Class 7: Machine Learning 1

Medhini Sosale (PID: A69034757)

Before we get into clustering methods let's make some sample data to cluster where we know what the answer should be.

To help with this I will use the rnorm() function.

```
hist(rnorm(150000, mean = c(-3,3)))
```

Histogram of rnorm(150000, mean = c(-3, 3))

rnorm(150000, mean = c(-3, 3))

```
n=10000
hist(c(rnorm(n, mean=-3), rnorm(n, mean=3)))
```

Histogram of c(rnorm(n, mean = -3), rnorm(n, mean = 3)

c(rnorm(n, mean = -3), rnorm(n, mean = 3))

```
n=30
x <- c(rnorm(n, mean=3), rnorm(n, mean=-3))
y <- rev(x)
z <- cbind(x,y)
plot(z)</pre>
```


K-means clustering

The function in base R for k-means clustering is called kmeans().

```
km <- kmeans(z, centers = 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 -3.361148 3.154906
2 3.154906 -3.361148
```

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 75.39334 75.39334 (between_SS / total_SS = 89.4 %)
```

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

km\$centers

```
x y
1 -3.361148 3.154906
2 3.154906 -3.361148
```

Q. Print out the cluster membership vector (i.e. our main answer)

km\$cluster

Plot with clustering result and add cluster centers:

```
plot(z, col=km$cluster)
points(km$centers, col="blue", pch=15, cex=2)
```


Q. Can you cluster our data in z into four clusters please?

```
km_4 <- kmeans(z, centers = 4)
plot(z, col=km_4$cluster)
points(km_4$centers, col="blue", pch=15, cex=2)</pre>
```


Hierarchical Clustering

The main function for hierarchical clustering in base R is called hclust()

Unlike kmeans() I cannot just pass in my data as input I first need a distance matrix from my data.

```
d <- dist(z)
hc <- hclust(d)
hc</pre>
```

Call:
hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

There is a specific hclust plot() method...

```
plot(hc)
abline(h=10, col='red')
```

Cluster Dendrogram

d hclust (*, "complete")

To get my main clustering result (i.e. the membership vector) I can "cut" my tree at a given height. To do this I will use the cutree() function

```
grps <- cutree(hc, h=10)
grps</pre>
```

```
plot(z, col=grps)
```


Principal Component Analysis

PCA is a multivariate statistical technique for reducing data set dimensionality.

PCA of UK food data

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
dim(x)</pre>
```

[1] 17 5

head(x)

	Х	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93

```
5 Fats_and_oils 193 235 184 209
6 Sugars 156 175 147 139
```

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

dim(x)

[1] 17 4

Q1. There are 17 rows and 5 columns. You can find this out by using nrow() and ncol() together or just dim().

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. I like the second approach better because it's more concise and because if you run the first approach multiple times you'll just keep deleting columns.

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


Q3. I changed beside=T to beside=F.

pairs(x, col=rainbow(10), pch=16)

Q5. The code above plots each pair of countries against each other and color codes the food types. You can determine which countries are being compared based on the row/column that each subplot is in. If a point lies on the diagonal, then both countries consume a roughly equal amount of food in that category.

PCA to the rescue

The main function to do PCA in base R is called prcomp().

Note that I need to take the transpose of this particular data as that is what the prcomp() help page was asking for.

```
pca <- prcomp( t(x) )
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

Let's see what is inside our result object pca that we just calculated:

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -4.894696e-14
Wales -240.52915 -224.646925 -56.475555 5.700024e-13
Scotland -91.86934 286.081786 -44.415495 -7.460785e-13
N.Ireland 477.39164 -58.901862 -4.877895 2.321303e-13
```

To make our main result figure, called a "PC plot" (or "score plot", "ordination plot" or PC1 vs PC2 plot)

Variable loadings plot

Can give us insight on how the original variables (in this case the foods) contribute to our new PC axis

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```

```
0.4
   0.2
    0.0
-0.2
-0.4
-0.6
                             Cheese
                                                                                 Sugars
                                                                                                       Fresh_Veg
Other_Veg
                                                                                                                                                             Cereals
                                                                                                                                                                        Beverages
                                                                        Fats_and_oils
                                                                                                                                                                                             Alcoholic_drinks
                                                                                             Fresh_potatoes
                                                                                                                             Processed_potatoes
                                                                                                                                                                                  Soft_drinks
                                        Carcass_meat
                                                   Other_meat
                                                                                                                                       Processed_Veg
                                                                                                                                                   Fresh_fruit
                                                                                                                                                                                                        Confectionery
```

```
# Scotland
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```

