Mathematics (1)

1.1 Logarithms

$$\log_b(MN) = \log_b(M) + \log_b(N)$$

$$\log_b\left(\frac{M}{N}\right) = \log_b(M) - \log_b(N)$$

$$\log_b(M^p) = p \cdot \log_b(M)$$

$$\log_b(a) = \frac{\log_x(a)}{\log_x(b)}$$

$$\log_b(b) = 1$$

1.2 Notation

deg p(x) means the degree of polynomial p.

LC p(x) means the leading coefficient of polynomial p.

1.3 Rational functions

For a rational function $f(x) = \frac{p(x)}{q(x)}$, cancel out any common factors, then:

- For all rational functions:
 - VA: roots of q(x)
 - Roots: roots of p(x)
- When deg p(x) = deg q(x):
 - HA: $y = \frac{\text{LC } p(x)}{\text{LC } q(x)}$
- When deg p(x) < deg q(x):
 - HA: y = 0
- When deg $p(x) > \deg q(x)$:
 - HA: none
 - slant asymptote: $\frac{p(x)}{q(x)}$ excluding remainder

1.4 Polynomials

1.4.1 Linear equations

Slope-intercept form: y = mx + b

Point-slope form: $y - y_1 = m(x - x_1)$ for point (x, y)

Standard form: ax + by = c

1.4.2 Quadratic equations

Standard form: $y = ax^2 + bx + c$

Vertex form: $y = a(x - h)^2 + k$ for vertex (h, k)

Sum of roots: $\frac{-b}{a}$

Product of roots: $\frac{c}{a}$

1.4.3 Higher-degree polynomials

In a polynomial

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

, with roots

$$r_1, r_2, r_3, \ldots, r_n$$

then:

$$r_1 + r_2 + r_3 + \dots + r_n = \sum_{k=1}^n n r_k = -\frac{a_{n-1}}{a_n}$$

1.5 Sequences and Series

1.5.1 Explicit formulas

Aritmetic sequence: $a_n = a_1 + r(n-1)$

Geometric sequence: $a_n = a_1 * r^{n-1}$ Harmonic sequence: $a_n = \frac{1}{a_1 + r(n-1)}$

$a_1 + r(n-1)$ **1.5.2** Arithmetic and Geometric Series

In the following equations, substituting j = 1 with j = 0, j - 1 with j, and a_1 with a_0 will produce the same result.

$$\sum_{j=1}^{n} (a_1 + r(j-1)) = \frac{n}{2} (2a_1 + (n-1)d)$$

$$\sum_{j=1}^{n} (a_1 * r^{j-1}) = \frac{a_1 (1 - r^n)}{1 - r}$$

$$\sum_{j=1}^{\infty} (a_1 * r^{j-1}) = \frac{a_1}{1 - r} \text{ for } r \in [-1, 1]$$

1.5.3 Special Sums

$$\sum_{j=1}^{n} c = nc$$

$$\sum_{j=1}^{n} ca_{j} = c \sum_{j=1}^{n} a_{j}$$

$$\sum_{j=1}^{n} (a_{j} + b_{j}) = \sum_{j=1}^{n} a_{j} + \sum_{j=1}^{n} b_{j}$$

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

$$\sum_{j=1}^{n} j^{2} = \frac{n(n+\frac{1}{2})(n+1)}{3}$$

$$\sum_{j=1}^{n} j^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

1.6 Trigonometry

0	rad	sin	cos	tan
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\tilde{\pi}}{2}$	1	Ō	undef

1.6.1 Law of Sines and Cosines

$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$
 $c^2 = a^2 + b^2 - 2ab\cos(C)$

1.6.2 Triangle area

$$K = \frac{1}{2}bh \qquad K = \frac{1}{2}bc\sin(A) \qquad K = \sqrt{s(s-a)(s-b)(s-c)}$$

1.6.3 More identities

$$(\sin A)^2 + (\cos A)^2 = 1$$
 $(\tan A)^2 + 1 = (\sec A)^2$
 $\sin(\frac{\pi}{2} - x) = \cos(x)$ $(\cot A)^2 + 1 = (\csc A)^2$

$$cos(-x) = cos(x)$$
 $sin(-x) = sin(x)$ $tan(-x) = tan(x)$

1.6.4 Slope

Where α is the angle between the line and the x-axis, and m is the slope of the line:

$$m = \tan \alpha$$

1.6.5 Sum and difference formulas

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$

$$\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}$$

$$\tan(A-B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$$

$$\sin(2A) = 2\sin(A)\cos(A)$$

$$\cos(2A) = (\cos A)^2 - (\sin A)^2 = 2(\cos A)^2 - 1 = 1 - 2(\sin A)^2$$

$$\tan(2A) = \frac{2\tan(A)}{1 - (\tan A)^2}$$

1.7 Vectors

$$\vec{v} + \vec{w} = \begin{bmatrix} v_x + w_x \\ v_y + w_y \\ v_z + w_z \end{bmatrix} \qquad c * \vec{v} = \begin{bmatrix} c * v_x \\ c * v_y \\ c * v_z \end{bmatrix}$$

