

Best Available Copy

HOLES.M

```
## usage: h = holes(y,p,M)
## Function discovered by Edwin A. Suominen
## Written for Octave (GNU MATLAB alternative)

function [h,yi] = holes(y,p,M)

h = zeros(p-M-1,2);

## Compute inverse of y mod p
[d,yi]= gcd(p,y);
if ( yi(2) < 0 )
    yi = p + yi(2);
elseif
    yi = yi(2);
endif

## Compute column 1 of LUT for this key y:
## holes in ascending order
kk = 0; # Counter for iterating next valid hole value
## For all possible hole values...
for i = 1:p-M-1
    ## Compute prospective hole value (may not be valid)
    h(i,1) = M+1 - rem( i*y-(p-M-1) ,p);
    ## If not valid (if >M), set to flag value
    if ( (h(i,1)>M) | (h(i,1)<1) )
        h(i,:) = zeros(1,2);
    else
        kk++; # Increment valid holes counter
    endif
endfor

## Compute column 2 of LUT for this key y: all possible
## overflowing values, xy mod p > M, in ascending order
kk2 = 1; # Counter for iterating next poss. overflow value
## For M+1 (lowest overflow) to p-1 (highest possible)...
for i = M+1:p-1
    ## Compute input value that would produce each
    ## possible overflowing output
    if ( rem(i*yi,p) <= M ) # If input valid...
        h(kk2,2) = i; # ...assign overflow to LUT.
        kk2++; # Move to next available LUT entry
    endif
endfor

## Sort ascending by values in each column
h = sort(h);
if ( 1+(length(h)-kk) > length(h) )
```

```
h = 0; # If there are no holes (e.g., for y=1)
else
    h = h(1:(length(h)-kk):length(h),:); # Shrink h to omit flag values
endif
endfunction
```

ENCRYPT.M

```
## usage: z = encrypt (x,y,N,k)
## INPUT: input block(s) x, key y, block length N in bits,
## k offset of modulus from 2^N (p=2^N+k)
## OUTPUT: z = x*y mod (2^N+k), but if
## z >= p, z = ( (z-2^N)*y - (k-1) ) mod (2^N+k )
## Function discovered by Edwin A. Suominen
## Written for Octave (GNU MATLAB alternative)

function z = encrypt(x,y,N,k)

L = length(x); # multiple input blocks can be supplied in a vector
z = zeros(L,1); # initialize output vector

## Enforce k must be odd
if ((k/2)==floor(k/2))
    disp('2^N+k cannot be prime is k is even!');
    return;
endif

## Define set order (M) and modulus (p)
M = 2^N; p = M+k;

## Compute LUT of holes in ascending order
## for this key y
h = holes(y,p,M);
Nh = rows(h);

## Basic modulo multiplication operation
## Do as array to speed things up
z = rem(x.*y,p);

## For each element in vector...
for i = 1:L

    ## Inventive exception handling
    if (z(i) > M)
        ## Map overflowing value to corresponding hole value in LUT
        ## If there are no holes (h=1 scalar), this code will not
        ## be called because z will always be <= M.
        c = 1:Nh; c = c'; # 1,2 ... (# of valid holes)
        c = c .* ( (z(i)*ones(Nh,1))==h(:,2) ); # Zeros with index of match
        ## z = hole from LUT entry having matching overflow value
        z(i) = h(max(c),1);
    endif

endfor
endfunction
```

DECRYPT.M

```
## usage: x = decrypt (z,y,N,k)
## INPUT: encoded block(s) z, key y, block length N in bits,
## k offset of modulus from 2^N (p=2^N+k)
## OUTPUT: x = z*y^-1 mod (2^N+k), but if
## z = h, where h = ( ((1:k)*y - (k-1) ) mod (2^N+k) )
## then z = M+a, where
## a = y^-1 * (2*M+(2+p-h)) mod (2^N+k)
## Function discovered by Edwin A. Suominen
## Written for Octave (GNU MATLAB alternative)

function x = decrypt (z,y,N,k)

L = length(z); # multiple input blocks can be supplied in a vector

## Enforce k must be odd
if ((k/2)==floor(k/2))
    disp('2^N+k cannot be prime if k is even!');
    return;
endif

## Define set order (M) and modulus (p)
M = 2^N; p = M+k;

## Compute LUT of holes in ascending order
## for this key y
[h,y] = holes(y,p,M); # With two args out, returns y^-1
if ( size(h)==1 )
    Nh = 0; # Account for special case of no holes
else
    Nh = rows(h);
endif

## Done with encryption key y, now y is modulo inverse of orig. y

## For all encrypted blocks (values)...
for i = 1:L

    if Nh>0
        ## If z(i) has been mapped to a hole, restore to overflowing value
        ## For all possible hole values given this key
        for j = 1:Nh
            ## If matches a hole value, remap back
            if (z(i)==h(j,1)), z(i) = h(j,2); endif
        endfor
    endif

endfor
```

```
## Now invert remapped values in vector
## Restored overflowing values will be decrypted properly.
## Do as array to speed things up
x = rem(z.*y,p);      # y = y^l at this point

endfunction
```

HOLETEST.M

```
## HOLETEST.M
## Written for Octave (GNU MATLAB alternative)

# Np = 1; M = 128; p = M + 3;
Np = 1; M = 512; p = M + 9;

% Try all column (key) values in {1,2,...M}
for j = 2:M,

    % Get hole values with brute-force lookup method
    x1 = holes1(j,p,M);

    % Get hole values using formula discovered by Ed Suominen
    x2 = holes2(j,p,M);

    disp('');
    disp(['j=',num2str(j)]);
    disp([' -x1- -x2-']);
    disp([x1 x2]);

    % Compare
    err(j) = sum(abs(x1-x2));
    disp(['Sum of absolute differences = ',num2str(err(j))]);

endfor
```

HOLES1.M

```
function h = holes1(y,p,M);

% h = holes1(y,p,N);
% Finds "holes" - skipped values of set {0,1}^N in result
% of x*y mod p. Variable length result with only holes.

% Number of values in set S:{0,1}^N
% M = 2^N;

s = 1:M;    % Working array of values in set S

% Zero out values in set that occur ("non-holes")
for i = 1:M
    j = rem(i*y,p);  % xy mod p
    % Zero out if not a hole
    if j<=M, s(j) = 0; end
endfor

% Sort decending to get holes first
h = -sort(-s);
% Trim off zeros (non-holes)
Nnz = sum(h>0); h = h(1:Nnz)';

endfunction
```

HOLES2.M

```
function h = holes2(y,p,M);

% h = holes2(y,p,M)
% Finds "holes" - skipped values of set {0,1}^N in result
% of x*y mod p.
% Uses equation discovered by Edwin A. Suominen

% Number of values in set S:{0,1}^N
% M = 2^N;

k = p-(M+1);

% For vector inputs...
for i=1:length(y)

    for j=1:k,

        ## Input values between M+1 and p will of necessity
        ## be mapped to holes (values not produced by inputs
        ## from set {1,2,...M} because xy mod p is a bijection
        ## (See HAC 1.8 Definition)
        ## h(j,i) = rem( (M+j)*y ,p);
        ## Equation above is simple but doesn't work when
        ## M < xy < p (which happens rarely, but it happens).

        h(j,i) = M+1 - rem(j*y(i)-k,p);

    endfor

endfor

% Map negs. to 0, Sort decending to match formats
Nok = sum(h<=M); h = sort(h); h = h(1:Nok);
if Nok==0, h = []; endif
h = h.*(h>0);
h = -sort(-h);
% Trim off zeros (non-holes)
Nnz = sum(h>0); h = h(1:Nnz);

endfunction
```

1093-093000-1.TXT

```
octave:56> date
ans = [REDACTED]
octave:57> clock
ans =

    2000.0000      9.0000     30.0000
12.0000    35.0000   32.0890

octave:58> type holes1
holes1 is the user-defined function
defined from: /1093-2/holes1.m

function h = holes1(y,p,M);

% h = holes1(y,p,N);
% CONFIDENTIAL AND PROPRIETARY
% Edwin A. Suominen
% 091600 - Initial writing
% Finds "holes" - skipped values of set
{0,1}^N in result
% of x*y mod p. Variable length result
with only holes.

% Number of values in set S:{0,1}^N
% M = 2^N;

s = 1:M; % Working array of values in
set S

% Zero out values in set that occur
("non-holes")
for i = 1:M
    j = rem(i*y,p); % xy mod p
    % Zero out if not a hole
    if j<=M, s(j) = 0; end
endfor

% Sort descending to get holes first
h = -sort(-s);
% Trim off zeros (non-holes)
Nnz = sum(h>0); h = h(1:Nnz)';

endfunction
octave:59> type holes2
holes2 is the user-defined function
defined from: /1093-2/holes2.m

function h = holes2(y,p,M);

% h = holes2(y,p,M)
```

```
% Finds "holes" - skipped values of set
{0,1}^N in result
% of x*y mod p.
% Uses equation discovered by EAS [REDACTED]

% Number of values in set S:{0,1}^N
% M = 2^N;

k = p-(M+1);

% For vector inputs...
for i=1:length(y)

    for j=1:k,
        ## Input values between M+1 and p
        will of necessity
        ## be mapped to holes (values not
        produced by inputs
        ## from set {1,2,...M} because xy mod
        p is a bijection
        ## (See HAC 1.8 Definition)
        h(j,i) = rem( (M+j)*y ,p);

        ## The simple equation above is
        substituted for the one below
        ## h(j,i) = M+1 - rem(j*y(i)-k,p);
    endfor

endfor

% Map negs. to 0, Sort decending to match
formats
Nok = sum(h<=M); h = sort(h); h =
h(1:Nok);
if Nok==0, h = []; endif
h = h.* (h>0);
h = -sort(-h);
% Trim off zeros (non-holes)
Nnz = sum(h>0); h = h(1:Nnz);

endfunction
octave:60> type holetest
holetest is the script file: /1093-
2/holetest.m

## HOLETTEST.M
## This file is CONFIDENTIAL AND
PROPRIETARY.
[REDACTED]

## Written for Octave (GNU MATLAB
alternative)
## REVISION [REDACTED]
```

```

Np = 1; M = 512; p = M + 9;

% Try all column (key) values in
{1,2,...M}
for j = 2:M,
    % Get hole values with brute-force lookup
    % method
    x1 = holes1(j,p,M);

    % Get hole values using formula
    % discovered [REDACTED]
    % by Ed Suominen
    x2 = holes2(j,p,M);

    disp('');
    disp(['j=',num2str(j)]);
    disp(' -x1- -x2-');
    disp([x1 x2]);

    % Compare
    err(j) = sum(abs(x1-x2));
    disp(['Sum of absolute differences = ', num2str(err(j))]);

endforoctave:61> who
*** currently compiled functions:
clock date holes1 holes2

octave:62> holetest

j=2
-x1- -x2-
511 511
509 509
507 507
505 505
Sum of absolute differences = 0

j=3
-x1- -x2-
512 512
509 509
506 506
503 503
500 500
497 497
Sum of absolute differences = 0

j=4
-x1- -x2-
509 509

