# Machine Learning for Systems and Control

5SC28

Lecture 4

dr. ir. Maarten Schoukens & dr. ir. Roland Tóth

Control Systems Group

Department of Electrical Engineering

Eindhoven University of Technology

Academic Year: 2020-2021 (version 1.0)



### Past Lectures

**Data-Driven Modelling** 

RKHS / Gaussian Processes

**Artificial Neural Networks** 

### Learning Objectives

Deep Learning & Deep Neural Networks

Training a Deep Neural Network

Artificial Neural Networks for Dynamical Systems

### Artificial Neural Networks

Deep Learning & Deep Neural Networks

Training a Deep Neural Network

Artificial Neural Networks for Dynamical Systems

## Deep Learning



### Deep Learning





## Deep Neural Network

"A network with multiple hidden layers" 1



## Deep Neural Networks

Deep Feedforward

Recurrent

Long-Short Term Memory

Autoencoder

Residual

Convolutional

• • •

## Deep Feedforward Neural Network



### Recurrent Neural Networks

#### Multiple recurrence schemes possible

$$z_{j}(k) = g\left(\boldsymbol{w}_{1,j}^{T}\boldsymbol{u}(k) + v_{1,j}z_{j}(k-1) + b_{1,j}\right)$$

$$y_{j}(k) = \boldsymbol{w}_{2,j}^{T}\boldsymbol{z}(k) + b_{2,j}$$

$$u_{j}(k) = \boldsymbol{w}_{2,j}^{T}\boldsymbol{z}(k) + b_{2,j}$$

Introduces states in the network

The mapping from u to y is now dynamic

## Recurrent Neural Networks - Training

**Network Unfolding** 

Backpropagation through time





## Long-Short Term Memory Networks

Extension of recurrent neural networks

LSTM - neuron

For experiences with very long time lags



13

## Long-Short Term Memory Networks

Extension of recurrent neural networks

For experiences with very long time lags

#### Input gate:

Decide when to update memory

#### Output gate:

Decide when to output memory

#### Forget Gate:

Decide when to erase memory

LSTM - neuron











tanh

sigmoid

pointwise multiplication

pointwise addition

vector concatenation

## Long-Short Term Memory Networks

Extension of recurrent neural networks

For experiences with very long time lags

#### Input gate:

Decide when to update memory

#### Output gate:

Decide when to output memory

#### Forget Gate:

Decide when to erase memory

sigmoid

LSTM - neuron











tanh

pointwise multiplication

pointwise addition

vector concatenation

Alternative: GRU

### Auto-Encoder Neural Networks



High-dimensional input space

Low-dimensional Learned features

Reconstructed input space 16

### Residual Networks

#### Regular Hidden Layer



Residual Network Layer

$$z = x + g\left(W_1x + b_1\right)$$

Improved training characteristics

Direct feedthrough can skip multiple layers

Dimension z = dimension x

## Residual Networks: Changing Dimensions

#### Regular Hidden Layer



Residual Network Layer



Improved training characteristics

Direct feedthrough can skip multiple layers

Dimension  $z \neq \text{dimension } x$ 

- Zero-padding for increasing dimensions

Linear projection for changing output dimensions (e.g. by 1x1 convolution)

### Convolutional Networks

Convolve the input with a filter

Learn filter weights + bias

Spatial / Temporal relation of entries preserved (as opposed to vectorizing the tensor / matrix)

Layer output decreases in dimension → perform padding to preserve the same dimension

#### **Convolutional Operation**





**Image** 

Convolved Feature

source: https://towardsdatascience.com/

## Convolutional Networks – Pooling

**Dimension reduction** 

**Max Pooling** 

Noise suppression

Extract dominant features

Max or average pooling



| 3 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|
| 0 | 0 | 1 | 3 | 1 |
| 3 | 1 | 2 | 2 | 3 |
| 2 | 0 | 0 | 2 | 2 |
| 2 | 0 | 0 | 0 | 1 |

source: https://towardsdatascience.com/

## Deep Neural Networks

Deep Feedforward basic structure

Recurrent time series, natural language processing

Long-Short Term Memory time series, natural language processing (long dependencies)

