www.ti.com

FEATURES

- Low ON-State Resistance (ron)
 - 0.9 Ω Max (3-V Supply)
 - 1.5 Ω Max (1.8-V Supply)
- 0.4- Ω Max r_{on} Flatness (3-V Supply)
- 1.6-V to 3.6-V Single-Supply Operation
- Available in SOT-23 and MSOP Packages
- High Current-Handling Capacity (100 mA Continuous)
- 1.8-V CMOS Logic Compatible (3-V Supply)
- Fast Switching: t_{ON} = 14 ns, t_{OFF} = 9 ns

APPLICATIONS

- Power Routing
- Battery-Powered Systems
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communications Circuits
- PCMCIA Cards
- Cellular Phones
- Modems
- Hard Drives

DESCRIPTION/ORDERING INFORMATION

The TS3A4741 is a low ON-state resistance (r_{on}) , low-voltage, dual single-pole/single-throw (SPST) analog switch that operates from a single 1.6-V to 3.6-V supply. This device has fast switching speeds, handles rail-to-rail analog signals, and consumes very low quiescent power.

The digital logic input is 1.8-V CMOS compatible when using a single 3-V supply.

The TS3A4741 has two normally open (NO) switches that are available in 8-pin SOT-23 and MSOP packages.

ORDERING INFORMATION

T _A	PACKA	3E ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
-40°C to 85°C	MSOP - DGK	Reel of 2500	TS3A4741DGKR	JYR	
-40 C 10 65 C	SOT-23 – DCN	Reel of 3000	TS3A4741DCNR	TBD	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

IN	NO TO COM, COM TO NO
L	OFF
Н	ON

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TS3A4741

${f 0.9} {f \Omega}$ LOW-VOLTAGE SINGLE-SUPPLY DUAL SPST ANALOG SWITCH

TEXAS INSTRUMENTS www.ti.com

SCDS228B-AUGUST 2006-REVISED SEPTEMBER 2006

Absolute Minimum and Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V ₊	Supply voltage reference to GND ⁽²⁾		-0.3	4	V
$V_{NO} \ V_{COM} \ V_{IN}$	Analog and digital voltage range		-0.3	V ₊ + 0.3	V
I _{NO} I _{COM}	On-state switch current	V_{NO} , $V_{COM} = 0$ to V_{+}	-100	100	mA
I ₊ I _{GND}	Continuous current through V ₊ or GND			±100	mA
	Peak current pulsed at 1 ms, 10% duty cycle	COM, V _{NO} , V _{COM}		±200	mA
0	Package thermal impedance (3)	DCN package		88	°C/W
θ_{JA}	Package thermal impedance (%)	DGK package		88	°C/VV
T _A	Operating temperature range		-40	85	°C
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature range	-65	150	°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ Signals on COM or NO exceeding V₊ or GND are clamped by internal diodes. Limit forward diode current to maximum current rating.

⁽³⁾ The package thermal impedance is measured in accordance with JESD 51-7.

$0.9-\Omega$ LOW-VOLTAGE SINGLE-SUPPLY DUAL SPST ANALOG SWITCH

SCDS228B-AUGUST 2006-REVISED SEPTEMBER 2006

Electrical Characteristics for 3-V Supply (1)(2)

 V_{+} = 2.7 V to 3.6 V, T_{A} = -40°C to 85°C, V_{IH} = 1.4 V, V_{IL} = 0.5 V (unless otherwise noted)

