ME720 - Modelos Lineares Generalizados

Parte 4 - Teste de hipótese em modelos normais lineares

Profa. Larissa Avila Matos

ANOVA

Exemplo 1

No primeiro modelo, o interesse primário, de certa forma, é testar se a carga não contribui para explicar o consumo de oxigênio, ou seja:

$$H_0: \beta_1 = 0 \ vs \ H_1: \beta_1 \neq 0, i = 1, ..., p$$

No modelo 2, temos igual interesse. Contudo, neste caso, queremos verificar a existência de tal contribuição para todos os grupos. Ou seja, desejamos testar:

 $H_0:\beta_{11}=\beta_{12}=\beta_{13}=\beta_{14}=0\,vs\,H_1:$ há pelo menos uma diferença

Exemplo 2

Para o exemplo 2, temos interesse em testar se as médias dos níveis de absorbância dos solventes são iguais, ou seja, testar se:

$$H_0: \alpha_2 = \alpha_3 = \alpha_4 = 0 \, vs \, H_1:$$
 há pelo menos uma diferença

Algumas dessas hipóteses podem (e devem) ser testadas antes de nos concentrarmos em outras hipóteses.

A primeira e a terceira podem ser testadas a partir da decomposição das somas de quadrados (ANOVA).

A segunda, requer uma abordagem mais específica.

ANOVA para modelos de regressão

Suponha o seguinte modelo:

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_{p-1} x_{(p-1)i} + \xi_i, \ \xi_i \overset{i.i.d}{\sim} N(0, \sigma^2).$$

Logo,
$$Y_i \stackrel{ind.}{\sim} N(\beta_0 + \sum_{j=1}^{p-1} \beta_j x_{ji}, \sigma^2).$$

O modelo acima define uma média (condicional aos valores de $x_{ji}, j = 1, \dots, p-1; i = 1, \dots, n$) para cada observação Y_i .

Defina $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{1i} + \widehat{\beta}_2 x_{2i} + \dots + \widehat{\beta}_{p-1} x_{(p-1)i}$ (valor predito pelo modelo).

O resíduo é definido por $R_i = \hat{\xi}_i = Y_i - \hat{Y}_i$.

Nosso objetivo é considerar um modelo que explique adequadamente a variabilidade dos dados, ou seja, um modelo para o qual os resíduos sejam "pequenos".

A soma de quadrados dos resíduos é dada por $SQR = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$.

Lema:
$$\sum_{i=1}^{n} R_i = \sum_{i=1}^{n} Y_i - \widehat{Y}_i = 0.$$

Prova: ??

Corolário:
$$\frac{1}{n}\sum_{i=1}^{n}\widehat{Y}_{i}=\overline{Y}$$
.

Prova: ??

Pode-se provar que, a soma de quadrados total $SQT = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$, pode ser decomposta como:

$$SQT = \underbrace{\sum_{i=1}^{n} (\overline{Y} - \widehat{Y}_i)^2}_{SQM} + \underbrace{\sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2}_{SQR}.$$

Assim, quanto maior for o valor de SQM em relação à SQR, maior será a contribuição da parte sistemática para explicar a variabilidade dos dados. Portanto, mais "provável" que exista (pelo menos um) $\beta_i \neq 0, \ j=1,\cdots,p-1.$

PJ / 0, J = 1, P = 1.

SQM: soma de quadrados do modelo ; SQR: soma de quadrados dos resíduos.

Portanto, como estatística de teste, podemos comparar, de alguma forma, as somas de quadrado (do modelo e dos resíduos).

Pergunta: como construir uma estatística de teste adequada?

Adequada: que serve para testar as hipóteses de interesse, que possua distrisbuição conhecida (sob H_0 e sob H_1) e que tenha um "razoável" poder (assumindo-se ser possível fixar o nível de significância α).

Lembrando da forma matricial do modelo: $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\xi},$ pode-se demonstrar que:

$$SQT = \mathbf{Y}' (\mathbf{I} - n^{-1}\mathbf{J}) \mathbf{Y}$$
, em que $\mathbf{J} = \mathbf{11}'$.

$$\mathrm{SQM} = \boldsymbol{Y}' \left(\boldsymbol{H} - \boldsymbol{n}^{-1} \boldsymbol{J} \right) \boldsymbol{Y} = \boldsymbol{Y}' \boldsymbol{A} \boldsymbol{Y}, \text{ em que } \boldsymbol{H} = \boldsymbol{X} (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}'.$$

$$SQR = \mathbf{Y}' (\mathbf{I} - \mathbf{H}) \mathbf{Y} = \mathbf{Y}' \mathbf{B} \mathbf{Y}.$$

Pode-se provar que as matrizes $A = H - n^{-1}J$ e B = I - H são ortogonais, ou seja, AB = 0 (provando-se que $n^{-1}HJ = n^{-1}J$).

Dizemos que \widehat{Y} e R projetam Y em dois subespaços ortogonais.

Um caminho para a construção de estatísticas do teste é o estudo das propriedades de formas quadráticas aleatórias (normais).

Distribuição de formas quadráticas

Distribuição qui-quadrado não central

Sejam $X_1, X_2, ..., X_n \stackrel{ind}{\sim} N(\mu_i, \sigma_i^2)$.

Defina $Y = \sum_{i=1}^{n} \left(\frac{X_i}{\sigma_i}\right)^2$. Dizemos então que Y tem distribuição qui-quadrado não central com n graus de liberdade e parâmetro de não-centralidade $\delta = \sum_{i=1}^{n} \left(\frac{\mu_i}{\sigma_i}\right)^2$.

Notação: $Y \sim \chi^2_{(n,\delta)}$, cuja fdp é dada por

$$f_y(y) = \sum_{i=0}^{\infty} \frac{e^{-\delta/2} (\delta/2)^i}{i!} f_{W_{n+2i}}(y) \mathbb{1}_{(0,\infty)}(y),$$

em que $W_{n+2i} \sim \chi^2_{(n+2i)}$.

Se $\delta = 0$, então $Y \sim \chi^2_{(n)}$.

Densidades da qui-quadrado central e não central

Distribuição F não central

Seja V uma outra v.a., independente de $Y, V \sim \chi^2_{(m)}$.

Defina $F = \frac{Y/n}{V/m}$. Então, F tem distribuição F não central com graus de liberdade, n e m e parâmetro de não centralidade δ .

