Meccanica - (prof. Spurio/Margiotta) - CdL Fisica Scritto del 03/06/2024

Esercizio A

Un sistema meccanico è composto da due sfere di massa $M_3=M_2=2.42$ kg agganciate tramite una molla di massa trascurabile e di costante elastica k=220 N/cm e lunghezza a riposo L=30.0 cm; il sistema è inizialmente in quiete.

Una terza particella di massa $m=M_2/2$ è lanciata da sinistra verso il sistema meccanico con una velocità v_0 =730 cm/s. Le tre particelle sono allineate nella direzione dei loro centri, e non sono presenti fonti di attrito come mostrato nella figura.

Sapendo che l'urto tra m e la massa M_2 del sistema sia completamente anelastico, determinare:

- 1. l'energia ΔE persa nell'urto;
- 2. la velocità del centro di massa v_{cm} del sistema;
- 3. la massima compressione della molla Δx dopo l'urto;
- 4. la pulsazione ω con cui il sistema oscilla attorno al suo centro di massa.

Esercizio B

Il sistema meccanico in figura è costituito da due dischi coassiali uniti tra di loro, dello stesso materiale, densità e spessore. Il disco esterno ha raggio r_1 = 20.0 cm e massa M_1 =2.36 kg; il disco interno ha raggio r_2 =10.0 cm. Il sistema può ruotare senza attrito attorno l'asse centrale. Due oggetti di massa m_1 =1.00 kg e m_2 sono appesi tramite fili inestensibili di massa trascurabile, avvolti in senso contrario rispettivamente sul disco di raggio r_1 e raggio r_2 come rappresentato in figura.

All'istante iniziale, il sistema viene lasciato libero di porsi in movimento. Si sa inoltre che la massa m₂ è tale che, durante il moto, le tensioni T agenti sui due fili sono eguali. Si determini:

- 1. Il momento d'inerzia del sistema meccanico composto dai due dischi sovrapposti rispetto l'asse centrale;
- 2. l'accelerazione angolare con cui ruota il rullo;
- 3. le accelerazioni, a_1 e a_2 , dei due corpi m_1 e m_2 (specificare quale dei due corpi scende);
- 4. la tensione T agente sui fili;
- 5. il valore della massa incognita m2.

A.1) ΔE= 21.5 J	B.1) J=0.050 kg m^2
A.2) v_{cm}=1.46 m/s;	B.2) 14 rad/s^2
A.3) $\Delta x = 1.98 \text{ cm}$	B.3) a1= 2.8 m/s^2 (scende);
	a2=-1.4 m/s^2 (sale).
A.4) ω = 123 rad/s	B.4) T=7.0 N
	B.5) m2= 0.63 kg