МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 2.1.1

Измерение удельной теплоёмкости воздуха при постоянном давлении

Выполнил: Гисич Арсений Б03-109

1 Аннотация

Цель работы: измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

2 Теоретические сведения

Измерение теплоёмкости тел обычно производится в калориметрах, т.е. в сосудах, обеспечивающих теплоизоляцию исследуемого тела от внешней среды. При этом регистрируется изменение его температуры δT в зависимости от количества тепла δQ , полученного телом от некоторого нагревательного элемента внутри калориметра. Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{\delta T}.\tag{1}$$

Надёжность измерения определяется, в основном, качеством калориметра. Необходимо, чтобы количество тепла, затрачиваемое на нагревание исследуемого тела, существенно превосходило тепло, расходуемое на нагревание самого калориметра, а также на потери тепла из установки. При измерении теплоёмкости газов эти требования выполнить довольно трудно - масса газа в калориметре и, следовательно, количество тепла, идущее на его нагревание, как правило, малы. Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры.

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в кото-рой установлен нагревательный элемент (см.рис.1). Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm = qdt, где q [кг/с] - массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q = (N - N_{\text{пот}})dt$. С другой стороны,

Рис. 1: Нагрев газа при течении по трубе

по определению теплоёмкости (1): $\delta Q = cdm\Delta T$, где $\Delta T = T_2 - T_1$ - приращение температуры газа, и c — удельная (на единицу массы) теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, поэтому можно принять, что $P_1 \approx P_2 = P_0$, где P_0 - атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_P . Таким образом, получаем

$$C_p = \frac{N - N_{\text{пот}}}{q\Delta T}.$$
 (2)

3 Методика измерений

Схема установки изображена на рис. 2. Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов. На внутреннюю поверхность стенок трубки нанесено серебряное покрытие для минимизации потерь тепла за счет излучения. Воздух из пространства между стенками калориметра откачан до высокого вакуума (10^{-5} торр) для минимизации потерь тепла, обусловленных теплопроводностью.

Рис. 2: Схема экспериментальной установки

Нагреватель в виде намотанной на пенопласт нихромовой проволоки расположен внутри калориметра непосредственно в воздушном потоке. Нагрев проволоки производится от регулируемого источника постоянного тока (ИП). Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N = UI$$
.

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй - в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС ε пропорциональна разности температур ΔT спаев:

$$\varepsilon = \beta \Delta T$$
,

где $\beta = 40,7 \frac{\text{мкB}}{^{\circ}C}$ – чувствительность медно-константановой термопары в рабочем диапазоне температур (20-30 °C). ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком Γ С. Для регулировки расхода служит кран К. Время Δt прохождения некоторого объема ΔV воздуха измеряется секундомером. Объёмный расход равен $\Delta V/\Delta t$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t},$$

где ρ_0 – плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева–Клапейрона: $\rho_0 = \frac{\mu P_0}{RT_0}$, где P_0 – атмосферное давление, T_0 – комнатная температура (в Кельвинах), $\mu = 29,0$ г/моль – средняя молярная масса (сухого) воздуха.

Учитывая особенности устройства калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счет нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T << T_0$) мощность потерь тепла $N_{\text{пот}}$ прямо пропорциональна разности температур:

$$N_{\text{пот}} = \alpha \Delta T, \tag{3}$$

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N = (c_p q + \alpha) \Delta T. \tag{4}$$

Следовательно, при фиксированном расходе воздуха (q=const) подводимая мощность и разность температур связаны прямой пропорциональностью $(\Delta T(N)$ — линейная функция).

4 Используемое оборудование

- 1. теплоизолированная стеклянная трубка;
- 2. электронагреватель;
- 3. источник питания постоянного тока;
- 4. амперметр, вольтметр (цифровые мультиметры), $\delta_A = 0, 1 \text{ мA}; \quad \delta_B = 1 \text{ мB};$
- 5. термопара, подключенная к микровольтметру;
- 6. компрессор;
- 7. газовый счётчик, $\delta_{cu} = 0.01 \ \Lambda$;
- 8. секундомер, $\delta_{cek} = 0, 2 c$.

5 Результаты измерений и обработка данных

Начальные условия: $P_{amm}=98,14\pm0,01\ \kappa\Pi a$ $T=23,7\pm0,1\ ^{\circ}\mathrm{C}$

Измерим максимальный расход воздуха Q по формуле

$$Q = \frac{\Delta V}{\Delta \bar{t}}.$$

Погрешность определяется по формуле

$$\delta_Q = \sqrt{\left(\frac{\delta_V}{V}\right)^2 + \left(\frac{\delta_{\overline{t}}}{\overline{t}}\right)^2} \cdot Q.$$

Затем по формуле

$$q = \frac{\mu P_{amm}}{RT} \cdot Q$$

определяем массовый расход. Полученные результаты представленны в таб. 1.

t	$c \mid \overline{t}, c$	$\delta_{\overline{t}}, c$	V , Λ	δ_V , A	$Q_{max}, \Lambda/c$	$\delta_{Q_{max}}, \Lambda/c$	$q_{max}, \varepsilon/c$	$\delta_{q_{max}}, \epsilon/c$
5,0								
5,								
4,9	$6 \ \ 5,14$	0,46	1	0,01	0,194	0,017	$0,\!224$	0,020
5,4	7							
4,9	9							

Таблица 1: Расчёт маскимального расхода

Оценим минимальную мощность N_0 по формуле (4), где $c_p=\frac{5}{2}\frac{R}{\mu}$, так как воздух считаем смесью двухатомных идеальных газов. Получаем $N_0\approx 0,161~Bm$. Учитывая сопротивление проволоки нагревателя $R_{\scriptscriptstyle H}\sim 35~O$ м, оценим $I_0=\sqrt{\frac{N_0}{R_{\scriptscriptstyle H}}}\approx 70$ мА.

