Investigacion Operativa

C.C. Lauritto & Ing. Casanova

Guia 02: Solucion de PL

Fecha de Entrega: -

Ravera P. & Rivera R.

${\bf \acute{I}ndice}$

Ejercicios 3	3
Punto 01 - Modelos Lineales	3
Inciso A	3
Inciso B	1
Inciso C	5
Inciso D	3
Punto 02 - Simplex Modelos Lineales	7
Inciso A	7
Inciso B	3
Inciso C)
Inciso D	L
Punto 03 - Compañía	L
Punto 04 - Granja Modelo	3
Punto 05 - Almacén La Falda	1
Punto 06 - Lotería	3
Punto 07 - Turkeyco	3
Punto 08 - Importador)
Punto 09 - Compañía de Seguros	3
Punto 10 - Criador de Perros	5
Punto 11 - Banco Gane	7
Punto 12 - Papelera Moderna	3
Punto 13 - Ciudad de Progreso	1

Ejercicios

Punto 01 - Modelos Lineales

Inciso A

Funcion Objetivo

$$Max Z = 2X_1 + 4X_2$$

Restricciones

$$x + y - 4 = 0 \tag{1}$$

$$x + 2y - 5 = 0 (2)$$

Por lo que los puntos son:

- A = (0, 0.25)
- B = (3,1)
- C = (4,0)

$$A \rightarrow 2(0) + 4(2.5) = 10$$

$$B \rightarrow 2(3) + 4(1) = 10$$

$$C \rightarrow 2(4) + 4(0) = 8$$

Por lo tanto, el problema cuenta con Soluciones Alternativas, siendo Deterministico - Lineal - Continuo.

Región factible:

Inciso B

Función Objetivo

$$Max Z = 2X_1 + 8X_2$$

Restricciones

$$2x - 5y = 0 \tag{3}$$

$$-x + 5y = 5 \tag{4}$$

$$x + 2y = 4 \tag{5}$$

Por lo que los puntos son:

$$\begin{cases} (??) \\ (??) \end{cases} \rightarrow A = \left(\frac{10}{7}, \frac{9}{7}\right)$$

$$\begin{cases} (??) \\ (??) \end{cases} \rightarrow B = (5,2)$$

$$\begin{cases} (??) \\ (??) \end{cases} \to C = (2.22, 0.88)$$

$$A \rightarrow 2\left(\frac{10}{7}\right) + 8\left(\frac{9}{7}\right) = 13.14$$

 $B \rightarrow 2(5) + 8(2) = 26$
 $C \rightarrow 2(2.22) + 8(0.88) = 11.48$

El máximo se halla en B. El problema es Deterministico - Lineal - Continuo. Región factible:

Inciso C

La función objetivo es:

$$Max Z = 2X_1 + X_2$$

La región factible no esta acotada, por lo que el valor de Z es ∞ . La variable X_2 puede crecer libremente.

El problema e Deterministico - Lineal - Continuo.

Inciso D

La función objetivo es:

$$Max Z = 3X_1 + 9X_2$$

En este caso la solución es Infactible o Incompatible ya que la región factible es un conjunto vació al ser no convexo.

El problema es Deterministico - Lineal - Continuo.

${\bf Punto}\ \ {\bf 02}\ \ {\bf - Simplex\ Modelos\ Lineales}$

Inciso A

$$Max\ Z = 2X_1 + 4X_2$$

s.a.: $X_1 + 2X_2 \le 5$
 $X_1 + X_2 \le 4$
 $X_1, X_2 \ge 0$

Forma Estándar:

$$Max \ Z = 2X_1 + 4X_2 + 0X_3 + 0X_4$$
 s.a.:
$$X_1 + 2X_2 + X_3 = 5$$

$$X_1 + X_2 + X_4 = 4$$

$$X_1, X_2, X_3, X_4 \ge 0$$

Este problema tiene soluciones alternativas, lo cual podemos detectar gracias a que existen dos conjuntos de variables básicas con el mismo valor de Z.

Cuadro 1: Tableau Simplex 02A

				2	4	0	0	
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	$\theta_i = b_i/a_{ij}$
\leftarrow	0	X_3	5	1	2	1	0	$\theta_1 = 1.66$
	0	X_4	4	1	1	0	1	$\theta_2 = 4$
		Z = 0		-2	-4	0	0	
					\uparrow			
	4	X_2	2,5	0,5	1	0,5	2,5	$\theta_1 = 5$
\leftarrow	0	X_4	1,5	$0,\!5$	0	-0,5	1	$ heta_2=3$
		Z = 10		0	0	2	0	
				\uparrow				
\leftarrow	4	X_2	1	1	2	1	0	
	2	X_1	3	1	1	0	1	
		Z = 10		0	0	2	0	
							\uparrow	

Inciso B

$$Max Z = 2X_1 + 8X_2$$
s.a.:
$$2X_1 + 4X_2 \ge 8$$

$$2X_1 - 5X_2 \le 0$$

$$-1X_1 + 5X_2 \le 5$$

$$X_1, X_2 \ge 0$$

Forma Estándar:

$$\begin{aligned} Max \ Z &= 2X_1 + 8X_2 + 0X_3 + 0X_4 + 0X_5 - M\mu_1 \\ s.a. : & 2X_1 - 5X_2 - 1X_3 + 0X_4 + 0X_5 + 1\mu_1 = 8 \\ & 2X_1 - 5X_2 - 0X_3 + 1X_4 + 0X_5 + 0\mu_1 = 0 \\ & -1X_1 + 5X_2 - 0X_3 + 0X_4 + 1X_5 + 0\mu_1 = 5 \\ & X_1, X_2, X_3, X_4, X_5 \ge 0 \end{aligned}$$

La Solución Básica Factible Optima es $X_1 = 5 \ y \ X_2 = 2$.

