Application No.: Unassigned Docket No.: US02 0576 US Preliminary Amendment

Amendments to the Claims

1. (CURRENTLY AMENDED)

An apparatus for performing a SubByte function of the Rijndael Block Cipher, comprising:

an S-box constructed by composing a first and second transformation, wherein the first transformation is a look-up table-(300), and the second transformation is an affine-all transformation that performs both an affine and inverse affine transformation.

2. (CURRENTLY AMENDED)

The apparatus as claimed in claim 1, wherein:

the look-up table (300) is the multiplicative inverse in the finite field GF(2⁸) having {00} mapped to itself; and

the affine-all transformation is implemented using a combinational logic circuit (400).

3. (CURRENTLY AMENDED)

The apparatus as claimed in claim 2, wherein:

the look-up table (300)-is implemented by a read-only memory (ROM); and the combinational logic circuit (400)-implements the equations

```
b'_0 = [(b_0 \cdot p_0) \oplus (b_1 \cdot p_1) \oplus (b_2 \cdot p_2) \oplus (b_3 \cdot p_3) \oplus (b_4 \cdot p_4) \oplus (b_5 \cdot p_5) \oplus (b_6 \cdot p_6) \oplus (b_7 \cdot p_7)] \oplus v_0
b'_1 = [(b_0 \cdot p_7) \oplus (b_1 \cdot p_0) \oplus (b_2 \cdot p_1) \oplus (b_3 \cdot p_2) \oplus (b_4 \cdot p_3) \oplus (b_5 \cdot p_4) \oplus (b_6 \cdot p_5) \oplus (b_7 \cdot p_6)] \oplus v_1
b'_2 = [(b_0 \cdot p_6) \oplus (b_1 \cdot p_7) \oplus (b_2 \cdot p_0) \oplus (b_3 \cdot p_1) \oplus (b_4 \cdot p_2) \oplus (b_5 \cdot p_3) \oplus (b_6 \cdot p_4) \oplus (b_7 \cdot p_5)] \oplus v_2
b'_3 = [(b_0 \cdot p_5) \oplus (b_1 \cdot p_6) \oplus (b_2 \cdot p_7) \oplus (b_3 \cdot p_0) \oplus (b_4 \cdot p_1) \oplus (b_5 \cdot p_2) \oplus (b_6 \cdot p_3) \oplus (b_7 \cdot p_4)] \oplus v_3
b'_4 = [(b_0 \cdot p_4) \oplus (b_1 \cdot p_5) \oplus (b_2 \cdot p_6) \oplus (b_3 \cdot p_7) \oplus (b_4 \cdot p_0) \oplus (b_5 \cdot p_1) \oplus (b_6 \cdot p_2) \oplus (b_7 \cdot p_3)] \oplus v_4
b'_5 = [(b_0 \cdot p_3) \oplus (b_1 \cdot p_4) \oplus (b_2 \cdot p_5) \oplus (b_3 \cdot p_6) \oplus (b_4 \cdot p_7) \oplus (b_5 \cdot p_0) \oplus (b_6 \cdot p_1) \oplus (b_7 \cdot p_2)] \oplus v_5
b'_6 = [(b_0 \cdot p_2) \oplus (b_1 \cdot p_3) \oplus (b_2 \cdot p_4) \oplus (b_3 \cdot p_5) \oplus (b_4 \cdot p_6) \oplus (b_5 \cdot p_7) \oplus (b_6 \cdot p_0) \oplus (b_7 \cdot p_1)] \oplus v_6
b'_7 = [(b_0 \cdot p_1) \oplus (b_1 \cdot p_2) \oplus (b_2 \cdot p_3) \oplus (b_3 \cdot p_4) \oplus (b_4 \cdot p_5) \oplus (b_5 \cdot p_6) \oplus (b_6 \cdot p_7) \oplus (b_7 \cdot p_0)] \oplus v_7
```

Application No.: Unassigned Docket No.: US02 0576 US Preliminary Amendment

having $p = p_0p_1p_2p_3p_4p_5p_6p_7$ as a load pattern consisting of {10001111} for the affine transformation and {00100101} for the inverse affine transformation and having v as a load

vector = $v_0v_1v_2v_3v_4v_5v_6v_7$ consisting of {11000110} for the affine transformation and {10100000} for the inverse affine transformation.

