Chapter 8

Dynamic Programming

Dynamic Programming

Dynamic Programming is a general algorithm design technique for solving problems defined by or formulated as recurrences with overlapping subinstances

- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
- "Programming" here means "planning"
- Main idea:
 - set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
 - solve smaller instances once
 - record solutions in a table
 - extract solution to the initial instance from that table

Example: Fibonacci numbers

• Recall definition of Fibonacci numbers:

$$F(n) = F(n-1) + F(n-2)$$

 $F(0) = 0$
 $F(1) = 1$

• Computing the nth Fibonacci number recursively (top-down):

$$F(n)$$

$$F(n-1) + F(n-2)$$

$$F(n-2) + F(n-3) + F(n-4)$$

Example: Fibonacci numbers (cont.)

Computing the n^{th} Fibonacci number using bottom-up iteration and recording results:

$$F(0) = 0$$

 $F(1) = 1$
 $F(2) = 1+0 = 1$
...
 $F(n-2) = F(n-1) = F(n-1) + F(n-2)$

Efficiency:

- time
- space

- n
- 1

What if we solve it recursively?

Examples of DP algorithms

- Computing a binomial coefficient
- Longest common subsequence
- Warshall's algorithm for transitive closure
- Floyd's algorithm for all-pairs shortest paths
- Constructing an optimal binary search tree
- Some instances of difficult discrete optimization problems:
 - traveling salesman
 - knapsack

Computing a binomial coefficient by DP

Binomial coefficients are coefficients of the binomial formula:

$$(a + b)^n = C(n,0)a^nb^0 + \ldots + C(n,k)a^{n-k}b^k + \ldots + C(n,n)a^0b^n$$

Recurrence:
$$C(n,k) = C(n-1,k) + C(n-1,k-1)$$
 for $n > k > 0$
 $C(n,0) = 1$, $C(n,n) = 1$ for $n \ge 0$

Value of C(n,k) can be computed by filling a table:

Computing C(n,k): pseudocode and analysis

```
ALGORITHM Binomial(n, k)
```

```
//Computes C(n, k) by the dynamic programming algorithm
//Input: A pair of nonnegative integers n \ge k \ge 0
//Output: The value of C(n, k)
for i \leftarrow 0 to n do
    for j \leftarrow 0 to \min(i, k) do
         if j = 0 or j = i
              C[i, j] \leftarrow 1
         else C[i, j] \leftarrow C[i-1, j-1] + C[i-1, j]
return C[n, k]
```

Time efficiency: $\Theta(nk)$

Space efficiency: $\Theta(nk)$

Knapsack Problem by DP

Given *n* items of

integer weights: w_1 w_2 ... w_n

values: $v_1 \quad v_2 \quad \dots \quad v_n$

a knapsack of integer capacity W

find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j ($j \le W$).

Let V[i,j] be optimal value of such an instance. Then

$$V[i,j] = \begin{cases} \max \{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j-w_i \ge 0 \\ V[i-1,j] & \text{if } j-w_i \le 0 \end{cases}$$

Initial conditions: V[0,j] = 0 and V[i,0] = 0

Knapsack Problem by DP (example)

Example: Knapsack of capacity W = 5

	Trace Trace							
item	weight	<u>value</u>						
1	2	\$12						
2	1	\$10						
3	3	\$20						
4	2	\$15			capa	city	$oldsymbol{j}$	
			0	1	2	3	4	5
		0	0	0	0			
	$w_1 = 2, v_1$	= 12 1	0	0	12			
	$w_2 = 1, v_2$	= 10 2	0	10	12	22	22	22
	2 11 -	- 20 2		10	10		20	20

Backtracing finds the actual optimal subset, i.e. solution.

