CS159-Programming Report for 'Cupid VS TOFEL'

Group name: 4.3 ATLAS

Members: 王智慧、朱瑞雯、钱心悦

Teacher: Bao Yang

目录

1	背景	3
	1.1 选题原因	3
	1.2 项目介绍	3
	1.3 Library 介绍	5
	1.3.1 Pygame	5
	1.3.2 OpenCV	5
	1.3.3 PIL	5
	1.3.4 Pyaudio	5
	1.3.5 Baidu-aip	6
2	代码解释	6
	2.1 游戏主界面	6
	2.1.1 游戏主界面	6
	2.1.2 子弹	8
	2.1.3 小怪兽	9
	2.2 使用人脸识别操纵飞机(小天使)	.10
	2.3 生成敌人(托福小怪兽)	.10
	2.3.1 随机生成托福单词	.10
	2.3.2 生成托福小怪兽图片	.11
	2.4 通过语音触发子弹(爱心)	.12
	2.4.1 语音输入	.12
	2.4.2 语音识别	.12
	2.4.3 判断是否与单词相同	.13
3	局限与改进	. 14
	3.1 局限性	. 14
	3.2 优化设计	.15
4	小结	.15
5	描述各自的工作	.15
6	参考文献	.16
7	附录	.16

1 背景

1.1 选题原因

随着出国留学深造的人数增加且趋于低龄化,托福等语言水平考试逐渐普及。目前留学机构所开设的学习课程更偏重于教授考试技巧,然而语言的学习离不开单词的积累。除了大量阅读做题积累词汇量,我们希望能够寻找一种寓教于乐的方式,使考生们,尤其是年龄较小的考生,更为轻松地识记这些较难的托福词汇。

1.2 项目介绍

该项目改编自经典小游戏飞机大战,玩家操纵小天使移动,发射爱心击中带有托福单词的小怪兽,用爱心治愈它们。游戏使用人脸识别技术与语音识别模块来达成。当游戏进行时,玩家需要指定人脸通过物体追踪来操纵小天使作为移动的对象。同时,玩家需要准确读出英文单词才能够发射爱心击中小怪兽并治愈它。若玩家一次性得到5分,则认为玩家获胜。

项目流程图

1.3 Library 介绍

1.3.1 Pygame

Pygame 是一个用于 SDL 多媒体库的 Python 包装模块。它包含允许您使用 SDLs 支持来播放光盘的 python 函数和类,音频和视频输出,键盘,鼠标和操纵 杆输入。在这个程序中,我们使用 pygame 来制作游戏的主界面。

1.3.2 OpenCV

开源计算机视觉库是在 BSD 许可下发布的它对学术和商业用途都是免费的。 OpenCV2 是为高效的计算机计算和实时应用而设计的。在这个程序中,我们使用 openCV2 来进行人脸识别与追踪,从而达成操纵小天使的作用。

我们使用 CascadeClassifier 函数来制定人脸识别器。CascadeClassifier 为 OpenCV 中 cv namespace 下用来做目标检测的级联分类器的一个类。该类中封装的目标检测机制,简而言之是滑动窗口机制+级联分类器的方式。

1.3.3 PIL

Python 映像库(缩写为 PIL)(在新版本中称为 Pillow)是 Python 编程语言的一个免费、开放源码的附加库,为 Python 解释器添加了图像处理功能。这个库支持许多文件格式,并提供强大的图像处理和图形功能。

1.3.4 Pyaudio

Pyaudio 主要有以下一些功能:提取特征——关于时域信号和频域信号的提取;训练并且使用分类器——监督学习,并用己有的训练集来进行训练;语音分割功能——按固定大小分割、静音检测、语音聚类、语音缩略图等进行分割;内容关系可视化——将语音信号映射到一个回归值。在本项目中,暂时只使用到了Pyaudio的语音录入功能。

