- Overview of multidomain recommender systems (Liang Hu, 25 mins)
- Multi-item domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-user domain recommender systems (Qi Zhang, 20 mins)
- Multi-data domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-spatial domain recommender systems (Qi Zhang 20 mins)
- Multi-temporal domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-goal domain recommender systems (Liang Hu, 20 mins)
- Summary (Liang Hu, 5 mins)

Multi-item domain recommendation

- Item types
 - E.g., flights, stays, cars

- Item relations:
 - E.g., destination (flight), location (hotel)

Multi-item domain recommender systems Multi-item type modeling for multidomain recommendation

• Multi-item relationship modeling for multidomain recommendation

Cross-Domain Collaborative Filtering

- The assumption of leveraging cross-domain information in RS
 - The existence of multiple *related* domains
 - The user preference from each domain is not independent
- User-item interaction in each domain quantified by the ratings matrix; contains information about different domains.

Idea: concatenate rating matrices across domains and perform naïve MF; use obtained latent to

predict new review

Deficiency

- Each domain has different characteristics
 - The factor of color has huge impact on the user preference in clothes domain
 - But factor of *color* has little impact on the user preference in *book* domain
- Above method using the single domain model implicitly assume the homogeneity of items.
 - Obviously, such assumption may decrease the prediction accuracy due to the heterogeneities of different domains.

Modeling Domain Heterogeneity

- Domain factors is an essential element in cross "domain" problem to model domain heterogeneity
- Triadic relation user-item-domain to reveal the domain-specific user preference

Hu, L., Cao, L., Cao, J., Gu, Z., Xu, G., & Yang, D. (2016). Learning Informative Priors from Heterogeneous Domains to Improve Recommendation in Cold-Start User Domains. *ACM Transactions on Information Systems (TOIS)*, 35(2), 13.

Tensor Factorization over Triadic Relation

Decompose a tensor into a sum of rank-one components

•
$$\mathcal{X} = [\![\mathbf{A}, \mathbf{B}, \mathbf{C}]\!] = \sum_{r=1}^{R} \mathbf{A}_{\cdot,r} \circ \mathbf{B}_{\cdot,r} \circ \mathbf{C}_{\cdot,r}$$

The Mean AP@5,10 and nDCG@5,10

Target					D1			
Domain		TR	-80%			TR	-50%	
Method	AP@5	AP@20	nDCG@5	nDCG@20	AP@5	AP@20	nDCG@5	nDCG@20
Most-Pop	0.0161^	0.0175^	0.0269^	0.0382^	0.0322^	0.0223^	0.0567^	0.0577^
N-CDCF	0.0252*	0.0240*	0.0441*	0.0465*	0.0352*	0.0210	0.0604*	0.0534
MF-IF	0.0263*	0.0293*	0.0432*	0.0631*	0.0455*	0.0324	0.0813*	0.0854*
MF-IF-CDCF	0.0242*	0.0258*	0.0399*	0.0552*	0.0431*	0.0296	0.0763*	0.0775*
PARAFAC2	0.0213*	0.0226*	0.0350*	0.0476*	0.0395*	0.0267	0.0691*	0.0687*
CDTF-IF	0.0258*	0.0276*	0.0425*	0.0587*	0.0423*	0.0294	0.0758*	0.0767*
WITF	0.0267*	0.0285*	0.0451*	0.0623*	0.0484*	0.0340	0.0849*	0.0872*
WITF+WRMF	0.0271**	0.0290**	0.0462**	0.0643**	0.0486**	0.0343**	0.0851**	0.0879**
Target			000/		D2		500/	
Domain	1	i	-80%			i	-50%	
Method	AP@5	AP@20	nDCG@5	nDCG@20	AP@5	AP@20	nDCG@5	nDCG@20
Most-Pop	0.0175^	0.0194^	0.0288^	0.0424^	0.0297^	0.0231^	0.0530^	0.0591^
N-CDCF	0.0281*	0.0261*	0.0435*	0.0520*	0.0228	0.0243*	0.0380	0.0357
MF-IF	0.0320*	0.0354*	0.0528*	0.0747*	0.0501*	0.0370*	0.0872**	0.0924**
MF-IF-CDCF	0.0240*	0.0262*	0.0397*	0.0563*	0.0380*	0.0285*	0.0675	0.0724*
PARAFAC2	0.0215*	0.0234*	0.0356*	0.0506*	0.0327*	0.0251*	0.0589*	0.0638*
CDTF-IF	0.0326*	0.0337*	0.0526*	0.0662*	0.0454*	0.0316*	0.0761*	0.0750*
WITF	0.0338*	0.0363*	0.0552*	0.0753*	0.0538*	0.0383*	0.0905*	0.0909*
WITF+WRMF	0.0343**	0.0369**	0.0556**	0.0758**	0.0542**	0.0386**	0.0907**	0.0915*

