Fonctions matricielles monotones

MAT 02 - Ecole Polytechnique

Vincent-Adam Alimi, Zian Chen, Abderrahman Kantos, Matéo Pirio Rossignol, Mohamed Sangaré, Ayoub Tirdad Sous la direction de Siarhei Finski

Mai 2024

Sommaire

- Introduction
 - Définitions
 - Formulation des théorèmes
- 2 Preuves
 - Matrices de Loewner
 - Localité de P_n
 - Schéma de preuve

Définition

Ordre de Loewner

Pour A, B des matrices hermitiennes de même taille, on note $A \leq B$ (resp. A < B) lorsque B - A est (resp. définie) positive.

Définition

Ordre de Loewner

Pour A, B des matrices hermitiennes de même taille, on note $A \leq B$ (resp. A < B) lorsque B - A est (resp. définie) positive.

Notation

On note $\mathbb{H}_n(a, b)$ l'ensemble des matrices hermitiennes de taille n dont le spectre est dans a; b[.

Fonction matricielle

Une fonction matricielle \overline{f} est définie à partir d'une fonction $f:]a; b[\to \mathbb{R}$ sur $\bigcup_n \mathbb{H}_n(a,b)$ en posant, pour $M \in \mathbb{H}_n(a,b)$ notée $M = U^* \operatorname{diag}(\lambda_1, \ldots, \lambda_n) U$, avec U unitaire,

$$\overline{f}(M) = U^* \operatorname{diag}(f(\lambda_1), \dots, f(\lambda_n)) U$$

Fonction matricielle

Une fonction matricielle \overline{f} est définie à partir d'une fonction $f:]a; b[\to \mathbb{R}$ sur $\bigcup_n \mathbb{H}_n(a,b)$ en posant, pour $M \in \mathbb{H}_n(a,b)$ notée $M = U^* \operatorname{diag}(\lambda_1, \ldots, \lambda_n) U$, avec U unitaire,

$$\overline{f}(M) = U^* \operatorname{diag}(f(\lambda_1), \dots, f(\lambda_n)) U$$

Notation

On note $P_n(a, b)$ l'ensemble des fonctions matricielles préservant l'ordre sur $\mathbb{H}_n(a, b)$.

Fonction matricielle

Une fonction matricielle \overline{f} est définie à partir d'une fonction $f:]a; b[\to \mathbb{R}$ sur $\bigcup_n \mathbb{H}_n(a,b)$ en posant, pour $M \in \mathbb{H}_n(a,b)$ notée $M = U^* \operatorname{diag}(\lambda_1, \ldots, \lambda_n) U$, avec U unitaire,

$$\overline{f}(M) = U^* \operatorname{diag}(f(\lambda_1), \dots, f(\lambda_n)) U$$

Notation

On note $P_n(a, b)$ l'ensemble des fonctions matricielles préservant l'ordre sur $\mathbb{H}_n(a, b)$.

Question : Comment décrire les fonctions qui préservent l'ordre ?

Un exemple de non-monotonicité

La fonction carrée $x \in \mathbb{R}_+^* \mapsto x^2 \in \mathbb{R}$ ne préserve pas l'ordre pour n=2.

$$A = \begin{pmatrix} 27 & 1 \\ 1 & 2 \end{pmatrix} > 0, \ B = \begin{pmatrix} 10 & -3 \\ -3 & 1 \end{pmatrix} > 0$$

Un rapide calcul montre que

$$A - B = \begin{pmatrix} 17 & 4 \\ 4 & 1 \end{pmatrix} > 0$$
 mais que $A^2 - B^2 = \begin{pmatrix} 621 & 62 \\ 62 & -5 \end{pmatrix} \not \geq 0$

Un exemple de non-monotonicité

La fonction carrée $x \in \mathbb{R}_+^* \mapsto x^2 \in \mathbb{R}$ ne préserve pas l'ordre pour n=2.

$$A = \begin{pmatrix} 27 & 1 \\ 1 & 2 \end{pmatrix} > 0, \ B = \begin{pmatrix} 10 & -3 \\ -3 & 1 \end{pmatrix} > 0$$

Un rapide calcul montre que

$$A - B = \begin{pmatrix} 17 & 4 \\ 4 & 1 \end{pmatrix} > 0$$
 mais que $A^2 - B^2 = \begin{pmatrix} 621 & 62 \\ 62 & -5 \end{pmatrix} \not \geq 0$

Un exemple de monotonicité

La fonction racine-carrée préserve l'ordre des matrices.

