

Universidade Presbiteriana Mackenzie

Faculdade de Computação e Informática

Objetivos

 Compreender o funcionamento de multiplexadores e demultiplexadores.

Referência Bibliográfia

- Referência para esta aula:
- Capítulo 6 de PIMENTA, T.C. Circuitos Digitais.
 São Paulo: Elsevier, 2017.

Multiplexagem

- Sincronismo entre chaves é essencial.
- Recurso M é compartilhado.

- Circuito seletor de dados.
- Informação de apenas uma de suas entradas atinge a saída em um dado instante.
- A seleção da entrada é realizada por entradas seletoras.
- É uma chave multiposição controlada digitalmente.

• MUX 2x1

Es	Α	В	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Es	Y
0	А
1	В

• MUX 2x1

$$Y = Es.B + \overline{Es}.A$$

Es	A	В	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Es	V
L3	
0	Α
1	В

• MUX 4x1

	11	1 1 2
E ₁	E _o	Y
0	0	Α
0	1	В
1	0	С
1	1	D

Composição de multiplexadores (4x2)

Composição de Multiplexadores

•
$$E_1 E_0 = 00$$

Composição de Multiplexadores

•
$$E_1 E_0 = 01$$

Composição de Multiplexadores

- Um MUX NxM possui M canais ou saídas e N linhas de entrada.
- Multiplicando N por M temos o número total de entradas de dados.
- M deve ser menor ou igual a 2ⁿ onde n é o número de entradas seletoras.
- Mux 4x2 possui 2 canais de quatro entradas.

Demultiplexador

 Dado de uma entrada pode atingir uma das saídas, dependendo das entradas de seleção.

Demultiplexadores

DEMUX 2x4

Composição de multiplexadores - paralelo

Composição de multiplexadores - serial

Funções lógicas

$$F = \overline{A} \cdot \overline{C} \cdot D + \overline{A} \cdot \overline{B} \cdot C + A \cdot C \cdot D + B \cdot C \cdot \overline{D}$$

Funções lógicas

$$F = \overline{A} \cdot \overline{C} \cdot D + \overline{A} \cdot \overline{B} \cdot C + A \cdot C \cdot D + B \cdot C \cdot \overline{D}$$

AB				
CD/	00	01	11	10
00	0	0	0	0
01	1	1	0	0
11	1	0	1	1
10	1	1	1	0

Funções lógicas - redução

$$F = \overline{A} \cdot \overline{C} \cdot D + \overline{A} \cdot \overline{B} \cdot C + A \cdot C \cdot D + B \cdot C \cdot \overline{D}$$

Funções lógicas - redução

$$F = \overline{A} \cdot \overline{C} \cdot D + \overline{A} \cdot \overline{B} \cdot C + A \cdot C \cdot D + B \cdot C \cdot \overline{D}$$

Exercícios

 Implemente as seguintes funções lógicas utilizando um MUX 16x1

a.
$$F = \overline{A} \oplus B + CB + BD + A \oplus C$$

b.
$$G = \overline{A} \ \overline{B}D + \overline{A} \ \overline{B}D + ACBD + AB \ \overline{D}$$

c.
$$H = A \odot (B \oplus C) + BCD$$

d.
$$I = (A \odot B) \oplus (A \odot C) + ACD$$

Exercícios

 Implemente as funções lógicas anteriores utilizando um MUX 8x1 com as seguintes linhas de controle:

a. ABC

b. BCD

c. ABD

