MODELO DE MEMORIAL TÉCNICO DESCRITIVO

MICROGERAÇÃO DISTRIBUÍDA UTILIZANDO UM SISTEMA [TIPO DE GERAÇÃO] DE XX kW
CONECTADO À REDE DE ENERGIA ELÉTRICA DE BAIXA TENSÃO EM [TENSÃO NOMINAL DA
REDE] CARACTERIZADO COMO [INDIVIDUAL, AUTOCONSUMO REMOTO, GERAÇÃO
COMPARTILHADA OU EMUC]

[NOME DO CLIENTE]
RG: [XXXXXXXXXX]

[NOME DO RESPONSÁVEL TÉCNICO]

[PROFISSÃO]

REGISTRO: XXXXXXXXX

CIDADE – UF MÊS – ANO

LISTA DE SIGLAS E ABREVIATURAS

ABNT: Associação Brasileira de Normas Técnicas

ANEEL: Agência Nacional de Energia Elétrica

BT: Baixa tensão (220/127 V, 380/220 V)

C.A: Corrente Alternada C.C: Corrente Contínua

CD: Custo de disponibilidade (30 kWh, 50kWh ou 100 kWh em sistemas de baixa tensão monofásicos,

bifásicos ou trifásicos, respectivamente)

CI: Carga Instalada

DSP: Dispositivo Supressor de Surto

DSV: Dispositivo de seccionamento visível

FP: Fator de potência

FV: Fotovoltaico

GD: Geração distribuída

HSP: Horas de sol pleno

IEC: International Electrotechnical Commission

I_N: Corrente Nominal

I_{DG}: Corrente nominal do disjuntor de entrada da unidade consumidora em ampéres (A)

Ist: Corrento de curto-circuito de módulo fotovoltaico em ampéres (A)

kW: kilo-watt

kWp: kilo-watt pico kWh: kilo-watt-hora

MicroGD: Microgeração distribuída

MT: Média tensão (13.8 kV, 34.5 kV)

NF: Fator referente ao número de fases, igual a 1 para sistemas monofásicos e bifásicos ou $\sqrt{3}$ para sistemas trifásicos

PRODIST: Procedimentos de Distribuição

PD: Potência disponibilizada para a unidade consumidora onde será instalada a geração distribuída

PR: Pára-raio

QGD: Quadro Geral de Distribuição

QGBT: Quadro Geral de Baixa Tensão

REN: Resolução Normativa

SPDA: Sistema de Proteção contra Descargas Atmosféricas

SFV: Sistema Fotovoltaico

SFVCR: Sistema Fotovoltaico Conectado à Rede

TC: Transformador de corrente TP: Transformador de potencial

UC: Unidade Consumidora

UTM: Universal Transversa de Mercator

V_N: Tensão nominal de atendimento em volts (V)

Voc: Tensão de circuito aberto de módulo fotovoltaico em volts (V)

SUMÁRIO

1.	OBJ	ETIVO				
2.	REFERÊNCIAS NORMATIVAS E REGULATÓRIA4					
3.	DOC	DOCUMENTOS OBRIGATÓRIOS				
4.	DAD	DADOS DA UNIDADE CONSUMIDORA				
5.	PAD	RÃO DE ENTRADA				
	5.1.	Tipo de Ligação e Tensão de Atendimento				
	5.2.	Disjuntor de Entrada				
	5.3.	Potência Disponibilizada				
	5.4.	Caixa de Medição				
	5.5.	Ramal de Entrada				
6.	LEV	LEVANTAMENTO DE CARGA E CONSUMO6				
	6.1.	Levantamento de Carga				
	6.2.	Consumo Mensal				
7.	ESTI	MATIVA DE GERAÇÃO				
8.	DIME	NSIONAMENTO DO GERADOR				
9.	ESP	CIFICAÇÕES TÉCN ICAS DO GERADOR Erro! Indicador não definido				
10.	DIME	NSIONAMENTO DO INVERSOR Erro! Indicador não definido				
11.	ESP	CIFICAÇÕES TÉCNICAS DO INVERSOR Erro! Indicador não definido				
	DIME nido.	NSIONAMENTO DO TRANSFORMADOR DE ACOPLAMENTO Erro! Indicador não				
	ESPI nido.	CIFICAÇÃO TÉCNICO DO TRANSFORMADOR DE ACOPLAMENTO Erro! Indicador não				
14.	DIME	NSIONAMENTO DOS CABOS10				
15.	DIME	NSIONAMENTO DA PROTEÇÃO1				
	15.1.	Fusíveis1				
	15.2.	Disjuntores1				
	15.3.	DPS 10				
	15.4.	Funções de Proteção e Ajustes Erro! Indicador não definido				

