

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/13
Paper 1 Pure Mathen	natics 1 (P1)	Octo	ober/November 2017
			1 hour 45 minutes
Candidates answer or	the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

xceeds 3000. Calculate the least possible value of n .	[4
	••••••
	••••••

d	listinct points.
••	
•	
• •	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
• •	

Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $	Find the term inde	•	, ((x)	
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $		••••••	•••••		•••••
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $		•••••	•••••		
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $			•••••		•••••
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$		•••••	•••••	•••••	
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					•••••
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
		Find the value of α	\imath for which there	e is no term indep	endent of x in the	e expansion of
		Find the value of α				e expansion of
		Find the value of a				e expansion of
		Find the value of a				e expansion of
		Find the value of a				e expansion of
		Find the value of a				e expansion of
		Find the value of a				e expansion of
		Find the value of a				
				$(1+ax^2)\left(\frac{2}{x}-3x\right)^6$		
				$(1+ax^2)\left(\frac{2}{x}-3x\right)^6$		
				$(1+ax^2)\left(\frac{2}{x}-3x\right)^6$		
				$(1+ax^2)\left(\frac{2}{x}-3x\right)^6$		
				$(1+ax^2)\left(\frac{2}{x}-3x\right)^6$		
				$1 + ax^2 \left(\frac{2}{x} - 3x\right)^6$		
				$1 + ax^2 \left(\frac{2}{x} - 3x\right)^6$		
				$1 + ax^2 \left(\frac{2}{x} - 3x\right)^6$		
				$1 + ax^2 \left(\frac{2}{x} - 3x\right)^6$		
				$1 + ax^2 \left(\frac{2}{x} - 3x\right)^6$		

value of k f	for which f i	s a decreas	sing funct	ion.	,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		nt. Find the la
••••••		· • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••
			•••••		•••••	•••••		
•••••		•••••	•••••	•••••	•••••	••••••	•••••	
•••••		•••••	•••••		•••••	•••••		
					•••••			
•••••		•••••			•••••	•••••		
								•••••
•••••		· • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	•••••	••••••	•••••
			••••••	••••••	•••••	••••••	•••••	
•••••					•••••	••••••		
					•••••	••••••		
•••••					•••••	••••••		

l)	Snow that the equation -	$\frac{\cos \theta + 4}{\sin \theta + 1} + 5\sin \theta - 5 = 0 \text{ may be expressed as } 5\cos^2 \theta - \cos \theta - 4$	i = 0. [3]
			•••••
			•••••
			•••••
			••••••
			•••••
			•••••
			••••••
			••••••
			•••••
			•••••

		$\cos \theta + 4$	ГА		
(ii)	Hence solve the equation	$\frac{\cos \theta + 4}{\sin \theta + 1} + 5\sin \theta - 5 = 0 \text{ for } 0^{\circ} \leqslant \theta \leqslant 360^{\circ}.$	[4]		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		

The functions f and g are defined by

$$f(x) = \frac{2}{x^2 - 1} \text{ for } x < -1,$$

$$g(x) = x^2 + 1 \text{ for } x > 0.$$

i)	Find an expression for $f^{-1}(x)$.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

			••••••			•••••				••••••
						•••••				
•••••	••••••	••••••	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •
•••••	••••••	•	••••••	••••••	••••••	•••••		•	••••••	• • • • • • • • • • • • • • • • • • • •
						•••••				
				•••••		•••••			•••••	
•••••			••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •			•••••	
•••••	•••••		••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••		••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •			•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••••	••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
						•••••				
			••••••	•••••	••••••	•••••			•••••	• • • • • • • • • • • • • • • • • • • •
				•••••	•••••	•••••	•••••	•••••	•••••	

7

The diagram shows a rectangle ABCD in which AB = 5 units and BC = 3 units. Point P lies on DC and AP is an arc of a circle with centre B. Point Q lies on DC and AQ is an arc of a circle with centre D.

(1)	Show that angle $ABP = 0.6435$ radians, correct to 4 decimal places.	.1]
		•••
		•••
(ii)	Calculate the areas of the sectors BAP and DAQ .	[3]
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••

		• • • • • • • • • • • • • • • • • • • •
		
(111)	Calculate the area of the shaded region.	[3]
		• • • • • • • • • • • • • • • • • • • •
		•••••
		• • • • • • • • • • • • • • • • • • • •

8

The diagram shows parts of the graphs of y = 3 - 2x and $y = 4 - 3\sqrt{x}$ intersecting at points A and B.

(i)	Find by calculation the x -coordinates of A and B .	[3]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

•••••
••••••

9	Relative to an	origin O ,	the position	vectors of the	points A ,	B and C a	are given l	Эγ

$$\overrightarrow{OA} = \begin{pmatrix} 8 \\ -6 \\ 5 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -10 \\ 3 \\ -13 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}.$$

A fourth point, D, is such that the magnitudes $|\overrightarrow{AB}|$, $|\overrightarrow{BC}|$ and $|\overrightarrow{CD}|$ are the first, second and third terms respectively of a geometric progression.

Find the magnitudes $ \overrightarrow{AB} $, $ \overrightarrow{BC} $ and $ \overrightarrow{CD} $.	[5]

•••••

1)	Find, in terms of a and b , the non-zero value of x for which the curve has a stationary podetermine, showing all necessary working, the nature of the stationary point.

It is now given that the at $x = 1$ is 9. Find $f(x)$			[6]
	•••••	•••••	 •••••

11

(i)

(ii)

The diagram shows the curve $y = (x - 1)^{\frac{1}{2}}$ and points A(1, 0) and B(5, 2) lying on the curve.

Find the equation of the line AB, giving your answer in the form $y = mx + c$.	[2]
	•••••
	•••••
	•••••
Find, showing all necessary working, the equation of the tangent to the curve which is AB .	parallel to [5]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

(iii)	Find the perpendicular distance between the line AB and the tangent parallel to AB . Give your answer correct to 2 decimal places. [3]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.