PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-107044

(43)Date of publication of application: 10.04.2002

(51)Int.CI.

F25D 21/04 F25B 1/00 F25B 1/10 F25D 11/00 F25D 19/00 F25D 23/00

(21)Application number: 2000-299700

(71)Applicant : SANYO ELECTRIC CO LTD

(22)Date of filing:

29.09.2000

(72)Inventor: MOGI JUNICHI

KUBOTA JUNICHI AOKI HITOSHI

KAKINUMA HIROTAKA

MATSUOKA MASAYA

(54) REFRIGERATOR

(57)Abstract:

PROBLEM TO BE SOLVED: To enhance cooling efficiency while preventing condensation at an opening 30, without influencing the inside temperature of a refrigerator.

SOLUTION: A piping arrangement for a tubular radiator 52 is provided at the inner edge portion of the opening 30, to which a cover and a door are brought contact. The radiator 52 is arranged singly around the opening 30 as though it is drawn in a single stroke.

LEGAL STATUS

[Date of request for examination]

14.04.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-107044 (P2002-107044A)

(43)公開日 平成14年4月10日(2002.4.10)

(51) Int.Cl.'	識別記号	F I デーマコート*(参考)
F 2 5 D 21/04	•	F 2 5 D 21/04 J 3 L 0 4 5
	·	E
		F
•		· H
F 2 5 B 1/00	395	F 2 5 B 1/00 3 9 5 Z
·	審査請求	未請求 請求項の数9 OL (全 9 頁) 最終頁に続く
(21)出願番号	特願2000-299700(P2000-299700)	(71)出願人 000001889
		三洋電機株式会社
(22)出願日	平成12年9月29日(2000.9.29)	大阪府守口市京阪本通2丁目5番5号
		(72)発明者 茂木 淳一
		大阪府守口市京阪本通2丁目5番5号 三
•		洋電機株式会社内
	•	(72)発明者 久保田 順一
		大阪府守口市京阪本通2丁目5番5号 三
·		洋電機株式会社内
		(74)代理人 100083231
,		弁理士 紋田 誠 (外1名)
		最終頁に統

(54)【発明の名称】 冷蔵庫

(57)【要約】

【課題】 開口部30の結**露**防止を行いながら庫内温度 に影響を与えないようにして冷却効率を高める。

【解決手段】 管状の放熱器52を蓋及び扉が当接する 開口部30の緑部内側に敷設配管する。その際に、放熱器52が当該開口部30を1重に取巻くように1筆書で 敷設する。

【特許請求の範囲】

【請求項1】 冷媒を圧縮する圧縮機と、冷媒を放熟させて凝縮させる細長い管状の放熱器と、冷媒を減圧する減圧装置と、冷媒を蒸発させて冷熱を発生させる蒸発器とにより形成された冷凍回路を備えると共に、筐体内部が仕切壁により複数の部屋に区画されて、各部屋の開口部には蓋又は扉が当接して当該部屋を閉塞して前記冷凍回路で発生した冷熱により各部屋を冷却してなる冷蔵庫において、

前記管状の放熱器を前記蓋及び扉が当接する開口部の緑部内側に敷設配管し、かつ、その際に前記放熱器が当該開口部を1重に取巻くように1筆書で敷設したことを特徴とする冷蔵庫。

【請求項2】 前記冷媒として二酸化炭素を用いると共に、前記圧縮機を前段圧縮要素と後段圧縮要素とにより形成し、かつ、該前段圧縮要素からの冷媒を冷却して前記後段圧縮要素に供給させる中間冷却器を設けて、冷媒を2段圧縮して前記放熱器に供給するようにしたことを特徴とする請求項1記載の冷蔵庫。

【請求項3】 前記仕切壁が温度帯域の異なる部屋を仕 20 切る際には、当該仕切壁に敷設されている前記放熱器を 低温帯域の部屋側に近づけて敷設したことを特徴とする 請求項1又は2記載の冷蔵庫。

【請求項4】 前記開口部の縁部で前記放熱器が敷設されていない部分には、近接して敷設されている前記放熱器と熱接触させた熱伝達部材を配設し、当該部分に前記放熱器の熱を伝導させて加熱するようにしたことをことを特徴とする請求項1乃至3いずれか1項記載の冷蔵庫。

