

CS 4364/6364 Machine Learning

Fall Semester 9/19/2023
Lecture 8.
Decision Trees & Random Forests

John Sipple jsipple@gwu.edu

Topics

Decision Trees

Ensemble Methods

Bagging

Random Forests

Boosting

Decision Trees

X

No Logistic Regression Model is an adequate fit to the data

Top-down, greedy, recursive split of features

Each leaf region *R* is represented by a constant:

$$\hat{f}\left(oldsymbol{x}_i
ight) = \sum_{R_m \in oldsymbol{R}} c_R I\{oldsymbol{x}_i \in R_m\}$$

Regression: Average value of each point

$$\hat{c}_R = \operatorname{ave}(y_i|x_i \in R)$$

• **Classification**: Proportion of each class *k*

$$\hat{p}_{mk} = rac{1}{N_m} \sum_{x_i \in R} \; I(y_i = k)$$

Growing Regression Trees

Proceed with a recursive, greedy algorithm, with variable j and split point s:

$$R_1(j,s) = {\mathbf{X} | \mathbf{x}_j \le s} \text{ and } R_2(j,s) = {\mathbf{X} | \mathbf{x}_j > s}$$

Choose the variable j and point s:

$$\min_{j,s} \left[\min_{c_1} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2
ight]$$

And for any j, s, inner minimization is solved by:

$$\hat{c}_1 = \operatorname{ave}(y_i|x_i \in R_1(j,s)) \text{ and } \hat{c}_2 = \operatorname{ave}(y_i|x_i \in R_2(j,s))$$

Classification Trees

Proportion of points of class k in region R_m :

$$\hat{p}_{mk} = rac{1}{N_m} \sum_{x_i \in R_m} I(y_i = k)$$

Classify points in node m to class $k(m) = rg \max_k \hat{p_{mk}}$

Measures of Impurity (i.e., Loss):

· Misclassification error:

$$rac{1}{N_m}\sum_{i\in R_m}I(y_i
eq k(m))=1-\hat{p}_{mk}$$

· Gini index:

$$\sum_{k=1}^K \hat{p}_{mk}(1-\hat{p}_{mk})$$

· Cross-entropy:

$$-\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}$$

FIGURE 9.3. Node impurity measures for two-class classification, as a function of the proportion p in class 2. Cross-entropy has been scaled to pass through (0.5, 0.5).

Regularization of Decision Trees

- Min leaf size
- 2. Max Depth
- Max Number of Nodes
- 4. Min decrease in loss (might stop too early)
- 5. Pruning:
 - Grow the whole tree
 - Iteratively collapse nodes that don't increase loss
 - Use validation set

Runtime Complexity

<u>Given</u>	<u>Test Time</u>	Train Time

N Points O(D) - depth Each point belongs to one split in O(D) nodes

F features $D < \log_2 N$ Cost of each point-split is proportionate to O(F)

D Depth Total Cost O(NFD)

No Additive Structure

Pros and Cons of Decision Trees

- Easy to explain (interpretable)
- + Categorical Variables
- + Fast

- High Variance (prone to overfit)
- Bad at additive structure
- Low predictive accuracy

Ensemble Methods

Ensemble methods

If each of p models generates a random variable \mathbf{y}_i are independent, identically distributed (iid)

$$\operatorname{Var}(\mathbf{y}_i) = \sigma_i^2$$

then

$$\operatorname{Var}(ar{\mathbf{y}}) = \operatorname{Var}(rac{1}{p} \sum_{i=1}^p \mathbf{y}_i) = rac{\sigma^2}{p}$$

- ullet Adding more variables reduces mean variance by p
- But usually there are correlations that makes us drop the independence assumption.

Ensemble Methods

Drop the independence assumption (only identically distributed now).

