Université de Sherbrooke Département de mathématiques

MAT115 : Logique et mathématiques discrètes

Examen final

Professeur : Marc Frappier

Vendredi 21 décembre 2018, 9 h à 12 h Salles : D3-2033, 38, 31, 37

Notes importantes:

- Documentation permise.
- Tout appareil électronique interdit.
- Ne dégrafez pas ce questionnaire.
- La correction est, entre autres, basée sur le fait que chacune de vos réponses soit :
 - claire, c'est-à-dire lisible et compréhensible pour le lecteur;
 - précise, c'est-à-dire exacte et sans erreur;
 - concise, c'est-à-dire qu'il n'y ait pas d'élément superflu;
 - complète, c'est-à-dire que tous les éléments requis sont présents.
- La note de l'examen est sur 100. Le total des points des questions donne 110. Votre note sera tronquée à 100 si elle dépasse 100. Vous pouvez répondre à toutes les questions.
- nombre de pages de l'examen, incluant celle-ci : 9.

Pondération:

Question	Point	Résultat	Question	Point	Résultat
1	10		6	10	
2	10		7	10	
3	10		8	10	
4	10		9	15	
5	10		10	15	
			total	110	

Nom:	Prénom :	
Signature:	CIP :	

1. (10 pts) Prouvez la formul	le suivante par i	nduction.
		$\sum_{i=1}^{n} i^3 = \frac{1}{4}n^2(n+1)^2$

2.	(10 pts)	Prouvez la fo	ormule suivante.	Soit $r \in \mathcal{A}$	$S \leftrightarrow S$,	$T \subseteq S$,	alors
----	----------	---------------	------------------	--------------------------	-------------------------	-------------------	-------

$$id(T)$$
; $r = r \cap T \times S$

Utilisez la définition suivante de l'identité, pour simplifier votre preuve.

$$\mathsf{id}(T) = \{(x,y) \mid x \in T \land x = y\} \tag{1}$$

—

3. (10 pts) On désire prouver le théorème suivant :

$$f \in S \rightarrow T \Rightarrow (\forall x, y, z \cdot (z, x) \in f \land (z, y) \in f \Rightarrow x = y)$$

Complétez la preuve ci-dessous en donnant les justifications manquantes ou les étapes manquantes.

$$f \in S \rightarrow T$$

$$f^{-1}\,;f\subseteq\operatorname{id}(T)$$

$$\forall x,y\cdot(x,y)\in f^{-1}\ ; f\Rightarrow(x,y)\in \operatorname{id}(T)$$

$$\forall x, y \cdot (\exists z \cdot (x, z) \in f^{-1} \land (z, y) \in f) \Rightarrow (x, y) \in \mathsf{id}(T)$$

$$\forall x,y\cdot (\exists z\cdot (z,x)\in f\wedge (z,y)\in f)\Rightarrow (x,y)\in \mathrm{id}(T)$$

$$\forall x, y \cdot (\exists z \cdot (z, x) \in f \land (z, y) \in f) \Rightarrow x = y \land x \in T$$

$$\forall x, y, z \cdot (z, x) \in f \land (z, y) \in f \Rightarrow x = y \land x \in T$$

$$\forall x, y, z \cdot ((z, x) \in f \land (z, y) \in f \Rightarrow x = y) \land ((z, x) \in f \land (z, y) \in f \Rightarrow x \in T)$$

$$\forall x, y, z \cdot (z, x) \in f \land (z, y) \in f \Rightarrow x = y$$

4. (10 pts) Prouvez la formule suivante par induction sur les ensembles finis. Soit S un ensemble.

$$\forall A \cdot A \in \mathbb{F}(S) \ \Rightarrow \ \operatorname{card}(A \rightarrowtail A) = \operatorname{card}(A)!$$

L'opérateur "!" est appelé la factorielle et il est défini comme suit:

$$0! = 1 \tag{2}$$

$$n > 0 \quad \Rightarrow \quad n! = n * (n-1)! \tag{3}$$

Par exemple, 3! = 3 * 2 * 1 = 6

Vous pouvez utiliser les deux lois suivantes pour faire la preuve.

