Devoir de Mathématiques n°6

KÉVIN POLISANO MP*

Vendredi 13 novembre 2009

PARTIE I

1.a. Par une récurrence immédiate $n \ge 5, F_n \ge n,$ d'où $\lim_{n \to +\infty} F_n = +\infty$.

b.
$$F_n^2 - F_{n-1}F_{n+1} = F_n^2 - F_{n-1}^2 - F_{n-1}F_n = F_n(F_n - F_{n-1}) - F_{n-1}^2 = F_nF_{n-2} - F_{n-1}^2$$
, soit en itérant :
$$F_n^2 - F_{n-1}F_{n+1} = (-1)^{n-2}(F_2^2 - F_1F_3) = (-1)^{n-1}$$

c. On réduit au même dénominateur et on utilise b. :

$$u_n = \frac{F_{n+1}}{F_n} - \frac{F_n}{F_{n-1}} = \frac{F_{n+1}F_{n-1} - F_n^2}{F_nF_{n-1}} = \frac{(-1)^n}{F_nF_{n-1}}$$

La série $\{u_n\}$ est convergente en vertu du critère de séries alternées.

2.a
$$\omega(F_n\omega + F_{n-1}) - F_{n+1}\omega - F_n = (1+\omega)F_n + \omega F_{n-1} - \omega F_{n+1} - F_n = \omega(F_n + F_{n-1} - F_{n+1}) = 0.$$

b. Posons
$$(s_n) = \left(\frac{F_{n+1}}{F_n}\right)_{n \in \mathbb{N}^*}, (u_n) = (s_{2n+1}) \text{ et } (v_n) = (s_{2n}).$$

$$u_{n+1} - u_n = \frac{F_{2n+4}}{F_{2n+3}} - \frac{F_{2n+2}}{F_{2n+1}}$$

$$= \frac{F_{2n+4}F_{2n+1} - F_{2n+3}F_{2n+2}}{F_{2n+1}F_{2n+3}}$$

$$= \frac{(F_{2n+3} + F_{2n+2})F_{2n+1} - F_{2n+3}(F_{2n+1} + F_{2n})}{F_{2n+1}F_{2n+3}}$$

$$= \frac{F_{2n+2}F_{2n+1} - F_{2n+3}F_{2n}}{F_{2n+1}F_{2n+3}}$$

$$= \frac{(F_{2n+1} + F_{2n})F_{2n+1} - (F_{2n+2} + F_{2n+1})F_{2n}}{F_{2n+1}F_{2n+3}}$$

$$= \frac{F_{2n+1}^2 - F_{2n}F_{2n+2}}{F_{2n+1}F_{2n+3}}$$

$$= \frac{1}{F_{2n+1}F_{2n+3}} \geqslant 0$$

Ainsi (u_n) est croissante. Et $u_n = \frac{F_{2n+2}}{F_{2n+1}} = 1 + \frac{F_{2n}}{F_{2n+1}} = 1 + \frac{1}{v_n}$ (*), donc (v_n) décroissante.

D'autre part :

$$u_n - v_n = \frac{F_{2n+2}}{F_{2n+1}} - \frac{F_{2n+1}}{F_{2n}} = \frac{F_{2n}F_{2n+2} - F_{2n+1}^2}{F_{2n}F_{2n+1}} = -\frac{1}{F_{2n}F_{2n+1}} (**)$$

Devoir de Mathématiques n°6 Kévin Polisano

On a donc $u_n - v_n \to 0$, avec (u_n) croissante et (v_n) décroissante d'où (u_n) et (v_n) adjacente.

$$\forall n \in \mathbb{N}^*, \quad u_n \leqslant \ell \leqslant v_n$$

d'après le théorème des suites adjacentes (où ℓ est la limite commune aux deux suites).

En passant à la limite dans (*) il vient $\ell = 1 + \frac{1}{\ell} \Rightarrow \ell = \omega$ car (u_n) positive.

