B.M.S. COLLEGE OF ENGINEERING

(AUTONOMOUS COLLEGE UNDER VTU)
BENGALURU-19

LAB TEST 2 RECORD(1-10)

NAME : TRISHUL M

USN : 1BM19CS173

COURSE NAME : DATABASE MANAGEMENT

SYSTEMS

COURSE TITLE : 19CS4PCDBM

SEM : 4

SECTION :D

PROGRAM 1- INSURANCE DATABASE

Consider the Insurance database given below. The primary keys are underlined and the data types are specified.

PERSON (driver-id #: String, name: String, address: String)

CAR (Regno: String, model: String, year: int)

ACCIDENT (report-number: int, date: date, location: String)

OWNS (driver-id #: String, Regno: String)

PARTICIPATED (driver-id: String, Regno: String, report-number: int, damage-amount: int)

i. Create the above tables by properly specifying the primary keys and the foreign keys

create database Supplier;

use Supplier;

create table person (driver_id varchar(10),

name varchar(20),

address varchar(30),

primary key(driver_id));

desc person;

create table car(reg_num varchar(10),model

varchar(10),year int,primary key(reg_num));

desc car;

create table accident(report_num int,accident_date
date,location varchar(20),primary key(report_num));
desc accident;

	Field	Type	Null	Key	Default	Extra
Þ	report_num	int	NO	PRI	NULL	
	accident_date	date	YES		NULL	
	location	varchar(20)	YES		NULL	

create table owns(driver_id varchar(10),reg_num

varchar(10),primary key(driver_id,reg_num),foreign key(driver_id) references person(driver_id),

foreign key(reg_num) references car(reg_num));

desc owns;

create table participated(driver_id

varchar(10), reg_num varchar(10),report_num int, damage_amount int,

primary key(driver_id,reg_num,report_num),

foreign key(driver_id) references person(driver_id),

foreign key(reg_num) references car(reg_num),

foreign key(report_num) references accident(report_num));

desc participated;

	Field	Type	Null	Key	Default	Extra
•	driver_id	varchar(10)	NO	PRI	NULL	
	reg_num	varchar(10)	NO	PRI	NULL	
	report_num	int	NO	PRI	NULL	
	damage_amount	int	YES		NULL	

ii. Enter at least five tuples for each relation

insert into person values('A01','Richard','Srinivas Nagar'); insert into person values('A02','Pradeep','Rajajinagar'); insert into person values('A03','Smith','Ashoknagar'); insert into person values('A04','Venu','N.R.Colony'); insert into person values('A05','John','Hanumanth Nagar'); select * from person;

	driver_id	name	address
•	A01	Richard	Srinivas Nagar
	A02	Pradeep	Rajajinagar
	A03	Smith	Ashoknagar
	A04	Venu	N.R.Colony
	A05	John	Hanumanth Nagar
	NULL	NULL	HULL

insert into car values('KA052250','Indica', 1990); insert into car values('KA031181','Lancer', 1957); insert into car values('KA095477','Toyota',1998); insert into car values('KA053408','Honda',2008); insert into car values('KA041702','Audi',2005); select * from car;

	reg_num	model	year
١	KA031181	Lancer	1957
	KA041702	Audi	2005
	KA052250	Indica	1990
	KA053408	Honda	2008
	KA095477	Toyota	1998
	NULL	NULL	NULL

insert into accident values(11,'2003-01-01','Mysore Road'); insert into accident values(12,'2004-02-02','Southend Circle'); insert into accident values(13,'2003-01-21','Bulltemple Road'); insert into accident values(14,'2008-02-17','Mysore Road'); insert into accident values(15,'2005-03-04','Kanakpura Road'); select * from accident;

	report_num	accident_date	location
١	11	2003-01-01	Mysore Road
	12	2004-02-02	Southend Circle
	13	2003-01-21	Bulltemple Road
	14	2008-02-17	Mysore Road
	15 NULL	2005-03-04	Kanakpura Road

insert into owns values('A01','KA052250'); insert into owns values('A02','KA053408'); insert into owns values('A03','KA095477'); insert into owns values('A04','KA031181'); insert into owns values('A05','KA041702'); select * from owns;

	driver_id	reg_num	
Þ	A04	KA031181	
	A05	KA041702	
	A01	KA052250	
	A02	KA053408	
	A03	KA095477	
*	NULL	NULL	

insert into participated values('A01','KA052250',11,10000); insert into participated values('A02','KA053408',12,50000); insert into participated values('A03','KA095477',13,25000); insert into participated values('A04','KA031181',14,3000); insert into participated values('A05','KA041702',15,5000); select * from participated;

	driver_id	reg_num	report_num	damage_amount
Þ	A01	KA052250	11	10000
	A02	KA053408	12	50000
	A03	KA095477	13	25000
	A04	KA031181	14	3000
	A05	KA041702	15	5000
*	NULL	NULL	NULL	HULL

iii. Demonstrate how you

a. Update the damage amount for the car with a specific Regno in the accident with report number 12 to 25000.

update participated set damage_amount=25000 where report_num=12; select * from participated;

	driver_id	reg_num	report_num	damage_amount
١	A01	KA052250	11	10000
	A02	KA053408	12	25000
	A03	KA095477	13	25000
	A04	KA031181	14	3000
	A05	KA041702	15	5000

b. Add a new accident to the database.

insert into person values('A06','Jospeh','Shanti Nagar');

insert into car values('KA012370','Honda', 2008);

insert into accident values(16,'2008-01-01','MG Road');

insert into owns values('A06', 'KA012370');

insert into participated values('A06','KA012370',16,15000);

iv. Find the total number of people who owned cars that involved in accidents in 2008.

select count(*) from accident where year(accident_date)=2008;

	count(*)	
b	2	

v. Find the number of accidents in which cars belonging to a specific model were involved

select count(*) as no_of_acc from participated where reg_num in(select reg_num from car where model='Lancer');

	no_of_acc
•	2

PROGRAM 2-BANKING ENTERPRISE DATABASE

Consider the following database for a banking enterprise.

Branch (branch-name: String, branch-city: String, assets: real) **BankAccount**(accno: int, branch-name: String, balance: real)

BankCustomer (customer-name: String, customer-street: String, customer-city: String)

Depositer(customer-name: String, accno: int)

Loan (loan-number: int, branch-name: String, amount: real)

i. Create the above tables by properly specifying the primary keys and the foreign keys.

create database Banking; use Banking;

create table Branch(branch_name varchar(30),branch_city varchar(30),assests real, primary key(branch_name)); desc Branch;

	Field	Type	Null	Key	Default	Extra
Þ	branch_name	varchar(30)	NO	PRI	NULL	
	branch_city	varchar(30)	YES		NULL	
	assests	double	YES		NULL	

create table BankCustomer(customer_name varchar(30),customer_street varchar(30),customer_city varchar(30), primary key(customer_name)); desc BankCustomer;

create table BankAccount(accno int, branch_name varchar(20), balance real, primary key(accno),

foreign key(branch_name) references Branch(branch_name)); desc BankAccount:

	Field	Type	Null	Key	Default	Extra
Þ	accno	int	NO	PRI	NULL	
	branch_name	varchar(20)	YES	MUL	NULL	
	balance	double	YES		NULL	

```
create table Depositer(
customer name varchar(20),
accno int.
primary key(customer_name,accno),
foreign key(customer_name) references BankCustomer(customer_name),
foreign key(accno) references BankAccount(accno)
```

desc Depositer;

	Field	Туре	Null	Key	Default	Extra
•	customer_name	varchar(20)	NO	PRI	NULL	
	accno	int	NO	PRI	HULL	

```
create table Loan(
loan_number int,
branch_name varchar(20),
Amount real,
primary key(loan_number),
foreign key(branch_name) references Branch(branch_name)
);
desc Loan;
```


ii. Enter at least five tuples for each relation.

```
insert into Branch values('SBI_Chamrajpet', 'Bangalore', 50000);
insert into Branch values ('SBI ResidencyRoad', 'Bangalore', 10000);
insert into Branch values ('SBI_ShivajiRoad', 'Bombay', 20000);
insert into Branch values('SBI_ParlimentRoad','Delhi',10000);
insert into Branch values('SBI_Jantarmantar','Delhi',20000);
select *from Branch:
```

	branch_name	branch_city	assests
•	SBI_Chamrajpet	Bangalore	50000
	SBI_Jantarmantar	Delhi	20000
	SBI_ParlimentRoad	Delhi	10000
	SBI_ResidencyRoad	Bangalore	10000
	SBI_ShivajiRoad	Bombay	20000
	NULL	HULL	NULL

insert into Loan values(2, 'SBI_ResidencyRoad', 2000); insert into Loan values(1, 'SBI_Chamrajpet', 1000); insert into Loan values(3, 'SBI_ShivajiRoad', 3000); insert into Loan values(4, 'SBI_ParlimentRoad', 4000); insert into Loan values(5, 'SBI_Jantarmantar', 3000); select *from Loan;

