MapReduce

Nicolas Dugué nicolas.dugue@univ-orleans.fr

M2 MIAGE Systèmes d'information répartis

Plan

- Introduction Big Data
- 2 MapReduce et ses implémentations
- 3 MapReduce pour fouiller des tweets
- 4 MapReduce pour la recommandation
- 5 Conclusion

Introduction

Les données

- Facebook, Twitter, LinkedIn
- Des appels téléphoniques
- Des clients et leurs achats
- Des utilisateurs d'internet
- Des emails
- Des trajets en Velib
- Des vidéos de surveillance
- Des données scientifiques

Introduction

Un exemple: Twitter

- > 500 millions d'utilisateurs recensés en 2012
- Des milliards d'abonnement entre utilisateurs
- un milliard de tweets tous les deux jours et demi
- Utilisation de hashtags, mentions, urls
- \rightarrow Données complexes (textes, liens entre utilisateurs, tags) + volume immense : Big Data

Introduction

Un exemple : Twitter

- > 500 millions d'utilisateurs recensés en 2012
- Des milliards d'abonnement entre utilisateurs
- un milliard de tweets tous les deux jours et demi
- Utilisation de hashtags, mentions, urls
- ightarrow Données complexes (textes, liens entre utilisateurs, tags) + volume immense : Big Data

Stocker ces données

Usama Fayyad (Yahoo): principale utilisation d'Hadoop

Appliances Teradata couteuses

Apache Hadoop et son HDFS: OpenSource

Introduction

Un exemple : Twitter

- > 500 millions d'utilisateurs recensés en 2012
- Des milliards d'abonnement entre utilisateurs
- un milliard de tweets tous les deux jours et demi
- Utilisation de hashtags, mentions, urls
- ightarrow Données complexes (textes, liens entre utilisateurs, tags) + volume immense : Big Data

Fouiller ces données

Algorithmes peu complexes

Epurer les données

Paralléliser le traitement des données : le modèle MapReduce

Plan

- Introduction Big Data
- 2 MapReduce et ses implémentations
- 3 MapReduce pour fouiller des tweets
- 4 MapReduce pour la recommandation
- 5 Conclusion

MapReduce

Les implémentations

- Octopy ou Mincemeat python
- Phoenix C++ pour multicoeurs
- Mars pour GPU
- MongoDB
- Apache Hadoop et son HDFS

MapReduce

Programmation MapReduce

Modèle de programmation très contraint :

Map et **Reduce** \rightarrow Issu de la programmation fonctionnelle (Caml, Haskell, Lisp)

Pourquoi MapReduce?

Traiter de gros volumes de données !

- Avec Apache Hadoop:
 - Parallélisation automatique des opération Map et Reduce
 - Equilibrage de charge
 - Tolérance aux pannes
- → Scalabilité horizontale

ntroduction Big Data **MapReduce et ses implémentations** Mining tweets Recommandation Conclusion

MapReduce et le Cloud

Adapté au Cloud

- Nombre de Mapper et de Reducer potentiellement illimités
- Parallélisme automatique
- Amazon Elastic MapReduce

Le stockage - HDFS

HDFS Architecture

Le stockage - MongoDB

Le modèle MapReduce

5 étapes

- Lecture des données
- 2 Map : pour chaque élément des données, appliquer une fonction qui retourne un couple (clé,valeur)
- 3 Trier les couples selon leurs clés
- 4 Reduce: agréger, résumer, filtrer ou transformer les données
- 5 Ecrire le résultat

Le modèle MapReduce

MapReduce en Natif

Du Javascript

```
db.tweets_sentiment.mapReduce(
function() { emit(KEY, VALUE); },
function (key, values) { return RESULT },
{
query : { },
out : "RESULT_NAME"
}
)
```

Stockage du résultat

Résultat stocké dans db.RESULT_NAME

Plan

- Introduction Big Data
- 2 MapReduce et ses implémentations
- 3 MapReduce pour fouiller des tweets
- MapReduce pour la recommandation
- 5 Conclusion

Exemple : compter la taille moyenne des tweets

```
db.tweets_sentiment.mapReduce(
function() { emit(this.sentiment, this.tweet.length);
},
function (key, values) { return Array.avg(values)
},
{ out : "avg char per sentiment" }
```

Stockage du résultat

```
> db.avg_char_per_sentiment.find()
{ " id" : 0, "value" : 68.82639589889486 }
{ " id" : 4, "value" : 66.30062250406955 }
```

Exemple 2 : Fréquence des mots

```
db.tweets_sentiment.mapReduce(
function() {
var tab = this.tweet.split(" ");
for (var i = 0; i < tab.length; i++) {
emit(tab[i], 1);
function (key, values) { return Array.sum(values) },
{ query : { sentiment : 0 },
out : "word frequency 0" }
```

Les plus fréquents

```
> db.word_frequency_0.find().sort({value : -1})
{ " id" : "", "value" : 8582 }
```

Les tweets : des sacs de mots

Soit W le dictionnaire de mots au moins une fois dans un ensemble de tweets T.

La représentation sac de mots d'un tweet $t_j \in T$ est un vecteur de poids $(w_{1j},...,w_{|W|j})$ où w_{ij} est la fréquence d'apprition du mot w_i du dictionnaire dans le tweet t_i

Les tweets : des sacs de mots

Soit W le dictionnaire de mots au moins une fois dans un ensemble de tweets T.

