TABLE OF CONTENTS

AUD-L1: MUSIC INFORMATION RETRIEVAL I
AUD-L1.1: ADDRESSING THE CONFOUNDS OF ACCOMPANIMENTS IN SINGER
AUD-L1.2: DISENTANGLED MULTIDIMENSIONAL METRIC LEARNING FOR MUSIC
AUD-L1.3: LEARNING THE HELIX TOPOLOGY OF MUSICAL PITCH
AUD-L1.4: AUDIO-BASED AUTO-TAGGING WITH CONTEXTUAL TAGS FOR MUSIC
AUD-L1.5: ACCURATE AND SCALABLE VERSION IDENTIFICATION USING
AUD-L1.6: SIMILARITY LEARNING FOR COVER SONG IDENTIFICATION USING
AUD-L2: DEEP LEARNING FOR SOURCE SEPARATION
AUD-L2.1: TWO-STEP SOUND SOURCE SEPARATION: TRAINING ON LEARNED
AUD-L2.2: A MULTI-PHASE GAMMATONE FILTERBANK FOR SPEECH SEPARATION
AUD-L2.3: IMPROVING VOICE SEPARATION BY INCORPORATING END-TO-END
AUD-L2.4: DUAL-PATH RNN: EFFICIENT LONG SEQUENCE MODELING FOR
AUD-L2.5: CONTROLLING THE PERCEIVED SOUND QUALITY FOR DIALOGUE

AUD-L2.0: UNSUPERVISED TRAINING FOR DEEP SPEECH SOURCE SEPARATION
WITH KULLBACK-LEIBLER DIVERGENCE BASED PROBABILISTIC LOSS FUNCTION Masahito Togami, LINE Corporation, Japan; Yoshiki Masuyama, Waseda University, Japan; Tatsuya Komatsu, LINE Corporation, Japan; Yu Nakagome, Waseda University, Japan
AUD-L3: ACOUSTIC EVENT DETECTION
AUD-ES, ACOUSTIC EVENT DETECTION
AUD-L3.1: A FRAMEWORK FOR THE ROBUST EVALUATION OF SOUND EVENT
AUD-L3.2: WEAKLY-SUPERVISED SOUND EVENT DETECTION WITH
Koichi Miyazaki, Tatsuya Komatsu, LINE Corporation, Japan; Tomoki Hayashi, Nagoya University, Japan; Shinji Watanabe, Johns Hopkins University, United States; Tomoki Toda, Kazuya Takeda, Nagoya University, Japan
AUD-L3.3: A SEQUENCE MATCHING NETWORK FOR POLYPHONIC SOUND
Thi Ngoc Tho Nguyen, Nanyang Technological University, Singapore; Douglas L. Jones, University of Illinois at Urbana-Champaign, United States; Woon-Seng Gan, Nanyang Technological University, Singapore
AUD-L3.4: FEW-SHOT ACOUSTIC EVENT DETECTION VIA META LEARNING
AUD-L3.5: FEW-SHOT SOUND EVENT DETECTION
AUD-L3.6: SOUND EVENT DETECTION IN SYNTHETIC DOMESTIC
Romain Serizel, Nicolas Turpault, Université de Lorraine, CNRS, Inria, Loria, France; Ankit Shah, Carnegie Mellon University, United States; Justin Salamon, Adobe Research, United States
AUD-L4: AUDIO AND SPEECH SOURCE SEPARATION
AUD-L4.1: LEARNING TO SEPARATE SOUNDS FROM WEAKLY LABELED SCENES9
Fatemeh Pishdadian, Northwestern University, United States; Gordon Wichern, Jonathan Le Roux, Mitsubishi Electric Research Laboratories (MERL), United States
AUD-L4.2: IMPROVING UNIVERSAL SOUND SEPARATION USING SOUND90
CLASSIFICATION Efthymios Tzinis, University of Illinois at Urbana-Champaign, United States; Scott Wisdom, John R. Hershey, Aren Jansen, Google, United States; Daniel P. W. Ellis, Google Research, United States
AUD-L4.3: SOURCE SEPARATION WITH WEAKLY LABELLED DATA: AN APPROACH TO
COMPUTATIONAL AUDITORY SCENE ANALYSIS Qiuqiang Kong, Yuxuan Wang, Xuchen Song, ByteDance, United States; Yin Cao, Wenwu Wang, Mark D. Plumbley, University of Surrey, United Kingdom
AUD-L4.4: BOOSTED LOCALITY SENSITIVE HASHING: DISCRIMINATIVE BINARY
AUD-L4.5: A FREQUENCY-DOMAIN BSS METHOD BASED ON L1 NORM, UNITARY11
CONSTRAINT, AND CAYLEY TRANSFORM Satoru Emura, Hiroshi Sawada, Shoko Araki, Noboru Harada, NTT, Japan

AUD-L4.6: END-TO-END NON-NEGATIVE AUTOENCODERS FOR SOUND SOURCE
AUD-L5: CLASSIFICATION OF ACOUSTIC SCENES AND EVENTS
AUD-L5.1: COINCIDENCE, CATEGORIZATION, AND CONSOLIDATION: LEARNING
AUD-L5.2: ACOUSTIC SCENE CLASSIFICATION FOR MISMATCHED RECORDING
AUD-L5.3: LIMITATIONS OF WEAK LABELS FOR EMBEDDING AND TAGGING
AUD-L5.4: MT-GCN FOR MULTI-LABEL AUDIO TAGGING WITH NOISY LABELS
AUD-L5.5: ACOUSTIC SCENE CLASSIFICATION USING DEEP RESIDUAL
AUD-L5.6: END-TO-END AUDITORY OBJECT RECOGNITION VIA INCEPTION
AUD-L6: ACOUSTIC ENVIRONMENTS AND SPATIAL AUDIO II
AUD-L6.1: TRANSLATION OF A HIGHER ORDER AMBISONICS SOUND SCENE
AUD-L6.2: BLASTER: AN OFF-GRID METHOD FOR BLIND AND REGULARIZED
AUD-L6.3: EVALUATION OF SENSOR SELF-NOISE IN BINAURAL RENDERING OF
AUD-L6.4: MUTUAL-INFORMATION-BASED SENSOR PLACEMENT FOR SPATIAL
AUD-L6.5: FAST ACOUSTIC SCATTERING USING CONVOLUTIONAL NEURAL

AUD-L6.6: FREQUENCY-DEPENDENT DIRECTIONAL FEEDBACK DELAY
Benou Alary, Auto Oniversity, Pintana, Archoniis I ottus, Iampere Oniversity, Pintana
AUD-L7: SIGNAL ENHANCEMENT AND RESTORATION I
AUD-L7.1: SPEECH ENHANCEMENT USING SELF-ADAPTATION AND MULTI-HEAD
Yoshiki Masuyama, Daiki Takeuchi, Waseda University, Japan
AUD-L7,2: PEVD-BASED SPEECH ENHANCEMENT IN REVERBERANT
AUD-L7.3: DNN-BASED SPEECH PRESENCE PROBABILITY ESTIMATION FOR
AUD-L7.4: NONLINEAR SPATIAL FILTERING FOR MULTICHANNEL SPEECH
AUD-L7.5: GENERALIZED COHERENCE-BASED SIGNAL ENHANCEMENT
AUD-L7.6: SPEAKER INDEPENDENCE OF NEURAL VOCODERS AND THEIR EFFECT
AUD-L8: ACOUSTIC SENSOR ARRAY SIGNAL PROCESSING II
AUD-L8.1: ROBUST AND STEERABLE KRONECKER PRODUCT DIFFERENTIAL
AUD-L8.2: JOINTLY OPTIMAL DEREVERBERATION AND BEAMFORMING
AUD-L8.3: EXPLOITING RAYS IN BLIND LOCALIZATION OF DISTRIBUTED
AUD-L8.4: A NOVEL METHOD FOR OBTAINING DIFFUSE FIELD MEASUREMENTS
AUD-L8.5: MULTI-CHANNEL SPEECH SOURCE SEPARATION AND
AUD-L8.6: FAST AND STABLE BLIND SOURCE SEPARATION WITH RANK-1 UPDATES

AUD-L9: MUSIC SIGNAL PROCESSING II

AUD-L9.1: MODELING PLATE AND SPRING REVERBERATION USING A	41
AUD-L9.2: DEEP AUTOTUNER: A PITCH CORRECTING NETWORK FOR SINGING24 PERFORMANCES	16
Sanna Wager, Indiana University Bloomington, United States; George Tzanetakis, University of Victoria, Canada; Cheng-i Wang Smule, Inc, United States; Minje Kim, Indiana University Bloomington, United States	3,
AUD-L9.3: PERCEPTUAL LOSS FUNCTION FOR NEURAL MODELLING OF AUDIO	51
Alec Wright, Vesa Välimäki, Aalto University, Finland	
AUD-L9.4: ONE-SHOT PARAMETRIC AUDIO PRODUCTION STYLE TRANSFER WITH	56
AUD-L9.5: SPEECH-TO-SINGING CONVERSION IN AN ENCODER-DECODER	51
FRAMEWORK Jayneel Parekh, Telecom Paris, Institut Polytechnique de Paris, France; Preeti Rao, Indian Institute of Technology Bombay, India; Yi-Hsuan Yang, Academia Sinica, Taiwan	
AUD-L9.6: TENSORFLOW AUDIO MODELS IN ESSENTIA	56
AUD-P1: DEEP LEARNING FOR AUDIO CLASSIFICATION	
AUD-P1.1: ANOMALOUS SOUND DETECTION BASED ON INTERPOLATION DEEP	71
NEURAL NETWORK Kaori Suefusa, Hitachi, Ltd., Japan; Tomoya Nishida, University of Tokyo, Japan; Purohit Harsh, Ryo Tanabe, Takashi Endo, Yohei Kawaguchi, Hitachi, Ltd., Japan	
AUD-P1.2: A-CRNN: A DOMAIN ADAPTATION MODEL FOR SOUND EVENT	76
DETECTION Wei Wei, National University of Singapore, Singapore; Hongning Zhu, Fudan University, China; Emmanouil Benetos, Queen Mary University of London, United Kingdom; Ye Wang, National University of Singapore, Singapore	
AUD-P1.3: SPIDERNET: ATTENTION NETWORK FOR ONE-SHOT ANOMALY	31
DETECTION IN SOUNDS Yuma Koizumi, Masahiro Yasuda, Shin Murata, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, NTT Corporation, Japan	
AUD-P1.4: SOUND EVENT DETECTION VIA DILATED CONVOLUTIONAL	36
AUD-P1.5: A DEEP NEURAL NETWORK-DRIVEN FEATURE LEARNING METHOD)1
AUD-P1.6: WEAKLY LABELLED AUDIO TAGGING VIA CONVOLUTIONAL) 6

AUD-P1.7: A STUDY ON THE TRANSFERABILITY OF ADVERSARIAL ATTACKS IN
SOUND EVENT CLASSIFICATION Vinod Subramanian, Arjun Pankajakshan, Emmanouil Benetos, Queen Mary University of London, United Kingdom; Ning Xu, SN-TM-Dayard, BOLLLed, United Kingdom; Mark Sandley, Overn Mary University of London, United Kingdom; Ning Xu,
SKoT McDonald, ROLI Ltd., United Kingdom; Mark Sandler, Queen Mary University of London, United Kingdom
AUD-P1.8: PROPELLER NOISE DETECTION WITH DEEP LEARNING
AUD-P1.9: DURATION ROBUST WEAKLY SUPERVISED SOUND EVENT
DETECTION
Heinrich Dinkel, Kai Yu, Shanghai Jiao Tong University, China
AUD-P1.10: A COMPARISON OF POOLING METHODS ON LSTM MODELS FOR RARE
ACOUSTIC EVENT CLASSIFICATION
Chieh-Chi Kao, Ming Sun, Amazon, Inc., United States; Weiran Wang, Salesforce Research, United States; Chao Wang, Amazon, Inc., United States
AUD-P1.11: AN ONTOLOGY-AWARE FRAMEWORK FOR AUDIO EVENT
CLASSIFICATION Visit of the product
Yiwei Sun, Pennsylvania State University, United States; Shabnam Ghaffarzadegan, Bosch Research and Technology Center, United States
ALID DI 12. TACE AWADE MEAN TEACHED METHOD FOR LADOE COALE WEARLY
AUD-P1.12: TASK-AWARE MEAN TEACHER METHOD FOR LARGE SCALE WEAKLY
Jie Yan, Yan Song, Li-Rong Dai, University of Science and Technology of China, China; Ian McLoughlin, University of Kent,
United Kingdom
AUD-P2: DEEP LEARNING FOR SPEECH AND AUDIO
ALID DA 1. WANTENETS: A NO DEPENDENCE CONVOLUTIONAL WATEROOM DAGED.
AUD-P2.1: WAWENETS: A NO-REFERENCE CONVOLUTIONAL WAVEFORM-BASED
Andrew Catellier, Stephen Voran, Institute for Telecommunication Sciences, United States
AUD-P2.2: A NEURAL NETWORK FOR MONAURAL INTRUSIVE SPEECH
INTELLIGIBILITY PREDICTION
Mathias Bach Pedersen, Aalborg University, Denmark; Asger Heidemann Andersen, Oticon A/S, Denmark; Søren Holdt Jensen,
Jesper Jensen, Aalborg University, Denmark
AUD-P2.3: SOURCE CODING OF AUDIO SIGNALS WITH A GENERATIVE MODEL
Roy Fejgin, Dolby Laboratories, United States; Janusz Klejsa, Lars Villemoes, Dolby Sweden AB, Sweden; Cong Zhou, Dolby Laboratories, United States
AUD-P2.4: FULL-REFERENCE SPEECH QUALITY ESTIMATION WITH ATTENTIONAL
Gabriel Mittag, Sebastian Möller, Technische Universität Berlin, Germany
AUD-P2.5: ENHANCED METHOD OF AUDIO CODING USING CNN-BASED SPECTRAL
RECOVERY WITH ADAPTIVE STRUCTURE
Seong-Hyeon Shin, Kwangwoon University, Korea (South); Seung Kwon Beack, Wootaek Lim, Electronics and
Telecommunications Research Institute (ETRI), Korea (South); Hochong Park, Kwangwoon University, Korea (South)
AUD-P2.6: AUDIO CODEC ENHANCEMENT WITH GENERATIVE ADVERSARIAL
NETWORKS Arijit Biswas, Dolby Germany GmbH, Germany; Dai Jia, Dolby Laboratories, China
AUD-P2.7: EFFICIENT AND SCALABLE NEURAL RESIDUAL WAVEFORM CODING
WITH COLLABORATIVE QUANTIZATION Kai Zhen, Indiana University, United States; Mi Suk Lee, Jongmo Sung, Seungkwon Beack, Electronics and Telecommunications
Research Institute (ETRI), Korea (South); Minje Kim, Indiana University, United States

AUD-P2.8: A DUAL-STAGED CONTEXT AGGREGATION METHOD TOWARDS	6
(South); Minje Kim, Indiana University, United States	
AUD-P2.9: A RECURRENT VARIATIONAL AUTOENCODER FOR SPEECH	1
AUD-P2.10: SPEAKERFILTER: DEEP LEARNING-BASED TARGET SPEAKER	6
AUD-P2.11: TACKLING REAL NOISY REVERBERANT MEETINGS WITH ALL-NEURAL	1
AUD-P2.12: TIME-DOMAIN AUDIO SOURCE SEPARATION BASED ON WAVE-U-NET	6
AUD-P3: ACOUSTIC ENVIRONMENTS AND SPATIAL AUDIO I	
AUD-P3.1: AUDITORY MODEL BASED SUBSETTING OF HEAD-RELATED TRANSFER	1
AUD-P3.2: IMPULSE RESPONSE DATA AUGMENTATION AND DEEP NEURAL	6
AUD-P3.4: INDIVIDUAL DISTANCE-DEPENDENT HRTFS MODELING THROUGH A	1
AUD-P3.6: EVALUATION OF DEEP-LEARNING-BASED VOICE ACTIVITY DETECTORS	6
AUD-P3.7: A MINIMAL PERSONALIZATION OF DYNAMIC BINAURAL SYNTHESIS	.1
AUD-P3.8: SOUND TEXTURE SYNTHESIS USING RI SPECTROGRAMS	6
AUD-P3.9: TIME DOMAIN VELOCITY VECTOR FOR RETRACING THE MULTIPATH	1
AUD-P3.10: ACOUSTIC MATCHING BY EMBEDDING IMPULSE RESPONSES	6
AUD-P3.11: JOINT ESTIMATION OF ACOUSTIC PARAMETERS FROM	1

AUD-P3.12: A FAST REDUCED-RANK SOUND ZONE CONTROL ALGORITHM USING
Liming Shi, Taewoong Lee, Aalborg University, Denmark; Lijun Zhang, Northwestern Polytechnical University, China; Jesper Kjær Nielsen, Mads Græsbøll Christensen, Aalborg University, Denmark
AUD-P4: FEEDBACK, NOISE, AND REVERBERATION
AUD-P4.1: AN EMPIRICAL STUDY ON ACOUSTIC FEEDBACK PATH ACROSS
AUD-P4.2: LOW COMPLEXITY NLMS FOR MULTIPLE LOUDSPEAKER ACOUSTIC
AUD-P4.3: A MULTICHANNEL KALMAN-BASED WIENER FILTER APPROACH FOR
AUD-P4.4: PRIMARY PATH ESTIMATOR BASED ON INDIVIDUAL SECONDARY PATH
AUD-P4.5: EFFICIENT MULTICHANNEL NONLINEAR ACOUSTIC ECHO
AUD-P4.6: ACTIVE CONTROL OF LINE SPECTRAL NOISE WITH SIMULTANEOUS
AUD-P4.7: ROBUST FREQUENCY-DOMAIN RECURSIVE LEAST M-ESTIMATE
AUD-P4.8: NEAREST KRONECKER PRODUCT DECOMPOSITION BASED
AUD-P4.9: JOINT BEAMFORMING AND REVERBERATION CANCELLATION USING A
AUD-P4.11: MULTI-MICROPHONE COMPLEX SPECTRAL MAPPING FOR SPEECH
AUD-P4.12: PREDICTING WORD ERROR RATE FOR REVERBERANT SPEECH
AUD-P5: MUSIC INFORMATION RETRIEVAL II
AUD-P5.1: AUTOMATIC LYRICS ALIGNMENT AND TRANSCRIPTION IN

AUD-P5.2: LOCAL KEY ESTIMATION IN CLASSICAL MUSIC RECORDINGS: A
AUD-P5.3: IMPROVING MUSIC TRANSCRIPTION BY PRE-STACKING A U-NET
AUD-P5.4: LEARNING TO RANK MUSIC TRACKS USING TRIPLET LOSS
AUD-P5.5: TRANSFORMER VAE: A HIERARCHICAL MODEL FOR STRUCTURE-AWARE
AUD-P5.6: A COMPARATIVE STUDY OF WESTERN AND CHINESE CLASSICAL MUSIC
AUD-P5.7: AUDIO-BASED DETECTION OF EXPLICIT CONTENT IN MUSIC
AUD-P5.8: NEW METRICS FOR EVALUATING THE ACCURACY OF FUNDAMENTAL
AUD-P5.9: DATA-DRIVEN HARMONIC FILTERS FOR AUDIO REPRESENTATION
AUD-P5.10: LEARNING A REPRESENTATION FOR COVER SONG IDENTIFICATION
AUD-P5.11: TOWARDS LINKING THE LAKH AND IMSLP DATASETS
AUD-P5.12: A MULTI-DILATION AND MULTI-RESOLUTION FULLY
AUD-P6: ACOUSTIC SENSOR ARRAY SIGNAL PROCESSING I
AUD-P6.1: AN IMPROVED SOLUTION TO THE FREQUENCY-INVARIANT
AUD-P6.2: BINAURAL AUDIO SOURCE REMIXING WITH MICROPHONE ARRAY
AUD-P6.3: EXPLOITING PERIODICITY FEATURES FOR JOINT DETECTION AND

AUD-P6.4: UNSUPERVISED MULTIPLE SOURCE LOCALIZATION USING RELATIVE571 HARMONIC COEFFICIENTS
Yonggang Hu, Prasanga N. Samarasinghe, Thushara D. Abhayapala, Australian National University, Australia; Sharon Gannot, Bar-Ilan University, Israel
AUD-P6.5: DATA-DRIVEN WIND SPEED ESTIMATION USING MULTIPLE
Daniele Mirabilii, Kishor Kayyar Lakshminarayana, Wolfgang Mack, Emanuël A. P. Habets, International Audio Laboratories Erlangen, Germany
AUD-P6.7: A DYNAMIC STREAM WEIGHT BACKPROP KALMAN FILTER FOR
Christopher Schymura, Ruhr-Universität Bochum, Germany; Tsubasa Ochiai, Marc Delcroix, Keisuke Kinoshita, Tomohiro Nakatani, Shoko Araki, NTT Corporation, Japan; Dorothea Kolossa, Ruhr-Universität Bochum, Germany
AUD-P6.8: MAXIMUM LIKELIHOOD MULTI-SPEAKER DIRECTION OF ARRIVAL
AUD-P6.9: OVERDETERMINED INDEPENDENT VECTOR ANALYSIS
AUD-P6.10: SPATIALLY GUIDED INDEPENDENT VECTOR ANALYSIS
AUD-P6.11: FAST INDEPENDENT VECTOR EXTRACTION BY ITERATIVE SINR
AUD-P6.12: REGULARIZED FAST MULTICHANNEL NONNEGATIVE MATRIX
FACTORIZATION WITH ILRMA-BASED PRIOR DISTRIBUTION OF JOINT-DIAGONALIZATION PROCESS
Keigo Kamo, Yuki Kubo, Norihiro Takamune, University of Tokyo, Japan; Daichi Kitamura, National Institute of Technology, Kagawa College, Japan; Hiroshi Saruwatari, University of Tokyo, Japan; Yu Takahashi, Kazunobu Kondo, Yamaha Corporation, Japan
AUD-P7: AUDIO CLASSIFICATION
AUD-P7.1: BEYOND THE DCASE 2017 CHALLENGE ON RARE SOUND EVENT
AUD-P7.2: METRIC LEARNING WITH BACKGROUND NOISE CLASS FOR
AUD-P7.3: SOUND EVENT DETECTION BY MULTITASK LEARNING OF SOUND
EVENTS AND SCENES WITH SOFT SCENE LABELS Keisuke Imoto, Noriyuki Tonami, Ritsumeikan University, Japan; Yuma Koizumi, Masahiro Yasuda, Nippon Telegraph and Telephone Corporation, Japan; Ryosuke Yamanishi, Yoichi Yamashita, Ritsumeikan University, Japan
AUD-P7.4: GUIDED LEARNING FOR WEAKLY-LABELED SEMI-SUPERVISED
SOUND EVENT DETECTION Liwei Lin, Xiangdong Wang, Hong Liu, Yueliang Qian, Institute of Computing Technology, Chinese Academy of Sciences, China

AUD-P7.5: STAGED TRAINING STRATEGY AND MULTI-ACTIVATION FOR AUDIO
AUD-P7.6: LEARNING WITH OUT-OF-DISTRIBUTION DATA FOR AUDIO
AUD-P7.7: MULTI-BRANCH LEARNING FOR WEAKLY-LABELED SOUND EVENT
AUD-P7.8: SCENE-DEPENDENT ACOUSTIC EVENT DETECTION WITH SCENE
AUD-P7.9: SOUND EVENT LOCALIZATION BASED ON SOUND INTENSITY VECTOR
AUD-P7.10: HIGH-RESOLUTION ATTENTION NETWORK WITH ACOUSTIC
AUD-P7.11: POLYPHONIC SOUND EVENT DETECTION USING TRANSPOSED
AUD-P7.12: SECOST: SEQUENTIAL CO-SUPERVISION FOR LARGE SCALE WEAKLY
AUD-P8: SOURCE SEPARATION AND ARRAY PROCESSING
AUD-P8.1: DEEP SPEECH EXTRACTION WITH TIME-VARYING SPATIAL FILTERING
AUD-P8.2: ADAPTIVE BLIND AUDIO SOURCE EXTRACTION SUPERVISED BY
AUD-P8.4: CONVERGENCE-GUARANTEED INDEPENDENT POSITIVE
AUD-P8.5: DETERMINED SOURCE SEPARATION USING THE SPARSITY OF

AUD-P8.6: IMPROVING SPEAKER DISCRIMINATION OF TARGET SPEECH	
AUD-P8.7: WHAMR!: NOISY AND REVERBERANT SINGLE-CHANNEL SPEECH	696
AUD-P9: TOPICS IN AUDIO ANALYSIS AND CLASSIFICATION	
AUD-P9.1: IMPACT OF A SHIFT-INVARIANT HARMONIC PHASE MODEL IN FULLY PARAMETRIC HARMONIC VOICE REPRESENTATION AND TIME/FREQUENCY SYNTHESIS Aníbal Ferreira, João Silva, Francisca Brito, University of Porto, Portugal; Deepen Sinha, ATC Labs, United States	701
AUD-P9.2: HEARING AID RESEARCH DATA SET FOR ACOUSTIC ENVIRONMENT	706
AUD-P9.3: AUDIO FEATURE EXTRACTION FOR VEHICLE ENGINE NOISE	.711
AUD-P9.4: TIME-FREQUENCY FEATURE DECOMPOSITION BASED ON SOUND	716
AUD-P9.5: VGGSOUND: A LARGE-SCALE AUDIO-VISUAL DATASET	721
AUD-P9.6: TRANSFER LEARNING FROM YOUTUBE SOUNDTRACKS TO TAG ARCTIC	
AUD-P9.7: DATA AUGMENTATION USING EMPIRICAL MODE DECOMPOSITION ON	731
AUD-P9.8: CLOTHO: AN AUDIO CAPTIONING DATASET Konstantinos Drossos, Samuel Lipping, Tuomas Virtanen, Tampere University, Finland	736
AUD-P9.9: ROBUST FUNDAMENTAL FREQUENCY ESTIMATION IN COLOURED	
AUD-P9.10: EFFICIENT BIRD SOUND DETECTION ON THE BELA EMBEDDED	746

AUD-P9.11: IMPROVING AUTOMATED SEGMENTATION OF RADIO SHOWS WITH
AUD-P9.12: SECL-UMONS DATABASE FOR SOUND EVENT CLASSIFICATION AND
AUD-P10: MUSIC SIGNAL PROCESSING I
AUD-P10.1: SYNTHESIZING ENGAGING MUSIC USING DYNAMIC MODELS OF
AUD-P10.2: HARMONICS BASED REPRESENTATION IN CLARINET TONE QUALITY
AUD-P10.3: SIMULTANEOUS SEPARATION AND TRANSCRIPTION OF MIXTURES
AUD-P10.4: THE ROLE OF ANNOTATION FUSION METHODS IN THE STUDY OF
AUD-P10.5: CONTENT BASED SINGING VOICE EXTRACTION FROM A MUSICAL
AUD-P10.6: NEURAL PERCUSSIVE SYNTHESIS PARAMETERISED BY HIGH-LEVEL
AUD-P10.7: NON-GRIFFIN–LIM TYPE SIGNAL RECOVERY FROM MAGNITUDE
AUD-P10.8: VAPAR SYNTH - A VARIATIONAL PARAMETRIC MODEL FOR AUDIO
AUD-P10.9: BANDWIDTH EXTENSION OF MUSICAL AUDIO SIGNALS WITH NO SIDE
AUD-P10.10: TOWARDS REAL-TIME SINGLE-CHANNEL SINGING-VOICE SEPARATION

GmbH, Austria; Franz Pernkopf, Graz University of Technology, Austria

AUD-P10.11: STATE-BASED TRANSCRIPTION OF COMPONENTS OF CARNATIC811 MUSIC
Venkata Viraraghavan, Arpan Pal, Tata Consultancy Services, India; Hema Murthy, R Aravind, Indian Institute of Technology Madras, India
AUD-P10.12: META-LEARNING EXTRACTORS FOR MUSIC SOURCE SEPARATION
AUD-P11: SIGNAL ENHANCEMENT AND RESTORATION II
AUD-P11.1: CONSISTENCY-AWARE MULTI-CHANNEL SPEECH ENHANCEMENT
AUD-P11.2: PHASE RECONSTRUCTION BASED ON RECURRENT PHASE
AUD-P11.3: PERFORMANCE STUDY OF A CONVOLUTIONAL TIME-DOMAIN AUDIO
AUD-P11.4: CHANNEL-ATTENTION DENSE U-NET FOR MULTICHANNEL SPEECH
AUD-P11.5: A COMPOSITE DNN ARCHITECTURE FOR SPEECH ENHANCEMENT
AUD-P11.6: GEOMETRICALLY CONSTRAINED INDEPENDENT VECTOR ANALYSIS
AUD-P11.7: REAL-TIME SPEECH ENHANCEMENT USING EQUILIBRIATED RNN
AUD-P11.8: SUBSPACE-BASED SPEECH CORRELATION VECTOR ESTIMATION FOR
AUD-P11.10: TIME-FREQUENCY LOSS FOR CNN BASED SPEECH
AUD-P11.11: TIME-DOMAIN NEURAL NETWORK APPROACH FOR SPEECH
AUD-P11.12: WEIGHTED SPEECH DISTORTION LOSSES FOR

AUD-P12: AUDIO, SPEECH AND MUSIC ANALYSIS

AUD-P12.1: SNORER DIARISATION BASED ON DEEP NEURAL NETWORK
Hector E. Romero, Ning Ma, Guy J. Brown, University of Sheffield, United Kingdom
AUD-P12.2: PLAYING TECHNIQUE RECOGNITION BY JOINT TIME—FREQUENCY
AUD-P12.3: PRIVACY AWARE ACOUSTIC SCENE SYNTHESIS USING DEEP
AUD-P12.4: ROBUSTNESS ASSESSMENT OF AUTOMATIC REINKE'S EDEMA
AUD-P12.5: WHOSECOUGH: IN-THE-WILD COUGHER VERIFICATION USING
MULTITASK LEARNING Matt Whitehill, University of Washington, United States; Jake Garrison, Google, Inc., United States; Shwetak Patel, University of Washington, United States
AUD-P12.6: CHIRPING UP THE RIGHT TREE: INCORPORATING BIOLOGICAL
AUD-P12.7: BEAMFORMING DESIGN FOR HIGH-RESOLUTION LOW-INTENSITY
AUD-P12.8: AN ATTENTION ENHANCED MULTI-TASK MODEL FOR OBJECTIVE
AUD-P12.9: HUMBUG ZOONIVERSE: A CROWD-SOURCED ACOUSTIC MOSQUITO
AUD-P12.10: SUBJECTIVE QUALITY ESTIMATION USING PESQ FOR HANDS-FREE
Sachiko Kurihara, Masahiro Fukui, NTT Corporation, Japan; Suehiro Shimauchi, Kanazawa Institute of Technology, Japan; Noboru Harada, NTT Corporation, Japan
BIO-L1: BIOELECTRICAL SIGNAL PROCESSING
BIO-L1.1: CLASSIFICATION OF EPILEPTIC IEEG SIGNALS BY CNN AND DATA
Xuyang Zhao, Saitama Institute of Technology, Japan; Jordi Sole '-Casals, University of Vic-Central University of Catalonia, Spain; Binghua Li, Zihao Huang, Nankai University, China; Andong Wang, Nanjing University of Science and Technology,

China; Jianting Cao, Saitama Institute of Technology, China; Toshihisa Tanaka, Tokyo University of Agriculture and Technology,

Japan; Qibin Zhao, RIKEN Center for Advanced Intelligence Project, Japan

BIO-L1.2: FRACTIONAL FOURIER TRANSFORM BASED QRS COMPLEX DETECTION
IN ECG SIGNAL Touseef Yaqoob, Saira Aziz, Sajid Ahmed, Osama Amin, Information Technology University Lahore, Pakistan; Mohamed-Slim Alouini, King Abdullah University of Science and Technology (KAUST), United Kingdom
BIO-L1.3: CROSS-DOMAIN JOINT DICTIONARY LEARNING FOR ECG
BIO-L1.4: AN LSTM BASED ARCHITECTURE TO RELATE SPEECH STIMULUS TO
BIO-L1.5: JOINT SEMI-SUPERVISED FEATURE AUTO-WEIGHTING AND
BIO-L1.6: REVERSAL NO LONGER MATTERS: ATTENTION-BASED ARRHYTHMIA
BIO-L2: BIOLOGICAL IMAGE ANALYSIS
BIO-L2.1: AUGMENTING MOLECULAR IMAGES WITH VECTOR
BIO-L2.2: MULTI-MODAL SELF-SUPERVISED PRE-TRAINING FOR JOINT OPTIC
BIO-L2.3: DENSE MAPPING OF INTRACELLULAR DIFFUSION AND DRIFT FROM
BIO-L2.4: A DEEP GRADIENT BOOSTING NETWORK FOR OPTIC DISC AND CUP
BIO-L2.5: ADAPTIVE ELASTIC LOSS BASED ON PROGRESSIVE INTER-CLASS
BIO-L2.6: A BIDIRECTIONAL CONTEXT PROPAGATION NETWORK FOR URINE
BIO-L3: SIGNAL PROCESSING IN BIOMETRICS
BIO-L3.1: THE SWAX BENCHMARK: ATTACKING BIOMETRIC SYSTEMS WITH

xlvi

Rafael Henrique Vareto, Araceli Marcia Saldanha, William Robson Schwartz, Universidade Federal de Minas Gerais, Brazil

BIO-L3.2: RESTING-STATE EEG-BASED BIOMETRICS WITH SIGNALS FEATURES EXTRACTED BY MULTIVARIATE EMPIRICAL MODE DECOMPOSITION	991
Matthew King-Hang Ma, Tan Lee, Chinese University of Hong Kong, Hong Kong SAR of China; Manson Cheuk-Man Fong William Shiyuan Wang, Hong Kong Polytechnic University, Hong Kong SAR of China	ŗ,,
BIO-L3.3: AUTO-FAS: SEARCHING LIGHTWEIGHT NETWORKS FOR FACE ANTI-SPOOFING Zitong Yu, University of Oulu, Finland; Yunxiao Qin, Northwestern Polytechnical University, China; Xiaqing Xu, Chenxu Z Zezheng Wang, Aibee, China; Zhen Lei, Institute of Automation, Chinese Academy of Sciences, China; Guoying Zhao, Univ of Oulu, Finland	Thao,
BIO-L3.5: DOMAIN ADAPTATION FOR GENERALIZATION OF FACE PRESENTATION	1001
BIO-L3.6: A LIGHTWEIGHT MULTI-LABEL SEGMENTATION NETWORK FOR	ny
BIO-L4: BIOMEDICAL SIGNAL PROCESSING	
BIO-L4.1: MODELING BEHAVIORAL CONSISTENCY IN LARGE-SCALE WEARABLE	
BIO-L4.2: MODELING BEHAVIOR AS MUTUAL DEPENDENCY BETWEEN	1016
BIO-L4.3: MULTICHANNEL SIGNAL CLASSIFICATION USING VECTOR	1021
BIO-L4.4: EFFICIENT ALGORITHM TO IMPLEMENT SLIDING SINGULAR	1026
BIO-L4.5: STRATEGIC ATTENTION LEARNING FOR MODALITY TRANSLATION	1030
BIO-L4.6: SPARSE CSP ALGORITHM VIA JOINT SPATIO-TEMPORAL FILTERING	
BIO-L5: MEDICAL IMAGE ANALYSIS	
BIO-L5.1: HUMAN-MACHINE COLLABORATION FOR MEDICAL IMAGE	1040
SEGMENTATION Mahdyar Ravanbakhsh, University of Genova, Italy; Vadim Tschernezki, Felix Last, Tassilo Klein, SAP ML Research Berlin Germany; Kayhan Batmanghelich, University of Pittsburgh, United States; Volker Tresp, Ludwig Maximilian University,	!,

