1) $\chi_{t} = \alpha \chi_{t-1} - \frac{1}{2} \chi_{t-2} + \xi_{t} \qquad \xi_{t} \sim N(0, b^{2}) \qquad \chi_{t} \sim N(0, 1)$ Ex indep of all to set 9=0 Øz=- = y(h) = E[X+ X+-h] = E \{a x + -1 - \frac{1}{2} x + -2 + \frac{1}{4} \} \text{\$\chi_t\$} = E ax+-1x+- - + x+-2x+- + E+ x+- $\gamma(h) = \int a \gamma(h-1) - \frac{1}{2} \gamma(h-2) \qquad h \neq 0$ Y(L)= Y(-L) 2 ay(1-1)- = y(1-2) + b2 h=0 3 equations $\gamma(0) = a \gamma(1) - \frac{1}{2} \gamma(2) + b^2$ γ(1) = a γ(0) - = γ(1) $y(z) = 0 \ y(z) - \frac{1}{2} \ y(0)$ $\gamma(1) = \frac{\alpha}{1 - (-\frac{1}{2})} \gamma(0) = \frac{2}{3} \alpha \gamma(0)$ y(0) = a \frac{2}{3} a y(0) - \frac{1}{2} a \frac{2}{3} a y(0) - \frac{1}{2} y(0) \rightarrow + b^2 y(0) = 3 02 y(0) +4 y(0) +62 $\gamma(0) = b^2$ |a| < 3/2 to (1-3 a2-4) be real/positive

Autocorrelation - Take (h) = y(h)/y(o) P(h) = a P(h-1) - 2 P(h-2) h=1 h=1) $\rho(1) = \alpha \rho(0) - \frac{1}{2}\rho(1) = \frac{2}{3}\alpha$ | |a| < 3/2 for this to work For Yi) $\chi_{\epsilon} = \underbrace{\xi}_{\psi_{\epsilon}} \underbrace{\xi}_{\xi_{\epsilon}} \underbrace{\xi}_{\xi_{\epsilon}} < \alpha$ in the most generic form, with $\Theta(L) = 1 + \sum_{i=1}^{q} \Theta_i L^i$ $\Phi(L) = 1 - \sum_{i=1}^{q} \emptyset_i L^i$ Ψ(L)= Σ 4, L we have) $\underline{\Psi}(L) X_t = \Theta(L) \mathcal{E}_t$ To be causal) $\chi_t = \Psi(L) \, E_t$ subst. χ_t in a bove. 50) $\Theta(L) = \Phi(L) \Psi(L)$ With q=0 and p=2 this gives 1 = (1-0,L-02L2) (40+4,L+4,L2+...) = 40 + (7, -0, 40) L + (1/2 - Ø14, - Ø240) L2 + (7- 91/2 - 02 41) L3 + ...

)
There must be an L on the LHS motching the RHS:	
$I = Y_0$	
$0 = Y_1 - \emptyset_1 Y_0$ $0 = Y_2 - \emptyset_1 Y_1 - \emptyset_2 Y_0$	
1 1 100 6 100 1-100 0 = 100 1-4	
any E & Z is	
0 = Yi - Ø, Yi-1 - Øz Yi-z	
Giving Yo = 1 Y ₁ = a	
many mand on the second of	
101<3/2)-
7 U 3 E 1	
 3()) = 3 X (2) (Sect Set)	
 20 CM - W - MD - 1 (2	
Thomas and Sing her Only would	
(= + + + + + + + + + + + + + + + + + +	
+ 31(9 0 - 9.6 - 21) + 1/20 - 1)+ 1/20	