1.3.5 Baidu-aip

百度语音识别库,可以将语音识别为文字,能够用于语音交互、语音内容分析、智能硬件、呼叫智能中心客服等等。通过调用接口,能够将人类语音中的词汇转换为计算机可读的输入,如按键、二进制编码或者字符序列等等。在本项目中,通过调用接口,将语音输入通过文件,转化为文本输出。

2 代码解释

2.1 游戏主界面

2.1.1 游戏主界面

首先,我们使用 pygame 搭建了游戏的主界面,我们使用 pygame 的内置函数确定了游戏主界面的大小、标题、图标、背景图片。

```
#初始化界面
pygame.init()
screen = pygame.display.set_mode((800,600))#屏幕大小
pygame.display.set_caption('Cupid VS TOFEL')
icon = pygame.image.load('ufo.png') #icon
pygame.display.set_icon(icon)
bgImg = pygame.image.load('1.png')#背景图片
```

我们使用 pygame 内置函数对游戏玩家操纵的 Cupid 和游戏得分显示进行了初始化,同时我们创造了 prevention ()函数,防止 Cupid 出界。

```
#Aircraft
playerImg = pygame. image. load('Cupid_now. png')
playerX = 400
playerY = 480

#score
score = 0
font1 = pygame. font. Font('freesansbold.ttf', 32)
```

我们定义了判断游戏胜负 check_is_win()与 check_is_over()的函数。当玩家获得 10 分,我们使用 screen.blit()函数显示"You Win!",并同时终止敌人移动;当敌人越过边界时,我们判定游戏失败,并使用 screen.blit()函数显示"Game over!"

到此,我们制作了游戏的主界面与主元素!

2.1.2 子弹

接下来我们创造了子弹类(即爱心),为了设定爱心击中怪兽,我们定义了distance()函数来衡量距离,当爱心与 TOFEL 怪兽的距离小于 30 时,我们认为爱心击中了 TOFEL 怪兽,并计得分+1,同时,怪兽被击中后会重新生成带有不同单词的新怪兽。

```
def distance(bx, by, ex, ey):

— wa = bx - ex

— wb = by - ey

— wreturn math. sqrt(a*a + b*b)
```

```
class Bullet():
→ def __init__(self):

— w self. img = pygame. image. load('heart_now.png')

 → self. x = playerX + 16
 → self.y = playerY - 10
 — × self. step = 10
 → def hit(self):
——wglobal score
 — ⊮ for e in enemies:
 \rightarrow \rightarrow \rightarrow if (distance(self. x, self. y, e. x, e. y) \langle 40 \rangle:
  →w →w →w bullets.remove(self)
 → → → → → e. reset()#秒投胎
bullets = []
def show bullets():
──wfor b in bullets:
 → screen. blit(b. img, (b. x, b. y))
—⊸wb.hit()
 — ₩ b. y -= b. step
— ⊮ if b. y < 0:
 → wbullets.remove(b)
```

2.1.3 小怪兽

我们创造了怪兽类,定义了他的移动与重置,并使用 random 函数使得他出现的位置随机。

```
class Enemy():
→ def __init__(self):
→ self. img = pygame. image. load("monster_now.png")
— → self. x = random. randint (100, 700)
\longrightarrow self. y = 0
— w self. step = random. randint(1, 2)
→ def reset(self):
TOFEL_word_enemy = TOFEL_words[random.randint(0,571)]
——→ image = image.resize((120, 106), Image. ANTIALIAS)
──wdraw = ImageDraw.Draw(image)
— → myfont = ImageFont. truetype ('arial. ttf', 18, encoding="arial")
— wimage. save ("monster_now" + ".png")

→ self. img = pygame. image. load("monster_now.png")
→ self. x = random. randint (100, 700)
\longrightarrowself. y = 0
enemies = []
for i in range(number_of_enemies):
— wenemies. append (Enemy ())
```

2.2 使用人脸识别操纵飞机(小天使)

