

Exercise 6-1

(a)

Figure 1: Decryption for CBC* mode

(b) As shown in the above figure, let us assume

$$d_i = \text{Dec } (c_i) \text{ or } c_i = \text{Enc } (d_i)$$

As given for CBC*,

$$d_1=m_1\oplus IV$$

$$d_2=m_2\oplus d_1$$
 i.e.,
$$d_2=m_2\oplus m_1\oplus IV$$
 Similarly,
$$d_3=m_3\oplus m_2\oplus m_1\oplus IV$$

The inverse for decryption would be,

$$m_1 = d_1 \oplus IV$$

$$m_2 = d_2 \oplus d_1 \dots$$

To show that this CBC* doesn't have indistinguishable encryptions, let us consider message in the format $m=m_1||m_2||m_3||...||m_n$.

Given the Enc is deterministic, the intution of the attack on this CBC* mode was that we can recognize repeated blocks in the message.

Let us consider IND-EAV adversary, A choose two messages i.e., m1 and m2 in the below format

$$m1 = m1_1 || m1_2 || m1_3 || ... || m1_n$$

 $m1 = m2_1 || m2_2 || m2_3 || ... || m2_n$

And m1 is choosen in such a way that $m1_1 == m1_2 == m1_3 == \dots == m1_n$ and m2 is choosen in such a way that $m2_1 \neq m2_2 \neq m2_3 \neq \dots \neq m2_n$

Then

$$d1_1=m1_1\oplus IV$$

$$d1_2=m1_2\oplus d1_1$$
 i.e.,
$$d1_2=m1_1\oplus m1_1\oplus IV=IV$$
 Similarly,
$$d1_3=m1_1\oplus m_1\oplus m1_1\oplus IV=m1_1\oplus IV$$

As Enc is deterministic, A can distingush m1 and m2 by checking Enc(m1) and Enc(m2) as

$$c_1 == c_3 == \dots == c_i$$

$$c_2 == c_4 == \dots == c_{i+1}$$
 where i is an odd number $\leq n$

If the above check is statisfied then the cipher c corresponds to m1. Else it corresponds to m2. With this construction A outputs 1 if this check is statisfied else 0. This means A always wins CBC* as A runs in polynomial time.

Exercise 6-2

Task: Show that Π_{CBC} is not CCA-secure by demonstrating a successful adversary.

The adversary $\mathcal A$ can choose the two messages $m_0=m_0^1||m_0^2=0^n\ 0^n$ and $m_1=m_1^1||m_1^2=1^n\ 1^n$ which he sends to the challenger. Then he gets the ciphertext $c_b=(c_b^0||c_b^1||c_b^2)=(IV||f_k(IV\oplus m_b^1)||f_k(f_k(IV\oplus m_b^1)\oplus m_b^2)|$ back.

Then $\mathcal A$ flips the last bit from c_b^2 , so $(c_b^2)'=c_b^2\oplus 0^{n-1}1$ and asks the decryption oracle for the decryption of $c_b'=c_b^0||c_b^1||(c_b^2)'$. Because $c_b'\neq c_b$ the decryption oracle answers with $m'=f_k^{-1}(c_b^1)\oplus c_b^0||f_k^{-1}(c_b^2)\oplus c_b^1=f_k^{-1}(f_k(IV\oplus m_b^1))\oplus IV||f_k^{-1}((c_b^2)')\oplus f_k(IV\oplus m_b^1)=m_b^1||f_k^{-1}((c_b^2)')\oplus f_k(IV\oplus m_b^1)$

 m_b^1 is now either m_0^1 or m_1^1 because the change in $(c_b^2)'$ doesn't impact m_b^1 . So the adversary can say for sure, if the received civertext c_b is the encoding for m_0 or m_1 .

 $\Rightarrow \Pi_{CBC}$ mode is not CCA-secure

Exercise 6-3

a) Let F be a pseudorandom permutation. Then F and F^{-1} are pseudorandom permutations.

 $\Pi_{\rm M} = ({\rm Gen}, {\rm Mac}, {\rm Vrfy})$

$$\begin{array}{ccc} \underline{\mathrm{Gen}(1^{\lambda})} & \underline{\mathrm{Mac_k(c)}} & \underline{\mathrm{Vrfy_k(c,t)}} \\ k \leftarrow \mathrm{Gen}(1^{\lambda}) & \underline{t} \leftarrow \mathrm{F}_k^{-1}(c) & \text{if } t = \mathrm{Mac_k(m)} \\ \mathbf{return} \ k & \mathbf{return} \ t & \mathbf{return} \ 1 \\ & \mathbf{return} \ 0 & \mathbf{retu$$

$$\Pi_{\rm E} = ({\rm Gen, Enc, Dec})$$

$$\begin{array}{ccc} \underline{\mathrm{Gen}(1^{\lambda})} & \underline{\mathrm{Enc_k(m)}} & \underline{\mathrm{Dec_k(c)}} \\ k \leftarrow \mathrm{Gen}(1^{\lambda}) & \underline{r} \leftarrow \{0,1\}^n & \underline{v} := \mathrm{F}_k^{-1}(c) \\ \mathbf{return} \ k & c \leftarrow \mathrm{F}_k(m \parallel r) & \mathbf{return} \ \mathrm{first} \ n \ \mathrm{bits} \ \mathrm{of} \ v \\ & \mathbf{return} \ c & \end{array}$$

Proof that $\Pi_{\boldsymbol{M}}$ is unforgeable

We reduce the security of the Mac to the pseudorandomness of the function F^{-1} .

Therefore, we first assume that the construction is not secure and therefore there exists an adversary $\mathcal A$ that wins MacForge with non-negligible probability $\varepsilon(\lambda)$. We use this adversary $\mathcal A$ to build a distinguisher for the pseudorandomness of F_k .

