Mechanized Verification of Graph-manipulating Programs

Shengyi Wang[†], Qingxiang Cao[‡], Anshuman Mohan[†], <u>Aquinas Hobor</u>[†]

Surrey Concurrency Workshop and S-REPLS 12 July 24, 2019

Our Focus

We would like to verify graph-manipulating programs written in real C with end-to-end machine-checked correctness proofs.

- Graph algorithms are hard to reason about but occur in critical areas of real systems
- Real C code has achingly subtle semantics in some places
- Machine-checked proofs are merciless and lengthy: we want to reuse existing codebases

Our Strategy

We will use the CompCert certified compiler's definition of C and the Verified Software Toolchain's (VST) version of Separation Logic to certify our code against strong specifications expressed with mathematical graphs.

- Between them, CompCert and VST have 50+ person-years worth of development effort. It is highly desirous to fit within their frameworks rather than reinventing the wheel.
- We make no changes to CompCert. We make minimal (approximately 1% of codebase) additions to VST (two new tacticals, assorted lemmas).
- Our techniques use vanilla separation logic (albeit with → and quantifiers).
- We have developed an expressive machine-checked framework for mathematical graphs that is powerful enough to verify real code.

Our Results

We have verified half a dozen graph algorithms, including:

- Graph visiting/coloring; ditto for DAG
- Graph reclamation (*i.e.* spanning tree followed by tree reclamation)
- Union-find (both for heap- and array-represented nodes)
- Garbage collector for CertiCoq project
 - Generational OCaml-style GC for a purely functional language
 - ≈ 400 lines of (rather devilish) C
 - We pinpoint two places where C is too weak to define an OCaml-style GC
 - Verify (almost) full graph isomorphism
 - $\approx 14,000$ lines of example-specific proof script

Union-Find Algorithm: Disjoint-Set Data Structure

```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
```

