Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

на разработку плагина моделирования цепного колеса для системы «AutoCAD»

Выполнил:	
Студент группы 588-2	
/ Рыжков Д.А.	
>2022 г.	··
Руководитель:	
к.т.н., доцент каф. КСУП	
/ Калентьев А. А.	
2022 г	//

Оглавление

1 Введение	3
2 Описание САПР	4
2.1 Описание AutoCAD 2022	4
2.2 Object ARX SDK	4
2.3 AutoCAD .NET API	5
2.4 Обзор аналогов	9
2.4.1 AutoCAD Mechanical Toolset	9
2.4.3 SelfCAD	10
2.4.1 Autodesk App Store	11
3 Описание предмета проектирования	12
4 Проект системы	14
4.1 Описание технических и функциональных аспектов системы	14
4.2 Диаграмма классов	
4.3 Макет пользовательского интерфейса	
5 Тестирование программы	20
5.1 Функциональное тестирование	20
5.2 Модульное тестирование	
5.3 Нагрузочное тестирование	23
5.3.1 Нагрузочное тестирование с параметрами по умолчанию	23
5.4 Выводы нагрузочного тестирования	
Вывод	
Список литературы	27
Приложение А	

1 Введение

Область применения систем автоматизированного проектирования (САПР) охватывает сегодня самые различные виды деятельности человека — от расстановки мебели в квартире до проектирования и изготовления интегральных микросхем и современной космической техники. Каждая категория задач технического черчения предъявляет к этим продуктам свои требования, однако наибольшее распространение они получили в машиностроении и архитектуре [1].

Средства автоматизированного проектирования имеют своей задачей эффективности инженеров. При повышение труда создании любой технической системы необходимо стремится к экономии трех категорий трудозатрат: прошлого, или овеществлённого, труда; настоящего, или живого, труда; будущего труда, связанного с развитием системы. Основной целью создания систем компьютеризации инженерной деятельности является экономия живого труда проектировщиков, конструкторов, технологов, инженеров-менеджеров ДЛЯ повышения эффективности процесса проектирования и планирования, а также для улучшения качества результатов этой деятельности [2].

Целью же данной работы является разработка плагина, позволяющего строить модель ракеты для САПР AtuoCAD.

2 Описание САПР

2.1 Описание AutoCAD 2022

AutoCAD — двух- и трёхмерная система автоматизированного проектирования и черчения, разработанная компанией Autodesk. AutoCAD и специализированные приложения на его основе нашли широкое применение в машиностроении, строительстве, архитектуре и других отраслях промышленности [10].

В области двумерного проектирования AutoCAD по-прежнему позволяет использовать элементарные графические примитивы для получения более сложных объектов. Кроме того, программа предоставляет весьма обширные возможности работы со слоями и аннотативными объектами (размерами, текстом, обозначениями). Использование механизма внешних ссылок (XRef) позволяет разбивать чертёж на составные файлы, за которые ответственны различные разработчики, а динамические блоки расширяют возможности автоматизации 2D-проектирования обычным пользователем без использования программирования.

АutoCAD включает в себя полный набор инструментов для комплексного трёхмерного моделирования (поддерживается твердотельное, поверхностное и полигональное моделирование). AutoCAD позволяет получить высококачественную визуализацию моделей с помощью системы рендеринга mental ray. Также в программе реализовано управление трёхмерной печатью (результат моделирования можно отправить на 3D-принтер) и поддержка облаков точек (позволяет работать с результатами 3D-сканирования) [3].

2.2 Object ARX SDK

Среда программирования ObjectARX используется для адаптации и расширения функциональных возможностей AutoCAD и продуктов на его основе. Она обеспечивает непосредственный доступ к структурам базы

данных AutoCAD, графической системе и определениям встроенных команд [4].

2.3 AutoCAD .NET API

В состав ObjectARX SDK входит также управляемый API, который часто называют AutoCAD .NET API. Для адаптации и расширения функциональных возможностей AutoCAD и продуктов на его основе может применяться любой язык программирования, поддерживающий .NET, к примеру, C# или VB. Обеспечивается непосредственный доступ к структурам базы данных AutoCAD, определениям встроенных команд и другим внутренним программным элементам [4].