```

```

505 505
501 501
497 497
493 493
489 489
Sum of absolute differences = 0

j=5
-x1- -x2-
511 511
506 506
501 501
496 496
491 491
486 486
481 481
Sum of absolute differences = 0

j=6
-x1- -x2-
509 509
503 503
497 497
491 491
485 485
479 479
473 473
Sum of absolute differences = 0

j=7
-x1- -x2-
507 507
500 500
493 493
486 486
479 479
472 472
465 465
Sum of absolute differences = 0

j=8
-x1- -x2-
505 505
497 497
489 489
481 481
473 473
465 465
457 457
Sum of absolute differences = 0

j=9
-x1- -x2-
512 512
503 503
494 494
485 485
476 476

```

467 467	465 465
458 458	451 451
449 449	437 437
Sum of absolute differences = 0	
j=10	423 423
-x1- -x2-	409 409
511 511	Sum of absolute differences = 0
501 501	j=15
491 491	-x1- -x2-
481 481	506 506
471 471	491 491
461 461	476 476
451 451	461 461
441 441	446 446
Sum of absolute differences = 0	
j=11	431 431
-x1- -x2-	416 416
510 510	401 401
499 499	Sum of absolute differences = 0
488 488	j=16
477 477	-x1- -x2-
466 466	505 505
455 455	489 489
444 444	473 473
433 433	457 457
Sum of absolute differences = 0	
j=12	441 441
-x1- -x2-	425 425
509 509	409 409
497 497	393 393
485 485	Sum of absolute differences = 0
473 473	j=17
461 461	-x1- -x2-
449 449	504 504
437 437	487 487
425 425	470 470
Sum of absolute differences = 0	
j=13	453 453
-x1- -x2-	436 436
508 508	419 419
495 495	402 402
482 482	385 385
469 469	Sum of absolute differences = 0
456 456	j=18
443 443	-x1- -x2-
430 430	503 503
417 417	485 485
Sum of absolute differences = 0	
j=14	467 467
-x1- -x2-	449 449
507 507	431 431
493 493	413 413
479 479	395 395
Sum of absolute differences = 0	
j=19	377 377
-x1- -x2-	Sum of absolute differences = 0
502 502	

162 162	245 245
108 108	196 196
54 54	147 147
Sum of absolute differences = 0	98 98
	49 49
j=468	Sum of absolute differences = 0
-x1- -x2-	
424 424	
371 371	
318 318	
265 265	
212 212	
159 159	
106 106	
53 53	
Sum of absolute differences = 0	
j=469	Sum of absolute differences = 0
-x1- -x2-	
416 416	
364 364	
312 312	
260 260	
208 208	
156 156	
104 104	
52 52	
Sum of absolute differences = 0	
j=470	Sum of absolute differences = 0
-x1- -x2-	
408 408	
357 357	
306 306	
255 255	
204 204	
153 153	
102 102	
51 51	
Sum of absolute differences = 0	
j=471	Sum of absolute differences = 0
-x1- -x2-	
400 400	
350 350	
300 300	
250 250	
200 200	
150 150	
100 100	
50 50	
Sum of absolute differences = 0	
j=472	Sum of absolute differences = 0
-x1- -x2-	
392 392	
343 343	
294 294	
j=473	
-x1- -x2-	
384 384	
336 336	
288 288	
240 240	
192 192	
144 144	
96 96	
48 48	
Sum of absolute differences = 0	
j=474	
-x1- -x2-	
376 376	
329 329	
282 282	
235 235	
188 188	
141 141	
94 94	
47 47	
Sum of absolute differences = 0	
j=475	Sum of absolute differences = 0
-x1- -x2-	
368 368	
322 322	
276 276	
230 230	
184 184	
138 138	
92 92	
46 46	
Sum of absolute differences = 0	
j=476	
-x1- -x2-	
360 360	
315 315	
270 270	
225 225	
180 180	
135 135	
90 90	
45 45	
Sum of absolute differences = 0	
j=477	
-x1- -x2-	
352 352	

308 308	-x1- -x2-
264 264	312 312
220 220	273 273
176 176	234 234
132 132	195 195
88 88	156 156
44 44	117 117
Sum of absolute differences = 0	78 78
	39 39
j=478	Sum of absolute differences = 0
-x1- -x2-	
344 344	j=483
301 301	-x1- -x2-
258 258	304 304
215 215	266 266
172 172	228 228
129 129	190 190
86 86	152 152
43 43	114 114
Sum of absolute differences = 0	76 76
	38 38
j=479	Sum of absolute differences = 0
-x1- -x2-	
336 336	j=484
294 294	-x1- -x2-
252 252	296 296
210 210	259 259
168 168	222 222
126 126	185 185
84 84	148 148
42 42	111 111
Sum of absolute differences = 0	74 74
	37 37
j=480	Sum of absolute differences = 0
-x1- -x2-	
328 328	j=485
287 287	-x1- -x2-
246 246	288 288
205 205	252 252
164 164	216 216
123 123	180 180
82 82	144 144
41 41	108 108
Sum of absolute differences = 0	72 72
	36 36
j=481	Sum of absolute differences = 0
-x1- -x2-	
320 320	j=486
280 280	-x1- -x2-
240 240	280 280
200 200	245 245
160 160	210 210
120 120	175 175
80 80	140 140
40 40	105 105
Sum of absolute differences = 0	70 70
	35 35
j=482	Sum of absolute differences = 0

<pre>j=487 -x1- -x2- 272 272 238 238 204 204 170 170 136 136 102 102 68 68 34 34 Sum of absolute differences = 0</pre> <pre>j=488 -x1- -x2- 264 264 231 231 198 198 165 165 132 132 99 99 66 66 33 33 Sum of absolute differences = 0</pre> <pre>j=489 -x1- -x2- 256 256 224 224 192 192 160 160 128 128 96 96 64 64 32 32 Sum of absolute differences = 0</pre> <pre>j=490 -x1- -x2- 248 248 217 217 186 186 155 155 124 124 93 93 62 62 31 31 Sum of absolute differences = 0</pre> <pre>j=491 -x1- -x2- 240 240 210 210 180 180 150 150 120 120 90 90 60 60</pre>	<pre>30 30 Sum of absolute differences = 0</pre> <pre>j=492 -x1- -x2- 232 232 203 203 174 174 145 145 116 116 87 87 58 58 29 29 Sum of absolute differences = 0</pre> <pre>j=493 -x1- -x2- 224 224 196 196 168 168 140 140 112 112 84 84 56 56 28 28 Sum of absolute differences = 0</pre> <pre>j=494 -x1- -x2- 216 216 189 189 162 162 135 135 108 108 81 81 54 54 27 27 Sum of absolute differences = 0</pre> <pre>j=495 -x1- -x2- 208 208 182 182 156 156 130 130 104 104 78 78 52 52 26 26 Sum of absolute differences = 0</pre> <pre>j=496 -x1- -x2- 200 200 175 175 150 150 125 125 100 100</pre>
--	--

