DTS203TC Design and Analysis of Algorithms

Lecture 1: Getting Started

Dr. Qi Chen
School of AI and Advanced Computing

What is an algorithm?

 An algorithm is a sequence of computational steps that transform the input into the output.

- We can also view an algorithm as a tool for solving a wellspecified computational problem.
- Daily life examples: cooking recipe

Algorithm vs. Program

- Algorithm
 - Design
 - Domain Knowledge
 - Any language
 - Hardware & OS
 - Analyze

- Program
 - Implementation
 - Programmer
 - Programming Language
 - Hardware & OS
 - Testing

Some Well-known Algorithms

- Sorting
 - Insertion sort
 - Merge sort
- Searching
- Graph algorithms
 - Minimum Spanning Trees
 - Maximum Flow
- String matching
 - The Rabin-Karp algorithm
 - The Knuth-Morris-Pratt algorithm
- Number-Theoretic Algorithms
 - The RSA public-key cryptosystem

Sorting

■ Input: A sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$.

• Output: A reordering $\langle a_1', a_2', \dots, a_n' \rangle$ of the input sequence such that $a_1' \leq a_2' \leq \dots \leq a_n'$.

Example:

Input: <8,2,4,9,3,6>

Output: <2,3,4,6,8,9>

Insertion sort

Sorting a hand of cards using insertion sort

3 2 4 9 3 6

8

8

pseudocode

INSERTION-SORT(
$$A$$
)

1 for
$$j = 2$$
 to $A.length$

$$2 key = A[j]$$

Insert
$$A[j]$$
 into the sorted sequence $A[1..j-1]$.

$$4 \qquad i = j - 1$$

5 **while**
$$i > 0$$
 and $A[i] > key$

$$A[i+1] = A[i]$$

$$i = i - 1$$

A:

$$8 A[i+1] = key$$

Analysis of Algorithms

 Proof of correctness: show that the algorithm gives the desired result

- Time complexity analysis: find out how fast the algorithm runs
- Space complexity analysis: decide how much memory space the algorithm requires

Look for improvement: can we improve it to run faster or use less memory?

Mathematical Induction

- Mathematical induction: a mathematical technique to prove that a statement holds for every natural number n=0,1,2,....
- For example, to prove $1+2+...+n = n(n+1)/2 \forall integers n \ge 1$
 - when n is 1, L.H.S = 1, R.H.S = 1*2/2 = 1 **OK!**
 - when n is 2, L.H.S = 1+2 = 3, R.H.S = 2*3/2 = 3 **OK!**
 - when n is 3, L.H.S = 1+2+3=6, R.H.S = 3*4/2=6 **OK!**

However, none of these constitute a proof and we cannot enumerate over all possible numbers.

=> Mathematical Induction

Mathematical induction - cont'd

- Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes.
- If the first domino falls, then the second domino falls. If the second domino falls, then the third domino will fall too. And so on.
- Conclusion: If the first domino falls, then any n, nth domino falls.

Mathematical Induction Examples

- To prove: $1+2+...+n = n(n+1)/2 \forall integers n \ge 1$
- Base case: When n=1, L.H.S = 1, R.H.S = 1*2/2=1. Therefore, the statement is true for n=1.
- Induction hypothesis: Assume that statement is true when n=k for some integer $k \ge 1$.
 - i.e., assume that 1+2+...+k = k(k+1)/2
- Induction step: When n=k+1,
 - L.H.S = $1+2+...+k+(k+1) = (k^2+3k+2)/2$
 - R.H.S = $(k+1)((k+1)+1)/2 = (k^2+3k+2)/2 = L.H.S$

Mathematical Induction Examples - Cont'd

- We have proved
 - statement true for n=1
 - If statement is true for n=k, then also true for n=k+1
- In other words,
 - true for n=1 implies true for n=2 (induction step)
 - true for n=2 implies true for n=3 (induction step)
 - true for n=3 implies true for n=4 (induction step)
 - and so on
- Conclusion: true for all integers n

Question

■ Use Mathematical Induction to prove $2^n < n! \forall$ integers $n \ge 4$.

Mathematical Induction Examples - Cont'd

- To prove $2^n < n! \forall$ integers $n \ge 4$.
- Base case: When n=4, L.H.S = 16, R.H.S = 4! = 4*3*2*1 = 24, L.H.S < R.H.S. So, statement true for n=4</p>
- Induction hypothesis: Assume that statement is true for some integer $k \ge 4$, i.e., assume $2^k < k!$
- Induction step: When n=k+1
 - L.H.S = 2^{k+1} = 2*2k < 2*k! <- by hypothesis
 - R.H.S = (k+1)! = (k+1)*k! > 2*k! > L.H.S <-because k+1>2
 - So, statement true for k+1
- Conclusion: statement true ∀ integers n ≥ 4.

Loop invariants and the correctness of insertion sort

 Back to Insertion Sort, We use loop invariants (Similar to Mathematical Induction) to help us understand why an algorithm is correct.

loop invariant:

- Initialization: It is true prior to the first iteration of the loop.
- Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
- Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Loop invariants and the correctness of insertion sort – cont'd

• Initialization: When j = 2, the subarray A[1..j-1] consists of just the single element A[1], which shows that the loop invariant holds prior to the first iteration of the loop.

```
INSERTION-SORT(A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1 ... j - 1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i + 1] = A[i]

7 i = i - 1

8 A[i + 1] = key
```


Loop invariants and the correctness of insertion sort – cont'd

Maintenance: The body of the for loop works by moving A[j-1], A[j-2], A[j-3] and so on by one position to the right until it finds the proper position for A[j] (lines 4-7), at which point it inserts the value of A[j] (line 8). The subarray A[1...j] then consists of the elements in sorted order. Incrementing j for the next iteration of the for loop then preserves the loop invariant.

