Université de Monastir Institut Supérieur D'Informatique et de Mathématiques de Monastir Dépt. de Mathématiques A.U: 2023-2024 L1 INFO Algèbre 2 15-5-2024

Examen Final - Session Principale

• NOTE: L'usage de la calculatrice est interdit.

Exercice 1: On considère les ensembles suivants:

$$E = \left\{ A = \left(\begin{array}{cc} a+b & -b \\ c & a+c \end{array} \right) \in \mathcal{M}_2(\mathbb{R}), \ a,b,c \in \mathbb{R} \right\}, \quad F = \left\{ A = \left(\begin{array}{cc} 2x-y & y \\ x & 0 \end{array} \right) \in \mathcal{M}_2(\mathbb{R}), \ x,y \in \mathbb{R} \right\}.$$

- 1. Montrer que E et F sont des sous espaces vectoriels de $\mathcal{M}_2(\mathbb{R})$, préciser leurs dimensions puis donner une base B de E et une base B' de F.
- 2. E et F sont-ils supplémentaires dans $\mathcal{M}_2(\mathbb{R})$? Justifier la réponse.
- 3. Déterminer le sous espace $E \cap F$.
- 4. A-t-on $E + F = \mathcal{M}_2(\mathbb{R})$? Justifier la réponse.
- 5. Compléter la base B' de F en une base B_1 de $\mathcal{M}_2(\mathbb{R})$.
- 6. Ecrire les coordonnées de la matrice $A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$ dans la base B_1 .

Exercice 2: On considère m un réel et le système (S_m) : $\begin{cases} (m+1)x-y+2z=1\\ -3x+(m-1)y-2z=0\\ 3x-y+mz=d \end{cases}, \ d\in\mathbb{R}$

- 1. Ecrire la matrice A_m du système (S_m) .
- 2. Donner le rang de la matrice A_m suivant les valeurs de m.
- 3. Pour quelles valeurs de m, le système (S_m) est-il un système de Cramer.
- 4. On prend m=0, vérifier que (S_0) est un système de Cramer et le résoudre avec les formules de Cramer.
- 5. On prend m = -4, résoudre (S_{-4}) avec la méthode des pivots de Gauss et interpréter le résultat géométriquement.
- 6. Dans la suite, on prend m=2 et on note $A=A_2$. On considère \mathbb{R}^3 muni de sa base canonique Bc et soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice A.
 - (a) Excrire l'expression de f(x, y, z) pour tout $(x, y, z) \in \mathbb{R}^3$.
 - (b) Calculer le polynôme $P_f(x) = det(A x I_3)$, $x \in \mathbb{R}$.
 - (c) Déterminer les sous espaces

$$E_0(f) = \{a = (x,y,z) \in \mathbb{R}^3, f(a) = 0\}$$
 et $E_0(f) = \{a = (x,y,z) \in \mathbb{R}^3, f(a) = 6a\}$

préciser leurs dimensions et donner une base de chacun.

- (d) Déduire qu'il existe une base B' de \mathbb{R}^3 , une matrice D diagonale tel que mat(f,B')=D
- (e) Ecrire la matrice de passage P = Pass(Bc, B') et calculer P^{-1} .
- (f) Donner la relation entre A et D à l'aide de la matrice P.
- (g) Pour tout $n \in \mathbb{N}$, calculer D^n et en déduire A^n .