Systèmes dynamiques Feuille d'exercices 4

Exercice 1. Ergodicité de quelques applications du tore

- 1. Soit $n \in \mathbb{N}^*$, pour $\alpha = (a_1, \dots, a_n) \in \mathbb{R}^n$ on considère la translation $\tau_\alpha : \mathbb{T}^n \to \mathbb{T}^n$ définie par $[\theta] \mapsto [\theta + \alpha]$. Trouver une condition nécessaire et suffisante pour que τ_α soit ergodique pour la mesure de Haar.
- 2. Pour $m \in \mathbf{N}^*$, montrer que l'application $E_m : [x] \in \mathbf{S}^1 \mapsto [mx] \in \mathbf{S}^1$ est ergodique.

Exercice 2. Calcul de mesures invariantes

1.
$$X = [0, 1], d\mu(x) = \frac{dx}{2\sqrt{1-x}} \text{ et } f(x) = 2\sqrt{x(1-x)}.$$

- 2. X = (0,1], $d\mu(x) = \frac{1}{\log 2} \frac{dx}{(1+x)}$ et $f(x) = \frac{1}{x} \left[\frac{1}{x}\right]$, où [y] est la partie entière d'un réel y.
- 3. Montrer que la fonction f(x) = x + 1 n'admet pas de mesure invariante finie.
- 4. Montrer que la fonction f définie par

$$f(x) = \begin{cases} x/2, & x \in (0,1] \\ 1, & x = 0. \end{cases}$$

ne possède pas de mesure invariante.

Exercice 3. Version topologique du théorème de récurrence de Poincaré

Soit X un espace métrique compact et $T: X \to X$ une transformation continue. Soit μ une mesure borélienne finie sur X invariante par T.

- 1. Montrer que μ -presque tout point de X est récurrent pouf T. En déduire le théorème de récurrence de Birkhoff.
- 2. On suppose que μ est ergodique pour T. Montrer pour μ -presque tout $x \in X$ et pour tout y dans le support de μ , il existe une suite strictement croissante d'entiers (n_k) telle que $T^{n_k}(x) \to y$ quand $k \to \infty$.

Exercice 4. Spectre discret des représentations de Koopman

Soit (X, \mathcal{X}, ν, T) un système dynamique pmp sur un espace de Borel standard. On rappelle que l'opérateur de Koopman κ_T associé est défini par la formule $\kappa_T(\xi) = \xi \circ T$ pour $\xi \in L^2(X, \mathcal{X}, \nu)$.

- 1. Montrer que le système dynamique considéré est ergodique si et seulement si 1 est une valeur propre simple de κ_T .
- 2. Montrer que, lorsque (X, \mathcal{X}, ν, T) est ergodique, l'ensemble des valeurs propres de κ_T forme un groupe et que chacune des valeurs propres est simple.
- 3. On suppose de nouveau que (X, \mathcal{X}, ν, T) est ergodique. Montrer que l'ensemble des valeurs propres est dénombrable.

Exercice 5. Unique ergodicité et densité des orbites

Soit (X, d) un espace métrique compact et $f: X \to X$ une transformation continue. On suppose qu'il existe une unique mesure borélienne de probabilités invariante μ et que $\mu(A) > 0$ pour tout ouvert non vide A. Montrer que toutes les orbites de f sont denses dans X.

Exercice 6.

Soit (X, \mathcal{X}, μ) un espace mesuré, et $f: X \mapsto X$ une application mesurable, préservant les ensembles de mesure nulle. Montrer que si une application $\varphi: X \to \mathbf{C}$ est presque partout invariante par f (i.e. $\varphi \circ f = \varphi$ μ -presque partout), alors il existe une application $\varphi': X \to \mathbf{C}$ invariante par f, et presque partout égale à φ .