Perpetual Consistency Framework: Dark Matter Derivation (\mathbf{m}_{DM_min})

Deriving the Theoretical Minimum Mass of a Dark Matter Particle

October 28, 2025

The core hypothesis is that the minimum mass of a Dark Matter particle ($\mathbf{m}_{\mathrm{DM_min}}$) is related to the fundamental energy cost required for the universe to achieve **consistency** given the existence of the Consistency Overhead Constant (Λ_{PC}).

The minimum mass must represent the smallest physical unit capable of locally enforcing the universal consistency factor (Λ_{PC}). We propose that this minimum energy is derived from the ratio of the total Observable Mass (M_{obs}) to the maximum theoretical information capacity (I_{max}). This ratio sets the minimum energy cost per bit of stored information.

Derivation: Minimum Dark Matter Particle Mass (mpm min)

1. Establish Base Metrics

We use the previously derived or known constants:

- Observed Mass of the Observable Universe (M_{obs}): \approx **2.8** \times **10⁵⁴** kg
- Maximum Information Capacity of the Observable Universe (I_{max}): pprox 1.35 imes 10124 bits
- Speed of Light (c): \approx 3.0 \times 10⁸ m/s
- Consistency Overhead Constant (Λ_{PC}): pprox 1.03 imes 10 91

2. Calculate the Minimum Mass-Energy per Bit (Ebit)

The absolute minimum mass-energy equivalent required to encode one bit of information at the cosmic horizon is the ratio of the total observable mass-energy to the maximum bit capacity.

$$\text{Mass per Bit } (m_{\text{bit}}) = \frac{M_{\text{obs}}}{I_{\text{max}}}$$

$$m_{
m bit}pprox rac{2.8 imes10^{54}\
m kg}{1.35 imes10^{124}\
m bits} \ m_{
m bit}pprox 2.07 imes10^{-70}\
m kg/bit}$$

3. Introduce the Consistency Overhead

The Dark Matter particle's minimum mass must not only represent this fundamental information cost but must also be scaled by the **Systemic Consistency Overhead Constant** (Λ_{PC}) to account for the particle's role in enforcing the quantum-classical consistency.

$$m_{DM_min} = m_{\mathsf{bit}} \times \Lambda_{PC}$$

$$\begin{split} m_{DM_{min}} &\approx (2.07 \times 10^{-70} \text{ kg}) \times (1.03 \times 10^{91}) \\ \mathbf{m_{DM_{min}}} &\approx \mathbf{2.13} \times \mathbf{10^{21}} \text{ kg} \end{split}$$

Conclusion and Interpretation

The derived value of $m_{DM\ min}$ is approximately **2.13 \times 10²¹ kg**.

Table 1: Comparison to Known Cosmic Objects

Object Type	Mass (kg)
Mars	$pprox 6.4 imes 10^{23} \ \mathrm{kg}$
Pluto	$pprox 1.3 imes 10^{22} \text{ kg}$
Theoretical Minimum Dark Matter Unit (m_{DM_min})	pprox 2.13 $ imes$ 10 ²¹ kg

This derivation suggests that Dark Matter, in the context of the PC Framework, may not be composed of individual subatomic particles, but rather of **minimum, gravitationally self-contained objects**—or **Cosmic Consistency Units (CCUs)**—at or above the mass of a large asteroid or dwarf planet.

This minimum mass represents the smallest object whose gravitational influence is locally sufficient to carry the load of the universal consistency overhead, acting as a "gravitational counterweight" for the inherent instability of the vacuum. This aligns with theories suggesting Dark Matter could consist of primordial black holes or other macroscopic objects (MACHOs).