CS229

Problem Set 0 Linear Algebra and Multivariable Calculus

Kangwei Ling @kevinkwl

February 2, 2017

1. Gradient and Hessians

Solution.

(a) Note that $x^TAx = \Sigma_{1\leqslant i,j\leqslant n}A_{ij}x_ix_j$, and since A is a symmetric matrix, $x^TAx = \Sigma_{i=1}^nA_{ii}x_i^2 + \Sigma_{i=1}^{n-1}\Sigma_{j=i+1}^n2A_{ij}x_ix_j$. Thus,

$$\forall f(x) = \begin{bmatrix} \vdots \\ 1/2(2A_{ii}x_i + \Sigma_{1 \leqslant j \leqslant n, j \neq i}2A_{ij}x_j) + b_i \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \Sigma_{1 \leqslant j \leqslant n}A_{ij}x_j + b_i \\ \vdots \end{bmatrix} = Ax + b$$

(b) Use the Chain Rule.

$$\nabla f(x) = \begin{bmatrix} g'(h(x)) \cdot \frac{\partial}{\partial x_1} h(x) \\ \vdots \end{bmatrix}$$

(c) from the answer in (a), it's easy to find out that,

$$\nabla^2 f(x) = A$$

(d)

$$\nabla f(x) = g'(\alpha^T x)\alpha$$
$$\nabla^2 f(x) = g''(\alpha^T x)\alpha\alpha^T$$

2. Positive definite matrices

(a) Firstly, $A^T = (zz^T)^T = zz^T = A$. Then for all $x \in \mathbb{R}^n$, $x^TAx = x^Tzz^Tx = (z^Tx)^2 \geqslant 0$.

- (b) A is PSD. Consider the linear system Ax = 0, notice that for all x', s.t., Ax' = 0, then $zz^Tx' = 0$. Note that z^Tx' is a scalar, and because z is non-zero, $z^Tx' = 0$. Therefore, the null space of A is $\{x \in \mathbb{R}^n \mid z^Tx = 0\}$. As the null space is a hyperplane perpendicular to non-zero vector z, the dimension of A is n-1. Thus rank(A) = n (n-1) = 1
- (c) $BAB^T \in \mathbb{R}^{m \times m}$, $(BAB^T)^T = BA^TB^T = BAB^T$. For all $x \in \mathbb{R}^m$, $B^Tx \in \mathbb{R}^n$, and $x^TB = (B^Tx)^T$. Let $y = B^Tx$, $y \in \mathbb{R}^n$, then for all such x, $y^TAy \geqslant 0$, that is, $x^TBAB^Tx \geqslant 0$. Therefore, BAB^T is PSD.
- 3. Eigenvectors, eigenvalues, nd the spectral theorem
 - (a) Let $I^{(i)}$ be the i^{th} column of I. Note that $T^{-1}T = I$, $T^{-1}t^{(i)} = I^{(i)}$. That is,

$$\mathsf{T}^{-1}\mathsf{t}^{(\mathfrak{i})} = \begin{bmatrix} \mathsf{0} \\ \vdots \\ \mathsf{1} \\ \vdots \\ \mathsf{0} \end{bmatrix}$$

and it's also obvious that

$$rac{1}{\lambda_{
m i}} \Lambda = egin{bmatrix} rac{\lambda_1}{\lambda_{
m i}} & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & \ddots & \\ & & & rac{\lambda_n}{\lambda_{
m i}} \end{bmatrix}$$

therefore,

$$\frac{1}{\lambda_i} \Lambda T^{-1} t^{(\mathfrak{i})} = T^{-1} t^{(\mathfrak{i})}$$

i.e. $At^{(i)} = \lambda_i t^{(i)}$

- (b) Since $U^TU = I$, $U^{-1} = U^T$, the statement follows immediately from the result of (a).
- (c) A is PSD, then $A=U\Lambda U^T$ by the **spectral theorem**.For each $u^{(i)}$, we know that $Au^{(i)}=\lambda_i u^{(i)}$. And

$$(t^{(\mathfrak{i})})^\mathsf{T} A t^{(\mathfrak{i})} \geqslant 0$$

since

$$(t^{(i)})^T A t^{(i)} = \lambda_i (t^{(i)})^T t^{(i)} = \lambda_i |t^{(i)}|^2$$

 $\lambda_i \geqslant 0$