75 75	100 100
50 50	80 80
25 25	60 60
Sum of absolute differences = 0	40 40
	20 20
j=497	Sum of absolute differences = 0
-x1- -x2-	
192 192	j=502
168 168	-x1- -x2-
144 144	152 152
120 120	133 133
96 96	114 114
72 72	95 95
48 48	76 76
24 24	57 57
Sum of absolute differences = 0	38 38
	19 19
j=498	Sum of absolute differences = 0
-x1- -x2-	
184 184	j=503
161 161	-x1- -x2-
138 138	144 144
115 115	126 126
92 92	108 108
69 69	90 90
46 46	72 72
23 23	54 54
Sum of absolute differences = 0	36 36
	18 18
j=499	Sum of absolute differences = 0
-x1- -x2-	
176 176	j=504
154 154	-x1- -x2-
132 132	136 136
110 110	119 119
88 88	102 102
66 66	85 85
44 44	68 68
22 22	51 51
Sum of absolute differences = 0	34 34
	17 17
j=500	Sum of absolute differences = 0
-x1- -x2-	
168 168	j=505
147 147	-x1- -x2-
126 126	128 128
105 105	112 112
84 84	96 96
63 63	80 80
42 42	64 64
21 21	48 48
Sum of absolute differences = 0	32 32
	16 16
j=501	Sum of absolute differences = 0
-x1- -x2-	
160 160	j=506
140 140	-x1- -x2-
120 120	120 120

```

105 105
90 90
75 75
60 60
45 45
30 30
15 15
Sum of absolute differences = 0

j=507
-x1- -x2-
112 112
98 98
84 84
70 70
56 56
42 42
28 28
14 14
Sum of absolute differences = 0

j=508
-x1- -x2-
104 104
91 91
78 78
65 65
52 52
39 39
26 26
13 13
Sum of absolute differences = 0

j=509
-x1- -x2-
96 96
84 84
72 72
60 60
48 48
36 36
24 24
12 12
Sum of absolute differences = 0

j=510
-x1- -x2-
88 88
77 77
66 66
55 55
44 44
33 33
22 22
11 11
Sum of absolute differences = 0

j=511

```

```

-x1- -x2-
80 80
70 70
60 60
50 50
40 40
30 30
20 20
10 10
Sum of absolute differences = 0

j=512
-x1- -x2-
72 72
63 63
54 54
45 45
36 36
27 27
18 18
9 9
Sum of absolute differences = 0
octave:63> who
*** currently compiled functions:
clock columns date holes1
holes2 num2str rem rows
*** local user variables:
M Np err j p x1 x2
octave:64> size(M)
ans =
1 1
octave:65> size(x1)
ans =
8 1
octave:66> size(err)
ans =
512 1
octave:67> max(abs(err))
ans = 0
octave:68> 'Simple hole finding function
works!'
ans = Simple hole finding function works!
octave:69> clock
ans =
[REDACTED]
octave:70> diary off

```

HOLES3.M

```
function [k,h] = holes3(y,p,M);

% h = holes3(y,p,M)
% CONFIDENTIAL AND PROPRIETARY
% Edwin A. Suominen
% Finds "holes" - skipped values of set {0,1}^N in result
% of x*y mod p.
% Uses equation discovered by EAS 9/16/00

% Number of values in set S:{0,1}^N
% M = 2^N;

k = p-(M+1);

% For vector inputs...
for i=1:length(y)

    for j=1:k,
        ## Input values between M+1 and p will of necessity
        ## be mapped to holes (values not produced by inputs
        ## from set {1,2,...M} because xy mod p is a bijection
        ## (See HAC 1.8 Definition)
        ## h(j,i) = rem( (M+j)*y , p);
        ## Equation above is simple but doesn't work when
        ## M < xy < p (which happens rarely, but it happens).

        h(j,i) = M+1 - rem(j*y(i)-k,p);
    endfor

endfor

if (nargout>=2)
    k = 1:k; k=k';
endif

endfunction
```

TEST3.M

TESTS EACH INPUT FOR ALL KEYS IN SPACE

```
## TEST3.M
## Block size is 10 bits. Input is taken from set Z:{1,2,...1024}
## Because of EAS-invented "pseudogroup" operation, output also
## falls in set Z.
## Keys are also taken from set Z - any set element is OK.

## This test proves the following:
## (1) Output set is same as input set Z.
## (2) Each input value has a unique output value, for a given
## key value.
## (3) The output value from "encrypt.m" can be converted back to
## the input value with "decrypt.m," given the key value.
## (4) For a given input value, each key value produces a unique
## output value.
## Written for Octave (GNU MATLAB alternative)

## No paging - want current screen output
page_screen_output=0;

## Set values defining set and underlying group order
N = 10; M = 2^N; # M = 1024
k = 7; p = M+k; # p = 1031 (prime)

## Create empty matrix of output values
A = zeros(M);

## Define vector with elements of set Z
v = linspace(1,M,M);

## Create string matrix of '-' neutral values for test condition codes
cc = ['-RESULTS- ' ; 'key: 1234']; # Header
## for each key value...
for i = 1:M
    ## insert key value before neutrals
    ccr = [num2str(i),': ----'];
    ## Leading zeros to make columns line up
    if i<10, ccr = ['0' ccr]; endif
    if i<100, ccr = ['0' ccr]; endif
    if i<1000, ccr = ['0' ccr]; endif
    cc(i+2,:) = ccr;
endfor

##### PART ONE OF TWO #####
disp(['Tests 1-3, for each key value in set 1,2,...',num2str(M)]);
disp('-----');
```

```

## For all possible key values in Z...
for i = 1:M

## Show progress
disp(['Encrypting and decrypting with key y=',num2str(i),'...']);

## Set key value for this iteration
y = v(i);

## Encrypt all possible input values in set Z with key
b = encrypt(v,y,N,k);
A(:,i) = b'; # Add this output vector to output matrix

## Test for conditions (1), (2) now
b = sort(b); # Sort ascending

disp(['Output set: min=',num2str(min(b)),', max=',num2str(max(b))]);

##### Test Condition (1) #####
if ( max(b)==M )
    disp('Output set is same as input set.');
    cc(i+2,7) = '+';
else
    disp('PROBLEM: Output set larger or smaller than input set!');
    cc(i+2,7) = 'o';
endif

##### Test Condition (2) #####
## Each input value should have a unique output value, for a given
## key value.
b = diff(b); # Get differentials between sorted elements
if ( min(b)==1 & max(b)==1 )
    disp('All elements in output set are unique.');
    cc(i+2,8) = '+';
else
    disp('PROBLEM: skipped or duplicated element(s) in output set!');
    cc(i+2,8) = 'o';
endif

##### Decrypt output values for this key #####
b = decrypt(A(:,i),y,N,k)';

##### Test Condition (3) #####

```

```

## Get differentials between plaintext-encrypted-decrypted (b) and
plaintext (v)
b = b - v; # Should be all zeros if test passes
if ( (max(abs(b))==0) )
    disp('All elements in input set encrypt and decrypt with key and
inverse.');
    cc(i+2,9) = '+';
else
    disp('PROBLEM: One or more elements do not match in
encryption/decryption!');
    cc(i+2,9) = 'o';
endif

disp('');

endfor

##### PART TWO OF TWO #####
disp(['Test 4, for each input value in set 1,2,...',num2str(M)]);
disp('-----');

##### Test Condition (4) #####
## For all possible input values in Z, working with full matrix of
outputs
for i = 1:M

    ## Show progress
    disp(['Analyzing outputs for input x=',num2str(i),' with all keys in
set...']);

    ## For a given input value, each key value should produce a unique
output value.
    b = diff(sort(A(i,:))); # Get differentials between sorted elements
    if ( min(b)==1 & max(b)==1 )
        disp('All elements in output set are unique.');
        cc(i+2,10) = '+';
    else
        disp('Skipped or duplicated element(s) in output set.');
        cc(i+2,10) = 'o';
    endif

    disp('');

endfor

## Display test results
disp(cc)

