P3. Let R and S be regular expressions, then consider the statement: If $R^* \equiv S^*$, then $R \equiv S$.

We prove this is false. Consider the counterexample:

Let R=0 and $S=0^*$. We obtain the result that $R^*\equiv S^*$ by the property of *idempotence* of the Kleene star. However, it is not true that $R\equiv S$ since the empty string would be in the language generated by S but not in the language generated by R.

P4. Let $\sigma = \{0, 1\}$. We prove that $L = \{w \mathbf{Rev}(w) : w \in \sigma^*\}$. (Note the **Rev** operation is defined in the texbook, it is simply the reversal of a string). Note that L only contains palindromes by this definition.