幾何数理工学ノート 距離空間

平井広志

東京大学工学部 計数工学科 数理情報工学コース 東京大学大学院 情報理工学系研究科 数理情報学専攻

> hirai@mist.i.u-tokyo.ac.jp 協力:池田基樹(数理情報学専攻D1)

0 準備

とばしてもよい.

0.1 集合と写像

集合 X の部分集合全体からなる集合(べき集合)を 2^X とかく、例えば、 $X=\{a,b,c\}$ なら、 $2^X=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\},\{a,b,c\}\}$ である。

X,Y を集合, $f:X\to Y$ を写像とする. $x\in X$ の行き先が f(x) であることを示す

$$x \mapsto f(x)$$

という書き方がある. この書き方で、写像 f を定義することがある. 例 : $f: \mathbb{R} \to \mathbb{R}$ を $x \mapsto 3x^2$ で定義する.

部分集合 $A \subseteq X$ に対する f の像 f(A) を

$$f(A) := \{ f(x) \mid x \in A \}$$

で定義する. $C \subseteq Y$ に対する逆像 $f^{-1}(C)$ を

$$f^{-1}(C) := \{ x \in X \mid f(x) \in C \}$$

とする. 像と逆像に関して以下の性質がある(確かめよ):

$$\begin{split} f(A \cup B) &= f(A) \cup f(B), \\ f(A \cap B) &\subseteq f(A) \cap f(B), \\ f^{-1}(C \cup D) &= f^{-1}(C) \cup f^{-1}(D), \\ f^{-1}(C \cap D) &= f^{-1}(C) \cap f^{-1}(D), \\ f^{-1}(f(A)) &\supseteq A, \\ f(f^{-1}(C)) &\subseteq C. \end{split}$$

f が単射であるとは、任意の異なる $x,y \in X$ に対して、 $f(x) \neq f(y)$ となるときをいう。f は全射であるとは、任意の $z \in Y$ に対して、f(x) = z となる $x \in X$ が存在するときをいう。いいかえると、 $X = f^{-1}(Y)$ が成り立つときである。単射かつ全射のとき全単射という。このときは、任意の $z \in Y$ に対して、一意に

 $x \in X$ が存在して,f(x) = z となる.この x を $f^{-1}(z)$ と定義することで**逆写像** $f^{-1}: Y \to X$ が定義される.逆像との違いに注意する.

部分集合 $A\subseteq X$ に対して f の定義域を A に制限することで写像 $A\to Y$ が定義される. これを $f|_A:A\to Y$ とかく.

0.2 Infとsup

 \mathbb{R} を実数の集合とする. $A\subseteq\mathbb{R}$ を空でない部分集合とする. もしも, $x\in A$ が, すべての $z\in A$ に対して, $x\geq z$ $(x\leq z)$ となるとき, x を A の最大値(最小値)といって, $\max A$ $(\min A)$ とかく. 最大値, あるいは, 最小値は, 存在するとは限らない.

A の上界(下界)とは,任意の $z\in A$ に対して, $x\geq z$ ($x\leq z$)となる $x\in \mathbb{R}$ 全体の集合のことである.このとき,A の上界には,それが空でなければ,必ず最小値が存在する.これを A の最小上界といって $\sup A$ とかく. $\sup A$ とは,A の上界の点 x であって,任意の $\epsilon>0$ に対して, $x-\epsilon$ は A の上界の点でなくなるようなものである.A の上界が空のときは, $\sup A:=\infty$ と定義する.もしも, $\max A$ が存在すれば, $\sup A=\max A$ である.同様に A の下界には,それが空でなければ,必ず最大値が存在する.これを A の最大下界といって $\inf A$ とかく.空のときは, $\inf A:=-\infty$ と定義する.もしも, $\min A$ が存在すれば, $\inf A=\min A$ である.

例 0.1. $A=(a,b)\subseteq\mathbb{R}$ を開区間とすると、 $\max A$ と $\min A$ は存在しないが、 $\inf A=a,\,\sup A=b$ である.

なぜ,最小上界 sup,最大下界 inf が必ず存在するかというと,そもそも,実数とは,それらがいつも存在するように構成された数の体系だから,である.

