

TSV991, TSV992, TSV994 TSV991A, TSV992A, TSV994A

Rail-to-rail input/output 20 MHz GBP operational amplifiers

Datasheet - production data

Features

- Low input offset voltage: 1.5 mV max (A grade)
- Rail-to-rail input and output
- Wide bandwidth 20 MHz
- Stable for gain ≥ 4 or ≤ -3
- Low power consumption: 820 μA typ
- High output current: 35 mA
- Operating from 2.5 V to 5.5 V
- Low input bias current, 1 pA typ
- ESD internal protection ≥ 5 kV

Related products

 See TSV911, TSV912, and TSV914 for unity-gain stable amplifiers

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning and active filtering
- Medical instrumentation
- Automotive applications

Description

The TSV99x and TSV99xA family of single, dual, and quad operational amplifiers offers low voltage operation and rail-to-rail input and output. These devices feature an excellent speed/power consumption ratio, offering a 20 MHz gain-bandwidth, stable for gains above 4 (100 pF capacitive load), while consuming only 1.1 mA maximum at 5 V. They also feature an ultra-low input bias current. These characteristics make the TSV99x family ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering. These characteristics make the TSV99x, TSV99xA family ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.

Contents

1	Absolut	te maximum ratings and operating conditions	3
2		al characteristics	
3	Applica	tion information	14
	3.1	Driving resistive and capacitive loads	14
	3.2	PCB layouts	14
	3.3	Macromodel	14
4	Packag	e information	15
	4.1	SOT23-5 package information	16
	4.2	DFN8 2 x 2 (NB) package information	17
	4.3	DFN6 1.3 x 1.6 x 0.55 (NA - option 2) package information	19
	4.4	MiniSO8 package information	21
	4.5	SO8 package information	22
	4.6	SO14 package information	23
	4.7	TSSOP14 package information	24
5	Orderin	g information	25
6	Revisio	n history	26

1 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)

Symbol	Parar	neter	Value	Unit	
Vcc	Supply voltage (1)		6		
V _{id}	Differential input voltage (2	2)	±V _{CC}	V	
Vin	Input voltage (3)		(V_{CC-}) - 0.2 to (V_{CC+}) + 0.2		
l _{in}	Input current (4)		10	mA	
T _{stg}	Storage temperature		-65 to 150	•c	
Tj	Maximum junction temper	ature	150		
		DFN8 2x2	57		
		DFN6 1.3x1.6x0.55	230		
		SOT23-5	250		
R_{thja}	Thermal resistance junction to ambient (5)(6)	SO8	125		
	,	MiniSO8	190		
		SO14	103	0000	
	TSSOP14	TSSOP14	100	°C/W	
		SOT23-5	81		
		SO8	40		
R_{thjc}	Thermal resistance junction to case	MiniSO8	39		
	, janonon to caco	SO14	31		
		TSSOP14	32		
	HBM: human body model	(7)	5	kV	
	MM: machine model (8)		400		
ESD		SOT23-5, SO8, MiniSO8, DFN8 2x2			
	CDM: charged device model ⁽⁹⁾	DFN6 1.3x1.6x0.55	TBD	V	
	model	TSSOP14	750		
		SO14	500		
	Latch-up immunity		200	mA	

 $^{^{(7)}}$ Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

 $^{{}^{(1)}\!}Value$ is with respect to the V_{CC^-} pin

⁽²⁾ Differential voltages are the non-inverting input terminal with respect to the inverting input terminal

 $^{^{(3)}}$ V_{CC} - V_{IN} must not exceed 6 V

⁽⁴⁾Input current must be limited by a resistor in series with the inputs

⁽⁵⁾Short-circuits can cause excessive heating and destructive dissipation

⁽⁶⁾ R_{th} are typical values

Table 2: Operating conditions

Symbol	Parameter Value		Unit
Vcc	Supply voltage	2.5 to 5.5	\/
V_{icm}	Common mode input voltage range	(V_{CC-}) - 0.1 to (V_{CC+}) + 0.1	V
T _{op}	Operating free air temperature range	-40 to 125	°C

 $^{^{(8)}}$ Machine model: 200 pF charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating

 $^{^{(9)}}$ Charged device model: all pins plus packages are charged together to the specified voltage and then discharged directly to the ground.

In the electrical characteristic tables below, all parameter limits at temperatures other than 25 °C are guaranteed by correlation

Table 3: Electrical characteristics at VCC+ = 2.5 V, VCC- = 0 V, Vicm = VCC/2, and RL connected to VCC/2, full temperature range (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance	·			
	0" , 1	T _{op} = 25 °C		0.1	4.5	
\ /	Offset voltage TSV99x	$T_{min} < T_{op} < T_{max}$			7.5	
V_{io}	O#+	T _{op} = 25 °C			1.5	mV
	Offset voltage TSV99xA	$T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$			3	
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
	Input offset current,	T _{op} = 25 °C		1	10	
l _{io}	$(V_{\text{out}} = V_{\text{CC}}/2)^{(1)}$	$T_{min} < T_{op} < T_{max}$			100	- Λ
	Input bias current,	T _{op} = 25 °C		1	10	pА
l _{ib}	$(V_{\text{out}} = V_{\text{CC}}/2)^{(1)}$	$T_{min} < T_{op} < T_{max}$			100	
CMR	Common mode rejection	0 V to 2.5 V, $V_{out} = 1.25 V$, $T_{op} = 25 ^{\circ}C$	58	75		
	ratio, 20 log (ΔV _{ic} /ΔV _{io})	$T_{min} < T_{op} < T_{max}$	53			4D
A_{vd}	d Large signal voltage gain	R_L = 10 k Ω , V_{out} = 0.5 V to 2 V, T_{op} = 25 °C	80	89		dB
		$T_{min} < T_{op} < T_{max}$	75			
V _{CC} -	Lligh level output voltage	$R_L = 10 \text{ k}\Omega, T_{min} < T_{op} < T_{max}$		15	40	
Vон	High level output voltage	$R_L = 600 \; k\Omega, \; T_{min} < T_{op} < T_{max}$		45	150	\
M	Law lawal autout valtage	$R_L = 10 \text{ k}\Omega, T_{min} < T_{op} < T_{max}$		15	40	mV
V_{OL}	Low level output voltage	$R_L = 600 \text{ k}\Omega, T_{min} < T_{op} < T_{max}$		45	150	
	1	$V_o = 2.5 \text{ V}, T_{op} = 25 ^{\circ}\text{C}$	18	32		
	Isink	$T_{min} < T_{op} < T_{max}$	16			
l _{out}	1	V _o = 0 V, T _{op} = 25 °C	18	35		mA
	Isource	$T_{min} < T_{op} < T_{max}$	16			
I _{CC}	Supply current (per channel)	No load, $V_{out} = V_{CC}/2$, $T_{min} < T_{op} < T_{max}$		0.78	1.1	
		AC performance				
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF},$ f = 100 kHz, $T_{op} = 25 \text{ °C}$		20		MHz
Gain	Minimum gain for stability	Phase margin = 45 °, R_f = 10 $k\Omega$, R_L = 2 $k\Omega$, C_L = 100 pF, T_{op} = 25 °C, positive gain configuration		4		V/V

TSV991, TSV992, TSV994 TSV991A, TSV992A, TSV994A

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Gain	Minimum gain for stability	Phase margin = 45 °, R_f = 10 $k\Omega$, R_L = 2 $k\Omega$, C_L = 100 pF, T_{op} = 25 °C, negative gain configuration		-3		V/V
SR	Slew rate	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF},$ $T_{op} = 25 \text{ °C}$		10		V/µs
en	Equivalent input noise voltage	f = 10 kHz, T _{op} = 25 °C		21		nV/√Hz
THD+N	Total harmonic distortion	$G = -3, f = 1 \text{ kHz}, R_L = 2 \text{ k}\Omega, \\ Bw = 22 \text{ kHz}, V_{icm} = V_{CC}/2, \\ V_{out} = 2 \text{ V}_{pp}, T_{op} = 25 \text{ °C}$		0.0025		%

