Review GRAPHS

1. A graph can be used to show relationships. For example, given the following list of people belonging to the same club and their friendships:

(C). Using the adjacency matrix representation, explain how would you determine whether a node is disjoint.

(D). Give the adjacency list representation.

Α

Review GRAPHS

- **2.** (A). What is the degree of node D?
 - **(B).** List all nodes adjacent to C:
 - **(C).** Draw a non-cyclic path of length 5 between C and H.

- **(D).** List one of the many graph applications:
- **3.** (A). Give the breadth-first traversal for the following graph Begin with A. Show how you get the answer.

(B). Give the depth-first traversal for the following graph. Begin with A. Show how you get the answer.

CIS 22C

Review GRAPHS

- 4. Minimum Spanning tree.
- (A). Circle the algorithm of your choice:
 - (a) Build the MST edge by edge? (Kruskal) or
 - (b) Build the MST node by node? (Prim)
- (B) Show how you get the answer, step by step (8 nodes \Rightarrow 7 steps).
- (C) What is the minimum weight of your tree?

Review GRAPHS

5. Dijkstra's Shortest Path algorithm (begin with A). Show how you get the answer step by step (8 nodes => 7 steps).

