Tydzień II

Zadanie 1

Oznaczmy naszą formę

$$\omega = ye^{-z}dx + xe^{-z}dy - xye^{-z}dz$$

Liczymy pochodną zewnętrzną:

$$d\omega = dx \wedge dy \left(\frac{\partial x e^{-z}}{\partial x} - \frac{\partial y e^{-z}}{\partial y} \right) + dx \wedge dz \left(-\frac{\partial x y e^{-z}}{\partial x} - \frac{\partial y e^{-z}}{\partial z} \right)$$
$$+ dy \wedge dz \left(-\frac{\partial x y e^{-z}}{\partial y} - \frac{\partial x e^{-z}}{\partial z} \right) = 0$$

W takim razie z lematu Poincare, ω jest zupełna.

Aby uzyskać formę pierwotną α , $\omega = d\alpha$, należy scałkować ω , czyli

$$\alpha(x, y, z) = \alpha(0) + \int_0^{(x, y, z)} \omega$$

gdzie całkujemy po dowolnej drodze. W szczególności możemy scałkować po łamanej

wtedy wyzeruje się całka po każdym odcinku oprócz ostatniego, po którym dostaniemy xye^{-z} , czyli

$$\alpha(x, y, z) = \alpha(0) + xye^{-z}$$

gdzie $\alpha(0)$ to dowolna stała.

Zadanie 2

Szukamy takiego μ , że $d(\mu dQ) = 0$.

Wtedy μdQ jest zamknięta, więc z lematu Poincare zupełna, czyli istnieje S t.że $\mu dQ = dS$. W takim razie ma być

$$0 = d(\mu dQ) = d(\mu C_V) \wedge dT + d(\mu p) \wedge dV = d\mu \wedge (C_V dT + p dV) + \mu dp \wedge dV$$

(bo C_V stałe). Z równania Clapeyrona

$$dp = \frac{R}{V}dT - \frac{RT}{V^2}dV$$

czyli

$$0 = d\mu \wedge (C_V dT + pdV) - \mu \frac{R}{V} dT \wedge dV$$

$$= d\mu \wedge (C_V dT + pdV) - \mu \frac{R}{pV} dT \wedge (C_V dT + pdV)$$

$$= \left(d\mu - \mu \frac{R}{pV} dT\right) \wedge (C_V dT + pdV)$$

$$= \left(d\mu - \frac{\mu}{T} dT\right) \wedge (C_V dT + pdV)$$

czyli musi być

$$d\mu = \frac{\mu}{T}dT + (C_V dT + pdV)\alpha$$

gdzie α to dowolna funkcja stanu taka, że $\frac{\mu}{T}dT+(C_VdT+pdV)\alpha$ jest zupełna. Dla $\alpha=0$ mamy

$$d\mu = \frac{\mu}{T}dT \implies \mu = \text{const} \cdot T$$

Tydzień III

Zadanie 1

Sformułowanie Kelvina: Nie istnieje odwracalny proces, którego jedynym skutkiem jest przekształcenie ciepła w pracę

Sformułowanie Clausiusa: Nie istnieje odwracalny proces, którego jedynym skutkiem jest przekaz ciepła z obiektu zimniejszego do cieplejszego.

nie Kelvin \implies nie Clausius:

Przypuśćmy, że istnieje proces odwracalny przekształcający tylko ciepło w pracę. Wtedy możemy pobrać ciepło z ciepłego obiektu i wykorzystać je do napędzania odwracalnej pompy ciepła (odwracalny silnik działający w drugą stronę) do pompowania ciepła z tegoż obiektu do obiektu zimniejszego, tym samym łamiąc zasadę Clausiusa.

nie Clausius \implies nie Kelvin:

Przypuśćmy, że istnieje proces odwracalny przekazujący tylko ciepło z obiektu zimniejszego do cieplejszego. Możemy wtedy uruchomić odwracalny silnik produkujący pracę kosztem przekazu ciepła z obiektu cieplejszego do zimniejszego, ale cały przekaz ciepła zrekompensować naszym hipotetycznym procesem. W ten sposób złamiemy zasadę Kelwina.

