homework 5

Class scores distribution Show

My score 97.5% (39/40)

Q1

10 / 10

see PDF

MAT334 Problem Set 5 — Due December 7, 2022 1006940802

1.

Consider the function g defined by $g(z)=f(ze^{i2\pi/3})f(ze^{i4\pi/3})f(z)$. Since \underline{f} is analytic on $\overline{B_1(0)}$, then so is g, and thus g must attain maximum and minimum values on $\overline{B_1(0)}$ by the extreme value theorem. However, by the maximum modulus principle, if g is nonconstant, then g should attain said values on $\partial B_1(0)$. Note that since $g(e^{i\theta}) = f(e^{i2\pi/3+\theta})f(e^{i4\pi/3+\theta})f(e^{i\theta}) = 0$ for $0 < \theta < \pi$, then $\pm \mathbb{R} e\{g\}$ and |g| have attained this maximum and minimum value on $\partial B_1(0)$ since $[0,2\pi]$ $(0,\pi) \cup (2\pi/3,5\pi/3) \cup (4\pi/3,7\pi/3)$. Since there is more than more than one possible θ for which $g(e^{i\theta})=0$, it must be that no maximum has occured. Therefore g must be constant on $\overline{B_1(0)}$, and this value is 0. Therefore g(z) = 0 for all $z \in \overline{B_1(0)}$.

This implies that for any z in $B_1(0)$, one of the values $f(z), f(ze^{i2\pi/3}), f(ze^{i4\pi/3})$ must be zero. Now say, for $z=0, g(0)=[f(0)]^3=0$, hence f(0)=0. If f is nonconstant on $B_1(0)$, then each of the zeroes of f must be isolated. However, for points $z=re^{i\alpha}$ with $r\ll 1$, no matter what value of r, implies that one of $f(re^{i2\pi/3+\alpha}), f(re^{i4\pi/3+\alpha})$, or $f(re^{i\alpha})$ are zero. Furthermore, due to the root at z=0, the zeroes no longer become isolated since r is a continuous variable.

Therefore f cannot be nonconstant, hence f(z) = 0 everywhere on $B_1(0)$.

2.

(a) The circle $|z-1|^2=1$ corresponds to the explicit equation $(x-1)^2+y^2=1$, or $x^2+y^2-2x=0$. For an equation of the form $\alpha(x^2+y^2)+\beta x\gamma y=\delta$, we know that the inversion mapping $w=\frac{1}{z}$ transforms this equation into $\delta(u^2+v^2)-\beta u$ the $w=\frac{1}{z}$ transformation, is

$$(x^2 + y^2) - 2x = 0 \xrightarrow{w=1/z} (0)(x^2 + y^2)$$

with w=u+iv. Therefore $\mathbb{R}\mathrm{e}\{w\}=u=\frac{1}{2},$

It would be nice if you showed this fact, or at least stated a theorem from class or from the textbook that lets you conclude this...

$$W(z) = z - \frac{1}{2}$$

Now, U(z) takes the circle |z|=1 and maps it to the new circle |z-1|=1, a shift one unit to the right. This circle correponds to the equation $(x^2+y^2)-2x=0$, with $\delta=\gamma=0$, $\alpha=1$ and $\beta=-2$. Then, the map $V(z)=\frac{1}{z}$ takes this circle and maps it to the line $(0)(u^2+v^2)+2u+(0)v=1$, that is, $u=\frac{1}{2}$. Lastly, the map $W(z)=z-\frac{1}{2}$ takes the line $u=\frac{1}{2}$ and maps it to the line u=0, which is equivalently $\mathbb{R}e\{w\}=0$. Therefore composing these indidual linear fractional transformations produces the map which takes the circle |z|=1 to the line $\mathbb{R}e\{w\}=0$:

$$\begin{split} W(V(U(z))) &= W(V(z+1)) \\ &= W\left(\frac{1}{z+1}\right) \\ &= \frac{1}{z+1} - \frac{1}{2} \\ &= \frac{2}{2(z+1)} - \frac{z+1}{2(z+1)} \\ &= \frac{2-1-z}{2(z+1)} \\ T(z) &= \frac{1-z}{2(z+1)}, \end{split}$$

which is the linear fractional transformation which I wanted to find.