⁽¹⁾Guaranteed by design

Table 4: Electrical characteristics at VCC+=3.3 V, VCC-=0 V, Vicm=VCC/2, and RL connected to VCC/2, full temperature range (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance			ı	
		T _{op} = 25 °C		0.1	4.5	
.,	Offset voltage TSV99x	$T_{min} < T_{op} < T_{max}$			7.5	.,
V_{io}	O(() TO) (00 A	T _{op} = 25 °C			1.5	mV
	Offset voltage TSV99xA	$T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$			3	
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
	Input offset current,	T _{op} = 25 °C		1	10	
l _{io}	$(V_{out} = V_{CC}/2)^{(1)}$	$T_{min} < T_{op} < T_{max}$			100	A
	Input bias current,	T _{op} = 25 °C		1	10	рA
l _{ib}	$(V_{out} = V_{CC}/2)^{(1)}$	$T_{min} < T_{op} < T_{max}$			100	
CMR	Common mode rejection	0 V to 3.3 V, V _{out} = 1.65 V, T _{op} = 25 °C	60	78		
	ratio, 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	55			40
A_{vd}	Large signal voltage gain	R_L = 10 k Ω , V_{out} = 0.5 V to 2.8 V, T_{op} = 25 °C	80	90		dB
		$T_{min} < T_{op} < T_{max}$	75			
V _{CC} -		$R_L = 10 \text{ k}\Omega$, $T_{min} < T_{op} < T_{max}$		15	40	
V_{OH}	High level output voltage	$R_L = 600 \text{ k}\Omega$, $T_{min} < T_{op} < T_{max}$		45	150	
	1 1 1 1 1	$R_L = 10 \text{ k}\Omega$, $T_{min} < T_{op} < T_{max}$		15	40	mV
V_{OL}	Low level output voltage	$R_L = 600 \text{ k}\Omega, T_{min} < T_{op} < T_{max}$		45	150	
	1	V _o = 3.3 V, T _{op} = 25 °C	18	32		
	Isink	$T_{min} < T_{op} < T_{max}$	16			
l _{out}	1	V _o = 0 V, T _{op} = 25 °C	18	35		mA
	Isource	$T_{min} < T_{op} < T_{max}$	16			1117 (
Icc	Supply current (per channel)	No load, $V_{out} = V_{CC}/2$, $T_{min} < T_{op} < T_{max}$		0.8	1.1	
		AC performance				
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF},$ $f = 100 \text{ kHz}, T_{op} = 25 \text{ °C}$		20		MHz
	Minimum gais for stability	Phase margin = 45 °, R_f = 10 $k\Omega$, R_L = 2 $k\Omega$, C_L = 100 pF, T_{op} = 25 °C, positive gain configuration		4		\/\/
Gain Minimum gain for stability		Phase margin = 45 °, R_f = 10 $k\Omega$, R_L = 2 $k\Omega$, C_L = 100 pF, T_{op} = 25 °C, negative gain configuration		-3		V/V
SR	Slew rate	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF},$ $f = 100 \text{ kHz}, T_{op} = 25 \text{ °C}$		10		V/µs

TSV991, TSV992, TSV994 TSV991A, TSV992A,

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
en	Equivalent input noise voltage	f = 10 kHz, T _{op} = 25 °C		21		nV/√Hz
THD+N	Total harmonic distortion	$G = -3$, $f = 1$ kHz, $R_L = 2$ k Ω , Bw = 22 kHz, $V_{icm} = V_{CC}/2$, $V_{out} = 2.8$ V_{pp} , $T_{op} = 25$ °C		0.0018		%