Germany; Moin Nabi, SAP ML Research Berlin, Germany

BIO-L5.2: MIXUP MULTI-ATTENTION MULTI-TASKING MODEL FOR EARLY-STAGE
BIO-L5.3: CROSS-VIEW ATTENTION NETWORK FOR BREAST CANCER
BIO-L5.4: UNET 3+: A FULL-SCALE CONNECTED UNET FOR MEDICAL IMAGE
BIO-L5.5: UNSUPERVISED CONTENT-PRESERVED ADAPTATION NETWORK FOR
BIO-L5.6: CLASSIFY AND EXPLAIN: AN INTERPRETABLE CONVOLUTIONAL
BIO-P1: BIOMEDICAL IMAGING AND ANALYSIS
BIO-P1.1: ROBUST GLOBAL OPTIMIZED AFFINE REGISTRATION METHOD FOR
BIO-P1.2: EMPIRICAL SURE-GUIDED MICROSCOPY SUPER-RESOLUTION IMAGE
BIO-P1.3: ENCODING TEMPORAL INFORMATION FOR AUTOMATIC DEPRESSION
BIO-P1.4: RETINAL VESSEL SEGMENTATION VIA A SEMANTICS AND MULTI-SCALE
BIO-P1.5: ADAPTIVE MATCHED FILTER USING NON-TARGET FREE TRAINING DATA
BIO-P1.6: FEATURE DRIFT RESILIENT TRACKING OF THE CAROTID ARTERY
BIO-P1.7: TRACING NETWORK EVOLUTION USING THE PARAFAC2 MODEL

BIO-P1.8: A MODEL-BASED DEEP NETWORK FOR MRI RECONSTRUCTION USING	.1105
BIO-P1.9: ONLINE POSITRON EMISSION TOMOGRAPHY BY ONLINE PORTFOLIO	.111(
BIO-P1.10: SPACE FILLING CURVES FOR MRI SAMPLING	.1115
BIO-P1.11: K-SPACE TRAJECTORY DESIGN FOR REDUCED MRI SCAN TIME	.112(
BIO-P1.12: RETHINKING RETINAL LANDMARK LOCALIZATION AS POSE	.1125
BIO-P2: BIOMEDICAL SIGNAL ANALYSIS	
BIO-P2.1: HIDDEN MARKOV MODELS FOR SEPSIS DETECTION IN PRETERM	.113(
BIO-P2.2: BLOOD PRESSURE ESTIMATION FROM PPG SIGNALS USING	.1135
BIO-P2.3: SPEECH BREATHING ESTIMATION USING DEEP LEARNING METHODS	.114(
BIO-P2.4: A FAST NON-CONTACT VITAL SIGNS DETECTION METHOD BASED ON	.1145
BIO-P2.5: ROBUST LIKELIHOOD RATIO TEST USING ALPHA-DIVERGENCE	.115(
BIO-P2.6: USING X-VECTORS TO AUTOMATICALLY DETECT PARKINSON'S	.1155
BIO-P2.7: LEARNING A COMMON GRANGER CAUSALITY NETWORK USING A	.116(
BIO-P2.8: SYNTHETIC DATA GENERATION THROUGH STATISTICAL EXPLOSION:	.1165
BIO-P2.9: HIGH-ACCURACY CLASSIFICATION OF ATTENTION DEFICIT	

BIO-P2.10: A NEURAL NETWORK-BASED SPIKE SORTING FEATURE MAP THAT
BIO-P2.11: GAIT PHASE SEGMENTATION USING WEIGHTED DYNAMIC TIME
BIO-P2.12: AUTOMATIC CLASSIFICATION OF VOLUMES OF WATER USING
BIO-P3: NEURO IMAGE AND SIGNAL PROCESSING
BIO-P3.1: CONDITIONAL DOMAIN ADVERSARIAL TRANSFER FOR ROBUST
BIO-P3.2: EEG CONNECTIVITY - INFORMED COOPERATIVE ADAPTIVE LINE
BIO-P3.3: ONLINE GRAPH TOPOLOGY INFERENCE WITH KERNELS FOR BRAIN
BIO-P3.4: MINIMAL ADVERSARIAL PERTURBATIONS IN MOBILE HEALTH
BIO-P3.5: DETECTING AUTISM SPECTRUM DISORDER USING TOPOLOGICAL
BIO-P3.6: MULTI-VIEW BAYESIAN GENERATIVE MODEL FOR MULTI-SUBJECT
BIO-P3.7: TIME-FREQUENCY ANALYSIS OF UNIMODAL SENSORY PROCESSING
BIO-P3.8: AUTOMATIC EPILEPTIC SEIZURE ONSET-OFFSET DETECTION BASED
BIO-P3.9: ENHANCE FEATURE REPRESENTATION OF ELECTROENCEPHALOGRAM
BIO-P3.10: SPEECH SYNTHESIS USING EEG

BIO-P3.11: EEG FEATURE SELECTION USING ORTHOGONAL REGRESSION:	. 1239
BIO-P3.12: SCALPNET: DETECTION OF SPATIOTEMPORAL ABNORMAL INTERVALS	^J erima
BIO-P4: PHYSIOLOGICAL SIGNAL PROCESSING	
BIO-P4.1: A SEMI-SUPERVISED APPROACH FOR IDENTIFYING ABNORMAL HEART	. 1249
BIO-P4.2: DETECTION OF S1 AND S2 LOCATIONS IN PHONOCARDIOGRAM SIGNALS	
BIO-P4.3: MENTAL FATIGUE PREDICTION FROM MULTI-CHANNEL ECOG SIGNAL Lin Yao, Cornell University, United States; Jonathan Baker, Jae-Wook Ryou, Nicholas Schiff, Keith Purpura, Weill Cornell Medicine, United States; Mahsa Shoaran, Cornell University, United States	. 1259
BIO-P4.4: THE EFFECT OF DATA AUGMENTATION ON CLASSIFICATION OF ATRIAL FIBRILLATION IN SHORT SINGLE-LEAD ECG SIGNALS USING DEEP NEURAL NETWORKS Faezeh Nejati Hatamian, Fraunhofer Institute for Integrated Circuits IIS, Germany; Nishant Ravikumar, University of Leeds, United Kingdom; Sulaiman Vesal, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany; Felix P. Kemeth, Matthia. Struck, Fraunhofer Institute for Integrated Circuits IIS, Germany; Andreas Maier, Friedrich-Alexander Universität Erlangen Nürnberg, Germany	i,
BIO-P4.5: ATRIAL FIBRILLATION RISK PREDICTION FROM ELECTROCARDIOGRAM	
BIO-P4.6: ADAPTIVE REGION AGGREGATION NETWORK: UNSUPERVISED DOMAIN	. 1274
BIO-P4.7: MATCHING PURSUIT BASED DYNAMIC PHASE-AMPLITUDE COUPLING	. 1279
BIO-P4.8: MULTITAPER SPECTRAL GRANGER CAUSALITY WITH APPLICATION TO	. 1284
BIO-P4.9: CROSS-DOMAIN ADAPTATION FOR BIOMETRIC IDENTIFICATION USING	. 1289
BIO-P4.10: EXPLORING BIO-BEHAVIORAL SIGNAL TRAJECTORIES OF STATE	. 1294

BIO-P4.11: REAL-TIME HAND GESTURE RECOGNITION USING TEMPORAL
MUSCLE ACTIVATION MAPS OF MULTI-CHANNEL SEMG SIGNALS Ashwin De Silva, Malsha Vijini Perera, Kithmin Wickramasinghe, Asma Mohamed Naim, Thilina Dulantha Lalitharatne, Simon Lind Kappel, University of Moratuwa, Sri Lanka
BIO-P4.12: XCEPTIONTIME: INDEPENDENT TIME-WINDOW XCEPTIONTIME
Elahe Rahimian, Soheil Zabihi, Concordia University, Canada; Farokh Atashzar, New York University, United States; Amir Asif, Arash Mohammadi, Concordia University, Canada
BIO-P5: BIO IMAGE AND SIGNAL PROCESSING
BIO-P5.1: DISCOVERING CAUSALITIES FROM CARDIOTOCOGRAPHY SIGNALS
Guanchao Feng, Stony Brook University, United States; J. Gerald Quirk, Stony Brook University Hospital, United States; Petar Djuric, Stony Brook University, United States
BIO-P5.2: LAI-NET: LOCAL-ANCESTRY INFERENCE WITH NEURAL NETWORKS
BIO-P5.3: PREDICTION OF INDIVIDUAL PROGRESSION RATE IN PARKINSON'S
Vyom Raval, University of Texas at Dallas, United States; Kevin Nguyen, Ashley Gerald, Richard Dewey, Albert Montillo, University of Texas Southwestern Medical Center, United States
BIO-P5.4: DEEP MATRIX COMPLETION ON GRAPHS: APPLICATION IN DRUG
BIO-P5.5: IDENTIFICATION OF ESSENTIAL PROTEINS USING A NOVEL
MULTI-OBJECTIVE OPTIMIZATION METHOD Chong Wu, City University of Hong Kong, Hong Kong SAR of China; Houwang Zhang, China University of Geosciences, China; Le Zhang, Tongji University, China; Hanying Zheng, China University of Geosciences, China
BIO-P5.6: GRAPH CONVOLUTIONAL NEURAL NETWORKS TO CLASSIFY WHOLE
Roshan Konda, Hang Wu, May Wang, Georgia Institute of Technology, United States
BIO-P5.7: DEEP JAMES-STEIN NEURAL NETWORKS FOR BRAIN-COMPUTER
Marko Angjelichinoski, Mohammadreza Soltani, Duke University, United States; John Choi, Bijan Pesaran, New York University, United States; Vahid Tarokh, Duke University, United States
BIO-P5.8: FORMULATING DIVERGENCE FRAMEWORK FOR MULTICLASS MOTOR
Satyam Kumar, Tharun Kumar Reddy, Vipul Arora, Laxmidhar Behera, Indian Institute of Technology Kanpur, India
BIO-P5.9: SUBJECT TRANSFER FRAMEWORK BASED ON SOURCE SELECTION
BIO-P5.10: DECODING MOVEMENT IMAGINATION AND EXECUTION FROM EEG

BIO-P5.11: CLASSIFICATION OF HIGH-DIMENSIONAL MOTOR IMAGERY TASKS	. 1359
BASED ON AN END-TO-END ROLE ASSIGNED CONVOLUTIONAL NEURAL NETWORK Byeong-Hoo Lee, Ji-Hoon Jeong, Kyung-Hwan Shim, Seong-Whan Lee, Korea University, Korea (South)	
BIO-P5.12: CHANNEL SELECTION OVER RIEMANNIAN MANIFOLD WITH	. 1364
Khadijeh Sadatnejad, Aline Roc, Lea Pillette, Aurelien Appriou, Thibaut Monseigne, Fabien Lotte, INRIA sud-ouest, France	
BIO-P6: BIOMEDICAL IMAGE SEGMENTATION	
BIO-P6.1: A SEGMENTATION BASED ROBUST DEEP LEARNING FRAMEWORK FOR	
Yiqian Wang, Junkang Zhang, Cheolhong An, Melina Cavichini, Mahima Jhingan, Manuel J. Amador-Patarroyo, Christophe Long, Dirk-Uwe G. Bartsch, William R. Freeman, Truong Q. Nguyen, University of California, San Diego, United States	er P.
BIO-P6.2: DENSE RESIDUAL NETWORK FOR RETINAL VESSEL SEGMENTATION	. 1374
Changlu Guo, Márton Szemenyei, Budapest University of Technology and Economics, Hungary; Yugen Yi, Jiangxi Normal University, China; Ying Xue, Eötvös Loránd University, Hungary; Wei Zhou, Shenyang Aerospace University, China; Yangyu Li, Budapest University of Technology and Economics, Hungary	an
BIO-P6.3: LIGHTWEIGHT V-NET FOR LIVER SEGMENTATION	. 1379
Tao Lei, Wenzheng Zhou, Yuxiao Zhang, Risheng Wang, Shaanxi University of Science and Technology, China; Hongying Me Asoke K. Nandi, Brunel University London, United Kingdom	
BIO-P6.4: ACU-NET: A 3D ATTENTION CONTEXT U-NET FOR MULTIPLE	. 1384
Chuan Hu, Guixia Kang, Beibei Hou, Yiyuan Ma, Ministry of Education Beijing University of Posts and Telecommunications	š,
China; Fabrice Labeau, McGill University, Canada; Zichen Su, Ministry of Education Beijing University of Posts and Telecommunications, China	
BIO-P6.5: EDNFC-NET: CONVOLUTIONAL NEURAL NETWORK WITH NESTED	. 1389
FEATURE CONCATENATION FOR NUCLEI-INSTANCE SEGMENTATION	c
Shiv Gehlot, Anubha Gupta, Indraprastha Institute of Information Technology Delhi, India; Ritu Gupta, All India Institute of Medical Sciences, New Delhi, India	
BIO-P6.6: AN UNSUPERVISED RETINAL VESSEL EXTRACTION AND	1394
SEGMENTATION METHOD BASED ON A TUBE MARKED POINT PROCESS MODEL	. 10) .
Tianyu Li, Mary Comer, Purdue University, United States; Josiane Zerubia, Inria and Université Côte d'Azur, France	
BIO-P6.7: KALM: KEY AREA LOCALIZATION MECHANISM FOR ABNORMALITY	. 1399
DETECTION IN MUSCULOSKELETAL RADIOGRAPHS Wei Huang, Zhitong Xiong, Qi Wang, Xuelong Li, Northwestern Polytechnical University, China	
BIO-P6.8: COMBINING CGAN AND MIL FOR HOTSPOT SEGMENTATION IN BONE	. 1404
Hang Xu, Shijie Geng, Yu Qiao, Kuan Xu, Yueyang Gu, Shanghai Jiao Tong University, China	
BIO-P6.9: A NONINVASIVE METHOD TO DETECT DIABETES MELLITUS AND	1409
LUNG CANCER USING THE STACKED SPARSE AUTOENCODER	. 1 102
Qi Zhang, Jianhang Zhou, Bob Zhang, University of Macau, Macao SAR of China	
BIO-P6.10: A MULTI-SCALED RECEPTIVE FIELD LEARNING APPROACH FOR	. 1414
MEDICAL IMAGE SEGMENTATION Pengcheng Guo, Xiangdong Su, Haoran Zhang, Meng Wang, Feilong Bao, Inner Mongolia University, China	
BIO-P6.11: AUTOMATIC DATA AUGMENTATION VIA DEEP REINFORCEMENT	, 1419
LEARNING FOR EFFECTIVE KIDNEY TUMOR SEGMENTATION Tiexin Qin, Ziyuan Wang, Kelei He, Yinghuan Shi, Yang Gao, Nanjing University, China; Dinggang Shen, University of North	h
Carolina - Chapel Hill, United States	

BIO-P6.12: CROSS-STAINED SEGMENTATION FROM RENAL BIOPSY IMAGES
CI-L1: COMPUTATIONAL IMAGING
CI-L1.1: BLIND MULTI-SPECTRAL IMAGE PAN-SHARPENING
CI-L1.2: A FORWARD-BACKWARD ALGORITHM FOR REWEIGHTED PROCEDURES:
CI-L1.3: CRA: A GENERIC COMPRESSION RATIO ADAPTER FOR END-TO-END
CI-L1.4: REVEALING HIDDEN DRAWINGS IN LEONARDO'S 'THE VIRGIN OF THE
CI-L1.5: 3D UNKNOWN VIEW TOMOGRAPHY VIA ROTATION INVARIANTS
CI-L1.6: MODELLING SEA CLUTTER IN SAR IMAGES USING LAPLACE-RICIAN
CI-L2: COMPUTATIONAL OPTICS
CI-L2.1: VOLUME RECONSTRUCTION FOR LIGHT FIELD MICROSCOPY
CI-L2.2: DEEP EXPOSURE FUSION WITH DEGHOSTING VIA HOMOGRAPHY
CI-L2.3: SINGLE-SHOT REAL-TIME MULTIPLE-PATH TIME-OF-FLIGHT DEPTH
CI-L2.4: FAST OPTICAL SYSTEM IDENTIFICATION BY NUMERICAL
CI-L2.5: FOURIER PHASE RETRIEVAL WITH ARBITRARY REFERENCE SIGNAL

CI-L2.6: PRECONDITIONED GHOST IMAGING VIA SPARSITY CONSTRAINT
CI-P1: COMPUTATIONAL IMAGING METHOD AND APPLICATIONS
CI-P1.1: MULTISPECTRAL FUSION OF RGB AND NIR IMAGES USING WEIGHTED
CI-P1.2: COLOR AND ANGULAR RECONSTRUCTION OF LIGHT FIELDS FROM
CI-P1.3: CROSS IMAGE CUBIC INTERPOLATOR FOR SPATIALLY VARYING
CI-P1.4: DISCRIMINANT AND SPARSITY BASED LEAST SQUARES REGRESSION
CI-P1.5: DEEP META-RELATION NETWORK FOR VISUAL FEW-SHOT LEARNING
CI-P1.6: A SEMI-SUPERVISED RANK TRACKING ALGORITHM FOR ON-LINE
CI-P1.7: INVERSE MULTIPLE SCATTERING WITH PHASELESS MEASUREMENTS
CI-P1.8: MULTI-POLARIZATION INFORMATION FUSION FOR OBJECT CONTOUR
CI-P1.9: CHARACTERIZATION OF A SNAPSHOT FOURIER TRANSFORM
CI-P1.10: SHADOW REMOVAL OF TEXT DOCUMENT IMAGES BY ESTIMATING
DIS-L1: ARRAY-BASED ARCHITECTURES FOR ENERGY-EFFICIENT SIGNAL PROCESSING SYSTEMS
DIS-L1.1: EXPLORING ENERGY EFFICIENT QUANTUM-RESISTANT SIGNAL
Security Research, United States; Nikil Dutt, University of California, Irvine, United States

DIS-L1.2: DMAZERUNNER: OPTIMIZING CONVOLUTIONS ON DATAFLOW	544
DIS-L1.3: EXPLORATION METHODOLOGY FOR BTI-INDUCED FAILURES ON	549
DIS-L1.4: TIME-PREDICTABLE SOFTWARE-DEFINED ARCHITECTURE WITH	553
DIS-L1.5: ACCELERATING LINEAR ALGEBRA KERNELS ON A MASSIVELY PARALLEL	or
DIS-L1.6: ENERGY EFFICIENT ACCELERATION OF FLOATING POINT	563
DIS-P1: SIGNAL PROCESSING FOR EMERGING APPLICATIONS: MACHINE LEARNING	
DIS-P1.1: FAST AND ACCURATE EMBEDDED DCNN FOR RGB-D BASED SIGN	568
DIS-P1.2: D2NA: DAY-TO-NIGHT ADAPTATION FOR VISION BASED PARKING	
DIS-P1.3: ENERGAN: A GENERATIVE ADVERSARIAL NETWORK FOR ENERGY	578
DIS-P1.4: ENHANCING THE LABELLING OF AUDIO SAMPLES FOR AUTOMATIC	
DIS-P1.5: DEEP-NEURAL-NETWORK BASED FALL-BACK MECHANISM IN	588
DIS-P1.6: DNN-CHIP PREDICTOR: AN ANALYTICAL PERFORMANCE PREDICTOR	593
DIS-P1.7: LOW-COMPLEXITY FIXED-POINT CONVOLUTIONAL NEURAL	

DIS-P1.8: ACCELERATING DISTRIBUTED DEEP LEARNING BY ADAPTIVE
GRADIENT QUANTIZATION Jinrong Guo, Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences, China; Wantao Liu, Institute of Information Engineering, Chinese Academy of Sciences, China; Wang Wang, Institute of Information Engineering, Chinese Academy of Sciences, School of Cyber Security, University of Chinese Academy of Sciences, China; Jizhong Han, Ruixuan Li, Institute of Information Engineering, Chinese Academy of Sciences, China; Yijun Lu, Alibaba Cloud Computing Co. Ltd., China; Songlin Hu, Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences, China
DIS-P1.9: LUPULUS: A FLEXIBLE HARDWARE ACCELERATOR FOR NEURAL
NETWORKS Andreas Toftegaard Kristensen, Robert Giterman, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Alexios Balatsoukas-Stimming, Eindhoven University of Technology, Switzerland; Andreas Burg, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
DIS-P1.10: DEPTH ESTIMATION FROM SINGLE IMAGE THROUGH
DIS-P1.11: OBJECT DETECTION WITH COLOR AND DEPTH IMAGES WITH
DIS-P1.12: DEBLURRING AND SUPER-RESOLUTION USING DEEP GATED FUSION
DIS-P2: ALGORITHM AND ARCHITECTURE CO-OPTIMIZATION
DIS-P2.1: INDOOR HEADING DIRECTION ESTIMATION USING RF SIGNALS
DIS-P2.2: AN IMPROVED SELECTIVE ACTIVE NOISE CONTROL ALGORITHM
DIS-P2.3: TOWARDS REAL-TIME, MULTI-VIEW VIDEO STEREOPSIS
DIS-P2.4: ERNET FAMILY: HARDWARE-ORIENTED CNN MODELS FOR
DIS-P2.5: A DSP ACCELERATION FRAMEWORK FOR SOFTWARE-DEFINED RADIOS
DIS-P2.6: FAST SINGLE-VIEW 3D OBJECT RECONSTRUCTION WITH FINE
DIS-P2.7: PROCESSING CONVOLUTIONAL NEURAL NETWORKS ON CACHE

DIS-P2.8: LIGHTWEIGHT HARDWARE IMPLEMENTATION OF VVC TRANSFORM	,
DIS-P2.9: RGB-D BASED MULTI-MODAL DEEP LEARNING FOR FACE	1668
DIS-P2.10: A REAL TIME IMPLEMENTATION OF A BAYER DOMAIN IMAGE DEBLURRING CORE FOR OPTICAL BLUR COMPENSATION Han-Sol Lee, Eundoo Heo, Wonseok Lee, Do-Chang Ahn, Jeonghyeon Cheon, Kyungho Kim, Kyunghwan Lee, Jeongguk Lee, Yunseok Choi, Soonkeun Chang, Samsung Electronics, Korea (South)	
DIS-P2.11: SELF-ATTENTIVE SENTIMENTAL SENTENCE EMBEDDING FOR SENTIMENT ANALYSIS Sheng-Chieh Lin, Academia Sinica, Taiwan; Wen-Yuh Su, National Chengchi University, Taiwan; Po-Chuan Chien, Academia Sinica, Taiwan; Ming-Feng Tsai, National Chengchi University, Taiwan; Chuan-Ju Wang, Academia Sinica, Taiwan	
DIS-P2.12: DECIDABLE VARIABLE-RATE DATAFLOW FOR HETEROGENEOUS SIGNAL	
DIS-P3: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS FOR WIRELESS COMMUNICATION SYSTEMS	
DIS-P3.1: BACK-TO-BACK BUTTERFLY NETWORK, AN ADAPTIVE PERMUTATION	1688
DIS-P3.2: 1.5GBIT/S 4.9W HYPERSPECTRAL IMAGE ENCODERS ON A LOW-POWER	1693
DIS-P3.3: DESIGN OF A CONVERGENCE-AWARE BASED EXPECTATION	1698
DIS-P3.4: BIPARTITE BELIEF PROPAGATION POLAR DECODING WITH	1703
DIS-P3.5: LOW-COMPLEXITY LSTM-ASSISTED BIT-FLIPPING ALGORITHM FOR	1708
DIS-P3.6: ADAPTIVE NORMALIZATION FOR FORECASTING LIMIT ORDER BOOK	
DIS-P3.7: GREEDY HYBRID RATE ADAPTATION IN DYNAMIC WIRELESS	
Yapeng Zhao, Shanghai University, China; Kai Kang, Hua Qian, Shanghai Advanced Research Institute, Chinese Academy of Sciences, China; Xiliang Luo, Shanghai Tech University, China; Yanliang Jin, Shanghai University, China	f

DIS-P3.8: A WIFI-BASED PASSIVE FALL DETECTION SYSTEM
DIS-P3.9: PROGRAMMABLE DATAFLOW ACCELERATORS: A 5G OFDM
DIS-P3.10: SIMPLIFIED DYNAMIC SC-FLIP POLAR DECODING
DIS-P3.11: REAL-TIME, UNIVERSAL, AND ROBUST ADVERSARIAL ATTACKS AGAINST
DIS-P3.12: AN ODORANT ENCODING MACHINE FOR SAMPLING,
DIS-P4: DESIGN AND IMPLEMENTATION OF EMERGING SIGNAL PROCESSING SYSTEMS
DIS-P4.1: FIR FILTER DESIGN AND IMPLEMENTATION FOR PHASE-BASED
DIS-P4.2: FIXED-POINT OPTIMIZATION OF TRANSFORMER NEURAL NETWORK
DIS-P4.3: A FIFO BASED ACCELERATOR FOR CONVOLUTIONAL NEURAL
DIS-P4.4: SOFT-OUTPUT FINITE ALPHABET EQUALIZATION FOR MMWAVE
DIS-P4.5: DIVERSITY AND SPARSITY: A NEW PERSPECTIVE ON INDEX TRACKING
DIS-P4.6: SPARSE BEAMSPACE EQUALIZATION FOR MASSIVE MU-MIMO MMWAVE
DIS-P4.7: THRESHOLD-ADJUSTED ORB STRATEGIES WITH GENETIC ALGORITHM
DIS-P4.8: CAN EVERY ANALOG SYSTEM BE SIMULATED ON A DIGITAL
DIS-P4.9: LOW-COMPLEXITY COMPRESSED ALIGNMENT-AIDED COMPRESSIVE

DIS-P4.10: REDUCED-COMPLEXITY SINGULAR VALUE DECOMPOSITION FOR
DIS-P4.11: AN EARLY TERMINATION SCHEME FOR SUCCESSIVE CANCELLATION
DIS-P4.12: LOW-LATENCY LIGHTWEIGHT STREAMING SPEECH RECOGNITION
IVMSP-L1: INVERSE PROBLEMS IN IMAGE/VIDEO PROCESSING I
IVMSP-L1.1: SHAPE FROM BANDWIDTH: CENTRAL PROJECTION CASE
IVMSP-L1.2: SEQUENTIAL DEEP UNROLLING WITH FLOW PRIORS FOR ROBUST
IVMSP-L1.3: A FAST AND ACCURATE SUPER-RESOLUTION NETWORK USING
IVMSP-L1.4: REV-AE: A LEARNED FRAME SET FOR IMAGE RECONSTRUCTION
IVMSP-L1.5: DECOMPOSED CYCLEGAN FOR SINGLE IMAGE DERAINING WITH
IVMSP-L1.6: SLICENET: SLICE-WISE 3D SHAPES RECONSTRUCTION FROM
IVMSP-L2: IMAGE/VIDEO ANALYSIS II
IVMSP-L2.1: SIGHT TO SOUND: AN END-TO-END APPROACH FOR VISUAL PIANO
IVMSP-L2.2: EXOCENTRIC TO EGOCENTRIC IMAGE GENERATION VIA PARALLEL
IVMSP-L2.3: FOCUS ON SEMANTIC CONSISTENCY FOR CROSS-DOMAIN CROWD
IVMSP-L2.4: IMPROVED REAL-TIME VISUAL TRACKING VIA ADVERSARIAL

OBJECT DETECTION
Zhu Chen, Weihai Li, Chi Fei, Bin Liu, Nenghai Yu, University of Science and Technology of China, China
IVMSP-L3: IMAGE EMERGING TOPICS
IVMSP-L3.1: USING PANORAMIC VIDEOS FOR MULTI-PERSON LOCALIZATION
IVMSP-L3.2: POSITION CONSTRAINT LOSS FOR FASHION LANDMARK
IVMSP-L3.3: RECEPTIVE FIELD PYRAMID NETWORK FOR OBJECT DETECTION
IVMSP-L3.4: ROBUST VISUAL TRACKING WITH CONTEXT-BASED ACTIVE
IVMSP-L3.5: LEVERAGING ORDINAL REGRESSION WITH SOFT LABELS FOR 3D
IVMSP-L4: MACHINE LEARNING FOR IMAGE/VIDEO PROCESSING III
IVMSP-L4.1: SOLVING MISSING-ANNOTATION OBJECT DETECTION WITH
IVMSP-L4.2: FACE FEATURE RECOVERY VIA TEMPORAL FUSION FOR PERSON
SEARCH Cheng-Yu Fan, Chao-Peng Liu, Kuan-Chun Wang, Jiun-Hao Jhan, Yu-Chiang Frank Wang, National Taiwan University, Taiwan Jun-Cheng Chen, Academia Sinica, Taiwan
IVMSP-L4.3: EDGEFOOL: AN ADVERSARIAL IMAGE ENHANCEMENT FILTER
IVMSP-L4.4: FACIAL FEATURE EMBEDDED CYCLEGAN FOR VIS-NIR TRANSLATION
IVMSP-L4.5: DEEP IMAGE DEBLURRING USING LOCAL CORRELATION BLOCK
IVMSP-L4.6: GLOBAL STRUCTURE GRAPH GUIDED FINE-GRAINED VEHICLE
IVMSP-L5: IMAGE/VIDEO STORAGE, AND RETRIEVAL
IVMSP-L5.1: TRIPLET LOSS FEATURE AGGREGATION FOR SCALABLE HASH

IVMSP-L5.2: HDMFH: HYPERGRAPH BASED DISCRETE MATRIX FACTORIZATION
IVMSP-L5.3: MULTI-SCALE DEEP FEATURE FUSION FOR VEHICLE
IVMSP-L5.4: CROWDSOURCING-BASED RANKING AGGREGATION FOR PERSON
IVMSP-L5.5: DEEP MULTI-REGION HASHING
IVMSP-L5.6: SEMANTIC AUGMENTATION HASHING FOR ZERO-SHOT IMAGE
IVMSP-L6: IMAGE/VIDEO SYNTHESIS, RENDERING AND VISUALIZATION
IVMSP-L6.1: END-TO-END GENERATION OF TALKING FACES FROM NOISY
IVMSP-L6.2: UNSUPERVISED IMAGE-TO-IMAGE TRANSLATION VIA FAIR
IVMSP-L6.3: VIDEO FRAME INTERPOLATION VIA EXCEPTIONAL MOTION-AWARE
IVMSP-L6.4: LOOK GLOBALLY, AGE LOCALLY: FACE AGING WITH AN ATTENTION
IVMSP-L6.5: DESIGN-GAN: CROSS-CATEGORY FASHION TRANSLATION DRIVEN
IVMSP-L6.6: INTENSITY-IMAGE RECONSTRUCTION FOR EVENT CAMERAS USING
IVMSP-L7: POINT CLOUD AND DEPTH PROCESSING
IVMSP-L7.1: COLOUR COMPRESSION OF PLENOPTIC POINT CLOUDS USING

Maja Krivokuća, Christine Guillemot, INRIA Rennes, France

IVMSP-L7.2: SUPER-RESOLUTION OF 3D COLOR POINT CLOUDS VIA FAST	1983
GRAPH TOTAL VARIATION Chinthaka Dinesh, Simon Fraser University, Canada; Gene Cheung, York University, Canada; Ivan V. Bajić, Simouniversity, Canada	on Fraser
IVMSP-L7.3: DEEP MONOCULAR VIDEO DEPTH ESTIMATION USING TEMPORALATTENTION	1988
Haoyu Ren, Mostafa El-khamy, Jungwon Lee, Samsung Semiconductor, Inc., United States	
IVMSP-L7.4: ROBUST FULL-FOV DEPTH ESTIMATION IN TELE-WIDE CAMERA	
IVMSP-L7.5: MANET: MULTI-SCALE AGGREGATED NETWORK FOR LIGHT FIELD	
IVMSP-L7.6: EPI-NEIGHBORHOOD DISTRIBUTION BASED LIGHT FIELD DEPTH ESTIMATION Junke Li, Xin Jin, Tsinghua University, China	2003
IVMSP-L8: MULTI-SCALE AND WAVELET PROCESSING	
IVMSP-L8.1: STOCHASTIC MULTI-SCALE AGGREGATION NETWORK FOR CROWDCOUNTING Mingjie Wang, Hao Cai, Memorial University of Newfoundland, University of Guelph, Canada; Jun Zhou, Dalian Technology, China; Minglun Gong, University of Guelph, Canada	
IVMSP-L8.2: MDR-SURV: A MULTI-SCALE DEEP LEARNING-BASED RADIOMICS	
IVMSP-L8.3: LEARNING A GENERIC ADAPTIVE WAVELET SHRINKAGE FUNCTION	2018
IVMSP-L8.4: MULTI-SCALE RESIDUAL NETWORK FOR IMAGE CLASSIFICATION	gling Yuan,
IVMSP-L8.5: DEEP MULTI-SCALE GABOR WAVELET NETWORK FOR IMAGE	2028
IVMSP-L8.6: RESIDUAL ATTENTION NETWORK FOR WAVELET DOMAIN	
IVMSP-L9: IMAGE/VIDEO CODING II	
IVMSP-L9.1: AN ADAPTIVE LINEAR ESTIMATOR BASED APPROACH TO	

IVMSP-L9.2: SPHERICAL VIDEO CODING WITH GEOMETRY AND REGION	43
IVMSP-L9.3: VERSATILE VIDEO CODING AND SUPER-RESOLUTION FOR	48
IVMSP-L9.4: ALTERNATIVE HALF-SAMPLE INTERPOLATION FILTERS FOR	
IVMSP-L9.5: JUST NOTICEABLE DISTORTION BASED PERCEPTUALLY LOSSLESS	58
IVMSP-L9.6: EFFICIENT DEEP LEARNING-BASED LOSSY IMAGE COMPRESSION	
IVMSP-L10: IMAGE/VIDEO PROCESSING III	
IVMSP-L10.1: DERIVING COMPACT FEATURE REPRESENTATIONS VIA ANNEALED	68
IVMSP-L10.2: FAST CLUSTERING WITH CO-CLUSTERING VIA DISCRETE	73
IVMSP-L10.3: COMPRESSIVE ADAPTIVE BILATERAL FILTERING	78
IVMSP-L10.4: ATTENTION MECHANISM ENHANCED KERNEL PREDICTION	83
IVMSP-L10.5: IMAGE RESTORATION VIA DATA-DEPENDENT PROXIMAL AVERAGED	88
IVMSP-L10.6: MULTI-WAY MULTI-VIEW DEEP AUTOENCODER FOR IMAGE	
IVMSP-P1: IMAGE/VIDEO REPRESENTATION	
IVMSP-P1.1: EXPOSURE INTERPOLATION VIA HYBRID LEARNING	

Yi Yang, Shiqian Wu, Wuhan University of Science and Technology, China

IVMSP-P1.2: LEARNING SPATIO-TEMPORAL REPRESENTATIONS WITH TEMPORAL
IVMSP-P1.3: FINE-GRAINED GIANT PANDA IDENTIFICATION
IVMSP-P1.4: LEARNING FROM DANCES: POSE-INVARIANT RE-IDENTIFICATION
IVMSP-P1.5: LEARNING FRACTIONAL ORTHOGONAL LATENT CONSISTENT
IVMSP-P1.6: SPARSE MODELING ON DISTRIBUTED ENCRYPTION DATA
IVMSP-P1.7: S-DOD-CNN: DOUBLY INJECTING SPATIALLY-PRESERVED OBJECT
IVMSP-P1.8: ANGULAR DISCRIMINATIVE DEEP FEATURE LEARNING FOR FACE
IVMSP-P1.9: 3D DEFORMATION SIGNATURE FOR DYNAMIC FACE RECOGNITION
IVMSP-P1.10: ASR IS ALL YOU NEED: CROSS-MODAL DISTILLATION FOR LIP
IVMSP-P1.11: COLOR STABILIZATION FOR MULTI-CAMERA LIGHT-FIELD IMAGING
IVMSP-P1.12: LEARNING SPATIO-TEMPORAL CONVOLUTIONAL NETWORK FOR
IVMSP-P2: IMAGE/VIDEO CODING I
IVMSP-P2.1: LEARNED LOSSLESS IMAGE COMPRESSION WITH A HYPERPRIOR
IVMSP-P2.2: VARIABLE BITRATE IMAGE COMPRESSION WITH QUALITY SCALING
IVMSP-P2.3: BINARY PROBABILITY MODEL FOR LEARNING BASED IMAGE
Théo Ladune, Pierrick Philippe, Orange, France; Wassim Hamidouche, Lu Zhang, INSA Rennes, France; Olivier Déforges,

Institut d'Electronique et de Télécommunications de Rennes / Institut Nationnal des Sciences Appliquées, France

