KHOA CNTT & TRUYỀN THÔNG BM KHOA HỌC MÁY TÍNH

Phương pháp học Bayes Bayesian classification

Nội dung

- □ Giới thiệu về Bayesian classification
- □ Kiến thức về xác suất thống kê
- □ Giải thuật học của naive Bayes
- □ Kết luận và hướng phát triển

2

Bayesian classification

Phương pháp học Bayes – bayesian classification

- Phân loại này được đặt theo tên của Thomas Bayes (1702-1761), người đề xuất các định lý Bayes
- Giải thuật học có giám sát (supervised learning) xây dựng mô hình phân loại dựa trên dữ liệu tập học đã có nhãn (lớp)
- Mang Bayes (Bayesian network), Bayes ngây thơ (naive Bayes)
- > Giải quyết các vấn đề về phân loại, gom nhóm, etc.

Bayesian classification

Phương pháp học Bayes ứng dụng thành công

- Phân loại thư rác
 - Cho một email, dự đoán xem đó là thư rác hay không
- Chẩn đoán y tế
 - Cho một danh sách các triệu chứng, dự đoán xem bệnh nhân có bệnh X hay không
- > Thời tiết
 - Dựa vào nhiệt độ, độ ẩm, vv ... dự đoán nếu nó sẽ mưa vào ngày mai

Bayesian classification

- > Phương pháp Bayesian là hệ thống ham học
- Dựa vào các đặc trưng đưa ra kết luận nhãn của đối tượng mới đến
- Khi đưa ra một tập huấn luyện, hệ thống ngay lập tức phân tích dữ liệu và xây dựng một mô hình. Khi cần phân loại một đối tượng mới đến, hệ thống sử dụng mô hình đã xây dựng để xác đinh đối tượng mới.
- Phương pháp Bayesian (ham học) có xu hướng phân loại các trường hợp nhanh hơn KNN (lười học)

Kỹ thuật DM thành công (2011) Decision Trees/Rules (186) Top 10 DM algorithms (2015 Regression (180) Clustering (163) 52.4 % Statistics (descriptive) (149) 47.9 % Visualization (119) 38.3 % Top 10 Data Time series/Sequence analysis (92) 29 6 96 Mining Support Vector (SVM) (89) 28.6 % Algorithms Ensemble methods (88) 28.3 % Text Mining (86) 27.7 % Neural Nets (84) 27.0 % • 1. C4.5 Bayesian (68) 21.9 % 2 k-means 20.3 % Bagging (63) 3. Support vector machines Factor Analysis (58) 4. Apriori Anomaly/Deviation detection (51) 16.4 % • 5. EM 14.2 % • 6. PageRank Social Network Analysis (44) 7. AdaBoost Survival Analysis (29) 9.32 % 8. kNN 9.32 % Genetic algorithms (29) 9. Naive Bayes 4.82 % Uplift modeling (15) • 10. CART

Nội dung

- □ Giới thiệu về Bayesian classification
- □ Kiến thức về xác suất thống kê
- ☐ Giải thuật học của naive Bayes
- □ Kết luận và hướng phát triển

Xác suất thống kê

Môt vài ví du

- Khi tung 1 đồng xu, khả năng nhận mặt ngửa là bao nhiêu?
- Khi tung một hột xúc xắc, khả năng xuất hiện mặt "6 nút" là bao nhiêu?

P (h): ký hiệu xác suất của giả thuyết h

Xác suất thống kê

Xác suất xuất hiện mặt ngửa:

 $P(ng\mathring{u}a) = 0.5$

Xác suất xuất hiện mặt có 6 nút:

P(6) = 1/6

Xác suất thống kê

	name	laptop	phone
Ī	Kate	PC	Android
	Tom	PC	Android
ı	Harry	PC	Android
-	Annika	Mac	iPhone
Ī	Naomi	Mac	Android
;	Joe	Мас	iPhone
-	Chakotay	Mac	iPhone
Ī	Neelix	Mac	Android
ı	Kes	PC	iPhone
1	B'Elanna	Mac	iPhone
Į	B'Elanna	Мас	iPhone

- Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone là bao nhiêu?
- »Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone khi người này có sử dụng một máy tính xách tay Mac là bao nhiêu?

