Statistics: Principles, Methods and R (II)

Gao Fengnan^{1 2}

27.02.2017

¹School of Data Science, Fudan University

²Shanghai Center for Mathematical Sciences

Overview

Basic Asymptotics Revisited

Bayesian Inference

Before we start

- · Lecturers: Gao Fengnan
 - · Office: N202 Zibin Building
 - Email:
 - Office Hour: 15-17, every Friday afternoon
- · Teaching Assistant: He Siyuan
 - Email:

Basic Course Information

- Course Objective
 The course covers fundamental aspects of probability and statistical methods and principles.
 Data illustration using statistical software R constitutes an integral part throughout the course, therefore provides the hands-on experience in simulation and data analysis.
- · Course Requirement
 - Understand key statistical concepts
 - Be able to program in R
 - Complete homework and project assignments
 - · Pass the exams

 The topics covered in this course include but are not restricted to: EM-algorithm, robustness, Bayesian inference, importance sampling, linear regression, logistic regression, multivariate models, statistical decision theory, clustering, inference for independence, causal inference, graphical models, nonparametric kernel estimation

Basic Course Information—Continued

- Every Monday in the afternoon in HGX306
- The last 20–30 minutes every lecture might be used for solving problems
- Two important exams—the mid-term and final exam.
- Two quizzes, taking place approximately at a quarter and three quarters of the semester.
- For imperative reasons, I will be away for a week or two during the semester, the solutions include
 - · finding someone to replace me, or
 - assigning that week to be the mid-term exam week

- A project assignment. Key aspects include
 - Working in teams of 2-3 people
 - A real-world data analysis problem
 - · Program in R
- The final mark will be a weighted average of all the evaluations, subject to some proper rescaling.
- The evaluations consist of (in decreasing order in importance) final exam, mid-term exam, project and quizzes.

Course References

· Basic references

- Pawitan, Yudi. In all likelihood: statistical modelling and inference using likelihood. Oxford University Press, 2001.
- Wasserman, Larry. All of statistics: a concise course in statistical inference.
 Springer Science & Business Media, 2013.
- Knight, Keith. Mathematical Statistics. Texts in Statistical Science Series. Boca Raton: Chapman & Hall/CRC Press, ©2000.
- Wickham, Hadley. ggplot2: elegant graphics for data analysis. Springer, 2016.

· Advanced references

- Tsybakov, A B. Introduction to Nonparametric Estimation. english ed. Springer Series in Statistics. New York: Springer, ©2009.
- Van der Vaart, Aad W. Asymptotic statistics. Vol. 3. Cambridge university press, 2000.

In This Course

- Emphasis of the theoretical underpinnings and foundations of statistical inference.
- In the modeling/homework assignments, you will encounter other aspects
 of statistics, such as gathering, description and summarization of data

Basic Asymptotics Revisited

Recapitulation—Different Converges of Random Variables

Definition (Convergence in Distribution)

A sequence X_1, X_2, \ldots of real-valued RV is said to converge in distribution, or converge weakly, or converge in law to a RV X if and only if (IIF)

$$\lim_{n\to\infty} F_n(x) = F(x)$$

for every $x \in \mathbb{R}$ at which F is continuous. Here F_n and F are the distribution functions of RV X_n and X, respectively. If X_n converges to X in distribution, we write

$$X_n \rightsquigarrow X$$
.

Definition (Convergence in Probability)

A sequence X_1, X_2, \ldots of real-valued RV is said to converge in probability to the RV X IIF for any $\varepsilon>0$

$$\lim_{n\to\infty}\mathbb{P}(|X_n-X|\geq\varepsilon)=0.$$

If X_n converges to X in probability, we write

$$X_n \xrightarrow{P} X$$
.

