

Permutation Equivariance of Graph Filters

▶ We will show that graph convolutional filters are equivariant to permutations

Definition (Permutation matrix)

A square matrix **P** is a permutation matrix if it has binary entries so that $P \in \{0, 1\}^{n \times n}$ and it further satisfies P1 = 1 and $P^T1 = 1$.

- ▶ The product P^Tx reorders the entries of the vector x.
- ightharpoonup The product P^TSP is a consistent reordering of the rows and columns of S

Definition (Permutation matrix)

A square matrix **P** is a permutation matrix if it has binary entries so that $\mathbf{P} \in \{0,1\}^{n \times n}$ and it further satisfies $\mathbf{P1} = \mathbf{1}$ and $\mathbf{P}^T \mathbf{1} = \mathbf{1}$.

- ► Since $P1 = P^T1 = 1$ with binary entries \Rightarrow Exactly one nonzero entry per row and column of P
- ightharpoonup Permutation matrices are unitary $\Rightarrow \mathbf{P}^T \mathbf{P} = \mathbf{I}$. Matrix \mathbf{P}^T undoes the reordering of matrix \mathbf{P}

▶ If (S, x) is a graph signal, (P^TSP, P^Tx) is a relabeling of (S, x). Same signal. Different names

Graph signal x Supported on S

Graph signal $\hat{\mathbf{x}} = \mathbf{P}^T \mathbf{x}$ supported on $\hat{\mathbf{S}} = \mathbf{P}^T \mathbf{S} \mathbf{P}$

▶ Processing should be label-independent ⇒ Permutation equivariance of graph filters and GNNs

▶ Graph filter H(S) is a polynomial on shift operator S with coefficients h_k . Outputs given by

$$\mathbf{H}(\mathbf{S})\mathbf{x} = \sum_{k=0}^{K-1} \mathbf{h}_k \mathbf{S}^k \mathbf{x}$$

▶ We consider running the same filter on (S, x) and permuted (relabeled) $(\hat{S}, \hat{x}) = (P^TSP, P^Tx)$

$$H(S)x = \sum_{k=0}^{K-1} h_k S^k x \qquad H(\hat{S})\hat{x} = \sum_{k=0}^{K-1} h_k \hat{S}^k \hat{x}$$

- ► Filter H(S)x \Rightarrow Coefficients h_k . Input signal x. Instantiated on shift S
- Filter $H(\hat{S})\hat{x} \Rightarrow Same$ Coefficients h_k . Permuted Input signal \hat{x} . Instantiated on permuted shift \hat{S}

Theorem (Permutation equivariance of graph filters)

Consider consistent permutations of the shift operator $\hat{S} = P^T SP$ and input signal $\hat{x} = P^T x$. Then

$$H(\hat{S})\hat{x} = P^T H(S)x$$

► Graph filters are equivariant to permutations ⇒ Permute input and shift ≡ Permute output

Proof: Write filter output in polynomial form. Use permutation definitions $\hat{S} = P^T SP$ and $\hat{x} = P^T x$

$$\mathsf{H}(\hat{\mathsf{S}})\hat{\mathsf{x}} \ = \ \sum_{k=0}^{K-1} h_k \hat{\mathsf{S}}^k \hat{\mathsf{x}} \ = \ \sum_{k=0}^{K-1} h_k \Big(\mathsf{P}^\mathsf{T} \mathsf{S} \mathsf{P}\Big)^k \mathsf{P}^\mathsf{T} \mathsf{x}$$

