Estimation of Effects of Endogenous Time-Varying Covariates: A Comparison Of Multilevel Linear Modeling and Generalized Estimating Equations

Research Report

Ward B. Eiling (9294163)

Supervisors: Ellen Hamaker and Jeroen Mulder

Master's degree in Methodology and Statistics for the Behavioural, Biomedical and Social Sciences

Utrecht University

December 14, 2024

Word count: 2500/2500

FETC-approved: 24-2003

 $Candidate\ journal:\ Psychological\ Methods$

1 Introduction

Across a wide range of disciplines, researchers analyze clustered longitudinal, observational data to investigate prospective causal relationships between variables. When analyzing such data, psychological researchers most commonly use the multilevel linear model¹ (MLM, Bauer & Sterba, 2011), which—in the context of longitudinal data analysis—partitions observed variance into stable between-person differences and within-person fluctuations (Hamaker & Muthén, 2020). In the application of the MLM, time invariant and time-varying covariates, the latter measured repeatedly over time, are often available. The inclusion of covariates is a common strategy to improve parameter precision and address bias introduced by time-varying confounders (Daniel et al., 2013; Wodtke, 2020). Nevertheless, it is well-known that this approach is not universally beneficial, as conditioning on variables like colliders within the causal pathway can distort treatment effect estimates (Elwert & Winship, 2014).

A recent paper by Qian et al. (2020) highlighted another potential issue with the inclusion of covariates in the MLM that has not yet been widely recognized in the psychological literature. In their paper, the authors considered the appropriateness of the MLM for estimating the causal effect of a time-varying exposure/treatment, when this exposure is randomly assigned at each occasion within each person, on an outcome. These randomized exposures may, for instance, entail prompts delivered through push notifications to remind participants of cognitive or mindfulness-based strategies (Nahum-Shani et al., 2021; Walton et al., 2018). While randomized assignment may seem to ensure that the presence or absence of a causal effect can be easily determined, Qian et al. (2020) showed that model fitting issues and parameter bias can arise in the presence of a time-varying endogenous covariate. A time-varying covariate is endogenous if it is directly or indirectly determined by prior treatment or outcome (Qian et al., 2020).

However, due to a divide between the disciplines that employ the MLM, such critiques appear

¹The MLM is known by various names, including: linear mixed model, hierarchical linear model, random-effect model and mixed-effects model.

to have largely failed to reach the applied researcher in psychology. One specific reason might be that the technical jargon in other disciplines makes it difficult for researchers to recognize when and how these issues emerge. Therefore, this report aims to understand why Qian et al. (2020) found biased estimates of the treatment effect for some generative models containing endogenous covariates and not for others; and to explain this issue to an audience of psychologists. To achieve this aim, the current investigation employs (a) graphical tools to evaluate key assumptions and (b) data simulations with additional scenarios to pinpoint the issue. Accordingly, the following research question will be addressed: When does the inclusion of endogenous variables in multilevel linear models result in biased estimates of the treatment effect?

2 Methods

To obtain a better understanding of the issue exposed by Qian et al. (2020), two methods were employed. First, graphical methods were used provide insight into the presence and extent of bias with potential violation of assumptions: (a) path diagrams were used to evaluate the conditional independence assumption and (b) directed acyclic graphs (DAGs) were used to evaluate the backdoor criterion (Pearl, 1988, 2009). Second, a simulation study was performed to reproduce the results for the generative models (GMs) from Qian et al. (2020) and to further isolate the issue using additional GMs. In this simulation, bias in the treatment effect was quantified using analytical multilevel models identical to the generative models.

2.1 Data Generation

We consider 2 generative models (GMs) from Qian et al. (2020), one (GM A) being a special case of the general model (GM G) where bias was detected. To further isolate the source of bias, we introduce two additional special cases, labeled GM B and C. Table 1 summarizes the differences between the generative models. Compared to the general model G, GM A is not directly determined by the random intercept b_{i0} ; GM B is does not have a random slope b_{i2}

for treatment; and GM C does not have a fixed interaction effect β_1 between covariate and treatment.

