Demostraciones e Inducción EST-1132 / Estructuras Discretas

Juan Zamora O.

Otoño 2024

Demostraciones

Demostraciones

- lacktriangle Anteriormente, consideramos argumentos de la forma $P\Rightarrow Q$
- ► El objetivo consistía en probar que el argumento era universalmente verdadero para todas las interpretaciones
- Introduciremos una noción de contexto que delimitará un ámbito para la validez de un argumento (generalmente \mathbb{Z}^+ o \mathbb{N})
- Así usaremos un mecanismo que nos permita probar que si P es verdadero en un cierto contexto, entonces también lo será Q. Luego, P ⇒ Q se transforma en un teorema dentro de ese ámbito.

Tipos de Razonamiento

Tipos de Razonamiento

- Razonamiento inductivo (Bottom-up)
 - Premisa particular y generalización repetitiva
 - ► Conclusiones se obtienen a partir de observaciones sucesivas
- ► Razonamiento deductivo (Top-Down)
 - Comienzan con premisas que llevan o derivan una conclusión

El método de Inducción

El método de Inducción

Objetivos

- 1. Reconocer cuando es apropiada una prueba por este método
- 2. Probar conjeturas
- 3. Probar matemáticamente la correctitud de programas que usan sentencias repetitivas For

Ejemplo de los escalones

- Imagine que está subiendo una escalera infinitamente larga.
- ¿Como saber si será posible alcanzar un escalón arbitrariamente alto?
- Suponga que realizamos las siguientes afirmaciones:
 - 1. [A1] Es posible alcanzar el primer escalón (el más bajo).
 - 2. [A2] Al alcanzar un escalón, siempre podrás alcanzar el que está inmediatamente más arriba.

- Si ambas afirmaciones son ciertas, entonces será posible alcanzar el primer escalón y por lo tanto (usando A2) también el segundo, (nuevamente A2) el tercero . . .
- ▶ Si sólo A1 es cierto, no existiría garantía de subir más allá
- Si sólo A2 es cierto, no habría garantía siquiera de poder comenzar a subir

Principio del buen orden

- ▶ Dados dos enteros diferentes x, y, se sabe que x < y o y < x
 - Esto es cierto también para los racionales y los reales
- ▶ ¿Qué hace especial a \mathbb{Z} y su subconjunto \mathbb{Z}^+ ?
 - $\mathbb{Z}^+ = \{x \in \mathbb{Z} | x > 0\} = \{x \in \mathbb{Z} | x \ge 1\}$
- No podemos establecer la misma definicion para los racionales y los reales
- ► Todo subconjunto no vacío X de \mathbb{Z}^+ contiene un entero $a \in X | a \leq x, \forall x \in X$ denominado mínimo

El principio del buen orden

Cualquier subconjunto no vacío de \mathbb{Z}^+ contiene elemento mínimo.

Esto es la base de la Inducción matemática

El primer principio de inducción matemática

- ► Los escalones del ejemplo anterior se encuentran numerados por enteros positivos 1, 2, 3 . . .
- ► En lugar de "alcanzar un escalón arbitrariamente alto" usaremos otra propiedad arbitraria P sobre los números positivos
- ► Necesitamos entonces probar que

- 1. *P*(1)
- 2. $\forall k \in \mathbb{Z}^+[P(k) \Rightarrow P(k+1)]$ Si un numero cualquiera la
- 1 tiene la propiedad P
 - Si un numero cualquiera la cumple, tambien el sgte.

- Estrategia: Mostrar que ambas hipotesis son ciertas
- ► La primera es trivial (paso base)
- ► La segunda es una implicancia que debe cumplirse para cualquier *k* (paso inductivo)
- Luego usamos G.U.
- Útil cuando se desea probar que algo se cumple para cada entero positivo

Inducción matemática se usa solamente para confirmar una conjetura que es correcta

Ejemplo Descendencia

- Ser vivo K tuvo dos hijos. Cada uno de estos (1ra generación) tuvo otros dos. Luego, pasó lo mismo en la 3ra generación. Así sucesivamente
- ► Al parecer, la generación n-ésima contiene 2ⁿ individuos.
 Probar!

- 1) Paso base: $P(1) = 2^1$
- 2) Ahora supongamos que la conjetura es correcta para un $k \ge 1$ cualquiera. Esto es $P(k) = 2^k$
- 3) Intentemos demostrar que $P(k+1) = 2^{k+1}$
- 4) Consideremos el **hecho** de que en esta familia, cada descendiente tiene siempre 2 hijos.
 - ▶ Entonces, $P(k+1) = 2 \times P(k)$
- 5) Luego, usando el supuesto inductivo $P(k) = 2^k$, entonces $P(k+1) = 2 \times P(k) = 2 \times (2^k) = 2^{k+1}$
- 6) Por lo tanto, logramos demostrar el punto (3) para cualquier valor de k.

Síntesis del primer principio de inducción

- ▶ Paso 1 Demostrar el caso base.
- **Paso 2** Suponer P(k).
- **Paso 3** Demostrar P(k+1).

El segundo principio de inducción matemática

1. P(1) es verdadero 2. $\forall k \in \mathbb{Z}^+ [\forall 1 \le r \le k, P(r) \Rightarrow P(k+1)]$ Se usa P(1),

- Luego que se demuestra P(k+1) usando la base inductiva y la hipótesis inductiva, se generaliza para cualquier valor n.
 - Es posible demostrar que ambos principios de inducción son equivalentes.
 - ► En ocasiones es más conveniente usar uno o el otro.

P(2) ... P(k)

Ejemplo Factorización de números primos

Demostrar que para cada número entero $n \ge 2$ es primo o bien se compone del producto de números primos.

- 1. P(2) claramente es verdadero
- 2. $P(2), P(3), \dots, P(n)$ hipotesis inductiva
- 3. P(n+1) Paso inductivo (demostrar usando 1y 2)
 - ¿Porque no usar el primer principio de inducción?
 - ▶ Dificil relacionar P(k) con P(k+1)

¿Como realizar el Paso Inductivo?

- Considerar (k+1) y el caso en que sea primo . . . estamos ok!
- ▶ El caso que nos interesa es cuando (k+1) **no** es primo.
 - Entonces (k+1) es compuesto y puede ser escrito como $(k+1) = a \cdot b$ con 1 < a, b < (k+1)
 - Según Hipotesis inductiva, contamos entonces con P(a) y P(b)
 - Luego, a y b son primos o bien están compuestos por primos.
 - ▶ Entonces, para cualquier caso (k+1) es un producto de primos.
 - Se demuestra P(k+1)

Teorema Fundamental de la Aritmética

La afirmación recien demostrada constituye el **teorema** fundamental de la aritmética

Para cada entero $n \ge 2$, n es un primo o bien puede ser escrito de manera única (ignorando orden) como producto de números primos.

Síntesis del segundo principio de inducción

- La demostración del Ejemplo anterior es de existencia
- ► En general, no es sencillo encontrar la factorización de números primos para un número compuesto

