Convergence of Cosmological N-body Simulations **Aaron Ouellette** May 4, 2022

Cosmological Simulations

- **Linear** structure formation (early times or large scales) very easy to predict analytically
- Non-linear structure (late times, small scales) practically impossible without direct simulation
 - → Need very large N-body simulations to study anything < ~10 Mpc

IllustrisTNG collaboration

Villaescusa-Navarro+ 2021

Initial Conditions

Use info from CMB to generate initial conditions

Image from lecture by Alexander Knebe

- Zel'dovich Approximation (ZA) only linear order
- Second-order Lagrangian perturbation theory (2LPT)

Generate initial particle displacements and velocities from an initial power spectrum

Discretization Parameters

- Number of particles (N) and box length (L) directly control the mass resolution (m_p) of the simulation
 - Computational cost directly related to N
 - Trade-off between needing large L and small m_n

- Softening length (ϵ) very important to avoid artificial close encounters, but puts limit on length resolution
 - Typically specified as a fraction of $L/N^{1/3}$

Gravitational softening in GADGET (Springel+ 2021)

Simulation Runs

Simulations run with GADGET-4

DM only - no hydro

Assume Planck 2018 cosmology ar same random seed for each run

Simulation outputs: particle snapshots and halo catalogs (FoF and subhalos)

Table 1. Run parameters of the N-body simulations. Parameters that are not listed (e.g. the cosmology) are listed in the text and are kept constant between all of the runs.

Run #	$L(h^{-1} \text{ Mpc})$	N	$m_p(h^{-1}~{\rm M}_\odot)$	IC type	$\epsilon~(L/N^{1/3})$	$\epsilon \ (h^{-1} \ \mathrm{kpc})$
1	256	64^{3}	5.6×10^{12}	2LPT	1/42	95
2	256	128^{3}	7.0×10^{11}	2LPT	1/42	48
3	256	256^{3}	8.7×10^{10}	2LPT	1/42	24
4	256	512^{3}	1.1×10^{10}	2LPT	1/42	12
5	256	64^{3}	5.6×10^{12}	ZA	1/42	95
6	256	128^{3}	7.0×10^{11}	ZA	1/42	48
7	256	256^{3}	8.7×10^{10}	ZA	1/42	24
8	256	256^{3}	8.7×10^{10}	2LPT	1/200	5
9	256	256^{3}	8.7×10^{10}	2LPT	1/67	15
10	256	256^{3}	8.7×10^{10}	2LPT	1/29	35
11	256	256^{3}	8.7×10^{10}	2LPT	1/22	45
13	512	256^{3}	7.0×10^{11}	2LPT	1/42	48
14	128	256^{3}	1.1×10^{10}	2LPT	1/42	12
15	64	256^{3}	1.4×10^{9}	2LPT	1/42	6

Summary Statistics

- Power spectra
 - Compare to predictions using LSSTDESC Core Cosmology Library
- Correlation functions

- Halo mass functions (HMFs)
 - Compare to Press-Schechter
 HMF
- Halo density profiles
 - Fit to NFW profile

Results: Mass Resolution

Power spectra

HMFs

Results: Initial Conditions

0.2

-0.2

-0.4

2LPT ZA

 10^{-1}

 $N = 64^3$

10°

HMFs

Results: Softening Length

-0.20 10⁻¹

10°

k, h Mpc⁻¹

10¹

Conclusions

- Parameter choices for cosmological simulations:
 - Use 2LPT instead of ZA to generate initial conditions
 - N and L directly affect the regimes the simulation can probe, secondary concern:
 accuracy
 - Softening length should usually be ~ 1/40 to 1/30 x mean interparticle separation

 For current and upcoming surveys, huge computational effort is required to produce simulations that can be compared to observations