問題 0.1. 実数の定義を与え, sup と inf がいつも存在することを示せ.

0.3 同值関係

集合 X 上の同値関係とは、2 項関係 \sim であって、以下を満たすものである:

反射律: $x \sim x$.

対称律: $x \sim y$ なら $y \sim x$.

推移律: $x \sim y \sim z$ なら $x \sim z$.

ここで、x,y,z は X の任意の元、 $x\sim y$ が成り立つとき、x と y は(\sim のもとで)同値である、という、 $x\in X$ の同値類 $[x]\subseteq X$ とは、x と同値な元全体のなす集合である:

$$[x] := \{ y \in X \mid x \sim y \}.$$

推移律より,[x]=[y] か $[x]\cap[y]=\emptyset$ が成り立つ.したがって,X は,同値類たちに分割される.これを X の同値類分割という.また,同値類のなす集合 $\subseteq 2^X$ を商集合といって, X/\sim とかく.同値類 C 内の元 x を C=[x] の代表元といったりする.写像 $X\ni x\mapsto [x]\in C/\sim$ を自然な射影という.

例 0.2. V をベクトル空間, $W\subseteq V$ を部分空間とする. 2 項関係 \sim e u \sim v \Leftrightarrow u v \in W で定義すると,これは V 上の同値関係である.対応する商集合を V/W とかく. u \in V の同値類 [u] は, $u+W=\{x+w\mid w\in W\}$ とかける.V/W にはベクトル空間の構造が入り,商ベクトル空間と呼ぶ.次の節の例 0.3 を参照せよ.

0.4 Well-defined について

定義を与えたとき,その定義が正しく定義されているか(well-defined か)は必ずしも自明ではなく確認を要するときがある. 典型的なシチュエーションは,同値類上の演算を代表元をつかって定義する際に現れる. このときの well-defined のチェックは,その演算が代表元の取り方によらないことを示すことである. 商ベクトル空間 V/W を例にとって説明する.

例 0.3. V/W がベクトル空間になることを示す. $C, D \in V/W$ の和 C+D を以下で定義する:

$$C + D := [u + v] = u + v + W.$$

ここで、 $u \in V$ は C の代表元、 $v \in V$ は D の代表元である.つまり、C = u + W、D = v + W である.また、定数倍は、 $\alpha C := [\alpha u] = \alpha u + W$ と定義する.

このとき,この定義が well-defined であることを示そう.すなわち,代表元 u,v の取り方に依存せずに C+D が決まることを示す.そのために,別の代表元 u',v' を考える.C=u+W=u'+W,D=v+W=v'+W である.あるいは, $u\sim u',v\sim v'$ ともかける.このとき, $u+u'\sim v+v'$ である.なぜなら, $u-u'\in W,v-v'\in W$,そして,W は部分ベクトル空間なので, $u+v-(u'+v')=(u-u')+(v-v')\in W$ となるからである.よって C+D=[u+v]=[u'+v'] が示され,代表元の取り方によらず,和の定義はwell-defined であることがわかった.

問題 0.2. 定数倍の定義も well-defined であることを示せ.

例 0.4. いま,線形写像 $f:V\to V'$ があって, $W\subseteq\ker f$ とする.このとき,線形写像 $\tilde{f}:V/W\to V'$ が以下のように定義される:

$$[u] \mapsto f(u).$$

 $\tilde{f}:V/W\to V'$ が well-defined であることを確認する.それには, $u\sim u'$ なら f(u)=f(u'),すなわち,同値類上で,f の値が等しいことをいえばよい. $u\sim u'$ から $u-u'\in W\subseteq\ker f$ なので f(u)-f(u')=f(u-u')=0.また, \tilde{f} の線形性は,f の線形性より従う(確認せよ).

1 距離空間

まず距離空間から話を始める.

1.1 距離空間の定義

定義 1.1. X を空でない集合とする. 実数値関数 $d: X \times X \to \mathbb{R}$ が次の性質を満たすとする:

- (D1) $\forall x, y \in X, \ d(x, y) \ge 0 \ \mathfrak{C} \ d(x, y) = 0 \Leftrightarrow x = y.$
- (D2) $\forall x, y \in X, d(x, y) = d(y, x)$ (対称性).
- (D3) $\forall x, y, z \in X, d(x, y) + d(y, z) \ge d(x, z)$ (三角不等式).

