Конспект лекции по транспортным сетям

1. Понятие транспортной сети

Транспортная сеть (TC) – это связный орграф G(X,U) со следующими свойствами:

- 1. $\exists ! x_0 \in X(\Gamma^{-1}(x_0) = \emptyset)$, где x_0 начало или источник TC
- 2. $\exists ! x_t \in X(\Gamma^1(x_t) = \emptyset)$, где x_t конец или сток TC
- 3. $\forall u \in U : c(u) \ge 0$, где c(u) пропускная способность дуги

На рисунке 1 приведен пример ТС. Здесь вершина x_1 — начало, а вершина x_6 — конец ТС. Количество вершин в ТС — n=6, а количество дуг — m=9. Числовые характеристики дуг определяют их пропускные способности, например, пропускная способность дуги (x_2, x_5) равна 6 (по этой дуге может пройти информации, газа и т.п. не больше, чем 6). Значение пропускной способности дуги определяется в процессе моделирования объекта (телекоммуникационной сети, газопровода, и т.п.).

Рисунок 1 – Пример транспортной сети

Допустимый поток дуги $\varphi(u)$ – это такая числовая характеристика дуги, которая выбирается из условий:

$$\forall u \in U : 0 \le \varphi(u) \le c(u) \tag{1}$$

$$\forall x_j \in X \setminus \{x_0, x_t\} (\sum_{\mathcal{X}_i \in \Gamma^{-1}(\mathcal{X}_j)} \varphi(x_i, x_j) = \sum_{\mathcal{X}_k \in \Gamma^{-1}(\mathcal{X}_j)} \varphi(x_j, x_k))$$
(2)

Условие (1) связано с тем, что поток, идущий по дуге, не превышает пропускную способность этой дуги. Условие (2) — это **принцип сохранения потока**. Суть его заключается в том, что, сколько информации, газа и т.п. пришло в данный пункт, столько и вышло из него.

Допустимый поток ТС $\varphi(G) = (\varphi(u_1),...,\varphi(u_m))$ – это любой поток при соблюдении условий (1) и (2), его величина определяется как

$$\Phi = \sum_{X_i \in \Gamma^{-1}(X_i)} \varphi(X_i, X_i) = \sum_{X_k \in \Gamma^{1}(X_0)} \varphi(X_0, X_k).$$
 (3)

Т.е. величина допустимого потока Φ определяется суммарной пропускной способностью дуг, исходящих из начала TC, или суммарной пропускной способностью дуг, входящих в конец TC.

Дуга $u \in U$ называется **насыщенной**, если для допустимого потока $\varphi(G) = (\varphi(u_1),...,\varphi(u_m))$ выполняется условие, что $\varphi(u) = c(u)$.

Допустимый поток ТС $\varphi(G) = (\varphi(u_1),...,\varphi(u_m))$ будет **полным**, если в каждом пути $\mu = (x_0,...,x_t)$ есть хотя бы одна насыщенная дуга. Обозначим полный поток $\varphi_f(G)$, а его величину — Φ_f . Рассмотрим далее алгоритм поиска полного потока в ТС.

2. Алгоритм поиска полного потока в транспортной сети

Пусть исходный граф TC-G(X,U), граф TC с полным потоком $\varphi_f(G)$ величиной $\Phi_f-G^*(X^*,U^*)$. Идея алгоритма состоит в последовательном поиске простых путей $\mu=(x_0,...,x_t)$ в графе G(X,U), нахождении в пути насыщенных дуг и удалении их из графа G(X,U). Поиск продолжается до тех пор, пока в графе G(X,U) есть хотя бы один простой путь $\mu=(x_0,...,x_t)$. После этого в графе G(X,U) получена остаточная TC с ненасыщенными дугами, а в графе $G^*(X^*,U^*)$ формируется ответ (полный поток TC). Алгоритм состоит из следующих действий.

- 1. Положить, что $G^*(X^*, U^*) = G(X, U)$.
- 2. Положить, что $\forall u \in U : \varphi(u) = c(u)$, $\Phi_f = 0$.
- 3. **ЦИКЛ до тех пор, пока** в графе G(X,U) вершина x_t достижима из вершины x_0 :
 - 3.1. Построить простой путь $\mu = (x_0,...,x_t)$.
 - 3.2. Найти в пути $\mu = (x_0,...,x_t)$ насыщенную дугу (насыщенные дуги) и определить $MIN = \min_{\forall u \in \mu} \varphi(u) \, .$
 - 3.3. Увеличить значение $\Phi_f = \Phi_f + MIN$.
 - 3.4. Скорректировать $\forall u \in \mu : \varphi(u) = \varphi(u) MIN$.
 - 3.5. Удалить из графа G(X,U) насыщенную дугу (насыщенные дуги).
- 4. Определить $\forall u^* \in U^* : \varphi(u^*) = c(u) \varphi(u)$.

