

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE18CS314

OCTOBER 2020: IN SEMESTER ASSESSMENT B Tech 5 SEMESTER TEST - 1 UE18CS314 (4 credit) - APPLIED CRYPTOGRAPHY

	-	Tir	ne: 2	2 Hrs				Ar	swer	All C	(uesti	ons				Max	Mark	s: 60	
а	1	For each of the following encryption schemes, state whether the scheme is perfectly secret. Justify your answer in each case The message space is M = {0, 1, 2, 3, 4} Algorithm Gen choses a uniform key from the key space {0, 1, 2, 3, 4, 5} Enck (m) returns [k + m mod 5] and Deck (c) returns [c-k mod 5].												5					
b	,	The message space is $M = \{m \in \{0,1\} \land l \mid \text{the last bit of m is 0}\}$. Gen chooses a uniform key from $\{0,1\} \land l-1$. Enc _k (m) returns cipher-text: $m \oplus (k 0)$, and Dec _k (c) returns $c \oplus (k 0)$. Note: represents concatenation												5					
2 a	columnar transposition cipher to find ciphertext with keys = {Crypt, Perfect}.												4						
b	,	Define Pseudo Random Permutation with example.												3					
c	;]	Explain the working of one-time pad.											3						
3 a		Why		muta		Sub	ostitu	ıtion ı	used	in DI	ES e	ncry	otion	Algo	rithr	 n?			4
b		Give	0 14 0 1	e s-b	2 13 7 14	3 1 4	9 find 4 2 14 13	5 15 2 6	6 11 13 2.	S	8 3 10 15	9 10 6 12	6 12 9	11	5 9 3	13 9 5 10	0 3 5	1.5 7 8 0	2
		3	15	12	ĸ	<u>1</u>	4	9	1	?	5	11	3	4	10)	{)	ń	13	
0		Explain the working of triple-DES.											4						
4 8	a	first	set o	of ke	y wo /alue: 2	rd [v s of 3	v5-w <i>rc_i</i> ir 4	8] with	th rcc adeci	on giv imal 8	/en b	10	BES1	CR	YPT	OGR	APH	Y" for	5

4.	b)	Rajesh has designed a logistic regression classifier to predict the likelihood of stars being visible in the night sky based on the humidity reported on any day:											
		logit (p) = $\log(p/(1-p)) = \beta_0 + \beta_1$ *humidity, where p is the probability stars are visible at r Given that $\beta_0 = 1.8185$ and $\beta_1 = -0.0665$, answer the following questions:											
		(i) What d	oes the value	e of β ₀ me	ean?	ah-l	_ 1134 c . s s s	lth whi	iah atau	re are visible in the			
		(ii) If humidity on a day = 25, what is the probability with which stars are visible in the night sky according to this model?											
	c)	All the 100 precious stones along with 100 other rocks have been classified as 'precious											
		stones' by a logistic regression model. Write the entries of the confusion matrix for this											
		classifier, clearly labeling the rows and columns. What further steps should be taken to plot the receiver operator characteristics (RoC) for this logistic regression model?											
					, <u></u>								
5.	a)	With a schem	atic sketch,	briefly d	escribe t	ne key	charac	teristic	s of th	ne level, trend and	4 (3+1)		
		seasonality components of an additive time series data. What are cyclic components and, vare they usually not accounted for in models for time series data?											
		·									3		
	b)	For the data given below, use MAPE to compare the forecast accuracy of single exponential											
		smoothing (SES) with alpha = 0.7 with the forecast accuracy of the simple moving average (SMA) with a window size = 3 for time points t=5,6,7. [You can use the values of y that are											
		available to make the forecasts for SMA and for SES assume the forecast, F ₄ =y ₄ .]											
			T T		2 12	- Ta	5	6	7	٦			
			Т		2 3	4				_			
			Уt	10	11 12	16	17	19	20				
	ļ												
	c)	Suggest an ap		each of th	e followin	g techni	ques to	mode	i time	series data	3		
		(i) Croston's method											
		(ii) Holt-Winter's method (iii) ARIMA											
6	a) Write the equation corresponding to the two models given below (explain the symbols clear												
		(i) ARIMA(0,1,0)											
		(ii) ARIMA(1,0,1)											
	b)	b) Which model is better and why? (3+3)											
		Statistic	Model A	Model I	3 Bet	ter: Mod	lel A o	r Mode	el B?	Why?			
		1 AIC	258.24	251.42									
		2 R ²	0.98	0.91									
	1	3 RMSE	0.048	10.001	1					. /	1		