

CIRCUITOS DIGITAIS CIRCUITOS COMBINACIONAIS BÁSICOS (DECODIFICADOR & MULTIPLEXADOR)

Marco A. Zanata Alves

IDENTIFICADOR BINÁRIO BÁSICO

Exercício 1: Projete um circuito digital com 4 entradas: a_3 , a_2 , a_1 , a_0 e uma saída X, tal que X=1 somente se $(a_3a_2a_1a_0)_2=(1001)_2$.

IDENTIFICADOR BINÁRIO BÁSICO

Exercício 1: Projete um circuito digital com 4 entradas: a_3 , a_2 , a_1 , a_0 e uma saída X, tal que X=1 somente se $(a_3a_2a_1a_0)_2=(1001)_2$.

$$X = a_3 \overline{a_2} \, \overline{a_1} a_0$$

IDENTIFICADOR BINÁRIO

Exercício 2: faça um circuito com quatro entradas a_3 , a_2 , a_1 , a_0 e três saídas X_5 , X_9 e X_{13} tais que cada uma delas identifique a entrada dos números 5, 9 e 13, respectivamente, por meio de um sinal de nível alto.

IDENTIFICADOR BINÁRIO

Exercício 2: faça um circuito com quatro entradas a_3 , a_2 , a_1 , a_0 e três saídas X_5 , X_9 e X_{13} tais que cada uma delas identifique a entrada dos números 5, 9 e 13, respectivamente, por meio de um sinal de nível alto.

$$X_5 = \overline{a_3} a_2 \overline{a_1} a_0$$

$$X_9 = a_3 \overline{a_2} \, \overline{a_1} a_0$$

$$X_5 = \overline{a_3} a_2 \overline{a_1} a_0 \qquad X_9 = a_3 \overline{a_2} \overline{a_1} a_0 \qquad X_{13} = a_3 a_2 \overline{a_1} a_0$$

DECODIFICADORES (DECODER)

Exercício 3: faça um circuito com duas entradas a_1 , a_0 e 4 saídas X_0 , X_1 , X_2 , X_3 , tais que cada uma delas identifique a entrada do número 0, 1, 2, 3 respectivamente, por meio de um sinal de nível alto.

Exercício 3: faça um circuito com duas entradas a_1 , a_0 e 4 saídas X_0 , X_1 , X_2 , X_3 , tais que cada uma delas identifique a entrada do número 0, 1, 2, 3 respectivamente, por meio de um sinal de nível alto.

Decodificador n entradas para 2^n saídas: circuito digital com:

- n entradas: a_{n-1} a_{n-2} , ..., a_1 , a_0
- 2^n saídas: $X_0, X_1, ..., X_{2^n-1}$

Onde a saída X_i está ativa se o código $i=(a_{n-1}a_{n-2}\dots a_1a_0)_2$ está na entrada

Decodificador n entradas para 2^n saídas: circuito digital com:

- n entradas: a_{n-1} a_{n-2} , ..., a_{1} , a_{0}
- 2^n saídas: $X_0, X_1, ..., X_{2^n-1}$

Onde a saída X_i está ativa se o código $i=(a_{n-1}a_{n-2}\dots a_1a_0)_2$ está na entrada

ÁRVORE DE NATAL

CODIFICADORES (ENCODER)

Exercício 4: faça um circuito com 4 entradas a_3 , a_2 , a_1 , a_0 e 2 saídas X_0 , X_1 , tais que cada uma delas codifique em binário qual porta de entrada está em nível alto.

Exercício 4: faça um circuito com 4 entradas a_3 , a_2 , a_1 , a_0 e 2 saídas X_0 , X_1 , tais que cada uma delas codifique em binário qual porta de entrada está em nível alto.

a_3	a_2	a_1	a_0	x_1	x_0
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

Exercício 4: faça um circuito com 4 entradas a_3 , a_2 , a_1 , a_0 e 2 saídas X_0 , X_1 , tais que cada uma delas codifique em binário qual porta de entrada está em nível alto.