首先,我们使用 openCV 中的 cv2. VideoCapture 函数读取玩家的内置摄像头。

```
frameWidth = 550
frameHeight = 350
cap = cv2.VideoCapture(0)
cap.set(3, frameWidth)
cap.set(4, frameHeight)
cap.set(10, 150)
```

随后,我们定义了人脸识别器,通过读取"haarcascade_frontalface_default.xml"文件,人脸识别器可以成功识别人脸。然后,我们通过读取玩家视频数据,将图片通过cv.COLOR_BGR2GRAY()将图片转为灰度图并使用人脸识别器进行识别,在人脸处标出方框,通过方框的位置制定飞机的x坐标,进行横向移动。

#人脸识别

faceCascade= cv2. CascadeClassifier("haarcascade_frontalface_default. xml")

2.3 生成敌人(托福小怪兽)

2.3.1 随机生成托福单词

```
f = open("TOFEL words.txt","r")
text = f.read()
TOFEL_words = text.split()
TOFEL_word_enemy = TOFEL_words[random.randint(0,571)]
```

自网络摘录托福核心词汇 570 个并保存 txt 文件,命名为"TOFEL words. txt"。 打开文件制成名称为"TOFEL_words"的 list,再使用 random. randint 随机取得一个单词。

2.3.2 生成托福小怪兽图片

```
image = Image.open('monster.png')
draw = ImageDraw.Draw(image)
draw.rectangle((40,350,578,450), fill = (255,235,205))
image.save("monster1" + ".png")
```

```
image = Image.open('monster1.png')
image = image.resize((120,106),Image.ANTIALIAS)
draw = ImageDraw.Draw(image)
myfont=ImageFont.truetype('arial.ttf',18,encoding="arial")
fillcolor = ImageColor.getrgb("black")
draw.text((16,65), TOFEL_word_enemy, font = myfont, fill = fillcolor)
image.save("monster_now" + ".png")
```

使用 PIL 包中 Image, ImageDraw, ImageFont, ImageColor 模块来实现图片处理。draw. rectangle 指定位置与颜色给图片添加一个杏色的框,使单词更加醒目。Image. resize 指定改变后图像的大小,ANTIALIAS 指生成图片质量最高;ImageFont. truetype 指定字体为 "arial"且大小为 18;ImageColor. getrgb 直接指定文字颜色为黑色。Draw. text 表示在图片上添加文字,括号中四个变量依次为文字位置、文字内容、字体设置、文字颜色。最后 image. save 保存为新的图片文件。

2.4 通过语音触发子弹(爱心)

2.4.1 语音输入

语音部分的程序主体思路为: 从用户端获得语音输入——将语音转化为文本 计入一个变量中——将该变量与选中的单词作对比——相同则发射子弹; 不同则 提示单词阅读错误; 识别失败则提示用户再次输入。

首先,从用户端获得语音输入,在这里采用的方法是:通过 pyaudio 获得用于的语音,设置好 16bit 位深、单声道与 16k 采样率,录音时长为 3s,最后将文件命名保存。最后,通过 open 函数开始录制语音,按单位写入文件,并将文件保存。

2.4.2 语音识别

```
# 读取文件

def get_file_content(filePath):

— with open(filePath, 'rb') as fp:

— wreturn fp.read()
```

```
APP_ID = '20280341'
API_KEY = 'G9s61o8AhulnIec8Vyg077K0'
SECRET_KEY = '6PFdo8H9d0jtUZS8oLgDo15XwNYybRGU'
client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)

# 识别本地文件
a = client.asr(get_file_content('TFWORD.pcm'), 'pcm', 16000, {
   'dev_pid': 1737,
})
```

通过调取百度 AIP 接口,读取语音文件的内容。并使用 asr 将文件内容识别为文字进行输出,参数分别为文件名与文件类型,采样频率,目标语言,"1737"即为将语音转为无标点的英语输出。

