INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MINAS GERAIS *CAMPUS* BETIM

3° ano de Automação Industrial - Turma T2

Emanuelle Pereira Silva Araújo Júlio César Queiroz Carvalho Lorrana Aparecida Braga Lucas Barbosa Oliveira Marisa Camargos Barbosa Sthefane Gonçalves Reis Yasmin Mariane Silva Torres

TRABALHO INTERDISCIPLINAR

Protótipo Estação de Tratamento de Água

Projeto Integrador elaborados pelos alunos do Técnico Integrado em Automação Industrial do Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais campus Betim em cumprimento às exigências para conclusão de curso.

ORIENTADOR: Virgil Del Duca Almeida

CO-ORIENTADORES: Helbert Ribeiro de Sá

Leandro Freitas de Abreu Michelle Mendes Santos Reginaldo Vagner Ferreira

SUMÁRIO

Protótipo Estação de Tratamento de Água	1
Apresentação da equipe	2
Introdução	2
Objetivos Propostos Objetivos gerais Objetivos específicos	3 3 3
Descritivo funcional	4
Desenho da estrutura física	5
Diagrama P&I do protótipo	6
Programação do protótipo	7
Montagem da parte elétrica	7
Previsão orçamentária	9
Link do pitch	10
Link da apresentação do resultado final	10
Fluxograma das etapas da execução do projeto	11
Ferramenta 5W2H	11
Cronograma e Planejamento	12
Check List	13
Matriz de Priorização GUT	14
Conclusão da 2º Etapa	15
Considerações finais	15
Referências	16
APÊNDICE A	17
APÊNDICE B	18
APÊNDICE B.1	19
APÊNDICE B.2	20
APÊNDICE C	21
APÊNDICE D	24

Apresentação da equipe

A equipe responsável pela realização deste projeto é constituída por alunos do terceiro ano do ensino integrado de Automação Industrial do Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais campus Betim cujo estes são: Emanuelle Pereira Silva Araújo; Júlio César Queiroz Carvalho; Lorrana Aparecida Braga; Lucas Barbosa Oliveira; Marisa Camargos Barbosa; Sthefane Gonçalves Reis; Yasmin Mariane Silva Torres; tendo como orientador o professor Virgil Del Duca Almeida graduado em Sistemas de Informação e mestrado em Ciências da Computação pela Universidade Federal de Minas Gerais e como co-orientadores os professores Helbert Ribeiro de Sá; Leandro Freitas de Abreu; Michelle Mendes Santos; Reginaldo Vagner Ferreira.

Fonte: Imagem de autoria do grupo PETA

Introdução

Atualmente, com o crescimento da industrialização e das tecnologias, surgem alguns problemas, sendo um deles o aumento da quantidade de microplásticos presentes no meio ambiente.

Os microplásticos são polímeros sintéticos, derivados principalmente de combustíveis fósseis e este se tornou popular pelas suas propriedades e baixos custos de produção. Porém, além de causarem danos ao meio ambiente, causam sérios problemas de saúde aos seres humanos pela sua alta toxicidade decorrente do seu tamanho e capacidade de absorver metais pesados. No entanto, essa contaminação acontece na maioria dos casos por meio da água consumida, assim, vê-se a necessidade de resolver esse problema.

Desse ponto de partida surge a ideia de um projeto que busca reproduzir o modelo de Estação de Tratamento de Água em forma de protótipo, incrementando ao processo de floculação, um método capaz de realizar a remoção dos microplásticos. É importante salientar que a remoção de microplásticos nesse projeto foi desenvolvida teoricamente, porque infelizmente esta remoção é cara, e a ideia do projeto foi mostrar que o problema existe e pode ser solucionado com a automação.

Para a montagem do protótipo, realizou-se a montagem da estrutura com o uso dos materiais arrecadados na primeira etapa do projeto. Após esse momento, realizou-se também os testes das bombas e sensores do protótipo bem como, testes do reservatório para verificar a existência de vazamentos. Além disso, foi construído o sistema de circuito elétrico do processo de automatização com o uso de softwares e também o código de programação do arduíno. Esse sistema inclui o uso de uma tela Nextion, na qual construímos o design no programa adequado de acordo com as características físicas do protótipo, sendo possível acompanhar o processo em tempo real por ele.