- Problem to be solved: How to optimize integration of multiple item data from different domains?
 - Solution could lead to better performance of CDR;
- In this paper: Deep fusion of latent information of item information from auxiliary and target domains.
 - Deep fusion smooths out heterogeneities in embeddings from different domains to improve prediction.
- Main components of architecture: stacked denoising autoencoders (sDAEs)

Reviews

Prediction

Reviews

Pusion

Latents

DAE

Plot Synopses

Plot Synopses

- deep fusion of user reviews and item contents via DAEs. Sparsity is solved via deep embedding of features;
 - text from user reviews and content information (plot description) undergo word embedding and max pooling;
 - rating scores from users and items injected with review and content embedding vectors;
 - sDAE attempts to reconstruct input vector in last layer; output of middle layer is latent factor;
 - build map between AI—SDAE / TI_SDAE with AP_SDAE;
 - use MLPs to build nonlinear mapping between auxiliary and target domain latent factors.

Vectorization of Reviews and Contents

- •Using word embedding function to map words to distributed vector
- •Merge all reviews into single document
- Pre-trained word embeddings used to obtain 300-D word vector for each word
- Concatenate into matrix and take max value of each column as feature
- •This is 300-D vector for all reviews for user *u* in auxiliary domain; corresponding vectors for item in both domains similar

Generation of Latent Factors

- •SDAEs reconstructs input from corrupted version to learn more robust mapping function;
- •SDAE tries to make output of middle layer close to actual latent factor as possible;
- •Take each column of rating matrix as rating vector of each item, each row as rating vector of each user
- Rating vectors + feature matrix from previous box constitute input to SDAE

Nonliner Mapping based on MLP

 Use MLP to perform nonlinear mapping of latents from auxiliary to target domain (latent space matching);

Cross-Domain
Recommendation

Datasets

- Amazon Dataset
 - http://jmcauley.ucsd.edu/data/amazon/
 - Ratings and metadata (including titles of movies) from Amazon website;
 - 142.8 million reviews in total from May 1996 to July 2014;
 - 21 categories of items;

Table 1: The Statistics of the datasets

	datas	set 1	da	taset 2
Domain	Movies	Books	Movies	Music CDs
Users	79	2	1	,464
Items	3,550	2,271	3,605	4,611
Ratings	51,422	20,365	78,431	59,299
Density	1.83%	1.13%	1.49%	0.88%

Table 2: Recommendation performance on "Movies & Books"

				rubic 2.	recomi	nendation	perrorman	ec on 1	101103 00	DOOKS			
				RI	MSE			MAE					
K	φ	PMF	CMF	EMCDR	DFM	R-DFM	RC-DFM	PMF	CMF	EMCDR	DFM	R-DFM	RC-DFM
10	80%	4.0892	1.5381	1.5276	0.9987	0.9893	0.9770	3.8438	1.2809	1.2246	0.7997	0.7958	0.7902
	50%	1.6204	1.5005	1.1174	0.9820	0.9719	0.9648	1.2326	1.2282	0.8538	0.7939	0.7865	0.7808
	20%	1.3839	1.4653	1.0482	0.9594	0.9583	0.9535	1.0611	1.1914	0.8246	0.7756	0.7719	0.7694
20	80%	4.1113	1.2624	1.5500	0.9990	0.9790	0.9744	3.8986	0.9884	1.2777	0.7996	0.7898	0.7886
	50%	1.7428	1.2470	1.1648	0.9721	0.9700	0.9632	1.3770	0.9625	0.8984	0.7859	0.7844	0.7774
	20%	1.4198	1.2146	1.0305	0.9609	0.9565	0.9514	1.1098	0.9432	0.7824	0.7758	0.7704	0.7667
30	80%	4.1103	1.5437	1.6676	0.9838	0.9807	0.9721	3.9034	1.2050	1.3633	0.7938	0.7904	0.7858
	50%	1.7933	1.3455	1.1823	0.9682	0.9646	0.9591	1.4537	1.0441	0.9413	0.7816	0.7752	0.7671
	20%	1.4835	1.2760	1.0548	0.9581	0.9532	0.9468	1.1892	0.9917	0.8176	0.7706	0.7645	0.7590

