MEASURES OF CENTRAL TENDENCY

DESCRIPTIVE STATISTICS

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Mean

Median

Mode

MEASURES OF CENTRAL TENDENCY

MEASURES OF CENTRAL TENDENCY

Measures of central tendency are used to describe the center or typical value of a dataset.

Dartboard Analogy

ACCURACY VS PRECISION

Accuracy refers to how close your measurements are to the **actual target** (in this case, 10).

Precision refers to how **consistent** your measurements are.

If you keep hitting 6.5 repeatedly, you have high precision but low accuracy because your results are consistent but not close to the true value (e.g., 10).

Dartboard Analogy

MEAN

MEAN

Mean (\bar{x}) is the arithmetic <u>center</u> of all data points (*a.k.a* "simple average").

<u>Formula</u>

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

<u>where</u>

 x_i = individual data points

n = number of observations

Normal Distribution

MEAN

Mean (\bar{x}) is the arithmetic <u>center</u> of all data points (*a.k.a* "simple average").

<u>Formula</u>

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

<u>where</u>

 x_i = individual data points

n = number of observations

Center of gravity analogy

<u>data</u>

2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6

The given dataset shows the prices of different fruits per kilogram in pesos. Determine the **mean** price per kilogram.

Fruit Price List

Fruit	Price
Apple	120
Banana	60
Orange	85
Mango	150
Grape	200

MEDIAN

MEDIAN

Median is the midpoint of the ordered dataset (i.e., ascending or descending).

median is at position

$$pos_M = \frac{n+1}{2}$$

where

n = number of observations

If the number of observations are even, the median is the average of the two middle numbers.

<u>example</u>

Dataset 1

Data	Ordered
5	1
2	2
1	3
4	4
3	5

Median = 3

Dataset 2

Data	Ordered
5	1
2	2
1	3
4	4
3	5
6	6

Median = 3.5

The given dataset consists of voltage measurements from two different instruments. Determine the <u>median</u> voltage value for each instrument.

Voltage Response

Measurement No.	Instrument A	
1	12	2.8
2	5	4.5
3	9.1	6
4	3.3	9
5	24	11.7
6	18.5	14.8
7	15.2	17.3
8		20

Measurement	No.	Instrument	Α
1		3.3	
2		5	
3		9.1	
4		12	
5		15.2	
6		18.5	
7		24	
8			

The given dataset consists of voltage measurements from two different instruments. Determine the <u>median</u> voltage value for each instrument.

Voltage Response

Measurement No.	i	Instrument B
1	12	2.8
2	5	4.5
3	9.1	6
4	3.3	9
5	24	11.7
6	18.5	14.8
7	15.2	17.3
8		20

Measurement	No.	Instrument	В
1		2.8	
2		4.5	
3		6	
4		9	
5		11.7	
6		14.8	
7		17.3	
8		20	

MODE

MODE

Mode is the value that appears most frequently in a data set. A data set may have one mode, more than one mode, or no mode at all.

Frequency Distribution Table

Data	Frequency
1	2
2	1
3	1
4	3
5	1

dataset

Group A: 1, 1, 2, 3, 4, 4, 4, 5 $\mathbf{mode}_A = \mathbf{4}$

Group B: 1, 2, 3, 4, 5 **no mode**

The given dataset records the number of points scored by a basketball player over 10 games.

Determine the **mode** of the dataset.

Player Performance

Game No.	Points Scored
1	12
2	18
3	15
4	12
5	20
6	15
7	12
8	22
9	18
10	15

Data	Frequency	

LABORATORY

