## Optimization Models and Applications

Martin Takáč

ISE 316, Fall 2014, Lecture 1

September 3, 2014

Martin Takáč ISE 316 Fall 2014 1 / 33

## **Outline**

- Course Information
- Example of an Optimization Problem
- Terminology and Formal Formulation
- General Optimization Problem
- Solving of an Optimization Problem in Excel

Martin Takáč ISE 316 Fall 2014 2 / 33

## Part I. Course Information

Martin Takáč ISE 316 Fall 2014 3 / 33

## What is it about?

#### Theory

- Linear Programming (LP)
- Integer Programming (IP)
- Nonlinear Programming (NP)
- Robust Optimization, Stochastic Programming and Multi-criteria Programming

#### **Practice**

- Modeling
- Solving problems using Excel Solver and AMPL

Martin Takáč ISE 316 Fall 2014 4 / 33

## 1st rule

Martin Takáč ISE 316 Fall 2014 5 / 33

### 1st rule

## There are no stupid questions!

Martin Takáč ISE 316 Fall 2014 5 / 33

## Evaluation

| Homework            | 25% |
|---------------------|-----|
| Quiz #1             | 20% |
| Quiz #2             | 25% |
| Case study          | 20% |
| Class participation | 10% |

Martin Takáč ISE 316 Fall 2014 6 / 33

#### Homework

- Several homework
- · All must be completed to receive a grade for the course
- Require modeling and solving simple problems
- · Homework will be penalized for each day they are late
- After solutions are released, they will not be accepted
- No exceptions! Also, no exception to the no-exception rule!

Martin Takáč ISE 316 Fall 2014 7 / 33

## Case study

- Is a hands-on experience on real Optimization problems
- It must be completed to receive a grade
- Groups of three-four people study an Optimization problem, propose a model and solve it using a tool of their choice
- The result is a short report on the whole experience
- There will be an informal discussion after the beginning of the study and another after the report is due

#### Which skills I will gain?

- Report writing
- Group work
- Presentation
- Consultancy

"This is something I can talk about in job interviews!"

Martin Takáč ISE 316 Fall 2014 8 / 33

### **Textbooks**

- Select chapters of Introduction to Operations Research by F.S. Hiller and G.J. Lieberman
- Select chapters of Introduction to Mathematical Programming: Applications and Algorithms by W.L.
   Winston and M. Venkataramanan
- Select chapters of Operations Research: Applications and Algorithms by Wayne L. Winston

Martin Takáč ISE 316 Fall 2014 9 / 33

## Software

- I will use Excel Solver and AMPL
- You are allowed to use whatever language you prefer
- Alternatives are GAMS and Mosel
- Online option http://neos.mcs.anl.gov/neos/

Martin Takáč ISE 316 Fall 2014 10 / 33

## Part II. Motivation and Example

Martin Takáč ISE 316 Fall 2014 11 / 33

## What would you produce?



Martin Takáč ISE 316 Fall 2014 12 / 33

## And now?



Martin Takáč ISE 316 Fall 2014 13 / 33

# Part III. Terminology and Formal Formulation

Martin Takáč ISE 316 Fall 2014 14 / 33

#### Variables

- ullet  $x_1$  how many chairs we are going to produce
- ullet  $x_2$  how many tables we are going to produce

#### Objective function

One chair gives us profit \$8 and one table will gives us \$6. Our profit will be

$$6x_1 + 8x_2$$

#### Material constraint

for one chair we need 20 and for one table we need 30 pieces of wood and our budget is 300 pieces of wood

$$20x_1 + 30x_2 \le 300$$

#### Labour constraint

for one chair we need 10 and for one table we need 5 hours of work. Budget is 110 hours of work

$$10x_1 + 5x_2 \le 110$$

Martin Takáč ISE 316 Fall 2014 15 / 33

## Final optimization formulation

#### Optimization Problem

$$\begin{array}{lll} \text{maximize} & 6 \ x_1 + \ 8x_2 \\ \text{subject to} & 20x_1 + 30x_2 \leq 300 \\ & 10x_1 + \ 5x_2 \leq 110 \\ & x_1 & \geq 0 \\ & x_2 & \geq 0 \end{array}$$

