

Matemática I

CLASE N°3-CLASE N°4

Ing. Marcela Bellani UNAHUR | 2021

En estas clases se desarrollarán los siguientes temas:

- Proposiciones equivalentes.
- -Leyes Lógicas
- -Redes de conmutación

Proposiciones lógicamente equivalentes

Dos proposiciones p y q se llaman equivalentes si sus tablas de verdad son idénticas. De ser así se denota: $p \equiv q$

Se observa al realizar las tablas de verdad de las proposiciones: $p \to q - y$ $\sim p \vee q$

Como vemos, luego de realizar las tablas de verdad encontramos que ambas proposiciones tienen el mismo resultado final. Con esto, decimos que ambas proposiciones son lógicamente equivalentes, y en este caso particular lo simbolizamos: $(p \rightarrow q) \equiv (\sim p \lor q)$

Teorema: Si dos expresiones lógicas son equivalentes, entonces, la expresión que se obtiene al operarlas con la bicondicional es una tautología.

Si F es equivalente a G, entonces $F \leftrightarrow G$ es una tautológica.

Aquellas fórmulas lógicas que resultan ser siempre verdaderas sin importar la combinación de los valores de verdad de sus proposiciones simples, son tautologías o leyes lógicas. En el cálculo proposicional existen algunas tautologías especialmente útiles cuya demostración se reduce a la confección de su correspondiente tabla de verdad, a saber:

Involución

$$\sim (\sim p) \equiv p$$

Idempotencia

$$(p \land p) \equiv p$$

$$(p \lor p) \equiv p$$

Conmutatividad

$$p \vee q \equiv q \vee p$$

$$p \wedge q \equiv q \wedge p$$

Asociatividad

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$(p \land q) \land r \equiv p \land (q \land r)$$

Distributividad:

$$(p \lor q) \land r \equiv (p \land r) \lor (q \land r)$$

$$(p \wedge q) \vee r \equiv (p \vee r) \wedge (q \vee r)$$

~ (
$$p \lor q$$
) \equiv ~ $p \land \sim q$

~ (
$$p \land q$$
) \equiv ~ $p \lor$ ~ q

QAbsorción

$$p \wedge (p \vee q) \equiv p$$

$$p \vee (p \wedge q) \equiv p$$

Identidad

$$p\,\wedge\,T\equiv p$$

$$p\vee F\equiv p$$

Dominación

$$p\,\wedge\,F\equiv F$$

$$p \lor V \equiv V$$

Negación

$$p\,\wedge\,\neg p\equiv F$$

$$p \vee \neg p \equiv V$$

Bicondicional

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

Q <u>Condicional</u>

$$p \rightarrow q \equiv (\sim p) \lor q$$

Aclaración: Se representa con T a una tautología y con F a una contradicción.

Simplificación

1. Simplificar la siguiente proposición, utilizando leyes lógicas

$[(\sim p \Rightarrow q) \land p] \lor (q \land \sim p) \lor \sim (p \lor \sim q) \equiv$	De Morgan/Involución
$[(\sim p \Rightarrow q) \land p] \lor (q \land \sim p) \lor (\sim p \land q) \equiv$	idempotencia
$[(\sim p \Rightarrow q) \land p] \lor (q \land \sim p) \equiv$	ley de implicación/involución
$[(p \lor q) \land p] \lor (q \land \sim p) \equiv$	Absorción
p ∨ (q ∧ ~p) ≡	distributiva
$(p \lor q) \land (p \lor \sim p) \equiv$	Ley de Negación
(p ∨ q) ∧ T ≡	neutro
p v q	

2.Negar y simplificar la siguiente proposición. Luego hacer el circuito de conmutación correspondiente

$$(p\rightarrow q) \wedge [\neg q \wedge (r \vee \neg q)]$$

Comienzo negando la proposición (aclaración: también se puede hacer la negación al final de la simplificación)

$$\neg[(p\rightarrow q) \land [\neg q \land (r \lor \neg q)]] \equiv ley de implicación/absorción $\neg[(\neg p \lor q) \land (\neg q)]] \equiv De Morgan$$$

$$\neg(\neg p \lor q) \lor \neg(\neg q) \equiv De Morgan/ doble negación$$

$$(p \land \neg q) \lor q \equiv Distributiva$$

$$(p \lor q) \land (\neg q \lor q) \equiv ley de negación$$

$$(p \lor q) \land T \equiv identidad$$

$$(p \vee q)$$

Redes de conmutación

Una red de conmutación está formada por cables e interruptores que conectan dos terminales T₁ y T₂. Si un interruptor está abierto, entonces no pasa la corriente por él y si el interruptor está cerrado pasa corriente por él.

Distintas formas de conectar los interruptores

- a) existe sólo un interruptor indicado con la letra "p"
- b) la corriente pasa de T_1 a T_2 si cualquiera de los interruptores p, q está cerrado. Aquí los interruptores están en paralelo y se representa mediante la proposición "p v q"

c) se necesita que los dos interruptores estén cerrados para que la corriente circule de T_1 a T_2 . Aquí los interruptores están en serie y esta red se representa por la proposición "p \wedge q"

Para nuestro ejemplo el circuito de conmutación es:

Ejercicios

1.Dada la siguiente red de conmutación:

Se pide:

1.1. Simplificar la red

1.2. Graficar la red obtenida

<u>Solución</u>

La red se expresa como (p \land q) \lor (($\neg p \land \neg q$) \lor q) 1.1.

$(p \land q) \lor ((\neg p \land \neg q) \lor q) \equiv$	Ley distributiva de ∨ respecto de ∧
$(p \land q) \lor ((\neg p \lor q) \land (\neg q \lor q)) \equiv$	Ley de negación
$(p \land q) \lor ((\neg p \lor q) \land T) \equiv$	Elemento neutro de A
$(p \land q) \lor (\neg p \lor q)) \equiv$	Asociativa y conmutativa
$((p \land q) \lor q) \lor \neg p \equiv$	Absorción
$q \vee \neg p$	

1.2.

Se pide:

- 2.1. Diseñar un circuito que represente la expresión simbólica dada.
- 2.2. Encuentra una red de conmutación que sea equivalente a la original mediante la simplificación de la expresión simbólica dada.

<u>Solución</u>

2.1.

2.2.

$[(\neg s \lor (r \land p) \lor r) \land \neg s] \lor (\neg s \lor (s \land r)) \equiv$	Asociativa
$[(\neg s \lor ((r \land p) \lor r)) \land \neg s] \lor (\neg s \lor (s \land r)) \equiv$	Absorción
$[(\neg s \lor r) \land \neg s] \lor (\neg s \lor (s \land r)) \equiv$	Asociativa
[((¬s ∨ r) ∧ ¬s) ∨ ¬s] ∨ (s∧r))≡	Absorción
¬s ∨ (s ∧ r) ≡	Ley Distributiva
(¬s ∨ s)∧(¬s ∨ r) ≡	Ley de negación
T ∧ (¬s ∨ r) ≡	Elemento Neutro
¬s v r	