IVMSP-P2.4: IMPROVED PROBABILITY MODELLING FOR EXCEPTION HANDLINGIN LOSSLESS SCREEN CONTENT CODING	. 2173
Tilo Strutz, Leipzig University of Telecommunications, Germany	
IVMSP-P2.5: SPATIALLY ADAPTIVE INTRA MODE PRE-SELECTION FOR ERP 360	. 2178
IVMSP-P2.6: SEMI-REGULAR GEOMETRIC KERNEL ENCODING &	
IVMSP-P2.7: LEVERAGING CUBOIDS FOR BETTER MOTION MODELING IN HIGH	. 2188
IVMSP-P2.9: ADVERSARIAL VIDEO COMPRESSION GUIDED BY SOFT EDGE	
IVMSP-P2.10: COMPRESSING FLOW FIELDS WITH EDGE-AWARE HOMOGENEOUS	. 2198
IVMSP-P2.11: ADAPTIVE RESOLUTION CHANGE USING UNCODED AREAS AND	. 2203
IVMSP-P2.12: RDE-MOGA: AUTOMATIC SELECTION OF	
IVMSP-P3: MACHINE LEARNING FOR IMAGE/VIDEO PROCESSING I	
IVMSP-P3.1: A CONNECTED AUTO-ENCODERS BASED APPROACH FOR IMAGE SEPARATION WITH SIDE INFORMATION: WITH APPLICATIONS TO ART INVESTIGATION Wei Pu, University College London, United Kingdom; Barak Sober, Duke University, United States; Nathan Daly, Catherine Higgitt, National Gallery, United Kingdom; Ingrid Daubechies, Duke University, United States; Miguel Rodrigues, University College London, United Kingdom	?
IVMSP-P3.2: SELF-SUPERVISED ADVERSARIAL TRAINING	
IVMSP-P3.3: GRAY-SCALE IMAGE COLORIZATION USING CYCLE-CONSISTENT	. 2223
IVMSP-P3.4: ALL YOU NEED IS A SECOND LOOK: TOWARDS TIGHTER	. 2228

IVMSP-P3.5: COMPARE LEARNING: BI-ATTENTION NETWORK FOR FEW-SHOTLEARNING	2233
Li Ke, Meng Pan, Weigao Wen, Dong Li, Alibaba Group, China	
IVMSP-P3.6: ARNET:ATTENTION-BASED REFINEMENT NETWORK FOR FEW-SHOT	2238
IVMSP-P3.7: LIGHTDET: A LIGHTWEIGHT AND ACCURATE OBJECT DETECTIONNETWORK	2243
Qiankun Tang, Jie Li, Institute of Computing Technology, Chinese Academy of Sciences, China; Zhiping Shi, Capital Nor University, China; Yu Hu, Institute of Computing Technology, Chinese Academy of Sciences, China	mal
IVMSP-P3.8: SELF-SUPERVISED DEEP LEARNING FOR FISHEYE IMAGE	2248
IVMSP-P3.9: SKETCHPPNET: A JOINT PIXEL AND POINT CONVOLUTIONAL NEURAL NETWORK FOR LOW RESOLUTION SKETCH IMAGE RECOGNITION Xianyi Zhu, Yi Xiao, Yan Zheng, Guanghua Tan, Shizhe Zhou, Hunan University, China	2253
IVMSP-P3.10: ALL IN ONE NETWORK FOR DRIVER ATTENTION MONITORING	
IVMSP-P3.11: UNSUPERVISED DOMAIN ADAPTATION FOR SEMANTIC	2263
IVMSP-P3.12: IQ-STAN: IMAGE QUALITY GUIDED SPATIO-TEMPORAL ATTENTION	2268
IVMSP-P4: IMAGE/VIDEO ANALYSIS I	
IVMSP-P4.1: WEAKLY SUPERVISED SEMANTIC SEGMENTATION FOR REMOTE	2273
IVMSP-P4.2: SOCIAL DATA ASSISTED MULTI-MODAL VIDEO ANALYSIS FOR	
IVMSP-P4.3: VIEW-ANGLE INVARIANT OBJECT MONITORING WITHOUT IMAGE	
IVMSP-P4.4: HIERARCHICAL SEQUENCE REPRESENTATION WITH GRAPH	
IVMSP-P4.5: MULTI IMAGE DEPTH FROM DEFOCUS NETWORK WITH BOUNDARY CUE FOR DUAL APERTURE CAMERA Gwangma Song Yumag Kim Kukiin Chun Kyoung Mu Lag Saoul National University Korag (South)	2293

IVMSP-P4.6: HEIGHT AND WEIGHT ESTIMATION FROM UNCONSTRAINED	
IVMSP-P4.7: SAMPLING STRATEGIES FOR GAN SYNTHETIC DATA	2303
IVMSP-P4.8: AUGLABEL: EXPLOITING WORD REPRESENTATIONS TO AUGMENT	2308
IVMSP-P4.9: MULTI-TASK CENTER-OF-PRESSURE METRICS ESTIMATION FROM	2313
IVMSP-P4.10: REGRESSION BEFORE CLASSIFICATION FOR TEMPORAL ACTION	2318
IVMSP-P4.11: MULTI-TASK LEARNING IN AUTONOMOUS DRIVING SCENARIOS VIA	
IVMSP-P4.12: A REAL-TIME DEEP NETWORK FOR CROWD COUNTING	
IVMSP-P5: IMAGE/VIDEO INTERPRETATION AND UNDERSTANDING	
IVMSP-P5.1: DRIFT DETECTION AND CORRECTION POST-TRACKING	2333
IVMSP-P5.2: INTERPRETABLE SELF-ATTENTION TEMPORAL REASONING FOR	
IVMSP-P5.3: NON-UNIFORM VIDEO TIME-LAPSE METHOD BASED ON MOTION	
IVMSP-P5.4: KEY ACTION AND JOINT CTC-ATTENTION BASED SIGN LANGUAGE	2348
IVMSP-P5.5: LEARNING GEOMETRIC FEATURES WITH DUAL-STREAM CNN FOR	ıth);
IVMSP-P5.6: A DEEP LEARNING APPROACH TO OBJECT AFFORDANCE SEGMENTATION Spyridon Thermos, University of Thessaly, Greece; Petros Daras, Centre for Research and Technology Hellas, Greece; Gerasi Potamianos, University of Thessaly, Greece	

IVMSP-P5.7: MULTI-VIEW SHAPE ESTIMATION OF TRANSPARENT CONTAINERS	3
IVMSP-P5.8: RETHINKING TEMPORAL-RELATED SAMPLE FOR HUMAN ACTION	8
Jinpeng Wang, Shiren Li, Sun Yat-Sen University, China; Zhikui Duan, Foshan University, China; Zhihao Yuan, Sun Yat-Sen University, China	
IVMSP-P5.9: FDDWNET: A LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORK	3
Jia Liu, Quan Zhou, Yong Qiang, Bin Kang, Xiaofu Wu, Baoyu Zheng, Nanjing University of Posts and Telecommunications, China	
IVMSP-P5.10: COMPLEX PAIRWISE ACTIVITY ANALYSIS VIA INSTANCE LEVEL	8
Sudipta Paul, University of California, Riverside, United States; Carlos Torres, TwoSixLabs, LLC, United States; Shivkumar Chandrasekaran, Mayachitra, Inc, United States; Amit K. Roy-Chowdhury, University of California, Riverside, United States	
IVMSP-P5.11: SCENE TEXT RECOGNITION WITH TEMPORAL CONVOLUTIONAL	3
Xiangcheng Du, Tianlong Ma, East China Normal University, China; Yingbin Zheng, Hao Ye, Videt Tech Ltd., China; Xingjiao Wu, Liang He, East China Normal University, China	
IVMSP-P5.12: ENHANCED ACTION TUBELET DETECTOR FOR SPATIO-TEMPORAL	8
IVMSP-P6: MACHINE LEARNING FOR IMAGE/VIDEO PROCESSING II	
IVMSP-P6.1: SECURE FACE RECOGNITION IN EDGE AND CLOUD NETWORKS:	3
IVMSP-P6.2: LOW COMPLEXITY SINGLE IMAGE SUPER-RESOLUTION WITH	8
CHANNEL SPLITTING AND FUSION NETWORK Minqiang Zou, Jie Tang, Gangshan Wu, Nanjing University, China	
IVMSP-P6.3: LEARNING SPECTRAL-SPATIAL PRIOR VIA 3DDNCNN FOR	3
IVMSP-P6.4: DYNAMICALLY MODULATED DEEP METRIC LEARNING FOR VISUAL	8
SEARCH Dipu Manandhar, Nanyang Technological University, Singapore; Muhammet Bastan, Amazon, Inc., United States; Kim-Hui Yap, Nanyang Technological University, Singapore	
IVMSP-P6.5: DEEP RESIDUAL NETWORK FOR MSFA RAW IMAGE DENOISING	3
IVMSP-P6.6: MSPNET: MULTI-SUPERVISED PARALLEL NETWORK FOR CROWD2415	8

Bo Wei, Yuan Yuan, Qi Wang, Northwestern Polytechnical University, China

IVMSP-P6.7: VIDEO QUESTION GENERATION VIA SEMANTIC RICH CROSS-MODAL	
IVMSP-P6.8: BLIND HYPERSPECTRAL UNMIXING USING DUAL BRANCH DEEP	428
IVMSP-P6.9: CLASSIFICATION OF DEPTH AND SURFACE EDGES WITH DEEP	433
IVMSP-P6.10: LEARNING TO CHARACTERIZE ADVERSARIAL SUBSPACES	438
IVMSP-P6.11: VIDEO DEBLURRING VIA 3D CNN AND FOURIER ACCUMULATION	443
IVMSP-P6.12: ENHANCED NON-LOCAL CASCADING NETWORK WITH ATTENTION	448
IVMSP-P7: IMAGE/VIDEO PROCESSING I	
IVMSP-P7.1: QUANTIZED TENSOR ROBUST PRINCIPAL COMPONENT ANALYSIS	453
IVMSP-P7.2: A NEW PERSPECTIVE FOR FLEXIBLE FEATURE GATHERING IN	458
IVMSP-P7.3: HYBRID ACTIVE CONTOUR DRIVEN BY DOUBLE-WEIGHTED	463
IVMSP-P7.4: NEURAL CODING STRATEGIES FOR EVENT-BASED VISION DATA	468
IVMSP-P7.5: CAMERA CONFIGURATION DESIGN IN COOPERATIVE ACTIVE VISUAL	473
IVMSP-P7.6: HAND-3D-STUDIO: A NEW MULTI-VIEW SYSTEM FOR 3D HAND	478
IVMSP-P7.7: LEARNING ENDMEMBER DYNAMICS IN MULTITEMPORAL	483
IVMSP-P7.8: LEARNING EATING ENVIRONMENTS THROUGH SCENE	488
Sri Kalyan Yarlagadda, Sriram Baireddy, David Güera, Purdue University, United States; Carol J. Boushey, University of Hawa United States; Deborah A. Kerr, Curtin University, Australia; Fengqing Zhu, Purdue University, United States	aii,

IVMSP-P8: INVERSE PROBLEMS IN IMAGE/VIDEO PROCESSING II

IVMSP-P8.1: A HYBRID STRUCTURAL SPARSE ERROR MODEL FOR IMAGE	2493
DEBLOCKING Zhiyuan Zha, Nanyang Technological University, Singapore; Xin Yuan, Nokia Bell Labs, United States; Jiantao Zhou, Univ of Macau, China; Ce Zhu, University of Electronic Science and Technology of China, China; Bihan Wen, Nanyang Technol University, Singapore	
IVMSP-P8.2: REFLECTANCE-GUIDED, CONTRAST-ACCUMULATED HISTOGRAM EQUALIZATION	2498
Xiaomeng Wu, Takahito Kawanishi, Kunio Kashino, NTT Corporation, Japan	
IVMSP-P8.3: BILATERAL RECURRENT NETWORK FOR SINGLE IMAGE DERAINING	2503
IVMSP-P8.4: SRZOO: AN INTEGRATED REPOSITORY FOR SUPER-RESOLUTION	2508
IVMSP-P8.5: SUB-DIP: OPTIMIZATION ON A SUBSPACE WITH DEEP IMAGE PRIORREGULARIZATION AND APPLICATION TO SUPERRESOLUTION	2513
Alexander Sagel, fortiss - The Research Institute of the Free State of Bavaria, Germany; Aline Roumy, Christine Guillemot, France	, Inria,
IVMSP-P8.6: PARSING MAP GUIDED MULTI-SCALE ATTENTION NETWORK FOR	2518
IVMSP-P8.7: A VARIATIONAL BAYESIAN APPROACH FOR MULTICHANNEL	2522
THROUGH-WALL RADAR IMAGING WITH LOW-RANK AND SPARSE PRIORS Van Ha Tang, Le Quy Don Technical University, Viet Nam; Abdesselam Bouzerdoum, Son Lam Phung, University of Wollow Australia	
IVMSP-P8.8: SEMANTICGAN: GENERATIVE ADVERSARIAL NETWORKS FOR	2528
IVMSP-P8.9: LEARNING BLIND DENOISING NETWORK FOR NOISY IMAGE DEBLURRING Meiya Chen, Yi Chang, Shuning Cao, Luxin Yan, Huazhong University of Science and Technology, China	2533
IVMSP-P8.10: PIXEL-LEVEL SELF-PACED LEARNING FOR SUPER-RESOLUTION	2538
IVMSP-P8.11: A RECURSIVE EDGE DETECTOR FOR COLOR FILTER ARRAY IMAGE	2543
IVMSP-P8.12: IMAGE DE-RAINING VIA RDL: WHEN REWEIGHTED	2548
IVMSP-P9: IMAGE/VIDEO ANALYSIS III	
IVMSP-P9.1: CS-R-FCN: CROSS-SUPERVISED LEARNING FOR LARGE-SCALE OBJECT DETECTION Ye Guo, Yali Li, Shengjin Wang, Tsinghua University, China	2553

IVMSP-P9.2: DILATED CONVOLUTIONAL NEURAL NETWORKS FOR PANORAMICIMAGE SALIENCY PREDICTION	. 2558
Feng Dai, Youqiang Zhang, Yike Ma, Institute of Computing Technology, Chinese Academy of Sciences, China; Hongliang Li, University of Chinese Academy of Sciences, China; Qiang Zhao, Institute of Computing Technology, Chinese Academy of Sciences, China	f
IVMSP-P9.3: FINE-GRAINED ACTION RECOGNITION ON A NOVEL BASKETBALL	. 2563
IVMSP-P9.4: ATTENTION GUIDED REGION DIVISION FOR CROWD COUNTING	. 2568
IVMSP-P9.5: SUPERPIXEL SEGMENTATION VIA CONVOLUTIONAL NEURAL	2573
IVMSP-P9.6: STACKED POOLING FOR BOOSTING SCALE INVARIANCE OF CROWD	
IVMSP-P9.7: GFNET: A LIGHTWEIGHT GROUP FRAME NETWORK FOR	
IVMSP-P9.8: ROIMIX: PROPOSAL-FUSION AMONG MULTIPLE IMAGES FOR	
IVMSP-P9.9: TREE OF SHAPES CUT FOR MATERIAL SEGMENTATION GUIDED BY A DESIGN Julien Baderot, Michel Desvignes, Laurent Condat, Mauro Dalla Mura, Univ. Grenoble Alpes, CNRS, Grenoble INP, France	
IVMSP-P9.10: DEEP FLOW COLLABORATIVE NETWORK FOR ONLINE VISUAL TRACKING Peidong Liu, Xiyu Yan, Yong Jiang, Shu-Tao Xia, Tsinghua University, China	. 2598
IVMSP-P9.11: SALIENT OBJECT DETECTION BASED ON IMAGE BIT-MAP	
IVMSP-P9.12: A NOVEL SALIENCY-DRIVEN OIL TANK DETECTION METHOD FOR	. 2608
IVMSP-P10: INVERSE PROBLEMS IN IMAGE/VIDEO PROCESSING III	
IVMSP-P10.1: VIDEO FRAME INTERPOLATION VIA RESIDUE REFINEMENT	2613
IVMSP-P10.2: ATTENTION-GUIDED DERAINING NETWORK VIA STAGE-WISE	
Kui Jiang, Zhongyuan Wang, Peng Yi, Wuhan University, China; Chen Chen, University of North Carolina - Charlotte, Unit States; Yuhong Yang, Xin Tian, Wuhan University, China; Junjun Jiang, Harbin Institute of Technology, China	чи

IVMSP-P10.3: ATTENTION-MASK DENSE MERGER (ATTENDENSE) DEEP HDR FOR
IVMSP-P10.4: Y-NET: MULTI-SCALE FEATURE AGGREGATION NETWORK WITH
IVMSP-P10.5: IMAGE SUPER-RESOLUTION USING RESIDUAL GLOBAL CONTEXT
IVMSP-P10.6: PRINCIPLE-INSPIRED MULTI-SCALE AGGREGATION NETWORK FOR
IVMSP-P10.7: NON-LOCAL NESTED RESIDUAL ATTENTION NETWORK FOR
IVMSP-P10.8: OPENDENOISING: AN EXTENSIBLE BENCHMARK FOR BUILDING
IVMSP-P10.9: SDTCN: SIMILARITY DRIVEN TRANSMISSION COMPUTING
IVMSP-P10.10: JOINT ENHANCEMENT AND DENOISING OF LOW LIGHT IMAGES
IVMSP-P10.11: ADVERSARIAL TEXT IMAGE SUPER-RESOLUTION USING
IVMSP-P10.12: ADRN: ATTENTION-BASED DEEP RESIDUAL NETWORK FOR
IVMSP-P11: IMAGE/VIDEO PROCESSING II
IVMSP-P11.1: WEAKLY SUPERVISED SEGMENTATION GUIDED HAND POSE
IVMSP-P11.2: SPARSE DIRECTED GRAPH LEARNING FOR HEAD MOVEMENT
IVMSP-P11.3: TRACKING TO IMPROVE DETECTION QUALITY IN LIDAR FOR

IVMSP-P11.4: CARTOON-TEXTURE DECOMPOSITION-BASED VARIATIONAL
IVMSP-P11.5: AN ALTERNATIVE SIGNATURE DESIGN USING L1 PRINCIPAL
IVMSP-P11.6: PRIVACY-PRESERVING PATTERN RECOGNITION USING
IVMSP-P11.7: FLEXIBLY-TUNABLE BITCUBE-BASED PERCEPTUAL ENCRYPTION
IVMSP-P11.8: GYROSCOPE AIDED VIDEO STABILIZATION USING NONLINEAR
IVMSP-P12: PERCEPTION AND QUALITY MODELS
IVMSP-P12.1: BBAND INDEX: A NO-REFERENCE BANDING ARTIFACT PREDICTOR
IVMSP-P12.2: LQAID: LOCALIZED QUALITY AWARE IMAGE DENOISING USING
IVMSP-P12.3: WEAKLY SUPERVISED CROWD-WISE ATTENTION FOR ROBUST
IVMSP-P12.4: XPSNR: A LOW-COMPLEXITY EXTENSION OF THE PERCEPTUALLY
IVMSP-P12.5: NON-EXPERTS OR EXPERTS? STATISTICAL ANALYSES OF MOS
IVMSP-P12.6: FULL REFERENCE VIDEO QUALITY MEASURES IMPROVEMENT
IVMSP-P12.7: LEARNING MULTI-SCALE ATTENTIVE FEATURES FOR SERIES
IVMSP-P12.8: SPATIO-TEMPORAL AND GEOMETRY CONSTRAINED NETWORK FOR

Hong Liu, Peng Wei, Weibo Huang, Guoliang Hua, Peking University, China; Fanyang Meng, Peng Cheng Laboratory, China

IVMSP-P12.9: A COMPREHENSIVE FRAMEWORK FOR 2D-JND EXTENSION TO275 360-DEG IMAGES
Sami Jaballah, Amegh Bhavsar, Chaker Larabi, Université de Poitiers, France
IVMSP-P12.10: COMPOSITE DYNAMIC TEXTURE SYNTHESIS USING
IFS-L1: MULTIMEDIA FORENSICS
IFS-L1.1: STEGANOGRAPHY AND ITS DETECTION IN JPEG IMAGES OBTAINED
IFS-L1.2: JPEG STEGANOGRAPHY WITH SIDE INFORMATION FROM THE
IFS-L1.3: SELECTION-CHANNEL-AWARE REVERSE JPEG COMPATIBILITY FOR
IFS-L1.4: EMET: EMBEDDINGS FROM MULTILINGUAL-ENCODER TRANSFORMER
IFS-L1.5: DEPTH MAP FINGERPRINTING AND SPLICING DETECTION
IFS-L1.6: A FRAMEWORK FOR PARAMETERS ESTIMATION OF IMAGE OPERATOR
IFS-L2: PRIVACY, BIOMETRICS AND INFORMATION SECURITY
IFS-L2.1: PRIVACY-PRESERVING PHISHING WEB PAGE CLASSIFICATION VIA
IFS-L2.2: PRIVACY-PRESERVING IMAGE SHARING VIA SPARSIFYING LAYERS ON
IFS-L2.3: EVALUATING VOICE CONVERSION-BASED PRIVACY PROTECTION
IFS-L2.4: LOW-COMPLEXITY AND RELIABLE TRANSFORMS FOR PHYSICAL
IFS-L2.5: ADVERSARIAL DETECTION OF COUNTERFEITED PRINTABLE GRAPHICAL

IFS-L2.6: PHYLOGENETIC MINIMUM SPANNING TREE RECONSTRUCTION
IFS-P1: INFORMATION HIDING, BIOMETRICS AND SECURITY
IFS-P1.1: FCEM: A NOVEL FAST CORRELATION EXTRACT MODEL FOR REAL TIME
IFS-P1.2: APPROACHING OPTIMAL EMBEDDING IN AUDIO STEGANOGRAPHY WITH
IFS-P1.3: MULTI-STAGE RESIDUAL HIDING FOR IMAGE-INTO-AUDIO
IFS-P1.4: PATCH-LEVEL SELECTION AND BREADTH-FIRST PREDICTION
IFS-P1.5: DIGITAL WATERMARKING FOR PROTECTING AUDIO CLASSIFICATION
IFS-P1.6: SALIENCY-BASED IMAGE CONTRAST ENHANCEMENT WITH
IFS-P1.7: UNSEEN FACE PRESENTATION ATTACK DETECTION WITH
IFS-P1.8: TEXCEPTION: A CHARACTER/WORD-LEVEL DEEP LEARNING MODEL
IFS-P1.9: CELL-PHONE CLASSIFICATION: A CONVOLUTIONAL NEURAL NETWORK
IFS-P1.10: QUALITY-OF-SERVICE PREDICTION FOR PHYSICAL-LAYER SECURITY
IFS-P1.11: SECURE IDENTIFICATION FOR GAUSSIAN CHANNELS

IFS-P2: ANONYMIZATION, SECURITY AND PRIVACY
IFS-P2.1: ANTI-JAMMING ROUTING FOR INTERNET OF SATELLITES: A
IFS-P2.2: ELECTRO-MAGNETIC SIDE-CHANNEL ATTACK THROUGH LEARNED
IFS-P2.3: DETECTION OF MALICIOUS VBSCRIPT USING STATIC AND DYNAMIC
IFS-P2.4: DYNAMIC ATTACK SCORING USING DISTRIBUTED LOCAL DETECTORS
IFS-P2.5: HIJACKING TRACKER: A POWERFUL ADVERSARIAL ATTACK ON VISUAL
IFS-P2.6: ADVMS: A MULTI-SOURCE MULTI-COST DEFENSE AGAINST
IFS-P2.7: CLASSIFYING ANOMALIES FOR NETWORK SECURITY
IFS-P2.8: A SWITCHING TRANSMISSION GAME WITH LATENCY AS THE USER'S
IFS-P2.9: AN EFFICIENT METHODOLOGY TO DE-ANONYMIZE THE 5G-NEW
IFS-P2.10: JOINT LEARNING OF ASSIGNMENT AND REPRESENTATION FOR
IFS-P2.11: PRIVATE FL-GAN: DIFFERENTIAL PRIVACY SYNTHETIC DATA

IFS-P3: MULTIMEDIA FORENSICS AND BIOMETRICS

Ying Xu, Tsinghua University, China; Yi Wang, Chinese University of Hong Kong, China; Jiajun Liang, Megvii Technology, China; Yong Jiang, Tsinghua University, China

IFS-P3.2: LEARNING TO FOOL THE SPEAKER RECOGNITION
IFS-P3.3: TS-FEN: PROBING FEATURE SELECTION STRATEGY FOR FACE
IFS-P3.4: IMPROVING CROSS-DATASET PERFORMANCE OF FACE PRESENTATION
IFS-P3.5: SSTNET: DETECTING MANIPULATED FACES THROUGH SPATIAL,
IFS-P3.6: MULTIMODAL VIOLENCE DETECTION IN VIDEOS
IFS-P3.7: OPEN SET VIDEO CAMERA MODEL VERIFICATION
IFS-P3.8: MULTI-PATCH AGGREGATION MODELS FOR RESAMPLING DETECTION
IFS-P3.9: IMPROVING THE CHRONOLOGICAL SORTING OF IMAGES THROUGH
IFS-P3.10: EFFECTIVENESS OF RANDOM DEEP FEATURE SELECTION FOR
IFS-P3.11: A DENSE U-NET WITH CROSS-LAYER INTERSECTION FOR DETECTION
IDSP-L1: SIGNAL PROCESSING FOR EMERGING INDUSTRY APPLICATIONS
IDSP-L1.1: FAST START-UP ALGORITHM FOR ADAPTIVE NOISE CANCELLERS WITH
IDSP-L1.2: ROBUST AND COMPUTATIONALLY-EFFICIENT ANOMALY DETECTION
IDSP-L1.3: SEMI-SUPERVISED OPTIMAL TRANSPORT METHODS FOR
IDSP-L1.4: LEARNING TO ESTIMATE DRIVER DROWSINESS FROM CAR

IDSP-L1.5: DAMAGE-SENSITIVE AND DOMAIN-INVARIANT FEATURE EXTRACTION
Jingxiao Liu, Stanford University, United States; Bingqing Chen, Carnegie Mellon University, United States; Siheng Chen, Mitsubishi Electric Research Laboratories (MERL), United States; Mario Berges, Jacobo Bielak, Carnegie Mellon University, United States; HaeYoung Noh, Stanford University, United States
IDSP-L1.6: ON ROBUST VARIANCE FILTERING AND CHANGE OF VARIANCE
DETECTION Qingsong Wen, Alibaba Group U.S., United States; Zhengzhi Ma, University of Southern California, United States; Liang Sun, Alibaba Group U.S., United States
IDSP-L2: INDUSTRY SESSION ON LARGE-SCALE DISTRIBUTED LEARNING STRATEGIES
IDSP-L2.1: LOW-RANK GRADIENT APPROXIMATION FOR MEMORY-EFFICIENT
Motta, Google, United States
IDSP-L2.2: IMPROVING EFFICIENCY IN LARGE-SCALE DECENTRALIZED
Wei Zhang, Xiaodong Cui, Abdullah Kayi, IBM, United States; Mingrui Liu, University of Iowa, United States; Ulrich Finkler, Brian Kingsbury, George Saon, Youssef Mroueh, Alper Buyuktosunoglu, Payel Das, David Kung, Michael Picheny, IBM, United States
IDSP-L2.3: PARALLELIZING ADAM OPTIMIZER WITH BLOCKWISE MODEL-UPDATE
Kai Chen, Microsoft Research Asia, China; Haisong Ding, University of Science and Technology of China, China; Qiang Huo, Microsoft Research Asia, China
IDSP-P1: EMERGING SIGNAL PROCESSING APPLICATIONS
IDSP-P1.1: JOINT TRAINING OF DEEP NEURAL NETWORKS FOR MULTI-CHANNEL
IDSP-P1.2: STRUCTURAL SPARSIFICATION FOR FAR-FIELD SPEAKER
RECOGNITION WITH INTEL GNA Jingchi Zhang, Duke University, United States; Jonathan Huang, Michael Deisher, Intel Corporation, United States; Hai Li, Yiran Chen, Duke University, United States
IDSP-P1.3: ENVIRONMENT-AWARE RECONFIGURABLE NOISE SUPPRESSION
IDSP-P1.4: FULLY-NEURAL APPROACH TO HEAVY VEHICLE DETECTION ON
IDSP-P1.5: MULTICHANNEL SIGNAL PROCESSING FOR ROAD SURFACE
IDENTIFICATION Gonzalo Safont, Addisson Salazar, Universitat Politècnica de València, Spain; Alberto Rodriguez, Universidad Miguel Hernández de Elche, Spain; Luis Vergara, Universitat Politècnica de València, Spain
IDSP-P1.6: A MONTE CARLO SEARCH-BASED TRIPLET SAMPLING METHOD FOR
LEARNING DISENTANGLED REPRESENTATION OF IMPULSIVE NOISE ON STEERING GEAR Seok-Jun Bu, Namu Park, Yonsei University, Korea (South); Gue-Hwan Nam, Jae-Yong Seo, Hyundai Mobis, Korea (South); Sung-Bae Cho, Yonsei University, Korea (South)

IDSP-P1.7: STOCHASTIC GEOMETRY PLANNING OF ELECTRIC VEHICLES
Erchin Serpedin, Texas A&M University at Qatar, Qatar Erchin Serpedin, Texas A&M University at Qatar, Qatar
IDSP-P1.8: DISCRIMINANT GENERATIVE ADVERSARIAL NETWORKS WITH ITS
IDSP-P1.9: POWER OPTIMIZATION USING EMBEDDED AUTOMATIC GAIN
IDSP-P1.10: A GENERAL DIFFICULTY CONTROL ALGORITHM FOR
IDSP-P1.11: A NEW APPLICATION OF ULTRASOUND SIGNAL PROCESSING FOR
MLSP-L1: ADVERSARIAL MACHINE LEARNING
MLSP-L1.1: HEADLESS HORSEMAN: ADVERSARIAL ATTACKS ON TRANSFER
MLSP-L1.2: DETECTING ADVERSARIAL ATTACKS IN TIME-SERIES DATA
MLSP-L1.3: DETECTION OF ADVERSARIAL ATTACKS AND CHARACTERIZATION OF
MLSP-L1.4: ADVERSARIAL EXAMPLE DETECTION BY CLASSIFICATION FOR DEEP
MLSP-L1.5: CHARACTERIZING SPEECH ADVERSARIAL EXAMPLES USING
MLSP-L1.6: ACTION-MANIPULATION ATTACKS ON STOCHASTIC BANDITS
MLSP-L2: OPTIMIZATION ALGORITHMS I
MLSP-L2.1: PRIMAL-DUAL STOCHASTIC SUBGRADIENT METHOD FOR
MLSP-L2.2: NEURAL NETWORK TRAINING WITH APPROXIMATE LOGARITHMIC

MLSP-L2.3: AUTOMATIC AND SIMULTANEOUS ADJUSTMENT OF LEARNING RATE	3127
MLSP-L2.4: A STUDY OF GENERALIZATION OF STOCHASTIC MIRROR DESCENTALGORITHMS ON OVERPARAMETERIZED NONLINEAR MODELS Navid Azizan, Sahin Lale, Babak Hassibi, California Institute of Technology, United States	3132
MLSP-L2.5: ON DISTRIBUTED STOCHASTIC GRADIENT DESCENT FOR	
MLSP-L2.6: PRECONDITIONING ADMM FOR FAST DECENTRALIZED	3142
MLSP-L3: OPTIMIZATION ALGORITHMS II	
MLSP-L3.1: EXTRAPOLATED ALTERNATING ALGORITHMS FOR APPROXIMATE	
MLSP-L3.2: SCALABLE KERNEL LEARNING VIA THE DISCRIMINANT INFORMATION Mert Al, Zejiang Hou, Sun-Yuan Kung, Princeton University, United States	3152
MLSP-L3.3: ARSM GRADIENT ESTIMATOR FOR SUPERVISED LEARNING TO RANK	
MLSP-L3.4: SOLVING NON-CONVEX NON-DIFFERENTIABLE MIN-MAX GAMES	3162
MLSP-L3.5: A FAST AND ACCURATE FREQUENT DIRECTIONS ALGORITHM FORLOW RANK APPROXIMATION VIA BLOCK KRYLOV ITERATION Qianxin Yi, Chenhao Wang, Xiuwu Liao, Yao Wang, Xi'an Jiaotong University, China	3167
MLSP-L3.6: STOCHASTIC ADMM FOR BYZANTINE-ROBUST DISTRIBUTEDLEARNING Feng Lin, Qing Ling, Sun Yat-Sen University, China; Weiyu Li, Zhiwei Xiong, University of Science and Techna	
MLSP-L4: GENERATIVE ADVERSARIAL NETWORKS	
MLSP-L4.1: UNIFIED SIGNAL COMPRESSION USING GENERATIVE ADVERSARIAL NETWORKS Bowen Liu, Ang Cao, Hun-Seok Kim, University of Michigan, United States	3177
MLSP-L4.2: WIND: WASSERSTEIN INCEPTION DISTANCE FOR EVALUATING	3182
MLSP-L4.3: TRACE NORM GENERATIVE ADVERSARIAL NETWORKS FOR SENSOR	3187

MLSP-L4.4: MAHALANOBIS DISTANCE BASED ADVERSARIAL NETWORK FOR	92
ANOMALY DETECTION Yubo Hou, Zhenghua Chen, Min Wu, Chuan-Sheng Foo, Xiaoli Li, Institute for Infocomm Research, Singapore; Raed Shubair, Massachusetts Institute of Technology, United States	
MLSP-L4.5: COMMUTING CONDITIONAL GANS FOR MULTI-MODAL FUSION	97
MLSP-L4.6: SEQUENCE-TO-SUBSEQUENCE LEARNING WITH CONDITIONAL GAN)2
MLSP-L5: NEURAL NETWORKS APPLICATIONS I	
MLSP-L5.1: A BIN ENCODING TRAINING OF A SPIKING NEURAL NETWORK BASED)7
MLSP-L5,2: ECG HEARTBEAT CLASSIFICATION BASED ON MULTI-SCALE WAVELET	12
MLSP-L5.3: SELF-SUPERVISED LEARNING FOR ECG-BASED EMOTION	17
MLSP-L5.4: EXPRESSION-GUIDED EEG REPRESENTATION LEARNING FOR	
MLSP-L5.5: ATTENTION DRIVEN FUSION FOR MULTI-MODAL EMOTION	27
MLSP-L5.6: LEARNING THE SPATIO-TEMPORAL DYNAMICS OF PHYSICAL	32
MLSP-L6: SPARSITY AWARE PROCESSING AND LEARNING	
MLSP-L6.1: OPTIMAL LAPLACIAN REGULARIZATION FOR SPARSE SPECTRAL	37
MLSP-L6.2: ANOMALY DETECTION IN MIXED TIME-SERIES USING A	

MLSP-L6.3: VARIATIONAL STUDENT: LEARNING COMPACT AND SPARSER
Srinidhi Hegde, Ranjitha Prasad, Ramya Hebbalaguppe, TCS Research, India; Vishwajeet Kumar, IIT Kharagpur, India
MLSP-L6.4: LOW RANK ACTIVATIONS FOR TENSOR-BASED CONVOLUTIONAL
Pierre Humbert, Julien Audiffren, CMLA - École normale supérieure Paris-Saclay, France; Laurent Oudre, L2TI Universite Paris 13, France; Nicolas Vayatis, CMLA - École normale supérieure Paris-Saclay, France
MLSP-L7: MACHINE LEARNING APPLICATIONS III
MLSP-L7.1: ENERGY DISAGGREGATION USING FRACTIONAL CALCULUS
MLSP-L7.2: DYNA-BOLT: DOMAIN ADAPTIVE BINARY FACTORIZATION OF
MLSP-L7.4: UNSUPERVISED STYLE AND CONTENT SEPARATION BY MINIMIZING
MLSP-L7.5: IMPROVING SINGING VOICE SEPARATION WITH THE WAVE-U-NET
MLSP-L7.6: SINGING VOICE CONVERSION WITH DISENTANGLED
MLSP-L8: TENSOR-BASED SIGNAL PROCESSING
MLSP-L8.1: ONLINE TENSOR COMPLETION AND FREE SUBMODULE TRACKING
MLSP-L8.2: EXPLOITING COMMUTATIVITY CONDITION FOR CP
MLSP-L8.3: A NOVEL RANK SELECTION SCHEME IN TENSOR RING
MLSP-L8.5: ESTIMATING STRUCTURAL MISSING VALUES VIA LOW-TUBAL-RANK
MLSP-L8.6: LOW-TUBAL-RANK TENSOR RECOVERY FROM ONE-BIT

