Hierarchical Bayesian analysis using Stan - From a binary logit to advanced learning models

Alina Ferecatu

Rotterdam School of Management, Erasmus University

eQMW

November 8, 2022

•oooooo Stan

Overview

Stan

Stan

Overview

Probabilistic programming language

Stan

Overview

Probabilistic programming language

Stanislaw Ulam (1909–1984) Inventor of the Monte Carlo method

Bayes' theorem — quick recap

Bayes' theorem:

$$p(\theta|y, X) \propto p(y|\theta, X) \times p(\theta)$$

where:

Overview

000000

- $ightharpoonup p(\theta|y,X)$: posterior distribution;
- $ightharpoonup p(y|\theta,X)$: model's likelihood;
- $\triangleright p(\theta)$: prior distribution.

Overview

0000000

Overview

0000000

► Exploratory data analysis

Overview

0000000

- ► Exploratory data analysis
- ► Write out a model (full probability model)

Overview

0000000

- ► Exploratory data analysis
- ▶ Write out a model (full probability model)
- ► *Prior* predictive checking

Overview

0000000

- ► Exploratory data analysis
- ▶ Write out a model (full probability model)
- ▶ *Prior* predictive checking
- ► Simulate the model with known parameter values

Overview

0000000

- ► Exploratory data analysis
- Write out a model (full probability model)
- ▶ *Prior* predictive checking
- Simulate the model with known parameter values
- Model fitting and algorithm diagnostics

Overview

0000000

- ► Exploratory data analysis
- Write out a model (full probability model)
- ▶ *Prior* predictive checking
- ► Simulate the model with known parameter values
- Model fitting and algorithm diagnostics
- Posterior predictive checking

Overview

0000000

- Exploratory data analysis
- Write out a model (full probability model)
- Prior predictive checking
- Simulate the model with known parameter values
- Model fitting and algorithm diagnostics
- Posterior predictive checking
- ► Model comparison (e.g., via cross-validation)

Stan language

Overview

0000000

Stan program (with R, Python, Matlab, Julia, Stata, CmdStan interface)

- declares data and (constrained) parameter variables
- defines log posterior (or penalized likelihood)

Stan inference

- ► Hamiltonian Monte Carlo for full Bayesian estimation
- Variation inference for approximate Bayes
- Optimization for (penalized) Maximum Likelihood

Stan implementation

Overview

A Stan model is comprised of *code blocks*:

data: declares the data

HB logit specification

- transformed data: makes transformations of the data, including any restrictions on their values.
- parameters: declares the parameters.
- transformed parameters: makes transformations or restrictions on the parameters.
- ▶ *model*: define the full *probability* model here.
- generated quantities: outputs from the model (posterior predictions, forecasts).

```
EWA_stan="
data {
parameters {
transformed parameters {
model {
generated quantities{
```

Hierarchical binary logit example: The data

A choice model of buying decisions given price and promotions:

- \triangleright 3 product attributes (including intercept), indexed by j
- ► 500 consumers, indexed by *i*
- ightharpoonup 10 purchase occasions each, indexed by t

Hierarchical binary logit example: The data

A choice model of buying decisions given price and promotions:

- \triangleright 3 product attributes (including intercept), indexed by j
- ► 500 consumers, indexed by *i*
- ▶ 10 purchase occasions each, indexed by *t*

Hierarchical binary logit example: The data

A choice model of buying decisions given price and promotions:

- ▶ 3 product attributes (including intercept), indexed by i
- 500 consumers, indexed by i

HB logit specification

Overview

10 purchase occasions each, indexed by t

Declare data in stan

```
int<lower=1> nvar; // number of parameters in the logit regression
int<lower=0> N: // number of observations
int<lower=1> nind: // number of individuals
int<lower=0,upper=1> y[N];
int<lower=1,upper=nind> ind[N]; // indicator for individuals
row_vector[nvar] x[N]:
```

Hierarchical binary logit example: The model

Overview

A choice model of buying decisions given price and promotions:

- ▶ Buy/ Not buy a product with *j* product attributes;
- i consumers with t purchase occasions each.

Hierarchical binary logit example: The model

A choice model of buying decisions given price and promotions:

- ▶ Buy/ Not buy a product with *j* product attributes;
- i consumers with t purchase occasions each.

$$y_{ijt} \sim \mathcal{B}(p_{ijt})$$

Overview

Hierarchical binary logit example: The model

A choice model of buying decisions given price and promotions:

- ▶ Buy/ Not buy a product with *j* product attributes;
- i consumers with t purchase occasions each.

$$y_{ijt} \sim \mathcal{B}(p_{ijt})$$

 $logit(p_{ijt}) \sim \mathcal{N}(x_{ijt}\beta_{ij})$

A choice model of buying decisions given price and promotions:

- ▶ Buy/ Not buy a product with *j* product attributes;
- ightharpoonup i consumers with t purchase occasions each.

$$y_{ijt} \sim \mathcal{B}(p_{ijt})$$
 $logit(p_{ijt}) \sim \mathcal{N}(x_{ijt}\beta_{ij})$
 $\beta_i \sim MultiNormal(z_i\delta, \Sigma)$