```

RESULTS OF TEST3.M

```
octave:14> date  
ans = [REDACTED]  
octave:15> clock  
ans = [REDACTED]
```

```
[REDACTED]  
octave:16> type test3  
test3 is the script file: /1093-2/test3.m  
  
## TEST3.M  
## Block size is 10 bits. Input is taken from set  
Z:{1,2,...1024}  
## Because of EAS-invented "pseudogroup" operation,  
output also  
## falls in set Z.  
## Keys are also taken from set Z - any set element is  
OK.  
  
## This test proves the following:  
## (1) Output set is same as input set Z.  
## (2) Each input value has a unique output value, for a  
given  
## key value.  
## (3) The output value from "encrypt.m" can be converted  
back to  
## the input value with "decrypt.m," given the key value.  
## (4) For a given input value, each key value produces a  
unique  
## output value.
```

```
[REDACTED]  
## Written for Octave (GNU MATLAB alternative)
```

```
[REDACTED]  
## No paging - want current screen output  
page_screen_output=0;  
  
## Set values defining set and underlying group order  
N = 10; M = 2^N; # M = 1024  
k = 7; p = M+k; # p = 1031 (prime)  
  
## Create empty matrix of output values  
A = zeros(M);  
  
## Define vector with elements of set Z  
v = linspace(1,M,M);  
  
## Create string matrix of '-' neutral values for test  
condition codes  
cc = ['-RESULTS-'; 'key: 1234']; # Header  
## for each key value...  
for i = 1:M  
    ## insert key value before neutrals  
    ccr = [num2str(i),': ----'];  
    ## Leading zeros to make columns line up  
    if i<10, ccr = ['0' ccr]; endif  
    if i<100, ccr = ['0' ccr]; endif  
    if i<1000, ccr = ['0' ccr]; endif  
    cc(i+2,:) = ccr;  
endfor
```

```
##### PART ONE OF TWO #####  
disp(['Tests 1-3, for each key value in s  
1,2,...',num2str(M)]);  
disp('-----');  
  
## For all possible key values in Z...  
for i = 1:M  
  
    ## Show progress  
    disp(['Encrypting and decrypting with k  
y=',num2str(i),'...']);  
  
    ## Set key value for this iteration  
    y = v(i);  
  
    ## Encrypt all possible input values in set Z with key  
    b = encrypt(v,y,N,k);  
    A(:,i) = b'; # Add this output vector to output matrix  
  
    ## Test for conditions (1),(2) now  
    b = sort(b); # Sort ascending  
  
    disp(['Output set: min=',num2str(min(b)),  
max=',num2str(max(b))]);  
  
    ##### Test Condition (1) #####  
    if ( max(b)==M )  
        disp('Output set is same as input set.' );  
        cc(i+2,7) = '+';  
    else  
        disp('PROBLEM: Output set larger or smaller than  
input set!');  
        cc(i+2,7) = 'o';  
    endif  
  
    ##### Test Condition (2) #####  
    ## Each input value should have a unique output value  
    for a given  
    ## key value.  
    b = diff(b); # Get differentials between sorted  
elements  
    if ( min(b)==1 & max(b)==1 )  
        disp('All elements in output set are unique.' );  
        cc(i+2,8) = '+';  
    else  
        disp('PROBLEM: skipped or duplicated element(s) in  
output set!');  
        cc(i+2,8) = 'o';  
    endif  
  
    ##### Decrypt output values for this key #####  
    b = decrypt(A(:,i),y,N,k);  
  
    ##### Test Condition (3) #####  
    ## Get differentials between plaintext-encrypted  
decrypted (b) and plaintext (v)  
    b = b - v; # Should be all zeros if test passes  
    if ( (max(abs(b))==0) )  
        disp('All elements in input set encrypt and decrypt  
with key and inverse.' );  
        cc(i+2,9) = '+';
```

```

else
    disp('PROBLEM: One or more elements do not match in
encryption/decryption!');
    cc(i+2,9) = 'o';
endif

disp('');
endfor

##### PART TWO OF TWO #####
disp(['Test 4, for each input value in set
1,2,...,num2str(M)];;
disp('-----');
-----');

##### Test Condition (4) #####
## For all possible input values in Z, working with full
matrix of outputs
for i = 1:M

## Show progress
disp(['Analyzing outputs for input x=',num2str(i),'
with all keys in set...']);

## For a given input value, each key value should
produce a unique output value.
b = diff(sort(A(i,:))); # Get differentials between
sorted elements
if ( min(b)==1 & max(b)==1 )
    disp('All elements in output set are unique.');
    cc(i+2,10) = '+';
else
    disp('Skipped or duplicated element(s) in output
set.');
    cc(i+2,10) = 'o';
endif

disp('');
endfor

## Display test results
disp(cc)
octave:18> test3
Tests 1-3, for each key value in set 1,2,...1024
-----
Encrypting and decrypting with key y=1...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=2...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=3...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=4...
Output set: min=1, max=1024
Output set is same as input set.

All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=5...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=6...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=7...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=8...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=9...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=10...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=11...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=12...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=13...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

Encrypting and decrypting with key y=14...
Output set: min=1, max=1024
Output set is same as input set.
All elements in output set are unique.
All elements in input set encrypt and decrypt with key
and inverse.

```


0028: +++o	0101: +++o
0029: +++o	0102: +++o
0030: +++o	0103: +++o
0031: +++o	0104: +++o
0032: +++o	0105: +++o
0033: +++o	0106: +++o
0034: +++o	0107: +++o
0035: +++o	0108: +++o
0036: +++o	0109: +++o
0037: +++o	0110: +++o
0038: +++o	0111: +++o
0039: +++o	0112: +++o
0040: +++o	0113: +++o
0041: +++o	0114: +++o
0042: +++o	0115: +++o
0043: +++o	0116: +++o
0044: +++o	0117: +++o
0045: +++o	0118: +++o
0046: +++o	0119: +++o
0047: +++o	0120: +++o
0048: +++o	0121: +++o
0049: +++o	0122: +++o
0050: +++o	0123: +++o
0051: +++o	0124: +++o
0052: +++o	0125: +++o
0053: +++o	0126: +++o
0054: +++o	0127: +++o
0055: +++o	0128: +++o
0056: +++o	0129: +++o
0057: +++o	0130: +++o
0058: +++o	0131: +++o
0059: +++o	0132: +++o
0060: +++o	0133: +++o
0061: +++o	0134: +++o
0062: +++o	0135: +++o
0063: +++o	0136: +++o
0064: +++o	0137: +++o
0065: +++o	0138: +++o
0066: +++o	0139: +++o
0067: +++o	0140: +++o
0068: +++o	0141: +++o
0069: +++o	0142: +++o
0070: +++o	0143: +++o
0071: +++o	0144: +++o
0072: +++o	0145: +++o
0073: +++o	0146: +++o
0074: +++o	0147: +++o
0075: +++o	0148: +++o
0076: +++o	0149: +++o
0077: +++o	0150: +++o
0078: +++o	0151: +++o
0079: +++o	0152: +++o
0080: +++o	0153: +++o
0081: +++o	0154: +++o
0082: +++o	0155: +++o
0083: +++o	0156: +++o
0084: +++o	0157: +++o
0085: +++o	0158: +++o
0086: +++o	0159: +++o
0087: +++o	0160: +++o
0088: +++o	0161: +++o
0089: +++o	0162: +++o
0090: +++o	0163: +++o
0091: +++o	0164: +++o
0092: +++o	0165: +++o
0093: +++o	0166: +++o
0094: +++o	0167: +++o
0095: +++o	0168: +++o
0096: +++o	0169: +++o
0097: +++o	0170: +++o
0098: +++o	0171: +++o
0099: +++o	0172: +++o
0100: +++o	0173: +++o

0174: +++o	0247: +++o
0175: +++o	0248: +++o
0176: +++o	0249: +++o
0177: +++o	0250: +++o
0178: +++o	0251: +++o
0179: +++o	0252: +++o
0180: +++o	0253: +++o
0181: +++o	0254: +++o
0182: +++o	0255: +++o
0183: +++o	0256: +++o
0184: +++o	0257: +++o
0185: +++o	0258: +++o
0186: +++o	0259: +++o
0187: +++o	0260: +++o
0188: +++o	0261: +++o
0189: +++o	0262: +++o
0190: +++o	0263: +++o
0191: +++o	0264: +++o
0192: +++o	0265: +++o
0193: +++o	0266: +++o
0194: +++o	0267: +++o
0195: +++o	0268: +++o
0196: +++o	0269: +++o
0197: +++o	0270: +++o
0198: +++o	0271: +++o
0199: +++o	0272: +++o
0200: +++o	0273: +++o
0201: +++o	0274: +++o
0202: +++o	0275: +++o
0203: +++o	0276: +++o
0204: +++o	0277: +++o
0205: +++o	0278: +++o
0206: +++o	0279: +++o
0207: +++o	0280: +++o
0208: +++o	0281: +++o
0209: +++o	0282: +++o
0210: +++o	0283: +++o
0211: +++o	0284: +++o
0212: +++o	0285: +++o
0213: +++o	0286: +++o
0214: +++o	0287: +++o
0215: +++o	0288: +++o
0216: +++o	0289: +++o
0217: +++o	0290: +++o
0218: +++o	0291: +++o
0219: +++o	0292: +++o
0220: +++o	0293: +++o
0221: +++o	0294: +++o
0222: +++o	0295: +++o
0223: +++o	0296: +++o
0224: +++o	0297: +++o
0225: +++o	0298: +++o
0226: +++o	0299: +++o
0227: +++o	0300: +++o
0228: +++o	0301: +++o
0229: +++o	0302: +++o
0230: +++o	0303: +++o
0231: +++o	0304: +++o
0232: +++o	0305: +++o
0233: +++o	0306: +++o
0234: +++o	0307: +++o
0235: +++o	0308: +++o
0236: +++o	0309: +++o
0237: +++o	0310: +++o
0238: +++o	0311: +++o
0239: +++o	0312: +++o
0240: +++o	0313: +++o
0241: +++o	0314: +++o
0242: +++o	0315: +++o
0243: +++o	0316: +++o
0244: +++o	0317: +++o
0245: +++o	0318: +++o
0246: +++o	0319: +++o

0320: +++o	0393: +++o
0321: +++o	0394: +++o
0322: +++o	0395: +++o
0323: +++o	0396: +++o
0324: +++o	0397: +++o
0325: +++o	0398: +++o
0326: +++o	0399: +++o
0327: +++o	0400: +++o
0328: +++o	0401: +++o
0329: +++o	0402: +++o
0330: +++o	0403: +++o
0331: +++o	0404: +++o
0332: +++o	0405: +++o
0333: +++o	0406: +++o
0334: +++o	0407: +++o
0335: +++o	0408: +++o
0336: +++o	0409: +++o
0337: +++o	0410: +++o
0338: +++o	0411: +++o
0339: +++o	0412: +++o
0340: +++o	0413: +++o
0341: +++o	0414: +++o
0342: +++o	0415: +++o
0343: +++o	0416: +++o
0344: +++o	0417: +++o
0345: +++o	0418: +++o
0346: +++o	0419: +++o
0347: +++o	0420: +++o
0348: +++o	0421: +++o
0349: +++o	0422: +++o
0350: +++o	0423: +++o
0351: +++o	0424: +++o
0352: +++o	0425: +++o
0353: +++o	0426: +++o
0354: +++o	0427: +++o
0355: +++o	0428: +++o
0356: +++o	0429: +++o
0357: +++o	0430: +++o
0358: +++o	0431: +++o
0359: +++o	0432: +++o
0360: +++o	0433: +++o
0361: +++o	0434: +++o
0362: +++o	0435: +++o
0363: +++o	0436: +++o
0364: +++o	0437: +++o
0365: +++o	0438: +++o
0366: +++o	0439: +++o
0367: +++o	0440: +++o
0368: +++o	0441: +++o
0369: +++o	0442: +++o
0370: +++o	0443: +++o
0371: +++o	0444: +++o
0372: +++o	0445: +++o
0373: +++o	0446: +++o
0374: +++o	0447: +++o
0375: +++o	0448: +++o
0376: +++o	0449: +++o
0377: +++o	0450: +++o
0378: +++o	0451: +++o
0379: +++o	0452: +++o
0380: +++o	0453: +++o
0381: +++o	0454: +++o
0382: +++o	0455: +++o
0383: +++o	0456: +++o
0384: +++o	0457: +++o
0385: +++o	0458: +++o
0386: +++o	0459: +++o
0387: +++o	0460: +++o
0388: +++o	0461: +++o
0389: +++o	0462: +++o
0390: +++o	0463: +++o
0391: +++o	0464: +++o
0392: +++o	0465: +++o

