Machine Learning

Homework2

By Mina Erfan

Dataset Info

- The dataset was created in 2014 by the University of Nottinghan, Ningbo, China
- The dataset was built from a collection of 1059 tracks covering 33 countries/area.
- The geographical location of origin was manually collected the information from the CD sleeve notes. The country of origin was determined by the artist's or artists' main country/area of residence.
- The position of each country's capital city (or the province of the area) have been taken by latitude and longitude as the absolute point of origin.
- The program MARSYAS[1] was used to extract audio features from the wave files.

Dataset

Data Set Characteristics:	Multivariate	Number of Instances:	1059	Area:	N/A
Attribute Characteristics:	Real	Number of Attributes:	68	Date Donated	2014-10-18
Associated Tasks:	Classification, Regression	Missing Values?	N/A	Number of Web Hits:	106939

Exp1: Dimension Reduction

Reducing Dimensions: Put aside samples' labels. Use PCA to reduce the dimensionality of the features based on the POV value. Repeat this process for 80%, 85%, 90%, and 95% rates respectively. Report dimensions for each POV value and train a model. Compare those results with results from Exp1 HomeWork1.

PCA with Weka is used for dimension reduction

Weka.Filter.Principal components

	Features	Correctly classified instances	TP Rate	FP Rate	precision	Recall	F-Measure
Main Set	68	104	0.327	0.024	0.369	0.327	0.322
PCA_80	19	92	0.289	0.026	0.3	0.289	0.276
PCA_85	24	94	0.296	0.026	0.329	0.296	0.286
PCA_90	31	100	0.314	0.026	0.347	0.314	0.308
PCA_95	40	106	0.333	0.025	0.381	0.333	0.329

Corectly classified instances

TP Rate

FP Rate

Precision

Recall

F-Measure

Exp2: Clustering

Put aside samples' labels. Apply K-means, C-means, Fuzzy, and EM algorithms. Compare new labels with original labels and report variations for each class separately. Then, consider clusters to be the same as the number of classes. Investigate how precise samples' labels are assigned.

K-means

Weka is used for K-means Clustering

Weka.Clusters.SimpleKmeans

Clustered Instances

```
0 207 ( 20%)
1 155 ( 15%)
2 120 ( 11%)
3 352 ( 33%)
4 225 ( 21%)
```

Class attribute: continent

Classes to Clusters:

```
0 1 2 3 4 <-- assigned to cluster

22 0 1 19 27 | America

93 15 23 83 91 | Africa

62 107 67 131 71 | Asia

22 33 28 118 32 | Europe

8 0 1 1 4 | Australia
```

```
Cluster 0 <-- Africa
Cluster 1 <-- Asia
Cluster 2 <-- Australia
Cluster 3 <-- Europe
Cluster 4 <-- America
```

Incorrectly clustered instances: 713.0 67.3277 %

: K-means

#samples in each class	Classes
305	Africa
405	Asia
14	Australia
266	Europe
69	America

Correctly Clustered	Incorrectly Clustered	Clustering	Class	Cluster
	713= %67.32 346= %32.68	207=%20	Africa	Cluster 0
713= %67.32		155=%15	Asia	Cluster 1
		120=%11	Australia	Cluster 2
		352=%33	Europe	Cluster3
		225=%21	America	Cluster 4

EM

Weka is used for EM clustering

weka.clusterer.EM

Clustered Instances

```
0 179 ( 17%)
1 208 ( 20%)
2 189 ( 18%)
3 221 ( 21%)
4 262 ( 25%)
```

Log likelihood: -79.49149

Class attribute: continent Classes to Clusters:

```
0 1 2 3 4 <-- assigned to cluster

19 2 1 32 15 | America

66 42 27 108 62 | Africa

64 120 116 54 84 | Asia

19 42 45 26 101 | Europe

11 2 0 1 0 | Australia
```

Cluster 0 <-- America Cluster 1 <-- Asia Cluster 2 <-- No class Cluster 3 <-- Africa Cluster 4 <-- Europe

Incorrectly clustered instances: 711.0 67.1388 %

: EM

#samples in each class	Classes
305	Africa
405	Asia
14	Australia
266	Europe
69	America

Correctly Clustered	Incorrectly Clustered	Clustering	Class	Cluster
711= %67.13 348= %33.86	179=%17	America	Cluster 0	
	348= %33.86	208=%20	Asia	Cluster 1
		189=%18	No class	Cluster 2
		221=%21	Africa	Cluster3
		262=%25	Europe	Cluster 4

:Fuzzy C-mean in Matlab

[centers,U,objFunc] = fcm(data,Nc)

- performs fuzzy c-means clustering on the given data and returns Nc cluster centers.
- also returns the objective function values at each optimization iteration for all of the previous syntaxes.

