

KIIT Deemed to be University Online End Semester Examination(Spring Semester-2021)

Subject Name & Code: Applicable to Courses:

Full Marks=50 Time:2 Hours

SECTION-A(Answer All Questions. Each question carries 2 Marks)

Time:30 Minutes

(7×2=14 Marks)

				-
Question	Question Type	Question	<u>CO</u>	Answer Key
<u>No</u>	(MCQ/SAT)		<u>Mapping</u>	(For MCQ
				Questions only)
Q.No:1	MCQ	Arrange the following	CO1	(c)
		Memory/Storage		
		Device in increasing		
		order of proximity to		
		the CPU.		
		a) Registers,		
		Electronic disk,		
		Main		
		Memory(RAM),		
		Cache.		
		b) Registers,		
		Cache,		
		Electronic disk,		
		Main		
		Memory(RAM).		
		c) Registers,		
		Cache,		
		Main		
		Memory(RAM),		
		Electronic disk.		
		d) Cache,		
		Registers		
		Main		
		Memory(RAM),		
		Electronic disk.		
		Electronic disk.		
	MCO	Annongo the following	CO ₁	(a)
	<u>MCQ</u>	Arrange the following	COI	(c)
		Memory/Storage		
		device in increasing		
		order of speed of		
		execution.		
		a) Magnetic tapes,		

		Electronic disk, Optical disk, Magnetic disk. b) Magnetic tapes, Electronic disk, Magnetic disk Optical disk, c) Magnetic tapes, Optical disk, Magnetic disk, Electronic disk. d) Magnetic tapes, Optical disk, Electronic disk, Electronic disk, Electronic disk, Magnetic disk,		
	<u>MCQ</u>	A memory storage which is both volatile and non-volatile. a)Electronic disk b) Optical disk c) RAM d)Cache	CO1	a)
	MCQ	Arrange the following Memory/Storage device in increasing order of cost. a) Magnetic tapes, Registers, Optical disk, Magnetic disk. b) Magnetic tapes, Optical disk, Registers. c) Magnetic disk, Registers. c) Magnetic tapes, Cache, Magnetic disk, Registers. d) Magnetic tapes, Cache, RAM, Registers.	CO1	(b)
Q.No:2	MCQ	Which of the following is a valid process state transitions? a) Ready – Ready b) Ready – Waiting c) Waiting – Ready d) Waiting – Running	CO2	(c)
	<u>MCQ</u>	Which of the following is an invalid process state transitions? a) Ready – New b) Ready – Waiting c) Waiting – Running	CO2	(d)

		d) All of the above		
	MCQ	CPU scheduler involves the following queue a) Device queue b) Ready queue c) Both of above d) None of above	CO2	(b)
	MCQ	Mid-term scheduler involves the following transition a)Ready-Running b)Running-Waiting c)Both of above d)None of above	CO2	(b)
Q.No:3	<u>MCQ</u>	Which of the following transition relates to non-preemption a) Running-Ready b) Running-Waiting c)Ready-Running d) Waiting-Ready	CO2	(b)
		If the fork() is called 'n' times by the parent process, then the number of total processes generated are: a) 2n b) n^2 c) n^2/2 d) 2^n	CO2	(d)
		Which of the following scheduling algorithms may produce starvation: a)FCFS b)Priority c) Only a d) Both a and b	CO2	(d)
		Increasing time quantum in Round Robin (RR) scheduling implies: a)RR behaves like FCFS b)Higher average turn around time c)RR behaves like SJF pre-emptive d)Only b	CO2	(a)

