Predicting Flight Delays Using Weather

December 12, 2024 Team Data Hawks

Ella Bronaugh, Mayur Dalvi, Reza Naiman, Tristan Levy-Park

Research Question:

Are weather conditions an effective predictor in classifying

flight delays?

Data Analysis Timeline

Research and Lit Review Data
Collection
and
Cleaning

Modeling

Results and Discussion

Impact of Weather-Related Flight Delays

- 1. **Delays:** Extreme weather caused 32.6% of delay minutes (2003-2015), with up to 82% in severe cases. [2]
- 2. **Economic Costs:** Delays cost up to \$40.2B annually, including \$31.2B in 2010. [3]
- 3. Environmental Impact:
 Idling/rerouting increase emissions
 and air pollution. [4]

Data Collection

Source:

- Flight Data: Bureau of Transportation Statistics
- Weather Data : Iowa Environmental Mesonet

Merging Conditions:

Columns: DateTime & Location

DataSet information:

- Flight Features: 18
- Weather Features: 12
- States: Illinois & Georgia (10 years)
- Size: 1 GB

Data Cleaning & Preprocessing

Flights Data:

- Dropped missing data row
- Feature-engineered column to create datetime feature for merging condition
- Most of the columns were strings that had to be converted into categories.
- Flight delayed more than 15 min it is classified as delayed flights.

Weather Data:

- Where there was 'M' replaced with NaN
- Applied forward fill to missing data
- Generated a 15-min interval and filled it with linear interpolation
- For precipitation where there was 'T' it was replaced with 0.005.

Methodology and Modeling

- SMOTE for Balancing: Applied SMOTE to address class imbalance in the dataset.
- Data Split (70-20-10): 10-year data split: 7 years for training, 2 for validation, 1 for testing.
- Model Exploration: Evaluated 5 models: Logistic Regression, Linear SVC, Random Forest, Decision Tree, CatBoost.

Three Fold Method, Months, and Seasons

Results & Discussion

Testing Set (IL Dataset):

- Using Weather Information: 70.6% accuracy
- Using Flight Information: 76.8% accuracy
- Using Combination of Both: 73.6% accuracy

Testing Set (GA Dataset):

- Using Weather Information: 48.75% accuracy
- Using Flight Information: 64.5% accuracy
- Using Combination of Both: 71.3% accuracy

Feature Importance

Weather data is an effective predictor for flight delays sometimes.

Illinois, January:

Weather Predictors Only:

Model	Accuracy	Precision	Precision Recall		
Full LR	0.64	0.41	0.65	0.51	
Linear SVC	0.65	0.42	0.64	0.51	
DT	0.76	0.77	0.19	0.31	
RF	0.57	0.34	0.60	0.44	
CatBoost	0.41	0.30	0.87	0.45	

Flight Predictors Only:

Model	Accuracy	Precision	Recall	F1-Score
Full LR	0.56	0.31	0.46	0.37
Linear SVC	0.71	0.15	0.00	0.01
DT	0.77	0.7	0.31	0.43
RF	0.64	0.34	0.30	0.32
CatBoost	0.46	0.32	0.81	0.46

Model	Accuracy	Precision	Recall	F1-Score	
Full LR	0.64	0.41	0.65	0.50	
Linear SVC	0.75	0.71	0.16	0.26	
DT	0.77	0.70	0.31	0.43	
RF	0.56	0.36	0.73	0.48	
CatBoost	0.66	0.42	0.53	0.47	

Illinois, April:

Weather Predictors Only:

	Model	Accuracy	Precision	Recall	F1-Score
	Full LR	0.35	0.25	0.85	0.38
7:	Linear SVC	0.28	0.23	0.90	0.37
	DT				
	RF	0.33	0.24	0.86	0.38
	CatBoost	0.23	0.23	0.99	0.38

Flight Predictors Only:

Illinois, July:

Weather Predictors Only

Flight Predictors Only

Illinois, October:

