- a. I choose SVM(linear), Neural Network (with 25 layers) and Logistic Regression to train the data. Also, I use tf_idf data because the most frequent word should have the least weight. Intuitively, the rare words will be the most helpful for classification. I did not train Neural Network with too many layers because it will run for a long time. That means the result should be better with more hidden layers.
- b. For SVM, train accuracy = 0.954127629485593 and test accuracy = 0.6631704726500266

For Neural Network, train accuracy = 0. 9747215838783808 and test accuracy = 0. 6975570897503983

For Logistic Regression, train accuracy = 0.8957044369807319 and test accuracy = 0.6775092936802974

For Bernoulli Naïve Bayes baseline, train accuracy = 0.5987272405868835 and test accuracy = 0.4579129049389272

- c. I use sklearn builtin function GridSearchCV (cross validation) with parameters = {'kernel':('linear', 'rbf'), 'C': [1, 10]} to find the best hyper parameters for SVM. The best parameter is C=1, kernel = linear.
- d. I run through all the algorithms we discussed in the class and find these three methods have the top accuracy. I thought KNN would have a decent performance, but it does not work as well as I thought. The methods work as same as my expectation. The discriminative models defeat generative models (ex. Bnb, Multinomial NB).
- e. For the computation of the confusion matrix for Neural Network. Please refer to the code.
- f. Neural Network is most confused about class 16 and 18. The confusion matrix graph shown below.

CSC411 A3 Guanxiong Liu 1002077726 liuguanx

Q2.1

a. Please see the attached code.

b.

Q2.2

a. Please see the attached code.

Q2.3

a. For beta = 0.1, train loss = 0.5835369453114629 average train hinge loss = 0.3694244002919029 test loss = 0.5842337924527631 average test hinge loss = 0.37012124743320307 train accuracy = 0.9266213151927437 test accuracy = 0.9245556764599202

CSC411 A3 Guanxiong Liu 1002077726 liuguanx

> b. For beta = 0.0 train loss = 0.5567972513778472 average train hinge loss = 0.3488265166912148 test loss = 0.5463558995332269 average test hinge loss = 0.3383851648465945 train accuracy = 0.9118367346938776 test accuracy = 0.9122234312658687

1002077726 liuguanx	
3.1	1. Prove for all vectors $x \in \mathbb{R}^d$ we have $x^T k \times 20 \Rightarrow$ a symmetric matrix $k \in \mathbb{R}^{d\times d}$ is positive semidefinite
	A is an eigenvalue of K. Then there exist eigenvector XEIRM s.t., Kx=xx. So 0 x x kx = xx x. Since xxis positive for all x, implies 1 s non-negative shelefole, asymmetric matrix KEIRM is positive semidefinite.
	Prove a symmetric matrix KEIR ded is positive semidefinite => for all vectors x EIR we have xTKX>0
,	K=ADAT A is orthogonal matrix and Dis diagonal matrix. D-B2 where B is a diagonal matrix then K-ABBAT = (AB)(AB)T = (CT=ETED) D is non-negative since All eigenvalue of K is non negative. So, for all vectors x E Rd we have D xTKX = XTETEX = (EXTEX 20
3.2	I since K(x,y)=0 is a positive semidefinite kernel K(x,y) = x + K(x,y) = x + 0 = x is also a valid
	Proof: Let \$\phi\$, denote a feature map of \$K_1\$, using the feature
	20(X),4(y) > - < 4,(X),4,(y) 1 (X - 1,(X, y) 1 (X - 1,(X, y) 1)
	: K(x,y) is a valid kernel.
2	Using the feature map \$: x > f(x), y > try), we
	have $K(x,y) = f(x) \cdot f(y) = \langle \phi(x), \phi(y) \rangle$ $\vdots K(x,y) \text{ is a valid Kernel function}$
-	
3	. K, has feature map ϕ , and K_2 has its feature map ϕ_2 . $aK_1(x,y) = \langle Ja\phi_1(x), Ja\phi_2(y) \rangle$ $bK_2(x,y) = \langle Ja\phi_2(x), Ja\phi_2(x) \rangle$ $K(x,y) = \langle Ja\phi_1(x), Ja\phi_2(y) \rangle + \langle Ja\phi_2(x), Ja\phi_2(y) \rangle$ $= \langle Ja\phi_1(x), Ja\phi_2(x), Ja\phi_2(y), Ja\phi_2(y) \rangle$ so, It is valid kernel
-	

CSC411 A3 Guanxiong Liu 1002077726 liuguanx

