Lecture 12,13,14

Jan. 2020

Real and Complex Analysis

MTL122/ MTL503/ MTL506

Lecturer: A. Dasgupta

aparajita.dasgupta@gmail.com

1. Continuity and Uniform Continuity

Definition 1.1. Suppose (X, d_X) , (Y, d_Y) are metric spaces. A function $f: X \to Y$ is continuous at the point $a \in X$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that $x \in X$, $d_X(x, a) < \delta$ implies $d_Y(f(x), f(a)) < \epsilon$.

A function is called **continuous** if it is continuous at all $a \in X$.

In terms of open balls, the definition says that $f(B_{\delta}(a)) \subset B_{\epsilon}(f(a))$.

Definition 1.2. A function $f: A \to Y$ is continuous at $c \in A \subset X$ if for every neighborhood V of f(c) there is a neighborhood U of c such that

$$x \in U \cap A \implies f(x) \in V$$
.

Note that c must belong to the domain of f in order to define the continuity of f at c. If c is an isolated point of A, then the continuity condition holds automatically, since, for sufficiently small $\delta > 0$, the only point $x \in A$ with $d_X(x,c) < \delta$ is x = c and the $0 = d_Y(f(x), f(c)) < \epsilon$. Thus, a function is continuous at every isolated point of its domain, and isolated points are not of much interest.

A function is said to be Lipschitz continuous if there is $C \in \mathbb{R}$ so that

$$d_Y(f(x), f(y)) \le Cd_X(x, y)$$
 for all $x, y \in X$.

We also say that f is Lipschitz with constant C.

Lipschitz continuous map \Longrightarrow continuous map.

Solution: Let $\epsilon > 0$ and assume $f: X \to y$ be Lipschitz with constant C. Choose $\delta < \frac{\epsilon}{c}$. Now for any $x_1, x_2 \in X$ such that $d_X(x_1, x_2) < \delta$ we have

$$d_Y(f(x_1), f(x_2)) \le Cd_X(x_1, x_2) < C\delta < \epsilon.$$

This implies f is continuous.

Converse is not true.

Example 1.3. The function $f:[0,\infty)\to\mathbb{R}$ defined by $f(x)=\sqrt{x}$ is continuous but not Lipschitz.

Check: f is continuous.

Let $0 < c < \infty$. We will show that there exist choices of $x, y \in [0, \infty)$ so that $c|x-y| < |\sqrt{x} - \sqrt{y}|$. Choose x = 0 and y > 0 such that $c\sqrt{y} < 1$ which is guaranteed

by Archimedian property. Now we can rewrite this inequality as $cy < \sqrt{y}$. Then we can see that f is not Lipschitz.

$$c|y - x| = c|y - 0| = cy < \sqrt{y} = |\sqrt{y} - \sqrt{0}| = |\sqrt{y} - \sqrt{x}|.$$

Example 1.4. Let $X = \mathbb{R} = Y$, and let $f : \mathbb{R} \to \mathbb{R}$ be the map

$$f(x) = \begin{cases} 0, & \text{if } x \in \mathbb{Q} \\ 1, & \text{if } x \notin \mathbb{Q}. \end{cases}$$
 (1.1)

Let then d_{Euc} and d_{dis} be the Euclidean and the discrete metrics on \mathbb{R} . We have then

- $f:(X,d_{Euc}) \to (Y,d_{Euc})$ is not continuous;
- $f:(X,d_{Euc}) \to (Y,d_{dis})$ is not continuous;
- $f:(X,d_{dis}) \to (Y,d_{Euc})$ is continuous;
- $f:(X,d_{dis})\to (Y,d_{dis})$ is continuous.

This describes the importance of keeping in mind which are the ambient metrics. As an exercise, fill in the details to show each of the points above.

Example 1.5. The function $x \to d(x, A)$, where $\phi \neq A \subset X$ is continuous.

Example 1.6. Since $|x_k - y_k| \le d_{Euc}(x, y)$ for $x, y \in \mathbb{R}^n$, the projections $x \in \mathbb{R}^n \to x_k$ are Lipschitz continuous.

One very important property of real-valued continuous functions from a metric space is that they can be added, multiplied, and multiplied by a scalar to get more continuous functions.

Proposition 1.7. Let (X,d) be a metric space, $f,g:X\to\mathbb{R}$ be continuous, and $c\in\mathbb{R}$. Then f+g, cf and $f\cdot g$ are all also continuous functions from X to \mathbb{R} .

