WAKISSHA JOINT MOCK EXAMINATIONS MARKING GUIDE Uganda Advanced Certificate of Education UACE August 2024 PHYSICS P510/1

SECTION A

	SECTION A	
1. a) (i)	is the way how physical quantities are related to the Co. I. d.	
(ii)	quantities of mass length and tinene time.	01 mark
()	$[L.H.S] = [P] = \frac{MLT^{-2}}{L^{-2}} X \frac{1}{L}$ $= M L^{-2} T^{-2} $ $[R.H.S.] = \frac{[n][v]}{L^{r^{4}} I} = \frac{ML^{-1}T X L^{3} T^{-1}}{L^{4}} $ $= ML^{-2} T^{-2} $	
	Since [L.H.S.] = $\begin{bmatrix} R.H.S. \end{bmatrix} = \begin{bmatrix} R.H.S. \end{bmatrix}$, then the equation is dimensionally consistent.	03 marks
b) i)	 A body continues in its state of rest or uniform motion is a straight line unless acted upon by an external force. The rate of change of momentum of a body is directly proportional to the applied force and takes place in the direction of the forces. For every action, there is an equal and opposite reaction. 	03 marks
ii)	$s = ut^{-1}/2 at^{2}$ $95000 = u(1.2 \times 3600) + \frac{1}{2} a (1.2 \times 3600)^{2}$ $95000 = 4320u + 9331200a - \frac{1}{2}$ $175000 = u(2 \times 3600) + \frac{1}{2} a (2 \times 3600)^{2}$ $175000 = 7200u + 25920.000 - \frac{1}{2}$ $u = 18.5185 \text{ms}^{-1}$ $a = 1.6075 \times 10^{-3} \text{ms}^{-2} \times \frac{1}{2}$	y for Conversion y for correct of 04 marks
c) i)	Is the time taken for a projectile to land at a point on the level through the point of a projection.	(01 mark)
ii) d) i)	Is the distance between the point of projection to the point where the projectile lands through the point of projection.	01 mark
	$u = 20 \text{ ms}^{-1} \qquad h=50\text{m}$ $h = \frac{1}{2} \text{ gt}^{2}$ $t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 50}{9.81}} = 3.193\text{s}$	02 marks
ii)	x = ut = 20 x 3.1939 = 63.86 m	02 marks

	<i>S</i>	V
i)	$V_x = U$ $V_y = gt$ $= 9.81 \times 3.1938$ $= 31.33 \text{ ms}^{31}$	Omarks (
	$V_{R} = \sqrt{31.33^{2} \times 20^{2}}$ $= 37.17 \text{ms}^{-1} \cdot \theta$ $\theta = \tan^{-1} \left(\frac{31.33}{25}\right)$	02 marks
2 1 (1)		FF A BR
2a) (i)	When two or more bodies collide, the total linear momentum of the system is conserved provided there is no external force acting on the system	01 mark
ii)	 Fuel is introduced in a combustion chamber where combustion takes place and exhaust gases are expelled at a high velocity. This causes a large backward momentum and an equal forward momentum is gained by the rocket. Due to continuous combustion of the fuel, there is a large change in forward momentum which leads to the thrust, hence maintaining the motion of the rocket. m = 40g 	03 marks
	M = 960g K = 50Nm ⁻¹ X = 4.5cm μ = 0.2 By conservation of momentum Mu _b + M ₍₀₎ = (m + M)V U _b = $\frac{(m + M)V}{m}$ Resultant force on the block and bullet T - μR = ma Kx - μmg = ma 50(0.045) - (0.2 x 1.0 x 9.8) = 1.0a 2.25 - 0.196 = a a = 2.054ms ⁻² using V ² = u ² + 2as V ² = 2(2.054) (0.045) = 0.18486 V = 0.43 ms ⁻¹ Therefore U _b = $\frac{(0.04+0.960)}{0.4}$ x 0.43	of mans.

