

on-board the rocket, have:

Tacceleration: A = cnst,

lexhaust velocity; VE = cnst.

The rocket accelerates so that passengers on-board feel a <u>constant</u> acceleration A, and -- since the rocket engines perform reliably -- the engineers on-board the rocket record a <u>constant</u> fuel exhaust velocity UE. If t is the rocket trip time as measured by an earth observer, and T the corresponding time on the rocket,

we want to find the distance D traveled by the rocket in a given time tor t, the fuel fraction remaining at that time, etc. How far can we go?

1) Define the usual velocity parameter B; with c = light velocity:

(4)

Earth & rocket observers agree on values of B, but they measure B according to different clock times t (EARTH) & T (ROCKET). These times are related by:

$$\rightarrow$$
 dt = d $\tau/\sqrt{1-\beta^2}$, instantaneously (when $\beta(t) = \beta(\tau)$).

To connect the tlearth) & Tlrocket) motions, note that an increment in v of dv learth) is related to the corresponding increment dulkocket) by...

$$\rightarrow dv = (1-\beta^2) du$$
.

(3)

This result follows from the relativistic velocity-addition formula. By combining Eqs. (2) \$ (31, we can write...

$$dv/dt = (1-\beta^2)^{3/2} du/dz$$
.

(4)

Here, du/dr is the rocket acceleration felt by its occupants, while dv/dt is the apparent acceleration as logged by an earth observer. We want

du/dr = A = enst for the rocket occupants, so Eq. (4) reads ...

$$d\beta/dt = \frac{A}{c} (1-\beta^2)^{3/2} \rightarrow \beta(t) = (At/c)/[1+(At/c)^2]^{1/2}$$
, (5)

Note that we can get to $\beta \to 1$, but only at $t \to \infty$ (when everyone will have forgotten this impropriety). Anyway, using Eq.(5) in Eq.(2), we can integrate to relate earth & rocket times t & \tau, and then get \beta in terms of \(\tau, \alpha \s.\).

$$t = \frac{c}{A} \sinh(A\tau/c)$$
, $\beta(\tau) = \tanh(A\tau/c)$.

2) The distance D traveled in earth time t is found by integrating Eq. (5)...

$$\rightarrow D = \int_{0}^{t} c \beta(t') dt' = \frac{c^{2}}{A} \left[\sqrt{1 + (At/c)^{2}} - 1 \right] \rightarrow ct, \text{ as } t \rightarrow large. \quad (8A)$$

D grows linearly with earth time t. The situation is quite different for rocket time z. By plugging Eq. (6), i.e. At/c=sinh(Az/c), into (8A)...

$$\overline{D(\tau)} = (c^2/A) \left[\cosh(A\tau/c) - 1 \right] \longrightarrow (c^2/2A) e^{A\tau/c}, \text{ as } \tau \rightarrow \text{large.} \quad (8B)$$

We see that D grows exponentially with time to on board the vocket.

3) So far, our results don't depend on the rocket fuel exhaust velocity V_E.

To bring in V_E, let m be the instantaneous rocket rest mass (m decreases with time), and by momentum conservation write the <u>rocket equation</u>

→ mcdβ + (1-β²) V_E dm = 0.

(9)

 $V_E=$ const (on-board the rocket), and we can solve (9) for β as a fcn of m. The result can be quoted in terms of two convenient ratios, $R \notin E$, as

BURN-RATIO:
$$R = m_o/m$$

EXHAUST
PARAMETER: $E = V_E/C$
 $\beta = (R^{2e} - 1)/(R^{2e} + 1) < 1$. (10)

Mo is the initial rocket mass (as it leaves earth), so R measures the mass

of fuel that must be burned to deliver a unit (payload) mass at journey's end. E is just the rocket fuel exhaust velocity in units of light speed C.

4) REMARKS on: $\beta = (R^{2\epsilon} - 1)/(R^{2\epsilon} + 1)$, $R = m_0/m \notin \epsilon = V_{\epsilon}/c$. (10)

1. For chemical rockets, & is very small ... $\epsilon \sim 10^{-4}$ is typical. Then (10) =>

→ B = Eln R, " v = v = ln (mo/m), for a chemical rocket. (11)

Such a vocket never gets close to light speed for any reasonable burn ratio. If $\varepsilon \sim 10^{-4}$ 4 R = 10^N (i.e., 10^N tons of fuel burned for each ton of psyload), then: $\beta \simeq 2.3 \times 10^{-4}$ N. So even if R = 10^{15} , only get to $\beta \simeq 0.0035$. NOTE: 10^{15} tons of liquid fuel occupies a volume of $\sim 2 \times 10^5$ cubic miles.