【請求項5】 前記熱伝達部材が、銅、アルミニューム、熱伝導パテのうち少なくとも1つであることを特徴とする請求項4記載の冷蔵庫。

【請求項6】 前記開口部の緑部で前記放熱器が敷設されていない部分には、当該部分を加熱する電気ヒータ若しくは前記中間冷却器を設け、または隣接する前記放熱器を当該部分まで延設して敷設したことを特徴とする請求項1乃至5いずれか1項記載の冷蔵庫。

【請求項7】 前記放熱器が筐体側面にも敷設され、かつ、前記開口部の縁部で前記放熱器が敷設されていない部分を加熱すべく、該放熱器を当該部分まで延設して敷 40 設する際には、前記側面に敷設されている放熱器を当該部分に迂回させて敷設したことを特徴とする請求項6記載の冷蔵庫。

【請求項8】 前記放熱器又は熱伝達部材を開口部の縁部内側に固定して敷設する際には、熱伝達範囲を広めると共に、速やかな熱伝達が行えるようにアルミニュームテープ等の熱伝導性の高い部材で固定して敷設するようにしたことを特徴とする請求項4乃至7いずれか1項記載の冷蔵庫。

【請求項9】 前記放熱器が2重に敷設される場所に

は、当該放熱器を紙テープ、樹脂テープ等の低熱伝導性 部材により固定し、かつ、その際は当該低熱伝導性部材 が庫内側になるようにして敷設したことを特徴とする請 求項1万至8いずれか1項記載の冷蔵庫。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、冷却効率を高めた 冷蔵庫に関する。

[0002]

10 【従来の技術】冷蔵庫(冷凍冷蔵庫を含む)は、内箱と 外箱との間に断熱材が充填されて形成された筐体を有 し、内部空間は仕切壁により区画されて、例えば冷蔵 室、冷凍室、野菜室等の部屋が複数形成されて多様化す るニーズに応えられるようになっている。

【0003】各部屋には食品等を出し入れするために前面側に開口部が設けられ、当該開口部は蓋や扉により密閉されるようになっている。

【0004】図12は当該冷蔵室の蓋等を取除いた際の 概略構成を示す斜視図で、筐体110の内部は仕切板1 11により区画されて、冷蔵室112、野菜室113、 アイスルーム114、冷凍室115等が形成されてい

【0005】また、冷蔵庫は冷媒を圧縮する圧縮機、冷媒を放熱させて凝縮させる細長い管状の放熱器、冷媒圧力を減圧する減圧装置、冷媒を蒸発させて冷熱を発生させる蒸発器等からなる冷媒回路を有し、当該冷凍回路で発生した冷熱により庫内空気を冷却して、当該庫内に収納された食品等を冷却するようになっている。

【0006】このとき、蓋や扉が当接する各開口縁部1 30 16は庫内空気により冷却されるため結露が発生する場合があるので、放熱器121を細長い管状に形成し、これを図12に示すように、開口縁部116に敷設することで当該開口縁部116を加熱して結露発生を防止するようにしている。

【0007】なお、図13は仕切壁111の部分断面図で、扉又は蓋117が当接する仕切壁の仕切壁111の内部には放熱器121が敷設されている。

[0008]

【発明が解決しようとする課題】しかしながら、従来の冷蔵庫では放熱器 1 2 1 が開口部を 2 重に取囲むように敷設されているため、当該部分で放熱される熱量が結露防止に対しては多過ぎて庫内温度に影響を与え(温度上昇をもたらす)、冷却効率を低下させる問題があった。

【0009】そこで、本発明は、開口部の結髂防止を行いながら庫内温度に影響を与えないようにして冷却効率を高めた冷蔵庫を提供することを目的とする。

[0010]

【課題を解決するための手段】上記課題を解決するため、請求項1にかかる発明は、冷媒を圧縮する圧縮機 50 と、冷媒を放熱させて凝縮させる細長い管状の放熱器

と、冷媒を減圧する減圧装置と、冷媒を蒸発させて冷熱 を発生させる蒸発器とにより形成された冷凍回路を備え ると共に、筐体内部が仕切壁により複数の部屋に区画さ れて、各部屋の開口部には蓋又は扉が当接して当該部屋 を閉塞して冷凍回路で発生した冷熱により各部屋を冷却 してなる冷蔵庫において、管状の放熱器を甍及び扉が当 接する開口部の緑部内側に敷設配管し、かつ、その際に 放熱器が当該開口部を1重に取巻くように1筆書で敷設 して、開口部の結路防止を行いながら庫内温度に影響を 与えないようにして冷却効率を高めたことを特徴とす る。

