DM865 – Spring 2018 Heuristics and Approximation Algorithms

Flow Shop and Job Shop

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

```
    Job Shop
        Modelling
        Exact Methods
        Shifting Bottleneck Heuristic
        Local Search Methods
```

2. Job Shop Generalizations

Outline

Job Shop
 Modelling
 Exact Methods
 Shifting Bottleneck Heuristic
 Local Search Methods

2. Job Shop Generalizations

Job Shop

General Shop Scheduling:

- $J = \{1, \dots, N\}$ set of jobs; $M = \{1, 2, \dots, m\}$ set of machines
- $J_j = \{O_{ij} \mid i = 1, \dots, n_j\}$ set of operations for each job
- p_{ij} processing times of operations O_{ij}
- $\mu_{ij} \subseteq M$ machine eligibilities for each operation
- precedence constraints among the operations
- one job processed per machine at a time, one machine processing each job at a time
- C_i completion time of job j
- ightharpoonup Find feasible schedule that minimize some regular function of C_j Job shop
 - $\mu_{ij} = l, l = 1, \dots, n_j$ and $\mu_{ij} \neq \mu_{i+1,j}$ (one machine per operation)
 - $O_{1j} o O_{2j} o \ldots o O_{n_i,j}$ precedences (without loss of generality)
 - without repetition and with unlimited buffers

Task:

• Find a schedule $S = (S_{ij})$, indicating the starting times of O_{ij} , such that:

it is feasible, that is,

- $S_{ij} + p_{ij} \leq S_{i+1,j}$ for all $O_{ij} \rightarrow O_{i+1,j}$
- $S_{ij} + p_{ij} \le S_{uv}$ or $S_{uv} + p_{uv} \le S_{ij}$ for all operations with $\mu_{ij} = \mu_{uv}$.

and has minimum makespan: $\min\{\max_{j\in J}(S_{n_i,j}+p_{n_i,j})\}.$

A schedule can also be represented by an *m*-tuple $\pi = (\pi^1, \pi^2, \dots, \pi^m)$ where π^i defines the processing order on machine *i*.

There is always an optimal schedule that is semi-active.

(semi-active schedule: for each machine, start each operation at the earliest feasible time.)

Often simplified notation: $N = \{1, \dots, n\}$ denotes the set of operations

- Disjunctive graph representation: G = (N, A, E)
 - vertices N: operations with two dummy operations 0 and n+1 denoting "start" and "finish".
 - directed arcs A, conjunctions
 - undirected arcs E, disjunctions
 - length of (i, j) in A is p_i

- A complete selection corresponds to choosing one direction for each arc of *E*.
- A complete selection that makes *D* acyclic corresponds to a feasible schedule and is called consistent.
- Complete, consistent selection
 ⇔ semi-active schedule (feasible earliest start schedule).
- Length of longest path 0-(n+1) in D corresponds to the makespan

Longest path computation

In an acyclic digraph:

- construct topological ordering $(i < j \text{ for all } i \rightarrow j \in A)$
- recursion:

$$r_0 = 0$$

 $r_l = \max_{\{j \mid j \to l \in A\}} \{r_j + p_j\}$ for $l = 1, ..., n + 1$

- A block is a maximal sequence of adjacent critical operations processed on the same machine.
- In the Fig. below: $B_1 = \{4, 1, 8\}$ and $B_2 = \{9, 3\}$

- Any operation, u, has two immediate predecessors and successors:
 - its job predecessor JP(u) and successor JS(u)
 - its machine predecessor MP(u) and successor MS(u)

Exact methods

• Disjunctive programming

$$\begin{array}{ll} \min & C_{max} \\ s.t. & x_{ij} + p_{ij} \leq C_{max} & \forall \ O_{ij} \in N \\ & x_{ij} + p_{ij} \leq x_{lj} & \forall \ (O_{ij}, O_{lj}) \in A \\ & x_{ij} + p_{ij} \leq x_{ik} \lor x_{ik} + p_{ik} \leq x_{ij} \ \forall \ (O_{ij}, O_{ik}) \in E \\ & x_{ij} \leq 0 & \forall \ i = 1, \dots, m \ j = 1, \dots, N \end{array}$$

- Constraint Programming
- Branch and Bound [Carlier and Pinson, 1983]

Typically unable to schedule optimally more than 10 jobs on 10 machines. Best result is around 250 operations.

