Sprawozdanie 6.

Poszukiwanie pierwiastków równania nieliniowego metodą siecznych i Newtona

Mirosław Kołodziej

15.04.2021

1. Wstęp teoretyczny

1.1 Metoda siecznych

Metoda siecznych (zwana także jako metoda Eulera) to metoda numeryczna służąca do rozwiązywania równania nieliniowego z jedną niewiadomą.

Metoda siecznych jest algorytmem interpolacji polowej. Jest ona modyfikacją metody Regula Falsi. Polega ona na założeniu, że funkcja ciągła na dostatecznie małym odcinku zmienia się w przybliżeniu w sposób liniowy. Kolejne przybliżenia x_{k+1} wyznaczamy przeprowadzając prostą przez dwa poprzednie przybliżenia: x_k oraz x_{k-1} (metoda dwupunktowa).

W przypadku metody siecznych kolejne przybliżenie wyznaczamy za pomocą relacji rekurencyjnej:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}.$$

Zbieżność tej metody jest większa niż w przypadku Regula Falsi i wynosi:

$$p = \frac{1}{2}(1 + \sqrt{5}) \approx 1,618.$$

Należy dodatkowo przyjąć, że $|f(x_k)|$ mają tworzyć ciąg wartości malejących. Jeśli w kolejnej iteracji $|f(x_k)|$ zaczyna rosnąć, powinniśmy przerwać obliczenia i ponownie wyznaczyć punkty startowe zwężając przedział izolacji.

1.2 Metoda Newtona

Metoda Newtona (zwana także jako metoda Newtona-Raphsona oraz metoda stycznych) to algorytm iteracyjny wyznaczania przybliżonej wartości pierwiastka funkcji. Jest metodą jednopunktową. Przyjmuje się w niej następujące założenia:

- 1. W przedziale [a, b] znajduje się dokładnie jeden pierwiastek.
- 2. Funkcja ma różne znaki na krańcach przedziału, czyli $f(a) \cdot f(b) < 0$.
- 3. Dwie pierwsze pochodne funkcji mają stały znak w tym przedziale.

Metodę Newtona możemy przedstawić za pomocą poniższego algorytmu:

- 1. Z końca przedziału [a, b], w którym funkcja ma ten sam znak co druga pochodna należy poprowadzić styczną do wykresu funkcji y = f(x).
- 2. Styczna przecina oś OX w punkcie x_1 który stanowi pierwsze przybliżenie rozwiązania.
- 3. Sprawdzamy czy $f(x_1) = 0$, jeśli nie to z tego punktu prowadzimy kolejną styczną.

- 4. Druga styczna przecina oś OX w punkcie x_2 , który stanowi drugie przybliżenie.
- 5. Kroki 3-4 powtarzamy iteracyjne, aż spełniony będzie warunek:

$$|x_{k+1} - x_k| \le \varepsilon.$$

Rysunek 1. Zobrazowanie metody Newtona

Równanie stycznej dla k-tego przybiżenia:

$$y - f(x_k) = f'(x_k)(x - x_k)$$

Wzór iteracyjny na położenie k-tego przybliżenia pierwiastka równania nieliniowego:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k = 1, 2, ...)$

Zbieżność metody Newtona wynosi:

$$p = 2$$
.

2. Problem

Naszym zadaniem na zajęciach laboratoryjnych było znalezienie punktów przecięcia funkcji $g_1(x)=\sin(x)$ z funkcją $g_2(x)=\frac{x^2}{8}$. Ponieważ obie funkcje mają w tych punktach równe wartości, problem możemy zapisać w postaci jednego równania:

$$f(x) = \sin(x) - \frac{x^2}{8}.$$

To równanie jest z pewnością nieliniowe, a jego przybliżone rozwiązanie możemy znaleźć numerycznie.

Przebieg tej funkcji oraz $g_1(x)$ i $g_2(x)$ na przedziale [-8, 8] pokazuje poniższy wykres:

Wykres 1. Wykresy funkcji $g_1(x) = \sin(x)$, $g_2(x) = \frac{x^2}{8}$ oraz $f(x) = \sin(x) - \frac{x^2}{8}$ na przedziale [-8, 8]

Z wykresu możemy odczytać, że miejsca zerowe funkcji f(x) znajdują się mniej więcej w punktach $x_0=0$ oraz $x_0\approx 2.4$.

Celem zajęć było dokładniejsze wyznaczenie tych wartości. W tym celu musieliśmy zaimplementować dwie metody – siecznych i Newtona. Zrobiliśmy to na podstawie pseudokodów:

• pseudokod dla metody siecznych:

Następnie wyznaczyliśmy 10 przybliżeń miejsca zerowego funkcji metodą Newtona startując od x=-8 i zapisaliśmy do pliku numer iteracji, wartość przybliżenia x_k , wartość funkcji $f(x_k)$ oraz wartość pochodnej $f'(x_k)$. Powtórzyliśmy obliczenia dla punktu startowego x=8 w celu znalezienia drugiego miejsca zerowego. Wyniki również zapisaliśmy do pliku.

Później wyznaczyliśmy kolejne 15 przybliżeń miejsca zerowego funkcji metodą siecznych, przyjmując za punkty startowe $x_0=-8$ i $x_1=-8,1$. Do pliku zapisaliśmy numer iteracji, wartość aktualnego przybliżenia x_{k+1} , wartości funkcji dla dwóch poprzednich przybliżeń $f(x_k)$ i $f(x_{k-1})$. Powtórzyliśmy obliczenia dla drugiego zestawu startowego: $x_0=8$ i $x_1=8,1$. Pozwoliło nam to na znalezienie drugiego miejsca zerowego. Wyniki ponownie zapisaliśmy do pliku.

