

ALY 6020: PREDCTIVE ANALYTICS

Week 4: Housing Price Prediction Models

Submitted To: Prof. Chinthaka Pathum Dinesh Herath Gedara, Faculty Lecturer

> Submitted By: Abhilash Dikshit

Academic Term: Winter 2024
Northeastern University, Vancouver, BC, Canada
Master of Professional Studies in Analytics

February 03, 2024

Title: Report on Housing Price Prediction Models

I. Objective:

The objective of this report is to present findings and recommendations based on the analysis of various machine learning models for predicting housing prices. The analysis includes Logistic Regression, Decision Tree, Random Forest, and Gradient Boosting models.

II. Dataset Overview:

The dataset used for this analysis contains information on various features related to real estate properties, including acreage, land value, building value, finished area, and more.

		Unnamed: 0	Parcel ID	Land Use	Property Address	Suite/ Condo #	Property City	Sale Date	Legal Reference	Sold As Vacant	Parcels Involved in Sale	 Building Value	Finished Area	Foundation Type
	0	1	105 11 0 080.00	SINGLE FAMILY	1802 STEWART PL	NaN	NASHVILLE	1/11/2013	20130118- 0006337	No	No	 134400	1149.00000	PT BSMT
	1	2	118 03 0 130.00	SINGLE FAMILY	2761 ROSEDALE PL	NaN	NASHVILLE	1/18/2013	20130124- 0008033	No	No	 157800	2090.82495	SLAB
	2	3	119 01 0 479.00	SINGLE FAMILY	224 PEACHTREE ST	NaN	NASHVILLE	1/18/2013	20130128- 0008863	No	No	 243700	2145.60001	FULL BSMT
	3	4	119 05 0 186.00	SINGLE FAMILY	316 LUTIE ST	NaN	NASHVILLE	1/23/2013	20130131- 0009929	No	No	 138100	1969.00000	CRAWL
	4	5	119 05 0 387.00	SINGLE FAMILY	2626 FOSTER AVE	NaN	NASHVILLE	1/4/2013	20130118- 0006110	No	No	 86100	1037.00000	CRAWL
22	2646	56602	176 01 0 003.00	SINGLE FAMILY	4617 ROCKLAND TRL	NaN	ANTIOCH	10/13/2016	20161019- 0110290	No	No	 105000	1758.00000	CRAWL
2:	2647	56605	176 05 0 070.00	SINGLE FAMILY	5004 SUNSHINE DR	NaN	ANTIOCH	10/26/2016	20161102- 0115842	No	No	 142400	2421.00000	SLAB
22	2648	56607	176 09 0 003.00	SINGLE FAMILY	4964 HICKORY WOODS E	NaN	ANTIOCH	10/28/2016	20161031- 0114817	No	No	 159300	3117.00000	SLAB
22	2649	56614	082 05 0 040.00	SINGLE FAMILY	1625 5TH AVE N	NaN	NASHVILLE	10/28/2016	20161102- 0115988	No	No	 204100	1637.00000	CRAWL

III. Exploratory Data Analysis (EDA):

- Conducted a thorough exploratory data analysis to understand the distribution and relationships among different features.

- Explored correlations between features and the target variable (Sale Price Compared To Value).

IV. Data Preprocessing:

- Handled missing values and applied necessary imputations.
- Converted categorical variables into a suitable format for machine learning models.
- Ensured that the dataset is ready for modeling.

Feature Selection:

- Selected a subset of features deemed important for predicting housing prices based on correlation analysis.

	Acreage	Neighborhood	Land Value	Building Value	Finished Area	Year Built	Bedrooms	Full Bath	Half Bath	Sale Compar
count	22651.000000	22651.000000	2.265100e+04	2.265100e+04	22651.000000	22651.000000	22651.000000	22651.000000	22651.000000	22651.00
mean	0.454705	4432.715024	7.013797e+04	1.722402e+05	1915.377151	1961.947684	3.104910	1.887285	0.270239	0.24
std	0.611818	2142.803595	1.029035e+05	1.896424e+05	1079.070700	25.843908	0.829232	0.951199	0.479040	0.4
min	0.040000	107.000000	9.000000e+02	1.400000e+03	450.000000	1832.000000	0.000000	0.000000	0.000000	0.00
25%	0.200000	3130.000000	2.200000e+04	8.550000e+04	1250.000000	1947.000000	3.000000	1.000000	0.000000	0.00
50%	0.280000	4026.000000	3.000000e+04	1.188000e+05	1646.000000	1959.000000	3.000000	2.000000	0.000000	0.00
75%	0.460000	6229.000000	6.030000e+04	1.882500e+05	2213.250000	1977.000000	4.000000	2.000000	1.000000	0.00
max	17.500000	9530.000000	1.869000e+06	5.824300e+06	19728.249880	2017.000000	11.000000	10.000000	3.000000	1.00

