Geração uniforme de *k-trees* para aprendizado de redes bayesianas

Tiago Madeira

<madeira@ime.usp.br>

Supervisor: Prof. Dr. Denis Deratani Mauá

Bacharelado em Ciência da Computação Instituto de Matemática e Estatística Universidade de São Paulo

Novembro de 2016

No que consiste o trabalho?

Estudo sobre amostragem uniforme de k-trees e seu uso no aprendizado da estrutura de redes bayesianas com treewidth limitado.

No que consiste o trabalho? Por que estudar k-trees? Por que gerar k-trees? O que foi feito? Onde encontrar o trabalho?

Por que estudar *k-trees*?

Há interesse considerável em desenvolver ferramentas eficientes para manipular k-trees, porque **problemas NP-difíceis são resolvidos em tempo polinomial** em k-trees e subgrafos de k-trees.

Alguns exemplos¹:

- Encontrar tamanho máximo dos conjuntos independentes;
- Computar tamanho mínimo dos conjuntos dominantes;
- Calcular número cromático;
- Determinar se tem um ciclo hamiltoniano.

¹Stefan Arnborg, Andrzej Proskurowski. Linear time algorithms for NP-Hard problems restricted to partial *k*-trees. *Discrete Applied Mathematics*, 23:11–24, 1989.

Por que gerar *k-trees?*

Há muitas razões, como por exemplo para testar a eficácia de algoritmos aproximados.

O problema que desperta nosso interesse é o **aprendizado de redes bayesianas**.

O que foi feito?

O que foi feito?

- Implementação do algoritmo de Caminiti et al. (2010)² para codificar k-trees de forma bijetiva em tempo linear.
- Implementação de algoritmo para amostrar k-trees **uniformemente** e testes para comprovar seu funcionamento.
- Estudo sobre aprendizado de redes bayesianas com treewidth limitado por meio da amostragem uniforme de k-trees conforme artigo de Nie et al. $(2014)^3$.
- Comparação entre métodos para aprender redes bayesianas.

³Sigi Nie, Denis D. Mauá, Cassio P. de Campos, Qiang Ji. Advances in learning bayesian networks of bounded treewidth. CoRR, abs/1406.1411, 2014.

²Severio Caminiti, Emanuele G. Fusco, Rossella Petreschi. Bijective linear time coding and decoding for k-trees. Theory of Computing Systems, 46:284–300, 2010.

No que consiste o trabalho? Por que estudar k-trees? Por que gerar k-trees? O que foi feito? Onde encontrar o trabalho?

Onde encontrar o trabalho?

Código (desenvolvido em Go^4) e documentação: https://github.com/tmadeira/tcc/

⁴https://golang.org/

Primeiramente, o que são k-trees?

Uma k-tree é definida da seguinte forma recursiva⁵:

- Um grafo completo com k vértices é uma k-tree.
- Se $T'_k = (V, E)$ é uma k-tree, $K \subseteq V$ é um k-clique e $v \notin V$, então $T_k = (V \cup \{v\}, E \cup \{(v, x) \mid x \in K\})$ é uma k-tree.

Figura: **(a)** Uma 1-tree (ou seja, uma árvore comum) com 4 vértices. **(b)** Uma 2-tree com 5 vértices. **(c)** Uma 3-tree com 5 vértices.

⁵Frank Harary, Edgar M. Palmer. On acyclic simplicial complexes. *Mathematika*, 15:115–122, 1968.

k-trees enraizadas

Uma k-tree enraizada é uma k-tree com um k-clique destacado $R = \{r_1, r_2, \dots, r_k\}$ que é chamado de raiz da k-tree enraizada.

Figura: (a) Uma 3-tree T_3 com 11 vértices. (b) A mesma 3-tree (T_3) enraizada no 3-clique $\{2,3,9\}$.

A relação entre geração e codificação

O problema de gerar *k-trees* está intimamente relacionado ao problema de codificá-las e decodificá-las. De fato, se há uma codificação bijetiva que associa *k-trees* a *strings*, basta gerar *strings* uniformemente aleatórias para gerar *k-trees* uniformemente aleatórias.

Codificação de k-trees

- Em 1889, Cayley⁶ demonstrou que para um conjunto de n vértices existem n^{n-2} árvores possíveis. Desde lá, foram criados vários códigos para árvores, como o de Prüfer⁷.
- Em 1970, Rényi e Renýi apresentaram uma codificação redundante (ou seja, não bijetiva) para um subconjunto de k-trees rotuladas que chamamos de k-trees de Rényi⁸.
 Definição: Uma k-tree de Rényi R_k é uma k-tree enraizada com n vértices rotulados em [1, n] e raiz {n k + 1, · · · , n}.

⁶Arthur Cayley. A theorem on trees. *Quart J. Math*, 23:376–378, 1889.

⁷Heinz Prüfer. Neuer beweis eines satzes über permutationen. *Archiv der Mat. und Physik*, 27:142–144, 1918.

⁸C. Rényi, A. Rényi. The prüfer code for *k*-trees. *Combinatorial Theory and its Applications*, 945–971, 1970.

A solução de Caminiti et al.

- Apenas em 2008 surgiu um código bijetivo para k-trees com algoritmos lineares de codificação e decodificação. Esses algoritmos, propostos por Caminiti et al., foram implementados neste trabalho.
- O código é formado por uma permutação de tamanho k e uma generalização do Dandelion Code⁹. A codificação das k-trees associa elementos em \mathcal{T}_k^n (conjunto das k-trees com n vértices) com elementos em:

$$\mathcal{A}_k^n = {[1, n] \choose k} \times (\{(0, \varepsilon)\} \cup ([1, n-k] \times [1, k]))^{n-k-2}$$

⁹Ömer Eğecioğlu, J. B. Remmel. Bijections for cayley trees, spanning trees, and their q-analogues. *Journal of Combinatorial Theory*, 42:15–30, 1986. ← ₹ → ← ₹ → ₹

A solução de Caminiti et al.

Geração uniforme de *k-trees*

Introdução **Geração uniforme de** *k***-trees** Aprendizado de redes bayesianas Considerações finais O que são k-trees? Codificação de k-trees Geração uniforme **Testes**

Testes

Redes bayesianas

Redes bayesianas Motivação Aprendizado por amostragem de k-trees Experimentos

Aprendizado de redes bayesianas

Aprendizado por amostragem de k-trees

Redes bayesianas Motivação Aprendizado por amostragem de *k-*tree Experimentos

Experimentos

Conclusão

Agradecimentos

Perguntas?