## "Capítol 2: Introducció al Model Relacional"

Fitxers i bases de dades

### Exemple d'una Relació

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 12121 | Wu         | Finance    | 90000  |
| 15151 | Mozart     | Music      | 40000  |
| 22222 | Einstein   | Physics    | 95000  |
| 32343 | El Said    | History    | 60000  |
| 33456 | Gold       | Physics    | 87000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 58583 | Califieri  | History    | 62000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76543 | Singh      | Finance    | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
|       |            |            |        |

Les columnes o variables es diuen atributs i les files, registres o casos es diuen tuples.



### Tipus d'atributs

- El conjunt de valors permesos per a cada atribut és anomenat el domini de l'atribut
- Els valors dels atributs (normalment) requereixen ser atòmics; és a dir, indivisibles
- El valor especial null pertany a qualsevol domini
- El valor null causa complicacions en la definició de moltes operacions

#### Esquema relacional i cas

- $A_1, A_2, \ldots, A_n$  són atributs
- $R = (A_1, A_2, \dots, A_n)$  és un esquema relacional

Exemple:

instructor = (ID, name, dept\_name, salary)

- Formalment, donats els conjunts  $D_1, D_2, \ldots, D_n$  una relació  ${\bf r}$  és una submostra de  $D_1 \times D_2 \times \ldots \times D_n$ 
  - D'aquesta manera, una relació és un conjunt de n-tuples  $(a_1,a_2,\ldots,a_n)$  on cada  $a_i\in D_i$
- Els valors concrets (casos) d'una relació són específics per una taula
- ullet Un element t de r és una tuple, representada per una file en una taula
- En anglès, cas es diu instance



#### Les relacions estan desordenades

- L'ordre de les tuples és irrellevant (les tuples es poden guardar en qualsevol ordre arbitrari)
- Exemple: Relació instructor amb tuples desordenades

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |

#### Base de dades

- Una base de dades consisteix en diverses relacions.
- Informació sobre una empresa separada per parts instructor

student

advisor

- Mal disseny:
  - univ(instructor-ID, name, dept\_name, salary, student\_Id, ...) resulta
  - Repetició d'informació (i.e. dos estudiants amb el mateix instructor)
  - La necessitat de valors nuls (i.e. representa un estudiant sense instructor)
- Teoria normalitzadora tracta sobre com dissenyar un "bon" esquema relacional



#### Claus

- ullet Sigui  $K\subseteq R$  un subconjunt dels atributs en l'esquema d'una relació
- $\bullet$  K és una superclau d'R si valors per K són suficients per identificar una única tuple per a cada possible r(R)
  - $\bullet$  Exemple:  $\{ID\}$  i  $\{ID,name\}$  són ambdues superclaus d'instructor
- ullet La superclau K és una clau candidata si K és mínima
  - ullet Exemple:  $\{ID\}$  és una clau candidata d'instructor
- Una de les claus candidates és seleccionada per ser la clau primària (sempre subratllada)
  - Quina d'elles? (cal unicitat, estabilitat, simplicitat,...)
- Restricció d'integritat referencial de clau externa (foreign key): valor en una relació que ha d'aparèixer en una altra
  - Referencing relation (Relació referenciadora)
  - Referenced relation (Relació referenciada)



## Diagrama esquema per la base de dades universitat



Figure: Exemple.

### Llenguatges de consulta relacional

- Procedimental versus no-procedimental, o declaratius
- Llenguatges "purs":
  - Àlgebra relacional
  - Càlcul relacional de tuples
  - · Càlcul relacional de dominis
- Operadors relacionals

## Selecció de tuples

Relació r

| Α        | В        | С  | D  |
|----------|----------|----|----|
| $\alpha$ | $\alpha$ | 1  | 7  |
| $\alpha$ | $\beta$  | 5  | 7  |
| $\beta$  | $\beta$  | 12 | 3  |
| $\beta$  | $\beta$  | 23 | 10 |

- Seleccionar tuples amb A=B i D > 5
  - $\sigma_{A=B i D>5}(r)$

| Α        | В        | С  | D  |
|----------|----------|----|----|
| $\alpha$ | $\alpha$ | 1  | 7  |
| $\beta$  | $\beta$  | 23 | 10 |

