Principles and Applications of Digital Image Processing

HW₂

- You are preparing a report and have to insert in it an image of size 2048×2048 pixels.
 - (a)*Assuming no limitations on the printer, what would the resolution in line pairs per mm have to be for the image to fit in a space of size 5 × 5 cm?
 - **(b)** What would the resolution have to be in dpi for the image to fit in 2×2 inches?
- **2.12*** Suppose that a flat area with center at (x_0, y_0) is

illuminated by a light source with intensity distribution

$$i(x, y) = Ke^{-[(x-x_0)^2 + (y-y_0)^2]}$$

Assume for simplicity that the reflectance of the area is constant and equal to 1.0, and let K = 255. If the intensity of the resulting image is quantized using k bits, and the eye can detect an abrupt change of eight intensity levels between adjacent pixels, what is the highest value of k that will cause visible false contouring?

- **2.18** Consider the image segment shown in the figure that follows.
 - (a)*As in Section 2.5, let $V = \{0,1\}$ be the set of intensity values used to define adjacency. Compute the lengths of the shortest 4-, 8-, and m-path between p and q in the following image. If a particular path does not exist between these two points, explain why.

- **(b)** Repeat (a) but using $V = \{1, 2\}$.
- **2.36** With reference to Table 2.3, provide single, composite transformation functions for performing the following operations:
 - (a)* Scaling and translation.
 - **(b)*** Scaling, translation, and rotation.
 - (c) Vertical shear, scaling, translation, and rotation.
 - (d) Does the order of multiplication of the individual matrices to produce a single transformations make a difference? Give an example based on a scaling/translation transformation to support your answer.

TABLE 2.3 Affine transformations based on Eq. (2-45).

Transformation Name	Affine Matrix, A	Coordinate Equations	Example
Identity	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	x' = x $y' = y$	y'
Scaling/Reflection (For reflection, set one scaling factor to -1 and the other to 0)	$\begin{bmatrix} c_x & 0 & 0 \\ 0 & c_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x' = c_x x$ $y' = c_y y$	x'
Rotation (about the origin)	$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x' = x \cos \theta - y \sin \theta$ $y' = x \sin \theta + y \cos \theta$	x'
Translation	$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$	$x' = x + t_x$ $y' = y + t_y$	y'
Shear (vertical)	$\begin{bmatrix} 1 & s_v & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x' = x + s_v y$ $y' = y$	y'
Shear (horizontal)	$\begin{bmatrix} 1 & 0 & 0 \\ s_h & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x' = x$ $y' = s_h x + y$	y'

3.12 An image with intensities in the range [0,1] has the PDF, $p_r(r)$, shown in the following figure. It is desired to transform the intensity levels of this image so that they will have the specified $p_z(z)$ shown in the figure. Assume continuous quantities, and find the transformation (expressed in terms of r and z) that will accomplish this.

3.21 Given the following kernel and image:

- (a) Give the convolution of the two.
- **(b)** Does your result have a bias?