Union-Find Algorithm: Disjoint-Set Data Structure

```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```


- Motivation √
- The Mathematical Graph Library
 - Core Definitions
 - Architecture
 - Selection of Properties
- The Spatial Representation of Graphs
 - CompCert and VST
 - Hoare Logic and Separation Logic
 - Spatial Representation of Graphs
 - Localize Rule
- Verification of the Find function
 - Specification
 - Proof Skeleton
 - Modularity
- A Generational Garbage Collector

Graph Library: A General Definition of Graph

A general definition of graph should have

Graph Library: A General Definition of Graph

A general definition of graph should have

- Vertices
- Pairs of vertices as Edges

Graph Library: A General Definition of Graph

A general definition of graph should have

- Vertices
- Pairs of vertices as Edges

A general definition of graph should have

- Vertices
- Edges, sources and destinations

A general definition of graph should have

- Vertices
- Edges, sources and destinations

A general definition of graph should have

- Vertices
- Edges, sources and destinations
- Validity of vertices and edges

$$\begin{split} \operatorname{PreGraph} &\stackrel{\operatorname{def}}{=} \{ \mathit{V}, \mathit{E}, \, \operatorname{\mathtt{vvalid}}, \, \operatorname{\mathtt{evalid}}, \\ & \operatorname{\mathtt{src}}, \, \operatorname{\mathtt{dst}} \} \end{split}$$

$$\begin{split} \operatorname{PreGraph} & \stackrel{\operatorname{def}}{=} \{ \mathit{V}, \mathit{E}, \, \operatorname{vvalid}, \, \operatorname{evalid}, \\ & \operatorname{src}, \, \operatorname{dst} \} \end{split}$$

 $\operatorname{PreGraph} \stackrel{\operatorname{def}}{=} \{V, E, \operatorname{vvalid}, \operatorname{evalid}, \\ \operatorname{src}, \operatorname{dst} \}$ $\operatorname{LabeledGraph} \stackrel{\operatorname{def}}{=} \{\operatorname{PreGraph}, L_V, L_E, L_G, \\ \operatorname{vlabel}, \operatorname{elabel}, \operatorname{glabel} \}$

 $\operatorname{PreGraph} \stackrel{\operatorname{def}}{=} \{V, E, \operatorname{\mathtt{vvalid}}, \operatorname{\mathtt{evalid}}, \\ \operatorname{\mathtt{src}}, \operatorname{\mathtt{dst}} \}$ $\operatorname{LabeledGraph} \stackrel{\operatorname{def}}{=} \{\operatorname{PreGraph}, L_V, L_E, L_G, \\ \operatorname{\mathtt{vlabel}}, \operatorname{\mathtt{elabel}}, \operatorname{\mathtt{glabel}} \}$ $\operatorname{GeneralGraph} \stackrel{\operatorname{def}}{=} \{\operatorname{LabeledGraph}, \operatorname{\mathtt{sound}} \operatorname{\mathtt{gg}} \}$

 $\operatorname{PreGraph} \stackrel{\operatorname{def}}{=} \{V, E, \operatorname{vvalid}, \operatorname{evalid}, \\ \operatorname{src}, \operatorname{dst} \}$ $\operatorname{LabeledGraph} \stackrel{\operatorname{def}}{=} \{\operatorname{PreGraph}, L_V, L_E, L_G, \\ \operatorname{vlabel}, \operatorname{elabel}, \operatorname{glabel} \}$ $\operatorname{GeneralGraph} \stackrel{\operatorname{def}}{=} \{\operatorname{LabeledGraph}, \operatorname{sound_gg} \}$ $\operatorname{For} \operatorname{Example:} \operatorname{Acyclic}$

• Path is used in defining reachability.

- Path is used in defining reachability.
- A path is a sequence of edges which connect a sequence of vertices.

- Path is used in defining reachability.
- A path is a sequence of edges which connect a sequence of vertices.

Path
$$\stackrel{\text{def}}{=} [v_0, e_0, v_1, e_1, \dots, v_{k-1}, e_{k-1}, v_k]$$

- Path is used in defining reachability.
- A path is a sequence of edges which connect a sequence of vertices.

Path
$$\stackrel{\text{def}}{=} [v_0, e_0, v_1, e_1, \dots, v_{k-1}, e_{k-1}, v_k]$$

Path
$$\stackrel{\text{def}}{=} [e_0, e_1, \dots, e_k]$$

- Path is used in defining reachability.
- A path is a sequence of edges which connect a sequence of vertices.

Path
$$\stackrel{\text{def}}{=} [v_0, e_0, v_1, e_1, \dots, v_{k-1}, e_{k-1}, v_k]$$

Path
$$\stackrel{\text{def}}{=} [e_0, e_1, \dots, e_k]$$

Path
$$\stackrel{\text{def}}{=} (v_0, [e_0, e_1, \dots, e_k])$$

Other Derived Definitions: A Peek

$$\begin{split} \mathbf{s}_\mathtt{evalid}(\gamma, e) &\stackrel{\mathrm{def}}{=} \mathtt{evalid}(\gamma, e) \; \land \\ & \mathtt{vvalid}(\gamma, \mathtt{src}(\gamma, e)) \; \land \; \mathtt{vvalid}(\gamma, \mathtt{dst}(\gamma, e)) \end{split}$$

Other Derived Definitions: A Peek

$$\begin{split} \mathbf{s}_\texttt{evalid}(\gamma, e) & \stackrel{\text{def}}{=} \texttt{evalid}(\gamma, e) \land \\ & \texttt{vvalid}(\gamma, \texttt{src}(\gamma, e)) \land \texttt{vvalid}(\gamma, \texttt{dst}(\gamma, e)) \\ & \texttt{valid}_\texttt{path}\big(\gamma, (v, [])\big) \stackrel{\text{def}}{=} \texttt{vvalid}(\gamma, v) \\ & \texttt{valid}_\texttt{path}\big(\gamma, (v, [e_1, e_2, \dots, e_n])\big) \stackrel{\text{def}}{=} v = \texttt{src}(\gamma, e_1) \land \texttt{s}_\texttt{evalid}(\gamma, e_1) \land \\ & \texttt{dst}(\gamma, e_1) = \texttt{src}(\gamma, e_2) \land \\ & \texttt{s}_\texttt{evalid}(\gamma, e_2) \land \dots \end{split}$$