	loan_number	branch_name	Amount
•	1	SBI_Chamrajpet	10000
	2	SBI_ResidencyRoad	20000
	3	SBI_ShivajiRoad	30000
	4	SBI_ParlimentRoad	40000
	5	SBI_Jantarmantar	30000
	NULL	NULL	NULL

insert into BankAccount values(1,'SBI_Chamrajpet',2000); insert into BankAccount values(2,'SBI_ResidencyRoad',5000); insert into BankAccount values(3,'SBI_ShivajiRoad',6000); insert into BankAccount values(4,'SBI_ParlimentRoad',9000); insert into BankAccount values(5,'SBI_Jantarmantar',8000); insert into BankAccount values(6, 'SBI_ShivajiRoad', 4000); insert into BankAccount values(8, 'SBI_ResidencyRoad', 4000); insert into BankAccount values(9, 'SBI_ParlimentRoad', 3000); insert into BankAccount values(10, 'SBI_ResidencyRoad', 5000); insert into BankAccount values(11, 'SBI_Jantarmantar', 2000); select *from BankAccount;

	accno	branch_name	balance
•	1	SBI_Chamrajpet	2000
	2	SBI_ResidencyRoad	5000
	3	SBI_ShivajiRoad	6000
	4	SBI_ParlimentRoad	9000
	5	SBI_Jantarmantar	8000
	6	SBI_ShivajiRoad	4000
	8	SBI_ResidencyRoad	4000
	9	SBI_ParlimentRoad	3000
	10	SBI_ResidencyRoad	5000
	11	SBI_Jantarmantar	2000
	NULL	NULL	NULL

insert into BankCustomer values ('Avinash', 'Bull_Temple_Road', 'Bangalore'); insert into BankCustomer values ('Dinesh', 'Bannergatta_Road', 'Bangalore'); insert into BankCustomer values ('Mohan', 'National_College_Road', 'Bangalore'); insert into BankCustomer values ('Nikhil', 'Akbar_Road', 'Delhi'); insert into BankCustomer values ('Ravi', 'Prithviraj_Road', 'Delhi'); select *from BankCustomer;

	customer_name	customer_street	customer_city
Þ	Avinash	Bull_Temple_Road	Bangalore
	Dinesh	Bannergatta_Road	Bangalore
	Mohan	National_College_Road	Bangalore
	Nikhil	Akbar_Road	Delhi
	Ravi	Prithviraj_Road	Delhi
	NULL	NULL	NULL

insert into Depositer values('Avinash', 1); insert into Depositer values('Dinesh', 2); insert into Depositer values('Nikhil', 4); insert into Depositer values('Ravi', 5); insert into Depositer values('Avinash', 8); insert into Depositer values('Nikhil', 9); insert into Depositer values('Dinesh', 10); insert into Depositer values('Nikhil', 11); select *from Depositer;

	customer_name	accno
•	Avinash	1
	Dinesh	2
	Nikhil	4
	Ravi	5
	Avinash	8
	Nikhil	9
	Dinesh	10
	Nikhil	11
	NULL	HULL

iii. Find all the customers who have at least two accounts at the *Main* branch (ex. SBI_ResidencyRoad).

select c.customer_name
from BankCustomer c
where exists(
select d.customer_name
from Depositer d, BankAccount ba
where
d.accno=ba.accno and
c.customer_name=d.customer_name and
ba.branch_name='SBI_ResidencyRoad'
group by d.customer_name
having count(d.customer_name)>=2
);

iv. Find all the customers who have an account at *all* the branches located in a specific city (Ex. Delhi).

select distinct d.customer_name from Depositer d where exists(select * from BankAccount ba where ba.accno=d.accno and exists (select * from Branch b where b.branch_name = ba.branch_name and b.branch_city='Delhi'));

v. Demonstrate how you delete all account tuples at every branch located in a specific city (Ex. Bombay).

delete from BankAccount where branch_name in (select branch_name from branch where branch_city = 'Bombay'); select *from BankAccount;

	accno	branch_name	balance
•	1	SBI_Chamrajpet	2000
	2	SBI_ResidencyRoad	5000
	4	SBI_ParlimentRoad	9000
	5	SBI_Jantarmantar	8000
	8	SBI_ResidencyRoad	4000
	9	SBI_ParlimentRoad	3000
	10	SBI_ResidencyRoad	5000
	11	SBI_Jantarmantar	2000
	NULL	NULL	NULL

PROGRAM 3- SUPPLIER DATABASE

Complact the following schema	Consider	the	foll	owing	schema
-------------------------------	----------	-----	------	-------	--------

SUPPLIERS(sid: integer, sname: string, address: string)

PARTS(pid: integer, pname: string, color: string)

CATALOG(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers.

create database Supplier;

use Supplier;

create table catalog(sid int,pid int,cost int);

desc catalog;

	Field	Type	Null	Key	Default	Extra
Þ	sid	int	YES		HULL	
	pid	int	YES		HULL	
	cost	int	YES		NULL	

create table supplier(sid int,sname varchar(20),city varchar(15),primary key (sid)); desc supplier;

create table parts(pid int,pname varchar(15),color varchar(10),primary key (pid)); desc parts;

insert into supplier values(10001, 'Acme Widget', 'Bengaluru');

insert into supplier values(10002, 'Johns', 'Kolkata');

insert into supplier values(10003, 'Vimal', 'Mumbai');

insert into supplier values(10004, 'Reliance', 'Delhi');

insert into supplier values(10005, 'Mahindra', 'Mumbai');

select * from supplier;

insert into parts values(20001, 'Book', 'Red');

insert into parts values(20002, 'Pen', 'Red');

insert into parts values(20003, 'Pencil', 'Green'); insert into parts values(20004, 'Mobile', 'Green'); insert into parts values(20005, 'Charger', 'Black'); select * from parts;

insert into catalog values(10001, '20001','10'); insert into catalog values(10001, '20002','10'); insert into catalog values(10001, '20003','30'); insert into catalog values(10001, '20004','10'); insert into catalog values(10001, '20005','10'); insert into catalog values(10002, '20001','10'); insert into catalog values(10002, '20002','20'); insert into catalog values(10003, '20003','30'); insert into catalog values(10004, '20003','40'); select * from catalog;

	sid	pid	cost
•	10001	20001	10
	10001	20002	10
	10001	20003	30
	10001	20004	10
	10001	20005	10
	10002	20001	10
	10002	20002	20
	10003	20003	30
	10004	20003	40
	NULL	NULL	NULL

1. Find the pnames of parts for which there is some supplier.

select distinct p.pname from parts p, catalog c where p.pid = c.pid;

2.Find the snames of suppliers who supply every part.

select s.sname from supplier s
where not exists (select p.pid from parts p where not exists

(select c.sid from catalog c where c.sid = s.sid and c.pid = p.pid));

3.Find the snames of suppliers who supply every red part.

select s.sname from supplier s where not exists

(select p.pid from parts p where p.color = 'Red' and

(not exists (select c.sid from catalog c where c.sid = s.sid and c.pid = p.pid)));

4. Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.

select p.pname from parts p , catalog c, supplier s $\label{eq:where p.pid} \ \ \, \text{e.pid} = c. \text{pid} \ \, \text{and c.sid} = s. \text{sid} \ \, \text{and s.sname} = \text{'Acme Widget'}$ and not exists $\ \, \text{(select * from catalog c1, supplier s1 where}$

p.pid = c1.pid and c1.sid = s1.sid and s1.sname <> 'Acme Widget');

5. Find the sids of suppliers who charge more for some part than the average cost of that part (averaged over all the suppliers who supply that part).

select distinct c.sid from catalog c
where c.cost > (select avg (c1.cost)
from catalog c1
where c1.pid = c.pid);

6. For each part, find the sname of the supplier who charges the most for that part.

select p.pid, s.sname

from parts p, supplier s, catalog c

where c.pid = p.pid

and c.sid = s.sid

and c.cost = (select MAX(c1.cost))

from catalog c1

where c1.pid = p.pid);

	pid	sname
Þ	20001	Acme Widget
	20004	Acme Widget
	20005	Acme Widget
	20001	Johns
	20002	Johns
	20003	Reliance

PROGRAM 4- STUDENT FACULTY DATABASE

Consider the following database for student enrollment for course:

STUDENT(snum: integer, sname:string, major: string, lvl: string, age: integer)

CLASS(cname: string, meetsat: time, room: string, fid: integer)

ENROLLED(snum: integer, cname:string)

FACULTY(fid: integer, fname:string, deptid: integer)

create database Students;

use Students;

create table student(snum int, sname varchar(10), major varchar(2), lvl varchar(2), age int,primary key (snum));

desc student;

	Field	Type	Null	Key	Default	Extra
•	snum	int	NO	PRI	NULL	
	sname	varchar(10)	YES		HULL	
	major	varchar(2)	YES		NULL	
	IvI	varchar(2)	YES		NULL	
	age	int	YES		NULL	

create table faculty(fid int, fname varchar(20), deptid int,primary key(fid));

desc faculty;

