PATENT ABSTRACTS OF JAPAN

(11)Publication number: 06-350562

(43) Date of publication of application: 22.12.1994

(51)Int.CI. H04J 13/00

H04B 7/26

(21)Application number: 05-163967 (71)Applicant: RICOH CO LTD

(22)Date of filing: 08.06.1993 (72)Inventor: HASEGAWA TAKAAKI

(54) SPREAD SPECTRUM COMMUNICATION SYSTEM

(57) Abstract:

PURPOSE: To execute communication tough to single code interference by making interception by delay detection difficult.

CONSTITUTION: Let the number of hopping codes to K and the number of hopping in data be N. PN1-PNK generators 1-1-1-k generate different PN (pseudo noise) signals respectively. A hopping control section 3 controls a changeover circuit 2 so as to allow the circuit 2 to select any of output signals from the PN1-PNK generators 1-1-1-k based on a predetermined hopping pattern. SIK being information modulation is applied to an output signal from the changeover circuit 2 by multiplying ±1 being information data with the selected output signal thereby inverting the phase of a PN signal. Furthermore, a frequency conversion section 6 converts the frequency into a carrier frequency and the power is amplified and the result is sent from a transmission antenna

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-350562

(43)公開日 平成6年(1994)12月22日

(51) Int.Cl.5

識別記号 庁内整理番号

FΙ

技術表示箇所

H 0 4 J 13/00

Α

H 0 4 B 7/26

109 A 7304-5K

審査請求 未請求 請求項の数5 FD (全 13 頁)

(21)出願番号

特願平5-163967

(22)出願日

平成5年(1993)6月8日

特許法第30条第1項適用申請有り 平成5年1月25日、 社団法人電子情報通信学会発行の「電子情報通信学会技 術研究報告Vo1.92, No.446」に発表 (71)出願人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72)発明者 長谷川 孝明

埼玉県川口市南前川1-14-10 プルジョ

ン2-202号 埼玉大学内

(74)代理人 弁理士 高野 明近 (外1名)

(54) 【発明の名称】 スペクトル拡散通信方式

(57)【要約】

【目的】 遅延検波による傍受が困難となり、単一符号 干渉に強い通信を行う。

【構成】 ホッピング符号数をK、1データ中のホッピング数をNとする。 $PN_1 \sim PN_K$ 発生器1- $1 \sim 1$ -kは、それぞれ異なるPN(擬似雑音)信号を発生する。切替回路2はホッピング制御部3によって、あらかじめ定められたホッピングパターンで $PN_1 \sim PN_K$ 発生器1- $1 \sim 1$ -kの出力信号を選択するように制御を行なう。切替回路2の出力信号に情報データの ± 1 を乗算することにより、PN信号の位相を反転させることで情報変調であるSIKをかけることができる。さらに、周波数変換部6で搬送波周波数に変換し、電力増幅して送信アンテナ8から送信を行なう。

【特許請求の範囲】

【請求項1】 各々異なる擬似雑音信号を発生するPN 発生手段と、予め定められたホッピングパターンで前記 PN発生手段の出力信号を選択する切替手段とを有し、複数の擬似雑音符号系列を、あらかじめ定められた順序 にしたがって切り替え、該信号をスペクトルを拡散させるための拡散信号として用いることを特徴とするスペクトル拡散通信方式。

【請求項2】 前記PN符号系列を、情報データ1ビットの間にN(Nは1以上の整数)個切り替える切替手段を有することを特徴とする請求項1記載のスペクトル拡散通信方式。

【請求項3】 前記Nを3以上の奇数とし、1つのPN 符号毎にデータ判別を行ない、N個の判定値の過半数を示した判定値をそのビットの情報データとするデータ判別手段を備えたことを特徴とする請求項1記載のスペクトル拡散通信方式。

【請求項4】 前記複数のPN符号系列をホッヒングパターンを含めてROMに格納しておき、該ROMに格納された情報を順次読み出して拡散符号とする送信機および受信機を備えたことを特徴とする請求項1記載のスペクトル拡散通信方式。

