Matrix Factorization

March 17, 2020
Data Science CSCI 1951A
Brown University

Instructor: Ellie Pavlick

HTAs: Josh Levin, Diane Mutako, Sol Zitter

Announcements

• . . .

Today

- Matrix Factorization with SVD
- Applications to: Topic Modeling, Recommendation Systems

Use Cases

- Matrix Completion:
 - Recommendation—if someone likes/watches/clicks on this, they might also like/watch/click on that
- Dimensionality Reduction:
 - Embeddings/Denoising—Can I throw away features without losing performance? Can I throw away noisy features an actually increase performance?

Clicks	Recency	Reading Level	Photo	Title: "new"	Title: "tax"	Title: "this"	
10	1.3	11	1	1	0	0	
1000	1.7	3	1	0	0	1	
1000000	2.4	2	1	0	0	1	
1	5.9	19	0	0	0	0	

feature 2

- Eigenvalue Decomposition of covariance matrix
- Singular Value Decomposition of the data matrix

- Eigenvalue Decomposition of covariance matrix
- Singular Value Decomposition of the data matrix

- Eigenvalue Decomposition of covariance matrix
- Singular Value Decomposition of the data matrix

Technically, PCA != SVD

- Eigenvalue Decomposition of covariance matrix
- Singular Value Decomposition of the data matrix

Technically, PCA!= SVD (but in practice these are used interchangeably)

2	1	1
4	3	1
2	0	2
8	4	4

2	11	1 ,	} -	1
4		3	} -	1
2	11	0 ,	} -	2
8		4 ,	}-	4

2	1 ,	\$	1
4	3	+	1
2	0 ,	***	2
8	4 ,	} -	4

Rank = 2

No new signal

Control of the Contro						
2		1	9	} -	1	
4	=	3	,	}	1	
2		0	9	} -	2	
8		4	9	} -	4	
	•			•		

Rank = 2

What is the rank of this matrix?

	the	congress	parliament	US	UK
doc1	1	1	1	1	0
doc2	1	0	1	0	1
doc3	1	1	0	1	0
doc4	1	0	1	0	1

What is the rank of this matrix?

	the	congress	parliament	US	UK
doc1	1	1	1	1	0
doc2	1	0	1	0	1
doc3	1	1	0	1	0
doc4	1	0	1	0	1

What is the rank of this matrix?

	the	parliament	US	UK
doc1	1	1	1	0
doc2	1	1	0	1
doc3	1	0	1	0
doc4	1	1	0	1

What is the rank of this matrix?

	the	parliament	US	UK
doc1	1	1	1	0
doc2	1	1	0	1
doc3	1	0	1	0
doc4	1	1	0	1

What is the rank of this matrix?

		parliament	US	UK
doc1		1	1	0
doc2		1	0	1
doc3		0	1	0
doc4		1	0	1

	the	congress	parliament	US	UK
doc1	1	1	1	1	0
doc2	1	0	1	0	1
doc3	1	1	0	1	0
doc4	1	0	1	0	1

"Low Rank Assumption": we typically assume that our features contain a large amount of redundant information

Matrix Arithmetic Refresh

Matrix Arithmetic Refresh

$$\vec{a} \cdot \vec{b} = (a1xb1) + (a2xb2) + (a3xb3)$$

a11	a12	a13
a21	a22	a23
a31	a32	a33

b11	b12
b21	b22
b31	b32

АВ

a11	a12	a13
a21	a22	a23
a31	a32	a33

b11	b12
b21	b22
b31	b32

A 3x3

3x2

a11	a12	a13
a21	a22	a23
a31	a32	a33

b11	b12
b21	b22
b31	b32

3x3

3x2

a11	a12	a13
a21	a22	a23
a31	a32	a33

b11	b12
b21	b22
b31	b32

??	??
??	??
??	??