Cuadro 2: Tableau Simplex 02.A

	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	$\theta_i = b_i/a_{ij}$
	-M	M_1	8	2	4	-1	0	0	1	$\theta_1 = 2$
	0	X_4	0	2	-5	0	1	0	0	$\theta_2 = X$
\leftarrow	0	X_5	5	-1	5	0	0	1	0	$ heta_3=1$
		Z = -8M		-2M	-4M	M	0	0	0	
					↑					
\leftarrow	-M	M_1	4	14/5	0	-1	0	-4/5	1	$ heta_1=10/7$
	0	X_4	5	1	0	0	1	1	0	$\theta_2 = 5$
	8	X_2	1	-1/5	1	0	0	1/5	0	$\theta_3 = X$
	#REF!	Z = -4M + 8		-14/5	0	M	0	4/5M	0	
				<u></u>						

Cuadro 3: Tableau Simplex 02.B

	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	$\theta_i = b_i/a_{ij}$
	2	X_1	10/7	1	0	-5/14	0	-2/7	5/14	$\theta_1 = -4X$
\leftarrow	0	$oldsymbol{X_4}$	25/7	0	0	5/14	1	9/7	-5/14	$ heta_2=10$
	8	X_2	9/7	0	1	-1/14	0	1/7	1/14	$\theta_3 = -18X$
		Z = 92/7		0	0	-9/7	0	4/7	9/7	
						†				
	2	X_1	5	1	0	0	1	1	0	
	0	X_3	10	0	0	1	14/5	18/5	-1	
	8	X_2	2	0	1	0	1/5	2/5	0	
		Z = 26		0	0	0	18/5	26/5	M	

Inciso C

$$Max\ Z = 2X_1 + X_2$$

 $s.a.: 1X_1 - 1X_2 \le 10$
 $2X_1 \le 40$
 $X_1, X_2 \ge 0$

Forma Estándar:

$$\begin{aligned} Max \ Z &= 2X_1 + X_2 + 0X_3 + 0X_4 \\ s.a. \ : &1X_1 - 1X_2 + 1X_3 + 0X_4 = 10 \\ 2X_1 + 0X_2 + 0X_3 + 1X_4 &= 40 \\ X_1, X_2, X_3, X_4 &\geq 0 \end{aligned}$$

Cuadro 4: Tableau Simplex 02.C

			2	1	0	0	
C_k	X_k	B_k	A_1	A_2	A_3	A_4	$\theta_i = b_i/a_{ij}$
0	X_3	10	1	-1	1	0	$\theta_1 = 10$
0	X_4	40	2	0	0	1	$\theta_2 = 20$
	Z = 0		-2	-1	0	0	
			\uparrow				
2	X_1	10	1	-1	1	0	$\theta_1 = 10X$
0	$oldsymbol{X_4}$	20	0	2	-2	1	$ heta_2=10$
	Z = 10		0	-2	2	0	
				\uparrow			
2	X_1	20	1	0	0	1/2	$\theta_1 = 8X$
1	X_2	10	0	1	-1	1/2	$\theta_2 = -10X$
	Z = 50		0	0	-1	3/2	
					\uparrow		
	2 0	$ \begin{array}{cccc} 0 & X_3 \\ 0 & X_4 \\ \hline Z = 0 \\ \hline 2 & X_1 \\ 0 & X_4 \\ \hline Z = 10 \\ \hline 2 & X_1 \\ 1 & X_2 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} C_k & X_k & B_k & A_1 \\ \hline 0 & X_3 & 10 & 1 \\ 0 & X_4 & 40 & 2 \\ \hline & Z = 0 & & -2 \\ \hline & & & \uparrow \\ \hline 2 & X_1 & 10 & 1 \\ 0 & X_4 & 20 & 0 \\ \hline & Z = 10 & & 0 \\ \hline & & & & \\ \hline 2 & X_1 & 20 & 1 \\ 1 & X_2 & 10 & 0 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Como podemos ver, en la ultima iteración del Simplex no existe un $\theta \geq 0$ por lo que la solución no esta acotada, osea, $Z \to \infty$.

Inciso D

$$Max Z = 3X_1 + 9X_2$$

 $s.a. : 1X_1 + 4X_2 \ge 9$
 $1X_1 + 2X_2 \le 4$
 $X_1, X_2 > 0$

Forma Estándar:

$$\begin{aligned} Max \ Z &= 3X_1 + 9X_2 + 0X_3 + 0X_4 - M\mu_1\\ s.a. \ :& 1X_1 + 4X_2 - 1X_3 + 0X_4 + 1\mu_1 = 9\\ 1X_1 + 2X_2 - 0X_3 + 1X_4 + 0\mu_1 &= 4\\ X_1, X_2, X_3, X_4 &\geq 0 \end{aligned}$$

Cuadro 5: Tableau Simplex 02.D

	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	$\theta_i = b_i/a_{ij}$
	-M	M_1	9	1	4	-1	0	1	$\theta_1 = 9/4$
\leftarrow	0	$oldsymbol{X_4}$	4	1	2	0	1	0	$ heta_2=2$
		Z = -9M		-M - 3	-4M - 9	M	0	0	
					†				
	-M	M_1	1	-1	0	-1	-2	1	
	9	X_2	2	1/2	1	0	1/2	0	
		Z = -M + 18		M + 3/2	0	M	2M + 9/2	0	

En este caso, el problema es incompatible ya que la región de factibilidad es igual al conjunto vació.

Punto 03 - Compañía

Las variables de decisión son:

- X_A la cantidad vendida del producto A
- ullet X_B la cantidad vendida del producto B

Función Objetivo:

$$Max Z = 70 \left[\frac{\$}{Ua} \right] X_A [Ua] + 50 \left[\frac{\$}{Ub} \right] X_B [Ub]$$
 (6)

Restricciones:

$$2\left[\frac{Hs}{Ua}\right]X_{a}\left[Ua\right] + 4\left[\frac{Hs}{Ub}\right]X_{b}\left[Ub\right] \le 100\left[Hs\right]$$

$$5\left[\frac{Hs}{Ua}\right]X_{a}\left[Ua\right] + 3\left[\frac{Hs}{Ub}\right]X_{b}\left[Ub\right] \le 110\left[Hs\right]$$

