The Process of AFS

Stage 2. The radiation at 254nm is absorbed by any analyte mercury atoms and is emitted as fluorescence at 254nm also.

AFS - How do we capture the emitted photons? The importance of detector design – measurement at 90°

AFS

AAS

Emission v Absorption

Emission Technique AFS/ICP

Absorption Technique AAS/GF

Analysis (Signal)

Standby

(Background)

Interferences

- Spectral (polyatomic isobaric)
- Contamination and Carryover (memory effects)

Spectral interferences

The Achilles heal of ICP-MS?

Consider Arsenic and Selenium

Table 1. Common ICP-MS interferences.	
Polyatomic Species	Interfered Analyte
40Ar35Cl	⁷⁵ As
ArAr	⁸⁰ Se

Arsenic ⁷⁵As 100% Selenium ⁷⁴Se 0.89% ⁷⁶Se 9.37% ⁷⁷Se 7.63% ⁷⁸Se 23.77% ⁸⁰Se 49.61% ⁸²Se 8.73%

Choose another isotope?

Use a high resolution MS?

Use He as a Plasma gas?

Use a collision cell?

There are no such interferences for AFS

Contamination and Carryover (memory effects)

- Hg is notorious for causing carry over problems –
 Sticks to most surfaces Care is required.
- A major problem is the presence of glassware within the instrumentation
 - Spray chamber, nebuliser, flow cells

PSA – AFS – Patented Argon shield flow cell