Xác suất thống kê

name	laptop	phone
Kate	PC	Android
Tom	PC	Android
Harry	PC	Android
Annika	Мас	iPhone
Naomi	Mac	Android
Joe	Мас	iPhone
Chakotay	Mac	iPhone
Neelix	Mac	Android
Kes	PC	iPhone
B'Elanna	Мас	iPhone

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone là bao nhiêu?

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone khi người này có sử dụng một máy tính xách tay Mac là bao nhiêu?

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau :

$$P(A/B) = \frac{P(AB)}{P(B)}$$

Xác suất thống kê

phone

Android

Android

Android

iPhone

Android

iPhone

iPhone

Android

iPhone

Phone

laptop

PC

PC

PC

Mac

Mac

Mac

Mac

Mac

PC

Mac

name

Kate

Tom

Harry

Annika

Naomi

Chakotay

B'Elanna

Neelix

Kes

Joe

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau :

$$P(A/B) = \frac{P(AB)}{P(B)}$$

Xác suất mà một người được lựa chọn ngẫu nhiên sử dung iPhone?

$$P(iPhone) = 5/10 = 0.5$$

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone khi người này sử dụng một máy tính xách tay Mac?

$$P(iPhone \mid mac) = \frac{P(mac \cap iPhone)}{P(mac)}$$

$$P(mac \cap iPhone) = \frac{4}{10} = 0.4$$
 $P(mac) = \frac{6}{10} = 0.6$

$$P(iPhone \mid mac) = \frac{0.4}{0.6} = 0.667$$

Định lý Bayes

Định lý Bayes bắt nguồn từ xác suất có điều kiện. Định lý Bayes được đặt theo tên Rev. Thomas Bayes (/ beɪz /; 1702-1761), người đầu tiên đã cho thấy làm thế nào để sử dụng thông tin mới để cập nhật những thông tin trước đó.

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau :

$$P(A/B) = \frac{P(AB)}{P(B)}$$

P(A/B) = P(AB)/P(B)=> P(AB) = P(A/B)*P(B)

P(B/A)=P(AB)/P(A) => P(AB)=(B/A)*P(A) P(A/B) = (P(B/A)*P(A))/P(B)

Định lý Bayes

Định lý Bayes cho phép tính xác suất xảy ra của một sự kiện ngẫu nhiên A khi biết sự kiện liên quan B đã xảy ra. Xác suất này được ký hiệu là P(A|B), và đọc là "xác suất của A nếu có B".

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{likelihood*prior}{normalizing_constant}$$

Định lý Bayes

Theo định lí Bayes, xác suất xảy ra A khi biết B sẽ phụ thuộc vào 3 yếu tố:

- >Xác suất xảy ra A của riêng nó, không quan tâm đến bất kỳ thông tin nào của B. Kí hiệu là P(A). Đại lượng này còn gọi là tiên nghiệm (prior)
- ➤Xác suất xảy ra B của riêng nó, không quan tâm đến A. Kí hiệu là P(B). Đại lượng này còn gọi là hằng số chuẩn hóa (normalising constant)
- ➤ Xác suất xảy ra B khi biết A xảy ra. Kí hiệu là P(B|A) và đọc là "xác suất của B nếu có A". Đại lượng này gọi là khả năng (likelihood) xảy ra B khi biết A đã xảy ra.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{likelihood*prior}{normalizing_constant}$$

Định lý Bayes

Evidence E = [E1,E2,...,En] thuộc tính của dữ liệu cần dự báo Event H: giá tri lớp/ nhãn của dữ liệu E cần sư báo

Н	The probability of a hypothesis
E	Conditional on a new piece of evidence
P(H E)	The probability of a hypothesis conditional on a new evidence
P(E H)	The probability of the evidence given the hypothesis
P(H)	The prior probability of the hypothesis
P(E)	The prior probability of the evidence

Giải thuật naive Bayes

□ Ngây thơ

- > các thuộc tính (biến) có độ quan trọng như nhau
- > các thuộc tính (biến) độc lập thống kê

