Wykład III

Zadanie 1. Niech $P(A | B \cap C) = 0.5$, $P(B | A \cap C) = 0.3$, $P(C | A \cap B) = 0.9$. Oblicz $P(A \cap B \cap C | (A \cap B) \cup (A \cap C) \cup (B \cap C))$.

Zadanie 2. 8 osób trzeba posadzić na ośmiu miejscach w rzędzie. Jakie jest prawdopodobieństwo, że

- a) osoby X,Y, Z siedzą obok siebie
- b) każda z 4 par małżeńskich siedzi razem obok siebie

Zadanie 3. Niech A_1, A_2, A_3 będą łącznie niezależnymi zdarzeniami takimi, że $0 < P(A_j) < 1$ dla j = 1, 2, 3.

Zbadać niezależność zdarzeń $C = A_1 - A_2$ i $D = A_2 - (A_1 \cup A_3)$.

Zadanie 4. Niech A_1, A_2, A_3, A_4, A_5 będą łącznie niezależnymi zdarzeniami takimi, że $P(A_j) = (0.5)^j$ dla j=1,...,5. Obliczyć $P((A_1 \cup A_2) - (A_3 \cup A_4 \cup A_5))$.