Problem 1.6 - Uncertainty Analysis

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = \frac{x_1 x_2 x_3}{3600000}$$

Varia	able	Uncertainty Interval	Distribution	∂f/∂x _i
x ₁ x ₂ x ₃	P T k	$(6.0 \pm 0.5) \times 10^{1}$ $6.048 \times (\text{exact}) \ 10^{5}$ $6 \times (\text{exact}) \ 10^{-1}$	Uniform	1.008×10^{-1} $1. \times 10^{-5}$ 1.008×10^{1}

У	6.048	
Ymin Ymax	5.544 6.552	= y - 0.504 = y + 0.504
ε_{\max} $y \pm \varepsilon_{\max}$	0.504 $(6.0 \pm 0.5) \times 10^{\circ}$	= 8.33 % = 6.0(5)
u _c y ± u _c	$0.290984535671571 (6.0 \pm 0.3) \times 10^{0}$	= 4.81 % = 6.0(3)

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{\mathbf{x}_{i}} \mathbf{f}[\mathbf{x}]| \varepsilon_{i}; \quad \mathbf{f}[\mathbf{x}] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

$$6.048 \pm 0.504$$

$$\in [5.544; 6.552]$$

$$\approx (6.0 \pm 0.5) \times 10^{0} = 6.0(5)$$

Combined Standard Uncertainty

$$\mathbf{u}_{c} = \left(\sum_{i=1}^{n} \left(\partial_{\mathbf{x}_{i}} \mathbf{f}[\mathbf{x}]\right)^{2} \mathbf{u}_{i}^{2}\right)^{1/2}; \quad \mathbf{f}[\mathbf{x}] \pm \mathbf{u}_{c} // \text{QUCA}$$

```
6.048 ± 0.290985

\in [5.757; 6.339]

\simeq (6.0 \pm 0.3) \times 10^0 = 6.0(3)
```

Monte Carlo Simulation

```
Block \left\{ data, trials = 10^6 \right\},
  data = f@@ Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
  Mean[data] ± StandardDeviation[data] ] // QUCA
   6.04837220779298 ± 0.290814
     ∈ [5.7576; 6.3392]
    \simeq (6.0 ± 0.3) × 10<sup>0</sup> = 6.0(3)
```