2.4.3 判断是否与单词相同

```
#輸出单词
word_half = a.get('result')
if type(word_half) == type(None):
    print("TRY AGAIN!")
else:
    word = ''.join(word_half)
    print(word)

#判断单词是否正确
    if word = TOFEL_word_enemy:
        bullets.append(Bullet())
else:
    print("WRONG WORD!")
```

由于默认返回是字典的形式,在这里单独返回的结果取出,并从列表形式转化为字符串的形式以便于与随机选中的 TOEFL 单词进行比较。首先考虑单词录入失败的问题,当单词录入失败,比如未收集到语音,或语音过于嘈杂无法识别时,返回的字典中不会出现'result'结果,即列表为空,此时设置让用户再次录入;当单词录入成功时,即比较单词与选定单词是否相同,若相同则发射子弹,若不相同则提示用户单词发音错误。

2.5 游戏主循环

游戏主循环中,我们调用了先前定义好的函数,并且通过键盘操纵实现了退出和启用语音识别的功能。

─ #游戏主循环

```
while 1:
— screen. blit (bgImg, (0, 0))
—>for event in pygame. event. get():
→ #键盘按下
 → if event.type == pygame.KEYDOWN:
___w__wif (event.key == pygame.K_SPACE):
__w__wcheck_words()
→ if (event.key == pygame.K_ESCAPE):
——ы——ы——ыpygame.quit()
— ы — ы — ы quit ()
\longrightarrow if (event. type == pygame. QUIT):
——⋈——⋈pygame.quit()
— ⇒ → auit()

—

success, img = cap. read()

\longrightarrow img = cv2. flip(img, 1)

→ imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
──Mfaces = faceCascade.detectMultiScale(imgGray, 1.1, 4)
—

for (x, y, w, h) in faces:
— show score()
—wcv2. imshow("Player", img)
\longrightarrow if cv2. waitKey(1) & 0xFF == ord('q'):
-----break

→ screen. blit (playerImg, (playerX, playerY))
——wprevention()
-----show_enemy()

→ show bullets()

→ check is win()

→ pygame. display. update()
```

3 局限与改进

3.1 局限性

人脸识别的精度不够,必须在较整洁的背景下进行游戏,否则容易产生误读, 且识别对象不够广泛。 语音输入前需要按空格键提示输入。物体追踪移动范围较大,可能导致距离设备较远不方便按空格键的问题。

语音输入、语音识别有一定时间间隔,较为影响游戏体验。

3.2 优化设计

提高人脸识别准确性。设想一是采用更多的人脸样本进行训练,防止误读、漏读的发生。设想二是采用物体追踪的技术实现多对象识别。

更换其他较为便捷的方式提示输入。设想一是使用激光笔等蓝牙连接设备远程连接电脑,给游戏腾出移动空间。设想二是指定动作提示输入,当玩家做出指定的肢体动作,经摄像头检测后自动识别,语音输入程序开始。

缩短语音输入、语音识别的时间间隔。更换其他更为可靠的语音识别包或加强电脑硬件设备。

4 小结

项目从生活出发,结合当下大热的托福考试单词与经典小游戏飞机大战,创造新的故事情境——小天使治愈托福小怪兽,实现经典再创造。项目总体达到预期要求的水平,在细节与游戏精度等方面略有不足。由于时间仓促,我们也未来得及掌握 Gi thub 网站的使用方法,但我们决定,结课后再对这个项目进行优化升级,届时打算上传 Gi thub 网站与大家共同交流改进。

同时非常感谢鲍杨老师不厌其烦的耐心指导!

