On Improving the Execution of Distributed CnC Programs

Yuhan Peng¹, Martin Kong¹, Louis-Noel Pouchet², Vivek Sarkar¹

¹Department of Computer Science Rice University

²Department of Computer Science Colorado State University

CNC-2016 Workshop, September 2016

Concurrent Collections (CnC)

- Run-time and data-flow model for parallel programming.
- No direct specification of parallel operations.
 - The user specifies the semantics with data and control dependencies.
 - ▶ The runtime decides the schedule of parallel tasks.
- Applicable on both shared and distributed memory.
 - Can reach performance comparable to OpenMP/MPI applications.

Data-Flow Graph Language (DFGL)

- Intermediate graph representation for macro dataflow programs.
- Emphasizes the data dependencies between tasks.
- User-friendly, expressive language.
- DFGL provides great opportunities for performing high-level optimizations
 - Optimizations can be done through graph and loop transformations.
 - Especially good for polyhedral optimizations when program exhibits regularity.

Data-Flow Graph Language (DFGL)

- Automatic code generation tools can transform DFGL into CnC code for being executed.
- ▶ DFGL framework.¹

¹Sbirlea, Alina, Louis-Noel Pouchet, and Vivek Sarkar. "Dfgr an intermediate graph representation for macro-dataflow programs." Data-Flow Execution Models for Extreme Scale Computing (DFM), 2014 Fourth Workshop on. IEEE, 2014.

PIPES

- Programming language and compiler derived from DFGL.
 - ▶ Input: DFGL with producer and consumer relations, with other language abstractions.
 - ▶ Output: Intel CnC C++ compilable program.
- Concentrates on virtual topologies and task mappings.
- Automatically applying optimization transformations such as task coarsening and coalescing.
- Goal: better supporting task-based programming for shared and distributed memory.

PIPES

- Framework of PIPES.²
 - Great support for adding new optimization pass in PIPES core.

²M. Kong, L-N. Pouchet, P. Sadayappan, and V. Sarkar. "Pipes: A language and compiler for distributed memory task parallelism." SC 16. IEEE, 2016.

- Managing and controlling the runtime overhead is crucial.
- ▶ In practice, such overhead depends on:
 - ▶ The total number of tasks created.
 - ▶ The number of tasks in flight at a give time point.
 - ▶ The total number of input dependencies.

- Johnson 3D matrix multiply algorithm: our motivating example.
 - Introduced by Ramesh C. Agarwal et al. in 1995.
 - Parallelizable divide-and-conquer approach.
- ▶ To compute the product of A * B. Johnson 3D goes through two steps:
 - ▶ MMC: Divide A and B into small matrix pieces, and multiply the small matrix pieces in parallel.
 - ▶ MMR: Reduction to sum up the results of small matrix pieces.

- We start by dissecting the program execution time of the Johnson 3D algorithm.
 - ▶ We tested the algorithm across different tile sizes.
 - We tested the algorithm across different number of nodes and task mappings.
- The program overhead is a non-negligible portion of the total time.
 - ▶ In distributed Johnson 3D algorithm, the overhead can take between 2% and 50% of the total execution time.

- ► The overhead of the execution of Johnson 3D on different number of processors.
 - ▶ We use 1-8 nodes where each node has 12 processors.
 - ▶ More processors, larger overhead proportion.
 - ▶ The overhead grows superlinearly.

Our Approach

- Our goal: minimize the run-time overhead.
- ▶ We proposed two transformation techniques:
 - Dependency reduction.
 - Dynamic prescription.

- Objective: minimizing the number of tasks and/or dependencies.
- Avoids needless polling of satisfied dependencies.
 - Depending on the runtime scheduler.
- Improves the program's progress.
 - Reduce the critical path length.
 - ▶ Minimize the number of task instances and block instances.
 - The processors will have fewer tasks to handle, and fewer dependencies to query.

- ▶ The user may specify a reduction factor R.
- ▶ Then we transform the dataflow graph, so that
 - ▶ The semantic of the input DFGL does not change.
 - Minimize the total number of dependencies.
 - Essentially contracts one dimension by a factor of R.
 - ▶ If R = 1, no change.
 - ► If R = 2, every two instances are fused. i.e. N / 2 instances left.
 - ▶ If R = N, all instances are fused. i.e. dimension collapses.

