

Security of the RSA algorithm

- Brute force: This involves trying all possible private keys.
- Mathematical attacks: There are several approaches, all equivalent in effect to factoring the the product of two primes (Integer Factorization Problem (IFP)).
 - Given a composite integer n of the form $n = p \times q$, to find the prime factors p and q.
 - IFP is computationally infeasible (not solvable in polynomial-time factoring algorithm when n is very large, for example, when n is 1024 bits or 2048 bits number.
- **Timing attacks:** These depend on the running time of the decryption algorithm.

Problem:

The ciphertext message produced by the RSA algorithm with the public key (e, n) = (223, 1643) is:

1451 0103 1263 0560 0127 0897.

Determine the original plaintext message.

Use the standard encoding procedure:

Solution:

- Here e = 223, $n = 1643 = 31 \times 53 = p \times q$, say, where p and q are distinct primes.
- $\phi(n) = \phi(1643) = (p-1) \times (q-1) = 30 \times 52 = 1560.$
- Using the Extended Euclid's GCD algorithm, $ed \equiv 1 \pmod{\phi(n)}$, that is, d = 7.
- The private key is then (d, n) = (7, 1643).
- The given ciphertext blocks are as follows:

$$C_1 = 1451$$
,

$$C_2 = 0103,$$

$$C_3 = 1263$$
,

$$C_4 = 0560$$

$$C_5 = 0.127$$

$$C_5 = 0127$$

$$C_6 = 0897.$$

Solution (Continued...):

- The deciphertext (recovered plaintext) of each block C_i is given below (using the repeated square-and-multiply method).
- $M_1 = C_1^d \pmod{n} = 1451^7 \pmod{1643} = 180$
- $M_2 = C_2^d \pmod{n} = 103^7 \pmod{1643} = 516$
- $M_3 = C_3^d \pmod{n} = 1263^7 \pmod{1643} = 122$
- $M_4 = C_4^d \pmod{n} = 560^7 \pmod{1643} = 500$
- $M_5 = C_5^d \pmod{n} = 127^7 \pmod{1643} = 141$
- $M_6 = C_6^d \pmod{n} = 897^7 \pmod{1643} = 523$
- Hence, the original plaintext message using the decoding method given here is as follows:

$$M = M_1 M_2 M_3 M_4 M_5 M_6 = 18\ 05\ 16\ 12\ 25\ 00\ 14\ 15\ 23$$

= REPLY NOW

Online Demo on RSA Algorithm

- Generating private/public keys pair
- Encrypting a message
- Decrypting a message

https://8gwifi.org/rsafunctions.jsp

https://www.mobilefish.com/services/rsa_key_
generation/rsa_key_generation.php

Diffie-Hellman Key Exchange Protocol

Overview

- Diffie-Hellman key agreement (also called exponential key exchange or Diffie-Hellman key exchange) provided the first practical solution to the secret key distribution problem.
- It is based on public-key cryptography.
- This protocol enables two parties, say A and B, which have never communicated before, to establish a mutual secret key by exchanging messages over a public channel.

Inventors

Figure: Prof. Whitfield Diffie

Inventors

Figure: Prof. Martin Hellman

Me with Prof. Martin Hellman (15 February 2018 at IIIT Hyderabad)

Global Public Elements

- q: a sufficiently large prime, such that it is intractible to compute the discrete logarithms in $Z_q^* = \{1, 2, \cdots, q-1\}$
- (Given α , q and $y = \alpha^x \pmod{q}$, to find discrete logarithm $x \in Z_q^*$).
- α : α < q and α a primitive root of q.
- (Compute $\alpha^1 \pmod{q}$, $\alpha^2 \pmod{q}$, \cdots , $\alpha^{q-1} \pmod{q}$).
- If all are distinct and $\alpha^{q-1} \pmod{q} = 1$, α is primitive root of q)

User A Key Generation

- Select private X_{Δ} such that $X_{\Delta} < a$
- Calculate public Y_A such that $Y_A = \alpha^{X_A} \mod q$
- $A \rightarrow B : \{Y_A, q, \alpha\}$
- Here $A \rightarrow B$: M denotes party A sends a message M to party B.

