の集合が部分空間であり、k 個の固有ベクトルがこの 部分空間の基底を成す (線型独立である) ことを意味する

固有空間は核空間 Ker($A-\alpha E$) と定義されるため、この次元が k であることは、次のようにも書ける

$$\dim \operatorname{Ker}(A - \alpha E) = k$$

正規行列について、一般に次が成り立つ

・ 正規行列における固有空間の次元と固有値の重複度の一致 n 次複素正方行列 A が正規行列であるとき、 $\Phi_A(x)$ における固有値 α の重複度 k について、次の等式が成り立つ

$$k = n - \text{rank}(A - \alpha E)$$

次元定理を用いて言い換えると、 α の固有空間 $W(\alpha)$ について、

$$\dim W(\alpha) = k$$

が成り立つ

証明

 $l=n-{\sf rank}(A-\alpha E)$ とおく(l が重複度 k に等しいことを示すことが目標)

すなわち、

$$rank(A - \alpha E) = n - l$$

であると仮定する

また、固有値 α の固有ベクトルは、斉次形方程式

$$(A - \alpha E)\boldsymbol{x} = \mathbf{0}$$

の非自明解である

この方程式の解空間は $Ker(A - \alpha E)$ であるが、次元定理より、

$$\dim \operatorname{Ker}(A - \alpha E) = n - \operatorname{rank}(A - \alpha E) = l$$

であるので、 $Ker(A-\alpha E)$ は次元 l の部分空間である

すなわち、方程式 $(A-\alpha E)\mathbf{x}=\mathbf{0}$ を満たす l 個の線型独立なベクトルが存在する

これらを $oldsymbol{v}_1, oldsymbol{v}_2, \ldots, oldsymbol{v}_l$ とすると、これらはすべて固有値 lpha の固有ベクトルである

これらが正規直交系でない場合は、グラム・シュミットの直交化法を 用いて正規直交系に変換し、それを改めて $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_l$ とする

次に、これら l 個のベクトルを補う形で、正規直交基底 $oldsymbol{v}_1,\ldots,oldsymbol{v}_l,oldsymbol{v}_{l+1},\ldots,oldsymbol{v}_n$ を作る

これらを用いて、行列 *U* を

$$U = (\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_l, \boldsymbol{v}_{l+1}, \dots, \boldsymbol{v}_n)$$

とおくと、 U はユニタリ行列である

さらに、 $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_l$ は \boldsymbol{A} の固有値 $\boldsymbol{\alpha}$ に属する固有ベクトルであることから、

$$U^{-1}AU = \begin{pmatrix} & & & & & & \\ & \alpha & & & & \\ & & \ddots & & & B \\ & & & \alpha & & \\ & & & O & & C \end{pmatrix} \uparrow_{n-l}$$

ユニタリ行列 U の定義より、 $U^{-1} = U^*$ が成り立つので、

$$U^*AU = \begin{pmatrix} & & & & & & \\ & \alpha & & & & \\ & & \ddots & & & B \\ & & & \alpha & & \\ & & & & C \end{pmatrix} \uparrow_{n-l}$$

ここで、両辺の随伴行列をつくることを考える

左辺は、積の随伴行列をつくると積の順序が入れ替わることに注意 して、

$$(U^*AU)^* = U^*A^*(U^*)^* = U^*A^*U$$

右辺は、転置してから各成分を共役複素数に置き換えればよいので、

$$U^*A^*U = \begin{pmatrix} & & & & & & & & \\ & \overline{\alpha} & & & & & & \\ & & \ddots & & & & & \\ & & & \overline{\alpha} & & & & \\ & & & \overline{\alpha} & & & & \\ & & & B^* & & & C^* & & \end{pmatrix} \uparrow_{n-l}^{l}$$

一方、A が正規行列であることから、 $oldsymbol{v}_1,\ldots,oldsymbol{v}_l$ は、 A^* の固有値 $\overline{\alpha}$ に属する固有ベクトルでもあるので、

$$U^{-1}A^*U = U^*A^*U = \begin{pmatrix} & & & & & & & \\ & \overline{\alpha} & & & & & \\ & & \ddots & & & B' \\ & & \overline{\alpha} & & & \\ & & & O & & C' \end{pmatrix} \uparrow_{n-l}$$

とも表せる

ここで、B と C は l × (n-l) 型行列、B' と C' は (n-l) × l 型行列であり、型が一致するので成分を比較できるよって、

$$B^* = O, \quad C^* = C'$$

0 の複素共役は 0 であることから、 $B^* = O$ より、

$$B = O$$

がしたがう

このことをふまえて、あらためて U*AU を表すと、

$$U^*AU = \begin{pmatrix} & & & & & & & \\ & \alpha & & & & & \\ & & \ddots & & & & \\ & & & \alpha & & & \\ & & & O & & & C \end{pmatrix} \uparrow_{n-l}$$