Notação: $F \sim F_{(n,m,\delta)}$, cuja fdp é dada por

$$f_F(f) = \sum_{i=0}^{\infty} \frac{e^{-\delta/2} (\delta/2)^i}{\beta(m/2, n/2 + i)i!} \left(\frac{n}{m}\right)^{n/2+i} \left(\frac{m}{m+nf}\right)^{(n+m)/2+i} \times f^{n/2-1+i} \mathbb{1}_{(0,\infty)}(f),$$

em que $\beta(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$.

Distribuição F não central dupla

Sejam U e V variáveis aleatórias independentes tais que $U \sim \chi^2_{(n,\delta_1)}$ e $V \sim \chi^2_{(m,\delta_2)}$.

Defina,

$$F = \frac{U/n}{V/m}.$$

Então, F tem distribuição F não central dupla com n graus de liberdade no numerador, m graus de liberdade no denominador e parâmetros de não centralidade δ_1 e δ_2 .

Notação: $F \sim F_{(n,m,\delta_1,\delta_2)}$.

Distribuição t de Student não-central

Defina $T=\frac{Z+\mu}{\sqrt{V/\nu}}$, em que $Z \perp V$, $Z \sim N(0,1)$ e $V \sim \chi^2_{\nu}$. Dizemos que T tem distrbuição t de student não central, com ν graus de liberdade e parâmetro de não centralidade μ .

Uma forma de se apresentar a densidade é:

$$f_T(t) = \frac{\nu^{\nu/2} e^{-\frac{\nu\mu^2}{2(t^2+\nu)}}}{\sqrt{\pi} \Gamma(\nu/2) 2^{\frac{\nu-1}{2}} (t^2 + nu)^{(\nu+1)/2}} \times \int_0^\infty y^{\nu} \exp\left\{-\frac{1}{2} \left(y - \frac{\mu t}{\sqrt{t^2 + \nu}}\right)^2\right\} dy$$

Distribuição de formas quadráticas normais

Seja $Z \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Dizemos, então, que Y = Z'AZ é uma forma quadrática normal. Em geral, \boldsymbol{A} é uma matriz não aleatória simétrica e real.

Pode-se provar, por exemplo, que:

$$Y = (\mathbf{Z} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{Z} - \boldsymbol{\mu}) \sim \chi_{(p)}^{2}. \tag{1}$$

Vamos demonstrar a validade do resultado dado pela equação (1).

Por simplicidade, admita que $\mu = 0$.

Assim, temos que (fazendo $\widehat{\boldsymbol{\theta}} = \boldsymbol{z}$)

$$M_{Y}(t) = \mathcal{E}(e^{Yt}) = \int_{\mathcal{R}^{p}} e^{ty} f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$= \int_{\mathcal{R}} \int_{\mathcal{R}} \dots \int_{\mathcal{R}} e^{t\mathbf{z}' \mathbf{\Sigma}^{-1} \mathbf{z}} |\mathbf{\Sigma}|^{-1/2} (2\pi)^{-p/2} \exp\left\{-\frac{1}{2}\mathbf{z}' \mathbf{\Sigma}^{-1} \mathbf{z}\right\} d\mathbf{z}$$

$$= \int_{\mathcal{R}} \int_{\mathcal{R}} \dots \int_{\mathcal{R}} |\mathbf{\Sigma}|^{-1/2} (2\pi)^{-p/2} \exp\left\{-\frac{1}{2}\mathbf{z}' \mathbf{\Sigma}^{-1} \mathbf{z}(1-2t)\right\} d\mathbf{z}$$

Considerando a mesma transformação anteriormente utilizada $(W = \Psi^{-1}z)$, em que $\Sigma = \Psi \Psi'$, temos que:

$$M_Y(t) = \prod_{i=1}^p (1-2t)^{-1/2} \int_{\mathcal{R}} \underbrace{\frac{(1-2t)^{-1/2}}{\sqrt{2\pi}} exp\left\{-\frac{1}{2}w_i^2(1-2t)\right\}}_{N(0,(1-2t)^{-1})} dw_i$$

$$= \prod_{i=1}^p (1-2t)^{-1/2} = (1-2t)^{-p/2}$$

A qual corresponde à fgm de uma distribuição χ_p^2 .

Principais teoremas de formas quadráticas normais

 \blacksquare Seja $\boldsymbol{Y} \sim N_p(\boldsymbol{0}, \boldsymbol{I})$ e \boldsymbol{A} uma matriz simétrica. Então

$$\boldsymbol{Y}'\boldsymbol{A}\boldsymbol{Y} \sim \chi^2_{[r(\boldsymbol{A})]}$$

se, e somente se \boldsymbol{A} for idempotente.

 ${\bf 2}$ Seja ${\bf Y} \sim N_p({\bf 0}, {\bf \Sigma})$ e ${\bf A}$ uma matriz simétrica. Então

$$m{Y}'m{A}m{Y} \sim \chi^2_{[r(m{A})]}$$

se, e somente se $A\Sigma$ for idempotente.

3 Seja $Y \sim N_p(\boldsymbol{\mu}, \boldsymbol{I})$ e \boldsymbol{A} uma matriz simétrica. Então,

$$Y'AY \sim \chi^2_{[r(A),\delta=\mu'A\mu]}$$

se, e somente se \boldsymbol{A} for idempotente.

4 Seja $\boldsymbol{Y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ e \boldsymbol{A} uma matriz simétrica. Então

$$Y'AY \sim \chi^2_{[r(A),\delta=\mu'A\mu]}$$

se, e somente se $A\Sigma$ for idempotente.

Obs. Naturalmente, se $\delta = \mu' A \mu = 0$, as distribuições passam a ser qui-quadrados centrais.

5 Seja $Y \sim N_p(\mu, \Sigma), A$ uma matriz simétrica e B uma matriz qualquer.

Então, Y'AY e BY são independentes se, e somente se

$$B\Sigma A=0$$
.

6 Seja $Y \sim N_p(\mu, \Sigma)$, A e B matrizes simétricas. Então, Y'AY e Y'BY são independentes se, e somente se

$$B\Sigma A = A\Sigma B = 0.$$

Demonstrações: pesquisar nas referências.

