Tópicos de Matemática

Lic. Ciências da Computação 2021/2022

5. Relações binárias

No dia a dia é usual definirmos relações entre objetos, tais como a relação de *igualdade* entre objetos, a relação *menor do que* entre inteiros, a relação de *inclusão* entre conjuntos. Neste capítulo formaliza-se a noção de relação binária entre objetos e estudam-se algumas propriedades a respeito deste tipo de relações.

5.1 Noções básicas

A noção de relação entre dois objetos baseia-se na ideia de que esses objetos estão associados de alguma forma. Assim sendo, define-se relação binária como um conjunto de pares ordenados e os seus elementos são os pares ordenados (a,b) tais que a está associado a b.

Definição 5.1. Dados conjuntos A e B, chamamos **relação binária de** A **em** B a qualquer subconjunto R de $A \times B$. Quando A = B, diz-se que R é uma relação binária em A.

Se $(a,b) \in R$, diz-se que a **está relacionado com** b **por** R e escreve-se a R b. Se $(a,b) \notin R$, diz-se que a **não está relacionado com** b **por** R e escreve-se a R b.

Exemplo 5.1.

- (1) Sendo A o conjunto de alunos da Licenciatura em Ciências da Computação (L.C.C.) e D o conjunto de disciplinas do plano de estudos deste curso, podemos definir uma relação R de A em D da seguinte forma: dados $a \in A$ e $d \in D$, $(a,d) \in R$ se d é uma disciplina do 1^o ano do curso e o aluno a está inscrito na disciplina d.
- (2) Sejam $A = \{2,3\}$ $e B = \{3,4,5,6\}$.
 - (α) São exemplos de relações binárias de A em B as que a seguir se listam:
 - (i) $R = \{(2,4), (2,6), (3,3), (3,6)\};$
 - (ii) $S = \{(2,5)\};$
 - (iii) \emptyset ;
 - (iv) $A \times B$.

A respeito da relação R verifica-se que esta pode ser definida por

a R b se e s ó se a divide b, para quaisquer $a \in A e b \in B$.

No caso da relação S, o par (5,2) não é elemento de S, pelo que 5\$2.

- (β) $T = \{(2,3),(3,2),(3,4)\}$ não é uma relação binária de A em B, visto que $(3,2) \not\in A \times B$.
- (3) Sejam $A = \{1, 2, 3, 4\}, B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ e R a relação binária de A em B definida por

$$a R b se e s ó se b = 2a$$
.

 $Ent\tilde{a}o$

$$R = \{(1, 2), (2, 4), (3, 6), (4, 8)\}.$$

Note-se que 1 R 3, pois $3 \neq 2 \times 1$.

(4) Dados conjuntos $A \ e \ B$, uma função $f : A \to B$ é uma relação binária de $A \ em \ B$.

Dados conjuntos A e B, o conjunto de todas as relações binárias de A em B é o conjunto $\mathcal{P}(A \times B)$. Se os conjuntos A e B forem finitos, com n e m elementos, respetivamente, então $A \times B$ tem nm elementos, pelo que $\mathcal{P}(A \times B)$ tem 2^{nm} elementos. Assim, existem 2^{nm} relações binárias de A em B. Em particular, os conjuntos \emptyset e $A \times B$ são relações binárias de A em B, designadas, respetivamente, por relação vazia e relação universal.

Dado um conjunto não vazio A,

$$id_A = \{(a, a) \mid a \in A\} \text{ e } \omega_A = A^2 = \{(x, y) \mid x, y \in A\}$$

são relações binárias em A designadas, respetivamente, por relação identidade em A e relação universal em A.

Definição 5.2. Dados conjuntos A e B e uma relação binária R de A em B, chamamos:

- domínio de R ao conjunto

$$Dom(R) = \{ a \mid \exists_{b \in B} \ (a, b) \in R \};$$

- imagem ou contradomínio de R ao conjunto

$$\operatorname{Im}(R) = \{b \mid \exists_{a \in A} \ (a, b) \in R\}.$$

Exemplo 5.2.

- (1) Sendo R a relação definida em (1) do Exemplo 5.1 tem-se
 - $DomR = \{a \in A \mid a \text{ est\'a inscrito em, pelo menos, uma disciplina do } 1^o \text{ ano da } L.C.C\};$
 - $\operatorname{Im} R = \{d \in D \mid \text{ existe, pelo menos, um aluno do } 1^o \text{ ano da } L.C.C. \text{ inscrito em } d\}.$

(2) Consideremos os conjuntos $A = \{2,4,5\}$, $B = \{2,3,4,5\}$ e a relação R de A em B definida por $(a,b) \in R$ se e só se a < b. Então temos:

- $R = \{(2,3), (2,4), (2,5), (4,5)\};$
- $Dom(R) = \{2,4\} \ e \ Im(R) = \{3,4,5\}.$

Duas relações binárias R e S de um conjunto A num conjunto B são iguais se os conjuntos R e S são iguais. Assim, se R = S, tem-se Dom(R) = Dom(S) e Im(R) = Im(S). Note-se, no entanto, que não é necessariamente verdade que R = S sempre que Dom(R) = Dom(S) e Im(R) = Im(S).

Seguidamende apresentam-se alguns processos que permitem obter novas relações a partir de relações dadas.

Uma vez que uma relação binária é um conjunto, podemos construir novas relações recorrendo aos processos estudados anteriormente para obter novos conjuntos a partir de conjuntos dados. Assim, se R e S são relações binárias de A em B, o mesmo acontece com $R \cup S$, $R \cap S$, $R \setminus S$.

Exemplo 5.3. Sejam $A = \{1,2,3\}$, $B = \{2,4,5,6\}$ e consideremos as relações $R = \{(1,2),(2,4),(3,2),(3,5)\}$ e $S = \{(2,4),(2,6),(3,5)\}$. Então são relações binárias de A em B:

- $R \cap S = \{(2,4), (3,5)\};$
- $R \cup S = \{(1,2), (2,4), (2,6), (3,2), (3,5)\};$
- $R \setminus S = \{(1,2), (3,2)\}.$

Além destes processos para obter novas relações, existem outros que são específicos das relações binárias.

