Welcome to instats

The Session Will Begin Shortly

START

Spatial Data Analysis and Visualization in R

Session 4: Creating Common Thematic Map Types Using the R Package tmap

instats

Introduction to tmap

Goal

- Visualize spatial data
- Intuitive to use
- Flexible

Software to visualize spatial data

- Traditional GIS software: ArcGIS, QGIS, GRASS
- Data science programming languages: Python, R, Julia
- Web technologies: JavaScript

Traditional GIS software

Proprietary: ArcGIS

Free/open-source: QGIS, GRASS

- No programming required
- Many options and tools can be difficult to navigate
- Workflows often not easily reproducible or scriptable

Data science program languages

Python, R, Julia

- Require programming skills
- Support scripted, reproducible workflows
- Multiple 'competing' and complementary packages foster innovation
- Large and active communities

R packages

Package	Also non-spatial	Static	Interactive	Extendable
ggplot	✓	✓	-	V
tmap	-	\checkmark	\checkmark	V
mapsf	-	\checkmark	-	-
mapview	-	_	V	-
leaflet	-	_	V	-
mapgl	-	_	~	-

tmap and other packages

Compared

- with **ggplot2**
- with mapview
- with mapsf

Uses

- **leaflet** in its interactive "view" mode
- mapgl in its other interactive modes "mapbox" and "maplibre" via tmap.mapgl

JavaScript

- Interactive mapping
- d3, leaflet, Mapbox JS, Maplibre JS, etc.
- Many R and Python libraries use them under the hood
- More flexible to use them directly (instead of via R/Python library), but requires significantly more development effort and technical knowledge.

When to Use tmap

- ✓ Great choice if you want to:
 - Make publication-quality static maps
 - Quickly switch to interactive maps for exploration
 - Use a layered syntax similar to ggplot2
 - Teach spatial visualization in a clear and structured way
 - Export maps for reports, articles, or dashboards

Not ideal for:

Getting started

Step 1: Installation

Instructions

```
install.packages("tmap")
# or for development version:
remotes::install_github("r-tmap/tmap")
```

Which version to use?

- CRAN version should always be stable
- Development version stability may vary:
 - → May have bug fixes found in the CRAN version (more stable)
 - → May have new features (less stable)

Step 2: find demo datasets

Included in **tmap**:

Vector data:

- World country data (polygons).
- NLD_prov, NLD_muni, NLD_dist regional data of the Netherlands (polygons)
- metro city data (points)
- World_rivers rivers data (lines)

Raster data:

land land cover data (raster)

Step 3: Learn the basics

- Online vignettes
- Function names:
 - → tm_ prefix: stackable layer functions, e.g. tm_shape() and tm_polygons()
 - → tmap_ prefix: stand-alone functions, e.g. tmap_save().

Recap

- tmap is a powerful and flexible R package for spatial data visualization
- Within the R spatial ecosystem there are alternatives, each with pros and cons.
- Main source of documentation

STOP