- Plan
- Motivate Machine Learning
- Introduce notation used throughout course
- Plan for initial lectures
 - What: Introduce, motivate a model
 - How: How to use a model: function signature, code (API)
 - Why: Mathematical basis -- enhance understanding and ability to improve results
- Course Overview (Course_overview.ipynb)
- Getting Started (Getting Started.ipynb)
- Machine Learning: Overview (ML Overview.ipynb)
- Intro to Classical ML (Intro Classical ML.ipynb)

- Plan
- Introduce a model for the Regression task: Linear Regression
- Introduce the Recipe for Machine Learning: detailed steps to problem solving
- Recap: Intro to Classical ML (Recap of Intro Classical ML.ipynb)

- Our first model: Linear Regression (Overview)
 (Linear Regression Overview.ipynb)
- A process for Machine Learning
 - Go through the methodical, multi-step process
 - Quick first pass, followed by Deeper Dives
 - This will be a code-heavy notebook!
 - Illustrate Pandas, Jupyter, etc
 - Recipe for Machine Learning: Overview (Recipe Overview.ipynb)
 - <u>Linked notebook (Recipe_for_ML.ipynb)</u>
- The Loss function for Linear Regression
 - <u>Linear Regression: Loss Function</u>
 (<u>Linear Regression Loss Function.ipynb</u>)
- · Deeper dives
 - Iterative improvement
 - When to stop: Bias and Variance (Bias and Variance.ipynb)
 - Regularization
 - Fine tuning techniques (Fine tuning.ipynb)

Deferred from Week 2

- Prepare Data step: Introduction to Transformations
 - Transforming data (featuring engineering) is a key step in the Recipe
 - We introduce transformations
 - Focus on the how; subsequent lecture will cover the why
 - <u>Prepare Data: Intro to Transformations</u>
 (<u>Prepare data Overview.ipynb</u>)
 - <u>Transformation pipelines in sklearn</u> (<u>Transformations Pipelines.ipynb</u>)

Plan

- Introduce a model for the Classification task: Logistic Regression
- How to deal with Categorical (non-numeric) variables
 - classification target
 - features

Classification intro

- Classification: Overview (Classification Overview.ipynb)
- Classification and Categorical Variables
 (Classification Notebook Overview.ipynb)
 - <u>linked notebook</u>
 <u>(Classification and Non Numerical Data.ipynb)</u>

Non-numeric variables (categorical)

- Categorical variables (Categorical Variables.ipynb)
- <u>Titanic using categorical features</u>
 <u>(Classification and Non Numerical Data.ipynb#Titanic-revisited:-OHE--features)</u>

Classification, continued

- Multinomial Classification (Multinomial_Classification.ipynb)
- <u>Classification Loss Function</u>
 <u>(Classification Loss Function.ipynb)</u>

Deeper dives

- Baseline model for Classification (Classification Baseline Model.ipynb)
- <u>Entropy, Cross Entropy, and KL Divergence</u>
 <u>(Entropy Cross Entropy KL Divergence.ipynb)</u>
- Log odds (Classification Log Odds.ipynb)
- <u>Dummy variable trap (Dummy Variable Trap.ipynb)</u>

Deferred modules

- Deferred from week 2
 - Fine tuning techniques (Fine tuning.ipynb)

- Deferred from Week 3
 - Deeper dives
 - Baseline model for Classification
 (Classification_Baseline_Model.ipynb)
 - <u>Dummy variable trap (Dummy Variable Trap.ipynb)</u>

- Plan
- Error Analysis
 - We explain Error Analysis for the Classification Task, with a detailed example
 - How Training Loss can be improved
- Transformations
 - One of the most important parts of the Recipe: transforming raw data into something that tells a story
- Loss functions
 - We look at the mathematical logic behind loss functions
- Recap and Clarification: Classification (Recap of Classification.ipynb)
- Error Analysis (Error Analysis Overview.ipynb)
 - Error Analysis for Classification (Error Analysis.ipynb)
 - Summary statistics
 - Conditional statistics
 - Worked example (Deeper Dive)

- Loss Analysis: Using training loss to improve models (Training Loss.ipynb)
- <u>Transformations Overview (Transformations Overview.ipynb)</u>
 - Transformations: the how (Transformations Overview.ipynb)
 - <u>Transformations: the why (Transformations.ipynb)</u>
- Deeper dives
 - Loss functions: the math (Loss_functions.ipynb)
 - Maximum likelihood
 - Entropy, Cross Entropy, and KL Divergence
 (Entropy Cross Entropy KL Divergence.ipynb)
 - Preview: custom loss functions and Deep Learning
 - <u>Examining errors in MNIST classification (Error Analysis MNIST.ipynb)</u>
- Deferred modules
 - Deferred from week 2
 - Fine tuning techniques (Fine tuning.ipynb)