Recapitulation—Different Converges of Random Variables

Definition (Convergence in Distribution)

A sequence X_1, X_2, \ldots of real-valued RV is said to converge in distribution, or converge weakly, or converge in law to a RV X if and only if (IIF)

$$\lim_{n\to\infty} F_n(x) = F(x)$$

for every $x \in \mathbb{R}$ at which F is continuous. Here F_n and F are the distribution functions of RV X_n and X, respectively. If X_n converges to X in distribution, we write

$$X_n \rightsquigarrow X$$
.

Definition (Convergence in Probability)

A sequence X_1, X_2, \ldots of real-valued RV is said to converge in probability to the RV X IIF for any $\varepsilon>0$

$$\lim_{n\to\infty}\mathbb{P}(|X_n-X|\geq\varepsilon)=0.$$

If X_n converges to X in probability, we write

$$X_n \xrightarrow{P} X$$
.

9

Recapitulation—Different Converges of Random Variables

Definition (Almost Sure Convergence)

A sequence X_1, X_2, \ldots of real-valued RV is said to *converge almost surely* towards X IIF

$$\mathbb{P}(\lim_{n\to\infty}X_n=X)=1.$$

If X_n converges to X almost surely, we write

$$X_n \xrightarrow{\text{a.s.}} X$$
.

Definition (Convergence in Mean)

For some real number $r \geq 1$, X_1, X_2, \ldots converge in mean towards X IIF

$$\lim_{n\to\infty}\mathbb{E}[|X_n-X|^r)=0,$$

If X_n converges to X in L^r , we write

$$X_n \xrightarrow{L^r} X$$
.

Recapitulation—Relations of Different Convergence Modes

Relations of Different Convergence Modes of Random Variables

Recapitulation—Law of Large Numbers and Central Limit Theorem

Let X be a real-valued RV, and let X_1, X_2, X_3, \ldots be an infinite sequence of IID copies of X. Let $\overline{X}_n = \left(\sum_{i=1}^n X_i\right)/n$ be the empirical averages of this sequence.

Theorem (Weak Law of Large Numbers)

Suppose that the first moment $\mathbb{E}[|X|]$ of X is finite. Then \overline{X}_n converges in probability to $\mathbb{E}[X]$.

Theorem (Strong Law of Large Numbers) Suppose that the first moment $\mathbb{E}[|X|]$ of X is finite. Then \overline{X}_n converges almost

surely to $\mathbb{E}[X]$.

Theorem (Lindeberg-Lévy CLT)

Suppose that the variance $\sigma^2 := \mathbb{E}[|X - \mathbb{E}[x]|^2] \text{ is finite and the }$ expectation $\mathbb{E}[X]$ of X is μ . Then as $n \to \infty, \sqrt{n}(\overline{X}_n - \mu) \text{ converges in }$ distribution to a normal law $N(0, \sigma^2)$

$$\sqrt{n}(\overline{X}_n - \mu) \rightsquigarrow N(0, \sigma^2).$$

Why are LLN and CLT important?

 Because the asymptotics enable us to do inference.

What distinguishes statisticians from computer/data scientists are not estimation. Anyone may propose estimators and sometimes they are good, but only statisticians can do inference.

• Suppose we observe IID sequence $X_1, X_2, \ldots, X_n \sim N(\mu, 1)$ and would like to estimate μ , the maximum likelihood estimator (MLE) gives

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

But how to determine the quality of the

• By the strong LLN,
$$\hat{\mu}_n \xrightarrow{\text{a.s.}} \mu$$

- How to construct a (1α) -confidence interval for μ ?
- By the CLT, $\sqrt{n}(\hat{\mu}_n \mu) \leadsto N(0,1),$ then

$$\mathbb{P}(\sqrt{n}|\hat{\mu}_n - \mu| > z_{\alpha/2}) \to \alpha.$$

• With approximately probability $1 - \alpha$, $\mu \in (\hat{\mu}_n \pm z_{\alpha/2}/\sqrt{n})$

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let X_1, \ldots, X_n be independent RV's such that X_i takes value in $[a_i, b_i]$ almost surely for all $i \le n$. Let $S = \sum_{i=1}^n (X_i - \mathbb{E}[X_i])$. Then for every t > 0,

$$\mathbb{P}(S \ge t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right).$$

Lemma (Hoeffding's lemma)

Let Y be a RV with $\mathbb{E}[Y]=0$, taking value in a bounded interval [a,b]. Then $\log \mathbb{E}[e^{\lambda Y}] \leq \lambda^2 (b-a)^2/8$.

