Week6_PythonCode_Demo

September 20, 2021

0.1 Importing Libraries

```
anyoneelse
[1]: import numpy as np
    import pandas as pd
    import matplotlib as plt
    from sklearn.impute import SimpleImputer
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.svm import SVC
    from sklearn.ensemble import GradientBoostingClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.feature_selection import RFE
    from sklearn.metrics import roc_curve
    from sklearn.metrics import accuracy_score
    import statsmodels.api as sm
     # Set a random seed
    np.random.seed(12345)
    # For supressing warnings
    import warnings
    warnings.simplefilter(action='ignore', category=FutureWarning)
```

0.2 Data loading

```
[2]: data = pd.read_csv("pmad_pva.csv")
```

Data Description

```
# Top 5 rows of the dataframe
data.head()
```

```
[3]:
        TargetB
                      ID TargetD GiftCnt36 GiftCntAll GiftCntCard36
                   14974
     0
              0
                              NaN
                                            2
                                                                         1
     1
              0
                    6294
                              NaN
                                            1
                                                         8
                                                                         0
     2
              1
                  46110
                              4.0
                                            6
                                                        41
                                                                         3
                                                        12
     3
              1
                  185937
                             10.0
                                            3
                                                                         3
     4
              0
                   29637
                              NaN
                                            1
                                                         1
                         GiftAvgLast GiftAvg36 GiftAvgAll
        GiftCntCardAll
                                                                  PromCntCardAll
                      3
                                17.0
                                           13.50
                                                         9.25
     0
                      3
                                20.0
                                           20.00
     1
                                                        15.88
     2
                     20
                                 6.0
                                            5.17
                                                         3.73
     3
                      8
                                10.0
                                            8.67
                                                         8.50
     4
                                20.0
                                           20.00
                      1
                                                        20.00
        StatusCat96NK
                        StatusCatStarAll
                                           DemCluster
                                                        DemAge
     0
                                                           NaN
                     Α
     1
                     Α
                                        0
                                                   23
                                                          67.0
     2
                     S
                                        1
                                                    0
                                                           NaN
                                                                         Μ
     3
                     Ε
                                        1
                                                    0
                                                                         М
                                                           NaN
     4
                     F
                                                   35
                                                          53.0
                                                                        Μ
        DemHomeOwner DemMedHomeValue
                                        DemPctVeterans DemMedIncome
                                                      0
     0
                    U
                                                                  NaN
                    U
                                186800
                                                      85
                                                                  NaN
     1
     2
                    U
                                 87600
                                                      36
                                                              38750.0
     3
                    U
                                139200
                                                      27
                                                              38942.0
     4
                    IJ
                                168100
                                                      37
                                                              71509.0
     [5 rows x 28 columns]
[4]: # All the variables in dataset
     data.columns
[4]: Index(['TargetB', 'ID', 'TargetD', 'GiftCnt36', 'GiftCntAll', 'GiftCntCard36',
            'GiftCntCardAll', 'GiftAvgLast', 'GiftAvg36', 'GiftAvgAll',
            'GiftAvgCard36', 'GiftTimeLast', 'GiftTimeFirst', 'PromCnt12',
             'PromCnt36', 'PromCntAll', 'PromCntCard12', 'PromCntCard36',
            PromCntCardAll', 'StatusCat96NK', 'StatusCatStarAll', 'DemCluster',
             DemAge', 'DemGender', 'DemHomeOwner', 'DemMedHomeValue',
             'DemPctVeterans', 'DemMedIncome'],
           dtype='object')
       Summary Statistics
```