- ▶ In the powers $\left(\mathbf{P}^{T}\mathbf{SP}\right)^{k}$, \mathbf{P} and \mathbf{P}^{T} undo each other $\left(\mathbf{P}^{T}\mathbf{P} = \mathbf{I}\right) \Rightarrow \left(\mathbf{P}^{T}\mathbf{SP}\right)^{k} = \mathbf{P}^{T}\left(\mathbf{S}\right)^{k}\mathbf{P}$
- ▶ Substitute this into filter's output expression. Cancel remaining $PP^T = I$ product. Factor P^T

$$\mathsf{H}(\hat{\mathsf{S}})\hat{\mathsf{x}} \ = \ \sum_{k=0}^{K-1} h_k \mathsf{P}^\mathsf{T} \mathsf{S}^k \mathsf{P} \mathsf{P}^\mathsf{T} \mathsf{x} \ = \ \sum_{k=0}^{K-1} h_k \mathsf{P}^\mathsf{T} \mathsf{S}^k | \mathsf{x} \ = \ \mathsf{P}^\mathsf{T} \sum_{k=0}^{K-1} h_k \mathsf{S}^k \mathsf{x} \ = \ \mathsf{P}^\mathsf{T} \mathsf{H}(\mathsf{S}) \mathsf{x}$$

- ▶ We requested signal processing independent of labeling ⇒ Graph filters fulfill this request
 - ⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Graph signal x Supported on S

Graph signal $\hat{\mathbf{x}} = \mathbf{P}^T \mathbf{x}$ supported on $\hat{\mathbf{S}} = \mathbf{P}^T \mathbf{S} \mathbf{P}$

- ▶ We requested signal processing independent of labeling ⇒ Graph filters fulfill this request
 - ⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Filter's output H(S)x Supported on S

Filter's Output $H(\hat{S})\hat{x}$ supported on \hat{S}

- ▶ We requested signal processing independent of labeling ⇒ Graph filters fulfill this request
 - \Rightarrow Permute input and shift \equiv Relabel input \Rightarrow Permute output \equiv Relabel output

Filter's output H(S)x Supported on S

Equivariance theorem $\Rightarrow H(\hat{S})\hat{x} = P^TH(S)x$

Permutation Equivariance of Graph Neural Networks

▶ We will show that graph neural networks inherit the permutation equivariance of graph filters

ightharpoonup L layers recursively process outputs of previous layers. GNN Output parametrized by tensor ${\cal H}$

$$\mathbf{x}_{\ell} = \sigma \left[\sum_{k=0}^{K-1} \frac{\mathbf{h}_{\ell k}}{\mathbf{S}^{k}} \mathbf{x}_{\ell-1} \right] = \sigma \left[\mathbf{H}_{\ell}(\mathbf{S}) \mathbf{x}_{\ell-1} \right] \qquad \Phi \left(\mathbf{x}; \ \mathbf{S}, \ \mathcal{H} \right) = \mathbf{x}_{L}$$

▶ We consider running the same GNN on (S, x) and permuted (relabeled) $(\hat{S}, \hat{x}) = (P^T S P, P^T x)$

$$\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$$
 $\Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H})$

► GNN $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H}) \Rightarrow$ Tensor \mathcal{H} .

Input signal x. Instantiated on

- shift S
- ▶ GNN $\Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H})$ \Rightarrow Same Tensor \mathcal{H} . Permuted Input signal $\hat{\mathbf{x}}$. Instantiated on permuted shift $\hat{\mathbf{S}}$

Theorem (Permutation equivariance of graph neural networks)

Consider consistent permutations of the shift operator $\hat{S} = P^T SP$ and input signal $\hat{x} = P^T x$. Then

$$\Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H}) = \mathbf{P}^{\mathsf{T}} \Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$$

► GNNs equivariant to permutations ⇒ Permute input and shift ≡ Permute output

Proof: GNN Layer ℓ recursion on signal $\mathbf{x}_{\ell-1}$ and shift $\mathbf{S} \Rightarrow \mathbf{x}_{\ell} = \sigma \left[\sum_{k=0}^{K-1} h_{\ell k} \, \mathbf{S}^k \, \mathbf{x}_{\ell-1} \right] = \sigma \left[\mathbf{H}_{\ell}(\mathbf{S}) \mathbf{x}_{\ell-1} \right]$

