

Evolving Neural Networks through Augmenting Topologies

Authors
Kenneth O. Stanley
Risto Miikkulainen

Speaker
Daniele Loiacono

- Introduction to Genetic Algorithms
- Introduction to Neural Networks
- Neuroevolution
- NEAT

- Introduction to Genetic Algorithms
- Introduction to Neural Networks
- Neuroevolution
- NEAT

Exploit goodness of parents

David Brogan, 2006

Explore unknown

David Brogan, 2006

- Introduction to Genetic Algorithms
- Introduction to Neural Networks
- Neuroevolution
- NEAT

No *much* more than a black box...

Just a glimpse inside the box

Output

Input

- Neurons
- Layers
- Connections and weights

Learning weights of NNs

- Weights of NNs can be learned from a set of samples <x,y>, in order to minimize the network error
- Many algorithms have been introduced in the literature (e.g. error backpropagation)
- Unfortunately:
 - we do not have always a set of samples
 - learning can get stuck in local minima

Design of network topology

- What is the best network topology for solving a given problem?
- A key factor for a successful application of NNs!
- Unfortunately is a trial and error process!

- Introduction to Genetic Algorithms
- Introduction to Neural Networks
- Neuroevolution
- NEAT

- Artificial evolution of NN using GA
- Fitness is the evaluation of NN performance
- Advantages:
 - no need for set of samples
 - avoid local minima
- Evolving what?
 - weights in a fixed network topology
 - topology along with weights (TWEANN)

TWEANN issues

- Encoding
 - direct
 - indirect
- Mating (Crossover)
 - competing conventions
 - free topology and the Holy Grail
- Protecting Innovations
- Initialization and topology minimization
- Examples of TWEANN systems

TWEANN Encoding

- How to encode a neural network?
- Direct encoding
 - genome specifies explicitly the phenotype
 - many encoding proposed (from binary encoding to graph encoding)
- Indirect Encoding
 - genome specify how to build the network
 - allow for a more compact representation
 - can be biased

- How can we mate two networks in meaningful way?
- Challenging even for small networks with the same topology:

- How can we mate two networks in meaningful way?
- Challenging even for small networks with the same topology:

Competing Conventions Problem

- For fixed and constrained topologies the competing conventions problem can be solved with tailored encoding
- But with free topology?

The Holy Grail (Radcliffe, 1993)

Protecting innovations

- Innovations usually involves larger networks with more connections
- Larger networks require more time to be optimized and cannot compete with smaller ones (at least in the short run)
- Speciation is an effective technique to avoid competition and mating between networks too different

Initialization and topology minimization

- Initial population of random networks
 - networks not connected
 - heterogeneous networks to mate
- How can network topology be minimized?
 - networks bigger than necessary are expensive to optimize
 - fitness penalty

- Binary encoding: a bit string represents the connective matrix of networks
- Advantages
 - Evolution can be performed with a standard GA
- Drawbacks
 - Computational space is square w.r.t. the number of nodes
 - Number of nodes limited

Breeder Genetic Programming (Zhang and Muhlenbein)

- Encoding with tree
- Only crossover adapts topology
- Fitness has an explicit penalty term for bigger networks
- How do we set the penalty? Does it depend from the problem?

Parallel Distributed Genetic Programming (PDGP) Pujol and Poli (1997)

- Dual encoding:
 - linear genome for mutating weights
 - Graph representation for a subgraph swapping crossover
- Does swapping crossover guarantee a good mating?

- Graph Encoding
- Avoid mating because considered disruptive

- Indirect encoding (developmental)
- Biased search in topology space
- Mating results are unpredictable
- More compact representation
- Effective but not always more effective than direct encoding

- Fixed topology
- When it fails starts from scratch with a new random topology
- Faster than Cellular Encoding!

- Introduction to Genetic Algorithms
- Introduction to Neural Networks
- Neuroevolution
- NEAT

- NeuroEvolution of Augmenting Topology solve effectively the TWEANN issues thanks to:
 - Historical Markings
 - Speciation
 - Complexification

Genetic Encoding in NEAT

Genome (Genotype)							
Node	Node 1 No	de 2 Node	3 Node 4	Node 5			
Genes	Sensor Se	nsor Senso	or Output	Hidden			
Connect.	In 1	In 2	In 3	In 2	In 5	In 1	In 4
	Out 4	Out 4	Out 4	Out 5	Out 4	Out 5	Out 5
	Weight 0.7	Weight-0.5	Weight 0.5	_	_	Weight 0.6	Weight 0.6
	Enabled	DISABLED	Enabled	Enabled	Enabled	Enabled	Enabled
	Innov 1	Innov 2	Innov 3	Innov 4	Innov 5	Innov 6	Innov 11

Topological Innovation

- A random number is added or subtracted from the current weight/parameter
- The number can be chosen from uniform, Gaussian (normal) or other distributions

Topology Matching Problem

- When mating networks they may have gene with the same functionality but in different positions
- In nature homologous genes are aligned and matched (synapsis)
- How can we solve this problem ?

 Two genes with the same history are expected to be homologous

Artificial Synapsis in NEAT

- At the beginning topological innovation may not be an advantage
- In order to let survive useful innovations, they have to be protected
- NEAT solve this problem with speciation:
 - similar networks are clustered
 - competition and mating is restricted to networks with the same space
 - fitness sharing prevent from a single species taking over the whole population

Network similarity in NEAT

- Based on historical markings
- A compatibility distance is computed on the basis of the excess (E), disjoint (D) and the average weight distance W of matching

$$\delta = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \bar{W}$$

Fitness Sharing in NEAT

- The fitness of each network is normalized with respect to the number of networks of the same species
- At each species is assigned a number of offspring in the next generation proportional to the fitness sum of the species members.
- Offspring are generated for each species by mating the fittest r% members of the species
- Speciation gives to promising topology the chance of being optimized without the need of competing with all the other networks
- Fitness sharing prevents from a single species taking over the whole population (i.e. it keeps diversity)

- In NEAT population is initialized with networks having the identical minimal topology (all inputs directly connected to outputs)
- More complex topology are introduced with mutation and survives only if useful
- Complexification has two advantages:
 - make trivial the initialization of the population
 - keeps limited the dimensionality of search space through the whole evolutionary process

NEAT has been tested on the double pole balancing problem (also without velocities info)

- Results shows that NEAT solves problems more effectively and faster than previous TWEANN systems
- Each of the three key components of NEAT is necessary

- Games
- Navigation
- Vehicle warning systems

- NEAT is an effective approach to NE thanks to
 - Historical marking
 - Speciation
 - Complexification
- Directions
 - Developmental Encoding
 - Adaptive Synapses
 - rtNEAT
 - Competitive Coevolution