Multiobjective Decomposition-based Mallows models Estimation of Distribution Algorithm. A case of study for Permutation Flowshop Scheduling Problem

Murilo Zangari^{a,*}, Alexander Mendiburu^b, Roberto Santana^c, Aurora Pozo^a

1. Supplementary results

Table 1 present the average HV results obtained by MOEA/D and MEDA/D-MK for the 110 Taillard test instances optimizing the objectives Total Flowtime (TFT), and the makespan (C_{max}). For each algorithm configuration and problem instance, we have executed 10 independent runs. Next, we have used the Kruskall-Wallis statistical test. The Kruskall-Wallis test is the main statistical method used in the determination if two samples are from the same population, which is an alternative to the one-way independent-samples Analysis of Variance (ANOVA). Therefore, we applied the Kruskall-Wallis test (at 5% significance level) to check if the results obtained have a statistical difference. Next, the *post-hoc* test *Nemenyi* is applied to check (if they have achieved significant differences) which one(s) have produced the best results. Thus, the best ranked algorithm(s) is(are) highlighted in boldface.

Table 1: Average normalized HV results

Taillard Instance	Weighted Sum		Tchebycheff	
	MOEA/D	MEDA/D-MK	MOEA/D	MEDA/D-MK
Ta_001	0.9020	0.9367	0.8722	0.9276
Ta_002	0.6969	0.7767	0.7280	0.7743
Ta_003	0.7602	0.9107	0.7111	0.8775
Ta_004	0.8541	0.9077	0.8412	0.8944
Ta_005	0.8005	0.8169	0.7440	0.7560
Ta_006	0.7015	0.7371	0.7344	0.7440
${ m Ta_007}$	0.7619	0.9393	0.7312	0.7681
Ta_008	0.8893	0.9442	0.8256	0.9002
Ta_009	0.7704	0.8242	0.6999	0.7811
Ta_010	0.8058	0.8736	0.7637	0.8116
Ta_011	0.7366	0.8338	0.6702	0.7757
${ m Ta_012}$	0.7140	0.8043	0.6290	0.7478
Continued on next page				

^{*}Corresponding author

Email addresses: murilo.zangari@gmail.com (Murilo Zangari), alexander.mendiburu@ehu.es (Alexander Mendiburu), roberto.santana@ehu.es (Roberto Santana), aurora@inf.ufpr.br (Aurora Pozo)

^a Computer Science Department, Federal University of Paraná (UFPR), Brazil. PO 19081, ZIP Code: 81531-970, Curitiba,
Brazil

^bIntelligent Systems Group, Department of Computer Architecture and Technology, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizabal 1, 20080 San Sebastián, Guipúzcoa, Spain

^cIntelligent Systems Group, Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizabal 1, 20080 San Sebastián, Guipúzcoa, Spain

Table 1 – continued from previous page

Table 1 – continued from previous page	Weighted Sum		Tchebycheff	
Taillard Instance	MOEA/D	MEDA/D-MK	MOEA/D	MEDA/D-MK
Ta_013	0.8347	0.8926	0.6708	0.8009
Ta_014	0.7929	0.8457	0.7121	0.8012
${ m Ta_015}$	0.7782	0.8668	0.6966	0.8572
Ta_016	0.8290	0.8830	0.7929	0.8553
Ta_017	0.8137	0.8487	0.7704	0.7828
Ta_018	0.8353	0.8925	0.8086	0.9073
Ta_019	0.8345	0.8923	0.7302	0.8448
${ m Ta_020}$	0.8247	0.9035	0.7432	0.8248
Ta_021	0.6278	0.6860	0.5342	0.6794
Ta_022	0.8160	0.8647	0.6870	0.8121
Ta_023	0.7940	0.8504	0.6598	0.7377
Ta_024	0.8768	0.9357	0.8710	0.9234
Ta_025	0.7830	0.8561	0.6669	0.6970
Ta_026	0.8183	$\boldsymbol{0.8762}$	0.7463	0.8060
Ta_027	0.7607	0.8578	0.7194	0.8262
Ta_028	0.8082	0.8522	0.6665	0.7503
Ta_029	0.8017	0.8405	0.7442	0.8279
Ta_030	0.7597	0.8500	0.6584	0.7957
Ta_031	0.9057	0.9509	0.8853	0.9178
Ta_032	0.8075	0.8885	0.6935	0.7586
Ta_033	0.9076	0.9589	0.7668	0.8440
Ta_034	0.8505	0.9401	0.6435	0.7883
Ta_035	0.9184	0.9763	0.7974	0.9369
Ta_036	0.8729	0.9330	0.6318	0.7317
Ta_037	0.8334	0.9222	0.7542	0.8375
Ta_038	0.8726	0.8955	0.8630	0.9198
Ta_039	0.7799	0.8972	0.5733	0.6997
Ta_040	0.9010	0.9593	0.7914	0.9082
Ta_041	0.7539	0.8701	0.6074	0.6836
Ta_042	0.6859	0.8281	0.5166	0.6305
Ta_043	0.6902	0.8274	0.5331	0.6028
${ m Ta_044}$	0.8043	0.8786	0.6765	0.7206
Ta_045	0.7657	0.8601	0.5883	0.6542
Ta_046	0.7645	0.8680	0.5779	0.6524
${ m Ta_047}$	0.7819	0.8725	0.6172	0.6571
Ta_048	0.7800	0.8497	0.5948	0.6572
Ta_049	0.7795	0.8431	0.6390	0.6996
Ta_050	0.7472	0.8507	0.5243	0.6008
Ta_051	0.7544	0.8551	0.5427	0.6306
${ m Ta_052}$	0.7552	0.8110	0.5567	0.5448
Ta_053	0.7375	0.8282	0.5507	0.6509
${ m Ta_054}$	0.7240	0.8767	0.5419	0.6592
${ m Ta_055}$	0.6776	0.7781	0.4816	0.5904
${ m Ta_056}$	0.7547	0.8461	0.5525	0.6542
${ m Ta_057}$	0.7155	0.7632	0.4625	0.6252
${ m Ta_058}$	0.7552	0.8996	0.6160	0.6876
Ta_059	0.7243	0.8311	0.6033	0.6560
			Continu	ed on next page

