SOLUTIONS/HINTS TO PROBLEM SET 8

Problem 1.

4.1.11:

(a) $q(x) = x^3$, $r(x) = x^4 + x^2$.

(b) $q(x) = x^5 + 1$, r(x) = 0.

(c) $q(x) = x^4 + x^2 + x + 1$, r(x) = 0. (d) $q(x) = x^7 + x^6 + x^4 + 1$, r(x) = 0.

Problem 2.

4.1.19:

- (a) $1 + x^4$.
- (b) $1 + x^2$.
- (c) $x + x^4$.

4.1.20: We must compute the remainder when f(x) is divided by $h(x) = x^7 + 1$ (i.e., $f(x) \mod h(x)$, and the remainder when p(x) is divided by h(x) (i.e., $p(x) \mod h(x)$) h(x)). Using the long division algorithm, we get:

- (a) $f(x) \mod h(x) = x^3 + x + 1$ and $p(x) \mod h(x) = x^3 + x + 1$. Hence, $f(x) \equiv h(x) \pmod{h(x)}$.
- (b) $f(x) \mod h(x) = x^5 + x^2 + x$ and $p(x) \mod h(x) = x^5 + x$. Hence, $f(x) \not\equiv h(x) \pmod{h(x)}$.
- (c) $f(x) \mod h(x) = x + 1$ and $p(x) \mod h(x) = x + 1$. Hence, $f(x) \equiv h(x) \pmod{h(x)}$.

4.1.21:

 $(f(x) + g(x)) \mod h(x)$ and $(f(x)g(x)) \mod h(x)$

- (a) x^6 , $x^2 + x^6$.
- (b) $x + x^5$, $x + x^3 + x^4 + x^5 + x^6$.
- (c) $x + x^2 + x^4 + x^5$, $x + x^2 + x^4$.

Problem 3. If $v = (v_0, v_1, v_2, \dots, v_{n-2}, v_{n-1})$ and $\pi(v) = (v_{n-1}, v_0, v_1, \dots, v_{n-3}, v_{n-2})$ are the equal then

$$v_0 = v_{n-1}, v_1 = v_0, v_2 = v_1, \dots, v_{n-2} = v_{n-3}, v_{n-1} = v_{n-2}.$$

This can only happen if v is either the all-zero or the all-one word.

Problem 4.

(a) From Corollary 4.2.18, the generator polynomial of the smallest cyclic code containing $x^5 + x^3 + x$ (the given word of length 6) is

$$g(x) = \gcd(x^5 + x^3 + x, x^6 + 1) = x^4 + x^2 + 1.$$

This can be computed in a similar way to computing the greatest common divisor between two integers (Euclidean algorithm).

(c) The generator polynomial of the smallest cyclic code containing the given word of length 8, namely, $x^6 + x^5 + x^2 + x$, is

$$g(x) = \gcd(x^6 + x^5 + x^2 + x, x^8 + 1) = x^5 + x^4 + x + 1.$$

1

Problem 5.

2

- (c) The three words of length 4 in S are linearly independent. So the code C generated by them is a (4,3)-linear cyclic code. The generator polynomial has degree t=n-k=1 and it is the unique polynomial of degree 1 in C. The third word in S corresponds to a polynomial of degree 1, namely, x+1. Hence, g(x)=x+1.
- (e) The four words of length 5 in S are linearly independent. So the code C generated by them is a (5,4)-linear cyclic code. The generator polynomial has degree t=n-k=1 and it is the unique polynomial of degree 1 in C. The first word in S corresponds to a polynomial of degree 1, namely, x+1. Hence, g(x)=x+1.

Problem 6.

4.3.4:

(a) The codeword corresponding to the message $1 + x^3$ is

$$v(x) = g(x) \cdot (1 + x^3) = 1 + x^2 + x^5 + x^6.$$

The codeword corresponding to the message x is

$$v(x) = q(x) \cdot x = x + x^3 + x^4$$
.

