# МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАВЧАЛЬНО-НАУКОВИЙ КОМПЛЕКС "ІНСТИТУТ ПРИКЛАДНОГО СИСТЕМНОГО АНАЛІЗУ" НАЦІОНАЛЬНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО"

КАФЕДРА МАТЕМАТИЧНИХ МЕТОДІВ СИСТЕМНОГО АНАЛІЗУ

# РОЗРАХУНКОВА РОБОТА №1

з теорії ймовірності

на тему: «Випадкові вектори»

Варіант 7

Виконав студент 2 курсу

групи КА-06

Вергелюк Олександр

Андрійович

Перевірив:

Ільєнко А. Б.

Київ – 2021

#### 1 ЗАВДАННЯ 1

Нехай дискретний випадковий вектор  $\vec{\xi} = (\xi_1, \xi_2)$  задано таблицею розподілу (Таблиця 1.1).

Таблиця 1.1 — Таблиця розподілу вектора  $\vec{\xi}$ 

| $\xi_2$ | -9   | 2    | 7    | 8    |
|---------|------|------|------|------|
| -2      | 0.17 | 0.01 | 0.07 | 0.06 |
| 1       | 0.13 | 0.08 | 0.04 | 0.08 |
| 2       | 0.12 | 0.02 | 0.07 | 0.15 |

## 1.1 Ряди розподілу координат $\xi_1$ та $\xi_2$

Для  $\xi_1$  використаємо формулу:  $p_i = \mathbb{P}\{\xi_1 = x_i\} = \sum_{j=1}^n p_{ij}$ .

Таблиця  $1.2-\,$  Ряд розподілу  $\xi_1$ 

| $x_i$ | -2   | 1    | 2    |
|-------|------|------|------|
| $p_i$ | 0.31 | 0.33 | 0.36 |

Перевірка:

$$0.31 + 0.33 + 0.36 = 1$$

Аналогічно для  $\xi_2$ :  $p_j = \mathbb{P}\{\xi_2 = y_j\} = \sum_{i=1}^m p_{ij}$ .

Таблиця 1.3 — Ряд розподілу  $\xi_2$ 

| $y_i$ | -9   | 2    | 7    | 8    |
|-------|------|------|------|------|
| $p_i$ | 0.42 | 0.11 | 0.18 | 0.29 |

Перевірка:

$$0.42 + 0.11 + 0.18 + 0.29 = 1$$

 $1.2\,$  Функції розподілу  $F_{\xi_1}(x)$  і  $F_{\xi_2}(y)$  та їх графіки

Для координати  $\xi_1$ :

$$F_{\xi_1} = \begin{cases} 0 & x \le -2\\ 0.31 & -2 < x \le 1\\ 0.64 & 1 < x \le 2\\ 1 & 2 < x \end{cases}$$



Рисунок 1.1 — Функція розподілу  $F_{\xi_1}(x)$ 

Для координати  $\xi_2$ :

$$F_{\xi_2}(y) = \begin{cases} 0 & y \le -9 \\ 0.42 & -9 < y \le 2 \\ 0.53 & 2 < y \le 7 \\ 0.71 & 7 < y \le 8 \\ 1 & 8 < y \end{cases}$$



Рисунок 1.2 — Функція розподілу  $F_{\xi_2}(y)$ 

# 1.3 Функція розподілу $F_{\vec{\xi}}(x,y)$ випадкового вектора

Зобразимо в декартовій системі координат всі точки, що відповідають значенню вектора  $\vec{\xi}$  (рис. 1.3).



Рисунок 1.3 — Значення вектора  $\vec{\xi}$  в декартовій системі координат

Розіб'ємо координатну площину на області, в яких сумісна функція розподілу  $F_{\vec{\xi}}(x,y)$  набуває однакові значення (рис. 1.4).



Рисунок 1.4 — Області, в яких сумісна функція розподілу  $F_{\vec{\xi}}(x,y)$  набуває однакові значення

Використаємо формулу:

$$F_{\vec{\xi}}(x,y) = \mathbb{P}\{\xi_1 < x, \xi_2 < y\} = \sum_{i:x_i < x} \sum_{j:y_j = y} p_{ij}$$

a) 
$$(x,y) \in D_0 \Rightarrow F_{\vec{\varepsilon}}(x,y) = 0$$

b) 
$$(x, y) \in D_1 \Rightarrow F_{\vec{\xi}}(x, y) = 0.17$$

c) 
$$(x, y) \in D_2 \Rightarrow F_{\vec{\xi}}(x, y) = 0.3$$

d) 
$$(x, y) \in D_3 \Rightarrow F_{\bar{\xi}}(x, y) = 0.42$$

e) 
$$(x, y) \in D_4 \Rightarrow F_{\vec{\xi}}(x, y) = 0.18$$

f) 
$$(x,y) \in D_5 \Rightarrow F_{\vec{\xi}}(x,y) = 0.39$$

g) 
$$(x, y) \in D_6 \Rightarrow F_{\vec{\xi}}(x, y) = 0.53$$

h) 
$$(x, y) \in D_7 \Rightarrow F_{\vec{\xi}}(x, y) = 0.25$$

i) 
$$(x, y) \in D_8 \Rightarrow F_{\vec{\xi}}(x, y) = 0.5$$

j) 
$$(x, y) \in D_9 \Rightarrow F_{\vec{\xi}}(x, y) = 0.71$$

k) 
$$(x, y) \in D_1 0 \Rightarrow F_{\vec{\xi}}(x, y) = 0.31$$

l) 
$$(x,y) \in D_1 1 \Rightarrow F_{\vec{\xi}}(x,y) = 0.64$$

m) 
$$(x,y) \in D_1 2 \Rightarrow F_{\vec{\xi}}(x,y) = 1$$

Запишемо функцію розподілу у вигляді таблиці:

Таблиця 1.4 — Сумісна функція розподілу  $F_{\vec{\xi}}(x,y)$ 

| $\begin{array}{ c c c c }\hline & y & \\ x & & \\ \hline \end{array}$ | $y \le -9$ | $-9 < y \le 2$ | $2 < y \le 7$ | $7 < y \le 8$ | 8 < y |
|-----------------------------------------------------------------------|------------|----------------|---------------|---------------|-------|
| $x \le -2$                                                            | 0          | 0              | 0             | 0             | 0     |
| $-2 < x \le 1$                                                        | 0          | 0.17           | 0.18          | 0.25          | 0.31  |
| $1 < x \le 2$                                                         | 0          | 0.3            | 0.39          | 0.5           | 0.64  |
| 2 < x                                                                 | 0          | 0.42           | 0.53          | 0.71          | 1     |

Перевірка (властивість узгодження):

$$\lim_{y\to\infty}F_{\vec{\xi}}(x,y)=F_{\xi_1}(x)$$
 виконується, оскільки останній стовпчик — це  $F_{\xi_1}(x)$  
$$\lim_{x\to\infty}F_{\vec{\xi}}(x,y)=F_{\xi_2}(y)$$
 виконується, оскільки останній рядок — це  $F_{\xi_2}(y)$  
$$\lim_{x\to\infty}F_{\vec{\xi}}(x,y)=1$$
 виконується, оскільки  $(x,y)\in D_12\Rightarrow F_{\vec{\xi}}(x,y)=1$   $x\to\infty$   $y\to\infty$ 

## 1.4 Математичні сподівання координат та кореляційна матриця

Знайдемо математичне сподівання координати  $\xi_1$ :

$$\mathbb{E}\xi_1 = \sum_{i=1}^3 x_i p_i = (-2) \cdot 0.31 + 1 \cdot 0.33 + 2 \cdot 0.36 = 0.43$$

Аналогічно для координати  $\xi_2$ :

$$\mathbb{E}\xi_2 = \sum_{j=1}^4 x_j p_j = (-9) \cdot 0.42 + 2 \cdot 0.11 + 7 \cdot 0.18 + 8 \cdot 0.29 = 0.02$$

Центр розсіювання вектора  $\vec{\xi}$  – точка (0.43, 0.02).

Дисперсія координати  $\xi_1$ :

$$\mathbb{D}\xi_1 = \mathbb{E}(\xi_1 - \mathbb{E}\xi_1)^2 = \mathbb{E}\xi_1^2 - (\mathbb{E}\xi_1)^2 = (-2)^2 \cdot 0.31 + 1^2 \cdot 0.33 + 2^2 \cdot 0.36 = 3.01$$

Дисперсія координати  $\xi_2$ :

$$\mathbb{D}\xi_2 = \mathbb{E}(\xi_2 - \mathbb{E}\xi_2)^2 = \mathbb{E}\xi_2^2 - (\mathbb{E}\xi_2)^2 = (-9)^2 \cdot 0.42 + 2^2 \cdot 0.11 + 7^2 \cdot 0.18 + 8^2 \cdot 0.29 = 61.84$$

Для побудови коваріаційної матриці скористаємося формулами:

$$cov(\xi_1\xi_2) = \mathbb{E}\xi_1\xi_2 - \mathbb{E}\xi_1\mathbb{E}\xi_2$$

$$cov(\xi_1\xi_1) = \mathbb{D}\xi_1$$

$$cov(\xi_2\xi_2) = \mathbb{D}\xi_2$$

$$\mathbb{E}\xi_1\xi_2 = \sum_{i=1}^3 \sum_{j=1}^4 x_i y_j p_{ij} = (-2) \cdot (-9) \cdot 0.17 + (-2) \cdot 2 \cdot 0.01 + (-2) \cdot 7 \cdot 0.07 + (-2) \cdot 8 \cdot 0.06 + 1 \cdot (-9) \cdot 0.13 + 1 \cdot 2 \cdot 0.08 + (-1) \cdot 7 \cdot 0.04 + 1 \cdot 8 \cdot 0.08 + 2 \cdot (-9) \cdot 0.12 + 2 \cdot 2 \cdot 0.02 + (-2) \cdot 7 \cdot 0.07 + 2 \cdot 8 \cdot 0.15 = 2.29$$

$$cov(\xi_1\xi_2) = 2.29 - 0.43 \cdot 0.02 = 2.2814$$

Тоді коваріаційна матриця:

$$C\vec{\xi} = \begin{pmatrix} \mathbb{D}\xi_1 & cov(\xi_1\xi_2) \\ cov(\xi_1\xi_2) & \mathbb{D}\xi_1 \end{pmatrix} = \begin{pmatrix} 3.01 & 2.2814 \\ 2.2814 & 61.84 \end{pmatrix}$$

Оскільки  $cov(\xi_1\xi_2)$  , то випадкові величини  $\xi_1$  та  $\xi_2$  корельовані та залежні.

## 1.5 Умовні ряди розподілу

Знайдемо умовні ряди розподілу для  $\xi_1$  за  $\xi_2=y_j$ .

$$\mathbb{P}(\xi_1 = x_i | \xi_2 = y_j) = \frac{\mathbb{P}\{\xi_1 = x_i, \xi_2 = y_j\}}{\mathbb{P}\{\xi_2 = y_j\}} = \frac{p_{ij}}{\sum_{j=1}^m p_{ij}}$$

Таблиця 1.5 — Умовні ряди розподілу для  $\xi_1$  за  $\xi_2=y_j$ 

| $\xi_1$                                    | -2              | 1               | 2               |
|--------------------------------------------|-----------------|-----------------|-----------------|
| $\mathbb{P}\{\xi_1 = \cdot   \xi_2 = -9\}$ | $\frac{17}{42}$ | $\frac{13}{42}$ | $\frac{12}{42}$ |
| $\mathbb{P}\{\xi_1 = \cdot   \xi_2 = 2\}$  | $\frac{1}{11}$  | $\frac{8}{11}$  | $\frac{2}{11}$  |
| $\mathbb{P}\{\xi_1 = \cdot   \xi_2 = 7\}$  | $\frac{7}{18}$  | $\frac{4}{18}$  | $\frac{7}{18}$  |
| $\mathbb{P}\{\xi_1 = \cdot   \xi_2 = 8\}$  | $\frac{6}{29}$  | $\frac{8}{29}$  | $\frac{15}{29}$ |

Перевірка:

$$\sum_{i=1}^{3} \mathbb{P}\{\xi_1 = x_i | \xi_2 = -9\} = \frac{17}{45} + \frac{13}{42} + \frac{12}{42} = 1$$

$$\sum_{i=1}^{3} \mathbb{P}\{\xi_1 = x_i | \xi_2 = 2\} = \frac{1}{11} + \frac{8}{11} + \frac{2}{11} = 1$$

$$\sum_{i=1}^{3} \mathbb{P}\{\xi_1 = x_i | \xi_2 = 7\} = \frac{7}{18} + \frac{4}{18} + \frac{7}{18} = 1$$

$$\sum_{i=1}^{3} \mathbb{P}\{\xi_1 = x_i | \xi_2 = 8\} = \frac{6}{29} + \frac{8}{29} + \frac{15}{29} = 1$$

Аналогічно для  $\xi_1$  за  $\xi_2 = y_j$ .

$$\mathbb{P}(\xi_2 = y_j | \xi_2 = x_i) = \frac{\mathbb{P}\{\xi_1 = x_i, \xi_2 = y_j\}}{\mathbb{P}\{\xi_1 = x_i\}} = \frac{p_{ij}}{\sum_{i=1}^n p_{ij}}$$

Таблиця 1.6 — Умовні ряди розподілу для  $\xi_2$  за  $\xi_1=x_i$ 

| $\xi_2$                                            | -9              | 2              | 7              | 8               |
|----------------------------------------------------|-----------------|----------------|----------------|-----------------|
| $\boxed{\mathbb{P}\{\xi_2 = \cdot   \xi_1 = -2\}}$ | $\frac{17}{31}$ | $\frac{1}{31}$ | $\frac{7}{31}$ | $\frac{6}{31}$  |
| $\mathbb{P}\{\xi_2 = \cdot   \xi_1 = 1\}$          | $\frac{13}{33}$ | $\frac{8}{33}$ | $\frac{4}{33}$ | $\frac{8}{33}$  |
| $\mathbb{P}\{\xi_2 = \cdot   \xi_1 = 2\}$          | $\frac{12}{36}$ | $\frac{2}{36}$ | $\frac{7}{36}$ | $\frac{15}{36}$ |

Перевірка:

$$\sum_{j=1}^{4} \mathbb{P}\{\xi_2 = y_j | \xi_1 = -2\} = \frac{17}{31} + \frac{1}{31} + \frac{7}{31} + \frac{6}{31} = 1$$

$$\sum_{j=1}^{4} \mathbb{P}\{\xi_2 = y_j | \xi_1 = 1\} = \frac{13}{33} + \frac{8}{33} + \frac{4}{33} + \frac{8}{33} = 1$$

$$\sum_{j=1}^{4} \mathbb{P}\{\xi_2 = y_j | \xi_1 = 2\} = \frac{12}{36} + \frac{2}{36} + \frac{7}{36} + \frac{15}{36} = 1$$

#### 1.6 Умовні математичні сподівання

Для пошуку умовного математичного сподівання  $\xi_1$  за  $\xi_2 = y_j$  застосуємо формулу:

$$\mathbb{E}(\xi_1|\xi_2 = y_j) = \sum_{i=1}^3 x_i \mathbb{P}\{\xi_1 = x_i, \xi_2 = y_j\}$$

$$\mathbb{E}(\xi_1|\xi_2 = -9) = (-2) \cdot \frac{17}{42} + 1 \cdot \frac{13}{42} + 2 \cdot \frac{12}{42} = \frac{3}{42}$$

$$\mathbb{E}(\xi_1|\xi_2 = 2) = (-2) \cdot \frac{1}{11} + 1 \cdot \frac{8}{11} + 2 \cdot \frac{2}{11} = \frac{10}{11}$$

$$\mathbb{E}(\xi_1|\xi_2 = 7) = (-2) \cdot \frac{7}{18} + 1 \cdot \frac{4}{18} + 2 \cdot \frac{7}{18} = \frac{4}{18}$$

$$\mathbb{E}(\xi_1|\xi_2 = 8) = (-2) \cdot \frac{6}{29} + 1 \cdot \frac{8}{29} + 2 \cdot \frac{15}{29} = \frac{26}{29}$$

Наведемо ряд умовного математичного сподівання  $\xi_1|\xi_2$  у вигляді таблиці.

Таблиця 1.7 — Умовне математичне сподівання  $\xi_1|\xi_2=y_j$ 

| $\mathbb{E}(\xi_1 \xi_2)$ | $\frac{3}{42}$ | $\frac{10}{11}$ | $\frac{4}{18}$ | $\frac{26}{29}$ |
|---------------------------|----------------|-----------------|----------------|-----------------|
| $\mathbb{P}$              | 0.42           | 0.11            | 0.18           | 0.29            |

Перевірка:

$$\mathbb{E}(\mathbb{E}(\xi_1|\xi_2)) = \frac{3}{42} \cdot 0.42 + \frac{10}{11} \cdot 0.11 + \frac{4}{18} \cdot 0.18 + \frac{26}{29} * 0.29 = 0.43 = \mathbb{E}\xi_1$$

Аналогічно умовне математичне сподівання  $\xi_2$  за  $\xi_1 = x_i$ :

$$\mathbb{E}(\xi_2|\xi_1 = x_i) = \sum_{j=1}^4 y_j \mathbb{P}\{\xi_1 = x_i, \xi_2 = y_j\}$$

$$\mathbb{E}(\xi_2|xi_1 = -2) = (-9) \cdot \frac{17}{31} + 2 \cdot \frac{1}{31} + 7 \cdot \frac{7}{31} + 8 \cdot \frac{6}{31} = -\frac{54}{31} = -1\frac{23}{31}$$

$$\mathbb{E}(\xi_2|xi_1 = -2) = (-9) \cdot \frac{13}{33} + 2 \cdot \frac{8}{33} + 7 \cdot \frac{4}{33} + 8 \cdot \frac{8}{33} = -\frac{9}{33} = -\frac{9}{33}$$

$$\mathbb{E}(\xi_2|xi_1 = -2) = (-9) \cdot \frac{12}{36} + 2 \cdot \frac{2}{36} + 7 \cdot \frac{7}{36} + 8 \cdot \frac{15}{36} = \frac{65}{36} = 1\frac{29}{36}$$

Наведемо ряд умовного математичного сподівання  $\xi_2|\xi_1$  у вигляді таблиці.

