

# Proof Granularity as an Empirical Problem?<sup>1</sup>

Marvin Schiller<sup>†</sup> and Christoph Benzmüller\*

†Saarland University, Germany \*International University Bruchsal, Germany

Internation Conference on Computer Supported Education, March 23rd-26th, 2009







<sup>&</sup>lt;sup>1</sup>This work has been funded by Studienstiftung des deutschen Volkes



## **Overview**

- 1 Background: Tutorial DIALOG on Mathematical Proof
- 2 Step Size Observations & Modeling
- 3 Study Environment & Experiments
- 4 Outlook & Discussion



## Background: The DIALOG Project

Tutorial Dialog for Mathematics.

### **Employed Techniques**

- Dyn. Domain Reasoning for math proofs: math assistant ΩMEGA
- ► NL processing, dialogue management, teaching model

## Research Processes (in spiral model)

- ► DIALOG system design
- ► Prototype development
- Empirical studies

Assume that  $a \in X$ . If  $X \cap Y = \emptyset$ , then  $a \notin Y$ .





## Simulation (Wizard-of-Oz)





Let R and S be relations in a set M. It holds that:  $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$ . Do the proof interactively with the system!

A pair (x,y) is element of  $R\circ S$  iff there is a z in M such that  $(x,z)\in R$  and  $(z,y)\in S$ 

#### Correct

Therefore a pair (x,y) is element of  $(R \circ S)^{-1}$  if there is a z in M, such that  $(x,z) \in S$  and  $(z,y) \in R$ 

That's not correct!



# Simulation (Wizard-of-Oz) [Ctd.]

Tutor: Let R and S be relations in a set M. It holds that:  $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$ . Do the proof interactively with the system!

Student: Execute  $(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$ 

Tutor: That's what you have to prove. Would you like a hint?

Student: yes

Tutor: At first, try to show  $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$ .

Student: How do I do that?

Tutor: You have to show that any element in  $(R \circ S)^{-1}$  is also in  $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$ . You could start with: Let  $(a, b) \in (R \circ S)^{-1}$ . ...Then it holds ...?



- ① Background: Tutorial DIALOG on Mathematical Proof
- 2 Step Size Observations & Modeling
- 3 Study Environment & Experiments
- 4 Outlook & Discussion



# Step Size in Mathematics (Granularity)

### Mathematical practice: skip intermediate steps when appropriate:

Proof Exercise:  $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$ 

- ▶ We show  $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$  and  $S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}$
- ▶ We assume  $(y,x) \in (R \circ S)^{-1}$  and show  $(y,x) \in S^{-1} \circ R^{-1}$
- ▶ Hence,  $(x, y) \in R \circ S$
- ▶ Hence,  $\exists z$  s.t.  $(x,z) \in R \land (z,y) \in S$
- ▶ Hence,  $\exists z \text{ s.t. } (z,x) \in R^{-1} \land (z,y) \in S$
- ▶ Hence,  $\exists z \text{ s.t. } (z, x) \in R^{-1} \land (y, z) \in S^{-1}$
- ▶ Hence,  $\exists z$  s.t.  $(y,z) \in S^{-1} \land (z,x) \in R^{-1}$
- ▶ Hence,  $(y, x) \in S^{-1} \circ R^{-1}$



# Step Size in Mathematics (Granularity)

Mathematical practice: skip intermediate steps when appropriate:

Proof Exercise: 
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$

We show 
$$(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$$
 and  $S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}$ 

- ▶ We assume  $(y,x) \in (R \circ S)^{-1}$  and show  $(y,x) \in S^{-1} \circ R^{-1}$
- ▶ Hence,  $(x, y) \in R \circ S$
- ► Hence,  $\exists z$  s.t.  $(x,z) \in R \land (z,y) \in S$ Hence,  $\exists z$  s.t.  $(z,x) \in R^{-1} \land (z,y) \in S$
- ► Hence,  $\exists z \text{ s.t. } (z, x) \in R^{-1} \land (y, z) \in S^{-1}$ Hence,  $\exists z \text{ s.t. } (y, z) \in S^{-1} \land (z, x) \in R^{-1}$
- ▶ Hence,  $(y, x) \in S^{-1} \circ R^{-1}$



## **Step Size in the Experiments**

Granularity: The question of the appropriate step size/complexity.

Exercise: z.Z. 
$$(R \circ S)^{-1} = (x,y) \in S^{-1} \circ R^{-1}$$
  
:: student]  $(x,y) \in (R \circ S)^{-1}$   
tutor] Now try to draw conclusions from this!  $(x,y) \in S^{-1} \circ R^{-1}$   
student]  $(x,y) \in S^{-1} \circ R^{-1}$   
tutor] This cannot be concluded directly. You need some intermediate steps!  $(x,y) \in S^{-1} \circ R^{-1}$ 

Step size annotated by tutors as appropriate, too coarse-grained (too big a step) or too detailed (too small a step)



## Modeling (Suitable) Granularity

Goal: diagnose student's step size, granularity-adapted proof presentation.

