Kontextfreie Sprache

Gegeben ist die Grammatik $G = (\{a, b\}, \{S, A, B\}, S, P)$ und den Produktionen

 $P = \{$

$$S \rightarrow SAB \mid \epsilon$$

 $BA \rightarrow AB$
 $AA \rightarrow aa$
 $BB \rightarrow bb$

}

(a) Geben Sie einen Ausdruck an, der die Wörter der Sprache beschreibt.

 $L = \{(a^n b^n)^m \mid m \in \mathbb{N}_0 \text{ und } n \in \text{ gerade Zahlen}\}$

Einige Testableitungen um die Grammatik in Erfahrung zu bringen: "." nur als optische Stütze nach 4 Zeichen eingefügt.

Mit 4 Buchstaben

$$S \rightarrow SAB \rightarrow SABAB \rightarrow ABAB \rightarrow AABB \rightarrow aabb$$

Mit 6 Buchstaben

$$S \rightarrow ... \rightarrow ABAB.AB \rightarrow AABB.AB \rightarrow AABA.BB \rightarrow AAAB.BB \rightarrow \varnothing$$

Mit 8 Buchstaben

 $S \rightarrow ... \rightarrow ABAB.ABAB \rightarrow ... \rightarrow aabb.aabb$

S \rightarrow ... \rightarrow ABAB.ABAB \rightarrow ... \rightarrow AABB.AABB \rightarrow AABA.BABB \rightarrow AABA.ABBB \rightarrow AAAB.ABBB \rightarrow AAAA.BBBB \rightarrow aaaa.bbbb

Mit 12 Buchstaben

 $S \rightarrow ... \rightarrow ABAB.ABAB.ABAB \rightarrow ... \rightarrow aabb.aabb.aabb$

 $S \rightarrow ... \rightarrow ABAB.ABAB.ABAB \rightarrow AAAA.BBBB.AABB \rightarrow aaaa.bbbb.aabb$

S \rightarrow ... \rightarrow ABAB.ABAB.ABAB \rightarrow AABB.ABAB.ABAB \rightarrow AABA.BBAB.ABAB.ABAB \rightarrow AAAB.BBAB.ABAB ... \rightarrow aaaa.aabb.bbbb

(b) Geben Sie eine kontextfreie Grammatik G' an, für die gilt: L(G') = L(G)

$$P = \{$$

$$S
ightarrow aaSbb \, | \, SS \, | \, \epsilon \ \}$$
 $\}$

(c) Geben Sie einen Kellerautomaten an, der die Sprache akzeptiert.

2. Kellerautomat

$$K = (\{z_0, z_1\}, \{a, b\}, \{\#, 1, 2\}, \delta, z_0, \#, z_0)$$

Bemerkung zum Kelleralphabet: 1 steht für 1A, also ein a befindet sich im Keller, und 2 steht für 2A, also zwei a befinden sich im Keller.

