

* öder : blas ??

nin

- puti

@ 1 B 6 1 10

0 1

(!) a. Yapay sinir aglarında bias redir? . b. Yapayzekada bias redir?

- . noron abtivacyonum etkilenek igin kullaniv.
- · Hernoronum bandi Stal bias deger wonder
- · model arkturn ettaler, Agi dang essel ve yound hole getiris.
- · modelin ver üzerindek garlılıkını ifade
- · modelin belief bir sowcu tercih etne egilimini stade eder.
- · model in genellane y exercigini ethilayelitic gerale danyadati performasun azaltabilir

(2) Gok Katmonli Sinir Aglan

Tek batman li Perception

NET = wi *

O, = sgn (NET) = sgn (w; *x)

(= d; - 0,

1 m; = crx = c [di - sgn (wi * x)] x

w=w+Dw:

xigiris signiles

wiagulie tatsayıları

Duri agulie kortagilari farti

L: gårerne zividel!

d: bettern artizageten

o : elde edien alter deges

1: Greek numarasi (X1, X2...)

Biz verler verigoruz,

Yapay Smir Afr ağırlıkları (Bremini)

(L) 1.0+1.0+1.1=1=f(1)

810.

Sogn

XI XZ	AND	NAND	OR XOR
100	0	1	- Controller
01	0	-1	The same
10	Ø	1	
111	1	0	

Perceptron Ögreme Altoritmass Formali:

5m. [w1, w2, w3]

$$WO \begin{pmatrix} 0 \\ 0 \\ X_3 = 1 \end{pmatrix} = NET \Rightarrow f(NET) \rightarrow output(0)$$

. Amac agulik degerlerinin zaman icande degisip iyilezmesi.

$$\Rightarrow w_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + (-1)(1) \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = w_1$$

1			bias	7.1	
	X	X	X3=b=1	440	1
0	0	0	1	•	>
0	0.	11.	1	0	D
1	1	0	- 1	0	
(1	1	1	1	D
		-	-	1	

(wo= (1,5) 1,5, 1,5]

W=1 -> X

max-epoch = 10

Son: Verler XI ve X2 girisleri icin AND fonksiyonunu öğrenmek üzere perceptron algoritmosus kullanır.

Yukanda verilen veri seti, bazlangia ağırlıkları,

0

6

(S)

-

1

ögreme katsayısı(«)) yı kullanarak perceptean alg. sını adın adın ygylayın ve ağırlıkların göncellenne sönecini göstenin.

* (Net, 0, d,e) degisterlerinin derdinin de deger dagismiyorsa egitim tomomlandi denetitir.

Logistic Regresyon

- · Girls degerterine gare classific hesaplar
- . Signord bullans.
- · Loss fontsiyonu blarak itili capraz entropio (binary cross entropy) willow.

$$L(y',y) = -(y,\log(y') + (1-y)\log(1-y'))$$

· Cost fanksiyanu ortalama loss

$$J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} L(y_i,y_i)$$

• ikili siniflanduma probile: göznekicin kullanlan Mc alg.

Lagratic Regression de Dognad model

y=wx+b

agirlik giris

matrisi

formal gosterini:

· iti gosterini de ayndr.

· Sadece b gosterimi logistik regresyon da daha yaygin willanlu.

& Logistik Regresyon, olasılığa dayyanır.

$$f(x) = \frac{1}{1 + e^{-x}} \rightarrow \frac{105iitik \text{ fonksiyon}}{(= \text{signoid fonksiyon})}$$

& Logistic Regression = Perceptron

$$d \longrightarrow y$$
 beklenen (disered = 15tenen)

Gok Katmaili Sinir Aglari (GESA)

· CKSA, YZ ve ml alanlarında yaygın olarak Wilanılan bir tir yapay sinir ağıdır.

