MATH 442 — Assignment 6

Stephanie Knill 54882113 Due: February 25, 2016

Question 31

Proposition: Let G_1 and G_2 be two homeomorphic graphs. Let G_1 have n_1 vertices and m_1 edges, and let G_2 have n_2 vertices and m_2 edges. Show that $m_1 - n_1 = m_2 = n_2$.

Proof. Let G_1 and G_2 be two homeomorphic graphs. Let G_1 have n_1 vertices and m_1 edges, and let G_2 have n_2 vertices and m_2 edges. For two graphs to be homeomorphic, we can go between the two graphs by performing one or more of the following operations:

- 1. Inserting vertices in the middle of an edge
- 2. Erasing vertices of degree 2

Let us examine the first operation. For G_2 of n_2 vertices and m_2 edges, inserting a vertex will give us a new graph G_1 homeomorphic with n_1 vertices and m_1 edges:

$$n_1 = n_2 + 1$$

$$m_1 = m_2 - 1$$

Taking the difference between m_1 and m_2 , we have

$$m_1 - n_1 = (m_2 - 1) - (n_2 + 1)$$

= $m_2 - n_2$

For the second operation, let us erase a vertex of degree 2 from G_2 . This will give us a new graph G_1 homeomorphic with n_1 vertices and m_1 edges:

$$n_1 = n_2 - 1$$

$$m_1 = m_2 + 1$$

Taking the difference similarly gives us

$$m_1 - n_1 = (m_2 + 1) - (n_2 - 1)$$

= $m_2 - n_2$

Question 32

Proposition: No polyhedral graph with exactly 30 edges and 11 faces can exist.

Proof. Assume, to the contrary, that there exists a polyhedral graph with exactly 30 edges and 11 faces. Since a polyhedral graph, by definition, is a simple connected planar graph where each vertex has degree at least 3, we can apply Euler's Theorem to find the number of vertices v of our graph:

$$v - e + f = 2$$

 $v = 2 + e - f$
 $= 2 + (30) - (11)$
 $= 21$

Since each vertex has degree $d_i \geq 3$, we have

$$3v \le 2e$$

Substituting v = 21 and e = 30 into our inequality

$$3(21) \le 2(30)$$
$$63 \nleq 60$$

we arrive at a contradiction.

Question 33

Let us find the dual of each regular polyhedra

1. Tetrahedron

Since the tetrahedron is relatively small (compared to an icosohedron), we can construct the dual graph (Figure 1) following the two stage algorithm as outlined in [1]:

Figure 1: Graph G and dual graph G^* , both of which are isomorphic to a tetrahedron. G has vertices denoted by black circles and edges by solid lines, and G^* denoted by unfilled squares and edges by dashed lines.

Alternatively, our tetrahedron graph G has number of edges e = 6, number of faces f = 4, and number of vertices v = 4. For our dual graph G^* with number of edges e^* , faces f^* , and vertices v^* , we have by Lemma 4.12 [1] that

$$e^* = e$$
$$f^* = v$$

$$v^* = f$$

Thus the dual of a tetrahedron has $e^* = 6$, $f^* = 4$, and $v^* = 4$, which is a graph isomorphic to a **tetrahedron** (Figure 2).

Figure 2: Planar graphs G and \overline{G} of 6 vertices.

2. Cube

Our cube graph G has number of edges e = 12, number of faces f = 6, and number of vertices v = 8. For our dual graph G^* with number of edges e^* , faces f^* , and vertices v^* , we have that

$$e^* = e = 12$$
$$f^* = v = 8$$
$$v^* = f = 6$$

Thus the dual of a cube is a graph isomorphic to an **Octahedron**.

3. Octahedron

By Theorem 4.13 in [1], we have that the dual of a dual graph (G^{**}) is isomorphic to the original graph (G^*) . From above, we know that a cube's dual is an octahedron. Thus the dual of an octahedron is a **Cube**.

4. Dodecahedron

Our dodecahedron graph G has number of edges e = 30, number of faces f = 20, and number of vertices v = 12. For our dual graph G^* with number of edges e^* , faces f^* , and vertices v^* , we have that

$$e^* = e = 30$$
$$f^* = v = 12$$
$$v^* = f = 20$$

Thus the dual of a dodecahedron is a graph isomorphic to an **Icosohedron**.

5. Icosohedron

Again by Theorem 4.13 in [1], we have that the dual of a dual graph (G^{**}) is isomorphic to the original graph (G^*) . From above, we know that a dodecahedron's dual is an icosohedron. Thus the dual of an icosohedron is a **Dodecahedron**.

Question 34

Show the line graph of a tetrahedron graph is the octahedron graph Superimposing the line graph L(G) on top of our tetrahedron graph G (Figure 3)

Figure 3: Graph G of a tetrahedron and its dual graph G^* . G has vertices denoted by black circles and edges by solid lines, and G^* denoted by unfilled squares and edges by dashed lines.

Next, let us separate L(G) from our original graph. Rearranging the orientation of the vertices gives us a graph isomorphic to the octahedron graph (Figure 4).

Prove that if a simple graph G is regular of degree k, then L(G) is regular of degree 2k-2.

Proof. Assume that G is a graph of regular degree k. Let us choose any edge e of G which will correspond to a vertex v^l in the line graph L(G). Since each edge connects 2 vertices,

Figure 4: Line graph L(G) of a tetrahedron is an octahedron.

we have a total of 2k edges meeting at the vertex ends of edge e. This means that the vertex v^l is adjacent to 2k other vertices in L(G), which gives us a vertex degree of $k^l = 2k$. However we have double counted the edge e twice: once for the first vertex end of degree k and a second time for the other vertex of degree k. Thus our line graph L(G) has vertices regular of degree $k^l = 2k - 2$.

Question 35

Find two simple graphs G and H such that G and H are not isomorphic but L(G) and L(H) are isomorphic.

Since L(G) is isomorphic to L(H), we have that $e = e^l$. Utilizing proof by inspector gadget, we see that a cycle graph C_3 (Figure 5a) and a simple connected graph of 4 vertices with one vertex degree 3 and the rest degree 1 (Figure 5b) are not isomorphic to each other

Figure 5: Non-isomorphic graphs G and H with isomorphic line graphs.

but whose line graphs are isomorphic (Figure 6).

Figure 6: Line graphs L(G) and L(H).

Question 36

Proof. Let G be a simple graph with vertices v_1, \ldots, v_n of corresponding vertex degree d_i for $1 \le i \le n$. To find the total number of edges in L(G), let us first find the number of edges contributed to L(G) for each vertex v_i . For a vertex v_i of degree d_i , we have d_i edges emerging from it. This means that each of these d_i edges (corresponding to a vertex in the line graph) is adjacent to $d_i - 1$ other edges going into v_i . Since there are d_i of these edges, this gives us a total of $d_i(d_i - 1)$ edges contributed to L(G) from each vertex v_i . However, each edge has been double counted. Thus we only have

$$\frac{d_i(d_i-1)}{2}$$

edges contributed per vertex v_i . Summating over all vertices v_1, \ldots, v_n gives us the total number of edges in L(G) to be

$$\sum_{i=1}^{n} \frac{d_i(d_i-1)}{2}$$

Bibliography

[1] Wilson, Robin J. (2010). Introduction to Graph Theory (5th ed.). Harlow, England: Pearson Education Limited.