# Redes de Computadores

Protocolos de Transporte na Internet User Datagram Protocol - UDP NAT/NAPT

Introdução a protocolos de aplicação (sockets)

Aula 24

### Introdução

Instituto de Informática - UFRGS A. Carissimi-11-nov-13

- Entidades da camada de transporte oferecem serviços não orientados a conexão
  - Apesar de não ter garantias de entrega, de ordenamento e de não duplicação eles tem o seu valor.
  - Na arquitetura TCP/IP corresponde ao protocolo UDP
- Os serviços das entidades de transporte são disponibilizados para a camada de nível superior
  - Na arquitetura TCP/IP isso é feito através da interface de *sockets*
- Funcionamento do NAPT (vulgarmente conhecido como NAT)
  - Envolve itens da camada de rede e da camada de transporte

2 Redes de Computadores

### User Datagram Protocol (UDP)

- Descrito na RFC 768
- PDU do UDP é denominada datagrama
  - Orientado a mensagem
  - Encapsula uma mensagem da aplicação sem realizar fragmentação
    - Controle é do próprio processo usuário
- Protocolo de transporte da família TCP/IP não orientado à conexão
  - Por não executar controle de fluxo, de erro e de ordenamento, possui baixo custo de processamento
  - Em relação ao IP agrega funcionalidade de multiplexação e demultiplexação
- Processos origem e destino são identificados através de portas

# Formato do datagrama UDP (relembrando...)



Comunicação processo a processo

- Porta fonte
  - Associada ao processo de origem (multiplexação)
  - Permite ao destino retornar mensagens ao processo de origem
- Porta destino
  - Usada para demultiplexação das mensagens encapsuladas nos datagramas
- Tamanho
  - Tamanho total do datagrama UDP (inclui cabeçalho + dados)
- Checksum
  - Verificação da integridade dos dados (complemento de 1 em 16 bits)
  - Calculado sobre um pseudo-cabeçalho (IP destino, IP fonte, campo protocolo, tamanho TPDU e a constante zero), o cabeçalho UDP e os dados
- Dados

Redes de Computadores

#### NAT- Network Address Translation

- Endereços IPs devem ser únicos
- Constatação: nem toda máquina precisa ter endereço Internet válido
  - Para que desperdiçar endereços IP válidos?
- Enderecos IP reservados para redes não conectadas (RFC 1918)
  - Bloco/Classe A: 10.0.0.0 10.255.255.255/8 (16.777.216 IPs)
  - Bloco/Faixa de classe B: 172.16.0.0 172.31.255.255/12 (1.048.576 IPs)
  - Bloco/Faixa de classe C: 192.168.0.0 192.168.255.255/16 (65.536 IPs)



Razões para usar UDP

- Menor custo computacional
  - Não há estabelecimento de conexão, nem estados a monitorar e gerenciar
  - Não faz controle de perda, repetição, ordenamento e congestionamento
    - Usado em aplicativos que toleram erros de entrga
  - Cabeçalho simplificado
- Melhor controle dos dados enviados
  - Dados da aplicação são empacotados pelo UDP e enviados ao IP
    - Cada mensagem aplicação deve caber em um datagrama UDP
      - Desejável que caiba em um datagrama IP para evitar fragmentação
- Uso de broadcast ou multicast

Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi-11-nov-13

5

#### Funcionamento do NAT



# Funcionamento do NAPT (Cont.)



Redes de Computadores

Traduções de endereços, portas e protocolos

- NAT (RFC 1631)
  - Mapeamento de um endereco IP em outro
  - Existem variedades: N:1, M:N; 1:1
- NAPT (RFC 3022)
  - Mapeamento de endereços e portas em outros endereços e portas
  - Denominado corriqueiramente de "NAT" (ou NAT tradicional)
- NAT-PT (RFC 2766)
  - Mapeamento de endereços e portas em outros endereços e portas
  - Capacidade de traduzir protocolos da camada de rede (*Protocol Translation*)
    - Um dos mecanismos previstos para a transição IPv4-IPv6

