tracking 模块

参数:

以下测试结果使用了控制变量法。

TrackerBoosting:

```
//set the parameters
cv::TrackerBoosting::Params params;
// params.iterationInit = 1;
// params.numClassifiers = 20;
// params.samplerOverlap = 5;
// params.samplerSearchFactor = 5;
//a Boosting tracker object
Ptr<TrackerBoosting> tracker = cv::TrackerBoosting::create(params);
```

成员名	类型	作用	测试
iterationInit	int	初始化迭代次数	测试时此参数对算法跟踪效果没有明显影响,但是数值比较大时会增加跟踪器初始化时间。设置值为50时,能感觉到秒级别的延迟。
numClassifiers	int	分类器数目	测试时此参数对算法跟踪效果没有明显影响,但是数值比较大时可能会导致内存错误,以至于初始化失败。
samplerOverlap	float	搜索区域	测试时调节此参数可以提高算法跟踪效果,并且对时间影响不大。
samplerSearchFactor	float	搜索区域	测试时调节增大此参数可以很大程度上提高算法跟踪效果,但是值过大时对时间及内存消耗影响很大,甚至导致死机。测试时设置值为50导致死机(8G内存占用率大约50%)。

TrackerCSRT:

```
//set parameters
cv::TrackerCSRT::Params params;
params.window_function = "kaiser"; //"hann", "cheb", "kaiser"
params.use_channel_weights = true;
params.use_color_names = true;
params.use_gray = true;
params.use_hog = true;
params.use_rgb = true;
params.use_segmentation = true;

//create the CSRT object
Ptr<TrackerCSRT> tracker = cv::TrackerCSRT::create(params);
```

成员名	类型	作用	测试
window_function	string	设置 窗函 数	可选项为:"hann", "cheb", "kaiser"。在测试中三种窗函 数表现没有明显差别。
use_channel_weights	bool	\	单独使用(设置为true)会报错。
use_color_names	bool	使用 cn特 征	单独使用无明显差别。
use_gray	bool	使用 灰度 特征	单独使用无明显差别,但速度最快。
use_hog	bool	使用 hog 特征	单独使用无明显差别。
use_rgb	bool	使用 rgb 特征	单独使用无明显差别。
use_segmentation	bool	\	单独使用(设置为true)会报错。
admm_iterations	int	\	值越大算法运行速度越慢,但是测试中,跟踪效果没有明 显差别
background_ratio	int	\	测试中,值越大(测试值1,10,100)效果越好,但是 提升不是很明显,同时运行速度稍微降低(不明显)。
cheb_attenuation	float	\	无明显作用。
filter_lr	float	\	值比较大时(测试值>1.5),跟踪框漂移严重,导致无法 跟踪。
gsl_sigma	float	\	值比较大时(测试值>7.0),跟踪框漂移严重,导致无法 跟踪。
histogram_bins	int	\	值比较大时(测试值100),会降低算法运行速度,对算 法性能提升不明显。
histogram_lr	float	\	无明显作用。
hog_clip	float	\	无明显作用。
hog_orientations	float	\	无明显作用。
kaiser_alpha	float	\	无明显作用。
num_hog_channels_used	int	\	值比较大时算法效果降低(测试值>10),值过大时(测试值100)会导致运行错误。

成员名	类型	作用	测试
number_of_scales	int	\	值较大时(测试值100)可以提升跟踪效果,但是帧率略 微降低(21FPS,值为1时帧率44FPS)。
padding	float	\	值较小(测试值<1)可以提升算法运行速度和跟踪效果, 值较大时(测试值>10)跟踪效果变差(跟踪框漂移)。
scale_lr	float	\	值过大(测试值>1)时会导致运行时程序崩溃。
scale_model_max_area	float	\	值较小(测试值<10)时会导致程序无法运行。
scale_sigma_factor	float	\	值较大(100)的跟踪效果不如较小(0.1)。
scale_step	float	\	设置测试值(0.1,10,100)时,代码无法运行。
template_size	float	\	值较小(测试值0.1)无法运行,值较大(测试值 50,100)时可以提升算法运行速度,算法运行效果没有明 显变化。