Autoencoder dimension reduction, feature learning

Residual to go deep

Convolutional image / video processing, spatial-temporal

• • •

### Artificial Neural Networks

Deep Learning & Deep Neural Networks

Training a Deep Neural Network

Artificial Neural Networks for Dynamical Systems

## Deep Learning

**Larger Networks** 

Big Data



→ Difficult for Training: Computational Load Vanishing Gradient Overfitting

### Stochastic Gradient Descent

Idea: Do we need to use the full dataset to compute the

gradient?

→ Use mini-batches of data to compute the gradient

This results in stochastic behavior as the mini-batch is only and approximation of the full dataset

### Stochastic Gradient Descent



10<sup>4</sup> samples, 1 hidden layer, 15 neurons (sigmoid activation), 1 white Gaussian input – std = 1, 1 (noisy) output, std noise = 0.02, learning rate 0.05

### Stochastic Gradient Descent



 $10^4$  samples, 1 hidden layer, 15 neurons (sigmoid activation), 1 white Gaussian input – std = 1, 1 (noisy) output, std noise = 0.02, learning rate 0.05, mini-batch size = 32

## Stochastic Gradient Descent - Convergence

If cost-function is (locally) convex, differentiable and Lipschitzcontinuous gradient + diminishing learning rate

Then GD and SGD converge to the closest (local) minimum

GD: 
$$f\left(\boldsymbol{x}^{(n)}\right) - f^{\star} = \mathcal{O}\left(\frac{1}{n}\right)$$
 SGD: 
$$f\left(\boldsymbol{x}^{(n)}\right) - f^{\star} = \mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$$
 (batch size = 1)

→ SGD has (much) slower theoretical convergence

## Stochastic Gradient Descent - Convergence

If cost-function is (locally) convex, differentiable and Lipschitzcontinuous gradient + diminishing learning rate

Then GD and SGD converge to the closest (local) minimum

GD: 
$$f\left(\boldsymbol{x}^{(n)}\right) - f^{\star} = \mathcal{O}\left(\frac{1}{n}\right)$$
 SGD: 
$$f\left(\boldsymbol{x}^{(n)}\right) - f^{\star} = \mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$$
 (batch size = 1)

In practice: batch SGD, with fixed learning rate reduce in computational cost / iteration outweigh disadvantages

### Stochastic Gradient Descent - Extensions

Momentum

Next parameter update is linear combination of current gradient and previous updates

Adaptive Gradient (AdaGrad)

Adaptive learning rate per parameter

Adaptive Moment estimation (AdaM)

Uses a running average of the gradient and second moment of the gradient

• • • •

## Deep Learning

**Larger Networks** 

Big Data



→ Difficult for Training: Computational Load Vanishing Gradient Overfitting

The gradient information becomes vanishing small when backpropagating backwards through the deep neural network

Prevents effective weight and bias training

### Vanishing Gradient – Previous Lecture





Typical activation function: sigmoid

Initialization approach: (small) random weights

Sigmoid

$$g(x) = \frac{1}{1 + e^{-x}}$$





Typical activation function: sigmoid

Initialization approach: (small) random weights

Sigmoid

$$g(x) = \frac{1}{1 + e^{-x}}$$







Max. of 0.25



$$\left. \frac{\partial \hat{y}}{\partial b_3} = w_o \left. \frac{\partial g(x)}{\partial x} \right|_{x_3} w_3 \left. \frac{\partial g(x)}{\partial x} \right|_{x_2} w_2 \left. \frac{\partial g(x)}{\partial x} \right|_{x_1}$$



$$\frac{\partial \hat{y}}{\partial b_3} = w_0 \frac{\partial g(x)}{\partial x} \bigg|_{x_3} w_3 \frac{\partial g(x)}{\partial x} \bigg|_{x_2} w_2 \frac{\partial g(x)}{\partial x} \bigg|_{x_1} \le 0.25$$

$$\leq 0.25 \qquad \leq 0.25$$

Initialized to small values



### Gradient typically vanishes the further you propagate backwards

$$\frac{\partial \hat{y}}{\partial b_3} = w_0 \frac{\partial g(x)}{\partial x} \bigg|_{x_3} w_3 \frac{\partial g(x)}{\partial x} \bigg|_{x_2} w_2 \frac{\partial g(x)}{\partial x} \bigg|_{x_3} \le 0.25$$

$$\leq 0.25 \qquad \leq 0.25$$

Initialized to small values

# **Exploding Gradient**



#### Gradient can also explode if derivative x weights > 1

$$\frac{\partial \hat{y}}{\partial b_3} = w_o \left. \frac{\partial g(x)}{\partial x} \right|_{x_3} w_3 \left. \frac{\partial g(x)}{\partial x} \right|_{x_2} w_2 \left. \frac{\partial g(x)}{\partial x} \right|_{x_1}$$

Especially problematic for recurrent neural networks

# Vanishing / Exploding Gradient: Solutions

#### **Change activation function**

**Data Normalization** 

Change network structure

**Better Initialization** 

**Faster Hardware** 

### Changing the Activation Function



#### Gradient propagates well if derivative x weights ≈ 1

$$\frac{\partial \hat{y}}{\partial b_3} = w_o \left. \frac{\partial g(x)}{\partial x} \right|_{x_3} w_3 \left. \frac{\partial g(x)}{\partial x} \right|_{x_2} w_2 \left. \frac{\partial g(x)}{\partial x} \right|_{x_1}$$

### Changing the Activation Function



#### Gradient propagates well if derivative x weights ≈ 1



### Changing the Activation Function



#### ReLu (and similar forms) became one of the most popular choices



## Vanishing / Exploding Gradient: Solutions

Change activation function

#### **Data Normalization**

Change network structure

**Better Initialization** 

**Faster Hardware** 

#### Data Normalization

Always normalize the input-output data before training

zero-mean

unit variance

Improves the conditioning of the learning problem

Lowers risk of vanishing gradient problem since the full activation function range is used









### Batch Normalization Layers

Add a normalization layer in the neural network architecture



First order statistics (mean, variance) are always the same, independent from the previous layers. Previous layers only affect the higher order statistics.

# Vanishing / Exploding Gradient: Solutions

Change activation function

**Data Normalization** 

**Change network structure** 

**Better Initialization** 

**Faster Hardware** 

### Change Network Structure

Smart network structure allow for a better backpropagation of the gradient



Residual Network Layer

$$z = x + g \left( \mathbf{W}_1 x + \mathbf{b}_1 \right)$$

$$z = f(x) = x + g(W_1x + b_1)$$

$$\frac{\partial f(x)}{\partial x} = 1 + \frac{\partial g(x)}{\partial x}$$

Ensures values close to 1

# Vanishing / Exploding Gradient: Solutions

Change activation function

**Data Normalization** 

Change network structure

**Better Initialization** 

**Faster Hardware** 

#### Better Initialization

#### Vanishing Gradients → Slower Learning

- Better initialization leads you faster to the (local) optimum. The learning time is reduced.
- II. A smart initialization can avoid regions of vanishing / exploding gradients.

This only overcomes the vanishing gradient problem; it doesn't solve the root cause of it.

## Vanishing / Exploding Gradient: Solutions

Change activation function

**Data Normalization** 

Change network structure

**Better Initialization** 

**Faster Hardware** 

#### Faster Hardware

Vanishing Gradients → Slower Learning

The development of faster and parallelized hardware has been one of the major drivers in the development of deep learning.

This only overcomes the vanishing gradient problem; it doesn't solve the root cause of it.

