Understanding Machine Learning: From Theory to Algorithms (Shalev-Shwartz & Ben-David, 2014)

Ch 12: Convex Learning Problems
Ch 14: Stochastic Gradient Descent

(ML Reading Group, UQ)

Vektor Dewanto

vektor.dewanto@gmail.com

March 16, 2018

Outline

- Convexity, Lipschitzness, and Smoothness
- 2 Convex Learning Problems
- Surrogate Loss Function
- 4 Gradient Descent
- Subgradients
- 6 Stochastic Gradient Descent (SGD)
- Learning with SGD
- 8 Conclusions
- References

- Convexity, Lipschitzness, and Smoothness

- 6 Stochastic Gradient Descent (SGD)

Convexity: Convex sets

DEFINITION 12.1 (Convex Set) A set C in a vector space is convex if for any two vectors \mathbf{u}, \mathbf{v} in C, the line segment between \mathbf{u} and \mathbf{v} is contained in C. That is, for any $\alpha \in [0,1]$ we have that $\alpha \mathbf{u} + (1-\alpha)\mathbf{v} \in C$.

Convexity: Convex functions

DEFINITION 12.2 (Convex Function) Let C be a convex set. A function $f:C\to\mathbb{R}$ is convex if for every $\mathbf{u},\mathbf{v}\in C$ and $\alpha\in[0,1],$

$$f(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) \leq \alpha f(\mathbf{u}) + (1 - \alpha)f(\mathbf{v})$$
.

Convexity: Convex functions

Properties of convex fn:

- every local minimum is also a global minimum
- for every w we can construct a tangent to f at w that lies below f everywhere. If f is differentiable, this tangent is the linear function

Convexity: Convex functions

LEMMA 12.3 Let $f: \mathbb{R} \to \mathbb{R}$ be a scalar twice differential function, and let f', f'' be its first and second derivatives, respectively. Then, the following are equivalent:

- 1. f is convex
- 2. f' is monotonically nondecreasing
- 3. f'' is nonnegative

CLAIM 12.4 Assume that $f: \mathbb{R}^d \to \mathbb{R}$ can be written as $f(\mathbf{w}) = g(\langle \mathbf{w}, \mathbf{x} \rangle + y)$, for some $\mathbf{x} \in \mathbb{R}^d$, $y \in \mathbb{R}$, and $g: \mathbb{R} \to \mathbb{R}$. Then, convexity of g implies the convexity of f.

CLAIM 12.5 For $i=1,\ldots,r$, let $f_i:\mathbb{R}^d\to\mathbb{R}$ be a convex function. The following functions from \mathbb{R}^d to \mathbb{R} are also convex.

- $g(x) = \max_{i \in [r]} f_i(x)$
- $g(x) = \sum_{i=1}^{r} w_i f_i(x)$, where for all $i, w_i \ge 0$.

Lipschitzness

DEFINITION 12.6 (Lipschitzness) Let $C \subset \mathbb{R}^d$. A function $f : \mathbb{R}^d \to \mathbb{R}^k$ is ρ -Lipschitz over C if for every $\mathbf{w}_1, \mathbf{w}_2 \in C$ we have that $||f(\mathbf{w}_1) - f(\mathbf{w}_2)|| \le \rho ||\mathbf{w}_1 - \mathbf{w}_2||$.

Properties:

- a Lipschitz function can **not** change too fast
- if the derivative of f is everywhere bounded (in absolute value) by ρ , then the function is ρ -Lipschitz.
- composition of Lipschitz functions preserves Lipschitzness.

Smoothness

DEFINITION 12.8 (Smoothness) A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth if its gradient is β -Lipschitz; namely, for all \mathbf{v}, \mathbf{w} we have $\|\nabla f(\mathbf{v}) - \nabla f(\mathbf{w})\| \le \beta \|\mathbf{v} - \mathbf{w}\|$.

