FARMACEUTICKÁ BOTANIKA – 7. přednáška

Vybrané kapitoly z fyziologie a biochemie rostlin

- Primární a sekundární metabolismus
- Fotosyntéza
 - C3, C4, CAM rostliny
 - Dýchání rostlin
- Biogeneze farmaceuticky významných sekundárních metabolitů
 - Alkaloidy
 - Isoprenoidy
 - Fenolické sloučeniny
 - Glykosidy
- Fytohormony

- přírodní látka produkt primárního, ale zejména sekundárního metabolismu rostlin
- primární metabolity v každé rostlinné buňce → zajišťují všechny základní životní procesy
- nízkomolekulární produkty: glykolýzy (fruktosa, glyceraldehyd-3-fosfát, fosfoenolpyruvát, pyruvát, acetát)
- Krebsova cyklu (citrát, sukcinát, malonát a jiné)
- pentosového cyklu (erythrosa-4-fosfát, ribosa-5-fosfát)
- glutamátového cyklu (arginin, tryptofan, histidin atd.)
- AMK cesty kyseliny asparagové (threonin, methionin, lysin, isoleucin) → klíčové body větvení prim. metabolismu

Hlavní metabolické cesty uplatňující se v biosyntéze sekundárních metabolitů

- rostliny otevřené systémy dochází k trvalé výměně hmot, energie a informací s okolím
- metabolické přeměny v rostlinách anabolické výstavba struktur
 katabolické odbourávání a rozklad
- většina rostlin autotrofní organizmy fotoautotrofní výživa fixace energie záření v procesech fotosyntézy
- při fotosyntéze: za využití světelné energie štěpení H_2O (uvolnění kyslíku), asimilace $CO_2 \rightarrow$ sacharidy rozvod do všech částí rostliny, uskladnění, substrát pro respiraci
- respirace: sacharidy přeměněny, štěpení, uvolnění CO_{2,} za spotřeby O₂ uvolnění H₂O; především zdroj energie ve formě ATP transport látek, metabolické reakce, růst, rozmnožování buněk

Fotosyntéza

- proces při kterém je CO_2 zabudován do organické sloučeniny, především sacharidů a je při něm využívána světelná energie (chemicky: převedení uhlíku z nejvíce oxidované formy o nejnižší energii CO_2 na redukovaný materiál o vysoké energii sacharidy)
- světelná energie je přeměněná na energii chemickou

- fotosyntetizující organismy: zelené rostliny, některé druhy bakterií, hnědé řasy, zelené řasy
- několikastupňový proces
- probíhá v chloroplastech zelených rostlin a dalších organismů
- 2 fáze světelná fáze získání energie pro další děje, rozklad vody (fotolýza vody), uvolnění kyslíku
 - **temná fáze** zabudování CO₂ do molekul cukrů
 - využívána energie získaná ve světelné fázi
- vnější faktory důležité pro průběh fotosyntézy: světlo, teplo, voda, koncentrace CO_2 ve vzduchu
- oxygenní fotosyntéza
- anoxygenní fotosyntéza nevzniká kyslík; sulfan, organické kyseliny

Fotosyntetické struktury

- Listy nejvýznamnější morfologická struktura adaptovaná pro zabezpečení procesů fotosyntézy
 - přizpůsobeny k maximální absorpci slunečního záření
- Chloroplasty
- Fotosyntetické pigmenty chlorofyly, fykobiliny, karotenoidy
 - list 70 mil buněk 5 × 10⁹ chloroplastů každá asi 600 mil. molekul chlorofylu

- outer membrane
- 2. intermembrane space
- 3. inner membrane (1+2+3: envelope)
- 4. stroma (aqueous fluid)
- 5. thylakoid lumen
- 6. thylakoid membrane

- 7. granum (stacks of thylakoids)
- 8. thylakoid (lamella)
- 9. starch
- 10. ribosome
- 11. plastidial DNA
- 12. plastoglobule (drop of lipids)

<u>Fotoreceptory</u> – chlorofyly a, b – substituované tetrapyrroly

chlorofyl a nezbytný pro vlastní přeměnu energie

Mg^{II}

CH₃

$$H_3C$$
 CH_3
 CH_3

H₃C'''''

a modrozelený b žlutozelený

Různá barviva absorbují různou část světelného spektra.

