1

EE23BTECH11217 - Prajwal M*

Exercise 9.1

12 For the block diagram shown in the figure, the transfer function $\frac{Y(s)}{R(s)}$ is

Fig. 1. block diagram

Solution:

Parameter	Description	Value
Y(s)	Output node variable	
R(s)	Input node variable	
$\frac{Y(s)}{R(s)}$	Transfer function	?
P_1	Forward path gain a-b-c	2
P_2	Forward path gain a-c	3
Δ_1	Determinant of forward path a-b-c	1
Δ_2	Determinant of forward path a-c	1
Δ	Determinant of system	$1 - \frac{1}{s}$
n	Number of forward path	2

TABLE I PARAMETERS

Fig. 2. signal flow graph

Using Mason's Gain Formula for Fig. 2,

$$\frac{Y(s)}{R(s)} = \frac{\sum_{i=1}^{n} P_i \Delta_i}{\Delta}$$
 (1)

$$=\frac{P_1\Delta_1 + P_2\Delta_2}{\Delta} \tag{2}$$

$$=\frac{\frac{2}{s}+3}{1-\frac{1}{s}}\tag{3}$$

$$= \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta}$$

$$= \frac{\frac{2}{s} + 3}{1 - \frac{1}{s}}$$

$$\frac{Y(s)}{R(s)} = \frac{3s + 2}{s - 1}$$
(2)
(3)

Fig. 3. signal flow graph