2

Table 1 – continued from previous page

Table 1 – continued from previous page Taillard Instance	Weig	Weighted Sum		Tchebycheff	
	MOEA/D	MEDA/D-MK	MOEA/D	MEDA/D-MK	
Ta_060	0.8181	0.9186	0.7115	0.7778	
Ta_061	0.9676	0.9890	0.7784	0.8738	
Ta_062	0.8840	0.9041	0.8442	0.8611	
Ta_063	0.7648	0.8273	0.6537	0.7101	
Ta_064	0.9257	0.9477	0.7808	0.8772	
Ta_065	0.9368	0.9655	0.8312	0.9007	
Ta_066	0.8028	0.8678	0.7274	0.7580	
Ta_067	0.8737	0.9009	0.6841	0.7970	
Ta_068	0.7855	0.8625	0.5837	0.7111	
Ta_069	0.6688	0.7139	0.6573	0.7187	
${ m Ta_070}$	0.8608	0.8945	0.7112	0.8134	
${ m Ta_071}$	0.7616	0.8283	0.5507	0.6120	
${ m Ta_072}$	0.8054	0.8733	0.6517	0.6811	
Ta_073	0.8426	0.8989	0.5272	0.6109	
${ m Ta_074}$	0.7137	0.8223	0.5103	0.5889	
Ta_075	0.7476	0.8168	0.5193	0.6018	
${ m Ta_076}$	0.8257	0.9061	0.4714	0.5998	
${ m Ta_077}$	0.7615	0.8201	0.4942	0.5613	
Ta_078	0.7622	0.8359	0.4558	0.5715	
${ m Ta_079}$	0.6975	0.7656	0.4514	0.5233	
Ta_080	0.6758	0.7021	0.6256	0.7003	
Ta_081	0.7755	0.8519	0.4619	0.5377	
${ m Ta_082}$	0.7195	0.8296	0.3618	0.4626	
Ta083	0.6744	0.7889	0.4346	0.5239	
${ m Ta_084}$	0.7114	0.8095	0.4052	0.4657	
${ m Ta_085}$	0.7533	0.8610	0.4838	0.5634	
${ m Ta_086}$	0.7373	0.8349	0.4327	0.4724	
${ m Ta_087}$	0.7429	0.8115	0.4567	0.4783	
Ta -088	0.7171	0.8564	0.4414	0.5152	
Ta -089	0.7674	0.8891	0.5681	0.5549	
Ta090	0.8332	0.8915	0.5853	0.6159	
Ta091	0.9553	0.9663	0.5965	0.6934	
Ta_092	$\boldsymbol{0.8162}$	0.8747	0.5612	0.5728	
Ta_093	0.7256	0.7531	0.5720	0.5916	
Ta_094	0.7837	0.8160	0.6746	0.6467	
Ta_095	0.8969	0.9153	0.4887	0.5308	
Ta_096	0.8871	0.8790	0.5846	0.6101	
Ta_097	0.7482	0.7618	0.5677	0.6080	
Ta_098	0.7778	0.8102	0.4530	0.5061	
Ta_099	0.9074	0.9613	0.5325	0.6161	
Ta_100	0.5293	0.5434	0.4528	0.4627	
Ta_101	0.7336	0.7892	0.4480	0.4422	
Ta_102	0.7577	0.8340	0.3980	0.4649	
Ta_103	0.7396	0.8493	0.4586	0.4931	
Ta_104	0.7635	0.8410	0.4473	0.5238	
Ta_105	0.6989	0.7957	0.3811	0.4438	
Ta_106	0.7797	0.8316	0.4561	0.4811	
			Continu	ed on next page	

3

Table 1 – continued from previous page

Taillard Instance	Weighted Sum		Tchebycheff	
	MOEA/D	$\mathrm{MEDA}/\mathrm{D}\text{-}\mathrm{MK}$	MOEA/D	$\mathrm{MEDA}/\mathrm{D}\text{-}\mathrm{MK}$
Ta_107	0.7402	0.8024	0.3574	0.4036
$Ta_{-}108$	0.6983	0.7760	0.4738	0.4960
$Ta_{-}109$	0.7441	0.8242	0.3409	0.3954
Ta_110	0.7056	0.8095	0.4271	0.4321

The results in Table 1 show that, overall, MEDA/D-MK using the scalarizing function $Weighted\ Sum\ (MEDA/D-MK^w)$ obtain the best results. MEDA/D-MK w significantly outperforms the other three algorithm configurations in 78 of the 110 test instances. As Miettinen [1] argued, the $Weighted\ sum\ approach$ is good at convex (concave) bi-objectives problems, while Tchebycheff approach is useful when the problem is non-convex. This is also confirmed in our results, in which $Weighted\ sum$ have outperformed Tchebycheff. Therefore, due to these results, we have used the $Weighted\ sum$ for the remaining experimental studies.

Moreover, these results contemplate that, MEDA/D-MK significantly outperforms MOEA/D (using the tailored genetic operators for the objectives TFT and C_{max} in most of the test instances.

References

[1] K. Miettinen, Nonlinear multiobjective optimization, vol. 12, Springer Science & Business Media, 2012.