

11-09-00

Docket No 594-23638-US

A

NEW APPLICATION TRANSMITTAL

Transmitted herewith for filing is the patent application of **Loran D. Ambs** for the invention entitled: **HYBRID PIEZO-FILM CONTINUOUS LINE AND DISCRETE ELEMENT ARRAYS.**

1. This new application is an original.
2. Papers enclosed which are required for filing date under 37 CFR 1.53(b):

11 Pages of specification

05 Pages of claims

01 Pages of abstract

04 Sheets of drawings

24923

PATENT TRADEMARK OFFICE

3. The application is in the English language.
4. The fee calculation for a regular application is as follows:

	Number Filed				Number Extra				Rate				Basic Fee (37CFR 1.16(a)) \$710
Total Claims	23	-	20	=	3	x	\$18	=		=		\$54	
Independent Claims	1	-	3	=	0	x	\$80	=		=		\$0	
Multiple Dependent Claims (if any)						X	\$270					\$0	
Total Filing Fee												\$764	

6. Applicant is other than a small entity.
7. The Commissioner is authorized to charge the \$764.00 filing fee under 37 CFR 1.16 to Deposit Account No. 02-0429(594-23638-US).
8. The Commissioner is hereby authorized to charge the following additional fees by this paper and during the entire pendency of this application to Deposit Account No. 02-0429(594-23638-US).

37 CFR 1.16 (filing fees)

37 CFR 1.16 (presentation of extra claims)

37 CFR 1.16(e) (surcharge for filing the basic filing fee and/or declaration on a date later than the filing date of the application).

37 CFR 1.17 (application processing fees)

- 9 Any overpayment is to be credited to Account No. 02-0429(594-23638-US).

Respectfully submitted,

November 8, 2000

Date

G. Michael Roebuck

G. Michael Roebuck

Reg. No. 35,662

Madan, Mossman & Sriram, PC

2603 Augusta Drive, Suite 700

Houston, Texas 77057-5638

Telephone (713) 266-1130

Facsimile: (713) 266-8510

CERTIFICATE OF MAILING

I hereby certify that this New Application Transmittal and the documents referred to as enclosed therein are being deposited with the United States Postal Service on **November 8, 2000**, in an envelope as "Express Mail Post Office to Addressee" Mailing Label Number **EL769791665US** addressed to the Attn.: Box New Patent Application, Assistant Commissioner of Patents, Washington, D.C. 20231.

Dean C. Brehm
Dean C. Brehm

EXPRESS MAIL CERTIFICATE

"EXPRESS MAIL" LABEL No EL769791665

Date of Deposit November 8, 2000

I hereby certify that this paper or fee and any papers referred to as being enclosed or attached is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above, addressed to: BOX NEW APPLICATION, Assistant Commissioner of Patents, Washington, D.C. 20231.

Dean C. Brehm

**APPLICATION FOR
UNITED STATES LETTERS PATENT
FOR
Hybrid Piezo-film Continuous Line
and Discrete Element Arrays**

Inventor: Loran D. Ambs

Assignee: Western Geophysical, Inc.

CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation in part of patent application serial number, 09/584,440 filed on May 31, 2000, entitled "Continuous Seismic Receiver Array" by Loran D. Ambs and Ricky L. Workman, incorporated herein by reference.

5

BACKGROUND OF THE INVENTION

Field of the Invention

This present invention relates to a marine seismic hydrophone array formed by a continuous line array of piezoelectric film of continuous extent with discrete points of increased sensitivity formed over sections of relatively compressible substrate. The invention is useful to acoustic arrays in general and may be used in air, water and other acoustic mediums.

Summary of Related Art

Marine seismic hydrophones are typically formed in seismic cables as a collection of associated receiver elements. The marine seismic hydrophone cables are towed behind a marine seismic vessel or deployed from a seismic vessel to rest on the bottom of the ocean. The marine seismic hydrophone cables are used for performing ocean borne and ocean bottom seismic surveys to determine the presence of hydrocarbon bearing formations beneath the surface of the ocean floor. Seismic surveyors utilize acoustic energy sources such as air guns to generate acoustic energy pulses that penetrate and acoustically probe subsurface geological formations.

20

The seismic surveyor hydrophone cables include hydrophones and/or geophones for detecting acoustic energy generated by the seismic sources and reflected from subsurface formations. The

characteristics of these acoustic pulse reflections enable seismic surveyors to determine the nature of the formations from which the reflections emanate.

The marine seismic survey cables typically comprise encapsulated hydrophone and/or geophone sub-arrays, comprising electrical conductors, fiber optic conductors for digital telemetry, seismic sensor wiring, and cable/hydrophone buoyancy materials. For towable seismic streamers, internal buoyancy fill materials are provided to increase buoyancy and overcome the relatively heavy internal components of the hydrophone cables. The hydrophone cable buoyancy material enable the seismic streamer cables to become neutrally or slightly negatively buoyant in water. Neutral buoyancy or slightly negative buoyancy, as desired, enables easier streaming through the water and/or deployment of the seismic hydrophone cable to the ocean bottom. Typically, a flexible water proof jacket surrounds the seismic hydrophone cables to exclude water from the interior components of the cable and reduce frictional drag to the cables as they are streamed through the water or deployed to the ocean bottom.

Towed seismic streamer hydrophone cables range up to twelve kilometers long. The seismic hydrophone cables are typically towed beneath the water surface to avoid the acoustic and mechanical noise produced by surface wave action and other such seismically detrimental environmental factors. The streamer elevation or depth beneath the surface of the water is selected for the associated water surface conditions, the water depth, and for the desired seismic data frequency content. Positional control over streamer elevation is critical to data quality, data frequency content and to the reflected seismic signals received by hydrophones which are incorporated into the seismic streamers.

Conventional seismic streamers are typically fluid filled. Seismic streamers and ocean bottom cables typically contain acoustic detectors such as piezoelectric crystal hydrophones. Each seismic streamer or ocean bottom cable is circular in cross section. The seismic acoustic signals are typically recorded from groups of point sensors connected together to form a sub-array. Each sub-array typically comprises a plurality (e.g. fourteen) individual sensors, and the sub-array centers of sensors are typically spaced at 12.5 meter intervals along the cable. The hydrophone sensors are electrically grouped into sub-arrays to enhance the desired signal and to reduce undesirable noise.

Conventional hydrophones have used ceramic buttons as acoustic sensing elements. More recently piezoelectric films has been employed as the acoustic sensing element in seismic hydrophone cables. Piezoelectric film produces an electrical signal when stressed or strained under an impinging acoustic sound wave or other force, such as towing tension and compression. The sensitivity of the piezoelectric film material is anisotropic so that the magnitude of the response varies with the direction of the applied acoustic stress. For instance, the piezo-stress constant, g for electrical measurements made across the thickness of a PVDF piezoelectric film varies by about 50% depending on whether the stress is applied in the thickness (i.e. "3" direction) or length direction (i.e. "1" direction). For PVDF film, g_{31} and g_{33} are 216×10^{-3} Vm/N and -330×10^{-3} Vm/N respectively. The relative differences in piezo-stress constant for other materials can be much greater. For copolymer film the ratio of g_{31}/g_{33} is about 0.25. (Measurement Specialties Incorporated Technical Manual for Piezo-film Sensors, internet version updated August, 1998)

The relative difference in piezo-stress constants of a film is further amplified by the way in which film is exposed to stress. Compared to a rigid-backed area of film exposed to pressure, the same film area exposed to the same pressure but backed by a compliant material may produce a signal more than 100 times as great. The rigid backed film produces a signal proportional to the thickness of the film. A compliant backed film produces a signal proportional to the span of film stretched. For PVDF, the piezo-stress constant for stress applied in the thickness direction is larger than that of the stretch direction but the length of material stretched is many times greater than the thickness and so the film is much more sensitive to stretch than to thinning. If a line array of rigidly backed piezo-film had small areas where the backing was compliant, the film stretched over those areas would have enhanced sensitivity to pressure.

U.S. Patent No. 5,774,423, U.S. Patent No. 5,982,708, U.S. Patent No. 5,883,857 and U.S. Patent No. 6,108,274 disclose a piezoelectric acoustic sensor having one or more segments that are electrically coupled to provide a response corresponding to an acoustic pressure applied to the segments. Another piezoelectric film acoustic sensor is described in U.S. Patent No. 5,361,240 wherein a piezoelectric film is wrapped around a mandrel. A hollow space or void is formed between the piezoelectric film and the mandrel provides pressure compensation to permit activation of the film. Another piezoelectric film hydrophone was described in U.S. Patent No. 5,774,423 where a flexible piezoelectric film was encapsulated with a segmented housing. Two or more clam-shell type housings were fastened to a cable to form a hydrophone. A hollow space was provided to permit flexure of the piezoelectric material, and multiple hydrophones assembled to form a seismic array.