TrackerKCF:

```
//set parameters
cv::TrackerKCF::Params params;
// params.compress_feature = true;
// params.compressed_size = 10;
// params.pca_learning_rate = 0.9;
// params.resize = false;
// params.desc_pca = cv::TrackerKCF::CN;
// params.detect_thresh = 0.5;
// params.lambda = 0.2;
// params.sigma = 1.5;
// params.split_coeff = true;
// params.wrap_kernel = true;
// params.interp_factor = 10.5;
// params.max_patch_size = 100;
// params.output_sigma_factor = 0.4;
//create a KCF tracker
Ptr<TrackerKCF> tracker = cv::TrackerKCF::create(params);
```

成员名	类型	作用	测试
compress_feature	bool	启用PCA	无明显差别
compressed_size	int	降维维度	值过大时(测试值100),会导致内核错误以致运行时崩溃。
desc_npca	int	不采用 PCA的特 征描述符	可选值为:cv::TrackerKCF::CN、cv::TrackerKCF::GRAY、cv::TrackerKCF::CUSTOM。RGB图像使用cv::TrackerKCF::CN,否则运行出错。
desc_pca	int	采用PCA 的特征描 述符	可选值为:cv::TrackerKCF::CN、cv::TrackerKCF::GRAY、cv::TrackerKCF::CUSTOM。RGB图像使用cv::TrackerKCF::CN,否则运行出错。
detect_thresh	float	检测器的 置信度阈 值	适当调低(增大过检率)可以提高跟踪效果。
interp_factor	float	自适应线 性差值因 子	值过大时(测试值10.5)会导致算法基本失效,无法跟 踪。
lambda	float	正则化参 数	值过大时(测试值0.2以上)导致算法无法使用。
max_patch_size	int	roi区域 大小	测试使用时,无明显差别,但是可以加快算法速度(测试 值100)。
output_sigma_factor	float	空间带宽	为0时跟踪框迅速飘逸到视野外,值较大时(0.5以上)跟 踪框飘逸严重导致无法跟踪。
pca_learning_rate	float	PCA学习 率	测试使用时,无明显差别。
resize	bool	减小特征 维度	测试使用时,无明显差别。
sigma	float	高斯核带 宽	测试使用时,无明显差别。
split_coeff	bool	将训练系 数转化为 两个矩阵	测试使用时,无明显差别。
wrap_kernel	bool		测试使用时,无明显差别。

TrackerMedianFlow:

```
//set parameters
cv::TrackerMedianFlow::Params params;
params.maxLevel = 10;
params.maxMedianLengthOfDisplacementDifference = 80.0;
params.pointsInGrid = 10;
params.winSize = cv::Size(20,20);
params.winSizeNCC = cv::Size(20,20);

//create a MedianFlow tracker
Ptr<TrackerMedianFlow> tracker = cv::TrackerMedianFlow::create(params);
```

成员名	类型	作用	测试
maxLevel	int	光 法 全 塔 数	测试中调节此参数无明显影响。
maxMedianLengthOfDisplacementDifference	double	丢失 目标 的惩 罚	测试中调节此参数无明显影响。但是值过低时(测试中 小于1.0)算法无效。
pointsInGrid	int	\	测试中调节此参数无明显影响。但是值过大时(测试中 100)算法帧率降低 (6FPS)。
termCriteria	TermCriteria	光流 法终 止标	\
winSize	cv::Size	光流 法窗 口	测试中调节此参数无明显影响。
winSizeNCC	cv::Size	NCC 窗口	测试中调节此参数无明显影 响。