MLSP-L9: AUTOENCODERS

MLSP-L9.1: CONTINUAL LEARNING THROUGH ONE-CLASS CLASSIFICATION	. 3307
Felix Wiewel, Andreas Brendle, Bin Yang, University of Stuttgart, Germany	
MLSP-L9.2: ESTIMATION OF POST-NONLINEAR CAUSAL MODELS USING	. 3312
MLSP-L9.3: FROM SYMBOLS TO SIGNALS: SYMBOLIC VARIATIONAL	
MLSP-L9.4: GRAPH AUTO-ENCODER FOR GRAPH SIGNAL DENOISING	. 3322
MLSP-L9.5: A PRIORI ESTIMATES OF THE GENERALIZATION ERROR FOR	. 3327
MLSP-L10: DEEP NEURAL NETWORK STRUCTURES	
MLSP-L10.1: GFCN: A NEW GRAPH CONVOLUTIONAL NETWORK BASED ON	. 3332
MLSP-L10.2: DEPTHWISE-STFT BASED SEPARABLE CONVOLUTIONAL NEURAL	. 3337
MLSP-L10.3: SEMI-IMPLICIT STOCHASTIC RECURRENT NEURAL NETWORKS	
MLSP-L10.4: FEEDBACK RECURRENT AUTOENCODER	. 3347
MLSP-L10.5: INDYLSTMS: INDEPENDENTLY RECURRENT LSTMS	. 3352
MLSP-L10.6: NEURAL ATTENTIVE MULTIVIEW MACHINES Oren Barkan, Ori Katz, Noam Koenigstein, Microsoft, Israel	. 3357
MLSP-L11: ATTENTION NETWORKS	
MLSP-L11.1: ATTENTIVE MODALITY HOPPING MECHANISM FOR SPEECH	
MLSP-L11.2: FACIAL EMOTION RECOGNITION USING LIGHT FIELD IMAGES	

MLSP-L11.3: A REGULARIZED ATTENTION MECHANISM FOR GRAPH ATTENTION	
Laboratory, United States; Andreas Spanias, Arizona State University, United States MLSP-L11.4: ATTENTIVE ITEM2VEC: NEURAL ATTENTIVE USER	3377
REPRESENTATIONS Oren Barkan, Microsoft, Israel; Avi Caciularu, Bar-Ilan University, Israel; Ori Katz, Noam Koenigstein, Microsoft, Israel	
MLSP-L11.5: AUDIO SOUND DETERMINATION USING FEATURE SPACE ATTENTION	
MLSP-L11.6: SPATIAL ATTENTIONAL BILINEAR 3D CONVOLUTIONAL NETWORK	. 3387
MLSP-L12: SEQUENTIAL LEARNING	
MLSP-L12.1: LINEAR THOMPSON SAMPLING UNDER UNKNOWN LINEAR	. 3392
MLSP-L12.2: OVERLAPPED STATE HIDDEN SEMI-MARKOV MODEL FOR	3397
GROUPED MULTIPLE SEQUENCES Hiromi Narimatsu, University of Electro-Communications / NTT Communication Science Laboratories, Japan; Hiroyuki Kas Waseda University, Japan	
MLSP-L12.3: ONLINE COMMUNITY DETECTION BY SPECTRAL CUSUM	. 3402
MLSP-L12.4: ENHANCED ADVERSARIAL STRATEGICALLY-TIMED ATTACKS AGAINST DEEP REINFORCEMENT LEARNING Chao-Han Huck Yang, Jun Qi, Georgia Institute of Technology, United States; Pin-Yu Chen, IBM Research, United States; Ya Ouyang, Preferred Network America, United States; I-Te Danny Hung, Columbia University, United States; Chin-Hui Lee, X Ma, Georgia Institute of Technology, United States	i i
MLSP-L12.5: PREFERENCE-AWARE MASK FOR SESSION-BASED	
MLSP-P1: DICTIONARY LEARNING, REPRESENTATION LEARNING AND MATRIX COMPLETION	
MLSP-P1.1: LOW MUTUAL AND AVERAGE COHERENCE DICTIONARY LEARNING	
MLSP-P1.2: ROBUST ONLINE MATRIX COMPLETION WITH GAUSSIAN MIXTURE	3422
MODEL Chunsheng Liu, National University of Defense Technology, China; Chunlei Chen, Weifang University, China; Hong Shan, B. Wang, National University of Defense Technology, China	3in
MLSP-P1.3: DEEP NEURAL NETWORK BASED MATRIX COMPLETION FOR	. 3427

MLSP-P1.4: BRINGING IN THE OUTLIERS: A SPARSE SUBSPACE CLUSTERING
MLSP-P1.5: ONE-BIT COMPRESSED SENSING USING GENERATIVE MODELS
MLSP-P1.6: HYBRID DEEP-SEMANTIC MATRIX FACTORIZATION FOR TAG-AWARE
MLSP-P1.7: SUPERVISED ENCODING FOR DISCRETE REPRESENTATION
MLSP-P1.8: LEARNING DATA REPRESENTATION AND EMOTION ASSESSMENT
MLSP-P1.9: FEATURE SELECTION UNDER ORTHOGONAL REGRESSION WITH
MLSP-P1.10: THE PICASSO ALGORITHM FOR BAYESIAN LOCALIZATION VIA PAIRED
MLSP-P1.11: LEARNING SEMI-SUPERVISED ANONYMIZED REPRESENTATIONS BY
MLSP-P1.12: LEARNING LOCAL STRUCTURE OF REPRESENTATIVE POINTS FOR
MLSP-P2: APPLICATIONS IN SPEECH AND AUDIO
MLSP-P2.1: TOWARDS BLIND QUALITY ASSESSMENT OF CONCERT AUDIO
MLSP-P2.3: MULTI-LABEL SOUND EVENT RETRIEVAL USING A DEEP
MLSP-P2.4: SPEECH-DRIVEN FACIAL ANIMATION USING POLYNOMIAL FUSION OF

MLSP-P2.5: SED-MDD: TOWARDS SENTENCE DEPENDENT END-TO-END
MLSP-P2.6: GENERATIVE PRE-TRAINING FOR SPEECH WITH AUTOREGRESSIVE
MLSP-P2.7: STARGAN FOR EMOTIONAL SPEECH CONVERSION: VALIDATED BY
MLSP-P2.8: MULTIMODAL TRANSFORMER FUSION FOR CONTINUOUS EMOTION
MLSP-P2.9: HKA: A HIERARCHICAL KNOWLEDGE ATTENTION MECHANISM FOR
MLSP-P2.10: SUBMODULAR RANK AGGREGATION ON SCORE-BASED
MLSP-P2.11: BRIDGING MIXTURE DENSITY NETWORKS WITH META-LEARNING
MLSP-P2.12: PITCH ESTIMATION VIA SELF-SUPERVISION
MLSP-P3: REINFORCEMENT AND SEQUENTIAL LEARNING
MLSP-P3.1: HIERARCHICAL CACHING VIA DEEP REINFORCEMENT LEARNING
MLSP-P3.2: LEARNING NETWORK REPRESENTATION THROUGH
MLSP-P3.3: ATTENTION-BASED CURIOSITY-DRIVEN EXPLORATION IN DEEP
MLSP-P3.4: STABILIZING MULTI-AGENT DEEP REINFORCEMENT LEARNING BY
MLSP-P3.5: QOS-AWARE FLOW CONTROL FOR POWER-EFFICIENT DATA CENTER

MLSP-P3.6: IMPROVING THE SCALABILITY OF DEEP REINFORCEMENT
Penghao Sun, Julong Lan, National Digital Switching System Engineering & Technological R&D Center, China; Zehua Guo, Beijing Institute of Technology, China; Yang Xu, Fudan University, China; Yuxiang Hu, National Digital Switching System Engineering & Technological R&D Center, China
MLSP-P3.7: GENERALIZED LINEAR BANDITS WITH SAFETY CONSTRAINTS
MLSP-P3.8: FROM VIDEO GAME TO REAL ROBOT: THE TRANSFER BETWEEN
MLSP-P3.9: CORRELATED MULTI-ARMED BANDITS WITH A LATENT RANDOM
MLSP-P3.10: ADAPTIVE SEQUENTIAL INTERPOLATOR USING ACTIVE LEARNING
Luca Martino, Universidad Rey Juan Carlos, Spain; Daniel Heestermans Svendsen, Universitat de Valencia, Spain; Jorge Vicent, Universitat of Valencia and Magellium Company in Geoinformation and Image Processing, France; Gustau Camps-Valls, Universitat de Valencia, Spain
MLSP-P3.11: CONTINUAL LEARNING FOR INFINITE HIERARCHICAL
MLSP-P4: ADVERSARIAL ATTACKS AND FAST ALGORITHMS
MLSP-P4.2: COST AWARE ADVERSARIAL LEARNING
MLSP-P4.3: ON DIVERGENCE APPROXIMATIONS FOR UNSUPERVISED TRAINING
Shakarim Soltanayev, Ulsan National Institute of Science and Technology, Korea (South); Raja Giryes, Tel Aviv University, Israel; Se Young Chun, Ulsan National Institute of Science and Technology, Korea (South); Yonina Eldar, Weizmann Institute of Science, Israel
MLSP-P4.4: VARIABLE METRIC PROXIMAL GRADIENT METHOD WITH DIAGONAL
BARZILAI-BORWEIN STEPSIZE Youngsuk Park, Stanford university, United States; Sauptik Dhar, LG Sillicon Valley Lab, United States; Stephen Boyd, Stanford university, United States; Mohak Shah, LG Sillicon Valley Lab, United States
MLSP-P4.5: REVISIT OF ESTIMATE SEQUENCE FOR ACCELERATED GRADIENT
Bingcong Li, University of minnesota, United States; Mario Coutino, Delft University of Technology, Netherlands; Georgios B. Giannakis, University of minnesota, United States
MLSP-P4.6: A GENERALIZATION OF PRINCIPAL COMPONENT ANALYSIS
MLSP-P4.7: AN EASY-TO-IMPLEMENT FRAMEWORK OF FAST SUBSPACE
MLSP-P4.8: INVESTIGATING GENERALIZATION IN NEURAL NETWORKS UNDER

MLSP-P4.9: HETEROGENEOUS DOMAIN GENERALIZATION VIA DOMAIN MIXUP
MLSP-P4.10: PRESERVATION OF ANOMALOUS SUBGROUPS ON VARIATIONAL
AUTOENCODER TRANSFORMED DATA
Samuel C. Maina, Reginald E. Bryant, William Ogallo, IBM Research, Kenya; Robert-Florian Samoilescu, University Politehnica of Bucharest, Romania; Aisha Walcott-Bryant, Skyler Speakman, Celia Cintas, Kush R. Varshney, Komminist Weldemariam, IBM Research, Kenya
MLSP-P4.11: LEARN-BY-CALIBRATING: USING CALIBRATION AS A TRAINING
OBJECTIVE
Jayaraman J. Thiagarajan, Lawrence Livermore National Labs, United States; Bindya Venkatesh, Arizona State University, United States; Deepta Rajan, IBM Research, United States
MLSP-P5: APPLICATIONS IN VIDEO AND IMAGE PROCESSING I
MLSP-P5.1: ESRGAN+: FURTHER IMPROVING ENHANCED SUPER-RESOLUTION
Nathanaël Carraz Rakotonirina, Andry Rasoanaivo, Université d'Antananarivo, Madagascar
MLSP-P5.2: ATTENTIVE CUTMIX: AN ENHANCED DATA AUGMENTATION APPROACH
Devesh Walawalkar, Zhiqiang Shen, Zechun Liu, Marios Savvides, Carnegie Mellon University, United States
MLSP-P5.3: EFFICIENT IMAGE SUPER RESOLUTION VIA CHANNEL
DISCRIMINATIVE DEEP NEURAL NETWORK PRUNING Zejiang Hou, Sun-Yuan Kung, Princeton University, United States
MLSP-P5.4: MULTI-RESOLUTION OVERLAPPING STRIPES NETWORK FOR
PERSON RE-IDENTIFICATION
Arda Efe Okay, University of Miami, United States; Manal AlGhamdi, Umm AlQura University, Saudi Arabia; Robert Westendorp, FORTINET Technologies (Canada) ULC, Canada; Mohamed Abdel-Mottaleb, University of Miami, United States
MLSP-P5.5: PERSON IDENTIFICATION USING DEEP CONVOLUTIONAL NEURAL
George Retsinas, Panagiotis P. Filntisis, Niki Efthymiou, Emmanouil Theodosis, Athanasia Zlatintsi, Petros Maragos, National Technical University of Athens, Greece
MLSP-P5.6: LOCAL-GLOBAL FEATURE FOR VIDEO-BASED ONE-SHOT PERSON
Chao Zhao, Zhenyu Zhang, Jian Yang, Yan Yan, Nanjing University of Science and Technology, China
MLSP-P5.7: GLOBAL AND LOCAL DISCRIMINATIVE PATCHES EXPLOITING FOR
Jintao Wu, Wu Luo, Weiwei Liu, Chongyang Zhang, Shanghai Jiao Tong University, China
MLSP-P5.9: DISENTANGLING CONTROLLABLE OBJECT THROUGH VIDEO
PREDICTION IMPROVES VISUAL REINFORCEMENT LEARNING Yuanyi Zhong, Alexander Schwing, Jian Peng, University of Illinois at Urbana-Champaign, United States
MLSP-P5.10: DYNAMIC VARIATIONAL AUTOENCODERS FOR VISUAL PROCESS
MODELING
Alexander Sagel, Hao Shen, fortiss - The Research Institute of the Free State of Bavaria, Germany
MLSP-P5.11: A NOVEL TWO-PATHWAY ENCODER-DECODER NETWORK FOR 3D
FACE RECONSTRUCTION
Xianfeng Li, Zichun Weng, Juntao Liang, Lei Cai, Youjun Xiang, Yuli Fu, South China University of Technology, China

MLSP-P5.12: RATE ASSIGNMENT IN 360-DEGREE VIDEO TILED STREAMING USING
Germany
MLSP-P6: PATTERN RECOGNITION AND MACHINE LEARNING
MLSP-P6.1: IMPROVING CONVERGENT CROSS MAPPING FOR CAUSAL
MLSP-P6.2: LABEL REUSE FOR EFFICIENT SEMI-SUPERVISED LEARNING
MLSP-P6.3: DECENTRALIZED OPTIMIZATION WITH NON-IDENTICAL SAMPLING
MLSP-P6.4: CONTENT VS CONTEXT: HOW ABOUT "WALKING HAND-IN-HAND"
MLSP-P6.5: FIXED SMOOTH CONVOLUTIONAL LAYER FOR AVOIDING
MLSP-P6.6: THIS DATASET DOES NOT EXIST: TRAINING MODELS FROM
MLSP-P6.7: LET-SNE: A HYBRID APPROACH TO DATA EMBEDDING AND
MLSP-P6.8: ADVERSARIAL MIXUP SYNTHESIS TRAINING FOR UNSUPERVISED
MLSP-P6.9: RATE-INVARIANT AUTOENCODING OF TIME-SERIES
MLSP-P6.10: SELF-PACED PROBABILISTIC PRINCIPAL COMPONENT ANALYSIS FOR
MLSP-P6.11: CORRDROP: CORRELATION BASED DROPOUT FOR
MLSP-P6.12: WITCHCRAFT: EFFICIENT PGD ATTACKS WITH RANDOM STEP SIZE

MLSP-P7: MACHINE LEARNING APPLICATIONS I

MLSP-P7.1: THE FIFTHNET CHROMA EXTRACTOR	3752
MLSP-P7.2: ROBUST MARINE BUOY PLACEMENT FOR SHIP DETECTION USING	3757
Yuting Ng, João M. Pereira, Duke University, United States; Denis Garagic, BAE Systems FAST Labs, United States; Vahid Tarokh, Duke University, United States	
MLSP-P7.3: ON-THE-FLY FEATURE SELECTION AND CLASSIFICATION WITH	
Yasitha Warahena Liyanage, Daphney-Stavroula Zois, Charalampos Chelmis, University at Albany, State University of New United States	
MLSP-P7.4: GLOBAL TRAFFIC STATE RECOVERY VIA LOCAL OBSERVATIONS	nina;
MLSP-P7.5: FORECASTING SPARSE TRAFFIC CONGESTION PATTERNS USING	3772
MLSP-P7.6: ENERGY DISAGGREGATION FROM LOW SAMPLING FREQUENCY MEASUREMENTS USING MULTI-LAYER ZERO CROSSING RATE Pascal Schirmer, Iosif Mporas, University of Hertfordhshire, United Kingdom	3777
MLSP-P7.7: DECODING 5G-NR COMMUNICATIONS VIA DEEP LEARNING	3782
MLSP-P7.8: BODY MOVEMENT GENERATION FOR EXPRESSIVE VIOLIN	
MLSP-P7.9: SEQUENTIAL VESSEL TRAJECTORY IDENTIFICATION USING	
MLSP-P7.10: A PROTOTYPICAL TRIPLET LOSS FOR COVER DETECTION	3797
MLSP-P7.11: AUTOMOTIVE RADAR SIGNAL INTERFERENCE MITIGATION USING	3802
MLSP-P7.12: A LARGE-SCALE DEEP ARCHITECTURE FOR PERSONALIZED	
MLSP-P8: MACHINE LEARNING APPLICATIONS II	
MLSP-P8.1: BLIND BOUNDED SOURCE SEPARATION USING NEURAL NETWORKS	3812
Alper Erdogan, Koc University, Turkey: Cengiz Pehleyan, Harvard University, United States	

MLSP-P8.2: MODELING PIECE-WISE STATIONARY TIME SERIES
MLSP-P8.3: MULTIVARIATE TROPICAL REGRESSION AND PIECEWISE-LINEAR
MLSP-P8.4: REVEALING BACKDOORS, POST-TRAINING, IN DNN CLASSIFIERS VIA
MLSP-P8.5: CLASSIFYING PARTIALLY LABELED NETWORKED DATA VIA LOGISTIC
MLSP-P8.6: NEURAL TIME WARPING FOR MULTIPLE SEQUENCE ALIGNMENT
MLSP-P8.7: LANCE: EFFICIENT LOW-PRECISION QUANTIZED WINOGRAD
MLSP-P8.8: MEDIA CLASSIFICATION WITH BAYESIAN OPTIMIZATION AND
MLSP-P8.9: BATMAN: BAYESIAN TARGET MODELLING FOR ACTIVE INFERENCE
MLSP-P8.10: DEEP LEARNING ABILITIES TO CLASSIFY INTRICATE VARIATIONS IN
MLSP-P8.11: ASSIMILATION-BASED LEARNING OF CHAOTIC DYNAMICAL SYSTEMS
MLSP-P8.12: GATED MULTI-LAYER CONVOLUTIONAL FEATURE EXTRACTION
MLSP-P9: GRAPHICAL, KERNEL AND TENSOR METHODS
MLSP-P9.1: KERNEL RIDGE REGRESSION WITH AUTOCORRELATION PRIOR:
MLSP-P9.2: GENERALIZED KERNEL-BASED DYNAMIC MODE DECOMPOSITION
MLSP-P9.3: AN ONLINE KERNEL SCALAR QUANTIZATION SCHEME FOR SIGNAL
Jing Guo, Purdue University, United States; Raghu Raj, U.S. Naval Research Laboratory, United States; David Love, Purdue University, United States

MLSP-P9.4: SELF-DRIVEN GRAPH VOLTERRA MODELS FOR HIGHER-ORDER
MLSP-P9.5: GRAPH CONSTRUCTION FROM DATA BY NON-NEGATIVE KERNEL
MLSP-P9.6: STRUCTURED CITATION TREND PREDICTION USING GRAPH NEURAL
MLSP-P9.7: REVISITING FAST SPECTRAL CLUSTERING WITH ANCHOR GRAPH
MLSP-P9.8: A GRAPH NETWORK MODEL FOR DISTRIBUTED LEARNING WITH
MLSP-P9.9: GRAPH REGULARIZED TENSOR TRAIN DECOMPOSITION
MLSP-P9.10: WEIGHTED KRYLOV-LEVENBERG-MARQUARDT METHOD FOR
MLSP-P9.11: LOW-COMPLEXITY LEVENBERG-MARQUARDT ALGORITHM FOR
MLSP-P9.12: A MOMENT-BASED APPROACH FOR GUARANTEED TENSOR
MLSP-P10: LEARNING METHODS
MLSP-P10.1: LEARNING DIVERSE SUB-POLICIES VIA A TASK-AGNOSTIC
MLSP-P10.2: FEDERATED LEARNING WITH MUTUALLY COOPERATING DEVICES: A
MLSP-P10.3: NO-REGRET NON-CONVEX ONLINE META-LEARNING
MLSP-P10.4: ASYNCHROUNOUS DECENTRALIZED LEARNING OF A NEURAL
MLSP-P10.5: LEARNING PERCEPTION AND PLANNING WITH DEEP ACTIVE
Ozan Çatal, Tim Verbelen, Johannes Nauta, Cedric De Boom, Bart Dhoedt, Ghent University - imec, Belgium

MLSP-P10.6: PROJECTION FREE DYNAMIC ONLINE LEARNING
MLSP-P10.7: LEARNING PARTIAL DIFFERENTIAL EQUATIONS FROM DATA USING
Ali Hasan, João M. Pereira, Robert Ravier, Sina Farsiu, Vahid Tarokh, Duke University, United States
MLSP-P10.8: ACTIVE LEARNING WITH UNSUPERVISED ENSEMBLES OF
MLSP-P10.9: NASIL: NEURAL ARCHITECTURE SEARCH WITH IMITATION
MLSP-P10.10: MULTI-VIEW CLUSTERING VIA MIXED EMBEDDING
MLSP-P10.11: SIGNAL CLUSTERING WITH CLASS-INDEPENDENT SEGMENTATION
MLSP-P11: NEURAL NETWORKS AND PATTERN RECOGNITION
MLSP-P11.1: MANGO: A PYTHON LIBRARY FOR PARALLEL HYPERPARAMETER
MLSP-P11.2: ANYTIME MINIBATCH WITH DELAYED GRADIENTS: SYSTEM
MLSP-P11.3: ON EXPONENTIALLY CONSISTENCY OF LINKAGE-BASED
MLSP-P11.5: A NEURAL NETWORK BASED ON FIRST PRINCIPLES
MLSP-P11.6: AL2: PROGRESSIVE ACTIVATION LOSS FOR LEARNING GENERAL
MLSP-P11.7: LABEL PROPAGATION ADAPTIVE RESONANCE THEORY FOR
MLSP-P11.8: A PROBABILISTIC SCHEME FOR REPRESENTATION LEARNING WITH
MLSP-P11.9: PERCEPTION-DISTORTION TRADE-OFF WITH RESTRICTED
BOLTZMANN MACHINES Chris Cannella, Duke University, United States; Jie Ding, University of Minnesota, United States; Mohammadreza Soltani, Duke University, United States; Yi Zhou, University of Utah, United States; Vahid Tarokh, Duke University, United States

MLSP-P11.10: AN EFFICIENT ALTERNATIVE TO NETWORK PRUNING THROUGH
MLSP-P11.11: A NOVEL PRUNING APPROACH FOR BAGGING ENSEMBLE
MLSP-P11.12: K-AUTOENCODERS DEEP CLUSTERING
MLSP-P12: APPLICATIONS IN VIDEO AND IMAGE PROCESSING II
MLSP-P12.1: MOGA: SEARCHING BEYOND MOBILENETV3
MLSP-P12.2: META METRIC LEARNING FOR HIGHLY IMBALANCED AERIAL SCENE
MLSP-P12.3: SYNTHETIC CROWD AND PEDESTRIAN GENERATOR FOR DEEP
MLSP-P12.4: TOSO: STUDENT'S-T DISTRIBUTION AIDED ONE-STAGE
MLSP-P12.5: IMPROVING DEEP LEARNING CLASSIFICATION OF JPEG2000 IMAGES
MLSP-P12.6: AUGMENTED GRAD-CAM: HEAT-MAPS SUPER RESOLUTION
MLSP-P12.7: BBA-NET: A BI-BRANCH ATTENTION NETWORK FOR CROWD
MLSP-P12.8: DEEP METRIC LEARNING BASED ON CENTER-RANKED LOSS FOR
MLSP-P12.9: CHANNEL ATTENTION BASED GENERATIVE NETWORK FOR ROBUST

MLSP-P12.10: CROSS-VAE: TOWARDS DISENTANGLING EXPRESSION FROM	. 4087
IDENTITY FOR HUMAN FACES Haozhe Wu, Jia Jia, Tsinghua University, China; Lingxi Xie, Huawei Noah's Ark Lab, China; Guojun Qi, Futurewei Technolo China; Yuanchun Shi, Tsinghua University, China; Qi Tian, Huawei Noah's Ark Lab, China	ogies,
MLSP-P12.11: ENHANCE PART-BASED MODEL FOR PERSON RE-IDENTIFICATION	. 4092
MLSP-P12.12: TEXT-TO-IMAGE SYNTHESIS METHOD EVALUATION BASED ON	. 4097
MLSP-P13: NEURAL NETWORKS APPLICATIONS II	
MLSP-P13.1: DETECTION OF MILD DYSPNEA FROM PAIRS OF SPEECH	. 4102
MLSP-P13.2: A HYBRID MODEL FOR BIPOLAR DISORDER CLASSIFICATION FROM	. 4107
MLSP-P13.3: AUTOMATIC EVENT DETECTION OF REM SLEEP WITHOUT ATONIA	
MLSP-P13.4: A DEEP LEARNING ARCHITECTURE FOR EPILEPTIC SEIZURE CLASSIFICATION BASED ON OBJECT AND ACTION RECOGNITION Tamás Karácsony, INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Portugal; Anna Loesch-Biffar, Christian Vollmar, Soheyl Noachtar, University of Munich, Germany; Joao Paulo Silva Cunha, INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Portugal	
MLSP-P13.5: TRANSFORMING SEISMOCARDIOGRAMS INTO ELECTROCARDIOGRAMS BY APPLYING CONVOLUTIONAL AUTOENCODERS Marian Haescher, Florian Höpfner, Wencke Chodan, Fraunhofer Gesellschaft, Germany; Dimitri Kraft, Universität Rostock, Germany; Mario Aehnelt, Fraunhofer Gesellschaft, Germany; Bodo Urban, Universität Rostock, Germany	
MLSP-P13.6: IMPROVED NEAREST NEIGHBOR DENSITY-BASED CLUSTERING TECHNIQUES WITH APPLICATION TO HYPERSPECTRAL IMAGES Claude Cariou, Kacem Chehdi, Univ Rennes, CNRS, France; Steven Le Moan, Massey University, New Zealand	. 4127
MLSP-P13.7: OBJECT SURFACE ESTIMATION FROM RADAR IMAGES	. 4132
MLSP-P13.8: COUNTING DENSE OBJECTS IN REMOTE SENSING IMAGES	. 4137
MLSP-P13.9: HPRNN: A HIERARCHICAL SEQUENCE PREDICTION MODEL FOR	. 4142
MLSP-P13.10: ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED	. 4147

xcvi

MLSP-P13.11: CPWC: CONTEXTUAL POINT WISE CONVOLUTION FOR OBJECT
Pratik Mazumder, Pravendra Singh, Vinay Namboodiri, Indian Institute of Technology Kanpur, India
MLSP-P13.12: ELECTRIC ANALOG CIRCUIT DESIGN WITH HYPERNETWORKS AND
MLSP-P14: TOPICS IN MACHINE LEARNING
MLSP-P14.1: MULTI-TASK LEARNING VIA SA-FPN AND EJ-HEAD
MLSP-P14.2: DIFFERENTIABLE BRANCHING IN DEEP NETWORKS FOR FAST
Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Enzo Baccarelli, Aurelio Uncini, Sapienza University of Rome, Italy
MLSP-P14.3: MULTI-STEP ONLINE UNSUPERVISED DOMAIN ADAPTATION
MLSP-P14.4: SELF-ADAPTIVE FEATURE FOOL
MLSP-P14.5: MULTI-MOTIFGAN (MMGAN): MOTIF-TARGETED GRAPH
MLSP-P14.6: FEDERATED CLASSIFICATION WITH LOW COMPLEXITY
MLSP-P14.7: MAXPOLYNOMIAL DIVISION WITH APPLICATION TO NEURAL
MLSP-P14.8: BALANCED BINARY NEURAL NETWORKS WITH GATED RESIDUAL
MLSP-P14.9: A GEOMETRIC APPROACH FOR UNSUPERVISED SIMILARITY
MLSP-P14.10: GRADIENT DELAY ANALYSIS IN ASYNCHRONOUS DISTRIBUTED
MLSP-P14.11: SEQUENTIAL IOT DATA AUGMENTATION USING GENERATIVE
MLSP-P14.12: ROBUST RANK CONSTRAINED SPARSE LEARNING: A GRAPH-BASED

MLSP-P15: NEURAL NETWORK ALGORITHMS

MLSP-P15.1: EFFICIENT DECOUPLED NEURAL ARCHITECTURE SEARCH BY	
MLSP-P15.2: WEIGHT SHARING AND DEEP LEARNING FOR SPECTRAL DATA	1227
MLSP-P15.3: COMPLEX TRANSFORMER: A FRAMEWORK FOR MODELING	1232
MLSP-P15.4: HIGH-DIMENSIONAL NEURAL FEATURE USING RECTIFIED LINEAR	1237
MLSP-P15.5: PROJECTED WEIGHT REGULARIZATION TO IMPROVE NEURAL	1242
MLSP-P15.7: DEEP CLUSTERING FOR DOMAIN ADAPTATION	1247
MLSP-P15.8: DEEP CLUSTERING WITH CONCRETE K-MEANS	1252
MLSP-P15.9: POLARIZING FRONT ENDS FOR ROBUST CNNS	
MLSP-P15.10: ADAPTIVE DISTRIBUTED STOCHASTIC GRADIENT DESCENT FOR	1262
MLSP-P15.11: A MODEL OF DOUBLE DESCENT FOR HIGH-DIMENSIONAL	
MLSP-P16: NEURAL NETWORKS APPLICATIONS III	
MLSP-P16.1: EFFICIENT SCENE TEXT DETECTION WITH TEXTUAL ATTENTION	1272
MLSP-P16.2: A HYBRID APPROACH FOR THERMOGRAPHIC IMAGING WITH DEEP	

MLSP-P16.3: KNOWLEDGE ENHANCED LATENT RELEVANCE MINING FOR
QUESTION ANSWERING Dang Wang Tringlang Shows on Intermediated Conductor School Tringlang University Chinas Ving Show Sun Vet Sen University
Dong Wang, Tsinghua Shenzhen International Graduate School, Tsinghua University, China; Ying Shen, Sun Yat-Sen University, China; Hai-Tao Zheng, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
China, 11th 140 Energ, 15th Shak Sheh 2neh 1th Critical Graduate School, 15th Shak Chira
MLSP-P16.4: MULTI-LABEL CONSISTENT CONVOLUTIONAL TRANSFORM
LEARNING: APPLICATION TO NON-INTRUSIVE LOAD MONITORING
Shikha Singh, Jyoti Maggu, Angshul Majumdar, Indraprastha Institute of Information Technology Delhi, India; Emilie
Chouzenoux, Inria Saclay, OPIS, Center for Visual Computing, France; Giovanni Chierchia, Université Paris Est, ESIEE, France
MLSP-P16.5: RESILIENT DISTRIBUTED RECOVERY OF LARGE FIELDS
Yuan Chen, Soummya Kar, José Moura, Carnegie Mellon University, United States
MLSP-P16.6: TRAINING LSTM FOR UNSUPERVISED ANOMALY DETECTION
WITHOUT A PRIORI KNOWLEDGE
Yann Cherdo, Paul de Kerret, Renaud Pawlak, Mantu, France
MLSP-P16.7: UNSUPERVISED PERSON RE-IDENTIFICATION USING
MULTI-BRANCH FEATURE COMPENSATION NETWORK AND LINK-BASED CLUSTER
DISSIMILARITY METRIC Lin Pan, Gege Qi, Biao Guo, Yuesheng Zhu, Peking University, China
Lin I an, Gege Qi, Biao Guo, Tuesneng Ena, I ening University, China
MLSP-P16.8: DEEP-SST-EDDIES: A DEEP LEARNING FRAMEWORK TO DETECT
OCEANIC EDDIES IN SEA SURFACE TEMPERATURE IMAGES
Evangelos Moschos, École Polytechnique, France; Olivier Schwander, Sorbonne Université, France; Alexandre Stegner, École
Polytechnique, France; Patrick Gallinari, Sorbonne Université / Criteo AI Lab, France
MLSP-P16.9: INTERPRETABILITY-GUIDED CONVOLUTIONAL NEURAL NETWORKS
FOR SEISMIC FAULT SEGMENTATION
Zhining Liu, Cheng Zhou, Guangmin Hu, University of Electronic Science and Technology of China, China; Chengyun Song,
Chongqing University of Technology, China
MLSP-P16.10: TOWARDS HIGH-PERFORMANCE OBJECT DETECTION:
TASK-SPECIFIC DESIGN CONSIDERING CLASSIFICATION AND LOCALIZATION SEPARATION
Jung Uk Kim, Korea Advanced Institute of Science and Technology (KAIST), Korea (South); Seong Tae Kim, Technische
Universität München, Germany; Eun Sung Kim, Korea Advanced Institute of Science and Technology (KAIST), Korea (South);
Sang-Keun Moon, Korea Electric Power Corporation (KEPCO) Research Institute, Korea (South); Yong Man Ro, Korea
Advanced Institute of Science and Technology (KAIST), Korea (South)
MLSP-P16.11: ANOMALY DETECTION FOR TIME SERIES USING VAE-LSTM
HYBRID MODEL
Shuyu Lin, University of Oxford, United Kingdom; Ronald Clark, Imperial College London, United Kingdom; Robert Birke,
Sandro Schoenborn, ABB Future Labs, Switzerland; Niki Trigoni, Stephen Roberts, University of Oxford, United Kingdom
MLSP-P16.12: HYDRANET: A REAL-TIME WAVEFORM SEPARATION NETWORK
Esbern Torgard Kaspersen, Aalborg University, Denmark; Tsampikos Kounalakis, Danish Technological Institute, Denmark;
Cumhur Erkut, Aalborg University, Denmark
MMSP-L1: SIGNAL PROCESSING FOR MULTIMEDIA APPLICATIONS II
MMSP-L1.1: STORING DIGITAL DATA INTO DNA: A COMPARATIVE STUDY OF
QUATERNARY CODE CONSTRUCTION
Melpomeni Dimopoulou, Marc Antonini, Université Côte d'Azur, CNRS, I3S, France; Pascal Barbry, Université Côte d'Azur,
CNRS, IPMC, France; Raja Appuswamy, EURECOM, France
MMSP-L1.2: A NEW MULTIHYPOTHESIS PREDICTION SCHEME FOR
COMPRESSED VIDEO SENSING RECONSTRUCTION
Shuai Zheng, Xidian University, China; Xiao-Ping Zhang, Ryerson University, Canada; Jian Chen, Yonghong Kuo, Xidian
University, China

