1 Table

Table 1: MLE result								
	Model 1		Model 2		Model 3		Model 4	
	ME	SE	ME	SE	ME	SE	ME	SE
sigma	0.251***	0.003	0.252***	0.003	0.254***	0.003	0.306***	0.004
gamma1	0.203***	0.008						
alpha1	0.731***	0.016						
gamma2			0.234***	0.009				
alpha2			1.351***	0.027				
alpha3					0.303***	0.013		
beta3					0.655***	0.009		
gamma4							0.650***	0.010
N	3285		3285		3285		3285	
Maximum Likelihood	-126.38		-154.81		-129.30		-768.25	

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

2 Model specification

Model 1

$$\Omega(p) = \frac{p^{\gamma}}{[p^{\gamma} + (1-p)^{\gamma}]^{\alpha}} \tag{1}$$

 ${\rm Model}\ 2$

$$\Omega(p) = \frac{\alpha p^{\gamma}}{\alpha p^{\gamma} + (1 - p)^{\gamma}} \tag{2}$$

Model 3

$$\Omega(p) = \exp\left[-\beta(-\ln p)^{\alpha}\right] \tag{3}$$

Model 4

$$\Omega(p) = \frac{p^{\gamma}}{[p^{\gamma} + (1-p)^{\gamma}]^{1/\gamma}} \tag{4}$$