

Seminar class

Optimization Technique for Turbomachinery

Student: Duc-Anh Nguyen

Campus: Korea Institute of Industrial Technology (KITECH)

Advisor: Prof. Jin-Hyuk Kim

Contents

- 1. Research Process
- 2. Screening Process
- 3. Radial Basic Neural Network (RBNN)
- 4. Non-dominated Sorting Genetic Algorithm (NSGA-II)

Duc-Anh Nguyen, UST

Why optimization? Motivation!

z-Anh Nguyen, UST

Research Process

ouc-Anh Nguyen, UST

Step 1

Step 2

Design variable	Low	Reference	High	Unit
Imp H ratio	49	54	59	(mm)
Imp H L	49	54	59	mm
Imp M L	35	39	43	mm
Imp S L	27	30	33	mm
Imp_β1_h	59	62	65	degree
Imp_β2_h	28	31	34	degree
Imp_Set_β_h	42	46	50	degree
Imp_β1_m	74	77	80	degree
Imp_β2_m	55	58	61	degree
Imp_Set_β_m	62	66	70	degree
Imp_β1_s	78	81	84	degree
Imp_β2_s	62	65	68	degree
Imp_Set_β_s	68	72	76	degree
Imp_LE_θ_m	1	3	5	degree
Imp LE θ s	-2	-1	0	degree

non aka

Step 4

	L	<u>L</u> h	ξm	$\beta_{1,m}$	Efficiency (%)	H ₃ (m)	H _t (m)	Power (kW)		Ls	<u>L</u> k	ξm	$\beta_{1,m}$	Efficiency (%)	H _s (m)	H _t (m)	Power (kW)
1	30.000	44.000	62.000		74.442	6.823	9.731	14.925	26	30.387	50.129	67.161	78.839	76.029	5.917	8.261	12.406
2	36.000	44.000	62.000	74.000	75.741	7.054	10.164	15.321	27	31.161	47.226	65.613	74.968	76.022	6.349	8.916	13.390
3	30.000	54.000	62.000	74.000	74.614	7.174	10.386	15.892	28	36.000	46.581	64.323	77.871	77.266	6.827	9.750	14.40
4	30.000	44.000	70.000	74.000	75.726	4.529	6.352	9.576	29	32.129	48.516	70.000	78.452	75.696	4.546	6.390	9.638
5	30.000	44.000	62.000	80.000	74.301	6.856	9.789	15.042	30			66.903	74.387	76,570	5.955	8.322	12.409
6	36.000	54.000	62.000	74.000	75.164	7.368	10.778	16.371	31		54.000	67.935	75.355	76,421	5.612	7.862	11.746
7	36.000	44.000	70.000	74.000	76.128	4.543	6.329	9.491	32	35.032	53.677	63.032	76.516	76.366	7.209	10.468	15.650
8	36.000	44.000	62.000	80.000	75.629	7.091	10.230	15.443	33	30.968	44.323	68.968	77.484	76.040	5.112	7.122	10.694
9		54.000		74.000	74.464	4.313	6.104	9.359	34	33.097	44.000	64.065	78.645	75.930	6.687	9.493	14.274
0		54.000			74.477	7.208	10.445	16.012	35	34.065	53,355	65.097	79.613	76,410	6.752	9.551	14.27
1		44.000			75.538	4.601	6.447	9.744	36	33.871	49.484	62.000	75.548	75.334	7.217	10.445	15.829
2		54.000		74.000	75.680	4.445	6.283	9.479	37	30.000	51.419	67.677	76.129	75.795	5.666	7.901	11.900
3		54.000			75.070	7.400	10.839	16.484	38	34.839	50.774	66.387	79.032	77.153	6.481	9.141	13.52
4		44.000			75.985	4.622	6.433	9.665	39	35.613	47.871	64.839	75.161	77,432	6.734	9.588	14.13
5		54.000			74.274	4.389	6.202	9.533	40	30.581	44.968	66,645	79.226	76.129	6.022	8.414	12.619
6		54.000		80.000	75.603	4.523	6.390	9.650	41	33.677	52.387	63.806	74.000	76.681	6.973	10.022	14.922
7		47.548		76.323	75.545	6.573	9.262	13.997	42	30.774	51.742	62.774	76.710	74.994	7.035	10.122	15.409
8		45.935		76.903	76.201	4.876	6.809	10.202	43	31.742	49.161	62.258	78.258	74.718	7.072	10.215	15.609
9		49.806		74.581	75.065	6.894	9.837	14.961	44	31.355	52,710	66.129	75.935	75,681	6.292	8,795	13.26
0		51.097		79.806	75.301	6.982	10.035	15.215	45	34,452	46.903	68,710	74.194	77.075	5.298	7.386	10.940
1		45.290		78.065	77.244	6.403	9.019	13.331	46	33.290	48.194	68.452	79.419	76.602	5.438	7.591	11.31
2		48.839			76.351	4.723	6.620	9.898	47	32.516	52.065	62.516	77.097	74,778	7.129	10.349	15.800
3		46.258		77.290	76.830	5.079	7.077	10.516	48		50.452	67.419	77.677	77.742	5.984	8.390	12.323
		45.613			76.421	5.536	7.715	11.526	Ref	30,000	54.000	66,000	77,000	75,439	6.163	8.636	13.069
24		45.613 53.032			76.421 76.944	5.536	7.715 9.466	11.526	Ref	30.000	54.000	66.000	77.000	75.439	6.163	8.636	