SYMBOL	TEST COND	TIONS	TA	MIN	TYP ⁽³⁾	MAX	UNIT	
V_{COM}, V_{NO}				0		V ₊	V	
	$V_{+} = 2.7 \text{ V}, I_{COM} = -100 \text{ mA},$ $V_{NO} = 1.5 \text{ V}$		25°C		0.7	0.9		
r _{on}			Full			1.1	Ω	
	$V_{+} = 2.7 \text{ V}, I_{COM} = -10$	0 mA,	25°C		0.03	0.05	0	
Δr_{on}	V _{NO} = 1.5 V	,	Full			0.15	Ω	
_	$V_{+} = 2.7 \text{ V}, I_{COM} = -10$	0 mA,	25°C		0.23	0.4		
ron(flat)	$V_{NO} = 1 \text{ V}, 1.5 \text{ V}, 2 \text{ V}$	Full			0.5	Ω		
	$V_{+} = 3.6 \text{ V}, V_{COM} = 0.3$	V, 3 V,	25°C	-2	1	2	nA	
NO(OFF)	$V_{NO} = 3 \text{ V}, 0.3 \text{ V}$	Full	-18		18	IIA		
1	$V_{+} = 3.6 \text{ V}, V_{COM} = 0.3$	V, 3 V,	25°C	-2	1	2	nA	
COM(OFF)	$V_{NO} = 3 \text{ V}, 0.3 \text{ V}$		Full	-18		18	11/4	
loowow	$V_{+} = 3.6 \text{ V}, V_{COM} = 0.3$	V, 3 V,	25°C	-2.5	0.01	2.5	nΑ	
COM(ON)	$V_{NO} = 0.3 \text{ V}, 3 \text{ V}, or flow$	ating	Full	- 5		5	nA	
ton	V_{NO} = 1.5 V, R_L = 50 Ω , C_L = 35 pF, See Figure 14		25°C		5	14	ns	
ON			Full			15		
torr	$V_{NO}=1.5$ V, $R_{L}=50$ Ω , $C_{L}=35$ pF, See Figure 14		25°C		4	9	ns	
OFF			Full			10		
Q_C	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1$ nF, See Figure 15		25°C		3		pC	
C _{NO(OFF)}	f = 1 MHz, See Figure 16		25°C		23		pF	
C _{COM(OFF)}	f = 1 MHz, See Figure 16		25°C		20		pF	
C _{COM(ON)}	f = 1 MHz, See Figure 1	16	25°C		43		pF	
BW	$R_L = 50 \Omega$, Switch ON		25°C		125		MHz	
O _{ISO}	$R_L = 50 \Omega, C_L = 5 pF,$	f = 10 MHz	25°€		-40		dB	
	See Figure 17	f = 1 MHz	25 0		-62		ub	
X	$R_L = 50 \Omega, C_L = 5 pF,$	f = 10 MHz	25°C		-73		dB	
ATALK	See Figure 17	f = 1 MHz	20 0	-95			QD.	
THD	f = 20 Hz to 20 kHz,	$R_L = 32 \Omega$	25°C		0.04		%	
	$V_{COM} = 2 V_{P-P}$ $R_L = 600 \Omega$			0.003			70	
IN2)	1							
V _{IH}			Full	1.4			V	
V _{IL}			Full			0.5	V	
I _{IN}	$V_I = 0 \text{ or } V_+$	25°C	_20	0.5	20	nA		
1			i dii	20		20		
V				16		3.6	V	
v +			25°€	1.0			v	
I_{+} $V_{+} = 3.6 \text{ V}, V_{IN} = 0 \text{ or}$,	200			0.073	μΑ	
	V _{COM} , V _{NO} r _{on} Δr _{on} l _{NO(OFF)} l _{COM(OFF)} l _{COM(ON)} ton toff Q _C C _{NO(OFF)} C _{COM(OFF)} C _{COM(ON)} BW O _{ISO} X _{TALK} THD IN2) V _I I _{IN}	$\begin{array}{c} V_{COM}, V_{NO} \\ \\ r_{on} \\ \\ V_{NO} = 1.5 \ V \\ \\ V_{VNO} = 1.5 \ V, 1.5 \ V, 2 \ V \\ \\ V_{VNO} = 1 \ V, 1.5 \ V, 2 \ V \\ \\ V_{VNO} = 3 \ V, 0.3 \ V \\ \\ V_{VNO} = 3 \ V, 0.3 \ V \\ \\ V_{VNO} = 3 \ V, 0.3 \ V \\ \\ V_{VNO} = 3 \ V, 0.3 \ V \\ \\ V_{VNO} = 0.3 \ V, 0.3 \ V \\ \\ V_{VNO} = 0.3 \ V, 0.3 \ V \\ \\ V_{VNO} = 0.3 \ V, 0.3 \ V \\ \\ V_{NO} = 0.3$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Parts are tested at 85°C and specified by design and correlation over the full temperature range.

Typical values are at $V_+ = 3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (3)

 $[\]Delta r_{on} = r_{on(max)} - r_{on(min)}$ Flatness is defined as the difference between the maximum and minimum value of r_{on} as measured over the specified analog signal

Leakage parameters are 100% tested at the maximum-rated hot operating temperature and specified by correlation at T_A = 25°C.

