Numerical methods for first-passage times of branching processes

Chay Paterson

Branching processes

- ▶ Beans can hop between pairs of points k and k' in a space, rate $r_{k \to k'}$
- \blacktriangleright Beans can split into two new beans, rate b_k

First passage times

- ► What is the probability that a given region *x* has not been visited yet?
- ▶ This is the probability that the time t_x to reach x is at least t
- $ightharpoonup P(t_{\times} \geq t)$

Gillespie (SSA) algorithm

Monte Carlo.

- Calculate event rate Γ
- Generate random number $u = \exp(\Gamma)$
- Convert into specific event
- Generate time to next event $\Delta t = \exp(\Gamma^{-1})$
- $ightharpoonup t+=\Delta t$

Example of SSA

Conditioned means method

Deterministic, given initial conditions.

- ► For each point k, update the conditional expected population $\langle n_k || n_x = 0 \rangle$.
- ▶ Update the probability of not being visited $P(n_x = 0)$.
- $P(t_x \ge t) = P(n_x = 0, t)$

$$\langle \dot{n}_k || n_x = 0 \rangle = \sum_{k'} \left[r_{k' \to k} \langle n_{k'} || n_x = 0 \rangle - r_{k \to k'} \langle n_k || n_x = 0 \rangle \right]$$
$$+ b_k \langle n_k || n_x = 0 \rangle$$

$$P(n_x = 0) = \exp\left(-\int_0^t \sum_k r_{k \to x} \langle n_k || n_x = 0 \rangle dt\right)$$

Conditioned means method

Why does this work?

Comparison

Comparison

Thank you

Questions?