Teorema de Cochran

Seja $X \sim N_n(\mathbf{0}, \mathbf{I})$ e suponha que

$$Q = \mathbf{X}'\mathbf{X} = \sum_{i=1}^{n} X_i^2 = Q_1 + Q_2 + \dots + Q_k,$$

em que

$$Q_i = \mathbf{X}' \mathbf{A}_i \mathbf{X}, i = 1, 2, ..., k,$$

é uma forma quadrática de posto r_i , i.e., $rank(\boldsymbol{A}_i) = r_i$, e \boldsymbol{A}_i é simétrica para todo i, i=1,2,...,k. Então, as seguintes condições são equivalentes:

- $Q_i \sim \chi^2_{(r_i)}$.
- $\sum_{i=1}^{k} r_i = n.$

Voltando ao problema

Lembremos que:

SQM =
$$\mathbf{Y}' \left(\mathbf{H} - n^{-1} \mathbf{J} \right) \mathbf{Y}$$
, em que $\mathbf{H} = \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'$, e

$$SQR = \mathbf{Y}' (\mathbf{I} - \mathbf{H}) \mathbf{Y},$$

$$com \mathbf{A} = \mathbf{H} - n^{-1}\mathbf{J} e \mathbf{B} = \mathbf{I} - \mathbf{H}.$$

Sabemos que
$$\boldsymbol{Y} \sim N_n(\boldsymbol{X}\beta, \sigma^2 \boldsymbol{I})$$
.

Defina
$$W = SQM/\sigma^2 = \mathbf{Y}'\left(\frac{\mathbf{H} - n^{-1}\mathbf{J}}{\sigma^2}\right)\mathbf{Y}$$
 e
$$V = SQR/\sigma^2 = \mathbf{Y}'\left(\frac{\mathbf{I} - \mathbf{H}}{\sigma^2}\right)\mathbf{Y}.$$

Postulamos que $\frac{A}{\sigma^2}(\sigma^2 I)\frac{B}{\sigma^2} = \frac{1}{\sigma^2}AB = 0$ (são ortogonais).

Então, $W \perp V$.

Como \boldsymbol{A} e \boldsymbol{B} são matrizes idempotentes, logo \boldsymbol{AI} e \boldsymbol{BI} , também o são.

Pode-se provar que $\mathcal{E}(V) = n - p$ e que, sob H_0 , $\mathcal{E}(W) = p - 1$ (parâmetros de não centralidade são iguais à 0).

Assim, $W \sim \chi^2_{(p-1)}$ (sob H_0) e $V \sim \chi^2_{(n-p)}$, em que $W \perp V$.

Logo,
$$F = \frac{W/(p-1)}{V/(n-p)} \sim F_{[(p-1),(n-p)]}$$
, sob H_0 .

Ainda, sob $H_1, F \sim F_{\left[(p-1),(n-p),\delta = \frac{1}{\sigma^2}(\boldsymbol{\beta}'\boldsymbol{X}'\boldsymbol{X}\boldsymbol{\beta} - n^{-1}\boldsymbol{\beta}'\boldsymbol{X}'\boldsymbol{J}\boldsymbol{X}\boldsymbol{\beta})\right]}$.

Assim, ao se optar por usar formas quadráticas para se testar hipóteses, é necessário verificar:

- \blacksquare A distribuição de \boldsymbol{Y} .
- \blacksquare As propriedades das matrizes núcleo (como a matriz de covariâncias de \boldsymbol{Y}).
- As esperanças das formas quadráticas (sob H_0 e H_1).

Portanto, rejeita-se H_0 se $f_c > f_{critico}$ ou, analogamente, se $pvalor = P(F > f_c | H_0) < \alpha$, em que f_c é o valor calculado da estatística F e $\alpha = P(F > f_{critico} | H_0)$.

Tabela de ANOVA (matricial)

Para testar $H_0: \beta_1 = \beta_2 = ... = \beta_{(p-1)} = 0$ vs $H_1:$ Há pelo menos uma diferença.

FV	SQ	$_{ m GL}$	$_{\mathrm{QM}}$	$\mathcal{E}(QM)$	Estat. F	p-valor
Modelo	$SQM = \mathbf{Y'}A\mathbf{Y}$	p-1	$= \frac{SQM}{p-1}$ (QMM)	$\sigma^2 + \frac{1}{p-1}\beta' \mathbf{X}' (\mathbf{I} - n^{-1}\mathbf{J}) \mathbf{X}\boldsymbol{\beta}$	$\frac{QMM}{QMR}$	p^*
Resíduo	$SQR = \mathbf{Y'}B\mathbf{Y}$	n-p	$\frac{SQR}{n-p}$ (QMR)	σ^2		
Total	SQT	n-1				

 $p^* = \min(P(F > f|H_0), P(F < f|H_0))$ FV: fonte de variação, SQ: soma de quadrados, GL: graus de liberdade, QM: quadrado médio.

Comentários

Quando não há intercepto no modelo ou quando há mais de um, eventualmente, o procedimento descrito anteriormente pode não ser adequado para se testar as hipóteses de interesse.

Alternativas: o procedimento pode ser adaptado ou pode-se usar outros tipo de testes como os "do tipo" $C\beta$ (o qual veremos mais adiante).

Os testes do tipo $C\beta$ são úteis (como veremos) para testar outras hipóteses de interesse como, por exemplo, descobrir quais componentes do vetor β são diferentes de 0.

Exemplo do Solvente (generalizando para k grupos)

Relembrando, o modelo é dado por

$$Y_{ij} = \mu + \alpha_i + \xi_{ij}, \quad i = 1, \dots, k \text{ e } j = 1, \dots, n_i.$$

Resumindo:

 $y_{ij} = j$ -ésima observação do *i*-ésimo solvente;

 $\mu =$ média geral dos dados;

 α_i = efeito do solvente i;

 ξ_{ij} = componente aleatória do modelo.

Neste caso, as hipóteses de interesse são

 $H_0: \mu_1 = \mu_2 = ... \mu_k \Leftrightarrow \alpha_2 = \alpha_3 = ... = \alpha_k = 0$ vs $H_1:$ há pelo menos uma diferença.

Primeiramente, a partir dos dados utilizaremos a seguinte notação:

 $y_{i\cdot} = \sum_{j=1}^{n_i} y_{ij}$: soma das observações do solvente i;

 $\overline{y_{i\cdot}} = \sum_{j=1}^{n_i} y_{ij}/n_i$ média das observações do solvente i;

 $y_{\cdot \cdot} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}$: soma de todas as observações;

 $\overline{y_{\cdot \cdot}} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}/n$: média das observações;

onde $n = \sum_{i=1}^{k} n_i$ total de observações.

A soma de quadrados pode ser expressa como:

$$SQT = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y_{\cdot \cdot}})^2 = \underbrace{\sum_{i=1}^{k} n_i (\overline{y_{i\cdot}} - \overline{y_{\cdot \cdot}})^2}_{\text{entre os grupos}} + \underbrace{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y_{i\cdot}})^2}_{\text{dentro de cada grupo}}$$
$$= SQF + SQR$$

Se SQF for significativamente maior do que SQR, conclui-se que as médias populacionais são diferentes.

