Sprawozdanie 3: Liczniki i automaty

Jakub Szymczak, Damian Tworek, Maksymilian Sulima, Łukasz Wala

AGH, Wydział Informatyki, Elektroniki i Telekomunikacji Technika Cyfrowa 2021/2022

Kraków, 18 maja 2022

1 Ćwiczenie 3a

Ideą ćwiczenia jest zaprojektowanie, zrealizowanie i przetestowanie dwójki liczącej w oparciu o przerzutnik JK.

Rysunek 1: Dwójka licząca

Układ ma wejście zegara ${\bf CLK}$ oraz wyjście ${\bf Q}$. W kolejnych taktach zegara stan na wyjściu ${\bf Q}$ zmienia się na przeciwny.

Następnie w oparciu o jeden z wariantów zaprojektowanej dwójki liczącej, zaprojektowany i przetestowany zostanie asynchroniczny licznik modulo 8.

Rysunek 2: Asynchroniczny licznik modulo 8

Wejście zegara oznaczono jako **CLK**, natomiast wyjścia to (w kolejności od najmniej istotnego bitu) **Q0**, **Q1**, **Q2**.

1.1 Rozwiązanie teoretyczne

Tabela prawdy dla dwójki liczącej wygląda następująco:

Q _n	Q _{n-1}			
0	1			
1	0			

Rysunek 3: Tabela prawdy dla dwójki liczącej

Do zbudowania jej będzie potrzebny jeden przerzutnik JK:

J	K	Qn
0	0	Q_{n-1}
0	1	0
1	0	1
1	1	\overline{Q}_{n-1}

Rysunek 4: Tabela prawdy dla przerzutnika JK

Na podstawie tych dwóch tabel można wywnioskować, które stany przerzutnika JK będzie można wykorzystać (z możliwych kombinacji wybrane zostały dwie):

Rysunek 5: Rozwiązanie teoretyczne

Tabele Karnough dla pierwszego przypadku:

Rysunek 6: Tabela Karnough dla przypadku 1

Można zauważyć, że Q_{n-1} jest zawsze równe \overline{Q} , więc można skorzystać z wyjścia zanegowanego wyjścia ${\bf Q}$ w przerzutniku JK.

$$J = Q_{n-1} = \overline{Q}$$
$$K = Q_n$$

Rysunek 7: Schemat dla tabeli 1

Tabela Karnough dla drugiego przypadku:

Rysunek 8: Tabela Karnough dla przypadku 2

$$J = 1$$

 $K = 1$

Rysunek 9: Schemat dla tabeli $2\,$

1.2 Implementacja w programie Multisim

Poniżej znajduje się implementacja obu wariantów układu:

Rysunek 10: Implementacja dwójki liczącej

Układ testujący dla dwójki liczącej (używający wariantu po lewej stronie):

Rysunek 11: Układ testujący dla dwójki liczącej

Rysunek 12: Generator słów dla układu testującego

Rysunek 13: Analizator dla układu testującego

Rysunek 14: Ustawienia analizatora

1.3 Asynchroniczny licznik modulo 8

Asynchroniczny licznik modulo 8 (odliczający do góry 0,1,2,...,7) można stworzyć używając trzech dwójek liczących, łącząc ich zanegowane wyjścia z wejściami zegara kolejnych (tylko, gdy użyty przerzutnik JK reaguje na wzrastający sygnał zegara):

Rysunek 15: Implementacja asynchronicznego licznika modulo $8\,$

Poniżej układ testujący:

Rysunek 16: Układ testujący dla asynchronicznego licznika modulo 8

Rysunek 17: Generator słów dla układu testującego

Rysunek 18: Analizator dla układu testującego

Rysunek 19: Ustawienia analizatora

1.4 Wnioski

- Liczniki asynchroniczne mają ograniczone zastosowanie, ponieważ, w związku z tym, że przerzutniki sterowane są wyjściami przerzutników poprzedzających, stan nie ustala się od razu, więc jeżeli impulsy zegarowe mają dużą częstotliwość i ich okres jest porównywalny z czasem propagacji przerzutnika, to sygnały wyjściowe licznika mogą podawać złe wartości. Rozwiązaniem tego problemu są liczniki synchroniczne.
- Dwójki liczącej oraz liczników w ogólności można użyć do zmniejszania częstotliwości zegara (jeżeli dwójka reaguje na zmianę z 0 na 1, wówczas częstosliwość na wyjściu zmniejszona jest dwukrotnie).