A choice model of buying decisions given price and promotions:

- ▶ Buy/ Not buy a product with *j* product attributes;
- i consumers with t purchase occasions each.

$$y_{ijt} \sim \mathcal{B}(p_{ijt}) \ logit(p_{ijt}) \sim \mathcal{N}(x_{ijt}\beta_{ij}) \ eta_i \sim \textit{MultiNormal}(z_i\delta, \Sigma) \ \delta \sim \mathcal{N}(\delta_0, \sigma)$$

A choice model of buying decisions given price and promotions:

- ▶ Buy/ Not buy a product with *j* product attributes;
- ▶ *i* consumers with *t* purchase occasions each.

$$y_{ijt} \sim \mathcal{B}(p_{ijt}) \ logit(p_{ijt}) \sim \mathcal{N}(x_{ijt}\beta_{ij}) \ eta_i \sim MultiNormal(z_i\delta, \Sigma) \ \delta \sim \mathcal{N}(\delta_0, \sigma)$$

HB logit specification

Non-conjugate prior

Overview

$$\Sigma = diag(\tau) \Omega diag(\tau)$$
$$\tau \sim \Gamma(a, b)$$
$$\Omega \sim LKJcorr(\nu)$$

10/25

A choice model of buying decisions given price and promotions:

- ▶ Buy/ Not buy a product with *i* product attributes:
- i consumers with t purchase occasions each.

$$y_{ijt} \sim \mathcal{B}(p_{ijt})$$
 $logit(p_{ijt}) \sim \mathcal{N}(x_{ijt}\beta_{ij})$
 $\beta_i \sim MultiNormal(z_i\delta, \Sigma)$
 $\delta \sim \mathcal{N}(\delta_0, \sigma)$

Non-conjugate prior

$$\Sigma = diag(\tau) \Omega diag(\tau)$$
$$\tau \sim \Gamma(a, b)$$
$$\Omega \sim LKJcorr(\nu)$$

hierarchical_binlogit_fullcov="data { vector[nvar] delta: vector<lower=0>[nvar] tau: corr matrix[nvar] Omega: // Vbeta - prior correlation to vector(delta) ~ normal(0, 5): to_vector(tau) ~ gamma(2, 0.5); Omega ~ lki_corr(2); beta[h]~multi normal(delta, quad form diag(Omega, tau)): v[n] ~ bernoulli_logit(x[n] * beta[ind[n]]): generated quantities { corr_matrix[nvar] Omega_corr: int z[N]: real log_lik[N]; Omega corr=Omega: z[n] = bernoulli_logit_rng(x[n] * beta[ind[n]]): log lik[n]= bernoulli logit lpmf(v[n][x[n] * betg[ind[n]]):

Choice of prior distribution of the variance components

Choice of the LKJ prior distribution

Checking model fit

Overview

- ► Lack of mixing.
- ► Stationarity.
- ► Autocorrelation.
- ▶ Divergent transitions.

Checking model fit

Overview

- Lack of mixing.
- Stationarity.
- Autocorrelation.
- Divergent transitions.

Figure 1: Traceplot of δ parameters (after burnin), using package bayesplot

Summary statistics

Overview

Effective sample size and convergence properties

mean	se_mean	sd	2.5%	97.5%	n_eff	Rhat
delta[1] -2.0226636	0.01805745	0.1661046	-2.3656187	-1.7061194	84.61558	1.034883
delta[2] -1.2509968	0.02373062	0.2545043	-1.7638505	-0.7585503	115.01969	1.019059
delta[3] 0.6711088	0.01967228	0.2450191	0.1780753	1.1415407	155.12809	1.019018

Stan resources

Summary statistics

Overview

Effective sample size and convergence properties

```
        mean
        se_mean
        sd
        2.5%
        97.5%
        n_eff
        Rhat

        delta[1]
        -2.0226636
        0.1805745
        0.1661046
        -2.3656187
        -1.7061194
        84.61558
        1.034883

        delta[2]
        -1.2509968
        0.02373062
        0.2545043
        -1.7638505
        -0.7585503
        115.01969
        1.019059

        delta[3]
        0.6711088
        0.01967228
        0.2450191
        0.1780753
        1.1415407
        155.12809
        1.019018
```


Figure 2: Density plot of δ parameters (after burnin), using package bayesplot

Noncentered (Re)Parameterization - the "Matt Trick"

Consider a model with a diagonal variance-covariance matrix

- Assume our intercept model: $\beta_i \sim \mathcal{N}(\delta, \tau)$
- We can decompose that into: $\mathcal{N}(\delta, \sigma) = \delta + \tau \mathcal{N}(0, 1)$
- ► The trick applies to other distributions in the location-scale family
- ► The transformation:
 - 1. declare α_i in the parameters block and β_i in the transformed parameters block
 - 2. draw $\alpha_i \sim \mathcal{N}(0,1) \& \tau \sim \Gamma(a,b)$
 - 3. compute $\beta_i = \delta + \tau \alpha_i$

Noncentered (Re)Parameterization - the multivariate case

- Assume our full model: $\beta_i \sim MultiNormal(\delta, \Sigma)$
 - If Σ_{ii} is small, then β_{ii} needs to fall into a small range, the sampler needs a small step size
 - If Σ_{ij} is large, then β_{ij} can fall into a wide range, the sampler needs a large step size or lots of small steps
- ► The transformation:

Overview

- 1. declare α_i in the parameters block and β_i in the transformed parameters block.
- 2. draw $\alpha_i \sim \mathcal{N}(0,1) \& \tau \sim \Gamma(a,b)$.
- 3. compute $\beta_i = \delta + \tau \mathbf{L} \alpha_i \sim \mathcal{N}(\delta, \tau^2 \mathbf{L} \mathbf{L}^T)$,
- 4. where $\tau \mathbf{L}$ is the Cholesky factor of $\Sigma = \tau^2 \mathbf{L} \mathbf{L}^T$, and τ is the standard deviation of the errors.

```
y_{ijt} \sim \mathcal{B}(p_{ijt})
logit(p_{ijt}) \sim \mathcal{N}(x_{ijt}\beta_{ij})
eta_{\mathbf{i}} = \delta + \tau \mathbf{L} \alpha_{\mathbf{i}}
\alpha_{i} \sim \mathcal{N}(0, 1)
\delta \sim \mathcal{N}(\delta_{0}, \sigma)
```

Non-conjugate prior

Overview

```
\tau \sim \Gamma(a, b)\Omega \sim LKJcorr(\nu)
```

```
hierarchical_binlogit_fullcov_noncentered="data {
matrix[nyar, nind] alpha: // nyar*H parameter matrix
ow vector[nyar] delta:
/ector<lower=0>[nvar] tau:
holesky factor corr[nyar] | Omega:
ransformed parameters?
ow_vector[nvar] beta[nind];
ratrix[nind,nvar] Vbeta_reparametrized;
/beto_reparametrized = (diag_pre_multiply(tau, L_Omega)*alpha)*;
beta[h]=delta+Vbeta_reparametrized[h];
o vector(delta) = normal(0, 5)
o_vector(tau) ~ aamma(2, 0.5):
/[n] ~ bernoulli_logit(beta[ind[n]]*x[n]);
enerated quantities (
int z[N]:
real loa_lik[N]:
Onega=L_Onega*L_Onega'
og lik[n]= bernoulli logit lnmf(v[n]|betg[ind[n]]*x[n]):
```

Traceplots of model parameters

Overview

The noncentered reparametrization helps tremendously

Figure 3: Traceplot of δ parameters (after burnin), estimated via the centered vs. noncentered parametrization

Summary statistics

Overview

Effective sample size and convergence properties

```
        $summary
        mean
        se_mean
        sd
        2.5%
        97.5%
        n_eff
        Rhat

        delta[1]
        -2.0508997
        0.005138191
        0.1701534
        -2.3861202
        -1.7288254
        1096.632
        1.0009678

        delta[2]
        -1.1951041
        0.006205318
        0.2535605
        -1.7052461
        -0.7068838
        1669.688
        0.9998616

        delta[3]
        0.6966904
        0.006432588
        0.2470562
        0.2011148
        1.1660746
        1475.095
        1.0001598
```


Individual level parameters

Overview

Most parameters are within the 95% highest density intervals

Figure 5: True values (black dots) and the 80% and 95% highest density intervals for the intercept, for the first 100 consumers

Stan resources

Model checking

Overview

Figure 6: Number of successes: posterior replications vs. true value

Model checking

Overview

600 400 200 1000 1050 1100 Number of switches

Figure 6: Number of successes: posterior replications vs. true value

Figure 7: Switches between buying/ not buying: posterior replications vs. true value

Compute hit rates and MSEs based on posterior replications

Model comparison

Overview

Likelihood-based measures: Leave-one-out cross-validation

Table 1: Model comparison based on LOO-CV, using package loo

	Variance model		Full covar	riance model	$NCP\ model$		
	Estimate	SE	Estimate	SE	Estimate	SE	
elpd_loo	-1874.3	43.1	-1871.9	43.2	-1871.2	43	
p_loo	398.6	12.5	364.4	11.8	363.7	11.8	
looic	3748.6	86.2	3743.7	86.4	3742.4	86.5	

Stan resources

Overview

Stan ecosystem

- ▶ lang, math library (C++)
- ▶ interfaces and tools (R, Python, many more)
- documentation (example model repo, user guide & reference manual, case studies, R package vignettes)
- online community (Stan Forums on Discourse)

Libraries implementing Stan

- rstanarm: complex hierarchical models
- ▶ hBayesDM: behavioral decision making models (stan codes on GitHub)
- bayesplot: data visualization

More Stan resources

StanCon 2018 talks: Link

Books:

Overview

- ▶ Bayesian Data Analysis: aka the Bible:)
 - ▶ Link
- ► Bayesian Statistics using Stan
 - ▶ Link
- Statistical Rethinking

▶ Link

github.com/alinafere/eQMW_stan_tutorial