$$P(X) = \frac{e^{-m}m^x}{x!}$$

先求 $X \le 1$ 之機率, $m = nP = 20 \times 0.08 = 1.6$

$$P(X \le 1) = P(X = 0) + P(X = 1) = 0.2019 + 0.3230 = 0.5249$$

再求
$$P(X \ge 2) = 1 - P(X \le 1) = 1 - 0.5249 = 0.4751$$

17. 先用蒲松氏分配,

$$P = \frac{3}{15} = 0.2$$
, $n = 3$, $x = 1$, $m = nP = 3 \times 0.2 = 0.6$
 $P(X \le 1) = 0.3293$

再用二項分配

$$P(X = 1) = 7C_x P^x q^{n-x} = 3C_1(0.2)^1(0.8)^2 = 0.384$$

不合理, 因為正確答案 0.384 而蒲松氏近似值 = 0.3293 兩者相差過大。

18. 先用蒲松氏分配

$$P = 0.09$$
, $n = 67$, $X = 3 \Rightarrow m = nP = 67 \times 0.09 = 6.03$
 $\Rightarrow P(X = 3) = 0.0879$

再用二項分配

$$P(X=3)=67C_3(0.09)^3(0.91)^{64}=.0835(兩者接近,合理)$$

第四章

1. 可量測數據:又名連續數據,如長度,重量,時間等數據。

可計數的數據:又名不連續數據不可量測之數據。如不良品之個數。

不良率屬於不連續數據,因爲,如不良率爲 $\frac{3}{100} = 0.03$,看起來好像是有基本量測單位的數據,事實不然,下一個不良率不一定會出現 0.04 或 0.02 之數據,而且它們也沒有基本量測單位之觀念。

2. 數據之收集應該考慮 (1) 澄淸數據之收集目的; (2) 有效率的收集數據; (3) 依照數據所顯示的事實,採取行動。

- 3. 檢查表依功能區分大致有下面五種 (1) 製程上之檢查表; (2) 缺點項目之檢查表; (3) 缺點位置之檢查表; (4) 缺點原因之檢查表; (5) 記錄用的檢查表。
- 4. 之所以要懷疑別人所提供之數據,因爲數據之來源及收集過程可能沒有反映實情,如 (1) 取樣不正確,如取樣不均勻不能代表全母體的實況;(2) 量測儀器的精準度與準確度有問題;(3) 量測儀器的使用不當;(4) 因故偽造數據。
- 5. 依成本大小次序,先做成分析表如下,

成本項目	全額 (元)	比率 (%)	累計金額	累計百分比(%)
(a) 材料費用	20,000	45.5	20,000	45.5
(b) 人工薪資	10,000	22.7	30,000	68.2
(c) 機器費用	8,000	18.2	38,000	86.4
(d) 運送費用	4,000	9.1	42,000	95.5
(e) 其他雜支	2,000	4.5	44,000	100.0
合 計	44,000	100.0		

- 6. (1) 魚骨圖具教育作用。
 - (2) 讓參與腦力激盪的人員把話題集中。
 - (3) 提昇公司的技術與文化水準。
 - (4) 由於關心品質問題之員工的參與,藉腦力激盪法可刺激員工的腦力與對 困難技術的突破,並且喚起員工主動探討問題的能力與習慣。
- 7. 修瓦特博士造成製程先天上,無法避免的變異原因稱做機遇原因(戴明叫它 爲共同原因);意指製程先天上必然會存在變異,無論如何努力都不可能根 除,最多只能縮小變異的範圍。