Objetivos Propostos

Objetivos gerais

Reproduzir um protótipo de uma Estação de Tratamento de Água automatizada aplicando conhecimentos adquiridos pelos estudantes durante o curso, bem como adicionar um processo capaz de remover microplásticos presentes na água a fim de ajudar a amenizar um dos principais desafios da humanidade atualmente.

Objetivos específicos

- Reproduzir uma Estação de Tratamento de Água automatizada;
- Simular o processo de remoção de microplásticos na etapa de floculação do protótipo, bem como demonstrar as demais etapas presentes no processo;
- Aplicar conhecimentos adquiridos durante o desenvolvimento do curso e oferecer experiência prática por meio da aplicação desses conhecimentos em situações reais;

Descritivo funcional

Para a elaboração do projeto, serão representados os processos de captação, floculação, decantação, filtração e bombeamento. Para o funcionamento do Protótipo Estação de Tratamento de Água (PETA), foi programando um arduino na linguagem C, o programa implementado é responsável por comandar uma grande parte do ciclo de ações do PETA, pois é ele quem irá dar os comando para as bombas e para o servomotor, também será ele quem irá informar, com o auxílio dos sensores, qual o nível de água presente em cada um dos tanques.

As etapas deste protótipo se darão da seguinte forma:

- O primeiro processo a ser realizado é a simulação da captação da água para o tratamento, e através de uma bomba (LZ-001), a água passará do tanque de reservatório (TQ.001) para o processo de floculação ilustrado como tanque de decantação (TQ.002) no diagrama P&I e no desenho técnico. Além disso, serão utilizados quatro sensores (LSHH-001, LSH-001, LSL-001 e LSLL-001) para monitorar o nível da água deste tanque.
- No processo de floculação, será utilizado um misturador (SZ-001), e válvulas (FV-001) para adicionar produtos que darão início ao procedimento de remoção dos microplásticos. Este funcionará da seguinte forma, será adicionado miçangas cinzas para simular o ferrofluido, após esta adição o misturador será acionado, a fim de "aglutinar" as partículas de microplásticos(simulados por miçangas coloridas), em seguida o misturador interrompe seu funcionamento e todas as partículas acabam por decantar.
- Na decantação, processo que ocorrerá juntamente com a floculação, ocorreu a separação de misturas heterogêneas, e o fim do processo de remoção dos microplásticos na água, por meio de uma válvula manual (LV-002). Neste tanque também será utilizado sensores (LSHH-002, LSH-002, LSL-002 e LSLL-002) para monitorar o nível da água.
- Logo ao passar pelo processo de floculação e decantação, a água será encaminhada, através de uma bomba(LZ-002) para um filtro que contém cascalho, areia, carvão e algodão, ocorrendo assim a filtração, no qual, ocorrerá a filtragem das demais impurezas presentes na água.

- E por fim, essa água tratada retorna para o tanque reservatório(TQ-001) e em tese será bombeada para as residências, que são representadas pelo tanque (TQ-003) que por sua vez simula a adição de sujeira.
- A partir daí inicia-se um novo ciclo.

Obs: Fotos da montagem da estrutura e parte elétrica disponíveis no Apêndice A.

Desenho da estrutura física

Para ilustrar a estrutura do projeto, realizou-se o desenho técnico em 3D aproximando-se da forma real do protótipo.

Desenho 3D realizado no programa Autodesk FONTE: Imagem de autoria do grupo PETA

Diagrama P&I do protótipo

Para elaborar a construção, acoplamento de materiais e equipamentos a serem utilizados, foi construído um diagrama capaz de facilitar a visualização das etapas do processo, cujo objetivo é apresentar graficamente e simbolicamente as funções ocupadas nas malhas.

Diagrama P&I feito no site Lucidchart FONTE: Imagem de autoria do grupo PETA

Programação do protótipo

Para elaboração da parte funcional do protótipo, foi criado, inicialmente, um circuito utilizando o software "Tinkercad" para testar a programação do arduino, nele foi elaborado um circuito semelhante ao da aplicação (foto disponível no apêndice B), e foi elaborada uma programação em linguagem de blocos.