Weather Predictors Only

Flight Predictors Only

Georgia, January:

Weather Predictors Only

Flight Predictors Only

Georgia, April:

Weather Predictors Only

Flight Predictors Only

Georgia, July:

Weather Predictors Only

Flight Predictors Only

Georgia, October:

Weather Predictors Only

Flight Predictors Only

Paper Formatting and Influence

Research done by Kim & Park heavily influenced the format of our paper [1]

Layout and Description of Features:

Layout of Important Metrics:

Attribute mame	Description	Mean (Std)	Min	Max
Time (year)	2010-2021 (e.g. 2020)	-	-	-
Airline	Unique carrier [e.g. AA (American Airlines)]	-	-	-
Flight number	Flight number (e.g. AA2000)	_	-	-
Destination	Destination (e.g. JFK)	-	-	-
Planned departure time	Planned departure time (e.g. 1622)	-	-	-
Actual departure time	Actual departure time (e.g. 1634)	_	-	-
Result status	Takeoff intime or delay status (e.g. 1)	_	-	-
Delay type	Delay type (e.g. WeatherDelay)	-	-	-
Wind direction	Wind direction (e.g. NW, WNW)	_	-	-
Wind speed	Wind speed (e.g. 3)	10.5 (5.3)	0	51
Wind gust	Wind gust (e.g. 24)	5.3 (10.9)	0	75
Temperature (celcius)	Temperature (celcius) (e.g. 34)	51.5 (20.5)	-21	103
Dew point temperature (celcius)	Dew point temperature (celcius) (e.g. 31)	39.9 (19.5)	-32	79
Humidity	Humidity (e.g. 92)	67.7 (17.2)	0	100
Pressure (hPa)	Pressure (hPa) (e.g. 29.96)	29.3 (0.3)	0	30.2
Precipitation (mm)	Precipitation (mm) (e.g. 0.1)	0.006 (0.046)	0	2
Condition	Condition (e.g. Cloudy, Windy)	_	-	-

Algorithm		Time difference: 2 h						
		Accuracy	Precision	Recall	F1-score	Train (s)	Test (us)	
DT	Normal	0.688	0.704	0.676	0.690	0.112	0.318	
	Delayed		0.671	0.700	0.685			
RF	Normal	0.749	0.729	0.814	0.769	2.254	16.242	
	Delayed		0.776	0.680	0.725			
SVM	Normal	0.651	0.631	0.774	0.695	3.625	458.280	
	Delayed		0.686	0.522	0.593			
KNN	Normal	0.641	0.655	0.637	0.646	0.003	60.510	
	Delayed		0.628	0.646	0.637			
LR	Normal	0.595	0.600	0.635	0.617	0.085	0.318	
	Delayed		0.589	0.552	0.570			
XGB	Normal	0.721	0.715	0.759	0.736	0.150	1.274	
	Delayed		0.728	0.680	0.703			
LSTM	Normal	0.644	0.620	0.776	0.689	490.4	3.503	
	Delayed		0.687	0.509	0.584			

References

- [1] Kim, S., Park, E. Prediction of flight departure delays caused by weather conditions adopting data-driven approaches. J Big Data 11, 11 (2024).
- [2] Goodman, C. J., and J. D. Small Griswold, 2019: Meteorological Impacts on Commercial Aviation Delays and Cancellations in the Continental United States. J. Appl. Meteor. Climatol., 58, 479–494
- [3] Yhdego et al. "Analyzing the Impacts of Inbound Flight Delay Trends on Departure Delays Due to Connection Passengers Using a Hybrid RNN Model." Mathematics 2023, 11, 2427.
- [4] Gratton, G. B. et al. "Reviewing the Impacts of Climate Change on Air Transport Operations." The Aeronautical Journal 126.1295 (2022): 209–221. Web.
- [5] https://www.bts.gov/content/weathers-share-delay-percent-total-delay-minutes-year