$12a_{1026} (K12a_{1026})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -3u^{12} + 17u^{11} + \dots + 10b - 42, \ 9u^{12} - 46u^{11} + \dots + 40a + 196, \ u^{13} - 6u^{12} + \dots + 52u - 8 \rangle \\ I_2^u &= \langle u^7a - 2u^6a + 8u^5a - 10u^4a + 19u^3a - 12u^2a + 15au + 5b - 4a, \ 4u^6a + u^7 + \dots + 20a - 6, \\ u^8 - 3u^7 + 10u^6 - 18u^5 + 29u^4 - 31u^3 + 27u^2 - 14u + 4 \rangle \\ I_3^u &= \langle 13u^4a^3 - 3u^4a^2 + \dots + 69a - 1, \ -2u^4a^3 - u^4a + \dots + 6a + 2, \ u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1 \rangle \\ I_4^u &= \langle -1.98276 \times 10^{25}a^7u^4 + 9.89103 \times 10^{25}a^6u^4 + \dots - 5.40442 \times 10^{26}a + 1.69204 \times 10^{27}, \\ 2a^7u^4 + 3a^6u^4 + \dots + 299a + 412, \ u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1 \rangle \\ I_5^u &= \langle u^{19} + u^{18} + \dots + 2b + 7, \ 6u^{19} + 26u^{18} + \dots + 26a + 299, \\ u^{20} + 14u^{18} + 83u^{16} + 274u^{14} + 562u^{12} + 767u^{10} + 738u^8 + 519u^6 + 261u^4 + 85u^2 + 13 \rangle \\ I_6^u &= \langle -u^4 + u^3 - 3u^2 + b + 2u - 1, \ u^3 + a + 2u, \ u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle \\ I_7^u &= \langle u^4a + 2u^4 + 4u^2a + 3u^3 - au + 8u^2 + 3b + a + 7u + 5, \\ 2u^4a + u^3a + 6u^2a - u^3 + a^2 + 2au - u^2 + 2a - 3u + 1, \ u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1 \rangle \\ I_8^u &= \langle 2b - u + 1, \ 3a - 2u, \ u^2 + 3 \rangle \\ I_9^u &= \langle b^2 - b + 1, \ a, \ u - 1 \rangle \\ I_1^v &= \langle a, \ b^2 + b + 1, \ v + 1 \rangle \end{split}$$

* 10 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 130 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated

I.
$$I_1^u = \langle -3u^{12} + 17u^{11} + \dots + 10b - 42, \ 9u^{12} - 46u^{11} + \dots + 40a + 196, \ u^{13} - 6u^{12} + \dots + 52u - 8 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.225000u^{12} + 1.15000u^{11} + \dots + 20.4000u - 4.90000 \\ \frac{3}{10}u^{12} - \frac{17}{10}u^{11} + \dots - \frac{91}{5}u + \frac{21}{5} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.175000u^{12} + 0.700000u^{11} + \dots - 0.300000u + 0.300000 \\ 0.650000u^{12} - 3.60000u^{11} + \dots - 35.6000u + 6.60000 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.325000u^{12} - 1.55000u^{11} + \dots - 10.8000u + 2.30000 \\ -\frac{2}{5}u^{12} + \frac{21}{10}u^{11} + \dots + \frac{43}{5}u - \frac{3}{5} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.325000u^{12} + 2.05000u^{11} + \dots + 31.8000u - 7.30000 \\ \frac{1}{5}u^{12} - \frac{4}{5}u^{11} + \dots - \frac{34}{5}u + \frac{9}{5} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.325000u^{12} - 2.05000u^{11} + \dots - 31.8000u + 7.30000 \\ \frac{2}{5}u^{12} - \frac{21}{10}u^{11} + \dots - \frac{73}{5}u + \frac{13}{5} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.475000u^{12} + 2.40000u^{11} + \dots + 25.9000u - 5.90000 \\ \frac{1}{20}u^{12} - \frac{1}{5}u^{11} + \dots - \frac{51}{5}u + \frac{11}{5} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{7}{10}u^{12} - \frac{24}{5}u^{11} + \frac{199}{10}u^{10} - 62u^9 + \frac{722}{5}u^8 - \frac{1386}{5}u^7 + \frac{2109}{5}u^6 - \frac{2659}{5}u^5 + \frac{5333}{10}u^4 - \frac{2156}{5}u^3 + \frac{1341}{5}u^2 - \frac{644}{5}u + \frac{194}{5}$$

in decimal forms when there is not enough margin.

Crossings	u-Polynomials at each crossing		
c_1, c_7	$u^{13} - 11u^{12} + \dots + 107u + 7$		
c_2, c_4, c_8 c_{10}	$u^{13} + u^{12} + 3u^{11} + u^{10} + 9u^9 + 5u^8 + 9u^7 + u^6 + 6u^5 - 2u^3 - u - 1$		
c_3, c_9	$u^{13} - 2u^{12} + \dots + 7u - 24$		
c_5, c_6, c_{11} c_{12}	$u^{13} - 6u^{12} + \dots + 52u - 8$		

