Diagrammes E-pH = Diagrammes de Pourbaix

doc 1 : Rappels sur les domaines de prédominance (DP) et domaines d'existence (DE)

l'oxydant ou le réducteur peuvent avoir des propriétés acido-basiques :

• l'oxydant ou le réducteur peuvent précipiter quand le pH augmente :

à partir de $\mathbf{pH_{lim}}$: $\mathbf{M}^{n+} + \mathbf{n} \ OH^{-} \Leftrightarrow \mathbf{M}(OH)_{n(s)}$ précipité = hydroxyde dans ce cas

 $pH_{\mbox{\scriptsize lim}1}$: début d'apparition du précipité

si
$$[M^+]$$
 initiale = Co donc $K_S = Co. [OH^-]$ $^n = Co.(Ke/h)^n$

$$pH_{lim} = pKe - 1/n * (pK_S + log Co)$$

doc 2 : Différentes conventions de tracé

> Frontière entre une espèce soluble et un solide :

Sur le domaine frontière (DF), [espèce soluble] = Ctr (Ctr = concentration de tracé ou de travail)

Ex :
$$Ag^+ + 1 e^- \Leftrightarrow Ag E = 0.8 + 0.06 \log[Ag^+]$$

 $E_{DF} = 0.8 + 0.06 \log[Ctr]$

> Frontière entre une espèce soluble et un gaz

Sur le domaine frontière (DF), [espèce soluble] = Ctr et Pgaz = Ptr

$$\begin{array}{ccc} Ex:2\;H^{+}\;+2\;e^{-} & \Leftrightarrow & H_{2(g)}\;\;E=0+0,03log[\;H^{+}]^{2}\:/\:PH_{2}\!/P^{\circ}\\ & E_{DF}=-\;0,06pH-0,03\;log\;Ptr/P^{\circ} \end{array}$$

> Frontière entre 2 espèces solubles

Convention 1 : sur le DF, il y a égalité des concentrations des 2 espèces solubles ; cette concentration étant fixée arbitrairement Ctr

Ex:
$$Cr_2O_7^{2-} + 14 H^+ + 6 e^- \Leftrightarrow 2 Cr^{3+} + 7 H_2O$$

$$\begin{split} E &= 1{,}33 + 0{,}01log[\ Cr_2O_7 \ ^{2\text{-}} \][\ H^+]^{14}/[\ Cr \ ^{3\text{+}}]^2 \\ E &= 1{,}33 - 0{,}14pH + 0{,}01log \ [\ Cr_2O_7 \ ^{2\text{-}} \]/[\ Cr \ ^{3\text{+}}]^2 \end{split}$$

Sur le DF :
$$[Cr_2O_7^{2-}] = [Cr^{3+}] = Ctr donc E_{DF} = 1,33 - 0,14pH - 0,01 log Ctr$$

Convention 2 : on fixe arbitrairement une concentration totale Ctr en espèces dissoutes avec égalité des concentrations des 2 espèces dissoutes sur le DF.

Sur le DF :
$$[Cr_2O_7^{2-}]=[Cr^{3+}]$$
 et $Ctr = [Cr_2O_7^{2-}]+[Cr^{3+}]$ $[Cr^{3+}]=Ctr/2$ et $[Cr_2O_7^{2-}]=Ctr/2$ donc $E_{DF}=1,33-0,14$ pH - 0,01 log $Ctr/2$

Convention 3 : on fixe arbitrairement une concentration totale Ctr en élément avec égalité des concentrations atomiques des 2 espèces sur le DF.

Sur le DF : 2. [
$$Cr_2O_7^{2-}$$
]=[Cr^{3+}] et $Ctr = 2$.[$Cr_2O_7^{2-}$]+[Cr^{3+}] [Cr^{3+}] = $Ctr/2$ et [$Cr_2O_7^{2-}$]= $Ctr/4$ donc $E_{DF} = 1,33 - 0,14$ pH - 0,01 log Ctr

doc 3: Diagramme E-pH de l'eau

$$O_2 + 4 H^+ + 4 e^- \Leftrightarrow 2 H_2O$$

$$2 \text{ H}^+ + 2 \text{ e}^- \Leftrightarrow \text{H}_2$$

■ Couple
$$O_2(g)/H_2O(l)$$
: $E_1 = 1,229 + \frac{0,059}{4}log(p_{O_2}/p^0) - 0,059 pH$.

