Inteligência Artificial RC&R em Lógica

Jerusa Marchi jerusa.marchi@ufsc.br

Departamento de Informática e Estatística
Universidade Federal de Santa Catarina
Florianópolis - SC

Lógica

- A Lógica trata de dois conceitos: Verdade e Prova
- Sistema lógico:
 - conjunto de fórmulas que podem assumir valores verdadeiro (V)
 ou falso (F)
 - fórmula válida uma fórmula pode ser válida se há uma atribuição de valores verdade que a faça verdadeira
 - tautologia a fórmula que é sempre verdadeira
 - Teoria dos Modelos
 - conjunto de regras de inferência
 - quando aplicada repetidamente a fórmulas verdadeiras, gera novas fórmulas verdadeiras (dedução)
 - as fórmulas geradas constituem uma prova
 - Teoria das Provas

Sintaxe

- Linguagem lógica de primeira ordem: $L(\mathbf{P}, \mathbf{F}, \mathbf{C}, \mathbf{V})$, onde:
 - Um conjunto P de símbolos de predicado
 - Um conjunto F de símbolos de função
 - Um conjunto C de símbolos de constante
 - Um conjunto V de símbolos de variável
- Aridade: a cada símbolo de predicado ou função é associado um número de argumentos.
 - Se a linguagem possuir somente símbolos de predicado com aridade zero, a lógica é chamada de proposicional e os conjuntos F, C e V não são importantes para a definição da linguagem

Sintaxe

A sintaxe da linguagem pode ser definida através da seguinte linguagem formal:

```
<fórmula>::=<fórmula-atômica> | ¬ <fórmula> | | (<fórmula>) |
            <fórmula> \land <fórmula>
            <fórmula> \leq <fórmula> |
            <fórmula>→<fórmula> |
           \forall <variável> .(<fórmula>) |
           \exists <variável> .(<fórmula>)
<fórmula-atômica>::=V \mid F
                   <termo>::=<variável> | <constante> |
          <função> (<termo>, ..., <termo>)
```

Sintaxe

- <constante>::= a, b, c, d...
- <variável>::= x, y, z, w...
- <função>::=f,g,h...
- <predicado>::=P,Q,R...
 - Exemplos de fórmulas:

$$(P \lor Q) \to S \qquad \neg (\neg P \lor \neg Q \to R),$$

$$((Pai(a,b) \land Pai(b,c)) \to Avo(a,c)), \quad \neg (Ama(brutus, cesar)),$$

$$\forall x. ((P(x) \land \neg (P(a))) \to Q(b)), \qquad \forall x. \exists y. (Gosta(y,x)),$$

$$Ama(amelia,z), \qquad F.$$

- Tarski, 1956 Formalização de como atribuir semântica (significado) à linguagem lógica
- Associar os elementos sintáticos da linguagem a estruturas matemáticas da teoria de conjuntos
 - Linguagem natural:
 - Cochabamba é uma Cidade.
 - Lógica:

Interpretação:

- Um domínio \mathcal{D} , um conjunto não vazio.
- Uma função de associação ξ que leva cada elemento da sintaxe da linguagem em uma estrutura matemática definida sobre o conjunto \mathcal{D} .

- \blacksquare A função de associação ξ é definida da seguinte maneira:
 - ullet Cada símbolo de constante é associado a um elemento de ${\cal D}$
 - Cada símbolo de função de aridade n é associado a uma função de \mathcal{D}^n em \mathcal{D} , onde \mathcal{D}^n representa o produto cartesiano do conjunto \mathcal{D} com ele mesmo n vezes
 - Cada símbolo de predicado de aridade n é associado a uma relação de aridade n contida em \mathcal{D}^n
- Extensão da função de associação para termos:
 - Se $f(t_1, \ldots, t_n)$ é um termo, então:

$$\xi(f(t_1,\ldots,t_n)) = \xi(f)(\xi(t_1),\ldots,\xi(t_n)).$$

Valor verdade de uma fórmula lógica:

- $P(t_1, ..., t_n)$ tem valor verdade V se e somente se $(\xi(t_1), ..., \xi(t_n)) \in \xi(P)$.
- \bullet ¬A tem valor verdade V se e somente se A tem valor verdade F.
- $A \wedge B$ tem valor verdade V se e somente se A e B tem valor verdade V.
- $A \lor B$ tem valor verdade V se e somente se A ou B, ou ambos, têm valor verdade V.
- $\forall x.A$ tem valor verdade V se e somente se para todo $\alpha \in \mathcal{D}$, se $\xi(t) = \alpha$, onde t é um termo, então $A\{x/t\}$ tem valor verdade V.
- $\exists x.A$ tem valor verdade V se e somente se existe um $\alpha \in \mathcal{D}$, tal que $\xi(t) = \alpha$, onde t é um termo, e $A\{x/t\}$ tem valor verdade V.

