

Exercice 1 - Moteur à courant continux

B2-07

On donne les équations du moteur à courant continu :

- $u(t) = e(t) + Ri(t) + L\frac{di(t)}{dt}$; $e(t) = K\omega(t)$; c(t) = Ki(t);

- $c(t) + c_r(t) f\omega(t) = J\frac{d\omega(t)}{dt}$.

Question 1 Réaliser le schéma-blocs.

Question 2 Mettre le schéma-blocs sous la forme suivante.

Exercice 2 - Diagramme de Bode*

C2-02

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_1(p) = \frac{15}{1+10p}$.

Question 2 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_2(p) = \frac{10}{(1+10p)(10+p)}$.

Question 3 Tracer le diagramme de Bode de la Corrigé voir 1. | fonction de transfert suivante : $F_3(p) =$

Corrigé voir 5.

Exercice 3 - Schéma d'Euler* C3-02 Pas de corrigé pour cet exercice.

Question 1 Donner la méthode de résolution numérique des équations différentielles suivantes en utilisant le schéma d'Euler explicite.

$$\begin{cases} y'(t) = -t y^2(t) & \text{si } t > 0 \\ y(0) = \alpha \end{cases}$$
 (1)

Corrigé voir 3.

Exercice 4 - Vérin*

B2-07 Pas de corrigé pour cet exercice.

On donne le schéma de principe d'une servocommande.

Les différentes équations temporelles qui modélisent le fonctionnement d'une servocommande sont :

- un amplificateur différentiel défini par : $u_c(t) =$ $\frac{i(t)}{K_a} + u_s(t);$ • débit dans le vérin dans le cas d'une hypothèse de
- fluide incompressible $q(t) = S \cdot \frac{dx(t)}{dt}$;
 capteur de position : $u_s(t) = K_c \cdot x(t)$;
 le serve distribut
- le servo-distributeur est un composant de la chaîne de commande conçu pour fournir un débit hydraulique q(t) proportionnel au courant de commande i(t). (Attention, valable uniquement en régime permanent.) Le constructeur fournit sa fonction de transfert:

$$F(p) = \frac{Q(p)}{I(p)} = \frac{K_d}{1 + Tp}$$

où K_d est le gain du servo-distributeur et T sa constante de temps.

Question 1 Réaliser le schéma-blocs.

Corrigé voir 4.

Exercice 5 - Diagramme de Bode *

C2-02 Pas de corrigé pour cet exercice.

Question 1 Tracer le diagramme de Bode fonction de transfert suivante : $F_1(p)$ dela

$$p\left(1+20p+100p^2\right)$$

Corrigé voir 5.

Exercice 6 - Schéma d'Euler* Pas de corrigé pour cet exercice.

Question 1 Donner la méthode de résolution numérique des équations différentielles suivantes en utilisant le schéma d'Euler explicite.

$$\ddot{\theta}(t) + \frac{g}{l}\sin\theta = 0$$
$$\theta(0) = 0 \quad \dot{\theta}(0) = 0$$

Corrigé voir 6.

Exercice 7 – Banc d'épreuve hydraulique * B2-07 Pas de corrigé pour cet exercice.

Analyse de la fonction technique « mettre le tube sous pression ».

Un schéma hydraulique simplifié est donné figure suivante.

Mise en place du modèle

Les équations du débit sont :

$$Q_e(t) = S_e \frac{\mathrm{d}z(t)}{\mathrm{d}t} - \frac{V_{e0}}{B_e} \frac{\mathrm{d}P_e(t)}{\mathrm{d}t}$$

et

$$Q_h(t) = S_h \frac{\mathrm{d}z(t)}{\mathrm{d}t} + \frac{V_{h0}}{B_h} \frac{\mathrm{d}P_h(t)}{\mathrm{d}t}.$$

En appliquant le théorème de la résultante dynamique selon \overrightarrow{z} sur le piston du multiplicateur, on a : $M\ddot{z}(t) = S_h p_h(t) - S_e p_e(t) - Mg - f \dot{z}(t)$.

Question 1 Déduire de la relation précédente l'équation reliant Z(p), $P_e(p)$, $P_h(p)$, et Poids(p) = Mg/p, transformées de Laplace de z(t), $P_e(t)$, $P_h(t)$ et du poids perçu comme une perturbation. Les conditions initiales sont supposées nulles.

On note:

- *L*(*t*) la position de l'équipage mobile repérée par rapport à sa position initiale;
- $V_t(t)$ le volume du tube;
- $F_t(t)$ l'effort du tube sur l'équipage mobile, avec $F_t(t) = -rL(t)$.

On néglige les variations de volume du tube dues à ses déformations. L'équation du débit s'écrit alors :

$$Q_e(t) = (S_a - S_b) \cdot \frac{\mathrm{d}L(t)}{\mathrm{d}t} + \frac{V_t}{B_e} \frac{\mathrm{d}P_e(t)}{\mathrm{d}t}.$$

L'équation du mouvement de l'équipage mobile est donnée par :

$$m\ddot{L}(t) = -rL(t) + (S_a - S_b)p_e(t) - f'\dot{L}(t).$$

Question 2 En déduire, en tenant compte de l'équation du débit, deux équations liant L(p), $P_e(p)$ et $Q_e(p)$, transformées de Laplace de L(t), $P_e(t)$ et $Q_e(t)$. Les conditions initiales sont supposées nulles.

Question 3 Compléter le schéma-blocs de l'ensemble (sans le distributeur hydraulique), l'entrée étant la pression d'huile régulée $P_r(p)$ et la sortie la pression d'épreuve dans le tube $P_e(p)$.

Corrigé voir 4.

Exercice 8 - Schéma d'Euler*

C3-02 Pas de corrigé pour cet exercice.

Question 1 Donner la méthode de résolution numérique des équations différentielles suivantes en utilisant le schéma d'Euler explicite.

$$\begin{cases} y'(t) + \alpha y(t) = \beta \\ y(0) = \gamma \end{cases}$$
 (2)

Corrigé voir 8.