ML leakage metrics

How bad could it get?

- Setup
- Most important terms used
- Population attack simple metric
- Reference attack correct but slow metric
- Wrap Up

- Setup
- Most important terms used
- Population attack simple metric
- Reference attack correct but slow metric
- Wrap Up

Setup

- Groups of 2
 - Different partners
 - Choose name and <u>write down</u>
 - o Requirements both
 - Other exercises pair programming

First Exercises

- For each exercise, three parts
- One group presents each part over <u>Zoom</u>
- Start with RED, then turn GREEN

Setup - cont

- Further exercises
 - Supplementary, only after all parts green
 - First 3 groups win a price

NN exercises

- If I really miscalculated your ML-foo
- Uses the ml_privacy_meter
- Things I would've liked to do but didn't have the time
- You're on your own :(
- Not sure we have the time to present it

Exercises

- Try as good as possible to make them reproducible
- Copy/paste code without shame no DRY today
- Append to the notebook, add markdown cells

Installation

First Exercise

- 1. Clone github repo
- 2. Start up jupyter
- 3. Install dependencies
- 4. Run 1-ml_load_data

https://go.epfl.ch/ml-2023

- Setup
- Most important terms used
- Population attack simple metric
- Reference attack correct but slow metric
- Wrap Up

Most important terms used

- Logit and sigmoid
- Confusion Matrix
- Receiver Operating Characteristic (ROC)
 - Area under the curve (AUROC)
- Random forest classifier
- Differential Privacy (DP)

Logit and Sigmoid function

Logit
$$x(p) = \log(p/1-p)$$

$$p = 0..1$$

$$x = -inf..inf$$
Probability
$$Sigmoid$$

$$p(x) = 1 / (1 + e^{-x})$$
Logit

© 2023 by Linus Gasser for C4DT / EPFL

Confusion Matrix

		Predicted condition		
	Total population=	Positive (PP)	Negative (PN)	Confusion matrix - Wikipedia
Actual condition	Positive (P)	True positive (TP),	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power TP/P = 1 - FNR
	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out FP/N = 1 - TNR

© 2023 by Linus Gasser for C4DT / EPFL

Receiver Operating Characteristic (ROC)

Curve for

- Binary classifiers with a threshold
- Shows performance of model

Area under the curve (AUROC)

- Single-number measurement
- Indication of performance for comparisons
- Too much optimisation -> overfitting

ROC Drawing

Input

- Confidence of model for each case
 - o Probability, between 0..1
 - 0 -> negative case
 - 1 -> positive case
- list of corresponding labels, e.g., {0,1}ⁿ

ROC Types

© 2023 by Linus Gasser for C4DT / EPFL

Random Forest Classifier

Input

labelled data

Model

Many decision trees trained on the data

Output

- Voting of the trees on the given data
- \sum of all outputs = 1

Differential Privacy - let's add some noise

APPLE'S 'DIFFERENTIAL PRIVACY' IS ABOUT COLLECTING YOUR DATA—BUT NOT YOUR DATA

Did you cheat in your tax reports?

Differential Privacy

Good

- Allows for plausible denial
 - My record seems to be part of it, but it's not
- Reduces leakage of privacy data

Bad

Reduces accuracy of models

How

- Chose a privacy budget *epsilon*
 - high epsilon (>5) -> less privacy
 - low epsilon (0.1-2) -> more privacy
- In RandomForest, randomly swap branches

- Setup
- Most important terms used
- Population attack simple metric
- Reference attack correct but slow metric
- Wrap Up

Idea

- Treat the training cases as parameters INSIDE of the model
 - The model has been trained using these
- Treat the test cases as parameters OUTSIDE of the model
 - The model never learnt these
- Compare the evaluation of these cases
 - INSIDE cases == 1
 - OUTSIDE cases == 0
 - Is there a difference between the two?

Measurements with potential leakage

Distribution of logit values for train and test cases

ROC of the potential leakage to population attacks

- Setup
- Most important terms used
- Population attack simple metric
- Reference attack correct but slow metric
- Wrap Up

Idea

- Start with a list of training examples whose leakage we want to measure
- Create different OUTSIDE models for each case
 - Measure mean and standard deviation for a case
- Measure the predicted confidence of the case in the INSIDE model
- Calculate the probability of the OUTSIDE result < the INSIDE result

The good and the bad

Good

- Actually measuring outcomes
- Using different values
- Allows for good comparisons

Bad

- Very computation intensive
- Only works for simple algorithms
- Difficult to do for 1000s of 1GB images in a CNN

- Setup
- Most important terms used
- Population attack simple metric
- Reference attack correct but slow metric
- Wrap Up

The Problem

- Training an ML model represents your data
- If the data is private / secret, it can be leaked
- Very bad leakage: retrieve chat text
- Less bad leakage: inference of IN and OUT cases

How to measure

Population attack measurement

- Simple and fast
- Allows to compare pipelines qualitatively

Reference attack measurement

- Slow, but more accurate
- Compare pipelines quantitatively

Protecting

Differential Privacy

- Add some noise to the training data
- Trade-off between leakage and accuracy
 - fairness/disparate impact
 - DP widens disparities in performance between population groups
 - arbitrariness of decisions
 - decisions of some inputs depend fully on the randomness in training

Links

Code

- For simple models
 - o DiffPrivLib
- For neural networks
 - o <u>ml privacy meter</u> measurements for neural networks
 - o <u>Opacus</u>

Papers

Membership Inference Attacks From First Principles