Derivatives of 3 different discriminat functions for multivariate Gaussian distribution

Compiled by Karthikeyan, CED16l015
Guided by
Dr Umarani Jayaraman

Department of Computer Science and Engineering
Indian Institute of Information Technology Design and Manufacturing
Kancheepuram

February 22, 2021

Introduction

We started with how this PDF actually influence the structure of the decision surface, because

$$g_i(X) = InP(X/\omega_i) + InP(\omega_i)$$

The purpose is to find $g_i(X)$ which is the maximum among all possible discriminant function.

$$\begin{split} g_{i}(X) &= \textit{InP}(X/\omega_{i}) + \textit{InP}(\omega_{i}) \\ P(X/\omega_{i}) &= \frac{1}{(2\pi)^{d/2} |\Sigma_{i}|^{1/2}} exp[\frac{-1}{2} (X - \mu_{i})^{t} \Sigma_{i}^{-1} (X - \mu_{i})] \\ g_{i}(X) &= \frac{-1}{2} [(X - \mu_{i})^{t} \Sigma_{i}^{-1} (X - \mu_{i})] - \frac{d}{2} \textit{In}(2\pi) - \frac{1}{2} \textit{In}(|\Sigma_{i}|) + \textit{InP}(\omega_{i}) \end{split}$$

$$g_{i}(X) = \frac{-1}{2}[(X - \mu_{i})^{t}\Sigma_{i}^{-1}(X - \mu_{i})] - \frac{d}{2}ln(2\pi) - \frac{1}{2}ln(|\Sigma_{i}|) + lnP(\omega_{i})$$

- This is the discriminant function for the multivariate normal DF
- This classifier can take care of linearly non separable classes.
- When we take a decision boundary between two classes ω_i and ω_j ; the decision surface is quadratic surface.
- It is not a linear surface. However for specific cases, this can be converted into a linear classifier.
- Depending upon the co-variance matrix Σ_i we can have different cases of discriminant function (i.e) Case 1, Case 2 and Case 3.

Assumptions:

- In every class, the samples are clustered in hyper spherical of same shape and size
- The covariance matrix is of $\sigma^2 I$
- The Σ_i is same for all classes where i=1,2,..,c

Case 1: $\Sigma_i = \sigma^2 I$ [I is Identity matrix]; given this,

Determinant of

$$|\Sigma_i| = \sigma^{2d} \Rightarrow$$
 d number of diagonal values

• Inverse of Σ_i : $\Sigma_i^{-1} = \frac{1}{\sigma^2}I$

ullet When covariance matrix is same for all different classes $\forall \omega_{\mathbf{i}}$

$$\begin{split} g_{\rm i}(X) &= \frac{-1}{2}[(X-\mu_i)^t \Sigma_i^{-1}(X-\mu_i)] - \frac{d}{2} \ln(2\pi) - \frac{1}{2} \ln(|\Sigma_i|) + \ln P(\omega_{\rm i}) \\ &- \frac{d}{2} \ln(2\pi) \, \Rightarrow \text{Constant or independent of classes} \\ &- \frac{1}{2} \ln(\Sigma_i) \, \Rightarrow \text{Remains same for all classes, hence ignored} \end{split}$$

• By substituting, $\Sigma_i^{-1} = \frac{1}{\sigma^2}I$ $g_i(X) = \frac{-1}{2}[(X - \mu_i)^t \Sigma_i^{-1}(X - \mu_i)] + InP(\omega_i)$ $= \frac{-1}{2\sigma^2}[(X - \mu_i)^t(X - \mu_i)] + InP(\omega_i)$ $= \frac{-1}{2\sigma^2}||X - \mu_i||^2 + InP(\omega_i)$

$$g_{\mathsf{i}}(X) = \frac{-1}{2\sigma^2}||X - \mu_i||^2 + InP(\omega_{\mathsf{i}})$$

If $\mathsf{P}(\omega_{\mathsf{i}}) = P(\omega_{\mathsf{j}})$ equal probability $\forall \mathsf{i,j} = 1,2,...,\mathsf{c}$

$$g_i(X) = \frac{-1}{2\sigma^2}||X - \mu_i||^2 \Rightarrow \text{squared Euclidean distance}$$

- By taking negative; $g_i(X)$ becomes maximum
- Regardless of whether the prior probabilities are equal or not; It is not actually necessary to compute distances.

