Mathematical Analysis

枫聆

2021年1月16日

目录

1	实数	2
	1.1 实数连续性	2
	极限论 2.1 数列极限	3
	一 元函数 3.1 连续函数的性质	4

实数

实数连续性

由于在有理数上划分存在一种边界无法确定的情况,即把数轴上所有有理数划分为 A|A', 其中要求 A 中所有的有理数都小于 A' 中的有理数,在 A 中无最大有理数,且 A' 中无最小有理数,这种情况下无法确定划分两者的边界,所以引入了无理数的概念,约定上面这种特殊的划分情况定义了某个无理数的 α ,让这个 α 代替缺少的界数,把它插在了 α 里面一切数 α 和 α 里面一切数 α' 中间。

用上面这种思路来理解有理数也是可以的,对任意一有理数 r 存在两种确定它的划分,还是前面的划分方式即 a < r 在下组 A 中,a > r 在上组 A' 中,而有理数 r 本身可能含于 A 或者 A',如果在 A 中,即 A 中有最大有理数,反之在 A' 中,则有最小有理数.为了确定起见,在提及确定有理数 r 的时候,常把其置于固定的一组,即 A 和 A' 任选一个,以后一直用它,在这里取 a 在上组.

实数之间的序关系, 用划分它集合对应的包含关系来描述, 在有理数里面已经有这样的性质了, 再看一下无理数, 定义划分 A|A' 确定无理数 α , 划分无理数 B|B' 确定 β , 即对应下述三种关系

- 1. $\alpha = \beta$, $A \cap B = \beta$, $A' \cap B' = \beta$.
- $2. \alpha > \beta, A$ 包含 A'.
- 3. $\alpha < \beta$, A' 包含 A.

还有一个传递关系 $\alpha > \beta, \beta > \gamma$, 则 $\alpha > \gamma$, 这些性质都比较容易证明。

Lemma 1.1. 对于不论怎样地两个实数 α 和 β , 其中 $\alpha > \beta$, 恒有一个位于它们中间的有理数 $r: \alpha > r > \beta$.

证明. 这个性质更强了,两个实数 $(\alpha > \beta)$ 之间不仅有实数,还有有理数。来证明一下,定义 α 对应 A|A' 有理数域上的划分, β 对应 B|B',因为 $\alpha > \beta$,所以有 A 包含 B,所以可以在 A 上取一点有理数 r 它不含于 B,于是它属于 B',使得 $\beta \leq r < \alpha$,从 里面没有最大数 (按照前面的统一),所以把 r 取的大一点就可以把等号去掉. \square

开始进攻戴德金基本定理)

Theorem 1.2. 对于实数域内的任一划分 A|A' 必有产生这划分的实数 β 存在, β 或是下组 A 中最大数, 或是上组 A' 中最小数.

证明. 首先还是先把实数域上的划分规定先拿出来,定义 \mathbf{A} 和 \mathbf{A}' 是两个非空集合,每一个实数必落在 \mathbf{A} 或者 \mathbf{A}' 其中一个里面,且 \mathbf{A} 里面的数都大于 \mathbf{A}' 里面的数.

将 **A** 里面的一切有理数记为 A, **A**' 里面的一切有理数记为 A', 容易证明这样 A|A' 是一个有理数域上划分,划分确定了一个实数 β . 它应该落在 **A** 或者 **A**' 中,假设它落在 **A** 上,则它是 **A** 中的最大数,假设它不是最大数,则还存在一个 α_0 使得 $\alpha_0 > \beta$,根据前面的 lemma 两个实数之间又可以确定一个有理数 $\alpha_0 > r > \beta$,与前提有理数划分的界数矛盾,所以 β 是 **A** 中最大数.

极限论

数列极限

数列,整序傻傻分不清....

Definition 2.1. 若对于每一整数 ε , 不论它怎样小,恒有序号 N, 使在 n>N 时,一切 x_n 的指满足不等式

$$|x_n - a| < \varepsilon$$

,则称常数 a 为整序变量 $x = x_n$ 的极限. a 是整序变量的极限这一事实,记成:

$$\lim x_n = a$$
 或者 $\lim x = a$

,也可以说这个序列收敛于 a

有一个很有趣的几何解释在这里,

以 a 点为中心的线段不论取的多小 (其长度为 2ε), 一切 x_n 点从某点起, 必全部落在这线段之内, 这样在线段之外一定只有有限长度个点了, 表示极限的点 a 表示整序变量的数值的点的凝聚中心.

一元函数

连续函数的性质

Lemma 3.1. E.Borel. 若闭区间 [a,b] 被一个开区间的无穷系 $\sum = \{\sigma\}$ 所覆盖,则恒能从 \sum 里面选出有限子系

$$\sum^* = \sigma_1, \sigma_2, \cdots, \sigma_n,$$

它同样可以覆盖全区间 [a,b].

证明. H.lebesgue's. 定义 x^* 为区间 [a,b] 中使得区间 $[a,x^*]$ 能用有限个区间 σ 来覆盖的点. x^* 肯定是存在,因为 a 就是,只要找一个包含 a 的开区间 σ 就行,这样想的话,又可以找到一群, σ 中接近 a 的都是这样的点.

所以我们的任务是证明 b 也是这样的一个 x^* . 因为一切 $x^* \le b$, 故亦有

$$\sup\{x^*\} = c \le b.$$

,因为 c 也是 [a,b] 中一点,同样可以找到包含它的开区间 $\sigma_0=(\alpha,\beta)$. 但依据上确界的性质,我们还可以找到 x^* 使得 $\alpha < x^* \le c$. 所以现在把 σ_0 来在加到有限个区间 σ 里面去,现在就可以覆盖区间 [a,c],也就是说上确界 c 也是 x^* .

而且 c 是不能小于 b 的,如果 c 小于 b,如果是这样 c 和 β 也可以找到一点 x^* ,这与 c 是上确界矛盾的. 这样,必须有 c = b,即 b 也是属于 x^* . 所以 [a,b] 可以被有限覆盖.

为什么 (a,b) 不是紧致的呢? 考虑 $(a+\frac{b-a}{n},b)$,任何一个 (a,b) 的真子集都可以被它覆盖,但是它不能有限覆盖 (a,b),因为如果有限就意味着我们能找到一个最大的开区间属于 (a,b),实际上这样的开区间并不存在. 但是如果我们加上 a 和 b,这种方式已经无法覆盖 a 和 b 两点了.

Compact means small. It is a peculiar kind of small, but at its heart, compactness is a precise way of being small in the mathematical world. The smallness is peculiar because, as in the example of the open and closed intervals (0,1) and [0,1], a set can be made "smaller" (that is, compact) by adding points to it, and it can be made "larger" (non-compact) by taking points away.