

Detailed Fuel Cell Demonstration Site Summary Report

Edwards Air Force Base, CA

J. Michael Torrey, John F. Westerman, William R. Taylor, Franklin H. Holcomb, and Joseph Bush

August 2006

Detailed Fuel Cell Demonstration Site Summary Report

Edwards Air Force Base, CA

William R. Taylor, Franklin H. Holcomb, and Joseph Bush Construction Engineering Research Laboratory (CERL) U.S. Army Engineer Research and Development Center 2902 Newmark Dr. Champaign, IL. 61824

J. Michael Torrey and John F. Westerman Science Applications International Corporation (SAIC) San Diego, CA

Final Report

Approved for public release; distribution is unlimited.

Abstract: Fuel cells are an environmentally clean, quiet, and a highly efficient method for generating electricity and heat from natural gas and other fuels. In fiscal year 1993 (FY93), the Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) was assigned the mission of managing the DOD Fuel Cell Demonstration Program. Specific tasks included developing turnkey PAFC packages, devising site criteria, screening candidate DOD installation sites based on selection criteria, evaluating viable applications at each candidate site, coordinating fuel cell site designs, installation and acceptance of the PAFC power plants, and performance monitoring and reporting.

CERL selected and evaluated 30 application sites, supervised the design and installation of fuel cells, actively monitored the operation and maintenance of fuel cells, and compiled "lessons learned" for feedback to fuel cell manufacturers. At the conclusion of the demonstration period, each of the demonstration fuel cell sites was given the choice to either have the fuel cell removed or to keep the fuel cell power plant. This report presents a detailed review of a 200 kW fuel cell installed at Edwards Air Force Base (AFB) and operated between July 1997 and July 2002.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Contents

Fig	gures and Tables	v
Pre	eface	vii
Un	it Conversion Factors	viii
1	Introduction	1
	1.1 Background	1
	1.2 Objectives	3
	1.3 Approach	3
	1.4 Mode of Technology Transfer	4
2	Project Overview and Participants	5
	2.1 Project Timeline	5
	2.2 Project Participants	6
3	Fuel Cell Design and Installation	8
	3.1 Fuel Cell Building Application	8
	3.2 Conceptual Installation Design	8
	3.3 Detailed Design Drawings	10
4	Fuel Cell Performance, Outage History and Maintenance Activities	26
	4.1 Operating History	
	4.2 Fuel Cell Outage Summary	
	4.3 Fuel Cell Stack Degradation	
	4.4 Fuel Cell Maintenance Activities	
	4.5 Fuel Cell Retrofits	
	Fuel Cell Operation and Outage Summary	45
5	Fuel Cell Economics	
	5.1 Hospital Energy Costs	
	5.2 Fuel Cell Maintenance Costs	
	5.3 Fuel Cell Energy Savings	
	5.4 Fuel Cell Lifecycle Costs	50
6	Summary and Conclusions	53
	6.1 Review of Fuel Cell Demonstration at Edwards AFB	53
	6.2 Lessons Learned	
	6.3 Issues for Further Analysis	55
Ac	ronyms and Abbreviations	57
Аp	pendix A: Fuel Cell Acceptance Test Report	59
Ap	pendix B: Project Meeting Notes	85
Ap	pendix C: Review Letters for Original Design Drawings	94

Appendix D: PC25C Fuel Cell Forced Outage Description Codes	98
Appendix E: Summary of Maintenance Invoices by Year	100
Report Documentation Page	12 5

Figures and Tables

Figures

1	Fuel cell installation7
2	Conceptual design fuel cell location and interfaces9
3	Conceptual design fuel cell thermal interface10
4	Final installation drawings – cover page with code information12
5	Final installation drawings – auxiliary equipment power wiring14
6	Final installation drawings – electrical details16
7	Final installation drawings – mechanical piping and instrumentation diagram18
8	Final installation drawings – mechanical piping details20
9	Final installation drawings – mechanical / electrical layout plan22
10	Final installation drawings – site foundation plan24
11	Fuel cell operating hours by month27
12	Monthly fuel cell availability29
13	Forced outage occurrences by major system types32
14	Average forced outage durations by major system types33
1 5	Number of forced outages by outage duration34
16	Total forced outage hours by major system types35
17	Fuel cell stack electrical efficiency degradation over time35
18	Electric efficiency trends with major system changes37
19	Fuel cell stack cell voltage degradation over time38
20	Cell voltage trends by electrical output40
21	Summary of maintenance costs by category48
22	Annual trend in fuel cell maintenance costs49
23	Annual fuel cell energy savings50
Tables	3
1	Time line of major events and milestones5
2	Principal project participants7
3	Changes to design drawings based on comments11
4	Distribution of continuous hours of operation26
5	Fuel cell electrical performance characteristics27
6	Fuel cell input fuel characteristics28
7	Fuel cell electric efficiency28

8	Distribution of non-operational hours by duration	.29
9	Fuel cell outage periods	.30
10	Forced outage categories	.31
11	Forced outage statistics	.31
12	Trend of electrical efficiency with fuel cell load hours	.36
1 3	Major system changes and electrical efficiency trends	.37
14	Trend of cell voltage with fuel cell load hours	.38
1 5	Cell voltage analysis by electrical output	.39
1 6	Maintenance days and labor hours by year	.40
17	Maintenance activities in 1997	.41
18	Maintenance activities in 1998	.42
1 9	Maintenance activities in 1999	.43
20	Maintenance activities in 2000	.43
21	Maintenance activities in 2001	.44
22	Summary of fuel cell retrofits	.45
23	SCE TOU-8 rate structure	.46
24	Annual electric and natural gas costs	.47
25	Summary of fuel cell maintenance costs	.47
26	Annual energy savings at hospital	.49
27	Fuel cell demand savings	.51
28	Lifecycle cost analysis	.52
29	Summary of fuel cell performance	.53

Preface

In fiscal years 93 and 94, Congress provided funds for natural gas utilization equipment, part of which was specifically designated for procurement of natural gas fuel cells for power generation at military installations. The purchase, installation, and ongoing monitoring of 30 fuel cells provided by these appropriations has come to be known as the "DOD Fuel Cell Demonstration Program." Additional funding was provided by: the Office of the Deputy Under Secretary of Defense for Industrial Affairs & Installations, ODUSD (IA&I)/HE&E; the Strategic Environmental Research & Development Program (SERDP); the Assistant Chief of Staff for Installation Management (ACSIM); the U.S. Army Center for Public Works (CPW); the Naval Facilities Engineering Service Center (NFESC); and Headquarters (HQ), Air Force Civil Engineer Support Agency (AFCESA).

The work was performed by the Energy Branch (CF-E), of the Facilities Division (CF), Construction Engineering Research Laboratory (CERL). The CERL Principal Investigator was Franklin H. Holcomb. Part of this work was done by Science Applications International Corporation (SAIC) under General Services Administration (GSA) contract No. 5TS5703C166. J. Michael Torrey and John F. Westerman are associated with SAIC. Dr. Thomas Hartranft is Chief, CEERD-CF-E, and L. Michael Golish is Chief, CEERD-CF. The associated Technical Director was Gary W. Schanche, CEERD-CVT. The Director of CERL is Dr. Ilker R. Adiguzel.

CERL is an element of the U.S. Army Engineer Research and Development Center (ERDC), U.S. Army Corps of Engineers. The Commander and Executive Director of ERDC is COL Richard B. Jenkins, and the Director of ERDC is Dr. James R. Houston.

Unit Conversion Factors

Multiply	Ву	To Obtain
acres	4,046.873	square meters
cubic feet	0.02831685	cubic meters
cubic inches	0.00001638706	cubic meters
degrees (angle)	0.01745329	radians
degrees Fahrenheit	(5/9) x (°F - 32)	degrees Celsius
degrees Fahrenheit	(5/9) x (°F - 32) + 273.15.	kelvins
feet	0.3048	meters
gallons (U.S. liquid)	0.003785412	cubic meters
horsepower (550 ft-lb force per second)	745.6999	watts
inches	0.0254	meters
kips per square foot	47.88026	kilopascals
kips per square inch	6.894757	megapascals
miles (U.S. statute)	1.609347	kilometers
pounds (force)	4.448222	newtons
pounds (force) per square inch	0.006894757	megapascals
pounds (mass)	0.4535924	kilograms
square feet	0.09290304	square meters
square miles	2,589,998	square meters
tons (force)	8,896.443	newtons
tons (2,000 pounds, mass)	907.1847	kilograms
yards	0.9144	meters

1 Introduction

1.1 Background

In fiscal year 1993 (FY93), the U.S. Congress appropriated \$18 million to advance the use of phosphoric acid fuel cells (PAFCs) at Department of Defense (DOD) installations. An additional \$18.75 million was appropriated in FY94 to expand the program. The Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) was assigned the mission of managing the DOD Fuel Cell Demonstration Program. Specific tasks included developing turnkey PAFC packages, devising site criteria, screening candidate DOD installation sites based on selection criteria, evaluating viable applications at each candidate site, coordinating fuel cell site designs, installation and acceptance of the PAFC power plants, and performance monitoring and reporting.

Thirty DOD fuel cell sites were selected based on the following criteria:

- 1. Geographic diversity
- 2. Application diversity
- 3. Fuel cell utilization at site
- 4. Energy cost savings.

The first two criteria are related more to overall program goals; the last are typical criteria for most fuel cell evaluations. It was important for the DOD Fuel Cell Program sites to represent a cross section of both "base" (including climate) and "building" applications. It was also important to identify applications where a high percentage of the fuel cell thermal and electrical output could be used at the site to demonstrate the greatest benefits.

Energy savings were less important in this Program than is typical with commercial applications since fuel cells purchased by the DOD were given to the Program sites. The economic criteria for each application was to generate at least \$25,000 per year in energy savings, which would essentially cover annual maintenance costs. This would enable the fuel cell to pay for itself once the responsibility for maintenance was turned over to the base (after approximately 5 years).

The program followed a consistent approach for selecting sites, designing and reviewing installation plans, installing and maintaining the fuel cells,

collecting fuel cell performance data and project decommissioning. This involved:

- 1. *Preliminary Screening*. Base energy data from the Defense Energy Information System (DEIS) were used to rank DOD sites by utility rates and potential fuel cell energy savings. DOD base personnel were contacted to identify their interest in hosting a fuel cell demonstration unit and identify a preliminary list of potential building applications. The Navy and Air Force provided an initial list of candidate sites for consideration.
- 2. Site Visits. ERDC/CERL and Science Applications International Corporation (SAIC) representatives visited each base, evaluated potential fuel cell application sites and discussed possibilities with site personnel. Data on energy consumption and rates, hours of operation, availability of space, etc. were collected during the site visit.
- 3. Site Evaluation Reports. SAIC prepared a site evaluation report* documenting site information, presenting conceptual fuel cell installation plans, estimation of electrical and thermal energy savings, and projected fuel cell energy savings. Based on the viability of the proposed fuel cell application, the base was accepted as a program site.
- 4. *Kick-off Meetings*. ERDC/CERL, SAIC, United Technologies Corp. (UTC) Fuel Cells (formerly ONSI Corp. and International Fuel Cells) and site personnel met to review the site evaluation report, discuss relevant issues, schedules, and any other concerns. UTC Fuel Cells collected site data for use in preparing the detailed site installation drawings.
- Design Review Meetings. Detailed design drawings were submitted by UTC Fuel Cells for review by ERDC/CERL, SAIC, and site personnel. Specific issues related to the design were discussed and UTC Fuel Cells would incorporate changes to the drawings based on the input received.
- 6. Acceptance Tests. Installation of the fuel cells was the responsibility of UTC Fuel Cells. After the fuel cell installation was completed, a series of tests were performed to validate fuel cell performance. On successful completion, the fuel cell was turned over to the base, but operation and maintenance remained the responsibility of UTC Fuel Cells for approximately 5 years. Appendix A includes a copy of the acceptance test report.

* Michael J. Binder, Franklin H. Holcomb, and William R. Taylor. (March 2001). Site Evaluation for Application of Fuel Cell Technology: Edwards AFB, ERDC/CERL Technical Report (TR) 01-60/ ADA395031, paa. Champaign, IL: Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL).

- 7. *Dedication Ceremonies*. Many of the fuel cell sites held a fuel cell dedication ceremony as part of their program participation. Often, dignitaries such as Generals and State Governors were in attendance.
- 8. *Fuel Cell Operations*. The fuel cells operated for 3 to 5 years. UTC Fuel Cells was responsible for maintenance of the power plant as well as collection of fuel cell performance data.
- 9. Fuel Cell Decommissioning. At the conclusion of the demonstration period, UTC Fuel Cells was responsible for removing the fuel cell and returning the site to the its condition before to the fuel cell installation. Each of the FY93 fuel cell sites, including Edwards AFB was given the opportunity to keep the fuel cell power plant at the end of the demonstration and take responsibility for all costs and issues related to operation, performance, and decommissioning.

This report presents a detailed review of a 200 kW fuel cell installed at Edwards Air Force Base (AFB). The base is located in near Palmdale, CA, approximately 60 mi north of Los Angeles. The fuel cell was installed at the hospital as part of the DOD Fuel Cell Demonstration Program. The fuel cell operated between July 1997 and July 2002.

1.2 Objectives

The overall objectives of the Fuel Cell Demonstration Program were to:

- demonstrate fuel cell capabilities in real-world situations
- stimulate growth and economies of scale in the fuel cell industry
- determine the role of fuel cells in DOD's long-term energy strategy.

The specific objective of this part of the program was to give a detailed review of the PAFC fuel cell demonstration at Edwards AFB.

1.3 Approach

The review process involved:

- 1. Collecting data from stage of the Fuel Cell Demonstration Program at Edwards AFB
- 2. Analyzing the data in terms of the technology's capabilities, performance, and potential for a continuing role in the DOD's long-term energy strategy
- 3. Compiling lessons learned from the demonstration experience
- 4. Making recommendations for continued/improved use of the technology at DOD installation.

1.4 Mode of Technology Transfer

Results of this work will be forwarded directly to the funding sponsor and to the participating installation. This report will be made publicly accessible through the World Wide Web (WWW) at URLs:

http://www.cecer.army.mil http://www.dodfuelcell.com

2 Project Overview and Participants

2.1 Project Timeline

The first formal activity related to the fuel cell demonstration unit at Edwards AFB was a site evaluation meeting held in August 1996. (Appendix B contains notes from this meeting and from the meeting of 25 March 1997.) The fuel cell was started up in June 1997 and, over the next 5 years, it operated for over 28,000 hours and generated more than 5 million kWh of electricity. The demonstration unit remains at the Edwards AFB, although it is not currently operational. Table 1 lists the major events and milestones for this fuel cell demonstration unit.

Date Event 15-16 1996 August Site Evaluation Meeting held at Edwards AFB 29 1997 Site Evaluation Report submitted by SAIC January 5 1997 February Project Kick-off Meeting held at Edwards AFB 18 February 1997 Draft design drawings submitted by UTC Fuel Cells 25 1997 Fuel Cell Design Review meeting held at Edwards AFB March 25 April 1997 ERDC/CERL authorizes UTC Fuel Cells to commence construction. 23-25 June 1997 Acceptance testing performed 16 1997 Acceptance Test Meeting; Form DD250 signed by Edwards AFB July 25 1997 October 1,000 hours of operation milestone 26 1997 October Fuel cell shut down due to failed cooling coil and cell sub-stacks. Cell stack removed and sent back to UTC Fuel Cells for repair. 4 **February** 1998 Repaired cell stack installed 11 March 1998 Power plant restarted after 3,203 outage hours. 12 October 1998 5,000 hours of operation milestone 4 July 1999 10,000 hours of operation milestone 17 February 2000 15,000 hours of operation milestone 3 November 2000 20,000 hours of operation milestone 1 July 2002 Fuel cell shut down for final time

Table 1. Time line of major events and milestones.

Chapter 4 of this report gives a more detailed analysis of the fuel cell operation and performance history.

There was an approximately 10-month period between the initial site evaluation meeting and the fuel cell acceptance test. It took approximately

3 months to install the fuel cell following acceptance of the installation design. UTC Fuel Cell was responsible for the installation of all 30 fuel cells installed as part of this program. GBC Electrical Services installed the fuel cell at Edwards AFB as a subcontractor to UTC Fuel Cells.

2.2 Project Participants

The successful demonstration of this fuel cell unit required the efforts of several organizations and individuals:

- ERDC/CERL had overall responsibility for the DOD Fuel Cell Demonstration Program unit installed at the Naval Hospital. ERDC/CERL was responsible for contracting with the fuel cell manufacturer, identifying all sites, managing all site evaluations, and overseeing all design, installation, operation, and maintenance activities.
- UTC Fuel Cells manufactured the PC25B and PC25C fuel cells used at the bases. They were responsible for manufacturing the fuel cell as well as the detailed design drawings, fuel cell installation, operation/maintenance and, if necessary, fuel cell removal.
- *SAIC* was responsible for evaluating potential building applications at each site, developing fuel cell conceptual designs, performing a preliminary economic analysis and submitting the site evaluation report for review by all parties. In addition, SAIC was involved in the detailed design reviews and participating in the design review meetings. For this demonstration unit, SAIC also conducted independent performance monitoring of the fuel cell.
- *GBC Electrical Services* was the installation contractor for this fuel cell. In addition, they performed the maintenance on the fuel cell and were involved in its removal.
- *Edwards AFB Hospital* was directly involved in the review and approval of the fuel cell project.
- *Edwards AFB Personnel* provided review and approval for various aspects of the project including fire and utilities interfaces.

Table 2 lists the individuals involved in this demonstration project at the Hospital. Figure 1 shows the fuel cell installation.

Table 2.	Principal	project	participants.
----------	-----------	---------	---------------

Organization	Name	Project Role
ERDC/CERL	Dr. Michael Binder	Manager, Fuel Cell Demonstration Program
ERDC/CERL	Franklin Holcomb	Fuel Cell Project Manager
ERDC/CERL	William Taylor	Fuel Cell Project Manager
UTC Fuel Cells	Joseph Staniunis	Installation Designer
UTC Fuel Cells	Douglas Young	Technical Representative
UTC Fuel Cells	Thomas Pompa	Installation/Maintenance Coordinator
Science Applications Int'l Corp.	Gerry Merten	Principal Technical Manager
Science Applications Int'l Corp.	Mike Torrey	Project Manager
Edwards AFB	Ken Munson	Base Point of Contact
Edwards AFB	Lt. Matt Sufnar	95CEG/CEO
Edwards AFB	Jose DeLavega	95CEG/CECV
Edwards AFB	F.P. Woodland	95MG/SGAF
GBC Electrical Services	George Collard	Installation/Maintenance Contractor

Figure 1. Fuel cell installation.

3 Fuel Cell Design and Installation

3.1 Fuel Cell Building Application

The Hospital, built in 1955, is a 65,000 sq ft building with an emergency room, several clinic facilities, and 30 hospital beds. Additions were made to the hospital in 1966. The average occupancy for inpatients was approximately 10 beds per night. Two back-up generators, rated at 300 kW and 500 kW, provide backup power to the facility. Space heating and domestic hot water is provided by the two steam boilers located inside the mechanical room. The steam distribution system operates throughout the year and provides for instrument sterilization and also to control building humidity levels. For space cooling requirements, there are two 200 ton chillers that operate throughout the year to provide space cooling and to control humidity. More details about the site can be obtained from ERDC/CERL TR-01-60, available through URL:

http://www.cecer.army.mil/techreports/Hol SE Edwards/Hol SE Edwards TR.pdf

3.2 Conceptual Installation Design

A preliminary conceptual design for the fuel cell installation was prepared. based on the initial site evaluation meeting in August of 1996. Figure 2 shows the layout of the mechanical room, fire system pump room, existing chillers, and the proposed fuel cell location, including proposed fuel cell interface connections.

The proposed fuel cell location was adjacent to the fire system pump room and the mechanical room at the end of an asphalt driveway. This location was close to the facility steam lines located inside the pump room, and approximately halfway between the electric transformer and main natural gas line for the hospital.

Initial plans were to connect the fuel cell electrical interface into the low voltage side of the 12,000/480V transformer $(1,000 \, kVA)$ that supplied electricity to the hospital facility. This connection would allow the electrical wiring distance to be approximately $60 \, \text{ft}$. No grid-independent mode operation was proposed for this application.

The proposed thermal interface was to take the fuel cell's high grade heat exchanger (a fuel cell option) and tie into the space heating loop to add heat on the return side. Figure 3 shows the proposed fuel cell thermal interface where 180 °F return water is heated up by the fuel cell prior to entering the steam heat exchanger. The thermal piping distance was estimated to be approximately 15 ft.

Figure 2. Conceptual design fuel cell location and interfaces.

Figure 3. Conceptual design fuel cell thermal interface.

3.3 Detailed Design Drawings

UTC Fuel Cells submitted an original set of design drawings on 18 February 1997. The drawings were reviewed by base personnel, ERDC/CERL, and SAIC. A design review meeting was held 25 March 1997 at Edwards AFB, at which the following drawings were submitted:

S-1: Site Foundation Plan

ME-1: Mechanical/Electrical Layout Plan

M-1: Mechanical Piping and Instrumentation Diagram

M-2: Mechanical Piping Details

E-1: Electrical Wiring Diagrams

E-2: Electrical Details.

The orientation of the fuel cell was rotated 90 degrees from the initial conceptual design layout to accommodate maintenance activities. Thermal piping was run above ground on the new fuel cell cement pad located inside the fenced area. Reviewers submitted comments based on the initial drawings. (Appendix C includes copies of these comments.) Table 3 lists the changes made to the detailed site drawings, both before and after the design review meeting. Figures 4 through 10 show the final installation drawings.

Table 3. Changes to design drawings based on comments.

Drawing		Changes
	1.	Provide standard wall penetration detail.
S-1	2.	Note that equipment pad will have #4 rebar on 2-ft centers instead of 1-ft centers.
	3.	Provide dimension of power module frame wide, fence width (short side) and clearance between fuel cell fence and open grate area.
	1.	Extend arrow for #7 polygon (electrical connection) note to indicate the make-up water line.
	2.	Add "boxed M" to symbol list.
ME-1	3.	Note the #3 and #5 mechanical connections are not used.
	4.	Move the nitrogen bottles 2 ft closer to hospital (Bldg. 5500) so that it is fully supported by the wall of Building 5700.
	5.	Disconnect labels changed (reversed grid-connected and grid-independent.
	1.	Correct the note for the source of natural gas to indicate the interface is at the existing gas piping under the parking lot (as noted in Drawing ME-1)
M-1	2.	Indicate the gas meter should be installed with a bypass (as noted on M-2, gas piping detail.
	3.	In the Equipment Schedule List, change the P1 pump specification to 1-1/2AA, 1/2 HP. (This was incorrectly listed as 1-1/2A, 1/2 HP).
M-2	No changes.	
E-1 1. Change the conduit size for the telephone conductors to 1-in. to match module interface opening size.		Change the conduit size for the telephone conductors to 1-in. to match power module interface opening size.
E-2		No changes.

