Quantify Uncertainty in Deep Neural Networks

Jose Jaita Aguilar Advisor: Rensso Mora Colque

San Pablo Catholic University

28th January 2019

What is Uncertainty?

- Uncertainty is a situation which involves imperfect or unknown information
- Something that is uncertain or that causes one to feel uncertain

Jaita et al. (UCSP) 28th January 2019

Motivation: Why is uncertainty important?

(a) Medical diagnostics

(b) Financial prediction

(c) Self-driving car

Problems

- Standard deep learning tools are poor at quantify uncertainty (deterministic approach)
- Bayesian probability theory offers us mathematically grounded tools to study uncertainty
- Bayesian inference comes with a prohibitive computational cost
- Stein Variational Gradient Descent (SVGD)[1] is a new variational inference algorithm
- SVGD in high dimensions, the convergence is slow

Goals

- Accelerated-SVGD algorithm to accelerate the convergence
- A method based in VAE for task out-of-distribution detection

Figure 4: Pileline

Out-of-Distribution (OOD)

Figure 5: OOD

6 / 27

Goal:

Detect out-of-distribution images

Start:

- We have a trained network (DenseNet, ResNet)
- The network only view train data (cifar10 50000)

Test:

- ID (images that belong to the classes of training data)(cifar10 10000)
- OOD (images that don't belong) (LSUN 10000)

Jaita et al. (UCSP) 28th January 2019 7 /

OOD Detection (at train time)

Figure 6: Feature extraction

OOD Detection (at test time)

$$Score_{-1} = \mathcal{L}_{i}(\theta, \phi) = -\mathbb{E}_{z \sim q_{\theta}(z|x_{i})}[logp_{\phi}(x_{i}|z)] + KL(q_{\theta}(z|x_{i})||p(z)) \quad (1)$$

28th January 2019 9 / 27 Jaita et al. (UCSP)

Jaita et al. (UCSP) 28th January 2019

10 / 27

ID: CIFAR 10

OOD: TinyImagenet

ID: CIFAR 100

OOD: TinyImagenet

28th January 2019 Jaita et al. (UCSP)

11 / 27

Clustering!

Jaita et al. (UCSP) 28th January 2019 12 / 27

28th January 2019 13 / 27 Jaita et al. (UCSP)

28th January 2019 Jaita et al. (UCSP) 14 / 27

OOD Detection - VAE+T-sne

Clustering! GMM, KDE

OOD Detection - VAE+T-sne

Jaita et al. (UCSP) 28th January 2019 16 / 27

OOD Detection - T-sne

• For train, 1000 samples from ID dataset are used

 Jaita et al. (UCSP)
 28th January 2019
 17 / 27

	Out-of-distribution	FPR	Detection	AUROC	AUPR	AUPR
	dataset	(95%TPR)	error		In	Out
		OI	DIN[2] / Vyas[3] / VA	E+T-sne		
D DC	TinyImagenet(c)	4.3/1.23/0.54	4.7/2.63/2.05	99.1/99.65/99.53	99.1/99.68/99.61	99.1/ 99.64 /99.43
Dense-BC CIFAR-10	TinyImagenet(r) LSUN(c)	7.5/2.93/ 1.19 8.7/3.42/ 1.18	6.1/3.84/ 3.40 6.0/4.12/ 3.90	98.5/ 99.34 /98.88 98.2/ 99.25 /99.00	98.6/ 99.37 /99.22 98.5/ 99.29 /99.10	98.5/ 99.32 /98.75 97.8/ 99.24 /99.00
C	LSUN(r)	3.8/0.77/ 0.28	4.4/2.10/1.96	99.2/99.75/99.52	99.3/99.77/99.60	99.2/99.73/99.41
	iSUN	6.3/ - /0.71	5.5/ - /2.66	98.8/ - / 99.35	98.9/ - / 99.36	98.8/ - / 99.31
	TinyImagenet(c)	17.3/8.29 /3.23	11.2/6.27/5.67	97.1/98.43/98.18	97.4/98.58/98.10	96.8/98.3 /98.18
Dense-BC	TinyImagenet(r)	44.3/20.52/ 12.26	24.6/9.98/ 7.64	90.7/96.27/ 97.53	91.4/96.66/ 96.86	90.1/95.82/97.93
CIFAR-100	LSUN(c)	17.6/14.69/11.96	11.3/8.46/10.37	96.8/97.37/97.02	97.1/97.62/97.54	96.5/97.18/97.11
	LSUN(r) iSUN	44.0/16.23/ 2.07 49.5/ - / 16.1	24.5/8.77/ 5.07 27.2/ - / 10.8	91.5/97.03/ 97.80 90.1/ - / 96.34	92.4/97.37/ 98.37 91.1/ - / 96.26	90.6/ 96.6 /96.35 88.9/ - / 96.76

Table 1: Comparation between VAE+T-sne and others methods

OOD Detector

	Out-of-distribution dataset	FPR (95%TPR)	Detection error	AUROC	AUPR In	AUPR Out	
	ODIN[2] / Vyas[3] / T-sne						
Dense-BC CIFAR-10	Tinylmagenet(c) Tinylmagenet(r) LSUN(c) LSUN(r) iSUN	4.3/1.23/0.55 7.5/2.93/1.60 8.7/3.42/0.78 3.8/0.77/0.39 6.3/ - /0.76	4.7/2.63/2.60 6.1/3.84/3.40 6.0/4.12/3.90 4.4/2.10/2.08 5.5/ - /2.43	99.1/99.65/99.44 98.5/99.34/98.77 98.2/99.25/99.45 99.2/99.75/99.53 98.8/ - /99.36	99.1/99.68/99.45 98.6/99.37/98.75 98.5/99.29/99.46 99.3/99.77/99.61 98.9/ - /99.34	99.1/ 99.64 /99.37 98.5/ 99.32 /98.85 97.8/99.24/ 99.42 99.2/ 99.73 /99.43 98.8/ - / 99.34	
Dense-BC CIFAR-100	Tinylmagenet(c) Tinylmagenet(r) LSUN(c) LSUN(r) iSUN	17.3/8.29 /5.40 44.3/20.52/2.19 17.6/14.69/17.69 44.0/16.23/0.45 49.5/ - /1.68	11.2/6.27/6.90 24.6/9.98/4.06 11.3/8.46/11.64 24.5/8.77/1.25 27.2/ - /2.69	97.1/98.43/97.80 90.7/96.27/98.96 96.8/97.37/93.64 91.5/97.03/99.75 90.1/ - /99.38	97.4/98.58/97.50 91.4/96.66/98.74 97.1/97.62/92.90 92.4/97.37/99.66 91.1/ - /99.33	96.8/98.3 /98.10 90.1/95.82/99.11 96.5/97.18/93.63 90.6/96.60/99.79 88.9/ - /99.44	

Table 2: Comparation between T-sne and others methods

In	Out-of-distribution dataset Out	FPR (95%TPR)	Detection error	AUROC
			Mahalanobis[4] / VAE+T-sne / T-sne	
Dense-BC CIFAR-10	${\sf TinyImagenet}(r)$	5.0/1.60/ 1.19	5.0/4.17/ 3.40	98.8/98.77/ 98.88
CII AIN-10	LSUN(r)	2.8/0.39/0.28	3.7/2.08/ 1.96	99.3/99.53/99.52
Dense-BC CIFAR-100	TinyImagenet(r)	13.4/2.19/3.38	7.8/ 4.06 /7.64	97.4/96.27/ 97.53
CII AR-100	LSUN(r)	8.6/ 0.45 /1.41	6.1/1.25/5.07	98.0/ 99.75 /97.80

Table 3: Comparation between T-sne , VAE and Mahalanobis

19 / 27

Stein Variational Gradient Descent (SVGD)

Inference (Sampling): Given p, find optimal $\{\theta\}_{i=1}^n$

argmin $\mathbb{D}(\{\theta\} \parallel p)$

SVGD

Jaita et al. (UCSP) 28th January 2019 21 / 27

Accelerated-SVGD

```
Normal
                                                SVGD
                                                                                           Acelerated-SVGD
                                                                                           for iters:
                                                                                                 for 1:
                                                                                                       \theta_1 \leftarrow \theta_1 + \nabla loss(\theta_1)
                                               for iters:
for iters:
                                                                                           for i = 2,..., n:
                                                     for i = 1,..., n:
     for 1:
                                                                                                  \theta_i \leftarrow \theta_1 + \eta_i
                                                           \theta_i \leftarrow \theta_i + \phi(\theta_i)
           \theta \leftarrow \theta + \nabla \log(\theta)
                                                                                           for iters:
                                                                                                 for i = 1,..., n:
                                                                                                       \theta_i \leftarrow \theta_i + \phi(\theta_i)
```

Figure 11: Comparation

Experiments: SVGD vs Acelerated-SVGD

Problem: Multivariate Normal, Rate = 2000ite/400ite = 5x

Jaita et al. (UCSP) 28th January 2019 23 / 27

Experiments: Accelerated-SVGD in Neural Network

Problem: Classification in toy-example

Figure 13: Bayesian Neural Network

24 / 27

Jaita et al. (UCSP) 28th January 2019

Conclusions

- We observe significant computational gains of Accelerated-SVGD over the original SVGD algorithm
- It is difficult to compute the true distribution for deep models
- We show interesting results for ood detection
- Study of other clustering methods, we use gmm and kde
- The VAE can be replaced for GANS

Jaita et al. (UCSP) 28th January 2019

25 / 27

References

- [1] Liu, Q. y Wang, D. (2016). Stein variational gradient descent: A general purpose bayesian inference algorithm. In Advances In Neural Information Processing Systems, pages 2378–2386
- [2] Liang, S., Li, Y., Srikant, R. (2017). Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690
- [3] Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul, B., Willke, T. L. (2018). Out-of-distribution detection using an ensemble of self supervised leave-out classifiers. In *Proceedings of the European* Conference on Computer Vision (ECCV), pages 550-564
- [4] Lee, K., Lee, K., Lee, H., Shin, J. (2018). A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In Advances in Neural Information Processing Systems, pages 7167-7177

28th January 2019 Jaita et al. (UCSP) 26 / 27 • Thank You.