

- Laboratorio di Servizi di Telecomunicazione

Architettura Hardware di un Router

Slide tratte da "Cisco Press CCNA Instructor's Manual" ed elaborate dall'Ing. Francesco Immè

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Tratto da: Cisco Press: CCNA Instructor's Manual

Wide Area Network (WAN)

- Le principali caratteristiche di una WAN sono
 - Collegamento di device separati da ampie aree geografiche
 - Usano servizi di "trasporto" forniti da operatori di rete
 - Usano connessioni seriali di vario tipo, su scale geografiche estese, per accedere alla banda
- WAN e Local Area Network (LAN) differiscono in diversi aspetti
 - Copertura
 - Una LAN collega device in una piccola area geografica, mentre una WAN supporta connessioni in area geografica
 - Strato protocollare
 - Una WAN opera al primo e secondo strato del modello OSI, interconnettendo LAN separate tra loro
 - Le WAN offrono lo scambio di pacchetti dati e frame tra router, switch e le LAN che essi supportano.

Router

- Il router ha le stesse componenti base di un PC (CPU, memoria, system bus e interfacce input/output)
- Sono progettati per operare in un determinato ambito, non coperto dai PC commerciali
- Come tutti i computer essi necessitano di un sistema operativo per il supporto delle applicazioni denominato IOS (Internetwork Operating System)
- L'IOS supporta i file di configurazione, che contengono istruzioni e parametri per controllare il flusso di traffico
 - tali parametri servono ad effettuare il setup dei protocolli di rete e dei protocolli di routing abilitati sul router
- I componenti principali interni di un router sono la RAM, la NVRAM, la flash memory, la ROM e le interfacce.

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Componenti interne di un Router (1/4)

CPU

- esegue istruzioni del sistema operativo, come l'inizializzazione, funzioni di routing e controllo delle interfacce
- I router più complessi possono avere più CPU

RAM

- usata per le routing table, per la cache fast switching, running configuration e code di pacchetti
- Fornisce il run time space per software eseguibile del sistema operativo e si divide in shared memory per I/O e main processor memory
- Fornisce della memoria temporanea per il file di configurazione mentre il router è acceso

Flash

- usata per memorizzare un'intera immagine del Cisco IOS
- Per la sua espansione si usano delle SIMM o schede PCMCIA

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Tratto da: Cisco Press: CCNA Instructor's Manual

Componenti interne di un Router (2/4)

NVRAM

- memorizzano la configurazione di startup
- In alcuni device è una EEPROM a parte, in altri è implementata nella stessa memoria dove è il boot code

Bus

- la maggior parte dei router hanno un bus di sistema ed uno di CPU
- Il primo è quello mediante il quale comunicano CPU e interfacce e sul quale i pacchetti viaggiano verso e da le interfacce

ROM

- è usata per memorizzare in modo permanente il codice diagnostico che si lancia allo startup
- Il compito principe della ROM è hardware diagnostic durante il bootup e caricare l'IOS da flash a RAM

Componenti interne di un Router (3/4)

Interfaces

- le interfacce sono le connessioni del router con l'esterno
- sono di tre tipi: per LAN, WAN e console/AUX
 - Le interfacce LAN hanno un controller chip che fornisce la logica per connettere il sistema al mezzo
 - Le interfacce WAN includono connessioni seriale, ISDN e CSU
 - Le porte AUX/Console sono usate primariamente per la configurazione del router e infatti non sono porte di rete

Power supply

- fornisce l'energia necessaria per far lavorare le componenti interne
- Router di grandi dimensione possono avere più power supply; in alcuni casi addirittura dei router hanno questo modulo esterno

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Ancora sui Router

- I router hanno interfacce sia di tipo WAN sia di tipo LAN
- I router operano allo strato 3 dell'OSI
 - Individuano il cammino dei pacchetti verso la loro destinazione
 - commutano i pacchetti all'interfaccia corretta
 - Tali operazioni sono possibili grazie alle routing table e alle info che sono scambiate tra i router
- Una rete IP ben configurata fornisce
 - Indirizzamento end-to-end consistente
 - Indirizzi che rappresentano la topologia della rete
 - Best path selection
 - Routing statico o dinamico
 - Switching

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Tratto da: Cisco Press: CCNA Instructor's Manual

Router come WAN device

- Il primo scopo di un router
 "WAN" è provvedere
 all'interlavoro tra interfacce
 WAN con protocolli diversi
- La differenza sostanziale tra WAN e LAN consiste nei diversi protocolli utilizzati nello strato fisico e nello strato di data link
- Lo strato fisico delle WAN descrive le interfacce tra il DTE (Data Terminal Equipment) e il DCE (Data-Circuit terminating Equipment)
 - generalmente il DCE è il service provider e il DTE è il device dell'utente
 - il servizio offerto al DTE è reso disponibile tramite modem o CSU/DSU

- Standard WAN di strato fisico
 - EIA/TIA-232 e EIA/TIA-449
 - V.24, V.35, X.21
 - G.703, EIA-530
 - ISDN
 - T1, T3, E1, E3, xDSL
 - SONET (OC-3, OC-12, OC-48, OC-192)

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Protocolli WAN di strato 2

Protocolli di strato data link sono:

- High-level data link control (HDLC)
- Frame Relay
- Point-to-Point Protocol (PPP)
- Synchronous Data Link Control (SDLC)
- Serial Line Internet Protocol (SLIP)
- X.25
- ATM
- LAPB
- LAPD
- LAPF

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Tratto da: Cisco Press: CCNA Instructor's Manual

Connessioni possibili di un Router

- I 3 tipi base di connessione su un router sono le interfacce LAN, WAN e le porte di management
- Le interfacce LAN permettono al router di collegarsi ai mezzi LAN
 - solitamente è Ethernet ma potrebbe essere un'altra tecnologia LAN come il Token Ring o l'ATM
- Le connessioni WAN forniscono connettività attraverso un service provider ad un sito distante o ad Internet
- Le porte di management danno una connessione text-based per configurare il router
 - sono porte asincrone

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Porte di management

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Tratto da: Cisco Press: CCNA Instructor's Manual

INFOCOM Dept.

Come si usano le porte AUX e Console

- La porta console e quella AUX sono porte per la gestione
 - sono seriali ed asincrone
 - una di esse è richiesta per la configurazione iniziale del router, e si consiglia usare quella console
 - non tutti i router hanno una AUX port
- Una volta che si è editata la configurazione iniziale il router può essere connesso alle reti per compiere monitoraggio o troubleshooting
- La porta console è preferibile da usare perché permette di visualizzare per default lo startup del router, il debugging e i messaggi di errore
- La si può usare anche per procedure di recovery in caso di disastri o per la password recovery.

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Configurare la connessione con la porta console

- La porta console è una porta di management usata per fornire accesso out-of-band
- E' usata, come già detto, per la configurazione iniziale, per il troubleshooting, per il monitoraggio e per le procedure di disaster recovery.
- Per collegarsi ad una porta console serve un cavo rollover e un adattatore da RJ-45 a DB-9.
- Il PC deve supportare la terminal emulation, con un software come Hyperterminal

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Tratto da: Cisco Press: CCNA Instructor's Manual

INFOCOM Dept.

Stabilire una sessione HyperTerminal (1/2)

- Un terminale console è un terminale ASCII o un PC che emula il terminale alla porta console (applicazione tipo HyperTerminal)
 - I parametri di default per la porta console sono 9600 baud, 8 data bits, no parity, 1 stop bit e no flow control, la porta console non supporta l'hardware flow control
- Gli step necessari sono
 - Collegare il terminale usando il rollover cable (usando adequatamente l'adaftatore RJ-45 to DB-9)
 - Configurare come indicato il terminale o l'emulazione di terminale sul PC

PC Operating System	Software
Windows 95, Windows 98, Windows NT, Windows 2000	HyperTerminal (included with Windows software), ProComm Plus
Windows 3.1	Terminal (included with Windows software)
Macintosh	ProComm, VersaTerm, ZTerm (supplied separately)
Unix/Linux	Minicom

Laboratorio - Prof. Vincenzo Framo - A A 2008/2009

Stabilire una sessione HyperTerminal (2/2)

- 1. Configurare la emulazione di terminale sul PC con:
 - La porta COM appropriata
 - 9600 baud
 - 8 data bits
 - No parity
 - 1 stop bit
 - No flow control
- Connettere il connettore RJ-45 del cavo rollover alla porta console del router
- 3. Connettere l'altro capo del cavo all'adattatore da RJ-45 a DB-9
- Attaccare la parte DB-9 dell'adattatore al PC.

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Tratto da: Cisco Press: CCNA Instructor's Manual

Tipi di connessione

- In molti ambienti LAN il router è collegato alla LAN usando l'interfaccia Ethernet o Fast Ethernet
- il router diviene un host che comunica con la LAN tramite hub o switch
- per tali connessioni si usa un cavo <u>straight</u> - <u>through</u>
- Una interfaccia 10/100Base-TX richiede un CAT5 o meglio, UTP indipendentemente dal tipo di router

 In alcuni casi la connessione Ethernet del router è diretta con un computer o un altro Router; in tali casi si usa un crossover

Port or Connection	Port Type	Color	Connected To	Cable
Ethernet	RJ-45	yellow	Ethernet hub or Ethernet switch	Straight-through
T1/E1 WAN	RJ-48C/ CA81A	light green	T1 or E1 network	RJ-48 T1
Console	8 pin	light blue	Computer com port	Rollover
AUX	8 pin	black	Modem	Rollover
BRI S/T	RJ-48C/ CA81A	orange	NT1 device or private integrated network exchange (PINX)	RJ-48
BRI U WAN	RJ-49C/ CA11A	orange	ISDN network	RJ-49
Token	UTP, STP	purple	Token Ring device	RJ-45 Token Ring cable

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

Sulle connessioni WAN

- Le connessioni WAN possono essere di diverso tipo poiché si possono usare diverse tecnologie
- Questi servizi WAN sono solitamente affittati da service provider (leased line, circuit-switched e packet-switched)
- Per ogni tipo di servizio WAN il Customer Premises Equipment (CPE), spesso un router, è il DTE
- Esso è connesso con il service provider usando un DCE device, solitamente un modem o un CSU/DSU
- Tale device serve a convertire i dati dal DTE in una forma accettabile per il WAN service provider. L'interfaccia più usata è quella seriale.

Laboratorio - Prof. Vincenzo Eramo - A.A. 2008/2009