1. OBJETIVO

O presente memorial técnico descritivo tem como objetivo apresentar a metodologia utilizada para elaboração e apresentação à [NOME DA CONCESSIONÁRIA], dos documentos mínimos necessários, em conformidade com a REN 482, com o PRODIST Módulo 3 secção 3.7, com a NT.020 e com as normas técnicas nacionais (ABNT) ou internacionais (europeia e americana), para SOLICITAÇÃO DO PARECER DE ACESSO de uma microgeração distribuída conectada à rede de distribuição de energia elétrica através sistema [tipo de geração] de XX kW, composto por [informar a quantidade de geradores e inversores, se for o caso], caracterizado como [individual, autoconsumo remoto, geração compartilhada ou emuc].

2. REFERÊNCIAS NORMATIVAS E REGULATÓRIA

Para elaboração deste memorial técnico descritivo, no âmbito da área de concessão do estado de (o) [NOME DO ESTADO] foram utilizadas as normas e resoluções, nas respectivas revisões vigentes, conforme descritas abaixo:

- a) ABNT NBR 5410: Instalações Elétricas de Baixa Tensão.
- b) ABNT NBR 10899: Energia Solar Fotovoltaica Terminologia.
- c) ABNT NBR 11704: Sistemas Fotovoltaicos Classificação.
- d) ABNT NBR 16149: Sistemas fotovoltaicos (FV) Características da interface de conexão com a rede elétrica de distribuição.
- e) ABNT NBR 16150: Sistemas fotovoltaicos (FV) Características da interface de conexão coma rede elétrica de distribuição – Procedimentos de ensaio de conformidade.
- f) ABNT NBR IEC 62116: Procedimento de Ensaio de Anti-ilhamento para Inversores de Sistemas Fotovoltaicos Conectados à Rede Elétrica.
- g) EQUATORIAL ENERGIA NT.020.EQTL.Normas e Padrões Conexão de Microgeração Distribuída ao Sistema de Baixa Tensão.
- h) EQUATORIAL ENERGIA NT.001.EQTL.Normas e Padrões Fornecimento de Energia Elétrica em Baixa Tensão.
- EQUATORIAL ENERGIA NT.030.EQTL.Normas e Padrões Padrões Construtivos de Caixas de Medição e Proteção.
- j) ANEEL Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional –
 PRODIST: Módulo 3 Acesso ao Sistema de Distribuição. Revisão 6. 2016, Seção 3.7.
- k) ANEEL Resolução Normativa nº 414, de 09 de setembro de 2010, que estabelece as condições gerais de fornecimento de energia elétrica.
- I) ANEEL Resolução Normativa ANEEL nº 482, de 17 de abril de 2012, que estabelece as condições gerais para o acesso de micro geração e mini geração distribuída aos sistemas de distribuição de energia elétrica e o sistema de compensação de energia elétrica.
- m) IEC 61727 Photovoltaic (PV) Systems Characteristics of the Utility Interface
- n) IEC 62116:2014 Utility-interconnected photovoltaic inverters Test procedure of islanding

3. DOCUMENTOS OBRIGATÓRIOS

Tabela 1 – Documentos obrigatórios para a solicitação de acesso de microgeração distribuída