GNN Layer
$$\ell$$
 recursion on signal $\hat{\mathbf{x}}_{\ell-1}$ and shift $\hat{\mathbf{S}} \Rightarrow \hat{\mathbf{x}}_{\ell} = \sigma \left[\sum_{k=0}^{K-1} h_{\ell k} \, \hat{\mathbf{S}}^k \, \hat{\mathbf{x}}_{\ell-1} \right] = \sigma \left[\mathbf{H}_{\ell}(\hat{\mathbf{S}}) \hat{\mathbf{x}}_{\ell-1} \right]$

▶ Assume Layer ℓ inputs satisfy $\hat{\mathbf{x}}_{\ell-1} = \mathbf{P}^T \mathbf{x}_{\ell-1}$. Filters are equivariant. Linearity is pointwise

$$\hat{\mathbf{x}}_{\ell} = \sigma \left[\mathbf{H}_{\ell}(\hat{\mathbf{S}}) \hat{\mathbf{x}}_{\ell-1} \right] = \sigma \left[\mathbf{P}^{\mathsf{T}} \mathbf{H}_{\ell}(\mathbf{S}) \mathbf{x}_{\ell-1} \right] = \mathbf{P}^{\mathsf{T}} \sigma \left[\mathbf{H}_{\ell}(\mathbf{S}) \mathbf{x}_{\ell-1} \right] = \mathbf{P}^{\mathsf{T}} \mathbf{x}_{\ell}$$

▶ This in an induction step At Layer 1 we have $\hat{x} = \mathbf{P}^T \mathbf{x}$ by hypothesis. Induction is complete.

1

- ► GNNs, same as graph filters, perform label-independent processing. The nonlinearity is pointwise
 - ⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Graph signal x Supported on S

Graph signal $\hat{\mathbf{x}} = \mathbf{P}^T \mathbf{x}$ supported on $\hat{\mathbf{S}} = \mathbf{P}^T \mathbf{S} \mathbf{P}$

- ► GNNs, same as graph filters, perform label-independent processing. The nonlinearity is pointwise
 - \Rightarrow Permute input and shift \equiv Relabel input \Rightarrow Permute output \equiv Relabel output

GNN output $\Phi(x; S, \mathcal{H})$ supported on S

GNN $\Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H}) = \mathbf{P}^T \Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ on $\hat{\mathbf{S}} = \mathbf{P}^T \mathbf{S} \mathbf{P}$

- ▶ Equivariance to permutations allows GNNs to exploit symmetries of graphs and graph signals
- ▶ By symmetry we mean that the graph can be permuted onto itself \Rightarrow **S** = **P**^T**SP**
- $\qquad \qquad \textbf{Equivariance theorem implies} \ \Rightarrow \Phi\Big(\ \textbf{P}^{\intercal}\textbf{x}; \ \textbf{S}, \mathcal{H} \ \Big) \ = \ \Phi\Big(\ \textbf{P}^{\intercal}\textbf{x}; \ \textbf{P}^{\intercal}\textbf{SP}, \mathcal{H} \ \Big) \ = \ \textbf{P}^{\intercal}\Phi\Big(\ \textbf{x}; \ \textbf{S}, \mathcal{H} \ \Big)$

From observing x supported on S

Learn to process P^Tx supported on $S = P^TSP$

► Graph not symmetric but close to symmetric ⇒ perturbed version of a permutation of itself

► We will show conditions for stability to deformations ⇒ Approximate (close to) equivariance

Definition (Operator Distance Modulo Permutation)

For operators Ψ and $\hat{\Psi}$, the operator distance modulo permutation is defined as

$$\left\| \Psi - \hat{\Psi} \right\|_{\mathcal{P}} = \min_{\mathbf{P} \in \mathcal{P}} \max_{\mathbf{x} : \|\mathbf{x}\| = 1} \left\| \mathbf{P}^{\mathsf{T}} \Psi(\mathbf{x}) - \hat{\Psi}(\mathbf{P}^{\mathsf{T}} \mathbf{x}) \right\|$$

where \mathcal{P} is the set of $n \times n$ permutation matrices and where $\|\cdot\|$ stands for the ℓ_2 -norm.

