Définition. – La pondérée de la série statistique

$$\frac{\text{Valeur} \quad x_1 \quad x_2 \quad \dots \quad x_p}{\text{Effectif} \quad n_1 \quad n_2 \quad \dots \quad n_p}$$

est le réel \bar{x} tel que :

$$\bar{\mathsf{x}} = \ldots,$$

où N est

•

Propriété. – On peut calculer la moyenne \bar{x} à partir de la distribution des fréquences :

$$\bar{\mathbf{x}} = \dots$$

Exemple. – Le tableau ci-dessous donne la répartition des magasins d'une enseigne de prêt-à-porter en fonction de leur nombre d'employés.

Nombre d'employés	1	2	3	4	5	6	7
Effectif	2	10	48	90	54	14	4

1. Interpréter la valeur 90 présente dans le tableau.

.....

2. Déterminer la moyenne de cette série statistique (on donnera la valeur exacte puis une valeur arrondie à 0, 01 près).

.....

Exemple. – On a soumis une liste de 10 questions à un groupe de candidats à un jeu télévisé. Voici les résultats :

Réponses justes	4	5	6	7	8	9	10
Fréquence	0,05	0	0, 175	0,35	0, 275	0, 125	0,025

1. Interpréter la valeur 0,175 présente dans le tableau précédent.

.....

2. Déterminer le nombre moyen de bonnes réponses données.

Remarque. – La moyenne permet de résumer une série statistique à l'aide d'un seul nombre mais elle ne donne aucune information sur la des valeurs.

Proposition (linéarité de la moyenne). -

- Si on multiplie toutes les valeurs d'une série statistique par un nombre a, alors la moyenne de cette série
- Si on ajoute un même nombre *b* à toutes les valeurs d'une série statistique,

2. VARIANCE ET ÉCART-TYPE

Définition. – Avec les notations du paragraphe 1., la variance V de la série statistique est calculée grâce à :

$$V = \dots$$

L'écart-type de la série statistique est le nombre σ défini par :

$$\sigma = \dots$$

Exemple. – Dans la classe de Seconde 3, la moyenne au dernier devoir commun de mathématiques est catastrophique : 6,25/20! Dans la classe de Seconde 1, les élèves sont bien meilleurs et la moyenne de cette classe est 12,25/20.

Le professeur de la Seconde 3 décide alors de multiplier toutes les notes par 2, tandis que le professeur de la Seconde 1 décide d'ajouter 1 point à chaque élève. Après modification des notes, quelle classe aura la meilleure moyenne?

•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•
•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	 •	•	•	•	•	•
•							•		•															•						•	•	 •							•	•	•	•								•	•						•

Exemple. – On a relevé l'âge des participants à une compétition inter académique de judo. On a obtenu les résultats ci-dessous :

Âge	15	16	17	18
Nombre de judokas	24	29	35	22

Déterminer l'écart-type de cette série à 0,01 près.

	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •