MACM 316 Lecture 34

Alexander Ng

Friday, April 4, 2025

1 The Taylor Method of Order n

If we drop the remainder term, we obtain the **Taylor Method of Order** n.

$$\begin{cases} w_0 = \alpha \\ w_{i+1} = w_i + hT^{(n)}(t_i, w_i) & i = 0, 1, \dots, N - 1. \end{cases}$$

where $T^{(n)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2} f'(t_i, w_i) + \dots + \frac{h^n}{n!} f^{(n)}(t_i, w_i)$ is the n^{th} Taylor Polynomial of f about t_i .

Note: Euler's Method is equivalent to Taylor's Method of Order 1.

1.1 Example: Taylor's Method of Order 2 (24.1)

Use Taylor's Method of order Two to approximate the solution for the IVP

$$\begin{cases} y' = te^{3t} - 2y & 0 \le t \le 1 \\ y = 0 & t = 0. \end{cases}$$

with h = 0.5.

Soln. The first approximation is

$$w_1 = w_0 + h(t_0e^{3t_0} - 2w + 0) + \frac{h^2}{2}(t_0e^{3t_0} + 4w_0)$$

$$= 0 + 0.5(0 - 0) + \frac{(0.5)^2}{2}(0 + 1 + 0)$$

$$= 0.125$$

and the second is

$$w_{2} = w_{1} + h \left(t_{1}e^{3t_{1}-2w_{1}} + \frac{h^{2}}{2}f\left(t_{1}, e^{3t_{1}} + e^{3t_{1}} + f(w_{1})\right) \right)$$

$$= 0.125 + 0.5 \left(0.5e^{1.5} - 2(0.125)\right)$$

$$+ \frac{(0.5)^{2}}{2} \left(0.5e^{1.5} + e^{1.5} + 4(0.125)\right)$$

$$= 2.02323897$$

1.2 Intermediate Point Methods (24.2)

If we want to determine an intermediate point (e.g. for some $t \in (t_{i-1}, t_i)$), then Cubic Hermite Interpolation based on $(y(t_{i-1}), y'(t_{i-1}), y(t_i), y'(t_i))$ is a particularly natural choice for a Taylor Method of degree ≤ 4 . Such an interpolation has the advantages that it can be constructed locally and that y'(t) = f(t, y(t)) is given.

To interpolate results from very high order Taylor Methods (n > 4), we will need higher order oscillating polynomials to preserve the overall accuracy of the results.

1.3 Error Analysis fo Taylor's Method (24.3)

The local truncation error for Taylor's Method of Order n is easily derivced:

$$y_{i+1} - y_i - hf(t_i, y_i) - \frac{h^2}{2} f'(t_i, y_i) - \dots - \frac{h^n}{n!} f^{(n-1)}(t_i, y_i)$$
gratuitous cancellations yield
$$= \frac{h^{n+1}}{(n+1)!} f^{(n)}(\xi_i, y(\xi_i))$$
where $y_i \equiv y(t_i)$

Thus the local truncation error is

$$\tau_{i+1}(h) = \frac{y_{i+1} - y_i}{h} - f(t_i, y_i) - \frac{h}{2} f'(t_i, y_i) - \dots - \frac{h^n}{n!} f^{(n-1)}(t_i, y_i)$$
$$= \frac{h^n}{(n+1)!} f^{(n)}(\xi_i, y(\xi_i))$$

Thus, if
$$y \in C^{(n+1)}[a, b]$$

 $\implies y^{(n+1)}(t) = f^{(n)}(t, y(t))$ is bounded
and $\tau_i = \mathcal{O}(h^n)$ for each $i = 1, 2, ..., N$.

2 Runge-Kutta Methods (24.4)

Taylor Methods are seldom used in practice because they require hte computation and evaluation of the derivatives of f(t, y). These evaluations can be complicated and expensive.

Runge-Kutta Methods have the high local truncation error of the Taylor Methods but do not need compute and evaluate the derivatives of f(t, y). To give some idea of how Runge-Kutta methods are developed, we will now show the derivation of a simple second-order method. Here, the increment of w is a weighted average of two estimates of the increment which we will call k_1 and k_2 .

$$\begin{cases} w_{n+1} = w_n + ak_1 + bk_2 \\ k_1 = hf(t_n, w_n) \\ k_2 = hf(t_n + \alpha h, w_n + \beta k_1). \end{cases}$$

we can think of k_1 and k_2 as estimates of the change in y when t advances by h because they are the product of the change in t and a value for the slope of the curve.

Runge-Kutta methods often use the simple Euler estimate as the first eestimate of δy . Now our problem si to devise a scheme by choosing hte four parameters a, b, α, β . We do so by making the local truncation error of (2).

We re-write (2) as

$$w_{n+1} = w_n + ahf(t_n, w_n) + bhf(t_n + \alpha h, w_n + \beta h + f(t_n, w_n)).$$

The local truncation error is then

$$\tau_{n+1}(h) = \frac{y_{n+1} - y_n}{n} - af(t_n, y_n) - bf(t_n + \alpha h, y_n + \beta h f(t_n, y_n)).$$

Applying a Taylor Series of degree 2:

$$y_{n+1} = y_n + h f(t_n, y_n) + \frac{h^2}{2} \underbrace{f'(t_n, y_n)}_{f_t(t_n, y_n) + f_y(t_n, y_n) \cdot f(t_n, y_n)} + \mathcal{O}(h^3).$$

$$f(t_n + \alpha h, y_n + \beta h f(t_n, y_n))$$

= $f(t_n, y_n) + f_t(t_n, y_n) \alpha h + f_y(t_n, y_n) f(t_n, y_n) \beta h + \mathcal{O}(h^2)$

Thus the local truncation error will be $\mathcal{O}(h^2)$ provided

$$a+b=1$$

$$\alpha b = \frac{1}{2}$$

$$\beta b = \frac{1}{2}$$

but there is not enough flexibility to obtain a third order method. (Proof is left as an exercise.)

2.1 Examples of Runge-Kutta Methods (24.7)

$$\begin{cases} a = 0 \\ b = 1 \\ \alpha = \frac{1}{2} \end{cases} \Longrightarrow \begin{cases} w_0 = y(t_0) \\ w_{n+1} = w_n + hf(t_n + \frac{h}{2}, w_n + \frac{h}{2}f(t_n, w_n)) \end{cases}$$
$$\beta = \frac{1}{2}$$