GCE May, 2016

Jiamin JIAN

Exercise 1:

A real-valued function f is increasing on a closed interval $[a, b] \subset \mathbb{R}$ if and only if $f(x_2) \geq f(x_1)$ whenever $x_2 > x_1$.

- (i) Using the definition of measurable, show that f is measurable on [a, b].
- (ii) Show that f is continuous, except perhaps a countable number of points.

Solution:

- (i) For any $c \in \mathbb{R}$, we denote $S = f^{-1}([c, +\infty])$, by the definition of S, we have $S = \{x \in [a, b] | f(x) \ge c\}$. For any $x \in S$, if y > x and $y \in [a, b]$, as f is increasing, we have $f(y) \ge f(x) \ge c$, thus $y \in S$. It is equivalent to that if $x \in S$, for any $y \in [a, b]$ and $y \ge x$, we have $y \in S$. This implies S can only be \emptyset , [a, b], [a, b], [a, b] and [a, b], all of the sets are measurable, thus f is measurable.
- (ii) Let $f(x^-)$ and $f(x^+)$ denote the left and the right hand limits of f respectively. Let A be the set of points where f is not continuous. Then for any $x \in A \subset [a,b]$, we can find a rational number $f^*(x) \in \mathbb{Q}$, such that $f(x^-) < f(x^*) < f(x^+)$. Since f is increasing function, then for $x_1, x_2 \in A$ and $x_1 < x_2$, we have $f(x_1) \leq f(x_2)$, also we have $f(x_1^+) \leq f(x_2^-)$. Thus we have $f(x_1^+) \leq f(x_2^-) < f(x_2^*)$, then we know that $f(x_1^*) < f(x_2^*)$. Then there exists a injection between A and a subsets of rational number \mathbb{Q} . Since \mathbb{Q} is countable, then we know that A is also countable. Thus f is continuous except perhaps a countable number of points.

Exercise 2:

If f is Lebesgue integrable on \mathbb{R} , define

$$F(x) = \int_0^x f \, d\mu$$

where $\mu(E)$ is the Lebesgue measurable set $E \subset \mathbb{R}$. Show that

- (i) F is continuous.
- (ii) If $\mu(E) = 0$, then $\mu(F(E)) = 0$.

Solution:

(i) Let $\{x_n\}$ is a sequence in \mathbb{R} and $x_n \to x_0$ as n goes to infinity. To show F is continuous, we need to show that $F(x_n)$ converges to $F(x_0)$, i.e.

$$\lim_{n \to +\infty} \int_0^{x_n} f \, d\mu = \int_0^{x_0} f \, d\mu.$$

Since we have

$$\lim_{n \to +\infty} \int_0^{x_n} f \, d\mu = \lim_{n \to +\infty} \int_0^{\infty} f \, \mathbb{I}_{[0,x_n]}(x) \, d\mu$$

and

$$|f \mathbb{I}_{[0,x_n]}(x)| \le |f| \in L^1(\mathbb{R}),$$

by the dominate convergence theorem, we have

$$\lim_{n \to +\infty} \int_0^\infty f \, \mathbb{I}_{[0,x_n]}(x) \, d\mu = \int_0^\infty \lim_{n \to +\infty} f \, \mathbb{I}_{[0,x_n]}(x) \, d\mu.$$

Next we need to show that

$$\lim_{n \to +\infty} \mathbb{I}_{[0,x_n]}(x) = \mathbb{I}_{[0,x_0]}(x).$$

If $x_n \to x_0$, then for any $0 < t < x_0$, there exists a $N_1 \in \mathbb{N}$, such that $t < x_n$ for any $n > N_1$, and hence we have $\mathbb{I}_{[0,x_n]}(t) = 1$ for all $n > N_1$. Similarly, for $t > x_0$, there exists a $N_2 \in \mathbb{N}$ such that $\mathbb{I}_{[0,x_n]}(t) = 0$ for all $n > N_2$. Since $\{x_0\}$ is a singleton, it has zero measure. Thus let $\epsilon > 0$ be given, for any $x \in \mathbb{R}$, there exists a $N = \max\{N_1, N_2\} \in \mathbb{N}$ such that $|\mathbb{I}_{[0,x_n]}(x) - \mathbb{I}_{[0,x_0]}(x)| = 0$, thus

$$\lim_{n \to +\infty} \mathbb{I}_{[0,x_n]}(x) = \mathbb{I}_{[0,x_0]}(x) \ a.e.$$

Then we have

$$\lim_{n \to +\infty} \int_0^\infty f \, \mathbb{I}_{[0,x_n]}(x) \, d\mu = \int_0^\infty f \, \mathbb{I}_{[0,x_0]}(x) \, d\mu = \int_0^{x_0} f \, d\mu,$$

from which we know F is continuous.

