Matrix-Free MPM on High-Order Meshes with Ratel and libCEED

Jeremy L Thompson

University of Colorado Boulder jeremy@jeremylt.org

15 July 2025

Ratel Team

Repository: https://gitlab.com/micromorph/ratel

Developers: Zach R. Atkins, Jed Brown, Fabio Di Gioacchino,

Leila Ghaffari, Zach Irwin, Rezgar Shakeri,

Ren Stengel, Jeremy L Thompson

The authors acknowledge support by the Department of Energy, National Nuclear Security Administration, Predictive Science Academic Alliance Program (PSAAP) under Award Number DE-NA0003962.

Overview

Ratel - high order, performance portable solid mechanics

Built on libCEED and PETSc

GPU and CPU performance

Overview

- Ratel Background
- AtPoints Evaluation
- Performance
- Multigrid
- Future Work

ECP Roots

- Ratel built directly on results from ECP CEED project
- libCEED provides high-performance operator evaluation
- PETSc provides linear/non-linear solvers and time steppers
- Ratel built from libCEED + PETSc solid mechanics demo app

Matrix-Free Operators from libCEED

libCEED provides arbitrary order matrix-free operator evaluation

Performance Portability from libCEED

Performance portability with libCEED's matrix-free operators

Extensible Solvers from PETSc

PETSc provides extensible, scalable solvers

What is MPM?

- Continuum based particle method with background mesh for gradients
- Extension of FLIP (which is an extension of PIC)
- Enables large deformation simulations with complex features

MPM vs FEM

MPM can be formulated as very similar to FEM

- Problem on background mesh changes when material points move
- Can be viewed as FEM with arbitrary quadrature point locations
- Natural fit for libCEED matrix-free representation
- Ratel FEM infrastructure provides fast background mesh solves

libCEED Basis Evaluation to Points

- Interpolate from primal to dual (quadrature) space
- Fit Chebyshev polynomials to values at quadrature points
- Evaluate Chebyshev polynomials at arbitrary points

libCEED Basis Evaluation to Points

Interpolation to Chebyshev has same FLOPs as FEM $\mathcal{O}\left(q^4\right)$

- Invert map C^{-1} from quadrature points to Chebyshev coeffs
- Create 1D interpolation matrix B = CN
- Tensor product: $B = (C \otimes C \otimes C) (N \otimes N \otimes N) = (CN) \otimes (CN) \otimes (CN)$
- Additional cost from evaluation to arbitrary points

libCEED Basis Evaluation to Points

Per point evaluation has higher FLOPs $\mathcal{O}\left(q^6\right)$

- Recurrence for Chebyshev values at point $f_0 = 1$, $f_1 = 2x$, $f_n = 2xf_{n-1} f_{n-2}$ $f'_0 = 0$, $f'_1 = 2$, $f'_n = 2xf'_{n-1} + 2f_{n-1} - f'_{n-2}$
- Contract pencil of values with element coefficients
- Operation is independent per quadrature point
- ullet $\mathcal{O}\left(q^3
 ight)$ FLOPs at $\mathcal{O}\left(\hat{q}^3
 ight)$ points (often $qpprox\hat{q})$

AtPoints Operator

Final operator very similar to FEM

- $L = \mathcal{E}^T B^T B^{eT} D B^e B \mathcal{E}$ CeedOperator
- All other operations identical to FEM
- libCEED gives action of local MPM operator
- PETSc responsible for communication between devices $A = P^T LP$

Sample Run

Confined compression of mock HE material

CEED Benchmark Problems

Performance on CEED BPs

- BP1 Scalar projection problem
- BP2 3 component projection problem
- BP3 Scalar Poisson problem
- BP4 3 component Poisson problem

Bulk of FLOPs are in basis evaluation

CEED Benchmark Problems

Performance on CEED BPs

- p = 2, 3, 4 and q = p + 1
- Units cube with 30³, 60³, 90³, 120³, and 150³ elements
- Compare tensor, non-tensor, and at-points basis evaluation
- MMS w/ partial sum of Weierstrass function, a = 0.5, b = 1.5, N = 2

Using 4x AMD Instinct™MI300A Accelerated Processing Units (APUs)

More FLOPs to do leads to lower efficiency

With more components, reach peak efficiency faster

With derivatives, at-points closer to non-tensor

Closest benchmark to representative_workload_

Ogden

Basis cost less important with heavier QFunctions

Preconditioning

Practical problems require preconditioning

- Problems for MPM tend to be poorly conditioned
- Poor conditioning + expensive Mat-Vec = need preconditioning
- Varying structure between elements makes assembly more difficult

PETSc PCMG

- PCMG PETSc geometric multigrid preconditioner
- Requires several operators from the user
 - Restriction operator
 - Interpolation operator
 - Smoother
 - Coarse grid solver

Ratel PCpMG

2 level multigrid with PCpMG

Coarse Solve (AMG)

Ratel PCpMG

pMG giving promising initial results with GPU impl

- Finite strain elasticity with damage
- Confined press of grain/binder with "sticky air" voids
- Jacobi iterations tend to double with 2x refinement
- pMG iteration counts robust with refinement

	# MPM Points	Jacobi its	pMG its
Coarse	388,800	900-1000	35-45
Fine	7,372,800	-	25-40

Future Work

- Continued iMPM development
- AtPoints basis and assembly perf tuning
- More models using Automatic Differentiation
- Further contact models development
- Rust QFunctions
- UHyper, UMat integration
- Addition of fluid dynamics models
- Upstream PETSc + libCEED integration
- We invite contributors and friendly users

Questions?

Repository: https://gitlab.com/micromorph/ratel

Ratel Team: Zach R. Atkins, Jed Brown, Fabio Di Gioacchino,

Leila Ghaffari, Zach Irwin, Rezgar Shakeri,

Ren Stengel, Jeremy L Thompson

Grant: Predictive Science Academic Alliance Program (DE-NA0003962)