【0011】 請求項2にかかる発明は、冷媒として二酸 化炭素を用いると共に、圧縮機を前段圧縮要素と後段圧 縮要素とにより形成し、かつ、該前段圧縮要素からの冷 媒を冷却して後段圧縮要素に供給させる中間冷却器を設 けて、冷媒を2段圧縮して放熱器に供給するようにした ことを特徴とする。

【0012】請求項3にかかる発明は、仕切壁が温度帯 域の異なる部屋を仕切る際には、当該仕切壁に敷設され ている放熱器を低温帯域の部屋側に近づけて敷設したこ とを特徴とする。

【0013】請求項4にかかる発明は、開口部の縁部で 放熱器が敷設されていない部分には、近接して敷設され ている放熱器と熱接触させた熱伝達部材を配設し、当該 部分に放熱器の熱を伝導させて加熱するようにしたこと をことを特徴とする。

【0014】 請求項5にかかる発明は、熱伝達部材が、 銅、アルミニューム、熱伝導パテのうち少なくとも1つ であることを特徴とする。

【0015】請求項6にかかる発明は、開口部の縁部で 30 放熱器が敷設されていない部分には、当該部分を加熱す る電気ヒータ若しくは中間冷却器を設け、または隣接す る放熱器を当該部分まで延設して敷設したことを特徴と

【0016】請求項7にかかる発明は、放熱器が筐体側 面にも敷設され、かつ、開口部の縁部で放熱器が敷設さ れていない部分を加熱すべく、該放熱器を当該部分まで 延設して敷設する際には、側面に敷設されている放熱器 を当該部分に迂回させて敷設したことを特徴とする。

達部材を開口部の縁部内側に固定して敷設する際には、 熱伝達範囲を広めると共に、速やかな熱伝達が行えるよ うにアルミニュームテープ等の熱伝導性の高い部材で固 定して敷設するようにしたことを特徴とする。

【0018】請求項9にかかる発明は、放熱器が2重に 敷設される場所には、当該放熱器を紙テープ、樹脂テー ブ等の低熱伝導性部材により固定し、かつ、その際は当 該低熱伝導性部材が庫内側になるようにして敷設したこ とを特徴とする。

[0019]

【発明の実施の形態】本発明の実施の形態を図を参照し て説明する。図1は冷蔵庫10の斜視図であり、図2は その断面図である。

【0020】冷蔵庫10の筺体は、鉄等の磁性金属から なる外箱11とABS等の合成樹脂からなる内箱12と が発泡ポリウレタン等の発泡断熱材13を介して一体化 されて形成され、内部空間には複数の仕切壁14(14 a,14b,14c)が設けられて冷蔵室18、野菜室 19、アイスルーム20、セレクトルーム21、冷凍室 22等が設けられている。

【0021】このような構成の場合には、例えば冷蔵室 18と野菜室19とを区画する仕切壁14 a及び冷凍室 22とアイスルーム20やセレクトルーム21等とを仕 切る仕切壁14bのように設定温度帯域が近い部屋の仕 切壁14には連通孔15が設けられて、庫内空気がこれ らの部屋を流動できるようになっている。

【0022】一方、野菜室19とアイスルーム20等と は設定温度帯域が大きく違うので、これらの部屋を仕切 る仕切壁14cには、上述した連通孔15は設けられて いない。

【0023】なお、セレクトルーム21は、例えば約3 ℃に設定されて冷蔵室、約1℃に設定されてチルド室、 約-1℃に設定されて氷温室、約-3℃に設定されてパ ーシャル室、約−7℃に設定されてやわらか冷凍室、約 -18℃に設定されて冷凍室として切換えて利用される ものである。

【0024】そして、冷蔵室18の前面開口部30には **扉25が設けられ、野菜室19、セレクトルーム21、** 冷凍室22等には前面側に蓋26(26a, 26b, 2 6 c) が付いた引出しが設けられている。無論、この扉 25や蓋26には、断熱材が内装されている。

【0025】また、扉25や引出しを締めたときに開口 部30が塞がれ、この状態を維持するように、開口緑部 31と当接する扉25や蓋26には磁石27が内装され た扉パッキン28が設けられいる(図6参照)。

