Bizonyítással kért tételek a 2. zh-n

1. A geometriai sor konvergenciája

Tétel:

Legyen $q \in \mathbb{R}$. Ekkor ha $\sum q^n$ konvergens $\Leftrightarrow |q| < 1$

Ekkor a részsorösszeg: $\sum\limits_{n=0}^{\infty}q^n=rac{1}{1-q}$

Bizonyítás:

q=1 esetén:

$$s_n = \sum\limits_{k=0}^n 1^k = n+1 \ \ (n \in \mathbb{N}) \ {\sf miatt} \ (s_n) \ {\sf divergens} \Rightarrow \sum q^n \ {\sf is}$$

divergens

 $q \in \mathbb{R} \setminus \{1\}$, akkor:

$$1-q^{n+1}=(1-q)(1+q+q^2+\ldots+q^n)$$
 miatt $s_n=\sum\limits_{k=0}^nq^k=1+q+q^2+\ldots+q^n=rac{1-q^{n+1}}{1-q}\ \ (n\in\mathbb{N})$

Tehát: (s_n) konvergens \Leftrightarrow $(q^{n+1})=q(q^n)$ konvergens

De (q^n) konvergens $\overset{q \neq 1}{\Leftrightarrow} |q| < 1$

És ekkor:

$$\sum_{n=0}^{\infty} q^n = \lim(s_n) = \lim(rac{1-q^{n+1}}{1-q}) = rac{1}{1-q}$$

2. A végtelen sorokra vonatkozó Cauchy-féle konvergenciakritérium

Tétel:

 $\sum a_n$ sor Cauchy, ha:

$$orall \epsilon > 0, \exists N \in \mathbb{N}, orall n, m \in \mathbb{N}, m > n \geq N: |a_{n+1} + a_{n+2} + \ldots + a_m| < \epsilon$$

 $\sum a_n$ sor konvergens $\Leftrightarrow \sum a_n$ Cauchy

Bizonyítás:

 $\sum a_n$ konvergens \Leftrightarrow (s_n) konvergens \Leftrightarrow (s_n) Cauchy-sorozat, azaz: $orall \epsilon > 0, \exists N \in \mathbb{N}, \forall n, m \in \mathbb{N}, m > n \geq N:$ $\underbrace{|s_m - s_n|} < \epsilon$ $|a_0 + a_1 + \ldots + a_{n-1} + a_n + \ldots a_m - (a_0 + a_1 + \ldots + a_n)| = |a_{n+1} + a_{n+2} + \ldots + a_m| \Leftrightarrow \sum a_n \text{ sor Cauchy}$

3. Végtelen sorokra vonatkozó összehasonlító kritériumok

Tétel:

Legyen $\sum a_n, \sum b_n$ pozitív tagú sorok, melyekre $\exists N\in\mathbb{N}, orall n\in\mathbb{N}, n\geq N: 0\leq a_n\leq b_n$

- 1. Ekkor ha $\sum b_n$ konvergens, akkor $\sum a_n$ is konvergens
- 2. Ekkor ha $\sum a_n$ divergens, akkor $\sum b_n$ is divergens

Bizonyítás:

Tfh.: $n \geq N$, legyenek $s_n^a := a_N + a_{N+1} + \ldots a_n \ s_n^b := b_N + b_{N+1} + \ldots + b_n$

Mivel $\forall n \in \mathbb{N}, n \geq N: a_n \leq b_n$, ezért $\forall n \in \mathbb{N}, n \geq N: s_n^a \leq s_n^b$

- 1. Ha $\sum b_n$ konvergens \Rightarrow (s_n^b) korlátos $\stackrel{a_n \leq b_n}{\Rightarrow} (s_n^a)$ is korlátos $\Rightarrow \sum_{n = N} a_n$ konvergens $\Rightarrow \sum a_n$ konvergens
- 2. $\sum a_n$ divergens $\Rightarrow \sum_{n=N} a_n$ divergens (s_n^a) nem felülről korlátos $\Rightarrow (s_n^b)$ sem felülről korlátos $\Rightarrow \sum_{n=N} b_n$ divergens $\Rightarrow \sum b_n$ divergens

4. A Cauchy-féle gyökkritérium

Tétel:

Tekintsük a $\sum a_n$ sort és tfh.: $\sqrt[n]{|a_n|}$ sorozat konvergens és $A:=\lim(\sqrt[n]{|a_n|})$ Ekkor:

- 1. Ha $0 \le A < 1$, akkor $\sum a_n$ abszolút konvergens, tehát konvergens is
- 2. Ha 1 < A, akkor $\sum a_n$ divergens
- 3. Ha A=1, akkor lehet konvergens és divergens is

Bizonyítás:

1, $0 \leq A < 1$ esetén $\exists q \in \mathbb{R}$, hogy A < q < 1 Mivel $\lim(\sqrt[n]{|a_n|}) = A$, ezért:

$$\exists N \in \mathbb{N}, orall n \in \mathbb{N}, n \geq N : \sqrt[n]{|a_n|} < q < 1 \ \Rightarrow orall n \in \mathbb{N}, n \geq N : |a_n| < q^n$$

Mivel
$$0 \leq A < q < 1$$
, ezért $\sum q^n$ konvergens $\Rightarrow \sum_{n=N} q^n$ konvergens

De:
$$\sum\limits_{n=N}q^n$$
 majorálja a $\sum\limits_{n=N}|a_n|$ sort

$$\Rightarrow$$
 (ld.: Majoráló kritérium) $\sum\limits_{n=N}|a_n|$ konvergens $\Rightarrow \sum|a_n|$ konvergens