· Bu og ler insa beyninin yapısında estinlanteret tasanlanmıstır. Uk karmazık problemleri corne yekneşine salip hir

-3

-

2 9

1

-

-

-

-

-

-

-1

-

Her Yogelin

iler yayılın, çak ketmenli sinir ağlanıde bilgini sirir ketmenteden çıktı ketmenine doğru nasıl attığın tenimleyen bir izlen dir

* iles Yoyshim Tenel Admilan:

1. Chiris (catmon): veiler giris catmondati noronlara

2. Aguliklanda Garpino: Her noron gelen verileri kendi aguliklariyla Garpar.

3. Toplana: Garpilan degerler toplans. Ve not giris deger olusur

4. Altivasyon fontsiyonu: Net giris deger, athivasyon fontsiyonundan gerande noronun citizmi belirler

S. Gikiz degeri! Aktivayan fankidan deger, naran qikiz deger alur 6. Birsonneki batmana Aktarma: Gikis degari, bir sanaki batmandaki nisronlar için : giris sayalı olarak kullanılır.

7. Tetrarlana: Myni aduntar trim katmanlarda tetrarlaris.

8. Gitti: Son botmondati noronların gitiz değerleri, modelin tehminlerini oluxturur.

Geri Yoyılın

1

6

16

6

1

1

- . Ilei yayılın ardından, geri yayılım islemi garlıklesir.
- · Geri yayılında no delin tahminleri, gercek degerlerle tarsılastırılır ve aradaki hata nesaplarır.
- · Hesaplanan hota degeri, modelin aguliklarını ve Siyargılarını güncellenek için kullanlır.

Ger Yayılında Kıllanılan En Yaysın Hate Problemleri

\$1. Ortalang Kare Hata (MSE):

model tahminler ile gerak degerler arasıdaki ortalamo kane farkı hesepleri

$$mSE = \frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - \xi_i)^2$$

n: veri kimesi Grnek sayısı

y: nothin street icin tehnisi

ti : örnek için gerçek değer

2. Gaprat Entropi

3. Kullback - Leibler Divergence (KL Divergence)

XOR Problemi

- & Geri yayılın, adekatmanlı bir sinir ağı ile kullanıldığında XOR problemni cözebilir.
- & their yayılım alg. SI, GKSA daki herbin ağırlığın ve sinyaygun hata oranına göne nasıl göncelleneceğini belirler. Bu sayede model zemanla XOR prob.
- 88 XOR problem, tek kot manlı perceptron ile gözdenez Ginkü " " modelidoğrusal ayınıcı XOR problemi Tde doğrusal olmaylar bir problem.

*XOR problemini Görnek icin,
geriyoyılım alg. mosı bulundu.
Sonra CKSA kullenlabilir hale geldi.
(1970)

* 3. boyut elclandi ve bu sayeda katnon eklandikae daha qok sey ogrenebiliyoruz.

Gok tertmony Sinin Agr modely tene 1 yapısı Görseli Giristanının Gizlikatman çıkıs karma

2 - giris bilgilei / giris parametroleri

V > ilk katnon agricular

y -> ilk katman cikisi /ikinci katman giri zi

w > itinci katman agirliklari

- 0 + gikiz loutput
- d -> betcheren I desired
- 1 -> toplam giris vers sayısı
- . $J \rightarrow ilk$ termondok nöron sayul (i=1,2,...,J)
- (K=1,L,m,K)

Fixed input: other samon again deger alon bir norm

- · Bu deger genellible O veya 1 gibi sabit bir degerdir
- . 620) sigiler modele girmet i cin wilanlır
- · herhangs bor ver girdis; he i histori degil.

Dummy neuron: . Herhangi bit bagbantus olmayan bir noron singeler

- · Bu noron ' horlongs by giris singuli almaz' ve (herhory's bir altri bretme?)
- · Giriz katmonu daks herhogi bit noronla beglantili degil

LOGITHE Regression modelinde kayip Fonksiyon Grafigi

· Yutaridaki grafikte kayip fonksiyonu: yatay eksende Z, dikey eksende E

olarak gösterilmis.

- · Grafikte ayrıca iki eğri bulunur:
 - 1) y=(Vz) egrisi, gergek degerler gesteri. Buegri gerellikle 0 veys 1 gibi ibili agererden oluzur.

2) o= r(Wz) egrisi, modelin tahmin ettigi alkhlari gaskrir. Bu egri signord voya tanh gibi bir aktruayon fonk. ile resoplany (f: signord, tanh, vb.)

· Gorsel delei grafilete kayip fonksiyoni E olarak gosteilmett. · Bu ortalano tayip anlanua gelic

(ortalora kayle; tom ver no ktalan) ich kayle fonk. nun ortalanosi.

