Universidade Federal de Campina Grande – UFCG

Centro de Engenharia Elétrica e Informática – CEEI

Departamento de Sistemas e Computação – DSC

Professor: Andrey Brito Período: 2023.2

• Autômatos comuns vs. Autômatos de pilha (pushdown)

- Semelhante a um autômato comum mas agora pode usar uma memória "secundária"
 - P: Por que uma pilha?
 - R: Forma simples de armazenamento, não requer endereçamento
- Um autômato finito de pilha (AP) pode ser determinístico ou nãodeterminístico
- Reconhece mais linguagens que um AFD

Como funciona?

- Ao seguir uma transição pode também guardar símbolos na pilha
- Reconhece mais linguagens que AFDs pois consegue lembrar de mais informações
 - Exemplo: 0ⁿ1ⁿ
 - Informalmente:
 - Para cada 0 lido, empilhe um 0
 - Quando começar a ler 1s, desempilhe um 0 para cada 1 lido
 - Se pilha e entrada acabarem ao mesmo tempo, aceite
- Limitação: não consegue consultar algo no fundo da pilha sem retirar o que está em cima

Como funciona?

- Vamos nos concentrar no não determinístico
 - Diferente de AFDs e AFNDs, APDs não têm o mesmo poder que APNDs
- No determinístico pode haver apenas uma transição disponível
 - Voltaremos a essa discussão...

Transições em um AP

- Seja um símbolo "a" na entrada, e um símbolo "b" no topo da pilha
 - Uma transição tem o formato a,b \rightarrow c
 - A máquina lê **a** na entrada...
 - A máquina lê **b** na pilha...
 - E substitui o símbolo **b** do topo da pilha pelo símbolo **c**
 - Como antes, às vezes transações são possíveis sem consumir símbolos na entrada
 - $\mathbf{a} = \lambda \rightarrow \text{faz a transição sem ler qualquer símbolo da entrada}$
 - Agora, é possível também fazer uma transição sem depender de algo da pilha
 - **b** = λ \rightarrow nada é retirado da pilha
 - Ou fazer a transição, sem adicionar algo na pilha
 - $\mathbf{c} = \lambda \rightarrow \text{nada \'e colocado na pilha}$
 - Ou qualquer combinação disso...

P₁:

$$L(P_1) = ?$$

a,b \rightarrow c : a máquina lê um **a** na entrada e substitui o símbolo **b** do topo da pilha pelo símbolo **c**.

Se $\mathbf{a} = \lambda$, ela faz a transição sem ler qualquer símbolo da entrada (ou seja, não toca na entrada)

Se $\mathbf{b} = \lambda$, ela insere o símbolo \mathbf{c} no topo da pilha, ignorando o que está no topo. A pilha aumenta (se \mathbf{c} for um símbolo).

Se $\mathbf{c} = \lambda$, ela retira o símbolo \mathbf{b} do topo da pilha (desempilha). A pilha diminui.

Exemplo

• Qual o autômato que reconhece a linguagem L = { w | |w| é impar, o símbolo central é o único 1 da palavra}, o alfabeto é {0, 1, 2}

Exemplo

- Qual o autômato que reconhece a linguagem L = { w | |w| é impar, o símbolo central é o único 1 da palavra}, o alfabeto é {0, 1, 2}
 - Exemplos: 012, 00122, 02120, 02102