4. (CURRENTLY AMENDED)

An apparatus for encrypting and decrypting data, comprising:

- a data processing module arranged to perform a byte substitution, wherein at least part of said data processing module comprises:
 - a look-up table (300),
 - a storage device for storing the look-up table, and
- a circuit (400) having shared logic that performs a single transform that accomplishes either an affine and an inverse affine transformation.

5. (CURRENTLY AMENDED)

The apparatus as claimed in claim 4 wherein said look-up table (300) is a multiplicative inverse of the finite field $GF(2^8)$.

6. (CURRENTLY AMENDED)

The apparatus as claimed in claim 5, wherein said look-up table (300) is implemented by means of a read only memory (ROM).

7. (CURRENTLY AMENDED)

The apparatus as claimed in claim 4, wherein said look-up table (300) is implemented by means of a read only memory (ROM).

Application No.: Unassigned Docket No.: US02 0576 US Preliminary Amendment

8. (ORIGINAL)

The apparatus as claimed in claim 4, wherein the apparatus comprises a plurality of instances of a data processing module arranged in a data processing pipeline.

9. (ORIGINAL)

The apparatus as claimed in claim 4, wherein the apparatus is arranged to perform encryption or decryption in accordance with the Rijndael Block Cipher, and wherein the data processing module is arranged to implement a Rijndael round.

10. (ORIGINAL)

An apparatus as claimed in claim 9, wherein the data processing module is arranged to implement the SubByte transformation of the Rijndael round using the look-up table composed with the affine transformation for encryption and the inverse affine transformation for decryption.

11. (CURRENTLY AMENDED)

The apparatus as claimed in claim 10, wherein said look-up table (300) is implemented by means of a read only memory (ROM).

12, (ORIGINAL)

A apparatus for performing a SubByte function of a round of the Rijndael Block Cipher, comprising an S-box constructed by composing,

means for obtaining the multiplicative inverse in the finite field GF(2⁸), and means for performing an affine-all transformation consisting of an affine and inverse affine transformation as a single affine transformation.

13. (CURRENTLY AMENDED)

The apparatus as claimed in claim 12, wherein said means for obtaining the multiplicative inverse is a look-up table (300), and said means for performing the affine-all transformation is a combinational logic circuit (400).

Application No.: Unassigned Docket No.: US02 0576 US Preliminary Amendment

14. (CURRENTLY AMENDED)

A method for performing a SubByte function of a Rijndael round of the Rijndael Block Cipher, comprising the steps of:

creating a look-up table (300)-for the multiplicative inverse in the finite field GF(2⁸);

providing an affine-all transformation consisting of an affine and inverse affine transformation in a single affine transformation;

composing an S-box constructed of the look-up table (300) and the affine-all transformation; and

performing a non-linear byte substitution using the composed S-box.

15. (CURRENTLY AMENDED)

The method of claim 14, wherein the providing step further comprises the step of providing a shared logic circuit (400) that performs the single affine transformation.

16. (CURRENTLY AMENDED)

The method of claim 14, further comprising the step of storing the look-up table (300) in a read-only memory (ROM).

17. (CURRENTLY AMENDED)

The method of claim 16, wherein the providing step further comprises the step of implementing a shared logic circuit (400)-that performs the single affine transformation.

18. (CURRENTLY AMENDED)

The method of claim 14, wherein:

the look-up table-(300) is the multiplicative inverse in the finite field GF(2⁸) having {00} mapped to itself; and

the providing step further comprises the step of implementing a combinational logic circuit (400) that performs the single affine transformation (400).