Forma Estándar:

$$\begin{aligned} Max \ Z &= 70X_1 + 50X_2 + 0X_3 + 0X_4\\ s.a. \ : &2X_1 + 4X_2 + 1X_3 + 0X_4 = 100\\ 5X_1 + 3X_2 + 0X_3 + 1X_4 &= 110\\ X_1, X_2, X_3, X_4 &\geq 0 \end{aligned}$$

Cuadro 6: Tableau Simplex 03

	C_k	X_k	B_k	A_1	A_2	A_3	A_4
	0	X_3	100	2	4	1	0
\leftarrow	0	X_4	110	5	3	0	1
		Z = 0		-70	-50	0	0
				\uparrow			
\leftarrow	0	X_3	56	0	14/5	1	-2/5
	70	X_1	22	1	3/5	0	1/5
		Z = 1540		0	-8	0	70/5
					↑		
	50	X_2	20	0	1	5/14	-1/7
	70	X_1	10	1	0	-3/14	10/35
		Z = 1700		0	0	20/7	90/7

De esta manera, para maximizar la utilidad deberíamos producir 20 y 10 unidades de los productos A y B respectivamente. De esa manera, nuestra ganancia ascendería a los \$1700. Los efectos de contar con mas recursos (una unidad mas) son los siguientes:

- Hora de la Maquina 1: Nuestra ganancia aumentaría en 20/7 [\$], podríamos producir 5/4 unidades mas del producto A, pero deberíamos producir 3/4 unidades menos del B.
- Hora de la Maquina 2: Nuestra ganancia aumentaría en 90/7 [\$], produciendo 1/7 menos unidades del producto A y 10/35 mas del producto B.

Punto 04 - Granja Modelo

Las variables de decisión son:

- ullet X_1 Cantidad de maíz utilizada en el alimento.
- X_2 Cantidad de soja utilizada en el alimento.

Función Objetivo:

$$Min \ Z = 0.30 \left[\frac{\$}{Kg_M} \right] X_1 [Kg_M] + 0.09 \left[\frac{\$}{Kg_S} \right] X_2 [Kg_S]$$
 (7)

Restricciones:

$$1 \left[\frac{Kg}{Kg_M} \right] X_1 [Kg_M] + 1 \left[\frac{Kg}{Kg_S} \right] X_2 [Kg_S] \ge 800 [Kg]$$

$$0.09 \left[\frac{Kg}{Kg_M} \right] X_1 [Kg_M] + 0.6 \left[\frac{Kg}{Kg_S} \right] X_2 [Kg_S] \ge 0.3 (X_1 + X_2) [Kg]$$

$$0.02 \left[\frac{Kg}{Kg_M} \right] X_1 [Kg_M] + 0.06 \left[\frac{Kg}{Kg_S} \right] X_2 [Kg_S] \ge 0.05 (X_1 + X_2) [Kg]$$

Forma Estándar:

$$Z = 0.3X_1 + 0.9X_2 + 0X_3 + 0X_4 + 0X_5 + M\mu_1 + M\mu_2$$

$$s.a.: 1X_1 + 1X_2 - 1X_3 + 1\mu_1 = 800$$

$$-0.21X_1 + 0.3X_2 - 1X_4 + 1\mu_2 = 0$$

$$-0.08X_1 + 0.01X_2 + 1X_5 = 0$$

$$X_1, X_2, X_3, X_4, X_5 > 0$$

Se determino entonces que se deben utilizar 200 kg de Maíz y 600 de Soja para cumplir con las exigencias impuestas.

 A_2 C_k X_k B_k A_1 $\theta_i = b_i/a_{ij}$ A_3 A_4 A_5 A_6 A_7 1 $\theta_1 = 800$ M M_1 800 1 -1 0 0 1 M M_2 0-0,210,03 0 -1 0 0 $\theta_2 = 0$ 1 -0,03 $\theta_3 = 0$ X_5 0 0,01 0 0 1 0 0 Z = 800M0,79M0,13M-M-M0 0 0 \uparrow 0 $\theta_1 = 240$ M M_1 800 1,7 -1 3,33 0 -3,33 1 0,09 -0,73,33 $\theta_2 = X$ X_2 0 1 0 -3,30 0 $\theta_3 = 0$ 0 X_5 0 -0,0230 0,03 0 -0,03 1 Z = 800M0 0,17M-M3,33M0 -4,33M \uparrow M_1 800 4 0 -1 0 0 $\theta_1 = 200$ M-100 1 0,09 X_2 0 -3 0 0 $\theta_2 = X$ 1 0 100 0 $\theta_3 = X$ 0 X_4 0 -0.69M0 0 30 0 -1

-M

-0.25

-0.75

-0,69M

0,14

0

0

0

1

0

-100M

-25

25

12,75

-5,25

0

-M

0

0

1

0

0

Cuadro 7: Tableau Simplex 04

Punto 05 - Almacén La Falda

200

600

138

Las variables de decisión son:

Z = 800M

 X_1

 X_2

 X_4

Z = 114

0,3

0,09

0

• X_1 : cantidad de cajas que se solicitan al deposito

41↑
1

0

0

0

• X_2 : cantidad de cajas que se solicitan al proveedor

La función objetivo es:

$$Min\ Z = 1\left[\frac{\$}{C_d}\right] X_1 [C_d] + 6\left[\frac{\$}{C_p}\right] X_2 [C_p]$$
 (8)

Sujeta a:

$$1 \left[\frac{Kg_A}{C_d} \right] X_1 [C_d] + 2 \left[\frac{Kg_A}{C_p} \right] X_2 [C_p] \ge 80 [Kg_A]$$

$$5 \left[\frac{Kg_Q}{C_p} \right] X_2 [C_p] \ge 60 [Kg_Q]$$

$$X_1 [C_d] \le 40 [C_d]$$

$$X_2 [C_p] \le 30 [C_p]$$

$$X_1, X_2 > 0$$

Forma Estándar:

$$\begin{aligned} 1X_1 + 6X_2 + 0X_3 + 0X_4 + 0X_5 + 0X_6 + M\mu_1 + M\mu_2 \\ 1X_1 + 2X_2 - 1X_3 + 0X_4 + 0X_5 + 0x_6 + 1\mu_1 + 0\mu_2 &= 80 \\ 0X_1 + 2X_2 + 0X_3 - 1X_4 + 0X_5 + 0x_6 + 0\mu_1 + 1\mu_2 &= 10 \\ 1X_1 + 0X_2 - 0X_3 - 0X_4 + 1X_5 + 0X_6 + 0\mu_1 + 0\mu_2 &= 40 \\ 0X_1 + 1X_2 - 0X_3 - 0X_4 + 0X_5 + 0X_6 + 0\mu_1 + 0\mu_2 &= 30 \\ X_1, X_2 &\geq 0 \end{aligned}$$

