

PROYECTO FINAL: PROCESAMIENTO DE IMÁGENES SIGUIENDO EL CICLO V

Ingeniería Mecánica y Automotriz Optativa de Especialidad II

GISELA CRUZ SOLÍS EXP. 298509

JESUS ESTEBAN MELENDREZ ROBLES EXP. 301824

BRANDON JOSUE PEREZ URBANO EXP 301838

JOSE VELAZQUEZ GONZALEZ EXP. 292711

CONTENT

- 1. INTRODUCTION
- 2. IMAGE PROCESSING
- 3. REQUIREMENTS
- 4. PROTOTYPE
- 5. COMPONENTS
- 6. CODE
- 7. UNIT TEST
- 8. COMPONENT TEST
- 9. SYSTEM TEST
- 10. ACCEPTANCE TEST
- 11. CONCLUSIONS

INTRODUCTION

Figure 1. V cycle

IMAGE PROCESSING

Figure 2. Image processing

1. REQUIREMENTS

- The system must be able to read an image in RGB channel and convert it to gray scale and get a threshold from the image to finally convert it to a binarized image and save it in the same folder.
- The process previously described must be repeated with ten images provided by the customer, the expectation is that the results are very similar in all tests.

1. REQUIREMENTS

- The system must be able to read an image in RGB channel from the same folder where the code is saved.
- The system must be able to convert the RGB image to gray scale using "im2gray" function in Matlab libraries and get a threshold from the image to finally convert it to a binarized image and save it in the same folder.
- The process previously described must be repeated with ten images provided by the customer, the expectation is that the results are very similar in all tests.

2. PROTOTYPE

Figure 3. Test Images

```
close all;
clear all;
clc;
%% Open image
name = "person2";
A = imread(name, "jpg"); % read the image
subplot(1,3,1);
                         % show the image as original
imshow(A);
title('Original image')
%% Convert to grays scale
G = im2gray(A);
subplot(1,3,2);
imshow(G);
title('Gray scale image')
%% Binaryzation
graylevel = graythresh(G);
BinImage = imbinarize(G,graylevel);
subplot(1,3,3);
imshow(BinImage);
title('Binaryzed image')
%% Write binaryzed image
imwrite(BinImage, "Binary.jpg");
```

3. COMPONENTS

Figure 4. Components

4. CODE

```
close all;
clear all;
clc;
%% Open image
name = "person2";
A = imread(name, "jpg"); % read the image
subplot(1,3,1);
                         % show the image as original
imshow(A);
title('Original image')
%% Convert to grays scale
G = im2gray(A);
subplot(1,3,2);
imshow(G);
title('Gray scale image')
%% Binaryzation
graylevel = graythresh(G);
BinImage = imbinarize(G,graylevel);
subplot(1,3,3);
imshow(BinImage);
title('Binaryzed image')
%% Write binaryzed image
imwrite(BinImage, "Binary.jpg");
```


Figure 6. Results

Open Image

Figure 7. Testing lines of "Open Image" 1.0

Open Image

Figure 8. Testing lines of "Open Image" 2.0

Convert to Grays Scale

Figure 9. Testing lines of "Convert to grays scaele" 1.0

Convert to Grays Scale

Figure 10. Testing lines of "Convert to grays scaele" 2.0

>> G = im2gray(A); >> subplot(1,3,2); >> imshow(G); >> title('Gray scale image') fx >>

Command Window

Binaryzation

>> graylevel = graythresh(G);

>> title('Binaryzed image')

>> subplot(1,3,3);

>> imshow(BinImage);

>> BinImage = imbinarize(G,graylevel);

Figure 11. Testing lines of "Binaryzation"

Save Image

Figure 12. Testing lines of "Save Image"

6. COMPONENT TEST

Figure 13. Open Image Component

```
%% Convert to grays scale
G = im2gray(A);
subplot(1,3,2);
imshow(G);
title('Gray scale image')
```

close all;

clear all;

Figure 14. Convert to gray Component

6. COMPONENT TEST

Figure 15. Binaryzation Component

```
%% Write binaryzed image
imwrite(BinImage, "Binary.jpg");
```


7. SYSTEM TEST

18

8. ACCEPTANCE TEST

19

9. CONCLUSIONS

THANK YOU!