Other Derived Definitions: A Peek

$$\begin{split} \mathbf{s}_\texttt{evalid}(\gamma, e) & \stackrel{\text{def}}{=} \texttt{evalid}(\gamma, e) \land \\ & \texttt{vvalid}(\gamma, \texttt{src}(\gamma, e)) \land \texttt{vvalid}(\gamma, \texttt{dst}(\gamma, e)) \\ & \texttt{valid}_\texttt{path}\big(\gamma, (v, [])\big) \stackrel{\text{def}}{=} \texttt{vvalid}(\gamma, v) \\ & \texttt{valid}_\texttt{path}\big(\gamma, (v, [e_1, e_2, \dots, e_n])\big) \stackrel{\text{def}}{=} v = \texttt{src}(\gamma, e_1) \land \texttt{s}_\texttt{evalid}(\gamma, e_1) \land \\ & \texttt{dst}(\gamma, e_1) = \texttt{src}(\gamma, e_2) \land \\ & \texttt{s}_\texttt{evalid}(\gamma, e_2) \land \dots \\ & \texttt{end}\big(\gamma, (v, [])\big) \stackrel{\text{def}}{=} v \\ & \texttt{end}\big(\gamma, (v, [e_1, e_2, \dots, e_n])\big) \stackrel{\text{def}}{=} \texttt{dst}(\gamma, e_n) \\ & \gamma \vDash s \stackrel{p}{\leadsto} t \stackrel{\text{def}}{=} \texttt{valid}_\texttt{path}(\gamma, p) \land \texttt{fst}(p) = s \land \texttt{end}(\gamma, p) = t \\ & \gamma \vDash s \leadsto t \stackrel{\text{def}}{=} \exists p \text{ s.t. } \gamma \vDash s \stackrel{p}{\leadsto} t \end{split}$$

Architecture

Mechanized Verification

$$\begin{split} \operatorname{MathGraph}(\gamma) &\stackrel{\operatorname{def}}{=} \Big\{ \\ \operatorname{null} : V \\ \operatorname{weak_valid}(v) &\stackrel{\operatorname{def}}{=} v = \operatorname{null} \vee \operatorname{vvalid}(\gamma, v) \\ \operatorname{valid_graph} : \forall e \operatorname{.evalid}(\gamma, e) \Rightarrow \\ \operatorname{vvalid}\Big(\gamma, \operatorname{src}(\gamma, e)\Big) \wedge \\ \operatorname{weak_valid}\Big(\operatorname{dst}(\gamma, e)\Big) \\ \operatorname{valid_not_null} : \forall v \operatorname{.vvalid}(\gamma, v) \Rightarrow \\ v \neq \operatorname{null} \Big\} \end{split}$$

$$\begin{split} \operatorname{LstGraph}(\gamma) &\stackrel{\text{def}}{=} \Big\{ \\ & \operatorname{out} : V \to E \\ & \operatorname{only_one_edge} : \forall v, \ e . \operatorname{vvalid}(\gamma, v) \Rightarrow \\ & \Big(\operatorname{src}(\gamma, e) = v \land \\ & \operatorname{evalid}(\gamma, e) \Big) \Leftrightarrow \\ & e = \operatorname{out}(v) \\ & \operatorname{acyclic_path} : \forall v, \ p . \gamma \vDash v \stackrel{p}{\leadsto} v \Rightarrow \\ & p = (v, []) \Big\} \end{split}$$

$$\begin{split} \operatorname{FiniteGraph}(\gamma) &\stackrel{\operatorname{def}}{=} \Big\{ \\ & \operatorname{finite_v} : \exists \: S_v, \: M_v \: \text{s.t.} \: |S_v| \leqslant M_v \: \land \\ & \forall v. \: \operatorname{vvalid}(\gamma, v) \Rightarrow v \in S_v \\ & \operatorname{finite_e} : \exists \: S_e, \: M_e \: \text{s.t.} \: |S_e| \leqslant M_e \: \land \\ & \forall e. \: \operatorname{evalid}(\gamma, e) \Rightarrow e \in S_e \Big\} \end{split}$$

- Motivation ✓
- ullet The Mathematical Graph Library \checkmark
 - Core Definitions ✓
 - Architecture \checkmark
 - Selection of Properties ✓
- The Spatial Representation of Graphs
 - CompCert and VST
 - Hoare Logic and Separation Logic
 - Spatial Representation of Graphs
 - Localize Rule
- Verification of the Find function
 - Specification
 - Proof Skeleton
 - Modularity
- A Generational Garbage Collector

• CompCert

- CompCert
 - $C \rightarrow Coq (Clight) \rightarrow Machine$

- CompCert
 - $C \to Coq (Clight) \to Machine$
 - Full-Scale C Specification

- CompCert
 - $C \to Coq (Clight) \to Machine$
 - Full-Scale C Specification
- Verified Software Toolchain

- CompCert
 - $C \to Coq (Clight) \to Machine$
 - Full-Scale C Specification
- Verified Software Toolchain
 - Separation Hoare Logic

- CompCert
 - $C \to Coq (Clight) \to Machine$
 - Full-Scale C Specification
- Verified Software Toolchain
 - Separation Hoare Logic
 - Verifiable C

- CompCert
 - $C \to Coq (Clight) \to Machine$
 - Full-Scale C Specification
- Verified Software Toolchain
 - Separation Hoare Logic
 - Verifiable C
 - Interactive Symbolic Execution

Recap: Hoare Logic

$$\{P\}\ C\{Q\}$$

(C. A. R. Hoare)

Recap: Separation Logic

P * Q

(Reynolds et al.)

$$h \models P * Q \stackrel{\mathrm{def}}{=} \exists \ h_1, h_2 \ \mathrm{s.t.} \ h_1 \oplus h_2 = h \ \land \ h_1 \models P \ \land \ h_2 \models Q$$

$$\forall P,\,Q.\,P * (P -\!\!\!\!* Q) \vdash Q$$

 $\verb"emp"$

$$\frac{\{P\}\;C\{Q\}}{\{P*F\}\;C\{Q*F\}}(\operatorname{mod}(\mathit{C})\cap\operatorname{fv}(F)=\varnothing)$$

```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
```



```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
```


$$\mathtt{graph}\mathtt{_rep}(\gamma) \overset{\mathrm{def}}{=} \underset{\mathtt{vvalid}(\gamma,v)}{\bigstar} \mathtt{v}\mathtt{_rep}(\gamma,v)$$

struct Node {
 unsigned int rank;
 struct Node *parent;
};

$$\begin{split} & \texttt{graph_rep}(\gamma) \overset{\text{def}}{=} \underset{\texttt{vvalid}(\gamma,v)}{\bigstar} \texttt{v_rep}(\gamma,v) \\ & \bigstar P \overset{\text{def}}{=} P(v_1) \star P(v_2) \star \cdots \star P(v_n) \end{split}$$

struct Node {
 unsigned int rank;
 struct Node *parent;
};

$$\begin{split} \operatorname{graph_rep}(\gamma) &\stackrel{\text{def}}{=} \underset{\operatorname{vvalid}(\gamma,v)}{\bigstar} \operatorname{v_rep}(\gamma,v) \\ & \underset{\{v_1,v_2,\dots,v_n\}}{\bigstar} P \stackrel{\text{def}}{=} P(v_1) * P(v_2) * \dots * P(v_n) \\ & \operatorname{v_rep}(\gamma,v) \stackrel{\text{def}}{=} v \mapsto \operatorname{vlabel}(\gamma,v) * \\ & (v+4) \mapsto \operatorname{prt}(\gamma,v) \end{split}$$

struct Node {
 unsigned int rank;
 struct Node *parent;
};

$$\begin{split} \operatorname{graph_rep}(\gamma) &\stackrel{\text{def}}{=} \underset{v \neq v = 1}{\bigstar} \operatorname{v_rep}(\gamma, v) \\ & \underset{\{v_1, v_2, \dots, v_n\}}{\bigstar} P \stackrel{\text{def}}{=} P(v_1) * P(v_2) * \dots * P(v_n) \\ & \operatorname{v_rep}(\gamma, v) \stackrel{\text{def}}{=} v \mapsto \operatorname{vlabel}(\gamma, v) * \\ & (v+4) \mapsto \operatorname{prt}(\gamma, v) \\ & \operatorname{prt}(\gamma, v) \stackrel{\text{def}}{=} \begin{cases} \operatorname{dst}(\gamma, \operatorname{out}(v)) & \neq \operatorname{null} \\ v & \operatorname{otherwise} \end{cases} \end{split}$$

$$\frac{\{L_1\}\ C\{L_2\}}{\{G_1\}\ C\{G_2\}}$$

$$\frac{\{L_1\}\;C\{L_2\}\quad G_1\vdash L_1*(L_2\twoheadrightarrow G_2)}{\{G_1\}\;C\{G_2\}}\;(\operatorname{mod}(\mathit{C})\cap\operatorname{fv}(L_2\twoheadrightarrow G_2)=\varnothing)$$

$$\frac{\{L_1\}\ C\{\exists x.\ L_2\} \qquad G_1 \vdash L_1 * R \qquad R \vdash \forall x.\ (L_2 \twoheadrightarrow G_2)}{\{G_1\}\ C\{\exists x.\ G_2\}}$$

$$\frac{\{L_1\} \ C\{\exists x. \ L_2\} \qquad G_1 \vdash L_1 * R \qquad R \vdash \forall x. \ (L_2 \twoheadrightarrow G_2)}{\{G_1\} \ C\{\exists x. \ G_2\}} \quad (\dagger)$$

$$(\dagger)\ \operatorname{mod}(\mathit{C}) \cap \operatorname{fv}(\mathit{R}) = \varnothing$$

$$\frac{\{L_1\}\ C\{\exists x.\ L_2\}\qquad G_1\vdash L_1*R\qquad R\vdash \forall x.\ (L_2\twoheadrightarrow G_2)}{\{G_1\}\ C\{\exists x.\ G_2\}}\quad (\dagger)$$

$$(\dagger) \ \operatorname{mod}(\mathit{C}) \cap \operatorname{fv}(\mathit{R}) = \varnothing$$

Comparing to Ramify rule:

$$\frac{\{L_1\}\ C\{L_2\}\quad G_1\vdash L_1*(L_2\twoheadrightarrow G_2)}{\{G_1\}\ C\{G_2\}}\quad (\ddagger)$$

$$(\ddagger) \mod(C) \cap \operatorname{fv}(L_2 - G_2) = \emptyset$$

- Motivation √
- The Mathematical Graph Library \checkmark
 - Core Definitions ✓
 - Architecture ✓
 - Selection of Properties ✓
- The Spatial Representation of Graphs \checkmark
 - CompCert and VST ✓
 - Hoare Logic and Separation Logic ✓
 - Spatial Representation of Graphs ✓
 - Localize Rule ✓
- Verification of the Find function
 - Specification
 - Proof Skeleton
 - Modularity
- A Generational Garbage Collector

Union-Find Algorithm: Find

```
struct Node {
    unsigned int rank;
    struct Node *parent;
};
struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x \rightarrow parent;
    if (p != x) {
         p0 = find(p);
         p = p0;
         x \rightarrow parent = p;
    return p;
};
```


The Specification of Find

 $\mathbf{PRE:} \ \mathtt{graph_rep}(\gamma) \land \mathtt{vvalid}(\gamma, x)$

POST: $\exists \gamma', t \text{ s.t. } graph_rep(\gamma') \land uf_eq(\gamma, \gamma') \land$

 $\mathtt{root}(\gamma', x, t)$

The Specification of Find

PRE: graph_rep(
$$\gamma$$
) \wedge vvalid(γ , x)
POST: $\exists \gamma', t \text{ s.t. graph}_rep(\gamma') \wedge uf_eq(\gamma, \gamma') \wedge root(\gamma', x, t)$

$$\begin{split} \operatorname{graph_rep}(\gamma) &\stackrel{\mathrm{def}}{=} \underset{\operatorname{vvalid}(\gamma,v)}{\bigstar} \operatorname{v_rep}(\gamma,v) \\ \operatorname{root}(\gamma,x,t) &\stackrel{\mathrm{def}}{=} \gamma \vDash x \leadsto t \land \forall y. \ \gamma \vDash t \leadsto y \Rightarrow y = t \\ \operatorname{uf_eq}(\gamma_1,\gamma_2) &\stackrel{\mathrm{def}}{=} \left(\forall x. \ \operatorname{vvalid}(\gamma_1,x) \Leftrightarrow \operatorname{vvalid}(\gamma_2,x) \right) \land \\ \forall x,r_1,r_2. \ \operatorname{root}(\gamma_1,x,r_1) \Rightarrow \\ \operatorname{root}(\gamma_2,x,r_2) \Rightarrow r_1 = r_2 \end{split}$$

$$\{ graph_rep(\gamma) \land vvalid(\gamma, x) \}$$

$$p = x \rightarrow parent;$$

$$p0 = find(p);$$

$$x \rightarrow parent = p0$$

$$\{\exists \gamma'. \; \mathtt{graph} _\mathtt{rep}(\gamma') \land \mathtt{uf} _\mathtt{eq}(\gamma, \gamma') \land \mathtt{root}(\gamma', \mathtt{x}, \mathtt{p0})\}$$

$$\begin{split} \{ \texttt{graph_rep}(\gamma) \wedge \texttt{vvalid}(\gamma, \texttt{x}) \} \\ p &= \texttt{x} \rightarrow \texttt{parent}; \\ \{ \texttt{graph_rep}(\gamma) \wedge \texttt{vvalid}(\gamma, \texttt{x}) \wedge \texttt{p} = \texttt{prt}(\gamma, \texttt{x}) \} \\ p0 &= \texttt{find}(\texttt{p}) ; \end{split}$$

$$x \rightarrow parent = p0$$

$$\{\exists \gamma'. \mathtt{graph_rep}(\gamma') \land \mathtt{uf_eq}(\gamma, \gamma') \land \mathtt{root}(\gamma', \mathtt{x}, \mathtt{p0})\}$$

$$\{ \begin{split} & \{ \text{graph_rep}(\gamma) \wedge \text{vvalid}(\gamma, \mathbf{x}) \} \\ & p = \mathbf{x} \rightarrow \text{parent}; \\ & \{ \text{graph_rep}(\gamma) \wedge \text{vvalid}(\gamma, \mathbf{x}) \wedge \mathbf{p} = \text{prt}(\gamma, \mathbf{x}) \} \\ & p0 = \text{find(p);} \end{split}$$

$$x \rightarrow parent = p0$$

$$\{\exists \gamma'. \mathtt{graph_rep}(\gamma') \land \mathtt{uf_eq}(\gamma, \gamma') \land \mathtt{root}(\gamma', \mathtt{x}, \mathtt{p0})\}$$

$$\{ \texttt{graph_rep}(\gamma) \land \texttt{vvalid}(\gamma, \texttt{x}) \}$$

$$p = \texttt{x} \rightarrow \texttt{parent};$$

$$\{ \texttt{graph_rep}(\gamma) \land \texttt{vvalid}(\gamma, \texttt{x}) \land p = \texttt{prt}(\gamma, \texttt{x}) \}$$

$$p0 = \texttt{find}(p);$$

$$\{ \texttt{graph_rep}(\gamma_1) \land \texttt{uf_eq}(\gamma, \gamma_1) \land \texttt{root}(\gamma_1, p, p0) \land p = \texttt{prt}(\gamma, \texttt{x}) \}$$

$$\texttt{x} \rightarrow \texttt{parent} = \texttt{p0}$$

$$\{\exists \gamma'. \ \mathtt{graph_rep}(\gamma') \land \mathtt{uf_eq}(\gamma, \gamma') \land \mathtt{root}(\gamma', \mathtt{x}, \mathtt{p0})\}$$