Thus, there are no known piezoelectric hydrophones that provide for the combination of a discrete array component sensitivity in a continuous line array. Thus there is a need for a piezoelectric hydrophone that provides for the combination of discrete array component sensitivity in a continuous line array.

SUMMARY OF THE INVENTION

This present invention provides a hydrophone array formed by a continuous line array of piezoelectric film with discrete points of increased sensitivity. The configuration provided by the present invention simultaneously provides the advantages and attributes of both the continuous line array and the multi-element discrete array. The line array and the multi-element array are designed to enhance or cancel specific frequency bands of signal noise and to enhance beam forming of the array. The piezoelectric hydrophone array can be extended and shaped into two-dimensional and three-dimensional hydrophone arrays.

The present invention comprises a continuous line array formed by a single piece of piezoelectric film with one or more points of enhanced sensitivity to alter the beam pattern or spectral sensitivity of the array. The invention is useful to acoustic arrays in general and may be used in air, water and other acoustic mediums. The electrical output of the entire array may be observed with one set of connectors, one positive and one negative lead. The effect of changing the beam pattern and/or spectral sensitivity applies to two and three-dimensional array, for example, multi-armed star, circular planar array and cylindrical array.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an orthographic view of a preferred embodiment of a hybrid piezoelectric film continuous line array and multi-element array of the present invention;

5 Figure 2 is a cross section of a preferred embodiment of a hybrid piezoelectric film continuous line array and multi-element array of the present invention;

Figure 3 is a side view of a two-dimensional alternative embodiment of a hybrid piezoelectric film continuous line array and multi-element array of the present invention; and

Figure 4 is a side view of a three-dimensional alternative embodiment of a hybrid piezoelectric film continuous line array and multi-element array of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a structure for a hydrophone array formed by a continuous line array of piezoelectric film having discrete points of increased acoustic sensitivity. The invention is useful to acoustic arrays in general and may be used in air, water and other acoustic mediums. The present invention enables a continuous line array with discrete points of increased sensitivity by placing windows or sections of relatively compressible substrate adjacent the piezoelectric film in the relatively incompressible strata under the substrate of the piezoelectric film continuous line array. If the line array were backed only by the relatively incompressible substrate, the sensitivity of the array would substantively be due only to deformation or compression of the film in the thickness dimension, that is, in the g_{33} mode. Thus, the output of the array without the increased sensitivity windows, which are coincident with the sections of relatively compressible substrate, would be a function of the g_{33} sensitivity only, the pressure applied to the array and the thickness of the piezoelectric film.

In a preferred embodiment, the areas of enhanced sensitivity are created by substituting selected portions of the relatively incompressible substrate with a relatively compressible, more compliant material. The piezoelectric film spanning the section above the area of the compressible material produces an additional and increased electrical output when exposed to pressure. The compressible substrate enables the piezoelectric film adjacent the compressible substrate to deform and stretch under the pressure of the incident acoustic wave. Thus, the relatively compressible substrate enables the piezoelectric film to generate an additional electrical signal that is dependent upon the g_{31} , the stretch direction.

The sensitivity of the piezoelectric film in the stretch direction is dependent upon the acoustic pressure scalar and the degree of compressibility and the area of the film backed by relatively compressible material. The magnitude of sensitivity in the thickness and stretch directions are relatively equal in magnitude, or at least within a factor of 2 or three of each other. The magnitude of the electrical output of the piezoelectric film in the stretch direction has the potential to be much larger than electrical output of the piezoelectric film in the compression dimension, since the dimension of the piezoelectric film being stretched is so much greater than the thickness of the film (i.e. centimeters versus micrometers). Thus, the amplitude of the electrical response to an acoustic signal in the areas adjacent the relatively compressible substrate is potentially three orders of magnitude greater than the amplitude of the electrical response of the piezoelectric film over the relatively incompressible substrate.

In the preferred embodiment, an acoustic line array is formed from a continuous strip of piezoelectric film over a variable compressibility substrate that enables formation of an acoustic array that has attributes of a continuous line array and of a multi-element line array. This continuous line array response enables the shaping and modification of acoustically sensitive elements by forming and shaping locations of heightened sensitivity, adjacent discrete areas or relatively compressible substrate along the array of piezoelectric film. The contribution of continuous line array response and multi-element array response is varied by designing the shapes and configuration of the discrete heightened sensitivity areas in the array to obtain the desired array response. Thus, the present invention enables enhanced array beam forming, spectral sensitivity control and noise reduction.