⁽¹⁾Guaranteed by design

Table 5: Electrical characteristics at VCC+ = 5 V, VCC- = 0 V, Vicm = VCC/2, and RL connected to VCC/2, full temperature range (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance				
		T _{op} = 25 °C		0.1	4.5	
	Offset voltage TSV99x	$T_{min} < T_{op} < T_{max}$			7.5	
V_{io}		T _{op} = 25 °C			1.5	mV
	Offset voltage TSV99xA	$T_{min} < T_{op} < T_{max}$			3	
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
	Input offset current,	T _{op} = 25 °C		1	10	
l _{io}	$(V_{out} = V_{CC}/2)^{(1)}$	$T_{min} < T_{op} < T_{max}$			100	A
,	Input bias current,	T _{op} = 25 °C		1	10	pА
l _{ib}	$(V_{\text{out}} = V_{\text{CC}}/2)^{(1)}$	$T_{min} < T_{op} < T_{max}$			100	
CMR	Common mode rejection	$0 \text{ V to 5 V}, V_{out} = 2.5 \text{ V}, T_{op} = 25 \text{ °C}$	62	82		
	ratio, 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	57			
SVR	Supply voltage rejection ratio, 20 log ($\Delta V_{cc}/\Delta V_{io}$)	V _{CC} = 2.5 to 5 V	70	86		dB
A _{vd}	Large signal voltage gain	$R_{L}\text{= }10\text{ k}\Omega,V_{out}\text{= }0.5\text{ V to }4.5\text{ V},$ $T_{op}\text{= }25^{\circ}\text{C}$	80	91		
		$T_{min} < T_{op} < T_{max}$	75			
V _{CC} -	Lligh level output voltage	$R_L = 10 \text{ k}\Omega, T_{min} < T_{op} < T_{max}$		15	40	
V _{OH}	High level output voltage	$R_L = 600 \; k\Omega, \; T_{min} < T_{op} < T_{max}$		45	150	mV
\/	Low lovel output voltage	$R_L = 10 \; k\Omega, \; T_{min} < T_{op} < T_{max}$		15	40	IIIV
V _{OL}	Low level output voltage	$R_L = 600 \; k\Omega, \; T_{min} < T_{op} < T_{max}$		45	150	
	1	$V_o = 5 \text{ V}, T_{op} = 25 ^{\circ}\text{C}$	18	32		
l _{out}	I _{sink}	$T_{min} < T_{op} < T_{max}$	16			
out	1	V _o = 0 V, T _{op} = 25 °C	18	35		mA
	Isource	$T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$	16			
Icc	Supply current (per channel)	No load, $V_{out} = 2.5 \text{ V}$, $T_{min} < T_{op} < T_{max}$		0.82	1.1	
		AC performance				
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF},$ $f = 100 \text{ kHz}, T_{op} = 25 \text{ °C}$		20		MHz
Gain	Minimum gain for stability	Phase margin = 45 °, R_f = 10 k Ω , R_L = 2 k Ω , C_L = 100 pF, T_{op} = 25 °C, positive gain configuration		4		V/V
Gain	Minimum gain for stability	Phase margin = 45 °, R_f = 10 k Ω , R_L = 2 k Ω , C_L = 100 pF, T_{op} = 25 °C, negative gain configuration		-3		V/V

TSV991, TSV992, TSV994 TSV991A, TSV992A,

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
SR	Slew rate	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF},$ $T_{op} = 25 \text{ °C}$		10		V/µs
en	Equivalent input noise voltage	f = 10 kHz, T _{op} = 25 °C		21		nV/√Hz
THD+N	Total harmonic distortion	$G = -3, f = 1 \text{ kHz}, R_L = 2 \text{ k}\Omega, \\ Bw = 22 \text{ kHz}, V_{icm} = V_{CC}/2, \\ V_{out} = 4.4 \text{ V}_{pp}, T_{op} = 25 \text{ °C}$		0.0014		%