	Field	Type	Null	Key	Default	Extra
Þ	fid	int	NO	PRI	NULL	
	fname	varchar(20)	YES		HULL	
	deptid	int	YES		NULL	

create table class(cname varchar(20), meetsat timestamp, room varchar(10), fid int,primary key (cname),foreign key(fid) references faculty(fid));

desc class;

create table enrolled(snum int, cname varchar(20),primary key(snum,cname),

foreign key(snum) references student(snum),

foreign key(cname) references class(cname));

desc enrolled;

insert into student values(1, 'jhon', 'CS', 'Sr', 19);

insert into student values(2, 'Smith', 'CS', 'Jr', 20);

insert into student values(3, 'Jacob', 'CV', 'Sr', 20);

insert into student values(4, 'Tom', 'CS', 'Jr', 20);

insert into student values(5, 'Rahul', 'CS', 'Jr', 20);

insert into student values(6, 'Rita', 'CS', 'Sr', 21);

select * from student;

	snum	sname	major	lvl	age
١	1	jhon	CS	Sr	19
	2	Smith	CS	Jr	20
	3	Jacob	CV	Sr	20
	4	Tom	CS	Jr	20
	5	Rahul	CS	Jr	20
	6	Rita	CS	Sr	21
	HULL	NULL	HULL	NULL	NULL

insert into faculty values(11, 'Harish', 1000); insert into faculty values(12, 'MV', 1000); insert into faculty values(13, 'Mira', 1001); insert into faculty values(14, 'Shiva', 1002); insert into faculty values(15, 'Nupur', 1000); select * from faculty;

	fid	fname	deptid
Þ	11	Harish	1000
	12	MV	1000
	13	Mira	1001
	14	Shiva	1002
	15	Nupur	1000
*	NULL	NULL	NULL

insert into class values('class1', '12/11/15 10:15:16', 'R1', 14); insert into class values('class10', '12/11/15 10:15:16', 'R128', 14); insert into class values('class2', '12/11/15 10:15:20', 'R2', 12); insert into class values('class3', '12/11/15 10:15:25', 'R3', 12); insert into class values('class4', '12/11/15 20:15:20', 'R4', 14); insert into class values('class5', '12/11/15 20:15:20', 'R3', 15); insert into class values('class6', '12/11/15 13:20:20', 'R2', 14);

insert into class values('class7', '12/11/15 10:10:10', 'R3', 14); select * from class;

	cname	meetsat	room	fid
Þ	dass1	2012-11-15 10:15:16	R1	14
	dass 10	2012-11-15 10:15:16	R128	14
	dass2	2012-11-15 10:15:20	R2	12
	dass3	2012-11-15 10:15:25	R3	11
	dass4	2012-11-15 20:15:20	R4	14
	class5	2012-11-15 20:15:20	R3	15
	dass6	2012-11-15 13:20:20	R2	14
	class7	2012-11-15 10:10:10	R3	14

insert into enrolled values(1, 'class1'); insert into enrolled values(2, 'class1'); insert into enrolled values(3, 'class3'); insert into enrolled values(4, 'class3'); insert into enrolled values(5, 'class4'); insert into enrolled values(1, 'class5'); insert into enrolled values(2, 'class5'); insert into enrolled values(3, 'class5'); insert into enrolled values(4, 'class5'); insert into enrolled values(5, 'class5'); insert into enrolled values(5, 'class5'); select * from enrolled;

	snum	cname
Þ	1	class 1
	2	class 1
	3	class3
	4	class3
	5	class4
	1	class5
	2	class5
	3	class5
	4	class5
	5	dass5
*	NULL	NULL

i. Find the names of all Juniors (level = JR) who are enrolled in a class taught by Harish

SELECT DISTINCT S.sname

FROM student S, class C, enrolled E, faculty F

WHERE S.snum = E.snum AND E.cname = C.cname AND C.fid = F.fid AND

F.fname = 'Harish' AND S.lvl = 'Jr';

ii.Find the names of all classes that either meet in room R128 or have five or more Students enrolled.

SELECT C.cname

FROM class C WHERE C.room = 'R128'

OR C.cname IN (SELECT E.cname FROM enrolled E

GROUP BY E.cname HAVING COUNT(*) >= 5);

iii. Find the names of all students who are enrolled in two classes that meet at the same time.

SELECT DISTINCT S.sname

FROM student S

WHERE S.snum IN (SELECT E1.snum

FROM enrolled E1, enrolled E2, class C1, class C2

WHERE E1.snum = E2.snum AND E1.cname <> E2.cname

AND E1.cname = C1.cname

AND E2.cname = C2.cname AND C1.meetsat = C2.meetsat);

iv. Find the names of faculty members who teach in every room in which some class is taught.

SELECT f.fname,f.fid

FROM faculty f

WHERE f.fid in (SELECT fid FROM class

GROUP BY fid HAVING COUNT(*)=(SELECT COUNT(DISTINCT room) FROM class);

v.Find the names of faculty members for whom the combined enrollment of the courses that they teach is less than five.

SELECT DISTINCT F.fname

FROM faculty F

WHERE 5 > (SELECT COUNT(E.snum)

FROM class C, enrolled E

WHERE C.cname = E.cname

AND C.fid = F.fid;

vi. Find the names of students who are not enrolled in any class.

SELECT DISTINCT S.sname

FROM student S

WHERE S.snum NOT IN (SELECT E.snum

FROM enrolled E);

vii.For each age value that appears in Students, find the level value that appears most often.

SELECT S.age, S.lvl

FROM Student S

GROUP BY S.age, S.lvl

HAVING S.lvl IN (SELECT S1.lvl FROM Student S1

WHERE S1.age = S.age

GROUP BY S1.lvl, S1.age

HAVING COUNT(*) >= ALL (SELECT COUNT(*)

FROM Student S2

WHERE s1.age = S2.age

GROUP BY S2.lvl, S2.age));

	age	Ivl	
Þ	19	Sr	
	20	Jr	
	21	Sr	

PROGRAM 5-AIRLINE FLIGHT DATABASE

Consider the following database that keeps track of airline flight information:

FLIGHTS(flno: integer, from: string, to: string, distance: integer, departs: time, arrives: time, price: integer)

AIRCRAFT(aid: integer, aname: string, cruisingrange: integer)

CERTIFIED(eid: integer, aid: integer)

EMPLOYEES(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well; Every pilot is certified for some aircraft, and only pilots are certified to fly.

```
create database flight;
use flight;
create table flights(
    flno int,
    fromplace varchar(15),
    toplace varchar(15),
    distance int,
    departs datetime,
    arrives datetime,
    price int,
    primary key (flno));
desc flights;
```


create table aircraft(

aid int,

aname varchar(15),

cruisingrange int,

primary key (aid));

desc aircraft;

	Field	Type	Null	Key	Default	Extra
Þ	aid	int	NO	PRI	NULL	
	aname	varchar(15)	YES		NULL	
	cruisingrange	int	YES		NULL	

create table employees (

eid int,

ename varchar(15),

salary int,

primary key (eid));

desc employees;

	Field	Type	Null	Key	Default	Extra
Þ	eid	int	NO	PRI	NULL	
	ename	varchar(15)	YES		NULL	
	salary	int	YES		NULL	

create table certified (

eid int,

aid int,

foreign key (eid) references employees(eid),

foreign key (aid) references aircraft(aid));

desc certified;

	Field	Type	Null	Key	Default	Extra
Þ	eid	int	YES	MUL	NULL	
	aid	int	YES	MUL	NULL	

insert into flights values(101, 'Bangalore', 'Delhi', 2500, '2005-05-13 07:15:31', '2005-05-13 18:15:31', 5000);

insert into flights values(102, 'Bangalore', 'Lucknow', 3000, '2013-05-05 07:15:31', '2013-05-05 11:15:31', 6000);

insert into flights values(103, 'Lucknow', 'Delhi', 500, '2013-05-05 12:15:31', '2013-05-05 17:15:31', 3000);

insert into flights values(107, 'Bangalore', 'Frankfurt', 8000, '2013-05-05 07:15:31', '2013-05-05 22:15:31', 60000);

insert into flights values(104, 'Bangalore', 'Frankfurt', 8500, '2013-05-05 07:15:31', '2013-05-05 23:15:31', 75000);

insert into flights values(105, 'Kolkata', 'Delhi', 3400, '2013-05-05 07:15:31', '2013-05-05 09:15:31', 7000);

insert into flights values(106, 'Bangalore', 'Kolkata', 1000, '2013-05-05 01:15:30', '2013-05-05 09:20:30', 10000);

insert into flights values(108, 'Lucknow', 'Kolkata', 1000, '2013-05-05 11:30:30', '2013-05-05 15:20:30', 10000);

select * from flights;