Step 3

uc-Anh Nguyen, UST

Screening Process

Design of Experiments

Latin Hypercube Sampling

Imp_β1_s Imp_β2_s

Imp Set β s

UST 파악기술안왔대학원대학교 대학기술안왔대학원대학교

Radial Basic Neural Network (RBNN)

> Introduction

✓ Features

- Two-layer feed-forward networks.
- Hidden nodes implement a set of radial basis functions (e.g. Gaussian fuctions).
- Output nodes implement linear summation functions as in an MLP.
- Training/learning is very fast.
- Networks are very good at interpolation.

uc-Anh Nguyen, UST

Radial Basic Neural Network (RBNN)

> Commonly Functions

- Gaussian Functions
- Multi-Quadric Gaussian Functions
- Generalized Multi-Quadric Gaussian
- Inverse Multi-Quadric Functions
- Generalized Inverse Multi-Quadric
- Thin Plate Spline Functions
- Cubic Functions
- Linear Functions

> Neuron Model

DUC-AND NAUMEN. UST

UST 과학기술인합대학원대학교 GRANGEST OF SCHOOLS

Radial Basic Neural Network (RBNN)

Network Architecture

 a_i^L is i^{th} element of a^L where $_iIW_{1,1}$ is a vector made of the i^{th} row of $IW_{1,1}$

Where R is number of elements in input vector, S_1 is number of neurons in layer 1, S_2 is number of neurons in layer 2

uc-Anh Nguyen, UST

Ending

NSGA-II: Non-dominated Sorting Genetic Algorithm

puc-Anh Nguyen, UST

Crowding Distance

Prediction and Pareto Optimal Solution

		Design 1	variables		Predicte	d values	Calculation		
	L_{s}	L_h	ξm	$eta_{I,m}$	η _t (%)	$H_t(m)$	η _t (%)	$H_t(m)$	
Case 1	35.447	48.539	65.783	77.226	-77.886	-9.191	77.405	9.202	
Case 2	34.925	52.711	63.251	75.384	-76.792	-10.347	76.397	10.331	
Case 3	35.831	48.623	62.335	79.890	-75.149	-11.092	75.894	10.489	

> Next Presentation:

- ✓ Prediction error
- ✓ Analysis of optimized geometry

ouc-Anh Nguyen, UST

Thank You For Liste ning!