非機遇原因 (戴明叫它為特殊原因),其原由從製程上來說,可能是操作錯誤,機器故障,原料之品質有瑕疵等等,所造成的變異,它使製程處於不可管制的異常狀況下。

- 8. 管制圖位數據的性質:可量測與不可量測而區分成
 - (1) 計量管制圖,如 $\overline{X}-R$, $\overline{X}-S$, $X-R_m$ 管制圖。
 - (2) 計數管制圖,如 P_{μ} , P, μ , 與 C 管制圖。
- 9. 其一,管制圖用來協助判定製程中的變異原因,究竟是屬於機遇原因或非機遇原因。經過管制圖之判斷之後,據此擬定改善變異或改進異常之行動方案。 其二,管制圖是一種工具,它基於經濟立場之考量,進行決策,判定究竟要 對製程找出錯誤,然後矯正錯誤。還是視製程表現爲理所當然(指自然性的 變異)而不採取任何行動。
- **10.** 因爲,樣本大小 n 的平均值比起樣本之個別值更能快速反映製程的變異情形。
- 11. 先計算試作的 UCL, CL, 與 LCL

$$\overline{\overline{X}} = \frac{\sum_{i=1}^{25} \overline{X}_i}{25} = \frac{30.65 + 30.36 + \dots + 30.40}{25} = 30.40$$

$$\overline{R} = \frac{\sum_{i=1}^{25} R_i}{25} = \frac{0.36 + 0.32 + \dots + 0.30}{25} = 0.356$$

 \bar{X} 管制圖的試作管制界限

$$n = 6 \Rightarrow A_2 = 0.483$$

UCL =
$$\overline{\overline{X}} + A_2 \overline{R}$$

= 30.40 + 0.483 × 0.356 = 30.57

$$CL = \overline{\overline{X}} = 30.40$$

LCL =
$$\overline{\overline{X}} - A_2 R$$

= 30.40 - 0.483 × 0.356 = 30.23

故知

UCL~LCL 之間為

$$30.57 \sim 30.23$$

$$\overline{X}_1 = 30.65$$

 $\overline{X}_8 = 30.20$
兩點超出界限外。

剔除 \bar{X}_1 與 \bar{X}_8 兩點後,

再計算 \bar{X} ,故

$$\overline{\overline{X}} = \frac{\sum_{i=1}^{25} \overline{X}_i - \overline{X}_1 - \overline{X}_8}{23} = 30.40$$

