SDK

设备上电会开启一个服务器,通过http协议进行参数读写及流数据获取,也可以通过ros主从机通信来控制以及获取数据和设备状态。

1.设置和操作

(1) 设置设备ip

设置后重启生效

(2) tof开关 ON/OFF

通过通信协议中的smart参数设置

默认: OFF

(3) raw_data输出设置

通过通信协议中的smart参数设置

图像: 0/1/2/3(注: 0: 无图像通过流数据输出; 1: 左目; 2: 右目; 3: 双目图像通过流数据输出)

imu: ON/OFF

tof深度图: ON/OFF

tof幅度图: ON/OFF

默认: OFF

ROS控制需要发送下面的话题, 话题数据是自定义的, 详情参考配套demo中的msg

Type: system_ctrl::viobot_ctrl

Topic: /system_ctrl

(4) VIO算法

启停: ON/OFF

重启: restart

重置: reset

重定位: relocation

ROS控制需要发送下面的话题,话题数据是自定义的,详情参考配套demo中的msg

Type: system_ctrl::algo_ctrl

Topic: /stereo1_ctrl /stereo2_ctrl /mono_ctrl

2.数据输出

SDK输出:

(1) raw_data

注:需设置raw_data输出

1) imu

```
typedef struct {
  double acc_x,acc_y,acc_z,groy_x,groy_y,groy_z;
  uint32_t time_stamp;
}imu;
```

2) 图像数据

```
uint16_t width,height;
uint32_t time_stamp;
char data[width * height];
```

3) tof数据

深度图

```
uint16_t width,height;
uint32_t time_stamp;
uint16_t data[width * height];
```

幅度图

```
uint16_t width,height;
uint32_t time_stamp;
uint16_t data[width * height];
```

(2) 算法数据

注: 启动算法后才会输出

1) 位姿

7个float数据——位置x,y,z+四元数x,y,z,w。通过流获取,详见3. (11)

2) 点云

x,y,z 通过流获取,详见3. (11)

(3) 参数数据

按需获取的数据,单次响应

1) 可见光内参

```
//内参结构体
typedef struct{
   float focal_length_x;
                                     // 焦距长度x (像素)
   float focal_length_y;
                                     // 焦距长度y (像素)
   float optical_center_point_x;
                                     // 光心投影坐标x(像素y)
                                     // 光心投影坐标y(像素)
   float optical_center_point_y;
   float radia_distortion_coef_k1;
                                     // radtan相机畸变模型畸变系数k1
   float radia_distortion_coef_k2;
                                     // radtan相机畸变模型畸变系数k2
   float radia_distortion_coef_k3;
                                     // radtan相机畸变模型畸变系数k3
   float tangential_distortion_p1;
                                     // radtan相机畸变模型畸变系数p1
   float tangential_distortion_p2;
                                     // radtan相机畸变模型畸变系数p2
} LensPara;
```

2) IMU内参

3) tof内参

```
//内参结构体
typedef struct{
   float focal_length_x;
                                      // 焦距长度x (像素)
   float focal_length_y;
                                      // 焦距长度y (像素)
   float optical_center_point_x;
                                     // 光心投影坐标x(像素y)
   float optical_center_point_y;
                                      // 光心投影坐标y(像素)
   float radia_distortion_coef_k1;
                                     // radtan相机畸变模型畸变系数k1
   float radia_distortion_coef_k2;
                                      // radtan相机畸变模型畸变系数k2
   float radia_distortion_coef_k3;
                                     // radtan相机畸变模型畸变系数k3
   float tangential_distortion_p1;
                                      // radtan相机畸变模型畸变系数p1
   float tangential_distortion_p2;
                                     // radtan相机畸变模型畸变系数p2
} LensPara;
```

4) 外参

3行4列变换矩阵 12个float数据

CamToImu

TofToCam0

(4) 系统算法状态

```
typedef enum{
    ready = 0,
    stereo1_initializing,
    stereo2_running,
    stereo2_running,
    mono_initializing,
    mono_running,
}system_status;
```

单个字节,上电连接后默认为ready,给设备发送了启动指后会进入初始化状态(initializing),初始化完成进入运行状态(running)

注: 默认可以通过ros获取数据

ROS话题:

(1)raw_data

i.图像数据

```
Type: sensor_msgs::Image
Topic: /image_left /image_right
```

ii.imu数据

```
Type: sensor_msgs::Imu
Topic: /imu
```

iii.tof点云数据(需开启tof)

```
Type: sensor_msgs::PointCloud2
Topic: /tof_cloud
(x,y,z)
```

iiii.tof幅度图和深度图(需开启tof)

```
Type: sensor_msgs::Image
Topic: /amp_image /depth_image
```

iiii.系统状态

```
#此项为自定义的ros msg,可以在SDK例程里面找到
Type: system_ctrl::viobot_ctrl
Topic: /sys_status
```

iiiii.算法状态

```
#此项为自定义的ros msg,可以在SDK例程里面找到,具体状态见(4)系统算法状态
Type: system_ctrl::algo_staus
Topic: /algo_status
```

```
Type: sensor_msgs::CameraInfo
```