Premier théorème de Loewner

Une fonction f appartient à $P_n(a,b)$ si, et seulement si, les trois conditions suivantes sont vérifiées :

- 2 $f^{(2n-3)}$ est convexe sur]a; b[
- **3** Pour presque tout $x \in]a; b[, M_n(x, f) \ge 0, où$

$$M_n(x, f) = \left(\frac{1}{(i+j-1)!} f^{(i+j-1)}(x)\right)_{1 \le i, j \le n}$$

Premier théorème de Loewner

Une fonction f appartient à $P_n(a,b)$ si, et seulement si, les trois conditions suivantes sont vérifiées :

- 2 $f^{(2n-3)}$ est convexe sur]a; b[
- **3** Pour presque tout $x \in]a; b[, M_n(x, f) \ge 0, où$

$$M_n(x,f) = \left(\frac{1}{(i+j-1)!}f^{(i+j-1)}(x)\right)_{1 \le i,j \le n}$$

Régularisation

On se ramène au cas où f est \mathcal{C}^{∞} en régularisant la fonction. La question de la régularisation n'est pas triviale mais ne sera pas abordée pas dans cet exposé.

Remarque

Ce théorème donne un résultat a priori surprenant : préserver l'ordre sur les matrices d'une taille fixée fournit de la régularité. Par ailleurs, la matrice M_n est définie presque partout car les derniers termes diagonaux sont des fonctions définies presque partout par la convexité de $f^{(2n-3)}$.

Remarque

Ce théorème donne un résultat a priori surprenant : préserver l'ordre sur les matrices d'une taille fixée fournit de la régularité. Par ailleurs, la matrice M_n est définie presque partout car les derniers termes diagonaux sont des fonctions définies presque partout par la convexité de $f^{(2n-3)}$.

Premier théorème de Loewner dans le cas C^{∞}

Soit f de classe C^{∞} . On a l'équivalence :

$$f \in P_n(a,b) \iff \forall x \in]a,b[,M_n(x,f) \ge 0$$

Application : Caractère local

Avec ce théorème, on voit que pour a < c < b < d, alors

$$P_n(a,b) \cap P_n(c,d) \subset P_n(a,d).$$

En fait ce résultat, non-trivial, a été démontré indépendamment afin d'aboutir à la preuve du théorème.

Deuxième théorème de Loewner

Soit]a; $b[\subset \mathbb{R}$, les affirmations suivantes sont équivalentes:

- 2 Il existe une représentation intégrale de f

$$f(z) = \alpha z + \beta + \int_{\mathbb{R}} \left(\frac{1}{\lambda - z} - \frac{\lambda}{1 + \lambda^2} \right) d\mu(\lambda),$$

où $\alpha > 0, \beta \in \mathbb{R}$ et μ mesure positive borélienne telle que $\lambda \mapsto 1/(1+\lambda^2) \in L^1(\mathbb{R},\mu)$ et $\mu(]a;b[)=0$.

Il existe une fonction analytique $\tilde{f}: \mathcal{H}_- \cup]a$; $b[\cup \mathcal{H}_+ \to \mathbb{C}$ telle que $\tilde{f}(\mathcal{H}_+) \subset \mathcal{H}_+$, $\tilde{f}|_{]a;b[} = f$ et $\overline{\tilde{f}(z)} = \tilde{f}(\overline{z})$ pour tout $z \in \mathcal{H}_+$. Ici \mathcal{H}_\pm est le demi-plan supérieur (resp. inférieur).

Remarque

Ce théorème fournit deux caractérisations de la monotonie matricielle à tout ordre : une dans le langage de la théorie de la mesure, une autre dans celui de l'analyse complexe.

Remarque

Ce théorème fournit deux caractérisations de la monotonie matricielle à tout ordre : une dans le langage de la théorie de la mesure, une autre dans celui de l'analyse complexe.

Utilité du premier théorème

En plus d'avoir un intérêt en soi, le premier théorème permet de démontrer le second.

Exemple

Exemple (fonction puissance)

La fonction $z\mapsto z^t$ appartient à $P_n(0,+\infty)$ si et seulement si $0\leq t\leq 1$.

