046197

Computational Methods in Optimization

HOMEWORK #1

Alexander Shender: 328626114

Eliran Cohen: 204187801

Contents

Question 1	2
Part a	2
Part b	3
Question 2	4
Part a	4
Part b	5
Part c	5
Part d	6
Question 3	7
Part a	7
Part b	7
Part c	8
Question 4-6	q

Question 1.

Part a.

There are 4 conditions that need to hold that define the inner product, as specified in the tutorial no. 1:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$$
 .1 מימטריה:

$$.\langle \mathbf{x}+\mathbf{y},\mathbf{z}
angle = \langle \mathbf{x},\mathbf{z}
angle + \langle \mathbf{y},\mathbf{z}
angle$$
 .2

$$.\langle \lambda \mathbf{x}, \mathbf{y} \rangle = \lambda \, \langle \mathbf{x}, \mathbf{y} \rangle$$
 :. הומוגניות:

$$\mathbf{x}=\mathbf{0}$$
 אם ורק אם $\langle \mathbf{x},\mathbf{x} \rangle = 0$ וכן $\langle \mathbf{x},\mathbf{x} \rangle \geq 0$ אם ורק אם 4.

In our case, we have $\langle x,y\rangle_M=x^TMy$; M is a general matrix $\in R^{n\times n}$

Condition 1 holds:

$$\langle x, y \rangle_M = x^T M y \underset{it's \ a \ scalar}{=} (x^T M y)^T = y^T M x = \langle y, x \rangle_M$$

Condition 2 holds:

$$\langle x + y, z \rangle_M = (x + y)^T M z = x^T M z + y^T M z = \langle x, z \rangle_M + \langle y, z \rangle_M$$

Condition 3 holds:

$$\langle \lambda x, y \rangle_M = \lambda x^T M y = \lambda \langle x, y \rangle_M$$

While conditions 1-3 indeed hold, the condition 4 will hold only if $x^T M x \ge 0$ and $x \ne 0$. This means M matrix should at least PSD. But we don't have such condition on M.

As basic example let's take M to be a matrix of all zeros. Then $\langle x, x \rangle_M = x^T M x = 0$, but $x \neq 0$.

So this operation is **NOT AN INNER PRODUCT**

Part b.

The only difference we have here is the new information on the matrix (now denoted Q): Q > 0So conditions 1-3 hold as previously in Part a.

Condition 4:

$$\langle x, x \rangle_Q = x^T Q x \ge 0$$
 ; $\langle x, x \rangle_Q iff x = 0$

Since we know that Q is a PD matrix, this means that for each $x \in \mathbb{R}^n$; $x \neq 0$,

$$x^T O x > 0$$

Which helps us to prove the condition 4.

So this operation answers all 4 conditions for the inner product.

Question 2.

Given: A is symmetric, $A \in \mathbb{R}^{n \times x}$

Part a.

Given: A > 0. Prove: A is invertible, $A^{-1} > 0$

Invertibility: If A is symmetric, PD, $A \in \mathbb{R}^{n \times n}$, then the following hold from the characteristics of the PD matrixes:

$$x^T A x > 0 \quad \forall x \neq 0$$

Which means:

$$Ax > 0 \quad \forall x \neq 0$$

Thus, A spans over all of its dimensions and has a full rank. Thus, A is invertible.

Another way to show this is to remember that all of eigenvalues of A are positive -> A is invertible.

To prove that A^{-1} is PD, we show that all its eigenvalues are strictly positive:

For matrix A, eigenvector $v \neq 0$ and corresponding eigenvalue $\lambda > 0$:

$$Av = \lambda v$$

$$A^{-1}Av = A^{-1}\lambda v \quad ; \quad A^{-1}A = I$$

$$\frac{1}{\lambda}v = A^{-1}v$$

Since $\lambda > 0$, so does $\frac{1}{\lambda} > 0$. Also, $v \neq 0$.

Thus, all the eigenvalues are positive, and $A^{-1} > 0$.

Part b.

Given: $A \ge 0$, A invertible. Prove: A > 0

A is invertible -> $\lambda \neq 0 \ \forall \ \lambda \in (eigenvalues \ of \ A)$

Invertible matrix has all non-zero eigenvalues.

$$A \geq 0 \rightarrow \lambda \geq 0 \quad \forall \lambda \in (eigenvalues \ of \ A)$$

Combining two of those constraints together we get:

$$\lambda > 0 \ \forall \lambda \in (eigenvalues \ of \ A)$$

Which is exactly the property of PD matrix – all its eigenvalues are strictly positive.

