Gráficas y Juegos: Tarea 02

Martínez Méndez Ángel Antonio Pinzón Chan José Carlos Rendón Ávila Jesús Mateo

February 28, 2025

Universidad Nacional Autónoma de México Facultad de Ciencias Profesor: César Hernández Cruz 1. Sea G una gáfica, y recuerde que c_G denota al número de componentes conexas de G. Demuestre que si $e \in E$, entonces $c_G \le c_{G-e} \le c_G + 1$.

Hipotesis

Ges una gráfica cuyo número de componentes conexas se denota c_G y e=uves una arista tal que $e\in E_G$

Definiciones

Def. A las subgráficas de una gráfica G, máximas por contención con la propiedad de ser conexas, se les llama **componentes conexas**.

Por hipótesis el número de componentes conexas de G es c_G . Sabemos que $e \in E_G$ por lo cual e forma parte de alguna componente conexa en G. Como se trata de componentes conexas , entre cualesquiera vértices que pertenezcan a la misma componente conexa que e, existe un camino. A partir de este punto se pueden distinguir dos casos generales:

Sean x, y dos vértices en la misma componente conexa que e.

- 1) Existe un xy camino, llamémoslo W, tal que e no forma parte de W: En este caso, como e no forma parte de W entonces al eliminar dicha arista el xy - camino sigue existiendo.
- 2) Existe un xy camino, llamémoslo P, tal que e forma parte de P. En este segundo caso es donde divergen dos posibilidades muy importantes:
 - (a) Si entre los vértices u y v existe un uv camino distinto de $\{u,e,v\}$, que denotaremos como R, al eliminar la arista e de G, el camino P ya no coneca a x con y, sin embargo, prevalece un xy-camino descrito del siguiente modo: xPuRvPy. En consiguiente podemos decir que la grafica sigue siendo conexa y que por lo tanto $c_{G-e} = c_G$.
 - (b) Si entre los vértices u y v el único camino existente es $\{u,e,v\}$, al eliminar e de G, el camino P deja de existir y sucede que u no puede alcanzar a v. Como resultado x no puede alcanzar a y, oséase, no existe un xy-camino; la componente conexa se ha separado. Por el incisio 1), sabemos que todos los caminos en los que e no forma parte se conservan, por lo tanto, en ambas particiones la grafica sigue siendo conexa. Asi podemos concluir que $c_{G-e}=c_G+1$.

A manera de resumen, puede suceder que $c_G = c_{G-e}$, o bien, $c_{G-e} = c_G + 1$, en otras palabras: $c_G \le c_{G-e} \le c_G + 1$.

Nota: Eliminar a la arista \underline{e} no afecta a las componentes conexas a las que \underline{e} no pertenece, es por ello que ignoramos al resto de componentes y nos centramos en la componente de \underline{e} .

2. Una gráfica es escindible completa si su conjunto de vértices admite una partición (S, K) de tal forma que S es un conjunto independiente, K es un clan, y cada vértice en S es adyacente a cada vértice en K. Demuestre que una gráfica es escindible completa si y sólo si no contiene a C_4 ni a $\overline{P_3}$ como subgráfica inducida. (Sugerencia: Un ejercicio de la tarea anterior puede resultar de utilidad.)

Hipótesis

Una gráfica es **escindible completa** si y sólo si no contiene a C_4 ni a $\overline{P_3}$ como subgráfica inducida.

Definiciones

Def. Una gráfica es escindible completa si su conjunto de vértices admite una partición (S, K) de tal forma que S es un conjunto independiente, K es un clan, y cada vértice en S es adyacente a cada vértice en K.

Def. Un subconjunto no vacío de vértices de una gráfica es un **clan** si y sólo si induce una subgráfica completa. Alternativamente, un subconjunto de los vértices de una gráfica G es un clan si y sólo si es un conjunto independiente en la gráfica complementaria \overline{G} .

Demostramos por contrapositiva.

 \Rightarrow] Sea G una gráfica, tal que G contiene a $\overline{P_3}$ o bien contiene a C_4 como subgráfica inducida , entonces G no es escindible completa.