□ Nhân xét

- > Giả thiết các thuộc tính độc lập không bao giờ đúng
- nhưng trong thực tế, naive Bayes cho kết quả khá tốt

17

Nội dung

- □ Giới thiệu về Bayesian classification
- □ Kiến thức về xác suất thống kê
- □ Giải thuật học của naive Bayes
- □ Kết luận và hướng phát triển

18

Luật Bayes

Đinh lý xác suất Bayes

$$P(H|E) = \frac{P(E|H).P(H)}{P(E)}$$

Evidence E = [E1,E2,...,En] có n giá trị thuộc tính của dữ liệu cần dự báo

Event H: giá trị lớp/ nhãn của dữ liệu E cần sự báo

Luật Bayes

Đinh lý xác suất Bayes

$$P[H | E] = \frac{P[E | H]P[H]}{P[E]}$$

Do giả thiết: " các thuộc tính độc lập nhau"

$$P(H|E) = \frac{P(E_1|H).P(E_2|H)...P(E_n|H).P(H)}{P(E)}$$

Evidence E = [E1,E2,...,En] có n thuộc tính của dữ liệu cần dự báo Event H: giá trị lớp/ nhãn của dữ liệu E cần dự báo

Bayes tho ngây

Bước 1: học/ huấn luyện mô hình (learning Phase) xây dựng mô hình sẵn dùng (tính sẵn xác suất xuất hiện của tất cả các trường hợp)

Bước 2: dự báo/ dự đoán

Khi có đối tượng/sự kiện mới xuất hiện cần phân loại : xác định nhãn của đối tương mới đến thông qua giá trị xác suất lớn nhất tính được

Ví dụ:

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

22

VÍ dụ: Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Bước 1

23

Sunny	Hot	High	False	No	Ш
Sunny	Hot	High	True	No	
Overcast	Hot	High	False	Yes	
Rainy	Mild	High	False	Yes	
Rainy	Cool	Normal	False	Yes	
Rainy	Cool	Normal	True	No	
Overcast	Cool	Normal	True	Yes	
Sunny	Mild	High	False	No	
Sunny	Cool	Normal	False	Yes	
Rainy	Mild	Normal	False	Yes	
Sunny	Mild	Normal	True	Yes	
Overcast	Mild	High	True	Yes	
Overcast	Hot	Normal	False	Yes	
Rainy	Mild	High	True	No	

Outlook Temp Humidity Windy Play

Ou	tlook		Temp	eratur	e	Hu	midity			Windy		Pl	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Dữ liêu weather, dưa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no) Outlook Temperature Humidity Windy Play Yes No Yes No Yes Yes No Yes No 4 6 2 High 3 Mild 2 Normal 1 Cool 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14 Sunny Mild 6/9 1/5 True 3/9 3/5 Overcast 0/5 4/9 2/5 Normal 2/5 Cool 3/9 quyết định (play=yes/no)? $P[Yes|E] = (2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14) / P[E]$ = 0.0053/P[E]Outlook Play $P[N_0|E] = 0.0206/P[E]$ True 28

Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Out	look		Temp	eratur	e	Hu	midity		1	Windy		Pl	ay
	Yes	No		Yes	No		Yes	Νο		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

quyết định (play=yes/no)?

Likelihood(yes) = $2/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

Likelihood(no) = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Likelihood(yes) = 0.0053 / (0.0053 + 0.0206) = 0.205

Likelihood(no) = 0.0206 / (0.0053 + 0.0206) = 0.795

=> **yes/no?**

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

29

Xác suất = 0

- giá trị của thuộc tính không xuất hiện trong tất cả các lớp sử dụng *Laplace estimator*
- xác suất không bao giờ có giá trị 0
- Cộng thêm cho tử một giá trị là p_iμ và mẫu số giá trị μ
 để tính xác suất. μ hằng số dương và pi là hệ số dương sao cho tổng các p_i = 1 (i=1..n)

