«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Дмитрий Павлов Студент факультета инноваций и высоких технологий (группа 790)

Лабораторная работа №2.2.1

«Исследование взаимной диффузии газов»

Долгопрудный 17 мая 2018 г.

0.1 Цель работы:

- Регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов.
- Определение коэффициента диффузии по результатам измерений.

0.2 В работе используются:

- измерительная установка;
- форвакуумный насос;
- баллон с газом (гелий);
- источник питания;
- магазин сопротивлений;
- манометр;
- секундометр.

1 Теоретический материал:

Диффузией называется самопроизвольное перемешивание молекул, происходящее вследствие их теплового движения. В тех случаях, когда происходит перемешивание молекул одного вещества, говорят о самодиффузии, а если перемешиваются разные молекулы — о взаимной (или концентрационной) диффузии.

Рассмотрим процесс выравнивания концентраций двух различных газов. Пусть концетрации одного из компонентов смеси в сосудах V_1 и V_2 равны n_1 и n_2 соответственно. Плотность диффузионного потока (количество вещества, проходящее в единицу времени через единичную поверхность) определяется законом Фика:

$$j = -D\frac{\partial n}{\partial x},\tag{1}$$

где D – коэффициент взаимной диффузии газов, а j – плотность потока частиц.

В условиях установки, приведенной на рис.1, объем соединительной трубки длиной l и площадью S мал по сравнению с объемами сосудов и концентрацию газов можно считать постоянной внутри каждого сосуда. Поэтому величина $J=jS=-DS(\partial n/\partial x)$ не меняется вдоль трубки. Отсюда получаем, что

$$J = -DS\frac{n_1 - n_2}{I} \tag{2}$$

Из закона сохранения вещества в любой момент времени $V_1n_1+V_2n_2=const$, отсюда, обозначив за Δn_1 и Δn_2 изменения концентраций в объемах V_1 и V_2 за время Δt , имеем

$$V_1 \Delta n_1 = -V_2 \Delta n_2 = J \Delta t = -DS \frac{n_1 - n_2}{l} \Delta t \tag{3}$$

Путем математических преобразований (разделим обе части на Δt , первое – на V_1 , второе на V_2 и вычитая), найдем

$$\frac{d(n_1 - n_2)}{dt} = \frac{dn_1}{dt} - \frac{dn_2}{dt} = -\frac{n_1 - n_2}{l} DS(\frac{1}{V_1} + \frac{1}{V_2})$$
(4)

Интегрируя (4), получим зависимость разности концентраций от времени:

$$n_1 - n_2 = (n_1 - n_2)_0 \exp(-t/\tau),$$
 (5)

где $n_1-n_2)_0$ – разность концентрация в начальный момент времени, $\tau=\frac{V_1V_2}{V_1+V_2}\frac{l}{SD}$ – характерное время, определяемое параметрами установки и величиной коэффициента диффузии.

Для измерения концентраций в данной установке используется зависимость теплопроводности газовой смеси от ее состава. Тонкая проволока радиуса r, натянутая вдоль оси цилиндра радиуса R, нагревается электрическим током. Вследствие теплопроводности газа происходит теплопередача от проволоки к стенкам. При этом количество теплоты, переданное в единицу времени, равно

$$Q = \varkappa \frac{2\pi L}{\ln(R/r)} (T_1 - T_2) \tag{6}$$

Измерение разности концентраций производится с помощью мостовой схемы (см. рис.2). При достаточно малых изменениях концентраций величина тока, проходящая через гальванометр, пропорциональна разности концентраций. Поэтому показания гальванометра во времени будут изменяться по тому же закону, что и разность концентраций, т.е.

$$N = N_0 \exp(-t/\tau),\tag{7}$$

где N_0 – показания в начальный момент времени.

2 Экспериментальная установка:

Схема установки.

Общая схема установки представлена на рис.1. (вариант А). Установка состоит из двух сосудов объемами V_1 и V_2 , соединенных краном K3, форвакуумного насоса, манометра М и системы напуска гелия (краны К6 и К7). Кран К5 служит для подключения форвакуумного насоса к установке, подачи воздуха в установку и соединения форвакуумного насоса с атмосферой. Сосуды можно соединять как с форвакуумным насосом, так и с системой напуска гелия. Манометр регистрирует давление газа, до которого заполняют сосуд.

Схема мостового соединения

На рис.2. приведена схема электрического соединения. D_1 и D_2 – сопротивления проволок датчиков парциального давления, которые составляют одно плечо моста. Второе плечо моста составляют сопротивления $R_1, R_2(R_1 \gg r_1, R_2 \gg r_2)$, служащие для грубой регулировки моста. Точная регулировка моста достигается с помощью потенциометра R.

3 Выполнение работы:

3.1 Установка и внешние условия:

Параметры установки:

$$V_1 = V_2 = 1200 \text{ cm}^3, \frac{L}{S} = 5.5 \text{cm}^{-1}$$

Атмосферное давление:

$$P_{amM} = 98156 \; \Pi a$$

3.2 Запуск установки:

Откачаем установку до давления ~ 0.1 Торр и проведем калибровку моста (показания вольтметра должны быть близки к нулевой отметке).

Приготовим рабочие смеси. Для этого откачаем всю установку до 0,1 Торр, а затем, закрыв K2 и K3, изолируем один из объемов. После этого заполняем один из объемов гелием и воздухом и уравняем давление в сосудах. Запишем установившееся давление.

Процесс диффузии начинается после открытия крана K3. Приготовим компьютерную программу и, открыв K3, измерим изменение показаний вольтметра с течением времени. Результаты запишем в таблицу 2.

