

MD7620A

双向磁保持继电器驱动

概述

MD7620A 是一款双向磁保持继电器驱动集成电路,具有高耐压、驱动能力强、自身静态功耗低和较强抗静电能力的特点。产品主要用于智能电表内部磁保持继电器的闭合与断开,提高驱动能力和效率,降低驱动功耗,延长继电器的使用寿命,增强电路工作稳定性和可靠性。

主要指标

- 芯片耐压 50V,推荐安全电压 5-40V
- 低导通电阻,典型驱动电流 400mA,最大驱动电流 800mA
- 高输入输出阻抗,电平转换阀值为 1.5V,可兼容各类型 单片机
- 输出端集成高速续流二极管,具有钳位反向电压保护功能
- 输入触发方式:脉冲、电平触发
- 提供 SOT23-6 和 SOP8 封装形式

管脚封装

引脚描述

引脚	符号	描述	引脚	符号	描述
1	ОВ	通道B 驱动输出端	4	OA	通道A 驱动输出端
2	GND	电源接地端	5	VDD	芯片电源输入端
3	INA	通道 A 输入端	6	INB	通道 B 输入端

功能框图

功能描述

● 逻辑真值表

INA	INB	OA	ОВ	继电器状态
0	0	高阻	高阻	状态保持
0	1	0	1	反向驱动
1	0	1	0	正向驱动
1	1	高阻	高阻	状态保持

极限参数

供应电压	VDD-GND		50	V	
其他引脚输入电压	VIN		(VGND-0.4~VDD+0.4)	V	
工作温度	TA		-40 ~ +85		
工作结温	TJ		150	°C	
存储温度	TSTG		-50~+125	°C	
++ 00 +-	θја	SOT23-6	190	°C /W	
热阻抗		SOIC8	125		
具十样类功效	Pd	SOT23-6	250	m\\/	
最大耗散功率	Pu	SOIC8	1068	mW	
人体 ESD 放电模型	HBM		3000	V	

注:施加到器件的最大额定值,应是独立应力限值(不正常的操作条件)且并非同时有效。超过最大额定值可能导致产品或设备损坏,可靠性受到影响。

电气参数

(典型值是指两个通道都在 TA=25°C, VDD=12V 条件下测试,除非另有说明)

参数	描述	条件	最小值	典型值	最大值	単位
VIN	輸入电压		5	12	50	V
BVDSS	输出击穿电压	VINA=VINB=0V, ID=250uA		50		V
IDSS	输出漏电流	VINA=VINB=0V, VD=24V		1.5		uA
VIL	低电压范围				0.9	V
VIH	高电压范围		2.1			V
	输出导通电阻	VDD=12V, RL=80Ω		8	10	Ω
RDS(ON)		VDD=30V, RL=80Ω		7	10	Ω
ND3(ON)		VDD=12V, RL=40Ω		8	10	Ω
		VDD=30V, RL=40Ω		7	10	Ω
RIN	等效输入电阻			110		ΚΩ
T	th > th >	VA=3V或VB=3V, VDD=12V		200	400	uA
IIN	输入电流	VA=5V或VB=5V , VDD=12V		500	650	uA
VSD	正向导通电压	IS=1A		1.5	2	V
TRR	反向恢复时间	VDD=12V, RL=80Ω		110		ns
TR	上升沿时间			40		ns
TD(ON)	开启延时	VDD 13V BL 000		45		ns
TF	下降沿时间	VDD=12V, RL=80Ω		30		ns
TD(OFF)	关断延时			900		ns

应用举例

控制输入端 INA, INB 可采用脉冲出发和电平出发两种方式。在智能电表应用中,使用单片机 I/O 口输出脉冲信号(参照逻辑真值表)来控制继电器的通断。考虑到磁保持继电器反应时间,要求每个脉冲宽度为至少为 100mS,然后再输出低电平脉冲信号予以保持。脉冲示意图如下:

● 应用线路图

● 注意事项

- 1. 芯片驱动电流=芯片供电电压/(R1+RDS(ON)+RS),R1 限流电阻, RDS(ON)为芯片输出等效电阻,RS 为继电器内阻,R1 一般取值在 $1\sim5\Omega$ 的大功率电阻;
- 2. 限流保护电阻 Ra 和 Rb 选值应为 0~3.3 KΩ范围之间;
- 3. 建议 C1 可取值为 1uF/50V, PCB 布线时请务必靠近 VDD 引脚。

订购信息

型号	封装	温度范围	包装
MD7620A	SOT23-6L	-40 to +85°C	3000 /Tape & Reel
	SOP8	-40 to +85°C	2500/ Tape & Reel

^{*}所有封装均为无铅环保

SOT-23-6L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

SOP8PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270 (BSC)		0.050 (BSC)		
Е	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	