3x3

3x2

AB

3x2

a11	a12	a13
a21	a22	a23
a31	a32	a33

b11	b12
b21	b22
b31	b32

??	??
??	??
??	??

mxk

B Vn

a1·b1	a2·b1
a2·b1	a2·b2
a3·b1	a3·b2

A

B

AB

a ₁
a2
a3

a1·b1	a2·b1
a2·b1	a2·b2
a3·b1	a3·b2

А

В

4B

$$AB[i][j] = ai \cdot bj$$

X

 1
 2
 3

 3
 4
 5

2	4
1	2
3	1

(a)

(b)

(c)

13	25
13	6

14	7	6
20	10	10
26	13	14

13	11
25	25

X

2	4
1	2
3	1

 13
 25

 13
 6

13	11
25	25

(c)

13	11
25	25

2	4
1	2
3	1

(a)

1325136

(b)

14	7	6
20	10	10
26	13	14

(c)

13	11
25	25

M $m \times n$

Data Matrix

Data Matrix

Singular Values of M

Data Matrix

Singular Values of M (#non-zero = rank M)

Singular Value Representation of on (SVD) rows of M in new feature space

$$M$$
 $m \times n$

$$\mathbf{U}$$
 $\mathbf{m} \times \mathbf{m}$

Data Matrix

Singular Values of M (#non-zero = rank M)

Singular Value

Representation of On rows of M in new feature space

Principle
Components
(new features)

	M	
m	X	n

$$D$$
 $m \times n$

Data Matrix

Singular Values of M (#non-zero = rank M)

	the	congr ess	parlia ment	US	UK
doc1	1	1	1	1	0
doc2	1	Ο	1	0	1
doc3	1	1	0	1	0
doc4	1	0	1	0	1

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		parli ame	cong ress	the	
	1	1	1	1	doc1
0 1 00	0	1	0	1	doc2
1 0	1	0	1	1	doc3
0 1	0	1	0	1	doc4

d1	-0.60	-0.39	0.70	0.00
d2	-0.48	0.50	-0.12	-0.71
d3	-0.43	-0.58	-0.69	0.00
d4	-0.48	0.50	-0.12	0.71

3.06	0.00	0.00	0.00	0.00
0.00	1.81	0.00	0.00	0.00
0.00	0.00	0.57	0.00	0.00
0.00	0.00	0.00	0.00	0.00

the	•	parlia ment	US	UK
-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

U

 D

cong parli US the UK ress ame Jular Value doc1 position (SVD) doc2 0 0 0 doc3 0 doc1 in old feature space doc4 0 0

d1	-0.60	-0.39	0.70	0.00
d2	-0.48	0.50	-0.12	-0.71
d3	-0.43	-0.58	-0.69	0.00
d4	-0.48	0.50	-0.12	0.71

3.06	0.00	0.00	0.00	0.00
0.00	1.81	0.00	0.00	0.00
0.00	0.00	0.57	0.00	0.00
0.00	0.00	0.00	0.00	0.00

the	•	parlia ment	US	UK
-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

U

 D

cong parli US the UK ress ame Jular Value doc1 position (SVD) 0 doc2 0 0 doc3 0 doc1 in new feature space doc4 0 0

d1	-0.60	-0.39	0.70	0.00
d2	-0.48	0.50	-0.12	-0.71
d3	-0.43	-0.58	-0.69	0.00
d4	-0.48	0.50	-0.12	0.71

3.06	0.00	0.00	0.00	0.00
0.00	1.81	0.00	0.00	0.00
0.00	0.00	0.57	0.00	0.00
0.00	0.00	0.00	0.00	0.00

the		parlia ment	US	UK
-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

U

 D

cong parli US the UK ress ame Jular Value doc1 position (SVD) doc2 0 0 weight of component 1 for doc 1 0 doc3 0 doc4 0 0

d1	-0.60	-0.39	0.70	0.00
d2	-0.48	0.50	-0.12	-0.71
d3	-0.43	-0.58	-0.69	0.00
d4	-0.48	0.50	-0.12	0.71