PC25TMC ON SITE
FUEL CELL POWER PLAN
BASE HOSPITAL, BUILDING 5500, I
FEBRUARY 17, 1997

195 GOVFRNORS HIGHWAY SOUTH WINDSOR, CONNECTICUT (860) 727-2237

Figure 4. Final installation drawings – cover page with code information.

DRAWING LIST

NO.	TITLE					
S-1	SITE FOUNDATION PLAN					
ME-1	MECHANICAL/ELECTRICAL LAYOUT PLAN					
M 1	MECHANICAL PIPING AND INSTRUMENTATION DIAGRAM					
M-S	MECHANICAL PIPING DETAILS					
E 1	ELECTRICAL WIRING DIAGRAMS					
E 2	ELECTRICAL DETAILS					

CODE INFORMATION

INSTALLATION SHALL COMPLY WITH THE FOLLOWING CODES:

THE BOCA NATIONAL BUILDING CODE 1990
THE BOCA NATIONAL MECHANICAL CODE 1990
THE BOCA NATIONAL PLUMBING CODE 1990
THE NATIONAL ELECTRICAL CODE 1993
THE NATIONAL FIRE PROTECTION CODE 1993

T INSTALLATION L'DWARDS AFB, CALIFORNIA

"COPYRIGHT NOTICE"

"This unpublished work is protected uncer the U.S. Copyright laws and the laws of other countries throughout the world. Reproduction, distribution, etc., in whole or in part, without the express consent of ONS Corporation is prohibited. Copyright 1997, ONSI Corporation, ALL RIGHTS RESERVED."

Figure 5. Final installation drawings – auxiliary equipment power wiring.

Figure 6. Final installation drawings – electrical details.

Figure 7. Final installation drawings – mechanical piping and instrumentation diagram.

SEQUENCE OF OPERA ION

FUEL CELL HEAT RECOVERY IS PROVIDED VIA THE OPTIONAL HIGH CRADE HEAT SOURCE.

THE HIGH GRADE SOURCE HEATS THE SPACE HEATING RETURN CIRCUIT TO 200 E NOM NAL (ADJISTABLE). THE DELIVERED TEMPERATURE IS CONTROLLED BY TS-1 ON THE SPACE HEATING REJURN PENIG. A LMP-ERALURE'S ABOVE 200 E PUMP PT IS SHUT OFF, STSN NG THE RETURN IF OF MANIFORM THE MAIN FLOW RATE AT '50 GMY THE MANMAM MASE', WITH THE MAIN FLOW RATE AT '50 GMY THE MANMAM MASE.

VALVE HV-1 IS PROVIDED FOR PUMP TRIM AND ISOLATION. HV-2 AND HV-3 VAY BE USED TO BYPASS PUMP PIN THE EVENT OF PUMP MAINTENANCE. WILL IN IN SYPASS, VALVE IIV-3 SIOJLD BE TRIMMED TO PROVDE UP TO 25 GPM (AS MEASURE) BY HIS FLEW ME LER PROVDED) TO THE FULL CELL.

EXISTING BUILDING PIPING

NEW HEAT RECOVERY PIPING FOR POZS FUE CELL POWER PI ANT

NOTES

PROVIDE VALVE CHART, VALVE DENTIFICATION TAGS, AND P PE IDENTIFICATION LABELS WITH IT OW ARROWS.

PROVIDE LOCKOUT DEVICES (HANDLES) FOR ALL EXTERIOR MANUAL VALVES.

		REVISION LIST
REV	DATE	DESCRIPTION
A	2/24/97 7/3/97	1. P.I SOHEDJAE TYPO FRED. 1-1/2A CHANGOD TO 1-1/2AA 2. ADDITIONAL MATURAL GAS AND ATS 8 PORT ADDITION 3. COLD WATER MAKEUP IIEAT TRACE DELETED. 4. REDUNDANT BOOATON BAIL, VALYES IN FEAT RECOVERY LINES AT BIT METER NSTRUMENTATION INTERFACE DELETE CREMENS COMMENS AND BIS SOFTLE COLUMNAY ASDED TO COLD WHITE MANUELP LINE.

"Unpub ished Work, Copyright, ONSI Corporation"

ONSI CORPORATION	PC25 C (S/N 9'21) FUEL CELL POWER PLANT INSTALLATION BASE HOSPITAL (BUILDING 5500), EDWARDS AFB, CALIFORNIA			
195 Governors Highway P.O. Box 1148 South Windsor, CT 06074	DRAWING NAME: MECHANICAL PIPING AND INSTRUVENTATION DIAGRAM			
CAD File: 9XXXM1.DC5	DRAWN BY: JWS DATE: Drowing No: RE			
Scole: NOT TO SCA_E	CHECKED BY: PSG 2-17-97 M-1 A			

Figure 8. Final installation drawings – mechanical piping details.

Figure 9. Final installation drawings – mechanical / electrical layout plan.

Figure 10. Final installation drawings – site foundation plan.

4 Fuel Cell Performance, Outage History and Maintenance Activities

4.1 Operating History

The fuel cell was started up in mid-June 1997. Acceptance tests were done between 23–25 June. (Appendix A includes the Acceptance Test Report.) Official data recording for the demonstration began on 17 July. The formal acceptance test meeting was held on 16 June, with title to the fuel cell transferred to the Edwards AFB using Form DD250. The power plant continued to operate until an event on 18 July 1997. A total of 27 power plant shutdowns were recorded between 17 July 1997 and the final shutdown on 1 July. 2002. There were 16 forced outages and 11 non-forced outages.

Performance data were collected via UTC Fuel Cells' RADAR data acquisition system. Using a modem and telephone line, the power plant was called daily to retrieve a "snapshot" of the current status. Included in the metrics collected were cumulative totals for hot time, load time, MWHrs, input fuel, etc. Thermal heat recovery was not monitored. These data records were then used to generate the various performance parameters discussed in this report.

A total of 28,358 operating load hours were recorded for the Hospital fuel cell. Of the 27 separate operating periods, eight had continuous fuel cell operating hours of more than 1,000 hours. The longest continuous operating period was 4,507 hours (\sim 6 months) and occurred between 21 July 1999 and 25 January 2000. Table 4 lists the distribution of continuous periods of operation for this fuel cell.

Table 4. Distr	ibution of	f continuous i	hours of o	peration.
----------------	------------	----------------	------------	-----------

Hours of Operation	Occurrences	
Over 3,000 hours	3	
2,001 - 3,000 hours	3	
1,001 - 2,000 hours	2	
751 - 1,000 hours	1	
501 - 750 hours	5	
250 - 500 hours	6	
Less than 250 hours	7	

120

Figure 11 shows the hours of operation and outages on a monthly basis for the entire demonstration period.

Figure 11. Fuel cell operating hours by month.

Month-Year

☐ Oper. Hours ☐ Outage Hours

The fuel cell generated over 5.1 million kWh of electricity for the Hospital during the demonstration period. Average output of the fuel cell during operation was 179 kW over the 5+ year period. Table 5 lists data related to annual fuel cell electrical operation during the demonstration. The average output represents the fuel cell's average rate of electrical generation while the fuel cell was operating. The average rate of generation through 1999 was 194 kW, 97.2 percent of the fuel cell's nominally rated electrical output of 200 kW. For the period of 2000 to the end of the demonstration, the average generation rate was 164 kW, 82 percent of the fuel cell's nominally rated electrical output.

ev e			
Year	Operating Hours	Generation (MWh)	Average Generation. (kW)
1997	1,024	192.8	188
1998	5,630	1,100.3	195
1999	7,340	1,426.5	194
2000	7,326	1,243.7	170
2001	2,823	447.2	158
2002	4,215	670.9	159
Total/Avg.	28,358	5,081.4	179

Table 5. Fuel cell electrical performance characteristics.

The RADAR system did not measure thermal utilization. Table 6 lists the input fuel data. The fuel cell consumed natural gas at an average rate of 1,744.3 cu ft/hour of operation or 9.7 cu ft/kW during the course of the demonstration.

	_	
Year	Input Fuel (cu ft)	Input Fuel (cubic ft/hr)
1997	1,200,000	1,788.4
1998	9,811,327	1,742.7
1999	13,824,858	1,883.5
2000	12,845,496	1,753.4
2001	4,713,880	1,669.8
2002	7,068,103	1,677.1
Total/Avg.	49,463,664	1,744.3

Table 6. Fuel cell input fuel characteristics.

Table 7 lists the fuel cell electrical efficiency based on higher heating value (HHV) for each year of operation. The average electrical efficiency over the course of the demonstration was 34.0 percent (HHV).

Year	Generation (MWh)	Input Fuel (cu ft)	Electrical Efficiency (% -HHV)*		
1997	192.8	1,200,000	34.9		
1998	1,100.3	9,811,327	37.2		
1999	1,426.5	13,824,858	34.2		
2000	1,243.7	12,845,496	32.1		
2001	447.2	4,713,880	31.4		
2002	670.9	7,068,103	31.5		
Total/Avg.	5,081.4	49,463,664	34.0		

Table 7. Fuel cell electric efficiency.

*Higher Heating Value (HHV) is based on a natural gas heating value of 1,030 Btu/cubic foot.

Efficiency =([MWhrs x 1,000,000 Watt-hrs/MWhrs x 3.413 Btu/Watt] / [cu ft x 1,030 Btu/cu ft]) x 100

4.2 Fuel Cell Outage Summary

Between 17 July 1997 and 1 July 2002 (43,419 hours), the fuel cell had 27 outages resulting in 15,061.5 hours of down time. The fuel cell's availability was 65.3 percent:

$$65.3\% = ([43,419 - 15,061.5] / [43,419]) \times 100$$

Figure 12 shows the fuel cell's monthly availability.

Figure 12. Monthly fuel cell availability.

The outages were identified from the RADAR performance monitoring system data. Because data records are collected on average once per day, outage times had to occasionally be interpolated. Sometimes the modem did not respond or the phone line was down, which prevented collection of a full complement of data records.

The longest outage was for 6,193 hours and occurred between 19 January and 14 October 2001. The next longest outage period occurred between 19 October 1997 and 12 February 1998 (2,556 hours). Table 8 lists the distribution of outage periods by hours of duration.

Table 8. Di	stribution	of non-o	perational	hours b	v duration.
-------------	------------	----------	------------	---------	-------------

Outage Hours	Occurrences
Over 3,000 hours	1
2,001 - 3,000 hours	1
1,001 - 2,000 hours	1
751 - 1,000 hours	1
501 - 750 hours	1
250 - 500 hours	7
Less than 250 hours	15

Table 9 lists, in chronological order, the start and end dates/times, the outage duration hours, and the outage type for the 27 individual events. Appendix D has the complete list of outage codes for the PC25C fuel cell.

Table 9. Fuel cell outage periods.

Outage No.	Off Date Stamp	On Date Stamp	Total Outage Hours	Hours to Next Outage	Туре	System	Part
		7/17/97 09:34		25.93			
1	7/18/97 11:30	7/31/97 07:00	307.50	630.40	N		
2	8/26/97 13:24	9/13/97 16:00	434.60	5.00	N		
3	9/13/97 21:00	9/22/97 12:58	207.97	70.53	F	TMS	
4	9/25/97 11:30	10/15/97 18:45	487.25	323.97	F	TMS	TCV830
5	10/29/97 06:43	2/12/98 18:35	2,555.87	269.00	F	TMS	
6	2/23/98 23:35	3/11/98 18:35	379.00	56.03	F	TMS	
7	3/14/98 02:37	4/21/98 17:13	926.60	91.70	N		
8	4/25/98 12:55	5/2/98 14:23	169.47	1,344.87	N		
9	6/27/98 15:15	7/1/98 15:00	95.75	243.57	F	WTS	LT450
10	7/11/98 18:34	7/13/98 21:00	50.43	881.28	N		
11	8/19/98 14:17	8/21/98 11:50	45.55	473.75	F	OTR	
12	9/10/98 05:35	9/18/98 15:15	201.67	2,264.75	F	OTR	
13	12/22/98 00:00	2/16/99 17:03	1,361.05	3,326.38	F	FPS	REF300
14	7/5/99 07:26	7/6/99 17:50	34.40	96.67	N		
15	7/10/99 18:30	7/21/99 12:00	257.50	4,507.42	F	OTR	CRL
16	1/25/00 07:25	2/1/00 23:00	183.58	656.33	F	APS	FCV140
17	2/29/00 07:20	2/29/00 16:47	9.45	708.72	N		
18	3/30/00 05:30	3/30/00 14:30	9.00	328.67	N		
19	4/13/00 07:10	4/27/00 21:21	350.18	636.00	F	TMS	TE431
20	5/24/00 09:21	5/26/00 13:00	51.65	2,953.67	N		
21	9/26/00 14:40	10/17/00 21:25	510.75	327.05	F	WTS	LT450
22	10/31/00 12:28	11/1/00 16:30	28.03	259.08	N		
23	11/12/00 11:35	11/14/00 19:30	55.92	520.50	F	OTR	CRL
24	12/6/00 12:00	12/8/00 15:30	51.50	1,007.25	F	NPS	CV720
25	1/19/01 14:45	10/4/01 16:07	6,193.37	4,189.30	N		
26	3/28/02 05:25	4/3/02 11:48	150.38	2,137.20	F	OTR	CRL
27	7/1/02 13:00	Final Shutdown			F	WTS	LT450

Table 10. Porced outage categories		
Category	Description	
APS	Air Processing System	
CVS	Cabinet Ventilation System	
ES	Electrical System	
FPS	Fuel Processing System	
NPS	Nitrogen Purge System	
OTR	Other	
PSS	Power Section System	
TMS	Thermal Management System	
	_	

Table 10. Forced outage categories.

Table 11. Forced outage statistics.

Water Treatment System

WTS

Category	Number of Occurrences	Total Outage Time	Min. Outage Time per Occurrences	Max. Outage Time per Occurrences	Avg. Outage Time per Occurrence	
APS	1	183.6	183.6	183.6	183.6	
CVS	0	0	0	0	0	
ES	0	0	0	0	0	
FPS	1	1,361.1	1,361.1	1,361.1	1,361.1	
NPS	1	51.5	51.5	51.5	51.5	
OTR	5	711.0	45.6	257.5	142.2	
PSS	0	0	0	0	0	
TMS	5	3,980.3	208.0	2,55.99	796.1	
WTS*	3	606.5	N/A	510.8	303.3	
	16	6,893.9			430.9	
*Includes the	*Includes the final outage which has no time associated it.					

The fuel cell experienced a total of 15,061.5 hours of outage time consisting of 16 forced outages (F) and 11 non-forced (N) outages. Table 10 lists the forced outages, broadly classified by the major fuel cell sub-systems. Table 11 lists the forced outages by major system category, along with statistics related to frequency of occurrence and time duration.

Most of the forced outages were classified as Other (OTR) or Thermal Management System (TMS). (Each had five occurrences.) The most frequent number of Other outages were three, which were attributed to the controller (CRL) for a total of 463.8 hours of outage. The longest outage in the TMS category was 2,555.87 hours between October 1997 and February 1998 due to a problem with the sub stack. This occurred early on in the demonstration. Similar characteristics were also observed in other fuel cells installed in the southwestern region of the country, which included

Camp Pendleton, Twentynine Palms, Davis-Monthan AFB, and Fort Huachuca. It was concluded that the hard water characteristics of the water supply was contributing to the water conductivity in the fuel cell. Hard water is water that contains a high level of dissolved minerals, most notably calcium and magnesium. The degree of hardness increases with increased levels of calcium and magnesium. When hard water is heated, the dissolved minerals come out of solution (precipitate) and attach to plumbing and heat exchangers. Water treatment systems were installed to control the water chemistry of these systems.

Figure 13 shows a graph of force outage occurrences. The cabinet ventilation system, electrical system, and power section system did not contribute to any forced outages during the demonstration. An outage associated with the water treatment system was the final outage in July 2002, which was not resolved.

Figure 13. Forced outage occurrences by major system types.

Figure 14 shows the average duration of forced outage hours by major system category. The fuel processing system was associated with the highest average duration per outage (1,361.1 hours). (Note that this represents just one outage.) The next highest average duration per outage was associated with the thermal management system, with an average of 796.1 hours per occurrence over a total of five outages. The longest TMS outage was attributed to problems with the cooling-side of the fuel cell stack and occurred for 2,555.87 hours. The shortest duration TMS outage lasted for 208 hours and was attributed to a failure of a steam ejector.

* Includes final forced outage that was never resolved.

Figure 14. Average forced outage durations by major system types.

The outages that occurred most frequently for a specific fuel cell component were due to an alarm triggered by the water level transmitter (LT450). The three outages associated with this were for 95.75 hours in June 1998, 510.75 hours in September 2000 and for final outage in July 2002.

These data show that forced outages have a significant impact on the availability of the fuel cell. The shortest duration outage lasted for 45.6 hours. Five of the outages had a duration between 1 and 7 days. There were two outages that had a duration longer than 30 days, of which one was greater than 90 days. Figure 15 shows the outages by duration, which demonstrates that there is a high risk of not achieving the monthly demand savings in the economics for the fuel cell due to forced outages.

Figure 15. Number of forced outages by outage duration.

Figure 16 shows the distribution of forced outages by major system categories. The major system category contributing to most of the outage hours was the thermal management system (57.7 percent). The next highest category was the fuel processing system with 19.7 percent of the forced outage time.

Typical non-forced outages were due to the natural gas supply being turned off, site operator error, or scheduled maintenance activities. The longest non-forced outage occurred between January and October 2001 for a total of 6,193.37 hours. This outage was due to site personnel shutting off the natural gas supply to the fuel cell and opening the maintenance disconnect switch. This resulted in a hot shutdown of the fuel cell. UTC Fuel Cells informed Edwards AFB that this event could have a permanent negative impact on the fuel cell performance, specifically affecting the fuel cell stack. This outage occurred with approximately 22,000 stack load hours of the total 28,358 load hours for the fuel cell. Fuel cell electric efficiency as shown in Figure 17 shows a variation in efficiency occurring around 22,000 hours, but not a significant step change in the performance of the fuel cell after the time of the event.

4.3 Fuel Cell Stack Degradation

The trend of the fuel cell electrical efficiency based on the lower heating value of natural gas was analyzed based on the hours of fuel cell operation. The data were acquired through the UTC Fuel Cells' RADAR system. Data records are for fuel cell operation when the electrical output was greater than 50 kW to eliminate data from fuel cell testing and startup operation.

Eq 1

Figure 16. Total forced outage hours by major system types.

Figure 17. Fuel cell stack electrical efficiency degradation over time.

Note that the data records were not recorded on regular intervals and 1,435 data points were used for this analysis. The individual data points are plotted with hours of operation in an X-Y plot (Figure 17). The average electrical efficiency for the data is 37.2 percent.

A linear regression was conducted on the data to characterize average efficiency trends for the fuel cell. The regression equation is:

Electric Efficiency % (LHV) = ([Load Hours] \times [-3.03424 \times 10⁻⁴]) + 41.28840

The linear curve fit shows that the trend is a reduction in electrical efficiency with increasing hours of operation. Table 12 lists the resulting efficiencies at 5,000 load hour intervals.

Load Hours	Electrical Efficiency (%)
0	41.3%
5,000	39.8%
10,000	38.3%
15,000	36.7%
20,000	35.2%
25,000	33.7%

Table 12. Trend of electrical efficiency with fuel cell load hours.

The data in Table 12 show that the fuel cell electrical efficiency decreased 1.5 basis points for every 10,000 hours of operation. The regression shows that the average initial electrical efficiency of the fuel cell was approximately 41.3 percent and that it decreased at a rate of approximately 7.9 percent per 10,000 hours of operation. For example, the average decrease between 10,000 hours (38.3 percent) and 20,000 hours (35.2 percent) is:

$$7.9\% = ([38.3\% - 35.2\%] / 38.3\%).$$

The R Square statistic for the above regression is 0.22. This means that 22 percent of the variation seen in the trend of electrical efficiency can be attributed to load hours. Thus other factors in the system are significantly affecting the changes observed in electrical efficiency. The efficiency data (as shown in Figure 9) indicate sub-trends in electrical efficiency within the life of the fuel cell's operation. Figure 10 shows the outages and identification of major system changes. Each of the 27 outages is represented as a circle on the 45 percent efficiency line. The figure identifies regions of operational trends that are attributed to a major change to the system or lack of data. The number identifier presented for the change corresponds to the outage number listed in Table 8. The most significant changes were the installation of a new cell stack and the installation of an external reverse osmosis (RO) water treatment system (#5), and the installation of a new reformer (#13). For a period of approximately 4,000 load hours, the natural gas meter failed which resulted in the inability to determine the efficiency during this period.

The five operational regions shown in Figure 18 were analyzed to determine the electrical efficiency trend by major system change. The trend in efficiency for each region was determined by a linear regression and the

slope is reported in terms of percent change per 10,000 hours of operation. Note that the unit of percent change per 10,000 is presented for consistency and only one of the regions evaluated (E) consists of 10,000 hours of data. Table 13 lists the dates, fuel cell load hours, system changes and electric efficiency trends for each of the time frames. For the regions analyzed, the R Square statistic is less than the 0.22 for the entire data set (B=0.05, C=0.02 and E=0.02). This indicates that the major system changes identified did not have a significant impact on the fuel cell performance and that this approach does not improve on the original efficiency trend model.

Figure 18. Electric efficiency trends with major system changes.

Table 13. Major system changes and electrical efficiency trends.

Range	Date	Fuel Cell Load Hours at End of Period	Change to System at Start of Period	Slope (% / 10000 hrs)
А	7/17/97 - 2/12/98	1,769	Initial system	-41.8%
В	1/12/98 - 2/16/99	7,407	Install new reformer	-15.0%
С	2/16/99 - 12/31/99	14,747	Install new cell stack and Install RO water treat- ment	-4.9%
D	12/31/99 - 6/29/00	18,168	Gas meter failure	No data
Е	6/29/00 - 7/1/02	29,055	Gas meter repaired	-3.1%

Figure 19. Fuel cell stack cell voltage degradation over time.