5 描述各自的工作

王智慧:使用 pygame 搭建了游戏主界面、初始化了游戏的主要元素,如 Player、Bullet、Enemy 等类、使用 opencv 实现人脸识别以操纵玩家、撰写报告游戏主

界面、使用人脸识别操纵飞机、游戏主循环部分;录制 demo 视频。

朱瑞雯:尝试 google、bing、CMUsphinx、Azure之后,最终通过 Baidu-aip 实现语音输入、语音识别功能、将识别单词与选中单词比较的功能;撰写报告语音识别模块部分;录制 demo 视频

钱心悦:制作敌人图片,游戏背景等图像处理来美化游戏界面,撰写报告概要、 局限改进、小结部分,剪辑 demo 视频

6 参考文献

[1]https://www.bilibili.com/video/BV16K411W7x9?t=4614

[2]https://www.bilibili.com/video/BV1i741137rM/?p=23&t=234

[3]https://ai.baidu.com/

7 附录

import time, sys, random, pygame, math, os from PIL import Image,ImageDraw,ImageFont,ImageColor import cv2 from aip import AipSpeech import pyaudio import wave

t = time.gmtime()

#初始化界面
pygame.init()
screen = pygame.display.set_mode((800,600))#屏幕大小
pygame.display.set_caption('Cupid VS TOFEL')
icon = pygame.image.load('ufo.png') #icon
pygame.display.set_icon(icon)
bgImg = pygame.image.load('1.png')#背景图片

```
#人脸识别
faceCascade= cv2.CascadeClassifier("haarcascade frontalface default.xml")
frameWidth = 550
frameHeight = 350
cap = cv2.VideoCapture(0)
cap.set(3, frameWidth)
cap.set(4, frameHeight)
cap.set(10, 150)
#Aircraft
playerImg = pygame.image.load('Cupid now.png')
playerX = 400
playerY = 500
#score
score = 0
font1 = pygame.font.Font('freesansbold.ttf', 32)
def show_score():
    text = f"Scores:{score}"
    score render = font1.render(text, True, (255,255,255))
    screen.blit(score render, (10,10))
is over = False
font2 = pygame.font.Font('freesansbold.ttf',64)
def check_is_win():
    if score == 10:
         text = "You Win"
         render = font2.render(text, True, (255,0,0))
         screen.blit(render,(200,250))
         for e in enemies:
              e.step = 0
def check_is_over():
    if is over:
         text = "Game Over!"
         render = font2.render(text, True, (255,0,0))
         screen.blit(render,(200,250))
         bullets
font3 = pygame.font.Font('freesansbold.ttf',32)
# 读取文件
def get file content(filePath):
    with open(filePath, 'rb') as fp:
```

```
return fp.read()
def check words():
    #录音
    CHUNK = 1024
    FORMAT = pyaudio.paInt16
    CHANNELS = 1
    RATE = 16000
    RECORD SECONDS = 3
    WAVE OUTPUT FILENAME = "TFWORD.pcm"
    p = pyaudio.PyAudio()
    stream = p.open(format=FORMAT,
                     channels=CHANNELS,
                     rate=RATE.
                     input=True,
                     frames per buffer=CHUNK)
    frames = []
    for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
        data = stream.read(CHUNK)
        frames.append(data)
    stream.stop stream()
    stream.close()
    p.terminate()
    wf = wave.open(WAVE OUTPUT FILENAME, 'wb')
    wf.setnchannels(CHANNELS)
    wf.setsampwidth(p.get sample size(FORMAT))
    wf.setframerate(RATE)
    wf.writeframes(b".join(frames))
    wf.close()
    APP ID = '20280341'
    API KEY = 'G9s6lo8Ahu1nIec8Vyg077K0'
    SECRET KEY = '6PFdo8H9dOjtUZS8oLgDo15XwNYybRGU'
    client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
    # 识别本地文件
    a = client.asr(get_file_content('TFWORD.pcm'), 'pcm', 16000, {
```

