

软件工程 第三章 软件项目管理

乔立民 qlm@hit.edu.cn

2011年4月6日

主要内容

- 3.1 软件项目管理概述
 - 3.1.1 项目管理概念及特征
 - 3.1.2 软件项目的"4P"
 - 3.1.3 软件项目策划过程
- 3.2 软件项目估算
- 3.3 项目进度安排
- 3.4 项目风险管理

若干基本概念

- 项目(Project): 为创建某种特定的产品或服务而组织或设计的临时的、一次性的行动;
- 项目(Project):精心定义的一组活动,使用受约束的资源 (资金、人、原料、能源、空间等)来满足预定义的目标。

- 项目管理(Project Management, PM): 有效的组织与管理 各类资源(例如人),以使项目能够在预定的范围、质量、 时间和成本等约束条件下顺利交付(deliver)。
 - 挑战1: 在各类约束条件下交付项目;
 - 挑战2: 通过优化资源的分配与集成来满足预先定义的目标;

软件项目的特征

- 软件产品的不可见性: 开发过程和产品都是看不见摸不着的,导致软件项目特别复杂和抽象;
- 项目的高度不确定性:项目的估算与计划非常困难,有很多难以预见的问题,造成预定计划于实际情况存在较大偏差;
- 软件过程的多变化性: 迭代、增量开发、动态变化、不确定、不稳定;
- 软件人员的高技能及其高流动性: 智力密集型活动、对人的要求高、核心技术人才流动性高。

主要内容

- 3.1 软件项目管理概述
 - 3.1.1 项目管理概念及特征
 - 3.1.2 软件项目的"4P"
 - 3.1.3 软件项目策划过程
- 3.2 软件项目估算
- 3.3 项目进度安排
- 3.4 项目风险管理

软件项目管理的"4P"

People——软件项目的参与人员

软件项目的参与人员

- 高级管理者: 负责定义业务问题;
- 项目(技术)管理者: 计划、激励、组织和控制软件开发人员; ^{→ 项目经理}
- 开发人员: 拥有开发软件所需技能的人员;
 - 系统分析员; 系统架构师; 设计师; 程序员; 测试人员; 质量保证人员; ...
- 客户: 进行投资、详细描述待开发软件需求、关心项目成败的组织/人员;
- 最终用户: 一旦软件发布成为产品,最终用户就是直接使用软件的人。

项目经理(Project Manager)

- 最重要的: 领导力 (MOI模型)
 - Motivation (激励): 通过"推"或"拉"鼓励项目成员发挥其最大才能与潜力;
 - Organization (组织): 形成能够将最初需求转换为最终产品的能力;
 - Idea or Innovation (思想或创新):即使在诸多约束条件下工作,也能鼓励项目成员去创造新的想法。

• 项目经理的关键品质

- 解决问题: 准确诊断出关键技术问题、组织问题, 制定解决方案
- 管理者特性: 掌控整个项目, 具有领导力
- 成就: 通过激励优化团队效率
- 影响和队伍建设:理解"人",在高压环境下保持控制力

软件开发团队

- "最好的"团队取决于项目经理的管理风格、团队里的人员数目与技能水平、项目的总体难易程度;
- 组建团队时应考虑以下要素:
- 从项目需求来看:
 - 待解决问题的难度;
 - 待开发软件系统的规模;
 - 待开发软件系统的技能要求;
 - 交付日期的严格程度;
 - 共同工作的时间;
 - 彼此之间的人际关系与友好交际程度;
 -

- 从个人能力来看:
 - 应用领域经验
 - 开发平台经验
 - 编程经验
 - 教育背景
 - 沟通能力
 - 适应能力
 - 工作态度
 - 团队协作能力
 -

软件开发团队的组织方式

• 民主式: 小组成员完全平等;

■ 主程序员式(外科手术):一个人全面负责、其他人给予支持;

• 技术管理式: 综合上述二者的特征;

■ 上述三种项目的组织方式各有什么利弊?

