4

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-217869

(43)Date of publication of application: 02.08.2002

(51)Int.Cl.

H04J 13/04

(21)Application number: 2001-373093

(71)Applicant: MITSUBISHI ELECTRIC INF TECHNOL CENTER

EUROP BV

(22)Date of filing:

06.12.2001

(72)Inventor: BRUNEL LOIC

(30)Priority

Priority number: 2000 200017255

Priority date: 22.12.2000

Priority country: FR

(54) METHOD FOR DETECTING A PLURALITY OF SYMBOLS

(57) Abstract:

PROBLEM TO BE SOLVED: To provide the simple type of a detection method by a sphere in a maximum likelihood multi-user detecting method for a DS-CDMA(Direct Sequence Code Division Multiple Access) system.

SOLUTION: In the method for detecting a plurality of symbols, each symbol belongs to a modulation constellation and is the objects of spectral spreading by means of a spreading sequence. The method comprises a filtering step for supplying a real vector characteristic of the received signal; the closest neighbor of the vector is sought within the lattice of points generated by the modulation constellation; the search is limited to candidate vectors and each of whose components has a value lying within a search interval defined by a lower bound and an upper bound; and the bounds are selected, so that each of the intervals comprises only component values of points situated within a sphere with a predetermined radius and belonging to the modulation constellation.

LEGAL STATUS

[Date of request for examination]

02.12.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(原文除く 13 頁)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-217869 (P2002-217869A)

(43)公開日 平成14年8月2日(2002.8.2)

(51) Int.Cl.⁷ H 0 4 J 13/04 識別記号

FI H04J 13/00 テーマコード(参考)

G 5K022

審査請求 未請求 請求項の数7 OL 外国語出願 (全 33 頁)

(21)出願番号 特願2001-373093(P2001-373093)

(22)出願日 平成13年12月6日(2001.12.6)

(31)優先権主張番号 0017255

(32) 優先日 平成12年12月22日(2000.12.22)

(33)優先権主張国 フランス (FR)

(71)出願人 599036406

ミツピシ・エレクトリック・インフォメイ ション・テクノロジー・センター・ヨーロ

ッパ・ピー・ヴィ

フランス国、35700 レンヌ、アヴニュ ー・デ・ピュット・ド・コスケム 80

(72)発明者 ロイ・ブリュヌ

フランス国、35700 レンヌ、アヴニュ ー・デ・ビュット・ド・コエスム 80

(74)代理人 100057874

弁理士 曾我 道照 (外6名)

Fターム(参考) 5K022 EE02 EE32

(54) 【発明の名称】 複数シンポルの検出方法

(57)【要約】

【課題】 DS-CDMAシステムのための最尤マルチ ユーザ検出方法における球体による検出方法の簡略形を 提供すること。

【解決手段】 複数のシンボルを検出する方法であって、各シンボルはある変調コンスタレーションに属し、拡散系列を用いて拡散されるスペクトルの対象であり、その方法は、受信される信号に固有の実数ベクトルを供給するためになされるフィルタリングステップを含み、そのベクトルに対して少なくとも最も近い隣接点が、変調コンスタレーションによって生成される点からなる格子内で探索され、その探索は候補ベクトルに制限され、その成分はそれぞれ下側境界と上側境界によって一切を指示し、その境界は、そのインターバル内に存在する値を有し、その境界は、そのインターバルが所定の半径の球体内に位置し、かつ変調コンスタレーションに属する点の成分の値のみを含むように選択される。

1

【特許請求の範囲】

【請求項1】 複数Kのユーザによって送信される、あるいはそのユーザに向けて送信される複数シンボル(d (i))の検出方法であって、

前記各シンボルは、ある変調コンスタレーションに属し、拡散系列を用いて拡散されるスペクトルの対象であり、前記方法は、受信される信号に固有の実数ベクトル(z)を供給するためになされるフィルタリングステップを含み、

前記ベクトルに対して少なくとも最も近い隣接点が、前 10 記変調コンスタレーションによって生成される点(Ξ)からなる格子内で探索され、前記探索は候補ベクトル (x) に限定され、前記候補ベクトルの成分(b_i) はそれぞれ下側境界(B_i -) と上側境界(B_i -) によって画定される探索インターバル内に存在する値を有し、前記境界は、前記各インターバルが所定の半径(\sqrt{C})の球体内に位置し、かつ1つの変調コンスタレーションに属する点の成分の値のみを含むように選択されることを特徴とする検出方法。

【請求項2】 請求項1に記載の検出方法において、所与の添数 i を有する成分の場合に、前記下側境界(B i $^+$) とからなる各対が、前記成分のための前記探索インターバルの幅に特有の量T i から計算され、前記特有の量は、添数 i に関する反復によって決定され、所与の添数の場合の前記特有の量(T i) は、以前の添数(Ti+1)を有する量と、以前の添数を有する前記成分に関連する前記探索インターバル([Bi+1], Bi+1 $^+$])において選択される成分(bi+1)の値とから決定されることを特徴とする検出方法。

【請求項3】 請求項2に記載の検出方法において、所与の添数(2k)を有する候補ベクトル成分の場合、前記探索インターバルの前記下側境界は、変調コンスタレーション(A_k)のシンボルに対応する最も小さい整数 (M_2k^-)より大きくなるように選択され、前記探索インターバルの前記上側境界は、変調コンスタレーションのシンボルに対応する最も大きい整数 (M_2k^+) より小さくなるように選択されることを特徴とする検出方法。

【請求項4】 請求項2に記載の検出方法において、所与の添数(2k-1)を有する第1の候補ベクトル成分の場合、前記探索インターバルの前記下側境界は、第1の整数 (M_{2k+1} -) より大きくなるように選択され、前記探索インターバルの前記上側境界は、第2の整数 (M_{2k+1} -) より小さくなるように選択され、前記第1の整数および前記第2の整数は、前記第1の成分および前記第2の成分が全く同じユーザに関連付けられるような前記候補ベクトルの第2の成分(b_{2k})の値から決定されることを特徴とする検出方法。

【請求項5】 請求項4に記載の検出方法において、

前記第1の整数および前記第2の整数は、前記第1の成分の値と前記第2の成分の値とによって定義される複素数が、前記ユーザの前記変調コンスタレーションのシンボルになるような、前記第1の成分の最も小さい値および最も大きい値としてそれぞれ決定されることを特徴とする検出方法。

【請求項6】 請求項1ないし5のいずれか一項に記載の検出方法において、

最も近い隣接点の前記探索は、種々の成分の添数(i) のための前記探索インターバルにおいて個々に走査を行うことにより、かつ前記各インターバルにおいて成分値(b₁)を選択することにより実行され、前記各インターバルの前記境界は、以前の添数(i+1)を有する前記インターバルの幅と、この同じインターバル内で選択される成分値(b₁₊₁)とにしたがって決定されることを特徴とする検出方法。

【請求項7】 請求項1ないし6のいずれか一項に記載の検出方法において、

前記探索中に、候補ベクトルのノルム

【数1】

(|w|)

が前記球体の前記半径より小さい場合には、前記半径は 前記ノルムの値に更新されることを特徴とする検出方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は複数シンボルの検出 方法および装置に関する。より詳細には、本発明は、D 30 S-CDMA(直接拡散符号分割多元接続)通信システ ムのための最尤マルチユーザを検出する方法および装置 に関する。

[0002]

【従来の技術】DS-CDMA移動体通信システムで は、種々のユーザから到来する通信、あるいは種々のユ ーザに伝送される通信の分離は、ユーザの各複素シンボ ルをユーザに固有の拡散系列と掛け合わせることにより 達成される。このため、拡散系列はユーザシグネチャと も呼ばれている。拡散周波数(チップレート)は、シン 40 ボルの周波数よりも高く、各ユーザによって送信される 信号は、周波数の空間内に分布(あるいは拡散)され る。拡散信号によって占有される帯域と情報信号によっ て占有される帯域との間の比は、拡散率と呼ばれる。受 信時に、所定のユーザの分離は、対応するシグネチャに 適応するフィルタリングによって得られる。伝送チャネ ルが複数の伝搬経路を有するとき、適応するフィルタリ ングの出力は、多くの相関ピークを含む。そのチャネル の各経路は、複素乗算係数および遅延によってモデル化 される。種々の経路に沿って伝搬される信号は、経路係 50 数の共役複素数である複素係数によって整列かつ結合さ

3

れて、それにより伝送チャネルに適応するフィルタリングが達成される。用語を簡略化するために、一般的な表現「ユーザ k に適応するフィルタリング」は、ユーザ k のシグネチャに適応するフィルタリング動作、および伝送チャネルに適応するフィルタリング動作の両方を含むものとする。

【0003】種々のユーザに向けられる(ダウンリンク)信号、あるいは種々のユーザから到来する(アップリンク)信号間の干渉を排除するために、マルチユーザ検出方法、特にPIC(並列干渉相殺)およびSIC(直列干渉相殺)として知られる方法のような反復検出方法が提案されている。これらの方法は、伝送されるシンボルの推定、干渉の評価および受信された信号からの減算を含む、干渉排除サイクルの反復に基づく。高い性能を有するものの、これらの方法は、種々のユーザによって伝送されるシンボルの最尤判定という意味における推定を提供しないため、最適ではない。

【0004】ビタビアルゴリズムによって生成される最 尤判定をともなうマルチユーザ検出の方法は、S. Verdu によってIEEE Transactions on Information Theory

(1986年1月、85~96ページ) に発表された論文「Minimum probability of error for asynchronous Gaussian multiple access channel」において提案されたが、ユーザの数とともに指数関数的に複雑になるため、普及が妨げられている。

【0005】さらに最近になって、点からなる格子による表現を用いて、最尤判定をともなうマルチユーザ検出の方法が、L. Brunel等によって、Proceedings of ITW (1999年6月、129ページ) に発表された論文

「Euclidian space lattice decoding for joint detec 30 tion in CDMA system」において提案された。この方法によれば、種々のユーザによって伝送されるシンボルの最尤検出のための十分な統計値を表す受信信号の固有の*

*ベクトルが判定される。ある条件下では、その固有ベクトルは、雑音を付加された格子内の点として表わせることも示されている。その際、その検出は、受信されたベクトルに対応する点に最も近い格子内の点を探索するステップにより行われる。しかしながら、用いられることになる格子の大きさが一般に2×Kであり、Kがユーザの数を表すとき、検査される点の数は依然として非常に多い。検出を簡略化するために、受信された点を中心にした球体に属する格子内の点に最も近い隣接点を探索することに限定することが提案されている。この簡略化された検出方法は、「球体による検出方法」とも呼ばれ、以下に記載されることになる。

【0006】以下の状況は、基地局と同期して通信する K人のユーザを含む直接スペクトル拡散 (DS-CDM A)を用いるマルチアクセス移動通信システムである。 【0007】 dk (i)を、時刻iにおいてユーザ kに よって送信される複素シンボルとする。このシンボル は、ユーザ k のシンボルのアルファベットとも呼ばれる、ユーザ k によって用いられる変調コンスタレーションAkに属する。各ユーザは、信号akの振幅を有するN 個のシンボルからなるブロックを送信する。そのシンボルは、シンボル周期Tに等しい間隔で、複素シグネチャ sk (t) = sk^R (t) + j × sk^I (t) によって拡散される。なお、

t∉[0,T]

