Limits, Continuity and Directional Derivatives

A. R. Moghaddamfar

K. N. Toosi University of Technology

E-mail: moghadam@kntu.ac.ir

1 Limits and Continuity

2 Directional Derivative

3 The Gradient Vector of f(x, y)

4 Implications

Limits and Continuity

Limit and Continuous Functions

Suppose f(x,y) is a function. We say that

$$\lim_{(x,y)\to(a,b)} f(x,y) = L,$$

if for every $\epsilon > 0$ there is a $\delta > 0$, so that

$$0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \implies |f(x,y) - L| < \epsilon.$$

A function f(x,y) is continuous at (a,b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b).$$

- *Polynomials* are continuous everywhere.
- Rational functions are continuous everywhere they are defined.

Directional Derivative

Directional Derivative of f(x,y) at (a,b) in the Direction of a Unit Vector $\vec{\mathbf{u}}$

If $\vec{\mathbf{u}} = u_1 \vec{\mathbf{i}} + u_2 \vec{\mathbf{j}}$ is a unit vector, we define the direction derivative $D_{\vec{\mathbf{u}}} f$ at the point (a, b) by

$$D_{\vec{\mathbf{u}}}f(a,b) = \lim_{h \to 0} \frac{f(a+hu_1,b+hu_2) - f(a,b)}{h},$$

provided that the limit exists.

• If $\vec{\mathbf{u}} = \vec{\mathbf{i}}$, then $u_1 = 1$ and $u_2 = 0$, and we have

$$D_{\vec{i}}f(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} = f_x(a,b).$$

• If $\vec{\mathbf{u}} = \vec{\mathbf{j}}$, then $u_1 = 0$ and $u_2 = 1$, and we have

$$D_{\vec{j}}f(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h} = f_y(a,b).$$

The Gradient Vector of f(x,y)

The Gradient Vector of f(x, y)

The gradient vector of a differentiable function f(x, y) at the point (a, b) is

$$\nabla f(a,b) = f_x(a,b)\vec{\mathbf{i}} + f_y(a,b)\vec{\mathbf{j}}.$$

Using this notation, we can define the directional derivative in terms of a unit vector in the desired direction and the gradient.

Directional Derivative of f(x,y) at (a,b) in terms of the Gradient Vector

If $\vec{\mathbf{u}} = u_1 \vec{\mathbf{i}} + u_2 \vec{\mathbf{j}}$ is a unit vector and f(x, y) is differentiable at the point (a, b), then we have that

$$D_{\vec{\mathbf{u}}}f(a,b) = \nabla f(a,b) \cdot \vec{\mathbf{u}} = f_x(a,b)u_1 + f_y(a,b)u_2.$$

Implications

We have another formula for the directional derivative, namely

$$D_{\vec{\mathbf{u}}}f(a,b) = \nabla f(a,b) \cdot \vec{\mathbf{u}} = ||\nabla f(a,b)|| \cdot ||\vec{\mathbf{u}}|| \cdot \cos \theta,$$
$$= ||\nabla f(a,b)|| \cdot \cos \theta$$

where θ is the angle between the gradient and the direction vector $\vec{\mathbf{u}}$ and we used the fact that the length of a unit vector is 1, i.e. $||\vec{\mathbf{u}}|| = 1$. Since $\cos \theta$ is always between -1 and +1:

- $\theta = 0$: The direction of maximum rate of increase. The rate of increase per unit distance is $||\nabla f(a,b)||$.
- $\theta = \pi$: The direction of minimum rate of increase. The rate of increase per unit distance is $-||\nabla f(a,b)||$.
- $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$: The directions giving zero rate of increase.