Rysunek 20: Układ zmniejszający czętstotliwość

Rysunek 21: analizator układu zmniejszającego częstotliwość

Jak widać, częstotliwość na wyjści najmniej znaczącego bitu jest zmniejszona dwukrotnie, na drugim bicie czterokrotnie itd.

2 Ćwiczenie 3b

Ideą ćwiczenia jest, bazując na dowolnie wybranych przerzutnikach, zaprojektowanie, zbudowanie i przetestowanie synchronicznego czterobitowego licznika liczącego w kodzie Graya.

Rysunek 22: Synchroniczny licznik czterobitowy w kodzie Graya

2.1 Rozwiązanie teoretyczne

Wszystkie układy są synchroniczne i zakładają zmianę stanu przy zmianie sygnału zegarowago.

Licznik powinien liczyć w kodzie Graya, co oznacza, że dwa kolejne stany różnią się dokładnie jednym bitem:

Rysunek 23: Kolejne stany licznika

W implementacji użyte zostaną przerzutniki D:

Rysunek 24: Tabela przejść dla przrzutnika D

Wyjście przerzutnika D_i odpowiada Q_i :

				T ₊₁]				
Q ₃	Q ₂	$Q_{_1}$	Q _o	Q ₃	Q ₂	Q ₁	Q _o	D ₃	D ₂	D ₁	D _o
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	1	0	0	1	1
0	0	1	1	0	0	1	0	0	0	1	0
0	0	1	0	0	1	1	0	0	1	1	0
0	7	1	0	0	1	1	1	0	1	1	1
0	1	1	1	0	1	0	1	0	1	0	1
0	1	0	1	0	1	0	0	0	1	0	0
0	1	0	0	1	1	0	0	1	1	0	0
1	7	0	0	1	1	0	1	1	1	0	1
1	1	0	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0	1	1	1	0
1	1	1	0	1	0	1	0	1	0	1	0
1	0	1	0	1	0	1	1	1	0	1	1
1	0	7	1	1	0	0	1	1	0	0	1
1	0	0	1	1	0	0	0	1	0	0	0
1	0	0	0	\bigcirc	0	0	0	0	0	0	0

Rysunek 25: Tabela prawdy dla licznika

Na podstawie tabeli prawdy licznika można skonstruować tabele Karnough oraz wzory dla $D_0,\,D_1,\,D_2,\,D_3$:

Rysunek 26: Tabela Karnough dla D_0

$$D_0 = \overline{Q_3} \, \overline{Q_2} \, \overline{Q_1} + \overline{Q_3} Q_2 Q_1 + Q_3 Q_2 \overline{Q_1} + Q_3 \overline{Q_2} Q_1$$

Ten wzór da się uprościć. Korzystając z rozdzielności koniunkcji względem alternatywy

$$D_0 = \overline{Q_3}(\overline{Q_2}\,\overline{Q_1} + Q_2Q_1) + Q_3(Q_2\overline{Q_1} + \overline{Q_2}Q_1)$$

Tutaj natomiast można zauważyć, że zawartość pierwszego nawiasu to wzór na XNOR, a drugiego na XOR, więc

$$D_0 = \overline{Q_3}(\overline{Q_1 \oplus Q_2}) + Q_3(Q_1 \oplus Q_2)$$

Ponownie, jest to wzór na XNOR Q_3 oraz zawartości nawiasu

$$D_0 = \overline{Q_1 \oplus Q_2 \oplus Q_3}$$

Rysunek 27: Tabela Karnough dla \mathcal{D}_1

$$D_1 = \underline{Q_1}\overline{Q_0} + \underline{\overline{Q_3}}\,\overline{Q_2}Q_0 + \underline{Q_3}Q_2Q_0$$