大型项目的技术管理组织结构

12

组织分解结构(OBS)

• 项目管理里通常使用"组织结构分解(Organization Breakdown Structure, OBS)"作为描述组织/人员之间关系的工具:

人员协调与沟通

- 问题1: 为什么需要沟通?
- 问题2: 沟通的方式有哪些?
 - 面对面交谈、电话交谈、email、面对面会议、电话会议、网络会议、项目网站、书面报告;
- 问题3: 项目沟通活动有哪些?
 - 规划项目沟通;
 - 实施阶段性评审;
 - 每周小组会议;
 - **—**

敏捷团队

- 小型充满活力的团队
- 强调团队成员的个人能力与团队协作精神相结合
- 自组织团队
 - 项目管理自主权
 - 技术决定权
 - 计划制定工作压缩到最低
 - 团队选择自己适用的手段(过程、方法、工具)

Product——软件产品

需求分析

- 用例模型
- 软件需求规格说明

软件设计

- 软件体系结 构描述
- 设计模型

软件实现

- 源程序
- 目标代码
- 可执行构件

软件测试

- 测试规程
- 测试用例

软件运行

- 相关的运 行时文件
- 用户手册

开发管理文档

计划文档

- 工作分解结构
- 业务案例
- 发布规格说明
- 软件开发计划

操作文档

- 发布版本说明书
- 状态评估
- 软件变更申请
- 实施文档、环境

product——软件产品

- 确定软件范围
 - 项目环境
 - 信息目标
 - 功能和非功能(性能)
 - 在管理层和技术层都必须是无歧义的和可理解的,软件范围应是确定的;
- 问题分解(软件需求分析的核心活动): 分治的思想
 - 必须交付的功能
 - 所使用的过程

[例] 文档编辑产品

文本输入 编辑及格式设计 自动复制编辑 页面布局能力 自动生成索引和目录 文件管理 文档生成

拼写检查 语句文法检查 大型文档的引用检查 大型文档中章节引用确认

产品分解结构(PBS)

- 项目管理里通常使用"产品结构分解(Product Breakdown Structure, PBS)"作为产品分解的工具:
 - PBS: 通过分层的树型结构来定义和组织项目范围内的所有产出物 (产品),自顶向下,逐级细分;
 - 产出物:项目结束时需要提交的最终产品,在项目之初就可以准确的预计。

PBS第3层

Process——软件过程

- Step 1: 选择软件过程模型,适合于:
 - 需要该产品的客户和从事开发工作的人员
 - 产品本身的特性
 - 软件项目团队工作的项目环境
- Step 2: 基于过程框架制定初步的项目计划(改进过程以适应项目)
- Step 3: 过程分解,制定完整计划,确定工作任务列表;
 - [例]沟通活动:
 - 列出需澄清的问题清单;
 - 与客户见面并说明问题;
 - 共同给出范围陈述
 - 与所有相关人员一起评审;
 - 根据需要修改范围陈述。

过程分解

- 项目管理里通常使用"工作结构分解 (Work Breakdown Structure, WBS)"作 为过程分解的工具:
- WBS: 通过分层的树型结构来定义和组织工作任务之间的分解关系,自顶向下,逐级细分;
 - [例]RAD过程模型的WBS分解结构

"产品"与"过程"的合并

- 还记得软件项目的"产品与过程二象性"吗?
- 将"产品分解结构PBS"与"工作分解结构WBS"之间建立关 联关系。

合并产品和过程

资源需求 开始/结束日期 工作产品 沟通活动:

列出需澄清的问题清单; 与客户见面并说明问题; 共同给出范围陈述 一与所有相关人员一起评审; 根据需要修改范围陈述。

通用过程框架活动	沟通			策划			建模			构建			部署	
软件工程任务														
产品功能														
文本输入														
编辑及格式设计														
自动复制编辑														
页面布局能力														
自动生成索引和目录														
文件管理														
文档生成														

例:复杂的沟通活动

- 1.评审客户要求
- 2. 计划并安排与客户召开正式的、有人主持的会议
- 3.研究如何详细说明推荐的解决方案和已有的方法
- 4.为正式会议准备一份"工作文档"和议程
- 5. 召开会议
- 6.共同制定能够反映软件的数据、功能和行为特征的小规格说明
- 7. 评审每一小份小规格说明或用例,确认其正确性、一致性和无歧义性
- 8. 将这些小规格说明组装起来形成一份范围文档
- 9.和所有相关人员一起评审范围文档或用例集
- 10.根据需要修改范围文档或用例