1 6 0 0 0 0 MM C_k X_k B_k A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 $\theta_i = b_i/a_{ij}$ 2 $\theta_1 = X$ M M_1 80 1 -1 0 0 0 1 0 M M_2 10 0 1 0 -1 0 0 0 1 $\theta_2 = 10$ X_5 40 1 00 0 1 0 0 0 $\theta_3 = X$ 0 X_6 0 1 0 0 0 1 0 $\theta_4 = 30$ Z = 90MM-13M - 6-M-M0 0 0 M M_1 60 0 -2 0 0 -2 $\theta_1 = 30$ 1 -1 1 $\theta_2 = X$ X_2 10 0 0 0 0 0 1 1 -1 $\theta_3 = X$ X_5 40 1 0 0 0 0 0 00 X_6 20 0 0 1 0-1 $\theta_4 = 20$ Z = 60M + 60M-1-M2M-60 0 -3M + 6 \uparrow M M_1 20 0 0 0 -2 0 $\theta_1 = 20$ 1 -1 1 $\theta_2 = X$ X_2 30 0 0 0 0 6 1 0 1 0 $\theta_3 = 40$ 0 X_5 40 1 0 0 0 1 0 0 0 X_4 0 20 0 0 1 1 0 -1 $\theta_4 = X$ Z = 180 + 20M-M0 0 -2M + 60 -MM-1 \uparrow 1 X_1 -2 $\theta_1 = X$ 20 1 0-1 0 0 0 1 $\theta_2 = 30$ X_2 30 0 0 0 0 0 0 6 1 1 0 $\mathbf{2}$ 0 $\theta_3 = 10$ 0 X_5 20 0 1 0 1 -1 $\theta_4 = 20$ 0 X_4 20 0 0 1 0 1 0 -1 Z = 200-1 0 4 1 - M-M

Cuadro 8: Tableau Simplex 05

De esta manera, podemos alcanzar el costo mínimo (de \$160) si traemos del deposito la totalidad de las cajas disponibles (40) y le compramos al proveedor el 66.67% de su stock disponible (osea 20 de 30 cajas).

0

-1/2

1/2

-1/2

-3

0

1

0

0

0

0

0

1

0

1

-1/2

1/2

-1/2

-2

Punto 06 - Lotería

 X_1

 X_2

 X_6

 X_4

Z = 160

40

20

10

1 0

0

0

1

6

0

0

Las variables de decisión son:

- X_1 : Cantidad de acciones del tipo A invertidas (en millones).
- X_2 : Cantidad de acciones invertidas del tipo B (en millones).

La función objetivo es:

$$Max Z = 0.10X_1 [\$] + 0.07X_2 [\$]$$
 (9)

 \uparrow

0

1

0

0

1/2

-1/2

1/2

3 - M

0

0

0

-1

-M

Sujeta a:

$$X_{1} [\$] + X_{2} [\$] = 10 [\$]$$

$$X_{1} [\$] \le 6 [\$]$$

$$X_{2} [\$] \ge 2 [\$]$$

$$X_{1}, X_{2} \ge 0$$

Forma Estándar:

$$\begin{aligned} 0.1X_1 + 0.07X_2 + 0X_3 + 0X_4 - M\mu_1 - M\mu_2 \\ 1X_1 + 1X_2 + 0X_3 + 0X_4 + 1\mu_1 - 0\mu_2 &= 10 \\ 1X_1 + 0X_2 + 1X_3 + 0X_4 - 0\mu_1 - 0\mu_2 &= 6 \\ 0X_1 + 1X_2 + 0X_3 + 1X_4 - 0\mu_1 + 1\mu_2 &= 2 \end{aligned}$$

Cuadro 9: Tableau Simplex 06

				0,1	0,07	0	0	-M	-M	
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	$\theta_i = b_i/a_{ij}$
	$\overline{-M}$	M_1	10	1	1	0	0	1	0	$\theta_1 = 10$
	0	X_3	6	1	0	1	0	0	0	$\theta_2 = X$
\leftarrow	-M	M_2	20	0	1	0	-1	0	1	$ heta_3=2$
		Z = -12M		-M	-2M	0	M	0	0	
					↑					
	-M	M_1	8	1	0	0	1	1	-1	$\theta_1 = 8$
\leftarrow	0	X_3	6	1	0	1	0	0	0	$ heta_2=6$
	0,07	X_2	2	0	1	0	-1	0	1	$\theta_3 = X$
		Z = -8M		-M	0	0	-M	0	2M	
				\uparrow						
\leftarrow	$\overline{-M}$	M_1	2	0	0	-1	1	1	-1	$ heta_1=2$
	0,1	X_1	6	1	0	1	0	0	0	$\theta_2 = X$
	0,07	X_2	2	0	1	0	-1	0	1	$\theta_3 = X$
		Z = -2M		0	0	M	-M	0	2M	
							\uparrow			
	0	X_4	2	0	0	-1	1	1	-1	
	0,1	X_1	6	1	0	1	0	0	0	
	0,07	X_2	4	0	1	-1	0	1	0	
		Z = 8, 8		0	0	-0,07	0	M	M	

Punto 07 - Turkeyco

Las variables de decisión son:

- \bullet B_1 : Cantidad de carne "blancaütilizada en chuleta tipo 1.
- $\bullet~N_1$: Cantidad de carne "negra
ütilizada en chuleta tipo 1.
- \bullet B_2 : Cantidad de carne "blancaütilizada en chuleta tipo 2.
- \bullet N_2 : Cantidad de carne "negra
ütilizada en chuleta tipo 2.
- ullet P_1 : Cantidad de pavos del tipo 1 utilizados.
- ullet P_2 : Cantidad de pavos del tipo 2 utilizados.