## Selecció de Columnes (Atributs)

Relació r

| Α        | В  | С |
|----------|----|---|
| $\alpha$ | 10 | 1 |
| $\alpha$ | 20 | 1 |
| $\beta$  | 30 | 1 |
| β        | 40 | 2 |

- Seleccionar A i C
  - Projecció
  - $\Pi_{A,C}(r)$

| Α        | С |
|----------|---|
| $\alpha$ | 1 |
| $\alpha$ | 1 |
| $\beta$  | 1 |
| $\beta$  | 2 |

| Α        | С |
|----------|---|
| $\alpha$ | 1 |
| $\beta$  | 1 |
| β        | 2 |
|          |   |

#### Unint dos relacions - Producte Cartesià

ullet Relacions r,s:

| Α        | В |
|----------|---|
| $\alpha$ | 1 |
| $\beta$  | 2 |
|          |   |

Table: r

| С        | D  | Е |
|----------|----|---|
| $\alpha$ | 10 | a |
| $\beta$  | 10 | a |
| $\beta$  | 20 | b |
| $\gamma$ | 10 | b |

Table: s

• r x s:

| Α        | В | С        | D  | Е |
|----------|---|----------|----|---|
| $\alpha$ | 1 | $\alpha$ | 10 | а |
| $\alpha$ | 1 | $\beta$  | 10 | a |
| $\alpha$ | 1 | $\beta$  | 20 | b |
| $\alpha$ | 1 | $\gamma$ | 10 | b |
| $\beta$  | 2 | $\alpha$ | 10 | a |
| $\beta$  | 2 | $\beta$  | 10 | а |
| $\beta$  | 2 | $\beta$  | 20 | b |
| $\beta$  | 2 | $\gamma$ | 10 | b |

### Unió de dues relacions

• Relacions r, s:

| Α        | В |
|----------|---|
| $\alpha$ | 1 |
| $\alpha$ | 2 |
| $\beta$  | 1 |
|          |   |

Table: r

| Α        | В |
|----------|---|
| $\alpha$ | 2 |
| $\beta$  | 3 |
|          |   |

Table: s

•  $r \cup s$ :

| Α        | В |
|----------|---|
| $\alpha$ | 1 |
| $\alpha$ | 2 |
| $\beta$  | 1 |
| $\beta$  | 3 |

## Conjunt diferència de dues relacions

• Relacions r, s:

| В |
|---|
| 1 |
| 2 |
| 1 |
|   |

Table: r

Table: s

$$\bullet$$
  $r-s$ :

$$\begin{array}{c|c} \mathbf{A} & \mathbf{B} \\ \hline \alpha & 1 \\ \beta & 1 \\ \end{array}$$

### Conjunt Intersecció de dues relacions

• Relacions r, s:

| Α        | В |
|----------|---|
| $\alpha$ | 1 |
| $\alpha$ | 2 |
| β        | 1 |
|          |   |

 $\begin{array}{c|c} \mathbf{A} & \mathbf{B} \\ \alpha & 2 \\ \beta & 3 \\ \hline \text{Table: } s \\ \end{array}$ 

Table: r

•  $r \cap s$ :

#### Unint dues relacions - Unió Natural

- Siguin r i s relacions dels esquemes R i S respectivament. Aleshores, la "unió natural" de relacions R i S és una relació sobre l'esquema  $R \cup S$  obtinguda de la següent manera:
  - ullet Considerant cada parell de tuples  $t_r$  d' r i  $t_s$  d' s
  - Si  $t_r$  i  $t_s$  tenen el mateix valor en cada element dels atributs en  $R\cap S$ , s'afegeix una tuple t al resultat, on
    - ullet té el mateix valor de  $t_r$  a r
    - ullet t té el mateix valor de  $t_s$  a s

## Exemple Unió Natural

ullet Relacions r,s:

| Α        | В | С        | D |
|----------|---|----------|---|
| $\alpha$ | 1 | $\alpha$ | а |
| $\beta$  | 2 | $\gamma$ | а |
| $\gamma$ | 4 | $\beta$  | b |
| $\alpha$ | 1 | $\gamma$ | а |
| δ        | 2 | $\beta$  | b |

| В | D | E          |
|---|---|------------|
| 1 | а | $\alpha$   |
| 3 | а | $\beta$    |
| 1 | a | $\gamma$   |
| 2 | b | $\delta$   |
| 3 | b | $\epsilon$ |
|   |   |            |

