МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА

Институт радиоэлектроники и информационных технологий Кафедра «Вычислительные системы и технологии»

ОТЧЁТ

по лабораторной работе №1

" РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ С ОДНОЙ НЕИЗВЕСТНОЙ"

по дисциплине

Вычислительная математика

(наименование дисциплины)

	Панкратова А.З.
(подпись)	(фамилия, и.,о.)
СТУДЕНТ:	
	Халеев А.А.
(подпись)	(фамилия, и.,о.)
	21-BM3-4
	(шифр группы)
абота защищена « »	

Нижний Новгород

Тема работы:

Решение нелинейных уравнений с одной неизвестной.

Цель работы:

Изучить численные методы и алгоритмы решения нелинейных уравнений.

Постановка задачи:

Решить нелинейное уравнение с одним неизвестным с использованием трех методов (метод половинного деления, метод Ньютона, метод простой итерации). Задание по вариантам. Точность ε =0.001

Вариант №7:

$$x^3 + 0.2x^2 + 0.5x - 1.2 = 0$$

Шаговый метод

Дано уравнение f(x) = 0. Задан интервал поиска [x0, x1]. Требуется найти интервал [a, b] длиной h, содержащий первый корень уравнения, начиная с левой границы интервала поиска.

Алгоритм метода:

- 1. Установить интервал [a,b] на начало интервала поиска (a=x0).
- 2. Определить координату точки b (b=a+h), а также значения функции в точках a и b: F(a) и F(b).
- 3. Проверить условие F(a)*F(b)<0. Если условие не выполнено передвинуть интервал [a, b] на один шаг (a=b) и перейти к пункту 2. Если условие выполнено закончить алгоритм.

Решение в Excel:

Шаговый метод	
0,8	
0,01	
f(x)	
-0,16000	
-0,13234	
-0,10415	
-0,07543	
-0,04618	
-0,01637	
0,01398	
0,04488	
0,07635	
0,10839	
0,14100	

Программа на Python:

```
def f(x: float) -> float:
    Вычисляет значение функции f(x) = x ** 3 + 0.2 * x ** 2 + 0.5 * x - 1.2
   Параметры:
       х: Значение аргумента функции.
    Возвращаемое значение:
       Значение функции в точке х.
    return x ** 3 + 0.2 * x ** 2 + 0.5 * x - 1.2
def step method(func: callable, start: float, step: float) -> tuple[int, int]:
    Находит отрезок, содержащий корень функции.
   Параметры:
       func: Функция f(x), корень которой необходимо найти.
        start: Начало отрезка поиска.
       step: Шаг при переборе точек на отрезке.
    Возвращаемое значение:
       Кортеж с началом и концом сегмента, содержащего корень функции.
    x0, x1 = start, start + step
   while func(x0) * func(x1) \geq 0:
       x0, x1 = x1, x1 + step
    return round(x0, 2), round(x1, 2)
def main() -> None:
   # Использование методов
    a, b = step method(func=f, start=0.8, step=0.01)
   print(f"Корень уравнения находится на отрезке: [{a:.3f}, {b:.3f}]")
if name == " main ":
   main()
```

Вывод программы:

Таким образом, на отрезке [0.85; 0.86] существует единственный корень уравнения $x^3 + 0.2x^2 + 0.5x - 1.2 = 0$ рассмотренного на интервале [0.80; 0.90].

После того как найден интервал, содержащий корень, применяют итерационные методы уточнения корня с заданной точностью.

Мы разберем следующие методы:

- 1. Метод половинного деления
- 2. Метод Ньютона (метод касательных)
- 3. Метод простой итерации (Якоби)

Метод половинного деления

Метод основан на последовательном сужении интервала, содержащего единственный корень уравнения 0 f(x) = до тех пор, пока не будет достигнута заданная точность ε . Пусть задан отрезок [a, b], содержащий один корень уравнения. Этот отрезок может быть предварительно найден с помощью шагового метода.

Алгоритм метода:

- 1. Определить новое приближение корня x в середине отрезка [a, b]: x = (a + b) / 2.
- 2. Найти значения функции в точках а и х: f(a) и f(x).
- 4. Перейти к пункту 1 и вновь поделить отрезок пополам. Алгоритм продолжить до тех пор, пока не будет выполнено условие $f(x) < \varepsilon$.

Решение в Excel:

Метод половинного деления					
Начальное значение	0,85				
Шаг табуляции	нет				
Точность	0,001				
а	х	b	f(a)	f(x)	f(a)*f(x)<0
0,8500	0,8550	0,8600	-0,0164	-0,0013	HET
0,8550	0,8575	0,8600	-0,0013	0,0063	ДА
0,8550	0,8563	0,8575	-0,0013	0,0025	ДА
0,8550	0,8556	0,8563	-0,0013	0,0006	СТОП

```
def f(x: float) -> float:
    Вычисляет значение функции f(x) = x ** 3 + 0.2 * x ** 2 + 0.5 * x - 1.2
    Параметры:
      х: Значение аргумента функции.
    Возвращаемое значение:
       Значение функции в точке х.
    return x ** 3 + 0.2 * x ** 2 + 0.5 * x - 1.2
def step method(func: callable, start: float, step: float) -> tuple[int, int]:
   Находит отрезок, содержащий корень функции.
   Параметры:
       func: Функция f(x), корень которой необходимо найти.
       start: Начало отрезка поиска.
       step: Шаг при переборе точек на отрезке.
    Возвращаемое значение:
      Кортеж с началом и концом сегмента, содержащего корень функции.
    x0, x1 = start, start + step
    while func(x0) * func(x1) \geq 0:
       x0, x1 = x1, x1 + step
    return round(x0, 2), round(x1, 2)
def bisection method(func: callable, a: float, b: float, epsilon: float) -> float:
    Реализует метод половинного деления для численного решения уравнения
    f(x) = 0 на заданном отрезке [a, b].
   Параметры:
       а: Начало отрезка.
       b: Конец отрезка.
       epsilon: Точность решения.
    Возвращаемое значение:
       Приближенное значение корня уравнения f(x) = 0.
    while abs(func(x := ((a + b) / 2))) >= epsilon:
       if func(x) * func(a) < 0:
           b = x
        else:
           a = x
    return x
def main():
    # Использование методов
   a, b = step method(func=f, start=0.8, step=0.01)
   root bisection = bisection method(f,a, b, epsilon=0.001)
   print(f"Метод половинного деления: {root bisection:.4f}")
if __name__ == "__main_ ":
   main()
```

Вывод программы:

Достоинство метода: более быстрая сходимость к заданной точности, чем у шагового. Недостаток: если на отрезке [a, b] содержится более одного корня, то метод не работает.

Метод Ньютона (метод касательных)

Задан отрезок [a, b], содержащий корень f(x) = 0. Уточнение значения корня производится путем использования уравнения касательной. В качестве начального приближения задается тот из концов отрезка [a, b], где значение функции и ее второй производной имеют одинаковые знаки (т.е. выполняется условие $f(x_0) * f``(x_0) > 0$). В точке $f(x_0)$ строится касательная к кривой y = F(x) и ищется ее пересечение с осью x. Точка пересечения принимается за новую итерацию. Итерационная формула имеет вид:

$$x_{i+1} = x_i - \frac{f(x_i)}{f^1(x_i)}$$

Итерационный процесс продолжается до тех пор, пока не будет выполнено условие:

 $|f(x)| < \varepsilon$, где ε - заданная точность.

