HAX501X – Groupes et anneaux 1

CM18 08/12/2023

Clément Dupont

10.2 Hérédité de la factorialité

10. Arithmétique dans un anneau factoriel

10.2 Hérédité de la factorialité

10. Arithmétique dans un anneau factoriel

Rappel: définition d'un anneau factoriel

Définition

Soit A un anneau intègre. On dit que A est un anneau factoriel s'il y a existence et unicité de la décomposition en produit d'irréductibles dans A, c'est-à-dire plus précisément si :

- (1) pour tout $a \in A \setminus \{0\}$ il existe un nombre fini x_1, \ldots, x_r d'éléments irréductibles de A et un inversible $u \in A^{\times}$ tels que $a = u \ x_1 \cdots x_r$;
- (2) si pour $a \in A \setminus \{0\}$ on a des écritures $a = u \, x_1 \cdots x_r$ et $a = v \, y_1 \cdots y_s$ avec les x_i, y_j irréductibles et u, v inversibles alors r = s et il existe une permutation $\sigma \in \mathfrak{S}_r$ et des éléments inversibles $u_i \in A^\times$ tels que $y_i = u_i x_{\sigma(i)}$ pour tout $i = 1, \ldots, r$.

Hérédité de la factorialité

But de la fin du cours : démontrer le théorème suivant.

Théorème

Soit A un anneau factoriel. Alors l'anneau A[X] est factoriel.

Corollaire

Soit A un anneau factoriel (par exemple $A = \mathbb{Z}$ ou A = K un corps). Alors pour tout entier n, l'anneau $A[X_1, \ldots, X_n]$ est factoriel.

Démonstration. Par récurrence : $A[X_1,\ldots,X_n]=(A[X_1,\ldots,X_{n-1}])[X_n]$.

Remarque

Les anneaux $\mathbb{Z}[X]$ et K[X,Y], pour K un corps, ne sont pas principaux (voir TD). Ce sont donc des exemples d'anneaux factoriels non principaux.

Le programme d'aujourd'hui

 \blacktriangleright Pour plus de clarté, on va seulement prouver le théorème dans le cas $A=\mathbb{Z}$

Théorème

L'anneau $\mathbb{Z}[X]$ est factoriel.

ightharpoonup On rappelle les inversibles de $\mathbb{Z}[X]$:

$$\mathbb{Z}[X]^{\times} = \mathbb{Z}^{\times} = \{-1, 1\}.$$

- ▶ On va se servir de la connaissance de $\mathbb{Q}[X]$, qui est un anneau factoriel.
- Attention :

mais

le polynôme $2X-4\in\mathbb{Q}[X]$ est irréductible (car de dégré 1)

le polynôme $2X-4\in\mathbb{Z}[X]$ n'est pas irréductible car il s'écrit $2\times (X-2)$, et ni 2 ni X-2 ne sont inversibles dans $\mathbb{Z}[X]$.

Contenu, polynômes primitifs

Définition

Le contenu d'un polynôme

$$f = \sum_{n=0}^{N} a_n X^n \in \mathbb{Z}[X]$$

est le PGCD des coefficients a_n . On le note c(f). On dit que f est **primitif** $si\ c(f)=1$, c'est-à-dire si les coefficients de f sont premiers entre eux dans leur ensemble.

Exercice 81

- 1) Montrer qu'on peut écrire $f = c(f)f_1$ avec $f_1 \in \mathbb{Z}[X]$ primitif.
- 2) Réciproquement, si on a $f=\lambda f_1$ avec $\lambda\in\mathbb{N}$ et $f_1\in\mathbb{Z}[X]$ primitif, montrer que $c(f)=\lambda$.

Existence de la décomposition en produit d'irréductibles

Cette fois c'est l'existence de la décomposition en produit d'irréductibles qui est la plus facile.

Proposition

Tout $f \in \mathbb{Z}[X] \setminus \{0\}$ peut s'écrire (au signe près) comme un produit d'irréductibles de $\mathbb{Z}[X]$.

Réduction modulo *p*

- On passe maintenant à l'unicité de la décomposition en produit d'irréductibles dans Z[X].
- ▶ Avant de continuer, une remarque sera utile. Pour un polynôme

$$f = \sum_{n=0}^{N} a_n X^n \in \mathbb{Z}[X]$$

et pour un nombre premier fixé p, on peut réduire tous les coefficients de f modulo p et obtenir un polynôme

$$\overline{f} = \sum_{n=0}^{N} \overline{a_n} X^n \in (\mathbb{Z}/p\mathbb{Z})[X]$$

à coefficients dans $\mathbb{Z}/p\mathbb{Z}$.

Exercice 82

Montrer que cette opération définit un morphisme d'anneaux

$$\mathbb{Z}[X] \longrightarrow (\mathbb{Z}/p\mathbb{Z})[X] \ , \ f \mapsto \overline{f} \ .$$

Montrer que ce morphisme est surjectif et décrire son noyau.

Le lemme de Gauss

▶ La proposition suivante s'appelle "lemme de Gauss", mais n'a pas vraiment de rapport avec l'autre lemme de Gauss de ce cours.

Proposition (Lemme de Gauss)

Pour $f,g\in\mathbb{Z}[X]$ on a

$$c(fg) = c(f)c(g) .$$

En particulier, le produit de deux polynômes primitifs est primitif.

Irréductibles de $\mathbb{Z}[X]$

Proposition

Un polynôme non constant $f \in \mathbb{Z}[X]$ est irréductible dans $\mathbb{Z}[X]$ si et seulement s'il est primitif et irréductible dans $\mathbb{Q}[X]$.

Remarque

La partie "non triviale" de la proposition pécédente est l'implication (irréductible dans $\mathbb{Z}[X]$) \Longrightarrow (irréductible dans $\mathbb{Q}[X]$).

En pratique, c'est cette implication qui est utile. En effet, il est (de manière peut-être surprenante) plus facile de montrer qu'un polynôme à coefficients **entiers** est irréductible, notamment parce qu'on peut alors réduire les coefficients modulo un nombre premier p bien choisi.

Corollaire

Les irréductibles de $\mathbb{Z}[X]$ sont les nombres premiers (et leurs opposés) et les polynômes primitifs qui sont irréductibles dans $\mathbb{Q}[X]$.

Le lemme d'Euclide dans $\mathbb{Z}[X]$

Proposition (Lemme d'Euclide pour les polynômes à coefficients dans $\ensuremath{\mathbb{Z}})$

Soient $f,g\in\mathbb{Z}[X]$, et $h\in\mathbb{Z}[X]$ irréductible. Si h|fg alors h|f ou h|g.

Unicité de la décomposition en produit d'irréductibles

Proposition

Dans $\mathbb{Z}[X]$ la décomposition en produit d'irréductibles est unique au signe près et à l'ordre des facteurs près.

 $D\acute{e}monstration.$ En utilisant le lemme d'Euclide (proposition précédente) comme dans le cas de $\mathbb{Z}.$

lackbox On a fini : on a montré que $\mathbb{Z}[X]$ est un anneau factoriel.