	fino	fromplace	toplace	distance	departs	arrives	price
Þ	101	Bangalore	Delhi	2500	2005-05-13 07:15:31	2005-05-13 18:15:31	5000
	102	Bangalore	Lucknow	3000	2013-05-05 07:15:31	2013-05-05 11:15:31	6000
	103	Lucknow	Delhi	500	2013-05-05 12:15:31	2013-05-05 17:15:31	3000
	104	Bangalore	Frankfurt	8500	2013-05-05 07:15:31	2013-05-05 23:15:31	75000
	105	Kolkata	Delhi	3400	2013-05-05 07:15:31	2013-05-05 09:15:31	7000
	106	Bangalore	Kolkata	1000	2013-05-05 01:15:30	2013-05-05 09:20:30	10000
	107	Bangalore	Frankfurt	8000	2013-05-05 07:15:31	2013-05-05 22:15:31	60000
	108	Lucknow	Kolkata	1000	2013-05-05 11:30:30	2013-05-05 15:20:30	10000

insert into aircraft values(101, '747', 3000);

insert into aircraft values(102, 'Boeing', 900);

insert into aircraft values(103, '647', 800);

insert into aircraft values(104, 'Dreamliner', 10000);

insert into aircraft values(105, 'Boeing', 3500);

insert into aircraft values(106, '707', 1500);

insert into aircraft values(107, 'Dream', 120000);

insert into aircraft values(108, '707', 760);

insert into aircraft values(109, '747', 1000);

select * from aircraft;

	aid	aname	cruisingrange
Þ	101	747	3000
	102	Boeing	900
	103	647	800
	104	Dreamliner	10000
	105	Boeing	3500
	106	707	1500
	107	Dream	120000
	108	707	760
	109	747 NULL	1000

insert into employees values(701, 'A', 50000);

insert into employees values(702, 'B', 100000);

insert into employees values(703, 'C', 150000); insert into employees values(704, 'D', 90000); insert into employees values(705, 'E', 40000); insert into employees values(706, 'F', 60000); insert into employees values(707, 'G', 90000); select * from employees;

	eid	ename	salary
•	701	Α	50000
	702	В	100000
	703	C	150000
	704	D	90000
	705	E	40000
	706	F	60000
	707	G	90000
*	NULL	NULL	NULL

insert into certified values(701, 101); insert into certified values(701, 102); insert into certified values(701, 106); insert into certified values(701, 105); insert into certified values(702, 104); insert into certified values(702, 104); insert into certified values(703, 104); insert into certified values(704, 104); insert into certified values(702, 107); insert into certified values(703, 107); insert into certified values(704, 107); insert into certified values(702, 101); insert into certified values(702, 108); insert into certified values(701, 109); select * from certified;

	eid	aid
Þ	701	101
	701	102
	701	106
	701	105
	702	104
	703	104
	704	104
	702	107
	703	107
	704	107
	702	101
	702	108
	701	109

i.Find the names of aircraft such that all pilots certified to operate them have salaries more than Rs.80,000.

select distinct a.aname from aircraft a where a.aid in (

select c.aid from certified c, employees e where

c.eid = e.eid and not exists(

select * from employees e1 where e1.eid=e.eid and e1.salary<80000

));

ii.For each pilot who is certified for more than three aircrafts, find the eid and the maximum cruisingrange of the aircraft for which she or he is certified.

select max(a.cruisingrange), c.eid from certified c, aircraft a

where c.aid = a.aid group by c.eid having count(c.eid)>3;

	max(a.cruisingrange)	eid
Þ	3500	701
	120000	702

iii.Find the names of pilots whose salary is less than the price of the cheapest route from Bengaluru to Frankfurt.

select ename from employees where salary <(

select min(price) from flights where fromplace='Bangalore' and toplace='Frankfurt');

	ename
•	Α
	E

iv.For all aircraft with cruisingrange over 1000 Kms, find the name of the aircraft and the average salary of all pilots certified for this aircraft.

select avg(e.salary), c.aid from certified c, employees e where c.aid in(

select aid from aircraft where cruisingrange>1000) and e.eid = c.eid group by c.aid;

	avg(e.salary)	aid
١	75000.0000	101
	113333.3333	104
	50000.0000	105
	50000.0000	106
	113333.3333	107

v.Find the names of pilots certified for some Boeing aircraft.

select ename from employees where eid in(

select eid from certified where aid in(

select aid from aircraft where aname = 'Boeing'));

vi. Find the aids of all aircraft that can be used on routes from Bengaluru to New Delhi.

select aname from aircraft where cruisingrange > any

(select distance from flights where fromplace='Bangalore' and toplace='Delhi');

vii.A customer wants to travel from Bangalore to Kolkata New with no more than two changes of flight. List the choice of departure times from Madison if the customer wants to arrive in Kolkata by 6 p.m.

```
select F.flno, F.departs
from flights F
Where F.flno in ( ( select F0.flno
from flights F0
where F0.fromplace = 'Bangalore' and F0.toplace = 'Kolkata'
and extract(hour from F0.arrives) < 18)
union
( select F0.flno
from flights F0, flights F1
where F0.fromplace = 'Bangalore' and F0.toplace <> 'Kolkata'
and F0.toplace = F1.fromplace and F1.toplace = 'Kolkata'
and F1.departs > F0.arrives
and extract(hour from F1.arrives) < 18)
union
( select F0.flno
from flights F0, flights F1, flights F2
where F0.fromplace = 'Bangalore'
and F0.toplace = F1.fromplace
and F1.toplace = F2.fromplace
and F2.toplace = 'Kolkata'
```

```
and F0.toplace <> 'Kolkata'

and F1.toplace <> 'Kolkata'

and F1.departs > F0.arrives

and F2.departs > F1.arrives

and extract(hour from F2.arrives) < 18));
```

	fino	departs
Þ	102	2013-05-05 07:15:31
	106	2013-05-05 01:15:30

Program 6 - Order Database

Consider the following schema for Order Database:

```
SALESMAN (Salesman_id, Name, City, Commission)
CUSTOMER (Customer_id, Cust_Name, City, Grade, Salesman_id)
ORDERS (Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)
```



```
create table customer (
customer_id int,
```

```
cust_name varchar (20),
city varchar (20),
grade int ,
salesman_id int,
primary key (customer_id),
foreign key (salesman_id) references salesman(salesman_id) on delete set
null);
desc customer;
```


cascade);
desc orders;


```
insert into salesman values (1000, 'john', 'bangalore', '25 %'); insert into salesman values (2000, 'ravi', 'bangalore', '20 %'); insert into salesman values (3000, 'kumar', 'mysore', '15 %'); insert into salesman values (4000, 'smith', 'delhi', '30 %'); insert into salesman values (5000, 'harsha', 'hydrabad', '15 %'); select * from salesman;
```

	salesman_id	name	city	commission
Þ	1000	john	bangalore	25 %
	2000	ravi	bangalore	20 %
	3000	kumar	mysore	15 %
	4000	smith	delhi	30 %
	5000 NULL	harsha NULL	hydrabad	15 %

insert into customer values (10, 'preethi', 'bangalore', 100, 1000); insert into customer values (11, 'vivek', 'mangalore', 300, 1000); insert into customer values (12, 'bhaskar', 'chennai', 400, 2000); insert into customer values (13, 'chethan', 'bangalore', 200, 2000); insert into customer values (14, 'mamatha', 'bangalore', 400, 3000); select * from customer;

	customer_id	cust_name	city	grade	salesman_id
Þ	10	preethi	bangalore	100	1000
	11	vivek	mangalore	300	1000
	12	bhaskar	chennai	400	2000
	13	chethan	bangalore	200	2000
	14	mamatha	bangalore	400	3000
	HULL	NULL	NULL	NULL	NULL

insert into orders values (50, 5000, '04-06-17', 10, 1000); insert into orders values (51, 450, '20-01-17', 10, 2000); insert into orders values (52, 1000, '24-02-17', 13, 2000); insert into orders values (53, 3500, '13-04-17', 14, 3000); insert into orders values (54, 550, '09-03-17', 12, 2000); select * from orders;

	ord_no	purchase_amt	ord_date	customer_id	salesman_id
Þ	50	5000	2004-06-17	10	1000
	51	450	2020-01-17	10	2000
	52	1000	2024-02-17	13	2000
	53	3500	2013-04-17	14	3000
	54	550	2009-03-17	12	2000
	NULL	NULL	NULL	HULL	HULL

1. Count the customers with grades above Bangalore's average.

SELECT grade, count(DISTINCT customer_id)

FROM customer

GROUP BY grade

HAVING grade > (SELECT AVG(grade)

FROM customer

WHERE city='bangalore');

	grade	count(DISTINCT customer_id)
Þ.	300	1
	400	2

2. Find the name and numbers of all salesmen who had more than one customer.

SELECT salesman id, NAME

FROM salesman a

WHERE 1 < (SELECT count(*)