Exemple

 $e^z = e^a \cdot e^{ib}$, où z = a + ib.

Exemple (exponentielle)

La fonction exp n'est pas matriciellement monotone.

Exemple

Exemple (détermination principale du logarithme)

La fonction Log appartient à $P_n(0,+\infty)$ pour tout n, car pour $z=re^{i\theta}$ où $\theta\in[0;2\pi[$, on aura que

$$Log(z) = log(r) + i\theta,$$

dont la partie imaginaire est positive.

En effet, on peut avoir sa représentation intégrale

$$\mathsf{Log}(z) = \int_{-\infty}^{0} \left(\frac{1}{\lambda - z} - \frac{\lambda}{1 + \lambda^{2}} \right) \mathrm{d}\lambda.$$

Description de croissance

Si f est C^1 sur un intervalle I, on a l'équivalence

f est croissante sur I si, et seulement si, $f' \ge 0$ sur I.

Comment généraliser ce résultat ?

Soit $f \in \mathcal{C}^1(]a; b[)$ et $A \in \mathbb{H}_n(a,b)$. La fonction matricielle f est différentiable en A et sa différentielle s'exprime comme un produit de Schur faisant intervenir la matrice de Loewner associée à f et A.

Soit $f \in \mathcal{C}^1(]a; b[)$ et $A \in \mathbb{H}_n(a,b)$. La fonction matricielle f est différentiable en A et sa différentielle s'exprime comme un produit de Schur faisant intervenir la matrice de Loewner associée à f et A.

Matrice de Loewner

Soient $\lambda_1, \ldots, \lambda_n \in]a; b[$. On note $f^{(1)}(\lambda_1, \ldots, \lambda_n)$ la matrice de taille n dont le coefficient d'indice (i,j) vaut $\frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j}$ si $\lambda_i \neq \lambda_j$ et $f'(\lambda_i)$ si $\lambda_i = \lambda_j$.

Soit $f \in \mathcal{C}^1(]a; b[)$ et $A \in \mathbb{H}_n(a,b)$. La fonction matricielle f est différentiable en A et sa différentielle s'exprime comme un produit de Schur faisant intervenir la matrice de Loewner associée à f et A.

Matrice de Loewner

Soient $\lambda_1, \ldots, \lambda_n \in]a; b[$. On note $f^{(1)}(\lambda_1, \ldots, \lambda_n)$ la matrice de taille n dont le coefficient d'indice (i,j) vaut $\frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j}$ si $\lambda_i \neq \lambda_j$ et $f'(\lambda_i)$ si $\lambda_i = \lambda_j$.

Produit de Schur

Le produit de Schur de deux matrices $A = (a_{i,j})_{i,j}$ et $B = (b_{i,j})_{i,j}$ est la matrice $A \odot B = (a_{i,j}b_{i,j})_{i,j}$. Le produit de Schur de deux matrices positives est positif.

Soit $A = diag(\lambda_1, \dots, \lambda_n)$. La différentielle D(f)(A)(H) de f en A appliquée à H vaut

$$D(f)(A)(H) = f^{(1)}(\lambda_1 \ldots, \lambda_n) \odot H$$

Soit $A = diag(\lambda_1, \dots, \lambda_n)$. La différentielle D(f)(A)(H) de f en A appliquée à H vaut

$$D(f)(A)(H) = f^{(1)}(\lambda_1 \ldots, \lambda_n) \odot H$$

Première caractérisation

Soit $f \in \mathcal{C}^1(]a; b[)$. Alors f est matriciellement monotone d'ordre n sur]a; b[si, et seulement si, pour tous $\lambda_1, \ldots, \lambda_n \in]a; b[, f^{(1)}(\lambda_1, \ldots, \lambda_n) > 0.$

Soit $A = diag(\lambda_1, ..., \lambda_n)$. La différentielle D(f)(A)(H) de f en A appliquée à H vaut

$$D(f)(A)(H) = f^{(1)}(\lambda_1 \ldots, \lambda_n) \odot H$$

Première caractérisation

Soit $f \in C^1(]a; b[)$. Alors f est matriciellement monotone d'ordre n sur]a; b[si, et seulement si, pour tous $\lambda_1, \ldots, \lambda_n \in]a; b[, f^{(1)}(\lambda_1, \ldots, \lambda_n) > 0.$

Exemple fondamental

La fonction inverse $f: t \in I \mapsto -\frac{1}{t} \in \mathbb{R}$ préserve l'ordre sur tout intervalle $I \subset \mathbb{R} \setminus \{0\}$.