30

Laplace estimator – Uóc lượng Laplace

□ VD: thuộc tính *outlook* cho lớp "no" => p_1 = p_2 = p_3 =1/3; μ =1

$$\frac{3+\mu/3}{5+\mu}$$

$$\frac{0 + \mu/3}{5 + \mu}$$

$$\frac{2 + \mu / 3}{5 + \mu}$$

Sunny

v Overcast

n	•
ĸ	aınv
	uiiiv

Out	tlook		Temp	eratur	e	Hu	midity			Windy		Pi	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

2 1

Laplace estimator – Uóc lượng Laplace

□ ví dụ : thuộc tính *outlook* cho lớp "no"

$$\frac{3+1/3}{5+1}$$

$$\frac{0+1/3}{5+1}$$

$$\frac{2+1/3}{5+1}$$

Sunny

ny Overcast

Rainy

Out	tlook	
	Yes	No
Sunny	2	3
Overcast	4	0
Rainy	3	2
Sunny	2/9	3/5
Overcast	4/9	0/5
Rainy	3/9	2/5

Laplace estimator – Uóc lượng Laplace

- □ trọng số có thể không bằng nhau, nhưng tổng phải là 1
- □ thuộc tính *outlook* cho lớp "Yes"

 $2 + \mu p_1$ $9+\mu$ $9 + \mu$

 $\frac{3+\mu p_3}{9+\mu}$

Sunny

Overcast

Rainy

Đề xuất giá trị p1, p2, p3 và μ

Laplace estimator – Uóc lượng Laplace

Uớc lượng Laplace cho trường hợp sau $(\mu, p_i = ?)$

	Α	В	С
T1	1/7	2/10	5/13
T2	2/7	1/10	3/13
Т3	1/7	2/10	0/13
T4	3/7	5/10	5/13

Giá trị thuộc tính nhiễu

- học : bỏ qua dữ liệu nhiễu
- phân lớp : bỏ qua các thuộc tính nhiễu
- ví dụ:

Outlook	Temp.	Humidity	Windy	Play
?	Cool	High	True	?

Likelihood(yes) = $3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$ Likelihood(no) = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$ Likelihood(yes) = 0.0238 / (0.0238 + 0.0343) = 0.41Likelihood(no) = 0.0343 / (0.0238 + 0.0343) = 0.59

Bài tập- cho tập dữ liệu như bảng

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
0	senior	medium	yes	fair	yes
1	youth	medium	yes	excellent	yes
2	middle_aged	medium	no	excellent	yes
3	middle_aged	high	yes	fair	yes
4	senior	medium	no	excellent	no

C2:buys_computer= 'no'

Class: C1:buys_computer= 'yes' C2:buys_computer

Dự đoán nhãn của phần tử X1 =(age=youth, Income=medium, Student=yes, Credit_rating=Fair) Dự đoán nhãn của phần tử X2 =(age=middle_agged, Student=yes,

Credit rating=Fair)

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Xác định dữ liệu trong bảng kế tiếp, giá trị của các thuộc tính là giá trị rời rạc hay liên tục?

Outlook	Temp	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	70	96	False	Yes
Rainy	68	80	False	Yes
Rainy	65	70	True	No
Overcast	64	65	True	Yes
Sunny	72	95	False	No
Sunny	69	70	False	Yes
Rainy	75	80	False	Yes
Sunny	75	70	True	Yes
Overcast	72	90	True	Yes
Overcast	81	75	False	Yes
Rainy	71	91	True	No

Dữ liệu liên tục

Phân phối chuẩn, còn gọi là **phân phối Gauss**, là một <u>phân phối xác suất</u> cực kì quan trọng trong nhiều lĩnh vực. Nó là họ phân phối có dạng tổng quát giống nhau, chỉ khác <u>tham số</u> vị trí (giá tri trung bình μ) và tỉ lệ (phương sai σ^2).

Phân phối chuẩn tắc (standard normal distribution) là phân phối chuẩn với giá trị trung binh bằng 0 và phương sai bằng 1 (đường cong màu đỏ trong hình). Phân phối chuẩn còn được gọi là **đường cong chuông** (bell curve) vì đồ thị của mật đồ xác suất có dạng chuông.

