1 Lox monoidal prendofunctor (F, 0, 0): (A, t) -> (Cat, x)
$\hat{\pi}$
2 Monoidal optibration $U:(X, \otimes) \longrightarrow (A, +)$
\$\\ \begin{align*} P seudofun ceor \mathfrak{F}: \A \rightarrow \text{Mon Cat} \end{align*}
ALSO IN SHULMAN
Let's peus on 2 =0 3 for searchers. The equivalence is formed as fellows
U: (X&) -> (A,+)> F:A> Mon(a+) (global a> Fa:= Xai wieh mon ser
U: (Xe) -> (A,+) -> F:A -> MonCar
(globa a - Fa := Xa with mon ser
$\bigotimes_{\mathbf{q}} := X_{\mathbf{q}} \times X_{\mathbf{q}} \xrightarrow{\bigotimes} X_{\mathbf{q}+\mathbf{q}} \xrightarrow{\nabla_{!}} X_{\mathbf{q}}$
C & bermise
If with monster (F:A -> MonCat
(a,x) & (a',x') = (a+a', f(1a) x & a+a f(1a')x)
Then $(X, \otimes) \rightarrow (A, t) \longmapsto A \rightarrow Mon(at \longmapsto (f, \otimes) \rightarrow (A, t))$
podues an isomorphic monoidal optibation where
etc.
Fm×Fm' — F(m+m')
F(lm) x F(lm)) = F(lm+lm)
F(m+m') ×F(m+m') \(\overline{\pi} \) F(m+m') \(\overline{\pi} \) F(m+m')
where the LHS isomorphism is due to 8 being a cocortesion
functor, namely it preserves cocortesion littings. [fix ®giy≅ (1+g)!(×84)]
SO SUCH A PASTED ISO ESTABLISHES THE 2-GOULVALENTE DED
two isomorphic manoidal caregories!
(X, 0x) and (If, 0st) (atale, F(j)(F(r)x o F(i, r)x) (still x)
112

E.g. the associators a: (xoy) oz => xo(yoz) and the induced (a+d+a", f(k)xo f(k)(f(d)xof(d)).

Connect via the isomorphism (2)

Then the inclusions etc. involve of, and also the associator in IF with 0 = 0 to begin with is "w", which then recessarily is the cononical map between respertive collimits, commuting with cocores etc-----

- This should partly respond to John's question "How do no actually pure that if a lox man pseudofun facous though fex, the caregory SF has finite colimits? So Universal cocores etc?"
 - · This sketches why I don't think we have to add extra structure on lox man pseudofun (option 3")
 since as long for Fta factor should be equivalent!
 enough for what we want.