

מבוא למדעי המחשב מי/ח׳

מבוא למדעי המחשב מ'/ח' (234114 \ 234114)

סמסטר חורף תשע"ט

מבחן מסכם מועד א', 19 בפברואר 2019

2	3	1	1	1	רשום/ה לקורס:					מספר סטודנט:
	J	4			ו שונועוז לקוו ט.					נוטפו טטוו נט.

משך המבחן: 3 שעות.

חומר עזר: אין להשתמש בכל חומר עזר.

הנחיות כלליות:

- מלאו את הפרטים בראש דף זה ובדף השער המצורף, בעט בלבד.
 - בדקו שיש 24 עמודים (4 שאלות) במבחן, כולל עמוד זה.
- כתבו את התשובות על טופס המבחן בלבד, במקומות המיועדים לכך. שימו לב שהמקום המיועד לתשובה אינו מעיד בהכרח על אורך התשובה הנכונה.
- העמודים הזוגיים בבחינה ריקים. ניתן להשתמש בהם כדפי טיוטה וכן לכתיבת תשובותיכם. סמנו טיוטות באופן ברור על מנת שהן לא תבדקנה.
 - יש לכתוב באופן ברור, נקי ומסודר, **ובעט בלבד**.
- בכל השאלות, הינכם רשאים להגדיר ולממש פונקציות עזר כרצונכם. לנוחיותכם, אין חשיבות לסדר מימוש הפונקציות בשאלה, ובפרט ניתן לממש פונקציה לאחר השימוש בה.
- אלא אם כן נאמר אחרת בשאלות, אין להשתמש בפונקציות ספריה או בפונקציות שמומשו
 בכיתה, למעט פונקציות קלט/פלט והקצאת זיכרון (malloc, free). ניתן להשתמש בטיפוס stdbool.h.e.
 - אין להשתמש במשתנים סטטיים וגלובאליים אלא אם נדרשתם לכך מפורשות.
- כשאתם נדרשים לכתוב קוד באילוצי סיבוכיות זמן/מקום נתונים, אם לא תעמדו באילוצים אלה תוכלו לקבל בחזרה מקצת הנקודות אם תחשבו נכון ותציינו את הסיבוכיות שהצלחתם להשיג.
- נוהל "לא יודע": אם תכתבו בצורה ברורה "לא יודע/ת" על שאלה (או סעיף) שבה אתם נדרשים לקודד, תקבלו 20% מהניקוד. דבר זה מומלץ אם אתם יודעים שאתם לא יודעים את התשובה.
 - נוסחאות שימושיות:

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \Theta(\log n) \qquad 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \dots = \Theta(1)$$

$$1 + 2 + \dots + n = \Theta(n^2) \qquad 1 + 4 + 9 + \dots + n^2 = \Theta(n^3) \qquad 1 + 8 + 27 + \dots + n^3 = \Theta(n^4)$$

צוות הקורס 234114/7

מרצים: פרופ' תומר שלומי, ד"ר אהרון קופרשטוק, ד"ר רמי כהן, מר טל טבצ'ניק מתרגלים: דניאלה בר לב, עדי גרוס, עמר דהרי, ניר חכמוביץ, יארה מולא, גסוב מזאוי, נג'יב נבואני, דניאל עזוז, אלון פאר, דמיטרי רבינוביץ' (מתרגל אחראי), יאיר ריעאני, עידו רפאל, אסף שומר

בהצלחה!

שאלה 1 (25 נקודות):

א. $(8 \, \text{tgltin})$ חשבו את סיבוכיות הזמן והמקום של הפונקציה f1 המוגדרת בקטע הקוד הבא, כפונקציה של n. אין צורך לפרט שיקוליכם. חובה לפשט את הביטוי ככל שניתן.

```
int f1(int n)
     int x = 0;
     for (int i = 1; i <= n; ++i)
            for (int j = i; j <= n; j += i)</pre>
                  ++x;
     return x;
```

 Θ (סיבוכיות זמן: Θ סיבוכיות מקום: Θ

ב. 8 נקודות): חשבו את סיבוכיות הזמן והמקום של הפונקציה f2 המוגדרת בקטע הקוד הבא, כפונקציה של n. אין צורך לפרט שיקוליכם. חובה לפשט את הביטוי ככל שניתן.

```
int g(int arr[], int start, int end, int k)
     if (start > end) return 0;
     int mid = (start + end) / 2;
     if (arr[mid] < k) return 1 + g(arr, mid + 2, end, k);</pre>
     if (arr[mid] > k) return 1 + g(arr, start, mid - 1, k);
     return g(arr, start, mid - 1, k) + 1 +
           g(arr, mid + 1, end, k);
int f2(int arr[], int n, int k)
     return g(arr, 0, n - 1, k);
```

 Θ (סיבוכיות זמן: Θ סיבוכיות מקום: Θ

ג. (<u>9 נקודות)</u>: חשבו את סיבוכיות הזמן והמקום של הפונקציה f3 המוגדרת בקטע הקוד הבא, כפונקציה של n. אין צורך לפרט שיקוליכם. <u>חובה לפשט את הביטוי ככל שניתו.</u>

 $\Theta($ סיבוכיות זמן: $\Theta($ סיבוכיות מקום: $\Theta($

(נקי) אאלה 2 (25 נקי)

ממשו פונקציה	.x ומספר n ⁻	arr באורן	מספרים שלמים	וין של	מערך ממ	נתון

int count_occurences(int arr[], int n, int x)

 arr שתחזיר את מספר ההופעות של מספר x

לדוגמה: אם נתון מערך arr לדוגמה

-5	0	1	1	3	3	4	4	4	7	13	42	
----	---	---	---	---	---	---	---	---	---	----	----	--

1 עבור x=0, הפונקציה תחזיר

3 עבור x=4, הפונקציה תחזיר

עבור x=8 אינו מופיע במערך) עבור x=8 אינו מופיע במערך)

:דרישות

• סיבוכיות זמן: **O(log n**) .

