STOR 635 HW 2

BY AMEER QAQISH

January 24, 2022

1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $0 . Show that the simple functions in <math>L^p$ are dense in L^p , i.e., for every $f \in L^p$, there exists a sequence of simple functions $s_n \in L^p$ such that $||s_n - f||_p \to 0$ as $n \to \infty$.

Answer. First we prove some auxiliary theorems.

Theorem 1. Suppose $f: \Omega \to [0, \infty]$ is measurable. Then there exists a sequence of nonnegative simple functions $s_n: \Omega \to [0, \infty)$ such that $s_n \nearrow f$ pointwise, that is, for each $x \in \Omega$, $s_n(x) \nearrow f(x)$.

Proof. For each $n \in \mathbb{N}$, define $s_n : \Omega \to [0, \infty)$ by

$$s_n(x) = \begin{cases} k 2^{-n} & \text{if } k \in \{0, 1, \dots, \frac{n}{2^{-n}} - 1\} \text{ and } f(x) \in [k 2^{-n}, (k+1) 2^{-n}) \\ n & \text{if } f(x) \ge n \end{cases}.$$

We have

$$s_n = \sum_{k=0}^{n2^n - 1} k \, 2^{-n} \, 1_{f^{-1}([k2^{-n},(k+1)2^{-n}))} + n \, 1_{f^{-1}([n,\infty])},$$

so each s_n is a nonnegative simple function. It is clear that $s_n \leq f$. Noting that the dyadic partition gets more refined as n increases, it is easy to check that $s_n(x) \leq s_{n+1}(x)$ for all $x \in \Omega$. Let $x \in \Omega$. If $f(x) = \infty$, then $s_n(x) = n \nearrow f(x)$. If $f(x) < \infty$, then $|s_n(x) - f(x)| \leq 2^{-n}$ for n > f(x), so $s_n(x) \nearrow f(x)$. Thus $s_n(x) \nearrow f(x)$ for all $x \in \Omega$. \square

Theorem 2. Let $f: \Omega \to \mathbb{C}$ be measurable. Then there exist simple functions $s_n: \Omega \to \mathbb{C}$ such that $|s_n| \leq |f|$ and $s_n \to f$ pointwise.

Proof. First assume f is real valued. By Theorem 1, there exist nonnegative simple functions φ_n and ψ_n such that $\varphi_n \nearrow f^+$ and $\psi_n \nearrow f^-$ pointwise. For each $n \in \mathbb{N}$, $\varphi_n - \psi_n$ is a real valued simple function and $|\varphi_n - \psi_n| \le \varphi_n + \psi_n \le f^+ + f^- = |f|$. We have $\varphi_n - \psi_n \to f$ pointwise, so the proof is finished for real valued f. To prove the theorem for complex valued f, apply the real valued case to Re(f) and Im(f). \square

Theorem 3. Suppose $f_n: \Omega \to \mathbb{C}$ are measurable functions with $f_n \to f$ pointwise. Suppose there exists $g \in L^p$ such that $|f_n| \leq g$ for all n. Then $f_n \to f$ in L^p .

Proof. We have

$$|f_n - f|^p \le (2 \max(|f_n|, |f|))^p \le 2^p (|f_n|^p + |f|^p) \le 2^p (g^p + g^p) \in L^1.$$

By the dominated convergence theorem,

$$\int |f_n - f|^p d\mu \to 0.$$

Now we prove problem 1.

Proof of Problem 1. Let $f \in L^p$. By Theorem 2, there exists a sequence of simple functions $(s_n)_{n=1}^{\infty}$ such that $|s_n| \leq |f|$ and $s_n \to f$ pointwise. By Theorem 3, $s_n \to f$ in L^p .

- **2.** Consider the measure space $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \mu)$, where μ is a Lebesgue-Stieltjes measure (that is, μ assigns finite measure to all bounded intervals in \mathbb{R}^n). Fix any 0 . Use question 1 to show the following:
 - (i) Continuous functions are dense in L^p .
 - (ii) L^p is separable, that is, it has a countable dense subset.

Answer. (i) We state without proof a theorem alluded to in the hint.

