Exercícios. uma aplicação computacional que implementa um algoritmo "branch and bound" forneceu a seguinte lista de soluções (nesta ordem, antes de ser interrompida) para um problema de programação inteira pura. O critério de escolha da variável de ramificação é a seqüência crescente do índice das variáveis.

- a) Indique se o problema inteiro é de maximização ou de minimização. Justifique.
- **b**) Construa a árvore binária de sub-problemas associada a esta lista de soluções (coloque os números nos nós), incluindo as restrições correspondentes a cada ramo (as restrições do tipo ≥ devem sempre estar a esquerda). Qual foi a estratégia de seleção de nós na árvore *branch-and-bound*?.
- c). Quais os nós que podem ser desprezados ("sondados ou podados")? Justifique.
- **d.**) Na situação atual já é conhecida a solução ótima ? Em caso negativo, qual a próxima ramificação a ser realizada?

Solução (nó)	Z	X_1	X_2	X_3	X_4	X_5
1	250.667	28	2.667	0	0	0
2	248.667	27.333	3	0	0	0
3	Infactível	28	3	0	0	0
4	247.875	27	3	0.25	0	0
5	245.5	26	3	1	0	0
6	247.667	27	3.167	0	0	0
7	242.667	25.333	4	0	0	0
8	247.5	27	3	0	0	0.25
9	242	25.75	3	0	0	1
10	247	27	3	0	0.143	0
11	237	25	3	0	1	0
12	246	27	3	0	0	0
13	248	28.5	2	0	0	0
14	245.333	29	1.333	0	0	0
15	247.5	28	2	0	0.5	0

- 2) A figura abaixo mostra a árvore de sub-problemas em determinada fase da resolução de um problema de programação inteira pura pelo algoritmo *branch and bound*. Ø Indica região factível vazia para o sub-problema correspondente a esse nó. SC indica solução contínua (existe pelo menos uma variável não inteira) e SI indica solução inteira (todas as variáveis têm valores inteiros).
- (a) Qual é o melhor limite superior para o máximo valor de z para o PI?
- (b) Qual é o melhor limite inferior para o máximo valor de z?
- (c) Quais os nós em que já não há ramificação ("podados")? Justifique.
- (d) Quais os nós em que ainda é possível haver ramificação ? Justifique.
- (e) Já foi alcançada uma solução ótima para o PI? Em caso negativo qual é a qualidade da solução atual (100*(UB-LI)/LI)) e qual o nó a ser ramificado?

Questão 3 Eva e João pretendem dividir entre eles as tarefas domésticas (cozinhar, lavar a louça, lavar a roupa, fazer as compras) de modo que cada um tenha duas tarefas e o tempo total que gastam nestas atividades seja mínimo. O tempo que cada um deles gasta para fazer cada tarefa é dado na tabela abaixo:

- a) Formule um modelo de programação linear inteira para este problema.
- b) Resolva o problema usando o método de "branch-and-bound" para o problema inteiro puro, mas antes reduza previamente o modelo a 4 variáveis binárias.

	Horas por semana						
	Compras	Cozinhar	Louça	Roupa			
Eva	4.5	7.8	3,6	2.9			
Adão	4.9	7.2	4.3	3,1			