			CH ₃ -CHO एसीटल्डिहाइड	इथेनल
			(इथाइल अल्डिहाइड)	
4.	KETONE	O 		
	(कीटोन)	C		एसीटोन या
	- CO -	CH ₃ -CO-CH ₃	डाईमिथाइल कीटोन	प्रोपेनोन
		C ₂ H ₅ -CO-C ₂ H ₅	(डाईइथाइल कीटोन)	3 – पेंटेनॉन
		CH ₃ -CO-C ₂ H ₅	 इथाईलमिथाईल कीटोन	2 - ब्यूटेनॉन
5.	Ether	—o—		
	ईथर	CH ₃ -O-CH ₃	डाई मिथाइल इथर	मेथॉक्सी मिथेन
		$C_2H_5-O-C_2H_5$	डाई इथाइल इथर	इथोक्सी इथेन
		CH ₃ -O-C ₂ H ₅	इथाइल मिथाइल इथर	
6.	ESTER	0		
	इस्टर			
	-COO-	- C - O -		
		CH ₃ -COO-CH ₃	डाई मिथाइल इस्टर	
		C_2H_5 -COO- C_2H_5	डाई मिथाइल इस्टर	
		H-COO-CH ₃	मिथाइल फॉर्मेट	
7. Carboxylic acid				
	कार्बोक्सिलक	Ö		
	अम्ल	l II		
	-COOH	-C-O-H		

	H-COOH	फार्मिक अम्ल (Formic acid)	मिथेनोइक अम्ल
	CH ₃ -COOH	एसीटिक अम्ल	इथेनोइक अम्ल
8. Amine एमीन -NH ₂	H -N-H		
	CH ₃ -NH ₂	मिथाइल एमीन	मेथोनोमीन
	C ₂ H ₅ -NH ₂	इथाइल एमीन	इथोनोमीन
9. Cynide साइनाइड	-C <u>=</u> N		
-CN	CH₃-CN	मिथाइल साइनाइड	
	C ₂ H ₅ -CN	इथाइल साइनाइड	
10. Nitro Compound नाइट्रो यौगिक	O -N-O		
-NO ₂ -	CH ₃ -NO ₂	नाइट्रोमिथेन	
	C ₂ H ₅ -NO ₂	नाइट्रोईथेन	

23. प्रश्नः – समावयता (ISOMERISM) किसे कहते हैं? उदाहरण देकर समझावें। उत्तर – कार्बनिक यौगिक में पाये जाने वाली वह घटना जिसके अंतर्गत यौगिकों को एक ही अणु सूत्र द्वारा व्यक्त किया जाता है। लेकिन उसके भौतिक एवं रसायनिक गुण भिन्न – भिन्न होत हैं। उसे समावयता कहते हैं ऐसे यौगिकों को समावयवी कहते हैं।

अथवा

कार्बनिक यौगिकों में पाये जाने वाली ऐसी घटना जिसके अंतर्गत यौगिकों को एक ही अणु सूत्र द्वारा व्यक्त किया जाता है, लेकिन उनके संरचना सूत्र भिन्न-भिन्न होते हैं। उसे समावयता कहते हैं। जैसे-ब्युटेन के दो समावयवी होते हैं-

24. प्रश्नः – समजातीय श्रेणी (Homologous Series) किसे कहते हैं? उदाहरण देकर समझावें।

उत्तर – कार्बनिक यौगिकों की वैसी श्रेणी जिसमें यौगिक के अणु – सूत्र भिन्न – भिन्न होते हैं, लेकिन उनके गुणों में समानता पायी जाती है। उसे समजातीय श्रेणी कहते हैं।

$$\begin{array}{c|c}
CH_4 \\
C_2H_6 \\
C_3H_8 \\
C_4H_{10} \\
C_5H_{12}
\end{array}$$
 -- CH_2