# Deep Learning

**Larger Networks** 

Big Data



→ Difficult for Training: Computational Load Vanishing Gradient Overfitting

# Overfitting & Regularization

Parameter Norm Regularization (previous lecture)

Early Stopping (previous lecture)

Parameter Sharing

**Data Augmentation** 

Noise Robustness

**Sparse Representations** 

## Parameter Sharing

Share parameters over multiply neurons / layers

Often used in Convolutional Networks or multi-task learning problems

Convolutional Operation



4

Image

Convolved Feature



#### Multi-Task Learning

e.g. multiple systems / outputs with shared dynamics source: www.deeplearningbook.org

# Data Augmentation

Affine Elastic Make use of data / system Noise Deformation Distortion symmetries and transformations that do not impact the system behavior → Horizontal Random Hue Shift Translation flip

source: www.deeplearningbook.org

#### Noise Robustness

Add noise to the (hidden) layers

Increases robustness at cost of bias introduction

Links with L<sup>2</sup>-regularization of parameters



# **Sparse Connections**



### **Sparse Connections**

Reduces the number of weights to be trained e.g. L¹-norm regularization of the weights



# Sparse Representations

Instead of having sparse weights, obtain a sparse representation (i.e. sparse signals) e.g. L<sup>1</sup>-norm regularization of the representation

$$\begin{bmatrix} 18 \\ 5 \\ 15 \\ -9 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & -1 & 0 & 3 & 0 \\ 0 & 5 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & -4 \\ 1 & 0 & 0 & 0 & -5 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ -2 \\ -5 \\ 1 \\ 4 \end{bmatrix}$$
 sparse weights / connections  $\boldsymbol{y} \in \mathbb{R}^m$   $\boldsymbol{A} \in \mathbb{R}^{m \times n}$   $\boldsymbol{x} \in \mathbb{R}^n$ 

$$\begin{bmatrix} -14 \\ 1 \\ 19 \\ 2 \\ 23 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 2 & -5 & 4 & 1 \\ 4 & 2 & -3 & -1 & 1 & 3 \\ -1 & 5 & 4 & 2 & -3 & -2 \\ 3 & 1 & 2 & -3 & 0 & -3 \\ -5 & 4 & -2 & 2 & -5 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \\ 0 \\ -3 \\ 0 \end{bmatrix}$$
 sparse representation  $\boldsymbol{y} \in \mathbb{R}^m$   $\boldsymbol{B} \in \mathbb{R}^{m \times n}$   $\boldsymbol{h} \in \mathbb{R}^n$ 

# Many other methods

#### **Bagging**

model output = mean of an ensemble of trained network structures

#### **Dropout**

optimize over an ensemble of network structures

#### **Adversarial Training**

training on adversarial perturbed examples from the training set

#### Artificial Neural Networks

Deep Learning & Deep Neural Networks

Training a Deep Neural Network

Artificial Neural Networks for Dynamical Systems

#### Model Structures

NARX

NOE

**Recurrent ANN** 

**Recursive State-Space** 

**Unwrapped State-Space** 

#### Feedforward NN - NARX

Feedforward NN with delayed inputs and delayed measured outputs (NARX)



Nonlinear Auto Regressive with eXogeneous Input (NARX)

Very particular noise structure Not always easy to analyze

Delayed Measured Output

$$y_k = f(u_k, u_{k-1}, \dots, u_{k-n_b}, y_{k-1}, \dots, y_{k-n_a}) + e_k$$

#### Recurrent NN - NOE



#### **Nonlinear Output Error (NOE)**

Similar to NARX, but different noise handling

Output depends on past unknown noiseless outputs
Difficult to analyze
Difficult to estimate
Straightforward noise structure

$$s_k = f(u_k, u_{k-1}, \dots, u_{k-n_b}, s_{k-1}, \dots, s_{k-n_a})$$

$$y_k = s_k + e_k$$

#### Recurrent NN — State-Space

Recurrent NN can be interpreted as a state-space representation



Loop over one layer

$$x_k = f(x_{k-1}, u_k)$$
$$y_k = Cx_k$$

x(k) are states of the model As many states as we have neurons in the hidden layer