data.describe().T

[5]:		count	mean	std	min	25%	\		
	TargetB	9686.0	0.500000	0.500026	0.00	0.00			
	ID	9686.0	97975.474086	56550.171120	12.00	48835.50			0/50
	TargetD	4843.0	15.624344	12.445137	1.00	10.00			15
	GiftCnt36	9686.0	3.205451	2.133421	0.00	2.00			
	GiftCntAll	9686.0	10.507640	8.993401	1.00	4.00			O
	GiftCntCard36	9686.0	1.856597	1.595419	0.00	1.00		70)
	${\tt GiftCntCardAll}$	9686.0	5.582490	4.736894	0.00	2.00			
	${ t GiftAvgLast}$	9686.0	16.017739	12.041805	0.00	10.00	16)	
	GiftAvg36	9686.0	14.876203	10.057007	0.00	9.60	3		
	GiftAvgAll	9686.0	12.489325	9.209297	1.50	7.75			
	GiftAvgCard36	7906.0	14.224431	10.022710	1.33	8.67			
	${\tt GiftTimeLast}$	9686.0	18.002168	4.073549	4.00	16.00			
	${\tt GiftTimeFirst}$	9686.0	71.100351	37.691984	15.00	36.00			
	PromCnt12	9686.0	12.988850	4.823458	2.00	11.00			
	PromCnt36	9686.0	29.348235	7.809743	4.00	25.00			
	PromCntAll	9686.0	48.483481	23.061483	5.00	29.00			
	PromCntCard12	9686.0	5.392009	1.323648	0.00	5.00			
	PromCntCard36	9686.0	11.954677	4.571568	2.00	7.00			
	${\tt PromCntCardAll}$	9686.0	19.007124		2.00	12.00			
	StatusCatStarAll	9686.0	0.540574		0.00	0.00			
	DemCluster	9686.0	27.150320	14.832665	0.00	14.00			
	DemAge	7279.0	59.150845	16.516400	0.00	47.00			
	${\tt DemMedHomeValue}$	9686.0	110986.299814	98670.855450	0.00	52300.00			
	DemPctVeterans	9686.0	30.604274		0.00	25.00			
	DemMedIncome	7329.0	53513.457361	19805.168339	2499.00	40389.00			
		_							
		50%		max					
	TargetB	0.50		1.0					
	ID			191779.0					
	TargetD	13.00		200.0					
	GiftCnt36	3.00		16.0					
	GiftCntAll	8.00		91.0					
	GiftCntCard36	1.00		9.0					
	GiftCntCardAll	4.00		41.0					
	GiftAvgLast	15.00		450.0					
	GiftAvg36	13.50		260.0					
	GiftAvgAll	10.71		450.0					
	GiftAvgCard36	12.50		260.0					
	GiftTimeLast	18.00		27.0					
	GiftTimeFirst	68.00		260.0					
1	PromCnt12	12.00		59.0					
()	PromCnt36	31.00		78.0					
	PromCntAll	48.00		174.0					
	PromCntCard12	6.00		17.0					
	PromCntCard36	13.00	16.00	28.0					

56.0

26.00

 ${\tt PromCntCardAll}$

19.00

```
StatusCatStarAll
                      1.00
                                  1.00
                                             1.0
DemCluster
                      27.00
                                 40.00
                                            53.0
DemAge
                      60.00
                                            87.0
                                 73.00
DemMedHomeValue
                  76900.00
                             128175.00
                                        600000.0
DemPctVeterans
                      31.00
                                 37.00
                                            85.0
DemMedIncome
                  48699.00
                              62385.00 200001.0
```

eelse

[6]: # Dimensions of the data

data.shape

[6]: (9686, 28)

[7]: # Structure of the data

	<pre>data.info()</pre>								
	Rang	ss 'pandas.core.fr eIndex: 9686 entri columns (total 28 Column	Dtype						
	0	 TargetB	9686 non-null	 int64					
	1	ID	9686 non-null	int64					
	2	TargetD	4843 non-null	float64					
	3	GiftCnt36	9686 non-null	int64					
	4	GiftCntAll		int64					
	5	GiftCntCard36	9686 non-null	int64					
	6	GiftCntCardAll	9686 non-null	int64					
	7	GiftAvgLast	9686 non-null	float64					
	8	GiftAvg36	9686 non-null	float64					
	9	GiftAvgAll	9686 non-null	float64					
	10	GiftAvgCard36	7906 non-null	float64					
	11		9686 non-null	int64					
	12		9686 non-null	int64					
	13		9686 non-null	int64					
	14	PromCnt36	9686 non-null	int64					
	15	PromCntAll	9686 non-null	int64					
	16	PromCntCard12	9686 non-null	int64					
	17	PromCntCard36	9686 non-null	int64					
	18	PromCntCardAll	9686 non-null	int64					
.(19	StatusCat96NK	9686 non-null	object					
4	20	StatusCatStarAll	9686 non-null	int64					
~ ()	21	DemCluster	9686 non-null	int64					
1.0	22	DemAge	7279 non-null	float64					
X	23	DemGender	9686 non-null	object					
•	24	DemHomeOwner	9686 non-null	object					
	25	${\tt DemMedHomeValue}$	9686 non-null	int64					

```
DemPctVeterans
                  9686 non-null
                                   int64
DemMedIncome
                  7329 non-null
                                   float64
```