Принцип создания и работы плагина для AutoCAD:

- 1. Подключение всех необходимых библиотек, находящихся в ObjectARX;
 - 2. Написание кода программы для реализации плагина;
 - 3. Компилируется файл с расширением .dll;
- 4. Полученный файл загружается в AutoCAD, после чего необходимо вызвать команду созданного плагина.

Основные пространства имен, используемые при создании плагина:

- Autodesk.AutoCAD.ApplicationServices позволяет получить доступ к приложению AutoCAD;
- Autodesk.AutoCAD.EditorInput позволяет получить доступ к редактору AutoCAD;
- Autodesk.AutoCAD.DatabaseServices дает доступ к базе данных и сущностям AutoCAD;
 - Autodesk.AutoCAD.Runtime отвечает за регистрацию команд.

В таблице 2.1 представлены свойства и методы интерфейсов, которые использовались при разработке плагина.

Таблица 2.1 – Свойства и методы интерфейсов и классов

Название	Возвращаемый	Описание	
	ТИП		
Application			
DocumentManager	DocumentCollection	Получает доступ к	
		объекту	
		DocumentManager.	
ShowModelessDialog	bool?	Используется для	
(Form)		отображения формы	
		WinForms	
	Transaction		
Commit()	void	фиксирует изменения,	
		внесенные во все	
		объекты DBObject,	
		открытые во время	
		Транзакции.	
Abort()	void	Прерывает транзакцию.	
GetObject(ObjectId,	DBObject	Получение объекта по	
DatabaseServices.OpenMod)		его идентификатору.	
	Document		
Database	Database	Обертывает функцию	
		AcApDocument.database()	
		ObjectARX, которая	
		возвращает объект базы	
		данных (базу данных),	
		используемый этим	
		документом	
LockDocument()	void	Блокирует документ	
	Solid3d		
createFrustum(double,	ErrorStatus	Этот метод используется	
double, double, double)		для создания цилиндра	
		или конуса с центром	
		мирового	
		происхождения вокруг	
		его диаметра и	
		расположен на половине	
		высоты	

Продолжение таблицы 2.1

Название	Возвращаемый	Описание	
	ТИП		
createWedge(double,	ErrorStatus	Этот метод используется	
double, double)		для создания твердого	
		тела клина с центром в	
		начале координат WCS	
extrude(double, double)	ErrorStatus	Создает твердое тело	
		путем выдавливания	
		области, расстояния по	
		высоте с углом	
		конусности конуса	
BooleanOperation(void	Выполняет логическую	
BooleanOperationType,		операцию между этим	
Solid3d)		твердым телом и	
		твердым телом.	
		Возможными типами	
		операций являются:	
		объединение,	
		пересечение, вычитание	
	DocumentCollection		
MdiActiveDocument	Document	Получает доступ к	
		текущему открытому	
		документу	
	ObjectId		
IsNull()	bool	Определяет, имеет ли	
		идентификатор объекта	
		нулевое значение.	
	TransactionaManage	r	
StartTransaction()	Transaction	Начинает новую	
		транзакцию	
	BlockTableRecord	-	
Name()	string	Возвращает имя записи в	
		таблицы символов.	
AppendEntity(Entity)	ObjectId	Добавляет объект в базу	
	-	данных и в	
		BlockTableRecord.	
	•	•	

Окончание таблицы 2.1

Название	Возвращаемый	Описание
	ТИП	
	Entity	
TransformBy(Matrix3d)	void	Эта функция
		предоставляет средство,
		с помощью которого
		приложения AutoCAD и
		ObjectARX могут
		запросить объект
		применить матрицу
		преобразования к себе.
SetDatabaseDefaults()	void	Эта функция задает
		сущностям: цвет, слой,
		тип линии, шкала типов
		линий, видимость,
		название стиля сюжета,
		вес линии значения по
		умолчанию для базы
		данных, в которой в
		настоящее время
		находится объект
	Database	
BlockTableId()	ObjectId	Возвращает
		идентификатор объекта
		BlockTable базы данных.
TransactionManager()	TransactionManager	Обращается к
		TransactionManager для
		базы данных.