【請求項5】 前記各PN符号に対応したマッチドフィルタと、該マッチドフィルタをホッピングパターンに応じて切替制御を行なう切替手段をもつ受信機を備えたことを特徴とする請求項1記載のスペクトル拡散通信方式。

【発明の詳細な説明】

[0001]

【技術分野】本発明は、スペクトル拡散通信方式に関し、より詳細には、複数のPN (Pseudo Noise: 擬似雑音)符号を切り替えてスペクトル拡散を行なうため、遅延検波による傍受が困難となり、単一符号干渉に強い通信を行なうようにしたスペクトル拡散通信方式に関する。例えば、室内無線通信、微弱無線通信、移動体無線通信に適用されるものである。

[0002]

【従来技術】スペクトル拡散通信方式には、PN(擬似雑音)系列などの拡散符号を乗算することによってスペクトルの拡散を行なう直接拡散(DS)方式と、狭帯域信号の搬送波周波数をランダムかつ離散的に切り替えることでスペクトルの拡散を行なう周波数ホッピング(FH)方式が知られている。これらの方式については、「スペクトル拡散通信システム」(横山光雄著、科学技術出版社、1988)に記載されている。

【0003】スペクトル拡散通信方式は、耐妨害性や秘 詰性に優れる通信方式として注目されており、特に近年 符号分割多元接続(CDMA)も注目されている。現 在、スペクトル拡散方式の1つの方式である直接拡散 (DS)方式は、装置の簡易性といった特長を有し、広 く検討がなされているが、1つの拡散符号を用いるために、遅延検波されやすいといった欠点も有している。また、スペクトル拡散方式は一般に広く普及し始めているが、拡散符号には限りがあり、意図的か否かにかかわりなく、他局が使用している拡散符号からの干渉が告じる。従来の狭帯域干渉に対して単一符号干渉が問題となる。よく知られているように、周波数ホッピング(FH)方式は多数の周波数をホッピングさせる方式であり、これにより高速ホッピングでは、狭帯域干渉に強い性質を有するが、本発明ではこれのアナロジーで、多数の符号をホッピングさせるスペクトル拡散コードホッピング(SS/CH)方式を提案している。本方式の高速ホッピングでは単一符号干渉に強い性質を有することが期待される。

【0004】このように、DS方式は、1つの拡散符号を用いるために遅延検波されやすいという欠点を有している。また、多元接続を行なう場合、拡散符号の種類には格りがあるため、他局との同一符号干渉が問題となる。また、FH方式による多元接続では、他局とのホッピング周波数がヒット(一致)してしまうと、その情報は伝送不可能または大きなダメージを受けてしまうという欠点を有している。

[0005]

【目的】本発明は、上述のごとき実情に鑑みなされたもので、遅延検波を困難とし、他局との符号干渉に強いスペクトル拡散通信方式を提供することを目的としてなされたものである。

[0006]

【構成】本発明は、上記目的を達成するために、(1) 各々異なる擬似雑音信号を発生するPN発生手段と、予 め定められたホッピングパターンで前記PN発生手段の 出力信号を選択する切替手段とを有し、複数の擬似雑音 符号系列を、あらかじめ定められた順序にしたがって切 り替え、該信号をスペクトルを拡散させるための拡散信 号として用いること、更には、(2)前記PN符号系列 を、情報データ1ビットの間にN(Nは1以上の整数) 個切り替える切替手段を有すること、更には、(3)前 記(2)において、前記Nを3以上の奇数とし、1つの PN符号毎にデータ判別を行ない、N個の判定値の過半 数を示した判定値をそのビットの情報データとするデー 夕判別手段を備えたこと、更には、(4)前記(1)に おいて、前記複数のPN符号系列をホッヒングパターン を含めてROMに格納しておき、該ROMに格納された 情報を順次読み出して拡散符号とする送信機および受信 機を備えたこと、更には、(5)前記(1)において、 前記各PN符号に対応したマッチドフィルタと、該マッ チドフィルタをホッピングパターンに応じて切替制御を 行なう切替手段をもつ受信機を備えたことを特徴とした ものである。以下、本発明の実施例に基づいて説明す る。

