

Work Experience:

Education:

Nathan Lim

Work Experience:

Education:

Nivedha Madhivanan

Work Experience:

Education:

Ronald Sun

Work Experience:

Education:

Ryan Diep

Work Experience:

Education:

Optimizing Stock Returns with AI and Portfolio Management to Outperform the S&P500

Executive Summary

S&P500

Git Gud

Sharpe Ratio

EXCA:

CVSN:

10. SNTA.:

8.9705x

8.9672x

8.5567x

Data Parsing & Used a Combination of Quantitative & Fundamental Feature Engineering

Feature Selection

Data Summary

The new data consists of small to mid-cap stocks from January 2000 to August 2024. It includes thousands of stocks with 147 firm-specific financial characteristics.

As a result, the amount of data we are processing at least 2-4 times bigger.

- We are looking for companies with sufficient growth movements
- Deleted the stocks of the training data that never exceeds the bottom 30th percentile in Market cap.

Compute Time Reduction

- To reduce computing time, we're extracting the top 800 mkt cap stocks.
- Continuously changing the list as time goes on.
- Still ensures correct proof of concept of our model

Feature Engineering:

Fundamental

Using academic papers and expert references, we hand selected financial features.

These features are more fundamental factors including Seasonality, Cashflow and financial statement ratios.

Reference: Xiu, Dacheng. Empirical Asset Pricing via Machine Learning - Dacheng Xiu Please see appendix for more

Technical

Using five regressions, we quantitatively determined the most important features for predicting returns.

Histogram-Based Gradient Boosting fits each tree to the negative gradient of the loss function with respect to the predicted value

XgBoost for time series data, then computes features for each window in time

Random Forest based on bagging and use a majority vote to predict the outcome

Ridge regularization which helped prevent overfitting by shrinking the coefficients

The features are hand picked, and it is reinforced with AI feature engineering

Feature Selection

Fundamental Feature Output

Using academic papers and expert references such as Xiu, Dacheng. Empirical Asset Pricing via Machine Learning. We got:

Stock momentum:

- Seas_1_1an: Seasonal factors that influence stock returns, based on different months or periods
- Seas_2_5na: Seasonal factors that influence stock returns, based on different months or periods.
- Ret_1_0: The return from one month ago to today
- Ret_3_1: The return from 3 months ago to 1 month ago
- Ret 6 1: The return from 6 months ago to 1 month ago

Cash related factors:

- pi_nix: Payout to net income ratio, indicating how much of earnings is paid out to shareholders in dividends
- fcf_me: Free cash flow to market equity
- ocf_me: Operating Cash flow to market equity
- Taccruals_ni: The total accruals normalized by net income
- ocfq_saleq_std: the standard deviation of operating cash flow to sales over a quarterly period

Liquidity & Volatility & etc...

Quantitative Feature Output

Top Features from our Quantitative Feature engineering

Feature Summary

- All together, we have 30 features inputted into our machine learning model.
- Consisting of:
 - 13 Quantitative Features
 - 17 Fundamental Features

The Pros and Cons of Various Machine Learning Models

Investment Strategy

What We Tried

Researched and attempted many learning models.

Time-Series Financial Forecasting and Portfolio Optimization

Long Short-Term Memory LSTM

Honourable mentions

ARIMA

- Limited to linear patterns
- Requires stationary data
- Unreliable in long-term forecast
- Does not make use of given data
- Requires outlier pre-processing

3

Recurrent Neural Net

- Captures sequential dependencies
- Models complex patterns
- · Vanishing gradient problem
- Struggles to remember earlier data

Elastic Net

- Deals with feature selection and regularization
- Can overfit on small datasets with high dimensionality
- Not great with long term predictions
- Struggles to capture nonlinear relationships

Lack of Time Series

Each method had limitations for time-series modeling, leading us to a more sophisticated approach.

Our main model: LSTM - Long-Short Term Memory

- Sequential data: Excels in tasks where order of inputs is significant
- Adapts to changing patterns over time, which is suitable for stock market
- Mitigates VGP, improving long sequences training and convergence
- Learns importance of different features, capturing complex relationships

LSTM Architecture:

Memory Cell enables model to store relevant info over many time steps

Forget gate resolves the vanishing gradient problem

Input/Output determines how much information is passed

Bidirectional layers allows learning in both forward and backward directions

Layers

• The Sequential() class was used to build our model layer by layer, where parameters can be specified. Below is the architecture of our model.

We have a total of 4 layers to achieve one prediction

Batch Size and Epoch

• Per yearly out-of-sample predictions, we used 30 epochs, with batch sizes of 64. These decisions are balanced between computational efficiency and maintaining model performance.

Optimizer

AdaGrad: penalizes the learning rate too harshly RMSProp: doesn't use momentum

Adam optimizer was used for its efficiency in handling sparse and noisy gradients, combining the advantages of AdaGrad and RMSProp.

Loss Function

Mean squared error: penalizes large errors more heavily Absolute error: treats all errors equally

The **Huber** loss function was chosen for its ability to handle outliers in stock returns, balancing sensitivity between mean squared error and absolute error.

Optimizing our portfolio

Mean Variance Optimization

Optimization

Portfolio optimization is the final and most critical element of our investment strategy. It is the final step in translating the predicted stock returns from our machine-learning model into actual investment decisions.

