Constraints as Control

By: Sinan Koksal, Viktor Kuncak, Philippe Suter

Presented by: Matthew Rhea

Scala

- An object-oriented language
 - Every value is an object, and types of objects are described by classes and traits
- Also, a functional language
 - Every function is a value
- Statically typed
 - Enforces that abstractions are used, at compile-time, in a safe manner

Constraint Programming

- A programming paradigm in which users declaratively state constraints on possible solutions
 - As opposed to detailing the steps to take in execution, it specifies the properties of a solution to be found

Users specify a method to solve the constraints

Kaplan

An extension of Scala that supports Constraint Programming

Integrates imperative programming by using constraints as a control structure

 As a functional subset of Scala, Kaplan supports recursive function definitions over algebraic data types, sets, maps, and integers

Motivation for Kaplan

It is difficult to solve declarative constraints

 It is difficult to incorporate constraint constructs into existing languages and platforms

How to tackle these challenges?

- It is difficult to solve declarative constraints
- ==> At the time, solvers were making significant progress: Kaplan leverages this.

- It is difficult to incorporate constraint constructs into existing languages and platforms
- ==> Kaplan programs look just like Scala programs

How to tackle these challenges?

- Use already existing features of Scala
 - Exploit Scala for-comprehensions to describe iterations as a search process over solution spaces

 Allowing users to define their own classes of constraints enables more efficient solving of declarative constraints

Features: First-Class Constraints

```
val c1: Constraint2[Int,Int] = ((x: Int, y: Int) \Rightarrow 2*x + 3*y == 10 && x \ge 0 && y \ge 0)
```

A new constraint with two variables

```
val c1 = ((x: Int, y: Int) \Rightarrow 2*x + 3*y == 10 && x \ge 0 && y \ge 0).c
```

An alternative way to declare constraints

```
scala> c1(2,1)
result: false
scala> c1(5,0)
result: true
```

• Constraints are extensions of functions, so may be evaluated

Features: First-Class Constraints

```
scala> c1.solve
result: (5,0)
scala> c1.findAll
result: non—empty iterator
```

Querying the solver for a solution

```
scala> c1.findAll.toList result: List((5,0),(2,2))
```

Finite set of solutions can be listed

Features: First-Class Constraints

```
val p1 = Seq(Seq(1,-2,-3), Seq(2,3,4), Seq(-1,-4)) (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_4)
```

CNF SAT defined in Kaplan

```
 \begin{array}{l} \textbf{def} \ satSolve(problem: Seq[Seq[Int]]): Option[Map[Int,Boolean]] = \\ problem.map(I \Rightarrow I.map(i \Rightarrow \{ \\ \textbf{val} \ id = scala.math.abs(i) \\ \textbf{val} \ isPos = i > 0 \\ ((m: Map[Int,Boolean]) \Rightarrow m(id) == isPos).c \\ \}).reduceLeft(\_ || \_)).reduceLeft(\_ \&\& \_).find \\ \} \\ \end{array}
```

```
scala> satSolve(p1) result: Some(Map(2 \rightarrow true, 3 \rightarrow false, 1 \rightarrow false, 4 \rightarrow false))) scala> satSolve(Seq(Seq(1,2), Seq(-1), Seq(-2))) result: None
```

A solver for CNF SAT formulas

Features: Ordering Solutions

```
def solveKnapsack(vals : List[Int], weights : List[Int], max : Int) = {
    def conditionalSumTerm(vs : List[Int]) = {
        vs.zipWithIndex.map(pair ⇒ {
        val (v,i) = pair
            ((m : Map[Int,Boolean]) ⇒ (if(m(i)) v else 0)).i
        }).reduceLeft(_ + _)
    }
    val valueTerm = conditionalSumTerm(vals)
    val weightTerm = conditionalSumTerm(weights)
    val answer = ((x : Int) ⇒ x ≤ max).compose0(weightTerm)
        .maximizing(valueTerm)
        .solve
}
```

```
scala> val vals : List[Int] = List(4, 2, 2, 1, 10) scala> val weights : List[Int] = List(12, 1, 2, 1, 4) scala> val max : Int = 15 scala> solveKnapsack(vals, weights, max) result: Map(0 \rightarrow false, 1 \rightarrow true, 2 \rightarrow true, 3 \rightarrow true, 4 \rightarrow true)
```

