EL2520 – Control Theory and Practice Classical Loop-Shaping

March 18, 2015

Osqulda Osquldasdotter $\begin{array}{c} x@kth.se \\ YYMMDD-NNNN \end{array}$

Oscar Oscarsson y@kth.se YYMMDD-NNNN

Abstract

In this report, we consider the classical loop-shaping procedure for control design \dots

Basics

A system is modeled by the transfer function (given in [1])

$$G(s) = \frac{3(-s+1)}{(5s+1)(10s+1)}. (1)$$

We will design a lead-lag compensator F such that the closed loop system in fig. 1 fulfills the following specification:

- Crossover frequency $\omega_c = 0.4 \text{ rad/s}.$
- Phase margin $\phi_m = 30^{\circ}$.
- No stationary error for a step response.

Figure 1: Closed loop block diagram, where F-controller, G-system, r-reference signal, u-control signal, d-disturbance signal, y-output signal, n-measurement noise.

We follow the procedure from [2] to determine the parameters $K, \beta, \tau_D, \tau_i, \gamma$ in the lead-lag compensator

$$F(s) = K \frac{\tau_D s + 1}{\beta \tau_D s + 1} \frac{\tau_I s + 1}{\tau_I s + \gamma}.$$
 (2)

The system's phase, $\arg(G(i\omega_c)) = -170^{\circ}$, is determined from the Bode diagram in fig. 2.

Figure 2: Bode diagram for system G(s) in (1).

Thus, the necessary phase shift is

$$30^{\circ} - (-170^{\circ} - -180^{\circ}) + 6^{\circ} = 26^{\circ},$$

where an extra 6° has been added to account for the lag-part. The first parameter can now be selected from [2, fig. 5.13] as $\beta = 0.35$.

K	β	$ au_D$	$ au_i$	γ
	0.35			

Table 1: Parameters for the lead-lag compensator.

. . .

The final controller is given by eq. (2) with the parameters in table 1.

. . .

The rise time and overshoot is determined form the step response in fig. 3, and given in table 2.

Figure 3: Step response for the closed loop system in fig. 1, with the lead-lag compensator.

$\omega_B \; [{ m rad/s}]$	M_T [dB]	T_r [s]	M [%]

Table 2: Closed loop system characteristics.

. . .

Disturbance attenuation

Conclusions

. . .

References

- [1] EL2520 Control Theory and Practice Advanced Course, Computer Exercise: Classical Loop-Shaping, 2014.
- [2] T. Glad and L. Ljung, Reglerteknik, Grundläggande teori, Studentlitteratur, 2006.

Some reminders

- Write clear and concise, but comprehensible. No novels!
- The report should be self-contained, don't assume the reader knows the lab instructions.
- However, don't repeat material from the course book, instead, use references.
- Make sure that all results and figures are reproducible.
- Start with a *short* summary of the results and the contents of the report.
- Motivate all the choices you have done.
- Show results in tables and figures that are easy to compare.
- Introduce figures in the text where it is needed, and remember to describe what the figure shows, what the axes corresponds to and what the results are.
- Be specific in your writing, and avoid vague expressions such as "some" and "not so good".
- Check grammar your and speling.