The trend of the fuel cell stack cell voltage based on the lower heating value of natural gas was analyzed based on the hours of fuel cell operation. The data are based on the same readings acquired through the UTC Fuel Cells RADAR system as the electrical efficiency data in the previous section. The individual data points are plotted with hours of operation in an X-Y plot. Figure 19 shows that the data fall into the typical operating range of 0.55 to 0.70 volts. The average cell voltage for the data is 0.623 volts. A linear regression was conducted on the data to characterize average cell voltage trends for the fuel cell. The resulting equation is:

Cell volts = ([Load Hours] x [-1.7694 x 10-6]) +
$$0.645519$$
 Eq 2

The regression shows a reduction in cell voltage with increased hours of operation. Table 14 lists the resulting cell voltages at 5,000 load hour intervals.

Table 14. Trend of cell voltage with fuel cell load hours.

Load Hours	Cell Voltage (%)
0	0.646
5,000	0.637
10,000	0.628
15,000	0.619
20,000	0.610
25,000	0.601

The linear curve fit shows that the average initial cell voltage was approximately 0.646 volts and that it generally decreased at a rate of 2.8 per-

cent per 10,000 hours of operation. For example, the average decrease between 10,000 hours (0.628) and 20,000 hours (0.610) is:

$$2.8\% = ([0.628 - 0.610] / 0.628)$$

This is equal to a cell voltage reduction rate of 0.018 volts per 10,000 hours of operation. The R Square statistic for the above regression is 0.61. This means that 61 percent of the variation seen in the trend of cell voltage can be attributed to load hours. Thus, other factors in the system are affecting the changes observed in cell voltage. The cell voltage data shown in Figure 11 indicate sub-trends in cell voltage during the life of the fuel cell's operation. Since the cell voltage is affected by the electrical output of the fuel cell, an additional analysis was conducted. The data were sorted by the fuel cell electrical output for the most frequent operating levels of 200 kW, 175 kW, and 150 kW. Then a linear regression was conducted for load hours greater than 5,000 hours (i.e., for the fuel cell after the stack was replaced). Table 15 lists the results of the analysis.

Table 15. Cell voltage analysis by electrical output.

Fuel Cell Output	200 kW	175 kW	150 kW
Data points	950	256	110
R Square statistic	0.54	0.95	0.42
Slope (%/10,000 hrs)	-3.41%	-5.44%	-2.67%

The analysis shows that the curve fit was very good for the 175 kW regression with an R Squared value of 0.95. This indicates that 95 percent of the decrease in cell voltage can be attributed to load hours for this data set. The 200 kW and 150 kW regressions have R Squared values that are lower than the original regression model, indicating that this approach does not improve the model for these two data sets. The slopes of the lines for the three power levels range from -2.67 percent to -5.44 percent per 10,000 load hours. Figure 20 shows the regression lines of the analysis for each data set projected over the entire fuel cell operating range.

While the efficiency remains relatively constant along the various fuel cell power levels, power plant cell voltages tend to increase at lower electrical output levels. This is most evident for fuel cell operation between 10,000 and 20,000 load hours. There is no data to indicate why the slope of the data varies at the different power levels.

Figure 20. Cell voltage trends by electrical output.

4.4 Fuel Cell Maintenance Activities

UTC Fuel Cells had overall responsibility for maintenance on the fuel cell during the 5-year demonstration period. GBC Electrical Services, as the maintenance contractor, performed most maintenance activities under the guidance of UTC Fuel Cells. Invoices from GBC Electrical Services were obtained to assess maintenance activity levels. Table 16 lists the number of maintenance days at the site and total labor hours by year. No maintenance records were available for 2002.

Year	Days at Site	Labor Hours
1997	39	323
1998	42	344
1999	21	193
2000	29	222
2001	9	30
Total	140	1,112

Table 16. Maintenance days and labor hours by year.

Tables 17 through 21 present the date, labor hours, and a brief description of the maintenance activities that were billed between the years 1997 and 2001. Appendix E includes detailed cost and maintenance summary information.

Table 17. Maintenance activities in 1997.

1997	Labor Hrs	Description of Activity			
10-Jun	10.0	Worked with UTC Fuel Cells at site.			
11-Jun	9.0	Worked with UTC Fuel Cells at site.			
12-Jun	11.5	Worked with UTC Fuel Cells at site.			
13-Jun	2.5	Worked with UTC Fuel Cells at site.			
16-Jun	8.0	Worked with UTC Fuel Cells at site.			
17-Jun	10.0	Worked with UTC Fuel Cells at site.			
18-Jun	10.0	Worked with UTC Fuel Cells at site.			
19-Jun	8.0	Worked with UTC Fuel Cells at site.			
20-Jun	3.0	Worked with UTC Fuel Cells at site.			
23-Jul	8.0	Worked with UTC Fuel Cells at site.			
24-Jul	5.0	Worked with UTC Fuel Cells at site.			
25-Jul	6.0	Worked with UTC Fuel Cells at site.			
27-Aug	9.0	Changed nitrogen bottles.			
5-Sep	6.0	Changed out resin bottles.			
8-Sep	2.0	Changed nitrogen bottles.			
9-Sep	0.0	Travel			
20-Sep	13.0	Changed ejector assembly.			
22-Sep	7.5	started power plant.			
26-Sep	3.5	Troubleshot ancillary cooling loop.			
29-Sep	9.5	Replaced TVC830.			
30-Sep	9.5	Started power plant.			
6-0ct	16.0	Installed new controller. Restarted power plant and installed retrofits.			
13-0ct	1.0	Worked with UTC Fuel Cells at site.			
14-0ct	7.5	Worked with UTC Fuel Cells at site.			
15-0ct	12.5	Worked with UTC Fuel Cells at site.			
16-0ct	12.5	Worked with UTC Fuel Cells at site.			
27-0ct	3.0	Worked with UTC Fuel Cells at site.			
28-0ct	9.0	Worked with UTC Fuel Cells at site.			
29-0ct	8.5	Worked with UTC Fuel Cells at site.			
7-Nov	9.0	Worked with UTC Fuel Cells at site.			
8-Nov	2.5	Worked with UTC Fuel Cells at site.			
11-Nov	6.0	Worked with UTC Fuel Cells at site to go over wet-up procedure.			
13-Nov	2.0	Worked with UTC Fuel Cells at site.			
14-Nov	9.5	Started wet-up process.			
17-Nov	9.5	Started wet-up process.			
18-Nov	12.0	Started wet-up process.			
19-Nov	7.0	Started wet-up process.			
7-Dec	12.5	Prepared cell stack assembly for removal.			
8-Dec	32.0	Removed and shipped cell stack assembly.			

Table 18. Maintenance activities in 1998.

1998	Labor Hrs	Description of Activity		
10-Jan	22.0	Worked with UTC Fuel Cells on retrofits		
12-Jan	7.5	Worked with UTC Fuel Cells on retrofits		
13-Jan	5.0	Worked with UTC Fuel Cells on retrofits		
2-Feb	4.0	Installed new strainer.		
4-Feb	24.0	Installed new cell stack assembly.		
5-Feb	9.0	Worked with UTC Fuel Cells at site.		
10-Feb	3.5	Worked with UTC Fuel Cells to trouble shoot short in inverter.		
11-Feb	9.0	Troubleshot, disassembled and re-assembled inverter.		
12-Feb	2.0	Started power plant.		
22-Feb	6.5	Worked with UTC Fuel Cells personnel on phone. Restarted power plant.		
24-Feb	6.0	Checked ejector and FCV012 for proper movement. Started power plant.		
5-Mar	3.0	Took measurements on old inverter drawer.		
6-Mar	8.0	Removed and replaced inverter drawer No. 3 and attempted to start power plant.		
11-Mar	6.0	Removed and replaced FCV110 and restarted power plant.		
7-Apr	15.0	Worked on high grade heat exchanger skid retrofit.		
8-Apr	17.0	Worked on high grade heat exchanger skid retrofit.		
9-Apr	5.5	Worked on high grade heat exchanger skid retrofit.		
13-Apr	18.0	Worked on high grade heat exchanger skid retrofit.		
14-Apr	23.0	Worked on high grade heat exchanger skid retrofit.		
15-Apr	20.0	Vorked on high grade heat exchanger skid retrofit.		
16-Apr	27.0	Worked on high grade heat exchanger skid retrofit.		
17-Apr	5.5	roubleshot and repaired short in power conditioning system.		
20-Apr	2.0	Replaced pop out fuse for UPS.		
21-Apr	8.0	Started power plant.		
28-Apr	3.0	Worked with UTC Fuel Cells at site.		
29-Apr	6.5	Worked with UTC Fuel Cells at site.		
30-Apr	6.5	Worked with UTC Fuel Cells at site.		
30-Apr	1.0	Travel		
18-Jun	3.0	Tested water, burner air and cathode air. Completed new checklist.		
30-Jun	6.0	Plugged reverse osmosis unit back in. Replaced fuse in cooling towers.		
1-Jul	5.0	Restarted power plant.		
8-Jul	3.5	Took amp readings on cooling tower.		
13-Jul	4.5	Took override off LCV452. Changed nitrogen bottles. Started power plant.		
10-Sep	4.0	Tested fuses in the cooling tower.		
11-Sep	5.0	Troubleshot tripped breaker No. 33.		
12-Sep	5.0	Put in new Ground Fault Interrupter (GFI) and new breaker. Breaker still tripped.		
17-Sep	6.5	Tested circuit breaker No. 33.		
18-Sep	8.5	Installed six temperature testers. Started fuel cell and left running at 200 kW.		

1998	Labor Hrs	Description of Activity
12-0ct	5.0	Changed resin and charcoal bottles.
11-Dec	6.0	Recorded water treatment system and pump 400 data. Cleaned filters 100 & 150.
22-Dec		Took stack voltage readings. Fixed leak on water bottles. Removed humidity sensor. Checked pump 451 on/off times. Checked R/O unit power on.
28-Dec	3.0	Tested TE's on reformer.

Table 19. Maintenance activities in 1999.

	Labor Hrs	Description of Activity
8-Jan	2.0	Reset lockout relay. Filled accumulator. Filled tank 450 to 30 in Left power plant in P30-S30.
12-Jan	24.0	Prepared reformer for removal.
13-Jan	10.0	Completed reformer preparations.
24-Jan	2.0	Started taking doors and frame apart.
26-Jan	12.0	Removed old reformer and put in new reformer.
28-Jan	5.0	Began quarterly maintenance on power plant.
1-Feb	16.0	Started annual maintenance. Set up for welders.
2-Feb	16.0	Continued with annual service. Assisted/supervised welders. Installed retrofit.
3-Feb	16.0	Insulated reformer piping. Continued annual service.
4-Feb	13.0	Completed piping insulation and annual maintenance activities. Did hydro test.
9-Feb	10.0	Conducted hydro test on ancillary loop.
10-Feb	6.0	Completed site cleanup, seals on door and changed fans.
15-Feb	4.0	Worked with UTC Fuel Cells in troubleshooting ejector.
16-Feb	10.5	Installed ejector. Started power plant while doing reduction on reformer.
17-Feb	8.0	Conducted gas analysis and brought power plant up to 200 kW.
15-Apr	3.0	Built rack for nitrogen bottles.
6-Jul	6.0	Changed nitrogen bottles and tested all three legs of electricity coming into P/T. Started power plant.
12-Jul	4.0	Updated controller software to 4.1 and attempted to start power plant.
20-Jul	8.0	Started power plant. Updated software on Base's laptop computer and explained to site coordinator.
21-Jul	8.0	Traveled to site to retrieve data.
1-Sep	10.0	Changed out water treatment system bottles.

Table 20. Maintenance activities in 2000.

2000	Labor Hrs	Description of Activity			
1-Jan	11.0	Changed brake on FT140 and I/O modules for FT140.			
3-Feb	2.5	shed charcoal bottle out and troubleshot pump 450.			
29-Feb	8.0	Replaced pump 451 & fan 800 motor. Started power plant, left running at 150 kW.			
30-Mar	8.0	Replaced Multi Source Discovery Protocol (MSDP) card & microchips for another MSDP card.			
18-Apr	6.0	Changed out electronic card underneath inverter and boost cards on white panel. Removed #3 motor from cooling tower.			

2000	Labor Hrs	Description of Activity				
20-Apr	11.0	Removed #2 and #1 fan blades and motors from cooling tower. Replaced relay card.				
26-Apr	6.0	Installed new motors and fan blades back into cooling tower.				
27-Apr	6.0	Replaced relay card again with correct relay card. Started power plant and left running at 125 kW.				
10-May	3.0	hanged master Digital Signal Processing (DSP) card and restarted power plant.				
12-May	4.0	Changed slave DSP and CB rating module. Restarted power plant.				
3-Jul	3.0	Back flushed charcoal bottle.				
21-Sep	4.0	Troubleshot long feed water cycle and tried to repair leak.				
28-Sep	6.0	Tri-annual maintenance.				
29-Sep	5.0	Tri-annual maintenance.				
2-Oct	18.0	Tri-annual cleaning.				
3-Oct	20.0	Tri-annual cleaning.				
4-Oct	16.0	Tri-annual cleaning.				
5-0ct	14.0	Tri-annual cleaning.				
6-Oct	8.0	Cleaned condenser and attempted to start power plant.				
11-Oct	7.0	Replaced air conditioner.				
12-Oct	10.0	Rewired air conditioner. Attempted to start power plant.				
16-0ct	6.0	Attempted to start power plant.				
17-Oct	10.0	Troubleshot failed attempted to start power plant. Purchased UPS battery.				
18-0ct	4.0	Installed UPS battery. Started power plant.				
23-0ct	4.0	Tuned up power plant.				
24-Oct	2.0	Changed brake.				
1-Nov	6.5	Troubleshot process flame off and restarted power plant.				
14-Nov	6.0	Installed new controller and started power plant. Left running at 175 kW.				
8-Dec	7.0	Restarted power plant and took sub stack readings.				

Table 21. Maintenance activities in 2001.

2001	Labor Hrs	Description of Activity
23-Jan	1.0	Turned power on and put power plant in water conditioning.
5-Mar	5.0	Checked thermal management system and water treatment system for leaks. Preformed pressure test on TMS loop.
6-Jun	1.0	Checked on modem - no communication.
8-Jun	2.0	Applied power to power plant. Extended TE350 to CSA. Cleaned heaters 310A & 310B.
16-Jul	2.0	Reset motor controllers for pumps 400, 450 and 830. Put power plant back in water conditioning. Rewired TE350.
4-Oct	7.0	Checked and started power plant.
5-Oct	7.0	Changed WTS bottles. Tuned power plant at all power levels, checked heat recovery system.
9-Oct	4.0	Rebuilt circulating pump for heat recovery system. Reset parameters for heat recovery system.
15-Nov	1.0	Removed and replaced TCV400.

4.5 Fuel Cell Retrofits

As part of the fuel cell demonstration and overall fuel cell development, UTC Fuel Cells refined the fuel cell design based on operational experience gained through the operation of the fleet of fuel cells. These improvements and modifications were classified as retrofits. Once a retrofit was developed, it would be incorporated into the production of new fuel cells or retrofit in the field for installed fuel cells. The details of the retrofits are considered proprietary information by UTC Fuel Cells and are not available for this report. The data in Tables 17 through 21 indicate that five retrofits (Table 22) were added to the fuel cell in the field.

Date of Retrofit	Retrofit Description
Oct. 1997	Install new controller and software
Jan. 1998	Upgrade base drive in inverter
Jan. 1998	Install strainer and filter in TMS
Apr. 1998	Replace high grade heat exchangers (redesign)
Feb. 1999	Replace breakers with higher grade version

Table 22. Summary of fuel cell retrofits.

Fuel Cell Operation and Outage Summary

Figure 12 shows the operational and outage periods for each hour within the 62 months that the fuel cell was active (June 1997 to July 2002). The outage times are highlighted in gray along with a listing of the outage number, duration in hours and minutes, and a brief description of the shutdown. Days where on-site maintenance was performed is shown graphically by an 8 hour box. GBC Electrical Services, the maintenance contractor, provided maintenance activity records.

5 Fuel Cell Economics

5.1 Hospital Energy Costs

The Base purchases electricity from Southern California Edison (SCE) under a time of use rate schedule, TOU-8. This rate has summer and winter seasons consisting of on-peak, mid-peak and off-peak time periods with associated demand and energy charges. The Base also purchases electricity from the Western Area Power Administration (WAPA) for a percentage of its total electricity requirements. Because the WAPA portion of the electricity was assumed to be significantly smaller than the SCE portion as discussed in ERDC/CERL TR-01-60, the focus of the economics will be based on the SCE TOU-8 rates. This rate has a summer and winter season consisting of on-peak, mid-peak, and off-peak time periods. Table 23 summarizes the structure of the TOU-8 tariff.

Winter Summer Months June - September October - May On Peak Period Noon - 6:00 pm None Mid-Peak Period 8:00 am - Noon 8:00 am - 9:00 pm 6:00 pm - 11:00 pm Off-Peak Period All other hours and holidays All other hours and holidays Charges Facility Charge (\$/meter) Facility Charge (\$/meter) Energy Charge (\$/kWh) Energy Charge (\$/kWh) Facility Related Demand Charge (\$/kW) Demand Charge (\$/kW) Time Related Demand Charge (\$/kW) Excess Transformer Capacity (\$/kVA) Excess Transformer Capacity (\$/kVA) Power Factor Adjustment (\$/kVA) Power Factor Adjustment (\$/kVA)

Table 23. SCE TOU-8 rate structure.

The Base purchases the natural gas commodity from the Defense Fuel Supply Center (DFSC) and the natural gas transportation is provided by the Pacific Gas and Electric Company (PG&E).

The Base did not provide Base-wide or Hospital energy usage or cost information for the fuel cell demonstration time period. To estimate the fuel cell economics, the average electric and natural gas rates used from another customer involved in the DoD Fuel Cell Demonstration Program (Twentynine Palms, CA) were used to approximate cost savings. Both facilities purchase electricity from SCE under the same rate schedule, but

purchase natural gas through different suppliers. Table 24 lists the annual average electric and natural costs used for the fuel cell economics analysis.

Average Energy Costs	1997	1998	1999	2000	2001	2002
Electricity (\$/kWh)	\$0.1040	\$0.1017	\$0.1017	\$0.1017	\$0.1500	\$0.1500
Natural Gas (\$/therm)	\$0.5800	\$0.4080	\$0.4080	\$0.4810	\$0.9500	\$0.7000

Table 24. Annual electric and natural gas costs.

Note that electric and natural gas costs were extremely volatile and high during the years of 2001 and 2002 when California was experiencing the energy crisis brought on by deregulation.

5.2 Fuel Cell Maintenance Costs

Table 25 lists maintenance costs from GBC Electrical Services between 1997 through the end of the 2001. Although the fuel cell was restarted once in 2002, invoices for that service call and others were not available for this report.

Category	1997	1998	1999	2000	2001	Totals
Labor Hours	323	342	193.5	218	30	1,107
Labor Costs	\$16,788	\$18,025	\$9,970	\$12,208	\$2,020	\$59,010
Nitrogen Costs	\$2,072	\$2,128	\$836	\$885	\$135	\$6,057
Charcoal (cu ft)	0	2	2	2	2	8
Charcoal Costs	\$0	\$186	\$206	\$186	\$186	\$764
Resin (cu ft)	24	8	9	8	8	57
Resin Costs	\$6,490	\$1,808	\$2,420	\$2,160	\$2,240	\$15,118
Other Costs	\$9,512	\$6,217	\$4,752	\$2,079	\$1,721	\$24,282
Travel Costs	\$6,413	\$8,238	\$4,868	\$9,141	\$3,934	\$32,594
Shipping Costs	\$309	\$205	\$25	\$23	\$0	\$562
Totals	\$41,583	\$36,808	\$23,077	\$26,682	\$10,237	\$138,386
Note:. Maintenance data was not available for 2002.						

Table 25. Summary of fuel cell maintenance costs.

The cost of maintenance over the entire operating period is estimated at \$138,386. Again, the maintenance costs for 2002 are not included as the information was not available. These costs correspond to an average maintenance cost of \$27,677/year or 2.72 cents/kWh (\$138,386/5,081,500 kWh) for all the electricity supplied to the Hospital. *Note that the maintenance costs presented do not include the cost of any parts or labor provided by UTC Fuel Cells to repair or modify the fuel cell.*

Figure 21 shows that labor was the highest cost category at \$59,010, representing 42.6 percent of total maintenance costs. Labor hours averaged 221 man-hours per calendar year. The highest number of man-hours in a calendar year was 342 in 1998. Nitrogen costs totaled \$6,057 and represents only 4.4 percent of the total maintenance costs. Spread across the 27 outages that occurred, the average cost of nitrogen was \$224 per outage. While charcoal used in the water treatment system was a relatively minor cost (~\$150/year), resin was a moderate program cost totaling approximately \$15,000 or 10.9 percent of the maintenance costs. Resin costs were \$533 per 1000 operating hours. The second highest cost category behind labor was travel costs, at 23.6 percent. Appendix E presents maintenance costs by invoice date.

Figure 21. Summary of maintenance costs by category

Figure 22 presents the trend in annual maintenance costs for the fuel cell. Note that the costs for 1997 are for less than 6 months of the demonstration as the fuel cell data collection started on 17 July 1997. The fuel cell concluded operation on 1 July 2002. The high costs on 1997 and 1998 are attributed to the hard water problems which resulted in the replacement of the cell stack and the installation of an external water treatment system.

Fuel cell maintenance costs for the 5-year demonstration period were included in the original purchase contract with the fuel cell manufacturer. First year maintenance costs were included in the original fuel cell purchase price. The final 4 years of contract maintenance paid by ERDC/CERL was \$98,223, at an average of \$24,556 per year.

Figure 22. Annual trend in fuel cell maintenance costs.

5.3 **Fuel Cell Energy Savings**

Energy savings from the fuel cell were calculated based the annual performance data collected through the UTC Fuel Cells RADAR system and the assumed electric and natural gas costs presented in Table 25. Note that the RADAR system did not monitor the thermal heat recovery loop on the fuel cell. Therefore, no data are available to estimate the value of the heat recovered by the Hospital from the fuel cell. Notes from the fuel cell acceptance test indicate that an artificial thermal load had to be established to demonstrate the heat recovery functionality because there was insufficient load at the Hospital. It is inferred that the level of heat recovery was not significant. Table 26 lists the fuel cell energy savings. Net energy savings without heat recovery over the entire program were \$304,145.

Table 26. Annual energy savings at hospital.							
	1997	1998	1999	2000	2001	2002	Total
Electric Savings Thermal Savings*	\$20,053	\$111,896	\$145,079	\$126,488	\$67,076	\$100,640	\$571,232
Total Savings	\$20,053	\$111,896	\$145,079	\$126,488	\$67,076	\$100,640	\$571,232
Natural Gas Costs	\$7,169	\$41,191	\$58,041	\$63,601	\$46,125	\$50,961	\$267,087
Net Savings	\$12,884	\$70,706	\$87,038	\$62,888	\$20,950	\$49,678	\$304,145
*Thermal heat recovery data was not monitored by UTC Fuel Cells' RADAR system.							

