Review for Thermodynamics Free Response

	Standard Fre Formation	e Energies n at 298 K	of	According to the Accord
Substance	ΔG° , 298 K, kJ mol ⁻¹		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**************************************
$C_2H_4Cl_2(g)$	-80.3			
$C_2H_5Cl(g)$	-60.5			
HCl(g)	-95.3			
$\text{Cl}_2(g)$	0			

Average Bond Dissociation Energies at 298 K

	Energies at 250 K		
Bond	Energy, kJ mol-1		
C-H	414		
C-C	347		
C-Cl	377		
Cl-Cl	243		
H-Cl	431		
	C-H C-C C-Cl Cl-Cl	Bond Energy, kJ mol ⁻¹ C-H 414 C-C 347 C-Cl 377 Cl-Cl 243	Bond Energy, kJ mol ⁻¹ C-H 414 C-C 347 C-Cl 377 Cl-Cl 243

The tables above contain information for determining thermodynamic properties of the reaction below.

$$C_2H_5Cl(g) + Cl_2(g) \rightarrow C_2H_4Cl_2(g) + HCl(g)$$

Calculate the ΔH° for the reaction above, using the table of average bond dissociation

2 Calculate the ΔS° for the reaction at 298 K, using data from either table as needed. AG= (-95.3+-80.3) = (-60.5) = -115,1 Kg

$$\Delta G = \Delta H + \Delta S T - I/S, I = (-15I) + \Delta S (298)$$
The combustion of carbon monoxide is represented by the equation above.

Determine the value of the standard enthalpy change, ΔH°_{rxn} for the combustion of CO_(g) at 298 K using the following information.

$$C(s) + \frac{1}{2}O_{2}(g) \to CO(g) \qquad \Delta H^{2}_{298} = -110.5 \text{ kJ mol}^{-1}$$

$$C(s) + O_{2}(g) \to CO_{2}(g) \qquad \Delta H^{2}_{298} = -393.5 \text{ kJ mol}^{-1}$$

$$2CO \qquad + O_{2} \qquad 2CO_{2} \qquad + O_{2} \qquad + O$$

Review for Thermodynamics Free Response

Substance	S° ₂₉₈ (J mol ⁻¹ K ⁻¹)		
CO(g)	197.7		
$CO_{2(g)}$	213.7		
$O_2(g)$	205.1		

Determine the value of the standard entropy change, ΔS°_{rxn} , for the combustion of CO(g) at 298 K using the information in the following table.

298 K using the information in the following table. AS = (2.213.7) - [(2.197.7) + (205.1)]427.4 - 600.5 = [-173.1]

Determine the standard free energy change, ΔG°_{rxn} , for the reaction at 298 K. Include units with your answer.

AG = -566 - (-,1731x298) -566 - -51.6 = -514.4 KJ

6 Is the reaction spontaneous under standard conditions at 298 K? Justify your answer.

yes, it is sence DG is negative

7. $3N_2O(g) + 2NH_3(g) \rightarrow 4N_2(g) + 3H_2O(g) \Delta H_{rxn} = -879.6 \text{ kJ}$

What is the heat of formation for N_2O in kJ/mole? (heats of formation: $NH_3 = -45.9$ kJ/mole and $H_2O = -241.8$ kJ/mole)?

$$-879.6 = (3, -241.8) - [(3x) + (2 - 45.9)$$

$$-154.2 = -3x + 91.8$$

$$-246 = -3x$$

$$x = 82 \times 5$$