2.4 Обзор аналогов

2.4.1 AutoCAD Mechanical Toolset

Самый лаконичный способ создания звёздочки является официальным: создать цепное колесо с помощью встроенного инструмента «вставка звездочки». Однако, данный способ доступен только на специальной версии AutoCAD (AutoCAD Mechanical Toolset), что создаёт заметные ограничения для использования этого варианта [5].

2.4.2 Gear Generator

Помимо официального инструмента AutoCAD существует онлайн редактор для автоматизированного построения аналогичного объекта — шестерёнок. На сайте «geargenerator.com» можно построить несколько видов шестерней (внутренняя, наружная) и задать параметры: количество зубьев, шаг зуба, угол давления, диаметр. И скачать созданную схему в нужном формате (DXF, SVG) [11].

Рисунок 2.1 — Интерфейс сайта «geargenerator.com»

2.4.3 SelfCAD

SelfCAD — это онлайн-программа для автоматизированного проектирования 3D-моделей и их 3D-печати, выпущенная в 2016 году. Она основана на браузере и облаке. Её отличительная черта — это отсутствие потребности в скачивании программы и возможность работы напрямую в облаке с сохранением возможности работы в автономном режиме (для чего уже потребуется установка программного обеспечения SelfCAD). [12]

Рисунок 2.2 — Интерфейс программы SelfCAD

2.4.1 Autodesk App Store

Также, существует магазин плагинов для всей продукции компании Autodesk. Однако, в нём плагины по созданию звёздочки в основном создаются для программы Fusion 360. В то время как для нужной среды AutoCAD нужных плагинов намного меньше (всего два плагина) и они распространяются на платной основе. [13]

Рисунок 2.3 — Пара платных плагинов AutoCAD для создания звёздочки

3 Описание предмета проектирования

Звёздочка (цепное колесо) — это профилированное колесо с зубьями, которые входят в зацепление с цепью, гусеницей или с другими материалами с выемками или зазубринами. Звёздочки отличаются от зубчатых колёс тем, что никогда не входят в зацепление друг с другом непосредственно, и отличаются от шкивов тем, что у звёздочек есть зубья, в то время как шкивы имеют гладкие ободы.

Звёздочки применяются в велосипедах, мотоциклах, автомобилях, гусеничных транспортных средствах, и в других машинах, в которых применение зубчатых передач является неподходящим. Они выполняют функцию передачи вращательного движения между двумя валами посредством цепной передачи или функцию сообщения линейного движения звеньям гусениц. [14]

К изменяемым параметрам модели относятся:

а) диаметр наружной окружности (d, 50 — 500 мм);

Рисунок 3.1 – Диаметр наружной окружности цепного колеса b) диаметр внутренней окружности (d2, 25 — 250 мм);

Рисунок 3.2 – Диаметр внутренней окружности звёздочки

- c) число зубьев (n, 5 30);
- d) высота зуба $(h_r \le 20\% * d);$

Рисунок 2.3 – Высота зуба

e) толщина пластины (h, 5 — 50 мм).

Рисунок 2.4 – Толщина пластины

4 Проект системы

4.1 Описание технических и функциональных аспектов системы

Для графического описания абстрактной модели проекта, а также пользовательского взаимодействия (сценарии действия) использован стандарт UML.

UML язык графического описания для объектного моделирования в области разработки программного обеспечения. UML является языком широкого профиля, это — открытый стандарт, использующий графические обозначения для создания абстрактной модели системы, называемой UML — моделью. UML был создан для определения, визуализации, проектирования и документирования, в основном, программных систем. UML не является языком программирования, но на основании UML возможна генерация кода и наоборот [6].

При использовании UML были простроена диаграмма классов.

4.2 Диаграмма классов

Диаграмму классов используют для отображения структуры проекта. Она отражает отношения между главными сущностями и описывает их внутреннюю структуру.

