



# **Private Graph Extraction via Feature Explanations**

Rishi Raj Sahoo SMLab Talk Jan 22, 2025





# **INTRODUCTION**





Even black-box model can leak information <sup>1</sup>

### PRIVACY vs INTERPRETATBILITY





**Privacy:** 

Which tries to preserve everything

Interpretability:

Which release everything(The **why** question)

# **MOTIVATION**

# **Private Graph**



### **MOTIVATION**



### **MOTIVATION**



Goal: Reconstruct the original graph, given explanation and some auxiliary information

#### THREAT MODEL

#### **Available:**

- Explanations
- Trained GNN Model
- Node Features(Optional)
- Labels (Optional)

#### **Private:**

Graphs/Link

#### **EXPLANATION METHODS**

- Feature explanation methods are used.
- Why not node/edge explanations?



# 1. Explanation-only Attack (ExplainSim)

- Unsupervised attack
- Access to Explanation only
- Attacker assigns edges between the nodes if the distance between the feature vector is small
- Cosine similarity



## 2. Explanation Augmentation Attacks



#### **Generator:**

- **Input** = Node features and explanations
- **Output** = Adjacency matrix
- Each element is treated as a separable learnable parameter(fully parameterised)



#### Normalizer:

- Symmetrize and make non-negative
- A is the transformation to obtain symmetric matrix

$$A = D^{-\frac{1}{2}} \left( \frac{\mathsf{P}_{[0,1]}(\tilde{A}) + \mathsf{P}_{[0,1]}(\tilde{A})^T}{2} \right) D^{-\frac{1}{2}},$$

$$\tilde{A} = G_{FP}(X; \theta_{G}) = \theta_{G}$$

Where,

 $\tilde{A}$  = Adjacency Matrix

 $\theta_{\mathrm{G}} \in \mathbb{R}^{n \times n}$  = Generator

 $G_{FP}(\cdot;\cdot)$  = Generator Function

Where P is a non-negative function defined by:

$$P_{[0,1]}[x] = \begin{cases} 0 & x < 0, \\ 1 & x > 1, \\ x & otherwise. \end{cases}$$

#### **Self-supervision:**

- Denoising autoencoder
- Input: Noisy features/explanation

+

**Graph sampled** from the **generator** as input

Goal: To reconstruct the true node features and explanations



### **Combining adjacency:**

- Add the feature adjacency and explanation adjacency
- Mult-task approach: Predicting class label, reconstructing noisy feature and explanations = reconstructed adjacency
- Objective: Minimize Loss

$$\mathcal{L} = \mathcal{L}_{DAE} + \mathcal{L}_{DAE_{\mathcal{E}_X}} + \mathcal{L}_C.$$

**Graph Stealing with Explanation and Features(GSEF)** 





**GSEF** 

### **VARIANTS OF GSEF**



#### GSEF-CONCAT GSEF-MULT



**GSE** 

#### **SUMMARY OF ATTACKS**

| Аттаск             | X | Y | $\mathcal{E}_X$ |
|--------------------|---|---|-----------------|
| ExplainSim         | X | X | ✓               |
| GSEF               | ✓ | ✓ | ✓               |
| <b>GSEF-CONCAT</b> | ✓ | ✓ | ✓               |
| GSEF-MULT          | ✓ | ✓ | ✓               |
| GSE                | X | ✓ | ✓               |

Table 1: Attack taxonomy based on attacker's knowledge of node features (X), labels (Y) and feature explanations  $(\mathcal{E}_X)$ .

