New types of communication networks will be necessary to meet various consumer and regulatory demands as well as satisfy requirements of safety and fuel efficiency. Multimedia systems will require high-bandwidth networks for video transfer, and body electronics need low-bandwidth networks to keep the cost down.

1 Protokoli komunikacije

Računarske mreže u vozilima interno povezuje komponente unutar bilo koje vrste vozila. Svi uslovi koji bi trebalo da budu ispunjeni kada se govori o računarskim mrežama, poput sigurnosti u slanju poruka, rešavanje konflikta, minimalno vreme pristizanja poruka, efikasnost i slično, zahtevaju korišćenje protokola posebno definisanih za ovu problematiku. Različiti skupovi ovih modula zahtevaju različite tipove mreže. U današnjim vozilima postoje dva tipa mreže: veoma brze mreže za pogon i spore mreže za elektroniku u telu vozila. Podela mreže se vrši tako da predstavlja jednu lokalnu mrežu ili jednu funkcionalnu celinu. U ovim podeljenim mrežama, različiti delovi mreže mogu koristiti različite protokole. Na primer, jedna particija može da koristi CAN protokol, druga LIN protokol i tako dalje kao na slici 1.

Osnovni zahtevi koji bi trebalo da budu ispunjeni su efikasno trošenje goriva, eliminisanje bregastih osovina u motoru i delova koji crpe energiju, nepotrebne težine vozila, povećanje sigurnosti. U vozilima se često koriste dve serijske magistrale, jedna za sistem koji kontroliše pogon, a druga za elektroniku u telu vozila. Proizvođači se trude da proizvedu što sigurnije vozilo i sa što boljim sistemom za upravljanje vozilom. U tabeli 1 se može videti koje protokole koriste neki od proizvođača u zavisnosti od tipa vozila.

Slika 1: Primer korišćenja protokola u automobilu

Postoje različiti tipovi protokola koji se mogu koristiti. Neki od tih protokola su:

• CAN - (Controller Area Network) Protokol koji se najčešće koristi kao LAN mreža vozila. Spada u sporu mrežu sa serijskom magistralom za

prenos poruka, a koristi Non Return to Zero (NRZ) kodiranje. Sadrži 5 mehanizama za detekciju grešaka.

- FlexRay Brza mreža koja omogućava visok stepen fleksibilnosti i pouzdanosti. Koristi point-to-point topologiju zvezde. Magistrala sa ovim protokolom dobro podnosi greške.
- LIN (Local Interconnect Network) Koristi se u serijskim magistralama koje se koriste za komunikaciju između inteligentnih senzora, ali i za elektroniku u telu automobila poput klima uređaja, vrata, sedišta i slično.
- MOST (Media Oriented Systems Transport) Najčešći protokol kada su u pitanju multimedijalne mreže. Dizajniran tako da omogući prenos audio i video sadržaja kao i podataka visokog kvaliteta.
- **D2B** (Domestic Digital Bus) Multimedijalni interfejs velike brzine. Koristi se u optičkim magistralama koje povezuju audio, video, kompijuterske i telefonske komponente u jednu prstenastu strukturu.
- Byteflight Koristi se u sistemima koji se odnose na sigurnost (vazdušni jastuk).
- J1850 -Za deo vozila koji sadrži dijagnostičke aplikacije i aplikacije za deljenje podataka.
- IEBus Protokol zasnovan na CSMA/CD (Carrier Sense Multiple Access/Collision Detection) pristupu mreži. Prenos podataka se vrši kroz dve linije, Data+ i Data-, u dva smera.
- J1708 Koristi se samo u fizičkom sloju i to u serijskim magistralama, za komunikaciju između mikrokompjutera u vozilu. [1]
- A²B (Automotive Audio Bus) Protokol audio distribucije. Ovim protokolom se dobija visoka vernost zvuka (Hi-Fi) uz smanjenje težine kablova i veće efikasnosti u trošenju goriva. [2]
- AFDX [3]
- DC-BUS [4]
- IDB-1394 [5]
- I²C [6]
- ISO 9141-1/-2 [7]
- Keyword Protocol 2000 [8]
- VAN (Vehicle Area Network) [9]

Sledeće što se u budućnosti očekuje jeste povezivanje komponenti preko Weba upravo zato što se količina podataka koje treba prenositi raste vremenom. Računarska mreža u vozilima konstantno se nadograđuje. Najverovatnije će se u vozila ubaciti sistemi zasnovani na Ethernet-u. Svaka komponenta vozila će imati svoju IP adresu tako da centralizovani računar i ruter u vozilu mogu da šalju i usmeravaju velike količine podataka. Ono što usporava ovakav razvitak jesu veliki troškovi, ali se takva nadogradnja očekuje jednog dana.

Tip protokola	Godina početka	Proizvođač	Tip vozila
CAN	1986	Bosch	razno
J1850	-	GM	- automobili
		Ford	
	2008	Chrysler	
FlexRay		BMW	
		Volkswagen	
		Daimler AG	
	-	General Motors	
MOST	?	Ford	
		BMW	
		Daimler	
		GM	
	2000	PSA Peugeot Citroën	
J1708	1985	Volvo AB	teški terenac

Tabela 1: Koje protokole koriste neki od proizvođača

Literatura

- [1] Automotive Buses http://www.interfacebus.com/Design_Connector_Automotive.html 11.5.2018.
- [2] Analog Devices. A better design experience. A more dynamic automotive experience. ADI's A²B technology delivers both. http://www.analog.com/en/landing-pages/001/a2b.html. Analog Devices, 11.5.2018.
- [3] Avionics Full-Duplex Switched Ethernet. https://en.wikipedia.org/wiki/Avionics_Full-Duplex_Switched_Ethernet. 11.5.2018.
- [4] $DC\ BUS\ Technology$. http://yamar.com/power-line-communication/. 11.5.2018.
- [5] IDB-1394. https://en.wikipedia.org/wiki/IEEE_1394#IDB-1394. 11.5.2018.
- [6] Inter-Integrated Circuit. https://en.wikipedia.org/wiki/I%C2%B2C. 11.5.2018.
- [7] ISO 9141. https://en.wikipedia.org/wiki/On-board_diagnostics#ISO_standards. 11.5.2018.
- [8] Keyword Protocol 2000. https://en.wikipedia.org/wiki/Keyword_Protocol_2000. 11.5.2018.
- [9] Vehicle Area Network. https://en.wikipedia.org/wiki/Vehicle_Area_Network. 11.5.2018.
- [10] Local Interconnect Network. https://en.wikipedia.org/wiki/Local_Interconnect_Network. 11.5.2018.
- [11] IDB-1394. https://en.wikipedia.org/wiki/IEEE_1394#IDB-1394. 11.5.2018.

- [12] Byteflight. https://en.wikipedia.org/wiki/Byteflight. 11.5.2018.
- $[14] \begin{tabular}{ll} Domestic & Digital & Bus. & {\tt https://en.wikipedia.org/wiki/Domestic_bigital_Bus_(automotive).} \end{tabular} 11.5.2018.$
- $[15] \ \mathit{FlexRay}. \ \mathtt{https://en.wikipedia.org/wiki/FlexRay}. \ 11.5.2018.$
- [16] Inter Equipment Bus. https://en.wikipedia.org/wiki/IEBus. 11.5.2018.
- [17] SAE J1708. https://en.wikipedia.org/wiki/SAE_J1708. 11.5.2018.
- [18] $SAE\ J1850$. https://en.wikipedia.org/wiki/On-board_diagnostics#SAE_standards_documents_on_OBD-II. 11.5.2018.