Problems for Lecture 4

2.the eigenvalues of A are 2,1 and the corresponding eigenvectors are $[1,1]^T$ and $[-2,1]^T$ respectively.

the eigenvalues of A^{-1} are $\frac{1}{2},-1$ and the corresponding eigenvectors are $[1,1]^T$ and $[-2,1]^T$ respectively.

 A^{-1} has the <u>same</u> eigenvectors as A. When A has eigenvalues λ_1 and λ_2 its inverse has eigenvalues $\frac{1}{\lambda_1}$ and λ_2

11.The eigenvalues of A equal the eigenvalues of A^T . This is because $det(A-\lambda I)$ equals $det(A^T-\lambda I)$. That is true because $det[(A-\lambda I)^T]=det(A^T-\lambda I)$.

15.(a)

$$A = egin{bmatrix} 1 & 2 \ 0 & 3 \end{bmatrix}$$

computing the eigenvalues of A, we get 1,3 (actually we do not need to compute, because it is a upper triangular matrix). Then computing the eigenvectors respectively, we gets $[1,0]^T$ and $[1,1]^T$. Hence we know

$$\Lambda = egin{bmatrix} 1 & 0 \ 0 & 3 \end{bmatrix} \qquad X = egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} \qquad X^{-1} = egin{bmatrix} 1 & -1 \ 0 & 1 \end{bmatrix}$$

(b) If $A=X\Lambda X^{-1}$ then $A^3=X\Lambda^3 X^{-1}$ and $A^{-1}=X\Lambda^{-1}X^{-1}$