Definition 1.8. A function $f: X \to Y$ is sequentially continuous at $a \in X$ if $x_n \to a$ in X implies that $f(x_n) \to f(a)$ in Y.

Theorem 1.9. A function $f: X \to Y$ is continuous at a if and only if it is sequentially continuous at a.

Proof Suppose that f is continuous at $a \in X$. Let $\epsilon > 0$ be given and suppose that $x_n \to a$. Then there exists $\delta > 0$ such that $d(f(x), f(a)) < \epsilon$ for $d(x, a) < \delta$, and there exists $N \in \mathbb{N}$ such that $d(x_n, a) < \delta$ for n > N. It follows that $d(f(x_n), f(a)) < \epsilon$ for n > N, so $f(x_n) \to f(a)$ and f is sequentially continuous at a.

Conversely, suppose that f is not continuous at a. Then there exists $\epsilon_0 > 0$ such that for every $n \in \mathbb{N}$ there exists $x_n \in X$ with $d(x_n, a) < \frac{1}{n}$ and $d(f(x_n, f(a)) \ge \epsilon_0$. Then $x_n \to a$ but $f(x_n) \nrightarrow f(a)$, so f is not sequentially continuous at a.

Recall that the pre-image of U under f is $f^{-1}(U) = \{x : f(x) \in U\}$. Note that use of f^{-1} does not mean that f has an inverse.

Theorem 1.10. A map $f: X \to Y$ is continuous if and only if for every open(closed) set $U \subset Y$, the set $f^{-1}(U)$ is open(closed) (in X).

Proof. Suppose that the inverse image under f of every open set is open. Let $U \subset Y$ open. Then by given condition $f^{-1}(U) \subset X$ is open. Let $y_0 \in Y$ such that $f(x_0) = y_0$. Pick $\epsilon > 0$ and consider $U = B_{\epsilon}(f(x_0))$. Since $f^{-1}(U)$ is open, that is, $f^{-1}(B_{\epsilon}(f(x_0)))$ is open, and $x_0 \in f^{-1}(B_{\epsilon}(f(x_0)))$ so there exists $\delta > 0$ such that $B_{\delta}(x_0) \subset f^{-1}(B_{\epsilon}(f(x_0)))$ that is $f(B_{\delta}(x_0)) \subset B_{\epsilon}(f(x_0))$. Hence f is continuous.

Conversely, suppose that $f: X \to Y$ is continuous and $U \subset Y$ is open. We have to show that $f^{-1}(U)$ is open. Take $x_0 \in f^{-1}(U)$. Then $f(x_0) \in U$. Since U is open there exists $\epsilon > 0$ such that $B_{\epsilon}(f(x_0)) \subset U$. For this fixed $\epsilon > 0$ we can use the continuity that is there exists $\delta > 0$ such that $f(B_{\delta}(x_0)) \subset B_{\epsilon}(f(x_0))$. That is $B_{\delta}(x_0) \subset f^{-1}(B_{\epsilon}(f(x_0))) \subset f^{-1}(U)$, which implies x_0 is an interior point and so $f^{-1}(U)$ is open.

• Any functions defined on a discrete metric spaces is always continuous.

Theorem 1.11. The composition of continuous functions is continuous.

Proof. Suppose that $f: X \to Y$ and $g: Y \to Z$ are continuous, and $g \circ f: X \to Z$ is their composition. If $W \subset Z$ is open, then $V = g^{-1}(W)$ is open, so $U = f^{-1}(V)$ is open. Now $U = f^{-1}(g^{-1}(W))$ also $(g \circ f)(U) = W$, that is, the pre image of W under $g \circ f$ is U. It follows that $(g \circ f)^{-1}(W) = U$ is open. So $g \circ f$ is continuous. \square

1.1. Uniform Continuity.

Definition 1.12. A function $f: X \to Y$ is uniformly continuous if, for every ϵ , there is a $\delta > 0$ such that $d_X(x,y) < \delta$ implies $d_Y(f(x),f(y)) < \epsilon$, for every $x,y \in X$.

Spot the difference between uniform continuity and standard continuity? For standard continuity, for any ϵ , we are allowed to find a δ for each x such that $d_X(x,y) < \delta$ implies $d_Y(f(x), f(y)) < \epsilon$. For uniform continuity you have to pick the same δ for every x. Clearly, any uniformly continuous function is continuous, but, the reverse is not true. The key point of this definition is that δ depends only on ϵ ,not on x, y.

