Inference and Representation: Latent Dirichlet Allocation

Rahul G. Krishnan

New York University

Lab 5, October 4, 2016

Outline

- Latent Dirichlet Allocation
- 2 Variants of LDA
- Ask what your topic models can do for you

LDA (Blei et. al)

Generative Model

- Given α, β as parameters for a Dirichlet distribution
- For each topic k, $\beta_k \sim \text{Dir}(\alpha)$ where $k \in \{1, ..., K\}$
- β_k is a vector that sums to 1 representing the word probabilities for topic k
- For each document d, $\theta_d \sim \text{Dir}(\alpha)$ where $d \in \{1, \dots, M\}$
- θ_K is a vector that sums to 1 representing the topic proportions for document d
- For every word n in document d
 - z_{n,d} ~ Mult(θ_i) is a categorical random variable (with cardinality K) whose assignment is the topic for the current word
 - w_{n,d} ~ Mult(β_{z_{n,d}}) is a categorical random variable with cardinality |V| (vocabulary size)

Choosing K

- No one right choice.
- Different choices lead to different results
- Choice of K also interacts with the choice of α and encapsulates prior knowledge
- eg. small K and α < 1 means you believe that there exist few disjoint topics within your corpora

Author-topic model (Rosen-Zvi et al., UAI '04)

- Goal: topic models that take into consideration author interests
- Training data: corpora with label for who wrote each document
 - Papers from NIPS conference from 1987 to 1999
 - Twitter posts from US politicians
- Why do this?
- How to do this?

Author-topic model (Rosen-Zvi et al., UAI '04)

Figure 1: Generative models for documents. (a) Latent Dirichlet Allocation (LDA; Blei et al., 2003), a topic model. (b) An author model. (c) The author-topic model.

Most likely author for a topic

TOPIC 31	
WORD	PROB.
SPEECH	0.0823
RECOGNITION	0.0497
HMM	0.0234
SPEAKER	0.0226
CONTEXT	0.0224
WORD	0.0166
SYSTEM	0.0151
ACOUSTIC	0.0134
PHONEME	0.0131
CONTINUOUS	0.0129
AUTHOR	PROB.
Waibel_A	0.0936
Makhoul_J	0.0238
De-Mori_R	0.0225
Bourlard_H	0.0216
Cole_R	0.0200
Rigoll_G	0.0191
Hochberg_M	0.0176
Franco_H	0.0163
Abrash V	0.0157

TOPIC 31

TODIO A		
TOPIC 61		
WORD	PROB.	
BAYESIAN	0.0450	
GAUSSIAN	0.0364	
POSTERIOR	0.0355	
PRIOR	0.0345	
DISTRIBUTION	0.0259	
PARAMETERS	0.0199	
EVIDENCE	0.0127	
SAMPLING	0.0117	
COVARIANCE	0.0117	
LOG	0.0112	
AUTHOR	PROB.	
Bishop_C	0.0563	
Williams_C	0.0497	
Barber_D	0.0368	
MacKay_D	0.0323	
Tipping_M	0.0216	
Rasmussen_C	0.0215	
Opper_M	0.0204	
Attias_H	0.0155	
Sollich_P	0.0143	
Schottky_B	0.0128	

TOPIC 71	
WORD	PROB.
MODEL	0.4963
MODELS	0.1445
MODELING	0.0218
PARAMETERS	0.0205
BASED	0.0116
PROPOSED	0.0103
OBSERVED	0.0100
SIMILAR	0.0083
ACCOUNT	0.0069
PARAMETER	0.0068
AUTHOR	PROB.
AUTHOR Omohundro_S	PROB. 0.0088
Omohundro_S	0.0088
Omohundro_S Zemel_R	0.0088 0.0084
Omohundro_S Zemel_R Ghahramani_Z	0.0088 0.0084 0.0076
Omohundro_S Zemel_R Ghahramani_Z Jordan_M	0.0088 0.0084 0.0076 0.0075
Omohundro_S Zemel_R Ghahramani_Z Jordan_M Sejnowski_T	0.0088 0.0084 0.0076 0.0075 0.0071
Omohundro_S Zemel_R Ghahramani_Z Jordan_M Sejnowski_T Atkeson_C	0.0088 0.0084 0.0076 0.0075 0.0071 0.0070
Omohundro_S Zemel_R Ghahramani_Z Jordan_M Sejnowski_T Atkeson_C Bower_J	0.0088 0.0084 0.0076 0.0075 0.0071 0.0070 0.0066

TOPIC 100		
WORD	PROB.	
HINTON	0.0329	
VISIBLE	0.0124	
PROCEDURE	0.0120	
DAYAN	0.0114	
UNIVERSITY	0.0114	
SINGLE	0.0111	
GENERATIVE	0.0109	
COST	0.0106	
WEIGHTS	0.0105	
PARAMETERS	0.0096	
AUTHOR	PROB.	
Hinton_G	0.2202	
Zemel_R	0.0545	
Dayan_P	0.0340	
Becker_S	0.0266	
Jordan_M	0.0190	
Mozer_M	0.0150	
Williams_C	0.0099	
de-Sa_V	0.0087	
Schraudolph_N	0.0078	
Schmidhuber_J	0.0056	

Perplexity as a function of number of observed words

Adding supervision to LDA

- What if, in addition to words, you had labels for a document?
- Possible labels:
 - Sentiment: Is the document generally positive or negative?
 - Content: Dollar value of the item that the document describes.
- Your topics might be useful as latent representations for the words in the document.

Supervised Topic Models

Supervised LDA:

- The inferred θ or **z** can be used as features in many prediction tasks.
- Performance can be improved by jointly training the representation and the predictor.

Evaluation

- Supervised LDA vs LDA (where a separate classifier is trained on the documents' topics)
- Dataset: Predicting movie ratings from reviews

Design Question

• Bayesian Network Design Question: Why not condition Y_d on θ_d rather than $Z_{d,n}$?

Group Excercise

- Grab a worksheet!
- Form groups of 3 4 with people sitting around you
- Write all your names on the top left corner!
- Read the instructions
- Please write legibly
- You will have 20 minutes