- Objective function is linear (convex)
- All constraints are linear (convex)
- ⇒ this optimization problem is linear (Linear Program)

Martin Takáč ISE 316 Fall 2014 16 / 33



Martin Takáč ISE 316 Fall 2014 17 / 33



Martin Takáč ISE 316 Fall 2014 18 / 33



Martin Takáč ISE 316 Fall 2014 19 / 33



Martin Takáč ISE 316 Fall 2014 20 / 33

# Part IV. General Optimization Problem, Convexity

Martin Takáč ISE 316 Fall 2014 21 / 33

## Consider the vector $x \in \mathbf{R}^n$ of optimization variables Optimization Problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_1(x) \leq b_1 \\ & f_2(x) \leq b_2 \\ & \vdots \\ & f_m(x) \leq b_m \end{array}$$

#### We denote by $\Omega$ feasible region:

$$\Omega = \{ x \in \mathbf{R}^n : f_1(x) \le b_1, \dots, f_m(x) \le b_m \}$$

#### Remember!

If all functions  $f_i(x)$  ( $i=0,1,\ldots,m$ ) are convex, then the optimization problem is (usually) easy to solve (by a computer).

Martin Takáč ISE 316 Fall 2014 22 / 33

## Convex set

#### Definition

Set  $S \subset \mathbf{R}^n$  is convex, if

$$\forall x_1, x_2 \in S, \forall \lambda \in [0, 1] \Rightarrow (1 - \lambda)x_1 + \lambda x_2 \in S$$

(if you take any two points from S then the whole line segment has to be in S)



Martin Takáč ISE 316 Fall 2014 23 / 33

## Set operation

#### Preserving convexity

Intersection of convex sets is convex set!



Adding a new constraint in optimization problem is actually intersection of original feasible set with a new set.

Martin Takáč ISE 316 Fall 2014 24 / 33

## Convex function

#### Definition

Function  $f: \mathbf{R}^n \to \mathbf{R}$  is convex iff  $\forall x, y \in dom(f), \forall \lambda \in [0, 1]$ 

$$f((1 - \lambda)x + \lambda y) \le (1 - \lambda)f(x) + \lambda f(y)$$

(if you connect any two points on f then the whole line segment is above the function)

Convex vs. nonconvex





Martin Takáč ISE 316 Fall 2014 25 / 33

## Operations preserving convexity

Multiplying by a positive constant

Let a > 0 and f be a convex function. Then  $a \cdot f$  is also convex

Summing functions

If functions  $\{f_i(x)\}_{i=1}^m$  are convex then also

$$\sum_{i=1}^{m} f_i(x)$$

is also convex

Linear function

A linear function  $f(x) = a_1x_1 + \cdots + a_nx_n$  is convex for any  $a_i \in \mathbf{R}$ 

Martin Takáč ISE 316 Fall 2014 26 / 33

# Part V. Solving of an Optimization Problem in Excel

Martin Takáč ISE 316 Fall 2014 27 / 3

#### **Variables**

x1 9 number of chairs produced x2 4 number of tables produced

#### **Optimization problem**

#### objective function

6 \* x1 + 8 \* x2 = 86

#### constraints

20 \* x1 + 30 \* x2 = 300 <= 300 Material constraint 10 \* x1 + 5 \* x2 = 110 <= 110 Labour constraint

x1 = 9 >= 0 Non-negative constraint x2 = 4 >= 0 Non-negative constraint

## The diet model

#### Task

Find the cheapest diet when restricted to the following food options?

| food                  | potato | eggs | milk | chicken |
|-----------------------|--------|------|------|---------|
| cost (cents per 100g) | 15     | 30   | 17   | 92      |

Nutritions and the daily requirement

|               |        | Yield (p | Daily requirement |         |      |
|---------------|--------|----------|-------------------|---------|------|
|               | potato | eggs     | milk              | chicken |      |
| Energy (kcal) | 390    | 210      | 60                | 198     | 2000 |
| Protein (g)   | 13     | 19       | 3                 | 18      | 56   |
| Sugar (g)     | 60     | 5        | 10                | 0       | 17   |