Finalement on a:

$$\forall n \in \mathbb{N}^*, \quad u_n < \omega < v_n \text{ et } 0 < \omega - u_n < v_n - u_n = \frac{1}{F_{2n+1}F_{2n}} \text{ d'après (**)}$$

les inégalités étant strictes par irrationalité de ω , soit :

$$\forall n \in \mathbb{N}^*, \quad \frac{F_{2n+2}}{F_{2n+1}} < \omega < \frac{F_{2n+1}}{F_{2n}} \text{ et } 0 < \omega - \frac{F_{2n+2}}{F_{2n+1}} < \frac{1}{F_{2n+1}F_{2n}}$$

Les suites (s_{2n+1}) et (s_{2n}) convergent vers ω donc (s_n) converge également vers ω .

PARTIE II

1. L'équation caractéristique fournit ω et $\overline{\omega}$ comme solutions, d'où :

$$F_n = \alpha \omega^n + \beta \overline{\omega}^n$$

On détermine α et β grâce à F_1 et F_2 , et on trouve :

$$F_n = \frac{1}{\sqrt{5}} (\omega^n - \overline{\omega}^n)$$

2. On procède par récurrence « double » : pour k=1 on a $\omega + \overline{\omega} = 1 \in \mathbb{Z}$.

Supposons la propriété vraie au rang k et k+1, alors au rang k+2:

$$\omega^{k+2} + \overline{\omega}^{k+2} = \omega^k (1 + \omega) + \overline{\omega}^k (1 + \overline{\omega}) = (\omega^{k+1} + \overline{\omega}^{k+1}) + (\omega^k + \overline{\omega}^k) \in \mathbb{Z}$$

3. Posons m = nq, ainsi :

$$F_m = \frac{1}{\sqrt{5}} (\omega^m + \overline{\omega}^m) = \frac{1}{\sqrt{5}} [(\omega^n)^q - (\overline{\omega}^n)^q]$$

Et d'après l'identité $a^q-b^q=(a-b)(a^{q-1}+a^{q-2}b+\cdots+ab^{q-2}+b^{q-1})$ on a (avec $a=\omega^n$ et $b=\overline{\omega}^n$):

$$F_m = F_n (a^{q-1} + a^{q-2}b + \dots + ab^{q-2} + b^{q-1})$$

Remarquons que la somme des termes symétriques de la parenthèse est entière :

Sachant que $a + b = \omega^n + \overline{\omega}^n = N \in \mathbb{Z}$ on a $a^{q-i}b^{i-1} + b^{q-i}a^{i-1} = a^{q-i}(N-a)^{i-1} + b^{q-i}(N-b)^{i-1}$.

On développe à l'aide du binôme de Newton :

$$a^{q-i} \sum_{k=0}^{i-1} (-1)^k N^{i-1-k} \binom{i-1}{k} a^k + b^{q-i} \sum_{k=0}^{i-1} (-1)^k N^{i-1-k} \binom{i-1}{k} b^k = \sum_{k=0}^{i-1} (-1)^k N^{i-1-k} \binom{i-1}{k} \underbrace{a^{q-i+k} + b^{q-i+k}}_{\text{option}} \underbrace{a^{q-i+k} + b^{q-i+k}}_{\text{option}}$$

Devoir de Mathématiques n°6 Kévin Polisan

remarque : si q est impair on a un terme central $(ab)^{(q-1)/2} = (\omega \overline{\omega})^{n(q-1)/2} = (-1)^{n(q-1)/2} \in \mathbb{Z}$.

La parenthèse est donc entière et par suite F_n divise F_m .

