





569K Followers

You have 2 free member-only stories left this month. Sign up for Medium and get an extra one

DATA ANALYSIS

# A complete Data Analysis workflow in Python and scikit-learn

A ready-to-run code including preprocessing, parameters tuning and model running and evaluation.



Angelica Lo Duca May 3 ⋅ 6 min read ★



Image by Buffik from Pixabay

In this short tutorial I illustrate a complete data analysis process which exploits the scikit-learn Python library. The process includes





model octoblion with parameters talling

• model evaluation

The code of this tutorial can be downloaded from my Github Repository.

#### **Load Dataset**

Firstly, I load the dataset through the Python pandas library. I exploit the heart.csv dataset, provided by the <u>Kaggle repository</u>.

```
import pandas as pd

df = pd.read_csv('source/heart.csv')
df.head()
```

|   | age | sex | ср | trtbps | chol | fbs | restecg | thalachh | exng | oldpeak | slp | caa | thall | output |
|---|-----|-----|----|--------|------|-----|---------|----------|------|---------|-----|-----|-------|--------|
| 0 | 63  | 1   | 3  | 145    | 233  | 1   | 0       | 150      | 0    | 2.3     | 0   | 0   | 1     | 1      |
| 1 | 37  | 1   | 2  | 130    | 250  | 0   | 1       | 187      | 0    | 3.5     | 0   | 0   | 2     | 1      |
| 2 | 41  | 0   | 1  | 130    | 204  | 0   | 0       | 172      | 0    | 1.4     | 2   | 0   | 2     | 1      |
| 3 | 56  | 1   | 1  | 120    | 236  | 0   | 1       | 178      | 0    | 0.8     | 2   | 0   | 2     | 1      |
| 4 | 57  | 0   | 0  | 120    | 354  | 0   | 1       | 163      | 1    | 0.6     | 2   | 0   | 2     | 1      |

Image by Author

I calculate the number of records and the number of columns in the dataset:

df.shape

which gives the following output:

(303, 14)

#### **Features selection**





```
features = []
for column in df.columns:
    if column != 'output':
        features.append(column)
X = df[features]
Y = df['output']
```

In order to select the minimum set of input features, I calculate the Pearson correlation coefficient among features, through corr() function, provided by a pandas dataframe.

|          | age       | sex       | ср        | trtbps    | chol      | fbs       | restecg   | thalachh  | exng      | oldpeak   | slp       | caa       | thall     |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| age      | 1.000000  | -0.098447 | -0.068653 | 0.279351  | 0.213678  | 0.121308  | -0.116211 | -0.398522 | 0.096801  | 0.210013  | -0.168814 | 0.276326  | 0.068001  |
| sex      | -0.098447 | 1.000000  | -0.049353 | -0.056769 | -0.197912 | 0.045032  | -0.058196 | -0.044020 | 0.141664  | 0.096093  | -0.030711 | 0.118261  | 0.210041  |
| ср       | -0.068653 | -0.049353 | 1.000000  | 0.047608  | -0.076904 | 0.094444  | 0.044421  | 0.295762  | -0.394280 | -0.149230 | 0.119717  | -0.181053 | -0.161736 |
| trtbps   | 0.279351  | -0.056769 | 0.047608  | 1.000000  | 0.123174  | 0.177531  | -0.114103 | -0.046698 | 0.067616  | 0.193216  | -0.121475 | 0.101389  | 0.062210  |
| chol     | 0.213678  | -0.197912 | -0.076904 | 0.123174  | 1.000000  | 0.013294  | -0.151040 | -0.009940 | 0.067023  | 0.053952  | -0.004038 | 0.070511  | 0.098803  |
| fbs      | 0.121308  | 0.045032  | 0.094444  | 0.177531  | 0.013294  | 1.000000  | -0.084189 | -0.008567 | 0.025665  | 0.005747  | -0.059894 | 0.137979  | -0.032019 |
| restecg  | -0.116211 | -0.058196 | 0.044421  | -0.114103 | -0.151040 | -0.084189 | 1.000000  | 0.044123  | -0.070733 | -0.058770 | 0.093045  | -0.072042 | -0.011981 |
| thalachh | -0.398522 | -0.044020 | 0.295762  | -0.046698 | -0.009940 | -0.008567 | 0.044123  | 1.000000  | -0.378812 | -0.344187 | 0.386784  | -0.213177 | -0.096439 |
| exng     | 0.096801  | 0.141664  | -0.394280 | 0.067616  | 0.067023  | 0.025665  | -0.070733 | -0.378812 | 1.000000  | 0.288223  | -0.257748 | 0.115739  | 0.206754  |
| oldpeak  | 0.210013  | 0.096093  | -0.149230 | 0.193216  | 0.053952  | 0.005747  | -0.058770 | -0.344187 | 0.288223  | 1.000000  | -0.577537 | 0.222682  | 0.210244  |
| slp      | -0.168814 | -0.030711 | 0.119717  | -0.121475 | -0.004038 | -0.059894 | 0.093045  | 0.386784  | -0.257748 | -0.577537 | 1.000000  | -0.080155 | -0.104764 |
| caa      | 0.276326  | 0.118261  | -0.181053 | 0.101389  | 0.070511  | 0.137979  | -0.072042 | -0.213177 | 0.115739  | 0.222682  | -0.080155 | 1.000000  | 0.151832  |
| thall    | 0.068001  | 0.210041  | -0.161736 | 0.062210  | 0.098803  | -0.032019 | -0.011981 | -0.096439 | 0.206754  | 0.210244  | -0.104764 | 0.151832  | 1.000000  |

