

Ch. 5: Geometric **Transformations**

cvGetAffineTransform(), cvWarpAffine() 함수 cv2DRotationMatrix(), invertAffineTransform() 함수 cvGetPerspectiveTransform(), cvWarpPerspective 할수

> 2024년 1학기 서경대학교 김진헌

차례

- □ 개요
- □ 이론적 분석
- □ 개념 요약
- OpenCV 함수
- □ 예제 분석

Richard Szeliski, Computer Vision: Algorithms and Applications, 2010

□ 명암변환 vs 기하학적 변환

Intensity transform(명암 변환): 화소 값을 변환 특정 위치(x, y)의 화소 값을 알면 그 값을 바탕으로 변환할 화소 값을 만들어 낸다. h()는 (x, y) 위치의 화소 값을 변환한다.

Geometric Transform(기하학적 변환): 영상의 좌표축을 변환하여 그것에 따라 영상을 변환 f() 는 영상 함수. (x, y)에 따라 결정된다. h()는 (x, y) 좌표축을 (x', y')로 변환한다.

기하학적 변환의 문제=위치 x에 있는 화소가 변환될 영상 x'로 갈 수 있는 맵핑 함수 h(x)를 찾는 문제

Image warping involves modifying the domain of an image function rather than its range.

1.1 기학적 변환의 구현 방식

□ Forward Warping (전방 변환):

- □ 입력 영상의 각 화소를 출력 영상으로 직접 매핑하는 방식.
- □ 입력 영상의 모든 화소에 대해 출력 출력 영상에 대응되는 위치를 계산하고, 이동, 회전 또는 크기 조정 등의 변환을 적용한다.
- □ 이 방법은 비교적 직관적이지만 출력 영상에서 입력 영상으로의 화소 값에 대한 매핑이 분명하지 않을 수 있다.
- □ 출력 영상의 화소 값은 입력 영상의 화소 값의 조합으로 얻어지므로, 특정한 출력 화소는 여러 입력 화소로 부터 영향을 받을 수 있다.

Inverse Warping (역방향 변환):

- □ 출력 영상의 각 픽셀을 입력 이미지로부터 직접 매핑하는 방식.
- □ 출력 영상의 각 화소 위치에 대해 입력 영상에서 해당 위치로의 역변환을 적용하여 대응되는 입력 영상의 픽셀 값을 결정한다.
- □ 이 방법은 출력 영상의 각 화소에 대한 입력 영상의 위치를 명확하게 알 수 있지만, 이를 위해서는 출력 영상의 모든 화소에 대해 입력 영상으로의 역변환을 계산해야 한다.
- □ 이는 계산적으로 비용이 많이 들 수 있습니다.

- Forward Warping의 장단점:
 - □ 장점:
 - 비교적 직관적이며 간단합니다. 입력 이미지의 모든 픽셀을 출력 이미지로 직접 매핑하는 방식이기 때문에 구현하기 쉽습니다.
 - 처리 속도가 빠를 수 있습니다. 특히, 출력 이미지의 해상도가 낮을 경우에는 빠른 계산이 가능합니다.
 - □ 단점:
 - 출력 이미지의 일부 영역에서 입력 이미지로부터의 정보 손실이 발생할 수 있습니다. 특히, 출력 이미지의 특정 픽셀이 여러 입력 픽셀로부터 영향을 받을 수 있으므로 정보의 왜곡이 발생할 수 있습니다.
 - 입력 이미지와 출력 이미지 사이의 대응 관계가 분명하지 않을 수 있습니다.
- Inverse Warping의 장단점:
 - □ 장점:
 - 출력 이미지의 각 픽셀이 입력 이미지의 명확한 대응점을 가집니다. 따라서, 변환된 이미지의 픽셀 값이 정확하게 계산됩니다.
 - 변환된 이미지의 특정 영역에서 입력 이미지의 정보 손실이 적습니다.
 - □ 단점:
 - 계산 비용이 많이 들 수 있습니다. 출력 이미지의 각 픽셀에 대해 입력 이미지로의 역변환을 계산해야 하므로 처리 속도가 느릴 수 있습니다.
 - 정확한 역변환을 위해서는 입력 이미지와 출력 이미지 사이의 변환 관계를 명확하게 이해해야 합니다. 때로는 이 변환 관계를 정확 하게 파악하기 어려울 수 있습니다.
- □ 따라서, Forward warping은 구현이 간단하고 처리 속도가 빠를 수 있지만, 정보의 왜곡이 발생할 수 있습니다. 반면에 Inverse warping은 출력 이미지의 정확성과 정보 손실을 최소화할 수 있지만, 계산 비용이 높을 수 있고 변환 관계를 이해하는 것이 중요합니다.

1.3 Forward/Inverse warping

Richard Szeliski, Computer Vision: Algorithms and Applications, 2010

Forward warping algorithm: (a) a pixel f(x) is copied to its corresponding location x' = h(x) in image g(x'); (b) detail of the source and destination pixel locations.

단점: crack/hole 존재(변환된 영상에 빈 공간이 발생할 수 있음) => interpolation으로 한계.

주의!!: 녹색 화살표 방향을 바꾸어야 함

Inverse warping algorithm: (a) a pixel g(x') is sampled from its corresponding location $x = \hat{h}(x')$ in image f(x); (b) detail of the source and destination pixel locations.

참고: 역방향 맵핑 예제

https://stackoverflow.com/questions/34989513/how-to-reverse-warpperspective

5

2. 매트릭스 정의에 의한 변환

들어가기에 앞서: Projective Plane

f. a → b는 함수 f는 원소 a를 원소 b에 대응시킨다는 것을 의미한다.

How to describe points in the plane?

Euclidean plane \mathbb{R}^2

- Choose a 2D coordinate frame
- Each point corresponds to a unique pair of Cartesian coordinates

$$x = (x, y) \in \mathbb{R}^2 \mapsto x = \begin{bmatrix} x \\ y \end{bmatrix}$$

Projective plane \mathbb{P}^2

- Expand coordinate frame to 3D
- Each point corresponds to a triple of homogeneous coordinates

$$\widetilde{x} = (\widetilde{x}, \widetilde{y}, \widetilde{w}) \in \mathcal{P}^2 \mapsto \widetilde{x} = \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{w} \end{bmatrix}$$

A homogeneous vector \tilde{x} can be converted back into an *inhomogeneous* vector x by dividing through by the last element \tilde{w} , i.e.,

$$\tilde{\boldsymbol{x}} = (\tilde{x}, \tilde{y}, \tilde{w}) = \tilde{w}(x, y, 1) = \tilde{w}\bar{\boldsymbol{x}}, \qquad \text{where } \bar{\boldsymbol{x}} = (x, y, 1) \text{ is the } \textit{augmented vector.}$$
 Inhomogenous Vector(augmented vector)

2.1 Transformation Matrix

매트릭스 연산으로 scale, shear, rotation 문제를 해결해 보자.

Affine transformations in 5 minutes

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} scale_horzontal & shear_horizontal \\ shear_vertical & scale_vertical \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

회전은 shear를 x, y 방향으로 같은 양으로 shearing 하면 된다. 그런데 크기가 조금씩 달라진다.

Scale 성분에 cos()을 적용하면 같은 크기로 완벽한 회전을 구현할 수 있다.

→ 문제는 이제 이동(tralslation) 만 남았다.

Scale, shear, rotation은 2x2 matrix로 충분하다. 이동은 이것만으로는 안된다

이동(translation) 문제를 매트릭스로 해결하기 위해 z 축을 도입하고 Homogeneous coordinates를 도입한다. Translation 성분은 3D 평면의 shearing처럼 작동한다.

3D 평면의 shearing이 맨 윗면은 translating한 것이 된다.

2.2 Affine Transform의 매트릭스

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Reflection
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Translation
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Scale
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Rotation
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} cos(\theta) & -sin(\theta) & 0 \\ sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Shear-X
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \lambda_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Shear-Y
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \lambda_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2.3 참고: 이론적 분석

 대다수 Homogenous 좌표와 Inhomogenous 좌 표와의 관계를 수식으로 표현

□ 투영 변환은 Homogenous 좌표계로 표현된다.

$$ilde{m{x}}' = ilde{m{H}} ilde{m{x}}$$

2D Transforms의 이론적 개념

Richard Szeliski, Computer Vision: Algorithms and Applications, 2010

Translation. 2D translations can be written as x' = x + t or

$$x' = \left[\begin{array}{ccc} I & t \end{array} \right] ar{x}$$

where I is the (2×2) identity matrix or

where 0 is the zero vector.

$$ar{x}' = \left| egin{array}{ccc} oldsymbol{I} & oldsymbol{t} \ oldsymbol{0}^T & 1 \end{array}
ight| ar{x}$$

Rotation + translation. = Rigid/Euclidean transform

$$x' = Rx + t$$
 or

$$x' = \left[egin{array}{cc} R & t \end{array}
ight]ar{x}$$

where

$$\boldsymbol{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

is an orthonormal rotation matrix with $RR^T = I$ and |R| = 1.

Scaled rotation.

$$x' = \begin{bmatrix} sR & t \end{bmatrix} \bar{x} = \begin{bmatrix} a & -b & t_x \\ b & a & t_y \end{bmatrix} \bar{x},$$

where we no longer require that $a^2 + b^2 = 1$.

Affine. The affine transformation is written as $x' = A\bar{x}$, where A is an arbitrary 2×3 matrix, i.e.,

$$\mathbf{x}' = \left[\begin{array}{ccc} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \end{array} \right] \bar{\mathbf{x}}.$$

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography, operates on homogeneous coordinates, Homogeneous coordinates 임에 유의

$$ilde{x}' = ilde{H} ilde{x},$$

13

Richard Szeliski, Computer Vision: Algorithms and Applications, 2010

warpAffine() 함수로 변환

	Transformation of \mathbb{P}^2	Matrix	#DoF	Preserves	Visualization
	Translation (x, y) 좌표이동.	2×3 $\begin{bmatrix} I & t \\ 0^T & 1 \end{bmatrix}$	2 (x, y)	Orientation	$\begin{array}{c} \\ \\ \\ \\ \end{array} \rightarrow \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array}$
	Euclidean 강체(rigid) 변환 translation + rotation	$2 \times 3 \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}$	3 ► +회전0	+ Lengths	
	Similarity scaling	$ \begin{array}{c c} 2\times3 & sR & t\\ 0^T & 1 \end{array} $	4 +scale	+ Angles	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Affine 2×3 직선과 평형성을 그대로 유지하는 변환 Affine 변환의 일반식은 Wx+b	$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} $	-6	+ Parallelism	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
_	Homography <i>Perspective</i> /projective 3×3 warpPerspective() 함수로 변환	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$	8	Straight lines	$\uparrow \rightarrow \uparrow \Diamond$

요약- Affine vs Perspective

Affine (2x2)

Perspective 변환: Affine변환 특징 포함 + 평행성도 유지되지 않음. 원근변환

Perspective (3x3)

4. OpenCV 함수

종류	함수명	주요 입력	출력	기능
	warpAffine()	변환매트릭스 (2x3)	변환된 영상	어파인 변환시행
Affine	<u>getAffineTransfor</u> <u>m()</u>	3개의 좌표 정보 쌍	변환 매트릭스	Affine 변환을 위한 매트릭스 생성
Transform	<u>getRotationMatri</u> <u>x2D()</u>	중심점, 각도, 스케일	변환 매트릭스	회전 변환을 위한 매트릭스 생성
	invertAffineTransf orm()	변환매트릭스	역변환 매트릭 스	Affine 변환의 역변 환을 위한 변환 매 트릭스 생성
Perspective	warpPerspective()	변환매트릭스 (3x3)	변환된 영상	투영변환 시행
Transform	<u>getPerspectiveTra</u> <u>nsform()</u>	4개의 좌표 정보 쌍	변환매트릭스	투영 변환을 위한 매트릭스 생성

^{*} 기하학적 변환의 다른 함수도 더 있는데 주로 여러 영상 데이터 셋트에 대한 변환 매트릭스를 생성하는데 관계된 함수들이다. 예: perspectiveTransform(), findHomography() 등.. Ch. 09에서 다룬다.

warpAffine()

dst=cv.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]])

 Applies an affine transformation to an image. The function warpAffine transforms the source image using the specified matrix, when the flag <u>WARP_INVERSE_MAP</u> is set.

$$\mathtt{dst}(x,y) = \mathtt{src}(\mathtt{M}_{11}x + \mathtt{M}_{12}y + \mathtt{M}_{13}, \mathtt{M}_{21}x + \mathtt{M}_{22}y + \mathtt{M}_{23})$$

Otherwise, the transformation is first inverted with <u>invertAffineTransform</u> and then
put in the formula above instead of M. The function cannot operate in-place.

src input image.

dst output image that has the size dsize and the same type as src.

M 2×3 transformation matrix.

dsize size of the output image.

Flags Default = <u>INTER LINEAR</u>. combination of interpolation methods

(see InterpolationFlags) and the optional flag WARP INVERSE MAP that

means that M is the inverse transformation (dst→src).

borderMode Defult=**BORDER_CONSTANT.** pixel extrapolation method

(see <u>BorderTypes</u>); when borderMode=<u>BORDER_TRANSPARENT</u>, it means that the pixels in the destination image corresponding to the "outliers" in

the source image are not modified by the function.

borderValue value used in case of a constant border; by default, it is 0.

getAffineTransform()

retval=cv.getAffineTransform(src, dst)

- Calculates an affine transform from three pairs of the corresponding points.
- The function calculates the 2×3 matrix of an affine transform so that:

$$\left[egin{array}{c} x_i' \ y_i' \end{array}
ight] = exttt{map_matrix} \cdot \left[egin{array}{c} x_i \ y_i \ 1 \end{array}
ight]$$

$$dst(i) = (x_i', y_i'), src(i) = (x_i, y_i), i = 0, 1, 2$$

Parameters

- **src** Coordinates of triangle vertices in the source image.
- **dst** Coordinates of the corresponding triangle vertices in the destination i mage.

getRotationMatrix2D()

retval = cv.getRotationMatrix2D(center, angle, scale)

- Calculates an affine matrix of 2D rotation.
- The transformation maps the rotation center to itself. If this is not the target, adjust the shift.

center Center of the rotation in the source image. (가로, 세로)

angle Rotation angle in degrees. Positive values mean counter-

clockwise rotation (the coordinate origin is assumed to be the

top-left corner).

scale Isotropic scale factor.

invertAffineTransform()

iM = cv.invertAffineTransform(M[, iM])

- Inverts an affine transformation.
- The function computes an inverse affine transformation represented by 2×3 matrix M:

$$\left[egin{matrix} a_{11} & a_{12} & b_1 \ a_{21} & a_{22} & b_2 \end{array}
ight]$$

□ The result is also a 2×3 matrix of the same type as M.

Parameters

M Original affine transformation.

iM Output reverse affine transformation.

warpPerspective()

dst = cv.warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]])

- Applies a perspective transformation to an image.
- The function warpPerspective transforms the source image using the specified matrix:
- when the flag <u>WARP INVERSE MAP</u> is set.

$$\mathtt{dst}(x,y) = \mathtt{src}\left(rac{M_{11}x + M_{12}y + M_{13}}{M_{31}x + M_{32}y + M_{33}}, rac{M_{21}x + M_{22}y + M_{23}}{M_{31}x + M_{32}y + M_{33}}
ight)$$

 Otherwise, the transformation is first inverted with invert and then put in the formula above instead of M. The function cannot operate in-place.

src input image.

dst output image that has the size dsize and the same type as src .

M 3×3 transformation matrix.

dsize size of the output image.

flags combination of interpolation methods (<u>INTER_LINEAR</u> or <u>INTER_NEAREST</u>) and

the optional flag WARP_INVERSE_MAP, that sets M as the inverse transformatio

n (dst→src).

borderMode pixel extrapolation method (<u>BORDER_CONSTANT</u> or <u>BORDER_REPLICATE</u>).

borderValue value used in case of a constant border; by default, it equals 0.

getPerspectiveTransform()

retval = cv.getPerspectiveTransform(src, dst[, solveMethod])

- Calculates a perspective transform from four pairs of the corresponding points.
- The function calculates the 3×3 matrix of a perspective transform so that:

$$egin{bmatrix} t_i x_i' \ t_i y_i' \ t_i \end{bmatrix} = exttt{map_matrix} \cdot egin{bmatrix} x_i \ y_i \ 1 \end{bmatrix}$$

$$dst(i) = (x_i', y_i'), src(i) = (x_i, y_i), i = 0, 1, 2, 3$$

Parameters

src Coordinates of quadrangle vertices in the source image.

dst Coordinates of the corresponding quadrangle vertices in the

destination image.

solveMethod method passed to cv::solve (DecompTypes)

5. 예제 분석

- □ 변환 매트릭스는 어떻게 생성하는가?]
- □ 변환하는 함수는 무엇인가?

- □ 이 두 함수들의 파라미터의 용법은 무엇인가?
- 역변환 관계는 어떻게 분석하는가?
- □ 4개 변환에 대해 개별 예제로 작성하였음

5.1 Translation

GeoTrans_1_Translation.py 23 Fig.2: 1) identity= (2, 2) 2) (512, 512) Translation 3) (1024, 1024) 1) (512, 512) [[1. 0.]]Original Translation [0. 1.]] Fig.2: 2) translation.shape= (2, 1) [[160] [40]] Fig.2: 3) translation_matrix=(2, 3) 0. 160.] 1. 40.]] t_matrix = np.hstack((identity, translation)) 5) (512, 512) Inv Trans 6) (1024, 1024) Inv Trans 4) (256, 256) Translation

Fig.5: inverse translation_matrix=(2, 3) -0. -160.1

1. -40.]]

Fig.6: inverse translation_matrix=(2, 3) -0. -160.] 1. -40.11

5.2 Rotation

GeoTrans_2_Rotation.py

타이틀 표기법

출력 영상의 크기, dsize(가로, 세로) 회전 각도, scale, center(가로, 세로)

1) size=(512, 512) Original

4) size=(512, 512) θ =30, s=1.0, c=(512, 512)

2) size=(512, 512) θ =30, s=0.5, c=(256, 256)

5) size=(512, 512) θ =30, s=1.0, c=(512, 0)

회전 중심점 표시: 〇 (반시계 방향 회전)

3) size=(512, 512) θ =30, s=1.0, c=(256, 256)

6) size=(768, 768) θ =30, s=1.0, c=(512, 0)

5.3 Affine

25

GeoTrans_3_Affine.py

원본

1) 어파인 변환 결과

matrix.shape=(2, 3) matrix.shape=

1.22802198 0.39267016 -137.26613831]

2) 어파인 역변환

3) 어파인 역변환 결과 - 1)의 매트릭스를 가지고 1)의 영상에 대해 WARP INVERSE MAP 플래그로 어파인 변환한 결과

5.4 Perspective

26

GeoTrans_4_Perspective.py


```
pts4_src = [(83, 90), (447, 90), (83, 472), (500, 472)]
```

2) Src 영상 투영할 4개의 포인트 pts4_dst = [[0, 0], [447, 90], [150, 472], [420, 320]]

3) Dst 영상 투영될 4개의 포인트 4) 투영변환 결과 영상 2)의 영상의 포인트를 3)의 포인트로 매핑하는 투영 매트릭스를 구하여 투영 변환을 실시한 결과

27

Src를 전 영역을 지정하였을 경우

GeoTrans_4_Perspective.py

pts4_src = [(0, 0), (cols-1, 0), (0, rows-1), (cols-1, rows-1)] # src, (x, y), 원본 전 영역

2) Src 영상 투영할 4개의 포인트 pts4_dst = [[0, 0], [447, 90], [150, 472], [420, 320]]

3) Dst 영상 투영될 4개의 포인트 4) 투영 변환 결과 영상 2)의 영상의 포인트를 3)의 포인트로 매핑하는 투영 매트릭스를 구하여 투영 변환을 실시한 결과 ㅁ끝…