Plan

- More models: Decision Trees, Naive Bayes
 - Different flavor: more procedural, less mathematical
 - Decision Trees: a model with non-linear boundaries
- Ensembles
 - Bagging and Boosting
 - Random Forests
- Naive Bayes: a simple but effective model
- Entropy, Cross Entropy, and KL Divergence
 (Entropy Cross Entropy KL Divergence.ipynb)
- <u>Decision Trees: Overview (Decision Trees Overview.ipynb)</u>
- <u>Decision Trees (Decision Trees Notebook Overview.ipynb)</u>
 - linked notebook (Decision_Trees.ipynb)
- <u>Trees, Forests, Ensembles (Ensembles.ipynb)</u>
- Naive Bayes (Naive Bayes.ipynb)
- Deeper Dives
 - Feature importance (Feature Importance.ipynb)
- Deferred modules
 - Deferred from week 4
 - <u>Examining errors in MNIST classification</u>
 (<u>Error Analysis MNIST.ipynb</u>)

1 - - - d d - /Cl - - : £ - - £ - - 1 - - O d d - : - : - : - |

Deferred from week 3

- Log odds (Classification_Log_Odds.ipynb)
- Deferred from Week 2
 - Fine tuning techniques (Fine_tuning.ipynb)

- Plan
- Support Vector Classifiers: a classifier with an interesting twist
- Interpretation: understanding models
- Gradient Descent: our tools for solving optimization problems
- Support Vector Machines: Overview (SVM_Overview.ipynb)
- SVC Loss function (SVM Hinge Loss.ipynb)
- SVC: Large Margin Classification (SVM Large Margin.ipynb)
- SVM: Kernel Transformations (SVM Kernel Functions.ipynb)
- SVM Wrapup (SVM Coda.ipynb)
- Gradient Descent (Gradient Descent.ipynb)
- Interpretation: Linear Models (Linear Model Interpretation.ipynb)

- SVC Loss function derivation (SVM_Derivation.ipynb)
- Missing Data (Missing Data.ipynb)
- Imbalanced data (Imbalanced_Data.ipynb)
- Deferred modules
 - Deferred from week 4
 - <u>Examining errors in MNIST classification</u>
 <u>(Error_Analysis_MNIST.ipynb)</u>
 - Deferred from week 3
 - <u>Log odds (Classification_Log_Odds.ipynb)</u>
 - Deferred from Week 2
 - Fine tuning techniques (Fine_tuning.ipynb)

- Plan
- Unsupervised Learning
- <u>Unsupervised Learning: Overview (Unsupervised Overview.ipynb)</u>
- PCA Notebook Overview (Unsupervised Notebook Overview.ipynb)
 - <u>linked notebook (Unsupervised.ipynb)</u>

Deeper dives

Other matrix factorization method (Unsupervised Other Factorizations.ipynb)

- Set up your Tensorflow environment (Tensorflow setup.ipynb)
- Neural Networks Overview (Neural Networks Overview.ipynb)
- Coding Neural Networks: Tensorflow, Keras
 - Intro to Keras (Tensorflow Keras.ipynb)
 - Using Tensorflow
 - Two choices
 - Local: <u>DNN Tensorflow example Notebook local</u> (<u>DNN TensorFlow example.ipynb)</u> (local)
 - Tensorflow version 2+ only!
 - <u>DNN Tensorflow example Notebook from github</u>
 (https://colab.research.google.com/github/kenperry-public/ML Spring 2020/blob/master/DNN TensorFlow (Colab)
- Practical Keras (Tensorflow Keras Practical.ipynb)
- Practical Colab
 - Colab: <u>Practical Colab Notebook from github</u> (https://colab.research.google.com/github/kenperry-public/ML_Fall_2019/blob/master/Colab_practical.ipynb)

Deeper Dives

- A neural network is a Universal Function Approximator (Universal Function Approximator.ipynb)
- History/Computation Graphs: Tensorflow version 1
 (DNN TensorFlow Using TF version 1.ipynb)
- Raw_TensorFlow example Notebook from github
 (https://colab.research.google.com/github/kenperry-
 public/ML_Spring_2020/blob/master/Raw_TensorFlow.ipynb) (Colab)
- Computation Graphs (Computation Graphs.ipynb)

Assignments

Assignment Guidelines (assignments/Assignment Guidelines.ipynb)

Assignment 1

- Assignment 1 notebook (assignments/Assignment 1.ipynb)
- Assignment 1 data (assignments/data/assignment 1)

Assignment 2

- Assignment 2 notebook (assignments/Assignment 2.ipynb)
- Assignment 2 data (assignments/data/assignment 2)