

# R-course: Machine Learning using R

#### Course organization and introduction



Yannick Rothacher

Zürich, 2021



#### Course material

- Where to find it...
  - Print out
  - USB stick
  - Github



#### Who am I?

- Yannick Rothacher
- Original background: Biology/Neuroscience (PhD in Neuroscience)
- Further education in "applied statistics" at ETH Zürich
- Currently working as a Post-Doc at the Professorship for Psychological Methods, Evaluation and Statistics (Prof. Carolin Strobl)
  - Doing research on Random Forests and interpretable machine learning
  - Teaching introductory courses to machine learning and R
- yannick.rothacher@psychologie.uzh.ch





#### Who are you?

A list of questions I would be interested in:

- What is your work?
- Experience with R? How often used?
- Experience in statistics?
- Experience in machine learning?
- What are your expectations for this course?



## Course goals and organization

#### Goals:

- Give an overview of different machine learning methods
- Explain working principle of the presented methods
- Practice application of presented methods in R
- Discuss general issues in machine learning

#### Organization:

- Two day course
- Alternation between lectures and exercises





#### Course timetable

See PDF "RKurs2021\_ML\_Program.pdf" ...



#### What is Machine Learning?



- Distinction from Machine Learning to other statistical methodology not always clear
- When comparing Machine Learning with "classical" statistics:
- Statistical models are generally designed for inference
- Machine Learning models are generally designed for prediction



#### **Application of Machine Learning**

Being able to **predict** certain outcomes based on data can be important in many different areas in **research and industry** 

#### Examples:

- Predict the winner of a basketball game
- Predict the weather of tomorrow
- Predict whether a medical scan shows an image of a tumor
- Predict whether an email is spam or not
- Predict how likely a person is about to develop depression



In all cases: Predictions are based on data!



# Prediction models don't have to be complicated

Simple linear regression can also be used to predict values of new observations





- ► However, sometimes statistical models have limited prediction accuracy, but allow **inference about the relation** between predictors and target variables (e.g. showing a significant influence of a treatment).
- In many Machine Learning models, the prediction accuracy is very good but it is difficult to infer the variables' relations (e.g. neural network)



## **Application of Machine Learning**

Again: In general one tries to predict a target variable based on predictor variables

target variable ~ predictor variables y ~ X



- ► Target variable can be a certain category, a number, a probability, ...
- In real-life data, there are often many predictor variables (genetic data: up to 10'000 predictors)
- Can even be n << p (much more variables (p) than data points (n))</p>
- This case can be difficult to handle with conventional methods (for example linear regression)



## Challenges of high-dimensional data

 $\triangleright$  For example linear regression only works for n > p:





- We need methods for situations with n < p</p>
- ► Machine Learning methods are usually able to handle n < p situations



## Challenges of high-dimensional data

 $\triangleright$  For example linear regression only works for n > p:



- We need methods for situations with n < p</p>
- ► Machine Learning methods are usually able to handle n < p situations



# Outlook: Machine Learning methods



PCA2

**Principal Component Analysis** 



K-means clustering



**Decision trees** 





**Neural networks**