Selected Problems - X

Problem 1) Design a synchronous counter that goes through the sequences

1 3 5 7 4 2 0 6 and repect using one D, one SR, and one JK type flip-flops.

Solution. We first derive the extended state

table for the counter as follows

YA	ys	ye	YA	YB	Yc	DA	SB	RB	Je	Kc	
0000011111 we	0011001100	07070707	70010101 t	77007700	07070770	10010101	2200 22 0 0	00220022	0000000000	000000000	

DA :	191	3yc 00	01	11	10
	0	1		1	

DA = YAYC + YBYC + YAYBYC

So:	YA	00	01	11	10
	0	1	1		
	1	1	1)		

So = yo

Ro = YB

- and we notice that Jc = Kc = 0 YA YA YB YB YC YC Clock

Problem 2) Design a synchronous counter using one SR Plip-Plop, one T type Plip-Plop and one JK type flip-flop denoted by A, B, C, respectively and a single input x such that when x=0 the circuit counts from 0 to 2 to 4 to 6 and back to 0 and when x=1, it counts from 1 to 3 to 5 to 7 and back to 1. PS 10,2

a. Derive the state table of the sequential

b. Derive the state alogican of the sequential circuit.

C. Draw the logic circuit diagram for the sequential logic circuit.

Solution.

a.

×	1 90	YB	90	YA	YB	Ye	SA	RA	TB	Je	Kc	
0	0	0	0	0	1	0	0	d	1	0	d	
1	0	0	7	0	1	1	0	d	1	d	0	
0	0	1	0	1	0	0	1	0	1	0	d	
1	0	1	1	1	0	1	1	0	1	d	0	
0	1	0	0	1	1	0	d	0	1	0	d	
1	1	0	1	1	1	1	d	0	1	d	0	
0	1	1	0	0	0	0	0	1	1	0	d	
1	1	1	1	0	0	1	0	1	1	d	0	_
			1.1									
- W.	= Fi	nd	+1	nct								
C	To	3 = '	1	cn	d	2	c = 1	<c =<="" td=""><td>0</td><td></td><td></td><td></td></c>	0			
. 1) –										
SA	. 9	Byc	01	1 1	1	10						
~~	XYA		d		1	1						
	00	1			d				1			
	01	d	d	-	1		5	SA =	ya!	JB		
	11	d	C	1		d						
	10	d		F		d						
				11								
	190	3yc		1 1	11	10						
	XYA	0		,	,	,,,						
	∞	0	0) (1							
	01		C	1 1	1			A =	/.	100		

Note that; -we assumed that for x=0, the inputs 1,3,9,7 do NOT occur and for x=1, the inputs 0,2,4,6 do NOT OCCUR (b) thus allowing to consider these situations as don't cares 0. 001 000 901 900 117 y's Je ye

PS 10.4

Problem 3) Given the NEW flip-flop described by the following Kernaugh map

where x and y are flip-flop inputs, Q(t) is the present state and Q(t+1) is the next state.

a. Find the excitation table of the NEW flip-flop. b. Using this NEW flip-flop, realize the sequential circuit with the state diagram shown as

Solution.

A the excitation table is obtained as follows

a. The	exci-	tctio	n to	OIE
Q(1)Q(4)	00	01	11	10
	1, d	o,d	d,1	d,0

6. We tobulate the state toble as follows:

E	A	B	A(H)	B(HH)	XA	SA	XB	90	圣	
0	0	0	0	7	1	d	0	d	0	9
1	0	0	1	0	0	d	1	d	1	
0	0	1	0	1	1	d	d	7	7	
7	0	1	1	1	0	d	d	1	0	
0	7	0	0	0	d	0	1	d	1	
7	1	0	1	1	d	1	0	d	0	
0	1	1	1	1	d	1	d	1	0	
1	1	1	0	0	d	0	d	0	1	

PS 10,5

