Partie A

On considère la fonction f définie sur $\mathbb{R}_+ = [0; +\infty[$ par :

$$f(x) = \frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2}.$$

On note (\mathscr{C}) la courbe représentative de f dans un repère orthonormal $\left(0, \overrightarrow{\iota}, \overrightarrow{f}\right)$ d'unité 2 cm.

- 1. **a.** Étudier les variations de f. Déterminer la limite de f(x) en $+\infty$.
 - **b.** Construire la courbe (*C*).
- **2.** On définit la fonction h sur $[0; +\infty[$ par :

$$h(x) = f(x) - x.$$

- **a.** Résoudre l'équation $e^x e^{-x} 2 = 0$ (on pourra poser X = Calculer m; en donner une valeur approchée à 10^{-2} près.
 - **3.** On définit une suite (u_n) de la façon suivante :

$$u_0 = 1$$
 et, pour n entier naturel, $u_{n+1} = f(u_n)$.

- **a.** Montrer que $u_{n+1}-u_n$ peut être minoré par m (calculé en 2. b.), puis que $u_n-u_0\geqslant n.m.$
- **b.** En déduire la limite de (u_n) .
- 4. Soit a un réel quelconque.
 - **a.** Discuter *graphiquement*, en utilisant le 1., le nombre de solutions de l'équation f(x) = a.
 - b. Résoudre, lorsque c'est possible, cette équation.

TS PROBLEME feuille 23 b

Partie B

On définit la fonction φ sur l'intervalle [1; $+\infty$ [par :

$$\varphi(x) = \ln\left(x + \sqrt{x^2 - 1}\right).$$

On désigne par Γ la courbe représentative de φ dans le même repère que celui de (\mathscr{C}) .

- 1. **a.** Soit x et y deux réels, $x \ge 0$, $y \ge 1$. Montrer que l'égalité y = f(x) équivaut à l'égalité $x = \varphi(y)$.
 - **b.** Soit M de coordonnées (a; b) et M' de coordonnées (b; a); montrer que M se transforme en M' par la symétrie orthogonale d'axe la droite (D) d'équation y = x.
 - c. En déduire que la courbe Γ est symétrique de (%) par la symétrie orthogonale d'axe (D).
 - d. Tracer la courbe Γ.
- **2.** On pose $\alpha = \varphi(2)$ et on note Δ la partie du plan que délimitent d'une part les droites d'équations y = 0 et $y = \alpha$, d'autre part la courbe Γ et la droite (D).
 - **a.** Hachurer Δ sur le graphique.
 - **b.** En utilisant la symétrie de la question 1. b., calculer l'aire en cm 2 de Δ .