1. Teoria

Wahadło podwójne to wahadło matematyczne zawieszone na drugim wahadle matematycznym. Jego schemat pokazuje rys. 1.

Rysunek 1: Schemat wahadła

Wahadło opisuje 5 parametrów: masy m_1 i m_2 , długości l_1 i l_2 oraz przyśpieszenie ziemskie g. Można jednak zmniejszyć ich ilość podstawiając:

$$A = \frac{m_1}{m_2} \qquad B = \frac{l_2}{l_1} \qquad C = \frac{g}{l_1} \tag{1}$$

Stan wahadła opisują cztery parametry: kąty odchylenia od pionu φ_1 i φ_2 oraz prędkości kątowe ω_1 i ω_2 . Ruch opisuje układ czterech równań różniczkowych [1]:

$$\dot{\varphi}_1 = \omega_1 \tag{2}$$

$$\dot{\omega}_1 = -\frac{\sin(\varphi_1 - \varphi_2)(B\omega_2^2 + \omega_1^2\cos(\varphi_1 - \varphi_2)) + C((A+1)\sin(\varphi_1) - \sin(\varphi_2)\cos(\varphi_1 - \varphi_2))}{A + \sin^2(\varphi_1 - \varphi_2)}$$

$$\dot{\varphi}_2 = \omega_2$$
(4)

$$\dot{\varphi}_2 = \omega_2 \tag{4}$$

$$\dot{\varphi}_{2} = \omega_{2}$$

$$\dot{\varphi}_{2} = \omega_{2}$$

$$\dot{\varphi}_{2} = \frac{(A+1)(\omega_{1}^{2}\sin(\varphi_{1}-\varphi_{2}) - C\sin(p_{2})) + \cos(\varphi_{1}-\varphi_{2})((B\omega_{2}^{2}\sin(\varphi_{1}-\varphi_{2})) + C(A+1)\sin(\varphi_{1}))}{B(A+\sin^{2}(\varphi_{1}-\varphi_{2}))}$$
(5)

W modelu wahadła nie uwzględniono tarcia.

2. Implementacja

Równania zostały rozwiązane numerycznie za pomocą metody Rungego-Kutty czwartego rzędu [2] która została zaimplementowana w języku c++. Wyniki zostały zapisane do pliku tekstowego, w każdej linii oddzielone spacjami: czas od początku symulacji, kąty φ_1 , φ_2 oraz prędkości kątowe ω_1 i ω_2 . Wykresy zostały przygotowane w programie Gnuplot. Powstał także program przedstawiający ruch wahadła napisany z wykorzystaniem biblioteki QT. Wygląd programu pokazuje rys. 2. Kody źródłowe przygotowanego oprogramowania znajdują się w repozytorium pod adresem github.com/Qbicz/MUFB

Rysunek 2: Graficzna symulacja ruchu wahadła.

3. Wyniki

Symulacja została przeprowadzona dla parametrów

$$A = 100$$
 , $B = 1$, $C = 1$ (6)

oraz stanu w chwili:

$$t_0 = 0$$
 , $\varphi_1(0) = 0$, $\varphi_2(0) = 1$, $\omega_1(0) = 0$, $\omega_2(0) = 0$ (7)

Symulacja trwała 300 sekund z krokiem 0,001 sekundy.

Rys. 3 przedstawia wartości kątów φ_1 , φ_2 oraz prędkości kątowych ω_1 , ω_2 w funkcji czasu. Dla tak dobranych parametrów powstają dudnienia.

Rys. 3 przedstawia trajektorię ruchu wahadła narysowaną w przestrzeniach φ_1 , φ_2 . Dla 300 sekund nie da się zaobserwować żadnej regularności w ruchu wahadła.

Rys. 3 przedstawia trajektorię w przestrzeni fazowej: wykresy prędkości kątowej w funkcji wartości kąta.

Rysunek 3: Kąty oraz prędkości kątowe w funkcji czasu.

Rysunek 4: Trajektoria w przestrzeniach φ_1 oraz φ_2 a) dla pierwszych 30 sekund, b) dla 300 sekund.

4. Bibliografia

- 1 Wróblewski J. praca licencjacka "Wahadło podwójne" Warszawa 2011
- 2 Dudek-Dyduch E., Wąs J., Dutkiewicz L., Grobel-Dębska K., Gudowski B. "Metody numeryczne wybrane zagadnienia" Wydawnictwo AGH Kraków 2011

Rysunek 5: Trajektoria w przestrzeni fazowej $\omega(\varphi(t))$