The SDP-exact region in quadratic optimization

Diego Cifuentes

Department of Mathematics Massachusetts Institute of Technology

Joint work with **Corey Harris** (University of Oslo), **Bernd Sturmfels** (MPI-MiS Leipzig & UC Berkeley) arXiv:1804.01796

SIAM Conference on Applied Algebraic Geometry - 2019

Quadratic programming

Consider a quadratically constrained quadratic program:

$$\min_{x \in \mathbb{R}^n} g(x) := x^T C x + 2c^T x$$

$$f_i(x) := x^T A x + 2a_i^T x + \alpha_i = 0, \quad i = 1, \dots, m$$
(QP)

QP's are nonconvex and NP-hard. We consider convex relaxations based on *semidefinite programming* (SDP).

Example (Max-Cut)

Given a graph G = (V, E) with weights c_{ij} ,

$$\min_{x} \quad \sum_{ij \in E} c_{ij} x_i x_j$$
s.t. $x_i^2 = 1$ for $i \in V$

Quadratic programming

Consider a quadratically constrained quadratic program:

$$\min_{x \in \mathbb{R}^n} g(x) := x^T C x + 2c^T x$$

$$f_i(x) := x^T A x + 2a_i^T x + \alpha_i = 0, \quad i = 1, \dots, m$$

$$(QP)$$

QP's are nonconvex and NP-hard. We consider convex relaxations based on *semidefinite programming* (SDP).

Example (Nearest point to quadratic variety)

Given a variety $X \subset \mathbb{R}^n$ defined by quadrics, and a point $u \in \mathbb{R}^n$,

$$\min_{x} \quad \|x - u\|^2$$

s.t. $x \in X$

Semidefinite Programming

A semidefinite program (SDP) is

$$\min_{X \in \mathbb{S}^d} \quad \mathcal{C} \bullet X$$

s.t.
$$A_i \bullet X = b_i$$
 for $i \in [m]$
 $X \succeq 0$

where $C, A_i \in \mathbb{S}^d, b_i \in \mathbb{R}$ are given.

SDP relaxation

Consider the quadratic program

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad g(\mathbf{x}) := \mathbf{x}^T C \mathbf{x} + 2c^T \mathbf{x} f_i(\mathbf{x}) := \mathbf{x}^T A \mathbf{x} + 2a_i^T \mathbf{x} + \alpha_i = 0, \text{ for } i \in [m]$$
 (QP)

Let the following matrices in \mathbb{S}^{n+1}

$$C := \begin{bmatrix} 0 & c^T \\ c & C \end{bmatrix}, \quad \mathcal{A}_0 := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathcal{A}_i := \begin{bmatrix} \alpha_i & a_i^T \\ a_i & A_i \end{bmatrix}$$

The QP can be equivalently written as

$$\min_{X \in \mathbb{R}^{n}, X \in \mathbb{S}^{n+1}} \quad C \bullet X$$

$$\mathcal{A}_{0} \bullet X = 1$$

$$\mathcal{A}_{i} \bullet X = 0 \text{ for } i \in [m]$$

$$X = \begin{bmatrix} 1 & x^{T} \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}$$

SDP relaxation

Consider the quadratic program

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad g(\mathbf{x}) := \mathbf{x}^T C \mathbf{x} + 2c^T \mathbf{x} f_i(\mathbf{x}) := \mathbf{x}^T A \mathbf{x} + 2a_i^T \mathbf{x} + \alpha_i = 0, \text{ for } i \in [m]$$
 (QP)

Let the following matrices in \mathbb{S}^{n+1}

$$C := \begin{bmatrix} 0 & c^T \\ c & C \end{bmatrix}, \quad \mathcal{A}_0 := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathcal{A}_i := \begin{bmatrix} \alpha_i & a_i^T \\ a_i & A_i \end{bmatrix}$$

The SDP relaxation of QP is

$$egin{array}{ll} \min & C ullet X \ \mathcal{A}_0 ullet X = 1 \ \mathcal{A}_i ullet X = 0 ext{ for } i \in [m] \ X \succ 0 \end{array}$$

The relaxation is exact if the optimal solution is rank-one.

