TAKE-HOME CLASS QUIZ SOLUTIONS: DUE FEBRUARY 8: LIMITS AT INFINITY AND IMPROPER INTEGRAL

MATH 153, SECTION 55 (VIPUL NAIK)

1. Performance review

11 people took this 11-question quiz. The score distribution was as follows:

- Score of 2: 1 person
- Score of 4: 1 person
- Score of 6: 2 people
- Score of 7: 1 person
- Score of 8: 1 person
- Score of 9: 1 person
- Score of 10: 1 person
- Score of 11: 3 people

The mean score was about 7.7.

The question wise answers and performance were as follows:

- (1) Option (B): 10 people
- (2) Option (B): 10 people
- (3) Option (E): 7 people
- (4) Option (D): 6 people
- (5) Option (B): 5 people
- (6) Option (D): 8 people
- (7) Option (C): 10 people
- (8) Option (A): 11 people
- (9) Option (C): 7 people
- (10) Option (D): 7 people
- (11) Option (A): 4 people

2. Solutions

- (1) If $\lim_{x\to\infty} f(x) = L$ for some finite L, this tells us that the graph of f has a:
 - (A) vertical asymptote
 - (B) horizontal asymptote
 - (C) vertical tangent
 - (D) horizontal tangent
 - (E) vertical cusp

Answer: Option (B)

Explanation: Just by definition.

Performance review: 10 out of 11 got this correct. 1 chose (D).

Historical note (last year): 23 out of 26 people got this correct. 1 person each chose (A), (C), and (D).

Action point: Everybody should get this correct!

- (2) If $\lim_{x\to\infty} f(x) = L$ and $\lim_{x\to\infty} f'(x) = M$, where both L and M are finite, then:
 - (A) L=0 but M need not be zero
 - (B) M = 0 but L need not be zero
 - (C) Both L and M must be zero.
 - (D) Neither L nor M need be zero.

1

(E) At least one of L and M must be zero, but it could be either one. Answer: Option (B)

Explanation: If M were finite and nonzero, f would have to go to $+\infty$ if M were positive and to $-\infty$ if M were negative, because f would be growing/decaying at a rate that was bounded from both above and below by linear functions.

Consider the following $\epsilon - \delta$ definition of limit at ∞ : $\lim_{x \to \infty} f(x) = L$ if for all $\epsilon > 0$, there exists $a \in \mathbb{R}$ such that for all x > a, $|f(x) - L| < \epsilon$.

Performance review: 10 out of 11 got this correct. 1 chose (D).

Historical note (last year): 17 out of 26 people got this correct. 6 people chose (D), 2 people chose (E), and 1 person chose (C).

- (3) What is the smallest a that can be picked for the function $f = \arctan$ with L being its limit at ∞ and $\epsilon = \pi$?
 - (A) $\sqrt{3}$
 - (B) 1
 - (C) 0
 - (D) -1
 - (E) There is no smallest a. Any $a \in \mathbb{R}$ will do.

Answer: Option (E)

Explanation: The function arctan has range $(-\pi/2, \pi/2)$, which is within the interval $(\pi/2 - \pi, \pi/2 + \pi)$. Thus, for all real numbers, the value of the arctan function is within the specified range. Performance review: 7 out of 11 got this correct. 2 chose (B), 1 chose (C) and 1 chose (D).

Historical note (last year): 14 out of 26 people got this correct. 5 people chose (B), 3 chose (C), 2 each chose (A) and (D).

- (4) What is the smallest a that can be picked for the function $f = \arctan$ with L being its limit at ∞ and $\epsilon = \pi/6$?
 - (A) 1/2
 - (B) $1/\sqrt{3}$
 - (C) 1
 - (D) $\sqrt{3}$
 - (E) 2

Answer: Option (D)

Explanation: We need a such that for x > a, $\arctan x \in (\pi/2 - \pi/6, \pi/2 + \pi/6) = (\pi/3, 2\pi/3)$. The right value of a is thus $\tan(\pi/3) = \sqrt{3}$.

Performance review: 6 out of 11 got this correct. 2 chose (E), 1 each chose (A), (B), and (C).