Zadanie 2

Silnik pobiera ciepło Q_g od czynnika o temperaturze T_g i oddaje Q_z do czynnika o temperaturze T_z . Wykonuje wtedy (z zasady zachowania energii) pracę $Q_g - Q_z$, czyli jego sprawność to

$$\eta = \frac{Q_g - Q_z}{Q_g}$$

Cykl Carnota składa się z adiabat, na których nie ma wymiany ciepła i izoterm, na których wymiana ciepła to odpowiednio $T_q\Delta S$ lub $T_z\Delta S$.

 ΔS jest to samo na obu izotermach, bo entropia jest stała na adiabatach, a w całym cyklu jej zmiana musi być 0 (bo jest odwracalny).

W takim razie

$$\eta = \frac{T_g - T_z}{T_g}$$

Zadanie 3

Sprawność lodówki definiujemy jako

$$\omega_c = \frac{Q_z}{W} = \frac{Q_z}{Q_g - Q_z} = \frac{T_z}{T_g - T_z}$$

(patrz poprzednie zadanie)

Tydzień IV

Zadanie 1

Zamiast liczby od 0 do 1 możemy losować pierwsze 10 cyfr po przecinku, czyli dowolny ciąg cyfr długości 10. Ciąg, w którym dokładnie 5 cyfr jest mniejszych od 5 wybieramy według następującej procedury: wybieramy 5 cyfr, które będą mniejsze od 5. Można to zrobić na $\binom{10}{5}$ sposobów. Następnie na 5^5 sposobów wybieramy wartości cyfr mniejszych od 5 i na 5^5 sposobów wybieramy wartości cyfr większych od 4. Ciąg taki możemy więc wybrać na $\binom{10}{5}$ 5 sposobów. Różnych ciągów 10-cyfrowych jest 10^{10} , więc prawdopodobieństwo wylosowania takiego ciągu to

$$\frac{\binom{10}{5}5^{10}}{10^{10}} = \frac{\binom{10}{5}}{2^{10}}$$

Zadanie 2

Niech α – kąt działa w momencie strzału (dla $\alpha=0$ działo strzela prostopadle w ekran), x – odległość trafionego punktu od punktu najbliżej działa. Działo trafi tylko dla $\alpha\in]-\pi,\pi[$, wtedy mamy $x=d\tan\alpha$. Gęstość prawdopodobieństwa w x to

$$p(x) = \frac{d\alpha}{dx}p(\alpha) = \frac{p(\alpha)}{1+x^2} = \frac{1}{2\pi(1+x^2)}$$

Jest unormowane do 1/2, bo co drugi strzał trafia.

Zadanie 3

Wybieramy oś x prostopadle do linii. Definiujemy zmienne losowe

 α – kąt między igłą a osią x.

x – odległość środka igły od prostej równo
odległej od dwóch sąsiednich linii, Przestrzeń możliwych położeń igły
jest prostokątem

$$[-\pi/2,\pi/2]\times[0,a]$$

Igła przetnie linię, jeżeli

$$x + l\cos\alpha \ge a$$

czyli

$$x \ge a - l\cos\alpha$$

W takim razie obszar w przestrzeni możliwych położeń odpowiadający przecięciu linii to obszar nad wykresem

$$a - l\cos\alpha$$

Jego pole to

$$a\pi - \int_{-\pi/2}^{\pi/2} d\alpha (a - l\cos\alpha) = 2l$$

a więc odpowiada mu prawdopodobieństwo (pole obszaru przez pole całej przestrzeni)

$$\frac{2l}{a\pi}$$

Zadanie 7

Jest 52! sposobów na potasowanie talii kart, więc prawdopodobieństwo otrzymania jednej konkretnej to 1/52! W takim razie informacja talii to $-\log(1/52!) = \log(52!)$ Jest $\binom{52}{5}$ sposobów na wylosowanie 5 kart, więc informacja układu 5 kart to $\log\binom{52}{5}$

Tydzień V

Zadanie 1

Twierdzenie o powrocie Poincare'go:

Mamy przestrzeń P z miarą $\mu,\ \mu(P)<\infty$ i bijekcję $T:P\to P$ zachowującą miarę (i mierzalność).