Table 3: Recommendation performance on "Movies & Music CDs"

				RM	MSE					N	IAE		
K	ϕ	PMF	CMF	EMCDR	DFM	R-DFM	RC-DFM	PMF	CMF	EMCDR	DFM	R-DFM	RC-DFM
10	80%	4.1154	1.6483	1.6757	1.0976	1.0726	1.0706	3.8374	1.3804	1.3660	0.8824	0.8611	0.8589
	50%	1.6585	1.6456	1.1887	1.0741	1.0637	1.0578	1.2419	1.3658	0.9289	0.8666	0.8564	0.8461
	20%	1.4015	1.6318	1.0857	1.0657	1.0513	1.0490	1.0466	1.3512	0.8464	0.8483	0.8360	0.8005
20	80%	4.1353	1.3287	1.7407	1.0917	1.0724	1.0698	3.8760	1.0275	1.4479	0.8773	0.8603	0.8573
	50%	1.6942	1.3269	1.2273	1.0719	1.0553	1.0507	1.3122	1.0081	0.9593	0.8653	0.8431	0.8410
	20%	1.4624	1.3039	1.0802	1.0546	1.0516	1.0477	1.1460	0.9898	0.8308	0.8267	0.8218	0.7782
30	80%	4.1894	1.5249	1.6540	1.0880	1.0720	1.0661	3.9655	1.1787	1.3451	0.8739	0.8591	0.8522
	50%	1.7951	1.3944	1.2093	1.0713	1.0637	1.0586	1.4315	1.0749	0.9456	0.8669	0.8532	0.8483
	20%	1.5190	1.3505	1.0852	1.0594	1.0580	1.0557	1.2106	1.0323	0.8190	0.8328	0.7836	0.7778

- 'Movies' is the auxiliary and 'Books'+
 'Music' the target domains;
- choice of baselines: reflect lack of cross modal information (PMF is single domain), or lack of robustness (choice of K for CMF)
- Closest performance from EMCDR: semideep framework where matrix factorized latents are learned and mapped from target to domain via MLPs (no deep fusion)
- Deep fusion of latents improves performance considerably.

- **Problem to be solved:** latent transfer models unable to account for structural information.
 - E.g., users interested in *Ironman* could conceivably be interested in DC or Marvel *comic books* as well, but this cannot be modeled via transfer.
 - Example of higher-order hops in a graph model, relating multiple items (slight overlap with item relations section).
- In this paper: user preference graph model, uses graphs to link different items depending on preference.
 - captures cross-domain data via longer-range hopping between nodes

- includes structural information bridging domains neglected in most embedding methods; also items in different domains might share similar properties.
- user preferences modeled via multihop model, which define CDPM to model cross-domain item interactions;
- CDPM and original embeddings fed to GC and propagation layers; different filter size ensure full spectrum of preference captured;
- Knowledge integration via MLP to fuse user and item embeddings (items from both domains);

- A is CDPM; 1 if interactions, 0 if no interactions
- Define $\hat{A} = D^{-1}(A+I)$
- Map IDs of u, i_a , $i_b \rightarrow$ embeddings e^u , e^{i_a} , e^{i_b}
- Form embedding matrix $E_0 = \left[e_1^{i_a}, \dots, e_p^{i_a}, e_1^u, \dots, e_n^u, e_1^{i_b}, \dots, e_p^{i_b}\right]$
- Feed E_0 and \hat{A} to graph propagation and convolution layers

•
$$E = [E_0, E_1, ..., E_{l_n}] = [E_a^i, E^u, E_b^i]^T$$

• Propagation process: $E_l = \sigma(\hat{A}E_{l-1}W_l + b_l)$

Datasets	# users	# items	# ratings	density
Books		269, 301	1, 254, 288	0.012%
Movies and TV		49, 273	792, 319	0.043%
CDs and Vinyl	5, 331	55, 848	376, 347	0.126%
Digital Music	5, 331	3, 563	63, 303	0.333%