The codeword corresponding to the message $x + x^2 + x^3$ is

$$v(x) = g(x) \cdot (x + x^2 + x^3) = x + x^2 + x^6.$$

(b) The message polynomial corresponding to $c(x) = x^2 + x^4 + x^5$ is

$$c(x)/g(x) = x^2.$$

The message polynomial corresponding to $c(x) = 1 + x + x^2 + x^4$ is

$$c(x)/g(x) = 1 + x.$$

The message polynomial corresponding to $c(x) = x^2 + x^3 + x^4 + x^6$ is

$$c(x)/g(x) = x^2 + x^3.$$

Problem 7.

4.3.9: *H* is produced as follows. First compute $x^i \mod g(x)$, for $i = 0, \ldots, n-1$. Each result corresponds to a row of *H*.

(c)

$$1 \mod g(x) = 1$$

$$x \mod g(x) = x$$

$$x^2 \mod g(x) = 1$$

$$x^3 \mod g(x) = x$$

$$x^4 \mod g(x) = 1$$

$$x^5 \mod g(x) = x$$

$$x^6 \mod g(x) = 1$$

$$x^7 \mod g(x) = x$$

Thus,

$$H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

(d) As in the previous part, first compute $x^i \mod g(x)$, for i = 0, ..., 8. In this case, $g(x) = 1 + x^3 + x^6$. Each result corresponds to a row of H.

$$\begin{array}{l} 1 \bmod g(x) = 1 \\ x \bmod g(x) = x \\ x^2 \bmod g(x) = x^2 \\ x^3 \bmod g(x) = x^3 \\ x^4 \bmod g(x) = x^4 \\ x^5 \bmod g(x) = x^5 \\ x^6 \bmod g(x) = 1 + x^3 \\ x^7 \bmod g(x) = x + x^4 \\ x^8 \bmod g(x) = x^2 + x^5 \end{array}$$

Thus,

$$H = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

Problem 8.

4.4.6:

- (a) Notice that $x^4 + 1 = (x+1)^4$. With the notation of Corollary 4.4.4, $n = 2^2$. Thus the number of proper cyclic codes of length 4 is equal to $(2^2 + 1)^1 2 = 3$.
- (b) The factorization of $x^5 + 1$ into irreducible factors is:

$$x^5 + 1 = (x+1)(x^4 + x^3 + x^2 + x + 1).$$

Again, by Corollary 4.4.4, the number of proper cyclic codes of length 5 is equal to $(2^0 + 1)^2 - 2 = 2$.

(c) The factorization of $x^7 + 1$ into irreducible factors is:

$$x^7 + 1 = (x+1)(x^3 + x^2 + 1)(x^3 + x + 1).$$

Again, by Corollary 4.4.4, the number of proper cyclic codes of length 7 is equal to $(2^0 + 1)^3 - 2 = 6$.

(d) Notice that $x^{14} + 1 = (x^7 + 1)^2$. With the notation of Corollary 4.4.4, $n = 2 \cdot 7$. Thus the number of proper cyclic codes of length 14 is equal to $(2^1 + 1)^3 - 2 = 25$.

4.4.7

The generator polynomials of proper cyclic codes of length n=4 are the divisors of $(x+1)^4$ which are different from 1 and $(x+1)^4$. They are: $x+1, (x+1)^2$, and $(x+1)^3$.

The generator polynomials of proper cyclic codes of length n=5 are the divisors of $x^5+1=(x+1)(x^4+x^3+x^2+x+1)$ which are different from 1 and x^5+1 . They are: x+1 and $x^4+x^3+x^2+x+1$.

4.4.8:

From $x^7 + 1 = (x+1)(x^3 + x + 1)(x^3 + x^2 + 1)$, one generator of degree 4 for a cyclic code of length 7 equals $(x+1)(x^3 + x + 1) = x^4 + x^3 + x^2 + 1$ and another equals $(x+1)(x^3 + x^2 + 1) = x^4 + x^2 + x + 1$.