Definição 5.3. Sejam A, B conjuntos e R uma relação binária de A em B. Chama-se relação inversa de R, e representa-se por R^{-1} , a relação de B em A definida por

$$R^{-1} = \{(b, a) \mid (a, b) \in R\}.$$

Exemplo 5.4. Consideremos os conjuntos $A = \{2, 4, 5\}$, $B = \{2, 3, 4, 5\}$ e a relação R de A em B definida por $(a, b) \in R$ se e só se a < b. Uma vez que $R = \{(2, 3), (2, 4), (2, 5), (4, 5)\}$ tem-se

$$R^{-1} = \{(3,2), (4,2), (5,2), (5,4)\}.$$

Proposição 5.4. Sejam A, B conjuntos e R e S relações binárias de A em B. Então

(1)
$$Dom(R^{-1}) = Im(R) \ e \ Im(R^{-1}) = Dom(R)$$
.

(2)
$$(R^{-1})^{-1} = R$$
.

(3) Se
$$R \subseteq S$$
, então $R^{-1} \subseteq S^{-1}$.

Demonstração. Apresenta-se a prova das propriedades (1) e (2), ficando a prova de (3) como exercício.

(1) Facilmente prova-se que $Dom(R^{-1}) = Im(R)$. De facto, para qualquer objeto y,

$$y \in \text{Dom}(R^{-1}) \Leftrightarrow \exists_{x \in A} (y, x) \in R^{-1}$$

 $\Leftrightarrow \exists_{x \in A} (x, y) \in R$
 $\Leftrightarrow y \in \text{Im}(R).$

A prova de $Im(R^{-1}) = Dom(R)$ é análoga.

(2) Uma vez que $R \subseteq A \times B$ e $(R^{-1})^{-1} \subseteq A \times B$ e, para qualquer $(x,y) \in A \times B$,

$$(x,y) \in R \Leftrightarrow (y,x) \in R^{-1}$$

 $\Leftrightarrow (x,y) \in (R^{-1})^{-1}$,

concluímos que $R = (R^{-1})^{-1}$.

Definição 5.5. Sejam A, B, C e D conjuntos, R uma relação binária de A em B e S uma relação binária de C em D. Chama-se **relação composta de** S **com** R, e representa-se por $S \circ R$, a relação binária de A em D definida por

$$S \circ R = \{(x,y) \mid \exists z \in B \cap C : (x,z) \in R \land (z,y) \in S\}.$$

Note-se que, nas condições da definição anterior, se $B \cap C = \emptyset$, tem-se $S \circ R = \emptyset$.

Exemplo 5.5. Sejam $A = \{1, 2, 3\}$, $B = \{1, 2, 3, 4, 5\}$, $C = \{0, 2, 3, 4\}$ e $D = \{0, 1, 3, 5\}$ e consideremos as relações binárias

$$R = \{(1,2), (1,3), (2,2), (2,4)\} \subseteq A \times B,$$

$$S = \{(0,1), (3,0), (3,3), (3,5), (4,0)\} \subseteq C \times D.$$

 $Ent\tilde{a}o$

(1)
$$S \circ R = \{(1,0), (1,3), (1,5), (2,0)\};$$

(2)
$$R \circ S = \{(0,2), (0,3)\}.$$

Do exemplo anterior podemos concluir que a composição de relações binárias não é, em geral, comutativa.

Proposição 5.6. Sejam R, S e T relações binárias. Então

(1)
$$\operatorname{Dom}(S \circ R) \subseteq \operatorname{Dom}(R) \ e \ \operatorname{Im}(S \circ R) \subseteq \operatorname{Im}(S)$$
.

(2)
$$(T \circ S) \circ R = T \circ (S \circ R)$$
.

(3)
$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$
.

Demonstração. (1) Resulta facilmente da definição de relação composta. Com efeito, se $x \in \text{Dom}(S \circ R)$, então existe y tal que $(x,y) \in S \circ R$. Logo existe z tal que $(x,z) \in R$ e $(z,y) \in S$. Portanto, $x \in \text{Dom}R$. Desta forma, provámos que $\text{Dom}(S \circ R) \subseteq \text{Dom}R$. De forma semelhante prova-se que $\text{Im}(S \circ R) \subseteq \text{Im}S$.

- (2) Seja $(x,y) \in (T \circ S) \circ R$. Então existe z tal que $(x,z) \in R$ e $(z,y) \in T \circ S$. De $(z,y) \in T \circ S$ segue que existe w tal que $(z,w) \in S$ e $(w,y) \in T$. Dado que $(x,z) \in R$ e $(z,w) \in S$, então $(x,w) \in S \circ R$. Agora, de $(x,w) \in S \circ R$ e de $(w,y) \in T$, tem-se $(x,y) \in T \circ (S \circ R)$. Logo $(T \circ S) \circ R \subseteq T \circ (S \circ R)$. De modo análogo, prova-se que $T \circ (S \circ R) \subseteq (T \circ S) \circ R$.
- (3) Para todo o objeto (x, y),

$$(x,y) \in (S \circ R)^{-1} \quad \Leftrightarrow \quad (y,x) \in S \circ R$$

$$\Leftrightarrow \quad \exists_z \ (y,z) \in R \land (z,x) \in S$$

$$\Leftrightarrow \quad \exists_z \ (z,y) \in R^{-1} \land (x,z) \in S^{-1}$$

$$\Leftrightarrow \quad (x,y) \in R^{-1} \circ S^{-1}.$$

Seguidamente referem-se algumas propriedades que permitem definir classes especiais de relações binárias.

Definição 5.7. Sejam A um conjunto e R uma relação binária em A. Diz-se que:

- R é reflexiva se

$$\forall_{a \in A} (a, a) \in R;$$

- R \acute{e} simétrica se

$$\forall_{a,b \in A} \ ((a,b) \in R \Rightarrow (b,a) \in R);$$

- R \acute{e} antissimétrica se

$$\forall_{a,b \in A} (((a,b) \in R \land (b,a) \in R) \Rightarrow a = b);$$

- R \acute{e} transitiva se

$$\forall_{a,b,c \in A} (((a,b) \in R \land (b,c) \in R) \Rightarrow (a,c)) \in R.$$

