AULA 3: PRÉ-PROCESSAMENTO DOS DADOS

INTRODUÇÃO A CIÊNCIA DE DADOS NA ENGENHARIA DE PETRÓLEO

Calendário

DATA	ATIVIDADE	
26/08	Introdução	
02/09	Tipos de dados/ Pré-processamento	
09/09	Aula Prática 1	
16/09	Aula Prática 2	
23/09	Introdução ML	
30/09	ML Regressão	
07/10	Aula Prática 3	
14/10	ML Classificação	
21/10	ML Agrupamento	
28/10	Feriado	
04/11	Aula Prática 4	
11/11	Entrega dos Trabalhos	

Tópicos

- □ Pré-processamento dos dados:
 - Análise Exploratória dos Dados:
 - Estatística Descritiva;
 - Histograma;
 - Matriz de Correlação.
 - Limpeza dos dados:
 - Outliers;
 - Valores ausentes.
 - Redução da Dimensionalidade:
 - PCA.

Análise Exploratória dos Dados

□ Melhor entendimento da natureza e padrões dos dados.

Respostas para:

- Dados estão adequados para aplicar modelos de previsão?
- Quais potenciais variáveis utilizar?
- Como a variáveis se correlacionam entre si?
- O Existe redundância de variáveis?

Análise Exploratória dos Dados

Dataset: Permeabilidade das rochas de um reservatório de petróleo

X		area	peri	shape	perm
	1	4990	2791.900	0.090330	6.3
	2	7002	3892.600	0.148622	6.3
	3	7558	3930.660	0.183312	6.3
	4	7352	3869.320	0.117063	6.3
\	5	7943	3948.540	0.122417	17.1
	6	7979	4010.150	0.167045	17.1
	7	9333	4345.750	0.189651	17.1
	8	8209	4344.750	0.164127	17.1
	9	8393	3682.040	0.203654	119.0
	10	6425	3098.650	0.162394	119.0
	11	036/	//RN 050	N 15NQ//	11Q N

 Problema: Qual permeabilidade em função das demais variáveis?

Dataset: 48 registros

Variável	Descrição
Área	Área do espaço dos poros em pixels de 256 por 256
Peri	perímetro em pixels
Shape	perímetro/raiz(área)
Perm	Permeabilidade em mili-Darcy

Desvio-

padrão

mediana

quartis

Range

(max - min)

□ Estatística básica das variáveis:

- Medidas de tendência central:
 - Média, Mediana e Moda
- Dispersão dos Dados
 - Range (máximo mínimo), Quartis,
 Variância e Desvio-padrão.

Resumo estatístico do Dataset Permeabilidade das Rochas

		area	peri	shape	perm
	count	48.000000	48.000000	48.000000	48.000000
	mean	7187.729167	2682.211938	0.218110	415.450000
•	std	2683.848862	1431.661164	0.083496	437.818226
•	min	1016.000000	308.642000	0.090330	6.300000
*	25%	5305.250000	1414.907500	0.162262	76.450000
•	50%	7487.000000	2536.195000	0.198862	130.500000
•	75%	8869.500000	3989.522500	0.262670	777.500000
•	max	12212.000000	4864.220000	0.464125	1300.000000

- O Por que analisar as variáveis individualmente?
 - Cada variável possui uma natureza estatística diferente.

Boxplot

□ Resumo de análise descritiva da variável área:

	area
count	48.000000
mean	7187.729167
std	2683.848862
min	1016.000000
25%	5305.250000
50%	7487.000000
75%	8869.500000
max	12212.000000

Boxplot

Resumo de análise descritiva das variáveis shape e perm:

Simetria dos dados:

- Distribuição simétrica:
 - O Mediana no centro do retângulo.
- Distribuição assimétrica positiva:
 - Mediana próxima ao primeiro quartil.
- Distribuição assimétrica negativa:
 - Mediana próxima ao terceiro quartil.

Simetria dos dados

Histogramas

Matriz de Correlação

Gráfico de Dispersão

- Quais variáveis parecem estar correlacionadas?
 - Perímetro e área

Coeficiente de Correlação

Correlação de Pearson

 Quanto a relação entre duas variáveis pode ser descrita por uma reta.