0466: +++o	0539: +++o
0467: +++o	0540: +++o
0468: +++o	0541: +++o
0469: +++o	0542: +++o
0470: +++o	0543: +++o
0471: +++o	0544: +++o
0472: +++o	0545: +++o
0473: +++o	0546: +++o
0474: +++o	0547: +++o
0475: +++o	0548: +++o
0476: +++o	0549: +++o
0477: +++o	0550: +++o
0478: +++o	0551: +++o
0479: +++o	0552: +++o
0480: +++o	0553: +++o
0481: +++o	0554: +++o
0482: +++o	0555: +++o
0483: +++o	0556: +++o
0484: +++o	0557: +++o
0485: +++o	0558: +++o
0486: +++o	0559: +++o
0487: +++o	0560: +++o
0488: +++o	0561: +++o
0489: +++o	0562: +++o
0490: +++o	0563: +++o
0491: +++o	0564: +++o
0492: +++o	0565: +++o
0493: +++o	0566: +++o
0494: +++o	0567: +++o
0495: +++o	0568: +++o
0496: +++o	0569: +++o
0497: +++o	0570: +++o
0498: +++o	0571: +++o
0499: +++o	0572: +++o
0500: +++o	0573: +++o
0501: +++o	0574: +++o
0502: +++o	0575: +++o
0503: +++o	0576: +++o
0504: +++o	0577: +++o
0505: +++o	0578: +++o
0506: +++o	0579: +++o
0507: +++o	0580: +++o
0508: +++o	0581: +++o
0509: +++o	0582: +++o
0510: +++o	0583: +++o
0511: +++o	0584: +++o
0512: +++o	0585: +++o
0513: +++o	0586: +++o
0514: +++o	0587: +++o
0515: +++o	0588: +++o
0516: +++o	0589: +++o
0517: +++o	0590: +++o
0518: +++o	0591: +++o
0519: +++o	0592: +++o
0520: +++o	0593: +++o
0521: +++o	0594: +++o
0522: +++o	0595: +++o
0523: +++o	0596: +++o
0524: +++o	0597: +++o
0525: +++o	0598: +++o
0526: +++o	0599: +++o
0527: +++o	0600: +++o
0528: +++o	0601: +++o
0529: +++o	0602: +++o
0530: +++o	0603: +++o
0531: +++o	0604: +++o
0532: +++o	0605: +++o
0533: +++o	0606: +++o
0534: +++o	0607: +++o
0535: +++o	0608: +++o
0536: +++o	0609: +++o
0537: +++o	0610: +++o
0538: +++o	0611: +++o

0612: +++o	0685: +++o
0613: +++o	0686: +++o
0614: +++o	0687: +++o
0615: +++o	0688: +++o
0616: +++o	0689: +++o
0617: +++o	0690: +++o
0618: +++o	0691: +++o
0619: +++o	0692: +++o
0620: +++o	0693: +++o
0621: +++o	0694: +++o
0622: +++o	0695: +++o
0623: +++o	0696: +++o
0624: +++o	0697: +++o
0625: +++o	0698: +++o
0626: +++o	0699: +++o
0627: +++o	0700: +++o
0628: +++o	0701: +++o
0629: +++o	0702: +++o
0630: +++o	0703: +++o
0631: +++o	0704: +++o
0632: +++o	0705: +++o
0633: +++o	0706: +++o
0634: +++o	0707: +++o
0635: +++o	0708: +++o
0636: +++o	0709: +++o
0637: +++o	0710: +++o
0638: +++o	0711: +++o
0639: +++o	0712: +++o
0640: +++o	0713: +++o
0641: +++o	0714: +++o
0642: +++o	0715: +++o
0643: +++o	0716: +++o
0644: +++o	0717: +++o
0645: +++o	0718: +++o
0646: +++o	0719: +++o
0647: +++o	0720: +++o
0648: +++o	0721: +++o
0649: +++o	0722: +++o
0650: +++o	0723: +++o
0651: +++o	0724: +++o
0652: +++o	0725: +++o
0653: +++o	0726: +++o
0654: +++o	0727: +++o
0655: +++o	0728: +++o
0656: +++o	0729: +++o
0657: +++o	0730: +++o
0658: +++o	0731: +++o
0659: +++o	0732: +++o
0660: +++o	0733: +++o
0661: +++o	0734: +++o
0662: +++o	0735: +++o
0663: +++o	0736: +++o
0664: +++o	0737: +++o
0665: +++o	0738: +++o
0666: +++o	0739: +++o
0667: +++o	0740: +++o
0668: +++o	0741: +++o
0669: +++o	0742: +++o
0670: +++o	0743: +++o
0671: +++o	0744: +++o
0672: +++o	0745: +++o
0673: +++o	0746: +++o
0674: +++o	0747: +++o
0675: +++o	0748: +++o
0676: +++o	0749: +++o
0677: +++o	0750: +++o
0678: +++o	0751: +++o
0679: +++o	0752: +++o
0680: +++o	0753: +++o
0681: +++o	0754: +++o
0682: +++o	0755: +++o
0683: +++o	0756: +++o
0684: +++o	0757: +++o

0758: +++o	0831: +++o
0759: +++o	0832: +++o
0760: +++o	0833: +++o
0761: +++o	0834: +++o
0762: +++o	0835: +++o
0763: +++o	0836: +++o
0764: +++o	0837: +++o
0765: +++o	0838: +++o
0766: +++o	0839: +++o
0767: +++o	0840: +++o
0768: +++o	0841: +++o
0769: +++o	0842: +++o
0770: +++o	0843: +++o
0771: +++o	0844: +++o
0772: +++o	0845: +++o
0773: +++o	0846: +++o
0774: +++o	0847: +++o
0775: +++o	0848: +++o
0776: +++o	0849: +++o
0777: +++o	0850: +++o
0778: +++o	0851: +++o
0779: +++o	0852: +++o
0780: +++o	0853: +++o
0781: +++o	0854: +++o
0782: +++o	0855: +++o
0783: +++o	0856: +++o
0784: +++o	0857: +++o
0785: +++o	0858: +++o
0786: +++o	0859: +++o
0787: +++o	0860: +++o
0788: +++o	0861: +++o
0789: +++o	0862: +++o
0790: +++o	0863: +++o
0791: +++o	0864: +++o
0792: +++o	0865: +++o
0793: +++o	0866: +++o
0794: +++o	0867: +++o
0795: +++o	0868: +++o
0796: +++o	0869: +++o
0797: +++o	0870: +++o
0798: +++o	0871: +++o
0799: +++o	0872: +++o
0800: +++o	0873: +++o
0801: +++o	0874: +++o
0802: +++o	0875: +++o
0803: +++o	0876: +++o
0804: +++o	0877: +++o
0805: +++o	0878: +++o
0806: +++o	0879: +++o
0807: +++o	0880: +++o
0808: +++o	0881: +++o
0809: +++o	0882: +++o
0810: +++o	0883: +++o
0811: +++o	0884: +++o
0812: +++o	0885: +++o
0813: +++o	0886: +++o
0814: +++o	0887: +++o
0815: +++o	0888: +++o
0816: +++o	0889: +++o
0817: +++o	0890: +++o
0818: +++o	0891: +++o
0819: +++o	0892: +++o
0820: +++o	0893: +++o
0821: +++o	0894: +++o
0822: +++o	0895: +++o
0823: +++o	0896: +++o
0824: +++o	0897: +++o
0825: +++o	0898: +++o
0826: +++o	0899: +++o
0827: +++o	0900: +++o
0828: +++o	0901: +++o
0829: +++o	0902: +++o
0830: +++o	0903: +++o

0904: +++o	0977: +++o
0905: +++o	0978: +++o
0906: +++o	0979: +++o
0907: +++o	0980: +++o
0908: +++o	0981: +++o
0909: +++o	0982: +++o
0910: +++o	0983: +++o
0911: +++o	0984: +++o
0912: +++o	0985: +++o
0913: +++o	0986: +++o
0914: +++o	0987: +++o
0915: +++o	0988: +++o
0916: +++o	0989: +++o
0917: +++o	0990: +++o
0918: +++o	0991: +++o
0919: +++o	0992: +++o
0920: +++o	0993: +++o
0921: +++o	0994: +++o
0922: +++o	0995: +++o
0923: +++o	0996: +++o
0924: +++o	0997: +++o
0925: +++o	0998: +++o
0926: +++o	0999: +++o
0927: +++o	1000: +++o
0928: +++o	1001: +++o
0929: +++o	1002: +++o
0930: +++o	1003: +++o
0931: +++o	1004: +++o
0932: +++o	1005: +++o
0933: +++o	1006: +++o
0934: +++o	1007: +++o
0935: +++o	1008: +++o
0936: +++o	1009: +++o
0937: +++o	1010: +++o
0938: +++o	1011: +++o
0939: +++o	1012: +++o
0940: +++o	1013: +++o
0941: +++o	1014: +++o
0942: +++o	1015: +++o
0943: +++o	1016: +++o
0944: +++o	1017: +++o
0945: +++o	1018: +++o
0946: +++o	1019: +++o
0947: +++o	1020: +++o
0948: +++o	1021: +++o
0949: +++o	1022: +++o
0950: +++o	1023: +++o
0951: +++o	1024: +++o
0952: +++o	octave:19> diary off
0953: +++o	
0954: +++o	
0955: +++o	
0956: +++o	
0957: +++o	
0958: +++o	
0959: +++o	
0960: +++o	
0961: +++o	
0962: +++o	
0963: +++o	
0964: +++o	
0965: +++o	
0966: +++o	
0967: +++o	
0968: +++o	
0969: +++o	
0970: +++o	
0971: +++o	
0972: +++o	
0973: +++o	
0974: +++o	
0975: +++o	
0976: +++o	

