مثال إختبار شهادة ختم التعليم الأساسي

التمرين الأول

1) يلى كل سؤال من أسئلة هذا التمرين ثلاث إجابات إحداها فقط صحيحة

ضع (×) أمام الإجابة الصحيحة

: و كان BC=2 و المثلث ABC=3 و BC=3 فإن المثلث BC=3 قائم في BC=3

$$C \quad \square \qquad \qquad B \quad \square \quad A \quad \square$$

A ب) ABC مثلث متقایس الأضلاع قیس طول ضلعه $3\,cm$ و [AH] الإرتفاع الصادر من ABC إذن :

$$7x^{2}+64$$
 \Box $\sqrt{7}x^{2}+64$ \Box $7x^{2}+64+16\sqrt{7}x$ \Box (2) أنتم مايلي :

$$(\sqrt{5}x)^2 - 9 = (... - 3)(3 + ...)$$

التمرين الثاني

نتائج قسم في الفرض التأليفي في مادة العربية كانت على النحو التالي:

	17,5	15,25	13,75	12,5	9	8	4	العدد من 20
-	2	5	5	7	4	4	3	عدد التلاميذ

1)أ) أكمل الجدول التالي

[15,20[[10,15[[5,10[[0,5[الفئة
	12			عدد التلاميذ
	19			التكرار التراكمي النازل
				العاري ا

- ب) ماهو مدى و منوال هذه السلسلة ؟
- 2) آرسم مضلع التكرارات التراكمية النازلة ؟
 - 3) ماهو موسط هذه السلسلة ؟

التمرين الثالث

$$a = 4\sqrt{3}(\sqrt{3}-1)-5$$
 نعتبر العدد الحقيقي (1

$$a = 7 - 4\sqrt{3}$$
 ابین أن

$$7$$
 و $4\sqrt{3}$ بين قارن بين

$$-rac{4}{7}$$
 و $-rac{1}{\sqrt{3}}$ بين ج) استنتج مقارنة بين

$$a = \left(2 - \sqrt{3}\right)^2$$
 بين أن (2

$$b=7+4\sqrt{3}$$
 ليكن العدد الحقيقي (3) $(7+4\sqrt{3})(7-4\sqrt{3})$ (أ) أحسب ($(b-a)^2=a^2+b^2-2$ بين أن $(a^2+b^2-2=192)$ بين أن (3) جي استنتج أن

التمرين الرابع

$$A=\sqrt{2}x-3$$
 نعتبر العبارة (1

 $x=-\sqrt{2}$ و x=1 و كل من الحالتين التاليتين x=1 و كل من الحالتين التاليتين x=1

$$B = \left(x - 2\sqrt{2}\right)^2$$
 نعتبر العبارة (2

B أنشر و اختصر العبارة

$$(x-2\sqrt{2})^2 + 2(\sqrt{2}x-3) = x^2 - 2\sqrt{2}x + 2$$
 ب) بین أن

ج) استنتج أن B+2A هو مربع لعدد حقيقي

التمرين الخامس

DC=6 منبه منحرف قائم في A و D حيث AB=3 و A و ABCD شبه منحرف قائم في A و ABCD احسب BD

(DC) ابن L المسقط العمودي لـ B على (أ(2

ب) ماهي طبيعة الرباعي ABLD معللا جوابك ؟

 $\lceil DC
ceil$ منتصف لL استنتج أن

BC أ(ا) أحسب (أ(3

B غير قائم في BDC بين أن المثلث

(BD) عين H المسقط العمودي لـ Aعلى

AH د) آحسب

 $\left(BL
ight)$ و $\left(A\,C
ight)$ عين النقطة K تقاطع المستقيمين (3

. $\lceil BL
ceil$ بين أن K منتصف (ب

إصلاح إختبار عدد 1

التمرين الأول

: و كان BC=2 و $AB=\sqrt{5}$ و كان BC=2 فإن المثلث ABC قائم في ABC=3 و (1

A مثلث متقايس الأضلاع قيس طول ضلعه $3\,cm$ و $3\,dm$ الإرتفاع الصادر من ABC (ب

إذن:

$$AH = 3 \times \frac{\sqrt{3}}{2} \quad \boxed{\times}$$

$$AH = 3 \times \frac{\sqrt{3}}{2}$$
 \times $AH = 3 \times \frac{2}{\sqrt{3}}$ \square $AH = 3 - \frac{\sqrt{3}}{2}$ \square

ج) العبارة $\left(\sqrt{7}x+8\right)^2$ تساوي:

 $7x^{2}+64$

$$\left(\sqrt{5}x\right)^2 - 9 = \left(\sqrt{5}x - 3\right)\left(3 + \sqrt{5}x\right)$$
 (2)

