Lecture 19

Tuesday, April 4, 2017

1. Examples of Cellular homology / local degree

9:34 PM

2. Euler Characteristic of a CW Complex

Recall [en]: generator of the Z/ summand o- $H_n(X^n, X^{n-1})$ corresponding to en $d_{n}([e_{\alpha}^{n}]) = \sum_{\alpha} d_{\alpha\beta} [e_{\beta}^{n-1}] d_{\alpha\beta} (S_{\alpha}^{n-1} \rightarrow X^{n-1}) \xrightarrow{X^{n-1}} X^{n-1}$

Degree: $f: S^n \longrightarrow S^n$ then $f_*: \widetilde{H}_n(S^n) \longrightarrow \widetilde{H}_n(S^n)$ deg $f = f_*(I)$

Properties 1) deg II = 1

2) deg f deg g = deg f g \Rightarrow If f is homotopy equivalence then 3 $f \simeq g \Longrightarrow \deg f = \deg g$ deg $f = \pm 1$

EX $X = S^n U_{\varphi} e^{n+1} \qquad \varphi : S^n \longrightarrow S^n \text{ of deg } K$

 $\circ \longrightarrow \mathbb{Z} \xrightarrow{\mathsf{dn}} \mathbb{Z} \longrightarrow \circ \longrightarrow \cdots \longrightarrow \mathbb{Z} \longrightarrow \circ$

multi by k

=) $H_n(X) \approx \mathbb{Z}_{4\mathbb{Z}}$ $H_i(X) = 0$ for $i \neq 0$ in $H_o(X) \approx \mathbb{Z}$

Remark $d_1: H_1(X^1, X^0) \longrightarrow H_0(X^0, X^{-1}) = H_0(X^0)$

H_o(X°) j_o-1

boundry map

EX X = Mg : 0-cell 7 1-cell 29 $\circ \longrightarrow \mathbb{Z} \xrightarrow{d_2} \mathbb{Z}^{29} \xrightarrow{d_1^{9}} \mathbb{Z} \longrightarrow \circ$ 2-cell 1

one o-cell >> di=0

Ex (a) Compute homology groups of the nononentable surface of genus g

(b) Compute homology groups of an orientable surface of genus g with n boundary components.

EX X = RPK : e^Ue^U... Ue^K ~~ C^{CW}(X) \times Z for a \le n \le K

$$\frac{EX}{X} = \mathbb{RP}^{K} : e^{O} U e^{I} U \cdots U e^{K} \qquad \sim C_{n}^{cw}(X) \approx \mathbb{Z} \quad \text{for } o \leq n \leq K$$

$$\times^{n} \qquad \sim o \longrightarrow \mathbb{Z} \xrightarrow{d_{K}} \mathbb{Z} \xrightarrow{d_{K-1}} \cdots \xrightarrow{d_{1}} \mathbb{Z} \longrightarrow o$$

$$X^{n+1} = \mathbb{RP}^{n+1} : \mathbb{RP}^{n} U_{cp} e^{n+1}$$

$$\varphi: S^n \longrightarrow |RP^n = S^n$$

double

covering

map

 $|RP^n = S^n \longrightarrow |RP^{n-1}|$

$$d_{n}([e^{n+1}]) = deg \left(S^{n} = \partial D^{n+1} \xrightarrow{CP} IRP^{n} \right) [e^{n}]$$

$$RP^{n} = S^{n}$$

$$RP^{n-1} = S^{n}$$

What is the deg of 94?!

Local digree

Assume $f: S^n \longrightarrow S^n$ is a Continuop, $x \in S^n$ and y = f(x). Let $x \in U$

be an open nbd of a such that $f^{-1}(y) \cap U = \{x\}$. Then

local homology \rightarrow $H_n(U, U_{-x}) \approx H_n(S^n, S_{-x}^n) \approx \widetilde{H}_n(S^n) \approx \mathbb{Z}$ group at $f: (U, U_{-x}) \longrightarrow (S^n, S^n_{-y}) \rightsquigarrow f_{*}: H_n(U, U_{-x}) \longrightarrow H_n(S^n, S^n_{-y})$

Let [U] be a generator for H_n (U,U-x) Corresponding to generator [Sⁿ] for Hn (Sⁿ) \Rightarrow $f_*: Hn(U,U-x) \longrightarrow Hn(S^1, S^1-y)$ fx([U])=deg(f,x)[s] local degree of fat x Properties () g.f. Sh-, sh and f(x)=y, g(y)=Z > deg (gf , x) = deg (f,x) deg (g,y) 2) If $f: S^n \to S^n$ maps a nbd u of x homeo to a nbd v of y for y = f(x), then $deg(f(x) = \pm 1)$. $f_{\star}: H_n(U, U-x) \xrightarrow{isom} H_n(V, V-y) \approx H_n(S^n, S^n-y)$ Thm Let $f: S^n \to S^n$ be a Conti. map and $f^{-1}(y) = \{x_1, ..., x_k\}$ for a $y \in S^n$. Then $\deg(f) = \sum_{i=1}^{n} \deg(f, \alpha_i)$. Pf Take disjoint open nbds u,, ... u s.t. x, E Ui. $H_{n}(S^{n}S^{n}x_{i}) \stackrel{P_{i}}{\leftarrow} H_{n}(S^{n}, S^{n} - \{x_{1}, \dots, x_{k}\}) \xrightarrow{f_{*}} H_{n}(S^{n}, S^{n} - y) deg(f)[S^{n}]$ Set Z=S1- W,U...UWx ?? $H_{n-1}(S^n-y)=0$ $H_n\left(\bigcup_{i=1}^k w_i, \bigcup_{i=1}^k u_{i-\kappa_i}\right)$ $\bigoplus_{i=1}^{n} H_{n}(u_{i}, u_{i} - x_{i})$ $H_{n}(S^{n}, S^{n} - x_{i})$ $= |P_{ij}[S^n] = [S^n] \in H_n(S^n, S^n \times_i) \longrightarrow f_* | [S^n] = deg(f, x_i) [S^n]$ $\Rightarrow f_{*}j[S^{n}] = \sum_{i=1}^{n} deg(f, x_{i}) [S^{n}] = \sum_{i=1}^{n} deg(f, x_{i})$