- $\stackrel{?}{=}$ For fixed burn ratio R >1, the rocket relocity β increases as the exhaust relocity ϵ increases. The fastest—and farthest—trip possible thus employs a "photon rocket", with $\epsilon=1$. Here, by some engineering miracle, the spent fuel is ejected from the rocket engine at light speed, $V_{\epsilon}=c$.
- 3: For fixed E (i.e. fixed engine design), B increases as R increases -- so you can get going fast if you are willing to burn enough fuel. But how much? A relevant form for the burn ratio R follows from setting B[Eq. 171] = B[Eq. 10]:

R increases exponentially fast with rocket trip-time T (and thus with distance traveled); R > Large is a dominant factor in limiting our rocket trip.

 $R(\tau) = m_o/m(\tau) = exp(A\tau/ec)$, for cost on-board accel A. (12)

- 4. The physical parameters most relevant to planning our rocket trip are:
 - burn-ratio R... how big a rochet can we build :
 lxhaust parameter E... can we design a photon vocket, ²/₂ €→1?
 - on-board trip-time T ... for passenger comfort: T < human lifetime.

To get the trip distance D in terms of R, E and T, use Eq. (12) to eliminate A, via $A\tau/c = \epsilon \ln R$, and plug this into Eq. (8B) to get...

 $D = \left[c\tau / \frac{1}{2} \epsilon \ln R \right] \sinh^{2} \left(\frac{1}{2} \epsilon \ln R \right)$

(13)

5) Consider a "symmetric" round trip from larth E to a star S lying at distance D. The triptakes total rocket time T, with equal times T/4 spent on each leg of ac-

celeration & deceleration (at rate A=cnst), per sketch. The maximum vocket velocity β_{max} is reached at the trip midpoints, and the same distance D/2 is traveled on each leg. β_{max} is given by Eq.(7) evaluated at $\frac{T}{4}$, namely: $\frac{\beta_{max}}{\beta_{max}} = \frac{tanh(AT/4c)}{\Delta T/4c}$, and the burn-ratio $R=m_0/m$ ($\frac{M}{m_0}=m_0/m$ cocket mass, $\frac{M}{m_0}=m_0/m$) is given by Eq.(12): $\frac{R(T)}{\Delta T/4c}=\frac{RT/4c}{\Delta T/4c}$. Eqs.(6) §(8) are modified slightly to give the clapsed earth time t and $E \hookrightarrow S$ distance D...

 $t = (4c/A) \sinh(A\tau/4c)$, $D = (2c^2/A) [\cosh(A\tau/4c) - 1]$.

We are free to choose the on-board acceleration A -- for passenger comfort, we design the engines to give $A=10\,\text{m/sec}^2\simeq 1\,\text{g}$ (one earth gravity). Also, we can pretend to have invented a photon rocket, with exhaust velocity E=1, so as to take the longest possible trip in a given time τ . Other relevant numbers are...

- 1 earth year = 3,1536×107 sec,
- 1 l.y. (light year) = c × 1 year = 9.4543 × 10¹² km,

(15)

• mass of earth: Me = 5.983×10²⁴ kgm = 6.595×10²¹ tons.

Then it turns out that the critical limiting parameter for the trip is the burn-ratio R. If we want the payload mass m = 100 tons (to return to earth) and also want the initial mass mo < Me, we don't have enough fuel to travel for more than $\tau = 43 \text{ yr}$. Representative numbers appear below...

PHOTON ROCKET: 6=1 @ accel'n A=10 m/sec2 = 1 g

1	ocket time T, yr.	earth time	trip distance D. L.y.	max.vel./c BMAX	bumratio R=mo/m	REMARKS
	1	1.0016	0.066	0.2569	2.86	D≈ 50 × solar system diam.
	3	3.32	0.623	0.6575	23.4	
	5	6.57	1.893	0.8653	192	
	7	11.7	4.236	0.9508	1569	Get to α -Centauri.
	10	26.2	11.34	0,9896	36,750	Visit ~15 nearby stars.
	15	98.0	47.13	0.9992	7.05×10 ⁶	
	20	365	180.5	1-5.4×10 ⁻⁵	1.35×10 ⁹	for $m=100$ ton payload, need $m_0 \sim 11$ cu.mi. of earth's crust.
	30	5050	2523	1-2.8×10-7	4.97×10 ¹³	Crab Nebula @ T=33yr.
	40	69,930	34,960	1-1.5×10 ⁻⁹	1.83×10 ¹⁸	Approaching galactic center.
	50	9.68×10 ⁵	4.84×10 ⁵	1-1.0×10 ⁻¹¹	6.71×10 ²²	Andromeda Galaxy @ T=5Syr.
	60	1.34 × 10 ⁷	6,70×10 ⁶	≃1	2.47×10 ²⁷	mo~ 100 solar masses
l	70	1.86×10 ⁸	9.28×10 ⁷	≃1	9.06×10 ³¹	$m_o \sim 3.7 \times 10^6$ solar masses.

These data are plotted on a graph, next page.

REMARKS on above photon rocket round-trip.