La localité de P_n , qui est remarquable dès l'énoncé du premier théorème, sert en fait à sa démonstration. Pour l'obtenir, on introduit les objets suivants.

Définition

Soit $f:]a; b[\to \mathbb{R}$. Pour tout (n+1)-uplet (x_0, \ldots, x_n) d'éléments de]a; b[deux à deux distincts, on définit la n-ième différence divisée associée à f par :

$$[x_0, x_1, \cdots, x_n]_f = \sum_{i=0}^n \frac{f(x_i)}{\prod_{j \neq i} (x_i - x_j)}$$

La localité de P_n , qui est remarquable dès l'énoncé du premier théorème, sert en fait à sa démonstration. Pour l'obtenir, on introduit les objets suivants.

Introduction

Définition

Soit $f:]a; b[\to \mathbb{R}$. Pour tout (n+1)-uplet (x_0, \ldots, x_n) d'éléments de]a; b[deux à deux distincts, on définit la n-ième différence divisée associée à f par :

$$[x_0, x_1, \cdots, x_n]_f = \sum_{i=0}^n \frac{f(x_i)}{\prod_{j \neq i} (x_i - x_j)}$$

Remarque

C'est une généralisation des taux d'accroissement.

Proposition

Avec les mêmes notation, si f est de classe C^n sur]a; b[, alors il existe $w \in]\min\{x_i\}$; $\max\{x_i\}$ [tel que

$$[x_0, x_1, \cdots, x_n]_f = \frac{f^{(n)}(w)}{n!}.$$

Proposition

Avec les mêmes notation, si f est de classe C^n sur]a; b[, alors il existe $w \in]\min\{x_i\}$; $\max\{x_i\}$ [tel que

$$[x_0, x_1, \cdots, x_n]_f = \frac{f^{(n)}(w)}{n!}.$$

Remarque

En particulier, si l'on fait tendre les x_i vers un point x contenu dans l'enveloppe convexe des x_i ,

$$[x_0, x_1, \cdots, x_n]_f \rightarrow \frac{f^{(n)}(x)}{n!}.$$

Voici une dernière description de la différence divisée qui fait un premier lien avec l'analyse complexe :

Proposition

Soit $f:]a; b[\to \mathbb{R}$ analytique et un (n+1)-uplet (x_0, \ldots, x_n) d'éléments de]a; b[deux à deux distincts et γ un lacet entourant ces réels.

On a

$$[x_0,x_1,...,x_n]_f=\int_{\gamma}\frac{f(z)}{\prod_i(z-x_i)}\mathrm{d}z.$$

Localité de P_n

Théorème

On a l'équivalence suivante

$$f \in P_n(a,b) \iff [x_0,x_1,\ldots,x_{2n-1}]_{fN(q)} \geq 0$$

pour tout $q \in \mathbb{C}_{n-1}[X]$, et $x_0, x_1, \dots, x_{2n-1} \in]a$; b[deux-à-deux distincts. Ici, $N(q) = qq^*$ avec $q^*(z) = \overline{q(\overline{z})}$.

Introduction

Localité de P_n

Théorème

On a l'équivalence suivante

$$f \in P_n(a,b) \iff [x_0,x_1,\ldots,x_{2n-1}]_{fN(q)} \geq 0$$

pour tout $q \in \mathbb{C}_{n-1}[X]$, et $x_0, x_1, \dots, x_{2n-1} \in]a; b[$ deux-à-deux distincts. Ici, $N(q) = qq^*$ avec $q^*(z) = q(\overline{z})$.

Remarque

Bien que ceci ne soit pas évident, ce résultat est la clé pour montrer la localité de P_n .

Paires projectives

Simplification

Si $B \geq A$, on sait que la différence B-A, matrice positive, s'écrit comme une somme de projecteurs orthogonaux de rang 1 par le théorème spectral. On peut simplifier le problème en n'étudiant que la monotonie sur les paires de matrices dont la différence est exactement égale à une projection orthogonale de rang 1.

