Databázové systémy

Úvod do teorie normalizace

Vilém Vychodil

KMI/DATA1, Přednáška 12

Databázové systémy

Přednáška 12: Přehled

- Boyce-Coddova normální forma:
 - formulace normální formy,
 - dekompozice na základě funkčních závislostí,
 - normalizace pomocí dekompozice.

Opakování: Funkční závislosti (Přednáška 11)

Definice (funkční závislost, angl.: functional dependency)

Nechť R je relační schéma. Pak **funkční závislost** nad schématem R je formule ve tvaru $A \Rightarrow B$, kde $A, B \subseteq R$.

Definice (pravdivost funkční závislosti v datech)

Nechť R je relační schéma a $\mathcal D$ je relace nad schématem R. Pak funkční závislost $A\Rightarrow B$ nad schématem R je **pravdivá** v $\mathcal D$, což označujeme $\mathcal D\models A\Rightarrow B$, pokud pro každé n-tice $r_1,r_2\in\mathcal D$ platí:

pokud
$$r_1(A) = r_2(A)$$
, pak $r_1(B) = r_2(B)$.

V opačném případě říkáme, že $A\Rightarrow B$ neplatí v $\mathcal D$ a píšeme $\mathcal D\not\models A\Rightarrow B$. Funkční závloslost se nazývá **triviální**, pokud je pravdivá v každé $\mathcal D$.

pozorování: $A \Rightarrow B$ je triviální p. k. $B \subseteq A$

Příklad (Funkční závislosti, které jsou/nejsou pravdivé v \mathcal{D})

mějme relaci $\mathcal{D} = \{r_1, r_2, r_3, r_4\}$ nad schématem $R = \{\text{FOO, BAR, BAZ, QUX}\}:$

10 22 a 25	
- - -	22
10 33 в 33	33
10 22 a 4	44
20 33 a 55	55

$$\begin{split} r_1 &= \{ \langle \texttt{F00}, \texttt{10} \rangle, \langle \texttt{BAR}, \texttt{22} \rangle, \langle \texttt{BAZ}, \texttt{a} \rangle, \langle \texttt{QUX}, \texttt{222} \rangle \} \\ r_2 &= \{ \langle \texttt{F00}, \texttt{10} \rangle, \langle \texttt{BAR}, \texttt{33} \rangle, \langle \texttt{BAZ}, \texttt{b} \rangle, \langle \texttt{QUX}, \texttt{333} \rangle \} \\ r_3 &= \{ \langle \texttt{F00}, \texttt{10} \rangle, \langle \texttt{BAR}, \texttt{22} \rangle, \langle \texttt{BAZ}, \texttt{a} \rangle, \langle \texttt{QUX}, \texttt{444} \rangle \} \\ r_4 &= \{ \langle \texttt{F00}, \texttt{20} \rangle, \langle \texttt{BAR}, \texttt{33} \rangle, \langle \texttt{BAZ}, \texttt{a} \rangle, \langle \texttt{QUX}, \texttt{555} \rangle \} \end{split}$$

$$\mathcal{D} \not\models \{\mathtt{BAZ}\} \Rightarrow \{\mathtt{BAR}\}$$

$$\mathcal{D} \not\models \{\mathtt{FOO},\mathtt{BAZ}\} \Rightarrow \{\mathtt{QUX}\}$$

(kvůli
$$r_1$$
 a r_4)
(kvůli r_1 a r_3)

$$\mathcal{D} \not\models \{\mathtt{BAR}\} \Rightarrow \{\mathtt{BAZ}\}$$

(kvůli
$$r_2$$
 a r_4)

$$\mathcal{D} \models \{\texttt{FOO}, \texttt{BAR}\} \Rightarrow \{\texttt{BAZ}\}$$

(pro jakékoliv
$$S$$
 je triviálně splněná)

$$\mathcal{D} \models \{\mathtt{QUX}\} \Rightarrow S$$

$$\models \{ \text{FOO}, \text{BAR} \} \Rightarrow \{ \text{FOO} \}$$

Motivace pro normalizaci

motivace:

