Desigualdades

- 1. Un minorista recibe mensualmente galletitas sin sal de 3 fábricas distintas siendo las cantidades recibidas (en kg.) variables aleatorias independientes X, Y y Z con distribuciones: $X \sim \mathcal{N}(100, 20)$, Y = 97 + W con $W \sim \mathcal{E}(1/3)$ y $Z \sim \mathcal{U}(80, 90)$. Acotar la probabilidad de que el peso total recibido en un mes se encuentre entre 275 y 295 kg.
- 2. Una máquina produce rieles cuya longitud (en metros) es una v.a. con distribución $\mathcal{U}(0,8,1,2)$. Se eligen al azar n rieles en forma independientes. Sea \overline{X} el promedio de sus longitudes. Hallar n tal que:

$$P(0.99 < \overline{X} < 1.01) > 0.90.$$

3. Sea p la probabilidad de que una persona elegida al azar apoye una nueva propuesta legislativa (p desconocida). Si se estima p a partir de la frecuencia relativa f_r que resulta al encuestar a p personas:

$$f_r = \frac{\text{número de personas que apoyan la propuesta}}{n}$$

cuánto más cerca esté f_r de p, mejor será la estimación.

Calcular el mínimo tamaño de muestra requerido para que $P(|f_r - p| \le 0.1) \ge 0.95$.

Convergencia

1. Sean $(X_n)_{n>1}$ variables aleatorias independientes e idénticamente distribuídas, con $X_i \sim \mathcal{E}(1)$ para todo $i \in \mathbb{N}$, y sea

$$Y_n = \frac{X_n}{\ln(n)}$$

Probar que $Y_n \stackrel{p}{\to} 0$.

2. Sean $(X_n)_{n\geq 1}$ variables aleatorias i.i.d, $X_i \sim U(0,1)$. Hallar el límite casi seguro de

$$Y_n = (\prod_{i=1}^n X_i)^{\frac{1}{n}}$$

.

3. Sean $(X_n)_{n\geq 1}$ variables aleatorias i.i.d. con $E(X_i)=var(X_i)=1$. Probar que:

$$\frac{\sum_{i=1}^{n} X_{i}}{(n \sum_{i=1}^{n} X_{i}^{2})^{\frac{1}{2}}} \xrightarrow{p} \frac{1}{\sqrt{2}}$$

Convergencia en distribución y Teorema central del límite

1. Sean $X_1, ... X_n$ v.a. i.i.d. con densidad

$$f(x) = \frac{2}{x^3} I\{x > 1\}$$

Calcular aproximadamente

$$P\left(\prod_{i=1}^{100} X_i > e^{55}\right)$$

- 2. En cierto juego de azar la probabilidad de ganar es 0.3. Para participar en el mismo se paga \$1 y, en caso de ganar, se reciben \$5.
 - a) ¿Cuál es la probabilidad aproximada de que en 100 juegos un jugador gane más de \$80? (Suponer que los juegos son independientes entre si).
 - b) ¿Cuántas veces tendrá que jugar para ganar más de \$80 con probabilidad mayor o igual que 0.90?
- 3. Una empresa láctea produce un cierto tipo de queso en unidades cuyo peso (en kg.) es una variable aleatoria con media 2 y varianza 0.04.
 - a) Calcular en forma aproximada la probabilidad de que 60 quesos pesen más de 122 kg.
 - b) ¿Cuántas unidades serán necesarias para satisfacer un pedido de 5000 kg con probabilidad mayor o igual que 0.95?
- 4. Sean $(X_n)_{n\geq 1}$ variables aleatorias i.i.d., $X_n \sim \mathcal{U}(0,\theta), \ \theta > 0$. Probar que

$$\sqrt{n}[ln(2\bar{X}_n) - ln(\theta)] \stackrel{D}{\to} \mathcal{N}(0, 1/3)$$

donde $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

5. Sean $(X_n)_{n\geq 1}$ variables aleatorias i.i.d., $E(X_i)=0$, $E(X_i^2)=2$. Hallar el límite en distribución de

a)
$$Y_n = (\sqrt{n} \sum_{i=1}^n X_i) / \sum_{i=1}^n X_i^2$$
.

b)
$$U_n = (\sum_{i=1}^n X_i) / \sqrt{\sum_{i=1}^n X_i^2}$$
.