の場合には、 s_k (t) = 0 となる。時刻 i において送信されるK個の複素シンボル

 $d_k(i) = d_k(i) + j \times d_k(i)$ は、以下のように定義される実数値 $d_2(i)$ の行べクトルに置かれる。

【数3】

【数2】

$$\mathbf{d}_{2}(i) = \left(d_{1}^{R}(i), d_{1}^{I}(i), \dots, d_{K}^{R}(i), d_{K}^{I}(i)\right) \tag{1}$$

その際、対応する変調された信号は、時間 t の関数とし ※【数4】 て、以下のように定義される。 ※

$$S_{t} = \sum_{i=0}^{N-1} \sum_{k=1}^{K} a_{k} d_{k} (i) s_{k} (t - iT)$$

そのチャネルは、白色付加ガウス雑音を含む理想的なチャネルであるものと仮定される。 $r_t = S_t + \eta_t$ を時間 tにおいて受信される信号とし、 η_t を、その成分が分散 N_0 を有するゼロ平均の複素ガウス雑音とする。 y

 $k(i) = yk^R(i) + j \times yk^I(i) が、ユーザ k に$

(2)

適応するフィルタの時刻 i における複素出力であるように、行ベクトルを y_2 (i) = (y_1 ^R (i), y_1 ^I (i), . . . , y_K ^R (i), y_K ^I (i)) とする。【数 5】

$$y_{k}(i) = \int_{-\infty}^{\infty} s_{k}^{*}(t - iT)r_{i}dt
= \sum_{t=1}^{K} a_{t}d_{t}(i)\int_{0}^{\tau} s_{t}(t)s_{k}^{*}(t)dt + n_{k}(i)
= \sum_{t=1}^{K} a_{t}d_{t}(i)R_{tk} + n_{k}(i)$$
(3)

ただし、

[数 6]
$$R_{tk} = \int_{0}^{\tau} s_{\ell}(t) s_{k}^{*}(t) dt - R_{tk}^{R} + j \times R_{tk}^{I} \quad [k, \ell = 1, ..., K]$$

$$n_{k}(i) = \int_{0}^{\tau} \eta_{i} \times s_{k}^{*}(t - i \times T) dt$$

である。その拡散系列の自己相関行列はR(i)で示さ れるであろう。

【0008】式(3)の複素数要素が実数部と虚数部に*

*分解される場合には、以下の式が得られる。 【数7】

$$[y_{k}^{R}(i) + j \times y_{k}^{I}(i)] = \sum_{t=1}^{K} a_{\ell} [b_{\ell}^{R}(i)R_{tk}^{R} - b_{\ell}^{I}(i)R_{tk}^{I}] + j \times \sum_{t=1}^{K} a_{\ell} [b_{\ell}^{R}(i)R_{tk}^{I} + b_{\ell}^{I}(i)R_{tk}^{R}] + [n_{k}^{R}(i) + j \times n_{k}^{I}(i)]$$
(4)

A2=Diag (a1, a1, . . . , ak, ak) および R2を、以下の式になるように大きさ2K×2Kの行列 ※

 $\mathbf{R}_{2} = \begin{bmatrix} R_{11}^{R} & R_{11}^{I} & \cdots & R_{1K}^{R} & R_{1K}^{I} \\ -R_{11}^{I} & R_{11}^{R} & \cdots & -R_{1K}^{I} & R_{1K}^{R} \\ \vdots & \vdots & & \vdots & \vdots \\ R_{K1}^{R} & R_{K1}^{I} & \cdots & R_{KK}^{RK} & R_{KK}^{I} \\ -R^{I} & R^{R} & \cdots & -R^{I} & R^{R} \end{bmatrix}$

※であるとする。

【数8】

【数9】

(5)

その際、式(4)は行列の形にすることができる。

 $y_2(i)=d_2(i)M_2+n_2(i)$

(6)

ただし、M2は、M2=A2R2によって定義される大きさ 2K×2Kの実数行列であり、雑音ベクトルn2(i) = $(n_1^R (i), n_1^I (i), ..., n_K^R (i), n$ κ'(i))は、その共分散行列としてNo R2を有する。 【0009】式(6)によって与えられるように、y2 (i)は、生成行列M2が雑音n2を付加された場合に、 大きさ2Kの格子 A2内の点として表すことができるこ とが以下に示されるであろう。

【0010】用語、寸法κの点Λの実数格子は、以下の 式を満足するR*の任意のベクトルの組に対して用いら れるであろう。

$$b = (b_1, \ldots, b_{\kappa}) \in Z^{\kappa}$$

である。

【0013】 基底ベクトルによって画定される領域は基 本平行体と呼ばれ、vol(Λ)およびdet(Λ)で 示されるその体積は基本体積と呼ばれる。この基本体積 は、まさにκ個の基底ベクトルのベクトル積の係数であ り、それゆえ、 | det(G) | に等しい。ただしde $\star x = b_1 v_1 + b_2 v_2 + \dots + b_\kappa v_\kappa$

ただし、 $b_i \in \mathbb{Z}$ 、 $\forall i = 1, ..., κ$ であり、 {v1, v2, ..., vx}はR*の基底である。

【0011】大きさ2の点の格子の一例が図1に示され

【OO12】格子内の点はR*の付加アーベルサブグル ープを形成し、またそれは、R*のベクトル {v1,

40 v2, . . . , v x) およびZーモジュラスを含むR × の最も小さいサブグループでもある。これらの基底ベク トルは、その格子の場合の生成行列Gの行を形成する。 それゆえ、x=bGと書き表すことができる。ただし、 (7)

t は行列式を示す。同じ格子のための生成行列に対して いくつかの選択が可能であるが、一方では、基本体積に 対しては1つの値のみが存在する。

【0014】その格子に属する点xのボロノイ領域Vあ るいはディリクレセルは全て、その格子内の任意の他の 50 点よりxに近いR*の点である。この領域は、基本体積

に等しい。

【0015】格子の積重半径のは、ポロノイ領域に内接 する最も大きな球体の半径であり、収束の半径は、この 同じ領域に外接する最も小さな球体の半径である。それ ゆえ、積重半径は、その積重が点からなる格子を構成す る、球体の半径であり、収束の半径は、その格子の点を 中心として、全空間R®を覆うことができるようにする 最も小さい球体の半径である。格子の密度は、半径ρの 球体の体積と基本体積との間の比である。最後に、その*

7

$$Card(A) = \prod_{k=1}^{K} Card(A_k)$$

*格子の誤差の係数(接触数) τ (Λ)は、その積重体内 の全く同じ球体に接する球体の数であり、言い換える と、最小距離 d Emin = 2ρ に配置される、格子内のある 点の隣接点の数である。

【0016】もう一度、式(6)について考えてみる。 ベクトルd2(i)の成分は、基数の有限のアルファベ ットAに属する。

【数10】

(8)

【0017】用語Aは、変調コンスタレーションと呼ば れるAkに対して、システムのコンスタレーション(あ るいは単にコンスタレーション)のために用いられるで あろう。

※【0018】たとえば、成分dkR(i)およびd k!(i)が、次数MのPAM変調シンボルであるものと 仮定する。

【数11】

$$d_k^R(i) \in \{-M+1, -M+3, ..., M-3, M-1\}$$
 (9)

$$d_{i}^{I}(i) \in \{-M+1, -M+3, ..., M-3, M-1\}$$
 (10)

変換が行われる場合には、

$$d_k^{R}(i) = \frac{1}{2} (d_k^{R}(i) + M - 1)$$
 および $d_k^{R}(i) = \frac{1}{2} (d_k^{R}(i) + M - 1)$

であり、再びベクトル表示では、
$$\mathbf{d'}_2\left(i\right) = \frac{1}{2} \big(\mathbf{d}_2\left(i\right) + \mathbf{v}_{\scriptscriptstyle M}\big)$$

である、ただし、 $v_M = (M-1, M-1, \ldots, M$ -1) であり、成分d´kR(i) およびd´kl(i) は Zの要素であり、したがってd´2(i)はZ²kのベク トルである。

【0019】一般的に言うと、成分 d k R (i) および d k¹ (i)をZの要素に変換するアフィン変換が存在する★

$$y_{2}(i) = \frac{1}{2}(y_{2}(i) + v_{M}M_{2})$$

【0021】これ以降、暗黙のうちに行われるものと仮 定されるこの変換を用いると、その際、ベクトルd 2 (i) M2は、G=M2で式(7)によって定義される ようなおおきさ2Kの点A2の格子に属する。その際、 ベクトルy2(i) M2は、雑音n2(i) を付加された 格子Λ₂内の点であると見なすことができる。

【0022】雑音ベクトルn2(i)の成分が、中心化 された独立したランダムガウス変数であるものと仮定す る場合には、種々のユーザによって送信されるシンボル の最尤判定の意味における検出の問題は、y2(i)へ の距離が最小になるように、格子 Λ2内の点 22を探索す☆

$$R_2 = W_2 W_2^T$$

ただし、W2は、大きさ2K×2Kの下三角行列であ る。

【0026】白色化された観測ベクトルは以下のように

【数13】

(11)

★場合には、ベクトルd´2 (i) はZ2Kのベクトルによ って表すことができる。

【0020】同じようにして、対応する変換がッ 30 2(i)に関しても行われる。すなわち、

【数14】

(12)

☆ることに相当する。

【0023】実際には、雑音ベクトルn2(i)の成分 は相関をとられ、n2(i)の共分散行列はNoR2であ る。

【0024】相関のない場合にするためには、復号化す 40 る前に、雑音の白色化の動作を行う必要がある。

【0025】行列Rがエルミート行列である場合、自己 相関行列R2は対称に定義された正の値であり、それゆ え、コレスキー因数分解の対象となり得る。

【数15】

(13)

定義され、 【数16】 10

 $\tilde{y}_{2}(t) = y_{2}(t)W_{1}^{T-1}$

(14)

点Ω2の新しい格子は、

【数17】

$$\tilde{\mathbf{x}}_{2}(i) = \mathbf{x}_{2}(i) \mathbf{W}_{2}^{T^{-1}}$$

の場合の成分

【数18】

$$(\widetilde{x}_1^R(i), \widetilde{x}_1^I(i), \dots, \widetilde{x}_K^R(i), \widetilde{x}_K^I(i))$$

のベクトルからなる。ただしx2(i)は、Λ2に属する 成分

【数19】

$$(x_{k}^{R}(i), x_{k}^{I}(i), ..., x_{k}^{R}(i), x_{k}^{I}(i))$$

のベクトルである。格子Ω2は、その生成行列A2W2と して下三角実数行列を有する。

【0027】白色化した後に、フィルタリングされた雑 音の共分散行列 n2 (i) W2 T-1 はNo I2 K に等しくなる の固有行列である。それゆえ、その検出は、観測ベクト ルを白色化する第1のステップと、それに続いて、点Ω 2の格子内の最も近い隣接点を探索するステップとを含

【0028】図1に示されるように、検査される点の数 を低減するために、点

【数20】

ỹ₂

を中心しにした球体に、その探索を限定することができ る。実際には、その球体の半径の選択は、ある妥協の結 30 果として生じる。その半径は、点の数が過度に多くなら ないようにするために大きすぎてはならないが、少なく とも最も近い隣接点を含むだけ十分に大きくなければな らない。

