3次贝塞尔解析平滑转接

作者: 汤凯

分支: dev_parking_bezier_smoothing

对应文件:

modules/planning/parking/common/bezier_local_smoother.h modules/planning/parking/common/bezier_local_smoother.cpp

注:相关功能在search_based_planner与arc_based_planner中做了测试,可查看对应位置代码。

参考文献:

- 1. Walton, D. J., D. S. Meek, and J. M. Ali. "Planar G2 transition curves composed of cubic Bézier spiral segments." Journal of Computational and Applied Mathematics 157.2 (2003): 453-476.
- 2. Habib, Zulfiqar, and Manabu Sakai. "Fairing an arc spline and designing with G 2 PH quintic spiral transitions." International Journal of Computer Mathematics 90.5 (2013): 1023-1039.
- 3. Yang, Kwangjin, and Salah Sukkarieh. "An analytical continuous-curvature path-smoothing algorithm." IEEE Transactions on Robotics 26.3 (2010): 561-568.

1.方案简要说明

可使用的转接情形:

case-1:

case-2:

• 定义 $\lambda = g/h$

• 圆弧端曲率: $\kappa = \frac{2h\sin(\phi)}{3k^2}$

• $k = d\sin(\phi) + R\tan(\phi/2)$

整体构造流程:

- 1. 给定 ϕ (通过误差限约束、实际圆弧段的最大圆心角来确定)
- 2. 由 ϕ 计算切线段 k
- 3. 由圆弧段曲率 κ , ϕ , k 计算出 h
- 4. 选取合适的 λ
- 5. 最后计算 $g = \lambda h$,构造完毕

按照以上文献中螺线的构造方法没法满足case-1的需要(曲率超限较大,无法再曲率单调):(如以下例子,取 $\lambda=0.58$,**曲率超限 2.60%**)

Kappa Overshoot: % 2.60

针对该问题,本人采用以下参数构造方法:

- 通过优化方法找到不同 ϕ 下最优的(曲率超限百分比最小) λ ,做函数拟合,拟合结果: $\lambda(\phi) = -0.03205 \exp(0.0725\phi) + 0.5366$
- 之后可通过单参数 ϕ 确定整条曲线

设计参数与误差限关系:

最后只要将转接角 ♦ 设定在0~30度内即可(误差限最多1%左右)

性质:

几何相似性:对于case-1 (相切情形)而言,对于任意半径圆弧,贝塞尔曲线参数随半径 R 缩放,该方法构造转接曲线的 ϵ (最大曲率超出百分比)都是一致的。

仿真效果示例

(1) 用于case-1的效果示例

圆弧半径 R=6m, 选取 $\phi=20^{\circ}$

转接效果:

smoothing length: 2.1817 m

曲率变化:

Kappa Overshoot: % 0.33

弧长等距重采样:

(2) 用于case-2的效果示例 (螺线)

圆弧半径 R=6m, 与直线间隔 d=0.2m 选取 $\phi=30^\circ$

转接效果:

smoothing length: 4.7989 m

Kappa Overshoot: % 0.0, 单调递增, 呈螺线性质

2.函数模块说明

(1) SmootherMathUtils:

功能函数与贝塞尔平滑转接采样函数接口

SmootherMathUtils::BezierLocalSmootherSample

- 贝塞尔平滑转接采样函数接口
- 输入: PathSegments, 规划好的直线圆弧组合(目前只支持连续gear的单对直线-圆弧或圆弧-直线组合)
- 输出: vector<PathPoint>, 经平滑后由弧长分辨率决定的均匀弧长点采样(包含曲率等信息)

SmootherMathUtils::linspace

• 与matlab中linspace函数一致

SmootherMathUtils::SimpsonIntegrator

• 辛普森积分器,用于构造完贝塞尔曲线后的弧长重参数化

(2) BezierCurve2d:

2维贝塞尔曲线模块

BezierCurve2d::Eval

• 输入参数u(0~1),输出对应的点

BezierCurve2d::GetDiffOnceBezier

• 返回对参数u求一阶导后的贝塞尔曲线类BezierCurve2d

BezierCurve2d::EvalDerivative

• 输入参数u(0~1),输出对应的一阶导向量

BezierCurve2d::GetTau

• 输入参数u(0~1),输出对应点的切向量

BezierCurve2d::GetKappa

• 输入参数u(0~1), 输出对应点的曲率 (带符号)

BezierCurve2d::SampleByIncrement

• 给定弧长分辨率,按均匀弧长采样,返回三元组<points_samples, u_samples, s_samples>

BezierCurve2d::reparam_samples_静态成员

• 弧长重参数化积分时的采样数,默认100

(3) CubicBezierLineArcSmoother

构造局部3次贝塞尔转接曲线的类

CubicBezierLineArcSmoother::CubicBezierLineArcSmoother构造函数

- 输入:
 - pair<PathSegment ,PathSegment> line_arc_pair, gear连续的直线-圆弧/圆弧-直线对
 - bool isSingleTransOnArc, 圆弧是否只与单个直线做转接
 - bool isSingleTransOnLine, 直线是否只与单个圆弧做转接
 - o init_guess_angle, 初设转接角(越大越好), 默认25°, 允许范围0~25°

CubicBezierLineArcSmoother::GetLineOccupation

• 计算转接贝塞尔在直线段上占用的长度

CubicBezierLineArcSmoother::GetRemainSegments

• 返回经贝塞尔转接后两边剩余的直线段与圆弧段pair (按照输入时的顺序)

CubicBezierLineArcSmoother::SamplePathPoints

• 返回贝塞尔转接曲线上的均匀弧长采样点(按分辨率 FLAGS_apa_output_trajectory_length_resolution)

CubicBezierLineArcSmoother::GetTransitionAngle

• 返回转接角 ϕ (rad)

CubicBezierLineArcSmoother::SetTransAngle

• 输入: 贝塞尔转接曲线可占用的最大直线段长度

• 输出:满足要求的最大转接角(按本方法,占用直线段长度在0~20度内递减,用二分法查找)

CubicBezierLineArcSmoother::lookup_table_静态成员

• 上文所说的最优参数表 $\phi - \lambda$

CubicBezierLineArcSmoother::lookup_curve_静态成员

• 由最优参数表拟合的最优参数查找曲线 $\phi - \lambda$