Note-se que uma relação binária R em A é antissimétrica se e só se

$$\forall_{a,b\in A} ((a,b)\in R \land a\neq b) \Rightarrow (b,a)\not\in R.$$

Exemplo 5.6. (1) Sejam $A = \{1, 2, 3, 4\}$ e

$$R_1 = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3), (4,4)\},\$$

$$R_2 = \{(1,4), (2,2), (2,3), (3,2), (4,1)\},\$$

$$R_3 = \{(2,3)\}.$$

Uma vez que $(1,1), (2,2), (3,3), (4,4) \in R_1$, a relação R_1 é reflexiva. O par (1,2) é elemento de R_1 , mas $(2,1) \notin R_1$, logo R_1 não é simétrica. Atendendo a que não existem elementos distintos $a,b \in A$ tais que $(a,b) \in R_1$ e $(b,a) \in R_1$, podemos afirmar que a relação R_1 é antissimétrica. Além disso,

$$((1,1) \in R_1 \land (1,1) \in R_1) \land (1,1) \in R_1$$

$$((1,1) \in R_1 \land (1,2) \in R_1) \land (1,2) \in R_1$$

$$((1,1) \in R_1 \land (1,3) \in R_1) \land (1,3) \in R_1$$

$$((1,2) \in R_1 \land (2,2) \in R_1) \land (1,2) \in R_1$$

$$((1,2) \in R_1 \land (2,3) \in R_1) \land (1,3) \in R_1$$

$$((1,3) \in R_1 \land (3,3) \in R_1) \land (1,3) \in R_1$$

$$((2,2) \in R_1 \land (2,2) \in R_1) \land (2,2) \in R_1$$

$$((2,2) \in R_1 \land (2,3) \in R_1) \land (2,3) \in R_1$$

$$((3,3) \in R_1 \land (3,3) \in R_1) \land (3,3) \in R_1$$

$$((4,4) \in R_1 \land (4,4) \in R_1) \land (4,4) \in R_1$$

 $e, portanto, R_1 \'e transitiva.$

Uma vez que $1 \in A$ e o par (1,1) não é elemento de R_2 , então R_2 não é reflexiva. Esta mesma relação é simétrica, pois, para quaisquer $a, b \in A$,

$$(a,b) \in R_2 \Rightarrow (b,a) \in R_2;$$

de facto,

$$(1,4) \in R_2 \land (4,1) \in R_2$$

$$(2,2) \in R_2 \land (2,2) \in R_2$$

$$(2,3) \in R_2 \land (3,2) \in R_2$$

$$(3,2) \in R_2 \land (2,3) \in R_2$$

$$(4,1) \in R_2 \land (1,4) \in R_2.$$

Facilmente verificamos que R_2 não é antissimétrica, pois $1 \neq 4$, $(1,4) \in R_2$ e $(4,1) \in R_2$. Esta mesma relação também não é transitiva: $(1,4) \in R_2 \land (4,1) \in R_2$, mas $(1,1) \notin R_2$.

No que diz respeito à relação R_3 , é simples verificar que esta é uma relação transitiva, antissimétrica, não reflexiva e não simétrica.

(2) Seja A um conjunto não vazio. A relação id_A e a relação universal ω_A são relações simultaneamente reflexivas, simétricas e transitivas.

Proposição 5.8. Sejam A um conjunto e R uma relação binária em A. Então

- (1) R é reflexiva se e só se $id_A \subseteq R$;
- (2) R é simétrica se e só se $R^{-1} = R$;
- (3) R é transitiva se e só se $R \circ R \subseteq R$;
- (4) R é antissimétrica se e só se $R \cap R^{-1} \subseteq id_A$.

Demonstração. Exercício.

5.2 Relações de equivalência

Na secção anterior vimos que a relação identidade id_A e a relação universal ω_A definidas num conjunto A são relações reflexivas, simétricas e transitivas. Relações que verifiquem simultaneamente estas propriedades são designadas por relações de equivalência.

Definição 5.9. Seja A um conjunto. Uma relação binária R em A diz-se uma relação de equivalência se R é reflexiva, simétrica e transitiva.

Exemplo 5.7. Seja $A = \{1, 2, 3, 4\}$ e consideremos a relação

$$R = \{(1,1), (2,2), (3,3), (4,4), (2,3), (3,2), (3,4), (4,3), (2,4), (4,2)\}.$$

A relação R é reflexiva, pois

$$id_A = \{(1,1), (2,2), (3,3), (4,4)\} \subseteq R.$$

A relação é simétrica, uma vez que

$$R^{-1} = \{(1,1), (2,2), (3,3), (4,4), (3,2), (2,3), (4,3), (3,4), (4,2), (2,4)\} = R.$$

A relação R também é transitiva, pois

$$R \circ R = \{(1,1), (2,2), (3,3), (4,4), (2,3), (3,2), (3,4), (4,3), (2,4), (4,2)\} \subseteq R.$$

Logo R é uma relação de equivalência.

Exemplo 5.8. A relação R definida no conjunto $A = \{x \mid x \text{ \'e aluno da } L.C.C.\}$ por

xRy se e só se x e y nasceram no mesmo ano

é uma relação de equivalência em A.

Exemplo 5.9. Sejam A e B conjuntos e $f:A\to B$ uma função. A relação binária definida em A por

$$x R_f y$$
 se e só se $f(x) = f(y)$

é uma relação de equivalência em A. De facto,

- R_f é reflexiva, pois, para todo $x \in A$, f(x) = f(x) e, portanto, $x R_f x$;
- R_f é simétrica, uma vez que para quaisquer $x, y \in A$,

$$x R_f y \Rightarrow f(x) = f(y) \Rightarrow f(y) = f(x) \Rightarrow y R_f x;$$

- R_f é transitiva, pois para quaisquer $x, y, z \in A$,

$$(x R_f y \land y R_f z) \Rightarrow (f(x) = f(y) \land f(y) = f(z)) \Rightarrow f(x) = f(z) \Rightarrow x R_f z.$$

Exemplo 5.10. Seja R a relação binária em \mathbb{Z} definida por

$$a R b se e só se a - b é divisível por 3.$$

É simples verificar que R é uma relação de equivalência. Com efeito, para todo $a \in \mathbb{Z}$, a-a=0 é divisível por 3, logo a R a. Portanto, R é reflexiva. Por outro lado, para quaisquer $a,b\in\mathbb{Z}$, se a R b, então a-b=3k, para algum $k\in\mathbb{Z}$. Logo b-a=3(-k), $com-k\in\mathbb{Z}$ e, por conseguinte, b R a. Assim, R é simétrica. Além disso, para quaisquer $a,b,c\in\mathbb{Z}$, se a R b e b R c, então a-b=3k, para algum $k\in\mathbb{Z}$ e b-c=3k', para algum $k'\in\mathbb{Z}$. Logo a-c=(a-b)+(b-c)=3(k+k'), $com\ k+k'\in\mathbb{Z}$, pelo que a R c. Logo R é transitiva.