 $w_4 = 2, v_4 = 15$ 4

Knapsack Problem by DP (pseudocode)


```
Algorithm DPKnapsack(w[1..n], v[1..n], W)
   var V[0..n, 0..W], P[1..n, 1..W]: int
  for j := 0 to W do
        V[0,j] := 0
   for i := 0 to n do
                                           Running time and space:
        V[i,0] := \overline{0}
                                                   O(nW).
   for i := 1 to n do
       for j := 1 to W do
               if w[i] \le j and v[i] + V[i-1,j-w[i]] > V[i-1,j] then
                        V[i,j] := v[i] + V[i-1,j-w[i]]; P[i,j] := j-w[i]
               else
                        V[i,j] := V[i-1,j]; P[i,j] := j
  return V[n,W] and the optimal subset by backtracing
```

Longest Common Subsequence (LCS)

- A subsequence of a sequence/string S is obtained by deleting zero or more symbols from S. For example, the following are **some** subsequences of "president": pred, sdn, predent. In other words, the letters of a subsequence of S appear in order in S, but they are not required to be consecutive.
- **A** The longest common subsequence problem is to find a maximum length common subsequence between two sequences.

LCS

For instance,

Sequence 1: president

Sequence 2: providence

Its LCS is priden.

LCS

Another example:

Sequence 1: algorithm

Sequence 2: alignment

One of its LCS is algm.

How to compute LCS?

- \bigcirc Let $A = a_1 a_2 ... a_m$ and $B = b_1 b_2 ... b_n$.
- Q len(i, j): the length of an LCS between $a_1a_2...a_i$ and $b_1b_2...b_i$
- Q With proper initializations, len(i, j) can be computed as follows.

$$len(i, j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ len(i-1, j-1) + 1 & \text{if } i, j > 0 \text{ and } a_i = b_j, \\ \max(len(i, j-1), len(i-1, j)) & \text{if } i, j > 0 \text{ and } a_i \neq b_j. \end{cases}$$

procedure LCS-Length(A, B)

1. **for**
$$i \leftarrow 0$$
 to m **do** $len(i,0) = 0$

2. **for**
$$j \leftarrow 1$$
 to n **do** $len(0,j) = 0$

3. for
$$i \leftarrow 1$$
 to m do

4. **for**
$$j \leftarrow 1$$
 to n **do**

6. else if
$$len(i-1, j) \ge len(i, j-1)$$

7. **then**
$$\begin{bmatrix} len(i,j) = len(i-1,j) \\ prev(i,j) = " & " \end{bmatrix}$$

8. else
$$\begin{bmatrix} len(i,j) = len(i,j-1) \\ prev(i,j) = \text{"} - \text{"} \end{bmatrix}$$

9. **return** *len* and *prev*

Running time and memory: O(mn) and O(mn).

The backtracing algorithm


```
procedure Output-LCS(A, prev, i, j)
```

- 1 if i = 0 or j = 0 then return
- 2 **if** prev(i, j) = " **then** $\begin{bmatrix} Output LCS(A, prev, i-1, j-1) \\ print & a_i \end{bmatrix}$
- 3 **else if** prev(i, j) =" $\stackrel{\wedge}{\bullet}$ " **then** Output-LCS(A, prev, i-1, j)
- 4 **else** Output-LCS(A, prev, i, j-1)

i		j	0		1	4	2	3	4	5	Ī	6	7	8	9	10
					p	ì	r	0	v	i		d	e	n	С	e
0			0		0	(C	0	0	0		0	0	0	0	0
1	p		0	<u> </u>	1	← :	1	← 1	← 1	← 1	•	← 1				
2	r		0	<u> </u>	1		2	← 2	← 2	← 2		← 2				
3	e		0		1		2	2	2	2	4	2	3	← 3	← 3	3
4	S		0		1		2		2	2	_	2	3	3	3	3
5	i		0	<u> </u>	1	<u> </u>	2	2	<u>†</u> 2	3		⊢ 3	1 3	3	3	1 3
6	d		0	<u> </u>	1		2	2	2	3		4	← 4	← 4	← 4	← 4
7	e		0		1		2	2	2	3		4	5	← 5	← 5	5
8	n		0		1		2	2	2	3		4	5	\ 6	← 6	← 6
9	t		0	<u> </u>	1		2	2	2	3	4	4	1 5	† 6	f 6	6

Output: priden

Warshall's Algorithm: Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph
- Example of transitive closure:

0	0	1	0
1	0	0	1
0	0	0	0
0	1	0	0

Warshall's Algorithm

Constructs transitive closure T as the last matrix in the sequence of n-by-n matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where $R^{(k)}[i,j] = 1$ iff there is nontrivial path from i to j with only the first k vertices allowed as intermediate Note that $R^{(0)} = A$ (adjacency matrix), $R^{(n)} = T$ (transitive closure)

$R^{(0)}$							
0	0	1	0				
1	0	0	1				
0	0	0	0				
0	1	0	0				

$R^{(1)}$							
0	0	1	0				
1	0	1	1				
0	0	0	0				
0	1	0	0				

$R^{(2)}$							
0	0	1	0				
1	0	1	1				
0	0	0	0				
1	1	1	1				

	$R^{(3)}$							
0	0	1	0					
1	0	1	1					
0	0	0	0					
1	1	1	1					

$R^{(4)}$							
0	0	1	0				
1	1	1	1				
0	0	0	0				
1	1	1	1				

Warshall's Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of vertices i, j if a path exists from i and j with just vertices $1, \dots, k$ allowed as intermediate

$$R^{(k)}[i,j] = \begin{cases} R^{(k-1)}[i,j] & \text{(path using just 1)} \\ \text{or} \\ R^{(k-1)}[i,k] & \text{and } R^{(k-1)}[k,j] & \text{(path from } i \text{ to } k \\ & \text{and from } k \end{cases}$$

(path using just $1, \dots, k-1$)

Initial condition?

Warshall's Algorithm (matrix generation)

Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

$$R^{(k)}[i,j] = R^{(k-1)}[i,j]$$
 or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

- Rule 1 If an element in row i and column j is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$
- Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1's in $R^{(k-1)}$

Warshall's Algorithm (example)

$$R^{(1)} = \begin{array}{c|ccc} 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$$

$$R^{(2)} = \begin{array}{c|cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 \\ \hline & 1 & 1 & 1 & 1 \end{array}$$

$$R^{(3)} = \begin{array}{c|c} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 \end{array}$$

$$R^{(4)} = \begin{array}{c} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$$

Warshall's Algorithm (pseudocode and analysis)


```
ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure

//Input: The adjacency matrix A of a digraph with n vertices

//Output: The transitive closure of the digraph

R^{(0)} \leftarrow A

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] or (R^{(k-1)}[i, k] and R^{(k-1)}[k, j])

return R^{(n)}
```

Time efficiency: $\Theta(n^3)$

Space efficiency: Matrices can be written over their predecessors (with some care), so it's $\Theta(n^2)$.

Floyd's Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}, ..., D^{(n)}$ using increasing subsets of the vertices allowed as intermediate

Example:

0	∞	4	∞
1	0	4	3
∞	∞	0	∞
6	5	1	0

Floyd's Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among $1, \ldots, k$ as intermediate

$$D^{(k)}[i,j] = \min \{D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}$$

Initial condition?

Floyd's Algorithm (example)

$$D^{(0)} = \begin{bmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & \infty & \infty \\ \infty & 7 & 0 & 1 \\ 6 & \infty & \infty & 0 \end{bmatrix}$$

$$D^{(1)} = \begin{array}{c|ccc} 0 & \infty & 3 & \infty \\ \hline 2 & 0 & 5 & \infty \\ \hline \infty & 7 & 0 & 1 \\ 6 & \infty & 9 & 0 \end{array}$$

$$D^{(2)} = \begin{array}{c|ccc} 0 & \infty & 3 & \infty \\ 2 & 0 & 5 & \infty \\ \hline 9 & 7 & 0 & 1 \\ \hline 6 & \infty & 9 & 0 \end{array}$$

$$D^{(3)} = \begin{array}{c} 0 & \mathbf{10} & 3 & \mathbf{4} \\ 2 & 0 & 5 & \mathbf{6} \\ 9 & 7 & 0 & 1 \\ \hline \mathbf{6} & \mathbf{16} & 9 & 0 \end{array}$$

$$D^{(4)} = \begin{array}{c} 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ \hline 7 & 7 & 0 & 1 \\ 6 & 16 & 9 & 0 \end{array}$$