Properties:

- when a function is both convex and smooth,
 we have both upper and lower bounds on the difference between the function and its first order approximation.
- a composition of a smooth scalar function over a linear function preserves smoothness.

CLAIM 12.9 Let $f(\mathbf{w}) = g(\langle \mathbf{w}, \mathbf{x} \rangle + b)$, where $g : \mathbb{R} \to \mathbb{R}$ is a β -smooth function, $\mathbf{x} \in \mathbb{R}^d$, and $b \in \mathbb{R}$. Then, f is $(\beta \|\mathbf{x}\|^2)$ -smooth.

- Convex Learning Problems

- 6 Stochastic Gradient Descent (SGD)

Convex Learning Problems: Intro

Recall, we have:

- ullet a set of examples $\mathcal{Z} = \mathcal{X} imes \mathcal{Y}$
- a hypothesis class \mathcal{H} , which can be an arbitrary set, for now consider: $\mathcal{H} \subseteq \mathbb{R}^d$, thus, denote a hypothesis in \mathcal{H} by **w**
- a loss function $\ell: \mathcal{H} \times \mathcal{Z} \mapsto \mathbb{R}_+$

DEFINITION 12.10 (Convex Learning Problem) A learning problem, (\mathcal{H}, Z, ℓ) , is called convex if the hypothesis class \mathcal{H} is a convex set and for all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex function (where, for any z, $\ell(\cdot, z)$ denotes the function $f: \mathcal{H} \to \mathbb{R}$ defined by $f(\mathbf{w}) = \ell(\mathbf{w}, z)$).

Convex Learning Problems: Intro

Example 12.7:

Linear Regression with the Squared Loss

- to learn a linear function $h : \mathbb{R}^d \mapsto \mathbb{R}$ that best approximates the relationship between "explanatory" and outcome variables.
- Each linear function is parameterized by a vector $\mathbf{w} \in \mathbb{R}^d$, hence $\mathcal{H} = \mathbb{R}^d$
- ullet set of examples: $\mathcal{Z} = \mathcal{X} imes \mathcal{Y} = \mathbb{R}^d imes \mathbb{R} = \mathbb{R}^{d+1}$
- loss function: $\ell(\mathbf{w}, (\mathbf{x}, y)) = (\langle \mathbf{w}, \mathbf{x} \rangle y)^2$
- ullet Clearly: ${\cal H}$ is a convex set and ℓ is convex fn wrt ${f w}$

LEMMA 12.11 If ℓ is a convex loss function and the class \mathcal{H} is convex, then the ERM_{\mathcal{H}} problem, of minimizing the empirical loss over \mathcal{H} , is a convex optimization problem (that is, a problem of minimizing a convex function over a convex set).

Convex Learning Problems: Learnability

QUESTIONS:

- is convexity a sufficient condition for the learnability of a problem?
- are all convex learning problems over R^d learnable?

ANSWERS:

- **not all** convex learning problems over \mathbb{R}^d are learnable.
- Convex problems are learnable under some restricting conditions: the properties of convexity, boundedness, and Lipschitzness or smoothness of the loss function are sufficient for learnability.

Convex Learning Problems: Learnability

TWO families of learning problems are learnable.

DEFINITION 12.12 (Convex-Lipschitz-Bounded Learning Problem) A learning problem, (\mathcal{H}, Z, ℓ) , is called Convex-Lipschitz-Bounded, with parameters ρ, B if the following holds:

- The hypothesis class \mathcal{H} is a convex set and for all $\mathbf{w} \in \mathcal{H}$ we have $\|\mathbf{w}\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex and ρ -Lipschitz function.

DEFINITION 12.13 (Convex-Smooth-Bounded Learning Problem) A learning problem, (\mathcal{H}, Z, ℓ) , is called Convex-Smooth-Bounded, with parameters β, B if the following holds:

- The hypothesis class \mathcal{H} is a convex set and for all $\mathbf{w} \in \mathcal{H}$ we have $\|\mathbf{w}\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot,z)$, is a convex, nonnegative, and β -smooth function.