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{13} + 3y^{12} + \dots + 15999y - 49$
c_2, c_4, c_8 c_{10}	$y^{13} + 5y^{12} + \dots + y - 1$
c_3, c_9	$y^{13} - 18y^{12} + \dots + 4849y - 576$
c_5, c_6, c_{11} c_{12}	$y^{13} + 14y^{12} + \dots + 208y - 64$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.925588 + 0.229213I		
a = 0.251266 - 0.164394I	-2.64658 + 9.80964I	0.48730 - 9.61538I
b = -0.719509 - 0.945453I		
u = 0.925588 - 0.229213I		
a = 0.251266 + 0.164394I	-2.64658 - 9.80964I	0.48730 + 9.61538I
b = -0.719509 + 0.945453I		
u = -0.012360 + 0.896275I		
a = -0.353446 - 0.826500I	-1.71733 + 1.71633I	2.68735 - 4.73670I
b = -0.562920 - 0.195545I		
u = -0.012360 - 0.896275I		
a = -0.353446 + 0.826500I	-1.71733 - 1.71633I	2.68735 + 4.73670I
b = -0.562920 + 0.195545I		
u = 0.548935 + 1.070790I		
a = -0.33469 + 1.40815I	-6.6253 + 14.6812I	-1.43670 - 9.72736I
b = 0.89400 + 1.20313I		
u = 0.548935 - 1.070790I		
a = -0.33469 - 1.40815I	-6.6253 - 14.6812I	-1.43670 + 9.72736I
b = 0.89400 - 1.20313I		
u = 0.959730 + 0.890724I		
a = 0.549017 - 0.142828I	-4.30776 - 3.71769I	-7.51801 + 8.71663I
b = 0.361184 - 0.750707I		
u = 0.959730 - 0.890724I		
a = 0.549017 + 0.142828I	-4.30776 + 3.71769I	-7.51801 - 8.71663I
b = 0.361184 + 0.750707I		
u = 0.418088		
a = -0.957441	0.881810	11.5670
b = 0.687897		
u = 0.15342 + 1.73647I		
a = -0.13933 - 1.90579I	-16.4057 + 17.5804I	-2.58727 - 8.30259I
b = -0.99446 - 1.40865I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.15342 - 1.73647I		
a = -0.13933 + 1.90579I	-16.4057 - 17.5804I	-2.58727 + 8.30259I
b = -0.99446 + 1.40865I		
u = 0.21564 + 1.85083I		
a = -0.244097 + 0.817556I	-13.97390 + 1.53205I	-8.41618 - 4.24758I
b = 0.177755 + 0.770665I		
u = 0.21564 - 1.85083I		
a = -0.244097 - 0.817556I	-13.97390 - 1.53205I	-8.41618 + 4.24758I
b = 0.177755 - 0.770665I		

$$I_2^u = \langle u^7a - 2u^6a + \dots + 5b - 4a, \ 4u^6a + u^7 + \dots + 20a - 6, \ u^8 - 3u^7 + \dots - 14u + 4 \rangle$$

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u\\u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{5}u^{7}a + \frac{2}{5}u^{6}a + \cdots - 3au + \frac{4}{5}a \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{7}a - \frac{3}{2}u^{6}a + \cdots - 2a + \frac{1}{2}\\-\frac{1}{5}u^{7}a - \frac{1}{2}u^{7} + \cdots + \frac{14}{5}a + 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{5}u^{7}a - \frac{1}{2}u^{7} + \cdots + \frac{9}{5}a + \frac{5}{2}\\\frac{2}{5}u^{7}a + \frac{1}{2}u^{7} + \cdots - \frac{8}{5}a - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{5}u^{7}a - \frac{2}{5}u^{6}a + \cdots + 2au + \frac{1}{5}a\\-au \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{5}u^{7}a - \frac{2}{5}u^{6}a + \cdots + \frac{1}{5}a + \frac{1}{2}\\-\frac{1}{5}u^{7}a - \frac{1}{2}u^{7} + \cdots + \frac{4}{5}a + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1\\-u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{7}{10}u^{7}a - \frac{1}{4}u^{7} + \cdots + \frac{14}{5}a + \frac{3}{2}\\-\frac{4}{5}u^{7}a + \frac{8}{5}u^{6}a + \cdots + \frac{6}{5}a + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^7 + 15u^6 41u^5 + 79u^4 104u^3 + 107u^2 70u + 30$

Crossings	u-Polynomials at each crossing		
c_1, c_7	$u^{16} - 13u^{15} + \dots - 328u + 41$		
c_2, c_4, c_8 c_{10}	$u^{16} + u^{15} + \dots - 2u + 1$		
c_{3}, c_{9}	$(u^8 - u^6 - u^3 + 2u^2 - u + 1)^2$		
c_5, c_6, c_{11} c_{12}	$(u^8 - 3u^7 + 10u^6 - 18u^5 + 29u^4 - 31u^3 + 27u^2 - 14u + 4)^2$		

Crossings	Riley Polynomials at each crossing		
c_{1}, c_{7}	$y^{16} + y^{15} + \dots + 2788y + 1681$		
c_2, c_4, c_8 c_{10}	$y^{16} + 7y^{15} + \dots - 6y + 1$		
c_3, c_9	$(y^8 - 2y^7 + y^6 + 4y^5 - 2y^4 - 3y^3 + 2y^2 + 3y + 1)^2$		
c_5, c_6, c_{11} c_{12}	$(y^8 + 11y^7 + 50y^6 + 124y^5 + 189y^4 + 181y^3 + 93y^2 + 20y + 16)^2$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.673128 + 1.045810I		
a = 0.301794 - 1.174260I	-6.47283 + 5.59386I	-6.60310 - 4.62010I
b = -0.803268 - 1.117440I		
u = 0.673128 + 1.045810I		
a = -0.633138 + 0.444550I	-6.47283 + 5.59386I	-6.60310 - 4.62010I
b = -0.073509 + 0.875041I		
u = 0.673128 - 1.045810I		
a = 0.301794 + 1.174260I	-6.47283 - 5.59386I	-6.60310 + 4.62010I
b = -0.803268 + 1.117440I		
u = 0.673128 - 1.045810I		
a = -0.633138 - 0.444550I	-6.47283 - 5.59386I	-6.60310 + 4.62010I
b = -0.073509 - 0.875041I		
u = 0.504550 + 0.414188I		
a = -0.841060 + 0.591436I	1.86670 + 1.71603I	7.94168 - 3.64767I
b = 0.745591 + 0.724115I		
u = 0.504550 + 0.414188I	4 00000 . 4 540007	-04400 004505
a = -0.275916 - 0.687804I	1.86670 + 1.71603I	7.94168 - 3.64767I
b = -0.631239 + 0.403393I		
u = 0.504550 - 0.414188I	1 00050 1 510007	F 0.41.00 . 0.045057
a = -0.841060 - 0.591436I	1.86670 - 1.71603I	7.94168 + 3.64767I
$\frac{b = 0.745591 - 0.724115I}{u = 0.504550 - 0.414188I}$		
	1.00070 1.710097	7 0 41 00 + 9 0 47 07 1
a = -0.275916 + 0.687804I	1.86670 - 1.71603I	7.94168 + 3.64767I
b = -0.631239 - 0.403393I $u = 0.143098 + 1.398100I$		
a = 0.462450 + 0.187513I	-3.91396 + 3.96633I	6.91340 + 0.89673I
	-0.31030 ± 0.300001	0.91940 + 0.090797
b = 0.412575 - 0.112689I $u = 0.143098 + 1.398100I$		
a = 0.143096 + 1.390100I a = 0.01496 - 1.62294I	-3.91396 + 3.96633I	6.91340 + 0.89673I
	-9.91990 + 9.900991	0.91940 + 0.090731
b = -0.833636 - 1.113530I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.143098 - 1.398100I		
a = 0.462450 - 0.187513I	-3.91396 - 3.96633I	6.91340 - 0.89673I
b = 0.412575 + 0.112689I		
u = 0.143098 - 1.398100I		
a = 0.01496 + 1.62294I	-3.91396 - 3.96633I	6.91340 - 0.89673I
b = -0.833636 + 1.113530I		
u = 0.17922 + 1.74365I		
a = 0.360792 - 1.135170I	-16.1539 + 9.0459I	-5.25198 - 5.62090I
b = -0.251883 - 1.053690I		
u = 0.17922 + 1.74365I		
a = 0.11012 + 1.80963I	-16.1539 + 9.0459I	-5.25198 - 5.62090I
b = 0.93537 + 1.35801I		
u = 0.17922 - 1.74365I		
a = 0.360792 + 1.135170I	-16.1539 - 9.0459I	-5.25198 + 5.62090I
b = -0.251883 + 1.053690I		
u = 0.17922 - 1.74365I		
a = 0.11012 - 1.80963I	-16.1539 - 9.0459I	-5.25198 + 5.62090I
b = 0.93537 - 1.35801I		

III.
$$I_3^u = \langle 13u^4a^3 - 3u^4a^2 + \cdots + 69a - 1, \ -2u^4a^3 - u^4a + \cdots + 6a + 2, \ u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.44444a^{3}u^{4} + 0.333333a^{2}u^{4} + \cdots - 7.66667a + 0.111111 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{2}{9}u^{4}a^{3} + \frac{2}{3}u^{4}a^{2} + \cdots - \frac{1}{3}a - \frac{2}{9} \\ -2.44444a^{3}u^{4} + 2.66667a^{2}u^{4} + \cdots - 17.3333a - 5.55556 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{13}{9}u^{4}a^{3} - \frac{1}{3}u^{4}a^{2} + \cdots + \frac{20}{3}a - \frac{1}{9} \\ -1.22222a^{3}u^{4} + 1.66667a^{2}u^{4} + \cdots - 10.3333a - 2.44444 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.222222a^{3}u^{4} - 1.33333a^{2}u^{4} + \cdots + 3.66667a + 2.55556 \\ -\frac{5}{3}u^{4}a^{3} - u^{4}a^{2} + \cdots - 5a + \frac{8}{3} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1.55556a^{3}u^{4} - 0.333333a^{2}u^{4} + \cdots - 5.33333a + 0.88889 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{5}{9}u^{4}a^{3} + \frac{2}{3}u^{4}a^{2} + \cdots - \frac{7}{3}a - \frac{14}{9} \\ -3u^{4}a^{3} - u^{4}a^{2} + \cdots - a^{2} - 14a \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{40}{3}u^4a^3 + 16a^3u^3 - 16u^4a^2 + \frac{136}{3}a^3u^2 + 32u^4a + \frac{128}{3}a^3u - 48a^2u^2 + 48u^3a + \frac{92}{3}u^4 + \frac{64}{3}a^3 + 8a^2u + 120u^2a + 20u^3 - 16a^2 + 128au + \frac{320}{3}u^2 + 88a + \frac{148}{3}u + \frac{110}{3}u^2 + \frac{1$$

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^2 + u + 1)^{10}$
c_2, c_4, c_8 c_{10}	$u^{20} - u^{19} + \dots + 6u + 1$
c_{3}, c_{9}	$u^{20} - 3u^{19} + \dots - 12u + 21$
c_5, c_6, c_{11} c_{12}	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^4$

Crossings	Riley Polynomials at each crossing		
c_1, c_7	$(y^2 + y + 1)^{10}$		
c_2, c_4, c_8 c_{10}	$y^{20} + 7y^{19} + \dots - 4y + 1$		
c_3, c_9	$y^{20} + 11y^{19} + \dots - 1908y + 441$		
c_5, c_6, c_{11} c_{12}	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^4$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.233677 + 0.885557I		
a = -0.904693 - 0.769663I	-1.81981 + 1.84580I	3.11432 - 2.70531I
b = -0.632026 - 0.556108I		
u = -0.233677 + 0.885557I		
a = -0.963301 - 0.933717I	-1.81981 - 6.27374I	3.11432 + 11.15109I
b = 0.861170 - 0.585785I		
u = -0.233677 + 0.885557I		
a = 0.158195 - 0.630606I	-1.81981 + 1.84580I	3.11432 - 2.70531I
b = -0.252831 + 0.191559I		
u = -0.233677 + 0.885557I		
a = 0.12388 + 2.28034I	-1.81981 - 6.27374I	3.11432 + 11.15109I
b = -0.73445 + 1.53437I		
u = -0.233677 - 0.885557I		
a = -0.904693 + 0.769663I	-1.81981 - 1.84580I	3.11432 + 2.70531I
b = -0.632026 + 0.556108I		
u = -0.233677 - 0.885557I		
a = -0.963301 + 0.933717I	-1.81981 + 6.27374I	3.11432 - 11.15109I
b = 0.861170 + 0.585785I		
u = -0.233677 - 0.885557I		
a = 0.158195 + 0.630606I	-1.81981 - 1.84580I	3.11432 + 2.70531I
b = -0.252831 - 0.191559I		
u = -0.233677 - 0.885557I		
a = 0.12388 - 2.28034I	-1.81981 + 6.27374I	3.11432 - 11.15109I
b = -0.73445 - 1.53437I		
u = -0.416284		
a = -0.354528 + 0.090103I	0.88218 - 4.05977I	11.60884 + 6.92820I
b = 0.805501 - 1.021500I		
u = -0.416284		
a = -0.354528 - 0.090103I	0.88218 + 4.05977I	11.60884 - 6.92820I
b = 0.805501 + 1.021500I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.416284		
a = 1.45208 + 1.99112I	0.88218 + 4.05977I	11.60884 - 6.92820I
b = -0.482901 - 0.462743I		
u = -0.416284		
a = 1.45208 - 1.99112I	0.88218 - 4.05977I	11.60884 + 6.92820I
b = -0.482901 + 0.462743I		
u = -0.05818 + 1.69128I		
a = 0.073865 + 1.064830I	-10.95830 - 7.39151I	2.08126 + 9.29048I
b = -1.074080 + 0.655525I		
u = -0.05818 + 1.69128I		
a = 0.686831 - 0.325631I	-10.95830 + 0.72802I	2.08126 - 4.56592I
b = 1.137160 - 0.408183I		
u = -0.05818 + 1.69128I		
a = 0.37758 + 1.42971I	-10.95830 + 0.72802I	2.08126 - 4.56592I
b = 0.113419 + 0.766429I		
u = -0.05818 + 1.69128I		
a = 0.35009 - 2.53868I	-10.95830 - 7.39151I	2.08126 + 9.29048I
b = 0.75904 - 1.91768I		
u = -0.05818 - 1.69128I		
a = 0.073865 - 1.064830I	-10.95830 + 7.39151I	2.08126 - 9.29048I
b = -1.074080 - 0.655525I		
u = -0.05818 - 1.69128I		
a = 0.686831 + 0.325631I	-10.95830 - 0.72802I	2.08126 + 4.56592I
b = 1.137160 + 0.408183I		
u = -0.05818 - 1.69128I		
a = 0.37758 - 1.42971I	-10.95830 - 0.72802I	2.08126 + 4.56592I
b = 0.113419 - 0.766429I		
u = -0.05818 - 1.69128I		
a = 0.35009 + 2.53868I	-10.95830 + 7.39151I	2.08126 - 9.29048I
b = 0.75904 + 1.91768I		

IV.
$$I_4^u = \langle -1.98 \times 10^{25} a^7 u^4 + 9.89 \times 10^{25} a^6 u^4 + \dots - 5.40 \times 10^{26} a + 1.69 \times 10^{27}, \ 2a^7 u^4 + 3a^6 u^4 + \dots + 299a + 412, \ u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0231630a^{7}u^{4} - 0.115549a^{6}u^{4} + \dots + 0.631354a - 1.97668 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0274758a^{7}u^{4} + 0.111775a^{6}u^{4} + \dots - 1.19459a + 5.60018 \\ -0.0428376a^{7}u^{4} + 0.165420a^{6}u^{4} + \dots + 0.718981a + 9.06528 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0396479a^{7}u^{4} + 0.0263946a^{6}u^{4} + \dots + 0.718981a + 9.06528 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0396479a^{7}u^{4} + 0.0263946a^{6}u^{4} + \dots + 1.43917a + 0.579745 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.000834185a^{7}u^{4} - 0.0524429a^{6}u^{4} + \dots + 1.43917a + 0.579745 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.000834185a^{7}u^{4} - 0.110753a^{6}u^{4} + \dots + 2.14641a - 3.25800 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.00657335a^{7}u^{4} - 0.0196410a^{6}u^{4} + \dots - 3.57265a - 4.76746 \\ 0.0175399a^{7}u^{4} - 0.111532a^{6}u^{4} + \dots + 1.18704a + 0.722514 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.105247a^{7}u^{4} + 0.0542594a^{6}u^{4} + \dots - 3.18898a - 6.29722 \\ 0.0451415a^{7}u^{4} + 0.205954a^{6}u^{4} + \dots - 1.91313a + 1.74778 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^4 + u^3 - 2u + 1)^{10}$
c_2, c_4, c_8 c_{10}	$u^{40} + u^{39} + \dots - 708u + 2217$
c_3, c_9	$(u^{20} + u^{19} + \dots + 40u + 343)^2$
c_5, c_6, c_{11} c_{12}	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^8$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^4 - y^3 + 6y^2 - 4y + 1)^{10}$
c_2, c_4, c_8 c_{10}	$y^{40} + 13y^{39} + \dots + 124590744y + 4915089$
c_{3}, c_{9}	$(y^{20} - 25y^{19} + \dots - 1012764y + 117649)^2$
c_5, c_6, c_{11} c_{12}	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^8$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.233677 + 0.885557I		
a = -0.784642 - 0.791408I	-5.10967 + 1.84580I	-8.88568 - 2.70531I
b = -0.009371 - 1.153560I		
u = -0.233677 + 0.885557I		
a = -0.367052 - 1.285790I	-5.10967 + 1.84580I	-8.88568 - 2.70531I
b = -1.25398 - 1.03539I		
u = -0.233677 + 0.885557I		
a = 1.35477 + 0.43992I	-5.10967 + 1.84580I	-8.88568 - 2.70531I
b = 0.139544 + 0.771173I		
u = -0.233677 + 0.885557I		
a = 1.03773 + 1.17397I	-5.10967 - 6.27374I	-8.8857 + 11.1511I
b = 1.63591 + 1.17695I		
u = -0.233677 + 0.885557I		
a = -0.43815 - 1.52704I	-5.10967 - 6.27374I	-8.8857 + 11.1511I
b = 0.99956 - 1.23269I		
u = -0.233677 + 0.885557I		
a = 0.98322 + 1.91625I	-5.10967 - 6.27374I	-8.8857 + 11.1511I
b = -0.596618 + 1.204390I		
u = -0.233677 + 0.885557I		
a = 0.72926 - 2.45624I	-5.10967 + 1.84580I	-8.88568 - 2.70531I
b = -0.014486 - 0.843941I		
u = -0.233677 + 0.885557I		
a = -0.92923 + 2.58398I	-5.10967 - 6.27374I	-8.8857 + 11.1511I
b = -0.142425 + 0.529033I		
u = -0.233677 - 0.885557I		
a = -0.784642 + 0.791408I	-5.10967 - 1.84580I	-8.88568 + 2.70531I
b = -0.009371 + 1.153560I		
u = -0.233677 - 0.885557I		
a = -0.367052 + 1.285790I	-5.10967 - 1.84580I	-8.88568 + 2.70531I
b = -1.25398 + 1.03539I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.233677 - 0.885557I		
a = 1.35477 - 0.43992I	-5.10967 - 1.84580I	-8.88568 + 2.70531I
b = 0.139544 - 0.771173I		
u = -0.233677 - 0.885557I		
a = 1.03773 - 1.17397I	-5.10967 + 6.27374I	-8.8857 - 11.1511I
b = 1.63591 - 1.17695I		
u = -0.233677 - 0.885557I		
a = -0.43815 + 1.52704I	-5.10967 + 6.27374I	-8.8857 - 11.1511I
b = 0.99956 + 1.23269I		
u = -0.233677 - 0.885557I		
a = 0.98322 - 1.91625I	-5.10967 + 6.27374I	-8.8857 - 11.1511I
b = -0.596618 - 1.204390I		
u = -0.233677 - 0.885557I		
a = 0.72926 + 2.45624I	-5.10967 - 1.84580I	-8.88568 + 2.70531I
b = -0.014486 + 0.843941I		
u = -0.233677 - 0.885557I		
a = -0.92923 - 2.58398I	-5.10967 + 6.27374I	-8.8857 - 11.1511I
b = -0.142425 - 0.529033I		
u = -0.416284		
a = -1.12225 + 1.12774I	-2.40769 - 4.05977I	-0.39116 + 6.92820I
b = 0.411711 - 1.062380I		
u = -0.416284		
a = -1.12225 - 1.12774I	-2.40769 + 4.05977I	-0.39116 - 6.92820I
b = 0.411711 + 1.062380I		
u = -0.416284		
a = 0.35045 + 1.64035I	-2.40769 + 4.05977I	-0.39116 - 6.92820I
b = -0.638561 - 0.911711I		
u = -0.416284		
a = 0.35045 - 1.64035I	-2.40769 - 4.05977I	-0.39116 + 6.92820I
b = -0.638561 + 0.911711I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.416284		
a = 0.82181 + 2.33488I	-2.40769 + 4.05977I	-0.39116 - 6.92820I
b = -0.750115 + 0.948474I		
u = -0.416284		
a = 0.82181 - 2.33488I	-2.40769 - 4.05977I	-0.39116 + 6.92820I
b = -0.750115 - 0.948474I		
u = -0.416284		
a = -1.14757 + 2.85557I	-2.40769 + 4.05977I	-0.39116 - 6.92820I
b = 0.654365 + 0.577136I		
u = -0.416284		
a = -1.14757 - 2.85557I	-2.40769 - 4.05977I	-0.39116 + 6.92820I
b = 0.654365 - 0.577136I		
u = -0.05818 + 1.69128I		
a = -0.575468 - 1.023550I	-14.2482 + 0.7280I	-9.91874 - 4.56592I
b = 0.243518 - 0.838061I		
u = -0.05818 + 1.69128I		
a = 0.13851 + 1.50113I	-14.2482 + 0.7280I	-9.91874 - 4.56592I
b = -0.36137 + 1.37434I		
u = -0.05818 + 1.69128I		
a = -0.52468 + 1.82556I	-14.2482 + 0.7280I	-9.91874 - 4.56592I
b = 0.344459 + 0.817677I		
u = -0.05818 + 1.69128I		
a = -0.44379 + 1.84920I	-14.2482 - 7.3915I	-9.91874 + 9.29048I
b = -1.25771 + 1.45285I		
u = -0.05818 + 1.69128I		
a = 0.71144 - 1.93489I	-14.2482 - 7.3915I	-9.91874 + 9.29048I
b = -0.103995 - 0.622502I		
u = -0.05818 + 1.69128I		
a = -0.16586 - 2.06676I	-14.2482 - 7.3915I	-9.91874 + 9.29048I
b = 0.71770 - 1.35351I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.05818 + 1.69128I		
a = 1.17815 + 1.74863I	-14.2482 + 0.7280I	-9.91874 - 4.56592I
b = 1.65404 + 1.52859I		
u = -0.05818 + 1.69128I		
a = -1.80666 - 1.52955I	-14.2482 - 7.3915I	-9.91874 + 9.29048I
b = -2.17218 - 1.45548I		
u = -0.05818 - 1.69128I		
a = -0.575468 + 1.023550I	-14.2482 - 0.7280I	-9.91874 + 4.56592I
b = 0.243518 + 0.838061I		
u = -0.05818 - 1.69128I		
a = 0.13851 - 1.50113I	-14.2482 - 0.7280I	-9.91874 + 4.56592I
b = -0.36137 - 1.37434I		
u = -0.05818 - 1.69128I		
a = -0.52468 - 1.82556I	-14.2482 - 0.7280I	-9.91874 + 4.56592I
b = 0.344459 - 0.817677I		
u = -0.05818 - 1.69128I		
a = -0.44379 - 1.84920I	-14.2482 + 7.3915I	-9.91874 - 9.29048I
b = -1.25771 - 1.45285I		
u = -0.05818 - 1.69128I		
a = 0.71144 + 1.93489I	-14.2482 + 7.3915I	-9.91874 - 9.29048I
b = -0.103995 + 0.622502I		
u = -0.05818 - 1.69128I		
a = -0.16586 + 2.06676I	-14.2482 + 7.3915I	-9.91874 - 9.29048I
b = 0.71770 + 1.35351I		
u = -0.05818 - 1.69128I		
a = 1.17815 - 1.74863I	-14.2482 - 0.7280I	-9.91874 + 4.56592I
b = 1.65404 - 1.52859I		
u = -0.05818 - 1.69128I		
a = -1.80666 + 1.52955I	-14.2482 + 7.3915I	-9.91874 - 9.29048I
b = -2.17218 + 1.45548I		

