Pre-Calculus Pre-Comprehensive Exam Review Problems

1. Given the following equations, which are functions?

(A) $y^2 = 1 - x^2$ (B) y = 9 (C) $y = x^3 - 5x$

(D) 5x + 2y = -10 **(E)** $y = \pm \sqrt{1 - 2x}$ **(F)** $y = \frac{3}{x} + 5$

a. all of the above **b.** none of the above **c.** B, C, D, and F

d. C, D, F

e. C only

f. C and F

2. Given $f(x) = \frac{x^2-1}{x+4}$, find f(-3).

a. -10 **b.** 10 **c.** -8 **d.** 8 **e.** $\frac{8}{7}$

3. Given $f(x) = \frac{x^2+3}{x-5}$, find $f(\frac{1}{4})$

a. $\frac{49}{76}$ b. $-\frac{49}{76}$ c. $-\frac{47}{84}$ d. $\frac{47}{84}$

5. What is the domain of this function: $f(x) = \frac{3-x}{x+5}$

a. $(-\infty, -5) \cup (3, \infty)$ **b.** $x \neq -5, x \neq 3$ **c.** $x \neq -5$ **d.** (-5, 3)

6. What is the range of this function: $y = x^2 - 5$

a. $(-\infty, \infty)$ b. $[5, \infty)$ c. $[-5, \infty)$ d. $(-\infty, -5]$

C.

Figure 1

- 7. Determine which of the following graphs in Figure (1) is the graph of a function.
 - a. A only
 - b. B only
 - c. B and D
 - d. all of these are fuctions
 - e. none of these are functions

9. Given the line 2y = 3x - 6, what is the slope and y-intercept?

a.
$$m = 3, y - int. = -6$$
 b. $m = 3, y - int. = 2$

b.
$$m = 3, y - int. = 2$$

c.
$$m = \frac{3}{2}, y - int. = -6$$
 d. $m = \frac{3}{2}, y - int. = -3$

d.
$$m = \frac{3}{2}, y - int. = -3$$

10. Find the equation of the line perpendicular to x - 2y + 5 = 0 passing through (0,4).

a.
$$y = \frac{1}{2}(x-5)$$
 b. $y = 2x+4$ **c.** $y = -\frac{1}{2}x+\frac{5}{2}$ **d.** $y = -2x+4$

11. Find the equation of a line through the points (3,2) and (-3,6).

a.
$$2x + 3y = 12$$
 b. $3x + 2y = -12$ **c.** $-3x + 2y = 4$ **d.** $-2x - 3y = 4$

12. Find the equation of a line with x-intercept=2 and y-intercept=-1.

a.
$$y = -\frac{1}{2}x - 1$$
 b. $y = -2x - 1$ **c.** $y = \frac{1}{2}x - 1$ **d.** $y = -2x + 1$

13. Given the line: 3x + 2y = 7, which of the following line is perpendicular to this line.

a.
$$y = \frac{3}{2}x + 4$$
 b. $y = -\frac{2}{3}x - 4$ **c.** $y = \frac{2}{3}x + 3$ **d.** $y = -\frac{2}{3}x + 5$

14. Find the equation of a line through the point (2,1) and parallel to the line 5x - 2y = 7.

a.
$$2x - 5y = 8$$
 b. $5x - 2y = 8$ **c.** $5x + 2y = -4$ **d.** $-2x + 5y = 4$

19. For the function $f(x) = 3x^2 - 2x + 5$, find f(2x - 3)

a.
$$4x^2 - 12x + 20$$
 b. $12x^2 + 40x + 16$ **c.** $3x^2 + 2$ **d.** $12x^2 - 40x + 38$

20. If a graph is symmetric with respect to the y-axis and the point (2,4) is on the graph, then what point is also on the graph?

a.
$$(-2,4)$$
 b. $(3,4)$ **c.** $(2,-4)$ **d.** $(-2,-4)$

23. The graph of y = |x| is shifted to the right 4 units and reflected across the x-axis. Write the equation of the new function.

a. y = |x| + 4 **b.** y = -|x + 4| **c.** y = -|x| + 4 **d.** y = -|x - 4|

24. y varies directly as x^2 and inversely as z; y=4 when x=4 and z=2. Find y when x=2 and z=4.