- Convexity, Lipschitzness, and Smoothness
- Surrogate Loss Function

- 6 Stochastic Gradient Descent (SGD)

Surrogate Loss Fn: Intro

WHAT:

handle some **non**convex problems by minimizing "surrogate" loss functions that are convex

WHY:

the natural loss function is not convex, e.g. 0-1 loss

HOW:

to upper bound the nonconvex loss function by a convex surrogate loss function that

- are convex
- upper bounds the original loss.

Surrogate Loss Fn: Example

In the context of learning halfspaces: Hinge loss as a convex surrogate for the 0 $-\,1$ loss 1

$$\ell^{\text{hinge}}(\mathbf{w}, (\mathbf{x}, y)) \stackrel{\text{def}}{=} \max\{0, 1 - y\langle \mathbf{w}, \mathbf{x} \rangle\}$$

 $^{{}^{1}{}}_{https://scicomp.stackexchange.com/questions/5628/confusion-related-to-convexity-of-0-1-loss-function} \equiv {}^{1}{}_{https://scicomp.stackexchange.com/questions/5628/confusion-related-to-convexity-of-0-1-loss-function} \equiv {}^{1}{}_{https://scicomp.stackexchange.com/question-related-to-convexity-of-0-1-loss-function$

- Convexity, Lipschitzness, and Smoothness

- Gradient Descent
- 6 Stochastic Gradient Descent (SGD)

Gradient Descent: Intro

Recall:

- ullet hypotheses as vectors $oldsymbol{w}$ that come from a convex hypothesis class, $\mathcal H$
- goal of learning:
 to minimize the risk function L_D(w);
 not the empirical risk L_S(h)
- gradient def:

The gradient of a differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ at \mathbf{w} , denoted $\nabla f(\mathbf{w})$, is the vector of partial derivatives of f, namely, $\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w[1]}, \dots, \frac{\partial f(\mathbf{w})}{\partial w[d]}\right)$.

Gradient Descent: Intro

Gradient descent:

- an iterative optimization procedure
- at each step: improve the solution by taking a step along the negative of the gradient of the function to be minimized at the current point

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla f(\mathbf{w}^{(t)}), \tag{14.1}$$

- after T iterations, output either
 - averaged vector, or
 - last vector, or
 - the best performing vector

Gradient Descent: Analysis of GD for Convex-Lipschitz Fn

LET:

- w* be any vector and
- B be an upper bound on $\|\mathbf{w}^*\|$

GOAL:

to obtain an upper bound on $f(\bar{\mathbf{w}}) - f(\mathbf{w}^*)$, where $\bar{\mathbf{w}} = \frac{1}{T} \sum_{1}^{T} \mathbf{w}^{(t)}$

RESULT:

From the definition of $\bar{\mathbf{w}}$, and using Jensen's inequality, we obtain:

$$f(\bar{\mathbf{w}}) - f(\mathbf{w}^{\star}) \leq \frac{1}{T} \sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \nabla f(\mathbf{w}^{(t)}) \rangle.$$

Gradient Descent: Analysis of GD for Convex-Lipschitz Fn

LEMMA 14.1 Let $\mathbf{v}_1, \dots, \mathbf{v}_T$ be an arbitrary sequence of vectors. Any algorithm with an initialization $\mathbf{w}^{(1)} = 0$ and an update rule of the form

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{v}_t \tag{14.4}$$

satisfies

$$\sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_t \rangle \le \frac{\|\mathbf{w}^{\star}\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_t\|^2.$$
 (14.5)

In particular, for every $B, \rho > 0$, if for all t we have that $\|\mathbf{v}_t\| \le \rho$ and if we set $\eta = \sqrt{\frac{B^2}{\rho^2 T}}$, then for every \mathbf{w}^* with $\|\mathbf{w}^*\| \le B$ we have

$$\frac{1}{T} \sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle \leq \frac{B \rho}{\sqrt{T}}.$$