Metrics	Dataset	BPRMF	NeuMF	NeuMF+	CoNet	SCoNet	PPGN-IP	PPGN
	Books	.3654	.4300	.4291	.5223	.5141	.4594	.5770
HR@10	Movies and TV	.4538	.5665	.5605	.6460	.6465	.5689	.6909
THOUGHTO	CDs and Vinyl	.5532	.6421	.6655	.7539	.7547	.7668	.7839
	Digital Music	.4742	.5322	.5991	.7179	.7205	.7492	.7874
-	Books	.1543	.2241	.2249	.3273	.3261	.1835	.3280
MRR@10	Movies and TV	.2034	.2775	.2742	.3651	.3829	.2498	.3869
MIRING TO	CDs and Vinyl	.2742	.3092	.3593	.4735	.4875	.4192	.5012
	Digital Music	.1431	.1549	.2472	.3855	.3878	.4112	.4388
	Books	.2365	.2725	.2724	.3396	.3370	.2470	.3574
NDCG@10	Movies and TV	.2654	.3445	.3416	.4060	.4210	.3164	.4249
NDCARGITO	CDs and Vinyl	.3532	.3933	.4303	.5227	.5291	.5020	.5697
	Digital Music	.2045	.2432	.3297	.4436	.4603	.4911	.5147

- Dataset: Amazon-5cores dataset from previous slide;
- baselines have similar deficiencies: takes single domain data into account (BPRMF,NeuMF); unguided sharing of user embeddings (NeuMF+) and unguided cross-domain embedding transfer (CoNet)
- taking user preference into account and systematically aggregating embeddings lead to significant improvements.

- **Problem to be solved:** privacy for users; ensuring users cannot be identified from purchase records.
 - But still ensuring high quality CDR.
 - Important for most commercial use of CDR.
- In this paper: Only item embeddings are transferred from auxiliary to target domain
 - Not all item embeddings need to be transferred; which is obtained via item-level attention mechanism.
 - Additional domain level attention to adjust importance of domains.

- interesting aspect of CDR: recommendation with user privacy
- only embedding of bridge items are transferred (instead of full user-item matrix) from aux to target.

Chen Gao, Xiangning Chen, Fuli Feng, Kai Zhao, Xiangnan He, Yong Li, and Depeng Jin. 2019. Cross-domain Recommendation Without Sharing User-relevant Data. In The World Wide Web Conference (WWW '19). Association for Computing Machinery, New York, NY, USA, 491– 502.

- p_u are local user embeddings (one-hot), ${q'}_j = W_0^T q_j^a + b_0$
- Item-level Attention: $\frac{e^{a_{uj}}}{\sum_{\{k|y_{uk}^t=1\}}e^{a_{uk}}}, a_{uj}=w_1^T ReLU\left(\boldsymbol{p}_u\odot\boldsymbol{q'}_{\boldsymbol{j}}\right)+b_1$
- Domain-level Attention: $\beta_{si} = \frac{e^{b_{si}}}{e^{b_{si}} + e^{b_{pi}}}$, $\beta_{pi} = \frac{e^{a_{pi}}}{e^{b_{si}} + e^{b_{pi}}}$, $b_{s(p)i} = w_2 \; ReLU(p_u(s_u) \odot q_i) + b_2$

					ML	NF Datase	et .		
Group	Method	User-relevant Data	HR(NDCG)@1	HR@2	NDCG@2	HR@5	NDCG@5	HR@10	NDCG@10
	NATR	Preserved	0.1315	0.1976	0.1403	0.3776	0.2110	0.5781	0.2726
Cross Domain	ItemCST	Preserved	0.0795	0.1475	0.1005	0.3068	0.1670	0.4846	0.2228
	CMF	Shared	0.1023	0.1903	0.1283	0.3675	0.2025	0.5483	0.2593
	NATR-local	Preserved	0.0947	0.1769	0.1253	0.3402	0.1894	0.5183	0.2440
Single Domain	PMF	Preserved	0.0668	0.1162	0.0796	0.2721	0.1375	0.4494	0.1956
	GMF	Preserved	0.0706	0.1174	0.0816	0.2681	0.1410	0.4284	0.1918
			TC-IQI Dataset						
					TC-	IQI Datase	et		
Group	Method	User-relevant Data	HR(NDCG)@1	HR@2	TC- NDCG@2	IQI Datase HR@5	NDCG@5	HR@10	NDCG@10
Group	Method NATR	User-relevant Data Preserved	HR(NDCG)@1 0.2010	HR@2 0.2660		~		HR@10 0.6035	NDCG@10 0.3365
Group Cross Domain			7.0		NDCG@2	HR@5	NDCG@5		
	NATR	Preserved	0.2010	0.2660	NDCG@2 0.2104	HR@5 0.4513	NDCG@5 0.2881	0.6035	0.3365
	NATR ItemCST	Preserved Preserved	0.2010 0.1161	0.2660 0.2129	NDCG@2 0.2104 0.1445	HR@5 0.4513 0.4194	NDCG@5 0.2881 0.2309	0.6035 0.6079	0.3365 0.2904
	NATR ItemCST CMF	Preserved Preserved Shared	0.2010 0.1161 0.1649	0.2660 0.2129 0.3101	NDCG@2 0.2104 0.1445 0.2101	HR@5 0.4513 0.4194 0.4499	NDCG@5 0.2881 0.2309 0.2668	0.6035 0.6079 0.6595	0.3365 0.2904 0.3326