Sea F una gráfica, supongamos que C_4 es un subgráfica inducida de F. Ahora demostremos que C_4 no puede ser escindible completa, esto es, que NO EXISTE una biparticion (S,K) en C_4 tal que S sea un conjunto independiente, K un clan y todo $s \in S$ sea adyacente a todo $k \in K$.

Como se trata de una gráfica de 4 vértices y tanto S como K tienen al menos un elemento, eso nos deja tres casos generales para la bipartición (S,K) en C_4 .

Figure 1: Representación de C_4

i)
$$|S| = |K| = 2$$

Al tratar de elegir vértices para el conjunto S, necesitamos que dichos vértices no sean adyacentes entre si, la única opción es elegir vértices en esquinas opuestas de C_4 . Nos queda que $S = \{v_1, v_3\}$ y $K = \{v_2, v_4\}$.

Sin embargo el subconjunto K no es un clan (falta la arista v_2v_4). Si intentamos dar cualquier otra partición de estas características para C_4 el resultado es análogo, pues (como mencionamos antes) los únicos vértices no adyacentes se encuentran en las esquinas.

ii) |S| = 1 y |K| = 3

En este otro caso, digamos que $S = \{v_1\}$ y $K = \{v_2, v_3, v_4\}$. Con esta particion, nuevamente K no es un clan (falta la arista v_2v_4), y aunque S es independiente, el único vértice en S no es adyacente a todos los vértices en K (falta la arista v_1v_3).

Este resultado es análogo, no importa que vértice en C_4 elijamos para el subconjunto S.

iii)
$$|S| = 3 \text{ y } |K| = 1$$

Esta partición en C_4 es imposible ya que cualesquiera 3 vértices que elijamos para S, al menos dos son adyacentes (no se cumple que S sea un conjunto independiente).

Figure 4: Problema del caso iii)

 \therefore Si F contiene a C_4 como subgráfica inducida, entonces F no es escindible completa. Note que si tuvieramos la gráfica F, como F contiene a C_4 , entonces al intentar dar una biparticion (S,K) para F, experimentaríamos los problemas vistos anteriormente, derivados del C_4 en su interior.

Supongamos ahora que $\overline{P_3}$ es una subgráfica inducida de F, de manera similar a lo hecho en C_4 , intentemos mostrar que NO EXISTE una biparticion (S,K) en $\overline{P_3}$ tal que S sea un conjunto independiente, K un clan y todo $s \in S$ sea adyacente a todo $k \in K$. Comenzemos rápidamente con los casos para dicha particion:

i)
$$|S| = 2 \text{ y } |K| = 1$$

Necesitamos que los vértices en S sean no adyacentes, asi que diremos que $S = \{v_1, v_2\}$ y $K = \{v_3\}$. El subconjunto S cumple con ser independiente, además K es un clan (pues |K| = 1), no obstante, el vértice $v_1 \in S$ no es adyacente al vértice $v_3 \in K$. Al elegir al vértice v_3 en lugar de v_2 esto sigue ocurriendo.

Figure 5: Representación de $\overline{P_3}$

ii) |S| = 1 y |K| = 2

En este caso nos vemos obligados a decir que $K = \{v_2, v_3\}$ pues son los únicos 2 vértices adyacentes en $\overline{P_3}$; naturalmente $S = \{v_1\}$.

Observe que K cumple con ser un clan nuevamente, pero $v_1 \in S$ no es adyacente a ninguno de los 2 vértices en K. Otra vez tenemos que $\overline{P_3}$ no puede darnos una bipartición (S, K) donde todo vértice en S sea adyacente a todo vértice en K.

- \therefore Si F contiene a $\overline{P_3}$, entonces F no es escindible completa, pues $\overline{P_3}$ no cumple con la definición de ser escindible completa. No importa si existe una bipartición (S,K) para el resto de vértices de F, al intentar inleuir en dicha bipartición a los vértices de $\overline{P_3}$, automáticamente la definición deja de cumplirse.
- \therefore Si G es una gráfica, tal que G contiene a C_4 o bien contiene a $\overline{P_3}$ como subgráfica inducida , entonces G no es escindible completa.
- \Leftarrow Sea G una gráfica, si G es no es escindible completa, entonces G contiene a C_4 o a $\overline{P_3}$ como subgráfica inducida.

Una gráfica F no es escindible completa, si al dar una bipartición (S, K), se cumple al menos una de las siguientes afirmaciones:

1. S no es independiente.

- 2. K no es un clan.
- 3. Al menos un vértice en S no es adyacente a algun vértice en K.

Existen 6 posibles casos (este número se obtiene de las permutaciones de las 3 afirmaciones anteriores) en los que una gráfica resulta no ser escindible completa. Analizemos si en cada uno de ellos podemos inferir la existencia de $\overline{P_3}$ o de C_4 .

Cabe resaltar que daremos por hecho el resto de propiedades de la definición de escindible completa, por ejemplo, en el caso i) decimos que S no es independiente, es decir, suponemos que el resto de propiedades se cumplen: K es un clan y que todo $s \in S$ es adyacente a todo $k \in K$.

i) S no es independiente

Al S no ser independiente, podemos suponer la existencia de una arista ss' tal que $s, s' \in S$. También podemos afirmar que existe una sk_1 y $s'k_2$ aristas. Además,como K es un clan, entonces la arista k_1k_2 existe.

 \therefore Existe un ciclo C de longitud 4, tal que $C = \{s, k_1, k_2, s', s\}$.

ii) K no es un clan.

Como K no es un clan, al menos entre 2 vértices $k_i, k_j \in K$ no existe un arista. Llamemos a estos vértices k_1 y k_2 .

Sean $s_1, s_2 \in S$; entonces existyen las aristas $s_1k_1, s_1k_2, s_2k_1, s_2k_2$.

 \therefore Existe un ciclo C de longitud 4, donde $C = \{s_1, k_1, s_2, k_2, s_1\}.$

iii) Al menos un vértice en S no es adyacente a algun vértice en K.

Sean $s_1, s_2 \in S$ y $k_1, k_2 \in K$, diremos (por hipótesis) que s_2 no es adyacente a k_1 . Entonces por lo menos tenemos las siguientes aristas: $s_1k_1, s_1k_2, s_2k_1, k_1k_2$.

Si eliminamos al vértice k_2 , entonces de las aristas antes mencionadas, sólo se conserva la arista s_1k_1 . Observe que s_1 y k_1 son adyacentes pero s_2 no es adyacente a nadie.

 $\therefore \overline{P_3}$ es una subgráfica inducida de F.

iv) S no es independiente y K no es un clan.

En el pe
or de los casos la gráfica de S es completa y la de K es vacía. Pero si es así, entonces basta con redefinir quien es S y quien es K y resulta que F es escindible completa. Si ignoramos este caso "extremo", nos topamos con que entonces podemos eliminar vértices $s_i \in S$ hasta que S sea independiente. Análogamente, podríamos eliminar vértices $k_j \in K$ hasta que K sea un clan.

Bajo esta lógica, si eliminamos **solamente** vértices en S, hasta que S sea independiente, podemos aplicar el caso ii) y decir que F tiene a C_4 como subgráfica inducida. Si eliminamos **solamente** vértices en

K, hasta que K sea un clan, podemos aplicar el caso i) y decir que F tiene a C_4 como subgráfica inducida.

- \therefore F tiene a C_4 como subgráfica inducida.
- v) S no es independiente y al menos un vértice en S no es advacente a algun vértice en K.

En el caso en el cual la gráfica de S sea completa y $\forall s_i \in S$, s_i no es adyacente a ningun $k_j \in K$. Podemos eliminar vértices en S hasta dejar únicamente 2, eliminar vértices en K hasta dejar uno y viceversa. Nos queda entonces que $\overline{P_3}$ es subgráfica de F.

En cualquier otro caso la gráfica de S no es completa y existe al menos un $s_i \in S$ tal que s_i no es adyacente a algun $k_j \in K$. Nombremos a este vértice s_0 . Al eliminar todos los vértices en S excepto a s_0 , S se vuelve independiente, y podemos aplicar el caso iii), que nos dice que $\overline{P_3}$ es una subgráfica inducida de F.

- \therefore Ftiene a $\overline{P_3}$ como subgráfica inducida.
- vi) S no es independiente, K no es un clan y al menos un vértice en S no es adyacente a algun vértice en K.

