第5章 动态规划

5.3 定期多阶段决策问题

阶段数固定的多阶段决策问题

- 背包问题
- 最长公共子序列问题
- 旅行售货员问题

背包问题

背包问题(The Knapsack Problem)

- 实例:有一个背包,总承重为整数 W。
 有 n 个物品,每个物品重量为 w_i,价值为 v_i, i = 1..n。w_i和 v_i均为整数。
- 目标:装入背包若干物品,使其总重量不超过 W,总价值 最大。

例子

 $\bullet n = 4, W = 5.$

i	1	2	3	4
v_i	6	10	12	13
Wi	1	2	3	4

● 贪心策略 1: 每次装当前价值最大的物品。 找到的解: 14+6=20。

● 贪心策略 2:每次装当前重量最小的物品(以留出尽可能多的空间给将来的物品使用)。

找到的解: 6+10=16。

● 贪心策略 3: 每次装当前"性价比"最高的物品。 找到的解: 6+10=16。

● 最优解: 10 + 12 = 22!

解(1)

- 定义 f(i,j)表示将物品 1..i 中的若干装入总容量为j 的背包,所获得的最大价值。则原问题是求 f(n, W)。
- ●若 $j < w_i$, 则第i个物品必不能装入背包。
- ●若 $j \ge w_i$,则第i个物品可以装入背包。到底是否装入背包,取决于装入第i个物品,再装入获得价值 $f(i-1,j-w_i)$ 的那些物品,所获得的总价值,以及将1..i-1物品中的若干装入容量为j的背包所获得的总价值f(i-1,j)哪个更大。
- ●则有:

$$f(i,j) = \begin{cases} f(i-1,j), & i \ge 1, j \ge 1, j < w_i \\ \max\{f(i-1,j-w_i)+v_i, f(i-1,j)\}, & i \ge 1, j \ge w_i \\ 0, & i = 0 \ \exists j = 0 \end{cases}$$

动态规划表

f	0	1	2	3	4	5	h	0	1	2	3	4	5
0	0	0	0	0	0	0	0	×	×	×	×	×	×
1	0	6	6	6	6	6	1	×	(0,0) +6	(0,1) +6	(0,2) +6	(0,3) +6	(0,4) +6
2	0	6	10	16	16	16	2	×	(1,1)	(1,0) +10	(1,1) +10	(1,2) +10	(1,3) +10
3	0	6	10	16	18	22	3	×	(2,1)	(2,2)	(2,3)	(2,1) +12	(2,2) +12
4	0	6	10	16	18	22	4	×	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)

- ●f表记录f(i,j)函数的值。
- h 表记录对应的 f(i,j)是如何计算出来的。即,f(i,j) = f(i-1,j),还是 $f(i,j) = f(i-1,j-w_i) + v_i$ 。后一种情况表明装了物品 i。

- 以上动态规划法的时间复杂度为O(nW)。
- 这个时间复杂度不是多项式的,原因在于W是问题输入中的一个整数。

解(2)

- ●定义f(i,j)表示在物品 1..i 中选择若干装入背包,使其总价值 恰好为j,总重量最小,这样的若干物品的总重量。若这样 的集合不存在,则 $f(i,j) = \infty$ 。
- ●则有:

$$f(i,j) = \begin{cases} 0, & i = 0, j = 0 \\ \infty & i = 0, j \ge 1 \\ 0, & i \ge 1, j = 0 \\ f(i-1,j), & i \ge 1, v_i > j \ge 1 \\ \min\{f(i-1,j), f(i-1,j-v_i)+w_i\}, & i \ge 1, j \ge v_i \end{cases}$$
● 则原问题是寻找满足 $f(i,j) \le W$ 的最大的 f 。

例子

●背包问题实例: n=4, W=5。

i	1	2	3	4
v_i	6	10	12	13
w_i	1	2	3	4

●动态规划表:

表格中j的上界 = min{ max{ v_i/w_i }*W, v_i } = 30。

最长公共子序列(LCS)问题

最长公共子序列(Longest Common Subsequence)问题

- 实例: 序列 $X = x_1 x_2 \cdots x_m$, $Y = y_1 y_2 \cdots y_n$ 。
- 询问: X和 Y的一个最长公共子序列。