Tutaj można skorzystać z prawa rozdzielności koniunkcji względem alternatywy

$$D_1 = Q_1 \overline{Q_0} + Q_0 (\overline{Q_2} \, \overline{Q_3} + Q_2 Q_3)$$

Zawartość nawiasu to XNOR

$$D_1 = Q_1 \overline{Q_0} + Q_0 (\overline{Q_2 \oplus Q_3})$$

Rysunek 28: Tabela Karnough dla \mathcal{D}_2

$$D_2 = \underline{Q_1}\overline{Q_0}\ \overline{Q_3} + \underline{Q_0}\overline{Q_2} + \overline{Q_1}\overline{Q_2}$$

Rysunek 29: Tabela Karnough dla \mathcal{D}_3

$$D_3 = Q_1 Q_3 + Q_3 \overline{Q_1} Q_0 + Q_2 \overline{Q_1} \overline{Q_0}$$

2.2 Implementacja w programie Multisim

Rysunek 30: Implementacja licznika

$$D_0 = \overline{Q_1 \oplus Q_2 \oplus Q_3}$$

Rysunek 31: Podukład 0

$$D_1 = Q_1 \overline{Q_0} + Q_0 (\overline{Q_2 \oplus Q_3})$$

Rysunek 32: Podukład 1

$$D_2 = Q_1 \overline{Q_0} \, \overline{Q_3} + Q_0 Q_2 + \overline{Q_1} Q_2$$

Rysunek 33: Podukład 2

$$D_3 = Q_1 Q_3 + Q_3 \overline{Q_1} Q_0 + Q_2 \overline{Q_1} \overline{Q_0}$$

Rysunek 34: Podukład 3

Poniżej układ testujący

Rysunek 35: Układ testujący

Rysunek 36: Generator słów

Rysunek 37: Opcje analizatora

Rysunek 38: Analizator stanów logicznych

2.3 Wnioski

Alternatywnym podejściem mogłoby być wykorzystanie innego typu przerzutników np. przerzutników JK (wówczas trzeba by jednak liczyć osiem zamiast czterech funkcji, bo bramka JK ma 2 wejścia) lub przerzutników typu T, które wydają się bardziej adekwatne. Podejście z przerzutnikiem T wymagałoby skonstruowania funkcji T₀, T₁, T₂, T₃, np. tabela Karnough dla T₀:

Rysunek 39: Tabela Karnough dla T_0

$$T_0 = \overline{Q_3} \, \overline{Q_2} \, \overline{Q_1} \, \overline{Q_3} + \overline{Q_3} \, \overline{Q_2} Q_1 Q_0 + \dots + Q_3 \overline{Q_2} Q_1 \overline{Q_0}$$

Jak widać, nie można zaznaczyć żadnej grupy większej niż jedna wartość, więc funkcja T_0 składałaby się z sumy ośmiu elementów, co wymaga większej liczby bramek i jest bardziej podatne na błędy w implementacji.

- Licznik synchroniczny w kodzie Graya, podobnie jak zwyczajny licznik binarny, może służyć jako dzielnik częstosliwości, jednak w tym przypadku częstotliwość sygnału na wyjściu najmniej znaczącego bitu będzie czterokrotnie mniejsza niż na wejściu, na wyjściu drugiego bitu ośmiokrotnie mniejsza itd.
- Przypuśćmy, że układ korzystający z licznika Graya służy do sterowania prądem przepływającym przez np. diodę LED. Użytkownik może naciskać przycisk tak żeby zwiększyć jasność diody (natężenie na diodzie = wyjście z licznika · pewne natężenie bazowe). Po tym gdy użytkownik znajdzie się w najwyższej pozycji licznika (np. 10) licznika wraca do pozycji minimalnej.

Rysunek 40: Przykład - układ sterujący jasnościa diody

Gdyby używać licznika binarnego, wówczas istnieje ryzyko, że podczas zmiany stanów dioda chwilowo znajdzie się w stanie zabronionym (np. $0111 \rightarrow 1000$ znajdzie się w stanie 1111), na diodę podane zostanie natężenie większe niż może przyjąć i dioda się przepali. Przy użyciu licznika w kodzie Graya podobne zagrożenie nie istnieje.