【0026】このような冷蔵庫には、図3及び図4に示 すような冷凍回路が設けられている。なお、図4は図3 に示す冷凍回路を立体組立図で示した図である。

【0027】このような冷凍回路は、冷媒を圧縮する圧 【0017】請求項8にかかる発明は、放熱器又は熱伝 40 縮機51、冷媒を放熱させて凝縮させる放熱器52、冷 媒を減圧させる減圧装置53、冷媒を蒸発させて冷熱を 発生する蒸発器55等により構成されて、これらが冷媒 配管により接続されている。

> 【0028】なお、近年の冷蔵庫は、蒸発器55を冷蔵 室18や野菜室19用等に設けた第1蒸発器55aと冷 凍室22やアイスルーム20用等に設けた第2蒸発器5 5 bにより構成される場合があり、図3及び図4はこの ような場合を示している。

【0029】なお、第1蒸発器55aと第2蒸発器55 50 bとが同時に運転されることがない場合には、図4等に

30

示すように3方弁54により冷媒をどちらかの蒸発器5 5に循環するように切換え、同時運転する場合には両方 に冷媒が両方に循環するようにする。無論このとき、各 蒸発器55に循環する冷媒の循環量は3方弁54に動き (流路切換度合) に応じて決る。

【0030】圧縮機51は、冷蔵庫の底部下側に配設さ れ、また第1蒸発器55aは冷蔵室18の上部背面側 に、第2蒸発器55bは冷凍室22やアイスルーム20 の背面側に設けられている。

【0031】また放熱器52は、筐体の上面や側面及び 開口緑部31に延設して敷設される冷媒配管であり、筺 体上面や側面では主に外箱11と発泡断熱材13との間 に配設されて、当該発泡断熱材13により固定されてい

【0032】一方、開口縁部31には、図5に示すよう に当該開口部30を1重に取巻くように放熱器52が一 筆書きで敷設されて、庫内の冷たい空気により開口緑部 31が冷却されて結露するのを防止している。

【0033】図6は、野菜室19とアイスルーム20と を仕切る仕切壁14cの様子を示す部分断面図であり、 図7は冷凍室22とアイスルーム20とを仕切る仕切壁 14の様子を示す部分断面図である。

【0034】野菜室19とアイスルーム20のように設 定温度帯域が離れている場合には、放熱器52を低温室 側に近づけて設け仕切壁14cを設け、冷凍室22とア イスルーム20のように設定温度帯域が近い場合には放 熱器52は仕切壁14bの略幅中心に設けられている。

【0035】このような構成で、圧縮機51からのホッ トガスが放熱器52を循環することにより放熱し減圧装 置53で絞られて第1蒸発器55aや第2蒸発器55b に供給される。

【0036】第1蒸発器55aには、第1ファン56a (56)により野菜室19からの空気が図示しない吸気 ダクトを介して送風されているので、当該第1蒸発器5 5 a に循環してきた冷媒はこの空気と熱交換し蒸発して 圧縮機51に戻る。

【0037】一方、野菜室19からの空気は冷媒と熱交 換することにより冷却され、吹出ダクト35を介して冷 蔵室18の上部から当該冷蔵室18に吹出される。この 冷蔵室18は、野菜室19と仕切壁14に設けられた連 40 通孔15を介して連通しているので、冷蔵室18と野菜 室19とが冷却されるようになる。なお、冷気が直接当 らないように邪魔板部材62が設けられている。

【0038】また第2蒸発器55bには、第2ファン5 6 b (5 6) により冷凍室 2 2 からの空気が吸気ダクト 36を介して送風されているので、当該第2蒸発器55 bに循環してきた冷媒はこの空気と熱交換し蒸発して圧 縮機51に戻る。

【0039】一方、冷凍室22の空気は冷媒と熱交換す

ルーム20の上部から当該アイスルーム20に吹出され、 る。このアイスルーム20は、冷凍室22と仕切壁14 に設けられた連通孔15を介して連通しているので、ア イスルーム20と冷凍室22とが冷却されるようにな る。

【0040】放熱器52は、図5に示すように1重に敷 設されて開口緑部31を加熱するようになっている。無 **論、全ての開口部30についてこのように1重に敷設す** ることができない場合が発生する。例えば、図5におい てA領域やB領域がこれに該当する。このような場合に ついては後述する。