• The function f(x) = 1/x is not uniformly continuous on (0,1).

Proof. It is known that f(x) = 1/x is continuous on (0,1). If we assume f(x) = 1/x is uniformly continuous on (0,1). Then there exists $\delta > 0$ such that $\forall x,y \in (0,1)$ with $|x-y| < \delta$, $|\frac{1}{x} - \frac{1}{y}| < 1$. Pick $x \in (0,1)$ wit $x < \delta$. Then set $y = \frac{x}{2}$. Then $|x-y| = \frac{x}{2} < \frac{\delta}{2} < \delta$, and $|\frac{1}{x} - \frac{1}{y}| = \frac{1}{x} > 1$, a contradiction.

Exercise 1.13. If $f: X \to Y$ is a Lipschitz continuous map between two metric spaces then f is uniformly continuous.

Proof. Let f be a Lipschitz continuous map. By definition, there exists a constant K > 0 such that

$$d_Y(f(x), f(y)) \le K d_X(x, y)$$
, for all $x, y \in X$.

Now for any $\epsilon > 0$, let $\delta(\epsilon) = \frac{\epsilon}{K}$. Then $d_X(x, y) < \delta(\epsilon)$ implies

$$d_Y(f(x), f(y)) \le K d_X(x, y) < K \delta(\epsilon) = \epsilon$$

for all $x, y \in X$.

Converse is not true.

Example 1.14. The function $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$ but not Lipschitz.

For any $n \in \mathbb{N}$, $|f(1/n) - f(0)| = \sqrt{1/n} = \sqrt{n}|1/n - 0|$. It follows that f is not Lipschitz.

Given $\epsilon > 0$, let $\delta = \epsilon^2$. Suppose $|x - y| < \delta$, where $x, y \ge 0$. To estimate |f(x) - f(y)|, we consider two cases.

In the case $x, y \in [0, \delta)$, we use the fact that f is strictly increasing. Then $|f(x) - f(y)| < f(\delta) - f(0) = \sqrt{\delta} = \epsilon$. Otherwise, when $x \notin [0, \delta)$ or $y \notin [0, \delta)$, we have $\max(x, y) \ge \delta$. Then

$$|\sqrt{x} - \sqrt{y}| = \left| \frac{x - y}{\sqrt{x} + \sqrt{y}} \right| \le \frac{|x - y|}{2\sqrt{\max(x, y)}} < \frac{\delta}{\sqrt{\delta}} = \sqrt{\delta} = \epsilon.$$

Thus f is uniformly continuous.

2. Compactness in metric spaces

The closed intervals [a, b] of the real line and more generally the close bounded subsets of \mathbb{R}^n are compact. For these type of spaces we have seen interesting and very useful theorems like **Bolzano-Weierstrass theorem**, **Heine-Borel theorem** etc. Our aim to investigate the generalizations of these to metric spaces.

Let (X, d) be a metric space.

Definition 2.1. A covering of X is a collection of sets whose union is X.

Definition 2.2. A collection of open sets $\{U_i : i \in I\}$ in X is an open cover of $Y \subset X$ if $Y \subset \bigcup_{i \in I} U_i$.

A subcover of $\{U_i : i \in I\}$ is a sub-collection $\{U_j : j \in J\}$ for some $J \subset I$ that still covers Y. It is a finite subcover if J is finite.

Definition 2.3.

- (1) A metric space X is **compact** if every open over of X has a finite subcover.
- (2) A metric space is **sequentially compact** if every sequence of points in X has a convergent subsequence to a point in X.

Example 2.4.

(1) (0,1] is not sequentially compact and not compact. To show that (0,1] is not compact, it is sufficient to find an open cover of (0,1] that has no finite subcover. Consider $U_n := (\frac{1}{n}, 2)$, for $n \in \mathbb{N}$. We see, $\bigcup_{n \in \mathbb{N}} U_n = (0, 2)$ and $(0,1] \subset (0,2)$. But if F is any finite subset of $\{U_n : n \in \mathbb{N}\}$. Let $N \in \mathbb{N}$ such

that $F = \{U_{i_1}, U_{i_2}, ..., U_{i_N}\}$. Let $k = \max\{i_1, i_2, ..., i_N\}$. Then $U_k \in F$ and $U_{i_j} \subseteq U_k$, for i = 1, 2, ..., N. and $(0, 1] \not\subset \bigcup F = U_k = (\frac{1}{k}, 2)$.

