Traccia:	

Processo	Tempo di esecuzione	Tempo di attesa	Tempo di esecuzione dopo attesa
P1	3 secondi	2 secondi	1 secondo
P2	2 secondi	1 secondo	-
P3	1 secondi	-	-
P4	4 secondi	1 secondo	2 secondi

Analizzando i tre diagrammi: mono-tasking, multi-tasking e time-sharing, posso dedurre che i più efficaci sono multi-tasking e time-sharing. Dato che nel mono-tasking con la necessità di attendere, impiega più secondi, precisamente 17 secondi, nel multi-tasking invece, senza le attese, facendo partire nei seguenti processi mentre è in attesa, spendiamo meno tempo, precisamente 13 secondi, recuperando 4 secondi dal mono-tasking; nel time-sharing invece, utilizziamo il tempo d'utilizzo della cpu, suddividendolo sui vari processi, avendo 13 secondi.

Eseguito da Anatoliy Prysyazhnyuk, 08.05.2023