### **Approach**

Modeling/representation of proofs: choice of suitable proof calculus/mechanism (assertion level vs. ND or resolution)

Analysis: granularity-relevant criteria

Classification: classify (multi-inference) proof steps (as appropriate, too big or too small)

Learn classifier from empirical samples.



#### Student's Proof

#### **Assertion Level Proof**

Ex: Show 
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$$

Exercise: 
$$\vdash \underbrace{(R \circ S)^{-1}}_{\Gamma} = \underbrace{S^{-1} \circ R^{-1}}_{\Theta}$$



#### Student's Proof

#### **Assertion Level Proof**

Ex: Show

$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$$

s1: Let  $(x,y) \in (R \circ S)^{-1}$ .

$$\frac{\text{s1:} (x,y) \in (R \circ S)^{-1} \vdash (x,y) \in \Theta}{\text{Def.}} = \frac{\vdash (R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}}{\text{Exercise:}} \vdash \underbrace{(R \circ S)^{-1} = \underbrace{S^{-1} \circ R^{-1}}_{\Theta}}$$



#### Student's Proof

### Assertion Level Proof

Ex: Show 
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$$
  
s1: Let  $(x, y) \in (R \circ S)^{-1}$ 

s2: Hence 
$$(y,x) \in (R \circ S)$$
.

$$\frac{s2: (y, x) \in (R \circ S) \vdash (x, y) \in \Theta}{s1: (x, y) \in (R \circ S)^{-1} \vdash (x, y) \in \Theta} \underbrace{\frac{s1: (x, y) \in (R \circ S)^{-1} \vdash (x, y) \in \Theta}{\vdash (R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}}}_{\text{Exercise:}} \underbrace{\frac{\vdash (R \circ S)^{-1} \in S^{-1} \circ R^{-1}}{\vdash (R \circ S)^{-1}}}_{\text{Exercise:}} = \underbrace{\frac{S^{-1} \circ R^{-1}}{\vdash (R \circ S)^{-1}}}_{\text{Exercise:}}$$



#### Student's Proof

### Assertion Level Proof

$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$$

s1: Let 
$$(x, y) \in (R \circ S)^{-1}$$

s2: Hence 
$$(y,x) \in (R \circ S)$$
.

s3: Hence 
$$(y,z) \in R \land (z,x) \in S$$
.

$$\begin{array}{c} \mathbf{s3:} (y,z) \in R \land (z,x) \in S \vdash (x,y) \in \Theta \\ \hline \mathbf{s2:} (y,x) \in (R \circ S) \vdash (x,y) \in \Theta \\ \hline \mathbf{s1:} (x,y) \in (R \circ S)^{-1} \vdash (x,y) \in \Theta \\ \hline \mathbf{Def.} = \begin{array}{c} \vdash (R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1} \\ \hline \\ \mathbf{Exercise:} & \vdash \underbrace{(R \circ S)^{-1}} = \underbrace{S^{-1} \circ R^{-1}} \end{array}$$



#### Student's Proof

# Ex: Show $(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$

s1: Let 
$$(x, y) \in (R \circ S)^{-1}$$

s2: Hence 
$$(y,x) \in (R \circ S)$$
.

$$(y,z)\in R\wedge (z,x)\in S.$$

Hence 
$$(z, y) \in R^{-1} \land (x, z) \in S^{-1}$$
.

### Assertion Level Proof

$$\begin{array}{c} \mathbf{s4:} (z,y) \in R^{-1} \land (x,z) \in S^{-1} \vdash (x,y) \in \Theta \\ \hline (y,z) \in R \land (x,z) \in S^{-1} \vdash (x,y) \in \Theta \\ \hline \mathbf{s3:} (y,z) \in R \land (z,x) \in S \vdash (x,y) \in \Theta \\ \hline \mathbf{s2:} (y,x) \in (R \circ S) \vdash (x,y) \in \Theta \\ \hline \mathbf{s1:} (x,y) \in (R \circ S)^{-1} \vdash (x,y) \in \Theta \\ \hline \mathbf{Def.} = \begin{matrix} \vdash (R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1} \\ \hline \mathbf{Exercise:} & \vdash \underbrace{(R \circ S)^{-1}}_{\Gamma} = \underbrace{S^{-1} \circ R^{-1}}_{\Theta} \end{matrix}$$

Typically: 1 student step  $\cong$  1 or several assertion level steps (experiment: usually 1-3, seldomly more)



## **Granularity Criteria**

### Possible criteria for size of a (multi-)inference step ("features")

- ► How many assertion level inference applications? (total)
- ► What concepts are used? (concepts)
- ► How many concepts are not yet known to the student? (unmastered)
- ► Are the concepts named? (verb)
- ► etc.