Simulación

A través de los correspondientes histogramas y otras formas de estimación de la densidad, analizaremos el comportamiento de la distribución de la suma de n variables aleatorias independientes, $S_n = \sum_{i=1}^n X_i$, a medida que sumamos un numero creciente de variables aleatorias (n aumentando). Para ello, fijado n, generaremos datos correspondientes a una muestra de n réplicas de una variable aleatoria X, $(X_1, \ldots, X_n \sim X, \text{ i.i.d})$, para una distribución dada y luego calcularemos la suma de cada conjunto de datos. Repetimos este procedimiento Nrep = 1000 veces. A partir de las Nrep = 1000 replicaciones realizaremos un histograma con las sumas generadas, para obtener una aproximación de la densidad o la función de probabilidad de S_n .

Para las diferentes distribuciones de la variable aleatoria X, desarrollaremos el siguiente ejercicio:

- i. Simular 1000 realizaciones de la variable $X_1 \sim X$.
- ii. Realizar un histograma para la variable X_1 .
- iii. Simular 1000 realizaciones de una variable $X_2 \sim X$ independiente de X_1 .
- iv. Defina $S_2 = X_1 + X_2$. Realizar un histograma para S_2 ¿qué observa?
- v. Repita el mismo procedimiento, agregando de a una variable aleatoria, sumando hasta 10 variables independientes con la misma distribución que X, definiendo así las variables S_1, \ldots, S_{10} .
- vi. Utilizando las funciones de R mean() y sd(), crear una función que dado un vector, le reste a cada elemento su promedio y luego lo divida por la estimación de su desviación estándar. Llamar a esa función estandarizar.
- vii. Aplicar la función estandarizar a los vectores creados S_1, \ldots, S_{10} , y luego a los nuevos vectores estandarizados graficarlos en un mismo plot utilizando la función density, con diferentes colores. Concluir acerca de lo que observa.
- viii. Observar graficamente que ocurre si sigue sumando variables aleatorias. ¿Para todas las distribuciones propuestas obtiene resultados similares?

Desarrollar los 8 pasos para las siguientes distribuciones:

- a. $X \sim \mathcal{U}(0, 1)$.
- b. $X \sim \mathcal{B}(10, 0, 5)$.
- c. $X \sim \mathcal{B}(10, 0, 1)$.
- d. $X \sim \mathcal{N}(5, 9)$.
- e. $X \sim \mathcal{E}(0,5)$.
- f. $X \sim C(0,5)$.
- g. $X \sim \mathcal{LN}(0,5,1)$.

Ejercicios complementarios

- 1. Sean $X_1,...X_n$ variables aleatorias *i.i.d.*, $X_n \sim \mathcal{U}(0,1)$. Sean $X_{(1)} = \min(X_1,...,X_n)$, $X_{(n)} = \max(X_1,...,X_n)$, $U_n = nX_{(1)}$, $V_n = n(1-X_{(n)})$. Probar que:
 - a) $X_{(1)} \stackrel{p}{\to} 0, X_{(n)} \stackrel{p}{\to} 1.$
 - b) $U_n \stackrel{D}{\to} W, V_n \stackrel{D}{\to} W$, donde W tiene distribución exponencial de parámetro 1.
- 2. Sean $U_1, ...U_n$, variables aleatorias independientes con distribución $\mathcal{U}(0,1)$ y sea h una función continua.
 - a) Si se define $I_1 = \frac{\sum_{i=1}^n h(U_i)}{n}$, verificar que

$$E(I_1) = I = \int_0^1 h(x)dx$$

- b) Proponer un método basado en generación de números al azar, para calcular en forma aproximada el valor de la integral I.
- $c)\,$ Proponer un método para el cálculo aproximado de

$$I = \int_{a}^{b} h(x)dx$$

siendo a y b número reales tales que a < b.