Em seguida foi utilizado o software "Proteus" (foto disponível no apêndice B) para testagem do circuito, inicialmente, foram feitos os testes nos sensores, a fim de descobrir se o sinal do sensor era suficiente para acionar o foto-acoplador, visto que a corrente era muito baixa devido a alta resistência da água, foi necessário a utilização de um transistor. e após estas e outras alterações foi feito o circuito na protoboard e implementado o código do arduino produzido no software "Arduino IDE". Em seguida foi conectado uma fonte externa na protoboard e iniciado os testes do protótipo. Com isso, foi montado a PCB (foto disponível no apêndice B) no software "DipTrace" e esta foi encomendada .

Montagem da parte elétrica

A maior parte elétrica do PETA é constituída pelo condicionamento do sinal das chaves de nível, para que o microcontrolador possa identificar de forma segura e exata o sinal enviado, além de um pequeno semi-circuito de alimentação e envio de sinal para a placa de módulo relé, para o servo motor e o recebimento do sinal do botão de emergência, que no **apêndice B.1** são representados pelos respectivos atuadores e botão.

Como pode-se observar no **apêndice B.2**, (que é o circuito elétrico de condicionamento do sinal sensorial, isolado do restante), primeiramente foi necessário a implementação de um CI 4N35, para produzir um isolamento elétrico entre a parte sensorial localizada no campo e a parte que chega ao microcontrolador, dessa forma, fornecendo uma proteção ao arduino para qualquer sobretensão ou sobrecorrente a que os sensores possam ser submetidos. Com a adição deste CI, se tornou necessário a utilização de um led para indicação, além de um resistor que limita a corrente no led, (D9 e R35 respectivamente). A tomada de sinal é realizada pelo arduino uno no terminal 4 do CI 4n35, onde são conectados simultaneamente o semi circuito de indicação, além de um resistor (R36) que executa a função de pulldown e acaba com qualquer trepidação que possa chegar ao terminal.

Para simular o fechamento da chave de nível feita pela água, foi utilizado 1 botão e um resistor (R33), e após alguns testes, foi constatado que por conta da alta resistividade da água, simulado no circuito pelo resistor R33, a corrente não se mostra suficiente para o acionamento do CI diretamente. Para que a corrente exercida nos terminais 1 e 2 do CI, se mostrassem suficiente para o acionamento deste, foi necessário montar um semi-circuito amplificador do sinal recebido.

Para a amplificação do sinal apresentado, foi utilizado um transistor NPN BC548 (Q9), que ao receber uma corrente em sua base se satura, permitindo assim a passagem de corrente na malha que contém o led presente no interior no CI. Para complementar, foi necessário a utilização de um resistor (R34) limitando a corrente no determinado led, visto que dessa forma a resistência da água deixa de pertencer a malha do led, ficando desprotegida contra sobrecorrente. Contudo, o transistor apresenta um ganho extremamente exagerado, e por conta disso, o circuito se mostrou ineficiente para o propósito requerido diante tamanha sensibilidade causada pelo ganho deste.

Para a solução desse problema, foi utilizado um potenciômetro de pulldown (RV9) ligado diretamente na base do transistor, o que permite a regulagem e calibragem da efetividade do aterramento na malha. Esta regulagem é precisa, pois caso a resistência se apresente com valor menor que o necessário, a corrente gerada pela chave de nível será direcionada predominantemente ao aterramento e não sobrará corrente suficiente para o acionamento do transistor, e caso seja mais alta que o necessário, a corrente produzida pela interferência magnética do meio se direciona predominantemente para base do transistor, saturado tal e apresentando um sinal indevido. É importante salientar que a interferência do meio, e a condutividade da água são extremamente variáveis, e isso explica a importância do resistor variável (potenciômetro) para regulagem, e não apenas um simples resistor fixo.

Previsão orçamentária

Para a montagem da estrutura do projeto, é necessário a arrecadação de materiais, seja por aquisição ou doação. Fez-se necessário portanto a criação de um planejamento para prever os gastos que serão destinados aos integrantes do grupo. Para a aquisição dos materiais levou-se como critério a durabilidade e qualidade, bem como o manuseio.