- baseline models: are of single domain (PMF, GMF, NATR) and hence unable to take multidomain data into account; are unable to perform well under assumption that only bridge user embeddings are transferred to the target domain (ItemCST, CMF);
- Improved performance attributed to:
 - Cross-domain learning (PMF, GMF, NATR-local);
 - Taking historical interactions into account (PMF, GMF);
 - Taking explicit preference of users into account (GMF).

Multi-item domain recommender systems Multi-item type modeling for multidomain recommendation

Multi-item relationship modeling for multidomain recommendation

Problem to be solved:

- Leverage data richness and diversity to generate representative item relationships and embeddings.
- Optimize item embeddings to improve recommendation.
- In this paper: hybrid architecture with both graph and attention for dual-target CDR;
 - heterogeneous graph to deal with rich and diverse data forms
 - attention mechanism to combine embedding learned from common users from both domains

Architecture:

- Input: explicit feedback (ratings, comments) + side information (user profiles, item details);
- Graph embedding: user-item, user-user and item-item relationships obtained via ratings and content information;
- Feature combination: use element-wise attention to combine common users' embeddings from different domains
- MLP layer: to model nonlinear relationships between users and items on each domain
- Output: predictions on probability of user-item interaction.

- Document embedding: Doc2vec
- Graph construction: weights of edges are $\frac{R}{\max(R)}$, normalized ratings, while edges are generated between users u_i and u_l with probability $P(i,l) = \alpha \cdot sim(UC_i, UC_l)$;
- Graph embedding: Node2vec
- Feature combination for domain a:

$$\widetilde{U}_i^a = W^a \odot U_i^a + (1 - W^a) \odot U_i^b$$

	Mode	el.	Training Data	Encoding	Embedding	Transfer Strategy
	Single-Domain	NeuMF [He et al., 2017]	Rating	One-hot	Non-linear MLP	-
	Recommendation (SDR)	DMF [Xue et al., 2017]	Rating	Rating Vector	Non-linear MLP	-
Baselines	Single-Target Cross-Domain	CTR-RBF [Xin et al., 2015]	Rating & Content	Topic Modeling	Linear MF	Mapping & Transfer Learning
Dascinies		BPR_DCDCSR [Zhu et al., 2018]	Rating	Random Initialization	Linear MF	Combination & MLP
	Recommendation (CDR)	TMH [Hu et al., 2019]	Rating & Content	One-hot	Non-linear MLP	Mapping & Transfer Learning & Attention
	Dual-Target CDR	DMF-DTCDR-Concat [Zhu et al., 2019]	Rating & Content	Rating Vector	Non-linear MLP	Multi-task Learning & Concatenation
		DDTCDR [Li and Tuzhilin, 2019]	Rating	One-hot & Multi-hot	Non-linear MLP	Dual Transfer Learning
Our Methods	Dual-Target CDR	GA-DTCDR_Average (a variant of GA-DTCDR for ablation study)	Rating & Content	Heterogeneous Graph	Graph Embedding	(Average-Pooling)
Methods		GA-DTCDR	Rating & Content	Heterogeneous Graph	Graph Embedding	Combination (Element-wise Attention)

		SDR I	Baselines	Sing	le-Target CDR I	Baselines
Task	Domain	NeuMF	DMF	CTR-RBF	BPR_DCDCSR	TMH
		HR NDCG	HR NDCG	HR NDCG	HR NDCG	HR NDCG
Task1	DoubanBook (Sparser)	.3810 .2151	.3841 .2265	.3830 .2217	.3954 .2419	.4199 .2583*
(k = 8)	DoubanMovie (Richer)	.5266 .2911	.5498 .3114			
Task 1	DoubanBook (Sparser)	.3833 .2181	.3854 .2356	.3870 .2256	.4014 .2413	.4331 .2522*
(k = 16)	DoubanMovie (Richer)	.5282 .2939	.5573 .3141			
Task 1	DoubanBook (Sparser)	.3899 .2182	.3871 .2340	.3956 .2264	.4079 .2436	.4468* .2647*
(k = 32)	DoubanMovie (Richer)	.5411 .2991	.5612 .3254			
Task 1	DoubanBook (Sparser)	.3908 .2226	.3917 .2362	.4017 .2314	.4107 .2454	.4504* .2768*
(k = 64)	DoubanMovie (Richer)	.5449 .3152	.5632 .3387			
Task 1	DoubanBook (Sparser)	.4012 .2310	.4046 .2451	.4171 .2532	.4111 .2431	.4523* .2814*
(k = 128)	DoubanMovie (Richer)	.5512 .3301	.5776 .3505			