■ Couple H+{aq}/H₂(g}:
$$E_2 = -0.059 \text{ pH} - \frac{0.059}{2} \log(p_{\text{H}_2}/p^0)$$
.

doc 4: Diagramme E-pH du fer

Les espèces considérées ici sont les suivantes :

Fe(s), Fe
$$^{2+}$$
 , Fe(OH)₂(s) pK_{S1} =15,26 , Fe $^{3+}$, Fe(OH)₃(s) pK_{S2} = 37,53

$$E^{\circ}$$
 (Fe²⁺ / Fe) =- 0,44 V/ESH et E° (Fe³⁺/ Fe²⁺) = 0,77V

> Recherche des couples à étudier

Une entité dont l'élément chimique principal correspond à un nombre d'oxydation élevé, a un DP à un potentiel élevé

Rappel sur les nombres d'oxydation:

■ Le n.o. d'un élément est égal à zéro dans tout corps pur simple à l'état standard.

$$C\ell_2(g)$$
 : n.o. $(C\ell) = 0$; $P_4(s)$: n.o. $(P) = 0$.

■ Dans un ion monoatomique, le n.o. de l'élément est égal à la charge de l'ion.

$$Na^+$$
: n.o. (Na) = +1; S^{2-} : n.o.(S) = -11

■ Les sommes des n.o. des différents éléments dans la molécule d'un corps pur composé ou dans un ion polyatomique sont respectivement égales à zéro ou à la charge de l'ion.

Comme bases de calcul, on prend en général :

$$n.o.(H) = +I$$
 et $n.o.(O) = -II$.

Dans
$$H_2SO_4$$
; n.o. (S) + 2n.o. (H) + 4n.o. (O) = 0.

D'où: n.o.
$$(S) = +VI$$
.

Dans
$$HPO_4^{2-}$$
: n.o. (P) + n.o. (H) + 4n.o. (O) = -II.

D'où:
$$\mathbf{n.o.}(P) = +V$$
.

Plus le pH augmente, plus il y a d'ions hydroxyde ; plus l'espèce est basique

ébauche de diagramme :

n.o

> Diagramme E-pH du fer

Diagramme E-pH du fer avec les oxydes à la place des hydroxydes $Fe_3O_4 \ n.o(Fe) = VIII/III \ et \ Fe_2O_3 \ n.o(Fe) = III$

En fait pour Fe_3O_4 , le calcul donne un n.o moyen ; il y a en fait dans cet oxyde des ions Fe^{2+} et Fe^{3+} . Il faudrait revoir certaines frontières car certains couples ont changé.

doc 5: Diagramme E-pH du zinc (Ctr = 0.01 ou 10^{-6} mol/L)

Les espèces considérées ici sont les suivantes :

$$Zn(s)$$
, Zn^{2+} , $Zn(OH)_2(s)$ pK_S =16,35

$$Zn(OH)_4^{2-}log\beta_4 = 14,7 \text{ et } E^{\circ} (Zn^{2+}/Zn) = -0,763 \text{ V/ESH}$$

Pour pH_{lim1}:
$$K_S = [Zn^{2+}][OH^{-1}]^2 = Ctr.Ke^2/h^2$$

Pour pH_{lim2}:
$$K_S.\beta_4 = [Zn(OH)_4^{\frac{1}{2}}]/[OH]^2 = Ctr.h^2/Ke^2$$

Si Ctr = 0,01 mol/L
$$pH_{lim1}$$
 = 6,82 et pH_{lim2} = 13,8 Si Ctr = 10 $^{-6}$ mol/L pH_{lim1} = 8,82 et pH_{lim2} = 11,8

