String Divide II

Input file: standard input
Output file: standard output

Time limit: 15 seconds Memory limit: 512 megabytes

Given a string $s = s_1 s_2 \dots s_n$ of length n, consisting of only lowercase English letters. For convenience, we define string $s_{[l,r]} = s_l s_{l+1} \dots s_r$, which is the substring of s from index l to r.

Given an integer k, you're curious about those substrings of s which are composed by concatenating k identical strings together. Please find out the longest length of those substrings.

Formally, you should find a set of intervals $\{[l_1, r_1], [l_2, r_2], ..., [l_k, r_k]\}$ which satisfies the following two conditions:

- For each i $(1 \le i \le k)$, $1 \le l_i \le r_i \le n$;
- For each i $(1 \le i < k)$, $r_i + 1 = l_{i+1}$, and $s_{[l_i, r_i]} = s_{[l_{i+1}, r_{i+1}]}$.

You need to maximize $r_k - l_1 + 1$.

Input

The first line contains two integers $n, k \ (2 \le k \le n \le 10^6)$.

The second line contains a string s of length n, consisting of only lowercase English letters.

Output

Output a single integer, denoting the answer. Specially, if there are no such substrings, output 0.

Examples

standard input	standard output
5 3	0
bacbc	
7 2	4
ababbba	

Note

For the second example, the set we choose is $\{[1,2],[3,4]\}$. It can be proved that this is the longest substring satisfying the condition.