Graph Problems

- □Critical Path Analysis
- **■ Maximum Flow Problem**
- **□Other Difficult Problems**

Maximum Flow Problem

Data Structures

We are given a flow network G with source s and sink t, and we wish to find a flow of maximum value from s to t.

Maximum Flow Problem

Data Structures

- □ Single-source single-sink maximum flow problem
- □ *Maximum-flow min-cut* theorem

Maximum Flow Problem

Data Structures

□ What is the maximum flow?

flow = 16+11-4=23

Maximum Flow Problem: Background

Data Structures

- ☐ A simplified model of Soviet railway traffic flow
 - Formulated by T.E. Harris 1954
- □ Ford-Fulkerson algorithm, 1955
 - Residual graph
 - residual capacity: $c_f(u,v) = c(u,v) f(u,v)$, $c_f(v,u) = c(v,u) f(v,u)$
- □ Edmonds-Karp algorithm, 1972
 - Heuristic to find augmenting path

flow f(u,v) / capacity c(u,v)

Ford-Fulkerson algorithm

Data Structures

P. 6

u

- 1. Initialize $c_f(u,v)$ for every edge;
- 2. Find a path P from s to t \ni $c_f(u,v)>0 \ \forall (u,v) \in P$;
- 3. $c_f(P) = min\{c_f(u,v): (u,v) \in P\};$
- 4. For each edge $(u,v) \in P$

S

- $c_f(u,v) = c_f(u,v) c_f(P);$
- $c_f(v,u) = c_f(v,u) + c_f(P);$

	$\mathbf{c}_{\mathbf{f}}$	S	u	V	t
	S	0	0	0	0
t	u	2	0	2	0
	V	4	4	0	0
<u> </u>	4	Λ	4		\cap

S

Edmonds-Karp algorithm

Data Structures

- 1. Initialize $c_f(u,v)$ for every edge;
- 2. Find a path P from s to t by a heuristic;
- 3. $c_f(P) = min\{c_f(u,v): (u,v) \in P\};$ Heuristic 1. max-capacity first
- 4. For each edge $(u,v) \in P$
 - $c_f(u,v) = c_f(u,v) c_f(P);$
 - $c_f(v,u) = c_f(v,u) + c_f(P);$

		$\mathbf{c_f}$	S	u	V	t
2 $\left(u \right) 4$		S	0	0	0	0
$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	$\setminus \lceil$	u	2	0	2	0
S		V	4	4	0	0
$4 \left(v \right)^2$		t	0	4	2	0

Edmonds-Karp algorithm

Nata Structures

- Initialize $c_f(u,v)$ for every edge;
- Find a path P from s to t by a heuristic;
- $c_f(P) = min\{c_f(u,v): (u,v) \in P\};$ 3.
- For each edge $(u,v) \in P$

u

S

6

- $c_f(u,v) = c_f(u,v) c_f(P);$
- $c_f(v,u) = c_f(v,u) + c_f(P);$

 $\mathbf{C_f}$

S

u

 \mathbf{V}

S

0

2

u

V	t	
0	0	
2	0	(
0	0	\
2	0	

Heuristic 1. max-capacity first

Heuristic 2. breadth first

Maximum Flow Problem: Example

				11/1	4	
	S	\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	$\mathbf{v_4}$	t
S	0	16	13	0	0	0
\mathbf{v}_1	0	0	10	12	0	0
\mathbf{v}_{2}	0	4	0	0	14	0
$\mathbf{v_3}$	0	0	9	0	0	20
$\mathbf{v_4}$	0	0	0	7	0	4
t	0	0	0	0	0	0

BFS Queue:	
	$v_2 \leftarrow v_3 \leftarrow v_1$
	$v_3 \leftarrow v_1 \leftarrow v_2$
	$(t \leftarrow v_4 \leftarrow v_2)$
	$v_3 \leftarrow v_4 \leftarrow v_2$
	$t \leftarrow v_4 \leftarrow v_2 \leftarrow v_1$
	$v_3 \leftarrow v_4 \leftarrow v_2 \leftarrow v_1$

Practice 12: *Maximum Flow*

Data Structures

☐ Find the maximum flows in the following networks

- 1. Find the maximum flow by *max-capacity edge first*.
- (a) What is the first path from s to t that creates a flow?
- (b) What is the second path from s to t that creates a flow?
- (c) What is the maximum flow?

If you have multiple choices, visit the vertex with the smallest label first.