Canonicity for Cubical Type Theory

Simon Huber

University of Gothenburg

Ljubljana, January 31, 2017

Review of Cubical Type Theory

(j.w.w. Cohen, Coquand, Mörtberg in TYPES 2015)

lacktriangleright allow variables to range over (formal) interval ${\mathbb I}$

$$i: \mathbb{I} \vdash t(i): A$$
 line from $t(0)$ to $t(1)$ in A $i: \mathbb{I}, j: \mathbb{I} \vdash r(i, j): A$ square in A

▶ path types Path A a b for A type, a : A, and b : A

$$\frac{\Gamma \vdash A \qquad \Gamma, i : \mathbb{I} \vdash t(i) : A}{\Gamma \vdash \langle i \rangle t : \mathsf{Path} \, A \, t(0) \, t(1)}$$

- composition operations to justify rules for identity types
- univalence provable from glueing

Partial Elements

New operations on contexts: context restrictions Γ, φ

$$\mathbb{F} \ \ni \ \varphi, \psi ::= 0_{\mathbb{F}} \mid 1_{\mathbb{F}} \mid (i=0) \mid (i=1) \mid \varphi \vee \psi \mid \varphi \wedge \psi$$
 (with relation $(i=0) \wedge (i=1) = 0_{\mathbb{F}}$)

 $\Gamma, \varphi \vdash A$ is a **partial type**. Examples:

 $i: \mathbb{I}, (i=0) \vee (i=1) \vdash A$

$$i:\mathbb{I},j:\mathbb{I},(i=0)ee(j=1)dash\mathcal{A}(i/0,j/1) \stackrel{A(j/1)}{\longrightarrow} A(i/1,j/1) \ A(i/0,j/0) \ A(i/0,j/0)$$

 $A(i/0) \bullet$

 $\bullet A(i/1)$

Systems

Can introduce partial types (and terms) using systems:

$$\frac{\Gamma \vdash \varphi_1 \lor \dots \lor \varphi_n = 1 : \mathbb{F}}{\Gamma, \varphi_i \vdash A_i \qquad \Gamma, \varphi_i \land \varphi_j \vdash A_i = A_j}{\Gamma \vdash [\varphi_1 \ A_1, \dots, \varphi_n \ A_n]}$$

If
$$\Gamma \vdash \varphi_k = 1 : \mathbb{F}$$
, then $\Gamma \vdash [\varphi_1 \ A_1, \dots, \varphi_n \ A_n] = A_k$.

Similar: $\Gamma \vdash [\varphi_1 \ t_1, \dots, \varphi_n \ t_n] : A$.

Composition Operations

Operation giving the "lid" to an open box

$$\frac{\Gamma, i : \mathbb{I} \vdash A \qquad \Gamma \vdash \varphi : \mathbb{F} \qquad \Gamma, \varphi, i : \mathbb{I} \vdash u : A}{\Gamma \vdash u_0 : A(i/0) \qquad \Gamma, \varphi \vdash u(i/0) = u_0 : A(i/0)}{\Gamma \vdash \mathsf{comp}^i A [\varphi \mapsto u] u_0 : A(i/1)}$$

$$\Gamma, \varphi \vdash \mathsf{comp}^i A [\varphi \mapsto u] u_0 = u(i/1) : A(i/1)$$

Explained by induction on the type

Glueing

Allows to "glue" types to parts of another type along an equivalence. Justifies compositions for universes and univalence.

Example:
$$\varphi = (i = 0) \lor (i = 1)$$
, $i : \mathbb{I} \vdash A$, $i : \mathbb{I}, \varphi \vdash T$, $i : \mathbb{I}, \varphi \vdash w$: Equiv $T A$

Have: equivalence (unglue, ...) : Equiv BA extending w.

Aim

Theorem (Canonicity)

Given a derivation $i_1 : \mathbb{I}, \ldots, i_n : \mathbb{I} \vdash t : \mathbb{N} \ (n \geqslant 0)$ there exists a unique $m \in \mathbb{N}$ such that $i_1 : \mathbb{I}, \ldots, i_n : \mathbb{I} \vdash t = S^m 0 : \mathbb{N}$.