• 子序列: 若有 l 个数满足 $1 \le s_1 < s_2 < \cdots < s_l \le m$,则称 $x_{s_1}x_{s_2}\cdots x_{s_l}$ 为 X 的一个子序列。

递推公式

- ●从X和Y的尾部向前,考虑它们的最长公共子序列。假设 现在扫描的字符是 x_i 和 y_i 。
- 若 $x_i = y_i$,则 $x_1..x_i$ 与 $y_1..y_i$ 的最长公共子序列就是 $x_1..x_{i-1}$ 与 $y_1..y_{i-1}$ 的最长公共子序列,再加上字符 x_i 。
- ●否则, $x_1..x_i$ 与 $y_1..y_i$ 的最长公共子序列,就是 $x_1..x_{i-1}$ 与 $y_1..y_i$ 的最长公共子序列,以及 $x_1..x_i$ 与 $y_1..y_{i-1}$ 的最长公共子序列 中,较长的那一个。
- 定义 v(i,j)为 $x_1..x_i$ 与 $y_1..y_i$ 的最长公共子序列的长度。则有:

定义
$$v(i, j)$$
为 $x_1...x_i$ 与 $y_1...y_j$ 的最长公共子序列的长度。 $v(i, j) = \begin{cases} v(i-1, j-1) + 1, & \exists i > 0, j > 0, x_i = y_j \\ \max\{v(i-1, j), v(i, j-1)\}, & \exists i > 0, j > 0, x_i \neq y_j \\ 0, & \exists i = 0$

例子

● 原问题就是计算 v(m, n)。

•例子: X = monkey, Y = human.

v	0	1h	2u	3m	4a	5 n	f	0	1h	2u	3m	4a	5 n
0	0	0	0	0	0	0	0	×	×	×	×	×	×
1m	0	0	0	1	1	1	1m	×	1	1	\	←	←
20	0	0	0	1	1	1	20	×	1	1	1	↑	1
3n	0	0	0	1	1	2	3n	×	1	1	↑	↑	\
4k	0	0	0	1	1	2	4k	×	1	1	↑	↑	1
5e	0	0	0	1	1	2	5e	×	1	1	1	↑	1
6y	0	0	0	1	1	2	6y	×	1	1	↑	\uparrow	1

LCS之动态规划算法

Algorithm LCS(X, Y)

计算 $X = x_1 x_2 ... x_m$ 和 $Y = y_1 y_2 ... y_n$ 的最长公共子序列。

1 for
$$i \leftarrow 1$$
 到 m do

$$2 \quad c[i, 0] \leftarrow 0$$

3 endfor

4 for
$$j \leftarrow 0$$
 到 n do

5
$$c[0,j] \leftarrow 0$$
.

6 endfor

7 for
$$i \leftarrow 1$$
 到 m do

8 for
$$j \leftarrow 1$$
 到 n do

9 if
$$x[i] = y[j]$$
 then

10
$$c[i,j] \leftarrow c[i-1,j-1] + 1$$
.

LCS之动态规划算法

```
11
            f[i,j] \leftarrow " \" \circ
                                                               22 endfor
12
          else
                                                               23 return c, f_{\circ}
13
              if c[i-1, j] \ge c[i, j-1] then
14
                 c[i,j] \leftarrow c[i-1,j].
                f[i,j] \leftarrow "\uparrow".
15
16
              else
17
                 c[i,j] \leftarrow c[i,j-1]
                f[i,j] \leftarrow "\leftarrow"
18
19
              endif
20
           endif
21
       endfor
```

- 以上动态规划法(LCS问题)的时间复杂度为O(mn)。
- 这是一个多项式的时间复杂度,表明LCS问题是多项式时间可解的。

旅行售货员(TSP)问题

- 旅行售货员问题是图论中一个著名问题。
- 实例:图G = (V, E),每条边 (v_i, v_j) 上有长度 $d(v_i, v_j)$ 。
- 询问:找一个最短的圈,走过所有的顶点。

