Curso DM "Datos"

Parte I

Profesores: Felipe Bravo - Hernán Sarmiento

Basado en las slides de Bárbara Poblete

¿Qué entendemos por dato?

¿Qué entendemos por dato?

Juan Pérez obtuvo un 5.8 en la segunda prueba de historia

Juan Pérez obtuvo mejor nota que el 75% del resto del curso

Juan Pérez es un buen alumno

¿Qué entendemos por dato?

 Colección de hechos tales como números, palabras, mediciones, o solo descripción de cosas.

• Utilizado generalmente para análisis.

¿Cómo describimos un dato?

Attributes

	Tid	Refund	Marital Status	Taxable Income	Cheat				
	1	Yes	Single	125K	No				
	2	No	Married	100K	No				
	3	No	Single	70K	No				
	4	Yes	Married	120K	No				
Objects -	5	No	Divorced	95K	Yes				
Objects <	6	No	Married	60K	No				
	7	Yes	Divorced	220K	No				
	8	No	Single	85K	Yes				
	9	No	Married	75K	No				
	10	No	Single	90K	Yes				

Estructura básica

Dataset, records, atributos

Diferentes enfoques

- Analizar en base a las relaciones entre datos
- Extraer relaciones y luego trabajar con estos valores, no con los datos mismos

Atributos y métricas

- Atributo: propiedad que puede variar de un objeto a otro
- Escala de medición o métrica: es necesario definirla de forma exacta, para poder comparar.

TIPOS DE ATRIBUTOS

Differences between **Ratio Data** measurements, true zero exists Quantitative Data Differences between **Interval Data** measurements but no true zero Ordered Categories **Ordinal Data** (rankings, order, or scaling) Qualitative Data Categories (no **Nominal Data** ordering or direction)

TIPOS DE ATRIBUTOS

- NOMINAL (IDs, color de ojos, categorías de bacterias)
- ORDINAL (rankings, notas, altura en {alto, mediano, bajo})
- INTERVALO (Fechas, temperaturas °C o °F)
- RAZÓN (Temperatura Kelvin, largo, hora)

TIPOS DE ATRIBUTOS

(Operaciones y propiedades)

- NOMINAL (IDs, color de ojos, categorías de bacterias)
 Distinción ==, != (solo diferencia de nombre)
- ORDINAL (rankings, notas, altura en {alto, mediano, bajo})
 Orden <, <=, >, >= (permite ordenar los datos)
- INTERVALO (Fechas, temperaturas °C o °F)
 Adición + -, grado de diferencia entre medidas pero no la razón entre ellos (el cero es arbitrario).
- RAZÓN (Temperatura Kelvin, largo, peso)
 Multiplicación * y /

CUALITATIVOS (Categóricos)

Nominal y Ordinal, aunque sean numéricos deben ser tratados como símbolos

CUANTITATIVOS (Numéricos)

Intervalo y Razón deben ser tratados como números y tienen propiedades numéricas (continuos o discretos)

Por qué la temperatura en Kelvin es Razón y Celsius es Intervalo?

Operaciones o propiedades

- 1. Distinción = $y \neq$
- 2. Orden <, \leq , > y \geq
- 3. Adición + y -
- 4. Multiplicación * y /
 - NOMINAL (1)
 - ORDINAL (1,2)
 - INTERVALO (1,2,3)
 - RAZÓN (1,2,3,4)

• Atributos DISCRETOS:

- Atributos categóricos.
- A menudo representados como enteros
- binarios (finitos)
- Ej: códigos postales o conjunto de palabras en docs.

Atributos CONTINUOS:

- Números reales o valores flotantes
- Ej: temperatura, altura, peso (infinitos)

Formatos de datos

Datos estructurados

Datos que han sido *formateados y modelados* para un "fácil" acceso.

Usualmente se organizan en tablas.

Poseen una estructura fija mediante columnas.

Un nuevo valor se representa como una fila.

Ejemplo: excel, .csv o tablas relacionales (SQL)

Nombre mascota	Especie	Raza	Edad	Sexo	Peso
Doris	Canino	Schnauzer	3	Hembra	8
Clotilde	Canino	Mestizo	14	Hembra	7
Tony	Felino	DPC	0.5	Macho	2
Lorenzo	Canino	Mestizo	3	Macho	1.5

Nombre mascota	Especie	Raza	Edad	Sexo	Peso
Doris	Canino	Schnauzer	3	Hembra	8
Clotilde	Canino	Mestizo	14	Hembra	7
Tony	Felino	DPC	0.5	Macho	2
Lorenzo	Canino	Mestizo	3	Macho	1.5

¿Qué problemas podríamos tener con datos en este formato?

Nombre mascota	Especie	Raza	Edad	Sexo	Peso
Doris	Canino	Schnauzer	3	Hembra	8
Clotilde	Canino	Mestizo	14	Hembra	7
Tony	Felino	DPC	0.5	Macho	2
Lorenzo	Canino	Mestizo	3	Macho	1.5

Agregar nuevas columnas: • Chip

- Celo
- Castración
- Esterilización
- Crías

Nombre mascota	Especie	Raza	Edad	Sexo	Peso	Celo	Alergias
Doris	Canino	Schnauzer	3	Hembra	8	NO	SI
Clotilde	Canino	Mestizo	14	Hembra	7	SI	NO
Tony	Felino	Ángora	0.5	Macho	2	??	??
Lorenzo	Canino	Mestizo	3	Macho	1.5	??	SI

Agregar nuevas columnas: • Chip

- Celo
- Castración
- Esterilización
- Alergías

Nombre mascota	Especie	Raza	Edad	Sexo	Peso	Celo	Alergias
Doris	Canino	Schnauzer	3	Hembra	8	NO	SI
Clotilde	Canino	Mestizo	14	Hembra	7	SI	NO
Tony	Felino	Ángora	0.5	Macho	2	??	??
Lorenzo	Canino	Mestizo	3	Macho	1.5	??	SI

Agregar nuevas columnas: •

- Chip
- Celo
- Castración
- Esterilización
- Alergias

Muchos valores **VACÍOS**

Formatos de datos

Datos semi-estructurados

Datos que sigue una estructura más dinámica y flexible.