Partie III

1.a En combinant les inégalités de 1.2.b on a :

$$\frac{F_{2n}}{F_{2n-1}} < \omega < \frac{F_{2n}}{F_{2n-1}} + \frac{1}{F_{2n-1}F_{2n-2}} < \frac{F_{2n}+1}{F_{2n-1}} \Rightarrow F_{2n} \leqslant F_{2n-1}\omega < F_{2n}+1 \Rightarrow E(F_{2n-1}\omega) = F_{2n}$$

b. Calculons $F_{2n}\omega$:

$$F_{2n}\omega = \frac{1}{\sqrt{5}}(\omega^{2n+1} - \overline{\omega}^{2n}\omega) = \frac{1}{\sqrt{5}}(\omega^{2n+1} - \overline{\omega}^{2n}(1 - \overline{\omega})) = \frac{1}{\sqrt{5}}(\omega^{2n+1} - \overline{\omega}^{2n+1}) + \frac{1}{\sqrt{5}}(2\overline{\omega}^{2n+1} - \overline{\omega}^{2n})$$

et $\frac{1}{\sqrt{5}}\overline{\omega}^{2n}(2\overline{\omega}-1)=-\overline{\omega}^{2n}$ dont la partie entière vaut -1 d'où :

$$E(F_{2n}\omega) = F_{2n+1} - 1$$
 et $E(F_{2n}\omega^2) = F_{2n} + E(F_{2n}\omega) = F_{2n+2} - 1$.

2. Soit $B_1 = \{(p,q) \in \mathbb{N}^{*2} | q = E((p-q)\omega)\}$, montrons que $B = B_1$ par double inclusion :

Posons
$$p = E(n\omega^2) = n + E(n\omega) = n + q$$
, $p - q = n$ d'où $q = E(n\omega) = E((p - q)\omega) \Rightarrow B \subset B_1$.

Réciproquement soit $(p,q) \in B_1$, notons p-q=n, $q=E(n\omega)$ et $p=q+n=E(n\omega^2) \Rightarrow B_1 \subset B$.

3. Par définition de la partie entière :

$$q = E((p-q)\omega) \Leftrightarrow q \leqslant (p-q)\omega < q+1 \Leftrightarrow 0 \leqslant p\omega - q(1+\omega) < 1 \Leftrightarrow 0 \leqslant p\omega - q\omega^2 < 1 \Leftrightarrow 0 \leqslant p-q\omega < \frac{1}{\omega}$$

 $remarque: p-q\omega \neq 0 \text{ sinon } \omega = \frac{p}{q} \text{ serait rationnel, absurde, d'où l'inégalité stricte.}$

4.a Toujours par définition :

$$n\omega - 1 < E(n\omega) \le n\omega \Leftrightarrow \frac{1}{n\omega} \le \frac{1}{E(n\omega)} < \frac{1}{n\omega - 1} \Leftrightarrow \frac{1}{\omega} \le \frac{n}{E(n\omega)} < \frac{n}{n\omega - 1}$$

D'après le théorème des gendarmes $\lim_{n\to+\infty} \frac{n}{E(n\omega)} = \frac{1}{\omega}$.

Et
$$\frac{E(n\omega^2)}{E(n\omega)} = \frac{n}{E(n\omega)} + 1$$
 d'où :

$$\lim_{n \to +\infty} \frac{E(n\omega^2)}{E(n\omega)} = 1 + \frac{1}{\omega} = \omega$$

Prenons $p = E(n\omega^2)$ et $q = E(n\omega)$. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in I$ donc $(P,Q) \in B$.

Donc de même il existe N tel que $P = E(N\omega^2)$ et $Q = E(N\omega)$, avec

$$E(N\omega^2) = P = ap + bq = aE(n\omega^2) + bE(n\omega)$$

$$E(N\omega) = Q = cp + dq = cE(n\omega^2) + dE(n\omega)$$

Devoir de Mathématiques n°6 Kévin Polisano

D'où en prenant le quotient 2 expressions et en factoriant par $E(n\omega)$:

$$\frac{E(N\omega^2)}{E(N\omega)} = \frac{a\frac{E(n\omega^2)}{E(n\omega)} + b}{c\frac{E(n\omega^2)}{E(n\omega)} + d}$$