Somas de quadrados dos resíduos

Temos que,

- Erro: $\boldsymbol{\xi} = \boldsymbol{Y} \boldsymbol{X}\boldsymbol{\beta}$.
- Valor predito: $Y = X\widehat{\beta}$.
- Resíduo (valor predito para o erro):

$$\widehat{\boldsymbol{\xi}} = \boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}} = \boldsymbol{Y} - \boldsymbol{X} (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}'\boldsymbol{Y} = [\boldsymbol{I} - \boldsymbol{H}] \boldsymbol{Y},$$

onde $H = X(X'X)^{-1}X'$ (matriz "hat" ou matriz de projeção).

Então, a
$$SQR = \hat{\boldsymbol{\xi}}'\hat{\boldsymbol{\xi}} = \boldsymbol{Y}'[\boldsymbol{I} - \boldsymbol{H}][\boldsymbol{I} - \boldsymbol{H}]\boldsymbol{Y} = \boldsymbol{Y}'\boldsymbol{B}\boldsymbol{Y}$$
, onde a matriz $\boldsymbol{B} = \boldsymbol{I} - \boldsymbol{H}$ é simétrica, idempotente, com $posto(B) = tr(B) = n - k$.

Obs. A SQR é a parte da variabilidade não explicada pelo modelo (devida à outros fatores).

Somas de quadrados do modelo

Considere o modelo,

$$Y_{ij} = \mu + \xi_{ij},$$

ou seja,

$$Y = X^*\beta^* + \xi$$
 (modelo a ser testado).

Note que $\beta^* = \mu$ e $X^* = \mathbf{1}_n = \mathbf{1}$, com $n = \sum_{i=1}^k n_i$, temos

$$SQR^* = \mathbf{Y}' \left[\mathbf{I} - \mathbf{1} \left(\mathbf{1}' \mathbf{1} \right)^{-1} \mathbf{1}' \right] \mathbf{Y} = \mathbf{Y}' \left[\mathbf{I} - n^{-1} \mathbf{J} \right] \mathbf{Y},$$

J = 11'.

Objetivo na comparação de médias: medir $SQF=SQR^*-SQR$ (soma de quadrados dos fatores ou do modelo) (exercício).

Portanto
$$SQF = \mathbf{Y}' \left[\mathbf{I} - n^{-1} \mathbf{J} \right] \mathbf{Y} - \mathbf{Y}' \left[\mathbf{I} - \mathbf{H} \right] \mathbf{Y} = \mathbf{Y}' \left[\mathbf{H} - n^{-1} \mathbf{J} \right] \mathbf{Y}.$$

Fato: independentemente da parametrização (modelo de médias, casela de referência e desvios com restrição), o valor predito é dado por

$$\widehat{Y} = X\widehat{\beta} = \begin{bmatrix} \overline{Y}_{1.} \\ \vdots \\ \overline{Y}_{1.} \\ \overline{Y}_{2.} \\ \vdots \\ \overline{Y}_{2.} \\ \vdots \\ \overline{Y}_{k.} \\ \vdots \\ \overline{Y}_{k.} \end{bmatrix}_{n \times 1}$$

Ou seja,

$$H = X \left(X'X \right)^{-1} X' = \begin{bmatrix} n_1^{-1} \mathbf{1}'_{n_1} & \mathbf{0}'_{n_2} & \dots & \mathbf{0}'_{n_k} \\ \vdots & \vdots & \ddots & \vdots \\ n_1^{-1} \mathbf{1}'_{n_1} & \mathbf{0}'_{n_2} & \dots & \mathbf{0}'_{n_k} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}'_{n_1} & n_2^{-1} \mathbf{1}'_{n_2} & \dots & \mathbf{0}'_{n_k} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}'_{n_1} & n_2^{-1} \mathbf{1}'_{n_2} & \dots & \mathbf{0}'_{n_k} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{0}'_{n_1} & \mathbf{0}'_{n_2} & \dots & n_k^{-1} \mathbf{1}'_{n_k} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}'_{n_1} & \mathbf{0}'_{n_2} & \dots & n_k^{-1} \mathbf{1}'_{n_k} \end{bmatrix}$$

Seja
$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{H} - n^{-1} \boldsymbol{J} \end{bmatrix}$$
.

Além disso, se $P = n^{-1}J$, temos que PP = P.

$$\text{Logo } \boldsymbol{A}\boldsymbol{A} = [\boldsymbol{H} - \boldsymbol{H}\boldsymbol{P} - \boldsymbol{H}\boldsymbol{P} + \boldsymbol{P}\boldsymbol{P}] = [\boldsymbol{H} - \boldsymbol{P}] = \boldsymbol{A}.$$

Assim, \boldsymbol{A} é uma matriz simétrica, idempotente de posto k-1.

Além disso,
$$AB = [H - H - P + PH] = \mathbf{0}_{n \times n}$$
.

Anova matricial: resumo

Tem-se que $SQF = \mathbf{Y}'A\mathbf{Y}$ e $SQR = \mathbf{Y}'B\mathbf{Y}$, em que $\mathbf{A} = \mathbf{H} - n^{-1}\mathbf{J}$ e $\mathbf{B} = \mathbf{I} - \mathbf{H}$.

Sob H_0 , temos que

$$Y_{ij} \sim N(\mu, \sigma^2)$$
 (modelo reduzido);

$$SQF/\sigma^2 \sim \chi^2_{(k-1)}, \, SQR/\sigma^2 \sim \chi^2_{(n-k)}$$
e $SQF \bot SQR;$

Então,
$$F = \frac{SQF/(k-1)}{SQR/(n-k)} \sim F_{(k-1,n-k)}$$
.

Sob
$$H_1$$
, $F \sim F_{\left[(k-1),(k-p),\delta=\frac{1}{\sigma^2}\left(\beta'X'X\beta-n^{-1}\beta'X'JX\beta\right)\right]}$.

Tabela de ANOVA (matricial)

Para testar a igualdade simultânea das médias

FV	SQ	GL	QM	$\mathcal{E}(QM)$	Estat. F	p-valor
Fatores	$SQF = \mathbf{Y'}A\mathbf{Y}$	k-1	$\frac{SQF}{k-1}$ (QMF)	$\sigma^2 + \frac{1}{k-1} \beta' \mathbf{X}' (\mathbf{I} - n^{-1} \mathbf{J}) \mathbf{X} \boldsymbol{\beta}$	$\frac{QMF}{QMR}$	p^*
Resíduo	$SQR = \mathbf{Y'BY}$	n-k	$\frac{SQR}{n-k}$ (QMR)	σ^2		
Total	SQT	n-1				

 $p^* = P(F > f|H_0)$ FV: fonte de variação, SQ: soma de quadrados, GL: graus de liberdade, QM: quadrado médio.