Проведём первое измерение при $q_1 = q_{max}$. Установим начальный ток $I_1 \sim 2I_0$. Результаты измерений прдеставлены в таб. 2.

I, MA	δ_I , MA	U, B	δ_U, B	N,Bm	δ_N, Bm	ε , κB	δ_{ε} , μκ B	ΔT ,° C	$\delta_{\Delta T}$,° C
160,2	0,1	4,568	0,001	0,7318	0,0005	116	1	2,85	0,02
182	0,1	5,194	0,001	0,9453	0,0006	144	1	3,54	0,02
203,3	0,1	5,803	0,001	1,1797	0,0006	187	1	4,59	0,02
217,8	0,1	6,218	0,001	1,3543	0,0007	209	1	5,14	0,02

Таблица 2: 1 измерение

Проведём второе измерение при меньшем расходе. По приведённым выше формулам найдём расход воздуха и начальный ток. Результаты измерений представленны в таб. 3.

t,	c	\overline{t}, c	$\delta_{\overline{t}}, c$	V , Λ	δ_V , A	$Q_{max}, \Lambda/c$	$\delta_{Q_{max}}, \Lambda/c$	$q_{max}, r/c$	$\delta_{q_{max}}, \varepsilon/c$
14,	09								
13,	85								
13,	21	13,76	0,48	1	0,01	0,073	0,003	0,084	$0,\!003$
14	,1								
13,	55								

Таблица 3: Расчёт второго расхода

Минимальная мощность $N_0 = 0,057~Bm$, $I_0 = 40~\text{мA}$. Результаты измерений представленны в таб. 4.

I, MA	$\delta_I,$ м A	U, B	δ_U, B	N, Bm	δ_N, Bm	ε , κB	δ_{ε} , μκ B	ΔT ,° C	$\delta_{\Delta T}$,° C
96,3	0,1	2,742	0,001	0,2641	0,0003	86	1	2,11	0,02
127,6	0,1	3,638	0,001	0,4642	0,0004	151	1	3,71	0,02
180,1	0,1	5,141	0,001	0,9259	0,0005	262	1	6,44	0,02
214,7	0,1	6,135	0,001	1,3172	0,0006	383	1	9,41	0,02

Таблица 4: 2 измерение

График зависимости $\Delta T(N)$ представлен на рис. 3.

Рис. 3:

Из формулы (4) получаем

$$c_p = \left(\frac{1}{k_1} - \frac{1}{k_2}\right) \cdot \frac{1}{q_1 - q_2}.$$

Погрешность определяется по формуле

$$\delta_{c_p} = \sqrt{\left(\frac{\left(\frac{\delta_{k_1}}{k_1^2}\right)^2 + \left(\frac{\delta_{k_2}}{k_2^2}\right)^2}{(k_1^{-1} - k_2^{-1})^2}\right) + \left(\frac{\delta_{q_1}^2 + \delta_{q_2}^2}{(q_1 - q_2)^2}\right) \cdot c_p}.$$

Получаем

$$c_p = 837,01 \pm 160,91 \ \frac{\mathcal{A} \mathcal{H} c}{\kappa r \cdot K} = (2,9 \pm 0,6) R \ \frac{\mathcal{A} \mathcal{H} c}{\mathsf{Monb} \cdot K}.$$

Из формул (3) и (4) получаем

$$\frac{N_{nom}}{N} = \alpha k_1 = 1 - k_1 c_p q_1.$$

Погрешность определяется по формуле

$$\delta_{\frac{N_{nom}}{N}} = \sqrt{\left(\frac{\delta_{k_1}}{k_1}\right)^2 + \left(\frac{\delta_{c_p}}{c_p}\right)^2 + \left(\frac{\delta_{q_1}}{q_1}\right)^2} \cdot (1 - k_1 c_p q_1).$$

Получаем

$$\frac{N_{nom}}{N} = 0,29 \pm 0,06.$$

6 Обсуждение результатов и выводы

В данной работе исследовалась зависимость давления в установке от времени. По результатам измерения давления различными способами определялась производительность вакуумного насоса. Полученное значение для скорости откачки:

$$W = 0.258 \pm 0.012 \ \text{n/c}$$

Использованный в работе метод измерений позволяет достичь относительной точности результатов в 5%. Метод расчёта скорости откачки по зависимости давления от времени при улучшении вакуума оказался точнее в сравнении с методом расчёта по различию P_{ycm} и P_{np} . Основной вклад в погрешность вносит погрешность определения коэффициентов линейной аппроксимации. Также в данной работе были проверены теоретические зависимости, связанные с течением газа ().