S.No.	Reagent	Function
3.No.		
_	PCl ₃ , PBr ₃ , PI ₃	Alcohols into Alkyl halides
2	SoCl ₂ , PCl ₅	Alcohols into Alkyl chlorides &
2	HOLD OF HE	Carboxylic acids into Acid Chlorides
3	HCl/ZnCl ₂ HBr,HI	Alcohols into alkyl halides
4	Cl ₂ /Fe or FeCl ₃	Cl group substituting on Benzene
5	NaNO ₂ /HCl 0-5°C	Diazotisation
6	CuCl,CuBr,CuCN,KI,H ₂ O,	Diazonium Cholride into Chlor Benzene,
	H ₃ PO ₂	Bromo Benzene, Benzo nitrile, Iodo
		Benzene , Phenol, Benzene respectively
7	HBF ₄ or NaBF ₄	Diazonium Chloride into Floro Benzene
8	AgF or Hg ₂ F ₂ or SbF ₃ or CoF ₂	Alkyl halides into alkyl florides
9	Na / dry ether	Alkyl halides into alkanes
10	NaOH 623/443/368K	Chloro benzene to phenol
11	Br ₂ /FeBr ₃	Bromination of Benzene
12	Cl ₂ /FeCl ₃	Chlorination of Benzene
13	CH ₃ Cl /AlCl ₃	alkylation of benzene and its derivatives
14	CH-CO-Cl /AlCl ₃	Acylation on benzene
15	H ₂ SO ₄ /HNO ₃	Nitration of benzene
16	(CHCO)2O /AlCl3	O Acylation of Phenol
17	H ₂ SO ₄	Sulphonation on Benzene
18	H ₂ O/H ₂ SO ₄	alkenes into alcohols
	Aq KOH	Alkyl halide into alcohol
19	BH ₃ /H ₂ O ₂ /OH	Alkenes into alcohols (Anti
		Markownikoff product)
20	NaBH ₄ / LiAlH ₄ (LAH)	Aldehydes, ketones, acids into alcohols,
		Nito & Cynides , Isocyanides into amines
21	H₂/ Ni or H₂/Pd	reduction of aldehydes, ketones and
		cynides
22	RMgX/H ₃ O ⁺	Aldehydes, ketones into alcohls
23	O ₂ /H ⁺	Cumene to phenol
24	Na	Alcohol or phenol into Sodium
		alkoxide/Phenoxide
25	(CHCO) ₂ O/ CH-CO-Cl	O acylation on phenol or N acylation on
		Aneline or amine
26	Conc.H ₂ SO ₄ /443K	Conversion of primary alcohols into
	_	Alkenes
27	Conc.H ₂ SO ₄ /410K	Conversion of alcohols into Ethers
28	85% H ₃ PO ₄ / 440K	Secondary alcohol into alkene
29	20% H ₃ PO ₄ /358K	Tertiary alcohol into alkene
	Alcoholic KOH	Alkyl halide into alkene
		· ····/· · · · · · · · · · · · · · · ·

30	CrO ₃ /KMnO ₄ or K ₂ Cr ₂ O ₇	oxidation of alcohols into acids
	in acidic medium	
31	Cu /573k	dehydrogenation of alcohols gives 10
		alcohols into aldehydes and 20 alcohols
		into ketones & 30 alcohos into alkenes
32	Dil. HNO ₃	Mono nitration of Phenol
33	Conc.HNO ₃	tri nitration of phenol
34	Br ₂ /H ₂ O tri bromination of phenol	
35 36	Br ₂ /Cs ₂ mono bromination of phenol	
36	NaOH /CO ₂ Phenol to salicilic acid	
37	CHCl ₃ /NaOH	Phenol to salcilaldehyde
38	Zn dust	Phenol to Benzene
39	Na ₂ Cr ₂ O ₇ /H ₂ SO ₄ or air	Phenol to Benzo quinone
40	Zn/Cr2O3 200to 300 atm	CO & H into methanol
	573 673K	
41	Invertase	Sucrose into Glucose or Fructose
42	Zymase	Glucose or Fructose into ethanol
43	HI	Ether into alcohol & alkyl halide
44	PCC alcohol to aldehyde	
45	Pd /BaSO ₄ ,H ₂	acid chloride into aldehyde
46	SnCl ₂ /HCl/H ₃ O ⁺	Cyanides into aldehydes
47	AlH(i-Bu) ₂ /H ₂ O Cyanides into aldehydes	
48	DIBAL-H/H ₂ O	Esters into aldehydes
49	CrO ₂ Cl ₂ /H ₂ O	Toluene to aldehyde
50	CrO ₃ /(CH ₃ CO) ₂ O	Toluene into Benzaldehyde
51	Cl ₂ /hv	Chlorination on alkyl group of Benzene or alkane
52	CO, HCl anhydrous AlCl ₃	Benzene to Benzaldehyde
53	(CH ₃) ₂ Cd	acid chloride into ketones
54	RMgX/H ₃ O ⁺	Cyanides into ketones
55	HCN	Carbonyl compound into cyanohydrin
56	NaHSO ₃	addition to aldehyde and ketone
57	H ₂ NOH	carbonyl compound into oxime
58	H ₂ N-NH ₂	carbonyl compound into hydrazone
59	H ₂ N-NH-Ph	carbonyl compound into Phenyl
		hydrazone
60	2,4DNP	carbonyl compound into 2,4 dinitro
		phynyl hydrazone
61	H ₂ N-NH-CO-CH ₃	carbonyl compound into semi carbazide
62	ROH/HCl	Aldehydes & ketones into hemiacetal and
		acetal
63	HO-CH ₂ -CH ₂ -OH/HCl	Aldehyde or ketone into ethelene glycol

