Zadanie 3

Weźmy dowolną macierz kwadratową M, taką że λ^2 jest wartością własną macierzy M^2 . Wtedy zbiór wektorów własnych dla M^2 to $ker(M^2-\lambda^2 Id)$. Weźmy dowolny wektor $V\in ker(M^2-\lambda^2 Id)$:

$$V \in ker(M^2 - \lambda^2 Id) \Leftrightarrow (M^2 - \lambda^2 Id)V = 0 \Leftrightarrow (M - \lambda Id)(M + \lambda Id)V = 0$$

To oznacza, że $(M + \lambda Id)V = 0 \quad \lor \quad (M - \lambda Id)[(M + \lambda Id)V] = 0$, ponieważ $(M + \lambda Id)V$ to wektor, możemy za niego podstawić wektor W i otrzymamy $(M - \lambda Id)W = 0$, wtedy:

- **1.** Gdy $(M + \lambda Id)V = 0$ to $V \in ker(M (-\lambda)Id)$ zatem $-\lambda$ jest wartością własną macierzy M.
- **2.** Gdy $(M \lambda Id)W = 0$ to $W \in ker(M (\lambda)Id)$ zatem λ jest wartością własną macierzy M.

Zatem jeśli λ^2 jest wartością własną macierzy M^2 to $-\lambda$ lub λ jest wartością własną macierzy M.