- 1. For a 7=1 yr round-trip, we only get out to see the Oort cloud. Worth it?
- 2. First "interesting" trip is T=7yrs; we get to D≈ location of α-Centauri, our nearest star. For m=100 tons payload, we need an mo=157,000 ton rocket.
- 3: A τ = 10 yr. trip might be practical: for a 100 ton payload, you only need a 3.7 million-ton rocket. You get to D≈11.3 Ly.; there are ~15 stars to inspect.
- 4. At T=33 yr, you visit the Crab Nebula (@D=6000 l.y.). Expenses are: tlearth)=11,110 yr (what do your), mo=10¹⁷ tons=8.1×10 cu,mi. of earth's crust.
- 5. T=40 yr. ⇒ visit to galactic center, but mo = 2.8 % × Me (or 2.25 × Mmoon). Extra-galactic trips (>105 l.y.) require burning up planets, stars, galaxies.
- 6. If you lived $\tau = 82$ yr., you could get to D=2.2×109 l.y., burning mo≈10¹² solar masses (~10⁴ galaxies). But t(earth)=4.4×10⁹ yr => Sun burns out before you return.

6) What happens if we are not clever enough to design a photon rocket that can burn up galaxies as fuel? Answer: the burn-ratio Rquickly gets out of hand, for a given trip. The counterpart of Eq. (13), for the round trip Sketched on p. RR4, with D = trip distance & T = trip time, is.

(16)

With $D \notin T$ fixed for the trip, we must have ElnR = enst. For example, the trip to α -Centauri (table on p. RR5) prescribes D = 4.24 l.y. in $\tau = 7 yr$, with: $ElnR = 1 \times ln 1569 = 7.3582$. Then...

For E=1 (photon rocket), we get the previous result: R=1569, or a rocket that starts at mass $m_0=157,000$ tons for an m=100 ton payload. But if E=0.5, $R\rightarrow 2.46\times 10^6 \Rightarrow m_0=246$ million tons.

ε	R=m./m	Mo, tons
1.0	1569	157,000
0.8	9877	~10 ⁶
0.6	2.12×10 ⁵	21×10 ⁶
0,4	9,76×10 ⁷	10×10 ⁹
0.2	9.52 × 10 ¹⁵	~10 ¹⁸
0.1612	6.6×10 ¹⁹	~ M(earth)
0.1261	2.2×10 ²⁵	~M(sun)

The table shows how much R must increase to compensate for a reduced exhaust velocity E... this increase in R must occur in order to maintain the on-board acceleration at A = 13 = enst. Evidently, trips to a-Centauri are not practical at E-values < 0.2. And E-values > 0.2 are not possible for Chemical rockets.

If we are limited by a manageable rocket mass mo, and by engines with 6<0.1, then -- to get any place interesting (e.g. & Centauri @ D = 4.3 l.y.) -- we must relax our restrictions on trip-time t and onboard acceleration A. In particular, we have to anticipate that -- practically -- ElnR is quite small.

7) If, indeed, the vocket design parameter ElnR { = exhanst velocity } is "small", then in Eq. (16), we can approximate sinh(\$\frac{1}{8}\in \ln R) \simeq \frac{1}{8}\in \ln R, and thus find:

$$T \simeq (16/\epsilon \ln R) \frac{D}{c}$$
, for $\epsilon \ln R < 1$.

This gives the rocket round-trip time T in terms of the objective distance D, and the design parameter $E \ln R$. Suppose $D \simeq 4.2 \text{ l.y.}$ (for α -Centauri), $E \simeq 2\times10^{-4}$ (a really"hot" chemical rocket), and $R \simeq 10^{5}$ (with a 100 ton payload, the rocket starts off at mo $\simeq 10$ million tons). Then $E \ln R \simeq 2.3\times10^{-3}$, and for this trip, Eq.(18) yields: T = 29,200 years. The Centaurians can rest easy.

One more numerical example: how far out could we go (and return) in one human difetime with a "practical" relativistic rocket... Say T = 80yr, and $R = 10^5$ (10 million tons mass at start). Eq. (16) gives...

$$\left[\begin{array}{c}
T = 80 \text{ yr} \\
R = 10^5
\end{array}\right] \frac{D_{\text{MAX}} = \frac{27.8}{\varepsilon} \sin^2(1.439 \varepsilon)}{\varepsilon}, \text{ in 1.y.} \tag{19}$$

Assuming we are not stuck with chemical rockets, look at the E-variation:

exhaust velocity E	1.0 (photon)	0,7	0.4	0.1	10-2	10-3	10-4
max. distance Dmax, l.y.	110	55.9	25.7	5.80	0.576	0.0576	0.0058
on-board accel : Alg		1/10.2	1/17.9	1/71.6	1/716	1/7160	1/71,600
max. velocity: Bmax		î .	1		14	~3×10 ⁻³	
1	246		1	4	BOyrs+ 4days	80yrs+ 1hour	80yrs+ 35 sec.

Clearly, we are bound to a fairly small neighborhood of our own galaxy, we with a photon rocket. What we really need is hyperdrive, Spacewarp, and -- mainly -- a repeal of the lows of relativity. Pace, Captain Kirk.