Part 1 公式與定義總整理

(1) Series, Integral, and Transform (非常重要)

把握不同 transform 之間的「關聯性」,多比較彼此之間相同或相異的地方

	T (a c) l [∞] -st a c) t
(1) Laplace Transform	$L\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$
(2) Fourier series (standard form)	interval: $x \in [-p, p]$
	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{p} x + b_n \sin \frac{n\pi}{p} x \right),$
	$a_0 = \frac{1}{p} \int_{-p}^{p} f(x) dx, \qquad a_n = \frac{1}{p} \int_{-p}^{p} f(x) \cos \frac{n\pi}{p} x dx,$
	$b_n = \frac{1}{p} \int_{-p}^{p} f(x) \sin \frac{n\pi}{p} x dx$, a_0, a_n, b_n : Fourier coefficients
(2-1) Fourier series	interval: $x \in [0, L]$
(half range extension	將 Fourier series 的 p 變成 $L/2$
form)	$\frac{1}{p}\int_{-p}^{p}$ 變成 $\frac{2}{L}\int_{0}^{L}$
(3) Fourier cosine series (cosine series)	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi}{p} x$
	$a_0 = \frac{2}{p} \int_0^p f(x) dx, \qquad a_n = \frac{2}{p} \int_0^p f(x) \cos \frac{n\pi}{p} x dx$
	適用情形:
	(1) interval: $x \in [-p, p]$, $f(x) = f(-x)$
	(2) interval: $x \in [0, p]$ (half range extension 時)
(4) Fourier sine series (sine series)	$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{p} x \qquad b_n = \frac{2}{p} \int_0^p f(x) \sin \frac{n\pi}{p} x dx$
	適用情形:
	(1) interval: $x \in [-p, p], f(x) = -f(-x)$
	(2) interval: $x \in [0, p]$ (half range extension 時)

(2) 和 Laplace Transform 相關的公式 (很重要)

Laplace transform	$L\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$
Differentiation $L\{f^{(n)}(t)\} =$	$s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots-sf^{(n-2)}(0)-f^{(n-1)}(0)$
Multiplication by t $L\{t^n f(t)\} =$	$(-1)^n \frac{d^n}{ds^n} F(s)$
Integration	$L\left\{\int_0^t f\left(\tau\right)d\tau\right\} = \frac{F(s)}{s}$
Multiplication by exp	$L\{e^{at}f(t)\} = F(s-a)$
Translation (I)	$L\{f(t-a)u(t-a)\} = e^{-as}F(s)$
Translation (II)	$L\{g(t)u(t-a)\} = e^{-as}L\{g(t+a)\}$
Convolution property	convolution: $y(t) = f(t) * g(t) = \int_0^t f(\tau)g(t-\tau)d\tau$ $L\{y(t)\} = F(s)G(s)$
Periodic input If $f(t) = f(t+T)$	$L\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$
<i>L</i> {1} =	1/s
$L\{u(t)\} =$	1/s
$L\{t^n\}=$	$\frac{n!}{s^{n+1}}$
$L\{\exp(at)\} =$	$\frac{1}{s-a}$
$L\{\sin(kt)\} =$	$\frac{k}{s^2 + k^2}$
$L\{\cos(kt)\} =$	$\frac{s}{s^2 + k^2}$
$L\{\sinh(kt)\} =$	$\frac{k}{s^2 - k^2}$

$L\{\cosh(kt)\} =$	$\frac{s}{s^2 - k^2}$
$L\{u(t-t_0)\} =$	$\frac{e^{-t_0s}}{s}$
$L\{\delta(t)\}=$	1