MMSP-L1.3: BIT ALLOCATION FOR MULTI-TASK COLLABORATIVE INTELLIGENCE	42
MMSP-L1.4: MOTION FEEDBACK DESIGN FOR VIDEO FRAME INTERPOLATION	
MMSP-L1.5: TRILINGUAL SEMANTIC EMBEDDINGS OF VISUALLY GROUNDED	
MMSP-L1.6: TOWARDS POSE-INVARIANT LIP-READING	
MMSP-L2: DEEP LEARNING FOR MULTIMEDIA PROCESSING AND ANALYSIS II	
MMSP-L2.1: A SIAMESE CONTENT-ATTENTIVE GRAPH CONVOLUTIONAL	62
MMSP-L2.2: SELF-SUPERVISED LEARNING FOR AUDIO-VISUAL SPEAKER	
MMSP-L2.3: WHAT MAKES THE SOUND?: A DUAL-MODALITY INTERACTING	72
MMSP-L2.4: ATTENTIONAL FUSED TEMPORAL TRANSFORMATION NETWORK FOR	
MMSP-L2.5: DEEP PRODUCT QUANTIZATION MODULE FOR EFFICIENT IMAGE	82
MMSP-L2.6: THE OPEN BRANDS DATASET: UNIFIED BRAND DETECTION AND	87
MMSP-P1: SIGNAL PROCESSING FOR MULTIMEDIA APPLICATIONS I	
MMSP-P1.1: SPECTROGRAM ANALYSIS VIA SELF-ATTENTION FOR REALIZING	92
MMSP-P1.2: DGAN: DISENTANGLED REPRESENTATION LEARNING FOR	97

MMSP-P1.3: APB2FACE: AUDIO-GUIDED FACE REENACTMENT WITH AUXILIARY
MMSP-P1.4: MOTION DYNAMICS IMPROVE SPEAKER-INDEPENDENT
MMSP-P1.5: MULTI-LAYER CONTENT INTERACTION THROUGH QUATERNION
MMSP-P1.6: LINEAR MODEL-BASED INTRA PREDICTION IN VVC TEST MODEL
MMSP-P1.7: INTRA FRAME RATE CONTROL FOR VERSATILE VIDEO CODING
MMSP-P1.8: PERFORMANCE COMPARISON OF LOSSLESS COMPRESSION
MMSP-P1.9: ENCODER-RECURRENT DECODER NETWORK FOR SINGLE IMAGE
MMSP-P1.10: DENOISING OF EVENT-BASED SENSORS WITH SPATIAL-TEMPORAL
MMSP-P2: DEEP LEARNING FOR MULTIMEDIA PROCESSING AND ANALYSIS I
MMSP-P2.1: A VISUAL-PILOT DEEP FUSION FOR TARGET SPEECH SEPARATION IN
MMSP-P2.2: C3DVQA: FULL-REFERENCE VIDEO QUALITY ASSESSMENT WITH 3D
MMSP-P2.3: EXPLORING ENTITY-LEVEL SPATIAL RELATIONSHIPS FOR
MMSP-P2.4: A DEEP MULTIMODAL APPROACH FOR MAP IMAGE CLASSIFICATION

MMSP-P2.5: SELECTIVE CONVOLUTIONAL NETWORK: AN EFFICIENT OBJECT
MMSP-P2.6: BACK-AND-FORTH PREDICTION FOR DEEP TENSOR COMPRESSION
MMSP-P2.7: EFFECTIVE PIPELINE FOR COMPRESSING DEEP OBJECT
MMSP-P2.8: GATED MECHANISM FOR ATTENTION BASED MULTIMODAL
MMSP-P2.9: MULTITASK LEARNING AND MULTISTAGE FUSION FOR
MMSP-P2.10: OBJECT DETECTION AND 3D ESTIMATION VIA AN FMCW RADAR
MMSP-P3: MULTIMEDIA SIGNAL PROCESSING
MMSP-P3.1: AVA ACTIVE SPEAKER: AN AUDIO-VISUAL DATASET FOR ACTIVE
MMSP-P3.2: SUPERVISED DEEP HASHING FOR EFFICIENT AUDIO EVENT
MMSP-P3.3: AN LSTM-BASED DYNAMIC CHORD PROGRESSION GENERATION
MMSP-P3.5: ENSEMBLE NETWORK FOR RANKING IMAGES BASED ON VISUAL
MMSP-P3.6: TRAPEZOIDAL SEGMENT SEQUENCING: A NOVEL APPROACH FOR
MMSP-P3.7: SEQUENCE-TO-SEQUENCE LABANOTATION GENERATION BASED ON
MMSP-P3.8: POSE REFINEMENT: BRIDGING THE GAP BETWEEN

MMSP-P3.9: MULTIMODAL ACTIVE SPEAKER DETECTION AND VIRTUAL
Microsoft, United States; Adam Kirk, Oliver Whyte, Omnivor, United States; Adarsh Kowdle, perceptive1O, United States MMSP-P3.10: A NEW VARIATIONAL METHOD FOR DEEP SUPERVISED SEMANTIC
IMAGE HASHING Furen Zhuang, Pierre Moulin, University of Illinois at Urbana-Champaign, United States
SAM-L1: DIRECTION OF ARRIVAL ESTIMATION
SAM-L1.1: DOA ESTIMATION IN SYSTEMS WITH NONLINEARITIES FOR MMWAVE
SAM-L1.2: WIDEBAND DIRECTION OF ARRIVAL ESTIMATION WITH SPARSE LINEAR4542
ARRAYS Feiyu Wang, Delft University of Technology, Netherlands; Zhi Tian, George Mason University, United States; Jun Fang, University of Electronic Science and Technology of China, China; Geert Leus, Delft University of Technology, Netherlands
SAM-L1.3: FOURTH ORDER CUMULANT BASED ACTIVE DIRECTION OF ARRIVAL
SAM-L1.4: ON REGULARIZATION PARAMETER FOR L0-SPARSE COVARIANCE
SAM-L1.5: EFFECTIVE APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION OF
SAM-L1.6: TWO-DIMENSIONAL DOA ESTIMATION FOR COPRIME PLANAR ARRAY: A
COARRAY TENSOR-BASED SOLUTION Hang Zheng, Chengwei Zhou, Zhejiang University, China; Yujie Gu, Temple University, China; Zhiguo Shi, Zhejiang University, China China
SAM-L2: MIMO SYSTEMS AND MIMO RADAR
SAM-L2.1: MULTI-CONSTRAINT SPECTRAL CO-DESIGN FOR COLOCATED MIMO
Sayed Hossein Dokhanchi, Bhavani Shankar M. R., Kumar Vijay Mishra, Björn Ottersten, University of Luxembourg, Luxembourg
SAM-L2.2: TENSOR DECOMPOSITION-BASED BEAMSPACE ESPRIT ALGORITHM
China; Henk Wymeersch, Chalmers University of Technology, Sweden SAM-L2.3: INFORMATION THEORETIC APPROACH FOR WAVEFORM DESIGN IN
COEXISTING MIMO RADAR AND MIMO COMMUNICATIONS Mohammad Alaee-Kerahroodi, Bhavani Shankar M. R., Kumar Vijay Mishra, Björn Ottersten, University of Luxembourg, Luxembourg
SAM-L2.4: TRANSMIT BEAMPATTERN SHAPING VIA WAVEFORM DESIGN IN
Ehsan Raei, Mohammad Alaee-Kerahroodi, Bhavani Shankar M. R., Björn Ottersten, University of Luxembourg, Luxembourg

(ML-GSVD) WITH APPLICATION TO COORDINATED BEAMFORMING IN MULTI-USER MIMO
SYSTEMS Liana Khamidullina, Ilmenau University of Technology, Germany; André L. F. de Almeida, Federal University of Ceará, Brazil; Martin Haardt, Ilmenau University of Technology, Germany
SAM-L3: SPARSE ARRAYS AND SPARSE SENSING
SAM-L3.1: SPARSE LOW-REDUNDANCY LINEAR ARRAY WITH UNIFORM SUM
SAM-L3.2: COMPRESSED SENSING BASED CHANNEL ESTIMATION AND
SAM-L3.3: DISPERSIVE GRID-FREE ORTHOGONAL MATCHING PURSUIT FOR
SAM-L3.4: GREEDY SPARSE ARRAY DESIGN FOR OPTIMAL LOCALIZATION UNDER
SAM-L3.5: COMPRESSIVE 2-D OFF-GRID DOA ESTIMATION FOR PROPELLER
SAM-L3.6: THE COMPRESSED NESTED ARRAY FOR UNDERDETERMINED DOA
SAM-L4: LEARNING MODELS AND METHODS FOR MULTI-SENSOR SYSTEMS
SAM-L4.1: MODEL ORDER SELECTION IN DOA SCENARIOS VIA CROSS-ENTROPY
SAM-L4.2: UNSUPERVISED CHANGE DETECTION FOR MULTIMODAL REMOTE
SAM-L4.3: FAST DIRECTION-OF-ARRIVAL ESTIMATION OF MULTIPLE TARGETS
SAM-L4.4: LEARNING BASED RECONFIGURABLE SUB-NYQUIST SAMPLING

SAM-L4.5: RAW WAVEFORM BASED END-TO-END DEEP CONVOLUTIONAL	642
Harshavardhan Sundar, Amazon, Inc., United States; Weiran Wang, Salesforce Research, United States; Ming Sun, Chao Wang Amazon, Inc., United States	r ,,,
SAM-L4.6: DNN-BASED MASK ESTIMATION INTEGRATING SPECTRAL AND SPATIAL	647
Chengyun Deng, Hui Song, Yi Zhang, Yongtao Sha, Xiangang Li, Didi Chuxing, China	
SAM-P1: RADAR AND ACOUSTIC ARRAY PROCESSING	
SAM-P1.2: RAY SEPARATION AND SOURCE DEPTH ESTIMATION BASED ON SOUND	652
SAM-P1.3: REGULARIZED BEAMFORMER FOR THE SPHERICAL MICROPHONE40	657
ARRAY TO COPE WITH THE WHITE NOISE AMPLIFICATION Lei Wang, Idiap Research Institute, Switzerland; Jie Zhu, Shanghai Jiao Tong University, China	
SAM-P1.4: INTERPOLATION AND RANGE EXTRAPOLATION OF SOUND SOURCE	662
Jens Ahrens, Chalmers University of Technology, Sweden; Stefan Bilbao, University of Edinburgh, United Kingdom	
SAM-P1.5: POLARIZATION PARAMETERS ESTIMATION WITH SCALAR SENSOR	667
Minghui Dai, Xiaofeng Ma, Nanjing University of Science and Technology, China; Wei Liu, University of Sheffield, United Kingdom; Weixing Sheng, Nanjing University of Science and Technology, China	
SAM-P1.6: DNN-BASED DISTRIBUTED MULTICHANNEL MASK ESTIMATION FOR	672
Nicolas Furnon, Romain Serizel, Irina Illina, Université de Lorraine, France; Slim Essid, Télécom ParisTech, France	
SAM-P1.7: ASYMPTOTICALLY OPTIMAL BLIND CALIBRATION OF ACOUSTIC	677
VECTOR SENSOR UNIFORM LINEAR ARRAYS Amir Weiss, Boaz Nadler, Weizmann Institute of Science, Israel; Arie Yeredor, Tel Aviv University, Israel	
SAM-P1.8: OPTIMIZED SENSOR SELECTION FOR JOINT RADAR-COMMUNICATION	682
Ammar Ahmed, Shuimei Zhang, Yimin D. Zhang, Temple University, United States	
SAM-P1.9: FREQUENCY DIVERSE ARRAY RADAR: A CLOSED-FORM SOLUTION TO	687
DESIGN WEIGHTS FOR DESIRED BEAMPATTERN Muhammad Zubair, Sajid Ahmed, Information Technology University Lahore, Pakistan; Mohamed-Slim Alouini, King Abdullah University of Science and Technology (KAUST), United Kingdom	h
SAM-P1.10: ROBUST CFAR RADAR DETECTION USING A K-NEAREST NEIGHBORS	692
RULE Angelo Coluccia, Alessio Fascista, Giuseppe Ricci, University of Salento, Italy	
SAM-P1.11: CRAMER-RAO BOUND ON DOA ESTIMATION OF FINITE BANDWIDTH	697
SAM-P1.12: THEORETICAL ANALYSIS OF MULTI-CARRIER AGILE PHASED ARRAY	702
RADAR Tianyao Huang, Tsinghua University, China; Nir Shlezinger, Weizmann Institute of Science, Israel; Xingyu Xu, Dingyou Ma, Vimin Liu, Tsinghua University, China; Vening Eldan Weizmann Institute of Science Israel	
Yimin Liu, Tsinghua University, China; Yonina Eldar, Weizmann Institute of Science, Israel	

SAM-P2: BEAMFORMING, RELAYING AND SOURCE SEPARATION

SAM-P2.1: CONVOLUTIONAL BEAMSPACE FOR ARRAY SIGNAL PROCESSING
SAM-P2.2: EFFICIENT ESTIMATION OF MIXING MATRIX USING A TWO-SENSOR
Qinmengying Yan, Siyu Sun, Haijian Zhang, Guang Hua, Wuhan University, China
SAM-P2.3: RIEMANNIAN GEOMETRY AND CRAMÉR-RAO BOUND FOR BLIND
Paris Sud, France; Guillaume Ginolhac, Univ. Savoie Mont Blanc, France
SAM-P2.4: BEAMFORMED FEATURE FOR LEARNING-BASED DUAL-CHANNEL
SAM-P2.5: TRANSMIT BEAMFORMING DESIGN WITH RECEIVED-INTERFERENCE
SAM-P2.6: FOREGROUND SIGNATURE EXTRACTION FOR AN INTIMATE MIXING
SAM-P2.7: PIXEL-WISE LINEAR/NONLINEAR NONNEGATIVE MATRIX
SAM-P2.8: BEAM ELIMINATION BASED ON SEQUENTIALLY ESTIMATED A
SAM-P2.9: TWO-ELEMENT BIOMIMETIC ANTENNA ARRAY DESIGN AND
Richard Kozick, Bucknell University, United States; Fikadu Dagefu, Brian Sadler, U.S. Army Research Laboratory, United States
SAM-P2.10: DISTRIBUTED EQUALIZATION AND POWER ALLOCATION FOR
SAM-P2.11: UPSCALING VECTOR APPROXIMATE MESSAGE PASSING
SAM-P3: SPARSITY, SUPER-RESOLUTION AND IMAGING
SAM-P3.1: ATOMIC NORM BASED LOCALIZATION OF FAR-FIELD AND NEAR-FIELD

SAM-P3.2: A NOVEL MOVING SPARSE ARRAY GEOMETRY WITH INCREASED
SAM-P3.3: CLUTTER IDENTIFICATION BASED ON SPARSE RECOVERY AND
SAM-P3.4: ADAPTIVE SUBSPACE DETECTORS FOR OFF-GRID MISMATCHED
SAM-P3.5: A METHOD FOR MILLIMETER-WAVE IMAGING OF CONCEALED
SAM-P3.6: A FAST SPARSE COVARIANCE-BASED FITTING METHOD FOR DOA
SAM-P3.7: EXTENDED CYCLIC COORDINATE DESCENT FOR ROBUST
SAM-P3.8: LOW-RANK TOEPLITZ MATRIX ESTIMATION VIA RANDOM
SAM-P3.9: URTIS: A SMALL 3D IMAGING SONAR SENSOR FOR ROBOTIC
SAM-P3.10: A PARTIAL RELAXATION DOA ESTIMATOR BASED ON ORTHOGONAL
SAM-P3.11: VARIABLE PROJECTION FOR MULTIPLE FREQUENCY ESTIMATION
SAM-P3.12: FUSIONNDVI: A NOVEL FUSION METHOD FOR NDVI IN REMOTE
SAM-P4: ROBUSTNESS, DECOMPOSITIONS, CALIBRATION AND BOUNDS
SAM-P4.1: ROBUST MUSIC ESTIMATION UNDER ARRAY RESPONSE UNCERTAINTY
SAM-P4.2: L1-NORM HIGHER-ORDER ORTHOGONAL ITERATIONS FOR ROBUST

SAM-P4.3: SENSOR SELECTION FOR MODEL-FREE SOURCE LOCALIZATION:
SAM-P4.4: ANOMALY DETECTION WITH TRAINING DATA IN HYPERSPECTRAL
SAM-P4.5: LEAST-SQUARES DOA ESTIMATION WITH AN INFORMED PHASE
SAM-P4.8: JOINT BLIND CALIBRATION AND TIME-DELAY ESTIMATION FOR
SAM-P4.9: UPGRADE METHODS FOR STRATIFIED SENSOR NETWORK
SAM-P4.10: AUDIO-VISUAL CALIBRATION WITH POLYNOMIAL REGRESSION FOR
SAM-P4.12: WEIGHTED NULL VECTOR INITIALIZATION AND ITS APPLICATION TO
SAM-P5: LOCALISATION AND TRACKING
SAM-P5.3: LOW-COMPLEXITY ACCURATE MMWAVE POSITIONING FOR
SAM-P5.4: ACCURATE LOCALIZATION OF AUV IN MOTION BY EXPLICIT
SAM-P5.5: DRSS-BASED LOCALISATION USING WEIGHTED INSTRUMENTAL
SAM-P5.6: A SIMPLE AND EFFICIENT ITERATIVE METHOD FOR TOA LOCALIZATION
SAM-P5.7: DISTRIBUTED TRACKING AND CIRCUMNAVIGATION USING BEARING

SAM-P5.8: JOINT MULTITARGET TRACKING AND DYNAMIC NETWORK	. 4890
LOCALIZATION IN THE UNDERWATER DOMAIN Rico Mendrzik, Hamburg University of Technology, Germany; Mattia Brambilla, Politecnico di Milano, Italy; Clemens Allm Fraunhofer FKIE, Germany; Monica Nicoli, Politecnico di Milano, Italy; Wolfgang Koch, Fraunhofer FKIE, Germany; Ger Bauch, Hamburg University of Technology, Germany; Kevin LePage, Paolo Braca, NATO STO Centre for Maritime Researce Experimentation, Italy	rhard
SAM-P5.9: ROBUST TDOA INDOOR TRACKING USING CONSTRAINED MEASUREMENT FILTERING AND GRID-BASED FILTERING Rui Huang, Jun Tao, Southeast University, China; Le Yang, University of Canterbury, New Zealand; Yanbo Xue, Kanzhun Technology, China; Qisong Wu, Southeast University, China	. 4895
SAM-P5.10: EXTENDED OBJECT TRACKING USING HIERARCHICAL TRUNCATION	
SAM-P5.11: DOA TRACKING VIA SIGNAL-SUBSPACE PROJECTOR UPDATE Jie Zhuang, Tianhan Tan, Daolin Chen, Jiancheng Kang, University of Electronic Science and Technology of China, China	. 4905
SAM-P6: DETECTION, ESTIMATION AND CLASSIFICATION	
SAM-P6.2: PARAMETER ESTIMATION OF IN-CITY FRONTAL RAINFALL PROPAGATION <i>Mor Hadar, Tel Aviv University, Israel; Jonatan Ostrometzky, Columbia University, United States; Hagit Messer, Tel Aviv University, Israel</i>	. 4910
SAM-P6.3: ML AND EM ESTIMATION OF SAMPLING INTERVALS OF SENSOR	. 4915
SAM-P6.4: ASYMPTOTIC STOCHASTIC ANALYSIS OF PARTIALLY RELAXED DML	. 4920
SAM-P6.5: THEORETICAL PERFORMANCE BOUND OF UPLINK CHANNEL ESTIMATION ACCURACY IN MASSIVE MIMO Alexander Osinsky, Andrey Ivanov, Dmitry Yarotsky, Skolkovo Institute of Science and Technology (Skoltech), Russia	. 4925
SAM-P6.6: SIGNAL-AWARE BROADBAND DOA ESTIMATION USING ATTENTION	
SAM-P6.7: STATIC VISUAL SPATIAL PRIORS FOR DOA ESTIMATION	. 4935
SAM-P6.8: MIRRORED ARRAYS FOR DIRECTION-OF-ARRIVAL ESTIMATION	. 4940
SAM-P6.9: TIME DIFFERENCE OF ARRIVAL ESTIMATION FROM	
SAM-P6.10: GROUP-UTILITY METRIC FOR EFFICIENT SENSOR SELECTION AND	. 4950

SAM-P6.11: ACCURATE SEMIDEFINITE RELAXATION METHOD FOR 3-D RIGID
SAM-P6.12: CRAMÉR-RAO BOUNDS FOR FLAW LOCALIZATION IN SUBSAMPLED
SPCOM-L1: NETWORKS AND RESOURCE ALLOCATION
SPCOM-L1.1: AGE OF INFORMATION WITH FINITE HORIZON AND PARTIAL
SPCOM-L1.2: ROBUST ONLINE MIRROR SADDLE-POINT METHOD FOR
SPCOM-L1.3: REAL-TIME TASK OFFLOADING FOR LARGE-SCALE MOBILE EDGE
SPCOM-L1.4: SIMPLE CACHING SCHEMES FOR NON-HOMOGENEOUS MISO
SPCOM-L1.5: DYNAMIC RESOURCE OPTIMIZATION AND ALTITUDE SELECTION
SPCOM-L1.6: JOINT RESOURCE ALLOCATION AND ROUTING FOR SERVICE
SPCOM-L2: CHANNEL ESTIMATION
SPCOM-L2.1: ONLINE CHANNEL ESTIMATION FOR HYBRID BEAMFORMING
SPCOM-L2.2: AN OPTIMAL CHANNEL ESTIMATION SCHEME FOR INTELLIGENT
SPCOM-L2.3: LOW-RANK MMWAVE MIMO CHANNEL ESTIMATION IN ONE-BIT
SPCOM-L2.4: CHANNEL CHARTING: AN EUCLIDEAN DISTANCE MATRIX

SPCOM-L2.5: MMSE-BASED CHANNEL ESTIMATION FOR HYBRID BEAMFORMING
Canada
SPCOM-P1: MACHINE LEARNING FOR COMMUNCATIONS I
SPCOM-P1.1: COMPLEX TRAINABLE ISTA FOR LINEAR AND NONLINEAR INVERSE
SPCOM-P1.2: CONDITIONAL MUTUAL INFORMATION NEURAL ESTIMATOR
SPCOM-P1.3: Q-LEARNING BASED PREDICTIVE RELAY SELECTION FOR OPTIMAL
SPCOM-P1.4: PEER TO PEER OFFLOADING WITH DELAYED FEEDBACK: AN
SPCOM-P1.5: TRANSFERABLE POLICIES FOR LARGE SCALE WIRELESS
SPCOM-P1.6: A ZEROTH-ORDER LEARNING ALGORITHM FOR ERGODIC
SPCOM-P1.7: JOINT SPARSE RECOVERY USING DEEP UNFOLDING WITH
SPCOM-P1.8: LEARNING-BASED CONTENT CACHING AND USER CLUSTERING: A
SPCOM-P1.9: LEARNING-AIDED CONTENT PLACEMENT IN CACHING-ENABLED
SPCOM-P1.10: JOINT CODING AND MODULATION IN THE ULTRA-SHORT
SPCOM-P1.11: DEEP JOINT SOURCE-CHANNEL CODING FOR WIRELESS IMAGE
SPCOM-P1.12: META-LEARNING TO COMMUNICATE: FAST END-TO-END TRAINING

SPCOM-P2: MODULATION, DETECTION AND DECODING

SPCOM-P2.1: COMPLEXITY REDUCTION METHODS FOR INDEX MODULATION	. 5080
SPCOM-P2.2: EQUALIZATION OF OFDM WAVEFORMS WITH INSUFFICIENT	. 5085
SPCOM-P2.3: FASTER-THAN-NYQUIST SIGNALING VIA SPATIOTEMPORAL	
SPCOM-P2.4: OPTIMIZED SINGLE CARRIER TRANSCEIVER FOR FUTURE	. 5095
SPCOM-P2.5: POWER SPECTRUM OPTIMIZATION FOR CAPACITY OF THE	. 5100
SPCOM-P2.6: A LOW-LATENCY SUCCESSIVE CANCELLATION HYBRID DECODER	. 5105
SPCOM-P2.7: NEAR CAPACITY RCQD CONSTELLATIONS FOR PAPR REDUCTION OF	5110
SPCOM-P2.8: FULLY PIPELINED ITERATION UNROLLED DECODERS THE ROAD	5115
SPCOM-P2.9: ZERO-CROSSING PRECODING WITH MAXIMUM DISTANCE TO THE	. 5120
SPCOM-P2.10: ACHIEVING FULLY-DIGITAL PERFORMANCE BY HYBRID	. 5125
SPCOM-P2.11: ENERGY-EFFICIENT BIT ALLOCATION FOR RESOLUTION-ADAPTIVE	
SPCOM-P2.12: GENERALIZED SPATIAL MODULATION FOR WIRELESS TERABITS	vayel,

SPCOM-P3: MIMO AND MULTI-ANTENNA SYSTEMS

SPCOM-P3.1: EFFICIENT TECHNIQUES FOR IN-BAND SYSTEM INFORMATION	5140
SPCOM-P3.2: OPTIMAL DESIGN OF ENERGY-EFFICIENT CELL-FREE MASSIVE	5145
SPCOM-P3.3: LARGE-SCALE FADING PRECODING FOR MAXIMIZING THE	5150
SPCOM-P3.4: PROXIMAL DISTANCE ALGORITHM FOR NONCONVEX QCQP WITH	5155
SPCOM-P3.5: CLOUD-DRIVEN MULTI-WAY MULTIPLE-ANTENNA RELAY	5160
SPCOM-P3.6: A COMPLEXITY EFFICIENT DMT-OPTIMAL TREE PRUNING BASED	5165
SPCOM-P3.7: A MODEL-FREE APPROACH TO DISTRIBUTED TRANSMIT	es;
SPCOM-P3.8: INTELLIGENT REFLECTING SURFACE FOR MASSIVE DEVICE	5175
SPCOM-P3.9: CHANNEL COVARIANCE ESTIMATION IN MULTIUSER MASSIVE	5180
SPCOM-P3.10: ELIMINATING OUT-OF-CELL INTERFERENCE IN CELLULAR	5185
SPCOM-P3.11: FAVORABLE PROPAGATION AND LINEAR MULTIUSER DETECTION	
SPCOM-P3.12: DISTRIBUTED NON-ORTHOGONAL PILOT DESIGN FOR	5195

SPCOM-P4: DESIGN AND IMPLEMENTATION OF COMMUNICATION SYSTEMS

SPCOM-P4.1: DISTRIBUTED DETECTION OF SPARSE SIGNALS WITH 1-BIT DATA IN
SPCOM-P4.2: OBJECTIVE BAYESIAN DETECTION UNDER SPATIALLY
SPCOM-P4.3: A GATED HYPERNET DECODER FOR POLAR CODES
SPCOM-P4.4: WEIGHTED GRADIENT CODING WITH LEVERAGE SCORE
SPCOM-P4.5: LOW-COMPLEXITY 5G SLAM WITH CKF-PHD FILTER
SPCOM-P4.6: THE EFFECT OF POWER ALLOCATION ON VISIBLE LIGHT
SPCOM-P4.7: ROBUST TRANSMISSION OVER CHANNELS WITH CHANNEL
SPCOM-P4.8: DEEP JOINT SOURCE-CHANNEL CODING OF IMAGES WITH
SPCOM-P4.9: A LEARNING APPROACH TO COOPERATIVE COMMUNICATION
SPCOM-P4.10: A STACKED-AUTOENCODER BASED END-TO-END LEARNING
SPCOM-P4.11: A NEW SAMPLING SCHEME FOR DISTRIBUTED BLIND SPECTRUM
SPCOM-P5: COMMUNICATION SIGNAL ANALYSIS AND OPTIMIZATION
SPCOM-P5.1: ON THROUGHPUT OF MILLIMETER WAVE MIMO SYSTEMS WITH

Erkip, New York University, United States; Yonina C. Eldar, Weizmann institute of Science, Israel

SPCOM-P5.2: RELIABLE AND SECURE TRANSMISSION FOR FUTURE NETWORKS
SPCOM-P5.3: ON POLAR CODING FOR FINITE BLOCKLENGTH SECRET KEY
SPCOM-P5.4: AN ENHANCED DECODING ALGORITHM FOR CODED COMPRESSED
SPCOM-P5.5: OPTIMAL WINDOW DESIGN FOR W-OFDM
SPCOM-P5.6: COMPUTABILITY OF THE PEAK VALUE OF BANDLIMITED SIGNALS
SPCOM-P5.7: JOINT SCHEDULING AND BEAMFORMING FOR DELAY SENSITIVE
SPCOM-P5.11: ROBUST HYBRID PRECODING FOR INTERFERENCE
SPTM-L1: ESTIMATION THEORY AND METHODS I
SPTM-L1.1: STATE-SPACE GAUSSIAN PROCESS FOR DRIFT ESTIMATION IN
SPTM-L1.2: COMPUTING HILBERT TRANSFORM AND SPECTRAL FACTORIZATION
SPTM-L1.3: M-ESTIMATORS OF SCATTER WITH EIGENVALUE SHRINKAGE
SPTM-L1.4: A MULTITAPER REASSIGNED SPECTROGRAM FOR INCREASED
SPTM-L1.5: STOCHASTIC ML ESTIMATION FOR HYPERSPECTRAL UNMIXING
SPTM-L1.6: ROBUST PHASE RETRIEVAL WITH OUTLIERS
SPTM-L2: GRAPH REPRESENTATIONS AND ANALYSIS
SPTM-L2.1: NODE-ASYNCHRONOUS SPECTRAL CLUSTERING ON DIRECTED

SPTM-L2.2: ESTIMATING CENTRALITY BLINDLY FROM LOW-PASS FILTERED
SPTM-L2.3: BLIND INFERENCE OF CENTRALITY RANKINGS FROM GRAPH
SPTM-L2.4: A LOW-DIMENSIONALITY METHOD FOR DATA-DRIVEN GRAPH
SPTM-L2.5: METRIC REPRESENTATIONS OF NETWORKS: A UNIQUENESS
SPTM-L2.6: ON THE STABILITY OF POLYNOMIAL SPECTRAL GRAPH FILTERS
SPTM-L3: ESTIMATION AND DETECTION
SPTM-L3.1: ON CRAMÉR-RAO LOWER BOUNDS WITH RANDOM EQUALITY
SPTM-L3.2: ON HARMONIC APPROXIMATIONS OF INHARMONIC SIGNALS
SPTM-L3.3: A GENERAL TEST FOR THE LINEAR STRUCTURE OF COVARIANCE
SPTM-L3.4: SEQUENTIAL JOINT DETECTION AND ESTIMATION WITH AN
SPTM-L3.5: A LINEAR TIME PARTITIONING ALGORITHM FOR FREQUENCY
SPTM-L3.6: FINITE SAMPLE DEVIATION AND VARIANCE BOUNDS FOR FIRST
SPTM-L4: OPTIMIZATION TECHNIQUES I
SPTM-L4.1: BALANCING RATES AND VARIANCE VIA ADAPTIVE BATCH-SIZES IN

Ribeiro, University of Pennsylvania, United States

SPTM-L4.2: A GREEDY SPARSE APPROXIMATION ALGORITHM BASED ON L1-NORM
SPTM-L4.3: EXACT SPARSE NONNEGATIVE LEAST SQUARES
SPTM-L4.4: EPIGRAPHICAL REFORMULATION FOR NON-PROXIMABLE MIXED5400
NORMS Seisuke Kyochi, University of Kitakyushu, Japan; Shunsuke Ono, Tokyo Institute of Technology, Japan; Ivan Selesnick, New York University, United States
SPTM-L4.5: FORWARD-BACKWARD SPLITTING FOR OPTIMAL TRANSPORT BASED
Fédérale de Lausanne (EPFL), Switzerland
SPTM-L4.6: SSGD: SPARSITY-PROMOTING STOCHASTIC GRADIENT DESCENT
Ching-Hua Lee, University of California, San Diego, United States; Igor Fedorov, ARM, United States; Bhaskar D. Rao, Harinath Garudadri, University of California, San Diego, United States
SPTM-L5: SIGNAL PROCESSING EMERGING TOPICS
SPTM-L5.1: LOW-RANK TENSOR RING MODEL FOR COMPLETING MISSING
VISUAL DATA M. Salman Asif, University of California, Riverside, United States; Ashley Prater-Bennette, Air Force Research Laboratory, United States
SPTM-L5.2: SEQUENTIAL SEMI-ORTHOGONAL MULTI-LEVEL NMF WITH
Riku Hashimoto, University of Electro-Communications, Japan; Hiroyuki Kasai, Waseda University, Japan
SPTM-L5.3: A FAST PROXIMAL POINT ALGORITHM FOR GENERALIZED GRAPH
Zengde Deng, Anthony Man-Cho So, Chinese University of Hong Kong, Hong Kong SAR of China
SPTM-L5.4: RECONSTRUCTION OF FRI SIGNALS USING DEEP NEURAL
Vincent C. H. Leung, Jun-Jie Huang, Pier Luigi Dragotti, Imperial College London, United Kingdom
SPTM-L5.5: ADAPTIVE PREDICTION OF FINANCIAL TIME-SERIES FOR
SPTM-L6: TRACKING AND ADAPTIVE SIGNAL PROCESSING
SPTM-L6.1: DATA SELECTION KERNEL CONJUGATE GRADIENT ALGORITHM
SPTM-L6.2: NORMALIZED LEAST-MEAN-SQUARE ALGORITHMS WITH MINIMAX

Hiroyuki Kaneko, Masahiro Yukawa, Keio University, Japan

SPTM-L6.3: STEEPENING SQUARED ERROR FUNCTION FACILITATES ONLINE
SPTM-L6.4: INDOOR ALTITUDE ESTIMATION OF UNMANNED AERIAL VEHICLES
SPTM-L6.5: UNDERWATER TRACKING BASED ON THE SUM-PRODUCT
SPTM-L6.6: FEATURE AFFINE PROJECTION ALGORITHMS
SPTM-L7: BAYESIAN SIGNAL PROCESSING II
SPTM-L7.1: APPROXIMATE BAYESIAN COMPUTATION WITH THE
SPTM-L7.2: ENHANCED MIXTURE POPULATION MONTE CARLO VIA STOCHASTIC
SPTM-L7.3: BETTER SAFE THAN SORRY: RISK-AWARE NONLINEAR BAYESIAN
SPTM-L7.4: PARTICLE FILTERING ON THE COMPLEX STIEFEL MANIFOLD WITH
SPTM-L7.5: BAYESIAN MULTIPLE CHANGE-POINT DETECTION WITH LIMITED
SPTM-L7.6: WHAT DID YOUR ADVERSARY BELIEVE? OPTIMAL FILTERING AND
SPTM-L8: SPARSITY-AWARE PROCESSING II
SPTM-L8.1: ROBUST PARAMETER ESTIMATION OF CONTAMINATED DAMPED
SPTM-L8.2: COMPUTATION OF "BEST" INTERPOLANTS IN THE LP SENSE

SPTM-L8.4: FAST BLOCK-SPARSE ESTIMATION FOR VECTOR NETWORKS
SPTM-L8.5: RELATIVE COST BASED MODEL SELECTION FOR SPARSE
SPTM-L8.6: CUMULANT SLICE RECONSTRUCTION FROM COMPRESSIVE
SPTM-P1: ADAPTATION AND LEARNING OVER GRAPHS
SPTM-P1.1: ADAPTATION AND LEARNING IN MULTI-TASK DECISION SYSTEMS
SPTM-P1.2: GRAPH METRIC LEARNING VIA GERSHGORIN DISC ALIGNMENT
SPTM-P1.3: LEARNING GRAPH INFLUENCE FROM SOCIAL INTERACTIONS
SPTM-P1.4: SOCIAL LEARNING WITH PARTIAL INFORMATION SHARING
SPTM-P1.5: NON-PARAMETRIC COMMUNITY CHANGE-POINTS DETECTION IN
SPTM-P1.6: SPATIAL GATING STRATEGIES FOR GRAPH RECURRENT NEURAL
SPTM-P1.7: LEARNING CONNECTIVITY AND HIGHER-ORDER INTERACTIONS IN
SPTM-P1.8: SEMI-SUPERVISED LEARNING OF PROCESSES OVER
SPTM-P1.9: RECURSIVE PREDICTION OF GRAPH SIGNALS WITH INCOMING
SPTM-P1.10: LEARNING SIGNED GRAPHS FROM DATA
SPTM-P1.11: FORECASTING MULTI-DIMENSIONAL PROCESSES OVER GRAPHS