#### Recurrent NN — State-Space

Recurrent NN can be interpreted as a state-space representation



Loop over one layer

$$x_{k} = f(x_{k-1}, u_{k})$$

$$z_{k} = g(z_{k-1}, x_{k})$$

$$y_{k} = Cz_{k}$$

$$x_{k} = f(x_{k-1}, u_{k})$$

$$z_{k} = g(z_{k-1}, f(x_{k-1}, u_{k}))$$

$$y_{k} = Cz_{k}$$

$$\begin{bmatrix} x_{k} \\ z_{k} \end{bmatrix} = \tilde{f}\left(\begin{bmatrix} x_{k-1} \\ z_{k-1} \end{bmatrix}, u_{k}\right)$$

$$y_{k} = Cz_{k}$$

$$y_{k} = Cz_{k}$$

x(k), z(k) are states of the model

As many states as we have neurons in the hidden layers

#### Recurrent NN – General Form

$$x_k = f(x_{k-1}, u_k, y_{k-1})$$
$$y_k = g(x_k)$$

Comprises a huge range of recurrent NN structures, including LSTM

How to structure f, g?

→ Model structure selection / design

NN Training?

Initialization, training strategy, expanded training network

# State-Space Neural Network (SSNN)



$$x_{k+1} = f(x_k, u_k)$$
$$y_k = g(x_k, u_k)$$

State dimension = # neurons in the blue linear layer

#### SSNN — Initialization



$$x_{k+1} = f(x_k, u_k)$$
$$y_k = g(x_k, u_k)$$

Random
Starting from a Linear Model (Suykens 1995)
Using Deep Autoencoder NN

## SSNN - Initialization - Linear Approximation



$$x_{k+1} = f(x_k, u_k)$$

$$y_k = g(x_k, u_k)$$

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

J.A.K. Suykens et al., Nonlinear system identification using neural state space models, applicable to robust control design, *International Journal of Control*, Vol 62, pp. 129-152, 1995

# SSNN – Initialization – Linear Approximation

Alternative SS-NN with hardwired Linear + Nonlinear Representation



$$x_{k+1} = f(x_k, u_k)$$
$$y_k = g(x_k, u_k)$$

$$x_{k+1} = Ax_k + Bu_k + f(x_k, u_k)$$
  
 $y_k = Cx_k + Du_k + g(x_k, u_k)$ 

**Linear + Nonlinear** 

M. Schoukens. Improved Initialization of State-Space Artificial Neural Networks, European Control Conference, 2021. https://arxiv.org/pdf/2103.14516.pdf

## SSNN - Initialization - Linear Approximation

Alternative SS-NN with hardwired Linear + Nonlinear Representation



$$x_{k+1} = f(x_k, u_k)$$
  
 $y_k = g(x_k, u_k)$   
 $x_{k+1} = Ax_k + Bu_k + f(x_k, u_k)$   
 $y_k = Cx_k + Du_k + g(x_k, u_k)$ 

#### **Linear + Nonlinear**

# SSNN – Initialization – Linear Approximation

Alternative SS-NN with hardwired Linear + Nonlinear Representation



Linear part → Generalized ResNet

$$x_{k+1} = Ax_k + Bu_k + f(x_k, u_k)$$
$$y_k = Cx_k + Du_k + g(x_k, u_k)$$

#### **Linear + Nonlinear**

# SSNN + Subspace Encoder

Hard problem due to unknown state signal



Regular State-Space Expression

# SSNN + Subspace Encoder

Breaking the recurrence, and only take a limited # steps forward smoothens the cost function



**Unwrapped State-Space Expression** 

#### SSNN + Subspace Encoder **Shared Parameters** Breaking the recurrence, $x_{k+3}$ $x_{k+2}$ $x_k$ $x_{k+1}$ and only take a limited # f(x,u)steps forward smoothens f(x,u) f(x,u) f(x,u) the cost function g(x,u) g(x,u) g(x,u)g(x,u)**Fully connected ANN** $y_{k+3}$ $y_k$ Linear Bypass (~ ResNet) $u_{k+3}$