(3) Chapter 7 的相關公式與定義

Step function	u(t-a) = 1 for $t > a$, $u(t-a) = 0$ for $t < a$,
convolution (旋積) 很重要,一定要會	$f(t)*g(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
10年文 元文日	
Integration for $\delta(t-t_0)$	$\int_{-\infty}^{\infty} \delta(t - t_0) dt = 1$
Sifting property for	[q f(4) S(4 4) d4 f(4)
$\delta(t-t_0)$	$\int_{p}^{q} f(t) \delta(t - t_0) dt = f(t_0)$
Relation between	$\int_{0}^{t} S(z,t) dz = u(t,t) \qquad du(t,t) = S(z,t)$
$\delta(t-t_0)$ and $u(t)$	$\int_{-\infty}^{t} \delta(\tau - t_0) d\tau = u(t - t_0) \qquad \frac{d}{dt} u(t - t_0) = \delta(\tau - t_0)$

(4) Chapter 11 的相關公式與定義

inner product	$(f_1, f_2) = \int_a^b f_1(x) f_2^*(x) dx \qquad *: conjugate$
orthogonal	$(f_1, f_2) = \int_a^b f_1(x) f_2^*(x) dx = 0$
square norm	$ f(x) ^2 = (f(x), f(x)) = \int_a^b f(x) f^*(x) dx = \int_a^b f(x) ^2 dx$
norm	$ f(x) = \sqrt{(f(x), f(x))} = \sqrt{\int_a^b f(x) f^*(x) dx} = \sqrt{\int_a^b f(x) ^2 dx}$
inner product with weight function	$(f_1, f_2) = \int_a^b f_1(x) f_2^*(x) w(x) dx$
orthogonal with respect to a weight function	$(f_1, f_2) = \int_a^b f_1(x) f_2^*(x) w(x) dx = 0$
normalize	$\psi(x) \qquad \qquad v(x) = \frac{\psi(x)}{\ \psi(x)\ } \qquad \qquad \stackrel{\text{iff}}{=} : \ v(x)\ = 1$

orthogonal set	$(\phi_m(x), \phi_n(x)) = 0$ for $m \neq n$, no constraint for $(\phi_n(x), \phi_n(x))$
orthonormal set	$(\phi_m(x),\phi_n(x)) = 0$ for $m \neq n$, $(\phi_n(x),\phi_n(x)) = 1$
orthogonal series expansion	$f(x) = \sum_{n=0}^{\infty} c_n \phi_n(x) \text{where} c_n = \frac{\left(f(x), \phi_n(x)\right)}{\left(\phi_n(x), \phi_n(x)\right)} \text{inner products}$
even and odd	If $f(x)$ is even, $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$
	If $f(x)$ is odd, $\int_{-a}^{a} f(x) dx = 0$

(5) 其他重要公式

cos(a+b) =	$\cos(a)\cos(b) - \sin(a)\sin(b)$
$\sin(a+b) =$	$\sin(a)\cos(b) + \cos(a)\sin(b)$
$\cos(a)\cos(b) =$	$[\cos(a+b)+\cos(a-b)]/2$
$\sin(a)\sin(b) =$	$[-\cos(a+b) + \cos(a-b)]/2$
$\sin(a)\cos(b) =$	$[\sin(a+b) + \sin(a-b)]/2$
cos(2a) =	$\cos^2(a) - \sin^2(a)$ or $1 - 2\sin^2(a)$ or $2\cos^2(a) - 1$
$\sin(2a) =$	$2\sin a \cos a$
$\cosh x =$	$\frac{e^x + e^{-x}}{2}$
sinhx =	$\frac{e^x - e^{-x}}{2}$
sinh(0) =	0
cosh(0) =	1
$\left \frac{d}{dx} \cosh x \right _{x=0} =$	0

公式雖然多,但是把握彼此之間的關係,注意相同或相異之處,就可以較容易的記起來

Part 2 「解法」總整理

(—) Variation of Parameters (Matrix) for Particular Solution

Suitable for any linear DE

$$y_p = u_1 y_1 + u_2 y_2 + \dots + u_n y_n$$
 where $u'_k(x) = \frac{W_k}{W}$

$$W = \begin{vmatrix} y_1 & y_2 & y_3 & \cdots & y_n \\ y'_1 & y'_2 & y'_3 & \cdots & y'_n \\ y''_1 & y''_2 & y''_3 & \cdots & y''_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & y_3^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix}$$

