The University of Texas at Austin Department of Electrical and Computer Engineering

EE381K-18: Convex Optimization — Fall 2019

PROBLEM SET ZERO

Due: Friday, September 6, 2019.

This problem set is intended to get the semester off to a good start and to help you refresh your memory about basic concepts of linear algebra.

Remark: Any problems marked by a (?) do not need to be turned in, and are just additional review problems, or reading assignments.

Reading Assignments

1. (?) Linear Algebra is probably the single most important technical tool used in this class. The course text by Boyd and Vandenberghe has a good review in Appendix A. An excellent and quite in depth review of the most relevant topics from Linear Algebra and Analysis can be found in Appendix A of the Lecture Notes by Ben-Tal and Nemirovski. These have been posted on Canvas.

For example, concepts that will be used repeatedly in this class include:

- (a) Matrices, linear operators, vector spaces.
- (b) Independence, range, null space, etc.
- (c) Eigenvalues/eigenvectors, symmetric matrices, spectral theorem, singular values and singular value decomposition (SVD),
- (d) etc...

If these topics are not fresh, spend some time learning/reminding yourself of the basic notions.

Linear Algebra Review

- 1. Vector Spaces: For the following examples, state whether or not they are in fact vector spaces.
 - The set of polynomials in one variable, of degree at most d.
 - The set of continuous functions mapping [0,1] to [0,1], such that f(0)=0.
 - The set of continuous functions mapping [0,1] to [0,1], such that f(1)=1.
- 2. Recall that a linear operator $T: V \to W$ is a map that satisfies:

$$T(a\mathbf{v}_1 + b\mathbf{v}_2) = aT\mathbf{v}_1 + bT\mathbf{v}_2,$$

for every $v_1, v_2 \in V$ and $a, b \in \mathbb{R}$.

Show which of the following maps are linear operators:

- $T: V \to V$ given by the identity map: $\mathbf{v} \mapsto \mathbf{v}$.
- $T: V \to W$ given by the constant map: $v \mapsto w_0$ for every $v \in V$. Does your answer change depending on what w_0 is?
- Let V be the vector space of polynomials of degree at most d. Let $T: V \to V$ be the map defined by the derivative: $p(x) \mapsto p'(x)$.
- For V as above, let T be given by:

$$T(p) = \int_0^1 p(x) \, dx.$$

• What about

$$T(p) = \int_0^1 p(x)x^3 dx.$$

3. Independence:

- If $v_1, \ldots, v_m \in V$ are independent, and $T: V \to W$ is a linear operator, is it true that $Tv_1, \ldots, Tv_m \in W$ are independent?
- If $v_1, \ldots, v_m \in V$ are dependent, and $T: V \to W$ is a linear operator, is it true that $Tv_1, \ldots, Tv_m \in W$ are dependent?
- 4. (?) True or False: If vectors v_1, v_2, v_3 are elements of a vector space V, and $\{v_1, v_2\}, \{v_2, v_3\}$, and $\{v_1, v_3\}$ are independent, then the set $\{v_1, v_2, v_3\}$ is also linearly independent.
- 5. (?) Range and Nullspace of Matrices: Recall the definition of the null space and the range of a linear transformation, $T: V \to W$:

$$null(T) = \{ \boldsymbol{v} \in V : T\boldsymbol{v} = 0 \}$$

range(T) = \{ T\boldsymbol{v} \in W : \boldsymbol{v} \in V \}

Remind yourselves of the Rank-Nullity Theorem.

- 6. More Range and Nullspace.
 - Suppose A is a 10-by-10 matrix of rank 5, and B is also a 10-by-10 matrix of rank 5. What is the **smallest** and **largest** the rank the matrix C = AB could be?
 - Now suppose A is a 10-by-15 matrix of rank 7, and B is a 15-by-11 matrix of rank 8. What is the **largest** that the rank of matrix C = AB can be?
- 7. Riesz Representation Theorem: Consider the standard basis for \mathbb{R}^n : $e_1 = (1, 0, ..., 0), e_2 = (0, 1, 0, ..., 0)$, etc. Recall that the inner-product of two vectors $\mathbf{w}_1 = (\alpha_1, ..., \alpha_n), \mathbf{w}_2 = (\beta_1, ..., \beta_n) \in \mathbb{R}^n$, is given by:

$$\langle \boldsymbol{w}_1, \boldsymbol{w}_2 \rangle = \sum_{i=1}^n \alpha_i \beta_i.$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a linear map. Show that there exists a vector $\boldsymbol{x} \in \mathbb{R}^n$, such that

$$f(\boldsymbol{w}) = \langle \boldsymbol{x}, \boldsymbol{w} \rangle,$$

for any $\boldsymbol{w} \in \mathbb{R}^n$.

Remark: It turns out that this result is true in much more generality. For example, consider the vector space of square-integrable functions (something we will see much more later in the course). Let F denote a linear map from square integrable functions to \mathbb{R} . Then, as a consequence similar to the finite dimensional exercise here, there exists a square integrable function, g, such that:

$$F(f) = \int fg.$$

8. Let V be the vector space of (univariate) polynomials of degree at most d. Consider the mapping $T: V \to V$ given by:

$$Tp = a_0 p(t) + a_1 t p^{(1)}(t) + a_2 t^2 p^{(2)}(t) + \dots + a_d t^d p^{(d)}(t),$$

where $p^{(r)}(t)$ denotes the r^{th} derivative of the polynomial p.

- True or False: if Tp = 2p(t) tp'(t), then for every polynomial $q \in V$, there exists a polynomial $p \in V$, with Tp = q.
- What about for T given by Tp = 2p(t) 3tp'(t)?
- Provide a characterization of the set of coefficients (a_0, a_1, \ldots, a_d) , such that the operator T they define has the property that for every polynomial $q \in V$, there exists a polynomial $p \in V$, with Tp = q.
- 9. Recall the definition of rank, and show the following.
 - For A an $m \times n$ matrix, $rank(A) \leq min\{m, n\}$.
 - For A an $m \times k$ matrix and B a $k \times n$ matrix,

$$rank(A) + rank(B) - k \le rank(AB) \le min\{rank(A), rank(B)\}.$$

• For A and B $m \times n$ matrices,

$$rank(A + B) < rank(A) + rank(B)$$
.

• For A an $m \times k$ matrix, B a $k \times p$ matrix, and C a $p \times n$ matrix, then

$$rank(AB) + rank(BC) \le rank(B) + rank(ABC)$$

- 10. Consider a mapping $T: V \to V$. If the vector space V is finite dimensional, then if $\text{null}(T) = \{0\}$, T is surjective (also known as onto), that is, for any $\mathbf{v} \in V$, there exists $\hat{\mathbf{v}}$ such that $T\hat{\mathbf{v}} = \mathbf{v}$. Conversely, if T is surjective, then $\text{null}(T) = \{0\}$, and $T\mathbf{v} = 0$ implies $\mathbf{v} = 0$.
 - Give an example of an infinite dimensional vector space, V, and a linear operator $T:V\to V$, such that T is surjective, but $\mathrm{null}(T)\neq\{0\}$.
 - Give an example of an infinite dimensional vector space, V, and a linear operator $T: V \to V$, such that $\text{null}(T) = \{0\}$, but T is not surjective.

[Hint: consider the space of polynomials of arbitrary degree.]