Historical note (last year): 10 out of 26 people got this correct. 11 people chose (B), indicating that either they took $\tan(\pi/3)$ wrong, or they computed $\tan(\pi/6)$ and did not perform the subtraction step $\pi/2 - \pi/6$. 4 people chose (A), 1 person chose (C), and 1 person left the question blank.

- (5) Suppose f(x) := p(x)/q(x) is a rational function in reduced form (i.e., the numerator and denominator are relatively prime) and $\lim_{x\to c} f(x) = \infty$. Which of the following can you conclude about f?
 - (A) x-c divides p(x), and the largest r such that $(x-c)^r$ divides p(x) is even.
 - (B) x-c divides q(x), and the largest r such that $(x-c)^r$ divides q(x) is even.
 - (C) x-c divides p(x), and the largest r such that $(x-c)^r$ divides p(x) is odd.
 - (D) x-c divides q(x), and the largest r such that $(x-c)^r$ divides q(x) is odd.
 - (E) x-c does not divide either p(x) or q(x).

Answer: Option (B)

Explanation: We need x - c to divide q(x) for the denominator to blow up as $x \to c$. The power needs to be even to get the *same* sign of infinity for both left-sided and right-sided approach. $1/x^2$ at c = 0 is one example.

Performance review: 5 out of 11 got this correct. 5 chose (C), 1 chose (A).

Historical note (last year): 9 out of 26 people got this correct. 7 chose (A), 4 chose (C), 3 chose (D), 2 chose (E), and 1 left the question blank.

Action point: Please review this solution, make sure you understand it, and if you were convinced of another answer, debug the reasoning or examples that misled you.

- (6) Suppose f(x) := p(x)/q(x) is a rational function in reduced form (i.e., the numerator and denominator are relatively prime) and $\lim_{x\to c^-} f(x) = \infty$ and $\lim_{x\to c^+} f(x) = -\infty$. Which of the following can you conclude about f?
 - (A) x-c divides p(x), and the largest r such that $(x-c)^r$ divides p(x) is even.
 - (B) x-c divides q(x), and the largest r such that $(x-c)^r$ divides q(x) is even.
 - (C) x-c divides p(x), and the largest r such that $(x-c)^r$ divides p(x) is odd.
 - (D) x-c divides q(x), and the largest r such that $(x-c)^r$ divides q(x) is odd.
 - (E) x-c does not divide either p(x) or q(x).

Answer: Option (D)

Explanation: We need x - c to divide q(x) for the denominator to blow up as $x \to c$. The power needs to be even to get *opposite* signs of infinity for left-sided and right-sided approach. -1/x at c = 0 is one example.

Performance review: 8 out of 11 got this correct. 1 each chose (A), (C), and (E).

Historical note (last year): 9 out of 26 people got this correct. 8 people chose (C), 5 people chose (E), 2 people chose (A), 1 chose (B), and 1 left the question blank.

Action point: Please review this solution, make sure you understand it, and if you were convinced of another answer, debug the reasoning or examples that misled you.

Suppose F is a function of two real variables, say x and t, so F(x,t) is a real number for x and t restricted to suitable open intervals in the real number. Suppose, further, that F is jointly continuous (whatever that means) in x and t.

Define $f(t) := \int_0^\infty F(x,t) dx$. Here, while doing the integration, t is treated as a constant. x, the variable of integration, is being integrated on $[0,\infty)$.

Suppose further that f is defined and continuous for t in $(0, \infty)$. Note that similar computations we did in the midterm review session involved integration from $-\infty$ to ∞ .

In the next few questions, you are asked to compute the function f explicitly given the function F, for $t \in (0, \infty)$.

- (7) $F(x,t) := e^{-tx}$. Find f.
 - (A) $f(t) = e^{-t}/t$
 - (B) $f(t) = e^{t}/t$
 - (C) f(t) = 1/t
 - (D) f(t) = -1/t
 - (E) f(t) = -t

Answer: Option (C)

Explanation: The integral becomes $[-e^{-tx}/t]_0^{\infty}$. Plugging in at ∞ gives 0 and plugging in at 0 gives -1/t. Since the value at 0 is being subtracted, we eventually get 1/t.

Note that the answer must be positive for the simple reason that we are integrating a positive function from left to right across an interval.

Performance review: 10 out of 11 got this correct. 1 chose (A).