Note-se que, dado $a \in \mathbb{Z}$, tem-se

$$1 R a \Leftrightarrow 1 - a = 3k, \ para \ algum \ k \in \mathbb{Z}$$

 $\Leftrightarrow a = 3k + 1, \ para \ algum \ k \in \mathbb{Z}$
 $\Leftrightarrow a \ tem \ resto \ 1 \ na \ divis\~ao \ inteira \ por \ 3.$

De modo análogo, prova-se que 2Ra se e só se a tem resto 2 na divisão inteira por 3 e que 0Ra se e só se a tem resto 0 na divisão inteira por 3. Assim, uma vez que os únicos restos possíveis na divisão inteira por 3 são 0,1,2 e atendendo a que R é uma relação de equivalência, os elementos de $\mathbb Z$ podem ser agrupados nos seguintes três subconjuntos de $\mathbb Z$:

$$X_{0} = \{ a \mid a \in \mathbb{Z} \land 0Ra \} = \{ a \mid a \in \mathbb{Z} \land \exists_{k \in \mathbb{Z}} \ a = 3k \}$$

$$X_{1} = \{ a \mid a \in \mathbb{Z} \land 1Ra \} = \{ a \mid a \in \mathbb{Z} \land \exists_{k \in \mathbb{Z}} \ a = 3k + 1 \}$$

$$X_{2} = \{ a \mid a \in \mathbb{Z} \land 2Ra \} = \{ a \mid a \in \mathbb{Z} \land \exists_{k \in \mathbb{Z}} \ a = 3k + 2 \}$$

Definição 5.10. Sejam R uma relação de equivalência num conjunto A e $x \in A$. Chama-se classe de equivalência de x módulo R ou, caso não haja ambiguidade, classe de equivalência de x, ao conjunto

$$[x]_R = \{ y \mid y \in A \land x R y \}.$$

Ao conjunto de todas as classes de equivalência dos elementos de A chamamos **conjunto quociente de** A **módulo** R e representamo-lo por A/R, i.e.,

$$A/R = \{ [x]_R \mid x \in A \}.$$

Exemplo 5.11. Considerando a relação de equivalência R definida no exemplo anterior, tem-se

$$[0]_R = \{ a \mid a \in \mathbb{Z} \land \exists_{k \in \mathbb{Z}} \ a = 3k \},$$

$$[1]_R = \{ a \mid a \in \mathbb{Z} \land \exists_{k \in \mathbb{Z}} \ a = 3k + 1 \}$$

$$[2]_R = \{ a \mid a \in \mathbb{Z} \land \exists_{k \in \mathbb{Z}} \ a = 3k + 2 \},$$

 $e \mathbb{Z}/R = \{[0]_R, [1]_R, [2]_R\}.$

Exemplo 5.12. Seja $A = \{1, 2, 3, 4\}$ e consideremos a relação de equivalência em A definida por

$$R = \{(1,1), (2,2), (3,3), (4,4), (2,3), (3,2), (3,4), (4,3), (2,4), (4,2)\}.$$

 $Ent\~ao$

$$[1]_R = \{1\} \ e \ [2]_R = [3]_R = [4]_R = \{2, 3, 4\}$$

e

$$A/R = \{[1]_R, [2]_R\}.$$

Exemplo 5.13. Seja $f: \mathbb{Z} \to \mathbb{Z}$ a função definida por f(n) = |n|, para qualquer $n \in \mathbb{N}$, e seja R_f a relação de equivalência associada a f, isto é, seja R_f a relação binária em \mathbb{Z} definida por

$$x R_f y$$
 se e só se $f(x) = f(y)$.

Então, para cada $x \in \mathbb{Z}$,

$$[x]_{R_f} = \{y \mid y \in \mathbb{Z} \land x R_f y\} = \{y \mid y \in \mathbb{Z} \land f(x) = f(y)\} = \{x, -x\}$$

e

$$\mathbb{Z}/R_f = \{\{x, -x\} \mid x \in \mathbb{Z}\}.$$

A respeito do conjunto quociente indicado em cada um dos exemplos anteriores verifica-se o seguinte: os seus elementos são conjuntos não vazios, são disjuntos dois a dois e a união dos seus elementos é o conjunto no qual está definida a relação binária. Estes conjuntos quociente satisfazem as condições do conceito a seguir definido.

Definição 5.11. Sejam A um conjunto e $\Pi \subseteq \mathcal{P}(A)$. Diz-se que Π é uma partição do conjunto A se satisfaz simultaneamente as seguintes condições:

- (1) para todo $X \in \Pi, X \neq \emptyset$;
- (2) para todo $X, Y \in \Pi$, $(X \neq Y \Rightarrow X \cap Y = \emptyset)$;
- (3) para todo $a \in A$, existe $X \in \Pi$ tal que $a \in X$.

Exemplo 5.14. Sejam $A = \{1, 2, 3, 4, 5\}$ e

$$\Pi_1 = \{\{1, 2\}, \{\}, \{3, 4, 5\}\}, \quad \Pi_2 = \{\{1, 2\}, \{2, 3\}, \{4, 5\}\},$$

$$\Pi_3 = \{\{1, 2\}, \{4, 5\}\}, \quad \Pi_4 = \{\{1, 2\}, \{3\}, \{4, 5\}\}.$$

Nenhum dos conjuntos Π_1, Π_2, Π_3 é uma partição de A. Com efeito:

- $\emptyset \in \Pi_1$ e, portanto, o conjunto Π_1 não verifica a condição (1) da definição anterior;
- o conjunto Π_2 não satisfaz a condição (2), pois $X = \{1, 2\} \in \Pi_2$, $Y = \{2, 3\} \in \Pi_2$, $X \neq Y$ $e \ X \cap Y \neq \emptyset$;
- no caso do conjunto Π_3 falha a condição (3), uma vez que $3 \in A$ e não existe $X \in \Pi_3$ tal que $3 \in X$.

No que diz respeito ao conjunto Π_4 , é simples verificar que qualquer uma das condições (1) a (3) da definição anterior é satisfeita e, portanto, Π_4 é uma partição de A.