We are interested in a proof that provides an algorithm.

Overview of the Proof

- 1. Typed and deterministic operational semantics
- 2. Computability predicates and relations
- 3. Soundness

Notation

 I, J, K, \ldots for contexts build only from **names**, i.e., of the form $i_1 : \mathbb{I}, \ldots, i_n : \mathbb{I}$ $(n \ge 0)$

 $f: J \rightarrow I$ for substitutions between such contexts

(Compare this to the cube category!)

Operational Semantics

Naive reduction on untyped terms not confluent!

Instead: One-step reduction on types and terms

$$I \vdash A \succ B$$
$$I \vdash t \succ u : A$$

well-typed and deterministic:

$$\begin{cases} I \vdash A \succ B & \Rightarrow I \vdash A = B \\ I \vdash t \succ u : A & \Rightarrow I \vdash t = u : A \end{cases}$$

$$\begin{cases} I \vdash A \succ B & \& I \vdash A \succ C & \Rightarrow B \equiv C \\ I \vdash t \succ u : A & \& I \vdash t \succ v : B & \Rightarrow u \equiv v \end{cases}$$

Operational Semantics

Weak-head reduction

$$\frac{I,x:A\vdash t:B}{I\vdash (\lambda x:A.t)\,u\succ t(x/u):B(x/u)}$$

$$\frac{I\vdash t\succ t':(x:A)\to B}{I\vdash u:A} \xrightarrow{I\vdash u:A}$$

$$\frac{I\vdash t\Rightarrow t': \exists\vdash t:A}{I\vdash (\langle i\rangle t)\,r\succ t(i/r):A}$$

$$\frac{I\vdash t\succ t': \mathsf{Path}\,A\,u\,v\qquad I\vdash r: \exists}{I\vdash t\;r\succ t'\;:A}$$

Reductions for Compositions

▶ First, reduction in the type: if $I, i : \mathbb{I} \vdash A \succ B$, then

$$I \vdash \mathsf{comp}^i A [\varphi \mapsto u] u_0 \succ \mathsf{comp}^i B [\varphi \mapsto u] u_0 : B(i1)$$

Reductions for each type former are then explained as a directed form of the corresponding judgmental equality. Example:

$$I \vdash \mathsf{comp}^{i} ((x : A) \times B) [\varphi \mapsto u] u_{0} \succ (v(i1), \mathsf{comp}^{i} B(x/v) [\varphi \mapsto u.2] (u_{0}.2)) : (x : A(i1)) \times B(i1)$$

where
$$v = \operatorname{fill}^i A [\varphi \mapsto u.1] (u_0.1)$$
.

Reductions for Compositions

We never have to reduce in restricted contexts I, φ (for now).

$$\frac{I \vdash \varphi : \mathbb{F} \qquad I, \varphi, i : \mathbb{I} \vdash u : \mathsf{N} \qquad I, \varphi, i : \mathbb{I} \vdash u = 0 : \mathsf{N}}{I \vdash \mathsf{comp}^i \, \mathsf{N} \, [\varphi \mapsto u] \, \mathsf{0} \succ \mathsf{0} : \mathsf{N}}$$

Reductions for Systems

Let
$$I \vdash \varphi_1 \lor \cdots \lor \varphi_n = 1 : \mathbb{F}$$
.

$$\frac{I, \varphi_{i} \land \varphi_{j} \vdash A_{i} = A_{j} \quad k \text{ minimal with } I \vdash \varphi_{k} = 1 : \mathbb{F}}{I \vdash [\varphi_{1} \ A_{1}, \dots, \varphi_{n} \ A_{n}] \succ A_{k}}$$

$$\frac{I \vdash A \quad I, \varphi_{i} \vdash t_{i} : A}{I, \varphi_{i} \vdash t_{i} = t_{j} : A \quad k \text{ minimal with } I \vdash \varphi_{k} = 1 : \mathbb{F}}$$

$$\frac{I \vdash [\varphi_{1} \ t_{1}, \dots, \varphi_{n} \ t_{n}] \succ t_{k} : A}{I \vdash [\varphi_{1} \ t_{1}, \dots, \varphi_{n} \ t_{n}] \succ t_{k} : A}$$