Table 1: Generative Models: Summary of Differences

Generative	Name in Qian et	dependency b_{i0}	random slope	
Model	al. (2020)	and X_{it}	treatment b_{i2}	interaction β_1
G(eneral)	3	\checkmark	\checkmark	\checkmark
A	1	×	\checkmark	\checkmark
В	NA	\checkmark	×	\checkmark
C	NA	\checkmark	\checkmark	×

The details of the generative models are described below. We follow the symbol notation of Qian et al. (2020) to allow for direct comparison, but rewrite the equations into within- and between-person models (see Raudenbush & Bryk, 2002; Schoot, 2017).

2.1.1 Generative Model G

Following the original notation of Qian et al. (2020), the outcome of GM G was generated according to the following model:

$$Y_{it+1} = \alpha_0 + \alpha_1 X_{it} + b_{i0} + A_{it} (\beta_0 + \beta_1 X_{it} + b_{i2}) + \epsilon_{it+1}$$

where Y_{it+1} is the outcome at time t+1, X_{it} is the covariate at time t, A_{it} is the treatment at time t, b_{i0} is the random intercept, b_{i2} is the random slope for the treatment, and ϵ_{it+1} is the error term. We may rewrite this model into the repeated-observations or within-person model in the following steps:

$$\begin{split} Y_{it+1} &= \alpha_0 + \alpha_1 X_{it} + b_{i0} + A_{it} (\beta_0 + \beta_1 X_{it} + b_{i2}) + \epsilon_{it+1} \\ &= \alpha_0 + \alpha_1 X_{it} + b_{i0} + \beta_0 A_{it} + \beta_1 A_{it} X_{it} + A_{it} b_{i2} + \epsilon_{it+1} \\ &= \alpha_0 + b_{i0} + \alpha_1 X_{it} + \beta_0 A_{it} + A_{it} b_{i2} + \beta_1 A_{it} X_{it} + \epsilon_{it+1} \\ &= (\alpha_0 + b_{i0}) + \alpha_1 X_{it} + (\beta_0 + b_{i2}) A_{it} + \beta_1 A_{it} X_{it} + \epsilon_{it+1} \\ &= \pi_{0i} + \pi_{1i} X_{it} + \pi_{2i} A_{it} + \pi_{3i} A_{it} X_{it} + \epsilon_{it+1}. \end{split}$$

with the person-level or between-person model (level 2):

$$\begin{split} \pi_{0i} &= \alpha_0 + b_{i0}, \quad \text{where} \quad b_{i0} \sim \mathcal{N}(0, \sigma_{b0}^2), \\ \pi_{1i} &= \alpha_1, \\ \pi_{2i} &= \beta_0 + b_{i2}, \quad \text{where} \quad b_{i2} \sim \mathcal{N}(0, \sigma_{b2}^2), \\ \pi_{3i} &= \beta_1. \end{split}$$

We model fixed effects α_0 , α_1 , β_0 , and β_1 as constants across individuals, while random effects b_{i0} and b_{i2} capture individual-specific deviations. Specifically, b_{i0} represents deviations from the population intercept α_0 , and b_{i2} represents deviations from the population slope β_0 . A higher b_{i0} indicates a higher initial outcome, while a higher b_{i2} indicates a stronger treatment effect. Following Qian et al. (2020), the random effects b_{i0} and b_{i2} are modeled independent of each other.

The covariate is generated as:

$$X_{it} = \begin{cases} b_{i0} + \epsilon_{X_{it}}, & \text{if } t = 1, \\ \\ b_{i0} + Y_{it} + \epsilon_{X_{it}}, & \text{if } t \geq 2, \end{cases} \quad \text{where} \quad \epsilon_{X_{it}} \sim \mathcal{N}(0, 1)$$

The randomization probability of treatment $p_t = P(A_{it} = 1 \mid H_{it})$ is constant at 1/2. Thus, $A_{it} \sim \text{Bernoulli}(0.5)$ for i = 1, ..., N and t = 1, ..., T. In other words, for every given person i and every timepoint t, the probability that treatment is assigned is equivalent to a fair coinflip.

