15-11-15_Sr.IPLCO_JEE-ADV_(2011_P2)_RPTA-12_Key &Sol's

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 JEE-ADVANCE
 Date: 15-11-15

 Time: 3 Hours
 2011-P2-Model
 Max Marks: 240

KEY & SOLUTIONS

CHEMISTRY

1	D	2	A	3	A	4	С	5	D	6	A
7	A	8	D	9	AB	10	AB	11	ABCD	12	ABD
13	6	14	4	15	5	16	4	17	7	18	4

19 A - P, S,T; 20 A - P,R,S,T; B - Q,R,T; B -P,Q,R,S,T; C - P,T; C - P,Q,T; D - Q,R,T D - P,Q,T

PHYSICS

21	C	22	В	23	С	24	В	25	С	26	В
27	A	28	С	29	BD	30	ABD	31	AC	32	ABD
33	7	34	4	35	2	36	9	37	5	38	2
	A-P,R;		A-P,Q;								

B- S; C-P,Q,R; D-P,R

| A-1,Q, B-R,S; | C-Q,R; | D-Q,R

MATHEMATICS

41	В	42	A	43	В	44	A	45	С	46	В
47	C	48	A	49	AC	50	AC	51	BD	52	ABCD
53	0	54	4	55	4	56	4	57	7	58	2

59 A - Q; 60 A - Q; B - S; B - R; C - P; C - S; D - P D - P

MATHS

41.

required area =
$$4\int_0^4 \sqrt{x} dx = \frac{64}{3}$$

42.

required area =
$$\frac{\pi r^2}{4} = \frac{\pi 4^2}{4} = 4\pi$$

43.
$$\frac{dy_1}{dx} + f(x)y_1 = 0 \Rightarrow f(x) = \frac{-1}{y_1} \frac{dy_1}{dx}$$

$$\frac{dy}{dx} - \frac{1}{y_1} \frac{dy_1}{dx} \cdot y = r(x)$$

$$e^{-\int \frac{1}{y_1} dy} = \frac{1}{y_2}$$

$$\frac{d}{dx}\left(\frac{y}{y_1}\right) = \frac{r(x)}{y_1} \Rightarrow \frac{y}{y_1} = \int \frac{r(x)dx + c}{y_1}$$

$$y = y_1 \int \frac{r(x)}{y_1} dx + cy_1$$

44.
$$A = \sqrt{2} \int_2^4 \sin\left(\frac{\pi x}{4}\right) dx = \frac{4\sqrt{2}}{\pi}$$

Sri Chaitanya IIT Academy

15-11-15_Sr.IPLCO_JEE-ADV_(2011_P2)_RPTA-12_Key &Sol's

Let the line $L_1 = 0$

Be
$$y - m_1(x - 4) = 0$$
 & $L_2 = 0$: $y - m_2(x - 4) = 0$

$$A(2, 2m_1), B(2-2m_2)$$

$$\Delta ACD = \frac{\Delta}{3} \Rightarrow m_1 = \frac{-2\sqrt{2}}{3\pi}$$

$$m_2 = \frac{-4\sqrt{2}}{3\pi}$$

45.
$$d(x^2e^y)+d\left(\frac{x^2}{y}\right)+d\left(\frac{x}{y^3}\right)=0$$

$$\Rightarrow x^2 e^y + \frac{x^2}{y} + \frac{x}{y^3} = e$$

46.

required area =
$$8\left\{\frac{1}{2}.1.1 + \int_{2}^{\sqrt{5}} \sqrt{5 - x^2} dx\right\}$$

49. required area

$$\frac{1}{2}xy + \int_{a}^{b} \frac{dy}{dx} \sqrt{a^2 - x^2} dx$$

$$= \frac{1}{2}x\frac{b}{a}\sqrt{a^2 - x^2} + \int_{a}^{b} \frac{b}{a}\sqrt{a^2 - x^2}dx = \frac{ab}{2}\cos^{-1}\left(\frac{x}{a}\right)$$

Sri Chaitanya IIT Academy

15-11-15_Sr.IPLCO_JEE-ADV_(2011_P2)_RPTA-12_Key &Sol's

50. a)
$$A = \int_{a}^{c} (f(c) - f(x)) dx + \int_{c}^{b} (f(x) - f(c)) dx$$

$$\frac{dA}{dc} = 0 \Rightarrow c = \frac{a+b}{2}$$
c) $f'(x) = x(x-2) < 0$ in $(0,2)$

$$\therefore x = \frac{0+2}{2} = 1$$

$$\Rightarrow f(1) = \frac{1}{2} - 1 + a = 0 \Rightarrow a = 2/3$$

- 51. solution of the differential equation $y = \left(\frac{x-2}{x-3}\right)^2 \left(x + \frac{1}{x-2} + C\right)$
- 53. $\frac{dy}{y} = \left(\frac{2n}{x \log x} + 1\right) dx$ $\Rightarrow \log y = 2n \log (|\log x|) + x + c \& c = 0$ $y = |\log x|^{2n} . e^x = f(x)$
- 54. $\frac{ydx xdy}{y^2} + \left(\frac{x}{y} + 1\right) \sqrt{\frac{x}{y}} \left(d\left(\frac{x^2 + y^2}{2}\right)\right) = 0$ $\Rightarrow d\left(\frac{x^2 + y^2}{2}\right) + \frac{d\left(\frac{x}{y}\right)}{\left(1 + \frac{x}{y}\right)\sqrt{\frac{x}{y}}} = 0$ $\Rightarrow \frac{x^2 + y^2}{2} + 2\tan^{-1}\left(\sqrt{\frac{x}{y}}\right) = C$ $(1,1) \text{ lies on it } \Rightarrow c = 1 + \frac{\pi}{2}$
- 55. $\frac{d(xy)}{x^2y^2} = \frac{y \cdot d\left(\frac{y}{x}\right)}{x}$ $\Rightarrow \frac{y^2}{2x^2} + \frac{1}{xy} = c \& x = 1 \& y = (-2)^{\frac{1}{3}}$ $\Rightarrow y^3 = -2x \& f^{-1}(-2) = 4$
- 56. (where [.], denotes greatest integer function)

Let
$$A = \int_0^2 y dx$$

$$\frac{dy}{dx} = y + A$$

$$\Rightarrow l \operatorname{n}(y+A) = x+B, \ y(0) = 1 \Rightarrow B = l \operatorname{n}(1+A)$$

$$A = \int_0^2 ((1+A)e^x - A)dx \Rightarrow A = \frac{e^2 - 1}{4 - e^2}$$

$$\therefore y(x) = \frac{3e^x - e^2 + 1}{4 - e^2}$$

$$y(2) = \frac{2e^2 + 1}{4 - e^2}$$

$$\left|\left|y(2)\right|\right|=4$$

57.
$$g(x) = \underset{n \to \infty}{Lt} \cdot \frac{1}{50} f(x) = \begin{cases} \to \infty & \text{if} \quad x < 1/e \\ 0 & \text{if} \quad \frac{1}{e} < x < e \\ \to \infty & \text{if} \quad x > e \end{cases}$$

$$\therefore \int_{1/e}^{e} g(x) dx = 0$$

58.

(required area is
$$A = 2\int_0^1 \left(y\sqrt{1-y^2} - \left(y^2 - 1\right)\right)dy$$

=2