روش انتگرالگیری نیوتن - کوتز

در قاعده انتگرال گیری ذوزنقه ای داریم:

$$\int_{x_{i+1}}^{x_{i+1}} f(x) dx \simeq \frac{h}{r} f_{i} + \frac{h}{r} f_{i+1} = \sum_{k=i}^{i+1} w_{k} f_{k} + E \qquad w_{i} = w_{i+1} = \frac{h}{r}$$

که خطای آن نیز $\frac{h^{\prime\prime}}{17}f''(\eta)$ است.

و همچنین از فرمول قاعده سیمسون نتیجه می شود که:

$$\int_{x_i}^{x_{i+r}} f(x) dx \simeq \frac{h}{r} f_i + \frac{rh}{r} f_{i+1} + \frac{h}{r} f_{i+r} = \sum_{k=i}^{i+r} w_k f_k + E$$

$$\mathbf{w}_i = \mathbf{w}_{i+1} = \frac{\mathbf{h}}{\mathbf{r}}$$
 , $\mathbf{w}_{i+1} = \frac{\mathbf{r}\mathbf{h}}{\mathbf{r}}$

و خطای آن $(\eta)^{(*)}(\eta)$ است.

بنابراین در حالت کلی فرم یک قاعده انتگرال گیری را چنین فرض می کنیم:

$$\int_{x}^{x_{m}} f(x) dx = \sum_{k=0}^{m} w_{k} f_{k} + E$$

در اینجا آنچه می تواند مجهول باشد نقاط «x_m،... «x₁ ،x_n» و ضرایب «w_n ،w،... » است که در اینجا دو روش برای محاسبهٔ آنها ارائه می کنیم.

در روش های انتگرال گیری نیوتن - کوتز نقاط x_{m} ،...، x_{1} معلوم فرض می شوند، مثلاً متساوی الفاصله و به صورت

$$x_{i+1} - x_i = h$$
 , $i = \circ, 1, ..., m-1$

بنابراین باید (m+۱) مجهول ،w،...، سرا بدست آوریم.

برای این منظور Wi ما را چنان پیدا میکنیم که خطای قاعده انتگرال گیری برای چندجملهایهای

تا درجهٔ m صفر باشد. یعنی:

$$f(x) = 1, x, ..., x^{m}$$

وقتى كە

در زیر فرمول قاعدهٔ چهارنقطهای به ازای m=m یا قاعده $\frac{m}{\Lambda}$ را به دست می آوریم.

برای این منظور، بدون این که به کلیت خللی وارد شود قرار میدهیم 🚛 ، بنابراین

$$\int_{\bullet}^{\tau_h} f(x) dx = \sum_{k=\bullet}^{\tau} w_k f_k + E$$

که در آن x_i= ih، بعنی:

$$x_{\bullet} = \circ$$
 , $x_1 = h$, $x_{\gamma} = \gamma h$, $x_{\gamma} = \gamma h$

حال برای به دست آوردن .w تا w قرار می دهیم == و قتی که

$$f(x) = \langle x, x, x^{\gamma}, x^{\gamma} \rangle$$

به این ترتیب چهار معادلهٔ زیر حاصل می شود:

$$f(x) = 1 \Rightarrow \int_{\cdot}^{\gamma h} 1 dx = \gamma h = w_{0} + w_{1} + w_{2} + w_{3}$$

$$f(x) = x \Rightarrow \int_{\cdot}^{\gamma h} x dx = \frac{qh^{\gamma}}{\gamma} = h w_{1} + \gamma h w_{2} + \gamma h w_{3}$$

$$f(x) = x^{\gamma} \Rightarrow \int_{\cdot}^{\gamma h} x^{\gamma} dx = q h^{\gamma} = h^{\gamma} w_{1} + \gamma h^{\gamma} w_{2} + q h^{\gamma} w_{3}$$

$$f(x) = x^{\gamma} \Rightarrow \int_{\cdot}^{\gamma h} x^{\gamma} dx = \frac{\Lambda h^{\gamma}}{\gamma} = h^{\gamma} w_{1} + \Lambda h^{\gamma} w_{2} + \gamma h^{\gamma} w_{3}$$

که پس از خلاصه کردن دستگاه معادله زیر حاصل میشود:

$$\begin{cases} w_0 + w_1 + w_7 + w_7 = 7h \\ w_1 + 7w_7 + 7w_7 = \frac{9h}{7} \\ w_1 + 7w_7 + 9w_7 = 9h \\ w_1 + 7w_7 + 7v_7 = \frac{5h}{7} \\ w_1 + 8w_7 + 7v_7 = \frac{5h}{7} \\ w_2 + 8w_7 + 8w_7 = \frac{5h}{7} \\ w_3 + 8w_7 + 8w_7 = \frac{5h}{7} \\ w_4 + 8w_7 + 8w_7 = \frac{5h}{7} \\ w_5 + 8w_7 + 8w_7 = \frac{5h}{7} \\ w_7 + 8w_7 + 8w_7 = \frac{5h}{7} \\ w_8 + 8w_7 + 8w_7 + 8w_7 = \frac{5h}{7} \\ w_8 + 8w_7 + 8w_7 + 8w_7 + 8w_7 = \frac{5h}{7} \\ w_8 + 8w_7 + 8w_7 + 8w_7 + 8w_7 = \frac{5h}{7} \\ w_8 + 8w_7 + 8w_7 + 8w_7 + 8w_7 = \frac{5h}{7} \\ w_8 + 8w_7 +$$