The exogenous noise is $\epsilon_{it+1} \sim \mathcal{N}(0, \sigma_{\epsilon}^2).$

Figure 1a shows the path diagram for the first couple observations of GM G.

2.1.2 Generative Model A

GM A is a special case of GM G, where the covariate X_{it} is not directly determined by the random intercept b_{i0} (see Figure 1b). Instead, the endogenous covariate X_{it} equals the previous outcome Y_{it} plus some random noise:

$$X_{it} = \begin{cases} \epsilon_{X_{it}}, & \text{if } t = 1, \\ & \text{where} \quad \epsilon_{X_{it}} \sim \mathcal{N}(0, 1) \\ Y_{it} + \epsilon_{X_{it}}, & \text{if } t \geq 2, \end{cases}$$

2.1.3 Generative Model B

GM B is a special case of GM G, where the random slope b_{i2} for the treatment A_{it} is removed (see Figure 1c). While the within-person model is the same as GM G, there is a slight alteration in the between-person model:

$$\pi_{2i} = \beta_0.$$

The single equation model then becomes:

$$Y_{it+1} = (\alpha_0 + b_{i0}) + \alpha_1 X_{it} + \beta_0 A_{it} + \beta_1 A_{it} X_{it} + \epsilon_{it+1}$$

2.1.4 Generative Model C

GM C is a special case of GM G, where the interaction term $\beta_1 A_{it} X_{it}$ is removed (see Figure 1d). Accordingly, due to the removal of π_{3i} , the within-person model of GM C differs from GM G:

$$Y_{it+1} = \pi_{0i} + \pi_{1i} X_{it} + \pi_{2i} A_{it} + \epsilon_{it+1}.$$

Nevertheless, the between-person model of π_{0i} , π_{1i} and π_{2i} remains the same as GM G. The single equation model then becomes:

$$Y_{it+1} = \alpha_0 + \alpha_1 X_{it} + b_{i0} + A_{it} (\beta_0 + b_{i2}) + \epsilon_{it+1}.$$

2.1.5 Parameter Values

The following parameter values were adapted from Qian et al. (2020):

$$\alpha_0 = -2$$
, $\alpha_1 = -0.3$, $\beta_0 = 1$, $\beta_1 = 0.3$,

$$\sigma_{b0}^2 = 4, \quad \sigma_{b2}^2 = 1, \quad \sigma_{\epsilon}^2 = 1.$$

2.2 Data Analysis

In the simulation study, we evaluated the performance of the models across a total of 24 different settings, each replicated 1,000 times, by systematically varying the following factors:

- Generative Models (GM): G, A, B, C
- Number of timepoints (T): 10, 30
- Sample size (N): 30, 100, 200

All data generation and estimation was performed in R, version 4.4.2 (Team, 2024). After the generation of data generation for any given setting, analytical multilevel linear models were fit that are equivalent to each of the respective data-generating models. To fit the standard MLM, the lmer function from the R-package lme4 (Bates et al., 2015) was employed with restricted maximum likelihood estimation.

3 Results

3.1 Conditional Independence and Path Diagrams

Qian et al. (2020) proposes the use of the conditional independence assumption to identify whether estimators of the treatment effect are consistent and unbiased under randomized treatment, which is given by:

$$X_{it} \perp (b_{i0}, b_{i1}) \mid H_{it-1}, A_{it-1}, Y_{it}.$$

In other words, the covariate at time t (X_{it}) must be independent of the individual's random effects (b_{i0} and b_{i1}) once we account for their history of covariates (H_{it-1}), previous treatments (A_{it-1}), and prior outcomes (Y_{it}). In the current case of a single covariate X_{it} , H_{it-1} comprises all observations of that covariate before timepoint t.

This assumption allows for X_{it} to be influenced by earlier variables (e.g., outcomes or treatments) but not directly by unobserved individual characteristics (i.e., random effects). If the included endogenous covariates are only affected by prior outcomes and treatments, the assumption is automatically satisfied. However, as Qian et al. (2020) highlights, ensuring this assumption holds require careful consideration of theory and domain knowledge.