Спроектированная диаграмма классов для проекта по созданию звёздочки показана на рисунке 4.1:

Рисунок 4.1 — Первоначальная UML-диаграмма классов

Для создания плагина AutoCAD будут реализованы следующие классы:

- AutoCADConnector класс, откуда будет запускаться плагин при помощи вызова команды «BuildSprocket» в терминале AutoCAD;
- SprocketForm класс, отвечающий за пользовательский интерфейс плагина;
- SprocketParameters класс, хранящий в себе все параметры модели зубчатого колеса;

- Validator класс, хранящий в себе методы проверки данных (проверка диапазона значений);
- SprocketBuilder класс, хранящий в себе методы для построения модели зубчатого колеса.

В ходе работы над пролетом структура классов и отношения между ними были изменены, дописаны новые методы, поля и свойства.

Было принято решение избавиться от статического класса «Validator», так как он содержал в себе лишь один метод проверки значений (проверка по диапазону допустимых значений). Метод, содержащийся в статическом классе был перенесён в класс «SprocketBuilder», где и осуществлялись все проверки параметров.

Итоговая диаграмма классов продемонстрирована на рисунке 4.2.

Рисунок 4.2 — Итоговая UML-диаграмма классов

4.3 Макет пользовательского интерфейса

Для создания звёздочки хватило бы и передачи аргументов (параметров) в терминале AutoCAD. Однако, такой способ взаимодействия с пользователем не очень дружелюбен.

Намного понятнее для пользователя воспользоваться специальным интерфейсом. С целью улучшения пользовательского опыта использования создаваемого плагина был разработан макет интерфейса.

Макет пользовательского интерфейса представлен на рисунке 4.3:

Рисунок 4.3 — Макет пользовательского интерфейса

Также плагин будет уведомлять пользователя о некорректном вводе данных. Планируется выводить сообщения, содержащие следующую информацию:

- где была совершена ошибка (конкретное поле);
- совершённая ошибка (выход за пределы значений или ввод некорректных символов);
- что программа ожидала получить.

К примеру, когда пользователь вводит в поле «толщина пластины» значение «90» (превышающее указанный диапазон 5-50 мм), плагин выводит следующее сообщение: «Введено неверное значение толщины пластины».

В скобочках рядом с полем ввода значение динамически меняется на требуемое, если оно зависит от других характеристик. Таким образом, подсказка пользователю становится более понятной.

Рисунок 4.4 — Пример блокировки и отображения сообщения о неверно введенных данных

В соответствие с макетом были реализованы интерфейс, представленный на рисунке 4.5, и отображение сообщения о неверно введенных данных (рисунок 4.6):

Рисунок 4.5 — Реализованный интерфейс

Рисунок 4.6 — Реализованное отображение сообщения о неверно введенных данных

5 Тестирование программы

5.1 Функциональное тестирование

При функциональном тестировании проверялось корректность работы плагина, а именно, соответствие полученного результата в виде трехмерной модели, с входными параметрами [7]. Проведено тестирование максимальных, минимальных и параметров по умолчанию для построения модели.

На рисунке 5.1 показана модель зубчатого колеса, построенная по заданным параметрам по умолчанию (диаметр наружной окружности = 80мм, диаметр внутренней окружности = 45мм, толщина пластины = 12мм, высота зуба = 10мм, число зубьев = 6шт).

Рисунок 5.1 – Зубчатое колесо, построенное по заданными по умолчанию параметрам

На рисунке 5.2 продемонстрирована модель зубчатого колеса с минимальными параметрами (диаметр наружной окружности = 50мм, диаметр внутренней окружности = 25мм, толщина пластины = 5мм, высота зуба = 5мм, число зубьев = 5шт).

Рисунок 5.2 – Зубчатое колесо, построенное по заданными минимальным параметрам

На рисунке 5.3 продемонстрирована модель зубчатого колеса, построенная с максимальными параметрами (диаметр наружной окружности = 50мм, диаметр внутренней окружности = 25мм, толщина пластины = 5мм, высота зуба = 5мм, число зубьев = 5шт).