Gradient Descent: Analysis of GD for Convex-Lipschitz Fn

COROLLARY 14.2 Let f be a convex, ρ -Lipschitz function, and let $\mathbf{w}^* \in \operatorname{argmin}_{\{\mathbf{w}: \|\mathbf{w}\| \leq B\}} f(\mathbf{w})$. If we run the GD algorithm on f for T steps with $\eta = \sqrt{\frac{B^2}{\rho^2 T}}$, then the output vector $\bar{\mathbf{w}}$ satisfies

$$f(\bar{\mathbf{w}}) - f(\mathbf{w}^*) \le \frac{B \rho}{\sqrt{T}}.$$

Furthermore, for every $\epsilon > 0$, to achieve $f(\bar{\mathbf{w}}) - f(\mathbf{w}^*) \le \epsilon$, it suffices to run the GD algorithm for a number of iterations that satisfies

$$T \geq \frac{B^2 \rho^2}{\epsilon^2}.$$

- Convexity, Lipschitzness, and Smoothness
- 2 Convex Learning Problems
- Surrogate Loss Function
- 4 Gradient Descent
- Subgradients
- 6 Stochastic Gradient Descent (SGD)
- Learning with SGD
- 8 Conclusions

Subgradients: Intro

```
WHAT:
```

apply GD to $\boldsymbol{non} differentiable$ convex function

HOW:

use subgradient of $f(\mathbf{w})$ at $\mathbf{w}^{(t)}$, instead of the gradient; (the analysis of the convergence rate remains unchanged)

Subgradients: Intro

LEMMA 14.3 Let S be an open convex set. A function $f: S \to \mathbb{R}$ is convex iff for every $\mathbf{w} \in S$ there exists \mathbf{v} such that

$$\forall \mathbf{u} \in S, \quad f(\mathbf{u}) \ge f(\mathbf{w}) + \langle \mathbf{u} - \mathbf{w}, \mathbf{v} \rangle. \tag{14.8}$$

DEFINITION 14.4 (Subgradients) A vector \mathbf{v} that satisfies Equation (14.8) is called a *subgradient* of f at \mathbf{w} . The set of subgradients of f at \mathbf{w} is called the differential set and denoted $\partial f(\mathbf{w})$.

Subgradients: Intro

Figure 14.2 Left: The right-hand side of Equation (14.7) is the tangent of f at \mathbf{w} . For a convex function, the tangent lower bounds f. Right: Illustration of several subgradients of a nondifferentiable convex function.

Subgradients: Calculating Subgradients

How do we construct subgradients of a given convex function?

For pointwise maximum functions:

CLAIM 14.6 Let $g(\mathbf{w}) = \max_{i \in [r]} g_i(\mathbf{w})$ for r convex differentiable functions g_1, \ldots, g_r . Given some \mathbf{w} , let $j \in \operatorname{argmax}_i g_i(\mathbf{w})$. Then $\nabla g_j(\mathbf{w}) \in \partial g(\mathbf{w})$.

Example 14.2 (A Subgradient of the Hinge Loss) Recall the hinge loss function from Section 12.3, $f(\mathbf{w}) = \max\{0, 1 - y\langle \mathbf{w}, \mathbf{x}\rangle\}$ for some vector \mathbf{x} and scalar y. To calculate a subgradient of the hinge loss at some \mathbf{w} we rely on the preceding claim and obtain that the vector \mathbf{v} defined in the following is a subgradient of the hinge loss at \mathbf{w} :

$$\mathbf{v} = \begin{cases} \mathbf{0} & \text{if } 1 - y \langle \mathbf{w}, \ \mathbf{x} \rangle \le 0 \\ -y\mathbf{x} & \text{if } 1 - y \langle \mathbf{w}, \ \mathbf{x} \rangle > 0 \end{cases}$$

- 6 Stochastic Gradient Descent (SGD)

SGD: Intro

```
WHAT:
```

Stochastic Gradient Descent (SGD);

WHY:

do not know D, so do not know the gradient of $L_D(w)$.

