

Plotting Tips

The first thing you need to consider when plotting is your **message**, the **audience**, and type of **plot**

Making a graphic is always helpful for a reader but not always necessary. Can you say this image in words?

Plots tell a story

Plot Colours

You can change the colour of your

lines by specifying one of the

following colours from the table

e.g., plot(x, y, 'r')

you can also specify RGB values using a specifier, see below

blue

W	white

Plot Lines

You can change the appearance of the lines of a plot()

e.g., plot(x, y, '-.') these can be combined with markers

and colours

\Diamond	P	lol	t(x,	у,	'X-	٠.٢′
$\langle \rangle$						

-	Solid line
	Dashed line
:	Dotted line
	Dotted line

Figure and close all

I always recommend you begin a new graph by running **figure** this ensures that you are not overwriting any previous information you've plotted before

Reminder that close can be used to **close** currently opened figures

Hold on / off

The command hold on allows one to **add to the existing axes** of a plot you just made. It is like adding another layer.

This does **not** need to be the **same type** of plot

Hold off removes this hold on the figure's axsis and allows you to overwrite them

Other Line plots

same way that plot does

Useful when data is decaying or exponentially growing

Use 'LineStyle' to remove line between x values this

allows you to plot the error bars separately from

Plot but make it fashion

There are many toolboxes in addition to the basic functions of MATLAB, some are developed my MATLAB and others are **external** and need downloading

We will cover some additional methods to plot in MATLAB

Gramm

capacities. The code runs much like ggplot in R,

whereby data is fed into the gramm function and

each layer of the graph is added on top

See below for a cheat sheet summarizing gramm's capacities

https://github.com/piermorel/gramm/raw/master/gramm%20cheat%20sheet.pdf

Gramm


```
g=gramm('x',cars.Model\_Year,'y',cars.MPG,'color',cars.Cylinders,'subset',cars.Cylinders \sim = 3 \ \& \ cars.Cylinders \sim = 5);
```

g.facet_grid([],cars.Origin_Region);

g.geom_point();

g.stat_glm();

g.set_names('column','Origin','x','Year of production','y','Fuel economy (MPG)','color','# Cylinders');

g.set_title('Fuel economy of new cars between 1970 and 1982');

Figure('Position',[100 100 800 400]);

g.draw();

See example on their website

References

- Rolandi et al 2011. A Brief Guide to Designing Effective Figures for the Scientific Paper. Advanced Materials
- Rougier et al 2014. Ten Simple Rules for Better Figures. Plos Computational Biology

• **Nature** blog http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.html