⁽¹⁾Guaranteed by design

Figure 1: Input offset voltage distribution at T = 25 ° C Vcc=5V V icm=2.5V 120 Tamb=25°C 100 Quantity of parts 80 60 40 20 0 -3 -2 -1 0 3 Input offs et Voltage (mV)

Figure 2: Input offset voltage distribution at T = 125 ° C

40

Vcc=5V
Vicm=2.5V
Tamb=125°C

10

10

10

11

Input offset Voltage (mV)

Figure 3: Supply current vs. input common mode voltage at VCC = 2.5 V

1.0

0.8

T=25°C

T=40°C

3 Application information

3.1 Driving resistive and capacitive loads

These products are low-voltage, low-power operational amplifiers optimized to drive rather large resistive loads above 2 $k\Omega$.

TSV99x products are not unity gain stable. To ensure proper stability they must be used in a gain configuration, with a minimum gain of -3 or 4.

However, they can be used in a "follower" configuration by adding a small, in-series resistor at the output, which drastically improves the stability of the device (Figure 15 shows the recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on the bench and simulated with the simulation model.

Another way to improve stability and reduce peaking is to add a capacitor in parallel with the feedback resistor. As shown in *Figure 16*, the feedback capacitor drastically reduces the peaking versus capacitive load (inverting gain configuration, gain = -2).

3.2 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

3.3 Macromodel

An accurate macromodel of the TSV99x is available on STMicroelectronics' web site at **www.st.com**. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV99x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, *however, it does not replace on-board measurements*.

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 SOT23-5 package information

A A2

A2

A1

E

Figure 17: SOT23-5 package outline

Table 6: SOT23-5 mechanical data

	Dimensions							
Ref.	Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	0.90	1.20	1.45	0.035	0.047	0.057		
A1			0.15			0.006		
A2	0.90	1.05	1.30	0.035	0.041	0.051		
В	0.35	0.40	0.50	0.014	0.016	0.020		
С	0.09	0.15	0.20	0.004	0.006	0.008		
D	2.80	2.90	3.00	0.110	0.114	0.118		
D1		1.90			0.075			
е		0.95			0.037			
Е	2.60	2.80	3.00	0.102	0.110	0.118		
F	1.50	1.60	1.75	0.059	0.063	0.069		
L	0.10	0.35	0.60	0.004	0.014	0.024		
K	0 degrees		10 degrees	0 degrees		10 degrees		

4.2 DFN8 2 x 2 (NB) package information

Figure 18: DFN8 2 x 2 mm (NB) package outline

Table 7: DFN8 2 x 2 x 0.6 mm (NB) mechanical data (pitch 0.5 mm)

			Dimer	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.51	0.55	0.60	0.020	0.022	0.024
A1			0.05			0.002
А3		0.15			0.006	
b	0.18	0.25	0.30	0.007	0.010	0.012
D	1.85	2.00	2.15	0.073	0.079	0.085
D2	1.45	1.60	1.70	0.057	0.063	0.067
Е	1.85	2.00	2.15	0.073	0.079	0.085
E2	0.75	0.90	1.00	0.030	0.035	0.039
е		0.50			0.020	
L			0.425			0.017
ddd			0.08			0.003

Figure 19: DFN8 2 x 2 mm (NB) recommended footprint

4.3 DFN6 1.3 x 1.6 x 0.55 (NA - option 2) package information

Figure 20: DFN6 1.3 x 1.6 x 0.55 package outline D PIN #1 INDEX AREA ш) asa (△ aaa C 2x TOP VIEW // ccc C SEATING PLANE 7\ Nx eee C SIDE VIEW PIN #1 ID 3 bbb(M) ddd(M) Terminal BOTTOM VIEW