TrackerMIL:

```
//set parameters
cv::TrackerMIL::Params params;
// params.featureSetNumFeatures = 1;
params.samplerInitInRadius = 5.0;
params.samplerInitMaxNegNum = 100;
params.samplerSearchWinSize = 10.0;
params.samplerTrackInRadius = 10.0;
params.samplerTrackMaxNegNum = 100;
params.samplerTrackMaxPosNum = 100;
//create a MIL tracker
Ptr<TrackerMIL> tracker = cv::TrackerMIL::create(params);
```

成员名	类型	作用	测试
featureSetNumFeatures	int	\	测试中使用了几组数据都无法使用
samplerInitInRadius	float	初化程正本索径 本条径	数值太小时(测试设置为1.0)无法追踪目标,算法基本 失效;数值太大时(测试设置为10.0)严重影响算法耗 时。设置一个合适的值(测试值为5.0)可以提升算法性 能。
samplerInitMaxNegNum	int	初化程最负本的大样数	值较大时(测试值100)可以提升跟踪效果,但是影响算法耗时(15FPS);值较小时(测试值10)可以减少算法耗时(25FPS),但是会降低跟踪效果。
samplerSearchWinSize	float	搜索 框大	值较大时(测试值50.0)降低跟踪效果(跟踪框容易跑偏),同时增加耗时(7FPS);值较低时(测试值10.0)跟踪效果比较好,帧率为17FPS;值过低时(测试5.0)算法基本失效。
samplerTrackInRadius	float	正样 本搜 索半 径	测试时无明显影响。
samplerTrackMaxNegNum	int	最大 负样 本数	测试时无明显影响。
samplerTrackMaxPosNum	int	最大 正样 本数	测试时无明显影响。

TrackerMOSSE/TrackerTLD/TrackerGOTURN:

无可调参数。

耗时(帧率):

以下各算法为默认参数。测试视频大小 768×576 ,一共794帧,初始化boundingBox为(500,160,525,235),取平均帧率:

算法	帧率/FPS	备注
TrackerBoosting	54.540891	与CSRT差不多
TrackerCSRT	38.112262	与Boosting差不多
TrackerKCF	369.234893	与MedianFlow差不多
TrackerMedianFlow	165.631738	与KCF差不多
TrackerMIL	13.997373	\
TrackerMOSSE	4036.727679	\
TrackerTLD	24.032678	\
TrackerGOTURN	\	\

说明:

上述时间具有参考价值。实际运行时间与boundingBox选取有关,与跟踪效果有关(有些跟踪器不能一直跟踪到目标)。

在同样视频不同boundingBox的另外一些测试中,Boosting与CSRT在耗时表现上差不多,并且基本能保证 >30FPS;KCF与MedianFlow方法在耗时表现上也相差无几,并且基本能保证>100FPS,上表KCF达到300多帧率是 因为大部分帧KCF没有找到目标。

跟踪效果:

算法	效果
TrackerBoosting	目标被遮挡时会将遮挡物当做目标;目标快速移动时容易跟错目标;boundingBox 会一直存在。
TrackerCSRT	可以解决一些目标被遮挡的问题;但是容易跟错目标;跟踪过程中,boundingBox大小可以自动变化。
TrackerKCF	速度快;但是很容易丢失目标,且目标丢失后算法基本失效。
TrackerMedianFlow	目标被遮挡时会将遮挡物当做目标;目标运动过快时算法基本失效;boundingBox 比目标大很多时算法基本失效;跟踪过程中,boundingBox大小可以自动变化; boundingBox会一直存在。
TrackerMIL	速度慢;目标被遮挡时会将遮挡物当做目标;boundingBox会一直存在。
TrackerMOSSE	速度很快;但是容易丢失目标,且目标丢失后算法基本失效。
TrackerTLD	容易跟错目标;跟踪过程中,boundingBox大小可以自动变化;boundingBox比目标大很多时算法基本失效;boundingBox会一直存在。
TrackerGOTURN	\

说明:

不同场景下同一算法的表现也有一定的差异。在满足时间要求的情况下,不同场景需要用不同的算法测试,因地制宜。