MACHINE LEARNING

MA124 Project specifications
University of Warwick

How to predict rent prices?

#	LOCATION	SIZE OF ROOM (Ft^2)	PEOPLE SHARING	ENSUITE	PRICE PER MONTH (£)
1	EARLSDON	132	2	NO	530
2	KENILWORTH	150	0	YES	970
3	LEAMINGTON	140	1	NO	750
4	KENILWORTH	100	1	YES	720
•••				•••	
m	CANLEY	160	2	NO	800

How to predict rent prices?

#	LOCATION	SIZE OF ROOM (Ft^2)	PEOPLE SHARING	ENSUITE	PRICE PER MONTH (£)
1	EARLSDON	132	2	NO	530
2	KENILWORTH	150	0	YES	970
3	LEAMINGTON	140	1	NO	750
4	KENILWORTH	100	1	YES	720
m	CANLEY	160	2	NO	800
	x_0	x_1	x_2	x_3	y

FEATURES

LABELS

Function to learn

HOW?

- 1. Use the data you have collected to "train" your model to recognise patterns in the data.
- Once model is trained, "test" it on new unseen data and try to predict rent of new houses.

REQUIRES: A LOT of data (10K, 100K, 1000K examples)

Types of learning

SUPERVISED LEARNING:

The model learns from being given "right answers" (labels).

- Predict house rent/house price. (Regression problems)
- Classify an image as "cat" or "dog". (Classification problems)

• ...

UNSUPERVISED LEARNING:

The model does not have "right answers" (labels).

- Generate new music.
- Generate a new image.
- Fly a helicopter.

•

How does the model learn? TASK A2

• 3 points in the plane.

- GOAL: find the line of best fit
- MODEL: y = mx + c

PARAMETERS TO LEARN

How does the model learn? TASK A2

- Start with random values m_0 and c_0 .
- Initial predictions:

$$\hat{y} = m_0 x + c_0$$

• LOSS: For each point, squared distance

$$\hat{y} \leftarrow y$$

- COST: Average of these 3 losses.
- GOAL: find m and c that minimize the COST.

Optimization: Gradient descent.

GOAL: find m and c that minimize the cost J(m, c).

- Start in $J(m_0, c_0)$
- Compute the direction of maximum descent : $-(\frac{dJ}{dm}, \frac{dJ}{dc})$
- Take a step of length α towards maximum descent:

$$(m_1, c_1) = (m_0, c_0) - \alpha \cdot (\frac{dJ}{dm}, \frac{dJ}{dc})$$

• Repeat from (m_1, c_1) until you reach the minimum.

Binary classification: Cat or dog?

#	WEIGHT (Kg)	HEIGHT(cm)	1 = Cat 0 = Dog
1	4.23	23	1
2	3.13	15	0
3	5.32	105	0
4	4.47	25	1
m	5.31	110	0

Binary classification: Cat or dog?

#	WEIGHT (Kg)	HEIGHT(cm)	1 = Cat 0 = Dog
1	4.23	23	1
2	3.13	15	0
3	5.32	105	0
4	4.47	25	1
m	5.31	110	0
	x_0	x_1	y
	FEAT	LABELS	

Binary classification

For each training example we have:

- x: feature vector containing the features of the animal $x = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$
- y: label containing 0 for dog or 1 for cat.

Model:

- Input: features x
- Output: \hat{y} , the probability it is either a cat or a dog.

If
$$\hat{y} > 0.5$$
 it is a cat

If
$$\hat{y} \le 0.5$$
 it is a dog

Logistic regression model

Output

Binary Cross-entropy Loss

For binary classification problems we use the following loss function:

$$L(\hat{y}, y) = -(y \cdot \log \hat{y} + (1 - y) \cdot \log(1 - \hat{y}))$$

When y = 1:

- $\hat{y} \sim 0$ $L(\hat{y}, 1) \sim \infty$
- $\hat{y} \sim 1$ $L(\hat{y}, 1) \sim 0$

When y = 0:

- $\hat{y} \sim 0$ $L(\hat{y}, 0) \sim 0$
- $\hat{y} \sim 1$ $L(\hat{y}, 0) \sim \infty$

Cost function

For every training example i = 1, ..., m

- $x^{(i)}$: Features vector.
- $y^{(i)}$: Label
- $\hat{y}^{(i)} = \sigma(W \cdot x^{(i)} + b)$: Prediction of the model

<u>COST</u>: average of the losses on all training examples

$$J(W,b) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$$

 $\underline{\mathsf{GOAL}}$: find W and b that minimize the total cost.

 $\min_{W,b} J(W,b)$

Optimization: Gradient descent

- Step 0 : Initialize W, b randomly.
- Step 1 : Compute cost J(W, b).
- Step 2 : Compute derivatives of cost with respect to parameters W, b .
- Step 3 : Update parameters with a step α towards minimum:

$$w_0 = w_0 - \alpha \cdot \frac{\partial J}{\partial w_0}$$

$$w_1 = w_1 - \alpha \cdot \frac{\partial J}{\partial w_1}$$

$$b = b - \alpha \cdot \frac{\partial J}{\partial b}$$

Repeat steps 1 to 3 till you reach minimum.

Logistic Regression Sum Up

- Initialize model parameters: W, b.
- Train the model parameters (training loop):

1. Forward propagation:
$$\hat{y}^{(i)} = \sigma(W \cdot x^{(i)} + b)$$

2. Compute cost:
$$J = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$$

3. Backward propagation:
$$\frac{\partial J}{\partial w_0}$$
, $\frac{\partial J}{\partial w_1}$, $\frac{\partial J}{\partial b}$

4. Update parameters:
$$b = b - \alpha \cdot \frac{\partial J}{\partial b}$$

• With the trained W and b predict on new data (test phase):

If
$$\sigma(W \cdot x + b) > 0.5$$
 it is a CAT!

Neural Network model

Neural Network forward propagation

•
$$z = \begin{pmatrix} z_0 \\ z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} w_{00} & w_{01} \\ w_{10} & w_{11} \\ w_{20} & w_{21} \\ w_{30} & w_{31} \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} + \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
 FIRST LINEAR LAYER

•
$$a = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \tanh \begin{pmatrix} z_0 \\ z_1 \\ z_2 \\ z_3 \end{pmatrix}$$

TANH ACTIVATION FUNCTION

$$\mathbf{v} = (\mathbf{t_0} \quad \mathbf{t_1} \quad \mathbf{t_2} \quad \mathbf{t_3}) \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} + \mathbf{c}$$

SECOND LINEAR LAYER

• $\hat{y} = \sigma(v)$

PARAMETERS TO LEARN

SIGMOID ACTIVATION FUNCTION

Trainable parameters

$$\bullet \ W = \begin{pmatrix} w_{00} & w_{01} \\ w_{10} & w_{11} \\ w_{20} & w_{21} \\ w_{30} & w_{31} \end{pmatrix}$$

Weight matrix first linear layer

$$\bullet \ b = \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Bias vector first linear layer

•
$$T = (t_0 \quad t_1 \quad t_2 \quad t_3)$$

Weight matrix second linear layer

• c Bias vector second linear layer

Neural Network: cost and loss

• COST and LOSS same as Logistic Regression:

$$J(W, b, T, c) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$$

$$L(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)} \cdot \log \hat{y}^{(i)} + (1 - y^{(i)}) \cdot \log(1 - \hat{y}^{(i)}))$$

• Gradient descent to find parameters W, b, T, c that minimize J.

Training Loop

Training Loop

FORWARD PROPAGATION

Training Loop

BACKWARD PROPAGATION