| Student step                              | Infs              | Features                                           | Verdict |
|-------------------------------------------|-------------------|----------------------------------------------------|---------|
| 1. We assume $(y,x) \in (R \circ S)^{-1}$ | Def.=,            | total:2,                                           | ?       |
| and show $(y,x) \in S^{-1} \circ R^{-1}$  | Def.⊆             | concepts:2,<br>relations:0,<br>verb:0,             |         |
| 2. Hence, $(x, y) \in R \circ S$          | Def <sup>-1</sup> | total:1,<br>concepts:1,<br>relations:1,<br>verb:0, | ?       |



# **Example Classifier**

### Sample ruleset classifier

- \* total  $\in \{0,1,2\} \Rightarrow$  "appropriate"
- \* unmastered  $\in \{2,3,4\} \land \text{relations} \in \{2,3,4\} \Rightarrow \text{"step-too-big"}$
- \* total  $\in \{3,4\} \land \mathsf{relations} \in \{0,1\} \Rightarrow \mathsf{"step-too-big"}$
- \* unmastered  $\in \{0,1\} \Rightarrow$  "appropriate"
- \*  $\_\Rightarrow$  "appropriate"

| Student step                              | Infs              | Features                                           | Verdict     |
|-------------------------------------------|-------------------|----------------------------------------------------|-------------|
| 1. We assume $(y,x) \in (R \circ S)^{-1}$ | Def.=,            | total:2,                                           | appropriate |
| and show $(y,x) \in S^{-1} \circ R^{-1}$  | Def.⊆             | concepts:2,<br>relations:0,<br>verb:0,             |             |
| 2. Hence, $(x, y) \in R \circ S$          | Def <sup>-1</sup> | total:1,<br>concepts:1,<br>relations:1,<br>verb:0, | appropriate |



- Background: Tutorial DIALOG on Mathematical Proof
- 2 Step Size Observations & Modeling
- 3 Study Environment & Experiments
- 4 Outlook & Discussion



## **Study Environment - Motivation**

- ► Learn classifiers via annotations from expert tutors using standard machine learning
- ► WoZ experiments not ideal for focused study on granularity

#### Idea

- ► Automate student's role using  $\Omega$ MEGA
- ► More control over "student"
- More granularity annotations in less time (compared to WoZ)



# **Study Environment**





# **Study Environment**





## **Study Environment**





# **Ongoing Work**

### Ongoing Evaluation

▶ 2 experiments with 2 expert tutors (using different exercises in naive set theory, relations, topology)

|                                                               | Tutor 1         | Tutor 2         |
|---------------------------------------------------------------|-----------------|-----------------|
| Steps annotated:                                              | 135             | 207             |
| Perf. learnt classifier <sup>1</sup> -mean correct - $\kappa$ | 86.7%<br>κ=0.68 | 68.9%<br>κ=0.47 |
| Interrater reliability <sup>2</sup>                           | $\kappa$ =0.37  |                 |

 $<sup>^{1}\</sup>mathrm{best}$  rule-based classifier, evaluated on full dataset using 10-fold cross validation

<sup>&</sup>lt;sup>2</sup>on common subset of 108 steps



- ① Background: Tutorial DIALOG on Mathematical Proof
- 2 Step Size Observations & Modeling
- 3 Study Environment & Experiments
- 4 Outlook & Discussion



## **Discussion & Outlook**

#### Discussion

- ► Empirical modeling of granularity
- ...independent of introspection/justification of experts' judgments
- ► Thus, we imitate the behavior of expert tutors
- Is it desirable/possible to establish a best practice for judging proof step granularity?

#### Outlook

- ► Further experiment sessions planned with different experts
- Measure performance of learnt classifiers, agreement between tutors
- What are the most useful granularity criteria for the classification task?



# Thank you!

Questions?



## Diversity in Wizard-of-Oz Corpora

Proof exercise:  $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$ 

| Studer           | nt X                                                                                                                               | Studen           | t Y                                                                                                           |
|------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------|
| st[0]:<br>tu[0]: | $(R \circ S)^{-1} = \{(y,x) (x,y) \in (R \circ S)\}$<br>This statement is correct.                                                 | st[0]:<br>tu[0]: | One needs to show equality between two sets. That's right! How do you                                         |
| st[1]:           | $(R \circ S)^{-1} = \{(y, x)   \exists z (z \in M \land (x, z) \in R \land (z, y) \in S\}$                                         | st[1]:           | proceed? I use the extensionality principle.                                                                  |
| tu[1]:<br>st[2]: | This formula is also correct.<br>$(R \circ S)^{-1} = \{(y, x)   \exists z (z \in M \land (z, x) \in R^{-1} \land (y, z) \in A) \}$ | tu[1]:<br>st[2]: | That's right.<br>Let $(s, r) \in (R \circ S)^{-1}$ . Ac-                                                      |
| tu[2]:           | $S^{-1}$ } This is correct. You are on a good way.                                                                                 | tu[2]:           | cording to the definition of the inverse relation it then holds that $(r, s) \in (R \circ S)$ . That's right! |