 $\vec{v} \cdot \vec{w} = v_x w_x + v_y w_y + v_z w_z = |\vec{v}| |\vec{w}| \cos(\theta)$

$$|\vec{v} \times \vec{w}| = |\vec{v}| |\vec{w}| \sin(\theta) = \text{area of parallelogram}$$

$$\vec{v} \times \vec{w} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} \qquad \vec{v} \times \vec{w} \perp \vec{v} \qquad \vec{v} \times \vec{w} \perp \vec{w}$$

$$\vec{v} \perp \vec{w} \iff \vec{v} \times \vec{w} = \vec{0} \qquad \vec{v} \parallel \vec{w} \iff \vec{v} \cdot \vec{w} = 0$$

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$
 $\operatorname{proj}_{\vec{b}} \vec{v} = \frac{\vec{v} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} * \vec{b} = (|\vec{v}| \cos(\theta))$

Right-hand rule

To determine the direction of $\vec{v} \times \vec{w}$, put the side of the right hand on \vec{v} and curl the fingers toward \vec{w} . The direction the thumb is pointing is the direction of $\vec{v} \times \vec{w}$.

1.8 Polar

1.8.1 Polar and Cartesian sytems

With point $(x, y) = (r; \theta) = (r; \beta)$, where θ is CCW from the x-axis and β is a bearing, CW from the y-axis:

$$\begin{split} x &= r \cos(\theta) = r \sin(\beta) & y &= r \sin(\theta) = r \cos(\beta) \\ r &= \sqrt{x^2 + y^2} & \theta &\equiv \arctan(\frac{y}{x}) & \beta &\equiv \arctan(\frac{x}{y}) \end{split}$$

1.8.2 Converting functions

Try these substitutions in order:

$$x^{2} = x^{2} + y^{2}$$
 $\tan \theta = \frac{y}{x}$ $x = r \cos \theta$ $y = r \sin \theta$

1.8.3 Limaçons and Petals

The function $y = A\cos(B(\theta + C)) + D$ is equivalent to $y = A\cos(B\theta) + D$ rotated C degrees/radians clockwise.

When C is 0 and B is 1, the x-intercepts are $A \pm D$ and the y-intercepts are $\pm D$, and it forms a limaçon.

When C is 0, but $B \neq 1$, then this sometimes still holds. The x-intercepts may also be $\pm A \pm D$.

There are B petals, with the axis of the first petal on the positive x-axis.

When B is even and |D| < 1, then the number of petals is 2B.

Using sin instead of cos, limaçons have their axes on the positive y-axis, while for petals, the first petal starts from the positive x-axis and curves upwards.

1.9 Complex

$$cis(\theta) = e^{i\theta} = cos(\theta) + i sin(\theta)$$

To find the n^{th} root of $x_r \operatorname{cis}(x_\theta)$, solve the equation $z_r^n \operatorname{cis}(nz_\theta) = x_r \operatorname{cis}(x_\theta + 360^\circ k)$ for $k \in \mathbb{R}$.

1.10 Function domain

Function	Domain x	Range y
$\log(x)$	$(0,\infty)$	\mathbb{R}
\sqrt{x}	$[0,\infty)$	$[0,\infty)$
$\arcsin(x)$	[-1, 1]	$[-\frac{\pi}{2}, \frac{\pi}{2}]$
$\arccos(x)$	[-1, 1]	$[0,\pi]$
$\arctan(x)$	\mathbb{R}	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Calculus Theorems (2)

1 Completeness

1.3 Completeness

Theorem (Completeness of the Real Numbers). Every nonempty subset S of \mathbb{R} which is bounded above has a least upper bound $\sup S$.

Definition of Supremum ($\sup S$). A number such that

- (1) $s \leq \sup S$ for every $s \in S$ (which just says that $\sup S$ is an upper bound for S)
- (2) If u is any upper bound for S, then $\sup S \leq u$ (which says that $\sup S$ is the least upper bound for S).

