

1204.44 more

Rank: **55157** |

Service Lane ☆

Problem Submissions Leaderboard Editorial Topics	Submissions Leaderboard	Problem	Editorial	Topics	
---	-------------------------	---------	-----------	--------	--

RATE THIS CHALLENGE

公公公公公

Calvin is driving his favorite vehicle on the 101 freeway. He notices that the check engine light of his vehicle is immediately to avoid any risks. Luckily, a service lane runs parallel to the highway. The service lane varies in v

You will be given an array of widths at points along the road (*indices*), then a list of the indices of entry and expoint pair, calculate the maximum size vehicle that can travel that segment of the service lane safely.

For example, there are n=4 measurements yielding width=[2,3,2,1]. If our entry index, i=1 and our of 2 and 3 respectively. The widest vehicle that can fit through both is 2. If i=2 and j=4, our widths are [3,3,2,1].

Function Description

Complete the *serviceLane* function in the editor below. It should return an array of integers representing the through each segment of the highway described.

serviceLane has the following parameter(s):

- n: an integer denoting the size of the cases array
- cases: a two dimensional array of integers where each element is an array of two integers represented to the consider.

Input Format

The first line of input contains two integers, n and t, where n denotes the number of width measurements ycases. The next line has n space-separated integers which represent the array $width[w_0, w_1, \dots, w_{n-1}]$.

The next t lines contain two integers, i and j, where i is the start index and j is the end index of the segment

Constraints

- $2 \le n \le 100000$
- $1 \le t \le 1000$
- $0 \le i < j < n$
- $2 \le j i + 1 \le min(n, 1000)$
- $1 \le width[k] \le 3$, where $0 \le k < n$

Output Format

For each test case, print the number that represents the largest vehicle type that can pass through the entire indexes *i* and *i* inclusive.

Sample Input

8 5

2 3 1 2 3 2 3 3

0.3

4 6

6 7

Sample Output

1

2

3

2 1

Explanation

Below is the representation of the lane:

0: | |--|

2

1:		3
2:	-	1
3:		2
4:		3
5:		2
6:		3
7:		3

- 1. (0,3): From index 0 through 3 we have widths 2,3,1 and 2. Nothing wider than 1 can pass all segments.
- 2. (4,6): From index 4 through 6 we have widht 3,2 and 3. Nothing wider than 2 can pass all segments.
- 3. (6,7): $3,3 \rightarrow 3$.
- 4. (3,5): $2,3,2 \rightarrow 2$
- 5. (0,7): $2,3,1,2,3,2,3,3 \rightarrow 1$.