Таблиця 1.8 — Умовне математичне сподівання  $\xi_2 | \xi_1 = x_i$ 

| $\mathbb{E}(\xi_2 \xi_1)$ | $-1\frac{23}{31}$ | $-\frac{9}{33}$ | $1\frac{29}{36}$ |
|---------------------------|-------------------|-----------------|------------------|
| $\mathbb{P}$              | 0.31              | 0.33            | 0.36             |

Перевірка:

$$\mathbb{E}(\mathbb{E}(\xi_2|\xi_1)) = (-1\frac{23}{31}) \cdot 0.31 + (-\frac{9}{33}) \cdot 0.33 + 1\frac{29}{36} \cdot 0.36 = 0.02 = \mathbb{E}\xi_2$$

#### 2 ЗАВДАННЯ 2

Двовимірний випадковий вектор  $\vec{\xi} = (\xi_1, \xi_2)$  рівномірно розподілений в області D, яка наведена на рис. 2.1.



Рисунок 2.1 — Область, в якій розподілено  $\vec{\xi}$ 

Рівняння ліній, що обмежують область D:

$$\begin{cases} y = 2 & -1 \le x \le 1 \\ y = -2x + 4 & 1 \le x \le 2 \\ y = -\sqrt{4 - x^2} & -2 \le x \le 2 \\ y = 2x + 4 & -2 \le x \le -1 \end{cases}$$

## 2.1 Щільності розподілу координат $\xi_1$ та $\xi_2$

Знайдемо щільність розподілу за формулою:

$$f_{\xi}(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0 & (x,y) \notin D \end{cases}$$

$$S_D = \iint_D dx dy = \int_{-2}^{-1} dx \int_{-\sqrt{4-x^2}}^{2x+4} dy + \int_{-1}^{1} dx \int_{-\sqrt{4-x^2}}^{2} dy + \int_{1}^{2} dx \int_{-\sqrt{4-x^2}}^{-2x+4} dy =$$

$$= \int_{-2}^{-1} (2x+4+\sqrt{4-x^2}) dx + \int_{-1}^{1} (2+\sqrt{4-x^2}) dx + \int_{1}^{2} (4-2x+\sqrt{4-x^2}) dx =$$

$$= \int_{-2}^{-1} (2x+4) dx + \int_{-1}^{1} 2dx + \int_{1}^{2} (4-2x) dx + \int_{-2}^{2} \sqrt{4-x^2} dx =$$

$$= (x^2+4x) \Big|_{-2}^{-1} + 2x \Big|_{-1}^{1} + (4x-x^2) \Big|_{1}^{2} - 4 \int_{\pi}^{0} \sin^2 \varphi d\varphi =$$

$$= 1+4+1+2 \int_{0}^{\pi} (1-\cos 2\varphi) d\varphi = 6 + (2\varphi-\sin 2\varphi) \Big|_{0}^{\pi} =$$

$$= 6+2\pi$$

В подальшому для обчислення інтегралу  $\int \sqrt{4-x^2} dx$  користуватимемось загальною формулою, яка наведена у додатку А.

Позначимо  $S_D = 6 + 2\pi$ .

Отже, щільність розподілу:

$$f_{\vec{\xi}}(x,y) = \begin{cases} \frac{1}{6+2\pi} & (x,y) \in D\\ 0 & (x,y) \notin D \end{cases}$$

Тепер знайдемо маргінальні щільності координат вектора.

$$f_{\xi_1}(x) = \int_{-\infty}^{\infty} f_{\xi}(x, y) dy = \begin{cases} 0 & x \le -2\\ \frac{1}{S_D} \int_{-\sqrt{4-x^2}}^{2x+4} dy & -2 < x \le -1\\ \frac{1}{S_D} \int_{-\sqrt{4-x^2}}^{2} dy & -1 < x \le 1\\ \frac{1}{S_D} \int_{-\sqrt{4-x^2}}^{-2x+4} dy & 1 < x \le 2\\ 0 & 2 < x \end{cases}$$

$$f_{\xi_1}(x) = \begin{cases} 0 & x \le -2\\ \frac{2x + 4 + \sqrt{4 - x^2}}{6 + 2\pi} & -2 < x \le -1\\ \frac{2 + \sqrt{4 - x^2}}{6 + 2\pi} & -1 < x \le 1\\ \frac{4 - 2x + \sqrt{4 - x^2}}{6 + 2\pi} & 1 < x \le 2\\ 0 & 2 < x \end{cases}$$

Перевірка умови нормування:  $\int_{-\infty}^{\infty} f_{\xi_1}(x) dx = 1$ .

$$\int_{-\infty}^{\infty} f_{\xi_1}(x) dx = \frac{1}{6+2\pi} \left( \int_{-2}^{-1} (2x+4+\sqrt{4-x^2}) dx + \int_{-1}^{1} (2+\sqrt{4-x^2}) dx \right) + \frac{1}{6+2\pi} \int_{1}^{2} (4-2x+\sqrt{4-x^2}) dx =$$

$$= \frac{1}{6+2\pi} \left( \int_{-2}^{-1} (2x+4) dx + \int_{-1}^{1} 2 dx + \int_{1}^{2} (4-2x) dx + \int_{-2}^{2} \sqrt{4-x^2} dx \right) =$$

$$= \frac{1}{6+2\pi} \left( \left( x^2+4x \right) \Big|_{-2}^{-1} + 2x \Big|_{-1}^{1} + \left( 4x-x^2 \right) \Big|_{1}^{2} - 4 \int_{\pi}^{0} \sin^2 \varphi d\varphi \right) =$$

$$= \frac{1}{6+2\pi} \left( 1+4+1+2 \int_{0}^{\pi} (1-\cos 2\varphi) d\varphi = 6 + (2\varphi-\sin 2\varphi) \Big|_{0}^{\pi} \right) =$$

$$= \frac{6+2\pi}{6+2\pi} = 1$$



Рисунок 2.2 — Щільність координати  $\xi_1(x)$ 

$$f_{\xi_2}(y) = \int_{-\infty}^{\infty} f_{\vec{\xi}}(x, y) dx = \begin{cases} 0 & y \le -2\\ \frac{1}{S_D} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} dx & -2 < y \le 0\\ \frac{1}{S_D} \int_{0.5y-2}^{-0.5y+2} dx & 0 < y \le 2\\ 0 & 2 < y \end{cases}$$

$$f_{\xi_2}(y) = \begin{cases} 0 & y \le -2\\ \frac{2\sqrt{4 - y^2}}{6 + 2\pi} & -2 < y \le 0\\ \frac{4 - y}{6 + 2\pi} & 0 < y \le 2\\ 0 & 2 < y \end{cases}$$

Перевірка умови нормування:  $\int_{-\infty}^{\infty} f_{\xi_2}(y) dy = 1$ .

$$\int_{-\infty}^{\infty} f_{\xi_2}(y) dy = \frac{1}{6+2\pi} \left( 2 \int_{-2}^{0} \sqrt{4-y^2} dy + \int_{0}^{2} (4-y) dy \right) =$$

$$= \frac{1}{6+2\pi} \left( 8 \int_{-\frac{\pi}{2}}^{0} \cos^2 \varphi d\varphi + (4y - \frac{y^2}{2}) \Big|_{0}^{2} \right) =$$

$$= \frac{1}{6+2\pi} \left( 4 \int_{-\frac{\pi}{2}}^{0} (1+\cos 2\varphi) d\varphi + 6 \right) =$$

$$= \frac{1}{6+2\pi} \left( (4\varphi + 2\sin 2\varphi) \Big|_{-\frac{\pi}{2}}^{0} + 6 \right) = \frac{6+2\pi}{6+2\pi} = 1$$



Рисунок 2.3 — Щільність координати  $\xi_2(y)$ 

### 2.2 Функції розподілу координати $\xi_1$ та $\xi_2$

Обчислимо функцію розподілу  $F_{\xi_1}(x)$  координати  $\xi_1$ .

$$F_{\xi_1}(x) = \int_{-\infty}^x f_{\xi_1}(x) dx$$

$$F_{\xi_1}(x) = \begin{cases} 0 & x \le -2\\ \frac{1}{6+2\pi} \int_{-2}^x (2s+4+\sqrt{4-s^2}) ds & -2 < x \le -1\\ F_{\xi_1}(-1) + \frac{1}{6+2\pi} \int_{-1}^x (2+\sqrt{4-s^2}) ds & -1 < x \le 1\\ F_{\xi_1}(1) + \frac{1}{6+2\pi} \int_{1}^x (4-2s+\sqrt{4-s^2}) ds & 1 < x \le 2\\ 1 & 2 < x \end{cases}$$

$$F_{\xi_1}(x) = \begin{cases} 0 & x \le -2\\ \frac{x^2 + 4x + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 4 + \pi}{6 + 2\pi} & -2 < x \le -1\\ \frac{2x + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 3 + \pi}{6 + 2\pi} & -1 < x \le 1\\ \frac{4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 2 + \pi}{6 + 2\pi} & 1 < x \le 2\\ 1 & 2 < x \end{cases}$$

Перевірка неперервності функції розподілу  $F_{\xi_1}(x)$  в точках склейки.