	The small w	
	Two identical gold spheres and b of mass m are suspended from the ends of highly polished bar CD of length l.	
	Two large identical lead sphere near A and B of mass M are	
	Bill thou a did b lespectively the distance between	
	bB & d, is measured and recorded.	
	X	0
	The deflection θ of the bar CD is measured	
	Torque of couple on $CD = \frac{GmMl}{d^2}$	
	$\frac{GmMl}{d^2} = K\theta$	
	From which G is calculated.	
d)	2	
	On a flat track the centeprial force in due to the rictional force	
	only, on a banked track centpital force is due to both component	
	of the normal reaction acting horizontally and the horizontal	0
	components of the frictional force.	.03
	Thus the car travels faster on the banked track than on the flat	
	track of the same radius.	
	Surface tension is the force acting at right angles to one side of an imaginary line of length 1m drawn in the surface of the liquid. Angle of contact- this is the angle made between the solid surface and the tangent to the liquid surface at the point of intersection with the solid surface as measured through the liquid.	20 Marks
4 a) i)	Surface tension is the force estimate sight and a to a sight and	alignous and
(45)	Surface tension is the force acting at right angles to one side of ar	1 01
Orange V	interest the or length the drawn in the surface of the liquid.	
(ii) John	Angle of contact- this is the angle made between the solid surface	01
Som her	and the tangent to the liquid surface at the point of intersection wi	th
of Sans	the solid surface as measured through the liquid.	Base (21)
	N S SIMP OF SIMP SQ SIGN	
b)	- A clean capillary tube is dipped in water as shown and a wire	
	which is bent is tied along the capillary tube with a rubber ban	d.
	- When the tube is dipped into water, the wire P is adjusted so the its top just touches the surface of the water.	120
	- A travelling microscope is the focused on the water meniscus	
		in
	the capillary tube and the reading noted, say, h.	
	The same of the sa	
	The state of the s	
	The same of the	1
	#71=1:10 M	
-	7 1/3-1-1-14	
	Barker	
	- The beaker is then removed and the travelling microscope is	
	focused on the tip of the wire P and the scale reading handte	d., ,
	- The height of water rise, h is calculated from h = [h, - ha]	X
	- The Capillary tube is removed and its diameter and radius r	S
	determined by using a travelling microscope.	***
	- The surface tension can be obtained from $r = \frac{hrfg}{2\sqrt{2}}$ for clean	
	glass of water $\theta = 0^0$	
	- Strikensky	

	$y = \frac{hr \wp g}{2\cos\theta}$	7
c)	$\theta = 0^{\circ}$	
	$r = \frac{d}{2} = \frac{0.05 \times 10^{-2}}{2}$	
	$h = \frac{2\cos\theta}{r \log g}$	03 marks
	$= \frac{2 \times 7.0 \times 10^{-2} \times 2}{0.05 \times 10^{-2} \times 10^{3} \times 9.81}$	
	=0.571m 0.0571 m.	
d) i)	Damped oscillation are oscillations in which the amplitude of oscillation decreases with time due to presence of dissipative forces like friction.	
ii)	Dignotomore Charte	,
	Time To your	
		SP SP
iii)	One application of damped oscillations is in the shock absorbers of a vehicle.	
	 The springs and fluids in the shock absorbs tame the oscillating or vibrating effect of the springs as they store and release energy after both compression and rebound and this ensure continuous contact between the tyres and the road surface. 	02 marks
e (i)	to The	
		Smare
	Up thrust = weight of the body Ahfg = mg	
	When the rod is depressed, the resultant upward force is $M = mg - A(h + x) fg$ but $m = L \sigma A$	
	ALo a = Afgx A	
	$a = -\left(\frac{gf}{l\sigma}\right)$ x Hence the motion is s.h.m	
	$\mathbf{W} = \sqrt{\mathbf{g}}$	

CS CamScanner

© WAKISSHA Joint Mock Examinations 2024

(ii)	$T = \frac{2\Pi}{w} = 2\Pi \sqrt{\frac{l\sigma}{g g}} \qquad \qquad \text{w} \qquad .$	
	$L = 0.3 \text{m}, f = 1000, g = 9.81 \sigma = 800$	
	$T = 2 \prod \sqrt{\frac{030X800}{100X9.81}}$ $= 3.11 $	
	CROWN ON THE	20 Marks