10 Redes de Computadores

#### Críticas ao NAT/NAPT

- Viola regra do endereço IP ser único
- Viola a independência de camadas
  - Mistura informações nível 3 (end. IP) com informações do nível 4 (porta)
- Só funciona com protocolos TCP e UDP (porta)
- Transforma a Internet (rede orientada a pacotes) em uma rede orientada a conexão (circuito virtual)
  - Necessidade de manter estado A-B; B-C para comunicação A-C
- Aplicações que inserem o IP ou porta no corpo de suas mensagens podem apresentar disfunção com o NAT
  - Ex.: FTP. H.323 e IPsec

### Nível de aplicação

| Aplicação    | Protocolo nível de aplicação    | Aplicação      |
|--------------|---------------------------------|----------------|
| Apresentação | Protocolo nível de apresentação | - Apresentação |
| Sessão       | Protocolo nivel de sessão       | - Sessão       |
| Transporte   | Protocolo nivel de transporte   | Transporte     |
| Rede         | Protocolo nível de rede         | Rede           |
| Enlace       | Protocolo nível de enlace       | Enlace         |
| Físico       | Protocolo nível de físico       | Físico         |

Instituto de Informática - UFRGS A. Carissimi -11-nov.-13

Instituto de Informática - UFRGS A. Carissimi -11-nov.-13

Redes de Computadores

Redes de Computadores 12

### Principais protocolos de aplicação da Internet

- DNS
- HTTP
- HTTPS
- TFTP
- SMTP
- POP3
- IMAP

Instituto de Informática - UFRGS A. Carissimi -11-nov.-13

- **TELNET**
- **SNMP**
- **BOOTP**
- DHCP
- NNTP
- NFS
- SSI

Redes de Computadores

**Endpoints** 

- Cliente e servidor possuem endpoint local e remoto
- Endpoint local
  - Criado, por default, com o endereço IP especial 0.0.0.0 e uma porta arbitrária
  - Pode ser atribuído uma porta e endereço IP específicos, tipicamente:
    - Servidor: configura uma porta específica
    - Cliente: porta (efêmera) selecionada pelo sistema operacional
  - Pode participar de várias comunicações com endpoints remotos distintos
- Endpoint remoto
  - Criado, por default, com endereço IP especial 0.0.0.0 e porta ANY (\*)
  - Pode ser atribuído um endereço IP e uma porta específica
    - Cliente : deve especificar endereço IP e a porta do servidor
    - Servidor: preenche com endereço IP e porta provenientes do cliente

### Visão da camada de transporte pela camada aplicação

- Interface de sockets
  - Interface entre a aplicação e as entidades de transporte
  - Conjunto de primitivas para definir portas, estabelecer conexão (ou não), enviar e receber dados
- Originalmente proposta para ambientes Unix e linguagem C
  - Adotada em várias plataformas e linguagens (java, C#,...)
  - Concebido para ser genérico
    - A Internet corresponde a família AF INET
- Construída sobre a abstração de socket
  - Na Internet um endpoint é representado pelo par (endereço IP e porta)
  - No TCP, cada conexão é identificada por um par de endpoints (socket pair)

Redes de Computadores

### Estados de um *socket* (serviços orientados a conexão)

- Socket ativo: cliente
  - Usado para solicitar requisições de conexão ao servidor



Socket passivo: servidor

Redes de Computadores

• Empregado pelo servidor para aguardar pedidos de conexão



Instituto de Informática - UFRGS A. Carissimi -11-nov.-13

15 Redes de Computadores

16

14

Instituto de Informática - UFRGS A. Carissimi-11-nov-13

#### Interface de sockets

- Socket é um descritor de arquivo
  - Paradigma abrir-ler-escrever-fechar
- As primitivas básicas são:
  - socket()
  - bind()
  - listen()
  - accept()
  - connect()
  - write(), sendto()
  - read(), recvfrom()
  - close()

