EECS 203 Exam 1 Review

Day 2

Today's Review Topics

- Proof Methods
 - Direct Proof
 - Proof by Contrapositive
 - Proof by Contradiction
 - Proof by Cases
- Sets

Proof Methods

Proofs Overview

- Direct Proof Prove p → q by showing that if p is true, then q must also be true.
- Proof by Contraposition Prove $p \rightarrow q$ by showing that **if not q, then not p.**
 - Assume not q and arrive at not p
- Proof by Contradiction
 - Prove p by assuming ¬p and arriving at a contradiction, therefore
 proving p is true (can think of this as ¬-intro from natural deduction)
 - Prove $p \to q$ by assuming p and $\neg q$ and arriving at a contradiction, therefore $\neg (p \text{ and } \neg q)$ is true which is equivalent to saying $p \to q$ is true

Overview Cont.

- Proof by Cases
 - Prove that a predicate is true by separating into all possible cases and showing that the predicate is true in each individual case.
 - Proof by cases is similar to the idea of ∨ elimination.

NOTE: Proof by Induction will not be covered in Exam 1

Proof Methods Table

$p \to q$	Assumptions	Want to Reach
Direct Proof	р	q
Proof By Contrapositive	¬q	¬р
Proof By Contradiction	p ∧ ¬q	F

Proving + Disproving Quantified Statements

	Prove	Disprove
∀xP(x)	Show that arbitrary x satisfies P(x)	Find a counterexample x which does not satisfy P(x)
∃xP(x)	Find an example x which satisfies P(x)	Show that an arbitrary x does not satisfy P(x)

NOTE: The above does not show proof by example. Proof by example is **never** valid.

WLOG

Without Loss of Generality (WLOG) – used when the same argument can be made for multiple cases

Example: Show that if x and y are integers and both $x \cdot y$ and x+y are even, then both x and y are even.

Proof: Use a proof by contraposition. Suppose x and y are not both even. Then, one or both are odd. Without loss of generality, assume that x is odd. Then x = 2m + 1 for some integer k.

Case 1: y is even. Then y = 2n for some integer n, so x + y = (2m + 1) + 2n = 2(m + n) + 1 is odd.

Case 2: y is odd. Then y = 2n + 1 for some integer n, so $x \cdot y = (2m + 1)(2n + 1) = 2(2m \cdot n + m + n) + 1$ is odd.

Prove that if n is an odd integer, then n² is odd.

Direct Proof Solution

Prove that if n is an odd integer, then n^2 is odd.

```
p = Odd(n)

q = Odd(n^2)
```

Direct Proof of $p \rightarrow q$:

- 1) Let n be odd; odd(n) \rightarrow n = 2k + 1 for some arbitrary k $\in \mathbb{Z}$
- 2) $n^2 = (2k + 1)^2$
- 3) = $4k^2 + 4k + 1$
- 4) = $2(2k^2 + 2k) + 1$
- 5) Since this is of the form 2(some integer) + 1, then we conclude $\text{odd}(n^2)$
- 6) Therefore, since we started by assuming p and were able to conclude q, then $p \rightarrow q$.

Prove that if a \cdot b < 0, where a $\in \mathbb{R}$ and b $\in \mathbb{R}$, then (a / b) < 0.

Proof by Cases Solution

Prove that if $a \cdot b < 0$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$, then a / b < 0.

If a \cdot b < 0, then a and b must be of opposite signs and a, b \neq 0 (since then a \cdot b = 0)

Case 1: a > 0, b < 0

Then a / b would be + / - which would divide to become a negative number.

Case 2: a < 0, b > 0

Then a / b would be - / + which would divide to become a negative number.

In all (both) cases a / b < 0, therefore we have proven our implication that a \cdot b < 0 \rightarrow a / b < 0.

Prove that if n = ab, where a and b are positive

integers, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$.