**Unwrapped State-Space Expression** 

# Batch Optimization

Consider full dataset at every optimization step

$$V_{\text{simulation}}(\theta) = \frac{1}{N_{\text{samples}}} \sum_{t=1}^{N_{\text{samples}}} ||h_{\theta}(x_t, u_t) - y_t||_2^2$$



Split full dataset in smaller sections, only consider some of them at every optimization step

$$V_{\text{batch}}(\theta) = \frac{1}{2N_{\text{batch}}(T+1)} \sum_{i \in B} \sum_{k=k_0}^{T+k_0} ||\hat{y}_{t_i} \rightarrow t_{i+k} - y_{t_i+k}||^2,$$
$$B \subset \{1, 2, ..., N\}.$$

Improved computational efficiency

#### SSNN + Subspace Encoder **Shared Parameters** Breaking the recurrence, $x_{k+3}$ $x_k$ $x_{k+2}$ $x_{k+1}$ and only take a limited # steps forward smoothens f(x,u)f(x,u) f(x,u) f(x,u)the cost function What should the starting state be? g(x,u)g(x,u) g(x,u)g(x,u)Fully connected ANN $y_{k+3}$ $y_k$ Linear Bypass (~ ResNet) $u_{k+3}$ $u_k$

**Unwrapped State-Space Expression** 

# SSNN + Subspace Encoder



Learn initial state with an encoder → state is known at every time instance

Encoder to learn starting state

**Unwrapped State-Space Expression** 

+

Run for all time instances *k* 

# Examples

Hysteretic System – Bouc-Wen MSD

Video-Encoder: Ball in a Box

# Hysteretic System: Bouc-Wen MSD



$$m\ddot{y}_t + c\dot{y}_t + ky_t + z(y_t, \dot{y}_t) = u_t$$
$$\dot{z}_t = \alpha \dot{y}_t - \beta \left( \gamma \left| \dot{y}_t \right| z_t + \delta \dot{y}_t \left| z_t \right| \right)$$

## Hysteretic System: Bouc-Wen MSD



$$m\ddot{y}_t + c\dot{y}_t + ky_t + z(y_t, \dot{y}_t) = u_t$$
$$\dot{z}_t = \alpha \dot{y}_t - \beta \left( \gamma |\dot{y}_t| z_t + \delta \dot{y}_t |z_t| \right)$$



**Hysteretic Loop** 

## Hysteretic System – Linear Identification



$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k + Du_k$$

3 states

Matlab function 'ssest'

## Hysteretic System – Linear Identification



# Hysteretic System – Linear Identification



### Hysteretic System – SS-NN



Random Initialization Linear Initialization (Suykens 1995)

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k + Du_k$$

### Hysteretic System – SS-NN



Linear + Nonlinear Initialization

$$x_{k+1} = Ax_k + Bu_k + f(x_k, u_k)$$
$$y_k = Cx_k + Du_k + g(x_k, u_k)$$









# Ball in a Box: System

Mass in 2D forcefield

Input: external forces

Output: 25x25 video feed of box



G.I. Beintema et al., Non-linear State-space Model Identification from Video Data using Deep Encoders, IFAC Symposium on System Identification (SYSID'21), 2021. https://arxiv.org/pdf/2012.07721.pdf

# Ball in a Box: State-Space with Subspace Encoder



6 States 50 steps ahead  $n_a$ ,  $n_b = 5$  h, f, e: 64 neurons/layer, 2 layers, tansig activation, linear bypass Random weight and bias initialization

#### Ball in a Box: Results





https://www.youtube.com/watch?v=IJzW1ma\_7Wg

#### Ball in a Box: Future

Convolutional Layers in Encoder / Output Function

Data Management

Identification and Control of Spatio-Temporal Systems

#### Discussion

Embedding systems & control knowledge is advantageous, noise is important a step towards explainable AI

Dynamic models have a wide range of use control, system design, system validation, understanding

Model to be estimated can be system model feedforward controller / policy feedback controller / policy

#### Artificial Neural Networks

Deep Learning & Deep Neural Networks

Training a Deep Neural Network

Artificial Neural Networks for Dynamical Systems