- Kaplan supports enumerating two methods in a defined order: minimizing and maximizing that take as input an objective function
- Consider the Knapsack problem in which a solution is an instance of a map indicating a choice of which objects should be picked
- conditionalSumTerm builds an integer term parameterized by a choice map and representing a sum of values"

Features: User-Defined Functions and Datatypes

```
@spec case class Red() extends Color
@spec sealed abstract class Tree
Ospec case class Node(c : Color, I : Tree, v : Int, r : Tree) extends Tree
Ospec case class Leaf() extends Tree
Ospec def orderedKeys(t : Tree) : Boolean = ...
Ospec def validColoring(t : Tree) : Boolean = ...
Ospec def validTree(t : Tree) = orderedKeys(t) && validColoring(t)
Ospec def valsWithin(t : Tree, min : Int, max : Int) : Boolean = ...
@spec def size(tree : Tree) : Int = (tree match {
  case Leaf() \Rightarrow 0
  case Node(_{-}, I, _{-}, r) \Rightarrow 1 + size(I) + size(r)
\}) ensuring(result \Rightarrow result \ge 0)
scala> (for(i \leftarrow (0 to 7)) yield ((t : Tree) \Rightarrow validTree(t) &&
   valsWithin(t, 0, i) && size(t) == i ).findAll.size).toList
result: List(1, 1, 2, 2, 4, 8, 16, 33)
```

Ospec sealed abstract class Color

@spec case class Black() extends Color

- Users can define their own (recursive) data types
- @spec annotation indicates the user wants to use the function as part of constraints
- Here, we have two such types for red-black trees

Features: Timeouts

```
Ospec def pow(x : Int, y : Int) : Int =
  if(y == 0) 1 else \times * pow(x, y - 1)
val fermat = ((x : Int, y : Int, z : Int, b : Int) \Rightarrow b > 2 \&\&
  pow(x,b) + pow(y,b) == pow(z,b)).c
 implicit val timeoutStrategy = Timeout(1.0)
 scala> fermat.find
 result: TimeoutReachedException: No solution after 1.0 second(s)
   at .solve(<console>)
   at .<init>(<console>)
   . . .
```

 Not all constraints will be solvable, so Kaplan supports timeout strategies

Features: Logical Variables

```
val c1 =
 ((x: Int, y: Int) \Rightarrow 2*x + 3*y == 10 \&\& x \ge 0 \&\& y \ge 0).c
scala> val (x,y) = c1.lazySolve; println((x,y))
result: (L(?),L(?))
scala> x.value
result: 5
scala> println((x,y))
result: (L(5),L(?))
```

- Previous examples all illustrate
 eager solution enumeration
 (solving constraints immediately produced concrete values)
- Kaplan can instead produce a
 promise of a solution in the form
 of a logical variable (a result of
 lazily solving a constraint)

Features: Imperative Constraint Programming

```
 \begin{array}{l} \textbf{val} \; \text{anyInt} = ((\textbf{x}: \textbf{Int}) \Rightarrow \textbf{true}).\textbf{c} \\ \textbf{val} \; \text{letters} \; @ \; \text{Seq}(\textbf{s},\textbf{e},\textbf{n},\textbf{d},\textbf{m},\textbf{o},\textbf{r},\textbf{y}) = \text{Seq.fill}(8)(\text{anyInt.lazySolve}) \\ \\ \textbf{for}(\textbf{I} \; \leftarrow \; \textbf{letters}) \; \textbf{asserting}(\textbf{I} \; \geq \; 0 \; \&\& \; \textbf{I} \; \leq \; 9) \\ \\ \textbf{asserting}(\textbf{s} \; > \; 0 \; \&\& \; \textbf{m} \; > \; 0) \\ \\ \end{array}
```

```
val fstLine = anyInt.lazySolve
asserting(fstLine == 1000*s + 100*e + 10*n + d)
val sndLine = anyInt.lazySolve
asserting(sndLine == 1000*m + 100*o + 10*r + e)
val total = anyInt.lazySolve
asserting(total == 10000*m + 1000*o + 100*n + 10*e + y)
scala> assuming(
    distinct(s,e,n,d,m,o,r,y) && fstLine + sndLine == total) {
        println("Solution: " + letters.map(_.value))
    } otherwise {
        println("The puzzle has no solution.")
    }
result: Solution: List(9, 5, 6, 7, 1, 0, 8, 2)
```