Table: r

Table: s

- Unió Natural
  - r|X|s:

| Α        | В | С        | D | Е        |
|----------|---|----------|---|----------|
| $\alpha$ | 1 | $\alpha$ | а | $\alpha$ |
| $\alpha$ | 1 | $\alpha$ | а | $\gamma$ |
| $\alpha$ | 1 | $\gamma$ | а | $\alpha$ |
| $\alpha$ | 1 | $\gamma$ | а | $\gamma$ |
| $\delta$ | 2 | $\beta$  | b | $\delta$ |

# Figura 2.1

| Symbol (Name)         | Example of Use                                                                                                                      |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| σ (6.1–1:–)           | σ salary>=85000 (instructor)                                                                                                        |  |
| (Selection)           | Return rows of the input relation that satisfy the predicate.                                                                       |  |
| II<br>(Parriagetions) | Π <sub>ID, salary</sub> (instructor)                                                                                                |  |
| (Projection)          | Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.                           |  |
| ×                     | $instructor \bowtie department$                                                                                                     |  |
| (Natural Join)        | Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.               |  |
| ×                     | instructor 	imes department                                                                                                         |  |
| (Cartesian Product)   | Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes) |  |
| U<br>(Union)          | $\Pi_{name}$ (instructor) $\cup$ $\Pi_{name}$ (student)                                                                             |  |
| (                     | Output the union of tuples from the two input relations.                                                                            |  |

Figure: Figure en 2.1.



# FINAL DEL CAPÍTOL 2

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 12121 | Wu         | Finance    | 90000  |
| 15151 | Mozart     | Music      | 40000  |
| 22222 | Einstein   | Physics    | 95000  |
| 32343 | El Said    | History    | 60000  |
| 33456 | Gold       | Physics    | 87000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 58583 | Califieri  | History    | 62000  |
| 76543 | Singh      | Finance    | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 98345 | Kim        | Elec. Eng. | 80000  |

Figure: Figure en 2.01.

| course_id | title                      | dept_name  | credits |
|-----------|----------------------------|------------|---------|
| BIO-101   | Intro. to Biology          | Biology    | 4       |
| BIO-301   | Genetics                   | Biology    | 4       |
| BIO-399   | Computational Biology      | Biology    | 3       |
| CS-101    | Intro. to Computer Science | Comp. Sci. | 4       |
| CS-190    | Game Design                | Comp. Sci. | 4       |
| CS-315    | Robotics                   | Comp. Sci. | 3       |
| CS-319    | Image Processing           | Comp. Sci. | 3       |
| CS-347    | Database System Concepts   | Comp. Sci. | 3       |
| EE-181    | Intro. to Digital Systems  | Elec. Eng. | 3       |
| FIN-201   | Investment Banking         | Finance    | 3       |
| HIS-351   | World History              | History    | 3       |
| MU-199    | Music Video Production     | Music      | 3       |
| PHY-101   | Physical Principles        | Physics    | 4       |

Figure: Figure en 2.02.

| course_id | prereq_id |
|-----------|-----------|
| BIO-301   | BIO-101   |
| BIO-399   | BIO-101   |
| CS-190    | CS-101    |
| CS-315    | CS-101    |
| CS-319    | CS-101    |
| CS-347    | CS-101    |
| EE-181    | PHY-101   |

Figure: Figure en 2.03.

| ID    | пате       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |

Figure: Figure en 2.04.

| dept_name  | building | budget |
|------------|----------|--------|
| Biology    | Watson   | 90000  |
| Comp. Sci. | Taylor   | 100000 |
| Elec. Eng. | Taylor   | 85000  |
| Finance    | Painter  | 120000 |
| History    | Painter  | 50000  |
| Music      | Packard  | 80000  |
| Physics    | Watson   | 70000  |

Figure: Figure en 2.05.