Overall electric savings were \$571,232 with a maximum annual savings of \$145,079 occurring in 1999. The cost of natural gas to operate the fuel cell totaled \$267,087 over the course of the demonstration and corresponds to a fuel cost for electrical generation of \$0.0526/kWh (\$267,087/5,081,400 kWh). Figure 23 shows the trend in annual energy savings.

Figure 23. Annual fuel cell energy savings.

5.4 Fuel Cell Lifecycle Costs

The fuel cell lifecycle cost analysis is presented for the operational life of the fuel cell at Edwards AFB. The installed cost of the fuel cell was \$1,260,727. The lifecycle cost analysis uses the utility rates presented in Section 5.1, the maintenance costs presented in Section 5.2 and the savings presented in Section 5.3. Note that the analysis is based on the average cost of electricity that the Hospital is charged. That is to say that demand savings are not calculated separately in the analysis. A review of the data shows that demand savings would have been realized in only 20 of the 59 full months of operation and that the average demand reduction for the 20 months would have been 184.8 kW. In 1999, demand savings could have been realized in 9 of the 12 months. In 1998 and 2001, demand savings could have been realized in 2 of the 12 months. The criterion for determining demand savings is that the fuel cell was operational during all hours of the peak period hours for the calendar month. Table 27 lists the months in which demand savings could have been attributed to the fuel cell and the average output of the fuel cell during the month.

Table 27. Fuel cell demand savings.

Month of Demand Savings	Fuel Cell Demand Savings
Oct 1998	200
Nov 1998	200
Mar 1999	200
Apr 1999	196
May 1999	200
Jun 1999	186
Aug 1999	200
Sep 1999	197
Oct 1999	200
Nov 1999	199
Dec 1999	200
Jun 2000	125
Jul 2000	200
Aug 2000	200
Nov 2001	175
Dec 2001	175
Jan 2002	173
Feb 2002	170
May 2002	150
Jun 2002	150
Average Demand:	184.8
Number of Months:	20

The data listed in Table 28 summarize the lifecycle cost analysis. The analysis allocates the capital cost of the fuel cell in the 1997 calendar year. In addition, values are actual costs and are not adjusted to a base year. The analysis shows that the operational costs exceeded the savings in 2001 and that the cumulative operational savings were \$158,545.

Table 28. Lifecycle cost analysis.

	1997	1998	1999	2000	2001	2002		
HOURS OF OPERATION								
Operation Hrs/Yr	1,024	5,630	7,340	7,326	2,823	4,215		
Total Operation Hours	1,024	6,654	13,995	21,320	24,123	28,358		
Hours Since Overhaul	1,024	6,654	13,995	21,320	24,123	28,358		
OPERATION VALUES								
Electrical Eff (%)	34.9%	37.2%	34.2%	32.1%	31.4%	31.5%		
Thermal Eff (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		
Demand Disp. (kW)	0	400	1,778	525	350	643		
Electrical Output (MWh)	192.8	1100.3	1426.5	1243.7	447.2	670.9		
Thermal Displ. (MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00		
Fuel Input (MMBTU)	1,236.0	10.105.7	14,239.6	13,320.9	4,855.3	7,280.1		
AVERAGE ENERGY RATES								
Demand Rate (\$/kW)	_	_	_	_	_	_		
Electrical Rate (\$/kW)	0.1040	0.1017	0.1017	0.1017	0.1500	0.1500		
Facility Gas Rate (\$/MMBTU)	5.80	4.08	4.08	4.81	9.50	7.00		
Generator Gas Rate (\$/MMBTU)	5.80	4.08	4.08	4.81	9.50	7.00		
GENERATOR SAVINGS / ENERGY	SAVINGS							
Demand	_	_	_	_	_	_		
Energy	\$20.051	\$111,901	\$145,075	\$126,484	\$67,080	\$100,635		
Displaced Fuel	\$0	\$0	\$0	\$0	\$0	\$0		
Subtotal (\$)	\$20.051	\$111,901	\$145,075	\$126,484	\$67,080	\$100,635		
COSTS								
Fuel Cost	\$7,169	\$41,231	\$58,098	\$63,641	\$46,125	\$50,961		
Maintenance	\$2,222	\$53,823	\$27,428	\$28,485	\$26,470	\$7.029		
Generator Overhaul	\$0	\$0	\$0	\$0	\$0	\$0		
Subtotal (\$)	\$9,391	\$95,054	\$85,526	\$92,126	\$72,595	\$57,990		
Annual Savings	\$10660	\$16,846	\$59,549	\$34,359	(\$5,515)	\$42,645		
Cumulative Savings	\$10660	\$27,507	\$87,056	\$121,415	\$115,899	\$158,545		
Installed Cost	\$1,260,727							
Net Cash Flow	(\$1,250,067)	\$16,846	\$59,549	\$34,359	(\$5,515)	\$42,645		
Cumulative Cash Flow	(\$1,250,067)	(\$1,233,220)	(\$1,173,671)	(\$1,139,312	(\$1,144,828)	(\$1,102,182)		

6 Summary and Conclusions

6.1 Review of Fuel Cell Demonstration at Edwards AFB

The 200 kW phosphoric acid fuel cell operated for 28,357.9 hours which corresponds to an availability of 65.3 percent. A total of 27 outages were recorded, 16 of which were classified as a "Forced Outage(s)." The fuel cell delivered more than 5,081 MWh of electricity to the Hospital facility at an average rate of 179 kW. The fuel cell electrical efficiency averaged 34.0 percent (HHV) over the course of the demonstration. Thermal heat recovery was not monitored for this fuel cell. The data listed in Table 29 summarizes the performance of the fuel cell operation.

2000 2002 Totals Fuel Cell Operation Hours in the Period 3 998 4 8 760 0 8.760.0 8.784.0 8 760 0 4,357.0 43 419 4 7,340.2 7,325.9 4,214.6 28,357.9 Fuel Cell Operation Hours 1,024.3 5,630.0 2,823.0 Fuel Cell Outage Hours 2,974.2 3,130.0 1,419.9 1,458.1 5,937.0 142.4 15.061.5 Availability 25.6% 64.3% 83.8% 83.4% 32.2% 96.7% 65.3% **Electrical Generation** Total Generation (MWh) 192.8 1,100.3 1,426.5 1,243.7 447.2 670.9 5,081.5 Average Rate of Generation (KW) 188.2 195.4 194.3 169.8 158.4 159.2 179.2 Natural Gas Consumption 1,236.0 10,105.7 14,239.6 13,230.9 4,855.3 7,280.1 1,200,000.0 9,811,327.0 13,824,858.0 12,845,496.0 4.713,880.0 7,068,103.0 Total Consumption (cu ft/hr) 49.463.664.0 Average Rate of Generation (cu ft/hr) 1,788.4 1,742.7 1,883.5 1,753.4 1,669.8 1,677.1 1,744.3 Heat Recovery Total Heat Recovered (MMBTU) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Average Rate of Recovery (MMBTU) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Efficiencies Electrical (%) 34.9% 34.2% 32.1% 31.4% 31.5% 34.0% 37.2% PURPA* (%) 34.9% 37.2% 34.2% 32.1% 31.4% 31.5% 34.0% Public Utility Regulatory Policy Act (PURPA)

Table 29. Summary of fuel cell performance.

The longest continuous period of operation was 4,507.4 hours, or about 6 months. The fuel cell stack had to be replaced once during the demonstration period and an external water treatment system had to be retrofit to the fuel cell due to high conductivity of the water. In addition, five fuel cell design retrofits were installed on the fuel cell which included a new controller and software as well as a new high grade heat exchanger system.

At the completion of the demonstration, the fuel cell was down due to a forced outage associated with the water treatment system. Edwards AFB has elected to keep the fuel cell and plans to restore operation at the current facility or to move it to another facility.

6.2 Lessons Learned

Based on the experience of installing, and operating the fuel cell, the following lessons learned can be considered:

- High conductivity of water, particularly due to the hardness of the water in the Southwest region of the U.S., must be addressed to prevent negatively impacting the performance of the fuel cell stack.
- Installation of the fuel cell is a relatively straightforward process with no major concerns at this site. The installation took 2 months from the authorization to commence construction to the completion of the acceptance testing (25 April 1997 to 25 June 1997).
- During the course of the demonstration, the fuel cell operation resulting an a cumulative savings of \$158,545 or \$31,700/yr. The level of energy savings was less than the anticipated \$72,500/yr to \$108,400/yr due to the following:
 - $\circ~$ The average fuel cell electrical output was 179 kW and not the anticipated 200 kW
 - o The fuel cell availability was only 65.3 percent instead of 95 percent.
 - The level of heat recovery was not measured and therefore not included in the savings values.
 - The fuel cell was able to potentially reduce the demand of the Hospital in only 20 of the 59 months of the demonstration.
- The fuel cell experienced a total of 8,167.6 hours of non-forced outages attributed to due to the natural gas supply being turned off, site operator error or scheduled maintenance activities. The longest non-forced outage occurred in January to October 2001 for a duration of 6,193.37 hours due to site personnel shutting off the natural gas supply to the fuel cell and opening the maintenance disconnect switch.
- Most of the forced outages were categorized as Other and Thermal Management System issues. The total duration of forced outages was 6,893.9 hours or 46 percent of all outages.
- The average duration of a forced outage was 430.9 hours, or approximately 18 days.
- The maintenance costs averaged \$27,677/year, which represents an average cost of 2.72 cents/kWh. This does not include the equipment cost of the replacement cell stack, the reverse osmosis system, the re-

- design high grade heat exchanger system, or the other hardware provided by UTC Fuel Cells.
- The average fuel cost to generate electricity was 5.26 cents/kWh. (\$267,087 / 5,081,500 kWh).
- The average operating and maintenance costs to generate electricity was 7.98 cents/kWh (5.26 cents/kWh [fuel cost] + 2.72 cents/kWh [O&M costs]). Note that this does not include the value of the heat recovered from the fuel cell. Over the same period of time, the average cost of electricity purchased from SCE is estimated to be 11.8 cents/kWh.

6.3 Issues for Further Analysis

The review and analysis of the 200 kW phosphoric acid fuel cell that was installed at Edwards AFB. resulted in the identification of several issues appropriate for further analysis:

- Water Quality Requirements. UTC Fuel Cells has identified through the demonstration that the hardness of the water impacts the fuel cell operation. The Edwards AFB fuel cell required the installation of a reverse osmosis water treatment system. The hardness level at which the fuel cell will require an RO system should be identified.
- **Fuel Cell Electrical Efficiency Trends.** The analysis of the electrical efficiency trends showed that in addition to the number of load hours, other factors affect the efficiency degradation. The secondary analysis that was conducted based on evaluating the trends between major system changes did not substantially improve on the ability to better quantify the electrical efficiency degradation. Further evaluation of trends of other demonstration fuel cells might provide more insight.
- **Cell Voltage Trends.** The analysis of the cell voltage trend showed that the trend for operation at the 175 kW output had the best regression with an R Squared value of 0.95. The 200 kW and 150 kW regressions have R Squared values that are lower than the original regression model indicating that this approach does not improve the model for these two data sets. The slopes of the lines for the three power levels range from -2.67 percent to -5.44 percent per 10,000 load hours. These trends should be further analyzed with additional C models to see if better characterizations can be developed.
- **System Design Improvements.** As part of the fuel cell demonstration and overall fuel cell development, UTC Fuel Cells refined the fuel cell design based on operational experience gained through the operation of the fleet of fuel cells. These improvements and modifications were classified as retrofits. The details of the retrofits are considered

proprietary information by UTC Fuel Cells and are not available for inclusion in this report. Investigation of maintenance activities for a larger number of C type fuel cells may provide greater insight into the modifications to the fuel cell design that can be attributed to the demonstration program.

Acronyms and Abbreviations

PSS

Power Section System

<u>Term</u> **Spellout** ACSIM Assistant Chief of Staff for Installation Management **AFB** Air Force Base **AFCESA** Air Force Civil Engineer Support Agency ANSI American National Standards Institute CEO corporate executive officer **CERL** Construction Engineering Research Laboratory **CPW** U.S. Army Center for Public Works **CVS** Cabinet Ventilation System DEIS Defense Energy Information System **DFSC** Defense Fuel Supply Center DOD Department of Defense DSP **Digital Signal Processing ERDC Engineer Research and Development Center FPS** Fuel Processing System GFI **Ground Fault Interrupter** HHV Higher Heating Value **HPLC** high performance low chromatography HQ headquarters 1/0 input/output **ILIR** In-house Laboratory Independent Research kW Kilowatt LHV lower heating value **MSDP** Multi Source Discovery Protocol N/A not applicable **NFESC** Naval Facilities Engineering Service Center **NPS** National Park Service **ODUSD** Office of the Deputy Under Secretary of Defense OMB Office of Management and Budget **PAFC** Phosphoric Acid Fuel Cell PG&E Pacific Gas and Electric Company PO purchase order

<u>Term</u>	Spellout
PURPA	Public Utility Regulatory Policy Act
RO	reverse osmosis
RADAR	Radio Detection And Ranging
SAIC	Science Applications International Corporation
SCE	Southern California Edison
SERDP	Strategic Environmental Research and Development Program
SI	Systeme Internationale
TMS	Thermal Management System
TOC	Table of Contents
TOU	time-of-use
UPS	Uninterruptible Power Supply
URL	Universal Resource Locator
UTC	United Technologies Corp.
WAPA	Western Area Power Administration
WTS	Water Treatment System
WWW	World Wide Web

Appendix A: Fuel Cell Acceptance Test Report

ONSI CORPORATION

ON SITE ACCEPTANCE TEST REPORT

POWER PLANT:

LOCATION:

TEST DATES:

SIN 9061

NAVAL HOSPITAL MCAGCC TWENTY NINE PALMS, CALIFORNIA

JUNE 16 THROUGH JUNE 21, 1995

CNSI CORPORATION

01/23/95

DOD ACCEPTANCE TEST OF PC25TM POWER PLANT INSTALLATION

■ Following a normal power plant start-up, operate at IDLE for one hour. At the completion of the one hour, obtain prints of the following five (5) display screens.

	KEY PARAMETERS	(screen 09)
-	REACTANT SUPPLY SYSTEM	(screen 10)
-	STACK LOOP, ANC LOOP, & WTS	(screen 11)
_	ELECTRICAL OVERVIEW	(screen 14)
_	POWER CONDITIONER SYSTEM	(screen 25)

- In the grid connect mode with unity power factor and no heat recovery, operate at each of the following powers for one hour. After one hour obtain prints of the five (5) screen displays outlined above. Also perform the additional demonstrations at 100 KW and 200 KW listed below which are accomplished after the one hour hold. The required display screen prints for verification are shown in brackets {}.
 - 50 KW
 - 100 KW
 - - imposed by the grid {screen 14}

{screen 14}

- 0.85 lagging power factor 150 KW
- 200 KW (Rated Power)
 - demonstrate < 3% harmonic distortion [using THD meter
 - across the output power breaker)
 demonstrate 60 Hz ± 3 Hz frequency [using a Fluke Model 87 True RMS Multimeter or equivalent]
 demonstrate leading and lagging power factors for 5 minutes
 - - max leading power factor up to 0.85 within limitiations imposed by the grid {screen 14}
 - 0.85 lagging power factor {screen 14}
 - demonstrate minimum of 2 hours of heat recovery at time of normal site heat usage and consistent with site design
 - * {screen 09 at beginning and end of demonstration plus screen 11 at beginning and every hour until heat recovery demonstration completed} confirmation of 1900 SCFH ± 100 SCFH natural gas
 - consumption during this two hour hold
- Grid Independent operation will be demonstrated at those sites where such capability is installed, at power conditions consistent with normal site demand. After one hour of grid independent operation each of the five (5) screens displays noted above shall be printed as verification.
 - demonstrate 60 Hz ± 3 Hz frequency [using a Fluke Model 87 True RMS Multimeter or equivalent]
 - demonstrate 480 volts ± 3%

3656:41			2 TE012F	VT310DEL≃ -0.91 EVEN T= 1495 OVERRI	
TS400 TE400R TS400DBL LS450 TS431	WATER TANK LEVEL SWITCH POLISHER TEMP	369.8 1 0.4 1 On 75.7 1	DEGF S DEGF S DEGF F	ETPOINT: EP TEMP FACTOR(DEGF) TK FLOW SW (FS400) /W TEMP SW (TS451)	370.0 1.0 On On
TE810 TE820 TE880 TE881 TE401 LT400	CONDENSOR EXIT TEMP CUST HEX HOT IN TEMP CUST HEX COLD IN TEMP STACK COOLANT INLET TEMP SEPARATOR LEVEL	153.3 1 90.6 1 102.3 1 361.2 1	DEGF F	UMHEATREC(MMBTU) T880 FLOW (FPH) EAT REC (MBTU/HR)	0.689 21940 270
PMP451 STARTTEMP IDCNET	WTS FEEDWATER PUMP TEMP FOR REF HEATUP NET DC CURRENT		O DEGF AMPS	N TIME, MIN.(FWPUMP):	0
HTR400	SLEMENT "A" ELEMENT "B"	On On		LEMENT "C" LEMENT "D"	On Off

REY PARAMETERS (ENGLISH UNITS)							
P/P 9061 06/16/95	0653:	33	event <i>s</i>	OVERR	IDE: C		
P 150 9 160 8 60 W 20	A 30 N	40 C	ээ ь 13 (<u>д</u> ,2 6)				
			CPERATING TIME		HRS		
POWER OUTPUT (GROSS)	56.3	KWAC	POWER FACTOR	0.90			
STACK CURRENT	239.1	AMES	CUMULATIVE POWER	0.839	MWHR		
STACK VOLTAGE VOLUMETRIC PUEL FIGW	227.4	VOLUE	HALF STACK VOLTAGE	-0.09	VOLTS		
VOLUMETRIC FUEL FIGW	461.2	SCFE	FURE PROW RESPOND	457.5	SCFH		
	20.7	PFH					
ATORO ESECTOR POSITION	18.9	₹	ZTO10 SETPOINT		9.		
PHI MORTTOR	1.03		TOTAL FUEL CONS	32622	SCF		
FT140 BURNER AIR FLOW	206.7	РPН	PT140 SETFOINT	210.0	PPH		
TE012 REFORMER TEMP	1492.7	DEGE	ZT110 POSITION	41.9	3		
TS012R BACKUP REF TEMP	1436.1	DEGY	TEO12 SETFOINT	1495.C	DEGF		
				D 005 6			
TEOCO HDS TEMP	499.7	DEGF	TESSO ANODE INDET TRK	P 395.6	DEGF		
TR400FT STEAM SEP TEMP	271.8	DESF	TE400 SETFOINT	370.0	DEGF		
TE881 TEMP TO CUST	102.3	DEGF	RECOVERED HEAT		MBTU/AR		
			TE431 FOLISHER TEMP		DEGF		
LT400 SEPARATOR LEVEL	10.5	IN	TESIO GLYCOL TEMP		DEGF		
PMP451 STATUS	01:		TE160 MOTOR COMP AIR		DEGF		
			TE150 MOT COMP AIR IN		DEGE		
ELECTRICAL EFFICIENCY	2.0	ž.	press (MEXT PAGE> key	_			

0655:38	REACTANT : 1DC= 243.5 VDC= 237 FTG12ACT= 21.4 10400FP P 150 R 160 S 60 W 20	KWACNETE I= 370	: 2 02012:	VT310DEL= -0.91 EVE YT= 1494 GVERR	NTS G iDE D
TECTIONS FTOTIACT FTOTIA FTOTIA SCRH FURLTOT	REF TUBE TEMP (PRIMARY) REF TUBE TEMP (BACKUP) REF TUBE TEMP DELTA ACTUAL MASS FUEL FLOW UNCORR, MASS FUEL FLOW ACTUAL VOLUME FUEL FLOW TOTAL FUEL CONSUMED	1487.4 7.0 21.4 22.6 475.9 22637	DEGF DEGF PPH PPH CPH SCF	REF/FURL CONT OUTPUT: SETPOINT: TEC11 FUES TEMP(DEGF) SETPOINT: PT012 VENTURI(PSIA)	21.0 56.9 468.0
ZTOLO PHIMON TESEO	EJECTOR POSITION PHI MONITOR ANCDE INLET TEMP	19.0 1.02 397.5	€ DRGF	SETPOINT: STEAM FLOW S.P.(PPH):	18.3 105.9
TE002	GDS BED TBMP	499.3	DEGF	HTR002 STATUS:	Cr.
ETFRE2'	REFORMER REFIGIENCY	77.6	સ્		
0657:53 P/P 9061	IDC= 239 VDG= 237 KV FT012ACT+ 21.1 T3490F9 P 150 R 160 S 60 W 20	(28E ≃7 14 08 A	2.5 T30123	FT= 1498OVERRID	NTS C ES O
LOADTIME HOTTIM2 CELV	TOTAL LOAD TIME	66 120	нз		
ASF	AVG VOLTS PER CELL	.741 42	V/C		
ASF KWDC VT310DEL	AVG VOLTS PER CELL CURRENT DENSITY DC KILOWATTS DELTA HALF STK VOLT INSTANTANEOUS STK AMPS	.741 42 56.7 -0.91 239	V/C	VT310 HALF STK VOLT	
ASF KWDC VT310DEL EFFINV BF7MECH EFFELEC	AVG VOLTS PER CELL CURRENT DENSITY DC KILOWATTS DELTA HALF STK VOLT INSTANTANEOUS STK AMPS INVERTER EFFICIENCY MECHANICAL EFFICIENCY SLECTRICAL SFFICIENCY NET AC POWER ACTUAL POWER FACTOR NET KVAR HET KVA FARASITS POWER	56.7 -0.91 239 99.3 4.4	V/C ASF KW V A B	CELL EFFICIENCY (%) REF EFFICIENCY (%)	59.3 75.5 190563