$$\varnothing \rightarrowtail \varnothing = \{\varnothing\} \tag{4}$$

$$\forall B, x \cdot \\ x \notin B \land \mathsf{finite}(B) \\ \Rightarrow \\ \mathsf{card}\left((B \cup \{x\}) \rightarrowtail (B \cup \{x\})\right) = (\mathsf{card}(B) + 1) * \mathsf{card}(B \rightarrowtail B)$$
 (5)

5. (10 pts) Pour chaque relation ci-dessous, indiquez les propriétés qu'elle satisfait, en indiquant un X dans la case correspondante. On suppose que $r \in S \leftrightarrow S$ et $S = \{a, b\}$.

r	réflexive	irréflexive	transitive	symétrique	anti- symétrique	asymétrique
id(S)						
id(S) S × S						
{a} × S						
$\{a\} \times \{b\}$						
{(a,b),(b,b)}						

6. (**10 pts**)

(a) Est-ce que la relation suivante est bien fondée? Justifiez votre réponse.

$$\{(x,y)\mid x\in\mathbb{N}\wedge y\in\mathbb{N}\wedge x=y+1\}$$

-	
l	
	-

(b) Est-ce que la relation suivante est acyclique? Justifiez votre réponse.

$$\{(x,y)\mid x\in\mathbb{N}\wedge y\in\mathbb{N}\wedge x*y=12\}$$

-		
-		
-		

7. (10 pts) Soit $A = \{a, b\}$ et $B = \{0, 1\}$. Pour chaque relation ci-dessous, déterminez à quelles classes de fonction elle appartient, en indiquant un X dans les cases appropriées.

relation	$A \rightarrow B$	$A \rightarrow B$	$A \rightarrowtail B$	$A \rightarrowtail B$	$A +\!\!\!\!> B$	A woheadrightarrow B	$A \rightarrowtail B$	$A \rightarrowtail B$
$\{(a,0),(b,0)\}$								
$\{(b,0),(b,1)\}$								
$\{(b,0)\}$								
$\{(a,1),(b,2)\}$								

	Soit $\Sigma = \{a, b\}$. Donnez les mots se terminant pa			qu	a accepto seute.
(b)	Soit $\Sigma = \{a, b, c\}$. Donn				
(b)	Soit $\Sigma = \{a, b, c\}$. Donn les mots se terminant p Par soucis de simplicité	ar aba (i.e., le	même langage	que pour la qu	estion précéde
(b)	les mots se terminant p	ar aba (i.e., le	même langage	que pour la qu	estion précéde
(b)	les mots se terminant p	ar aba (i.e., le	même langage	que pour la qu	estion précéde
(b)	les mots se terminant p	ar aba (i.e., le	même langage	que pour la qu	estion précéde
(b)	les mots se terminant p	ar aba (i.e., le	même langage	que pour la qu	estion précéde
(b)	les mots se terminant p	ar aba (i.e., le	même langage	que pour la qu	estion précéde
(b)	les mots se terminant p	ar aba (i.e., le	même langage	que pour la qu	estion précéde
(b)	les mots se terminant p	ar aba (i.e., le	même langage	que pour la qu	estion précéde
(b)	les mots se terminant p	ar aba (i.e., le	même langage	que pour la qu	estion précéde
(b)	les mots se terminant p	ar aba (i.e., le	même langage	que pour la qu	estion précéde
(b)	les mots se terminant p	ar aba (i.e., le	même langage	que pour la qu	estion précéde
(b)	les mots se terminant p	ar aba (i.e., le	même langage	que pour la qu	estion précéde

9. (15 pts) Déterminisez l'automate suivant, en supposant que $\Sigma = \{a,b\}$.

Dessinez l'automate déterministe ici. Ne donnez pas t et λ -closure. Donnez l'état puits.

10. (15 pts) Minimisez l'automate suivant, en supposant que $\Sigma = \{a,b\}.$

Dessinez l'automate minimal équivalent ici.

