9. Лява и дясна граница на функция. Основни граници

Галина Люцканова

17 октомври 2013 г.

Определение 9.1: Казваме, че f(x) клони към A при $x \to x_0$ отляво и пишем $\lim_{x \to x_0 = 0} f(x) = A$ (или), ако за всяко $\varepsilon > 0$ съществува $\delta > 0$, такова че ако $-\delta < x - x_0 < 0$ (или $x_0 - \delta < x < x_0$), то да е изпълнено $|f(x) - A| < \varepsilon$.

Определение 9.2: Казваме, че f(x) клони към A при $x \to x_0$ отдясно и пишем $\lim_{x \to x_0 + 0} f(x) = A$ (или), ако за всяко $\varepsilon > 0$ съществува $\delta > 0$, такова че ако $0 < x - x_0 < \delta$ (или $x_0 < x < x_0 + \delta$), то да е изпълнено $|f(x) - A| < \varepsilon$.

Определение 9.3: Нека f(x) е дефинирана в множеството M и нека x_0 е точка на сгъстяване за M. Ще казваме, че f(x) има граница, равна на L, когато каквата и клоняща към x_0 редица $\{x_n\}_{n=1}^{\infty}$ от точки от M да изберем ($x_n < x_0$), съответната редица от функционални стойности $\{f(x_n)\}$ да клони към L отляво.

Определение 9.4: Нека f(x) е дефинирана в множеството M и нека x_0 е точка на сгъстяване за M. Ще казваме, че f(x) има граница, равна на L, когато каквата и клоняща към x_0 редица $\{x_n\}_{n=1}^{\infty}$ от точки от M да изберем ($x_n > x_0$), съответната редица от функционални стойности $\{f(x_n)\}$ да клони към L отдясно.

Твърдение 9.1: Ако $\lim_{x \to x_0} f(x) = A$, то $\lim_{x \to x_0 - 0} f(x) = A$ и $\lim_{x \to x_0 + 0} f(x) = A$ А. Обратното, ако съществуват лява и дясна граница на една функция в точка на сгъстяване, то $\lim_{x \to x_0} f(x) = A$.

Доказателство:

Основни граници:

$$1. \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказателство:

$$2. \lim_{x \to 0} \frac{\lg x}{x} = 1$$

Доказателство:
$$\lim_{x\to 0}\frac{\operatorname{tg} x}{x}=\lim_{x\to 0}\frac{\sin x}{x}\cdot\lim_{x\to 0}\frac{1}{\cos x}=1\cdot\frac{1}{\cos 0}=1$$

$$3. \lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

Доказателство:

Сега полагаме $y=\arcsin x$ следователно $x=\sin y$ за $y\in\left[-\frac{\pi}{2},+\frac{\pi}{2}\right]$. Тогава получаваме $\lim_{x\to 0}\frac{\arcsin x}{x}=\lim_{\sin y\to 0}\frac{y}{\sin y}=\lim_{y\to 0}\frac{y}{\sin y}=\lim_{y\to 0}\frac{1}{\frac{\sin y}{y}}=$

$$\frac{\lim\limits_{y\to 0}1}{\lim\limits_{y\to 0}\frac{\sin y}{y}}=\frac{1}{1}=1$$

$$4. \lim_{x \to 0} \frac{\arctan x}{x} = 1$$

Доказателство:

Аналогично на предишното доказателство.

5.
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}}$$

Доказателство: Тук имаме неопределеност от типа $1^{+\infty}$.