Theorem 4. Let X be a second-countable locally compact Hausdorff space, e.g. $X = \mathbb{R}^n$. Then every measure ν on $\mathcal{B}(X)$ that is finite on compact sets is regular, that is, for all $E \in \mathcal{B}(X)$,

$$\nu(E) = \inf \{ \nu(U) : U \text{ is open and } U \supset E \}$$

=
$$\sup \{ \nu(K) : K \text{ is compact and } K \subset E \}$$

Proof. This theorem is implied by Theorem 7.8 on page 217 of [1].

Now we prove a special case of Urysohn's lemma.

Theorem 5. Let X be a metric space. Let $C \subset X$ be closed and $U \subset X$ be open with $C \subset U$. Then there is a continuous function $f: X \to [0,1]$ with f=1 on C and f=0 off U.

Proof. Set

$$f(x) = \frac{d(x, U^c)}{d(x, C) + d(x, U^c)},$$

where for $A \subset X$, $d(x,A) = \inf \{d(x,y) : y \in A\}$. Using the triangle inequality, it can be shown that $x \mapsto d(x,A)$ is continuous. Note that d(x,A) = 0 if and only if $x \in \overline{A}$. Thus if A is closed, then d(x,A) = 0 if and only if $x \in A$. Since $C \cap U^c = \emptyset$, this implies that the denominator of f(x) is never 0, so f is well defined. The claimed properties of f follow easily.

Theorem 6. Let X be a metric space. If $K \subset X$ is compact, $C \subset X$ is closed, and $K \cap C = \emptyset$, then $d(K, C) := \inf \{d(x, y) : x \in K, y \in C\} > 0$.

Proof. If $C = \emptyset$, then $d(K, C) = \inf(\emptyset) = \infty$. So suppose $C \neq \emptyset$. The function $f: K \to [0, \infty)$ defined by f(x) = d(x, C) is continuous and $d(K, C) = \inf\{f(x) : x \in K\}$. Since K is compact, this inf is actually a minimum, so there exists $x_0 \in K$ such that $d(K, C) = d(x_0, C)$. Since C is closed and $x_0 \notin C$, we have $d(x_0, C) > 0$.

Now we give the proof of (i).

Proof of (i). We will show that $C_c(\mathbb{R}^n)$, the space of continuous functions $f:\mathbb{R}^n \to \mathbb{C}$ with compact support, is dense in L^p . Since $C_c(\mathbb{R}^n)$ is a linear subspace of L^p , it's closure $\overline{C_c(\mathbb{R}^n)}$ in L^p is a linear subspace of L^p . We need to show that $\overline{C_c(\mathbb{R}^n)} = L^p$. By problem 1, simple functions are dense in L^p . Thus it suffices to show that if $\varphi \in L^p$ is a simple function, then $\varphi \in \overline{C_c(\mathbb{R}^n)}$.

So let φ be an arbitrary simple function in L^p . Write $\varphi(\Omega) \setminus \{0\} = \{a_1, a_2, \dots, a_N\}$ (this set is finite by definition of simple function). We have $\varphi = \sum_{i=1}^N a_i 1_{E_i}$, where $E_i = \varphi^{-1}(\{a_i\}) \in \mathcal{B}(\mathbb{R}^n)$. Thus $|\varphi|^p = \sum_{i=1}^N |a_i|^p 1_{E_i}$. Since $\int |\varphi|^p d\mu = \sum_{i=1}^N |a_i|^p \mu(E_i) < \infty$, it follows that $\mu(E_i) < \infty$ for each i. Since $\overline{C_c(\mathbb{R}^n)}$ is a linear subspace of L^p , it suffices to show that if $E \in \mathcal{B}(\mathbb{R}^n)$ and $\mu(E) < \infty$, then $1_E \in \overline{C_c(\mathbb{R}^n)}$.

