

Project documentation

▼ 0. Dataset Description

- Files
 - train.csv historical data including Sales
 - **store.csv** supplemental information about the Stores
- Data fields
 - **Store** a unique numerical value for each store (1 1115)
 - Sales the turnover for any given day (in \$)
 - Customers the number of customers on a given day
 - **Open** indicates if the store was open (0 = closed, 1 = open)
 - StateHoliday indicates a state holiday (a = public holiday, b = Easter holiday, c = Christmas, 0 = None)
 - SchoolHoliday indicates a school holiday (0 = no , 1 = yes)
 - **StoreType** differentiates between 4 different store models (a, b, c, d)
 - Assortment describes an assortment level (a = basic, b = extra, c = extended)
 - **CompetitionDistance** distance in meters to the nearest competitor store
 - CompetitionOpenSince[Month/Year] gives the approximate year and month of the time the nearest competitor was opened
 - Promo indicates whether a store is running a promo on that day (0 = no promotion, 1 = yes)

 Promo2 - Promo2 is a continuing and consecutive promotion for some stores (0 = no, 1 = yes)

▼ 1. Data description and cleaning

- 1.1 Format columns
 - rename columns from CamelCase to snake case
- 1.2 Data dimensions
 - verify number of lines and columns
- 1.3 Data types
 - · verify data types
 - necessary correction: date from object to datetime
- 1.4 Verify missing data
 - variables with missing values
 - competition_distance (2642), competition_open_since_month (323348),
 competition_open_since_year (323348)
- 1.5 Fill missing values
 - Hypothesis:
 - competition_distance → for non-available information, it was assumed a very large distance (200000)
 - variables with date information missing were replaced with by the corresponding date sale record
 - competition open since month
 - competition open since year
 - ▼ 1.6 Descriptive Statistics
 - Statistical metrics
 - numerical attributes
 - highlight:

competition_distance
 high positive skew and large kurtosis → there is a high concentration of competition near the rossmann stores

competition_open_since_year
 high negative skew and large kurtosis → most of the competition stores opened recently

categorical attributes

state_holiday

- a = public holiday, b = Easter holiday, c = Christmas
 - in general, sales during holidays have a similar behavior
- store_type
 - store model b has higher sales
- assortment
 - the assortment level b has higher sales

▼ 2. Feature engineering

- 2.1 Business hypothesis
 - goal: raise possible questions to investigate in the explanatory analysis → therefore, evaluate if there are missing features that could be derived from the original dataset
 - hypothesis construction
 - phenomenon
 - ▼ ex: sales
 - agents
 - ▼ ex: aspects that impact sales, such as store type
 - agent's attributes

2.2 Hypothesis

- based on the available dataset, the hypotheses investigate the effects of promotion, holidays, competition, store type and assortment:
 - 1. Stores with extended assortments sell more.
 - 2. Stores with closer competitors sell less.
 - 3. Stores with more promotion days sell more.
 - 4. Stores open over the Christmas holiday sell more.
 - 5. Stores sell more over the years.
 - 6. Stores sell more in the second semester.
 - 7. Stores sell more after the 10th of every month.
 - 8. Stores sell less on weekends.
 - Stores sell less during school holidays.

• 2.3 Feature Engineering

- to test the hypothesis, the extra variables required are:
 - the day, year, and month of the sale (week of the year was also generated)
 - period of time since the competition started

▼ 3. Data filtering

- ▼ filter the variables not available during production
 - ▼ customers: number of customers inside the store
- ▼ filter conditions that are not the interest
 - data when the store is closed
 - ▼ data when no sales were made

▼ 4. Exploratory analysis

- ▼ goal:
 - business insights and hypothesis validation (item 2.1)
 - verify variables more important for the model
- ▼ 4.1 Univariate analysis
 - sales:
 - have a lognormal distribution; therefore, the logarithm is normal
 - numerical and categorical variables
 - highlights:
 - among the holidays, public holidays are the best for sales
 - store type 'a' makes more sales than d, followed by 'c' and 'b' at last
 - store with assortments basic and extended make more sales
- ▼ 4.2 Bivariate analysis
 - ▼ Hypothesis testing (item 2.1)
 - 1. Stores with extended assortments sell more.

a. False: stores with basic assortment sell more

• the behavior is corroborated by weekly sales per assortment

2. Stores with closer competitors sell less.

a. False: stores with closer competition sell more

• indeed, competition distance does not explain sales (weak correlation)

3. Stores with promotions sell more.

a. True: during days without promotion, sales are 28% smaller, on average

Mean sales during promo days: R\$ 8228.74

Mean sales during days without promo: R\$ 5929.83

4. Stores open over the Christmas holiday sell more.

a. False: sales are higher during public holidays during every registered year

5. Stores sell more over the years.

False: stores sell less over the years.

