Question 1(a) [3 marks]

What do you mean by Narrow AI or Weak AI?

Answer:

Narrow AI or **Weak AI** refers to artificial intelligence systems designed to perform specific, limited tasks within a narrow domain.

Table: Narrow AI Characteristics

Aspect	Description
Scope	Limited to specific tasks
Intelligence	Task-specific expertise
Examples	Siri, chess programs, recommendation systems
Learning	Pattern recognition within domain

Mnemonic: "Narrow = Specific Tasks Only"

Question 1(b) [4 marks]

Define: Classification, Regression, Clustering, Association Analysis.

Answer:

Table: Machine Learning Techniques

Technique	Definition	Туре	Example
Classification	Predicts discrete categories/classes	Supervised	Email spam detection
Regression	Predicts continuous numerical values	Supervised	House price prediction
Clustering	Groups similar data points	Unsupervised	Customer segmentation
Association Analysis	Finds relationships between variables	Unsupervised	Market basket analysis

Mnemonic: "CRCA - Categories, Real-numbers, Clusters, Associations"

Question 1(c) [7 marks]

Illuminate the three main components of neuron.

Answer:

The three main components of a biological neuron that inspire artificial neural networks are:

Diagram:

Table: Neuron Components

Component	Function	Al Equivalent
Dendrites	Receive input signals from other neurons	Input layer/weights
Cell Body (Soma)	Processes and integrates signals	Activation function
Axon	Transmits output signals to other neurons	Output connections

Key Points:

- **Dendrites**: Act as input receivers with varying connection strengths
- Cell Body: Sums inputs and applies threshold function
- **Axon**: Carries processed signal to next neurons

Mnemonic: "DCA - Dendrites Collect, Cell-body Calculates, Axon Announces"

Question 1(c) OR [7 marks]

Explicate back propagation method in Artificial Neural Network.

Answer:

Back Propagation is a supervised learning algorithm used to train multi-layer neural networks by minimizing error through gradient descent.

Flowchart:

Table: Back Propagation Steps

Step	Process	Formula
Forward Pass	Calculate outputs layer by layer	$y = f(\Sigma(wi*xi + b))$
Error Calculation	Compute loss function	E = ½(target - output) ²
Backward Pass	Calculate error gradients	δ = ∂E/∂w
Weight Update	Adjust weights using learning rate	w_new = w_old - η*δ

Key Features:

• Gradient Descent: Uses calculus to find minimum error

• Chain Rule: Propagates error backward through layers

• Learning Rate: Controls speed of weight updates

Mnemonic: "FEBU - Forward, Error, Backward, Update"

Question 2(a) [3 marks]

List out any five popular algorithms used in Machine Learning.

Answer:

Table: Popular ML Algorithms

Algorithm	Туре	Application
Linear Regression	Supervised	Prediction of continuous values
Decision Tree	Supervised	Classification and regression
K-Means Clustering	Unsupervised	Data grouping
Support Vector Machine	Supervised	Classification with margins
Random Forest	Supervised	Ensemble learning

Mnemonic: "LDKSR - Learn Data, Keep Samples, Run"

Question 2(b) [4 marks]

What is Expert System? List out its limitations and applications.

Answer:

Expert System is an AI program that mimics human expert knowledge to solve complex problems in specific domains.

Table: Expert System Overview

Aspect	Details
Definition	Al system with domain-specific expertise
Components	Knowledge base, inference engine, user interface

Applications:

- Medical Diagnosis: Disease identification systems
- Financial Planning: Investment advisory systems
- Fault Diagnosis: Equipment troubleshooting

Limitations:

- Limited Domain: Works only in specific areas
- Knowledge Acquisition: Difficult to extract expert knowledge
- Maintenance: Hard to update and modify rules

Mnemonic: "EXPERT - Explains Problems, Executes Rules, Tests"

Question 2(c) [7 marks]

What is tokenization? Explain with suitable example.

Answer:

Tokenization is the process of breaking down text into smaller units called tokens (words, phrases, symbols) for NLP processing.

