

Question Paper 2006 Compartment Outside Delhi Set-1

Class-12 Chemistry

Time Allowed: 3 Hours, Maximum Marks: 70

General Instructions

- 1. All questions are compulsory.
- 2. Marks for each question are indicated against it.
- 3. Question numbers 1 to 5 are very short-answer questions, carrying 1 mark each.

 Answer these in one word or about one sentence each.
- 4. Question numbers 6 to 12 are short-answer questions, carrying 2 marks each. Answer these in about 30 words each.
- 5. Question numbers 13 to 24 are short-answer questions of 3 marks each.

 Answer these in about 40 words each.
- 6. Question numbers 25 to 27 are long-answer questions of 5 marks each. Answer these in about 70 words each.
- 7. Use Log Tables, if necessary Use of calculators is not permitted.
- 1. State Raoult's law for solutions of nonvolatile solutes. [1]
- 2. What makes the crystal of KCI appear sometimes violet? [1]
- 3. Define activation energy of a reaction. [1]
- 4. Give the IUPAC name of the following compound: [1]

5. Complete the reaction equation [1]

$$C_6H_6 + RCOCI - --->$$
 (anhydrous)

6. On what basis can you say that in an atom an s-orbital is spherical and the p-orbitals

are dumbbell shaped? [2]

- 7. Prove that in a process heat change at constant pressure is a measure of the change in enthalpy. [2]
- 8. What happens when
- i. Tin dissolves in a hot alkali solution?
- ii. XeO_3 reacts with an aqueous alkali solution?

Write the complete chemical equation in each case. [2]

Or

Write balanced chemical equations for the following processes

- i. SiO_2 is treated with an excess of KOH .
- ii. Bi_2O_3 is treated with conc. HNO_3 .
- 9. How is the variability in oxidation states of the transition elements different from that of the non-transition elements? Illustrate with examples. [2]
- 10. Convert the following wedge-and-dash formula to Fischer projection formula. [2]

- 11. How are the following conversions carried out [2]
- i. Propene to porpan-2-ol
- ii. Phenol to salicylaldehyde
- 12. Differentiate between a homopolymer and a copolymer. Give one example of each.

[2]

13. Compare the relative stability of the following species and indicate their magnetic (diamagnetic or paramagnetic) characters O_2^+ , O_{2-} and O_2^{2-} Is only bond order a quantitative measure of the bond strength in a species? [3]

Or

Draw the molecular orbital diagrams for the species $\,N_2^+\,$ and $\,N_2^-\,$. Comment on the magnetic property and bond strength of each.

- 14. What is a semiconductor? Describe two main types of semiconductors, giving examples and their distinctive features. [3]
- 15. A 0.2 per cent aqueous solution of a non-volatile solute exerts a vapour pressure of $1.004\ bar$ at $1000\ C$. What is the molar mass of the solute? (Given: Vapour pressure of pure water at $100^{\circ}C$ is $1.013\ bar$ and molar mass of water is $18\ g\ mol^{-1}$) [3]
- 16. Calculate $\Delta_r G^\circ$ and the equilibrium constant for the following reaction at 298 K and 1 atmosphere pressure:

$$CO(g) + 3H_2(g) \leftrightarrow CH_4(g) + H_2O(l)$$

(Given that at $298~K~\Delta_r H^\circ$ for the reaction is $-250.3~kJ~mol^{-1}$ and $\Delta_f S^\circ$ for the reaction is $-333.3~JK^{-1}$ and $R=8.314~J~K^{-1}~mol^{-1}$ [3]

- 17. At 300° C the thermal dissociation of HI is 20%. What will be the equilibrium concentrations of H_2 and I_2 in the system $H_2 + I_2 \leftrightarrow 2HI$ at this temperature if the equilibrium concentration of HI is found to be 0.96 $mol\ L^{-1}$? [3]
- 18. State what you will observe when
- i. an electrolyte is added to a colloidal solution,
- ii. an electric current is passed through a colloidal solution,
- iii. a beam of light is passed across pure water and then across a colloidal solution of

sulphur when you are not in the path of light. [3]

