PHL 110 Fields and waves. Minor II exam 09 October 2012, 09.30AM to 10.30AM

Answer all the questions.

Maximum: 20marks

An electromagnetic wave propagating in a medium of $\varepsilon_r = 9$, has $\vec{E} = A(\hat{x} + \alpha \hat{z}) exp \left\{ -i \left(\omega t - \omega \frac{x}{c} + \beta z \right) \right\}. \text{ Obtain (i) } \beta \text{ (ii) } \alpha \text{ (iii) } \vec{B} \text{ (iv) } \vec{S}_{av}. \text{ (5 marks)}$

A transformer comprises a frame of cross section s, relative magnetic permeability μ_r and length l but with a small airgap of width d. The primary is a coil with N turns carrying current $l_1 = l_0 exp(-i\omega t)$ and the secondary is a plasma ring of radius R. Estimate the induced electric field in the plasma. (5marks)

3. An electromagnetic wave of 10^{12} Hz frequency normally incident on a collisionless plasma suffers 100% reflection with phase change of $\frac{\pi}{3}$. What would be the reflectivity and phase change on reflection of EM wave of frequency 2×10^{12} Hz. (5 marks)

4. (a) A dipole $m\hat{z}$ is placed at the centre of an imaginary hollow sphere of radius R. Obtain the magnetic flux linked to the upper half hemisphere. (3 marks)

(b) A sphere of radius R with centre at the origin has uniform magnetization $M\hat{z}$. The magnetic field inside the sphere is $\vec{B} = \frac{2}{3}\mu_0\vec{M}$. Obtain \vec{H} inside and just outside the sphere at (R, θ, φ) . (2 marks)