Computerorientierte Mathematik Landau-Notation

15. Dezember 2015

Diese Definitionen und Erklärungen wurden aus dem Buch:

Th.H.Cormen | Ch.E.Leiserson | R.Rivest | C.Stein " Algorithmen - Eine Einführung" (ISBN: 978-3-486-58262) entnommen (Kapitel 3.1)

Θ -Notation

Für eine gegebene Funktion g bezeichnet $\Theta(g)$ die Menge der Funktionen:

 $\theta(g(n)) = \{f(n) : \text{ es existieren positive Konstante } c_1, c_2 \text{ und } n_0 \text{ sodass } 0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \quad \forall n \geq n_0 \}$

Eine Funktion f gehört zur Menge $\Theta(g)$, wenn positive Konstanten c_1 und c_2 existieren, sodass f(n) zwischen $c_1 \cdot g(n)$ und $c_2 \cdot g(n)$ für ein hinreichend großes n eingeschlossen werden kann.

O-Notation

Die Θ-Notation beschränkt eine Funktion asymptotisch von oben **und** unten. Wenn wir nur die *obere* asymptotische Schranke betrachten wollen, verwenden wir die \mathcal{O} -Notation. ($\mathcal{O} = O$) Wir definieren analog zur Θ-Notation folgende Menge:

$$\mathcal{O}(g(n)) = \{f(n) : \text{ es existieren positive Konstante } c \text{ und } n_0 \text{ sodass } 0 \le f(n) \le c \cdot g(n) \quad \forall n \ge n_0 \}$$

Die \mathcal{O} -Notation kann verwendet werden die obere Schranke einer Funktion bis auf einen konstanten Faktor anzugeben.

Bemerkung

Technisch gesehen ist es falsch zu sagen, dass die Laufzeit von Bubblesort in $\mathcal{O}(n^2)$ liegt, da die tatsächliche Laufzeit eines Algorithmus von der spezifischen Eingabegröße n abhängt und damit variieren kann.

Wenn man nun sagt "Die Laufzeit ist in $\mathcal{O}(n^2)$ "bedeutet das eigentlich:

Es gibt eine Funktion f(n) in $\mathcal{O}(n^2)$, sodass für jeden Wert von n, egal wie die spezielle Eingabe der Größe n aussieht, die Laufzeit für diese Eingabe von oben durch den Wert f(n) beschränkt ist. Entsprechend meinen wir, dass die Laufzeit im schlechtesten Fall (Worst-Case) in $\mathcal{O}(n^2)$ liegt.

o-Notation

Die von der \mathcal{O} -Notation definierte obere Schranke kann scharf sein, \mathbf{muss} es aber $\mathbf{nicht}!$

Die Schranke $2n^2 = \mathcal{O}(n^2)$ ist asymptotisch scharf, während $2n = \mathcal{O}(n^2)$ nicht ist.

Die o-Notation wir verwendet, um eine nicht asymptotische scharfe obere Schranke zu definieren. Sei die Menge wie folgt definiert:

 $o(g(n)) = \{f(n) : \text{ für jedes positive } c > 0 \text{ existiert ein konstantes } n_0 > 0 \text{ ,sodass } 0 \le f(n) < c \cdot g(n) \quad \forall n \ge n_0 \}$

Die Definitionen der \mathcal{O} -Notation und der o-Notation sind sich sehr ähnlich. Der große Unterschied liegt aber darin, dass $f(n) = \mathcal{O}(g(n))$ die Schranke $0 \le f(n) \le c \cdot g(n)$ für (irgend)eine Konstante c > 0 verwendet. In der o-Notation wird dagegen die Schranke $0 \le f(n) < c \cdot g(n)$ für **alle** Konstanten c > 0 verwendet. (Beachte jeweils < in der o-Notation und $\le \mathcal{O}$ -Notation).

Man kann beobachten, dass in der o-Notation die Funktion f(n) gegenüber g(n) unbedeutend wird, wenn $(n \to \infty)$.

Das führt zu der Grenzwertdefinition:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Beispiel:

Es gilt: $2n = 0(n^2)$ und $2n^2 \neq o(n^2)$