Commentary on Notation:

It is useful to review so far our notational conventions. We have:

i, i : Global indices for basis functions and control points

a, b: Local (element-wise) indices for basis functions and control points

A, B: Indices for components in a vector (e.g., {C})

p: Polynomial degree

or patch, but we will focus on single-patch

geometries *

Moreover:

\$: Global parametric coordinate
\$: Parent parametric coordinate

We have seen that B-splines are a special case of NURBS, so we will hence forth always use the terminology, NURBS. We will also write $N(\S)$ to refer to any basis function. It is to be understood that this could be a univariate, bivariate, or trivariate, polynomial or rational basis function. To avoid distinguishing between curves, surfaces, and solids, we will refer to a point in the domain at parameter value \S as $X(\S)$. That is:

X(3): Geometric map

Similarly, we can localize:

xe(§): Local geometric map

We also need to be careful when discussing the domain. We denote the domain in physical space as Ωu and the domain in parametric space as Ωu . Thus, $\vec{x}: \hat{\Omega} u \to \Omega u$ and, in fact, $\vec{x}^{-1}: \Omega u \to \hat{\Omega} u$. Summarizing:

De : Domain in Parametric Space

We also have multiple definition of elements:

in : Element e in Parametris Space

Il : Element e in Physical Space

In : The Parent Element

We have $\vec{x}: \hat{\Omega}^e \to \Omega^e$ and $\vec{x}^e: \hat{\Omega}_i \to \Omega^e$ as well as $\vec{x}^{-1}: \Omega^e \to \hat{\Omega}^e$ and $(\vec{x}^e)^{-1}: \Omega^e \to \hat{\Omega}^e$. We will repeatedly tely on the afforementioned notation throughout the class.