Tip

Table 8: DFN6 1.3 x 1.6 x 0.55 mechanical data

			Dimer	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.50	0.55	0.60	0.020	0.022	0.024
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3		0.15			0.006	
В	0.15	0.20	0.25	0.006	0.008	0.010
D		1.30			0.051	
E		1.60			0.063	
е		0.40			0.016	
L	0.453	0.553	0.653	0.018	0.022	0.026
N		6			0.236	
aaa		0.05			0.002	
bbb		0.07			0.003	
ccc		0.10			0.004	
ddd		0.05			0.002	
eee		0.08			0.003	

Figure 21: DFN6 1.3 x 1.6 x 0.55 recommended footprint

4.4 MiniSO8 package information

Figure 22: MiniSO8 package outline

Table 9: MiniSO8 mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.1			0.043	
A1	0		0.15	0		0.006	
A2	0.75	0.85	0.95	0.030	0.033	0.037	
b	0.22		0.40	0.009		0.016	
С	0.08		0.23	0.003		0.009	
D	2.80	3.00	3.20	0.11	0.118	0.126	
Е	4.65	4.90	5.15	0.183	0.193	0.203	
E1	2.80	3.00	3.10	0.11	0.118	0.122	
е		0.65			0.026		
L	0.40	0.60	0.80	0.016	0.024	0.031	
L1		0.95			0.037		
L2		0.25			0.010		
k	0°		8°	0°		8°	
ccc			0.10			0.004	

4.5 SO8 package information

Figure 23: SO8 package outline

Table 10: SO8 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.75			0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25			0.049			
b	0.28		0.48	0.011		0.019	
С	0.17		0.23	0.007		0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
Е	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
е		1.27			0.050		
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
L1		1.04			0.040		
k	1°		8°	1°		8°	
ccc			0.10			0.004	

4.6 SO14 package information

D

hx 45'

c

SEATING
PLANE

CAGE PLANE

1

e

7

Figure 24: SO14 package outline

Table 11: SO14 mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	1.35		1.75	0.05		0.068	
A1	0.10		0.25	0.004		0.009	
A2	1.10		1.65	0.04		0.06	
В	0.33		0.51	0.01		0.02	
С	0.19		0.25	0.007		0.009	
D	8.55		8.75	0.33		0.34	
E	3.80		4.0	0.15		0.15	
е		1.27			0.05		
Н	5.80		6.20	0.22		0.24	
h	0.25		0.50	0.009		0.02	
L	0.40		1.27	0.015		0.05	
k	8° (max)						
ddd			0.10			0.004	

4.7 TSSOP14 package information

Figure 25: TSSOP14 package outline

Table 12: TSSOP14 mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.20			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.90	5.00	5.10	0.193	0.197	0.201	
Е	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.176	
е		0.65			0.0256		
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00			0.039		
k	0°		8°	0°		8°	
aaa			0.10			0.004	

5 Ordering information

Table 13: Order codes

Order code	Temperature range	Package	Packing	Marking
TSV991ILT		SOT22 F		K130
TSV991AILT		SOT23-5		K129
TSV991IQ2T		DENIG O. O		K1F
TSV991AIQ2T		DFN8 2x2		K1E
TSV991AIQ1T		DFN6 1.3x1.6x0.55		K5
TSV992IST		M: :000		K132
TSV992AIST	-40 °C to 125 °C	MiniSO8		K135
TSV992IDT		SO8		V992I
TSV992AIDT				V992AI
TSV994IPT		TSSOP14	Tape and reel	V994I
TSV994AIPT				V994AI
TSV994IDT		SO14		V994I
TSV994AIDT		3014		V994AI
TSV991IYLT (1)		SOT23-5		K149
TSV991AIYLT (1)		50123-5		K150
TSV992IYDT (1)		200		V992IY
TSV992AIYDT (1)	-40 °C to 125 °C automotive grade	SO8		V992AY
TSV992IYST (1)		MiniCOO		K149
TSV992AIYST (1)		MiniSO8		K150
TSV994IYDT (1)		8044		V994IY
TSV994AIYDT (1)		SO14		V994AY
TSV994IYPT (1)		T000014		V994IY
TSV994AIYPT (1)		TSSOP14		V994AY