2 Fil 3 Bo 4 Se 5 Bo 6 Co 7 Tu 8 Co	Tipo de material ecipiente plástico 5L ltro de garrafa pet ase de madeira ensor de nível (pares de fios) omba de água ano pvc 25mm ubo flexível de silicone 1 metro	Quantidade 2 1 1 5 2 1 2	x x x	Doação x x	Preço em reais 16,96 6 0
2 Fil 3 Bo 4 Se 5 Bo 6 Co 7 Tu 8 Co	Itro de garrafa pet ase de madeira ensor de nível (pares de fios) omba de água ano pvc 25mm ubo flexível de silicone 1 metro	1 1 5 2	x		6 0 0
3 BC 4 Se 5 BC 6 CC 7 TU 8 CC	ase de madeira ensor de nível (pares de fios) omba de água ano pvc 25mm ubo flexível de silicone 1 metro	2	х		0
4 Se 5 Bc 6 Cc 7 Tu 8 Cc	ensor de nível (pares de fios) omba de água ano pvc 25mm ubo flexível de silicone 1 metro	2			0
5 Bd 6 Cd 7 Tu 8 Cd	omba de água ano pvc 25mm ubo flexível de silicone 1 metro	2		X	
6 Cd 7 Tu 8 Cd	ano pvc 25mm ubo flexível de silicone 1 metro	1			
7 Tu	ubo flexível de silicone 1 metro	1 2	X		50
8 C		2			5,7
	ola quente		X		10
		4	X		2
	ola tekbond	2	X		10
	ta isolante 20m	1	X		8,95
11 M		1		X	0
	arrafa pet mini	2		X	0
	lassa Durepoxi	1	X		7
	liçangas	7	X		14
	ap soldavel 25mm	1	X		2,3
	oelho soldavel 25mm	1	X		2,55
	E soldavel 25mm	1	X		1,99
	apel contact preto	1	Х		5
	ano tule	1	X		1
	lgodão	1	X		3
	arvão, areia e pedregulho	1		X	0
	braçadeira	5	X		1,25
	ervo motor	1		X	0
24 M		1		X	0
25 Ar		1		X	0
	ola silicone	1	X		11
	aca de Circuito Impresso	1	X		57,4
_	ano pvc 50mm	1		X	0
	omponentes eletrônicos		X		51
	ransporte do projeto	2	x		20
	desivo	1	x		5,5
32 C	omponentes eletrônicos a parte		x		54,71

Tabela de previsão orçamentária feita no google planilhas. FONTE: Imagem de autoria do grupo

Link do pitch

Para apresentar brevemente a ideia do projeto, construiu-se uma apresentação em formato pitch.

O pitch está disponível no youtube e pode ser acessado pelo link: https://youtu.be/3TotuYnCuVg

Link da apresentação do resultado final

Ao final da construção do protótipo, realizou-se a apresentação com o intuito de mostrar o resultado e explicar cada etapa presente no projeto.

O vídeo está disponível no link a seguir: https://youtu.be/3tJqFR ThKc

Fluxograma das etapas da execução do projeto

O Fluxograma deste projeto visa ilustrar de forma exemplificada quais foram os passos a serem tomados em cada etapa do processo. Analisando tal metodologia é nítido o momento em que houveram impasses, bem como avanço na execução e elaboração do protótipo.

Segue anexo o fluxograma no apêndice C.

Ferramenta 5W2H

A ferramenta 5W2H consiste em identificar etapas que possam acarretar em possíveis erros. Essa ferramenta consiste em identificar a tarefa mostrando: o que foi/será feito, por quem, porque, quando será feito, como e quanto custará. Além disso, a construção da ferramenta possibilita visualizar as funções com clareza e definir as atividades.

Segue anexo a ferramenta 5W2H no apêndice D.

Cronograma e Planejamento

O cronograma serve para a organização e realização das atividades dentro do prazo previsto, sendo um instrumento de organização e planejamento que permite acompanhar também o desempenho dos integrantes das equipes. Sendo assim, foram adicionadas todas as etapas que serão realizadas ao longo deste ano, em relação ao projeto interdisciplinar, e ao decorrer do tempo, as tarefas que foram então realizadas serão atualizadas.