Instituto de Informática - UFRGS A. Carissimi -11-nov.-13

Instituto de Informática - UFRGS A. Carissimi-11-nov.-13

Redes de Computadores

#### Clientes e servidores UDP



Não há estados em sockets UDP (serviço sem conexão)

18 Redes de Computadores

#### Clientes e servidores TCP



17

19

# Exemplo *sockets* (lado servidor TCP)

Redes de Computadores

```
int cont,create_socket,new_socket,addrlen;
                                                                                              recv(new socket.buffer.bufsize.0):
             int bufsize = 1024:
                                                                                              // do service...
             char *buffer = madoc(buffsize);
                                                                                              send(new_socket,buffer,bufsize,0);
             struct sockaddr_in address;
                                                                                            }while(strcmp(buffer,"/q"))
             printf("\x1B[2J");
                                                                                            close(new socket);
             if ((create_socket = socket(AF_INET,SOCK_STREAM,0)) > 0)
                                                                                            close(create_socket);
              printf("The socket was created\n");
             address.sin_family = AF_INET;
Informática - UFRGS
             address.sin addr.s addr = INADDR ANY;
             address.sin_port = htons(15000);
             if (bind(create_socket,(struct sockaddr *)&address,sizeof(address)) == 0)
              printf("Binding Socket\n");
             listen(create socket,3);
             addrlen = sizeof(struct sockaddr_in);
             new_socket = accept(create_socket,(struct sockaddr *)&address,&addrlen);
               printf("The Client %s is connected...\n",inet_ntoa(address.sin_addr));
               for(cont=1;cont<5000;cont++)
             printf("\x7");
```

20

### Exemplo sockets (lado cliente)

```
main(int argc,char *argv∏) -
                       int create socket, buffsize = 1024;
                       char *buffer = malloc(buffsize):
                       struct sockaddr in address:
                       if ((create_socket = socket(AF_INET,SOCK_STREAM,0)) > 0)
                           printf("The Socket was created\n");
                       address.sin_family = AF_INET;
                       address.sin_port = htons(15000);
                       inet_pton(AF_INET,argv[1],&address.sin_addr);
Instituto de Informática - UFRGS
A. Carissimi -11-nov.-13
                       if (connect(create_socket,(struct_sockaddr *)&address,sizeof(address)) == 0)
                             printf("The connection was accepted with the server %s...\n",inet_ntoa(address.sin_addr));
                         aets(buffer):
                         send(cria socket,buffer,bufsize,0);
                         recv(create_socket,buffer,bufsize,0)
                         printf("Message recieved: %s\n",buffer);
                         if (strcmp(buffer,"/q"))
                             printf("Message to send: ");
                       }while (strcmp(buffer,"/q"));
                       close(create socket);
            Redes de Computadores
```

### Servidor iterativo (single threaded)

Instituto de Informática - UFRGS A. Carissimi-11-nov-13

Instituto de Informática - UFRGS A. Carissimi -11-nov.-13

21

 Adequado para serviços com reduzida taxa de requisições e serviços cujas requisições possuem baixa carga de processamento



Redes de Computadores 22

# Servidor concorrente (multithreaded)

Instituto de Informática - UFRGS A. Carissimi -11-nov.-13

- Serviços com elevada taxa de requisições e serviços cujas requisições possuem alta carga de processamento
- Implementado com várias threads ou processos independentes



### Funcionamento de sockets: lado servidor

- Socket (único) que atende o serviço
  - Sempre em estado listen (processam segmentos SYN)
  - Endpoint local possui o endereço especial 0.0.0.0 e porta específica do servidor
  - Endpoint remoto possui o endereço especial 0.0.0.0 e a porta ANY (\*)
- Sockets criados para atender requisições dos clientes
  - Estado *established* (processam segmentos de dados)
  - Endpoints locais possuem o endereço IP e porta específica do servidor
  - Endpoints remotos possuem os endereços IP e as portas dos respectivos clientes