Table: Tokenization Types

Туре	Description	Example
Word Tokenization	Split by words	"Hello world" \rightarrow ["Hello", "world"]
Sentence Tokenization	Split by sentences	"Hi. How are you?" \rightarrow ["Hi.", "How are you?"]
Subword Tokenization	Split into subwords	"unhappy" → ["un", "happy"]

Code Example:

```
import nltk
text = "Natural Language Processing is amazing!"
tokens = nltk.word_tokenize(text)
# Output: ['Natural', 'Language', 'Processing', 'is', 'amazing', '!']
```

Process Flow:

Key Benefits:

• Standardization: Converts text to uniform format

• Analysis Ready: Prepares text for ML algorithms

• Feature Extraction: Enables statistical analysis

Mnemonic: "TOKEN - Text Operations Keep Everything Normalized"

Question 2(a) OR [3 marks]

Compare Supervised and Unsupervised Learning.

Answer:

Table: Supervised vs Unsupervised Learning

Aspect	Supervised Learning	Unsupervised Learning
Training Data	Labeled data with target outputs	Unlabeled data without targets
Goal	Predict specific outcomes	Discover hidden patterns
Examples	Classification, Regression	Clustering, Association rules
Evaluation	Accuracy, precision, recall	Silhouette score, elbow method
Applications	Email spam, price prediction	Customer segmentation, anomaly detection

Mnemonic: "SU - Supervised Uses labels, Unsupervised Uncovers patterns"

Question 2(b) OR [4 marks]

Explain all about AI applications in Healthcare, Finance and Manufacturing.

Answer:

Table: AI Applications by Industry

Industry	Applications	Benefits
Healthcare	Medical imaging, drug discovery, diagnosis	Improved accuracy, faster treatment
Finance	Fraud detection, algorithmic trading, credit scoring	Risk reduction, automated decisions
Manufacturing	Quality control, predictive maintenance, robotics	Efficiency, cost reduction

Healthcare Examples:

- Medical Imaging: Al detects cancer in X-rays and MRIs
- Drug Discovery: Al accelerates new medicine development

Finance Examples:

- Fraud Detection: Real-time transaction monitoring
- Robo-advisors: Automated investment management

Manufacturing Examples:

- Quality Control: Automated defect detection
- **Predictive Maintenance**: Equipment failure prediction

Mnemonic: "HFM - Health, Finance, Manufacturing benefit from Al"

Question 2(c) OR [7 marks]

What is syntactic analysis and how it is differ from lexical analysis?

Answer:

Syntactic Analysis examines the grammatical structure of sentences, while **Lexical Analysis** breaks text into meaningful tokens.

Table: Lexical vs Syntactic Analysis

Aspect	Lexical Analysis	Syntactic Analysis
Purpose	Tokenize text into words	Parse grammatical structure
Input	Raw text	Tokens from lexical analysis
Output	Tokens, part-of-speech tags	Parse trees, grammar rules
Focus	Individual words	Sentence structure
Example	"The cat runs" → [The, cat, runs]	Creates parse tree showing noun-verb relationship

Process Flow:

Example:

- **Lexical**: "She reads books" → ["She", "reads", "books"]
- Syntactic: Identifies "She" as subject, "reads" as verb, "books" as object

Key Differences:

- **Scope**: Lexical works on words, Syntactic on sentence structure
- **Complexity**: Syntactic analysis is more complex than lexical
- Dependencies: Syntactic analysis depends on lexical analysis

Mnemonic: "LEX-SYN: LEXical extracts, SYNtactic structures"

Question 3(a) [3 marks]

List out various characteristics of Reactive machines.

Answer:

Table: Reactive Machines Characteristics

Characteristic	Description
No Memory	Cannot store past experiences
Present-focused	Responds only to current input
Deterministic	Same input produces same output
Task-specific	Designed for particular functions
No Learning	Cannot improve from experience

Examples:

• Deep Blue: IBM's chess computer

• Game AI: Tic-tac-toe programs

Mnemonic: "REACT - Responds Exactly, Always Consistent Tasks"

Question 3(b) [4 marks]

Differentiate: Positive Reinforcement v/s Negative Reinforcement.