3

Q3

9 / 10

see PDF

3.

Consider the function defined by $f(z)=i\frac{1+z}{1-z}$. Note that this linear fractional transformation is a composition of other linear fractional transformations. Let

$$\begin{split} V(z) &= \frac{1}{z} \\ T(z) &= \frac{1}{2}z - \frac{1}{2} \\ W(z) &= iz + i. \end{split}$$

Then,

$$\begin{split} f(z) &= W(V(T(V(z)))) \\ &= W(V(T(1/z))) \\ &= W\left(V\left(\frac{1}{2z} - \frac{1}{2}\right)\right) \\ &= W\left(\frac{1}{1/2z} - 1/2\right) \\ &= i\left(\frac{1}{1/2z} - z/2z\right) + i \\ &= i\left(\frac{2z}{1-z} + 1\right) \\ &= i\left(\frac{2z + (1-z)}{1-z}\right) \\ &= i\frac{1+z}{1-z}. \end{split}$$

Now consider the unit disc $|z| \leq 1$. We wish to find the mapping of $|z| \leq 1$ under f.

• First, note that the mapping of $|z| \le 1$ under V is still $|z| \le 1$, since V acts to invert the unit circle. We have that $(x^2+y^2) \le 1$, which is equivalent to the equation $\alpha(x^2+y^2) + \beta x + \gamma y = \delta$ with $\alpha = \delta = 1$ and $\beta = \gamma = 0$. Therefore under V, we obtain the inverted circle $\delta(x^2+y^2) - \beta x + \gamma y = \alpha$, hence we still have that $x^2+y^2 \le 1$. Thus

$$|z| \le 1 \xrightarrow{V} |z| \le 1.$$

• Second, consider the mapping of $|z| \le 1$ under T. For a mapping of the form g(z) = az + b, then g takes a circle $|z - z_0| \le r$ to the new translated disc $|z - (az_0 + b)| \le |a|r$. Therefore $|z| \le 1$ is translated to $|z - \frac{1}{2}(0) + \frac{1}{2}| \le \frac{1}{2}$:

$$|z| \le 1 \xrightarrow{T} |z + \frac{1}{2}| \le \frac{1}{2}.$$

• Third, now V again acts on the circle $|z+\frac{1}{2}|\leq \frac{1}{2}$ and converts it to another equation. In explicit form as we did before, we have that $\left(x+\frac{1}{2}\right)^2+y^2=x^2+y^2+x+\frac{1}{4}\leq \frac{1}{4} \implies$

4

 $x^2+y^2+x\leq 0$, hence V takes this circle and converts it to the line $(0)(x^2+y^2)-x+(0)y\leq 1$, which is the line $x\geq -1$. Therefore

$$|z+\frac{1}{2}| \leq \frac{1}{2} \xrightarrow{V} x \geq -1.$$

• Lastly, consider the image of $\{z: \mathbb{R} e\{z\} \geq -1\}$ under W. First note that for lines $\mathbb{R} e\{Az+B\}=0$ under the linear fractional transformation g(z)=az+b is taken to the new line $\mathbb{R} e\{(A/a)z+B-b(A/a)\}=0$. Hence, for our line $\mathbb{R} e\{z+1\}>0$. A=B=1, and our map

W a=b=i. Thus, we obtain the new line $\mathbb{R} e\{-iz+1-i(-i)\}=\mathbb{R} e\{-iz\}\geq 0$ which is equivalently $\mathbb{R} e\{-i(x+iy)\}=\mathbb{R} e\{-ix+y)\}=y\geq 0$, which is identically the upper half plane. Thus

$$\mathbb{R}e\{z\} \ge -1 \xrightarrow{W} \mathbb{I}m\{z\} \ge 0,$$

which is what I wanted to show. I will next find the inverse. For a linear fractional transformation $T(z)=\frac{az+b}{cz+d}$, we have that the inverse is given by $T^{-1}(w)=\frac{-dw+b}{cw-a}$. For f, we have that a=b=i and c=-1, d=1. Then $f^{-1}(z)=\frac{-z+i}{-z-i}$. Proof:

Then
$$f^{-1}(z) = \frac{z+i}{-z-i}$$
. Proof:

$$f(f^{-1}(z)) = \frac{i\left(1 + \left(\frac{-z+i}{-z-i}\right)\right)}{1 - \left(\frac{-z+i}{-z-i}\right)}$$

$$= \frac{i[(-z-i) + (-z+i)]}{-z-i - (-z+i)}$$

$$= \frac{-2i}{-2i}z$$

$$= z,$$

hence the inverse is $f^{-1}(z)=\frac{-z+i}{-z-i}$. Now, since f is a linear fractional transformation, f is already injective (see section 3.3, pg. 196 Fisher). It suffices to show that it is bijective. Fix $w\in\{w:\mathbb{Im}\{w\}\geq 0\}$ and choose $z\in\overline{B_1(0)}$ as $z=\frac{w-i}{w+i}$. Clearly, $z\in\overline{B_1(0)}$ since $|z|=\frac{|w-i|}{|w+i|}\leq \frac{|z|}{|z|}$

$$\frac{|w|+1}{|w|+1} = 1$$
, and

$$\begin{split} f(z) &= \frac{i \left(1 + \left(\frac{w-i}{w+i} \right) \right)}{1 - \left(\frac{w-i}{w+i} \right)} \\ &= \frac{i [(w+i) + (w-i)]}{w+i - (w-i)} \\ &= \frac{-2i}{-2i} w \\ &= w, \end{split}$$

as desired. Therefore f(z) is bijective, which is what I wanted to show.

5

Q4

10 / 10

See PDF

4.

So far, I have not had time to study yet because I have had 5 assignments all due on Wednesday, December 7, 2022. However, in preparation for the final exam, I will be eventually reviewing the concept of Laurant series. Let f be an analytic function on an open disc of radius R centered at a point z_0 , $B_R(z_0)$. By definition, we are able to expand f in terms of a power series of radius of convergence R centered ar z_0 . Allow us to now consider a punctured disc of inner radius $0 \le r$ and outer radius R such that $r < |z - z_0| < R$, or $B_R(z_0) \setminus \overline{B_r(0)}$. Now, we are able to expand an analytic function f on this punctured disc by a means of a sum of two power series f_1 and f_2 , where f_1 is analytic on $B_R(z_0)$ and f_2 is analytic on $B_r(z_0) \cup \{\infty\}$. Here, f is expressed as the sum of the two power series terms

$$f(z) = f_1(z) + f_2(z) = \sum_{k=0} a_k (z - z_0)^k + \sum_{k=1} b_k (z - z_0)^{-k}.$$

Note that f_2 is often referred to as the 'principle part' of the expansion of f. Similarly to the power series of f, the coefficients $a_{-k} = b_k$ are given by $a_k = \frac{1}{2\pi i} \int_{|w-z_0|=s} \frac{f(w)}{(w-z_0)^{k+1}} \, dw, \ k = 0, \pm 1, \pm 2, \ldots$ for a circle of radius r < s < R centered at z_0 . By this method of expansion, we are able to express functions in terms of their Laurant series expansions which will allow us to quickly determine residues (the value of the coefficient a_{-1}) and determine principle components

Consider the following example of finding the principle part and residue of the function $f(z)=\frac{z^3+z^2}{(z-1)^2}$ centered at $z_0=1$. We will first proceed by the expanding z^3+z^2 in terms of (z-1):

$$\begin{split} a(z-1)^3 + b(z-1)^2 + c(z-1) + d &= a(z^3 - 3z^2 + 3z - 1) + b(z^2 - z + 1) + c(z-1) + d \\ &= az^3 + (-3a + b)z^2 + (2a - b + c)z + (-a + b - c + d) \\ &\implies a = 1, b = 4, c = 5, d = 2 \\ &\implies z^3 + z^2 = (z-1)^3 + 4(z-1)^2 + 5(z-1) + 2 \end{split}$$

Therefore f becomes

$$f(z) = \frac{(z-1)^3 + 4(z-1)^2 + 5(z-1) + 2}{(z-1)^2} = (z-1) + 4 + \frac{5}{z-1} + \frac{2}{(z-1)^2},$$

which is equivalently the Laurant series expasion of f. The residue at z_0 is then 5, and the principle part is $\frac{5}{z-1}+\frac{2}{(z-1)^2}$.

6