$$\lim_{-2-0} F_{\xi_1}(x) = 0$$

$$\lim_{-2+0} F_{\xi_1}(x) = \lim_{-2+0} \left( \frac{x^2 + 4x + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 4 + \pi}{6 + 2\pi} \right) = \frac{(-2)^2 + 4(-2) + 2\arcsin\frac{(-2)}{2} + \frac{(-2)}{2}\sqrt{4 - (-2)^2} + 4 + \pi}{6 + 2\pi} = \frac{4 - 8 - \pi + 4 + \pi}{6 + 2\pi} = 0$$

$$\lim_{-1-0} F_{\xi_1}(x) = \lim_{-1-0} \left( \frac{x^2 + 4x + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 4 + \pi}{6 + 2\pi} \right) = \frac{(-1)^2 + 4(-1) + 2\arcsin\frac{(-1)}{2} + \frac{(-1)}{2}\sqrt{4 - (-1)^2} + 4 + \pi}{6 + 2\pi} = \frac{1 - 4 - \frac{\pi}{3} - \frac{\sqrt{3}}{2} + 4 + \pi}{6 + 2\pi} = \frac{1 + \frac{2\pi}{3} - \frac{\sqrt{3}}{2}}{6 + 2\pi}$$

$$\lim_{-1+0} F_{\xi_1}(x) = \lim_{-1+0} \left( \frac{2x + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 3 + \pi}{6 + 2\pi} \right) = \frac{2(-1) + 2\arcsin\frac{(-1)}{2} - \frac{1}{2}\sqrt{4 - (-1)^2} + 3 + \pi}{6 + 2\pi} = \frac{-2 - \frac{\pi}{3} - \frac{\sqrt{3}}{2} + 3 + \pi}{6 + 2\pi} = \frac{1 + \frac{2\pi}{3} - \frac{\sqrt{3}}{3}}{6 + 2\pi}$$

$$\lim_{1-0} F_{\xi_1}(x) = \lim_{1-0} \left( \frac{2x + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 3 + \pi}{6 + 2\pi} \right) = \frac{2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 3 + \pi}{6 + 2\pi} = \frac{2 + \frac{\pi}{3} + \frac{\sqrt{3}}{3} + 3 + \pi}{6 + 2\pi} = \frac{5 + \frac{4\pi}{3} + \frac{\sqrt{3}}{3}}{6 + 2\pi}$$

$$\lim_{1+0} F_{\xi_1}(x) = \lim_{1+0} \left( \frac{4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 2 + \pi}{6 + 2\pi} \right) = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi} = \frac{4 - 1^2 + 2\arcsin\frac{1}{2} + \frac{1}{2}\sqrt{4 - 1^2} + 2 + \pi}{6 + 2\pi}$$

$$= \frac{4 - 1 + \frac{\pi}{3} + \frac{\sqrt{3}}{2} + 2 + \pi}{6 + 2\pi} = \frac{5 + \frac{4\pi}{3} + \frac{\sqrt{3}}{2}}{6 + 2\pi}$$

$$\lim_{2 \to 0} F_{\xi_1}(x) = \lim_{2 \to 0} \left( \frac{4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 2 + \pi}{6 + 2\pi} \right) =$$

$$= \frac{4(2) - 2^2 + 2\arcsin\frac{2}{2} + \frac{2}{2}\sqrt{4 - 2^2} + 2 + \pi}{6 + 2\pi} =$$

$$= \frac{8 - 4 + \pi + 2 + \pi}{6 + 2\pi} = \frac{6 + 2\pi}{6 + 2\pi} = 1$$

$$\lim_{2 \to 0} F_{\xi_1}(x) = 1$$

Як видно, в точках склейки значення функції розподілу збігається, отже  $F_{\xi_1}(x)$  – неперервна (це також видно з графіку наведеного на рис.2.4).



Рисунок 2.4 — Функція розподілу  $F_{\xi_1}(x)$ 

Аналогічно обчислимо функцію розподілу  $F_{\xi_2}(y)$  координати  $\xi_2$ .

$$F_{\xi_2}(y) = \begin{cases} 0 & x \le -2\\ \frac{2}{6+2\pi} \int_{-2}^{y} \sqrt{4-y^2} dy & -2 \le y \le 0\\ \frac{1}{6+2\pi} \left( F_{\xi_2}(0) + \int_{0}^{y} (4-y) dy \right) & 0 \le y \le 2\\ 1 & 2 < y \end{cases}$$

$$F_{\xi_2}(y) = \begin{cases} 0 & x \le -2\\ \frac{2\arcsin\frac{y}{2} + \frac{y}{2}\sqrt{4 - y^2 + \pi}}{3 + \pi} & -2 \le y \le 0\\ \frac{4y - \frac{y^2}{2} + 2\pi}{6 + 2\pi} & 0 \le y \le 2\\ 1 & 2 < y \end{cases}$$

Перевірка неперервності функції розподілу  $F_{\xi_2}(y)$  в точках склейки.

$$\lim_{-2\to 0} F_{\xi_2}(y) = 0$$

$$\lim_{-2\to 0} F_{\xi_2}(y) = \lim_{-2\to 0} \left( \frac{2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + \pi}{3 + \pi} \right) =$$

$$= \frac{2\arcsin\frac{(-2)}{2} + \frac{(-2)}{2}\sqrt{4 - (-2)^2} + \pi}{3 + \pi} = \frac{-\pi + \pi}{3 + \pi} = 0$$

$$\lim_{0\to 0} F_{\xi_2}(y) = \lim_{0\to 0} \left( \frac{2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + \pi}{3 + \pi} \right) =$$

$$= \frac{2\arcsin\frac{0}{2} + \frac{0}{2}\sqrt{4 - 0^2} + \pi}{3 + \pi} = \frac{0 + 0 + \pi}{3 + \pi} = \frac{\pi}{3 + \pi}$$

$$\lim_{0\to 0} F_{\xi_2}(y) = \lim_{0\to 0} \left( \frac{4y - \frac{y^2}{2} + 2\pi}{6 + 2\pi} \right) =$$

$$= \frac{4(0) - \frac{0^2}{2} + 2\pi}{6 + 2\pi} = \frac{0 - 0 + 2\pi}{6 + 2\pi} = \frac{2\pi}{6 + 2\pi} = \frac{\pi}{3 + \pi}$$

$$\lim_{2\to 0} F_{\xi_2}(y) = \lim_{2\to 0} \left( \frac{4(2) - \frac{2^2}{2} + 2\pi}{6 + 2\pi} \right) =$$

$$= \frac{8 - \frac{4}{2} + 2\pi}{6 + 2\pi} = \frac{8 - 2 + 2\pi}{6 + 2\pi} = \frac{6 + 2\pi}{6 + 2\pi} = 1$$

$$\lim_{2\to 0} F_{\xi_2}(y) = 1$$

Як видно, в точках склейки значення функції розподілу збігається, отже  $F_{\xi_2}(y)$  – неперервна (це також видно з графіку наведеного на рис.2.5).



Рисунок 2.5 — Функція розподілу  $F_{\xi_2}(y)$ 

# 2.3 Сумісна функція розподілу випадкового вектора $\vec{\xi}$



Рисунок 2.6 — Розбиття на області

Список областей:

$$D_{0} = \{(x,y) \in \mathbb{R} | (x \le -2) \lor (y \le -2) \lor ()\}$$

$$D_{1} = \{(x,y) \in \mathbb{R} | (-2 < x \le 2) \land (-\sqrt{4 - x^{2}} < y \le 0)\}$$

$$D_{2} = \{(x,y) \in \mathbb{R} | (-2 < y \le 0) \land (\sqrt{4 - y^{2}} \le x)\}$$

$$D_{3} = \{(x,y) \in \mathbb{R} | (|y + 2x| < 4) \land (0 < y \le 2)\}$$

$$D_{4} = \{(x,y) \in \mathbb{R} | (1 < x \le 2) \land (4 - 2x < y \le 2)\}$$

$$D_{5} = \{(x,y) \in \mathbb{R} | (2 < x) \land (0 < y \le 2)\}$$

$$D_{6} = \{(x,y) \in \mathbb{R} | (-2 < x \le -1) \land (2x + 4 < y)\}$$

$$D_{7} = \{(x,y) \in \mathbb{R} | (-1 < x \le 1) \land (2 < y)\}$$

$$D_{8} = \{(x,y) \in \mathbb{R} | (1 < x \le 2) \land (2 < y)\}$$

$$D_{9} = \{(x,y) \in \mathbb{R} | (2 < x) \land (2 < y)\}$$

2.3.1 
$$(x,y) \in D_0$$
  
 $F_{\vec{\xi}}^{(D_0)} = 0$ 



Рисунок  $2.7 - (x, y) \in D_0$ 

Перевірка:

$$\frac{\partial^2 F_{\vec{\xi}}^{(D_0)}}{\partial x \partial y} = \frac{\partial^2 0}{\partial x \partial y} = 0 = f_{\vec{\xi}}$$