このとき d を距離関数,(X,d) の組を距離空間(metric space)という。d が明らかなときは省略して X を距離空間ということもある.

例 1.1 (n 次元ユークリッド空間). $X が n 次元ユークリッド空間 <math>\mathbb{R}^n$ の場合,

$$d_2(x,y) := \sqrt{\sum_{i=1}^n (x_i - y_i)^2}, \quad d_1(x,y) := \sum_{i=1}^n |x_i - y_i|, \quad d_{\infty}(x,y) := \max_{1 \le i \le n} |x_i - y_i|$$

と定義すると、 d_2, d_1, d_∞ はいずれも距離関数になる。 例えば d_2 の三角不等式は

$$d_2(x,z)^2 = \sum_{i=1}^n (x_i - z_i)^2 = \sum_{i=1}^n (x_i - y_i + y_i - z_i)^2$$

$$= \sum_{i=1}^n (x_i - y_i)^2 + \sum_{i=1}^n (y_i - z_i)^2 + 2\sum_{i=1}^n (x_i - y_i)(y_i - z_i)$$

$$\leq \sum_{i=1}^n (x_i - y_i)^2 + \sum_{i=1}^n (y_i - z_i)^2 + 2\sqrt{\left(\sum_{i=1}^n (x_i - y_i)^2\right)\left(\sum_{i=1}^n (y_i - z_i)^2\right)}$$

$$= \left(\sqrt{\sum_{i=1}^n (x_i - y_i)^2} + \sqrt{\sum_{i=1}^n (y_i - z_i)^2}\right)^2 = (d_2(x, y) + d_2(y, z))^2$$

と示される. ただし3行目の不等式はコーシー・シュワルツの不等式を用いた.

例 1.2. 区間 $[a,b] \subseteq \mathbb{R}$ 上の連続関数全体の集合を C[a,b] で表す. X = C[a,b] の場合,

$$d_2(f,g) := \sqrt{\int_a^b |f(t) - g(t)|^2 dt}, \quad d_1(f,g) := \int_a^b |f(t) - g(t)| dt, \quad d_\infty(f,g) := \sup_{t \in [a,b]} |f(t) - g(t)| dt$$

と定義すると、 d_2,d_1,d_∞ はいずれも距離関数になる.例えば d_1 の三角不等式は

$$d_1(f,h) = \int_a^b |f(t) - h(t)| dt = \int_a^b |f(t) - g(t)| + g(t) - h(t)| dt$$

$$\leq \int_a^b (|f(t) - g(t)| + |g(t) - h(t)|) dt$$

$$= \int_a^b |f(t) - g(t)| dt + \int_a^b |g(t) - h(t)| dt = d_1(f,g) + d_1(g,h)$$

と示される。また, $d_1(f,g)=0\Leftrightarrow f=g$ は,もしある t について $f(t)\neq g(t)$ なら |f(t)-g(t)|>0 で,連続性から $\epsilon>0$ が存在して

$$|f(s) - q(s)| > 0 \quad (s \in [t - \epsilon, t + \epsilon])$$

となることから

$$\int_{a}^{b} |f(s) - g(s)| \, \mathrm{d}s \ge 2\epsilon \times \min_{t - \epsilon \le s \le t + \epsilon} |f(s) - g(s)| > 0$$

と示される.

例 1.3 (ハミング距離). $X = \{0,1\}^n$ の場合,

$$d_H(x,y) := \#\{i \mid x_i \neq y_i\}$$

と定義すると d_H は距離関数になる.

例 1.4. 無向グラフG = (X, E)の頂点集合X上に2変数関数 d_G を

$$d_G(x,y) := \{x \text{ から } y \text{ への最短路の長さ } \}$$

と定義すると、 d_G は距離関数になる.実際、x から y への最短路と y から z への最短路を繋げると x から z へのパスとなるので、三角不等式が成り立つ.

図 1: ユークリッド空間における ϵ -近傍.

図 2: $(C[0,1],d_{\infty})$ での ϵ -近傍.

1.2 開集合と閉集合

(X,d) を距離空間とする. 点 $a \in X$ と実数 $\epsilon > 0$ について, a の ϵ -近傍 $N(a;\epsilon)$ を

$$N(a;\epsilon) := \{ x \in X \mid d(a,x) < \epsilon \}$$

と定義する.例えば $X=\mathbb{R}^2$ の距離 d_2,d_1,d_∞ のもとでの ϵ -近傍は図 1 のようになる.また,図 2 に $(X,d)=(C[0,1],d_\infty)$ の場合の ϵ -近傍を示す.

定義 1.2. $A \subseteq X$ を任意の X の部分集合とする.

- $x \in X$ が A の内点 $\stackrel{\text{def}}{\Longleftrightarrow} \exists \epsilon > 0, \ N(x; \epsilon) \subseteq A.$
- A の内部 $A^\circ := \{x \in X \mid \exists \epsilon > 0, \ N(x; \epsilon) \subseteq A\} \ (\subseteq A)$ (内点全体の集合).
- $x \in X$ が A の外点 $\stackrel{\text{def}}{\Longleftrightarrow} \exists \epsilon > 0, \ N(x; \epsilon) \cap A = \emptyset \ (\Leftrightarrow A \text{ の補集合の内点}).$
- A の外部 := $(X A)^{\circ}$ (外点全体の集合).
- $x \in X$ が A の境界点 $\stackrel{\mathrm{def}}{\Longleftrightarrow} \forall \epsilon > 0, \ N(x;\epsilon) \cap A \neq \emptyset, \ N(x;\epsilon) \cap (X-A) \neq \emptyset.$
- A の境界 $\partial A := X A^{\circ} (X A)^{\circ}$ (境界点全体の集合).
- $x \in X$ が A の触点 $\stackrel{\text{def}}{\Longleftrightarrow} \forall \epsilon > 0, \ N(x; \epsilon) \cap A \neq \emptyset.$

図 3: Aの内部・境界・外部.

• A の閉包 $\overline{A} := \{x \in X \mid \forall \epsilon > 0, \ N(x; \epsilon) \cap A \neq \emptyset\}$ (触点全体の集合).

X は任意の A の内部 A° ,境界 ∂A ,A の外部の直和になる(図 3).また定義から $A^\circ \subseteq A \subseteq \overline{A}$, $\overline{A} = A^\circ \cup \partial A$ が成り立つ.

補題 **1.3.** $X - A^{\circ} = \overline{X - A}$

証明. $x \in X - A^{\circ} \Leftrightarrow x \, \text{が} \, A \, \text{の内点でない} \Leftrightarrow \forall \epsilon > 0, \, N(x; \epsilon) \cap (X - A) \neq \emptyset \Leftrightarrow x \in \overline{X - A}.$

定義 1.4.

- $A \subseteq X$ が開集合 $\stackrel{\text{def}}{\Longleftrightarrow} \forall x \in A, \exists \epsilon > 0, N(x; \epsilon) \subseteq A \iff A = A^{\circ}.$
- $A\subseteq X$ が閉集合 $\stackrel{\mathrm{def}}{\Longleftrightarrow} \forall x\in X,\ [\forall \epsilon>0,\ N(x;\epsilon)\cap A\neq\emptyset\Rightarrow x\in A]$ $\iff A=\bar{A}.$

補題 1.5. 任意の $x \in X$ と $\epsilon > 0$ に対して $N(x;\epsilon)$ は開集合. つまり $N(x;\epsilon) = N(x;\epsilon)^{\circ}$.

証明. 任意の $y\in N(x;\epsilon)$ に対し $\delta:=\epsilon-d(x,y)>0$ とおくと, $N(y;\delta)\subseteq N(x;\epsilon)$ が成り立つ.実際,任意の $z\in N(y;\delta)$ に対し,三角不等式より

$$d(x, z) \le d(x, y) + d(y, z) < d(x, y) + \delta = \epsilon$$

となるので、 $z \in N(x; \epsilon)$ が成り立つ.