Branch and Bound [Carlier and Pinson, 1983] [B1, p. 179]

Let Ω contain the first operation of each job;

Let $r_{ij} = 0$ for all $O_{ij} \in \Omega$

Machine Selection Compute for the current partial schedule

$$t(\Omega) = \min_{ij \in \Omega} \{r_{ij} + p_{ij}\}$$

and let i^* denote the machine on which the minimum is achieved Branching Let Ω' denote the set of all operations O_{i^*i} on machine i^* such that

$$r_{i*j} < t(\Omega)$$
 (i.e. eliminate $r_{i*j} \ge t(\Omega)$)

For each operation in Ω' , consider an (extended)partial schedule with that operation as the next one on machine i^* .

For each such (extended) partial schedule, delete the operations from Ω , include its immediate follower in Ω and return to Machine Selection.

Lower Bounding:

- longest path in partially selected disjunctive digraph
- solve $1|r_{ij}|L_{max}$ on each machine i like if all other machines could process at the same time (see later shifting bottleneck heuristic) + longest path.

Shifting Bottleneck Heuristic

- A complete selection is made by the union of selections S_k for each clique E_k that corresponds to machines.
- Idea: use a priority rule for ordering the machines.
 choose each time the bottleneck machine and schedule jobs on that machine.
- Measure bottleneck quality of a machine *k* by finding optimal schedule to a certain single machine problem.
- Critical machine, if at least one of its arcs is on the critical path.

- M₀ \subset M set of machines already sequenced.
- $-k \in M \setminus M_0$
- $-P(k, M_0)$ is problem $1 \mid r_i \mid L_{max}$ obtained by:
 - the selections in M_0
 - deleting each disjunctive arc in $p \in M \setminus M_0, p \neq k$
- $v(k, M_0)$ is the optimum of $P(k, M_0)$
- bottleneck $m = \arg \max_{k \in M \setminus M_0} \{v(k, M_0)\}$
- $-M_{0}=\emptyset$
- Step 1: Identify bottleneck m among $k \in M \setminus M_0$ and sequence it optimally. Set $M_0 \leftarrow M_0 \cup \{m\}$
- Step 2: Reoptimize the sequence of each critical machine $k \in M_0$ in turn: set $M_o' = M_0 \{k\}$ and solve $P(k, M_0')$. Stop if $M_0 = M$ otherwise Step 1.
 - Local Reoptimization Procedure

Construction of $P(k, M_0)$

- $1 \mid r_j \mid L_{max}$:
 - $r_j = L(0,j)$
 - $d_j = L(0, n) L(j, n) + p_j$

L(i,j) length of longest path in G: Computable in O(n)

acyclic complete directed graph \iff transitive closure of its unique directed Hamiltonian path.

Hence, only predecessors and successor are to be checked.

The graph is not constructed explicitly, but by maintaining a list of jobs per machines and a list machines per jobs.

 $1 \mid r_j \mid L_{max}$ can be solved optimally very efficiently. Results reported up to 1000 jobs.

$1 \mid r_j \mid L_{max}$

From one of the past lectures

[Maximum lateness with release dates]

- Strongly NP-hard (reduction from 3-partition)
- · might have optimal schedule which is not non-delay
- Branch and bound algorithm (valid also for $1 \mid r_j, prec \mid L_{max}$)
 - Branching:
 schedule from the beginning (level k, n!/(k-1)! nodes)
 elimination criterion: do not consider job ik if:

• Lower bounding: relaxation to preemptive case for which EDD is optimal

Efficient local search for job shop

Solution representation:

m-tuple
$$\pi = (\pi^1, \pi^2, \dots, \pi^m) \iff$$
 oriented digraph $D_{\pi} = (N, A, E_{\pi})$

Neighborhoods

Change the orientation of certain disjunctive arcs of the current complete selection

Issues:

- 1. Can it be decided easily if the new digraph $D_{\pi'}$ is acyclic?
- 2. Can the neighborhood selection S' improve the makespan?
- 3. Is the neighborhood connected?