【0041】開口縁部31の放熱器52を1重に敷設す ることにより、結露防止を図りながら庫内への影響を最 小限に押えることが可能になり、冷却効果を高めること ができる。

【0042】特に、放熱器52の熱が開口縁部31に幅 広く伝わるように熱伝導性の高いアルミニュームテープ で当該放熱器52を固定することが好ましい。

【0043】なお、先に説明したように仕切壁14がア イスルーム20と冷蔵室18とを仕切る場合のように、 設定温度帯域が大きくずれている部屋を仕切る場合に は、放熱器52を低温側に近づけて設け、冷蔵室18や 野菜室19のように略同じ設定温度帯域の部屋を仕切る 場合には仕切壁14の略中間に設けている。

【0044】これにより、結露防止を行いながら、各部 屋への熱影響を最小限に押えることができて冷却効率を 向上させることが可能になっている。

【0045】ところで、上述したように全ての開口縁部 31に放熱器52を1重に敷設することが困難であり、 2 重配管となる部分(A領域)及び放熱器 5 2 が配管さ れない部分(B領域)が発生する。

【0046】2重管となるA領域については、図8に示 すように、当該放熱器52の庫内側を紙テープや樹脂テ ープ等の低熱伝導性部材60で覆い固着して庫内への熱 伝導を押えるようにする。

【0047】また、放熱器52が配設されないB領域に ついては、図4及び図5に示すように、筐体側面に配設 されている放熱器52を当該部分に迂回させるようにし てもよく、図9(a)及び図9(b)に示すように、近 接して敷設されている放熱器52と熱接触させた熱伝達 部材 6 1 (6 1 a、 6 1 b) を設けて熱接触している放 熱器52で放熱される熱を当該B領域に伝導させて加熱 するようにしてもよい。

【0048】このような、熱伝達部材61としては銅板 やアルミニューム板等の高い熱伝導特性を持つ金属部材 6 1 a で接続したり、熱伝導性パテ 6 1 b を埋込んだ入 することが可能である。

【0049】金属部材61aを用いる場合には、ロウ付 等により熱接触を行わせることも可能であり、また当該 ることにより冷却され、吹出ダクト37を介してアイス 50 金属部材61aを放熱器52にカシメたり圧着させても

よい。

【0050】一方、図9 (c) に示すように、この領域 のみを2重に放熱器52を敷設することも可能であり、 図9 (d) に示すように電気ヒータ54を別途敷設する ことも可能である。

【0051】なお、2重に放熱器52を敷設する場合 は、上述したように紙テープや樹脂テープ等の低熱伝導 性部材60で覆い固着して庫内への熱伝導を押えるよう にすることが好ましい。

【0052】なお、これまで説明した冷蔵庫に用いられ る冷凍回路にはRー22冷媒やHFC冷媒等が用いられ るが、近年環境に優しい冷媒として注目を浴びている自 然冷媒である二酸化炭素を用いるようにしても良い。

【0053】この二酸化炭素を用いると動作圧が高くな るので、図10に示すように圧縮要素を前段圧縮要素 5 1 a と後段圧縮要素 5 1 b とにより構成し、この間に中 間冷却器57を設けて前段圧縮要素51aからの吐出さ れた冷媒を冷却し、その冷媒を後段圧縮要素51bで圧 縮するようにする。

【0054】中間冷却器57で冷却された冷媒の熱は廃 棄されるので、当該熱で放熱器52が設けられていない 開口部30の領域(B領域)を加熱するようにすること も可能である。

【0055】なお、図1及び図2等に示す冷蔵室18や 冷凍室22等の設置位置の構成は例示であって、例えば 図11に示すような構成であっても本発明の効果を得る ことができることは付言するまでもない。

[0056]

【発明の効果】以上説明したように、発明によれば、管 状の放熱器を蓋及び扉が当接する開口部の縁部内側に敷 30 設配管し、かつ、その際に放熱器が当該開口部を1重に 取巻くように1 筆書で敷設したので、開口部の結露防止 を行いながら庫内温度に影響を与えないようにして冷却 効率を高めることが可能になる。