Il est clair que si $n\to +\infty$ alors $N\to +\infty,$ ainsi en passant à la limite :

$$\omega = \frac{a\omega + b}{c\omega + d}$$

b. En effectuant le produit, P=ap+bq et Q=bp+(a-b)q, $P-Q\omega=p(a-b\omega)+q(b+(b-a)\omega)$:

$$\frac{P - Q\omega}{a - b\omega} = p + q \frac{b(1 + \omega) - a\omega}{a - b\omega} = p + q \frac{b\omega^2 - a\omega}{a - b\omega} = p - q\omega$$

Le sup S vaut $\frac{1}{\omega}$, on peut le voir en prenant $p = E(F_{2n}\omega^2)$ et $q = E(F_{2n}\omega)$:

$$p - q\omega = \underbrace{F_{2n+2} - F_{2n+1}\omega}_{\to 0} + \frac{1}{\omega}$$

d'après la deuxième inégalité de la partie I.

Supposons que $a - b\omega > 1$ et $(p,q) \in B$ donné, alors on peut construire :

$$P_n - Q_n \omega = (a - b\omega)^n (p - q\omega)$$

où
$$(P_n, Q_n) \in B \operatorname{car} \begin{pmatrix} a & b \\ b & a - b \end{pmatrix} \in I.$$

En faisant tendre $n \to +\infty$ on aurait un sup infini, contradiction.

Donc $0 < a - b\omega < 1$ (les cas d'égalité sont exclus par irrationalité de ω).

c. Réciproquement si $0 < a - b\omega < 1$ on a :

$$\forall (p,q) \in B, 0 < P - Q\omega = (a - b\omega)(p - q\omega) < p - q\omega < \frac{1}{\omega} \Rightarrow (P,Q) \in B$$

d'après 3, donc $\begin{pmatrix} a & b \\ b & a-b \end{pmatrix} \in I$.

PARTIE IV

- 1.a D'après III.4.b, $P-Q\omega=(2-\omega)(p-q\omega)<\frac{2-\omega}{\omega}=\frac{1}{2\omega+1}$.
- b. Inversement : $0 d'où <math>(p, q) \in B$.
- 2.a On a déjà $(F_{n+1}, F_n) \in B$ pour n pair car $E(F_{2n-1}\omega) = F_{2n}$ et $E(F_{2n-1}\omega^2) = F_{2n+1}$ (cf. III.1.a)

Pour n impair $(F_{n+1}, F_n) \notin B$ car sinon on aurait :

$$0 < F_{n+1} - F_n \omega < \frac{1}{\omega} \Leftrightarrow 0 < \omega (F_{n+1} - F_n) - F_n < 1 \Leftrightarrow 0 < F_{n-1} \Leftrightarrow -F_n < 1 \Rightarrow \frac{F_n}{F_{n-1}} < \omega$$

Devoir de Mathématiques n°6

Kévin Polisano

ce qui est faux pour n impair d'après I.2.b. Reste à vérifier que $\forall k \in \mathbb{N}^*, \varphi(F_{2k+1}, F_{2k}) = 1$.

$$F_{2k+1}^2 - F_{2k}F_{2k+1} - F_{2k}^2 = (F_{2k} + F_{2k-1})^2 - F_{2k}F_{2k-1} - 2F_{2k}^2 = -(F_{2k}^2 - F_{2k-1}F_{2k} - F_{2k-1}^2)$$

En réitétant une nouvelle fois on remarque que $\varphi(F_{2k+1}, F_{2k}) = \varphi(F_{2(k-1)+1}, F_{2(k-1)})$.

De proche en proche on obtient : $\varphi(F_{2k+1}, F_{2k}) = \varphi(F_3, F_2) = 1$.

Finalement pour tout n pair non nul on a $(F_{n+1}, F_n) \in C$.

b. Soit $(p,q) \in C$, montrons que $p - q\omega < \frac{1}{\sqrt{5}q}$ (on a bien sûr $p - q\omega > 0$ car $(p,q) \in B$).

Etudions le signe de $A = 1 - \sqrt{5}q(p - q\omega) = 1 - pq\sqrt{5} + q^2\omega\sqrt{5}$.