となる

ここで、A と U^*AU の特性多項式は一致するので、実際に計算すると、

$$\det(xE - A) = \det(xE - U^*AU)$$

$$= \begin{vmatrix} x - \alpha & & & & \\ & \ddots & & & \\ & & x - \alpha & & \\ \hline & O & & xE_{n-l} - C \\ \\ = \begin{vmatrix} x - \alpha & & & \\ & \ddots & & \\ & & x - \alpha & \\ \\ = (x - \alpha)^l \det(xE_{n-l} - C) \\ \end{vmatrix}$$

$$= (x - \alpha)^l \det(xE_{n-l} - C)$$

また、 $\alpha E - U^*AU$ を考えると、

より、

$$\operatorname{rank}(\alpha E - U^*AU) = \operatorname{rank}(\alpha E_{n-l} - C)$$

ここで、 $A \ge U^*AU$ は相似な行列であり、相似な行列の固有値(特性方程式の根)は重複度も含めて一致するので、

$$\operatorname{rank}(\alpha E - U^*AU) = \operatorname{rank}(\alpha E - A) = n - l$$

よって、

$$\operatorname{rank}(\alpha E_{n-l} - C) = n - l$$

つまり、 $\alpha E_{n-l} - C$ は行列の階数が次数 n-l に等しいので、正則行列である

ゆえにその行列式は、

$$\det(\alpha E_{n-l} - C) \neq 0$$

となることから、 $x=\alpha$ は方程式 $\det(xE_{n-l}-C)=0$ の解ではないことがわかる

よって、 $\det(xE-A)=0$ の解 $x=\alpha$ は、 $(x-\alpha)^l$ の部分から現れることになるため、 $x=\alpha$ は l 重解である

したがって、 α の重複度 k は l に等しいことが示された

固有空間の次元と重複度が一致すれば対角化可能であることから、正規行 列は対角化可能である

さらに、上の定理の証明過程から、正規行列はユニタリ行列によって対角 化できることもわかる

・・正規行列とユニタリ対角化 複素正方行列 A について、A が 正規行列であることと、A がユニタリ行列を用いて対角化できる ことは同値である

正規行列 ⇒ ユニタリ行列を用いて対角化可能

正規行列における固有空間の次元と固有値の重複度の一致の 定理の証明過程より明らか

ユニタリ行列を用いて対角化可能 ==> 正規行列

A がユニタリ行列 U を用いて、次のように対角化されたとする

$$U^*AU = \begin{pmatrix} lpha_1 & O \\ & \ddots & \\ O & & lpha_n \end{pmatrix}$$

このとき、両辺に左から U をかけ、右から U^* をかけると、ユニタリ行列の定義より $U^*U = UU^* = E$ であることから、

$$A = U \begin{pmatrix} \alpha_1 & & O \\ & \ddots & \\ O & & \alpha_n \end{pmatrix} U^*$$

と変形できる

よって、*A** は、積の随伴行列をつくると積の順序が入れ替わることに注意して、

$$A^* = (U^*)^* \begin{pmatrix} \overline{\alpha_1} & O \\ & \ddots & \\ O & \overline{\alpha_n} \end{pmatrix} U^*$$
$$= U \begin{pmatrix} \overline{\alpha_1} & O \\ & \ddots & \\ O & \overline{\alpha_n} \end{pmatrix} U^*$$

以上をふまえて、 AA^* と A^*A をそれぞれ計算すると、

$$AA^* = U \begin{pmatrix} \alpha_1 & O \\ & \ddots & \\ O & \alpha_n \end{pmatrix} U^* U \begin{pmatrix} \overline{\alpha_1} & O \\ & \ddots & \\ O & \overline{\alpha_n} \end{pmatrix} U^*$$
$$= U \begin{pmatrix} \alpha_1 \overline{\alpha_1} & O \\ & \ddots & \\ O & \alpha_n \overline{\alpha_n} \end{pmatrix} U^*$$

$$A^*A = U \begin{pmatrix} \overline{\alpha_1} & O \\ & \ddots & \\ O & \overline{\alpha_n} \end{pmatrix} U^*U \begin{pmatrix} \alpha_1 & O \\ & \ddots & \\ O & \alpha_n \end{pmatrix} U^*$$
$$= U \begin{pmatrix} \overline{\alpha_1}\alpha_1 & O \\ & \ddots & \\ O & \overline{\alpha_n}\alpha_n \end{pmatrix} U^*$$

 $\forall x \in \alpha_i \overline{\alpha_i} = \overline{\alpha_i} \alpha_i \text{ and } x \in \alpha_i$

$$AA^* = A^*A$$

が成り立つ

これは、 A が正規行列であることを意味する

Zebra Notes

Туре	Number
todo	2