HOMEWORK 9

JACKSON VAN DYKE

Exercise 1 (Hatcher §2.1.11). Show that if A is a retract of X then the map $H_n(A) \to H_n(X)$ induced by the inclusion $A \subset X$ is injective.

Exercise 2 (Hatcher §2.1.15). For an exact sequence $A \to B \to C \to D \to E$ show that C = 0 iff the map $A \to B$ is surjective and $D \to E$ is injective. Hence for a pair of spaces (X, A), the inclusion $A \hookrightarrow X$ induces isomorphisms on all homology groups iff $H_n(X, A) = 0$ for all n.

Exercise 3 (Hatcher §2.1.16). (a) Show that $H_0(X, A) = 0$ iff A meets each path-component of X.

(b) Show that $H_1(X, A) = 0$ iff $H_1(A) \to H_1(X)$ is surjective and each path-component of X contains at most one path-component of A.

Exercise 4. Recall that a SES of chain complexes $0 \to C \xrightarrow{\varphi} D \xrightarrow{\psi} E \to 0$ induces a long exact sequence in homology

(1)
$$\cdots \to H_q(C) \xrightarrow{\varphi_*} H_q(D) \xrightarrow{\psi_*} H_q(E) \xrightarrow{\Delta} H_{q-1}(C) \to \cdots$$

Prove

- (i) Δ is well-defined,
- (ii) Δ is a homomorphism, and
- (iii) exactness at $H_q(E)$.

Exercise 5. Let $0 \to A_0 \to A_1 \to \cdots \to A_{n-1} \to A_n \to 0$ be an exact sequence of finite-dimensional vector spaces. Show that $\sum_{i=0}^{n} (-1)^i \dim A_i = 0$.

Date: November 4, 2019.

1