Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Terminology

- unicast: Direct, host-to-host communication. Can be across the entire internet.
- broadcast: Communication done from one host to all other hosts on the same subnet.
- multicast: Communication done from one or more hosts to a "subscribed" set of hosts across multiple subnets. Note that internet routers block multicast packets, so it's LAN only.
- anycast: Communication done to the closest subnet that responds. Google uses this to cache search results physically closer to you. i.e., a subnet is advertised in multiple places!

Broadcast routing

- deliver packets from source to all other nodes
- source duplication is inefficient:

source duplication: how does source determine all of the recipient addresses?

In-network duplication

- flooding: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- controlled flooding: node only broadcasts packet if it hasn't broadcast same packet before
 - node keeps track of packet ids already broadcasted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- spanning tree:
 - no redundant packets received by any node

Spanning tree

- first construct a spanning tree
- nodes then forward/make copies only along spanning tree

Broadcast initiated at A

Broadcast initiated at D

Spanning tree: creation

- center node
- each node sends unicast join message to center node
 - message forwarded until it arrives at a node already belonging to spanning tree

(a) stepwise construction of spanning tree (center: E)

(b) constructed spanning tree

Multicast routing: problem statement

goal: find a tree (or trees) connecting routers having local multicast group members

- * tree: not all paths between routers used
- * shared-tree: same tree used by all group members
- * source-based: different tree from each sender to rcvrs

shared tree

source-based trees

legend

group member

not group member

router with a group member

router without group member

Approaches for building meast trees

approaches:

- source-based tree: one tree per source
 - shortest path trees
 - reverse path forwarding
- group-shared tree: group uses one tree
 - minimal spanning (Steiner)
 - center-based trees

...we first look at basic approaches, then specific protocols adopting these approaches

Shortest path tree

- multicast forwarding tree: tree of shortest path routes from source to all receivers
 - Dijkstra's algorithm

LEGEND

link used for forwarding, i indicates order link added by algorithm

Reverse path forwarding

- rely on router's knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

if (multicast datagram received on incoming link on shortest path back to center)then flood datagram onto all outgoing linkselse ignore datagram

Reverse path forwarding: example

LEGEND

datagram will be forwarded

datagram will not be forwarded

- result is a source-specific reverse SPT
 - may be a bad choice with asymmetric links

Reverse path forwarding: pruning

- forwarding tree contains subtrees with no multicast group members
 - no need to forward datagrams down subtree
 - "prune" messages sent upstream by router with no downstream group members

Shared-tree: steiner tree

- steiner tree: minimum cost tree connecting all routers with attached group members
- problem is NP-complete
- excellent heuristics exists
- not used in practice:
 - computational complexity
 - information about entire network needed
 - monolithic: rerun whenever a router needs to join/leave

Center-based trees

- single delivery tree shared by all
- one router identified as "center" of tree
- to join:
 - edge router sends unicast join-msg addressed to center router
 - join-msg "processed" by intermediate routers and forwarded towards center
 - join-msg either hits existing tree branch for this center, or arrives at center
 - path taken by join-msg becomes new branch of tree for this router

Center-based trees: example

suppose R6 chosen as center:

Internet Multicasting Routing: DVMRP

- DVMRP: distance vector multicast routing protocol, RFC1075
- flood and prune: reverse path forwarding, sourcebased tree
 - RPF tree based on DVMRP's own routing tables constructed by communicating DVMRP routers
 - no assumptions about underlying unicast
 - initial datagram to multicast group flooded everywhere via RPF
 - routers not wanting group: send upstream prune messages

DVMRP: continued...

- soft state: DVMRP router periodically (1 min.) "forgets" branches are pruned:
 - multicast data again flows down unpruned branch
 - downstream router: reprune or else continue to receive data
- routers can quickly regraft to tree
 - following IGMP join at leaf
- odds and ends
 - commonly implemented in commercial router

Tunneling

Q: how to connect "islands" of multicast routers in a "sea" of unicast routers?

- multicast datagram encapsulated inside "normal" (nonmulticast-addressed) datagram
- normal IP datagram sent through "tunnel" via regular IP unicast to receiving multicast router (recall IPv6 inside IPv4 tunneling)
- receiving multicast router un-encapsulates to get multicast datagram
 Network Layer 4-18

PIM: Protocol Independent Multicast

- not dependent on any specific underlying unicast routing algorithm (works with all)
- two different multicast distribution scenarios :

dense:

- group members densely packed, in "close" proximity.
- bandwidth more plentiful

sparse:

- # networks with group members small wrt # interconnected networks
- group members "widely dispersed"
- bandwidth not plentiful

Consequences of sparse-dense dichotomy:

dense

- group membership by routers assumed until routers explicitly prune
- data-driven construction on multicast tree (e.g., RPF)
- bandwidth and non-grouprouter processing is profligate

sparse:

- no membership until routers explicitly join
- receiver-driven construction of multicast tree (e.g., centerbased)
- bandwidth and non-grouprouter processing is conservative

PIM- dense mode

flood-and-prune RPF: similar to DVMRP but...

- underlying unicast protocol provides RPF info for incoming datagram
- less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm
- has protocol mechanism for router to detect it is a leaf-node router

PIM - sparse mode

- center-based approach
- router sends join msg to rendezvous point (RP)
 - intermediate routers update state and forward join
- after joining via RP, router can switch to sourcespecific tree
 - increased
 performance: less
 concentration, shorter
 paths

PIM - sparse mode

sender(s):

- unicast data to RP, which distributes down RP-rooted tree
- RP can extend multicast tree upstream to source
- RP can send stop
 message if no attached
 receivers
 - "no one is listening!"

Chapter 4: done!

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format, IPv4 addressing, ICMP, IPv6

- 4.5 routing algorithms
 - link state, distance vector, hierarchical routing
- 4.6 routing in the Internet
 - RIP, OSPF, BGP
- 4.7 broadcast and multicast routing
- understand principles behind network layer services:
 - network layer service models, forwarding versus routing how a router works, routing (path selection), broadcast, multicast
- instantiation, implementation in the Internet