Solutions week 8

Simon Elias Schrader

October 25, 2024

1 Diskusjonsoppgaver

- Q11.1 Det kan forklares på to ulike måter. For $1s^12s^1$ konfigurasjonen har vi at $S \in \{0,1\}$ og L=0. Triplettilstanden har termsymbol 3S , singlettilstanden har temsymbol 1S . Den ene forklaringen er at Hund's første regel sier at tilstanden med størst spinmultiplisitet har lavest energi, dvs. triplettilstanden 3S . Men man kan også forklare dette uten å ty til regler, men basert på fysikken: I singlettilstanden er den romslige bølgefunksjonen symmetrisk, mens den er antisymmetrisk i triplettilstanden. Romslig antisymmetri gjør at elektronene er "lengre fra hverandre", noe som reduserer Coulomb-frastøtning og total energi.
- Q11.6 Dette er fordi elektroner i mange-elektron-atomer interagerer med hverandre gjennom Coulomb-frastøtning, samt at spinn-bane-kopling spiller en rolle. Disse interaksjonene gjør at vi ikke lenger kan beskrive hvert elektron uavhengig med kvantetallene n, l, m_l , og m_s . I stedet må vi bruke kollektive kvantetall som beskriver hele systemet, som L, S, og J.
- Q11.4 Atomic absorption spectroscopy (AAS) er mer sensitiv enn atomic emission spectroscopy (AES) fordi mekanismen i AES krever eksiterte atomer, noe som er svært temparaturavhengig, og krever høye konsentrasjoner. For AAS er dette ikke tilfellet. I tillegg kan man bruke lyskilder som er optimal for et bestemt element i AAS.
- P11.29 Dette kan forklares ut fra spin-bane-kobling. I grunntilstanden er valenselektronet i 3s-tilstanden, dvs. s=1/2 og l=0, så det er ingen spin-bane-kobling der. Når elektronet blir eksitert til en 3p-tilstand ($s=1/2,\,l=1$), fører spin-bane-koblingen til en oppsplitting av tilstanden i to nivåer: j=1/2 og j=3/2. Disse to tilstandene har litt forskjellige energier, som gir opphav til to forskjellige overgangsfrekvenser i emisjonsspekteret, og dette gir det observerte doblet med bølgelengder på 589.0 nm og 589.6 nm.
- Q12.4 For ett elektron har vi at Hamilton-operatoren \hat{H} kan skrives som:

$$\hat{H} = -\nabla^2 - \frac{Z}{r_1} - \frac{Z}{r_2},$$

hvor r_1 og r_2 representerer avstanden fra elektronet til atomkjernene.

Når vi vurderer Ψ_1 , som er en bølgefunksjon sentrert rundt atom 1, er forventningsverdien $\langle \Psi_1|\frac{1}{r_2}|\Psi_1\rangle$ liten fordi elektronet er primært lokalisert rundt r_1 , altså atom 1, og har liten sannsynlighet for å befinne seg nær atom 2. På samme måte er $\langle \Psi_2|\frac{1}{r_1}|\Psi_2\rangle$ liten for elektronet som er lokalisert rundt atom 2.

Derfor kan H_{11} og H_{22} tilnærmes med ionisasjonsenergien til de respektive nøytrale atomene, ettersom energien hovedsakelig bestemmes av interaksjonen mellom elektronet og kjernen det er nærmest, mens bidraget fra den andre kjernen er neglisjerbart.

• Q12.23 Selv om det er en node i Ψ_u , er elektronet fortsatt delokalisert fordi bølgefunksjonen beskriver en sannsynlighetsfordeling som dekker begge sider av noden. Sannsynligheten for å finne elektronet ved noden er null, men det eksisterer på begge sider samtidig i kvantemekanisk forstand. Elektronet "beveger" seg ikke i klassisk forstand fra én side til den andre, men er del av en kontinuerlig bølgefunksjon.

2 Regneoppgaver gjort av meg

• I en d^3 konfigurasjon har vi tre elektroner fordelt over 5 orbitaler, og hvert elektron har spinn α eller spinn β , dvs. vi har 10 spinn-orbitaler. I utgangspunktet har vi ta altså $10 \times 9 \times 8$ muligheter å fordele 3 elektroner. Fordi elektronene ikke kan skilles fra hverandre, må vi i tillegg dele på 3!, dvs. svaret blir

$$\frac{10 \times 9 \times 8}{3 \times 2 \times 1} = \binom{10}{3} = 120$$

d-elektroner har l-kvantetall l=2, og vi har $l_1=l_2=l_3=2$. Når vi legger sammen to l=2 elektroner, får vi L=0,1,2,3,4 ettersom L kan gå fra $L=|l_1-l_2|$ til $L=|l_1+l_2|$. Deretter legger vi til det tredje elektronet, også med l=2. Nå vil summen av dette tredje elektronet med de tidligere L-verdiene gå fra $|L-l_3|$ til $L+l_3$, altså fra:

- -L=0: Summen med $l_3=2$ gir verdier fra |0-2|=2 til 0+2=2 (så bare L=2).
- -L = 1: Summen med $l_3 = 2$ gir verdier fra |1 2| = 1 til 1 + 2 = 3 (så L = 1, 2, 3).
- -L = 2: Summen med $l_3 = 2$ gir verdier fra |2 2| = 0 til 2 + 2 = 4 (så L = 0, 1, 2, 3, 4).
- -L = 3: Summen med $l_3 = 2$ gir verdier fra |3 2| = 1 til 3 + 2 = 5 (så L = 1, 2, 3, 4, 5).
- -L = 4: Summen med $l_3 = 2$ gir verdier fra |4-2| = 2 til 4+2=6 (så L=2,3,4,5,6).

Når vi tar med alle disse mulige verdiene, får vi dermed de tillatte L-verdiene for hele systemet: L=0,1,2,3,4,5,6.

- What atomic terms are possible for the following electron configurations? 1. ns^1np^1 2. ns^1np^2
 - For ns^1np^1 har vi to elektroner med s=1/2 hver, og l=0 for det første elektronet og l=1 for det andre. Dvs. vi kan ha $S \in \{0,1\}$ $(|s_1-s_2|=0,|s_1+s_2|=1,$ og L=1 $|l_1-l_2|=|l_1+l_2|=1)$. Vi konkluderer med at vi kan ha 3P og 1P tilstander.
 - For ns^1np^2 har vi tre elektroner med s=1/2 hver, og $l_1=0, l_2=1, l_3=1$. I tillegg har vi Pauli's ekslusjonsprinsipp å ta hensyn til, fordi to elektroner er i p-orbitaler. For to elektroner i p-orbitaler, dvs. for np^2 -konfigurasjonen, har vi fra en forrige oppgave i boka at de følgende termene er tillatt: 1D , 1S og 3P . Når vi får et ekstra elektron i en ns-orbital, får vi at total spin kan økes eller reduseres med 1/2, så vi får S=1/2 og S=3/2. L-kvantetallet endres ikke, og fordi de romslige bølgefunksjonene er ulike, må vi ikke ta ekstra hensyn til Paulis ekslusjonsprinsipp. Så vi ender opp med 2P , 4P , 2S og 2D .
- P12.3 We know that ϕ_{H1s_a} and ϕ_{H1s_b} are normalized. We start with:

$$\psi_u = c_u(\phi_{H1s_a} - \phi_{H1s_b})$$

We also know:

$$\int \phi_{H1s_a}^* \phi_{H1s_a} \, d\tau = \int \phi_{H1s_b}^* \phi_{H1s_b} \, d\tau = 1$$

$$\int \phi_{H1s_a}^* \phi_{H1s_b} \, d\tau = S_{ab}$$

We want:

$$1 = \int \psi_u^* \psi_u \, d\tau$$

First, expand $\psi_u^* \psi_u$:

$$\psi_u^* \psi_u = (c_u (\phi_{H1s_a} - \phi_{H1s_b}))^* (c_u (\phi_{H1s_a} - \phi_{H1s_b}))$$

This gives:

$$\psi_u^* \psi_u = |c_u|^2 \left((\phi_{H1s_a} - \phi_{H1s_b})^* (\phi_{H1s_a} - \phi_{H1s_b}) \right)$$

Now expand the product inside the parentheses:

$$(\phi_{H1s_a} - \phi_{H1s_b})^* (\phi_{H1s_a} - \phi_{H1s_b}) = \phi_{H1s_a}^* \phi_{H1s_a} - \phi_{H1s_a}^* \phi_{H1s_b} - \phi_{H1s_b}^* \phi_{H1s_a} + \phi_{H1s_b}^* \phi_{H1s_b}$$

Therefore, we have:

$$\int (\phi_{H1s_a} - \phi_{H1s_b})^* (\phi_{H1s_a} - \phi_{H1s_b}) d\tau = 1 - S_{ab} - S_{ab}^* + 1 = 2 - 2\operatorname{Re}(S_{ab})$$

Now substitute this back into the expression for $\psi_u^*\psi_u$:

$$1 = |c_u|^2 \cdot (2 - 2\operatorname{Re}(S_{ab}))$$

Solving for $|c_u|^2$:

$$|c_u|^2 = \frac{1}{2 - 2\operatorname{Re}(S_{ab})}$$

Thus, the normalization constant c_u is:

$$c_u = \frac{1}{\sqrt{2 - 2\operatorname{Re}(S_{ab})}}$$