Answer:

Table: Positive vs Negative Reinforcement

Aspect	Positive Reinforcement	Negative Reinforcement
Definition	Adding reward for good behavior	Removing penalty for good behavior
Action	Give something desirable	Take away something undesirable
Goal	Increase desired behavior	Increase desired behavior
Example	Give treat for correct answer	Remove extra work for good performance

Diagram:

Key Points:

- Both increase behavior but through different mechanisms
- Positive adds something pleasant
- Negative removes something unpleasant

Mnemonic: "PN - Positive adds Nice things, Negative removes Nasty things"

Question 3(c) [7 marks]

Explain all about Term-Frequency-Inverse Document Frequency(TF-IDF) word embedding technique.

Answer:

TF-IDF is a numerical statistic that reflects how important a word is to a document in a collection of documents.

Formula:

```
TF-IDF = TF(t,d) \times IDF(t) Where: TF(t,d) = (Number of times term \ t \ appears \ in \ document \ d) \ / \ (Total terms \ in \ document \ d) IDF(t) = log((Total \ documents) \ / \ (Documents \ containing \ term \ t))
```

Table: TF-IDF Components

Component	Formula	Purpose
Term Frequency (TF)	tf(t,d) = count(t,d) /	d
Inverse Document Frequency (IDF)	idf(t) = log(N / df(t))	Measures word importance across corpus
TF-IDF Score	$tf-idf(t,d) = tf(t,d) \times idf(t)$	Final word importance score

Example Calculation:

• Document: "cat sat on mat"

• Term: "cat"

• TF = 1/4 = 0.25

• If "cat" appears in 2 out of 10 documents: IDF = log(10/2) = 0.699

• TF-IDF = 0.25 × 0.699 = 0.175

Applications:

• Information Retrieval: Search engines

• Text Mining: Document similarity

• Feature Extraction: ML preprocessing

Advantages:

- Common words get low scores (the, and, is)
- Rare but important words get high scores
- Simple and effective for text analysis

Mnemonic: "TF-IDF - Term Frequency × Inverse Document Frequency"

Question 3(a) OR [3 marks]

Define Fuzzy Logic Systems. Discuss its key components.

Answer:

Fuzzy Logic Systems handle uncertainty and partial truth, allowing values between completely true and completely false.

Table: Fuzzy Logic Components

Component	Function	Example
Fuzzifier	Converts crisp inputs to fuzzy sets	Temperature 75°F → "Warm" (0.7)
Rule Base	Contains if-then fuzzy rules	IF temp is warm THEN fan is medium
Inference Engine	Applies fuzzy rules to inputs	Combines multiple rules
Defuzzifier	Converts fuzzy output to crisp value	"Medium speed" → 60% fan speed

Key Features:

• **Membership Functions**: Degree of belonging (0 to 1)

• Linguistic Variables: Human-like terms (hot, cold, warm)

• Fuzzy Rules: IF-THEN statements with fuzzy conditions

Mnemonic: "FRID - Fuzzifier, Rules, Inference, Defuzzifier"

Question 3(b) OR [4 marks]

Explain elements of reinforcement learning: Policy, Reward Signal, Value Function, Model

Answer:

Table: Reinforcement Learning Elements

Element	Definition	Purpose
Policy	Strategy for selecting actions	Defines agent's behavior
Reward Signal	Feedback from environment	Indicates good/bad actions
Value Function	Expected future rewards	Estimates long-term benefit
Model	Agent's representation of environment	Predicts next state and reward

Detailed Explanation:

Policy (π):

- **Deterministic**: $\pi(s) = a$ (one action per state)
- **Stochastic**: $\pi(a|s)$ = probability of action a in state s

Reward Signal (R):

- Immediate feedback from environment
- **Positive** for good actions, **negative** for bad actions

Value Function (V):

• **State Value**: V(s) = expected return from state s

• **Action Value**: Q(s,a) = expected return from action a in state s

Model:

• **Transition Model**: P(s'|s,a) = probability of next state

• **Reward Model**: R(s,a,s') = expected reward

Mnemonic: "PRVM - Policy chooses, Reward judges, Value estimates, Model predicts"

Question 3(c) OR [7 marks]

Differentiate: frequency-based v/s prediction-based word embedding techniques.