La función objetivo es:

$$Max Z = 4 \left[\frac{\$}{Kg_{C1}} \right] (B_1 + N_1) [Kg_{C1}] + 3 \left[\frac{\$}{Kg_{C2}} \right] (B_2 + N_2) [Kg_{C2}] - 10 \left[\frac{\$}{Kg_{P1}} \right] P_1 [Kg_{P1}] - 8 \left[\frac{\$}{Kg_{P2}} \right] P_2 [Kg_{P2}]$$
(10)

Sujeta a:

$$B_{1}\left[Kg_{C1}\right] + N_{1}\left[Kg_{C1}\right] \leq 50\left[Kg_{C1}\right]$$

$$B_{2}\left[Kg_{C2}\right] + N_{2}\left[Kg_{C2}\right] \leq 30\left[Kg_{C2}\right]$$

$$B_{1}\left[Kg_{C1}\right] \geq 0.7\left(B_{1} + N_{1}\right)\left[Kg_{C1}\right]$$

$$B_{2}\left[Kg_{C2}\right] \geq 0.6\left(B_{2} + N_{2}\right)\left[Kg_{C2}\right]$$

$$1\left[\frac{Kg}{Kg_{C1}}\right]B_{1}\left[Kg_{C1}\right] + 1\left[\frac{Kg}{Kg_{C2}}\right]B_{2}\left[Kg_{C2}\right] \leq 5\left[\frac{Kg}{Kg_{P1}}\right]P_{1}\left[Kg_{P1}\right] + 3\left[\frac{Kg}{Kg_{P2}}\right]P_{2}\left[Kg_{CP2}\right]$$

$$1\left[\frac{Kg}{Kg_{C1}}\right]N_{1}\left[Kg_{C1}\right] + 1\left[\frac{Kg}{Kg_{C2}}\right]N_{2}\left[Kg_{C2}\right] \leq 2\left[\frac{Kg}{Kg_{P1}}\right]P_{1}\left[Kg_{P1}\right] + 3\left[\frac{Kg}{Kg_{P2}}\right]P_{2}\left[Kg_{CP2}\right]$$

$$B_{1}, B_{2}, N_{1}, N_{2}, P_{1}, P_{2} \geq 0$$

Solucion por Software 1: Ejercicio 07 - LINGO

Global optimal solution four	nd.		
Objective value:		177.5556	
Infeasibilities:		0.000000	
Total solver iterations:		4	
Elapsed runtime seconds:		0.03	
Model Class:		LP	
Total variables:	6		
Nonlinear variables:	0		
Integer variables:	0		
<u> </u>			
Total constraints:	13		
Nonlinear constraints:	0		
Total nonzeros:	28		
Nonlinear nonzeros:	0		
	Variable	Value	Reduced Cost
	B1	35.00000	0.00000
	N1	15.00000	0.00000
	B2	18.00000	0.00000
	N2	12.00000	0.00000
	P1	8.666667	0.00000
	P2	3.222222	0.00000
	Row	Slack or Surplus	Dual Price
	1	177.5556	1.000000
	2	0.00000	2.577778
	3	0.00000	1.622222
	4	0.00000	-0.444444
	5	0.00000	-0.444444
	6	0.00000	1.555556
	7	0.000000	1.111111
	8	15.00000	0.000000
	9	12.00000	0.000000
	10	35.00000	0.000000
	11	18.00000	0.000000
	12	8.666667	0.000000
	13	3.222222	0.000000

Podemos observar entonces que lo mas conveniente para la empresa es utilizar para la confección de la chuleta numero 1, 35Kg de carne blanca y 15Kg de carne oscura, mientras que para la chuleta numero 2 las cantidades son 18Kg y 12Kg respectivamente. Por otra parte es conveniente adquirir casi 9 pavos del tipo 1 y un poco mas de 3 del tipo 2.

Punto 08 - Importador

Las variables de decisión son:

• X_1 : Cantidad de dinero (en millones) dispuesto para importar repuestos.

• X_2 : Cantidad de dinero (en millones) destinado a importar sustancias químicas.

La función objetivo es:

$$Max Z = 0.02X_1 [\$] + 0.06X_2 [\$]$$
 (11)

Sujeta a:

$$X_{1} [\$] + X_{2} [\$] \le 20 [\$]$$

$$X_{1} [\$] \le 16 [\$]$$

$$X_{2} [\$] \le 8 [\$]$$

$$2X_{2} [\$] - X_{1} [\$] \ge 0$$

Forma Estándar:

$$0.02X_1 + 0.06X_2 + 0X_3 + 0X_4 + 0X_5 + 0X_6$$
$$1X_1 + 1X_2 + 1X_3 + 0X_4 + 0X_5 + 0X_6 = 20$$
$$1X_1 + 0X_2 + 0X_3 + 1X_4 + 1X_5 + 0X_6 = 16$$
$$0X_1 + 1X_2 + 0X_3 + 0X_4 + 1X_5 + 0X_6 = 8$$
$$-1X_1 + 2X_2 + 1X_3 + 0X_4 + 0X_5 + 1X_6 = 0$$

0 0,02 0,06 0 0 0 $\theta_i = b_i/a_{ij}$ C_k X_k A_1 A_4 A_5 A_6 B_k A_2 A_3 $\theta_1 = 20$ X_3 0 1 1 1 20 0 0 0 X_4 $\theta_2 = X$ 0 16 1 0 0 1 0 0 X_5 8 0 1 0 $\theta_3 = 8$ 0 1 2 -1 $\theta_4 = X$ X_6 0 0 Z = 0-0.02-0,06 0 0 \uparrow $\theta_1 = 13,33$ X_3 3/2-1/20 20 0 1 0 0 0 X_4 1 $\theta_2 = 16$ 16 0 0 1 0 X_5 $\theta_3 = 16$ 0 8 1/20 0 0 1 -1/2 $\theta_4 = X$ 0,06 X_2 0 -1/21 0 0 0 1/2Z = 0-0,050 0 0 0 0,03 0,02 X_1 13,33 1 0 2/30 0 -1/30 X_4 2,66 0 0 -2/31 0 1/3 X_5 0 1,33 0 0 -1/3-1/30 1 X_2 0,06 6,66 0 1/30 0 1/3Z = 0,660 0 1/300 0 1/75

Cuadro 10: Tableau Simplex 08

Entonces, lo recomendable resulta la inversión de 13.33 millones aproximadamente en repuestos para maquinarias agrícolas y 6.66 millones por otra parte en sustancias químicas.