 $2.3.2 (x,y) \in D_1$ 



Рисунок  $2.8 - (x, y) \in D_1$ 

$$F_{\vec{\xi}}^{(D_1)} = \frac{1}{6+2\pi} \int_{-\sqrt{4-y^2}}^{x} ds \int_{-\sqrt{4-s^2}}^{y} dt = \frac{1}{6+2\pi} \int_{-\sqrt{4-y^2}}^{x} (y+\sqrt{4-s^2}) ds =$$

$$= \frac{1}{6+2\pi} \left( ys + 2\arcsin\frac{s}{2} + \frac{s}{2}\sqrt{4-s^2} \right) \Big|_{-\sqrt{4-y^2}}^{x} =$$

$$= \frac{yx + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} + y\sqrt{4-y^2} - 2\arcsin\left(-\frac{\sqrt{4-y^2}}{2}\right) - \frac{\sqrt{4-y^2}}{2}y}{6+2\pi} =$$

$$= \frac{yx + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} + \frac{y}{2}\sqrt{4-y^2} - 2\arcsin\left(-\frac{\sqrt{4-y^2}}{2}\right)}{6+2\pi} =$$

$$= \frac{yx + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} + \frac{y}{2}\sqrt{4-y^2} - 2\arcsin\left(-\frac{\sqrt{4-y^2}}{2}\right)}{6+2\pi}$$

Перевірка:

$$\frac{\partial^2 F_{\vec{\xi}}^{(D_1)}}{\partial x \partial y} =$$

$$= \frac{\partial^2}{\partial x \partial y} \left( \frac{yx + 2 \arcsin \frac{x}{2} + \frac{x}{2} \sqrt{4 - x^2} + \frac{y}{2} \sqrt{4 - y^2} - 2 \arcsin \left( -\frac{\sqrt{4 - y^2}}{2} \right)}{6 + 2\pi} \right) =$$

$$= \frac{1}{6 + 2\pi} = f_{\vec{\xi}}$$

Перевірка стику областей  $D_0$  та  $D_1: y = -\sqrt{4-x^2}$ 

$$\begin{split} F_{\vec{\xi}}^{(D_1)}(x,-\sqrt{4-x^2}) &= \\ &= \frac{1}{6+2\pi} \left( -x\sqrt{4-x^2} + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} + \right. \\ &\left. + \frac{-\sqrt{4-x^2}}{2}\sqrt{4 - \left( -\sqrt{4-x^2}\right)^2} - 2\arcsin\left( -\frac{\sqrt{4 - \left( -\sqrt{4-x^2}\right)^2}}{2} \right) \right) = \\ &= \frac{1}{6+2\pi} \left( -x\sqrt{4-x^2} + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} + \right. \\ &\left. + \frac{x\sqrt{4-x^2}}{2} - 2\arcsin\frac{x}{2} \right) = 0 = F_{\vec{\xi}}^{(D_0)}(x, -\sqrt{4-x^2}) \end{split}$$



Рисунок  $2.9 - (x, y) \in D_2$ 

$$\begin{split} F_{\vec{\xi}}^{(D_2)}(x,y) &= F_{\vec{\xi}}^{(D_1)}(\sqrt{4-y^2},y) = \\ &= \frac{1}{6+2\pi} \left( \sqrt{4-y^2} + 2 \arcsin \frac{\sqrt{4-y^2}}{2} + \frac{\sqrt{4-y^2}}{2} \sqrt{4-(\sqrt{4-y^2})^2} + \right. \\ &\quad + \frac{y}{2} \sqrt{4-y^2} - 2 \arcsin \left( -\frac{\sqrt{4-y^2}}{2} \right) \right) = \\ &= \frac{1}{6+2\pi} \left( y \sqrt{4-y^2} + 2 \arcsin \frac{\sqrt{4-y^2}}{2} - \frac{\sqrt{4-y^2}}{2} y + \right. \\ &\quad + \frac{y}{2} \sqrt{4-y^2} + 2 \arcsin \left( \frac{\sqrt{4-y^2}}{2} \right) \right) = \\ &= \frac{\frac{y}{2} \sqrt{4-y^2} + 2 \arcsin \frac{\sqrt{4-y^2}}{2}}{3+\pi} = \end{split}$$

Використаємо формулу зведення для  $\arcsin x + \arcsin y$  в зворотньому порядку:

$$= \frac{\frac{y}{2}\sqrt{4 - y^2} + 2\left(\arcsin\frac{y}{2} + \arcsin 1\right)}{3 + \pi} =$$

$$= \frac{\frac{y}{2}\sqrt{4 - y^2} + 2\arcsin\frac{y}{2} + \pi}{3 + \pi} = F_{\xi_2}(y)$$

Отримали маргінальну функцію розподілу  $F_{\xi_2}(y)$  при  $y\in[-2;0]$ , як і має бути.

Перевірка:

$$\frac{\partial^2 F_{\vec{\xi}}^{(D_1)}}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} \left( \frac{\frac{y}{2} \sqrt{4 - y^2} + 2 \arcsin \frac{y}{2} + \pi}{3 + \pi} \right) = 0 = f_{\vec{\xi}}$$

Перевірка стику областей  $D_1$  та  $D_2: x = \sqrt{4-y^2}$  можна не робити, оскільки  $F_{\vec{\xi}}^{(D_2)}(x,y)$  отримана за допомогою відповідної підстановки з  $F_{\vec{\xi}}^{(D_1)}(\sqrt{4-y^2},y)$ . Натомість свідченням того, що все зроблено вірно є те, що сумісна функція розподілу співпала із маргінальною  $F_{\xi_2}(y)$  при  $y \in [-2;0]$ .



Рисунок  $2.10 - (x, y) \in D_3$ 

$$\begin{split} F_{\vec{\xi}}^{(D_3)}(x,y) &= F_{\vec{\xi}}^{(D_1)}(x,0) + \frac{1}{6+2\pi} \left( \int_{-2}^{0.5y-2} ds \int_{0}^{2s+4} dt + \int_{0.5y-2}^{x} ds \int_{0}^{y} dt \right) = \\ &= \frac{1}{6+2\pi} \left( 2 \arcsin \frac{x}{2} + \frac{x}{2} \sqrt{4-x^2} + \pi + \int_{-2}^{0.5y-2} (2s+4) ds + \int_{0.5y-2}^{x} y ds \right) = \\ &= \frac{1}{6+2\pi} \left( 2 \arcsin \frac{x}{2} + \frac{x}{2} \sqrt{4-x^2} + \pi + \left( s^2 + 4s \right) \Big|_{-2}^{0.5y-2} + y s \Big|_{0.5y-2}^{x} \right) = \\ &= \frac{2 \arcsin \frac{x}{2} + \frac{x}{2} \sqrt{4-x^2} + \pi + 0.25y^2 - 2y + 4 + 2y - 8 - 4 + 8 + xy - 0.5y^2 + 2y}{6+2\pi} = \\ &= \frac{xy + 2 \arcsin \frac{x}{2} + \frac{x}{2} \sqrt{4-x^2} - 0.25y^2 + 2y + \pi}{6+2\pi} \end{split}$$

Перевірка:

$$\frac{\partial^2 F_{\vec{\xi}}^{(D_3)}}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} \left( \frac{xy + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} - 0.25y^2 + 2y + \pi}{6 + 2\pi} \right) = \frac{1}{6 + 2\pi} = f_{\vec{\xi}}$$

Перевірка стику областей  $D_1$  та  $D_3: y=0$ 

$$F_{\vec{\xi}}^{(D_1)}(x,0) = \frac{0x + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + \frac{0}{2}\sqrt{4 - 0^2} - 2\arcsin\left(-\frac{\sqrt{4 - 0^2}}{2}\right)}{6 + 2\pi} = \frac{2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + \pi}{6 + 2\pi}$$

$$F_{\vec{\xi}}^{(D_3)}(x,0) = \frac{x0 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} - 0.25(0)^2 + 2(0) + \pi}{6 + 2\pi} = \frac{2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + \pi}{6 + 2\pi}$$

Отже:

$$F_{\vec{\xi}}^{(D_1)}(x,0) = F_{\vec{\xi}}^{(D_3)}(x,0) = \frac{2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + \pi}{6 + 2\pi}$$



Рисунок  $2.11 - (x, y) \in D_4$ 

$$F_{\vec{\xi}}^{(D_4)}(x,y) = F_{\vec{\xi}}^{(D_3)}(x,4-2x) + \frac{1}{6+2\pi} \left( \int_{4-2x}^{y} dt \int_{0.5t-2}^{2-0.5t} ds \right) =$$

$$= \frac{1}{6+2\pi} \left( x(4-2x) + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - \right.$$

$$-0.25(4-2x)^2 + 2(4-2x) + \pi + \int_{4-2x}^{y} (4-t)dt \right) =$$

$$= \frac{1}{6+2\pi} \left( 4x - 2x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - \right.$$

$$-4+4x-x^2+8-4x+\pi + \left( 4t - \frac{t^2}{2} \right) \Big|_{4-2x}^{y} \right) =$$

$$= \frac{1}{6+2\pi} \left( 4x - 3x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} + \right.$$

$$+4+\pi+4y-\frac{y^2}{2}-16+8x+8-8x+2x^2\Big) =$$

$$=\frac{4x-x^2+2\arcsin\frac{x}{2}+\frac{x}{2}\sqrt{4-x^2}-4+\pi+4y-\frac{y^2}{2}}{6+2\pi}$$

Перевірка:

$$\frac{\partial^2 F_{\vec{\xi}}^{(D_4)}}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} \left( \frac{4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} - 4 + \pi + 4y - \frac{y^2}{2}}{6 + 2\pi} \right) = 0 = f_{\vec{\xi}}$$

