Assignment

Linear Regression: Real Estate Training Dataset

Prepare four Models where Price as Dependent Variable with each other sqft_living, Bedroom, Bathroom, floors as Independent Variables.

```
Model 1: Price as DV & sqft_living as IDV
```

```
Step 1: Load the dataset
```

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

lr_realestate = pd.read_excel("D:/Al_ML_Course/Day21/Linear Regression.xlsx")

lr_realestate.columns

Out[28]: Index(['price', 'sqft_living', 'bedrooms', 'bathrooms', 'floors'], dtype='object')

import sklearn

y = lr_realestate.price

X = Ir_realestate[['sqft_living']]

Step 2: Split the records for training & testing

from sklearn.model selection import train test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 2)

X_train.shape

Out[35]: (17290, 1)

X test.shape

Out[36]: (4323, 1)

```
y_train.shape
Out[37]: (17290,)
y_test.shape
Out[38]: (4323,)
Step 3: Model Building with sklearn
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
Step 4: Train the model
lin_reg.fit(X_train, y_train)
lin_reg.coef_
Out[42]: array([280.67382569])
lin_reg.intercept_
Out[43]: -42568.70358496299
Step 5: Visualize Training set result
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, lin_reg.predict(X_train), color = 'green')
plt.title('Real Estate (Training set)')
plt.xlabel('sqft_living')
plt.ylabel('Price')
plt.show()
```


Step 6: Test the Model

ypred=lin_reg.predict(X_test)

print(ypred)

array([633855.21632509, 566493.49815977, 364408.34366382, ...,

701216.9344904 , 187583.83347987, 465450.9209118])

X_test.head()

Out[111]:

sqft_living

6638 2410

7366 2170

3158 1450

9117 4500

3392 860

```
from sklearn.metrics import mean_squared_error,r2_score

RMSE=np.sqrt(mean_squared_error(y_test,ypred))

r_square=r2_score(y_test,ypred)

print('The R-Square value is...',r_square)

The R-Square value is... 0.5031163723285275

print('The RMSE value is......',RMSE)

The RMSE value is.........263380.00189817196

Step 8: How to predict for unseen value

unseen_pred=lin_reg.predict(np.array([[2410]]))

print('The unseen for the given x is....',unseen_pred)
```

The unseen for the given x is.... [633855.21632509]

Model 2: Price as DV & Bedroom as IDV

```
Step 1: Load the dataset
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
lr_realestate = pd.read_excel("D:/AI_ML_Course/Day21/Linear Regression.xlsx")
Ir realestate.columns
Out[28]: Index(['price', 'sqft_living', 'bedrooms', 'bathrooms', 'floors'], dtype='object')
import sklearn
y = lr_realestate.price
X = lr_realestate[['bedrooms']]
Step 2: Split the records for training & testing
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 2)
X train.shape
Out[35]: (17290, 1)
X_test.shape
Out[36]: (4323, 1)
y_train.shape
Out[37]: (17290,)
y_test.shape
Out[38]: (4323,)
```

```
Step 3: Model Building with sklearn
from sklearn.linear model import LinearRegression
lin_reg = LinearRegression()
Step 4: Train the model
lin_reg.fit(X_train, y_train)
lin_reg.coef_
array([118660.62797869])
lin_reg.intercept_
139952.8759338616
Step 5: Visualize Training set result
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, lin_reg.predict(X_train), color = 'green')
plt.title('Real Estate (Training set)')
plt.xlabel('sqft_living')
plt.ylabel('Price')
plt.show()
```


Step 6: Test the Model

ypred=lin_reg.predict(X_test)

print(ypred)

array([614595.3878486, 495934.75986992, 377274.13189123, ...,

614595.3878486, 377274.13189123, 614595.3878486])

X_test.head()

Out[135]:

bedrooms

6638 4

7366 3

3158 2

9117 5

3392 2

The unseen for the given x is.... [377274.13189123]

