北京交通大学

2017-2018 学年第一学期研究生随机过程I试题

姓名:	学院:	任课教师:
专业:	班级:	_学号:
`	本试卷满分100 分, 共五道大题, 姓名、学院、专业、班级、学号	

- **1. (20分)** 设在 [0,t] 内事件 A 已经发生 n 次, 求第 k(k < n) 次事件 A 发生的时间 S_k 的条件概率密度函数. (其中等待时间 S_n 服从参数为 n,λ 的 Γ 分布,即分布密度为 $f(t) = \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}, t \geq 0$.)
- **2. (20分)** A, B 两罐总共装着 N 个球, 在时刻 n 先从 N 个球中等概率地任取一球. 然后从 A, B 两罐中任选一个, 选中 A 的概率为 p, 选中 B 的概率为 1-p. 之后再将选出的球放入选好的罐中. 设 X_n 为每次试验时 A 罐中的球数. 试详细求此 Markov 链的转移概率矩阵.
- **3.** (20分) 设 Markov 链 X_n , $n \ge 0$ 的状态空间 $E = \{1, 2, 3\}$ 和一步转移概率矩阵

$$P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

初始分布为 $P(X_0 = 1) = P(X_0 = 2) = P(X_0 = 3) = 1/3$. 对任意 $n \ge 1$, 试求: (1) $P(X_{n+2} = 2|X_n = 1)$; (2) $P(X_3 = 1)$ (写出计算步骤); (3) 该链是否具有平稳分布? 为什么? (4) 是否具有极限分布? 若有则求出.

4. (20分)

(I) 设马尔科夫链 $\{X_n\}$ 的状态空间 $E = \{0, 1, 2, 3\}$, 一步转移概率矩阵为

$$P = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0.4 & 0.6 & 0 & 0 \\ 0.5 & 0.3 & 0.2 & 0 \end{array}\right).$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集; (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.
- (II) 设 Markov 链的状态空间 $E = \{1, 2, 3\}$, 其转移概率矩阵

$$P = \left(\begin{array}{ccc} 0.6 & 0.2 & 0.2 \\ 0.1 & 0.6 & 0.3 \\ 0.5 & 0.2 & 0.3 \end{array}\right).$$

(1) 判别以上 Markov 链是否具有平稳分布(写出理由); (2) 若具有平稳分布, 求平稳分布及 $\lim_{n\to\infty} P^{(n)}$.

5. (20分) 设
$$Y_t = \sum_{n=1}^{N_t} \xi_n$$
 是一个复合 Poisson 过程, $t \ge 0$.

- (1) 若 $\varphi_{\xi}(u) \triangleq Ee^{iu\xi}(其中\ i = \sqrt{-1})$ 是随机变量 ξ_n 的特征函数, 试求 Y_t 的特征函数 $\varphi_{Y_t}(u)$.
- (2) 若 $E(\xi^2)$ < ∞ , 试求 $E(Y_t)$, $Var(Y_t)$.

(注:
$$Var(Y_t) = E[Var(Y_t|N_t)] + Var[E(Y_t|N_t)].$$
)