Listing of Claims:

1. (Currently Amended) Process for the manufacture of Olanzapine of the following formula I or a salt thereof:

by converting a compound of the following formula II or a

salt thereof

$$N = \begin{bmatrix} N \\ R_1 \\ R_2 \end{bmatrix}$$
 II

in which wherein

- (i) $R1 R_1$ and $R_2 R_2$ together form =CH-CH₂-CH₃, or
- (ii) $R1 R_1$ and $R_2 R_2$ are both H, or
- (iii) R1 $\underline{R_1}$ is H and $\underline{R_2}$ R2 is $\underline{\text{CH}(R_3)}$ $\underline{\text{CH}_2}$ $\underline{\text{CH}_3}$ $\underline{\text{CH}_{(R_3)}}$ $\underline{\text$

to give Olanzapine or a salt thereof.

2. (Currently Amended) Process according to claim 1, in which wherein the leaving group R3. R3 is -OR4 -OR4, R4 is selected from the group consisting of H, acyl, and sulfonyl.

- 3. (Currently Amended)) Process according to claim 2, in which wherein R4 R4 is H.
- 4. (Currently Amended) Process according to claim 2, in which wherein R4 \underline{R}_4 is selected from the group of acyl and sulfonyl and preferably is trifluoroacetyl or methane sulfonyl.
- 5. (Currently Amended) Process according to claim 1, in which wherein R1 $\underline{R_1}$ and $\underline{R_2}$ R2 together form =CH-CH₂-CH₃ and the conversion is performed by reacting the compound of formula II with a source of sulfur.
- 6. (Cancelled)
- 7. (Currently Amended) The <u>compound process</u> according to claim <u>1</u> <u>11</u>, <u>which wherein the</u> <u>compound of formula II</u> is benzodiazepine of the following formula IV:

or salts thereof.

8. (Currently Amended) The compound process according to claim <u>1</u> <u>11</u>, which wherein the compound of formula <u>II</u> is benzodiazepine-propanol of the following formula VI:

$$N = H$$
 $N = H$
 $N =$

or salts thereof.

9. (Currently Amended) The <u>compound process</u> according to claim <u>1</u> <u>11</u>, <u>which wherein the</u> <u>compound of formula II</u> is benzodiazepine-ester of the following formula VII:

$$N = \begin{array}{c} N \\ N \\ N \end{array}$$
 OR_4
 $N = \begin{array}{c} N \\ N \\ N \end{array}$

in which wherein R4 R₄ is selected from the group consisting of acyl and sulfonyl and preferably is trifluoroacetyl or methane sulfonyl, or salts thereof.

10. (Cancelled).

11. (Currently Amended) A compound of the following formula

$$N = \begin{bmatrix} N \\ N \\ R_2 \end{bmatrix}$$

or salts thereof

in-which-wherein

- (i) R1 \underline{R}_1 and \underline{R}_2 \underline{R}_2 together form =CH-CH₂-CH₃, or
- (ii) $R1 R_1$ and $R_2 R_2$ are both H, or
- (iii) R1 $\underline{R_1}$ is H and $\underline{R_2}$ R2 is $\underline{\text{CH}(R_3)}$ $\underline{\text{CH}_2}$ $\underline{\text{CH}_3}$ $\underline{\text{CH}_2}$ $\underline{\text{CH}_3}$, wherein $\underline{R_3}$ is $\underline{\text{CH}_4}$, $\underline{R_4}$ R3 is selected from the group <u>consisting</u> of hydrogen, acyl and sulfonyland <u>preferably is trifluoroacetyl or methane sulfonyl, or salts thereof.</u>
- 12. (New) The compound of claim 11 wherein R_1 is H and R_2 is -CH(R_3)- CH₂-CH₃, wherein R_4 is trifluoroacetyl or methane sulfonyl.
- 13. (New) The compound according to claim 11, which is a propylidene-benzodiazepine of the following formula III:

III.

14. (New) The compound according to claim 11, which is benzodiazepine of the following formula IV:

15. (New) The compound according to claim 11, which is benzodiazepine-propanol of the following formula VI:

16. (New) The process of claim 9 wherein R_4 is trifluoroacetyl or methane sulfonyl	l .