

A Glimpse of Titanicers

Titanic.head()

I	class	survive	ed	name	sex	age	sibsp	parch	ticket	fare	cabin	embarked	boat	body	home. dest
0	1		1	Allen, Miss. Elisabeth Walton	female	29.0000	0	0	24160	211.3375	B5	S	2	NaN	St Louis, MO
1	1		1	Allison, Master. Hudson Trevor	male	0.9167	1	2	113781	151.5500	C22 C26	S	11	NaN	Montreal, PQ / Chesterville, ON
2	1		0	Allison, Miss. Helen Loraine	female	2.0000	1	2	113781	151.5500	C22 C26	S	NaN	NaN	Montreal, PQ / Chesterville, ON
3	1		0	Allison, Mr. Hudson Joshua Creighton	male	30.0000	1	2	113781	151.5500	C22 C26	S	NaN	135.0	Montreal, PQ / Chesterville, ON
4	1		0 Allison, N	Mrs. Hudson J C (Bessie Waldo Daniels)	female	25.0000	1	2	113781	151.5500	C22 C26	S	NaN	NaN	Montreal, PQ / Chesterville, ON

Sex

survived

sex	
female	0.727468
male	0.190985

• The survival rate of female passengers is significant higher than that of male passengers.

Age

survived

age_group

Child	0.525974
Adult	0.386189
Elderly	0.400000

• Child: under 18

• Adult: 18-50

• Elderly: over 50

Child's survival rate is the highest!

Passenger Class

- The survival rate of the third class cabin is the lowest.
- The survival rate of the first class cabin is the highest.

Familial Relationships (sibsp / parch)

 Having 1 partner on Titanic had the highest survival rate

Fare

Average Fare Survival Percentage

pclass		
1	87.508992	0.619195
2	21.179196	0.429603
3	13.302889	0.255289

• Cheap: under 10 dollars

Mid: between 10 and 30 dollars

• Expensive: above 30 dollars

Port Embarkation

Count

embarked	pclass	
С	1	141
	2	28
	3	101
Q	1	3
	2	7
	3	113
S	1	177
	2	242
	3	495

Variables Correlation Matrix

High Correlation

- Sex and Survived
- Age and Pclass
- Fare and Pclass

Age by Class

age

pclass	
1	39.159918
2	29.506705
3	24.816367

 First class passengers are on average almost 10 years older than second class passengers, and 15 years older than third class passengers.

Fare vs Class Survival Distribution

 Distribution differences can only be seen in the First Class

Who Survived: Machine Learning Classification

Machine Learning: Preprocessing

```
# preprocessing for the Logistic Regression
if self.linear model:
    print('We are turning categorical features into ohc and dropping some unhelpful columns...')
    df = pd.get dummies(df,columns=['pclass','sex','embarked'])
    df['family size'] = df['sibsp'] + df['parch']
    df.drop(['name','boat','home.dest','sex_male','body','cabin','ticket','sibsp','parch','pclass_3','embarked_S'],axis=1,inplace=True)
    # df.dropna(axis=0,inplace=True)
    df['age'].fillna(df['age'].median(),inplace=True)
    df['fare'].fillna(df['fare'].median(),inplace=True)
else:
# Preprocessing for the XGBoost Model
    df = pd.get_dummies(df,columns=['pclass','sex','embarked'])
    df['family_size'] = df['sibsp'] + df['parch']
    df['cabin'] = df[df.cabin.notnull()].cabin.apply(lambda cabin: cabin[0]).map({'A':1,'B':2,'C':3,'D':4,'E':5,'F':6,'G':7})
    df.drop(['name','boat','home.dest','sex_male','body','ticket','sibsp','parch','pclass_3','embarked_S'],axis=1,inplace=True)
    df.fillna(0,inplace=True)
```


Model Performance: Cross Validation Scores

Logistic Regression

```
2 pd.DataFrame(model.cv_results_).sort_values('rank_test_score').iloc[0,:]
```

```
mean fit time
                                                              0.00378466
std fit time
                                                             0.000180305
mean score time
                                                            0.000973606
std score time
                                                             3.75194e-05
param C
                                                                   0.365
                                                                      95
param max iter
                                                                      11
param penalty
                                                                     833
param random state
param solver
                                                               liblinear
params
                      {'C': 0.365, 'max iter': 95, 'penalty': '11', ...
split0 test score
                                                                0.822335
split1 test score
                                                                 0.77551
split2 test score
                                                                 0.80102
split3 test score
                                                                0.795918
split4 test score
                                                               0.755102
mean_test_score
                                                                0.789977
std test score
                                                               0.022934
rank test score
```