Se múltiplos estiverem ativos, codifique o maior bit ativo.

a_3	a_2	a_1	a_0	x_1	x_0
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

Exercício 4: faça um circuito com 4 entradas a_3 , a_2 , a_1 , a_0 e 2 saídas X_0 , X_1 , tais que cada uma delas codifique em binário qual porta de entrada está em nível alto.

Se múltiplos estiverem ativos, codifique o maior bit ativo, ou zero se nenhum.

a_3	a_2	a_1	a_0	x_1	x_0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

Exercício 4: faça um circuito com 4 entradas a_3 , a_2 , a_1 , a_0 e 2 saídas X_0 , X_1 , tais que cada uma delas codifique em binário qual porta de entrada está em nível alto.

Se múltiplos estiverem ativos, codifique o maior bit ativo, ou zero se nenhum.

X_0	a_1a_0	$a_1\overline{a_0}$	$\overline{a_1a_0}$	$\overline{a_1}a_0$
a_3a_2	1	1	1	1
$a_3\overline{a_2}$	1	1	1	1
$\overline{a_3a_2}$	1	1		
$\overline{a_3}a_2$				

$$x_0 = a_3 + \overline{a_2}a_1$$

a_3	a_2	a_1	a_0	x_1	x_0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

Exercício 4: faça um circuito com 4 entradas a_3 , a_2 , a_1 , a_0 e 2 saídas X_0 , X_1 , tais que cada uma delas codifique em binário qual porta de entrada está em nível alto.

Se múltiplos estiverem ativos, codifique o maior bit ativo, ou zero se nenhum.

X_1	a_1a_0	$a_1\overline{a_0}$	$ \overline{a_1a_0} $	$ \overline{a_1}a_0 $	
a_3a_2	1	1	1	1	
$a_3\overline{a_2}$	1	1	1	1	
$\overline{a_3a_2}$	1	1			
$\overline{a_3}a_2$	L	1	1	1	

$$x_1 = a_3 + a_2 + a_1$$

a_3	a_2	a_1	a_0	x_1	x_0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

Exercício 4: faça um circuito com 4 entradas a_3 , a_2 , a_1 , a_0 e 2 saídas X_0 , X_1 , tais que cada uma delas codifique em binário qual porta de entrada está em nível alto.

CODIFICADOR BINÁRIO (ENCODER)

Codificador de 2^n para n, faz a operação reversa do decodificador:

- 2^n entradas: $a_0, a_1, ..., a_{2^n-1}$
- n saídas: $X_{n-1} X_{n-2}, ..., X_1, X_0$

CODIFICADOR BINÁRIO (ENCODER)

Codificador de 2^n para n, faz a operação reversa do decodificador:

- 2^n entradas: $a_0, a_1, ..., a_{2^n-1}$
- n saídas: $X_{n-1} X_{n-2}, ..., X_1, X_0$

CODIFICADOR BINÁRIO (ENCODER)

Codificador de 2^n para n, faz a operação reversa do decodificador:

- 2^n entradas: $a_0, a_1, ..., a_{2^n-1}$
- n saídas: $X_{n-1} X_{n-2}, ..., X_1, X_0$

Para casa: fazer os diagramas dos codificadores:

- 2 para 1
- 4 para 2
- 8 para 3
- Com entradas: (a) ativas em nível alto; (b) ativas em nível baixo.

MULTIPLEXADOR (MUX)

Exercício 5: Faça um circuito com:

- Três entradas: D_0 , D_1 , S_0
- Uma saída: Y

Tal que $Y = D_i$ se $S_0 = i$.

Exercício 5: Faça um circuito com:

- Três entradas: D_0 , D_1 , S_0
- Uma saída: Y

Tal que $\mathbf{Y} = D_i$ se $S_0 = i$.

SO	D1	DO	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Exercício 5: Faça um circuito com:

- Três entradas: D_0 , D_1 , S_0
- Uma saída: Y

Tal que $Y = D_i$ se $S_0 = i$.