- ▶ Equivariance to permutations of graph filters \Rightarrow If $\|\hat{S} S\|_{\mathcal{D}} = 0$. Then $\|H(\hat{S}) H(S)\|_{\mathcal{D}} = 0$
- ► Equivariance to permutations GNNs \Rightarrow If $\|\hat{\mathbf{S}} \mathbf{S}\|_{\mathcal{P}} = \mathbf{0}$. Then $\|\Phi(\cdot; \hat{\mathbf{S}}, \mathcal{H}) \Phi(\cdot; \mathbf{S}, \mathcal{H})\|_{\mathcal{P}} = \mathbf{0}$
- ▶ When distance $\|\hat{S} S\|_{\mathcal{P}}$ is small? (not zero) \Rightarrow Stability properties of graph filters and GNNs

Lipschitz and Integral Lipschitz Filters

► Classes of filters to study discriminablity of GNNs ⇒ Lipschitz and integral Lipschitz graph filters

- ► Graph filters are polynomials on shift operators **S** with given coefficients $h_k \Rightarrow H(S) = \sum_{k=0}^{\infty} h_k S^k$
- Filter's frequency response is the same polynomial with scalar variable $\lambda \Rightarrow \tilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k$
- ▶ Frequency response determined by filter coefficients h_k . Independent of particular given graph

Definition (Lipschitz Filter)

Given a graph filter with coefficients $\mathbf{h} = \{h_k\}_{k=1}^{\infty}$, and graph frequency response

$$\tilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k,$$

we say that the filter is Lipschitz if there exists a constant C > 0 such that for λ_1 and λ_2

$$|\tilde{h}(\lambda_2) - \tilde{h}(\lambda_1)| \leq C |\lambda_2 - \lambda_1|.$$

► Change in values of frequency response is at most linear with rate $C \Rightarrow \text{Derivative } \tilde{h}'(\lambda) \leq C$

Frequency response $\tilde{h}(\lambda)$ of Lipschitz filter is Lipschitz continuous \Rightarrow Maximum slope is $\tilde{h}'(\lambda) \leq C$

ightharpoonup Lipschitz constant determines discriminability ightharpoonup Small / Large $C \equiv \text{Low}$ / High discriminability

Frequency response $\tilde{h}(\lambda)$ of Lipschitz filter is Lipschitz continuous \Rightarrow Maximum slope is $\tilde{h}'(\lambda) \leq C$

ightharpoonup Lipschitz constant determines discriminability ightharpoonup Small / Large $C \equiv \text{Low}$ / High discriminability

- ▶ A Lipschitz frame with constant C is made up of Lipschitz filters with constant C
- ▶ Larger *C* allows for sharper filters, that can discriminate more signals. Tighter packing
- ▶ The discriminability of the frame is (or can be) the same at all frequencies.

Definition (Integral Lipschitz Filter)

Consider graph filter with coefficients h_k and graph frequency response $\tilde{h}(\lambda)=\sum_{k=0}^\infty h_k\lambda^k$. The

filter is said integral Lipschitz if there exists constant C > 0 such that for all λ_1 and λ_2 ,

$$|\tilde{h}(\lambda_2) - \tilde{h}(\lambda_1)| \leq C \frac{|\lambda_2 - \lambda_1|}{|\lambda_1 + \lambda_2|/2}.$$

- ▶ Lipschitz with a constant that is inversely proportional to the interval's midpoint $\Rightarrow 2C/|\lambda_1 + \lambda_2|$.
- ▶ Letting $\lambda_2 \to \lambda_1$ we get that $\lambda \tilde{h}'(\lambda) \leq C$ ⇒ The filter can't change for large λ .

