QUESTIONS

WHAT IS COMPUTER SCIENCE?

STUDY OF ALGORITHMS

WHAT ARE ALGORITHMS GOOD FOR? -> SOLVING ALG. PROBLEMS

WHAT ARE ALGORITHMIC PROBLEMS?

WHAT ARE ALGORITHMS GOUD FOR? SOLVING ALGORITHMIC PROBLEMS? WHAT IS AN ALGORITHMIC PROBLEM? 1. 6 wen graph 6, is & connected? J. " " " 3-xolo Pable? TI Gwen a Boolean bermula d, is a satisficable?
(circuit DESIGN
QUESTION?) I Giver natural number 11, is n prino? I Given 2 integers m & n, find greatest common division. I Given a natural number M, fond a Vits primo factors. Zaños TII Given a Boolean Formula d, brief all its satisfying assignment. Given a network of eiter + clistances between them.

OPTIMILATION FUNCTION I brief length of shortest tows.

OVER NEW (REVIEW)

ALGORITHMIC PROPLEUS -> EXPAND ON TYPES OF PROBLEUS,

FOCUS ON DECISION PROBLEMS

SIMPLIST

AS DIFFICULT AS ANY PROBLEMS

COMPUTATION / SOLVICA

BIE QUESTIONS

SOLUTION POSSIBLE

EFFICIEUT SOLUTION POSSIBLE

FINITE AUTOMATA
PUSH DOWN AUTOMATA
TURIUS MACHINES

JUSOVA BLE

SOLVAPLE

TAXONOMY OF PROBLEMS RE RESOURCES REQUIRED.

GRACIABLE

COLLECTION OF DISTINGUISHABLE OBJECTS SET -MEMBER X ES ELEMENT

SPECIFY/DESAPIRED

5= {1,5,93 COMPLETE DENOTATION

ELEMENTS NOT REPEATED AND NOT ORDERED.

EQUALITY - CONTAIN SAME ELEMENTS

FREQUENT SETS

empte set mill set

Z integers \(\xi_{\cdots,-3,-2,-1,0,1,2,3,\cdots}\)

R real numbers

N natural numbers 541, 2, 3, ... 3

Q rational numbers

SUBSET

A S is all sec A are a B Ya xeA => xeB

```
SET OPERATIONS
 AAB = Ex: RUA and RUB3
INTERSECTION
                                 EXAMPLE $
 AUB = {x:xvA or x «B3
UNION
 A-B = {Z', REA AND Z & B3
DIFFERENCE
SYMETRIC DIFFERENCE
 A DB = { x : 9e(A-B) U (B-A) }
"LAWS" FOR OPPERATIONS
               EMPTY GET LAWS
   ANØ = Ø
   A U Ø = A
            I DEMPOTENT
   ANA = A
   AUA =A
   A 11B = BNA COMMUTATIVE
   AUB = BUA
   AN(BNC) = (ANB)NC ASSOCIATIVE
   AUCBUC) = (AUB) UC
```

AM (AUB) = A

ABSORPTION LAWS

AV(AMB)=A

A-(B(C) = (A-B) U(A-C)

DE MORGAN

A-(BUC) = (A-13) ((A-C)

GIVEN UNIVERSE OF DISCOURSE SAY U

A = U-A

 $\overline{\widehat{A}} = A$

ANA = Ø

AUA = U

AMB = AUB OF MORGAN

AUB = ANB

CAN PROVE FROM DEFINITIONS $A \subseteq B$ A = B $B \subseteq A$ ASA A SB 3 => A SC B S C DEA but all A WATURAL WUBERS MORE WAYS TO SPECIFY FOR example OND CHATCH EVER UNDANGERS Ext 2 & N and = & N } OR EXEN 1 ZUN3

L RUSSELL PARADOX? >

Runds Condon

set of all tea eyes

EXTRADROINARY SETS

CONTAIN THOM SELS

I set of all mon = teacups,

I set of all sets that can be defined Capecificil

with less than 1000 shrates.

Stein food Eurose, of Philosophy

ROSSIEL PARADOX,

X & X => X & E EXTRAORDINARY

\[\frac{2}{3} \] \quad \frac{1}{3} \quad \frac{7}{3} \]

\[\frac{2}{3} \quad \frac{1}{3} \quad \frac{7}{3} \]

\[\frac{2}{3} \quad \frac{7}{3} \quad \frac{7}{3

THAT IS IT IS AND A MEMBER OF OPDINARY
SETS.

RUSSEL P-1P T(P/P) TP Vg P+g TP

a 76 7 (a/16)

1 p v g p 7 5

esta ordines set set des not hure

self a a mento?

(a set llatio nota

nombol d'ittrell.)

cerricle set fulloldinas set

?= \(\frac{2}{2} \frac{2}{3} \frac{2}{3} \frac{1}{3} \frac{1}{3

X. is ordinar X. E. X. BECAUSE X. S. SET OF ALL Ordinar Sell X. is entraved units X. is entraved units X. E. X. del, or entry ordinar X. E. X. del, or entry ordinar X. IS OR OIHARY RELATIONS

Ex. <

SET OF ALL PAIRS SUCH THAT a < &

ORDERED PAIR

(a, b) - PIFFETCENT THAN {a, b}

TUPLE

(a, b) 7 (b, a) nigen.