Image by Author

I note that all the features have a low correlation, thus I can keep all of them as input features.

#### **Data Normalization**

Data Normalization scales all the features in the same interval. I exploit the MinMaxScaler() provided by the scikit-learn library. I dealt with Data Normalization in scikit-learn in my previous article, while I this article I described the general process of Data Normalization without scikit-learn.

```
X.describe()
```



Image by Author

Looking at the minimum and maximum value for each feature, I note that there are many features out the range [0,1], thus I need to scale them.

For each input feature I calculate the MinMaxScaler() and I store the result in the same X column. The MinMaxScaler() must be fitted firstly through the fit() function and then can be applied for a transformation through the transform() function. Note that I must reshape every feature in the format (-1,1) in order to be passed as input parameter of the scaler. For example, Reshape(-1,1) transforms the array [0,1,2,3,5] into [[0],[1],[2],[3],[5]].

```
from sklearn.preprocessing import MinMaxScaler

for column in X.columns:
    feature = np.array(X[column]).reshape(-1,1)
    scaler = MinMaxScaler()
    scaler.fit(feature)
    feature_scaled = scaler.transform(feature)
    X[column] = feature_scaled.reshape(1,-1)[0]
```

# Split the dataset in Training and Test

Now I split the dataset into two parts: training and testset. The test set size is 20% of the whole dataset. I exploit the scikit-learn function train\_test\_split() . I will use the training set to train the model and the testset to test the performance of the model.

```
import numpy as np
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split( X, Y, test_size=0.20, random_state=42)
```

## Balancing





number of records in each output class.

```
y train.value counts()
```

which gives the following output:

- 1 133
- 0 109

The output classes are not balanced, thus I can balance it. I can exploit the imblearn library, to perform balancing. I try both oversampling the minority class and undersampling the majority class. More details related to the Imbalanced Learn library can be found <a href="https://examplercommons.org/learn-library">here</a>. I perform over sampling through the RandomOverSampler() . I create the model and then I fit with the training set. The <a href="https://example()">fit\_resample()</a> function returns the balanced training set.

```
from imblearn.over_sampling import RandomOverSampler
over_sampler = RandomOverSampler(random_state=42)
X_bal_over, y_bal_over = over_sampler.fit_resample(X_train, y_train)
```