Discriminability of Integral Lipschitz Filters

- ▶ At medium frequencies, integral Lipschitz filters are akin to Lipschitz filters. Roughly speaking
- ▶ At low frequencies integral Lipschitz filters can be arbitrarily thin ⇒ arbitrary discriminability
- ► At high frequencies integral Lipschitz filters have to be flat ⇒ They lose discriminability

- ▶ As Lipschitz frames, integral Lipschitz frames are more discriminative for larger C. Tighter packing
- \blacktriangleright Except that around $\lambda = 0$, filters can be thin no matter $C \Rightarrow$ High discriminability
- ▶ But for large λ filters have to be wide no matter $C \Rightarrow No$ discriminability

Stability of Graph Filters to Scaling

▶ Scaling of shift operators is a perturbation form that illustrates proof techniques and insights

▶ We show that graph filters are stable with respect to scaling

- ► Graphs are subject to estimation error and changes ⇒ Running filters on similar graphs
- ▶ We scale edges by $(1 + \epsilon)$. Scaling deformation of the shift operator $\Rightarrow \hat{S} = (1 + \epsilon)S$

▶ Deformation model is reasonable ⇒ Edges change proportional to their values

- ► Also unrealistic ⇒ All of the edges change by the same proportion
 - ⇒ Illuminating for discussions. Stability proof contains essential arguments of more generic proof.

Theorem (Integral Lipschitz Graph Filters are Stable to Scaling)

Given graph shift operators **S** and $\hat{S} = (1 + \epsilon) S$ and an integral Lipschitz filter with constant C.

The operator norm difference between filters $\mathbf{H}(\mathbf{S})$ and $\mathbf{H}(\hat{\mathbf{S}})$ is bounded as

$$\| \mathbf{H}(\hat{\mathbf{S}}) - \mathbf{H}(\mathbf{S}) \| \leq C \epsilon + \mathcal{O}(\epsilon^2).$$

► Stability to scaling is possible. ⇒ But it requires a restriction to the use of integral Lipschitz filters.

▶ The key arguments of the proof are in the GFT domain. We provide two preliminary spectral facts.

Fact 1:

If $\tilde{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$ is the GFT of \mathbf{x} we can write $\Rightarrow \mathbf{x} = \sum_{i=1}^n \tilde{x}_i \mathbf{v}_i$, where \mathbf{v}_i are the eigenvectors of \mathbf{S}

Proof: Write **x** using the inverse GFT
$$\Rightarrow$$
 x = $\begin{bmatrix} \mathbf{v}_1, \dots, \mathbf{v}_n \end{bmatrix} \times \begin{bmatrix} x_1 \\ \vdots \\ \tilde{x}_n \end{bmatrix} = \tilde{x}_1 \mathbf{v}_1 + \dots + \tilde{x}_n \mathbf{v}_n$

▶ The key arguments of the proof are in the GFT domain. We provide two preliminary spectral facts.

Fact 2:

The frequency response derivative is $\tilde{h}'(\lambda) = \sum_{k=0}^{\infty} k \, h_k \, \lambda^{k-1}$. Consequently $\lambda \tilde{h}'(\lambda) = \sum_{k=0}^{\infty} k \, h_k \, \lambda^k$.

Proof: Frequency response is the series $\Rightarrow \tilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k$. The summands' derivatives are $k h_k \lambda^{k-1}$.

Proof: Filter difference given by graph filter definition $\mathbf{H}(\mathbf{S}) = \sum_{k=0}^{\infty} h_k \mathbf{S}^k$. Further write $\hat{\mathbf{S}} = (\mathbf{1} + \epsilon) \mathbf{S}$

$$\mathsf{H}(\hat{\mathsf{S}}) - \mathsf{H}(\mathsf{S}) \ = \ \sum_{k=0}^{\infty} h_k \hat{\mathsf{S}}^k - \sum_{k=0}^{\infty} h_k \mathsf{S}^k \ = \ \sum_{k=0}^{\infty} h_k \Big[\left(\left(\mathsf{1} + \epsilon \right) \mathsf{S} \right)^k - \hat{\mathsf{S}}^k \Big]$$

Expand binomial $((1+\epsilon)\mathbf{S})^k$ to first order only. Group all high order terms in matrix $\mathbf{O}_k(\epsilon)$

$$\left(\left(1+\epsilon\right)\mathsf{S}\right)^{k}=\left(1+k\epsilon\right)\mathsf{S}^{k}+\mathsf{O}_{k}(\epsilon)$$

