Flot Maximal (Ford-Fulkerson)

- 1. Initialiser tous les flots $\varphi(i,j) = 0$.
- 2. Tant qu'il existe un chemin améliorant de s à p (arcs non saturés) :
 - Trouver un tel chemin (BFS).
 - Calculer δ = min capacité résiduelle sur le chemin.
 - \circ Augmenter le flot de δ sur les arcs directs, diminuer de δ sur les arcs inverses.
- 3. Arrêter quand plus de chemin améliorant.

Flot Max à Coût Min (Bernard Roy)

Envoyer le plus de flot possible de s à p, avec le coût total minimal.

Procédure

- 1. **Initialiser** tous les flots $\varphi(i,j) = 0$.
- 2. Graphe d'écart :
 - A partir des φ(i,j) du graphe flot maximal:
 - Pour chaque arc (i,j) du réseau :
 - Si φ(i,j) < c(i,j) :
 - \rightarrow arc direct (i,j), capacité résiduelle = c(i,j) φ (i,j), coût = φ (i,j)
 - Si φ(i,j) > 0:
 - \rightarrow arc inverse (j,i), capacité = $\varphi(i,j)$, coût = -p(i,j)
- 3. Tant qu'il existe un chemin de s à p dans le graphe d'écart :
 - Trouver le chemin de coût total minimal (Dijkstra/Bellman).
 - Calculer δ = plus petite capacité sur ce chemin.
 - Pour chaque arc du chemin :
 - Si arc direct (i,j): φ(i,j) += δ
 - Si arc inverse (j,i) : φ(j,i) -= δ
 - Mettre à jour le graphe d'écart.
- 4. **Arrêt**: plus de chemin de s à p.