RESULTS OF TEST3B.M

```
octave:4> date
ans = [REDACTED]
octave:5> clock
ans = [REDACTED]

octave:6> type test3b
test3b is the script file: /1093-2/test3b.m

## TEST3B.M
## Block size is 10 bits. Input is taken from set Z:{1,2,...1024}
## Because of EAS-invented "pseudogroup" operation, output also
## falls in set Z.
## Keys are also taken from set Z - any set element is OK.

## This test analyzes outputs for a given input over all
## possible keys.

## Written for Octave (GNU MATLAB alternative)

## No paging - want current screen output
page_screen_output=0;

## Set values defining set and underlying group order
N = 10; M = 2^N; # M = 1024
k = 7; p = M+k; # p = 1031 (prime)

## Define vector with elements of set Z
v = linspace(1,M,M);

## Define vector of skip/repeat counts
cc = zeros(1,M);

disp(['Test for each input value in set 1,2,...',num2str(M)]);
disp('-----');

## For all possible input values in Z...
for i = 1:M

    ## Show progress
    disp(['Encrypting with input value y=',num2str(i),'...']);

    ## Set input value for this iteration
    x = v(i);

    ## Encrypt input value with all keys in set Z
    for j = 1:M
        b(j) = encrypt(x,v(j),N,k);
    endfor
```

```

        ;
disp(['Output set: min=',num2str(min(b)),', max=',num2str(max(b))]);
disp('');

## Identify any skipped or repeated set elements
## with vector of index numbers
b1 = sort(b); # Sort ascending
b2 = [diff(b1)']; # Should be all 1's...
b2 = b2~=1; # ...so 1's indicate skips/repeats

Nsr = sum(b2); # Count of skips/repeats

b3 = b2 .* v(1:M-1); # map index numbers to skips/repeats
b3 = sort(b3); # Sort ascending
b4 = b3(M-Nsr:M-1); # Select only skips/repeats

if (Nsr > 0)
    ,
    disp(['There are ',num2str(Nsr),' skips & repeats, at:']);
    disp(b4);
    disp('-----');

c = zeros(6,Nsr); # Start with empty ("0") matrix
for j = 1:Nsr
    k1 = max([1 b4(j)-2]);
    k2 = min([b4(j)+3 M]);
    c(1:k2-k1+1,j) = b1(k1:k2);
endfor

disp(c)

endif

cc(i) = Nsr; # Add this count to vector
disp(['Maximum skips & repeats for a given input (so far):',num2str(max(cc))]);
disp('');

endfor
.

.

octave:9> test3b
Test for each input value in set 1,2,...1024
-----
Encrypting with input value y=1...
Output set: min=1, max=1024

Maximum skips & repeats for a given input (so far):0

Encrypting with input value y=2...
Output set: min=1, max=1024

There are 6 skips & repeats, at:
  10    518    520   1021   1022   1023
-----
  8    515    517   1016   1017   1018
  9    516    517   1017   1018   1020
 10    517    518   1018   1020   1022
 10    517    518   1020   1022   1024

```

11	518	519	1022	1024	0
12	518	520	1024	0	0

Maximum skips & repeats for a given input (so far):6

Encrypting with input value y=3...
Output set: min=1, max=1024

There are 8 skips & repeats, at:

10	346	690	692	1016	1018	1020	1022
----	-----	-----	-----	------	------	------	------

8	343	686	688	1010	1012	1015	1018
9	344	687	688	1011	1014	1017	1020
10	345	688	689	1012	1015	1018	1021
10	345	688	689	1014	1017	1020	1023
11	346	689	690	1015	1018	1021	1024
12	347	689	691	1017	1020	1023	0

Maximum skips & repeats for a given input (so far):8

Encrypting with input value y=4...
Output set: min=1, max=1024

There are 10 skips & repeats, at:

3	260	519	523	778	1011	1014	1017	1020	1023
---	-----	-----	-----	-----	------	------	------	------	------

1	257	515	518	772	1004	1008	1012	1016	1020
2	258	516	519	773	1005	1009	1013	1017	1021
3	259	517	520	774	1006	1010	1014	1018	1022
3	259	517	520	774	1008	1012	1016	1020	1024
4	260	518	521	775	1009	1013	1017	1021	0
5	261	519	522	776	1010	1014	1018	1022	0

Maximum skips & repeats for a given input (so far):10

Encrypting with input value y=5...
Output set: min=1, max=1024

There are 10 skips & repeats, at:

6	212	418	624	830	1005	1009	1013	1017	1021
---	-----	-----	-----	-----	------	------	------	------	------

4	209	414	619	824	998	1003	1008	1013	1018
5	210	415	620	825	999	1004	1009	1014	1019
6	211	416	621	826	1000	1005	1010	1015	1020
6	211	416	621	826	1002	1007	1012	1017	1022
7	212	417	622	827	1003	1008	1013	1018	1023
8	213	418	623	828	1004	1009	1014	1019	1024

Maximum skips & repeats for a given input (so far):10

Encrypting with input value y=6...
Output set: min=1, max=1024

There are 10 skips & repeats, at:

176	346	518	691	864	999	1004	1009	1014	1019
-----	-----	-----	-----	-----	-----	------	------	------	------

174	343	514	686	858	992	998	1004	1010	1016
175	344	515	687	859	993	999	1005	1011	1017
176	345	516	688	860	994	1000	1006	1012	1018
176	345	516	688	860	996	1002	1008	1014	1020
177	346	517	689	861	997	1003	1009	1015	1021
178	347	518	690	862	998	1004	1010	1016	1022

Maximum skips & repeats for a given input (so far):10

Encrypting with input value y=7...
Output set: min=1, max=1023

There are 11 skips & repeats, at:

149	297	445	593	741	889	994	1000	1006	1012	1018
147	294	441	588	735	882	986	993	1000	1007	1014
148	295	442	589	736	883	987	994	1001	1008	1015
149	296	443	590	737	884	988	995	1002	1009	1016
149	296	443	590	737	884	990	997	1004	1011	1018
150	297	444	591	738	885	991	998	1005	1012	1019
151	298	445	592	739	886	992	999	1006	1013	1020

Maximum skips & repeats for a given input (so far):11

Encrypting with input value y=8...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

3	4	261	520	521	779	988	995	1002	1009	1016	1023
1	2	257	515	516	772	980	988	996	1004	1012	1020
2	3	258	516	517	773	981	989	997	1005	1013	1021
3	3	259	517	517	774	982	990	998	1006	1014	1022
3	3	259	517	517	774	984	992	1000	1008	1016	1024
3	4	260	517	518	775	985	993	1001	1009	1017	0
4	5	261	518	519	776	986	994	1002	1010	1018	0

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=9...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

2	346	347	464	692	922	982	990	998	1006	1014	1022
1	343	344	459	686	915	974	983	992	1001	1010	1019
2	344	345	460	687	916	975	984	993	1002	1011	1020
2	345	345	461	688	917	976	985	994	1003	1012	1021
3	345	345	461	688	917	978	987	996	1005	1014	1023
4	345	346	462	689	918	979	988	997	1006	1015	1024
0	346	347	463	690	919	980	989	998	1007	1016	0

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=10...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

2	4	416	520	829	933	976	985	994	1003	1012	1021
1	2	412	515	823	926	968	978	988	998	1008	1018
2	2	413	516	824	927	969	979	989	999	1009	1019
2	3	414	517	825	928	970	980	990	1000	1010	1020
3	3	414	517	825	928	972	982	992	1002	1012	1022
3	4	415	518	826	929	973	983	993	1003	1013	1023
0	5	416	519	827	930	974	984	994	1004	1014	1024

Maximum skips & repeats for a given input (so far):12

17	35	53	71	89	107	114	342	458	687	687	859
19	37	55	73	91	109	114	342	458	687	687	859
20	38	56	74	92	110	115	343	459	687	688	860
21	39	57	75	93	111	116	344	460	688	689	861

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=1014...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

16	32	48	64	80	96	236	479	661	845	907	969
14	31	48	65	82	99	240	482	663	846	907	968
15	32	49	66	83	100	241	483	664	847	908	969
16	33	50	67	84	101	242	484	665	848	909	970
18	35	52	69	86	103	242	484	665	848	909	970
19	36	53	70	87	104	243	485	666	849	910	971
20	37	54	71	88	105	244	486	667	850	911	972

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=1015...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

15	30	45	60	75	90	121	188	511	641	771	901
13	29	45	61	77	93	125	191	513	642	771	900
14	30	46	62	78	94	126	192	514	643	772	901
15	31	47	63	79	95	127	193	515	644	773	902
17	33	49	65	81	97	127	193	515	644	773	902
18	34	50	66	82	98	128	194	516	645	774	903
19	35	51	67	83	99	129	195	517	646	775	904