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, x) \}$$

$$p = x \rightarrow \operatorname{parent};$$

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, x) \wedge p = \operatorname{prt}(\gamma, x) \}$$

$$p0 = \operatorname{find}(p);$$

$$\{ \operatorname{graph_rep}(\gamma_1) \wedge \operatorname{uf_eq}(\gamma, \gamma_1) \wedge \operatorname{root}(\gamma_1, p, p0) \wedge p = \operatorname{prt}(\gamma, x) \}$$

$$x \rightarrow \operatorname{parent} = p0$$

$$\{\exists \gamma'. \mathtt{graph_rep}(\gamma') \land \mathtt{uf_eq}(\gamma, \gamma') \land \mathtt{root}(\gamma', \mathtt{x}, \mathtt{p0})\}$$

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, x) \}$$

$$p = x -> \operatorname{parent};$$

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, x) \wedge p = \operatorname{prt}(\gamma, x) \}$$

$$p0 = \operatorname{find}(p);$$

$$\{ \operatorname{graph_rep}(\gamma_1) \wedge \operatorname{uf_eq}(\gamma, \gamma_1) \wedge \operatorname{root}(\gamma_1, p, p0) \wedge p = \operatorname{prt}(\gamma, x) \}$$

$$x -> \operatorname{parent} = p0$$

$$\{ \operatorname{graph_rep}(\gamma_2) \wedge \gamma_2 = \operatorname{redirect_parent}(\gamma_1, x, p0) \wedge \ldots \}$$

$$\{ \exists \gamma'. \operatorname{graph} \operatorname{rep}(\gamma') \wedge \operatorname{uf} \operatorname{eq}(\gamma, \gamma') \wedge \operatorname{root}(\gamma', x, p0) \}$$

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, x) \}$$

$$p = x \rightarrow \operatorname{parent};$$

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, x) \wedge p = \operatorname{prt}(\gamma, x) \}$$

$$p0 = \operatorname{find}(p);$$

$$\{ \operatorname{graph_rep}(\gamma_1) \wedge \operatorname{uf_eq}(\gamma, \gamma_1) \wedge \operatorname{root}(\gamma_1, p, p0) \wedge p = \operatorname{prt}(\gamma, x) \}$$

$$\{ x \mapsto \operatorname{vlabel}(\gamma_1, x), \operatorname{prt}(\gamma_1, x) \}$$

$$x \rightarrow \operatorname{parent} = p0$$

$$\{ x \mapsto \operatorname{vlabel}(\gamma_1, x), p0 \}$$

$$\{ \operatorname{graph_rep}(\gamma_2) \wedge \gamma_2 = \operatorname{redirect_parent}(\gamma_1, x, p0) \wedge \ldots \}$$

$$\{ \exists \gamma'. \operatorname{graph_rep}(\gamma') \wedge \operatorname{uf_eq}(\gamma, \gamma') \wedge \operatorname{root}(\gamma', x, p0) \}$$

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, x) \}$$

$$p = x -> \operatorname{parent};$$

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, x) \wedge p = \operatorname{prt}(\gamma, x) \}$$

$$p0 = \operatorname{find}(p);$$

$$\{ \operatorname{graph_rep}(\gamma_1) \wedge \operatorname{uf_eq}(\gamma, \gamma_1) \wedge \operatorname{root}(\gamma_1, p, p0) \wedge p = \operatorname{prt}(\gamma, x) \}$$

$$\{ x \mapsto \operatorname{vlabel}(\gamma_1, x), \operatorname{prt}(\gamma_1, x) \}$$

$$x -> \operatorname{parent} = p0$$

$$\{ x \mapsto \operatorname{vlabel}(\gamma_1, x), p0 \}$$

$$\{ \operatorname{graph_rep}(\gamma_2) \wedge \gamma_2 = \operatorname{redirect_parent}(\gamma_1, x, p0) \wedge \ldots \}$$

$$\{ \exists \gamma'. \operatorname{graph_rep}(\gamma') \wedge \operatorname{uf_eq}(\gamma, \gamma') \wedge \operatorname{root}(\gamma', x, p0) \}$$

Proof Skeleton of Find

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, \mathbf{x}) \}$$

$$p = \mathbf{x} \rightarrow \operatorname{parent};$$

