# CS 8803 Deep RL

# Shared Visual Representations in Multi-Agent Reinforcement Learning

Fall 2024

Presenters: Biswajit Banerjee, Chinar Dankhara, Rishabh Goswami

Instructor: Animesh Garg



### Motivation

- Reinforcement Learning (RL) agents struggle with redundant visual processing
- Traditional methods require each agent to learn input visual representations from scratch

- Biological systems reuse vision mechanisms across species and tasks. Our work is inspired by this
- We decided to apply shared visual representations in multi-agent RL scenarios feeding environment images directly

### Formal Problem Statement

- Redundant computation in multi-agent environments by training visual processing from scratch
- Inconsistent visual interpretations among agents. Bespoke implementations increase computational costs and impede scalability
- There is need for a unified approach to visual processing in RL that focuses on using learned representations on visual inputs

### Related Work

- Multi-Agent RL scenarios require effective communication and coordination
- Spatial intention maps enhance decentralized agent coordination (Wu et al, 2021). These allows agents to represent their goals in shared intention representation space
- Visual communication maps improve convergence and robustness (Nguyen et al, 2020)
- Our work is inspired by these approaches. Shared visual encoders promise reduced redundancy and better performance

# Approach

- Implement a shared vision encoder ("Eyes") for all agents
- Convert raw RGB images into a 16-dimensional latent space using convolutional filters
- Enable different RL algorithms to utilize the same visual inputs produced from this module

 Aim is to enhance learning efficiency and coordination by ensuring consistent inputs

# Algorithms (Part 1)

#### **REINFORCE:**

- Policy-based baseline method
- Directly learns action probabilities from states

### Deep Q-Network (DQN):

- Value-based approach estimating Q-values for state-action pairs
- Utilizes experience replay and target networks for stability

# Algorithms (Part 2)

### **Soft Actor-Critic (SAC):**

- Actor-critic method with entropy regularization
- Balances exploration and exploitation through maximum entropy framework

We evaluate performance across different RL paradigms using the shared visual encoder

### Environments

- Combact Tank:
- **Description:** Two tanks compete in a 2D arena.
- Observation Space: RGB images (210x160x3).
- Action Space: 18 discrete actions (movement, shooting, etc.).
- Reward Structure: Winner (+1), Loser (0).
- Space War:
- **Description:** Two spaceships engage in combat within a 2D space.
- Observation Space: RGB images (210x160x3).
- Action Space: 18 discrete actions (movement, firing, etc.).
- **Reward Structure:** Winner (+1), Loser (-1).





# Benchmark Challenges

- Since it's adversarial training it's hard to benchmark.
- Both of those agents are getting efficient, and reward depends on both of those agents' actions.
- We developed several techniques to make sure our agent is improving
- Also, some benchmarks to see what is going on

### Training Methods

- Policy Zero (warm up)
  - Opponent never moves, always action is zero
  - Target kill off static opponent.
- Balanced training
  - Same policy and vision copied to both agents
  - They fight each other and back propagate.
  - Only optimize the looser.
  - Helped stabilize process and reduce mode collapse issue.
- Vision / policy transfer
  - We eventually had to copy the vision encoder or the policy to the opponent

# Offender and Victim (Behavior Engineering)

#### Offender:

- Rewarded highly for killing opponent (victim).
- Penalized for not killing or for taking non lethal actions.

#### Victim:

- Rewarded slightly for surviving.
- Penalized for not killing or for taking non lethal actions.

#### Offender Rewards:

| Action                                  | Reward         | Reason                                    |
|-----------------------------------------|----------------|-------------------------------------------|
| Successfully kills victim               | +4.0           | Major objective achieved.                 |
| Is unable to kill                       | -0.2           | Penalize wasteful actions.                |
| Takes non-lethal action Victim Rewards: | -0.1           | Slight penalty to incentivize aggression. |
|                                         |                |                                           |
| Action                                  | Reward         | Reason                                    |
| Action Successfully kills Offender      | Reward<br>+4.0 | Reason  Major objective achieved.         |
| Successfully kills                      |                | Major objective                           |

### Offender and Victim Behaviors

#### **Space War:**

- Offender (top left): More precise following the victim and controlled shooting
- Victim (bottom right): adapted to vertical movement as the most efficient.

#### **Battle Tanks:**

- Offender (left): Tries to intercept victim in its path.
- Victim (right): Confuses offender by shooting in one direction and running to other.





### Conclusion

- Shared Vision Encoder reduces computational redundancy and ensures consistent visual inputs across agents
- SAC outperforms REINFORCE and DQN in both Combat Tank and Space War
- DQN struggles with sparse and negative rewards

### Future Improvements:

- Test in environments with denser rewards
- Enhance encoder for more complex representations