FROM customer

WHERE salesman_id=a.salesman_id);

	salesman_id	NAME
Þ	1000	john
	2000	ravi
*	NULL	NULL

3. List all salesmen and indicate those who have and don't have customers in their cities (Use UNION operation.)

SELECT salesman.salesman_id, NAME, cust_name, commission

FROM salesman, customer

WHERE salesman.city = customer.city

HNION

SELECT salesman_id, name, 'no customer', commission

FROM salesman

WHERE NOT city = ANY

(SELECT city

FROM customer)

ORDER BY 2 DESC;

	salesman_id	NAME	cust_name	commission
Þ	4000	smith	no customer	30 %
	2000	ravi	preethi	20 %
	2000	ravi	chethan	20 %
	2000	ravi	mamatha	20 %
	3000	kumar	no customer	15 %
	1000	john	preethi	25 %
	1000	john	chethan	25 %
	1000	john	mamatha	25 %
	5000	harsha	no customer	15 %

4. Create a view that finds the salesman who has the customer with the highest order of a day.

CREATE VIEW highsalesman AS
SELECT b.ord_date, a.salesman_id, a.name
FROM salesman a, orders b
WHERE a.salesman_id = b.salesman_id
AND b.purchase_amt=(SELECT max(purchase_amt)
FROM orders c

WHERE c.ord_date = b.ord_date);

SELECT * FROM highsalesman;

	ord_date	salesman_id	name
Þ	2004-06-17	1000	john
	2020-01-17	2000	ravi
	2024-02-17	2000	ravi
	2013-04-17	3000	kumar
	2009-03-17	2000	ravi

5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.

DELETE FROM salesman WHERE salesman_id=1000; SELECT * FROM salesman;

SELECT * FROM orders;

	salesman_id	name	city	commission
Þ	2000	ravi	bangalore	20 %
	3000	kumar	mysore	15 %
	4000	smith	delhi	30 %
	5000	harsha	hydrabad	15 %
	NULL	NULL	NULL	NULL

	ord_no	purchase_amt	ord_date	customer_id	salesman_id
•	51	450	2020-01-17	10	2000
	52	1000	2024-02-17	13	2000
	53	3500	2013-04-17	14	3000
	54	550	2009-03-17	12	2000
	NULL	NULL	NULL	NULL	NULL

Program 7 - Book Database

BOOK (Book_id, Title, Publisher_Name, Pub_Year)

BOOK_AUTHORS (Book_id, Author_Name)

PUBLISHER (Name, Address, Phone)

BOOK_COPIES (Book_id, Branch_id, No-of_Copies)

BOOK_LENDING (Book_id, Branch_id, Card_No, Date_Out, Due_Date) LIBRARY_BRANCH (Branch_id, Branch_Name, Address)

```
create database Books;
use Books;
create table publisher (
       name varchar (20) primary key,
        phone integer,
       address varchar (20)
);
desc publisher;
```

	Field	Type	Null	Key	Default	Extra
Þ	name	varchar(20)	NO	PRI	MULL	
	phone	int	YES		NULL	
	address	varchar(20)	YES		NULL	

```
create table book (
```

```
book_id integer primary key,
title varchar (20),
pub_year varchar (20),
publisher_name varchar (20),
foreign key (publisher_name) references publisher (name) on delete cascade
```

desc book;

);

	Field	Type	Null	Key	Default	Extra
Þ	book_id	int	NO	PRI	NULL	
	title	varchar(20)	YES		NULL	
	pub_year	varchar(20)	YES		NULL	
	publisher_name	varchar(20)	YES	MUL	NULL	

```
create table book_authors (
       author_name varchar (20),
       book_id integer,
       foreign key (book_id) references book (book_id) on delete cascade,
       primary key (book_id, author_name)
);
desc book_authors;
```

	Field	Type	Null	Key	Default	Extra
Þ	author_name	varchar(20)	NO	PRI	NULL	
	book_id	int	NO	PRI	NULL	

```
create table library_branch (
        branch_id integer primary key,
        branch_name varchar (50),
        address varchar (50)
);
```

desc library_branch;

	Field	Type	Null	Key	Default	Extra
•	branch_id	int	NO	PRI	NULL	
	branch_name	varchar(50)	YES		NULL	
	address	varchar(50)	YES		NULL	

```
create table book_copies (
        no_of_copies integer,
        book_id integer,
        branch_id integer,
        foreign key (book_id) references book (book_id) on delete cascade,
        foreign key (branch_id) references library_branch (branch_id) on delete cascade,
        primary key (book_id, branch_id)
);
desc book_copies;
```


desc card;

	Field	Type	Null	Key	Default	Extra
Þ	card_no	int	NO	PRI	NULL	

desc book_lending;

	Field	Type	Null	Key	Default	Extra
•	date_out	date	YES		NULL	
	due_date	date	YES		NULL	
	book_id	int	NO	PRI	NULL	
	branch_id	int	NO	PRI	NULL	
	card_no	int	NO	PRI	NULL	

insert into publisher values ('mcgraw-hill', 99890, 'bangalore'); insert into publisher values ('pearson', 98890, 'newdelhi'); insert into publisher values ('random house', 74556, 'hyderabad'); insert into publisher values ('hachette livre', 897086, 'chenai'); insert into publisher values ('grupo planeta', 77561, 'bangalore'); select * from publisher;

	name	phone	address
Þ	grupo planeta	77561	bangalore
	hachette livre	897086	chenai
	mcgraw-hill	99890	bangalore
	pearson	98890	newdelhi
	random house	74556	hyderabad

insert into book values (1,'dbms','01-2017', 'mcgraw-hill'); insert into book values (2,'adbms','06-2016', 'mcgraw-hill'); insert into book values (3,'cn','09-2016', 'pearson'); insert into book values (4,'cg','09-2015', 'grupo planeta'); insert into book values (5,'os','05-2016', 'pearson'); select * from book;

	book_id	title	pub_year	publisher_name
•	1	dbms	01-2017	mcgraw-hill
	2	adbms	06-2016	mcgraw-hill
	3	cn	09-2016	pearson
	4	cg	09-2015	grupo planeta
	5	os	05-2016	pearson
	NULL	NULL	NULL	NULL

insert into book_authors values ('navathe', 1);
insert into book_authors values ('navathe', 2);
insert into book_authors values ('tanenbaum', 3);
insert into book_authors values ('edward angel', 4);
insert into book_authors values ('galvin', 5);

select * from book_authors;

	author_name	book_id
Þ	navathe	1
	navathe	2
	tanenbaum	3
	edward angel	4
	galvin	5
	NULL	NULL

insert into library_branch values (10,'rr nagar','bangalore');
insert into library_branch values (11,'rnsit','bangalore');
insert into library_branch values (12,'rajaji nagar', 'bangalore');
insert into library_branch values (13,'nitte','mangalore');
insert into library_branch values (14,'manipal','udupi');
select * from library_branch;

	branch_id	branch_name	address
Þ	10	rr nagar	bangalore
	11	rnsit	bangalore
	12	rajaji nagar	bangalore
	13	nitte	mangalore
	14	manipal	udupi
	HULL	NULL	NULL

insert into book_copies values (10, 1, 10); insert into book_copies values (5, 1, 11); insert into book_copies values (2, 2, 12); insert into book_copies values (5, 2, 13); insert into book_copies values (7, 3, 14); insert into book_copies values (1, 5, 10); insert into book_copies values (3, 4, 11); select * from book_copies;

	Field	Type	Null	Key	Default	Extra
Þ	no_of_copies	int	YES		NULL	
	book_id	int	NO	PRI	NULL	
	branch_id	int	NO	PRI	NULL	

```
insert into card values (100);
insert into card values (101);
insert into card values (102);
insert into card values (103);
insert into card values (104);
select * from card;
```

	card_no
Þ	100
	101
	102
	103
	104
	NULL

insert into book_lending values ('01-01-17','01-06-17', 1, 10, 101); insert into book_lending values ('11-01-17','11-03-17', 3, 14, 101); insert into book_lending values ('21-02-17','21-04-17', 2, 13, 101); insert into book_lending values ('15-03-17','15-07-17', 4, 11, 101); insert into book_lending values ('12-08-17','12-08-17', 1, 11, 104); select * from book_lending;

	date_out	due_date	book_id	branch_id	card_no
Þ	2001-01-17	2001-06-17	1	10	101
	2012-08-17	2012-08-17	1	11	104
	2021-02-17	2021-04-17	2	13	101
	2011-01-17	2011-03-17	3	14	101
	2015-03-17	2015-07-17	4	11 NULL	101

Write SQL queries to

1.Retrieve details of all books in the library – id, title, name of publisher, authors, number of copies in each branch, etc.

