Foundations of Modern Optics

Dimitris Papazoglou

dpapa@materials.uoc.gr

Materials Science and Technology Department University of Crete

Licenses

This educational material is subject to the Creative Commons license and in particular:

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

-For educational materials, such as images, subject to another type of license, the license is expressly stated.

5

Propagation of Gaussian Beams

Description of a Gaussian Beam

The amplitude is described by a Gaussian distribution function

$$E(x, y; z) = E_o(z) e^{-\frac{x^2 + y^2}{w^2(z)}}$$

Propagation of a Gaussian

We can **analytically describe** the distribution of a Gaussian beam along it's propagation

always Gaussian on a transverse plane

Values of the Gaussian beam parameters along propagation

$$w(z) = w_o \sqrt{1 + \frac{z^2}{z_R^2}}$$

$$R(z) = z + \frac{z_R^2}{z}$$

$$\psi(z) = \arctan(\frac{z}{z_R})$$

Rayleigh length

$$z_R \equiv \frac{\pi w_o^2}{\lambda}$$

Distance z_R (often called Rayleigh length) equals the 1/2 of the solenoid focus length

- Beams that are tightly focused (small w_o) expand more rapidly!
- By reducing the wavelength we "slow down" the beam spatial expansion

$$w(z) = w_o \sqrt{1 + \frac{z^2}{z_R^2}}$$

$$z \gg z_R \Longrightarrow w(z) \cong \frac{w_o}{z_R} z$$

at large enough distances we can simply use geometrical optics

$$\theta_{1/e} \cong \frac{w_o}{z_R} = \frac{\lambda}{\pi w_o}$$

$$R(z) = z + \frac{z_R^2}{z}$$

When $z \approx 0$, the wavefront is flat!

Away from the focus $(z \gg z_R)$ the wavefront is spherical with radius of curvature of $R(z) \approx z$

Maximum

Typical focusing of a Gaussian beam*

^{*} Idealized calculation. We assume that the input beam waist is on the lens entrance

Imaging Gaussian beams

Imaging relations

We assume that
the input
Gaussian beam
focus is the
object, while the
output Gaussian
beam is the image

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

$$\frac{1}{s + \frac{z_R^2}{s - f}} + \frac{1}{s'} = \frac{1}{f}$$

Gaussian beams

$$\frac{1}{s} + \frac{1}{s' + \frac{z'_R^2}{s' - f}} = \frac{1}{f}$$

input beam parameters

output beam parameters

In contrast to the classical geometrical optics the imaging formulas are **not symmetric** to the input and output beam parameters

Position of the image

There is a **minimum** and a **maximum** distance for the image position in Gaussian beams

$$s = f + z_R \Longrightarrow s'_{\text{max}} = f(1 + \frac{f}{2z_R})$$

The image is located at the maximum distance from the lens when $s = f + z_R$ and not at s = f

$$s = f \Longrightarrow s' = f$$

Magnification

Transverse Magnification

$$M_T \equiv \frac{w_o'}{w_o} = \frac{1}{\sqrt{(1 - s / f)^2 + z_R^2 / f^2}}$$

$$s = f \Longrightarrow M_T^{\max} = \frac{f}{z_R}$$

Longitudinal magnification

$$\boldsymbol{M}_L \equiv \frac{\boldsymbol{z}_R'}{\boldsymbol{z}_R} = \boldsymbol{M}_T^2$$

Examples of peculiar behavior

Generic analysis

Normalization

it is advantageous to normalize all spatial values on the lens focal length

input Gaussian beam

output Gaussian beam

distance from the lens

Length

$$\xi = \frac{s}{f}$$

$$\zeta_R = \frac{z_R}{f} = \frac{\pi \, w_o^2}{f \cdot \lambda}$$

$$\xi' = \frac{s'}{f}$$

$$\zeta_R' = \frac{z_R'}{f} = \frac{\pi w_o'^2}{f \cdot \lambda}$$

normalized distance of a plane lying at distance z

$$z_n = \frac{z}{f}$$

Normalized imaging equations

position of Beam

the output Gaussian Beam
$$\xi' = 1 + \frac{\xi - 1}{\zeta_R^2 + (\xi - 1)^2}$$

$$\zeta_R' = \frac{\zeta_R}{\zeta_R^2 + (\xi - 1)^2}$$

Rayleigh Length of the output Gaussian Beam

waist of the output Gaussian Beam

$$w'_{o} = \frac{w_{o}}{\sqrt{(\xi - 1)^{2} + \zeta_{R}^{2}}}$$

$$M_T \equiv \frac{w'_o}{w_o} = \frac{1}{\sqrt{(\xi - 1)^2 + \zeta_R^2}}$$

Longitudinal Magnification

$$M_L \equiv \frac{z_R'}{z_R} = \frac{\zeta_R'}{\zeta_R} = M_T^2 = \frac{1}{(\xi - 1)^2 + \zeta_R^2}$$

output beam semi-diameter w_{out} size at a distance z_n from the lens:

$$\frac{w_{out}^{2}(\xi, z_{n})}{w_{o}^{2}} = 1 + \frac{\xi^{2}}{\zeta_{R}^{2}} + \frac{z_{n}^{2}}{\zeta_{R}^{2}} [\zeta_{R}^{2} + (\xi - 1)^{2}] - 2\frac{z_{n}}{\zeta_{R}^{2}} [\zeta_{R}^{2} + (\xi - 1)\xi]$$

