Part IB - Electromagnetism Definitions

Lectured by David Tong Lent 2015

Electromagnetism and Relativity

Review of Special Relativity; tensors and index notation. Lorentz force law. Electromagnetic tensor. Lorentz transformations of electric and magnetic fields. Currents and the conservation of charge. Maxwell equations in relativistic and non-relativistic forms.

Electrostatics

Gauss's law. Application to spherically symmetric and cylindrically symmetric charge distributions. Point, line and surface charges. Electrostatic potentials; general charge distributions, dipoles. Electrostatic energy. Conductors. [3]

Magnetostatics

Magnetic fields due to steady currents. Ampre's law. Simple examples. Vector potentials and the Biot-Savart law for general current distributions. Magnetic dipoles. Lorentz force on current distributions and force between current-carrying wires. Ohm's law.

Electrodynamics

Faraday's law of induction for fixed and moving circuits. Electromagnetic energy and Poynting vector. 4-vector potential, gauge transformations. Plane electromagnetic waves in vacuum, polarization. [5]

Contents

1	1.1	oducti Charg Forces	ge a	nd (
2	Elec	ctrosta	itic	s															4
	2.1	Gauss	, L	aw															4
	2.2	Electro	ost	atic	pot	tent	ial												4
		2.2.1	P	oint	cha	arge													4
		2.2.2																	
		2.2.3		-															

1 Introduction

1.1 Charge and Current

Definition (Charge density). The *charge density* is the charge per unit volume. The total charge in a region V is

$$Q = \int_{V} \rho(\mathbf{x}, t) \, \mathrm{d}^{3} x$$

Definition (Current and current density). For any surface S, the integral

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{S}$$

counts the charge per unit time passing through S. I is the *current*, and \mathbf{J} is the *charge density*, "current per unit area".

1.2 Forces and Fields

2 Electrostatics

2.1 Gauss' Law

Definition (Flux through surface). The flux of ${\bf E}$ through the surface S is defined to be

 $\int_{S} \mathbf{E} \cdot d\mathbf{S}.$

2.2 Electrostatic potential

Definition (Electrostatic potential). If $\mathbf{E} = -\nabla \phi$, then ϕ is the *electrostatic potential*.

2.2.1 Point charge

2.2.2 Dipole

Definition (Dipole). A *dipole* consists of two point charges, +Q and -Q at $\mathbf{r} = 0$ and $\mathbf{r} = -\mathbf{d}$ respectively. By the principle of superposition,

$$\phi = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{r} - \frac{Q}{|\mathbf{r} + \mathbf{d}|} \right).$$

Definition (Electric dipole moment). We define the *electric dipole moment* is

$$\mathbf{p} = Q\mathbf{d}$$
.

By convention, it points from -ve to +ve.

2.2.3 General charge distribution