dtypes: float64(7), int64(18), object(3)

memory usage: 2.1+ MB

0.4 Data preprocessing

- 1) Change the object columns into numeric float64 columns.
- 2) Impute the missing values. Use mean for interval variables and mode for categorical variables
- 3) Dropping ID and few other variables from analysis.
- 4) Creating dummies for categorical variables.
- 5) Splitting the data into training and testing set

```
[8]: # Turn object columns into numeric float64 columns
     for i in data.columns:
         if data[i].dtype == 'object':
             data[i] = data[i].str.decode('utf-8')
```

```
[9]: # Number of missing values
     data.isnull().sum()
```

```
[9]: TargetB
                              0
     ID
                              0
     TargetD
                           4843
     GiftCnt36
     GiftCntAll
     GiftCntCard36
     GiftCntCardAll
     GiftAvgLast
     GiftAvg36
     GiftAvgAll
     GiftAvgCard36
     GiftTimeLast
     GiftTimeFirs
     PromCnt12
                              0
     PromCnt36
                              0
     PromCntAll
                              0
     PromCntCard12
                              0
     PromCntCard36
                              0
     PromCntCardAll
                              0
     StatusCat96NK
                           9686
     StatusCatStarAll
                              0
     DemCluster
                              0
     DemAge
                           2407
     DemGender
                           9686
```

```
9686
     DemHomeOwner
     DemMedHomeValue
                            0
     DemPctVeterans
                            0
     DemMedIncome
                         2357
     dtype: int64
[10]: # Impute missing values --> mean for interval, mode for categorical
     for i in data.columns:
         if data[i].dtype == "float64":
             data[i].fillna(data[i].mean(), inplace = True)
             data[i].fillna(data[i].mode(), inplace = True)
                         O COLLA .
[11]: data.isnull().sum()
[11]: TargetB
     ID
     TargetD
     GiftCnt36
     GiftCntAll
     GiftCntCard36
     GiftCntCardAll
     GiftAvgLast
     GiftAvg36
     GiftAvgAll
     GiftAvgCard36
     GiftTimeLast
     GiftTimeFirst
     PromCnt12
     PromCnt36
     PromCntAll
     PromCntCard12
     PromCntCard36
     PromCntCardAll
                            0
     StatusCat96NK
                         9686
     StatusCatStarAll
                            0
     DemCluster
                            0
     DemAge
                            0
     DemGender
                         9686
     DemHomeOwner
                         9686
     DemMedHomeValue
                            0
     DemPctVeterans
                            0
     DemMedIncome
```

dtype: int64

```
[12]: # How many number of variables in the categorical Variables
                                                                                  Jone else
      data[[ "DemCluster", "DemGender", "DemHomeOwner", "StatusCat96NK"]].nunique()
[12]: DemCluster
                       54
      DemGender
                        0
      DemHomeOwner
                        0
      StatusCat96NK
                        0
      dtype: int64
[13]: # Dropping Id and few other variables
      data = data.drop(['ID', 'StatusCat96NK', 'DemGender', 'DemHomeOwner'], axis = 1)
[14]: # Create dummies for the categorical variables
      data = pd.get_dummies(data, drop_first=True)
      data.head()
                                                     GiftCntCard36
                    TargetD GiftCnt36
[14]:
         TargetB
                                        GiftCntAll
                                                                    GiftCntCardAll
                 15.624344
                                     2
                                                                 1
      1
               0 15.624344
                                      1
                                                                 0
                                                                                  3
      2
                   4.000000
                                     6
                                                                 3
                                                                                 20
               1
      3
                 10.000000
                                     3
                                                 12
                                                                 3
                                                                                  8
               1
               0 15.624344
                                                                                  1
         GiftAvgLast
                      GiftAvg36 GiftAvgAll GiftAvgCard36
                                                                PromCntAll
                17.0
                          13.50
                                                  17.000000
      0
                                                                         26
                20.0
                          20.00
      1
                                       15.88
                                                  14.224431
                                                                        79
      2
                 6.0
                           5.17
                                        3.73
                                                   5.000000 ...
                                                                        51
      3
                10.0
                           8.67
                                        8.50
                                                   8.670000
                                                                        44
                20.0
                          20.00
                                       20.00
                                                  20.000000
                                                                         13
         PromCntCard12 PromCntCard36
                                       PromCntCardAll StatusCatStarAll DemCluster \
      0
                                                    13
                                    5
                                                                                   23
      1
                                                    24
                                                                       0
      2
                                                    22
                                                                       1
                                                                                    0
                                    11
                                    6
                                                                       1
      3
                                                    16
                                                                                    0
                                                     6
                                                                                   35
            DemAge DemMedHomeValue DemPctVeterans DemMedIncome
         59.150845
                                  0
                                                   0 53513.457361
         67.000000
                             186800
                                                  85
                                                      53513.457361
         59.150845
                              87600
                                                  36
                                                      38750.000000
                                                      38942.000000
         59.150845
                             139200
                                                  27
         53.000000
                             168100
                                                  37
                                                     71509.000000
```