Exemplo do Solvente

Tabela ANOVA

FV	SQ	GL	QM	Estatística F	pvalor
Solvente	0,541	4	0,135	212,81	< 0,0001
Resíduo	0,012	20	< 0,001		
Total	0.553	24			

Rejeita-se H_0 .

```
fit.model <- lm(mabsor~solvfac)
anova(fit.model)</pre>
```

Analysis of Variance Table

Response: mabsor

Df Sum Sq Mean Sq F value Pr(>F)

solvfac 4 0.54127 0.135317 212.81 4.378e-16 ***

Residuals 20 0.01272 0.000636

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimativas dos parâmetros do modelo

Parâmetro	Estimativa	EP	IC(95%)	Estat. t	pvalor
$\mu \ (E50)$	0,539	0,011	[0,517; 0,561]	47,826	< 0,0001
α_2 (E70)	0,069	0,0160	$[\ 0.037\ ;\ 0.010]$	4,298	0,0003
α_3 (EAW)	0,028	0,0160	[-0.004 ; 0.059]	1,726	0,0998
$\alpha_4 \text{ (M1M)}$	-0,343	0,0160	[-0,374; -0,311]	-21,481	< 0,0001
α_5 (MAW)	-0,090	0,0160	[-0,121 ;-0,058]	-5,624	< 0,0001

Parâmetro α_3 não significativo. Isto sugere uma possível equivalência entre os solventes E50 e EAW.

Mais testes de hipóteses em modelos normais lineares

Teste para um subconjunto dos $\boldsymbol{\beta}$'s

Suponha agora que queremos testar a hipótese que um subconjunto dos X's não é útil para predizer Y.

Podemos particionar $\boldsymbol{\beta}$ e \boldsymbol{X} da seguinte maneira $\boldsymbol{\beta}=(\boldsymbol{\beta}_1',\boldsymbol{\beta}_2')'$ e $\boldsymbol{X}=(\boldsymbol{X}_1,\boldsymbol{X}_2),$ o qual podemos reescrever o modelo como

$$Y = X\beta + \xi = X_1\beta_1 + X_2\beta_2 + \xi, \ \xi \sim N(0, \sigma^2 I),$$

onde $\pmb{\beta}_2$ contém os β 's a serem testados. O intercepto está incluso em $\pmb{\beta}_1.$

Então, temos interesse em testar

$$H_0: \boldsymbol{\beta}_2 = \mathbf{0} \, vs \, H_1: \boldsymbol{\beta}_2 \neq \mathbf{0}.$$

Sob H_0 , o modelo reduzido é dado por

$$Y = X_1 \beta_1^* + \xi^*,$$

onde temos que a estimativa para $\widehat{\boldsymbol{\beta}_1^*} = (\boldsymbol{X}_1'\boldsymbol{X}_1)^{-1}\boldsymbol{X}_1'\boldsymbol{Y}.$

Pode-se mostrar que, a soma de quadrados total

$$SQT = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \mathbf{Y}'\mathbf{Y} - n\overline{Y}^2,$$

pode ser decomposta como

$$SQT = \underbrace{Y'(I-H)Y}_{SQR} + \underbrace{Y'(H-H_1)Y}_{SQ(\beta_2|\beta_1)} + \underbrace{Y'(H_1-n^{-1}J)Y}_{SQM(reduzido)},$$

onde
$$H_1 = X_1(X_1'X_1)^{-1}X_1'$$
.

SQM(reduzido): soma de quadrados do modelo reduzido; SQR: soma de quadrados dos resíduos; $SQ(\beta_2|\beta_1)$ soma de quadrados devido a β_2 depois de ajustar β_1 .

Podemos reescrever $SQ(\beta_2|\beta_1)$ como a diferença entre a soma de quadrados do modelo completo menos a soma de quadrados do modelo reduzido, ou seja,

$$SQ(\boldsymbol{\beta}_2|\boldsymbol{\beta}_1) = SQM(completo) - SQM(reduzido)$$
$$= \boldsymbol{Y}'(\boldsymbol{H} - n^{-1}\boldsymbol{J})\boldsymbol{Y} - \boldsymbol{Y}'(\boldsymbol{H}_1 - n^{-1}\boldsymbol{J})\boldsymbol{Y}$$

Assim, se $H_0:\beta_2=\mathbf{0}$ é verdadeira, esperamos que a $SQ(\beta_2|\beta_1)$ seja pequena e a SQT seja composta essencialmente pela SQ do modelo reduzido e a SQ dos resíduos.

Já vimos que, (I-H) é idempotente com posto n-p e que $\frac{Y'(I-H)Y}{\sigma^2}\sim\chi^2_{(n-1)}$.

Podemos provar que $(\boldsymbol{H} - \boldsymbol{H}_1)$ é idempotente de posto h, onde h é o número de elementos em $\boldsymbol{\beta}_2$.

Pode-se provar também que

$$\frac{\boldsymbol{Y}'(\boldsymbol{H}-\boldsymbol{H}_1)\boldsymbol{Y}}{\sigma^2} \sim \chi^2_{(h,\delta/\sigma^2)},$$

onde
$$\delta = \beta_2' \boldsymbol{X}_2' \boldsymbol{X}_2 \boldsymbol{\beta}_2 - \beta_2' \boldsymbol{X}_2' \boldsymbol{X}_1 (\boldsymbol{X}_1' \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1' \boldsymbol{X}_2 \boldsymbol{\beta}_2.$$

Além disso, $SQR \perp SQ(\boldsymbol{\beta}_2|\boldsymbol{\beta}_1)$.

Logo, sob H_0 ,

$$F = \frac{SQ(\boldsymbol{\beta}_2|\boldsymbol{\beta}_1)/h}{SQR/(n-p)} \sim F_{[h,(n-p)]}.$$

Ainda, sob H_1 ,

$$F \sim F_{\left[h,(n-p),\delta = \frac{1}{\sigma^2} \left(\beta_2' X_2' X_2 \beta_2 - \beta_2' X_2' X_1 (X_1' X_1)^{-1} X_1' X_2 \beta_2\right)\right]}.$$

Portanto, rejeita-se H_0 se $f_c > f_{critico}$ ou, analogamente, se $pvalor = P(F > f_c|H_0) < \alpha$, em que f_c é o valor calculado da estatística F e $\alpha = P(F > f_{critico}|H_0)$.