Tabelas verdade:

lacksquare	B	$A \wedge B$	$A \vee B$	$A \to B$	$\neg A$
$oxed{F}$	F	F	F	V	V
$\mid F \mid$	V	ig F	V	V	V
V	$\mid F \mid$	ig F	V	F	F
$\mid V \mid$	V	ig V	V	V	F

- Interpretação: possíveis combinações de valores verdades
- Modelo: interpretação que tem valor verdade verdadeiro
- Se existe um modelo então diz-se que a fórmula é válida
- Se todas as interpretações da fórmula são modelos, diz-se que a fórmula é uma tautologia

Equivalências válidas:

$$(A \lor B) \Leftrightarrow \neg(\neg A \land \neg B)$$

$$(A \land B) \Leftrightarrow \neg(\neg A \lor \neg B)$$

$$(A \to B) \Leftrightarrow (\neg A \lor B)$$

$$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$$

$$A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$$

$$\forall x.(A) \Leftrightarrow \neg \exists x. \neg(A)$$

ightharpoonup Exemplo: Considere a seguinte linguagem lógica $L(\mathbf{P}, \mathbf{F}, \mathbf{C}, \mathbf{V})$ com:

•
$$P = \{P, Q\}$$

•
$$\mathbf{F} = \{f, g\}$$

•
$$C = \{a\}$$

•
$$V = \{x\}$$

e as seguintes fórmulas lógicas:

$$P(a)$$

$$\forall x. (P(x) \to Q(x))$$

$$\forall x. (P(x) \to P(f(x)))$$

$$\forall x. (P(x) \to Q(g(x)))$$

- Interpretação:
 - Domínio: $\mathcal{D} = \mathbb{Z}$, conjunto dos números inteiros
 - Função de associação:

x	P	Q	f	g	a
$\xi(x)$	N	\mathbb{Z}	$\lambda x.x + 1$	$\lambda x x$	0

- Agora as fórmulas da linguagem ganham o seguinte significado:
 - 0 é um número natural
 - Todo número natural é um inteiro
 - Todo sucessor de um número natural é também um natural
 - Todo oposto de um número natural é um inteiro

RC em Lógica

- Representação de Conhecimento em Lógica: Conhecimento Declarativo
 - Declaração de Fatos
 - Declaração de Regras

RC em Lógica

1. Marcos era um homem

2. Marcos nasceu em Pompéia

3. Todos os que nasceram em Pompéia eram romanos

$$\forall x.pompeano(x) \rightarrow romano(x)$$

4. César era um soberano

RC em Lógica

5. Todos os romanos eram leais a César ou então odiavam-no

$$\forall x.romano(x) \rightarrow leal(x, cesar) \lor odeia(x, cesar)$$

6. Todo o mundo é leal a alguém

$$\forall x. \exists y. leal(x,y)$$

7. Os homens só tentam assassinar soberanos aos quais não são leais

$$\forall x. \forall y. homem(x) \land soberano(y) \land tentaAssassinar(x,y) \rightarrow \neg leal(x,y)$$

8. Marcos tentou assassinar César

tenta Assassinar(marcos, cesar)

- Dado um conjunto de fatos e regras, inferir novos conhecimentos que sejam verdadeiros
- Um processo de inferência consiste na aplicação de regras de inferência corretas sobre o conjunto de fórmulas, produzindo novas fórmulas válidas
- m Dado um conjunto G de fórmulas e uma fórmula W, determinar se W é ou não uma consequência lógica de G

$$G \models W$$

Algumas regras de inferência conhecidas

$$(A \wedge (A \to B)) \to B \qquad \text{Modus Ponens}$$

$$(\neg B \wedge (A \to B)) \to \neg A \qquad \text{Modus Tollens}$$

$$((A \to B) \wedge (B \to C)) \to (A \to C) \qquad \text{Silogismo Hipotético}$$

$$\forall x.A \to A\{x/a\} \qquad \text{Especialização}$$

$$A\{x/a\} \to \exists x.A \qquad \text{Generalização}$$

Marcos era leal a Cesar?

