

Présentation intermédiaire de stage de fin d'études

Optimisation d'algorithmes de traitement d'images en télédétection

Matthieu Verlynde

Maître de stage : Ammar Mian **Enseignant référent : Antoine Cornuéjols**

Sommaire

Introduction

I. Evaluer le compromis performance/efficacité énergétique

II. Optimiser les traitements

III. Organisation de la suite du stage

Conclusion

Introduction

Au LISTIC, la recherche en informatique pour l'environnement et l'humain

Laboratoire d'Informatique, Système et Traitement de l'Information et de la Connaissance

2 thèmes:

• ReGaRD : Représentation et tRaitement des Données pour l'humain

• AFUTÉ: Apprentissage, FUsion et Télédétection

Introduction

La télédétection : gestion de l'environnement aux coûts écologiques croissants

9000 satellites en 2023

500 en observation de la Terre

Applications:

glaciologie, volcanologie, suivi de territoire, gestion de milieu naturels, agronomie...

Thompson et al. (2022) Search OSOidx. (n. d.)

Introduction

Objectif double:

Métrique d'évaluation énergie + performance Méthodes d'optimisation

Les métriques de la littérature

Durée d'exécution

Complexité algorithmique

- Descripteur de Bachmann-Landeau (Big O)
- Lignes de codes, volume d'Halstead, nombre cyclomatique...

Mesure empirique

Performances du modèle

Performances sur la tâche effectuée

Exemple : précision de classification

Emission en eqCO2

Énergie (kWh) × intensité carbone (eqCO₂/kWh) ✓

Accéder aux données de consommation énergétique

03/06/2024

8

Des méthodes d'optimisations variées

BigEarthNet, une base de données satellites de grande taille

BigEarth 201

- Discontinuous urban fabric
- Beaches, dunes, sands
- Salt marshes
- Intertidal flats
- Estuaries

590 326 images

Sentinel-1 (SAR) et Sentinel-2 (optique)

Multilabellisées

- Pastures
- Broad-leaved forest
- Mixed forest
- Natural grassland
- Transitional woodland/shrub

InceptionV2

Métrique	Article	Expérience
Précision (%)	48.23	59.23 ± 0.04
Rappel (%)	56.79	68.05 ± 0.09
F1	0.4988	0.6945 ± 0.0004
F2	0.5301	0.6806 ± 0.0007

Evolution du taux de perte en apprentissage (sigmoid cross-entropy)

Szegedy et al. (2015) Brital (2024) Sumbul et al. (2019) 03/06/2024

12

Training

03/06/2024

Métrique	Article	Expérience
Précision (%)	69.93	54.65 ± 0.20
Rappel (%)	77.10	64.66 ± 0.74
F1	0.7098	0.6520 ± 0.0027
F2	0.7384	0.6427 ± 0.0054

Toutes bandes
Taux d'apprentissage = 10⁻⁴

Evolution du taux de perte en apprentissage (sigmoid cross-entropy)

III. Organisation de la suite du stage

Mois		Juin				Juillet			Août				Septembre	
Semaine	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Utilisation de 100% de BigEarthNet	\Diamond													
Passage en multimodal														
Fusion d'information énergie + performance														
Identification des variables importantes														
Traitement des données énergétiques														
Application de méthodes d'optimisation												/		
Ecriture du rapport final			♦									4		\
Préparation du projet de thèse		\Q												

20/06 – Journée des

stagiaires LISTIC

11/06 – Fin du stage

03/06/2024

03/06 – Présentation

intermédiaire de stage

10/06 - Présentation

devant l'école doctorale

Conclusion

• thèmes **émergents** en sciences des données

• démarche scientifique classique mais centrale

• expérience complémentaire à la formation AgroParisTech

Références

Anas BRITAL. Inception V2 CNN Architecture Explained . Medium. 24 oct. 2021. url : https://medium.com/@AnasBrital98/inception-v2-cnn-architecture-explained-128464f742ce (visité le 29/05/2024).

GrafanaLabs. Grafana version 10.4 documentation. 2024. url: https://grafana.com/docs/grafana/v10.4/.

InfluxDATA. InfluxDB version 2.10 documentation. 2024. url: https://docs.influxdata.com/influxdb/v2/.

InfluxDATA. Telegraf version 1.30 documentation. 2024. url: https://docs.influxdata.com/telegraf/v1/.

Daniel Lando. Z-Wave JS UI version 9.12.0 documentation. 2024. url: https://zwave-js.github.io/zwave-js-ui/.

Roger A Light. « Mosquitto : server and client implementation of the MQTT protocol ». en. In : The Journal of Open Source Software 2.13 (mai 2017), p. 265. issn : 2475-9066. doi: 10.21105/joss.00265. url : http://joss.theoj.org/papers/10.21105/joss.00265 (visité le 10/05/2024).

Tailin Liang et al. « Pruning and Quantization for Deep Neural Network Acceleration : A Survey ». en. In : (juin 2021). arXiv :2101.09671 [cs]. url : http://arxiv.org/abs/2101.09671 (visité le 17/05/2024)

Search OSOidx. url: https://www.unoosa.org/oosa/osoindex/search-

ng.jspx?lf_id=#?c=%7B%22filters%22:%5B%7B%22fieldName%22:%22en%23object.status.inOrbit_s1%22,%22value%22:%22Yes%22%7D%5D,%22match%22:%22earth%20observation%22,%22sortings%22:%5B%7B%22fieldName%22:%22object.launch.dateOfLaunch_s1%22,%22dir%22:%22desc%22%7D%5D,%22termMatch%22:%22earth%20observation%22%7D (visité le 23/05/2024).

Space debris by the numbers. en. Déc. 2023. url: https://www.esa.int/Space Safety/Space Debris/Space debris by the numbers (visité le 23/05/2024)

Gencer Sumbul et al. « Bigearthnet : A Large-Scale Benchmark Archive for Remote Sensing Image Understanding ». en. In : IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan : IEEE, juill. 2019, p. 5901-5904. isbn : 978-1-5386-9154-0. doi : 10.1109/IGARSS.2019.8900532. url : https://ieeexplore.ieee.org/document/8900532/ (visité le 08/04/2024).

Christian Szegedy et al. « Rethinking the Inception Architecture for Computer Vision ». In: (déc. 2015). arXiv:1512.00567 [cs]. doi: 10.48550/arXiv.1512.00567. url: http://arxiv.org/abs/1512.00567 (visité le 16/04/2024).

Neil C. Thompson et al. « The Computational Limits of Deep Learning ». In: (juill. 2022). arXiv:2007.05558 [cs, stat]. doi: 10.48550/arXiv.2007.05558. url: http://arxiv.org/abs/2007.05558 (visité le 16/05/2024)