two conflicting finalized blocks imply that at least n/3 adversarial validators can be detected to have violated either [slashing condition] E1 or E2. $AccountableSafetu \triangleq$ LET $finalized_checkpoints \triangleq get_finalized_checkpoints(single_node_state)$ $finalized_blocks \triangleq \{$ $qet_block_from_hash(checkpoint.block_hash, single_node_state):$ $checkpoint \in finalized_checkpoints$

Theorem 1 (Accountable safety). The finalized chain chFin_i is accountably safe, i.e.,

 $there_are_conflicting_finalized_blocks \triangleq$ $\exists block1, block2 \in finalized_blocks:$ are_conflicting(block1, block2, single_node_state) $slashable_nodes \stackrel{\triangle}{=} get_slashable_nodes(single_node_state.view_votes)$

 $there_are_conflicting_finalized_blocks \Rightarrow$ ΙN $(Cardinality(slashable_nodes) * 3 \ge Cardinality(Nodes))$