1

Assignment 2

AI1110: Probability and Random Variables

Indian Institute of Technology Hyderabad

Aditya Garg CS22BTECH11002 26 April 2023

11.16.1.12: One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball.

- (a) What is the probability that two black balls are chosen?
- (b) What is the probability that two balls of opposite colour are chosen?

Solution:

Let Z be a Bernoulli random variable

$$Z = \begin{cases} 0, & \text{if Urn 1 chosen} \\ 1, & \text{if Urn 2 chosen} \end{cases}$$
 (1)

Since both events are equally likely

$$Pr(Z = 0) = Pr(Z = 1)$$
 (2)

$$=\frac{1}{2}\tag{3}$$

Let X_i be a random variable where i denotes the turn

$$X_i = \begin{cases} 0, & \text{if Black ball chosen} \\ 1, & \text{if White ball chosen} \end{cases}$$
 (4)

Let X_1 be a random variable denoting first ball is chosen and X_2 be random variable denoting second ball is chosen.

X_1	X_2	Description
0	0	Both Black chosen
1	1	Both White chosen
0	1	Black,White chosen
1	0	White,Black chosen

TABLE 1

(a) Let E be event that 2 black balls are chosen.

$$E = (X_1 + X_2)\prime \tag{5}$$

$$= X_1 \prime X_2 \prime \tag{6}$$

Required Probability:

$$Pr(X_{1}\prime X_{2}\prime)$$
(7)
=
$$Pr(X_{1}\prime X_{2}\prime|Z\prime) Pr(Z\prime)$$

=
$$\frac{2}{3} \times \frac{1}{2} \times \frac{1}{2}$$

=
$$1/6$$
 (8)

$$\therefore \Pr(E) = \frac{1}{6} \tag{9}$$

(b) Let *E* be event that balls of opposite colours are chosen.

$$E = X_1 \oplus X_2 \tag{10}$$

$$= X_1 X_2 \prime + X_1 \prime X_2 \tag{11}$$

Required Probability:

$$\Pr(X_1 X_2 \prime + X_1 \prime X_2) \tag{12}$$

$$= \Pr(X_1 X_2 i) + \Pr(X_1 i X_2)$$
 (13)

$$\therefore \Pr(X_1 X_1 \prime X_2 X_2 \prime) = 0 \tag{14}$$

$$= (\frac{1}{3} \times \frac{1}{2} + \frac{2}{3} \times \frac{1}{2} \times \frac{1}{2}) \times 2 \tag{15}$$

$$=\frac{2}{3}\tag{16}$$

$$\therefore \Pr(E) = \frac{2}{3} \tag{17}$$