CRONOGRAMA DE EXECUÇÃO DO PROJETO									
	PRAZOS								
TAREFAS	MARÇO	ABRIL	MAIO	JUNHO	JULHO	AGOSTO	SETEMB	OUTUB	
Definição do tema									
Reunião com orientador									
Confecção diagrama P&I									
Estrutura no CAD									
Fluxograma									
Vídeo PITCH									
Lista de materiais									
Envio de documentos									
Revisão e correção dos arquivos									
Apresentação									
Montagem da estrutura									
Divisões do documento									
Reunião entre os integrantes									
Aquisição dos materiais									
Materiais para parte elétrica									
Cronograma e atualizações									
Correção de erros da estrutura									
Desenvolvimento da parte elétric	a								
Testes									
Aquisição da PCB									
			Tarefas re	alizadas					
			Tarefas a realizar						

Tabela do cronograma de execução do Projeto feita no google planilhas. FONTE: Imagem de autoria do grupo PETA

Check List

A fim de uma melhor organização, se fez necessário a utilização de um check list, este método consiste em listar quais passos já foram dados durante a execução do projeto, bem como os que virão a ser tomados para que ocorra tudo como planejado durante o decorrer da criação deste protótipo.

CHECK LIST							
ATIVIDADES	NÃO	PARCIALMENTE	SIM				
Reunião com o orientador .			X				
Definição das fases do Projeto.			X				
Reunião para dar início a 1º documentação do projeto			X				
Divisão de tarefas para a primeira entrega.			X				
Execução das tarefas relacionadas a 1º entrega			X				
Envio do documento para o orientador fazer a correção			X				
Montagem do documento para a entrega da 1ºEtapa			X				
Entrega do 1º documento no AVA			X				
Correção do documento eviado na 1º Etapa			X				
Compra de matériais			X				
nício ao processo de construção do protótipo			X				
Apresentação da estrutura do projeto			X				
Teste de verificação da estrutura			X				
Adaptações no protótipo			X				
nício a montagem do circuito			X				
Reunião para dar início a 2º documentação do projeto			X				
Divisão de tarefas para a segunda entrega.			X				
Execução das tarefas relacionadas a segunda entrega.			X				
Montagem do documento para a entrega da 2ºEtapa			X				
Entrega do 2º documento no AVA			X				
Correção do documento enviado na 2º Etapa			X				
Execução de tarefas relacionadas a terceira entrega			X				
Revisão dos documentos e outros			X				
Checagem final do protótipo			Χ				
Divisão das funções para a apresentação			X				
Apresentação final na SNCT			Х				

Tabela Checklist feita no google planilhas. FONTE: Imagem de autoria do grupo PETA

Matriz de Priorização GUT

A matriz GUT tem como objetivo visualizar e identificar as tarefas que serão dadas como prioridade durante todo o processo. A fim de ajudar na organização e definir prioridades de execução, a matriz foi empregada para orientar na sequência de solução dos problemas.

PROBLEMA	GRAVIDADE	URGÊNCIA	TENDENCIA	GxUxT	CLASSIFICAÇÃO
Vazamento de água	5	5	2	50	3°
Encomenda da PCB	4	3	1	12	10°
Testagem da parte elétrica	3	5	2	30	5°
Montagem de circuito	5	5	2	50	3°
Finalização da documentação	3	5	1	15	9°
Entrega da etapa	5	5	1	25	6°
Reunião com equipe	3	5	1	15	9°
Reunião com o orientador	4	5	1	20	7°
Problemas na estrutura	4	3	3	36	4°
Bombeamento fraco	5	5	3	75	2°
Refazer filtro	3	3	1	9	12°
Fixar sensores de nível	5	5	3	75	2°
Revisão de planejamento	3	2	1	6	13°
Atualização de diário	2	5	1	10	11°
Previsões para próxima etapa	3	3	1	9	12°
Teste final 2° etapa	5	2	1	10	11°
ntrega da documentação 2° etap	4	5	1	20	7°
Revisão final	5	2	1	10	11°
Programação Nextion	2	3	1	6	13°
Designer Nextion	1	4	1	4	14°
Programar	2	3	3	18	8°
Trocar bombas	5	5	2	50	3°
Testar lantejoulas	1	2	1	2	15°
Trocar componentes queimados	5	1	4	20	7°
Consertar novos vazamentos	5	5	5	125	1°
Apresentação SNCT	5	2	1	10	11°
Apresentação para docentes	5	3	1	15	9°
Entrega da documentação final	5	2	1	10	11°