So let $E \in \mathcal{B}(\mathbb{R}^n)$ with $\mu(E) < \infty$ be arbitrary. Let $\varepsilon > 0$ be arbitrary. Since any compact $K \subset \mathbb{R}^n$ is contained in a bounded interval, the hypothesis that μ assigns finite measure to all bounded intervals in \mathbb{R}^n implies that $\mu(K)$ is finite for all compact $K \subset \mathbb{R}^n$. By Theorem 4, there exist compact $K \subset E$ and open $U \supset E$ such that $\mu(E) < \mu(K) + \frac{\varepsilon}{2}$ and $\mu(U) - \frac{\varepsilon}{2} < \mu(E)$. Since $\mu(E) < \infty$, it follows that $\mu(U) < \infty$, so

$$\mu(U \setminus K) = \mu(U) - \mu(K) < \varepsilon.$$

By Theorem 6, $d(K, U^c) > 0$. Pick $\delta \in (0, d(K, U^c))$. Let $V = \{x \in \mathbb{R}^n : d(x, K) < \delta\}$. By Theorem 5, there is a continuous function $f : \mathbb{R}^n \to [0, 1]$ such that f = 1 on K and f = 0 off V. Since f = 0 off V, it follows that $\sup_{V \in \mathbb{R}^n : d(x, K) \le \delta}$ and A is bounded (since K is), it follows that \overline{V} is closed and bounded, hence compact. Thus $f \in C_c(\mathbb{R}^n)$. Since $V \subset U$,

$$\int |f - 1_E|^p = \int_{V \setminus K} |f - 1_E|^p \le 2^p \,\mu(V \setminus K) \le 2^p \,\mu(U \setminus K) \le 2^p \,\varepsilon.$$

Since ε was arbitrary, this completes the proof.

(ii) To prove (ii), we claim that it suffices to prove the following result:

Theorem 7. Let (X, \mathcal{F}, μ) be a measure space and let $p \in (0, \infty)$. Assume that μ is σ -finite. Assume that there is a countable collection $H \subset \mathcal{F}$ such that \mathcal{F} is the σ -algebra generated by H. Then $L^p(X, \mu)$ is separable.

To show that Theorem 7 implies (ii), we just note that $\mathcal{B}(\mathbb{R}^n)$ is generated by the countable set $H = \{\prod_{i=1}^n [a_i, b_i] : a_i, b_i \in \mathbb{Q}\}$ since every open $U \subset \mathbb{R}^n$ is a countable union of closed dyadic cubes, and closed dyadic cubes are in H. To prove Theorem 7, we need some auxiliary theorems.

Theorem 8. Let (X, \mathcal{F}, μ) be a measure space. Assume $\mu(X) < \infty$. Suppose \mathcal{A} is an algebra of sets such that \mathcal{F} is the σ -algebra generated by \mathcal{A} . Let

$$\Lambda = \{1_A : A \in \mathcal{A}\}, \quad V = \operatorname{span}(\Lambda) = \{a_1 1_{A_1} + \dots + a_n 1_{A_n} : a_i \in \mathbb{C}, A_i \in \mathcal{A}\}.$$

Then V is dense in $L^p(X, \mu)$, that is, $\overline{V} = L^p(X, \mu)$.

Proof. Since simple functions are dense in $L^p(X, \mu)$ and \overline{V} is a linear subspace of $L^p(X, \mu)$, it suffices to show that if $E \in \mathcal{F}$, then $1_E \in \overline{V}$. We will establish the stronger result that $\{1_E : E \in \mathcal{F}\} \subset \overline{\Lambda}$. To establish this, we make use of the monotone class theorem. Let

$$\mathcal{C} = \{ E \in \mathcal{F} : 1_E \in \overline{\Lambda} \}.$$

We need to show that $C = \mathcal{F}$. We verify that C is a monotone class. Suppose $E_j \in C$ and $E_j \nearrow E$. Since $E_j \in \mathcal{F}$, it follows that $E \in \mathcal{F}$. We have $1_{E_j} \nearrow 1_E$ pointwise and $1_{E_j} \le 1 \in L^p$, since $\mu(X) < \infty$. By the dominated convergence theorem (Theorem 3), it follows that $1_{E_j} \to 1_E$ in L^p . Thus $1_E \in \overline{\Lambda}$. Thus $E \in C$. If $E_j \in C$ and $E_j \searrow E$, a similar argument shows that $E \in C$. Thus C is a monotone class. Since C contains A, it follows that C contains the monotone class generated by A. By the monotone class theorem, the monotone class generated by A is equal to the σ -algebra generated by A, which is F. Thus C contains F and the proof is complete.