【0029】図2は、球体による検出方法を用いるマル チユーザ検出装置を概略的に示す。受信される信号rt は、ユーザ2101、2102、...、210xのそれ ぞれに適応する一群のフィルタによってフィルタリング される。適応フィルタから出力される観測ベクトル y 2 (i)の実数成分および虚数成分は、式(14)にした 40 がってスペクトル白色化動作を実行する行列計算ユニッ トに送信される。その後、白色化されたベクトル

【数21】

$$\widetilde{\mathbf{y}}_{2}(i)$$

の実数成分および虚数成分は、大きさ2 Κの格子Ω2内 で受信される点の最も近い隣接点を探索する、球体によ り検出を行うためのユニットに送信される。最も近い隣 接点の座標が直接、種々のユーザのための推定されたシ ンボル

【数22】

 $\hat{d}_{k}(i)$

の実数成分および虚数成分を与える。

【0030】最も近い隣接点を探索するステップは計算 に時間がかかり、ユーザの数が多いときに非常に不利に なることを示す場合がある。

[0031]

【発明が解決しようとする課題】本発明の目的は、DS - CDMAシステムのための最尤マルチユーザ検出方法 のうちの球体による検出方法の簡略形を提案することで ある。

[0032]

【課題を解決するための手段】この目的を達成するため に、本発明は、複数Kのユーザによって送信される、あ るいそのユーザに向けて送信される複数のシンボル(d k(i))を検出する方法によって確定され、各シンボ ルはある変調コンスタレーションに属し、拡散系列を用 ことは容易に理解できよう。ただし12xは、大きさ2K 20 いて拡散されるスペクトルの対象であり、その方法は、 受信される信号に固有の実数ベクトル(z)を供給する ためになされるフィルタリングステップを含み、そのべ クトルに対して少なくとも最も近い隣接点が、変調コン スタレーションによって生成される点(E)からなる格 子内で探索され、その探索は候補ベクトル(x)に限定 され、その成分(bi)はそれぞれ下側境界(Bi⁻)と 上側境界(Bi+)によって画定される探索インターバ ル内に存在する値を有し、その境界は、その各インター バルが所定の半径(√C)の球体内に位置し、かつ変調 コンスタレーションに属する点の成分の値のみを含むよ うに選択される。

> 【0033】所与の添数iを有する成分の場合に、下側 境界(Bi-)と上側境界(Bi+)とからなる各対が、 その成分のための探索インターバルの幅に特有の量Ti から計算されることが有利である。この特有の量は、添 数 i に関する反復によって決定される。所与の添数の場 合の特有の量(Ti)は、以前の添数(Ti+1)を有する 量と、以前の添数を有する成分に関連する探索インター バル([Bi+1-, Bi+1+]) において選択される成分 (bi+1) の値とから決定される。

【0034】所与の添数(2k)を有する候補ベクトル 成分の場合、探索インターバルの下側境界は、変調コン スタレーション (Ak) のシンボルに対応する最も小さ い整数 (M2k-) より大きくなるように選択され、探索 インターバルの上側境界は、変調コンスタレーションの シンボルに対応する最も大きい整数 (M2k+) より小さ くなるように選択されるようにすることが有利である。 【0035】所与の添数 (2k-1) を有する第1のべ クトル候補成分の場合、探索インターバルの下側境界 50 は、第1の整数 (M2k-1-) より大きくなるように選択

(7)

11

され、探索インターバルの上側境界は、第2の整数(M 2k+1⁻)より小さくなるように選択されることになり、第1および第2の整数は、第1および第2の成分が全く同じユーザに関連するようなベクトル候補の第2の成分 (bzk) の値から決定される。

【0036】第1および第2の整数は、第1の成分の値と第2の成分の値とによって定義される複素数がユーザの変調コンスタレーションのシンボルになるような、第1の成分の最も小さい値および最も大きい値としてそれぞれ決定される。

【0037】最も近い隣接点の探索は、種々の成分の添数(i)のための探索インターバルにおいて個々に走査を行うことにより、かつその各インターバルにおいて成分値(bi)を選択することにより実行されることが好ましく、各インターバルの境界は、以前の添数(i+1)を有するインターバルの幅と、この同じインターバル内で選択される成分値(bi+1)とにしたがって決定される。

【0038】一実施形態によれば、その探索中に、候補ベクトルのノルム

【数23】

(||w||)

$$\mathbf{y}^{R}(i) = \mathbf{d}^{R}(i)\mathbf{M}(i) + \mathbf{n}^{R}(i)$$
$$\mathbf{y}^{I}(i) = \mathbf{d}^{I}(i)\mathbf{M}(i) + \mathbf{n}^{I}(i)$$

ここで、 y^R (i)、 d^R (i)、 n^R (i) (あるいは それぞれ y^I (i)、 d^I (i)、 n^I (i) は、y (i)、d (i)、n (i) の成分の実数部 (あるいは それぞれ虚数部) からなるベクトルであり、M (i) = 30 AR (i) は、R (i) が係数

【数25】

$$R_{\ell k} = \int_{0}^{\tau} s_{\ell}(t) s_{k}(t) dt$$

からなる行列であり、AはK人のユーザの振幅のベクトルである。観測ベクトル y^R (i) および y^I (i) はR Kに属する。 (12) と同じタイプの式にしたがって任 %

$$\widetilde{\mathbf{y}}^{R}(i) = \mathbf{y}^{R}(i)\mathbf{W}^{T-1}$$

$$\widetilde{\mathbf{y}}^{I}(i) = \mathbf{y}^{I}(i)\mathbf{W}^{T-1}$$

【0043】次に、ベクトル

【数27】

$$\tilde{\mathbf{x}}(i) = \mathbf{x}(i)\mathbf{W}^{\tau^{-1}}$$

(ただしx (i) は Λ に属する)によって形成される点 Ω の格子に属するベクトル

【数28】

$$\widetilde{\mathbf{y}}^{R}(i)$$

*その球体の半径より小さい場合には、半径はそのノルム

【0039】上記の本発明の特徴および他の特徴は、添付の図面に関連して与えられる以下の説明を読むことにより、より明らかになるであろう。

[0040]

の値に更新される。

【発明の実施の形態】もう一度、同期モードで機能している、K人のユーザを有するDS-CDMA通信システムを考えてみる。上記のように、最尤判定の意味における、種々のユーザによって送信されるシンボルの検出は、受信される信号に対応する点の最も近い隣接点のために、格子(Ω2)内の点の中を探索することに低減されることができる。

【0041】拡散系列が実数、より一般的には同じ複素数の実数の倍数である場合には、その探索が、Kまで低減された大きさを有する格子内で実行できることを示すことができる。これは、行列R2の虚数項、それに続く行列M2の虚数項が0であるとき、大きさKおよび生成行列Mの実数点Λの格子にすることができるためである。

【数24】

(15)

(16)

※意の変換を行った後、ベクトルy^R(i)およびy

I (i) は、雑音を付加された生成行列M (i) の格子 Λ 内の点であると見なすことができる。

【0042】雑音ベクトル n^R (i)および n^I (i)はいずれも、共分散行列 N_0R (i)を有することを容易に示すことができる。Rが正の値で定義された対称行列であるとき、コレスキー分解: $R=WW^I$ にしたがって因数分解することができる。ただしWは、大きさ $K\times K$ の下三角実数行列である。雑音成分の相関をなくすために、実数観測ベクトル y^R (i)および y^I (i)は最初に、白色化動作にかけられる。

【数26】

(17)

(18)

および

【数29】

 $\widetilde{\mathbf{y}}'(i)$

の最も近い隣接点が探索される。格子Ωの生成行列はAW、下三角実数行列に等しいことに留意されたい。さらに、白色化した後、フィルタリングされた雑音n[®](i)W¹⁻¹およびn¹(i)W¹⁻¹の共分散行列がいず

* (1) Wi およびn' (1) Wi の共分取行列がい 9 50 れもNo I k に等しくなることを容易に示すことができ (8)

る。ただし、Ixは寸法Kの固有行列である。

【0044】ユーザから、あるいはユーザへのシンボル が非同期に送信されるとき、あるユーザのシンボルが、 別のユーザの2つあるいはそれ以上の連続したシンボル をも干渉する可能性があるということを考慮する必要が あるため、そのシステムのモデル化はさらに複雑にな る。この場合に、K´>Kである大きさ2K´(実数シ グネチャの場合にはK´)の格子内の最も近い隣接点を 探索できることを示すことができる。ただしK´は、互 いに干渉する場合がある、まだ推定されていないシンボ * 10

$$m(\widetilde{\mathbf{y}}/\mathbf{x}) = \sum_{i=1}^{\kappa} |\widetilde{\mathbf{y}}_{i} - \mathbf{x}_{i}|^{2} = \|\widetilde{\mathbf{y}} - \mathbf{x}\|^{2}$$

ただし、

【数32】

$$\widetilde{y} = x + \eta$$
, $\eta = (\eta_1, \dots, \eta_n)$

は雑音ベクトルであり、 $x = (x_1, \dots, x_k)$ は その格子に属する点である。雑音ベクトルヵは、ゼロ平※ $m(\mathbf{y}/\mathbf{x}) = (\mathbf{y} - \mathbf{x})\mathbf{R}^{-1}(\mathbf{y} - \mathbf{x})^{T}$

【0047】これ以降、簡略化するために、観測ベクト ルは、白色化されていても

【数34】

(ỹ(i))

いなくても(y (i))、zで呼ばれることになり、式 (19) あるいは (20) において作用する計量は 【数35】

11-11

と呼ぶものとする。

【0048】格子日内の点は、ベクトルx=bGによっ て記述されることができる。ここで、b=

(b₁, . . . , b_k) は、整数 Z の環に属する成分 b₁ を有し、Gは格子の生成行列である。行列Gの行は、 {v1, v2, . . . , vk} で示される。定義によっ て、これらのベクトルは格子の根拠を形成する。

【0049】送信されるシンボルの組は、コンスタレー ションと呼ばれる有限の大きさA κ C Z * のアルファベ ★ 40

$$\min ||z - x|| = \min ||w||$$

【0052】これを行うために、復号化器は、変換され た組z-E内の最も小さいベクトルwを探索する。ベク☆

$$z = \rho G$$

 $\rho = (\rho_1, ..., \rho_\kappa)$

 $\mathbf{w} = \xi \mathbf{G}$

 $\xi = (\xi_1, ..., \xi_r)$

【0053】 ρおよびξが実数ベクトルであることに留 意することは重要である。w=z-x(ただしxは格子 Ξ に属する) であるので、これは、 $i=1,\ldots,\kappa$ 50

*ルの数の関数である。しかしながら、その検出は、最尤 判定という意味において、最適ではない。

【0045】全ての場合に、その問題は、受信された白 色化ベクトル

【数30】

に最も近い大きさκの格子E内の点xを判定することで あり、結局、以下の行列を最小にすることに相当する。

【数31】

(19)

※均のガウス分布の独立した実数成分を有する。

【0046】ベクトルy(i)は、以下の共分散行列に 基づく行列を使用する場合には、白色化される必要がな

【数33】

(20)