 W_k : replace the k column of W by $\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ f(x) \end{bmatrix}$, note: $f(x) = \frac{g(x)}{a_n(x)}$

節例: 講義 233, 235, 237, 242 頁

(二) Cauchy Euler Equation

Homogeneous

$$a_n x^n y^{(n)}(x) + a_{n-1} x^{n-1} y^{(n-1)}(x) + \dots + a_1 x y'(x) + a_0 y = 0$$

$$\Rightarrow a_n \frac{m!}{(m-n)!} + a_{n-1} \frac{m!}{(m-n+1)!} + \dots + a_1 x \frac{m!}{(m-1)!} + a_0 = 0$$

Nonhomogeneous

(方法一) 使用 Variation of Parameters 範例: 講義 259 頁

(方法二) Set
$$t = \ln x$$
, $\frac{dy}{dx} = \frac{1}{x} \frac{dy}{dt}$, $\frac{d^2y}{dx^2} = \frac{1}{x^2} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right)$ 範例: 講義 261 頁

(三) Laplace transform 解 DE 的方法

方法:

DE → Laplace transform → 計算 → 分解因式(若需要的話) → inverse Laplace transform

範例: 講義 332,333 頁

主要精神:把微分簡化為乘法

$$a_n y^{(n)}(x) + a_{n-1} y^{(n-1)}(x) + \dots + a_1 y'(x) + a_0 y = g(x)$$
 \longrightarrow $P(s)Y(s) = Q(s) + G(s)$

P(s): 即 auxiliary function, Q(s): 來自 initial conditions

計算 Q(s) 的快速法

參考講義 334,335 頁

• 分解因式的方法 (Cover up method)

$$\frac{K(s)}{(s-a_1)(s-a_2)\cdots(s-a_n)^2\cdots\cdots(s-a_N)} = \frac{A_1}{s-a_1} + \frac{A_2}{s-a_2} + \cdots + \frac{A_n + B_n(s-a_n)}{(s-a_n)^2} + \cdots + \frac{A_N}{s-a_N}$$

其中 $a_1, a_2,, a_N$ 互異, 分子的 order 要小於分母的 order

$$\exists I \quad A_n = \frac{K(s)}{(s-a_1)(s-a_2)\cdots(s-a_{n-1})(s-a_n)(s-a_{n+1})\cdots(s-a_N)}\bigg|_{s=a_n}$$

$$B_{n} = \frac{d}{ds} \frac{K(s)}{(s - a_{1})(s - a_{2}) \cdot \dots \cdot (s - a_{n-1})(s - a_{n+1}) \cdot \dots \cdot (s - a_{N})} \bigg|_{s = a}$$

(四) Laplace transform 解多個 DEs 的方法

方法: DE → Laplace transform → 聯立方程式 → 消掉其他應變數,只剩一個應變數

→ 分解因式(若需要的話) → inverse Laplace transform → 解其他應變數

範例: 講義 381,385 頁

(五) 用 Fourier Series 來解 Particular Solutions

精神:當 f(t) = f(t+2p) 時,用 Fourier series, Furier cosine series, 或 Fouries sine series

將
$$f(t)$$
 表示成 $\cos\left(\frac{n\pi}{p}t\right)$, $\sin\left(\frac{n\pi}{p}t\right)$ 的 linear combination

流程: 見講義 462-463 頁

節例: 講義 464 頁

(六) Partial Differential Equations 的解法 (一)

用 Separation of Variables

精神: 例如當 independent variables Ax and Yx 時,

假設 u(x,y) = X(x)Y(y),代入原式

使得 PDE ── ODE

流程: 7 個 Steps, 講義 477-479 頁 (非常重要, 請熟悉)

注意: (1) 其中 Steps 3, 4, 5 要分成不同的 cases 來解

(2) 經常把 $d_1e^{2\alpha x}+d_2e^{-2\alpha x}$ 表示成 $c_4\cosh(2\alpha x)+c_5\sinh(2\alpha x)$

Part 3 補充

同學們若覺得以上的整理,還漏掉哪些公式、定義、或解法,就在這邊補充吧!