3. Wyniki

3.1 Tabela wyników dla metody Newtona z wartością początkową x=-8

	<u>'</u>	C 1	ζ ζ
Numer	Wartość przybliżenia	Wartość funkcji	Wartość pochodnej
iteracji	x_k	$f(x_k)$	$f'(x_k)$
1	-3,152678	-1,231337	-0,211769
2	-8,967207	-10,493121	1,344673
3	-1,163736	-1,087574	0,686846
4	0,419697	0,385465	0,808288
5	-0,057194	-0,057572	1,012663
6	-0,000342	-0,000342	1,000085
7	0,000000	0,000000	1,000000
8	0,000000	0,000000	1,000000
9	0,000000	0,000000	1,000000
10	0,000000	0,000000	1,000000

3.2 Tabela wyników dla metody Newtona z wartością początkową x=8

Numer	Wartość przybliżenia	Wartość funkcji	Wartość pochodnej
iteracji	x_k	$f(x_k)$	$f'(x_k)$
1	4,732397	-3,799248	-1,163092
2	1,465892	0,725898	-0,26176
3	4,23903	-3,136213	-1,515636
4	2,169791	0,237404	-1,10626
5	2,384391	-0,023775	-1,322859
6	2,366419	-0,000152	-1,305904
7	2,366302	0,000000	-1,305794
8	2,366302	0,000000	-1,305794
9	2,366302	0,000000	-1,305794
10	2,366302	0,000000	-1,305794

3.3 Tabela wyników dla metody siecznych z wartościami początkowymi $x_0=-8$ i $x_1=-8,1$

. , , ,	0)1		
Numer	Wartość przybliżenia	Wartość funkcji	Wartość funkcji
iteracji	x_{k+1}	$f(x_k)$	$f(x_{k-1})$
1	-3,054857	-9,171140	-8,989358
2	-2,256385	-1,253146	-9,171140
3	-9,415569	-1,410456	-1,253146
4	-1,213272	-11,090826	-1,410456
5	-0,291223	-1,120770	-11,090826
6	0,042316	-0,297725	-1,120770
7	0,001012	0,042079	-0,297725
8	-0,000006	0,001012	0,042079
9	0,000000	-0,000006	0,001012
10	0,000000	0,000000	-0,000006
11	0,000000	0,000000	0,000000
12	0,000000	0,000000	0,000000
13	0,000000	0,000000	0,000000
14	-nan	0,000000	0,000000
15	-nan	-nan	0,000000

3.4 Tabela wyników dla metody siecznych z wartościami początkowymi $x_0=8$ i $x_1=8$,1

Numer	Wartość przybliżenia	Wartość funkcji	Wartość funkcji
iteracji	x_{k+1}	$f(x_k)$	$f(x_{k-1})$
1	4,823717	-7,231360	-7,010642
2	0,983196	-3,902340	-7,231360
3	1,575400	0,711439	-3,902340
4	20,411886	0,689754	0,711439
5	1,826364	-51,080672	0,689754
6	2,024551	0,550569	-51,080672
7	2,491247	0,386457	0,550569
8	2,348479	-0,170328	0,386457
9	2,365543	0,023123	-0,170328
10	2,366307	0,000991	0,023123
11	2,366302	-0,000006	0,000991
12	2,366302	0,000000	-0,000006
13	2,366302	0,000000	0,000000
14	2,366302	0,000000	0,000000
15	-nan	0,000000	0,000000

4. Wnioski

Wyznaczyliśmy pierwiastki równania nieliniowego za pomocą metod siecznych i Newtona.

Dla szybszego zakończenia obliczeń moglibyśmy przyjąć warunek STOP-u. W przypadku metody siecznych można wskazać poniższe warunki:

1. wartość funkcji w wyznaczonym punkcie jest bliska 0:

$$|f(x_k)| \le \varepsilon$$
,

2. odległość pomiędzy kolejnymi przybliżeniami jest dość mała:

$$|x_{k+1} - x_k| \le \varepsilon,$$

3. kryterium mieszane (punkty 1 i 2 jednocześnie).

Zaś dla metody Newtona warunki są następujące:

1. wartość funkcji w wyznaczonym punkcie jest bliska 0:

$$|f(x_k)| \le \varepsilon$$
,

2. odległość pomiędzy kolejnymi przybliżeniami jest dość mała:

$$|x_{k+1} - x_k| \le \varepsilon,$$

3. szacowany błąd jest dostatecznie mały:

$$\frac{M}{2m}(x_k - x_{k-1})^2 \le \varepsilon,$$

4. kryterium mieszane (punkty 1 i 2 jednocześnie).

Obliczając kolejne przybliżenia, możemy zauważyć, że dla obu metod zachodzą oscylacje. Dzieje się tak, ponieważ z przebiegu wykresu funkcji pochodnej widzimy, że jest ona funkcją oscylującą.

Wykres 2. Wykresy funkcji $f'(x) = \cos(x) - \frac{x}{4}$ oraz $f(x) = \sin(x) - \frac{x^2}{8}$ na przedziale [-8, 8]

Wyniki naszych obliczeń wskazują, że metoda siecznych jest niestabilna – na końcu obliczeń program zwraca wartość –nan oznaczającą wartość niebędącą liczbą. Aby rozwiązać ten problem wystarczy zmniejszyć liczbę iteracji lub przyjąć któryś z warunków STOP-u.

Jak zostało to wspomniane we wstępie teoretycznym, zbieżność metody Newtona jest wyższa niż w przypadku metody siecznych. Oznacza to, że metoda Newtona jest szybsza. Możemy to również zauważyć patrząc na ilość iteracji potrzebnej do otrzymania wartości miejsca zerowego.