Play tennis dataset

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy Cool		Normal	False	Yes
Rainy Cool		Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Dữ liệu liên tục

- Giả sử các thuộc tính có phân phối Gaussian
- \Box hàm mật độ xác suất f(x) được tính như sau

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Mean μ

Karl Gauss, 1777-1855 great German mathematician

- > Phwong sai (Variance) $\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \mu)^2$
- > Độ lệch chuẩn -standard deviation: căn bậc 2 của phương sai

$$\sigma = \sqrt{\sigma^2}$$

https://www.mathsisfun.com/data/standard-

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

Outlook	Temp	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	70	96	False	Yes
Rainy	68	80	False	Yes
Rainy	65	70	True	No
Overcast	64	65	True	Yes
Sunny	72	95	False	No
Sunny	69	70	False	Yes
Rainy	75	80	False	Yes
Sunny	75	70	True	Yes
Overcast	72	90	True	Yes
Overcast	81	75	False	Yes
Rainy	71	91	True	No

Bước 1: huấn luyện mô hình

Outlook	Temp	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	70	96	False	Yes
Rainy	68	80	False	Yes
Rainy	65	70	True	No
Overcast	64	65	True	Yes
Sunny	72	95	False	No
Sunny	69	70	False	Yes
Rainy	75	80	False	Yes
Sunny	75	70	True	Yes
Overcast	72	90	True	Yes
Overcast	81	75	False	Yes
Rainy	71	91	True	No

Outlook		Temperatur	e	Humid	lity		,	Windy		PI	ay	
	Yes	No	Yes	No)	Yes	No		Yes	No	Yes	No
Sunny	2	3						False	6	2	9	5
Overcast	4	0			True	3	3					
Rainy	3	2		00								
Sunny	2/9	3/5		!!	??			False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5						True	3/9	3/5		
Rainy	3/9	2/5										

Temp	Play	
85	No	
80	No	
83	Yes	
70	Yes	
68	Yes	
65	No	
64	Yes	
72	No	
69	Yes	
75	Yes	
75	Yes	
72	Yes	
81	Yes	
71	No	

	$\mu = \frac{1}{I}$	$\sum_{i=1}^{n} x_i$	σ^2	² = -	<u>1</u> n –	$-\sum_{i=1}^{n}$	x_i –	μ) ²	j	f(x)) = <u>-</u> -	<u>1</u>	-e	$\frac{x \mu}{2\sigma^2}$	
Temp	Play	l	$\int_{i=1}^{n} x_{i} \qquad \sigma^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \qquad f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$												
85	No			Th	e n	umeric	weath	ner da	ata with	summa	ary statis	stics			
80	No	out	look		to	emperat	ture		humidity	y	'	windy		pla	ay
83	Yes		yes	no		yes	no		yes	no		yes	no	yes	no
70	Yes	sunny	2	3	Н	83	85		86	85	false	6	2	9	5
68	Yes	overcast	4	0	Н	70	80		96	90	true	3	3	<u> </u>	Ť
65	No		3	2	Н						liue	-	<u> </u>	├─	\vdash
64	Yes	rainy	3	2	\sqcup	68	65		80	70	—		<u> </u>	 	_
72	No		<u> </u>	<u> </u>	Ľ	64	72		65	95	<u> </u>		<u> </u>	<u> </u>	L
69	Yes					69	71		70	91			$oxed{oxed}$		
75	Yes					75			80				L		
75	Yes					75			70						
72	Yes				П	72			90						
81	Yes				П	81			75						
71	No				ш										_

Dữ liệu liên tục

□ mean – trung bình

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 $\mu = (83+70+68+64+69+75+75+72+81)/9 = 73$

standard deviation – phuong sai
$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$\sigma^2 = 1/8*[(83-73)^2+(70-73)^2+(68-73)^2+(64-73)^2+(69-73)^2 + (75-73)^2+(75-73)^2+(72-73)^2+(81-73)^2) = \mathbf{38.44}$$

