- N皇后问题算法实验报告
 - 1. 算法说明
 - 回溯法
 - 2. 实验结果
 - 解的验证
 - 3 优化思路
 - 位运算优化
 - 性能对比

N皇后问题算法实验报告

1. 算法说明

回溯法

- 基本思路:逐行放置皇后,每行选择一个列位置,确保不与已放置的皇后冲突(同一列、同一对角线)。若当前行无合法位置,则回溯到上一行调整位置。
- 实现细节:
 - 递归遍历每一行,尝试所有可能的列位置。
 - 使用 check()函数验证当前位置是否安全,时间复杂度为O(n)。
 - 递归深度为N,每层递归需遍历N列,总时间复杂度为O(N^N)。

2. 实验结果

解的验证

• 四皇后: 2种解,示例如下:

```
# Q # #
# # Q Q # # #
# # Q #
```

• 八皇后: 92种解,第一个解如下:

• 时间增长曲线:

3 优化思路

位运算优化

- **核心思想**:利用二进制位表示列、主对角线和副对角线的占用状态,通过位操作快速筛选可用位置。
- 实现细节:
 - 用三个整数 cols、diag1、diag2分别表示列、主对角线和副对角线的占用状态。
 - available_positions = ~(cols | diag1 | diag2) & ((1 << N) 1)获取当前行可用位置。

- 通过 pos = available_positions & -available_positions快速取 最右侧可用位。
- 时间复杂度优化至接近O(N!),实际性能显著优于普通回溯。

性能对比

N	普通回溯耗时(s)	位运算耗时(s)	加速比
4	0.000000	0.000000	-
8	0.005990	0.001001	~6x
12	5.357095	0.446396	~12x