Deures 06/03/2020

Joan Pau Condal Marco

20 de març de 2020

Enunciat:

- 1. Siguin $f: E \longrightarrow F$ una aplicació lineal, S_E subespai d'E i S_F subespai de F.
 - (a) Prova que $f(S_E)$ és subespai de F.
 - (b) Prova que $f^{-1}(S_F)$ és un subespai d'E.
- 2. Siguin $A, B, C \in M(n, n, \mathbb{R}), C$ invertible.
 - (a) Prova que $tr(A \cdot B) = tr(B \cdot A)$.
 - (b) Prova que $tr(A) = tr(C \cdot A \cdot C^{-1})$.

Apartat 1.

Per la demostració de 1. sabem que $S_E \subset E, S_F \subset F$ són subespais de E i F respectivament; i també sabem que f és lineal.

Demostració de (a):

Per demostrar que $f(S_E)$ és un subespai de F, hem de demostrar que no és buit, que la suma de dos elements de $f(S_E)$ cau a $f(S_E)$ i que un escalar per un element de $f(S_E)$ també pertany a $f(S_E)$.

Comencarem demostrant que $f(S_E)$ no és buit. Per hipòtesi sabem que $S_E \subset E$ és subespai i f és aplicació lineal. Per tant, sabem que $\mathbf{0}_E \in S_E$ i $f(\mathbf{0}_E) = \mathbf{0}_F$; d'on queda demostrat que $f(S_E) \neq \emptyset$.

A continuació veurem que dos elements de $f(S_E)$ sumats pertanyen a $f(S_E)$. Siguin $u, v \in S_E$, tenim que:

$$f(u) \in f(S_E), \ f(v) \in f(S_E)$$
$$u \in S_E \text{ i } v \in S_E \implies u + v \in S_E \implies f(u + v) \in f(S_E) \implies f(u) + f(v) \in f(S_E)$$

D'on queda demostrada la segona propietat.

Finalment hem de demostrar que el producte d'un escalar per un vector de $f(S_E)$, pertany a $f(S_E)$. Sigui $\alpha \in \mathbb{R}$ i $v \in S_E$. Com que S_E és un subespai vectorial, sabem que $\alpha v \in S_E$. Aleshores:

$$\alpha v \in S_E \implies f(\alpha v) \in f(S_E) \implies \alpha f(v) \in f(S_E)$$

D'on queda demostrada la tercera propietat i, per tant, el fet de que $f(S_E)$ és subespai.

Per veure que $f(S_E)$ és subespai de F, només cal veure que:

$$f(S_E) = \{ f(v) : v \in S_E \} \subset F$$

Demostració de (b):

A l'hora de demostrar que $f^{-1}(S_F)$ és subespai vectorial hem d'anar amb compte, ja que f^{-1} no té perquè ser aplicació; ja que només ho és si f és un isomorfisme. Sabent això, seguirem la demostració considerant f^{-1} el conjunt antiimatge i no la aplicació inversa de f.

Per demostrar que $f^{-1}(S_F)$ és subespai vectorial, haurem de demostrar que es compleixen les mateixes propietats que hem demostrat per 1.a.

Primer de tot, hem de demostrar que $f^{-1}(S_F) \neq \emptyset$. Per la definició de f^{-1} , sabem que $f^{-1}(\mathbf{0}_F) = ker f$; i com que $ker f \neq \emptyset$ sempre (considerant f lineal), podem afirmar que $f^{-1}(S_F) \neq \emptyset$

Per demostrar que la suma de dos elements de $f^{-1}(S_F)$ pertany a $f^{-1}(S_F)$, considerarem dos vectors $u, v \in f^{-1}(S_F)$. Aleshores:

$$f(u), f(v) \in S_F \implies f(u) + f(v) \in S_F \implies f(u+v) \in S_F \implies u+v \in f^{-1}(S_F)$$

I d'aquí demostrem la segona propietat dels subespais per $f^{-1}(S_F)$

Finalment hem de demostrar que un escalar per un vector de $f^{-1}(S_F)$ pertany a $f^{-1}(S_F)$. Considerarem $\alpha \in \mathbb{R}$ i $v \in f^{-1}(S_F)$. Aleshores, sabem:

$$v \in f^{-1}(S_F) \implies f(v) \in S_F \implies \alpha f(v) \in S_F \implies f(\alpha v) \in S_F \implies \alpha v \in f^{-1}(S_F)$$

Demostrant la tercera condició dels subespais vectorials.

Com que han quedat demostrades les tres condicions, queda demostrat que $f^{-1}(S_F)$ és un subespai d'E.

Apartat 2.

Demostració de (a):

Siguin $A = (a_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,n}}$ i $B = (b_{st})_{\substack{s=1,\dots,n\\t=1,\dots,n}}$. Sabem que $tr(A) = \sum_{i=1}^n a_{ii}$. Per definició del producte de matrius, sabem que:

$$A \cdot B = \left(\sum_{k=1}^{n} a_{ik} b_{kj}\right)_{\substack{i=1,\dots,n\\j=1,\dots,n}}$$
$$B \cdot A = \left(\sum_{k=1}^{n} b_{ik} a_{kj}\right)_{\substack{i=1,\dots,n\\j=1,\dots,n\\j=1,\dots,n}}$$

Per tant, aplicant la definició de tr al producte de matrius, obtenim:

$$tr(A \cdot B) = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{ik} b_{ki} \right) = \sum_{k=1}^{n} \sum_{i=1}^{n} a_{ik} b_{ki} = \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ik} = tr(B \cdot A)$$

Demostració de (b):

Per demostrar que $tr(C \cdot A \cdot C^{-1}) = tr(A)$, podem utilitzar la demostració anterior:

$$tr(C \cdot A \cdot C^{-1}) = tr(C \cdot C^{-1} \cdot A) = tr(I_n \cdot A) = tr(A)$$