hàm mật độ xác suất f(x) tính khi có phần tử mới xuất hiện $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Tem	p Play														
85	No	ľ			The	numeric	weather	data wit	h summ	ary sta	atistics				
80	No	u	tlook		te	mperatu	re	h	umidity		,	windy		pla	ay
83	Yes	┢	yes	no		ves	no		yes	no		yes	no	ves	no
70	Yes	L	ľ			,	-		·			Ľ		,	
68	Yes		2	3		83	85		86	85	false	6	2	9	5
65	No		4	0		70	80		96	90	true	3	3		
64	Yes		3	2		68	65		80	70					
72	No	ľ				64	72		65	95					
69	Yes	ľ				69	71		70	91					
75	Yes	┢				75			80						
75	Yes	┢				75			70						
72	Yes	ŀ													\vdash
81	Yes	L				72			90						
71	No					81			75						
	sunny		2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4
	overcas	st	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5		
	rainy		3/9	2/5	σ^2	3844									

	The numeric weather data with summary statistics												
out	look		te	mperatu	re	humidity			,		play		
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5		
rainy	3/9	2/5	σ^2	3844									

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

 $P(H|E) = \frac{P(E_1|H).P(E_2|H)...P(E_n|H).P(H)}{P(E)}$

P[Yes|E] = (P(Outlook=Sunny|Play=Yes))

x P(Temp.=66 | Play=Yes)

x P(Hum.=90|Play=Yes)

x P(Wind=True | Play=Yes)

x P(Play=Yes))/P[E]

P(Outl=Sunny | Play=Yes) = 2/9P(Temp.=66 | Play=Yes) = ??

P(Hum.=90|Play=Yes) = ??

P(Wind=True | Play=Yes) = 3/9

P(Play=Yes) = 9/14

			The r	numeric	weather	r data wit	h summ	ary sta	atistics				
out	look		te	mperatu	re	humidity			١		play		
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/ 4
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5		
rainy	3/9	2/5	σ^2	3844									

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

P(Outl=Sunny | Play=Yes) = 2/9

P(Temp.=66 | **Play=***Yes*) = ??

P(Hum.=90|Play=*Yes***) = ??**

P(Wind=True | Play=Yes) = 3/9

P(Play=Yes) = 9/14

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

	The numeric weather data with summary statistics													
out	look		te	mperatu	re	h	umidity		\	vindy		play		
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4	
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5			
rainy	3/9	2/5	σ^2	3844										

P(Outl=Sunny | Play=Yes) = 2/9 P(Temp.=66 | Play=Yes) = 0.034

P(Hum.=90|Play=Yes) = ??

P(Wind=True | Play=Yes) = 3/9

P(Play=Yes) = 9/14

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$f(temperature = 66 \mid yes) = \frac{1}{\sqrt{2\pi} 6.2} e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

	The numeric weather data with summary statistics														
out	look		te	mperatui	re e	h	umidity		١	vindy		play			
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4		
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5				
rainy	3/9	2/5	σ^2	3844											

P(Outl=Sunny | Play=Yes) = 2/9

P(Temp.=66 | Play=Yes) = 0.034

P(Hum.=90|Play=*Yes***) = ??**

P(Wind=True | Play=Yes) = 3/9P(Play=Yes) = 9/14

f(temp=66/Yes) =?

f(temp=66/No) =?

OutlookTemp.HumidityWindyPlaySunny6690true?

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

f(humidity=90/Yes) =?

f(humidity=90/No) =?

	The numeric weather data with summary statistics													
outlook temperature						humidity				windy			ay	
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4	
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5			
rainy	3/9	2/5	σ^2	3844										

Outlook

Sunny

P(Outl=Sunny | Play=Yes) = 2/9 P(Temp.=66 | Play=Yes) = 0.034 P(Hum.=90 | Play=Yes) = 0.0221 P(Wind=True | Play=Yes) = 3/9 P(Play=Yes) = 9/14

f(x)	=	
) (30)		$\sqrt{2\pi}$

Temp.

