$\ensuremath{\mathbf{1}}$ Best ARMA model: ARMA(0, 0, 3) with AIC: -19605.529408445313

Dep. Variable	e:	Return	N	o. Obser	rvations:	4507
Model:	AI	RIMA(0, 0)	, 3) L o	Log Likelihood		9807.765
Date:	Fri	i, 28 Feb 2	025 A	\mathbf{IC}		-19605.529
Time:		12:39:46	\mathbf{B}	\mathbf{IC}		-19573.462
Sample:		0	\mathbf{H}	QIC		-19594.231
		- 4507				
Covariance T	ype:	opg				
	coef	std err	${f z}$	$\mathbf{P}> \mathbf{z} $	[0.025	0.975]
const	0.0002	0.000	0.544	0.586	-0.001	0.001
ma.L1	0.0013	0.009	0.152	0.880	-0.016	0.018
${ m ma.L2}$	-0.0118	0.011	-1.096	0.273	-0.033	0.009
ma.L3	-0.0311	0.009	-3.495	0.000	-0.049	-0.014
${f sigma2}$	0.0008	8.04e-06	93.788	0.000	0.001	0.001
Ljung-Box	(L1) (C	Q): 0.	00 Ja ı	rque-Ber	a (JB):	7512.73
Prob(Q):		0.	95 Pr	ob(JB):		0.00
Heteroske	dasticity	(H): 0.	54 Sk	ew:		-0.08
Prob(H) (two-side	ed): 0.	00 K u	rtosis:		9.32

Warnings:

^[1] Covariance matrix calculated using the outer product of gradients (complex-step).

		$lb_s tat$	$lb_p value$
	1	0.004035	0.949348
	2	0.023130	0.988502
	3	0.023171	0.999068
	4	0.023171	0.999933
Ljung-Box Test on Residuals:	5	1.142103	0.950310
	6	8.894291	0.179611
	7	9.079874	0.246972
	8	12.551090	0.128257
	9	12.620791	0.180529
	10	20.580949	0.024213

		$lb_s tat$	$lb_p value$
	1	319.352371	0.000000
	2	392.727698	0.000000
	3	649.803186	0.000000
	4	709.771928	0.000000
Squared Residuals:	5	812.289201	0.000000
	6	841.152911	0.000000
	7	857.797019	0.000000
	8	867.738854	0.000000
	9	879.774545	0.000000
	10	883.774629	0.000000

 $\label{eq:Ljung-Box} \mbox{ Test on Squared Residuals:}$

 $ARCH-LM\ Test\ p-value:\ 4.1329892296863164e-116$

We can therefore conclude that heterosked asticity is present, and that there are significant non-linearities in the data.

3

Best GARCH model: $\operatorname{GARCH}(1,\,2)$ with AIC: -20405.169282378793

Dep. Va	ariable:	Return		R-squared:	-0.000
Mean Model:		AR		Adj. R-squa	red: -0.000
Vol Mo	Vol Model: GARCH		H	Log-Likeliho	ood: 10208.6
$\mathbf{Distrib}_{\mathbf{I}}$	ution:	Normal		AIC:	-20405.2
\mathbf{Method}	l: M	Maximum Likelihood		BIC:	-20366.7
				No. Observa	ations: 4506
Date:		Fri, Feb 28	2025	Df Residual	s: 4504
Time:		12:39:46		Df Model:	2
	coef	std err	t	P> t	95.0% Conf. Int.
Const	4.5335e-04	3.472e-04	1.306	0.192	[-2.271e-04,1.134e-03]
Return[1]	2.9568e-03	03 1.689e-02 0.175		0.861	[-3.016e-02, 3.607e-02]
	\mathbf{coef}	std err t		$\mathbf{P} {>} \left \mathbf{t} \right $	95.0% Conf. Int.
omega	1.3995e-05	1.278e-11	1.095e + 0	6 0.000	[1.399e-05,1.399e-05]
alpha[1]	0.1088	1.838e-02	5.920	3.217e-09	[7.279e-02, 0.145]
beta[1]	0.3263	0.333	0.981	0.327	[-0.326, 0.979]
beta[2]	0.5487	0.327	1.675	9.385 e-02	[-9.318e-02, 1.191]

Covariance estimator: robust

4

GARCH persistence (+): 0.43514650063945454

Is the model covariance stationary (persistence < 1)? Yes

A GARCH process is covariance stationary if $\alpha + \beta < 1$. If the sum is very close to 1, it suggests high persistence in volatility and potential integration