Documentos Obrigatórios	Até 10 kW	Acima de 10 kW	Observações
1. Formulário de Solicitação de Acesso	SIM	SIM	
2. ART do Responsável Técnico	SIM	SIM	
3. Diagrama unifilar do sistema de geração, carga, proteção e medição	SIM	SIM	
4. Diagrama de blocos do sistema de geração, carga e proteção	NÃO	SIM	Até 10kW apenas o diagrama unifilar
5. Memorial Técnico Descritivo	SIM	SIM	
6. Projeto Elétrico, contendo:	NÃO	SIM	
6.1. Planta de Situação			
6.2. Diagrama Funcional			
6.3. Arranjos Físicos ou layout e detalhes de montagem			Itens integrantes do Projeto Elétrico
6.4. Manual com Folha de Dados (datasheet) dos Inversores (fotovoltaica e eólica) ou dos geradores (hidríca, biomassa, resíduos, cogeração, etc)			Eletrico
7. Certificados de Conformidade dos Inversores ou o número de registro de concessão do INMETRO para a tensão nominal de conexão com a rede	SIM	SIM	Inversor acima de 10 kW, não é obrigatória a homologação, apresentar apenas certificados de conformidade.
8. Dados necessários para registro da central geradora conforme disponível no site da ANEEL: www.aneel.gov.br/scg	SIM	SIM	
9. Lista de unidades consumidoras participantes do sistema de compensação (se houver) indicando a porcentagem de rateio dos créditos e o enquadramento conforme incisos VI a VIII do art. 2º da Resolução Normativa nº 482/2012	SIM, ver observação	SIM, ver observação	Apenas para os casos de autoconsumo consumo remoto, geração compartilhada e EMUC
10. Cópia de instrumento jurídico que comprove o	SIM, ver	SIM, ver	Apenas para EMUC e geração
compromisso de solidariedade entre os Integrantes	observação	observação	compartilhada.
11.Documento que comprove o reconhecimento pela	SIM, ver	SIM, ver	Apenas para cogeração
ANEEL, no caso de cogeração qualificada	observação	observação	qualificada
12. Contrato de aluguel ou arrendamento da unidade	SIM, ver	SIM, ver	Quando a UC geradora for
consumidora	observação	observação	alugada ou arrendada Quando a solicitação for feita
13.Procuração	SIM, ver observação	SIM, ver observação	por terceiros
14. Autorização de uso de área comum em condomínio	SIM, ver observação	SIM, ver observação	Quando uma UC individualmente construir uma central geradora utilizando a área comum do condomínio

NOTA 1: Para inversores até 10 kW é obrigatório o registro de concessão do INMETRO.

4. DADOS DA UNIDADE CONSUMIDORA

Número da Conta Contrato:

Classe:

Nome do Titular da CC:

Endereço Completo:				
Número de identificação do poste e/ou transformador mais próximo:				
Coordenadas georrefenciadas:				
INSERIR NESTA CAIXA DE TEXTO UMA IMAGEM DA UNIDADE CONSUMIDORA, RETIRADA DO GOOGLE EARTH.				

Figura 1: Localização da unidade consumidora.

5. LEVANTAMENTO DE CARGA E CONSUMO

5.1. Levantamento de Carga

Tabela 2 – Levantamento de carga

ITEM	DESCRIÇÃO	P (W) [A]	QUANT. [B]	CI (kW) [C = (A*B)/1000]	FP [D]	CI (kVA) [E = C/D]	FD [F]	D(kW) [G = CxF]	D(kVA) [H = ExF]
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
TOTAL									

5.2. Consumo Mensal

Tabela 3 – Consumo mensal dos últimos 12 meses

MÊS	CONSUMO (kWh)
MÊS 1	
MÊS 2	
MÊS 3	
MÊS 4	
MÊS 5	
MÊS 6	
MÊS 7	
MÊS 8	
MÊS 9	
MÊS 10	
MÊS 11	
MÊS 12	
TOTAL	
MÉDIA	

6. PADRÃO DE ENTRADA

6.1. Tipo de Ligação e Tensão de Atendimento

A unidade consumidora é (será) ligada em ramal de ligação em baixa tensão, através de um circuito [monofásico, bifásico, trifásico] à [dois, três, quatro] condutores, sendo [um, dois, três] condutor(es) FASE de diâmetro nominal XXX mm² e um condutor NEUTRO de diâmetro nominal XXX mm², com tensão de atendimento em [380, 220, 127] V, derivado de uma rede aérea/subterrânea de distribuição secundária da EQUATORIAL ENERGIA no estado de(o) [NOME DO ESTADO].

6.2. Disjuntor de Entrada

No ponto de entrega/conexão é (será) instalado um disjuntor termomagnético, em conformidade com a norma NT.001.EQTL.Normas e Padrões da Equatorial Energia, com as seguintes características:

NÚMERO DE POLOS: X

TENSÃO NOMINAL: XXX V

CORRENTE NOMINAL: XXX A

FREQUÊNCIA NOMINAL: 60 HZ

ELEMENTO DE PROTECAO: TERMOMAGNÉTICO

CAPACIDADE MAXIMA DE INTERRUPCAO: XXX kA;

ACIONAMENTO: XXXXXXXXXXXXXXXXXXXXXX

CURVA DE ATUACAO (DISPARO): X.