	=3.11000,98285	
		20 Marks
. a) i)	An ideal gas is a second	
	An ideal gas is a gas whose molecules make perfectly elastic collisio with each other and the walls of the vessel and also have negligible i molecular forces.	nter 01 mark
ii)	 Molecules of a gas are randomly moving about, continuously colliding with each other and the walls of the container. Intermolecular collisions are perfectly elastic. The duration of a collision is negligible compared to the time spe between collisions. Intermolecular forces of attraction are negligible. The volume occupied by molecules themselves is negligible. 	ent 01 mark
iii)	The volume occupied by molecules themselves is negligible compared to the volume occupied by the general consider N molecules of a gas contained in a cube of side, L, each molecule having a mass, \bar{m} . The molecules are considered to be in a state of continuous random motion. Consider one molecules having velocity \bar{c} at any instant where \bar{c} has component \bar{u} , \bar{v} and \bar{w} in the copy and oz respectively. Then; $C^2 = \bar{c} ^2 = \bar{u} ^2 + \bar{v} ^2 + \bar{w} ^2$ Let $ \bar{u} = u^*$, $ \bar{v} = v$ and $ \bar{w} = w$ $= c^2 = u^2 + v^2 + w^2$ (i) Consider the speed u of a molecule perpendicular to the face A of cube. Change in momentum of the molecule $= mu - (-mu)$ $= 2mu$ Let t be the time taken for the molecule to move from one face to another and back, Then $t = \frac{2l}{u}$ (ii) The rate of change of momentum, $F = \frac{2mu}{2l/u}$	as. a g a ox ,
	$P = \frac{mu^2}{l} $ (iii) $P = \frac{mu^2}{l} $ (iv)	
	For N molecules of the gas, the total pressure, P, exerted will be	

The temperature θ of the vapour is determined using a thermometer and noted.
 The pressure, P of the vapour; P = A ± h where H is barometric height.
 The procedure is repeated for different pressure P and corresponding temperature θ is noted.
 A graph of P against θ is plotted and shows the variation.

6. a) i) Thermal conductivity is the rate of heat flow across opposite faces of a parallel sided slab when the temperature difference across the faces is one Kelvin. Or K is the heat flow rate normal to one square metre area of a sample where faces are maintained at a temperature gradient of one Kelvin per metre. When one end of a solid is heated, molecular vibrate about their mean ii) position and pass on their thermal energy as they collide with the 03 marks neighboring molecules. This intermolecular vibrations continues until the whole solid is heated. iii) The apparatus is set up as shown in the figure above with the specimen metal rod AB long compared to it's diameter. - A heater is placed at one and of the bar while the other end in cooled by circulating water & - Two holes are drilled and thermometers placed there at a measurable length, l. The holes are filled with mercury to ensure good thermal contact. - The whole apparatus is left running until the temperatures have become steady. The circulating water is collected over a measurable time interval and is recorded. Let M = mass of water collected per second and θ_1 and θ_2 be the respective thermometer readings at C and D. The diameter, d of the metal bar is obtained atleast three times at different positions of the bar and the cross section area in calculated from The rate of heat flow is given by.

	$\lambda_{\text{max}} T = \text{constant}$	
ii)	$\lambda_{\text{max}} = \frac{2.9 \times 10^{-3}}{T} = \frac{2.9 \times 10^{-3}}{111 \text{ Hz}} = \frac{2.9 \times 10^{-3}}{111 H$	and i
		20 marks

a) i)	Kelvin is $\frac{1}{273.16}$ of the thermodynamic scale of temperature	01
ii)	- should vary linearly and continuously with temperature - Should vary for a small change in temperature - Should correspond to a single value of temperature.	02 marks
b) i)	The hot junction is varied to steam and unknown temperature. Determine the value E.m.f at unknown temperature. Determine the value E.m.f at the triple point of water The unknown temperature. $\theta = \frac{E_{\theta}}{E_{t,p}} \times 273.16 \text{ k}$	03 marks
ii)	$L_0 = 2.0 \text{cm}$ $L_{100} = 2.7 \text{cm}$ $L_0 = 8.4 \text{cm}$	
	$\theta = \left(\frac{l_0 - l_0}{l_{100} - l_0}\right) \times 100 + 273$ $= \left(\frac{8.4 - 2.0}{2.7 - 2.0}\right) \times 100 + 273k$ $= \left(\frac{6.4}{0.7} \times 100\right) + 273$	
c) i)	During latent heat of vaporization, work is done against atmospheric pressure and in change of state yet during fusion, work is only done to weaken the intermolecular forces of a structure.	02 marks
ii)	- Switch k is closed and liquid is heated until it starts boiling.	
	 A stop clock is started and the mass M₁ of the liquid collecte in a time t is noted. The ammeter reading V₁ and voltmeter reading V₁ are recorded. 	COLUMN TO SERVICE