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1...j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```


Loop invariants and the correctness of insertion sort – cont'd

Termination: The condition causing the for loop to terminate is that =j =n+1. We have the entire array A[1...n] consists of the elements in sorted order. Hence, the algorithm is correct.

```
INSERTION-SORT(A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1 ... j - 1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i + 1] = A[i]

7 i = i - 1

8 A[i + 1] = key
```


Complexity Measures

- Why we need to analyze algorithm complexity?
 - Computing time is a bounded resource, and so is space in memory.

- What we need to analyze?
 - Analyzing an algorithm has come to mean predicting the resources that the algorithm requires (computational time, space, power consumption, number of exchanged messages, and so on).

Running Time

 The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed.

 It is convenient to define the notion of step so that it is as machine-independent as possible.

Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.

- $T_A(n)$ = time of A on length n inputs

Running Time – cont'd

• The running time of the algorithm is the sum of running times for each statement executed; a statement that takes time c_i to execute and executes n times will contribute $c_i n$ to the total running time.

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	C_4	n-1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	C_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

Running Time – cont'd

■ The total running time T(n) for INSERTION-SORT is:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

INSERTION-SORT (A)		times
for $j = 2$ to A.length	c_1	n
key = A[j]	c_2	n-1
$/\!\!/$ Insert $A[j]$ into the sorted		
sequence $A[1 j - 1]$.	O	n-1
i = j - 1	c_4	n-1
while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
A[i+1] = key	C8	n-1
	for $j = 2$ to A .length key = A[j] // Insert $A[j]$ into the sorted sequence $A[1 j - 1]$. i = j - 1 while $i > 0$ and $A[i] > key$ A[i + 1] = A[i] i = i - 1	for $j = 2$ to A . length c_1 $key = A[j]$ c_2 // Insert $A[j]$ into the sorted c_2 sequence $A[1 j - 1]$. c_4 $i = j - 1$ c_4 while $i > 0$ and $A[i] > key$ c_5 $A[i + 1] = A[i]$ c_6 $i = i - 1$ c_7

Running Time – cont'd

 The running time also depends on the input: an already sorted sequence (Best-case) is easier to sort.

 Generally, we seek upper bounds (Worst-case) on the running time, to have a guarantee of performance.

best-case for Insertion Sort

• The best case occurs if the array is already sorted, which means $t_j = 1$.

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

It's a linear function of n.

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	C_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	C_{7}	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	C8	n-1

Worst-case for Insertion Sort

■ The worst case occurs if the array is reverse sorted.

$$T(n) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right)n - \left(c_2 + c_4 + c_5 + c_8\right)$$

It is a quadratic function of n.

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	$/\!\!/$ Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1	c_4	n - 1
5	while $i > 0$ and $A[i] > key$	C 5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	C_{7}	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	C_8	n-1

Worst-case and average-case analysis

- The worst-case running time of an algorithm gives us an upper bound on the running time for any input.
- The average-case running time is the amount of time used by the algorithm, averaged over all possible inputs. The averagecase is often roughly as bad as the worst case.

Order of growth

- For Insertion Sort, we expressed the worst-case running time
 - $T(n) = an^2 + bn + c$
- We consider only the leading term of a formula (e.g., an^2).
- We write that insertion sort has a worst-case time complexity of

$$O(n^2)$$

Time complexity

- Time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm.
- We commonly considers the worst-case time complexity, which
 is the maximum amount of time required for inputs of a given
 size.
- The time complexity is commonly expressed using big O notation
- Insertion sort has a time complexity of $O(n^2)$

Space complexity

- The space complexity of an algorithm is the amount of memory space required to solve an instance of the computational problem.
- Space complexity is often expressed in big O notation.
- Auxiliary space refers to space other than that consumed by the input
- We commonly considers the auxiliary space complexity

What is the space complexity of Insertion sort?

```
INSERTION-SORT(A)
   for j = 2 to A.length
       key = A[j]
                                                                              8
       // Insert A[j] into the sorted sequence A[1...j-1].
       i = j - 1
       while i > 0 and A[i] > key
                                                                              8
                                                                                                          6
           A[i+1] = A[i]
6
          i = i - 1
       A[i+1] = key
                                                                                       6
                                                                                                8
```


Space complexity of Insertion sort

- In-place: An in-place algorithm updates its input sequence only through replacement or swapping of elements
- Only requires a constant amount O(1) of additional memory space
- (Auxiliary) space complexity: O(1)

> sort (34, 10, 64, 51, 32, 21) in ascending order

·	•	
Sorted part	Unsorted part	Swapped
	34 10 64 51 32 21	10, 34
10	34 64 51 32 21	21, 34
10 21	64 51 32 34	32,64
10 21 32	51 64 34	51, 34
10 21 32 34	64 51	51, 64
10 21 32 34 51	64	
10 21 32 34 51 6	4	


```
for i = 1 to n-1:
    min = i
    for j = i+1 to n do
        if a[j] < a[min]
            min = j
        swap a[i] and a[min]</pre>
```


Worst-case Time complexity?

Best-case time complexity?

Average-case time complexity?

• (Auxiliary) space complexity?

• Worst-case Time complexity: $O(n^2)$

• Best-case time complexity: $O(n^2)$

• Average-case time complexity: $O(n^2)$

(Auxiliary) space complexity: O(1)

Learning outcomes

- Algorithm definition
- Examples of algorithmic problems
- Insertion sort
- Analysis of algorithms
- Mathematical Induction
- Worst-case and average-case time complexity
- Space complexity