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

$$\frac{Z_{xi}}{z_y}$$

 Zi : quanto a medida se afasta da média em termos de desvios padrão.

$$-1 \le r \le +1$$

Coeficiente de Correlação

Correlação nas variáveis área e perímetro

\circ \downarrow $valor - p \rightarrow \uparrow$ confiança

R	1
Valor-p	1

R	1
Valor-p	0

Matriz de Correlação

	AREA	PERI	SHAPE	PERM
AREA	1.00	0.82	-0.18	-0.40
PERI	0.82	1.00	-0.43	-0.74
SHAPE	-0.18	-0.43	1.00	0.56
PERM	-0.40	-0.74	0.56	1.00

Limpeza dos dados

- "Garbage in, garbage out".
- □ Etapa fundamental <u>ANTES</u> de qualquer análise preditiva nos dados.

Limpeza dos dados

□ Considerar um dataset com P_PDG e T_PDG:

DATEPRD	AVG_DOWNHOLE_ PRESSURE	AVG_DOWNHOLE_ TEMPERATURE	AVG_DP_ TUBING
07-abr-14	0,00	0,00	0,00
08-abr-14			
09-abr-14			
10-abr-14			
11-abr-14	310,38	96,88	277,28
12-abr-14	303,50	96,92	281,45
13-abr-14	303,53	96,96	276,03
14-abr-14	303,78	96,97	282,79
15-abr-14	303,86	97,02	289,94
16-abr-14	303,79	97,07	299,67
17-abr-14	304,34	96,92	282,90
18-abr-14	304,85	96,72	273,70

Dados anômalos (outliers)

Dados ausentes

Outliers

- Registros significativamente destoantes dos demais em um mesmo conjunto de dados.
- Dados não acurados, ruídos ou inconsistentes.

Qual origem?

- Equipamentos com falhas.
- Erros de digitação ou humanos
- Erros de transmissão.
- Formatos inconsistentes (por exemplo, data).
- Fenômenos naturais.

Como resolver?

- Visualmente.
- Métodos estatísticos.
- Métodos baseados em distância.
- Métodos baseados em densidade.
- Técnicas de Agrupamento.

Dados anômalos (outliers)

Remoção de Outliers

Outliers:

Q < Q25% - 1,5*IQR

Q > Q75% + 1,5*IQR

Dados Ausentes

Qual origem?

- Equipamentos param de funcionar.
- Medidas não estão sempre disponíveis.
- Remoção de Outliers.

Como resolver?

- Remover linha/coluna.
- Métodos de inserção

Por que precisamos lidar com dados ausentes?

DATEPRD	AVG_DOWNHOLE_ PRESSURE	AVG_DOWNHOLE_ TEMPERATURE	AVG_DP_ TUBING
07-abr-14	0,00	0,00	0,00
08-abr-1 <i>4</i>			
09-abr-14			
10-abr-14			
11-abr-14	310,38	96,88	277,28
12-abr-14	303,50	96,92	281,45
13-abr-14	303,53	96,96	276,03
14-abr-14	303,78	96,97	282,79
15-abr-14	303,86	97,02	289,94
16-abr-14	303,79	97,07	299,67
17-abr-14	304,34	96,92	282,90
18-abr-14	304,85	96,72	273,70

Dados ausentes

Remover linha/coluna

Preencher o valor ausente manualmente

Não é viável para muitos dados

Normalmente distribuídos: média Não normalmente distribuídos: mediana

Preencher com medida de tendência central (média ou mediana)

Preencher com valor de algum modelo

Regressão, árvore de decisão, interpolação, médias móveis

- Utilizar a média ou mediana de todas as amostras de determinada classe

- Métodos 3 a 5 insere bias nos dados
- Método 5 é a estratégia mais utilizada.

Dimensionalidade dos Dados

□ Voltando para conjunto de dados iniciais referente a permeabilidade das rochas.

	area	peri	shape	perm
1	4990	2791.900	0.090330	6.3
2	7002	3892.600	0.148622	6.3
3	7558	3930.660	0.183312	6.3
4	7352	3869.320	0.117063	6.3
5	7943	3948.540	0.122417	17.1
6	7979	4010.150	0.167045	17.1
7	9333	4345.750	0.189651	17.1
8	8209	4344.750	0.164127	17.1
9	8393	3682.040	0.203654	119.0
10	6425	3098.650	0.162394	119.0
11	036/	1180 O50	0 1500//	110 0

Quais são as dimensões do dataset?