A cada relação de equivalência definida num conjunto A está sempre associada uma partição de A, como se pode verificar pelo resultado que a seguir se prova.

Proposição 5.12. Seja R uma relação de equivalência num conjunto A. Então A/R é uma partição de A.

Demonstração. Sendo R uma relação de equivalência em A, prova-se facilmente que A/R é uma partição de A. De facto:

- (1) Uma vez que R é reflexiva, tem-se xRx, para todo $x \in A$, e, portanto, $x \in [x]_R$. Logo, para todo $[x]_R \in A/R$, $[x]_R \neq \emptyset$.
- (2) Dadas duas classes de equivalência $[x]_R, [y]_R \in A/R$, se $[x]_R \neq [y]_R$, então $[x]_R \cap [y]_R = \emptyset$. Com efeito, se admitirmos que $[x]_R \cap [y]_R \neq \emptyset$, existe $z \in A$ tal que $z \in [x]_R$ e $z \in [y]_R$. Assim x R z e y R z e, uma vez que R é simétrica, temos também z R y. Daqui segue que, para todo $a \in A$,

$$a \in [x]_R \implies xRa$$

$$\Rightarrow aRx \qquad (R \text{ \'e sim\'etrica})$$

$$\Rightarrow aRz \qquad (xRz \text{ e } R \text{ \'e transitiva})$$

$$\Rightarrow aRy \qquad (zRy \text{ e } R \text{ \'e transitiva})$$

$$\Rightarrow yRa \qquad (R \text{ \'e sim\'etrica})$$

$$\Rightarrow a \in [y]_R.$$

e, portanto, $[x]_R \subseteq [y]_R$. De forma análoga prova-se que $[y]_R \subseteq [x]_R$. Logo $[x]_R = [y]_R$.

(3) Para todo $x \in A$, tem-se x R x e, portanto, existe $[x]_R \in A/R$ tal que $x \in [x]_R$.

Assim, por (1), (2) e (3), temos que A/R é uma partição de A.

O recíproco do resultado anterior também é válido, ou seja, cada partição de um conjunto define uma relação de equivalência nesse conjunto.

Proposição 5.13. Sejam A um conjunto, Π uma partição de A e R_{Π} a relação binária em A definida por

$$x R_{\Pi} y$$
 se e só se existe $X \in \Pi$ tal que $x, y \in X$.

Então R_{Π} é uma relação de equivalência em A.

Demonstração. (1) Uma vez que Π é uma partição de A, então, para todo $x \in A$, existe $X \in \Pi$ tal que $x \in X$. Logo $x R_{\Pi} x$ e, portanto, R_{Π} é reflexiva.

- (2) Dados $x, y \in A$, se $x R_{\Pi} y$, é óbvio que também temos $y R_{\Pi} x$; logo R_{Π} é simétrica.
- (3) Dados $x,y,z\in A$, se $x\,R_\Pi\,y$ e $y\,R_\Pi\,z$, existem $X,Y\in\Pi$ tais que $x,y\in X$ e $y,z\in Y$. Dado que $y\in X\cap Y$, tem-se $X\cap Y\neq\emptyset$ e, como Π é uma partição de A, segue que X=Y. Assim, existe $X\in\Pi$ tal que $x,z\in X$ e, portanto, $x\,R_\Pi\,z$. Logo R_Π é transitiva.

De (1), (2) e (3) concluímos que
$$R_{\Pi}$$
 é uma relação de equivalência em A .

Exemplo 5.15.

(1) Sejam $A = \{1, 2, 3, 4, 5\}$ $e \Pi_1 = \{\{1, 2\}, \{3, 4, 5\}\}, \Pi_2 = \{\{1, 3\}, \{2\}, \{4\}, \{5\}\}\}$ partições de A. Então

$$R_{\Pi_1} = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1)$$

$$(3,4), (4,3), (3,5), (5,3), (4,5), (5,4)\},$$

$$R_{\Pi_2} = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,3), (3,1)\}.$$

(2) Seja $\Pi = \{X_0, X_1, X_2\}$ a partição de \mathbb{Z} onde

$$X_0 = \{3k \mid k \in \mathbb{Z}\}, \ X_1 = \{3k+1 \mid k \in \mathbb{Z}\}, \ X_2 = \{3k+2 \mid k \in \mathbb{Z}\}.$$

Então, para quaisquer $a, b \in \mathbb{Z}$,

$$a R_{\Pi} b$$
 se e só se $a - b$ é divisível 3.

5.3 Relações de ordem

A noção de ordem pode ser encontrada nas mais diversas situações do dia a dia, e sob variadas formas, quando fazemos referência a expressões tais como: primeiro, segundo, terceiro; maior versus menor; melhor versus pior; precedência, preferência, ... Nesta secção formalizamos o que se entende por relação de ordem e apresentamos algumas noções relacionadas com este conceito.

5.3.1 Noções básicas

Definição 5.14. Sejam A um conjunto e R uma relação binária em A. Diz-se que R é uma relação de **ordem parcial em** A se R é reflexiva, antissimétrica e transitiva. Se A é um conjunto não vazio e R é uma ordem parcial em A, ao par (A, R) dá-se a designação de **conjunto parcialmente ordenado (c.p.o.)**.

Exemplo 5.16. São exemplos de c.p.o.'s os sequintes pares:

- (1) (A, id_A) , onde $A \notin um$ conjunto não vazio $e id_A = \{(a, a) : a \in A\}$.
- (2) (\mathbb{N}, \leq) , onde \leq é a relação "menor ou igual" usual em \mathbb{N} (para todo $x \in \mathbb{N}$, $x \leq x$, logo \leq é reflexiva; para quaisquer $x, y \in \mathbb{N}$, se $x \leq y$ e $y \leq x$, então x = y e, portanto, \leq é antissimétrica; para quaisquer $x, y, z \in \mathbb{N}$, se $x \leq y$ e $y \leq z$, tem-se $x \leq z$, assim \leq é transitiva. Então \leq é uma relação de ordem parcial em \mathbb{N}).
- (3) $(\mathbb{N}, |)$, onde | é a relação "divide" em \mathbb{N} .
- (4) $(\mathcal{P}(A), \subseteq)$, onde $A \notin um$ conjunto qualquer $e \subseteq \acute{e}$ a relação de inclusão usual.