► The dependency diagram of the original Johnson 3D algorithm.

▶ The dependency diagram of the Johnson 3D algorithm after dependency reduction with R = 2.

► The dependency diagram of the Johnson 3D algorithm after dependency reduction with R = N.

- Related work: OpenMP chunk_size.
 - Merge multiple loop bodies into one serial task, before being allocated to a thread.
 - Increase the work's granularity.
 - Improves program's scalability.
- ▶ The OpenMP chunk_size is similar to the reduction factor R.
- Difference between OpenMP chunk_size and PIPES dependency reduction.
 - OpenMP only performs data parallelism.
 - ▶ PIPES dependency reduction can support task parallelism.
 - PIPES dependency reduction can support the case when R = N, i.e. collapsing the entire dimension. Where OpenMP chunk_size must be a constant.
 - ▶ PIPES dependency reduction also removes intermediate results.

- Minimizes the number of tasks in flight by enforcing a dynamic prescription schedule, also known as creation and spawning schedule.
 - Determine when tasks are created and spawned.
 - Minimize the number of waiting tasks.
- Narrowing down the run-times scheduling options.
- Potentially improving the program's locality.
- Similarly, the user may specify a prescription factor K.
 - The size of the task set of each spawn.

- ▶ Using the MMC in Johnson 3D as an example.
- ► Original version (K=N):
 - env::MMC(i,j,k) $0 \le i, j, k \le n$

- ▶ Dynamic Prescription (K=1):
 - env::MMC(i,j,0) $0 \le i, j \le n$
 - ► MMC(i,j,k)::MMC(i,j,k+1) $0 \le i, j \le n, 0 \le k \le n-1$

- ▶ Dynamic Prescription (K=2):
 - $\qquad \qquad \bullet \ \ env::MMC(i,j,0), \ MMC(i,j,1) \ 0 \leq i, \ j \leq n$
 - ▶ $\mathsf{MMC}(i,j,k)$:: $\mathsf{MMC}(i,j,k+1)$, $\mathsf{MMC}(i,j,k+2)$ $0 \le i, j \le n, 0 \le k$ $\le n$ 2, k mod 2 = 1

- ▶ Dynamic Prescription (K=4):
 - env::MMC(i,j,0), MMC(i,j,1),MMC(i,j,2), MMC(i,j,3) $0 \le i, j < n$
 - ► MMC(i,j,k)::MMC(i,j,k+1), MMC(i,j,k+2),MMC(i,j,k+3), MMC(i,j,k+4) $0 \le i, j \le n, 0 \le k \le n 4, k \mod 4 = 3$

- Related work: cilk for.
 - cilk_for can divide the loop into chunks.
 - ▶ Grain size: the maximum number of iterations in each chunk.
 - #pragma cilk grainsize = expression
- Grain size is similar to the prescription factor K.
- ▶ Difference between cilk_for and PIPES dynamic prescription.
 - cilk_for only performs data parallelism.
 - ▶ PIPES dynamic prescription can support task parallelism.
 - PIPES dynamic prescription can support prescription between different kernels.

Complexity Analysis

- No dependency reduction on MMR.
- ▶ Dynamic prescription on MMC. (K = 1, 2, 4)

	Original	K = 1	K = 2	K = 4
env::MMC	N^3	N^2	$2N^{2}$	4 <i>N</i> ²
env::MMR	N^3	N^3	N^3	N^3
MMC::MMC	0	$N^3 - N^2$	$N^3 - 2N^2$	$N^3 - 4N^2$
MMC::MMR	0	0	0	0
MMR::MMR	0	0	0	0
Theoretical CPL	N + 1	N + 1	N+1	N + 1

Complexity Analysis

- ▶ Dependency reduction on MMR. (R = N)
- ▶ Dynamic prescription on MMC. (K = 1, 2, 4)

	Original	K = 1	K = 2	K = 4
env::MMC	N^3	N^2	$2N^2$	$4N^2$
env::MMR	N^2	N^2	N^2	N^2
MMC::MMC	0	$N^3 - N^2$	$N^3 - 2N^2$	$N^3 - 4N^2$
MMC::MMR	0	0	0	0
MMR::MMR	0	0	0	0
Theoretical CPL	2	2	2	2

Experimental Setup

- All experiments were performed on Davinci Cluster at Rice University.
 - ▶ The following table shows the detailed configuration.