Swap Neighborhood

[Novicki, Smutnicki]

Reverse one oriented disjunctive arc (i,j) on some critical path.

Theorem

All neighbors are consistent selections.

Note: If the neighborhood is empty then there are no disjunctive arcs, nothing can be improved and the schedule is already optimal.

Theorem

The swap neighborhood is weakly optimal connected.

Insertion Neighborhood

[Balas, Vazacopoulos, 1998]

For some nodes u, v in the critical path:

- move *u* right after *v* (forward insert)
- move *v* right before *u* (backward insert)

Theorem: If a critical path containing u and v also contains JS(v) and

$$L(v, n) \geq L(JS(u), n)$$

then a forward insert of u after v yields an acyclic complete selection.

Theorem: If a critical path containing u and v also contains JS(v) and

$$L(0, u) + p_u \ge L(0, JP(v)) + p_{JP(v)}$$

then a backward insert of v before v yields an acyclic complete selection.

Theorem: (Elimination criterion) If $C_{max}(S') < C_{max}(S)$ then at least one operation of a machine block B on the critical path has to be processed before the first or after the last operation of B.

- Swap neighborhood can be restricted to first and last operations in the block
- Insert neighborhood can be restricted to moves similar to those saw for the flow shop.
 [Grabowski, Wodecki]

Tabu Search requires a best improvement strategy hence the neighborhood must be searched very fast.

Neighbor evaluation:

- exact recomputation of the makespan O(n)
- approximate evaluation (rather involved procedure but much faster and effective in practice)

The implementation of Tabu Search follows the one saw for flow shop.

Outline

```
.. Job Shop
    Modelling
    Exact Methods
    Shifting Bottleneck Heuristic
    Local Search Methods
```

2. Job Shop Generalizations

Generalizations: Time Lags

Generalized time constraints

They can be used to model:

• Release time:

$$S_0 + r_i \leq S_i \iff d_{0i} = r_i$$

• Deadlines:

$$S_i + p_i - d_i \leq S_0 \qquad \Longleftrightarrow \qquad d_{i0} = p_i - d_i$$

Modelling

$$\begin{array}{ll} \min & C_{max} \\ s.t. & x_{ij} + d_{ij} \leq C_{max} & \forall \ O_{ij} \in N \\ & x_{ij} + d_{ij} \leq x_{ij} & \forall \ (O_{ij}, O_{lj}) \in A \\ & x_{ij} + d_{ij} \leq x_{ik} \ \forall \ x_{ik} + d_{ik} \leq x_{ij} \ \forall \ (O_{ij}, O_{ik}) \in E \\ & x_{ij} \geq 0 & \forall \ i = 1, \dots, m \ j = 1, \dots, N \end{array}$$

ullet In the disjunctive graph, d_{ij} become the lengths of arcs

Exact relative timing (perishability constraints):
 if operation j must start l_{ij} after operation i:

$$S_i + p_i + I_{ij} \le S_j$$
 and $S_j - (p_i + I_{ij}) \le S_i$

 $(I_{ij} = 0 \text{ if no-wait constraint})$

• Set up times:

$$S_i + p_i + s_{ij} \le S_j$$
 or $S_j + p_j + s_{ji} \le S_i$

- Machine unavailabilities:
 - Machine M_k unavailable in $[a_1, b_1], [a_2, b_2], \ldots, [a_v, b_v]$
 - Introduce v artificial operations $\lambda = 1, ..., v$ with $\mu_{\lambda} = M_k$ and:

$$p_{\lambda}=b_{\lambda}-a_{\lambda}$$

$$r_{\lambda} = a_{\lambda}$$

$$d_{\lambda} = b_{\lambda}$$

Minimum lateness objectives:

$$L_{max} = \max_{j=1}^{n} \{C_j - d_j\} \qquad \Longleftrightarrow \qquad d_{n_j,n+1} = p_{n_j} - d_j$$