Model 3: Price as DV & Bathroom as IDV

```
Step 1: Load the dataset
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
lr_realestate = pd.read_excel("D:/AI_ML_Course/Day21/Linear Regression.xlsx")
Ir realestate.columns
Out[28]: Index(['price', 'sqft_living', 'bedrooms', 'bathrooms', 'floors'], dtype='object')
import sklearn
y = lr_realestate.price
X = Ir_realestate[['bathrooms']]
Step 2: Split the records for training & testing
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 2)
X train.shape
Out[35]: (17290, 1)
X_test.shape
Out[36]: (4323, 1)
y_train.shape
Out[37]: (17290,)
y_test.shape
Out[38]: (4323,)
```

```
Step 3: Model Building with sklearn
from sklearn.linear model import LinearRegression
lin_reg = LinearRegression()
Step 4: Train the model
lin_reg.fit(X_train, y_train)
lin_reg.coef_
array([249143.95803858])
lin_reg.intercept_
13073.99575
Step 5: Visualize Training set result
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, lin_reg.predict(X_train), color = 'green')
plt.title('Real Estate (Training set)')
plt.xlabel('sqft_living')
plt.ylabel('Price')
plt.show()
```


Step 6: Test the Model

ypred=lin_reg.predict(X_test)

print(ypred)

array([573647.90133969, 386789.93281076, 262217.95379147, ...,

635933.89084934, 262217.95379147, 698219.88035898])

X_test.head()

Out[170]:

bathrooms

6638 2.25

7366 1.50

3158 1.00

9117 3.25

3392 1.00

```
from sklearn.metrics import mean_squared_error,r2_score

RMSE=np.sqrt(mean_squared_error(y_test,ypred))

r_square=r2_score(y_test,ypred)

print('The R-Square value is...',r_square)

The R-Square value is... 0.28122887124177365

print('The RMSE value is......',RMSE)

The RMSE value is.......',RMSE)

Step 8: How to predict for unseen value

unseen_pred=lin_reg.predict(np.array([[2.25]]))

print('The unseen for the given x is....',unseen_pred)
```

The unseen for the given x is.... [573647.90133969]

Model 4: Price as DV & Floors as IDV

Out[38]: (4323,)

```
Step 1: Load the dataset
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
lr_realestate = pd.read_excel("D:/AI_ML_Course/Day21/Linear Regression.xlsx")
Ir realestate.columns
Out[28]: Index(['price', 'sqft_living', 'bedrooms', 'bathrooms', 'floors'], dtype='object')
import sklearn
y = lr_realestate.price
X = Ir_realestate[['floors']]
Step 2: Split the records for training & testing
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 2)
X train.shape
Out[35]: (17290, 1)
X_test.shape
Out[36]: (4323, 1)
y_train.shape
Out[37]: (17290,)
y_test.shape
```

```
Step 3: Model Building with sklearn
from sklearn.linear model import LinearRegression
lin_reg = LinearRegression()
Step 4: Train the model
lin_reg.fit(X_train, y_train)
lin_reg.coef_
array([171376.44562902])
lin_reg.intercept_
283309.93245028483
Step 5: Visualize Training set result
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, lin_reg.predict(X_train), color = 'green')
plt.title('Real Estate (Training set)')
plt.xlabel('floors')
plt.ylabel('Price')
plt.show()
```


Step 6: Test the Model

ypred=lin_reg.predict(X_test)

print(ypred)

array([540374.60089382, 454686.37807931, 454686.37807931, ...,

626062.82370833, 454686.37807931, 540374.60089382])

X_test.head()

Out[197]:

floors

6638 1.5

7366 1.0

3158 1.0

9117 2.0

3392 1.0

```
from sklearn.metrics import mean_squared_error,r2_score

RMSE=np.sqrt(mean_squared_error(y_test,ypred))

r_square=r2_score(y_test,ypred)

print('The R-Square value is...',r_square)

The R-Square value is... 0.0733487976687478

print('The RMSE value is......',RMSE)

The RMSE value is.......',RMSE)

The RMSE value is..........',r2

Step 8: How to predict for unseen value

unseen_pred=lin_reg.predict(np.array([[2.25]]))

print('The unseen for the given x is....',unseen_pred)
```

The unseen for the given x is.... [626062.82370833]

