ESPACES VECTORIELS

IMAGE, NOYAU, ESPACE $\mathcal{L}(E,F)$, COMPOSITION ET RÉCIPROQUE D'APPLICATIONS LINÉAIRES

Soient E et F deux \mathbb{K} -espaces vectoriels.

1 Image et noyau d'une application linéaire

Proposition 1 Soit $f: E \to F$ une application linéaire et E' un sous-espace vectoriel de E. ALors f(E') est un sous-espace vectoriel de F. En particulier f(E) est un sous-espace vectoriel de F appelé **image** de f et noté $\mathrm{Im}(f)$. Ainsi

$$\begin{split} \operatorname{Im}(f) &=& \left\{ f(x); \ x \in E \right\}, \\ &=& \left\{ y \in F, \ \exists x \in E \ \text{tel que} \ y = f(x) \right\}. \end{split}$$

Remarque 1 $f: E \to F$ est surjective si et seulement si $\mathrm{Im}(f) = F$.

Définition 1 Soit $f: E \to F$ une application linéaire. Le **noyau** de f, noté $\mathrm{Ker}(f)$ est défini par

$$Ker(f) = \{x \in E : f(x) = 0_F\}.$$

C'est l'image réciproque du vecteur nul de F: $Ker(f) = f^{-1}(\{0_F\})$.

Proposition 2 Ker(f) *est un sous-espace vectoriel de E.*

Proposition 3 Soit $f \in \mathcal{L}(E, F)$. Alors f est **injective** si et seulement si

$$Ker(f) = \{0_E\}.$$

2 Opérations sur les applications linéaires

Proposition 4 $\mathcal{L}(E,F)$ est un \mathbb{K} -espace vectoriel.

Proposition 5 Soient E, F et G trois \mathbb{K} -espaces vectoriels. Soient $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$. Alors gof est une application linéaire de E dans G.

Proposition 6 Soient E, F deux \mathbb{K} -espaces vectoriels et $f \in \mathcal{L}(E,F)$. Si f est un isomorphisme de E dans F, alors f^{-1} est un isomorphisme de F dans E.

1 IONISX