[5 rows x 24 columns]

0.6 Step-wise Regression

```
[]: #execute this function once, as there are no pre-existing libraries in pythonu
     → to run step wise regression model
     def stepwise_selection(data, target, SL_in = 0.05, SL_out = 0.05):
         initial features = data.columns.tolist()
         best_features = []
         while (len(initial features)>0):
             remaining_features = list(set(initial_features) - set(best_features))
             new_pval = pd.Series(index = remaining_features, dtype='float64')
             for new_column in remaining_features:
                 model = sm.OLS(target, sm.
      →add_constant(data[best_features+[new_column]])).fit()
                 new_pval[new_column] = model.pvalues[new_column]
             min p value = new pval.min()
             if (min_p_value < SL_in):</pre>
                 best_features.append(new_pval.idxmin())
                 while(len(best features)>0):
                     best_features_with_constant = sm.
      →add_constant(data[best_features])
                     p values = sm.OLS(target, best features with constant).fit().
      →pvalues[1:]
                     max_p_value = p_values.max()
```

```
if(max_p_value >= SL_out):
                                                                                 excluded_feature = p_values.idxmax()
                                                                                 best_features.remove(excluded_feature)
                                                                     else:
                                                                                 break
                                            else:
                                                        break
                               return best features
                   ##Source: https://www.analyticsvidhya.com/blog/2020/10/
                       \rightarrow a-comprehensive-guide-to-feature-selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python/selection-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-methods-in-python-using-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-method-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapper-wrapp
   []: X1 = stepwise_selection(X,y)
   []: # Variables that are selected
                  print(X1)
   []: X_stepwise = data[X1]
   []: # Split the data in 70:30
                  X_train, X_test, y_train, y_test = train_test_split(X_stepwise, y, test_size=0.
                     →3)
[24]: # logistic Modelling
                  log_model = LogisticRegression(penalty='11', solver='liblinear', C = 1e9).
                    →fit(X_train, y_train)
                  accuracy_score(log_model.predict(X_test), y_test)
[24]: 0.5784583620096352
                0.7 Decision Tree Modelling
[25]: # Split the data in 70:30
                  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
 [26] # Decision Tree modelling
                  DT_model = DecisionTreeClassifier().fit(X_train, y_train)
                   # Accuracy
```

```
accuracy_score(DT_model.predict(X_test), y_test)
[26]: 0.5313145216792843
     0.8 Gradient Boosting
[27]: # Gradient boosting
     gb_model = GradientBoostingClassifier()
     gb_model.fit(X_train, y_train)
     # Accuracy
     accuracy_score(gb_model.predict(X_test), y_test)
[27]: 0.5719201651754989
     0.9 Random Forest Modeling
[28]: rf_model = RandomForestClassifier()
     rf_model.fit(X_train, y_train)
     # Accuracy
     accuracy_score(rf_model.predict(X_test), y_test)
[28]: 0.5646937370956642
     0.10 SVM Model
     0.10.1 a. Linear Kernel
[29]: svm_model = SVC(kernel= 'linear').fit(X_train, y_train)
     # Accuracy
     accuracy_score(svm_model.predict(X_test), y_test)
[29]: 0.5588437715072264
     0.10.2 b. Polynomial Kernel
     svm_model = SVC(kernel= 'poly').fit(X_train, y_train)
```

accuracy_score(svm_model.predict(X_test), y_test)

Accuracy

[30]: 0.4865794907088782

0.10.3 c. Gaussian Kernel

```
For your personal use only. Do not share with any
    [31]: svm_model = SVC(kernel= 'rbf').fit(X_train, y_train)
```