3 Ćwiczenie 3c

Ideą ćwiczenia jest, bazując na przerzutnikach "D", zaprojektowanie, zbudowanie i przetestowanie automatu realizującego detekcję litery Q przekazywanej alfabetem Morsa, czyli sekwencji bitów: "— \bullet —". Za kreskę nalezy przyjąć stan logiczny '1', a za kropkę stan logiczny '0'. Należy również zaproponować własny, ale skuteczny i praktyczny sposób wprowadzania do urządzenia sygnału wejściowego.

Rysunek 41: Układ 3c

3.1 Rozwiązanie teoretyczne

Sekwencja, którą trzeba wykryć, to "1101", na tej podstawie zaprojektować można automat wykrywający owe słowo:

Rysunek 42: Automat wykrywający słowo "1101"

Na podstawie automatu można stworzyć tabelę kolejnych stanów oraz tabelę dla Y:

	>	(
STAN	٥	1	STAN	Y
000	٥٥٥	001	000	D
001	000	011	001	0
011	010	011	011	D
010	اموه	110	010	0
110	000	011	410	1
111	_		111	_
101		_	101	_
100	_		טעג	_

Rysunek 43: Tabela kolejnych stanów automatu oraz tabela Y Pozostaje skonstruować tabele Karnough (STAN = $Q_2Q_1Q_0$):

Rysunek 44: Tabela Karnough dla D_0

$$D_0 = \underline{Q_0 X} + X \overline{Q_1} + X Q_2$$

Rysunek 45: Tabela Karnough dla \mathcal{D}_1

$$D_1 = \underline{Q_0 X} + \underline{X Q_1} + \underline{Q_0 Q_1}$$

Rysunek 46: Tabela Karnough dla D_2

$$D_2 = \overline{Q_0} X \overline{Q_2} Q_1$$

Oraz tabela Karnough dla Y:

Rysunek 47: Tabela Karnough dla ${\cal Y}$

$$Y = \underline{Q_2}$$

3.2 Implementacja w programie Multisim

Rysunek 48: Implementacja w programie Multisim

$$D_0 = Q_0 X + X \overline{Q_1} + X Q_2$$

Rysunek 49: Podukład \mathcal{D}_0

$$D_1 = Q_0 X + X Q_1 + Q_0 Q_1$$

Rysunek 50: Podukład D_1

$$D_2 = \overline{Q_0} X \overline{Q_2} Q_1$$

Rysunek 51: Podukład \mathcal{D}_2

Poniżej układ testujący:

Rysunek 52: Układ testujący

Rysunek 53: Analizator stanów logicznych w układzie testującym

Rysunek 54: Generator słów w układzie testująym

Rysunek 55: Ustawienia analizatora stanów logicznych

3.3 Wnioski

Prostym, a praktycznym sposobem podawania sygnału wejściowego byłoby zastosowanie przełącznika i przycisku: przełącznik określałby stan kolejnego symbolu (włączony - 1, wyłączony - 0), a drugi pełniłby rolę manualnego zegara.

Rysunek 56: Wprowadzanie sygnału

• W naszym podejściu kolejne stany oznaczone kolejnymi liczbami w kodzie Graya (przypadłość po ćwiczeniu 3b). Alternatywnie, można opisać by je kolejnymi liczbami zapisanymi binarnie (000, 001, 010, 011, 100). Wówczas tabele Karnough, a co za tym idzie, wzory byłyby inne niż obecnie.

Rysunek 57: Alternatywne oznaczenia stanów automatu

Rysunek 58: Alternatywna tabela Karnough D_0

$$D_0 = \overline{Q_0} X \overline{Q_2}$$

• Hipotetycznym scenariuszem, w którym układ byłby przydatny, to wykrywanie sygnału wysyłanego przez pewną maszynę. Przypuśćmy, że maszyna może wysyłać różne sygnały, np. o tym, że kończy się materiał, z którego korzysta. Jednym z sygnałów wysyłanych może być sygnał stop (1101), wysyłany w przypadku, gdy np. maszyna się przegrzewa. Układ wykrywa ten sygnał i odłącza maszynę od prądu.

Rysunek 59: Maszyna wysyłająca sygnały