0658:49	POWD IBC= 239 VDC= 237 FT012ACT= 21.1 TE400F9 P 150 R 160 S 60 W 20	EWACNET 2= 370.0	TIONER SYSTEM = 2.5 VT31CDEL= -0.92 EVENTS 0 TE012FT= 1500.6 OVERRIDE 0 40 C 30 L 10 (£ 26)
CT001A	INV AC VOLTAGE,PHASE A INV AC VOLTAGE,PHASE B INV AC VOLTAGE,PHASE C INV AC CURRENT,PHASE A INV AC CURRENT,PHASE B INV AC CURRENT,PHASE C	480.6 475.5 0.5 0.0	V V A
FINKADC BLOG3C BLOG3Y	NET AC VOLTAGE PHASE B		V VOLTAGE UMBAL (%) 1.0
MCB002	PERCENT FUNDAMENTAL PHASE SHIFT REQUEST G/I BREAKER STATUS G/C BREAKER STATUS INTER-TIF BREAKER STAT INTERRUPT COUNT	83.8 2.0 Off Off On 0	

KEY PARAMETERS (ENGLISH UNITS)							
P/P 9061 06/16/95	0837:0) 2	EVENTS:0	CVERR	IDE: O		
2 160 R 160 S 52 W 20	$A_{-}30$ N	<u>40—0</u>	30 2 20 (I 50)				
CROWER COTRUT (NET)	50.7	KWAC	OPERATING TIME	68.4	HRS		
POWER CUTPUT (GROSE)	102.6		POWER FACTOR	-1.GO			
STACK CURRENT	459.8	AMPS	CUMULATIVE POWER	0.915	MWER		
STACK VOLTAGE	223.0	701TZ	HALF STACK VOLTAGE	0.05	VOLTS		
AOPRWELKIC ERST REOM	900.9	SCFH	FUEL PLOW SETPOINT	850:7	SCFH		
ACTUAL FUEL FLOW	40.5	PPH					
atolo EUFCTOR POSITION			27010 SETFOINT	23.7	3		
	0.98		TOTAL FUEL CONS				
FT140 BURNER AIR FLOW					PPH		
TEOLN REFORMER TEMP			ZT1:0 POSITION	45.7	*		
TE012R BACKUP REF TEMP	1522.1	SEGY	TE012 SETFOINT	1514.4	DEGF		
TROC2 HDS TEMP	500.1	DEGF	TE350 ANODE INCET TEM	ſF 396.4	DEGF		
TE4COFT STEAM SEP TEMP		DMGF	TE400 SETPOINT	360.6	DEGF		
TE881 TEMP TO CUST	129.8	DEGF	RECOVERED HEAT	0	MBTU/HR		
			TR421 POLISHER TEMP		DEGF		
LT400 SEPARATOR SEVEL	$11 \ 4$	ΙŅ	TERIS GLYCOL TEMP		DEGF		
PMP451 STATUS	Off		TB160 MCTOR COMP AIR				
			T2150 MOT COMP AIR IN				
ELECTRICAS REFICIENCY	20.5	÷	press <next key<="" page≻="" td=""><td>r to view</td><td>RM data</td></next>	r to view	RM data		

06/16/95 0839:24 F/P 9061	RSACTANT S IDC= 457.6 VDC= 226 S FT012ACT= 38.3 TE400FT P 160 R 160 S 60 W 20	<u>жидсият</u> - 358	= 45 TE012) VT310DEL= -0.58 RVE FT= 1524 OVERR	NTS 0
TED12DEL FT012ACT FT012 SCFH	REF TUBE TEMP (PRIMARY) REF TUBE TEMP (BACKUP) REF TUBE TEMP DELTA ACTUAL MASS FUEL FLOW UNCORR. MASS FUEL FLOW ACTUAL VOLUME FUEL FLOW TOTAL FUEL CONSUMED	1522.5 1.7 38.3 42.0 851.7	DEGF DEGF PPH PPH CFN	REF/FUEL CONT OUTPUT: SETPOINT: TED11 FUEL TEMP(DEGF) SETPOINT:	37.0 71.1 900.4
ZTC10 FHIMON TZ350	EJECTOR POSITION PHI MONITOR ANODE INLET TEMP	24.5 1.13 396.6	§ Dege	SETPOINT: STEAM FLOW S.F.(PPH):	23.3 143.8
TSCO2	HDS BED TEMP	500.1	CEGF	HTROOZ STATUS:	On
3PFR EF	REFORMER EFFICIENCY	80.7	ŧ		
0549:06	STACK LOCAL STACK	WACNET:	TE012	9) VT310DEL= -0.78 EVEN 27T- 1511OVERN	NTS 0 IDP 0
0549:06 P/P 9061 T3400 TE40CR	IDC= 459.9 VDC= 223 Q PT012ACT+ 41.2 TE400PT: P 160 R 160 S 60 W 20 P SEPARATOR TEMP (PRIMARY) SEPARATOR TEMP (BACKUP)	WACNET: = 359.9 A 30 N 359.9 259.3	TE012 40 C DBGF DBGF DEGF	37 VTS10DEL= -0.78 EVEL 37T	358.3 1.6
0549:06 P/P 9061 T3400 T840CR T54003L U3450 T3431 TE810 T182C TE880	IDC= 459.9 VDC= 223 () PT012ACT= 41.2 TE400PT: p 160 R 160 S 60 W 20 ; SEPARATOR TEMP (PRIMARY) SEP TEMP BELTA WATER TANK SEVEL SWITCH POLISHER TEMP CONDENSOR BXIT TEMP CUST HEX HOT IN TEMP CUST HEX COLD IN TEMP	359.9 359.9 259.5 0.4 0n 74.6 139.9 173.8 172.9	TEO12 40 C DSGF DEGF DEGF DEGF DEGF DEGF DEGF DEGF DE	37 VTS10DEL= -0.78 EVEL 37T	358.3 1.6 On
0549:06 P/P 9061 T3400 T8400R T6400D3L US450 T3431 TE810 TE820 TE880 TE881 T3401 UT400	IDC= 459.9 VDC= 223 Q PT012ACT= 41.2 TE400FT: p 160 R 160 S 60 W 20 ; SEPARATOR TEMP (PRIMARY) SEF TEMP BELTA WATER TANK LEVEL SWITCH POLISHER TEMP CONDENSOR EXIT TEMP CUST HEX HOT IN TEMP CUST HEX COLD IN TEMP STACK COOLANT INLET TEMP SEPARATOR LEVEL	359.9 259.3 359.9 259.3 0.4 0n 74.6 139.9 173.8 172.9 123.6 339.0 11.2	TEOL:	SY VYSIODEL= -0.78 EVE 2FT- 1511 OVERRY 30 L 10 T 50 SETPOINT: SEP TEMP FACTOR(DEGY) STK FLOW SW (FS400) P/W TEMP SW (TS451)	356.3 1.6 On On 1.056
0549:06 P/P 9061 T3400 T8400R T6400D3L US450 T3431 TE810 TE820 TE880 TE881 T3401 UT400	IDC= 459.9 VDC= 223 () PT012ACT= 41.2 TE400FT; p 160 R 160 S 60 W 20 ; SEPARATOR TEMP (PRIMARY) SEP TEMP BELTA WATER TANK LEVEL SWITCH POLISHER TEMP CONDENSOR EXIT TEMP CUST HEX HOT IN TEMP CUST HEX COLD EX TEMP STACK COOLANT INLET TEMP	359.9 259.3 359.9 259.3 0.4 0n 74.6 139.9 173.8 172.9 123.6 339.0 11.2	TEOLO	OVTSIODELE -0.78 EVEN OVERNI 30 L 10 I 50 SETPOINT: SEP TEMP FACTOR(DEGY) STK FLOW SW (FS400) F/W TEMP SW (TS451) CUMHEATREC(MMBTU) FT880 FLOW (PPH) HEAT REC (MBTU/HE)	356.3 1.6 On On 1.056

PSREQ

MCB001

MCB002

MCBD03

LINKVĎC

LINK VOLTAGE

MCB003 INTER-TIE BREAKER STAT INTEROUNT INTERRUPT COUNT

PHASE SHIFT REQUEST

G/I BREAKER STATUS G/C BREAKER STATUS

PERCHUND PERCENT FUNDAMENTAL

	Of Compa				
08/15/95	100- 172 Und- 724 Two	CVT OVES!	كالقهك	VT310DBL= -0.85 EV	rn™s 0
00: - 3; 53 004 h - 76	100= 473 VDC= 224 (X) PC012ACT= 37.7 TE400F	MACHEL	18012		
5540:33 575 9A61	7 160 R 160 B 60 W 20	2 35 M	40 0	30 L 10 (1 50)	020 -
F/E 3001	1 (00 2 200 2 00 11 20	1. 3c 1.	45 (.		
LOADTIME	TOTAL LOAD TIME	68	ER		
HOTTIME	TOTAL HOT TIME	122	ня		
CEDA	AVG VOLTS PER CENT	.700	V/C		
ASF	CURRENT DENSITY		ASF		
kwed	DC KILOWATTS		KW		_
VTR1QDBL		-0.85		VT910 HALY STK VOLT	-0.01
	Instantaneous str amps	465			
SFFINV	INVERTER SEFICIENCY	99.0		CELL EFFICIENCY (%)	56.0 36.6
REFMECH	MECHANICAL EFFICIENCY SLECTRICAL EFFICIENCY	48.C 23.C		REF EFFICIENCY (%) HEAT RATE (BTU/KWHR)	15506
SLASTSC	SESCIRICAL EFF.C. SACI	23.0	*	MEAL RADS (BIO/RWHA)	19900
KWACNET	NET AC POWER	50.2	KWAC	DISPATCHED POWER:	50.0
PEACT	ACTUAL POWER FACTOR	-1.00	-	DISPATCHED P.F.:	1.00
	• • • • • • • • • • • • • • • • • • • •	-1.1	KVAR	DISPATCHED KVAR:	0,0
KVARNST	NET KVAR			Elbinione attac.	•
KVANET	NET KVA	49.7	RVA		
PARPOWER	PARASITE POWER	55.0	KW		
KWACGROS	GROSS AC POWER	105.2	KW South		
MWARSGR	GROSS AC MW HRS	2.549	-		
MWYRSNEC	MET AC MW HOURS	0.922	MWHR		
	PCW	BR_CONDI	TIONE	R SYSTEM	
06/16/95	IDC= 462 VDC= 224	KWACHÉT	= 49	. 0.80 131012TV (7.	EVENTS 0
0846:35	FT012ACT= 40.4 TE400F	T= 361.	TRO		ERRIDE 0
	P 160 R 160 B 60 W 20			C 20 L 10 (I 50)	
2,,,					
PTOOLA	INV AC VOLTAGE, PRASE A	497.5	V		
PT001B	INV AC VOLTAGE, PHASE B	494.2	ν		
PT001C	INV AC VOLTAGE, PHASE C	493.2	V		
0T001A	INV AC CURRENT, PHASE A	53.7	A		
CT031B	INV AC CURRENT, PHASE B	56.9	A		
CTC01C	INV AC CURRENT, PHASE C	58.2	A	CURRENT UNBAL (%)	7.5
	-				
PT003A	NET AC VOLTAGE, PHASE A		ų		
PTOOSB	NET AC VOLTAGE PHASE B	495.2	V		
PTC03C	NET AC VOLTAGE, PHASE C	492.3		VOLTAGE UNBAL (%)	1.0
CENKMOO	LINK VOLTAGE	599 7	v		

492.3 V 599.7 V

86.8 4.8 DEG

Off

On

Oπ

n/n 0051	KE 06/16/95 60 S 60 W 20 PUT (N3T) PUT (GROSS) (RENT	Y PARAME?	reks (E)	NGLISH	UNI	rs)	OMBDE:	
P/P 9051	. 05/16/95	1027:	5/ 40 0 1	9.V	ያ የሚገኝ	بمرعسه	GVERE.	150: 0
P 160 K 1	EUS EU W ZU	<u>-A-3U-</u> 2H-	4U C .	opens.	10 C	1000	20.2	NDC
POWER OUT	PUT (NET)	~ ``	KMAC2	OPEKA	TIME	TIME	2 00	ans
POWER CUI	PUT (GRUSS)	11/./	AWAC	POWER	PAC	TOR E DOMES	1 004	MATTO
STACK CUE	RENT TAGE	539.0	AMPS					VOLTS
STACK VOI	TAGE C FUEL PLOW	220.9	VOLTS	AALE.	STAC.	K VOLTAGE SETPOINT	0.03	
VOLUMETE:	C FUEL PLOW	993.2	SCFH	FUEL	FLOW	2FILEOIMI	1002.5	SCFH
	IEL FLOW		PPH -				25.5	
	CTOR POSITION		8	ZT010	SET.	POINT	25.9	8
BKI MUNIZ	CR	1.05		TOTAL	FUE:	I. CONS POINT ITION	35819	SCF
FT140 BUE	RNER AIR FLOW	315.1	PPH	FT140	SET.	FOINT	319.5	PPA
TE012 REX	ORMER TEMP	1521.2	DEGF	ZT110	POS	ITION	48.7	8
TE012R BA	ACKUP REF TEMP	1519.0	DEGF	TED12	SET	PCINT	1520.5	DEGF
тярог ноз	TEMP	510.7	DEGF	TE350	ANO:	DE INLET TEM	P 397.3	DBGF
734D077 3	STEAM SEP TEMP	355.3	DEGF	78400	SET	POINT	356.8	DEGF
TESS1 TEN	47 TO CUST	102.5	DEGF	RECOV	RRED	POINT HEAT	0 0	MBTU/HR
1001 .4				TP431	POL	ISHER TEMP	82.3	DEGE
TAMANO SEE	PARATOR LEVEL	11 1	- N	ጥሚያገበ	GLY	COL TEMP	140.6	DEGF
PMP451 51		Off		TP:560	MOT	OR COMP AIR	74 4	DEGF
		V.				COMP AIR IN		
フェンロからまでき	AL BEFICIENCY	22.3	%			XT PAGE> key		
ZEZCIKIC	AD BELICIERCE	37.3	v	Press	/NE	vi tuge, vel	12 ATAM	WW MALA
		REACTANT	01111111	r Otrom	17734			
06/46/05	IDC= 521.3	MEACIANI	733	<u> </u>	101)	VT310DEL=	_0 90 5	VENTS 0
00/10/90	TDC= 321.3	7DC= 222		[161 – 	612r			RRIDE 0
1028:43	FT012ACT= 44	.4 28400)FI 3:	0/ IB			<u></u>	V ddian
F/P 9061	P 150 R 150 S	60 W 20) A 30	Я 40	C	30 1 10 (I	30/	
						TERROTTAN.		1519.6
TE012	REF TUBE TEMP			.1 08	GF	SETPOINT: REF/FUEL CON	e cumpum	
TE012R	REF TUBE TEMP					REALAGET COM	T COTPOT	: 1.09
TEC12DES	REF TUBE TEMP ACTUAL MASS F	DETLY	1	, 7 DE	GF			47 6
FT012ACT	ACTUAL MASS F	GET LFOM	44	.4 PP		SETPOINT:		43.5
FT012	UNCORR. MASS					TEO11 FUEL T	EMP (DEGP) /5.0
SCFH	ACTUAL VOLUME	FUEL FLO)W 986	.9 CF		SETPOINT:		957.6
FUELTOT	TOTAL FUEL CO	NSUMED	35B	36 SC	F	PT012 VENTUR	I(PSIA)	6.85
mmo : A	RIGGTOR POSIT	TON	26	.3 %		SETPOINT:		25.3
PRIMON	פחידיות ועס		1.			STEAM FLOW S	.F. (PPH)	: 161.9
TE250	EJECTOR POSIT PHI MONITOR ANOCE INLET T	2MP	398		G7			
15000	AMOUN IMMN I	D111	373	0-				
mecon	HDS BED TEMP		510	2 na	GF	HTROOZ STATU	Q.	٥a
TECO2	ALS BED TEMP		210	. Z D3	701	HIKUUZ SIATU	υ.	Oil

EFFREF REFORMER EFFICIENCY 78.9 %

1029:49	STACK LOOP IDC= 542.1 VDC- 221 Q FT012ACT= 44.6 TE400FT: P 160 R 160 S 60 W 20 A	<u>(WACNET = 356.9</u>	روو E012F	7 VT310DEL= -0.31 EVENTS FT- 1524 CVERRIOR	9 0
TE400 TE400R TE400DEL LS450 TE431 TE310	WATER TANK LEVEL SWITCH POLISHER TEMP CONDENSOR EXIT TEMP	357.3 i 0.0 i On 81.8 i	DEGF S DEGY DEGF I	SETPOINT: 356. SEF TEMP FACTOR(DEGF) 1. STK FLOW SW (FS400) Or F/W TEMP SW (TS451) Or CUMHRATREC(MMBTU) 1.05	. C n
T3581	CUST HEX COLD BX TRMP STACK COOLANT INLET TEMP	103.4 B 329.1 B	DEGF :	FTASU FLOW (PPH) HEAT REC (METU/AR) 0	0
PMP 451 STARTTEMP IDCNET	WTS FEEDWATER FUMP TEMP FOR REF HEATUP NET DC CURRENT	Gn 350.0 1 544.5 .	DRGM AMPS	ON TIME, MIN.(PWPUMP):	Q
HTR400	ELEMENT "A"	Off Off			íf ff
06/16/95 1031:21 P/P 9061		ACNET = 356	99.1) TE012F1		
1031:21 P/P 9061 LOADTIME HOTTIME CELV ASP	IDC= 535 VDC= 222 NW FTC12ACT= 44.4 TE400FT P 160 R 160 S 60 W 20 TOTAL LOAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY	ACNET = 356 1 A 3G N 4 123 1 695 1 96	99.18 TE012F1 40 C : HR HR V/C ASF	OVERRIDES OVERRIDES	
1031:21 P/P 9061 LOADTIME HOTTIME CELV ASP	IDC= 535 VDC= 222 (NW FTC12ACT= 44.4 TE400FT P 160 R 160 S 60 W 20 TOTAL LOAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY DC KILOWATTS DELTA HALF STK VOLT	ACNET = 356	TEO12FI TEO12FI 40 C : HR HR V/C ASF KW V	OVERRIDES OVERRIDES	0
1031:21 P/P 9061 LOADTIME HOTTIME CELV ASP KWDC VT310DEL	IDC= 535 VDC= 222 KW FTC12ACT= 44.4 TE400FT P 160 R 160 S 60 W 20 TOTAL LOAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY DC KILOWATTS DELTA HALF STK VOLT INSTANTANEOUS STK AMPS INVERTER EFFICIENCY MECHANICAL EFFICIENCY	70 F 123 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	99.1 TE012F1 40 C : HR HR V/C ASF KW V V	T= 1524 OVERRIDES 20 L 10 (I 50)	0

08/16/95 1032:44 F/P 9061	IDC= 539 VDC= 221	KWACNET= FT= 356.8		
PT001A PT001B PT001C CT001A CT001B CT001C	INV AC VOLTAGE, PHASE A INV AC VOLTAGE, FHASE B INV AC VOLTAGE, PHASE C INV AC CURRENT, PHASE A INV AC CURRENT, PHASE B INV AC CURRENT, PHASE C	492.8 V 490.1 V 490.5 V 108.0 A 116.2 A 121.3 A	/ / A	
PTOOBA PTOOBB PTOOBC LIMKVDC		488.4 V	/ / / VOLTAGE UNBAL (%) 1.0	
PSREQ MCB001 MCB002 MCB003	PERCENT FUNDAMENTAL PHASE SHIFT REQUEST G/I BREAKER STATUS G/C BREAKER STATUS INTER-TIE BREAKER STATUS INTERRUPT COUNT	Off On	B DBG	
06/16/95 1041:36 P/P 9061	IDC= 546 VDC≃ 221 (PT 356 T	00.1) VT310DBL= -0.80 EVENTS R072FT= 1529OVERRICES	0 Ø
1041:36 P/P 9061 LOADTIME HOTTIME CELV ASF	IDC= 546 VDC= 221 () FT012ACT= 45.0 TE40C P 160 R 360 S 60 W 20 TGTAL LOAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY	(WACNET = 1: FT = 356 T) A 30 N 4: 70 HI 124 HI .591 V. 98 A	00.17 VT310DBL= -0.80 EVENTS E0.2FT= 1529 OVERRICES 0 C 30 L 10 1 50 R R /C SF	_
1041:36 P/P 9061 LOADTIME HOTTIME CELV ASP KWDC VT310DEL	IDC= 546 VDC= 221 () FT012ACT= 45.0 TE40C) P 160 R 369 S 60 W 20 TGTAL LOAD TIME TOTAL HOT TIME AVG VOLTS PER CEAL CURRENT DENSITY DC KILOWATTS DELTA HALF STK VOLT INSTANTAMEOUS STK AMPS INVERTER EFFICIENCY	WACNET = 1: FT = 356 T) A 30 N 4: 70 Hi 124 Hi .591 V. 98 A: 121.1 Ki -0.80 V 542 A 97.9 3 84.5 8	OO.17 VT310DBL= -0.80 EVENTS ECT2FT= 1529 OVERRICES O C 30 L 10 1 50 R R R /C SF W VT31C HALF STK VOLT D.0 CELL EFFICIENCY (%) 55. REF EFFICIENCY (%) 77.	0 12 4 5

05/16/95 1051:11		= 356	100.9 78012	ZT= 1531CVERRIDES G
h/h 9001	F 160 K 160 B 60 W 20	V 30 N	40 c	2 30 L 10 (I 50)
LOADTIME		70	HB	
HOTTIME	TOTAL HOT TIME	124	HR	
CELV	AVG VOLTS PER CELL	.690		
ASE	CURRENT DENSITY	97	ASF	
KWDC	DC KILOWATTS	120.1	KW	
VT31CDEL		-0.80		VT310 HALF STK VOLT 0.02
	INSTANTANEOUS STK AMPS	544	A	
SELINA	INVERTER SPRICIENCY	97.7	_	CELL EFFICIENCY (%) 55.3
ZFFMECH		85.9	-	REF EFFICIENCY (%) 78.5
BERELEC	ELECTRICAL EFFICIENCY	36.3	ě	HEAT RATE (BTU/KWHR) 10415
KWACNET	NET_AC POWER	100.9	XWAC	DISPATCHED POWER: 100.0
L PEACT	ACTUAL POWER FACTOR	-0.85	_	OISPATCHED P.F.: -0.85)
KVARNET	NET RVAR	-59.0	KVAR	DISPATCHED RVAR: -61.8
KVANET	NET KVA	116.8	KVA	
PARPOWER	PARASITE FOWER	18.1	KW	
KWACGROS	GROSS AC POWER	119.0	KW	
MWHRSGR	GROSS AC MW HES	2.793	MWES	
MWHRSNET	NZT AC MW HOURS	1.124	MWHR	
	KEY PARAMETE	RS (ENGL		
P/P 9061			EAER.	
POWER OUT	<u>50 S 60 W 20 A 30 N 4</u> PUT (NET) 150 L K		5 10 Park 20 1	(50) NG_CIME 71.9 HRS
FOWER OUT	701 (MET) 17 - 17 84 T - 18 8 8 8 8 8 1 1914			ACTOR -: .00

