Edge-Linking-using-Hough-Transformm

Aim:

To write a Python program to detect the lines using Hough Transform.

Software Required:

Anaconda - Python 3.7

Algorithm:

Step1:

Import all the necessary modules for the program.

Step2:

Load a image using imread() from cv2 module.

Step3:

Convert the image to grayscale.

Step4:

Using Canny operator from cv2, detect the edges of the image.

Step5:

Using the HoughLinesP(),detect line co-ordinates for every points in the images. Using For loop,draw the lines on the found co-ordinates. Display the image.

Code

```
import cv2
import numpy as np
import matplotlib.pyplot as plt

image = cv2.imread('Qn_7_.jpg')

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title("Input Image")
```

```
plt.axis('off')

plt.imshow(gray_image, cmap='gray')
plt.title("Grayscale Image")
plt.axis('off')

edges = cv2.Canny(gray_image, 50, 150)
plt.imshow(edges, cmap='gray')
plt.title("Canny Edge Detector")
plt.axis('off')

lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 100, minLineLength=50, maxLineGap=10)

for line in lines:
    x1, y1, x2, y2 = line[0]
    cv2.line(image, (x1, y1), (x2, y2), (0, 255, 0), 2)

plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title("Result of Hough Transform")
plt.axis('off')
```

Output

Input image and grayscale image

Canny Edge detector output

Canny Edge Detector

Display the result of Hough transform

Result

Thus, The Python program to detect the lines using Hough Transform run successfully.