等价描述:从v₁点出发,经过其余顶点(v₂,...,v_n)各一次,最后返回v₁的最短的圈。

递推方程

- ●如何对问题(按最优化原理)进行分解?
- ●由于原问题是找一个圈,从任何一个点开始走这个圈都是可以的。因此不妨假设从 v₁ 开始。
- ●于是问题就是,从 v₁ 开始,经过 V \ {v₁} 中的顶点各一次,最后回到 v₁,这样的最短路的长度是多少?
- ●用 $f(v_i, U, v_1)$ 表示从顶点 v_i 出发,经过 U 中的顶点各一次,最后到达 v_1 的最短路的长度,其中 $U \subset V$ 是一个顶点子集,满足 $v_1 \notin U$, $v_i \notin U$ 。则有

$$f(v_i, U, v_1) = \begin{cases} \min_{v_j \in U} \{d(v_i, v_j) + f(v_j, U \setminus \{v_j\}, v_1)\}, & U \neq \emptyset \\ d(v_i, v_1), & U = \emptyset \end{cases}$$

● 原问题就是计算 $f(v_1, V \setminus \{v_1\}, v_1)$ 。

例 5.3.1 解 TSP 问题:

例5.3.1

	v_2	v_3	v_4		v_2	v_3	v_4
Ø	6	7	9	\varnothing	v_1	v_1	v_1
$\{v_2\}$	×	15	13	$\{v_2\}$	×	v_2, \varnothing	v_2, \varnothing
$\{v_3\}$	15	×	15	$\{v_3\}$	v_3, \varnothing	×	v_3, \varnothing
$\{v_4\}$	14	14	×	$\{v_4\}$	v_4, \varnothing	v_4, \varnothing	×
$\{v_2, v_3\}$	×	×	22	$\{v_2, v_3\}$	×	×	$v_2, \{v_3\}$
$\{v_2, v_4\}$	×	18	×	$\{v_2, v_4\}$	×	$v_4, \{v_2\}$	×
$\{v_3, v_4\}$	20	×	×	$\{v_3, v_4\}$	$v_4, \{v_3\}$	×	×

- 使用表格计算诸 $f_k(v_i, U, v_1)$: k = 1..2; $\forall v_i \neq v_1$; $\forall U \subset V$, 满足 $v_i \notin U$, $v_i \notin U$.
- ●最后单独计算 $f_3(v_1, U = V \setminus \{v_1\}, v_1)$ (因为 $v_1 \in U$,故 $f_3(v_1, U, v_1)$)没有列入动态规划表格中)。

计算一个单元格

```
f_k(v_i, U, v_1)

1 \ d \leftarrow \infty.

2 for each v_j \in U do

3 \ t \leftarrow d(v_i, v_j) + \text{table}(v_j, U \setminus \{v_j\}).

4 \ \text{if } t < d \text{ then } d \leftarrow t.

5 \ \text{endfor}
```

6 return d_o

计算过程

$$\Phi f_1(v_3, \{v_2\}, v_1) = \min\{d(v_3, v_2) + f_0(v_2, \emptyset, v_1)\} = 9 + 6 = 15.$$

$$\Phi f_1(v_3, \{v_4\}, v_1) = \min\{d(v_3, v_4) + f_0(v_4, \emptyset, v_1)\} = 5 + 9 = 14.$$

$$\Phi f_1(v_4, \{v_3\}, v_1) = \min\{d(v_4, v_3) + f_0(v_3, \emptyset, v_1)\} = 8 + 7 = 15.$$

$$\Phi f_2(v_2, \{v_3, v_4\}, v_1)
= \min\{d(v_2, v_3) + f_1(v_3, \{v_4\}, v_1), d(v_2, v_4) + f_1(v_4, \{v_3\}, v_1)\}
= \min\{8 + 14, 5 + 15\} = 20_{\circ}$$

