OSNOVE UMETNE INTELIGENCE 2022/23

uvod v strojno učenje učenje odločitvenih dreves

Pridobljeno znanje s prejšnjih predavanj

- različne definicije umetne inteligence
- filozofske in psihološke implikacije umetne inteligence
- Turingov test
- zgodovina umetne inteligence
- sodobne aplikacije in področja umetne inteligence
- strojno učenje
 - namen in cilji učenja
 - vrste učenja: nadzorovano, nenadzorovano, spodbujevano
 - nadzorovano učenje:
 - atributna predstavitev podatkov
 - klasifikacijski/regresijski problemi
 - prostor hipotez
 - evalvacija hipotez: konsistentnost, splošnost, preprostost/razumljivost/interpretabilnost

Pregled

- uvod v strojno učenje
- vrste strojnega učenja
- predstavitev podatkov, hipoteze
- učenje odločitvenih dreves

Odločitveno drevo

- ponazarja relacijo med vhodnimi vrednostmi (atributi) in odločitvijo (ciljna spremenljivka – razred ali označba)
 - notranja vozlišča: test glede na vrednost posameznega atributa
 - listi: odločitev (vrednost ciljne spremenljivke)
 - pot: konjunkcija pogojev v notranjih vozliščih na poti, ki vodi do lista
- poseben primer: binarna klasifikacija (razred ima dve možni vrednosti npr. pozitivni/negativni, strupen/užiten itd.)

Example	Attributes								Target		
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Gradnja odločitvenega drevesa

- cilj: zgradi čim manjše drevo, ki je konsistentno z učnimi podatki
- prostor iskanja: kombinatoričen, vsa možna drevesa (neučinkovito!)
- hevristični požrešni algoritem s strategijo razveji in omeji:
 - izberi najbolj pomemben atribut tisti, ki najbolj odločilno vpliva na klasifikacijo primera – in razdeli primere v poddrevesa glede na njegove vrednosti,
 - rekurzivno ponovi za poddrevesa,
 - če vsi elementi v listu pripadajo istemu razredu ali vozlišča ni možno deliti naprej (ni razpoložljivih atributov), ustavi gradnjo.
- imenovano tudi Top Down Induction of Decision Trees (TDIDT)
- primeri implementacij: ID3, CART, Assistant, C4.5, C5, ...

Izbor najbolj pomembnega atributa

- najboljši atribut je tisti, ki razdeli učno množico v najbolj "čiste" podmnožice (glede na razred)
- uporabimo lahko mero entropije:

$$H = -\sum_{k} p_k \log_2 p_k$$

- mera nečistoče oz. mera nedoločenosti naključne spremenljivke (Shannon in Weaver, 1949)
- enota: količina informacije v bitih, ki jo pridobimo
- primeri:
 - met kovanca: 1 bit informacije
 - poskus s štirimi enako verjetnimi možnimi izidi: 2 bita informacije
 - poskus z dvema izidoma, od katerih je eden 99%: ~ 0 bitov informacije

Entropy

Informacijski prispevek

- dejansko nas zanima znižanje entropije (nedoločenosti) ob delitvi učne množice glede na vrednosti atributa A
- znižanje entropije ob delitvi učne množice glede na vrednosti atributa A
- informacijski prispevek:

$$Gain(A) = I - I_{res}(A)$$

$$I_{res} = -\sum_{v_i \in A} p_{v_i} \sum_{c} p(c|v_i) \log_2 p(c|v_i)$$

 najbolj informativni atribut maksimizira informacijski prispevek (minimizira I_{res})

informacija (entropija) I = H(C)

rezidualna informacija (entropija)

$$I_{res} = \sum_{i} p_{v_i} \cdot H(C|v_i)$$

entropije, utežene z verjetnostmi posameznih poddreves

Izbor najbolj pomembnega atributa

Example	Attributes								Target		
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

slab atribut (slabo loči pozitivne in negativne primere)

- znižanje entropije ob delitvi učne množice glede na vrednosti atributa A
- $Gain(A) = I I_{res}(A)$

$$I = -p(T)\log_2 p(T) - p(F)\log_2 p(F) = -\frac{6}{12}\log_2 \frac{6}{12} - \frac{6}{12}\log_2 \frac{6}{12} = -\log_2 \frac{1}{2} = 1$$

$$I_{res}(Type) = -\frac{2}{12} \left[\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2} \right] - \frac{2}{12} \left[\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2} \right] - \frac{4}{12} \left[\frac{2}{4} \log_2 \frac{2}{4} + \frac{2}{4} \log_2 \frac{2}{4} \right] - \frac{4}{12} \left[\frac{2}{4} \log_2 \frac{2}{4} + \frac{2}{4} \log_2 \frac{2}{4} \right] = 1$$

$$I_{res}(Patrons) = -\frac{2}{12} \cdot 0 - \frac{4}{12} \cdot 0 - \frac{6}{12} \left[\frac{2}{6} \log_2 \frac{2}{6} + \frac{4}{6} \log_2 \frac{4}{6} \right] \approx 0,46$$

$$Gain(Type) = 1 - 1 = 0$$

$$Gain(Patrons) = 1 - 0.46 = 0.54$$

Primer

naučeno odločitveno drevo (levo) je krajše od ročno zgrajenega drevesa (desno)

- obe drevesi sta konsistentni s primeri
- v zgrajenem drevesu ne nastopajo vsi atributi (npr. Raining in Reservation), zakaj?