6.3. Potência Disponibilizada

A potência disponibilizada para unidades consumidora onde será instalada a microGD é (será) igual à:

 $PD [kVA] = (V_N [V] X I_{DG} [A] X NF)/1000$

PD[kW] = PD[kVA]xFP

 $V_N = XXX V$

 $l_{DG} = XXX A$

NF = X

FP = XXX

PD (kVA) = XX KVA

PD(kW) = XX kW

NOTA 2: A potência de geração deve ser menor ou igual a potência disponibilizada PD em kW.

6.4. Caixa de Medição

A caixa de medição [existente ou nova] [monofásica ou polifásica] em material polimérico tem (terá) as dimensões de XXX mm x YYY mm x ZZZ mm (comprimento, altura e largura), está (será) instalada [em poste auxiliar, muro ou fachada], no ponto de entrega caracterizado como o limite da via pública com a propriedade, conforme fotos abaixo, atendendo aos requisitos de localização, facilidade de acesso e lay-out, em conformidade com as normas da concessionária NT.001.EQTL e NT.030.EQTL, conforme a FIGURA 2 e FIGURA 3.

INSERIR NESTA CAIXA DE TEXTO O DESENHO DIMENSIONAL DETALHADO DA CAIXA DE MEDIÇÃO COM SUAS DIMENSÕES E DETALHES INTERNOS E EXTERNOS.

Figura 2: Desenho dimensional detalhado da caixa de medição.

INSERIR NESTA CAIXA DE TEXTO FOTOS MOSTRANDO A CAIXA DE MEDIÇÃO EXISTENTE, UMA FOTO FRONTAL COM AMPLA VISÃO (EXTERNA E INTERNA) E UMA FOTO LATERAL COM AMPLA VISÃO, PARA VISUALIZAÇÃO DA CAIXA, DO RAMAL DE LIGAÇÃO E DO RAMAL DE ENTRADA. CASO SEJA UM UNIDADE CONSUMIDORA NOVA, INSERIR UMA FOTO COM AMPLA VISÃO DO LOCAL DA FUTURA INSTALAÇÃO.

Figura 2: Foto da caixa de medição ou do local de instalação da futura caixa de medição.

O aterramento da caixa de medição é(será) com X hastes de aterramento de comprimento XXXX mm e diâmetro X", condutor de XXX mm² com conexão em [solda exotérmica ou conector tipo XXXXXXXXX].

6.5. Ramal de Entrada

O ramal de entrada da unidade consumidora é (será), através de um circuito [monofásico, bifásico, trifásico] à [dois, três, quatro] condutores, sendo [um, dois, três] condutor(es) FASE de diâmetro nominal XXX mm² e um condutor NEUTRO de diâmetro nominal XXX mm², em [380, 220, 127] V.

7. ESTIMATIVA DE GERAÇÃO

8. DIMENSIONAMENTO DO GERADOR

8.1. Dimensionamento do gerador

Descrever o dimensionamento do gerador e informar as características técnicas.

Tabela 4 – Características técnicas do gerador

Fabricante	
Modelo	
Potência nominal – Pn [W]	
Tensão de circuito aberto – Voc [V]	
Corrente de curto circuito – Isc [A]	
Tensão de máxima potência – Vpmp [V]	
Corrente de máxima potência – Ipmp [A]	
Eficiência [%]	
Comprimento [m]	
Largura [m]	
Área [m2]	
Peso [kg]	
Quantidade	
Potência do gerador [kW]	

9. DIMENSIONAMENTO DO INVERSOR (SE HOUVER)

Descrever o dimensionamento do inversor e informar as características técnicas.