⁽⁷⁾ OFF isolation = $20_{log}10$ (V_{COM}/V_{NO}), V_{COM} = output, V_{NO} = input to OFF switch

TS3A4741

$0.9-\Omega$ LOW-VOLTAGE SINGLE-SUPPLY DUAL SPST ANALOG SWITCH

SCDS228B-AUGUST 2006-REVISED SEPTEMBER 2006

Electrical Characteristics for 1.8-V Supply (1)(2)

 V_{+} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C, V_{IH} = 1 V, V_{IL} = 0.4 V (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIO	ONS	T _A	MIN	TYP ⁽³⁾	MAX	UNIT	
Analog Switch	1.								
Analog signal range	V_{COM}, V_{NO}				0		V ₊	V	
•		$V_{+} = 1.8 \text{ V}, I_{COM} = -10 \text{ mA},$ $V_{NO} = 0.9 \text{ V}$		25°C		1	1.5		
ON-state resistance	r _{on}			Full			2	Ω	
ON-state resistance match		V ₊ = 1.8 V, I _{COM} = -10 mA		25°C		0.09	0.15		
between channels ⁽⁴⁾	Δr_{on}	$V_{NO} = 0.9 \text{ V}$		Full			0.25	Ω	
ON-state resistance	_	V ₊ = 1.8 V, I _{COM} = -10 mA,		25°C		0.7	0.9	0	
flatness ⁽⁵⁾	r _{on(flat)}	$0 \le V_{NO} \le V_{+}$		Full			1.5	Ω	
NO	1	V ₊ = 1.95 V, V _{COM} = 0.15 V, 1.65 V,		25°C	-1	0.5	1		
OFF leakage current (6)	I _{NO(OFF)}	$V_{NO} = 1.8 \text{ V}, 0.15 \text{ V}$	Full	-10		10	nA		
СОМ		V ₊ = 1.95 V, V _{COM} = 0.15 V	′, 1.65 V,	25°C	-1	0.5	1	~ ^	
OFF leakage current (6)	ICOM(OFF)	$V_{NO} = 1.8 \text{ V}, 0.15 \text{ V}$		Full	-10		10	nA	
СОМ		$V_{+} = 1.95 \text{ V}, V_{COM} = 0.15 \text{ V}$	′, 1.65 V,	25°C	-1	0.01	1	nΛ	
ON leakage current ⁽⁶⁾	I _{COM(ON)}	$V_{NO} = 0.15 \text{ V}, 1.65 \text{ V}, \text{ or floating}$		Full	-3		3	nA	
Dynamic									
Turn-on time	+	V_{NO} = 1.5 V, R_L = 50 Ω , C_L = 35 pF, See Figure 14		25°C		6	18	ns	
rum-on ume	t _{ON}			Full			20		
Turn-off time	t	$V_{NO} = 1.5 \text{ V}, R_L = 50 \Omega,$				5	10	ns	
Tuni-on unic	h-off time t_{OFF} $C_L = 35 \text{ pF, See Figure 14}$			Full			12		
Charge injection	Q _C	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1$ nF, See Figure 15		25°C		3.2		pC	
NO OFF capacitance	C _{NO(OFF)}	f = 1 MHz, See Figure 16		25°C		23		pF	
COM OFF capacitance	C _{COM(OFF)}	f = 1 MHz, See Figure 16		25°C		20		pF	
COM ON capacitance	C _{COM(ON)}	f = 1 MHz, See Figure 16		25°C		43		pF	
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON		25°C		123		MHz	
OFF isolation ⁽⁷⁾	O _{ISO}	$R_L = 50 \Omega, C_L = 5 pF,$	f = 10 MHz	25°C		-61		dB	
Of F Isolation 7		See Figure 17	f = 100 MHz	25 0		-36		UB	
Crosstalk	X _{TALK}	$R_L = 50 \Omega, C_L = 5 pF,$	f = 10 MHz	Hz 25°C -	-95		dB		
Orossian	^TALK	See Figure 17	f = 100 MHz	20 0		-73		uБ	
Total harmonic distortion	THD	$f = 20 \text{ Hz to } 20 \text{ kHz}, V_{COM}$	$R_L = 32 \Omega$	25°C		0.14		%	
Total Harmonio distortion	1110	= 2 V _{P-P}	$R_L = 600 \Omega$	20 0		0.013		/0	
Digital Control Inputs (IN1,	IN2)								
Input logic high	V _{IH}			Full	1			V	
Input logic low	V _{IL}			Full			0.4	V	
Input leakage current	I _{IN}	$V_I = 0 \text{ or } V_+$		25°C		0.1	5	nA	
III)		-1 0 0+		Full	-10		10	, .	
Supply			 ,		1				
Power-supply range	V ₊				1.6		1.95	V	
Positive-supply current	I ₊	$V_I = 0 \text{ or } V_+$		25°C			0.05	μΑ	
. IIIII Cappi) callolit	'+	v - 0 01 v ₊		Full			0.5	μΛ	