Повторим измерения при различных давлениях из диапазона 40–300 Торр.

По результатам измерений построим график зависимости показаний вольтметра от времени для каждого давления в логарифмическом масштабе по оси ординат (puc.1). По угловому коэффициенту получившихся прямых определим характерное время для данной установки.

Пользуясь формулой

$$D = \frac{1}{\tau} \frac{VL}{2S} \tag{8}$$

определим значение коэффициента взаимной диффузии при данном давлении. Запишем результат в таблицу 1.

Построим график зависимости коэффициента диффузии от величины, обратной давлению, в координатах D(1/P) ($puc.\ 2$). Убедимся, что данная зависимость линейная. Экстраполируя график к атмосферному ($P=760\ Topp$) давлению, определим коэффициент взаимной диффузии гелия и воздуха при атмосферном давлении:

$$D_{amm} = 225.02/760 + 1.28 \approx 1,58 \text{ cm}^2/c$$

Оценим длину свободного пробега и эффективное сечение атомов гелия в условиях эксперимента:

$$D = \frac{1}{3}\overline{v}\lambda = \frac{1}{3}\sqrt{\frac{3RT}{\mu}}\lambda$$
$$\lambda = D\sqrt{\frac{3\mu}{RT}}$$
$$\lambda = \frac{1}{\sqrt{2}\sigma n} \to \sigma = \frac{kT}{\sqrt{2}\lambda P}$$

Результаты запишем в таблицу 1.

Рис. 1: Зависимость показаний вольтметра от времени при различных давлениях

Рис. 2: Зависимость показаний вольтметра от времени при различных давлениях

Рис. 3: Зависимость коэффициента диффузии от обратного давления

4 Погрешности измерений

Погрешность величины	значение	причины		
$\sigma(\Delta V)$	30 см ³	данные из установки		
$\sigma(\frac{L}{S})$	$0.5 \ 1/{ m cm}$	данные из установки		
$\sigma(ilde{ au})$	0.01 c	точность секундомера в компьютере		
$\sigma(T)$	1 K	точность термометра		
$\sigma(D)$	0,05	косвенная погрешность		

Таблица 1: Результаты измерений

$$\sigma(D) = D\sqrt{\left(\frac{\sigma(V)}{V}\right)^2 + \left(\frac{\sigma(\frac{L}{S})}{\frac{L}{S}}\right)^2 + \left(\frac{\sigma(\tau)}{\tau}\right)^2}$$
$$\sigma(\lambda) = \lambda\sqrt{\left(\frac{\sigma(D)}{D}\right)^2 + \left(\frac{\sigma(T)}{T}\right)^2}$$

запишем в таблицу 1.

5 Вывод:

Мы убедились, что в процессе взаимной диффузии газов зависимость концентрации примеси одного газа в другом зависит от времени экспоненциально. Также экспериментально было установлено, что коэффициент диффузии обратно пропорционален давлению газовой смеси. Коэффициента диффузии при атмосфер- ном давлении: $(6\pm0.6)*10^{-5}$ м2/с.

Р, торр	$D \text{ cm}^2/c$	ΔD , cm ² /c	εD	$\lambda, 10^{-6} \text{ M}$	$\Delta \lambda$, M	$\sigma, 10^{-19} \text{ m}^2$
40	6,74	0,087	0,012	3,98	0,052	1,38
80	4,28	0,053	0,012	2,53	0,032	1,09
120	3,57	0,041	0,011	2,11	0,025	0,87
200	2,24	0,028	0.013	1,32	0,017	0,83
300	1,75	0,026	0,013	1,03	0,015	0,71

Таблица 2: Результаты измерений

6 Приложение: Таблица 2

Р, торр	Т, с	U, мВ	τ , c	D	Р, торр	Т, с	U, мВ	τ , c	D
40	0,00	255,0	652,6	6,74	120	0,00	255,0	1233,0	3,57
	28,93	245,9				31,71	249,0		
	57,85	231,5				63,41	243,0		
	86,78	224,0				95,12	236,0		
	112,71	217,1				126,82	230,0		
	144,63	204,0				158,53	224,0		
	173,56	195,0				190,23	218,0		
	202,48	186,3				221,94	213,0		
	231,41	178,0				253,64	207,0		
	260,34	170,1				285,35	202,0		
	289,26	163,0				317,05	197,0		
	318,19	155,0				348,76	192,0		
	347,12	148,0				380,46	187,0		
	376,04	142,0				380,46	187,0		
	404,97	136,5				412,17	182,0		
	433,89	131,0				443,87	178,0		
	462,82	126,0				475,58	173,0		
	491,75	121,0				507,28	169,0		
	520,67	116,1				538,99	165,0		
	549,60	111,0				570,69	161,0		
80	0,00	255,0	1028,2	4,28	200	0,00	255,0	1963,7	2,24
	31,71	247,6				48,44	248,6		
	63,41	240,0				96,88	242,0		
	95,12	232,9				145,33	236,0		
	126,82	224,0				193,77	230,0		
	158,53	217,0				242,21	224,2		
	190,23	210,8				290,65	219,0		
	221,94	204,4				339,09	213,0		
	253,64	198,0				387,54	208,0		
	285,35	192,0				435,98	203,0		
	317,05	187,0				484,42	199,0		
	348,76	181,0				532,86	194,0		
	380,46	176,0				581,31	189,0		
	412,17	170,0				629,75	185,0		
	443,87	165,0				678,19	180,0		
	475,58	160,5				726,63	176,0		
	507,28	156,0				775,07	172,0		
	538,99	152,0				823,52	168,0		
	570,69	147,4				871,96	165,0		
	602,40	143,0				920,40	161,0		