### **COMPARED BASELINES**

FeatureSim: Assigns links if the distance in feature space is small

**GraphMI:** Whitebox attack. The goal is to reconstruct the adjacency matrix given the features and labels

Link stealing attack(LSA): Creates a surrogate model and assigns a link if the posterior between the original label and surrogate model are close

**SLAPS:** Graph structure learning approach that constructs the appropriate graph given the features and labels

#### **PERFORMANCE**



#### **ExplainSim vs FeatureSim**



**GSEF vs SLAPS** 

### **MEASURING EXPLANATION QUALITY**

**Fidelity** = Measure of the explanation's ability to approximate the model's behaviour (**faithfulness**)

#### **Higher** is better

$$\mathcal{F}(\mathcal{E}_X) = \mathbb{E}_{Y_{\mathcal{E}_X}|Z \sim \mathcal{N}} \left[ \mathbb{1}_{f(X) = f(Y_{\mathcal{E}_X})} \right]$$

**Sparsity** = Meaningful explanation should be sparse(contains only subset of the features that is most predictive of the model's decision)

#### Lower the entropy, sparse the explanation

$$H(p) = -\sum_{f \in M} p(f) \log p(f).$$

| Exp     | Co       | Cora CoraML |          | AML      | Вітсоім  |          |  |
|---------|----------|-------------|----------|----------|----------|----------|--|
|         | Fidelity | Sparsity    | Fidelity | Sparsity | Fidelity | Sparsity |  |
| GRAD    | 0.23     | 3.99        | 0.22     | 5.24     | 0.83     | 0.64     |  |
| GRAD-I  | 0.19     | 3.99        | 0.20     | 5.30     | 0.82     | 0.64     |  |
| Zorro   | 0.89     | 1.83        | 0.96     | 3.33     | 0.99     | 0.37     |  |
| Zorro-S | 0.98     | 2.49        | 0.84     | 2.75     | 0.95     | 0.96     |  |
| GLIME   | 0.19     | 0.88        | 0.20     | 0.98     | 0.82     | 0.13     |  |
| GNNExp  | 0.74     | 7.27        | 0.55     | 5.70     | 0.90     | 2.05     |  |

### **ACCURACY OF RECONSTRUCTED GRAPH**



#### **SUMMARY**

| Exp           | Attack       | Cora  |       | CORAML |       | BITCOIN |       |
|---------------|--------------|-------|-------|--------|-------|---------|-------|
|               |              | AUC   | AP    | AUC    | AP    | AUC     | AP    |
| - 0           | FEATURESIM   | 0.799 | 0.827 | 0.706  | 0.753 | 0.535   | 0.478 |
| ij            | Lsa [20]     | 0.795 | 0.810 | 0.725  | 0.760 | 0.532   | 0.500 |
| Baseline      | GraphMI [48] | 0.856 | 0.830 | 0.808  | 0.814 | 0.585   | 0.518 |
| ñ             | Slaps [13]   | 0.736 | 0.776 | 0.649  | 0.702 | 0.597   | 0.577 |
|               | GSEF-CONCAT  | 0.734 | 0.773 | 0.640  | 0.705 | 0.527   | 0.515 |
| Q             | GSEF-MULT    | 0.678 | 0.737 | 0.666  | 0.730 | 0.264   | 0.383 |
| Grad          | GSEF         | 0.948 | 0.953 | 0.902  | 0.833 | 0.700   | 0.715 |
| 9             | GSE          | 0.924 | 0.939 | 0.699  | 0.768 | 0.229   | 0.365 |
|               | EXPLAINSIM   | 0.984 | 0.978 | 0.890  | 0.891 | 0.681   | 0.644 |
|               | GSEF-CONCAT  | 0.734 | 0.775 | 0.674  | 0.734 | 0.525   | 0.527 |
| -             | GSEF-MULT    | 0.691 | 0.742 | 0.717  | 0.756 | 0.252   | 0.380 |
| GRAD-I        | GSEF         | 0.949 | 0.950 | 0.887  | 0.832 | 0.709   | 0.723 |
| Ğ             | GSE          | 0.903 | 0.923 | 0.717  | 0.781 | 0.256   | 0.380 |
|               | EXPLAINSIM   | 0.984 | 0.979 | 0.903  | 0.899 | 0.681   | 0.644 |
|               | GSEF-CONCAT  | 0.823 | 0.860 | 0.735  | 0.786 | 0.575   | 0.529 |
| 0             | GSEF-MULT    | 0.723 | 0.756 | 0.681  | 0.697 | 0.399   | 0.449 |
| Zorro         | GSEF         | 0.884 | 0.880 | 0.776  | 0.820 | 0.537   | 0.527 |
| Z             | GSE          | 0.779 | 0.810 | 0.722  | 0.777 | 0.596   | 0.561 |
|               | EXPLAINSIM   | 0.871 | 0.873 | 0.806  | 0.829 | 0.427   | 0.485 |
|               | GSEF-CONCAT  | 0.907 | 0.922 | 0.747  | 0.791 | 0.601   | 0.590 |
| S-C           | GSEF-MULT    | 0.794 | 0.815 | 0.712  | 0.740 | 0.490   | 0.491 |
| Zorro-S       | GSEF         | 0.918 | 0.923 | 0.776  | 0.819 | 0.598   | 0.565 |
| [OZ           | GSE          | 0.893 | 0.915 | 0.742  | 0.784 | 0.571   | 0.564 |
|               | EXPLAINSIM   | 0.908 | 0.934 | 0.732  | 0.787 | 0.484   | 0.496 |
| GLIME         | GSEF-CONCAT  | 0.643 | 0.710 | 0.610  | 0.652 | 0.473   | 0.493 |
|               | GSEF-MULT    | 0.516 | 0.522 | 0.517  | 0.528 | 0.264   | 0.371 |
|               | GSEF         | 0.730 | 0.773 | 0.681  | 0.740 | 0.542   | 0.525 |
|               | GSE          | 0.558 | 0.571 | 0.540  | 0.555 | 0.236   | 0.361 |
|               | EXPLAINSIM   | 0.505 | 0.524 | 0.520  | 0.523 | 0.504   | 0.512 |
|               | GSEF-CONCAT  | 0.614 | 0.650 | 0.653  | 0.705 | 0.467   | 0.489 |
| ΧÞ            | GSEF-MULT    | 0.724 | 0.760 | 0.637  | 0.692 | 0.390   | 0.454 |
| GNNExp        | GSEF         | 0.762 | 0.796 | 0.700  | 0.695 | 0.590   | 0.563 |
| $\frac{2}{5}$ | GSE          | 0.517 | 0.552 | 0.490  | 0.508 | 0.386   | 0.451 |
|               | EXPLAINSIM   | 0.537 | 0.541 | 0.484  | 0.508 | 0.551   | 0.543 |

