```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import warnings
         warnings.filterwarnings("ignore")
In [2]: data=pd.read csv("/home/placement/Downloads/Advertising.csv")
In [3]: data.describe()
Out[3]:
                                           radio newspaper
                 Unnamed: 0
                                   TV
                                                                sales
                 200.000000 200.000000
                                      200.000000
                                                 200.000000
                                                           200.000000
           count
                 100.500000 147.042500
                                       23.264000
                                                  30.554000
                                                            14.022500
           mean
                  57.879185
                             85.854236
                                       14.846809
                                                  21.778621
                                                             5.217457
             std
                   1.000000
                              0.700000
                                        0.000000
                                                   0.300000
                                                             1.600000
            min
            25%
                  50.750000
                             74.375000
                                        9.975000
                                                  12.750000
                                                            10.375000
            50%
                 100.500000
                           149.750000
                                       22.900000
                                                  25.750000
                                                            12.900000
                 150.250000 218.825000
            75%
                                       36.525000
                                                  45.100000
                                                            17.400000
                 200.000000 296.400000
                                                            27.000000
            max
                                       49.600000 114.000000
In [4]: list(data)
Out[4]: ['Unnamed: 0', 'TV', 'radio', 'newspaper', 'sales']
In [5]: data1=data.drop(['Unnamed: 0'],axis=1)
```

In [6]: data1

Out[6]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [7]: y=data1['sales']
x=data1.drop(['sales'],axis=1)
```

In [8]: x

Out[8]:

	TV	radio	newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4
195	38.2	3.7	13.8
196	94.2	4.9	8.1
197	177.0	9.3	6.4
198	283.6	42.0	66.2
199	232.1	8.6	8.7

200 rows × 3 columns

```
In [9]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [10]: x_test

Out[10]:

	TV	radio	newspaper
95	163.3	31.6	52.9
15	195.4	47.7	52.9
30	292.9	28.3	43.2
158	11.7	36.9	45.2
128	220.3	49.0	3.2
97	184.9	21.0	22.0
31	112.9	17.4	38.6
12	23.8	35.1	65.9
35	290.7	4.1	8.5
119	19.4	16.0	22.3

66 rows × 3 columns

```
In [11]: y_test
Out[11]: 95
                16.9
         15
                22.4
         30
                21.4
         158
                7.3
         128
                24.7
                 . . .
         97
                15.5
         31
                11.9
         12
                 9.2
         35
                12.8
         119
                 6.6
         Name: sales, Length: 66, dtype: float64
In [12]: x_train
```

Out[12]:

	TV	radio	newspaper
42	293.6	27.7	1.8
189	18.7	12.1	23.4
90	134.3	4.9	9.3
136	25.6	39.0	9.3
51	100.4	9.6	3.6
106	25.0	11.0	29.7
14	204.1	32.9	46.0
92	217.7	33.5	59.0
179	165.6	10.0	17.6
102	280.2	10.1	21.4

134 rows × 3 columns

```
In [13]: y train
Out[13]: 42
                20.7
                 6.7
         189
         90
                11.2
         136
                9.5
         51
                10.7
                . . .
         106
                7.2
                19.0
         14
         92
                19.4
         179
                12.6
         102
                14.8
         Name: sales, Length: 134, dtype: float64
In [14]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Lasso
         lasso= Lasso()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         lasso regressor = GridSearchCV(lasso, parameters)
         lasso_regressor.fit(x_train, y_train)
Out[14]:
          ▶ GridSearchCV
          ▶ estimator: Lasso
                ▶ Lasso
In [15]: lasso_regressor.best_params_
Out[15]: {'alpha': 1}
In [16]: lasso=Lasso(alpha=30)
         lasso.fit(x train,y train)
         y pred lasso=lasso.predict(x test)
```