EXPERIMENT NO. 02

DATE OF PERFORMANCE: GRADE:

DATE OF ASSESSMENT: SIGNATURE OF LECTURER/ TTA:

AIM: Implementation of HALF ADDER, FULL ADDER using basic logic gates.

THEORY:

An adder is a digital circuit that performs addition of numbers. The half adder adds two binary digits called as augend and addend and produces two outputs as sum and carry; XOR is applied to both inputs to produce sum and AND gate is applied to both inputs to produce carry. The full adder adds 3 one bit numbers, where two can be referred to as operands and one can be referred to as bit carried in. And produces 2-bit output, and these can be referred to as output carry and sum. Half Adder By using half adder, you can design simple addition with the help of logic gates.

Half Adder

0+0=0

0+1=1

1+0=1

1+1 = 10

adder can be easily implemented with the help of the XOR Gate for the output 'SUM' and an AND Gate for the 'Carry'. When we need to add, two 8-bit bytes together, we can be done with the help of a full-adder logic. The half-adder is useful when you want to add one binary digit quantities. A way to develop a two-binary digit adders would be to make a truth table and reduce it. When you want to make a three binary digit adder, do it again. When you decide to make a four digit adder, do it again. The circuits would be fast, but development time is slow.

FULL ADDER

The output carry is designated as C-OUT and the normal output is designated as S.

FULL ADDER Truth Table:

INPUTS			OUTPUT	
A	В	C-IN	C-OUT	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	.0
1	1	0	1	0
1	1	1	1	1

With the truth-table, the full adder logic can be implemented. You can see that the output S is an XOR between the input A and the half-adder, SUM output with B and C-IN inputs. We take C-OUT will only be true if any of the two inputs out of the three are HIGH.

So, we can implement a full adder circuit with the help of two half adder circuits. At first, half adder will be used to add A and B to produce a partial Sum and a second half adder logic can be used to add C-IN to the Sum produced by the first half adder to get the final S output.

The implementation of larger logic diagrams is possible with the above full adder logic a simpler symbol is mostly used to represent the operation. Given below is a simpler schematic representation of a one-bit full adder.

Full Adder Design Using Half Adders With this type of symbol, we can add two bits together, taking a carry from the next lower order of magnitude, and sending a carry to the next higher order of magnitude.

In a computer, for a multi-bit operation, each bit must be represented by a full adder and must be added simultaneously. Thus, to add two 8-bit numbers, you will need 8 full adders which can be formed by cascading two of the 4-bit blocks.

Full-Adder is of two Half-Adders, the Full-Adder is the actual block that we use to create the arithmetic circuits.