	e)None of the above		
Q.No:4	Given a Resource	CO ₄	(c)
	allocation graph		
	(RAG) with multiple		
	instance multiple		
	resources, choose		
	the correct statement:		
	a) A cycle in RAG		
	guarantees		
	deadlock.		
	b) A cycle in RAG		
	means no		
	deadlock.		
	c) A cycle in RAG		
	may or may not		
	guarantee		
	deadlock.		
	d) Absence of cycle		
	may guarantee		
	no deadlock.		
	Given a Resource	CO ₄	(a)
	allocation graph	•	
	(RAG) with single		
	instance multiple		
	resources, choose		
	the correct statement:		
	a) A cycle in RAG		
	guarantees		
	deadlock.		
	b) A cycle in RAG		
	means no		
	deadlock.		
	c) A cycle in RAG		
	may or may not		
	guarantee		
	deadlock.		
	d) Absence of cycle		
	may guarantee		
	no deadlock.		
	Given a Resource	CO ₄	(a)
	allocation graph		
	(RAG) 'm' resource		
	types and 'n'		
	processes, choose		
	the correct statement:		
	a) RAG algorithm		
	is more efficient		
	than Banker's		
	algorithm by a		
	factor of 'm'.		
	b) RAG algorithm		
	is more efficient		
	than Banker's		
	algorithm by a		
	factor of '1/m'		

	types.		
	c) RAG algorithm		
	is more efficient		
	than Banker's		
	algorithm by a		
	factor of		
	'm/n^2'.		
	d) RAG algorithm		
	is more efficient than Banker's		
	algorithm by a		
	factor of		
	'n^2/m'.		
	Given a Wait for graph	CO ₄	(b)
	(WFG) 'm' resource	•	
	types and 'n'		
	processes, choose		
	the correct statement:		
	a) WFG algorithm		
	is more efficient		
	than Deadlock		
	detection		
	algorithm by a		
	factor of '1/m'.		
	b) WFG algorithm		
	is more efficient than Deadlock		
	detection		
	algorithm by a		
	factor of 'm'.		
	c) WFG algorithm		
	is more efficient		
	than Deadlock		
	detection		
	algorithm by a		
	factor of		
	'n^2/m'.		
	d) WFG algorithm		
	is more efficient		
	than Deadlock		
	detection		
	algorithm by a factor of		
	'm/n^2'.		
	m/n 2.		
Q.No:5	Given two atomic	CO ₃	(b)
2	operations on	55 0	(5)
	semaphore p(),v()		
	choose the correct		
	option:		
	a) p(): s++; v():		
	S++		
	b) p(): s; v(): s++		
	c) p(): s++; v():s		
	d) p(): s; v(): s		

	The problem of busy waiting in semaphore is solved by following functions: a) wait(); sleep() b) wait(); signal() c) block(); wakeup()	CO3	(c)
	d) block(); wait() Given that P and Q are two processes on semaphores S, Q such that: Wait(S) Wait(Q); Wait(Q) Wait(S);	CO ₃	(a)
	Choose the correct option: a) The above sequence will lead to a deadlock. b) The above sequence may lead to a deadlock. c) No deadlock will happen. d) None of the above.		
	A solution for priority inversion may be: (a) Priority acquiring (b) Priority reduction (c) Both of the above (d) None of the above	СО3	(d)
Q.No:6	Let processes P and Q access a shared variable S with critical section. Pick the correct statement: a) P, Q modify S simultaneously b) Q then P may modify S. c) P then Q may modify S d) Both (b) and (c) e) None of the above Given a logical	СО3	(d)

memory of size 16KB and page size of 4B. If the physical memory has a total of 8 bits, (assume byte addressable memory), choose the most appropriate option: a) Data insufficient b) 64 frames, 256B RAM, 12 page table entries c) 64 frames, 256B RAM d) 64 frames, 256B RAM e) 64 frames, 256B RAM, 256 KB page table size e) Address mapping not possible	CO ₅	(d)
Given a logical memory of size 16KB and page size of 4B. If the physical memory has a total of x bits, (assume byte addressable memory), choose the most appropriate option: a) Data insufficient b) 2^(x-2) frames, 256B RAM, 12 page table entries c) 2^(x-2) frames, 2^x B RAM, 2^x KB page table size d) 64 frames, 2^x KB page table size e) Address mapping not possible	CO ₅	(c)
Given a logical memory of size x KB and page size of 4B. If the size of physical memory and that of page table is 256B (assume byte addressable memory),	CO ₅	