Page 11 of 1

	 At steady state I, V, t = M₁ x L₂ + h	04 marks
d)	$L_{v} = \frac{(l_{1} v_{2} - l_{1} v_{1})t}{(M_{2} - M_{1})}$ $M_{s} (2.26 \times 10^{6} + 4200(100 - 10)) = 40(100 - 0) + 0.2 \times 4200 \times 10$ $M_{s} = \frac{40 \times 4000}{2.26 \times 10^{6} + 4200 \times 90}$	is in ig.
	= 8800 0.2+0.02899 = 2638000 0.2489 60.2289159 0.0289 + 0.2033 + 0.0023 = 0.2033kg 0.02 2 9 0.002	20 Marks

8. a) i)	X-rays	Cathode rays	
	- Carry no charge	Carry a negative charge	
wish-	- Travel at the speed of light	Have a relatively low speed	
granie Lines	- Have a higher penetrating power	Have a relatively low penetrating power	Any 02 marks
Sulish Sulish	No deflected by electric and magnetic fields	Deflected by both electric and magnetic fields	
ii)	The anode is a high melting po	int material so that it does not melt ing electrons. At the end of it are rid of the heat gained by the a nod	03 marks
b) i)	$2dsin\theta = n\lambda \text{ where}$ $d = inter planer s$ $\theta = glancing angle$ $n = order of diffred$ $\lambda = wave length$	ring electrons. At the end of it are rid of the heat gained by the a nod pacing for washnich action	01 mark
ii)	as the inter-planer spacing	radiation must be of the same ord	er 01 mark
iii)	$\lambda = 1.10 \times 10^{-19} \text{ m}, \text{ n} = 1, \theta = 1$ $R_{mm} = 75.5$	Let d = inter planer spacing Using $2d\sin\theta = n\lambda$ $d = \frac{1 \times 1.10 \times 10}{2\sin 1990}$ $= 1.69 \times 10 \text{ m}$	

Page 12 of 16

	Volume associated with one atom = dxdxd	
	Volume associated with kol crystal, $V = 2d^3$	
	Now mass of one molecule, $m = \frac{M}{N_a}$	
	So density, $f = \frac{m}{v} = \frac{\frac{M}{Na}}{2d^3}$	
	So delisity, $J = \frac{1}{v} = \frac{4}{2}d^3$	
	$f = \frac{75.5 \times 10}{6.02 \times 10^{23} \times 2 \times (1.69 \times 10^{-10})^3}$ $= 1.299 \times 10^4 \text{ kg/m}^3$	04 marks
Ci)	Work fuction; Is the minimum energy required to eject an electron	01 mark
ii)	from a metal surface.	
	- An incident beam of electromagnetic radiation is passed through a colour filter onto a photocell. - The potential divide P is used to vary the p.d between the anode and cathode and the d.c amplifier is seed for measuring small currents. - The p.d. V is increased negatively until the current becomes zero and the stopping potential, V _s , is read and recorded from a voltmeter. - A graph of V _s against f is now ploted and its slope at scalculated.	04 marks
	h = es where s = slope e = electronic change h = plank's constant	
ii)	F = 6.0 x 10 ¹⁴ , V ₃ = 0.6 From Eistan equation $eV_s = h_f - W_o$ $W_s = 6.64 \times 10^{-34} \times 6.0 \times 10^{14} = 0.6 \times 1.6 \times 10^{-19} = 0.4$	2 Wo
	$W_o = 6.64 \times 10^{-34} \times 6.0 \times 10^{14} - 0.6 \times 1.6 \times 10^{-19} \text{ h} = 0.44$ $W_o = 6.64 \times 10^{-34} \times 6.0 \times 10^{14} - 0.6 \times 1.6 \times 10^{-19} \text{ h} = 0.44$ $W_o = 6.64 \times 10^{-34} \times 6.0 \times 10^{14} - 0.6 \times 1.6 \times 10^{-19} \text{ h} = 0.44$ $W_o = 6.64 \times 10^{-34} \times 6.0 \times 10^{14} - 0.6 \times 1.6 \times 10^{-19} \text{ h} = 0.44$ $W_o = 6.64 \times 10^{-34} \times 6.0 \times 10^{14} - 0.6 \times 1.6 \times 10^{-19} \text{ h} = 0.44$ $W_o = 6.64 \times 10^{-34} \times 6.0 \times 10^{14} - 0.6 \times 1.6 \times 10^{-19} \text{ h} = 0.44$ $W_o = 6.64 \times 10^{-34} \times 6.0 \times 10^{14} - 0.6 \times 1.6 \times 10^{-19} \text{ h} = 0.44$ $W_o = 6.64 \times 10^{-34} \times 6.0 \times 10^{14} - 0.6 \times 1.6 \times 10^{-19} \text{ h} = 0.44$ $W_o = 6.64 \times 10^{-34} \times 6.0 \times 10^{14} - 0.6 \times 1.6 \times 10^{-19} \text{ h} = 0.44$ $W_o = 6.64 \times 10^{-34} \times 6.0 \times 10^{14} - 0.6 \times 1.6 \times 10^{-19} \text{ h} = 0.44$	1.0X1015