| course_id | sec_id | semester | year | building | room_number | time_slot_id |
|-----------|--------|----------|------|----------|-------------|--------------|
| BIO-101   | 1      | Summer   | 2009 | Painter  | 514         | В            |
| BIO-301   | 1      | Summer   | 2010 | Painter  | 514         | A            |
| CS-101    | 1      | Fall     | 2009 | Packard  | 101         | H            |
| CS-101    | 1      | Spring   | 2010 | Packard  | 101         | F            |
| CS-190    | 1      | Spring   | 2009 | Taylor   | 3128        | E            |
| CS-190    | 2      | Spring   | 2009 | Taylor   | 3128        | Α            |
| CS-315    | 1      | Spring   | 2010 | Watson   | 120         | D            |
| CS-319    | 1      | Spring   | 2010 | Watson   | 100         | В            |
| CS-319    | 2      | Spring   | 2010 | Taylor   | 3128        | C            |
| CS-347    | 1      | Fall     | 2009 | Taylor   | 3128        | A            |
| EE-181    | 1      | Spring   | 2009 | Taylor   | 3128        | C            |
| FIN-201   | 1      | Spring   | 2010 | Packard  | 101         | В            |
| HIS-351   | 1      | Spring   | 2010 | Painter  | 514         | C            |
| MU-199    | 1      | Spring   | 2010 | Packard  | 101         | D            |
| PHY-101   | 1      | Fall     | 2009 | Watson   | 100         | A            |

Figure: Figure en 2.06.

| ID    | course_id | sec_id | semester | year |
|-------|-----------|--------|----------|------|
| 10101 | CS-101    | 1      | Fall     | 2009 |
| 10101 | CS-315    | 1      | Spring   | 2010 |
| 10101 | CS-347    | 1      | Fall     | 2009 |
| 12121 | FIN-201   | 1      | Spring   | 2010 |
| 15151 | MU-199    | 1      | Spring   | 2010 |
| 22222 | PHY-101   | 1      | Fall     | 2009 |
| 32343 | HIS-351   | 1      | Spring   | 2010 |
| 45565 | CS-101    | 1      | Spring   | 2010 |
| 45565 | CS-319    | 1      | Spring   | 2010 |
| 76766 | BIO-101   | 1      | Summer   | 2009 |
| 76766 | BIO-301   | 1      | Summer   | 2010 |
| 83821 | CS-190    | 1      | Spring   | 2009 |
| 83821 | CS-190    | 2      | Spring   | 2009 |
| 83821 | CS-319    | 2      | Spring   | 2010 |
| 98345 | EE-181    | 1      | Spring   | 2009 |

Figure: Figure en 2.07.

| ID    | name     | dept_name  | salary |
|-------|----------|------------|--------|
| 12121 | Wu       | Finance    | 90000  |
| 22222 | Einstein | Physics    | 95000  |
| 33456 | Gold     | Physics    | 87000  |
| 83821 | Brandt   | Comp. Sci. | 92000  |

Figure: Figure en 2.08.

| ID    | salary        |
|-------|---------------|
| 10101 | 65000         |
| 12121 | 90000         |
| 15151 | 40000         |
| 22222 | 95000         |
| 32343 | 60000         |
| 33456 | 87000         |
| 45565 | <i>7</i> 5000 |
| 58583 | 62000         |
| 76543 | 80000         |
| 76766 | 72000         |
| 83821 | 92000         |
| 98345 | 80000         |

Figure: Figure en 2.09.

| ID    | name       | salary | dept_name  | building | budget |
|-------|------------|--------|------------|----------|--------|
| 10101 | Srinivasan | 65000  | Comp. Sci. | Taylor   | 100000 |
| 12121 | Wu         | 90000  | Finance    | Painter  | 120000 |
| 15151 | Mozart     | 40000  | Music      | Packard  | 80000  |
| 22222 | Einstein   | 95000  | Physics    | Watson   | 70000  |
| 32343 | El Said    | 60000  | History    | Painter  | 50000  |
| 33456 | Gold       | 87000  | Physics    | Watson   | 70000  |
| 45565 | Katz       | 75000  | Comp. Sci. | Taylor   | 100000 |
| 58583 | Califieri  | 62000  | History    | Painter  | 50000  |
| 76543 | Singh      | 80000  | Finance    | Painter  | 120000 |
| 76766 | Crick      | 72000  | Biology    | Watson   | 90000  |
| 83821 | Brandt     | 92000  | Comp. Sci. | Taylor   | 100000 |
| 98345 | Kim        | 80000  | Elec. Eng. | Taylor   | 85000  |

Figure: Figure en 2.10.

| ID    | salary |
|-------|--------|
| 12121 | 90000  |
| 22222 | 95000  |
| 33456 | 87000  |
| 83821 | 92000  |

Figure: Figure en 2.11.