1.2 1) Le premier chiffre doit être compris entre 1 et 9 : ce ne peut être 0, sinon on formerait un nombre d'au plus trois chiffres.

Les trois derniers chiffres peuvent être l'un des dix chiffres de 0 à 9.

On peut donc former $9 \cdot 10 \cdot 10 \cdot 10 = 9000$ nombres.

2) Le premier chiffre doit être compris entre 1 et 9 : ce ne peut être 0, sinon on formerait un nombre d'au plus trois chiffres.

Le deuxième chiffre peut être l'un des dix chiffres de 0 à 9, excepté celui que l'on a choisi comme premier chiffre. Il y a ainsi 9 possibilités.

Le troisième chiffre peut être l'un des dix chiffres de 0 à 9, mais différent des deux premiers chiffres. Il y a donc 8 possibilités.

Le quatrième chiffre peut être l'un des dix chiffres de 0 à 9, mais différent des trois premiers chiffres. Il y a par conséquent 7 possibilités.

On peut donc former $9 \cdot 9 \cdot 8 \cdot 7 = 4536$ nombres.

3) On commence par écrire le dernier chiffre : 0.

Le premier chiffre peut être compris entre 1 et 9. Il y a donc 9 possibilités.

Le deuxième chiffre peut être compris entre 1 et 9, mais doit être différent du premier chiffre. Il y a ainsi 8 possibilités.

Le troisième chiffre peut être compris entre 1 et 9, mais doit être différent des deux premiers chiffres. Il y a dès lors 7 possibilités.

On peut donc former $9 \cdot 8 \cdot 7 = 504$ nombres.

Combinatoire Corrigé 1.2