CNN Language Model

Conv2d()→ ReLU()

Conv2d()

Upsample()

Е	256
V	50257
C	256
H,W	14,14

CNN Language Model

Conv2d()→ ReLU()

______ Conv2d()

Upsample()

XXXXXXXX AvgPool()

Е	256
V	50257
C	384
H,W	14,14

CNN Perception-Language-Action Model

inner caption

Conv2d()→	BatchNorm2d()→	ReLU()
Conv2d()		
<pre>Upsample()</pre>	→ Conv2d()	

V 256 C 384 H,W 28,28

PHASE 1:

CNN Perception-Language-Action model (CNN-PLA), running on GPU >20fps, <100ms latency, <400W

PHASE 2:

CNN-PLA model running on FPGA >100fps, <15ms latency, <100W

PHASE 3:

CNN-PLA model running on ASIC at >300fps, <5ms latency, <10W

Seated humanoid:

1-DoF spine

2-DoF shoulder

2-DoF neck

6-DoF arms

6-DoF hands

Data collection:

VR teleoperated

spine/shoulder: swivel chair with up/down control

neck : VR gyroscope arms/hands : TBD

ROBOT

896x896 RGB at 120Hz, left and right eye 896x896 spectrogram at 120Hz, audio and tactile signals 29-DoF target pose at 120Hz

TELEOPERATOR

transcribed verbal commentary at 120 characters/s synthetically captioned using open source VL model, 1 character/frame

BACKUP

Devices

• TE256A : Token Encoder, vocab_size=256, ASCII

TD256A : Token Decoder, vocab_size=256, ASCII

CP384V : Context Projector, n_embd=384, VGG

• IE384R : Image Encoder, n_embd=384, Resnet

TD

lacktriangle

Conv2d(kernel=3)→ ReLU()

Conv2d(kernel=1)

Upsample(scale=3) → Conv2d(kernel=3) → ReLU()

٧	256
С	384
H,W	81,81

٧	256
С	384
H,W	81,81