3.06	0.00	0.00	0.00	0.00
0.00	1.81	0.00	0.00	0.00
0.00	0.00	0.57	0.00	0.00
0.00	0.00	0.00	0.00	0.00

the	•	parlia ment	US	UK
-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

U

 D

cong parli US the UK ress ame Jular Value doc1 bosition (SVD) 0 0 doc2 weight of component 1 over all the data 0 doc3 0 0 doc4 0

d1	-0.60	-0.39	0.70	0.00
d2	-0.48	0.50	-0.12	-0.71
d3	-0.43	-0.58	-0.69	0.00
d4	-0.48	0.50	-0.12	0.71

3.06	0.00	0.00	0.00	0.00
0.00	1.81	0.00	0.00	0.00
0.00	0.00	0.57	0.00	0.00
0.00	0.00	0.00	0.00	0.00

the		parlia ment	US	UK
-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

U

 D

cong parli US the UK ress ame Jular Value doc1 position (SVD) doc2 0 0 0 doc3 0 component 1 doc4 0 0

-0.60	-0.39	0.70	0.00
-0.48	0.50	-0.12	-0.71
-0.43	-0.58	-0.69	0.00
-0.48	0.50	-0.12	0.71
	-0.48	-0.48	-0.60-0.390.70-0.480.50-0.12-0.43-0.58-0.69-0.480.50-0.12

3.06	0.00	0.00	0.00	0.00
0.00	1.81	0.00	0.00	0.00
0.00	0.00	0.57	0.00	0.00
0.00	0.00	0.00	0.00	0.00

the	cong	parlia ment	US	UK
-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

U

 D

cong parli US the UK ress ame doc1 doc2 0 0 doc3 0 0doc4 0 0

Jular Value Josition (SVD)

contribution of "the" to component 1

d1	-0.60	-0.39	0.70	0.00
d2	-0.48	0.50	-0.12	-0.71
d3	-0.43	-0.58	-0.69	0.00
d4	-0.48	0.50	-0.12	0.71

3.06	0.00	0.00	0.00	0.00
0.00	1.81	0.00	0.00	0.00
0.00	0.00	0.57	0.00	0.00
0.00	0.00	0.00	0.00	0.00

the	•	ment	US	UK
-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

cona narlia

U

 D

keep only first L components

keep only first L components "best L-rank approximation of M"

keep only first L components "best L-rank approximation of M"

Dimensionality Reduction

- "Low Rank Assumption": we typically assume that our features contain a large amount of redundant information
- We can throw away a lot of principle components without losing too much of the signal needed for our task

In practice, is this assumption of low rank valid?

- a) Yes
- b) No
- c) Yeah, sure, why not?

Data is noisy, so M is most likely full-rank

- Data is noisy, so M is most likely full-rank
- We assume that M is close to a low rank matrix, and we approximate the matrix it is close to

- Data is noisy, so M is most likely full-rank
- We assume that M is close to a low rank matrix, and we approximate the matrix it is close to
- Viewed as a "de-noised" version of M

- Data is noisy, so M is most likely full-rank
- We assume that M is close to a low rank matrix, and we approximate the matrix it is close to
- Viewed as a "de-noised" version of M
- "Original matrix exhibits redundancy and noise, low-rank reconstruction exploits the former to remove the latter"*

^{*}Matrix and Tensor Factorization Methods for Natural Language Processing. (ACL 2015)

Data is also often incomplete...missing values, new observations, etc.

- Data is also often incomplete...missing values, new observations, etc.
- Can we use SVD for this?

- Data is also often incomplete...missing values, new observations, etc.
- Can we use SVD for this?
- Yes! Though we need to make a few changes...

	roma	ballad of buster scruggs	mud- bound	to all the boys i	okja
user1	1	0	1		
user2	0			0	1
user3	1	0		1	0
user4		1	0		
user5					1

	roma	ballad of buster scruggs	mud- bound	to all the boys i	okja
user1	1	0	1	1	0
user2	0			0	1
user3	1	0	1	1	0
user4		1	0		
user5					1

"people also liked.."