(a,a) valid

CARTESIAN PRODUCT

OF TWO SETS A AND B

{(a, L) | a E A AND LEBS

EX.

 $= \{(c,1)(c,2)(c,3)(d,1)(d,2)(d,3)\}$

BINARY RELATION ON A AND B

15 SUBSET OF AXB

MORE ON BINARY RELATIONS ON A SET A REFLEXIVE BOUNTS = and \le \text{ut x Yze c A XRX SYMMETRIC = but not < on < 2 Ry implies 5 RZ TRANSITIVE aRy and y RZ implies x RZ SYMMETRIC & TRANSITIVE \$ REFLEXIVE WHY? EXAMPLE WOOT TRANSITIVE

EXAMPLE NOT TRANSITIVE $R = \frac{5}{5} \frac{5(\pi, 5)}{(\pi, 5)} \frac{\pi}{2, 5} \frac{\pi}{6} \frac{\pi}{1}$ and $\pi = \frac{1}{3}$ 1R2 and 2R3 do not night 1R3 $R = \frac{\pi}{6}$ one less than "

M-FOLD CARTESIAN PRODUCT

 $A, XA_1 \times ... \times A_m$

 $\{(a_1, a_2, ..., a_m) \mid a_i \in A_i \text{ FOR } \text{EACH } i = 1, z, ..., a_m\}$ M-TUPLE

AXAXAX,.XA IN times AM EX, Nº PAIRS OF NATURAL WMBERS

M-ARY RELATION

A, , A₂, A₅, ,... A_m

SUBSET OF A, XA₂X A₃X,... XA_n

PARTITIONS

DIS JOINT A113 = 0

PARTITION SETS PARTITION OF S C = & P., P2, ..., Pm 3 5 = DAM JR P2', P2, CC and z'+2' => P2', 1 P2'=0

∀ 2', 2'

EXAMPLE

LET E = {REN | ZEN }

0 = EXEN (Z / N 3

EVER NAT. NUNS

N= EUO

ANO ENO=0

FUNCTION A B
GIVEN TWO SETS 990 and 184
a FUNCTION & 15
BINARY
FOR ALL 20 CA, there exists exactly one y & B
FOR ALL 26 (M) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G
A A > 1 PULL
SUCH THAT (M, M) & f SUCH THAT (M, M) & f DEFINE VALUES WITH TABLE OR A SERVENTALE SERVENTALE OR A SERVENTALE O
& g & SUM BLEMENT
ASSIGNS ONE ELEMENT OF BY TO EACH ELEMENT OF DOP
DAMAIN
A 15 CO-DOMAIN S(A) RANGE IS 1/3
BIF A'CA SIGN BIL = f(a) for some a cA'S
$f(A') = \{b \in B \mid b = f(a) \text{ for some } a \in A'\}$
A m
MAGE 1 MAGE

GRAPH
a tuple
$$G = (V, E)$$
 where

Vis a set

 $E \subseteq \{\{x,y\}\} \mid x,y \in V \text{ and } x \neq y \}$

The so is a binary relation of the solution of the set of the solution of the second of the second of the solution of the second of the sec

$$\frac{\text{PIRECTED}}{V}$$

$$E = \frac{2}{3}(2,9) \left((2,6) \in V \times V \right)^{\frac{2}{3}} = V \times V$$

$$V = \{1, 2, 3\}$$

$$E = \{\{1, 2, 3\}\}$$

$$V = Ramo$$

$$E = \frac{5}{3}(1,2), (3,1)^{\frac{3}{3}}$$

COMPLETE GRAPH

KM

V can be SPECIFIED like any set

E RAM be SPECIFIED BY like any set ALSO

ADDACENCY LIST

MATRIX.

PATH - SEQUEDCE OF VERTICIES THAT ARE
PAIRWISE CONNECTED

SIMPLE - 11- ALL VERTICIES DISTINCT

LENGTH NUMBER OF EDGES

CYCLE (Vo, ..., Vn) and Vo = Vn SIMPLE is all others odistinct. CONNECTED

I putes between any two vertines.

TREE (FREE)

CONNECTED

ACYCLIC SGRAPH

UNDIRECTED

NOT CONNECTED FOREST

ROOTED

ONE VERTEX DISTINGUISHED

GRAPH CHN BE USED TO REPRESENT BINARY RELATION ON A FINITE SET

PERCEXIVE

- TRANSITIVE

RETLEXIVE

LET A BE A SET AND

REATION ON A.

REATION ON A.

EXAMPLE: 5 ON NATURAL NUMBERS

ALPHABET AM FINITE SET (NOTATION GUALLY CAPITAL GREEK LETTERS, 49. E)

ELEMENTS OF ALPHABET CALLED LETTERS OR SYMBOLS
(NOTATION LAWER CASE HATTI, a, C, C

STRING OVER Z

FINITE LENGTH BEQUEXCE OF ELEMTS

FROM Z

(NOTATION 2,7,2)

6.6. Z = \{ a, \(\) \}

THEN aabab 15 A STRINGOVER Z

OF LENGH 5.

LENGTH OF A STRING X IS KNUBER OF SMIBOLS WA.

EMPTH STRIKE UNIQUE STRING OF LENTH O

an INPOCTIVE DEF and define and define

Z* SET OF ALL STRINGS OVER ALPHABET Z MOTE CONVENTION B* 263