(ii) We need to show that the continuous image of a zero measure set is also a zero measure set. For $E \in \mathbb{R}$ and $\mu(E) = 0$, we can find a disjoint sequence E_n such that

 $E \subset \bigcup_{n=1}^{\infty} E_n$ and for any $\epsilon > 0$ we have $\mu(\bigcup_{n=1}^{\infty} E_n) < \epsilon$. Since $F(E) \subset F(\bigcup_{n=1}^{\infty} E_n)$, we know that

$$\mu(F(E)) \le \mu(F(\bigcup_{n=1}^{\infty} E_n)).$$

Since F is continuous, if f is lipchitz continuous or f is absolutely continuous, then there exists a constant K > 0 and we have $\mu(F(\bigcup_{n=1}^{\infty} E_n)) \leq K\mu(\bigcup_{n=1}^{\infty} E_n) < K\epsilon$. So, we know that $\mu(F(E)) = 0$.

Exercise 3:

Let f be in $L^1(\mathbb{R})$ such that $f \geq 0$ almost everywhere and $\int_{\mathbb{R}} f = 1$. Set $f_n(x) = nf(nx)$. Let g be in $L^{\infty}(\mathbb{R})$.

(i) Let x_0 be in \mathbb{R} . Assume that g is continuous at x_0 . show that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x_0 - y) g(y) \, dy = g(x_0).$$

- (ii) If g is uniformly continuous, is this limit uniformly in x_0 ?
- (iii) If h is in $L^1(\mathbb{R})$ show that the function in x

$$\int_{\mathbb{R}} f_n(x-y)h(y)\,dy$$

converges to h in $L^1(\mathbb{R})$.

Solution:

(i) We denote $z = x_0 - y$, so we have

$$\int_{\mathbb{R}} f_n(x_0 - y) g(y) \, dy = \int_{\mathbb{R}} f_n(z) g(x_0 - z) \, dz = \int_{\mathbb{R}} n f(nz) g(x_0 - z) \, dz,$$

and then we denote u = nz,

$$\int_{\mathbb{R}} nf(nz)g(x_0 - z) dz = \int_{\mathbb{R}} f(u)g(x_0 - \frac{u}{n}) du.$$

Since $f \in L^1(\mathbb{R})$ and $g(x) \in L^{\infty}(\mathbb{R})$, there exists a M > 0 such that

$$|f(u)g(x_0 - \frac{u}{n})| \le Mf(u) \in L^1(\mathbb{R}),$$

by the dominate convergence theorem, we have

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x_0 - y) g(y) \, dy = \lim_{n \to \infty} \int_{\mathbb{R}} f(u) g(x_0 - \frac{u}{n}) \, du$$

$$= \int_{\mathbb{R}} \lim_{n \to \infty} f(u) g(x_0 - \frac{u}{n}) \, du$$

$$= \int_{\mathbb{R}} f(u) g(x_0) \, du$$

$$= g(x_0)$$

as q is continuous at x_0 .

(ii) We need to show that $\int_{\mathbb{R}} f_n(x-y)g(y) dy$ is uniformly converges to g(x) when g is uniformly continuous on \mathbb{R} . By the definition of $f_n(x)$, we have

$$\int_{\mathbb{R}} f_n(x) dx = \int_{\mathbb{R}} n f(nx) dx = \int_{\mathbb{R}} f(nx) d(nx) = 1.$$

For any $x \in \mathbb{R}$,

$$\left| \int_{\mathbb{R}} f_n(x - y) g(y) \, dy - g(x) \right| = \left| \int_{\mathbb{R}} f_n(z) g(x - z) \, dz - g(x) \right|$$

$$= \left| \int_{\mathbb{R}} f_n(z) g(x - z) \, dz - \int_{\mathbb{R}} f_n(z) g(x) \, dz \right|$$

$$\leq \int_{\mathbb{R}} f_n(z) |g(x - z) - g(x)| \, dz$$

$$= \int_{\mathbb{R}} n f(nz) |g(x - z) - g(x)| \, dz,$$

we denote u = nz, then we have

$$\left| \int_{\mathbb{R}} f_n(x - y) g(y) \, dy - g(x) \right| \le \int_{\mathbb{R}} f(u) \left| g\left(x - \frac{u}{n}\right) - g(x) \right| du.$$

