Soil Heterogeneity Statistics Overview

8/7/23

Overview

- Goals
 - Explore local soil density
 - Identify metrics that capture heterogeneity of local soil density

Local Soil Density

- Gather some basic statistics by depth (horizontal xray slices)
- Split into 3 different sections
 - o Inner soil core
 - Ignore the edges with the container to avoid boundary effects
 - Plastic ring
 - This should be uniform density throughout
 - Outside the container
 - Should be a density of zero?

Local Soil Density

scan 14, no till, high manure

density = (Plsoil-Ploutside_of_container)/(Plcontainer-Ploutside_of_container)*1.022, units: g/ml Conversion from displacement measurement of PETG container: 70mL volume displacement, 71.55g

Local Soil Density

Greater difference in density by fertilizer treatment than tillage. Bulk density measurements for these scanned soils?

Characterizing Heterogeneity

Denoised with total variation technique

What can **local density statistics**tell us about the soil's
heterogeneity and differences
between soil
treatments/management
practices?

Characterizing Heterogeneity

Focusing on metrics robust against x-ray related noise

Skewness

Asymmetry in pixel density distribution.

Negative Skew Positive Skew

Kurtosis

"peakedness" or "flatness" of distribution compared to the normal distribution, specifically, how much of the distribution is in the tails.

Sobel Edges

Edge finding image convolution that calculates the vertical and horizontal gradients in an image.

Skewness vs Kurtosis

Skewness vs Kurtosis vs Sobel Edge Metric

- Each point is in an average from an individual horizontal xray slice
- Sampled every 50 slices
- Data seems fall roughly on a curved surface

Averaging metrics by x-ray scan

12 total features for each scan: skew, kurt and sobel averages at 4 depth bins.

Reducing dimensionality to extract qualitative insights

t-SNE visualization of x-ray stats by tillage and fertilizer

t-SNE components illustrate strongly separated clusters by soil type. ANOVA:

- Significant differences in t-SNE_1 by both fertilizer (P~1E-8), and tillage (P~1.8E-5)
- Significant differences in t-SNE 2 by fertilizer (P~1E-12)

Reducing dimensionality to extract qualitative insights

- t-SNE great for visualization, though no direct mapping between 12 original features and t-SNE components.
- But:
 - t-SNE_1 strongly correlated with sobel edge features
 - t-SNE 2 strongly correlated with skew and kurtosis

Sobel edges (3.3 - 6.6 cm)

Similar separation found just with just mid-depth skew v edge metrics

Predicting soil type by depth-binned metrics

- I trained a support vector machine (<u>SVM</u>, a classification technique) to **predict soil type** from the 12 statistical features calculated for each scan:
 - To determine the accuracy of the SVM model, I used cross-validation with 5 folds (for each fold, the model was trained on 80% of the scans to predict the soil type of other 20% of the scans), and compared the accuracy of the predictions.
 - I used stratified group k-folds to preserve the distribution of each soil type in the folds.
 - Accuracy = total correct predictions / total predictions
 - Results:

Classification Type:	Tillage-Fertilizer	Tillage	Fertilizer
Fold 1 accuracy	0.73	0.91	1.00
Fold 2 accuracy	0.82	0.91	0.91
Fold 3 accuracy	0.73	0.91	0.73
Fold 4 accuracy	0.90	0.70	0.90
Fold 5 accuracy	0.90	0.90	0.90
Mean accuracy	0.81	0.87	0.89

Conclusion

- Skew, Kurtosis, and Sobel edge seem to be good metrics to differentiate soils
- Changes in skew and kurtosis seem indicative of fertilizer vs manure.
- Changes in edges seems indicative of tillage differences
- Depth seems important, especially to differentiate tillage of high fertilizer soils
- Future directions:
 - How do these metrics connect with physical metrics like drainage, nutrient transport, etc?
 More experiments required.
 - O How do these metrics connect to pore structure metrics?
 - How do bulk density measurements compare against x-ray calculated values?

Skewness

Kurtosis

tillage

Sobel Edge Intensity

Tilled - High Fertilizer - metrics by depth

What do different regions look like?