Expansion of the quadratic form yields:

$$\begin{split} g_{\mathsf{i}}(X) &= \frac{-1}{2\sigma^2}[(X - \mu_i)^t(X - \mu_i)] + \mathit{InP}(\omega_{\mathsf{i}}) \\ &= \frac{-1}{2\sigma^2}[X^tX - X^t\mu_i - \mu_i^tX + \mu_i^t\mu_i] + \mathit{InP}(\omega_{\mathsf{i}}) \end{split}$$

 X^tX is constant and same for all $i \Rightarrow g_i(X)$

$$\begin{aligned} \boxed{\mathbf{X}^t \mu_i &= \mu_i^t \mathbf{X}} \quad \text{Next slide for explanation} \\ &= \frac{-1}{2\sigma^2} [-\mu_i^t \mathbf{X} - \mu_i^t \mathbf{X} + \mu_i^t \mu_i] + \textit{InP}(\omega_{\mathsf{i}}) \\ &= \frac{-1}{2\sigma^2} [-2\mu_i^t \mathbf{X} + \mu_i^t \mu_i] + \textit{InP}(\omega_{\mathsf{i}}) \end{aligned}$$

$$X = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \mu = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$X^t \mu = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2^2 + 3 + 1 \end{bmatrix} = 8$$

$$\mu^t X = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2^2 + 3 + 1 \end{bmatrix} = 8$$
Hence $X^t \mu_i = \mu_i^t X$

$$g_{i}(X) = \frac{-1}{2\sigma^{2}} \left[-2\mu_{i}^{t}X + \mu_{i}^{t}\mu_{i} \right] + InP(\omega_{i})$$
$$= \frac{\mu_{i}^{t}X}{\sigma^{2}} - \frac{1}{2\sigma^{2}}\mu_{i}^{t}\mu_{i} + InP(\omega_{i})$$
$$W_{i} = \frac{\mu_{i}}{\sigma^{2}}$$

 $g_i(X) = W_i^t X + W_{i0} \mid \Rightarrow$ linear equation or linear machine

$$W_i = \frac{1}{\sigma^2} \mu_i$$

$$\mathsf{W}_{i0} = rac{-1}{2\sigma^2}\mu_i^t\mu_i + \mathit{InP}(\omega_i)$$

discriminant function for individual class or i^{th} class is given by

$$g_i(X) = W_i{}^t X + W_{i0}$$

- If we want to find out the decision boundary between two different classes ω_i and ω_i then let's understand
- What will be the nature of the decision boundary that separates the two classes ω_i and ω_j ?

- $g_i(X) = g_i(X)$ is the decision boundary
- \bullet g_i(X) = $W_i^t X + W_{i0}$
- $\bullet \ \mathsf{g}_{\mathsf{j}}(\mathsf{X}) = W_{\mathsf{j}}{}^{\mathsf{t}}X + W_{\mathsf{j}0}$
- $g(X) = g_i(X) g_j(X) = 0$ is the equation of the decision boundary
- \bullet g(X)= W_i^tX + W_{i0} W_j^tX W_{j0} = 0

$$g(X) = (W_i - W_j)^t X \, + \, W_{i0} \, - \, W_{j0} \, = \, 0$$

$$\begin{split} g(X) &= (W_i - W_j)^t X + W_{i0} - W_{j0} = 0 \\ &= \frac{1}{\sigma^2} (\mu_i - \mu_j)^t X - \frac{\mu_i^t \mu_i}{2\sigma^2} + InP(\omega_i) + \frac{\mu_j^t \mu_j}{2\sigma^2} - InP(\omega_j = 0) \\ &= \frac{1}{\sigma^2} (\mu_i - \mu_j)^t X - \frac{1}{2\sigma^2} (\mu_i^t \mu_i - \mu_j^t \mu_j) + InP(\omega_i) - InP(\omega_j) = 0 \\ &= \frac{1}{\sigma^2} (\mu_i - \mu_j)^t X - \frac{1}{2\sigma^2} (\mu_i^t \mu_i - \mu_j^t \mu_j) + In\frac{P(\omega_i)}{P(\omega_j)} = 0 \end{split}$$

