## Particle spectrograph

## Wave operator and propagator



| ee) action              |     | $\iiint (\frac{1}{6}\left(2\left(t_{1}-2t_{3}\right)\mathcal{A}^{\alpha\prime}_{\ \alpha}\mathcal{A}^{\theta}_{\ \beta}+6f^{\alpha\beta}\tau_{\alpha\beta}+6\mathcal{A}^{\alpha\beta\chi}\sigma_{\alpha\beta\chi}-4t_{1}\mathcal{A}^{\theta}_{\alpha\theta}\partial_{,}f^{\alpha\prime}+\right.$ | $8t_{3}  {\mathscr{A}}_{\alpha}^{\ \theta}  \partial_{\prime} f^{\alpha\prime} + 4t_{1}  {\mathscr{A}}_{\prime}^{\ \theta}  \partial^{\prime} f^{\alpha}_{\ \alpha} - 8t_{3}  {\mathscr{A}}_{\prime}^{\ \theta}  \partial^{\prime} f^{\alpha}_{\ \alpha} -$ | $2t_1\partial_i f^{	heta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $4t_3\partial_{\scriptscriptstyle{j}} f^{\alpha\prime}\partial_{\theta} f_{}^{} + 4t_1\partial^{\prime} f^{\alpha}_{}\partial_{\theta} f_{}^{\theta} - 8t_3\partial^{\prime} f^{\alpha}_{}\partial_{\theta} f_{}^{\theta} -$ | $6t_{1}\partial_{\alpha}f_{,\theta}\partial^{\theta}f^{\alpha\prime}-3t_{1}\partial_{\alpha}f_{\theta\prime}\partial^{\theta}f^{\alpha\prime}+3t_{1}\partial_{\prime}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime}+$ | $3t_1\partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime}+3t_1\partial_{\theta}f_{\prime\alpha}\partial^{\theta}f^{\alpha\prime}+$ | $6t_1~\mathcal{A}_{lpha	heta_{\prime}}$ ( $\mathcal{A}^{lpha_{\prime}	heta}$ $+ 2\partial^{	heta}\!f^{lpha_{\prime}}$ ) $+ 8r_2\partial_{eta}\mathcal{A}_{lpha_{\prime}	heta}\partial^{	heta}\!\mathcal{A}^{lphaeta_{\prime}}$ - | $4r_2\partial_{eta}\mathcal{R}_{lpha	heta_l}\partial^{	heta}\mathcal{R}^{lphaeta_l}+4r_2\partial_{eta}\mathcal{R}_{l	hetalpha}\partial^{	heta}\mathcal{R}^{lphaeta_l}$ - | $2r_2\partial_{ert}\mathcal{R}_{lphaeta	heta}\partial^{	heta}\mathcal{R}^{lphaeta\prime}+2r_2\partial_{	heta}\mathcal{R}_{lphaeta\prime}\partial^{	heta}\mathcal{R}^{lphaeta\prime}.$ | $4r_2\partial_	heta \mathcal{R}_{lpha Ieta})$ $[t, x, y, z]dzdydxdt$ |   |
|-------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---|
| ee) actio               |     | $(1-2t_3)  \mathcal{A}$                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                             |                                                                    |                                                                                                                                                                                                                              |                                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                       |                                                                      | ! |
| Quadratic (free) action | S== | $\iiint (\frac{1}{6} (2 (t$                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |                                                                    |                                                                                                                                                                                                                              |                                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                       |                                                                      | : |

| Source constraints                                                          |                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SO(3) irreps                                                                | Fundamental fields                                                                                                                                                                                           |
| $\tau_{0+}^{\#2} == 0$                                                      | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$                                                                                                                                                   |
| $\tau_{0+}^{\#1} - 2  i  k  \sigma_{0+}^{\#1} == 0$                         | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$              |
| $\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#2}{}^{\alpha} == 0$        | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}$  |
| $\tau_{1}^{\#1}{}^{\alpha} == 0$                                            | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$                                                                       |
| $\tau_{1+}^{\#1}\alpha\beta + \bar{l}k \ \sigma_{1+}^{\#2}\alpha\beta == 0$ | $\partial_{\chi}\partial^{\alpha} \tau^{\beta\chi} + \partial_{\chi}\partial^{\beta} \tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi} \tau^{\alpha\beta} +$                                                |
|                                                                             | $2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = $                                     |
|                                                                             | $\partial_{\chi}\partial^{\alpha} t^{\chi\beta} + \partial_{\chi}\partial^{\beta} t^{\alpha\chi} +$                                                                                                          |
|                                                                             | $\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$                                                                              |
| $\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$        | $-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right.$ |
|                                                                             | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau$                                   |
|                                                                             | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau$                                    |
|                                                                             | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}$                                           |
|                                                                             | $4I k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta}$ -                                                                                     |
|                                                                             | 6 I KX OEOSOXOUGE-                                                                                                                                                                                           |
|                                                                             | $6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\delta\epsilon}+$                                                                                                |
|                                                                             | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$                                                                                         |
|                                                                             | $6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$                                                                                      |
|                                                                             | $6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{eta \delta lpha}$ -                                                                                    |
|                                                                             | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -                                                                                      |
|                                                                             | $4  i  n^{lpha eta}  k^X  \partial_\phi \partial^\phi \partial_\epsilon \partial_\chi \sigma^{\delta \epsilon}{}_\delta) = 0$                                                                                |
| Total constraints/gauge generators:                                         | ye generators:                                                                                                                                                                                               |
| Quadratic (free) action                                                     | <b>U</b>                                                                                                                                                                                                     |
| S== S                                                                       |                                                                                                                                                                                                              |
| $\iiint (\frac{1}{6} (2 (t_1 - 2 t_3) \mathcal{A}^{\alpha\prime})$          | $_{\alpha}$ $\mathcal{A}_{,\ \theta}^{\ \theta}$ + $_{\beta}$ $_{\beta}$ $_{\alpha\beta}$ + $_{\alpha\beta}$ + $_{\beta}$                                                                                    |
|                                                                             | $+4t_1 \mathcal{A}_{p}$                                                                                                                                                                                      |
|                                                                             | $2t_1\partial_{i}f^{\theta}_{}\partial^{\prime}f^{\alpha}_{}+4t_3\partial_{i}f^{\theta}_{}\partial^{\prime}f^{\alpha}_{}-2$                                                                                  |
|                                                                             | $4t_3\partial_i f^{\alpha i}\partial_\theta f_\alpha^{\ \theta} + 4t_1\partial^i f^\alpha_{\ \alpha}\partial_\theta f_i^{\ \theta} - 8$                                                                      |
|                                                                             | $6t_1\partial_\alpha f_{,\theta}\partial^\theta f^{\alpha\prime} - 3t_1\partial_\alpha f_{\theta\prime}\partial^\theta f^{\alpha\prime} + 3$                                                                 |
|                                                                             | $3t, \partial_{x}f  \partial^{\theta}f^{\alpha\prime} + 3t, \partial_{x}f  \partial^{\theta}f^{\alpha\prime} +$                                                                                              |

## Massive and massless spectra

?
$$J^{P} = 0^{-}$$
?
?

| Massive particl | е                     | (No    |
|-----------------|-----------------------|--------|
| Pole residue:   | $-\frac{1}{r_2} > 0$  | ) mas  |
| Polarisations:  | 1                     | SSIE   |
| Square mass:    | $\frac{t_1}{r_2} > 0$ | ss pa  |
| Spin:           | 0                     | artici |
| Parity:         | Odd                   | les)   |

## Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$ 

| $\sigma_{1}^{\#2}{}_{lpha}$ $t_{1}^{\#1}{}_{lpha}$ $t_{1}^{\#2}{}_{lpha}$ | 0 0 0                                              | 0 0 0                              | 0 0 0                                                                     | $\frac{\sqrt{2} (t_1 - 2t_3)}{3 (1 + 2 k^2) t_1 t_3}  0  - \frac{2 i k t_1 - 4 i k t_3}{3 t_1 t_3 + 6 k^2 t_1 t_3}$ | $\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}  0  \frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$   | 0 0 0                         | $\frac{i\sqrt{2} k(t_1+4t_3)}{3(1+2k^2)^2 t_1 t_3}  0  \frac{2k^2 (t_1+4t_3)}{3(1+2k^2)^2 t_1 t_3}$ | $lpha \qquad f_1^{\#1} \qquad f_1^{\#2} \qquad$                              | 0 0                                                     | 0 0                                                          | 0 0                                                      | $\frac{3}{2}$ 0 $\frac{1}{3}$ $\vec{l} k(t_1 - 2t_3)$ | $\frac{3}{3} \qquad 0 \qquad \frac{1}{3}  \tilde{l}  \sqrt{2}   k \left( t_1 + t_3 \right)$ | 0 0                       | $k(t_1+t_3)$ 0 $\frac{2}{3}k^2(t_1+t_3)$                            |                                                                                                 |                                                                         |                                   |                                    |                                   | $\begin{array}{ccc} \beta f_{2}^{\#1} & \mathcal{A}_{2}^{\#1} & \mathcal{A}_{2}^{\#1} \\ \hline -\frac{ikt_{1}}{\alpha} & 0 \end{array}$  |                             |                      |
|---------------------------------------------------------------------------|----------------------------------------------------|------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|
| $	au_1^{\#1}_{+lphaeta} \qquad \sigma_1^{\#1}_{1^-lpha}$                  | $\frac{i\sqrt{2}k}{t_1+k^2t_1} \qquad 0$           | $\frac{ik}{(1+k^2)^2t_1} \qquad 0$ | $\frac{k^2}{(1+k^2)^2 t_1}$ 0                                             | $0 \qquad \frac{2(t_1+t_3)}{3t_1t_3} \qquad -\frac{\sqrt{3}}{3(1)}$                                                 | $0 - \frac{\sqrt{2} (t_1 - 2t_3)}{3 (1 + 2 k^2) t_1 t_3} \frac{t}{3 (1 + 2 k^2) t_2 t_3}$ |                               | $0 \frac{2ikt_1 - 4ikt_3}{3t_1t_3 + 6k^2t_1t_3} - \frac{i\sqrt{2}}{3(1+2)}$                         | ${\mathscr A}_{1^-}^{\#1}{}_{lpha} \qquad {\mathscr A}_{1^-}^{\#2}{}_{lpha}$ | 0 0                                                     | 0 0                                                          | 0 0                                                      | $\frac{1}{6}(t_1+4t_3)$ $\frac{t_1-2t_3}{3\sqrt{2}}$  | $\frac{t_1-2t_3}{3\sqrt{2}}$ $\frac{t_1+t_3}{3}$                                            | 0 0                       | $\frac{1}{3}\bar{l}k(t_1-2t_3)\bigg _{-\frac{1}{3}}\bar{l}\sqrt{2}$ | $\mathcal{A}_{0^{+}}^{\#1}$ † $f_{0^{+}}^{\#1}$ † $f_{0^{+}}^{\#2}$ †                           | $i\sqrt{2} kt_3$                                                        | $-i \sqrt{2} kt_3$                | f <sub>0</sub> <sup>#2</sup> 0 0 0 | $\mathcal{A}_{0}^{#1}$ 0 0 0      | $ \begin{array}{c c} \sigma_{2}^{\#1} & \mathcal{A}_{2}^{\#1} \\ 0 & \mathcal{A}_{2}^{\#1} + \alpha \beta & \frac{t_{1}}{1} \end{array} $ | $f_{2}^{*1} + \alpha \beta$ | 1                    |
| $\sigma_{1}^{\#2}{}_{lphaeta}$ $	au_{1}^{\#1}{}_{1}^{\#1}$                | $-\frac{\sqrt{2}}{t_1+k^2t_1} - \frac{i}{t_1+t_1}$ |                                    | $\frac{ik}{(1+k^2)^2 t_1} \left  \frac{k}{(1+k^2)^2} \right $             | 0                                                                                                                   | 0                                                                                         | 0                             | 0                                                                                                   | $\mathcal{A}_{1}^{\#2}_{+lphaeta}f_{1}^{\#1}_{lphaeta}$                      | $-\frac{t_1}{\sqrt{2}}  -\frac{ikt_1}{\sqrt{2}}$        | 0 0                                                          | 0 0                                                      | 0 0                                                   | 0 0                                                                                         | 0                         | - 0 0                                                               | $\mathscr{R}_0^{\sharp 1}$ †                                                                    | $\sigma_{0^{+}}^{*1}$                                                   | $0$ $\tau_0^{\#1}$ $i \sqrt{2} k$ | 0<br>τ <sub>0</sub> <sup>#2</sup>  | $k^2 r_2 - t_1$ $\sigma_0^{\#1}$  |                                                                                                                                           |                             |                      |
| $\sigma_{1+\alpha\beta}^{\#1}$                                            | $\sigma_{1}^{\#1} + \alpha \beta = 0$              |                                    | $\tau_{1}^{\#1} + \alpha\beta \qquad \frac{i\sqrt{2}k}{t_1 + k^2 t_1}  -$ | $\sigma_{1}^{\#1} + ^{\alpha}$ 0                                                                                    | $\sigma_{1}^{\#2} + \alpha = 0$                                                           | $\tau_{1}^{\#1} + \alpha = 0$ | $t_1^{\#2} + \alpha = 0$                                                                            | κβ                                                                           | $\mathcal{A}_{1}^{\#1} + \alpha \beta$ $-\frac{t_1}{2}$ | $\mathcal{A}_{1}^{#2} + \alpha \beta - \frac{t_1}{\sqrt{2}}$ | $f_1^{\#1} + \alpha \beta \qquad \frac{ikt_1}{\sqrt{2}}$ | $\mathcal{A}_{1}^{\#1} +^{\alpha}$ 0                  | $\mathcal{A}_{1}^{\#2} +^{\alpha}$ 0                                                        | $f_{1}^{#1} +^{\alpha} 0$ | $f_{1}^{#2} +^{\alpha}$ 0                                           | $\sigma_{0^{+}}^{\#1}$ † $\tau_{0^{+}}^{\#1}$ † $\tau_{0^{+}}^{\#2}$ † $\sigma_{0^{-}}^{\#1}$ † | $\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$ $\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$ 0 | $(1+2k^2)^2t_3$                   | 3                                  | $0$ $0$ $\frac{1}{k^2 r_2 - t_1}$ | $\sigma_{2}^{\#1} + \alpha \beta \frac{2}{\alpha^{2} + \alpha \beta}$                                                                     |                             | - (   + / K_ ) - t-1 |