

	Ist L eine reg	_			_		
	etaillierten B $_{ m C}$ r L verwendet		struktur	elle Induk	tion übe	er den 1	regulären
Seg. R	Weilse		-je				
CL = CL	(a Up)	$R = (a^{R})$	js ^R)				
3 2	(x4)R	$= (\int_{S}^{R} \circ \chi^{R})^{*}$ $= (\chi^{R})^{*}$	9				
IA. LIE	$r = \angle(\epsilon)$	= L(E) n					
4(0	e) = 4(a)	= ((a) R					
4(0") = ((ø)	= L(Ø) K					
regulõre dus	umhelny	Regulate Sp	socia				
J. U. L(xe)	= ((x) = ((a)					
1.2.							
Fall 1	$L((\alpha o \beta)^R) = L($	$(\beta^R \circ \alpha^R) =$	L(15th) .	(ar) 3.4	(ps) 0 L	(a) (
Fall Z. L	$((\alpha \cup \beta)^R) = 0$	L(xrupr) = L(de)	U ((p k)			,
						u r.	A = rA
Fall 3. L($(\alpha^*)^R$) = $L((\alpha)^R$	r)*) = _((x k)* = 1.1/	(L (a) x)*			
				(T.A)* =	8. A. V		

In der Vorlesung haben wir definiert, dass nichtdeterministische endliche Automaten genau einen Startzustand besitzen. In dieser Aufgabe wollen wir die Variante betrachten, dass es mehrere Startzustände geben kann.

- (a) Geben Sie eine sinnvolle Definition f\u00fcr nichtdeterministische endliche Automaten mit mehreren Startzust\u00e4nden. Erkl\u00e4ren Sie insbesondere, wie die Sprache definiert ist, die von einem solchen Automaten erkannt wird.
- (b) Sei $L \subseteq \Sigma^*$ eine Sprache. Zeigen Sie: Es existiert ein NEA mit genau einem Startzustand, der L akzeptiert, genau dann, wenn es einen NEA mit mehreren Startzuständen gibt, der L akzeptiert.