Рисунок 5.3 – Зубчатое колесо, построенное по заданными максимальными параметрам

5.2 Модульное тестирование

В целях проверки корректности работы всех модулей программы было проведено также модульное тестирование при помощи фреймворка NUnit версии 3.13 [8]. При модульном проверяются все открытые методы и свойства. Таким образом были написаны модульные тесты для SprocketParameters и Validator со сто процентным покрытием (рисунок 5.5). Результат запуска всех тестов показана на рисунке 5.4. Таблица с описанием тестовых случаев и параметрами тестов приведена в приложении А.

Рисунок 5.4 – Результат запуска тестов

Рисунок 5.5 – Анализ покрытия модульного тестирования.

5.3 Нагрузочное тестирование

В целях проверки производительности работы плагина, было проведено нагрузочное тестирование [9]. Тестирование производилось на ПК со следующей конфигурацией:

- Core i5-4430, 3.0 GHz;
- 8 Гб ОЗУ.

Было проведено нагрузочное тестирование с параметрами по умолчанию. Для наглядности результата в каждом тестировании проводилось построение 30000 моделей.

5.3.1 Нагрузочное тестирование с параметрами по умолчанию

Для второго нагрузочного теста были выбраны минимальные параметры для построения модели, а именно:

- Диаметр наружной окружности = 80мм;
- Диаметр внутренней окружности = 45мм;
- Толщина пластины = 12мм;
- Высота зуба = 10мм;
- Число зубьев = 6шт.

Тестирование заняло 6 минут. Результаты тестирования продемонстрированы на графиках 5.6 и 5.7.

График 5.6 – График зависимости количества потребляемой оперативной памяти от количества моделей с минимальными параметрами

График 5.7 – График зависимости времени построения одной модели от общего количества моделей с минимальными параметрами

5.4 Выводы нагрузочного тестирования

Исходя из всех полученных данных по нагрузочным тестам можно сделать следующие выводы:

Во-первых, использование оперативной памяти, затрачиваемое программой, линейно увеличивается до достижения предела объема оперативной памяти.

Во-вторых, AutoCAD не выключается при максимальной нагрузке на оперативную память, к примеру, как может происходить в САПР «Компас 3D». Можно предположить, что это происходит из-за того, что все построения происходят через записи в базу данных.

В-третьих, графику 5.6 видно, ПО как программа начинает переиспользовать доступные ресурсы оперативной памяти: после примерно 25 тысяч моделей доступная заканчивается, память И программа, предположительно, начинает выгружать старые модели и создавать на этих освобождённых ресурсах новые модели. На графике это выражается в непродолжительном уменьшении используемой памяти, которая вскоре вновь занимается программой: так получается почти прямая линия около 8Гб объёма ОЗУ ПК) и работоспособность (максимального программы сохраняется.

Вывод

В ходе выполнения лабораторных работ были изучены предметная область проектирования, предмет проектирования, аналоги предмета проектирования, АРІ для взаимодействия с выбранной САПР, так же по итогам разработки плагина была спроектирована UML-диаграмма классов, разработан плагин для создания 3D модели зубчатого колеса в САПР AutoCAD 2022 и проведено функциональное и нагрузочное тестирование плагина.

