

A crucial pillar in physics

Fundamental forces in nature

Gravitational

Why apples fall

Electromagnetic

Ubiquitous in nature

Weak

Radioactive decay

Strong

Holds proton and neutron together

Mechanics

How a system would behave when subjected to a given force?

Classical mechanics: normal objects in daily life

- Newtonian mechanics
- Electrodynamics
 - Most well established, least controversial
 - Highly relevant and can be extended to other three types of mechanics

Quantum mechanics: small objects

Special relativity: objects moving at fast speeds

Quantum field theory: small objects moving at fast speeds

Topics

1. Vector calculus

2. Electrostatics

- Charge, electric force, electric field
- Electric potential
- Electric fields in matter

3. Magnetostatics

- Current, magnetic force, magnetic field
- Magnetic vector potential
- Magnetic fields in matter

4. Electrodynamics

- Electromotive force
- Electromagnetic induction
- Maxwell's equations

5. Electromagnetic waves

- EM waves in vacuum
- EM waves in matter
- Guided EM waves
- Radiation

6. Relativity

- Theory of special relativity
- Relativistic mechanics
- Relativistic electrodynamics

Research frontier

Metamaterials and plasmonics

Negative refractive index

Invisibility cloak

Plasmonics

Choudhury 2013 Wienhoven 2021 Bioparticles.com Advanced science news

Spintronics

Quantum computing

Cold atoms

Magnetic optical trap (at NUS CQT)

Superconducting qubits

Fluxonium

Su 2022

Applications

Daily applications

Resistor-Inductor-Capacitor

Electric motors

Magnetic compass

Faraday cage

Electrical isolation enclosure that protects human and sensitive equipment from lightning strikes

Telecommunication

Optical fiber

Radar

Geophysical techniques

Transient electromagnetic survey

Cross-sectional mapping of seismic resistivity

Mathematical tools

Vector calculus, linear algebra, ordinary differential equations, partial differential equations

Weather forecasting

Financial market

Fluid dynamics

Thermal problems

Course facts

Term:	2024 Sem1	Lecture days: Mon. & Thurs.
Instructor:	Li Xinwei	Lecture time: 10 am – Noon
Email:	xinweili@nus.edu.sg	Venue: M: LT29, T: LT27
Office hour:	By appointment	TA: Yang Hengxing
		(hengxing@u.nus.edu)

Instructor: Li Xinwei (office: S12-02-08)

Lab of light-matter interaction https://www.lixinweigroup.com/

Asst/Prof @ NUS Physics

July 2023 -

Postdoc @ Caltech Physics 2019 - 2023

Ph.D. @ Rice ECE 2014 - 2019

B.Sc. @ Fudan Physics 2010 - 2014

Textbooks

Main:

• David J. Griffiths. *Introduction to Electrodynamics*. 4th ed., Pearson Education, Inc., 2013. ISBN: 978-0-321-85656-2

Supplementary:

- John David Jackson. Classical Electrodynamics. New York, John Wiley & Sons, Inc., 1998. ISBN: 978-0-471-30932-1
- Landau and Lifshitz. Electrodynamics of continuous media., Oxford: Pergamon Press Ltd., 1961.

Assessment components

Component	Weight	Description
Lecture attendance	12 %	4 – 6 times, randomly called upon
		throughout semester
Homework	40%	4-6 sets
Final exam	40%	Closed book test (with one A4 help
		sheet), in the exam week
Mini-project	8%	Surveying open-ended questions
		and writing project report

Assessment components

Lecture attendance (12%)

- 4 6 times, randomly called throughout semester
- In the form of unannounced quizzes, to be turned in at the end of class
- Fully count as long as name is properly signed

Homework (40%)

- 4 6 sets of assignment questions
- Submit to Canvas in .pdf format (typed or scanned handwritten copy)
- Late submissions without excuse penalized proportional to lateness

Assessment components

Final exam (40%)

- Covers all course contents throughout semester
- Closed book, with an A4 help sheet (both sides)
- Nonprogrammable calculator

Mini-project (8%)

- Open-ended questions to investigate
- Topics to be introduced in class, or can self-propose projects
- Analytical derivation, literature review, programming, simulation...
- Turn in project reports individually or in groups of 2 (voluntarily)
- o In exceptional cases, may be invited to give a talk in class ©

Academic integrity

NUS code of student conduct

"The University takes a strict view of cheating in any form, deceptive fabrication, plagiarism and violation of intellectual property and copyright laws. Any student who is found to have engaged in such misconduct will be subject to disciplinary action by the University. Such misconduct will include, but is not limited to, the misuse of content or language generated by artificial intelligence (AI) computer programs."