Thus, A > 0

Part c.

Given: $A = B^T B$; $B \in \mathbb{R}^{m \times n}$. Prove: $A \ge 0$

We try to prove the property of the PDS matrix:

$$x^TAx = x^TB^TBx \underset{C=Bx}{\overset{\leftarrow}{=}} C^TC = \|C\|_2^2 \ge 0$$

Which means

$$x^T A x \ge 0$$

Thus, $A \ge 0$.

Example for B: m = 1, n = 2.

$$B \neq 0 = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$A = B^T B = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

We take $x \neq 0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$:

$$x^{T}Ax = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$$

Part d.

Given: $A_{i,i} < 0$; $1 \le i \le n$, Prove: $A \ngeq 0$.

It if sufficient to show that for some $x \neq 0$, this holds: $x^T A x < 0$

Expanding:

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}x_{j}A_{i,j} = \sum_{i=1}^{n} x_{i}^{2}A_{i,i} + \sum_{i=1}^{n} \sum_{j\neq i}^{n} x_{i}x_{j}A_{i,j}$$

If some $A_{i,i} < 0$, this means this whole expression can be negative too, if we choose $x \neq 0$, that has all the values equal 0 except for the i'th value. For example:

$$x^{T}Ax = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 2 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -1 \ge 0$$

The condition that A has non-negative diagonal values is **sufficient** to prove it is PSD, Example for the extreme case by having zero values on the diagonals:

$$x^T A x = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \ge 0$$

By having positive values on a diagonal will still make the inequality hold.

Question 3.

Given:

 $f: U \to R$ continuously differentiable. $U \in R^n$. $d \neq 0$ is the downhill direction at point x if there exists T such that for each 0 < t < T:

$$f(x + td) < f(x)$$

Part a.

Prove: If direction d uphold: f'(x, d) < 0 for some x, then d is the downhill direction.

From the definition:

$$f'(x,d) = \lim_{t \to 0^+} \frac{f(x+td) - f(x)}{t}$$
$$\lim_{t \to 0^+} \frac{f(x+td) - f(x)}{t} < 0$$
$$f(x+td) - f(x) < 0$$
$$f(x+td) < f(x)$$

Thus, this is the downhill direction from the definition given in this exercise.

Part b.

Prove: if $\nabla f(x) \neq 0$, then the direction $d = -\nabla f(x)$ is the downhill direction.

From theorem 4 from the tutorial: if f is continuously differentiable, then:

$$f'(x;d) = \nabla f(x)^T d$$

If $d = -\nabla f(x)$, then $\nabla f(x) = -d$, then:

$$f'(x;d) = \nabla f(x)^T d = -d \cdot d = -d^2 < 0$$

Thus,

From Part a. of this question we know that if this inequality holds, then d is the downhill direction.

Part c.

Find example of a function $f(x_1,x_2)$, a point $x^0=[x_1^0\ x_2^0]^T$, directions d_1,d_2 , s.t. d_1 is the downhill direction and d_2 is not.

What came on my mind is Pringles (image source – google images):

Pringles are examples of hyperbolic paraboloids.

Let's take a = 1; b = 1, c = 1

$$f(x_1, x_2) = x_1^2 - x_2^2$$

Let's take trivial point $\begin{cases} x_1 = 1 \\ x_2 = 1 \end{cases}$

Calculating gradient:

$$\nabla f(x) = \begin{bmatrix} \frac{\delta f}{\delta x_1} & \frac{\delta f}{\delta x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 & -2x_2 \end{bmatrix} = \begin{bmatrix} 2 & -2 \end{bmatrix}$$

From what we have proven:

$$\begin{cases} d_1 = \nabla f(x_1, x_2) = \begin{bmatrix} 2 & -2 \end{bmatrix} = \textit{UPHILL DIRECTION} \\ d_2 = -\nabla f(x_1, x_2) = \begin{bmatrix} -2 & 2 \end{bmatrix} = \textit{DOWNHILL DIRECTION} \end{cases}$$

Question 4-6.

<continue to the next page>