★ットに限定される。このコンスタレーションは、κ人の ユーザによって(あるいはユーザのために)用いられる 変調コンスタレーションによって決定され、アルファベ ットARの基数は、種々の変調アルファベットの基数の 積である。これらの各コンスタレーションの複素点は実 数値と、均等に分布した虚数値とを有するものと想定さ れる。

【0050】ここまで見てきたように、完全な復号化に 30 は、A k を通して最も近い隣接点を探索することが必要 とされるであろう。復号化器は、受信された点の周囲に 配置されるコンスタレーションの領域内に、好ましく は、図1に示されるように、受信された点を中心にした 所与の半径√Cの球体内部に配置される点に計算を限定 することが有利である。それゆえ、受信された点からC 未満の平方距離に配置される格子内の点のみが、計量

(19)の最小化のために考慮される。

【0051】実際には、復号化器は以下の最小化を達成 する。

【数36】

(21)

☆トルzおよびwは以下のように表すことができる。

【数37】

(22)

の場合に $\xi_i = \rho_i - b_i$ であり、ただし、

【数38】

$$\mathbf{w} = \sum_{i=1}^{15} \xi_i \mathbf{v}_i$$

【0054】ベクトルwは、その座標を」が受信された * $\|\mathbf{w}\|^2 - Q(\xi) - \xi G G^T \xi^T \le C$

*点を中心にした変換された座標系において表現される格 子内の点である。ベクトルwは、以下の式が成り立つ場 合には、Oを中心とした平方半径Cの球体に属する。 【数39】

(23)

【0055】それゆえ、とによって定義される座標系の 新しい系では、yを中心とする平方半径Cの球体は、原 点を中心とした楕円体に変換される。グラム行列Γ=G G^{\dagger} のコレスキー因数分解は、 $\Gamma = \Delta \Delta^{\dagger}$ を与える。ただ

し Δ は、要素 δ ijの下三角行列である。

【0056】ベクトルッが白色化されている場合には、※

※その格子のための生成行列が既に三角で、下側半分にあ るので、この因数分解を行う必要はない。

【0057】しかしながら、予め白色化が実行されてい なかった場合、それゆえ、コレスキー分解が必要とされ

【数40】

$$Q(\xi) = \xi \Delta \vec{\Delta} \xi^{T} = \left\| \Delta^{T} \xi^{T} \right\|^{2} = \sum_{i=1}^{K} \left(\delta_{ii} \xi_{i} + \sum_{j=i+1}^{K} \delta_{ji} \xi_{j} \right)^{2} \le C$$
 (24)

であり、以下の式を代入することにより、

することにより、 【数41】
$$q_{ii} = \delta_{ii}^2 \quad \text{ただし } i=1,...,\kappa$$

$$q_{ij} = \frac{\delta_{ij}}{\delta_{ji}} \quad \text{ただし } j=1,...,\kappa; \quad i=j+1,...,\kappa$$
 (25)

以下の式が得られる。

【数42】

$$Q(\xi) = \sum_{i=1}^{K} q_{ii} \left(\xi_i + \sum_{j=i+1}^{K} q_{ji} \xi_j \right)^2$$
 (26)

【0058】最初に、ξェの可能な変動の範囲に関係し て、かつ1つずつ成分を追加することにより、以下のκ の不等式が得られ、それは楕円体内の全ての点を定義す★

【数43】

$$q_{\kappa\kappa}\xi_{\kappa} \leq C$$

$$q_{\kappa-1,\kappa-1}(\xi_{\kappa-1} + q_{\kappa,\kappa-1}\xi_{\kappa})^{2} + q_{\kappa\kappa}\xi_{\kappa}^{2} \leq C$$

$$\forall \ell \in \{1; \kappa\}, \sum_{i=\ell}^{\kappa} q_{ii} \left(\xi_{i} + \sum_{j=\ell+1}^{\kappa} q_{ji}\xi_{j}\right)^{2} \leq C$$
(27)

不等式(27)によって、bの整数成分が以下の式を満 たすことが必要になることを示すことができる。

$$\left[-\sqrt{\frac{C}{q_{\text{exc}}}} + \rho_{\kappa}\right] \leq b_{\kappa} \leq \left[\sqrt{\frac{C}{q_{\text{exc}}}} + \rho_{\kappa}\right]$$

$$\left[-\sqrt{\frac{C-q_{\text{exc}}\xi_{\kappa}^{2}}{q_{\kappa-1,\kappa-1}}} + \rho_{\kappa-1} + q_{\kappa,\kappa-1}\xi_{\kappa}\right] \leq b_{\kappa-1} \leq \left[-\sqrt{\frac{C-q_{\text{exc}}\xi_{\kappa}^{2}}{q_{\kappa-1,\kappa-1}}} + \rho_{\kappa-1} + q_{\kappa,\kappa-1}\xi_{\kappa}\right]$$

$$\left[-\sqrt{\frac{1}{q_{\text{eff}}}}\left(C - \sum_{\ell=i+1}^{K} q_{\ell\ell}\left(\xi_{\ell} + \sum_{j=i+1}^{K} q_{j\ell}\xi_{j}\right)^{2}\right) + \rho_{i} + \sum_{j=i+1}^{K} q_{ji}\xi_{j}\right] \leq b_{k}$$

$$b \leq \left[\sqrt{\frac{1}{q_{\text{eff}}}\left(C - \sum_{\ell=i+1}^{K} q_{\ell\ell}\left(\xi_{\ell} + \sum_{j=i+1}^{K} q_{j\ell}\xi_{j}\right)^{2}\right) + \rho_{i} + \sum_{j=i+1}^{K} q_{ji}\xi_{j}\right]$$
(28)

ただし、

【数45】

50 は、実数xより大きい整数のうちの最も小さい整数であ

 $\lceil x \rceil$

ŋ,

【数46】

LxJ

17

は、実数xより小さい整数のうちの最も大きい整数である。

【0059】復号化器は κ 個の内部カウンタを、すなわ*

$$S_i = S_i(\xi_{i+1}, \dots, \xi_x) = \rho_i + \sum_{j=i+1}^x q_{ji}\xi_j$$

$$T_{i-1} = T_{i-1}(\xi_i, \dots, \xi_r) = C - \sum_{t=1}^{K} q_{tt} \left(\xi_t + \sum_{j=t+1}^{K} q_{jt} \xi_j \right)^2 = T_i - q_{it} (\xi_i + S_i - \rho_i)^2$$
(30)

$$T_{i-1} = T_i - q_{ii}(S_i - b_i)^2 (31)$$

【0060】式 (29) ~ (31) を用いると、各成分 b_1 の変動の範囲は、成分 b_2 で開始して、再帰的に決 ※ $L_1 \leq b_1 \leq L_2^*$

※定される。 【数48】

【数47】

(32)

*ち大きさあたり1つのカウンタを有しており、各カウン

タが特定の一対の境界に関連付けられることが与えられ

るとき、各カウンタは式(28)に示されるように、下

(29)

側境界と上側境界との間でカウント動作を行う。実際 に、これらの境界は再帰的に更新される。ここで、T_K

=Cの場合に、以下の式を与える。

ただし、

$$L = \left[-\sqrt{\frac{T_i}{q_{ii}}} + S_i \right] \quad \text{\Rightarrow $\downarrow V$} \quad L = \left[\sqrt{\frac{T_i}{q_{ii}}} + S_i \right]$$

【数49】

(33)

★の場合に、ユーザkによって、あるいはユーザkのため

に送信される複素シンボルを有する大きさ2kおよび2

k-1 が考慮される。図3に示されるように、そのコン

スタレーション、すなわち同等の意味では、ユーザ k の

変調コンスタレーションは最初に、大きさ2kに投射さ

れる。この投射は、インターバル [M2k-, M2k+] を定

☆際、探索インターバル [B2k-1-, B2k-1+] は以下のよ

【0061】式(33)によって定義される変動の範囲は、コンスタレーションの外側に位置する点を不必要に検査しないように限定されることが有利である。各ユーザ k はシンボル A_k のコンスタレーションを使用しており、そのコンスタレーションを使用しており、そのコンスタレーションの各シンボルは、その実数部および虚数部(おそらくアフィン変換後)がZの要素である複素数であることが明確にされるべきである。一般的な場合は最初に、格子が大きさ 2 Kからなる場所がないように定義され、得られる。ただし、Kはユーザの数である。各ユーザ k 【数50】 $B_{2k} = Upp((L_{2k}, M_{2k}))$ および $B_{2k} = Low((L_{2k}, M_{2k}))$

義する。その際、探索インターバル [B2k⁻, B2k⁺] は 0 以下のように定義され、 【数50】 - Low(/t.- Mt.)

整数 b 2 k はこのインターバル内で選択される。その際、 成分 b 2 k は、図 3 に示されるように、成分 b 2 k - 1 の場合 のインターバル [M2 k - 1 ⁻ , M2 k - 1 ⁺] を定義する。その☆

うに定義される。

このようにして進めることにより、探索球体、およびコ ンスタレーション内の点のいずれにも配置される候補の *40* 中からのみ、最も近い隣接点が探索されるようになる。

【0062】実数拡散系列が用いられるとき、それゆえ格子が大きさK(ただしKはユーザの数である)からなるとき、この状況はわずかに異なる。この場合、シンボルの実数値および虚数値が、大きさKの格子(Λ 、 Ω)内の平行探索の対象である。探索境界の計算(および成分の値の選択)は、インターリーブされるように、実数部および虚数部に交互に関係付けられる。

【0063】大きさiにおいて用いられる変調が次数MのPAM変調である簡単な場合には、探索される点の整 50

数座標 b_1 は、 $0\sim M-1$ になければならない。その探索境界は、成分 b_1 に関連するカウンタが探索球体あるいはコンスタレーションの外側に位置する点上を移動しないように、 $B_1^-=Upp(L_1^-,0)$ および $B_1^+=Low(L_1^+,M-1)$ によって調整される。その探索境界の調整は球体による検出のためのアルゴリズムを著しく加速する。

【0064】さらに、球体内の探索は、最後に計算されたユークリッドノルム

【数52】

(||w||)

19

を用いて半径√Cを更新することにより、さらに加速さ せることができる。

【0065】探索半径√Cの初期値は、適切な態様で選 択されなければならない。これは、復号化球体内に配置 される格子内の点の数がCとともに増加するためであ る。これは、大きな値のCを選択することにより復号化 アルゴリズムが不利になり、一方、Cが小さすぎる場合*

$$\sqrt{C}^{\kappa} = (\kappa \log \kappa + \kappa \log \log \kappa + 5\kappa) \times \frac{|\det(G)|}{V}$$

ただし、Vkは、実数空間Rk内の単位半径の球体の体

【0067】図3は、本発明による、球体による検出方 法において用いられる最も近い隣接点を探索するための 流れ図を示す。

【0068】ベクトルz、行列Gおよび初期値Cは、そ の探索方法に伝送されるパラメータである。

【0069】その状況は κ = 2 K の場合に一般的であ り、その簡略化された場合κ=Κは、簡単にそこから導 出されるものと想定されるであろう。

【0070】ステップ301では、ベクトルをが白色化 から生じたものでなかった場合には、グラム行列Γ=G G「のコレスキー因数分解が実行される(そうでない場 合には、既に見てきたように、行列Gは既に三角で、下 側半分にある)。係数 qi」は式(25)にしたがって計 算され、値 ρ_k は式: $\rho = z$ G^{-1} によって計算される。