Martin Takáč ISE 316 Fall 2014 29 / 33

## Final optimization formulation

#### Variables:

 $x_1$  - amount of potato,  $x_2$  - amount of eggs,  $x_3$  - amount of milk and  $x_4$  - amount of chicken

**Optimization Problem** 

minimize 15 
$$x_1+$$
  $30x_2+17x_3+$   $92x_4$  subject to  $390x_1+210x_2+60x_3+198x_4 \geq 2000$  13  $x_1+$   $19x_2+3$   $x_3+$   $18x_4 \geq 56$  60  $x_1+$   $5x_2+10x_3+$   $0x_4 \geq 17$   $x_1$   $\geq 0$   $x_2$   $\geq 0$   $x_3$   $\geq 0$   $x_4 \geq 0$ 

Martin Takáč ISE 316 Fall 2014 30 / 33

| Varia | bles                          |     |             |    |      |                         |
|-------|-------------------------------|-----|-------------|----|------|-------------------------|
| x1    | 5.1282051282 amount of potato |     |             |    |      |                         |
| x2    | C                             | amo | ount of egg | gs |      |                         |
| x3    | C                             | amo | ount of mil | k  |      |                         |
| x4    | <b>0</b> amount of chicken    |     |             |    |      |                         |
|       |                               |     |             |    |      |                         |
| Optin | nization problem              |     |             |    |      |                         |
| obied | ctive function                |     |             |    |      |                         |
|       | 15 x1+30 x2+17 x3+92 x4       | =   | 76.9231     |    |      |                         |
| cons  | traints                       |     |             |    |      |                         |
|       | 390 x1+210 x2+60 x3+ 198 x4   | =   | 2000        | >= | 2000 | Energy                  |
|       | 13 x1+19 x2+3 x3+18 x4        | =   | 66.6667     | >= | 56   | Protein                 |
|       | 60 x1+5 x2+10 x3+0 x4         | =   | 307.692     | >= | 17   | Sugar                   |
|       | x1                            | =   | 5.12821     | >= | 0    | Non-negative constraint |
|       | x2                            | =   | 0           | >= | 0    | Non-negative constraint |
|       | x3                            | =   | 0           | >= | 0    | Non-negative constraint |
|       | x4                            | =   | 0           | >= | 0    | Non-negative constraint |

#### Post optimization modification

We do not want to get Diabetes, let us add limit on sugar!

Martin Takáč ISE 316 Fall 2014 31 / 33

#### **Variables**

| 1.0328638498 amount of potato |
|-------------------------------|
| 7.6056338028 amount of eggs   |
| <b>0</b> amount of milk       |
| <b>0</b> amount of chicken    |
|                               |

#### Optimization problem

#### objective function

15 x1+30 x2+17 x3+92 x4 243.662

| ons | traints                     |   |                        |        |                         |
|-----|-----------------------------|---|------------------------|--------|-------------------------|
|     | 390 x1+210 x2+60 x3+ 198 x4 | = | 2000 >=                | = 2000 | Energy                  |
|     | 13 x1+19 x2+3 x3+18 x4      | = | 157.934 >=             | = 56   | Protein                 |
|     | 60 x1+5 x2+10 x3+0 x4       | = | 100 <mark>&gt;=</mark> | = 17   | Sugar                   |
|     | x1                          | = | 1.03286 >=             | = 0    | Non-negative constraint |
|     | x2                          | = | 7.60563 >=             | = 0    | Non-negative constraint |
|     | x3                          | = | 0 >=                   | = 0    | Non-negative constraint |
|     | x4                          | = | 0 >=                   | = 0    | Non-negative constraint |
|     | 60 x1+5 x2+10 x3+0 x4       | = | 100 <=                 | = 100  | Sugar                   |

Martin Takáč ISE 316 Fall 2014 32 / 33

## Attention!

There is a homework due on 9th of September at 9.20am!



Martin Takáč ISE 316 Fall 2014 33 / 33