- (2) [0,1] is sequentially compact. In fact, [0,1] is also compact.
- (3) \mathbb{R} is neither compact nor sequentially compact. It is not sequentially compact or compact follows from the fact that \mathbb{R} from Heine-Borel.

Exercise 2.5.

A nonempty subset K of a discrete metric space (X,d) is compact if and only if K is finite.

Proof. Assume that K is compact. Since each singleton set in a discrete metric space is open, the collection $\mathcal{C} = \{\{x\} : x \in K\}$ is an open cover for K. Since K is compact, there are elements $x_1, x_2, ..., x_n$ in K such that $K \subseteq \bigcup_{i=1}^n \{x_i\}$. Hence K is finite. Conversely, assume that K is finite. Then K is clearly compact as any finite set is compact.

Theorem 2.6. A closed subset F of a compact metric space (X, d) is compact. Easy.

Theorem 2.7. Every compact subset K of a metric (X, d) is closed and bounded.

Proof. If $K = \phi$ then it is bounded. If not, the let $x_0 \in K$. Then let $K \subseteq \bigcup_{n \in \mathbb{N}} B_n(x_0)$. By compactness there is a finite subset $F \in \mathbb{N}$ such that $K \subseteq \bigcup_{n \in F} B_n(x_0)$. Let N be the largest integer in F. Such an integer exists because F is finite and non-empty. Then $K \subset B_N(x_0)$ and it follows that K is bounded.

Let K be a compact subset of (X, d). We shall prove $X \setminus K$ is open. Fix a point $p \in X \setminus K$. For each $x \in K$ consider $\delta_x = \frac{1}{2}d(p, x)$. Then $\{B_{\delta_x}(x)\}_{x \in K}$ forms an open

cover for K. Since K is compact, there exist $x_1, x_2, ..., x_k$ such that $K \subseteq \bigcup_{i=1}^k B_{\delta_{x_i}(x_i)}$.

Then $V = \bigcap_{i=1}^k B_{\delta_{x_i}}(p)$ is an open set and contains p. Also since $B_{\delta_{x_i}}(x_i) \cap B_{\delta_{x_i}}(p) = \phi$ for all i and so $V \subset X \setminus K$. Hence K is closed as $X \setminus K$ is open. \square

We know by Heine-Borel Theorem that a subset of \mathbb{R} is compact if and only if it is closed and bounded. That is, the converse of Theorem (2.7) holds if $X = \mathbb{R}$. But in general the converse doesn't hold.

Example 2.8. K be an infinite subset of a discrete metric space (X, d). Then K is closed and bounded but not compact. (Exercise)

Definition 2.9. A subset A of a metric space X is totally bounded if, for every $\epsilon > 0$, there exist $x_1, x_2, ..., x_k \in A$, with k finite, so that $\{B_{\epsilon}(x_i) : 1 \leq i \leq k\}$ is an open

cover of X, that is,

$$A \subseteq \bigcup_{i=1}^k B_{\epsilon}(x_i)$$

Example 2.10. The set (0,1) is totally bounded. For any $\epsilon > 0$ by Archimedean property, there exists $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon}$. Then consider the points $\epsilon, 2\epsilon, ...(N-1)\epsilon$, and the balls $B_{\epsilon}(n\epsilon)$, n = 0, 1, 2, ..., N. Then $(0,1) \subset \bigcup_{n=1}^{N} B_{\epsilon}(n\epsilon)$.

• A totally bounded set is bounded.

Let B be a totally bounded set. We can therefore cover B with finite number of ϵ -balls, in particular with 1-balls.

$$B \subset \bigcup_{i=1}^{N} B_1(a_i).$$

Since there are only a finite number of these balls, we can find the maximum distance between their centres. $D := \max\{d(a_i, a_j)\}$. Now given any two points $x, y \in B$, they must be covered by two of these balls $B_1(a_I)$ and $B_1(a_J)$, say. Therefore, using the triangle inequality twice,

$$d(x,y) \le d(x,a_I) + d(a_I,a_J) + d(a_J,y) \le 1 + D + 1.$$

That is D+2 is an upper bound for the distance between points in B.

But the converse is not true, i.e. bounded *⇒* totally bounded.