In a preferred embodiment a hybrid line array is formed over a rod shaped substrate. Points of enhanced sensitivity along the array are created by axial symmetric thinning of the substrate material filled with compliant materials and covered by piezoelectric film. Unlike prior piezoelectric hydrophones which provide a single sensor formed by two segments or pieces of piezoelectric film at each sensor location, the present invention provides a sensor formed by one continuous piece of piezoelectric film. The single piece of piezoelectric film of the present invention can be used to cover a window formed in the substrate filled with a relatively compressible material, air or some other material to achieve the desired acoustic and mechanical properties.

The present invention incorporates the method of rejecting common mode signals created by stretching or deformation in the stretch direction, as described by patent application serial

number, 09/584,440 filed on May 31, 2000, entitled "Continuous Seismic Receiver Array" by Loran D. Ambs and Ricky L. Workman, incorporated herein by reference.

The piezoelectric film used to make the preferred array can be applied to a cable in various ways, for example, the piezoelectric film can be made as a ribbon, as a longitudinal stripe on a cable, as multiple radial wraps on a cable, as helical wraps around a cable or rolled into a cylinder.

Turning now to **Figure 1**, an orthographic view of the piezoelectric film hydrophone array of the preferred embodiment is illustrated. As shown in **Figure 1**, a portion of a preferred hybrid piezoelectric film continuous line array and multi-element array **8** is shown. Piezoelectric film **10** is placed on the stiff, relatively incompressible substrate **12**. Windows **14** or sections of enhance acoustic sensitivity, adjacent relatively compressible substrate **16**, are shown along piezoelectric film **10**. The shape and size of the windows **14** can be varied so that each window is the same size or the size of the windows can be varied relative to each other to enable variance of the sensitivity of each discrete element relative to the other discrete elements. The total surface area relative to the incompressible surface area and the spacing of the discrete increased sensitivity area are varied as desired to form the desired response of the array.

Turning to **Figure 2**, a cross section of the preferred hybrid piezoelectric film continuous line array and multi-element array **8** is shown. The windows **14** of enhanced acoustic sensitivity are coincident with areas of the relatively compressible substrate **16**, as shown in **Figure 2**. The windows **14** of enhanced acoustic sensitivity over the relatively compressible substrate are more

sensitive to acoustic pressure waves **18** impinging on the piezoelectric film than the areas of piezoelectric film over the relatively incompressible substrate.

Turning now to **Figure 3**, an example of a two-dimensional array is illustrated. The areas of increased sensitivity **14** in **Figure 3** are arranged side by side to form a two-dimensional array on top of the substrate. Turning now to **Figure 4**, an example of a three-dimensional array is illustrated. The areas of increased sensitivity in **Figure 4** are arranged side by side and formed into a cylinder to form a three-dimensional array on top of the substrate.

The shape and size of the areas of increased sensitivity can be varied to enhance beam pattern formation, noise reduction and other advantages of continuous line arrays and discrete element arrays. The piezoelectric array of the present invention can be shaped into virtually any desired shape to reduce noise or to achieve a desired beam pattern shape or response for the array. The compressibility and or shape and relative size of each discrete section can be varied to achieve the desired noise reduction and/or array beam pattern.

While a preferred embodiment of the present invention has been described herein, it is for illustration purposes and not intended to limit the scope of the invention as defined by the following claims.

WHAT IS CLAIMED IS:

- 1 1. A piezoelectric array for detecting acoustic seismic data comprising:
2 a piezoelectric film placed on a surface of a relatively incompressible
3 substrate; and
4 an area of relatively compressible substrate formed in the surface of the
5 incompressible substrate forming an area of increased sensitivity in the
6 piezoelectric film to impinging acoustic pressure waves.

7

- 1 2. The piezoelectric array of claim 1 further comprising:
2 an array of areas of relatively compressible substrate formed in the surface of
3 the relatively incompressible substrate forming an array of areas of increased
4 sensitivity in the piezoelectric film to impinging acoustic pressure waves.
- 1 3. The piezoelectric array of claim 2, further comprising:
2 a two-dimensional array of areas of relatively compressible substrate formed
3 in the surface of the relatively incompressible substrate forming a two-
4 dimensional array of areas of increased sensitivity in the piezoelectric film to
5 impinging acoustic pressure waves.

