Homogeneous Dynamical System (Spring 2022, Runlin Zhang)

Ajorda Jiao

Contents

1		Introduction of Homogeneous Dynamics	3
	1.1	Motivations and applications	3
	1.2	Measure rigidity	
2		Oppenheim Conjecture	7
	2.1	22.2.25: The unipotent flow is minimal on compact space	7
	2.2	22.3.4: Weak Oppenheim conjecture I	
	2.3	22.3.8: Weak Oppenheim conjecture II	11
	2.4	22.3.11: Completion of some gaps	
	2.5	22.3.18: Unipotent flows on X_2	15
	2.6	22.3.22: Strong Oppenheim conjecture	17
	2.7	22.3.25: General dimension	19
3		Measure Rigidity	22
	3.1	22.4.8: Ergodicity and mixing	22
	3.2	22.4.15: Classification of finite invariant measures under unipotent flows	
		in $\mathrm{SL}(2,\mathbb{R}),$ I	24
	3.3	22.4.19: Classification of finite invariant measures under unipotent flows	
		in $\mathrm{SL}(2,\mathbb{R}),\mathrm{II}$	27
	3.4	22.4.29: Equidistribution of unipotent flows on finite volume quotient of	
		$\mathrm{SL}(2,\mathbb{R})$	29

Introduction of Homogeneous Dynamics

§1.1 Motivations and applications

§1.1.i Horocycles on constant negative curvature surfaces

Equip $\mathbb{H}^2 := \{x + iy \in \mathbb{C}, y > 0\}$ with the metric $\frac{\mathrm{d}x^2 + \mathrm{d}y^2}{y^2}$. Let $\Gamma \leqslant \mathrm{Isom}(\mathbb{H}^2)$ be a discrete (torsion free) subgroup such that $\Gamma \setminus \mathbb{H}^2$ is compact (such a subgroup is called a uniform lattice). Then $\Gamma \setminus \mathbb{H}^2$ is a compact surface of constant negative curvature.

Let $\pi: \mathbb{H}^2 \to \Gamma \setminus \mathbb{H}^2 = M$ be the quotient map. Consider a horocycle $\mathcal{H} \subset \mathbb{H}^2$.

Theorem 1.1.1

For every \mathcal{H} , $\pi(\mathcal{H})$ is dense in M.

Theorem 1.1.2

If $M = \Gamma \setminus \mathbb{H}^2$ ($\Gamma \leq \text{Isom}(\mathbb{H}^2)$ still discrete) is just of finite volume, then:

- 1. $\pi(\mathcal{H})$ is either closed or dense in M.
- 2. Consider a sequence of closed horocycles $\pi(\mathcal{H}_i)$ with length $\to \infty$, then $\pi(\mathcal{H}_i)$ becomes dense in $\Gamma \setminus \mathbb{H}^2$.

§1.1.ii Isometric immersion of hyperbolic spaces

Let \mathbb{H}^3 be the three dimensional hyperbolic space $\{(x+iy,z)\in\mathbb{C}\times\mathbb{R},z>0\}$ equipped with the metric $\frac{1}{z^2}(\mathrm{d}x^2+\mathrm{d}y^2+\mathrm{d}z^2)$. Let $\Gamma\leqslant\mathbb{H}^3$ be a discrete (torsion free) subgroup, such that \mathbb{H}^3 is compact (finite volume suffices). Consider an isometric embedding $\iota:\mathbb{H}^2\to\mathbb{H}^3$. The image of ι can be explicitly described.

Theorem 1.1.3

The following holds:

- 1. $\pi(\iota(\mathbb{H}^2))$ is either closed or dense in M;
- 2. Given an infinite sequence of distinct closed $\pi(\iota_i(\mathbb{H}^2))$, then $\lim_i \pi(\iota_i(\mathbb{H}^2))$ is dense in M.

§1.1.iii Oppenheim conjecture/Margulis theorem

Let Q be a real quadratic form in 3 variables, indefinite and non-degenerated. Consider Q as a function $\mathbb{R}^3 \to \mathbb{R}$.

Theorem 1.1.4

Assume Q is **not** proportional to a quadratic form with \mathbb{Q} -coefficients. Then $Q(\mathbb{Z}^3)$ is dense in \mathbb{R} .

Remark 1.1.5 — It is true for $k \ge 3$ variables. But it is false for Q only has two variables.

Theorem 1.1.6 (Eskin-Margulis-Mozes)

Further assume Q has at least signature (3,1), then for every $a < b \in \mathbb{R}$,

$$\{v \in \mathbb{Z}^4 : ||v|| \le T, Q(v) \in (a, b)\}$$

 $\sim \text{Vol} \{v \in \mathbb{R}^4 : ||v|| \le T, Q(v) \in (a, b)\}$
 $\sim C_Q(b - a)T^2$.

§1.1.iv Littlewood conjecture

For $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, we have $\inf \{ n \langle n\alpha \rangle : n \in \mathbb{Z}_+ \} < 1$.

Fact 1.1.7. There exists α such that $\inf \{ n \langle n\alpha \rangle : n \in \mathbb{Z}_+ \} > 0$.

Conjecture 1.1.8

For all $(\alpha, \beta) \in \mathbb{R}^2$, $\alpha, \beta \notin \mathbb{Q}$,

$$\inf \{ n \langle n\alpha \rangle \langle n\beta \rangle : n \in \mathbb{Z}_+ \} = 0.$$

Remark 1.1.9 — The conjecture is reasonable in some sense:

- 1. $\forall \delta > 0$, $\inf \{ n^{1-\delta} \langle n\alpha \rangle \langle n\beta \rangle : n \in \mathbb{Z}_+ \} = 0$.
- 2. $\forall \delta > 0, \exists (\alpha, \beta), \text{ such that inf } \{n^{1+\delta} \langle n\alpha \rangle \langle n\beta \rangle : n \in \mathbb{Z}_+\} > 0.$

§1.1.v Quantum unique ergodicity

Consider $M^2 = \Gamma \setminus \mathbb{H}^2$ is a closed hyperbolic surface. Consider $\Delta := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$ acts on $C^{\infty}(M)$. Then:

- 1. $\exists \lambda_0 = 0 < \lambda_1 < \cdots, \lambda_i \to \infty,$
- 2. Let $E_{\lambda_i} := \{ f \in C^{\infty}(M) : \Delta f = \lambda_i f \}$, then $E_{\lambda_i} \neq \emptyset$ and dim $E_{\lambda_i} < \infty$.

For each i, choose $f_i \in E_{\lambda_i}$. Consider $(|f_i|^2 \text{Vol})_i$ a sequence of measure on M, normalized to be probability measure.

Conjecture 1.1.10

 $|f_i|^2$ Vol tends to $\frac{1}{\text{Vol}(M)}$ Vol in the weak* topology.

Further assume Γ is a "congruence subgroup". In this situation, there is an additional supply of operators, called Hecke operators, that commute with the Laplacian. Let $f_i \in E_{\lambda_i}$ which is also an eigenfunction of Hecke operator.

Theorem 1.1.11 (Lindenstrauss-Bourgain)

In such settings, the conjecture holds.

§1.2 Measure rigidity

§1.2.i Unipotent rigidity

Let $G = \mathrm{SL}(2,\mathbb{R}), \ \Gamma \leqslant G$ a discrete subgroup. G has a right G-invariant Riemannian metric. It induces a volume measure Vol on G/Γ .

Fact 1.2.1. Vol is left G-invariant.

Let
$$U = \left\{ u_s = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} : s \in \mathbb{R} \right\}$$
.

Theorem 1.2.2

If G/Γ is compact, then Vol is the unique U-invariant finite measure(up to a scalar).

Theorem 1.2.3

If Vol is finite (normalized to be probability measure). Then every U-invariant probability measure is a "convex combination" of:

- (i) the *U*-invariant measure supported on a closed (and compact) orbit.
- (ii) Vol.

Theorem 1.2.4 (Measure Rigidity Theorem)

Let G be a (conneted) Lie group, let $U = \{u_s : s \in \mathbb{R}\}$ be an Ad-unipotent oneparameter subgroup of G. Let $\Gamma \leq G$ be a closed subgroup. Then every U-invariant ergodic probability measure on G/Γ is "homogeneous".

Theorem 1.2.5 (Equidistribution and Topological Rigidity)

Assume Γ is a lattice in G, then for any $x \in G/\Gamma$:

1. There exists a probability "homogeneous" measure μ such that

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(u_s x) ds = \int f(x) d\mu(x), \quad \forall f \in C_c(G/\Gamma).$$

2. The closure of the orbit Ux is "homogeneous", which means $\exists H \leqslant G$ closed such that $\overline{Ux} = Hx$.

§1.2.ii Higher rank diagonalizable flow

Let $G = \mathrm{SL}(2,\mathbb{R}), \ \Gamma \leqslant G$ lattice. Consider $A = \left\{ \begin{bmatrix} e^t & 0 \\ 0 & e^{-t} \end{bmatrix} \right\}$ acts on G/Γ .

Conjecture 1.2.6

 $G = \mathrm{SL}(3,\mathbb{R}), \ \Gamma = \mathrm{SL}(3,\mathbb{Z}).$ Consider

$$\mathbb{R}^2 \cong A := \left\{ \begin{bmatrix} e^{t_1} & & \\ & e^{t_2} & \\ & & e^{t_3} \end{bmatrix} : t_1 + t_2 + t_3 = 0 \right\}$$

acts on G/Γ .

- 1. Every A-ergodic probability measure is homogeneous.
- 2. Every bounded A-orbit is closed.

Theorem 1.2.7

 A, G, Γ as in the conjecture, then:

- 1. Every A-invariant ergodic probability measure with "positive entropy" is homogeneous.
- 2. The Hausdorff dimension of $\{x \in G/\Gamma : Ax \text{ is bounded}\}\$ is equal to 2.

2 Oppenheim Conjecture

§2.1 22.2.25: The unipotent flow is minimal on compact space

- Let $G = \mathrm{SL}(2,\mathbb{R})$, let $\Gamma \leqslant G$ be a discrete subgroup.
- Assume for today $X = G/\Gamma$: is compact.
- $\bullet \ U^+ = \left\{ \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} : s \geqslant 0 \right\}.$

Theorem 2.1.1

For all $x \in X$, U^+x is dense in X.

Definition 2.1.2. Let A be a semigroup acting on a topological space Z:

- 1. We say the action is **minimal** if every A-orbit is dense in Z.
- 2. We say the subset $W \subset Z$ is A-minimal if W is A-stable, closed and $A \cap W$ is minimal.

Theorem 2.1.3

Let Y be a U^+ -minimal subset of X. Then $Y = \emptyset$ or Y = X.

Claim 2.1.4. Theorem 2.1.3 implies Theorem 2.1.1

Proof. Zorn's lemma + compactness of X. We can always find a nonempty U^+ -minimal subset of X, which must be X.

Fact 2.1.5. $SL(2,\mathbb{R})$ admits a right-invariant metric compatible with its topology.

Now we fix such a metric $d: G \times G \to \mathbb{R}$. It induces a "quotient" metric $d_X: X \times X \to \mathbb{R}$ by

$$d_X(g\Gamma, h\Gamma) := \inf_{\gamma_1, \gamma_2 \in \Gamma} d(g\gamma_1, h\gamma_2) = \inf_{\gamma \in \Gamma} d(g\gamma, h).$$

For $x \in X = G/\Gamma$, define the **injective radius** of x as

 $\operatorname{InjRad}(x) := \sup \{\delta > 0 : \text{ such that } g \mapsto g.x \text{ is injective on } g \in B(\operatorname{Id}, \delta) \subseteq G \}.$

Exercise 2.1.6. For all $x \in X$, InjRad(x) > 0.

Proof. By Γ is discrete.

Exercise 2.1.7. $\exists r_X > 0$, such that $\forall x \in X$, $\operatorname{InjRad}(x) > r_X$.

