

Title

lprobust — Local Polynomial Regression Estimation with Robust Bias-Corrected
 Confidence Intervals and Inference Procedures.

Syntax

lprobust yvar xvar [if] [in] [, eval(gridvar) neval(#) deriv(#) p(#) h(hvar)
 b(bvar) rho(#) kernel(kernelfn) bwselect(bwmethod) bwcheck(#) imsegrid(#)
 vce(vcetype [vceopt]) level(#) bwregul(#) separator(#) interior genvars plot
 graph_options(gphopts)]

Description

- A detailed introduction to this command is given in <u>Calonico</u>, <u>Cattaneo and Farrell</u> (2018b).
- Companion command is: <a href="https://linear.com/linea
- Related Stata and R packages useful for empirical analysis are described in the following website:

https://sites.google.com/site/nppackages/

Options

- eval(gridvar) specifies the grid of evaluation points for xvar. By default it
 uses 30 equally spaced points over to support of xvar.
- neval(#) specifies the number of evaluation points to estimate the regression functions. Default is 30 evaluation points.
- deriv(#) specifies the order of the derivative of the regression functions to be estimated. Default is deriv(0).
- p(#) specifies the order of the local polynomial used to construct the point estimator. Default is p(1) (local linear regression).
- $\mathbf{h}(hvar)$ specifies the main bandwidth (h) used to construct the point estimator for each evaluation point. If not specified, it is computed by the companion command $\underline{lpbwselect}$.
- $\mathbf{b}(bvar)$ specifies the bias bandwidth (b) used to construct the bias-correction estimator for each evaluation point. If not specified, it is computed by the companion command $\underline{\mathbf{lpbwselect}}$.
- ${\bf rho}(\#)$ specifies the value of ${\it rho}$, so that the bias bandwidth b equals b=h/rho. Default is ${\bf rho}(1)$ if h is specified but b is not.
- kernel(kernelfn) specifies the kernel function used to construct the
 local-polynomial estimator(s). Options are: triangular, epanechnikov, and
 uniform. Default is kernel(epanechnikov).

```
bwselect(bwmethod) bandwidth selection procedure to be used. By default it
    computes both h and b, unless rho is specified, in which case it only computes
    h and sets b=h/rho. Options are:
    mse-dpi second-generation DPI implementation of MSE-optimal bandwidth. Default
        choice.
    mse-rot ROT implementation of MSE-optimal bandwidth.
    imse-dpi second-generation DPI implementation of IMSE-optimal bandwidth.
imse-rot ROT implementation of IMSE-optimal bandwidth.
    ce-dpi second generation DPI implementation of CE-optimal bandwidth.
    ce-rot ROT implementation of CE-optimal bandwidth.
Note: MSE = Mean Square Error; IMSE = Integrated Mean Squared Error; CE = Coverage
        Error; DPI = Direct Plug-in; ROT = Rule-of-Thumb.
    Default is bwselect(mse-dpi). For details on implementation see Calonico,
        Cattaneo and Farrrell (2018b).
bwcheck(#) specifies an optional positive integer so that the selected bandwidth
    is enlarged to have at least # effective observations available for each
    evaluation point.
imsegrid(\#) number of evaluations points used to compute the IMSE bandwidth
    selector. Default is 30 points.
vce(vcetype [vceopt1]) specifies the procedure used to compute the
    variance-covariance matrix estimator. Options are:
    vce(nn [nnmatch]) for heteroskedasticity-robust nearest neighbor variance
        estimator with nnmatch indicating the minimum number of neighbors to be
        used.
    vce(hc0) for heteroskedasticity-robust plug-in residuals variance estimator
        without weights.
    vce(hc1) for heteroskedasticity-robust plug-in residuals variance estimator
        with hc1 weights.
    vce(hc2) for heteroskedasticity-robust plug-in residuals variance estimator
        with hc2 weights.
    vce(hc3) for heteroskedasticity-robust plug-in residuals variance estimator
        with hc3 weights.
    vce(nncluster clustervar [nnmatch]) for cluster-robust nearest neighbor
        variance estimation using with clustervar indicating the cluster ID
        variable and nnmatch matches indicating the minimum number of neighbors to
        be used.
    vce(cluster clustervar) for cluster-robust plug-in residuals variance
        estimation with degrees-of-freedom weights and clustervar indicating the
        cluster ID variable.
    Default is vce(nn 3).
level(#) specifies confidence level for confidence intervals. Default is
    level(95).
bwregul(#) specifies scaling factor for the regularization term added to the
    denominator of the bandwidth selectors. Setting bwregul(0) removes the
    regularization term from the bandwidth selectors. Default is bwregul(1).
separator(#) draws separator line after every # variables; default is
    separator(5).
interior optional option to set all evaluation points to be interior points. This
    option affects only data-driven bandwith selection via <a href="https://doi.org/10.1001/journal.org/">https://doi.org/10.1001/journal.org/</a>
plot generates the local polynomial regression plot.
genvars generates new variables storing the following results.
    lprobust_eval evaluation points.
    lprobust_h bandwidth h.
    lprobust b bandwidth b.
    lprobust_nh effective sample size.
    lprobust_gx_us conventional local polynomial estimate.
    lprobust_se_us conventional standard error for the local polynomial estimator.
    lprobust_gx_bc bias-corrected local polynomial regression estimate.
    lprobust_se_rb robust standard error for the local polynomial estimator.
    lprobust_ci_l_rb lower end value of the robust confidence interval.
    lprobust_ci_r_rb upper end value of the robust confidence interval.
```

graph_options(gphopts) specifies graphical options to be passed on to the underlying graph command.

Setup

. webuse motorcycle

Local linear regression with second-generation DPI implementation of MSE-optimal bandwidth

. lprobust accel time

Same as above, but generating a plot and the corresponding output variables . lprobust accel time, plot genvars

Saved results

lprobust saves the following in e():

Scalars

e(p)

e(N) original number of observations

order of the polynomial used for estimation of the

regression function

Macros

e(varname) name of variable

e(kernel) kernel choice
e(vce) vce choice

Matrices

e(Result) estimation result

<u>References</u>

- Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2018a. <u>On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference</u>. *Journal of the American Statistical Association*, forthcoming.
- Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2018b. nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference. Working Paper.
- Fan, J., and Gijbels, I. 1996. Local Polynomial Modelling and Its Applications, London: Chapman and Hall.
- Wand, M., and Jones, M. 1995. Kernel Smoothing, Florida: Chapman & Hall/CRC.

<u>Authors</u>

Sebastian Calonico, University of Miami, Coral Gables, FL. scalonico@bus.miami.edu.

Matias D. Cattaneo, University of Michigan, Ann Arbor, MI. cattaneo@umich.edu.

Max H. Farrell, University of Chicago, Chicago, IL. <u>max.farrell@chicagobooth.edu</u>.