En el caso más interesante, S es completa y K es vacía, renombrando quien es S y quien es K podemos aplicar el caso iii). En otras circunstancias, siempre ocurre que podemos hacer que S sea independiente o bien que K sea un clan. Dependiendo de las circunstancias podremos aplicar los casos iv) o v).

- \therefore F contiene a C_4 o a $\overline{P_3}$ como subgráfica inducida.
- \therefore Si G no es escindible completa, entonces contiene a C_4 o $\overline{P_3}$ a como subgráfica inducida.
- \therefore Una gráfica es **escindible completa** si y sólo si no contiene a C_4 ni a $\overline{P_3}$ como subgráfica inducida.

3.

a) Demuestre que si $\mid E \mid > \binom{|V|-1}{2}$, entonces G es conexa.

Definiciones

Def. Gráfica conexa: G es conexa si para todos $u, v \in V$ existe un uv-camino.

Def. Coeficiente binomial: Denotado por $\binom{n}{2}$, representa el número de maneras de elegir subconjuntos de tamaño 2 a partir de un conjunto de n elementos.

Hipotesis

Hip. Sea G una gráfica que cumple | E |> $\binom{|V|-1}{2}$

Notemos que las gráficas que cumplen con nuestra hipótesis, empiezan justo después del caso donde:

$$\mid E \mid = {|V|-1 \choose 2}$$

Es decir, desde el caso en el que nuestras gráficas son inconexas. Esto es debido a que este tipo particular de gráficas, dada un número n arbitrario de vertices, donde n > 3, tienen como subgráfica inducida a un $K_{n-1} \cup v$ donde, v representa a un vertice aislado.

Representemos esta inconexidad suponiendo que en una gráfica H, cumple que $\mid E_H \mid = {|V|-1 \choose 2}$ donde podemos hacer un partición (X,Y) en V_H donde en X existe un ux-camino camino uWx, donde $v, x \in K_{n-1}$ y además, $y \in Y$ que es nuestro vertice aislado.

Como es evidente, para que este tipo de gráficas tenga un uv-camino, particularmente que exista un uy-camino en H, i.e. que sea conexa, es necesario que en las particiones de estas gráficas (X,Y) sean adyacentes, dicho de otro modo:

$$\mid E \mid > {|V|-1 \choose 2}$$

O bien:

$$\binom{|V|-1}{2} + 1 > \binom{|V|-1}{2}$$

Donde debe existir una aristas más en nuestra gráfica G para que sea conexa, justo lo que es nuestra hipótesis. Lo que quiere decir que las gráficas que cumplan:

$$\mid E \mid > \binom{|V|-1}{2}$$

En efecto, son conexas, pues existe un uv-camino para cada $u, v \in V$.

b) Para cada n > 3 encuentre una gráfica inconexa de orden n con $|E| = \binom{n-1}{2}$

Dibujando los gráficas para n = 4, n = 5, n = 6 y n = 7

Figure 8: Representación de una gráfica con una subgráfica 3-regular de 4 vertices, uno aislado, con 3 aristas

Figure 10: Representación de una gráfica con una subgráfica 5-regular de 6 vertices, uno aislado, con 10 aristas

Figure 9: Representación de una gráfica con una subgráfica 4-regular de 5 vertices, uno aislado, con 6 aristas

Figure 11: Representación de una gráfica con una subgráfica 6-regular de 7 vertices, uno aislado, con 15 aristas

Notemos que las gráficas obtenidas tienen la particularidad de tener inducidas en ellas, como subgráfica, a un $K_{n-1} \cup v$ donde, v representa a un vertice aislado dado un n arbitrario que representa justamente |V| = n. Y cumple con la condición de que $|E| = \binom{n-1}{2} = \frac{(n-1)(n-2)}{2}$.

4.

a) Demuestre que si $\delta > \left(\left| \frac{|V|}{2} \right| - 1 \right)$, entonces G es conexa.

Hipotesis

El grado minimo δ de G es mayor a $\left(\left|\frac{|V|}{2}\right|-1\right)$.