V.
$$I_5^u = \langle u^{19} + u^{18} + \dots + 2b + 7, \ 6u^{19} + 26u^{18} + \dots + 26a + 299, \ u^{20} + 14u^{18} + \dots + 85u^2 + 13 \rangle$$

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u\\u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{3}{13}u^{19} - u^{18} + \dots - \frac{263}{26}u - \frac{23}{2}\\ -\frac{1}{2}u^{19} - \frac{1}{2}u^{18} + \dots - 8u - \frac{7}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.30769u^{19} - 0.500000u^{18} + \dots + 16.6538u - 5.50000\\ \frac{1}{2}u^{19} - u^{18} + \dots + 4u - \frac{21}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{19}{26}u^{19} - \frac{1}{2}u^{18} + \dots + \frac{393}{26}u - 2\\ -\frac{3}{2}u^{18} + \frac{1}{2}u^{17} + \dots + \frac{9}{2}u - 16 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{19}{26}u^{19} - \frac{1}{2}u^{18} + \dots - \frac{177}{13}u - 5\\ -u^{19} - 13u^{17} + \dots - \frac{23}{2}u + 3 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{19}{26}u^{19} - \frac{1}{2}u^{18} + \dots + \frac{177}{13}u - 5\\ -\frac{1}{2}u^{19} - \frac{1}{2}u^{18} + \dots - 2u - \frac{19}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1\\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{4}{13}u^{19} - u^{18} + \dots - \frac{93}{13}u - 13\\ -\frac{1}{2}u^{19} - \frac{13}{2}u^{17} + \dots - \frac{19}{2}u + 4 \end{pmatrix}$$