		KE	y PARAMET	FERS (E	NGLISH UNITS)		
		9061 06/16/95	1201:		EVENTS:C	OVERR:	IDE: C
	<u> 26 ئىڭ</u>	<u>) 8 160 5 60 W 20</u>	<u>3 30 N</u>	<u> 40 </u>			
(POMER	OCTPUT (NET)	150 I	KMWC)	OPERATING TIME	71.9	HRS
		ຄົນບໍ່ກີ່ຂໍ້ນີ້ (GROSS) - ^-		ZWAC	POWER FACTOR	-1.00	
		COURRENT	802.5	AMPS	CUMULATIVE FOWER		MWHR
			212.1	VOLTS	HALF STACK VOLTAGE		VOLTS
		METRIC FUEL FLOW		SCFH	FUEL FLOW SETPOINT	1458.7	SCFH
	ACCUA		65 6	₽₽₩			
	ZT010) BUBGTOR POSITION	43.2	3	ZT010 SETPOINT	42.1	₹
	PHI N	10NITOR	1,05		TOTAL FUEL CONS		SCF
	FT141) BURNER AIR FLOW	438.9	PPH	FT140 SETFOINT	435.2	PPH
	TE012	REPORMSK TEMP	1587.6	DEGE	ST130 POSITION	63.i	8
	TE012	R BACKUP REF TEMP	1592.0	DEGF	TEC12 SETPOINT	1596.6	DEGF
	TEGO:	E HDS TEMP	537.1	DEGF	TE350 ANODE INLET TE	EMP 299.5	DEGF
	TE4CC	FT STEAM SEP TEMP	343.1	DEGE	TB400 SETPOINT	348.4	DEGF
	TESSI	. TEMP TO CUST	94.6	DEGF	RECOVERED HEAT	0 0	MBTU/HR
					TE431 FOLISHER TEMP	86.5	DEGF
	5T400	SEPARATOR LEVEL	11.3	LM	TE810 GLYCOL TEMP	155.5	DEGF
	PMP 45	STATUS	011		TE160 MOTOR COMP AIR	R 74.2	DEGP
					TE150 MOT COMP AIR 1	LN 73.5	DEGF
	REFOR	FRICAL EFFECIENCY	38.6	3,	press (NEXT PAGE) ke	ey to view	RM data

1203:45	REACTANT 3 IDC= 800.6 VDC= 212 (FT0:RACT= 56.5 TE400Y; P 160 R 160 R 60 W 20	<u> KWACNET </u>	150 reolii	FT- 1399OVERR	NTS 0
	REF TUBE TEMP (PRIMARY)		DEGF	SETPOINT:	
TE012K TE012DEL	REF TUBE TEMP (BACKUP) REF TUBE TEMP DESTA		DEGF DEGF	REF/FUEL CONT OUTPUT:	1.07
FT012ACT	ACTUAL MASS FUEL FLOW			SETPOINT:	65.6
90012	UNCORR, MASS FUEL FLOW			TED11 FUBL TEMP(DEGY)	
SCAR	ACTUAL VOLUME FUEL PLOW	1477.0	CFH	SETPOINT:	1460.1
FUSLICT	TOTAL FUEL CONSUMED	37950	SCF	PT012 VENTURI(PSIA)	7.85
ZTC 10	ZUNCTOR POSITION	42.1	3	SETPOINT:	41.2
PEIMON	PHI MONITOR	1.01		STEAM FLOW S.P. (PPH):	242.2
CE350	ANODE INLET TEMP	399.3	DEGF		
12002	HOS BED TEMP	537.9	DEGE	HTR002 STATUS:	Qff

EFFREF FEFORMER SFFICIENCY 80.6 %

1205:01		349.0	15: 2801:	T) VT310DEL= -C.&7 EVB1	NTS 0 IDE 0
TE400	SEPARATOR TEMP (PRIMARY)	349.6	DEGF	SETPOINT:	348.5
TE40CR	SEPARATOR TEMP (BACKUP)	348.7	DEGF	SEP TEMP FACTOR(DEGP)	0.9
TE400DEL	SEP TEMP DELTA	Q.6	DEGF	•	
LS450	WATER TANK LEVEL SWITCH	On		STK FLOW SW (FS400)	On
TE431	POLISHER TEMP	84.5	DEGF	F/W TEMP SW (TS451)	On
73810	CONDENSOR EXIT TEMP	157.5	DEGF		
TE820	CUST HEX HOT IN TEMP	189.8	DEGF	CUMHEATREC (MMBTV)	1.055
OSSAT	CUST HEX COLD IN TEMP	156.8	DEGF	FT880 FLOW (PPR)	0
TE381	CUST HEX COLD EX TEMP	95.0	DEGF	HEAT REC (MBTV/RR)	D C
TE401	STACK COCLANT INLET TEMP	308.3	DEGF		
LT400	SEPARATOR LEVEL	10.8	IN		
PMP451 STARTTEMP IDONET	WTS FEEDWATER PUMP TBMP FOR REF HEATUP NET DC CURRENT	On 350.0 809.4	DEGF AMPS	ON TIME, MIN.(FWPUMP):	0
HTR400	ELEMENT "A"	Off		RLEMENT "C"	Off
1117400	ELEMENT "B"	off		BLEMENT "D"	Off

06/15/95 1206:00 P/P 9061		<u>r=320</u>	TEO12	TT= 1607 OVERRIDE	TS 0
LOADTIME HOTTIME CELV ASF KWDC	TOTAL LOAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY DO KILOWATTS	71 125 .664 142 168.9	ASF		
	DELTA HALF STK VOLT INSTANTANEOUS STK AMPS	-0.65 802		VT310 HALF STK VOLT	0.18
EFFINV	INVERTER EFFICIENCY	97.6	*	CELL EFFICIENCY (%)	53.1
effmach effelec	ELECTRICAL SERICISMOY	90.1 38.2	-	REF EFFICIENCY (%) HEAT RATE (BTU/KWHR)	82.0 9 9 19
KWACGROS MWHRSGR	NET AC POWER ACTUAL POWER FACTOR NET KVAR MET KVA PARASITE POWER GROSS AC POWER GROSS AC MW HES NET AC MW HOURS	148.8 -1.00 -1.3 149.3 -5.8 164.7 2.998 1.307	KVA KW KW MWHR	DISPATCHED P.F.: DISPATCHED P.F.: DISPATCHED XVAR:	150.0 1.00 0.0
C6/15/95 1206:59 P/P 9061	IDC= 801 VDC= 212 { FT012ACT= 64.0 TE4C0F P 160 R 160 S 60 W 20	T= 348.8 A 30 N	= 150. TEO1 40 C	.19 VT310DEL= -0.65 EVE	
2T001A 2T001B	INV AC VOLTAGE, PHASE A INV AC VOLTAGE, PHASE B	498,2 496,3	V V		
PT001C	INV AC VOLTAGE, PHASE C	496.5	v		
CTOCIA CTOCIB	INV AC CURRENT, PHASE A INV AC CURRENT, PHASE B	164.0 176.0	A A		
CT0C1C	INV AC CURRENT, PHASE C	179.5		CURRENT UNBAL (%)	9.1
PTC03A PT003B PT003C	NET AC VOLTAGE, PHASE A NET AC VOLTAGE, PHASE B NET AC VOLTAGE, PHASE C	495.8 491.9		OLTAGE UNBAL (%)	1.0
LINKVDC	LINK VOLTAGE	599.6	٧		
MCB003	PERCENT FUNDAMENTAL PHASE SHIFT REQUEST G/I BREAKER STATUS G/C BREAKER STATUS INTER-TIE BREAKER STAT INTERRUPT COUNT	88.8 6.9 Off On On U	% DEG		

	Kā	Y PARAMETES	S (ENGLI	H UNIT	·s)		
/P 9061	06/20/95 0 9 60 W 20	1746:14 30 N 40) C 36	VENTS	(S) (S) (S) (S) (S) (S) (S) (S) (S) (S)	GVERR	12 2:
OWER OUTE	O S 50 W 20		V ČSEI	RATING	TIME	150.1	HRS
TACK CURR	PUT (GROSS) RENT PAG2	216,1 KV 1084.4 AM	IPS CUM	SK YACT SLATIVE	POWER	11.584	MWHR
	AGS	A01.0 V	OLTS RAL	F STACE	VOLTAGE SETPOINT	0.49	VOLTS
OLUMETRIC CTUAL PUR	: FUEL FLOW :L FLOW	1975.1 SC 88.9 PE	PH				
T010 EJEC	TOR POSITION	66,7 %	ZTO	LO SETÉ	POINT CONS POINT	66.2	*
			TOTA	AL PUEL	, CONS	139496 533.3	SCF
1140 BUK7	HER AIR FLOW RMER TEMP	1669 2 PI	99 FT1: 3GF ZT1:	O SETE	OIMT TION	≎43.1 84.0	
	KUP REF TEMP	1676.0 DI	GF 180	12 SETE	POINT		
าย002 มากร	ТЕМР	58: 9 06	የመፍ ጥቂን	SO ANOT	E INLET TEM	р 4 07 я	DECE
E400FT ST	TEAM SEP TEMP	350.8 DE	GF TE4	JO SKTF	POINT HEAT SHER TEMP COL TEMP	350.1	DEGF
TREET LEWI	Y TO COST	177.1 19	BGF REC Tra4	JVEXED 31 POLI	IBAT Shro Temp	454 119 N	MBTU/HR
.T400 S2PA	LEVEL ROTARA	11.2 11	TES:	10 GLY	COL TEMP	153.3	DEGF
	TUS	Off	TE10	JO MOTO	ir comp air	113.1	DEGF
TECTOTOLONI	EFFICISHCY	26 2 2	TE1:	O MOT	COMP AIR IN	99.Z - to wiew	DEGF
GEC / RICMI	. Efficianti	30.2 6	Pre:	S CAE	II MAGEY KEY	ro ATAM	KW Gard
		REACTART	SUPPLY 9	YSTEM	_		
06/20/95	IBC= 1085.5 FT012ACT= 8	VDC= 207	(KWACNET	200	O VT310DEC		
	P 160 R 160				FT= 1656 30 L 10 (T 50)	VERRIDE O
						~	
TE012 TE012R	REF TUBE TEM				SETPOINT:		1655.2
TEO12K TEO12DEL	REF TUBE TEM	LP (BACKUF) D DRITA	1670.2	PEGF	REF/FUEL C	ONT OUTP	UT: 1.08
FT012ACT	REF TUBE TEM ACTUAL MASS UNCORE MASS	FUEL FLOW	88.3	FPH	SETPOINT:		89.8
FTC12	UNCORR. MASS	FUEL FLOW	91.7	2PH	TS011 FUEL		
SCIH FUELTOT	ACTUAL VOLUM						
FOEDIO1	TOTAL FORL C	CHROWED	139496	SCF	PT012 VENT	UKI(PSIA	, 8.70
21010	EJECTOR POSI		65.8	-			65.7
PHIMON TE350	PHI MONITOR		1.02		STEAM FLOW	\$.9.(PP	н): 322.3
23300	ANODE INLET	LEMP	407.4	DEGF			
TEOGZ	ting ago make		F00 0		********		644
IEUUZ	HDS BED TEMP		384.8	DEGF	HTRO02 STA	TUŞ!	Off

EFFREF REFORMER EFFICIENCY 81.2 %

2747:41	STACK LC IDC= 1089.6 VDC= 207 FTG12ACT= 90.8 TS400F P 150 R 160 S 60 W 20	T= 351.5	TE01:		NTS D
TE400 TE400R TE400DEL	SEPARATOR TEMP (PRIMAR) SEPARATOR TEMP (BACKUP) SEP TEMP DELTA		DEGF DEGF DEGF	SETPOINT: SEP TEMP FACTOR(DEGF)	350.4 0.9
LS450 TE431	WATER TANK LEVEL SWITCH POLISHER TEMP	119.0		STK FLOW SW (FS400) F/W TEMP SW (TS451)	Ωq
TE310 TE820 TE880	CONDENSOR EXIT TEMP CUST MEX HOT IN TEMP CUST HEX COLD IN TEMP CUST HEX COLD EX TEMP	177.5	DEGF		1,210 2763
78881 78401 67405	CUST HEX COLD EX TEMP STACK COOLANT INLET TEX SEPARATOR LEVEL		DEGF DEGF IN	FTSSC FLOW (PPH)	202
PMP451 STARTTEMP IDONET	WTS FEEDWATER PUMP TEMP FOR REF HEATUP NET DC CURRENT	On 350.0 1092.8		ON TIME, MIN. (FWPUMP):	D
HTR400	ELEMENT "A" ELEMENT "B"	Off Off		ELEMENT "C"	Off Off
LOADTIME ECTTIME		T= 351 A 30 N 150 210	199.7 T80121		nts o Es o
CELV ASF KWDC	CURRENT DENSITY DC KILOWATTS	194 224.5	ASF KW		5 46
	DELTA HALF STK VOLT INSTANTANEOUS STR AMPS	1978	V A	VT310 HALF STX VOLT	51.7
effinv Effmech Effelec	INVERTER EFFICIENCY MECHANICAL EFFICIENCY ELECTRICAL EFFICIENCY	96.0 92.4 36.3	\$ 8	CELL EFFICIENCY (%) REF EFFICIENCY (%) HEAT RATE (BTU/KWHR)	= = =
KWACNET PFACT KVARNET KVANET PARPOWER KWACGROS MWERSGR MWHESNET		199.9 -1.00 -0.7 200.2 16.8 216.2 14.718 11.591	KWAC - KVAR KVA KW KW MWER MWER	DISPATCHED FOWER: DISPATCHED P.F.: DISPATCHED KVAR:	200.0 1.00 0.0

1749:30		r= 351.2 T	99.3) VT310DEL= -0.35 B012FT= 1659.3	EVENTS 0 OVERRIDE 0
PT001A	INV AC VOLTAGE, PHASE A	491.2 V		
PT0016	INV AC VOLTAGE, PHASE B			
PTGOIC	INV AC VOLTAGE PHASE C			
CT001A	INV AC CURRENT, PHASE A	225.1 A		
CTSOIB	INV AC CURRENT, PHASE B			
C0001C	INV AC CURRENT, PHASE C	239.5 A	CURRENT UNBAL (%)	7.1
91003A P1003B	NET AC VOLTAGE, PHASE A NET AC VOLTAGE, PHASE B			
PT003C	NET AC VOLTAGE, PHASE C	484.2 V	VÇLTAGE UNBAL (%)	1.1
LINKADC	LINK VOLTAGE	599.9 V		
PERCFUND	PERCENT FUNDAMENTAL	88.88		
PSR3Q	PHASE SHIFT REQUEST	8.8 CE	G	
MCBDG1	G/I BREAKER STATUS	Off		
	G/C BREAKER STATUS	On.		
MCBDG3	INTER-TIE BREAKER STAT	On		
INTCOUNT	INTERRUPT COUNT	Ö		

ONSI CORPORATION

TOTAL HARMONIC DISTORTION

DEMONSTRATED: 1.27 %
REQUIRED: <3.00 %
RESULT: PASS

23

24 25

UQLTS = 483.7 FMPS ■ kmTTS ■ 0.04 17 F.F. ≠ +1.00 HARM PWR = Approx TDF = 0.95 UOLTS: AMPS TIF (j.27%) 17.39% THE Ø.04A F 474.3U 23 0.46% 13.04% 4,35% 0.40% 4.35% 4.35% 4 0.06% 5 0.84% a.00% 0.04% 6 0.32% 4.35% 7 0.04% 8 0.00% 0.00% 0.06% 9 4.35% 4.35% 10 9.98% 0.48% 0.02% 11 0.00% 12 13 4.35% 0.38% 14 9.02% 0.00% 0.00% 15 0.02% 16 0.02% 0.00% 0.00% 17 0.04% 0.02% 0.90% 18 0.02% 0.00% 19 20 0.02% 0.00% 0.00% 21 0.00% 0.00% 22 0.02%

0.04%

0.00%

0.00%

4.35%

0.00%

0.00%

86/28/95 13:84:4**6**

ONS! CORPORATION

OUTPUT FREQUENCY (GRID CONNECT)

DEMONSTRATED: 60.00 HZ REQUIRED: 6013 HZ

resout:

PASS

06/20/95 1822:17 9/9 9061	IDC= 1093 VDC= 207 (K FT012ACT= 90.1 TE400F	CAL OVER WACNET = T= 351 A 30 N	VIPW 200.1) VT310DEL= -0.40 EVENTS TE012FT= 1661 OVERHIDES 40 C 30 L 10 I 50	0
LCADTIME	TOTAL LOAD TIME	150	ĦŔ	
HOTTIME	TOTAL HOT TIME	211	НЭ	
CELV	AVG VOLTS PER CELL	.646	v/c	
ASF	CURRENT DENSITY	196	ASF	
XWDC	DC KELOWATTS	226.7	KM .	
VT310DEL	DELTA HALF STE VOLT	-0. 4 0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	43
	INSTANTANEOUS STK AMPS	1091	Α	_
3F7INV	INVERTER RFFICIENCY	95.6		. 7
EFFMECH	MECHANICAL EFFICIENCY	92.2		. 1
RFFELEC	ELECTRICAL EFFICIENCY	36.5	8 HEAT RATE (BTU/KWHR) 102	68
KWACNET	NET AC POWER	200.3	KWAC DISPATCHED POWER: 200	
PFACT	ACTUAL POWER FACTOR	(99.0		الرجيج
KVARNET	NET KVAR	25.1	KVAR DISPATCHED KVAR: 123	. 9
KVANET	NET KVA	202.0	KVA	
PARPOWER	PARASITE POWER	16.1	KM	
KWACGROS	GROSS AC POWER	216.4	KW	
MWHRSGR	GROSS AC MW HRS	14.541	MWHR	
MWHRSNET	NET AC MW HOURS	11.704	MWHR	

	ELECTRI	CAL OVER	YIEW_		
06/20/95	IDC= 1110 VDC= 206 (K	WACNET=	250.	7 VT310DEL= -0.39 EVENTS 0	
1829:02	FT012ACT= 88.8 TE40CF	T= 351	T8012	ZFT= 1656OVERRIDES O	
P/P 9061	P 160 R 160 S 60 W 20	A 30 N	40 0	C 30 L 10 (I 50)	
				4.2	
LOADTIME		150	HR		
SOTTIME	TOTAL HOT TIME	211	HR		
CELV	AVG VOLTS PER CELL	.645			
ASF	CURRENT DENSITY	198			
KWDC	DC KILOWATTS	229.1	• • • •		
VT310DEL		-0.39	-	VT310 HALF STK VOLT 0.43	
	INSTANTANEOUS STK AMPS	1113			
EFFINV	INVERTER EFFICIENCY	95.2		CELL EFFICIENCY (%) 51.6	
EFFMECH	MECHANICAL EPPICIENCY	92.4	ą.	REF EFFICIENCY (%) 82.0	
EFFELEC	ELECTRICAL REFICIENCY	37.1	ŧ.	HEAT RATE (BTU/KWHR) 10198	
_KWACNET	NST.AC POWER-	199.7		DISPATCHED POWER: 200.0	
CPACI	ACTUAL POWER FACTOR	0.85)	_	CDISPATCHED P.P0.85	•
KVARNET	NET KVAR	-122.6	KVAR	DISPATCHED KVAR: -123.9	
KVANET	NET KVA	234.8	KVA		
FARPOWER		17.4	KW		
KWACGROS		217.2	KW		
	GROSS AC MW HRS	14.866	MWHR		
MWRSHET	NET AC MW HOURS	11.724	MWHR		
	KEY PARAMETES				
7/7 9061	06/20/95 1834:08		SVENTS		
0 165 D 16	n e 60 w 20 a 30 N 40	0.30	T. 10 🐔	T 56N	

KE	Y PARAME	reas (e	nglish units)		_
7/7 9061 0 8/20/95	1834:		svents:O	OVERRI	DB: 0
P 150 R 160 S 60 W 20	A 30_N	40 C	30 L 10 (1 50)		
ROWER OUTSUT (MST)	200.23	KWAC	OPERATING TIME	150.9	HR5
POWER CUTPUT (GROSS)	214.3	KWAC	POWER FACTOR	-1.00	
STACK CURRENT	1077.0	AMPS	CUMULATIVE POWER	11.744	MWHR
STACK VOLTAGE	207.2	VOLTS		0.44	
VOLUMETRIC FUEL FLOW	1943.4	SCFH	FUEL FLOW SETPOINT	1963.9	SCFH
ACTUAL FUEL FLOW	97.5	PPH			
ZTOID EJECTOR POSITION	5 4 .8	*	ZTOIC SRTEDINT	<u>64.,3_</u>	&
PHI MONITOR	1.02	,	CTOTAL FUEL CONS	141110	SCF)
FT140 SURNER AIR FLOW	536.8	PPH	FT140 SZTPOINT	519.6	PPH
TE012 REFORMER TEMP	1660.1	DEGF	ZT110 POSITION	84.4	8
TE012R BACKUP REF TEMP	1672.9	DEGF	TE012 SETPOINT	1656.3	DEGF
TEO02 HDS TEMP	595.5	DEGF	TE350 ANODÉ INLET TEMÉ	409.8	DEGF
TE400FT STEAM SEP TEMP	351.1	DEGF	T2400 SETPOINT	350.2	DEGF
TERRI TEMP TO CUST	134.0	DEGY	RECOVERED HEAT	912	MBTU/HR
			TR431 POLISHER TEMP		DEGF
LT400 SEPARATOR LEVEL	11.0	IN	TE810 GLYCCL TEMP	150.2	DEGF
PMP451 STATUS	Cn		TE160 MCTOR COMP AIR		
			TE150 MOT COMP AIR IN	101.9	
ELECTRICAL REFICIENCY	37.4	*	press <next page=""> key</next>	to view	RM data