Floyd's Algorithm (pseudocode and analysis)

```
ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem

//Input: The weight matrix W of a graph with no negative-length cycle

//Output: The distance matrix of the shortest paths' lengths

D \leftarrow W //is not necessary if W can be overwritten

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

D[i, j] \leftarrow \min\{D[i, j], D[i, k] + D[k, j]\}

return D If D[i,k] + D[k,j] < D[i,j] then P[i,j] \leftarrow k
```

Time efficiency: $\Theta(n^3)$

Since the superscripts k or k-l make no difference to D[i,k] and D[k,j].

Space efficiency: Matrices can be written over their predecessors

Note: Works on graphs with negative edges but without negative cycles. Shortest paths themselves can be found, too. How?

Optimal Binary Search Trees

Problem: Given n keys $a_1 < ... < a_n$ and probabilities $p_1, ..., p_n$ searching for them, find a BST with a minimum average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by C(2n,n)/(n+1), which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys A, B, C, and D with search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

DP for Optimal BST Problem

Let C[i,j] be minimum average number of comparisons made in T[i,j], optimal BST for keys $a_i < ... < a_j$, where $1 \le i \le j \le n$. Consider optimal BST among all BSTs with some a_k $(i \le k \le j)$ as their root; T[i,j] is the best among them.

DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for C[i,j]:

$$C[i,j] = \min_{i \le k \le j} \{C[i,k-1] + C[k+1,j]\} + \sum_{s=i}^{J} p_s \text{ for } 1 \le i \le j \le n$$

$$C[i,i] = p_i \text{ for } 1 \le i \le j \le n$$

Example: key

 \boldsymbol{A}

B

D

probability 0.1 0.2 0.4 0.3

The tables below are filled diagonal by diagonal: the left one is filled using the recurrence *i*

$$C[i,j] = \min_{i \le k \le j} \{C[i,k-1] + C[k+1,j]\} + \sum_{s=i}^{\infty} p_{s}, \quad C[i,i] = p_{i};$$

the right one, for trees' roots, records k's values giving the minima

i^{j}	0	1	2	3	4
1	0	.1	.4	1.1	1.7
2		0	.2	.8	1.4
3			0	.4	1.0
4				0	.3
5					0

i^{j}	0	1	2	3	4
1		1	2	3	3
2			2	3	3
3				3	3
4					4
5					

optimal BST

Optimal Binary Search Trees

ALGORITHM OptimalBST(P[1..n])

```
| | | | | |
```

```
//Finds an optimal binary search tree by dynamic programming
//Input: An array P[1..n] of search probabilities for a sorted list of n keys
//Output: Average number of comparisons in successful searches in the
            optimal BST and table R of subtrees' roots in the optimal BST
for i \leftarrow 1 to n do
     C[i, i-1] \leftarrow 0
     C[i, i] \leftarrow P[i]
     R[i, i] \leftarrow i
C[n+1, n] \leftarrow 0
for d \leftarrow 1 to n - 1 do //diagonal count
     for i \leftarrow 1 to n - d do
          i \leftarrow i + d
          minval \leftarrow \infty
          for k \leftarrow i to i do
               if C[i, k-1] + C[k+1, i] < minval
                    minval \leftarrow C[i, k-1] + C[k+1, i]; kmin \leftarrow k
          R[i, j] \leftarrow kmin
          sum \leftarrow P[i]; for s \leftarrow i + 1 to j do sum \leftarrow sum + P[s]
          C[i, j] \leftarrow minval + sum
return C[1, n]. R
```

Analysis DP for Optimal BST Problem

Time efficiency: $\Theta(n^3)$ but can be reduced to $\Theta(n^2)$ by taking advantage of monotonicity of entries in the root table, i.e., R[i,j] is always in the range between R[i,j-1] and R[i+1,j]

Space efficiency: $\Theta(n^2)$

Method can be expanded to include unsuccessful searches