HOW:

take a step along a **random** direction (vector), as long as its **expected value** at each iteration will **equal the gradient direction** (more generally, a subgradient of the function at the current vector)

SGD: Intro

Figure 14.3 An illustration of the gradient descent algorithm (left) and the stochastic gradient descent algorithm (right). The function to be minimized is $1.25(x+6)^2 + (y-8)^2$. For the stochastic case, the black line depicts the averaged value of **w**.

SGD: Intro

```
Stochastic Gradient Descent (SGD) for minimizing f(\mathbf{w}) parameters: Scalar \eta > 0, integer T > 0 initialize: \mathbf{w}^{(1)} = \mathbf{0} for t = 1, 2, \dots, T choose \mathbf{v}_t at random from a distribution such that \mathbb{E}[\mathbf{v}_t \mid \mathbf{w}^{(t)}] \in \partial f(\mathbf{w}^{(t)}) update \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{v}_t output \bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}
```

SGD: Analysis for Convex-Lipschitz-Bounded Fn

THEOREM 14.8 Let $B, \rho > 0$. Let f be a convex function and let $\mathbf{w}^* \in \operatorname{argmin}_{\mathbf{w}: \|\mathbf{w}\| \leq B} f(\mathbf{w})$. Assume that SGD is run for T iterations with $\eta = \sqrt{\frac{B^2}{\rho^2 T}}$. Assume also that for all t, $\|\mathbf{v}_t\| \leq \rho$ with probability 1. Then,

$$\mathbb{E}\left[f(\bar{\mathbf{w}})\right] - f(\mathbf{w}^{\star}) \le \frac{B\,\rho}{\sqrt{T}}.$$

Therefore, for any $\epsilon > 0$, to achieve $\mathbb{E}[f(\bar{\mathbf{w}})] - f(\mathbf{w}^*) \le \epsilon$, it suffices to run the SGD algorithm for a number of iterations that satisfies

$$T \ge \frac{B^2 \rho^2}{\epsilon^2}.$$

- Convexity, Lipschitzness, and Smoothness

- 6 Stochastic Gradient Descent (SGD)
- Learning with SGD

Learning with SGD: Risk Minimization

Recall, in learning:

- ullet want to minimize the risk function, $L_D(\mathbf{w}) = \mathbb{E}_{z \sim D}[\ell(\mathbf{w},z)]$
- do not know D, so cannot simply calculate $\nabla L_D(\mathbf{w}^{(t)})$
- as an estimate to minimizing $L_D(w)$: minimize $L_S(w)^2$

SGD minimizes $L_D(\mathbf{w})$ directly: find an **unbiased estimate** of the gradient of $L_D(\mathbf{w})$, that is, a random vector whose conditional expected value is $\nabla L_D(\mathbf{w}^{(t)})$

Learning with SGD: Risk Minimization

Construction of the random vector \mathbf{v}_t for a differentiable risk fn L_D :

- sample $z \sim D$
- define \mathbf{v}_t to be the gradient of $\ell(\mathbf{w}, z)$ wrt \mathbf{w} , at $\mathbf{w}^{(t)}$
- by the linearity of the gradient we have:

$$\mathbb{E}[\mathbf{v}_t|\mathbf{w}^{(t)}] = \mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}^{(t)}, z)] = \nabla \mathbb{E}_{z \sim \mathcal{D}}[\ell(\mathbf{w}^{(t)}, z)] = \nabla L_{\mathcal{D}}(\mathbf{w}^{(t)}).$$
 (14.13)

Thus, the gradient of the loss function $\ell(w,z)$ at $\mathbf{w}^{(t)}$ is

- ullet unbiased estimate of the gradient of the risk function $L_D(w^{(t)})$ and
- constructed by sampling a single fresh example $z \sim D$ at each iteration t.