	DR - CB - C	
	$\frac{hk}{\lambda_0} = 3.024 \times 10^{-19} \text{ J}$ $\frac{hc}{\lambda_0} = \frac{6.64 \times 10^{-34} \times 3.0 \times 10^8}{3.024 \times 10^{-19}}$ $= 3.68 \times 10^{-34} \times 3.0 \times 10^{-19} \times 1$	04 marks
-	$\lambda_0 = 6.59 \times 10^{-7} \text{m}$	20 marks
9. a) i)	Radioactivity is the send	20 Marks
,,,	Radioactivity is the random spontaneous disintergration of an unstable radioactive nuclei accompanied with emission of any of α, β – particles or gamma tays While, Nuclear fission is the splitting of a heavy radioactive nuclide into light nuclei accompanied by release of energy.	02 marks
ii)	Binding Energy is the work done to take all the nucleons of an atom apart so that they are completely separated. Or is the energy required to bring the constitution.	01 mark
b) i)	Half life is the time taken for the mass of a radioactive nuclide to reduce to half it's original value.	01 mark
ii)	Let N be the number of atoms present at a time t. $-\frac{dN}{dt} \alpha N \text{ (dcecay law)}$	
	Ar The state of th	
	$-\frac{dN}{dt} = \lambda N$ $\int \frac{dN}{dt} = -\int \lambda at$ $1Nn = -\lambda t + c$ $At t = 0, N = No$ $InNo = C$ $InNo = -\lambda t + InNo$	
	At t= 0, N = No InNo = C InN = - λ t + InNo At t = t _{1/2} , (half life, Nt = $No/2$) In $\left(\frac{No}{2}\right)$ = - λ t _{1/2} + InNo In $\left(\frac{No/2}{No}\right)$ = - λ t _{1/2} = In2 $t_{1/2} = \frac{\ln 2}{\lambda} \text{ or } t_{1/2} = \frac{0.693}{\lambda}$	
c) A	At $t = 0$, $N = N_0$ $InN_0 = C$ $InN = -\lambda t + InN_0$ At $t = t_{1/2}$, (half life, $N_0 = N_0/2$) $In\left(\frac{N_0}{2}\right) = -\lambda t_{1/2} + InN_0$ $In\left(\frac{N_0/2}{N_0}\right) = -\lambda t_{1/2}$	

Page 15 of 16

END

Page 16 of 16

WAKISSHA JOINT MOCK EXAMINATIONS MARKING GUIDE

Uganda Advanced Certificate of Education PHYSICS P510/3

July/August 2024

Question One

Aı:

Value of t measured at least 3 times (5.00 - 6.00) adp; mm (0.00500 - 0.00600) 5 dp; (0.00500 - 0.00600) 5 A_2

t = (5.00 - 6.00)Value of b measured at least 3 times As:

Value of b = (2.50 - 2.80) 2dp; unit: cm (Correct symbols) A4: b= (240-2.80) 2dp incm or (0.0240-0.0280) 4dp in 114

NB: -pencil work zero marks

Marks

= 1/2.

