روش انتگرال گیری گاوس

در این روش نقاط و ضرایب همگی مجهول فرض می شوند. لذا در فرمول

$$\int_{a}^{b} f(x) dx = \sum_{k=0}^{m} w_{k} f(x_{k}) + E$$

(m+۱) نقطهٔ ، x، ...، x، و (m+۱) ضریب . w، ...، wمجهول هستند.

برای به دست آوردن این ۲+۲ مجهول قرارمی دهیم: E=۰ برای

$$f(x) = 1, x, x^{7}, ..., x^{7m+1}$$

به عبارت دیگر کاری میکنیم که $\sum_{k=0}^{m} w_k f(x_k)$ برای چند جملهایهای تا درجهٔ $\sum_{k=0}^{m} w_k f(x_k)$ دو فیصر است که این روش از روشهای متناظر در روش نیوتن کو تز دقیقتر است.

قاعده دو نقطهای گاوس

به دلایلی که بعداً شرح می دهیم، فرمولهای گاوس را برای بازه [۱,۱] به دست می آوریم. در این صورت و اضح است که بازه های [a,b] و [۱,۱] را به سادگی می توان به هم تبدیل کرد.

$$x = \frac{1}{7}[(b-a)u + (b+a)]$$
 با تغییر متغیر:

$$dx = \frac{(b-a)}{r} du$$

 $\int_{a}^{b} f(x) dx = \int_{-1}^{1} \psi(u) du$

$$\psi(\mathbf{u}) = \frac{(b-a)}{7} f\left(\frac{1}{7}((b-a)\mathbf{u}+(b+a))\right)$$

پس، فرمول دو نقطه ای گاوس را برای تقریب $\int_{-1}^{1} f(x) dx$ چنین به دست می آوریم.

$$\int_{-1}^{1} f(x) dx = \sum_{k=0}^{1} w_k f(x_k) + E$$

 $f(x) = 1, x, x^7, x^7$ برای تعیین $w_0 = 0$ هو او می دهیم: $v_0 = 0$ برای تعیین $v_0 = 0$ برای تعیی تعیین $v_0 = 0$ برای تعیین v_0

مشابه روش نیوتن ـ کوتز، در اینجا نیز دستگاه زیر حاصل می شود:

$$f(x) = 1: \qquad \int_{-1}^{1} 1 dx = Y = w_* + w_1 \tag{1}$$

$$f(x) = x: \qquad \int_{-1}^{1} x \, dx = \cdot = w_{\circ} x_{\circ} + w_{1} x_{1} \qquad (7)$$

$$f(x) = x^{\gamma}: \qquad \int_{-1}^{1} x^{\gamma} dx = \frac{\gamma}{\gamma} = w_{*} x^{\gamma}_{*} + w_{1} x^{\gamma}_{1}$$
 (7)

$$f(x) = x^{r}; \qquad \int_{-1}^{1} x^{r} dx = \cdot = w_{\bullet} x^{r}_{\bullet} + w_{1} x^{r}_{1} \qquad (f)$$

 $w_1 x_1^{\mathsf{w}} - w_1 x_0^{\mathsf{v}} x_1 = \circ$ هعادلهٔ (۲) را در x^{v} ضرب و با معادله (۴) جمع میکنیم $w_1 x_1^{\mathsf{v}} - w_1 x_0^{\mathsf{v}} x_1^{\mathsf{v}} = \circ$ بنابراین، $w_1 x_1 (x_1 - x_0) (x_1 + x_0) = \circ$

در تساوی بالا ثابت میکنیم که تنها $=(x_1+x_0)$ و بقیهٔ عوامل سمت چپ تساوی مخالف صفر هستند. این مطلب را به برهان خلف ثابت میکنیم. فرض کنید $w_1x_1=0$

از این تساوی و (۲) نتیجه میگیریم: w. x.= ۰

 $\circ = (w_{\bullet} + w_{1}) x_{1}$ با استفاده از (۲) داریم:

که با توجه به (۱) نتیجه میگیریم: $v_1x_1 = 0$ که خلاف $v_1x_1 \neq 0$ است.

پس و × x1 - x. از این رو، باید داشته باشیم:

 $x_1+x_2=0$

یعنی، $x_1 = -x_0$ و چون x_0 و $x_1 = x_0$ مفر نیستند، فرض کنید x_1 کو چکتر از x_1 باشد.

 $X_1 > 0$, $X_0 < 0$

از (٣) به دست مي آوريم :

$$\frac{\gamma}{m} = w_{0}x_{0}^{\gamma} + w_{1}x_{0}^{\gamma} = (w_{0}+w_{1})x_{0}^{\gamma}$$
 $x_{0}^{\gamma} = \frac{1}{m}$
 $x_{0}^{\gamma} = \frac{1}{m}$
 $x_{1} = -x_{0} = \frac{\sqrt{m}}{m}$
 $x_{2} = -\frac{\sqrt{m}}{m}$
 $x_{3} = -x_{0} = \frac{\sqrt{m}}{m}$
 $x_{4} = -x_{0} = \frac{\sqrt{m}}{m}$
 $x_{5} = -x_{0} = \frac{\sqrt{m}}{m}$
 $x_{6} = -x_{0} = \frac{\sqrt{m}}{m}$
 $x_{6} = -x_{0} = \frac{\sqrt{m}}{m}$
 $x_{6} = -x_{0} = \frac{\sqrt{m}}{m}$
 $x_{7} = -x_{0} = \frac{m}{m}$
 $x_{7} = -x_{0} =$