Cor If f is not surjective, deg f = 0 In IRPⁿ⁺¹ example: a: antipodal map of sn $\deg f = \deg(f_{1}x_{1}) + \deg(f_{1}x_{2})$. Take a nbd $u \circ f x$, such that f maps u homeo onto an open abol of y $\Rightarrow \deg(f, x_2) = \deg(f_{\alpha}, x_2) = \deg(f, x_1) \deg(\alpha, x_2)$ =) deg $f = deg(f_1x_1) + deg(f_1x_2) = deg(f_1x_1)(1 + deg x)$ $\alpha = -1$ Lem If $r: S^n \to S^n$ is reflection $w \cdot r \cdot to x_1 = 0$ hyperplane $\Rightarrow dog r_1 = -1$ i.e. (x1, --1xn1) = (-x1, x2, -1xn+1) $PF S'': \Delta_1^n, \Delta_2^n \text{ attach } \Delta_1 \text{ to } \Delta_2 \text{ with id: } \partial \Delta_1 \longrightarrow \partial \Delta_2.$ \Rightarrow $H_n(S^n)$: gen by $\Delta_2^n - \Delta_1^n \xrightarrow{r_1} \Delta_1^n - \Delta_2^n \Rightarrow \deg r_1 = -1$. $\underbrace{\operatorname{Cor}}_{n_{t}} \operatorname{deg} \alpha = (-1)^{n_{t}} \alpha(x_{1}, \dots, x_{n_{t}}) = r r_{2} r_{1}(x_{1}, \dots, x_{n}) = \operatorname{deg} (\alpha) = (-1)^{n_{t}}$ \Rightarrow deg(f) = $\pm (l + (-1)^{n+1})$ \longrightarrow deg(f) = $l + (-1)^{n+1} \Rightarrow$ For $|RP^{K}|$ $d_{n+1} = 1 + (-1)^{n+1} = \begin{cases} 0 & \text{n+1} : \text{odd} \\ 2 & \text{n+1} : \text{even} \end{cases}$ $\begin{array}{ccc}
0 & 2 \\
\hline
2 & dn \\
\hline
2 & dn
\end{array}$ n=o, or n=K and K wen $\circ - \mathcal{I} \cdots \longrightarrow \mathcal{I} \xrightarrow{\circ} \mathcal{I} \xrightarrow{2} \mathcal{I} \xrightarrow{\circ} \mathcal{I} \longrightarrow \circ \Rightarrow H_n(\mathbb{R}^{pK}) \approx \begin{cases} \mathcal{I} \\ \mathcal{I}/_{2\mathcal{I}} \end{cases}$ n : odd , olnck

Euler characteristic

X: finite CW Complex

Det: Euler Charae. of $X: X(X) = C_0 - C_1 + C_2 - \cdots + (-1)^n C_n \rightarrow \dim \mathcal{A} \times C_i: \#(i-(ells))$

Q Does $\chi(X)$ depend on the CW complex str?

$$\frac{\text{Thm } \chi(x) = \sum_{i=0}^{n} (-1)^{i} r k(H_{i}(x))}{(1-1)^{i} r k(H_{i}(x))}$$

 $H_i(x)$: finitely gen. abelian group \Rightarrow $rk(H_i(x))$: # of \mathbb{Z} summand in the decomes of $H_i(x)$ as a direct sum of Cyclic groups.

<u>lem</u> Given a short exact seq $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of finitely gen. abelian groups, then rk(B) = rk(A) + rk(C)

$$C_i \xrightarrow{d_i} C_{i-1} =) \circ \longrightarrow Z_i \hookrightarrow C_i \xrightarrow{d_i} B_{i-1} \longrightarrow \circ \Rightarrow c_i = rk(B_{i-1}) + rk(Z_i)$$

$$\sum_{i=0}^{n} (-1)^{i} c_{i} = \sum_{i=0}^{n} (-1)^{i} (rk(B_{i-1}) + rk(Z_{i})) = \sum_{i=0}^{n} (-1)^{i} rk(B_{i-1}) + \sum_{i=0}^{n} (-1)^{i} rk(Z_{i}) = -\sum_{i=0}^{n} (-1)^{i} rk(B_{i})$$

$$+ \sum_{i=0}^{n} (-1)^{n} rk(Z_{i}) = \sum_{i=0}^{n} (-1)^{n} rk(H_{i})$$