MATH 4000/6000 - Homework #4

posted February 21, 2024; due March 1, 2024 by 5 PM

You did a number on me. But, honestly, baby, who's counting?

- Taylor Swift

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. Let R be a ring, and let R' be a subset of R. We call R' a subring of R if
 - (A) R' is a ring for the same operations + and \cdot as in R, and
 - (B) R' contains the multiplicative identity 1_R of R.

(For example, making the identification discussed in class, \mathbb{Z} is a subring of \mathbb{Q} .)

- (a) Let R be a ring. Suppose that R' is a subset of R closed under the + and \cdot operations of R, that R' contains the additive inverse (in R) of each of its elements, and that R' contains 1_R . Show that R' is a subring of R.
 - *Hint.* (B) holds by assumption. Check that all the ring axioms hold for R' in order to verify (A). To get started, show that 0_R must belong to R'.
- (b) Find a two-element subset R' of $R = \mathbb{Z}_6$ that satisfies condition (A) in the definition of a subring but not (B). You do **not** have to give a detailed proof that (A) holds.
- 2. (Introduction to the Gaussian integers) Let $\mathbb{Z}[i]$ be the subset of complex numbers defined by $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}.$
 - (a) Check that $\mathbb{Z}[i]$ is a subring of \mathbb{C} . (Exercise 1 above may be helpful.)
 - (b) Define a function $N: \mathbb{Z}[i] \to \mathbb{R}$ by $N(z) = z \cdot \overline{z}$. This is called the **norm** of z. Explain why N(z) is a nonnegative integer for every $z \in \mathbb{Z}[i]$. For which $z \in \mathbb{Z}[i]$ is N(z) = 0?
 - (c) Prove that N(zw) = N(z)N(w) for all $z, w \in \mathbb{Z}[i]$.
 - (d) Using (c), show that $z \in \mathbb{Z}[i]$ is a unit $\iff N(z) = 1$. Then find (with proof) all units in $\mathbb{Z}[i]$.
- 3. Let F be a field in which $1+1 \neq 0$, and let a be a nonzero element of F. Show that the equation $z^2 = a$ has either no solutions in F or exactly two distinct solutions.

Hint. If $z_1^2 = a$ and $z_2^2 = a$, how are z_1 and z_2 related?

- 4. (Quadratic Formula!) Let F be a field with $1+1\neq 0$. Suppose $f(x)\in F[x]$ has degree 2, and write $f(x)=ax^2+bx+c$, where $a,b,c\in F$. Define Δ by setting $\Delta=b^2-4ac$.
 - (a) Show that if R is an element of F with $R^2 = \Delta$, then

$$\frac{-b+R}{2a}$$

is a root of f that belongs to F. (Interpret the fraction $\frac{-b+R}{2a}$ as $-(b+R)(2a)^{-1}$, which makes sense as an element of F because 2a is a nonzero element of F.)

(b) Prove the converse of (a). That is, show that every root of f that belongs to F has the form $\frac{-b+R}{2a}$ for some $R \in F$ satisfying $R^2 = \Delta$.

Hint. Completing the square yields $4af(x) = (2ax + b)^2 - \Delta$.

- 5. Let F be a field, and let $f(x) \in F[x]$ be a polynomial of degree n. Show that f has at most n distinct roots in F. Hint: Use the Root-Factor theorem.
- 6. Decide whether each of the following polynomials is irreducible in F[x] for the given field F.
 - (a) $f(x) = x^2 + \bar{1}$, $F = \mathbb{Z}_5$,
 - (c) $f(x) = x^2 + \bar{1}$, $F = \mathbb{Z}_{19}$,
 - (e) $f(x) = x^3 + x + \bar{1}$, $F = \mathbb{Z}_2$.
- 7. Let F be a field. Prove that the units in F[x] are precisely the nonzero elements of F.
- 8. Let F be a field. Recall the definition of the gcd in F[x]: a gcd of a(x), b(x) is a common divisor of a(x) and b(x) in F[x] that is divisible by every common divisor in F[x].

Show that if $d(x) \in F[x]$ is a gcd of a(x), b(x), then so is $c \cdot d(x)$ for every nonzero $c \in F$. Conversely, show that every gcd of a(x), b(x) has the form $c \cdot d(x)$ for some nonzero $c \in F$.

- 9. Let F be a field. Give a detailed proof that every nonconstant polynomial in F[x] can be written as a product of irreducible polynomials. (You are not asked to prove uniqueness in this problem.)
- 10. Later in the course we will construct a field K with 4 elements containing \mathbb{Z}_2 as subfield. In this exercise, assume K is such a field. Then in addition to 0, 1 from \mathbb{Z}_2 , the field K has two extra elements; call these α and β .
 - (a) Show that $\alpha + 1 = \beta$.

 Hint. Eliminate all other possibilities for $\alpha + 1$.
 - (b) Show that $\alpha^2 = \beta$.
 - (c) Show that both α and β are roots of x^2+x+1 and deduce that $x^2+x+1=(x-\alpha)(x-\beta)$ in K[x].
- 11. (*; MATH 6000 problem) The field $\mathbb{Q}(x)$ of rational functions with coefficients in \mathbb{Q} is defined by

$$\mathbb{Q}(x) = \left\{ \frac{a(x)}{b(x)} : a(x), b(x) \in \mathbb{Q}[x], b(x) \neq 0 \right\},\,$$

with operations $\frac{a(x)}{b(x)} + \frac{c(x)}{d(x)} = \frac{a(x)d(x) + b(x)c(x)}{b(x)d(x)}$ and $\frac{a(x)}{b(x)} \cdot \frac{c(x)}{d(x)} = \frac{a(x)c(x)}{b(x)d(x)}$.

- (a) Say that $\frac{a(x)}{b(x)}$ is positive if $a(x) \neq 0$ and the leading coefficients of a(x) and b(x) have the same sign. Check that whether or not a(x)/b(x) is positive is independent of the representation a(x)/b(x).
- (b) Define $\mathbb{Q}(x)^+ = \{\text{positive elements of } \mathbb{Q}(x)\}$. Check that $\mathbb{Q}(x)^+$ has the three properties stated in Axiom O1 from our handout, where $\mathbb{Q}(x)^+$ replaces \mathbb{Z}^+ and $\mathbb{Q}(x)$ replaces \mathbb{Z} . So we have turned $\mathbb{Q}(x)$ into an ordered field and we can define < and > as we are used to doing.
- (c) We can view \mathbb{Q} as a subset of $\mathbb{Q}(x)$ by identifying each rational number r with the rational function r/1, the numerator and denominator being constant polynomials. Making these identifications, show that \mathbb{Z}^+ is bounded above in $\mathbb{Q}(x)$.

12. (*; MATH 6000 problem)

¹It is to be understood here that $\mathbb{Q}(x)$ is obtained from $\mathbb{Q}[x]$ by applying the equivalence class construction used to obtain \mathbb{Q} from \mathbb{Z} . In particular, a(x)/b(x) = c(x)/d(x) precisely when a(x)d(x) = b(x)c(x) in $\mathbb{Q}[x]$.

(a) Is $\mathbb{Q}(x)$ Archimedean? That is: If $a(x), b(x) \in \mathbb{Q}(x)^+$, is there always a positive integer n such that

$$\underbrace{a(x) + a(x) + \dots + a(x)}_{n \text{ times}} > b(x)?$$

Justify your answer.

(b) Does $\mathbb{Q}(x)$ have the Least Upper Bound Property? That is, does every nonempty subset of $\mathbb{Q}(x)$ that is bounded above have a least upper bound? Justify your answer.