> Equations des DF

• Couple Zn²⁺/Zn $Zn^{2+} + 2e^{-} \Leftrightarrow Zn(s)$

$$E_{DF1} = -0.763 + 0.03 \log Ctr$$

Pour Ctr = 0,01 mol/L pH < 6,8
$$\Rightarrow$$
 E_{DF1} = - 0,82V
Pour Ctr = = 10 $^{-6}$ mol/L pH < 8,8 \Rightarrow E_{DF1} = - 0,94V

Couple $Zn(OH)_2/Zn$ $Zn(OH)_2(s) + 2 H^+ + 2 e^- \Leftrightarrow Zn(s) + 2 H_2O$

Même si le couple rédox n'existe qu'en milieu basique, il faut équilibrer la demi-équation rédox avec des H^+ car E° est à pH = 0!

$$E_{DF2} = E_2^{\circ} + 0.03 \log h^2 = E_2^{\circ} - 0.06 pH$$

Calcul de E₂°: il y a continuité du potentiel en pH_{lim1}:

$$E_{DF1}(pH_{lim1}) = E_{DF2}(pH_{lim1})$$

-
$$0.763 + 0.03 logCtr = E_2^{\circ} - 0.06 pH_{lim1} donc E_2^{\circ} = -0.415 V$$

Couple Zn(OH)₄ ²⁻/Zn $Zn(OH)_4^{2-} + 4H^+ + 2e^- \Leftrightarrow Zn(s) + 4H_2O$

 $E_{DF3} = E_3^{\circ} + 0.03 \log h^4 + 0.03 \log Ctr = E_3^{\circ} - 0.12 pH + 0.03 \log Ctr$ Calcul de E_3° : il v a continuité du potentiel en p H_{lim} 2 donc $E_3^{\circ} = 0.473$ V

Pour Ctr = 0,01 mol/L
$$\,$$
 pH > 13,8 $\,$ E = 0,41 - 0,12pH Pour Ctr = = 10^{-6} mol/L $\,$ pH > 11,8 $\,$ E = 0,29 - 0,12pH

> Tracé du diagramme et DP des différentes espèces

doc 6: Diagramme E-pH du cuivre Ctr = 0,01 mol/L

Les espèces considérées ici sont les suivantes :

$$Cu(s)$$
, Cu^+ , $1/2Cu_2O(s)$ $pK_{S2} = 14$, Cu^{2+} , $Cu(OH)_2(s)$ $pK_{S1} = 18$;

$$E_{1}^{\circ}(Cu^{+}/Cu) = 0.52V/ESH \text{ et } E_{2}^{\circ}(Cu^{2+}/Cu^{+}) = 0.16V$$

> Recherche des couples

> Recherche des DF

☐ Couple I/0

• Couple Cu
$$^+$$
/Cu Cu $^+$ + 1 e $^ \Leftrightarrow$ Cu(s)
 $E_{DF1} = 0.52 + 0.06log0.01$

pour pH $< 2 \Rightarrow E_{DF1} = 0.4V$

• Couple Cu₂O/Cu 1/2Cu₂O(s) + H⁺ + 1 e⁻ \Leftrightarrow Cu(s) + 1/2 H₂O $E_{DF2} = E_3^{\circ}$ - 0,06pH Continuité de E pour pH = 2 donc E_3° = 0,52V

pour pH > 2
$$\Rightarrow$$
 E_{DF2} = 0,52 - 0,06pH

□ Couple II/I

• Couple Cu^{2+} / Cu^{+} $Cu^{2+} + 1 e^{-} \Leftrightarrow Cu^{+}$ $E'_{DF1} = 0.16 + 0.06 log Ctr/Ctr = 0.16 V$