select b.book_id, b.title, b.pub_year, b.publisher_name, bc.no_of_copies, ba.author_name, lb.branch_name from book b, book_authors ba,

library_branch lb, book_copies bc where b.book_id = ba.book_id and b.book_id = bc.book_id and lb.branch_id = bc.branch_id;

	book_id	title	pub_year	publisher_name	no_of_copies	author_name	branch_name
•	1	dbms	01-2017	mcgraw-hill	10	navathe	rr nagar
	1	dbms	01-2017	mcgraw-hill	5	navathe	rnsit
	2	adbms	06-2016	mcgraw-hill	2	navathe	rajaji nagar
	2	adbms	06-2016	mcgraw-hill	5	navathe	nitte
	3	cn	09-2016	pearson	7	tanenbaum	manipal
	4	cg	09-2015	grupo planeta	3	edward angel	rnsit
	5	os	05-2016	pearson	1	galvin	rr nagar

2.Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017

select card_no from book_lending where year(date_out) >17 and month(date_out) <7 group by card_no having count(card_no) >2;

3.Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.

delete from book where book_id = 3;

select * from book;

select * from book_authors;

select * from book_copies;

select * from book_lending;

	book_id	title	pub_year	publisher_name
Þ	1	dbms	01-2017	mcgraw-hill
	2	adbms	06-2016	mcgraw-hill
	4	cg	09-2015	grupo planeta
	5	os	05-2016	pearson
	NULL	HULL	NULL	NULL

	author_name	book_id
>	navathe	1
	navathe	2
	edward angel	4
	galvin	5
	NULL	NULL

	no_of_copies	book_id	branch_id
Þ	10	1	10
	5	1	11
	2	2	12
	5	2	13
	3	4	11
	1	5	10
	NULL	NULL	HULL

	date_out	due_date	book_id	branch_id	card_no
Þ	2001-01-17	2001-06-17	1	10	101
	2012-08-17	2012-08-17	1	11	104
	2021-02-17	2021-04-17	2	13	101
	2015-03-17	2015-07-17	4	11	101
	NULL	NULL	NULL	NULL	HULL

4.Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.

create view partition select pub_year from book;

select * from partition;

	pub_year
Þ	01-2017
	06-2016
	09-2015
	05-2016

5.Create a view of all books and its number of copies that are currently available in the Library.

create view book_copies as select b.book_id, b.title, bc.no_of_copies from book b, book_copies bc where b.book_id = bc.book_id;

select * from book_copies;

	book_id	title	no_of_copies
Þ	1	dbms	10
	1	dbms	5
	2	adbms	2
	2	adbms	5
	4	cg	3
	5	os	1

Program 8-STUDENT ENROLLMENT DATABASE

Consider the following database of student enrollment in courses & books adopted for each course.

STUDENT (regno: string, name: string, major: string, bdate:date)

COURSE (course #:int, cname:string, dept:string)

ENROLL (regno:string, course#:int, sem:int, marks:int)

BOOK _ ADOPTION (course# :int, sem:int, book-ISBN:int)

TEXT (book-ISBN:int, book-title:string, publisher:string, author:string)

i. Create the above tables by properly specifying the primary keys and the foreign keys.

create database student_enroll;
use student_enroll;

```
create table student(
regno varchar(15),
name varchar(20),
major varchar(20),
bdate date,
primary key(regno));
desc student;
create table course(
courseno int,
cname varchar(20),
dept varchar(20),
primary key(courseno));
desc course;
create table enroll(
regno varchar(15),
courseno int,
sem int,
marks int,
primary key(regno,courseno),
foreign key(regno) references student(regno),
foreign key(courseno) references course(courseno));
desc enroll;
create table textbook(
book_isbn int,
book_title varchar(20),
publisher varchar(20),
author varchar(20),
primary key(book_isbn));
```

```
desc textbook;

create table book_adoption(
courseno int,
sem int,
book_isbn int,
primary key(courseno,book_isbn),
foreign key(courseno) references course(courseno),
foreign key(book_isbn) references textbook(book_isbn));
desc book_adoption;
```

ii. Enter at least five tuples for each relation.

insert into student values('1BM11CS001','A','Sr','19931230'); insert into student values('1BM11CS002','B','Sr','19930924'); insert into student values('1BM11CS003','C','Sr','19931127'); insert into student values('1BM11CS004','D','Sr','19930413'); insert into student values('1BM11CS005','E','Jr','19940824'); commit;

select * from student;

		-		
	regno	name	major	bdate
•	1BM11CS001	Α	Sr	1993-12-30
	1BM11CS002	В	Sr	1993-09-24
	1BM11CS003	C	Sr	1993-11-27
	1BM11CS004	D	Sr	1993-04-13
	1BM11CS005	E	Jr	1994-08-24
	NULL	NULL	NULL	NULL

```
insert into course values(111,'OS','CSE');
insert into course values(112,'EC','ECE');
insert into course values(113,'SS','ISE');
insert into course values(114,'DBMS','CSE');
insert into course values(115,'SIGNALS','ECE');
```

commit;

select * from course;

	courseno	cname	dept
•	111	OS	CSE
	112	EC	ECE
	113	SS	ISE
	114	DBMS	CSE
	115	SIGNALS	ECE
	NULL	NULL	NULL

insert into textbook values(10,'DATABASE SYSTEMS','PEARSON','SCHIELD'); insert into textbook values(900,'OPERATING SYSTEMS','PEARSON','LELAND'); insert into textbook values(901,'CIRCUITS','HALL INDIA','BOB'); insert into textbook values(902,'SYSTEM SOFTWARE','PETERSON','JACOB'); insert into textbook values(903,'SCHEDULING','PEARSON','PATIL'); insert into textbook values(904,'DATABASE SYSTEMS','PEARSON','JACOB'); insert into textbook values(905,'DATABASE MANAGER','PEARSON','BOB'); insert into textbook values(906,'SIGNALS','HALL INDIA','SUMIT'); commit;

select * from textbook;

	book_isbn	book_title	publisher	author
Þ	10	DATABASE SYSTEMS	PEARSON	SCHIELD
	900	OPERATING SYSTEMS	PEARSON	LELAND
	901	CIRCUITS	HALL INDIA	BOB
	902	SYSTEM SOFTWARE	PETERSON	JACOB
	903	SCHEDULING	PEARSON	PATIL
	904	DATABASE SYSTEMS	PEARSON	JACOB
	905	DATABASE MANAGER	PEARSON	BOB
	906	SIGNALS	HALL INDIA	SUMIT
	NULL	NULL	NULL	HULL

insert into enroll values('1BM11CS001',115,3,100); insert into enroll values('1BM11CS002',114,5,100); insert into enroll values('1BM11CS003',113,5,100); insert into enroll values('1BM11CS004',111,5,100); insert into enroll values('1BM11CS005',112,3,100);

commit;

select * from enroll;

	regno	courseno	sem	marks
•	1BM11CS001	115	3	100
	1BM11CS002	114	5	100
	1BM11CS003	113	5	100
	1BM11CS004	111	5	100
	1BM11CS005	112	3	100
	NULL	NULL	NULL	NULL

insert into book_adoption values(111,5,900); insert into book_adoption values(111,5,903); insert into book_adoption values(111,5,904); insert into book_adoption values(112,3,901); insert into book_adoption values(113,3,10); insert into book_adoption values(114,5,905); insert into book_adoption values(113,5,902); insert into book_adoption values(113,5,906); commit;

select * from book_adoption;

	courseno	sem	book_isbn
•	111	5	900
	111	5	903
	111	5	904
	112	3	901
	113	3	10
	113	5	902
	114	5	905
	115	3	906
	NULL	HULL	HULL

iii. Demonstrate how you add a new text book to the database and make this book be adopted by some department.

insert into textbook values(908, 'UNIX CONCEPTS', 'TATA MCGRAW HILL', 'SUMITABHA DAS'); insert into book_adoption values(113,4,908); select * from textbook;

select * from book_adoption;

	book_isbn	book_title	publisher	author
١	10	DATABASE SYSTEMS	PEARSON	SCHIELD
	900	OPERATING SYSTEMS	PEARSON	LELAND
	901	CIRCUITS	HALL INDIA	BOB
	902	SYSTEM SOFTWARE	PETERSON	JACOB
	903	SCHEDULING	PEARSON	PATIL
	904	DATABASE SYSTEMS	PEARSON	JACOB
	905	DATABASE MANAGER	PEARSON	BOB
	906	SIGNALS	HALL INDIA	SUMIT
	908	UNIX CONCEPTS	TATA MCGRAW HILL	SUMITABHA DAS
	NULL	NULL	NULL	NULL

	courseno	sem	book_isbn
•	111	5	900
	111	5	903
	111	5	904
	112	3	901
	113	3	10
	113	5	902
	113	4	908
	114	5	905
	115	3	906
	NULL	NULL	NULL

iv. Produce a list of text books (include Course #, Book-ISBN, Book-title) in the alphabetical order for courses offered by the 'CS' department that use more than two books.

