Instruction Scheduling of the PE Array

4 Nov. 2020

Below is an idea of *Iterative Modulo Scheduling* which is very efficient on hardware.

Cycle	PE_0	PE_1	PE_2	PE_K	PE_K+1	PE255
32	$\bigwedge X_0^T$, Y_0^T					
32	MULT	X_1^T , Y_0^T				
160	FFT_32	MULT	X_2^T , Y_0^T			
16	Output	FFT_32	MULT			
32	$X_0^T Y_1^T$	Output	FFT_32			
32	MULT	$X_1^T Y_1^T$	Output			X_{255}^T , Y_0^T
160	FFT_32	MULT	$X_2^T Y_1^T$			MULT
16	Output	FFT_32	MULT			FFT_32
		Output	FFT_32			Output
II II		•••••	Output			X_{255}^{T} , Y_{1}^{T}
			•••••			MULT
				•••••		FFT_32
						Output
	\					
	$X^{\prime T}_{0}$, $Y^{\prime T}_{0}$					
		$X^{\prime T}_{1}$, $Y^{\prime T}_{0}$				

Latency = 32 * 255 + (32 + 32 + 160 + 16) * 256 cycles = 69600 cycles = **0.139 ms** (@500MHz)

Throughput = 1 / II = 1 / ((32 + 32 + 160 + 16) * 256 * 2ns) = 8138 signals/s (The state-of-the-art full SCD implementation on Tesla K40 GPU is 1282 signals/s)

Proposed PE array consumes 1,024 DPSs and 512 BRAMs (1 PE uses 4 DSPs and 2 BRAMs).

Available resources on Xilinx RFSoC (ZCU111) platform:

LUT	FF	BRAM	DSP	URAM
425,280	850,560	1,080 (36Kb)	4,272	80 (288Kb)