Real analysis - introduction

Limitation of Riemann's integral

- 1. Riemann integrable function space is not have one to one correspondence with $\ell^2(\mathbb{Z})$
 - \circ By Parseval's identity, L_2 space inner product is same as $\ell^2(Z)$ space inner produc

$$\sum_{n=-\infty}^{\infty} |a_n|^2 = rac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$

0

- \circ However, it is easy to construct elements in $\ell^2(\mathbb{Z})$ that do not correspond to functions in \mathcal{R} which is collection of Riemann integrable functions
- Note that $\ell^2(\mathbb{Z})$ is complete in its norm, while \mathcal{R} is not.
- 2. Limits of continuous functions
 - \circ Suppose $\{f_n\}$ is a sequence of continuous functions on [0,1]. We assume that $\lim_{n \to \infty} f_n(x) = f(x)$ exists for every x, and inquire as to the nature of the limiting function f.
 - If we did not suppose the convergence is uniform, it is not sufficient to say that

$$\int_{R^d} f(x) dx = \lim_{n o \infty} \int_{R^d} f_n(x) dx.$$

3.

 \rightarrow There is a need for a **new integral** that can overcome the limitations of Riemann's integral which is called "Lebegue integral"

Fundamental theorem of Calculus with Lebegue integral

• What is fundamental theorem of calculus?

$$F(x) = \int_{a}^{x} f(y)dy \tag{1}$$

$$F(b) - F(a) = \int_a^b F'(x) dx \quad (2)$$

- When f is integrable, we want to see if F is differentiable and above relationship is holds (1)
- ullet We want to find What conditions on F make F' exists and above condition holds (2)

Preliminaries

Point

- ullet Let \mathbb{R}^d denote the d-dimensional Euclidean space
- ullet A point $x\in\mathbb{R}^d$ consists of a d- tuple of real numbers

$$x = (x_1, x_2, \dots, x_d), \ x_i \in \mathbb{R} \text{ for } 1 \leq i \leq d$$

- The norm of a point is denoted by |x| and is defined as the standard euclidean norm
- ullet The distance between two points x and y is |x-y|

Set

- ullet The complment of a set E in \mathbb{R}^d is denoted by E^c
- ullet The reletive complement is denoted by E-F where E and F are subsets of \mathbb{R}^d
- The distance between two sets E and F is defined by $d(E,F)=\inf\{|x-y|:x\in E \text{ and } y\in F\}$
- ullet The open ball in \mathbb{R}^d centered at x and of radius r is defined by $B_r(x) = \{y \in \mathbb{R}^d: |x-y| < r\}$
- ullet A set $E\subset \mathbb{R}^d$ is open , if for every $x\in E$, there exists r>0 s. t $B_r(x)\subset E$
- ullet A set E is closed if E^c is open
 - * Any union of open sets is open, while the intersection of finitely many open sets is open
 - * Any intersection of closed sets is closed, union of finitely many closed sets is closed.
- ullet A set E is bounded if there is R>0 such that $E< B_R(0)$
- A bounded set *E* is complete if it is also closed
 - * Compact sets follow the Heint-Borel covering property

: Assume
$$E$$
 is compact, $\,E\in \bigcup_{\alpha\in I} O_{\alpha}$ and O_{α} is open

Then there are finitely many open sets $O_{lpha_1},O_{lpha_2},\cdots,O_{lpha_n}$ such that $E\inigcup\limits_{j=1}^nO_{lpha_j}$

 \rightarrow Any covering of a compact set contains a finite subcovering!!

points of set

- ullet A point $x\in\mathbb{R}^d$ is a limit point of the set E if for every r>0, $(B_r(x)-\{x\})\cap E
 eq\emptyset$
 - * A limit point x does not necessarily belong to the set E
- ullet The set of all limit points of E is denoted by E'
- ullet An isolated point of E is a point x in E such that there is r>0 with $B_r(x)\cap E=\{x\}$
- ullet The set of all interior point is called interior of E, denoted by E^o
- ullet The closure of E, denoted by $ar{E}$, consists of $E \cup ar{E}$
- ullet The boundary of E, denoted by ∂E , is the set consist of $ar{E} = E^o$

- * A set E is closed $\iff E' \subset E \iff E = \bar{E}$
- A closed set *E* is perfect if *E* does not have any isolated points.

Rectangle and Cube

ullet A (closed) rectangle R in \mathbb{R}^d is defined by

$$R = [a_1, b_1] \times \cdots \times [a_d, b_d]$$
, where $a_j \leq b_j, 1 \leq j \leq d$

- Side lengths of R are b_1-a_1,\cdots,b_d-a_d
- ullet The volume of R is denoted by |R| and defined by $|R|=(b_1-a_1) imes\cdots imes(b_d-a_d)$
- ullet A (closed) cube, usually denoted by Q, is a rectangle with the same side lengths
- A union of rectangle is said to be almost disjoint , if the interiors are disjoint

Any open sets can be represented by countable union of almost disjoint closed cube

Lemma 1.1.1

Let R,R_j $j=1,\cdots,N$ be rectangles such that R_j 's are almost disjount and $R=\bigcup_{j=1}^n R_j$, then $|R|=\sum_{j=1}^n |R_j|$

Lemma 1.1.2

Let R,R_j $j=1,\cdots,N$ be rectangles s.t $R\subset \bigcup_{j=1}^n R_j$, then $|R|=\sum_{j=1}^n |R_j|$

• Theorem 1.1.1

Every open set \mathcal{O} of \mathbb{R} can be written uniquely as a countable union of disjoint openset.

proof

i) For each $x \in \mathcal{O}$ let I_x denote the longest open interval containing x and contained in \mathcal{O}

$$I_x = (a_x, b_x)$$
 where $a_x = \inf\{a < x : (a, x) \subset \mathcal{O}\}$ and $b_x = \sup\{x < b : (x, b) \subset \mathcal{O}\}$

- ii) if it can be written by union of disjoint set, there is a rational that can represent each set. because rationals are countable, The sets are also countable. \rightarrow It is surficient to show that it can be represented by union of disjoint sets
- iii) When $I_x\cap I_y\neq\emptyset$, $I_x=I_y$ because of maximality. -> Every open set can be represented as a set of disjoint sets.
- Theorem 1.1.2 (multi-dimensional version of thm 1.1.1) Every open set $\mathcal O$ of $\mathbb R^d$, $d\geq 1$, can be written as a countable union of almost disjoint cubes.

proof

i) Define set of cubes $Q_{n_1^k,\cdots,n_d^k}^{rac{1}{2^{k-1}}}$ that fill an open set ${\mathcal O}$

- ii) because of the definition of Q, $\cup Q \subset \mathcal{O}$ iii) for any point $x \in \mathcal{O}$, one can find $Q_{n_1^k,\cdots,n_d^k}^{\frac{1}{2^{k-1}}}$ that satisfies $\frac{1}{2^{k-1}} < \delta$. because $x \in B_\delta\left(x\right) \subset \mathcal{O}$ $\therefore \mathcal{O} \subset \cup Q$
- ightarrow The volume of any open sets can be calculated by summations of volumes of cube!!