5

Dep. Variable:	Return	R-squared:	-0.000
Mean Model:	AR	Adj. R-squared:	-0.000
Vol Model:	FIGARCH	Log-Likelihood:	10214.4
Distribution:	Normal	AIC:	-20416.9
Method:	Maximum Likelihood	BIC:	-20378.4
		No. Observations:	4506
Date:	Fri, Feb 28 2025	Df Residuals:	4504
Time:	12:41:32	Df Model:	2

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} {>} \left \mathbf{t} \right $	95.0% Conf. Int.
Const	4.2991e-04	3.594e-04	1.196	0.232	[-2.746e-04,1.134e-03]
${ m Return}[1]$	2.5414e-03	1.774e-02	0.143	0.886	[-3.223e-02, 3.732e-02]
	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P}{> \mathbf{t} }$	95.0% Conf. Int.
omega	1.0771e-05	4.010e-06	2.686	7.225e-03	[2.912e-06, 1.863e-05]
phi	0.1998	5.376e-02	3.716	2.023e-04	[9.442e-02, 0.305]
\mathbf{d}	0.5005	0.110	4.559	5.150e-06	[0.285, 0.716]
beta	0.6294	9.758e-02	6.450	1.118e-10	[0.438, 0.821]

Covariance estimator: robust Fractional integration parameter (δ): 0.5005

p-value: 0.0000

Is δ significant at 5% ($d_p value < 0.05$)?Yes

The significance of the δ parameter indicates whether there is long memory in the volatility process. If significant, it suggests that shocks to volatility persist for a long time.

 ${\bf 6}$ Best TARCH model: TARCH(1, 2) with AIC: -20401.206588425353

Dep. Va	ariable:	Return		R-squared:	-0.000
Mean Model:		AR		Adj. R-squa	red: -0.000
Vol Mo	del:	GJR-GARCH		Log-Likeliho	ood: 10207.6
$\operatorname{Distrib}$	ution:	Normal		AIC:	-20401.2
Method	l: M	Maximum Likelihood		BIC:	-20356.3
				No. Observa	ations: 4506
Date:		Fri, Feb 28	2025	Df Residual	s: 4504
Time:		12:39:4	7	Df Model:	2
	coef	std err	t	P> t	95.0% Conf. Int.
Const	3.8341e-04	3.542e-04	1.083	0.279	[-3.107e-04,1.078e-03]
Return[1]	2.6565e-03	1.708e-02	0.156	0.876	[-3.082e-02, 3.614e-02]
	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P}{>}\left \mathbf{t}\right $	95.0% Conf. Int.
omega	1.5392 e-05	2.376e-11	6.478e + 0	5 0.000	[1.539e-05, 1.539e-05]
alpha[1]	0.1000	3.966e-02	2.523	1.165e-02	[2.231e-02, 0.178]
$\mathbf{gamma}[1]$	9.9603e-03	2.107e-02	0.473	0.636	[-3.134e-02, 5.126e-02]
beta[1]	0.4375	1.213	0.361	0.718	[-1.939, 2.814]
beta[2]	0.4375	1.178	0.371	0.710	[-1.871, 2.746]

Covariance estimator: robust

7 & 8Question 7 and 8 seem to be duplicates.

Dep. Var	Dep. Variable:		Return_gas R-se		-0.000
Mean Mo	del:	AR		R-square	d: -0.000
Vol Mode	el:	GARCH		Likelihood	l: 10202.9
Distributi	ion:	Normal		:	-20395.8
Method:	Maxi	mum Likelil	hood BIC	:	-20363.8
			No.	Observati	ons: 4506
Date:	Fri	i, Feb 28 20	25 Df F	Residuals:	4504
Time:		12:39:47	Df N	Model:	2
	coef	std err	t	P> t	95.0% Conf. Int.
Const	5.2288e-04	3.535e-04	1.479	0.139	[-1.699e-04,1.216e-03]
Return gas[1]	2.5457e-03	1.731e-02	0.147	0.883	[-3.137e-02,3.646e-02]
	\mathbf{coef}	std err	${f t}$	$\mathbf{P}> \mathbf{t} $	95.0% Conf. Int.
omega	1.5098e-05	1.150e-11	1.313e + 06	0.000	[1.510e-05,1.510e-05]
alpha[1]	0.1000	1.426e-02	7.014	2.319e-12	[7.206e-02, 0.128]
beta[1]	0.8800	1.229 e-02	71.591	0.000	[0.856, 0.904]

Covariance estimator: robust

This approach models how Brent crude oil returns impact the volatility of Gasoline returns by including the absolute Brent returns as an external regressor in the volatility equation. Alternatively, I could model them jointly using a multivariate GARCH framework, but that's more complex and would require additional code.