بنابراین، فرمول دو نقطهای گاوس عبارت است از:

$$\int_{-1}^{1} f(x) dx \simeq w \cdot f(x \cdot) + w \cdot f(x \cdot) = f\left(-\frac{\sqrt{r}}{r}\right) + f\left(\frac{\sqrt{r}}{r}\right)$$

این فرمول برای چندجمله ایهای تا درجهٔ سوم دقیق است و تنها از دو مقدار تابع استفاده می کند. بنابراین، قاعدهٔ دو نقطه ای گاوس از نظر دقت و خطا تقریباً مشابه قاعده سیمسون است که مقادیر بیشتری از تابع را نیاز داشته و در نتیجه از آن بهتر است.

مقادیر ،x۱، x ،...، و ،w۱ ،w۱ ، به ازای m های مختلف محاسبه شده و در جدولهایی در اختیار هستند:

m	(ریشه های چندجمله ای لژاندر) Xi	Wi
١	$x = -x_* = \frac{\sqrt{r}}{r}$	$\mathbf{w}_1 = \mathbf{w}_* = 1$
۲	$x_1 = 0$ $x_2 = -x_2 = \sqrt{\frac{\gamma}{\Delta}}$	$w_1 = \frac{\Lambda}{q}$ $w_Y = w_* = \frac{\Delta}{q}$
۲	x ₇ = -x₁ <u>~</u> ∘/٣٣٩٩٨١٠۴ x ₇ =-x _• ~∘/٨۶١١٣۶٣١	$\mathbf{w}_{1} = \mathbf{w}_{1} \simeq ./20111010$ $\mathbf{w}_{2} = \mathbf{w}_{3} = ./211101010101010101010101010101010101010$
۴	$x_{\gamma} = \circ$ $x_{\gamma} = -x_{1} = \circ / \Delta \tau \wedge \tau \wedge \tau \wedge \tau$ $x_{\tau} = -x_{\bullet} = \circ / \tau \wedge \tau \wedge \tau \wedge \Delta$	$w_{\gamma} = 0/0$ ρ

از جمله خصوصیات فرمولهای انتگرالگیری گاوس این است که اگر m فرد باشد تعداد نقاط زوج است و داریم.

$$\begin{cases} x_{m-i} = -x_i & , \\ w_{m-i} = w_i & , \end{cases}$$
 $i = \cdot, \cdot, ..., \frac{m-1}{\gamma}$

و اگر m زوج باشد تعداد نقاط فرد است و

$$\begin{cases} x_{m-i} = -x_i &, & i = \bullet, \setminus, ..., \frac{m}{\gamma} - \setminus \\ x_{\frac{m}{\gamma}} = \bullet &, & \\ w_{m-i} = w_i &, & i = \bullet, \setminus, ..., \frac{m}{\gamma} - \setminus \end{cases}$$

این خصوصیات در جدول مشاهده می شود.

از خصوصیات بارز فرمولهای انتگرالگیری گاوس آن است که <mark>تمام ضرایب w_i مثبت</mark> هستند و کاکاwi این ویژگی و دقت بالای این فرمولها استفاده از آنها را اجتناب ناپذیر میکند.

مثال

با استفاده از فرمول سه نقطهای گاوس تقریبی از انتگرال زیر را حساب کنید.

$$I = \int_{1}^{\tau} \frac{\sin^{\tau} x}{x} dx$$

$$I = \int_{1}^{\tau} \frac{\sin^{\tau} (u+\tau)}{u+\tau} du$$
 داریم: $x=u+\tau$ داریم:

$$I = \int_{-1}^{1} e^{-x^{\gamma}} dx$$
 (فرمول دو نقطه ای گاوس)

$$x = \frac{(b-a)u + (b+a)}{7} = \frac{u+1}{7}, \qquad dx = \frac{1}{7}du$$

$$I = \int_{-1}^{1} e^{-\left(\frac{u+1}{\tau}\right)^{\gamma}} \times \frac{1}{\tau} du = \frac{1}{\tau} \int_{-1}^{1} e^{-\left(\frac{u+1}{\tau}\right)^{\gamma}} du$$

$$f(u) = e^{-(\frac{u+1}{\gamma})^{\gamma}} \quad \text{,} \qquad I = \frac{1}{\gamma} \left[f(-\frac{\sqrt{\gamma}}{\gamma}) + f(\frac{\sqrt{\gamma}}{\gamma}) \right] \simeq \text{ann}$$

$$I = \int_{\cdot}^{\frac{\pi}{Y}} \sin t \, dt \qquad (integral of the single o$$

داریم: $x = \frac{\pi}{\epsilon}(u+1)$ داریم:

$$\int_{\cdot}^{\frac{\pi}{\gamma}} \sin t \, dt = \frac{\pi}{\gamma} \int_{-1}^{1} \sin \frac{\pi (u+1)}{\gamma} du = 1$$

تحقیق کنید که تقریب ۱/۰۰۰۰۰۰ را با ۶۵ نقطه و به قاعدهٔ سیمسون می توان به دست آورد!