命題 1.6. 任意の $A\subseteq X$ に対し、 A° は開で、 \overline{A} は閉、すなわち、 $(A^\circ)^\circ=A^\circ$ および $\overline{\overline{A}}=\overline{A}$.

証明. 任意の $x \in A^\circ$ に対し、定義より $\epsilon > 0$ が存在して $N(x;\epsilon) \subseteq A$ となる. $N(x;\epsilon)$ は開集合なので、

$$N(x;\epsilon) = N(x;\epsilon)^{\circ} \subseteq A^{\circ}$$

となる. $(A \subseteq B \text{ ならば } A^{\circ} \subseteq B^{\circ} \text{ に注意する.})$ よって $x \in (A^{\circ})^{\circ}$ が確かめられた.

B:=X-A とおくと,A=X-B である.補題 1.3 より $\overline{A}=X-B^\circ$.そして $\overline{\overline{A}}=X-(B^\circ)^\circ=X-B^\circ=\overline{A}$.

命題 1.7.

- A が開集合 \iff X A が閉集合.
- A が閉集合 \iff X A が開集合.

証明.

$$A$$
 が開集合でない $\iff \exists x \in A, \ \forall \epsilon > 0, \ N(x;\epsilon) \not\subseteq A$ $\iff \exists x \in A, \ \forall \epsilon > 0, \ N(x;\epsilon) \cap (X-A) \neq \emptyset$ $\iff X-A$ の触点だが $X-A$ の元ではない x が存在 $\iff X-A$ は閉集合でない.

命題の2つ目はAとX - A の役割を入れ替えれば1つ目から得られる.

定義 1.8.

- 開集合系 := 開集合全体の集合. ೨ で表す.
- 閉集合系 := 閉集合全体の集合. 乳 で表す.

命題 1.9. 開集合系 𝔾 は以下を満たす.

- (1) $X \in \mathfrak{O}, \emptyset \in \mathfrak{O}$.
- (2) $O_1, O_2, \ldots, O_k \in \mathfrak{O}$ なら $O_1 \cap O_2 \cap \cdots \cap O_k \in \mathfrak{O}$.
- (3) $O_{\lambda} \in \mathfrak{O}$ $(\lambda \in \Lambda)$ なら $\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathfrak{O}$ (Λ は任意の集合).

証明. (1) は明らか.

- (2) $x \in O_1 \cap O_2 \cap \cdots \cap O_k$ とすると、各 $i=1,\ldots,k$ について $\epsilon_i>0$ が存在して $N(x;\epsilon_i)\subseteq O_i$ が成り立っ。よって $\epsilon:=\min_{1\leq i\leq k}\epsilon_i$ とおくと、 $N(x;\epsilon)\subseteq O_1\cap O_2\cap\cdots\cap O_k$.
- (3) $x\in\bigcup_{\lambda\in\Lambda}O_{\lambda}$ とすると, $x\in O_{\lambda}$ なる $\lambda\in\Lambda$ が存在する.すると $\epsilon>0$ が存在して $N(x;\epsilon)\subseteq O_{\lambda}\subseteq\bigcup_{\lambda\in\Lambda}O_{\lambda}$ となる.

命題 1.10. 閉集合系 ¾ は以下を満たす.

- (1) $X \in \mathfrak{A}, \emptyset \in \mathfrak{A}$.
- (2) $A_1, A_2, \dots, A_k \in \mathfrak{A}$ ならば $A_1 \cup A_2 \cup \dots \cup A_k \in \mathfrak{A}$.
- (3) 任意の $\lambda \in \Lambda$ について $A_{\lambda} \in \mathfrak{A}$ ならば、 $\bigcap_{\lambda \in \Lambda} A_{\lambda} \in \mathfrak{A}$ (Λ は任意の集合).

証明. 命題 1.7 より $\mathfrak{A} = \{X - O \mid O \in \mathfrak{O}\}$ が成り立つことに注意すると, (1) は明らか.

