MASTERY QUIZ DAY 13

Math 237 – Linear Algebra

Version 4

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V2. Determine if $\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and $\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$.

Solution:

RREF
$$\left(\begin{bmatrix} 3 & 1 & 5 & 1 \\ 0 & -1 & 1 & 4 \\ -1 & 4 & -6 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

So $\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$ is not a linear combination of the three vectors.

S1. Determine if the vectors $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\1 \end{bmatrix}$, and $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ are linearly dependent or linearly independent

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{pmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since each column is a pivot column, the vectors are linearly independent.