Logistic Regression

```
Project 1: Bank Loan Modeling
Dependent Variable as "Personal Loan" and Independent Variable as "others"
Step 1: Load the Dataset
import pandas as pd
bankPL dataset =
pd.read excel("D:/AI ML Course/Day24/Bank Personal Loan Modelling.xlsx",
sheet name='Data')
bankPL dataset.columns
# Index(['ID', 'Age', 'Experience', 'Income', 'ZIP Code', 'Family', 'CCAvg',
#
     'Education', 'Mortgage', 'Personal Loan', 'Securities Account',
#
     'CD Account', 'Online', 'CreditCard'],
     dtype='object')
bankPL_dataset = bankPL_dataset.drop(['ID','ZIP Code'], axis=1)
bankPL dataset.columns
# Index(['Age', 'Experience', 'Income', 'Family', 'CCAvg', 'Education',
     'Mortgage', 'Personal Loan', 'Securities Account', 'CD Account',
#
     'Online', 'CreditCard'],
#
#
     dtype='object')
Step 2: Logistic Regression
import statsmodels.api as sm
Y = bankPL_dataset['Personal Loan']
X = bankPL_dataset[['Age', 'Experience', 'Income', 'Family', 'CCAvg', 'Education', 'Mortgage',
'Securities Account', 'CD Account', 'Online', 'CreditCard']]
```

X1 = sm.add_constant(X)

BanKPL = sm.Logit(Y, X1)

result = BanKPL.fit()

Optimization terminated successfully.

Current function value: 0.128435

Iterations 9

result.summary()

Family

Logit Regression Results

=========				==
Dep. Variable:	Personal Loan	No. Observations:	5000	
Model:	Logit	Df Residuals:	4988	

Method: MLE Df Model: 11

Method: MLE Df Model: 11

Date: Wed, 12 Aug 2020 Pseudo R-squ.: 0.5938

Time: 16:42:50 Log-Likelihood: -642.18

converged: True LL-Null: -1581.0

Covariance Type: nonrobust LLR p-value: 0.000

	coef	std err	Z	P> z	[0.025	0.975]
const	-12.1928	1 6/15		0.000	-15.417	-8.968
COTIST	-12.1920	1.045	-7.411	0.000	-13.417	-0.906
Age	-0.0536	0.061	-0.874	0.382	-0.174	0.067
Experience	0.0638	0.061	1.046	0.295	-0.056	0.183
Income	0.0546	0.003	20.831	0.000	0.049	0.060

CCAvg	0.1240	0.040	3.127	0.002	0.046	0.202
Education	1.7362	0.115	15.088	0.000	1.511	1.962
Mortgage	0.0005	0.001	0.856	0.392	-0.001	0.002
Securities Account	-0.9368	0.286	-3.277	0.001	-1.497	-0.377
CD Account	3.8225	0.324	11.800	0.000	3.188	4.457
Online	-0.6752	0.157	-4.298	0.000	-0.983	-0.367
CreditCard	-1.1197	0.205	-5.462	0.000	-1.522	-0.718

Step 3: Find the significant variables

With the above Logit Regression table, the variable where the P value is less than 0.05 is the significant variable.

So the significant variables are:

- Income
- Family
- CCAvg
- Education
- Securities Account
- CD Account
- Online
- CreditCard

Project 2: Attrition Rate Analysis

```
Dependent Variable as "Attrition" and Independent Variable as "others"
```