Answer:

Table: Frequency-based vs Prediction-based Word Embeddings

Aspect	Frequency-based	Prediction-based
Approach	Count-based statistics	Neural network prediction
Examples	TF-IDF, Co-occurrence Matrix	Word2Vec, GloVe
Computation	Matrix factorization	Gradient descent
Context	Global statistics	Local context windows
Scalability	Limited by matrix size	Scales with vocabulary
Quality	Basic semantic relationships	Rich semantic relationships

Frequency-based Methods:

• **TF-IDF**: Term frequency × Inverse document frequency

• Co-occurrence Matrix: Word pair frequency counts

• LSA: Latent Semantic Analysis using SVD

Prediction-based Methods:

• Word2Vec: Skip-gram and CBOW models

• Glove: Global Vectors for Word Representation

• FastText: Subword information inclusion

Code Comparison:

```
# Frequency-based (TF-IDF)
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(documents)

# Prediction-based (Word2Vec)
from gensim.models import Word2Vec
model = Word2Vec(sentences, vector_size=100, window=5)
```

Advantages:

Frequency-based:

- Simple and interpretable
- Fast computation for small datasets
- Good for basic similarity tasks

Prediction-based:

- **Dense** vector representations
- Better semantic relationships
- Scalable to large vocabularies

Mnemonic: "FP - Frequency counts, Prediction learns"

Question 4(a) [3 marks]

List out the key characteristics of reactive machine.

Answer:

Table: Reactive Machine Key Characteristics

Characteristic	Description
Stateless	No memory of past interactions
Reactive	Responds only to current inputs
Deterministic	Consistent outputs for same inputs
Specialized	Designed for specific tasks
Real-time	Immediate response to stimuli

Examples:

- Deep Blue: Chess-playing computer
- Google AlphaGo: Go-playing system (early version)

Mnemonic: "SRDSR - Stateless, Reactive, Deterministic, Specialized, Real-time"

Question 4(b) [4 marks]

List out various pre-processing techniques. Explain any one of them with python code.

Answer:

Table: Text Pre-processing Techniques

Technique	Purpose	Example
Tokenization	Split text into words	"Hello world" → ["Hello", "world"]
Stop Word Removal	Remove common words	Remove "the", "and", "is"
Stemming	Reduce words to root form	"running" → "run"
Lemmatization	Convert to dictionary form	"better" → "good"

Stemming Explanation:

Stemming reduces words to their root form by removing suffixes.

Python Code for Stemming:

```
import nltk
from nltk.stem import PorterStemmer

# Initialize stemmer
stemmer = PorterStemmer()

# Example words
words = ["running", "flies", "dogs", "churches", "studying"]

# Apply stemming
stemmed_words = [stemmer.stem(word) for word in words]
print(stemmed_words)
# Output: ['run', 'fli', 'dog', 'church', 'studi']
```

Benefits of Stemming:

- Reduces vocabulary size for ML models
- Groups related words together
- Improves text analysis efficiency

Mnemonic: "TSSL - Tokenize, Stop-words, Stem, Lemmatize"

Question 4(c) [7 marks]

Illuminate the Word2vec technique in detail.

Answer:

Word2Vec is a neural network-based technique that learns dense vector representations of words by predicting context.

Table: Word2Vec Architectures

Architecture	Approach	Input	Output
Skip-gram	Predict context from center word	Center word	Context words
CBOW	Predict center word from context	Context words	Center word

Skip-gram Model:

Training Process:

1. Sliding Window: Move window across text

2. Word Pairs: Create (center, context) pairs

3. **Neural Network**: Train to predict context

4. Weight Matrix: Extract word vectors

Key Features:

• Vector Size: Typically 100-300 dimensions

• Window Size: Context range (usually 5-10 words)

• Negative Sampling: Efficient training method

• Hierarchical Softmax: Alternative to softmax

Mathematical Concept:

```
Objective = max \Sigma log P(context|center)
Where P(context|center) = exp(v_context · v_center) / \Sigma exp(v_w · v_center)
```

Applications:

• Similarity: Find similar words

• **Analogies**: King - Man + Woman = Queen

• Clustering: Group semantic categories

• Feature Engineering: ML input features

Advantages:

• Dense Representations: Rich semantic information

• Semantic Relationships: Captures word meanings

• Arithmetic Properties: Vector operations make sense

Mnemonic: "W2V - Words to Vectors via neural networks"

Question 4(a) OR [3 marks]

List out any four applications of Natural Language Processing. Explain spam detection in detail.