Пример. Пусть имеется следующая транспортная сеть – граф G(X,U). Здесь вершина x_1 – начало, а вершина x_6 – конец ТС. Количество вершин в ТС – n=6, а количество дуг – m=9. Веса дуг определяют их пропускные способности. Надо найти полный поток этой сети $\varphi(G)=(\varphi(u_1),...,\varphi(u_m))$ и определить его величину Φ_f .

Решение.

Положим, что $G^*(X^*, U^*) = G(X, U)$.

Пусть $\forall u \in U : \varphi(u) = c(u)$, $\Phi_f = 0$. Ниже на рисунке изображен граф G(X,U), в котором веса дуг определяют их допустимые потоки.

Построим простой путь $\mu_1=(x_1,x_2,x_4,x_6)$, в этом пути дуга (x_2,x_4) является насыщенной, см. рисунок ниже. Тогда $MIN=\varphi(x_2,x_4)=3$, $\Phi_f=\Phi_f+MIN=0+3=3$.

Скорректируем допустимые потоки дуг этого пути:

$$\varphi(x_1, x_2) = \varphi(x_1, x_2) - MIN = 7 - 3 = 4$$

$$\varphi(x_2, x_4) = \varphi(x_2, x_4) - MIN = 3 - 3 = 0,$$

$$\varphi(x_4, x_6) = \varphi(x_4, x_6) - MIN = 7 - 3 = 4$$
.

Удалим из графа G(X,U) дугу (x_2,x_4) . Полученный граф G(X,U) представлен на рисунке ниже.

Т.к. в графе G(X,U) вершина x_6 достижима из вершины x_1 , то построим в нем новый простой путь $\mu_2=(x_1,x_2,x_3,x_4,x_6)$, в этом пути дуги (x_2,x_3) и (x_3,x_4) являются насыщенными, см. рисунок ниже. Тогда $MIN=\varphi(x_2,x_3)=\varphi(x_3,x_4)=2$, $\Phi_f=\Phi_f+MIN=3+2=5$.

Скорректируем допустимые потоки дуг этого пути:

$$\varphi(x_1, x_2) = \varphi(x_1, x_2) - MIN = 4 - 2 = 2$$

$$\varphi(x_2, x_3) = \varphi(x_2, x_3) - MIN = 2 - 2 = 0$$

$$\varphi(x_3, x_4) = \varphi(x_3, x_4) - MIN = 2 - 2 = 0$$
,

$$\varphi(x_4, x_6) = \varphi(x_4, x_6) - MIN = 4 - 2 = 2$$
.

Удалим из графа G(X,U) дуги (x_2,x_3) и (x_3,x_4) . Полученный граф G(X,U) представлен на рисунке ниже.

Т.к. в графе G(X,U) вершина x_6 достижима из вершины x_1 , то построим в нем новый простой путь $\mu_3=(x_1,x_3,x_5,x_6)$, в этом пути дуга (x_3,x_5) является насыщенной. Тогда $MIN=\varphi(x_3,x_5)=2$, $\Phi_f=\Phi_f+MIN=5+2=7$.

Скорректируем допустимые потоки дуг этого пути:

$$\varphi(x_1, x_3) = \varphi(x_1, x_3) - MIN = 8 - 2 = 6$$

$$\varphi(x_3, x_5) = \varphi(x_3, x_5) - MIN = 2 - 2 = 0,$$

$$\varphi(x_5, x_6) = \varphi(x_5, x_6) - MIN = 9 - 2 = 7$$
.

Удалим из графа G(X,U) дугу (x_3,x_5) . Полученный граф G(X,U) представлен на рисунке ниже.

Т.к. в графе G(X,U) вершина x_6 достижима из вершины x_1 , то построим в нем новый простой путь $\mu_4=(x_1,x_2,x_5,x_6)$, в этом пути дуга (x_1,x_2) является насыщенной. Тогда $MIN=\varphi(x_1,x_2)=2$, $\Phi_f=\Phi_f+MIN=7+2=9$.

Скорректируем допустимые потоки дуг этого пути:

$$\varphi(x_1, x_2) = \varphi(x_1, x_2) - MIN = 2 - 2 = 0$$
,

$$\varphi(x_2, x_5) = \varphi(x_2, x_5) - MIN = 6 - 2 = 4$$

$$\varphi(x_5, x_6) = \varphi(x_5, x_6) - MIN = 7 - 2 = 5$$
.