			CDR Baselines	Dual-Targ	et CDR (our)	Improvement
Task	Domain	DMF_DTCDR _Concat	DDTCDR	GA-DTCDR -Average GA-DTCDR		(GA-DTCDR vs. best baselines)
		HR NDCG	HR NDCG	HR NDCG	HR NDCG	HR NDCG
Task1	DoubanBook (Sparser)	.4412* .2571	.4033 .2257	.4057 .2513	.4479 .2759	1.52% 6.81%
(k = 8)	DoubanMovie (Richer)	.6032* .3732*	.5612 .3185	.5968 .3546	.6518 .4025	8.06% 7.85%
Task 1	DoubanBook (Sparser)	.4408* .2513	.4054 .2292	.4190 .2577	.4706 .2900	6.76% 14.99%
(k = 16)	DoubanMovie (Richer)	.6080* .3721*	.5750 .3595	.6013 .3596	.6566 .4014	10.80% 7.87%
Task 1	DoubanBook (Sparser)	.4318 .2461	.4180 .2344	.4346 .2610	.4758 .2896	6.50% 9.41%
(k = 32)	DoubanMovie (Richer)	.6011* .3718*	.5739 .3386	.6374 .3896	.6747 .4187	12.24% 12.61%
Task 1	DoubanBook (Sparser)	.4265 .2452	.4258 .2430	.4423 .2671	.4882 .3026	8.40% 9.32%
(k = 64)	DoubanMovie (Richer)	.5998* .3649*	.5825 .3553	.6416 .3941	.6817 .4205	13.65% 15.23%
Task 1	DoubanBook (Sparser)	.4317 .2510	.4225 .2439	.4490 .2691	.4995 .3098	10.44% 10.09%
(k = 128)	DoubanMovie (Richer)	.5991* .3680*	.5863 .3589	.6449 .3981	.6957 .4406	16.12% 19.73%

		1	SDR	Baseli	nes	[]	Sing	le-Tars	get CDR I			
Task	Domain	N	euMF	D	MF	CTI	R-RBF	BPR_I	DCDCSR	T	MH	
		HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	
Task 2	DoubanMusic (Sparser)	.313	5 .1703	.312	7 .1812	.322	7 .1895	.325	9 .1894	.3579	2034	
(k = 8)	DoubanMovie (Richer)	.526	6 .2911	.5498	3114	-	-	-	-	-	-	
Task 2	DoubanMusic (Sparser)	.319	0 .1731	.3170	.1891	.312	1 .1761	.326	1 .1901	-3612	2 .2137	
(k = 16)	DoubanMovie (Richer)	.528	2 .2939	.5573	3 .3141	-	-	-	-	-		
Task 2	DoubanMusic (Sparser)			.3218	8 .1912	.314	1 .1844	.327	1 .1931	.3701°	* .2202*	
(k = 32)	DoubanMovie (Richer)	.541	1 .2991	.5612	2 .3254	-		-		-		
Task 2	DoubanMusic (Sparser)	.324	2 .1791	.326	7 .1926	.3324	4 .1916	.330	4 .2001	.3882	* .2323*	
(k = 64)	DoubanMovie (Richer)	.544	9 .3152	.5632	2 .3387	-	-	-	-	-	-	
Task 2	DoubanMusic (Sparser)	.331	4 .1810	.330	1 .1971	.3412	2 .1954	.345	2 .2074	.3946	* .2430*	
(k = 128)	DoubanMovie (Richer)	.551	2 .3301	.5770	3505	-	-	-	-	-	-	