Em geral, sempre que tal não cause confusão, representamos uma ordem parcial num conjunto A por \leq e o respectivo c.p.o. por (A, \leq) . Formalmente, um conjunto parcialmente ordenado é um par $(A; \leq)$, onde A é um conjunto não vazio e \leq é uma relação de ordem parcial. Porém, caso seja claro a partir do contexto qual é a relação \leq , é usual dizer apenas "seja A um conjunto parcialmente ordenado".

Dado um c.p.o. (A, \leq) e dados $a, b \in A$, escrevemos:

- $a \le b$ e lemos "a é menor ou igual a b" ou "a precede b" para representar $(a,b) \in \le$;
- $a \not\leq b$ e lemos "a não é menor ou igual a b" se $(a,b) \not\in \leq$;
- a < b e lemos "a é menor do que b" (ou a "precede propriamente b") se $a \le b$ e $a \ne b$;
- a << b e lemos "b é sucessor de a" (ou "b cobre a" ou "a é coberto por b") se a < b e $\neg (\exists_{c \in A} \ a < c < b)$.

Diz-se que a, b são elementos **comparáveis** se $a \le b$ ou $b \le a$; caso contrário, ou seja, se $a \le b$ e $b \le a$, $a \in b$ dizem-se **incomparáveis** e escrevemos a||b.

Um c.p.o. (A, \leq) , em que A é um conjunto finito, pode ser representado por meio de um **diagrama de Hasse** da seguinte forma:

- cada elemento é representado por um ponto;
- se a, b são dois elementos de A tais que $a \le b$, representa-se b acima de a; além disso se a << b unem-se estes dois pontos por um segmento de reta.

Exemplo 5.17.

(1) Sejam $A = \{1, 2, 3, 4, 6, 10, 12\}$ $e \mid a \text{ ordem parcial definida por }$

$$x \mid y \Leftrightarrow \exists_{k \in \mathbb{N}} \ y = kx.$$

O c.p.o. (A,|) pode ser representado pelo seguinte diagrama de Hasse

(2) Consideremos o conjunto $A=\{a,b,c,d,e\}$ e a relação binária R definida em A por

$$R = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (b, e), (c, d), (e, d)\}.$$

É simples verificar que R é uma relação de ordem e que a << b, a << c, b << e, c << d e e << d. Assim, a relação R pode ser representada pelo diagrama de Hasse seguinte

(3) Seja $A = \{1, 2, 3\}$. O c.p.o. $(\mathcal{P}(A), \subseteq)$ pode ser representado pelo diagrama de Hasse que se segue

Dados um c.p.o. (A, \leq) e X um suconjunto de A podem existir elementos com propriedades especiais relativamente a X.

Definição 5.15. Sejam (A, \leq) um c.p.o., X um subconjunto de A e $m \in A$. Dizemos que m é:

- um elemento maximal de X se $m \in X$ e $\neg(\exists_{x \in X} m < x)$;
- um elemento minimal de X se $m \in X$ $e \neg (\exists_{x \in X} x < m);$
- majorante de X se $\forall_{x \in X}$ $x \leq m$;
- minorante de x se $\forall_{x \in X}$ $m \leq x$;
- supremo de X se m é majorante de X e $m \le m'$, para qualquer m' majorante de X;
- **infimo de** X se m é minorante de X e $m' \leq m$, para qualquer m' minorante de X;
- **máximo de** X se m é majorante de X e $m \in X$;
- mínimo de X se m é minorante de X e $m \in X$.

O conjunto dos majorantes de X e o conjunto dos minorantes de X são representados por $\operatorname{Maj}(X)$ e $\operatorname{Min}(X)$, respetivamente. Caso exista, o supremo (ínfimo, máximo, mínimo) de um subconjunto X de A é único e representa-se por $\sup(X)$ ($\inf(X)$, $\max(X)$, $\min(X)$).

Exemplo 5.18. Consideremos novamente o c.p.o. (A, |) representado por

e sejam $X = \{1, 2, 3\}$ e $Y = \{2, 4, 6, 10\}$. Então:

- 2 e 3 são os elementos maximais de X; 1 é o único elemento minimal de X;
- $\operatorname{Maj}(X) = \{6, 12\}; \sup(X) = 6; n\tilde{a}o \text{ existe m\'aximo de } X;$
- $Min(X) = \{1\}; inf(X) = 1; min(X) = 1;$
- 4, 6 e 10 são os elementos maximais de Y; 2 é o único elemento minimal de Y;
- $Maj(Y) = \emptyset$; não existe supremo de Y; não existe máximo de Y;
- $Min(Y) = \{1, 2\}; inf(Y) = 2; min(Y) = 2.$

Relativamente ao conjunto A tem-se o seguinte:

- 10 e 12 são os elementos maximais de A; 1 é o único elemento minimal de A;
- $Maj(A) = \emptyset$; A não tem supremo; A não tem máximo;
- $Min(A) = \{1\}$; inf(A) = 1; min(A) = 1.

Proposição 5.16. Num conjunto parcialmente ordenado (A, \leq) são equivalentes as sequintes proposições, para quaisquer $a, b \in A$:

- (1) $a \le b$;
- (2) $\sup(\{a,b\}) = b;$
- (3) $\inf(\{a,b\}) = a$.

Demonstração. (1) \Rightarrow (2) Admitamos que $a \leq b$. Então, uma vez que também temos $b \leq b$ (pois \leq é reflexiva), segue que b é um majorante de $\{a,b\}$. Além disso, se x é um majorante de $\{a,b\}$, temos $b \leq x$. Logo b é o menor dos majorantes de $\{a,b\}$ e, portanto, $\sup(\{a,b\}) = b$.

 $(2) \Rightarrow (3)$ Admitamos que $\sup\{\{a,b\}\} = b$. Então b é um majorante de $\{a,b\}$, pelo que $a \leq b$. Assim, como $a \leq a$ e $a \leq b$, a é um minorante de $\{a,b\}$. Além disso, se x é um minorante de $\{a,b\}$, tem-se, em particular, $x \leq a$ e, portanto, a é o maior dos minorantes de $\{a,b\}$. Logo $\inf\{\{a,b\}\} = a$.

 $(3) \Rightarrow (2)$ Se $\inf(\{a,b\}) = a$, então a é um minorante de $\{a,b\}$ e, por conseguinte, $a \leq b$. Logo as três proposições são equivalentes.