Paires projectives

Simplification

Si $B \geq A$, on sait que la différence B-A, matrice positive, s'écrit comme une somme de projecteurs orthogonaux de rang 1 par le théorème spectral. On peut simplifier le problème en n'étudiant que la monotonie sur les paires de matrices dont la différence est exactement égale à une projection orthogonale de rang 1.

Définition

Un triplet $(A, B, v) \in \mathbb{H}_n^2 \times \mathbb{C}^n$ est une paire projective de taille n si $B - A = vv^*$. Elle est dite stricte si v n'est orthogonal à aucun vecteur propre de A.

Paires projectives

Proposition

Si (A, B, v) est une paire projective de taille n, alors, en notant

$$\operatorname{Sp}(A) = \{\lambda_0 \le \lambda_2 \le \ldots \le \lambda_{2n-2}\}$$
 et

$$\mathrm{Sp}(B) = \{\lambda_1 \leq \lambda_3 \leq \ldots \leq \lambda_{2n-1}\}$$
, on a l'entrelacement :

$$\lambda_0 \leq \lambda_1 \leq \ldots \leq \lambda_{2n-1}$$
.

De plus, (A, B, v) est stricte si et seulement si :

$$\lambda_0 < \lambda_1 < \ldots < \lambda_{2n-1}$$
.

Introduction

Paires projectives

Remarque

Cette dernière équivalence permet de voir que (A, B, v) n'est pas stricte si, et seulement si, A et B ont une valeur propre commune. Dans ce cas, on peut même montrer qu'elles ont alors un vecteur propre commun pour cette valeur propre commune, orthogonal à v. Nous nous ramenons ainsi à l'étude des paires projectives stricte en enlevant les vecteurs propres communs orthogonaux à v.

Proposition

Réciproquement, étant donnés $\lambda_0 \leq \lambda_1 \leq \ldots \leq \lambda_{2n-1}$, il existe une paire projective (A, B, v) de taille n telle que

$$\operatorname{Sp}(A) = \{\lambda_0 \le \lambda_2 \le \ldots \le \lambda_{2n-2}\}$$
 et

$$\operatorname{Sp}(B) = \{\lambda_1 \le \lambda_3 \le \ldots \le \lambda_{2n-1}\}.$$

Théorème

Si $(A, B, v) \in \mathbb{H}_n(a, b)^2 \times \mathbb{C}^n$ est une paire projective stricte de taille n et $w \in \mathbb{C}^n$, alors il existe $a < \lambda_0 < \lambda_1 < \ldots < \lambda_{2n-1} < b$ et $q \in \mathbb{C}_{n-1}[X]$ tels que :

$$\mathrm{Sp}(A) = \{\lambda_{2i}, \, 0 \leq i < n\}, \, \mathrm{Sp}(B) = \{\lambda_{2i+1}, \, 0 \leq i < n\}$$

$$\forall f:]a; b[\to \mathbb{R}, \langle w, (f(B) - f(A))w \rangle = [\lambda_0, \lambda_1, \dots, \lambda_{2n-1}]_{fN(q)}$$

Théorème

Si $(A, B, v) \in \mathbb{H}_n(a, b)^2 \times \mathbb{C}^n$ est une paire projective stricte de taille n et $w \in \mathbb{C}^n$, alors il existe $a < \lambda_0 < \lambda_1 < \ldots < \lambda_{2n-1} < b$ et $q \in \mathbb{C}_{n-1}[X]$ tels que :

$$\mathrm{Sp}(A) = \{\lambda_{2i}, \, 0 \leq i < n\}, \, \mathrm{Sp}(B) = \{\lambda_{2i+1}, \, 0 \leq i < n\}$$

$$\forall f:]a; b[\to \mathbb{R}, \langle w, (f(B) - f(A))w \rangle = [\lambda_0, \lambda_1, \dots, \lambda_{2n-1}]_{fN(q)}$$

Remarque

Ce théorème fait apparaître la différence f(B) - f(A), dont on étudie le signe.

Premier théorème de Loewner dans le cas C^{∞}

Soit f de classe \mathcal{C}^{∞} . On a l'équivalence :

$$f \in P_n(a,b)$$

$$\iff$$

$$\forall x \in]a, b[, M_n(x, f) = \left(\frac{1}{(i+j-1)!} f^{(i+j-1)}(x)\right)_{1 \le i, j \le n} \ge 0$$

Sens direct: on procède par récurrence forte. Le cas n=2 se traite par des manipulations élémentaires.