Matriz GUT feita no google planilhas. FONTE: Imagem de autoria do grupo PETA

Conclusão da 2º Etapa

Conclui-se, portanto, que foi uma etapa complicada e foram enfrentados vários desafios na montagem e na parte elétrica do projeto, pois no PETA existem discrepâncias em trabalhar com água e eletricidade. Com isso, na realização das atividades do 2° trimestre ocorreram muitos impasses na montagem da estrutura, já que foram usadas duas garrafas PETs e houve uma grande complexidade em acoplar os sensores, as mangueiras e o mixer dentro da estrutura, havendo a necessidade de fazer furos nos reservatórios para prender todos estes citados acima de uma maneira que não prejudicasse o funcionamento do projeto. Consequentemente, com esses furos, houveram vazamentos de água, entretanto, o problema foi resolvido com o uso de silicone, e deu-se seguimento na montagem da parte elétrica que também foram encontradas algumas dificuldades no funcionamento da pressão da bomba, e nos sensores do recipiente 2, pois eles não estavam funcionando corretamente e acabou queimando vários fotoacopladores.

Contudo, parte dos problemas foram resolvidos e os demais serão solucionados no decorrer da terceira etapa. Apesar disso, o PETA atingiu grande parte dos objetivos propostos pela equipe, funcionando conforme o que era esperado até o momento.

Considerações finais

Conclui-se, que a elaboração do protótipo PETA foi se suma importância para o aprendizado de todos os integrantes do projeto, pois através de sua confecção pôde ser colocado em prática diversos conhecimentos da parte de pesquisa, elétrica, hidráulica e mecânica. No entanto, durante a execução do mesmo, ocorreu diversos impasses, como a queima de componentes da PCB, a alta sensibilidade dos sensores de nível, vários vazamentos, enferrujamento de uma bomba, entre outros diversos problemas, mas tais dificuldades foram de grande importância para que o protótipo fosse entregue da melhor maneira possível - com tudo funcionando dentro do planejado e sem vazamento algum.

Logo, deve-se ressaltar que a partir deste projeto o censo de trabalho em equipe, de organização e de apoio mútuo foi explorado excepcionalmente. Portanto, tais requisitos servem como base para possíveis experiências futuras, seja no âmbito acadêmico ou profissional.

Referências

DIAS, Diogo. **Microplásticos**. Mundo Educação. Disponível em: https://mundoeducacao.uol.com.br/quimica/microplasticos.htm. Acesso em: 29 de abril de 2022.

SOUSA, Marcia. Jovem cria técnica para extrair microplásticos e vence prêmio do Google. Ciclo Vivo. Disponível em:

https://ciclovivo.com.br/inovacao/inspiracao/jovem-tecnica-extrair-microplasticos-g oog le/>. Acesso em: 29 de abril de 2022.

MICROPLÁSTICO: PRINCIPAL POLUENTE DOS OCEANOS. eCycle. Disponível em: https://www.ecycle.com.br/microplastico/. Acesso em: 29 de abril de 2022.

RABELO, Jamille. **O que são os microplásticos e como eles afetam a vida marinha?**. Socientifica, 2020. Disponível em:

https://socientifica.com.br/o-que-sao-os-microplasticos-e-como-eles-afetam-a-vida-marinha/
Acesso em: 29 de abril de 2022.

LOPES, Diogo. **MICROPLÁSTICOS**. Mundo educação. Disponível em: < https://mundoeducacao.uol.com.br/quimica/microplasticos.htm >. Acesso em: 23 de abril de 2022.

O QUE SÃO MICROPLÁSTICOS. Iberdrola, 2021. Disponível em:

microplasticos-ameaca-a-saude. Acesso em: 22 de abril de 2022.

OMS PEDE MAIS PESQUISAS SOBRE MICROPLÁSTICOS E REDUÇÃO DA POLUIÇÃO DO MEIO AMBIENTE POR ESSES MATERIAIS. OPAS Brasil, 2019.

Disponível em: <

https://www3.paho.org/bra/index.php?option=com_content&view=article&id=6009:oms-ped e-mais-pesquisas-sobre-microplasticos-e-reducao-da-poluicao-do-meio-ambiente-por-esses-m ateriais&Itemid=839 >. Acesso em: 22 de abril de 2022.

