

Interactive Learning from Activity Description

Khanh Nguyen 1 , Dipendra Misra 2 , Robert Schapire 2 , Miro Dudík 2 , and Patrick Shafto 3

 1 University of Maryland, College Park 2 Microsoft Research, New York 3 Rutgers University, Newark

ILIAD: A Verbal Interactive Learning Protocol

ILIAD can offer complementary advantages compared to non-verbal protocols like imitation learning and reinforcement learning.

ADEL: A Practical Implementation of ILIAD

Sampling executions from a *mixture* of policies:

$$P\left(e\mid d\right) = \underbrace{\lambda P_{\pi_{\omega}}(e)}_{\text{accelerate learning}} + \underbrace{(1-\lambda)P_{\pi_{\theta}}(e\mid d^{\star})}_{\text{ensure convergence}}$$

where P_{π} is execution distribution induced by policy π

 π_{ω} is **request-agnostic** policy learned from <u>unlabeled</u> executions π_{θ} is **request-guided** policy of the agent (to be used at test time)

Grounding description language to executions:

$$heta_{\mathsf{new}} = rg \max_{ heta} \sum_{(\hat{e},\hat{d}) \in D} \sum_{(s,a_s) \in \hat{e}} \log \pi_{ heta} \left(a_s \mid s,\hat{d}
ight)$$

Agent is trained to (re)generate executions conditioned on descriptions.

Motivational Example

Agent better fulfills requests that are the **same** as description

If agent can leverage compositionality of language, it also learns to better fulfill **similar** requests

Results

Experiments

Algorithm	Test success rate (%)	Test success rate (%) \uparrow Sample complexity \downarrow	
Vision-language navigation (Na	AV)		
Imitation learning	32.0 ± 1.63	$45 \mathrm{K} \pm 26 \mathrm{K}$	
Reinforcement learning	20.5 ± 0.58	$+\infty$	
ADEL (ours)	31.9 ± 0.76	$406\textrm{K}\pm31\textrm{K}$	
Word modification (REGEX)			
Imitation learning	93.0 ± 0.37	$118 \text{K} \pm 16 \text{K}$	
Reinforcement learning	0.0 ± 0.00	$+\infty$	
ADEL (ours)	89.0 ± 1.30	$573 \text{K} \pm 116 \text{K}$	

Table: Results on test set. Sample complexity is the number of training episodes (or number of teacher responses) required to reach a validation success rate of at least c (30% on NAV and 85% on REGEX).

Mixing rate	Val success rate (%)	↑ Sample complexity ↓	
Vision-language navigation			
$\lambda = 1$	29.4	$+\infty$	
$\lambda = 0$	0.0	$+\infty$	
$\lambda = 0.5$ (final)	32.0	384K	
Word modification			
$\lambda = 1$	55.7	$+\infty$	
$\lambda = 0$	0.2	$+\infty$	
$\lambda = 0.5$ (final)	88.0	608K	

Task 2: Generating Regular Expressions from Word-Modifying Language Requests

>>> re.sub('()(n)()', 'c', 'embolden'

Task 1: Following Navigational Language

Instructions in Photo-Realistic Environments

Tasks

Exit the bedroom and turn

Table: Effects of mixing execution policies in ADEL.

ADEL is more sample-efficient than RL baselines, while achieving competitive success rates with IL baselines (without requiring feedback provides to have agent-specific expertise).