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=1016...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

14	28	42	56	70	84	199	338	614	752	891	961
12	27	42	57	72	87	203	341	616	753	891	960
13	28	43	58	73	88	204	342	617	754	892	961
14	29	44	59	74	89	205	343	618	755	893	962
16	31	46	61	76	91	205	343	618	755	893	962
17	32	47	62	77	92	206	344	619	756	894	963
18	33	48	63	78	93	207	345	620	757	895	964

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=1017...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

13	26	39	52	65	78	140	436	437	658	734	956
11	25	39	53	67	81	144	439	440	659	734	955
12	26	40	54	68	82	145	440	441	660	735	956
13	27	41	55	69	83	146	441	441	661	736	957
15	29	43	57	71	85	146	441	441	661	736	957

16	30	44	58	72	86	147	441	442	662	737	958
17	31	45	59	73	87	148	442	443	663	738	959

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=1018...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

12	24	36	48	60	72	73	231	233	631	632	871
<hr/>											
10	23	36	49	62	75	76	234	236	632	633	870
11	24	37	50	63	76	77	235	236	633	634	871
12	25	38	51	64	77	77	236	237	634	634	872
14	27	40	53	66	77	79	236	237	634	634	872
15	28	41	54	67	79	80	237	238	634	634	873
16	29	42	55	68	80	81	237	239	635	636	874

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=1019...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

11	22	33	44	55	66	336	508	682	769	857	944
<hr/>											
9	21	33	45	57	69	340	511	684	770	857	943
10	22	34	46	58	70	341	512	685	771	858	944
11	23	35	47	59	71	342	513	686	772	859	945
13	25	37	49	61	73	342	513	686	772	859	945
14	26	38	50	62	74	343	514	687	773	860	946
15	27	39	51	63	75	344	515	688	774	861	947

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=1020...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

10	20	30	40	50	60	85	182	275	652	747	936
<hr/>											
8	19	30	41	52	63	89	185	277	653	747	935
9	20	31	42	53	64	90	186	278	654	748	936
10	21	32	43	54	65	91	187	279	655	749	937
12	23	34	45	56	67	91	187	279	655	749	937
13	24	35	46	57	68	92	188	280	656	750	938
14	25	36	47	58	69	93	189	281	657	751	939

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=1021...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

9	18	27	36	45	54	199	407	510	615	616	823
<hr/>											
7	17	27	37	47	57	203	410	512	616	617	822
8	18	28	38	48	58	204	411	513	617	618	823
9	19	29	39	49	59	205	412	514	618	618	824
11	21	31	41	51	61	205	412	514	618	618	824
12	22	32	42	52	62	206	413	515	618	619	825
13	23	33	43	53	63	207	414	516	619	620	826

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=1022...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

8	16	24	32	40	48	222	336	567	684	799	915

6	15	24	33	42	51	226	339	569	685	799	914
7	16	25	34	43	52	227	340	570	686	800	915
8	17	26	35	44	53	228	341	571	687	801	916
10	19	28	37	46	55	228	341	571	687	801	916
11	20	29	38	47	56	229	342	572	688	802	917
12	21	30	39	48	57	230	343	573	689	803	918

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=1023...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

7	14	21	28	35	42	248	249	511	641	771	901

5	13	21	29	37	45	252	253	513	642	771	900
6	14	22	30	38	46	253	254	514	643	772	901
7	15	23	31	39	47	254	254	515	644	773	902
9	17	25	33	41	49	254	254	515	644	773	902
10	18	26	34	42	50	254	255	516	645	774	903
11	19	27	35	43	51	255	256	517	646	775	904

Maximum skips & repeats for a given input (so far):12

Encrypting with input value y=1024...
Output set: min=1, max=1024

There are 12 skips & repeats, at:

6	12	18	24	30	36	137	286	435	584	733	882

4	11	18	25	32	39	141	289	437	585	733	881
5	12	19	26	33	40	142	290	438	586	734	882
6	13	20	27	34	41	143	291	439	587	735	883
8	15	22	29	36	43	143	291	439	587	735	883
9	16	23	30	37	44	144	292	440	588	736	884
10	17	24	31	38	45	145	293	441	589	737	885

Maximum skips & repeats for a given input (so far):12

```
octave:10> date
ans = [REDACTED]
octave:11> clock
ans = [REDACTED]
```

```
[REDACTED]
octave:12> diary off
```


0

500

1000

1500

2000

2500

← New →

TGST4B.M
WITH M = 2048
 $\rho = 2053$

1.1-1

Pronounceable Passphrase Worksheet

by Edwin A. Suominen

Digit Content	Min. Digits	Entropy	Example Passphrase
Alternating consonants (C), Vowels (V) C,13: {b,d,g,h,k,l,m,n,p,r,s,t,z} V,5: {a,e,i,o,u}	C: 11 V: 10	About 64 bits, for minimum digits	nihudezo dogiz pozubume

The vowels and phonetically distinct consonants below are pseudorandomly distributed, created using alternating pseudorandom lookups to a list of consonants b,d,g,h,k,l,m,n,p,r,s,t,z and vowels a,e,i,o,u. Alternating randomly selected consonants and randomly selected vowels from the array below form passphrases that have a faintly Oriental or African sound to them, and are more memorable than random alphanumerics. Consonants c,f,j,q,v,w,x,y are omitted because the passphrases tend to have a more distinct sound and are easier to pronounce without them.

You should split the consonant/vowel pairs into groups to make the passphrase pronounceable and thus more memorable. The suggested way of grouping the minimum 11 consonants and 10 vowels is as follows: CVCVCV CVCVCV CVCVCV. Note that the middle group begins and ends with a consonant. The resulting passphrase has a distinct sound that makes you wonder if the "words" show up in some foreign language even though they're just groups of randomly chosen letters.

Unbend a paper clip slightly, repeatedly toss the clip onto a printout of this page without aiming it anywhere in particular, and select the consonant/vowel pair to which the unbent end comes closest to get the next digit in your consonant-vowel sequence. Don't use both digits from a pair - each digit in your passphrase needs its own toss. With good random tosses, you can expect the clip to bounce outside the array of digits below about half the time. Just toss again. Don't aim at any particular region.

ne ze nu hi ni ba hu pi pu lu me ki lu ge le mu nu ko se ze ta ba ga ro ta be ko te lo ru hu gi ra ga ro do ro zu tu si mu pu lo bi ze tu ha ti ru to ni ze bu be si ma ro le hi ni bo ma do hu ma lu bu zi ru sa ta zo po go ta hi ri bi te la me go ho si go ka hi bo li ro mi ta mo ki ku hu ri le da ra za mi le mi da ra zu ki ke bi mi do mo ta tu ta ra si la go ki su ki mi re ba le so to za ba te hi ri da go za ka sa za mo na la me ku bu mu me no ke ri be ho tu mu ki no re ho pe mi hu ho pi ge ro to se go ka ze ri du sa de bi si de mi pi se po le mi bu re pe du so lu la ri mo mo bo go to ge ne go lo ru sa da ma ga ni pe si se bu di pi da pu ta la ku hu ko go za si de tu me po ro to pe ku hu ra ha bu zo ti na ba ma se te pi do to ke so do re ru ze ru to lo ne ki ta ha go go li ra po de na du ba su po ka lu bu hi be za la ke bo ne mi he ni te ma ni pu ho ru ne da nu de ge ge so ge lu re ho bi po li ma ri su pa te du zi ta ma lu ti bu ha ba hu mu su za ko to ga te tu ru la ki ru ze po ni pi ho sa pa pa bu pi za du go ga su mu re su ni re hi bi ko po la zu ri ku ka zi ba pa tu di da ma mo di hu po ro ho ku se pa bo la ga ne me pi pu gu he li ha gi bo he hu so ru pa se be pe ga se ni lo bo se ka be gi de zi di me mu lu pe ku tu go pe hi di bi de ne mo mi ki ni ka ha nu ka za do he ni da du ri se du lo se tu pe to ti hu na ru se ta na ho bu tu ze ge ru ru ba ga li ro so mu du he da go mu da ne tu mu pi ne bu ka la li le he me gi ru ge hi lo po ho pe no mu pe ta lo re na di gi ko ze re pi ga ba ki ke su zo ra no di lu du be za na po do su ra do si he me bi ga ra ha do za ru ku ri zi bu do lo ga ki ha zi ka ru re ke ti lo zu zu gu bu ma bo hi he si du ne hu da ka te ne na zi hu si da no mo te bu ko tu ro mu ne ma su li ba ga te se mo bi re si tu ta pe bo bu ma tu ge be ri no pa do ri za ra ho so to da ze ze lo he mi ha la de me pu ha no te de la zi hu gi ro te pa mo bu mu pe da sa pe na pi ti ru ro pi go li ku gi gi pu za pe go ti lo pu du su mo ta ki ha ge ka ke pa tu po hi be lu sa bo li so ko ra ri zi po ra la ze pe ru zu ra mu zu du ka lo ku zo po mo no he ze su ho le gi te go pu ka ga la ki lu pa ti na ga gi ba ka pi ka su gi mo no si te li gi se zi ze za lu ge ro zi ra do bo ma zo mi ke ze la bu ru be ki te ga ni go go gi ga no ha si bu be mi ta pa de ke ta lu ru ma ra si se te me pe pu gi mu me li bi bi hi zu me de he ku zu nu gi pi zi ga ka ze lo re ru ha zu ta ku pi po me la da mu li de he be pi le mu ko ki nu ke ga hu la la ri po su ri na ru no ta ro ho zi so ru ri go su hu gi ra ru pu mu gi le ga ti ne go le ba da gi si si ni ra zu ma ha bu le se ze ro go pi no bu ne nu ma si re ka gu zo si bo sa be zo si ko po li gi ra pe ne gu ri la ki go ka ze ne ro mo bi nu he no hu ne ha lo ne le hu hi so du de li ta ze li hu de do ga ha bi he su ku pe de he hu ta so zo he bu ti hi gi ta ti ze pe gu ni ka ra su pi lu ge pe ka pu na da mu ti du mo pi de pu pa ri si bi sa mi li ko mi be ge ku su po me mi tu ze ge ki gu hu hi lo tu da mu to ru gi ru ra mo na ma ba si se ri ro ro ka po ge do sa pu ma so na ba la li ka ne ba di te zo so ru mi se ni gu na ta di zi ri ga ga ri no ho sa ne mo le hi he re ta ne go ki de pi de gi mu du tu bo to ki po di ma ge bo se ne hi ni ma go li le ra ri mu si lo gi zo ku bo ro ze po to do go re tu ga ka la ki za ti me te zi ho mi ta no ne lo za ma mo te si sa ba da ku ko be ki go zi zu tu pe ma ba zu lo ra ge hu pa te ra ra ko zu ni se he to ma se gu gu ba bi te pe zo ne no gu ne bi ga ra na ra na la do nu du za ro li li mu ne ru ni he te ma

