Pays: Cameroun	Année : 2014	Session: normale
Série: BAC, séries D et TI	Durée : 4 h	Coefficient: 4

Exercice 1

A) On considère le polynôme p défini par $p(z) = z^3 - 3z^2 - 3z + 5 + 20i$, z étant un nombre complexe.

- **1.** Montrer que 1+2i est une racine de p.
- **2.** Trouver deux nombres complexes a et b tels que, pour tout nombre complexe z, on ait $p(z) = (z-1-2i)(z^2+az+b)$.
- 3. En déduire dans l'ensemble des nombres complexes, les solutions de l'équation p(z) = 0.
- **B**) Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$; on prendra 1cm pour unité graphique.
- **1.** Placer les points A, B et C d'affixes respectives a = 1 + 2i, b = -2 i et c = 4 i dans le repère $(O; \vec{u}, \vec{v})$.
- **2.** Soit D le point d'affixe 2 + 3i. Montrer que A, B et D sont alignés.
- a) Calculer $\frac{b-a}{c-a}$, mettre le résultat sous la forme algébrique puis sous la forme trigonométrique.
- b) En déduire la nature exacte du triangle ABC.

Exercice 2

Une entreprise achète, utilise et revend des machines après un certain nombre x_i d'années. Après 6 années, l'évolution du prix de vente d'une machine en fonction du nombre d'années d'utilisation, se présente comme suit :

Nombre d'année x _i	1	2	3	4	5	6
Prix y_i en milliers de	150	125	90	75	50	45

- 1. Représenter graphiquement le nuage de points de cette série statistique. (On prendra 1 cm pour une année en abscisse et 1 cm pour 20 000 FCFA en ordonnée.)
- 2. Déterminer les coordonnées du point moyen G de la série (x_i, y_i) ainsi définie.
- **3.** En utilisant la méthode des moindres carrés, déterminer une équation cartésienne de la droite de régression de *y* en *x* de cette série statistique.
- **4.** En déduire une estimation du prix de vente d'une machine après 7 ans d'utilisation.

Problème

Le problème comporte trois parties A, B et C obligatoires.

On considère la fonction numérique f de la variable réelle x définie pour tout $x \neq -2$ par

$$f(x) = \frac{e^x}{x+2}.$$

On note (\mathscr{C}) sa courbe représentative dans un repère orthonormé (O; \vec{i} , \vec{j}).

Partie A

- 1. Déterminer les limites de f aux bornes de son domaine de définition.
- **2.** Étudier les variations de f et dresser son tableau de variation.
- **3.** Soit g la restriction de f à l'intervalle I =]-1; $+\infty[$.

Montrer que g réalise une bijection de I sur un intervalle J que l'on déterminera.

4. Tracer, dans le même repère, la courbe (\mathscr{C}) représentative de la fonction f, et la courbe (\mathscr{C}) représentative de la fonction g^{-1} .

Partie B

- **1.** Déterminer l'image par f de l'intervalle [0;1].
- **2.** Calculer f''(x) et vérifier que pour tout x de [0;1], f''(x) > 0.
- 3. En déduire que pour tout x de [0;1], $\frac{1}{4} \le f'(x) \le \frac{2}{3}$.
- **4.** Démontrer que l'équation f(x) = x admet une unique solution Γ dans l'intervalle [0;1] (On ne demande pas de calculer Γ .)

Partie C

On considère la suite (u_n) à termes positifs, définie par $u_0 = \frac{1}{2}$ et pour tout entier naturel non nul n, $u_{n+1} = f(u_n)$.

1. Montrer par récurrence sur n que la suite (u_n) est croissante et que $u_n \in \left[\frac{1}{2}; 1\right]$.

Quelle conclusion peut-on en tirer?

- **2.** Démontrer que pour tout entier naturel n, on a : $|u_{n+1} r| \le \frac{2}{3} |u_n r|$.
- **3.** En déduire que pour tout entier naturel n, $|u_n r| \le \left(\frac{2}{3}\right)^n$.
- **4.** Déterminer la limite de la suite (u_n) .