Proof. By the compactness of X. Because Γ is cocompact, there exists $C \subseteq G$ compact, such that $\forall x \in X, \exists g_x \in C, x = g_x \Gamma$.

Lemma 2.1.8

 $U^+ \cap X = G/\Gamma$ has no closed (compact) orbit.

Proof. Say: we have a compact orbit $\{u_s.x:s\geqslant 0\}$. Define $s_0=\inf\{s>0:u_s.x=x\}$, then

$$\begin{bmatrix} e^{-t} & \\ & e^{t} \end{bmatrix} u_{s_0} \begin{bmatrix} e^{t} & \\ & e^{-t} \end{bmatrix} \begin{bmatrix} e^{-t} & \\ & e^{t} \end{bmatrix} . x = \begin{bmatrix} e^{-t} & \\ & e^{t} \end{bmatrix} . x.$$

This shows that $\begin{bmatrix} e^{-t} & \\ & e^t \end{bmatrix} . x$ is invariant under $\begin{bmatrix} e^{-t} & \\ & e^t \end{bmatrix} u_{s_0} \begin{bmatrix} e^t & \\ & e^{-t} \end{bmatrix} = u_{e^{-2t}s_0}.$

Corollary 2.1.9

 Γ contains no nontrivial unipotent matrix.

Corollary 2.1.10

The following holds:

- 1. $\forall x \in X$, the map $s \mapsto u_s.x$ is injective.
- 2. $\forall x, \exists s_n, t_n \to \infty$ with $|s_n t_n| \to \infty$, such that $d_X(u_{s_n}.x, u_{t_n}.x) \to 0$.

Proof of Theorem 2.1.3. By corollary 2.1.10, we can find $A_n \in G \setminus U$ and $x_n, x'_n \in U^+x \subseteq X$ with $d_X(x_n, x'_n) \to 0$ and $x'_n = A_n.x_n$. Moreover, we can choose $A_n \to \mathrm{Id}$ (use the fact that injective radius is larger than r_X).

Say
$$A_n = \begin{bmatrix} a_n & b_n \\ c_n & d_n \end{bmatrix}$$
, where $a_n, d_n \to 1, b_n, c_n \to 0$. We have

$$\begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} A_n \begin{bmatrix} 1 & -s \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a_n + sc_n & b_n - sa_n + sd_n - s^2c_n \\ c_n & d_n - sc_n \end{bmatrix}.$$

We want to choose $t = t_s$ such that

$$\begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_n + sc_n & b_n - sa_n + sd_n - s^2c_n \\ c_n & d_n - sc_n \end{bmatrix} = \begin{bmatrix} * & 0 \\ * & * \end{bmatrix}.$$

Take $t = t_s = \frac{-(b_n - sa_n + sd_n - s^2c_n)}{d_n - sc_n}$. Then

$$u_t u_s A_n u_s^{-1} = \begin{bmatrix} \frac{1}{d_n - sc_n} & 0\\ c_n & d_n - sc_n \end{bmatrix}.$$

Fix $\delta > 0$, choose $s = s_{\delta,n} \geqslant 0$ such that $d_n - sc_n = 1 - \delta$ or $1 + \delta$. Let $y_n = u_s.x_n$, $y'_n = u_t u_s A_n.x_n = \begin{bmatrix} (1+\delta)^{-1} & 0 \\ c_n & (1+\delta) \end{bmatrix}.y_n$. By passing to a subsequence, assume that $y_n \to y_\infty$ and $y'_n \to y'_\infty$ both in Y, where $y'_\infty = \begin{bmatrix} (1+\delta)^{-1} \\ (1+\delta) \end{bmatrix}.y_\infty$. Then

$$Y = \overline{U^+ y_\infty'} = \begin{bmatrix} (1+\delta)^{-1} & \\ & (1+\delta) \end{bmatrix} \overline{U^+ y_\infty} = \begin{bmatrix} (1+\delta)^{-1} & \\ & (1+\delta) \end{bmatrix} Y.$$

Let $B^+ = \{a_t u_s : s \in \mathbb{R}_+, t \in \mathbb{R}\}$, where $a_t = \begin{bmatrix} e^t \\ e^{-t} \end{bmatrix}$, then Y is B^+ invariant. The theorem is immediate by the following lemma.

Lemma 2.1.11

We have:

- 1. $B \cap \operatorname{SL}(2, \mathbb{R})/\Gamma$ is minimal.
- 2. $B^+ \cap \operatorname{SL}(2,\mathbb{R})/\Gamma$ is minimal.

§2.2 22.3.4: Weak Oppenheim conjecture I

Theorem 2.2.1 (Weak Version of Oppenheim Conjecture)

Let Q be a nondegenerate, indefinite, quadratic form with real coefficients in 3 variables. Assume Q is **not** proportional to a quadratic form with \mathbb{Q} -coefficients. Then $\overline{Q(\mathbb{Z}^3 \setminus (0))}$ contains 0.

Example 2.2.2

 $Q(x, y, z) = xy - \sqrt{2}z^2$, the statement is trivial for Q because Q(1, 0, 0) = 0.

Definition 2.2.3. Define the special orthogonal group of Q as

$$\mathrm{SO}(Q,\mathbb{R}) \coloneqq \left\{g \in \mathrm{SL}(3,\mathbb{R}), Q \circ g = Q\right\}, \quad \mathrm{SO}(Q,\mathbb{Z}) \coloneqq \left\{g \in \mathrm{SL}(3,\mathbb{Z}), Q \circ g = Q\right\}.$$

Definition 2.2.4. A subgroup $\Lambda \leq \mathbb{R}^N$ is a **lattice** if Γ is discrete and cocompact.

Definition 2.2.5. $\Lambda \leq \mathbb{R}^n$ is a unimodular lattice if Λ is a lattice and $Vol(\mathbb{R}^N/\Lambda) = 1$.

Definition 2.2.6. Let $X_N := \{\text{unimodular lattice in } \mathbb{R}^N \}$ equipped with the **Chabauty** topology.

Remark 2.2.7 — A sequence $\{\Lambda_n\} \subseteq X_N$ converges to $\Lambda_\infty \in X_N$ iff we can find a basis $\{v_1^n, v_2^n, \cdots, v_N^n\}$ of Λ_n such that for every $i=1,2,\cdots,N, \ v_i^n \to v_i^\infty \in \mathbb{R}^N,$ and $\Lambda_\infty = \mathbb{Z} v_1^\infty \oplus \mathbb{Z} v_2^\infty \oplus \cdots \oplus \mathbb{Z} v_N^\infty.$

Remark 2.2.8 — $SL(N, \mathbb{R})$ naturally acts on X_N .

Lemma 2.2.9

The map $g \mapsto g \cdot \mathbb{Z}^N$, induces a homeomorphism $SL(N, \mathbb{R})/SL(N, \mathbb{Z}) \cong X_N$.

Definition 2.2.10. For a discrete subgroup $\Lambda \leq \mathbb{R}^N$, define $\delta(\Lambda) := \inf \{ ||v|| : v \neq 0 \in \Lambda \}$.

Fact 2.2.11. $\delta: X_N \to \mathbb{R}_{>0}$ is continuous.

Lemma 2.2.12 (Mahler's Criterion)

 $\delta: X_N \to \mathbb{R}_{>0}$ is proper, i.e. $(x_n) \subseteq X_N$ diverges iff $\delta(x_n) \to 0$.

Remark 2.2.13 — (x_n) diverges iff for every compact $K \subseteq X_N$, (x_n) will eventually out of K. This is equivalent to (x_n) has no convergent subsequence.

Proof. The "if" part: If $\delta(x_n) \to 0$, we need to show (x_n) is divergent. This is immediate by (x_n) has a convergence subsequence.

The "only if" part: By passing to a subsequence, $\exists \varepsilon > 0$ such that $\delta(x_n) \geqslant \varepsilon > 0$. The statement follows by the following claim.

Claim 2.2.14. $\exists C = C(N, \varepsilon) > 0$, such that every Λ with $\delta(\Lambda) > \varepsilon$ has a basis (v_1, v_2, \dots, v_N) with $||v_i|| \leq C(N, \varepsilon), i = 1, 2, \dots, N$.

Proof. Consider the projection $p: \mathbb{R}^N \to \mathbb{R}^N/\Lambda$. Then p is not injective restricted to $[-1,1]^N$. There will be $v \neq w \in [-1,1]^N$ such that $v-w \in \Lambda$ and $||v-w|| \leq 2\sqrt{N}$. Now we pick $w_1 \in \Lambda$ that minimize $\{||v|| : v \neq 0 \in \Lambda\}$, then $||w_1|| \leq 2\sqrt{N}$.

Let $\pi_1^{\perp}: \mathbb{R}^N \to w_1^{\perp}$ be the orthogonal projection. Consider $\pi_1^{\perp}(\Lambda) \leqslant w_1^{\perp} \cong \mathbb{R}^{N-1}$. Then:

- 1. $\pi_1^{\perp}(\Lambda)$ is discrete and is a lattice in w_1^{\perp} .
- 2. $1 = \|\Lambda\| = \|w_1\| \|\pi_1^{\perp}(\Lambda)\| \geqslant \varepsilon \|\pi_1^{\perp}(\Lambda)\|.$

Then $\|\pi_1^{\perp}(\Lambda)\| \leq \varepsilon^{-1}$ and $\delta(\pi_1^{\perp}(\Lambda))$ is controlled by a function of ε . We can reduce to the situation of dimensional N-1.

Lemma 2.2.15

Let Q be a nondegenerate quadratic form in N variables with real coefficients, then the followings are equivalent:

- (i) $\overline{Q(\mathbb{Z}^N\setminus\{0\})}$ contains 0.
- (ii) $SO(Q, \mathbb{R}) \cdot \mathbb{Z}^N$ is unbounded in X_N .

Proof. (ii) \Longrightarrow (i): By assumption, $\exists g_n \in SO(Q, \mathbb{R})$ such that $(g_n \cdot \mathbb{Z}^N)_n$ diverges in X_N . By Mahler's Criterion 2.2.12, $\delta(g_n \cdot \mathbb{Z}^N) \to 0$, hence $\exists v_n \neq 0 \in \mathbb{Z}^N$ such that $g_n v_n \to 0$.

Consider N=3, Q indefinite.

Fact 2.2.16. $\exists g_Q \in \mathrm{SL}(3,\mathbb{R})$ such that $Q = \lambda(Q_0 \circ g_Q)$, where $\lambda \in \mathbb{R} \setminus \{0\}$ and $Q_0 = 2xz - y^2$.

Then $SO(Q, \mathbb{R}) = g_Q^{-1}SO_{Q_0}(\mathbb{R})g_Q$, hence $SO(Q, \mathbb{R}) \cdot \mathbb{Z}^3$ is unbounded iff $SO(Q_0, \mathbb{Z})g_Q \cdot \mathbb{Z}^3$ is unbounded.

Theorem 2.2.17

Every orbit of $SO(Q_0, \mathbb{R})$ on $X_3 \cong SL(3, \mathbb{R})/SL(3, \mathbb{Z})$ either unbounded or is closed.

Proof of Theorem 2.2.1 assuming Theorem 2.2.17. Otherwise, $SO(Q, \mathbb{R}) \cdot \mathbb{Z}^3$ is compact. Then $SO(Q, \mathbb{Z}) := SO(Q, \mathbb{R}) \cap SL(3, \mathbb{Z})$ is cocompact in $SO(Q, \mathbb{R})$. We want to show that Q is proportional to a \mathbb{Q} -coefficient quadratic form. Otherwise, $\exists \alpha, \beta$ coefficients of Q such that $\frac{\alpha}{\beta} \notin \mathbb{Q}$. Then $\exists \sigma \in Aut(\mathbb{R}/\mathbb{Q})$ such that $\sigma(Q)$ is not proportional to Q.