select c.courseno,t.book_isbn,t.book_title

from course c,book_adoption ba,textbook t

where c.courseno=ba.courseno

and ba.book_isbn=t.book_isbn

and c.dept='CSE'

and 2<(select COUNT(book_isbn)

from book_adoption b

where c.courseno=b.courseno)

order by t.book_title;

	courseno	book_isbn	book_title
•	111	904	DATABASE SYSTEMS
	111	900	OPERATING SYSTEMS
	111	903	SCHEDULING

v. List any department that has all its adopted books published by a specific publisher.

```
from course c

where c.dept in(select c.dept

from course c,book_adoption b,textbook t

where c.courseno=b.courseno

and t.book_isbn=b.book_isbn

and t.publisher='PEARSON')

and c.dept not in(select c.dept

from course c,book_adoption b,textbook t

where c.courseno=b.courseno

and t.book_isbn=b.book_isbn

and t.publisher != 'PEARSON');

dept

cse
```

Program 9: Movie database

Consider the schema for Movie Database:

```
ACTOR (Act_id, Act_Name, Act_Gender)

DIRECTOR (Dir_id, Dir_Name, Dir_Phone)

MOVIES (Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id)

MOVIE_CAST (Act_id, Mov_id, Role)
```

RATING (Mov_id, Rev_Stars)

```
create database movie;
use movie;
create table actor(
act_id int,
act_name varchar(20),
act_gender char(1),
primary key(act_id));
desc actor;
create table director(
dir_id int,
dir_name varchar(20),
dir_phone int(10),
primary key(dir_id));
desc director;
alter table director
modify column dir_phone bigint;
desc director;
create table movies(
mov_id int,
mov_title varchar(25),
mov_year int,
mov_lang varchar(12),
dir_id int,
primary key(mov_id),
foreign key(dir_id) references director(dir_id));
```

```
desc movies;
create table movie_cast(
act_id int,
mov_id int,
role varchar(10),
primary key(act_id,mov_id),
foreign key(act_id) references actor(act_id),
foreign key(mov_id) references movies(mov_id));
desc movie_cast;
create table rating(
mov_id int,
rev_stars varchar(25),
primary key(mov_id),
foreign key(mov_id) references movies(mov_id));
desc rating;
insert into actor values(301,'ANUSHKA','F');
insert into actor values (302, 'PRABHAS', 'M');
insert into actor values(303, PUNITH', 'M');
insert into actor values(304,'JERMY','M');
commit;
select * from actor;
    act_id act_name act_gender
▶ 301
          ANUSHKA F
   302 PRABHAS M
                   NULL
```

insert into director values(60, 'RAJAMOULI', 8751611001); insert into director values(61, 'HITCHCOCK', 7766138911);

insert into director values(62, FARAN', 9986776531);

 $insert\ into\ director\ values (63, 'STEVEN\ SPIELBERG', 8989776530);$

commit;

select * from director;

insert into movies values(1001,'BAHUBALI-2', 2017, 'TELAGU', 60); insert into movies values(1002,'BAHUBALI-1', 2015, 'TELAGU', 60); insert into movies values(1003,'AKASH', 2008, 'KANNADA', 61); insert into movies values(1004,'WAR HORSE', 2011, 'ENGLISH', 63); commit;

select * from movies;

	mov_id	mov_title	mov_year	mov_lang	dir_id
٠	1001	BAHUBALI-2	2017	TELAGU	60
	1002	BAHUBALI-1	2015	TELAGU	60
	1003	AKASH	2008	KANNADA	61
	1004	WAR HORSE	2011	ENGLISH	63
	NULL	NULL	NULL	NULL	NULL

insert into movie_cast values(301, 1002, 'HEROINE'); insert into movie_cast values(301, 1001, 'HEROINE'); insert into movie_cast values(303, 1003, 'HERO'); insert into movie_cast values(303, 1002, 'GUEST'); insert into movie_cast values(304, 1004, 'HERO'); commit; select * from movie_cast;

	act_id	mov_id	role
•	301	1001	HEROINE
	301	1002	HEROINE
	303	1002	GUEST
	303	1003	HERO
	304	1004	HERO
	NULL	NULL	NULL

insert into rating values(1001, 4);
insert into rating values(1002, 2);

insert into rating values(1003, 5);

insert into rating values(1004, 4);

commit;

select * from rating;

	mov_id	rev_stars
•	1001	4
	1002	2
	1003	5
	1004	4
	NULL	NULL

1. List the titles of all movies directed by 'Hitchcock'.

select mov_title

from movies

where dir_id=(select dir_id from director where dir_name='Hitchcock')

group by mov_title;

2. Find the movie names where one or more actors acted in two or more movies.

```
select m.mov_title

from movies m, movie_cast mc

where m.mov_id=mc.mov_id

and mc.act_id in( select act_id from movie_cast group by act_id having count(act_id)>1)

group by mov_title

having count(*)>1;

mov_title

BAHUBALI-1
```

3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN operation).

```
select act_name,mov_title,mov_year

from actor a

join movie_cast mc

on a.act_id=mc.act_id

join movies m

on m.mov_id=mc.mov_id

where m.mov_year not between 2000 and 2015;

act_name mov_title mov_year

ANUSHKA BAHUBALI-2 2017
```

4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.

```
select mov_title,max(rev_stars)
from movies
inner join rating using(mov_id)
group by mov_id
having max(rev_stars)>0
```

order by mov_title;

	mov_title	max(rev_stars)
•	AKASH	5
	BAHUBALI-1	2
	BAHUBALI-2	4
	WAR HORSE	4

5. Update rating of all movies directed by 'Steven Spielberg' to 5.

```
update rating

set rev_stars=5

where mov_id in(select mov_id from movies

where dir_id in(select dir_id from director

where dir_name='Steven Spielberg'));

select * from rating;
```

	mov_id	rev_stars
•	1001	4
	1002	2
	1003	5
	1004	5
	NULL	NULL

Program 10 - College Database

Consider the schema for College Database:

STUDENT (USN, SName, Address, Phone, Gender)
SEMSEC (SSID, Sem, Sec)

CLASS (USN, SSID)

SUBJECT (Subcode, Title, Sem, Credits)

IAMARKS (USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)

create database colg_db;

```
use colg_db;
create table student(
usn varchar(30),
sname varchar(30),
address varchar(30),
phone real,
gender varchar(30),
primary key(usn)
);
```

desc student;

Field Default Extra Type Null Key HULL varchar(30) NO PRI usn HULL sname varchar(30) YES NULL address varchar(30) YES NULL phone double YES NULL varchar(30) YES gender

```
create table semsec(
ssid varchar(30),
sem int,
sec varchar(30),
primary key(ssid)
);
```

Field Type Null Default Extra Key NULL varchar(30) NO PRI ssid NULL sem YES NULL varchar(30) YES sec

```
create table class(
usn varchar(30),
ssid varchar(30),
```

desc semsec;

```
primary key(usn,ssid),
      foreign key(usn) REFERENCES student(usn),
      foreign key(ssid) REFERENCES semsec(ssid)
 );
desc class;
```

	Field	Type	Null	Key	Default	Extra
•	usn	varchar(30)	NO	PRI	NULL	
	ssid	varchar(30)	NO	PRI	NULL	

```
create table subject(
 code varchar(30),
 title varchar(30),
 sem int,
 credits int,
 primary key(code)
 );
```

desc subject;

	Field	Type	Null	Key	Default	Extra
Þ	code	varchar(30)	NO	PRI	NULL	
	title	varchar(30)	YES		HULL	
	sem	int	YES		NULL	
	credits	int	YES		HULL	

create table marks(

```
usn varchar(30),code varchar(30),
ssid varchar(30),
test1 real, test2 real, test3 real, final real,
primary key(usn,code,ssid),
foreign key(usn) REFERENCES student(usn),
foreign key(code) REFERENCES subject(code),
```

foreign key(ssid) REFERENCES semsec(ssid)

);

desc marks;