Theorem 9. Let X be a set. If H is a countable collection of subsets of X, then the algebra \mathcal{A} generated by H is countable.

Proof. Let

$$\mathcal{A}' = \left\{ \bigcup_{i=1}^{N} \bigcap_{j=1}^{n_i} A_{i,j} : N \ge 0, n_i \ge 0, A_{i,j} \in H \text{ or } A_{i,j}^c \in H \right\}.$$

We claim that $\mathcal{A} = \mathcal{A}'$. To see this, note that \mathcal{A}' is an algebra that contains H and that any other algebra that contains H must contain \mathcal{A}' . Using the fact that \mathbb{N}^n is countable for any $n \in \mathbb{N}$ and the fact that a countable union of countable sets is countable, it is simple to check that \mathcal{A}' is countable.

Now we prove Theorem (7)

Proof of Theorem 7. First assume $\mu(X) < \infty$. Let \mathcal{A} be the algebra generated by H. By Theorem 9, \mathcal{A} is countable. Thus the set

$$W = \operatorname{span} \{ a_1 1_{E_1} + \dots + a_n 1_{E_n} : a_i \in \mathbb{Q} + i \mathbb{Q}, E_i \in \mathcal{A} \}$$

is countable. Since \mathcal{F} is the σ -algebra generated by H, it follows that \mathcal{F} is the σ -algebra generated by \mathcal{A} . Since vector space operations on a normed space are continuous and \mathbb{Q} is dense in \mathbb{R} , \overline{W} contains $V = \{a_1 1_{E_1} + \dots + a_n 1_{E_n} : a_j \in \mathbb{C}, E_j \in \mathcal{A}\}$. It follows from Theorem 8 that $\overline{V} = L^p(X, \mu)$, so $\overline{W} = L^p(X, \mu)$. Thus W is a countable dense subset of $L^p(X, \mu)$. This finishes the proof when $\mu(X) < \infty$.

Now suppose μ is an arbitrary σ -finite measure on (X, \mathcal{F}) . Take measurable $E_n \nearrow X$ with $\mu(E_n) < \infty$. Since H generates \mathcal{F} , it follows that for each $n \in \mathbb{N}$, the induced σ -algebra on E_n is generated by $\{A \cap E_n : A \in H\}$, which is countable since H is. Thus by the case of the theorem proved for finite measures, for each $n \in \mathbb{N}$, there is a countable dense set $W_n \subset L^p(E_n, \mu)$. We identify $L^p(E_n, \mu)$ with the linear subspace of $L^p(X, \mu)$ consisting of functions that vanish off E_n . Let $W = \bigcup_{n=1}^{\infty} W_n$. W is countable since it is a countable union of countable sets. We claim that W is dense in $L^p(X, \mu)$. Let $f \in L^p(X, \mu)$ be arbitrary. Let $\varepsilon > 0$ be arbitrary. By Theorem 3, $1_{E_n} f \to f$ in L^p . Pick $N \in \mathbb{N}$ such that $\|1_{E_N} f - f\|_{L^p(X,\mu)} < \varepsilon$. Pick $g \in W_N$ such that $\|g - 1_{E_N} f\|_{L^p(E_N,\mu)} < \varepsilon$. We have

$$||g - f||_{L^{p}(X)} \leq ||g - 1_{E_{N}} f||_{L^{p}(X)} + ||1_{E_{N}} f - f||_{L^{p}(X)}$$

$$= ||g - 1_{E_{N}} f||_{L^{p}(E_{N})} + ||1_{E_{N}} f - f||_{L^{p}(X)}$$

$$\leq 2 \varepsilon.$$

This completes the proof.