			CDR Baselines	Dual-Targ	et CDR (our)	Improvement
Task	Domain	DMF_DTCDR	DDTCDR	GA-DTCDR	GA-DTCDR	(GA-DTCDR vs.
		_Concat		_Average		best buseintes)
		HR NDCG	HR NDCG	HR NDCG	HR NDCG	HR NDCG
Task 2	DoubanMusic (Sparser)	.3614* .2117*	.3302 .1930	.3690 .2109	.3852 .2166	6.59% 2.31%
(k = 8)	DoubanMovie (Richer)		.5655 .3629	.5987 .3731	.6470 .3983	10.17% 3.00%
Task 2	DoubanMusic (Sparser)	.3663* .2213*	.3451 .2092	.3706 .2037	.3947 .2256	7.75% 1.94%
(k = 16)	DoubanMovie (Richer)	.5887* .3863*	.5704 .3676	.6058 .3716	.6426 .3950	9.16% 2.25%
Task 2	DoubanMusic (Sparser)	.3607 .2201	.3463 .2050	.3789 .2056	.4133 .2318	14.58% 5.32%
(k = 32)	DoubanMovie (Richer)	.5770* .3758*	.5739 .3726	.6145 .3754	.6677 .4141	15.72% 10.19%
Task 2	DoubanMusic (Sparser)	.3571 .2109	.3466 .2045	.3812 .2144	.4384 .2489	12.93% 7.15%
(k = 64)	DoubanMovie (Richer)	.5787* .3705*	.5719 .3621	.6120 .3681	.6817 .4284	17.80% 15.63%
Task 2	DoubanMusic (Sparser)	.3580 .2132	.3520 .2117	.3996 .2207	.4491 .2604	13.81% 7.16%
(k = 128)	DoubanMovie (Richer)	.5792° .3742	.5748 .3762*	.6311 .3859	.7068 .4526	22.03% 20.31%

	Domain	SDR	Baselines	Single-Target CDR Baselines			
Task		NeuMF	DMF	CTR-RBF	BPR_DCDCSR	TMH	
		HR NDCG	HR NDCG	HR NDCG	HR NDCG	HR NDCG	
Task 3	DoubanMovie (Sparser)	.5266 .2911	.5498 .3114	.5514 .3156	.5762 .3347	.5987 .3487	
(k = 8)	MovieLens (Richer)	.7818 .5024	.8115 .5219				
Task 3	DoubanMovie (Sparser)	.5282 .2939	.5573 .3141	.5631 .3213	.5816 .3438	.6031 .3580	
(k = 16)	MovieLens (Richer)	.7901 .5084	.8143 .5212				
Task 3	DoubanMovie (Sparser)	.5411 .2991	.5612 .3254	.5721 .3347	.5821 .3447	.6108 .3733*	
(k = 32)	MovieLens (Richer)	.7978 .5124	.8180 .5231*				
Task 3	DoubanMovie (Sparser)	.5449 .3152		.5704 .3327	.5926 .3559	.6186 .3754*	
(k = 64)	MovieLens (Richer)	.7935 .5149	.8231* .5277				
Task 3	DoubanMovie (Sparser)	.5512 .3301	.5776 .3505	.5912 .3741	.6142 .3904	.6314 .3927*	
(k = 128)	MovieLens (Richer)	.8042 .5205	.8319* .5344				

		Dual-Target	CDR Baselines	Dual-Targ	Improvement		
Task	Domain	DMF_DTCDR _Concat	DDTCDR	GA-DTCDR -Average	GA-DTCDR	(GA-DTCDR vs. best baselines)	
			TID NIDGO		TID NIDGO		
			HR NDCG	****	HR NDCG	HR NDCG	
Task 3	DoubanMovie (Sparser)	.6387* .3628*	.6070 .3522	.6140 .3572	.6486 .4005	6.85% 10.39%	
(k = 8)	MovieLens (Richer)	.8328* .5293*	.8211 .5283	.8225 .5241	.8541 .5372	2.56% 1.49%	
Task 3	DoubanMovie (Sparser)	.6391* .3606*	.6100 .3518	.6266 .3710	.6514 .4018	1.92% 11.43%	
(k = 16)	MovieLens (Richer)	.8312° .5260°	.8263 .5170	.8280 .5277	.8547 .5381	2.83% 1.02%	
Task 3	DoubanMovie (Sparser)	.6530* .3631	.6137 .3460	.6310 .3776	.6598 .4087	1.04% 9.48%	
(k = 32)	MovieLens (Richer)	.8243 * .5213	.8111 .5167	.8301 .5280	.8612 .5478	4.48% 4.72%	
Task 3	DoubanMovie (Sparser)	.6477* .3605	.6200 .3544	.6423 .3841	.6654 .4101	2.73% 9.24%	
(k = 64)	MovieLens (Richer)	.8200 .5382*	.8130 .5198	.8324 .5320	.8668 .5516	5.31% 2.50%	
Task 3	DoubanMovie (Sparser)	.6521* .3642	.6222 .3714	.6489 .3792	.6812 .4198	4.46% 6.90%	
(k = 128)	MovieLens (Richer)	.8267 .5401*	.8210 .5311	.8349 .5381	.8642 .5512	3.88% 2.06%	