Перевірка стику областей  $D_3$  та  $D_4$  : y = 4 - 2x

$$F_{\xi}^{(D_3)}(x, 4-2x) = \frac{1}{6+2\pi} \left( x(4-2x) + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - \frac{1}{6+2\pi} \left( 4x - 2x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - \frac{1}{6+2\pi} \left( 4x - 2x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - \frac{1}{6-2\pi} \left( 4x - 2x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - \frac{1}{6-2\pi} \right) \right) = \frac{2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - 3x^2 + 4x + 4 + \pi}{6+2\pi}$$

$$F_{\vec{\xi}}^{(D_4)}(x, 4-2x) = \frac{4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} - 4 + \pi + 4(4 - 2x) - \frac{(4-2x)^2}{2}}{6 + 2\pi} = \frac{4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} - 4 + \pi + 16 - 8x - 8 + 8x - 2x^2}{6 + 2\pi} = \frac{2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} - 3x^2 + 4x + 4 + \pi}{6 + 2\pi}$$

Отже:

$$F_{\vec{\xi}}^{(D_3)}(x, 4-2x) = F_{\vec{\xi}}^{(D_3)}(x, 4-2x) = \frac{2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - 3x^2 + 4x + 4 + \pi}{6+2\pi}$$



Рисунок  $2.12 - (x, y) \in D_5$ 

$$F_{\vec{\xi}}^{(D_5)}(x,y) = F_{\vec{\xi}}^{(D_4)}(2,y) = \frac{4 \cdot 2 - 2^2 + 2\arcsin\frac{2}{2} + \frac{2}{2}\sqrt{4 - 2^2} - 4 + \pi + 4y - \frac{y^2}{2}}{6 + 2\pi} = \frac{8 - 4 + \pi - 4 + \pi + 4y - \frac{y^2}{2}}{6 + 2\pi} = \frac{4y - \frac{y^2}{2} + 2\pi}{6 + 2\pi}$$

Отримали маргінальну функцію розподілу  $F_{\xi_2}(y)$  при  $y\in[0;2]$ , як і має бути.

Перевірка:

$$\frac{\partial^2 F_{\vec{\xi}}^{(D_5)}}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} \left( \frac{4y - \frac{y^2}{2} + 2\pi}{6 + 2\pi} \right) = 0 = f_{\vec{\xi}}$$

Перевірка стику областей  $D_4$  та  $D_5$  : y=4-2x можна не робити, оскільки  $F_{\vec{\xi}}^{(D_5)}(x,y)$  отримана за допомогою відповідної підстановки з

 $F_{\vec{\xi}}^{(D_4)}(x,4-2x)$ . Натомість свідченням того, що все зроблено вірно є те, що сумісна функція розподілу співпала із маргінальною  $F_{\xi_2}(y)$  при  $y\in[0;2]$ .

$$2.3.7 (x,y) \in D_6$$



Рисунок  $2.13 - (x, y) \in D_6$ 

$$F_{\xi}^{(D_6)}(x,y) = F_{\xi}^{(D_3)}(x,2x+4) = \frac{1}{6+2\pi} \left( x(2x+4) + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - 0.25(2x+4)^2 + 2(2x+4) + \pi \right) =$$

$$= \frac{2x^2 + 4x + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - x^2 - 4x - 4 + 4x + 8 + \pi}{6+2\pi} =$$

$$= \frac{x^2 + 4x + 4 + \pi + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2}}{6+2\pi}$$

Отримали маргінальну функцію розподілу  $F_{\xi_1}(x)$  при  $x \in [-2;-1],$  як і має бути.

Перевірка:

$$\frac{\partial^2 F_{\vec{\xi}}^{(D_6)}}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} \left( \frac{x^2 + 4x + 4 + \pi + 2 \arcsin \frac{x}{2} + \frac{x}{2} \sqrt{4 - x^2}}{6 + 2\pi} \right) = 0 = f_{\vec{\xi}}$$

Перевірка стику областей  $D_3$  та  $D_6$ : y=2x+4 можна не робити, оскільки  $F_{\vec{\xi}}^{(D_6)}(x,y)$  отримана за допомогою відповідної підстановки з  $F_{\vec{\xi}}^{(D_3)}(x,2x+4)$ . Натомість свідченням того, що все зроблено вірно є те, що сумісна функція розподілу співпала із маргінальною  $F_{\xi_1}(x)$  при  $y\in [-2;-1]$ .

$$2.3.8 \ (x,y) \in D_7$$



Рисунок  $2.14 - (x, y) \in D_7$ 

$$F_{\vec{\xi}}^{(D_7)}(x,y) = F_{\vec{\xi}}^{(D_3)}(x,2) = \frac{1}{6+2\pi} \left(2x + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - \frac{x}{2}\right)$$

$$-0.25(2)^{2} + 4 + \pi = \frac{2x + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^{2}} - 1 + 4 + \pi}{6 + 2\pi} = \frac{2x + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^{2}} + 3 + \pi}{6 + 2\pi}$$

Отримали маргінальну функцію розподілу  $F_{\xi_1}(x)$  при  $x \in [-1;1]$ , як і має бути.

Перевірка:

$$\frac{\partial^2 F_{\vec{\xi}}^{(D_7)}}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} \left( \frac{2x + 2 \arcsin \frac{x}{2} + \frac{x}{2} \sqrt{4 - x^2} + 3 + \pi}{6 + 2\pi} \right) = 0 = f_{\vec{\xi}}$$

Перевірка стику областей  $D_3$  та  $D_7: y=2$  можна не робити, оскільки  $F^{(D_7)}_{\vec{\xi}}(x,y)$  отримана за допомогою відповідної підстановки з  $F^{(D_3)}_{\vec{\xi}}(x,2)$ . Натомість свідченням того, що все зроблено вірно є те, що сумісна функція розподілу співпала із маргінальною  $F_{\xi_1}(x)$  при  $y\in [-1;1]$ .



Рисунок  $2.15 - (x, y) \in D_8$ 

$$F_{\vec{\xi}}^{(D_8)}(x,y) = F_{\vec{\xi}}^{(D_4)}(x,4-2x) + \frac{1}{6+2\pi} \int_{4-2x}^{2} dt \int_{0.5t-2}^{2-0.5t} ds =$$

$$= \frac{1}{6+2\pi} \left( 4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - 4 + \pi + 4(4-2x) - \frac{(4-2x)^2}{2} + \int_{4-2x}^{2} (4-s)dt \right) =$$

$$= \frac{1}{6+2\pi} \left( 4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} - 4 + \pi + 16 - 8x - 8 + 8x - 2x^2 + \left( 4s - \frac{s^2}{2} \right) \Big|_{4-2x}^{2} \right) =$$

$$= \frac{1}{6+2\pi} \left( 4x - 3x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} + \frac{x}{2}\sqrt{4-x^2} + \frac{1}{2}\sqrt{4-x^2} + \frac{1}{2}\sqrt$$

$$+4 + \pi + 8 - 2 - 16 + 8x + 8 - 8x + 2x^{2}) =$$

$$= \frac{4x - x^{2} + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^{2}} + 2 + \pi}{6 + 2\pi}$$

Отримали маргінальну функцію розподілу  $F_{\xi_1}(x)$  при  $x\in[1;2]$ , як і має бути.

Перевірка:

$$\frac{\partial^2 F_{\vec{\xi}}^{(D_8)}}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} \left( \frac{4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 2 + \pi}{6 + 2\pi} \right) = 0 = f_{\vec{\xi}}$$

Перевірка стику областей  $D_4$  та  $D_8: y=2$ 

$$F_{\vec{\xi}}^{(D_4)}(x,2) = \frac{4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} - 4 + \pi + 4 \cdot 2 - \frac{2^2}{2}}{6 + 2\pi} = \frac{4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 2 + \pi}{6 + 2\pi}$$

$$F_{\vec{\xi}}^{(D_8)}(x,2) = \frac{4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 2 + \pi}{6 + 2\pi}$$

Отже:

$$F_{\vec{\xi}}^{(D_4)}(x,2) = F_{\vec{\xi}}^{(D_8)}(x,2) = \frac{4x - x^2 + 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + 2 + \pi}{6 + 2\pi}$$



Рисунок  $2.16 - (x, y) \in D_9$ 

$$F_{\vec{\xi}}^{(D_9)} = 1$$
  
Перевірка:

переырка.

$$\frac{\partial^2 F_{\vec{\xi}}^{(D_9)}}{\partial x \partial y} = \frac{\partial^2 1}{\partial x \partial y} = 0 = f_{\vec{\xi}}$$

