This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

In the claims:

Claim 1 cancelled.

- 2. (Currently amended) The valve (10, 110) of claim 410, wherein the at least one valve seat (22, 122) and the associated at least one valve member (36, 136, 236) have a chamfer (58, 158 and 56, 156, 256) relative to the axis of the lifting rod (34, 134), which chamfers correspond to one another.
- 3. (Currently amended) The valve (10, 110) of claim <u>410</u>, wherein the elasticity of the valve seat (22, 122) and/or valve member (36, 136, 236) is produced by means of the elastic properties of the material used and/or by the specially designed shape of the valve seat (22, 122) and/or of the valve member (36, 136, 236).
- 4. (Previously presented) The valve (10, 110) of claim 3, wherein recesses (82, 182) are located in the valve seat (22, 122) and/or in the valve member (36, 136, 236), which recesses are capable of receiving elastic material comprising the valve seat (22, 122) and/or the valve member

(36, 136, 236) while the valve member (36, 136, 236) is being led through the valve seat (22, 122).

5. (Currently amended) A valve (10, 110) having a valve chamber (14, 114), havi<u>ng at least one inlet conduit (16, 116) and one outlet</u> conduit (18, 118) branching off from the valve chamber, having a movable lifting rod (34, 134), one end of which opens into an actuator (53), and having at least one valve member (36, 136, 236) secured to the lifting rod (34, 134), and having at least one valve seat (22, 122) cooperating with the valve member (36, 136, 236), characterized in that the valve seat (22, 122) and/or valve member (36, 136, 236) is elastically deformable, and that the elasticity of the valve seat (22, 122) and/or valve member (36, 136, 236) is at least so great that the valve member (36, 136, 236) can be thrust through the valve seat (22, 122) by what is in particular an external exertion of force and subsequently the valve seat (36, 136, 236) and the valve member (22, 122) return to their outset state, wherein the surfaces (86, 186 and 84, 184) of the valve seat (22, 122) and/or of the valve member (36, 136, 236) are treated with a lubricant, which reduces a sliding friction that occurs while the valve member (36, 136, 236) is being led through the valve seat (22, 122).

- 6. (Currently amended) The valve (10, 110) of claim 410, wherein the at least one valve member (36, 136, 236) of the valve (10, 110) is calked at the lifting rod (34, 134).
- 7. (Currently amended) A valve (10, 110) having a valve chamber (14, 114), having at least one inlet conduit (16, 116) and one outlet conduit (18, 118) branching off from the valve chamber, having a movable lifting rod (34, 134), one end of which opens into an actuator (53), and having at least one valve member (36, 136, 236) secured to the lifting rod (34, 134), and having at least one valve seat (22, 122) cooperating with the valve member (36, 136, 236), characterized in that the valve seat (22, 122) and/or valve member (36, 136, 236) is elastically deformable, and that the elasticity of the valve seat (22, 122) and/or valve member (36, 136, 236) is at least so great that the valve member (36, 136, 236) can be thrust through the valve seat (22, 122) by what is in particular an external exertion of force and subsequently the valve seat (36, 136, 236) and the valve member (22, 122) return to their outset state, wherein a second valve member (38, 128) is mounted on the lifting rod (34, 134), on the side of the at least one valve member (36, 136, 236) opposite the at least one valve seat (22, 122).

- 8. (Previously presented) The valve (10, 110) of claim 7, wherein the second valve member (38, 138) and the valve seat (24, 124) belonging to this second valve member (38, 138) are likewise elastically deformable in such a way that both valve members (36, 136 and 38, 138) can be thrust through the valve seats (22, 122 and 24, 124) with in particular external expenditure of force.
- 9. (Currently amended) A valve (10, 110) having a valve chamber (14, 114), having at least one inlet conduit (16, 116) and one outlet conduit (18, 118) branching off from the valve chamber, having a movable lifting rod (34, 134), one end of which opens into an actuator (53), and having at least one valve member (36, 136, 236) secured to the lifting rod (34, 134), and having at least one valve seat (22, 122) cooperating with the valve member (36, 136, 236), characterized in that the valve seat (22, 122) and/or valve member (36, 136, 236) is elastically deformable, and that the elasticity of the valve seat (22, 122) and/or valve member (36, 136, 236) is at least so great that the valve member (36, 136, 236) can be thrust through the valve seat (22, 122) by what is in particular an external exertion of force and subsequently the valve seat (36, 136, 236) and the valve member (22, 122) return to their outset state, wherein a second outlet conduit (20, 120) with

an associated valve seat (24, 124) and valve member (38, 138) branches off from the valve chamber (14, 114) of the valve (10, 110).