Topic: /camera_left_info /camera_right_info

(2)算法输出

i.stereo1

pose:

```
Type: nav_msgs::Odometry
```

Topic: /pr_loop/odometry_rect

ii.stereo2

pose + twist:

```
Type: nav_msgs::Odometry
Topic: /pr_loop/odometry_rect
```

pointcloud:

```
Type: sensor_msgs::PointCloud2
Topic: /pr_loop/loop_PointCloud2
```

iii.mono1

pose:

```
Type: nav_msgs::Odometry
Topic: /mono1_loop/loop_pose
```

(3)参数数据

双目内参:

```
Type:sensor_msgs::CameraInfo
```

Topic: /camera_left_info /camera_right_info

ROS2话题:

此部分对应ROS2版本

(1)raw_data

i.图像数据

```
Type: sensor_msgs::msg::Image
```

Topic: /image_left /image_right

ii.imu数据

Type: sensor_msgs::msg::Imu

Topic: /imu

iii.tof点云数据(需开启tof)

Type: sensor_msgs::msg::PointCloud2

Topic: /tof_cloud

(x,y,z)

iiii.tof幅度图和深度图(需开启tof)

Type: sensor_msgs::msg::Image
Topic: /amp_image /depth_image

iiii.系统状态

#此项为自定义的ros msg,可以在SDK例程里面找到

Type: system_ctrl::msg::ViobotCtrl

Topic: /sys_status

iiiii.算法状态

#此项为自定义的ros msg,可以在SDK例程里面找到,具体状态见(4)系统算法状态

Type: system_ctrl::msg::AlgoStatus

Topic: /algo_status

iiiii.相机参数

Type: sensor_msgs::msg::CameraInfo

Topic: /camera_left_info /camera_right_info

(2)算法输出

i.stereo1

pose:

Type: nav_msgs::msg::Odometry
Topic: /pr_loop/odometry_rect

ii.stereo2

pose + twist:

Type: nav_msgs::msg::Odometry
Topic: /pr_loop/odometry_rect

pointcloud:

Type: sensor_msgs::msg::PointCloud2
Topic: /pr_loop/loop_PointCloud2

pose:

```
Type: nav_msgs::msg::Odometry
Topic: /mono1_loop/loop_pose
```

(3)参数数据

双目内参:

```
Type:sensor_pub::msg::ImageInfo
Topic: /camera_left_info /camera_right_info
```

3.通信协议

【**协议说明**】HTTP协议主要用于参数读写及流数据获取,默认端口8000

【*接口说明*】

(1) 网络参数

URL	http:// <ip>:<port>/System/network</port></ip>
METHOD	GET/PUT
BODY	{ "ipaddr":"192.168.1.100", "submask":"192.168.0.1.0", "gateway":"192.168.1.1", "macaddr":"FF:FF:FF:FF:FF:FF;, "commandPort":8000, "heartbeatPort":6789, "udpPort":10000 }

BODY参数定义:

ipaddr	IP地址
submask	子网掩码
gateway	网关地址
macaddr	MAC地址
commandPort	指令端口
heartbeatPort	心跳端口
udpPort	UDP端口

(2) 镜头参数

URL	http:// <ip>:<port>/Config/lens?Camera=<param/></port></ip>
URL参数: Camera=1:左目可见光 Camera=2:右目可见光 Camera=3:TOF	
METHOD	GET
BODY	{ "focal_length_x":0, "focal_length_y":0, "optical_center_point_x":0, "optical_center_point_y":0, "radia_distortion_coef_k1":0, "radia_distortion_coef_k2":0, "radia_distortion_coef_k3":0, "tangential_distortion_p1":0, "tangential_distortion_p2":0 }
注:	单目版本只有1和3,双目无TOF版本只有1和2

BODY参数定义: (float)

focal_length_x	焦距长度x (像素)
focal_length_y	焦距长度y (像素)
optical_center_point_x	光心投影坐标x
optical_center_point_y	光心投影坐标y
radia_distortion_coef_k1	radtan相机畸变模型畸变系数k1
radia_distortion_coef_k2	radtan相机畸变模型畸变系数k2
radia_distortion_coef_k3	radtan相机畸变模型畸变系数k3
tangential_distortion_p1	radtan相机畸变模型畸变系数p1
tangential_distortion_p2	radtan相机畸变模型畸变系数p2

(3) IMU内参

URL	http:// <ip>:<port>/Config/imuInter</port></ip>
METHOD	GET
BODY	{ "acc_n":0, "acc_w":0, "gyr_n":0, "gyr_w":0 }