【0071】ステップ302では、最も小さい現在の距 離の平方値がC: Dmin² = Cに初期化され、探索境界の 再帰的な計算が $T_{\kappa} = C$ 、 $S_i = \rho_i$ 、 $i = 1, \ldots$, κ によって初期化される。境界 M_i -、 M_i +の値も i=2 30 $k \setminus k = 1$, . . . , Kで判定され、次のKテーブル は、種々の実現可能な値 b_{2k} に対応する i=2k-1、 $k=1, \ldots, K で値M_i⁻、M_i⁺を与えることにより$ 構成される。

【0072】ステップ303では、探索の大きさの添字 が初期化、すなわちi=kにされる。

【0073】ステップ304では、式(33)を用い て、値Li-、Li+が計算される。iが偶数である場合に は、式 (34) を用いて、B: 、B: が決定される。 i 1) / 2および bi+1 の値から決定される。次に、境界 B_{i}^{-} 、 B_{i}^{+} が式(34[´])にしたがって決定される。さ らに、b:が値B: - -1に初期化される。

【0074】ステップ305では、b:の値が1だけイ ンクリメントされる: $b_i = b_i + 1$ 。

【0075】ステップ306は検査からなる:bi>Bi

【0076】ステップ306においてその検査が否定さ れる場合には、ステップ307に渡され、i>1である か否かが検査される。

*には、探索球体が空になる可能性があることによる。

【0066】復号化器が格子内に少なくとも1つの点を 見つけることを確実にするように、格子の収束の半径よ り大きい探索半径が選択されることが有利である。たと えば、それは、上側ロジャーズ境界に等しくなるように とられることができる。

20

【数53】

【0077】ステップ307においてその検査が肯定さ れる場合には、段階的に探索境界が計算される。ステッ プ310では、 $T_{i-1} = T_i - q_{ij} (S_i - b_i)^2$ および $\xi_1 = \rho_1 - b_1$ が計算され、その後ステップ311で は、

(35)

【数54】

$$S_{i-1} = \rho_{i-1} + \sum_{i=1}^{\pi} q_{j,i-1} \xi_j$$

が計算される。次に、i-1の場合の探索境界を計算す るために、ステップ304に戻る前に、ステップ312 において i がデクリメントされる。

【0078】ステップ307の検査が否定されるとき、 【数55】

$$\|\mathbf{w}\|^2 = T_{\kappa} - T_1 + q_{11}(S_1 - b_1)^2$$

によって現在の点に関係付けられるベクトルwの平方ノ ルム

【数56】

$$\|\mathbf{w}\|^2$$

を計算するために、ステップ308に渡される。その 後、

【数57】

$$\|\mathbf{w}\|^2 < D_{\min}^2$$

であるか否かが検査される。それが該当する状況でない 場合には、ステップ305が継続される。一方、最小距 離が改善される場合には、ステップ313に渡され、そ が奇数である場合には、Mi⁻、Mi⁺は、テーブル(i + 40 こで、この最小値に対応するベクトルxの成分 bi が格 納される。最小平方距離は

【数58】

$$D_{\min}^2 = |\mathbf{w}|^2$$

により更新されて、探索球体は

【数59】

$$T_{\mathbf{v}} = \|\mathbf{w}\|^2$$

により更新される。その探索手順は、ステップ303に 50 戻ることにより再開される。

【0079】ステップ306における検査が肯定される 場合、すなわち上側探索境界が現在の大きさに到達する 場合には、ステップ321においてi=kであるか否か が検査される。それが該当する状況である場合には、ス テップ320において、探索は終了され、格納された最 後のベクトルxが最も近い隣接点である。一方、検査が 否定される場合には、その探索は、ステップ322にお いてiをインクリメントすることにより継続し、ステッ プ305に戻る。

21

[0080]

【発明の効果】上記のように、本発明によれば、DS-CDMAシステムのための最尤マルチユーザ検出方法に

22 おける球体による検出方法の簡略形を実現することがで きる。

【図面の簡単な説明】

【図1】 図2に示される受信機内で用いられる検出方 法に対して有用な点の格子を示す図である。

【図2】 球体による検出方法を用いる、マルチユーザ DS-CDMA受信機の構造を示す概略図である。

【図3】 本発明による、球体による検出方法において 用いられる最も近い隣接点を探索するための流れ図であ 10 る。

【図4】 ユーザ変調コンスタレーションの一例を示す 図である。

【図1】

【図2】

【外国語明細書】

1. Title of the Invention

METHOD OF DETECTING A PLURALITY OF SYMBOLS

2. Claims

- 1. Method of detecting a plurality of symbols $(\mathbf{d_k}(i))$ transmitted by or for a plurality K of users, each symbol belonging to a modulation constellation and being the subject of a spectral spreading by means of a spreading sequence, the said method comprising a filtering step adapted for supplying a real vector (\mathbf{z}) characteristic of the said received signal, characterised in that at least the closest neighbour of the said vector is sought within a lattice of points (\mathbf{z}) generated by the said modulation constellations, the said search being limited to candidate vectors (\mathbf{x}) , each of whose components (b_i) has a value lying within a search interval defined by a lower bound (B^-) and an upper bound (B^+) , the said bounds being chosen so that each of the said intervals comprises only component values of points situated within a sphere with a predetermined radius (\sqrt{C}) and belonging to a modulation constellation.
- 2. Detection method according to Claim 1, characterised in that, for a component with a given index i, each pair of bounds, lower (B^*) and upper (B^*) , is calculated from a quantity T_i characteristic of the width of the search interval for the said component, this characteristic quantity being determined by recurrence on the index i, the characteristic quantity (T_i) for a given index being determined from the quantity with the previous index (T_{i+1}) and the value of a component (b_{i+1}) chosen in the search interval $([B_{i+1}, B_{i+1}^*])$ relating to the component with the previous index.
- 3. Detection method according to Claim 2, characterised in that, for a candidate vector component with a given index (2k), the lower bound of the search interval is chosen so as to be greater than the smallest integer $(M\bar{u})$ corresponding to a symbol of the modulation constellation (A_k) and the upper bound of the search interval is chosen so as to be less than the largest integer $(M\bar{u})$ corresponding to a symbol of the modulation constellation.
- 4. Detection method according to Claim 2, characterised in that, for a first candidate vector component with a given index (2k-1), the lower bound of the search interval is chosen so as to be greater than a first integer $(M\bar{n}_{-1})$ and the upper bound of

the search interval is chosen so as to be less than a second integer $(M\dot{x}_{-1})$, the said first and second integers being determined from the value of a second component (b_{2k}) of the candidate vector such that the first and second components relate to one and the same user.

- 5. Detection method according to Claim 4, characterised in that the said first and second integers are respectively determined as the smallest value and the largest value of the first component such that the complex number defined by the value of the said first component and the value of the said second component is a symbol of the modulation constellation of the said user.
- 6. Detection method according to one of the preceding claims, characterised in that the search for the closest neighbour is effected by scanning one by one the said search intervals for the different component indices (i) and choosing a component value (b_i) in each of the said intervals, the bounds of each interval being determined according to the width of the interval with the preceding index (i+1) and the component value (b_{i+1}) chosen in this same interval.
- 7. Detection method according to one of the preceding claims, characterised in that, if, during the said search, the norm ($\|\mathbf{w}\|$) of a candidate vector is less than the radius of the said sphere, the radius is updated to the value of the said norm.

3. Detailed Description of Invention

The present invention concerns a multiuser detection method and device. More particularly, the present invention concerns a maximum likelihood multiuser detection method and device for a DS-CDMA (Direct Sequence Code Division Multiple Access) telecommunication system.

In a DS-CDMA mobile telecommunication system, the separation of the communications coming from or going to the different users is achieved by multiplying each complex symbol of a user by a spreading sequence which is peculiar to him, also referred to for this reason as the user signature. The spreading frequency (chip rate) being greater than the frequency of the symbols, the signal transmitted by each user is distributed (or spread) in the space of the frequencies. The ratio between the band occupied by the spread signal and the band occupied by the information signal is referred to as the spreading factor. On reception, the separation of a given user is obtained by means of a filtering adapted to the corresponding signature. When the

transmission channel has a plurality of propagation paths, the output of the adapted filtering contains as many correlation peaks. Each path of the channel can be modelled by a complex multiplicative coefficient and a delay. The signals being propagated along the different paths can be aligned and combined by means of complex coefficients which are conjugates of the path coefficients, thus effecting a filtering adapted to the transmission channel. In order to simplify the terminology, the general expression "filtering adapted to the user k" will encompass both the filtering operation adapted to the signature of the user k and the filtering operation adapted to the transmission channel.

To combat the interference between signals destined for (the downlink) or coming from (the uplink) the different users, multiuser detection methods have been proposed, and notably iterative detection methods such as those known as PIC (Parallel Interference Cancellation) and SIC (Serial Interference Cancellation). They are based on the iteration of an interference elimination cycle including the estimation of the symbols transmitted, the evaluation of the interferences and their subtraction from the signals received. Although of high performance, these methods are not optimal since they do not provide an estimation in the sense of the maximum likelihood of the symbols transmitted by the different users.

A method of multiuser detection with maximum likelihood inspired by the Viterbi algorithm was proposed by S. Verdu in an article entitled "Minimum probability of error for asynchronous Gaussian multiple access channels", published in IEEE Transactions on Information Theory, pages 85-96, January 1986, but its complexity is prohibitive since it varies exponentially with the number of users.

More recently a method of multiuser detection with maximum likelihood using a representation by a lattice of points was proposed by L. Brunel et al., in an article entitled "Euclidian space lattice decoding for joint detection in CDMA system" published in Proceedings of ITW, page 129, June 1999. According to this method, a vector characteristic of the received signal representing a statistic sufficient for the maximum likelihood detection of the symbols transmitted by the different users is determined. It is shown under certain conditions that the characteristic vector can be represented as the point in a lattice disturbed by a noise. The detection then consists of seeking the point in the lattice closest to the point corresponding to the vector received. However, the dimension of the lattice to be used generally being $2 \times K$ where K is the number of users, the number of points to be tested is still very high. To simplify detection, it has been proposed to limit the search for the closest neighbour to the points in the lattice belonging to a sphere centred around the point received. This simplified

detection method, referred to as the "method of detection by spheres", will be disclosed below:

The context is a multiple access mobile telecommunication system with direct sequence spectrum spreading (DS-CDMA) comprising K users communicating synchronously with a base station.

Let $d_k(i)$ be the complex symbol sent by the user k at instant i. This symbol belongs to the modulation constellation A_k used by the user k, which will also be referred to as the alphabet of symbols of the user k. Each user k transmits a block of N symbols with an amplitude of the signal a_k . The symbols are spread by a complex signature $s_k(t) = s_k^R(t) + j \times s_k'(t)$ with a duration equal to the symbol period T:

$$s_t(t) = 0$$
 if $t \notin [0,T]$

The K complex symbols $d_k(i) = d_k^R(i) + j \times d_k^I(i)$ transmitted at instant i are placed in a row vector of real values $d_2(i)$ defined as:

$$\mathbf{d}_{i}(i) = (d_{i}^{R}(i), d_{i}^{R}(i), \dots, d_{k}^{R}(i), d_{k}^{L}(i)) \tag{1}$$

The corresponding modulated signal is then, as a function of the time t:

$$S_{i} = \sum_{t=1}^{N-1} \sum_{t=1}^{N} a_{it} d_{i}(t) \alpha(t-iT)$$
(2)

It is assumed that the channel is an ideal channel with white additive Gaussian noise. Let $n-S_t+\eta_t$ be the signal received at time t and η_t a complex Gaussian noise of zero mean whose components have a variance N_0 .

