#### A

#### PROJECT REPORT

## ON

# "Heat Transfer Enhancement in Rectangular Duct"

#### **SUBMITTED BY**

| Mr. MOHITE GAURAV VISHNU        | 2016440196 |
|---------------------------------|------------|
| Mr JADHAV RAJVARDHAN SHASHIKANT | 2016440198 |
| Mr. PATIL PRUTHVIRAJ DEEPAK     | 2016440216 |
| Mr MIII ANI SAIID II AHI        | 2016440248 |

#### UNDER THE GUIDANCE OF

Mr. S. J.THIKANE



# DEPARTMENT OF MECHANICAL ENGINEERING SANJAY GHODAWAT POLYTECHNIC, ATIGRE ACADEMIC YEAR 2022-23

Academic Year: 2022-23

# **Certificate**

This is to certify that the project work entitled

## "Heat Transfer Enhancement in Rectangular Duct"

## Has been successfully completed by

| Mr. MOHITE GAURAV VISHNU         | 2016440196 |
|----------------------------------|------------|
| Mr. JADHAV RAJVARDHAN SHASHIKANT | 2016440198 |
| Mr. PATIL PRUTHVIRAJ DEEPAK      | 2016440216 |
| Mr. MULANI SAJID ILAHI           | 2016440248 |

## In fulfillment for the

## **Diploma in Mechanical Engineering**



## Maharashtra State Board of Technical Education During the academic year 2022-23 under the guidance of

| Mr. S. J. Thikane | Mr. P. M. Patil |
|-------------------|-----------------|
| (Project Guide)   | (H.O.D)         |

Mr. V. V. Giri External Examiner (Principal)



**ACKNOWLEDGEMET** 

During the selection of "Heat Transfer Enhancement in Rectangular Duct", the help

we received from our professors, industry persons, family and friends is invaluable and we are

forever indebted to them.

We would first like to express our gratitude to our Principal Mr. V. V. Giri, Mr. P.M.

Patil (HOD-Mechanical) and Mr. S. J. Thikane (Project Guide) for their immense support,

suggestion, encouragement and interest in our project work. Without their in valuable

suggestions our project selection would be incomplete.

Last but not least, we would like to thank our friends, parents and group members for

2016440196

2016440198

their belief and patience in our endeavor.

Mr. MOHITE GAURAV VISHNU

Mr. JADHAV RAJVARDHAN SHASHIKANT

Mr. PATIL PRUTHVIRAJ DEEPAK 2016440216

Mr. MULANI SAJID ILAHI 2016440248

Date:-

Place:- Atigre

#### Abstract

Improving the convection heat exchange coefficient is the key to progress the execution of a heat exchange. In common, heat exchangers are expecting to be littler and more reasonable. There are two common sorts of methods that can be utilized to upgrade heat exchange. There's a detached strategy, such as bent tapes, helical screw tape embeds, unpleasant surfaces, amplified surfaces, and fluid and gas added substances. Dynamic strategies, on the other hand, require extra control, such as mechanical helps, liquid vibrations, or electrostatic areas. Comparatively, inactive strategies are found to be more reasonable than dynamic strategies.

Ribs are common warm exchange improvement gadgets that can be utilized in a assortment of heat-exchanging channels. As a result of decreased liquid stream region caused by stream blockages such as ribs, weight drops increment and gooey impacts increment. Distribution, reattachment, and auxiliary stream are all included within the flow around ribs. Also, auxiliary stream gives distant better; a much better; a higher; a stronger; an improved">an improved warm contact between surface and liquid because it makes twirl between surface and liquid. It comes about in a blending of liquid that upgrades the warm angle, which eventually leads to an increment in warm exchange coefficient.

An exploratory consider of warm exchange and grinding figure of a square channel with embeds beneath turbulent stream conditions is displayed in this paper. In plain square conduits, with or without embeds, discuss is considered the working liquid. An exploratory set up is created in arrange to assess the warm exchange coefficient and grinding figure. To start with, tests are conducted in plain straight square conduits with and without embeds and the comes about are compared to those within the writing.

## <u>INDEX</u>

| Ch. |       | Name of Content                                                                    | Page |
|-----|-------|------------------------------------------------------------------------------------|------|
| no. |       |                                                                                    | no.  |
|     |       | Abstract                                                                           |      |
| 1   |       | Introduction                                                                       | 1    |
| _   | 1.1   | Introduction                                                                       | 1    |
|     | 1.2   | Need of Heat Transfer Enhancement                                                  | 1    |
| 2   |       | Literature review                                                                  | 3    |
| 3   |       | Theory                                                                             | 9    |
|     | 3.1   | Objectives of Heat Transfer Enhancement                                            | 9    |
|     | 3.2   | Classification of Heat transfer enhancement                                        | 10   |
|     | 3.2.1 | Passive Techniques                                                                 | 12   |
|     | 3.2.2 | Active Techniques                                                                  | 15   |
| 4   |       | Present Experimental Work                                                          | 17   |
|     | 4.1   | Components of Experimental Setup                                                   | 17   |
|     | 4.2   | Types of Inserts Used                                                              | 18   |
|     | 4.3   | Experimental Work                                                                  | 24   |
|     | 4.4   | Calculation Procedure                                                              | 27   |
| 5   |       | Observations For Plain Square Duct and Square Duct Provided with Different Inserts | 28   |
| 6   |       | Sample Calculations                                                                | 36   |
| 7   |       | Results                                                                            | 37   |
| 8   |       | Conclusion                                                                         | 40   |
| 9   |       | Scope of Work                                                                      | 41   |
| 10  |       | References                                                                         | 42   |

# **List of Figures**

| Fig.<br>No. |      | Figure Number                       | Page<br>No. |
|-------------|------|-------------------------------------|-------------|
| 3           | 3.1  | Corrugated tubes                    | 10          |
|             | 3.2  | Segmented Fins                      | 11          |
|             | 3.3  | Conical Rings                       | 11          |
|             | 3.4  | Plain twisted tubes                 | 12          |
|             | 3.5  | Baffle twisted tape with holes      | 12          |
|             | 3.6  | Wavy twisted tapes                  | 12          |
|             | 3.7  | Parabolic cut twisted tapes         | 12          |
|             | 3.8  | Coils tubes                         | 13          |
| _           | 3.9  | Helical baffle heat exchanger       | 14          |
| _           | 3.10 | Test section fitted with wire coils | 16          |
| 4           | 4.1  | Hybrid Ribs Type Plate              | 18          |
|             | 4.2  | Slot Ribs Type Plate                | 19          |
|             | 4.3  | Center Slot Ribs Type Plate         | 20          |
|             | 4.4  | Slot Ribs Type Plate                | 21          |
|             | 4.5  | zig zag Slot Ribs Type Plate        | 22          |
|             | 4.6  | Continuous Slot Ribs Plate          | 23          |
|             | 4.3  | Experimental work                   | 24          |

# **List of Graphs**

| Graph No. | Name of Graphs                                                | Page No. |
|-----------|---------------------------------------------------------------|----------|
| 7.1       | Heat Transfer Coefficient Vs Air Velocity For Hybrid Ribs     | 37       |
| 7.2       | Heat Transfer Coefficient Vs Air Velocity For 3 Slots<br>Rib  | 37       |
| 7.3       | Heat Transfer Coefficient Vs Air Velocity For 3 Slots<br>Rib  | 38       |
| 7.4       | Heat Transfer Coefficient Vs Air Velocity For 2 Slot Ribs     | 38       |
| 7.5       | Heat Transfer Coefficient Vs Air Velocity For Zig Zag<br>Ribs | 39       |