Methods 1: Logic

Introduction, overview, & practicalities

Michael Franke

Why are you here?

Logic puzzle

There are two villages. In the honest village (H) everybody always speaks the truth. In the dishonest village (D) everybody always says the opposite of what is true. Before you the road splits: one way leads to the honest, the other to the dishonest village. At the splitting there is a man. He may be from village H or D, you don't know. What do you ask the man to find out where the honest village is?

honest village	man	where're you from?
left	honest	"left"
left	dishonest	"left"
right	honest	"right"
right	dishonest	"right"

What is logic?

proof entailment meaning

All Europeans are human.
All humans are mortal
Therefore, all Europeans are mortal.

Modeling

Logis as a normative model: how language & thought should be

entailment	meaning
inference	precision of expression

The focus of this course is more on logic as a tool in psychological / linguistic explanations. There will be less emphasis on the role of logic in the foundations of mathematics (so-called logicism).

Big-picture learning goals

- understand the significance of logic for the development of modern Linguistics, Philosophy, Cognitive Science and AI
 - formal language theory (with syntax & semantics); meta vs object language
 - picture theory of meaning and correspondence theory of truth
 - symbol-manipulation theory of human cognition
- distinguish "good reasoning" from "fallacious reasoning", as well as "logical entailment" from "commonsense entailment"
- be able to excavate the logical structure of natural language sentences and represent it in logical notation

What is a logic?

- there are different kinds of logic
- a logic is a formal system that captures some structural properties of meaning
- this course will cover three logics:

```
propositional logic [meaning of connectives and, or, not ...]
predicate logic [meaning of quantifiers all, some, none ...]
modal logic [meaning of epistemic attitudes belief, knowledge ...]
```

Course content

		date	topic
	1	2022-10-27	Course overview & introduction
	2	2022-11-03	Basics of (naive) set theory
set theory	3	2022-11-10	Proofs
• (informal) proofs	4	2022-11-17	Relations & functions
	5	2022-11-24	PropLog: Syntax & truth tables
propositional logic	6	2022-12-01	PropLog: Translations & logical validity
predicate logic	7	2022-12-08	PropLog: Natural Deduction
natural deduction	8	2022-12-15	PredLog: Syntax & Translations
 modal (epistemic) logic 	9	2022-12-22	PredLog: Semantics & Identity
probability theory	10	2023-01-12	Modal logic
information theory	11	2023-01-19	Probability theory
information theory	12	2023-01-26	Information theory
	13	2023-02-02	Recap
	14	2023-02-09	no class
	15	2023-02-16	final exam

Practicalities

- enroll for this course on **moodle**:
 - https://moodle.zdv.uni-tuebingen.de/course/view.php?id=2876
- necessary for
 - · assessing course material
 - receiving notifications
 - asking questions in the forum
 - submitting homework
 - receiving feedback on homework

Best practice guide

- self-study
 - prepare the assigned reading material before the lecture
 - bring questions, know what you don't know, ask and probe
- 2 lecture
 - provides motivation, context and overview
 - focuses on conceptual understanding
- 3 homework

[start as early as possible each week]

- · discussion with others is allowed & encouraged
- write-up & submissions must be made individually
- ask general questions on moodle, but do not share solutions
- tutorials

[go to at least one tutorial every week!]

- start working on homework questions before the tutorial(s)
- emphasis on hands-on support for exercises

12 / 17

Tutorials

• four different slots: [tutorials start in the week of Nov 7]

¹ Aydemir Shamsutdinov: Monday 12:00 (room TBA)

² Benedict Konhäuser: Tuesday 12:00 (Zoom), Tuesday 16:00 (room TBA)

3 Fanyi Meng: Wednesday 12:00 (room TBA)

• sign up for your favorite slot on moodle

How to get answers

- general questions (for everyone to see) about content:
 - use the "General Ouestions" section on moodle
 - $\hbox{$\bullet$ joing the dischord server: $https://discord.gg/fJ7ZmZHw}\\$

- confidential, non-content-related questions:
 - email to lecturer

do not use moodle's messaging system!!

Homework

- no copying from others
- release: Thursday after lecture
- submission:
 - Friday 18:00 (one week after release)
 - electronically via moodle as PDF
 - handwritten (legible) or typeset (as PDF)

[plagiarism will lead to failure]

Exam

- February 16 2023, 10:00-16:00 (CET)
- take-home exam:
 - released electronically at 10:00 via moodle
 - solvable in ca. 3 hours
 - you may use any material you like (books, handouts, ...)
 - cooperation is forbidden, submissions may not be copied
 - submit electronically at 16:00 the latest via moodle

Homework

- sign up for course on moodle
- sign up for preferred tutorial slot
- read section "Course overview & practicalities" on moodle
- follow instructions in section "Basics of (naive) set theory" on moodle
 - read handout
 - watch videos
 - try solving exercises in handout
 - collect what you do not understand