Exercice 1:

On considère les trois transformations cycliques réversibles d'une mole de gaz parfait, représentées par un rectangle (voir figure 1):

- a- sur le diagramme de Clapeyron (p,v=,
- b- sur le diagramme (T,v),
- c- sur le diagramme (T,p).

Figure1

Calculer dans chaque cas le travail et la quantité de chaleur échangés au cours de chaque transformation $1\rightarrow 2,\ 2\rightarrow 3,\ 3\rightarrow 4,\ 4\rightarrow 1$, et du cycle entier, entre le système gazeux et le milieu extérieur, en fonction de γ et des coordonnées indiquées dans chacun des diagrammes. Vérifier le principe d'équivalence

Exercice 2

Un cylindre horizontal, clos, de volume invariable, est divisé en deux compartiments, par un piston mobile, sans frottement voir figure 2. Les parois du cylindre et le piston sont imperméables à la chaleur (athermanes). A l'état initial, les deux compartiments C_1 et C_2 contiennent un même volume $V_0 = 2$ l d'hélium (gaz parfait), à la pression $P_0 = 1$ atm, et à la température $T_0 = 273$ k.

Le rapport des chaleurs massiques à pression et volume constants est $\gamma = 5/3$.

Le gaz du compartiment C_1 reçoit, à l'aide d'une résistance chauffante, de la chaleur du milieu extérieur.

Déterminer :

- 1- Les pressions, volumes et températures des compartiments C_1 et C_2 , lorsque la pression du gaz contenu dans C_1 devient $P_1 = 3$ p_0 .
- 2- La variation d'énergie interne du gaz dans C₁ et C₂, et l'énergie fournie par la résistance chauffante.

Figure 2