Fatos

homem(marcos), soberano(cesar), tenta Assassinar(marcos, cesar)

Regra

 $\forall x. \forall y. homem(x) \land soberano(y) \land tenta Assassinar(x,y) \rightarrow \neg leal(x,y)$

Aplicando Modus Ponens

$$(A \land (A \to B)) \to B$$

Conclui-se que

 $\neg leal(marcos, cesar)$

- Como realizar o raciocínio de forma automática?
 - Métodos Automáticos de Prova de Teoremas
 - Padronizar as fórmulas lógicas CNF
 - Aplicar um método de Prova Automática
 - Método da Resolução
 - · Método de Tableaux

- Podemos representar as fórmulas em uma forma normalizada utilizando unicamente os operadores $\{\neg, \lor, \land\}$
- Objetivo das formas normais:
 - Simplificar fórmulas complexas
 - Em geral, primeira etapa dos procedimentos de demonstração automática de teoremas

- Forma normal conjuntiva (ou forma clausal) CNF
 - conjunção de disjunções

$$(p \vee q) \wedge (\neg q \vee r)$$

- Mais formalmente
 - a fórmula está na forma

$$C_1 \wedge C_2 \wedge \dots C_n$$

 $oldsymbol{\wp}$ onde cada cláusula C_i é uma disjunção de literais

$$L_1 \vee L_2 \vee \dots L_n$$

 $oldsymbol{\mathfrak{S}}$ onde cada literal L_i é um símbolo de predicado ou sua negação

- \blacksquare Forma normal disjuntiva (ou forma clausal dual) DNF
 - disjunção de conjunções

$$(r \land \neg p) \lor (q \land r)$$

- Mais formalmente
 - a fórmula esta na forma

$$D_1 \vee D_2 \vee \dots D_n$$

 $oldsymbol{\wp}$ onde cada cláusula D_i é uma conjunção de literais

$$L_1 \wedge L_2 \wedge \dots L_n$$

As fórmulas são transformadas utilizando as relações de equivalência

$$A \to B \equiv \neg A \vee B \text{ (eliminação da implicação)}$$

$$\neg (A \vee B) \equiv \neg A \wedge \neg B \text{ (lei de De Morgan)}$$

$$\neg (A \wedge B) \equiv \neg A \vee \neg B \text{ (lei de De Morgan dual)}$$

$$A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C) \text{ (distributividade)}$$

$$A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C) \text{ (distributividade)}$$

As representações em formas normais são equivalentes às fórmulas originais

$$W \equiv CNF_W \equiv DNF_W$$

- Eliminar todas as ocorrências de $A \to B$ em W, substituindo-as por $\neg A \lor B$.
- Reduzir o escopo das negações de maneira que só restem negações aplicadas a fórmulas atômicas. Para isto usar as regras:

$$\neg (A \lor B) \Rightarrow (\neg A \land \neg B),$$

$$\neg (A \land B) \Rightarrow (\neg A \lor \neg B),$$

$$\neg (\forall x.A) \Rightarrow \exists x. \neg (A),$$

$$\neg (\exists x.A) \Rightarrow \forall x. \neg (A),$$

$$\neg (\neg (A)) \Rightarrow A.$$

- Substituir os nomes de variáveis de maneira que cada quantificador possua a sua própria variável.
- Mover os quantificadores, preservando sua ordem, para o início da fórmula.
- Eliminar os quantificadores existenciais. Este passo é realizado através do processo chamado Skolemização, criado por Skolem em 1920. A idéia básica é que uma fórmula com uma variável quantificada existencialmente se torna verdadeira quando esta variável é substituída por pelo menos um elemento do domínio. Como a existência deste elemento está garantida, podemos atribuir-lhe um nome, isto é, um símbolo de constante que não apareça na fórmula W:

 $\exists x. P(x) \Rightarrow P(a)$, onde a é um símbolo de constante, chamada *constante de Skolem*, que não aparece em W.