Punto 09 - Compañía de Seguros

Las variables de decisión son:

- X_1 : Unidades de Riesgos Especiales" vendidas.
- X_2 : Unidades de "Hipotecas" vendidas.

La función objetivo es:

$$Max Z = 5 \left[\frac{\$}{u1} \right] X_1 [u1] + 2 \left[\frac{\$}{u2} \right] X_2 [u2]$$
 (12)

Sujeta a:

$$3\left[\frac{Hs}{u1}\right]X_{1}[u1] + 2\left[\frac{Hs}{u2}\right]X_{2}[u2] \le 2400[Hs]$$

$$1\left[\frac{Hs}{u2}\right]X_{2}[u2] \le 800[Hs]$$

$$2\left[\frac{Hs}{u1}\right]X_{1}[u1] \le 1200[Hs]$$

$$X_{1}, X_{2} \ge 0$$

Forma Estándar:

$$5X_1 + 2X_2 + 0X_3 + 0X_4 + 0X_5$$
$$3X_1 + 2X_2 + 1X_3 + 0X_4 + 0X_5 = 2400$$
$$0X_1 + 1X_2 + 0X_3 + 1X_4 + 0X_5 = 800$$
$$2X_1 + 0X_2 + 0X_3 + 0X_4 + 1X_5 = 1200$$

5 2 0 0 0 C_k X_k $\theta_i = b_i/a_{ij}$ B_k A_1 A_2 A_3 A_4 $\theta_1 = 800$ X_3 24002 1 0 $\theta_2 = X$ X_4 800 0 1 0 1 0 X_5 $\mathbf{2}$ 0 0 $\theta_3 = 600$ 1200 0 1 Z = 0-5 -2 0 0 0 \uparrow X_3 -3/2 $\theta_1 = 300$ 0 600 0 $\mathbf{2}$ 1 0 $\theta_2 = 800$ 0 X_4 800 1 0 1 0 0 $\theta_3 = X$ X_1 600 0 1/2Z = 30000 **-2** 5/2 \uparrow 2 X_2 300 1 1/2-3/40 0 0 X_4 0 -1/21 3 500 5 X_1 600 0 0 1/21 0

Cuadro 11: Tableau Simplex 09

Podemos observar que lo mas beneficioso seria la venta de 600 unidades del producto 1 (-iesgo Especial") y 300 unidades del producto 2 ("Hipotecas"). Tambien cabe aclarar que las horas administrativas no se llegan a consumir en su totalidad, existiendo un sobrante de 500, que podrían ser utilizadas en otras actividades.

0

0

Punto 10 - Criador de Perros

Las variables de decisión son:

• X_1 : Cantidad de alimento del tipo 1 utilizado.

Z = 3600

• X_2 : Cantidad de alimento del tipo 2 utilizado.

La función objetivo es:

$$Min Z = 50 \left[\frac{\$}{Kg_1} \right] X_1 [Kg_1] + 25 \left[\frac{\$}{Kg_2} \right] X_2 [Kg_2]$$
 (13)

0

1

1

Sujeta a:

$$0.1 \left[\frac{Kg_G}{Kg_1} \right] X_1 \left[Kg_1 \right] + 0.3 \left[\frac{Kg_G}{Kg_2} \right] X_2 \left[Kg_2 \right] \ge 8 \left[Kg_G \right]$$

$$0.3 \left[\frac{Kg_C}{Kg_1} \right] X_1 \left[Kg_1 \right] + 0.4 \left[\frac{Kg_C}{Kg_2} \right] X_2 \left[Kg_2 \right] \ge 19 \left[Kg_C \right]$$

$$0.3 \left[\frac{Kg_{Ca}}{Kg_1} \right] X_1 \left[Kg_1 \right] + 0.1 \left[\frac{Kg_{Ca}}{Kg_2} \right] X_2 \left[Kg_2 \right] \ge 7 \left[Kg_{Ca} \right]$$

$$X_1, X_2 \ge 0$$

Forma Estándar:

$$50X_1 + 25X_2 + 0X_3 + 0X_4 + 0X_5 + M\mu_1 + M\mu_2 + M\mu_3$$

$$0.1X_1 + 0.3X_2 - 1X_3 + 0X_4 + 0X_5 + 1\mu_1 + 0\mu_2 + 0\mu_3 = 8$$

$$0.3X_1 + 0.4X_2 + 0X_3 - 1X_4 + 0X_5 + 0\mu_1 + 1\mu_2 + 0\mu_3 = 19$$

$$0.3X_1 + 0.1X_2 + 0X_3 + 0X_4 - 1X_5 + 1\mu_1 + 0\mu_2 + 1\mu_3 = 7$$

				50	25	0	0	0	M	M	M	
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	$\theta_i = b_i/a_{ij}$
\leftarrow	M	M_1	8	0,1	0,3	-1	0	0	1	0	0	$\theta_1=26,666$
	M	M_2	19	0,3	0,4	0	-1	0	0	1	0	$\theta_2 = 47, 5$
	M	M_3	7	0,3	0,1	0	0	-1	0	0	1	$\theta_3 = 70$
		Z = 34M		0,7M	0,8M	-M	-M	-M	0	0	0	
					↑							
	25	X_2	26,66667	0,33	1	-3,33	0	0	3,33	0	0	$\theta_1 = X$
\leftarrow	M	$oldsymbol{M_2}$	8,333333	0,16	0	$1,\!33$	-1	0	-1,33	1	0	$\theta_2=6,25$
	M	M_3	4,333333	$0,\!27$	0	0,33	0	-1	-0,33	0	1	$\theta_3 = 13$
		Z=12,67M		0,43M	0	1,66M	-M	-M	2,67M	0	0	
						↑						
	25	X_2	47,5	0,75	1	0	-2,5	0	0	2,5	0	$\theta_1 = X$
	0	X_3	6,25	0,13	0	1	-0.75	0	-1	0,75	0	$\theta_2 = X$
\leftarrow	M	M_3	2,25	0,23	0	0	$0,\!25$	-1	0	-0,25	1	$ heta_3=9$
		Z=2,25M		0,23M	0	0	0,25M	-M	-M	-1,25M	0	
							↑					
	25	X_2	70	3	1	0	0	-10	$\theta_1 = 23, 3$			
	0	X_3	13	0,8	0	1	0	-3	$\theta_2 = 41,56$			
\leftarrow	0	$oldsymbol{X_4}$	9	0,9	0	0	1	-4	$ heta_3=10$			
		Z = 1750		25	0	0	0	-250				
				↑								
	25	X_2	40	0	1	0	-3,33	3,33				
	0	X_3	5	0	0	1	-2,66	0,55				
	50	X_1	10	1	0	0	1,11	-4,44				
		Z = 1500		0	0	0	-250/9	-1250/9				

Cuadro 12: Tableau Simplex 10

En este caso, sugerimos al criador de perros el siguiente plan, con el cual podrá satisfacer las necesidades alimentarias de sus animales con el menor costo:

- Utilizar 10 unidades del alimento tipo 1
- Utilizar 40 unidades del alimento tipo 2
- La necesidad de grasas saturadas de los animales se encuentra satisfecha con un nivel por encima del requerido.

Punto 11 - Banco Gane

Las variables de decisión son:

- X_1 : Dinero (en millones) que se destina a prestamos Personales.
- X_2 : Dinero (en millones) que se destina a prestamos Automovilísticos.
- X_3 : Dinero (en millones) que se destina a prestamos para el Hogar.

- X_4 : Dinero (en millones) que se destina a prestamos Agrícolas.
- X_5 : Dinero (en millones) que se destina a prestamos Comerciales.

La función objetivo es:

$$Max Z = 0.026X_1 [\$] + 0.051X_2 [\$] + 0.086X_3 [\$] + 0.069X_4 [\$] + 0.078X_5 [\$]$$
 (14)

Sujeta a:

$$X_{4} [\$] + X_{5} [\$] \ge 0.4 (X_{1} + X_{2} + X_{3} + X_{4} + X_{5}) [\$]$$

$$X_{3} [\$] \ge 0.5 (X_{1} + X_{2} + X_{3}) [\$]$$

$$(0.1X_{1} + 0.07X_{2} + 0.03X_{3} + 0.05X_{4} + 0.02X_{5}) [\$] \le 0.04 (X_{1} + X_{2} + X_{3} + X_{4} + X_{5}) [\$]$$

$$(X_{1} + X_{2} + X_{3} + X_{4} + X_{5}) [\$] \le 12 [\$]$$

Cuadro 13: Tableau Simplex 11

				2	4	0	0	
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	$\theta_i = b_i/a_{ij}$
\leftarrow	0	X_3	5	1	2	1	0	$\theta_1 = 1.66$
	0	X_4	4	1	1	0	1	$\theta_2 = 4$
		Z = 0		-2	-4	0	0	
					\uparrow			
	4	X_2	2,5	0,5	1	0,5	2,5	$\theta_1 = 5$
\leftarrow	0	X_4	1,5	$0,\!5$	0	-0,5	1	$ heta_2=3$
		Z = 10		0	0	2	0	
				\uparrow				
\leftarrow	4	X_2	1	1	2	1	0	
	2	X_1	3	1	1	0	1	
		Z = 10		0	0	2	0	
							\uparrow	

Solucion por Software 2: Ejercicio 11 - LINGO

Global optimal solution foun	d.		
Objective value:		0.9936000	
Infeasibilities:		0.00000	
Total solver iterations:		2	
Elapsed runtime seconds:		0.07	
Model Class:		LP	
Total variables:	6		
Nonlinear variables:	0		
Integer variables:	0		
Total constraints:	10		
Nonlinear constraints:	0		
Total nonzeros:	28		
Nonlinear nonzeros:	0		
	Variable	Value	Reduced Cost
	X 1	0.000000	0.6000000E
	X2	0.00000	0.3500000E
		-01	
	ХЗ	7.200000	0.00000
	X4	0.00000	0.900000E
		-02	
	Х5	4.800000	0.00000
	Z2	0.000000	0.00000
	Row	Slack or Surplus	Dual Price
	1	0.9936000	1.000000
	2	0.00000	-0.800000E
		-02	
	3	3.600000	0.000000
	4	0.1680000	0.00000
	5	0.00000	0.8280000E
		-01	
	6	0.000000	0.000000
	7	0.000000	0.000000
	8	7.200000	0.000000
	9	0.000000	0.000000
	10	4.800000	0.00000

La mejor política de prestamos para el Banco Gane es la siguiente:

- Destinar 7,2 millones a prestamos para casas.
- Destinar 4,8 millones a prestamos comerciales.

De esta manera, la ganancia del banco seria de \$993600.

Punto 12 - Papelera Moderna

Las variables de decisión son:

- X_1 : Cantidad de cortes en posición 7-9.
- X_2 : Cantidad de cortes en posición 5-5-7.
- X_3 : Cantidad de cortes en posición 5-5-9.
- X_4 : Cantidad de cortes en posición 5-5-5-5.
- X_5 : Cantidad de cortes en posición 9-9.
- X_6 : Cantidad de cortes en posición 7-7-5.