XGBoost

```
2 pd.DataFrame(model_.cv_results_).sort_values('rank_test_score').iloc[0,:]
```

```
0.193202
mean_fit_time
std fit time
                                                                0.00786232
mean score time
                                                                0.00208974
std score time
                                                               1.7916e-05
param learning rate
                                                                      9.92
                                                                  deviance
param loss
param max depth
                                                                       100
param n estimators
param_random_state
                                                                       833
                       {'learning rate': 0.02, 'loss': 'deviance', 'm...
params
split0 test score
                                                                  0.807107
split1 test score
                                                                  0.806122
split2 test score
                                                                  0.816327
split3 test score
                                                                  0.811224
split4 test score
                                                                  0.770408
                                                                 0.802238
mean test score
std test score
                                                                 0.0163167
rank_test_score
```


Model Performance: Test Set

	accuracy	precision	recall	f1_score	roc_auc
0	0.79878	0.770642	0.672	0.717949	0.774424

Logistic Regression

	accuracy	precision	recall	f1_score	roc_auc
0	0.820122	0.836735	0.656	0.735426	0.788591

XGBoost

Examining Model Predictions

 Looking beyond performance metrics to better understand how the model made it's predictions

Feature Importance:

age	-0.030069
fare	0.003281
pclass_1	1.477765
pclass_2	0.668954
sex_female	2.452388
embarked_C	0.485291
embarked_Q	0.000000
family_size	-0.165658

Confusion Matrix

Predicted Result

Dataframe with Predictions

	pclass	survived_x	name	sex	age	sibsp	parch	ticket	fare	cabin	embarked	boat	body	home.dest	survived_y	predicted	correct_pred
1	1	1	Allison, Master. Hudson Trevor	male	0.9167	1	2	113781	151.5500	C22 C26	S	11	NaN	Montreal, PQ / Chesterville, ON	1	0	False
3	1	0	Allison, Mr. Hudson Joshua Creighton	male	30.0000	1	2	113781	151.5 <mark>500</mark>	C22 C26	S	NaN	135.0	Montreal, PQ / Chesterville, ON	0	0	True
7	1	0	Andrews, Mr. Thomas Jr	male	39.0000	0	0	112050	0.0000	A36	S	NaN	NaN	Belfast, NI	0	0	True
13	1	1	Barber, Miss. Ellen 'Nellie'	female	26.0000	0	0	19877	78.8500	NaN	S	6	NaN	NaN	1	1	True
15	1	0	Baumann, Mr. John D	male	NaN	0	0	PC 17318	25.9250	NaN	S	NaN	NaN	New York, NY	0	0	True
					***				-		144		44	244	44.	144	942)
1298	3	0	Wittevrongel, Mr. Camille	male	36.0000	0	0	345771	9.5000	NaN	S	NaN	NaN	NaN	0	0	True
1302	3	0	Yousif, Mr. Wazli	male	NaN	0	0	2647	7.2250	NaN	С	NaN	NaN	NaN	0	0	True
1304	3	0	Zabour, Miss. Hileni	female	14.5000	1	0	2665	14.4542	NaN	С	NaN	328.0	NaN	0	1	False
1307	3	0	Zakarian, Mr. Ortin	male	27.0000	0	0	2670	7.2250	NaN	С	NaN	NaN	NaN	0	0	True
1308	3	0	Zimmerman, Mr. Leo	male	29.0000	0	0	315082	7.8750	NaN	S	NaN	NaN	NaN	0	0	True

328 rows × 17 columns

Add column for:

- Model's predicted value
- Whether the prediction was correct

Visualizing Incorrect Predictions

False Positives

False Negatives

Conclusions

- Got a better understanding of passenger features and how they interact with each other to influence a passenger's chances of survival.
- Expanded and demystified our machine learning model to better explain its predictions.

Q & A

Old Presentation

Titanic Dataset: Who Most Likely Survived?