Удалим из графа G(X,U) дугу (x_1,x_2) . Полученный граф G(X,U) представлен на рисунке ниже.

Т.к. в графе G(X,U) вершина x_6 не достижима из вершины x_1 , то завершим цикл. Граф на рисунке ниже представляет собой остаточную ТС, в которой все дуги ненасыщенные, а их вес указывает на остаточную пропускную способность после того, как через ТС прошел полный поток.

Определим допустимые потоки дуг в графе $G^*(X^*,U^*)$ по формуле $\forall u^* \in U^*: \varphi(u^*) = c(u) - \varphi(u)$. Ниже на рисунке представлен граф $G^*(X^*,U^*)$, в котором веса дуг определяют их пропускную способность и допустимый поток (в скобках). На рисунке желтым цветом раскрашены насыщенные дуги. Задача решена.

Полученный поток является полным $\varphi_f(G)$, его величина $\Phi_f = 9$. Задача решена.

3. Теорема Форда-Фалкерсона

Не всякий допустимый поток TC $\varphi(G) = (\varphi(u_1),...,\varphi(u_m))$, в т.ч. и полный поток $\varphi_f(G)$, является максимальным. Данная теорема служит теоретической основой для поиска максимального допустимого потока TC $\varphi(G) = (\varphi(u_1),...,\varphi(u_m))$. Теорема опирается на понятие разреза и его пропускной способности в TC.

Разрезом транспортной сети G(X,U) называется разбиение множества X на два подмножества A и B таких, что: $A \cap B = \emptyset, A \cup B = X$, $x_0 \in A$, $x_t \in B$. Очевидно, что $A \neq \emptyset$ и $B \neq \emptyset$. Разрезы TC строятся с начала сети слева направо.

Пропускная способность разреза определяется по условию допустимости потока (1) и (2) как

$$C(A,B) = \sum_{\forall \nu \in A} C(\nu), \qquad (4)$$

где C(v) – поток, который может пройти через данный разрез из вершины v.

Принимается, что $C(x_0) = \sum_{\forall w \in B} c(x_0, w)$, а для других вершин разреза как

$$C(v) = \min(\sum_{\forall s \in A} c(s, v), \sum_{\forall w \in B} c(v, w)).$$
 (5)

Т.е. поток, который может пройти через разрез из вершины v не больше, чем сумма потоков, которые могут прийти в эту вершину из других вершин множества A.

Пример. На рисунке 1 представлена транспортная сеть G(X,U), вершина x_1 является началом, а вершина x_6 — концом этой сети, а веса дуг определяют их пропускную способность c(u). Этот рисунок приведен еще раз ниже.

Разрезы этой ТС и их пропускные способности, рассчитанные по формулам (4) и (5), приведены в таблице ниже.

№	A	В	C(A,B)
1	$\{x_1\}$	$\{x_2, x_3, x_4, x_5, x_6\}$	$C(x_1) = 7 + 8 = 15$
2	$\{x_1, x_2, x_3\}$	$\{x_4, x_5, x_6\}$	$C(x_1) + C(x_2) + C(x_3) = 0 + 7 + 4 = 11$
3	$\{x_1, x_2, x_3, x_4, x_5\}$	$\{x_6\}$	$C(x_1) + C(x_2) + C(x_3) + C(x_4) + C(x_5) = 0 + 0 + 5 + 8 = 13$

Разрез транспортной сети с минимальной пропускной способностью называется **минимальным разрезом**. Очевидно, что минимальным разрезом TC (рис. 1) является второй разрез с C(A,B) = 11.

Теорема Форда-Фалкерсона. Величина максимального потока Φ_{\max} транспортной сети G(X,U) определяется пропускной способностью ее минимального разреза.

<u>Доказательство.</u> Для любого допустимого потока Φ в транспортной сети G(X,U) и любого ее разреза выполняется неравенство $\Phi \leq C(A,B)$, т.е. величина любого

допустимого потока Φ , в т.ч. и максимального Φ_{\max} не превышает пропускную способность любого разреза TC, в т.ч. и минимального. Следовательно $\Phi_{\max} = \min_{\forall A,B} C(A,B)$

Эта формулировка теоремы Форда-Фалкерсона является **критерием максимальности** допустимого потока TC $\varphi(G) = (\varphi(u_1),...,\varphi(u_m))$. Следовательно, величина максимального потока TC (рис.1) $\Phi_{\max} = 11$. Ранее для данной TC мы нашли полный поток $\Phi_f = 9$, что указывает на то, что он не является максимальным.