MORE SLIDES ON BASEBAND MODULATION

Bandwidth efficiency

 R/W is a useful parameter for measuring bandwidth efficiency (bits/s/hz)

R: Bit rate

W: Baseband bandwidth

- Larger the value of R/W more efficient the system is from bandwidth viewpoint
- For on-off signaling and polar signaling W = 2R
 R/W = 0.5 bits/s/Hz
 For bipolar signaling R/W = 1 bit/s/Hz

Comparison of various codes

Line Code	D.C.	Clock	Noise Immunity	Bandwidth	Transparency
ON-OFF	No Null	Yes	poor	2R	poor
POLAR	No Null	No	Good	2R	Good
BIPOLAR	Null	No	Poor	R	Poor

Quantization distortion error

Maximum quantization error

$$|e|_{\text{max}} = \frac{q}{2} = \frac{2V_p}{L \times 2} = \frac{V_{pp}}{2L}$$

$$\frac{V_{pp}}{2L} \le pV_{pp}$$
: p is a fraction

$$L \ge \frac{1}{2p}$$

M'ary pulse modulation waveforms

x(t): Analog Signal

 $x_c(t)$: Binary Signal

 $x_A(t)$: M'ary Signal

A convention

- □ At the output of A/D converter
 - L: Number of quantization levels
 - I: Number of bits/sample
 - $2^{I} = L$
- At the output of Pulse modulator
 - M: Number of possible symbols(Waveforms) in the symbol set
 - k : Number of bits per symbol
 - $2^k = M$

PCM-PAM signalling

Analog signal : -1 to 1 volt. And 6 bit PCM q = 2/64 = 1/32 volt. Signal between -1 &-31/32 volts coded as 000000

-31/32 & -30/32 coded as 000001 etc.

Sample value	10	5	4		8		6		30	
PCM output	010	000	0001	100	0010	000	000	110	011	110
8'ary values	2	0	0	4	1	0	0	6	3	6

Example

```
Analog signal fm = 3.5 \text{ kHz}
Sampling frequency: 8 kHz
PCM bit rate (6 bits /sample) R = 48 \text{ kbits/sec}
Bandwidth requirement: 2 R = 96 Khz
(On-Off signalling)
For PAM signalling Symbols/sec = 48/3 = 16
  Ksymbols/sec
Bandwidth requirement = 16x2 = 32 KHz.
```