Quando a variável quantificada existencialmente aparece dentro do escopo de um quantificador universal, o elemento do domínio associado ao quantificador existencial pode depender do valor escolhido para a variável quantificada universalmente, que pode ser qualquer. Por exemplo, na fórmula $\forall x. \exists y. (M\tilde{a}e(y,x))$, se adotarmos a interpretação "para qualquer x existe um y tal que y é mãe de x" fica claro que o valor de y, a mãe, depende do valor de x, o filho. Neste caso, é necessário substituir a variável quantificada existencialmente por um símbolo de função, cujos argumentos são todas as variáveis quantificadas universalmente que dominam o quantificador existencial:

 $\forall x_1. \cdots \forall x_n. \exists y. (P(y)) \Rightarrow P(f(x_1, \dots, x_n))$, onde f é um símbolo de função, chamada *função de Skolem*, que não aparece em W

- Eliminar os quantificadores universais, deixando implícito que todas as variáveis que aparecem na fórmula são quantificadas universalmente.
- Converter a fórmula para a forma de uma conjunção de disjunções usando a propriedade distributiva do operador ∨ sobre o operador ∧:

$$A \vee (B \wedge C) \Rightarrow (A \vee B) \wedge (A \vee C).$$

Trocar os nomes das variáveis de maneira que cada cláusula do resultado possua suas variáveis próprias. Isto é possível devido ao resultado:

$$\forall x. (P(x) \land Q(x)) \Leftrightarrow \forall x. (P(x)) \land \forall y. (Q(y)).$$

Forma normal conjuntiva

Exemplo:

"Se chove então eu não saio. Mas, se não chove, eu saio e eu tomo sorvete. Independentemente, eu saio e tomo sorvete."

representamos como:

$$c \rightarrow \neg s$$

$$\neg c \rightarrow s \wedge t$$

$$s \wedge t$$

transformando em CNF:

$$\neg c \lor \neg s$$

$$c \vee s$$

$$c \vee t$$

S

t

Forma normal conjuntiva

Todos os que nasceram em Pompéia eram romanos

$$\forall x.pompeano(x) \rightarrow romano(x)$$

$$\neg pompeano(x_1) \lor romano(x_1)$$

Todos os romanos eram leais a César ou então odiavam-no

$$\forall x.romano(x) \rightarrow leal(x, cesar) \lor odeia(x, cesar)$$

$$\neg romano(x_2) \lor leal(x_2, cesar) \lor odeia(x_2, cesar)$$

Forma normal conjuntiva

Todo o mundo é leal a alguém

$$\forall x. \exists y. leal(x,y)$$

$$leal(x_3, f(x_3))$$

Os homens só tentam assassinar soberanos aos quais não são leais

$$\forall x. \forall y. homem(x) \land soberano(y) \land tentaAssassinar(x,y) \rightarrow \neg leal(x,y)$$

$$\neg homem(x_4) \lor \neg soberano(y_1) \lor \neg tenta Assassinar(x_4, y_1) \lor \neg leal(x_4, y_1)$$

Método da Resolução

- O método da Resolução é um método de prova por refutação
 - para provar que $G \models W$, prova-se que $H = G \cup \{\neg W\}$ é insatisfazível, isto é, que não existe nenhuma interpretação que satisfaça simultaneamente todas as fórmulas de H
- o método baseia-se no cálculo de resolventes

$$\left.\begin{array}{c} p \lor \neg r \\ r \lor q \end{array}\right\} p \lor q$$

As proposições precisam ser unificáveis

- Encontrar uma substituição mais geral que torne duas fórmulas idênticas
 - Exemplo: As fórmulas atômicas