Humidity

Windy

 $(x-\mu)^2$

Play

f(humidity=90/Yes) =

	The numeric weather data with summary statistics												
outlook			temperature			humidity			windy			play	
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5		
rainy	3/9	2/5	σ^2	3844									

P(Outl=Sunny | Play=Yes) = 2/9 P(Temp.=66 | Play=Yes) = 0.034 P(Hum.=90 | Play=Yes) = 0.0221 P(Wind=True | Play=Yes) = 3/9 P(Play=Yes) = 9/14

ullook	remp.	Hullilaity	vviiiuy	Fia
Sunny	66	90	true	?
f(:	$(x) = \frac{1}{\sqrt{2}}$	$\frac{1}{2\pi\sigma}e^{-\frac{(x-1)^2}{2}}$	$\frac{-\mu)^2}{\sigma^2}$	

f(temp=66/Yes) = 0.034f(temp=66/No) = 0.0291 f(humidity=90/Yes) = 0.0221

f(humidity=90/No) = 0.0380

Nhãn????	Outlook	Temp.	Humidity	Windy	Play
	Sunny	66	90	true	?

f(temp=66/Yes) = 0.034

f(humidity=90/Yes) = 0.0221

f(temp=66/No) = 0.0291

f(humidity=90/No) = 0.0380

The numeric weather data with summary statistics													
outlook			temperature		humidity		windy			play			
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5		
rainy	3/9	2/5	σ^2	3844									

Dữ liệu liên tục

■ Bước 2- dự đoán

Outlook Temp.		Humidity	Windy	Play	
Sunny	66	90	true	?	

Likelihood(yes) = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$ Likelihood(no) = $3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136$ Likelihood(yes) = 0.000036 / (0.000036 + 0.000136) = 20.9%Likelihood(no) = 0.000136 / (0.000036 + 0.000136) = 79.1%

Multinomial Naive Bayes

- Mô hình này chủ yếu được sử dụng trong phân loại văn bản mà feature vectors được tính bằng Bags of Words.
- Mỗi văn bản được biểu diễn bởi một vector có độ dài d chính là số từ trong từ điển.
- Giá trị của thành phần thứ i trong mỗi vector chính là số lần từ thứ i xuất hiện trong văn bản đó

$$p(x_i|c) = rac{N_{ci}}{N_c}$$

•NciNci là tổng số lần từ thứ ii xuất hiện trong các văn bản của class cc, nó được tính là tổng của tất cả các thành phần thứ ii của các feature vectors ứng với class cc.

•NcNc là tổng số từ (kể cả lặp) xuất hiện trong class cc. Nói cách khác, nó bằng tổng độ dài của toàn bộ các văn bản thuộc vào class cc.

Bernoulli Naive Bayes

Mô hình này được áp dụng cho các loại dữ liệu mà mỗi thành phần là một giá trị binary - bẳng **0** hoặc **1.** Ví dụ: cũng với loại văn bản nhưng thay vì đếm tổng số lần xuất hiện của 1 từ trong văn bản, ta chỉ cần quan tâm từ đó có xuất hiện hay không

Khi đó, $p(x_i|c)$ được tính bằng:

$$p(x_i|c) = p(i|c)^{x_i} (1-p(i|c)^{1-x_i}$$

p(i|c) có thể được hiểu là xác suất từ thứ "i" xuất hiện trong các văn bản của lớp "c"

Nội dung

- □ Giới thiệu về Bayesian classification
- □ Giải thuật học của naive Bayes
- □ Kết luận và hướng phát triển

Kết luân

- □ naïve Bayes
 - □ cho kết quả tốt trong thực tế mặc dù chịu những giả thiết về tính độc lập thống kê của các thuộc tính
 - phân lớp không yêu cầu phải ước lượng một cách chính xác xác suất
 - dễ cài đặt, học nhanh, kết quả dễ hiểu
 - sử dụng trong phân loại text, spam, etc
 - tuy nhiên khi dữ liệu có nhiều thuộc tính dư thừa thì naïve Bayes không còn hiệu quả
 - dữ liệu liên tục có thể không tuân theo phân phối chuẩn (=> kernel density estimators)

Hướng phát triển

- □ naïve Bayes
 - □ chọn thuộc tính con từ các thuộc tính ban đầu
 - □ chỉ sử dụng các thuộc tính con để học phân lớp
 - nạng Bayes : mối liên quan giữa các thuộc tính