- ostatní pigmenty pomocná fce (zachycují dopadají kvanta záření, energie exitovaného stavu předávána na chlorofyl a)
- fykobilny doprovodné pigmenty u sinic (Cyanophyta), ruduch (Rhodophyta) deriváty karotenoidů

všechna fotosyntetická barviva lokalizována v membránách chloroplastů

- Membrána thylakoidů 4 supramolekulární komplexy
 - Fotosystém II (PSII) katalyzuje rozklad vody za uvolnění molekulárního kyslíku
 - Cytochrom b₆/f přenost elektronů z PSII na PSI
 - Fotosystém I (PSI) získává elektron pro své reakční centrum z komplexu b₆/f
 - ATP-syntasa využívá protonový gradient vytvořený přenosem elektronů k syntéze ATP na vnějším povrchu tylakoidní membrány

Světelná fáze fotosyntézy

- závislá na světle, probíhá v thylakoidech
- přeměna světelné energie (fotonů) na chemickou energii (NADPH + ATP) → vedlejší produkt kyslík
- vlastní proces fotosyntézy začíná zachycením světla pigmentem →
 molekula pigmentu se dostane do excitovaného stavu
- reakce probíhají ve 3 bílkovinných komplexech: fotosystém I, komplex cytochromů b₆/f a fotosystému II (ty jsou propojeny pohyblivými elektronovými přenašeči) - schéma-Z - výchozí látkou je voda
- 3 fáze (procesy): fotolýza vody tvorba NADPH fotofosforylace (syntéza ATP)

Z-schéma světelné fáze

Fotofosforylace - děj při kterém je prostřednictvím protonového gradientu syntetizován ATP (vzniká z ADP a Pi pomocí ATP-syntasy)

 pohonným motorem je vyrovnávání koncentrací protonů mezi stromatem a thylakoidní dutinou

ATP a NADPH vzniklé ve světelné fázi se využijí v temnostní fázi k tvorbě glukosy

Protonový gradient – rozdíl koncentrací H⁺ mezi stromatem a thylakoidní dutinou)

Temnostní fáze fotosyntézy

- zabudování (asimilace) CO₂ do organických sloučenin
- probíhá v kapalné části chloroplastu (stroma) a v cytosolu, ukládání chemické energie získané ve světelné fázi (NADPH, ATP) fixací CO₂ do sacharidů
- podle prvních kroků fixace CO₂ dělíme rostliny na C₃, C₄ a CAM-rostliny
 - → Calvinův cyklus (C₃-rostliny mírný podnebný pás)
 - → Hatchův-Slackův cyklus (C₄-rostliny subtropický podnebný pás)
 - → CAM cyklus tropický pp
- výnos fotosyntézy snižuje fotorespirační cyklus (především u C₃-rostlin)

Cyklus fotosyntetické redukce uhlíku (rostliny C₃)

- Calvinův cyklus dle M. Calvina (1961 Nobelova cena)
- C₃-cyklus první stálý meziprodukt C-3
- vázán na rostliny mírného a chladného podnebného pásu (pšenice, ječmen apod.)
 teplota zde není vysoká tak fotorespirace nepřevládá nad fotosyntézou
- 3 fáze karboxylace
 - redukce
 - regenerace ribulosa-1,5-bisfosfátu

add 1) fixace CO_2 na ribulosa-1,5-bisfosfát katalyzována enzymem RuBisCo \rightarrow šestiuhlíkatý meziprodukt \rightarrow 2 molekuly 3-fosfoglycerátu fosforylace (ATP \rightarrow ADP) 1,3-bisfosfoglycerát na redukce za pomoci NADPH glyceraldehyd-3-fosfát