$$Ama(x, carlos, z)$$
 e $Ama(amelia, y, z)$

podem ser unificadas pela aplicação da substituição

$$\{x/amelia, y/carlos\}$$

resultando na fórmula

Ama(amelia, carlos, z)

```
\begin{array}{l} \textit{Unify}(\phi_1,\phi_2) \\ \text{se } \phi_1 \text{ ou } \phi_2 \text{ for um símbolo atômico então} \\ \text{se } \phi_1 = \phi_2 \text{ então retorne} \{\} \\ \text{se não} \\ \text{se } \phi_1 \text{ for variável e } \phi_1 \not \leadsto \phi_2 \text{ então retorne} \{\phi_1/\phi_2\} \\ \text{se não} \\ \text{se não} \\ \text{se } \phi_2 \text{ for variável e } \phi_2 \not \leadsto \phi_1 \text{ então retorne} \{\phi_2/\phi_1\} \\ \text{se não retorne } \textit{Falha} \\ \text{se não} \end{array}
```

```
Seja \phi_1 = \varphi_1(t_{11}, \dots, t_{1n_1}) e
         \phi_2 = \varphi_2(t_{21}, \dots, t_{2n_2}), onde \varphi_i \in \mathbf{P} ou \varphi_i \in \mathbf{F}
se arphi_1=arphi_2 e n_1=n_2=n então
    \Theta \leftarrow \emptyset
    para i=1,\ldots,n faça
             \theta \leftarrow \textit{Unify}(t_{1i}, t_{2i})
             se \theta = Falha então retorne Falha
             se não
             para j = i + 1, \dots, n faça
                     t_{1j} \leftarrow t_{1j}\theta
                     t_{2j} \leftarrow t_{2j}\theta
             \Theta \leftarrow \Theta \cup \theta
    retorne \Theta
se não retorne Falha
```

- O algoritmo consiste em dois casos principais
 - Caso 1: quando uma das fórmulas é um símbolo atômico (variável ou símbolo de constante)
 - as duas fórmulas são símbolos e estes são iguais, resultando na substituição vazia
 - uma das fórmulas é uma variável que não ocorre na outra, resultando em uma substituição com um único par
 - outros casos, resultando em falha

Algoritmo de Unificação

- Caso 2: quando ambas as fórmulas são fórmulas atômicas ou termos compostos por mais de um símbolo
 - se ambas as fórmulas forem termos de mesma aridade e mesmo símbolo de predicado ou função, então o resultado é a composição das diversas substituições necessárias para unificar os subtermos correspondentes em ambas as fórmulas
 - caso algum par de subtermos não seja unificável, ou caso não seja possível combinar as diversas substituições, o algoritmo retorna falha

Algoritmo de Unificação

Exemplos:

$$A = A$$
 and $f(A) = f(B)$ $f(g(A), A) = f(B, xyz)$

Contra-exemplos:

$$f(A) = g(B)$$
 and $f(A) = g(A)$

Regra de resolução

Considere o seguinte par de cláusulas:

$$C_1 = L_{1,1} \lor \cdots \lor L_{1,n}$$
$$C_2 = L_{2,1} \lor \cdots \lor L_{2,m}$$

onde existem i e j tal que $L_{1,i} = P(t_1, \ldots, t_k)$ e $L_{2,j} = \neg P(t'_1, \ldots, t'_k)$ e existe uma substituição θ , tal que:

$$P(t_1,\ldots,t_k)\theta = P(t_1',\ldots,t_k')\theta.$$

Neste caso, é possível inferir, a partir de C_1 e C_2 e utilizando a regra de resolução, a seguinte cláusula, chamada de *resolvente*:

$$(C_1 - \{L_{1,i}\} \cup C_2 - \{L_{2,j}\})\theta.$$

Algoritmo de resolução

- 1. Converta *G* para a forma clausal
- 2. Negue W e converta para a forma clausal. Acrescente-o ao conjunto de cláusulas obtidas na etapa 1.
- 3. Repita até que uma contradição seja encontrada ou até que nenhum progresso a mais possa ser feito:
 - (a) Selecione duas cláusulas. Chame-as de cláusulas-pai.
 - (b) Resolva as duas juntas. A cláusula resultante, chamada de *resolvente*, será a disjunção de todos os literais de ambas as cláusulas-pai com a seguinte excessão: se houver pares de literais L e $\neg L$ tais que uma das cláusulas-pai contenha L e a outra $\neg L$, selecione um desses pares e elimine tanto L quanto $\neg L$ do resolvente.
 - (c) Se o resolvente for uma cláusula vazia, foi encontrada uma contradição. Se não for, acresecente-o ao conjunto de cláusulas disponíveis ao procedimento.