【0007】図1及び図2は、本発明によるスペクトル拡散通信方式の送信機と受信機の一実施例を説明するための構成図で、図1は送信機、図2は受信機である。図中、1-1~1-4はPN発生器、2は切替回路、3はホッピング制御部、4は乗算器、5は情報データ、6は周波数変換部、7は電力増幅部、8は送信アンテナ、9は受信アンテナ、10はRF(Radio Frequency)増幅部、11は周波数変換部、12はキャリア同期部、13~15は乗算器、16は遅延回路、17a,17bはLPF(Low Pass Filter:低域通過フィルタ)、18はデータ復号部、19a,19bは絶対値回路、20は加算器、21はループフィルタ、22は電圧制御発振器、23-1~23-kはPN発生器、24は切替回路、25はホッピング制御部である。

【0008】以下、データ変調としてシーケンス・イン バージョン・キーイング(SIK)を用いた場合の実施 例について説明を行なう。なお、本発明による方式をス ペクトル拡散コードホッピング(SS/CH)方式と呼 ぶ。まず、図3(a)~(c)に基づいて本発明におけ るスペクトル拡散通信(SS)方式の基本原理について 説明する。図(a)は直接拡散(DS)方式、図(b) は周波数ホッピング(FH)方式、図(c)は本発明に よるスペクトル拡散コードホッピング(SS/CH)方 式を各々示している。なお、図中の小さい四角内は伝送 する情報を示している。特に、図(a)と図(c)では ±1の2値情報を3符号周期で1回のシーケンス・イン バージョン・キーイング (SIK)をする場合を示して いる。すなわち、図(a)は以下の方式との対比のため に特に3周期で1回のSIKをする場合を示したもので ある。図(b)は周波数ホッピング(FH)方式におい て、1次変調を2進周波数シフト・キーイング(BFS K)で行ない、4つのホッピング周波数を用意し、3ホ ップで1データを送る高速FH方式を示している。この ようにFH方式では狭帯域干渉波が存在しても、多数決 判定を行なえば、影響を受けたホッピング周波数のみに 誤りを生じ、他のホッピング周波数は影響を受けない。 したがって、FH方式は狭帯域干渉に対して強い性質を 有するわけである。

【0009】図(c)は本発明の概念図であり、ホッピング符号数K=4,1データ間のホッピング数N=3としている。すなわち、4つの拡散符号を用意し、3ホップで1データを送る高速CH方式を示している。あらかじめ定められたホッピングパターンでこれら4つの符号をホップさせ、情報はDS方式と同様にSIKを用いて伝送する。単一の拡散符号による干渉は、1つのホッピング符号が干渉を受けるが、他のホッピング符号は影響を受けないので、高速CH方式は拡散符号干渉に対して強い性質を有するわけである。また、CH方式で用意するホッピング符号数と1データのホッピング数を変えることにより、極めて遅延検波が困難になる。次に、多元

接続の場合、F H 方式では、自局と他局との間でホッピング周波数がヒットしてしまえば、その情報は伝送不可能、又は大きなダメージとなってしまう。しかしながら、本方式では、たとえ他局とのホッピングした拡散符号が一致しても、1 チップ以上位相差があれば伝送可能である。

【0010】次に、図1に基づき送信機について説明する。ここで用意するホッピング符号数をK、1 データ中のホッピング数をNとする。 $PN_1 \sim PN_K$ 発生器 $1-1 \sim 1$ -kは、それぞれ異なるPN(擬似雑音)信号を発生する。切替回路2はホッピング制御部3によって、あらかじめ定められたホッピングパターンで $PN_1 \sim PN_K$ 発生器 $1-1 \sim 1$ -kの出力信号を選択するように制御を行なう。切替回路2の出力信号に情報データの ± 1 を乗算することによりPN信号の位相を反転させることで情報変調であるSIKをかけることができる。さらに、周波数変換部6で搬送波周波数に変換し、電力増幅器7で電力増幅して送信アンテナ8から送信を行なう。

