Exploring Model Fit for the PISA Perceived Control Scale

Breanna Morrison, Wen-juo Lo, Ronna Turner, Lihua Yang, Sho-Hsien Su University of Arkansas

Programme for International Student Assessment (PISA)

- Measures a variety of academic and attitudinal constructs
- Perceived control new scale for the PISA 2012
- Will a mix of positively and negatively worded questions affect the validity of this new scale?

Research on Mixed Worded Items

- Factor loadings used to determine if a scale is measuring one unified construct
- Some research has found positively and negatively worded loading onto two different factors
 - (Barnette, 2000; Borgers, Sikkel, & Hox, 2004; Greenberger et. al., 2003)
- Mixed results on how these different loadings affect reliability
- Other mixed worded PISA scales have been analyzed
 - (Wang, Chen, & Jin, 2015).

Research on Perceived Control

- PISA Perceived Control Scale new; focus on math
- Variety of measures on the construct of perceived control
 - (Skinner, James, & James, 1990; Wellborn, Connell, & Skinner, 1989)
- Theological framework of how perceived control relates to behavior

Methods

- Correlated traits correlated methods (CTCM)
- PISA data for only United States students used
 - Sample size of 3,190
- Six Likert type items from strongly agree (value 1) to strongly disagree (value 4)
- Cronbach's alpha (a measure of internal reliability) of .638

Questions

Question label	Question Text	Coding
PC1	If I put in enough effort I can succeed in mathematics.	Reversed
PC2	Whether or not I do well in mathematics is completely up to me.	Reversed
PC3	Family demands or other problems prevent me from putting a lot of time into my mathematics work.	
PC4	If I had different teachers I would try harder in mathematics.	
PC5	If I wanted to I could do well in mathematics.	Reversed
PC6	I do badly in mathematics whether or not I study for my exams.	

Models Tested

- Single factor model: All items load onto 1 factor (that factor being perceived control)
- Two-factor without correlation model: Positively worded items will go on one factor while negatively worded items will go on another factor; factors are uncorrelated
- Two-factor with correlation model: Two factors but correlated
- Single factor with method effects:
 All questions load onto one factor
 but negatively worded items load
 onto a second factor as well

Model Fit

- Single factor model worst fitting model
- Two-factor without correlation model fit better and twofactor with correlation model was even a better fit than the uncorrelated model
- Best fitting model was the single factor model with method effects

Model	χ^2	RMSEA	CFI	GFI	SRMR	Model AIC
Model 1: Single factor model	739.91	0.160 (0.150, 0.169)	0.783	0.921	0.100	721.911
Model 2: Two-factor without correlation	390.93	0.115 (0.106, 0.125)	0.887	0.963	0.107	372.928
Model 3: Two-factor with correlation	209.68	0.089 (0.079, 0.099)	0.940	0.978	0.053	193.676
Model 4: Single factor with method effects	48.08	0.047 (0.035, 0.060)	0.988	0.995	0.017	36.076

Model	χ^2	RMSEA	CFI	GFI	SRMR	Model AIC
Model 1: Single factor model	739.91	0.160 (0.150, 0.169)	0.783	0.921	0.100	721.911

Figure 1: Model 1: Single factor model with factor coefficients listed

Model	χ^2	RMSEA	CFI	GFI	SRMR	Model AIC
Model 2: Two-factor model without correlation	390.93	0.115 (0.106, 0.125)	0.887	0.963	0.107	372.928

Figure 2: Model 2: Two-factor without correlation model with factor coefficients listed

Model	χ^2	RMSEA	CFI	GFI	SRMR	Model AIC
Model 3: Two-factor with correlation	209.68	0.089 (0.079, 0.099)	0.940	0.978	0.053	193.676

Figure 3: Model 3: Two-factor model with correlation with factor coefficients listed

Model	χ^2	RMSEA	CFI	<i>GFI</i>	SRMR	Model AIC
Model 4: Single factor with method effects	48.08	0.047 (0.035, 0.060)	0.988	0.995	0.017	36.076

Figure 4: Model 4: Single factor with method effects with factor coefficients listed

Significance of Findings

- Data did not fit a single factor model well in this Perceived control scale
- Wording seemed to have an effect on how questions were answered
- Future studies may look to see how this scale is performing across countries

References

- Barnette, J. J. (2000). Effects of stem and Likert response option reversals on survey internal consistency: If you feel the need, there is a better alternative to using those negatively worded stems. Educational and Psychological Measurement, 60(3), 361-370.
- Borgers, N., Sikkel, D., & Hox, J. (2004). Response effects in surveys on children and adolescents: The effect of number of response options, negative wording, and neutral midpoint. Quality and Quantity, 38(1), 17-33.
- Greenberger, E., Chen, C., Dmitrieva, J., & Farruggia, S. P. (2003). Item-wording and the dimensionality of the Rosenberg Self-Esteem Scale: do they matter?. Personality and individual differences, 35(6), 1241-1254.
- Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural equation modeling: a multidisciplinary journal*, *6*(1), 1-55.
- Skinner, Ellen A., James G. Wellborn, and James P. Connell. "What it takes to do well in school and whether I've got it: A process model of perceived control and children's engagement and achievement in school." Journal of educational psychology 82.1 (1990): 22.
- Wang, W. C., Chen, H. F., & Jin, K. Y. (2015). Item Response Theory Models for Wording Effects in Mixed-Format Scales. Educational and Psychological Measurement, 75(1), 157-178.
- Wellborn, J. G., Connell, J. P., & Skinner, E. A. (1989). The Students Perceptions of Control Questionnaire (SPOCQ): Academic Domain. Technical Report, University of Rochester, Rochester, NY.