Algoritmo de resolução

- As provas por resolução são normalmente apresentadas na forma de uma árvore binária invertida com a cláusula vazia na raiz e as cláusulas do conjunto original nas folhas
- Cada nodo interno é associado a um resolvente e tem como descendentes nodos associados às cláusulas que o geraram

Exemplo 1: Considere as seguintes fórmulas lógicas

Axiomas

P

$$(P \wedge Q) \to R$$

$$(S \vee T) \to Q$$

T

Forma Clausal

P

$$\neg P \vee \neg Q \vee R$$

$$\neg S \lor Q$$

$$\neg T \lor Q$$

T

$$W = R$$
$$H = G \cup \{\neg W\}$$

Exemplo 2:

Exemplo 2: Considere as seguintes fórmulas lógicas

Axiomas

$$\forall x. P(x)$$
$$\forall x. \forall y. P(x) \land Q(x) \rightarrow R(y)$$

$$\forall x. S(x) \lor T(x) \to Q(x)$$

$$\exists k.T(k)$$

$$W = R(c)$$
$$H = G \cup \{\neg W\}$$

Forma Clausal

$$P(x)$$

$$\neg P(x_1) \lor \neg Q(x_1) \lor R(y)$$

$$\neg S(x_2) \lor Q(x_2)$$

$$\neg T(x_3) \lor Q(x_3)$$

$$T(k)$$

Exemplo 2:

Exemplo 3:

```
G = \{1.homem(marcos),
       2.pompeano(marcos),
       3.\neg pompeano(x_1) \lor romano(x_1),
       4.soberano(cesar),
       5.\neg romano(x_2) \lor leal(x_2, cesar) \lor odeia(x_2, cesar),
       6.leal(x_3, f(x_3)),
       7.\neg homem(x_4) \lor \neg soberano(y_1) \lor \neg tentaAssassinar(x_4, y_1) \lor
       \neg leal(x_4, y_1),
       8.tentaAssassinar(marcos, cesar)
```

W = odeia(marcos, cesar)

- Análogo ao método da Resolução, Tableaux é um método de prova por refutação
- Seja H um conjunto de fórmula em Forma Normal Disjuntiva, se a fórmula é insatisfazível, cada cláusula dual deve ser independentemente insatisfazível (definição do operador \vee)
 - cada D_i deve conter uma contradição na forma de um par de literais com sinais inversos e cujas fórmulas atômicas são unificáveis
 - não é necessário completar a transformação para a forma normal, pois se durante a construção de uma cláusula dual for encontrada uma contradição, esta cláusula dual pode ser abandonada

- Regras para a construção de um tableau lógico:
 - Regras para fórmulas conjuntivas:

$$\frac{A \wedge B}{A \atop B}$$

$$\frac{\neg (A \lor B)}{\neg A} \\ \neg B$$

$$\begin{array}{ccc} A \wedge B & \neg (A \vee B) & \neg (A \rightarrow B) \\ \hline A & \neg A & \hline \\ B & \neg B & \neg B \end{array}$$

Regras para fórmulas disjuntivas:

$$\begin{array}{|c|c|c|} \hline A \lor B \\ \hline A & B \\ \hline \end{array}$$

$$\begin{array}{c|c} A \lor B \\ \hline A & B \end{array} \qquad \begin{array}{c|c} \neg (A \land B) \\ \hline \neg A & \neg B \end{array} \qquad \begin{array}{c|c} A \to B \\ \hline \neg A & B \end{array}$$

$$\begin{array}{c|c}
A \to B \\
\hline
\neg A & B
\end{array}$$

- Regras para a construção de um tableau lógico:
 - Regra para a negação:

$$\frac{\neg \neg A}{A}$$

Regras para fórmulas quantificadas universalmente:

$$\frac{\forall x.A}{A\{x/t\}}$$
 $\frac{\neg \exists x.A}{\neg A\{x/t\}}$ onde t é um termo.

Regras para fórmulas quantificadas existencialmente:

$$\frac{\exists x.A}{A\{x/\pi\}}$$
 $\frac{\neg \forall x.A}{\neg A\{x/\pi\}}$ onde π é um parâmetro.

Formalmente, é necessário definir uma nova linguagem $L^{\Pi}(\mathbf{P}, \mathbf{F}, \mathbf{C} \cup \Pi, \mathbf{V})$ onde Π é um novo conjunto de constantes, disjunto de \mathbf{C} , chamado parâmetros.