3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $g \in L^1(\mu)$ such that $g \ge 0$. Show that

$$\nu_g(A) \doteq \int_A g \, d\mu, \quad A \in \mathcal{F}$$

defines a finite measure on (Ω, \mathcal{F}) . Further show that $h \in L^1(\nu_g)$ if and only if $h \cdot g \in L^1(\mu)$ and in that case

$$\int h \, d\nu_g = \int h \, g \, d\mu. \tag{1}$$

Proof. We have

$$u_g(\emptyset) = \int_{\emptyset} g \, d\mu = \int g \, 1_{\emptyset} \, d\mu = \int 0 \, d\mu = 0.$$

Suppose $A_1, A_2, \ldots \in \mathcal{F}$ are disjoint. Note that $1_{\bigcup_{n=1}^{\infty} A_n} = \sum_{n=1}^{\infty} 1_{A_n}$. Thus

$$\nu_{g}\left(\bigcup_{n=1}^{\infty} A_{n}\right) = \int_{\bigcup_{n=1}^{\infty} A_{n}} g \, d\mu$$

$$= \int g \, \mathbf{1}_{\bigcup_{n=1}^{\infty} A_{n}} \, d\mu$$

$$= \int g \sum_{n=1}^{\infty} \mathbf{1}_{A_{n}} \, d\mu$$

$$= \int \sum_{n=1}^{\infty} g \, \mathbf{1}_{A_{n}} \, d\mu$$

$$= \sum_{n=1}^{\infty} \int g \, \mathbf{1}_{A_{n}} \, d\mu$$

$$= \sum_{n=1}^{\infty} \int_{A_{n}} g \, d\mu$$

$$= \sum_{n=1}^{\infty} \int_{A_{n}} g \, d\mu$$

$$= \sum_{n=1}^{\infty} \nu_{g}(A_{n}).$$
(2)

The equality of (2) and (3) follows from the monotone convergence theorem. Thus ν_q is a measure. We have $\nu_q(\Omega) = \int g \, d\mu < \infty$ since $g \in L^1(\mu)$.

Now we prove that (1) holds for all measurable $h: \Omega \to [0, \infty]$. By definition of ν_g , (1) holds whenever $h = 1_A$ for some $A \in \mathcal{F}$. Recall that for any measure θ on (Ω, \mathcal{F}) ,

$$a \in [0, \infty], h : \Omega \to [0, \infty] \text{ measurable} \implies \int a h d\theta = a \int h d\theta,$$

$$h_1, h_2 : \Omega \to [0, \infty] \text{ measurable} \implies \int (h_1 + h_2) d\theta = \int h_1 d\theta + \int h_2 d\theta.$$

From these facts, we deduce that (1) holds for nonnegative simple functions h. Now let $h: \Omega \to [0, \infty]$ be an arbitrary measurable function. By Theorem (1), there exist nonnegative simple functions $h_n \nearrow h$. For each $n \in \mathbb{N}$,

$$\int h_n \, d\nu_g = \int h_n \, g \, d\mu.$$

Letting $n \to \infty$ and using the monotone convergence theorem yields

$$\int h \, d\nu_g = \int h \, g \, d\mu.$$

Thus 1 holds for all measurable $h: \Omega \to [0, \infty]$.

If $h:\Omega\to\mathbb{C}$ is measurable, then applying this result to |h| shows that

$$h \in L^1(\nu_g) \iff h g \in L^1(\mu).$$

If $h \in L^1(\nu_g)$, then $\text{Re}(h)^+$, $\text{Re}(h)^-$, $\text{Im}(h)^+$, $\text{Im}(h)^-$ are all nonnegative and in $L^1(\nu_g)$. Since (1) holds for these four functions, linearity of the integral on $L^1(\nu_g)$ and $L^1(\mu)$ implies that (1) holds for h.

4. Show that the Lebesgue Decomposition Theorem for finite measures implies the theorem for σ -finite measures.

Proof. Let μ and ν be arbitrary σ -finite measures on a measure space (X, \mathcal{F}) . Write $X = \bigcup_{i=1}^{\infty} A_i$ with $\{A_i\}$ disjoint and $\mu(A_i) < \infty$. Similarly, write $X = \bigcup_{j=1}^{\infty} B_j$ with $\{B_j\}$ disjoint and $\nu(B_j) < \infty$. We have $X = \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} A_i \cap B_j$. Thus X is a countable union of disjoint sets $E_n, n \in \mathbb{N}$ with $\mu(E_n) < \infty$ and $\nu(E_n) < \infty$.