		ketone	
64	Zn-Hg/HCl	carbonyl compound into alkane	
65	H ₂ N-NH ₂ /KOH	carbonyl compound into alkane	
66	KMnO ₄ /OH ⁻ / K ₂ Cr ₂ O ₇	Ketones into mixture of carboxylic acids	
00	/H ₂ SO ₄ or HNO ₃	on prolonged oxidation	
67	(Ag(NH ₃) ₂)NO ₃ +NaOH	Tollen s test	
68	Cu(OH) ₂	Fehiling s test	
69	NaOH+I ₂	Iodoform	
70	NaOH or Ba(OH) ₂	aldal condensation	
71	Conc KOH or NaOH	Cannizaro s reaction	
72	KMnO ₄ /KOH	Toluene/alkyl Benzene into Benzoic Acid	
73	H ₂ O/H ⁺	Cyanides into carboxylic acids, amides	
		into carboxylic acids, esters into	
		carboxylic acis and alcohols, acid	
		chlorides or anhydrides into carboxylic	
		acids	
74	NaOH	Saponification of ester, acid into salt of	
		acid	
75	Na ₂ CO ₃ or NaHCO ₃	Carboxylic acid test	
76	P ₄ O ₁₀ or P ₂ O ₅	Dehydration of acids into anhydride,	
		amides into nitriles	
77	ROH/conc H ₂ SO ₄	Caroxylic acids into esters	
78	PCl ₃ , SoCl ₂ , PCl ₅	Carboxylic acids into acid chlorides	
79	NH ₃ heating	Carboxylic acids into amides	
80	NaOH/CaO	Decarboxylation (acids into alkanes)	
81	LiAlH ₄	Carboxylic acids into alcohols, amides	
		into amines	
82	Cl ₂ /red.P ₄	HVZ reaction	
83	Sn /HCl or Fe /HCl, H ₂ /Pd	Reduction of nitro compounds into	
		amines	
84	NH ₃	Alkyl halides into amines	
85	H ₂ /Ni or H ₂ /Pd LiAlH ₄	Amides into cyanindes	
86	KOH/R-X	Phthalamide into amine	
87	NaOH /Br ₂	Hoffman bromamide, amide into amine	
		with one C less	
88	KOH,CHCl ₃	Amines into Carbyl amines	
89	NaNO ₂ /HCl	10 aliphatic amines into alcohols	
90	NaNO ₂ /HCl 0 5 ⁰ C	Aniline into diazonium chloride	
91	C ₆ H ₅ SO ₂ Cl	Distinguishing 1°,2° & 3° amines	
92	Br ₂ /H ₂ O	Aneline into tri bromo aniline	
93	Br ₂ / CH-CO-Cl	Aniline into Bromo Aniline	
	/(CHCO) ₂ O		

94	HNO₃/ CH-CO-Cl	Nitro aniline
	/(CHCO) ₂ O	
95	H ₂ SO ₄	Sulphonation on aniline
96	CuCl,CuBr,CuCN,KI,H2O,	Diazonium Cholride into Chlor Benzene,
	H ₃ PO ₂ or CH ₃ -CH ₂ -OH	Bromo Benzene, Benzo nitrile, Iodo
		Benzene , Phenol, Benzene respectively

CHEMISTRY

APPENDIX -B

NAME REACTIONS

1.	Finkelstein	CH ₃ Br + NaI Acetone ► CH ₃ -I + NaBr
2.	Swarts	CH ₃ Br + AgF CH ₃ F + AgBr
3.	Friedel-Crafts Alkylation	+ H ₃ C—CI Anhydrous AlCl ₃
4.	Friedel-Crafts Acylation	CH ₈ COCI ,
5.	Wurtz	H ₃ C —CI + CI —CH ₃ — 2Na Dry ether → H ₃ C —CH ₃ + Na CI
6.	Fittig	2Na + Na CI
7.	Wurtz-Fittig	+ c1—cH 3
8.	Kolbe	Na OH ON a i) CO 2 COOH
9.	Reimer-Tiemann	CH ₃ Cl + Na OH CHO H+
10.	Williamson	CH₃-Br + CH₃-ONa ————————————————————————————————————
11.	Stephen	H_3C — $CN + SnCl_2 + HCl$ \longrightarrow H_3C — CH \Longrightarrow H_3C — CHO