Step 1:
$$SO(Q, \mathbb{R})^0 = SO(\sigma(Q), \mathbb{R})^0 = \sigma(SO(Q, \mathbb{R}))^0$$
.
 $SO(Q, \mathbb{R})^0 \supseteq SO(Q, \mathbb{Z}) \cap SO(Q, \mathbb{R})^0 = \Gamma \subseteq \sigma(SO(Q, \mathbb{R}))^0$. Consider

$$SL(3,\mathbb{R}) \cap Sym := \{\mathbb{R} - Symmetric matrices\}, \quad g.M = gMg^t.$$

Let $\psi : SO(Q, \mathbb{R}) \to Sym, g \mapsto g.\sigma(Q)$, then ψ factors through $SO(Q, \mathbb{R})/SO(Q, \mathbb{Z}) \to Sym$. Hence, the image of ψ is compact. The following two facts shows that $SO(Q, \mathbb{R})^0$ fixes $\sigma(Q)$ and the statement follows immediately:

- 1. $SO(Q, \mathbb{R})^0$ is generated by one-parameter unipotent flows.
- 2. For every unipotent flow $\{u_t\}$ and $M \in \text{Sym}$, either $\{u_t.M\}$ is unbounded or M is fixed by $\{u_t\}$.

Step 2: A direct compute shows that $SO(Q, \mathbb{R})^0 = SO(\sigma(Q), \mathbb{R})^0$ implies $\sigma(Q)$ is proportional to Q.

§2.3 22.3.8: Weak Oppenheim conjecture II

Theorem 2.3.1

An orbit of $H = SO(Q_0, \mathbb{R})$ on X_3 is either:

- (i) unbounded.
- (ii) compact.
- (iii) its closure contains a $\{v_s\}_{s\geqslant 0}$ -orbit or a $\{v_s\}_{s\leqslant 0}$ -orbit, where $v_s=\begin{bmatrix}1&0&s\\0&1&0\\0&0&1\end{bmatrix}$.

Fact 2.3.2. Theorem $2.3.1 \implies$ Theorem 2.2.17.

Now, we calculate H. Let \mathfrak{h} be the Lie algebra of H, then

$$\mathfrak{h} = \left\{ X \in \mathfrak{gl}(3, \mathbb{R}) : M_0 X = -X^t M_0, M_0 = \begin{bmatrix} & & 1 \\ 1 & & \end{bmatrix} \right\}.$$

After some tough work, we get

$$\mathfrak{h} = \left\{ \begin{bmatrix} x_1 & x_2 & 0 \\ x_4 & 0 & x_2 \\ 0 & x_4 & -x_1 \end{bmatrix} : x_1, x_2, x_4 \in \mathbb{R} \right\}.$$

In particular,

$$u_t := \exp\left(t \begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & t & t^2/2 \\ 1 & t \\ 1 \end{bmatrix}, a_t = \exp\left(t \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} e^t \\ 1 \\ e^{-t} \end{bmatrix} \in H.$$

Proof of Theorem 2.3.1. Take $x_0 \in X_3$ such that $Y_0 = \overline{H.x_0} \neq H.x_0$ and $H.x_0$ is bounded. Let $\Omega := \{y \in Y_0 : Hy \text{ is open in } Y_0\}$. We need the following lemma.

Lemma 2.3.3

 $\Omega \neq Y_0$.

Proof. Otherwise, every orbit of H in Y_0 is closed, in particular Hx_0 is closed. Contradiction.

Continued proof of Theorem 2.3.1. Let Y_1 be a nonempty U-minimal nonempty subset of $Y_0 \setminus \Omega$, where $U = \{u_t\}$. If $y \in Y_0 \setminus \Omega$, then H.y is not open in Y_0 , hence $\exists y_n \in Y_0$ such that $y_n \notin H.y, y_n \to y$.

Case 1: Y_1 is closed U-orbit. Impossible.

Case 2: Y_1 is **not** a closed U-orbit but Y_1 is A-stable, where $A = \{a_t\}$. We want to find a $\{v_s\}_{s \ge 0}$ -orbit or a $\{v_s\}_{s \le 0}$ -orbit inside Y_0 .

Fact 2.3.4. The map $\mathfrak{h} \oplus \mathfrak{h}^{\perp} \to X_3$, $(h, w) \mapsto \exp(h) \exp(w).x_1$ is a local diffeomorphism.

$$\mathfrak{h} = \left\{ X \in \mathfrak{gl}(3, \mathbb{R}) : M_0 X = -X^t M_0, M_0 = \begin{bmatrix} & & 1 \\ 1 & & \end{bmatrix} \right\}.$$

$$\mathfrak{h}^{\perp} = \left\{ X \in \mathfrak{gl}(3, \mathbb{R}) : \operatorname{tr} X = 0, M_0 X = X M_0, M_0 = \begin{bmatrix} & & 1 \\ 1 & & \end{bmatrix} \right\}.$$

Fact 2.3.5. $\mathfrak{sl}(3,\mathbb{R}) = \mathfrak{h} \oplus \mathfrak{h}^{\perp}$, moreover \mathfrak{h}^{\perp} is invariant under $\mathrm{Ad}(H)$.

In this case, there exists $x_1 \in Y_1, A_n \to \operatorname{Id}, A_n.x_1 \in Y_0$ where $A_n \notin H$. Write $A_n = \exp(h_n) \exp(w_n), h_n \in \mathfrak{h}, w_n \neq 0 \in \mathfrak{h}^{\perp}$. Let $x_n = \exp(w_n)x_1 \in Y_0, ||w_n|| \to 0$.

Lemma 2.3.6

For δ sufficiently small, n sufficiently large, there exists $t_{n,\delta} \in \mathbb{R}$ such that:

- (i) $\| \text{Ad}(u_{t_{n,\delta}}) w_n \| \in [10^{-10} \delta, 10^{10} \delta].$
- (ii) Every limit of $Ad(u_{t_n,\delta})w_n$ is in Lie algebra of $\{v_s\}$.

Let $y_{n,\delta} = u_{t_{n,\delta}}.x_1, z_{n,\delta} = u_{t_{n,\delta}}.x_n$. As $x_n = \exp(w_n)x_1$, hence $z_{n,\delta} = \exp(\operatorname{Ad}(u_{t_{n,\delta}})w_n)y_{n,\delta}$. By passing to a subsequence, we assume that

$$z_{n,\delta} \to z_{\infty,\delta}$$
, $\operatorname{Ad}(u_{t_{n,\delta}})w_n \to w_{\infty,\delta}$, $y_{n,\delta} \to y_{\infty,\delta}$.

Then $z_{n,\delta} \in Y_0, y_{\infty,\delta} \in Y_1$ and $w_{\infty,\delta}$ is in Lie algebra of $\{v_s\}$. Note that v_s commutes with u_t , we get $\exp(w_{\infty,\delta})Y_1 \subseteq Y_0$. By assumption, Y_1 is A-stable, after some calculation, $a_t \exp(w_{n,\delta})a_t^{-1}$ can go through ever v_s for $s \ge 0$ or $s \le 0$.

Case 3: Y_1 is **not** A-stable.

Take $x \in Y_1$, because Ux is not closed, a same argument of the proof 2.1, we can find $y_n = \exp(h_n) \exp(w_n) x \in Y_1$ with $h_n \in \mathfrak{h}, w_n \in \mathfrak{h}^{\perp}$, such that $w_n, h_n \to 0, w_n + h_n$ is not in the Lie algebra of U.

Lemma 2.3.7

For δ sufficiently small, for n sufficiently large. There exists $s_{n,\delta}, t_{n,\delta} \in \mathbb{R}, h_{n,\delta} \oplus w_{n,\delta} \in \mathfrak{h} \oplus \mathfrak{h}^{\perp}$, such that:

- (i) $u_{s_{n,\delta}} \exp(\operatorname{Ad}(u_t)h_n) \exp(\operatorname{Ad}(u_t)w_n) = \exp(h_{n,\delta}) \exp(w_{n,\delta}).$
- (ii) $\max\{\|h_{n,\delta}\|, \|w_{n,\delta}\|\} \in \left[10^{-100}\delta, 10^{100}\delta\right]$.
- (iii) Every limit of $h_{n,\delta}$ is in Lie algebra of $\{a_t\}$, every limit of $w_{n,\delta}$ is in Lie algebra of $\{v_s\}$.

Let $h_{\infty,\delta}, w_{\infty,\delta}$ be a limit of $(h_{n,\delta} \oplus w_{n,\delta})$. Write $g_{\delta} := \exp(h_{n,\delta}) \exp(w_{n,\delta})$, then g_{δ} normalize U, i.e. $g_{\delta}Ug_{\delta}^{-1} = U$. We have

$$y_{\infty,\delta} = g_{\delta}.x_{\infty,\delta} \in Y_1, \quad x_{\infty,\delta} \in Y_1,$$

hence Y_1 is g_{δ} invariant. Let $g_{\delta} = \exp(\nu_{\delta})$ and take a limit point ν of ν_{δ} as $\delta \to 0$. Then Y_1 is $\exp(s\nu)$ invariant for all $s \in \mathbb{R}$. Where ν is in Lie algebra of $\{a_t v_s\}$ and Y_1 is not A-stable, hence ν has a nonzero Lie($\{v_s\}$) component.

§2.4 22.3.11: Completion of some gaps

Fact 2.4.1. If Q is "irrational", then $SO(Q_0, \mathbb{R})g_Q\mathbb{Z}^3$ is **not** compact.

Proof of Theorem 2.2.1 assuming Theorem 2.3.1. If suffices to show that $SO(Q_0, \mathbb{R})g_Q\mathbb{Z}^3$ is unbounded. So if $SO(Q_0, \mathbb{R})g_Q\mathbb{Z}^3$ is not unbounded, then (WLOG) $\overline{SO(Q_0, \mathbb{R})g_Q\mathbb{Z}^3}$ contains a $\{v_s\}_{s\leq 0}$ -orbit.

Let $h \in \mathrm{SL}(3,\mathbb{R})$ such that $\overline{\mathrm{SO}(Q_0,\mathbb{R})g_Q\mathbb{Z}^3} \supseteq \{v_s.h\mathbb{Z}^3 : s \leqslant 0\}$. Then

$$\overline{Q(\mathbb{Z}^3)} = \overline{Q_0(g_Q \mathbb{Z}^3)} \supseteq Q_0(\{v_s h \mathbb{Z}^3 : s \leqslant 0\}).$$

We want to find $s_n \leq 0, x_n \in h\mathbb{Z}^3$ such that $Q_0(v_{s_n}x_n) \to 0$. After some specific calculation, it suffices to find $x \in h\mathbb{Z}^3$ such that $2x_1x_3 - x_2^2 > 0$. The lattice and this cone always intersect.

Proof of Lemma 2.3.6. We have

$$\mathfrak{h}^{\perp} = \left\{ \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & -2x_{11} & -x_{12} \\ x_{31} & -x_{21} & x_{11} \end{bmatrix} \right\}.$$

For $x \in \mathfrak{h}^{\perp}$, we can calculate $u_t x u_t^{-1}$ explicitly. We have

$$u_t x u_t^{-1} = \begin{bmatrix} * * P_x(t) = \frac{t^4}{4!} x_{31} + \frac{t^3}{3!} x_{21} + \frac{t^2}{2!} x_{11} + \frac{t}{3} (-x_{21}) + \frac{x_{13}}{6} \\ * * & * \\ * * & * \end{bmatrix}$$

Let $M_t \coloneqq \max\left\{\left|\frac{t^4}{4!}x_{31}\right|, \left|\frac{t^3}{3!}x_{21}\right|, \left|\frac{t^2}{2!}x_{11}\right|, \left|\frac{t}{3}x_{21}\right|, \left|\frac{x_{13}}{6}\right|\right\}$, then we can prove that

$$\max \{ |P_x(t)|, |P_x(2t)|, |P_x(3t)|, |P_x(4t)|, |P_x(5t)| \} \geqslant 10^{-10} M_t.$$

For x_n , choose t such that $M_t = \delta$, choose $t_{n,\delta} \in \{t, 2t, 3t, 4t, 5t\}$ such that $|P_{x_n}(t_{n,\delta})| \ge 10^{-10}\delta$. Then the statement follows.