Multiply by σ^2

$$= (\mu_{i} - \mu_{j})^{t} X - \frac{1}{2} [(\mu_{i} - \mu_{j})^{t} (\mu_{i} + \mu_{j})] + \sigma^{2} ln \frac{P(\omega_{i})}{P(\omega_{i})} = 0$$

$$=(\mu_{i}-\mu_{j})^{t}X-rac{1}{2}[(\mu_{i}-\mu_{j})^{t}(\mu_{i}+\mu_{j})]+\sigma^{2}\lnrac{P(\omega_{i})}{P(\omega_{i})}=0$$

Take $(\mu_i - \mu_i)^t$ out

$$\begin{split} &= (\mu_{i} - \mu_{j})^{t}[X - \{\frac{1}{2}(\mu_{i} + \mu_{j}) - \frac{\sigma^{2}}{(\mu_{i} - \mu_{j})^{t}(\mu_{i} - \mu_{j})} ln \frac{P(\omega_{i})}{P(\omega_{j})}.(\mu_{i} - \mu_{j})\}] \\ &= W^{t}[X - X_{0}] = 0 \end{split}$$

where

$$W^t[X-X_0]=0$$
 \Rightarrow Decision boundary between i^{th} and j^{th} class

- ullet W = line joining μ_{i} and μ_{j} where μ_{i} and μ_{j} is vector
- Since $W^t[X-X_0]=0$, the decision surface is orthogonal to the line joining $\mu_{\rm i}$ and $\mu_{\rm j}$
- Since the decision boundary is linear, the surface which separates two classes is nothing but hyperplane.
- If $P(\omega_i) = P(\omega_j)$, it turns out to be orthogonal bisector passing through X_0 . This is also called as minimum distance classifier.

Figure: Decision Boundary

- If $P(\omega_1) == P(\omega_2)$ It is on the point X_0
- If $P(\omega_1) > P(\omega_2)$ The decision surface is away from μ_1
- ullet If $P(\omega_2)>P(\omega_1)$ The decision surface is away from μ_2

Case 1: Summary

- $\Sigma_i = \sigma^2 I$; i = 1,2,...,c; All covariance matrix of type $\sigma^2 I$
- $\Sigma^{-1}_{i} = \frac{1}{\sigma^{2}}$
- ullet Σ_i is of hyper sphere of same shape and size.
- $W^t[X X_0] = 0$ is the decision surface and it is linear.
- It is Euclidean minimum distance classifier
- In 2d, it turns out to be $\Sigma_1 = \Sigma_2 = \begin{bmatrix} {\sigma_1}^2 & 0 \\ 0 & {\sigma_2}^2 \end{bmatrix} = \begin{bmatrix} 0.3 & 0 \\ 0 & 0.3 \end{bmatrix}$
- \bullet x_1 and x_2 are independent

Case 2 Assumption:

- $\begin{array}{ll} \bullet & \Sigma_{\mathsf{i}} = \Sigma \\ \Sigma \text{ is arbitrary} \Rightarrow \Sigma_1 = \Sigma_2 = \begin{bmatrix} {\sigma_1}^2 & {\sigma_{12}} \\ {\sigma_{21}} & {\sigma_2}^2 \end{bmatrix} \end{array}$
- 2 x_1 and x_2 are not necessarily independent
- \odot Σ_i is the same for all different classes
- The samples are clustered in hyper ellipsoidal of same shape and size
- \bullet $\sigma_{12} = \sigma_{21}$, hence symmetry

$$g_{i}(X) = \frac{-1}{2}[(X - \mu_{i})^{t}\Sigma_{i}^{-1}(X - \mu_{i})] - \frac{d}{2}ln(2\pi) - \frac{1}{2}ln(|\Sigma_{i}|) + lnP(\omega_{i})$$

After ignoring constant $-\frac{d}{2}ln(2\pi)$ and $-\frac{1}{2}ln(|\Sigma_i|)$

$$g_{i}(X) = \frac{-1}{2}[(X - \mu_{i})^{t}\Sigma_{i}^{-1}(X - \mu_{i})] + InP(\omega_{i})$$

- If all the classes are equal probable then
- Minimum distance classifier for
- Case 1 Squared Euclidean Distance
- Case 2 Squared Mahalanobis Distance

Expansion of the quadratic form yields:

$$g_{i}(X) = \frac{-1}{2}[(X - \mu_{i})^{t}\Sigma_{i}^{-1}(X - \mu_{i})] + InP(\omega_{i})$$

$$= \frac{-1}{2}[(X^{t} - \mu_{i}^{t})\Sigma_{i}^{-1}(X - \mu_{i})] + InP(\omega_{i})$$

$$= \frac{-1}{2}[(X^{t}\Sigma_{i}^{-1} - \mu_{i}^{t}\Sigma_{i}^{-1})(X - \mu_{i})] + InP(\omega_{i})$$

$$= \frac{-1}{2}[X^{t}\Sigma_{i}^{-1}X - \mu_{i}^{t}\Sigma_{i}^{-1}X - X^{t}\Sigma_{i}^{-1}\mu_{i} + \mu_{i}^{t}\Sigma_{i}^{-1}\mu_{i}] + InP(\omega_{i}) \Rightarrow (1)$$

 $X^t\Sigma_i^{-1}X$ is same for all classes and hence ignored

$$\left| \, g_i(X) = W_i{}^t X + W_{i0} \, \right| \Rightarrow \text{linear equation} / \, \text{machine}$$

where

$$egin{aligned} W_{\mathsf{i}} &= \mu_{i} \Sigma_{i}^{-1} \ W_{\mathsf{i}0} &= -rac{1}{2} [\mu_{i}^{\mathsf{t}} \Sigma_{i}^{-1} \mu_{i}] + \mathit{InP}(\omega_{\mathsf{i}}) \end{aligned}$$

What will be the nature of the decision boundary that separates the two classes ω_i and ω_i ?

$$g_{\rm i}(X)-g_{\rm j}(X)=0$$

By deriving as like previous, it turned to

$$W^{\mathsf{t}}(X-X_0)=0$$

where,

$$W = \Sigma^{-1}(\mu_{i} - \mu_{j})$$

$$X_{0} = \frac{1}{2}(\mu_{i} + \mu_{j}) - \frac{1}{(\mu_{i} - \mu_{j})^{t} \Sigma^{-1}(\mu_{i} - \mu_{j})} ln \frac{P(\omega_{i})}{P(\omega_{j})} (\mu_{i} - \mu_{j})$$

Case 3: It is more general case

- \bullet Σ_i is arbitrary; different classes have different covariance matrix; $\Sigma_i \neq \Sigma_j$
- The decision surface is hyper quadratic in nature
- Ovariance matrix is arbitrary

From (1), We cant ignore anything here because of $\boldsymbol{\Sigma}_i$ is arbitrary in nature

$$\begin{split} &= \frac{-1}{2}[X^t \Sigma_i^{-1} X - \mu_i^t \Sigma_i^{-1} X - X^t \Sigma_i^{-1} \mu_i + \mu_i^t \Sigma_i^{-1} \mu_i] + lnP(\omega_i) - \frac{1}{2} ln|\Sigma_i| \\ &= \frac{-1}{2}[X^t \Sigma_i^{-1} X - 2\mu_i^t \Sigma_i^{-1} X + \mu_i^t \Sigma_i^{-1} \mu_i] + lnP(\omega_i) - \frac{1}{2} ln|\Sigma_i| \end{split}$$

$$g_i(X) = X^t A_i X + B_i^{\ t} X + C_{i0}$$

where

$$\begin{aligned} A_{\mathsf{i}} &= \frac{-1}{2} \Sigma_{\mathsf{i}}^{-1} \\ B_{\mathsf{i}} &= \Sigma_{\mathsf{i}}^{-1} \mu_{\mathsf{i}} \\ C_{\mathsf{i}0} &= \frac{-1}{2} \mu_{\mathsf{i}}^t \Sigma_{\mathsf{i}}^{-1} \mu_{\mathsf{i}} - \frac{1}{2} l n |\Sigma_{\mathsf{i}}| + l n P(\omega_{\mathsf{i}}) \end{aligned}$$

The decision surface is quadratic hyperplane

Summary of all 3 cases

Multivariate case:

- Case 1: $\Sigma_i = \sigma^2 I$; Same for all class
- Case 2: $\Sigma_i = \Sigma$; Same for all class
- Case 3: $\Sigma_i \neq \Sigma_j$; Different for different class

Bivariate case:

Case 1:
$$\sigma_1^2 = \sigma_2^2$$
; $\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$
Case 2: $\sigma_1^2 > \sigma_2^2$; $\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$

Case 3:
$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}$$