Список литературы

- 1. Актуальность применения САПР в машиностроении [Электронный ресурс]. URL: https://sapr.ru/article/7837 (дата обращения: 17.02.2022).
- 2. Малюх В.Н. Введение в современные САПР: Курс лекций. М.: ДМК Пресс, 2010. 192 с.: ил.
- 3. AutoCAD 2D и 3D система Программы САПР от Autodesk [электронный ресурс]. Режим доступа: http://linterra.ru/2017/08/09/autocad-2d-i-3d-sistema-programmy-sapr-ot-autodesk/ (дата обращения 17.02.2022);
- 4. Autodesk. Autodesk Developer Network open. Программные платформы. Разработка приложений для AutoCAD. [электронный ресурс]. Режим доступа: https://www.autodesk.ru/autodesk-developer-network/software-platform-russian/develop-autocad (дата обращения 21.02.2022);
- 5. Вставка звездочки (AutoCAD Mechanical Toolset). [Электронный ресурс]. Режим доступа: https://knowledge.autodesk.com/ru/support/autocad-mechanical/learn-explore/caas/CloudHelp/cloudhelp/2019/RUS/AutoCAD-Mechanical/files/GUID-D8739549-39DC-48A2-97AF-976AE73CB132-htm.html (дата обращения 31.10.2021)
- 6. UML. [электронный ресурс]. Режим доступа: http://www.uml.org/ (дата обращения 21.02.2022).
- 7. Функциональное тестирование [Электронный ресурс]. URL: https://daglab.ru/funkcionalnoe-testirovanie-programmnogo-obespechenija/ (дата обращения: 17.02.2022).
- 8. Юнит-тестирование для чайников [Электронный ресурс]. URL: https://habr.com/ru/post/169381/ (дата обращения: 17.02.2022).
- 9. Нагрузочное тестирование: с чего начать и куда смотреть [Электронный ресурс]. URL: https://habr.com/ru/company/jugru/blog/329174/ (дата обращения: 17.02.2022).

- 10. AutoCAD Википедия [электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/AutoCAD (дата обращения 20.03.2022)
- 11. Gear generator— онлайн редактор чертежей для создания шестерней. [Электронный ресурс]. Режим доступа: https://geargenerator.com (дата обращения 31.10.2021).
- 12. 3D SHAPES: GEAR GENERATOR. [Электронный ресурс]. Режим доступа: https://www.selfcad.com/3d-modeling-features/3d-shapes-gear-generator (дата обращения 31.10.2021).
- 13. Gears | Подключаемые модули, надстройки, расширения для AutoCAD Autodesk App Store. [Электронный ресурс]. Режим доступа: https://apps.autodesk.com/ACD/ru/List/Search?isAppSearch=True&searchboxstor e=ACD&facet=&collection=&sort=&query=Gears (дата обращения 31.10.2021).
- 14. Звёздочка (техника) Википедия. [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Звёздочка_(техника) (дата обращения 31.10.2021).

Приложение А

Описание тестовых случаев с входными параметрами

Таблица А.1 – Описание тестовых случаев

Царранно мотола	Описание тестового случая		
Название метода	Описание	Параметры	
AnyParameter_ GetSetValue_Success(Проверка Get и Set для OuterDiameter при значении равному граничному	expectedValue = 50 parameterName =	
double expectedValue,	минимальному.	OuterDiameter	
string parameterName)	Проверка Get и Set для OuterDiameter при значении равному определенному выражению в границе допустимых значений	expectedValue = 100 parameterName = OuterDiameter	
	Проверка Get и Set для OuterDiameter при значении равному граничному максимальному	expectedValue = 500 parameterName = OuterDiameter	
	Проверка Get и Set для InnerDiameter при значении равному граничному минимальному	expectedValue = 25 parameterName = InnerDiameter	
	Проверка Get и Set для InnerDiameter при значении равному определенному ыражению в границе допустимых значений	expectedValue = 100 parameterName = InnerDiameter	
	Проверка Get и Set для InnerDiameter при значении равному граничному максимальному	expectedValue = 250 parameterName = InnerDiameter	
	Проверка Get и Set для Thickness при значении равному граничному минимальному	expectedValue = 4 parameterName = Thickness	
	Проверка Get и Set для Thickness при значении равному определенному выражению в границе допустимых значений	expectedValue = 5 parameterName = Thickness	
	Проверка Get и Set для Thickness при значении равному граничному максимальному	expectedValue = 25 parameterName = Thickness	
	Проверка Get и Set для ToothHeight при значении равному граничному минимальному	expectedValue = 1 parameterName = ToothHeight	
	Проверка Get и Set для ToothHeight при значении равному определенному выражению в границе допустимых значений	expectedValue = 10 parameterName = ToothHeight	
	Проверка Get и Set для ToothHeight при значении равному граничному максимальному	expectedValue = 16 parameterName = ToothHeight	

