Categorical Data

Data such that each observation can be classified as belonging to one of a finite number of categories.

Nonparametric Problem/Methods

N.P. problem: problem in which possible distrof observation are not restricted to a specific parametric family
N.P. method: statistical methods applicable to N.P. problems.

N Test for Goodness-of-fit Suppose observation has k categories. Let p; be the probability that a sample belongs to category i.

Ho: $P_i = P_i$ for $i = 1 \dots k$ Hr: $P_i \neq P_i$ for some i

Suppose n samples are taken, N_i being number of category i.

If test statistic: $Q_i = \sum_{i=1}^{k} \frac{(N_i - n P_i^0)^2}{n P_i^0}$

• If Ho is true and $n \rightarrow \infty$, Q converge in distr to χ_{k-1} .

Test procedure: reject Ho if $12 \ge C$ Choose c given do: $C = 1 - \infty$ quantile of 1/2

It test for continuous distr can be done by discretization into discrete distr.

No for Composite Hypo

Suppose for a vector of params $\overrightarrow{\theta} = (\theta_1 \cdots \theta_S)$, \exists function $\mathcal{T}_i, \forall i$ $H_0: \exists \overrightarrow{0} \in \mathcal{N}_i, s_i t. \ p_i = \mathcal{T}_i \mid 0)$ $H_1: o \mid w$

Interpretation: \vec{D} is an encoding of prob distribution over categories. To maps encoding to prob distribution. Ho: N contains true prob distr.

Test statistics:

First find $\hat{\theta}$, the MLE of θ given observations. $Q = \sum_{i=1}^{k} \frac{[N_i - n\pi_i(\hat{\theta})]}{n \pi_i(\hat{\theta})}$

· If Ho is true, now, Q > 22/k-1-s

Test procedure: reject Ho if Q > C.

Testing Whether a Distr is Normal Consider using N test on discretized distr w interval (a_i, b_i) $\theta = (\mu, 6^2)$. $\pi_i = \mathbb{P}(\frac{b_i - \mu}{6}) - \mathbb{P}(\frac{a_i - \mu}{6})$ Use the N test above.

X Test of Independence

Contingency table: table in which observations are classified in >2 ways.

Parameters: p_{ij} : true possibility of a grid. N_{ij} : # observation $p_{i+} = \sum_{i} p_{ij} \quad p_{+j} = \sum_{i} P_{ij}$

, , , , , ,

Ho: Pij = Pi+ P+j, Viij (independence) Hi: 0/W

Test statistic:

Find
$$\hat{E}_{ij}$$
 which is MLE of N_{ij} if Ho is true.

$$\hat{E}_{ij} = n \cdot \frac{N_{i+}}{n} \cdot \frac{N_{i+}}{n} = \frac{N_{i+}N_{i+}}{n}$$

$$Q = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{N_{ij} - \hat{E}_{ij}}{\hat{E}_{ij}}$$

• If H_o is true, $n \rightarrow \infty$, $Q \rightarrow y^{2}w/(R-1)(C-1)$ dof.

Test of Homogeneity

Test if distr of observed RV is same among multiple populations.

Suppose there are R populations, C categories.

Ho: Pij = Pzj = ... = Prj for j=1...c.

Test statistic:

Suppose we know Pij, then for population i, we can use χ test for goodness of fit to test $Pii = \cdots = Pic$. The χ^2 statistic used:

$$\sum_{j=1}^{C} \frac{(N_{ij} - N_{i+} p_{ij})^{2}}{N_{i+} p_{ij}}$$

Sum this statistic over all population gives a statistic that tests Ho:

· For large samples, Q -> XRIC-1)

However, Pij is unknown. But we can use MLE as substitute:

$$\hat{p}_{ij} = \frac{N_{ij}}{n}$$
 (MLE assuming Ho)

Now, let
$$\hat{E}_{ij} = \frac{N_{i+}N_{+j}}{n}$$
,
$$Q = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{(N_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}}$$

· Ho, n>∞ => Q → X(R-1)(C-1)

Note that the form of Q is very similar to X of independence.