To clarify the application of the conditional independence assumption, we pair the equations of the generative models (GMs) with path diagrams illustrating the first three timepoints (t) for each model (see Figure 1). Let's begin with the general model, GM G (Figure 1a), which Qian et al. (2020) identified as prone to bias. In GM G, the covariate X_{it} is directly influenced by unobserved individual factors (represented by the random effects, b_{i0}). Consequently, conditioning on prior variables, such as the outcome at the previous timepoint Y_{it} , does not fully block or eliminate the influence of these unobserved factors. As a result, X_{it} remains dependent on the random effects, violating the assumption that X_{it} should be independent of these unobserved factors once we account for prior variables. This violation of the conditional independence as-

sumption explains the biased estimates of the treatment effect observed in GM G, as identified by Qian et al. (2020).

In contrast, GM A, a special case of GM G where no bias was found by Qian et al. (2020), removes the direct link between X_{it} and the random effects b_{i0} . In this case, X_{it} is simply the previous outcome Y_{it} plus some random noise. While there remains an indirect connection between X_{it} and b_{i0} through Y_{it} , conditioning on Y_{it} effectively "breaks the link" between X_{it} and the random effects, satisfying the conditional independence assumption. This explains the unbiased treatment effect estimates found by Qian et al. (2020).

For the additional special cases, GM B and GM C, the direct link between the random effects and X_{it} remains, as in GM G. As a result, these models also violate the conditional independence assumption, leading to biased estimates of the treatment effect.

In summary, GM G, B, and C violate the conditional independence assumption, which suggests that we would expect biased treatment effect estimates for these models. In contrast, GM A satisfies the assumption, supporting unbiased estimates of the treatment effect.

Figure 1: Path Diagrams for Generative Models G, A, B and C (t = 1, 2, 3)

Note. Random effects are represented by grey circles, observed variables by squares and relationships across variables by arrows, where dashed lines are reserved for random slopes.

3.2 Backdoor Criterion and DAGs

According to the backdoor criterion (Pearl, 1988, 2009), a requirement for causal identification, causal effects can be identified by blocking non-causal paths through conditioning on intermediate variables (e.g., controlling or matching). If any non-causal paths cannot be blocked due to omitted variables or measurement error, treatment and outcome remain linked via backdoor paths, leading to biased estimates of the treatment effect (Kim & Steiner, 2021).

DAGs are a useful tool for representing causal relationships between variables and to evaluate the assumptions needed for causal identification (see Elwert & Winship, 2014 for a psychological example). We formulated the DAGs for the first three observations of each generative model, where the random disturbance b_{0i} was represented by the node U (e.g., Kim & Steiner, 2021, see Figure 2).

When applying Pearl's backdoor criterion to the GMs, it may be observed that there exists no backdoor path in the treatment effect $A_{it} \to Y_{it+1}$, as A_{it} does not have any parents. While we need not control for covariate X_{it} to obtain an unbiased total effect, doing so should not introduce bias. All things considered, according to the backdoor criterion, controlling for the covariate X_{it} should not result in biased estimates of the treatment effect for any of the generative models.

Note that these limitations of the DAG (not random effects or interactions explicit) would have prevented us from evaluating the conditional independence assumption.

Figure 2: DAGs for Generative Models G, A, B and C (t = 1, 2, 3)

Note. The red arrows show the biased backdoor path(s) in the treatment effect (before controlling for X_{it}).

3.3 Simulation Study

Table 2 presents the simulation results for each of the generative and analytical models. The estimates for the analytical MLM may be interpreted in terms of bias, where given the value of the treatment effect $\beta_0 = 1$, absolute bias of .05 would imply 5% relative bias. Here we find the greatest absolute bias of .02 – .06 for GM3, \leq .015 for GM1/2, \leq .010 for GM3B and , \leq .005 for GM3A. While the bias found for the original GMs 1, 2 and 3 was slightly larger here compared to Qian et al. (2020), the overall pattern remained the same. To conclude, once we remove either the dependency of the random intercept with the covariate (GM1), the random slope b_{i2} (GM3A) or the interaction β_1 (GM3B) from GM3, the bias dissapears or becomes very small. The bias in GM3 decreases as the number of timepoints T increases from 10 to 30. Note that the MLM model fitting success rates are particularly poor for GM2, where in the worst case, only 87 of the 1000 models were fitted.