Reductions for Glue

```
For I \vdash \varphi = 1 : \mathbb{F}:
```

- ▶ $I \vdash \mathsf{Glue} [\varphi \mapsto T] A \succ T$
- ▶ $I \vdash \mathsf{glue} [\varphi \mapsto t] a \succ t : T$
- ▶ $I \vdash \text{unglue} [\varphi \mapsto w] u \succ w.1 u : A$

For $I \vdash \varphi \neq 1 : \mathbb{F}$:

- ▶ $I \vdash \text{unglue} [\varphi \mapsto w] (\text{glue} [\varphi \mapsto t] a) \succ a : A$
- ▶ $I \vdash \text{unglue} [\varphi \mapsto w] u \succ \text{unglue} [\varphi \mapsto w] u' : A \text{ whenever}$ $I \vdash u \succ u' : \text{Glue} [\varphi \mapsto T] A$

Reductions are in general **not** closed under name substitutions:

$$I \vdash u \succ v : A \& f : J \rightarrow I \not\Rightarrow J \vdash uf \succ vf : Af$$

Examples:

- ▶ If $u = [(i = 0) \ v, 1_{\mathbb{F}} \ w]$, then $u \succ w$ but $u(i/0) \succ v$. We only have $\vdash v = w(i/0)$.
- ▶ If $u = \text{unglue} [\varphi \mapsto w]$ (glue $[\varphi \mapsto t]$ a) with $\varphi \neq 1$ and $\varphi f = 1$, then $u \succ a$ but $uf \succ wf.1$ (glue $[\varphi f \mapsto tf]$ af)

Computability Predicates

- want to adapt Tait's (1967) computability method
- ▶ Reduction adds names $i : \mathbb{I}$ (in compⁱ)!
- So: need to consider expressions with name variables $i_1 : \mathbb{I}, \dots, i_n : \mathbb{I}$
- Being computable should be stable under substituting in name variables!
- We only consider well-typed expressions.

Computability Predicates and Relations

Define by (simultaneous) induction-recursion:

$$I \Vdash A$$
 $I \Vdash A = B$
 $I \Vdash u : A$ by recursion on $I \Vdash A$
 $I \Vdash u = v : A$ by recursion on $I \Vdash A$

(Actually, with a universe we need \Vdash_0 and $\Vdash_1 \dots$)

Some Properties

- Closed under substitutions: e.g., I ⊩ A and f: J → I imply J ⊩ Af.
- ▶ $I \Vdash \cdot = \cdot : A$ and $I \Vdash \cdot = \cdot$ are PERs with domain given by $I \Vdash \cdot : A$ and $I \Vdash \cdot$, respectively.
- ▶ $I \Vdash u = v : A \text{ and } I \Vdash A = B \text{ imply } I \Vdash u = v : B.$

Π-types

 $I \Vdash (x : A) \rightarrow B$ whenever:

- ▶ $J \Vdash Af$ for all $f: J \rightarrow I$,
- ▶ $J \Vdash B(f, x/u)$ for all $f: J \rightarrow I$ and $J \Vdash u : Af$, and
- ▶ $J \Vdash B(f, x/u) = B(f, x/v)$ for all $f: J \rightarrow I$ and $J \Vdash u = v : Af$.

In this case, $I \Vdash w : (x : A) \rightarrow B$ whenever:

- ▶ $J \Vdash wf \ u : B(f, x/u)$ for all $f : J \rightarrow I$ and $J \Vdash u : Af$, and
- ▶ $J \Vdash wf \ u = wf \ v : B(f, x/u)$ for all $f : J \rightarrow I$ and $J \Vdash u = v : Af$.

Path types

$I \Vdash \mathsf{Path}\,A\,a\,b$ whenever

- ▶ $J \Vdash Af$ for all $f: J \rightarrow I$,
- ▶ $I \Vdash a : A \text{ and } I \Vdash b : A$.