La représentation sac de mots d'un tweet $t_j \in T$ est un vecteur de poids $(w_{1j},...,w_{|W|j})$ où w_{ij} est la fréquence d'apprition du mot w_i du dictionnaire dans le tweet t_j

Algo Data mining

- K plus proches voisins
- Naive Bayes

Plan

- Introduction Big Data
- MapReduce et ses implémentations
- MapReduce pour fouiller des tweets
- MapReduce pour la recommandation
- 5 Conclusion

ntroduction Big Data MapReduce et ses implémentations Mining tweets **Recommandation** Conclusion

La recommandation

Objectif système de recommandation

Présenter des contenus susceptibles d'intéresser l'utilisateur

Exemples

- Amazon : suggestion de produits ;
- Last.fm : suggestion de groupes/chansons ;
- Facebook : suggestion d'amis ;

La recommandation

Construire un profil utilisateur

- Pages, Objets, chansons : tracer les habitudes de l'utilisateur
- Demander à l'utilisateur d'évaluer
- Demander à l'utilisateur de créer des listes de préférences
- Utiliser le réseau social de l'utilisateur
- Demander des informations personnelles
- Utiliser des tags

Systèmes de Filtrage collaboratifs utilisateurs

- Qu'est ce qui est proche de ce que j'ai aimé ?
- Qu'aiment les profils proches du mien ?
- Qu'aiment mes amis ?

ntroduction Big Data MapReduce et ses implémentations Mining tweets **Recommandation** Conclusion

La recommandation

Systèmes de Filtrage collaboratifs utilisateurs

Trouver utilisateurs avec un profil proche de l'utilisateur Calculer une liste de recommandations

ntroduction Big Data MapReduce et ses implémentations Mining tweets **Recommandation** Conclusion

La recommandation

Suggérer des amis

 $\mathsf{A}\to\mathsf{B}\;\mathsf{C}\;\mathsf{D}$

 $\mathsf{B}\to\mathsf{A}\;\mathsf{C}\;\mathsf{D}$

 $\mathsf{C}\to\mathsf{A}\;\mathsf{B}$

 $\mathsf{D}\to\mathsf{A}\;\mathsf{B}$

Suggérer des amis

 $A \rightarrow B C D$

 $\mathsf{B} \to \mathsf{A} \; \mathsf{C} \; \mathsf{D}$

 $\mathsf{C}\to\mathsf{A}\;\mathsf{B}$

 $\mathsf{D}\to\mathsf{A}\;\mathsf{B}$

For map(A \rightarrow B C D)

 $(A B) \rightarrow B C D$

 $(A C) \rightarrow B C D$

 $(A D) \rightarrow B C D$

Suggérer des amis

 $A \rightarrow B C D$

 $B \rightarrow A C D$

 $\mathsf{C}\to\mathsf{A}\;\mathsf{B}$

 $\mathsf{D}\to\mathsf{A}\;\mathsf{B}$

For map(A \rightarrow B C D)

 $(A B) \rightarrow B C D$

 $(A\ C)\to B\ C\ D$

 $(A D) \rightarrow B C D$

For map(B \rightarrow A C D)

 $(A B) \rightarrow A C D$

 $(B C) \rightarrow A C D$

 $(B D) \rightarrow A C D$

23/29

Suggérer des amis

 $A \rightarrow B C D$

 $\mathsf{B} \to \mathsf{A} \; \mathsf{C} \; \mathsf{D}$

 $C \rightarrow A B$

 $D \rightarrow A B$

For map($C \rightarrow A B$)

 $(A\ C)\to A\ B$

 $(B C) \rightarrow A B$

Suggérer des amis

 $A \rightarrow B C D$

 $B \rightarrow A C D$

 $C \to A B$

 $D \rightarrow A B$

For map($C \rightarrow A B$)

 $(A C) \rightarrow A B$

 $(B C) \rightarrow A B$

For map(D \rightarrow A B)

 $(A D) \rightarrow A B$

 $(B D) \rightarrow A B$

Suggérer des amis

 $A \rightarrow B C D$

 $B \rightarrow A C D$

 $C \rightarrow A B$

 $D \rightarrow A B$

Tri par clé

 $(A B) \rightarrow (A C D) (B C D)$

 $(A C) \rightarrow (A B) (B C)$

 $(A D) \rightarrow (A B) (B C)$

 $(B C) \rightarrow (A B D) (A C D)$

 $(B D) \rightarrow (A B C) (A C D)$

 $(C D) \rightarrow (A B C) (A B D)$

Suggérer des amis

 $A \rightarrow B C D$

 $B \rightarrow A C D$

 $C \rightarrow A B$

 $\mathsf{D} \to \mathsf{A} \; \mathsf{B}$

Reduce

 $(A B) \rightarrow (C D)$

 $(A C) \rightarrow (B)$

 $(A D) \rightarrow (B)$

 $(B C) \rightarrow (A D)$

 $(B D) \rightarrow (A C)$

 $(C D) \rightarrow (A B)$

Plan

- Introduction Big Data
- 2 MapReduce et ses implémentations
- MapReduce pour fouiller des tweets
- MapReduce pour la recommandation
- 5 Conclusion

Big data

Big data

Les terriens ont en moyenne : un sein et un testicule

Big data

- Récolter de gands volumes de données
- Stocker les données
- Paralléliser les traitements

Big data

- Récolter de gands volumes de données
- Stocker les données
- Paralléliser les traitements
- Interpréter les données