Powiemy, że punkt $x \in A$ wraca, jeżeli $\exists_n T^n(x) \in A$

Wtedy dla mierzalnych A, prawie wszystkie punkty (wszystkie z wyjątkiem zbioru miary zero) wracają nieskończenie wiele razy.

Oznaczymy jeszcze $A_n = \{x \in A : T^n(x) \in A\} = A \cap T^n(A)$

Dowód:

Krok pierwszy:

Dowodzimy przez sprzeczność, że jeżeli zbiór mierzalny X spełnia dla jakiegoś $N \geq 0$

$$\forall_{n>N}X\cap T^n(X)=\emptyset$$

to jest miary zero:

Jeżeli X jest N-kontrprzykładem, to spełnia

$$\forall_{n>0} X \cap (T^{N+1})^n(X) = \emptyset$$

czyli jest 0-kontrprzykładem dla innego odwzorowania $T' = T^{N+1}$ Wystarczy więc dowieść przypadek N = 0:

Dowodzimy najpierw, że $\forall_{m>n}T^m(X)\cap T^n(X)=\emptyset.$

Przypuśćmy, że $\exists y \in T^n(X) \cap T^m(X).$

Wtedy z definicji $T^{-n}(y), T^{-m}(y) \in X$, jednak

$$T^{m-n}\left(T^{-m}(y)\right) = T^{-n}(y)$$

czyli $X \cap T^{m-n} \neq \emptyset$

Skoro wszystkie zbiory $T^n(X)$ są rozłączne, T zachowuje miarę, a $\mu(X) \neq 0$, to

$$\mu(\bigcup_n T^n(X)) = \sum_n T^n(X) = \infty$$

Sprzeczność, bo $\mu(P) < \infty$

Krok drugi:

Definiujemy dla mierzalnego A i każdego skończonego zbioru liczb naturalnych a

$$B_a = \left(\bigcap_{n \in a} A_n\right) \setminus \left(\bigcup_{n \notin a} A_n\right)$$

Czyli B_a to zbiór punktów wracających do A tylko dla $n \in a$. Suma takich zbiorów dla wszystkich skończonych a da nam zbiór punktów wracających skończenie wiele razy do A. Zbiory A_n są mierzalne, więc B też, więc z punktu pierwszego są miary zero. Jest ich przeliczalnie wiele, więc miara ich sumy to zero.

Zadanie 2

Jeżeli układ jest przygotowany w którymś ze stanów $|i\rangle$ z klasycznym prawdopodobieństwem p_i , to z definicji

$$\rho = \sum_{i} p_{i} |i\rangle \langle i|$$

a) Dla dowolnej bazy ortonormalnej $|j\rangle$

$$\operatorname{Tr} \rho = \sum_{j} \langle j | \rho | j \rangle$$

$$= \sum_{i,j} p_{i} \langle j | | i \rangle \langle i | | j \rangle$$

$$= \sum_{i,j} p_{i} \langle i | | j \rangle \langle j | | i \rangle$$

$$= \sum_{i} p_{i} = 1$$

- b) $|i\rangle\langle i|$ są hermitowskie, więc ρ jest hermitowski jako rzeczywista kombinacja liniowa operatorów hermitowskich.
- c) Skoro ρ hermitowskie, ma ortonormalną bazę diagonalizującą $|k\rangle$ W tej bazie

$$\operatorname{Tr} \rho^{2} = \sum_{k} (\langle k | \rho | k \rangle)^{2} \leq \sum_{k} \langle k | \rho | k \rangle = 1$$

 $(\langle k | \rho | k \rangle$ są dodatnie i sumują się do 1, więc muszą być $\leq 1)$

Zadanie 3

 $|\psi\rangle$ jest stanem czystym, więc jego operator statystyczny to po prostu

$$\rho = |\psi\rangle\langle\psi|$$

$$= p |x_1x_2\rangle\langle x_1x_2| + (1-p) |y_1y_2\rangle\langle y_1y_2| + \sqrt{p-p^2} |x_1x_2\rangle\langle y_1y_2| + \sqrt{p-p^2} |y_1y_2\rangle\langle x_1x_2|$$

Aby znaleźć operatory zredukowane, liczymy częściowe ślady:

$$\rho_1 = \langle x_2 | \rho | x_2 \rangle + \langle y_2 | \rho | y_2 \rangle = p | x_1 \rangle \langle x_1 | + (1-p) | y_1 \rangle \langle y_1 |$$

$$\rho_2 = \langle x_1 | \rho | x_1 \rangle + \langle y_1 | \rho | y_1 \rangle = p | x_2 \rangle \langle x_2 | + (1 - p) | y_2 \rangle \langle y_2 |$$

Entropia obu operatorów to bezpośrednio ze wzoru

$$S = -p\log p - (1-p)\log(1-p)$$

Stan jest niekorelowany, kiedy ρ_1 i ρ_2 reprezentują stany czyste, czyli ślady ich kwadratów są równe 1, czyli

$$p^2 + (1-p)^2 = p^2 + 1 - 2p = 0$$

czyli
$$p = 0$$
 lub $p = 1$

Tydzień VIII

Zadanie 8

Oznaczmy dla wygody $A = X_i$, $a = y_i$, $B = X_k$, $b = y_k$ Wtedy

$$dU = adA + bdB$$

Niech J będzie transformacją Legendra U względem A, czyli

$$J = U - aA$$
$$dJ = -Ada + bdB$$

Nasza teza przyjmuje teraz postać

$$\left(\frac{\partial A}{\partial a}\right)_{B} < \left(\frac{\partial A}{\partial a}\right)_{b} \iff \left(\frac{\partial^{2} J}{\partial a^{2}}\right)_{B} > \left(\frac{\partial \left(\frac{\partial J}{\partial a}\right)_{B}}{\partial a}\right)_{b}$$

Przechodzimy do innej notacji.

Dla dowolnej różniczkowalnej funkcji F(x,y) mamy

$$\left(\frac{\partial F}{\partial x}\right)_y = F'(1,0)_{xy}$$

czyli nasza teza to

$$J''(1,0)_{aB}^2 > J''(1,0)_{aB}(1,0)_{ab} \iff \exists_{\Delta a} J''(\Delta a,0)_{aB}^2 > J''(\Delta a,0)_{aB}(\Delta a,0)_{ab}$$

Weźmiemy teraz dowolny punkt $\boldsymbol{\alpha}$ i małe Δa . Oznaczymy

$$\mathbf{v} = (\Delta a, 0)_{aB}$$

$$\mathbf{w} = (\Delta a, 0)_{ab} = \left(\Delta a, \left(\frac{\partial B}{\partial a}\right)_b \Delta a\right)_{aB}$$

$$\boldsymbol{\beta} = \boldsymbol{\alpha} + \mathbf{w}$$

Wtedy z dokładnością do wyrazów rzędu Δa^2

$$J'_{\alpha}v + \frac{1}{2}J''_{\alpha}v^{2} = J(\alpha + v) - J(\alpha) = J'_{\alpha}w + \frac{1}{2}J''_{\alpha}w^{2} + J'_{\beta}(v - w) + \frac{1}{2}J''_{\beta}(v - w)^{2}$$

 $\pmb{\alpha}$ i
 $\pmb{\beta}$ mają tą samą współrzędną $b=\left(\frac{\partial U}{\partial B}\right)_A=\left(\frac{\partial J}{\partial B}\right)_a$ więc

$$J_{\boldsymbol{\alpha}}(\boldsymbol{v}-\boldsymbol{w})=J_{\boldsymbol{\beta}}(\boldsymbol{v}-\boldsymbol{w})$$

Czyli skracają się pierwsze pochodne, zostaje

$$\frac{1}{2}J_{\alpha}''(\mathbf{v}^2 - \mathbf{w}^2) = \frac{1}{2}J_{\beta}''(\mathbf{v} - \mathbf{w})^2 \iff J_{\alpha}''\mathbf{v}^2 - J_{\alpha}''\mathbf{v}\mathbf{w} = \frac{1}{2}J_{\alpha}''(\mathbf{v} - \mathbf{w})^2 + \frac{1}{2}J_{\beta}''(\mathbf{v} - \mathbf{w})^2$$

Co jest dodatnie, bo J jest transformacją Legendra wypukłej funkcji U, czyli J'', U'' > 0