- Formalmente, um tableau lógico para um conjunto de fórmulas $H = \{H_1, \dots, H_n\}$ é definido da seguinte maneira:
 - 1. A árvore abaixo, que contém apenas um ramo, é um tableau de *H*. A numeração das linhas visa apenas facilitar a referência às fórmulas do tableau.

$$\begin{array}{c|c}
(1) & H_1 \\
\vdots & \vdots \\
(n) & H_n
\end{array}$$

2. Se um ramo de um tableau de *H* contém uma fórmula conjuntiva, então o tableau resultante da extensão deste ramo com as duas subfórmulas que formam a fórmula conjuntiva, de acordo com as regras para fórmulas conjuntivas, é um tableau para *H*.

(1)	H_1		
:	:		
(i)	$A \wedge B$		
:	:		
(n)	H_n		
(n+1)	A	de	(i)
(n+2)	B	de	(i)

3. Se um ramo de um tableau de *H* contém uma fórmula disjuntiva, então o tableau resultante da bifurcação deste ramo em dois ramos contendo cada um uma das duas subfórmulas que formam a fórmula disjuntiva, de acordo com as regras para fórmulas disjuntivas, é um tableau para *H*.

(1)	H_1		
:	: :		
(i)	$A \lor B$		
:	:		
(n)	H_n		
(n+1)	igg A de (i) $igg B$ de (i)		

4. Se um ramo de um tableau de *H* contém uma fórmula duplamente negada, então o tableau resultante da extensão deste ramo com a fórmula não negada, de acordo com a regra para a negação, é um tableau para *H*.

5. Se um ramo de um tableau de *H* contém uma fórmula quantificada, então o tableau resultante da extensão deste ramo com uma instância da fórmula quantificada, de acordo com as regras para fórmulas quantificadas, é um tableau para *H*.

(1)	H_1		
:	:		
(i)	$\forall x.A$		
<u> </u>	:		
(n)	H_n		
(n+1)	$A\{x/t\}$	de	(i)

■ Um ramo de um tableu é dito **fechado** se ele contém uma contradição, isto é, duas fórmulas com sinais contrários, $x \in \neg x$, onde $x \in \neg x$ fórmula qualquer

dicas:

- Negar o teorema
- Sempre que houver escolha, utilizar antes as regras conjuntivas ou de negação e depois as regras disjuntivas
- Numerar cada fórmula da prova e indicar, se for o caso, de qual outra fórmula ela foi gerada e o tipo de regra utilizada (conjuntiva, disjuntiva ou negação)
- Expandir sempre as fórmulas quantificadas existencialmente antes das quantificadas universalmente

Exemplo:

$$W = \forall x.(Bom(x) \rightarrow Alegria) \rightarrow \\ \exists x.Bom(x) \rightarrow Alegria$$

(1)	$\neg(\forall x.(B(x)\to A)\to\exists x.B(x)\to A)$		
(2)	$\forall x. (B(x) \to A)$	de	(1)
(3)	$\neg(\exists x.B(x) \to A)$	de	(1)
(4)	$\exists x.B(x)$	de	(3)
(5)	$\neg A$	de	(3)
(6)	B(a)	de	(4)
(7)	$B(a) \to A$	de	(2)
(8)	$\neg B(a)$ de (7) A	de	(7)

• Caso se queira provar que uma fórmula W é uma conseqüência lógica de um conjunto de fórmulas S, isto é, $S \models W$, é necessário adotar a regra de introdução de hipóteses

Qualquer $x \in S$ pode ser adicionado a qualquer ramo do tableau.

■ Diz-se que W pode ser provada a partir de S pelo método de tableaux, notado $S \vdash W$, se, permitindo a introdução de hipóteses existe um tableau fechado para $\neg W$.

Exemplo:

$$\{ \forall x. (Homem(x) \rightarrow Mortal(x)), Homem(socrates) \} \vdash Mortal(socrates)$$

(1)	$\neg M(s)$		$\neg W$	
(2)	$\forall x. (H(x) \to M(x))$		R	.l.
(3)	$(H(s) \to M(s))$		de	(2)
(4)	$\neg H(s)$ de (3)	M(s)	de	(3)
(5)	H(s) R.I.			