Proof of both Hoeffding's lemma and inequality.

On the blackboard.

Application of Hoeffding's Inequality—Nonasymptotic Inference on Sample Mean

- Take X_i 's to be IID RV's with value only from [b, a]
- Estimate the expecation $\mathbb{E}[X]$ with sample mean \overline{X}_n
- · Hoeffding's inequaity says

$$\mathbb{P}(\sqrt{n}(\overline{X}_n - \mathbb{E}[X]) \ge t) \le \exp\left(-\frac{2t^2}{(b-a)^2}\right).$$

The Bayesian Philosophy

Bayesian
Probability describes degrees of belief, not limiting frequency.
We can make probability statements about parameters, even though they are fixed constants.
We make inferences about a parameter θ by producing a probability distribution for θ .

Frequentist v.s. Bayesian

The Bayesian Method

Bayesian inference is usually carried out in the following steps.

- 1. Choose a probability density $\pi(\theta)$ —the *prior distribution*—to express our beliefs about a parameter θ before any data
- 2. Choose a statistical model $f(x|\theta)$ that reflects our belief about x given θ
- 3. After observing data X_1, \ldots, X_n , we update our beliefs and calculate the posterior distribution $\pi(\theta|X_1, \ldots, X_n)$

Recall Bayes' theorem

Theorem (Bayes' Theorem)

For two events A and B with $\mathbb{P}(B) \neq 0$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}.$$

Bayesian Procedure

Keep in mind that the parameter θ is random!

- Θ -the parameter, X-data
- Suppose heta only takes discrete values,

$$\begin{split} \mathbb{P}(\Theta = \theta | X = x) &= \frac{\mathbb{P}(X = x, \Theta = \theta)}{\mathbb{P}(X = x)} \\ &= \frac{\mathbb{P}(X = x | \Theta = \theta) \mathbb{P}(\Theta = \theta)}{\sum_{\theta} \mathbb{P}(X = x | \Theta = \theta) \mathbb{P}(\Theta = \theta)} \end{split}$$

- Suppose continuous heta, we use density function

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\theta)\pi(\theta)d\theta}.$$

• Suppose n IID observations $X^{(n)} := \{X_1, \dots, X_n\}$ and write non-random $x^{(n)} = \{x_1, \dots, x_n\}$, then the likelihood function is

$$f(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n f(x_i|\theta)=L_n(\theta).$$

Bayesian Procedure Continued

· We get

$$\pi(\theta|x^{(n)}) = \frac{f(x^{(n)}|\theta)\pi(\theta)}{\int f(x^{n}|\theta)\pi(\theta)d\theta} = \frac{L_n(\theta)\pi(\theta)}{c_n} \propto L_n(\theta)\pi(\theta)$$

where $c_n = \int L_n(\theta) \pi(\theta) d\theta$ is called the normalizing constant.

- Posterior is proportional to Likelihood times Prior.
- With $L_n(\theta)\pi(\theta)$, c_n can always be recovered.
- Compare with normal distribution, the density is proportional to $\exp\left(-x^2/(2\sigma^2)\right)$, we can recover the full density by calculating the integral

$$\int \exp(-x^2/(2\sigma^2)) dx.$$

Examples

Example (Bernoulli Experiment)

Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$, how to estimate p?

- The MLE gives $\hat{p}_n = \overline{X}_n$
- The Bayesian way—specify a prior π on p first—a density taking value on all possible p's
- We take uniform prior on [0, 1], i.e., $\pi(p) = 1_{[0,1]}(p)$
- Any other possible prior for p?