Занятие 4.

Тема: Динамика материально точки. Законы Ньютона. Вес.

1. Брусок массой m=2 кг движется по шероховатой горизонтальной поверхности с ускорением $w=3\,\mathrm{m/c^2}$, когда на него действуют силой $F=14\,\mathrm{H}$, направленной под углом $\alpha=45^{\circ}$ к горизонту. Найти коэффициент трения k и какой минимальной силой F_{\circ} и под каким углом α_{\circ} нужно подействовать на брусок, чтобы его только сдвинуть с места? ($k=\frac{F\cos\alpha-m\,\mathrm{w}}{mg-F\sin\alpha}$;

$$F_0 = \frac{kmg}{\sqrt{1+k^2}} = 7.3 \,\text{H}; \, \text{tg} \,\alpha_0 = k$$
)

2. Шайбу положили на наклонную плоскость и сообщили направленную вверх начальную скорость v_0 . Коэффициент трения между шайбой и плоскостью равен k. При каком значении угла наклона α шайба пройдет вверх по плоскости наименьшее расстояние? Чему оно равно?

$$(\operatorname{ctg} \alpha = k; S_{\min} = v_0^2/(2g\sqrt{1+k^2}))$$

- **3.** На небольшое тело массой m, лежащее на гладкой горизонтальной плоскости, в момент t=0 начала действовать сила, зависящая от времени по закону F=at, где a- постоянная. Направление этой силы все время составляет угол α с горизонтом. Найти: а) скорость тела в момент отрыва от плоскости; б) путь, пройденный телом к этому моменту. $(v_{i \delta \delta} = \frac{mg^2 \cos \alpha}{2k \sin^2 \alpha})$
- **4**. Самолет делает «мертвую петлю» радиуса R = 500 м с постоянной скоростью 360 км/ч. Найти вес летчика массы 70 кг в нижней, верхней и средней точках петли.
- **5.** Какова начальная скорость шайбы, пущенной по поверхности льда, если она остановилась через 40 с. Коэффициент трения равен 0,05.
- **6.** Через блок (не вращается) перекинута тонкая гибкая (невесомая нерастяжимая) нить, к концам которой подвешены грузы массами $m_1 = 100~$ г и $m_2 = 200~$ г. С каким ускорением будут двигаться грузы, если их предоставить самим себе? Трением пренебречь.
- **7.** Небольшое тело пустили снизу вверх по наклонной плоскости, составляющей угол $\alpha = 15^{\circ}$ с горизонтом. Найти коэффициент трения, если время подъема тела оказалось в $\eta = 2.0$ раза меньше времени спуска.
- **8**. Через блок, прикрепленный к потолку кабины лифта, перекинута нить, к концам которой привязаны грузы с массами m1 и m2. Кабина начинает подниматься с ускорением w0. Пренебрегая массами блоками и нити, а также трением, найти: а) ускорение груза m1 относительно кабины; б) силу, с которой блок действует на потолок кабины.
- **9.** На горизонтальной плоскости с коэффициентом трения k лежит тело массой m. В момент t=0 к нему приложили горизонтальную силу, меняющуюся со временем по закону $\vec{F} = \vec{a}t$, где $\vec{a}-$ постоянный вектор. Найти путь, пройденный телом за первые t секунд после начала действия этой силы. ($S = a(t-t_0)^3/6m$)
- 10. В лифте, который движется вверх, вес тела массой 100 кг равен 1200 Н. Определить модуль ускорения лифта.
- **11.** Наклонная плоскость, образующая угол $\alpha = 25^{\circ}$ с плоскостью горизонта, имеет длину l = 2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время t = 2 с. Определить коэффициент трения k тела о плоскость. ($k = \operatorname{tg} \alpha 2l / gt^2 \cos \alpha$)
- **12**. Велосипедист массой m = 80 кг движется со скоростью v = 10 м/с по вогнутому мосту, который имеет радиус кривизны R = 20 м. Чему будет равен вес этого велосипедиста в момент прохождения нижней точки моста?

1

- **13.** Аэростат массы m начал опускаться с постоянным ускорением w. Определить массу m_0 балласта, который следует сбросить за борт, чтобы аэростат получил такое же ускорение, но направленное вверх. Сопротивлением воздуха пренебречь. ($m_0 = 2m \, \text{w}/(\text{w}+g)$)
- **14.** На столе стоит тележка массой m = 4 кг. К тележке привязан один конец шнура, перекинутого через блок. С каким ускорением w будет двигаться тележка, если к другому концу шнура привязать гирю массой $m_2 = 1$ кг? Коэффициент трения k = 0.2.
- **15.** Два соприкасающихся бруска скользят по наклонной доске. Масса первого бруска $m_1 = 2$ кг, масса второго бруска $m_2 = 3$ кг. Коэффициент трения между бруском и доской равен $k_1 = 0,1$ для бруска 1 и $k_2 = 0,2$ для бруска 2. Угол наклона доски $\alpha = 45^{\circ}$. Определить: а) ускорение с которым движутся бруски; б) силу F, с которой бруски давят друг на друга.

- **16.** Материальная точка массой m=2 кг движется под действием некоторой силы F согласно уравнению $x = a + bt + ct^2 + dt^3$, где c = 1 м/c², d=-0,2 м/c³. Найти значения этой силы в момент времени t_1 =2 с и t_2 =5 с. В какой момент времени сила равна нулю? (**Ответ**: $F_1 = -0.8$ H; $F_2 = -8$ H; F=0 при t=1,67c)
- **17.** Тело массой m = 0,5 кг движется прямолинейно и зависимость пройденного телом пути S от времени t дается уравнением $S = A Bt + Ct^2 Dt^3$, где C = 5 м/с 2 и D = 1 м/с 3 . Найти силу, которая действует на тело в конце первой секунды движения. (F = 2 H).
- **18.** Автомобиль массой m = 1020 кг, который движется равнозамедленно, прошел путь S = 25 м за время t=5 с. Найти начальную скорость v_0 автомобиля и силу F торможения. ($v_0=10$ м/с; F=2,04 кH)