Comme $(p,q) \in C$ on a $p^2 - pq - q^2 = 1$ d'où $A = p^2 - (1 + \sqrt{5})pq - q^2(1 - \omega\sqrt{5})$ soit en simplifiant :

$$A = p^2 - 2\omega pq + \omega^2 q^2 = (p - q\omega)^2 > 0$$

ce qui prouve l'inégalité voulue.

$$\frac{1}{\sqrt{5}q} < \frac{1}{2\omega + 1} \Leftrightarrow \sqrt{5}q > 2\omega + 1 \Leftrightarrow \sqrt{5}(q - 1) > 2$$

vraie pour $q \ge 2$, donc 0 sauf pour <math>q = 1.

Montrons maintenant que tout élément de C est de la forme (F_{2n+1}, F_{2n}) .

J'ai du passer autant de temps sur cette question que sur son complémentaire...

Choisissons un élément $(p,q) \in C$ avec q > 1. On a alors 0 .

D'après 1.b le couple (p',q') défini par $M^{-1}\binom{p}{q}=\binom{p-q}{2q-p}$ appartient à B.

En outre on remarque en calculant que $\varphi(p',q') = \varphi(p,q) = 1$. Ainsi $(p',q') \in C$.

On peut donc dire que C est « stable » par M^{-1} .

Or
$$0 d'où $q' < q(2 - \omega) < q$, et $p' = p - q < p$.$$

Le nouveau couple obtenu possède des composantes strictement inférieures à celui d'origine.

En itérant on procède à une « descente infinie », et on finit par tomber sur q=1 et donc p=2.

De cette façon, pour n'importe quel couple initialement choisi dans C on aboutit en appliquant l'algorithme au couple (2,1). Graphiquement on parcourt les points entiers (dont les coordonnées sont dans B) de la courbe implicite $x^2 - xy - y^2 = 1$ avec une abscisse et ordonnée décroissante jusqu'à atteindre le point (2,1). Donc tous les points de C sont reliés à (2,1) par un morceau de cette courbe.

Inversement on atteint tout point de C en partant du couple (2,1) et en appliquant M!

Devoir de Mathématiques n°6

Kévin Polisano

Montrons alors par récurrence que ces points ont pour coordonnées (F_{2n+1}, F_{2n}) .

Initialisation : $(F_3, F_2) = (2, 1) \in C$.

<u>Hérédité</u> : Supposons que $M^n\binom{2}{1}=\binom{F_{2n+1}}{F_{2n}}$, alors au rang suivant :

$$M^{n+1} \binom{2}{1} = M \binom{F_{2n+1}}{F_{2n}} = \binom{2F_{2n+1} + F_{2n}}{F_{2n+1} + F_{2n}} = \binom{F_{2(n+1)+1}}{F_{2(n+1)}}$$

Ce qui achève la récurrence et la démonstration. (ouf!)

3.a La première inégalité est une conséquence de ce qui précède, si on avait $0 on pourrait construire un nouveau couple <math>(p',q') \in B$ tel que $\varphi(p',q') = \varphi(p,q) = a$ et q' < q ce qui serait contradictoire avec l'hypothèse de minimalité, donc $p - q\omega > \frac{1}{2\omega+1}$ (le cas d'égalité est exclu par irrationalité de ω).

En adaptant la preuve de 2.b avec a à la place de 1 on trouve $p-q\omega<\frac{a}{q\sqrt{5}}$. D'où

$$\frac{1}{2\omega + 1} < \frac{a}{q\sqrt{5}} \Leftrightarrow q < \left(1 + \frac{2}{\sqrt{5}}\right)a$$

b. Dans la pratique on va chercher pour $1 \le a \le 10$ fixé un couple (p,q) vérifiant :

$$0$$

On peut par exemple avec Maple créer une boucle qui va tester pour q variant de 1 à $E\left[\left(1+\frac{2}{\sqrt{5}}\right)a\right]$ si l'équation du second degré $p^2-pq-q^2=a$ admet une solution entière positive pour p, puis vérifier que $0 < p-q\omega < \frac{1}{\omega}$. On trouve alors comme valeurs possibles de a:1,4,5,9 avec comme couples respectifs (q minimal)(2,1), (10,6), (7,4), (15,9).