Project——项目

- 项目管理中的危险信号
 - 软件人员不了解其客户的要求
 - 产品范围定义的很糟糕
 - 没有很好地管理变更
 - 选择的技术发生了变化
 - 业务需求发生变化(或未被很好地定义)
 - 最后期限是不切实际的
 - 客户抵制
 - 失去赞助(或从来没有真正得到过赞助)
 - 项目团队缺乏具有合适技能的人员
 - 管理者(和实践者)没有很好地利用已学到的最佳实践和教训

90—90规则

项目关注的四个方面

- 质量(Quality)
- 范围(Scope)
- 时间(Time)
- 成本(Cost)

Project——项目

W⁵HH原则

– Why

– What

– When

-Who

– Where

- How

– How much

为什么要开发这个系统?

将要做什么?

什么时候做?

某功能由谁来做?

他们的机构组织位于何处?

如何完成技术与管理工作?

各种资源分别需要多少?

主要内容

- 3.1 软件项目管理概述
 - 3.1.1 项目管理概念及特征
 - 3.1.2 软件项目的"4P"
 - 3.1.3 软件项目策划过程
- 3.2 软件项目估算
- 3.3 项目进度安排
- 3.4 项目风险管理

项目策划过程

- 软件通用过程框架
 - 沟通: 项目启动、需求获取
 - 策划: 项目估算、资源需求、进度计划
 - 建模: 创建模型,进行分析和设计
 - 构建:编码和测试
 - 部署: 软件交付, 支持和反馈
- 策划的目标: 提供一个能使管理人员对资源、成本及进 度做出合理估算的框架
 - 定义"最好的情况"、"最坏的情况"
 - 软件项目的不确定性与动态调整

项目策划任务集

- 1. 规定项目范围
- 2. 确定可行性
- 3. 分析风险
- 4. 确定需要的资源
 - 确定需要的人力资源
 - 确定可复用的软件资源
 - 标识环境资源

5. 估算成本和工作量

- 分解问题
- 使用规模、功能点、过程任务或用例等方法进行两种以上的估算
- 调和不同的估算

6. 制定项目进度计划

- 建立一组有意义的任务集合
- 定义任务网络
- 使用进度计划工具制定任务表
- 定义进度跟踪机制

主要内容

- 3.1 软件项目管理概述
- 3.2 软件项目估算
 - 3.2.1 可行性分析
 - **3.2.2** 软件项目估算
- 3.3 项目进度安排
- 3.4 项目风险管理

估算与可行性分析

- 软件估算的内容(定量)
 - 需要多少工作量(成本)
 - 需要多少时间(进度)
 - 需要多少人员(资源)
- 软件估算的依据
 - 历史信息
 - 经验
 - 定量预言
- 软件估算风险
 - 定量的不确定性
 - 资源不稳定性

软件项目估算的动态调整

1确定范围

- Needs: 客户/最终用户的请求、想法和业务需求;
- Requirements: 对未来系统所应具备的功能的陈述;
- Exclusions: 将不包含在未来系统中的功能的陈述;
- Baseline: 对未来系统中应包含的功能的陈述。

1确定范围

• 范围(Scope): 描述了将要交付给最终用户的功能和特性、输入输出数据、用户界面、系统的性能、约束条件、接口和可靠性等,以及期望的时间、成本目标;

■ 两种方法:

- 与所有项目成员交流之后,写出对软件范围的叙述性描述;
- 由最终用户开发一组用例。

■注意

- 并不是客户所有的要求都"来者不拒",需要分别对待!
- 软件范围一定要用户同意

范围的可行性分析

■ 技术可行性

项目在技术上可行吗?它在技术水平范围内吗?能够将缺陷减少到一定程度吗?

■ 经济可行性

- 它在经济上可行吗?能以可负担的成本完成开发吗?