Marks

B1. Columnar table labeled: $\frac{M}{m}$ define the time, t, $\frac{1}{r^2}$, $\frac{1}{r^2}$, $\frac{1}{r^2}$, $\frac{1}{r}$

all values entered (6; 2, 5-4; 11/2, 3-2; 1, 1; 1/2)

= 2. (Correct symbols; If unknown symbol is used; must be defined otherwise loses the mark for the label and the unit of the eolumn)

B₂: Indication of units; in brackets: (kg), (s), (s), (s²), (s²), (kg⁻¹)

(6; 2, 5-4; 1½, 3-2; 1, 1; ½)

(Correct symbols; If unknown symbol is used in B; & undefined, loses the mark for the unit of the column)

B₃: Values of time for 20 oscillations = (6.0 - 21.0), increasing:

sc: 1dp, differences between consecutive values (0.5 - 1.5).

sw: 2dp, differences between consecutive values (0.50 - 1.50) @ 1

B4: Correctly calculated values of, T,

sc: 2dp, if largest value of t < 10

sc: 3dp, if largest value of $10 \le t < 20$

sc: 2dp, if largest value of $t \ge 20$

/sw: 3dp, if largest value of t < 10</p>

✓sw: 4dp, if largest value of $10 \le t < 20$

✓sw: 3dp, if largest value of t ≥ 20, @½

2-02

3-06

4-03

1 = 3

= 1

Bs: Correctly calculated values of, T²:

sc: 2dp, if largest value of t < 10

sc: 3dp, if largest value of $10 \le t < 20$

se: 2dp, if largest value of $t \ge 20$

sw: 3dp, if largest value of t < 10

sw: 4dp, if largest value of $10 \le t < 20$

sw: 3dp, if largest value of t ≥ 20, @1/2

O WAKISSHA Joint Mock Examinations 2024

Page 1 of 5

```
Correctly calculated values of, \frac{1}{r^2}:
           se: ldp, if largest value of t < 10
           sc: 2dp, if largest value of 10 \le t < 20
           se: 3dp, if largest value of t \ge 20
           sw: 2dp, if largest value of t < 10
           sw: 3dp, if largest value of 10 \le t < 20
           sw: 4dp, if largest value of t \ge 20, @\\\2
                                                                                                         = 3
  B<sub>7</sub>: Correctly calculated values of, \frac{1}{M} = (14.30, 10.00, 8.33, 6.67, 5.88, 5.00), @\\\^2 \\ \\^{14.29} \]
                                                                                                          = <u>3</u> 🏏
                                                                                                           22
               NB: -pencil work zero marks
                                                                                                          Marks
           Title: A graph of \frac{1}{T^2} against \frac{1}{M}.
  Ci:
                                                                                                           = 1/2
                    (Accept variation with, versus, not v/s, no units, correct symbols)
  C2:
          Perpendicular axes drawn, with arrows, correctly labeled; vertical axis: \frac{1}{r^2}(s<sup>-2</sup>); horizontal
          axis: (kg-1); (Correct symbols) @ 1/2
                                                                                                           =1
         Uniform, convenient and suitable scales, cover 1/2 or more of the graph paper page, starting
          values indicated, axes marked at least 3 times, @ 1/2
          Correctly plotted points using X, For o (not •), with error limit of half a small square,
          accept shaded dots within this error limit/margin. For multiple scales consider 1st uniform
          scale only, if axes are not labeled do not check, for reverse axes no mark) @1/2
           Line of best fit drawn, provided at least 4 points are correctly plotted - Regression
           Indication for slope, s covers 1/2 or more of graph page on at least one of the sides. If a
          right-angled triangle is drawn, must touch the line of best fit.
                                                                                   accurate of Ismall square
          Correctly calculated slope, s = (0.062 - 0.720), 2dp or 3dp; provided coordinates are
  C7:
         correctly read; not table values; unit: s^2 kg or kgs^2 (correct symbols) = 1+\frac{1}{2} Correctly calculated value of, E_1 = (2.0 \times 10^9 - 12 \times 10^9) unit: Nm<sup>-2</sup>, 0dp if E_1 \ge 10,
         Correctly calculated value of, E_1 = (2.0 \times 10^9)
                                                     28F X109
                                           S.lunit
   1dp 0 if E < 10; provided correct substitution into, E_2 = \frac{16\pi^2 l^3 s}{bt^3}
 D1: Value of y_1 = (0.005 - 0.045) 3dp; unit: (Correct symbols)
       Value of y_2 = (0.010 - 0.078) 3dp; unit: \frac{m}{em} (Correct symbols)
 D<sub>3</sub>: Correctly calculated value of, E_2 = (2.0 \times 10^9 - 12 \times 10^9) unit: Nm<sup>-2</sup>, 0dp if E_2 \ge 10.
         or Pa
Solunit

Adp if E2 < 10; provided correct substitution into, E2 = \frac{16\pi^27^25}{bt^3} \frac{0.895}{bt^3} \left(\frac{m_1}{y_1} + \frac{m_2}{y_3}\right) = \frac{1+1/2}{2}
Dif correctly calculated value of E = (2.0×109-12×109) unit Nm2 or Pa, provided, there is
                             NB: - C7 to D3; pencil work is zero marks
                                                                                                                = 40
 Total Marks
```