-

67

09

- B

W 8

-

--

-

7

--- 9 -

-9

-0

0.0

0

C19

00

0

0

00 60

60

-

THE

1 -

- Error cost, en sondo elde édilon. I min olması istenir.

- · Gradyon, birtinksiyonu birnoktadaki egimini gosteren war veletordur
- · Gradyan This algorithmost, birtonksiyonun minimum vege maximum dojevni butmak icin gradgen kullanv. A Gradgeninis, natalam torene gere apuliklandvilmen. • Gradgen hesebinde kullanden formüller.

o degoine gore

Fornillein Gradyan inis Algisuda bullanmi:

- 1. Basingia degorer w ve 6 ign fontsiyour gradyan, nesaplanur,
- 2. Gradyon, fortesiyonun min veya max degerine doğru bir adın atmak için kullanılır.
- 3. Adm attldicter source forksiyonun gradyanı telear hesaplane,
- 4. Bu aduntar, fonk, nun min very max despet bulurana kadar teknarlarur.

Tume Cook and Augi Tain (admlar bugue buyüzsen minta ulazamaz)

- coast fonk , runa gare times alorak agulit buluyon t ve brafirliklarn degisimine göne ilerliganz

- 1- coast fonk , www minimize et
- 2- tirex al ve agulitlar bul
- 3 aguliklara gore hareket et

Slayt-2, sayfa 10-17

- · Gradyan inis materialic curallari · zincir tirev larell.
 - i kisni torev

Clasmi threw: bir fontsiyonun bir degistene gore tesmi terevi, Organ degisterler sallt tutuluten

forksiyonin o degistere gare tiravi

uzun mad formules vardi Lornagin

(3) Altivesyon Fonksiyonlari

- · Yapay smin aplarenda (YSA), aktivesyon fonkinu bir nöronun aldığı girişleri işleyerek trettigi aiktilari belirleyen motoratiksel forksiyon.
- Butankoganlar noranlarn dogrusel dragan douranter sergitemesini soplar. Bu sayede YSAInu barmazik problember Göznesini montin talar.

Attitization Fork. Templ izlevleri

- Linear olmazzanlik icatmak (dogresal olmayorlik)
- Gilles araligm sinisterale (0-1/-1,1)
- larar verne yetereği karandırmet-(noron altif/defil) singal iterlenesine
- * Gradyon hesoplanosuda kullanılır.

* Amac: Montieneerlik (doğrum) olmayorlık) etlemet.

@ Binary Step Function

1

& Rew

f(x)=x, x70

$$f(x) = 0, x \le 0$$

· Belin wir degerden som o her o atendiqueda bir sure sonra o'grenneyi durdens. ue noron olons olur.

· Egitin yopnak momkin degil

0 -> during neutron (56 notion)

Sigmoid / Logistic

x, 3 ten bayok ise gradion 4 X, 31 for kingite is gradger

, & Gradyon iniste bullanila Silin

10 Leaky Reli

ef(x) = max(x, 0), 515 about orolusnosus selsep oluyor. Bu sorunu cornele icin 0,01 deger le carpilar

formal popularies.

Tanh (Haperbolik Tanjant)

- · Hesoplano karmosiklý var
- · Sigmoid'e gove daha hizli yakusar Dana iyi sonuclar verir

* Gradyon mixte to Manilabilin

11

: Olor suppressed .

$$f(x) = max(ax,x)$$

- · a (alfe) icin sirekli yoli bir hesoplana gorektinger.
- · Bu bir dezavantay. Gonki sisteme exsta is you biner

x (ex-1) for x10 & ELU (Chiz bedichigory?) Ta (ex-1) for xco SELU 1.5 · Gizli katmanların Gikişini normative extreys softer. . Bu her leakmonin bendi bendine -05 ögrennesini saglar. 2 Swish $f(x) = x \cdot Sigmoid(x)$ 12 . Sigmoid der dana Tyi performens S GELU · Heoplano yülcü fazla Bi gizden her zomen kullend myör

-9

Attragger Fontsigenlandoti Sorvalar

Signoid we Tark - Warnshing Gradient

(taybolon Gradyonlar)

- Signoieve Tork gibi aktivator fanksiyonları,
 giris değerler Gok büyük veya Gok küzük oldıda
 gradyon (eğim) değeni sıfıra yaklastvabilir.
- · Bu durum sinir aga egitimi, svesnda parametrelain surcellameaini zarlaztur. ve modelin ogrennesini ergellek

Relu > Dying Relu (ölen Relu)

- · Rell activesyon fonk giris degen negatif oldida sifu cittes verir.
- · Bu durum sinir ağının bezi nöronlarının ölmedine veyn eğitim strecinde etkilerini kaybetnelerine neden olur.