■时间可行性

- 项目投入市场的时间可以按预期完成吗?

■资源可行性

- 组织拥有取得成功所需要的资源吗?

2 确定资源

资源

- 人力资源
- 可复用的软件资源
- 环境资源
- ■说明资源的特征
 - 资源的描述
 - 可用性说明
 - 何时需要资源
 - 使用资源的持续时间

主要内容

- 3.1 软件项目管理概述
- 3.2 项目可行性分析与估算
 - 3.2.1 可行性分析
 - **3.2.2** 软件项目估算
 - 分解技术
 - 经验估算模型
- 3.3 项目进度安排
- 3.4 项目风险管理

软件项目估算(成本和工作量)

- 软件项目估算方式
 - 把估算推迟到项目的后期进行X
 - 根据已经完成的类似项目进行估算
 - 使用比较简单的分解技术, 生成项目的成本和工作量的估算
 - 使用一个或多个经验模型来进行软件成本和工作量的估算
- 到目前为止,因为软件项目变化的要素太多,所以对软件的成本估算从来没有达到精确
- 估算效果的好坏取决于估算使用的历史数据

1分解估算技术

- * 软件规模估算
 - 直接测量(代码行LOC)
 - 间接测量(功能点FP)
- ■问题分解与过程分解(产品与过程)
 - 基于问题的估算
 - 将软件分解成可独立估算的功能问题(功能、类、变更、过程)
 - 估算每个功能的LOC或FP
 - 合并得到项目的总体估算
 - 基于过程的估算
- 调和不同的估算方法

代码行技术(LOC)

LOC: Lines of Code

- 从过去开发类似产品的经验和历史数据出发,估计出所开发软件的代码行数。

$$L = \frac{a + 4m + b}{6}$$

$$C = \mu \times L$$

$$PM = \frac{L}{V}$$

代码行技术(LOC)

功能	LOC估算						
	乐观值	可能值	悲观值	估算值			
用户接口及控制设备	2000	2200	3000	2300			
二维几何分析	3000	5700	6000	5300			
三维几何分析	4600	6900	8600	6800			
数据库管理	3000	3250	4100	3350			
图形显示	4000	4900	6100	4950			
外部设备控制	1800	2100	2400	2100			
设计分析模块	7000	8600	9000	8400			
总代码行数(L)				33200			
平均生产率(v)	620LOC/人	 、月					
每行代码单位成本(u)	月平均工资	8000,u=8					
	元						
总成本(C)	c=u*L			431600			
总工作量	pm=L/v			54人月			

功能点技术FP

- 功能点(Function Point, FP),以功能点为单位来估计软件规模,关注五个方面的功能:
 - 外部输入(EI): 用户进行添加或修改数据的UI
 - 外部输出(EO): 软件为用户产生的输出UI
 - 外部查询(EQ): 软件可产生的独立查询
 - 内部逻辑文件(ILF): 软件修改或保存的逻辑记录集合(数据表或文件)
 - 外部接口(EIF): 与其它系统进行信息交换或共享的文件
- 问题分解关注的不是软件功能,而是信息域的值
- 估算得到一个系统的总功能点数,然后据此估算工作量和 成本。

Step 1: 计算未调整功能点

总自标店	信息域值 乐观值 可能值		· 金、	估算值 加权因子(r)			FP值	
信息域值 		可能值	i 悲观值	(P)	简单	中等	复杂	FP但.
外部输入	20	24	30	24	3	4	6	97
外部输出	12	15	22	16	4	5	7	78
外部查询	16	22	28	22	3	4	6	88
内部逻辑文件	4	4	5	4	7	10	15	42
外部接口文件	2	2	3	2	5	7	10	15
未调整功能点总数						320		

$$P = \frac{a+4m+b}{6}$$
 $P = \frac{d + 4m+b}{a}$
 $E = \frac{a+4m+b}{6}$
 $E = \frac{a+4m+b}{b}$
 $E = \frac{a+4m+b}{b}$