【0011】次に、図2に基づき受信機について説明する。これはベースバンド遅延ロックループ(DLL)に複数のPN符号発生器23-1~23-kとその切替回路24およびホッピング制御部25を追加した構成となっている。したがって、ベースバンドにおける処理を行なっているが、中間周波数(IF)においてノンコヒーレントDLLを用いることもできる。まず、受信アンテナ9により受信された微小信号は、RF増幅部10で増幅され、周波数変換部11に入力される。このとき同時にキャリア同期部12によりキャリア同期をとることでベースバンド信号に落される。この信号に同期がとれているPN符号を乗算したあと、データ復調部18でSIKデータ復調を行なう。

【0012】一方で、PN符号の同期は遅延ロックルー プ(DLL)によってとることができる。 ベースバンド 信号は2分され、それぞれ位相の進んだ信号(Early信 号)と遅れた信号(Late信号)を乗算器14,15で乗 算する。送信されるPN信号にはSIK変調がかけられ ているため、参照PN信号をかけたとき送信PN信号の 位相が反転していると相関値 (乗算器出力)が反転して でてくる。そこで、低域通過フィルタ(LPF)17 a, 17bを通した後に絶対値回路19a, 19bで絶 対値がとられる。次に、Early信号からLate信号を減算 し、ループフィルタで雑音を取り除く。この信号で電圧 制御発振器(VCO)22を駆動し、PN信号発生器2 3-1~23-kのクロックとする。PN₁~PN_K発生器2 3-1~23-k、切替回路24およびホッピング制御部2 5は、図1の送信機と同様に動作させることによって参 照PN符号をホッピングさせ、受信PN信号の同期追従 を行なうことができる。切替回路24の出力信号は遅延 回路16によってデータ復調に必要な基準参照PN信号 と、それより位相の進んだEarly信号および位相の遅れ

たLate信号が生成される。Early信号とLate信号の位相 差は 1Δ あるいは 2Δ (Δ は1 チップ時間)などに設定 される。

【0013】すなわち、送信側では、ホッピングパター ンに従って拡散符号を切り替えて送信している。受信側 では、通常のDS方式と同様に、能動相関あるいは受動 相関(マッチドフィルタリング)で検波する。能動相関 の例として遅延ロックループ(DLL)を用いる場合を あげている。DLL内部の拡散符号発生器に、送信側で 用いる拡散符号と同一符号を用意し、拡散符号をホッピ ングさせるホッピングパターンの順に、DLL内部の拡 散符号発生器を切り替えて同期保持ができる。もちろ ん、ホッピングを含めた長い1周期を1チップごとにメ モリに記憶させ、読みだしていくことも可能である。D LLにより同期した拡散符号を発生させ、送信信号と乗 算逆拡散し、その後、相関検波を行ってデータを取り出 す。このようにハードウェアは比較的簡易で、DS方式 の少しの拡張で本方式に用いることができる。受動相関 による受信システムの例としては、送信側で用いるのと 同じ拡散符号のマッチドフィルタ(MF)を同数だけ用 意しておき、ホッピングパターンごとにMFを切り替え てサンプルしていくシステムがあげられる。

【0014】図4(a),(b)は、データの判定方式によるデータ復号部を示す図で、図(a)は一括判定型、図(b)は多数決判定型を各々示している。図中、31は積分回路、32はデータ(1Bit)判定回路、33は積分回路、34はデータ(1Hop)判定回路、35は多数決判定回路である。すなわち、データの判定法としては、1データにわたるホッピング(3ホッピング)の間全て積分する一括判定と、例えば、1データに渡る各ホッピング毎の3つの判定値から多数決で判定する多数決半定の2つの判定法がある。

【0015】図4(a)の一括判定方式によるデータ復号部において、DLLで再生されたPN信号によって逆拡散された拡散復調信号を積分回路31によって1データの間積分し、データ判定回路32では1ビット毎に土一を判定する。また、データ復号は請求項3による多数

