Open Opened 3 weeks ago by Rubén Montero

Primeros pasos programando para móviles

Resumen

- Veremos consideraciones especiales de desarrollar código para dispositivos móviles
- Instalaremos y configuraremos Android Studio. Probaremos la aplicación
- Eliminaremos el texto Hello World! y comprobaremos de nuevo la aplicación
- Haremos git add, git commit y git push para subir los cambios al repositorio

Descripción

Desarrollar aplicaciones para uso móvil no es lo mismo que crear aplicaciones para escritorio (Windows, Linux,...). Es extremadamente importante que:

- Los recursos (RAM, ancho de red,...) usados por nuestra aplicación sean los mínimos.
- Controlemos el ciclo de vida de la aplicación. ¿Qué pasa si llaman por teléfono al usuario mientras nuestra app está descargando un vídeo?
- Las aplicaciones sean responsive. Deben adaptarse perfectamente a diferentes tamaños de pantalla.
- El feedback visual sea inmediato. ¡Nada de tocar la pantalla y que dé la impresión de que la app se ha quedado "pillada"!

Principales plataformas

Android e iOS conforman la pareja vencedora en lo que respecta a sistemas operativos móviles hoy en día.

Usaremos Android como vehículo de aprendizaje pues la cuota de mercado es mayor (86% vs 14%), el precio para la publicación de apps es menor (pago único de 25\$ frente a 99\$ anuales) y no dependemos de un hardware específico (Xcode sólo funciona en MacOS).

La tarea

Desde la página web de Android Studio, descarga el instalador .exe haciendo click en Download Android Studio y acepta los términos de

Una vez descargado, ejecútalo y procede con las opciones por defecto, hasta que llegues a la ventana donde permite abrir un proyecto existente o crear un proyecto nuevo.

Primeros pasos en el repositorio

Necesitas haber instalado Git y tener tu usuario, email y clave SSH configurados apropiadamente. Si seguiste estos pasos e hiciste git clone, ya tienes disponible el repositorio en local. Sólo necesitas abrir un terminal de Windows (tecla de Windows > cmd), posicionarte en tu repositorio local con cd y traer los cambios haciendo pull:

git pull

Puedes verificar desde el explorador de archivos que una carpeta android-introduction/ ha aparecido.

Luego, desde Android Studio, selecciona Open project y abre la carpeta android-introduction/ que se encuentra el repositorio local de nuestro ordenador. Indica Trust Project y Trust Server Certificate.

Paciencia 🖴

Arrancar un proyecto es lento.

Antes de hacer nada, hay que cerciorarse de que el banner amarillo Gradle Project Sync in Process... ha desaparecido y abajo no hay barras de progreso indicando tareas en segundo plano.

Aunque tarda hasta 5 ó 10 minutos, terminará estabilizándose y veremos a la izquierda nuestra estructura de proyecto:

1 of 4 10/4/2023, 8:48 AM

```
- app/
  |-- manifests/
  |-- java/
  1 1
  | |-- com.afundacion.fp.library/
  1 1
           |-- MainActivity.java
       |-- com.afundacion.fp.library/ (androidTest)
      |-- com.afundacion.fp.library/ (test)
  |-- res/
- Gradle Scripts/
```

Editar preferencias

Haz click en File (barra superior) > Settings.

Se desplegará una ventana con los ajustes de preferencias. En la columna izquierda, busca > Editor y haz click en la flecha para expandir el menú.

Selecciona Design Tools. En las 4 opciones que aparecen, elige Code :

• Default Editor Mode

o Drawables: Code

o Other Resources (e.g. Layout, Menu, Navigation): Code

 Compose files: Code Other Kotlin files: Code

De esta manera, preferiremos editar los archivos de interfaz XML a través de código (XML). Existe un editor visual que nos puede dar muchos dolores de cabeza si no entendemos qué XML estamos manipulando, así que no lo usaremos.

Lanzar la aplicación

Haz click en el botón desplegable No Devices en la barra de herramientas superior. Se encuentra a la izquierda del botón verde 'Play'.

Selecciona No Devices > Device Manager. En la pestaña Virtual pulsa en Create Device.

A continuación, crearemos un emulador sencillo. Elige:

• Nexus S (4.0") de 480x800 hdpi.

En la siguiente ventana del asistente, **selecciona** (**Download**) la versión:

• Pie (API Level 28) para x86

...del sistema operativo que usará la máquina simulada. Acepta el acuerdo de licencia y espera a que se descargue.

Importante: No descargues una versión de API > 28 o tendrás problemas en algunos tests.

En la última página de Verify configuration cambia Emulated Performance > Graphics y elige Hardware - GLES 2.0 . Si está disponible, esto debería aprovechar la acelaración hardware para que el emulador funcione más deprisa.

Una vez le damos a Finish, ¡emulador creado!

Lanza la aplicación con el botón verde 'Play' en la barra superior. Aparecerá a la derecha de Nexus S API 28 donde antes aparecía No Devices.

¡Y ten paciencia 👛!

Si todo funciona como es debido, aparecerá el emulador a la derecha dentro de Android Studio:

2 of 4 10/4/2023, 8:48 AM

Posibles problemas

- Si la aplicación no llega a lanzarse, es posible que el dispositivo esté congelado. Puedes verificarlo si Android Studio responde a tus clicks (e.g.: Abrir menú File) pero el emulador no hace ni caso. En ese caso:
 - 1. Cerramos el emulador (icono X en la pestaña al lado del nombre)
 - 2. Vamos a Dispositivos (menú desplegable en la barra de arriba) > Device Manager > Actions > Flecha 📘 (último icono) > Wipe Data.
 - 3. Re-lanzamos la aplicación con paciencia

Más adelante, veremos alternativas al emulador de Android Studio.

Continuemos...

Trabajemos ahora en la aplicación.

Las interfaces visuales de las pantallas se definen en archivos XML.

Abre res > layout > activity_main.xml . Al hacer doble *click* en ella, verás:

```
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"</pre>
    xmlns:app="http://schemas.android.com/apk/res-auto"
    xmlns:tools="http://schemas.android.com/tools'
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    tools:context=".MainActivity">
    <TextView
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="Hello World!"
        app:layout_constraintBottom_toBottomOf="parent"
        app:layout_constraintEnd_toEndOf="parent"
        app:layout_constraintStart_toStartOf="parent"
        app:layout_constraintTop_toTopOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>
```

Elimina las líneas 9-16 asociadas al TextView.

Si vuelves a lanzar la aplicación verás que el pequeño texto Hello World! ha desaparecido.

¡Enhorabuena! Primera tarea completada.

Por último

Desde el terminal de Windows (cmd.exe), nos posicionamos en android-introduction/ y escribimos:

```
git add *
```

...para marcar los cambios del un nuevo commit. Después:

```
git commit -m "Tarea #1: Eliminado TextView hello world en actividad principal"
```

...y por último subimos los cambios al repositorio remoto:

3 of 4

git push

No está de más visitar la página de GitLab (https://raspi) y verificar que el commit se ha subido.

- 1. Estos términos de licencia los impone Google para que usemos su SDK. Básicamente, nos está dando las herramientas necesarias para que nuestras aplicaciones funcionen en dispositivos reales y quiere que, en la medida de lo posible, le exoneremos de responsabilidad ante los daños que nuestras aplicaciones puedan causar 🔁
- (<u>L</u>) Rubén Montero @ruben.montero changed milestone to MSprint 1 3 weeks ago
 - Ania Blanco @ania.blanco mentioned in commit 42b57134 2 weeks ago

4 of 4 10/4/2023, 8:48 AM