Fotorespirace

- světelné dýchání rostlin, opačný proces k fotosyntéze
- RuBisCo vykazuje nejen karboxylasovou, ale i oxygenasovou aktivitu katalyzuje nejen reakci CO₂ s ribulosa-1,5-bisfosfátem, ale i vazbu O₂ na tento substrát
- rostlina přijímá O₂ a produkuje CO₂
- za běžných podmínek převažuje karboxylace nad oxygenací v poměru 4:1 (3:1)
- navázání O_2 na ribulosa-1,5-bisfosfát \rightarrow C_5 meziprodukt \rightarrow rozpad na 3-fosfoglycerát a 2-fosfoglykolát \rightarrow dále metabolizován

Calvinův cyklus

- defosforylace glykolát transportován z chloroplastů do peroxizomů oxidace na glyoxylát transaminace na glycin transport do mitochondrií –
 ze dvou molekul vznik serinu + uvolnění CO₂ a NH₃
- neuvolňuje se ATP, štěpení meziproduktů fotosyntézy, produkce $CO_2 \rightarrow z$ tráta substrátu, energie \rightarrow snížení účinnosti fotosyntézy

Fixace CO₂ u rostlin C₄ (Hatch-Slackův cyklus)

Calvinův cyklus

- rostliny charakteristickou stavbu
- v chloroplastech mezofylových buněk chybí enzym RuBisCO
- obsahují mezofylové buňky (fixace CO₂) a buňky pochvy cévního svazku (uvolnění CO₂ do Calvinova cyklu)

zpět mezofyl, fosforylace (ATP)

CO₂ se váže jako HCO₃⁻, ten reaguje s fosfoenolpyruvátem za vzniku oxalacetátu
 → malátdehydrogenasa a NADPH, redukce na malát → buňky pochvy
 cévního svazku → NADP⁺, oxidace → pyruvát + uvolnění CO₂ ➡ fixace
 CO₂ probíhá prakticky 2x

• především teplomilné rostliny, při zvýšené teplotě stoupá podíl fotorespirace (pokles účinnosti fotosyntézy) \rightarrow koncentrace ${\rm CO_2}$ před vstupem do Calvinova cyklu

- C4 rostliny taxonomicky zástupci různých čeledí
- dobře adaptované na suché a teplé klima; často agresívní plevele
- z celkového počtu trav (Poaceae) přibližně polovina C4 rostliny např. kukuřice (Zea),
 cukrovník (třtina cukrová, Saccharum officinarum), proso (Panicum)

CAM cyklus (Crassulacean Acid Metabolism)

- obměna C₄-cyklu, CO₂ v noci ukládán do vakuol, ve dne zpracován Calvinovým cyklem
- pouštní rostliny, které musí šetřit vodou → otevírají průduchy pouze v noci, vazba CO₂ do malátu

pro uložení CO₂ potřeba fosfoenolpyruvát (glykolytické štěpení škrobu), ve dne štěpení malátu na CO₂ a pyruvát→ škrob

Biochemické, fyziologické a anatomické rozdíly C₃- a C₄- rostlin

C3 rostliny: řepa (*Beta vulgaris*), svlačec (*Convolvulus arvensis*), pšenice (*Tritium aestivum*), ječmen (*Hordeum vulgare*)

C4 rostliny: kukuřice (Zea mays), šáchor (Cyperus esculentus), proso (Avena sativa)

CAM rostliny: agáve (*Agave americana*), pryšec (*Euphorbia grandidens*), kakost (*Geranium pratense*) aj.