- chamber (14. 114), having at least one inlet conduit (16. 116) and one outlet conduit (18. 118) branching off from the valve chamber, having a movable lifting rod (34, 134), one end of which opens into an actuator (53), and having at least one valve member (36, 136, 236) secured to the lifting rod (34, 134), and having at least one valve seat (22, 122) cooperating with the valve member (36, 136, 236), characterized in that the valve seat (22, 122) and/or valve member (36, 136, 236) is elastically deformable, and that the elasticity of the valve seat (22, 122) and/or valve member (36, 136, 236) is at least so great that the valve member (36, 136, 236) can be thrust through the valve seat (22, 122) by what is in particular an external exertion of force and subsequently the valve seat (36, 136, 236) and the valve member (22, 122) return to their outset state, wherein the valve has a magnetic actuator (53).
- 11. (Currently amended) The valve (10, 110) of claim 410, wherein the lifting rod (34, 134) is made from plastic.

- 12. (Withdrawn) The valve (10, 110) of claim 11, wherein the valve members (36, 136 and 38, 138) are welded directly into the lifting rod (34, 134).
- 13. (Currently amended) The valve (10, 110) of claim 4<u>10</u>, wherein the valve chamber (14, 114) is hollowed out integrally.
- 14. (Currently amended) The valve (10, 110) of claim +10, wherein he valve (10, 110) is part of the water-associated control of the cycle of a heating or cooling system.
- chamber (14, 114), having at least one inlet conduit (16, 116) and one outlet conduit (18, 118) branching off from the valve chamber, having a movable lifting rod (34, 134), one end of which opens into an actuator (53), and having at least one valve member (36, 136, 236) secured to the lifting rod (34, 134), and having at least one valve seat (22, 122) cooperating with the valve member (36, 136, 236), characterized in that the valve seat (22, 122) and/or valve member (36, 136, 236) is elastically deformable, and that the elasticity of the valve seat (22, 122) and/or valve member (36, 136, 236) is at least so great that the valve member (36, 136, 236) can be thrust through the

valveseat (22, 122) by what is in particular an external exertion of force and subsequently the valve seat (36, 136, 236) and the valve member (22, 122) return to their outset state; of claim 10, wherein the at least one valve seat (22, 122) and the associated at least one valve member (36, 136, 236) have a chamfer (58, 158 and 56, 156, 256) relative to the axis of the lifting rod (34, 134), which chamfers correspond to one another.

- 16. (Currently amended) The valve (10, 110) of claim 410, wherein the valve member (36, 136, 236) is elastic, while the valve seat (22, 122) is substantially rigid.
- valve (10, 110) for water-associated control of the cycle of a heating or cooling system, having a valve chamber (14, 114), having at least one inlet conduit (16, 116) and one outlet conduit (18, 118) branching off from the valve chamber, having a movable lifting rod (34, 134), one end of which opens into an actuator (53), and having at least one valve member (36, 136, 236) secured to the lifting rod (34, 134), and having at least one valve seat (22, 122) cooperating with the valve member (36, 136, 236), characterized in that the valve seat (22, 122) and/or valve member (36, 136, 236) is elastically deformable, and that the elasticity of the valve seat (22, 122)

→ US PTO

and/or valve member (36, 136, 236) is at least so great that the valve member (36, 136, 236) can be thrust through the valve seat (22, 122) by what is in particular an external exertion of force and subsequently the valve seat (36, 136, 236) and the valve member (22, 122) return to their outset state.

18. (Previously presented) An electromagnetically-actuated valve (10, 110) for water-associated control of the cycle of a heating or cooling system, having a valve chamber (14, 114), having at least one inlet conduit (16, 116) and one outlet conduit (18, 118) branching off from the valve chamber, having a movable lifting rod (34, 134), one end of which opens into an actuator (53), and having at least one valve member (36, 136, 236) secured to the lifting rod (34, 134), and having at least one valve seat (22, 122) cooperating with the valve member (36, 136, 236), characterized in that the valve seat (22, 122) and/or valve member (36, 136, 236) is elastically deformable, and that the elasticity of the valve seat (22, 122) and/or valve member (36, 136, 236) is at least so great that the valve member (36, 136, 236) can be thrust through the valve seat (22, 122) by what is in particular an external exertion of force and subsequently the valve seat (36, 136, 236) and the valve member (22, 122) return to their outset state, the at least one valve seat (22, 122) and the associated at least one valve member (36, 136, 236)

RIKER → US PTO

have a chamfer (58, 158 and 56, 156, 256) relative to the axis of the lifting rod (34, 134), which chamfers correspond to one another.