1.2. Límites de funciones

Introducción

El concepto que marca la diferencia entre el cálculo, el álgebra y la trigonometría, es el de límite. El límite es fundamental para determinar la tangente a una curva o la velocidad de un objeto.

1.2.1. Definición de límites

Definición 1.1. El límite de una función f(x) cuando x se acerca a x_0 , es el número L, el cual se le denota por:

$$\lim_{x \to x_0} f(x) = L,$$

siempre que f(x) esté arbitrariamente cercana a L para toda x lo suficientemente cerca, pero diferente de x_0 .

En pocas palabras, el proceso de límite consiste en examinar el comportamiento de una función f(x) cuando x se aproxima a un número x_0 , que puede o no estar en el dominio de f.

1.2.2. Reglas de los límites

El siguiente resultado nos indica cómo calcular límites de funciones que son combinaciones aritméticas de otros cuyos límites ya se conocen.

Teorema 1.2. Supongamos que $\lim_{x\to x_0} f(x) = L$ y $\lim_{x\to x_0} g(x) = M$, entonces:

• El límite de una suma o resta de funciones:

$$\lim_{x\to x_0}(f(x)\pm g(x))=\lim_{x\to x_0}f(x)\,\pm\,\lim_{x\to x_0}g(x)=L\pm M,$$

■ El límite de un producto de funciones:

$$\lim_{x\to x_0} (f(x)\cdot g(x)) = \lim_{x\to x_0} f(x)\cdot \lim_{x\to x_0} g(x) = L\cdot M,$$

• El límite de un cociente de funciones:

$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{L}{M}, M \neq 0.$$

■ El límite del múltiplo constante:

$$\lim_{x \to x_0} (k \cdot f(x)) = k \cdot L$$

Ejemplo 3. Si $f(x) = \frac{x^2 - 1}{x - 1}$, para $x \to 1$:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$$

En la figura 8 se muestra la gráfica de f(x). El cálculo del límite indica que cuando el dominio $x \to 1$, la imagen f(x) tiende a 2. En este mismo ejemplo se utiliza un procedimiento algebraico para encontrar el mismo resultado.

Figura 8: $\lim_{x\to 1} f \to 2$

Ejemplo 4. Si $f(x) = \frac{x^2 - 3x - 10}{x - 5}$, para $x \to 5$:

$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{x - 5} = \lim_{x \to 5} \frac{(x - 5)(x + 2)}{x - 5} = \lim_{x \to 5} (x + 2) = 7.$$

Figura 9: $\lim_{x\to 5} f \to 7$

En la figura 9 se muestra la gráfica de f(x). El cálculo del límite indica que cuando el dominio $x \to 5$, la imagen f(x) tiende a 7. En este mismo ejemplo se utiliza un procedimiento algebraico para encontrar el mismo resultado.

Ejemplo 5.

$$\lim_{x \to 1} (x^3 + 4x^2 - 3) = \lim_{x \to 1} x^3 + \lim_{x \to 1} 4x^2 - \lim_{x \to 1} 3$$
$$= 1^3 + 4(1)^2 - 3$$
$$= 2.$$

1.2.3. límites al infinito

Con frecuencia el comportamiento a **largo plazo** es un tema de interés en economía. Por ejemplo, un economista podría desear conocer la población de cierto país después de un periodo de tiempo indefinido.

En matemáticas, el símbolo infinito ∞ se utiliza para representar el crecimiento ilimitado o el resultado de tal crecimiento. He aqui las definiciones de los límites que implican infinito, que se usarán para estudiar el comportamiento a largo plazo.

Definición 1.3. Decimos que f(x) tiene el límite L cuando x tiende al

infinito, y escribimos:

$$\lim_{x \to \infty} f(x) = L$$

si cuando x se aleja cada vez más del origen en dirección positiva, f(x) se acerca arbitrariamente a L.

Se tienen los siguientes hechos básicos:

$$\lim_{x \to \pm \infty} k = k \text{ y } \lim_{x \to \pm \infty} \frac{1}{x^k} = 0.$$

Los límites al infinito tienen propiedades similares a los de los límites finitos. Además, debido a que cualquier recíproco de una potencia $1/x^k$ para k>0, se hace más y más pequeño en valor absoluto cuando x aumenta o disminuye sin límite.