Charakteristické rozdíly

Stanoviště

C3: mírné klima

C4: sucho, vysoká intenzita slunečního záření, nízká relativní vzdušná vlhkost

CAM: aridní podmínky – sucho, vysoká intenzita slunečního záření, vysoké denní a

nízké noční teploty

Anatomická stavba listu

C3: mezofyl většinou rozlišen na houbový a palisádový parenchym

C4: mezofyl s parenchymatickými pochvami kolem cévních svazků

CAM: buňky mezofylu s velkými vakuolami

Enzymy fixující CO₂

C3: Rubisco

C4: PEP-karboxylasa a Rubisco (lokální oddělení)

CAM: PEP-karboxylasa a Rubisco (časové oddělení)

Primární produkt fixace

C3: fosfoglycerát

C4: oxalacetát

CAM: oxalacetát

Minimální potřeba ATP a NADPH pro fixaci 1 molekuly CO₂

C3: 3 ATP a 2 NADPH

C4: 5 ATP a 2 NADPH

CAM: 5 ATP a 2 NADPH

Vliv teploty

C3: teplotní minimum 0 °C (u některých až do -6°C až -10°C), optimum 15 °C až 25 °C, maximum 30 °C

C4: pod 10 °C rychlost výrazně klesá, optimum 25 až 40 °C

CAM: optimum cca 40 °C

Dýchání a jeho význam v životě rostlin

- reakce organického substrátu s molekulárním kyslíkem tvorba ATP
- každá vyšší zelená rostlina obsahuje buňky, pletiva i celé orgány (kořeny) získávající energii rozkladem organických látek – dýcháním
- na tento zdroj rostliny odkázány v prvních fázích života (klíčení), v noci a za podmínek nepříznivých pro fotosyntézu
- soubor procesů zajišťující využití asimilátů pro růst, udržení struktura funkcí, transport látek, příjem iontů
- vytváření využitelné formy energie (ATP), redukční ekvivalenty a meziprodukty (uhlíkové skelety)
- výdej CO₂ a příjem O₂ podmíněný oxidací substrátů v reakcích glykolýzy, citrátového a pentosového cyklu, spojení s přenosem elektronů v dýchacím řetězci

Komplex procesů dýchaní možno rozdělit do 4 souborů

- 1) Glykolýza
- 2) Oxidace acetyl-CoA v tzv. citrátovém cyklu až na 2 molekuly CO₂
- 3) Přenos elektronů z NADH+H+ v dýchacím řetězci
- 4) Oxidační fosforylace volná energie přenosu elektronů spřažena se syntézou ATP

Glykolýza

- probíhá v cytoplazmě buněk
- metabolická přeměna glukosy na dvě molekuly pyruvátu za vzniku 2 molekul ATP a 2 molekul NADH
- 10 kroků, každý katalyzován jiným enzymem

- další přeměna pyruvátu za anaerobních podmínek kvašení alkoholické
 - mléčné
 - a další
- alkoholické kvašení dekarboxylace pyruvátu na acetaldehyd (pyruvátdekarboxylasa) redukce na ethanol (alkoholdehydrogenasa)
 - představitel kvasinky
 - také v pletivech vyšších rostlin
- mléčné kvašení redukce pyruvátu na laktát

 aerobní podmínky – účinkem pyruvátdehydrogenasy přeměna pyruvátu na aktivovanou kyselinu octovou – acetyl-CoA - vstupní substrát pro odbourání dvou posledních molekul uhlíku a jeho vyloučení ve formě CO₂ – citrátový cyklus

Citrátový cyklus

(cyklus kyseliny citrónové, Krebsův cyklus)

- v matrix mitochondrií za účasti ca 20 enzymů
- základní substrát acetyl-CoA
- v průběhu cyklu vytvoření
 2 molekul CO₂, 1 molekuly
 GTP, 3 molekuly NADH₂ a
 1 redukovaný flavoprotein

Figure 9-14 Biological Science, 2/e

Glyoxylátový cyklus

- rezervní tuky také substrátem pro dýchání (semena bohatá na tuky)
- z tuků tvorba sacharidů v glyoxylátovém cyklu modifikace cyklu citrátového
- lokalizace glyoxyzomech organely obsahující enzymy pro aktivaci a oxidaci mastných kyselin
- acetyl-CoA využit na tvorbu sukcinátu