Usualmente se organizan de manera jerárquica.

No necesita modificar la estructura completa al agregar un nuevo atributo.

En lugar de utilizar columnas, se usan "tags" para representar atributos

Ejemplos: XML, json, e-mails, algunas web

Datos semi-estructurados

Nombre mascota	Especie	Raza	Edad	Sexo	Peso
Doris	Canino	Schnauzer	3	Hembra	8
Clotilde	Canino	Mestizo	14	Hembra	7

XML

```
<mascota>
  <nombre>Doris</nombre>
  <especie>Canino</especie>
  <raza>Schnauzer</raza>
  <edad>3</edad>
  <color>Sal y pimienta</color>
  <peso>8</peso>
  <celo> SI </celo>
  </mascota>
```

json

```
{
  "nombre": "Doris",
  "especie": "Canino",
  "raza": "Schnauzer",
  "edad": "3",
  "color": "Sal y pimienta",
  "peso": "8"
}
```

Formatos de datos

Datos NO estructurados

Datos **no** poseen estructura alguna **previamente** definida.

Es posible encontrar **patrones** de cómo están organizados los datos.

Sin embargo, involucra mucho trabajo de pre-procesamiento de datos.

80% de los datos están en este formato.

Ejemplos: documentos de texto, imágenes, video, audio, etc.

Nombre mascota	Especie	Raza	Edad	Sexo	Peso
Doris	Canino	Schnauzer	3	Hembra	8
Clotilde	Canino	Mestizo	14	Hembra	7

Se ha ingresado el paciente **Doris**, de especie **canino**. Nació aproximadamente el 2017, por lo que tiene **3 años**. Su manto es color **sal y pimienta** y patas blancas. Este es su primer control, pesando **8kg** aproximadamente.

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

	team	coach	рlа У	ball	score	game	n W	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Datos tipo grafos

Datos ordenados

- 1) datos secuenciales (transacciones con tiempo asociado: libros embarazo -> pañales)
- 2) secuencias datos ordenados pero sin tiempo (ADN, secuencias de genes, etc.)
- 3) Datos ordenados en el espacio
- 4) Datos ordenados en el tiempo: series de tiempo (fluctuaciones de la bolsa)
- 5) Autocorrelación temporal: objetos cercanos en el tiempo son parecidos (mediciones temp en 2 minutos continuos)
- 6) Autocorrelación espacial: obj. cercanos en el espacio son parecidos (i.e., ley del metal)

Características Generales (sets de Datos)

- Dimensionalidad: nro. de atributos, maldición de la dimensionalidad (curse of dimensionality) tiene que ver con problemas al trabajar con muchas dimensiones (preprocesamiento: reducción de dimensionalidad)
- Dispersión: mayoría de las dimensiones son 0 para los datos, puede tener ventajas, como no necesitar almacenar los valores 0, sólo los 1s. (Ej. Grafo de la Web y sus enlaces).
- Resolución (ej. variaciones de presión atmosférica en horas es notoria, pero en meses no se detecta).

Bag of Words Example

Document 1

The quick brown fox jumped over the lazy dog's back.

Document 2

Now is the time for all good men to come to the aid of their party.

Document 2

aid	0	1
all	0	1
back	1	0
brown	1	0
come	0	1
dog	1	0
fox	1	0
good	0	1
jump	1	0
lazy	1	0
men	0	1
now	0	1
over	1	0
party	0	1
quick	1	0
their	0	1
time	0	1

Stopword List

for	
is	
of	
the	
to	

queries

Reducción de dimensionalidad (DOCUMENTO WEB)

Calidad de los datos

- No poseen la calidad deseada a priori, los algoritmos de DM se enfocan en:
 - Detección y corrección de problemas de calidad
 - 2. Usar algoritmos que toleren datos de poca calidad
- i.e., limpieza de datos

Calidad de los datos

Time spent in a life of a Data Scientist

@datavizzdom Gulrez

Perception

Reality

¿Por qué se producen errores?

Tipos de errores:

- Ruido y outliers
- Valores faltantes
- Datos duplicados

¿Qué es el ruido?

- Componente aleatoria en la medición (distorsión de voz en un teléfono malo)
- Datos espaciales, temporales

Outliers

 Objetos con características considerablemente diferentes a la mayoría

Valores faltantes

- ¿Motivos?
 - Información no recolectada (e.j: no quieren dar edad y/o peso)
 - Atributos no aplicables a todos (e.j: impuesto en niños)

Valores faltantes...

- ¿Cómo los manejo?
- Eliminando el objeto
- Estimando (interpolando) valores
- Ignorar

Población efectivamente censada

Moradores ausentes (670.772 Hab.)

censo 2012

Valores inconsistentes

Datos mal ingresados

Datos duplicados

 El dataset incluye datos duplicados o cuasi-duplicados

 Gran problema al juntar datos de fuentes múltiples

e.j: RT (casos deseados, no deseados)