1834:50	STACK LOOK IDC= 1068.4 VDC= 208 (F FT012ACT= 87.5 TE400FT= P 160 R 160 S 60 W 20 A	WACNET= : 350.7	199 TE011	9) VT310DEL= -0.37 EVE) 2FT= 1656 OVERE	
T8400 T8400R T8400DEL LS45C TE431 T8810 TE820 TB880 TE881 TE881 TE401		250.0 0.2 0m 119.0 149.4 176.6 92.6 130.2 299.7 11.2	DEGF DEGF DEGF DEGF DEGF DEGF DEGF DEGF	SETPOINT: SEP TEMP FACTOR(DEGP) STK PLOW SW (FS460) P/W TEMP SW (TS451) CUMHEATREC(MMBTU) FT880 FLOW (PPH) HEAT REC (MBTU/HR)	On On 1.350
PMP451 STARTTEMP IDCNAT	WTS FREDWATER PUMP TEMP FOR REF HEATUP NET DC CURRENT 1	Off 350.0 .064.1	DEGF AMPS	OR TIME, MIN.(FWPUMP):	٥
HTR4CO	ELEMENT "A" ELEMENT "B"	Off Off		ELEMENT "C"	Off Off
1004.55	STACK LOO IDC= 1088.1 VDC= 207 \$T012ACT= 91.6 TE400FT F 160 R 160 S 60 W 20	KWACNET: - 351.0	= 20 TE01	g vt310DRL= -0.45 EVE 2FT= 1651 OVERR	NTS D IDE C
1934:51 P/P 9061 TE400 TE400ES	IDC= 1088.1 VDC= 207 FT012ACT= 91.6 TE400FT F 160 R 160 S 60 W 20 SEPARATOR TEMP (PRIMARY) SEPARATOR TEMP (BACKUP) EEP TEMP DELTA	KWACNET: → 351.0 A 30 N 351.1 350.1 0.0	TRO1 40 C DEGF DEGF	Q VT310DRL= -0.45 EVE 2FT= 1651 OVERR 30 L 10 I 50 SETPOINT: SEF TEMP FACTOR(DEGF) STW FLOW SW (FS400)	359.4 0.9
1934:51 P/P 9061 TE400 TE400E5 US450 TE431 TE810 TE820 TE880 TE881 TE881 TE8401 LT400	IDC= 1088.1 VDC= 207 \$T012ACT= 91.6 TE40DFT \$ 160 R 160 S 60 W 20 SEPARATOR TEMP (PRIMARY) SEPARATOR TEMP (BACKUP) EEP TEMP DELTA WATER TANK LEVEL SWITCH POLISHER TEMP CONDENSOR EXIT TEMP CUST HEX EOT IN TEMP CUST HEX COLD IN TEMP CUST HEX COLD EX TEMP STACK COOLANT INLET TEMP SEPARATOR LEVEL	KWACNET: - 351.0 A 30 N - 351.1 - 350.1 - 0.0 - On - 119.5 - 152.2 - 180.6 - 146.1 - 179.9 - 303.4 - 10.8	TRO1 40 C DEGF DEGF DEGF DEGF DEGF DEGF DEGF DEGF	Q VT310DRL= -0.45 EVE 2FT= 1651 OVERR 30 L 10 I 50 SETPOINT: SEF TEMP FACTOR(DEGF) STW FLOW SW (FS400)	359.4 0.9 On On
1934:51 P/P 9061 TE400 TE400E5 US450 TE431 TE810 TE820 TE880 TE881 TE881 TE8401 LT400	IDC= 1088.1 VDC= 207 \$T012ACT= 91.6 TE40OFT \$F 160 R 160 S 60 W 20 SEPARATOR TEMP (PRIMARY) SEPARATOR TEMP (BACKUP) SEP TEMP DELTA WATER TANK LEVEL SWITCH POLISHER TEMP CONDENSOR EXIT TEMP CUST HEX COLD IN TEMP CUST HEX COLD EX TEMP STACK COOLANT INLET TEMP	KWACNET: - 351.0 A 30 N - 351.1 - 350.1 - 0.0 - On - 119.5 - 152.2 - 180.6 - 146.1 - 179.9 - 303.4 - 10.8	TRO1 40 C DEGF DEGF DEGF DEGF DEGF DEGF DEGF DEGF	O VT310DRL= -0.45 EVE 2FT= 1651 OVERR 30 L 10 I 50 SETPOINT: SEF TEMP FACTOR(DEGF) STK FLOW SW (FS400) F/W TEMP SW (TS451)	359.4 0.9 On On 1.942 0

KE	Y PARAMET	reas (I	NGLISH UNITS)		
P/P 9061 06/20/95	2034:5		EVENTS:O	OVERR	IDE: 0
_P_160_R_160_S_60_W_20_		40 C	30 L 10 (1 50)		
POWER OUTPUT (NET)	<u> 200.23</u>	KWAC	OPERATING TIME	152.9	ЯRS
POWER OUTPUT (GROSS)	215.7		POWER PACTOR	1.00	
STACK CURRENT	1086.0	AMPS			MWHR
STACK VOLTAGE	206.7	VOLŢŞ	HALF STACK VOLTAGE	0.39	VOLTS
VOLUMETRIC FUEL FLOW		SCFH	FUEL FLOW SETPOINT	1997.0	SCFE
	89.8	PPH			
ZT010 EJECTOR POSITION		7	_ATCIO_SETPOINT	66.2_	-8 -
	1.01		CTOTAL FUEL CONS	145056	SCF_)
FT140 BURNER AIR FLOW		PPH	PT14C SETFOINT	517.8	PPE
TB012 REFORMER TEMP		DEGT	ZT110 POSITION	85.2	₹
TEC12R BACKUP REF TEMP	1661.9	Degr	TE012 SETPOINT	1657.1	DECE
TE002 NDs TEMP	603.9	DEGF	TB350 ANODE INLET TEM	t and e	DEGF
12502 1100 1011	003.7	COOL	IBSSO ANODS INDEX INC	r 405.5	DEGE
TE400FT STEAM SEP TEMP	350.9	DEGF	TE400 SETPOINT	350.2	DRGF
TE881 TEMP TO CUST	180.4	DEGF	RECOVERED HEAT	101	MBTU/HR
			TE431 POLISHER TEMP	121.9	DEGF
17400 SEPARATOR LEVEL	11.0	IN	TE810 GLYCOL TEMP	153.3	DEGF
PMP451 STATUS	Off		TB160 MOTOR COMP AIR		DEGF
			TE150 MOT COMP AIR IN		DRGF
ESECTRICAL EFFICIENCY	27.4	Ł	press <next page=""> key</next>	to view	RM data

ONSI CORPORATION

FUEL CONSUMPTION

<u>TIME</u> 1834:08 2034:51

ELAPSED TIME:
!XXXEMENTAL FUEL CONSUMED:
ANG. VOLUMETRIC FUEL FLOW RATE;
REQUIRED FUEL FLOW RATE;

RESULT:

CUMULATIVE FUEL CONSUMED IA1,110 SCF IA5,086 SCF

> 2.012 HRS 3976 SCF 1976 SCFH 1900*100 SCFH

> > 22A9

06/20/95 2035:32 P/P 9061	IDC= 1086.1 VDC= 207 C FT012ACT= 89.9 TE400FT		OCP. 2 WTS = 199 VT310DEL= -0.44 EVENTS TEC12FT= 1655 OVERRIDE 40 C 3C L 10 T 50	- 1
T2400	SEPARATOR TEMP (PRIMARY)	350.9	DEGF SETPOINT: 35	0.1
TE40OR	SEPARATOR TEMP (BACKUP)	350.9		0.9
TB40CDBL	SEP TEMP DELTA	0.0	DEGF	
18459	WATER TANK LEVEL SWITCH	On	STK FLOW SW (FS400)	Qπ
TE431	POLISHER TEMP	121.9	DEGF F/W TEMP SW (TS451)	On
TE810	CONDENSOR EXIT TEMP	154.0	DEGF	~
TESZO	CUST HEX HOT IN TEMP	188.0	DEGF (CUMHEATREC(MMBTU) 1.	الرووو
TE280	CUST HEX COLD IN TEMP	150.7	DEGF FT880 FLOW (PPH) 2	591
TES81	CUST HEX COLD EX TEMP	183.0	DEGF HEAT REC (MSTU/MR)	83
T3401	STACK COOLANT INLET TEMP	316.8	DEGF	
LT400	SEPARATOR LEVEL	1,0.8	IN	
PMP451 STARTTEMP IBCNET	WTS FEEDWATER PUMP TEMP FOR REF HEATUP NET DC CURRENT	Off 350.0 1081.8	ON TIME, MIN.(FWPUMP): DEGE AMPS	a
HTR400	ELEMENT "A"	Off	RLEMENT "C"	Off
1111100	ELEMENT "B"	Off		Off

ONSI CORPORATION

HEAT RECOVERY

<u>TIME</u> 08:A581 \$6:280\$

ELAPSED TIME: INCREMENTAL HERT RECOVERY: AVERAGE RATE OF HERT RECOVERY: OUMULATIVE HEAT RECOVERY
1,350,000 BTU
1,997,000 BTU

2,012 HRS 6A7,000 BTU 321,570 BTU/HR.

KE	Y PARAME	TERS (3	NGLISH UNITS)		
P/P 9061 06/21/95	0935:	15	EVENTS:C	OVERR.	IDE: 0
2 161 R 160 S 60 W 20	A 30_N	_40C	30 L 10 QL 803		
POWER CUTPUT (NET)	38.1	_KWAC_)	OPERATING TIME POWER FACTOR	166.0	яве
FOWER OUTPUT (GROSE)	90.3	KWAC	POWER FACTOR	0.95	
STACK CURRENT	410.4	AMPS	CUMULATIVE FOWER	14.561	MWHR
STACK VOLTAGE	227.9	VOLT5	HALF STACK VOLTAGE	-0.40	VOLTS
VOLUMETRIC FUEL FLOW	711.9	SCFH	FUEL FLOW SETPOINT	717.6	SCFH
ACTUAL FUEL FLOW	32.0	PPE			
ZTO10 EJECTOR POSITION	23.2	*	ZT010 SETPOINT	21.8	%
	1.07		TOTAL FUEL CONS	169280	SCF
FT140 BURNER AIR FLOW	250.4	PPH	FT140 SETPOINT	253.7	PPH
TED12 REFORMER TEMP			ZT110 POSITION	45.5	8
TEO12R BACKUP REF TEMP				1527.3	DEGF
TEOC2 HDS TEMP	603.0	DEGF	TR350 ANCDE INLET TE	(P 406.7	DEGF
TR4COFT STEAM SEP TEMP	364.0	DSGF	TE400 SETPOINT	363.4	DEGF
TE881 TEMP TO CUST	162.1		RECOVERED HEAT TE431 FOLISHER TEMP	237	MBTU/HR
			TE431 FOLISHER TEMP	105.2	DEGF
LT400 SEPARATOR LEVEL	10.9	IN	TESIC GLYCOL TEMP	131.3	DEGE
PMP451 STATUS	On		18160 MOTOR COMP AIR	100.8	DEGF
			TB150 MOT COMP AIR IS		
ELECTRICAL EFFICIENCY	18.4	E.	press <next page=""> key</next>	y to view	RM data
	DD10018		ru avampu		
55 / 50 / 55 TRG	REACTAR		LY SYSTEM	0 93 1	arranne A

0936:14	REACTANT IDC= 398.5 VDC= 229 FT012ACT= 32.3 TE400P P 161 R 160 S 60 W 20	KWACHET T= 363	= 31 TEO12	FT= 1518 OVERS	INTS O
TE012 TE012R TE012DEL PT012ACT FT012 SCPH FUBLECT	REF TUBE TEMP (PRIMARY) REF TUBE TEMP (BACKUP) REF TUBE TEMP DELTA ACTUAL MASS FUEL FLOW UNCORE. MASS FUEL FLOW ACTUAL VOLUME FUEL FLOW TOTAL FUEL CONSUMED	1511.6 6.5 32.0 36.1	DEGF DEGF PPH PPH CFH	SETPOINT: REF/FUEL CONT OUTPUT: SETPOINT: TEO12 FUEL TEMP(DEGF) SETPOINT: PTO12 VENTURI(PSIA)	31.7
2T010 PHIMON TE350	EJECTOR POSITION PHI MONITOR ANODE INLET TEMP	22.9 1.04 406.7		SETPOINT: STEAM PLOW S.P. (PPM):	21.6 134.4
TE002	HDS BED TEMP	602.1	DEGF	HTRO02 STATUS:	Off

BFFREF REFORMER EFFICIENCY 93.7 €

06/21/95	STACK LO IDC= 490.8 VDC= 2224	OP ANC LOOP	. & WTS 54	NTS O
0937:97	FT012ACT= 40.4 TE400F P 161 R 160 S 60 W 20	T= 362.5 TE	D12FT- 1520OVERR	
TE400 TE400R TE400DEI	SEPARATOR TEMP (PRIMARY SEPARATOR TEMP (BACKUP) SEP TEMP DELTA		F SEP TEMP FACTOR(DEGF)	358.8 1.0
12450 TK431 TE810	WATER TANK LEVEL SWITCH POLISHER TEMP	. 0-	գու բորա գա (բզմին)	On On
TE820 TE880	CUST HEX HOT IN TEMP CUST HEX COLD IN TEMP	186.1 DEG:	F FT88G FLOW (PP9) F FT88G FLOW (PP9) F KEAT REC (MBTU/HR)	3.231 22247
TE401 LT400	STACK COOLANT INLET TEM SEPARATOR LEVEL	IP 346.1 DEG. 11.3 IN	f	224
PMP451 STARTTEMP IDONET	WIS FEBDWATER PUMP TEMP FOR REF HEATUP NET DC CURRENT	Off 350.0 DEG: 209.3 AMP:	ON TIME, MIN.(FWFUMF): F S	0
	PLEMENT "A" ELEMENT "B"	On On	BLEMENT "C" ELEMENT "D"	On Off
06/21/95	ELECTRI 190= 450	CAL OVERVIEW WACNET AA	5 V#310DRI 0 85 RW	ស្រាក្ស ប
0938:12	1DC= 452 VDC= 225 L	WACNET 44 T= 361 TEO	.5) VT310DEL= -0.85 EV 12FT= 1528OVERRI	ents o des o
0938:12	1DC= 452 VDC= 225 k FT012ACT = 35.0 T8400F P 161 R 160 S 60 W 20	WACNET 44 T= 361 TEO	.5) VT310DEL= -0.85 EV 12FT= 1528OVERRI	ents o Des d
0938:12 P/P 9061 LOADTIME HOTTIME CRLV ASF	IDC= 452 VDC= 225 k FTD12ACT= 35.0 T8400F P 161 R 160 S 60 W 20 TOTAL LOAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY	WACMET 44 T 361 TEO A 30 N 4D 166 HR 225 HR .704 Y/C 81 ASF	.5) VT310DEL= -0.85 EV 12PT= 1528 OVERRI C 30 L 10 (I 80)	ents o Des d
0938:12 P/P 9061 LOADTIME HOTTIME CELV ASP KWDC VT310DEL	IDC= 452 VBC= 225 K FT012ACT= 35.0 T8400F P 161 R 160 S 60 W 20 TOTAL LCAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY BC KILOWATTS DELTA HALF STX VOLT INSTANTANEOUS STK AMPS	WACNET 44 T = 361 TEO A 30 N 4D 166 HR 225 HR .704 Y/C 81 ASF 102.1 KW	(5) VT310DEL= -0.85 EV 12FT= 1528 OVERRI C 30 L 10 I 80 VT310 HALF STK VOLT	DES 0
0938:12 P/P 9061 LOADTIME HOTTIME CELV ASP KWDC VT310DEL EFFIXV 3FFMECH	IDC= 452 VDC= 225 K FTD12ACT= 35.0 T8400F P 161 R 160 S 60 W 20 TOTAL LOAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY DC KILOWATTS DELTA HALF STX VOLT INSTANTANEOUS STK AMPS INVERTER EFFICIENCY MECHANICAL EFFICIENCY	WACNE = 44 T = 361 TEO A 30 N 4D 166 HR 225 HR .704 V/C 81 ASF 102.1 KW -0.85 V 452 A 97.4 % 50.1 %	VT310DEL= -0.85 EV IZPT= 1528 OVERRI C 3G L 10 I 80 VT310 HALF STK VOLT CELL EFFICIENCY (%) REF EFFICIENCY (%)	-0.02 56.1 88.4
0938:12 P/P 9061 LOADTIME HOTTIME CELV ASP KWDC VT310DFL EFFINV 3FFMECH EFFSLEC	IDC= 452 VDC= 225 K FTD12ACT= 35.0 T8400F P 161 R 160 S 60 W 20 TOTAL LCAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY DC KILOWATTS DELTA HALF STX VOLT INSTANTANEOUS STX AMPS INVERTER EFFICIENCY MECHANICAL EFFICIENCY BLECTRICAL EFFICIENCY	WACNET 44 T = 361 TEO A 30 N 4D 166 HR 225 HR .704 Y/C 81 ASF 102.1 KW -0.85 V 452 A 97.4 % 50.1 % 23.5 %	VT310DEL= -0.85 EV IZFT= 1528 OVERRI C 3G L 10 [80] VT310 HALF STK VOLT CSLL EFFICIENCY (%) REF EFFICIENCY (%) HEAT RATE (BTU/KWHR)	-0.02 56.1 88.4 16152
0938:12 P/P 9081 LOADTIME HOTTIME CRLV ASF KWDC VT310DFL EFFINV 3FFMBCH EFFSLEC KWACNET FFACT	IDC= 452 VDC= 225 K FTD12ACT= 35.0 T8400F P 161 R 160 S 60 W 20 TOTAL LOAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY DC KILOWATTS DELTA HALF STX VOLT INSTANTANEOUS STK AMPS INVERTER EFFICIENCY MECHANICAL EFFICIENCY ELECTRICAL EFFICIENCY NET AC POWER ACTUAL POWER FACTOR	WACNET 44 T = 361 TEO A 30 N 4D 166 HR 225 HR .704 Y/C 81 ASF 102.1 KW -0.85 V 452 A 97.4 % 50.1 % 23.8 %	VT310DEL= -0.85 EV IZFT= 1528 OVERRI C 3G L 10 [30] VT310 HALF STK VOLT CELL EFFICIENCY (%) REF EFFICIENCY (%) HEAT RATE (BTU/KWHR) C DISPATCHED POWER: DISPATCHED P.F.:	-0.02 56.1 88.4 16152 0.0 1.00
0938:12 P/P 9061 LOADTIME HOTTIME CRLV ASP SWDC VT310DEL EFFINV 3FFMECH EFFSLEC KWACNET FFACT KVARNET	IDC= 452 VDC= 225 K FTD12ACT= 35.0 T8400F P 161 R 160 S 60 W ZO TOTAL LOAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY DC KILOWATTS DELTA HALF STX VOLT INSTANTANEOUS STK AMPS INVERTER EFFICIENCY MECHANICAL EFFICIENCY ELECTRICAL EFFICIENCY NET AC POWER ACTUAL POWER FACTOR NET KVAR NET KVAR	WACNE = 44 T = 361 TEO A 30 N 4D 166 HR 225 HR .704 V/C 81 ASF 102.1 KW -0.85 V 452 A 97.4 % 50.1 % 23.8 % 44.5 KWA 0.95 - 14.5 KVA 46.8 KVA	VT310DEL= -0.85 EV IZFT= 1528 OVERRI C 3G L 10 [30] VT310 HALF STK VOLT CELL EFFICIENCY (%) REF EFFICIENCY (%) HEAT RATE (BTU/KWHR) C DISPATCHED POWER: DISPATCHED P.F.: R DISPATCHED KVAR:	-0.02 56.1 88.4 16152
0938:12 P/P 9061 LOADTIME HOTTIME CRLV ASP SWDC VT310DEL EFFINV 3FFMECH EFFSLEC KWACNET FFACT KVARNET	IDC= 452 VDC= 225 K FTD12ACT= 35.0 TS400F P 161 R 160 S 60 W 20 TOTAL LCAD TIME TOTAL HOT TIME AVG VOLTS PER CELL CURRENT DENSITY DC KILOWATTS DELTA HALF STX VOLT INSTANTANEOUS STK AMPS INVERTER EFFICIENCY MECHANICAL EFFICIENCY BLECTRICAL EFFICIENCY NET AC POWER ACTUAL POWER FACTOR NET KVAR NET KVAR NET KVA PARASITE POWER	WACNET 44 T= 361 TEO A 30 N 4D 166 HR 225 HR .704 Y/C 81 ASF 102.1 KW -0.85 V 452 A 97.4 % 50.1 % 23.8 % 44.5 KWA 0.95 - 14.5 KVA	VT310DEL= -0.85 EV IZFT= 1528 OVERRI C 3G L 10 [80] VT310 HALF STK VOLT CSLL EFFICIENCY (%) REF EFFICIENCY (%) HEAT RATE (BTU/KWHR) C DISPATCHED POWER: DISPATCHED P.F.: R DISPATCHED KVAR:	-0.02 56.1 88.4 16152 0.0 1.00

093	9:11	IDC= 42 FT012ACT P 161 R	2= 35.6	227 TE40	<u>)</u> =T=0	WACNET 361.9	= 4% TEC	(R_SYSTE) 2.6) VT3: 112FT= 1: C 30 L	CODET,=	-	L EVENTS OVERRIDE	0
PTO PTO CTO	01A 01B 01C 01B	INV AC O INV AC O	OLTAGE () OLTAGE () OURRENT ()	PHASE PHASE PHASE PHASE	E D D	482.9 480.0 478.9 52.3 54.9	A					
PT0 PT0	01C 03A 03B	NET AC V	OLTAGE,	PHASE .	A B	482.7		CURRENT		` '	14.3	
	KADC 03C	NET AC V		PHASE		480.7 599.9	V V	VOLTAGE	UNBAL	(₺)	1.0	
PSR MCE MCE MCD	EQ 1001	PERCENT PHASE SH G/I BREA G/C BREA INTER-TI INTERRUP	lift requ KER STAT KER STAT KE BREAK	IBET CUS CUS	T	85.4 2.0 On Off Off	% DES					

DEMONSTRATED OUTPUT VOLTAGE: REQUIRED OUTPUT VOLTAGE:

4789 TO 4829 VAC 480 1 3% VAC

PASS

TESULT:

ONSI CORPORATION

OUTPUT FREQUENCY (GRID INDEPENDENT)

DEMONSTRATED: 59.99 HZ REQUIRED: 6013 HZ

RESULT: PASS

Appendix B: Project Meeting Notes

EDWARDS AFB SITE EVALUATION MEETING 14-15 AUGR I. OVERALL INBRIEFING TO BLONEL KULKUK & STAFF II. POTENTIAL SITES - Swimming fool - DINING HAZE (WITH NEIGHBORING DORMITONIES) - HUSPITAL - FLIGHT LINE (SPACE HEATING, 3-4 MINTHS ONLY) -AGING ELECTRICAL INFRASTRUCTURE - Could Replace DIESEL GENERATOR AT HOSPITAL WITH GRID-INDEPENDENT OPTION (DOUBLE BACKUP SYSTEM - THEY HAVE UPS ON ALL CRITICAL LOAD ON BASE WITH DIESEC GENERATORS AS 2 - BACKUP) III. VISIT TO POTENTIAL SITES
- HOSPITAL HAS BEST THERMAN APPLICATION II. OUTBRIEFING - 15-20% THERMAN UTKIGATION - NEED TO SEE IF FUEL CELL CAN HANDLE lof the two 200- for chiller in gild-independent mode (4 Compressors per dulla). Can switch over occur without compressors Shalting down? Confuel cell start Compregues from shat down state? SAIL to chech.