計算 \overline{X} 與 R 管制圖的標準管制界限

$$UCL = 30.40 + 0.483 \times 0.34 = 30.56$$

$$CL = 30.40$$

$$LCL = 30.40 - 0.483 \times 0.34 = 30.24$$

R 管制圖的試作管制界限

$$n = 6 \Rightarrow D_3 = 0$$
, $D_4 = 2.004$

$$UCL = D_4 \overline{R} = 2.004 \times 0.356 = 0.713$$

$$CL = \overline{R} = 0.356$$

$$CL = D_3 \overline{R} = 0 \times \overline{R} = 0$$

故知

UCL~LCL之間為

$$0.713 \sim 0$$

 $R_{18} = 0.73$ 超出界外

剔除 R_{18} ,再計算

$$\overline{R} = \frac{\sum_{i=1}^{25} R_i - R_{18}}{24} = 0.34$$

12. $n = 2 \Rightarrow A_2 = 1.880$, $D_3 = 0$, $D_4 = 3.267$

\overline{X} 管制圖的試作管制界限

$$\bar{X} = 30.40$$

$$UCL = 30.40 + 1.880 \times 0.356 = 31.07$$

$$CL = 30.40$$

$$LCL = 30.40 - 1.88 \times 0.356 = 29.73$$

結論:檢查例 11 的 25 點,發現 \overline{X}

R管制圖的試作管制界限

 $UCL = 2.004 \times 0.34 = 0.68$

$$\overline{R} = 0.356$$

CL = 0.34

LCL = 0

$$UCL = 3.267 \times 0.356 = 1.163$$

$$CL = 0.356$$

$$LCL = 0$$

檢查例 11 的 25 點,發現 R_i 都位

都 在 UCL = 31.07 與 LCL = 29.73 | 於 UCL = 1.163 與 LCL = 0 之間, 之間,因此,製程被判定處於管制 狀況下。

此時,試作界限就是標準界限,不 須再修正。

$$n = 4 \Rightarrow A_2 = 0.729$$
, $D_3 = 0$, $D_4 = 2.282$

X 管制圖的試作管制界限

 $\therefore \overline{X} = 30.40$

 $UCL = 30.40 + 0.729 \times 0.356 = 30.66$

CL = 30.40

 $LCL = 30.40 - 0.729 \times 0.356 = 30.14$

檢查例 11 的 25 點,發現 \bar{X} ,都位 於 UCL = 30.66 與 LCL = 30.14 之 間。

R管制圖的試作管制界限

 $\overline{R} = 0.356$

 $UCL = 2.282 \times 0.356 = 0.812$

CL = 0.356

LCL = 0

檢查例 11 的 25 點,發現 R_i 都位 於 UCL = 0.812 與 LCL = 0 之間。

結論: \overline{X} 與R管制圖的管制界限不必修正。

$$n = 5 \Rightarrow A_2 = 0.577$$
, $D_3 = 0$, $D_4 = 2.114$

X 管制圖的試作管制界限

 $\bar{X} = 30.40$

 $UCL = 30.40 + 0.577 \times 0.356 = 30.61$

CL = 30.40

 $LCL = 30.40 - 0.577 \times 0.356 = 30.19$

發現 $\overline{X}_1 = 30.65$ 超過管制界限,因 此,要修改管制界限,先修改,

$$\overline{\overline{X}} = \frac{\sum_{i=1}^{25} \overline{X}_i - \overline{X}_1}{24} = 30.39$$

 $UCL = 30.39 + 0.577 \times 0.356 = 30.60$

CL = 30.39

 $LCL = 30.39 - 0.577 \times 0.356 = 30.18$

R管制圖的試作管制界限

 $\overline{R} = 0.356$

 $UCL = 2.114 \times 0.356 = 0.753$

CL = 0.356

LCL = 0

發現 25 點中,沒有任何超出管制界 限

$$\overline{R} = 0.356$$

因此,

UCL = 0.753

CL = 0.356

LCL = 0

不變。

結論:

比較 n=2, n=4, n=5, 與 n=6 之試作與標準管制界限。

	$\underline{n}=2$	n=4	n = 5	n=6
制ま作	$UCL_{\overline{X}} = 31.07$	$UCL_{\overline{X}} = 30.66$	$LCL_{\overline{X}} = 30.61$	$UCL_{\overline{X}} = 30.57$
	$LCL_{\overline{X}} = 29.73$	$LCL_{\overline{X}} = 30.14$	$LCL_{\overline{X}} = 30.19$	$LCL_{\overline{X}} = 30.23$
	$UCL_R = 1.163$	$UCL_R = 0.812$	$UCL_R = 0.753$	$UCL_R = 0.713$
	$LCL_R = 0$	$LCL_R = 0$	$LCL_R = 0$	$LCL_R = 0$
制標界準	不變同上	不變同上	$UCL_{\overline{X}} = 30.60$	$UCL_{\overline{X}} = 30.56$
			$LCL_{\overline{X}} = 30.18$	$LCL_{\overline{X}} = 30.24$
			$UCL_R = 0.753$	$UCL_R = 0.68$
			$LCL_R = 0$	$LCL_R = 0$

13. 先求中心線的大小

<u></u> 管制圖	R 管制圖
$\therefore n = 4 \Rightarrow A_2 = 0.709$	$n = 4 \Rightarrow D_3 = 0$, $D_4 = 2.282$
$\overline{\overline{X}} = CL = \frac{62.50}{25} = 2.5 \text{ kg}$	$\overline{R} = \frac{13.83}{25} = 0.553$
$UCL = 2.5 + 0.729 \times 0.553 = 2.90$	$UCL = 2.282 \times 0.553 = 1.262$
CL = 2.5	CL = 0.553
$LCL = 2.5 - 0.729 \times 0.553 = 2.10$	LCL = 0

- 14. 製程處於穩定狀況下與管制狀況下是名異實同的說法,其意義是,
 - (1) 管制圖上的每一點都在管制界限內。
 - (2) 管制圖上的點之分佈情形沒有特殊現象,而呈現隨機的分佈,因爲,製 程處於管制狀況下的變異只源自機遇原因而不可摻有非機遇原因。