Tabela 4 – Características técnicas do inversor

Fabricante	
Modelo	
Quantidade	
Entrada	
Potência nominal – Pn [kW]	
Máxima potência na entrada CC – Pmax-cc [kW]	
Máxima tensão CC – Vcc-máx [V]	
Máxima corrente CC – Icc-máx [V]	
Máxima tensão MPPT – Vpmp-máx [V]	
Mínima tensão MPPT – Vpmp-min [V]	
Tensão CC de partida – Vcc-part [V]	

Quantidade de Strings	
Quantidade de entradas MPPT	
Entrada	
Potência nominal CA – Pca [kW]	
Máxima potência na saída CA – Pca-máx [kW]	
Máxima corrente na saída CA – Imáx-ca [A]	
Tensão nominal CA – Vnon-ca [V]	
Frequência nominal – Fn [Hz]	
Máxima tensão CA – Vca-máx [V]	
Mínima tensão CA – Vca-min [V]	
THD de corrente [%]	
Fator de potência	
Tipo de conexão – número de fases + neutro + terra	
Eficiência máxima [%]	

10. DIMENSIONAMENTO DA PROTEÇÃO

10.1. Fusíveis

Dimensionar e descrever as características técnicas dos fusíveis CC dos arranjos fotovoltaicos.

10.2. Disjuntores

Dimensionar e descrever as características técnicas dos fusíveis de disjuntores CA e CC:

- Número de pólos:
- Tensão nominal CA ou CC [V]:
- Corrente Nominal [A]:
- Frequência [Hz], para disjuntor CA:
- Capacidade máxima de interrupção [kA]:
- Curva de atuação:

10.3. Dispositivo de seccionamento visível (quando houver)

Dimensionar e descrever as características técnicas do dispositivo de seccionamento visível.

10.4. DPS

Dimensionar e descrever as características técnicas dos DPSs CA e CC, informando no mínimo as seguintes características:

- Tipo CC ou CA:
- Classe:
- Tensão CC ou CA [V]:
- Corrente nominal [kA]:
- Corrente máxima [kA]:

10.5. Aterramento

Dimensionar e descrever as características técnicas do aterramento, informando no mínimo as seguintes características:

- Geometria da malha, informando a distância entre cada haste:
- Descrição das hastes de aterramento, informando tipo, camada e dimensões:
- Quantidade de hastes:
- Descrição dos cabos do aterramento da malha, da interligação com a geração e da equipotencialização, informando isolamento, bitola, etc:
- Descrição das conexões:
- Valor da resistência de aterramento: 10 ohms
- Descrição do barramento de equipotencialização, informando material e dimensões:

10.6. Requisitos de Proteção

Tabela 4 - Características técnicas do gerador

Requisito de Proteção	Obrigatório	Ajuste
Elemento de desconexão	Sim, quando não usar inversor	
Elemento de interrupção (52)	Sim	
Proteção de subtensão (27) e sobretensão (59)	Sim	
Proteção de subfrequência (81U) e sobrefrequência (81O)	Sim	
Relé de sincronismo (25)	Sim	
Anti-ilhamento (78 e 81 df/dt – ROCOF)	Sim	
Proteção direcional de potência (32)	Sim, quando não usar inversor	
Tempo de Reconexão (temporizador) (62)	Opcional, quando não usar inversor	

11. DIMENSIONAMENTO DOS CABOS

Dimensionar e descrever as características técnicas dos cabos CA e CC, informando no mínimo as seguintes características:

Isolação: XLPE (por exemplo)

Isolamento: 0,6/1 kV (por exemplo)

Bitola [mm2]:

Capacidade de condução de corrente:

12. PLACA DE ADVERTÊNCIA

Descrever forma e local de instalação, conforme modelo abaixo:

Características da Placa:

Espessura: 2 mm;

Material: Policarbonato com aditivos anti-raios UV (ultravioleta);

- Gravação: As letras devem ser em Arial Black;
- Acabamento: Deve possuir cor amarela, obtida por processo de masterização com 2%, assegurando opacidade que permita adequada visualização das marcações pintadas na superfície da placa;

Figura 3: Placa de advertência.

13. ANEXOS

- Formulário de Solicitação de Acesso
- ART do Responsável Técnico
- Diagrama unifilar contemplando, geração, inversor (se houver), cargas, proteção e medição.
- Diagrama de blocos contemplando geração, inversor (se houver), cargas, proteção e medição.
- Projeto Elétricos contendo: planta de situação, diagrama funcional, arranjos físicos ou lay-out, detalhes de montagem, manual com folha de dados do gerador e manual com folha de dados do inversor (se houver)
- Para inversores até 10 kW registro de concessão do INMETRO, para inversores acima de 10 kW certificados de conformidade
- Dados de registro
- Lista de rateio dos créditos
- Cópia de instrumento jurídico de solidariedade
- Para cogeração documento que comprove o reconhecimento pela ANEEL.