

Machine Learning Fundamentals

Practical Machine Learning (with R)

UC Berkeley Spring 2016

Topics

- Administrativa
 - Role Call
 - Missing data from class-list.xlsx
 - Images
 - Assignments due to github
 - Group (Joined)

REVIEW

R PRIMER

Help in R

?,help,??,apropos

Accessors

Access by name Access interpreted Subset/slice

\$name
[[...]] "reach" inside
[...]

Data Structures

Vectors

Lists

data.frame

data.frame, data.table, tbl(dplyr)

Operators

Control Flow Model Formula

?Control

-tk

USEFUL R PACKAGES

> install.packages("package-name")

ML Framework: caret (Classification and Regression Training)

Pipe operators: magrittr (ctrl+shift+m), pipeR, backpipe

Tables: data.tables, dplyr

Visualization:
ggvis, ggplot2

Reporting: knitr, rmarkdown, shiny

Misc: devtools (packages), hash

DATA.FRAME VS. DATA.TABLE VS. DPLYR

EXPECTATIONS: R

You have installed R and Rstudio

- olf you are new to **R**, you will have checked out one of the resources and have started becoming familiar with syntax and functions.
- You have attempted the first assignment

EXPECTATIONS: GIT

- You have:
 - installed git and created a github account
 - forked the class repo(sitory)
 - cloned a local copy of the repo
 - pulled new changes
 - completed the assignment
 - added/committed your solutions
 - pushed the assignment back to your repo
- Now: pull changes from csx460/csx460.git

EXPECTATIONS: READING

- Read APM Chapters 1, 2.
- Understand terminology:
 - instance, observation, data point, sample
 - Training / test / validation set
 - Predictors, independent variables, attributes, descriptors, features
 - Outcome, dependent variable, target, class, response
 - Continuous / categorical / ordinal
 - Model building, training, parameter estimation
- Notation

EXPECTATION: READING 2

- Type of Response:
 - Continuous → REGRESSION
 - Categorical*
 → CLASSIFICATION
 *Binary is a special case
- Availability of "labelled" Responses
 - Available → SUPERVISED
 - Unavailable → UNSUPERVISED
 - Sometimes available/inferable → SEMI-SUPERVISED
 - Avail. as training progresses → ADAPTIVE/REINFORCEMENT

GOAL FIND A FUNCTION, f

- easy to evaluate
- Takes a one or more values of inputs
- yields a single output value for each input (row)

Output, \hat{y} , should be "close" to observed values, y:

$$\widehat{y} \sim y$$

Expectations: Process

REVIEW EXERCISES

GOAL FIND A FUNCTION, f

- easy to evaluate
- Takes a one or more values of inputs
- yields a single output value for each input (row)

Output, \hat{y} , should be "close" to observed values, y:

$$\widehat{\mathbf{y}} \sim \mathbf{y}$$

QUESTIONS:

> What do we mean by "close"?

• What functions are available to be used?

How do we find one? The best one?

EXERCISE 1: FUEL ECONOMY

OUR MODEL

Naïve Model

$$\hat{y} = mean(y)$$

Our Model, a linear model:

$$\hat{y} = \beta_0 + \beta_1 x_1$$

3 REQUIREMENT FOR ALGORITHM

- A method for evaluating how well the algorithm performs (ERRORS)
- A restricted class of function (MODEL)

A process for proceeding through the restricted class of functions to identify the functions (SEARCH/OPTIMIZATION)

SEARCH

Find the parameters minimize that minimize the loss function ...

SOLVE:

 $argmin_{\beta} L(\mathbf{y}, \widehat{\mathbf{y}})$

- Direct Solution (special case) $\hat{y} = \rho_{1} + \mu T \rho$
 - linear regression $\hat{y} = \beta_0 + x^T \beta$
- Recursive Goal Seeking

LM / MODEL FORMULA

4/13/2016

LINEAR REGRESSION MODEL

→ Abstract to multiple dimensions

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

$$\hat{y} = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

Mathy-r!!!

APPENDIX