Перевірка стику областей  $D_8$  та  $D_9$  : x=2

$$F_{\vec{\xi}}^{(D_8)}(2,y) = \frac{4 \cdot 2 - 2^2 + 2\arcsin\frac{2}{2} + \frac{2}{2}\sqrt{4 - 2^2} + 2 + \pi}{6 + 2\pi} = \frac{8 - 4 + \pi + 0 + 2 + \pi}{6 + 2\pi} = 1$$

$$F_{\vec{\xi}}^{(D_9)}(x,2) = 1$$

Отже:

$$F_{\vec{\xi}}^{(D_8)}(x,2) = F_{\vec{\xi}}^{(D_9)}(x,2) = 1$$

Перевірка стику областей  $D_5$  та  $D_9$  : y=2

$$F_{\vec{\xi}}^{(D_5)}(x,2) = \frac{4 \cdot 2 - \frac{2^2}{2} + 2\pi}{6 + 2\pi} = \frac{6 + 2\pi}{6 + 2\pi} = 1$$

$$F_{\vec{\xi}}^{(D_9)}(x,2) = 1$$

Отже:

$$F_{\vec{\xi}}^{(D_5)}(2,y) = F_{\vec{\xi}}^{(D_9)}(2,y) = 1$$

#### 2.4 Математичні сподівання координат. Коваріаційна матриця

Математичне сподівання  $\xi_1$ :

$$\mathbb{E}\xi_{1} = \int_{-\infty}^{\infty} x f_{\xi_{1}}(x) dx = \int_{-2}^{-1} \frac{2x^{2} + 4x + x\sqrt{4 - x^{2}}}{6 + 2\pi} dx + \int_{-1}^{1} \frac{2x + x\sqrt{4 - x^{2}}}{6 + 2\pi} dx + \int_{1}^{2} \frac{4x - 2x^{2} + x\sqrt{4 - x^{2}}}{6 + 2\pi} dx =$$

$$= \frac{1}{6 + 2\pi} \left( \left( \frac{2x^{3}}{3} + 2x^{2} \right) \Big|_{-2}^{-1} + x^{2} \Big|_{-1}^{1} + \left( 2x^{2} - \frac{2x^{3}}{3} \right) \Big|_{1}^{2} - \int_{-2}^{2} \frac{\sqrt{4 - x^{2}}}{2} d(4 - x^{2}) \right) = \frac{1}{6 + 2\pi} \left( \frac{4}{3} - \frac{8}{3} + 0 + \frac{8}{3} - \frac{4}{3} - \frac{\sqrt{(4 - x^{2})^{3}}}{3} \Big|_{-2}^{2} \right) =$$

$$= \frac{0 - 0}{6 + 2\pi} = 0$$

 $\mathbb{E}\xi_1=0$ , як і очікувалось, оскільки область D симетрична відносно осі OY.

Математичне сподівання  $\xi_2$ :

$$\mathbb{E}\xi_2 = \int_{-\infty}^{\infty} y f_{\xi_2}(y) dy = \frac{1}{6+2\pi} \left( \int_{-2}^{0} 2y \sqrt{4-y^2} dy + \int_{0}^{2} (4y-y^2) dy \right) =$$

$$= \frac{1}{6+2\pi} \left( -\int_{-2}^{0} \sqrt{4-y^2} d(4-y^2) + \left( 2y^2 - \frac{y^3}{3} \right) \Big|_{0}^{2} \right) =$$

$$= \frac{1}{6+2\pi} \left( \left( -\frac{2\sqrt{(4-y^2)^3}}{3} \right) \Big|_{-2}^{0} + \frac{16}{3} \right) = \frac{1}{6+2\pi} \left( -\frac{16}{3} + \frac{16}{3} \right) = 0$$

Отже, центр розсіювання  $\mathbb{E}\vec{\xi} = (\mathbb{E}\xi_1, \mathbb{E}\xi_2)^T = (0,0)^T$ .

Знайдемо дисперсії.

$$\mathbb{E}\xi_{2}^{2} = \int_{-\infty}^{\infty} x^{2} f_{\xi_{1}}(x) dx = \int_{-2}^{-1} \frac{2x^{3} + 4x^{2} + x^{2}\sqrt{4 - x^{2}}}{6 + 2\pi} dx + \int_{-1}^{1} \frac{2x^{2} + x^{2}\sqrt{4 - x^{2}}}{6 + 2\pi} dx + \int_{1}^{2} \frac{4x^{2} - 2x^{3} + x^{2}\sqrt{4 - x^{2}}}{6 + 2\pi} dx =$$

$$= \frac{1}{6 + 2\pi} \left( \left( \frac{x^{4}}{2} + \frac{4x^{3}}{3} \right) \Big|_{-2}^{-1} + \frac{2x^{3}}{3} \Big|_{-1}^{1} + \left( \frac{4x^{3}}{3} - \frac{x^{4}}{2} \right) \Big|_{1}^{2} - \right.$$

$$- \int_{-2}^{2} x^{2} \sqrt{4 - x^{2}} dx = \left. \left( \frac{x^{4}}{2} + \frac{4x^{3}}{3} \right) \right|_{-2}^{-1} + \left. \frac{2x^{3}}{3} \right|_{-1}^{1} + \left( \frac{4x^{3}}{3} - \frac{x^{4}}{2} \right) \Big|_{1}^{2} - \right.$$

$$- \int_{-2}^{2} x^{2} \sqrt{4 - x^{2}} dx = \left. \left( \frac{x^{4}}{2} + \frac{4x^{3}}{3} \right) \right|_{-2}^{1} + \left. \left( \frac{4x^{3}}{3} - \frac{x^{4}}{2} \right) \right|_{1}^{2} - \left. \left( \frac{x^{4}}{3} + \frac{x^{4}}{3} + \frac{x^{4}}{3} \right) \right|_{1}^{2} + \left. \left( \frac{x^{4}}{3} + \frac{x^{4}}{3} + \frac{x^{4}}{3} + \frac{x^{4}}{3} \right) \right|_{1}^{2} - \left. \left( \frac{x^{4}}{4} - \frac{x^{2}}{3} \right) \right|_{1}^{2} + \left. \left( \frac{x^{4}}{3} - \frac{x^{4}}{3} \right) \right|_{1}^{2} - \left. \left( \frac{x^{4}}{4} - \frac{x^{2}}{3} \right) \right|_{1}^{2} - \left. \left( \frac{x^{4}}{4} - \frac{x$$

$$\mathbb{E}\xi_2^2 = \int_{-\infty}^{\infty} y^2 f_{\xi_2}(y) dy = \frac{1}{6+2\pi} \left( \int_{-2}^0 2y^2 \sqrt{4-y^2} dy + \int_0^2 (4y^2 - y^3) dy \right) =$$

При обчисленні  $2\int_{-2}^{0}y^2\sqrt{4-y^2}dy$  підставимо одразу кінцеву формулу, яка була знайдена в минулому прикладі.

$$= \frac{1}{6+2\pi} \left( (4t+\sin 4t) \Big|_{-\frac{\pi}{2}}^{0} + \left( \frac{4y^3}{3} - \frac{y^4}{4} \right) \Big|_{0}^{2} \right) = \frac{1}{6+2\pi} \left( 2\pi + \frac{32}{3} - 4 \right) =$$

$$= \frac{2\pi + \frac{20}{3}}{6+2\pi}$$

$$\mathbb{D}\xi_2 = \mathbb{E}\xi_2^2 - (\mathbb{E}\xi_2)^2 = \frac{\frac{20}{3} + 2\pi}{6 + 2\pi}$$

Для побудови коваріаційної матриці знайдемо коваріацію:  $cov(\xi_1,\xi_2)=\mathbb{E}\xi_1\xi_2-\mathbb{E}\xi_1\mathbb{E}\xi_2$ 

$$\mathbb{E}\xi_{1}\xi_{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x,y)dxdy =$$

$$= \frac{1}{6+2\pi} \left( \int_{-2}^{0} dy \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} yxdx + \int_{0}^{2} dy \int_{0.5y-2}^{2-0.5y} yxdx \right) =$$

$$= \frac{1}{6+2\pi} \left( \int_{-2}^{0} y \left( \frac{x^{2}}{2} \right) \Big|_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} dy + \int_{0}^{2} y \left( \frac{x^{2}}{2} \right) \Big|_{0.5y-2}^{2-0.5y} dy \right) =$$

$$= \frac{1}{6+2\pi} \left( \int_{-2}^{0} y \left( \frac{4-y^{2}-4+y^{2}}{2} \right) dy + \right.$$

$$+ \int_{0}^{2} y \left( \frac{4-2y+0.25y-0.25y+2y-4}{2} \right) dy \right) =$$

$$= \frac{1}{6+2\pi} \left( \int_{-2}^{2} y(0) dy \right) = 0$$

$$cov(\xi_1, \xi_2) = \mathbb{E}\xi_1\xi_2 - \mathbb{E}\xi_1\mathbb{E}\xi_2 = 0 - 0 = 0$$

 $cov(\xi_1,\xi_2)=0$ , як і має бути, оскільки область D симетрична відносно осі OY. Звідси можна зробити висновок, що величини  $\xi_1$  та  $\xi_2$  некорельовані, відповідно  $r(\xi_1,\xi_2)=0$ . Тоді коваріаційна матриця буде:

$$C_{\vec{\xi}} = \begin{pmatrix} \frac{5+2\pi}{6+2\pi} & 0\\ 0 & \frac{\frac{20}{3}+2\pi}{6+2\pi} \end{pmatrix}$$

Зробимо перевірку невід'ємної визначеності матриці:

$$\det C_{\vec{\xi}} = \frac{5 + 2\pi}{6 + 2\pi} \cdot \frac{\frac{20}{3} + 2\pi}{6 + 2\pi} = \frac{\frac{100}{3} + \frac{70\pi}{3} + 4\pi^2}{36 + 24\pi + 2\pi^2} > 0$$