6

7

8

- 1 4. The piezoelectric array of claim 3, further comprising:
2 the two-dimensional array of areas of increased sensitivity are formed into a
3 three-dimensional shape to form a three-dimensional array of areas of
4 increased sensitivity in the piezoelectric film to impinging acoustic pressure
5 waves.
- 6
- 1 5. The piezoelectric array of claim 2 wherein the size and location of the areas of
2 increased sensitivity are varied to shape the beam pattern of the piezoelectric
3 array.
- 1 6. The piezoelectric array of claim 2 wherein the size and location of the areas of
2 increased sensitivity are varied to shape the spectral response of the
3 piezoelectric array.
- 1 7. The piezoelectric array of claim 2 wherein the ratio of the total surface area of
2 the areas of increased sensitivity to the total surface area of the relatively
3 incompressible substrate are varied to shape the beam pattern of the
4 piezoelectric array.
- 5
- 1 8. The piezoelectric array of claim 2 wherein the ratio of the total surface area of
2 the areas of increased sensitivity to the total surface area of the relatively

3 incompressible substrate are varied to determine the spectral response of the
4 piezoelectric array.

5

1 9. The piezoelectric array of claim 3 wherein the shape of the array is formed to
2 determine the beam pattern of the array.

1 10. The piezoelectric array of claim 3 wherein the shape of the array is formed to
2 determine the spectral response of the array.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
995
996
997
997
998
999
999
1000

1 13. The piezoelectric array of claim 3 wherein the size and location of the areas of
2 increased sensitivity are varied to shape the spectral response of the
3 piezoelectric array.

- 1 14. The piezoelectric array of claim 3 wherein the ratio of the total surface area of
2 the areas of increased sensitivity to the total surface area of the relatively
3 incompressible substrate are varied to shape the beam pattern of the
4 piezoelectric array.
- 5
- 1 15. The piezoelectric array of claim 3 wherein the ratio of the total surface area of
2 the areas of increased sensitivity to the total surface area of the relatively
3 incompressible substrate are varied to determine the spectral response of the
4 piezoelectric array.
- 5
- 1 16. The piezoelectric array of claim 4 wherein the shape of the array is formed to
2 determine the beam pattern of the array.
- 1 17. The piezoelectric array of claim 4 wherein the shape of the array is formed to
2 determine the spectral response of the array.
- 3
- 1 18. The piezoelectric array of claim 4 wherein the piezoelectric response can be
2 monitored with a single set of leads, one positive and one negative.
- 3

4 19. The piezoelectric array of claim 4 wherein the size and location of the areas of
5 increased sensitivity are varied to shape the beam pattern of the piezoelectric
6 array.

1 20. The piezoelectric array of claim 4 wherein the size and location of the areas of
2 increased sensitivity are varied to shape the spectral response of the
3 piezoelectric array.

1 21. The piezoelectric array of claim 4 wherein the ratio of the total surface area of
2 the areas of increased sensitivity to the total surface area of the relatively
3 incompressible substrate are varied to shape the beam pattern of the
4 piezoelectric array.

1 22. The piezoelectric array of claim 4 wherein the ratio of the total surface area of
2 the areas of increased sensitivity to the total surface area of the relatively
3 incompressible substrate are varied to determine the spectral response of the
4 piezoelectric array.

1 23. The piezoelectric array of claim 4 wherein the piezoelectric response can be
2 monitored with a single set of leads, one positive and one negative.

ABSTRACT

This present invention provides an array formed by a continuous line array of piezoelectric film with discrete points of increased sensitivity to sense and measure acoustic signals. The configuration provided by the present invention simultaneously provides the advantages and attributes of both the continuous line array and the multi-element discrete array. The line array and the multi-element array are designed to enhance or cancel specific frequency bands of signal noise and to enhance beam forming of the array. The piezoelectric array can be extended and shaped into two-dimensional and three-dimensional hydrophone arrays. The present invention comprises a continuous line array formed by a single piece of piezoelectric film with one or more points of enhanced sensitivity to alter the beam pattern or spectral sensitivity of the array. The electrical output of the entire array may be observed with one set of connectors, one positive and one negative lead.

Figure 1

Figure 2

Figure 3

Figure 4