Indeed, time and sales are highly negatively correlated.

6. Stores sell more in the second semester.

a. False: stores sell less in the second semester

7. Stores sell more after the 10th of every month.

True: the cumulative sales after the 10th are higher than before this day

8. Stores sell less on weekends.

True. There is a significant correlation between the day of the week and sales

9. Stores sell less during school holidays.

True: stores sell more on regular days (blue bars) than during school holidays (orange bars) - the exception is july - august

▼ 4.3 Multivariate analysis

- ▼ Numerical attributes:
 - ▼ most correlations are weak between variables and sales are weak

▼ Categorical attributes

- Cramer's V is calculated to evaluate the correlation of categorical variables
- The results indicate a medium correlation between store type and assortment

▼ 5. Data preparation

- goal:
 - adjust variables to similar ranges for model application (otherwise the adjustments might be biased)
 - o transform the var. resposta com variação mais próxima possível de normal
 - represent the distribution of cyclical variables (e.g. months): transformation
 - transform categorical variables into numerical values: encoding
- ▼ 5.1 Normalization: not applied, as none of the variables has a gaussian distribution (see item 4.1.2)
- ▼ 5.2 Rescaling
 - ▼ applied to the variables with non-gaussian distribution (as verified in item
 - 4.1.2): competition distance, competition since, and year
 - ▼ methods:

- ▼ Robust scaler for competition_distance and competition_since
 - ▼ selected to avoid over sensibility to outliers
- ▼ Min-Max scaler for year
 - ▼ selected because it keeps the variable distribution (important because 'year' represents temporal evolution)
 - ▼ this method may be sensible to outliers; however, the 'year' variable does not have significant outliers

▼ 5.3 Transformation

- ▼ encoding
 - ▼ method one hot encoding for the variable 'state_holiday'
 - ▼ it creates new columns for the types of state_holiday, and attributes 0 and 1 as no/yes
 - ▼ method label encoding for the variable 'store_type'
 - ▼ it attributes a random number to each store type
 - ▼ method of ordinal encoding to the variable assortment
 - ▼ it attributes a **hierarchical** number to each type of assortment
- ▼ response variable transformation
 - ▼ sales is transformed to log, to comply with a gaussian distribution
- ▼ nature transformation
 - ▼ variables that indicate temporal evolution were transformed as sin and cos: 'day_of_week', 'month', 'day', 'week_of_year'

▼ 6. Feature selection

- goal: select features most adequate to predict the response variable, using the Boruta algorithm
- ▼ split data into training and testing

- variables dropped:
 - the original variables must be dropped from the dataframe after the nature transformation
 - variables with temporal format:
 - competition_open_since_month, competition_open_since_year,
 year_week, competition_open_since (these are also redundant, as
 the competition_since variable compiles the information)
- test: last 6 weeks of the dataset
- train: the remaining data
- ▼ Boruta application
 - ▼ the algorithm indicates as most relevant features the variables
- ▼ Feature selection
 - from the Boruta and from the exploratory analysis, the following variables were then selected:
 - 'store', 'promo', 'store_type', 'assortment', 'competition_distance',
 'promo2', 'competition_since', 'day_of_week_sin', 'day_of_week_cos',
 'month_cos', 'month_sin', 'day_sin', 'day_cos', 'week_of_year_cos',
 'week of year sin'

▼ 7. Machine learning modeling

- ▼ Average
 - ▼ the average sale of each store is the baseline model
- ▼ 2 linear and 1 non-linear model
 - ▼ to evaluate if sales are better predicted by linear or non-linear relationships
- **▼** Linear regression
- ▼ Linear regression regularized (Lasso)
- ▼ Random forest regressor
- ▼ Cross validation was implemented for all models

- ▼ It provides the real model performance, as the process is less influenced by the train/test split subjectivity
- ▼ Selected model:
 - ▼ Random forest model, that generated lower errors

▼ 9. Model performance

- ▼ Business implications related to model error
 - MAE (mean absolute error) ≈ R\$ 665
 - Compared to the range and mean of sales in the test dataset (R\$ 6995 and 40982, respectively), it is not a significant amount
 - Compared to the simple Average model (i. e. estimate the next year sales based on the mean amount sold past year), the presented model reduces the MAE from R\$ 1355 to R\$ 736
 - Error per store
 - The sales for some stores are more difficult to predict
 - example: store 292 has a MAPE of 63%

This means that, if the model says that the revenue is R\$100, in reality it can vary between R\$ 37 and R\$ 163

Total performance

 The model predicts sales for the next 6 weeks of all stores between R\$ R\$282,663,190.49 and R\$ R\$284,310,750.55

	Scenario	Values
0	predictions	R\$283,486,970.52
1	worst_scenario	R\$282,663,190.49
2	best_scenario	R\$284,310,750.55