SMOTE - Synthetic Minority Oversampling Technique

IMBALANCED DATA

· Presence of minority class in the dataset

- Challenges related Imbalanced Dataset
 - · Biased predictions
 - · Misleading accuracy

- Some Examples
 - · Credit card frauds
 - Manufacturing defects
 - Rare diseases diagnosis
 - · Natural disasters
 - Enrolment to premier institutes

Two Class Classification

No-Fraud \rightarrow 99.5% Fraud \rightarrow 0.5%

RE-SAMPLE

· Balance the classes by Increasing minority or decreasing majority

- · Random Under-Sampling
 - · Randomly remove majority class observations
 - Helps balance the dataset
 - Discarded observations could have important information
 - May lead to bias
- · Random Over-Sampling
 - · Randomly add more minority observations by replication
 - · No information loss
 - · Prone to overfitting due to copying same information

Total Observations = 1,000 Fraudulent = 10 or 1% Normal = 990 or 99%

Reduce normal to 90 Fraudulent = 10 or 10%

Total Observations = 1,000 Fraudulent = 10 or 1% Normal = 990 or 99%

Increase fraudulent by 100 Fraudulent 110 or 10%

SMOTE

Synthetic Minority Oversampling Technique

Creates new "Synthetic" observations

- SMOTE Process
 - Identify the feature vector and its nearest neighbour
 - Take the difference between the two
 - Multiply the difference with a random number between 0 and 1
 - Identify a new point on the line segment by adding the random number to feature vector
 - Repeat the process for identified feature vectors

Thanks