## COMS 4771 Machine Learning (Spring 2020) Problem Set #5

Joseph High - jph2185@columbia.edu May 6, 2020

## Problem 1: Improving the Confidence

*Proof.* Using the hint, one can construct an algorithm (referred to as algorithm  $\mathcal{B}$ , or just  $\mathcal{B}$ , henceforth) that calls algorithm  $\mathcal{A}$  on k independent sets of training samples where each run will be done over a draw of  $n = O\left(\frac{1}{\epsilon^2}\right)$  samples. In total,  $\mathcal{B}$  is run over a draw of n' samples such that the error of the resulting model is within  $\epsilon$ -distance of the model with minimum error over all  $f \in \mathcal{F}$ . Algorithm  $\mathcal{B}$  is constructed below.

Fix an  $\epsilon_1 = \frac{\epsilon}{2}$  such that with probability 0.55 we have the following for each run of  $\mathcal{A}$  (over a draw of n samples in each run):

$$\operatorname{err}(f_n^{\mathcal{A}}) - \inf_{f \in \mathcal{F}} \operatorname{err}(f) \leq \epsilon_1 \iff \operatorname{err}(f_n^{\mathcal{A}}) \leq \inf_{f \in \mathcal{F}} \operatorname{err}(f) + \epsilon_1$$
 (1)

Fix a  $\delta > 0$  and choose some  $\gamma_1 \leq \frac{\delta}{2}$  such that with probability  $1 - \gamma_1 \geq 1 - \frac{\delta}{2}$  (i.e., with probability at least  $1 - \frac{\delta}{2}$ ), the k iterations of algorithm  $\mathcal{A}$  will return at least one model with a generalization error within  $\frac{\epsilon}{2}$  of  $\inf_{f \in \mathcal{F}} \operatorname{err}(f)$ . Henceforth, such a model will be referred to as a "good" model, while models that don't exhibit this behavior will be referred to as "bad". Let  $\mathcal{F}_{\mathcal{B}}$  be the collection of the k models returned by algorithm  $\mathcal{A}$ . That is, for  $i \in \{1, \ldots, k\}$ , let  $f_{n_i}^{\mathcal{A}}$  denote the model returned by  $\mathcal{A}$  in the  $i^{th}$  run, then  $\mathcal{F}_{\mathcal{B}} = \{f_{n_1}^{\mathcal{A}}, \ldots, f_{n_k}^{\mathcal{A}}\}$ . The number of models in  $\mathcal{F}_{\mathcal{B}}$  (i.e., the number of iterations of  $\mathcal{A}$ ) should be sufficiently large so that the probability of at least one "good" model being returned is at least  $1 - \frac{\delta}{2}$ . To determine a sufficient k, consider the following:

Let  $E_i$  be the random variable that denotes the event that the  $i^{th}$  model,  $f_{n_i}^{\mathcal{A}}$ , is a "good" model. That is, let  $E_i = \left\{ \operatorname{err} \left( f_{n_i}^{\mathcal{A}} \right) - \inf_{f \in \mathcal{F}} \operatorname{err} \left( f \right) \leq \frac{\epsilon}{2} \right\}$ . Then, the complement,  $E_i^c$ , is the event that  $f_{n_i}^{\mathcal{A}}$  is a "bad" model:  $E_i^c = \left\{ \operatorname{err} \left( f_{n_i}^{\mathcal{A}} \right) - \inf_{f \in \mathcal{F}} \operatorname{err} \left( f \right) > \frac{\epsilon}{2} \right\}$ . From the supposition, the probability that the  $i^{th}$  run of  $\mathcal{A}$  returns a "bad" model is

$$\mathbb{P}(E_i^c) = 1 - \mathbb{P}(E_i) = 1 - 0.55 = 0.45$$

Then, the probability that all k models returned by  $\mathcal{A}$  are "bad" is

$$\mathbb{P}\left(\forall i \in \{1, \dots, k\} : f_{n_i}^{\mathcal{A}} \in \mathcal{F}_{\mathcal{B}} \text{ is "bad"}\right) = \mathbb{P}\left(\bigcap_{i=1}^{k} E_i^{\text{c}}\right) = \prod_{i=1}^{k} \mathbb{P}\left(E_i^{\text{c}}\right) = \prod_{i=1}^{k} 0.45 = (0.45)^k$$

