CDM		_				799	257	TO
SRN								

PES UNIVERSITY, BANGALORE (Established under Karnataka Act 16 of 2013)

UE20MA151

END SEMESTER ASSESSMENT B. Tech. II SEMESTER- Dec 2021 UE20MA151 - Engineering Mathematics - II

Time: 3 Hrs

Answer All Questions

Max Marks: 100

1. a)	Find the average value of the function $\sqrt{xy - y^2}$ over the triangle with vertex (0,0), (10, 1), (1,1).	6
b)	Change the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate.	7
c)	Find the volume of the cylinder $x^2 + y^2 = 2ax$ intercepted between the paraboloid $z = \frac{x^2 + y^2}{2a}$ and the xyplane.	7
2. a)	Find the constants a, b if the directional derivative of the function $\varphi = ay^2 + 2bxy + xz$ at $P(1,2,-1)$ is maximum in the direction of the tangent to the curve, $\vec{r} = (t^3 - 1)\hat{i} + (3t - 1)\hat{j} + (t^2 - 1)\hat{k}$ at the point $(0,2,0)$.	6
b)	Show that $\vec{F} = (x^2 + xy^2)\hat{\imath} + (y^2 + x^2y)\hat{\jmath}$ is conservative force field and find the scalar potential \emptyset such that $\vec{F} = \nabla \emptyset$.	7
c)	Using divergence theorem, evaluate $\iint_S \vec{A} \cdot \hat{n} dS$ where $\vec{A} = x^3 \hat{i} + y^3 \hat{j} + z^3 \hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$.	7
3. a)	Find the Laplace transform of $t \cdot u(t-4) + t^2 \cdot \delta(t-4) + t \cdot \cos 2t + \sqrt{t} \cdot e^{4t} + \frac{\sin at}{t} + 5^t$	6
b)	Sketch the graph of f(t) as a periodic function and show that $L\{f(t)\} = \frac{1}{s^2} \tanh\left(\frac{as}{2}\right)$ $f(t) = \begin{cases} t & 0 \le t \le a \\ 2a - t & a < t \le 2a \end{cases}, f(t + 2a) = f(t)$	7
c)	Express the following function $f(t)$ in terms of unit step function and hence find the Laplace transform $f(t) = \begin{cases} t-1 & 1 < t < 2 \\ 3-t & 2 < t < 3 \end{cases}$	7
4. a)		6
b)	Solve the differential equation $ty'' + 2y' + ty = cost$, if $y(0) = 1$, $y'(0) = 0$ using Laplace transform.	7
c)	Using convolution theorem find $L^{-1}\left[\frac{1}{(s+1)(s^2+1)}\right]$	7

						S	RN	x			
_		Find the Fourier Series expansion of $f(x) = 2x - x^2$ in the interval $0 < x < 3$ and hence									
5.	a)	deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi}{12}$								7	
	b)	By using the sine series for $f(x) = 1$ in $0 < x < \pi$,									
		show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.									6
	c)	Find the direct current part and the first two harmonics from the following table consisting									
		of the variations of periodic current over a period T.									
		t sec	0	^T / ₆	$T/_3$	T/2	$2T/_3$	5T/6	Т		
		A amp	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98	*	7
			•								