Seguidamente estudam-se alguns processos de construção de novos c.p.o.'s a partir de c.p.o.'s dados.

Se (A, \leq) é um conjunto parcialmente ordenado e X é um subconjunto não vazio de A, a relação $\leq_{|_X}$ definida, para quaisquer $a,b\in X$, por

$$a \leq_{|_{X}} b$$
 se e só se $a \leq b$

é uma relação de ordem parcial em X. A relação $\leq_{|X}$ designa-se por $ordem\ parcial\ induzida\ por \leq$ em X.

Sendo (A, \leq) um conjunto parcialmente ordenado, define-se a partir da relação \leq uma outra relação de ordem parcial em A. A relação \leq_d definida em A por

$$a \leq_d b$$
 se e só se $b \leq a$

é também uma relação de ordem parcial em A. A relação \leq_d designa-se por relação de $ordem dual <math>de \leq e$ o conjunto parcialmente ordenado (A, \leq_d) designa-se por conjunto $parcialmente ordenado <math>dual de (A, \leq)$. É simples perceber que $(\leq_d)_d = \leq e$ que o c.p.o.

dual de (A, \leq_d) é (A, \leq) . Os c.p.o.s (A, \leq) e (A, \leq_d) dizem-se **conjuntos parcialmente ordenados duais**.

Se Φ é uma afirmação sobre conjuntos parcialmente ordenados, a afirmação Φ_d , obtida de Φ substituindo toda a ocorrência de \leq por \leq_d , designa-se por **afirmação dual de** Φ . Note-se que se Φ é uma afirmação verdadeira em (A, \leq) , então Φ_d é verdadeira em (A, \leq) , pelo que é válido o seguinte princípio.

Princípio de dualidade para c.p.o.'s Uma afirmação é verdadeira em qualquer conjunto parcialmente ordenado se e só se o mesmo acontece com a respetiva afirmação dual.

Observe-se que os conceitos de majorante, supremo, elemento máximo, elemento maximal são duais dos conceitos de minorante, ínfimo, elemento mínimo, elemento minimal, respetivamente. Assim, se Φ é uma afirmação sobre c.p.o.s envolvendo algum destes conceitos, a afirmação Φ_d é obtida substituindo cada um destes conceitos pelo conceito dual e substituindo toda a ocorrência de \leq por \leq_d .

5.3.2 Homomorfismos

No estudo de aplicações entre conjuntos parcialmente ordenados têm particular interesse aquelas que preservam a ordem.

Definição 5.17. Sejam (A_1, \leq_1) e (A_2, \leq_2) dois conjuntos parcialmente ordenados e $\alpha: A_1 \to A_2$ uma aplicação. Diz-se que:

- a aplicação α é **isótona** ou que é um **homomorfismo** (alternativamente, também se diz que α **preserva a ordem**) se, para quaisquer $a, b \in A_1$,

$$a \leq_1 b \Rightarrow \alpha(a) \leq_2 \alpha(b)$$
.

- a aplicação α é antítona se, para quaisquer $a, b \in A_1$,

$$a \leq_1 b \Rightarrow \alpha(b) \leq_2 \alpha(a)$$
.

- α é um mergulho de ordem se, para quaisquer $a, b \in A_1$,

$$a \leq_1 b \Leftrightarrow \alpha(a) \leq_2 \alpha(b)$$
.

 α é um isomorfismo de c.p.o.s se α é um mergulho de ordem e é uma aplicação sobrejetiva.

Caso exista um isomorfismo de c.p.o.s de (A_1, \leq_1) em (A_2, \leq_2) , diz-se que o c.p.o. (A_1, \leq_1) é isomorfo ao c.p.o. (A_2, \leq_2) .

Exemplo 5.19. (1) Seja $\mathcal{P}_F(\mathbb{N})$ a família dos subconjuntos finitos de \mathbb{N} . Então $(\mathcal{P}_F(\mathbb{N}), \subseteq)$ é um c.p.o.. Consideremos, também, o c.p.o. (\mathbb{N}_0, \leq) . Seja $s: \mathcal{P}_F(\mathbb{N}) \to \mathbb{N}_0$ a aplicação definida por s(X) = |X|, para todo $X \in \mathcal{P}_F(\mathbb{N})$ (por |X| representa-se o número de elementos de X). A aplicação s é um homomorfismo de c.p.o.'s. Esta aplicação não é, no entanto, um isomorfismo de c.p.o.'s, pois não é bijetiva.

(2) Sejam
$$A = \{a, b\}$$
, $B = \{1, 2, 3, 6\}$ $e \mid a$ relação de ordem definida em B por $x \mid y$ se e só se $\exists_{k \in \mathbb{N}} y = kx$.

Claramente, os conjuntos parcialmente ordenados $(\mathcal{P}(A),\subseteq)$ e (B,|), representados pelos diagramas de Hasse seguintes, são isomorfos.

Fica ao cuidado do leitor a verificação de que a aplicação $f: B \to \mathcal{P}(A)$, definida por $f(1) = \emptyset$, $f(2) = \{a\}$, $f(3) = \{b\}$ e $f(6) = \{a,b\}$, é um isomorfismo de c.p.o.'s.

Um isomorfismo de c.p.o.s é uma aplicação bijetiva. Assim, se α é um isomorfismo de um c.p.o. (A_1, \leq_1) num c.p.o. (A_2, \leq_2) , então $\alpha^{-1}: A_2 \to A_1$ também é um isomorfismo de (A_2, \leq_2) em (A_1, \leq_1) . Caso exista um isomorfismo entre os c.p.o.s (A_1, \leq_1) e (A_2, \leq_2) diz-se que os c.p.o.s são *isomorfos* e escreve-se $(P_1, \leq_1) \cong (P_2, \leq_2)$.

Note-se que, embora um isomorfismo de c.p.o.s seja uma aplicação isótona e bijetiva, uma aplicação bijetiva e isótona não é necessariamente um isomorfismo de c.p.o.s. Por exemplo, sendo (A_1, \leq_1) e (A_2, \leq_2) os c.p.o.s com os diagramas de Hasse a seguir apresentados

Figura 5.1

a aplicação α de A_1 em A_2 definida por $\alpha(a)=1,\ \alpha(b)=3,\ \alpha(c)=2$ e $\alpha(d)=4$ é isótona e bijetiva, mas não é um isomorfismo de c.p.o.s.