- Area
- Peri
- Shape
- perme

Como representar graficamente dados com mais de 3 dimensões?

Dataset: Permeabilidade das rochas

Dimensionalidade dos Dados

Qual o problema da alta dimensionalidade dos dados?

Maior capacidade de armazenagem e computacional

Dificuldade de visualização

Maior dimensão → maior superajuste dos modelos.

Maior número de registros para treinar os modelos

Seleção de Atributos

area	peri	perm
4990	2791.9	6.3
7002	3892.6	6.3
7558	3930.7	6.3
7352	3869.3	6.3
7943	3948.5	1 <i>7</i> .1
7979	4010.1	1 <i>7</i> .1
9333	4345.8	1 <i>7</i> .1
8209	4344.8	1 <i>7</i> .1

X

Remoção de variáveis que não trazem informações importantes para o problema

Subconjunto ótimo

Transformação dos dados

PC1	PC2	perm
0.53	- 0.64	6.3
- 0.55	- 0.65	6.3
- 0.72	- 0.52	6.3
- 0.64	- 0.43	6.3
- 0.8 <i>7</i>	- 0.45	1 <i>7</i> .1
- 1.41	- 0.26	1 <i>7</i> .1
- 1.10	- 0.56	1 <i>7</i> .1
- 0.82	- 0.18	1 <i>7</i> .1

X

Transformação em combinações lineares das variáveis

Transformação do espaço de atributos

- □ Método mais comum para transformação dos dados.
- □ Etapas:
 - 1. Normalização;
 - 2. Encontrar os componentes principais;
 - 3. Avaliar quanto cada componente explica a variância total dos dados.

1 - Normalização

□ Passo 1: Normalizar os dados

Distribuição dos dados igual, mas a média é 0

Sem normalização

Com normalização

2 – Encontrar Componente Principal 1 (CP1)

□ Passo 2: Encontrar reta que passa pela origem que maximize a variância.

3 – Encontrar Componentes Principais

□ Passo 3: Encontrar Componentes Principais

Soma do quadrado das distâncias:

$$SS(dist) = d_1^2 + d_2^2 + d_3^2 + \dots + d_n^2$$

$$max SS(dist) \longrightarrow Autovalor do$$
PC 1 (λ_1)

$$PC1 = a_{i1}X_1 + a_{i2}X_2 \longrightarrow \begin{array}{c} \text{Componente} \\ \text{Principal 1} \end{array}$$
 $PC2 = b_{i1}X_1 + b_{i2}X_2 \longrightarrow \begin{array}{c} \text{Componente} \\ \text{Principal 2} \end{array}$

4 – Avaliar o quanto cada PC explica a variância dos dados

□ Passo 3: Encontrar Componentes Principais

Como saber quanto cada componente explica o total da variância dos dados?

Componente
$$\frac{\lambda_1}{n-1}$$

Componente
$$\frac{\lambda_2}{n-1}$$

Qual número máximo de componentes principais que podem ser feitos?

O número máximo de dimensões do problema.

Aplicando PCA no nosso problema

Dados originais

area	peri	shape	perm
4990	2791.9	0.09	6.3
7002	3892.6	0.15	6.3
7558	3930.7	0.18	6.3
7352	3869.3	0.12	6.3
7943	3948.5	0.12	1 <i>7</i> .1
7979	4010.1	0.17	1 <i>7</i> .1
9333	4345.8	0.19	1 <i>7</i> .1
8209	4344.8	0.16	1 <i>7</i> .1

Referências Bibliográficas

- □ Jiawei Han, Micheline Kamber, and Jian Pei. 2011. **Data Mining: Concepts and Techniques** (3rd. ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- Steven S. Skiena. 2017. The Data Science Design Manual (1st. ed.). Springer Publishing
 Company, Incorporated.
- □ Vídeos:
 - https://www.youtube.com/watch?v=FgakZw6K1QQ
 - https://www.youtube.com/watch?v= UVHneBUBW0