	ahaasa tha		
	choose the most appropriate option: a) No. Of pages is 4K b) Size of logical		(d)
	memory is 16KB c) Data insufficient d) Both (a), (b)		
	Given that the total number of TLB accesses is 100 and the total number of page table accesses is 20. If the TLB access time is 20 ns, page table and RAM access time is 100 ns each then there is: a) 45% slowdown in memory-access time b) 40% slowdown in memory-access time c) 50% slowdown in memory-access time d) Data insufficient	CO ₅	(b)
Q.No:7	External fragmentation may be	CO ₅	(d)
	dealt with schemes: a) Only Compaction b) Paging c) Only Paging, Segmentation d) Compaction, paging, segmentation	CO 2	
	Perform FIFO with the following page sequence: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 having a frame size of 4. The number of page faults: a)9 b)10 c)11 d) None of the above	CO5	(b)

Perform FIFO with the following page sequence: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 having a frame size of 3. The number of page faults: a)15 b)11 c)13 d)10	CO ₅	(a)
Perform LRU with the following page sequence: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 having a frame size of 3. The number of page faults: a)15 b)12 c)13 d)10	CO ₅	(b)

SECTION-B(Answer Any Three Questions. Each Question carries 12 Marks)

<u>Time: 1 Hour and 30 Minutes</u> (3×12=36 Marks)

Qu est	<u>Question</u>	CO Map
ion		ping
No		(Eac
		<u>h</u>
		<u>quest</u>
		<u>ion</u>
		shoul
		<u>d be</u>
		from the
		same
		$\frac{\text{CO(s)}}{\text{CO(s)}}$
		<u>))</u>
<u>Q.</u>		CO ₂
Q. <u>No</u> :8	a) Explain the difference between batch, multiprogramming,	
<u>:8</u>	time-sharing and distributed operating system.	
	[2]	
	[2]	

b) Consider process arrival as given below where N = right most significant digit of your Roll No.(ex:- for Roll No. 180854, N=4):

F	rocess	CPU Burst Time(ms)	Arrival Time	Priority	
	A	4	0	2	
	В	3	3	3	
	С	6	N	6	
	D	5	5	N	
	Е	1	15	4	

Calculate the following for *priority (non preemptive)* and *round robin* (time quantum = 2 ms) CPU scheduling algorithm: [10]

- i. Average waiting time
- ii. Turnaround time for each process
- iii. Order of completion(hints:-higher digits indicate higher priority)
 - a) What is the drawback of preemptive priority scheduling algorithm? Explain method to solve it.
 [2]
 - b) Consider process arrival as given below where N = right most significant digit of your Roll No.(ex:- for Roll No. 180854, N=4):

F	rocess	CPU Burst Time(ms)	Arrival Time	Priority	
	A	4	0	2	
	В	3	1	3	
	С	6	3	6	
	D	5	N	N	
	Е	1	4	4	

Calculate the following for *priority* (non preemptive) and round robin (time quantum = 2 ms) CPU scheduling algorithm: [10]

- iv. Average waiting time
- v. Turnaround time for each process
- vi. Order of completion

(hints:-higher digits indicate higher priority)

- A) A.Define and differentiate between preemptive & non-preemptive scheduling. [2]
- B) Consider process arrival as given below where N = right most significant digit of your Roll No.(ex:- for Roll No. 180854, N=4):

Process	CPU Burst	Arrival	Priority
	Time(ms)	Time	
A	4	0	2
В	3	3	3
С	6	4	1
D	5	6	N
Е	1	N	4

Calculate the following for *priority* (non preemptive) and round robin (time quantum = 2 ms) CPU scheduling algorithm: [10]

- (a) Average waiting time
- (b)Turnaround time for each process
- (c)Order of completion

(hints:-higher digits indicate higher priority)

Q. <u>No</u> :9 (a)What is "starvation" of process and how to prevent it? What do you mean by cascading termination? (6+6)

(b) Find the total head movement for FCFS scheduling with following disk queue requests on I/O blocks: 98, 183, 37, 122, 14, 124, 65, 67. Head starts at N (where N= your Roll No. MODULUS 100).