REIS, Wellington. Microplásticos suspensos na atmosfera podem afetar o clima.

Socientifica, 2021. Disponível em: <

https://socientifica.com.br/microplasticos-suspensos-na-atmosfera-podem-afetar-o-clima/>. Acesso em: 22 de abril de 2022.

MICROPLÁSTICOS: ENTENDA O QUE SÃO E DE ONDE ELES VÊM. Modefica.

Disponível em: < https://www.modefica.com.br/microplasticos-o-que-sao/ >. Acesso em: 23 de abril de 2022.

APÊNDICE A

APÊNDICE B

Circuito feito no Tinkercad.

FONTE: Imagem de autoria do grupo PETA

Circuito feito no Proteus.

FONTE: Imagem de autoria do grupo PETA

PCB elaborada no DipTrace FONTE: Imagem de autoria do grupo PETA

APÊNDICE B.1

APÊNDICE B.2

Fluxograma : Fases de execução do Projeto

FIM

FIM

Fluxograma : Fases de execução do Projeto 3ª Etapa

FIM

APÊNDICE D

Ferramenta 5W2H

What (O que será feito?)	Why (Por que será feito?)	Where (Onde será feito?)	When (Quando será feito?)	Who (Por quem será feito?)	How (Como será feito?)	How much (Quanto custará?)
	Para melhor organização das ideias a serem desenvolvidas no			Intregrantes Lucas Barbosa e Marisa	Produzir um paragrafo de introdução do projeto	
ntrodução	projeto	Software a escolha	Ate 27.04	Camargos	a ser realizado	-
	Para melhor organização das ideias a serem desenvolvidas no			Integrantes Emanuelle Pereira e Sthefane	Produzir um paragrafo com a descrição do	
Descrição do processo	projeto	Software a escolha	Ate 27.04	Gonçalves	projeto	-
Desenho da estrutura ísica feito em um programa de CAD 3D	Para melhor organização da estrutura física a ser desenvolvidas no projeto	Software a escolha	Ate 27.04	Integrantes Júlio César e Luca Barbosa	Produzir desenho com a descrição fisica do projeto	-
Diagrama P&I	Para melhor organização dos processos a serem desenvolvidos no projeto	Software a escolha	Ate 27.04	Integrantes Júlio César e Marisa Barbosa	Produzir um diagrama p&l que detalhe as tubulações e equipamentos utilizados	-
Fluxograma contendo todas as fases de execução do projeto	Para melhor organização das ideias a serem desenvolvidas no projeto	Software a escolha	Ate 27.04	Integrantes Emanuelle Pereira e Sthefane Gonçalves	Produzir um fluxograma que detalhe os processos do prototipo desenvolvido	-
Planejamento utilizando	Para melhor organização das funções a serem desempenhadas 3 e	Cofficient a secolibri	A 07 04	laterante Mila Ofera	Produzir um planejamento o metodo	
a ferramenta 5W2H	prazos	Software a escolha	Ate 27.04	Integrante Júlio César	5W2H	-
Lista de materiais necessários para a construção do projeto, incluindo previsão orçamentária	Para melhor planejamento de futura aquisição de materias	Software a escolha	Ate 27.04	Integrantes Emanuelle Pereira e Yasmin Mariane	Produzir uma lista de materias que possivelmente serão utilizados no projeto	-
Cronograma de	Para melhor planejamento da produção do projeto	Coffware a cocolleg	Ate 27.04	Integrantes Lorrana Aparecida e Yasmin Mariane	Produzir um cronograma com metas de produção a serem alcançadas	
execução do projeto;	Para melhor	Software a escolha	Ale 27.04		Pruduzir um documento com as	-
Matriz de responsabilidades;	planejamento da produção do projeto	Software a escolha	Ate 27.04	Integrante Yasmin Mariane	responsabilidades de cada individuo	-
Aplicação das Ferramentas da Qualidade "Check List" e "Matriz de Priorização"	Para melhor planejamento da produção do projeto	Software a escolha	Ate 27.04	Intregrantes Lorrana Aparecida e Sthefane Gonçalves	Produzir um documento com as tarefas a serem execultadas e a prioridade de cada uma	-
Vídeo (pitch)	Para divulgação do projeto a ser desenvolvido	Software a escolha	Ate 27.04	Intregrantes Lucas Barbosa e Marisa Camargos	Produzir um video com o objetivo da divulgação e despertar o interresse pelo projeto Juntar toda a	_
Relatório a ser entregue no ava	Para entrega referente as tarefas produzidas na etapa	Software a escolha	Ate 29.04	A definir	documentação a ser entregue na primeira etapa e complentar em um documento apresentavel	_
Introdução, contendo uma breve descrição do que foi realizado na	Para melhor referenciação do que ja foi feito e o que ainda				Produzir uma documentação do tudo que ja foi produzido até	
etapa	sera desenvolvido	Software a escolha	Ate 15.08	A definir	o determiando ponto	-
Desenho 3D atualizado (conforme construído)	Para melhor organização da estrutura fisica em desenvolviemnto no projeto	Software a escolha	Ate 15.08	A definir	Produzir desenho com a descrição física do projeto que ja foi produzido	_
Lista de materiais atualizada (com preços e quantidades),	Para melhor controle dos gastos feito pelo grupo	Software a escolha	Ate 15.08	A definir	Produzir uma lista com os materias produtos e quantidade que foram gastos	_
Fotos do processo de construção e do	Para divulgação do	No local onde se			Produzir fotos para a a melhor documentação e	
resultado final,	projeto Para melhor	encontrar o projeto	Ate 15.08	A definir	divulgação do projeto Produzir um paragrafo com a descrição dos processos a serem	-
Descritivo funcional	entendimento do processo realizado pelo resultado final	Software a escolha	Ate 15.08	A definir	realizados pelo resultado final do prototipo	
Atualização do	Para melhor organização das ideias a				Produzir um fluxograma de acordo com os processos a serem desenvolvidos pelo	
Fluxograma e do Planejamento	serem desenvolvidas no projeto	Software a escolha	Ate 15.08	A definir	resultado final do prototipo Produzir com um	-
Cronograma atualizado,	Para melhor planejamento da produção do projeto	Software a escolha	Ate 15.08	A definir	cronograma atualizado com as metas a serem alcançadas	-
Aplicação das Ferramentas da Qualidade "Check List" e					Produzir um documento com as tarefas a serem execultadas e a	
Matriz de Priorização	produção do projeto	Software a escolha	Ate 15.08	A definir	prioridade de cada uma Produzir um documento	-
					com as dificuldades encontradas pelo grupo, com as metas	
Conclusão sobre a etapa	Para documentar as dificuldades encontradas pelo grupo	Software a escolha	Ate 15.08	A definir	alcançadas e como foi a experiencia do desenvolvimento do projeto	_