(2) $A_i = X - O_i$ と書くと,

$$A_1 \cup A_2 \cup \cdots \cup A_k = (X - O_1) \cup (X - O_2) \cup \cdots \cup (X - O_k) = X - (O_1 \cap O_2 \cap \cdots \cap O_k)$$

であるから、命題 1.9 より $A_1 \cup A_2 \cup \cdots \cup A_k \in \mathfrak{A}$.

(3) $A_{\lambda} = X - O_{\lambda}$ と書くと,

$$\bigcap_{\lambda \in \Lambda} A_{\lambda} = \bigcap_{\lambda \in \Lambda} (X - O_{\lambda}) = X - \bigcup_{\lambda \in \Lambda} O_{\lambda}$$

であるから、命題 1.9 より $\bigcap_{\lambda \in \Lambda} A_{\lambda} \in \mathfrak{A}$.

(a) d_{∞} での x の近傍を含む d_2 での近傍.

(b) d_2 での x の近傍を含む d_∞ での近傍.

図 4: ユークリッド空間の距離 d_2 と d_∞ が定める位相.

1.3 収束性・連続性

距離空間の言葉で、収束性や連続性といった概念が定義できる.

定義 1.11.

• 点列 $a_i \in X$ (i = 1, 2, ...) が $a \in X$ に収束する $(\lim_{i \to \infty} a_i = a$ と表す):

$$\lim_{i \to \infty} a_i = a \iff \lim_{i \to \infty} d(a, a_i) = 0 \quad (実数列としての収束).$$

• 関数 $f: X \to \mathbb{R}$ が $a \in X$ で連続

$$\stackrel{\text{def}}{\iff} \forall \epsilon > 0, \ \exists \delta > 0, \ [d(a,x) < \delta \Rightarrow |f(a) - f(x)| < \epsilon].$$

集合 X に異なる距離関数 d,d' を与えると,異なる距離空間 (X,d),(X,d') が定義される.距離関数の違いにより,収束性や連続性に違いが生じるだろうか? これを調べるために導入されるのが,位相空間の概念である.X に開集合系を与えることを,空間に位相を与えるという.収束性や連続性は位相空間の言葉のみで定義することができ,開集合系が同じ距離空間ならば収束性や連続性も等価になる.

例 1.5. (\mathbb{R}^n,d_2) と (\mathbb{R}^n,d_∞) が定義する開集合系は等しい(位相は等しい).よって,収束性や連続性はどちらの距離空間で考えても等価になる.実際,ある実数 C>0 が存在して任意の $x,y\in\mathbb{R}^n$ に対し $d_2(x,y)\leq d_\infty(x,y)/C$ が成り立つ.集合 $A\subseteq\mathbb{R}^n$ が d_2 の下で開だとすると,任意の $x\in A$ について $\epsilon>0$ が存在して $N_2(x,\epsilon)\subseteq A$ となる.すると

$$N_{\infty}(x, C\epsilon) \subseteq N_2(x, \epsilon) \subseteq A$$

であるから、A は d_{∞} の下でも開である。逆に d_{∞} の下での開集合は、 d_2 の下での開集合でもある(図 4).

例 1.6. \mathbb{R}^n 上のノルム $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ とは、次の条件

- $||v|| \ge 0$, $||v|| = 0 \Leftrightarrow v = 0$,
- $\forall a \in \mathbb{R}, \ \forall v \in \mathbb{R}^n, \ ||av|| = |a|||v||,$
- $\forall u, v \in \mathbb{R}, \ \|u + v\| \le \|u\| + \|v\|$

を満たす関数のことである. ノルム $\|\cdot\|$ により $d(x,y):=\|x-y\|$ と定義すると,d は距離関数になる. d_2 はノルム $\|v\|_2:=\sqrt{\sum_{i=1}^n v_i^2}$ から, d_∞ は $\|v\|_\infty:=\max_{1\leq i\leq n}|v_i|$ からこのようにして得られる(d_1 も同様). 実は, \mathbb{R}^n 上のどんなノルムも定める位相は等しいことが知られている. 一方,無限次元ではそうとも限らない(らしい).

TODO: 有理数の集合 \mathbb{Q} 上の絶対値から得られる位相とは異なる位相 (p 進位相) について書く.