Tabela de ANOVA (matricial)

FV	$_{ m SQ}$	GL	QM	Estatística F
$R(\beta_2 \beta_1)$	$SQ(oldsymbol{eta}_2 oldsymbol{eta}_1)$	h	$\frac{SQ(\boldsymbol{\beta}_2 \boldsymbol{\beta}_1)}{h}$	$F = \frac{SQ(\beta_2 \beta_1)/h}{SQR/(n-p)}$
$R(\pmb{\beta}_1)$	SQM(reduzido)	p-h-1	$\frac{SQM(reduzido)}{p\!-\!h\!-\!1}$	
Resíduo	SQR	n-p	$\frac{SQR}{n-p}$	
Total	SQT	n-1		

FV: fonte de variação, SQ: soma de quadrados, GL: graus de liberdade, QM: quadrado médio.

Exemplo 1: considerando as etiologias cardíacas

O modelo considerando as etiologias cardíacas é dado por

$$Y_{ij} = \beta_{0i} + \beta_{1i}x_{ij} + \xi_{ij}, i = 1, ..., j = 1, ..., n_i,$$

com

- Etiologias = CH (i = 1), ID (i = 2), IS (i = 3), C: (i = 4);
- $\xi_{ij} \stackrel{i.i.d.}{\sim} N(0, \sigma^2);$
- $(\beta_{01}, \beta_{02}, \beta_{03}, \beta_{04}, \beta_{11}, \beta_{12}, \beta_{13}, \beta_{14}, \sigma^2)$ parâmetros desconhecidos;
- x_{ij} : carga à que o paciente j que apresenta a etiologia cardíaca i foi submetido (conhecido e não aleatório);
- Parte sistemática: $\mathcal{E}(Y_{ij}) = \beta_{0i} + \beta_{1i}x_{ij}$;
- Parte aleatória: ξ_{ij} .

O modelo acima implica que $Y_{ij} \overset{ind.}{\sim} N(\beta_{0i} + \beta_{1i}x_{ij}, \sigma^2)$.

Análise no R

Ao ajustarmos o modelo anterior no R, ele fornece a seguinte "Tabela ANOVA":

FV	GL	SQ	QM	Estatística F	p-valor
(1)	4	13749,95	3437,49	1015,73	< 0,0001
(2)	4	$473,\!30$	118,33	34,96	< 0,0001
Resíduos	116	392,57	3,38		

Que hipóteses estão sendo testadas em cada linha da tabela acima?

Análise no R

Para responder à estas perguntas, precisamos saber como as somas de quadrados foram calculadas (matricialmente, de preferência) e estudar suas propriedades.

Exercício: obter as expressões matriciais das somas de quadrados em questão.

Solução:

- (1): $H_0: \beta_{01} = \beta_{02} = \beta_{03} = \beta_{04} = 0$ vs $H_1:$ há pelo menos uma diferença.
- (2): $H_0: \beta_{11} = \beta_{12} = \beta_{13} = \beta_{14} = 0$ vs $H_1:$ há pelo menos uma diferença.

Estimativas dos parâmetros

Parâmetro	Estimativa	EP	Estat. t	IC(95%)	p-valor
$\beta_{01}(C)$	6,56	0,71	9,18	[5,16; 7,96]	< 0,0001
$\beta_{02}(CH)$	6,63	0,75	8,88	[5,17;8,10]	< 0,0001
$\beta_{03}(ID)$	$7,\!35$	0,78	$9,\!45$	[5,82;8,87]	< 0,0001
$\beta_{04}(IS)$	6,80	0,66	10,33	[5,51;8,09]	< 0,0001
$\beta_{11}(C)$	0,09	0,01	7,62	$[0.07 \; ; \; 0.11 \;]$	< 0,0001
$\beta_{12}(CH)$	0,10	0,01	$7{,}14$	[0.07;0.13]	< 0,0001
$\beta_{13}(ID)$	0,05	0,02	2,82	[0,02;0,08]	0,0056
$\beta_{14}(IS)$	0,08	0,02	4,78	[0,05 ; 0,11]	< 0,0001

O consumo de oxigênio dos pacientes para carga 0 parecem ser semelhantes entre os grupos. O aumento no consumo parecer ser menor que os demais, para pacientes idiopáticos e igual para os outros três tipos.

Consumo de oxigencio em funcao da carga

Temos interesse em saber os consumos de oxigênio, para pacientes submetidos à uma carga nula, são os mesmos entre os grupos. Ou seja, desejamos testar se:

$$H_0: \beta_{01} = \beta_{02} = \beta_{03} = \beta_{04} vs H_1:$$
 há pelo menos uma diferença. (2)

Temos interesse em saber se os aumentos no consumo de oxigênio, são todos nulos entre os grupos. Ou seja, desejamos testar:

$$H_0: \beta_{11}=\beta_{12}=\beta_{13}=\beta_{14}=0\,vs\,H_1:$$
há pelo menos uma diferença. (3)

Em sendo não nulos, temos interesse em saber se os aumentos no consumo de oxigênio, são os mesmos entre os grupos. Ou seja, desejamos testar:

$$H_0:\beta_{11}=\beta_{12}=\beta_{13}=\beta_{14}\,vs\,H_1:$$
há pelo menos uma diferença. (4)

Ao se detectar a existência de pelo menos uma diferença (rejeitar H_0), devemos identificar os padrões dela (comparações dois a dois, por exemplo, sempre procedendo-se com cautela).

Em geral, a grande maioria das hipóteses de interesse, podem ser descritas como

$$H_0: C_{(q\times p)}\beta_{(p\times 1)} = \mathbf{0} \operatorname{vs} H_1: C_{(q\times p)}\beta_{(p\times 1)} \neq \mathbf{0},$$
 (5)

em que, via de regra, $q \leq p$.

Como podemos testar as hipóteses acima?

Lembremos que $\beta = (\beta_{01}, \beta_{02}, \beta_{03}, \beta_{04}, \beta_{11}, \beta_{21}, \beta_{31}, \beta_{41})'$.

