Symmetric Crypto: Stream Ciphers

2019. 3. 11

Contents

- Introduction to crypto
- Symmetric-key cryptography
 - Stream ciphers
 - Block ciphers
 - Block cypher modes
- Public-key cryptography
 - RSA
 - ECC
 - Digital signature
 - Public key Infrastructure

- Cryptographic hash function
 - Attack complexity
 - Hash Function algorithm
- Integrity and Authentication
 - Message authentication code
 - GCM
 - Digital signature
- Key establishment
 - server-based
 - Public-key based
 - Key agreement (Diffie-Hellman)

Stream Cipher vs. Block Cipher

Encryption/Decryption of Stream cipher


```
x_i, y_i, s_i \in \{0,1\}
encryption : y_i = E_{si}(x_i) \equiv x_i + s_i \mod 2
dncryption : x_i = D_{si}(y_i) \equiv y_i + s_i \mod 2
```

Modulo 2 addition

• Modulo 2 addition is equivalent to the XOR operation.

Xi	Si	$y_i \equiv x_i + s_i \mod 2$	$y_i \equiv x_i \oplus s_i$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

- If the key bit s_i behaves perfectly randomly, y_i is unpredictable with a 50% chance of being 0 or 1.
- If we have perfect random numbers, the stream cipher can achieve the unconditional security.

Key Stream

- The security of the stream cipher completely depends on the key stream.
- Then, the question is how or whether we can generate the random key stream.

True Random Number Generators

- A sequence of bits cannot be reproduced.
- The true RNG is based on physical processes such as coin flipping, dice rolling, semiconductor noise, radioactive decay, and so on.

Pseudorandom Number Generators (PRNG)

The bits are generated recursively from an initial seed value.

$$s_0 = seed$$

 $s_{i+1} = f(s_i), i=0,1,...$

Popular example: the linear congruential generator

$$s_0 = seed$$

 $s_{i+1} = as_i + b \mod m, i=0,1,...$

Cryptographically Secure PRNG(CSPRNG)

- CSPRNG is PRNG which is unpredictable.
 - Given n output bits of the key stream $s_i, s_{i+1}, ..., s_{i+n-1}$, it is computationally infeasible to compute the sequence bits s_{i+n} , s_{i+n+1} ,...
 - In other words, given n consecutive bits of the key stream, there is no polynomial time algorithm that can predict the next bit s_{n+1} with the better than 50% chance of success.

One-Time Pad (OTP)

OTP

- The key stream is generated by a true random number generator,
- The key stream is only known to the legitimate communicating parties,
- Every key stream bit s_i is only used once.
- Provably secure
- Unconditional security

OTP requirements

- OTP requires True RNG, so it needs a device that can generate true random number.
- The sender have a mean to deliver the bits to the receiver.
- Key stream cannot be reused. OTP need one key bit for every bit of plaintext.
- Because of these requirements, OTP is rarely used in practice.
- However, it gives us a design idea for secure cipher.

Stream cipher

- Plaintext is XORed with keystream generated from secret key and initialization vector (IV)
 - Vernam cipher (one-time pad)
 - RC4, Seal
 - linear feedback shift registers (LFSR)
- Here we explain the algorithm using A5/1.
 - Based on shift registers
 - Used in GSM mobile phone system

A5/1: Shift Register

- A5/1 uses 3 linear feedback shift registers
 - X: 19 bits $(x_0,x_1,x_2,...,x_{18})$
 - Y: 22 bits $(y_0, y_1, y_2, ..., y_{21})$
 - Z: 23 bits $(z_0, z_1, z_2, ..., z_{22})$
 - X+Y+Z = 64 bits

A5/1: Keystream

- At each step: $m = \text{maj}(x_8, y_{10}, z_{10})$
 - Examples: maj(0,1,0) = 0 and maj(1,1,0) = 1
- If $x_8 = m$ then X steps
 - $t = x_{13} \oplus x_{16} \oplus x_{17} \oplus x_{18}$
 - $x_i = x_{i-1}$ for i = 18, 17, ..., 1 and $x_0 = t$
- If $y_{10} = m$ then Y steps
 - $t = y_{20} \oplus y_{21}$
 - $y_i = y_{i-1}$ for i = 21,20,...,1 and $y_0 = t$
- If $z_{10} = m$ then Z steps
 - $t = \mathbf{z}_7 \oplus \mathbf{z}_{20} \oplus \mathbf{z}_{21} \oplus \mathbf{z}_{22}$
 - $z_i = z_{i-1}$ for i = 22,21,...,1 and $z_0 = t$
- Keystream bit is $x_{18} \oplus y_{21} \oplus z_{22}$

A5/1

- Each variable here is a single bit
- Key is used as initial fill of registers
- Each register steps (or not) based on maj(x_8 , y_{10} , z_{10})
- Keystream bit is XOR of rightmost bits of registers

A5/1

- In this example, $m = \text{maj}(x_8, y_{10}, z_{10}) = \text{maj}(\mathbf{1}, \mathbf{0}, \mathbf{1}) = \mathbf{1}$
- Register X steps, no Y steps, and Z steps
- Keystream bit is XOR of right bits of registers
- Here, keystream bit will be $0 \oplus 1 \oplus 0 = 1$

Shift Register Crypto

- Shift register crypto efficient in hardware
- Often, slow if implement in software
- In the past, very popular
- Today, more is done in software due to fast processors
- Shift register crypto still used some
 - Resource-constrained devices

Looking back on Stream Ciphers

- Stream ciphers tends to be small and fast, so it is beneficial for applications with little computational resources.
- LFSR-based algorithms are hardware-oriented ciphers.
 - A5/1 was used in GSM mobile networks for voice encryption between cell phones and base station.
 - A5/1 and A5/2 were broken.
- Once, it was considered to be more efficient than block ciphers. But these days block ciphers are as efficient as stream ciphers for either software or hardware-optimized implementation.
- Then, is the stream cipher dead?