Na základě znalostí (funkčních) závislostí v datech je potřeba navrhnout relační schémata v databázi tak, aby se minimalizovala redundance dat a nedocházelo k patologickým situacím souvisejícím s modifikací dat.

příklad relace nad nevhodným schématem:

SCHOOL	DEAN	DEPT	HEAD	ID	COURSE	YEAR
SCI	Blangis	AF	Durcet	7	QOPT1	2012
SCI	Blangis	AF	Durcet	8	LASR1	2012
 	:	:	:	:	:	:
SCI	Blangis	CS	Curval	6	PAPR1	2012

problémy:

- redundance dat (zbytečná duplikace hodnot)
- 2 anomálie spojená s výmazem dat (výmaz kurzů katedry "odstraní vedoucího")
- anomálie spojená s aktualizací hodnot (změna vedoucího katedry na víc místech)

Boyce-Coddova normální forma

zdroj anomálií v předchozím příkladě: některá množina atributů je funkčně závislá na jiné množině atributů, která není nadklíč; zavádíme proto:

Definice (Boyce-Coddova normální forma, BCNF)

Mějme relační schéma R a teorii Γ . Pak R je v BCNF vzhledem k Γ pokud pro každou netriviální $A\Rightarrow B\in \Gamma$ platí, že $\Gamma\models A\Rightarrow R$.

normalizace pomocí dekompozice: pokud není R v BCNF vzhledem k Γ , pak:

- $\bullet \text{ vezmeme netriviální } A \Rightarrow B \in \Gamma \text{ takovou, že } \Gamma \not\models A \Rightarrow R$
- $② \ \mathsf{položíme} \ R_1 = A \cup B \ \mathsf{a} \ \Gamma_1 = \{C \cap R_1 \Rightarrow D \cap R_1 \,|\, C \cap R_1 \Rightarrow D \in \Gamma\}$
- proces se pokusíme opakovat pro dvojici R_1 a Γ_1 pokud R_1 není v BCNF vzhledem k Γ_1 a analogicky pro R_2 a Γ_2

poznámka: BCNF nemusí být dosažitelná, více kurs Databázové systémy 2 (!!)

Příklad (Schéma, které není v BCNF)

Uvažujme relační schéma

$$R = \{ SCHOOL, DEAN, DEPT, HEAD, ID, COURSE, YEAR \}$$

a teorii Γ popisující závislosti mezi atributy:

$$\begin{split} \Gamma &= \{ \{ \texttt{DEPT} \} \Rightarrow \{ \texttt{HEAD}, \texttt{SCHOOL}, \texttt{DEAN} \}, \\ \{ \texttt{SCHOOL} \} &\Rightarrow \{ \texttt{DEAN} \}, \\ \{ \texttt{COURSE}, \texttt{YEAR} \} &\Rightarrow \{ \texttt{ID} \}, \\ \{ \texttt{ID}, \texttt{YEAR} \} &\Rightarrow \{ \texttt{DEPT} \} \}. \end{split}$$

Schéma R není v BCNF vzhledem k Γ , protože (například):

- {DEPT} \Rightarrow {HEAD, SCHOOL, DEAN} $\in \Gamma$, ale $[\{\text{DEPT}\}]_{\Gamma} = \{\text{SCHOOL}, \text{DEAN}, \text{DEPT}, \text{HEAD}\} \neq R$, to jest $\Gamma \not\models \{\text{DEPT}\} \Rightarrow R$, nebo:
- $\{\mathtt{SCHOOL}\}\Rightarrow \{\mathtt{DEAN}\}\in \Gamma$, ale $[\{\mathtt{SCHOOL}\}]_{\Gamma}=\{\mathtt{SCHOOL},\mathtt{DEAN}\}\neq R$, to jest $\Gamma\not\models \{\mathtt{SCHOOL}\}\Rightarrow R$.