Position of the image

There is a **minimum** and a **maximum** distance for the image position in Gaussian beams

$$\xi = 1 \Rightarrow \xi' = 1$$

$$\xi = 1 + \zeta_R \Rightarrow \begin{cases} \xi'_{max} = 1 + \frac{1}{2\zeta_R} \\ \xi'_{min} = 1 - \frac{1}{2\zeta_R} \end{cases}$$

Image on the lens $\xi' = 0$

$$\xi' = 0 \Rightarrow \xi = \frac{1 \pm \sqrt{1 - 4\zeta_R^2}}{2}$$

There are two solutions in this problem that merge at $\zeta_R = 0.5$

"Geometrical regime"

$$\zeta_R \to 0 \Rightarrow \begin{cases} \xi \to 0 \\ \xi \to 1 \end{cases}$$

$$\xi'_{max} = 1 + \frac{1}{2\zeta_R}$$

maximal position of the image as a function of the normalized Rayleigh length of the input Gaussian Beam

Magnification

Transverse
Magnification is
maximized at

$$\xi = 1 \Longrightarrow M_T^{\text{max}} = \frac{1}{\zeta_R}$$

At what distance ξ is the output beam collimated?

One safe criterion is that the output Gaussian beam is **collimated** when it's Rayleigh length is **maximized**.

Since the only varying parameter is the distance of the input Gaussian beam to the lens, it is sufficient to estimate the maximum of the function ζ_R ' in respect to ξ :

$$\frac{\partial \zeta_R'}{\partial \xi} = 0 \Rightarrow \xi_{col} = 1$$

$$\zeta_R$$

$$= \frac{1}{\zeta_R}$$
0.01

In this case:

$$\xi' = 1$$

$$\zeta_R' = \frac{1}{\zeta_R}$$

$$M_T = \frac{1}{\zeta_R}$$

$$M_L = \frac{1}{\zeta_R^2}$$

$$\xi'=1$$

Minimum beam diameter at a distance z_n

Since the only varying parameter is the distance of the input Gaussian beam to the lens, it is sufficient to estimate the minimum of the function w_{out} in respect to ξ :

$$\frac{\partial w_{out}(\xi, \zeta_R; z_n)}{\partial \xi} = 0 \Rightarrow \xi_{min} = \frac{z_n}{z_n - 1}$$

$$collimation error < 1\%$$

$$\frac{10.0}{7.0}$$

$$\frac{10.0}{5.0}$$

$$\frac{10.0}{1.5}$$

$$\frac{10$$

Dimitris Papazoglou dpapa@materials.uoc.gr

ABCD matrix theory and Gaussian beams

Complex parameter q

$$E(\mathbf{r}) = E_o \frac{e^{-i[kz + \psi(z)]}}{w(z)} \cdot e^{-\frac{x^2 + y^2}{w^2(z)} - i\frac{\pi}{\lambda} \frac{x^2 + y^2}{R(z)}} \equiv E_o \frac{e^{-i[kz + \psi(z)]}}{w(z)} e^{-i\frac{\pi}{\lambda} \frac{x^2 + y^2}{q(z)}}$$

$$\frac{1}{q(z)} \equiv \frac{1}{R(z)} - i\frac{\lambda}{\pi} \frac{1}{w^2(z)}$$

The complex parameter q(z) describes the Gaussian beam completely

By replacing the known values of the R(z), w(z) parameters for the free space propagation we get:

$$|w(z)| = w_o \sqrt{1 + \frac{z^2}{z_R^2}}$$

$$\Rightarrow \frac{1}{q(z)} = \frac{1}{z + z_R^2 / z} - i \frac{1}{z_R + z^2 / z_R}$$

$$\frac{1}{q(z)} = \frac{z_R + z^2 / z_R - i(z + z_R^2 / z)}{(z_R + z^2 / z_R)(z_R + z^2 / z_R)} \Longrightarrow$$

$$q(z) = z + i z_R$$

Propagation though an optical system

The parameter q in the exit of an optical system is defined by the optical transfer matrix of the system M and it's value in the input of the system.

Application in free space propagation

From the ray matrix theory we know that free space propagation is described as a simple transport over z.

$$M = \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}$$

$$q(z) \equiv q_{out}$$

$$q(0) = q_{in} = i z_R$$

$$\Rightarrow q(z) = \frac{1 \cdot q(0) + z}{0 \cdot q(0) + 1} = z + i z_R$$