Proof by Contraposition Solution

Prove that if n = ab, where a and b are positive integers, then a $\leq \sqrt{n}$ or b $\leq \sqrt{n}$.

p: n = ab

q: $a \le \sqrt{n}$ or $b \le \sqrt{n}$

- 1) Start by assuming not q, that a > \sqrt{n} and b > \sqrt{n} (by De Morgan's Law)
- 2) Multiply the two inequalities (able to do this since left side is > right side for both inequalities)
- 3) $ab > \sqrt{n} \cdot \sqrt{n} \equiv ab > n$, so $ab \neq n$ (this is $\neg p$)
- 4) Therefore we have reached $\neg p$ and have shown that $\neg q \rightarrow \neg p$
- 5) By using proof by contraposition, we have now shown that $p \rightarrow q$

Prove that if 3n + 2 is odd, then n is odd.

Proof by Contradiction Solution

Prove that if 3n + 2 is odd, then n is odd.

```
p = odd(3n + 2)
```

```
q = odd(n)
```

- 1) Assume odd(3n + 2), then assume $\neg odd(n) \equiv even(n)$
- 2) If n is even, then n = 2k, $k \in \mathbb{Z}$.
- 3) 3(2k) + 2 = 6k + 2 = 2(3k + 1)
- 4) This shows even(3n + 2) which is a contradiction with our first assumption, therefore our second assumption ($\neg odd(n)$) must have been false and odd(n) must be true.
- 5) Therefore, $p \rightarrow q$ by proof by contradiction

Prove or Disprove: For all rational numbers x and y, x^y is

also rational.

Prove/Disprove For-all Statement Solution

For all rational numbers x and y, x^y is also rational.

Recall that roots are applied to numbers raised to fractions. We can use this to our advantage in coming up with a counterexample.

Disproof by counterexample: let x=2, $y=\frac{1}{2}$

- x and y are both rational numbers.
- However, $x^y = 2^{1/2} = \sqrt{2}$, which is not rational.
- Thus, our counterexample disproves the statement.

Prove or Disprove: There exists an integer n such that

 $4n^2 + 8n + 16$ is prime

Prove/Disprove There-exists Statement Solution

There exists an integer n such that $4n^2 + 8n + 16$ is prime.

Notice that $4n^2 + 8n + 16$ is divisible by 4, no matter what integer can be plugged in. Therefore, it cannot be prime, so we know to disprove this statement.

Disproof of an Exists Statement:

- Let x be an arbitrary integer.
- Then, we have the expression $y = 4x^2 + 8x + 16$ (abbreviate y for less writing)
- We can factor out a 4 to get $y = 4(x^2 + 2x + 4)$.
- $x^2 + 2x + 4$ is an integer, and because we have written y as 4 times (some integer), y is divisible by 4.

Prove/Disprove There-exists Statement Solution (cont.)

- Now we have 2 cases: y = 4 and $y \ne 4$
 - 1. y = 4: y is not prime, because it (4) has a factor of 2
 - 2. $y \ne 4$: y is not prime, because it is divisible by 4 (a factor that is not equal to y, as y is not 4)
- In all cases y is not prime. Therefore, there does not exist any integer such that $4n^2 + 8n + 16$ is prime.

Which of the following describe the proof method(s) used to show the following statement? Mark all that apply.

Statement: If x is rational and y is irrational, then x + y is irrational.

Proof: Assume that x is rational, y is irrational, and x + y is rational. Notice that y = (x + y) - x. Since both x + y and x are rational, and the difference of two rational numbers is also rational, this means that y is rational. But we assumed y was irrational. So it must be the case that whenever x is rational and y is irrational, x + y is irrational.

- (a) Proof by contrapositive
- (b) Proof by cases
- (c) Proof by contradiction
- (d) Direct Proof
- (e) Exhaustive proof Proving all cases possible

Solution

C, we assume p and not q and arrive at a contradiction

Identify the mistakes in the following proof, multiple answers

We prove that 0 = 2 as follows.