(ii) Obstruction class = 1

$$= 6u^{18} + 72u^{16} + 352u^{14} + 914u^{12} + 1408u^{10} + 1415u^8 + 1015u^6 + 512u^4 + 158u^2 + 15u^8 + 1015u^8 + 1015u^8$$

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{20} - 8u^{19} + \dots + 2u + 1$
c_2, c_4, c_8 c_{10}	$u^{20} - 2u^{19} + \dots - 4u + 1$
c_3,c_9	$(u^{10} - u^9 - 3u^8 + 3u^7 + 7u^6 - 4u^5 - 8u^4 - u^3 + 5u^2 + 3u - 1)^2$
c_5, c_6, c_{11} c_{12}	$u^{20} + 14u^{18} + \dots + 85u^2 + 13$

Crossings	Riley Polynomials at each crossing
c_{1}, c_{7}	$y^{20} + 14y^{18} + \dots - 16y + 1$
c_2, c_4, c_8 c_{10}	$y^{20} + 8y^{19} + \dots + 4y + 1$
c_3, c_9	$(y^{10} - 7y^9 + \dots - 19y + 1)^2$
c_5, c_6, c_{11} c_{12}	$(y^{10} + 14y^9 + \dots + 85y + 13)^2$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.292954 + 0.839226I		
a = -0.45802 + 1.38942I	-4.45321 + 5.61478I	-0.94997 - 3.81742I
b = -0.699531 + 0.471567I		
u = 0.292954 - 0.839226I		
a = -0.45802 - 1.38942I	-4.45321 - 5.61478I	-0.94997 + 3.81742I
b = -0.699531 - 0.471567I		
u = -0.292954 + 0.839226I		
a = -0.76762 - 1.54520I	-4.45321 - 5.61478I	-0.94997 + 3.81742I
b = 0.759941 - 1.172910I		
u = -0.292954 - 0.839226I		
a = -0.76762 + 1.54520I	-4.45321 + 5.61478I	-0.94997 - 3.81742I
b = 0.759941 + 1.172910I		
u = -0.578949 + 0.658786I		
a = -0.825562 + 0.060286I	-3.49395 + 2.59792I	-3.58756 - 3.56344I
b = -0.321887 - 0.870956I		
u = -0.578949 - 0.658786I		
a = -0.825562 - 0.060286I	-3.49395 - 2.59792I	-3.58756 + 3.56344I
b = -0.321887 + 0.870956I		
u = 0.578949 + 0.658786I		
a = 0.944411 - 0.622307I	-3.49395 - 2.59792I	-3.58756 + 3.56344I
b = 0.575029 - 0.074063I		
u = 0.578949 - 0.658786I		
a = 0.944411 + 0.622307I	-3.49395 + 2.59792I	-3.58756 - 3.56344I
b = 0.575029 + 0.074063I		
u = 0.701594I		
a = -1.19157 - 1.33290I	-4.42214	-6.61610
b = 0.233625 - 0.999908I		
u = -0.701594I		
a = -1.19157 + 1.33290I	-4.42214	-6.61610
b = 0.233625 + 0.999908I		

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.060025 + 1.313210I		
a = 0.544429 + 0.310811I	-4.33175 + 4.31090I	-5.13581 - 8.57420I
b = 0.198498 + 0.446154I		
u = 0.060025 - 1.313210I		
a = 0.544429 - 0.310811I	-4.33175 - 4.31090I	-5.13581 + 8.57420I
b = 0.198498 - 0.446154I		
u = -0.060025 + 1.313210I		
a = -0.11611 - 1.73797I	-4.33175 - 4.31090I	-5.13581 + 8.57420I
b = 0.80084 - 1.17005I		
u = -0.060025 - 1.313210I		
a = -0.11611 + 1.73797I	-4.33175 + 4.31090I	-5.13581 - 8.57420I
b = 0.80084 + 1.17005I		
u = -0.06323 + 1.68896I		
a = -0.12947 + 1.91613I	-13.4730 + 6.8978I	-0.54611 + 3.29895I
b = -0.96456 + 1.37630I		
u = -0.06323 - 1.68896I		
a = -0.12947 - 1.91613I	-13.4730 - 6.8978I	-0.54611 - 3.29895I
b = -0.96456 - 1.37630I		
u = 0.06323 + 1.68896I		
a = 0.48519 - 1.38402I	-13.4730 - 6.8978I	-0.54611 - 3.29895I
b = 0.942552 - 0.808832I		
u = 0.06323 - 1.68896I		
a = 0.48519 + 1.38402I	-13.4730 + 6.8978I	-0.54611 + 3.29895I
b = 0.942552 + 0.808832I		
u = 1.71295I		
a = 0.014324 + 1.229180I	-13.1612	-2.94490
b = -0.524504 + 0.922982I		
u = -1.71295I		
a = 0.014324 - 1.229180I	-13.1612	-2.94490
b = -0.524504 - 0.922982I		

$$VI. \\ I_6^u = \langle -u^4 + u^3 - 3u^2 + b + 2u - 1, \ u^3 + a + 2u, \ u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{3} + 3u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} - 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} - 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^4 4u^3 + 16u^2 12u + 14u^3 + 16u^3 12u + 16u^3$