- (1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
- Parts are tested at 85°C and specified by design and correlation over the full temperature range.
- (3) Typical values are at $T_A = 25^{\circ} \dot{C}$.
- (4)
- $\Delta r_{on} = r_{on(max)} r_{on(min)}$ Flatness is defined as the difference between the maximum and minimum value of r_{on} as measured over the specified analog signal (5)
- Leakage parameters are 100% tested at the maximum-rated hot operating temperature and specified by correlation at $T_A = 25$ °C.
- OFF isolation = $20_{log}10$ (V_{COM}/V_{NO}), V_{COM} = output, V_{NO} = input to OFF switch

TYPICAL PERFORMANCE

Figure 1. ron vs V_{COM}

Figure 3. r_{on} vs V_{COM} ($V_{+} = 2.7 \text{ V}$)

Figure 4. I_{ON} and I_{OFF} vs Temperature (V₊ = 3.6 V)

Figure 5. Q_C vs V_{COM}

Figure 6. t_{ON} and t_{OFF} vs Supply Voltage

TYPICAL PERFORMANCE (continued)

Figure 7. toN and toFF vs Temperature

Figure 8. I, vs V,

Figure 9. Gain vs Frequency $(V_+ = 3 V)$

Figure 10. OFF Isolation vs Frequency $(V_+ = 3 V)$

Figure 11. Total Harmonic Distortion vs Frequency (RL = 32 Ω)

Figure 12. Total Harmonic Distortion vs Frequency ($R_L = 600 \ \Omega$)

TYPICAL PERFORMANCE (continued)

Figure 13. Crosstalk vs Frequency $(V_+ = 3 V)$

PIN DESCRIPTION

= === ====									
PIN NO.		NAME	DESCRIPTION						
MSOP	SOT-23	NAIVIE	DESCRIPTION						
1	8	NO1	Normally open 1						
2	7	COM1	Common 1						
3	6	IN2	Digital control to connect COM2 to NO2						
4	5	GND	Digital ground						
5	3	NO2	Normally open 2						
6	4	COM2	Common 2						
7	1	IN1	Digital control to connect COM1 to NO1						
8	2	V ₊	Power supply						

TS3A4741 0.9- Ω LOW-VOLTAGE SINGLE-SUPPLY DUAL SPST ANALOG SWITCH

TEXAS INSTRUMENTS www.ti.com

SCDS228B-AUGUST 2006-REVISED SEPTEMBER 2006

Application Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device. Always sequence V₊ on first, followed by NO, NC, or COM.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V_+ supply to other components. A 0.1- μF capacitor, connected from V_+ to GND, is adequate for most applications.

Logic Inputs

The TS3A4741 logic inputs can be driven up to 3.6 V, regardless of the supply voltage. For example, with a 1.8-V supply, IN may be driven low to GND and high to 3.6 V. Driving IN rail to rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V_{+} to GND) can be passed with very little change in r_{on} (see Typical Operating Characteristics). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

PARAMETER MEASUREMENT INFORMATION

Figure 14. Switching Times

Figure 15. Charge Injection (Q_C)

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 16. NO and COM Capacitance

Measurements are standardized against short at socket terminals. OFF isolation is measured between COM and OFF terminals on each switch. Bandwidth is measured between contact and cont direction through switch is reversed; worst values are recorded.

OFF isolation = 20 log V_O/V_I

OFF isolation

Figure 17. OFF Isolation, Bandwidth, and Crosstalk

SCDS228B-AUGUST 2006-REVISED SEPTEMBER 2006

PARAMETER MEASUREMENT INFORMATION (continued)

A. C_L includes probe and jig capacitance.

Figure 18. Total Harmonic Distortion (THD)

PACKAGE OPTION ADDENDUM

26-Sep-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins F	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TS3A4741DGKR	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3A4741DGKRG4	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated