Bioinformatik

Lokale Alignierung Gapkosten

Silke Trißl / Ulf Leser
Wissensmanagement in der
Bioinformatik

Inhalt dieser Vorlesung

- Ähnlichkeit
- Lokales und globales Alignment
- Gapped Alignment

Ähnlichkeit

- Welche Frage will man eigentlich beantworten?
 - Wie weit entfernt sind diese beiden Sequenzen?
 - Wie ähnlich sind sich zwei Sequenzen?
- Editabstand berechnet den (einen) Abstand
 - Großer Abstand geringe Ähnlichkeit
- Wir können die Sequenzähnlichkeit auch direkt berechnen
 - Intuitives Maß je ähnlicher, desto höher ist die Wahrscheinlichkeit für ähnliche Funktion
- Dabei werden wir langsam differenzierter
 - Ähnlichkeit einzelner Basen / Aminosäuren
 - Ähnliche Moleküle positive Werte
 - Unähnliche Moleküle negative Werte
 - Individuelle Kosten f
 ür InsDel einer Base

Formal

- Definition Gegeben Alphabet $\Sigma'=\Sigma \cup '_'$, Strings A,B über Σ' mit |A|=|B|=n
 - Eine Scoringfunktion ist eine Funktion s: $\Sigma'x\Sigma' \rightarrow Integer$
 - Anderer Name: Substitutionsmatrix
 - Die Ähnlichkeit von A,B bzgl. der Scoringfunktion s ist

$$sim(A,B) = \sum_{i=1}^{n} s(A[i],B[i])$$

- Bemerkung
 - Zur Anwendung für zwei Sequenzen A,B wählen wir ein Alignment und berechnen dann die Ähnlichkeit der beiden Zeilen zueinander
 - Also mit den eingefügten InsDels
 - Wir suchen natürlich wieder das/die Alignment(s) mit dem höchsten Ähnlichkeitswert

Beispiel

$$\Sigma$$
' = {A,C,G,T,_}

	A	C	G	H	1
A	4	-2	-2	-2	-2
C		4	-2	-2	0
G			4	-1	0
4				4	-2
					0

Berechnung

- Gleiches Prinzip wie zur Berechnung des Editabstands
- Nur kleine Veränderungen

$$d(i,0) = \sum_{k=1}^{i} s(A[k], _) \qquad d(0,j) = \sum_{k=1}^{j} s(_, B[k])$$

$$d(i, j - 1) + s(_, B[j])$$

$$d(i, j) = \max \begin{cases} d(i, j - 1) + s(_, B[j]) \\ d(i - 1, j) + s(A[i], _) \\ d(i - 1, j - 1) + s(A[i], B[j]) \end{cases}$$

Beispiel

Abstand (Ins/del/Repl: 1,

Match: 0)

Ähnlichkeit

	A	G	T	С
A	4	-1	-1	-1
G		4	-1	-1
Т			4	-1
С				4
١	-3	-3	-3	-3

		A	G	G	Т	С
	0	1	2	3	4	5
A	1	0	1	2	3	4
G	2	1	0	1	2	3
Т	3	2	1	1	1	2
С	4	3	2	2	2	1
С	5	4	3	3	3	2

		A	G	G	T	С
	0	-3	-6	-9	-12	-15
A	-3	4	1	-2	-5	-8
G	-6	1	8	5		
T	-9					
С	-12					
С	-15					

Lokales und globales Alignment

- Bisher: Globale Alignments
 - Beide Sequenzen werden komplett betrachtet
- Das entspricht oft nicht der biologischen Frage
 - Funktion wird nur durch manche Sequenzblöcke bestimmt (Gene, Exons, Proteindomänen, ...)
- Wir suchen meistens ähnliche Teilsequenzen
 - Funktionstragende Sequenzblöcke
 - "Lokale" Alignments

Lokale Alignments

- Definition. Gegeben zwei Strings A, B.
 - Seien a,b Substrings mit a⊆A, b⊆B so dass

$$sim(a,b) = \max \left(sim(a',b') \right)$$

 $\forall a' \in A, b' \in B$

- Das vom (globalen) Alignment von a und b induzierte Alignment von A und B heißt lokales Alignment von A und B
- Der lokale Ähnlichkeitsscore dist_{local}(A,B) = sim(a,b)
- Bemerkung
 - Unempfindlich gegen unterschiedliche lange Strings
- Beispiel
 - Lokales A. findet den identischen Substring

Smith-Waterman Algorithmus

- Smith, Waterman: "Identification of common molecular subsequences", J. Mol. Bio 147, 1981
- Grundidee
 - Geringfügige Veränderung des Algorithmus für globales Alignment
 - Funktioniert nur mit Ähnlichkeit, nicht mit Abstand
 - Scoring Funktion mit positiven Werten für Matches und negativen Werten für alles andere
 - Eine Reihe von Matches beim Vergleich erzeugt also sukzessive größere Ähnlichkeitswerte
 - Bei Mismatch oder InsDel wird der Wert wieder kleiner
 - Um Regionen mit hoher Ähnlichkeit zu finden, können wir alle Substringmatches mit negativem Gesamtähnlichkeit vergessen
 - Also: Statt in negative Werte zu rutschen, darf der Algorithmus auch bei 0 anfangen