Netflix Prize

Home

Rules

Leaderboard

Update

Leaderboard

Showing Test Score. Click here to show quiz score

Rank	Team Name	Best Test Score	½ Improvement	Best Submit Time
Grand	Prize - RMSE = 0.8567 - Winning Te	am: BellKor's Pragn	natic Chaos	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
6	<u>PragmaticTheory</u>	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace_	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	<u>BigChaos</u>	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
40	Dallidan	1 0.0004	0.40	0000 07 00 47 40 44

 $M \approx UDV = M'$

problems?

Exact SVD assumes M is complete...

...just gradient descent that MF!

Not properly SVD (fewer guarantees, e.g. components not orthonormal) but good enough

$$\min_{U,V} \sum_{ij}^{\mathsf{U}} (M_{ij} - u_i \cdot v_j)^2$$

$$\min_{U,V} \sum_{ij}^{\mathsf{M}} (M_{ij} - u_i \cdot v_j)^2$$

But! Only consider cases when Mij is observed!

$$\min_{U,V} \sum_{ij} (M_{ij} - u_i \cdot v_j)^2$$

Compute the loss given this setting of U and V...

2		1		
	3	2	1	2
2	0	0		
N	Λ	U	\	/

a) 14

b) 10

c)

$$\min_{U,V} \sum_{ij} (M_{ij} - u_i \cdot v_j)^2$$

Compute the loss given this setting of U and V...

2		1					1	2
	3	2	X	1	2	=	2	4
2	0	0					0	O
N	Λ	U	-	\	/		٨	/]'

$$\min_{U,V} \sum_{ij} (M_{ij} - u_i \cdot v_j)^2$$

Compute the loss given this setting of U and V...

2		1					1	2
	3	2	X	1	2	=	2	4
2	0	0					O	O
N	/ I	U	-	\	/		٨	/]'

a) 14

b) 10

c) (

$$\min_{U,V} \sum_{ij} (M_{ij} - u_i \cdot v_j)^2$$

Compute the loss given this setting of U and V...

2			1					1	2
	3		2	X	1	2	=	2	4
2	0		0		1 +	1	=	0	0
	/	_	U	•	\	/		١	/ '

Can you elaborate on exactly what the directions are in part 2 step 3, the stencil code does not quite imply what we are supposed to do...

When I try to display dots from part 2 on my mac (tried chrome, firefox, and safari), the elements do not appear in the html.

Changes I make to the nations.js file do not affect any of the html in after I load the nations.html file

Can you elaborate on exactly what the directions are in part 2 step 3, the stencil code does not quite imply what we are supposed to do...

When I try to display dots from part 2 on my mac (tried chrome, firefox, and safari), the elements do not appear in the html.

Changes I make to the nations.js file do not affect any of the html in after I load the nations.html file

instructions: stencil, instructions, part, step, rubric, handin... UI: html, javascript, debug, display, elements... systems: mac, windows, linux, chrome, firefox, os...

fillers: I, you, when, the, and, a

"Latent Semantic Analysis" (LSA)

$$P(w_i) = \sum_{j=1}^{T} P(w_i \mid z_i = j) P(z_i = j)$$

"Latent Semantic Analysis" (LSA)

$$P(w_i) = \sum_{j=1}^{T} P(w_i \mid z_i = j) P(z_i = j)$$

words are determined by topic (and are conditionally independent of each other)

"Latent Semantic Analysis" (LSA)

$$P(w_i) = \sum_{j=1}^{T} P(w_i \mid z_i = j) P(z_i = j)$$

documents are a distribution over topics

	the	cong ress	parli ame	US	UK
doc1	1	1	1	1	0
doc2	1	0	1	0	1
doc3	1	1	0	1	0
doc4	1	0	1	0	1

d1	-0.60	-0.39	0.70	0.00
d2	-0.48	0.50	-0.12	-0.71
d3	-0.43	-0.58	-0.69	0.00
d4	-0.48	0.50	-0.12	0.71