پس از حذف w₁ به کمک معادلهٔ دوم، معادلات سوم و چهارم به صورت زیر درمی آیند.

$$\begin{cases} \Upsilon w_{\gamma} + \mathcal{F} w_{\gamma} = \frac{9}{7}h \\ \mathcal{F} w_{\gamma} + \Upsilon \mathcal{F} w_{\gamma} = \frac{\mathcal{F} \mathcal{F} h}{7} \end{cases}$$

$$\mathbf{W}_{\mathbf{v}} = \frac{\mathbf{v}_{\mathbf{h}}}{\Lambda}$$
 بنابراین، $\mathbf{v}_{\mathbf{v}} = \frac{\mathbf{q}_{\mathbf{h}}}{\kappa}$ بنابراین، $\mathbf{w}_{\mathbf{v}} = \frac{\mathbf{q}_{\mathbf{h}}}{\Lambda}$ از معادله اول به دست می آید:
$$\mathbf{w}_{\mathbf{l}} = \frac{\mathbf{q}_{\mathbf{h}}}{\Lambda}$$
 از معادله دوم حاصل می شود:
$$\mathbf{w}_{\mathbf{l}} = \frac{\mathbf{q}_{\mathbf{h}}}{\Lambda}$$
 $\mathbf{w}_{\mathbf{v}} = \frac{\mathbf{v}_{\mathbf{h}}}{\Lambda}$

بنابراین فرمول چهار نقطهای عبارت است از:

$$\int_{\circ}^{\psi_h} f(x) dx \simeq \frac{\psi_h}{h} (f(\circ) + \psi_f(h) + \psi_f(h) + f(\psi_h))$$

$$\int_{\circ}^{x_{\tau}} f(x) dx \simeq \frac{\psi_h}{h} (f_{\circ} + \psi_f(h) + \psi_f(h) + \psi_f(h) + f(\psi_h))$$

$$\int_{x_i}^{x_{\tau}} f(x) dx \simeq \frac{\psi_h}{h} (f_{\circ} + \psi_f(h) + \psi_f(h$$

روش فوق به روش ضرایب مجهول نیز معروف است. فرمولهای نیوتن ـ کوتز پنج نقطهای و ... نیز به همین ترتیب به دست می آیند. در زیر جدول مربوط به این فرمولها، ضرایب و خطای آنها آمده است:

m	A.	w.	w ₁	WY	WΥ	WY	A 1
1	<u>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </u>	Y	Y				- 1
۲	7	Y	۴	1			- 1
٣	<u>"</u>	١	٣	٣	1		- 1
۴	<u>Y</u>	٧	٣٢	17	٣٢	V	- <u>A</u>
۵	<u> </u>	19	۷۵	٥٠	۵۰	۷۵	- <u>7VD</u> 7.98
۶		41	718	**	777	**	- 9
٧	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۷۵۱	2000	1222	4919	79.59	- 4144
٨	¥ 14100	9,49	۵۸۸۸	-9 YA	1.941	-4040	- <u>۲۳۶۸</u> ۴۶۷۷۷۵

درحالت كلى داريم:

$$\int_{x_{.}}^{x_{m}} f(x) dx = A_{.} \sum_{k=-\infty}^{m} w_{k} f_{k} + A_{1} h^{(1)} f^{(1)}(\eta)$$

که در آن n∈[x.,x_m] و

$$1 = \begin{cases} m+1 & i = m \\ m \neq 1 \end{cases}$$
 اگر m فرد باشد $m+1 = m+1$

درعمل بهتر است از فرمولهایی استفاده کنیم که در آنها m زوج است.

در جدول مشاهده می شود:

- ضرایب جملات متساوی الفاصله از طرفین برابرند.
- تا ساس ضرایب همگی مثبت ولی برای m=۸ بعضی از ضرایب منفی هستند.

در عمل توصیه می شود با توجه به این که محاسبهٔ ifها تو أم با خطاست و برای m های بزرگ ضرایب w ممکن است منفی باشند، فرمولهای نیوتن ـکوتز را برای mهای کوچک به کارببریم. بخصوص mهای زوج را اختیار کنید.

مثلاً، فرمولهای ۳ نقطهای (یعنی قاعدهٔ سیمسون) و ۴ نقطهای (یعنی قاعدهٔ ۳) هر دو برای ۸ چندجملهایهای تا درجهٔ سوم دقیق هستند. اماروش سیمسون از یک نقطه کمتر استفاده میکند