La función objetivo es:

$$\begin{split} Min~Z &= 4 \left[\frac{pies}{C} \right] X_1 \left[C \right] + 3 \left[\frac{pies}{C} \right] X_2 \left[C \right] + 1 \left[\frac{pies}{C} \right] X_3 \left[C \right] \\ &+ 0 \left[\frac{pies}{C} \right] X_4 \left[C \right] + 2 \left[\frac{pies}{C} \right] X_5 \left[C \right] + 1 \left[\frac{pies}{C} \right] X_6 \left[C \right] \end{split}$$

Sujeta a:

$$\begin{split} 2X_2\left[C\right] + 2X_3\left[C\right] + 4X_4\left[C\right] + 1X_6\left[C\right] &\geq 150\left[C\right] \\ 1X_1\left[C\right] + 1X_2\left[C\right] + 2X_6\left[C\right] &\geq 200\left[C\right] \\ 1X_1\left[C\right] + 1X_3\left[C\right] + 2X_5\left[C\right] &\geq 300\left[C\right] \\ X_1, X_2, X_3, X_4, X_5, X_6 &\geq 0 \end{split}$$

	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9
\leftarrow	0	X_4	25/2	-0,13	0,38	1/2	1	0	0	-1/4	0,13	0
	1	X_6	100	1/2	1/2	0	0	0	1	0	-1/2	0
	2	X_5	150	1/2	0	1/2	0	1	0	0	0	-1/2
		Z = 400		5/2	5/2	0	0	0	0	0	1/2	1
						↑						
	1	X_3	25	-1/4	3/4	1	2	0	0	-1/2	1/4	0
	1	X_6	100	1/2	1/2	0	0	0	1	0	-1/2	0
	2	X_5	137,5	0,63	-0,38	0	-1	1	0	1/4	-0,13	-1/2
		Z = 400		5/2	5/2	0	0	0	0	0	1/2	1

Cuadro 14: Tableau Simplex 12

Podemos ver que existen múltiples soluciones:

- Solución 01:
 - Realizar 100 cortes con el esquema 6
 - Realizar 150 cortes con el esquema 5
- Solución 02:
 - Realizar 25 cortes con el esquema 3
 - Realizar 100 cortes con el esquema 6
 - Realizar 137,5 cortes con el esquema 5

Ambas estrategias nos permiten alcanzar un desperdicio de solo 400 pies

Punto 13 - Ciudad de Progreso

Las variables de decisión son:

- X_1 : Cantidad de colectivos necesarios de 00 a 08 Hs.
- X_2 : Cantidad de colectivos necesarios de 04 a 23 Hs.
- X_3 : Cantidad de colectivos necesarios de 08 a 16 Hs.
- X_4 : Cantidad de colectivos necesarios de 12 a 20 Hs.
- X_5 : Cantidad de colectivos necesarios de 16 a 24 Hs.
- X_6 : Cantidad de colectivos necesarios de 20 a 04 Hs.

La función objetivo es:

$$Min \ Z = \sum_{i=1}^{6} X_i [C]$$
 (15)

Sujeta a:

$$X_{1}[C] + X_{6}[C] \ge 4[C]$$

$$X_{1}[C] + X_{2}[C] \ge 8[C]$$

$$X_{2}[C] + X_{3}[C] \ge 10[C]$$

$$X_{3}[C] + X_{4}[C] \ge 7[C]$$

$$X_{4}[C] + X_{5}[C] \ge 12[C]$$

$$X_{5}[C] + X_{6}[C] \ge 4[C]$$

$$X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6} \ge 0$$

Cuadro 15: Tableau Simplex 13.A

				1	1	1	1	1	1	0	0	0	0	0	0
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}
	1	X_1	4	1	0	0	0	0	1	-1	0	0	0	0	0
	1	X_2	10	0	1	1	0	0	0	0	0	-1	0	0	0
\leftarrow	0	X_8	6	0	0	1	0	0	1	-1	1	-1	0	0	0
	1	X_4	8	0	0	0	1	0	-1	0	0	0	0	-1	1
	0	X_{10}	1	0	0	-1	0	0	-1	0	0	0	1	-1	1
	1	X_5	4	0	0	0	0	1	1	0	0	0	0	0	-1
		Z = 26		0	0	0	0	0	0	-1	0	-1	0	-1	0
						\uparrow									
	1	X_1	4	1	0	0	0	0	1	-1	0	0	0	0	0
	1	X_2	4	0	1	0	0	0	-1	1	-1	0	0	0	0
	1	X_3	6	0	0	1	0	0	1	-1	1	-1	0	0	0
	1	X_4	8	0	0	0	1	0	-1	0	0	0	0	-1	1
	0	X_{10}	7	0	0	0	0	0	0	-1	1	-1	1	-1	1
\leftarrow	1	X_5	4	0	0	0	0	1	1	0	0	0	0	0	-1
		Z = 26		0	0	0	0	0	0	-1	0	-1	0	-1	0
									\uparrow						

Cuadro 16: Tableau Simplex 13.B

	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}
\leftarrow	1	$oldsymbol{X_1}$	0	1	0	0	0	-1	0	-1	0	0	0	0	1
	1	X_2	8	0	1	0	0	1	0	1	-1	0	0	0	-1
	1	X_3	2	0	0	1	0	-1	0	-1	1	-1	0	0	1
	1	X_4	12	0	0	0	1	1	0	0	0	0	0	-1	0
	0	X_{10}	7	0	0	0	0	0	0	-1	1	-1	1	-1	1
	1	X_6	4	0	0	0	0	1	1	0	0	0	0	0	-1
		Z = 26		0	0	0	0	0	0	-1	0	-1	0	-1	0
															\uparrow
	0	X_{12}	0	1	0	0	0	-1	0	-1	0	0	0	0	1
	1	X_2	8	1	1	0	0	0	0	0	-1	0	0	0	0
	1	X_3	2	-1	0	1	0	0	0	0	1	-1	0	0	0
	1	X_4	12	0	0	0	1	1	0	0	0	0	0	-1	0
	0	X_{10}	7	-1	0	0	0	1	0	0	1	-1	1	-1	0
	1	X_6	4	1	0	0	0	0	1	-1	0	0	0	0	0
		Z = 26		0	0	0	0	0	0	-1	0	-1	0	-1	0