Correlation of two variables \mathbf{y}_i and \mathbf{y}_j is $ho(\mathbf{y}_i,\mathbf{y}_j)=
ho_{i,j}$

Covariance between two variables i, j, $\mathrm{Cov}(\mathbf{y}_i,\mathbf{y}_j) =
ho_{ij}\sigma_i\sigma_j$

$$\operatorname{Var}\left(\sum_{i=1}^p \mathbf{y}_i
ight) = \operatorname{Cov}\left(\sum_{i=1}^p \mathbf{y}_i, \sum_{j=1}^p \mathbf{x}_j
ight) = \sum_{i=1}^p \operatorname{Var}(\mathbf{y}_i) + \sum_{i
eq j} \operatorname{Cov}(\mathbf{y}_i, \mathbf{y}_j)$$

If, for all i and j, $\rho_{i,j} = \rho$ and $\sigma_{i,j} = \sigma$,

$$=p\sigma^2+p(p-1)
ho\sigma^2$$

Now the Mean Variance is:

$$\operatorname{Var}\left(rac{1}{p}\sum_{i=1}^{p}\mathbf{y}_{i}
ight)=rac{1}{p^{2}}(p\sigma^{2}+p(p-1)
ho\sigma^{2})\ =
ho\sigma^{2}+rac{1-
ho}{p}\sigma^{2}$$

Ensemble Methods

Two approaches for reducing variance error in models:

$$\operatorname{Var}\left(rac{1}{p}\sum_{i=1}^{p}\mathbf{y}_{i}
ight)=
ho\sigma^{2}+rac{1-
ho}{p}\sigma^{2}$$

"Decorrelate" multiple models, reducing ρ

Increase the number of models, which increases *p*

Ways to Ensemble

- 1. Different Algorithms
- 2. Different Training Sets
- 3. Bagging (Approximate Different Training Sets)
 - Random Forest
- 4. Boosting (We'll skip)
 - Adaboost
 - XGBoost

Bootstrap Methods

Bagging - Bootstrap Aggregation

Have a true population *P*

Training Set samples from P, $S \sim P$

Assume population is the training sample P = S

Bootstrap samples $Z_1, Z_2, \dots Z_M \sim S$ (with replacement)

Train separate models G_m on Bootstrap sample Z_m , then average:

$$G(oldsymbol{x}_i) = rac{\sum_{m=1}^M G_m(oldsymbol{x})}{M}$$

Ensemble Methods

Two approaches for reducing variance error in models:

$$\operatorname{Var}\left(rac{1}{p}\sum_{i=1}^{p}\mathbf{y}_{i}
ight)=
ho\sigma^{2}+rac{1-
ho}{p}\sigma^{2}$$

With bootstrapped samples, you're increasing bias

"Decorrelate" multiple models, reducing ρ

Increase the number of models, which increases p

Random Forest

Random Forest = Decision Trees + Bagging

DT have a high variance, low bias

Good fit for bagging

To further decorrelate (decrease ρ), at each split consider only a fraction of the features:

 Prevents all models from making the same splits - and decorrelates individual trees

Random Forest Algorithm

Algorithm 15.1 Random Forest for Regression or Classification

Train(M, n_{\min} , $loss = \{cross-entropy or gini index<math>\}$):

- 1. For m = 1 to M:
 - a. Draw bootstrap sample Z of size N from the training data.
 - b. Grow tree T_m from Z, by recursively until minimum node size, n_{min} , is reached
 - i. Randomly select *p* 'variables from *p* variables
 - ii. Pick the best split point s among the p' variables using loss function
 - iii. Split node into 2 daughter nodes
- 2. Return ensemble of M trees $\{T_m\}$

Random Forest Algorithm

Algorithm 15.1 Random Forest for Regression or Classification

Predict(*x*):

Regression:

$$\hat{f}_{rf}^{\,(M)}(oldsymbol{x}) = rac{1}{M} \sum_{m=1}^{M} T_m(oldsymbol{x})$$

Classification:

$$\hat{C}_{rf}^{(M)}(oldsymbol{x}) = ext{majority vote} \{\hat{C}_m(oldsymbol{x})\}_1^M$$

Readings

Hastie 12.1-12.3 Support Vector Machines