CPE 431/531

Chapter 3 – Arithmetic for Computers

Dr. Rhonda Kay Gaede

3.1 Introduction

Bits are bits, what is important is how they are ______.

- You may have an ______.
- You may have a _____(integer).
- You may have an _____(integer).
- You may have a ______.

3.5 Floating Point - Basics

- Floating-point numbers are represented in _____notation
- Floating-point numbers use _____representation.
- In general, floating-point numbers are of the form
- There is a tradeoff between _____ and _____
 - More ___ bits gives you more _____
 - More ___ bits gives you more _____
- IEEE defines two types of floating-point numbers
 - Single Precision
 - Double Precision

3.5 Floating Point – More of the Story

IEEE 754 Floating	g Point Standard		
Adding a	to the exponent simplifies		
The leading one is			
Representati	on expanded		

Example: Represent -0.75 in single and double precision

3.5 Floating Point – More Examples

Example: What decimal number is represented by this single precision float? 0x4493 AB00

3.6 Subword Parallelism

systems originally used 8 bits to represent and
B bits to represent
Support for led to 16 bits of information.
Subword items have been supported for a long time in
Graphics processing called for on subword items.
· · · · · · · · · · · · · · · · · · ·
Often the same operation is performed on () of data.
L28 bit adders can handle (Data Level Parallelism)
bit operands

3.9 Fallacies and Pitfalls

Pitfall: Floating-point addition is not	
Because floating-point numbers are	of real
numbers and because computer arithmetic has	
, associativity does not hold for floating	g-point
numbers.	
$y = -1.5 ext{ } y = 1.5 ext{ } y = 1.5 ext{ } y = 1.0$	

$$x = -1.5_{10} \times 10^{38}$$
, $y = 1.5_{10} \times 10^{38}$, $z = 1.0$

Fallacy: Parallel exec	cution strategies that work for	data
types also work for __	data types.	
Results may be	but not .	