Softmax

· Gikiz icatmonlaruda verlen degerterin herbir tarkli skufi i cin bir tensilci olygor

CALL

The same

-

1

TO THE

6

() B

-

-

· Herbir Citasus toplan olesilgun 1 olmasus sigler.

> ex Lex

· Citis testmentarus suiflendume problemlerinde

bias: gerter and ordinate ordi

, . Hiper parametrolar

- * Azur ögrerneg: engellenekican gelistiretőimit parametralar
 - · Ögreine Oran, (Learning rate)

 La parametrolerin ne badar goncellerecegii
 - · Agirlik azaltmo (weight decay)
 - · Dropout

 () asvi öğrenmeyi eygaller

 () egitim svesinda rastgele
 näronları davre disi broku:
 - · Epoch sayisi
 - · Batch says ! tel selecte vertien bree says !
 - · Aktivayon honksiyonları

LOSS Fonksjyphan

- Mean Squared Error (MSE)
- Bring Cross- Entrapy
- Categorical cross Entropy Loss

Asiri ögrenne - Eksik ögrenne (overfitting) (under fitting)

Bias (variance

Just right High priorce (overfit)

* Agu gerelleztime yetereği yüzsek olsun Tsteriyar, 13

High bias

Curden Fit)

Optimizayon Tetrikleri

- · momentum : hith opt
- . Ada arad: ögrenne oran degistirir (güncellere sayıl ögrenme oranı)
- · RMSprop: agreeme oran i gis momentum elelent.
- · Adam: momentum + Rm Sprop
- Adamax: Adam yout a bonzer.

 Max you've infinity norm bullans
- · Nadom: Nestro v york, the Adam york, tytlestirit
- . Stokastik Gradyan inisi (SGD):

 (5) Gradient nesaplamede tom ver yerne

 (5) Cradient botth ler kullant.

the same of the same of

14

-

176

10

-

-

-1

(d-0) = e + obu hata degeri ile * olması

beldon gerfet gorebenda ne tadar uzak tayız

bulmayı sağlar.

* Burodaki Fork @ ise iyi,

Anso Fork (-2 ise (270)

* burodaki Fork, aguliklaru

gürcellermesinde kullanliyor.

e (charte), sifter (0) ulasmossane kadar some iona edilecet?)

La epoch sayusi

o = f(NET) (Net: girssler ve agrilicary)

signume

fonk. (WT.X) yeda (WT. X +b)

belli degerlein)

0,1,-1

olarak leabul

edildigii,

ikli fonk.

arteradyon fonk

. Shape() + boyut bilgis venir

Gikti: (saturacy, sütun say) shahayutteki elenen Jay, icinen tuple.

nump arraylle carllenille.

e>0 → egitim devametmeli.

w (egyrlitlan) goncellent

e=0 → Egitim tamamlands. w degiones. 15

×ı	X	-	d
0	0	1	0
0 0	1	1	0
1	0	1	0
1	1	1	1

AND problem:

X=np.insert (XCI], 2, 1)

ile 2. deger elledik

we deger 1 oldu

(bia)=1 deger 16in)

- . net = np. matrul(w,x) matrix multiplation
- · Ayutaq Dograsu Nasil alustralur?

w,, wz, wg

Dogro delteri = wix1+w1x2+w3 =0

2 noctasibilizar doğri derkleminder (.xi ve xz'ye svayla () vererek) bulumr

suitan birtirlemden dogn setilde ayalmosni softer

Bu bolimate: tom kodlar

paception - do-si. ipynb

YSA

- · Derin ögrenme
- · wywn Agrill Degeteini bulur (Chradyon inis)
- · matris Garpmas

DNN ANN

az katman

aux katuran

as karnesiklis

ask formosiklik

· Derin ad, katur Say isun facializadas gelac.

