Méthodes psychométriques en qualité de vie

Christophe Lalanne EA 7334 REMES

Unité de Méthodologie des critères d'évaluation Université Paris-Diderot, Sorbonne Paris-Cité

Fidélité de mesure

- Consistance interne d'une échelle
- Stabilité test-retest
- Accord inter-juges
- Théorie de la généralisabilité

Comment évaluer la fidélité de mesure

Une formulation alternative consiste à se demander quelles sont les sources potentielles de variation des scores, et donc comment les mesurer et quel est leur impact lorsque l'on infère des résultats observés sur un échantillon à la population ? Des mesures collectées plusieurs fois à partir d'un même instrument peuvent survenir de plusieurs manière ¹ :

- évaluation répétée de plusieurs sujets par le même évaluateur;
- évaluation alternative d'un même individu par plusieurs évaluateurs ;
- administration répétée d'un même questionnaire ou de formes parallèles;
- utilisation de différentes sous-échelles d'un même questionnaire.

^{1.} G Dunn. Statistics in Psychiatry. Hodder Arnold, 2000.

Outils statistiques

La fidélité ou précision de mesure peut être quantifiée à l'aide de différentes techniques :

- décomposition (linéaire) des composantes de variance en TCT;
- modèles d'équations structurelles;
- modèles de réponse à l'item.

Fidélité de mesure # significativité

La **significativité statistique** est utilisée pour évaluer la probabilité ou la vraisemblance de résultats observés sur un échantillon en référence à un modèle de population sous l'hypothèse nulle; la **significativité pratique ou clinique** reflète le degré de divergence des résultats observés avec l'hypothèse nulle (tel que mesuré par une mesure de taille d'effet) – sous laquelle on ne distingue pas les patients des sujets contrôles. ²

Mais ces deux concepts supposent que les scores sur lesquelles les conclusions reposent sont des indicateurs corrects et précis de la performance ou de l'état mesuré chez l'individu.

^{2.} B THOMPSON, éd. *Score Reliability. Contemporary Thinking on Reliability issues.* Sage Publications, 2003.

It is important to remember that a test is not reliable or unreliable. Reliability is a property of the scores on a test for a particular population of examinees (Feldt & Brennan, 1989). Thus, authors should provide reliability coefficients of the scores for the data being analyzed even when the focus of their research is not psychometric.

Wilkinson & APA Task Force³

^{3.} L Wilkinson & APA Task Force on STATISTICAL INFERENCE. « Statistical methods in psychology journals: Guidelines and explanations ». In: American Psychologist 54 (1999). reprint available through the APA Home Page: http://www.apa.org/journals/amp/amp548594.html, p. 594-604.

Modèle de mesure

Pour un individu i évalué sur une seule occasion, son score x_i peut être exprimé comme suit :

$$x_i = \tau_i + \varepsilon_i \quad \varepsilon_i \sim \mathcal{N}(0; \sigma_e^2),$$

d'où l'on en déduit naturellement que $\mathbb{E}(X)$ = T (par construction).

Si l'on suppose que T et E sont indépendants, on a également

$$\mathbb{V}(X) = \mathbb{V}(T) + \mathbb{V}(E)$$

On peut définir le coefficient de fidélité de la manière suivante :

$$R_X = \frac{\mathbb{V}(T)}{\mathbb{V}(X)}$$

$$= \frac{\mathbb{V}(T)}{\mathbb{V}(T) + \mathbb{V}(E)}.$$
(1)

Il s'agit d'une variable aléatoire donc ce n'est pas une propriété fixe d'un instrument de mesure. La racine carré de ce coefficient est appelée erreur standard de mesure (SEM).

Extension simple de ce modèle de mesure

Supposons que les évaluations ne dépendent pas seulement du score vrai des individus mais également de l'évaluateur (les effets étant supposés indépendants). On a donc :

$$\mathbb{V}(X) = \mathbb{V}(T) + \mathbb{V}(E).$$

Si tous les sujets sont évalués par le même évaluateur, R_X se calcule tel que défini en (1). Si, au contraire, les individus sont évalués par des évaluateurs choisis aléatoirement, alors

$$R_X' = \frac{\mathbb{V}(T)}{\mathbb{V}(T) + \mathbb{V}(I) + \mathbb{V}(E)},\tag{2}$$

et
$$R_X > R'_X$$
.

Le cas de deux instruments

Supposons que nous disposons d'une série de données appariées collectées à partir de deux instruments de mesure, \mathcal{I}_X et \mathcal{I}_Y , pour lesquels les scores sont construits selon le même schéma :

$$X = T_X + E_X$$

$$Y = T_Y + E_Y$$

Quelle est la corrélation entre X et Y?

Les deux séries de mesure sont des réalisations des variables alétoires X et Y, mais la précision des instruments de mesure entre également en jeu.

Corrélation atténuée

La corrélation (liénaire) entre X et Y est donnée par $\rho_{XY} = \frac{\text{cov}(T_X, T_Y)}{\sqrt{\mathbb{V}(T_X)\mathbb{V}(T_Y)}}$. Un bon estimateur peut être construit comme suit :

$$\hat{\rho}_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{\mathbb{V}(X)\mathbb{V}(Y)}}$$

$$= \frac{\text{cov}(T_X + E_X, T_Y + E_Y)}{\sqrt{\mathbb{V}(T_X + E_X)\mathbb{V}(T_Y + E_Y)}} = \rho_{XY}\sqrt{R_X R_Y}$$
(3)

La corrélation entre les données observées est atténuée par la précision de chacun des instruments de mesure.

Il en va de même dans le cas de la régression linéaire : si l'on souhaite prédire Y à partir de X à l'aide d'un modèle de régression simple, $\mathbb{E}(T_Y|T_X) = \beta_0 + \beta_1 T_X$, la pente serait estimée par $\beta_1 = \text{cov}(T_X,T_Y)/\mathbb{V}(T_X)$. En tenant compte de la précision de la mesure X, R_X , on considèrera comme estimateur :

$$\hat{\beta}_{1} = \frac{\text{cov}(X,Y)}{\mathbb{V}(X)}$$

$$= \frac{R_{X}\text{cov}(T_{X},T_{Y})}{\mathbb{V}(T_{X})} = R_{X}\beta_{1}$$
(4)

La pente de la droite de régression est atténuée (c.a.d. ramenée vers 0).

Fichier de données et scripts R disponibles à l'adresse suivante : https://bitbucket.org/chlalanne/eespe11

- Typeset with Foil T_EX (version 2), Revision e967a78