I calculate the number of records in each class through the value\_counts() function and I note that now the dataset is balanced.

```
y_bal_over.value_counts()
```

which gives the following output:

- 1 133
- 0 133

Secondly, I perform under sampling through the RandomUnderSampler() model.





```
under_sampler = RandomUnderSampler(random_state=42)
X_bal_under, y_bal_under = under_sampler.fit_resample(X_train, y_train)
```

## **Model Selection and Training**

Now, I'm ready to train the model. I choose a KNeighborsClassifier and firstly I train it with imbalanced data. I exploit the fit() function to train the model and then the predict\_proba() function to predict the values of the test set.

```
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)
y_score = model.predict_proba(X_test)
```

I calculate the performance of the model. In particular, I calculate the <code>roc\_curve()</code> and the <code>precision\_recall()</code> and then I plot them. I exploit the <code>scikitplot</code> library to plot curves.

From the plot I note that there is a roc curve for each class. With respect to the precision recall curve, the class 1 works better than class 0, probably because it is represented by a greater number of samples.

```
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve
from scikitplot.metrics import plot_roc,auc
from scikitplot.metrics import plot_precision_recall

fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1])

# Plot metrics
plot_roc(y_test, y_score)
plt.show()

plot_precision_recall(y_test, y_score)
plt.show()
```



Image by Author



Image by Author





```
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_bal_over, y_bal_over)
y_score = model.predict_proba(X_test)
fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1])
# Plot metrics
plot_roc(y_test, y_score)
plt.show()

plot_precision_recall(y_test, y_score)
plt.show()
```



Image by Author





Finally, I train the model through under sampled data and I note a general deterioration of the performance.

```
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_bal_under, y_bal_under)
y_score = model.predict_proba(X_test)
fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1])
# Plot metrics
plot_roc(y_test, y_score)
plt.show()

plot_precision_recall(y_test, y_score)
plt.show()
```







## **Parameters Tuning**

In the last part of this tutorial, I try to improve the performance of the model by searching for best parameters for my model. I exploit the <code>GridSearchCV</code> mechanism provided by the <code>scikit-learn</code> library. I select a range of values for each parameter to be tested and I put them in the <code>param\_grid</code> variable. I create a <code>GridSearchCV()</code> object, I fit with the training set and then I retrieve the best estimator, contained in the <code>best\_estimator\_</code> variable.





```
model = KNeighborsClassifier()

param_grid = {
    'n_neighbors': np.arange(2,8),
    'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
    'metric': ['euclidean', 'manhattan', 'chebyshev', 'minkowski']
}

grid = GridSearchCV(model, param_grid = param_grid)
grid.fit(X_train, y_train)

best_estimator = grid.best_estimator_
```

I exploit the best estimator as model for my predictions and I calculate the performance of the algorithm.

```
best_estimator.fit(X_train, y_train)
y_score = best_estimator.predict_proba(X_test)
fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1])
# Plot metrics
plot_roc(y_test, y_score)
plt.show()

plot_precision_recall(y_test, y_score)
plt.show()
```







#### False Positive Rate

Image by Author



Image by Author

I note that the roc curve has improved. I try now with the over sampled training set. I omit the code because it is the same as before. In this case I obtain the best performance.





Image by Author



Image by Author

# **Summary**

In this tutorial I have illustrated the full workflow to build a good model for data analysis. The workflow includes:

data preprocessing, with features selection and balancing





In this tutorial I have not dealt with Outliers Detection. If you want to learn something about this aspect, you can give a look to <u>my previous article</u>.

If you wanted to be updated on my research and other activities, you can follow me on <u>Twitter</u>, <u>Youtube</u> and and <u>Github</u>.

#### Sign up for The Variable

By Towards Data Science

Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials and cutting-edge research to original features you don't want to miss. <u>Take a look.</u>

Get this newsletter

Data Science Data Analysis Python Scikit Learn Imbalanced Data

About Write Help Legal

Get the Medium app