pour pH
$$<$$
 2 \Rightarrow E'_{DF1}= 0,16V

• Couple Cu²⁺ / Cu₂O(s) Cu²⁺ +1/2 H₂O + 1 e $^-\Leftrightarrow 1/2$ Cu₂O(s) + \mathbf{H}^+ E' $_{DF2} = E_4^{\circ} + 0,06logCtr/h = E_4^{\circ} + 0,06pH + 0,06log0,01$ Continuité pour pH = 2 \Rightarrow E' $_{DF1} =$ E' $_{DF2}$ donc $E_4^{\circ} = 0,16V$

pour
$$2 < pH < 5.9 \Rightarrow E'_{DF2} = 0.04 + 0.06pH$$

• Couple Cu(OH)₂ / Cu₂O Cu(OH)₂ + H⁺ + 1 e \Rightarrow 1/2Cu₂O(s) + 3/2 H₂O

 $E'_{DF3} = E_5^{\circ} + 0.06logh = E_5^{\circ} - 0.06pH$ Continuité pour pH = 5,9 \Rightarrow $E'_{DF2} = E'_{DF3}$ donc $E_5^{\circ} = 0.748V$

pour pH>
$$5.9 \Rightarrow E'_{DF3} = 0.748 - 0.06$$
pH

pour pH < 4 : Cu⁺ et Cu₂O (s) n'ont pas de domaine stable nouveau couple à étudier : Cu²⁺/Cu(s) $Cu^{2+} + 2 e^- \Leftrightarrow Cu(s)$ $E_{DF} = E_6^{\circ} + 0.06 log Ctr$ Calcul de E_6° : $E_6^{\circ} = (E_1^{\circ} + E_2^{\circ})/2 = 0.34 V$ $E_{DF} = 0.34 + 0.06 log Ctr = 0.28 V$

doc 7: Lecture d'un diagramme E-pH vide

Voici le diagramme E-pH du chrome ; on considère les espèces chimiques en solution : Cr^{2+} , CrO_4^{2-} , CrO_2^{-} , Cr^{3+} , $Cr_2O_7^{-2-}$ et les espèces solides : Cr et $Cr(OH)_3$

Convention: Ctr = somme des concentrations en élément chrome

- 1) Attribuer chaque espèce chimique à un domaine.
- 2) Calculer Ctr.
- 3) Calculer pK_S de $Cr(OH)_3$.
- (a) et (b) correspondent aux couples de l'eau (chaque gaz dans l'état standard) Données : E°(Cr^{2+}/Cr) = 0,91V

doc 8 : Réactions des métaux avec l'eau

1) réaction du zinc avec l'eau

Le DP du zinc est différent du DP de l'eau \forall le pH donc le zinc est oxydé par l'eau mais les produits obtenus dépendent du pH :

$$Si\ Ctr = 0.01\ mol/L$$
:

$$pH < 6.8 : Zn(s) + 2H^{+} \rightarrow Zn^{2+} + H_{2(g)}$$

 $6.8 < pH < 13.8 : Zn(s) + 2 H_{2}O \rightarrow Zn(OH)_{2(s)} + H_{2(g)}$
 $pH > 13.8 : Zn(s) + 2 OH^{-} + 2 H_{2}O \rightarrow Zn(OH)_{4}^{2-} + H_{2(g)}$

2) réaction du fer avec l'eau (Ctr = 0.01 mol/L)

Le DP du fer est différent du DP de l'eau \forall le pH donc le fer est oxydé par l'eau mais les produits obtenus dépendent du pH :

$$pH < 7,37 : Fe(s) + 2H^+ \rightarrow Fe^{2+} + H_{2(g)}$$

 $pH > 7,37 : Fe(s) + 2 H_2O \rightarrow Fe(OH)_{2(s)} + H_{2(g)}$

3) réaction du cuivre avec l'eau ($Ctr = 0.01 \ mol/L$)

 \forall le pH, les DP de Cu(s) et H2O ont une partie commune donc le cuivre solide est stable dans l'eau \forall le pH.

doc 9: Hydrométallurgie du zinc

On peut obtenir du zinc pur par électrolyse d'une solution aqueuse contenant des ions zinc cette solution étant obtenue à partir de **sulfure de zinc ZnS blende.**