決判定方式で行なうこともできる。

【0016】図5(a)~(c)は、図4(b)の多数 決判定方式によるデータ判別を示す図で、図(a)は送 信データ、図(b)は受信データ、図(c)は判定デー タである。この方式は、ホッピングするPN符号の数を 3以上の奇数とし、本説明では、1データを3ホップで 伝送している。まず、拡散復調信号を積分回路33で1 ホッピング区間の積分を行ない、次に、1ホッピング毎 にデータ判定を行なう。多数決判定回路35では、各ホ ッピングにおける判定値から1データ中の過半数を示し たデータを情報データとして出力する。 図5の例では、 3つの判定値のうち2つ以上が示したデータを情報デー タとする。したがって、ホッピング毎の判定値に誤りが あっても多数決判定を行なうことによって、より正確な 情報データを受信することができる。本実施例ではデー 夕変調をSIKによって行なったが、DS方式と同様に PSKやFSKなどの1次変調を行なってもよい。すな わち、多数決判定とは、2:1の多数決判定を例にとる と、1ビットをホッピングされた3つの連続した拡散符 号で伝送し、各ホッピング毎の判定値、すなわち3つの 判定値を用い、この内の過半数(2つ以上)の示した結 果を判定値とする方法である。

【0017】次に、スペクトル拡散コードホッピング (SS/CH) 方式の特性について説明する。ここで は、単一の拡散符号の干渉と白色ガウス雑音を考える。 干渉符号は、送信側でスペクトル拡散するために用いる いくつかのホッピング拡散符号の内の1つと同一の符号 とし、その位相とクロック周波数が一致する場合、すな わち最悪の場合を考える。

1ホップ1データのCH方式

1ホップ1データCH方式の条件下では、受信側ではSIKの通常の受信信号振幅分布に、干渉符号によるシフトが加わったものと考えられるので、ホッピング符号数1、すなわちDS方式におけるビット誤り率Pdは式(1)となる。

[0018]

【数1】

$$P_{d} = Q\left(\sqrt{2\frac{E_{b}}{N_{0}}}\left(1 + \sqrt{\frac{E_{j}}{E_{b}}}\right)\right) + Q\left(\sqrt{2\frac{E_{b}}{N_{0}}}\left(1 - \sqrt{\frac{E_{j}}{E_{b}}}\right)\right) \cdots (1)$$

【0019】ここで、Ejは干渉符号の1データ時間当たりのエネルギー(ここで1データ時間とは希望信号の1ビットの時間長を表す)であり、また、Eb/EjはSIRに対応している。さらに、ホッピング符号数を増加し、ホッピング符号数Kとしたときのビット誤り率Peは、符号干渉がなく、SIKのかかった時のビット誤り率をPsとして、式(2)として表わせる。

[0020]

【数2】

$$P_{\epsilon} = \frac{1}{K} P_d + \frac{K - 1}{K} P_{\epsilon} \qquad (2)$$

【 0 0 2 1 】 <u>多数決判定を用いた高速CH方式</u> 用意するホッピング符号数K及び 1 データを担うホッピ ング数 Nが一致(K=N)する場合で、多数決判定を用 いた高速CH方式のビット誤り率Pemを求める。符号干 渉を受けないホッピングの符号の符号誤り率Psmは式 (3)となり、

[0022]

【数3】

【0023】また、符号干渉を受けるホッピングの符号 の符号誤り率Pdmは式(4)となる。

[0024]

【数4】

$$P_{sm} = Q\left(\sqrt{\frac{2E_b}{KN_0}}\right) \qquad \dots (3)$$

$$P_d = Q\left(\sqrt{\frac{2E_b}{KN_0}}\left(1 + \sqrt{\frac{E_j}{E_b}}\right)\right) + Q\left(\sqrt{\frac{2E_b}{KN_0}}\left(1 - \sqrt{\frac{E_j}{E_b}}\right)\right) \qquad \dots (4)$$

【0025】従って、多数決判定を用いたときの高速C H方式の誤リ率Pemは式(5)となる。

[0026] 【数5】

$$P_{em} = P_{dm} P_{sm}^{K-1} + \sum_{i=1}^{\frac{K-1}{2}} \left[{K-1 \choose K-1-i} P_{dm} P_{sm}^{K-1-i} (1-P_{sm})^{i} + {K-1 \choose K-i} (1-P_{dm}) P_{sm}^{K-i} (1-P_{sm})^{i-1} \right] \cdot \cdots (5)$$