Relatório a ser entregue no ava	Para entrega referente as tarefas produzidas na etapa	Software a escolha	Ate 17.08	A definir	Juntar toda a documentação a ser entregue na primeira etapa e complentar em um documento apresentavel	-
Relatório conforme modelo fornecido pelos professores	Para documentar todo o desenvolvimento do projeto	Software a escolha	Ate 13.11	A definir	Produzir um relatório com todas as informações necessarias no pedido	-
Apêndices contendo desenhos, circuitos, diagramas, programas, etc.	Para documentar todo o desenvolvimento do projeto	Software a escolha	Ate 13.11	A definir	Produzir um apendice com toda a documentação tecnica produzida durante o ano	-
Apresentação no formato .ppt ou .pdf;	Para o divulgamento do prototipo em resultado final	Software a escolha	Ate 13.11	A definir	Produzir uma apresentação do projeto realizado	-
Códigos-fonte dos programas desenvolvidos.	Para documentar todo o desenvolvimento do projeto	Software a escolha	Ate 13.11	A definir	Produzir uma documentação com toda a programação desenvolvida	-
Vídeo de, no máximo, 2 minutos mostrando o funcionamento do sistema ao vivo	Para o divulgamento do prototipo em resultado final	Software a escolha	Ate 13.11	A definir	Produzir um video demostrando o funcionamento do projeto desenvolvido	-
Relatório a ser entregue no ava	Para entrega referente as tarefas produzidas na etapa	Software a escolha	Ate 16.11	A definir	Juntar toda a documentação a ser entregue na primeira etapa e complentar em um documento apresentavel	-