1 PS 5.17

1.1

Figure 1: Integrand at a=2,3,4

1.2

$$\frac{d}{dx}x^{a-1}e^{-x}$$
= $(a-1)x^{a-2}e^x - x^{a-1}e^{-x}$
= $x^{a-2}e^{-x}(a-1-x)$

which has a root at x = a - 1 and at x = 0. However, at all higher derivatives, there will be some factor of x^{-n} , so the root a x = 0 can correspond to a maxima. However if a - 1 is negative, there is no peak in the defined range. An approximation would be the first moment i.e.

$$\int_0^{\inf} x e^{-x} x^{a-1} = \int_0^{\inf} e^{-x} x^a = \Gamma(a+1)$$

1.3

To peak x around $x=\frac{1}{2},\,\frac{1}{2}=\frac{a\pm 1}{c+a\pm 1}\Rightarrow c=a\pm 1$

1.4

 $\ln(x)-x$ is roughly linear so there difference is roughly linear. Therefor, we wouldn't expect machine precision errors except for very large numbers. Very small numbers may have some precision error as $\ln(x) \to -\infty$ but exponentiation regulates errors to order of unity instead.

2

Time is scaled to a dimensionless parameter given by

$$\frac{t_i - \bar{t}}{\sum t_i^2}$$

where \bar{t} is its mean.

Figure 2: Signal

2.1

Assuming a gaussian like distribution, the residuals have a standard deviation of ~ 3 which means $\sim \%45$ of the date is outside the error bounds of the model which is unacceptable.

Figure 3: Residuals of 3rd order polynomial

2.2

The highest order polynomial within machine precision is at order 6 with condition number 7.4×10^9 which means calculations are done within 6 orders of magnitude of machine precision while getting the least possible residuals.

Figure 4: 3rd and 6th order plots

2.3

Both cos and sin fits seem to fare poorly with residuals \sim 3000. Both however clearly had a natural frequency of 4 times the base frequency.

Figure 5: Trig Plots