	Asignatura
	Nombre y Apellidos
	Fecha Grupo
/	R
PI	Q _b
0)	
u)	The imaginary spherical
	surface with radius R=3R3
	encloses the point charge of the spherical shell
	with charge ashell of 471 Rx and the charged,
	Conducting hollow sphere that has a total charge of
	Therefore, from Govs) low: P = denc = 9 to 190ki + or
	~ Q = 8, Po - 9 - 8, 47 R, (1)
8)	The hollow conducting sphere of inner radius ke
	and outer radius Rs has a net charae a, colculated above, with 2= ap + ap where
	colculated above, with a ap were
	de is the sharge on the inner surface and des
	the charge on the outer surface. The electric field
	inside the conducting hollow sphere Eson = O (Rectary)
	a) the conductor is at electrostatic equilibrium.) of we consider a spherical imaginary Gossian surface
	It me consider a spherical imaginary consion surface
	concentric to the charge distribution) with radio

Asignatura			
7 toightaiora			
Nombre y Apellidos			
Cooka	Curso	Grupo	

R22 Z X R3 the electric flux &= D Ed3 = D
through the Gaussian Surface. From Gouss's (au.
Φ = Qen(G) = 9 + δ1 47 R12 + QR2 - 0 (2)
The charge on the surface of the bollow sphere
QR2 = 82. 471R2, where 82 the surface charge
density.
from equation 2: $\delta_2 = -9 - \delta_1 \cdot 4\pi R_1$ (3)
7 (1 /2
The charge density on the outer surface of the
hollow sphere oz - Qe, - Q-QRz - Q+9+6,4TR
471 R3 471 R3 471 R3
$\begin{array}{c} (1) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$0 = \frac{\sqrt{3}}{4\pi \ell_3} = \frac{\sqrt{4}}{2}$
The Eu made conducting hollow sphere is or
electrostotic equillibrium and therefore the electric potential for any point of the sphere is constant and equal to Vou We will calculate the electric
potential for any point of the sphere is constant
and equal to Vou We will colculate the electric
potential on the outer surface of the hollow sphere VR3 = Vcu: VR3 - Voo = - 183 Edz,
sphere VR3 = Vcu: VR3 - Voo = - 10 Edt,

Asignatura					
, toighaidia					
Nombre y Apellidos					
Fecha	Curso	Grupo			

where	e in the	apore	express	ion we	consider	that
	electric			infinity		
SO	that 1	R3 = -)6	3 E d?	(5) where	e É)
the	net el	ectric	field	52 20	R3.	7
We theo.	con obt			expres on side		hericol
	sion su					v sphere
with	radius	7, W	nere z	7/ R3.	trom G	((رره
(ow	the e			through	(hi)	su tface
P ₆	- denc	9+61	471 12, 2 + 2	. = Po	(6)	
From	the de	finition	of the	electric	field	flux:
PG	DE	13 = 6	Eds =	6.00	ls = E.	4772 (7)
		E 11d3		the Goussian		
where		ode use	of the	fact t	hot the	electric
has	a const			ilong the		on settore
From	Eq. (6)	and (7) -	1 6 3	Po 0	nd the	vector
	4712 VZ	with v	7 91 70	diol unit	- vector	,

Asignatura	
Nombre y Apellidos	
Fecha Curso	Grupo
	0
	1kg = 1kg = 1
From Eq. (3): VR3 =	- 1 E d = - 1 E d = =
	700 2712 100
	R3 Élolo
18	
1 to de :	Vo 1 = 017 =
7 /00 41772	477
1 6 0 63	
0, 1	
471 471	K3
so that the electric (ostential at any point of
the Cu hollow sphe	EC: N = P
	47123