25. प्रश्नः – समजातीय श्रेणी के विशेषताओं को लिखें।

उत्तर समजातीय श्रेणी को निम्न विशेषतायें पायी जाती हैं-

- (1) इस श्रेणी के सदस्यों को एक सामान्य सूत्र द्वारा व्यक्त किया जाता है।
- (2) इस श्रेणी के सदस्यों को एक समान विधि द्वारा बनाया जाता है।
- (3) इस श्रेणी के सदस्यों के बीच अणु सूत्र में CH_2 का अंतर पाया जाता है। उनके परमाणु भार में 14 ईकाई का अंतर होता है।
- (4) इस श्रेणी के सदस्यों की रसायनिक प्रतिक्रियायें समान होती हैं।
- 26. प्रश्नः प्रतिक्रियाओं के प्रकारों को लिखे तथा समझावें। उत्तर प्रतिक्रियाओं के प्रकार निम्नलिखित हैं _
 - (i) प्रतिस्थापन प्रतिक्रिया (Subsitution reaction) वैसी रसायनिकप्रतिक्रियायें जिसमें कोई प्रतिकारक किसी यौगिक पर प्रतिक्रिया कर उसमें उपस्थित परमाणु या परमाणु समूह को विस्थापित कर पुनः जुट जाता है। उसे प्रतिस्थापन प्रतिक्रिया कहते हैं। जैसे CH_4 की प्रतिक्रिया जब Cl_2 के साथ करायी जाती है तो मिथाइल क्लोराइड बनता है।

$$\begin{array}{c|c} H & H \\ \hline | & Diffuse \\ H-C-H+Cl_2 & \hline Sunlight & H-C-Cl+HCl \\ \hline \end{array}$$

इस प्रकार की प्रतिक्रियायें सिर्फ संतृप्त हाइड्रोकार्बन में होती है।

(ii) योगशील अभिक्रिया (Addition reaction) - वैसी रसायनिक अभिक्रिया जिसमें कोई प्रतिकारक प्रतिक्रिया के बाद उसमें उपस्थित द्विबंधन (=) या त्रिबंधन (=) को हटाकर पुनः जाता है। उसे योगशील प्रतिक्रिया कहते हैं। जैसे-इथिलीन की प्रतिक्रिया जब Cl_2 के साथ कराते हैं तो डाईक्लोराइथेन

बनता है।
$$Cl Cl$$
 $H-C=C-H+Cl_2 \longrightarrow H-C-C-H+HCl$ $H H H$

इस प्रकार की प्रतिक्रियायें असंतृप्त यौगिकों में होती है।

(iii) बहुलीकरण अभिक्रिया (Polyrization reaction) - वैसी रसायनिक

प्रतिक्रिया

जिसमें एक ही यौगिक का अनेक अणु आपस में संयोग कर एक बड़े अणु का निर्माण करते हैं। उसे बहुलीकरण अभिक्रिया कहते हैं। जैसे-एसीटिलीन गैस को जब लाल तप्त नली से होकर गुजारा जाता है तो $700^{\circ}\text{C}-800^{\circ}\text{C}$ के बीच अभिक्रिया कर के C_2H_2 तीन अणु संयोग कर बेंजिन बनाते हैं।

$$3 C_2 H_2$$
 लाल तप्त ताम्र नली $C_6 H_6$

(iv) किण्वन (Fermentation) - एञ्जाइम की उपस्थिति में किसी कार्बनिक यौगिक के अपघटन की क्रिया किण्वन कहलाती है। यीष्ट किण्वन के सर्वोत्तम उदाहरण है। यीष्ट गन्ने के शक्कर का किण्वन करके अल्कोहल में बदल देता है।

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{\overline{\xi} - \overline{q}C} \to C_6H_{12}O_6 + C_6H_{12}O_6$$
 $C_6H_{12}O_6 \xrightarrow{\overline{\xi} - \overline{q}C} \to 2C_2H_5 - OH + 2CO_2$

(v) भंजन (Cracking) – 500° c- 700° c तक गर्म किये जाने पर उच्च अणु भार वाले एल्केन के अणु सरल अणुओं में टूट जाते हैं। इस प्रकिया को भंजन कहते हैं।

$$C_{12}H_{26}$$
 $\rightarrow C_{7}H_{16} + C_{5}H_{10}$ (डोडीकेन) (हेप्टेन) (पेंटीन)

- **27.** समावयता के प्रकारों को लिखें तथा परिभाषित करें? **उत्तर** समावयता के प्रकार निम्नलिखित हैं:
 - (i) संरचनात्मक समावयता (STRUCTURAL FORMULE)-कार्बनिक यौगिकों के अणु में उपस्थित परमाणुओं एवं परमाणुओं समूह को विभिन्न प्रकार से जुड़े होने के कारण जिस समावयता का निर्माण होता है उसे संरचानात्मक समावयता कहते हैं

इसके प्रकार निम्नलिखिति है:-

- (a) श्रृंखला समावयता (CHAIN ISOMERISM) कार्बन की श्रृंखला में भिन्नता के कारण उत्पन्न होने वाले श्रृंखला को श्रृंखला समावयता कहते हैं।
- (b) त्रिविमीय समावयता-त्रिविम समावयिवों का संरचना सूत्र समान किन्तु