6/8/2020

Online Homework System

Assignment Worksheet 6/8/20 - 1:00:41 PM EDT

Name:	
Class #:	

Instructor: Nathaniel Stevens

Class: Section #: Assignment: Ouiz 4

UW Möbius -

Question 1: (1 point)

Suppose that M=9 independent hypothesis tests are performed, each at significant level $\alpha=0.02$. Calculate the family-wise error rate in this case. Round your answer to 4 decimals.

Question 2: (1 point)

In class we've discussed four methods for dealing with the multiple comparison problem. These methods vary in their likelihood of committing Type I Errors. By dragging and dropping the names below, arrange the four methods from least likely to commit a Type I Error (left) to most likely to commit a Type I Error (right).

null

Holm Benjamini-Hochber

Question 3: (1 point)

TRUE or FALSE: In order to account for the multiple comparison problem, you will need fewer experimental units in each condition than you would have needed otherwise.

(a) True

Question 4: (1 point)

In class we've discussed four methods for dealing with the *multiple comparison problem*. These methods vary in their likelihood of committing Type II Errors. By dragging and dropping the names below, arrange the four methods from *least powerful* (left) to *most powerful* (right). Note that *powerful* here refers to "power" in the hypothesis testing sense of the word.

null Bonferroni Sidák Holm Benjamini-Hochberg

Question 5: (1 point)

M=10 hypothesis tests have been performed and their sorted p-values are plotted below. The blue, red and purple curves respectively depict the Bonferroni, Holm, and Benjamini-Hochberg thresholds associated with $\alpha^*=0.05$.

Based on the plot above, indicate whether you REJECT or ACCEPT each of the null hypotheses below, on the basis of the *Bonferroni Correction*.

Г	
	REJECT
77	
$ig H_{0,(1)}$	ACCEPT
	II
	(REJECT)
7.7	
$ig H_{0,(2)}$	ACCEPT
	II
	[1
	REJECT
77	
$igg H_{0,(3)}$	ACCEPT
	REJECT
77	[]
$igg H_{0,(4)}$	ACCEPT
	REJECT
77	
$H_{0,(5)}$	ACCEPT
	REJECT
$H_{0,(6)}$	ACCEPT
	REJECT
H	
$H_{0,(7)}$	ACCEPT
	11
	REJECT
$H_{0,(8)}$	[<u>]</u>
110,(8)	ACCEPT
<u> </u>	
	REJECT
$H_{0,(9)}$	[]
[110,(9)	ACCEPT
	11
	REJECT
$H_{0,(10)}$	
[, , , , , , , , , , , , , , , , , , ,	ACCEPT
	L 1

Question 6: (1 point)

M=10 hypothesis tests have been performed and their sorted p-values are plotted below. The blue, red and purple curves respectively depict the Bonferroni, Holm, and Benjamini-Hochberg thresholds associated with $\alpha^*=0.05$.

Based on the plot above, indicate whether you REJECT or ACCEPT each of the null hypotheses below, on the basis of *Holm's Procedure*.

Question 7: (1 point)

M=10 hypothesis tests have been performed and their sorted p-values are plotted below. The blue, red and purple curves respectively depict the Bonferroni, Holm, and Benjamini-Hochberg thresholds associated with $lpha^*=0.05$.

Based on the plot above, indicate whether you REJECT or ACCEPT each of the null hypotheses below, on the basis of the *Benjamini-Hochberg Procedure*.

Question 8: (4 points)

M=4 hypothesis tests were performed and the following p-values were observed: $p_1=0.0662,\ p_2=0.0497,\ p_3=0.0412,\ p_4=0.0035$.

Listed below are four versions of p_3^* , the adjusted p-value for hypothesis test 3. Using the drop-downs, indicate which correction method gave rise to each adjusted p-value.

Bonferroni:
$$P_{k}^{*} = Mp_{k}$$
 $p_{i}^{*} = 0.2648$ $p_{2}^{*} = 0.1988$ $p_{3}^{*} = 0.1648$ $p_{4}^{*} = 0.0140$

$$\frac{\ddot{S} i d \ddot{a} k}{p_1^* = 0.2396}$$
 $p_2^* = 0.1845$ $p_3^* = 0.1549$ $p_4^* = 0.0139$

Pu = Pu = 0.0035, Pa) = P3 = 0.0412, Pan = P2 = 0.0497, Pan = P1 = 0.0662

K	P(K)	M-K+1	P(K) x (M-K+1)	P(K)
	0.0035	4	०.०।५	0.014 - Max [0.017]
2	0.0412	3	0.1236	0.1236
3	0.0497	2	0.0997	0.1236
4	0.0662	1	0.0662	0.12360
				\ \ \ \ \

max {0.014,0.1236}

max {0.014, 0.1236, 0.0994}

max {0,014,0.1236,0.0997}

$$rac{1}{\sqrt{p_3^*}} = p_{(2)}^* = 0.1236$$

Pan = Pu = 0.0035, Pan = P3 = 0.0412, Pan = P2 = 0.0497, Pan = P1 = 0.0662

k [P(K)	M P(e)/K	P(K)	¬
\sim	0.0035	0.014	0.014	← mi~ {0.014,0.0824,0.0663,0.0662}
2	0.0412	0.0824		← mi~{0.0824,0.0663,0.0662}
3	0.0407	0.0663		min {0.0663,0.0662}
4	0.0662	0.0662	6.0662	min {0.0062}

$$\therefore \left(p_3^* = p_{123}^* = 0.0662 \right)$$