## 30. Методы типа Рунге-Кутты. Примеры.

Формулировка задачи Коши для ДУ 1-го порядка: Дано ОДУ первого порядка, разрешенное относительно производной:  $\dot{y} = f(x,y)$  (1). Необходимо найти решение (1), удовлетворяющее начальному условию  $y(x_0) = y_0$  (2). То есть, в задаче Коши необходимо найти кривую y(x), проходящую через заданную точку  $(x_0, y_0)$ .



Решение задачи Коши является частным решением (1) при условии (2). Достаточные условия существования и единственности задачи Коши содержатся в следующей теореме:

Теорема 1: Пусть функция f(x,y) - правая часть ДУ (1) - непрерывна вместе со своей частной производной  $\frac{\partial f(x,y)}{\partial y}$  в некоторой области D на плоскости  $\{x, y\}$ . Тогда при любых начальных значениях  $\{x_0, y_0\} \in D$  задача Коши (1) - (2) имеет единственное решение y(x).

При выполнении условий теоремы через точку  $(x_0, y_0)$  проходит единственная кривая.

Метод Рунге-Кутта 1-го порядка (Метод Эйлера): Рассмотрим задачу Коши  $\acute{y}=f(x,y),\ a\leq x\leq b;\ y(a)=y_0.$  Зададим равномерную сетку:  $x_i=a+i\cdot h,\$ где  $i=\overline{0,n}.$  Введем обозначения  $y(x_i)=y_i.$  Тогда имеем вычислительную формулу для метода Рунге-Кутта 1-го порядка:  $y_{i+1}=y_i+h\cdot f(x_i,y_i),\$ где  $i=\overline{0,n-1}.$  Данная формула позволяет, начиная от начального условия  $(x_0,y_0)$  найти последовательно величины  $y_1,y_2,...,y_n$  с шагом h и, таким образом, решить задачу Коши.

**Погрешность метода:**  $\varepsilon = \max_{i=\overline{0,n}} |y(x)-y_i| \le e^{L(b-a)} (b-a) \frac{M_2}{2} \cdot h$ , где y(x) - точное решение,  $y_i$  - численное решение,  $L = \max_{x \in [a;b]} |f_y'|$ ,  $M_i = \max_{x \in [a;b]} |y^{(i)}(x)|$ . Метод Эйлера - метод первого порядка точности.

Метод Рунге-Кутта 2-го порядка точности: На равномерной сетке имеем формулу Рунге-Кутта второго порядка точности:  $y_{i+1} = y_i + h \cdot f(x_i + \frac{h}{2}, y_i + \frac{h}{2} \cdot f(x_i, y_i))$  (3) .

Погрешность метода:  $\overline{\varepsilon} \sim (b-a)M_3h^2$ .

<u>Метод Рунге-Кутта 4-го порядка точности:</u> Вычислим интеграл в (3) по формуле Симпсона. Получим вычислительную формулу:

$$\begin{cases} k_1 = h \cdot f(x_i, y_i) \\ k_2 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{1}{2}k_1(x_i, y_i)) \\ k_3 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{1}{2}k_2(x_i, y_i)) \\ k_4 = h \cdot f(x_i + h, y_i + k_3(x_i, y_i)) \\ y_{i+1} = y_i + \frac{1}{6} [k_1(x_i, y_i) + 2k_2(x_i, y_i) + 2k_3(x_i, y_i) + k_4(x_i, y_i)] \end{cases}$$

Погрешность метода:  $\overline{\varepsilon} \sim (b-a)M_5h^4$ 

Схемы Рунге-Кутта имеют ряд достоинств:

- 1. Все они (кроме метода Эйлера) имеют хорошую точность;
- 2. Они являются явными, то есть значения  $y_{i+1}$  вычисляются по ранее найденным значениям  $y_1, y_2, \dots, y_i$ ;
- 3. Схемы допускают введение переменного шага h;

Источник: http://orloff.am.tpu.ru/chisl\_metod\_labs\_2/Lab2/teoriya.htm