Definition of **Infimum** (inf S). A number such that

- (1) inf $S \leq s$ for every $s \in S$ (i.e. inf S is an lower bound for S)
- (2) If l is any upper bound for S, then $l \leq \inf S$ (i.e. $\inf S$ is the greatest lower bound for S).

Theorem. Every nonempty subset S of \mathbb{R} which is bounded below has a greatest lower bound.

Theorem. If min S exists, then min $S = \inf S$.

Theorem. If $A \subset R$ and $c \ge 0$, and $cA := ca : a \in A$, $\sup cA = c \sup A$.

1.4 Consequences of Completeness

Theorem (Rationals between Reals). For every two real numbers a and b with a < b, there exists a rational number r satisfying a < r < b.

1.5 Nested Intervals Theorem

Nested Intervals Theorem.

If
$$I_n = [a_n, b_n] = \{x \in R : a_n \le x \le b_n\}$$
 s.t. $a_n \le a_{n+1}$ and $b_{n+1} \le b_n$ for $n \in \mathbb{N}$, so that $I_1 \subseteq I_2 \subseteq I_3 \subseteq I_4 \subseteq \ldots$, then
$$\bigcap_{n=1}^{\infty} I_n \ne \emptyset.$$

If
$$\inf\{b_n - a_n\} = 0$$
, then $\bigcap_{n=1}^{\infty} I_n\{x\}$, where $x = \sup\{a_n\} = \inf\{b_n\}$.

1.6 Capture Theorem

Capture Theorem. If A is a nonempty subset of \mathbb{R} , then:

- (i) If A is bounded above, then any open interval containing $\sup A$ contains an element of A.
- (ii) Similarly, if A is bounded below, then any open interval containing inf A contains an element of A.

1.7 Binary Search

If we binary-search for x over $I_1 = [a_1, b_1]$ for $a_1, b_1 \in \mathbb{Q}$, we define I_n s.t. either $I_n := [a_{n-1}, \frac{a_{n-1}+b_{n-1}}{2}]$ or $I_n := [\frac{a_{n-1}+b_{n-1}}{2}, a_{n+1}]$, and we define $a_n := \inf I_n$ and $b_n := \sup I_n$. We define A to be the set of all a_n , and B to be the set of all b_n .

Then, the size of
$$I_n = \frac{b_1 - a_1}{2^n} = b_n - a_n$$
, and $\bigcap_{n=1}^{\infty} I_n\{x\}$, where $x = \sup\{a_n\} = \inf\{b_n\}$.

2 Limits

2.4 ε - δ definition of a Limit

Definition of **Limit**. If $\lim_{x\to a} f(x) = L$, then for any $\varepsilon > 0$, there exists $\delta > 0$ s.t. for any $x \in (a - \delta, a) \cup (a, a + \delta)$, $f(x) \in (L - \varepsilon, L + \varepsilon)$.

Alternatively,

Definition of Limit. If $\lim_{x\to a} f(x) = L$, then for any $\varepsilon > 0$, there exists $\delta > 0$ s.t. for any $|f(x) - L| < \varepsilon$ whenever $0 < |x - a| < \delta$.

2.6 Limit Laws

Theorem (Limit Laws). Let $c \in R$ be a constant and suppose the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then

(i)
$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

(ii)
$$\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$$

(iii)
$$\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

(iv)
$$\lim_{x\to a}f(x)g(x)=\lim_{x\to a}f(x)\lim_{x\to a}g(x)$$
 , provided that $\lim_{x\to a}g(x)\neq 0$

- (v) See (i).
- $(vi) \lim_{x \to a} x^n = (\lim_{x \to a} x)^n$

(vii)
$$\lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)}$$

(viii)
$$\lim_{x \to a} \frac{a(x)b(x)}{c(x)b(x)} = \lim_{x \to a} \frac{a(x)}{c(x)}$$

Theorem (Operations on infinity). For $x \in \mathbb{R}$,

$$\infty + x = \infty$$

$$-\infty + x = -\infty$$

$$x * \infty = \begin{cases} \infty & \text{if } x > 0 \\ -\infty & \text{if } x < 0 \end{cases}$$

$$x * -\infty = \begin{cases} -\infty & \text{if } x > 0 \\ \infty & \text{if } x < 0 \end{cases}$$

$$\frac{x}{\pm \infty} = 0$$

Definition of Indeterminate forms. The following forms are indeterminate and you cannot evaluate them.