אם לפי חישוביכם לא עמדתם בדרישות הסיבוכיות אנא ציינו כאן את הסיבוכיות שהגעתם אליה:

90	מקום נו	זמן

<pre>int count_occurences(int arr[], int n, in</pre>	t x)
{	

מבוא למדעי המחשב מי/חי

: (שאלה 3 (25 נקודות)

בארב בהרצאה: merge sort שממש להלן קטע הקוד שממש

```
#define FAILURE -1
#define SUCCESS 0
int merge_sort(int ar[], int n)
{
      int len;
      int *temp_array, *base;
      temp_array = (int*) malloc(sizeof(int)*n);
      if (temp_array == NULL)
      {
            printf("Dynamic Allocation Error in merge_sort");
            return FAILURE;
      }
      for (len = 1; len < n; len *= 2)</pre>
            for (base = ar; base < ar + n; base += 2 * len)</pre>
            {
                  merge(base, len, base + len, len, temp_array);
                  memcpy(base, temp_array, 2 * len * sizeof(int));
            }
      }
      free(temp_array);
      return SUCCESS;
}
```

יש לשכתב את הקוד כך שפקודת העתקת הזיכרון תתבצע לכל היותר פעם אחת לפני החזרה מביצוע הפונקציה merge_sort.

בקוד המשוכתב, אין להשתמש בפקודת memcpy או פקודת/פעולת העתקה אחרת של מערכים, אין להשתמש בפונקציה merge רק לצרכי מיזוג.

```
int merge_sort(int ar[], int n) {
```


}				

: (שאלה 4 (25 נקודות)

כדי לפתור את בעיית הפקקים בישראל, החליטה הממשלה לחבר כבישים מרכזיים באמצעות גשרים. הרעיון הוא לחבר זוג כבישים הפונים לאותו כיוון באמצעות גשר.

אנשי משרד התחבורה חילקו את כבישי ישראל מדרום עד צפון למערך של אותיות 'S' ו- 'S', כאשר כל אות מייצגת כביש הפונה לכיוון צפון (north) או דרום (south) בהתאמה. עלינו לבחור זוגות שונים של כבישים הפונים לאותו כיוון, כך שבין זוגות כבישים יהיה ניתן לחבר גשר, מבלי שגשרים שונים יחצו זה את זה.

לדוגמא, עבור המערך:

NSSNNN

פתרונות אפשריים הם:

כאשר הגשרים מיוצגים ע"י הקשתות המחברות בין האותיות.

פתרון שגוי לבעיה הינו:

משום שבסידור זה שני גשרים נחתכים.

: עבור המערך

NSSNN

הפתרון האפשרי הינו:

ראו המשך השאלה בעמוד 17.

ĺ	
ĺ	
i	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
i	
ĺ	
i	
ĺ	
ĺ	
ĺ	
ĺ	
i	
ĺ	

מבוא למדעי המחשב מי/חי

n שמקבלת את מערך כיווני הכבישים build_bridges, את גודלו build_bridges, את גודלו bridges ממשו את הפונקציה bridges שמקבלת הנבישים bridges,

```
int build bridges(char roads[], int n, int bridges[])
```

ורושמת במערך הפלט bridges את הפתרון האפשרי המקסימלי (אשר מחבר את מספר זוגות bridges הגדול ביותר). במידה והוחלט להשאיר כביש לא מחובר ייכתב 1– במקום המתאים. על הפונקציה להחזיר את מספר הגשרים בפתרון ולמקם במערך bridges מספרים שלמים עוקבים החל מ- 0 המייצגים פתרון כלשהו של הבעיה, כך שתאים במערך החולקים את אותו מספר ייצגו זוג כבישים המחובר בגשר.

לדוגמא, עבור המערך $\{N, S, S, N, N, N, N\}$ הפתרון הראשון שהצגנו ניתן לכתיבה לדוגמא, עבור המערך כ- $\{0, 1, 1, 2, 2, 0\}$ bridges במערך במערך $\{0, 1, 1, 2, 2, 0\}$ בעוד עבור הדוגמה השנייה ייכתב $\{0, 1, 1, 0, 2, 2\}$

במידה ולא קיים פתרון לבעיה, על הפונקציה להחזיר 0.

:הערות

- יש להשתמש בשיטת backtracking כפי שנלמדה בכיתה.
- בשאלה זו אין דרישות סיבוכיות, אולם כמקובל ב-backtracking יש לוודא שלא מתבצעות קריאות רקורסיביות מיותרות עם פתרונות שאינם חוקיים.
 - ניתן ומומלץ להשתמש בפונקציות עזר (ויש לממש את כולן).

int	build	_bridges	(char	roads[],	int	n,	int	bridges[])
{								

ĺ	
ĺ	
i	
ĺ	
ĺ	
ĺ	
ĺ	
l	
l	
l	
l	
l	
ĺ	
ĺ	
i	
ĺ	
ĺ	
ĺ	
ĺ	
i	
ĺ	

ĺ	
ĺ	
i	
ĺ	
ĺ	
ĺ	
ĺ	
l	
l	
l	
l	
ĺ	
ĺ	
ĺ	
i	
ĺ	
ĺ	
ĺ	
ĺ	
i	
ĺ	

ĺ	
ĺ	
i	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
i	
ĺ	
ĺ	
ĺ	
ĺ	
i	
ĺ	

ĺ	
ĺ	
i	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
ĺ	
i	
ĺ	
ĺ	
ĺ	
ĺ	
i	
ĺ	