SPTM-P2: SAMPLING THEORY, ANALYSIS AND METHODS

SPTM-P2.1: DISTRIBUTED QUANTIZATION FOR SPARSE TIME SEQUENCES
SPTM-P2.2: A TIME-BASED SAMPLING FRAMEWORK FOR
SPTM-P2.3: EFFECTIVE APPROXIMATION OF BANDLIMITED SIGNALS AND THEIR
SPTM-P2.4: RECEIVER DESIGN AND AGC OPTIMIZATION WITH SELF
SPTM-P2.5: D-SLAM: DIFFUSION SOURCE LOCALIZATION AND TRAJECTORY
SPTM-P2.6: TRIGGERLESS RANDOM INTERLEAVED SAMPLING
SPTM-P2.7: THE FRACTIONAL QUATERNION FOURIER NUMBER TRANSFORM
SPTM-P2.8: SHORT AND SQUEEZED: ACCELERATING THE COMPUTATION OF
SPTM-P2.9: DECENTRALIZED EXPECTED CONSISTENT SIGNAL RECOVERY FOR
SPTM-P2.11: LIE GROUP STATE ESTIMATION VIA OPTIMAL TRANSPORT
SPTM-P3: SIGNAL AND INFORMATION PROCESSING OVER GRAPHS
SPTM-P3.1: SMOOTHING GRAPH SIGNALS VIA RANDOM SPANNING FORESTS
SPTM-P3.2: DIAGONALIZABLE SHIFT AND FILTERS FOR DIRECTED GRAPHS BASED
SPTM-P3.3: GAUSSIAN PROCESSES OVER GRAPHS
Arun Venkitaraman, Saikat Chatterjee, Peter Handel, KTH Royal Institute of Technology, Sweden
SPTM-P3.4: BLIND SOURCE SEPARATION OF GRAPH SIGNALS

SPTM-P3.5: GRAPHICAL EVOLUTIONARY GAME THEORETIC ANALYSIS OF SUPER	
SPTM-P3.6: GRADIENT-BASED ALGORITHM WITH SPATIAL REGULARIZATION FOR	
SPTM-P3.7: THE GRAPHON FOURIER TRANSFORM	. 5660
SPTM-P3.8: LEARNING PRODUCT GRAPHS FROM MULTIDOMAIN SIGNALS	. 5665
SPTM-P3.9: GRAPH VERTEX SAMPLING WITH ARBITRARY GRAPH SIGNAL	. 5670
SPTM-P3.10: ESTIMATION OF INFORMATION IN PARALLEL GAUSSIAN CHANNELS	. 5675
SPTM-P3.11: GENERALIZED GRAPH SPECTRAL SAMPLING WITH STOCHASTIC	
SPTM-P4: SPARSITY-AWARE PROCESSING I	
SPTM-P4.1: ANOMALYDAE: DUAL AUTOENCODER FOR ANOMALY DETECTION ON	. 5685
SPTM-P4.2: ON THE DEGREES OF FREEDOM IN TOTAL VARIATION	
SPTM-P4.3: ATOMIC NORM DENOISING IN BLIND TWO-DIMENSIONAL	. 5695
SPTM-P4.4: DYNAMIC CHANNEL PRUNING FOR CORRELATION FILTER BASED	. 5700
SPTM-P4.5: POSITIVE SEMIDEFINITE MATRIX FACTORIZATION: A LINK TO PHASE	. 5705
SPTM-P4.6: REALIZABILITY OF PLANAR POINT EMBEDDINGS FROM ANGLE	. 5710
SPTM-P4.7: SPARSE RECOVERY WITH NON-LINEAR FOURIER FEATURES	. 5715

SPTM-P4.8: EFFICIENT SUPER-RESOLUTION TWO-DIMENSIONAL HARMONIC
Yue Wang, George Mason University, United States; Yu Zhang, Nanjing University of Aeronautics and Astronautics, China; Zhi Tian, George Mason University, United States; Geert Leus, Delft University of Technology, Netherlands; Gong Zhang, Nanjing University of Aeronautics and Astronautics, China
SPTM-P4.9: EFFECT OF UNDERSAMPLING ON NON-NEGATIVE BLIND
SPTM-P4.10: MANIFOLD GRADIENT DESCENT SOLVES MULTI-CHANNEL SPARSE
SPTM-P5: OPTIMIZATION TECHNIQUES II
SPTM-P5.1: SPARSE BRANCH AND BOUND FOR EXACT OPTIMIZATION OF
SPTM-P5.2: A PROXIMAL DUAL CONSENSUS METHOD FOR LINEARLY COUPLED
SPTM-P5.3: A PENALTY ALTERNATING DIRECTION METHOD OF MULTIPLIERS
SPTM-P5.4: WIRTINGER FLOW ALGORITHMS FOR PHASE RETRIEVAL FROM
SPTM-P5.5: DECENTRALIZED MIN-MAX OPTIMIZATION: FORMULATIONS,
SPTM-P5.6: AN EFFICIENT AUGMENTED LAGRANGIAN-BASED METHOD FOR
SPTM-P5.7: CONTROL OF LINEAR DYNAMICAL SYSTEMS USING SPARSE INPUTS
SPTM-P5.8: DECENTRALIZED STOCHASTIC NON-CONVEX OPTIMIZATION OVER
SPTM-P6: SAMPLING, MULTIRATE SIGNAL PROCESSING AND DIGITAL SIGNAL PROCESSING
SPTM-P6.1: PACO AND PACO-DCT: PATCH CONSENSUS AND ITS APPLICATION TO

Ignacio Ramírez, Ignacio Hounie, Universidad de la República, Uruguay

SPTM-P6.2: IMAGE RECOVERY FROM ROTATIONAL AND TRANSLATIONAL	5780
SPTM-P6.3: OPTIMAL WINDOW DESIGN FOR JOINT SPATIAL-SPECTRAL DOMAIN	5785
SPTM-P6.4: FILTERING OUT TIME-FREQUENCY AREAS USING GABOR	5790
SPTM-P6.5: \$\BETA\$-NMF AND SPARSITY PROMOTING REGULARIZATIONS FOR	5795
SPTM-P6.6: FIR FILTERING OF DISCONTINUOUS SIGNALS: A	5800
SPTM-P6.7: MESSAGE TRANSMISSION THROUGH UNDERSPREAD TIME-VARYING	5805
SPTM-P6.8: THE DISCRETE STOCKWELL TRANSFORMS FOR INFINITE-LENGTH	5810
SPTM-P6.9: LOW-RANK APPROXIMATION OF MATRICES VIA A RANK-REVEALING	5815
SPTM-P6.10: TIME-SCALE SYNTHESIS FOR LOCALLY STATIONARY SIGNALS	5820
SPTM-P6.11: MAXIMALLY ENERGY-CONCENTRATED DIFFERENTIAL WINDOW	5825
SPTM-P6.12: ON THE USE OF RÉNYI ENTROPY FOR OPTIMAL WINDOW SIZE	5830
SPTM-P7: BAYESIAN SIGNAL PROCESSING I	
SPTM-P7.1: DATA-DRIVEN MODEL SET DESIGN FOR MODEL AVERAGED	5835
SPTM-P7.2: GRAPHEM: EM ALGORITHM FOR BLIND KALMAN FILTERING UNDER	5840
SPTM-P7.3: ON DESIGN OF OPTIMAL SMART METER PRIVACY CONTROL	5845

SPTM-P7.4: APPROXIMATE INFERENCE BY KULLBACK-LEIBLER TENSOR BELIEF
SPTM-P7.5: A PARTICLE GIBBS SAMPLING APPROACH TO TOPOLOGY INFERENCE
SPTM-P7.6: PARTICLE FILTER WITH REJECTION CONTROL AND UNBIASED
SPTM-P7.7: PARTICLE GROUP METROPOLIS METHODS FOR TRACKING THE
SPTM-P7.8: UNSUPERVISED VARIATIONAL BAYESIAN KALMAN FILTERING FOR
SPTM-P7.9: LEVENBERG-MARQUARDT AND LINE-SEARCH EXTENDED KALMAN
SPTM-P7.10: LAPLACE STATE SPACE FILTER WITH EXACT INFERENCE AND
SPTM-P7.11: PROBABILISTIC FILTER AND SMOOTHER FOR VARIATIONAL
SPTM-P7.12: OPTIMUM KERNEL PARTICLE FILTER FOR ASYMMETRIC LAPLACE
SPTM-P8: SIGNAL PROCESSING OVER NETWORKS
SPTM-P8.2: CONVEX OPTIMISATION-BASED PRIVACY-PRESERVING
SPTM-P8.3: PROXIMAL MULTITASK LEARNING OVER DISTRIBUTED NETWORKS
SPTM-P8.4: OPTIMAL SAMPLING RATE AND BANDWIDTH OF BANDLIMITED

SPTM-P8.5: RESILIENT TO BYZANTINE ATTACKS FINITE-SUM OPTIMIZATION
Zhaoxian Wu, Qing Ling, Sun Yat-Sen University, China; Tianyi Chen, Rensselaer Polytechnic Institute, United States; Georgios B. Giannakis, University of Minnesota, United States
SPTM-P8.6: EXPLOITING SPARSITY FOR ROBUST SENSOR NETWORK
SPTM-P8.7: A LOW-COMPLEXITY MAP DETECTOR FOR DISTRIBUTED
SPTM-P8.8: QUICKEST CHANGE DETECTION IN ANONYMOUS HETEROGENEOUS
SPTM-P8.9: OPTIMAL POWER FLOW USING GRAPH NEURAL NETWORKS
SPTM-P8.10: BYZANTINE-ROBUST DECENTRALIZED STOCHASTIC OPTIMIZATION
SPTM-P8.11: FEDERATED TRUTH INFERENCE OVER DISTRIBUTED
SPTM-P8.12: CLOCK SYNCHRONIZATION OVER NETWORKS USING SAWTOOTH
SPTM-P9: ESTIMATION THEORY AND METHODS II
SPTM-P9.1: AN ANALYTICAL SOLUTION TO JACOBSEN ESTIMATOR FOR
SPTM-P9.2: REGULARIZED PARTIAL PHASE SYNCHRONY INDEX APPLIED TO
SPTM-P9.3: THE MATCHED REASSIGNED CROSS-SPECTROGRAM FOR PHASE
SPTM-P9.4: LINE SPECTRAL ESTIMATION WITH PALINDROMIC KERNELS
SPTM-P9.5: LATENT FUSED LASSO
SPTM-P9.6: ADVERSARIAL ATTACKS ON DEEP UNFOLDED NETWORKS FOR

SPTM-P9.7: RIEMANNIAN FRAMEWORK FOR ROBUST COVARIANCE MATRIX	5979
Florent Bouchard, Univ. Savoie Mont Blanc, France; Arnaud Breloy, Univ. Paris Nanterre, France; Guillaume Ginolhac, Un Savoie Mont Blanc, France; Frédéric Pascal, CentraleSupélec, Univ. Paris-Saclay, France	iiv.
SPTM-P9.8: ROBUST MATRIX COMPLETION VIA LP-GREEDY PURSUITS	
SPTM-P9.10: SEPARABLE OPTIMIZATION FOR JOINT BLIND DECONVOLUTION	5989
SPTM-P9.11: MISSPECIFIED CRAMER-RAO BOUND FOR DELAY ESTIMATION WITH	5994
SPTM-P10: DETECTION AND CLASSIFICATION	
SPTM-P10.1: PRIVACY-AWARE QUICKEST CHANGE DETECTION	5999
SPTM-P10.2: SOURCE ENUMERATION VIA TOEPLITZ MATRIX COMPLETION	
SPTM-P10.3: SEQUENTIAL METHODS FOR DETECTING A CHANGE IN THE	6009
SPTM-P10.4: DISTRIBUTION OF THE PRODUCT OF A COMPLEX GAUSSIAN	6014
SPTM-P10.5: PRINCIPAL ANGLE DETECTOR FOR SUBSPACE SIGNAL WITH	6019
SPTM-P10.6: A ROBUST SPEAKER CLUSTERING METHOD BASED ON DISCRETE	6024
SPTM-P10.7: TRACK-BEFORE-DETECT FOR SUB-NYQUIST RADAR	6029
SPTM-P10.8: OPTIMAL TRANSPORT BASED CHANGE POINT DETECTION AND TIME	6034
SPTM-P10.9: MULTI-VIEW WASSERSTEIN DISCRIMINANT ANALYSIS WITH	6039
SPTM-P10.10: LARGE-SCALE TIME SERIES CLUSTERING WITH K-ARS	6044
SPTM-P10.11: DETERMINISTIC FEATURE DECOUPLING BY SURFING INVARIANCE	6049

Eduardo Martinez-Enriquez, Javier Portilla, Consejo Superior de Investigaciones Científicas, Spain

SPTM-P10.12: UNSUPERVISED AUTO-ENCODING MULTIPLE-OBJECT TRACKER
SPE-L1: END-TO-END SPEECH RECOGNITION I: STREAMING
SPE-L1.1: A STREAMING ON-DEVICE END-TO-END MODEL SURPASSING
SPE-L1.2: MINIMUM LATENCY TRAINING STRATEGIES FOR STREAMING
SPE-L1.3: TOWARDS FAST AND ACCURATE STREAMING END-TO-END ASR
SPE-L1.4: STREAMING AUTOMATIC SPEECH RECOGNITION WITH THE
SPE-L1.5: CIF: CONTINUOUS INTEGRATE-AND-FIRE FOR END-TO-END SPEECH
SPE-L1.6: TRANSFORMER-BASED ONLINE CTC/ATTENTION END-TO-END SPEECH
SPE-L2: LANGUAGE DISORDERS
SPE-L2.1: DETECTING MULTIPLE SPEECH DISFLUENCIES USING A DEEP
SPE-L2.2: EXPLORING APPROPRIATE ACOUSTIC AND LANGUAGE MODELLING
SPE-L2.3: SYNTHETIC SPEECH REFERENCES FOR AUTOMATIC PATHOLOGICAL
SPE-L2.4: TWO-STEP ACOUSTIC MODEL ADAPTATION FOR DYSARTHRIC SPEECH
SPE-L2.5: DYSARTHRIC SPEECH RECOGNITION WITH LATTICE-FREE MMI
SPE-L2.6: IMPROVED SPEAKER INDEPENDENT DYSARTHRIA INTELLIGIBILITY

SPE-L3: END-TO-END SPEECH RECOGNITION II: NEW MODELS

SPE-L3.1: JOINT PHONEME-GRAPHEME MODEL FOR END-TO-END SPEECH
Yotaro Kubo, Michiel Bacchiani, Google, Japan
SPE-L3.2: QUARTZNET: DEEP AUTOMATIC SPEECH RECOGNITION WITH 1D
SPE-L3.3: END-TO-END MULTI-TALKER OVERLAPPING SPEECH RECOGNITION
SPE-L3.4: END-TO-END MULTI-SPEAKER SPEECH RECOGNITION WITH
SPE-L3.5: HYBRID AUTOREGRESSIVE TRANSDUCER (HAT)
SPE-L3.6: LIGHTWEIGHT AND EFFICIENT END-TO-END SPEECH RECOGNITION
SPE-L4: MACHINE LEARNING FOR LANGUAGE PROCESSING I
SPE-L4.1: SPOKEN LANGUAGE ACQUISITION BASED ON REINFORCEMENT
SPE-L4.2: HOW MUCH SELF-ATTENTION DO WE NEED? TRADING ATTENTION
SPE-L4.3: LEARNING RECURRENT NEURAL NETWORK LANGUAGE MODELS
SPE-L4.4: SEMI-SUPERVISED LEARNING FOR TEXT CLASSIFICATION BY LAYER
SPE-L4.5: INTEGRATING DISCRETE AND NEURAL FEATURES VIA MIXED-FEATURE
SPE-L4.6: GATED ATTENTIVE CONVOLUTIONAL NETWORK DIALOGUE STATE
Sihong Liu, Beijing University Of Posts And Telecommunications, China; Songyan Liu, Beijing University of Posts and Telecommunications, China; Weiran Xu, Beijing University Of Posts And Telecommunications, China

SPE-L5: SPEECH SYNTHESIS AND VOICE CONVERSION I

SPE-L5.1: USING VAES AND NORMALIZING FLOWS FOR ONE-SHOT	179
SPE-L5.2: ZERO-SHOT MULTI-SPEAKER TEXT-TO-SPEECH WITH	
SPE-L5.3: MELLOTRON: MULTISPEAKER EXPRESSIVE VOICE SYNTHESIS BY	189
SPE-L5.4: LOCATION-RELATIVE ATTENTION MECHANISMS FOR ROBUST	
SPE-L5.5: PARALLEL WAVEGAN: A FAST WAVEFORM GENERATION MODEL BASED	199
SPE-L5.6: GAUSSIAN LPCNET FOR MULTISAMPLE SPEECH SYNTHESIS	204
SPE-L6: SPEECH ENHANCEMENT II: SINGLE CHANNEL	
SPE-L6.1: A COMPUTATIONALLY LIGHT ALGORITHM FOR BAYESIAN SPEECH	209
SPE-L6.2: LOW-LATENCY SINGLE CHANNEL SPEECH ENHANCEMENT USING	
SPE-L6.3: A CROSS-TASK TRANSFER LEARNING APPROACH TO ADAPTING DEEP	
SPE-L6.4: MONAURAL SPEECH ENHANCEMENT USING INTRA-SPECTRAL	224
SPE-L6.5: A MAXIMUM LIKELIHOOD APPROACH TO MULTI-OBJECTIVE LEARNING	229

SPE-L6.6: PAGAN: A PHASE-ADAPTED GENERATIVE ADVERSARIAL NETWORKS FOR
Peishuo Li, Zihang Jiang, Shouyi Yin, Tsinghua University, China; Dandan Song, Peng Ouyang, TsingMicro Co. Ltd., China;
Leibo Liu, Shaojun Wei, Tsinghua University, China
SPE-L7: SPEECH PERCEPTION AND PSYCHOACOUSTICS
SPE-L7.1: HUMANGAN: GENERATIVE ADVERSARIAL NETWORK WITH
SPE-L7.2: THE PROCESSING OF MANDARIN CHINESE TONAL ALTERNATIONS IN
SPE-L7.3: ON THE IMPACT OF LANGUAGE FAMILIARITY IN TALKER CHANGE
SPE-L7.4: EFFECTS OF SPECTRAL TILT ON LISTENERS' PREFERENCES AND
SPE-L7.5: EFFECT OF FRICATION DURATION AND FORMANT TRANSITIONS ON
SPE-L8: SPEECH SYNTHESIS AND VOICE CONVERSION II
SPE-L8.1: FULLY-HIERARCHICAL FINE-GRAINED PROSODY MODELING FOR
SPE-L8.2: TRANSFERRING NEURAL SPEECH WAVEFORM SYNTHESIZERS TO
SPE-L8.3: TEACHER-STUDENT TRAINING FOR ROBUST TACOTRON-BASED TTS
SPE-L8.4: MANY-TO-MANY VOICE CONVERSION USING CONDITIONAL
SPE-L8.5: F0-CONSISTENT MANY-TO-MANY NON-PARALLEL VOICE CONVERSION

SPE-L8.6: END-TO-END ACCENT CONVERSION WITHOUT USING NATIVE
UTTERANCES Songxiang Liu, Disong Wang, Yuewen Cao, Chinese University of Hong Kong, China; Lifa Sun, SpeechX Limited, China; Xixin Wu, Chinese University of Hong Kong, China; Shiyin Kang, Tencent, China; Zhiyong Wu, Tsinghua University, China; Xunying Liu, Chinese University of Hong Kong, China; Dan Su, Dong Yu, Tencent, China; Helen Meng, Chinese University of Hong Kong, Hong Kong SAR of China
SPE-L9: MULTIMODAL PROCESSING OF LANGUAGE
SPE-L9.1: COGANS FOR UNSUPERVISED VISUAL SPEECH ADAPTATION TO NEW
Adriana Fernandez-Lopez, Pompeu Fabra University, Spain; Ali Karaali, Naomi Harte, Trinity College Dublin, Ireland; Federico M. Sukno, Pompeu Fabra University, Spain
SPE-L9.2: VISUALLY GUIDED SELF SUPERVISED LEARNING OF SPEECH
Kingdom
SPE-L9.3: LOOKING ENHANCES LISTENING: RECOVERING MISSING SPEECH
Florian Metze, Carnegie Mellon University, United States
SPE-L9.4: TOWARDS MULTILINGUAL SIGN LANGUAGE RECOGNITION
SPE-L9.5: AUTOMATIC IDENTIFICATION OF SPEAKERS FROM HEAD GESTURES IN
SPE-L9.6: LIPREADING USING TEMPORAL CONVOLUTIONAL NETWORKS
SPE-L10: SPEECH RECOGNITION: CONFIDENCE, ERRORS AND OOVS
SPE-L10.1: ON MODELING ASR WORD CONFIDENCE
SPE-L10.2: CONFIDENCE ESTIMATION FOR BLACK BOX AUTOMATIC SPEECH
SPE-L10.3: OOV RECOVERY WITH EFFICIENT 2ND PASS DECODING AND
SPE-L10.4: END TO END SPEECH RECOGNITION ERROR PREDICTION WITH
SPE-L10.5: ASR ERROR CORRECTION AND DOMAIN ADAPTATION USING MACHINE
TRANSLATION Anirudh Mani, Abridge AI, United States; Shruti Palaskar, Carnegie Mellon University, United States; Nimshi Venkat Meripo, Sandeep Konam, Abridge AI, United States; Florian Metze, Carnegie Mellon University, United States

SPE-L10.6: JOINT CONTEXTUAL MODELING FOR ASR CORRECTION AND	549
LANGUAGE UNDERSTANDING Yue Weng, Sai Sumanth Miryala, Chandra Khatri, Runze Wang, Huaixiu Zheng, Piero Molino, Mahdi Namazifar, Alexandros Papangelis, Hugh Williams, Franziska Bell, Gokhan Tur, Uber Technologies Inc, United States	
SPE-L11: SPEECH SEPARATION AND EXTRACTION I: SINGLE CHANNEL	
SPE-L11.1: DEEP CASA FOR TALKER-INDEPENDENT MONAURAL SPEECH	354
SPE-L11.2: DEMYSTIFYING TASNET: A DISSECTING APPROACH	359
SPE-L11.3: FILTERBANK DESIGN FOR END-TO-END SPEECH SEPARATION	364
SPE-L11.4: INTERRUPTED AND CASCADED PERMUTATION INVARIANT TRAINING	369
SPE-L11.5: MIXUP-BREAKDOWN: A CONSISTENCY TRAINING METHOD FOR	57 4
SPE-L11.6: AN ONLINE SPEAKER-AWARE SPEECH SEPARATION APPROACH BASED	
SPE-L12: SPEECH SEPARATION AND EXTRACTION II: MULTI-CHANNEL	
SPE-L12.1: BEAM-TASNET: TIME-DOMAIN AUDIO SEPARATION NETWORK MEETS	384
SPE-L12.2: ON END-TO-END MULTI-CHANNEL TIME DOMAIN SPEECH	
SPE-L12.3: END-TO-END MICROPHONE PERMUTATION AND NUMBER INVARIANT	
SPE-L12.4: DNN-SUPPORTED MASK-BASED CONVOLUTIONAL BEAMFORMING	39 9
SPE-L12.5: REAL-TIME BINAURAL SPEECH SEPARATION WITH PRESERVED SPATIAL	104

SPE-L12.6: SLOGD: SPEAKER LOCATION GUIDED DEFLATION APPROACH TO
SPE-L13: SPEECH RECOGNITION: REPRESENTATIONS AND EMBEDDINGS
SPE-L13.1: MULTILINGUAL ACOUSTIC WORD EMBEDDING MODELS FOR
SPE-L13.2: MOCKINGJAY: UNSUPERVISED SPEECH REPRESENTATION LEARNING
SPE-L13.3: RECURRENT NEURAL AUDIOVISUAL WORD EMBEDDINGS FOR
SPE-L13.4: DEEP CONTEXTUALIZED ACOUSTIC REPRESENTATIONS FOR
SPE-L13.5: WHAT DOES A NETWORK LAYER HEAR? ANALYZING HIDDEN
SPE-L13.6: LEARNING A SUBWORD INVENTORY JOINTLY WITH END-TO-END
SPE-L14: SPEAKER RECOGNITION/IDENTIFICATION/VERIFICATION
SPE-L14.1: MULTIPLE POINTS INPUT FOR CONVOLUTIONAL NEURAL
SPE-L14.2: INFORMATION MAXIMIZED VARIATIONAL DOMAIN ADVERSARIAL
SPE-L14.3: TEXT ADAPTATION FOR SPEAKER VERIFICATION WITH SPEAKER-TEXT
SPE-L14.4: VOICEAI SYSTEMS TO NIST SRE19 EVALUATION: ROBUST SPEAKER
SPE-L14.5: MULTI-RESOLUTION MULTI-HEAD ATTENTION IN DEEP SPEAKER
SPE-L14.6: WITHIN-SAMPLE VARIABILITY-INVARIANT LOSS FOR ROBUST SPEAKER

SPE-L15: EMOTION RECOGNITION

SPE-L15.1: SPEECH EMOTION RECOGNITION WITH DUAL-SEQUENCE LSTM	
Cities, United States; Vahid Tarokh, Duke University, United States	ırı
SPE-L15.2: A DIALOGICAL EMOTION DECODER FOR SPEECH EMOTION	79
SPE-L15.3: FUSION APPROACHES FOR EMOTION RECOGNITION FROM SPEECH	34
SPE-L15.4: MULTI-TIME-SCALE CONVOLUTION FOR EMOTION RECOGNITION	39
SPE-L15.5: ORDINAL LEARNING FOR EMOTION RECOGNITION IN CUSTOMER	94
SERVICE CALLS Wenjing Han, Tao Jiang, Yan Li, Kuaishou Technology Corp., China; Björn Schuller, Imperial College London, United Kingdom, Huabin Ruan, Tsinghua University, China	;
SPE-L15.6: HGFM: A HIERARCHICAL GRAINED AND FEATURE MODEL FOR) 9
SPE-L16: SPEAKER DIARIZATION	
SPE-L16.1: SPEAKER DIARIZATION USING LATENT SPACE CLUSTERING IN)4
SPE-L16.2: MULTIMODAL SPEAKER DIARIZATION OF REAL-WORLD MEETINGS)9
SPE-L16.3: SPEAKER DIARIZATION WITH REGION PROPOSAL NETWORK	
SPE-L16.4: OPTIMIZING BAYESIAN HMM BASED X-VECTOR CLUSTERING FOR	
SPE-L16.5: A MEMORY AUGMENTED ARCHITECTURE FOR CONTINUOUS	24

CHALLENGE Federico Landini, Brno University of Technology, Czech Republic; Shuai Wang, Shanghai Jiao Tong University, China; Mireia Diez, Lukáš Burget, Pavel Matějka, Kateřina Žmolíková, Ladislav Mošner, Anna Silnova, Oldřich Plchot, Ondřej Novotný, Hossein Zeinali, Johan Rohdin, Brno University of Technology, Czech Republic
SPE-L17: PARALINGUISTICS MODELING
SPE-L17.1: ESTIMATING THE DEGREE OF SLEEPINESS BY INTEGRATING
SPE-L17.2: AUTOMATIC PREDICTION OF SUICIDAL RISK IN MILITARY COUPLES
SPE-L17.3: COMPARISON OF USER MODELS BASED ON GMM-UBM AND
I-VECTORS FOR SPEECH, HANDWRITING, AND GAIT ASSESSMENT OF PARKINSON'S DISEASE PATIENTS
Juan Camilo Vasquez-Correa, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany; Tobias Bocklet, Technische Hochschule, Germany; Juan Rafael Orozco-Arroyave, University of Antioquia, Colombia; Elmar Nöth, Friedrich-Alexander Universität Erlangen-Nürnberg, Colombia
SPE-L17.4: EXPLOITING VOCAL TRACT COORDINATION USING DILATED CNNS
SPE-L17.5: DEEP LEARNING BASED PREDICTION OF HYPERNASALITY FOR
CLINICAL APPLICATIONS Vikram C Mathad, Arizona State University, United States; Kathy Chapman, University of Utah, United States; Julie Liss, Nancy Scherer, Visar Berisha, Arizona State University, United States
SPE-L17.6: LANGUAGE INDEPENDENT GENDER IDENTIFICATION FROM RAW
SPE-P1: ADVERSARIAL/DISCRIMINATIVE TRAINING AND SPOOFING FOR SPEAKER RECOGNITION
SPE-P1.1: DEFENSE AGAINST ADVERSARIAL ATTACKS ON SPOOFING
COUNTERMEASURES OF ASV Haibin Wu, National Taiwan University, China; Songxiang Liu, Helen Meng, Chinese University of Hong Kong, China; Hung-yi Lee, National Taiwan University, Taiwan
SPE-P1.2: TEXT-INDEPENDENT SPEAKER VERIFICATION WITH ADVERSARIAL
SPE-P1.3: CHANNEL INVARIANT SPEAKER EMBEDDING LEARNING WITH JOINT
SPE-P1.4: ADVERSARIAL ATTACKS ON GMM I-VECTOR BASED SPEAKER
VERIFICATION SYSTEMS Xu Li, Jinghua Zhong, Xixin Wu, Jianwei Yu, Xunying Liu, Helen Meng, Chinese University of Hong Kong, Hong Kong SAR of China

SPE-P1.5: ORTHOGONAL TRAINING FOR TEXT-INDEPENDENT SPEAKER
SPE-P1.6: ASSESSING THE SCOPE OF GENERALIZED COUNTERMEASURES FOR
SPE-P1.7: IMPROVING SPEAKER-ATTRIBUTE ESTIMATION BY VOTING BASED ON
SPE-P1.8: AN ENSEMBLE BASED APPROACH FOR GENERALIZED DETECTION OF
SPE-P1.9: A DISCRIMINATIVE CONDITION-AWARE BACKEND FOR SPEAKER
SPE-P1.10: ADVERSARIAL MULTI-TASK LEARNING FOR SPEAKER NORMALIZATION
SPE-P1.11: ROBUST SPEAKER RECOGNITION USING UNSUPERVISED
SPE-P1.12: A GENERALIZED FRAMEWORK FOR DOMAIN ADAPTATION OF PLDA IN
SPE-P2: SPEECH ENHANCEMENT I: NETWORK ARCHITECTURES
SPE-P2.1: CP-GAN: CONTEXT PYRAMID GENERATIVE ADVERSARIAL NETWORK
SPE-P2.2: DENSELY CONNECTED NEURAL NETWORK WITH DILATED
SPE-P2.3: PAN: PHONEME-AWARE NETWORK FOR MONAURAL SPEECH
SPE-P2.4: EFFICIENT TRAINABLE FRONT-ENDS FOR NEURAL SPEECH

SPE-P2.5: INVERTIBLE DNN-BASED NONLINEAR TIME-FREQUENCY TRANSFORM
SPE-P2.6: T-GSA: TRANSFORMER WITH GAUSSIAN-WEIGHTED SELF-ATTENTION
SPE-P2.7: REDUNDANT CONVOLUTIONAL NETWORK WITH ATTENTION
SPE-P2.8: RESIDUAL RECURRENT NEURAL NETWORK FOR SPEECH
SPE-P2.9: 2D-TO-2D MASK ESTIMATION FOR SPEECH ENHANCEMENT BASED ON
SPE-P2.10: SELF-SUPERVISED DENOISING AUTOENCODER WITH LINEAR
SPE-P2.11: FULLY CONVOLUTIONAL RECURRENT NETWORKS FOR SPEECH
SPE-P2.12: PHONETIC FEEDBACK FOR SPEECH ENHANCEMENT WITH AND
SPE-P3: MACHINE LEARNING FOR SPEECH SYNTHESIS I
SPE-P3.1: SCALABLE MULTILINGUAL FRONTEND FOR TTS
SPE-P3.2: A UNIFIED SEQUENCE-TO-SEQUENCE FRONT-END MODEL FOR
SPE-P3.3: A HYBRID TEXT NORMALIZATION SYSTEM USING MULTI-HEAD
SPE-P3.4: GENERATING DIVERSE AND NATURAL TEXT-TO-SPEECH SAMPLES
SPE-P3.5: IMPROVING PROSODY WITH LINGUISTIC AND BERT DERIVED

SPE-P3.6: FOCUSING ON ATTENTION: PROSODY TRANSFER AND ADAPTATIVE	'09
SPE-P3.7: ALIGNTTS: EFFICIENT FEED-FORWARD TEXT-TO-SPEECH SYSTEM	′14
SPE-P3.8: GRAPHTTS: GRAPH-TO-SEQUENCE MODELLING IN NEURAL	'19
SPE-P3.9: EFFECT OF CHOICE OF PROBABILITY DISTRIBUTION, RANDOMNESS,	'24
SPE-P3.10: TRANSFORMER-BASED TEXT-TO-SPEECH WITH WEIGHTED FORCED	29
ATTENTION Takuma Okamoto, National Institute of Information and Communications Technology (NICT), Japan; Tomoki Toda, Nagoya University, Japan; Yoshinori Shiga, Hisashi Kawai, National Institute of Information and Communications Technology (NICT), Japan	
SPE-P3.11: IMPROVING END-TO-END SPEECH SYNTHESIS WITH LOCAL	'34
SPE-P4: SPEECH ANALYSIS AND CODING	
SPE-P4.1: GCI DETECTION FROM RAW SPEECH USING A	'39
SPE-P4.2: FRAME-BASED OVERLAPPING SPEECH DETECTION USING	'44
SPE-P4.3: LEARNING DOMAIN INVARIANT REPRESENTATIONS FOR CHILD-ADULT	49
Rimita Lahiri, Manoj Kumar, University of Southern California, United States; Somer Bishop, University of California, San Francisco, United States; Shrikanth Narayanan, University of Southern California, United States	
SPE-P4.5: SINGLE FREQUENCY FILTER BANK BASED LONG-TERM AVERAGE	′54
Hashim Javid Mohammad, Krishna Gurugubelli, Anil Kumar Vuppala, International Institute of Information Technology, Hyderabad, India	
SPE-P4.6: AUTOREGRESSIVE PARAMETER ESTIMATION WITH DNN-BASED	159
Zihao Cui, Changchun Bao, Beijing University of Technology, China; Jesper Kjær Nielsen, Mads Græsbøll Christensen, Aalborg University, Denmark	g
SPE-P4.7: ENHANCEMENT OF CODED SPEECH USING A MASK-BASED	64
Srikanth Korse, Fraunhofer Institute for Integrated Circuits IIS, Germany; Kishan Gupta, Guillaume Fuchs, AudioLabs-IIS, Germany	

SPE-P4.8: ROBUST LOW RATE SPEECH CODING BASED ON CLONED NETWORKS	
SPE-P4.9: MIXTURE FACTORIZED AUTO-ENCODER FOR UNSUPERVISED	. 6774
SPE-P4.10: A NOVEL APPROACH FOR INTELLIGIBILITY ASSESSMENT IN	. 6779
SPE-P4.11: VOICE BASED CLASSIFICATION OF PATIENTS WITH AMYOTROPHIC	, Ravi
SPE-P4.12: ANALYSIS OF ACOUSTIC FEATURES FOR SPEECH SOUND BASED	
SPE-P5: DEEP SPEAKER RECOGNITION MODELS	
SPE-P5.1: FREQUENCY AND TEMPORAL CONVOLUTIONAL ATTENTION FOR	. 6794
SPE-P5.2: FRAME-LEVEL PHONEME-INVARIANT SPEAKER EMBEDDING FOR	
SPE-P5.3: PROTOTYPICAL NETWORKS FOR SMALL FOOTPRINT	
SPE-P5.4: TDMF: TASK-DRIVEN MULTILEVEL FRAMEWORK FOR END-TO-END	. 6809
SPE-P5.5: AN IMPROVED DEEP NEURAL NETWORK FOR MODELING SPEAKER	. 6814
SPE-P5.6: PARTIAL AUC OPTIMIZATION BASED DEEP SPEAKER EMBEDDINGS	. 6819
SPE-P5.7: KNOWLEDGE DISTILLATION AND RANDOM ERASING DATA	. 6824