A dynamics exposition of the case N=2

Recall lemma 2.2.15, it suffices to find an indefinite "irrational" Q such that $SO(Q, \mathbb{R})\mathbb{Z}^2$ is bounded. Let $Q_1 = xy$, then $\exists g_Q \in SL(2, \mathbb{R})$ such that $Q = \lambda(Q_1 \circ g_Q)$ where $\lambda \neq 0 \in \mathbb{R}$. We want to find $g \in SL(2, \mathbb{R})$ such that:

- (i) $Q_1 \circ g$ is "irrational".
- (ii) $SO(Q_1, \mathbb{R})g\mathbb{Z}^2$ is bounded.

We can calculate that $SO(Q_1, \mathbb{R}) = \left\{ a_t = \begin{bmatrix} t & 0 \\ 0 & t^{-1} \end{bmatrix} \right\}$.

Example 2.4.2

Let $\Lambda := \mathbb{Z}\begin{bmatrix} 1 \\ 1 \end{bmatrix} \oplus \mathbb{Z}\begin{bmatrix} \sqrt{2} \\ -\sqrt{2} \end{bmatrix}$, let $\Lambda' = \frac{\Lambda}{\sqrt{2\sqrt{2}}}$, then $\Lambda' \in X_2$. Consider $t_0 = 3 + 2\sqrt{2}$, we can prove $a_{t_0}\Lambda \subseteq \Lambda$ hence $a_{t_0}\Lambda' \subseteq \Lambda'$. Note that a_{t_0} preserve the volume of lattice, hence $a_{t_0}\Lambda' = \Lambda'$ which shows that $\{a_t, \Lambda\}$ is compact.

Fact 2.4.3. If $SO(Q_1, \mathbb{R})g\mathbb{Z}^2$ is **not** closed, then $Q_1 \circ g$ is "irrational".

So it suffices to construct an orbit of $SO(Q_1, \mathbb{R}) = \{a_t\}$ that is not compact and is bounded.

Fact 2.4.4. The union of all compact a_t -orbits are dense.

Proof. Firstly, there exists at least one compact a_t -orbit, say $a_t\Lambda$. Then we can prove that $\{\Lambda' \in X_2 : \Lambda' \text{ is commensurable with } \Lambda\}$ is dense in X_2 and those Λ' are with compact a_t -orbit. The statement follows by the following lemma 2.4.6.

Definition 2.4.5. We say two lattice Λ_1 and Λ_2 is **commensurable**, denoted by $\Lambda_1 \sim \Lambda_2$, iff $\Lambda_1 \cap \Lambda_2$ is of finite index in Λ_1 and Λ_2 .

Lemma 2.4.6

If $a_t \Lambda$ is compact and $\Lambda' \sim \Lambda$, then $a_t \Lambda'$ is also compact.

For the final construction, we want to find $x,y,z\in X$ such that $\{a_t.x\}\,,\{a_t.y\}$ both closed and

$$a_t.z \to a_t.x(t \to 0), \quad a_t.z \to a_t.y(t \to \infty).$$

Then $\{a_t.z\}$ is not closed but bounded. Given x with closed a_t -orbit, we can choose z as $\begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} a_t.x$ and choose y as $\begin{bmatrix} 1 & 0 \\ s' & 1 \end{bmatrix}.z$, then the choice of y contains an open set in X_2 . Hence, there is a suitable y with closed a_t -orbit.

Remark 2.4.7 — In the case of N=2, the orthogonal group of Q_0 corresponding to the diagonal flow. But for $N \ge 3$, the orthogonal group is semisimple, which brings more rigidity.

§2.5 22.3.18: Unipotent flows on X_2

 $\text{Let } X_2 \coloneqq \left\{ \text{unimodular lattices in } \mathbb{R}^2 \right\} = \text{SL}(2,\mathbb{R}) / \text{SL}(2,\mathbb{Z}). \text{ Let } U = \left\{ u_s = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}, s \in \mathbb{R} \right\}.$

Theorem 2.5.1

We have the following dichotomy regarding orbits of U in X_2 :

- (1) the orbit is compact.
- (2) the orbit is dense in X_2 .

Say the orbit is $U.\Lambda$, case (1) happens exactly when Λ contains a horizontal vector, i.e., $\Lambda \cap \mathbb{R}e_1 = \mathbb{R}e_1$.

Example 2.5.2

 $\Lambda = \mathbb{Z}^2$, we check that $U.\mathbb{Z}^2$ is compact. Because $u_1.\mathbb{Z}^2 = \mathbb{Z}^2$.

Question 2.5.3. Given $x \in X_2$, could the *U*-orbit *U.x* diverge? Or could $s \mapsto u_s.x$ be a proper map? The answer is **NO**.

For $\Lambda \in X_2$, define $\operatorname{Sys}(\Lambda) := \inf\{\|v\| : v \neq 0, v \in \Lambda\}$. Recall Mahler's criterion.

Proposition 2.5.4 (Mahler's criterion)

The following holds:

- 1. For any $\varepsilon > 0$, $\mathscr{C}_{\varepsilon} := \{ \Lambda \in X_2 : \operatorname{Sys}(\Lambda) \geqslant \varepsilon \}$ is compact.
- 2. $\forall K \subseteq X_2 \text{ compact}, \exists \varepsilon > 0 \text{ such that } K \subseteq \mathscr{C}_{\varepsilon}.$

Theorem 2.5.5

For any $K \subseteq X_2$ compact, $\forall \varepsilon > 0$, $\exists \delta = \delta(K, \varepsilon) > 0$, such that the following holds. For every interval (a, b) and $\Lambda_0 \in X_2$, satisfying $u_{s_0} \Lambda_0 \in K$ for some $s_0 \in (a, b)$, then

$$\frac{1}{b-a} \text{Leb} \left\{ s \in (a,b) : u_s. \Lambda_0 \notin \mathscr{C}_{\delta} \right\} \leqslant \varepsilon.$$

Corollary 2.5.6

 $\forall \varepsilon > 0, \, \exists \delta > 0, \, \text{for any } x \in X_2 \text{ does not have compact } U\text{-orbit, then}$

$$\limsup_{T \to \infty} \frac{1}{T} \text{Leb} \left\{ s \in [0, T] : u_s.x \notin \mathscr{C}_{\delta} \right\} \leqslant \varepsilon.$$

Observation 2.5.7. It is impossible for a unimodular lattice Λ to contain two linearly independent vectors of length < 1.

Proof of Corollary assuming Theorem 2.5.5. Let $K := \mathscr{C}_1$, we want to find some $s \ge 0$ such that $u_s.x \in K := \mathscr{C}_1$. Otherwise, for any $s \ge 0$, $\exists v_s \ne 0 \in \Lambda_x = x$, such that $\|u_sv_s\| < 1$. Let v_s be primitive, i.e., $\mathbb{R}v \cap \Lambda = \mathbb{Z}v$, then v_s is unique up to a sign. For any primitive $v \in \Lambda_x$, consider $I_v = \{s > 0 : \|u_sv\| < 1\}$. Moreover, for $v \ne \pm w$, we have $I_v \cap I_w = \varnothing$. Then $\{I_v\}$ could not be an open cover of $(0, \infty)$ otherwise $I_v = (0, \infty)$ for some v. This shows that v is a horizontal vector, hence U.x is compact.

Therefore, if $x \in X_2$ such that U.x is not compact, then $\exists s \in (0, \infty)$ such that $u_s.x \in \mathscr{C}_1$. For any $\varepsilon > 0$, let $K = \mathscr{C}_1$, there is $\delta = \delta(\varepsilon, K)$ such that

$$\frac{1}{T} \text{Leb} \left\{ t \in [0, T] : u_t . x \notin \mathscr{C}_{\delta} \right\} \leqslant \varepsilon$$

for any T > s, by Theorem 2.5.5. Let $T \to \infty$ and the statement follows.

Remark 2.5.8 — This corollary can give another view of showing that X_2 is of finite volume.

Lemma 2.5.9

 $\exists C_1, \alpha_1 > 0$ such that for every interval (a, b), every vector $v \in \mathbb{R}^2$, every $\rho \in (0, 1)$,

$$\frac{1}{b-a} \mathrm{Leb} \left\{ s \in (a,b) : \|u_s v\| \leqslant \rho M_0 \right\} \leqslant C_1 \rho^{\alpha_1},$$

where $M_0 := \sup_{s \in (a,b)} \|u_s v\|$.

Proof. Let $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, then $u_s v = \begin{bmatrix} v_1 + sv_2 \\ v_2 \end{bmatrix}$, let $M_0 = u_{s_0} v = \begin{bmatrix} v_1 + s_0v_2 \\ v_2 \end{bmatrix}$. Take $C_1 = 100$ and $\alpha_1 = 1$. Consider each case of $|v_2| > \frac{1}{4}$ and $|v_2| \leqslant \frac{1}{4}$, both easy to verify.

Proof of Theorem 2.5.5. K compact implies that $\exists \delta_1 < 1$ such that $K \subseteq \mathscr{C}_{\delta_1}$. Hence, there is $s_0 \in (a,b)$ such that $\forall v \neq 0 \in \Lambda_0$, $||u_{s_0}v|| \geqslant \delta_1$. Let

$$I(\delta_1) := \{ s \in (a, b) : \operatorname{Sys}(u_s.\Lambda_0) < \delta_1 \} = \coprod_{\alpha \in \mathscr{A}} I_\alpha = \coprod_{\alpha \in \mathscr{A}} (a_\alpha, b_\alpha).$$

For every $\alpha \in \mathcal{A}$, there exists $v_{\alpha} \in \Lambda_0$ primitive such that $\forall s \in I_{\alpha}, ||u_s v_{\alpha}|| < \delta_1$. Take ρ such that $C_1 \rho^{\alpha_1} < \varepsilon$, take $\delta = \rho \delta_1$. Apply the lemma to each I_{α} , the conclusion follows.

Proof of Theorem 2.5.1. Fix $x_0 \in X_2$ such that $U.x_0$ is not compact. Choose a minimal element from $\{\overline{U.y}: y \in \overline{U.x_0}, U.y \text{ is not compact}\}$. Consider $Y_0 = \overline{U.y_0}$, there are two cases.

Case 1: Y_0 does not contain any compact U-orbit.

Applying the argument in proof 2.1, we choose $x_n, x'_n \in \mathcal{C}_1$ by Theorem 2.5.5 such that $d(x'_n, x_n) \to 0$, then $x'_n = A_n x_n$ for some $A_n \to \mathrm{Id}$. Let $y_n = u_s x_n$ and $y'_n = u_{s+t} x'_n$ for some $s = s_n, t = t_n$. But for fixed δ , we should allow $s_{n,\delta}$ to vary in some interval to guarantee that y_n lives a fixed compact set. The range of $s_{n,\delta}$ is controlled by Theorem 2.5.5. Then there are $y_{\infty,\delta}$ and $y'_{\infty,\delta}$ differ from each other by a diagonal matrix. The diagonal element is also dominated by δ . Finally, we can show that Y_0 is invariant under positive diagonal matrices.

Case 2: Y_0 contains some compact U-orbits.

Same as case 1, but easier to show that Y_0 is invariant under positive diagonal matrices.

§2.6 22.3.22: Strong Oppenheim conjecture

Notation 2.6.1. $Prim(\mathbb{Z}^3)$ denotes $\{v \in \mathbb{Z}^3 : \mathbb{R}v \cap \mathbb{Z}^3 = \mathbb{Z}v\}$.