Answer:

Table: NLP Applications

Application	Description
Spam Detection	Identify unwanted emails
Sentiment Analysis	Determine emotional tone
Machine Translation	Translate between languages
Chatbots	Automated conversation systems

Spam Detection Details:

Process:

1. **Feature Extraction**: Convert email text to numerical features

2. Classification: Use ML algorithms to classify

3. **Decision**: Mark as spam or legitimate

Features Used:

• Word Frequency: Spam keywords count

• Email Headers: Sender information

• **URL Analysis**: Suspicious links

• **Text Patterns**: ALL CAPS, excessive punctuation

Machine Learning Approach:

```
# Simplified spam detection
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB

# Convert emails to features
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(email_texts)

# Train classifier
classifier = MultinomialNB()
classifier.fit(X, labels) # labels: 0=legitimate, 1=spam
```

Mnemonic: "SMTP - Spam, Machine Translation, Sentiment, Phishing detection"

Question 4(b) OR [4 marks]

Explain about discourse integration and pragmatic analysis.

Answer:

Table: Discourse Integration vs Pragmatic Analysis

Aspect	Discourse Integration	Pragmatic Analysis
Focus	Text coherence and structure	Context and intention
Scope	Multiple sentences/paragraphs	Speaker's intended meaning
Elements	Anaphora, cataphora, connectives	Implicature, speech acts
Goal	Understand text flow	Understand real meaning

Discourse Integration:

- Anaphora Resolution: "John went to store. He bought milk." (He = John)
- Cataphora: "Before he left, John locked the door."
- Coherence: Logical flow between sentences
- Cohesion: Grammatical connections

Pragmatic Analysis:

- Speech Acts: Commands, requests, promises
- Implicature: Implied meanings beyond literal
- Context Dependency: Same words, different meanings
- Intention Recognition: What speaker really means

Examples:

Discourse Integration:

```
Text: "Mary owns a car. The vehicle is red."
Resolution: "vehicle" refers to "car"
```

Pragmatic Analysis:

```
Statement: "Can you pass the salt?"
Literal: Question about ability
Pragmatic: Request to pass salt
```

Mnemonic: "DP - Discourse connects, Pragmatics interprets context"

Question 4(c) OR [7 marks]

Discuss about the Bag of Words word embedding technique in detail.

Answer:

Bag of Words (BoW) is a simple text representation method that treats documents as unordered collections of words.

Table: BoW Process

Step	Description	Example
Vocabulary Creation	Collect all unique words	["cat", "sat", "mat", "dog"]
Vector Creation	Count word occurrences	[1, 1, 1, 0] for "cat sat mat"
Document Representation	Each document becomes a vector	Multiple documents → Matrix

Example:

```
Documents:

1. "The cat sat on the mat"

2. "The dog ran in the park"

Vocabulary: [the, cat, sat, on, mat, dog, ran, in, park]

Document Vectors:

Doc1: [2, 1, 1, 1, 1, 0, 0, 0, 0]

Doc2: [2, 0, 0, 0, 0, 1, 1, 1, 1]
```

Python Implementation:

```
from sklearn.feature_extraction.text import CountVectorizer

documents = [
    "The cat sat on the mat",
    "The dog ran in the park"
]

vectorizer = CountVectorizer()
bow_matrix = vectorizer.fit_transform(documents)
vocab = vectorizer.get_feature_names_out()

print("Vocabulary:", vocab)
print("Bow Matrix:", bow_matrix.toarray())
```

Advantages:

- **Simplicity**: Easy to understand and implement
- Interpretability: Clear word-count relationship
- Effectiveness: Works well for many tasks

Disadvantages:

- No Word Order: "cat sat mat" = "mat sat cat"
- Sparse Vectors: Many zeros in large vocabularies
- No Semantics: No understanding of word meanings
- High Dimensionality: Scales with vocabulary size

Variations:

- **Binary BoW**: 1 if word present, 0 if absent
- **TF-IDF BoW**: Term frequency × Inverse document frequency
- N-gram BoW: Consider word sequences

Applications:

- Document Classification: Spam detection
- Information Retrieval: Search engines
- Text Clustering: Group similar documents
- Feature Engineering: Input for ML models

Mnemonic: "BOW - Bag Of Words counts occurrences"

Question 5(a) [3 marks]

What is the role of activation functions in Neural Network?