Crossings	u-Polynomials at each crossing
c_1, c_7	u^5
c_2, c_3, c_4 c_8, c_9, c_{10}	$u^5 - u^4 + u^2 + u - 1$
c_5, c_6, c_{11} c_{12}	$u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_7	y^5
$c_2, c_3, c_4 \\ c_8, c_9, c_{10}$	$y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1$
c_5, c_6, c_{11} c_{12}	$y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.233677 + 0.885557I		
a = 0.069642 - 1.221720I	-1.81981 + 2.21397I	3.11432 - 4.22289I
b = -0.758138 - 0.584034I		
u = 0.233677 - 0.885557I		
a = 0.069642 + 1.221720I	-1.81981 - 2.21397I	3.11432 + 4.22289I
b = -0.758138 + 0.584034I		
u = 0.416284		
a = -0.904706	0.882183	11.6090
b = 0.645200		
u = 0.05818 + 1.69128I		
a = 0.38271 + 1.43804I	-10.95830 + 3.33174I	2.08126 - 2.36228I
b = 0.935538 + 0.903908I		
u = 0.05818 - 1.69128I		
a = 0.38271 - 1.43804I	-10.95830 - 3.33174I	2.08126 + 2.36228I
b = 0.935538 - 0.903908I		

VII.
$$I_7^u = \langle u^4 a + 2 u^4 + \dots + a + 5, \ 2 u^4 a + u^3 a + \dots + 2 a + 1, \ u^5 + u^4 + 4 u^3 + 3 u^2 + 3 u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{3}u^{4}a - \frac{2}{3}u^{4} + \dots - \frac{1}{3}a - \frac{5}{3} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{3}u^{4}a + \frac{4}{3}u^{4} + \dots + \frac{2}{3}a + \frac{7}{3} \\ -\frac{1}{3}u^{4}a + \frac{1}{3}u^{4} + \dots + \frac{2}{3}a - \frac{2}{3} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{3}u^{4}a + \frac{4}{3}u^{4} + \dots + \frac{2}{3}a - \frac{7}{3} \\ -\frac{1}{3}u^{4}a + \frac{1}{3}u^{4} + \dots + \frac{4}{3}a - \frac{1}{3} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{3}u^{4}a - \frac{1}{3}u^{4} + \dots + \frac{4}{3}a - \frac{1}{3} \\ -u^{4} - 2u^{3} + au - 4u^{2} - 4u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{3}u^{4}a + \frac{5}{3}u^{4} + \dots + \frac{4}{3}a + \frac{8}{3} \\ -\frac{1}{3}u^{4}a + \frac{1}{3}u^{4} + \dots - \frac{1}{3}a - \frac{2}{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{3}u^{4}a - \frac{1}{3}u^{4} + \dots + \frac{4}{3}a + \frac{2}{3} \\ -2u^{4} - 2u^{3} + au - 6u^{2} - 4u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^4 + 4u^3 + 16u^2 + 12u + 2$

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u+1)^{10}$
c_2, c_4, c_8 c_{10}	$u^{10} + u^9 + 4u^8 + 16u^6 + 2u^5 + 19u^4 + 3u^3 + 12u^2 + 2u + 3$
c_{3}, c_{9}	$(u^5 + u^4 - u^2 + u + 1)^2$
c_5, c_6, c_{11} c_{12}	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y-1)^{10}$
c_2, c_4, c_8 c_{10}	$y^{10} + 7y^9 + \dots + 68y + 9$
c_{3}, c_{9}	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)^2$
c_5, c_6, c_{11} c_{12}	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^2$

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.233677 + 0.885557I		
a = 0.128608 - 1.279670I	-5.10967 - 2.21397I	-8.88568 + 4.22289I
b = 0.92954 - 1.29747I		
u = -0.233677 + 0.885557I		
a = 1.45731 + 1.33332I	-5.10967 - 2.21397I	-8.88568 + 4.22289I
b = -0.171405 + 0.713431I		
u = -0.233677 - 0.885557I		
a = 0.128608 + 1.279670I	-5.10967 + 2.21397I	-8.88568 - 4.22289I
b = 0.92954 + 1.29747I		
u = -0.233677 - 0.885557I		
a = 1.45731 - 1.33332I	-5.10967 + 2.21397I	-8.88568 - 4.22289I
b = -0.171405 - 0.713431I		
u = -0.416284		
a = -1.09755 + 0.97112I	-2.40769	-0.391160
b = -0.322600 - 0.692564I		
u = -0.416284		
a = -1.09755 - 0.97112I	-2.40769	-0.391160
b = -0.322600 + 0.692564I		
u = -0.05818 + 1.69128I		
a = -0.68121 - 1.55202I	-14.2482 - 3.3317I	-9.91874 + 2.36228I
b = 0.363268 - 0.820011I		
u = -0.05818 + 1.69128I		
a = -0.80715 + 1.92179I	-14.2482 - 3.3317I	-9.91874 + 2.36228I
b = -1.29881 + 1.72392I		
u = -0.05818 - 1.69128I		
a = -0.68121 + 1.55202I	-14.2482 + 3.3317I	-9.91874 - 2.36228I
b = 0.363268 + 0.820011I		
u = -0.05818 - 1.69128I		
a = -0.80715 - 1.92179I	-14.2482 + 3.3317I	-9.91874 - 2.36228I
b = -1.29881 - 1.72392I		

VIII.
$$I_8^u = \langle 2b - u + 1, \ 3a - 2u, \ u^2 + 3 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} \frac{2}{3}u\\ \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -\frac{1}{3}u \\ -\frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_2 = \begin{pmatrix} \frac{5}{6}u - \frac{1}{2} \\ u - 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} \frac{1}{6}u - \frac{3}{2} \\ -2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -\frac{1}{6}u - \frac{3}{2} \\ -\frac{1}{2}u - \frac{5}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -2u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{6}u + \frac{1}{2} \\ -\frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -3

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^2 - u + 1$
c_2, c_4, c_8 c_{10}	$u^2 + u + 1$
c_3, c_9	$(u+1)^2$
c_5, c_6, c_{11} c_{12}	$u^2 + 3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \\ c_7, c_8, c_{10}$	$y^2 + y + 1$
c_{3}, c_{9}	$(y-1)^2$
c_5, c_6, c_{11} c_{12}	$(y+3)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_8^u		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.73205I		
a =	1.154700I	-13.1595	-3.00000
b = -0.500000	0 + 0.866025I		
u =	-1.73205I		
a =	$-\ 1.154700I$	-13.1595	-3.00000
b = -0.500000	0 - 0.866025I		

IX.
$$I_9^u = \langle b^2 - b + 1, \ a, \ u - 1 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ b-1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} b-1\\ -2b+2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -b \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -b+1 \\ b-1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\2 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} b-1\\-b+2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -3