 $\Rightarrow \sum a_n$ abszolút konvergens

2

Tfh.:
$$A > 1$$
. Ekkor $\exists q \in \mathbb{R} : 1 < q < A$
 $\lim(\sqrt[n]{|a_n|}) = A$ miatt:

$$\exists N \in \mathbb{N}, orall n \in \mathbb{N}, n \geq N: \sqrt[n]{|a_n|} > q$$
 $\Rightarrow orall n \in \mathbb{N}, n \geq N: |a_n| > q^n > 1$ $\Rightarrow \lim(a_n)
eq 0 \Rightarrow \sum a_n ext{ divergens}$

3

Tekintsük a $\sum\limits_{n=1}^{\infty} rac{1}{n^2}$ konvergens sort és a $\sum\limits_{n=1}^{\infty} rac{1}{n}$ divergens sort.

Ekkor:

$$\sqrt[n]{\left|rac{1}{n^2}
ight|}=\left(rac{1}{\sqrt[n]{n}}
ight)^2
ightarrow 1 \quad (n
ightarrow\infty)$$

$$\sqrt[n]{\left|rac{1}{n}
ight|}=rac{1}{\sqrt[n]{n}}
ightarrow 1\quad (n
ightarrow\infty)$$

5. A D'Alembert-féle hányados-kritérium

Tétel:

Tekintsük a
$$\sum a_n$$
 sort, ahol $a_n \neq 0 \ \ (n \in \mathbb{N})$ és tfh.: $\left(\frac{|a_{n+1}|}{|a_n|}\right)$ sorozat konvergens és $A:=\lim\left(\frac{|a_{n+1}|}{|a_n|}\right)$

Ekkor:

- 1. Ha $0 \leq A < 1$, akkor $\sum a_n$ abszolút konvergens, tehát konvergens is
- 2. Ha 1 < A, akkor $\sum a_n$ divergens
- 3. Ha A=1, akkor lehet konvergens és divergens is

Bizonyítás:

Tfh.:
$$A < 1 \Rightarrow \exists q \in \mathbb{R}: A < q < 1$$
 $\lim \left(\frac{|a_{n+1}|}{|a_n|} \right) = A$ miatt:

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N : \frac{|a_{n+1}|}{|a_n|} < q$$
 Tehát: $|a_{n+1}| < q|a_n|$ $|a_n| < q|a_{n-1}|$ $|a_{n-1}| < q|a_{n-2}|$... $|a_{n_0+1}| < q|a_{n_0}|$ $\Rightarrow \forall n \in \mathbb{N}, n \geq n_0 : |a_{n+1}| < \underbrace{q|a_n|}_{< q|a_{n+1}|} < q^2|a_{n+1}| < \ldots < q^{n+1-n_0} \cdot |a_{n_0}| = \underbrace{q^{1-n_0} \cdot |a_{n_0}|}_{=K>0} \cdot q^n$

$$\Rightarrow q \in (0,1)$$
 miatt $\sum q^n$ konvergens $\Rightarrow \sum_{n=n_0} q^n$ konvergens \Rightarrow De! $\sum_{n=n_0} q^n$ majorálja a $\sum |a_{n+1}|$ sort $\Rightarrow \sum_{n=n_0} |a_{n+1}|$ konvergens \Rightarrow $\Rightarrow \sum |a_{n+1}|$ konvergens $\Rightarrow \sum |a_n|$ konvergens $\Rightarrow \sum a_n$ abszolút konvergens

2,
$$\begin{array}{l} \textbf{Tfh.: } A>1. \ \textbf{Ekkor: } \exists q\in\mathbb{R}: A>q>1\\ \Rightarrow \sum n_0\in\mathbb{N}, \forall n\in\mathbb{N}, n\geq n_0: \frac{|a_{n+1}|}{|a_n|}>q\\ \Rightarrow |a_{n+1}|>K\cdot q^n>K>0 \quad (n\geq n_0)\\ \Rightarrow \lim(a_{n+1})\neq 0\Rightarrow \lim(a_n)\neq 0\Rightarrow \sum a_n \ \textbf{divergens} \end{array}$$

3,Tekintsük a $\sum_{n=1}^\infty \frac{1}{n^2}$ konvergens sort és a $\sum_{n=1}^\infty \frac{1}{n}$ divergens sort. Ekkor:

$$egin{aligned} \left| rac{1}{(n+1)^2}
ight| \ \left| rac{1}{n^2}
ight| \end{aligned} = rac{n^2}{(n+1)^2}
ightarrow 1 \quad (n
ightarrow \infty)$$

$$egin{aligned} \left| rac{1}{n+1}
ight| \ \hline \left| rac{1}{n}
ight| \end{aligned} = rac{n}{n+1}
ightarrow 1 \quad (n
ightarrow \infty)$$

6. Leibniz-típusú sorok konvergenciája

7. Minden [0,1]-beli szám előállítható tizedestört alakban

8. Abszolút konvergens sorok átrendezése

- 9. Abszolút konvergens sorok szorzására vonatkozó tétel
- 10. Hatványsorok konvergenciahalmazára vonatkozó, a konvergenciasugarát meghatározó tétel
- 11. A Cauchy-Hadamard-tétel
- 12. Függvények határértékének egyértelműsége
- 13. A határértékre vonatkozó átviteli elv
- 14. Hatványsorok konvergenciája
- 15. Monoton függvények határértéke