Answer:

Table: Activation Function Roles

Role	Description
Non-linearity	Enables learning complex patterns
Output Control	Determines neuron firing threshold
Gradient Flow	Affects backpropagation efficiency
Range Limiting	Bounds output values

Key Functions:

• **Decision Making**: Whether neuron should activate

• Pattern Recognition: Enables complex decision boundaries

• Signal Processing: Transforms weighted inputs

Common Activation Functions:

• **ReLU**: f(x) = max(0, x) - Simple and efficient

• **Sigmoid**: $f(x) = 1/(1 + e^{-x})$ - Smooth probability output

• **Tanh**: $f(x) = (e^x - e^{-x})/(e^x + e^x)$ - Zero-centered

Mnemonic: "NOGL - Non-linearity, Output control, Gradient flow, Limiting range"

Question 5(b) [4 marks]

Describe architecture of Neural Network in detail.

Answer:

Table: Neural Network Architecture Components

Component	Function	Example
Input Layer	Receives input data	Features/pixels
Hidden Layers	Process information	Pattern recognition
Output Layer	Produces final result	Classification/prediction
Connections	Link neurons between layers	Weighted edges

Architecture Diagram:

Layer Details:

- **Input Layer**: Number of neurons = number of features
- **Hidden Layers**: Variable neurons, multiple layers for complexity
- Output Layer: Number of neurons = number of classes/outputs

Information Flow:

1. **Forward Pass**: Input → Hidden → Output

2. **Weighted Sum**: Σ (wi × xi + bias)

3. **Activation**: Apply activation function

4. **Output**: Final prediction/classification

Mnemonic: "IHOC - Input, Hidden, Output, Connections"

Question 5(c) [7 marks]

List out and explain types of ambiguities in Natural Language Processing.

Answer:

Ambiguity in NLP occurs when text has multiple possible interpretations, making automatic understanding challenging.

Table: Types of NLP Ambiguities

Туре	Definition	Example	Resolution
Lexical	Word has multiple meanings	"Bank" (river/financial)	Context analysis
Syntactic	Multiple parse structures	"I saw her duck"	Grammar rules
Semantic	Multiple sentence meanings	"Visiting relatives can be boring"	Semantic analysis
Pragmatic	Context-dependent meaning	"Can you pass salt?"	Intent recognition
Referential	Unclear pronoun reference	"John told Bill he was late"	Anaphora resolution

Detailed Explanations:

Lexical Ambiguity:

- **Homonyms**: Same spelling, different meanings
- Example: "I went to the bank" (financial institution vs. river bank)
- **Solution**: Word sense disambiguation using context

Syntactic Ambiguity:

- Multiple Parse Trees: Same sentence, different structures
- Example: "I saw the man with the telescope"
 - o I used telescope to see man
 - I saw man who had telescope
- **Solution**: Statistical parsing, grammar preferences

Semantic Ambiguity:

- Multiple Interpretations: Same structure, different meanings
- Example: "Visiting relatives can be boring"
 - Going to visit relatives is boring
 - Relatives who visit are boring
- **Solution**: Semantic role labeling

Pragmatic Ambiguity:

- **Context-dependent**: Meaning depends on situation
- Example: "It's cold here" (statement vs. request to close window)
- Solution: Dialogue systems, context modeling

Referential Ambiguity:

- **Unclear References**: Pronouns with multiple possible antecedents
- Example: "John told Bill that he was promoted" (who got promoted?)
- Solution: Coreference resolution algorithms

Resolution Strategies:

Impact on NLP Systems:

• Machine Translation: Wrong word choices

• Information Retrieval: Irrelevant results

Question Answering: Incorrect responses

• Chatbots: Misunderstood queries

Mnemonic: "LSSPR - Lexical, Syntactic, Semantic, Pragmatic, Referential"

Question 5(a) OR [3 marks]

List down the names of some popular activation functions used in Neural Network.

