Übungsblatt 3

Aufgabe 7 (2+1+2). (i) Sei $\Omega = \mathbb{Q} \cap [0,1] \subset Q = [0,1]$. Zeigen Sie, dass 1_{Ω} nicht integrierbar ist.

- (ii) Sei $\Omega \subset \mathbb{R}^n$ beschränkt, so dass 1_{Ω} integrierbar ist und vol $\Omega = 0$. Sei $A \subset \Omega$. Zeigen Sie, dass dann auch 1_A integrierbar ist und vol A = 0 gilt.
- (iii) Sei $\Omega \subset [0,1]^2 \subset \mathbb{R}^2$ das rechtwinklige, gleichschenklige Dreieck mit Kantenlänge 1, so dass die beiden Katheten jeweils auf der x- bzw. y-Achse liegen. Bestimmen Sie $S_k(1_{\Omega})$ und $S^k(1_{\Omega})$ und damit dann (unter Verwendung der Definition der Integrierbarkeit) $\int_{[0,1]^2} 1_{\Omega} dvol$.

Aufgabe 8 (1+2+2). (i) Berechnen Sie $\int_{[0,\pi]\times[-\frac{\pi}{\alpha},\pi]}\sin(x+y)dvol$.

(ii) Bestimmen und skizzieren Sie $\Omega \subset [0,a] \times [0,a] \subset \mathbb{R}^2$, a>1, so dass 1_{Ω} integrierbar ist (begründen Sie dann auch, warum es integrierbar ist) und das Anwenden von Fubini

$$\int_{\Omega} d\text{vol} = \int_{0}^{a} \left(\int_{0}^{x} dy \right) dx$$

ergibt. Wenden Sie auf dieses Ω Fubini mit vertauschter Integrationsreihenfolge an und bestimmen Sie damit die Integrationsgrenzen in

$$\int_{\Omega} dvol = \int_{?}^{?} \left(\int_{?}^{?} dx \right) dy.$$

(iii) Lösen Sie (ii) noch einmal für

$$\int_{\Omega} d\text{vol} = \int_{0}^{a} \left(\int_{a-x}^{a^{2}-x^{2}} dy \right) dx$$

mit $\Omega \subset [0, a] \times [0, a^2]$ für a > 1.

Aufgabe 9 (2.5+2.5). (Prinzip des Cavalieri)

- (i) Seien $\Omega_i \subset \mathbb{R}^n$, i=1,2, beschränkt und so dass $1_{\Omega_i} \subset \mathbb{R}^n \to \mathbb{R}$ integrierbar sind. Für $h \in \mathbb{R}$ fassen wir $\Omega_{i,h} := \Omega_i \cap \{x_n = h\} \subset \mathbb{R}^{n-1} \times \{x_n = h\} \cong \mathbb{R}^{n-1}$ als Teilmenge von \mathbb{R}^{n-1} . Sei nun für alle $h \in \mathbb{R}$ die Funktion $1_{\Omega_{i,h}} : \mathbb{R}^{n-1} \to \mathbb{R}$ integrierbar. Sei vol $_{n-1}\Omega_{i,h} := \int_{\mathbb{R}^{n-1}} 1_{\Omega_{i,h}} dvol$ (vgl. Bemerkung 1.2.4). Sei vol $_{n-1}\Omega_{1,h} = vol_{n-1}\Omega_{2,h}$ für alle $h \in \mathbb{R}$. Zeigen Sie, dass dann vol $\Omega_1 = vol_{n-1}\Omega_{2,h}$ gilt.
- (ii) (Serviettenring-Problem)

Sie haben eine Kugel von Radius r und stechen mittels eines Zylinders, dessen Achse durch den Mittelpunkt der Kugel geht, ein Teil der Kugel aus. Dann bleibt (wenn der Radius des Zylinders kleiner r war) ein Rest übrig. Dieser Rest habe Höhe h. Zeigen Sie, dass das Volumen dieses Restes nicht vom Radius der ursprüngliches Kugel abhängt.