Page 2 of 5

		Marks	Marks	
	Aı:	Value of, b measured at least 3times 📈 🏒	= 1/2	
	A2:	Value of, $b = (6.00 - 7.00)$ 2dp; unit: cm, [Correct symbols]	$= \frac{1/2 + 1/2}{2}$	٠.
	4 .	b = (5.80 - 7.00) vernier cal. per	011/2	1 01
			Marks	A1-05
~	$\mathbf{B_1}$	Columnar table labeled: $i, \beta, \theta, l, \sin i, \sin \theta, \tan \beta, l \sin \theta, b \tan \beta, x$		As - 01
		[Correct symbols] $(9-8; 2, 7-5; 1\%, 4-3; 1, 2-1; \%)$	=2	11-12
	р.,		16]=2	B1-02
	B ₂ :	Indication of units; in brackets: (°), (°), (°), cm, -, -, -, cm, cm, -,[Correct symbol	7.5] 2	2-02
	B ₃ :	(10-8; 2, 7-5; 1½, 4-3; 1, 2-1; ½) Values of $\beta = (80, 70, 60, 50, 30, 25) \pm 2$ decreasing, 0dp @1	=6.	
	B ₄ :	Values of $\theta = (83-84, 76-78, 69-72, 63-66, 52-57, 50-55)$, decreasing, 0dp @1	=6	3-06
	B ₅ :	Values of $l = (5.7 - 2.0)$, decreasing, difference between consecutive values	= -	4-06
	D5.	(0.1 - 1.1), Idp @1; for constant difference mark only first the 3 values	=6	5-06
	B6:	Correctly read values of sin i, 3dp; (0.174, 0.342, 0.500, 0.643, 0.866, 0.906)		6-15
	20.	(6-5; 1½, 4-3; 1, 2-1; ½)	= 11/2	7-15
	B7:	Correctly read values of $\sin \theta$, $3dp$, $(6-5; 11/2, 4-3; 1, 2-1; 1/2)$	= 11/2	
		Correctly read values of $\tan \beta$, $3dp$, $(6-5; 1½, 4-3; 1, 2-1; ½)$	= 11/2	8一洼
	B9:	Correctly calculated values of $l\sin\theta$, Idp, (6-5; 1½, 4-3; 1, 2-1; ½)	= 11/2	9-15
NB-	Bio:	Correctly calculated values of btan B. Odp. (6-5: 11/2 . 4-3: 1.2-1: 1/2) Accept	= 11/2	10-12
	B11:		146 11/2	11-15-
			31	
	NB:		Ti	-31
	>		1-	-
	A	For B ₃ , B ₄ , and B ₅ ; used tracing paper must be available.		
	_	The same of the sa	Marks	
	C ₁ :	Title: A graph of sin i against x	= 1/2	
(Accept variation with, versus, not v/s, no units, and correct symbols)				
	C ₂ :	Perpendicular axes drawn, with arrows, correctly labeled; Vertical axis: sin i; H		
	•	axis:x; (Correct symbols) @ ½	=1	
	C	I In: Enrounne wenient, and suitable sea to the graph paper		ng
		values indicated, axes marked at least 3 times, @ 1/2	= 1	
	C	(X) (+)	all square.	
		accept shaded dots within this error limit/margin. For multiple scales consider		rm
		scale only, if axes are not labeled do not check, for reverse axes no mark) @		
	C:		. = 1/2	2
	C	•		
		right-angled triangle is drawn, must touch the line of best fit.	= ½	
	C			
		correctly read; not table values. (Correct symbols).	$=\frac{1/2}{1}$	
		NB: For C ₇ ; pencil work is zero marks.		71/2
		Total Marks	= 4	10