SPE-P5.8: DISENTANGLED SPEECH EMBEDDINGS USING CROSS-MODAL
SPE-P5.9: IMPROVING DEEP CNN NETWORKS WITH LONG TEMPORAL
CONTEXT FOR TEXT-INDEPENDENT SPEAKER VERIFICATION Yong Zhao, Tianyan Zhou, Zhuo Chen, Jian Wu, Microsoft Corporation, United States
SPE-P5.10: MULTI-LEVEL DEEP NEURAL NETWORK ADAPTATION FOR SPEAKER
SPE-P5.11: MULTI-TASK LEARNING FOR SPEAKER VERIFICATION AND VOICE
SPE-P5.12: STATISTICS POOLING TIME DELAY NEURAL NETWORK BASED ON
SPE-P6: SPEECH RECOGNITION: ACOUSTIC MODELLING I
SPE-P6.1: SNDCNN: SELF-NORMALIZING DEEP CNNS WITH SCALED
SPE-P6.2: ROBUST MULTI-CHANNEL SPEECH RECOGNITION USING
SPE-P6.3: FULLY LEARNABLE FRONT-END FOR MULTI-CHANNEL ACOUSTIC
SPE-P6.4: G2G: TTS-DRIVEN PRONUNCIATION LEARNING FOR GRAPHEMIC
Duc Le, Thilo Koehler, Christian Fuegen, Michael L. Seltzer, Facebook, United States
SPE-P6.5: TRANSFORMER-BASED ACOUSTIC MODELING FOR HYBRID SPEECH
SPE-P6.6: SPECAUGMENT ON LARGE SCALE DATASETS
SPE-P6.7: FAST TRAINING OF DEEP NEURAL NETWORKS FOR SPEECH
SPE-P6.8: UNSUPERVISED PRE-TRAINING OF BIDIRECTIONAL SPEECH

SPE-P6.9: DISTILLING ATTENTION WEIGHTS FOR CTC-BASED ASR SYSTEMS
SPE-P6.10: DEJA-VU: DOUBLE FEATURE PRESENTATION AND ITERATED LOSS IN
SPE-P6.11: FRAME-LEVEL MMI AS A SEQUENCE DISCRIMINATIVE TRAINING
SPE-P6.12: CROSS LINGUAL TRANSFER LEARNING FOR ZERO-RESOURCE
SPE-P7: SPEECH ENHANCEMENT III: HEARING AIDS AND OTHER APPLICATIONS
SPE-P7.1: IMPROVING ROBUSTNESS OF DEEP LEARNING BASED MONAURAL
SPE-P7.2: CAD-AEC: CONTEXT-AWARE DEEP ACOUSTIC ECHO CANCELLATION
SPE-P7.3: ARTIFICIAL BANDWIDTH EXTENSION USING CONDITIONAL
SPE-P7.4: USING AUTOMATIC SPEECH RECOGNITION AND SPEECH SYNTHESIS
SPE-P7.5: SPEECH INTELLIGIBILITY ENHANCEMENT BY EQUALIZATION FOR
SPE-P7.6: MAXIMUM LIKELIHOOD ESTIMATION OF THE
SPE-P7.7: A CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATOR OF SPEECH AND
SPE-P7.8: CLCNET: DEEP LEARNING-BASED NOISE REDUCTION FOR HEARING

Banuelos, Sivantos GmbH, Germany; Marc Aubreville, Andreas Maier, Friedrich-Alexander Universität Erlangen-Nürnberg,

Germany

SPE-P7.9: A TIME-FREQUENCY NETWORK WITH CHANNEL ATTENTION AND
SPE-P7.10: MASKING AND INPAINTING: A TWO-STAGE SPEECH ENHANCEMENT
SPE-P7.11: 3-D ACOUSTIC MODELING FOR FAR-FIELD MULTI-CHANNEL SPEECH
SPE-P8: ROBUST SPEECH RECOGNITION
SPE-P8.1: IMPROVING REVERBERANT SPEECH TRAINING USING DIFFUSE
SPE-P8.2: LOW-FREQUENCY COMPENSATED SYNTHETIC IMPULSE RESPONSES
SPE-P8.3: AIPNET: GENERATIVE ADVERSARIAL PRE-TRAINING OF
SPE-P8.4: AUDIO-VISUAL RECOGNITION OF OVERLAPPED SPEECH FOR THE LRS2
SPE-P8.5: MULTI-TASK SELF-SUPERVISED LEARNING FOR ROBUST SPEECH
SPE-P8.6: END-TO-END MULTI-PERSON AUDIO/VISUAL AUTOMATIC SPEECH
SPE-P8.7: END-TO-END AUTOMATIC SPEECH RECOGNITION INTEGRATED WITH
SPE-P8.8: END-TO-END TRAINING OF TIME DOMAIN AUDIO SEPARATION AND

SPE-P8.9: IMPROVING NOISE ROBUST AUTOMATIC SPEECH RECOGNITIONWITH	. 7009
SPE-P8.10: A PRACTICAL TWO-STAGE TRAINING STRATEGY FOR MULTI-STREAM	. 7014
SPE-P8.11: MULTI-SCALE OCTAVE CONVOLUTIONS FOR ROBUST SPEECH	. 7019
SPE-P8.12: LEARNING NOISE INVARIANT FEATURES THROUGH TRANSFER LEARNING FOR ROBUST END-TO-END SPEECH RECOGNITION Shucong Zhang, University of Edinburgh, United Kingdom; Cong-Thanh Do, Rama Doddipatla, Toshiba Research Europe Limited Company, United Kingdom; Steve Renals, University of Edinburgh, United Kingdom	. 7024
SPE-P9: END-TO-END SPEECH RECOGNITION III: GENERAL TOPICS	
SPE-P9.1: IMPROVING SPEECH RECOGNITION USING CONSISTENT	
SPE-P9.2: ATTENTION-BASED ASR WITH LIGHTWEIGHT AND DYNAMIC	
SPE-P9.3: AN ATTENTION-BASED JOINT ACOUSTIC AND TEXT ON-DEVICE	. 7039
SPE-P9.4: STRUCTURED SPARSE ATTENTION FOR END-TO-END AUTOMATIC	. 7044
SPE-P9.5: RNN-TRANSDUCER WITH STATELESS PREDICTION NETWORK	. 7049
SPE-P9.6: SEQUENCE-LEVEL CONSISTENCY TRAINING FOR SEMI-SUPERVISED	
SPE-P9.7: INDEPENDENT LANGUAGE MODELING ARCHITECTURE FOR	. 7059
SPE-P9.8: SPEAKER-AWARE TRAINING OF ATTENTION-BASED END-TO-END	. 7064
SPE-P9.9: GENERATING SYNTHETIC AUDIO DATA FOR ATTENTION-BASED SPEECH	. 7069

SPE-P9.10: CORRECTION OF AUTOMATIC SPEECH RECOGNITION WITH	7074
TRANSFORMER SEQUENCE-TO-SEQUENCE MODEL Oleksii Hrinchuk, Moscow Institute of Physics and Technology, NVIDIA, Russia; Mariya Popova, Carnegie Mellon University and NVIDIA, United States; Boris Ginsburg, NVIDIA, United States	ity
SPE-P9.11: EXPLORING PRE-TRAINING WITH ALIGNMENTS FOR RNN	7079
SPE-P9.12: SELF-TRAINING FOR END-TO-END SPEECH RECOGNITION	7084
SPE-P10: SPEAKER DIARIZATION AND CHARACTERIZATION	
SPE-P10.1: TOWARD BETTER SPEAKER EMBEDDINGS: AUTOMATED COLLECTION	7089
SPE-P10.2: CHANNEL ADVERSARIAL TRAINING FOR SPEAKER VERIFICATION AND	7094
SPE-P10.3: PROGRESSIVE MULTI-TARGET NETWORK BASED SPEECH	7099
SPE-P10.4: IMPROVED LARGE-MARGIN SOFTMAX LOSS FOR SPEAKER DIARISATION Yassir Fathullah, Chao Zhang, Philip Woodland, University of Cambridge, United Kingdom	7104
SPE-P10.5: SPEAKER DIARIZATION WITH SESSION-LEVEL SPEAKER EMBEDDING	
SPE-P10.6: OVERLAP-AWARE DIARIZATION: RESEGMENTATION USING NEURAL	
SPE-P10.7: ON THE IMPORTANCE OF VOCAL TRACT CONSTRICTION FOR	7119
SPE-P10.8: PYANNOTE.AUDIO: NEURAL BUILDING BLOCKS FOR SPEAKER DIARIZATION Hervé Bredin, Ruiqing Yin, LIMSI, CNRS, Université Paris-Saclay, France; Juan Manuel Coria, LIMSI, CNRS, Univ. Paris-Université Paris-Saclay, France; Gregory Gelly, LIMSI, CNRS, France; Pavel Korshunov, Idiap Research Institute, Switzerl Marvin Lavechin, Ecole Normale Supérieure/INRIA, France; Diego Fustes, Toptal LLC, Spain; Hadrien Titeux, Université I France; Wassim Bouaziz, Ecole Normale Supérieure/INRIA, France; Marie-Philippe Gill, Ecole de Technologie Supérieure, Université du Québec, Canada	-Sud, land; PSL,
SPE-P10.9: SPEAKER EMBEDDINGS INCORPORATING ACOUSTIC CONDITIONS	7129

SPE-P10.10: SUPERVISED ONLINE DIARIZATION WITH SAMPLE MEAN LOSS FOR
SPE-P10.11: INVESTIGATION OF SPECAUGMENT FOR DEEP SPEAKER EMBEDDING
SPE-P11: EMOTION
SPE-P11.1: SPEAKER-INVARIANT AFFECTIVE REPRESENTATION LEARNING VIA
SPE-P11.2: SPEECH SENTIMENT ANALYSIS VIA PRE-TRAINED FEATURES FROM
SPE-P11.3: GENDER DIFFERENCES ON THE PERCEPTION AND PRODUCTION OF
SPE-P11.4: HIERARCHICAL ATTENTION TRANSFER NETWORKS FOR DEPRESSION
SPE-P11.5: DETECTING EMOTION PRIMITIVES FROM SPEECH AND THEIR USE
SPE-P11.6: X-VECTORS MEET EMOTIONS: A STUDY ON DEPENDENCIES
SPE-P11.7: SPEECH EMOTION RECOGNITION WITH LOCAL-GLOBAL AWARE DEEP
SPE-P11.8: MULTI-HEAD ATTENTION FOR SPEECH EMOTION RECOGNITION
SPE-P11.9: GENERATING AND PROTECTING AGAINST ADVERSARIAL ATTACKS FOR
SPE-P11.10: DEEP ENCODED LINGUISTIC AND ACOUSTIC CUES FOR ATTENTION

SPE-P11.11: MULTI-CONDITIONING AND DATA AUGMENTATION USING
SPE-P11.12: A SELF-ATTENTIVE EMOTION RECOGNITION NETWORK
SPE-P12: MACHINE LEARNING FOR SPEECH SYNTHESIS II
SPE-P12.1: EFFICIENT SHALLOW WAVENET VOCODER USING MULTIPLE
SPE-P12.2: FLOW-TTS: A NON-AUTOREGRESSIVE NETWORK FOR TEXT TO
SPE-P12.3: WAVEFFJORD: FFJORD-BASED VOCODER FOR STATISTICAL
SPE-P12.4: IMPROVING LPCNET-BASED TEXT-TO-SPEECH WITH LINEAR
SPE-P12.5: DISENTANGLING TIMBRE AND SINGING STYLE WITH MULTI-SINGER
SPE-P12.6: SEQUENCE-TO-SEQUENCE SINGING SYNTHESIS USING THE
SPE-P12.7: KOREAN SINGING VOICE SYNTHESIS BASED ON AUTO-REGRESSIVE
SPE-P12.8: FAST AND HIGH-QUALITY SINGING VOICE SYNTHESIS SYSTEM
SPE-P12.9: HYBRID NEURAL-PARAMETRIC F0 MODEL FOR SINGING SYNTHESIS
SPE-P12.10: UTTERANCE-LEVEL SEQUENTIAL MODELING FOR DEEP GAUSSIAN
SPE-P12.11: EMOTIONAL SPEECH SYNTHESIS WITH RICH AND GRANULARIZED7254 CONTROL
Se-Yun Um, Sangshin Oh, Kyungguen Byun, Yonsei University, Korea (South); Inseon Jang, Chunghyun Ahn, Electronics and Telecommunications Research Institute (ETRI), Korea (South); Hong-Goo Kang, Yonsei University, Korea (South)

SPE-P12.12: TOWARDS UNSUPERVISED SPEECH RECOGNITION AND SYNTHESIS
Alexander H. Liu, Tao Tu, Hung-yi Lee, Lin-shan Lee, National Taiwan University, Taiwan
SPE-P13: SPEECH SEPARATION AND EXTRACTION III
SPE-P13.1: AN EMPIRICAL STUDY OF CONV-TASNET
SPE-P13.2: MASK-DEPENDENT PHASE ESTIMATION FOR MONAURAL SPEAKER
SPE-P13.3: JOINT PHONEME ALIGNMENT AND TEXT-INFORMED SPEECH
SPE-P13.4: SINGLE-CHANNEL SPEECH SEPARATION INTEGRATING PITCH
SPE-P13.5: CONTINUOUS SPEECH SEPARATION: DATASET AND ANALYSIS
SPE-P13.6: THE SOUND OF MY VOICE: SPEAKER REPRESENTATION LOSS FOR
SPE-P13.7: SPEAKER-AWARE TARGET SPEAKER ENHANCEMENT BY JOINTLY
SPE-P13.8: FAR-FIELD LOCATION GUIDED TARGET SPEECH EXTRACTION USING
SPE-P13.9: A STUDY OF CHILD SPEECH EXTRACTION USING JOINT SPEECH
SPE-P13.10: AN ANALYSIS OF SPEECH ENHANCEMENT AND RECOGNITION LOSSES
SPE-P13.11: DEEP AUDIO-VISUAL SPEECH SEPARATION WITH ATTENTION

SPATIAL FEATURE LEARNING Rongzhi Gu, Peking University Shenzhen Graduate School, China; Shi-Xiong Zhang, Tencent AI Lab, United States; Lianwu Chen, Yong Xu, Meng Yu, Dan Su, Tencent, China; Yuexian Zou, Peking University Shenzhen Graduate School, China; Dong Yu, Tencent, United States
SPE-P14: SPEECH PRODUCTION
SPE-P14.1: DETECTION AND ANALYSIS OF T/D DELETION IN LIBRISPEECH
SPE-P14.2: PREDICTION OF VOICING AND THE F0 CONTOUR FROM
SPE-P14.3: A COMPARATIVE STUDY OF ESTIMATING ARTICULATORY MOVEMENTS
SPE-P14.4: AUTOMATIC VOCAL TRACT LANDMARK TRACKING IN RTMRI USING
SPE-P14.5: SPEECH-BASED PARAMETER ESTIMATION OF AN ASYMMETRIC VOCAL
SPE-P14.6: END-TO-END ARTICULATORY MODELING FOR DYSARTHRIC
SPE-P14.7: VOCAL TRACT ARTICULATORY CONTOUR DETECTION IN REAL-TIME
SPE-P14.8: RETRIEVING VOCAL-TRACT RESONANCE AND ANTI-RESONANCE FROM
SPE-P14.9: EPOCH EXTRACTION FROM A SPEECH SIGNAL USING GAMMATONE
SPE-P14.10: STUDY OF CLOSED PHASE RESONANCE BANDWIDTHS FOR ORAL AND
SPE-P14.11: ALGORITHMIC EXPLORATION OF AMERICAN ENGLISH DIALECTS

ALGORITHMS FOR EMOTIONAL SPEECH Sudarsana Reddy Kadiri, Paavo Alku, Aalto University, Finland; Yegnanarayana B, Indian Institute of Technology Hyderabad, India
SPE-P15: SPEECH RECOGNITION: ADAPTATION
SPE-P15.1: UNSUPERVISED SPEAKER ADAPTATION USING ATTENTION-BASED
SPE-P15.2: L-VECTOR: NEURAL LABEL EMBEDDING FOR DOMAIN ADAPTATION
SPE-P15.3: ACOUSTIC MODEL ADAPTATION FOR PRESENTATION TRANSCRIPTION
SPE-P15.4: USING PERSONALIZED SPEECH SYNTHESIS AND NEURAL LANGUAGE
SPE-P15.5: ATTENTION-BASED GATED SCALING ADAPTIVE ACOUSTIC MODEL FOR
SPE-P15.6: ADAPTIVE KNOWLEDGE DISTILLATION BASED ON ENTROPY
SPE-P15.7: UNSUPERVISED PRETRAINING TRANSFERS WELL ACROSS LANGUAGES
SPE-P15.8: INCREMENTAL SEMI-SUPERVISED LEARNING FOR MULTI-GENRE
SPE-P15.9: SOURCE DOMAIN DATA SELECTION FOR IMPROVED TRANSFER
SPE-P15.10: STUDY OF FORMANT MODIFICATION FOR CHILDREN ASR
SPE-P15.11: PSEUDO LIKELIHOOD CORRECTION TECHNIQUE FOR LOW
SPE-P15.12: LIBRI-ADAPT: A NEW SPEECH DATASET FOR UNSUPERVISED DOMAIN

SPE-P16: WORD SPOTTING

SPE-P16.1: MINING EFFECTIVE NEGATIVE TRAINING SAMPLES FOR KEYWORD7444 SPOTTING
Jingyong Hou, Northwestern Polytechnical University, China; Yangyang Shi, Mobvoi AI Lab, United States; Mari Ostendorf, University of Washington, United States; Mei-Yuh Hwang, Mobvoi AI Lab, United States; Lei Xie, Northwestern Polytechnical University, China
SPE-P16.2: MULTI-TASK LEARNING FOR VOICE TRIGGER DETECTION
SPE-P16.3: SMALL-FOOTPRINT KEYWORD SPOTTING ON RAW AUDIO DATA WITH
SPE-P16.4: LATTICE-BASED IMPROVEMENTS FOR VOICE TRIGGERING USING
SPE-P16.5: INTEGRATION OF MULTI-LOOK BEAMFORMERS FOR
SPE-P16.6: FAST LATTICE-FREE KEYWORD FILTERING FOR ACCELERATED
SPE-P16.7: TRAINING KEYWORD SPOTTERS WITH LIMITED AND SYNTHESIZED
SPE-P16.8: TOWARDS DATA-EFFICIENT MODELING FOR WAKE WORD SPOTTING
SPE-P16.9: ADAPTATION OF RNN TRANSDUCER WITH TEXT-TO-SPEECH
SPE-P16.11: CRNN-CTC BASED MANDARIN KEYWORDS SPOTTING
SPE-P17: SPEECH ENHANCEMENT IV
SPE-P17.1: UNSUPERVISED NEURAL MASK ESTIMATOR FOR GENERALIZED
SPE-P17.2: SPATIAL ATTENTION FOR FAR-FIELD SPEECH RECOGNITION WITH

SPE-P17.3: TENSOR-TO-VECTOR REGRESSION FOR MULTI-CHANNEL SPEECH
Jun Qi, Hu Hu, Georgia Institute of Technology, United States; Yannan Wang, Tencent, China; Chao-Han Huck Yang, Georgia Institute of Technology, United States; Marco Siniscalchi, University of Enna, Italy; Chin-Hui Lee, Georgia Institute of Technology, United States
SPE-P17.4: TRUTH-TO-ESTIMATE RATIO MASK: A POST-PROCESSING METHOD7509
FOR SPEECH ENHANCEMENT DIRECT AT LOW SIGNAL-TO-NOISE RATIOS Bohan Chen, He Wang, Hong Kong University of Science and Technology Shenzhen Research Institute, China; Yue Wei, Incus Company Limited, China; Richard H.Y. So, Hong Kong University of Science and Technology, China
SPE-P17.5: GEOMETRY CONSTRAINED PROGRESSIVE LEARNING FOR
Xin Tang, Jun Du, Li Chai, University of Science and Technology of China, China; Yannan Wang, Qing Wang, Tencent Technology(Shenzhen) Company Limited, China; Chin-Hui Lee, Georgia Institute of Technology, United States
SPE-P17.6: USING SEPARATE LOSSES FOR SPEECH AND NOISE IN MASK-BASED
Ziyi Xu, Samy Elshamy, Tim Fingscheidt, Technische Universität Braunschweig, Germany
SPE-P17.7: STABLE TRAINING OF DNN FOR SPEECH ENHANCEMENT BASED ON
Masaki Kawanaka, National Institute of Technology, Tokuyama College, Japan; Yuma Koizumi, NTT Corporation, Japan; Ryoichi Miyazaki, National Institute of Technology, Tokuyama College, Japan; Kohei Yatabe, Waseda University, Japan
SPE-P17.8: A ROBUST AUDIO-VISUAL SPEECH ENHANCEMENT MODEL
Wupeng Wang, Chao Xing, Huawei Noah's Ark Lab, China; Dong Wang, Tsinghua University, China; Xiao Chen, Huawei Noah's Ark Lab, China; Fengyu Sun, Huawei Technologies CO. LTD, China
SPE-P17.9: ROBUST UNSUPERVISED AUDIO-VISUAL SPEECH ENHANCEMENT
SPE-P17.10: AV(SE) ² : AUDIO-VISUAL SQUEEZE-EXCITE SPEECH ENHANCEMENT
SPE-P17.11: SPECTROGRAMS FUSION WITH MINIMUM DIFFERENCE MASKS
ESTIMATION FOR MONAURAL SPEECH DEREVERBERATION Hao Shi, Longbiao Wang, Meng Ge, Tianjin University, China; Sheng Li, National Institute of Information and Communications Technology (NICT), Japan; Jianwu Dang, Tianjin University, China
SPE-P17.12: A RETURN TO DEREVERBERATION IN THE FREQUENCY DOMAIN
USING A JOINT LEARNING APPROACH Yuying Li, Indiana University Bloomington, United States; Donald S. Williamson, Indiana University, United States
SPE-P18: SPEAKER RECOGNITION SYSTEMS, DATA AND FEATURES
SPE-P18.1: IN-DOMAIN AND OUT-OF-DOMAIN DATA AUGMENTATION TO IMPROVE
India; Nagaraj Adiga, University of Crete, Greece; Avinash Kumar, National Institute of Technology Sikkim, India
SPE-P18.2: JHU-HLTCOE SYSTEM FOR THE VOXSRC SPEAKER RECOGNITION
SPE-P18.3: DETECTION OF SPEECH EVENTS AND SPEAKER CHARACTERISTICS

SPE-P18.4: XMU-TS SYSTEMS FOR NIST SRE19 CTS CHALLENGE
SPE-P18.5: I-VECTOR TRANSFORMATION USING K-NEAREST NEIGHBORS FOR
SPE-P18.6: H-VECTORS: UTTERANCE-LEVEL SPEAKER EMBEDDING USING A
SPE-P18.7: FEATURE ENHANCEMENT WITH DEEP FEATURE LOSSES FOR
SPE-P18.8: COMBINING DEEP EMBEDDINGS OF ACOUSTIC AND ARTICULATORY
SPE-P18.9: BAYESIAN ESTIMATION OF PLDA WITH NOISY TRAINING LABELS,
SPE-P18.10: UNSUPERVISED FEATURE ENHANCEMENT FOR SPEAKER
SPE-P18.11: CN-CELEB: A CHALLENGING CHINESE SPEAKER RECOGNITION
SPE-P18.12: HI-MIA: A FAR-FIELD TEXT-DEPENDENT SPEAKER VERIFICATION
SPE-P19: MACHINE LEARNING FOR SPEECH SYNTHESIS III
SPE-P19.1: END-TO-END CODE-SWITCHING TTS WITH CROSS-LINGUAL
SPE-P19.2: CODE-SWITCHED SPEECH SYNTHESIS USING BILINGUAL PHONETIC
SPE-P19.3: GENERATING MULTILINGUAL VOICES USING SPEAKER SPACE

Soumi Maiti, City University of New York, United States; Erik Marchi, Alistair Conkie, Apple, United States

SPE-P19.4: SPEAKER ADAPTATION OF A MULTILINGUAL ACOUSTIC MODEL FOR
SPE-P19.5: SEMI-SUPERVISED SPEAKER ADAPTATION FOR END-TO-END SPEECH
SPE-P19.6: BOFFIN TTS: FEW-SHOT SPEAKER ADAPTATION BY BAYESIAN
SPE-P19.7: SEMI-SUPERVISED LEARNING BASED ON HIERARCHICAL GENERATIVE
SPE-P19.8: BREATHING AND SPEECH PLANNING IN SPONTANEOUS SPEECH
SPE-P19.9: ESPNET-TTS: UNIFIED, REPRODUCIBLE, AND INTEGRATABLE OPEN
SPE-P19.10: EXTRACTING UNIT EMBEDDINGS USING SEQUENCE-TO-SEQUENCE
SPE-P19.11: AUDIO-ASSISTED IMAGE INPAINTING FOR TALKING FACES
SPE-P20: SPEECH RECOGNITION: ACOUSTIC MODELLING II
SPE-P20.1: LIBRI-LIGHT: A BENCHMARK FOR ASR WITH LIMITED OR NO
SPE-P20.2: A COMPREHENSIVE STUDY OF RESIDUAL CNNS FOR ACOUSTIC
SPE-P20.3: LAYER-NORMALIZED LSTM FOR HYBRID-HMM AND END-TO-END ASR
SPE-P20.4: SMALL ENERGY MASKING FOR IMPROVED NEURAL NETWORK

TRAINING WITH ON-THE-FLY DATA AUGMENTATION Thai Son Nguyen, Sebastian Stueker, Karlsruhe Institute of Technology, Germany; Jan Niehues, Maastricht University, Netherlands; Alex Waibel, Karlsruhe Institute of Technology, Germany
SPE-P20.6: EFFECTIVENESS OF SELF-SUPERVISED PRE-TRAINING FOR ASR
SPE-P20.7: HIGH-ACCURACY AND LOW-LATENCY SPEECH RECOGNITION WITH
SPE-P20.8: DFSMN-SAN WITH PERSISTENT MEMORY MODEL FOR AUTOMATIC
SPE-P20.9: DYNAMIC TEMPORAL RESIDUAL LEARNING FOR SPEECH
SPE-P20.10: E2E-SINCNET: TOWARD FULLY END-TO-END SPEECH RECOGNITION
SPE-P20.11: SPEAKER AUGMENTATION FOR LOW RESOURCE SPEECH
SPE-P20.12: CGCNN: COMPLEX GABOR CONVOLUTIONAL NEURAL NETWORK ON
SPE-P21: VOICE CONVERSION
SPE-P21.1: ONE-SHOT VOICE CONVERSION USING STAR-GAN
Ruobai Wang, Yu Ding, Lincheng Li, Changjie Fan, Netease Inc., China
Ruobai Wang, Yu Ding, Lincheng Li, Changjie Fan, Netease Inc., China SPE-P21.2: ONE-SHOT VOICE CONVERSION BY VECTOR QUANTIZATION
SPE-P21.2: ONE-SHOT VOICE CONVERSION BY VECTOR QUANTIZATION
SPE-P21.2: ONE-SHOT VOICE CONVERSION BY VECTOR QUANTIZATION
SPE-P21.2: ONE-SHOT VOICE CONVERSION BY VECTOR QUANTIZATION

SPE-P21.7: VOICE CONVERSION WITH TRANSFORMER NETWORK
SPE-P21.8: MSPEC-NET: MULTI-DOMAIN SPEECH CONVERSION NETWORK
SPE-P21.9: MULTI-SPEAKER AND MULTI-DOMAIN EMOTIONAL VOICE
SPE-P21.10: EMOTIONAL VOICE CONVERSION USING MULTITASK LEARNING
SPE-P21.11: EFFECTIVE WAVENET ADAPTATION FOR VOICE CONVERSION WITH
SPE-P21.12: LIFTER TRAINING AND SUB-BAND MODELING FOR
SPE-P22: LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION AND SEARCH
SPE-P22.1: IMPROVING PROPER NOUN RECOGNITION IN END-TO-END ASR BY
SPE-P22.2: NEURAL LATTICE SEARCH FOR SPEECH RECOGNITION
SPE-P22.3: DELIBERATION MODEL BASED TWO-PASS END-TO-END SPEECH
SPE-P22.4: ALIGNMENT-LENGTH SYNCHRONOUS DECODING FOR RNN
SPE-P22.5: INCORPORATING WRITTEN DOMAIN NUMERIC GRAMMARS INTO
SPE-P22.6: LSTM-BASED ONE-PASS DECODER FOR LOW-LATENCY STREAMING
SPE-P22.7: MULTISTATE ENCODING WITH END-TO-END SPEECH RNN
SPE-P22.8: NEURAL ORACLE SEARCH ON N-BEST HYPOTHESES

SPE-P22.10: TRANSFORMER TRANSDUCER: A STREAMABLE SPEECH RECOGNITION
SPE-P22.11: FULL-SUM DECODING FOR HYBRID HMM BASED SPEECH
SPE-P22.12: THE RWTH ASR SYSTEM FOR TED-LIUM RELEASE 2: IMPROVING
SPE-P23: SPEECH RECOGNITION: GENERAL TOPICS
SPE-P23.1: META LEARNING FOR END-TO-END LOW-RESOURCE SPEECH
SPE-P23.2: CROSS-SPEAKER SILENT-SPEECH COMMAND WORD RECOGNITION
SPE-P23.3: EXPLORING A ZERO-ORDER DIRECT HMM BASED ON LATENT
SPE-P23.4: IMPROVING DEVICE DIRECTEDNESS CLASSIFICATION OF
SPE-P23.5: TRAINING ASR MODELS BY GENERATION OF CONTEXTUAL
SPE-P23.6: SPEECH RECOGNITION MODEL COMPRESSION
SPE-P23.7: GPU-ACCELERATED VITERBI EXACT LATTICE DECODER FOR BATCHED
SPE-P23.8: SEQUENCE-TO-SEQUENCE AUTOMATIC SPEECH RECOGNITION WITH
SPE-P23.9: SYNCHRONOUS TRANSFORMERS FOR END-TO-END SPEECH
SPE-P23.10: INVESTIGATION OF METHODS TO IMPROVE THE RECOGNITION

clvi

SPE-P23.11: BANGLA VOICE COMMAND RECOGNITION IN END-TO-END SYSTEM	. 7894
USING TOPIC MODELING BASED CONTEXTUAL RESCORING Nafis Sadeq, Shafayat Ahmed, Sudipta Saha Shubha, Md. Nahidul Islam, Muhammad Abdullah Adnan, Bangladesh Universit Engineering and Technology, Bangladesh	ty of
SPE-P23.12: LEARNING TO DETECT KEYWORD PARTS AND WHOLE BY SMOOTHED MAX POOLING Hyun-Jin Park, Patrick Violette, Niranjan Subrahmanya, Google, United States	. 7899
HLT-L1: SPOKEN LANGUAGE TRANSLATION	
HLT-L1.1: END-END SPEECH-TO-TEXT TRANSLATION WITH MODALITY	
HLT-L1.2: ANALYZING ASR PRETRAINING FOR LOW-RESOURCE	. 7909
HLT-L1.3: INSTANCE-BASED MODEL ADAPTATION FOR DIRECT SPEECH	. 7914
TRANSLATION Mattia Antonino Di Gangi, Fondazione Bruno Kessler and University of Trento, Italy; Viet Nhat Nguyen, University of Trento Italy; Matteo Negri, Marco Turchi, Fondazione Bruno Kessler, Italy	
HLT-L1.4: RE-TRANSLATION STRATEGIES FOR LONG FORM, SIMULTANEOUS,	. 7919
HLT-L1.5: SKINAUGMENT: AUTO-ENCODING SPEAKER CONVERSIONS FOR	. 7924
HLT-L1.6: END-TO-END SPEECH TRANSLATION WITH SELF-CONTAINED	. 7929
HLT-L2: LANGUAGE MODELING	
HLT-L2.1: AN EMPIRICAL STUDY OF TRANSFORMER-BASED NEURAL LANGUAGE	
HLT-L2.2: LOW-BIT QUANTIZATION OF RECURRENT NEURAL NETWORK	
HLT-L2.3: AUDIO-ATTENTION DISCRIMINATIVE LANGUAGE MODEL FOR ASR	. 7944
HLT-L2.4: TRAINING CODE-SWITCHING LANGUAGE MODEL WITH	. 7949
MONOLINGUAL DATA Shun-Po Chuang, National Taiwan University, Taiwan; Tzu-Wei Sung, University of California, San Diego, Taiwan; Hung-Yi National Taiwan University, Taiwan	

Alexander Gerstenberger, Kazuki Irie, RWTH Aachen University, Germany; Pavel Golik, AppTek GmbH, Germany; Eugen Beck, Hermann Ney, RWTH Aachen University, Germany
HLT-L2.6: A RANDOM GOSSIP BMUF PROCESS FOR NEURAL LANGUAGE
Dong Yu, Tencent, China HLT-L3: SPOKEN LANGUAGE UNDERSTANDING AND DIALOGUE II
HLT-L3.1: PSEUDO LABELING AND NEGATIVE FEEDBACK LEARNING FOR
HLT-L3.2: PRE-TRAINING FOR QUERY REWRITING IN A SPOKEN LANGUAGE
HLT-L3.3: END-TO-END ARCHITECTURES FOR ASR-FREE SPOKEN LANGUAGE
HLT-L3.4: END-TO-END SPOKEN LANGUAGE UNDERSTANDING WITHOUT
HLT-L3.5: LEVERAGING UNPAIRED TEXT DATA FOR TRAINING END-TO-END
HLT-L3.6: GENERATING EMPATHETIC RESPONSES BY LOOKING AHEAD THE
HLT-P1: SPOKEN LANGUAGE UNDERSTANDING AND DIALOGUE I
HLT-P1.1: A HIERARCHICAL MODEL FOR DIALOG ACT RECOGNITION
HLT-P1.2: LARGE-SCALE UNSUPERVISED PRE-TRAINING FOR END-TO-END
HLT-P1.3: IMPROVING SPOKEN QUESTION ANSWERING USING
HLT-P1.4: LEARNING ASR-ROBUST CONTEXTUALIZED EMBEDDINGS FOR

HLT-P1.5: A HIERARCHICAL TRACKER FOR MULTI-DOMAIN DIALOGUE STATE	3014
HLT-P1.6: A BI-MODEL APPROACH FOR HANDLING UNKNOWN SLOT VALUES IN	8019
HLT-P1.7: IMPROVING SAMPLE-EFFICIENCY IN REINFORCEMENT LEARNING	8024
HLT-P1.8: FG2SEQ: EFFECTIVELY ENCODING KNOWLEDGE FOR END-TO-END	
HLT-P1.9: A SIMPLE BUT EFFECTIVE BERT MODEL FOR DIALOG STATE	8034
HLT-P1.10: FAST DOMAIN ADAPTATION FOR GOAL-ORIENTED DIALOGUE USING A	8039
HLT-P1.11: PREDICTING PERFORMANCE OUTCOME WITH A CONVERSATIONAL	8044
HLT-P1.12: DESIGN CONSIDERATIONS FOR HYPOTHESIS REJECTION MODULES	8049
HLT-P2: SPEECH AND LANGUAGE ANALYSIS	
HLT-P2.1: COMBINING ACOUSTICS, CONTENT AND INTERACTION FEATURES TO	8054
HLT-P2.2: ACCENT ESTIMATION OF JAPANESE WORDS FROM THEIR SURFACES	8059
HLT-P2.3: OH, JEEZ! OR UH-HUH? A LISTENER-AWARE BACKCHANNEL	8064
HLT-P2.4: CONTROLLABLE TIME-DELAY TRANSFORMER FOR REAL-TIME	8069
HLT-P2.5: IDENTIFYING TRUTHFUL LANGUAGE IN CHILD INTERVIEWS	