Sens direct: on procède par récurrence forte. Le cas n = 2 se traite par des manipulations élémentaires.

Hérédité : On suppose le résultat vrai pour $k \le n$. On a les hypothèses suivantes :

- $P_{n+1}(a,b) \subset P_n(a,b)$

Sens direct: on procède par récurrence forte. Le cas n = 2 se traite par des manipulations élémentaires.

Hérédité : On suppose le résultat vrai pour $k \le n$. On a les hypothèses suivantes :

- $lacksquare{1}{1} f \in \mathcal{C}^{\infty}(]a;b[,\mathbb{R})$
- $P_{n+1}(a,b) \subset P_n(a,b)$
- ③ $\forall x \in]a; b[, \forall k \le n, M_k(x, f) \ge 0$ (Hypothèse de récurrence)

Critère de Sylvester

Une matrice est définie positive si, et seulement si, ses mineurs principaux sont tous strictement positifs.

Sens direct: on procède par récurrence forte. Le cas n = 2 se traite par des manipulations élémentaires.

Hérédité : On suppose le résultat vrai pour $k \le n$. On a les hypothèses suivantes :

- \bullet $f \in \mathcal{C}^{\infty}(]a; b[, \mathbb{R})$
- $P_{n+1}(a,b) \subset P_n(a,b)$
- **③** $\forall x \in]a; b[, \forall k \le n, M_k(x, f) \ge 0$ (Hypothèse de récurrence)

Critère de Sylvester

Une matrice est définie positive si, et seulement si, ses mineurs principaux sont tous strictement positifs.

Question

On a des objets seulement positifs et non strictement positifs, comment utiliser le critère de Sylvester ?

Solution

On peut ajouter un shift!

Fonction shift

On définit une fonction ϕ dans $P_{\infty}(a,b)$ telle que $M_{n+1}(x,\phi) > 0$.

Solution

On peut ajouter un shift!

Fonction shift

On définit une fonction ϕ dans $P_{\infty}(a,b)$ telle que $M_{n+1}(x,\phi) > 0$.

Si l'on a det $M_{n+1}(x, f + \varepsilon \phi) \ge 0$, alors det $M_{n+1}(x, f + \varepsilon \phi) > 0$ pour ϵ petit, puis $M_{n+1}(x, f + \varepsilon \phi) > 0$ puis $M_{n+1}(x, f) \ge 0$.

Pour obtenir en toute généralité det $M_n(x, f) \ge 0$ pour f de classe C^{∞} , on introduit d'abord deux matrices :

Pour obtenir en toute généralité det $M_n(x, f) \ge 0$ pour f de classe C^{∞} , on introduit d'abord deux matrices :

Soient f:]a; $b[\to \mathbb{R}$ et $\xi_1<\eta_1<\xi_2<\eta_2<\ldots<\xi_n<\eta_n$ des éléments de]a; b[.

Matrice de Loewner généralisée

On appelle matrice de Loewner généralisée la matrice

$$L(\xi,\eta) = ([\xi_i,\eta_j]_f)_{1 \le i,j \le n}$$

Matrice de Loewner étendue

On définit la matrice de Loewner étendue

$$L^{e}(\xi,\eta)=([\xi_1,\ldots,\xi_i,\eta_1,\ldots,\eta_j]_f)_{1\leq i,j\leq n}$$

On peut alors prouver la positivité de $\det M_n(x, f)$:

On peut alors prouver la positivité de det $M_n(x, f)$:

Positivité de det $M_n(x, f)$

Pour f de classe C^{∞} , on a la suite de déductions suivantes :

- Si $f \in P_n(a, b)$, et (ξ, η) sont des n-uplets strictement entrelacés, le codage de ces n-uplet par les paires projectives donne det $L(\eta, \xi) > 0$.
- det $L(\eta, \xi)$ et det $L^e(\eta, \xi)$ sont de même signe strict.
- det $M_n(x, f) \ge 0$, en approchant $M_n(x, f)$ par des matrices de Loewner étendues.

Sens réciproque : Comme pour le sens direct, on commence par appliquer un shift à notre fonction, ce qui permet de supposer que $M_n(x, f) > 0$.