Blocking

Arises with limited buffers:

after processing, a job remains on the machine until the next machine is freed

- Needed a generalization of the disjunctive graph model \implies Alternative graph model G = (N, E, A) [Mascis, Pacciarelli, 2002]
- 1. two non-blocking operations to be processed on the same machine

$$S_i + p_i \le S_j$$
 or $S_j + p_j \le S_i$

2. Two blocking operations i, j to be processed on the same machine $\mu(i) = \mu(j)$

$$S_{\sigma(j)} \leq S_i$$
 or $S_{\sigma(i)} \leq S_j$

3. i is blocking, j is non-blocking (ideal) and i, j to be processed on the same machine $\mu(i) = \mu(j)$.

$$S_i + p_i \le S_j$$
 or $S_{\sigma(j)} \le S_i$

Example

- O_0, O_1, \ldots, O_{13}
- $M(O_1) = M(O_5) = M(O_9)$ $M(O_2) = M(O_6) = M(O_{10})$ $M(O_3) = M(O_7) = M(O_{11})$

- Length of arcs can be negative
- Multiple occurrences possible: $((i,j),(u,v)) \in A$ and $((i,j),(h,k)) \in A$
- The last operation of a job j is always non-blocking.

• A complete selection *S* is consistent if it chooses alternatives from each pair such that the resulting graph does not contain positive cycles.

Example:

- $p_a = 4$
- $p_b = 2$
- $p_c = 1$
- b must start at least 9 days after a has started
- c must start at least 8 days after b is finished
- c must finish within 16 days after a has started

$$S_a + 9 \le S_b$$

$$S_b + 10 \le S_c$$

$$S_c - 15 \le S_a$$

This leads to an absurd. In the alternative graph the cycle is positive.

- The Makespan still corresponds to the longest path in the graph with the arc selection G(S).
- Problem: now the digraph may contain cycles. Longest path with simple cyclic paths is NP-complete. However, here we have to care only of non-positive cycles.
- If there are no cycles of length strictly positive it can still be computed efficiently in $O(|N||E \cup A|)$ by Bellman-Ford (1958) algorithm.
- The algorithm iteratively considers all edges in a certain order and updates an array of longest path lengths for each vertex. It stops if a loop over all edges does not yield any update or after |N| iterations over all edges (in which case we know there is a positive cycle).
- Possible to maintain incremental updates when changing the selection [Demetrescu, Frangioni, Marchetti-Spaccamela, Nanni, 2000].

Heuristic Methods

- The search space is highly constrained + detecting positive cycles is costly
- Hence local search methods not very successful
- Rely on the construction paradigm
- Rollout algorithm [Meloni, Pacciarelli, Pranzo, 2004]

Rollout

- Master process: grows a partial selection S^k:
 decides the next element to fix based on an heuristic function
 (selects the one with minimal value)
- Slave process: evaluates heuristically the alternative choices.
 Completes the selection by keeping fixed what passed by the master process and fixing one alternative at a time.

- Slave heuristics
 - Avoid Maximum Current Completion time find an arc (h, k) that if selected would increase most the length of the longest path in G(S^k) and select its alternative

$$\max_{(uv)\in A} \{ I(0, u) + a_{uv} + I(v, n) \}$$

Select Most Critical Pair
find the pair that, in the worst case, would increase least the length of the longest path in G(S^k)
and select the best alternative

$$\max_{((ij),(hk))\in A} \min\{l(0,u) + a_{hk} + l(k,n), l(0,i) + a_{ij} + l(j,n)\}$$

• Select Max Sum Pair find the pair with greatest potential effect on the length of the longest path in $G(S^k)$ and select the best alternative

$$\max_{((ij),(hk))\in A} |I(0,u) + a_{hk} + I(k,n) + I(0,i) + a_{ij} + I(j,n)|$$

Trade off quality *vs* keeping feasibility Results depend on the characteristics of the instance.

Implementation details of the slave heuristics

- Once an arc is added we need to update all L(0, u) and L(u, n). Backward and forward visit O(|F| + |A|)
- When adding arc a_{ij} , we detect positive cycles if $L(i,j) + a_{ij} > 0$. This happens only if we updated L(0,i) or L(j,n) in the previous point and hence it comes for free.
- Overall complexity O(|A|(|F|+|A|))

Speed up of Rollout:

- Stop if partial solution overtakes upper bound
- limit evaluation to say 20% of arcs in A