Let the row vector be $y_2(i) - (y_k^n(i), y_k(i), y_k(i), y_k(i))$ such that $y_k(i) = y_k^n(i) + j \times y_k'(i)$ is the complex output at instant i of the filter adapted to the user k:

$$y_{k}(i) = \int_{-\infty}^{\infty} sx^{*}(t-iT)ndt$$

$$= \sum_{t=1}^{K} a_{t}dx_{t}(i) \int_{0}^{T} sx_{t}(t)sx^{*}(t)dt + nx_{t}(i)$$

$$= \sum_{t=1}^{K} a_{t}dx_{t}(i)Rx_{t} + nx_{t}(i)$$
with $R_{tk} = \int_{0}^{T} s_{t}(t)s_{k}^{*}(t)dt = R_{tk}^{R} + j \times R_{tk}^{I}$ for $k, \ell = 1, ..., K$ and $n_{k}(i) = \int_{0}^{T} \eta_{t} \times s_{k}^{*}(t-i\times T)dt$

The autocorrelation matrix of the spreading sequences will be denoted $\mathbf{R}(i)$.

If the complex elements of (3) are decomposed into their real and imaginary parts, there is obtained:

$$\left[y_{i}^{R}(i)+j\times y_{i}^{J}(i)\right]=\sum_{l=1}^{K}a_{l}\left[b_{l}^{R}(i)R_{li}^{R}-b_{l}^{J}(i)R_{li}^{J}\right]+j\times\sum_{l=1}^{K}a_{l}\left[b_{l}^{R}(i)R_{li}^{J}+b_{l}^{J}(i)R_{li}^{R}\right]+\left[r_{k}^{R}(i)+j\times r_{k}^{J}(i)\right] \tag{4}$$

Let $A_2 = Diag(a_1, a_2, a_1, a_2, a_1)$ and R_1 be the matrix of size $2K \times 2K$ such that:

$$\mathbf{R}_{2} = \begin{bmatrix} R_{1}^{2} & R_{1}^{2} \cdots & R_{K}^{2} & R_{K}^{2} \\ -R_{1}^{2} & R_{1}^{2} \cdots & -R_{K}^{2} & R_{K}^{2} \\ \vdots & \vdots & \vdots & \vdots \\ R_{K}^{2} & R_{K}^{2} \cdots & R_{K}^{2} & R_{K}^{2} \\ -R_{K}^{2} & R_{K}^{2} \cdots & -R_{K}^{2} & R_{K}^{2} \end{bmatrix}$$
(5)

Equation (4) can then be put in matrix form:

$$y_2(i)=d_2(i)M_2+n_2(i)$$
 (6)

where M_2 is a real matrix of size $2K \times 2K$ defined by $M_2 = A_2R_2$ and where the noise vector $n_2(i) = (n_1^R(i), n_1^R(i), \dots, n_K^R(i), n_K^R(i))$ has N_0R_2 as its covariance matrix.

It will be demonstrated below that $y_2(i)$, as given by equation (6), can be represented as a point in a lattice Λ_2 of dimension $2 \times K$, with a generator matrix M_2 corrupted by a noise n_2 .

The term real lattice of points A of dimension κ will be used for any set of vectors of \mathbb{R}^n satisfying:

$$x = b_1v_1 + b_2v_2 + ... + b_1v_1$$
 where $b_i \in Z$, $\forall i = 1, ..., \kappa$ and where $\{v_1, v_2, ..., v_K\}$ is a base on \mathbb{R}^K .

An example of a lattice of points of dimension 2 has been shown in Fig. 1.

The points in the lattice form an additive abelian sub-group of \mathbb{R}^n , and it is also the smallest sub-group of \mathbb{R}^n containing the vectors $\{v_1, v_2, ..., v_n\}$ and a Z-modulus of \mathbb{R}^n . These base vectors form the rows of the generator matrix G for the lattice. It is therefore possible to write x = bG where $b = (b, ..., b_n) \in \mathbb{Z}^n$. (7)

The region delimited by the base vectors is referred to as the fundamental parallelotope and its volume, denoted $vol(\Lambda)$ and $det(\Lambda)$, is referred to as the fundamental volume. This fundamental volume is none other than the modulus of the vectorial product of the κ base vectors and is therefore equal to |det(G)| where det designates the determinant. Though there are several possible choices for the generator matrix for the same lattice, on the other hand there is only one value for the fundamental volume.

The Voronoi region V or Dirichlet cell of a point x belonging to the lattice is all the points of R^x closer to x than any other point in the lattice. The volume of this region is equal to the fundamental volume.

The stacking radius ρ of the lattice is the radius of the largest sphere inscribed in the Voronoi region and the radius of coverage that of the smallest sphere circumscribed in this same region. The stacking radius is therefore the radius of the spheres whose stacking constitutes the lattice of points and the radius of coverage is that of the smallest spheres which, centred on the points in the lattice, make it possible to cover the entire space \mathbf{R}^{κ} . The density of the lattice is the ratio between the volume of the sphere of radius ρ and the fundamental volume. Finally, the coefficient of error (the kissing number) $\tau(\Lambda)$ of the lattice is the number of spheres tangent to one and the same sphere in the stack or, in other words, the number of neighbours of a point in the lattice, situated at the minimum distance $d_{\text{Emin}} = 2\rho$.

Consider once again equation (6). The components of the vector $\mathbf{d_2}(i)$ belong to a finite alphabet A of cardinal:

$$Card(\mathbf{A}) = \prod_{k=1}^{K} Card(\mathbf{A}_{k})$$
 (8)

The term A will be used for the constellation of the system (or simply constellation) as opposed to A_k said to be modulation constellations.

Assume for example that the components df(i) and df(i) are PAM modulation symbols of order M:

$$d_{i}^{r}(i) = \{-M+1, -M+3, \dots, M-3, M-1\}$$
 and (9)

$$d_{i}(i) = \{-M+1, -M+3, ..., M-3, M-1\}$$
(10)

If the transformation is effected:

$$d_k^R(i) - \frac{1}{2}(d_k^R(i) + M - 1)$$
 and $d_k^I(i) - \frac{1}{2}(d_k^I(i) + M - 1)$ or again vectorially:

$$d_2(i) - \frac{1}{2}(d_2(i) + v_M) \tag{11}$$

where $v_{M} = (M-1, M-1, ..., M-1)$

the components $d_1^R(i)$ and $d_1^R(i)$ are elements of \mathbb{Z} and consequently $d_2^R(i)$ is a vector of \mathbb{Z}^{2K}

In general terms, if there exists an affine transformation transforming the components $d_i^p(i)$ and $d_i^p(i)$ into elements of **Z**, the vector $\mathbf{d}'_2(i)$ can be represented by a vector of \mathbf{Z}^{2K} .

In a similar manner, the corresponding transformation is effected on $y_2(i)$, that is to say:

$$y_2(i) = \frac{1}{2}(y_2(i) + v_M M_2)$$
 (12)

By means of this transformation, which is assumed to be implicit hereinafter, the vector $d_2(i)M_2$ then belongs to a lattice of points Λ_2 of dimension $2 \times K$ as defined by equation (7) with $G=M_2$. The vector $y_2(i)$ can then be considered to be a point in the lattice Λ_2 corrupted by a noise $n_2(i)$.

If it is assumed that the components of the noise vector $\mathbf{n}_2(i)$ are centred independent random Gaussian variables, the problem of detection in the sense of the maximum likelihood of the symbols transmitted by the different users amounts to a search for the point z_2 in the lattice Λ_1 such that its distance to $\mathbf{y}_2(i)$ is at a minimum.

In reality, the components of the noise vector $\mathbf{n}_i(i)$ are correlated and the covariance matrix of $\mathbf{n}_i(i)$ is $N_0 \mathbf{R}_2$.

In order to boil down to the decorrelated case it is necessary, prior to the decoding, to effect an operation of whitening of the noise.

The matrix R being hermitian, the autocorrelation matrix R_2 is symmetrical defined positive and can therefore be the subject of a Cholesky factorisation:

$$R_2 = W_2 W_2^7$$
 (13)

where W_2 is an inferior triangular matrix of size $2K \times 2K$.

A whitened observation vector is defined: $\tilde{y}_2(i) = y_2(i)W_2^{r-1}$ (14)

and a new lattice of points Ω_2 consisting of vectors of components $(\widetilde{x}_i^R(i),\widetilde{x}_i^I(i),...,\widetilde{x}_k^R(i),\widetilde{x}_k^I(i))$ with $\widetilde{x}_2(i)-x_2(i)W_1^{r-1}$ where $x_2(i)$ is a vector of components $(x_i^R(i),x_i^I(i),...,x_k^R(i),x_k^I(i))$ belonging to Λ_2 . The lattice Ω_1 has an inferior triangular real matrix as its generator matrix A_2W_2 .

It can easily be shown that, after whitening, the covariance matrix of the filtered noise $n_2(i)W_2^{r-1}$ is equal to $N_0I_{2\kappa}$ where $I_{2\kappa}$ is the identity matrix of dimension 2K. The detection therefore comprises a first step of whitening the observation vector followed by a step of seeking the closest neighbour within the lattice of points Ω_2 .

In order to reduce the number of points to be tested, as illustrated in Fig. 1, it is possible to limit the search to a sphere centred around the point \tilde{y}_2 . In practice, the choice of the radius of the sphere results from a compromise: it must not be too large in order not to lead to an excessively high number of points and sufficiently large to include at least the closest neighbour.

Fig. 2 depicts schematically a multiuser detection device using a method of detection by spheres. The received signal n is filtered by a battery of filters adapted to each of the users, $210_1,...,210_K$. The real and imaginary components of the observation vector $\mathbf{y}_2(i)$ output from the adapted filters are transmitted to a matrix calculation unit performing the spectral whitening operation according to equation (14). The real and imaginary components of the whitened vector $\tilde{\mathbf{y}}_2(i)$ are then transmitted to a unit for detection by spheres seeking the closest neighbour of the point received within the lattice Ω_2 of dimension $2 \times K$. The coordinates of the closest neighbour directly give the real and imaginary components of the estimated symbols $\hat{d}_k(i)$ for the different users.

The step of searching for the closest neighbour is greedy in calculation time, which may prove very disadvantageous when the number of users is high.

The aim of the present invention is to propose a simplification of the method of detection by spheres.

To this end, the invention is defined by a method of detecting a plurality of symbols $(d_k(i))$ transmitted by or for a plurality K of users, each symbol belonging to a modulation constellation and being the subject of a spectral spreading by means of a spreading sequence, the said method comprising a filtering step adapted for supplying a real vector (z) characteristic of the said received signal, at least the closest neighbour to the said vector being sought within a lattice of points (E) generated by the said modulation constellations, the said search being limited to candidate vectors (x), each of whose components (b_i) has a value lying within a search interval defined by a lower bound (B^T) and an upper bound (B^T) , the said bounds being chosen so that each of the said intervals comprises only values of components of points situated within a sphere of predetermined radius (\sqrt{C}) and belonging to a modulation constellation.