12.	Etard	CrO 2Cl 2 H ₃ O ⁺
13.	Gatterman – Koch	CO / HCI Anhydrous AlCl 3
14.	Rosenmund reduction	H ₃ C CI Pd / BaSO 4 H ₃ C C H
15.	Clemmensen	COnc. HCI H ₃ C —CH ₂ -CH ₃ Conc. HCI
16.	Wolff-Kishner reduction	H ₃ C CH ₃ ii) NH ₂ NH ₂ H ₃ C CH ₂ -CH ₃
17.	Tollens' test	R-CHO + 2 [Ag(NH ₃) ₂] ⁺ + 3 OH ⁻
18.	Fehling's test	R-CHO + 2 Cu ²⁺ + 5 OH ⁻ → R-COO ⁻ + Cu ₂ O ↓ + 3H ₂ O
19.	lodoform	O I 2 / NaOH CHI 3 + CH 3COO Na OR, NaOI
20.	Aldol condensation	$2 \text{ H}_3\text{C}$ — CHO — $\frac{\text{dil NaOH}}{}$ — $\frac{\text{OH}}{}$ — $\frac{\Delta}{}$ — CH ₃ —CH = CHCHO
21.	Cannizzaro	HCHO + HCHO Conc. NaOH HCOONA + H3C OH
22.	Hell-Volhard- Zelinsky (HVZ)	H ₃ C —— COOH ii) Cl ₂ / Red Phosphorus ii) H ₂ O —— COOH
23.	Hoffmann bromamide degradation	H ₃ C — NH ₂ — Br ₂ → H ₃ C — NH ₂ NaOH

CHEMISTRY

24.	Carbylamine	R-NH₂ + CHCl₃ + 3 KOH
25.	Diazo	NaNO 2 + dil HCl 273 - 278 K
26.	Sandmeyer.	Cuci / Hci + N 2
27.	Gatterman	Cu / HCl + N z
28.	Coupling	$N_2^+CI^-$ + H—OH OH OH OH OH

Distinguish By a Single Chemical Test

1. All aldehydes (R-CHO) give Tollens' Test and produce silver mirror.

Note: HCOOH(methanoic acid) also gives this test, ketones (RCOR) do not give this test

All aldehydes (R-CHO) and ketones(RCOR) give 2,4-DNP test

RCOR + 2,4-DNP → Orange ppt R-CHO + 2,4-DNP → Orange ppt

Aldehydes and ketones having CH,CO- (keto methyl) group give lodoform Test. Alcohols having CH,CH- OH group also give lodoform Test.

CH,CHO + 3I, + 4 NaOH → CHI, ↓ + HCOONa + 3 NaI + 3H,O Yellow ppt

- The following compounds give Iodoform Test: ethanol (C₂H₃OH), propan-2-ol (CH₃CH(OH)CH₃), ethanal(CH₃CHO), propanone(CH₃COCH₃), butanone (CH₃COCH₂CH₃), pentan-2-one (CH₃COCH₃CH₃), acetophenone (PhCOCH₃)
- All carboxylic acids (R-COOH) give Bicarbonate Test RCOOH + NaHCO₃ → RCOONa + CO₂ ↑ + H₂O effervescence
- 6. Phenol gives FeCl₃ Test

$$C_6H_5OH + FeCl_3 \rightarrow (C_6H_5O)_5Fe + 3 HCl$$

(neutral) (violet color)

CHEMISTRY

All primary amines (R/Ar -NH₂) give Carbyl Amine Test
 R-NH₂ + CHCl₃ + KOH(alc) → R-NC + KCl + H₂O

offensive smell

- Aniline gives Azo Dye Test (Only for aromatic amines)
 C_cH_sNH₂ + NaNO₂ + HCl → C_cH_sN₂ Cl⁻; then add β-naphthol orange dye
- 9. All alcohols (ROH) give Na-metal test

R-OH + Na → R-ONa + H₂ bubbles

- For esters (RCOOR): Hydrolyses first. Then see the products (acid & alcohol) and give a test to identify them.
- 11. All alkenes (C=C) and alkynes (C=C) decolorizes Br, water from red to colourless
- 12. Lucas Test to distinguish primary, secondary and tertiary alcohols

Lucas reagent: ZnCl₃/HCl

3°-alcohol + Lucas reagent → immediate turbidity

2°-alcohol + Lucas reagent → turbidity after sometime

1º-alcohol + Lucas reagent → no turbidity