【0057】また、冷媒として二酸化炭素を用いる場合 には、中間冷却器を設け、この中間冷却器からの廃熱で 開口部を加熱するようにしたので冷却効率を向上する。

【0058】また、仕切壁が温度帯域の異なる部屋を仕 切る際には、当該仕切壁に敷設されている放熱器を低温 帯域の部屋側に近づけて敷設したので、開口部の結露防 40 止を行いながら庫内温度に影響を与えないようにして冷 却効率を高めることが可能になる。

【0059】また、開口部の緑部で放熱器が敷設されて いない部分には、近接して敷設されている放熱器と熱接 触させた熱伝達部材を配設したので、当該部分に放熱器 の熱を伝導させて加熱できるようになり、開口部の結路 防止を行いながら庫内温度に影響を与えないようにして 冷却効率を高めることが可能になる。

【0060】また、開口部の緑部で放熱器が敷設されて いない部分には、当該部分を加熱する電気ヒータ等を設 50 21 セレクトルーム・

け、または隣接する放熱器を当該部分まで延設して敷設 し、あるいは側面に敷設されている放熱器を当該部分に 迂回させて敷設するようにしたので、開口部の結び防止 を行いながら庫内温度に影響を与えないようにして冷却 効率を高めることが可能になる。

【0061】また、アルミニュームテープ等の熱伝導性 の高い部材で放熱器又は熱伝達部材を開口部の緑部内側 に固定して敷設するようにしたので、熱伝達範囲が広が ると共に、速やかな熱伝達が行えるようになり、開口部 の結露防止を行いながら庫内温度に影響を与えないよう にして冷却効率を高めることが可能になる。

【0062】さらに、放熱器が2重に敷設される場所に は、当該放熱器を紙テープ、樹脂テープ等の低熱伝導性 部材により固定し、かつ、その際は当該低熱伝導性部材 が庫内側になるようにして敷設したので、開口部の結路 防止を行いながら庫内温度に影響を与えないようにして 冷却効率を高めることが可能になる。

【図面の簡単な説明】

【図1】本発明の実施の形態の説明に適用される冷蔵庫 の斜視図である。

【図2】図1の断面図である。

【図3】冷蔵庫に用いられる冷凍回路図である。

【図4】立体的に示した冷凍回路図である。

【図5】開口部に配設された放熱器の敷設方法を示す図 である。

【図6】野菜室とアイスルームとを仕切る仕切壁の部分 断面図である。

【図7】アイスルームと冷凍室とを仕切る仕切壁の部分 断面図である。

【図8】放熱器を2重に敷設した際の構造を示す図であ

【図9】放熱器が1重に敷設されない部分の結露防止を . 行う場合の説明図である。

【図10】二酸化炭素を冷媒として用いた場合の冷媒回 路図である。

【図11】野菜室等の設置位置の異なる冷蔵庫における 開口部に配設された放熱器の敷設方法を示す図である。

【図12】従来の技術の説明に適用される扉等を除いた 冷蔵庫の斜視図である。

【図13】従来の技術の説明に適用される仕切壁の断面 図である。

【符号の説明】

10 冷蔵庫

11 外箱

13 発泡断熱材

14 (14a, 14b, 14c) 仕切壁

18 冷蔵室

19 野菜室

20 アイスルーム

- 2 2 冷凍室
- 25 扉
- 26 蓋
- 30 開口部
- 3 1 開口縁部
- 5 1 b 後段圧縮要素
- 5 1 a 前段圧縮要素

【図1】

51 圧縮機

- 5.2 放熱器
- 53 減圧装置
- 55 (55a, 55b) 蒸発器
- 57 中間冷却器
- 60 低熱伝導性部材
- 61 (61a, 61b) 熱伝達部材

[図2]

【図3】

[図6]

53

【図10】

[図12]

22

フロントページの続き

(51) Int.CI. ⁷	識別記 号	ΓĮ	テーマコード(参考)
F 2 5 B 1/10		F 2 5 B 1/10	P
F 2 5 D 11/00	1 0 1	F 2 5 D 11/00	1 0 1 A
. 19/00	5 1 0	19/00	5 1 0 C
	5 3 0		5 3 0 A
23/00	3 0 5	23/00	3 0 5 D

(72)発明者 青木 均史

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

(72)発明者 柿沼 裕貴

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

(72)発明者 松岡 雅也 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 F ターム(参考) 3L045 AA01 AA06 BA01 CA02 DA02 EA01 GA07 HA02 HA07 JA00 PA04 PA05