Theorem 2.6.2 (Strong Oppenheim Conjecture)

Let Q be a nondegenerate, indefinite, quadratic form with real coefficients in 3 variables. Assume Q is **not** proportional to a quadratic form with \mathbb{Q} -coefficients. Then $Q(\mathbb{Z}^3)$ or $Q(\operatorname{Prim}(\mathbb{Z}^3))$ is dense in \mathbb{R}^3 .

Theorem 2.6.3

Let $\mathrm{SO}(Q,\mathbb{R})\coloneqq\{g\in\mathrm{SL}(3,\mathbb{R}):Q\circ g=Q\}$. If Q is as in the theorem above, then $\overline{\mathrm{SO}(Q,\mathbb{R})\mathbb{Z}^3}$ in X_3 contains a $\{v_s\}_{s\geqslant 0}$ or $\{v_s\}_{s\leqslant 0}$ orbit.

Claim 2.6.4. Theorem $2.6.3 \implies$ Theorem 2.6.2.

Recall $Q_0(x_1, x_2, x_3) = 2x_1x_3 - x_2^2$.

Theorem 2.6.5

Let $H := SO(Q_0, \mathbb{R})$, then every orbit of H on X_3 is either closed or the orbit closure contains a $\{v_s\}_{s\geq 0}$ or $\{v_s\}_{s\leq 0}$ orbit.

Theorem 2.6.6

If Q is as in Theorem 2.6.2, then $SO(Q, \mathbb{Z}^3)\mathbb{Z}^3 = SO(Q_0)g_Q\mathbb{Z}^3$ is **not** closed.

Claim 2.6.7. Theorem $2.6.5 + \text{Theorem } 2.6.6 \implies \text{Theorem } 2.6.3.$

Theorem 2.6.8

 $\forall \varepsilon > 0, \exists$ a compact $C \subseteq X_3$ such that for every $\Lambda \in X_3$, at least one of the following holds:

- (1) $\limsup_{T\to\infty} \frac{1}{T} \text{Leb} \{t \in [0,T] : u_t . \Lambda \notin C\} \leq \varepsilon.$
- (2) $\Lambda \cap \mathbb{R}e_1$ is a lattice in $\mathbb{R}e_1$ and $\|\Lambda \cap \mathbb{R}e_1\|_{\mathbb{R}e_1} < \varepsilon$.
- $(3)\ \, \Lambda\cap\mathbb{R}e_1\oplus\mathbb{R}e_2\ \, \text{is a lattice in}\ \, \mathbb{R}e_1\oplus\mathbb{R}e_2\ \, \text{and}\ \, \|\Lambda\cap\mathbb{R}e_1\oplus\mathbb{R}e_2\|_{\mathbb{R}e_1\oplus\mathbb{R}e_2}<\varepsilon.$

Claim 2.6.9. Theorem 2.6.8 + some arguments in Section 2.3 \implies Theorem 2.6.5 and Theorem 2.6.6.

Recall what happens for X_2 . Assume $\Lambda \in X_2$ contains no horizontal vector. Then

- 1. $\forall v \neq 0 \in \lambda, ||u_t v|| \to \infty (t \to \pm \infty).$
- 2. if $||u_t.v|| \ge M_0$ for some $t \in (a,b)$, then for most $t \in (a,b)$, $||u_t.v|| \ge \frac{M_0}{10^{10}}$.

Notation 2.6.10. $\operatorname{Prim}^1(\Lambda)$ denotes $\{\Delta \subseteq \Lambda : \operatorname{rank} \Delta = 1, \operatorname{span}_{\mathbb{R}} \Delta \cap \Lambda = \Delta\}$. $\operatorname{Prim}^2(\Lambda)$ denotes $\{\Delta \subseteq \Lambda : \operatorname{rank} \Delta = 2, \operatorname{span}_{\mathbb{R}} \Delta \cap \Lambda = \Delta\}$.

Definition 2.6.11. $\varepsilon, \rho \in (0,1), \Lambda$ is said to be (ε, ρ) -protected (with respect to $\{0\} \subseteq \mathbb{Z}v \subseteq \Delta \subseteq \Lambda$) if exist $\mathbb{Z}v \in \operatorname{Prim}^1(\Lambda)$ and $\Delta \in \operatorname{Prim}^2(\Lambda)$ such that

- (i) $\mathbb{Z}v \subseteq \Delta$.
- (ii) $\|\mathbb{Z}v\|, \|\Delta\| \in (\rho\varepsilon, \varepsilon).$

Lemma 2.6.12

If Λ is (ε, ρ) -protected with respect to $\{0\} \subseteq \mathbb{Z}v \subseteq \Delta \subseteq \Lambda$, then $\operatorname{Sys}(\Lambda) \geqslant \rho \varepsilon$.

Proof. Take $w \neq 0 \in \Lambda$, then

- (1) if $w \in \Lambda \setminus \Delta$, then $||w|| \ge \frac{1}{\varepsilon} > 1$,
- (2) if $w \in \Delta \setminus \mathbb{Z}v$, then $||w|| \ge \rho$.
- (3) if $w \in \mathbb{Z}v$, then $||w|| \geqslant \rho \varepsilon$.

Lemma 2.6.13

 $\exists C_2, \alpha_2 > 0$, such that for every $v \in \mathbb{R}^3 \oplus \wedge^2(\mathbb{R}^3)$, for every a < b in \mathbb{R} ,

$$\frac{1}{b-a} \operatorname{Leb} \left\{ t \in (a,b) : \|u_t v\| \leqslant \rho M_0 \right\} \leqslant C_2 \rho^{\alpha_2},$$

where $M_0 := \sup_{t \in (a,b)} \|u_t v\|$.

Exercise 2.6.14. Proof this lemma.

Observation 2.6.15. $\Lambda \in X_3$, if $\mathbb{Z}v \in \operatorname{Prim}^1(\Lambda)$ and $\Delta \in \operatorname{Prim}^2(\Lambda)$ such that $\|\mathbb{Z}v\| \leq 1$ and $\|\Delta\| \leq 1$, then $\mathbb{Z}v \subseteq \Delta$.

Proof of Theorem 2.6.8. Assume $\Lambda \in X_3$ which does not satisfy (2) or (3). The parameters $\varepsilon', \delta, \rho$ will be determined later. Consider

$$I_1 = \left\{ t \in [0, T] : \operatorname{Sys}(u_t \Lambda) < \varepsilon', \not \exists \mathbb{Z} v \in \operatorname{Prim}^1(\Lambda), \rho \delta < |u_t v| < \delta \right\},$$

$$I_1 = \{ t \in [0, T] : \operatorname{Sys}(u_t \Lambda) < \varepsilon', \not \exists \Delta \in \operatorname{Prim}^2(\Lambda), \rho \delta < |u_t \Delta| < \delta \},$$

then $I_1 \cup I_2$ is the set of t such that $u_t \Lambda \notin C$ for some compact C. We will choose $\varepsilon', \delta, \rho$ such that for T large enough, $|I_1| \leq \varepsilon T$, the proof of I_2 is the same.

Let
$$\varepsilon' = \delta/2$$
, let

$$I = \{t \in (0,T) : \operatorname{Sys}(u_t \Lambda) < \varepsilon'\}.$$

Then I is open, write $I = \coprod_{\alpha} (a_{\alpha}, b_{\alpha})$. Fix α , for every $t \in (a, b)$, there is $v \in \text{Prim}^{1}(\Lambda)$ such that $||u_{t}v|| < \varepsilon' = \delta/2$. Let I(t, v) be the maximal interval containing t such that $||u_{s}v|| < \delta$ for every $s \in I(t, v)$. Then $\bigcup I(t, v) \supseteq [a, b]$. By passing to a sub-covering, we can assume the cover is of multiplicity at most 2.

Choose T_0 large enough, we assume $\sup_{t \in [0,T]} \operatorname{Sys}(u_t \Lambda) \geq \delta$ for every $T \geq T_0$. Then $\sup_{s \in I(t,v)} ||u_s v|| \geq \varepsilon' = \delta/2$. By lemma, we can choose ρ smaller enough such that

Leb
$$\left\{ s \in I(t,v) : \|u_s v\| \leqslant 2\rho \frac{\delta'}{2} \right\} \leqslant C_2 |I(t,v)| (2\rho)^{\alpha_2} \leqslant \frac{1}{2} \varepsilon |I(t,v)|,$$

then the conclusion follows.

§2.7 22.3.25: General dimension

Theorem 2.7.1

Let $X \coloneqq \{\text{unimodular lattice in } \mathbb{R}^N\}$, let $u \in \mathfrak{sl}(N,\mathbb{R})$ be a nilpotent matrix, let $\phi_s \coloneqq \exp(su)$. For every $\varepsilon, \delta \in (0,1)$, $\exists \mathscr{C} \subseteq X_N$ compact, such that for all interval $I = (a,b) \subseteq \mathbb{R}$, $\Lambda \in X_N$, such that if

$$\sup_{s \in I} \|\phi_s \Delta\| \geqslant \delta, \quad \forall \Delta \in \operatorname{Prim}(\Lambda).$$

Then we have

$$\frac{1}{b-a} \operatorname{Leb} \left\{ s \in (a,b) : \phi_s \Lambda \notin \mathscr{C} \right\} \leqslant \varepsilon.$$

Definition 2.7.2. For $\Lambda \in X_N$, for every $k \in \{0, \dots, N\}$, let

$$\operatorname{Prim}^k(\Lambda) := \{ \Delta \leqslant \Lambda : \operatorname{rank} \Delta = k, \Delta_{\mathbb{R}} (= \operatorname{span}_{\mathbb{R}} \Delta) \cap \Lambda = \Delta \}.$$

Let $\|\Delta\| := \operatorname{Vol}(\Delta_{\mathbb{R}}/\Delta), \|0\| := 1$. Let $\operatorname{Prim}(\Lambda) := \bigcup_{k=0}^{N} \operatorname{Prim}^{k}(\Lambda)$.

Definition 2.7.3. Let I be a interval in \mathbb{R} , a continuous map $\phi: I \to \mathrm{SL}(N, \mathbb{R})$ is said to be (C, α) -good at $\Lambda \in X_N$ if for every $\Delta \in \mathrm{Prim}(\Lambda)$, the map

$$s \mapsto \|\phi_s \Delta\|$$

is (C, α) -good in the sense that $\forall J \subseteq I$ interval, for every $\rho \in (0, 1)$,

$$\frac{1}{|J|} \operatorname{Leb} \left\{ s \in J : \|\phi_s \Delta\| < \rho \sup_{s \in J} \|\phi_s \Delta\| \right\} \leqslant C \rho^{\alpha}.$$

Lemma 2.7.4

 $\exists C_N, \alpha_N > 0$, such that for every unipotent matrix $u \in \mathfrak{sl}(N, \mathbb{R})$, for every interval $I \subseteq \mathbb{R}$, for every $\Lambda \in X_N$, the map $s \mapsto \exp(su) \in \mathrm{SL}(N, \mathbb{R})$ is (C, α) -good on I at Λ .

Now, we can restate the theorem.

Theorem 2.7.5

Let $\Lambda \in X_N$, let $X := \{\text{unimodular lattice in } \mathbb{R}^N \}$, let $I \subseteq \mathbb{R}$ be a interval, let $\phi : I \to \mathrm{SL}(N,\mathbb{R})$ be (C,α) -good. For every $\varepsilon, \delta \in (0,1)$, $\exists \kappa = \kappa(\varepsilon,\delta,C,\alpha)$ such that if

$$\sup_{s \in I} \|\phi_s \Delta\| \geqslant \delta, \quad \forall \Delta \in \operatorname{Prim}(\Lambda),$$

then

$$\frac{1}{b-a} \text{Leb} \left\{ s \in (a,b) : \phi_s \Lambda \notin \mathscr{C}_{\kappa} \right\} \leqslant \varepsilon.$$

We will prove for N=3 as an example.