Advantageously, for a component with a given index i, each pair of lower (B^-) and upper (B^*) bounds is calculated from a quantity T_i characteristic of the width of the search interval for the said component. This characteristic quantity is determined by recurrence on the index i: the characteristic quantity (T_i) for a given index is determined from the quantity with the previous index (T_{i+1}) and the value of a component (b_{i+1}) chosen in the search interval $([B_{i+1}, B_{i+1}])$ relating to the component with the previous index.

For a candidate vector component with a given index (2k), the lower bound of the search interval will be advantageously chosen so as to be greater than the smallest integer $(M\bar{\nu})$ corresponding to a symbol of the modulation constellation (A_k) and the upper bound of the search interval will be chosen so as to be less than the greatest integer $(M\bar{\nu})$ corresponding to a symbol of the modulation constellation.

For a first vector candidate component with a given index (2k-1), the lower bound of the search interval will be chosen so as to be greater than a first integer $(M\bar{u}_{k-1})$ and the upper bound of the search interval will be chosen so as to be less than a second integer $(M\bar{u}_{k-1})$, the said first and second integers being determined from the value of a second component (b_{2k}) of the vector candidate such that the first and second components relate to one and the same user.

Advantageously, the said first and second integers are respectively determined as the smallest value and the largest value of the first component such that the complex number defined by the value of the said first component and the value of the said second component is a symbol of the modulation constellation of the said user.

The search for the closest neighbour is preferably carried out by scanning at the said search intervals one by one for the different component indices (i) and by choosing a component value (b_i) in each of the said intervals, the bounds of each interval being determined according to the width of the interval with the previous index (i+1) and the component value (b_{i+1}) chosen in this same interval.

According to one embodiment, if, during the said search, the norm (||w||) of a candidate vector is less than the radius of the said sphere, the radius is updated to the value of the said norm.

The characteristics of the invention mentioned above, as well as others, will emerge more clearly from a reading of the following description given in relation to the accompanying figures.

Consider once again a DS-CDMA telecommunication system with K users functioning in synchronous mode. As seen above, the detection of the symbols transmitted by the different users in the sense of the maximum likelihood can be reduced to a search amongst the points in a lattice (Ω_2) for the closest neighbour of the point corresponding to the received signal.

In the case where the spreading sequences are real or more generally real multiples of the same complex number, it can be shown that the search can be carried out in a lattice with a dimension reduced to K. This is because, the imaginary terms of the matrix \mathbf{R}_2 and consequently of the matrix \mathbf{M}_2 being zero, it is possible to boil down to a lattice of real points Λ of dimension K and of generator matrix \mathbf{M} :

$$y^{R}(i)=d^{R}(i)M(i)+n^{R}(i)$$
 (15)
 $y^{I}(i)=d^{I}(i)M(i)+n^{I}(i)$ (16)

where $y^R(i), d^R(i), n^R(i)$ (or respectively $y^I(i), d^I(i), n^I(i)$) are the vectors consisting of the real parts (or respectively of the imaginary parts) of the components of y(i), d(i), n(i);

M(i)-AR(i) where R(i) is the matrix consisting of the coefficients $Ra = \int_{0}^{\pi} s_{i}(t) x_{i}(t) dt$ and

A is the vector of the amplitudes of the K users. The observation vectors $\mathbf{y}^R(i)$ and $\mathbf{y}^I(i)$ belong to \mathbf{R}^K . After any transformation according to an equation of the same type as (12), the vectors $\mathbf{y}^R(i)$ and $\mathbf{y}^I(i)$ can be considered to be points in a lattice Λ of generator matrix $\mathbf{M}(i)$ corrupted by noise.

It can easily be shown that the noise vectors $\mathbf{n}^R(i)$ and $\mathbf{n}^I(i)$ both have the covariance matrix $N_0.\mathbf{R}(i)$. R being a symmetrical matrix defined positive, it can be factorised according to a Cholesky decomposition: $\mathbf{R} - \mathbf{W}\mathbf{W}^T$ where \mathbf{W} is an inferior triangular real matrix of size KxK. In order to decorrelate the noise components, the real observation vectors $\mathbf{y}^R(i)$ and $\mathbf{y}^I(i)$ are first of all subjected to a whitening operation:

$$\widetilde{\mathbf{y}}^{R}(i) = \mathbf{y}^{R}(i) \mathbf{W}^{T^{-1}} \tag{17}$$

$$\widetilde{\mathbf{y}}'(i) - \mathbf{y}'(i) \mathbf{W}^{\tau-1} \tag{18}$$

Secondly, the closest neighbours of the vectors $\widetilde{\mathbf{y}}^R(i)$ and $\widetilde{\mathbf{y}}^I(i)$ belonging to the lattice of points Ω formed by the vectors $\widetilde{\mathbf{x}}(i)=\mathbf{x}(i)\mathbf{W}^{r-1}$, where $\mathbf{x}(i)$ belongs to Λ , are sought. It should be noted that the generator matrix of the lattice Ω is equal to $\mathbf{A}\mathbf{W}$, an inferior triangular real matrix. In addition, it can easily be shown that, after whitening, the covariance matrices of the filtered noises $\mathbf{n}^R(i)\mathbf{W}^{r-1}$ and $\mathbf{n}^I(i)\mathbf{W}^{r-1}$ are both equal to Nol_K where \mathbf{l}_K is the identity matrix of dimension K.

When the symbols of or for the users are transmitted asynchronously, the modelling of the system is more complex since it is necessary to take account of the fact that a symbol of a user can interfere with two or even several consecutive symbols of another user. It can be shown in this case that it is possible to boil down to a search for the closest neighbour within a lattice of dimension $2 \times K'$ (K' in the case of real signatures) with K' > K where K' is a function of the number of symbols not yet

estimated which may interfere with each other. The detection is however not optimum in the sense of the maximum likelihood.

In all cases, the problem is to determine the point x in a lattice Ξ of dimension κ closest to the received whitened vector \widetilde{y} , which amounts to minimising the metric

$$m(\widetilde{\mathbf{y}}/\mathbf{x}) = \sum_{i=1}^{n} |\widetilde{\mathbf{y}}_{i} - \mathbf{x}_{i}|^{2} - \|\widetilde{\mathbf{y}} - \mathbf{x}\|^{2}$$

$$\tag{19}$$

where $\tilde{y}=x+\eta$, $\eta=(\eta_r, \eta_r)$ is the noise vector and $x-(x_1, x_r)$ is a point belonging to the lattice. The noise vector η has independent real components in a Gaussian distribution of zero mean.

It should be noted that the vector y(i) does not need to be whitened if use is made of a metric based on the covariance matrix:

$$m(\mathbf{y}/\mathbf{x}) = (\mathbf{y} - \mathbf{x})\mathbf{R}^{-1}(\mathbf{y} - \mathbf{x})^{\mathrm{T}} \tag{20}$$

Hereinafter, for reasons of simplification, the observation vector, whitened $(\tilde{\mathbf{y}}(i))$ or not $(\mathbf{y}(i))$ will be termed \mathbf{z} and the metric acting in equation (19) or (20) will be termed $\|\cdot\|$.

The points in the lattice Ξ can be described by the vectors $\mathbf{x} = \mathbf{b}\mathbf{G}$ where $\mathbf{b} = (b_r, ..., b_r)$ has components b_r belonging to the ring of the integers \mathbf{Z} and where \mathbf{G} is the generator matrix of the lattice. The rows of the matrix \mathbf{G} are denoted $\{v_1, v_2, ..., v_r\}$. By definition these vectors form a base of the lattice.

The set of transmitted symbols is limited to an alphabet of finite size $A_{\kappa} \subset \mathbb{Z}^{\kappa}$ referred to as a constellation. This constellation is determined by the modulation constellations used by (or for) the κ users and the cardinal of the alphabet A_{κ} is the product of the cardinals of the different modulation alphabets. It is assumed that the complex points of each of these constellations have real values and evenly distributed imaginary values.

As has been seen, an exhaustive decoding would require a search for the closest neighbour throughout $A_{\mathbf{r}}$. The decoder advantageously restricts its calculation to the points which are situated within an area of the constellation situated around the received point, preferably inside a sphere of given radius \sqrt{C} centred on the received point as depicted in Fig. 1. Only the points in the lattice situated at a quadratic distance less than C from the received point are therefore considered for the minimisation of the metric (19).

In practice, the decoder effects the following minimisation:

$$\min_{\mathbf{z} = \mathbf{x} = \min_{\mathbf{z}} \|\mathbf{w}\| \tag{21}$$

To do this, the decoder seeks the smallest vector \mathbf{w} in the translated set $\mathbf{z} - \mathbf{\Xi}$. The vectors \mathbf{z} and \mathbf{w} can be expressed as:

$$z=\varrho G$$
 with $\varrho=(\rho_1,...,\rho_n)$
 $w=\xi G$ with $\xi=(\xi_1,...,\xi_n)$ (22)

It is important to note that ρ and ξ are real vectors. As $\mathbf{w} = \mathbf{z} - \mathbf{x}$, where \mathbf{x} belongs to the lattice Ξ , this gives the equation $\xi_i = \rho_i - b_i$ for $i=1,...,\kappa$ with $\mathbf{w} = \sum_{i=1}^{K} \xi_i \mathbf{v}_i$.

The vector \mathbf{w} is a point in the lattice whose coordinates ξ_i are expressed in the translated reference frame centred on the received point. The vector \mathbf{w} belongs to a sphere of quadratic radius C centred at $\mathbf{0}$ if:

$$\|\mathbf{w}\|^2 = Q(\xi) - \xi G G^T \xi^T \le C \tag{23}$$

In the new system of coordinates defined by ξ , the sphere of quadratic radius C centred at y is therefore transformed into an ellipsoid centred on the origin. The Cholesky factorisation of the Gram matrix $\Gamma = GG^T$ gives $\Gamma = \Delta\Delta\Delta^T$, where Δ is an inferior triangular matrix of elements δ_V .

It should be noted that, if the vector y has been whitened, it is not necessary to effect this factorisation since the generator matrix for the lattice is already triangular and inferior.

