Reconnection converts Mag. energy into Kin. energy

Sweet-Parker model needs resistivity: slow

Petschek model: needs a fast shock

→ quite "simple" picture in 2D

Solar prominence merging [Aulanier et al., ApJ 2005]

Cold dense tube in hot tenuous coronna, $\beta \sim 10^{-2}$ \longrightarrow 3D geometry : complicated for "sleepy reconnection"

Orders of magnitude

	HED Plasmas	Solar corona
Magnetic field	100 T	0.01 T
density	$10^{27} \; \mathrm{m}^{-3}$	$10^{14} \; \mathrm{m}^{-3}$
Temperature	400 eV	20 eV
Resistivity (Spitzer)	$10^{-7} \ \mathrm{m}^2.\mathrm{s}^{-1}$	$1 \text{m}^2.\text{s}^{-1}$
Lundqvist Numb.	200	10^{10}
Beta parameter	100	10^{-3}
Ion cyclotron freq.	1.7 GHz	1 MHz
Ion skin depth	10 μ m	20 m
Alfvén speed	$20 \; km.s^{-1}$	$2000 \; \rm km.s^{-1}$
Sound speed	$200 \; km.s^{-1}$	$2 \mathrm{~km.s^{-1}}$
Ion thermal speed	$300 \; \rm km.s^{-1}$	3 km.s^{-1}

With high-intensity Lasers... [Nielson et al., 2006]

- 2 hotspots on solid target (Au foils of few μm thickness) :
- → 2 anti-parallel Magnetic loops (Biermann-Battery effect)

When folding targtets [Smets et al., 2014]

Initial out-of-plane magnetic field: Quadripolar structure

- → Reconnection rate depends on sallient/reverse angle
- \rightarrow 6 shots scheduled on LMJ/PETAL : end of 2017

LULI 2000: 2 beams with 200 J & 4.0 ns each

- → The 2 magnetic shells get compressed and get flat
- → On the reconnection sheet, protons are weakly scattered

LULI 2000: 2 beams with 200 J & 4.0 ns each

- → No more flat sheet betweens the 2 shells
- → Reconnection inhibited ?

LMJ/PETAL shots end of 2017

- 12 kJ, 5 ns with 4 quads
- Increase magnetization & shorten reconnection process
- ullet High Z target decreases the eta value down to ~ 1
- Proton radiography (PETAL+ 300 J, 0.7 ps)
- \rightarrow Get (integrated) E & B fields at different times
- DP1 X-ray imager: 12 images with resolution of 130 ps
- \rightarrow a sequence of 2D images
- DMX Spectrometer: X-rays spectra resolved in time
- ightarrow measure the black-body spectrum of $T\sim$ 100 eV plasma