By (Sylar) Jiajian Guo, Qiqi Tiang, Lequn Yu, Scott McCoy, Tiam Moradi

Titanic Passenger Dataset

pclass	survived	name	sex	age	sibsp	parch	ticket	fare	cabin	embarked	boat	body	home_dest
3	0	Storey, Mr. Thomas	male	60.5	0	0	3701	NaN	None	S	None	261.0	None
1	0	Andrews, Mr. Thomas Jr	male	39.0	0	0	112050	0.0	A36	S	None	NaN	Belfast, NI
1	0	Chisholm, Mr. Roderick Robert Crispin	male	NaN	0	0	112051	0.0	None	S	None	NaN	Liverpool, England / Belfast
1	0	Fry, Mr. Richard	male	NaN	0	0	112058	0.0	B102	S	None	NaN	None
1	0	Harrison, Mr. William	male	40.0	0	0	112059	0.0	B94	S	None	110.0	None

	number_of_survivors	number_of_passengers	passenger_survival_percentage
0	500	1309	38.2

Titanic Passenger Dataset

pclass	survived	name	sex	age	sibsp	parch	ticket	fare	cabin	embarked	boat	body	home_dest
3	0	Storey, Mr. Thomas	male	60.5	0	0	3701	NaN	None	S	None	261.0	None
1	0	Andrews, Mr. Thomas Jr	male	39.0	0	0	112050	0.0	A36	S	None	NaN	Belfast, NI
1	0	Chisholm, Mr. Roderick Robert Crispin	male	NaN	0	0	112051	0.0	None	S	None	NaN	Liverpool, England / Belfast
1	0	Fry, Mr. Richard	male	NaN	0	0	112058	0.0	B102	S	None	NaN	None
1	0	Harrison, Mr. William	male	40.0	0	0	112059	0.0	B94	S	None	110.0	None

Features most associated with increased chance of survival:

- -Sex
- -Passenger Class

	Survival_Percentage	Number_Survivors	Number_Passengers	sex
-Majority of passengers were male	0.190985	161	843	male
-Majority of survivors were female	0.727468	339	466	female

Age

age_group	Number_Passengers	Number_Survivors	Survival_Percentage
Child	154	81	0.525974
Elder	95	38	0.400000
Adult	797	308	0.386449
None	263	73	0.277567

```
(SELECT *,
CASE WHEN age > 0 AND age < 18 THEN 'Child'
WHEN age >= 18 AND age <= 50 THEN 'Adult'
WHEN age >50 THEN 'Elder'
ELSE NULL END AS age_group
FROM `ba775-team-6b.Project.passengers`
)
```

- -Passengers under the age of 18 had the highest survival rate
- -Very few passengers over the age of 50
- -263 null values in age column

Passenger Class

- -Passengers who had better Class, had higher chances of survival
- -Locations of different Class on Titanic affected this rate difference

pclass	Number_Passengers	Number_Survivors	Survival_Percentage
1	323	200	0.619195
2	277	119	0.429603
3	709	181	0.255289

Port of Embarkation

port_of_embarkation	Passengers	Survivors	Survival_Percentage	port_of_embarkation	pclass	Number_Passengers	pclass_percentage_by_port
Cherbourg, France	270	150	0.555556	Cherbourg, France	1	141	→ 0.52
Queenstown, Ireland	123	44	0.357724	Cherbourg, France	2	28	0.10
Southampton, England	914	304	0.332604	Cherbourg, France	3	101	0.37
Southampton, England	214 31	504	0.332004	Queenstown, Ireland	1	3	0.02
				Queenstown, Ireland	2	7	0.06
-Higher survival	rate Port	had large	er number of	Queenstown, Ireland	3	113	0.92
higher Class Pas		•		Southampton, UK	1	177	0.19
which affected c				Southampton, UK	2	242	0.27
		23	9	Southampton, UK	3	495	0.54

Fare

-Passengers who had better Fare, had higher chances of survival

-Fare is highly correlated to Class

fare_group	Number_Passengers	Number_Survivors	Survival_Percentage	pclass	Number_Passengers	Number_Survivors	Survival_Percentage
Expensive	350	202	0.577143	1	323	200	0.619195
Mid	467	188	0.402570	2	277	119	0.429603
Cheap	474	108	0.227848	3	709	181	0.255289
None	18	2	0.111111	,	,03	101	0.233203