Match: +1

Beispiel

I/R/D: -1

		А	Т	G	Т	G	G
	0	-1	- 2	<u>3</u>	- 4	5 	- 6
G				-1			
Т					0		
G						1	
А							0

Ähnlichke	it	
+		
		70 11
1		Pfadlänge
\		
†		
†		
		
1		
↓		

Optimales lokales Alignment

Theorem

Gegeben Strings A,B. Mit der folgenden Funktion v(i,j),

mit 0≤i≤n und 0≤j≤m

$$v(i, j) = \max \begin{cases} v(i, j-1) + s(_, B[i]) \\ v(i-1, j) + s(A[i], _) \\ v(i-1, j-1) + s(A[i], B[j]) \end{cases}$$

- Gilt:
$$dist_{local}(A, B) = \max_{i,j}(v(i, j))$$

- Traceback
 - Starte beim maximalen Wert in der Matrix
 - Verfolge beliebigen Pfad bis zu einer Zelle mit Wert 0

Beispiel

Match: +1

I/R/D: -1

		А	Т	G	Т	С	G
	0	-1	-2	3	-4	5	-6
А	-1	1	0	-1	-2	-3	-4
Т	-2	0	2	1 ←	0	-1	-2
G	-3	-1	1	3	-2←	- 1 ←	0

ATGTCG
ATGTCG
ATGTCG
ATGTCG

A T G

> Drei Lösungen, alle mit gleicher Güte

		А	Т	G	Т	С	G
	0	0	0	0	0	0	0
A	0	1	0	0	0	0	0
Т	0	0	2	1	1	0	0
G	0	0	1	3	2	1	0

ATGTCG ATG

➤ Eine Lösung – das lokale Alignment

Wann lokales, wann globales Alignment

Globales Alignment

- Genauer Vergleich ähnlicher Sequenzen
- Z.B. Charakterisierung von Protein-Familien
- Z.B. Bestimmung einer Consensus-Sequenz für MSA

Lokales Alignment

- Finden der interessanten Regionen in unbekannten Sequenzen
 - Z.B. unterschiedliche Spezies, unterschiedliche Gene, ...
- Finden konservierter (=funktionaler) Subsequenzen
 - Erster Schritt zur Proteinfamilie; danach g. A. innerhalb der Familie
- Finden konservierter Bereiche
 - Untersuchung von evolutionären Prozessen

Inhalt dieser Vorlesung

- Ähnlichkeit
- Lokales und globales Alignment
- Gapped Alignment
 - Gap = Loch = Zusammenhänge Folge von Spaces = Insertions bzw. Deletions
 - Bisher zählt jedes Space einzeln
 - Ist das immer das richtige Modell?

Gaps

- Evolution besteht nicht nur aus Punktmutationen
- Oft werden ganze Blöcke verschoben
 - Beispiele
 - Crossing-Over während Meiose (geschlechtliche Zellteilung)
 - "Versehentliche" Duplikation von Sequenzen
 - Transposable Elements
- Dazwischen: lange Reihen von Inserts / Deletions
- Nur die "guten" Blöcke sind relevant, die Zwischenräume nicht
 - Exons und Introns unterliegen unterschiedlichem Selektionsdruck
 - Proteine setzen sich aus "active sites" und variablen Zwischensequenzen zusammen

Bewertung von Gaps

- Gesucht: Gapscorefunktionen, die Gaps unterschiedlicher Länge bei der Berechnung der Sequenzähnlichkeit flexibel bewerten können
- Sei w(k) der Score eines Gaps der Länge k
- Folgende Funktionsklassen
 - Konstanter Gapscore c
 - w(k) = c
 - Score unabhängig von Gaplänge
 - Linearer Gapscore mit Kosten für Gapbeginn w_s und Gapfortsetzung w_f
 - $W(k) = W_s + W_f * k$
 - Bisheriges Modell nimmt $w_s=0$ und $w_f=1$ an
 - Konvexer Gapscore Score wird nie kleiner mit wachsendem k, aber immer langsamer größer
 - w(k) = f(k); mit f'(k) > 0 und $f''(k) \le 0$
 - Beispiel: w = log(k)
 - Beliebiger Gapscore Score kann wachsen, fallen, oszillieren, ...
 - w(k) = f(k); mit f(k) beliebig

Klassen von Gapscorefunktionen

Konstanter Gapscore

Linearer Gapscore

Konvexer Gapscore

Beliebiger Gapscore

Auswirkungen auf Berechnung

 Je flexibler die Scorefunktion, desto komplexer die Berechnung

Konstant oder linear: O(nm)

Konvex:O(nm log m)

- Beliebig: $O(nm^2 + n^2m)$

