

<u>Home</u> Maths

ns Functions

General Functions

Exponential Equation 2

Exponential Equation 2

Solve the following for
$$x$$
: $3^x = \frac{1}{\left(9^{x-\frac{9}{4}}\right)}$.

Created for isaacphysics.org by David Lawrence

Maths

Functions

General Functions

Exponential Equation 3

Exponential Equation 3

Solve the following for m: $\frac{1}{9^m}=27^{1-m}$.

$$rac{1}{\Omega^m}=27^{1-m}.$$

Created for isaacphysics.org by David Lawrence

Maths

Log Laws 1ii

Log Laws 1ii

Part A Express in terms of $\log_2(x)$ (i)

Express $\log_2(x^2)$ in terms of $\log_2(x)$.

When you are entering your answer, note that $\log_a b$ can be written using $\log(b,a)$.

The following symbols may be useful: ln(), log(), x

Part B Express in terms of $\log_2(x)$ (ii)

Express $\log_2(8x^2)$ in terms of $\log_2(x)$.

When you are entering your answer, note that $\log_a b$ can be written using $\log(b,a)$.

The following symbols may be useful: ln(), log(), x

Part C Find $\log_3 y$

Given that $y^2 = 27$, find the value of $\log_3 y$.

The following symbols may be useful: ln(), log(), y

Used with permission from UCLES, A Level Maths, Specimen paper, OCR C2, Question 3

Maths

Log Laws 2ii

Log Laws 2ii

Part A Express as a single log (i)

Express $\log_a 2 + \log_a 3$ as a single logarithm.

The following symbols may be useful: a, log()

Part B Express as a single log (ii)

Express $2 \log_{10} x - 3 \log_{10} y$ as a single logarithm.

The following symbols may be useful: log(), x, y

Used with permission from UCLES, A Level Maths, January 2008, OCR C2, Question 3

Maths

Functions

General Functions

Logarithmic Equations 3

Logarithmic Equations 3

Solve the following logarithmic equations.

Part A
$$\log_3 \sqrt{b} = 2$$
.

Find
$$b$$
 if $\log_3 \sqrt{b} = 2$.

Part B
$$\log_2(x^2) - \log_2 3 = \log_2 48$$
.

Solve the following for
$$x$$
: $\log_2(x^2) - \log_2 3 = \log_2 48$.

Created for isaacphysics.org by Julia Riley

Maths

Functions

General Functions

Apparent Magnitudes

Apparent Magnitudes

The apparent magnitude m of an astronomical object describes on a logarithmic scale how bright an object appears to an observer. It is related to its actual brightness or energy flux F (i.e. the energy arriving at the Earth per unit area per second) in the following way. Consider two objects with magnitudes m_1 and m_2 and brightnesses F_1 and F_2 ; the relationship between these quantities is

$$rac{F_1}{F_2} = 100^{rac{m_2-m_1}{5}}.$$

Part A Sun and Moon

The magnitude of the Sun is -26.8 and it is a factor of 4.80×10^5 brighter than the full Moon. Find the magnitude of the full Moon.

Part B Supernova 1987A

Supernova 1987A was discovered in the nearby dwarf galaxy the Large Magellanic Cloud and, with a magnitude of +2.9, it was visible with the naked eye. It was subsequently discovered that its progenitor was a blue supergiant with a magnitude of +12.2. Find the ratio of the brightness of Supernova 1987A to that of its progenitor (give your answer to 2 sig figs).

Created for isaacphysics.org by Julia Riley

<u>Gameboard</u>

Maths

Log Laws 1i

Log Laws 1i

It is given that $\ln x = p + 2$ and $\ln y = 3p$

Part A Log laws

Express ln(xy) in terms of p.

The following symbols may be useful: p

Part B Simplify 1

Express $ln(x^3)$ in terms of p.

The following symbols may be useful: p

Part C Simplify 2

Express $\ln(\frac{y}{e})$ in terms of p.

The following symbols may be useful: p

Part D Solve equation

Express y in terms of x and e, simplifying your answer.

The following symbols may be useful: e, x, y

Used with permission from UCLES, A Level Maths, January 2009, OCR C2, Question 8

Gameboard:

STEM SMART Double Maths 8 - Exponents and Logarithms

<u>Home</u> Maths Functions General Functions Energy Decay

Energy Decay

A steel bar is tapped on one end and the resulting pulse of energy travels backwards and forwards along the bar. A very small fraction α of its energy is lost on each reflection so that after n reflections the fraction of its initial energy left is $(1-\alpha)^n$. It takes a time τ to travel from one end of the bar to the other.

Part A Time for energy to halve

Find an expression for the time it takes for the energy in the pulse to halve.

When you are entering your answer, note that $\log_a b$ can be written using $\log(b,a)$.

The following symbols may be useful: alpha, ln(), log(), tau

Part B Time for energy to fall by factor of 100

Find an expression for the time it takes for the energy in the pulse to fall by a factor of 100.

When you are entering your answer, note that $\log_a b$ can be written using $\log(b,a)$.

The following symbols may be useful: alpha, ln(), log(), tau

Created for isaacphysics.org by Julia Riley

Maths

Solving Equations & Logs 2ii

Solving Equations & Logs 2ii

Part A Solve equation

Use logarithms to solve the equation $5^{3w-1} = 4^{250}$, giving the value of w correct to 3 significant figures.

Part B Find expression

Given that $\log_x(5y + 1) - \log_x 3 = 4$, express y in terms of x.

The following symbols may be useful: x, y

Used with permission from UCLES, A Level Maths, June 2016, OCR C2, Question 4

Maths

Solving Equations & Logs 3i

Solving Equations & Logs 3i

Part A Solve equation

Solve the equation $2^{4x-1} = 3^{5-2x}$, giving your answer in the form $x = \frac{\log_{10} a}{\log_{10} b}$.

When you are entering your answer, note that $\log_a b$ can be written using $\log(b,a)$.

The following symbols may be useful: log(), x

Part B Find integer

Find the smallest integer n which satisfies the inequality $7^{2n} > e^{600}$.

Used with permission from UCLES, A Level Maths, June 2014, OCR C2, Question 5