La preuve se décompose alors en deux temps :

- Prouver par l'absurde que pour tout $x \in]a, b[, \exists h > 0$ tel que $f \in P_n(x h, x + h)$.
- 2 Étendre le résultat en utilisant la localité.

Etape 1: On cherche à approcher la matrice $M_n(x, f) > 0$ par des matrices de déterminant négatif ou nul. On dispose du théorème suivant :

Théorème

Soit $f:]a; b[\to \mathbb{R}$ de classe \mathcal{C}^1 et h > 0 tel que $f \not\in P_n(x_0 - h, x_0 + h)$. Il existe $m_h \in [1; n]$ et $x_0 - h < \xi_1^{(h)} < \eta_1^{(h)} < \ldots < \xi_{m_h}^{(h)} < \eta_{m_h}^{(h)} < x_0 + h$ tels que le déterminant de la matrice de Loewner généralisée $\det([\xi_i^{(h)}, \eta_i^{(h)}]_f)_{1 \le i,j \le m_h}$ soit strictement négatif.

Problème

Les matrices données par le résultat précédent ont des coefficients qui ne sont pas du même "ordre" que ceux de la matrice $M_n(x, f)$.

On rappelle la définition des matrices de Loewner étendues.

Matrice de Loewner étendue

Soient $\xi_1 < \eta_1 < \xi_2 < \eta_2 < \ldots < \xi_n < \eta_n$ des éléments de]a; b[. Pour toute fonction f:]a; b[$\to \mathbb{R}$, on définit la matrice de Loewner étendue

$$L^{e} = (L_{i,j}^{e})_{i,j} = ([\xi_{1}, \ldots, \xi_{i}, \eta_{1}, \ldots, \eta_{j}]_{f})_{i,j}$$

Son déterminant a le même signe strict que celui de la matrice de Loewner généralisée !

On rappelle la définition des matrices de Loewner étendues.

Matrice de Loewner étendue

Soient $\xi_1 < \eta_1 < \xi_2 < \eta_2 < \ldots < \xi_n < \eta_n$ des éléments de]a; b[. Pour toute fonction f:]a; b[$\to \mathbb{R}$, on définit la matrice de Loewner étendue

$$L^{e} = (L_{i,j}^{e})_{i,j} = ([\xi_{1}, \dots, \xi_{i}, \eta_{1}, \dots, \eta_{j}]_{f})_{i,j}$$

Son déterminant a le même signe strict que celui de la matrice de Loewner généralisée !

On dispose d'un résultat sur la convergence des différences divisées. Cela permet d'obtenir la convergence suivante :

$$0 \ge \det L_h^e \underset{h \to 0}{\longrightarrow} \det \left(\frac{1}{(i+j-1)!} f^{(i+j-1)}(x) \right) = \det M_m(x,f) > 0$$

4□ > 4同 > 4 = > 4 = > 4 Q (~

Etape 2 : On utilise la localité que l'on a exprimée ainsi :

Caractère local

On a, pour a < c < b < d

$$P_n(a,b)\cap P_n(c,d)\subset P_n(a,d).$$

L'étape 1 nous donne que pour $x \in]a; b[, \exists h_x > 0$ tel que $f \in P_n(x - h_x, x + h_x)$. Pour $A \leq B$ dans $\mathbb{H}_n(a, b)$, on peut trouver c < d réels de]a; b[tels que $Sp(A), Sp(B) \subset]c; d[$. Par compacité, on a $\bigcup_i]x_i - h_{x_i}; x_i + h_{x_i}[$ recouvre [c; d].

En itérant un nombre fini de fois le résultat de localité, $\bigcap_i P_n(a_{x_i}, b_{x_i}) \subset P_n(c, d)$. Ainsi, $f \in P_n(c, d)$ et $f(A) \leq f(B)$. D'où le résultat.

Conclusion '

Lors de ce PSC, nous avons pu nous confronter à plusieurs difficultés :

- Omprendre une démonstration difficile.
- 2 Mobiliser des ressources éparses et parfois difficiles à lire.
- Oévelopper un esprit critique sur notre travail en affinant notre rigueur.

Nous tenons à remercier notre tuteur Siarhei Finski pour ses orientations et son aide qui ont été fondamentales lors de l'étude du sujet.