Then, the probability that there is at least one "good" model in  $\mathcal{F}_{\mathcal{B}}$  is

$$\mathbb{P}\left(\exists i \in \{1,\dots,k\}: f_{n_i}^{\mathcal{A}} \in \mathcal{F}_{\mathcal{B}} \text{ is "good"}\right) = 1 - \mathbb{P}\left(\bigcap_{i=i}^{k} E_i^{\text{c}}\right) = 1 - (0.45)^k$$

Therefore, we need to choose a k such that

$$1 - (0.45)^k \ge 1 - \frac{\delta}{2} \iff (0.45)^k \le \frac{\delta}{2} \iff k \ln(0.45) \le \ln\left(\frac{\delta}{2}\right)$$

$$\iff -k \ln\left(\frac{1}{0.45}\right) \le -\ln\left(\frac{2}{\delta}\right) \iff k \ge \frac{\ln\left(\frac{2}{\delta}\right)}{\ln\left(\frac{1}{0.45}\right)}$$

It suffices to set  $k = \left\lceil \frac{\ln(2/\delta)}{\ln(1/0.45)} \right\rceil$ . Indeed, k is necessarily an integer, so the ceiling function should be applied to the right-hand side.

Since  $\mathcal{F}_{\mathcal{B}}$  is finite, the ERM algorithm can be applied to  $\mathcal{F}_{\mathcal{B}}$ . Then, for a fixed confidence level  $\gamma_2 \leq \frac{\delta}{2}$  and tolerance  $\epsilon_2 = \frac{\epsilon}{2}$ , apply the ERM algorithm over  $\mathcal{F}_{\mathcal{B}}$  using a test set of size m. By Occam's Razor, such an m should be such that

$$m \geq \frac{1}{2\epsilon_2^2} \ln \left( \frac{2|\mathcal{F}_{\mathcal{B}}|}{\gamma_2} \right) \geq \frac{1}{2(\epsilon/2)^2} \ln \left( \frac{2k}{\delta/2} \right) = \frac{2}{\epsilon^2} \ln \left( \frac{4k}{\delta} \right)$$

and since m is necessarily a positive integer, we can set  $m = \lceil \frac{2}{\epsilon^2} \ln \left( \frac{4k}{\delta} \right) \rceil$ . Let  $f_m^{ERM}$  be the model returned by the ERM algorithm. If follows from Occam's Razor that, with probability at least  $1 - \frac{\delta}{2}$ ,

$$\operatorname{err}\left(f_{m}^{ERM}\right) - \inf_{f \in \mathcal{F}_{\mathcal{B}}} \operatorname{err}(f) \leq \epsilon_{2}$$
 (2)

Now, the probability that algorithm  $\mathcal{B}$  fails is equal to the probability that either algorithm  $\mathcal{A}$  fails to return a "good" model in k iterations or the ERM algorithm fails to select a "good" model from  $\mathcal{F}_{\mathcal{B}}$ . That is,

$$\mathbb{P}(\mathcal{B} \text{ fails}) = \mathbb{P}\left(\left\{\forall f_{n_i}^{\mathcal{A}} \in \mathcal{F}_{\mathcal{B}} : \operatorname{err}\left(f_{n_i}^{\mathcal{A}}\right) - \inf_{f \in \mathcal{F}} \operatorname{err}(f) > \epsilon_1\right\} \bigcup \left\{\operatorname{err}\left(f_m^{ERM}\right) - \inf_{f \in \mathcal{F}_{\mathcal{B}}} \operatorname{err}(f) > \epsilon_2\right\}\right) \\
\leq \mathbb{P}\left\{\forall f_{n_i}^{\mathcal{A}} \in \mathcal{F}_{\mathcal{B}} : \operatorname{err}\left(f_{n_i}^{\mathcal{A}}\right) - \inf_{f \in \mathcal{F}} \operatorname{err}(f) > \epsilon_1\right\} + \mathbb{P}\left\{\operatorname{err}\left(f_m^{ERM}\right) - \inf_{f \in \mathcal{F}_{\mathcal{B}}} \operatorname{err}(f) > \epsilon_2\right\} \\
= \gamma_1 + \gamma_2 \leq \frac{\delta}{2} + \frac{\delta}{2} = \delta$$