التمرين الثاني

1)أ(1

[15,20[[10,15[[5,10[[0,5[الفئة
7	12	8	3	عدد التلاميذ
7	19	27	30	التكرار التراكمي النازل

$$; 20 - 0 = 20$$
 ;

2) مضلع التكرارات التراكمية النازلة

3) موسط هذه السلسلة هذه السلسلة هو 11,6

التمرين الثالث

1)أ)

$$a = 4\sqrt{3}\left(\sqrt{3} - 1\right) - 5$$
$$= 12 - 4\sqrt{3} - 5$$
$$= 7 - 4\sqrt{3}$$

$$7^2 = 49$$
 و $\left(4\sqrt{3}\right)^2 = 48$ ب) لدينا (ب

بما أن
$$48 < 48$$
 فإن $7^2 > \left(4\sqrt{3}\right)^2$ وبالتالي $7^2 > \left(4\sqrt{3}\right)^2$ (لأنهما عددان موجبان)

(لأنهما عددان موجبان قطعا)
$$\frac{1}{7} < \frac{1}{4\sqrt{3}}$$
 (الأنهما عددان موجبان قطعا) ج

(2

$$(2-\sqrt{3})^2 = 4-4\sqrt{3}+3$$
$$= 7-4\sqrt{3}$$
$$= a$$

$$a = \left(2 - \sqrt{3}\right)^2$$
 إذن

() (3

$$(7+4\sqrt{3})(7-4\sqrt{3}) = 7^2 - (4\sqrt{3})^2$$
= 49-48
= 1

$$(b-a)^{2} = b^{2} - 2ab + a^{2}$$

$$= b^{2} + a^{2} - 2$$

$$a^{2} + b^{2} - 2 = (b - a)^{2}$$

$$= \left[7 + 4\sqrt{3} - (7 - 4\sqrt{3})\right]^{2}$$

$$= (8\sqrt{3})^{2} = 192$$

التمرين الرابع

$$A=\sqrt{2}-3$$
 الذا كان $x=1$ فإن $x=1$ الذا كان $A=-5$ فإن $x=-\sqrt{2}$ (2)

$$B = (x - 2\sqrt{2})^2$$
$$= x^2 - 4\sqrt{2}x + 8$$

ب)

$$(x - 2\sqrt{2})^{2} + 2(\sqrt{2}x - 3) = x^{2} - 4\sqrt{2}x + 8 + 2\sqrt{2}x - 6$$
$$= x^{2} - 2\sqrt{2}x + 2$$

$$B + 2A = x^{2} - 2\sqrt{2}x + 2$$
$$= (x - \sqrt{2})^{2}$$

. پافن B+2A هو مربع لعدد صحیح طبیعي

التمرين الخامس

مثلث قائم A إذن حسب نظرية بيتاغور نتحصل على ABD (1

$$BD = 5$$
 إذن $BD^2 = AB^2 + AD^2$
= $3^2 + 4^2 = 25$

2) ب) في الرباعي ABLD لدينا ABLD دينا ABLD و $BAD = 90^\circ$ و ABLD (لأن ABLD شبه منحرف قائم في A قاعدتاه ABLD و ABD و ABD و ABD

. ((DC) على B على) $B \stackrel{\hat{L}}{L} D = 90^\circ$

إذن طبيعة الرباعي ABLD مستطيل

 $L\in [DC]$ و DC=6 و (AB=3 مستطيل و ABLD و DL=3) DL=3 ج) بماأن

 $\left[DC
ight]$ فإن L منتصف

اً) المثلث BLC قائم في Lإذن حسب نظرية بيتاغور نتحصل على BLC

$$BC = 5$$
 إذن $BC^2 = LC^2 + BL^2$
= $3^2 + 4^2 = 25$

$$BC^2 + BD^2 = 5^2 + 5^2 = 50$$
 و $DC^2 = 36$ ب)

Bفإن $DC^2 \neq BC^2 + BD^2$ فإن $DC^2 \neq BC^2 + BD^2$ فإن في حسب عكس نظرية بيتاغور المثلث

(BD) على A على (BD) د) المثلث ABD قائم في A و A المسقط العمودي لـ

 $AH = \frac{12}{5} = 2,4$ ومنه فإن $AH \times 5 = 3 \times 4$ وبالتالي $AH \times BD = AB \times AD$ إذن

3)ب)

في الرباعي ABCL لدينا $ABCL=3\,cm$ و ABCL و ABCL و أضلاع

K و بماأن قطراه $[BL\,]$ و $[A\,C\,]$ يتقاطعان في

. (لأن القطران في متوازي الأضلاع يتقاطعان في منتصفيهما) [BL منتصف في منتصفيهما) .