Table 2: Treatment effect bias for Generative Models G, A, B and C over 1000 replications

			β_0		SR
GM	T	N	Bias	$\overline{\mathrm{SD}}$	
		30	-0.052	0.245	0.999
	10	100	-0.064	0.134	1.000
G	_ <u> </u>	200	-0.051	0.096	1.000
	30	30	-0.024	0.206	0.997
		100	-0.030	0.108	0.996
		200	-0.023	0.080	0.997
A	10	30	0.000	0.238	0.998
		100	-0.012	0.129	1.000
		200	0.003	0.093	0.999
	30	30	-0.001	0.203	0.998
		100	-0.007	0.107	0.996
		200	0.001	0.079	0.996
В	10	30	0.000	0.126	1.000
		100	0.004	0.073	1.000
		200	0.002	0.048	1.000
	30	30	-0.001	0.071	1.000
		100	0.000	0.040	1.000
		200	0.000	0.028	1.000
С	10	30	0.001	0.217	0.999
		100	-0.008	0.121	1.000
		200	0.005	0.087	1.000
	30	30	0.000	0.193	1.000
		100	-0.008	0.103	0.997
		200	0.001	0.075	0.999

 $\overline{Note.}$ GM: generative model. T: number of timepoints. N: sample size. SD: standard deviation of estimates across replications. SR: model fitting success rate. Bias: $\hat{\beta}_{0,MLM} - \beta_{0,MLM}$.

Figure 3: Estimation bias for the fixed treatment effect β_0 of each generative model for different combinations of sample size N and number of timepoints T over 1000 simulation replications

4 Discussion

This report employed both graphical methods and data simulations to understand and explain the issue of endogenous covariates. Now we first discuss the expected results based on the backdoor criterion Pearl (2009) and the conditional independence assumption (Qian et al., 2020), whereafter we discuss the findings relating to the two research questions.

Using the conditional independence assumption of Qian et al. (2020), we would expect, based on the path diagrams, that the treatment effect would be biased for GM3, 3A and 3B. On the other hand, the backdoor criterion suggested the absence of bias for all generative models. While Qian et al. (2020) show that GM3 is the only model with bias in the treatment effect, the backdoor criterion failed to identify this bias, as there is no backdoor path in the treatment effect. This may be explained by the fact that the classic DAG does not impose restrictions based on (a) the random slopes and (b) interaction effects.

The first research question—pertaining to the extent of treatment effect bias in MLM estimates of generative model that were nested in GM3—was investigated using the analytical multilevel model. First, we reproduced the findings by Qian et al. (2020) who found consistent estimators for GM1 and and inconsistent ones for GM3. Using additional generative models, we found that bias became indiscernable when removing from GM3 either the dependency between the random intercept and covariate (GM1), the random slope for treatment (GM3A) or the interaction effect (GM3B). This finding is in sharp contrast to the suggestion of the conditional independence assumption that the treatment effect would be biased for GM3, 3A and 3B.

The current research report leaves several avenues unexplored. First, it is unclear whether the simulation findings pertaining the generative models in Qian et al. (2020) and here generalize to other generative models. For instance, we found here that removal of a random slope or interaction from GM3 got rid of most if not all of the treatment effect bias. Thus, it is important to establish how this generalizes, so that practical recommendations can be formulated. This is particularly important, since while violations of model assumptions are never desired, the

robustness against and the practical implications of a violation is what matters. Second, it is unclear how exactly the divide between the literatures pertaining to the focus of the MLM on different centering methods and within- and between-person interpretations and the focus of the GEE on marginal and conditional interpretations may be bridged. Consequently, future research could assess the implications of centering methods in MLMs on the extent to which the marginal interpretation of MLM breaks down. Third, we found that the classical DAG may not be sufficient to identify bias in the treatment effect for GM3, especially due to its lack of specification of interaction effects. Concerns regarding the use of Pearl's backdoor criterion in situations with interaction effects have been voiced by several people (see Weinberg (2007); Attia et al. (2022)). Future research could explore to what extent proposed extensions of the DAG may be useful in identifying bias in the treatment effect for GM3. Finally, it may be interesting to investigate the implications of endogenous covariates in MLMs for other types of longitudinal data analysis methods, such as dynamic structural equation modelling (DSEM; a widely used framework in the social sciences based on MLM).