3.06	0.00	0.00	0.00	0.00
0.00	1.81	0.00	0.00	0.00
0.00	0.00	0.57	0.00	0.00
0.00	0.00	0.00	0.00	0.00

the	•	parlia ment	US	UK
-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

U

 D

	the	cong ress	parli ame	US	UK
doc1	1	1	1	1	0
doc2	1	0	1	0	1
doc3	1	1	0	1	0
doc4	1	О	1	0	1

component = "topic"

d1	-0.60	-0.39	0.70	0.00
d2	-0.48	0.50	-0.12	-0.71
d3	-0.43	-0.58	-0.69	0.00
d4	-0.48	0.50	-0.12	0.71

3.06	0.00	0.00	0.00	0.00
0.00	1.81	0.00	0.00	0.00
0.00	0.00	0.57	0.00	0.00
0.00	0.00	0.00	0.00	0.00

the	cong ress	parlia ment	US	UK
-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

U

 D

	the	cong ress	parli ame	US	UK
doc1	1	1	1	1	0
doc2	1	0	1	0	1
doc3	1	1	0	1	0
doc4	1	0	1	0	1

component = "topic" = distribution over words

d1	-0.60	-0.39	0.70	0.00
d2	-0.48	0.50	-0.12	-0.71
d3	-0.43	-0.58	-0.69	0.00
d4	-0.48	0.50	-0.12	0.71

3.06	0.00	0.00	0.00	0.00
0.00	1.81	0.00	0.00	0.00
0.00	0.00	0.57	0.00	0.00
0.00	0.00	0.00	0.00	0.00

the	cong	parlia ment	US	UK
-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

U

 D

	the	cong ress	parli ame	US	UK
doc1	1	1	1	1	0
doc2	1	0	1	0	1
doc3	1	1	0	1	0
doc4	1	0	1	0	1

document = distribution over topics

d1	-0.60	-0.39	0.70	0.00
d2	-0.48	0.50	-0.12	-0.71
d3	-0.43	-0.58	-0.69	0.00
d4	-0.48	0.50	-0.12	0.71

3.06	0.00	0.00	0.00	0.00
0.00	1.81	0.00	0.00	0.00
0.00	0.00	0.57	0.00	0.00
0.00	0.00	0.00	0.00	0.00

the	•	parlia ment	US	UK
-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

U

 D

Factorization of the term-document matrix

	the	congress	parliament	US	UK
doc1	1	1	1	1	0
doc2	1	0	1	0	1
doc3	1	1	0	1	0
doc4	1	0	1	0	1

More on Thursday!

Word Embeddings

Factorization of the term-context matrix

	the	congress parliament US			UK
the	1	1	1	1	1
congress	1	1	0	1	0
parlaiment	1	0	1	1	1
US	1	1	1	1	0
UK	1	0	1	0	1

More on Thursday!

con- parlia- US UK Embeddings gress ment

the 1 congress 1 parlaiment 1 US 1

UK

1	1	1	1	1
1	1	0	1	0
1	0	1	1	1
1	1	1	1	المالي المالي
1	0	1	0	1

Embeddings!

the	-0.60	-0.39	0.70	0.00
ongress	-0.48	0.50	-0.12	-0.71
arliament	-0.43	-0.58	-0.69	0.00
US	-0.48	0.50	-0.12	0.71
IK	0.02	0.79	0.02	-0.44

-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

More on Thursday!

Word Embeddings

Useful Resources/ References

- https://github.com/uclmr/acl2015tutorial/
- https://web.stanford.edu/~jurafsky/li15/lec3.vector.pdf
- https://arxiv.org/pdf/1404.1100.pdf
- https://towardsdatascience.com/pca-and-svd-explained-withnumpy-5d13b0d2a4d8
- http://nicolas-hug.com/blog/matrix_facto_3
- https://machinelearningmastery.com/singular-value-decompositionfor-machine-learning/
- http://cocosci.princeton.edu/tom/papers/SteyversGriffiths.pdf