Description	Digit Space #1	No. of #1 Digits	Entropy #1 (bits)	Digit Space #2	No. of #2 Digits	Entropy #2 (bits)	Digit Space #3	No. of #3 Digits	Entropy #3 (bits)	Total Entropy
6 word DICEWARE (http://diceware.com)	7776	6	77.54888	1	0	0	1	0	0	77.5
14 alphanumeric digits except lowercase "L" (can group 5-4-5 or 4-6-4)	35	14	71.80996	1	0	0	1	0	0	71.8
13 alphanumeric digits except lowercase "L" (can group 4-5-4)	35	13	66.68068	1	0	0	1	0	0	66.7
Pairs of phonetically distinct consonants "b,d,g,h,k,l,m,n,p,r,s,t,z" followed by vowel, arranged as follows: cvcvccv cvcvccv cvcvccv	13	11	40.70484	5	10	23.21928	1	0	0	63.9
12 alphanumeric digits except lowercase "L" separated randomly into three groups	35	12	61.5514	11	1	3.459432	1	0	0	65.0
5 word DICEWARE	7776	5	64.62406	1	0	0	1	0	0	64.6
12 alphanumeric digits except lowercase "L" (can be grouped 4-4-4)	35	12	61.5514	1	0	0	1	0	0	61.6
4 words from 70K dictionary	70000	4	64.38027	1	0	0	1	0	0	64.4
Three dates, Month, Day, Year	12	3	10.75489	30	3	14.72067	500	3	26.89735	52.4
Random first name (10K) plus M.I. Plus last name (50K)	10000	1	13.28771	50000	1	15.60964	26	1	4.70044	33.6
Random street address	20000	1	14.28771	8	1	3	10000	1	13.28771	30.6
++ No.				NSEW		30.6	20	1	4.321928	34.9
<u>(e.g., Passwords for smartcards)</u>	1	0	0	1	0	0	1	0	0	0.0
Pairs of phonetically distinct consonants "b,d,g,h,k,l,m,n,p,r,s,t,z" followed by vowel, arranged as follows: cvcvccv cvcvccv cvcvccv	13	4	14.80176	5	4	9.287712	1	0	0	24.1
5 alphanumeric digits except lowercase "L" (e.g., Medium Security for use with secure delay)	35	5	25.64642	1	0	0	1	0	0	25.6
Pairs of phonetically distinct consonants "b,d,g,h,k,l,m,n,p,r,s,t,z" followed by vowel, arranged as follows: cvcvccv cvcvccv cvcvccv	13	8	29.60352	5	8	18.57542	1	0	0	45.2
"b,d,g,h,k,n,p,s,t,z" followed by vowel, arranged as follows: cvcvccv cvcvccv cvcvccv	10	8	26.57542	5	8	18.57542	1	0	0	52
Groups of numbers 1000-9192 = {0-8192}+1000	8192	4	52	1	0	0	1	0	0	0.0
	1	0	0	1	0	0	1	0	0	0.0

SECURE PASSPHRASE

Z2-Z6 illustrate screen shots of a secure passphrase entry system according to various aspects of the invention, illustrating an exemplary user interface at different points during the input of a passphrase without the use of keystrokes. Thus, the security hazard of keystroke loggers can be avoided. In addition, the mouse-based input method may be preferred by users over the use of a keyboard, for example when they are entering their passphrase to browse encrypted e-mails or files. In an experiment the applicant carried out, "entering" the passphrase by the mouse input method (simulated by tapping a pen onto a printout similar to Z2-Z6) did not take him much longer than typing in the passphrase.

Advantageously, the passphrase is represented in the illustrated embodiment (as it is entered) both as circled letters and has a pair of stair-stepped line segments having characteristic shapes. Viewing the passphrase and its associated characteristic shapes of the line segments helps the user to remember the passphrase. Human brains are good at remembering pronounceable words (even when they are nonsense words) and are also good at remembering characteristic shapes. The combination of both characteristics of a unique passphrase can be expected to improve the user's ability to remember it when the time comes to input the passphrase.

A delay system according to another aspect of the invention, illustrated in the block diagrams of Z7 and Z8, makes a secure delay according to various aspects of the invention less unobtrusive to the user. It does so by beginning the delay process when the passphrase has been partially entered. Advantageously, such a system performs the delay computations substantially in parallel with the unavoidable delay of the user's input of the passphrase. Even when typing quickly, it took the applicant at least about three seconds to enter the passphrase during his experiment. This is a substantial period of delay that, when made computationally unavoidable, makes cracking the 2^{48} possible combinations of the randomly chosen passphrase nearly impossible with the computing horsepower available around the date of filing of the present application. (See Z9 and Z10 for a detailed computational analysis.) The screen shots of Z2-Z6 show the "private key delayed unlocking" beginning with the first consonant-vowel pair entered by the user. The delayed unlocking (the inventive "computationally unavoidable" delay) continues substantially in parallel with the user's input of additional consonant-vowel pairs. Note Z6, in which the passphrase is confirmed and the private key has been completely unlocked.

#

1/2

Number of consonants	13
Number of vowels	5
Combinations in each CV pair	65
Pairs	8
Total Combinations	318,644,812,890,625
Base-2 Entropy	48

(bits)

Mean Input Times (experiment)

Touch typing (fast), hidden digits	4.70	(sec.)	$= (5.3 + 4 + 5 + 5.1 + 4.1) / 5$
Tough typing (fast), digits shown	3.88		$= (3.8 + 3.5 + 3.4 + 3.5 + 5.2) / 5$
Mouse, drag line through digits	9.32		$= (9.7 + 9.2 + 9.8 + 8.9 + 9) / 5$
Mouse, click on digits	8.28		$= (8 + 8.2 + 8.9 + 8 + 8.3) / 5$
Set total delay to minimum total input time (Keeps user from noticing the delay)	3.88	(sec.)	

Software (equivalent machine)Attack Analysis

Total number of seconds for all delayed combinations (on equivalent machine)	1,236,341,874,015,620	
Average number of years on equivalent machine (1/2 total)	19,602,072	← Impossible with present machines
Effective lifetime of signing key (years)	20	
Performance multiplier at end of life (Moore's law)	10,321	
Total number of seconds for all delayed combinations (on future machine)	119,785,790,491	
Number of future machines in network	1,000	← Even this number would leave evidence of fraudulent activity on the part of the person forging signature with broken private key
Average number of years on future machine network (1/2 total)	0.95	

Massively Parallel Hardware (FPGA, ASIC) Attack Analysis

Budget (current equivalent dollars)	1,000,000	←
Cost per FPGA or ASIC (with NRE)	400	
Number of available parallel branches in budget	2,500	
Number of parallel branches operating simultaneously	2,048	
Performance multiplier of each branch over equivalent machine	100	
Total performance multiplier over equivalent machine	204,800	

Total number of seconds for all delayed combinations	6,036,825,557
Average number of years (1/2 total)	96

Effective lifetime of signing key (years)

↑ Can include sunset date in ACI after which all sigs. are invalid
← Impractical with present H/W, even w/ large budget

2/2

Performance multiplier at end of life (Moore's law)	10,321
Total number of seconds for all delayed combinations (on future hardware system)	584,892
Average number of days on future machine (1/2 total)	3.38

But, here's where the key lookup helps
protect against such attacks...

Random keys in key lookup table	8,192
Size of each key (in bytes)	16
Total memory for lookup table (bytes)	131,072
Total fast SRAM memory for all branches (bytes)	268,435,456
Total MB of fast SRAM memory	262,144
Cost per MB of SRAM (current equivalent dollars)	10
Total cost of SRAM (See budget above.)	2,621,440

Lots of
gates: \$\$

$\sim 8 \times 2$ gates,
per byte, or

$\sim 4.3 \times 10^9$ gates

Or $\sim 2M$ gates
per branch

Expensive ASIC!

Should
(must fit in 256K cache)
to ensure top
performance in
user's machine.
otherwise ratio
between

$$\left[\frac{\text{Attacker Delay}}{\text{User Delay}} \right]$$

is reduced.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.