PARTIE V

1. Supposons qu'il existe $(p,q) \in \mathbb{N}^{*2}$, $E(p\omega) = E(q\omega^2) = N$, on a alors :

$$\begin{array}{c} N < p\omega < N+1 \\ N < q\omega^2 < N+1 \end{array} \iff \frac{\frac{N}{\omega}}{\frac{N}{\omega^2}} < p < \frac{N+1}{\omega^2} \\ \frac{N}{\omega^2} < q < \frac{N+1}{\omega^2} \end{array}$$

les inégalités étant strictes par irrationnalité de ω , soit en sommant on obtient :

$$N$$

ce qui est absurde.

2. Soit $E(F_{2n+1}\omega) = F_{2n+2}, F_{2n+2} \in A'_n$ et $F_{2n+2} \notin A''_n$.

On a $E(F_{2n}\omega^2) = F_{2n+2} - 1$ qui est le plus grand entier de A_n'' précédent F_{2n+2} .

Devoir de Mathématiques n°6
Kévin Polisano

Or les applications $p \to E(p\omega)$ et $p \to E(p\omega^2)$ (avec p entier) sont injectives :

$$E(p\omega) = E(p'\omega) = N \Rightarrow \frac{\frac{N}{\omega}}{\frac{N}{\omega}} \leqslant p < \frac{\frac{N}{\omega}}{\frac{N}{\omega}} + \frac{1}{\omega} \Rightarrow p = p'$$

car p et p' sont compris dans un intervalle de longueur $\frac{1}{\omega} < 1$.

Par conséquent l'intervalle $[1, F_{2n+2}]$ contient $F_{2n} + F_{2n+1} = F_{2n+2}$ éléments de A'_n et A''_n (car disjoint d'après 1.).

On en déduit que la réunion $A'_n \cup A''_n$ forme une partition de $[1, F_{2n+2}]$.

En choisissant n arbitrairement grand A et A' forme donc une partition de \mathbb{N}^* .

3. Supposons qu'il existe un réel $\theta > 1$ tel que (B', B'') soit une partition de \mathbb{N}^* :

$$B' = \{ E(p\theta), p \in \mathbb{N}^* \}, \quad B'' = \{ E(q\theta^2), q \in \mathbb{N}^* \}$$

Considérons un intervalle $N_n = [1, n]$, il y a $E(\frac{n}{\theta})$ entiers dans N_n qui sont dans B' et $E(\frac{n}{\theta^2})$ dans B''. Mais puisque l'on a une partition on peut écrire :

$$E\left(\frac{n}{\theta}\right) + E\left(\frac{n}{\theta^2}\right) = n \Leftrightarrow \frac{1}{n}E\left(\frac{n}{\theta}\right) + \frac{1}{n}E\left(\frac{n}{\theta^2}\right) = 1$$

Comme ceci est valable pour tout $n \in \mathbb{N}^*$ passons à la limite :

$$\frac{n}{\theta} - 1 < E\left(\frac{n}{\theta}\right) \leqslant \frac{n}{\theta} \Leftrightarrow \frac{1}{\theta} - \frac{1}{n} < \frac{1}{n}E\left(\frac{n}{\theta}\right) \leqslant \frac{1}{\theta}$$

Par le théorème des gendarmes $\lim_{n\to +\infty}\frac{1}{n}E\left(\frac{n}{\theta}\right)=\frac{1}{\theta}$, de même $\lim_{n\to +\infty}\frac{1}{n}E\left(\frac{n}{\theta^2}\right)=\frac{1}{\theta^2}$ d'où :

$$\frac{1}{\theta} + \frac{1}{\theta^2} = 1 \Leftrightarrow \theta^2 = 1 + \theta \Rightarrow \theta = \omega \operatorname{car} \theta > 1$$

ce qui prouve l'unicité.