Math 297 Discussion 1*

Annie Xu

January 15, 2019

HW setup: Complex numbers

1. Complex number, real part, imaginary part

A complex number takes the form z = x + iy where x and y are real and i is an imaginary number that satisfies $i^2 = -1$. We call x and y the **real part** and the **imaginary part** of z, respectively, and we write x = Re(z) and y = Im(z).

2. Complex plane

We make the identification: the complex number $z = x + iy \in \mathbb{C}$ is identified with the point $(x, y) \in \mathbb{R}^2$. The x and y axis of \mathbb{R}^2 are called the **real axis** and **imaginary axis** because they correspond to the real and purely imaginary numbers.

3. Arithmetic rules

Question. Think about the geometric meaning of the rules:

- What geometric transformation of vectors in the complex plane does addition of complex numbers correspond to?
- How about multiplication by i?

4. Absolute value

Define $|z| = (x^2 + y^2)^{1/2}$, precisely the distance from the origin to the point (x, y).

5. Complex conjugate

 $\bar{z} = x - iy$, obtained by a reflection across the real axis in the plane.

6. Polar form

 $z=re^{i\theta}$, where $r\geq 0,\ \theta\in\mathbb{R}$ is called the **argument** of z (unique up to a multiple of 2π), often denoted by $\arg z$. $e^{i\theta}=\cos\theta+i\sin\theta$.

r = |z| since $|e^{i\theta}| = 1$.

Note: If $z = re^{i\theta}$ and $w = se^{i\phi}$ then $zw = rse^{i(\theta+\phi)}$, so multiplication by a complex number corresponds to a homothety in \mathbb{R}^2 (i.e., a rotation composed with a dilation).

Fun topic: The pigeonhole principle

This is an interesting topic whose charm can only be conveyed through an array of examples and applications.

^{*}Reference: Elias M. Stein, Rami Shakarchi. Complex Analysis. Princeton University Press, Princeton, 2003.