Example 2.11. Take $U = \{e_n | n \in \mathbb{N}\} \subset l^{\infty}(\mathbb{R})$, where $e_n = (e_{nj})_{j \in \mathbb{N}}$ with $e_{nj} = 1$, j = n and 0 otherwise. Then since $\forall e_i, e_j \in U$ $d(e_i, e_j) = 1$ so obviously this set is bounded. But for $\epsilon = 1$ we cannot find finite number of open balls with radius ϵ that cover U- as each ball will contain only one element of U. Hence U is not totally bounded.

Theorem 2.12. X is totally bounded if and only if every sequence in X has a Cauchy subsequence.

Proof. First assume that X is totally bounded, and let $\{x_n\}$ be a sequence in X. X is a union of finitely many sets of diameter less than 1. We pick one of these sets that contains infinitely many elements of (x_n) and call it S_1 . Choose n_1 such that $x_{n_1} \in S_1$. Again since S_1 is totally bounded, it is a union of finitely many sets of diameter less than 1/2. From here also we pick up a set that contains infinitely many elements of (x_n) and call it S_2 . Choose $n_2 > n_1$ such that $x_{n_2} \in S_2$. Continuing this way we get a decreasing sequence $\{S_k\}$ of sets, that is $S_k \supset S_{k+1}$, $\forall k$, of diameter less than 1/k and a strictly increasing sequence $\{n_k\}$ in \mathbb{N} such that $x_{n_k} \in S_k$ for all k. Since $d(x_{n_1}, x_{n_k}) < 1/k$ for all $j, l \geq k$, the subsequence is Cauchy.

Conversely, suppose X is not totally bounded. We will construct a sequence in X with no Cauchy subsequence. We can choose $\epsilon > 0$ such that X is not finite union of open balls of radius ϵ . Choose $x_1 \in X$. Since $X \neq B_{\epsilon}(x_1)$, we can choose $x_2 \notin B_{\epsilon}(x_1)$.

Similarly, we can choose $x_3 \in \bigcup_{i=1}^2 B_{\epsilon}(x_i)$. Continue in this way, getting a sequence $\{x_n\}$ in X such that x_n in X such that

$$x_n \notin \bigcup_{i < n} B_{\epsilon}(x_i)$$
, for all n .

It follows that if $n \neq k$ then $d(x_n, x_k) \geq \epsilon$. Therefore, $\{x_n\}$ has no Cauchy subsequence.

Theorem 2.13. For a metric space (X, ρ) , the following are equivalent:

- (1) X is compact.
- (2) X is sequentially compact.
- (3) X is complete and totally bounded.

Proof.
$$(1) \implies (2)$$
.

Let (x_n) be a sequence in a compact metric space X. If no subsequence of (x_n) converges in X, then for each $y \in X$ there is some $r_y > 0$ and a positive integer n_y such that $x_n \notin B_{r_y}(y)$ for all $n \geq n_x$. Since $X = \bigcup_{y \in X} B_{r_y}(y)$, and X is compact so there are finitely many $y_1, y_2, ..., y_k \in X$ such that $X = \bigcup_{i=1}^k B_{r_{y_i}}(y_i)$. Take $n_0 = \max\{n_{y_1}, n_{y_2}, ..., n_{y_k}\}$. Then $x_{n_0+1} \notin B_{r_{y_i}}(y_i)$, $\forall i = 1, 2, ...k$. So $x_{n_0+1} \notin X$. A contradiction.

$$(2) \implies (3).$$

Suppose that every sequence in X has a convergent subsequence. Since a Cauchy sequence having a convergent subsequence is it self convergent so X is complete. Next assume that X is not totally bounded. Then there is some $\epsilon > 0$ such that X cannot be covered by finitely many open balls of radius ϵ . Let $x_1 \in X$ and consider $B_{\epsilon}(x_1)$ for some $\epsilon > 0$. Find $x_2 \in X$ such that $x_2 \notin B_{\epsilon}(x_1)$. Inductively find $x_{n+1} \in X$ such that $x_{n+1} \notin \bigcup_{i=1}^n B_{\epsilon}(x_i)$. Then by construction $d(x_n, x_m) \ge \epsilon$ for all n, m = 1, 2, ..., so (x_n) cannot have any convergent subsequence. A contradiction. Hence X is totally bounded.