a. y = 2 **b.** $y = \frac{1}{2}$ **c.** y = -2 **d.** y = 10

25. The velocity v of a falling object is directly proportional to the time t of the fall. If, after 2 seconds, the velocity is 64 ft sec. What is the velocity after 5 sec.

a. 26.4 ft sec **b.** 160 ft sec **c.** $\frac{5}{32}$ ft sec **d.** 1600 ft sec

28. Find the midpoint of a line segment from (-6,0) and (2,-4).

a. M = (-2, -2) **b.** M = (-3, -4) **c.** M = -1, -3) **d.** M = (0, -1)

29. Find the distance between (-2,5) and (3,4).

a. $d = \sqrt{26}$ **b.** $d = \sqrt{58}$ **c.** $d = -\frac{1}{5}$ **d.** $d = \sqrt{29}$

30. Given the circle with center (2, -5) and radius of 4. What is the equation of the circle.

a. $x^2 - y^2 + 4x - 10y = -13$ **b.** $x^2 + y^2 + 4x - 10y = -13$

c. $x^2 + y^2 + 4x + 10y = 45$ **d.** $x^2 + y^2 - 4x + 10y = -13$

31. What is the center of circle: $x^2 + y^2 + 2x - 6y + 9 = 0$

a. (1,3) **b.** (-2,6) **c.** (-1,3) **d.** (2,3)

- **33.** Solve for t_2 : $S = \frac{A}{r(t_1 t_2)}$
 - a. $srt_1 A$ b. $\frac{Srt_1 A}{Sr}$ c. $t_1 A$ d. $\frac{A Srt_1}{Sr}$
- **34.** Mani pays \$135.45 for a new bike. If the price paid includes a 7.5% sales tax, which is the price of the bike itself?
 - a. \$119.50 b. \$122.80 c. \$123.00 d. \$126.00
- **35.** Multiply: $(4 i)^2$
 - **a.** 17 4i **b.** 16 + 2i **c.** 15 8i **d.** 17 8i
- **36.** Divide: $\frac{4-3i}{2+5i}$
 - **a.** $\frac{23}{29} \frac{28}{29}i$ **b.** $-\frac{7}{29} \frac{26}{29}i$ **c.** $-\frac{7}{29} + \frac{14}{29}i$ **d.** $\frac{1}{3}$
- 37. Find the value of i^{50}
 - a. -1 b. 1 c. -i d. i
- 38. Solve $3x^2 10x + 5 = 0$. Simplify your answer.
 - **a.** $\frac{5\pm\sqrt{10}}{3}$ **b.** $\frac{5\pm\sqrt{17}}{3}$ **c.** $\frac{10\pm\sqrt{10}}{3}$ **d.** $5\pm\sqrt{10}$
- **39.** Solve in the complex number system: $x^2 + 3 = x$
 - **a.** $\frac{1\pm\sqrt{11}i}{2}$ **b.** $\frac{1\pm\sqrt{11}}{2}$ **c.** $\frac{1\pm\sqrt{17}i}{2}$ **d.** $\frac{-3\pm\sqrt{3}i}{2}$
- **44.** Find the vertex of this parabola: $f(x) = -x^2 + 2x + 8$
 - **a.** (-1,8) **b.** (9,1) **c.** (2,8) **d.** (1,9)
- 45. Does the parabola above:
 - a Open up b Open down
- **46.** Find the line of symmetry of the given function $y = 2x^2 8x + 4$
 - **a.** x = -4 **b.** x = 2 **c.** x = 4 **d.** x = -2

47. Match the equation to the correct graph: $y = 2(x+1)^2 - 2$

- **48.** Solve the following: $\frac{3}{x-2} = \frac{1}{x-1} + \frac{7}{(x-1)(x-2)}$
 - **a.** no solution **b.** x = -4 **c.** x = 3 **d.** x = 4

- **49.** Solve the following: $\sqrt{12 x} = x$

- **a.** x = 6 **b.** x = -6 **c.** x = 3 **d.** $x = \{-3, 4\}$ **e.** $x = \{-4, 3\}$