The SDP-exact region

$$\min_{x \in \mathbb{R}^n} g(x)$$
 s.t. $f_i(x) = 0$, for $i \in [m]$ (QP)

Let $\mathbf{f} = (f_1, \dots, f_m)$ be fixed quadrics. The SDP-exact region is

 $\mathcal{R}_{\mathbf{f}} = \{ g \in \mathbb{R}[x]_{\leq 2} : \text{the QP is solved exactly by its SDP relaxation} \}.$

The SDP-exact region is a semialgebraic set in $\mathbb{R}[x]_{\leq 2} \cong \mathbb{S}^{n+1}$.

Problem

Given \mathbf{f} , compute/characterize the SDP-exact region. If the computation is intractable, we would like to understand its degree.

Nearest point to four points

For $u \in \mathbb{R}^n$, consider

$$\min_{x} \quad \|x - u\|^2 \quad s.t. \quad x \in X$$

 $X := \{ \text{ zero set of two polynomials in two variables } \}$

The SDP-exact region is the union of four conics, each contained in a *Voronoi cell*.

Max-Cut

Given a graph G = (V, E) with V = [n] and weights c_{ij}

$$\begin{aligned} & \min_{x} & & \sum_{ij \in E} c_{ij} x_i x_j \\ & \text{s.t.} & & x_i^2 = 1 \text{ for } i \in [n] \end{aligned}$$

Let $S := \{C : \mathcal{L}(C) \succeq 0\}$ be the spectrahedron of the *Laplacian* matrix

$$\mathcal{L}(C) \; = \; egin{pmatrix} -\sum_{j
eq 1} c_{1j} & c_{12} & c_{13} & \cdots & c_{1n} \ c_{12} & -\sum_{j
eq 2} c_{2j} & c_{23} & \cdots & c_{2n} \ c_{13} & c_{23} & -\sum_{j
eq 3} c_{2j} & \cdots & c_{3n} \ dots & dots & dots & \ddots & dots \ c_{1n} & c_{2n} & c_{3n} & \cdots & -\sum_{j
eq n} c_{jn} \end{pmatrix}.$$

The SDP-exact region consists of 2^{n-1} copies of S.

Rank-one region in SDP

Consider the SDP

$$\min_{X \in \mathbb{S}^d} \quad \mathcal{C} \bullet X \quad \text{s.t.} \quad \mathcal{A}_i \bullet X = b_i \text{ for } i \in [m], \quad X \succeq 0 \tag{P}$$

Let A, b be fixed. We define the rank-one region as

$$\mathcal{R}_{\mathcal{A},b} \ = \ \{ \ \textit{C} \in \mathbb{S}^d : \ \text{there is an optimal solution of rank one } \}.$$

This is a generalization of the SDP-exact region to arbitrary SDP's.

Rank-one region: primal-dual characterization

Consider the primal-dual pair

$$\min_{X \in \mathbb{S}^d} \quad \mathcal{C} \bullet X \quad \text{s.t.} \quad \mathcal{A}_i \bullet X = b_i \text{ for } i \in [m], \quad X \succeq 0$$
 (P)

$$\max_{\lambda \in \mathbb{R}^{\ell}, Y \in \mathbb{S}^{d}} b^{T} \lambda \quad \text{s.t.} \quad Y = \mathcal{C} - \sum_{i} \lambda_{i} \mathcal{A}_{i} \quad Y \succeq 0$$
 (D)

The rank-one region is defined by the critical equations

$$\mathcal{R}_{\mathcal{A},b} \ = \ \left\{ \begin{array}{l} C \in \mathbb{S}^d \ : \quad \mathcal{A}_i \bullet X = b_i, \quad Y = \mathcal{C} - \sum_i \lambda_i \mathcal{A}_i, \quad X \cdot Y = 0, \\ X \succeq 0, \quad Y \succeq 0, \quad \mathrm{rank} X = 1, \quad \mathrm{rank} Y = d - 1 \end{array} \right\}$$