Proof. Let Sys'(Λ) := inf { $\|\Delta\|$: $\Delta \in Prim(\Lambda)$ }, let

$$I' := \{ s \in I : \operatorname{Sys}'(\phi_s) < 0.9\delta \} = \coprod_{\alpha \in \mathscr{I}_0} I_{\alpha}.$$

Take some $\alpha \in \mathscr{I}_0$, for every $x \in I_\alpha, \Delta \in \text{Prim}(\Lambda)$, consider

 $I(x, \Delta) := \text{the connected component of } \{s \in I_{\alpha} : ||\phi_s \Delta|| < \delta\} \text{ containing } x.$

Take a maximal element from $\{I(x,\Delta): \Delta \in \text{Prim}(\Lambda)\}\$, denoted by $I_x = I(x,\Delta_x)$. Then I_x is an open interval satisfying:

- (i) $\sup_{s \in I_x} \|\phi_s \Delta_x\| \leqslant \delta$.
- (ii) $\forall \Delta \in \text{Prim}(\Lambda), \sup_{s \in I_r} \|\phi_s \Delta\| \geqslant 0.9\delta.$
- (iii) $\{I_x\}_{x\in I_\alpha}$ forms an open cover of I_α which admits a finite sub-cover $\{I_x\}_{x\in\mathscr{I}_\alpha}$ of I_α with multiplicity $\leqslant 2$.

Definition 2.7.6. Let $\delta, \rho \in (0,1)$, we say $\Lambda \in X_N$ is (δ, ρ) -protected by a flag $\mathscr{F} = \{\Delta_1 \leq \Delta_2 \leq \cdots \leq \Delta_l\}$ in $\operatorname{Prim}(\Lambda)$, if

- (i) $\rho \delta \leqslant ||\Delta_i|| \leqslant \delta, \forall i = 1, 2, \dots, l.$
- (ii) if $\Delta \in \text{Prim}(\Lambda)$ is such that $\Delta \notin \mathscr{F}$ and $\{\Delta\} \cup \mathscr{F}$ is also a flag, then $\|\Delta\| \geqslant 0.5\delta$.

Remark 2.7.7 — $\operatorname{rank} \Delta_1 < \operatorname{rank} \Delta_2 < \cdots < \operatorname{rank} \Delta_l$, hence $l \leqslant N+1$.

Definition 2.7.8. We say a \mathbb{R} linear subspace W of \mathbb{R}^N is Λ -rational iff $W \cap \Lambda$ is lattice in W.

Lemma 2.7.9

 $\Delta \mapsto \Delta_{\mathbb{R}}$ gives a bijection between $Prim(\Lambda) \cong {\Lambda$ -rational subspaces}.

Lemma 2.7.10

 $\delta, \rho \in (0,1), \rho < 0.5$. If Λ is (δ, ρ) -protected by $\mathscr{F} = \{\Delta_1 \leqslant \Delta_2 \leqslant \cdots \leqslant \Delta_l\}$, then $\operatorname{Sys}(\Delta) \geqslant \rho \delta$.

Remark 2.7.11 — It suffices to find (δ', ρ') take place of κ .

Continued proof of Theorem 2.7.5. Let

$$\mathscr{P}_x := \{ \Delta \in \operatorname{Prim}(\Lambda) : \Delta \neq \Delta_x, \{\Delta, \Delta_x\} \text{ is a flag} \},$$

let

$$I_x' = \{ s \in I_x : \forall \Delta \in \mathscr{P}_x, \|\phi_s \Delta\| < 0.8\delta \} = \coprod_{b \in \mathscr{J}_x} I_{\beta}.$$

Then for every $y \in I_{\beta}, \Delta \in \mathscr{P}_x$, let

$$I(y, \Delta) := \text{the connected component of } \{s \in I_{\alpha} : \|\phi_s \Delta\| < 0.9\delta\} \text{ containing } y.$$

For every $y \in I'_x$, take a maximal element, denoted by $I_y = I(y, \Delta_y)$. Take a sub-cover as before. We have

$$I_{\alpha} \supseteq I_x \supseteq I'_x \supseteq I_y$$
.

Let

$$I_y(\text{bad}) = \left\{ s \in I_y : \|\phi_s \Delta_y\| < \rho' \delta \right\}, \quad I_x(\text{bad}) = \left\{ s \in I_x : \|\phi_s \Delta_x\| < \rho' \delta \right\}.$$

By (C, α) -good, we can choose ρ' sufficiently small such that $|I_y(\text{bad})| \leq 0.01\varepsilon |I_y|$ and $|I_x(\text{bad})| \leq 0.01\varepsilon |I_x|$. Consider the complement of all bad sets, denoted by I(good), which is of at least $(1 - \varepsilon)$ density. It suffices to check for every $s \in I(\text{good})$, $\phi_s \Lambda$ is (δ, ρ') -protected.

- (1) $s \in I \setminus I'$, then $\phi_s \Lambda$ is (δ, ρ') -protected by \varnothing .
- (2) $s \in I', s \notin I'_x$, then $\phi_s \Lambda$ is (δ, ρ') -protected by $\{\Delta_x\}$.
- (3) $s \in I', s \in I'_x$, then $s \in I(y, \Delta_y)$, then $\phi_s \Lambda$ is (δ, ρ') -protected by $\{\Delta_x, \Delta_y\}$.

Remark 2.7.12 — This proof is different with the proof in last section. It is not hard to extend this proof to general dimension $N \geq 3$. We just need to choose $I_x \supseteq I_y \supseteq I_z \supseteq \cdots$ repeatedly. Where in the case of N=3, twice is enough.

3 Measure Rigidity

§3.1 22.4.8: Ergodicity and mixing

Exercise 3.1.1. Let

$$B = \left\{ \begin{bmatrix} t & s \\ 0 & t^{-1} \end{bmatrix} : t > 0, s \in \mathbb{R} \right\}, \quad A = \left\{ \begin{bmatrix} t & 0 \\ 0 & t^{-1} \end{bmatrix} : t > 0 \right\}, \quad U = \left\{ \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} : s \in \mathbb{R} \right\}.$$

Does there exist a probability measure space (x, \mathcal{B}, μ) such that

- (i) X is a locally compact metrizable space, \mathcal{B} is the Borel σ -algebra.
- (ii) $B \cap X$ continuously.
- (iii) B preserves μ .
- (iv) μ is "totally ergodic", i.e., μ is ergodic with respect to A and U.
- (v) μ is **not** mixing with respect to U.

Basic notions

- X is a compact metrizable space.
- \bullet *H* is a Lie group.
- H acts on X continuously, i.e., $H \times X \to X$ is continuous and some compatibility conditions.
- \mathcal{B}_X is the Borel σ -algebra on X.
- $\operatorname{Prob}(X)$ denotes all probability measures on (X, \mathcal{B}_X) .
- $\operatorname{Prob}(X)^H$ denotes all elements μ in $\operatorname{Prob}(X)$ that is H-invariant, i.e.,

$$h_*\mu = \mu(h^{-1} \cdot) = \mu, \quad \forall h \in H.$$

Definition 3.1.2. An *H*-invariant probability measure μ is said to be **ergodic** with respect to *H* if every *H*-invariant measurable set *E* is either $\mu(E) = 0$ or $\mu(X \setminus E) = 0$.

Fact 3.1.3. If μ is ergodic, then for every "almost H-invariant" measurable set E, i.e., $\mu(hE\triangle E) = 0, \forall h \in H$, then there is either $\mu(E) = 0$ or $\mu(X \setminus E) = 0$.

If $\mu \in \text{Prob}(X)^H$, consider a natural action $H \cap L^2(X,\mu)$. Then this action gives a homomorphism

$$\pi: H \to \mathcal{U}(L^2(X,\mu))$$

where $\mathcal{U}(L^2(X,\mu))$ is the family of unitary operators on $L^2(X,\mu)$.

Proposition 3.1.4

 π is continuous with respect to SOT (**strong operator norm**), i.e., for every convergent sequence $(h_n) \subseteq H$, assuming $h_n \to h \in H$, then for every $f \in L^2(X, \mu)$,

$$h_n.f \to h.f$$
 in L^2 .

Remark 3.1.5 — Generally, π is not continuous with respect to operator norm topology.

Lemma 3.1.6

 $H \cap (X, \mathcal{B}_X, \mu)$ continuously, $\mu \in \text{Prob}(X)^H$, then the followings are equivalent

- (1) μ is ergodic with respect to H.
- (2) the associated unitary representation has no fixed vector other than constants.

Example 3.1.7

 $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, let R_{α} be the rotation on $\mathbb{T} = \mathbb{R}/\mathbb{Z} \to \mathbb{T}$ defined by $x \mapsto x + \alpha \mod \mathbb{Z}$. Then R_{α} preserves the Haar measure m on \mathbb{T} and m is ergodic with respect to R_{α} .

Example 3.1.8

- 1. Let $M = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ acting on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$. Then M preserves the Haar measure m and m is ergodic with respect to $\{M^n : n \in \mathbb{Z}\}$.
- 2. $M = \exp(W)$ for some matrix M. Consider

$$\mathbb{R} \cong \{W_t = \exp(tW) : t \in \mathbb{R}\} \cap W_t \cdot \mathbb{Z}^2 \subseteq X_2 = \{\text{unimodular lattices in } \mathbb{R}^2\},$$

then this induces an action $W_t: \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/W_t.\mathbb{Z}^2$. Note that $W_1.\mathbb{Z}^2 = \mathbb{Z}^2$, we consider an action

$$W_t \cap T =$$
 "a torus bundle" over \mathbb{S}^1 .

Then W_t preserves the natural measure on T, is ergodic but **not** mixing.

Definition 3.1.9. Assume $\mu \in \text{Prob}(X)^H$, we say that μ is **mixing** with respect to H if for every $(h_n) \subseteq H$ that diverges, for every $\varphi, \psi \in L^2(X, \mu)$,

$$\int \varphi(h_n^{-1}x)\overline{\psi(x)}\mathrm{d}\mu(x) \to \int \varphi\mathrm{d}\mu \int \overline{\psi}\mathrm{d}\mu.$$

Lemma 3.1.10

 $\mu \in \text{Prob}(X)^H$, if μ is mixing, then μ is ergodic.

Theorem 3.1.11

Assume $\pi : \mathrm{SL}(2,\mathbb{R}) \to \mathcal{U}(\mathcal{H})$ is a unitary representation continuous with respect to SOT, where \mathcal{H} is a separable Hilbert space. Assume π has no fixed vectors, then π is mixing, i.e., for every (h_n) divergent in $\mathrm{SL}(2,\mathbb{R})$, for every $\varphi, \psi \in \mathcal{H}$,

$$\langle h_n.\varphi,\psi\rangle \to 0.$$

Proof. We assume $(h_n) \subseteq A$, let $h_n = \begin{bmatrix} e^{t_n} \\ e^{-t_n} \end{bmatrix}$, assume $t_n \to \infty$. By the separability, there is a subsequence (h_{n_k}) such that

$$\langle h_{n_k} \varphi, \psi \rangle$$
 exists, $\forall \varphi, \psi \in \mathcal{H}$.

Fixed ψ , there exists $E\varphi \in \mathcal{H}$ such that

$$\langle E\varphi, \psi \rangle = \lim_{k \to \infty} \langle h_{n_k} \varphi, \psi \rangle.$$

Then $E: \mathcal{H} \to \mathcal{H}$ is linear, bounded. We will show that Im E is fixed by $SL(2, \mathbb{R})$.