#### Note:

- ExplainSim and GSEF attacks for all explanation methods other than GLIME and GNNExp, outperform all baseline methods.
- Among baseline approaches, GraphMI performs best followed by FeatureSim.
- The information leakage for BITCOIN is limited by small feature size.
- For GLIME and GNNExp, we observe that the explanation contains little information about the graph structure. The reason behind this is further revealed in the fidelity-sparsity analysis of the obtained explanations.

# **References**

- 1. Private Graph extraction via feature extraction (Link)
- 2. Code
- 3. YouTube video (Link)



### **ATTACKER'S ADVANTAGE**



### **DEFENSE**

$$Pr(\mathcal{E}'_{x_i} = 1) = \begin{cases} \frac{e^{\epsilon}}{e^{\epsilon} + 1}, & \text{if } \mathcal{E}_{x_i} = 1, \\ \frac{1}{e^{\epsilon} + 1}, & \text{if } \mathcal{E}_{x_i} = 0, \end{cases}$$



Figure 9: Privacy budget and corresponding attack performance of ExplainSim for Zorro explanation on the Cora dataset. ∞ implies that no perturbation is performed.

| $\epsilon$ | Fidelity | Sparsity | Intersection |
|------------|----------|----------|--------------|
| 0.0001     | 0.84     | 5.91     | 74.68        |
| 0.001      | 0.84     | 5.91     | 74.70        |
| 0.01       | 0.84     | 5.89     | 75.03        |
| 0.1        | 0.84     | 5.80     | 75.10        |
| 0.2        | 0.83     | 5.71     | 75.60        |
| 0.4        | 0.82     | 5.49     | 76.45        |
| 0.6        | 0.81     | 5.25     | 77.16        |
| 0.8        | 0.81     | 5.00     | 78.66        |
| 1          | 0.81     | 4.73     | 80.10        |
| ∞          | 0.89     | 1.83     | 100          |

# **SUMMARY**