V. Modeling:

Iterat	rminated su t function ions 5	value: 0.55		Results			Decision Tree Accuracy: 0.63 Confusion Mat	345177664974	619		
p. Variable: pethod: ate: ime: onverged: overiance Type	Sale Pr		d To Value Logit MLE 3 Feb 2024 20:42:22 True nonrobust	No. Observ Df Residua Df Model: Pseudo R-s Log-Likeli LL-Null: LLR p-valu	als: squ.: ihood:	18120 18115 4 0.007985 -10033. -10114. 6.891e-34	[[2592 797] [859 283]] Classification		recall	f1-score	support
	coef	std err	z	P> z	[0.025	0.975]	0	0.75	0.76	0.76	3389
onst creage	-1.3258 0.0601	0.041 0.031	-32.378 1.946	0.000 0.052	-1.406 -0.000	-1.246 0.121	1	0.26	0.25	0.25	1142
and Value uilding Value	-1.057e-06 1.27e-06	2.38e-07 1.85e-07	-4.441 6.865	0.000 0.000	-1.52e-06 9.07e-07	-5.9e-07 1.63e-06	accuracy			0.63	4531
	1.443e-05	3.34e-05	0.433	0.665	-5.09e-05	7.98e-05	macro avg	0.51	0.51	0.51	4531
ccuracy: 0.749 onfusion Matri [3381 8] [1127 15]] lassification 0 1	x:	recall f1 1.00 0.01	score su 0.86 0.03	3389 1142			Fig: Decision	0.63 on Tree	0.63	0.63	4531
accuracy macro avg eighted avg	0.70 0.73	0.51 0.75	0.75 0.44 0.65	4531 4531 4531							

Random Forest Mo Accuracy: 0.7058 Confusion Matrix [[3020 369] [964 178]] Classification R	044581770 :	029			Accuracy: 0.748179209887442 Confusion Matrix: [[3363 26] [1115 27]] Classification Report:						
	ecision	recall	f1-score	support	precision recall f1-score support						
0 1	0.76 0.33	0.89 0.16	0.82 0.21	3389 1142	0 0.75 0.99 0.85 3389 1 0.51 0.02 0.05 1142						
accuracy macro avg weighted avg	0.54 0.65	0.52 0.71	0.71 0.51 0.67	4531 4531 4531	accuracy 0.75 4531 macro avg 0.63 0.51 0.45 4531 weighted avg 0.69 0.75 0.65 4531						
Fig: Random	Forest				Fig: Gradient Boost						
Accuracy:					Precision (weighted):						
- Logistic R	Regress	ion: 0.7	757		- Logistic Regression: 0.73						
- Decision	Tree: 0	.6345			- Decision Tree: 0.63						
- Random I	Forest:	0.7058			- Random Forest: 0.65						
- Gradient	Boostir	ng: 0.74	182		- Gradient Boosting: 0.69						
Recall (weig	hted):				F1-score (weighted):						
- Logistic R	Regress	ion: 0.7	'8		- Logistic Regression: 0.68						
- Decision	Tree: 0	.63			- Decision Tree: 0.63						
- Random I	Forest:	0.71			- Random Forest: 0.67						
- Gradient	Boostir	ng: 0.75	5		- Gradient Boosting: 0.65						

Considering these metrics, the choice of the best model depends on the specific goals of the real estate company:

- Logistic Regression:

- Pros: Highest accuracy, precision, and recall.
- Cons: May not capture complex relationships.

- Random Forest:

- Pros: Good accuracy, suitable for handling complex relationships and interactions between features.
- Cons: Slightly lower precision and recall compared to Logistic Regression.

- Gradient Boosting:

- Pros: Good accuracy, precision, and recall; can handle complex relationships and

provide feature importance.

- Cons: May be computationally expensive compared to other models.

VI. Recommendations:

- If interpretability is a priority and the goal is to have a model that is easy to understand and explain, Logistic Regression might be the preferred choice.
- If predictive accuracy is crucial, and the model needs to handle complex relationships, Gradient Boosting could be a suitable option.
- Random Forest is also a strong contender, offering a balance between interpretability and accuracy.

VII. Considerations:

- The choice of the model should align with specific business goals and resource constraints.
- Further optimization through cross-validation and hyperparameter tuning may enhance model performance.

VIII. Conclusion:

The analysis indicates that the choice of the best model depends on the company's priorities. Logistic Regression provides interpretability, Random Forest handles complex relationships, and Gradient Boosting offers a balanced approach. A comprehensive understanding of business objectives and trade-offs is essential for making an informed decision.

This report aims to guide the real estate company in selecting the most suitable model based on their specific needs. Further refinement and customization of models can be explored based on future requirements.