A hipótese (nula) (2), pode ser escrita como:

$$H_0: \begin{cases} \beta_{01} - \beta_{02} = 0 \\ \beta_{01} - \beta_{03} = 0 & \Leftrightarrow H_0: C\beta = 0, \\ \beta_{01} - \beta_{04} = 0 \end{cases}$$

em que

$$C = \left[\begin{array}{ccccccc} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \end{array} \right].$$

A hipótese (nula) (3), pode ser escrita como:

$$H_0: \begin{cases} \beta_{11} = 0 \\ \beta_{12} = 0 \\ \beta_{13} = 0 \\ \beta_{14} = 0 \end{cases} \Leftrightarrow H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{0},$$

em que

A hipótese (nula) (4), pode ser escrita como:

$$H_0: \begin{cases} \beta_{11} - \beta_{12} = 0 \\ \beta_{11} - \beta_{13} = 0 & \Leftrightarrow H_0: C\beta = 0, \\ \beta_{11} - \beta_{14} = 0 \end{cases}$$

em que

Testes para $H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{0}$

Sabemos que

$$\widehat{\boldsymbol{\theta}} = \boldsymbol{C}\widehat{\boldsymbol{\beta}} \sim N_q(\boldsymbol{C}\boldsymbol{\beta}, \sigma^2 \boldsymbol{C}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{C}').$$

Como $\widehat{\boldsymbol{\beta}} \perp \widehat{\sigma}^2$, então $\widehat{\boldsymbol{C}} \widehat{\boldsymbol{\beta}} \perp \widehat{\sigma}^2$, em que

$$\widehat{\sigma}^2 = \frac{1}{n-p} (\boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}})' (\boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}}) = \frac{1}{n-p} \boldsymbol{Y}' (\boldsymbol{I} - \boldsymbol{H}) \, \boldsymbol{Y} = \frac{SQR}{n-p} = QMR.$$

Portanto, sob $H_0(C\beta = \mathbf{0})$ e usando alguns resultados de distribuições de formas quadráticas (provar), temos que

$$Q^* = \frac{1}{\sigma^2} \left(\boldsymbol{C} \widehat{\boldsymbol{\beta}} \right)' \left(\boldsymbol{C} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{C}' \right)^{-1} \left(\boldsymbol{C} \widehat{\boldsymbol{\beta}} \right) \sim \chi^2_{(q)}.$$

Construção da Estatística do Teste

Além disso, sabemos que $(n-p)\hat{\sigma}^2/\sigma^2 \sim \chi^2_{(n-p)}$.

Portanto, pelos resultados acima, temos, sob H_0 , que

$$F = \frac{Q^*/q}{\widehat{\sigma}^2/\sigma^2} = \frac{1}{q\widehat{\sigma}^2} \left(\boldsymbol{C}\widehat{\boldsymbol{\beta}} \right)' \left(\boldsymbol{C} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{C}' \right)^{-1} \left(\boldsymbol{C}\widehat{\boldsymbol{\beta}} \right) \sim F_{(q,n-p)}$$

 $p-valor=P(F>f|H_0),$ em que f é o valor calculado da estatística definida acima, e $F\sim F_{(q,n-p)}.$

Sob
$$H_1$$
, $F \sim F_{\left[q,n-p,\delta=\frac{1}{\sigma^2}\left((C\beta)'\left(C(X'X)^{-1}C'\right)^{-1}(C\beta)\right)\right]}$.

Voltando ao exemplo 1

Para o teste de nulidade simultânea de todos os interceptos, temos (estatística (p-valor)): $89.95 \ (< 0.0001)$.

Para o teste de nulidade simultânea de todos os incrementos, temos (estatística (p-valor)): $34,96 \ (< 0,001)$.

Para o teste de igualdade simultânea de todos os interceptos, temos (estatística (p-valor)): 0,22 (0,8842).

Para o teste de igualdade simultânea de todos os incrementos, temos (estatística (p-valor)): 1,72 (0,1666).

À rigor, após (ou mesmo antes) de ajustar o modelo, devemos verificar se as hipóteses se verificam (homocedasticidade, ausência de correlação e normalidade dos erros). Faremos isso mais adiante.

Exemplo 2: Modelo (casela de referência)

$$Y_{ij} = \mu + \alpha_i + \xi_{ij}, i = 1, 2, \dots, 5 \text{ (grupos)}, j = 1, \dots, 5 \text{ (u.e.)};$$

onde u.e. = unidades experimentais; com

- Erros (parte aleatória): $\xi_{ij} \stackrel{i.i.d}{\sim} N(0, \sigma^2);$
- $\blacksquare \mu, \alpha_i$ não aleatório;
- $\mathbb{E}_{\xi_{ij}}(Y_{ij}) = \mu_i, \mathcal{V}_{\xi_{ij}}(Y_{ij}) = \sigma^2;$
- Parte sistemática: $\mu + \alpha_i$ que é a média populacional relacionada ao i-ésimo fator, $\alpha_1 = 0$;
- $Y_{ij} \stackrel{ind.}{\sim} N(\mu + \alpha_i, \sigma^2).$

Análise descritiva

Não há sentido em construir box-plots ou histogramas (poucas observações por grupo).

Solvente	Medida descritiva					
	Média	DP	Var.	CV%	Mínimo	Máximo
E50	0,539	0,026	0,0007	4,937	0,510	0,562
E70	0,608	0,017	0,0003	2,744	0,583	0,629
EAW	0,567	0,015	0,0002	2,717	0,544	$0,\!586$
M1M	0,197	0,024	0,0006	12,107	$0,\!165$	0,225
MAW	0,450	0,037	0,0014	8,283	0,409	0,501

Teste de Bartlett para igualdade de variâncias

 $H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$ vs $H_1: \sigma_i^2 \neq \sigma_j^2$ para pelo menos um $i \neq j$.

Estatística do teste:

$$Q_B = \frac{q}{c},$$

em que

$$q = (n-k)\ln S_p^2 - \sum_{i=1}^k (n_i - 1)\ln S_i^2, S_p^2 = QMR = \frac{\sum_{i=1}^k (n_i - 1)S_i^2}{n-k},$$

$$c = 1 + \frac{1}{3(k-1)} \left[\sum_{i=1}^{k} (n_i - 1)^{-1} - (n-k)^{-1} \right].$$

Sob H_0 , $Q_B \approx \chi^2_{(k-1)}$. Rejeita-se H_0 quando $P(Q_B > q_B | H_0) < \alpha$, onde q_B é o valor calculado e α é o nível de significância.

Teste de Levene para igualdade de variâncias

 $H_0:\sigma_1^2=\sigma_2^2=\ldots=\sigma_k^2$ vs $H_1:\sigma_i^2\neq\sigma_j^2$ para pelo menos um $i\neq j$.