- ▶ Upon substitution the terms \mathbf{S}^k cancel out $\Rightarrow \mathbf{H}(\hat{\mathbf{S}}) \mathbf{H}(\mathbf{S}) = \sum_{k=0}^{\infty} h_k k \epsilon \mathbf{S}^k + \mathbf{O}(\epsilon)$
- ▶ The matrix $\mathbf{O}(\epsilon)$ satisfies $0 < \lim_{\epsilon \to 0} \frac{\|\mathbf{O}(\epsilon)\|}{\epsilon^2} < \infty$ because filter is analytic. Term is of order $\mathcal{O}(\epsilon^2)$

- ► Have reduced the filter difference to \Rightarrow H(\hat{S}) H(S) = $\sum_{k=0}^{\infty} h_k k \epsilon S^k + O(\epsilon) = \Delta(S) + O(\epsilon)$
- ▶ Where we have defined the filter variation $\Delta(S) = \epsilon \sum_{k=0}^{\infty} kh_k S^k$ to simplify notation
- ▶ Triangle inequality $\Rightarrow \|\mathbf{H}(\hat{\mathbf{S}}) \mathbf{H}(\mathbf{S})\| \leq \|\mathbf{\Delta}(\mathbf{S})\| + \mathbb{O}(\epsilon) = \|\mathbf{\Delta}(\mathbf{S})\| + \mathcal{O}(\epsilon^2)$
- ► Since $\|\Delta(S)\| = \max_{\|\mathbf{x}\|=1} \|\Delta(S)\mathbf{x}\|$ theorem follows if we prove $\|\Delta(S)\mathbf{x}\| \le C\epsilon$ for all \mathbf{x} with $\|\mathbf{x}\| = 1$

▶ Product of filter variation with unit norm **x**. Write the iGFT of the input $\mathbf{x} = \sum_{i=1}^{n} \tilde{\mathbf{x}}_{i} \mathbf{v}_{i}$ (Sv_i = λ_{i} v_i)

$$\mathbf{\Delta}(\mathbf{S}) \mathbf{x} = \epsilon \sum_{k=0}^{\infty} k \, h_k \, \mathbf{S}^k \, \mathbf{x} = \epsilon \sum_{k=0}^{\infty} k \, h_k \, \mathbf{S}^k \times \left[\sum_{i=1}^n \tilde{\mathbf{x}}_i \mathbf{v}_i \right] = \sum_{i=1}^n \tilde{\mathbf{x}}_i \, \epsilon \sum_{k=0}^{\infty} k \, h_k \, \mathbf{S}^k \, \mathbf{v}_i$$

► Since the \mathbf{v}_i are eigenvectors of $\mathbf{S} \Rightarrow \mathbf{S}^k \mathbf{v}_i = \lambda_i^k \mathbf{v}_i$. With λ_i the associated eigenvalue

$$\Delta(S)\mathbf{x} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \mathbf{S}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i} \sum_{k=0}^{\infty} k \, h_{k} \, \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{x}_{i}^{$$

► The derivative of the filter's response appears $\Rightarrow \sum_{k=0}^{\infty} k h_k \lambda_i^k = \lambda_i \tilde{h}'(\lambda_i)$

- ► End up with remarkably simple equation $\Rightarrow \Delta(\mathbf{S})\mathbf{x} = \epsilon \sum_{i=1}^{n} \tilde{\mathbf{x}}_{i} \sum_{k=n}^{\infty} k h_{k} \lambda_{i}^{k} \mathbf{v}_{i} = \epsilon \sum_{i=1}^{n} \tilde{\mathbf{x}}_{i} \left(\lambda_{i} \tilde{\mathbf{h}}'(\lambda_{i}) \right) \mathbf{v}_{i}$
- ▶ Which involves the quantity we bound with the integral Lipschitz condition $\Rightarrow |\lambda_i \tilde{h}'(\lambda_i)| \leq C$
- lacktriangle Compute energy. Use integral Lipschitz bound. Recall that signal has unit energy, $\|\mathbf{x}\|^2 = \|\mathbf{\tilde{x}}\|^2 = 1$

$$\|\mathbf{\Delta}(\mathbf{S})\mathbf{x}\|^2 = \epsilon^2 \sum_{i=1}^n \tilde{x}_i^2 \left(\lambda_i \, \tilde{h}'(\lambda_i)\right)^2 \le \epsilon^2 \sum_{i=1}^n \tilde{x}_i^2 \, C^2 = (C\epsilon)^2$$