<sup>&</sup>lt;sup>1</sup>The specific inequality used here was extracted from the proof of efficient PAC learnability for finite  $\mathcal{F}$ , using the the ERM algorithm, provided in the Learning Theory lecture notes (slide 8).

where the second inequality is a result of Boole's inequality (a.k.a. subadditivity). Then, by combining inequalities (1) and (2), we have, with probability at least  $1 - \delta$ ,

$$\operatorname{err}(f_m^{ERM}) \leq \epsilon_2 + \inf_{f \in \mathcal{F}_{\mathcal{B}}} \operatorname{err}(f)$$

$$\leq \epsilon_2 + (\epsilon_1 + \inf_{f \in \mathcal{F}} \operatorname{err}(f))$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2} + \inf_{f \in \mathcal{F}} \operatorname{err}(f))$$

$$\implies \operatorname{err}(f_m^{ERM}) - \inf_{f \in \mathcal{F}} \operatorname{err}(f)) \leq \epsilon$$

Since  $f_m^{ERM}$  is an arbitrary model returned by algorithm  $\mathcal{B}$ , the above inequality holds for any model returned by algorithm  $\mathcal{B}$ , with probability at least  $1-\delta$ . Note, each run of algorithm  $\mathcal{B}$  is over a draw of n'=kn+m samples. Indeed,  $k\cdot n$  samples are used for the k iterations of  $\mathcal{A}$  and m test samples are used to identify the model in  $\mathcal{F}_{\mathcal{B}}$  with the minimum empirical error. Then, denote any model returned by  $\mathcal{B}$  as  $f_{n'}^{\mathcal{B}}$ . Hence, for a tolerance  $\epsilon > 0$ , with probability at least  $1-\delta$ , we have

$$\operatorname{err}(f_{n'}^{\mathcal{B}}) - \inf_{f \in \mathcal{F}} \operatorname{err}(f)) \leq \epsilon$$

Moreover,

$$k = \left\lceil \frac{\ln(2/\delta)}{\ln(1/0.45)} \right\rceil \implies k = O(\ln(1/\delta))$$

$$m = \left\lceil \frac{2}{\epsilon^2} \ln \left( \frac{4k}{\delta} \right) \right\rceil \implies m = O\left( \frac{1}{\epsilon^2} \ln \left( \frac{1}{\delta} \right) \right)$$

Recall that,  $n = O\left(\frac{1}{\epsilon^2}\right)$ . Therefore, since  $n' = nk + m \implies n' = O\left(\frac{1}{\epsilon^2}\ln\left(\frac{1}{\delta}\right)\right)$ . Since  $\ln\left(\frac{1}{\delta}\right)$  grows at a slower rate than  $\frac{1}{\delta}$  (i.e.,  $\ln\left(\frac{1}{\delta}\right) \le \frac{1}{\delta}$ ), then n' is bounded by a polynomial in both  $\frac{1}{\epsilon}$  and  $\frac{1}{\delta}$ . That is,  $n' = O\left(\frac{1}{\epsilon^2}\ln\left(\frac{1}{\delta}\right)\right) \in \text{poly}\left(\frac{1}{\epsilon}, \frac{1}{\delta}\right)$ , or equivalently

$$n' = \text{poly}\left(\frac{1}{\epsilon}, \frac{1}{\delta}\right)$$

Hence,  $\mathcal{F}$  is efficiently PAC-learnable.

## Problem 2: Non-linear Dimensionality Reduction

(i) For some  $i \in \{1, ..., n\}$ , the derivative of the objective function with respect to  $y_i$  is as follows:

$$\frac{\partial}{\partial y_i} \sum_{i,j} (\|y_i - y_j\| - \pi_{ij})^2 = \sum_{i,j} \frac{\partial}{\partial y_i} \left[ (\|y_i - y_j\| - \pi_{ij})^2 \right] 
= \sum_{\substack{i,j \\ j \neq i}} 2 (\|y_i - y_j\| - \pi_{ij}) \cdot \frac{\partial}{\partial y_i} \left[ \|y_i - y_j\| - \pi_{ij} \right] 
= 2 \sum_{\substack{i,j \\ j \neq i}} (\|y_i - y_j\| - \pi_{ij}) \cdot \frac{y_i - y_j}{\|y_i - y_j\|} 
= 2 \sum_{\substack{i,j \\ j \neq i}} \left( 1 - \frac{\pi_{ij}}{\|y_i - y_j\|} \right) (y_i - y_j)$$