User B Key Generation

- Select private X_B such that $X_B < q$
- Calculate public Y_B such that $Y_B = \alpha^{X_B} \mod q$

$$B \rightarrow A : \{Y_B\}$$

Generation of secret key by User A

$$\bullet K_{A,B} = (Y_B)^{X_A} \mod q$$

Generation of secret key by User B

$$\bullet K_{B,A} = (Y_A)^{X_B} \mod q$$

Summary

User A	User B
1. Select private X_A	
2. Calculate public Y_A	
3. $Y_A = \alpha^{X_A} \mod q$	
	1. Select private X_B
	2. Calculate public Y_B
	3. $Y_B = \alpha^{X_B} \mod q$
4. $K_{A,B} = (Y_B)^{X_A} \mod q$	4. $K_{B,A} = (Y_A)^{X_B} \mod q$

Correctness Proof

$$K_{A,B} = (Y_B)^{X_A} \mod q \text{ [User A]}$$

$$= (\alpha^{X_B} \mod q)^{X_A} \mod q$$

$$= (\alpha)^{X_B \cdot X_A} \mod q$$

$$= (\alpha^{X_A})^{X_B} \mod q$$

$$= (\alpha^{X_A} \mod q)^{X_B} \mod q$$

$$= (Y_A)^{X_B} \mod q$$

$$= K_{B,A} \text{ [User B]}$$

Problem [Diffie-Hellman Key Exchange]

Users A and B use the Diffie-Hellman key exchange technique with a common prime q = 71 and a primitive root $\alpha = 7$.

- (a) If user A has private key $X_A = 5$, what is the A's public key Y_A ?
- (b) If user B has private key $X_B = 12$, what is the B's public key Y_B ?
- (c) What is the secret shared key?

Solution: Here q = 71 and $\alpha = 7$.

(a) A's public key Y_A is given by

$$Y_A = \alpha^{X_A} \mod q$$

= $7^5 \mod 71$
= $(7^1 \mod 71) \times (7^4 \mod 71) \mod 71$
= 51

Problem [Diffie-Hellman Key Exchange] (Continued...)

(b) B's public key Y_B is given by

$$Y_B = \alpha^{X_B} \mod q$$

= $7^{12} \mod 71$
= $(7^4 \mod 71) \times (7^8 \mod 71) \mod 71$
= 4

(c) The secret shared key K is given by

$$K_{A,B} = (Y_B)^{X_A} \mod q$$
 [User A]
= $4^5 \mod 71$
= 30

Problem [Diffie-Hellman Key Exchange] (Continued...)

$$K_{B,A} = (Y_A)^{X_B} \mod q \text{ [User B]}$$

= 51¹² mod 71
= 30

 $K = K_{A,B} = K_{B,A} = 30$ is the required secret shared key between A and B.

Online Demo on Diffie-Hellman Key Exchange Protocol

- Generating primitive root of prime
- Computing the shared session key between two parties

http://www.irongeek.com/diffie-hellman.php?

Further Readings (Cryptography and Network Security)

- William Stallings, "Cryptography and Network Security: Principles and Practices", Pearson Education, 2010.
- Behrouz A. Forouzan, "Cryptography and Network Security", Special Indian Edition.
- Bernard Menezes, "Network Security and Cryptography", Cengage Learning, 2010.
- A. Menezes, P. Oorschot and S. Vanstone, "Handbook of Applied Cryptography", CRC Press.
- B. Schneier, "Applied Cryptography", Reading, MA: Addison-Wesley, 2006.
- D. Stinson, "Cryptography: Theory and Practice", Chapman & Hall/CRC, 2006.
- Neal Koblitz, "A course in number theory and cryptography", Springer.

Thank you