Take square root

- ▶ Integral Lipschitz filters are necessary for stability to deformations of the supporting graph
- ► This is not an artifact of the analysis. The result is tight. The term $\sum_{k=0}^{\infty} k h_k \lambda_i^k = \lambda_i h'(\lambda_i)$ appears.

The Stability / Discriminability Non-Tradeoff

- ▶ One would expect a stability vs discriminability tradeoff. But in a sense, we get a non-tradeoff.
- ▶ Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can't discriminate
- ▶ It is impossible to separate signals with high frequency features and be stable to deformations

The Stability / Discriminability Non-Tradeoff

- ▶ One would expect a stability vs discriminability tradeoff. But in a sense, we get a non-tradeoff.
- ▶ Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can't discriminate
- ▶ It is impossible to separate signals with high frequency features and be stable to deformations

Stability of Graph Neural Networks to Scaling

▶ Scaling of shift operators is a perturbation form that illustrates proof techniques and insights

▶ We show that Graph Neural Networks are stable with respect to scaling

- ▶ To avoid appearance of meaningless constants we normalize the filters and the nonlinearity.
- ightharpoonup At each layer of the GNN, the filters have unit operator norm $\Rightarrow \| H_{\ell}(S) \| = 1$
 - \Rightarrow Easy to achieve with scaling \Rightarrow Equivalent to $\max_{\lambda} \, \tilde{h}_{\ell}(\lambda) = 1$
- ▶ The nonlinearity σ is Lipschitz and normalized so that $\Rightarrow \|\sigma(\mathbf{x}_2) \sigma(\mathbf{x}_1)\| \le \|\mathbf{x}_2 \mathbf{x}_1\|$
 - ⇒ Easy to achieve with scaling. True of ReLU, hyperbolic tangent, and absolute value
- ▶ Joining both assumptions \Rightarrow If input energy is $\|\mathbf{x}\| \le 1$, all layer outputs have energy $\|\mathbf{x}_{\ell}\| \le 1$

Theorem (Integral Lipschitz GNNs are Stable to Scaling)

Given shift operators \hat{S} and $\hat{S} = (1 + \epsilon) S$ and a GNN operator $\Phi(\cdot; S, \mathcal{H})$ with L single-feature

layers. The filters at each layer have unit operator norms and are integral Lipschitz with

constant C. The nonlinearity σ is normalized Lipschitz. Then

$$\| \Phi(\cdot; \mathbf{S}, \mathcal{H}) - \Phi(\cdot; \hat{\mathbf{S}}, \mathcal{H}) \| \leq C L \epsilon + \mathcal{O}(\epsilon^2).$$

ightharpoonup GNNs inherit the stability of graph filters. It's the same bound. Propagated through L layers

Proof Step 1: Eliminating the Pointwise Nonlinearity

Proof: The theorem is true because the nonlinearity is pointwise. It is unaware of the graph.