1 vega 2 gizli katmon

3 vega dahafazla gizli batman

Yapay Sinir Aglari (AMN) Dein Sinir Aglam (DNN) (bosit regression, scriftendum problemen) (goront terms, NUP, 323 terms)

il mostrous SIMIT ASONI (CNN)

· Ger yayılım (Gradyon, inis) cullano

- · klasik sinir aglam, kendi özellik arkarmaz.
- · Problem odaklidegil Gardi verizion yopiani kullanmaz
- · Agrille Soyisi artisi geometrie 4 daha disor gerellene yeteregi La daha fazla overfitting

- a Günümüzde bazaralı sekilde kullanılmasında iti etten:
 - 1 Yeterli mikt ven
 - 2- Yeterli izlangoci
- · Derin aglari islame;
 - Farkli alanlarda bazariyla nAdrovic (piloramari deri) goranto Estene, zonan serilen)
 - ilac tasarimi, ses torma, ... ub.)
 - Dö Herledikae yeni derin ağı mimarilen ortoga citmistu:

(Eurisimli sinir Aglan,

Derin inong Agram, RNN/LSTM,

> Transformer, VAE, ... ub.) 16

- icinaming arms are semsellaco a
- · lagora tipi topologii orn: zenen sersi (1 boyutu), gonineiter versit (2 Loguetle)
- * Garantler, ago direct vertebilin Br sayede diger ögrenne alg. larada gerelen özellik Gikarumi 'na bureda gerek you

· Euroim adı, verlen matematikael bir islemin gerceklestirildiğini 95sterir (Konvalisyprel)

* considerad voice onistene decer Özellik alkarımını ağ yapar.

ver: (s(+)

0

0

« e

-

-

-9 --5

-5

0

5(4)

05 -9 6.9

E-9 0 6

00

vygdanode CNNs

· Grantiler genislik, yekseklik ve demlik (RGB) clarak 3 boyute salip.

* Gerekli islemeyi saglameticin <u>Cetindek de</u> 3 boyutu olnali.

· CNN'de birder forla celeirdet bullanter.

(RCAB).

CNN üc azara icerir:

1- (Got sayida) Euri sim Uygularres (kerneli gezdir-> harita elde et)

2- ALHI VAZYON FONE UYGULA * algibyici (detector) azanazi

3- Have zeama (pooling) vygula

Icatman lava girislerin verilmesi

Euri2im . Algilagici Havuzlana

Sonraki Katmon

Algilagici

· Non-linearlik sigler (gikislanda)

Havuzlana

. Agn bir noktadaki cikisi, Komzu aikizlari vir özeti ile degizir.

· Lette otelevelere idagizitlidere barzi esreklit

· probleme gore degrisebiling

· max pooling -> dist of the dolder (ethins obnames)

18

· min pooling -> 11 255" " "

Admarqlege (stride) -> i elen verinliligi

Solde do ldurma (padding) - source bogut degrisheresi icis

CNN de Hiperparametreller

ogrelde 1 3×3

OF B

C B

CI-

C 3

-

-10

-19

-19

15

-

-1-3

-

1 -

Gelerder (filtre) posjutu

Filtre soyisi Adm oraligi

Sözde dolduma

Bu degree probleme gone secilier.

* Filtre day gorelde ikinin better olarak (32-1024 orasuda) section

* Gok filtre, agi goclerairir

Egitim shoot artor (risk)

Tan Bagil smir Aglari Asarasi }

e klasit sime og yapess

a Gok boguth islem gapilinea: ence net product not some

distastione (flatter)

to Dielostimes: cot boyuth veri,

(Flather) you you swalan 1 boyuth releter haline

getinlin.

O report: Overfitting a zather. 1.25 / 1.50 oranda naronlari rostgele kapatur.

