They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Scripting and breakpointing is also part of this process. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). It is very difficult to determine what are the most popular modern programming languages. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Unreadable code often leads to bugs, inefficiencies, and duplicated code. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages.