Stat 343, Fri 11-Sep-2020 -- Fri 11-Sep-2020 Probability and Statistics Fall 2020

-----

Friday, September 11th 2020

\_\_\_\_\_

Topic:: Binomial and negative binomial distributions

Read:: FASt 2.3

## **Discrete Distributions**

If X is a discrete random variable, the **probability mass function** (pmf)  $f_X \colon \mathbb{R} \to [0,1]$  is the one that, for each real number x, returns the probability that the random variable X takes the value x. That is,  $f_X(x) = P(X = x)$ .

**Example**: Roll two fair dice and take X = sum of pips. We can give the pmf for this random variable in table form.

| $\boldsymbol{x}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|------------------|---|---|---|---|---|---|---|---|----|----|----|
| $f_X(x)$         |   |   |   |   |   |   |   |   |    |    |    |

Some R code (with mosaic package)

```
die = 1:6
manyRolls <- do(10000) * sum(resample(die, size=2))
mytab <- tally(~sum, data=manyRolls)
gf_point(probability ~ roll, data=res) %>%
    gf_segment(0+probability ~ roll+roll, data=res) %>%
gf_point( as.numeric(mytab)/1000 ~ as.numeric(names(mytab)), color="blue")
```

**Example**: Certain multiple choice tests offer 5 options, A–E. If you have no idea about an answer, and are unable to narrow down the list of possibilities, you have a 1-in-5 chance of guessing the correct answer. A similar description applies to a test for ESP using Zener cards when the subject has no special telepathic abilities.

Let *X* be the number of correct answers when guessing on a test consisting of just three questions.



# Binomial distributions 2.3

Scenarios which are bihomial must fit these criteria:

- (1) The number n of trials is set in advance.
- (2) Each trial has just two outcomes.
- (3) The probability  $\pi$  of the outcome in focus, generically called success, is the same for each trial.
- (4) Each trial is independent of the other trials.

In this setting, the number X of success in n trials is a binomial random variable, written  $X \sim \text{Binom}(n,\pi)$ . Such an X is discrete, with these possible values: 0, 1, 2, ..., n. For any of these numbers, x, the value of the pmf is

A PMF function for  $X \sim \text{Binom}(n, \pi)$ :

```
binomPMF <- function(x, n, p) {
  return (choose(n,x) * p^x * (1-p)^(n-x))
}

binomPMF(2, 5, .2)
dbinom(0:5, 5, .2)
pmfAsData <- data.frame(x = 0:5, probability = dbinom(0:5, size=5, p=0.2))
gf_point(probability ~ x, data=pmfAsData) %>%
  gf_segment(0 + probability ~ x + x, data=pmfAsData)
```

Related to pdf  $f_X(x)$  is the **cumulative distribution function** or cdf  $F_X(x)$  which, for a discrete random variable X, is defined by

$$F_X(x) = \sum_{w \le x} f_X(w).$$

```
pbinom(0:5, 5, .2)
```

**Question**: If a person taking a test with Zener cards has no special abilities (ESP), what is the probability of

- 1. getting exactly 15 correct out of 503
- 2. getting five or fewer correct out of 50?
- 3. getting fifteen or more correct out of 50?

#### Simulating values of a binomial r.v.: one run of 50 trials

```
sum(resample( c(0,1), size=50, prob=c(.8, .2)))
rflip(50, prob=.2)
rbinom(1, size=50, p=.2)
```

### Many runs

```
do(5000) * sum(resample( c(0,1), size=50, prob=c(.8, .2)))
do(5000) * rflip(50, prob=.2)
rbinom(5000, size=50, p=.2)
```

## Negative binomial distribution

- similar conditions as for binomial, except trials continue until a predetermined number of *successes s* is reached
- random variable  $X \sim \text{NBinom}(s, \pi)$  counts the number of *failures*—so, interpret

```
dnbinom(2, 5, .3)
```

as giving, when trials yield the "desired" result 30% of the time, the probability that the  $5^{th}$  success occurs on the  $7^{th}$  trial (i.e., after 2 failures). Mirroring the relationship between dbinom() and pbinom(),

```
pnbinom(2, 5, .3) f(2) = P(X=2) = d_n binom(2, 2) = d_n binom(2,
```

is a cdf function corresponding to the pmf of a negative binomial r.v. given above, yielding the probability that the 5<sup>th</sup> success occurs on or before the 7<sup>th</sup> trial.

One can craft commands to simulate negative binomial scenarios. For instance, if we want repeat trials with  $\pi=0.3$  until the 5<sup>th</sup> success, this command produces one simulated result:

```
match(5, cumsum(resample(c(0,1), size=100, prob=c(.7, .3)))) - 5
```

The command is awkward, however, first because 100 trials might not be enough to see the  $5^{th}$  success, though surely it will usually be enough when  $\pi = 0.3$ . You can simulate 500 results through the addition of a do() command:

```
do(500) * (match(5, cumsum(resample(c(0,1), size=100, prob=c(.7, .3)))) - 5)
```

But the subtraction of 5 at the end is also an awkward step, necessitated by the fact that the match() command determines for us the numbered trial on which the 5<sup>th</sup> success occurred, not the number of failures leading up to it. Happily, R has the command

```
rnbinom(1, size=5, p=0.3) # to simulate one result
rnbinom(500, size=5, p=0.3) # to simulate 500 results
```

which handles both details cleanly.

The pmf for negative binomial. Given  $X \sim \text{NBinom}(s, \pi)$ , what is the actual formula for the pmf  $f_X(x) = f_X(x; s)\pi$ ) used in dnbinom()?