(SELI	ECT *,	
CASE	WHEN fare > 0	0 AND fare < 10 THEN 'Cheap'
WHEN	fare >= 10 /	AND fare < 30 THEN 'Mid'
WHEN	fare >= 30	THEN 'Expensive'
ELSE	NULL END AS	fare_group
FROM	`ba775-team-	6b.Project.passengers`
)		

pclass	avg_fare
1	87.51
2	21.18
3	13.30

SibSp	Number_Passengers	Number_Survivors	Survival_Percentage
0	891	309	0.346801
1	319	163	0.510972
2	42	19	0.452381
3	20	6	0.300000
4	22	3	0.136364
5	6	0	0.000000
8	9	0	0.000000

Imagine try to find all your family members on Titanic

- -Passengers who had one Siblings/Spouses, had higher chances of survival than zero or more
- -Hypothesis of having one accompany is the sweet spot number under emergency natural disaster. Need more controlled experiments to test on.

Titanic Dataset: Who Most Likely Survived?

Our team attempted to predict whether passengers would survived the Titanic accident. Since our dataset has two discrete labels, survived and not survived, we are going to solving a binary classification problem.

By Cohort B Team 6: (Sylar) Jiajian Guo, Lequn Yu, Qiqi Tang, Scott McCoy, Tiam Moradi

163.0

Pass. Survi.. Pass. Survi.. Pass. Survi.. Pass. Survi..

20.0

Survival by Sex

• The survival rate of female passengers is significant higher than that of male passengers.

Survival by Age

- The survival rate of the minor group (0-19) is the highest.
- The survival rate of the people over 60 is the lowest.

Survival by Fare

Higher tickets' prices, Higher survival rate.

Survival by Number of Siblings/Spouses

Going out with 1 partner has the highest survival rate.

Survival by Passenger Class

- The survival rate of the third class cabin is the lowest.
- The survival rate of the first class cabin is the highest.

Survival by Port Embarked

• The landing site may eventually be reflected in gender, cabin class and another aspect we talk about early.

Who Survived: Machine Learning Classification

Preprocessing the Data

- Transformed categorical data into one hot encodings.
 - Sex
 - Embarked
 - PClass
- kept numerical features
 - SibSp
 - o Parch
 - Fare
 - Age
 - Trained both original values vs scaled values
- Feature Engineering
 - o Title
 - Ultimately removed because it hindered performance

Pclass3	Pclass2	Pclass1	isFemale	isMale	Survived	Row
1	0	0	1	0	0	1
1	0	0	1	0	1	2
1	0	0	1	0	1	3
1	0	0	1	0	0	4
1	0	0	1	0	0	5
1	0	0	1	0	0	6
1	0	0	1	0	1	7

Model Performance

- Logistic Regression
- Overall, our model is a good baseline score, but can be improved significantly.
- Here are our metrics on our test set.

Accuracy: 79.5%

o AUC ROC: 84.5%

• Precision: 70.4%

• Recall: 71.1%

F1-Score: 71.1%

- Regularization prevents overfitting
 - Early Stopping
 - L1 Regularization

Feature Importance: Coefficients

• We can see that isMale, isFemale, Pclass1, Pclass3, and Embarked C have most predictive power.

processed_input weight

Follows our exploratory analysis

- Good amount of features were not impactful..
 - L1 regularization

	$processed_input$	weight
0	isMale	-1.189517
1	isFemale	1.189517
2	Pclass1	0.736785
3	Pclass2	0.000000
4	Pclass3	-0.641205
5	SibSp	-0.292447
6	Parch	0.000000
7	Age	-0.026890
8	Fare	0.000493
9	Embarked_S	-0.239489
10	Embarked_B	0.000000
11	Embarked_C	0.322280
12	_INTERCEPT_	1.015495

Limitations

- Amount of data at our disposal.
 - o Only 1300 samples and models need more to generalize well.
 - Can't collect more data.
- Null and Missing values.
 - Certain models can handle these values
 - Imputing the feature, having too many imputed data points can confuse the model.

Conclusions

- We were able to explore and discover key finding that lead to certain passengers survive at a higher rate.
- Developed a machine learning model make predictions based on those features.

