## Stochastic Processes

#### Eklavya Sharma

**Definition 1** (Stochastic Process). Let  $\mathcal{T} \subseteq \mathbb{R}$ . For any  $t \in \mathcal{T}$ , let  $X_t$  be a random variable with support D. Then  $X := \{X_t : t \in \mathcal{T}\}$  is called a stochastic process on state-space D and time  $\mathcal{T}$ . Usually,  $\mathcal{T}$  is either  $\mathbb{Z}_{\geq 0}$  (discrete-time) or  $\mathbb{R}_{\geq 0}$  (continuous-time).

#### 1 Discrete-Time Markov Chains

**Definition 2** (Markov Chain). Let  $X := [X_0, X_1, \ldots]$  be a stochastic process on state-space D and time  $\mathbb{Z}_{\geq 0}$ . X is called a discrete-time markov chain if  $\Pr(X_{t+1} = d \mid X_t, X_{t-1}, \ldots, X_0) = \Pr(X_{t+1} = d \mid X_t)$ . If  $\Pr(X_{t+1} = d \mid X_t) = \Pr(X_1 = d \mid X_0)$ , then X is called time-homogeneous.

**Definition 3** (Transition function). Let X be a markov chain on state space D. Define  $P^{(k)}: D \times D \mapsto [0,1]$  as  $P^{(k)}(i,j) = \Pr(X_k = j \mid X_0 = i)$ . Then  $P^{(k)}$  is called the k-step transition function of X. For k = 1, we simply write P instead of  $P^{(1)}$ . For a finite state space, we can represent P as a matrix.

**Lemma 1** (Chapman-Kolmogorov Equation).  $P^{(m+n)}(i,j) = \sum_k P^{(m)}(i,k) P^{(n)}(k,j)$ .

# 1.1 Classification of States, Recurrence, Limiting Probabilities

**Definition 4.** Let  $f_{i,j} := \Pr\left(\bigvee_{t \geq 1} (X_t = j) \mid X_0 = i\right)$ . Then  $f_{i,j}$  is called the eventual transition probability from i to j. If i = j, then we write  $f_{i,i}$  as  $f_i$ , and call it the recurrence probability of state i.

**Definition 5.** For a state i, let  $N_i$  be the random variable that counts the number of times we are in state i, i.e.,  $N_i := \sum_{t=0}^{\infty} \mathbf{1}(X_t = i)$ . Then  $N_i$  is called the visit-count of i.

**Definition 6.** A state i of a markov chain is recurrent iff (the following are equivalent):

- the recurrence probability  $(f_i)$  of i is 1.
- i is visited infinitely often, i.e.,  $Pr(N_i = \infty \mid X_0 = i) = 1$ .
- i is visited infinitely often in expectation, i.e.,  $E(N_i \mid X_0 = i) = \infty$ .

A non-recurrent state is called a transient state.

**Lemma 2.** 
$$Pr(N_i = k \mid X_0 = i) = f_i^{k-1}(1 - f_i).$$

**Lemma 3.** 
$$E(N_i \mid X_0 = i) = 1/(1 - f_i) = \sum_{t=0}^{\infty} P^{(t)}(i, i)$$
.

**Definition 7.** State j is accessible from state i if  $P^{(t)}(i,j) > 0$  for some t. States i and j communicate (denoted as  $i \leftrightarrow j$ ) if i and j are both accessible from each other.

**Lemma 4.** Accessibility is reflexive and transitive. Communication is an equivalence relation. The equivalence classes of communicability are called state classes. A markov chain is irreducible if it has just one state class.

**Definition 8.** Let  $T_i$  be the time when a markov chain moves to state i, i.e.,  $T_i := \min_{t \geq 1}(X_t = i)$ . When conditioned on  $X_0 = i$ ,  $T_i$  is called the recurrence time of i. State i is called positive recurrent if  $E(T_i \mid X_0 = i)$  is finite, otherwise it is null recurrent.

**Lemma 5.** Recurrence and positive recurrence are class properties, i.e., they are same for all states in a class.

**Lemma 6.** In a finite-state markov chain, all recurrent states are positive recurrent, and there is at least one recurrent state.

**Definition 9** (Periodicity). For a state i, its period is defined as  $gcd(\{t : Pr(T_i = t \mid X_0 = i) > 0\})$ . A state is aperiodic if its period is 1.

**Lemma 7.** Periodicity is a class property.

**Definition 10** (Ergodicity). A state is ergodic if it is positive recurrent and aperiodic. A markov chain is ergodic if all its states are ergodic.

**Lemma 8.** In an irreducible ergodic markov chain, for every state j,  $\lim_{t\to\infty} P^{(t)}(j,i) = \pi_i$  for a unique real number  $\pi_i$ .  $\pi_i$  is called the limiting probability of state i. Furthermore,  $\pi_i$  is the unique solution to this system of equations:  $\pi_i = \sum_j \pi_j P(j,i)$  for all i ( $\pi = P^T \pi$  in matrix form) and  $\sum_i \pi_i = 1$ .

**Lemma 9.** In an irreducible ergodic markov chain,  $E(T_i \mid X_0 = i) = 1/\pi_i$ .

Corollary 9.1. A state i is null recurrent iff  $\pi_i = 0$ .

**Theorem 10.** If the transition function of markov chain X is doubly-stochastic (i.e., each row and each column sums to 1), then the limiting probability of each state is 1/n, where n is the number of states.

### 1.2 Time-Reversibility

**Definition 11.** For an irreducible ergodic markov chain X with limiting probabilities  $\pi$ . Let Y be a markov chain whose transition function is  $Q(i,j) = P(j,i)(\pi_j/\pi_i)$ . Then Y is called the time-reversed markov chain of X. X is called time-reversible if Q = P.

**Theorem 11.** Let X be a time-reversible markov chain with limiting probabilities  $\pi$ . Then  $\pi$  is the unique solution to this system of equations:  $x_j P(j,i) = x_i P(i,j)$  for all states i and j, and  $\sum_i x_i = 1$ .

**Theorem 12.** If the transition function of markov chain X is symmetric, then X is time-reversible.