Notes:

 $^{^{(1)}}$ Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

In the table above, all packages except the SO14 are "moisture sensitivity level 1" as per Jedec J-STD-020-C. SO14 is Jedec level 3.

6 Revision history

Table 14: Document revision history

Date	Revision	Changes	
31-Jul-2006	1	Preliminary data release for product under development.	
07-Nov-2006	2	Final version of datasheet.	
12-Dec-2006	3	Noise and distortion figures added.	
07-Jun-2007	4	ESD tolerance modified for SO14, CDM in <i>Table 1: "Absolute maximum ratings (AMR)"</i> . Automotive grade commercial products added in <i>Table 13: "Order codes"</i> . Note about SO14 added in <i>Table 13: "Order codes"</i> . Limits in temperature added in <i>Section 2: "Electrical characteristics"</i> .	
11-Feb-2008	5	Corrected MiniSO8 package information. Corrected footnote for automotive grade order codes in order code table. Improved presentation of package information.	
25-May-2009	6	Added input current information in table <i>Table 1: "Absolute maximum ratings (AMR)"</i> . Added <i>Section 3: "Application information"</i> . Updated all packages in <i>Section 4: "Package information"</i> . Added new order codes: TSV991IYLT, TSV991AIYLT, TSV992IYST, TSV992AIYST, TSV994IYPT, TSV994AIYPT in <i>Table 13: "Order codes"</i> .	
19-Oct-2009	7	Added A versions of devices in title on cover page. Added parameters for full temperature range in <i>Table 3</i> , <i>Table 4</i> , and <i>Table 5</i> . Removed gain margin and phase margin parameters in <i>Table 3</i> , <i>Table 4</i> , and <i>Table 5</i> . These parameters have been replaced by the gain parameter (minimum gain for stability). Added <i>Figure 14</i> and <i>Figure 16</i> .	
14-Jan-2010	8	Added parameters for full temperature range in <i>Table 3</i> , <i>Table 4</i> , and <i>Table 5</i> . Modified note relative to automotive grade in <i>Table 13</i> : "Order codes".	
22-Oct-2012	9	Document status changed to production data. Modified gain value in <i>Features</i> and <i>Description</i> . Added DFN8 2x2 pin connection diagram. <i>Table 1: "Absolute maximum ratings (AMR)"</i> : added package DFN8 2x2 to rows R _{thja} and ESD. <i>Table 3, Table 4,</i> and <i>Table 5</i> : replaced "DV _{io} " with ΔV _{io} /ΔT; modified "Gain" and "THD+N" conditions and typical values. <i>Figure 7</i> and <i>Figure 8</i> : added arrows indicating "Gain" and 'Phase".	

Date	Revision	Changes
22-Oct-2012	9 cont'd	Figure 11 and Figure 12: updated. Added Figure 18: "DFN8 2 x 2 mm (NB) package outline" and Figure 19: "DFN8 2 x 2 mm (NB) recommended footprint". Table 13: "Order codes": updated automotive grade qualification and added order code of DFN8 package.
10-Mar-2014	10	Table 13: "Order codes": added new commercial product TSV991AlQ2T; corrected "Marking" error for TSV991IQ2T from K1E to K1F.
12-Jun-2015	11	Added DFN6 1.3 x 1.6 x 0.55 package for new order code TSV991AIQ1T. Updated "L" dimension of Section 4.2: "DFN8 2 x 2 (NB) package information" Updated min "k" value of Section 4.5: "SO8 package information"

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