Histórico

- Acrônimo de PROgramming in LOGic
- Desenvolvida na década de 70 por Alain Colmerauer e Phillipe Roussel (Artificial Intelligence Group - Université Aix-Marseille) e Robert Kowalski (Departament of Artificial Intelligence - University of Edimburgh)
- 1972 Desenvolvimento do 1^o interpretador PROLOG em Marseille
- Meados de 70 fim da cooperação
 - surgimento de 2 dialetos distintos

Histórico

- 1981 Projeto Fifth Generation Computing Systems (Japão)
 - desenvolvimento de máquinas inteligentes
 - atenção voltada para a Inteligência Artificial e a Programação em Lógica
- Surgimento de variações de PROLOG com diferentes sintaxes

- um programa é constituido por dois elementos disjuntos:
 - lógica (descrição dos fatos)
 - controle (mecanismo de solução)
- O programador deve preocupar-se somente em descrever o problema a ser solucionado (especificação), deixando a critério da máquina a busca pela solução

- A descrição dos fatos é feita por meio de cláusulas (G)
 - fatos
 - regras
 - consultas (W)

Tipos de Cláusulas

- Uma implicação lógica é da forma $A \rightarrow B$
 - onde onde A esta na forma:

$$A_1(x_1,...,x_k) \wedge ... \wedge A_m(x_1,...,x_k)$$

e B está na forma

$$B_1(x_1,...,x_k) \vee ... \vee B_n(x_1,...,x_k)$$

Usando a relação de equivalência temos $\neg A \lor B$

Tipos de Cláusulas

Geral:

$$A_1(x_1,...,x_k) \land ... \land A_m(x_1,...,x_k) \rightarrow B_1(x_1,...,x_k) \lor ... \lor B_n(x_1,...,x_k)$$

Positiva:

$$B_1(x_1,...,x_k) \vee ... \vee B_n(x_1,...,x_k)$$

Fechada:

$$A_1 \wedge ... \wedge A_m \rightarrow B_1 \vee ... \vee B_n$$

Positiva Fechada:

$$B_1 \vee ... \vee B_n$$

Tipos de Cláusulas

Cláusula de Horn Geral:

$$A_1(x_1,...,x_k) \wedge ... \wedge A_m(x_1,...,x_k) \rightarrow B_1(x_1,...,x_k)$$

Cláusula de Horn Positiva:

$$B_1(x_1,...,x_k)$$

Cláusula de Horn Fechada:

$$A_1 \wedge ... \wedge A_m \rightarrow B_1$$

Cláusula de Horn Positiva Fechada:

$$B_1$$

- A linguagem Prolog utiliza apenas cláusulas de Horn
- Também é adotada uma notação diferente
 - Variáveis são declaradas em letras maiúsculas
 - Constantes são declaradas em letras minúsculas

os quatro tipos de cláusulas de Horn são escritos em Prolog como:

$$B_1(x_1,...,x_k): -A_1(x_1,...,x_k) \wedge ... \wedge A_m(x_1,...,x_k).$$
 $B_1(x_1,...,x_k).$
 $B_1: -A_1 \wedge ... \wedge A_m.$
 $B_1.$

- cada cláusula em prolog possui uma cabeça (antes de : —) e um corpo (depois de : —)
 - uma cláusula com corpo vazio é um fato
 - caso contrário, a cláusula (regra) será verdade se o corpo for verdade

 $a:-b,c,d\Rightarrow a$ é verdade se $b\wedge c\wedge d$ é verdade

• $b \wedge c \wedge d \rightarrow a$ ou em cláusula de Horn $\neg b \vee \neg c \vee \neg d \vee a$

Exemplo:

```
homem(marcos). homem(aquiles). homem(brutos). pompeano(marcos). pompeano(aquiles). pompeano(brutos). soberano(cesar). tentaAssassinar(marcos, cesar). romano(X):- pompeano(X). leal(X, cesar):- romano(X), \simodeia(X,cesar). odeia(X,Y):- homem(X), soberano(Y), tentaAssassinar(X,Y).
```

Referências

- G. Bittencourt, Inteligência Artificial: Ferramentas e Teorias, 3^a Edição, Editora da UFSC, Florianópolis, SC, 2006.
- M.A. Casanova, F.A.C. Giorno, A.L. Furtado, Programação em Lógica e a Linguagem Prolog, 2006.
- J.M. Barreto, Inteligência Artificial No limiar do Século XXI, 1999.