Продолжение таблицы А.1

Название метода	Описание тестового случая		
пазвание метода	Описание	Параметры	
AnyParameter_ GetSetValue_Success(double expectedValue, string parameterName)	Проверка Get и Set для ToothTopRadiusRatio при значении равному граничному минимальному	expectedValue = 0.2 parameterName = ToothTopRadiusRatio	
	Проверка Get и Set для ToothTopRadiusRatio при значении равному определенному выражению в границе допустимых значений	expectedValue = 0.5 parameterName = ToothTopRadiusRatio	
	Проверка Get и Set для ToothTopRadiusRatio при значении равному граничному максимальному	expectedValue = 0.8 parameterName = ToothTopRadiusRatio	
AnyParameter_ GetSetValue_Success(int expectedValue, string parameterName)	Проверка Get и Set для ToothCount при значении равному граничному минимальному	expectedValue = 5 parameterName = ToothCount	
	Проверка Get и Set для ToothCount при значении равному определенному выражению в границе допустимых значений	expectedValue = 10 parameterName = ToothCount	
	Проверка Get и Set для ToothCount при значении равному граничному максимальному	expectedValue = 30 parameterName = ToothCount	
AnyParameter_SetValue_Failed(double expectedValue, string parameterName)	Проверка Set для OuterDiameter при присвоении значения равному меньше минимального возможного	value = 5 parameterName = OuterDiameter	
	Проверка Set для OuterDiameter при присвоении значения равному больше максимального возможного	value = 600 parameterName = OuterDiameter	
	Проверка Set для InnerDiameter при присвоении значения равному меньше минимального возможного	value = 5 parameterName = InnerDiameter	
	Проверка Set для InnerDiameter при присвоении значения равному больше максимального возможного	value = 500 parameterName = InnerDiameter	

Продолжение таблицы А.1

Название метода	Описание тестового случая		
пазвание метода	Описание	Параметры	
AnyParameter_SetValue_Failed(double expectedValue,	Проверка Set для Thickness при присвоении	value = 2 parameterName =	
string parameterName)	значения равному меньше минимального возможного	Thickness	
	Проверка Set для Thickness при присвоении значения равному больше максимального возможного	value = 150 parameterName = Thickness	
	Проверка Set для ToothHeight при присвоении значения равному меньше минимального возможного	value = 0 parameterName = ToothHeight	
	Проверка Set для ToothHeight при присвоении значения равному больше максимального возможного	value = 100 parameterName = ToothHeight	
	Проверка Set для ToothTopRadiusRatio при присвоении значения равному меньше минимального возможного	value = 0.1 parameterName = ToothTopRadiusRatio	
	Проверка Set для ToothTopRadiusRatio при присвоении значения равному больше максимального возможного	value = 0.9 parameterName = ToothTopRadiusRatio	
AnyParameter_SetValue_Failed(int expectedValue, string parameterName)	Проверка Set для ToothCount при присвоении значения равному меньше минимального возможного	value = 2 parameterName = ToothCount	
	Проверка Set для ToothCount при присвоении значения равному больше максимального возможного	value = 150 parameterName = ToothCount	
Constructor_CorrectCreation_ Success()	Проверка корректности создания объекта используя конструктор по умолчанию	Отсутствуют	

Окончание таблицы А.1

Название метода	Описание тестового	случая
пазвание метода	Описание	Параметры
Validate_CheckValue_IsValid(double min, double max, double value)	Проверка значения равного среднему значению диапазона	min = 5 max = 10 value = 7
	Проверка значения равного минимуму диапазона	min = 5 max = 10 value = 5
	Проверка значения равного максимуму диапазона	min = 5 $max = 10$ $value = 10$
Validate_CheckValue_NotValid(double min, double max, double value)	Проверка значения меньше минимума диапазона	min = 5 $max = 10$ $value = 4.99$
	Проверка значения больше максимума диапазона	min = 5 max = 10 value = 10.01