Third, since the issue extends to all longitudinal data analysis methods according to Diggle (2002), in future research it may be interesting to investigate the implications of endogenous covariates in MLMs for other types of longitudinal data analysis methods, such as dynamic structural equation modelling (DSEM; a widely used framework in the social sciences based on MLM).

5 References

- Attia, J., Holliday, E., & Oldmeadow, C. (2022). A proposal for capturing interaction and effect modification using DAGs. *International Journal of Epidemiology*, 51(4), 1047–1053. https://doi.org/10.1093/ije/dyac126
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. *Journal of Statistical Software*, 67(1), 148. https://doi.org/10.18637/jss.v067.i01
- Bauer, D. J., & Sterba, S. K. (2011). Fitting multilevel models with ordinal outcomes: Performance of alternative specifications and methods of estimation. *Psychological Methods*, 16(4), 373–390. https://doi.org/10.1037/a0025813
- Daniel, R. m., Cousens, S. n., De Stavola, B. l., Kenward, M. G., & Sterne, J. a. C. (2013).

 Methods for dealing with time-dependent confounding. *Statistics in Medicine*, 32(9), 1584–1618. https://doi.org/10.1002/sim.5686
- Diggle, P. (2002). Analysis of Longitudinal Data. OUP Oxford.
- Elwert, F., & Winship, C. (2014). Endogenous selection bias: The problem of conditioning on a collider variable. *Annual Review of Sociology*, 40, 31–53. https://doi.org/10.1146/annurev-soc-071913-043455
- Hamaker, E. L., & Muthén, B. (2020). The fixed versus random effects debate and how it relates to centering in multilevel modeling. *Psychological Methods*, 25(3), 365–379. https://doi.org/10.1037/met0000239
- Kim, Y., & Steiner, P. M. (2021). Causal graphical views of fixed effects and random effects models. British Journal of Mathematical and Statistical Psychology, 74(2), 165–183. https://doi.org/10.1111/bmsp.12217
- Nahum-Shani, I., Potter, L. N., Lam, C. Y., Yap, J., Moreno, A., Stoffel, R., Wu, Z., Wan, N., Dempsey, W., Kumar, S., & al., et. (2021). The mobile assistance for regulating smoking (MARS) micro-randomized trial design protocol. Contemporary Clinical Trials, 110, 106513. https://doi.org/10.1016/j.cct.2021.106513

- Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

 Morgan Kaufmann.
- Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge University Press.
- Qian, T., Klasnja, P., & Murphy, S. A. (2020). Linear mixed models with endogenous covariates:

 Modeling sequential treatment effects with application to a mobile health study. Statistical

 Science: A Review Journal of the Institute of Mathematical Statistics, 35(3), 375–390.

 https://doi.org/10.1214/19-sts720
- Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods (2nd ed.). SAGE.
- Schoot, J. H. M. M. R. van de. (2017). Multilevel analysis: Techniques and applications, third edition (3rd ed.). Routledge. https://doi.org/10.4324/9781315650982
- Team, R. C. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
- Walton, A., Nahum-Shani, I., Crosby, L., Klasnja, P., & Murphy, S. (2018). Optimizing digital integrated care via micro-randomized trials. *Clinical Pharmacology & Therapeutics*, 104(1), 53–58. https://doi.org/10.1002/cpt.1079
- Weinberg, C. R. (2007). Commentary: Can DAGs clarify effect modification? *Epidemiology*, 18(5), 569–572. https://www.jstor.org/stable/20486428
- Wodtke, G. T. (2020). Regression-based adjustment for time-varying confounders. *Sociological Methods & Research*, 49(4), 906–946. https://doi.org/10.1177/0049124118769087