МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича»

Кафедра Защищенных систем связи

Дисциплина «Основы криптографии с открытыми ключами»

Лабораторная работа № 11

СИСТЕМА ЭЛЕКТРОННОГО ГОЛОСОВАНИЯ НА ОСНОВЕ ГОМОМОРФНЫХ СВОЙСТВ КРИПТОСИСТЕМЫ ПЭЙЕ

Выполнил:	ст. г. ИКТЗ-83 Громов А. А.
Проверил:	Яковлев В. А.

Цель лабораторной работы:

Изучение принципов построения системы электронного голосования на основе криптосистемы Пэйе и анализ выполнения требований по обеспечению ее безопасности.

Исходные данные:

Вариант №4.

Избират ель	B1 (7°)	B2 (7¹)	B3 (7 ²)	B4 (7³)	B5 (7 ⁴)	Голос (m)
A1	V		V			m=50
A2			V		V	m=2450
A3			٧			m=49
A4		v				m=7
A5	V			V		m=344
A6			V			m=49
Итог:	2	1	4	1	1	2949

$$2949_{10} = 11412_7$$

$$Nv = 6, Nc = 5$$

Основание системы счисления b = Nv + 1 = 7

Выполнение работы:

Генерация ключей:

Максимальное число сообщений, которые можно зашифровать

$$m_{max} = 7^4 + 7^3 + 7^2 + 7^1 + 7^0 = 2801$$

Следовательно, максимально возможная сумма всех голосов

$$T_{max} = Nv * m_{max} = 6 * 2801 = 16806$$

По условию $n > T_{\text{max}}$; n > 16806

Для генерации ключа выберем случайным образом 2 простых больших числа

$$p = 307$$
 и $q = 443$, где $gcd(pq, (p - 1)(q - 1)) = 1$

Вычисляем $n = 307 \times 443 = 136001$, $n^2 = 18496272001$

$$\lambda = lcm(p - 1, q - 1) = lcm(306, 442) = 3978$$

Пусть $\alpha=17$, $\beta=7$

$$g = (\alpha n + 1)\beta^{n} mod n^{2} = (17 * 136001 + 1)7^{136001} mod 136001^{2} = 4877987725$$

$$\mu = (L(g^{\lambda} mod n^{2})) - 1 mod n =$$

$$((4877987725^{3978} \mod 18496272001 - 1)/136001) \mod 136001 = 87520$$

Шифрование:

Зашифруем сообщения, содержащие выбор избирателей: $E(m_i) = c_i = g^{mi} \times r_i^n mod \ n^2 = 4877987725^{mi} \times r_i^{136001} mod \ 18496272001 \ r \in Z_n^*$

Избиратель	Случайное число (r _i)	Голос (m)	Зашифрованное значение голоса (c _i)
A1	21	m=50	5197777036
A2	68	m=2450	17083747880
A3	13	m=49	11662488432
A4	7	m=7	11633357469
A5	45	m=344	6178628370
A6	9	m=49	18023831322
Подсчет:		2949	

$$\begin{split} c_1 &= 4877987725^{50} * 21^{136001} mod \ 18496272001 \ = 2457790475 \\ c_2 &= 4877987725^{2450} * 68^{136001} mod \ 18496272001 \ = 10019542800 \\ c_3 &= 4877987725^{49} * 13^{136001} mod \ 18496272001 \ = 13630098806 \\ c_4 &= 4877987725^{7} * 7^{136001} mod \ 18496272001 \ = 15686081260 \\ c_5 &= 4877987725^{344} * 45^{136001} mod \ 18496272001 \ = 15296550907 \end{split}$$

 $c_6 = 4877987725^{49} * 9^{136001} mod 18496272001 = 17323384321$

Вычислим произведение криптограмм:

$$T = \prod_{i=1}^{Nv} c_i \mod n^2 = (2457790475 * 10019542800 * 13630098806 *$$

* 15686081260 * 15296550907 * 17323384321) *mod* 18496272001 = 1154822184

Дешифрование:

$$D(T) = L(T^{\lambda} \mod n^{2}) \times \mu \mod n = \left(\frac{(1154822184^{3978} \mod 18496272001) - 1}{136001}\right) *$$

$$* 87520 \mod 136001 = 2949$$

Таким образом, подсчет зашифрованных голосов дает сумму всех голосов. Для определения победителя голосования необходимо преобразовать получившееся значение в числовую форму, представленную в начале выборов. В данном случае сервер для подсчетов голосов работает с десятичными числами, поэтому перевод не обязателен.

$$2949_{10} = 1 * 7^4 + 1 * 7^3 + 4 * 7^2 + 1 * 7^1 + 2 * 7^0 = 11412_7$$

В силу гомоморфности криптосистемы индекс максимального элемента результирующего вектора и будет индексом победившего кандидата. Следовательно, можно сделать вывод о том, что победителем электронных выборов является кандидат ВЗ.

Вывод:

В ходе выполнения данной лабораторной работы был изучен алгоритм электронного голосования на основе КС Пэйе и определен победитель электронного голосования.