Příklad (Normalizace schématu pomocí dekompozice)

```
R = \{ SCHOOL, DEAN, DEPT, HEAD, ID, COURSE, YEAR \}
\Gamma = \{\{\text{DEPT}\} \Rightarrow \{\text{HEAD}, \text{SCHOOL}, \text{DEAN}\}, \ldots\} \text{ (viz předchozí příklad)}
 • R_1 = \{\text{SCHOOL}, \text{DEAN}, \text{DEPT}, \text{HEAD}\}
     \Gamma_1 = \{\{\text{DEPT}\} \Rightarrow \{\text{HEAD}, \text{SCHOOL}, \text{DEAN}\}, \{\text{SCHOOL}\} \Rightarrow \{\text{DEAN}\}\}
       • R_{11} = \{ SCHOOL, DEAN \}
           \Gamma_{11} = \{\{\text{SCHOOL}\} \Rightarrow \{\text{DEAN}\}\}
       • R_{12} = \{\text{SCHOOL}, \text{DEPT}, \text{HEAD}\}
           \Gamma_{12} = \{\{\text{DEPT}\} \Rightarrow \{\text{HEAD}, \text{SCHOOL}\}, \{\text{SCHOOL}\} \Rightarrow \{\}\}
 • R_2 = \{ DEPT, ID, COURSE, YEAR \}
     \Gamma_2 = \{\{ DEPT \} \Rightarrow \{\}, \{COURSE, YEAR \} \Rightarrow \{ID\}, \{ID, YEAR \} \Rightarrow \{DEPT\} \}
       • R_{21} = \{ DEPT, ID, YEAR \}
           \Gamma_{21} = \{\{ \texttt{DEPT} \} \Rightarrow \{\}, \{ \texttt{ID}, \texttt{YEAR} \} \Rightarrow \{ \texttt{DEPT} \} \}
       • R_{22} = \{ ID, COURSE, YEAR \}
           \Gamma_{22} = \{\{\text{COURSE}, \text{YEAR}\} \Rightarrow \{\text{ID}\}, \{\text{ID}, \text{YEAR}\} \Rightarrow \{\}\}
```

Příklad (Reprezentace výchozích dat v normalizované databázi)

SCHOOL	DEAN	DEPT	HEAD	ID	COURSE	YEAR	
SCI	Blangis	AF	Durcet	7	QOPT1	2012	
SCI	Blangis	AF	Durcet	8	LASR1	2012	
SCI	Blangis	AF	Durcet	8	LASR1	2013	
SCI	Blangis	CS	Curval	3	ALMA1	2012	
SCI	Blangis	CS	Curval	3	ALMA1	2013	
SCI	Blangis	CS	Curval	6	DATA1	2012	
SCI	Blangis	CS	Curval	6	DATA1	2013	
SCI	Blangis	CS	Curval	6	PAPR1	2012	

SCHOOL	DEAN	
SCI	Blangis	

	DEPT	ID	YEAR	
	AF	7	2012	
	AF	8	2012	
1	AF	8	2013	١
'	CS	3	2012	ľ
	CS	3	2013	
	CS	6	2012	
	CS	6	2013	

ID	COURSE	YEAR
3		2012
ľ	ALMA1	
3	ALMA1	2013
6	DATA1	2012
6	DATA1	2013
6	PAPR1	2012
7	QOPT1	2012
8	LASR1	2012
8	LASR1	2013

Přednáška 8: Závěr

pojmy k zapamatování:

• anomálie, Boyce-Coddova normální forma, normalizace pomocí dekompozice

použité zdroje:

- Date C. J.: Database in Depth: Relational Theory for Practitioners O'Reilly Media 2005, ISBN 978-0596100124
- Maier D: Theory of Relational Databases
 Computer Science Press 1983, ISBN 978-0914894421
- Simovici D.: Tenney R.: *Relational Database Systems* Academic Press 1995, ISBN 978–0126443752