RESUMEN PARCIAL

REDES NEURONALES

▶ Red general de 3 capas

Núm. de params:
$$(D+1)J + J+1$$

matriz vector

 $V=(V_j)$
 $W=(W_j)$

Forward prop:

$$Z_j = O\left(\sum_{d=0}^{N} X_d Y_d\right)$$

vale la sigmoidal

capa mejor no

 $Y(x) = O\left(\sum_{j=0}^{N} w_j Z_j\right) = O\left(\sum_{j=0}^{N} w_j \sum_{d=0}^{N} X_d Y_d\right)$

o combinae

$$\mathcal{J}(x) = \sigma\left(\sum_{j=0}^{3} \omega_{j} Z_{j}\right) = \sigma\left(\sum_{j=0}^{3} \omega_{j} \sum_{d=0}^{3} X_{d} V_{dj}\right)$$

$$\omega_{i} = \omega_{i} - \gamma(y(x_{n}) - t_{n})Z_{i}$$
 $V_{pq} = V_{pq} - \gamma(y(x_{n}) - t_{n})W_{q}Z_{q}(1 - Z_{q})X_{np}$

V, W < inicializar pesos aleat. E [-0'5,0'5]. for ie = 1: nepocas: for N=1:N

des: primero se actualiza Vpq y después Wq.

ALGORITMOS	GENÉTICOS
ALGORITMOS	GENÉTICOS

Algorituo	1
Argontino	•

AG_Model (función fitness f, params evolución):

init población aleatoria inicial P

mientras no se cumpla criterio-fin:

S = selección-progenitores (P)

S = recombinación (S)

S = mutación (S)

P = selección-supervivientes (P,S)

return best_individuo

función fitness: cuantifica la calidad de una solución (individuo). Debe ser mayor cuanto mejor sea. selección-progenitores: selección aleatoria con reempla-zamiento con tantos progenitores como individuo haya en la población: normalmente se hace selección proporcional a fitness.

seleccion supervivientes: se copia la generación obtenida en la siguiente + elitismo (pequeño).

Teoria de esquemas:

O(H) := número de bits definidos esquema H.

d(H):= longitud esquena H = distancia máx. bits def

L := longitud cadenas de soluciones.

· Cada cadena def. de longitud L es una instancia de 2

· Una población de N individuos contiene instancias de 2^L esquemas (todos iguales) a N2^L esquemas.

 $n_{H}(t) := numero instancias esquema H tiempo t.$

fi(t):= fitness individuo i en tiempo t.

 $\bar{f}(t) := fitness medio población tiempo t.$

 $f_H(t) := fitness medio exquena H tiempo t.$

E[n_H(t+4)]:= valor esperado de instancias esquema H tiempo t+1

Paso 1: selección proporcional a fitness.

 $\mathbb{E}_{s}\left[n_{H}(t+4)\right] = n_{H}(t) \cdot \frac{\overline{f_{H}(t)}}{\overline{I}(t)}$

<u>Paso</u> 2: cruce en un junto

 $S_c = 1 - P_c \cdot \frac{d(H)}{1-1}$

Paso 3: mutación bitflip $S_M = (1 - P_M)^{O(H)}$

 $\mathbb{E}\left[N_{H}(t+1)\right] = N_{H}(t) \frac{\overline{f}_{H}(t)}{\overline{f}(t)} \cdot \left(1 - P_{c} \frac{d(H)}{L-1}\right) \left(1 - P_{M}\right)$

ARBOLES DE DECISION

Observaciones:

- Inviable encontrar una solución óptima (maldición de la
 - dimensionalidad) -> debemos tener sesgos -> -> construimos el árbol paso a paso, escogiendo la mejor división en cada paso (criterio DE División)
- El arbol crece hasta que se cumple el critterio DE PARA
- El árbol se peda (criterio DE PODA) para evitar 'overfitting

CRITERIO DE DIVISIÓN: CRITERIO DE GINI

Debenos medir la impureza del nodo. Impureza Gini: $i(t) = \sum_{i=1}^{K} f_i(1-f_i)$

$$i(t) = \sum_{i=1}^{K} f_i(1-f_i)$$

fi = fracción ejemplos clase i nodo (K = número de clases totali

Variación de impureza tras una división:

$$\Delta i(t,s) = i(t) - P_L i(t_L) - P_R i(t_R)$$

| sproporción | " " deho

que van al inde.

CRITERIO DE PARADA!

- todos los ejemplos clasificados o no hay nuevas divisiones p el nº de ejemplos de un nodo er "muy pequeño". pre-pod la ganancia de impureza es "pequeña".

 profundidad máxima.

PodA: eviter "overfitting"

Criterio de poda:
$$R_{\infty}(t) = R(t) + \infty C(t)$$

R = error del árb con raíz en $R_{\infty}(t) = R(t) + \infty C(t)$

Criterio de poda: $R_{\infty}(t) = R(t) + \infty C(t)$
 $R = \text{error del árb}$

con raíz en $R = \text{error del árb}$

con raí

HIPERPARÁNETROS — número mínimo de ejemplos para dividir una hoja aplicar o no poda Limite de profundidad (si la hay) o número máximo de nodos del árbol.
DESVENTAJAS ÁRBOLES > no manejan bien interacciones complejas entre atributos. Falta de poder expresivo > problema de replicación: mismo subárbol en
partes diferentes. VENTAJAS ÁRBOLES Taciles de entender por no expertos. Se pueden convertir en reglas => interpretables. -> manejan atributos nominales y numéricos
> gestionan bien atributos no informativos o redundantes. > pueden trabajar con missing values. > método no paramétrico. No hay una idea predefiniob sobre el concepto de aprender. > pocos hiperparametros.

LUNION DE CLAGIFICADORES

· jurado con errores indeps y < 50% =>

> voto por mayoría -> 100% tamaño -> 0

jurado Trua de Condorcet:

DESVENTAJAS

más leuto que un clasificador único ya que hay que crear cientos o miles de clasificadores. > se pierde interpretabilidad de los árboles.

VENTAJAS

familia de alg con mejor rendimiento actualmente. los conjuntos basados en aleatorización son alg. sin prácticamente hiperparámetros que ajustar. > si son árboles, se crean y clasifican muy rapido.

BAGGING /

Dataset L: (xi,yi) i=1,-,N Ensemble size T for t=1 to T: sample = BootstrapSample (L) h = Train (lf (sample)

output:

$$H(x) = \underset{f}{\operatorname{argmax}} \left(\sum_{t=1}^{T} 1_{\{h_t(x) = j\}} \right)$$

voto por
mayona

BOOSTING

Dataset L: (Xi, Yi) i=1,-,N Ensemble size T asignar pesos ejemplos 1/N for t=1 to T: ht = buildClf(L, pesos) et = weighted Error (L, pesos) if et==0 or et>0'5: brea dividir pesas ejemplos mal: 20 dividir pesos ejemplos bien: 2(1-

 $H(x) = \underset{\text{voto pouderado}}{\operatorname{argmax}} \left(\sum_{t=1}^{T} log \left(\frac{1-\ell_t}{\ell_t} \right) \right)$