_			
Parameters	Value		
Nodes	1-8		
Processor	Intel Xeon X5660 @ 2.80 GHz		
Sockets per node	2		
Cores per socket	6		
InfiniBand QDR bandwidth	40 GB/s		
L1 Cache	32 KB per core		
L2 Cache	256 KB per core		
L3 Cache	12 MB per socket		
CnC	1.01		
MPI run-time	Intel MPI 5.0		
Compiler	Intel ICPC 13		
Slurm	2.6.5		

Experimental Setup

- Matrix Size: 8000 * 8000.
- ▶ 1, 2, 4, 8 nodes * 12 processors per node
- ► Tile Size: 400, 500, 800, 1000, 1600, 2000.
- All transformations were manually implemented.
- CnC tuners were used.
 - Dependency consumer.
 - computed_on
 - consumed_on

- We applied our proposed transformations on the Johnson 3D algorithm.
 - Dependency reduction on MMR (R = N)
 - ▶ Dynamic prescription on MMC (K = 1, 2, 4)
 - lacktriangle Dynamic prescription on both MMC and MMR (K = 1, 2, 4)
 - ▶ Adding $MMC(i,j,k)::MMR(i,j,k) \ 0 \le i, j, k \le n$
 - Dynamic reduction (K = 1, 2, 4)
 - Dependency reduction on MMR (R = N), plus dynamic prescription on MMC (K = 1, 2, 4)
- ▶ We obtained 30% speedup when combining the proposed transformations comparing to the base version.

- Dependency reduction on MMR (R = N)
- ▶ Dynamic prescription on MMC (K = 1, 2, 4)

Dynamic prescription on both MMC and MMR (K = 1, 2, 4)

▶ Dynamic reduction (R = N, K = 1, 2, 4)

Conclusion

- ► The overhead of task scheduling in distributed CnC programs is non-negligible.
- We proposed two transformations for overhead reduction:
 - Dependency reduction.
 - Dynamic prescription.
- Our preliminary results obtaining 30% speedup by applying our proposed transformations on Johnson distributed matrix-multiply algorithm.

Ongoing Work

- Currently we are focusing on dynamic prescription.
- Degree of freedom (dof): a property of task scheduling.
 - We have identified several dofs.
 - Manipulator: concentrate the prescription on as few tasks as possible.
 - Balanced: try to have more tasks being in charge of prescription operations.
 - Phased: all tasks of A should finish before any task of B starts.
 - Interleaved: some task of A should finish before starting some task of B.
 - More dofs to discover.
- Policies: combinations of dofs.
 - ▶ Policies determine runtime behavior.
 - Policies are applicable program-wide, or a subset of tasks.

References

- R. Agarwal et al., "A Three-dimensional Approach to Parallel Matrix Multiplication," IBM Journal of Research and Development, vol. 39, no. 5, pp. 575582, Sept 1995.
- Chandramowlishwaran, Knobe, and Vuduc. "Performance evaluation of concurrent collections on high-performance multicore computing systems." IPDPS, 2010.
- Sbirlea, Alina, Louis-Noel Pouchet, and Vivek Sarkar. "Dfgr an intermediate graph representation for macro-dataflow programs." Data-Flow Execution Models for Extreme Scale Computing (DFM), 2014 Fourth Workshop on. IEEE, 2014.
- Sbrlea, Alina, et al. "Polyhedral Optimizations for a Data-Flow Graph Language." International Workshop on Languages and Compilers for Parallel Computing. Springer International Publishing, 2015.
- ► M. Kong, L-N. Pouchet, P. Sadayappan, and V. Sarkar. "Pipes: A language and compiler for distributed memory task parallelism." SC 16. IEEE, 2016.