Name _____

Real and Complex Analysis Qualifying Exam New System Saeki & Burckel Spring 2004

Instructions: Below you will find 8 problems. Each problem is worth 10 points. **Time:** 2 hours.

NOTATIONS: $\mathbb{R} = \text{set of all real numbers}$; $\mathbb{C} = \text{set of all complex numbers}$; $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ (the unit disk); $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ (the unit circle); $\lambda = \text{Lebesgue measure on } \mathbb{R}$.

1. Let $f:[0,1]\to\mathbb{C}$ be a continuous function. Define the function $F:\mathbb{C}\smallsetminus[0,1]\to\mathbb{C}$ by

$$F(z) = \int_0^1 \frac{f(t)}{t-z} dt, \quad z \in \mathbb{C} \setminus [0,1].$$

Prove that F is holomorphic.

2. Consider the annulus $\Omega = \{z \in \mathbb{C} : 1 < |z| < 2\}$. Show there does not exist a sequence $(P_n)_{n=1}^{\infty}$ of polynomials in one variable, such that

$$P_n(z) \xrightarrow[n \to \infty]{\text{uniformly}} \frac{1}{z}, \ \forall z \in \Omega.$$

3. Compute

$$\int_0^\infty \frac{dx}{1+x^7}.$$

HINT: For (large) R > 1, use the boundary of the circular sector

$$C_R = \{ re^{i\theta} : 0 < r < R, \ 0 < \theta < 2\pi/7 \}$$

as contour.

4. Let $f:[0,\infty)\to\mathbb{C}$ be a Lebesgue measurable function. Assume there exists real numbers a,k>0, such that

$$|f(x)| \le ae^{-kx}, \ \forall x \ge 0.$$

Consider the half-plane $H = \{z \in \mathbb{C} : \text{Im } z > k\}.$

- (i) Prove that, for every $z \in H$, the function $[0, \infty) \ni t \longmapsto e^{itz} f(t)$ is Lebesgue integrable.
- (ii) Prove that the function $F: H \ni z \longmapsto \int_0^\infty e^{itz} f(t) dt \in \mathbb{C}$ is holomorphic.
- **5.** Call a subset of \mathbb{R} *negligible*, if it is Lebesgue measurable, and has Lebesgue measure zero. Prove that, for $A \subset \mathbb{R}$, the following are equivalent:
 - (i) A is negligible;
 - (ii) there is a sequence $(D_n)_{n=1}^{\infty}$ of open sets in \mathbb{R} with $\lim_{n\to\infty} \lambda(D_n) = 0$, and $A \subset \bigcap_{n=1}^{\infty} D_n$.
- **6.** Let $p > q \ge 1$ be real numbers.
 - (i) Prove the inclusion $L^p([0,1],\lambda) \subset L^q([0,1],\lambda)$.
 - (ii) Show (by example) that the inclusion in (i) is strict.
 - (iii) Give an example of a measure space (X, \mathcal{A}, μ) , for which one has the inclusion $L^p(X, \mathcal{A}, \mu) \supset L^q(X, \mathcal{A}, \mu)$.
- 7. Let $p \ge 1$ be a real number, and let $(f_n)_{n=1}^{\infty} \subset L^p(\mathbb{R}, \lambda)$ be a sequence with $\lim_{n\to\infty} \|f_n\|_p = 0$. Prove there exist integers $1 \le n_1 < n_2 < \dots$, such that $\lim_{k\to\infty} f_{n_k} = 0$, λ -a.e.
- **8.** Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function with the property:

$$f(z+m+ni) = f(z), \ \forall z \in \mathbb{C}, m, n \in \mathbb{Z}.$$

Prove that f is constant.