Spectral Graph Partitioning: Graph Laplacian Matrix

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Finding Clusters

Nodes

Adjacency matrix

Graph Partitioning

 Task: Partition the graph into two pieces such the resulting pieces have low conductance

- How do we efficiently find a good partition?
 - Problem: Computing optimal cut is NP-hard

Spectral Graph Partitioning

- A: adjacency matrix of undirected G
 - A_{ij} =1 if (i, j) is an edge, else 0
- x is a vector in \Re^n with components $(x_1, ..., x_n)$
 - Think of it as a label/value of each node of G
- What is the meaning of $A \cdot x$?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$y_i = \sum_{j=1}^n A_{ij} x_j = \sum_{(i,j) \in E} x_j$$

• Entry y_i is a sum of labels x_j of neighbors of i

What is the meaning of A-x?

- - of neighbors of *j*
- j^{th} coordinate of $A \cdot x$:
 Sum of the x-values
 of neighbors of i $\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$
 - Make this a new value at node j

$$A \cdot x = \lambda \cdot x$$

- Spectral Graph Theory:
 - Analyze the "spectrum" of matrix representing G
 - Spectrum: Eigenvectors x_i of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues λ_i : $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$

$$\lambda_1 \le \lambda_2 \le \dots \le \lambda_n$$