In this case, $I \Vdash u$: Path A a b whenever

- ▶ $I \Vdash u 0 = a : A \text{ and } I \Vdash u 1 = b : A, \text{ and }$
- ▶ $J \Vdash uf \ r : Af \ \text{for all} \ f : J \to I \ \text{and} \ r \in \mathbb{I}(J)$.

Naturals

 $I \Vdash N$ by definition. When should a natural $I \vdash u : N$ be computable?

Usually something like $u \succ^* S^m 0 \dots$ but reduction is not closed under substitution!

Reducts have to be coherent...

Naturals

- I ⊩ 0 : N and I ⊩ 0 = 0 : N
- ▶ if $I \Vdash u : N$, then $I \Vdash S u : N$ if $I \Vdash u = v : N$, then $I \Vdash S u = S v : N$
- ▶ $I \Vdash u : N$ for u is not an introduction whenever
 - ▶ for all $f: J \rightarrow I$, $J \vdash uf \succ uf \downarrow : Af$ and $J \Vdash uf \downarrow$, and
 - ▶ for all $f: J \rightarrow I$ and $g: K \rightarrow J$,

$$K \Vdash uf \downarrow g = u \downarrow fg : N$$

▶ $I \Vdash u = v : N$ for u or v not an introduction whenever $I \Vdash u : N$, $I \Vdash v : N$, and $J \Vdash uf \downarrow = vf \downarrow : N$

Similar conditions appear in the work of Angiuli/Harper/Wilson.

Expansion Lemma

If $I \vdash u : A$ is not an introduction, $I \vdash A$, $J \vdash uf \succ v_f : Af$ for all $f : J \rightarrow I$, satisfying $J \vdash v_f = v_1 f : Af$, then

 $I \Vdash u : A \text{ and } I \Vdash u = v_1 : A.$

Key ingredient of the canonicity proof!

Soundness

We extend computability to open judgments:

$$\Gamma \models A :\Leftrightarrow \Gamma \vdash A \& \Vdash \Gamma \& \\
\forall I, \sigma, \tau (I \Vdash \sigma = \tau : \Gamma \Rightarrow I \Vdash A\sigma = A\tau)$$

$$\Gamma \models a : A :\Leftrightarrow \Gamma \vdash a : A \& \Gamma \models A \& \\
\forall I, \sigma, \tau (I \Vdash \sigma = \tau : \Gamma \Rightarrow I \Vdash a\sigma = a\tau : A\sigma)$$

Theorem (Soundness)

$$\Gamma \vdash \mathcal{J} \Rightarrow \Gamma \models \mathcal{J}$$

Theorem (Canonicity)

If $I \vdash u : N$, then $I \vdash u = S^n 0 : N$ for a unique $n \in \mathbb{N}$.

Proof.

By soundness, $I \models u : \mathbb{N}$, so $I \Vdash u : \mathbb{N}$ using $\mathbf{1} : I \to I$, and hence $I \Vdash u = \mathbb{S}^n \ 0 : \mathbb{N}$ for some n, thus also $I \vdash u = \mathbb{S}^n \ 0 : \mathbb{N}$. Uniqueness: $I \vdash \mathbb{S}^n \ 0 = \mathbb{S}^m \ 0 : \mathbb{N}$ implies $I \Vdash \mathbb{S}^n \ 0 = \mathbb{S}^m \ 0 : \mathbb{N}$, and hence n = m.

Theorem (Consistency)

Path N 0 1 is not inhabited.

Proof.

If $\vdash u$: Path N 0 1, then $i: \mathbb{I} \vdash u \, i = S^n 0$: N for some n by canonicity. But then $\vdash 0 = u \, 0 = S^n 0 = u \, 1 = 1$: N, contradicting uniqueness.

Conclusion

- canonicity for cubical type theory; can be extended with circle S¹
- first step towards normalization and decidability of type checking
- proof not proof-theoretically optimal (least fixpoint vs. a fixpoint)
- Formalization would be desirable!
- Related work: Abel/Scherer, Coquand/Mannaa, Angiuli/Harper/Wilson