- Maximizes risk-adjusted returns (maximizing the risk-adjusted utility, a key performance measure;)
- Encourages diversification by selecting stocks with low or negative correlations using a correlation matrix (reducing volatility) with shrinkage

Objective Function:

$$max E[Rp] - \lambda \cdot \sigma_p^2$$

Where,

- $E[Rp] = w^T \mu$, is the expected portfolio return
 - $\sigma_p^2 = w^T \Sigma \omega$, is the **portfolio variance**
 - λ , is the risk aversion coefficient

Constraints: Positive weights for a long-only portfolio

Turnover less than 25%

Ticker weight less than 10%

Iterative Process - Monthly

Future Applications

The risk aversion parameter can be adjusted as per the risk tolerance for different asset classes/investors

To reduce noise, and improve estimates and input quality for the MVO, use a factor model to predict returns and estimate covariance matrix

The Results

GitGud Portfolio Outperforms S&P 500 with 19.5% CAGR

Portfolio Performance Results

Cumulative Portfolio Returns Comparison

Cumulative Portfolio Returns Comparison

	Git Gud Performance	S&P 500 Performance
Average annualized returns	0.195	0.117
Annualized Std Dev.	0.307	0.146
CAPM Alpha	0.022	n.a.
Annualized Alpha	0.260	n.a
Sharpe Ratio (annualized)	0.636	0.434
Information Ratio	0.849	n.a.
Maximum Drawdown	0.637	0.746
Maximum 1 Month Loss	-0.309	-0.169
Maximum 1 Month Loss	0.099	n.a.

Cumulative Portfolio Returns Comparison

Name		ROI
1.	GME:	19.8805x
2.	VNDA:	12.4019x
3.	MSEL:	11.8530x
4.	PTIE:	11.6093x
5.	ARIA:	10.6043x
6.	AIRB:	9.4735x
7.	EGHT:	8.9897x
8.	EXCA:	8.9705x
9.	CVSN:	8.9672x
10.	SNTA.:	8.5567x

Future Potential Reflection

Risk and Mitigations

Areas of Concern

Mitigation

Risk Level

Illiquidity

Lower levels of liquidity lead to higher transaction costs and challenges in executing trades

Consider introducing position sizing limits based on liquidity and use liquidity constraints when selecting stocks

Market Regime Shifts The model may perform well under certain market but struggle during sharp market regime shifts (financial crises)

Build regime detection models that classify market environments and adjust stock selection accordingly

Probability

Threat

Assessment

Next Steps

Further Tune Hyperparameters: For instance, increasing batch size/decrease epochs for overfitting (time constraints)

Web Scraping: Sentimental Analysis

Event Driven Analysis: High market cap stocks tend to be influenced by the news; **take Tesla's 20% increase today**

Institution Readiness

Severity

Scalable

Customizable

Intentional Innovation

Citations/Resources

Thank you for Reading!

M. A. Istiake Sunny, M. M. S. Maswood and A. G. Alharbi, "Deep Learning-Based Stock Price Prediction Using LSTM and Bi-Directional LSTM Model," 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 2020, pp. 87-92, doi: 10.1109/NILES50944.2020.9257950. keywords: {Computer architecture;Logic gates;Microprocessors;Predictive models;Forecasting;Autoregressive processes;Time series analysis;RNN;LSTM;BI-LSTM;Stock Market Prediction;Deep Learning},

Hum Nath Bhandari, Binod Rimal, Nawa Raj Pokhrel, Ramchandra Rimal, Keshab R. Dahal, Rajendra K.C. Khatri, Predicting stock market index using LSTM, Machine Learning with Applications, Volume 9,2022,100320, ISSN 2666-8270, https://doi.org/10.1016/j.mlwa.2022.100320

Y. Liu, Z. Wang and B. Zheng, "Application of Regularized GRU-LSTM Model in Stock Price Prediction," 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 2019, pp. 1886-1890, doi: 10.1109/ICCC47050.2019.9064035. keywords: {Logic gates; Predictive models; Indexes; Neural networks; Computational modeling; Time series analysis; Computer architecture; LSTM; GRU; Time series prediction},

Adil Moghar, Mhamed Hamiche, Stock Market Prediction Using LSTM Recurrent Neural Network, Procedia Computer Science, Volume 170, 2020, Pages 1168-1173, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2020.03.049

Verifying LSTM stock price prediction effectiveness using TQUANT lab (part 1) - tej. TEJ台灣經濟新報. (2024, August 16). <a href="https://www.tejwin.com/en/insight/lstm-stock-price-prediction/#:~:text=Finally%2C%20we%20set%20up%20an,will%20stop%20to%20prevent%20overfitting.&text=After%20about%2025%20epochs%2C%20the,that%20the%20model%20converges%20quickly

Mukherjee, A., Singh, A., & Vardhan, S. (2023, May). 034adarsh/stock-price-prediction-using-LSTM: This project is about predicting stock prices with more accuracy using LSTM algorithm. for this project we have fetched real-time data from yfinance library. GitHub. https://github.com/034adarsh/Stock-Price-Prediction-Using-LSTM

mplappertmplappert 54111 gold badge44 silver badges44 bronze badges, Santanu_PattanayakSantanu_Pattanayak 37622 silver badges44 bronze badges, mpratmprat 25122 silver badges1010 bronze badges, PeterPeter 7, & rigorigo 16144 bronze badges. (1961, June 1). Guidelines for selecting an optimizer for training neural networks. Data Science Stack Exchange. https://datascience.stackexchange.com/questions/10523/guidelines-for-selecting-an-optimizer-for-training-neural-networks

Xiu, D. (n.d.). Empirical asset pricing via machine learning - Dacheng Xiu. https://dachxiu.chicagobooth.edu/download/ML.pdf

Mengmeng Ao, Li Yingying, Xinghua Zheng, Approaching Mean-Variance Efficiency for Large Portfolios, The Review of Financial Studies, Volume 32, Issue 7, July 2019, Pages 2890-2919, https://doi.org/10.1093/rfs/hhy105

Some icons are from: Flaticons: Constraint icons created by Freepik - Flaticon

Executive Summary Investment Strategy Portfolio Performance Conclusion