$$\frac{0}{0}, \frac{\pm \infty}{\pm \infty}, 0 * \pm \infty, \infty - \infty$$

Other theorems

Composite Function Theorem. If f is continuous at L and $\lim_{x\to a}g(x)=L$, then $\lim_{x\to a}f(g(x)=f(lim_{x\to a}g(x)))=f(L)$

2.12 Squeeze Theorem

Squeeze Theorem. Let f, g, and h be defined for all $x \neq a$ over an open interval containing a. If

$$f(x) \le g(x) \le h(x)$$

for all $x \neq a$ in an open interval containing a and

$$\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x)$$

where $L \in \mathbb{R}$, then $\lim_{x \to a} q(x) = L$.

3 Continuity

Definition of Continuity at a point. Function f is continuous at point a if $\lim_{x\to a} f(x) = f(a)$.

Definition. f has a **removable discontinuity** if $\lim_{x\to a} f(x) = L \in \mathbb{R}$ (in this case either f(a) is undefined, or f(a) is defined by $L \neq f(a)$).

Definition. f has a **jump discontinuity** if $\lim_{x\to a^-} f(x) = L_1 \in \mathbb{R}$ and $\lim_{x\to a^+} f(x) = L_2 \in \mathbb{R}$ but $L1 \neq L2$.

Definition. f has an **infinite discontinuity** at a if $\lim_{x\to a^-} f(x) = \pm \infty$ or $\lim_{x\to a^+} f(x) = \pm \infty$

Intermediate Value Theorem. If f is continuous on [a,b], then for any real number L between f(a) and f(b) there exists at least one $c \in [a,b]$ such that f(c) = L. In other words, if f is continuous on [a,b], then the graph must cross the horizontal line y = L at least once between the vertical lines x = a and x = b.

Aura Theorem. If f(x) is continuous and f(a) is positive, then there exists an open interval containing a such that for all x in the interval, f(x) is positive.

If f(x) is continuous and f(a) is negative, then there exists an open interval containing a such that for all x in the interval, f(x) is negative.

Bolzano's Theorem. Let f be a continuous function defined on [a, b]. If 0 is between f(a) and f(b), then there exists $x \in [a, b]$ such that f(x) = 0.

4 Derivatives

The derivative is the instantaneous rate of change, and the slope of the tangent line to the point.

Definition of **Derivative** (f'(a)).

$$\frac{d}{da}f(a) = f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Theorem (Tangent line to a point). The equation of the tangent line to the point (a, f(a)) is

$$y = f'(a)(x - a) + f(a)$$

Derivative Rules

Theorem (Difference Rule).

$$\frac{d}{dx}(f(x) - g(x)) = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$$

Theorem (Sum Rule).

$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

Theorem (Constant Multiple Rule).

$$\frac{d}{dx}(cf(x)) = c\frac{d}{dx}f(x)$$

Theorem (Product Rule).

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

Theorem (Quotient Rule).

$$\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Theorem (Power Rule).

$$\frac{d}{dx}x^n = nx^{n-1}$$

for $n \in \mathbb{R}$

Theorem (Chain Rule).

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x) \qquad \frac{dy}{dx} = \frac{dy}{db}\frac{db}{dx}$$

Theorem (Derivative of inverse functions). Let $x \in \mathbb{R}$ and f be a differentiable, one-to-one function at x. Then if $f'(x) \neq 0$, then

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)}$$

Theorem (Derivatives of exponentials and logs).

$$\frac{d}{dx}e^x = e^x \qquad \frac{d}{dx}\ln x = \frac{1}{x}$$
$$\frac{d}{dx}a^x = a^x\ln(a) \quad \frac{d}{dx}\log_a x = \frac{1}{x\ln(a)}$$

Theorem (Derivatives of trig functions).

$$\sin'(x) = \cos(x) \qquad \cos'(x) = -\sin(x)$$

$$\sec'(x) = \sec(x)\tan(x) \qquad \csc'(x) = -\csc(x)\cot(x)$$

$$\tan'(x) = \sec(x)^2 \qquad \cot'(x) = -\csc(x)^2$$

$$\arcsin'(x) = \frac{1}{\sqrt{1-x^2}} \qquad \arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$$

$$\arccos'(x) = \frac{1}{|x|\sqrt{x^2-1}} \qquad \arccos'(x) = -\frac{1}{|x|\sqrt{x^2-1}}$$

$$\arctan'(x) = \frac{1}{1+x^2} \qquad \arccos'(x) = -\frac{1}{1+x^2}$$