(a)In terms of the variable pid, differentiate between a child process and a parent process? Draw the Queuing diagram representation of process scheduling for all types of schedulers. (6+6)

- (b)Find the total head movement for SSTF scheduling with following disk queue requests on I/O blocks: 98, 183, 37, 122, 14, 124, 65, 67. Head starts at Head starts at N (where N= your Roll No. MODULUS 100).
- (a) What are the criteria for a good CPU scheduling algorithm? State the differences between Multi level queue scheduling(MQS) and Multi level feed back queue scheduling(MFQS)? Which of MQS or MFQS can lead towards starvation of processes? (6+6)

Find the total head movement for SCAN and C-SCAN scheduling with following disk queue requests on I/O blocks: 0, 14, 37, 53, 65, 67, 98, 122, 124, 183. Head starts at N (where N= your Roll No. MODULUS 100). Which algorithm is more

CO₂

& CO6

	preferable and why?		
Q. No :10	Consider a paging memory management system, where each entry of the page table consists of frame address, valid bit(1 bit), present bit(1 bit), protection bit(2 bits), modified bit(1 bit). The virtual address is 18bits, page size is 512 bytes, and page table is exactly fit into one page. The program is allocated with 3 page frames. The program generates the following 16 page numbers (which are part of the virtual address produced by): 0, 17, 18, M, 20, 2, 20, M, 17, 32, 0, 2, 2*M, 0, 16, M (Note: The page numbers are in decimal and M=sum of digits of your Roll No. MODULUS 10). (6+6)	CO6	
	I. Calculate the number of page faults generated for the above page request, assuming a Optimal page replacement algorithm. II. Find the maximum size pf the program for single level paging.		
	Consider a paging memory management system, where each entry of the page table consists of frame address, valid bit(1 bit), present bit(1 bit), protection bit(3 bits), modified bit(1 bit). The virtual address is 18bits, page size is 512 bytes, and page table is exactly fit into one page. The program is allocated with 3 page frames. The program generates the following 16 page numbers (which are part of the virtual address produced by): 0, 17, 18, M+2, 20, 2, 20, M, 31, 32, 0, 18, N, 0, 17, M (Note: The page numbers are in decimal and M=sum of digits of your Roll No. MODULUS 10). (6+6)		
	I. Calculate the number of page faults generated for the above page request, assuming a Optimal page replacement algorithm. II. Find the maximum size pf the program for single level paging.		
	Consider a paging memory management system, where each entry of the page table consists of frame address, valid bit(1 bit), present bit(1 bit), protection bit(2 bits), modified bit(1 bit). The virtual address is 18bits, page size is 512 bytes, and page table is exactly fit into one page. The program is allocated with 3 page frames. The program generates the following 16 page numbers (which are part of the virtual address produced by): 0, 17, 18, M, 20, 2, 20, M+4, 17, 32, 0, 2, M+2, 0, 16, M (Note: The page numbers are in decimal and M=sum of digits of your Roll No. MODULUS 10). (6+6)		
	I. Calculate the number of page faults generated for the above page request, assuming a Optimal page replacement algorithm. II. Find the maximum size pf the program for single level paging.		
Q.	Find a safe sequence(if any) for the following resource	CO ₄	
No	allocation table using deadlock detection algorithm.		
:11	Process Alloc Req Avail Po 010 222 433		
	P1 111 122		

P2 101 322 P3 212 423 P4 000 323

Does the system has deadlock, if so then which are the deadlocked processes? Also find any unsafe sequence and provide the value of 'Work' vector for it. (6+2+4)

Find a safe sequence(if any) for the following resource allocation table using Banker's algorithm.

Process Alloc Max Avail

Po 010 222 433 P1 111 122 P2 101 322 P3 212 423 P4 000 323

Also find any unsafe sequence and provide the value of 'Work' vector for it. processes? (6+4+2)

Convert the following Resource Allocation Graph (RAG) to Wait for Graph (WFG)

Identify the cycle in the corresponding WFG. List the processes which are a part of deadlock.