Page 3 of 5

even drop counts -miliotopo

Question Three. Marks Diameter, d measured at least 3times v Ai: Value of d = (0.36 - 0.39) 2dp; units: mm, [Correct symbols] = $1+\frac{1}{2}$. Value of $V_0 = (1.4 - 1.6)$, 1 or 2dp; units: V, (correct symbols) = $1+\frac{1}{2}$. Value of $V_0 = (50.0 - 75.0)$, 1dp or (0.500 - 0.750), 3dp; unit: cm; (correct symbols) = $1+\frac{1}{2}$. A2: A3: A4: Value calculated value of, $\alpha = (1.9 - 3.2)$, 1dp or 2dp;unit:Vm⁻¹, (correct symbols) = $1 + \frac{1}{2}$. As: = Provided there is correct SI unit substitution in \= Vo 061/2 NB: -pencil work zero marks (unit of b in m Don't mark unit) Marks Columnar table labeled: $y, I, b, x, \frac{x}{l}$; (Correct symbols) @ $\frac{1}{2}$ Bı $=2\frac{1}{2}$ Indication of units using brackets: (m),(A),(cm),(m),(mA-1),(correct symbols)@ 1/2=21/2 B₂: Values of, I = (0.30 - 0.10), decreasing, 1st difference (0.06 - 0.08), B₃: 1dp adp - Last dejit even numbers // the rest (0.02 - 0.04)@1 = 6 Values of, b = (65.0 - 25.0), decreasing, difference between consecutive values B4: ^In ldpin cm or 6.650-0.250) is m (1.0 - 5.0)@1= 6 correctly calculated values of, x = (0.350 - 0.750), increasing, difference between B5 consecutive values (0.010-0.050) @ 1/2 strickly in mut = 3Correctly calculated values of $\frac{x}{l}$, 1dp@ $\frac{1}{2}$ B =<u>3</u> 23 NB: -pencil work zero marks Marks Title: A graph of $\frac{x}{I}$ against y. Cı: = 1/2 V (Accept variation with, versus, not v/s, no units, correct symbols) Perpendicular axes drawn, with arrows, correctly labeled; vertical axis: $\frac{x}{t}$ (mA⁻¹); C2: horizontal axis: y (m); (Correct symbols) @, 1/2 Uniform, convenient and suitable scales, cover 1/2 or more of the graph paper page, starting C3: values indicated, axes marked at least 3 times, @ 1/2 = 1 Correctly plotted points using x, + or @ (not .), with error limit of half a small square, C4:

accept shaded dots within this error limit/margin. For multiple scales consider 1st uniform scale only, if axes are not labeled do not check, for reverse axes no mark) @1/2 = 3 V

C5: Line of best fit drawn, provided at least 4 points are correctly plotted = 1/2 X

© WAKISSHA Joint Mock Examinations 2024

Page 4 of 5

C6: Indication for slope, s covers 1/2 or more of graph page on at least one of the sides. If a right-angled triangle is drawn, must touch the line of best fit. = 1/2 X Correctly calculated slope, s = (0.71 - 8.3), 1dp if $s \ge 1.0$ or 2dp if s < 10; provided C7: coordinates are correctly read; not table values; unit: A.1 (correct symbols) Correctly calculated value of, $\rho = (2.0 \times 10^{-7} - \frac{12}{16} \times 10^{-7})$, 0dp if $\rho \ge 10$, 1dp if $\rho < 10$; provided correct substitution into, $\rho = \frac{\pi d^2 \alpha s}{4}$; unit: Ωm C_8 : constention possible sources of error are; Non uniformity of the potentiometer wire Non uniformity of the wire, W. X End correction error Unsteady current by the driver cell along the potentiometer wire. 1 mark@ Any one, = Ī 101/2 NB: - C7 and C9; pencil work is zero marks **Total Marks** =40

END

END