Answer:

Table: Popular Activation Functions

Function	Formula	Range	Usage
ReLU	f(x) = max(0, x)	[0, ∞)	Hidden layers
Sigmoid	$f(x) = 1/(1 + e^{-x})$	(0, 1)	Binary classification
Tanh	$f(x) = (e^x - e^{-x)/(e} + e^x)$	(-1, 1)	Hidden layers
Softmax	$f(xi) = e^xi / \Sigma e^xj$	(0, 1)	Multi-class output
Leaky ReLU	f(x) = max(0.01x, x)	(-∞, ∞)	Solving dead neurons

Popular Functions:

• ReLU: Most commonly used in hidden layers

• **Sigmoid**: Traditional choice for binary problems

• Tanh: Zero-centered alternative to sigmoid

• **Softmax**: Standard for multi-class classification

Mnemonic: "RSTSL - ReLU, Sigmoid, Tanh, Softmax, Leaky ReLU"

Question 5(b) OR [4 marks]

Explain Learning process in artificial Neural Network.

Answer:

Learning Process in neural networks involves adjusting weights and biases to minimize error through iterative training.

Table: Learning Process Steps

Step	Process	Description
Initialize	Random weights	Start with small random values
Forward Pass	Calculate output	Propagate input through network
Calculate Error	Compare with target	Use loss function
Backward Pass	Calculate gradients	Use backpropagation
Update Weights	Adjust parameters	Apply gradient descent
Repeat	Iterate process	Until convergence

Learning Algorithm Flow:

Mathematical Foundation:

• Loss Function: L = ½(target - output)²

• **Gradient**: $\partial L/\partial w = error \times input$

• Weight Update: w_new = w_old - η × gradient

• **Learning Rate**: η controls update step size

Types of Learning:

• Supervised: Learn from labeled examples

• Batch Learning: Update after all samples

• Online Learning: Update after each sample

• Mini-batch: Update after small batches

Key Concepts:

• **Epoch**: One complete pass through training data

• Convergence: When error stops decreasing

• Overfitting: Memorizing training data

• Regularization: Techniques to prevent overfitting

Mnemonic: "IFCBU - Initialize, Forward, Calculate, Backward, Update"

Question 5(c) OR [7 marks]

List out various advantages and disadvantages of Natural Language Processing.

Answer:

Table: NLP Advantages and Disadvantages

Advantages	Disadvantages	
Automated Text Analysis	Ambiguity Handling	
Language Translation	Context Understanding	
Human-Computer Interaction	Cultural Nuances	
Information Extraction	Computational Complexity	
Sentiment Analysis	Data Requirements	

Detailed Advantages:

Business Benefits:

• Customer Service: Automated chatbots and support

• Content Analysis: Social media monitoring

• **Document Processing**: Automated summarization

• Search Enhancement: Better information retrieval

Technical Advantages:

• Scalability: Process large text volumes

• Consistency: Uniform analysis across documents

• Speed: Faster than human text processing

• Integration: Works with existing systems

Detailed Disadvantages:

Technical Challenges:

- Ambiguity: Multiple interpretations of text
- Context Dependency: Meaning changes with situation
- Sarcasm/Irony: Difficult to detect automatically
- Domain Specificity: Models need retraining for new domains

Resource Requirements:

- Large Datasets: Need millions of text samples
- Computational Power: Complex models require GPUs
- Expert Knowledge: Requires linguistics and ML expertise
- Maintenance: Models need regular updates

Quality Issues:

- Accuracy Limitations: Not 100% accurate
- Bias Problems: Reflects training data biases
- Language Barriers: Works better for some languages
- Error Propagation: Mistakes compound in pipelines

Applications vs Challenges:

Future Improvements:

- Better Context Models: Transformer architectures
- Multilingual Support: Cross-language understanding
- Few-shot Learning: Less data requirements
- Explainable AI: Understanding model decisions

Mnemonic: "ALICE vs ACHDR - Automated, Language, Interaction, Content, Extraction vs Ambiguity, Context, Human-nuances, Data, Resources"