Consider the below graph of a function f(x) (integer coordinates can be assumed where clear).

Find the following limits, if they exist. If they do not, indicate whether the limit is ∞ , $-\infty$, or DNE. (No proofs required.)

(a)
$$\lim_{x \to \infty} f(x)$$

(a)
$$\lim_{x \to -\infty} f(x)$$
 (f) $\lim_{x \to -4^+} f(x)$ (k) $\lim_{x \to 0^-} f(x)$

(k)
$$\lim_{x\to 0^-} f(x)$$

$$(p) \lim_{x \to 2} f(x)$$

(b)
$$\lim_{x \to -6^-} f(x)$$
 (g) $\lim_{x \to -4} f(x)$ (l) $\lim_{x \to 0^+} f(x)$ (q) $\lim_{x \to 8^-} f(x)$

(g)
$$\lim_{x \to -4} f(x)$$

(1)
$$\lim_{x \to 0^+} f(x)$$

(q)
$$\lim_{x \to 8^-} f(x)$$

(c)
$$\lim_{x \to a} f(x)$$

(m)
$$\lim_{x \to 0} f(x)$$

(r)
$$\lim_{x \to 8^+} f(x)$$

(d)
$$\lim_{x \to a} f(x)$$

(d)
$$\lim_{x \to -6} f(x)$$
 (i) $\lim_{x \to -3^+} f(x)$ (n) $\lim_{x \to 2^-} f(x)$

(n)
$$\lim_{x \to 2^-} f(x)$$

(s)
$$\lim_{x \to 8} f(x)$$

(e)
$$\lim_{x \to -4^-} f(x)$$
 (j) $\lim_{x \to -3} f(x)$ (o) $\lim_{x \to 2^+} f(x)$ (t) $\lim_{x \to \infty} f(x)$

(j)
$$\lim_{x \to a} f(x)$$

(o)
$$\lim_{x \to 2^+} f(x)$$

(t)
$$\lim_{x \to \infty} f(x)$$

Where is the function discontinuous? Identify the type of discontinuity at such points.