Distribuciones Conjuntas

Espacios muestrales multidimensionales.

Trataremos en este apartado las bidimensionales de variable aleatoria (x, y).

Propiedades:

Discreta	Continua	
$f(x,y) \ge 0$; $\forall (x,y)$	$f(x,y) \ge 0$; $f(x,y)$	
$\sum_{\forall x} \sum_{\forall y} f(x, y) = 1; \ \forall (x, y)$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$	
P(X = x, Y = y) = f(x, y)	$P(a < x < b, c < y < d) = \int_{a}^{b} \int_{c}^{d} f(x, y) dx dy$ $si \{a \le x \le b ; c \le y \le d\}$	
$P[(x,y) \in A] = \sum_{x} \sum_{y} f(x,y)$		

f(x,y) se denomina Función de Distribución conjunta **fdc** para VAD ó Función de Densidad de Probabilidad Conjunta **fdpc** para VAC.

Ejemplo: Si (x, y) es un para de Variables Aleatorias Discretas (VAD) y:

$$f(x,y) = \begin{cases} cxy & si \ 1 \le x \le 3; 1 \le y \le 3 \\ 0 & en \ otro \ caso \end{cases}$$

- a) Determine la constante c para que f(x,y) sea una **fdc**
- b) Obtenga $P(X,Y) \in A$, con $A = \{1 \le x \le 2, 1 \le y \le 2\}$
- c) Calcule: $P\left[\frac{(x,y)}{(x+y)\leq 3}\right]$

Resolución:

a) Según las condiciones que debe cumplir una f(x) para ser considerada fdc

1.
$$f(x,y) \ge 0 \quad \forall (x,y)$$

2. $\sum_{\forall x} \sum_{\forall y} f(x, y) = 1$	2.	$\sum_{\forall x} \sum_{\forall y}$	f(x,y)	$=$ \hat{x}	1
--	----	-------------------------------------	--------	---------------	---

$$\sum_{\forall x} \sum_{\forall y} f(x, y) = 36C$$

$$C = \frac{1}{36}$$

		1	2	3	
	1	С	2C	3C	6C
Y	2	2C	4C	6C	12C
	3	3C	6C	12C	18C
$\sum Y$		6C	12C	18C	36C

X

b)
$$P[1 \le x \le 2 , 1 \le y \le 2] = \sum_{x=1}^{2} \sum_{y=1}^{2} f(x, y) = 9C = \frac{9}{36} = \frac{1}{4}$$

c) Calcule: $P\left[\frac{(x,y)}{(x+y)\leq 3}\right]$

X				$\sum X$	
		1	2	3	
Y	1	С	2C	3C	6C
	2	2C	4C	6C	12C
	3	3C	6C	12C	18C
$\sum Y$		6C	12C	18C	36C

$$P\left[\frac{(x,y)}{x+y} \le 3\right] = \sum_{\forall x} \sum_{\forall y} (x+y) \le 3 = 5C = \frac{5}{36}$$

Ejemplo: Sea una f(x,y) para (x,y) VAC definida por:

$$f(x,y) = \begin{cases} \frac{2}{5}(2x+3y) & para & 0 \le x \le 1; \ 0 \le y \le 1\\ 0 & para & otro \ caso \end{cases}$$

1) Verificar si f(x,y) es una fpc

2) Obtener
$$P[(x,y) \in A]$$
 si $A = \begin{cases} 0 \le x \le \frac{1}{2} \\ \frac{1}{4} \le y \le \frac{1}{2} \end{cases}$

Solución:

a)
$$f(x,y) \ge 0$$
; $\forall (x,y)$

b)
$$\int_{y=-\infty}^{+\infty} \int_{x=-\infty}^{+\infty} f(x,y) \, dx \, dy = 1$$

$$\int_{y=-\infty}^{+\infty} \int_{x=-\infty}^{+\infty} f(x,y) \, dx \, dy = \int_{y=0}^{1} \int_{x=0}^{1} \frac{2}{5} (2x + 3y) dx \, dy =$$

$$\frac{2}{5} \int_{y=0}^{1} \int_{x=0}^{1} (2x+3y) dx \, dy = \frac{2}{5} \int_{y=0}^{1} \left(2\frac{x^2}{2} + 3xy \right) \Big|_{0}^{1} \, dy =$$

$$\frac{2}{5} \int_{y=0}^{1} (1+3y) dy = \frac{2}{5} \left(y + 3 \frac{y^2}{2} \right) \Big|_{0}^{1} = \frac{2}{5} \left(1 + \frac{3}{2} \right) = \frac{2}{5} \cdot \frac{5}{2} = 1$$