Step 1: Load the Dataset

```
import pandas as pd
attrition dataset = pd.read csv("D:/AI ML Course/Day24/general data.csv")
attrition dataset.columns
# Index(['Age', 'Attrition', 'BusinessTravel', 'Department', 'DistanceFromHome',
     'Education', 'EducationField', 'EmployeeCount', 'EmployeeID', 'Gender',
#
     'JobLevel', 'JobRole', 'MaritalStatus', 'MonthlyIncome',
#
     'NumCompaniesWorked', 'Over18', 'PercentSalaryHike', 'StandardHours',
#
     'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear',
#
#
     'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager'],
     dtype='object')
#
attrition_dataset = attrition_dataset.drop(['EmployeeCount',
'EmployeeID','Over18','StandardHours'], axis=1)
attrition_dataset.columns
# Index(['Age', 'Attrition', 'BusinessTravel', 'Department', 'DistanceFromHome',
     'Education', 'EducationField', 'Gender', 'JobLevel', 'JobRole',
#
     'MaritalStatus', 'MonthlyIncome', 'NumCompaniesWorked',
#
     'PercentSalaryHike', 'StockOptionLevel', 'TotalWorkingYears',
#
     'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion',
#
#
     'YearsWithCurrManager'],
     dtype='object')
#
```

```
from sklearn import preprocessing
attrition dataset = attrition dataset.dropna()
attrition dataset = attrition dataset.drop duplicates()
le = preprocessing.LabelEncoder()
attrition dataset['Attrition'] = le.fit transform(attrition dataset['Attrition'])
attrition dataset['BusinessTravel'] = le.fit transform(attrition dataset['BusinessTravel'])
attrition dataset['Department'] = le.fit transform(attrition dataset['Department'])
attrition dataset['EducationField'] = le.fit transform(attrition dataset['EducationField'])
attrition dataset['Gender'] = le.fit transform(attrition dataset['Gender'])
attrition dataset['JobRole'] = le.fit transform(attrition dataset['JobRole'])
attrition dataset['MaritalStatus'] = le.fit transform(attrition dataset['MaritalStatus'])
Step 2: Logistic Regression
import statsmodels.api as sm
Y = attrition dataset['Attrition']
X = attrition dataset[['Age', 'BusinessTravel', 'Department', 'DistanceFromHome', 'Education',
'EducationField', 'Gender', 'JobLevel', 'JobRole', 'MaritalStatus', 'MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike', 'StockOptionLevel', 'TotalWorkingYears',
'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion',
'YearsWithCurrManager']]
X1 = sm.add constant(X)
Logistic_Attrition = sm.Logit(Y, X1)
result = Logistic Attrition.fit()
# Optimization terminated successfully.
      Current function value: 0.392756
#
      Iterations 7
#
```

result.summary()

Logit Regression Results

Dep. Variable: Attrition No. Observations: 1470

Model: Logit Df Residuals: 1450

Method: MLE Df Model: 19

Date: Sun, 16 Aug 2020 Pseudo R-squ.: 0.1108

Time: 23:20:53 Log-Likelihood: -577.35

converged: True LL-Null: -649.29

Covariance Type: nonrobust LLR p-value: 3.295e-21

===========

coef std err z P>|z| [0.025 0.975]

const	0.0650	0.717	0.091	0.928	-1.340	1.470
Age	-0.0306	0.012	-2.583	0.010	-0.054	-0.007
BusinessTravel	-0.0166	0.113	-0.146	0.884	-0.239	0.206
Department	-0.2421	0.141	-1.720	0.085	-0.518	0.034
DistanceFromHome	-0.0014	0.009	-0.145	0.884	-0.020	0.017
Education	-0.0625	0.074	-0.847	0.397	-0.207	0.082
EducationField	-0.0965	0.058	-1.669	0.095	-0.210	0.017
Gender	0.0869	0.155	0.560	0.576	-0.217	0.391

JobLevel	-0.0249	0.069	-0.363	0.717	-0.159	0.110
JobRole	0.0378	0.031	1.219	0.223	-0.023	0.099
MaritalStatus	0.5885	0.109	5.379	0.000	0.374	0.803
MonthlyIncome	-1.868e-0	06 1.66e-	-06 -1.1	128 0.2	59 -5.116	e-06 1.38e-06
NumCompaniesWork	ced 0.118	4 0.032	2 3.729	0.000	0.056	0.181
PercentSalaryHike	0.0117	0.020	0.576	0.565	-0.028	0.052
StockOptionLevel	-0.0645	0.089	-0.721	0.471	-0.240	0.111
TotalWorkingYears	-0.0593	0.021	-2.856	0.004	-0.100	-0.019
TrainingTimesLastYea	ar -0.1465	0.061	-2.406	0.016	-0.266	-0.027
YearsAtCompany	0.0136	0.032	0.428	0.669	-0.049	0.076
YearsSinceLastPromo	otion 0.1	323 0.0	035 3.	732 0.0	0.0	63 0.202
YearsWithCurrManag	ger -0.1	396 0.	038 -3.	642 0.0	000 -0.2	215 -0.064

Step 3: Find the significant variables

With the above Logit Regression table, the variable where the P value is less than 0.05 is the significant variable.

So the significant variables are:

- Age
- Marital Status
- NumCompaniesWorked
- TotalWorkingYears
- TrainingTimeLastYear
- YearsSinceLastPromotion
- YearsWithCurrManager