5.3.3 Reticulados, cadeias, conjuntos bem ordenados

Nesta secção referem-se algumas classes especiais de conjuntos parcialmente ordenados.

Definição 5.18. Um conjunto parcialmente ordenado (A, \leq) diz-se um **reticulado** se, para quaisquer $x, y \in A$, existem o supremo e o ínfimo do conjunto $\{x, y\}$.

Exemplo 5.20. (1) Dos c.p.o.'s a seguir representados são reticulados os c.p.o.'s R_2 e R_3 ; R_1 não é reticulado, pois, por exemplo, não existe supremo de $\{b,c\}$.

- (2) Dado um conjunto A, o c.p.o. $(\mathcal{P}(A), \subseteq)$ é um reticulado.
- (3) O c.p.o. $(\mathbb{N}, |)$ \acute{e} um reticulado.

Definição 5.19. Seja (A, \leq) um conjunto parcialmente ordenado. A ordem parcial \leq diz-se uma ordem total ou ordem linear se quaisquer elementos a e b de A são comparáveis. Neste caso, (A, \leq) diz-se uma cadeia ou um conjunto totalmente ordenado. Um subconjunto X de A diz-se uma cadeia em (A, \leq) ou um subconjunto totalmente ordenado de (A, \leq) se, para quaisquer $x, y \in X$, x e y são comparáveis.

Exemplo 5.21.

- (1) $\{3,6,12\}$ e $\{2,4\}$ são cadeias em $(\{1,2,3,4,6,10,12\},|)$, mas este c.p.o. não é uma cadeia, pois 4 e 10 não são comparáveis.
- (2) (\mathbb{N}, \leq) , (\mathbb{R}, \leq) , (\mathbb{Z}, \leq) são cadeias.

Proposição 5.20. Se (A, \leq) é uma cadeia, então (A, \leq) é um reticulado.

Demonstração. Se (A, \leq) é uma cadeia, então, para quaiquer $a, b \in A$, tem-se $a \leq b$ ou $b \leq a$. Caso $a \leq b$ segue que $\sup(\{a,b\}) = b$ e $\inf(\{a,b\}) = a$; caso $b \leq a$, então $\sup(\{a,b\}) = a$ e $\inf(\{a,b\}) = b$. Assim, para quaisquer $a,b \in A$, existem $\sup(\{a,b\})$ e $\inf(\{a,b\})$ e, portanto, (A, \leq) é um reticulado.

Conjuntos parcialmente ordenados nos quais toda a cadeia admita um majorante têm garantidamente um elemento maximal. Este resultado, conhecido por Lema de Zorn, é fundamental no estudo de conjuntos parcialmente ordenados e tem aplicações nas mais diversas áreas, tais como Álgebra Linear, Álgebra Universal e Análise.

Teorema 5.21 (Lema de Zorn). Seja (A, \leq) um conjunto parcialmente ordenado no qual qualquer cadeia admite um majorante. Então, A tem um elemento maximal.

O Lema de Zorn, equivalente ao Axioma da Escolha, é geralmente utilizado para estabelecer a existência de um objeto que não pode ser construído diretamente (como, por exemplo, uma base num espaço vetorial não trivial ou um ideal maximal num anel).

Definição 5.22. Seja (A, \leq) um conjunto parcialmente ordenado. Diz-se que \leq é uma boa ordem em A se cada subconjunto não vazio de A tem elemento mínimo. Neste caso, diz-se que (A, \leq) é um conjunto bem ordenado (c.b.o.).

Exemplo 5.22. Todo o conjunto totalmente ordenado finito é um conjunto bem ordenado.

Proposição 5.23. Se (A, \leq) é um conjunto bem ordenado, então (A, \leq) é uma cadeia.

Demonstração. Sejam (A, \leq) um conjunto bem ordenado e $a, b \in A$. Uma vez que (A, \leq) é um conjunto bem ordenado, o subconjunto $\{a, b\}$ tem elemento mínimo; então $\min\{a, b\} = a$ e tem-se $a \leq b$, ou $\min\{a, b\} = b$ e tem-se $b \leq a$. Assim, quaisquer dois elementos de A são comparáveis e, portanto, (A, \leq) é uma cadeia. \square

Embora todo o conjunto bem ordenado seja uma cadeia, existem cadeias que não são conjuntos bem ordenados.

Exemplo 5.23. (\mathbb{R}, \leq) é uma cadeia, mas não é um conjunto bem ordenado; de facto, $\{x \in \mathbb{R} : 0 < x < 1\}$ é um subconjunto não vazio de \mathbb{R} e não tem elemento mínimo.

Proposição 5.24. Um conjunto totalmente ordenado é bem ordenado se e só se não contém qualquer cadeia descendente infinita

$$x_1 > x_2 > \ldots > x_n > \ldots$$

Demonstração. A prova que se apresenta seguidamente é uma prova informal; uma prova formal deste resultado requer a aplicação do Axioma da Escolha e poderá ser consultada em bibliografia adequada.

Se (P, \leq) é um conjunto totalmente ordenado que contém uma cadeia descendente infinita

$$x_1 > x_2 > \ldots > x_n > \ldots,$$

então (P, \leq) não é bem ordenado.

Reciprocamente, suponhamos que (P, \leq) é um conjunto totalmente ordenado que não contém qualquer cadeia descendente infinita. Pretendemos mostrar que se A é um subconjunto não vazio de P, então A tem elemento mínimo. Uma vez que $A \neq \emptyset$, existe $a_1 \in A$. Se a_1 é o elemento mínimo de A, a prova está completa. Caso a_1 não seja um elemento mínimo, então existe $a_2 \in A$ tal que $a_1 \nleq a_2$. Uma vez que a ordem é total, segue que $a_2 < a_1$. Se a_2 é o elemento mínimo de A, a prova termina. Caso contrário, existe $a_3 \in A$ tal que $a_2 \nleq a_3$, donde $a_3 < a_2$. Ora, uma vez que (P, \leq) não tem cadeias descentes infinitas, este processo termina num número finito de passos, digamos $a_1 > a_2 > a_3 > \ldots > a_n$. Logo a_n é o elemento mínimo de A.

Corolário 5.25. (Princípio da Boa Ordenação de \mathbb{N}) O conjunto parcialmente ordenado (\mathbb{N},\leq) é bem ordenado.