Estatística do teste:

$$Q_{L} = \frac{\sum_{i=1}^{k} n_{i} \left(\overline{Z_{i\cdot}} - \overline{Z_{\cdot\cdot}}\right)^{2} / (k-1)}{\sum_{i=1}^{k} \sum_{i=1}^{n_{i}} \left(Z_{ij} - \overline{Z_{i\cdot}}\right)^{2} / (n-k)},$$

em que

$$Z_{ij} = |Y_{ij} - \overline{Y_{i\cdot}}|; \overline{Z_{i\cdot}} = \frac{1}{n_i} \sum_{j=1}^{n_i} Z_{ij}; \overline{Z_{\cdot\cdot}} = \frac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} Z_{ij}.$$

Sob H_0 , $Q_L \approx F_{(k-1,n-k)}$. Rejeita-se H_0 quando $P(Q_L > q_L | H_0) < \alpha$, onde q_L é o valor calculado e α é o nível de significância.

Testes para homocedasticidade

Teste de Bartlett : 3,772 (0,4378).

Teste de Levene : 0,696 (0,6033).

Hipótese de homocedasticidade parace razoável.

Tabela ANOVA

FV	SQ	GL	QM	Estatística F	pvalor
Solvente	0,541	4	0,135	212,81	< 0,0001
Resíduo	0,012	20	< 0,001		
Total	0.553	24			

Rejeita-se H_0 .

```
fit.model <- lm(mabsor~solvfac)
anova(fit.model)</pre>
```

Analysis of Variance Table

Response: mabsor

Df Sum Sq Mean Sq F value Pr(>F)

solvfac 4 0.54127 0.135317 212.81 4.378e-16 ***

Residuals 20 0.01272 0.000636

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Estimativas dos parâmetros do modelo

Parâmetro	Estimativa	EP	IC(95%)	Estat. t	pvalor
$\mu \ (E50)$	0,539	0,011	[0,517; 0,561]	47,826	< 0,0001
α_2 (E70)	0,069	0,0160	$[\ 0.037\ ;\ 0.010]$	$4,\!298$	0,0003
α_3 (EAW)	0,028	0,0160	[-0.004 ; 0.059]	1,726	0,0998
$\alpha_4 \text{ (M1M)}$	-0,343	0,0160	[-0.374; -0.311]	-21,481	< 0.0001
α_5 (MAW)	-0,090	0,0160	[-0,121 ;-0,058]	-5,624	< 0,0001

Parâmetro α_3 não significativo. Isto sugere uma possível equivalência entre os solventes E50 e EAW.

Aplicação no exemplo 2

Lembrando os grupos : grupo 1(E50), grupo 2(E70), grupo 3(EAW), grupo 4(M1M), grupo 5(MAW).

Considere as hipóteses (H_0) :

$$H_{01}: \left\{ \begin{array}{l} \mu_1 - \mu_2 = 0, \ \mathbf{e} \\ \mu_1 - \mu_3 = 0 \end{array} \right.$$

$$H_{02}: \mu_1 = \mu_2.$$

$$H_{03}: \mu_1 = \mu_3.$$

$$H_{04}: \frac{\mu_1 + \mu_2 + \mu_3}{3} = \frac{\mu_4 + \mu_5}{2}.$$

$$H_{05}: \mu_3 = \mu_5.$$

Continuação: em termos das parametrização CR

Considere as hipóteses (H_0) :

$$H_{01}: \left\{ \begin{array}{l} \alpha_2=0, \ \mathbf{e} \\ \alpha_3=0 \end{array} \right.$$

 $H_{02}:\alpha_2=0.$

 $H_{03}:\alpha_3=0.$

 $H_{04}: 2\alpha_2 + 2\alpha_3 - 3\alpha_4 - 3\alpha_5 = 0.$

 $H_{05}: \alpha_3 = \alpha_5.$

Estatísticas (valores p)

Resultados:

```
H_{01}: 9,35 \quad (0,0014).
H_{02}: 18,47 \quad (<0,0001).
H_{03}: 2,98 \quad (0,0998).
H_{04}: 581,90 \quad (<0,0001).
H_{05}: 54,02 \quad (<0,0001).
```

É importante tentar controlar o nível de significância global de todas as hipóteses testadas. Aconselha-se a utilizar $\alpha^* = \frac{\alpha}{k}$, em que α é o nível de significância adotado na tabela ANOVA (se for o caso) ou algum valor pré-fixado de interesse e k o número de hipóteses testadas.

Modelo reduzido (casela de referência)

$$Y_{ij} = \mu + \alpha_i + \xi_{ij}, i = 1, 2, \dots, 5 \text{ (grupos)}, j = 1, \dots, 5 \text{ (u.e.)};$$

onde u.e. = unidades experimentais; com

- Erros (parte aleatória): $\xi_{ij} \stackrel{i.i.d}{\sim} N(0, \sigma^2);$
- $\blacksquare \mu, \alpha_i$ não aleatório;
- $\mathbb{E}_{\xi_{ij}}(Y_{ij}) = \mu_i, \mathcal{V}_{\xi_{ij}}(Y_{ij}) = \sigma^2;$
- \blacksquare $\mu+\alpha_i$: média populacional relacionada ao i-ésimo fator, $\alpha_1=\alpha_3=0.$
- $Y_{ij} \stackrel{ind.}{\sim} N(\mu + \alpha_i, \sigma^2).$

Estimativas dos parâmetros do modelo

Parâmetro	Estimativa	EP	IC(95%)	Estat. t	pvalor
$\mu \text{ (E50/EAW)}$	0,553	0,008	[0,537;0,569]	66,310	< 0,0001
$\alpha_2 \text{ (E70)}$	$0,\!055$	0,0114	[0,026;0,083]	3,792	0,0011
$\alpha_4 \text{ (M1M)}$	-0,356	0,0114	[-0,385;-0,328]	-24,665	< 0.0001
α_5 (MAW)	-0,103	0,0114	[-0,132;-0,075]	-7,161	< 0,0001

Todos os incrementos α são significativos e todos parecem distintos entre si.

Estimativas finais das médias

Solvente	Estimativa	EP	IC(95%)
E50/EAW	0,553	0,008	[0,537;0,569]
E70	0,607	0,012	$[0,\!584;\!0,\!631]$
M1M	$0,\!197$	0,012	$[0,\!173;\!0,\!220]$
MAW	0,450	0,012	$[0,\!426;\!0,\!472]$

Melhor solvente: E70.

Pior solvente: M1M.

Os soventes E50 e EAW são equivalentes.

Gráficos de perfis ajustados

Referência

- Notas de aula do Prof. Caio Azevedo.
- Agresti, A. (2015). Foundations of Linear and Generalized Linear Models. Wiley series in probability and statistics.