【0027】シミュレーションの条件は、以下の通りで ある。

拡散符号 : M系列(符号長127) 検波方法 : コヒーレント相関検波 情報伝送速度:100 [kbit/s]

ただし、同期はとれているものと仮定した。

【0028】図6は、1ホップ1ビットCH方式におい て、ホッピング符号数Kを変化させた時のビット誤り率 特性を示す図である。実線は前記で求めた理論値であ る。図6より明らかに、ホッピング符号数の増加が単一 符号干渉下においてビット誤り率を改善することがわか る。図7は、高速CH方式において、判定方法に多数決 判定を用いた際のビット誤り率を示す図である。図6に おいて生じていたフロアが無くなり、明らかにビット誤 り率が改善しているのがわかる。以上より、大きな単一 符号干渉下では本方式の判定法に多数決判定を用いるこ とが有効であることがわかる。

【0029】図8及び図9は、本発明によるスペクトル 拡散通信方式の送信機と受信機の他の実施例(請求項 4)を示す図で、図中、41はROM (Read Only Memo ry)、42はアドレス発生回路、43は乗算器、44は 情報データ、45は周波数変換部、46は電力増幅部、 47は送信アンテナ、48は受信アンテナ、49はRF

増幅部、50は周波数変換部、51はキャリア同期部、 52, 53, 54は乗算器、55は遅延回路、56a, 56bはLPF(低域通過フィルタ)、57はデータ復 号部、58a,58bは絶対値回路、59は加算器、6 0はループフィルタ、61は電圧制御発振器、62はア ドレス発生回路、63はROMである。

【0030】図1においては、拡散符号をホッピングさ せるのに実施例1ではPN1~PNgのK個のPN発生器 1-1~1-kとそのうちから1つを選択出力する切替回路 2、切替の制御を行なうホッピング制御部3とで行なっ ていた。図8に示す実施例では、ホッピングさせる符号 系列をホッピングさせる順序も含めてROM 41に書き 込んでおき、送信時にはそれをシリアルに読み出してい くことで実現が可能となる。同様な符号発生方式を用い た受信機を図9に示す。PN信号をROM63によって 発生させる以外は実施例1の図2に示した受信機と動作 は同じである。本実施例によれば、図2に示すPN符号 の発生をK個のPN発生器23-1~23-k、切替回路2 4、ホッピング制御部25のかわりにアドレス発生回路 (カウンタ) 62とROM63の簡単な構成とすること ができる。

【0031】図10は、本発明によるスペクトル拡散通 信方式の受信機の更に他の実施例(請求項5)を示す図 で、図中、71は受信アンテナ、72はRF増幅部、73は周波数変換部、74はキャリア同期部、75-1~75-kはマルチドフィルタ(MF)、76は切替回路、77はホッピング制御部、78はデータ判定部である。

【0032】本実施例はマッチドフィルタ(MF)によ る受動同期方式である。受信アンテナ71から入力され た信号をRF増幅部72により増幅し、周波数変換部7 3でベースバンド信号に落される。この信号は送信され るホッピング符号数だけ用意された各マッチドフィルタ (MF1~MFK)75-1~75-kに入力される。各マ ッチドフィルタ75-1~75-kは、送信される各ホッピ ングPN符号に対応している。これらのマッチドフィル 夕出力を送信側と同じホッピングパターンにしたがって 切替回路76によって切り替える。切り替える速度は送 信側でのホッピングのタイミングの間隔と同じとする。 しかし、これがずれていってしまうこともありうるた め、相関出力のタイミングから毎回ずれを補正すること ができる。ホッピングパターンの初期同期は、ホッピン グパターンの切替回路76においてパターンをずらして いってパターンが一致するのを捕捉する。あるいはある マッチドフィルタの出力をトリガーとするなどによって 行なうことができる。各マッチドフィルタ75-1~75 -kでは、対応するPN符号が送信されてくるとPN符号 周期の最後に相関出力が得られる。このタイミングで1 周期毎の標本化パルスによりデータを標本化する。デー タ判別部78では、1周期毎のデータから情報データの 判定を行なうが、実施例1で述べたように、1データに ホッピングする符号数Nを3以上の奇数として多数決定 判を行なう。