A Derse (Tan bagal) leatmostor:

Societi katmondaki timnoronlarin br sonraki katmadaki tim nöronlarla patel o longer (tem pote) pir dobis

* non linear 112 Tain attivasyon force willowlynastri saglar

(... basta gorarles de var)

a cot X cas vocaler vertice gets archai oluar Lux nesoplarir (CCE ile) a (1) cirtisi intere

(ain-17), Xin> noronlara verilli yens gittesi olusur 2 (1) heraplan (CCE ile) Lacos oluzur

L(1) Fin+ L(1) toplan Toplam loss hasoplans.

in was toon (was) a boyouse caradyan patterness olur,

Onto

0

CO.S

10

· gradyanlar anormal sekilde ordar. Agu ögrenesini olumbuz etkiler - global him jatlezenayabilin - gradyanter o la got yokur deger elip gradyenlar baybolabiling = anadyan varishing

Bu problemin onine gecebilinez fain LSTM presimiz (Long short term memory)

Her loss deger ich 20monde gergedagiden Backpropogation through time yopilo sondan basa dogru.

Agrildan gincellemesi soflamis ohr.

RNN de Problem

wxa

was her deferinde basa dandonslap kullanılıyar her deferiade televorden surece dahil ediliyor

was > 1 obursa verseternée acopuna delil olur. oin: so here salil edildi (waa) salur. 20

Technologyan YZ Elkitabi - Stanford. Rdu (CS-230 - Dem Ogreme)

4) Gelenetsel RNN mimarisi

GRUN Ugulanalar 1

Ly kayip fonk

· Zanala Ger yayılım

· keybolan/patlayan Gradyan

LSTM - (Long Short Term Memory

Vous Esa Vadeli Bellek

elde ediler deger lota got yakusa unutulur. e 11 11 11 The re undulned re-hatulantal belir lenir.

· y deger (-1,1) arounds -1'é yakunsa unutnoya reder our.

-1,41+0,94 - 0,32 = 2,03 Janh 0,97=4

1*2+1* 1,65 +0,62=4,27 sigmoid 1/e Gok yakun değer = 1 dedit

X= 1 " 0,97 Leti 0,97 An tarani uzun vadeli afrene kap Whin bilgisine etti e decek

1 " 097 = 2

2+0,97 = 2,97 (1,994 yarnak gover bence (?

usur vadali input gates

, Bu LSTMIN Ta yopiside.

LITMIN dis yopisi RNN'in disyopisi Fle aynder.

LSTM Sentiment Analysis | Keras, ipynb

La get dummes etilet degeleini 0-1 olarak ayur

[IMDB RNN modeling. ipynb

loss distit, accuracy yother olimple (hata) (dogralus)

TWAN

(10) GANS

Unetra YZ

o ortada olneyan seylerin ortaya cikanilmoni

Unetic Cetizneli Aglar (GANS)-(GÜA)

ANN RNN

Uygulona alanlar 1:

- . M L youtenior ign veri artturns
- · Yuzgorontuss oretime
- ಆರಂಭ ತಿಂಬಳು ಕ್ರುಪ್ತಿಯ
- · metin generati
- o superas zinirlik

GUA mimorisi

GUA Egitin Admilan

1. GÜA mimorial Belirle (Probleme Gibre

2. Ayırıcı Eşit

3, Unetical Egit

4. Tetrar Et (200-400 epoch)

5. modeli kaydet

GÜA Problemler

- # 1- Mod Gotnesi (mode collapse): GAN'low sorekti benerlaynı türde onether iretmesi.
 - I- Egitim toransialy! (Training Instability)! üreteg ve ayırıcı eğlaru egitim sürecinde romsosop is personal representation

Ekzarludar

- Kaybolan Gradyanlar (Vanishing Gradient): Ayurciag cor basarili, virtici as icin gradyonlar cox kitaix
 - your > egitim sireci:
 - Asv. ugum (over felting):

min-wax Chame

V(D,G) = Ex~ parta(x)[105 D(x)] + Ez~ pz(z)[105(1-D(G(2)))

D(x) > gercago gerceck algilarma olasiligi

* Uredici disormeye calisi

(D(G(Z))) - santerin gerces

algilarma dasiliqi

* "refici ystachmeye aguici assomeye

(1-D(G(2))

A viretici duzvineya ayind yorselfneye

GANS

G-PATE

med GAN

COCCAN

DP - CGAN

OCT-GAN

DP-WGAN

PacGAN

Table GAN

PostGAN Boost

PATECTGAN

DPGAN

DPCTGAN

CTGAN

DP-CGANS

CTAB-GAN

PATEGAN

RDP GAN

GAN_ CIFAR_Keres . ipynb)

() generate - fate - samples ()
South deger pretin

Sante - 0 gereek - 1 CIN

213

2

0

2