Večvrednostni atributi

- težava z atributi, ki imajo več kot dve vrednosti: informacijski prispevek precenjuje njihovo kakovost (entropija je višja na račun večjega števila vrednosti in ne na račun kakovosti atributa)
- primer: dve situaciji z enako nedoločenostjo razredov:
 - dve vrednosti: **QQQQQ**, $H = -\frac{1}{2}\log_2\frac{1}{2} \frac{1}{2}\log_2\frac{1}{2} = -\log_2\frac{1}{2} = 1$
 - tri vrednosti: **QQQQQ**, $H = -\frac{1}{3}\log_2\frac{1}{3} \frac{1}{3}\log_2\frac{1}{3} \frac{1}{3}\log_2\frac{1}{3} = -\log_2\frac{1}{3} = 1,58$

- rešitve:
 - 1. normalizacija informacijskega prispevka (relativni informacijski prispevek)
 - 2. uporaba alternativnih mer (informacijskih, ocene verjetnosti itd.)
 - 3. binarizacija atributov

Relativni informacijski prispevek in Gini

• Normalizacija informacijskega prispevka: information gain ratio (sistem ID3, Quinlan, 1986)

$$Gain(a) = I - I_{res}(A)$$

$$I(A) = -\sum_{v} p_v \log_2 p_v$$

$$GainRatio(A) = \frac{Gain(A)}{I(A)} = \frac{I - I_{res}(A)}{I(A)}$$

 $oldsymbol{v}-v$ rednost atributa

c -razred

informacija, ki jo potrebujemo za določitev vrednosti atributa A (entropija atributa)

- Alternativna mera za kakovost atributa: Gini index
 - ocena pričakovane klasifikacijske napake (vsota produktov verjetnosti razredov)

$$Gini = \sum_{c_1 \neq c_2} p(c_1)p(c_2)$$

$$Gini(A) = \sum_{v} p(v) \sum_{c_1 \neq c_2} p(c_1|v)p(c_2|v)$$

Izpitna naloga

• 2. izpitni rok, 15. 2. 2018 (prilagojena naloga)

Podana je učna množica primerov, ki je prikazana v tabeli (*vreme* in *pritisk* sta atributa, *glavobol* pa je razred). Naloge:

- Zgradi odločitveno drevo, pri čemer za ocenjevanje atributov uporabi informacijski prispevek. V primeru enakega števila primerov – predstavnikov obeh razredov – naj vozlišče klasificira v večinski razred iz učne množice.
- b) Ali bi dobljeno drevo bilo drugačno, če bi uporabili razmerje informacijskega prispevka? Utemelji.
- c) V kateri razred bi drevo klasificiralo učni primer z vrednostmi atributov vreme=deževno, pritisk=srednji?

vreme	pritisk	glavobol		
sončno	nizek	ne		
sončno	nizek	ne		
sončno	srednji	da		
sončno	visok	ne		
sončno	nizek	ne		
sončno	nizek	da		
deževno	srednji	ne		
deževno	srednji	da		
deževno	visok	da		

Binarizacija atributov

- alternativa za reševanje problematike z večvrednostnimi atributi
- zalogo vrednosti atributa lahko razbijemo v dve množici
- primer: atribut $barva \in \{rde\check{c}a, rumena, zelena, modra\}$
- strategije:
 - {{rdeča}, {rumena, zelena, modra}} (one-vs-all)
 - {{rdeča, rumena}, {zelena, modra}}
 - vpeljava binarnih atributov za vsako barvo
 - itd.
- prednost: manjše vejanje drevesa (statistično bolj zanesljivo, možna višja klasifikacijska točnost)
 - različne načine binarizacije atributa lahko nastopajo kot samostojni atributi, ki se v drevesu pojavijo večkrat

Kratkovidnost algoritma TDIDT

- TDIDT je požrešni algoritem, ki "lokalno" izbira najboljši atribut in ne upošteva, kako dobro drugi algoritmi dopolnjujejo izbrani atribut
- prednosti in slabosti zgornjega pristopa?
- kratkovidnost (angl. myopy) izbora atributa
- primer: problem XOR

A_1	A_2	Razred
0	0	0
0	1	1
1	0	1
1	1	0

$$Gain(A_1) = ?$$

 $Gain(A_2) = ?$

$$Gain(A_1A_2) = ?$$

Prostor hipotez odločitvenih dreves

- diskretni atributi odločitvena drevesa delijo prvotno učno množico na vse manjše podmnožice (cilj: maksimizirati čistost podmnožic)
- zvezni atributi delitev podmnožice glede na smiselno mejo izbranega atributa
- primera:

Prostor hipotez odločitvenih dreves

- zvezni atributi (npr. višina, dolžina, IQ, koncentracija ozona, poraba el. energije, ipd.)
- v vozliščih običajno testiramo primerjavo zveznega atributa z izbrano mejo (večje/manjše)
- takšna odločitvena drevesa delijo prostor na particije (hiper-kvadre), katerih meje so vzporedne koordinatnim osem
- dva primera:

Privzeta točnost

- smiselna mera za **privzeto točnost** (minimalno pričakovano točnost) odločitvenega drevesa je **verjetnost večinskega razreda** v učni množici
- drevo je koristno/uporabno, če je njegova točnost višja od privzete točnosti

Primer:

- [#Yes, #No] = [3,7]
- pričakovana točnost (verjetnost večinskega razreda) je 0,7
- želimo, da ima zgrajeno drevo na testnih podatkih višjo točnost

Pristranost na učni množici

- cilj: maksimiziraj pričakovano točnost drevesa (vendar ne na učnih podatkih - pretirano prilagajanje?)
- alternativa uporaba **nevidenih primerov**:
 - izvzamemo posebno množico testnih primerov, če imamo dovolj podatkov (ostane manj podatkov za gradnjo)
 - tipična delitev podatkov: učna množica (70%), testna množica (30%)