2.5 Умовні щільності розподілу для кожної координати

$$f_{\xi_1}(x|y) = \frac{f_{\xi}(x,y)}{f_{\xi_2}(y)}$$

$$f_{\xi_2}(y|x) = \frac{f_{\xi}(x,y)}{f_{\xi_1}(x)}$$

$$f_{\xi}(x,y) = \begin{cases} \frac{1}{6+2\pi} & (x,y) \in D\\ 0 & (x,y) \notin D \end{cases}$$

$$f_{\xi_1}(x) = \int_{-\infty}^{\infty} f_{\xi}(x,y) dy = \begin{cases} 0 & x \le -2\\ \frac{2x+4+\sqrt{4-x^2}}{6+2\pi} & -2 < x \le -1\\ \frac{2+\sqrt{4-x^2}}{6+2\pi} & -1 < x \le 1\\ \frac{4-2x+\sqrt{4-x^2}}{6+2\pi} & 1 < x \le 2\\ 0 & 2 < x \end{cases}$$

$$f_{\xi_2}(y) = \begin{cases} 0 & y \le -2\\ \frac{2\sqrt{4-y^2}}{6+2\pi} & -2 < y \le 0\\ \frac{4-y}{6+2\pi} & 0 < y \le 2\\ 0 & 2 < y \end{cases}$$

Знайдемо спочатку  $f_{\xi_1}(x|y)$ :

$$f_{\xi_1}(x|y) = \begin{cases} \frac{1}{2\sqrt{4-y^2}} & x \in [-\sqrt{4-y^2}; \sqrt{4-y^2}] \\ 0 & x \notin [-\sqrt{4-y^2}; \sqrt{4-y^2}] \\ \frac{1}{4-y} & x \in \left[\frac{y}{2}-2; 2-\frac{y}{2}\right] \\ 0 & x \notin \left[\frac{y}{2}-2; 2-\frac{y}{2}\right] \end{cases} \qquad 0 < y \le 2$$
 не визначено 
$$2 < y$$

Аналогічно:

#### 2.6 Умовні математичні сподівання для кожної координати

$$\mathbb{E}(\xi_1|\xi_2) = \int_{-\infty}^{\infty} x f_{\xi_1}(x|y) dx =$$

$$=\begin{cases} \begin{cases} \text{ не визначено} & y \leq -2 \\ \int_{-\infty}^{\infty} x dx \begin{cases} \frac{1}{2\sqrt{4-y^2}} & x \in [-\sqrt{4-y^2}; \sqrt{4-y^2}] \\ 0 & x \notin [-\sqrt{4-y^2}; \sqrt{4-y^2}] \end{cases} & -2 < y \leq 0 \\ \begin{cases} \int_{-\infty}^{\infty} x dx \begin{cases} \frac{1}{4-y} & x \in \left[\frac{y}{2}-2; 2-\frac{y}{2}\right] \\ 0 & x \notin \left[\frac{y}{2}-2; 2-\frac{y}{2}\right] \end{cases} & 0 < y \leq 2 \end{cases} \\ \text{ не визначено} & 2 < y \end{cases}$$

$$= \begin{cases} \text{ не визначено} & y \leq -2 \\ \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \frac{x}{2\sqrt{4-y^2}} dx & -2 < y \leq 0 \\ \int_{\frac{y}{2}-2}^{2-\frac{y}{2}} \frac{x}{4-y} dx & 0 < y \leq 2 \\ \text{ не визначено} & 2 < y \end{cases}$$

$$=\begin{cases} \begin{cases} \text{ не визначено} & y \leq -2 \\ \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \frac{x}{2\sqrt{4-y^2}} dx & -2 < y \leq 0 \end{cases} \\ = \begin{cases} \int_{\frac{y}{2}-2}^{2-\frac{y}{2}} \frac{x}{4-y} dx & 0 < y \leq 2 \\ \text{ не визначено} & 2 < y \end{cases} \\ = \begin{cases} \begin{cases} \text{ не визначено} & y \leq -2 \\ \frac{4-y^2-4+y^2}{4\sqrt{4-y^2}} dx & -2 < y \leq 0 \end{cases} \\ \frac{\frac{y^2}{4}-2y+4-4+2y-\frac{y^2}{4}}{2(4-y)} dx & 0 < y \leq 2 \end{cases} \\ \text{ не визначено} & 2 < y \end{cases}$$

$$= \begin{cases} \text{не визначено} & y \leq -2 \\ 0 & -2 < y \leq 0 \\ 0 & 0 < y \leq 2 \\ \text{не визначено} & 2 < y \end{cases}$$

Перевірка ( $\mathbb{E}(\mathbb{E}(\xi_1|\xi_2)) = \mathbb{E}\xi_1$ ):

$$\int_{-\infty}^{\infty} \mathbb{E}(\xi_1|\xi_2) f_{\xi_2}(y) dy = \int_{-\infty}^{\infty} 0 f_{\xi_2}(y) dy = 0 = \mathbb{E}\xi_1$$

#### Графік умовного математичного сподівання $\mathbb{E}(\xi_1|\xi_2)$ наведено на рис. 2.17.



Рисунок  $2.17 - \mathbb{E}(\xi_1|\xi_2)$ 

$$\mathbb{E}(\xi_2|\xi_1) = \int_{-\infty}^{\infty} y f_{\xi_2}(y|x) dy =$$

$$\begin{cases} \text{ He визначено} & x \leq -2 \\ \int_{-\infty}^{\infty} y dy \begin{cases} \frac{1}{2x+4+\sqrt{4-x^2}} & y \in [-\sqrt{4-x^2}; 2x+4] \\ 0 & y \notin [-\sqrt{4-x^2}; 2x+4] \end{cases} & -2 < x \leq -1 \\ \begin{cases} \int_{-\infty}^{\infty} y dy \begin{cases} \frac{1}{2+\sqrt{4-x^2}} & y \in [-\sqrt{4-x^2}; 2] \\ 0 & y \notin [-\sqrt{4-x^2}; 2] \end{cases} & -1 < x \leq -1 \end{cases} \\ \int_{-\infty}^{\infty} y dy \begin{cases} \frac{1}{4-2x+\sqrt{4-x^2}} & y \in [-\sqrt{4-x^2}; 4-2x] \\ 0 & y \notin [-\sqrt{4-x^2}; 4-2x] \end{cases} & 1 < x \leq 2 \\ \text{ He визначено} & 2 < x \end{cases}$$

Перевірка ( $\mathbb{E}(\mathbb{E}(\xi_2|\xi_1)) = \mathbb{E}\xi_2$ ):

$$\int_{-\infty}^{\infty} \mathbb{E}(\xi_2|\xi_1) f_{\xi_1}(x) dx =$$

$$= \int_{-2}^{-1} \frac{5x^2 + 16x + 12}{2(6+2\pi)} dx + \int_{-1}^{1} \frac{x^2}{2(6+2\pi)} dx + \int_{1}^{2} \frac{5x^2 - 16x + 12}{2(6+2\pi)} dx =$$

$$= \frac{1}{12+4\pi} \left( \left( \frac{5x^3}{3} + 8x^2 + 12x \right) \Big|_{-2}^{-1} + \frac{x^3}{3} \Big|_{-1}^{1} + \left( \frac{5x^3}{3} - 8x^2 + 12x \right) \Big|_{1}^{2} \right) =$$

$$= \frac{1}{12+4\pi} \left( \left( \frac{5x^3}{3} + 8x^2 + 12x \right) \Big|_{-2}^{-1} + \frac{x^3}{3} \Big|_{-1}^{1} + \left( \frac{5x^3}{3} - 8x^2 + 12x \right) \Big|_{1}^{2} \right) =$$

$$= \frac{1}{12+4\pi} \left( \left( -\frac{5}{3} + 8 - 12 \right) - \left( -\frac{40}{3} + 32 - 24 \right) + \frac{1}{3} + \frac{1}{3} + \left( \frac{40}{3} - 32 + 24 \right) - \left( \frac{5}{3} - 8 + 12 \right) \right) =$$

$$= \frac{1}{12+4\pi} \left( -\frac{17}{3} + \frac{16}{3} + \frac{2}{3} + \frac{16}{3} - \frac{17}{3} \right) = 0 = \mathbb{E}\xi_{2}$$

Графік умовного математичного сподівання  $\mathbb{E}(\xi_2|\xi_1)$ наведено на рис. 2.18.



Рисунок 2.18 —  $\mathbb{E}(\xi_2|\xi_1)$ 

#### ДОДАТОК А

Обчислення інтеграла  $\int \sqrt{4-x^2} dx$ 

$$\int \sqrt{4 - x^2} dx = 2 \int \sqrt{1 - \frac{x^2}{4}} dx = \begin{vmatrix} \frac{x}{2} = \sin t \\ t = \arcsin \frac{x}{2} \\ dx = 2 \cos t dt \end{vmatrix} = 4 \int \sqrt{1 - \sin^2 t} \cos t dt = 4 \int \cos^2 t dt = 2 \int (1 + \cos 2t) dt = 2t + \sin 2t + C = 2t + 2 \sin t \cos t + C = 2t + 2 \sin t \sqrt{1 - \sin^2 t} + C = 2 \arcsin \frac{x}{2} + \frac{x}{2} \sqrt{4 - x^2} + C$$