For every $v = \begin{bmatrix} 1 \\ * 1 \end{bmatrix}$, we have $h_{n_k} v h_{n_k}^{-1} \to \text{Id}$. Hence

$$\langle E(v\varphi), \psi \rangle = \lim_{k \to \infty} \left\langle h_{n_k} v h_{n_k}^{-1} h_{n_k} \varphi, \psi \right\rangle = \lim_{k \to \infty} \left\langle h_{n_k} \varphi, \psi \right\rangle = \left\langle E \varphi, \psi \right\rangle.$$

Similarly, we can show that $\langle uE\varphi,\psi\rangle=\langle E\varphi,\psi\rangle$ for every $u=\begin{bmatrix}1&*\\&1\end{bmatrix}$. Hence we have $u\circ E=E$ and $E\circ v=E$, or, $v^*\circ E^*=E^*$.

Notice that $E^* = \lim_k h_{n_k}^{-1}$ in the weak operator topology, and we can prove that $\ker E = \ker E^*$. Then

$$\operatorname{Im}(\operatorname{Id} - v) \subseteq \ker E = \ker E^* \implies v^* \circ E = E.$$

 $v^* = v^{-1} \in V$, hence U, V both fix elements in Im E. Because U, V generates G, it follows Im $E = \{0\}$, we are done.

§3.2 22.4.15: Classification of finite invariant measures under unipotent flows in $SL(2,\mathbb{R})$, I

- G "nice" topological group.
- X "nice" topological group.
- $G \cap X$ continuously $\leadsto G \cap (X, \mathcal{B}_X)$.
- $\operatorname{Prob}(X) := \{ \operatorname{probability measures on } (X, \mathcal{B}_X) \}.$
- $\operatorname{Prob}(X)^G := \{ \mu \in \operatorname{Prob}(X) : g_*\mu = \mu, \forall g \in G \}.$

Lemma 3.2.1

 $\text{Prob}(X)^G$ has a convex structure and the extremal points in $\text{Prob}(X)^G$ is exactly the measures in $\text{Prob}(X)^{G,\text{erg}}$.

Theorem 3.2.2 (Choquet, Ergodic Decomposition)

 $\forall \mu \in \operatorname{Prob}(X), \exists_1 \lambda \in \operatorname{Prob}(\operatorname{Prob}(X)^G), \text{ such that}$

- (i) $\mu = \int_{\text{Prob}(X)^G} \nu d\lambda(\nu)$,
- (ii) $\lambda(\operatorname{Prob}(X)^{G,\operatorname{erg}}) = 1.$

Remark 3.2.3 — In general, $\operatorname{Prob}(X)^{G,\operatorname{erg}}$ is **not** closed in $\operatorname{Prob}(X)^{G}$, hence we can **not** say $\operatorname{supp} \lambda = \operatorname{Prob}(X)^{G,\operatorname{erg}}$.

Assume we have an \mathbb{R} -action on X (flow), $\mathbb{R} \times X \to X$, $(t, x) \mapsto T_t(x)$. Take some $x \in X$, consider a limit point μ of

$$\left\{ \frac{1}{T} \int_{t=0}^{T} (T_t)_* \delta_x dt : T \geqslant 0 \right\},\,$$

is $(T_t)_{t \ge 0}$ -invariant.

Lemma 3.2.4

If further assume X is compact, then $\operatorname{Prob}(X)^{(T_t)_{t\geqslant 0}}\neq\varnothing$.

Example 3.2.5

If X is not compact, let $(T_t)_{t\geqslant 0}$ be translations on \mathbb{R} , then $\operatorname{Prob}(\mathbb{R})^{(T_t)_{t\geqslant 0}}=\varnothing$.

Example 3.2.6

If G is not \mathbb{R} , X is compact, consider $\mathrm{SL}(2,\mathbb{R}) \cap \mathbb{RP}^1$ linearly, then $\mathrm{Prob}(X)^G = \emptyset$.

Theorem 3.2.7 (Pointwise Ergodic Theorem)

Assume we have a flow $T_t: X \to X$ on a nice X. Let μ be a (T_t) -invariant, ergodic, probability Borel measure. Then for every $f \in L^1(X, \mathcal{B}_X, \mu)$, there exists $E_f \in \mathcal{B}_X, \mu(E_f) = 1$ such that

$$\lim_{T \to \pm \infty} \frac{1}{T} \int_0^T f(T_t x_0) dt = \int f(x) d\mu(x), \quad \forall x_0 \in E_f.$$

Corollary 3.2.8

Assumption as above, then there exists a set $E \in \mathcal{B}_X$ with μ full measure such that

$$\lim_{T \to \pm \infty} \frac{1}{T} \int_0^T (T_t)_* \delta_x dt \to \mu, \quad \forall x \in E,$$

in the weak* topology.

Definition 3.2.9. $G \cap X$, we say this action is **uniquely ergodic** if there exists a unique G-invariant probability measure on X.

Lemma 3.2.10

If $G = \mathbb{R}$, X is compact and $G \cap X$ is uniquely ergodic. Assume $\text{Prob}(X)^G = \{\mu\}$, then for every $x \in X$,

 $\lim_{T \to \pm \infty} \frac{1}{T} \int_0^T (T_t)_* \delta_x dt = \mu.$

Example 3.2.11

Consider $\mathbb{R} \cap \{pt\} \coprod \mathbb{R}$ and $SL(2,\mathbb{R}) \cap \{pt\} \coprod \mathbb{RP}^1$ as examples above. They both uniquely ergodic. It shows that the condition of $X = \mathbb{R}$ and the compactness of X are both necessary.

Example 3.2.12

 $\mathbb{R} \cap \mathbb{T} = \mathbb{R}/\mathbb{Z}$ by $T_t(x) := x + t \mod \mathbb{Z}$ is uniquely ergodic.

Example 3.2.13

 $SL(2,\mathbb{R}) \cap SL(2,\mathbb{R})/\Gamma$ where $\Gamma \leq SL(2,\mathbb{R})$ is discrete and cocompact, is uniquely ergodic.

Example 3.2.14

 $\begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \cap \operatorname{SL}(2,\mathbb{R})/\Gamma \text{ where } \Gamma \leqslant \operatorname{SL}(2,\mathbb{R}) \text{ is discrete and cocompact, is uniquely ergodic.}$

Theorem 3.2.15

 $U := \left\{ u_s = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} : s \in \mathbb{R} \right\}, \ \Gamma \leqslant G = \mathrm{SL}(2, \mathbb{R}), \ \mathrm{consider} \ G \cap X = G/\Gamma. \ \mathrm{Then} \ \mathrm{every}$ $\mu \in \mathrm{Prob}(X)^{U,\mathrm{erg}} \ \mathrm{is}$

- (i) either supported on a compact U-orbit.
- (ii) or is the unique $SL(2,\mathbb{R})$ -invariant measure (up to a scalar).

Fact 3.2.16. For every discrete $\Gamma \leq G = \mathrm{SL}(2,\mathbb{R})$, there exists a unique (up to a scalar) G-invariant locally finite measure m_X on $X = G/\Gamma$.

Lemma 3.2.17

Assumptions as above. Then

- (i) either μ is supported on a compact *U*-orbit.
- (ii) or μ is $B := \left\{ \begin{bmatrix} e^t & s \\ 0 & e^{-t} \end{bmatrix} : t, s \in \mathbb{R} \right\}$ -invariant.

Proof. Recall the argument in Section 2.1, we want to mimic the proof. There are some analogies between topology and measure theory.

- compact space → invariant probability measure
- \bullet minimal set \sim "generic points" and "ergodicity"

Let E be the set of generic points of μ , then $\mu(E)$. Take $E' \subseteq E$ compact such that $\mu(E') > 0.8$. Then $\exists F', \mu(F') = 1, \forall x \in F'$ we have

$$\lim_{T \to \pm \infty} \frac{1}{T} \int_0^T \mathbb{1}_{E'}(u_s x) ds = \mu(E') > 0.8.$$

We can find a set $F \subseteq F'$, $\mu(F) > 0.9$ such that the convergence is uniform for $x \in F$. Then $\exists T_0$, such that $\forall x \in F, T > T_0$, we have

$$\frac{1}{T} \int_0^T \mathbb{1}_{E'}(u_s x) \mathrm{d}s > 0.5.$$

Claim $\forall \varepsilon > 0, \exists x \neq y \in F \text{ such that } d(x,y) < \varepsilon \text{ and } y \notin \{u_s x : s \in (-1,1)\}.$

Argue by contradiction, then $\exists \varepsilon > 0$, such that for every $x \neq y \in F$, $d(x,y) < \varepsilon$ implies $y \in u_{(-1,1)}x$. Cover F by countable boxes with diameter $< \varepsilon$. Then there is a local u-orbit with positive μ -measure. Assume $y \in F$ such that $\mu(u_{(-1,1)}y) > 0$. Then we can choose $s \in (-1,1)$ such that $u_s y$ is generic, hence

$$\frac{1}{T} \int_0^T \mathbb{1}_{u_{(-1,1)}y}(u_t(u_s y)) \to \mu(u_{(-1,1)}y) > 0.$$

Then $\exists t > 1$, such that $u_t y' \in u_{(-1,1)} y$. Then Uy is compact and μ supported on it. This is case (i).

By the claim, recall the notation in Section 2.1, we can replace $s_{n,\delta}$ by $s'_{n,\delta} \in [\frac{1}{2}s_{n,\delta}, \frac{3}{2}s_{n,\delta}]$ such that

- (i) $u_{s'_{n,\delta}}x_n \in E' \subseteq E$,
- (ii) $u_{s'_{n,\delta}}y_n \in E' \subseteq E$.

Then $u_{s'_{n,\delta}}x_n, u_{s'_{n,\delta}}y_n$ are both in a compact set and take limit points $x = x_{\infty,\delta}, y = y_{\infty,\delta} \in E'$. Then x, y are different by some a_t where $t \in [\delta/C, C\delta]$ for some absolute constant C. Then

$$(a_t)_*\mu = \lim_{T \to \infty} \int_0^T (a_t)_*(u_s)_* \delta_x ds = \lim_{T \to \infty} \int_0^T (u_{\lambda s})_* \delta_{a_t x} ds = \mu,$$

it follows that μ is *B*-invariant.

§3.3 22.4.19: Classification of finite invariant measures under unipotent flows in $SL(2,\mathbb{R})$, II

Today, we want to show that B-invariant implies μ is the unique $SL(2,\mathbb{R})$ -invariant measure m_X up to a scalar and $m_X(X)$ is finite.

Conditional measures

- X nice (σ -compact, metrizable), \mathcal{B}_X is the Borel σ -algebra.
- $\mu \in \text{Prob}(X)$.
- Let $A \subseteq \mathcal{B}_X$ be a sub σ -algebra, assume A is **countably generated**, i.e., $\exists \{A_i : i \in \mathbb{N}\} \subseteq \mathcal{B}_X$ such that A is the smallest sub σ -algebra of \mathcal{B}_X containing $\{A_i\}$.
- $x \in X$, define the **atom** of x (with respect to A) to be

$$[x]^{\mathcal{A}} := \bigcap_{x \in A_i} A_i$$
, (assume A_i^c also belongs to $\{A_i\}_{i \in \mathbb{N}}$).

Remark 3.3.1 — $[x]^{\mathcal{A}}$ gives an equivalence relation on X, i.e., $y \sim x \iff y \in [x]^{\mathcal{A}}$.

Example 3.3.2

- 1. $\mathcal{A} = \mathcal{B}_X$, then $[x]^{\mathcal{A}} = \{x\}$ for every $x \in X$.
- 2. $\mathcal{A} = \{\emptyset, X\}$, then $[x]^{\mathcal{A}} = X$ for every $x \in X$.
- 3. $X = [0,1] \times [0,1]$, let $\mathcal{A} := \{A \times [0,1] : A \in \mathcal{B}_{[0,1]}\}$, then $[(x,y)]^{\mathcal{A}} = \{x\} \times [0,1]$.
- 4. $\pi: (X, \mathcal{B}_X, \mu) \to (Y, \mathcal{B}_Y, \nu)$ measurable, such that $\pi_* \mu = \nu$, let $\mathcal{A} = \pi^{-1} \mathcal{B}_Y \subseteq \mathcal{B}_X$, then $[x]^{\mathcal{A}} = \pi^{-1}(\pi(x))$.