With the help of the oracle $O_{\mathcal{D}}$ of the pseudorandomness, \mathcal{D} answers the oracle requests of \mathcal{A} by computing $t:=O_D(m)$. If the oracle answers with a pseudorandom function, the view of \mathcal{A} is identical to $MacForge_{\mathcal{A},\Pi'}(\lambda)$. Thus we have

$$Pr\left[D^{F_k^{-1}(\cdot)}(1^\lambda)=1\right]=Pr\left[MacForge_{\mathcal{A},\Pi}(\lambda)=1\right]=\varepsilon$$
 where $k\leftarrow\{0,1\}^\lambda$.

If the oracle answers with a random function, then we simulate the game for a different MAC-scheme Π' . Let $\Pi' = (Gen', Mac', Vrfy')$ be a message authentication code which is the same as Π , except it uses a truly random function f instead of the pseudorandom function F_k . It is easy to see that

$$\Pr\left[MacForge_{A,\Pi'}(\lambda)=1\right] \leq 2^{-\lambda}$$

This is the case because for any message m, the value t is uniformly distributed in $\{0,1\}_*$ from the point of view of \mathcal{A} . The view of \mathcal{A} is identical to $MacForge_{\mathcal{A},\Pi}(\lambda)$. We have $Pr\left[D^{f(\cdot)}(1^{\lambda})=1\right]=Pr\left[MacForge_{\mathcal{A},\Pi'}(\lambda)=1\right]\leq \frac{1}{2^{\lambda}}$ where $f\leftarrow Func_{\lambda}$.

The distinguisher can now distinguish between pseudorandom and truly random with non-negligible probability. As we assumed the function F^{-1} to be pseudorandom, this is a contradiction and thus such an adversary cannot exist. Hence the MAC construction is secure.

Proof that $\Pi_{\rm E}$ is CPA-secure

We assume towards contradiction that the scheme $\Pi_{\rm E}$ is not CPA-secure.

If Π_E is not CPA-secure then there exists an adversary \mathcal{A} that succeeds in the CPA-game $\frac{1}{2}$ with probability $\frac{1}{2} + \varepsilon(\lambda)$ where ε is a non-negligible function.

We now use the ability of the adversary \mathcal{A} to create a distinguisher \mathcal{D} that can distinguish between the underlying pseudorandom function F and a randomly chosen function f.

The distinguisher \mathcal{D} gets as input λ and access to $\mathcal{O}_{\mathcal{D}}$ that runs either F or f.

 \mathcal{D} simulates an encryption oracle O_{Enc} to \mathcal{A} . It answers with Enc(k,m) on the input m where the function F is replaced with the oracle $O_{\mathcal{D}}$.

The encryption oracle either answers with $c := F_k(m \parallel r)$ or $c := f(m \parallel r)$.

 \mathcal{A} then asks for the encryption of one of the two messages m_0 and m_1 with $|m_0| = |m_1|$. \mathcal{D} then samples a bit $b \leftarrow \$\{0,1\}$ and forwards $c_b \leftarrow Enc_k(m_b)$ to \mathcal{A} where $Enc_k(m_b)$ is realised like in the encryption oracle. \mathcal{D} then outputs b' = b

 \mathcal{D} is efficient because it only forwards messages what can be done in constant time and invokes \mathcal{A} which is efficient. To analyse the success we distinguish two cases:

If \mathcal{O}_D runs a pseudorandom permutation function f then \mathcal{D} perfectly simulates Π_E to \mathcal{A} .

$$\Rightarrow Pr[\mathcal{D}^{f(\cdot)}(1^{\lambda})=1]=Pr[PrivK_{\Pi^{E},\mathcal{A}}^{CPA}=1]=rac{1}{2}+non-negl(\lambda)$$
, because \mathcal{A} is an efficient adversary against the CPA-security of Π_{E}

If the oracle runs a randomly chosen function f^* and $\mathcal A$ queries the encryption oracle at least q times we have $\Pr[\mathcal D^{f^*(\cdot)}(1^\lambda)=1]=\frac12+\frac{q(\lambda)}{2^\lambda}.$

Now we subtract those two cases:

$$|Pr[\mathcal{D}^{f(\cdot)}(1^{\lambda}) = 1] - Pr[\mathcal{D}^{f^{*}(\cdot)}(1^{\lambda}) = 1]| = \left| \frac{1}{2} + non - negl(\lambda) - \frac{1}{2} - \frac{q(\lambda)}{2^{\lambda}} \right| = non - negl(\lambda) - \frac{1}{2} - \frac{q(\lambda)}{2^{\lambda}} = non - negl(\lambda) - no$$

Introduction to Modern Cryptography

Theresa, Celine, Prisca, Saibaba December 1, 2022

SOLUTION OF EXERCISESHEET 6

$$negl(\lambda) - \frac{q(\lambda)}{2^{\lambda}} = non - negl(\lambda)$$

 $negl(\lambda) - \frac{q(\lambda)}{2^{\lambda}} = non - negl(\lambda).$ So the distinguisher $\mathcal D$ can distinguish between f and f^* with a non-negligible gap which is a contradiction to the pseudorandomness of f.

Therefore such an adversary A against the CPA-security of Π_E cannot exist.

b) Proof that Π' is not CCA-secure

Because
$$\operatorname{Enc}_k(m), \operatorname{Mac}_k(\operatorname{Enc}_k(m)) = \operatorname{F}_k(m \parallel r), \operatorname{F}_k^{-1}(\operatorname{F}_k(m \parallel r)) = \operatorname{F}_k(m \parallel r), (m \parallel r)$$

When the adversary A receives its challenge ciphertext c = (c', t), it can easily recover the message and knows which of its two messages was encrypted.