Решение в Excel:

X	0,8	0,9
$f(x) = x^3 + 0.2x^2 + 0.5x - 1.2$	-0,16	0,141
$f'(x) = 3x^2 + 0.4x + 0.5$	2,74	3,29
f''(x) = 6x + 0.4	5,2	5,8

Так как в правой точке отрезка вторая производная и значение функции имеют одинаковые знаки, то начальной точкой выбрана правая граница отрезка, содержащего корень: X0 = 0.9

Метод Ньютона		
Начальное значение	0,9	
Шаг табуляции	нет	
Точность	0,001	
$x_{i+1} = x_i - \frac{x_i^3 + 0.2x_i^2 + 0.5x_i - 1.2}{3x_i^2 + 0.4x_i + 0.5}$		
x_{i+1}	$f(x_{i+1})$	
0,9000	0,1410	
0,8571	0,0052478	
0,8554	0,0000082	

Программа на Python:

```
from scipy.misc import derivative
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
def f(x: float) -> float:
    Вычисляет значение функции f(x) = x ** 3 + 0.2 * x ** 2 + 0.5 * x - 1.2
    Параметры:
       х: Значение аргумента функции.
    Возвращаемое значение:
       Значение функции в точке х.
    return x ** 3 + 0.2 * x ** 2 + 0.5 * x - 1.2
def step method(func: callable, start: float, step: float) -> tuple[int, int]:
    Находит отрезок, содержащий корень функции.
    Параметры:
        func: Функция f(x), корень которой необходимо найти.
        start: Начало отрезка поиска.
       step: Шаг при переборе точек на отрезке.
    Возвращаемое значение:
       Кортеж с началом и концом отрезка, содержащего корень функции.
    x0, x1 = start, start + step
    while func(x0) * func(x1) \geq 0:
       x0, x1 = x1, x1 + step
    return x0, x1
def newton method(func: callable, a: float, b: float, epsilon: float) -> float:
    Реализует метод Ньютона (метод касательных)
    для численного решения уравнения f(x) = 0 на заданном отрезке [a, b].
    Параметры:
        func: Функция f(x), корень которой необходимо найти.
        а: Начало отрезка.
        b: Конец отрезка.
       epsilon: Точность решения.
    Возвращаемое значение:
       Приближенное значение корня уравнения f(x) = 0.
    x = a if func(a) * derivative(func, x0=a, n=2) > 0 else b # начальное приближение
    next_value = lambda x: x - func(x) / derivative(func, x0=x) # итерационная формула
    while func(x) >= epsilon:
       x = next value(x)
    return x
def main():
    # Использование методов
    a, b = step method(func=f, start=0.8, step=0.01)
    root_newton = newton_method(f, a, b, epsilon=0.001)
    print(f"Метод Ньютона (метод касательных): {root newton:.4f}")
    _name__ == "__main__":
    main()
```

Вывод программы:

Достоинство метода: очень быстрая сходимость к заданной точности.

Недостаток: громоздкий алгоритм, на каждой итерации необходимо вычислять значение функции и ее первой производной.

Метод простой итерации (Якоби)

Метод основан на замене исходного уравнения f(x) = 0 на эквивалентное $x = \phi(x)$. Функция $\phi(x)$ выбирается таким образом, чтобы на обоих концах отрезка [a, b] выполнялось условие сходимости $|\phi'(x)| < 1$. В этом случае в качестве начального приближения можно выбрать любой из концов отрезка.

Итерационная формула имеет вид:

$$x_{i+1} = \phi(x_i)$$

Итерационный процесс продолжается до тех пор, пока не будет выполнено условие:

$$|f(x)| < \varepsilon$$
, где ε — заданная точность.

На первом этапе нам необходимо выбрать функцию $\phi(x)$, удовлетворяющую условию сходимости.