HLT-P2.6: A MULTI-VIEW APPROACH FOR MANDARIN NON-NATIVE
Zhenyu Wang, John H.L. Hansen, University of Texas at Dallas, United States; Yanlu Xie, Beijing Language and Culture University, China
HLT-P2.7: DIACRITIC-LEVEL PRONUNCIATION ANALYSIS USING PHONOLOGICAL
Alexander Kain, Amie Roten, Robert Gale, Oregon Health & Science University, United States
HLT-P2.8: PHONEME BOUNDARY DETECTION USING LEARNABLE SEGMENTAL
HLT-P2.9: META-LEARNING FOR ROBUST CHILD-ADULT CLASSIFICATION FROM
Nithin Rao Koluguri, Manoj Kumar, University of Southern California, United States; So Hyun Kim, Weill Cornell Medicine, United States; Catherine Lord, University of California, Los Angeles, United States; Shrikanth Narayanan, University of Southern California, United States
HLT-P2.11: ACCOUNTING FOR MICROPROSODY IN MODELING INTONATION
HLT-P2.12: HOW CONFIDENT ARE YOU? EXPLORING THE ROLE OF FILLERS IN
HLT-P3: LANGUAGE UNDERSTANDING AND MODELING
HLT-P3.1: TRAINING SPOKEN LANGUAGE UNDERSTANDING SYSTEMS WITH
Hasegawa-Johnson, University of Illinois at Urbana-Champaign, United States
HLT-P3.2: WHAT IS BEST FOR SPOKEN LANGUAGE UNDERSTANDING: SMALL
HLT-P3.3: FAST INTENT CLASSIFICATION FOR SPOKEN LANGUAGE
UNDERSTANDING SYSTEMS Akshit Tyagi, Varun Sharma, University of Massachusetts, Amherst, United States; Rahul Gupta, Amazon, Inc., United States; Lynn Samson, Nan Zhuang, Zihang Wang, University of Massachusetts, Amherst, United States; Bill Campbell, Amazon, Inc., United States
HLT-P3.4: CONVERTING WRITTEN LANGUAGE TO SPOKEN LANGUAGE WITH
HLT-P3.5: ADDRESSING THE POLYSEMY PROBLEM IN LANGUAGE MODELING
HLT-P3.6: ADDRESSING CHALLENGES IN BUILDING WEB-SCALE CONTENT

HLT-P3.7: A NEURAL DOCUMENT LANGUAGE MODELING FRAMEWORK FOR
HLT-P3.8: SPOKEN DOCUMENT RETRIEVAL LEVERAGING BERT-BASED
HLT-P3.9: MULTITASK LEARNING FOR DARPA LORELEI'S SITUATION FRAME
HLT-P3.10: AUXILIARY CAPSULES FOR NATURAL LANGUAGE UNDERSTANDING
HLT-P3.11: DISCRETE WASSERSTEIN AUTOENCODERS FOR DOCUMENT
HLT-P3.12: CROSS-LINGUAL TOPIC PREDICTION FOR SPEECH USING
HLT-P4: MACHINE LEARNING FOR LANGUAGE PROCESSING II
HLT-P4.1: EMBEDDED LARGE–SCALE HANDWRITTEN CHINESE CHARACTER
HLT-P4.2: LEVERAGING GANS TO IMPROVE CONTINUOUS PATH KEYBOARD
HLT-P4.3: UNSUPERVISED KEY HAND SHAPE DISCOVERY OF SIGN LANGUAGE
HLT-P4.4: KEYWORD SEARCH FOR SIGN LANGUAGE
HLT-P4.5: LARGE-CONTEXT POINTER-GENERATOR NETWORKS FOR
HLT-P4.6: FROM UNSUPERVISED MACHINE TRANSLATION TO ADVERSARIAL
HLT-P4.7: SELF-ATTENTION AND RETRIEVAL ENHANCED NEURAL NETWORKS
HLT-P4.8: BERT IS NOT ALL YOU NEED FOR COMMONSENSE INFERENCE
HLT-P4.9: SEMI-SUPERVISED SENTENCE CLASSIFICATION BASED ON USER

HLT-P4.10: UPGRADING CRFS TO JRFS AND ITS BENEFITS TO SEQUENCE
HLT-P4.11: SELECTIVE ATTENTION ENCODERS BY SYNTACTIC GRAPH
HLT-P4.12: LEARNING TO GENERATE DIVERSE QUESTIONS FROM KEYWORDS
HLT-P5: MULTILINGUAL PROCESSING OF LANGUAGE
HLT-P5.1: EUROPARL-ST: A MULTILINGUAL CORPUS FOR SPEECH TRANSLATION
HLT-P5.2: MULTILINGUAL GRAPHEME-TO-PHONEME CONVERSION WITH BYTE
HLT-P5.3: LANGUAGE-AGNOSTIC MULTILINGUAL MODELING
HLT-P5.4: ADI17: A FINE-GRAINED ARABIC DIALECT IDENTIFICATION DATASET
HLT-P5.5: UNIVERSAL PHONE RECOGNITION WITH A MULTILINGUAL
HLT-P5.6: COUPLED TRAINING OF SEQUENCE-TO-SEQUENCE MODELS FOR
HLT-P5.7: ADDRESSING ACCENT MISMATCH IN MANDARIN-ENGLISH
HLT-P5.8: DETECTING MISMATCH BETWEEN TEXT SCRIPT AND VOICE-OVER
HLT-P5.9: DNN-BASED SPEECH RECOGNITION FOR GLOBALPHONE LANGUAGES
HLT-P5.10: DEEP NEURAL NETWORKS BASED AUTOMATIC SPEECH
HLT-P5.11: IMPROVING THE PERFORMANCE OF TRANSFORMER BASED LOW

HLT-P5.12: IMPROVING LANGUAGE IDENTIFICATION FOR MULTILINGUAL
IOT-P1: INTERNET OF THINGS
IOT-P1.1: INFORMATION FLOW OPTIMIZATION IN INFERENCE NETWORKS
IOT-P1.2: EXPLOITING TWO-DIMENSIONAL SYMMETRY AND UNIMODALITY FOR
IOT-P1.3: UNCERTAINTY QUANTIFICATION FOR REMAINING USEFUL LIFETIME
IOT-P1.4: VIMO: VITAL SIGN MONITORING USING COMMODITY MILLIMETER
IOT-P1.5: TIME REVERSAL BASED ROBUST GESTURE RECOGNITION USING
IOT-P1.6: NONCOHERENT MAXIMUM-LIKELIHOOD DETECTION FOR AMBIENT
IOT-P1.7: BANDIT SAMPLING FOR FASTER ACTIVITY AND DATA DETECTION IN
IOT-P1.8: CONSENSUS-BASED DISTRIBUTED CLUSTERING FOR IOT
IOT-P1.9: ENERGY-EFFICIENT 3D UAV TRAJECTORY DESIGN FOR DATA
IOT-P1.10: APPLICATION INFORMED MOTION SIGNAL PROCESSING FOR FINGER
IOT-P1.11: INSTANT ADAPTIVE LEARNING: AN ADAPTIVE FILTER BASED FAST

DIMENSION DATA	
COLL-L1.1: IMAGE FUSION USING JOINT SPARSE REPRESENTATIONS AND	344
COLL-L1.2: CLUSTERING OF NONNEGATIVE DATA AND AN APPLICATION TO	1349
COLL-L1.3: SAMPLING OF SURFACES AND LEARNING FUNCTIONS IN HIGH	1354
COLL-L1.4: STOCK MOVEMENT PREDICTION THAT INTEGRATES	
COLL-L1.5: LARGE-SCALE WEAKLY-SUPERVISED CONTENT EMBEDDINGS FOR	364
COLL-L1.6: SUPERVISED CANONICAL CORRELATION ANALYSIS OF DATA ON	369
COLL-L2: SESSION 3R: ROBUSTNESS REPRODUCIBILITY REPLICABILITY	
COLL-L2.1: THE EMPIRICAL DUALITY GAP OF CONSTRAINED STATISTICAL	374
COLL-L2.2: CONTEXT AND UNCERTAINTY MODELING FOR ONLINE SPEAKER	1379
COLL-L2.3: MODELING UNCERTAINTY IN PREDICTING EMOTIONAL	1384
COLL-L2.4: ACCURACY-ROBUSTNESS TRADE-OFF FOR POSITIVELY WEIGHTED	
COLL-L2.5: TOWARDS A NEW UNDERSTANDING OF THE TRAINING OF NEURAL	
COLL-L2.6: ON NETWORK SCIENCE AND MUTUAL INFORMATION FOR	1399

COLL-L1: SESSION 3H: PROCESSING OF HIGHLY COMPLEX, HETEROGENEOUS, HIGH-

SS-L1: ACTIVE CONTROL OF ACOUSTIC NOISE OVER SPATIAL REGIONS

SS-L1.1: SPATIAL ACTIVE NOISE CONTROL BASED ON KERNEL INTERPOLATION	04
SS-L1.2: ACTIVE NOISE CONTROL OVER MULTIPLE REGIONS: PERFORMANCE	09
SS-L1.3: ARRAY-GEOMETRY-AWARE SPATIAL ACTIVE NOISE CONTROL BASED ON	14
SS-L1.4: MULTICHANNEL ACTIVE NOISE CONTROL WITH SPATIAL DERIVATIVE	19
SS-L1.5: AN ACOUSTIC MODELLING BASED REMOTE ERROR SENSING APPROACH	24
SS-L1.6: DISTRIBUTED WAVE-DOMAIN ACTIVE NOISE CONTROL BASED ON THE	29
SS-L2: SIGNAL PROCESSING METHODS FOR FINANCE APPLICATIONS	
SS-L2.1: A THEORETICAL BASIS FOR PRACTITIONERS HEURISTIC 1/N AND	34
SS-L2.2: A RECURSIVE BAYESIAN SOLUTION FOR THE EXCESS OVER	39
SS-L2.3: GAUSSIAN PROCESS IMPUTATION OF MULTIPLE FINANCIAL SERIES	44
SS-L2.4: ROBUST COVARIANCE MATRIX ESTIMATION AND PORTFOLIO	49
SS-L2.5: PORTFOLIO CUTS: A GRAPH-THEORETIC FRAMEWORK TO	54
SS-L2.6: CORRGAN: SAMPLING REALISTIC FINANCIAL CORRELATION MATRICES	59

SS-L3: A SIGNAL-PROCESSING VIEW OF GRAPH NEURAL NETWORKS

SS-L3.1: GRAPH NEURAL NET USING ANALYTICAL GRAPH FILTERS AND	
SS-L3.2: DEFENDING GRAPH CONVOLUTIONAL NETWORKS AGAINST	8469
SS-L3.3: CONSTRAINED SPECTRAL CLUSTERING FOR DYNAMIC COMMUNITY DETECTION Abdullah Karaaslanli, Selin Aviyente, Michigan State University, United States	8474
SS-L3.4: TOWARDS AN EFFICIENT AND GENERAL FRAMEWORK OF ROBUST	
SS-L3.5: DEEP GEOMETRIC KNOWLEDGE DISTILLATION WITH GRAPHS	8484
SS-L3.6: ON THE CHOICE OF GRAPH NEURAL NETWORK ARCHITECTURES	
SS-L4: END-TO-END APPROACHES FOR SPOKEN LANGUAGE UNDERSTANDING	
SS-L4.1: MULTITASK LEARNING WITH CAPSULE NETWORKS FOR	8494
SS-L4.2: USING SPEECH SYNTHESIS TO TRAIN END-TO-END SPOKEN LANGUAGE	
SS-L4.3: IMPROVED END-TO-END SPOKEN UTTERANCE CLASSIFICATION WITH A	8504
SS-L4.4: DIALOGUE HISTORY INTEGRATION INTO END-TO-END	
SS-L4.5: ERROR ANALYSIS APPLIED TO END-TO-END SPOKEN LANGUAGE	е;
SS-L4.6: A DATA EFFICIENT END-TO-END SPOKEN LANGUAGE UNDERSTANDING	8519

AND LEARNING
SS-L5.1: FEDERATED NEUROMORPHIC LEARNING OF SPIKING NEURAL
SS-L5.2: TEMPORAL CODING IN SPIKING NEURAL NETWORKS WITH ALPHA
SS-L5.3: EVENT-DRIVEN SIGNAL PROCESSING WITH NEUROMORPHIC
SS-L5.4: CHALLENGES AND PERSPECTIVES IN NEUROMORPHIC-BASED VISUAL
SS-L5.5: SPIKING NEURAL NETWORKS TRAINED WITH BACKPROPAGATION FOR
SS-L5.6: TRAINING DEEP SPIKING NEURAL NETWORKS FOR
SS-L6: MACHINE LEARNING FOR COMMUNICATIONS II
SS-L6.1: DEEP LEARNING FOR ROBUST POWER CONTROL FOR WIRELESS
SS-L6.2: FEEDBACK TURBO AUTOENCODER
SS-L6.3: EXPLOITING CHANNEL LOCALITY FOR ADAPTIVE MASSIVE MIMO
SS-L6.4: DEEP LEARNING-BASED BEAM ALIGNMENT IN MMWAVE VEHICULAR
SS-L6.5: JOINT SOURCE-CHANNEL CODING AND BAYESIAN MESSAGE PASSING
SS-L6.6: CNN-BASED ANALOG CSI FEEDBACK IN FDD MIMO-OFDM SYSTEMS

SS-L5: SPIKE-BASED NEUROMORPHIC INFORMATION REPRESENTATION, PROCESSING

SS-L7: LEARNING AND OPTIMIZATION IN NON-CONVEX ENVIRONMENTS

SS-L7.1: SCALABLE LEARNING-BASED SAMPLING OPTIMIZATION FOR	
SS-L7.2: LINEAR SPEEDUP IN SADDLE-POINT ESCAPE FOR DECENTRALIZED	8589
SS-L7.3: ON DISTRIBUTED STOCHASTIC GRADIENT ALGORITHMS FOR GLOBAL	8594
SS-L7.4: DISTRIBUTED TENSOR COMPLETION OVER NETWORKS	8599
SS-L7.5: LOOKAHEAD CONVERGES TO STATIONARY POINTS OF SMOOTH	8604
SS-L7.6: COMMUNICATION CONSTRAINED LEARNING WITH UNCERTAIN	tes;
SS-L8: RECENT ADVANCES IN AUTOMOTIVE RADAR SYSTEMS	
SS-L8.1: A SPARSE LINEAR ARRAY APPROACH IN AUTOMOTIVE RADARS USING	8614
SS-L8.2: A LOW-RESOLUTION ADC PROOF-OF-CONCEPT DEVELOPMENT FOR A	
SS-L8.3: PERFORMANCE BOUNDS FOR DISPLACED SENSOR AUTOMOTIVE RADAR	8624
SS-L8.4: SPATIAL AND TEMPORAL SMOOTHING FOR COVARIANCE ESTIMATION IN	8629
SS-L8.5: SLOW-TIME MIMO-FMCW AUTOMOTIVE RADAR DETECTION WITH	
SS-L8.6: ON BINARY SEQUENCE SET DESIGN WITH APPLICATIONS TO	8639

SS-L9: LEARNING BASED INVERSION

SS-L9.1: OPTIMAL TRANSPORT STRUCTURE OF CYCLEGAN FOR UNSUPERVISED LEARNING FOR INVERSE PROBLEMS Byeongsu Sim, Gyutaek Oh, Jong Chul Ye, Korea Advanced Institute of Science and Technology (KAIST), Korea (South)	8644
SS-L9.2: LIGHT-FIELD RECONSTRUCTION AND DEPTH ESTIMATION FROM	
SS-L9.3: JOINT LEARNING OF CARTESIAN UNDERSAMPLING AND	
SS-L9.4: BUILDING FIRMLY NONEXPANSIVE CONVOLUTIONAL NEURAL NETWORKS Matthieu Terris, Audrey Repetti, Heriot-Watt University, United Kingdom; Jean-Christophe Pesquet, Université Paris-Saclay, CentraleSupélec, Inria, France; Yves Wiaux, Heriot-Watt University, United Kingdom	
SS-L9.5: CONFIRMNET: CONVOLUTIONAL FIRMNET AND APPLICATION TO IMAGE	8663
SS-L9.6: LEARNING DIFFERENTIABLE SPARSE AND LOW RANK NETWORKS FOR	8668
SS-L10: SIGNAL PROCESSING FOR EMERGING WIRELESS HARDWARE ARCHITECTUR	ES
SS-L10.1: SPHERICAL LARGE INTELLIGENT SURFACES	8673
SS-L10.2: PATHLOSS PREDICTION USING DEEP LEARNING WITH APPLICATIONS TO CELLULAR OPTIMIZATION AND EFFICIENT D2D LINK SCHEDULING Ron Levie, Cagkan Yapar, Gitta Kutyniok, Giuseppe Caire, Technische Universität Berlin, Germany	8678
SS-L10.3: BEAMFORMING IN INTELLIGENT ENVIRONMENTS BASED ON	8683
SS-L10.4: A SINGLE-RF ARCHITECTURE FOR MULTIUSER MASSIVE MIMO VIA	
SS-L10.5: HYBRID PRECODING FOR SECURE TRANSMISSION IN	
SS-L10.6: WIDEBAND CHANNEL TRACKING FOR MILLIMETER WAVE MASSIVE	8698

SS-L11: NEURAL AND AUDIO SIGNAL PROCESSING FOR HEARING DEVICES

SS-L11.1: IMPROVING AUDITORY ATTENTION DECODING PERFORMANCE OF	3
SS-L11.2: TOWARDS DECODING SELECTIVE ATTENTION FROM SINGLE-TRIAL	8
SS-L11.3: HARMONIC/PERCUSSIVE SOUND SEPARATION AND SPECTRAL	3
SS-L11.4: BIO-MIMETIC ATTENTIONAL FEEDBACK IN MUSIC SOURCE	8
SS-L11.5: TALKER-INDEPENDENT SPEAKER SEPARATION IN REVERBERANT	3
SS-L11.6: EVALUATION OF JOINT AUDITORY ATTENTION DECODING AND	.8
SS-L12: MACHINE LEARNING FOR PHYSICAL LAYER SECURITY AND PRIVACY	
SS-L12.1: ROBUST PRICING MECHANISM FOR RESOURCE SUSTAINABILITY	3
SS-L12.2: NEURAL NETWORK WIRETAP CODE DESIGN FOR MULTI-MODE FIBER	8
SS-L12.3: AGE-BASED SCHEDULING POLICY FOR FEDERATED LEARNING IN	3
SS-L12.4: ADVERSARIAL NETWORKS FOR SECURE WIRELESS COMMUNICATIONS	8
SS-L12.5: LATENCY-MINIMIZED DESIGN OF SECURE TRANSMISSIONS IN	
SS-L12.6: DETECT INSIDER ATTACKS USING CNN IN DECENTRALIZED	8

SS-L13: RANDOM MATRIX THEORY AND HIGH-DIMENSIONAL STATISTICAL SIGNAL
PROCESSING
SS-L13.1: RISK CONVERGENCE OF CENTERED KERNEL RIDGE REGRESSION
SS-L13.2: A WHITENESS TEST BASED ON THE SPECTRAL MEASURE OF LARGE
SS-L13.3: ON THE LIMIT DISTRIBUTION OF THE CANONICAL CORRELATION
SS-L13.4: POSITIVE SOLUTIONS FOR LARGE RANDOM LINEAR SYSTEMS
SS-L13.5: ON THE FREQUENCY DOMAIN DETECTION OF HIGH DIMENSIONAL
SS-L13.6: LARGE DIMENSIONAL ASYMPTOTICS OF MULTI-TASK LEARNING
SS-L14: SIGNAL PROCESSING AND MACHINE LEARNING FOR SATELLITE AND SPACE COMMUNICATIONS
SS-L14.1: ROBUST HYBRID BEAMFORMING FOR SATELLITE-TERRESTRIAL
SS-L14.2: IN-NETWORK CACHING FOR HYBRID SATELLITE-TERRESTRIAL

NETWORKS USING DEEP REINFORCEMENT LEARNING Navneet Garg, Mathini Sellathurai, Heriot-Watt University, United Kingdom; Tharmalingam Ratnarajah, University of Edinburgh, United Kingdom DELIVERY AND SCHEDULING IN BEAM-FREE SATELLITE COMMUNICATIONS Miguel Ángel Vázquez, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Spain; Ana Isabel Pérez-Neira, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Universitat Politecnica de Catalunya (UPC), Spain Christos Tsinos, Aakash Arora, Björn Ottersten, University of Luxembourg, Luxembourg SATELLITE DOWNLINK Tomás Ramirez, Carlos Mosquera, University of Vigo, Spain

SS-L14.6: GENETIC ALGORITHM OPTIMIZED SUPPORT VECTOR MACHINE IN
Xiaojuan Yan, Beibu Gulf University, China; Kang An, National University of Defense Technology, China; Cheng-Xiang Wang, Southeast University, China; Wei-Ping Zhu, Concordia University, Canada; Yusheng Li, National University of Defense Technology, China; Zhiqiang Feng, Beibu Gulf University, China
SS-L15: SIGNAL PROCESSING AND CODING FOR MACROMOLECULAR STORAGE AND COMPUTING
SS-L15.1: OVERCOMING HIGH NANOPORE BASECALLER ERROR RATES FOR DNA
SS-L15.2: EFFICIENT CONSTRAINED ENCODERS CORRECTING A SINGLE
NUCLEOTIDE EDIT IN DNA STORAGE Kui Cai, Xuan He, Singapore University of Technology and Design, Singapore; Han Mao Kiah, Nanyang Technological
University, Singapore; Tuan Thanh Nguyen, Singapore University of Technology and Design, Singapore
SS-L15.3: IMAGE PROCESSING IN DNA
SS-L15.4: CONCENTRATION-BASED POLYNOMIAL CALCULATIONS ON NICKED
SS-L15.5: CAPACITY OF THE ERASURE SHUFFLING CHANNEL
SS-L15.6: ACHIEVING THE CAPACITY OF THE DNA STORAGE CHANNEL
SS-L16: DISTRIBUTED MACHINE LEARNING ON WIRELESS NETWORKS
SS-L16.1: FEDERATED LEARNING WITH QUANTIZATION CONSTRAINTS
Nir Shlezinger, Weizmann Institute of Science, Israel; Mingzhe Chen, Princeton University, United States; Yonina Eldar, Weizmann Institute of Science, Israel; H. Vincent Poor, Princeton University, United States; Shuguang Cui, Chinese University of Hong Kong, China
SS-L16.2: COOPERATIVE LEARNING VIA FEDERATED DISTILLATION OVER FADING
Jin-Hyun Ahn, Korea Advanced Institute of Science and Technology (KAIST), Korea (South); Osvaldo Simeone, King's College London, United Kingdom; Joonhyuk Kang, Korea Advanced Institute of Science and Technology (KAIST), Korea (South)
SS-L16.3: ON THE BYZANTINE ROBUSTNESS OF CLUSTERED FEDERATED
Felix Sattler, Fraunhofer Heinreich-Hertz-Institute, Germany; Klaus-Robert Müller, Technische Universität Berlin, Germany; Thomas Wiegand, Wojciech Samek, Fraunhofer Heinreich-Hertz-Institute, Germany
SS-L16.4: HIERARCHICAL FEDERATED LEARNING ACROSS HETEROGENEOUS
Mehdi Salehi Haydar Abad, Sabanci University, Turkey; Emre Ozfatura, Deniz Gündüz, Imperial College London, United Kingdom; Ozgur Ercetin, Sabanci University, Turkey

SS-L16.5: OVERLAP LOCAL-SGD: AN ALGORITHMIC APPROACH TO HIDE	8871
Jianyu Wang, Hao Liang, Gauri Joshi, Carnegie Mellon University, United States	
SS-L16.6: Q-GADMM: QUANTIZED GROUP ADMM FOR COMMUNICATION	8876
Bennis, University of Oulu, Finland; Vaneet Aggarwal, Purdue University, United States	
SS-L17: MODEL BASED DEEP LEARNING	
SS-L17.1: DEEP SOFT INTERFERENCE CANCELLATION FOR MIMO DETECTION	
SS-L17.2: AN EMPIRICAL BAYES APPROACH TO PARTIALLY LABELED ANDSHUFFLED DATA SETS	8886
Alex Dytso, H. Vincent Poor, Princeton University, United States	
SS-L17.3: REINFORCED DEPTH-AWARE DEEP LEARNING FOR SINGLE IMAGE	8891
SS-L17.4: LEARNING PLUG-AND-PLAY PROXIMAL QUASI-NEWTON DENOISERS	8896
Abdullah Al-Shabili, New York University, United States; Hassan Mansour, Petros T. Boufounos, Mitsubishi Electric Researd Laboratories (MERL), United States	
SS-L17.5: JOINT OPTIMIZATION OF SAMPLING PATTERNS AND DEEP PRIORS FORIMPROVED PARALLEL MRI	8901
Hemant Kumar Aggarwal, Mathews Jacob, University of Iowa, United States	
SS-L17.6: LEARNING SAMPLING AND MODEL-BASED SIGNAL RECOVERY FOR	
Iris A.M. Huijben, Eindhoven University of Technology, Netherlands; Bastiaan S. Veeling, University of Amsterdam, Netherlands Ruud J.G. van Sloun, Eindhoven University of Technology, Netherlands	anas;
SS-L18: ANOMALY DETECTION AND INTENT INFERENCE IN OBJECT TRACKING	
SS-L18.1: INFERRING DYNAMIC GROUP LEADERSHIP USING SEQUENTIAL	8911
SS-L18.2: SCALABLE DETECTION AND TRACKING OF EXTENDED OBJECTS	8916
Florian Meyer, University of California, San Diego, United States; Jason L. Williams, Commonwealth Scientific and Industr Research Organisation, Australia	
SS-L18.3: ADVERSARIAL ANOMALY DETECTION FOR MARKED SPATIO-TEMPORAL	8921
SS-L18.4: QUICKEST DETECTION OF GROWING DYNAMIC ANOMALIES IN	8926
NETWORKS Georgios Rovatsos, Venugopal Veeravalli, University of Illinois at Urbana-Champaign, United States; Don Towsley, University of Illinois at Urbana-Champaign, United States; Ananthram Swami, Army Research Lab, United States	sity of
SS-L18.5: IMAGE SEGMENTATION BASED PRIVACY-PRESERVING HUMAN ACTION	8931
Jiawei Yan, Federico Angelini, Syed Mohsen Naqvi, Newcastle University, United Kingdom	

SS-L18.6: PREDICTION OF VESSEL TRAJECTORIES FROM AIS DATA VIA
SEQUENCE-TO-SEQUENCE RECURRENT NEURAL NETWORKS Nicola Forti, Leonardo M. Millefiori, Paolo Braca, NATO STO Centre for Maritime Research and Experimentation, Italy; Peter Willett, University of Connecticut, United States
SS-L19: HARDWARE-EFFICIENT LARGE-SCALE ANTENNA ARRAYS: THE STAGE FOR SYMBOL-LEVEL PRECODING
SS-L19.1: NEAR-OPTIMAL INTERFERENCE EXPLOITATION 1-BIT MASSIVE MIMO
SS-L19.2: SECURE SYMBOL-LEVEL MISO PRECODING
SS-L19.3: ROBUST SYMBOL-LEVEL PRECODING VIA AUTOENCODER-BASED
SS-L19.4: CONSTANT ENVELOPE MASSIVE MIMO-OFDM PRECODING: AN
SS-L19.5: PASSIVE INTELLIGENT SURFACE ASSISTED MIMO POWERED
SS-L19.6: MULTIUSER MASSIVE MIMO DOWNLINK PRECODING USING
SS-L20: SUSTAINABLE NETWORKING AND COMPUTING THROUGH MACHINE LEARNING
SS-L20.1: ALLOCATION OF COMPUTING TASKS IN DISTRIBUTED MEC SERVERS
SS-L20.2: MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR DISTRIBUTED
SS-L20.3: INTERPRETABLE MACHINE LEARNING IN SUSTAINABLE EDGE
SS-L20.4: LOAD MANAGEMENT WITH PREDICTIONS OF SOLAR ENERGY

SS-L20.5: SPECTRUM ALLOCATION IN WIRELESS NETWORKS FOR CROWD
SS-L20.6: MODELING THE ENVIRONMENT IN DEEP REINFORCEMENT
SS-L21: ADVANCES IN SIGNAL PROCESSING FOR ENVIRONMENTAL STUDIES
SS-L21.1: A DIFFERENTIAL APPROACH FOR RAIN FIELD TOMOGRAPHIC
SS-L21.2: UNCERTAINTIES IN SHORT COMMERCIAL MICROWAVE LINKS FADING
SS-L21.3: ON THE OPPORTUNISTIC USE OF COMMERCIAL KU AND KA BAND
SS-L21.4: PERFORMANCE ANALYSIS FOR PATH ATTENUATION ESTIMATION OF
SS-L21.5: DEEP RAINRATE ESTIMATION FROM HIGHLY ATTENUATED DOWNLINK
SS-L21.6: STATISTICAL SIGNAL PROCESSING APPROACH FOR RAIN ESTIMATION
SS-L22: SIGNAL PROCESSING FOR IOT
SS-L22.1: DYNAMIC OVERSAMPLING IN 1-BIT QUANTIZED ASYNCHRONOUS
SS-L22.2: DYNAMIC RESOURCE ALLOCATION FOR WIRELESS EDGE MACHINE
SS-L22.3: FEDERATING SOLAR, STORAGE AND COMMUNICATIONS IN THE
SS-L22.4: NON-GAUSSIAN BLE-BASED INDOOR LOCALIZATION VIA GAUSSIAN SUM

Canada

SS-L22.5: OPTIMAL JOINT CHANNEL ESTIMATION AND DATA DETECTION BY
SS-L22.6: ON MEASURING DOPPLER SHIFTS BETWEEN TAGS IN A
SS-L23: DEEP GRAPH LEARNING
SS-L23.1: EFFICIENT BELIEF PROPAGATION FOR GRAPH MATCHING
SS-L23.2: SUPERVISED GRAPH REPRESENTATION LEARNING FOR MODELING
SS-L23.3: STABILITY OF GRAPH NEURAL NETWORKS TO RELATIVE
SS-L23.4: ACTIVE SEMI-SUPERVISED LEARNING FOR DIFFUSIONS ON GRAPHS
SS-L23.5: STOCHASTIC GRAPH NEURAL NETWORKS
SS-L23.6: GENERATIVE ADVERSARIAL NETWORKS FOR GRAPH DATA IMPUTATION
SS-L24: AMP AND OTHER APPROXIMATE BAYESIAN INFERENCE TECHNIQUES
SS-L24.1: JOINT FREQUENCY DOMAIN CHANNEL ESTIMATION AND
SS-L24.2: BP-VB-EP BASED STATIC AND DYNAMIC SPARSE BAYESIAN LEARNING
SS-L24.3: ROBUSTNESS OF SPARSE BAYESIAN LEARNING IN CORRELATED
SS-L24.4: A SIMPLE DERIVATION OF AMP AND ITS STATE EVOLUTION VIA
SS-L24.5: VAMP WITH VECTOR-VALUED DIAGONALIZATION

SS-L24.6: DISTRIBUTED VERIFICATION OF BELIEF PRECISIONS CONVERGENCE911 IN GAUSSIAN BELIEF PROPAGATION
Bin Li, Nan Wu, Beijing Institute of Technology, China; Yik-Chung Wu, University of Hong Kong, China
SS-L25: ADVANCES IN LOW-RESOLUTION SAMPLING AND SIGNAL PROCESSING
SS-L25.1: ADMM-BASED ONE-BIT QUANTIZED SIGNAL DETECTION FOR MASSIVE
SS-L25.2: LEARNING TASK-BASED ANALOG-TO-DIGITAL CONVERSION FOR MIMO
SS-L25.3: ONE-BIT NORMALIZED SCATTER MATRIX ESTIMATION FOR COMPLEX
SS-L25.4: ONE-BIT DOA ESTIMATION VIA SPARSE LINEAR ARRAYS
SS-L25.5: ONE-BIT SAMPLING IN FRACTIONAL FOURIER DOMAIN
SS-L25.6: TARGET PARAMETER ESTIMATION VIA ONE-BIT PMCW RADAR
SS-L26: SIGNAL PROCESSING FOR BEYOND 5G COMMUNICATIONS
SS-L26.1: MOBILITY-AWARE BEAM STEERING IN METASURFACE-BASED
SS-L26.2: DYNAMIC METASURFACE ANTENNAS FOR BIT-CONSTRAINED
SS-L26.3: USING INTELLIGENT REFLECTING SURFACES FOR RANK
SS-L26.4: OPTIMIZING BACKSCATTERING COEFFICIENT DESIGN FOR
SS-L26.5: REAL-TIME IMPLEMENTATION ASPECTS OF LARGE INTELLIGENT

SS-L26.6: A HARDWARE ARCHITECTURE FOR RECONFIGURABLE INTELLIGENT
SS-L27: SIGNAL PROCESSING FOR SENSING, INFORMATION FUSION, AND SITUATIONAL AWARENESS IN AUTONOMOUS SYSTEMS
SS-L27.1: CONDITIONAL DENSITY DRIVEN GRID DESIGN IN POINT-MASS FILTER
SS-L27.2: ENHANCED SAFETY OF AUTONOMOUS DRIVING BY INCORPORATING
SS-L27.3: OPPORTUNISTIC USE OF GNSS SIGNALS TO CHARACTERIZE THE
SS-L27.4: AN OPTIMAL SYMMETRIC THRESHOLD STRATEGY FOR REMOTE
SS-L27.5: AUTOMOTIVE COLLISION RISK ESTIMATION UNDER COOPERATIVE
SS-L27.6: EXPLOITATION OF 3D CITY MAPS FOR HYBRID 5G RTT AND GNSS
SS-P1: SIGNAL PROCESSING EDUCATION: TRENDS AND INNOVATIONS
SS-P1.1: A DATASET FOR MEASURING READING LEVELS IN INDIA AT SCALE
SS-P1.2: NOISE-ROBUST KEY-PHRASE DETECTORS FOR AUTOMATED
SS-P1.3: EXPERIMENTS IN CREATING ONLINE COURSE CONTENT FOR SIGNAL
SS-P1.4: TEACHING SIGNALS AND SYSTEMS - A FIRST COURSE IN SIGNAL

SS-P1.5: COCHLEAR SIGNAL PROCESSING: A PLATFORM FOR LEARNING THE
SS-P1.6: MULTIMODAL LEARNING FOR CLASSROOM ACTIVITY DETECTION
SS-P1.7: AUTOMATIC FLUENCY EVALUATION OF SPONTANEOUS SPEECH USING
SS-P1.8: INTELLIGENT STUDENT BEHAVIOR ANALYSIS SYSTEM FOR REAL
SS-P2: UNCONVENTIONAL SENSING
SS-P2.1: CODED ILLUMINATION AND MULTIPLEXING FOR LENSLESS IMAGING
SS-P2.2: SPARSE CONVOLUTIONAL BEAMFORMING FOR WIRELESS
SS-P2.3: DIVERGENCE-BASED ADAPTIVE EXTREME VIDEO COMPLETION
SS-P2.4: ENCODING AND DECODING MIXED BANDLIMITED SIGNALS USING
SS-P2.5: ON THE EFFECT OF REFLECTANCE ON PHASOR FIELD
SS-P2.6: SIGNAL SENSING AND RECONSTRUCTION PARADIGMS FOR A NOVEL
SS-P2.7: SAMPLING CLASSES OF NON-BANDLIMITED SIGNALS USING
SS-P2.8: TOWARDS AN INTELLIGENT MICROSCOPE: ADAPTIVELY LEARNED
SS-P2.9: HIGH DYNAMIC RANGE IMAGING USING DEEP IMAGE PRIORS

SS-P2.10: KERNEL COMPUTATIONS FROM LARGE-SCALE RANDOM FEATURES9294 OBTAINED BY OPTICAL PROCESSING UNITS
Ruben Ohana, Ecole Normale Supérieure, France; Jonas Wacker, EURECOM, France; Jonathan Dong, Ecole Normale Supérieure, France; Sébastien Marmin, EURECOM, France; Florent Krzakala, Ecole Normale Supérieure, France; Maurizio Filippone, EURECOM, France; Laurent Daudet, LightOn, France
SS-P2.11: MULTI-DEPTH COMPUTATIONAL PERISCOPY WITH AN ORDINARY
CAMERA
Charles Saunders, Boston University, United States; Rishabh Bose, Stockdale High School, United States; John Murray-Bruce, Vivek Goyal, Boston University, United States
rivek doyal, Boston Oniversity, Onited states
SS-P2.12: SUPER-RESOLUTION WITH NOISY MEASUREMENTS: RECONCILING9304
UPPER AND LOWER BOUNDS
Heng Qiao, Sina Shahsayari, Piya Pal, University of California, San Diego, United States