- ► Formally \Rightarrow Let \mathbf{x}_{ℓ} be the Layer ℓ output of GNN $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$
 - \Rightarrow Let $\hat{\textbf{x}}_{\ell}$ be the Layer ℓ output of GNN $\Phi(\hat{\textbf{x}};\hat{\textbf{S}},\mathcal{H})$
- ▶ Layer ℓ is a perceptron with filter $\mathbf{H}_{\ell} \Rightarrow \|\mathbf{x}_{\ell} \hat{\mathbf{x}}_{\ell}\| = \|\sigma[\mathbf{H}_{\ell}(\mathbf{S})\mathbf{x}_{\ell-1}] \sigma[\mathbf{H}_{\ell}(\hat{\mathbf{S}})\hat{\mathbf{x}}_{\ell-1}]\|$
- $\blacktriangleright \ \, \text{Nonlinearity is normalized Lipschitz} \ \, \Rightarrow \left\| \, \mathbf{x}_{\ell} \hat{\mathbf{x}}_{\ell} \, \right\| \ \, \leq \, \left\| \, \mathbf{H}_{\ell}(\mathbf{S}) \mathbf{x}_{\ell-1} \mathbf{H}_{\ell}(\hat{\mathbf{S}}) \hat{\mathbf{x}}_{\ell-1} \, \right\|$
- ▶ This is the critical step of the proof. The rest of the proof is just algebra.

▶ In last bound, add and subtract $H_{\ell}(\hat{S})x_{\ell-1}$. Triangle inequality. Submultiplicative property of norms

$$\begin{split} \left\| \, \boldsymbol{x}_{\ell} - \hat{\boldsymbol{x}}_{\ell} \, \right\| \; & \leq \; \left\| \, \boldsymbol{H}_{\ell}(\boldsymbol{S}) \boldsymbol{x}_{\ell-1} \; - \; \boldsymbol{H}_{\ell}(\hat{\boldsymbol{S}}) \hat{\boldsymbol{x}}_{\ell-1} \; + \; \boldsymbol{H}_{\ell}(\hat{\boldsymbol{S}}) \boldsymbol{x}_{\ell-1} \; - \; \boldsymbol{H}_{\ell}(\hat{\boldsymbol{S}}) \boldsymbol{x}_{\ell-1} \, \right\| \\ & \leq \; \left\| \, \boldsymbol{H}_{\ell}(\boldsymbol{S}) - \boldsymbol{H}_{\ell}(\hat{\boldsymbol{S}}) \, \right\| \times \left\| \, \boldsymbol{x}_{\ell-1} \, \right\| + \left\| \, \boldsymbol{H}_{\ell}(\hat{\boldsymbol{S}}) \, \right\| \times \left\| \, \boldsymbol{x}_{\ell-1} - \hat{\boldsymbol{x}}_{\ell-1} \, \right\| \end{split}$$

- ▶ Since filters are normalized \Rightarrow Filter norm $\| H_{\ell}(\hat{S}) \| = 1$. Signal norm $\Rightarrow \| x_{\ell-1} \| \le 1$
- ▶ The theorem on stability of filters to scaling holds $\Rightarrow \|\mathbf{H}_{\ell}(\mathbf{S}) \mathbf{H}_{\ell}(\hat{\mathbf{S}})\| \leq \epsilon \mathbf{C} + \mathcal{O}(\epsilon^2)$
- ▶ Put all bounds together \Rightarrow $\|\mathbf{x}_{\ell} \hat{\mathbf{x}}_{\ell}\| \le \epsilon \mathbf{C} \times 1 + 1 \times \|\mathbf{x}_{\ell-1} \hat{\mathbf{x}}_{\ell-1}\| + \mathcal{O}(\epsilon^2)$
- ▶ Apply recursively from Layer *L* back to Layer 1. The *L* factor appears

The Stability / Discriminability Tradeoff of GNNs

- ► GNNs have the same stability properties of graph filters. They need integral Lipschitz filters.
- ▶ Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can't discriminate
- It is impossible to separate signals with high frequency features and be stable to deformations

The Stability / Discriminability Tradeoff of GNNs

- ► GNNs have the same stability properties of graph filters. They need integral Lipschitz filters.
- ▶ On the flip side, integral Lipschitz filter can be very sharp at low frequencies
- ▶ We can be very discriminative at low frequencies. And at the same very stable to deformations

The Stability / Discriminability Tradeoff of GNNs

- ► GNNs use low-pass nonlinearities to demodulate high frequencies into low frequencies
- ▶ Where they can be discriminated sharply with a stable filter at the next layer
- Thus, they can be stable and discriminative. Something that linear graph filters can't be