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{7}	$u^2 - 3u + 3$
c_2, c_4, c_8 c_{10}	$u^2 - u + 1$
c_3, c_9	$(u+1)^2$
c_5, c_6, c_{11} c_{12}	$(u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^2 - 3y + 9$
c_2, c_4, c_8 c_{10}	$y^2 + y + 1$
$c_3, c_5, c_6 \\ c_9, c_{11}, c_{12}$	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_9^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	0	-3.28987	-3.00000
b =	0.500000 + 0.866025I		
u =	1.00000		
a =	0	-3.28987	-3.00000
b =	0.500000 - 0.866025I		

X.
$$I_1^v = \langle a, b^2 + b + 1, v + 1 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -b-1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} b \\ -b \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -b \\ b \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ b+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8b + 4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_1, c_3, c_7 c_9	$u^2 - u + 1$	
c_2, c_4, c_8 c_{10}	$u^2 + u + 1$	
c_5, c_6, c_{11} c_{12}	u^2	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_7, c_8 c_9, c_{10}	$y^2 + y + 1$	
c_5, c_6, c_{11} c_{12}	y^2	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000 $a = 0$	-4.05977I	0. + 6.92820I
b = -0.500000 + 0.866025I		
v = -1.00000		
a = 0	4.05977I	0 6.92820I
b = -0.500000 - 0.866025I		

XI. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1, c_7	$u^{5}(u+1)^{10}(u^{2}-3u+3)(u^{2}-u+1)^{2}(u^{2}+u+1)^{10}$ $\cdot ((u^{4}+u^{3}-2u+1)^{10})(u^{13}-11u^{12}+\cdots+107u+7)$ $\cdot (u^{16}-13u^{15}+\cdots-328u+41)(u^{20}-8u^{19}+\cdots+2u+1)$	
c_2, c_4, c_8 c_{10}	$(u^{2} - u + 1)(u^{2} + u + 1)^{2}(u^{5} - u^{4} + u^{2} + u - 1)$ $\cdot (u^{10} + u^{9} + 4u^{8} + 16u^{6} + 2u^{5} + 19u^{4} + 3u^{3} + 12u^{2} + 2u + 3)$ $\cdot (u^{13} + u^{12} + 3u^{11} + u^{10} + 9u^{9} + 5u^{8} + 9u^{7} + u^{6} + 6u^{5} - 2u^{3} - u - 1)$ $\cdot (u^{16} + u^{15} + \dots - 2u + 1)(u^{20} - 2u^{19} + \dots - 4u + 1)$ $\cdot (u^{20} - u^{19} + \dots + 6u + 1)(u^{40} + u^{39} + \dots - 708u + 2217)$	
c_3,c_9	$(u+1)^{4}(u^{2}-u+1)(u^{5}-u^{4}+u^{2}+u-1)(u^{5}+u^{4}-u^{2}+u+1)^{2}$ $\cdot (u^{8}-u^{6}-u^{3}+2u^{2}-u+1)^{2}$ $\cdot (u^{10}-u^{9}-3u^{8}+3u^{7}+7u^{6}-4u^{5}-8u^{4}-u^{3}+5u^{2}+3u-1)^{2}$ $\cdot (u^{13}-2u^{12}+\cdots+7u-24)(u^{20}-3u^{19}+\cdots-12u+21)$ $\cdot (u^{20}+u^{19}+\cdots+40u+343)^{2}$	
c_5, c_6, c_{11} c_{12}	$u^{2}(u-1)^{2}(u^{2}+3)(u^{5}-u^{4}+4u^{3}-3u^{2}+3u-1)$ $\cdot (u^{5}+u^{4}+4u^{3}+3u^{2}+3u+1)^{14}$ $\cdot (u^{8}-3u^{7}+10u^{6}-18u^{5}+29u^{4}-31u^{3}+27u^{2}-14u+4)^{2}$ $\cdot (u^{13}-6u^{12}+\cdots+52u-8)(u^{20}+14u^{18}+\cdots+85u^{2}+13)$	

XII. Riley Polynomials

Crossings	Riley Polynomials at each crossing		
c_1, c_7	$y^{5}(y-1)^{10}(y^{2}-3y+9)(y^{2}+y+1)^{12}(y^{4}-y^{3}+6y^{2}-4y+1)^{10}$ $\cdot (y^{13}+3y^{12}+\cdots+15999y-49)(y^{16}+y^{15}+\cdots+2788y+1681)$ $\cdot (y^{20}+14y^{18}+\cdots-16y+1)$		
c_2, c_4, c_8 c_{10}	$((y^{2} + y + 1)^{3})(y^{5} - y^{4} + \dots + 3y - 1)(y^{10} + 7y^{9} + \dots + 68y + 9)$ $\cdot (y^{13} + 5y^{12} + \dots + y - 1)(y^{16} + 7y^{15} + \dots - 6y + 1)$ $\cdot (y^{20} + 7y^{19} + \dots - 4y + 1)(y^{20} + 8y^{19} + \dots + 4y + 1)$ $\cdot (y^{40} + 13y^{39} + \dots + 124590744y + 4915089)$		
c_3,c_9	$(y-1)^{4}(y^{2}+y+1)(y^{5}-y^{4}+4y^{3}-3y^{2}+3y-1)^{3}$ $\cdot (y^{8}-2y^{7}+y^{6}+4y^{5}-2y^{4}-3y^{3}+2y^{2}+3y+1)^{2}$ $\cdot ((y^{10}-7y^{9}+\cdots-19y+1)^{2})(y^{13}-18y^{12}+\cdots+4849y-576)$ $\cdot (y^{20}-25y^{19}+\cdots-1012764y+117649)^{2}$ $\cdot (y^{20}+11y^{19}+\cdots-1908y+441)$		
c_5, c_6, c_{11} c_{12}	$y^{2}(y-1)^{2}(y+3)^{2}(y^{5}+7y^{4}+16y^{3}+13y^{2}+3y-1)^{15}$ $\cdot (y^{8}+11y^{7}+50y^{6}+124y^{5}+189y^{4}+181y^{3}+93y^{2}+20y+16)^{2}$ $\cdot ((y^{10}+14y^{9}+\cdots+85y+13)^{2})(y^{13}+14y^{12}+\cdots+208y-64)$		