2) Obtener
$$P[(x,y) \in A]$$
 si $A = \begin{cases} 0 \le x \le \frac{1}{2} \\ \frac{1}{4} \le y \le \frac{1}{2} \end{cases}$

$$\int_{y=1/4}^{1/2} \int_{x=0}^{1/2} \frac{2}{5} (2x+3y) dx dy = \frac{2}{5} \int_{y=1/4}^{1/2} \left(2\frac{x^2}{2} + 3xy \right) \Big|_{0}^{1/2} dy$$

$$\frac{2}{5} \int_{y=1/4}^{1/2} \left(\frac{1}{4} + \frac{3}{2}y \right) dy = \frac{2}{5} \left(\frac{1}{4}y + \frac{3}{2} \frac{y^2}{2} \right) \Big|_{1/4}^{1/2} = \frac{2}{5} \left(\frac{1}{4} \cdot \frac{1}{4} + \frac{3}{4} \cdot \frac{3}{16} \right) = \frac{2}{5} \cdot \frac{13}{64} = \frac{13}{160}$$

Distribuciones Marginales

Dentro de las distribuciones conjuntas bidimensionales, las Distribuciones Marginales son distribuciones de una variable cuando la otra toma todos los valores posibles.

$$g(x) = \sum_{\forall y} f(x, y)$$
 y $h(y) = \sum_{\forall x} f(x, y)$ VAD

$$g(x) = \int_{y=-\infty}^{+\infty} f(x,y)dy \qquad y \qquad \qquad h(y) = \int_{x=-\infty}^{+\infty} f(x,y)dx \qquad \text{VAC}$$

Del ejemplo de VAD:

X			$\sum X$		
		1	2	3	
	1	с	26	36	→ 6C
Υ	2	2C —	4C	6C	1 2C
	3	3C —	6 C	12C	18C
$\sum Y$		6C	12C	18C	36C

$$h(y = 1) = 6C$$

 $h(y = 2) = 12C$
 $h(y = 3) = 18C$

$$g(x = 1) = 6C$$
 $g(x = 2) = 12C$ $g(x = 3) = 18C$

Del ejemplo para VAC: ?

Distribuciones de Probabilidad Condicional

De la definición de Probabilidad Condicional:

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

$$P\left(Y = y \middle/_{X = x}\right) = \frac{P(X = x, Y = y)}{P(X = x)} = \frac{f(x, y)}{g(x)}$$

$$f(^{y}/_{x}) = \frac{f(x,y)}{g(x)}$$

De la misma forma:

$$f(x/y) = \frac{f(x,y)}{h(y)}$$

Independencia Estadística

De la teoría de conjuntos sabemos que:

$$P(B/A) = P(B)$$

$$P(B/A) = P(B)$$
 y $P(A/B) = P(A)$

A y B son independientes

Si las VA x e y son independientes:

$$f(^{\chi}/_{\mathcal{Y}}) = g(x)$$

$$f(^{\mathcal{Y}}/_{\chi}) = h(y)$$

Entonces:

$$f(x/y) = g(x) = \frac{f(x,y)}{h(y)} \rightarrow f(x,y) = g(x).h(y)$$
$$f(y/x) = h(y) = \frac{f(x,y)}{g(x)} \rightarrow f(x,y) = h(y).g(x)$$

$$f(^{y}/_{x}) = h(y) = \frac{f(x,y)}{g(x)}$$
 -

$$f(x,y) = g(x).h(y)$$

$$f(x,y) = h(y). g(x)$$

CONDICIÓN DE INDEPENDENCIA **ESTADÍSTICA**