| > netstat -tan |        |        |               |                   |                    |  |
|----------------|--------|--------|---------------|-------------------|--------------------|--|
| Proto          | Recv-Q | Send-Q | Local Address | Foreign Address   | State              |  |
| tcp            | 0      | 0      | 0.0.0.0:25    | 0.0.0.0:*         | LISTEN             |  |
| tcp            | 0      | 0      | 150.1.20.1:25 | 192.10.1.50:57568 | <b>ESTABLISHED</b> |  |
| tcp            | 0      | 0      | 150.1.20.1:25 | 200.50.2.10:58461 | <b>ESTABLISHED</b> |  |
| tcp            | 0      | 0      | 150.1.20.1:25 | 150.10.1.20:60496 | <b>ESTABLISHED</b> |  |
|                |        |        |               |                   |                    |  |

Redes de Computadores 23 Redes de

tcp 0 0 150.1.20.1:25 150.10.1.20:60496 ESTABLISHED

Redes de Computadores

- Tanenbaum, A. Redes de Computadores (4ª edição), Campus, 2000.
  - Capítulo 5, seção 5.6 (NAT)
  - Capítulo 6, seção 6.1
- Carissimi, A.; Rochol, J; Granville, L.Z; Redes de Computadores. Série Livros Didáticos. Bookman 2009.
  - Capítulo 5, seção 5.5.1
  - Capítulo 7, seção 7.2

Redes de Computadores

#### TFTP - Trivial File Transfer Protocol

- Similar ao FTP
  - Baseado em UDP (menor em código e mais simples)
  - Conjunto limitado de comandos
  - Não emprega nenhum tipo de autenticação (problema de segurança!!)
- Empregado para:
  - Realizar boot em estações diskless (inicialização de máquinas via rede)
  - Upload e download de firmware em dispositivos específicos (embarcados)
- Atende na porta 69 (UDP)

Gerenciamento de conexões TCP

- Fila de requisições
  - Associada a sockets TCP no estado listen
    - Processamento da abertura da conexão é realizado pela entidade TCP, e não pelo servidor
    - Reguisição de conexão presente na fila ainda não foi aceita pelo servidor
    - Requisição de conexão somente é aceita e removida da fila quando o servidor ativa a função accept
  - Possui capacidade fixa, mas pode ser configurada pelo servidor com a função listen
    - E.g.: listen(s, 5);

Instituto de Informática - UFRGS A. Carissimi-11-nov-13

25

Redes de Computadores

### File Transfer Protocol (FTP)

- Utilizado para transferência de arquivos
- Atualmente empregado na forma ftp://url
- Utiliza duas portas (TCP)

Redes de Computadores

- Porta 20 para dados e porta 21 para comandos
  - Definição original do protocolo



Instituto de Informática - UFRGS A. Carissimi -11-nov.-13

27 Redes de Computadores

28

#### FTP em Modo Ativo



#### FTP em Modo Passivo



# Formato PDU FTP

- Bastante simples: é um string delimitado por CR/LF
  - Os strings são interpretados pelos processos envolvidos na sessão FTP



- Comandos FTP (USER, PASS, PASV, MODE etc)
- Respostas FTP (códigos de reply como 220, 226, 230, etc)

# Exemplo: captura de sessão ftp



Instituto de Informática - UFRGS

Redes de Computadores

#### Formato das PDUs do TFTP

Instituto de Informática - UFRGS A. Carissimi -11-nov.-13



Redes de Computadores 33

#### Telnet

Instituto de Informática - UFRGS A. Carissimi -11-nov.-13

- Aplicativo Internet para login remoto
  - Permite um usuário se conectar remotamente em um sistema e enviar comandos como se tivesse "logado" nesse sistema remoto
  - Na verdade, ele é um protocolo de envio de caracteres para um processo remoto.
- Sintaxe: telnet IP\_máquina\_remota [porta]
  - A informação de porta é opcional (default é porta 23/TCP onde atende o servidor telnet)
  - Possível se conectar a outra porta qualquer

```
telnet IP_máquina_remota 25 (envia caracteres → servidor SMTP) telnet IP_máquina_remota 80 (envia caracteres → servidor HTTP)
```