- Problem to be solved: how to optimally combine item information from different domains for CDR?
- In this paper: graphs at multiple levels
 - Inter-domain shared graph
 - Intra domain graph

- novel multitarget architecture; build heterogenous graphs for each domain and combine embedding of intra- with inter-domain embeddings;
 - \blacksquare intra-domain embedding simple to obtain and results in E_{u_A} and E_{i_A} for domain A;
 - \blacksquare cross-domain embedding obtained via *heterogenous graphs* for u_A and i_A (G_{u_A} and G_{i_A});
- recurrent attention iteratively aggregates neighbor information wrt specific node in graph;

- Intermediate graph embeddings:
 - $\blacksquare q = h_{u_A}$ (user vector)
 - $K = \{h_j | j \in N(u_A)\} = \{h_{i_A}, h_{i_B}, ..., h_{i_N}\}$ (neighbors' vector)
 - $V = \{Ph_j + p | h_j \in K\}$ (embedded neighbor)
- Cross domain embedding is then:
 - $o_V = \max(V)$ (aggregated neighbor representation)
 - $\blacksquare G_{u_A} = \text{ReLU}(W \cdot CONCAT(q, o_V) + w)$

Utilize attention mechanism to calculate weights a;

$$\bullet o_V = V \cdot a$$

• Iteratively refine process of obtaining a and q

$$\bullet$$
 $o_K = K \cdot a$

Table 2: Performance comparison of baselines and our models.

,	Task 1				Task 2		
Domain Evaluation on test set		Music	Instrument AUC (%)	Video	Clothing	Beauty AUC (%)	Health
Baselines	BPR [11] DDTCDR [7] GraphSAGE-pool [3]	65.36 65.21 65.50	51.15 53.46 59.10	67.20 67.40 71.30	53.84 52.50 53.17	59.13 57.97 58.59	59.68 60.23 60.04
Our HeroGRAPH	HeroGRAPH-Att-1 HeroGRAPH-Att-2 HeroGRAPH-Att-3	66.52 67.98 66.38	60.14 62.56 62.56	71.20 73.80 68.80	52.84 54.73 51.95	58.40 58.18 57.23	60.26 60.21 58.63

Table 3: Performance comparison on sparse set. Items in sparse set appear no more than 5 times in test set.

Task - sparse		Task 1 - sparse			Task 2 - sparse		
Domain		Music	Instrument	Video	Clothing	Beauty	Health
Number of feedbacks in test set	whole set sparse set proportion	687 634 92.28%	868 647 74.53%	4,988 1,685 33.78%	36,002 23,266 64.62%	23,389 11,363 48.58%	41,622 18,324 44.02%
Evaluation on sparse set			AUC (%)			AUC (%)	
Baselines	BPR [11] DDTCDR [7] GraphSAGE-pool [3]	64.51 67.04 66.26	51.62 51.93 54.56	63.32 60.50 61.40	52.64 52.03 52.74	55.25 54.69 55.51	52.85 53.78 53.49
Our HeroGRAPH	HeroGRAPH-Att-1 HeroGRAPH-Att-2 HeroGRAPH-Att-2	66.25 68.30 67.67	56.72 57.34 58.73	63.20 60.90 59.30	52.11 53.26 51.84	54.79 53.88 53.17	53.57 53.75 52.18

- Dataset: Amazon 5-core dataset. Chose six domains and divided into two tasks
- baselines are single-domain (BPR-MF) and a DTCDR method extended to handle three domains (DDTCDR);
- Recurrent attention also show good performance compared to non-attention baseline (GraphSAGE);
- graph based methods, especially with attention, is able to model user-item relations for CDR with good results.

Next chapter

- Overview of multidomain recommender systems (Liang Hu, 25 mins)
- Multi-item domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-user domain recommender systems (Qi Zhang, 20 mins)
- Multi-data domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-spatial domain recommender systems (Qi Zhang 20 mins)
- Multi-temporal domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-goal domain recommender systems (Liang Hu, 20 mins)
- Summary (Liang Hu, 5 mins)