Лабораторная работа 3.4.1. Диа- и парамагнетики

Абакшин Василий, Б05-207

19 ноября 2023 г.

Краткие теоретические сведения

Измерение магнитной восприимчивости материалов будем проводить с помощью расчета силы, действующей на магнетик в магнитном поле. При смещении образца на расстояние Δl внутрь магнитного поля магнитная сила, действующая на него, равна

$$F = \left(\frac{\Delta W_m}{\Delta l}\right)_I,\tag{1}$$

где ΔW_m – изменение магнитной энергии системы при постоянном токе в обмотке электромагнита и, следовательно, при постоянной величине магнитного поля в зазоре. Магнитная энергия рассчитывается по формуле:

$$W_m = \frac{1}{2} \int (\mathbf{HB}) dV = \frac{1}{2\mu_0} \int \frac{B^2}{\mu} dV,$$

Рис. 1: Перемещение магнетика

При смещении образца магнитная энергия меняется только в области зазора (в объёме площади S и высоты Δl), а около верхнего конца стержня остаётся неизменной, поскольку магнитного поля там практически нет. Тогда изменение магнитной энергии будет:

$$\Delta W_m = \frac{1}{2\mu_0} \frac{(\mu B)^2}{\mu} S\Delta l - \frac{1}{2\mu_0} B^2 S\Delta l = (\mu - 1) \frac{B^2}{2\mu_0} S\Delta l$$

Следовательно, на образец действует сила

$$F = (\mu - 1)\frac{B^2}{2\mu_0}S = \chi \frac{B^2}{2\mu_0}S$$

Знак силы, действующей на образец, зависит от знака χ : образцы из парамагнитных материалов ($\chi>0$) втягиваются в зазор электромагнита, а диамагнитные образцы ($\chi<0$) выталкиваются из него.

Экспериментальная установка

Магнитное поле создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр полюсов существенно превосходит ширину зазора, поэтому поле в средней части зазора однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником питания GPR и измеряется амперметром, встроенным в источник питания. Градуировка электромагнита (связь между индукцией магнитного поля

Рис. 2: Схема экспериментальной установки.

B в зазоре электромагнита и силой тока I в его обмотках) производится при помощи милливеберметра либо тесламетра.

Сила, действующая на образец со стороны магнитного поля измеряется в помощью весов: смотрится разность веса образца вне поля и в поле.

Ход работы

Градуировка электромагнита

Сначала проведём градуировку магнита: с помощью тесламетра измеряем магнитное поле при разных токах:

I, A	0,22	0,30	0,45	0,60	0,75	0,90	1,05	1,15
В, мТл	236,2	300,2	448,8	598,8	733,5	933,2	1103,2	1144,7

Таблица 1: Результаты измерений

По полученным данным построим график зависимости B(I).

Измерение сил, действующих на образцы в магнитном поле

При нулевом токе через электромагнит подвесим к весам один из образцов так, чтобы он не касался наконечников электромагнита. Обнулим показания весов, чтобы измерять непосредственно перегрузки $\Delta P = F$ – силы, действующей на образец при различных токах в обмотках электромагнита. Были получены следующие значения:

 $m_{Al}=25,228$ г, $m_{Cu}=83,270$ г, $d=1\pm0,01$ см (диаметр образцов).

I, A	0,22	0,30	0,45	0,60	0,75	0,90	1,05	1,15
Al, Δm , мг	4	7	15	24	36	49	62	70
$Cu, \Delta m, M\Gamma$	-3	-4	-7	-12	-17	-23	-29	-32

Таблица 2: Изменение веса образцов в магнитном поле

Рис. 3: Градуировка электромагнита B(I)

Расчёт магнитной восприимчивости

Построим графики зависимости $\Delta P(B^2)$ для меди и алюминия. Если k - угловой коэффициент наклона графика, то

 $k = \frac{\chi S}{2\mu_0} \to \chi = \frac{2\mu_0 k}{S}$

где S – площадь поперечного сечения исследуемых образцов. В нашем случае $S=(0,785\pm0,016)~{\rm cm}^2$ для всех образцов. Для меди значения для графика были взяты по модулю чисто для расчета, сам коэффициент будет отрицательным. Полученные значения представлены в таблице.

Материал	k	χ	ε_χ
Алюминий Al	$0,491 \pm 0,022$	$(15,72\pm0,79)\cdot10^{-6}$	4,9%
Медь Си	$0,221 \pm 0,009$	$-(7,08\pm0,33)\cdot10^{-6}$	4,7%

Рис. 4: Зависимость $\Delta P(B^2)$

Выводы

В ходе данной работы была измерена магнитная восприимчивость образцов меди и алюминия. Для алюминия и меди табличные значения удельной магнитной восприимчивости равны $\chi_{Al,yg} = 0,61 \cdot 10^{-9} \, \frac{\text{м}^3}{\text{кr}}$ и $\chi_{Cu,yg} = -0,086 \cdot 10^{-9} \, \frac{\text{м}^3}{\text{кr}}$ соответственно, получается $\chi_{Al} = 1,64 \cdot 10^{-6}$ и $\chi_{Cu} = -0,77 \cdot 10^{-6}$. Полученные экспериментально данные, к сожалению, на порядок не совпадают с табличными. Вероятно, это связано с наличием ферромагнитных примесей в экспериментальных образцах, так как даже очень малое их количество может привести к резкому возрастанию магнитной проницаемости.