However, where prior whitening has not been carried out, and therefore where Cholesky decomposition is necessary:

$$Q(\xi) - \xi \Delta \Delta^T \xi^T - \left\| \Delta^T \xi^T \right\|^2 = \sum_{i=1}^K \left(\delta_{ii} \xi_i + \sum_{j=i+1}^K \delta_{ji} \xi_j \right)^2 \leq C$$
(24)

By putting

$$q_{ii} = \delta_{ii}^{2} \text{ for } i = 1, ..., x$$

$$q_{ij} = \frac{\delta_{ij}}{\delta_{jj}} \text{ for } j = 1, ..., x; \qquad i = j + 1, ..., x$$
(25)

there is obtained

$$Q(\xi) - \sum_{i=1}^{L} q_{ii} \left(\xi_{i} + \sum_{j=1}^{L} q_{ji} \xi_{j} \right)^{2}$$
 (26)

Being concerned first of all with the range of possible variations of ξ_{κ} , and then by adding the components one by one, the following κ inequalities are obtained, which define all the points within the ellipsoid:

$$q_{xx} \xi_{i}^{2} \leq C$$

$$q_{x-1,x-1} (\xi_{x-1} + q_{xx-1} \xi_{x})^{2} + q_{xx} \xi_{x}^{2} \leq C$$

$$\forall k \in \{1; \kappa\} \sum_{i=1}^{K} q_{i} \left(\xi_{i} + \sum_{j=1}^{K} q_{ji} \xi_{j}\right)^{2} \leq C$$

$$(27)$$

It can be shown that the inequalities (27) make it necessary for the integer components of b to satisfy:

$$\left[-\sqrt{\frac{C}{q_{xx}}} + \rho_{x} \right] \le b_{x} \le \left[\sqrt{\frac{C}{q_{xx}}} + \rho_{x} \right]$$

$$\left[-\sqrt{\frac{C - q_{xx} \xi_{x}^{2}}{q_{x-1,x-1}}} + \rho_{x-1} + q_{x,x-1} \xi_{x} \right] \le b_{x-1} \le \left[-\sqrt{\frac{C - q_{xx} \xi_{x}^{2}}{q_{x-1,x-1}}} + \rho_{x-1} + q_{x,x-1} \xi_{x} \right]$$

$$\left[-\sqrt{\frac{1}{q_{yi}}} \left(C - \sum_{\ell=1}^{x} q_{\ell\ell} \left(\xi_{\ell} + \sum_{j=\ell+1}^{x} q_{j\ell} \xi_{j} \right)^{2} \right) + \rho_{i} + \sum_{j=1}^{x} q_{ji} \xi_{j} \right] \le b$$

$$b_{i} \le \left[\sqrt{\frac{1}{q_{yi}} \left(C - \sum_{\ell=1}^{x} q_{\ell\ell} \left(\xi_{\ell} + \sum_{j=\ell+1}^{x} q_{j\ell} \xi_{j} \right)^{2} \right) + \rho_{i} + \sum_{j=1}^{x} q_{ji} \xi_{j} \right]$$

$$(28)$$

where $\lceil x \rceil$ is the smallest integer greater than the real number x and $\lfloor x \rfloor$ is the largest integer smaller than the real number x.

The decoder has κ internal counters, namely one counter per dimension, each counter counting between a lower and upper bound as indicated in (28), given that each counter is associated with a particular pair of bounds. In practice these bounds can be updated recursively. We put:

$$S_{i} = S_{i}(\xi_{i+1}, \dots, \xi_{n}) - \rho_{i} + \sum_{i=1}^{n} q_{i} \xi_{j}$$
(29)

$$T_{i-1} = T_{i-1}(\xi_j, \dots, \xi_n) - C - \sum_{i=1}^n q_{ii} \left(\xi_i + \sum_{j=i+1}^n q_{ji} \xi_j \right)^2 = T_i - q_{ii} \left(\xi_i + S_i - \rho_i \right)^2$$
(30)

$$T_{i-1} = T_i - q_{ii}(S_i - b_i)^2$$
(31)

with $T_r = C$

Using equations (29) to (31), the range of variation of each component b_i is determined recursively, commencing with the component b_i :

$$L\bar{I} \leq h \leq L^{\frac{1}{2}} \tag{32}$$

with
$$L = \left[-\sqrt{\frac{T_i}{q_{ii}}} + S_i \right]$$
 and $L' = \left[\sqrt{\frac{T_i}{q_{ii}}} + S_i \right]$ (33)

The ranges of variation defined by (33) are advantageously restricted so as not to unnecessarily test points which are situated outside the constellation. It should be stated that each user k uses a constellation of symbols A_k , each symbol of the constellation being a complex number whose real and imaginary parts (possibly after affine transformation) are elements of \mathbb{Z} . The general case is first of all taken where the lattice is of dimension 2K, where K is the number of users. For each user k, the dimensions 2k and 2k-1 bearing the complex symbol transmitted by or for the user k are considered. As indicated in Fig. 3, the constellation, or equivalently the modulation constellation of the user k, is first of all projected onto the dimension 2k. This projection defines an interval $[M\tilde{u}_k,M\tilde{u}_k]$. The search interval $[B\tilde{u}_k,B\tilde{u}_k]$ is then defined where:

$$B_{2k}^- = Upp(L_{2k}^-, M_{2k}^-)$$
 and $B_{2k}^+ = Low(L_{2k}^+, M_{2k}^+)$ (34)

and an integer b_{2k} is chosen in this interval. The component b_{2k} then defines an interval $[M_{2k-1},M_{2k-1}^2]$ for the component b_{2k-1} as indicated in Fig. 3. A search interval $[B_{2k-1},B_{2k-1}^2]$ is then defined by:

$$B_{2k-1}^- = Upp(L_{2k-1}^-, M_{2k-1}^-)$$
 and $B_{2k-1}^+ = Low(L_{2k-1}^+, M_{2k-1}^+)$ (34')

By proceeding in this way it is ensured that the closest neighbour is sought only amongst candidates which are both situated in the search sphere and points in the constellation.

The situation is slightly different when real spreading sequences are used and therefore when the lattice is of dimension K (where K is the number of users). In this case, the real and imaginary values of the symbols are the subject of parallel searches in a lattice (Λ, Ω) of dimension K. The calculation of the search bounds (and the choice of the values of the components) relates by turns to the real part and the imaginary part, in an interleaved fashion.

In the simple example where the modulation employed on a dimension i is a PAM modulation of order M, the integer coordinate b_i of the point sought must be between 0 and M-1. The search bounds are adjusted by $B_i^- = Upp(L_i^-,0)$ and $B_i^+ = Low(L_i^+, M-1)$ so that the counter associated with the component b_i does not travel over points which are situated outside the search sphere or outside the

constellation. This adjustment of the search bounds considerably accelerates the algorithm for detection by spheres.

In addition, the search within the sphere can be accelerated still further by updating the radius \sqrt{C} with the last calculated Euclidean norm $\|\mathbf{w}\|$.

The initial value of the search radius \sqrt{C} must be chosen in an appropriate manner. This is because the number of points in the lattice situated within the decoding sphere increases with C. This is why the choice of a large value of C disadvantages the decoding algorithm whilst the search sphere may be empty if C is too low.

So as to be sure that the decoder finds at least one point in the lattice, a search radius greater than the radius of coverage of the lattice is advantageously chosen. It can for example be taken so as to be equal to the upper Rogers bound:

$$\sqrt{C}^* = (\kappa \log \kappa + \kappa \log \log \kappa + 5\kappa) \times \frac{\det(G)}{V_r}$$
(35)

where V_{κ} is the volume of a sphere of unity radius in the real space \mathbf{R}^{κ} .

Fig. 3 depicts a flow diagram for the search for the closest neighbour used in the method of detection by spheres according to the invention.

The vector z, the matrix G and the initial value C are the parameters transmitted to the search method.

It will be assumed that the situation prevails where $\kappa=2K$, the simplified case $\kappa=K$ being derived therefrom without difficulty.

In a first step 301, the Cholesky factorisation of the Gram matrix Γ -GG is carried out if the vector z has not resulted from a whitening (otherwise the matrix G is, as has been seen, already triangular and inferior). The coefficients q_y are calculated according to equation (25) and the values ρ_x are calculated by the equation: e-zG⁻¹.

At step 302 the quadratic value of the smallest current distance is initialised to C: $D_{\min}^2 - C$ and the recursive calculation of the search bounds is initialised by: $T_{ir} = C$, $S_i = \rho_i, i=1,...,K$. The values of bounds M_i , M_i are also determined with i=2k, k=1,...,K and next K tables are constructed giving the values M_i , M_i with i=2k-1, k=1,...,K corresponding to the different possible values b_{2k} .

At step 303 the index of the search dimension is initialised, that is to say $i=\kappa$.

At step 304 the values E_i , E_i are calculated by means of equation (33). B_i^- , B_i^+ are determined by means of equation (34) if i is even. If i is odd, M_i^- , M_i^+ are determined from the table (i+1)/2 and the value of b_{i+1} . The hounds B_i^- , B_i^+ are next determined according to equation (34'). In addition, b_i is initialised to the value $B_i^- - 1$.

At step 305 the value of b_i is incremented by 1: b-b+1.

Step 306 consists of a test: $b>B^*$?

If the test at 306 is negative, step 307 is passed to and it is tested whether i > 1.

If the test at 307 is positive, the search bounds are calculated step by step. At step 310, $T_{i-1} = T_i - q_{ii}(S_i - b_i)^2$ and $\xi_i = \rho_i - b_i$ are calculated and then, at step 311, $S_{i-1} = \rho_{i-1} + \sum_{j=1}^{n} q_{j,j-1}\xi_j$ is calculated. Next *i* is decremented at 312 before returning to step 304 in order to calculate the search bounds for *i*-1.

When the test at 307 is negative, step 308 is passed to in order to calculate the quadratic norm $\|\mathbf{w}\|^2$ of the vector \mathbf{w} relating to the current point by $\|\mathbf{w}\|^2 = T_{\mathbf{x}} - T_{\mathbf{i}} + q_{\mathbf{i}}(S_{\mathbf{i}} - b_{\mathbf{i}})^2$. Then it is tested whether $\|\mathbf{w}\|^2 < D_{\min}^2$. If such is not the case 305 is continued with. On the other hand, if the minimum distance is improved, step 313 is passed to, at which the components b_i of the vector \mathbf{x} corresponding to this minimum are stored. The minimum quadratic distance is updated by $D_{\min}^2 = \|\mathbf{w}\|^2$ and the size of the search sphere by $T_{\mathbf{x}} - \|\mathbf{w}\|^2$. The search procedure is recommenced by returning to 303.

If the test at 306 is positive, that is to say if the upper search bound is reached for the current dimension, it is tested at 321 whether $i=\kappa$. If such is the case, the search is terminated at 320 and the last vector x stored is the closest neighbour. On the other hand, if the test is negative, the search continues by incrementing i at step 322 and returning to step 305.

4. Brief Description of Drawings

Fig. 1 depicts a lattice of points useful to the detection method employed in the receiver illustrated in Fig. 2;

Fig. 2 depicts schematically the structure of a multiuser DS-CDMA receiver using a method of detection by spheres;

Fig. 3 depicts a flow diagram for the search for the closest neighbour used in the method of detection by spheres according to the invention;

Fig. 4 depicts an example of a user modulation constellation.

FIG.1

FIG.3

F1G.4

1. Abstract

Method of detecting a plurality of symbols $(d_k(i))$ transmitted by or for a plurality K of users, each symbol belonging to a modulation constellation and being the subject of a spectral spreading by means of a spreading sequence, the said method comprising a filtering step adapted for supplying a real vector (z) characteristic of the said received signal, at least the closest neighbour of the said vector being sought within a lattice of points (Ξ) generated by the said modulation constellations, the said search being limited to candidate vectors (x), each of whose components (b_i) has a value lying within a search interval defined by a lower bound (B^-) and an upper bound (B^+) , the said bounds being chosen so that each of the said intervals comprises only component values of points situated within a sphere with a predetermined radius (\sqrt{C}) and belonging to a modulation constellation.

2. Representative Drawings

Fig. 3