BODY参数定义: (float)

acc_n	加速度计噪声
acc_w	加速度计随机游走
gyr_n	陀螺仪噪声
gyr_w	陀螺仪随机游走

(4) smart参数

URL	http:// <ip>:<port>/Config/smart</port></ip>	
METHOD	GET/PUT	
BODY	{ "gray_image_enable": 0, "imu_enable": 0, "tof_enable": 0, "tof_deep_image_enable": 0, "tof_amp_image_enable": 0 }	

BODY参数定义:

gray_image_enable	灰度图启用: 3/2/1/0
imu_enable	Imu启用: 1/0
tof_enable	Tof启用: 1/0
tof_deep_image_enable	Tof深度图启用: 1/0
tof_amp_image_enable	Tof幅度图启用: 1/0

注:灰度图启用:

0: 不启用流获取灰度图

1: 启用流获取左目灰度图 (单目)

- 2: 启用流获取右目灰度图
- 3: 启用流获取双目灰度图

(5) 重定位

URL	http:// <ip>:<port>/Smart/relocation</port></ip>
METHOD	PUT
BODY	[0,0,0,0,0,0,0,0,0,0]

BODY参数定义:一个3行4列的位姿变换矩阵,由12个浮点数组成的数组,每4个值表示矩阵的一行

(6) Vio算法控制

1) Vio算法启用

URL	http:// <ip>:<port>/Algorithm/enable/"algo_tyep_num"</port></ip>
METHOD	PUT
BODY	无
注:	"algo_tyep_num": 1:stereo1 2.stereo2 3.mono

2) Vio算法禁用

URL	http:// <ip>:<port>/Algorithm/disable/"algo_tyep_num"</port></ip>
METHOD	PUT
BODY	无
注:	"algo_tyep_num": 1:stereo1 2.stereo2 3.mono

3) Vio算法重启

URL	http:// <ip>:<port>/Algorithm/reboot/"algo_tyep_num"</port></ip>
METHOD	PUT
BODY	无
注:	"algo_tyep_num": 1:stereo1 2.stereo2

URL	គឺተኛፀ:ንዶ ip >:< port >/Algorithm/reboot/"algo_tyep_num"
-------	---

4) Vio算法重置

URL	http:// <ip>:<port>/Algorithm/reset/"algo_tyep_num"</port></ip>
METHOD	PUT
BODY	无
注:	"algo_tyep_num": 1:stereo1 2.stereo2 3.mono

(7) 回环添加关键帧

URL	http:// <ip>:<port>/Smart/addKeyFrame</port></ip>	
METHOD	PUT	
BODY	无	

(8) 回环保存关键帧

URL	http:// <ip>:<port>/Smart/saveKeyFrame</port></ip>	
METHOD	PUT	
BODY	无	

(9) cam2imu参数

URL	http:// <ip>:<port>/Config/cam2imu</port></ip>	
METHOD	GET	
BODY	[0,0,0,0, 0,0,0,0, 0,0,0,0]	

BODY参数定义:一个3行4列的变换矩阵,由12个浮点数组成的数组,每4个值表示矩阵的一行

(10) tof2cam参数

URL	http:// <ip>:<port>/Config/tof2cam</port></ip>	
METHOD	GET	
BODY	[0,0,0,0, 0,0,0,0, 0,0,0,0]	

BODY参数定义:一个3行4列的变换矩阵,由12个浮点数组成的数组,每4个值表示矩阵的一行

(11) 获取数据流

URL	http:// <ip>:<port>/Stream?Channel=<chan></chan></port></ip>	
	chan:数据流通道号 通道1: imu + stereo1位姿 + stereo2位姿 + 速度 + 系统状态 通道2: 左目可见光灰度图 通道3: 深度图 + 幅度图 通道4: 算法输出点云 通道5: tof点云 通道6: 右目可见光灰度图 通道7: 全局一致点云 通道8: RDF点云+位姿	
METHOD	GET	
BODY	无	
注:	单目版本可见光图为通道2:左目可见光,位姿为stereo1位姿	

数据包=帧头+帧数据;

帧头=0x33cccc33+帧类型 (uint) +时间戳 (uint) +序列号 (uint) +宽 (uint) +高 (uint) +长度 (uint) ;

服务端收到数据流请求后开始发送连续数据包。

当服务端收到Bye,则停止发送数据流,并断开连接。

帧类型编号	帧类型
1	IMU
2	左目可见光灰度图
3	深度图
4	幅度图
5	算法位姿
6	回环位姿
7	stereo2算法点云
8	系统状态
9	tof点云
10	右目可见光灰度图
11	全局一致位姿
12	全局一致点云
13	设备速度
14	RDF位姿
15	RDF点云
16	TOF实时状态
17	补光灯实时状态