Rank-one region: primal-dual characterization

Consider the primal-dual pair

$$\min_{X \in \mathbb{S}^d} \quad \mathcal{C} \bullet X \quad \text{s.t.} \quad \mathcal{A}_i \bullet X = b_i \text{ for } i \in [m], \quad X \succeq 0$$
 (P)

$$\max_{\lambda \in \mathbb{R}^{\ell}, Y \in \mathbb{S}^{d}} \quad b^{\mathsf{T}} \lambda \quad \text{s.t.} \quad Y = \mathcal{C} - \sum_{i} \lambda_{i} \mathcal{A}_{i} \quad Y \succeq 0$$
 (D)

The rank-one region is defined by the critical equations

$$\mathcal{R}_{\mathcal{A},b} = \left\{ \begin{array}{l} C \in \mathbb{S}^d : & \mathcal{A}_i \bullet X = b_i, \quad Y = \mathcal{C} - \sum_i \lambda_i \mathcal{A}_i, \quad X \cdot Y = 0, \\ X \succeq 0, \quad Y \succeq 0, \quad \text{rank} X = 1, \quad \text{rank} Y = d - 1 \end{array} \right\}$$

Computation: For generic A, b, the boundary hypersurface $\partial_{\operatorname{alg}} \mathcal{R}_{A,b}$ can be computed by eliminating X, Y, λ in the equations.

$$A_i \bullet X = b_i, \quad Y = C - \sum_i \lambda_i A_i, \quad X \cdot Y = 0, \quad \text{minors}_2(X) = 0$$

Rank-one region in MaxCut SDP

$$\min_{X \in \mathbb{S}^d} \quad \mathcal{C} \bullet X \quad \text{s.t.} \quad X_{ii} = 1 \text{ for } i \in [n], \quad X \succeq 0 \tag{P}$$

$$\max_{\lambda \in \mathbb{R}^{\ell}} \quad \sum_{i} \lambda_{i} \quad \text{s.t.} \quad Y = \mathcal{C} - \text{Diag}(\lambda) \quad Y \succeq 0$$
 (D)

The rank-one region has 2^{n-1} pieces, one for each $X = xx^T$, $x \in \{\pm 1\}^n$.

$$\mathcal{R}_{\mathcal{A},b} \; = \; \bigcup_{X \; \mathsf{vertex}} \Big\{ \; C \in \mathbb{S}^d \; : \; \; X \cdot Y = 0, \quad Y = \mathcal{C} - \mathrm{Diag}(\lambda), \quad Y \succeq 0, \; \Big\}$$

Generic degree of the rank-one region

Theorem

Consider an SDP with generic ${\cal A}$ and b. The boundary degree $\partial_{\rm alg} {\cal R}_{{\cal A},b}$ is

$$2^{\ell-1}(d-1) {d \choose \ell} - 2^{\ell} {d \choose \ell+1}$$
 for $3 \le \ell \le d$

If $\ell = 2$ then $\mathcal{R}_{\mathcal{A},b}$ is dense and the degree is $\binom{d+1}{3}$.

The proof follows the strategy by [Nie-Ranestad-Sturmfels] to compute the algebraic degree of SDP.

Algebraic degree of SDP								
$\ell ackslash d$	3	4	5	6	7			
2	6	12	20	30	42			
3	4	16	40	80	140			
4		8	40	120	280			
5			16	96	336			
6				32	224			

Rank-one boundary degrees								
$\ell \backslash d$	3	4	5	6	7			
2	4	10	20	35	66			
3	8	40	120	280	560			
4		24	144	504	1344			
5			64	448	1792			
6				160	1280			

Generic degree of the SDP-exact region

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad g(\mathbf{x}) := \mathbf{x}^T C \mathbf{x} + 2 \mathbf{c}^T \mathbf{x}
f_i(\mathbf{x}) := \mathbf{x}^T A \mathbf{x} + 2 \mathbf{a}_i^T \mathbf{x} + \alpha_i = 0, \quad i = 1, \dots, m$$
(QP)

Consider the Hessian of the Lagrangian

$$H(\lambda) = \nabla^2 L(x, \lambda) = C - \sum_i \lambda_i A_i \in \mathbb{S}^n$$

The SDP-exact region is

$$\mathcal{R}_{\mathbf{f}} = \bigcup_{x \in V_{\mathbf{f}}} \left\{ (c, C) : c - \sum_{i} \lambda_{i} a_{i} + H(\lambda) x = 0, \quad H(\lambda) \succeq 0 \right\}$$