SO	D1	DO	Υ
0	0	0	0
0	0	1	1
0	ī	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Exercício 5: Faça um circuito com:

- Três entradas: D_0 , D_1 , S_0
- Uma saída: Y

Tal que $Y = D_i$ se $S_0 = i$.

SO	D1	D0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$y = \overline{s_0}d_0 + s_0d_1$$

Exercício 6: Faça um circuito com:

- Seis entradas: D_0 , D_1 , D_2 , D_3 , S_0 , S_1
- Uma saída: Y

Tal que $Y = D_i$ se $(S_1 S_0)_2 = i$.

Exercício 6: Faça um circuito com:

- Seis entradas: $D_0, D_1, D_2, D_3, S_0, S_1$
- Uma saída: Y

Tal que $Y = D_i$ se $(S_1S_0)_2 = i$.

"Tabela Verdade"

S 1	SO	Y
0	0	D0
0	1	D1
1	0	D2
1	1	D3

$$Y = \overline{S_1} \, \overline{S_0} D_0 + \overline{S_1} S_0 D_1 + S_1 \overline{S_0} D_2 + S_1 S_0 D_3$$

Exercício 6:
$$Y = \overline{S_1} \, \overline{S_0} D_0 + \overline{S_1} S_0 D_1 + S_1 \overline{S_0} D_2 + S_1 S_0 D_3$$

Exercício 6:
$$Y = \overline{S_1} \, \overline{S_0} D_0 + \overline{S_1} S_0 D_1 + S_1 \overline{S_0} D_2 + S_1 S_0 D_3$$

Exercício 6:
$$Y=\overline{S_1}\,\overline{S_0}D_0+\overline{S_1}S_0D_1+S_1\overline{S_0}D_2+S_1S_0D_3$$

Outra maneira de se construir um MUX 4×1

Um multiplexador (ou MUX) $2^k \times 1$ é um circuito com:

- * k entradas de seleção de dado: $S_0, S_1, \dots S_{k-1}$ (também chamadas entradas de endereço)
- 2^k entradas de dados: D_0 , D_1 , ..., D_{2^k-1}
- Uma saída: $Y = D_i$ se $i = (S_{k-1}S_{k-2} ... S_1S_0)_2$

Exercício 7: Construa um MUX 8×1 a partir de multiplexadores menores.

Endereço: S_2 , S_1 , S_0 ; Dados: D_0 , D_1 , ..., D_7

Exercício 7: Construa um MUX 8×1 a partir de multiplexadores menores.

Endereço: S_2 , S_1 , S_0 ; Dados: D_0 , D_1 , ..., D_7

Para casa:

Construa um MUX 16 \times 1 usando apenas multiplexadores 4 \times 1.

DEMULTIPLEXADOR (DEMUX)

38

Demultiplexador (DEMUX): faz a operação reversa do multiplexador.

Exercício 8: Construa um demultiplexador 1:2.

Exercício 8: Construa um demultiplexador 1:2.

Sel	Input	A 1	AO
0	0		
0	1		
1	0		
1	1		

Exercício 8: Construa um demultiplexador 1:2.

Sel	Input	A 1	AO
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	0

Exercício 8: Construa um demultiplexador 1:2.

Sel	Input	A 1	AO
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	0

APLICAÇÕES

MULTIPLEXADOR: APLICAÇÃO

Exercício 9: construa um circuito com:

- 8 entradas de dados b_3 , b_2 , b_1 , b_0 , e a_3 , a_2 , a_1 , a_0
- 1 entrada de seleção Op
- 4 saídas S₃, S₂, S₁, S₀

Tal que:

$$(S_3S_2S_1S_0) = \begin{cases} A+B & se & Op = 0\\ A-B & se & Op = 1 \end{cases}$$

Todas as operações são com números sem sinal. Desconsidere os casos em que há overflow.

UNIDADE LÓGICO-ARITMÉTICA

Unidade Lógico-Aritmética (ULA): circuito digital que faz operações lógicas e aritméticas. A operação a ser feita é selecionada pelos bits de seleção de operação Op0, Op1,

A ULA do exercício anterior só possui 1 bit de operação, para escolher entre soma e subtração.