$$(3) \implies (1).$$

Suppose that X is complete and totally bounded. Assume that X is not compact. Consider an open cover of $X = \bigcup_{\alpha \in \Omega} \{U_{\alpha}\}$ without any finite subcover. Since X is totally bounded, cover X by finitely many open balls of radius 1. Then for at least one of these open balls of radius 1, say $B_1(x_1)$ there exists no finite subcover. Now $B_1(x_1) \subset X$ is totally bounded, cover $B_1(x_1)$ by finitely many open balls of radius 1/2. Then for at least one of these open balls of radius 1/2 there exists no finite subcover. So there exists $x_2 \in B_1(x_1)$ such that $B_{1/2}(x_2)$ has no finite subcover. Continuing this we get a sequence (x_n) in X with $x_{n+1} \in B_{1/2^n}(x_n)$ such that $B_{1/2^n}(x_n)$ has no

finite subcover. Now

$$d(x_n, x_m) \le \sum_{j=n}^{m-1} d(x_j, x_{j+1}) \le \sum_{j=n}^{m-1} \frac{1}{2^j} \le \frac{1}{2^{n-1}}$$

for all m > n. So (x_n) is a Cauchy sequence in the complete metric space X. Let $x_n \to x \in X$. Then $x \in U_\alpha$ for some $\alpha \in \Omega$. Then there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset U_{\alpha}$. For this $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $d(x_n, x) < \epsilon/2$ for all $n \geq N$. We choose m > N so large that $1/2^m < \epsilon/2$. Now let $y \in B_{1/2^m}(x_m)$, then

$$d(x,y) \le d(x,x_m) + d(x_m,y) < \frac{\epsilon}{2} + \frac{1}{2^m} < \epsilon.$$

This implies $y \in B_{\epsilon}(x)$, that is $B_{1/2^m}(x_m) \subset B_{\epsilon}(x) \subset U_{\alpha}$. Thus U_{α} constitutes a open subcover of $B_{1/2^m}(x_m)$. A contradiction to our construction of $B_{1/2^m}(x_m)$.

Theorem 2.14. Let (X, d_1) and (Y, d_2) be metric spaces and $f: X \to Y$ be a continuous function. Then for each compact subset $C \subset X$, $f(C) \subset Y$ is compact.

Proof. Let $\{U_i : i \in I\}$ be an open cover of f(C), and for each $i \in I$, define $V_i = f^{-1}(U_i)$. Notice that since f is continuous, each V_i is open and $\{V_i : \in I\}$ is an open cover of C. Since C is compact so it has a finite subcover $\{V_{i_1}, ..., V_{i_n}\}$. Then $\{U_{i_1}, U_{i_2}, ..., U_{i_n}\}$ is a finite subcover of f(C). This proves f(C) is compact. \square

Theorem 2.15. Let $f:(X,d_X) \to (Y,d_Y)$ be a continuous function of metric spaces, and suppose in addition that X is compact. Then f is uniformly continuous.

Proof. Let (X,d) be a compact metric space and (Y,ρ) be a metric space. Suppose $f:X\to Y$ is continuous. We want to show that it is uniformly continuous. Let $\epsilon>0$. We want to find $\delta>0$ such that $d(x,y)<\delta \implies \rho(f(x),f(y))<\epsilon$ for all $x,y\in X$. Since f is continuous at each $x\in X$ then there is some $\delta_x>0$ so that

$$f(B(x, \delta_x) \subseteq B(f(x), \epsilon/2).$$

Now $\{B(x, \delta_{x/2})\}_{x \in X}$ is an open cover of X so there is a finite subcover $\{B(x_i, \delta_{x_i}/2)\}_{i=1}^n$. Take $\delta = \min_i (\frac{\delta_{x_i}}{2})$. Suppose for $x, y \in X$, $d(x, y) < \delta$. Since $x \in X$ so $x \in B(x_i, \delta_{x_i}/2)$ for some i. We claim then $y \in B(x_i, \delta_{x_i})$. (Check). Then for $d(x, y) < \delta$ we have

$$\rho(f(x), f(y)) \le \rho(f(x), f(x_i)) + \rho(f(x_i), f(y)) < \epsilon/2 + \epsilon/2 = \epsilon.$$

Theorem 2.16. Let (X, d_X) be a compact metric space. Then (X, d_X) is complete.

Remark 2.17. (Exercise)

- (1) The product of two compact metric spaces is compact.
- (2) A finite union of compact sets is compact.