The University of Melbourne School of Computing and Information Systems COMP90020 Distributed Algorithms

Tutorial Week 3: Logical Clocks

Solutions

10.

- LC1: L_i is incremented before each event is issued at process p_i , $L_i := L_i + 1$
- LC2:
 - (a) When a process p_i sends a message m_i , it piggybacks on m the value $t = L_i$
 - (b) On receiving (m, t), a process p_j computes $L_j := max(L_j, t)$ and then applies **LC1** before time stamping the event receive(m)
- $p_0 = (s_1 = 1, s_2 = 2, r_5 = 5)$
- $p_1 = (r_2 = 3, s_5 = 4)$
- $p_2 = (r_1 = 2, a = 3, s_4 = 4, r_3 = 5, r_6 = 8)$
- $p_3 = (s_3 = 1, r_4 = 5, b = 6, s_6 = 7)$
- 11. Concurrent events aren't related by $a \to b$ or $b \to a$. We use a||b to denote concurrent events. In the above example, $L(s_3) < L(a)$ whilst $s_3||a$.

12.

- Consider e and e' are successive events in the same process (LC1) or related to by e = send(m) and e' = recv(m) (LC2), then it must be the case that L(e) < L(e'). (1)
- Now assume $e_i \to e_j \Rightarrow L(e_i) < L(e_j)$ for all connected pairs of events i,j where i < j in a sequence of length N or less. Following, e and e' are connected by a chain of events $e_1, e_2, ..., e_{N+1}$ at $m \geq 1$ processes such that $e = e_1$ and $e' = e_{N+1}$. Then it must be the case that $e \to e_N$, so $L(e) < L(e_N)$ by the induction hypothesis. Then by (LC1) and (LC2), $L(e_N) < L(e')$. Therefore by the transitive property, $L(e) < L(e_N) < L(e'), \forall N > 1$. (2).

Combining (1) and (2): $e \rightarrow e' \Rightarrow L(e) < L(e')$.

13.

- **VC1:** Initially, $V_i[j] = 0$ for i, j = 1, 2, ..., N.
- VC2: Just before p_i timestamps an event, it sets $V_i[i] := V_i[i] + 1$.
- VC3: p_i includes the value $t = V_i$ in every message it sends.
- VC4: When p_i receives a timestamp t in a message, it sets $V_i[j] := max(V_i[j], t[j])$ for j = 1, 2, ..., N. Taking the component wise maximum of the two vector timestamps.
- $p_0 = (s_1 = [1, 0, 0, 0], s_2 = [2, 0, 0, 0], r_5 = [3, 2, 0, 0])$
- $p_1 = (r_2 = [2, 1, 0, 0], s_5 = [2, 2, 0, 0])$

- $p_2 = (r_1 = [1, 0, 1, 0], a = [1, 0, 2, 0], s_4 = [1, 0, 3, 0], r_3 = [1, 0, 4, 1], r_6 = [1, 0, 5, 4])$
- $p_3 = (s_3 = [0, 0, 0, 1], r_4 = [1, 0, 3, 2], b = [1, 0, 3, 3], s_6 = [1, 0, 3, 4])$

14.

- (a) Consider:
 - Initially by VC1, $V_i[j] = 0$ for i, j = 1, 2, ..., N, therefore $V_i[i] \le V_i[i]$
 - Then by VC2, p_i is the source of any increment to V[i]. This occurs before timestamping any event. p_j increments $V_j[i]$ only as it receives messages containing a timestamp with a larger V[i]. Therefore $V_j[i] \leq V_i[i]$ follows.
- (b) This is very similar to *exercise 13* and we can use a similar approach.
 - Consider e and e' are successive events in the same process (VC2), or there is a message such that e = send(m) and e' = recv(m) (VC3,VC4). Then the result follows from VC2-VC4. (1)
 - Now assume $e_i \to e_j V(e_i) < V(e_j)$ for all pairs of events i,j=1,2,...,N where i < j in a sequence of events of length N or less. Following, $e=e_1$ and $e'=e_{N+1}$. Then it must be the case that $e \to e'$, so $V(e) < V(e_N)$ by the induction hypothesis. Then by VC2-VC4, $V(e_N) < V(e')$. Therefore by the transitive property, $V(e) < V(e_N) < V(e')$, $\forall N > 1$. (2)

Combining (1) and (2): $e \rightarrow e' \Rightarrow V(e) < V(e')$.