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, \mathbf{x}) \wedge p = \operatorname{prt}(\gamma, \mathbf{x}) \}$$

$$p0 = \operatorname{find}(p);$$

$$\{ \operatorname{graph_rep}(\gamma_1) \wedge \operatorname{uf_eq}(\gamma, \gamma_1) \wedge \operatorname{root}(\gamma_1, \mathbf{p}, \mathbf{p0}) \wedge p = \operatorname{prt}(\gamma, \mathbf{x}) \}$$

$$\{ \mathbf{x} \mapsto \operatorname{vlabel}(\gamma_1, \mathbf{x}), \operatorname{prt}(\gamma_1, \mathbf{x}) \}$$

$$\mathbf{x} \rightarrow \operatorname{parent} = p0$$

$$\{ \mathbf{x} \mapsto \operatorname{vlabel}(\gamma_1, \mathbf{x}), \mathbf{p0} \}$$

$$\{ \operatorname{graph_rep}(\gamma_2) \wedge \gamma_2 = \operatorname{redirect_parent}(\gamma_1, \mathbf{x}, \mathbf{p0}) \wedge \ldots \}$$

$$\{ \operatorname{graph_rep}(\gamma_2) \wedge \operatorname{uf_eq}(\gamma, \gamma_2) \wedge \operatorname{root}(\gamma_2, \mathbf{x}, \mathbf{p0}) \}$$

$$\{ \exists \gamma'. \operatorname{graph_rep}(\gamma') \wedge \operatorname{uf_eq}(\gamma, \gamma') \wedge \operatorname{root}(\gamma', \mathbf{x}, \mathbf{p0}) \}$$

Proof Skeleton of Find

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, \mathbf{x}) \}$$

$$p = \mathbf{x} \rightarrow \operatorname{parent};$$

$$\{ \operatorname{graph_rep}(\gamma) \wedge \operatorname{vvalid}(\gamma, \mathbf{x}) \wedge p = \operatorname{prt}(\gamma, \mathbf{x}) \}$$

$$p0 = \operatorname{find}(p);$$

$$\{ \operatorname{graph_rep}(\gamma_1) \wedge \operatorname{uf_eq}(\gamma, \gamma_1) \wedge \operatorname{root}(\gamma_1, \mathbf{p}, \mathbf{p0}) \wedge p = \operatorname{prt}(\gamma, \mathbf{x}) \}$$

$$\{ \mathbf{x} \mapsto \operatorname{vlabel}(\gamma_1, \mathbf{x}), \operatorname{prt}(\gamma_1, \mathbf{x}) \}$$

$$\mathbf{x} \rightarrow \operatorname{parent} = p0$$

$$\{ \mathbf{x} \mapsto \operatorname{vlabel}(\gamma_1, \mathbf{x}), \mathbf{p0} \}$$

$$\{ \operatorname{graph_rep}(\gamma_2) \wedge \gamma_2 = \operatorname{redirect_parent}(\gamma_1, \mathbf{x}, \mathbf{p0}) \wedge \dots \}$$

$$\{ \operatorname{graph_rep}(\gamma_2) \wedge \operatorname{uf_eq}(\gamma, \gamma_2) \wedge \operatorname{root}(\gamma_2, \mathbf{x}, \mathbf{p0}) \}$$

$$\{ \exists \gamma'. \operatorname{graph} \operatorname{rep}(\gamma') \wedge \operatorname{uf_eq}(\gamma, \gamma') \wedge \operatorname{root}(\gamma', \mathbf{x}, \mathbf{p0}) \}$$

Proof Obligation of Find

Proof Obligation of Find

$$\begin{split} \operatorname{graph_rep}(\gamma_1) \vdash & \big(\mathtt{x} \mapsto \operatorname{vlabel}(\gamma_1, \mathtt{x}), \operatorname{prt}(\gamma_1, \mathtt{x}) \big) * \\ & \quad \Big(\big(\mathtt{x} \mapsto \operatorname{vlabel}(\gamma_1, \mathtt{x}), \mathtt{p0} \big) - \!\!\!\! * \\ & \quad \operatorname{graph_rep} \big(\operatorname{redirect_parent}(\gamma_1, \mathtt{x}, \mathtt{p0}) \big) \Big) \end{split}$$

$$\begin{split} & \texttt{uf}_\texttt{eq}(\gamma,\gamma_1) \Rightarrow \texttt{root}(\gamma_1,\texttt{p},\texttt{p0}) \Rightarrow \texttt{dst}\big(\gamma,\texttt{out}(\texttt{x})\big) = \texttt{p} \\ & \gamma_2 = \texttt{redirect}_\texttt{parent}(\gamma_1,\texttt{x},\texttt{p0}) \Rightarrow \\ & \texttt{uf}_\texttt{eq}(\gamma,\gamma_2) \land \texttt{root}(\gamma_2,\texttt{x},\texttt{p0}) \end{split}$$

Modularity: The Array Version of Find

