Numerical Optimization Exercise II

Jonathan Balzer

Geometric Modeling and Scientific Visualization Center King Abdullah University of Science and Technology

Wolfe Condition

 $c_2 \in (c_1, 1)$

Assume: \boldsymbol{p}_k is descent direction, i.e. $\nabla f(\boldsymbol{x}_k)^{\top} \boldsymbol{p}_k < 0$.

Sufficient decrease (Armijo) condition:

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \le f(\boldsymbol{x}_k) + c_1 \alpha_k \nabla f(\boldsymbol{x}_k)^{\top} \boldsymbol{p}_k$$
$$c_1 \in (0,1)$$

Sufficient step size (curvature) condition:

$$\nabla f(\mathbf{x}_k + \alpha_k \mathbf{p}_k)^{\top} \mathbf{p}_k \geq c_2 \nabla f(\mathbf{x}_k)^{\top} \mathbf{p}_k$$

Other Notions of "Good Step Size"

Goldstein condition:

$$f(\mathbf{x}_k) + (1 - c)\alpha_k \nabla f(\mathbf{x}_k)^{\top} \mathbf{p}_k$$

$$\leq f(\mathbf{x}_k + \alpha_k \mathbf{p}_k)$$

$$\leq f(\mathbf{x}_k) + c\alpha_k \nabla f(\mathbf{x}_k)^{\top} \mathbf{p}_k$$

$$c \in (0, \frac{1}{2})$$

Sufficient decrease condition while backtracking

Fundamental Convergence Result

Theorem (Zoutendijk)

Let \mathbf{x}_k be a sequence iteratively defined by $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$, where \mathbf{p}_k is a descent direction, and α_k satisfies the Wolfe condition for every step k. Assume f is bounded from below, continuously differentiable and has Lipschitz-continuous first derivative. Then,

$$\lim_{n\to\infty}\sum_{k=0}^n\cos^2\theta_k\|\nabla f(\boldsymbol{x}_k)\|^2<\infty$$

where

$$\cos \theta_k = \frac{-\nabla f(\boldsymbol{x}_k)^{\top} \boldsymbol{p}_k}{\|\nabla f(\boldsymbol{x}_k)\| \|\boldsymbol{p}_k\|}.$$

Rates I (Steepest Descent)

Theorem (Gradient Descent with Exact Line Search)

When the steepest descent method with exact line search is applied to the strongly convex quadratic function

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} + \mathbf{b}^{\top}\mathbf{x} + \mathbf{c},$$

the error norm satisfies

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_{\mathbf{A}} \leq \frac{\kappa - 1}{\kappa + 1} \|\mathbf{x}_k - \mathbf{x}^*\|_{\mathbf{A}}$$

for all k greater than some k_0 .

Rates II (Quasi-Newton)

Theorem (Dennis and Moré)

Suppose $f \in C^3(\mathbb{R}^n)$. Consider the iteration $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{p}_k$ with descent direction $\mathbf{p}_k = -\mathbf{B}_k \nabla f(\mathbf{x}_k)$. Under the assumption that f is strictly convex in \mathbf{x}^* , the convergence of $\mathbf{x}_k \to \mathbf{x}^*$ is superlinear if and only if

$$\lim_{k\to\infty}\frac{\|(\mathbf{B}_k-\nabla^2 f(\mathbf{x}^*))\boldsymbol{p}_k\|}{\|\boldsymbol{p}_k\|}=0.$$

Rates III (Newton)

Theorem (Local result)

Assume $f \in C^2(\mathbb{R}^n)$ with Lipschitz-continuous Hessian around a minimizer \mathbf{x}^* . The iteration $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{p}_k$ with descent direction $\mathbf{p}_k = -\nabla^2 f(\mathbf{x}_k)^{-1} \nabla f(\mathbf{x}_k)$

- (i) converges quadratically if x_0 is sufficiently close to x^* .
- (ii) Moreover, the gradient $\nabla f(\mathbf{x}_k)$ converges quadratically to $\mathbf{0}$ in norm.

Step Size Selection

exact line search

backtracking

▶ interpolation

Exercises

1. Compute the minimizer of $f: \mathbb{R}^n \mapsto \mathbb{R}$,

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x} + \mathbf{c},$$

in the set

$$D = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} = \boldsymbol{x}_0 + \alpha \boldsymbol{p}, \boldsymbol{x}_0, \boldsymbol{p} \in \mathbb{R}^n, \alpha \in \mathbb{R}_{\geq 0} \}.$$

Suppose $\mathbf{x}_0 = \mathbf{0}$ and \mathbf{p} lies in an eigenspace of \mathbf{A} . Show that steepest descent with an exact line search will find the minimum of f in a single step.

Exercises

2. Show by construction that if $0 < c_2 < c_1 < 1$, there may be no step lengths satisfying the Wolfe condition.

Exercises

3. Reason mathematically that if $\phi(\alpha_0)$ is large, α_1 can be quite small in the step size selection by interpolation. Give an example for which this situation arises.