Sea G una gráfica cuyo grado minimo es $\delta > \left(\left\lfloor \frac{|V|}{2} \right\rfloor - 1 \right)$, entonces podemos decir quev $\delta \ge \left\lfloor \frac{|V|}{2} \right\rfloor - 1 + 1$, es decir:

$$\delta \ge \left| \frac{|V|}{2} \right|$$

Si S es un subconjunto de V(G) que satisface |S| = |V| - 2 y u, v dos vértices que pertenecen a V(G) y no pertenecen a S.

Como sabemos que $u, v \notin S$. Si es que u es adyacente a $\frac{|S|}{2}$ elementos $s \in S$ y v es adyacente a $\frac{|S|}{2}$ elementos $s' \in S$, es decir, u es adyacente a $\frac{|V|-2}{2}$ elementos $s \in S$ y v es adyacente a $\frac{|V|-2}{2}$ elementos $s' \in S$. Con lo anterior podemos decir que u es adyacente a los elementos del subconjunto de $S \{s_0, s_1, s_2, \ldots, s_n\}$, mientras que v es adyacente a los elementos del subconjunto de $S \{s'_0, s'_1, s'_2, \ldots, s'_n\}$

Como por hipotesis sabemos que $d(u), d(v) \ge \left\lfloor \frac{|V|}{2} \right\rfloor$, entonces cuando |V| es impar debe haber un s^* en S tal que $s_n = s^* = s'_n$. Mientras que cuando |V| es par, existe otro s^{**} que cumple $s_i = s^{**} = s'_i$ a los cuales u y v son adyacentes. Por lo que podemos grantizar una uv- trayectoria P:

$$P = (u, s_n = s^* = s'_n, v)$$
 cuando $|V|$ es par e impar y $P' = (u, s_n = s^{**} = s'_n, v)$, cuando $|V|$ es par

para cada $u, v \in V(G)$. Por lo tanto G es conexa.

Figure 12: Representación de G cuando |V| es par, suponiendo que en la columna central (negra) son adaycentes cualesqueira 2 vértices.

Figure 13: Representación de G cuando |V| es impar, suponiendo que en la columna central (negra) son adyacentes cualesquiera 2 vertices.

b) Para |V| par encuentre una gráfica $\left(\left|\frac{|V|}{2}\right|-1\right)$ -regular e inconexa.

Como podemos ver de dibujar las gráficas para |V|=2, |V|=4, |V|=6 y |V|=8

Figure 14: Representación de una gráfica 0-regular de 2 vértices

Figure 15: Representación de una gráfica 1-regular de 4 vértices

Figure 16: Representación de una gráfica 2-regular de 6 vértices

Podemos decir que las gráficas que representan la condición son las $2k_n$ con $n \ge 1$ y $n \in \mathbb{N}$.

5. Demuestre que si D no tiene lazos y $\delta^+ \geq 1$, entonces D contiene un ciclo dirigido de longitud al menos $\delta^+ + 1$.

Hipotesis

Sabemos que D no tiene lazos y ademas $\delta^+ \geq 1.$

P.D La gráfica D contiene un cilco dirigido de longitud al menos $\delta^+ + 1$ Sea D una gráfica dirigida que conntiene una trayecttoria dirigida máxima P tal que:

$$P = (d_1, e_1, d_2, e_2, \dots, d_{k-1}, e_{k-1}, d_k)$$

Como sabemos que P es de longitud máxima y además el exgrado minimo de D es mayor o igual a 1, entonces el vértice d_k tiene una arísta saleinte e_k que, por ser P de longitud máxima no puede incidir en un vértice d_{k+1} , pues de ser así P no sería de lóngitud máxima.

De lo anterior, debe haber un vértice d_i en la secuancia de P tal que d_k incide en $d_i = d_{k+1}$ con $i \in \{1, 2, ..., k-1\}$, de no ser así P no sería una trayectoria dirigida de longitud máxima. Con ello deducimos:

$$P = (d_1, e_1, d_2, e_2, \dots, d_i = d_{k+1}, \dots, d_{k-1}, e_{k-1}, d_k, e_k, d_i = d_{k+1})$$

Como hemos visto que d_k debe incidir en un vértice anterior y perteneciente a P decimos que D contiene un ciclo de al menos longitud $\delta^+ + 1$.