TD 1

Email timothy.hosgood@univ-amu.fr for questions or corrections.

January 29, 2019

Mathematical formalism.

The objective of these exercises is for you to practise writing proofs: the exercises themselves are not supposed to be difficult, but you should write the solutions as best as you can.

Problem 1. Prove that, for every odd integer $x \in \mathbb{Z}$, there exists some integer $y \in \mathbb{Z}$ such that $x^2 = 8y + 1$.

Problem 2. Let $c \neq 0$ be a real number. Show that the function $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = cx is injective.

Problem 3. Let $f,g: \mathbb{R} \to \mathbb{R}$ be injective. Show that their composition $f \circ g: \mathbb{R} \to \mathbb{R}$ is also injective.

Problem 4. Fix a real number $x \neq 1$. Show, by induction, that, for every non-negative integer $n \in \mathbb{N}$, the following equality holds.

$$1 + x + x^{2} + \ldots + x^{n} = \frac{x^{n+1} - 1}{x - 1}.$$

Dedekind cuts.

In the following exercises, +, \cdot , <, and \leq all refer to operations on the *rational numbers*, and so we cannot use their properties (as we know them) on the *irrational* numbers: all we can use is their properties on \mathbb{Q} , as well as the properties of Dedekind cuts.

Problem 5. Let x and y be Dedekind cuts, and define their sum $x \oplus y$ as

$$x \oplus y = \{d + e \mid d \in x \text{ and } e \in y\}.$$

Prove that $x \oplus y$ *is a Dedekind cut.*

Problem 6. Define $Z = \{q \in \mathbb{Q} \mid q < 0\}$ (where $0 \in \mathbb{Q}$), which we assume is a Dedekind cut. Show that, for any Dedekind cut x, we have that $x \oplus Z = x$.

Recall that, in the lectures, we defined a total order \leq on Dedekind cuts by

$$x \leq y \iff x \subseteq y$$
.

We say that a Dedekind cut x is non-negative if $Z \leq x$.

Problem 7. Define the product $x \odot y$ of two non-negative Dedekind cuts x and y by

$$x \odot y = Z \cup \{d \cdot e \mid d \in x \setminus Z \text{ and } e \in y \setminus Z\}.$$

Show that $x \odot y$ is a Dedekind cut.

Problem 8. For a Dedekind cut x, we define its negative $\ominus x$ by

$$\ominus x = \{ -q \mid q \in \mathbb{Q} \setminus x \text{ and } q \text{ is not a minimum element of } \mathbb{Q} \setminus x \}.$$

- (a) (Warm up.) Show that $\ominus Z = Z$.
- (b) (Useful technical step.) Show that $\mathbb{Q} \setminus x$ is closed upwards, i.e. if $q \in \mathbb{Q} \setminus x$ and $q' \in \mathbb{Q}$ is such that q' > q then $q' \in \mathbb{Q} \setminus x$.
- (c) Show that $\ominus x$ is indeed a Dedekind cut.
- (d) (Another technical step.) Show that, for every r < 0, there exists some $d \in x$ such that $d r \in \mathbb{Q} \setminus x$.
- (e) Show that $x \oplus (\ominus x) = Z$.