As $f \in L^1(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$, there exists a M > 0 such that

$$\left| f(u) \left(g(x - \frac{u}{n}) - g(x) \right) \right| \le 2M f(u) \in L^1(\mathbb{R}),$$

by the dominate convergence theorem, we have

$$\lim_{n \to \infty} \Big| \int_{\mathbb{R}} f_n(x - y) g(y) \, dy - g(x) \Big| \le \int_{\mathbb{R}} \lim_{n \to \infty} f(u) \Big| g\Big(x - \frac{u}{n}\Big) - g(x) \Big| \, du.$$

Since g is uniformly continuous on \mathbb{R} , let $\epsilon > 0$ be given, there exists a $N \in \mathbb{N}$ such that for any $x \in \mathbb{R}$ and whenever n > N, we have $|g(x - \frac{u}{n}) - g(x)| < \epsilon$. So, for the above ϵ and N, for any $x \in \mathbb{R}$, when n > N we have

$$\int_{\mathbb{R}} f(u) \left| g\left(x - \frac{u}{n}\right) - g(x) \right| du \le \int_{\mathbb{R}} f(u) \epsilon \, du = \epsilon$$

thus we know that $\int_{\mathbb{R}} f_n(x-y)g(y) dy$ is uniformly converges to g(x).

(iii) As $h \in L^1(\mathbb{R})$ and $C_c(\mathbb{R})$ is dense in $L^1(\mathbb{R})$, for any $\epsilon > 0$, there exists a function $g \in C_c(\mathbb{R})$, such that

$$||g - h||_1 < \epsilon.$$

We denote $\int_{\mathbb{R}} f_n(x-y)h(y) dy = h_n(x)$ and $\int_{\mathbb{R}} f_n(x-y)g(y) dy = g(x)$, then we have

$$||h(x) - h_n(x)||_1 \le ||h(x) - g(x)|| + ||g(x) - g_n(x)|| + ||g_n(x) - h_n(x)||.$$

For the above ϵ , as $||g - h||_1 < \epsilon$ and by the result we get from (ii), $g_n(x)$ is uniformly converges to g(x), we have $||g_n(x) - g(x)|| < \epsilon$, then we have

$$\lim_{n \to \infty} ||h(x) - h_n(x)||_1 = \lim_{n \to \infty} ||g_n(x) - h_n(x)||.$$

Next we need to verify the term $||g_n(x) - h_n(x)||$, since

$$||g_n(x) - h_n(x)|| = \left\| \int_{\mathbb{R}} f_n(x - y)h(y) \, dy - \int_{\mathbb{R}} f_n(x - y)g(y) \, dy \right\|$$

$$= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} f_n(x - y)(h(y) - g(y)) \, dy \right| dx$$

$$\leq \int_{\mathbb{R}} \int_{\mathbb{R}} f_n(x - y)|h(y) - g(y)| \, dy \, dx$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(u) \left| h\left(x - \frac{u}{n}\right) - g\left(x - \frac{u}{n}\right) \right| du \, dx,$$

by Fubini's theorem, we have

$$||g_n(x) - h_n(x)|| \leq \int_{\mathbb{R}} f(u) \int_{\mathbb{R}} \left| h\left(x - \frac{u}{n}\right) - g\left(x - \frac{u}{n}\right) \right| dx du$$

$$= \int_{\mathbb{R}} f(u) \int_{\mathbb{R}} |h(y) - g(y)| dy du$$

$$= \int_{\mathbb{R}} f(u) ||h - g||_1 du$$

$$= ||h - g||_1$$

as $\int_{\mathbb{R}} f = 1$. Thus we know that for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$||h(x) - h_n(x)||_1 \le ||h(x) - g(x)|| + ||g(x) - g_n(x)|| + ||g_n(x) - h_n(x)|| < 3\epsilon$$

for all $n \geq N$. Therefore

$$\lim_{n \to \infty} ||h(x) - h_n(x)||_1 = 0,$$

which means $\int_{\mathbb{R}} f_n(x-y)h(y) dy$ converges to h in $L^1(\mathbb{R})$.