- 1) Obtention de ZnO(s)
- ➤ Il faut isoler la blende de la gangue par le procédé de **flottation** : le minerai est broyé puis placé dans de l'eau en présence de O₂ ; comme les sulfures ont une faible mouillabilité de surface, en présence de O₂, la blende flotte. On obtient ainsi un concentré contenant 40 à 60% de blende.
- ➤ Grillage du concentré : oxydation par l'air à 800°C

$$ZnS(s) + 3/2 O_{2(g)} \rightarrow ZnO(s) + SO_{2(g)}$$

Tous les autres métaux (sous forme se sulfures, de carbonates) sont en même temps oxydés. Ce mélange d'oxydes est appelé **calcine.**

2) Lixiviation acide de la calcine : obtention de la solution contenant Zn²⁺ $ZnO(s) + 2H^+ \rightarrow Zn^{2+} + H_2O$

L'acide utilisé est l'acide sulfurique lui-même sous-produit du grillage ($SO_{2(g)} + \frac{1}{2}$ $O_{2(g)} \rightarrow SO_3$ puis $SO_3 + H_2O \rightarrow H_2SO_4$). Le problème est que tous les autres oxydes sont ainsi solubilisés et on obtient un mélange de cations en plus de Zn^{2+} : Fe^{2+} , Fe^{3+} , Cu^{2+} , Cd^{2+} ... et lorsqu'on fera l'électrolyse de cette solution on réduira tous ces cations avant Zn^{2+} puisque le $E^{\circ}(Zn^{2+}/Zn) = -0.76V$; il faut donc purifier cette solution.

- 3) Purification de la solution
- Elimination de Fe²⁺ en faisant barboter de l'air dans la solution ; cf diag E-pH du fer, les ions Fe²⁺ sont donc oxydés en ions Fe³⁺.
- On place ensuite de la calcine (entre autre ZnO) qui est basique jusqu'à ce que le pH de la solution soit environ de 5.

A pH = 5, les ions Fe³⁺ précipitent sous forme de Fe(OH)_{3(s)}. Si on augmente trop le pH pour faire précipiter Cu ²⁺ en Cu(OH)₂, Zn ²⁺ précipite aussi (2 limites trop voisines). Une simple décantation permet d'éliminer Fe(OH)_{3(s)}.

• Il faut encore éliminer Cu ²⁺, Cd ²⁺ par **cémentation**:
On traite la solution par un métal très réducteur (ici de la poudre de zinc) qui réduit tous les ions en leurs métaux ; ce mélange de solides précipite et est appelé cément.

• On obtient alors une solution contenant des ions Zn^{2+} , H^+ et SO_4 ²⁻qu'on électrolyse (voir chapitre courbes i-E)

Convention de tracé des E-pH : $[Zn^{2+}] = 0,1 \text{ mol/L}[Fe^{3+}] = [Cu^{2+}] = 0,01 \text{ mol/L}$

doc 10 : Diagramme E-pL

Il faut trouver maintenant les équations E = f(pL) des DF d'oxydants et de réducteurs qui peuvent se complexer.

1) 1^{er} exemple

Le fer (III) se complexe en milieu fluorure tandis que le fer (II) non. Représenter le diagramme E fonction de pF = $-\log [F^-]$ du système Fe^{III}/Fe^{II} en présence d'ions fluorure.

Données: $-E^{o}$ (Fe³⁺/Fe²⁺) = 0,77 V.

- Constantes de dissociation successives des complexes FeF₃: 2,8 FeF₂: 3,9 FeF²: 5,2.

[F] augmente

2) $2^{\grave{e}^{me}}$ exemple

Soient les espèces contenant l'élément mercure : Hg(l), Hg_2^{2+} , $Hg_2(SCN)_{2(s)}$, Hg^{2+} , $Hg(SCN)_2$, $Hg(SCN)_3$, $Hg(SCN)_4^{2-}$ Compléter le diagramme E-pSCN suivant ; indiquer la pente du segment (2).

8