Learning with SGD: Risk Minimization

```
Stochastic Gradient Descent (SGD) for minimizing L_{\mathcal{D}}(\mathbf{w}) parameters: Scalar \eta > 0, integer T > 0 initialize: \mathbf{w}^{(1)} = \mathbf{0} for t = 1, 2, \dots, T sample z \sim \mathcal{D} pick \mathbf{v}_t \in \partial \ell(\mathbf{w}^{(t)}, z) update \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{v}_t output \bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^T \mathbf{w}^{(t)}
```

Same for nondifferentiable loss functions, simply let \mathbf{v}_t be a subgradient of $\ell(\mathbf{w}, z)$ at $\mathbf{w}^{(t)}$

Learning with SGD: Convex-Smooth Learning Problems

THEOREM 14.13 Assume that for all z, the loss function $\ell(\cdot, z)$ is convex, β smooth, and nonnegative. Then, if we run the SGD algorithm for minimizing $L_{\mathcal{D}}(\mathbf{w})$ we have that for every \mathbf{w}^* ,

$$\mathbb{E}[L_{\mathcal{D}}(\bar{\mathbf{w}})] \leq \frac{1}{1 - \eta \beta} \left(L_{\mathcal{D}}(\mathbf{w}^{\star}) + \frac{\|\mathbf{w}^{\star}\|^2}{2\eta T} \right).$$

COROLLARY 14.14 Consider a convex-smooth-bounded learning problem with parameters β , B. Assume in addition that $\ell(\mathbf{0},z) \leq 1$ for all $z \in Z$. For every $\epsilon > 0$, set $\eta = \frac{1}{\beta(1+3/\epsilon)}$. Then, running SGD with $T \geq 12B^2\beta/\epsilon^2$ yields

$$\mathbb{E}[L_{\mathcal{D}}(\bar{\mathbf{w}})] \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) + \epsilon.$$

Learning with SGD: Regularized Loss Minimization

WHAT:

to solve the regularized loss minimization:

$$\min_{\mathbf{w}} \left(\frac{\lambda}{2} \|\mathbf{w}\|^2 + L_S(\mathbf{w}) \right). \tag{14.14}$$

WHY:

- SGD enjoys the same worst-case sample complexity bound as regularized loss minimization
- on some distributions, regularized loss minimization may yield a better solution.

HOW:

...

Learning with SGD: Regularized Loss Minimization

WHAT:

to solve the regularized loss minimization:

$$\min_{\mathbf{w}} \left(\frac{\lambda}{2} \|\mathbf{w}\|^2 + L_S(\mathbf{w}) \right). \tag{14.14}$$

HOW:

- define $f(\mathbf{w}) = \frac{\lambda}{2} \| w \|^2 + L_S(\mathbf{w})$.
 - f is a λ -strongly convex function;
 - therefore, apply the SGD variant with $\mathcal{H} = \mathbb{R}^d$.
- construct an unbiased estimate of a subgradient of f at $\mathbf{w}^{(t)}$
 - pick z uniformly at random from S,
 - choose \mathbf{v}_t in $\partial \ell(\mathbf{w}^{(t)}, z)$
 - (then) the expected value of $\lambda \mathbf{w}^{(t)} + \mathbf{v}t$ is a subgradient of f at $\mathbf{w}^{(t)}$.

- Convexity, Lipschitzness, and Smoothness

- 6 Stochastic Gradient Descent (SGD)
- 8 Conclusions

Conclusions

SGD can directly minimize the risk function

- by sampling a point i.i.d from D and
- using a subgradient of the loss of the current hypothesis at this point as an unbiased estimate of the (sub)gradient of the risk function.

SGD's number of iterations

guarantees an expected objective of at most ϵ plus the optimal objective

WARN: Skipped (Subsub)sections:

- any proofs
- 14.2.2 Subgradients of Lipschitz Functions
- 14.4 Variants

References I

Shalev-Shwartz, S., & Ben-David, S. (2014). *Understanding machine learning: From theory to algorithms*. New York, NY, USA: Cambridge University Press.

Discussion time and thank you.