(ii) The optimization problem is *non-convex*. While the feasible region,  $\mathbb{R}^d$ , is a convex set (since the problem is unconstrained), the objective function is not a convex function. To see this, consider the following:

$$\sum_{i,j} (\|y_i - y_j\| - \pi_{ij})^2 = \sum_{i,j} \|y_i - y_j\|^2 - 2\pi_{ij} \|y_i - y_j\| + \pi_{ij}^2$$

Without loss of generality, consider one summand

$$\underbrace{\|y_i - y_j\|^2}_{\text{convex}} - \underbrace{2\pi_{ij}\|y_i - y_j\| + \pi_{ij}^2}_{\text{convex}}$$

Note that all p-norms are convex functions, provided that  $p \geq 1$ . Now, because the  $\pi_{ij}$  terms denote the shortest path between data points  $x_i$  and  $x_j$ , they're deterministic scalars, and so each summand is the difference of convex functions, which is the equivalent to the sum of a convex function and a concave function. The difference of convex functions is not necessarily convex, but it could be.

Counter-example: Let  $f(y_1) = \sum_{i,j} (\|y_i - y_j\| - \pi_{ij})^2$ . Without loss of generality, let d = 1, that is,  $y_j \in \mathbb{R}^1$  and suppose that n = 3. Fix  $y_2 = 0$  and  $y_3 = 1$ , and suppose  $\pi_{12} = \pi_{13} = 1$ . The objective is then

$$f(y_1) = \sum_{j=2}^{3} (\|y_i - y_j\| - \pi_{1j})^2 = (\|y_1\| - 1)^2 + (\|y_1 - 1\| - 1)^2$$

Recall that a function g is convex if and only if for all  $x, y \in \mathbf{dom}(g)$ ,

$$g(y) \ge g(x) + g'(x)(y - x)$$

Proceeding with this in mind, consider f at  $y_1 = \frac{1}{2}$  and  $y_1 = \frac{5}{4}$ :

$$f(1/2) = (\|1/2\| - 1)^2 + (\|1/2 - 1\| - 1)^2 = 1/2$$

$$f(5/4) = (||5/4|| - 1)^2 + (||5/4 - 1|| - 1)^2 = 5/8$$

The derivative of the objective was computed in part (i), which will be used here to compute f'(2):

$$f'(1/2) = 2 \cdot \left[ \left( 1 - \frac{1}{\|1/2\|} \right) (1/2) + \left( 1 - \frac{1}{\|1/2 - 1\|} \right) (1/2 - 1) \right] = 2 \cdot (1/4 - 3/4) = 0$$

Then,  $f(2) + f'(2) \cdot (3-2) = 1 + 2 = 3$ 



- (iii) Code submitted to Courseworks.
- (iv) Below are the results of PCA on the swiss\_roll.txt data set (implemented in Python).

  Swiss Roll Results (swiss\_roll.txt)



(a) 3-Dimensional Swiss Roll



Joseph High - jph2185@columbia.edu

Below are the results of my implementation of the non-linear embedding algorithm given in the homework on the swiss\_roll.txt data set. The non-linear embedding succeeded and appears to have done far better than PCA.

Figure 1: Low-Dimensional Embedding Result (swiss\_roll.txt)



Swiss Roll Hole Results (swiss\_roll\_hole.txt)

Below are the results of PCA on the swiss\_roll\_hole.txt data set (implemented in Python).







(b) PCA Embedding of Swiss Roll with hole

Below are the results of my implementation of the non-linear embedding algorithm given in the homework on the swiss\_roll\_hole.txt data set. Similar to the result for the other data set, the non-linear embedding succeeded and appears to have done far better than PCA.



Figure 2: Low-Dimensional Embedding Result (swiss\_roll\_hole.txt)

When the learning rate was set at 0.01, the non-linear embedding failed to capture sufficient information from the swiss roll. However, when the learning rate was adjusted to 0.0001, the nonlinear embedding improved, significantly.