: Fuzzy C-mean

Result:

Cluster0	Cluster1	Cluster2	Cluster3	Cluster4	
0	28	0	0	41	America
0	108	1	0	157	Europe
0	121	1	0	183	Africa
0	198	2	Ο	205	Asia
0	6	0	0	8	Australia

#samples in each class	Classes
305	Africa
405	Asia
14	Australia
266	Europe
69	America

Correctly Clustered	Incorrectly Clustered	Clustering	Class	Cluster
732= %69.12 327= %30.88	0=%0	No class	Cluster 0	
	327= %30.88	461=%44	Africa	Cluster 1
		4=%0	Europe	Cluster 2
		0=%0	No class	Cluster3
		594=%56	sia	Cluster 4

Exp3: agglomerative clustering

Use agglomerative clustering (single-link and complete-link separately) and depict samples' Dendrogram. Then again, consider clusters to be the same as the number of classes, and compare new labels with original labels and report conflicts. Also report and rank the best achieved number of clusters based on all clustering methods used in B and C.

Agglomerative Clustering

Weka is used for single link clustering

weka.clusterers.HierarchicalClusterer

Clustered Instances

```
0 1055 (100%)
1 1 ( 0%)
2 1 ( 0%)
3 1 ( 0%)
4 1 ( 0%)
```

: Single Hierarchical cluster

```
Class attribute: continent
Classes to Clusters:
```

```
0 1 2 3 4 <-- assigned to cluster
69 0 0 0 | America
305 0 0 0 | Africa
434 1 1 1 | Asia
233 0 0 0 | Europe
14 0 0 0 | Australia
```

```
Cluster 0 <-- Asia
Cluster 1 <-- No class
Cluster 2 <-- No class
Cluster 3 <-- No class
Cluster 4 <-- No class
```

Incorrectly clustered instances: 625.0 59.0179 %

#samples in each class	Classes
305	Africa
405	Asia
14	Australia
266	Europe
69	America

Correctly Clustered	Incorrectly Clustered	Clustering	Class	Cluster
625= %59.02 434= %40.98	1055=%100	Asia	Cluster 0	
	434= %40.98	1=%0	No class	Cluster 1
		1=%0	No class	Cluster 2
		1=%0	No class	Cluster3
		1=%0	No class	Cluster 4

Agglomerative Clustering

Weka is used to do clustering using complete link

weka.clusterers.HierarchicalClusterer

Clustered Instances

```
0 657 (62%)
1 328 (31%)
2 71 (7%)
3 2 (0%)
4 1 (0%)
```

: Complete Hierarchicalcluster

```
Class attribute: continent
Classes to Clusters:
```

```
0 1 2 3 4 <-- assigned to cluster

58 11 0 0 0 | America

231 60 14 0 0 | Africa

211 181 43 2 1 | Asia

147 72 14 0 0 | Europe

10 4 0 0 | Australia
```

```
Cluster 0 <-- Africa
Cluster 1 <-- Asia
Cluster 2 <-- Europe
Cluster 3 <-- No class
Cluster 4 <-- No class
```

Incorrectly clustered instances: 633.0 59.7734 %

#samples in each class	Classes
305	Africa
405	Asia
14	Australia
266	Europe
69	America

Correctly Clustered	Incorrectly Clustered	Clustering	Class	Cluster
633= %59.77	426= %40.23	657=%62	Africa	Cluster 0
		328=%31	Asia	Cluster 1
		71=%7	Europe	Cluster 2
		2=%0	No class	Cluster3
		1=%0	No class	Cluster 4

Comparison

	Correctly classified instances	Incorrectly classified instances
Fuzzy C-mean	30.88 %	69.12 %
K-means	32.68 %	67.32 %
EM	33.86 %	67.1 3 %
complete hierarchical	40.23 %	59.77 %
Single hierarchical	40.98%	59.02 %

Thank You