- 19. How would you account for the following observations: [3]
- i. The enthalpies of atomisation of the transition metals are high.
- ii. Of the lanthanoids only Cerium (Z = 58) is known to exhibit quite stable + 4 state in solutions.
- iii. Sodium thiosulphate solution is used in the 'fixing' step of photography.
- 20. Draw the structures of the following: [3]
- i. Cis-dichlorotetracyanochromate (III)
- ii. Pentaamminenitrito-N-cobalt (III)
- iii. Hexamethyldialuminium
- 21. Write the product nucleides for the following radiaction decays: [3]
 - i. 92 U undergoes α decay
 - ii. ²³⁹₉₃ Np undergoes β decay
- iii. 133 Np undergoes β+ emission

(Note: You can put 'X' for the symbol if it is not known to you).

- 22. How would you bring about the following conversions: [3]
- i. Propanal to butanone
- ii. Benzaldehyde to benzophenone
- iii. Benzoyl chloride to benzonitrile

Give the complete chemical equation and reaction conditions in each case.

- 23. a. Explain the following observations:
- i. Primary amines are higher boiling than comparable tertiary amines.
- ii. Aromatic amines are less basic than aliphatic amines.
- b. Mention two important uses of N, N-Dimethyl aniline(DMA). [3]
- 24. Describe the following with examples: [3]

- i. Tranquilizers
- ii. Preservatives
- iii. Biliquid propellants
- 25. a. State the products of electrolysis obtained on the cathode and the anode in the following cases.
- i. A dilute solution of $H_{\gamma}SO_{4}$ with platinum electrodes
- ii. An aqueous solution of $AgNO_3$ with silver electrodes
- b. Write the cell formulation and calculate the standard cell potential of the galvanic cell in which the following reaction takes place:

$$Fe^{2+}(aq) + Ag^{+}(aq) \rightarrow Fe^{3+}(aq) + Ag(s)$$

Calculate $\Delta_f G^{\circ}$ for the above reaction.

[Given:
$$E_{Ag^+/Ag}^{\circ} = +0.80 \ V \ and \ E_{Fe^{3+}/Fe^{2+}}^{\circ} = +0.77V$$
; $F = 96500 \ Cmol^{-1}$] [2, 3]

Or

- a. What are fuel cells? Write the electrode reactions of a fuel cell which uses the reaction of hydrogen with oxygen.
- b. Write the cell formulation and calculate the standard cell potential of the galvanic cell which uses the following reaction in its operation:

$$2Cr(s)+3Cd^{2+}(aq) \rightarrow 2Cr^{3+}(aq)+3Cd(s)$$

Calculate $\Delta_{_{\scriptscriptstyle T}}G^\circ$ for the above reaction.

[Given:
$$E_{Cr^{3+}/Cr}^{\circ} = -0.74 V$$
 and $E_{Cd^{2+}/Cd}^{\circ} = -0.40 V$; $F = 96500 C mol^{-1}$]

- 26. a. How would you account for the following:
- i. Tin (II) is a stronger reducing agent than lead (II).
- ii. Enthalpy of dissociation for F_2 is much less than that for Cl_2 .
- iii. Sulphur in vapour state exhibits paramagnetism.
- b. Draw the structures of the following molecules:
- i. *H*₃*PO*₂
- ii. $XeOF_4$ [3, 2]

Or

- a. Explain the following observations:
- i. Anhydrous aluminium chloride has a lower melting point than aluminium fluoride
- ii. Bismuth oxide is not acidic in any of its reactions
- iii. HF is weaker acid than HI in aqueous solutions
- b. Draw the structures of the following molecules
- i. XeF₄
- ii. SF_4
- 27. a. Enumerate the structural differences between DNA and RNA. Write down the structure of a nucleoside which is present only in RNA.
- b. What are reducing sugars? Give an example each of a reducing sugar and a non-reducing sugar. [3, 2]

Or

- a. Name the three classes of lipids and give one example of each class.
- b. Explain the term mutarotation giving an example.

