Padosan

A Square is a closed geometric figure with 4 equal sides, and its interior angles all right angles (90°). From this it follows that the opposite sides are parallel.

Consider a grid comprising several identical squares. Squares sharing one of its sides with another are **adjacent squares (Padosan)**. Overlapping squares and squares sharing a single vertex point are not considered adjacent.

In the following figure, square 1 is adjacent to squares 2 & 4, square 2 is adjacent to squares 1 & 3, square 3 is adjacent to square 2, square 4 is adjacent to square 1, square 5 is adjacent to square 6, square 6 is adjacent to square 5 and square 7 is isolated (not adjacent to any of the other squares).

	0_	1	2	3	4	5	6	3	7	8	9
2									į	_	
3				2		1		۷	ļ		
4											
5				3	- 1				ļ		
6					-	-				—	
7						5		6	ó		
8					-						
9				7					ļ		

Write a program to determine the number of adjacent squares for a given square.

Input Specification:

- 1) The first line of the input will contain integer **N** where **N** is number of squares (1 <= N <= 50).
- 2) The next **N** lines will contain 8 positive integers in each line, each pair of the integers represents the (x, y) coordinates of one of the vertices of N^{th} square.

Output specification:

On each line print the square number and the number of the squares adjacent to it, separated by a space, for each square starting from square no. 1 to square no. **N** terminated by new line character.

	Sample 1		Sample 2			
Sample Input - 1	Sample Output - 1	Sample Input – 2	Sample Output - 2			
7	12	4	12			
11313313	22	11313313	22			
31515333	3 1	31515333	32			
51717353	4 1	13333515	4 2			
13333515	5 1	33535535				
17373919	6 1					
37575939	70					
54747656						

ShabdKhosh

You have to write a program to chain some words. A word is properly chained if it starts with a trailing sub-string of its predecessor word with a minimum overlap of three (3) characters. Given a number of words, you have to reorder them to appropriately chain them. The first word in the input is used as a starting word in the chain. It may happen that there is no chaining possible for a given set of words. If chaining is possible, assume that there will be a unique word chain.

Note: A word is a sequence of alphabetic characters.

Input Specification

- The first line will be an integer N, indicating the number of words that will follow. Assume N will never be greater than twenty (20)
- The next N lines of input will contain words, which are to be chained. Assume that the maximum length of a word will never exceed thirty (30) characters.

Output Specification

 Your program should output the chain of words, one word on a separate line. If there is no chain possible from the given words, the program should print IMPOSSIBLE

	Sample 1	Sample 2			
Input 1	Output 1	Input 2	Output 2		
2	IMPOSSIBLE	8	whisper		
start		whisper	person		
finish		format	sonnet		
		perform	network		
		sonnet	workshop		
		person	shopper		
		shopper	perform		
		workshop	format		
		network			