'dev pid': 1737,

```
})
    #输出单词
    word half = a.get('result')
    if type(word half) == type(None):
         print("TRY AGAIN!")
         text1 word = "TRY AGAIN!"
         word1_render = font1.render(text1_word,True,(255,255,255))
         screen.blit(word1 render, (10,50))
    else:
         word = ".join(word half)
         print(word)
         text2 word = "The word you said:" + word
         word2 render = font1.render(text2 word, True, (255,255,255))
         screen.blit(word2 render, (10,50))
     #判断单词是否正确
         if word == TOFEL word enemy:
             bullets.append(Bullet())
         else:
             print("WRONG WORD!")
             print(TOFEL word enemy)
             text3 word = "WRONG WORD!"
             word3 render = font1.render(text3 word, True, (255,255,255))
             screen.blit(word3 render, (10,90))
#添加敌人
number of enemies = 1
f = open("TOFEL words.txt","r")
text = f.read()
TOFEL words = text.split()
TOFEL word enemy = TOFEL words[random.randint(0,571)]
image = Image.open('monster1.png')
image = image.resize((120,106),Image.ANTIALIAS)
draw = ImageDraw.Draw(image)
myfont=ImageFont.truetype('arial.ttf',18,encoding="arial")
fillcolor = ImageColor.getrgb("black")
draw.text((16,65), TOFEL word enemy, font = myfont, fill = fillcolor)
image.save("monster now" + ".png")
class Enemy():
    global TOFEL_word_enemy
    def init (self):
```

```
self.img = pygame.image.load("monster now.png")
         self.x = random.randint(150,650)
         self.y = 0
         self.step = random.randint(1, 2)
    def reset(self):
         TOFEL word enemy = TOFEL words[random.randint(0,571)]
         image = Image.open('monster1.png')
         image = image.resize((120,106),Image.ANTIALIAS)
         draw = ImageDraw.Draw(image)
         myfont = ImageFont.truetype('arial.ttf',18,encoding="arial")
         draw.text((16,65), TOFEL_word_enemy, font = myfont, fill = fillcolor)
         image.save("monster now" + ".png")
         self.img = pygame.image.load("monster now.png")
         self.x = random.randint(100,700)
         self.y = 0
enemies = []
for i in range(number of enemies):
    enemies.append(Enemy())
def distance(bx, by, ex, ey):
    a = bx - ex
    b = by - ey
    return math.sqrt(a*a + b*b)
class Bullet():
    def init (self):
         self.img = pygame.image.load('heart now.png')
         self.x = playerX + 16
         self.y = playerY - 10
         self.step = 10
    def hit(self):
         global score
         for e in enemies:
              if (distance(self.x, self.y, e.x, e.y) < 40):
                   bullets.remove(self)
                   e.reset()#秒投胎
                   score += 1
bullets = []
def show bullets():
    for b in bullets:
```

```
screen.blit(b.img,(b.x,b.y))
         b.hit()
         b.y -= b.step
         if b.y < 0:
              bullets.remove(b)
def show_enemy():
    global is_over
    for e in enemies:
         screen.blit(e.img, (e.x,e.y))
         e.y += e.step
         if e.y > 450:
              is_over = True
              enemies.clear()
def prevention():
    global playerX
    #防止飞机出界
    if playerX >850:
         playerX = 850
    if playerX < 0:
         player = 0
    #游戏主循环
while 1:
    screen.blit(bgImg,(0,0))
    for event in pygame.event.get():
         if event.type == pygame.QUIT:sys.exit()
         #键盘按下
         if event.type == pygame.KEYDOWN:
              if (event.key == pygame.K SPACE):
                  check_words()
              if (event.key == pygame.K_ESCAPE):
                  pygame.quit()
                  quit()
         if (event.type == pygame.QUIT):
              pygame.quit()
              quit()
    success, img = cap.read()
    img = cv2.flip(img, 1)
    imgGray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
```

```
faces = faceCascade.detectMultiScale(imgGray, 1.1, 4)
for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
    playerX = x + w//2 #还需根据画布再做调整
    playerY = 480
show_score()
cv2.imshow("Player",img)
if cv2.waitKey(1) & 0xFF == ord('q'):
    break
screen.blit(playerImg, (playerX, playerY))
prevention()
show_enemy()
show_bullets()
check_is_over()
check_is_win()
pygame.display.update()
```