LANGUAGE MODELING FOR SPEECH RECOGNITION

HUNG-YI LEE 李宏毅

Why Language modeling?

- Language model (LM): Estimated the probability of token sequence
 - Token sequence: $Y = y_1, y_2, \dots, y_n$
 - $P(y_1, y_2, ..., y_n)$

$$\underline{HMM} \quad Y^* = arg \max_{Y} P(X|Y)P(Y)$$

LM is usually helpful when your model outputs text

$$\underbrace{LAS} \quad Y^* = arg \max_{Y} \underline{P(Y|X)} + \underline{P(Y)}$$

Why we need LM?

$$Y^* = arg \max_{Y} P(Y|X) + P(Y)$$
Need paired data Easy to collect

Words in Transcribed Audio

12,500 hours transcribed audio

= 12,500 x 60 x 130 ≈ 一億!

(哈利波特全套約100萬字)

Moschitta had been credited in The Guinness Book of World Records as the World's Fastest Talker

Source of video: https://youtu.be/ExKCcndqK5c

Why we need LM?

$$Y^* = arg \max_{Y} \underline{P(Y|X)} + \underline{P(Y)}$$

Need paired data

Easy to collect

Words in Transcribed Audio

12,500 hours transcribed audio

= 12,500 x 60 x 130 ≈ 一億!

(哈利波特全套約100萬字)

BERT:

https://youtu.be/UYPa347-DdE

Just Words ...

BERT (一個巨大的 LM) 用了 30 億個以上的 word

N-gram

P("wreck a nice beach") =P(wreck|START)P(a|wreck) P(nice|a)P(beach|nice)

- How to estimate $P(y_1, y_2, \dots, y_n)$
- Collect a large amount of text data as training data
 - However, the token sequence y_1, y_2, \dots, y_n may not appear in the training data
- N-gram language model: $P(y_1, y_2, ..., y_n) = P(y_1|BOS)P(y_2|y_1) ... P(y_n|y_{n-1})$

E.g. Estimate P(beach|nice) from training data

$$P(\text{beach}|\text{nice}) = \frac{C(\text{nice beach})}{C(\text{nice})} \leftarrow \frac{\text{Count of "nice beach"}}{\text{Count of "nice"}}$$

• It is easy to generalize to 3-gram, 4-gram

Challenge of N-gram

- The estimated probability is not accurate.
 - Especially when we consider n-gram with large n
 - Because of data sparsity (Many n-grams never appear in training data)

```
Training Data:

The dog ran .....

The cat jumped ......
```

```
P(jumped | the, dog) = 0.0001
P(ran | the, cat) = 0.0001
```

Give some small probability

This is called language model smoothing.

Recommendation system

Α	5	5		1							
В	5	5?	1								
С		1		5							
D	1		4	4							
Е		1	5	4							

Matrix Factorization

Ref: https://youtu.be/iwh5o_M4BNU?t=4673

Recommendation System: History as customer, vocabulary as product

							4		
				$dog\ h^1$	cat	h^2	•••••	child	history
Vocabulary .		ran	v^1	$2 n_1$	3			1	•
		jumped	v^2	0	2	n_{22}	2	1	
	{	cried	v^3	0	0			3	
		laughed	v^4	0	0			3	
Not observed						COLL	nt of "cat i	umned"	

 v^i , h^j are vectors to be learned

$$n_{12} = v^1 \cdot h^2$$

 $n_{21} = v^2 \cdot h^1$...

Count of "cat jumped"

Minimizing
$$L = \sum_{(i,j)} (v^i \cdot h^j - n_{ij})^2$$

 v^i , h^j found by gradient descent

Recommendation System: History as customer, vocabulary as product

History "dog" and "cat" can have similar vector h^{dog} and h^{cat} If $v^{jumped} \cdot h^{cat}$ is large, $v^{jumped} \cdot h^{dog}$ would be large accordingly. Even if we have never seen "dog jumped ..."

Smoothing is automatically done.

$$L = \sum_{(i,j)} (v^i \cdot h^j - n_{ij})^2$$

NN-based LM

• Training:

Collect data:

潮水 退了 就 知道 誰 … 不爽 不要 買 … 公道價 八萬 一 …

Learn to predict the next word

NN-based LM

P("wreck a nice beach")

=P(wreck|START)P(a|wreck)P(nice|a)P(beach|nice)

P(b|a): the probability of NN predicting the next word.

[Bengio, et al., JMLR'03]

$$w_{t+1} = 1$$
 (0 otherwise)

RNN-based LM

[Mikolov, et al., INTERSPEECH'10]

If we use 1-of-N encoding to represent the history, history cannot be very long.

 W_1

 W_2

Can be very complex

[Ko, et al., ICASSP'17]

LSTM with proper optimization and regularization can be good.

[Merity, et al., ICLR'18]

How to use LM to improve LAS?

Cold Fusion

[Sriram, et al., INTERSPEECH'18]

LM is already trained

- LAS converges faster during training
- LAS has to be trained again if you have a new LM.

SoftMax Size V max **Network** Need to be trained

Before

LAS is trained from scratch

Concluding Remarks

Reference

- [Bengio, et al., JMLR'03] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Janvin, A neural probabilistic language model, The Journal of Machine Learning Research, March 2003
- [Mikolov, et al., INTERSPEECH'10] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, Sanjeev Khudanpur, Recurrent Neural Network Based Language Model INTERSPEECH, 2010
- [Ko, et al., ICASSP'17] Wei-Jen Ko, Bo-Hsiang Tseng, Hung-yi Lee, "Recurrent Neural Network based Language Modeling with Controllable External Memory", ICASSP, 2017
- [Merity, et al., ICLR'18] Stephen Merity, Nitish Shirish Keskar, Richard Socher, Regularizing and optimizing LSTM language models, ICLR, 2018

Reference

- [Gulcehre, et al., arXiv'15] Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares, Holger Schwenk, Yoshua Bengio, On Using Monolingual Corpora in Neural Machine Translation, arXiv, 2015
- [Sriram, et al., INTERSPEECH'18] Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, Adam Coates, Cold Fusion: Training Seq2Seq Models Together with Language Models, INTERSPEECH, 2018
- [Kannan, et al., ICASSP'18] Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N. Sainath, Zhifeng Chen, Rohit Prabhavalkar, An analysis of incorporating an external language model into a sequence-to-sequence model, ICASSP, 2018