$$FP = r \times P$$
 r 加权因子 R 放成本

Step 2: 估计调整因子

■ 由于软件规模会受到诸如性能、数据处理、可用性、可维护性等多种技术因素的影响,需要对计算得到的FP进行适当调整。

技术因素	影响值	技术因素	影响值
备份与恢复	4	主文件联机更新	3
数据通信	2	信息域值复杂度	5
分布式处理	0	内部处理复杂度	5
关键性能	4	设计可复用的代码	4
现有操作环境	3	设计中的转换与安装	3
联机数据输入	4	多次安装	5
多屏幕输入切换	5	易于变更的应用设计	5

$$K = 0.65 + 0.01 \times \sum_{i=1}^{14} (F_i) = 1.17$$

Step 3: 计算调整功能点和总成本

$$FP_{estimated} = 320 \times 1.17 = 375$$

- 平均生产率(v): 6.5FP/pm
- 月平均工资: 8000元
- 每个FP的成本(u): 1230元
- 总成本(C): C=FP*u=375*1230=461250元
- 总工作量(PM): PM=FP/v=375/6.5=58人月

基于过程的估算

- 将过程分解为一组较小的任务,并估算完成每个任务所需的工作量
 - 沟通
 - 策划
 - 可行性分析
 - 计划
 - 建模
 - 分析
 - 设计
 - 构建
 - 编码
 - 测试
 - 部署

基于过程估算实例

活动		策划	风险	建模		构建		客户	合计
	沟通		分析	分析	设计	编码	测试	评估	
用户接口及控制设备				0.5	2.5	0.4	5		8.4
二维几何分析				0.75	4	0.6	25		7.35
三维几何分析				0.5	4	1	3		8.5
数据库管理				0.5	3	1	1.5		6
计算机图形显示设备				0.5	3	0.75	1.5		5.75
外部设备控制功能				0.25	2	0.5	1.5		4.25
设计分析模块				0.5	2	0.5	2		5
合计	0.25	0.25	0.25	3.5	20.5	4.5	16.5		46
%工作量	1%	1%	1%	8%	45%	10%	36%		

月平均工资:8000元

总成本(c): C=8000*46=36800元

2 经验估算模型

- COCOMO II 模型
- *软件方程式

小结: 软件项目估算

- 除此之外,还有其他很多估算方法;
- 不同的方法采用不同的计算公式,考虑的因素不同,复杂程度也不同;
- 都是根据实际项目的经验所总结出来的;
- 不能说"谁好谁坏",应用的时候可以依据自身的经验对其进行修正。

主要内容

- 3.1 软件项目管理概述
- 3.2 项目可行性分析与估算
- 3.3 项目进度安排
 - 3.3.1 项目进度计划
 - 3.3.2 项目进度跟踪
- 3.4 项目风险管理

小练习

■ 你手头有五项任务需要去做,请为其编制执行计划

任务	预计时间	预计成本	预计收益	所需资源
P1	1周	¥100	¥140	15人
P2	2周	¥100	¥150	15人
Р3	2周	¥150	¥ 200	15人
P4	1周	¥200	¥300	15人
P5	2周	¥150	¥250	15人
P6	1周	¥50	¥80	15人

- 约束条件:

- 你共有四周时间,每周的预算是Y150;
- 你共有30人的可用资源。
- 前一周的收益可以作为下一周的成本而投入进去。

1 软件项目进度计划

■ 目标:

- 使软件项目在截止日期之前成功的完成并提交给客户;

■ 活动:

Step 1: 定义任务网络

Step 2: 为任务(task)安排特定的日期(scheduling)

Step 3: 将资源(resources)分配给任务

Step 4: 明确产出结果(outcomes)

Step 5: 明确里程碑(milestones)

Step 1: 定义任务网络

- 任务不是独立存在的,各任务在顺序上存在相互依赖关系。
- 项目管理里通常采用"网络图(Network Diagram)"的形式对此进行描述。

Step 2: 任务进度安排

- 在绘制出任务网络图之后,下一步需要为每一个任务分配具体的执行时间。
- 两种具体的技术:
 - 程序评估及评审技术(PERT)
 - 关键路径方法(CPM)

■ 步骤:

- Step 2.1: 标出任务的最早开始(ES)与结束时间(EF);
- Step 2.2: 标出任务的最迟开始(LS)与结束时间(LF);
- Step 2.3: 计算关键路径(Critical Path);
- Step 2.4: 确定任务的开始/结束时间。
- Step 2.5: 绘制最终的任务进度安排(甘特图, Gantt Diagram)

最早开始	最早结束						
任务名称							
最晚开始	松弛量	最晚结束					

Step 2.1 标出最早开始/结束日期

Step 2.2 标出最晚开始/结束日期

Step 2.3: 计算关键路径

Step 2.4: 确定最终开始/结束日期

- [关键定义]松弛量(Slack): 在不影响最终交付日期的前提下,一个任务最多可被推迟的总天数。
- 关键路径上的任务的松弛量=0;
- 先确定关键路径上各任务的日期;
- 然后确定其他任务的日期;

通过缩短关键路径上的任务的 持续时间,可极大优化整个项目的 持续时间。

Step 2.5: 绘制任务进度安排图

■ 项目管理里通常采用甘特图(Gantt Chart)来描述任务的进度安排。

甘特图(Gantt Chart)

Microsoft Project中的Gantt图

Step 3~5 资源、产出与里程碑

Step 1: 定义任务网络

Step 2: 为任务(task)安排特定的日期(scheduling)

Step 3: 将资源(resources)分配给任务

资金

人员

设备

环境

Step 4: 明确产出结果(outcomes)

每一项任务的产出结果是什么?对应于PBS中的哪一部分?

Step 5: 明确里程碑(milestones)

项目的关键产出物,标志着某一阶段的完成。

人员/资源分配图

2项目进度跟踪

- 项目进度表只是提供了一张进度路线图,在实际执行过程中,需要定期对其进行跟踪和控制,以决定是否需要对进度计划进行调整。
 - 定期举行项目状态会议,各成员分别报告进展和存在问题;
 - 评审进展和产出物;
 - 判断项目里程碑是否在预定日期内完成;
 - 比较个项目的实际开始/结束日期与计划开始/结束日期;
 - 找出问题,并寻找对策;
 - 定量评估项目进展;
 - 决策是否需要对进度进行调整。

项目进度跟踪Gantt图

主要内容

- 3.1 软件项目管理概述
- 3.2 项目可行性分析与估算
- 3.3 项目进度安排
- 3.4 项目风险管理

软件项目风险

• 软件规模风险:

- 估算准确程度?
- 用户需求可能发生变化的频度与规模?

■ 商业影响风险:

- 交付期限?
- 政府出台新政策?

■ 客户相关风险:

- 陌生客户?客户高层的重视程度?
- 客户的配合程度?

• 软件过程风险:

- 开发者不了解/不熟悉选定的过程模型?
- 没有维护足够的文档?

■ 开发环境风险:

- 无法得到可用的工具?
- 没有或不会使用工具?

■ 开发技术风险:

- 之前无该技术的经验?
- 该技术难以实现某些需求?

■ 开发人员风险:

- 没有足够的经验与技能?
- 某些人员会中途离开?

风险预测与分析

- Step 1: 列出可能的风险;
- Step 2: 估计风险发生的可能性或概率;
- Step 3: 建立风险表;
- Step 4: 估计风险可能产生的影响或后果;
- Step 5: 风险求精;
- Step 6: 风险环节、监测和管理;
- Step 7: 风险应急计划;

风险预测与分析

风险	风险类型	概率	影响程度	后果	应急计划
规模估算不准确	产品规模	60%	严重的		
用户数量超出想象	产品规模	30%	轻微的		•••
最终用户抵制新系统	产品规模	70%	严重的		•••
交付日期将推迟	商业影响	40%	灾难的		
用户将改变需求	产品规模	50%	轻微的	•••	•••
技术到不到预期效果	开发技术	40%	灾难的		
人员缺乏经验	人员	80%	严重的	•••	•••
缺少对工具的培训	开发环境	30%	可忽略的	•••	•••
人员变动频繁	人员	80%	严重的		

风险管理的其他方面

结束

2011年4月6日