Historical note (last year): 17 out of 25 people got this correct. 4 chose (A), 3 chose (D), and 1 chose (E).

- (8) $F(x,t) := 1/(t^2 + x^2)$. Find f.
 - (A) $f(t) = \pi/(2t)$
 - (B) $f(t) = \pi/t$
 - (C) $f(t) = 2\pi/t$
 - (D) $f(t) = \pi t$
 - (E) $f(t) = 2\pi t$

Answer: Option (A)

Explanation: We get $[(1/t)\arctan(x/t)]_0^{\infty}$. The evaluation at ∞ gives $\pi/(2t)$ and the evaluation at 0 gives 0. Subtracting, we get $\pi/(2t)$.

Performance review: Everybody got this correct.

Historical note (last year): 17 out of 25 got this correct. 5 chose (B), 2 chose (D), 1 chose (C).

- (9) $F(x,t) := 1/(t^2 + x^2)^2$. Find f.
 - (A) $f(t) = \pi/t^3$
 - (B) $f(t) = \pi/(2t^3)$
 - (C) $f(t) = \pi/(4t^3)$
 - (D) $f(t) = \pi/(8t^3)$
 - (E) $f(t) = 3\pi/(8t^3)$

Answer: Option (C)

Explanation: Put in $\theta = \arctan(x/t)$. Substitute, and we get $(1/t^3) \int_0^{\pi/2} \cos^2 \theta \, d\theta$. Integrating, we get $[\theta/2t^3 + \sin(2\theta)/4t^3]_0^{\pi/2}$. The trigonometric part vanishes between limits, and we are left with $\pi/(4t^3)$

Performance review: 7 out of 11 got this correct. 3 chose (B), 1 chose (D).

Historical note (last year): 15 out of 25 people got this correct. 5 chose (B), 2 chose (A), 1 each chose (D) and (E), 1 left the question blank.

- (10) $F(x,t) = \exp(-(tx)^2)$. Use that $\int_0^\infty \exp(-x^2) dx = \sqrt{\pi}/2$. Find f.
 - (A) $f(t) = t^2 \sqrt{\pi}/2$
 - (B) $f(t) = t\sqrt{\pi}/2$
 - (C) $f(t) = \sqrt{\pi}/2$
 - (D) $f(t) = \sqrt{\pi}/(2t)$
 - (E) $f(t) = \sqrt{\pi}/(2t^2)$

Answer: Option (D)

Explanation: Put u = tx, get a 1/t on the outside, giving $(1/t) \int_0^\infty \exp(-u^2) du$.

Performance review: 7 out of 11 got this correct. 2 chose (A), 2 chose (E).

Historical note (last year): 12 out of 25 people got the question correct. 6 chose (E), 3 chose (C), 2 each chose (A) and (B).

- (11) In the same general setup as above (but with none of these specific Fs), which of the following is a sufficient condition for f to be an increasing function of t?
 - (A) $t \mapsto F(x_0, t)$ is an increasing function of t for every choice of $x_0 \ge 0$.
 - (B) $x \mapsto F(x, t_0)$ is an increasing function of x for every choice of $t_0 \in (0, \infty)$.
 - (C) $t \mapsto F(x_0, t)$ is a decreasing function of t for every choice of $x_0 \ge 0$.
 - (D) $x \mapsto F(x, t_0)$ is a decreasing function of x for every choice of $t_0 \in (0, \infty)$.
 - (E) None of the above.

Answer: Option (A)

Explanation: If F is increasing in t for every value of x_0 , then that means that as t gets bigger, the function F being integrated gets bigger everywhere in x, i.e., if $t_1 < t_2$, then $F(t_1, x_0) < F(t_2, x_0)$ for every $x_0 \ge 0$. The integral for the larger value t_2 must therefore also be bigger. (We looked at this stuff in Section 5.8 of the book).

Performance review: 4 out of 11 got this correct. 4 chose (B), 1 each chose (C), (D), and (E).

Historical note (last year): 4 out of 25 got the question correct. 10 chose (B), 5 chose (E), 3 chose (C), 2 chose (D), and 1 left the question blank.

(A) was the "obvious" choice – people may have tried to seek more subtletly in the question than it had.

Action point: This should not trip anybody in the future.