

Analytical studies

- Investigator does not assign the exposure
 - Makes careful measurement of patterns of exposure and disease in populations
- Comparison group an council of NATIONAL INSTITUTE OF
 - Make inferences about exposure and disease

Cohort study

- Cohort
 - 300 to 600 man unit in Roman Army
- Cohort
 - Group of people sharing some common characteristics (ex. Birth cohort)

NATIONAL INSTITUTE OF

Closed (fixed) and open cohort

- Closed cohort
- Once cohort is enrolled and follow-up begins, no one can be added
- Cohort size always get smaller over time
- Ex: Victims of Bhopal gas tragedy

- Open cohort
- Members can leave, or added in the cohort over time
- Ex: Framingham study

Elements of cohort study

- 1. Selection of study populations
- Gathering baseline information
- 3. Follow-up
- 4. Analysis

Selection of study population

- General population cohorts or a sub-set
 - Framingham heart study
 - Nurses health study
- Special exposure cohorts
 - Occupational groups

Gathering baseline information

- Objective
 - Valid assessment of exposure status of members of cohort
 - Identification data
 - INDIAN COUNCIL OF NATIONAL INSTITUTE OF
 - Exclude individuals having disease at baseline Log
 - Define individuals at risk
 - Obtain data on co-variables (other exposure variables)

Sources of baseline information

- Existing records
 - Hospital records, employment records
- Interviews
 - Personal interviews/mailed questionnaires etc.
- Examinations
 - Medical and other special examination
- Measurement of environment
 - E.g. air pollution, exposure to radiation

Choice of comparison group

- Internal comparison group
 - Unexposed persons in the population
- External comparison group
 - When internal comparison group not available TUTE OF
 - Ex: Observed number of bladder cancer deaths in aniline dye industry compared with expected cases

Follow-up

- Objectives
 - Uniform and complete follow-up of all cohort members
 - Uniform surveillance in exposed and unexposed groups
 - Complete ascertainment of exposures and outcome/s
 - Standardized diagnosis of outcome events

Presentation of the data in a cohort study in a 2 x 2 table

Diseased	Non-diseas	ed	Total	
а	b		a+b	
С	d		c+d	
a+c	b+d		a+b+c+d	
Known at the start of the study				
	с	a b c d a+c b+d	a b c d a+c b+d Known a	a b a+b c d c+d a+c b+d a+b+c+d Known at the start of

Relative risk

द्रेडान क्षेत्र				
	Diseased	Non-diseased	Total	
Exposed	a	b	a+b	
Unexposed	С	d	c+d	
M/5	a+c	b+d	a+b+c+d	UTE (

Incidence of disease in exposed = a/a+b

Incidence of disease in unexposed = c/c+d

Interpreting Relative risk

- RR=1
 - Incidence in exposed and unexposed is same
 - Exposure is not associated with disease
- RR > 1
 - Incidence in exposed is higher than unexposed with the control of the control o
 - Exposure is positively associated with disease
- RR < 1
 - Incidence in exposed is lower than unexposed
 - Exposure is negatively associated with disease

Cohort study – Strengths and weaknesses

- Strengths
 - Allows calculation of incidence
 - Examine multiple outcomes for a given exposure
 - · Clarity of temporal sequence
 - Good for investigating rare exposures

- Weakness
 - May have to follow large numbers of subjects for a long time.
 - Expensive and time consuming. NSTITUTE OF
 - Not good for rare diseases.
 - Not good for diseases with a long latency.
 - Differential loss to follow up can introduce bias.

nie.gov.ir

Odds Ratio Cases (Ca. lung) TE OF Controls (non cancer **Exposure** patients) odds Exposure Outcome icma NIE

Elements of case control study

- Selection of cases 1.
- Selection of controls
- Information on exposure

Analysis 4.

icma NIE

Selection of cases

- All people in source population who develop the disease of interest
 - Sample of cases
 - Independent of the exposure under study INSTITUTE OF
- Clear definition of outcome studied
- Prevalent vs. incident cases
 - Prevalent cases may be related more to survival with disease than to development of disease

Sources of cases

- Hospital/clinic based cases
 - Easier to find
 - May represent severe cases
- Population based (cancer registry) IONAL INSTITUTE OF
 - not biased by factors drawing a patient to a particular hospital

Selection of controls

- Represent the distribution of exposure in the source population of cases
 - Selected from the same source population that gives rise to the cases
- Selected independently of their exposure status

Selection of controls

- Population based
 - Sampling of the general population
- Health care facility based
- Case-based
 - Friends, Neighbourhood

Collecting good data on exposure

- Objectively
 - Reproducibility of exposure measurement
- Accurately
 - Information reflecting as closely as possible the effect of exposure
- Precisely
 - · Quality management in exposure measurement

Presentation of the data of a case-control study in a 2 x 2 table

देखान अ				
	Cases	Controls	Total	
Exposed	а	b	a+b	
Unexposed	С	d	c+d	
	a+c	b+d	a+b+c+d	UTE OF

Known at the start of the study

Odds ratio

	Cases	Controls	Total
Exposed	a 🔨	/ b	a+b
Unexposed	c 🗾	d	c+d
	a+c	b+d	a+b+c+d

Odds that case was exposed =

Odds that control was exposed =

Probability that case was exposed
Probability that case was not exposed

Probability that control was exposed
Probability that control was unexposed

$$\frac{=[(a/a+c)]}{=[(c/a+c)]} = a/c$$

$$\frac{=[(b/b+d)]}{=[(d/b+d)]} = b/d$$

Odds ratio=[a/c]/[b/d] = ad/bc

Interpreting Odds Ratio

- OR=1
 - Odds of exposure among cases and controls are same
 - Exposure is not associated with disease
- OR > 1
 - Odds of exposure among cases are higher than controls
 - Exposure is positively associated with disease
- OR < 1
 - · Odds of exposure among cases are lower than controls
 - Exposure is negatively associated with disease

Case control study: Strengths and weaknesses

- Strengths
 - Good for examining rare outcomes or outcomes with long latency
 - Relatively quick to conduct, inexpensive
 - Requires comparatively few subjects
 - Multiple exposures or risk factors can be examined

- Weaknesses
 - Susceptible to recall bias
 - Selection of an appropriate comparison
 group may be difficult
 - Rates of disease in exposed and unexposed individuals cannot be determined

nie.gov.ir

nie.gov.in