Machine Learning (ELL409)

Assignment-2 Hand Written Digit Recognition

Submitted on: 10th April, 2016

Santosh Nain (2012EE10476)

Sachin Rinder (2013EE10489)

Ashutosh Kumar (2013EE30550)

A) Logistic Regression:

Cost function:

$$E(w) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log(h_w(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_w(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{N} w_j^2.$$

Gradient:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

where λ is the regularization parameter

When alpha (learning rate) = 0.5, m (number of training data) = 4000

Lambda	Training Accuracy	Cost for Class zero
0	91.1	0.0295
0.25	91.07	0.0300
0.50	91.05	0.0304
0.75	91.05	0.0308
1	91.05	0.0312

When lambda = 0, m (number of training data) = 4000

Alpha	Training Accuracy	Cost for Class zero
0.01	80.42	0.1412
0.1	88.2	0.0549
0.4	90.67	0.0322
0.7	91.87	0.0258
1	92.6	0.0223

Conclusion:

- 1) Training accuracy decreases when we increase lambda and finally gets saturated at approx. 91.05, considering no of training data set is 4000.
- 2) Cost increases with the lambda linearly, as expected from the cost equation.
- 3) Also training Accuracy increases linearly when varying learning rate and finally converges to 92.04.
- 4) And Cost decreases (seems to be exponentially) as we increase alpha.

B) Neural Networks

When alpha (learning rate) = 1, m (number of training data) = 4000 (After 1000 iterations)

Lambda	Training Accuracy	Cost for Class zero
0	91.6	0.2440
0.25	91.4	0.3033
0.50	92	0.3348
0.75	92.1	0.3722
1	92.4	0.4036

When lambda = 0, m (number of training data) = 4000

Alpha	Training Accuracy	Cost for Class zero
0.01	50.6	3.1204
0.1	85	1.1488
0.4	91.2	0.4756
0.7	91.4	0.3354
1	91.8	0.2434

CONCLUSIONS:

- 1) We can see here that initially when we increase lambda, accuracy has a dip but later it increases.
- 2) Cost varies linearly with lambda.
- 3) Accuracy seems to be getting saturated when we increase alpha.
- 4) And Cost decreases (seems to be exponentially) as we increase alpha.