计算过程

```
\bullet f_2(v_3, \{v_2, v_4\}, v_1)
   = \min\{d(v_3, v_2) + f_1(v_2, \{v_4\}, v_1), d(v_3, v_4) + f_1(v_4, \{v_2\}, v_1)\}
   = \min\{9 + 14, 5 + 13\} = 18.
\bullet f_2(v_4, \{v_2, v_3\}, v_1)
   = \min\{d(v_4, v_2) + f_1(v_2, \{v_3\}, v_1), d(v_4, v_3) + f_1(v_3, \{v_2\}, v_1)\}\
   = \min\{7 + 15, 8 + 14\} = 22.
●最后一个: f<sub>3</sub>(v<sub>1</sub>, {v<sub>2</sub>, v<sub>3</sub>, v<sub>4</sub>}, v<sub>1</sub>)
   = \min\{d(v_1, v_2) + f_2(v_2, \{v_3, v_4\}, v_1),
              d(v_1, v_3) + f_2(v_3, \{v_2, v_4\}, v_1),
              d(v_1, v_4) + f_2(v_4, \{v_2, v_3\}, v_1)
   = \min\{8 + 20, 5 + 18, 6 + 22\} = \min\{26, 23, 28\} = 23.
```

●最优 TSP 旅游为: $v_1 \rightarrow v_3 \rightarrow v_4 \rightarrow v_2 \rightarrow v_1$ 。

一般情况

_	v_2	v_3	v_4	•••	•••	•••	v_n
Ø							
$\{v_2\}$							
$\{v_3\}$							
$\{v_4\}$							
$\{v_2, v_3\}$							
$\{v_2, v_4\}$							
$\{v_3, v_4\}$							
:							
$\{v_2, v_3, \dots, v_{n-1}\}$							
$\{v_2, v_3, \cdots, v_n\}$							
:							
$\{v_3, v_4, \cdots, v_n\}$							

- 计算过程中的基本运算为加法和比较。考虑加法运算的次数。
- ●需要计算的f函数:
- 1. $\forall v_i \neq v_1$, $\forall U \subset V$, 满足|U| = 1且 $v_1, v_i \notin U$, $f_1(v_i, U, v_1)$ 。
- 2. $\forall v_i \neq v_1$, $\forall U \subset V$, 满足|U| = 2且 $v_1, v_i \notin U$, $f_2(v_i, U, v_1)$ 。
- **3.** · · ·
- 4. $\forall v_i \neq v_1$, $\forall U \subset V$,满足|U| = n 2且 $v_1, v_i \notin U$, $f_{n-2}(v_i, U, v_1)$ 。
- ●因此,需要计算 $\binom{n-1}{1}$ 个 $f_1(v_i,U,v_1)$, $\binom{n-1}{2}$ 个

$$f_2(v_i, U, v_1), \dots, (n-1)\binom{n-2}{n-2} \uparrow f_{n-2}(v_i, U, v_1)_{\circ}$$

- 计算每个 $f_k(v_i, U, v_1)$ 需要计算 k 次加法,k = 1 ... n 1。
- ●因此,计算 $f_1(v_i, U, v_1)$, ..., $f_{n-2}(v_i, U, v_1)$, 以及最后一个 $f_{n-1}(v_1, U, v_1)$, 所需要的加法运算的次数为:

$$T = (n-1) + (n-1) \sum_{k=1}^{n-2} {n-2 \choose k} k$$

• = 1 H, $\sum_{k=1}^{n-2} {n-2 \choose k} k = \sum_{k=1}^{n-2} {n-2 \choose k} k x^{k-1} = \left(\sum_{k=1}^{n-2} {n-2 \choose k} x^k\right)^{n-2}$

$$= \left(\sum_{k=0}^{n-2} {n-2 \choose k} x^k\right)' = \left((1+x)^{n-2}\right)' = (n-2)(1+x)^{n-3} = (n-2)2^{n-3}$$

- 因此, $T = (n-1) + (n-1)(n-2)2^{n-3}$ 。
- ●比较运算的次数与加法运算的次数是同量级的。因此,上述 TSP 的动态规划算法的时间复杂度为 $O(n^2 2^{n-3})$ 。这已经比枚 举法的时间复杂度 O(n!)好了很多。

