Exemples fondamentaux d'espaces vectoriels

Exemple 1

Le \mathbb{K} -espace vectoriel $(\mathbb{K}^n, +, \cdot)$.

• Définition de la loi interne.

Pour
$$u = (x_1, x_2, \dots, x_n)$$
 et $v = (y_1, y_2, \dots, y_n)$ deux éléments de \mathbb{K}^n , on a : $u + v = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$

• Définition de la loi externe.

Pour
$$\lambda \in \mathbb{K}$$
 et $u = (x_1, x_2, \dots, x_n) \in \mathbb{K}^n$, on a :

$$\lambda \cdot u = \lambda \cdot (x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n).$$

• Vecteur nul. L'élément neutre du groupe $(\mathbb{K}^n, +)$ est

$$0_{\mathbb{K}^n} = (0, 0, \dots, 0).$$

La base canonique de \mathbb{K}^n en tant que \mathbb{K} -ev est $\mathcal{B} = (e_1, e_2, \dots, e_n)$ avec

$$e_1 = (1, 0, 0, \dots, 0, 0)$$

 $e_2 = (0, 1, 0, \dots, 0, 0)$
 $\vdots = \vdots$
 $e_n = (0, 0, 0, \dots, 0, 1).$

On a donc $\dim_{\mathbb{K}}(\mathbb{K}^n) = n$.

Remarque : Dans le cas de \mathbb{C}^n , nous venons donc de voir que $\dim_{\mathbb{C}}(\mathbb{C}^n) = n$. Nous verrons en TD que $\dim_{\mathbb{R}}(\mathbb{C}^n) = 2n$ et nous donnerons une base de \mathbb{C}^n en tant que \mathbb{R} -ev.

Exemple 2

Le \mathbb{K} -espace vectoriel ($\mathbb{K}[X], +, \cdot$).

• Définition de la loi interne.

Pour $P = a_0 + a_1 X + \dots + a_p X^p$ et $Q = b_0 + b_1 X + \dots + b_q X^q$ deux éléments de $\mathbb{K}[X]$ (avec p < q par exemple), on a :

$$P + Q = \sum_{k=0}^{p} (a_k + b_k) X^k + \sum_{k=p+1}^{q} b_k X^k.$$

1

• Définition de la loi externe.

Pour
$$\lambda \in \mathbb{K}$$
 et $P = a_0 + a_1 X + \dots + a_p X^p \in \mathbb{K}[X]$, on a :

$$\lambda \cdot P = \lambda a_0 + \lambda a_1 X + \dots + \lambda a_p X^p.$$

• Vecteur nul. L'élément neutre du groupe ($\mathbb{K}[X]$, +) est le polynôme nul noté $0_{\mathbb{K}[X]}$.

Attention, $\mathbb{K}[X]$ est un espace vectoriel de **dimension infinie**.

Cependant, le sous-espace vectoriel de $\mathbb{K}[X]$ formé des polynômes de degré inférieur ou égal à n, c'est-à-dire

$$\mathbb{K}_n[X] = \{ P \in \mathbb{K}[X] \mid \deg(P) \le n \},\,$$

est de dimension finie.

La base canonique de $\mathbb{K}_n[X]$ en tant que \mathbb{K} -ev est $\mathcal{B} = (1, X, X^2, \dots, X^n)$. On a donc $\dim_{\mathbb{K}}(\mathbb{K}_n[X]) = n + 1$.

Remarque: Dans le cas de $\mathbb{C}_n[X]$, nous venons donc de voir que $\dim_{\mathbb{C}}(\mathbb{C}_n[X]) = n + 1$. Nous verrons en TD que $\dim_{\mathbb{R}}(\mathbb{C}_n[X]) = 2n + 2$ et nous donnerons une base de $\mathbb{C}_n[X]$ en tant que \mathbb{R} -ev.

Exemple 3

Le \mathbb{K} -espace vectoriel des suites à valeurs dans \mathbb{K} : $(\mathbb{K}^{\mathbb{N}}, +, \cdot)$.

• Définition de la loi interne.

Pour $u = (u_n)_{n \in \mathbb{N}}$ et $v = (v_n)_{n \in \mathbb{N}}$ deux éléments de $\mathbb{K}^{\mathbb{N}}$, on a :

$$u + v = (u_n)_{n \in \mathbb{N}} + (v_n)_{n \in \mathbb{N}} = (u_n + v_n)_{n \in \mathbb{N}}.$$

• Définition de la loi externe.

Pour $\lambda \in \mathbb{K}$ et $u = (u_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$, on a :

$$\lambda \cdot u = \lambda \cdot (u_n)_{n \in \mathbb{N}} = (\lambda u_n)_{n \in \mathbb{N}}.$$

• Vecteur nul. L'élément neutre du groupe $(\mathbb{K}^{\mathbb{N}}, +)$ est la suite nulle notée $0_{\mathbb{K}^{\mathbb{N}}}$ (tous ses termes sont égaux à 0).

Attention, $\mathbb{K}^{\mathbb{N}}$ est un espace vectoriel de **dimension infinie**.

Exemple 4

Le \mathbb{R} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} : $(\mathbb{R}^{\mathbb{R}}, +, \cdot)$.

• Définition de la loi interne.

Pour f et g deux éléments de $\mathbb{R}^{\mathbb{R}}$, la fonction f+g est définie par

$$\forall x \in \mathbb{R}, \quad (f+g)(x) = f(x) + g(x).$$

• Définition de la loi externe.

Pour $\lambda \in \mathbb{R}$ et $f \in \mathbb{R}^{\mathbb{R}}$, la fonction $\lambda \cdot f$ est définie par

$$\forall x \in \mathbb{R}, \quad (\lambda \cdot f)(x) = \lambda f(x).$$

• Vecteur nul. L'élément neutre du groupe $(\mathbb{R}^{\mathbb{R}}, +)$ est la fonction nulle notée $0_{\mathbb{R}^{\mathbb{R}}}$ définie par

$$\forall x \in \mathbb{R}, \quad 0_{\mathbb{R}^{\mathbb{R}}}(x) = 0.$$

Attention, $\mathbb{R}^{\mathbb{R}}$ est un espace vectoriel de **dimension infinie**.