Исходное уравнение:

$$x^3 + 0.2x^2 + 0.5x - 1.2 = 0$$

Запишем исходное уравнение в виде:

$$x = \sqrt[3]{1.2 - 0.2x^2 - 0.5x}$$

Тогда:

$$\phi(x) = \sqrt[3]{1.2 - 0.2x^2 - 0.5x}$$

$$\phi'(x) = \frac{-0.4x - 0.5}{3(1.2 - 0.2x^2 - 0.5x)^{\frac{2}{3}}}$$

$$\phi'(0.8) \approx 0.0782$$
; $\phi'(0.9) \approx 0.0665$

Условие сходимости выполнено, поскольку |0.0782| < 1 и |0.0665| < 1 Следовательно, итерационная формула имеет вид:

$$x_{i+1} = \sqrt[3]{1.2 - 0.2x_i^2 - 0.5x_i}$$

Решение в Excel:

Метод простой итерации (Якоби)		
Начальное значение	0,8	
Шаг табуляции	нет	
Точность	0,001	
Эквивалентная формула $x_{i+1} = \sqrt[3]{1.2 - 0.2 x_i^2 - 0.5 x_i}$		
$\phi(x_i)$	$f(x_{i+1})$	
0,8759	0,0634	
0,8474	-0,0240	
0,8585	0,0093	
0,8542	-0,0035	
0,8559	0,0014	
0,8552	-0,0005	

Программа на Python:

```
from scipy.misc import derivative
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
def f(x: float) -> float:
    Вычисляет значение функции f(x) = x ** 3 + 0.2 * x ** 2 + 0.5 * x - 1.2
    Параметры:
       х: Значение аргумента функции.
    Возвращаемое значение:
       Значение функции в точке х.
    return x ** 3 + 0.2 * x ** 2 + 0.5 * x - 1.2
def step method(func: callable, start: float, step: float) -> tuple[int, int]:
    Находит отрезок, содержащий корень функции.
    Параметры:
        func: Функция f(x), корень которой необходимо найти.
        start: Начало отрезка поиска.
       step: Шаг при переборе точек на отрезке.
    Возвращаемое значение:
       Кортеж с началом и концом сегмента, содержащего корень функции.
    x0, x1 = start, start + step
    while func(x0) * func(x1) \geq 0:
       x0, x1 = x1, x1 + step
    return round(x0, 2), round(x1, 2)
def simple iteration method(func: callable, a: float, b: float, epsilon: float) -> float:
    Реализует метод простых итераций для численного решения уравнения
      f(x) = 0 на заданном отрезке [a, b].
    Реализовано для функции f(x) = x * * 3 + 0.2 * x * * 2 + 0.5 * x - 1.2 = 0
    Тогда g(x) = (1.2 - 0.2 * x ** 2 - 0.5 * x) ** (1 / 3) является эквивалентной,
     так как g'(x) меньше 1 для обоих концов отрезка
    Параметры:
       а: Начало отрезка.
        epsilon: Точность решения.
    Возвращаемое значение:
       Приближенное значение корня уравнения f(x) = 0.
    g = lambda x: (1.2 - 0.2 * x ** 2 - 0.5 * x) ** (1 / 3)
    if any(derivative(g, x0=point) >= 1 for point in [a, b]):
       raise ValueError ("Условие сходимости не выполнено на заданном отрезке")
    xi = g(a)
    while abs(func(xi)) >= epsilon:
       xi = g(xi)
    return xi
def main():
    # Использование методов
    a, b = step method(func=f, start=0.8, step=0.01)
    root jacobi = simple iteration method(f, a, b, epsilon=0.001)
    print(f"Метод простых итераций (Якоби): {root jacobi:.4f}")
           == "__main__":
    name
    main()
```

Вывод программы:

Достоинство метода: простота алгоритма.

Недостатки: возможные сложности с выбором функции $\phi(x)$; более медленное достижение заданной точности, чем у других методов уточнения.

Вывод:

В данной лабораторной работе были изучены следующие методы численного решения нелинейных уравнений:

- шаговый метод
- метод половинного деления
- метод Ньютона
- метод простых итераций (Якоби)

Также были проведены программные вычисления с помощью MS Excel и языка программирования Python для уравнения, полученного согласно варианту.

Все решения сходятся на заданной точности. В процессе решения были проанализированы особенности, плюсы и минусы каждого из использованных методов.