TO BETTER REFINE ECONOMIC SAUNGS,

CHAIN LINK FENCE IS REQUIRED.

Wagne Holfeldt is Elison Electric Poc. Copt toaborg is somewhat concerned about whether 'selling' power to the hospital, I don't Mark that, a concern - we set precedent at 29 Pilms. LOCAL AGMD IS KERN COUNTY.

QUESTION OF WHETHER SPACE HEATING OF OHW (0160M) is best application - WILL GO BACK TO HOSPITAL TO DOUBLE CHECK.

& WED, 14 AUG GLE EDWARDS AFB SITE EVALUATION

HANGARS - SPACE HEATING

10 months cooling I year Coments cooling base average 4 months heating

Hospital - several bildings, do produce steam, um 3 months out of year Guessing 2500 meals /day

Saring for Edwards Elec 121,000

15,000

· get ford all serial #'s, etc into database

Hospital has 500 KW + (2) 250 kW generators

* USE KEN MUNSON as PRIMARY PUC.

KICKOFF MEETING 05 Feb 97 EDWARDS AFB FOR SAKE OF I. INTRODUCTIONS / OVERALL PROGRAM (NEW POC) - POSSIBLE PAPERWONE NEEDED BY EDWANDS - ENVIRONMENTAL SITE EVALUATION REPORT SUMMARY (TORREY) II. - Pump Room - They're going to put a drain in there because There's a lot of Water - Will need to Coordinate drain installation with hiel cell design. - Possibility of removing one of the tanhs (fuel) - Needs to be checked out. - Joe's guarha. IS 8' Clearance to the grates sufficient - yes. GENERAL DESCRIPTION OF ONSI/FUEL CECC UPCOMING EVENTS - 5 Sets of drawings -BASE RESPONSIBILIES - log Bock - Phits - Publiz Relations

DESIGN REVIEW 25 MARGO EDWARDS AFB I PURPOSE OF MEETING - BINDER INITIAL BASE QUESTIONS - BASE
- FORM 332 NEEDS TO BE SUBMITTED BY KEN FOR BASE ASPROJAL (COMPREHEUSINE PLANNING FUGHT & ENVIRONMENTAL MANGEEREN;) Next Makin, 11 May 5 for Approved - WILL WORK IT INTERNALLY THIS WEER & MAY BE ASCE TO GET PAPERWORK SIGNED OFF THIS WEEK TIT DESIGN REVIEW - THE SAIC COMMENTS (Unless ofherwise Roted) ME-1 (1) TO BE Corrected on AT-BURET (2) WILL BE ADDED ON AT-BURET (3) Will be Labeled as not used on AT- PULLIE, Connection is all that's required. (2 Class A lines). ME-1 (TAYLOR)
(1) Should be adequate as i) ME-1 (Holconds)
(1) Will Move on row so it doesn't

extend post and of Bldg.
(2) BASE WOULD' PREFER THAT DISGING BE AVOIDED IF POSSIBLE - MIGHT SLOW PROJECT DOWN COMMENT IS WITHDRAWN. M-1 (SAIC) (1) Equil CENUTA <19'- OR (2) MUST BE LESS THAN 170 psig > (3) FIELD EXPERIENCE HAS SHOWN THAT ONE BLEED LINE IS SUFFICIENT, - INSTRUMPION (4) SEGUENCE OF OPERATION STATEMENT WILL BE REWRITTEN. HU-Z & HV-3 CAN BE USED TO CETAIN HEAT RECOVERY Situaco Pump P-1 FAIL. (5) WILL BE ADDED TO AU-BUILT, M-1 (TAYLOR) (2) M-1 TO BE CHANGED TO INDICATE NEW GAI LINE TO QUILERT TO EXITING BURIED GAS LINE. M-2 (SAIC) (1) By- Pais Value will be Shown on Builti-

E-1 (SAIC) (1) BASE & GEORGE COMPRED WILL DISCUSS AT PRECONSTRUCTION BRIEFING, (2) Will be changed to I" on AJ-BRIET. 5-1 (SAIC) (1) TO BE ADDED TO AS BUILT. 5-1 (Holcomb) (1) Change on AS-BUILT (2) 1/2 AJ 15 IV. Schedrle (1) Bue Mero to Me (2) My Memo to ONSI (3) Base to keep log 4) Bare to take photos George Mante to Start construction on 07 Apr - Buje Well try by get me letter by 31 Man

NOTE: BASE SUBMITED NO COMMENTI FOR THE DESIGN REVIEW

25 mar 97 EDWARDS AFB DESIGN REVIEW

sand needs to fill for 332 to get approval / review for the project. Normally needs to 50 then planning + Joning committee. May i is when the next P+2 meets. George wants to start a week from monday (7 ARR 97).

- · JUE DESIGN COMMENTS
 - Comment by basi, they cannot run any short line. Response for for, all they need to do is provide a phone interface, George will rethe cable.

 - The will move to is bother back so that they are flush with building. Comment about digging undergood, base does not want to do in digging, overhead lines are fine.
 - Granding of fence and No bottles, george will discuss with base at the preconstruction meeting.

KET MINISON - DOESN'T USE EMAIL I USE SAME SYNTAX AS SAFMARS,

EDWAMOS AFB ACCEPTANCE TEST 16 JUL 97

KEN MUNSON - EDWARDS AFB DOUG YOUNG - ONSI MIKE BINDER - USACERC

KEN MUNSON DIDN'T WANT TO REVIEW ACCEPTANCE TEST REPORT OR AS-BUILTS, HE WANTED TO TREAT -THE FUEL CELL AS REAL PROPERTY WHICH WOULD REQUIRE THE COMMANDER TO SIGN THE DO250. THIS COULD TAKE A COUPLE WEEKS, HEN CALLOD LT MATT SUFNAR IN. THE LT SAID THE FUEL CELL COULD BE TREATED AS THE EQUIPMENT (SAME AS A GENERATOR ON CHILLER) AND THAT KEN COULD SIGN THE DOZSO, KEN SAID THE HOSPITAL DID NOT WANT A DEDICATION CEREMUNY SINCE THEY WERE LOSING MONEY. EDWARDS BILLS THE HOSPITAL AT AN AVERAGE PRICE FOR ELECTRICITY (INCLUDING WAPA) WHICH DOES NOT OFFSET THE NATURE BAS PRICE. I REMINDED KEN THAT EDWARDS AFB WAS SAUNCE THE HIGH PRICE ELECTRICITY PURCHASED FROM THE UTILITY HE AGREED BUT SAID THE HOSPION DOESN'T SEE THAT SAVINGS, DOUG & I TOURED THE FUEL CELL SITE,

Appendix C: Review Letters for Original Design Drawings

February 14, 1995

Or, Mike Bjuder USACERL Energy and Utilities Systems Division 2002 Newmark Drive Champaign, 41, 61821-1076

Subject Twenty-Nine Pairts Fing Design Review

Dear Mike

SAIC and our Reensed machanical and electrical subcontractors, have reviewed the fuel ceil installation design drawings for the 'Ewenty Nine Palms Marine Corps, Base. Our comments are cresented below.

- HEAT REJECTION LOOP (COOLING MODULE)
 - a. Assumed 30 gpin Row rate.
 - Total equivalent piping length of 335 foot.
 - Pressure drop 30 gpm in 2" pipe ± 27100".
 - Fluid cooler pressure drop 12° at 30 gpm.
 - c. Total pressure drop external to fuel cell. is $(3.35^{\circ} \times 2^{\circ}) + 12^{\circ} = 18.7^{\circ}$

Pipe sizing and velocity are adequate at 2". Discharge head for circulating persp located of mel cell power module should include the 18.7 piping loop pressure drop.

- HEAT RECOVERY PIPING CUSTOMER SIDE
 - a. Flow tain 50 gpm.
 - Total equivalent piping length 318 feet.
 - e. Pipo size 3"
 - d. Pressure drop \cdot 25 gpm in 3° pipe = 0.8/100°.
 - c. Piping pressure loss = $3.18 \times 0.8 = 2.8$
 - $\xi_{\rm c}$. Pressure drop through (IEX880 (in power condule) = $15^{1.4}$
 - g. Foral pump head required = 2.8 + 15' = 17.7'

Piping sizing and volnoity are adequate at 3"; however, as not volocity is low at 2.3 feet per second, some savings could be realized by utilizing 2" gipe versus 3". A check valve is recommended at the discharge of Recirculating Pimp P 2.

HEAT RECOVERY POPING - FOFF, CELL SIDE (HEX850 FO STORAGE TANK LOOP W/P-) ;

- au i growingte i 25 gpm
- Is. Pipo size assurae 2
- c. Total equivation paparg length 2211
- d Prossure grop 25 apro in 2 i pipe = 1.591(0).
- c. Proping pressure $loss = 2.24 \times 1.5 \pm 3.5^{\circ}$
- f. Pressure drap through HFX880 = (5) \pm
- g . Total bump toon required = 3.3' , (3) = (8.3)

Piping strong and valuely are unequate to 7". The B&G Series 90, size 1-100A, 1/2 H.P. pump is undertune.

4. CITY WATER TO FUEL CHILL POWER MODULE.

- a. Flow rate assume 10 gpm \pm
- Woter bressure assume 50 psig __
- Total equivalent piping length 156°
- c. Pressure drop 10 gpin in 3/4" pape = 10 psig/100"
- e. Pressure drop through HEX380 assume 15°
- 5. Fotal pressure drop then is (1.56 x 10) + (15; x .45) = 22 psig. The 3/4" pipe size is carefunce assuming that about 23 psig at the first cell inject is satisfactory.

Should the City water supply not be isolated from the potable system elsewhere in the plant, an approved backflow prevention device speed by provided.

NATURAL GAS

- $a_{\rm eff}$ Connected load 1,900 CFH
- b. Pipe siza 3
- c. Pressure at point-of-confection assume under 14" W.C.
- b. Total equivalent proint length 180'.
- Movemum delivery capacity of 0.60 specific gravity natural gas per nour with pressure from at 0.5 inch water column in 3" pipe is 3.257 CFH. Pipe sizing at 3 list adequate.

NITROGEN

- Required flow rate chold not be reformined from data providen.
- b. Prog size 3/4"
- a_0 . Torol equivalent proing length = a0.

Assuming a required delivery pressure or 50 psig at the finel cell power module connection, capacity of a 361 psige is in excess of 1,600 fines, per minute. This tripe size should be adequate depending on ONSI's maximum anticipated flow rate

5. ELECTRICAL

- a. The many should be strapped by a registered electrical engineer.
- More details should be given for the new 400A suppariel; i.e., mounting ACC, breaker sizes, etc.
- 2. The sizes of conduits and conductors from new sub-page! to "NTH" and "HNH" should be given.
- d. The 120V power source to the fuel ed.) power module should be shown
- Show ground grid around fuel cell enclosure and all termination points.
 - Show routing to more POOS along with feeder length and voltage deep.

Based on the 10599 and 1439F supply temperatures for the domestic hot water coops, the 5,000 gallon stronger took appears adequate. The datailed electrical and thermal designs are sufficient, With consideration of the above comments, we believe that the site design is adequate to proceed with construction.

Sincerety,

Garry Mestern)
Division Manager.

Advanced Energy Systems

: : : : :		
Z9 PALMS	RECORD DRAWING CHANGES	6/19/95
		J. STENIUNA
		· · · · · · · · · · · · · · · · · · ·
- + Duning CI	(A) GE	
S-I Equip	i strantsuis adjustants is	Live had
	Arogen rock to back side of po	4
	lengthened of to 52 ft	
e e e e la la la la Estit	Concrete pack within Sence	
prairie Drair	age accommortations at toulding e	nd of pad
<u> </u>		
5-2 <u>- Equipa</u>	ent position adjustments	
ME-1 Equip	vent respositioned do on 5-1	
1 1 ! . 11 !	ne reportioned	
Sonalise.	conduct added Sourceauth Down	card
Birte	ing wall personations noted	
- Distor	most labels changed Kreuwad GC	(F)
		
M/L 54+	se trank dimensión typo corrected	au A
Clota	va values laterfell (galets \$40, c	
		- -
M-2 Na ch	anger	
		<u>:</u>
- HILE-1 Groving	fing Mustratum changed to care	respond
	grand grid on 9061 E-3 dr	why + + + +
E-2 No.		
	hange,	
E-3 Grouns	d great updated,	
		ļ <u>ļ</u> .
		- - -
		
!		
_		<u> </u>

Appendix D: PC25C Fuel Cell Forced Outage Description Codes

			Fleet Log Model C				pa
FORCED OUTAGE ORIGIN BY PO	OWER PLA	ANT		CHANGE IN S	TATE	FORCED OL UNFORCED (
DESCRIPTION				DESCRIPTION		DESCRIPTION	
	CODE1	CODE2	CODE3		CODE		CODE
POWER SECTION SYSTEM FREEZE PREVENTION HEATER A FREEZE PREVENTION HEATER B GROUND FAULT DETECTOR	PSS	0000	HTR310A HTR310B GFD-001	POWER UP POWER DOWN IDLE UP IDLE DOWN	PU PD IU ID	FORCED UNFORCED	F U
HALF-STACK VOLTAGE MONITOR			VT310	SHUTDOWN	S N		
FUEL PROCESSING SYSTEM SHUTOFF VALVE SHUTOFF VALVE	FPS		CV000 CHV100				
CHECK VALVE FLOW CONTROL VALVE EJECTOR			CV100 FCV012 EJT010				
REFORMER LOW TEMP SHIFT CONVERTER AIR PRE-HEATER BURNER CONTROL			REF300 SC300 HEX910 BSC001				
INTEGRATED LOW TEMP SYSTEM		ILS	500001				
AIR PROCSSING SYSTEM FILTER	APS		FIL100				
PROCESS AIR BLOWER CATHODE			BLO100 FCV100 FCV110				
CATHODE AIR VALVE REFORMER BURNER VALVE POSITION INDICATIOR AIR FLOW TRANSMITTER			FCV140 ZT110 FT140				
HAND ORIFICE FIXED ORIFICE REFORMER BURNER SENSOR			HO135 FO130 BE030				
THERMAL MANAGEMENT SYSTEM	TMS						
FLOW SWITCH THERMAL TEMP MANAGEMENT CONTROL THERMAL TEMP MANAGEMENT CONTROL			FS400 TE400 TE431				
CELL STACK COOLING H20 SUB-SYSTEM COOLANT ACCUMULATOR COOLANT PUMP THERMAL CONTROL HEAT EXCHANGER		CSCW	ACC400 PMP400 HEX400				
FLOW ORIFICE FLOW ORIFICE BLOWDOWN COOLER BLOWDOWN VALVE			FO400 FO420 HEX310 FCV430				
MIXED RESIN DEMINERALIZER BED ELECTRIC HEATER MOTORIZED VALVE			DMN440 HTR400 TCV400				
ANCILLARY COOLANT SUB-SYSTEM PUMP		ACS	PMP830				
PUMP BLOWDOWN COOLER CONDENSER CUSTOMER HEAT EXCHANGER			HEX431 HEX920 HEX880				
FORCED CONVECTION COOLING MODULE SELF-ACTUATED FLOW CONTROL VALVE MOTORIZED VALVE			HEX800 TCV800 TCV830				

			Fleet Log	
			Model C	
WATER TREATMENT SYSTEM	WTS			
WTS PUMP	*****		PMP450	
ORGANIC FILTER			ORG450	
MIXED RESIN DEMINERALIZER BED			DMN450A	
MIXED RESIN DEMINERALIZER BED			DMN450B	
MIXED RESIN DEMINERALIZER BED			DMN450C	
MIXED RESIN DEMINERALIZER BED			DMN450D	
FEEDWATER PUMP			PMP451	
ISOLATION HAND VALVE			HV450A	
ISOLATION HAND VALVE			HV450B	
WATER TANK LEVEL TRANSMITTER			LS450	
WATER TANK LEVEL TRANSMITTER			LS451	
WATER LEVEL CONTROL VALVE			LT450 LCV451	
WATER LEVEL CONTROL VALVE			CHV451	
CHECK VALVE			OHV401	
NITROGEN PURGE SYSTEM	NPS			
OPEN SOLENOID VALVE			CV720	
OPEN SOLENOID VALVE			CV710	
FLOW ORIFICE			FO720	
AIR EJECTOR			EJT710	
CABINET VENTILATION SYSTEM	CVS			
VENTILATION FAN			FAN165	
VENTILATION FAN			FAN150	
FLOW SWITCH			FS165	
FILTER			FIL150	
FLOW CONTROL DAMPER			FCD150	
EXIT FLOW RATE CONTROL			TE150B	
TO PROCESSED STEAM SHUTOFF VALVE			CV500	
ELECTRICAL SYSTEM	ES			
POWER CONDITIONING SYSTEM	LO	PCS		
MOTORIZED AC CURCUIT BREAKER			MCB001	
MOTORIZED AC CURCUIT BREAKER			MCB002	
MOTORIZED AC CURCUIT BREAKER			MCB003	
POWER DISTRIBUTION SYSTEM		PDS		
AUXILIARY TRANSFORMER			T005	
UNINTERUPTABLE POWER SUPPLY			UPS001	
POWER PLANT CONTROL		PPC		
LOCAL OPERATING INTERFACE			LOI	
LOCAL DIAGNOSTIC TERMINAL			LDT	
ELECTICAL CONTROL SYSYEM		ECS		
OTHER	OTR	OTDE		
OTHER ELECTRICAL		OTRE	1/004	
K001			K001	
K002			K002 INV	
INVERTER			CSA	
CSA BC CARD			PC	
PC CARD BOOST REGULATOR			BSRG	
FUSE			FUSE	
POLE FAULT			POLE	
BRIDGE FAULT			BRDG	
QUAD POWER SUPPLY			QUAD	
DUAL POWER SUPPLY			DUAL	
RELAY TRIP			RELAY	
GROUND FAULT			GRND	
CIRCUIT BREAKER			CRB	
CONTROLLER			CRL	
SUBSTACK			SBSTK	
GRID DISTIRBANCE			GRID	
OTHER GAS		OTRG		
OTHER WATER		OTRW		

Appendix E: Summary of Maintenance Invoices by Year

4-25

Detailed Fuel Cell Demonstration Site Summary Report Edwards AFB

Final Report April 2004

4-27

June May Detailed Fuel Cell Demonstration Site Summary Report Edwards AFB 1998: April 12:00 AM 1:00 AM 3:00 AM 3:00 AM 5:00 AM 6:00 AM 1:00 PM 6:00 PM

7 926:36 See previous page.
8 169:30 Outage not specified. UTC Fuel Cells worked at site.
9 95:45 WTS: P/P shutdown due to low LT450; customer inadvertently shut off the R/O unit.

Description

Outage # Duration

Final Report April 2004

Detailed Fuel Cell Demonstration Site Summary Report Edwards AFB

2345678911111111112222222222233 012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901 4-37 December NPS: Shutdown due to suspected failure of CV720, solenoid valve. Power plant shutdown when base contractor cut natural gas line. November OTR: Shutdown on controller failure. Detailed Fuel Cell Demonstration Site Summary Report Edwards AFB See previous page. Description 12:00 AM #221 (continued)
2:00 AM #221 (continued)
3:00 AM #20 (continued)
3:00 AM #20 (continued)
1:00 PM #20 (continued)
1:00 PM #20 (continued) Outage # Duration 510:45 2000: October 28:00 55:55 51:30 Final Report April 2004 7 22 23

4-38 Base shut off gas to the power plant and opened the maintenance disconnect switch resulting in a hot shutdown. This will result in a permanent cell stack performance loss. March February Detailed Fuel Cell Demonstration Site Summary Report Edwards AFB #25 Description 6,193:22 Outage # Duration 2001: January Final Report April 2004 25 12:00 AM 1:00 AM 1:00 AM 1:00 AM 1:00 AM 1:00 AM 1:00 PM 1:00 PM

4-42 2345678911111111122222222222223312345678911111111112222222221223456789111111111111122222222222338 March OTR: Shutdown (unknown cause) with controller reboot. February Detailed Fuel Cell Demonstration Site Summary Report Edwards AFB Description Outage # Duration 12:00 AM
12:00 AM
12:00 AM
2:00 AM
4:00 AM
6:00 AM
6:00 AM
6:00 AM
11:00 BM
12:00 BM
6:00 BM
6:00 BM
6:00 BM
12:00 BM 150:23 Final Report April 2004 26

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)			
18-08-2006	Final				
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER				
Detailed Fuel Cell Demonstration Site S					
Edwards Air Force Base, CA	5b. GRANT NUMBER				
		5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S) J. Michael Torrey, John F. Westerman,	5d. PROJECT NUMBER				
Bush		5e. TASK NUMBER			
		5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S	8. PERFORMING ORGANIZATION REPORT				
U.S. Army Engineer Research and Development Center (ERDC)		NUMBER			
Construction Engineering Research Lab	ERDC/CERL TR-06-19				
PO Box 9005,					
Champaign, IL 61826-9005					
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)			
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION / AVAILABILITY STATEMENT					
Approved for public release: distribution is unlimited					

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Fuel cells are an environmentally clean, quiet, and a highly efficient method for generating electricity and heat from natural gas and other fuels. In fiscal year 1993 (FY93), the Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) was assigned the mission of managing the DOD Fuel Cell Demonstration Program. Specific tasks included developing turnkey PAFC packages, devising site criteria, screening candidate DOD installation sites based on selection criteria, evaluating viable applications at each candidate site, coordinating fuel cell site designs, installation and acceptance of the PAFC power plants, and performance monitoring and reporting.

CERL selected and evaluated 30 application sites, supervised the design and installation of fuel cells, actively monitored the operation and maintenance of fuel cells, and compiled "lessons learned" for feedback to fuel cell manufacturers. At the conclusion of the demonstration period, each of the demonstration fuel cell sites was given the choice to either have the fuel cell removed or to keep the fuel cell power plant. This report presents a detailed review of a 200 kW fuel cell installed at Edwards Air Force Base (AFB) and operated between July 1997 and July 2002.

15. SUBJECT TERMS fuel cells Edwards AFB, CA		energy conservati	tion energy technology alternative		es
16. SECURITY CLASSIFICATION OF:				19a. NAME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER
Unclassified	Unclassified	Unclassified	SAR	140	(include area code)