- Kaplan defines assuming-otherwise branding as a new library construct
- Similar to if-then-else except that it checks whether the condition is "feasible" and, if so, constrain the logical variables in the environment so that their values satisfy the branching constraint

The Constraint Sublanguage: Data types

Core sublanguage is PureScala, a subset of Scala

Supports (recursive) algebraic data types

Types are defined using a hierarchy of special case classes

The Constraint Sublanguage: Expressions and Function Definitions

 Expressions may contain all standard arithmetic operators, map applications and updates, set operators and membership tests, and function applications

A PureScala function body is defined by a single expression
whose free variables are the arguments of the function, and may
optionally be annotated with a post-condition

The Constraint Sublanguage: Solver

 Kaplan invokes the Leon verification systems's core solving procedure at both compile-time and run-time

 At compile-time, it validates post-conditions and prove patternmatching expressions are exhaustive

• At run-time, it finds solutions to constraints

Implementation

• Briefly: Kaplan has been implemented as both a run-time library and a compiler plugin (Both of which are implemented in Scala)

• For this presentation, we focus on the implementation of the core solving algorithms and its interactions with the SMT Solver

Implementation: Core Solving Algorithms

 Leon enables additional expressive power of recursive functions within constraints, hence Kaplan implements Z3 through this extension

Implementation: Solution Enumeration

- Uses find and lazyFind through the use of an iterator to implement findAll and lazyFindAll
- The iterator maintains constraints at all times

- Each time a new solution is required, iterator updates the constraint by adding to it the negation of the previous solution
- Made efficient by the incremental reasoning of Z3 to avoid solving the entire constraint each time

Implementation: Optimization Constraints

 Can be seen as a generalization of a binary search over a range of values an objective function can take

```
def solveMinimizing(\phi, t_m) {
  solve(\phi) match {
    case ("SAT", m) \Rightarrow
      model = m
      v = \mathsf{modelValue}(m, t_m)
      pivot = v - 1
       lo = null
      hi = v + 1
       while (lo == null \lor hi - lo > 2) {
         solve(\phi \wedge t_m \leq pivot) match {
            case ("SAT", m) \Rightarrow
             model = m
              if (lo == null) {
                pivot = pivot \geq 0? -1: pivot \times 2
                hi = pivot + 1
              } else {
                l_v = \mathsf{modelValue}(m, t_m)
                pivot = l_v + (pivot + 1 - lv)/2
                hi = pivot + 1
           case ("UNSAT", _{-}) \Rightarrow
             pivot = pivot + (hi - pivot)/2
              lo = pivot
      return ("SAT", model)
    case ("UNSAT", _{-}) \Rightarrow return ("UNSAT", null)
```

Figure 5. Pseudo-code of the solving algorithm with minimization. We invoke our base satisfiability procedure via calls to solve.

Implementation: Ordered Enumeration

```
\begin{array}{l} \operatorname{def} \operatorname{orderedEnum}(\phi,\,t_m) \ \{ \\ \operatorname{solveMinimizing}(\phi) \ \operatorname{match} \ \{ \\ \operatorname{case} \ (\text{"SAT"},\,m) \Rightarrow \\ v_m = \operatorname{modelValue}(m,\,t_m) \\ \operatorname{findAll}(\phi \wedge t_m = v_m) \ ++ \ \operatorname{orderedEnum}(\phi \wedge t_m > v_m,\,t_m) \\ \operatorname{case} \ (\text{"UNSAT"},\, \_) \Rightarrow \operatorname{return} \ \operatorname{Iterator.empty} \\ \} \\ \} \end{array}
```

Figure 6. Pseudo-code of the ordered enumeration algorithm.

 Composing the minimized term with a solution enumeration obtains an ordered enumeration

Discussion