Teorema 1.4. Supongamos que $\lim_{x\to x_0} f(x) = L \ y \lim_{x\to \pm \infty} g(x) = M$, entonces:

■ El límite de una suma o resta de funciones:

$$\lim_{x \to \infty} (f(x) \pm g(x)) = \lim_{x \to \pm \infty} f(x) \, \pm \, \lim_{x \to \pm \infty} g(x) = L \pm M,$$

■ El límite de un producto de funciones:

$$\lim_{x\to\pm\infty}(f(x)\cdot g(x))=\lim_{x\to\pm\infty}f(x)\cdot \lim_{x\to\pm\infty}g(x)=L\cdot M,$$

■ El límite de un cociente de funciones:

$$\lim_{x \to \pm \infty} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to \pm \infty} f(x)}{\lim_{x \to \pm \infty} g(x)} = \frac{L}{M}, M \neq 0.$$

■ El límite del múltiplo constante:

$$\lim_{x \to \pm \infty} (k \cdot f(x)) = k \cdot L$$

Ejemplo 6. Encuentre el $\lim_{x\to\infty} \left(5+\frac{1}{x}\right)$

Solución

Para obtener intuitivamente lo que ocurre con este límite, se evalúa la función

$$f(x) = 5 + \frac{1}{x}$$

en x=0.5, 1, 5, 10, 20 y 50 y se muestran los datos en una tabla:

x	0.5	1	5	10	20	50
f(x)	7	6	5.2	5.1	5.05	5.02

Los valores de la función en el renglón inferior de la tabla indican que f(x) se aproxima a 5 cuando x crece más y más (ver figura 10). En este ejemplo observamos que 1/x se hace más y más pequeño en valor absoluto cuando x aumenta.

$$\lim_{x \to \infty} \left(5 + \frac{1}{x} \right) = \lim_{x \to \infty} 5 + \lim_{x \to \infty} \frac{1}{x}$$
$$= 5 + 0 = 5.$$

Figura 10: $\lim_{x\to\infty} f \to 5$

Ejemplo 7. Encuentre el $\lim_{x\to\infty} \frac{x^2}{1+x+2x^2}$ Solución

Para obtener intuitivamente lo que ocurre con este límite, se evalúa la función

$$f(x) = \frac{x^2}{1 + x + 2x^2}$$

en x=100, 1000, 10000 y 100000 y se muestran los datos en una tabla:

x	100	1 000	10 000	100 000
f(x)	0.49749	0.49975	0.49997	0.49999

Los valores de la función en el renglón inferior de la tabla indican que f(x) se aproxima a 0.5 cuando x crece más y más (ver figura 11). Para confirmar esta observación analíticamente, se divide cada término de la ecuación en f(x) entre la potencia más alta que aparece en el denominador $1+x+x^2$; es decir, entre x^2 . Esto permite encontrar el lím $_{x\to\infty} f(x)$; aplicando las reglas del recíproco de la potencia de la siguiente manera:

$$\lim_{x \to \infty} \frac{x^2}{1 + x + 2x^2} = \lim_{x \to \infty} \frac{x^2/x^2}{1/x^2 + x/x^2 + 2x^2/x^2}$$
$$= \frac{1}{0 + 0 + 2} = 0.5$$

Figura 11: $\lim_{x\to\infty} f \to 0.5$

Problema 2. Una mercancía se introduce en un precio inicial de \$5 por unidad, y t semanas después el precio es:

$$p(t) = 1 + 20e^{-0.1t} - 16e^{-0.2t}$$

por unidad. Determine lo siguiente:

- a) ¿Cuál es el precio unitario de la mercancía 5 semanas después?
- b) ¿Cuál es el precio unitario de la mercancía 22 semanas después?
- c) ¿Cuál es el precio de "largo plazo" $(t \to \infty)?$

Solución al problema 2

a) Después de 5 semanas (t=5), el precio es

$$p(5) = 1 + 20e^{-0.1(5)} - 16e^{-0.2(5)} = 7.24454$$

b) Después de 22 semanas (t=22), el precio es

$$p(22) = 1 + 20e^{-0.1(22)} - 16e^{-0.2(22)} = 3.01963$$

c) Como

$$\lim_{t \to \infty} p(t) = \lim_{t \to \infty} (1 + 20e^{-0.1t} - 16e^{-0.2t})$$
$$= 1 + 20(0) - 16(0)$$
$$= 1$$

"a largo plazo", el precio tiende a \$1 por unidad. La gráfica de la función de precio unitario p(t) se muestra en la figura 12.