[0033]

【効果】以上の説明から明らかなように、本発明による と、以下のような効果がある。

- (1)請求項1に対応する効果:各々異なる擬似雑音信号を発生するPN発生手段と、予め定められたホッピングパターンで前記PN発生手段の出力信号を選択する切替手段とを有し、複数のPN符号を切り替えてスペクトル拡散を行なうため、遅延検波による傍受が困難となる。また、単一符号干渉に強い通信を行なうことができる。
- (2)請求項2に対応する効果: PN符号系列を、情報データ1ビットの間にN(Nは1以上の整数)個切り替え、1データを多数の符号をホッピングさせて伝送しているので他局との符号干渉に強い。
- (3)請求項3に対応する効果:Nを3以上の奇数とし、1つのPN符号毎にデータ判別を行ない、N個の判定値の過半数を示した判定値をそのビットの情報データとするデータ判別手段を備え、データ判定をホッピング

PN符号毎に行ない、その多数決をとるため、他局との 符号干渉などにより1 データ中でいくつかの判定誤りを 生じても、データの判定を誤ることがない。

- (4)請求項4に対応する効果:複数のPN符号系列をホッピングも含めてROMに格納しておくため、ホッピングする符号の数のPN符号発生器と、ホッピング制御回路が必要なくなり、回路構成が簡単となる。
- (5)請求項5に対応する効果:各PN符号に対応したマットドフィルタと、該マッチドフィルタをホッピングパターンに応じて切替制御を行なう切替手段をもつ受信機を備えているので、複雑なループ構成であるDLL(遅延ロックループ)を用いない簡単な構成とすることができる。

【図面の簡単な説明】

- 【図1】 本発明によるスペクトル拡散通信方式の送信 機の一実施例を説明するための構成図である。
- 【図2】 本発明によるスペクトル拡散通信方式の受信機の一実施例を説明するための構成図である。
- 【図3】 本発明によるスペクトル拡散通信方式の基本 原理を説明するための図である。
- 【図4】 本発明におけるデータ判定方式を説明するための図である。
- 【図5】 本発明における多数決判定方式を説明するための図である。
- 【図6】 本発明のホップ1データのCH方式におけるホッピング符号数増加時の誤り率特性を示す図である。
- 【図7】 本発明の高速CH方式における多数決判定時の誤り率特性を示す図である。
- 【図8】 本発明によるスペクトル拡散通信方式の送信 機の他の実施例を示す図である。
- 【図9】 本発明によるスペクトル拡散通信方式の受信 機の他の実施例を示す図である。
- 【図10】 本発明によるスペクトル拡散通信方式の受信機の更に他の実施例を示す図である。

【符号の説明】

1-1~1-4···P N発生器、2···切替回路、3···ホッピング制御部、4··・乗算器、5···情報データ、6···周波数変換部、7···電力増幅部、8···送信アンテナ、9···受信アンテナ、10···RF(Radio Frequency)増幅部、11···周波数変換部、12···キャリア同期部、13~15···乗算器、16···遅延回路、17a,17b···LPF(Low Pass Filter: 低域通過フィルタ)、18···データ復号部、19a,19b···・絶対値回路、20···加算器、21···ループフィルタ、22···電圧制御発振器、23-1~23-k···P N発生器、24···切替回路、25···ホッピング制御部。

【図1】

【図2】 22 2 情報データ 電圧制御 発振器 ループ フィルタ 受信機 (1) 20 190 23-2 23-k 23-1 ∞, 発生器 発生器 絶対值回路 PN K 発生器 絶対値回路 データ復号部 Ŋ P N N N 25/ ホッピング制御部 24 切替回路 PF FP. Late 信号 ဖ္ -運延回路 Early (富号 キャリア同期部 周波数 変換部 ₽、 RF 增幅部

【図3】

各SS方式の概念図

【図4】

【図8】

送信機(2)

受信機 (2)

【図10】

受信機 (3)