	Field	Type	Null	Key	Default	Extra
Þ	usn	varchar(30)	NO	PRI	NULL	
	code	varchar(30)	NO	PRI	NULL	
	ssid	varchar(30)	NO	PRI	NULL	
	test1	double	YES		NULL	
	test2	double	YES		NULL	
	test3	double	YES		NULL	
	final	double	YES		NULL	

```
insert into student values('1RN13CS020','akshay','belagavi',8877881122,'m'),
('1RN13CS062','sandhya','bengaluru',7722829912,'f'),
('1RN13CS091','teesha','bengaluru',7712312312,'f'),
('1RN13CS066','supriya','mangaluru',8877881122,'f'),
('1RN14CS010','abhay','bengaluru',9900211201,'m'),
('1RN14CS032','bhaskar','bengaluru',9923211099,'m'),
('1RN14CS025','asmi','bengaluru',7894737377,'f'),
('1RN15CS011','ajay','tumkur',98545091341,'m'),
('1RN15CS029','chitra','davangere',7696772121,'f'),
('1RN15CS045','jeeva','bellary',9944850121,'m'),
('1RN15CS091','santosh','mangaluru',8812332201,'m'),
('1RN16CS045','ismail','kalburgi',9900232201,'m'),
('1RN16CS088','sameera','shimoga',9905542212,'f'),
('1RN16CS122','vinayaka','chikamagaluru',8800880011,'m');
select * from student;
```

	usn	sname	address	phone	gender
Þ	1RN13CS020	akshay	belagavi	8877881122	m
	1RN13CS062	sandhya	bengaluru	7722829912	f
	1RN13CS066	supriya	mangaluru	8877881122	f
	1RN13CS091	teesha	bengaluru	7712312312	f
	1RN14CS010	abhay	bengaluru	9900211201	m
	1RN14CS025	asmi	bengaluru	7894737377	f
	1RN14CS032	bhaskar	bengaluru	9923211099	m
	1RN15CS011	ajay	tumkur	98545091341	m
	1RN15CS029	chitra	davangere	7696772121	f
	1RN15CS045	jeeva	bellary	9944850121	m
	1RN15CS091	santosh	mangaluru	8812332201	m
	1RN16CS045	ismail	kalburgi	9900232201	m
	1RN16CS088	sameera	shimoga	9905542212	f
	1RN16CS122	vinayaka	chikamag	8800880011	m
	NULL	HULL	NULL	NULL	HULL

insert into semsec values('CSE8A',8,'A'),
('CSE8B',8,'B'),('CSE8C',8,'C'),
('CSE7A',7,'A'),('CSE7B',7,'B'),('CSE7C',7,'C'),
('CSE6A',6,'A'),('CSE6B',6,'B'),('CSE6C',6,'C'),
('CSE5A',5,'A'),('CSE5B',5,'B'),('CSE5C',5,'C'),
('CSE4A',4,'A'),('CSE4B',4,'B'),('CSE4C',4,'C'),
('CSE3A',3,'A'),('CSE3B',3,'B'),('CSE3C',3,'C'),
('CSE2A',2,'A'),('CSE2B',2,'B'),('CSE2C',2,'C'),
('CSE1A',1,'A'),('CSE1B',1,'B'),('CSE1C',1,'C');
select * from semsec;

	ssid	sem	sec
Þ	CSE1A	1	Α
	CSE1B	1	В
	CSE1C	1	C
	CSE2A	2	Α
	CSE2B	2	В
	CSE2C	2	C
	CSE3A	3	Α
	CSE3B	3	В
	CSE3C	3	C
	CSE4A	4	Α
	CSE4B	4	В
	CSE4C	4	C
	CSE5A	5	A
	CSE5B	5	В
	CSE5C	5	С
	CSE6A	6	Α
	CSE6B	6	В
	CSE6C	6	C
	CSE7A	7	Α
	CSE7B	7	В
	CSE7C	7	C
	CSE8A	8	A
	CSE8B	8	В
	CSE8C	8	C
*	NULL	NULL	NULL

insert into class values('1RN13CS020','CSE8A'),
('1RN13CS062','CSE8A'),('1RN13CS066','CSE8B'),('1RN13CS091','CSE8C'),
('1RN14CS010','CSE7A'),('1RN14CS025','CSE7A'),('1RN14CS032','CSE7A'),
('1RN15CS011','CSE4A'),('1RN15CS029','CSE4A'),('1RN15CS045','CSE4B'),
('1RN15CS091','CSE4C'),('1RN16CS045','CSE3A'),('1RN16CS088','CSE3B'),
('1RN16CS122','CSE3C');
select * from class;

	usn	ssid
>	1RN16CS045	CSE3A
	1RN16CS088	CSE3B
	1RN16CS122	CSE3C
	1RN15CS011	CSE4A
	1RN15CS029	CSE4A
	1RN15CS045	CSE4B
	1RN15CS091	CSE4C
	1RN14CS010	CSE7A
	1RN14CS025	CSE7A
	1RN14CS032	CSE7A
	1RN13CS020	CSE8A
	1RN13CS062	CSE8A
	1RN13CS066	CSE8B
	1RN13CS091	CSE8C
	NULL	HULL

insert into subject values('10CS81','ACA',8,4),
('10CS82','SSM',8,4),('10CS83','NM',8,4),
('10CS84','CC',8,4),('10CS85','PW',8,4),
('10CS71','OOAD',7,4),('10CS72','ECS',7,4),
('10CS73','PTW',7,4),('10CS74','DWDM',7,4),
('10CS75','JAVA',7,4),('10CS76','SAN',7,4),
('10CS51','ME',5,4),('10CS52','CN',5,4),
('10CS53','DBMS',5,4),('10CS54','ATC',5,4),
('10CS55','JAVA',5,3),('10CS56','Al',5,3),
('10CS41','M4',4,4),('10CS42','SE',4,4),
('10CS43','DAA',4,4),('10CS44','MPMC',4,4),
('10CS45','OOC',4,3),('10CS46','DC',4,3),
('10CS31','M3',3,4),('10CS32','ADE',3,4),
('10CS35','USP',3,3),('10CS36','DMS',3,3);

select * from subject;

	code	title	sem	credits
•	10CS31	МЗ	3	4
	10CS32	ADE	3	4
	10CS33	DSA	3	4
	10CS34	CO	3	4
	10CS35	USP	3	3
	10CS36	DMS	3	3
	10CS41	M4	4	4
	10CS42	SE	4	4
	10CS43	DAA	4	4
	10CS44	MPMC	4	4
	10CS45	OOC	4	3
	10CS46	DC	4	3
	10CS51	ME	5	4
	10CS52	CN	5	4
	10CS53	DBMS	5	4
	10CS54	ATC	5	4

insert into marks(usn,code,ssid,test1,test2,test3) values('1RN13CS091','10CS81','CSE8C',15,16,18), ('1RN13CS091','10CS82','CSE8C',12,19,14),('1RN13CS091','10CS83','CSE8C',19,15,20), ('1RN13CS091','10CS84','CSE8C',20,16,19),('1RN13CS091','10CS85','CSE8C',15,15,12); select * from marks;

	usn	code	ssid	test1	test2	test3	final
Þ	1RN13CS091	10CS81	CSE8C	15	16	18	HULL
	1RN13CS091	10CS82	CSE8C	12	19	14	HULL
	1RN13CS091	10CS83	CSE8C	19	15	20	HULL
	1RN13CS091	10CS84	CSE8C	20	16	19	HULL
	1RN13CS091	10CS85	CSE8C	15	15	12	NULL
	NULL	NULL	NULL	NULL	HULL	HULL	NULL

i. List all the student details studying in fourth semester 'C' section.

select S.*, SS.sem, SS.sec

from student S, semsec SS, class C

where S.usn = C.usn AND SS.ssid = C.ssid AND SS.sem = 4 AND SS.sec = 'C';

	usn	sname	address	phone	gender	sem	sec
•	1RN15CS091	santosh	mangaluru	8812332201	m	4	С

ii. Compute the total number of male and female students in each semester and in each section.

select SS.sem, SS.sec, S.gender, count(S.gender) as COUNT

from student S, semsec SS, class C

where S.usn = C.usn AND SS.ssid = C.ssid

group by SS.sem, SS.sec, S.gender ORDER by sem;

	sem	sec	gender	COUNT
Þ	3	Α	m	1
	3	В	f	1
	3	C	m	1
	4	Α	f	1
	4	Α	m	1
	4	В	m	1
	4	C	m	1
	7	Α	f	1
	7	Α	m	2
	8	Α	f	1
	8	A	m	1
	8	В	f	1
	8	C	f	1

iii. Create a view of Test1 marks of student USN '1BI15CS101' in all subjects.

create view STU_test1_marks_view as

select test1, code

from marks

where usn = '1RN13CS091';

select * from STU_test1_marks_view;

	test1	code
Þ	15	10CS81
	12	10CS82
	19	10CS83
	20	10CS84
	15	10CS85

iv. Categorize students based on the following criterion:

If FinalIA = 17 to 20 then CAT = 'Outstanding'

If FinalIA = 12 to 16 then CAT = 'Average'

If FinalIA < 12 then CAT = 'Weak'

Give these details only for 8th semester A, B, and C section students.

select S.usn, S.sname, S.address, S.phone, S.gender,

(CASE

when IA.final between 17 and 20 then 'outstanding'

when IA.final between 12 and 16 then 'average'

else 'weak' end) AS CAT

from student S, semsec SS, marks IA, subject sub

where S.usn = IA.usn AND SS.ssid = IA.ssid AND sub.code = IA.code AND sub.sem = 8;

	usn	sname	address	phone	gender	CAT
Þ	1RN13CS091	teesha	bengaluru	7712312312	f	weak
	1RN13CS091	teesha	bengaluru	7712312312	f	weak
	1RN13CS091	teesha	bengaluru	7712312312	f	weak
	1RN13CS091	teesha	bengaluru	7712312312	f	weak
	1RN13CS091	teesha	bengaluru	7712312312	f	weak