製程處於非穩定狀況下與非管制狀況下,與異常狀況下,三者是名異實同的 說法,其意義是,

- (1) 管制圖上只要有一點或一點以上,越過管制界限。
- (2) 管制圖上的點之分佈,呈現特殊的現象,或者呈現非隨機 (非任意)的排列。

這時的製程之變異起因於非機遇原因,因此,又名製程異常。

15. 過去沒有任 \bar{X} -R 管制圖之品質記錄,所以,一般而言,用規格的上下限與目標值做爲現場線上品管所需 \bar{X} -R 管制圖之中心線與上下限之參考。因爲,製程處於管制狀況下,總會呈現,

因此,不妨把 (USL-LSL) 80 做為

$$UCL = T + \frac{1}{2} \times (USL - LSL) \times \frac{80}{100}$$

$$LCL = T - \frac{1}{2} \times (USL - LSL) \times \frac{80}{100}$$

16. n = 10 查表 $\Rightarrow A_3 = 0.975$, $B_3 = 0.284$, $B_4 = 1.716$

\bar{X} 管制圖

試作管制界限

$$\sum_{i=1}^{22} \overline{X}_i = 5533$$

$$\overline{\overline{X}} = \frac{5533}{22} = 251.5$$

$$UCL = \overline{\overline{X}} + A_3 \overline{S} = 251.5 + 0.975 \times 26.64$$

$$= 277.5$$

$$CL = 251.5$$

$$LCL = 251.5 - 0.975 \times 26.64 = 225.5$$

檢查數據表,發現

$$\overline{X}_9$$
 = 279, \overline{X}_{10} = 222, \overline{X}_{17} = 223, \overline{X}_{20} = 284 共四點

超出 USL = 277.5 與 LCL = 7.57 之間

S 管制圖

試作管制界限

$$\sum_{i=1}^{22} S_i = 586$$

$$\overline{S} = \frac{586}{22} = 26.64$$

$$UCL = B_4 \overline{S} = 1.716 \times 26.64 = 45.71$$

$$CL = 26.64$$

$$LCL = B_3 \overline{S} = 0.284 \times 26.64 = 7.57$$

超出 UCL = 45.71 與 LCL = 7.57 之間

因此,需要修正作管制界限如下,

X管制圖

$$\overline{\overline{X}} = \frac{\sum_{i=1}^{22} \overline{X}_i - \overline{X}_9 - \overline{X}_{10} - \overline{X}_{17} - \overline{X}_{20}}{22 - 4}$$

$$= \frac{5533 - 279 - 222 - 223 - 284}{18}$$

$$= 251.4$$

$$UCL = 251.4 + 0.975 \times 25.5 = 276.3$$

$$CL = 251.4$$

$$LCL = 251.4 - 0.975 \times 25.5 = 226.5$$

17. X 管制圖

$$\sum_{i=1}^{25} X_i = 188.7$$

$$\overline{X} = \frac{188.7}{25} = 7.55$$

$$\sigma_x = \frac{\overline{R}_m}{d_2} = \frac{0.36}{1.128} = 0.319$$

$$UCL = \overline{X} + 3\sigma_x = 7.55 + 3 \times 0.319 = 8.51$$

$$CL = 7.55$$

$$LCL = \overline{X} - 3\sigma_x = 7.55 - 3 \times 0.319 = 6.59$$

S 管制圖

試作管制界限

$$\overline{S} = \frac{\sum_{i=1}^{22} S_i - S_{17}}{21} = 25.5$$

$$UCL = 1.716 \times 25.5 = 43.8$$

$$CL = 25.5$$

$$LCL = 0.284 \times 25.5 = 7.2 = 7.57$$

R, 管制圖

$$\overline{R}_{m} = \frac{\sum_{i=1}^{24} R_{m_{i}}}{24} = \frac{8.7}{24} = 0.36$$

$$n = 2 \Rightarrow$$
 查表 D , $D_{3} = 0$,
$$D_{4} = 3.267$$

$$UCL = D_{4}\overline{R}_{m} = 3.267 \times 0.36 = 1.176$$

$$CL = 0.36$$

$$LCL = D_{3}\overline{R}_{m} = 0$$

X 管制圖

R_m 管制圖