Generic degree of the SDP-exact region

$$\min_{x \in \mathbb{R}^n} g(x) := x^T C x + 2c^T x$$

$$f_i(x) := x^T A x + 2a_i^T x + \alpha_i = 0, \quad i = 1, \dots, m$$
(QP)

Consider the Hessian of the Lagrangian

$$H(\lambda) = \nabla^2 L(x, \lambda) = C - \sum_i \lambda_i A_i \in \mathbb{S}^n$$

The SDP-exact region is

$$\mathcal{R}_{\mathbf{f}} = \bigcup_{x \in V_{\mathbf{f}}} \left\{ (c, C) : c - \sum_{i} \lambda_{i} a_{i} + H(\lambda) x = 0, \quad H(\lambda) \succeq 0 \right\}$$

Theorem

Consider a QP with generic equations f. The boundary degree $\partial_{\rm alg} \mathcal{R}_f$ is

$$2^{m}\left(n\binom{n}{m}-\binom{n}{m+1}\right).$$

Nearest point problems

Let $X \subset \mathbb{R}^n$ quadratic and $u \in \mathbb{R}^n$.

$$\min_{x} \quad \|x - u\|^2$$

s.t. $x \in X$

Many different applications

Nearest point problems

Let $X \subset \mathbb{R}^n$ quadratic and $u \in \mathbb{R}^n$.

$$\min_{x} \quad \|x - u\|^2$$

s.t. $x \in X$

The SDP-exact region for the Euclidean Distance (ED) problem is

$$\mathcal{R}^{ed}_{\mathbf{f}} = \{ u \in \mathbb{R}^n : \text{problem is solved exactly by its SDP relaxation} \}.$$

This is an affine slice of \mathcal{R}_f .

Nearest point problems

Theorem

The SDP-exact region satisfies

$$\mathcal{R}_{\mathbf{f}}^{ed} = \bigcup_{x \in V_{\mathbf{f}}} \left(x - \frac{1}{2} \operatorname{Jac}_{\mathbf{f}}(x) \cdot \operatorname{S}_{\mathbf{f}}^{ed} \right)$$

where

$$\mathbf{S}^{ed}_{\mathbf{f}} = \left\{ \lambda \in \mathbb{R}^m : \sum_i \lambda_i A_i \prec I_n \right\}, \qquad \mathbf{Jac}_{\mathbf{f}}(x) : \mathbb{R}^m \to \mathbf{NormalSpace}(x)$$

This is a bundle of spectrahedral shadows.

Corollary (C.-Agarwal-Parrilo-Thomas)

If x be a smooth point, then $\mathcal{R}^{ed}_{\mathbf{f}}$ contains an open ball around x.

Applications: Triangulation (vision), Rank-1 tensor approximation.

Nearest point to the twisted cubic

$$X := \{(x_1, x_2, x_3) : x_2 = x_1^2, x_3 = x_1x_2\}$$

Nearest point to 2^n points

Theorem: Let m = n and \mathbf{f} generic, so $X = V_{\mathbf{f}}$ is finite. The SDP-exact region consists of 2^n spectrahedra. The boundaries are pairwise tangent.

X =(four points in the plane)

Nearest point to 2^n points

Theorem: Let m = n and \mathbf{f} generic, so $X = V_{\mathbf{f}}$ is finite. The SDP-exact region consists of 2^n spectrahedra. The boundaries are pairwise tangent.

X = (eight points in 3D space)

Nearest point to a complete intersection

Theorem: Let $m \le n$, **f** generic. The degree of $\partial_{\text{alg}} \mathcal{R}^{ed}_{\mathbf{f}}$ equals $2^m n \binom{n-2}{m-2}$.

X =(curve defined by two quadrics)

Beyond complete intersections

We developed symbolic algorithms to compute $\partial_{\rm alg} \mathcal{R}^{ed}_{\bf f}$ for arbitrary ${\bf f}$, even if m>n. We have a conjecture for the degree.

Example (Twisted cubic)

We now use three defining equations:

$$X := \{(x_1, x_2, x_3) : x_2 = x_1^2, x_3 = x_1x_2, x_1x_3 = x_2^2\}$$

The region $\mathcal{R}^{ed}_{\mathbf{f}}$ is dense, and its bounded by

```
5832u_{2}^{3}u_{3}^{6} + 27648u_{2}^{6}u_{3}^{2} - 62208u_{1}u_{2}^{4}u_{3}^{3} - 2916u_{1}^{2}u_{2}^{2}u_{3}^{4} + 15552u_{2}^{4}u_{3}^{4} - 5832u_{1}^{3}u_{3}^{5} + 8748u_{1}^{2}u_{3}^{6} - 5832u_{2}^{2}u_{3}^{6} - 4374u_{1}u_{3}^{7} \\ + 729u_{3}^{8} - 41472u_{1}^{2}u_{2}^{5} + 86400u_{1}^{3}u_{2}^{3}u_{3} + 27648u_{1}u_{2}^{5}u_{3} + 60750u_{1}^{4}u_{2}u_{3}^{2} - 41472u_{1}^{2}u_{2}^{3}u_{3}^{2} - 62208u_{2}^{5}u_{3}^{2} - 106920u_{1}^{3}u_{2}u_{3}^{3} \\ + 85536u_{1}u_{2}^{3}u_{3}^{3} + 71442u_{1}^{2}u_{2}u_{3}^{4} - 19656u_{2}^{3}u_{3}^{4} - 19440u_{1}u_{2}u_{3}^{5} + 3888u_{2}u_{3}^{6} - 84375u_{1}^{6} - 54000u_{1}^{4}u_{2}^{2} + 72576u_{1}^{2}u_{2}^{4} \\ + 202500u_{1}^{5}u_{3} - 19440u_{1}^{3}u_{2}^{2}u_{3} - 48384u_{1}u_{2}^{4}u_{3} - 220725u_{1}^{4}u_{3}^{2} + 6912u_{1}^{2}u_{2}^{2}u_{3}^{2} + 58032u_{2}^{4}u_{3}^{2} + 140454u_{1}^{3}u_{3}^{3} - 35424u_{1}u_{2}^{2}u_{3}^{3} \\ - 54027u_{1}^{2}u_{3}^{4} + 8424u_{2}^{2}u_{3}^{4} + 11178u_{1}u_{3}^{5} - 1161u_{3}^{6} + 40050u_{1}^{4}u_{2} - 50760u_{1}^{2}u_{2}^{3} - 21132u_{1}^{3}u_{2}u_{3} + 33840u_{1}u_{2}^{3}u_{3} \\ + 11880u_{1}^{2}u_{2}u_{3}^{2} - 28744u_{2}^{3}u_{3}^{2} + 3708u_{1}u_{2}u_{3}^{3} - 3134u_{2}u_{3}^{4} - 7431u_{1}^{4} + 17736u_{1}^{2}u_{2}^{2} + 6112u_{1}^{3}u_{3} - 11824u_{1}u_{2}^{2}u_{3} - 3246u_{1}^{2}u_{3}^{2} \\ + 7976u_{2}^{2}u_{3}^{2} + 312u_{1}u_{3}^{3} + 37u_{3}^{4} - 3096u_{1}^{2}u_{2} + 2064u_{1}u_{2}u_{3} - 1176u_{2}u_{3}^{2} + 216u_{1}^{2} - 144u_{1}u_{3} + 72u_{3}^{2}.
```

Summary

- We characterized the rank-one region (for SDPs) and the SDP-exact region (for QPs).
- We computed the degree for generic instances.
- The SDP-exact region for distance problems has even more structure (a bundle of spectrahedral shadows).

Summary

- We characterized the rank-one region (for SDPs) and the SDP-exact region (for QPs).
- We computed the degree for generic instances.
- The SDP-exact region for distance problems has even more structure (a bundle of spectrahedral shadows).

If you want to know more:

- D. Cifuentes, C. Harris, B. Sturmfels, The geometry of SDP-exactness in quadratic optimization, Math. Prog. (2019). arXiv:1804.01796.
- D. Cifuentes, S. Agarwal, P. Parrilo, R. Thomas, On the local stability of semidefinite relaxations, arXiv:1710.04287.

Thanks for your attention!

More SDP-exact regions