```
struct subset {
    int parent;
    unsigned int rank;
};
int find(struct subset subs[], int i) {
    int p0 = 0;
    int p = subs[i].parent;
    if (p != i) {
        p0 = find(subs, p);
        p = p0;
        subs[i].parent = p;
    return p;
```


The same specification but a different representation

PRE: graph_rep(γ , s) \wedge vvalid(γ , x)

POST: $\exists \gamma', t \text{ s.t. } graph_rep(\gamma', s) \land uf_eq(\gamma, \gamma') \land$

 $\mathtt{root}(\gamma', x, t)$

The same specification but a different representation

PRE: graph_rep(
$$\gamma, s$$
) \wedge vvalid(γ, x)
POST: $\exists \gamma', t \text{ s.t. graph}_rep(\gamma', s) \wedge uf_eq(\gamma, \gamma') \wedge root(\gamma', x, t)$

$$\begin{split} \mathtt{graph_rep}(g,s) &\stackrel{\mathrm{def}}{=} & \exists n. \ \Big(\forall v. \ 0 \leqslant v < n \ \Leftrightarrow \ \mathtt{vvalid}(\gamma,v) \land \\ & \left(n \leqslant \mathrm{MaxInt/8} \right) \land \\ & s \mapsto \mathtt{map}(\lambda v. \ \mathtt{v_rep}(\gamma,v)) \ [0,1,2,\ldots,n] \Big) \end{split}$$

- Motivation √
- The Mathematical Graph Library \checkmark
 - Core Definitions ✓
 - Architecture ✓
 - Selection of Properties
- The Spatial Representation of Graphs \checkmark
 - CompCert and VST ✓
 - Hoare Logic and Separation Logic ✓
 - Spatial Representation of Graphs ✓
 - Localize Rule ✓
- Verification of the Find function ✓
 - Specification √
 - Proof Skeleton ✓
 - Modularity ✓
- A Generational Garbage Collector

A Generational Garbage Collector

- 12 generations; mutator allocates only into the first
- Functional mutator, so no backward pointers

A Generational Garbage Collector

- 12 generations; mutator allocates only into the first
- Functional mutator, so no backward pointers
- Cheney's mark-and-copy collects generation to its successor
- Receiving generation may exceed fullness bound, triggering cascade of further pairwise collections

A Generational Garbage Collector

- 12 generations; mutator allocates only into the first
- Functional mutator, so no backward pointers
- Cheney's mark-and-copy collects generation to its successor
- Receiving generation may exceed fullness bound, triggering cascade of further pairwise collections
- Most tasks are handled by two key functions: forward (to copy individual objects) and do_scan (to repair the copied objects)

roots
(2,3)
(2,2)
(3,1)

Bugs in the source C code

 Cheney was executed too conservatively, only part of to needs to be scaned.

Bugs in the source C code

- Cheney was executed too conservatively, only part of to needs to be scaned.
- Overflow in the following calculation:

```
int space_size =
    h->spaces[i].limit - h->spaces[i].start;
```

Undefined behavior in C

• Double-bounded pointer comparisons:

Undefined behavior in C

• Double-bounded pointer comparisons:

Resolved using CompCert's "extcall_properties".

• A classic OCaml trick:

```
int test_int_or_ptr (value x) {
   return (int)(((intnat)x)&1); }
```

Discussing char alignment issues with CompCert.

Statistics

Component	Files	LOC
Common Utilities	10	2,842
Math Graph Library	19	12,723
Memory Model & Logic	13	2,373
Spatial Graph Library	10	6,458
Integration into VST	12	1,917
Examples (excluding GC)	13	3,290
GC, subdivided into	18	14,170
• mathematical graph	1	5,764
• spatial graph	1	1,618
• function specifications	1	461
• function Hoare proofs	14	3,062
• isomorphism proof	1	3,265
Total Development	95	43,773

Separation between pure and spatial reasoning