- S1. We have $4x^2 = 4x^2$.
- S2. Rewriting the left and right hand sides, we get $(-2x)^2 = (2x)^2$.
- S3. Taking the square root, we get -2x = 2x.
- S4. Adding $x^{2} + 1$ on both sides gives $-2x + x^{2} + 1 = 2x + x^{2} + 1$.
- S5. By algebra, this can be written as $(x-1)^2 = (x+1)^2$.
- S6. Taking the square root, we get x 1 = x + 1.
- S7. Subtracting x 1 on both sides, we get x 1 (x 1) = x + 1 (x 1), i.e., 0 = 2.

Solution: The mistake was made in steps 3 and 6. $a^2 = b^2$ does not imply that a = b and so $(-2x)^2 = (2x)^2$ does not imply that -2x = 2x. Similarly, $(x-1)^2 = (x+1)^2$ does not imply that x-1=x+1. The problem only asks to select the step where first

error is made, therefore the correct answer is S3.

5 Minute Break

https://paveldogreat.github.io/WebGL-Fluid-Simulation/

Sets and Set Proofs

Overview/Definitions

Set: An unordered collection of distinct objects

Subset (\subseteq): A set A is considered to be a **subset** of B if every element in A is also in B (Note that, with this definition, A is a subset of itself)

Proper Subset (\subsetneq): A set A is considered to be a **proper subset** of B if A is a subset of B, and B contains at least one element not in A.

Power set (P(S)): A set containing all of the subsets of S as **elements** in the set.

Inclusion-Exclusion Principle: $|A \cup B| = |A| + |B| - |A \cap B|$

Sets Question 1

Which of the following are valid subsets of the set S where S = $\{1, \{2\}, \emptyset\}$? Select all that apply.

- A. Ø
- B. {∅}
- C. 1
- D. {1}
- E. {2}

Sets Answer 1

Which of the following are valid subsets of the set S where S = $\{1, \{2\}, \emptyset\}$? Select all that apply.

- A. Ø
- B. {∅} ✓
- C. 1 X
- D. {1}
- E. {2}

Sets Solution 1

Answer: A, B and D

S = $\{1, \{2\}, \varnothing\}$ Of the answer choices, only \varnothing , $\{\varnothing\}$ and $\{1\}$ appear as answers so A and D are correct.

So we have 1 is an element so {1} would be a subset. Not 1

So we have \varnothing is an element so $\{\varnothing\}$ would be a subset

∅ is a subset of everything

{2} is an element so {{2}} would be a subset not {2}

More definitions and Sets Question 2

Cardinality: The number of elements in a set, denoted |A|

Note that power sets of sets with n elements are of cardinality 2ⁿ

Cartesian Product: A x B is the set of all pairs of elements from A and B, i.e. (a,b) where $a \in A$ and $b \in B$. Note that $|A \times B| = |A| * |B|$

What is the cardinality of {E,E,C,S} X {2,0,3}?

Sets Solution 2

{E, E, C, S} has cardinality 3, as does {2, 0, 3}. Note this is because the cardinality is the number of *unique* elements in a set.

We know that $|A \times B| = |A| * |B|$, so $|\{E, E, C, S\} \times \{2, 0, 3\}| = |\{E, E, C, S\}| * |\{2, 0, 3\}| = 3 * 3 = 9.$

Sets Question 3

Prove that if $C \subseteq \text{comp}(A - B)$, then $A \cap C \subseteq B$. Note that comp() is the complement of the set.

Solution:

To prove this implication, we will assume the premise and try to derive the conclusion. We therefore assume that $C \subseteq \overline{(A-B)}$. This means if $x \in C$ then $x \notin A - B$. That is, if $x \in C$, then either $x \notin A$ or $x \in B$.

We want to show that $A \cap C \subseteq B$. Take any $x \in A \cap C$. Then $x \in A$ and $x \in C$. We know from above that if $x \in C$, then either $x \notin A$ or $x \in B$. But it cannot be the case that $x \notin A$ as we already know that $x \in A$. The only possibility, then, is that $x \in B$. We have shown that for every $x \in A \cap C$, we have $x \in B$. We conclude that $A \cap C \subseteq B$.

Good luck studying!