- **50.** Solve: |3m-1|=6
 - **a.** $\frac{7}{3}$ **b.** $-\frac{7}{3}, \frac{7}{3}$ **c.** $-\frac{5}{3}, \frac{7}{3}$ **d.** $-\frac{5}{3}$
- **51.** Solve the inequality: $-32 \le \frac{32-4x}{8} \le 32$
- a. [-56,72] b. [0,16] c. [-72,-56] d. [-16,0]
- 52. Solve the inequality: |32 4x| < 32
 - a. (-64,0) b. [-64,0] c. [0,16] d. (0,16)

- **67.** For the functions below and $(f \circ g)(-2)$.
- a. 166 b. -128 c. -156 d. -7 e. 62 f. none of these
- **68.** Given that $f(x) = 3x^2 2x + 5$ and g(x) = 3x 1, find $g \circ f$

 - **a.** $9x^2 6x + 14$ **b.** $9x^3 9x^2 + 17x 5$ **c.** $3x^2 + x + 4$ **d.** $9x^2 + 6x 16$

69. Determine which of the following functions are one-to-one.

- a. A only
- ${f b.}$ B and C
- c. D only
- ${f d.}$ all of the above
- e. none of the above
- **70.** Find the inverse of f(x) = 2x + 3

a.
$$f^{-1}(x) = \frac{1}{2}(x+3)$$

a.
$$f^{-1}(x) = \frac{1}{2}(x+3)$$
 b. $f^{-1}(x) = \frac{1}{2}(x-3)$

c.
$$f^{-1}(x) = \frac{2}{x-3}$$
 d. $f^{-1}(x) = \frac{2}{x+3}$

d.
$$f^{-1}(x) = \frac{2}{x+3}$$

71. Match the following functions with the correct graphs.

- **a.** $y = 2^x$ **b.** $y = 2^x 1$ **c.** $y = 2^{(x-1)}$ **d.** $y = 1 2^x$
- 72. Graph the following function $y = \log_2 x$

- 73. Convert the following to a logarithmic equation $e^{-5} = 0.006738$

 - **a.** $e = \log_{-5} 0.006738$ **b.** $\ln(0.006738) = -5$

 - **c.** $0.006738 = \log_{-5} e$ **d.** $\ln(-5) = 0.006738$
- **74.** Convert the following to an exponential equation $\log_{10}(\frac{1}{100}) = -2$
- **a.** $10^{100} = -2$ **b.** $10^{-2} = \frac{1}{100}$ **c.** $(\frac{1}{100})^2 = 10$ **d.** $2^{10} = \frac{1}{100}$

76. Write $\log_8 \frac{x^3 \sqrt{x^2+4}}{(x+8)^8}$ as a sum and difference of logarithms. Express all powers as factors.

- **a.** $\log_8 x + \frac{1}{2} \log_8(x^2+4) \log_8(x+8)$ **b.** $3 \log_8 x + \frac{1}{2} \log_8(x^2+4) + 8 \log_8(x+8)$
- **c.** $3\log_8 x + \frac{1}{2}\log_8(x^2+4) 8\log_8(x+8)$ **d.** $3\log_8 x \frac{1}{2}\log_8(x^2+4) 8\log_8(x+8)$

77. Find the value of 3.56^{π}

a. 54.0047 b. 540.0466 c. 5.4005 d. 53.8956

79. Find y such that: $\log_2 \frac{1}{32} = y$

a. y = 5 **b.** y = -5 **c.** none of these **d.** y = 0.09834 **e.** y = -4

80. Solve: $3\log_8 x = \log_8 216$

a. x = 36 **b.** x = 6 **c.** x = 2.44949 **d.** x = -6 **e.** none of these

81. Solve: $\log_3(x+5) - \log_3 x = 2$

a. x = 1 **b.** x = 5 **c.** $x = \frac{8}{5}$ **d.** $x = \frac{5}{8}$

82. Solve: $\log_2(x+3) = 2 - \log_2 x$

a. x = 1 **b.** x = -1 **c.** $x = \{-4, 1\}$ **d.** x = 3.2345

84. Solve this equation: $\log_4(x+3) + \log_4(2-x) = 1$

a. $x = \{-1, 2\}$ **b.** x = 2 **c.** x = 1 **d.** $x = \{-2, 1\}$

85. Solve this equation: $6^{x-3} = 36^{4-3x}$

a. x = 2 **b.** $x = \frac{11}{7}$ **c.** x = 3.987 **d.** $x = \frac{7}{4}$