For each $n \in \mathbb{N}$, define finite measures μ_n, ν_n on (X, \mathcal{F}) by

$$\mu_n(A) = \mu(A \cap E_n),$$

$$\nu_n(A) = \nu(A \cap E_n).$$

By the Lebesgue decomposition theorem for finite measures, for each $n \in \mathbb{N}$ there exist measures $\nu_{n,a}$, $\nu_{n,s}$ on (X, \mathcal{F}) such that

$$\nu_n = \nu_{n,a} + \nu_{n,s}, \quad \nu_{n,a} \ll \mu_n, \quad \nu_{n,s} \perp \mu_n$$

We have

$$\nu = \sum_{n=1}^{\infty} \nu_n = \sum_{n=1}^{\infty} \nu_{n,a} + \sum_{n=1}^{\infty} \nu_{n,s} = \nu_a + \nu_s,$$

where

$$\nu_a = \sum_{n=1}^{\infty} \nu_{n,a},$$

$$\nu_s = \sum_{n=1}^{\infty} \nu_{n,s}.$$

Since $\mu = \sum_{n=1}^{\infty} \mu_n$,

$$\mu(A) = 0 \implies \mu_n(A) = 0 \text{ for all } n \implies \nu_{n,a}(A) = 0 \text{ for all } n \implies \nu_a(A) = 0.$$

Thus $\nu_a \ll \mu$. Let $n \in \mathbb{N}$. We have $\nu_{n,s}(E_n^c) \leq \nu_n(E_n^c) = 0$. Thus $\nu_{n,s}$ is supported on E_n . Since μ_j is supported on E_j and $E_j \cap E_n = \emptyset$ for $j \neq n$, it follows that $\nu_{n,s} \perp \mu_j$ for all $j \neq n$, and therefore for all $j \in \mathbb{N}$. Thus $\nu_{n,s} \perp \sum_{j=1}^{\infty} \mu_j = \mu$. Since this holds for every $n, \nu_s = \sum_{n=1}^{\infty} \nu_{n,s} \perp \mu$. This proves existence of the Lebesgue decomposition.

Now we show ν_a has a density with respect to μ . By the Lebesgue decomposition theorem for finite measures, there exists $f: X \to [0, \infty)$ such that $d\nu_{n,a} = f_n d\mu_n$. Note that $d\mu_n = 1_{E_n} d\mu$ since both sides are measures that agree on every set in \mathcal{F} . Thus for $A \in \mathcal{F}$,

$$\nu_a(A) = \sum_{n=1}^{\infty} \nu_{n,a}(A)$$

$$= \sum_{n=1}^{\infty} \int_A f_n d\mu_n$$

$$= \sum_{n=1}^{\infty} \int_A f_n 1_{E_n} d\mu$$

$$= \int_{A_{n-1}}^{\infty} f_n 1_{E_n} d\mu.$$

Thus $f = \sum_{n=1}^{\infty} f_n 1_{E_n}$ is the density of ν_a with respect to μ .

Now we show uniqueness. Suppose there is another decomposition $\nu = \tilde{\nu_a} + \tilde{\nu_s}$ with $\tilde{\nu_a} \ll \mu$ and $\tilde{\nu_s} \perp \mu$. Let $E \in \mathcal{F}$ be an arbitrary set with $\mu(E) < \infty$ and $\nu(E) < \infty$. Then for any $n \in \mathbb{N}$,

$$1_E d\nu = 1_E d\tilde{\nu_a} + 1_E d\tilde{\nu_s} = 1_E d\nu_a + 1_E d\nu_s.$$

Since $1_E d\nu_a \leq \nu_a \ll \mu$ and $1_E d\nu_s \leq \nu_s \perp \mu$, it follows that $1_E d\nu_a \ll \mu$ and $1_E d\nu_s \perp \mu$. Similarly, $1_E d\tilde{\nu_a} \ll \mu$ and $1_E d\tilde{\nu_s} \perp \mu$. By the uniqueness part of the Lebesgue decomposition theorem for finite measures, $1_E d\nu_a = 1_E d\tilde{\nu_a}$ and $1_E d\nu_s = 1_E d\tilde{\nu_s}$. Since X is a countable disjoint union of such sets E, it follows that $\nu_a = \tilde{\nu_a}$ and $\nu_s = \tilde{\nu_s}$. \square

Bibliography

[1] G. B. Folland. Real analysis: modern techniques and their applications. Pure and applied mathematics. Wiley, New York, 2nd ed edition, 1999.