Theorem 3.3.3 (Conditional Expectation)

There exists a full measure subset $X' \subseteq X$ and a measurable map $X' \to \operatorname{Prob}(X), x \mapsto \mu_x^{\mathcal{A}}$ with $\mu_x^{\mathcal{A}}([x]^{\mathcal{A}}) = 1$ such that

$$\int_{A} \int_{X'} f(y) d\mu_{x}^{\mathcal{A}}(y) d\mu(x) = \int_{A} f(x) d\mu(x), \quad \forall f \in L^{1}(X, \mathcal{B}_{X}, \mu), A \in \mathcal{A}.$$
 (*)

The integral $\int_{X'} f(y) d\mu_x^{\mathcal{A}}(y)$ is called the **conditional expectation** of f with respect to \mathcal{A} . Moreover, if $x \to \nu_x^{\mathcal{A}}$ is another measurable function $X'' \to \operatorname{Prob}(X)$ such that (*) holds, then $\mu_x^{\mathcal{A}} = \nu_x^{\mathcal{A}}$ on a full measure set $X''' \subseteq X' \cap X''$.

Back to our setting, $X = \mathrm{SL}(2,\mathbb{R})/\Gamma$, $U, \mu \in \mathrm{Prob}(X)^{U,\mathrm{erg}}$ which is *B*-invariant. By the discussions in Section 3.1, we can show that μ is *A*-mixing, hence μ is $a^{\mathbb{Z}}$ -ergodic, for every $a \neq \mathrm{Id} \in A$.

Take $0 \in X$, $0 \in \text{supp } \mu$. Consider $B_{\delta}(0) \subseteq X$ where $\delta \ll \text{InjRad}(0)$. Take δ' such that $\delta \ll \delta' \ll \text{InjRad}(0)$. Let \mathcal{A} be a sub σ -algebra on $\mathcal{B}_{\delta}(0)$, such that for every $x \in B_{\delta}(0)$,

$$[x]^{\mathcal{A}} := \{ y \in B_{\delta}(0) : y = bx, b \in B, d_B(b, \mathrm{Id}) < \delta' \}.$$

Where we can choose δ, δ' small enough, such that for every $x \in B_{\delta}(0)$, the map

$$B_{\delta'}(\mathrm{Id}) = \{ b \in B : d_B(b, \mathrm{Id}) < \delta' \} \to X, \quad b \mapsto bx$$

is injective. Let

$$\mu_{B_{\delta}(0)} \coloneqq \frac{\mu|_{B_{\delta}(0)}}{\mu(B_{\delta}(0))},$$

then it induces a conditional measure $(\mu_{B_{\delta}(0)})_x^{\mathcal{A}}$.

Because μ is B-invariant, by the uniqueness of conditional measures, for $\mu_{B_{\delta}(0)}$ -almost every $x \in B_{\delta}(0)$, $(\mu_{B_{\delta}(0)})_x^{\mathcal{A}}$ is the unique left B-invariant Haar measure on B (up to a scalar). Here we regard $[x]^{\mathcal{A}}$ as $\{b \in B_{\delta'}(\mathrm{Id}) : bx \in B_{\delta}(0)\} \subseteq B$, then $(\mu_{B_{\delta}(0)})_x^{\mathcal{A}} \propto m_B|_{\square}$. For every $f \in C_c(X)$, we can find a full measure set $E_f \subseteq B_{\delta}(0)$ such that $\forall x \in E_f$,

$$\frac{1}{N} \sum_{n=0}^{N-1} f(a^n.x) \to \int f \mathrm{d}\mu.$$

Then, we can find a full measure set $E'_f \subseteq E_f$, such that $\forall x \in E'_f$, $(\mu_{B_\delta(0)})_x^A$ is the restriction of left *B*-invariant measure on *B*. Let

$$\widetilde{E}_f := \left\{ x \in B_\delta(0) : x \in v_{(-\delta', \delta')} y \text{ for some } y \in E_f' \right\} \supseteq E_f',$$

where $v_* = \begin{bmatrix} 1 \\ * 1 \end{bmatrix}$. Then for every $x \in \widetilde{E}_f$, let $x = v_s y$, we have

$$\frac{1}{N} \sum_{n=0}^{N-1} f(a^n \cdot x) = \frac{1}{N} \sum_{n=0}^{N-1} f((a^n v_s a^{-n}) a^n \cdot y) \to \int f d\mu.$$

So x is also generic for f, μ . Moreover, \widetilde{E}_f is conull with respect to μ and m_X in $B_\delta(0)$. If $m_X(X) < \infty$, because $m_X(\widetilde{E}_f) > 0$, then we can find a point x in \widetilde{E}_f which is generic for m_X . Then x is a generic point for μ and m_X simultaneously, hence $\mu = \frac{m_X}{m_X(X)}$.

If $m_X(X) = \infty$, then for every $\varphi, \psi \in L^2(X, m_X)$, we have

$$\int_X \varphi(a^n.x)\psi(x)\mathrm{d}m_X \to 0.$$

Take $\psi=\mathbb{1}_{\widetilde{E}_f},$ then $\int_{\widetilde{E}_f} \varphi(a^n.x) \mathrm{d}x \to 0$, hence

$$m_X(\widetilde{E}_f) \int \varphi(x) d\mu(x) = \lim_{N \to \infty} \int_{\widetilde{E}_f} \frac{1}{N} \sum_{n=0}^{N-1} \varphi(a^n.x) dx = 0.$$

Take $\varphi > 0$ and a contradiction. This shows Theorem ??.

§3.4 22.4.29: Equidistribution of unipotent flows on finite volume quotient of $SL(2,\mathbb{R})$

- $\Gamma \leqslant \mathrm{SL}(2,\mathbb{R})$ discrete subgroup.
- $U = \left\{ u_s = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} : s \in \mathbb{R} \right\}.$
- $A = \left\{ a_t : \begin{bmatrix} e^t \\ e^{-t} \end{bmatrix} : t \in \mathbb{R} \right\}.$

Recall Theorem ??. Today we show some works of Dani and Smillie, which gives some techniques to apply the classification of ergodic measure to deal with some problems.

Theorem 3.4.1 (Dani-Smillie)

Assume Γ is a lattice in $\mathrm{SL}(2,\mathbb{R}), x \in X = \mathrm{SL}(2,\mathbb{R})/\Gamma$ with a non-compact U-orbit (equivalent to U.x is not closed). Then

$$\frac{1}{S} \int_0^S (u_s)_* \delta_x \mathrm{d}s \xrightarrow{\mathrm{weak}^*} \widehat{m}_X = \frac{m_X}{m_X(X)}.$$

Corollary 3.4.2

 $\Gamma \leqslant \mathrm{SL}(2,\mathbb{R})$ is a lattice. For every $x \in X$, U.x is either compact or dense in X.

Proof. Step 1 By passing to a subsequence, we can assume that $\mu_{S_k} \to \mu$, but $\mu(X) \leq 1$. Then we can use some non-divergence argument (see) to show that $\mu(X) = 1$.

Step 2 μ is *U*-invariant.

Step 3 Let $\mathscr{T} = \{x \in X : U.x \text{ is compact}\}\$, in general, \mathscr{T} is dense in X. We show that $\mu(\mathscr{T}) = 0$, this is Proposition 3.4.3.

Step 4 $\exists \lambda \in \text{Prob}(\text{Prob}(X)^U)$ depending on μ , such that

$$\mu = \int_{\nu \in \operatorname{Prob}(X)^{U,\operatorname{erg}}} \nu d\lambda(\nu).$$

By Step 3, we can show that $\nu(\mathscr{T}) = 0$ for λ -a.e. μ . By Theorem ??, we have $\mu = \widehat{m}_X$. \square

Proposition 3.4.3

 $\Lambda_0 \in X_2 \cong \mathrm{SL}(2,\mathbb{R})/\mathrm{SL}(2,\mathbb{Z})$, assume $U.\Lambda_0$ is not compact. Then $\mu(\mathscr{T}) = 0$.

Lemma 3.4.4

When $\Gamma = \mathrm{SL}(2,\mathbb{Z})$, then $\mathscr{T} = \{a_t u_s \mathbb{Z}^2 : t \in \mathbb{R}, s \in \mathbb{R}/\mathbb{Z}\}$.

Let $\mathscr{T}_{t_1,t_2} := \left\{ a_t u_s \mathbb{Z}^2 : t \in [t_1,t_2], s \in \mathbb{R}/\mathbb{Z} \right\}$, it suffices to show that $\mu(\mathscr{T}_{t_1,t_2})$.

Proposition 3.4.5

For every $-\infty < t_1 < t_2 < \infty, \varepsilon > 0$, there exists an open neighborhood N_{ε} of \mathscr{T}_{t_1,t_2} such that

 $\limsup \frac{1}{S} \operatorname{Leb} \left\{ s \in [0, S] : u_s. \Lambda_0 \in N_{\varepsilon} \right\} < \varepsilon.$

Fact 3.4.6. Proposition $3.4.5 \implies \text{Proposition } 3.4.3$.

Proof. We have

$$\mathscr{T}_{t_1,t_2} \subseteq \left\{ \Lambda \in X_2 : \operatorname{Prim}(\Lambda) \cap ([e^{t_1}, e^{t_2} \times \{0\}]) \neq \varnothing \right\}.$$

In fact, two sets above are identifying. We define $\text{Box}(C, \delta) := [-C, C] \times [-\delta, \delta]$ for $C, \delta > 0$. We will choose $\delta = 0.1\varepsilon$, $C \ge e^{t_2} + 1$ independent with ε . Let

$$N_{\varepsilon} := \{ \Lambda \in X_2 : \operatorname{Prim}(\Lambda) \cap \operatorname{Box}(C, \delta) \neq \emptyset \} \supseteq \mathscr{T}_{t_1, t_2}.$$

We define

$$N'_{\varepsilon} := \left\{ \Lambda \in X_2 : \operatorname{Prim}(\Lambda) \cap \operatorname{Box}(\varepsilon^{-1}, \varepsilon) \neq \varnothing \right\}.$$

Let

$$I(N_{\varepsilon}) := \left\{ s \in \mathbb{R} : u_s \Lambda_0 \in N_{\varepsilon} \right\}, \quad I(N'_{\varepsilon}) := \left\{ s \in \mathbb{R} : u_s \Lambda_0 \in N'_{\varepsilon} \right\}.$$

For every $v \in \text{Prim}(\Lambda_0)$, consider

$$I(N_{\varepsilon}, v) := \{ s \in \mathbb{R} : u_s v \in \text{Box}(C, \delta) \}, \quad I(N'_{\varepsilon}, v) := \{ s \in \mathbb{R} : u_s v \in \text{Box}(\varepsilon^{-1}, \varepsilon) \}.$$

By definition,
$$I(N_{\varepsilon}) = \bigcup_{v \in \text{Prim}(\Lambda)} I(N_{\varepsilon}, v), \ I(N'_{\varepsilon}) = \bigcup_{v \in \text{Prim}(\Lambda)} I(N'_{\varepsilon}, v).$$

We can show that for every $v, w \in \text{Prim}(\Lambda_0), \varepsilon \in (0, 1)$, if $I(N'_{\varepsilon}, v) \cap I(N_{\varepsilon}, w) \neq \emptyset$, then $v = \pm w$. Then the union is a disjoint union. Note that $|I(N_{\varepsilon}, v)| \leq C\varepsilon |I(N'_{\varepsilon}, v)|$, then $|I(N_{\varepsilon}) \cap [0, S]| \leq 4C\varepsilon S$.