

Praktikumsbericht

Modellbildung und Simulation

2. Praktikumsaufgabe: Blockorientierte Simulation eines zeitkontinuierlich-zeitdiskreten nichtlinearen Systems - Anwendung der Transitionsmatrix

Gruppe 10:

Konstantin Kuhl

Nils Leimbach

Sebastian Schwabe

Konstantin Wrede

Eingereicht am: 28. Mai 2020

Inhaltsverzeichnis

1	Aufgabe: Implementierung des nichtlinearen kontinuierlichen Streckenmodells	3
	1.1 Test der statischen Nichtlinearität des Servoventils	3
	1.2 Verifikation des nichtlinearen kontinuierlichen Streckenmodells	3
2	Aufgabe: Implementierung des linearen zeitdiskreten Streckenmodells	4
	2.1 Berechnung der Transitionsmatrix und Eingangsmatrix	4
	2.2 Verifikation des linearen zeitdiskreten Streckenmodells	4
3	Aufgabe: Reglerauslegung und Simulation mit dem linearen Modell	6
	3.1 Einstellung der Reglerverstärkung	6
	3.2 Verifikation des geschlossenen Regelkreises	7
	3.3 Bestimmung der kritischen Reglerverstärkung	7
4	Aufgabe: Experimentation mit dem nichtlinearen kontinuierlichen Modell	8
	4.1 Vergleich von linearem und nicht linearem Regelkreis	8
	4.2 Bestimmung der kritischen Reglerverstärkungen	9

1 Aufgabe: Implementierung des nichtlinearen kontinuierlichen Streckenmodells

1.1 Test der statischen Nichtlinearität des Servoventils

Das Servoventil wurde in einer Testumgebung bei konstantem Eingang $F_Z=10000~\mathrm{N}$ und einer Rechteckfunktion der Amplitude $I_v=5~\mathrm{A}$ getestet. Nach der Definitionsgleichung des Servoventils sollte sich ebenfalls eine Rechteckfunktion mit $\dot{x}_{\ddot{o},min}=-4.28~\mathrm{m\,s^{-1}}$ und $\dot{x}_{\ddot{o},max}=3.65~\mathrm{m\,s^{-1}}$ ergeben. Das Ergebnis der in *TestServoventil1.mdl* durchgeführten Simulation erfüllt diese Definition.

Abbildung 1.1: Eingabe i_v und Ausgabe $\dot{x}_{\ddot{\mathrm{o}}}$ des Servoventils bei $F_Z=10000~\mathrm{N}$

1.2 Verifikation des nichtlinearen kontinuierlichen Streckenmodells

Mittels Linearisierung des nichtlinearen kontinuierlichen Streckenmodells und anschließendem Aufstellen einer Übertragungsfunktion können die Parameter a_1 , a_2 , a_3 und K_F bestimmt werden. Der Vergleich dieser Werte im Skript *A1Main.m* mit denen aus den analytischen Berechnungsvorschriften ergibt eine Übereinstimmung.

2 Aufgabe: Implementierung des linearen zeitdiskreten Streckenmodells

2.1 Berechnung der Transitionsmatrix und Eingangsmatrix

Nach der Linearisierung des nichtlinearen kontinuierlichen Streckenmodells und Ermittlung der Matrizen des Zustandsraums kann die zeitdiskrete Transitionsmatrix nach MODSIM06 Seite 6-6 wie folgt berechnet werden:

$$\underline{\Phi}(h) = \mathrm{e}^{\underline{A}h} \; \mathsf{mit} \; h = T_a \; .$$

Die zeitdiskrete Eingangsmatrix wird für reguläre Matrizen \underline{A} nach MODSIM06 Seite 6-10 bestimmt:

$$\underline{H}(h) = \underline{A}^{-1} \cdot (\underline{\Phi} - \underline{I}) \cdot \underline{B} \text{ mit } h = T_a.$$

2.2 Verifikation des linearen zeitdiskreten Streckenmodells

Ein Vergleich des nun ermittelten linearen zeitdiskreten Streckenmodells mit dem bereits verifizierten nichtlinearen zeitkontinuierlichen Modell ergibt eine gute Übereinstimmung bei Eingangssprüngen der Höhe $U_0=10^{-4}~{\rm V}$ oder kleineren Auslenkungen aus dem Arbeitspunkt. Bereits Eingangssprünge der Größenordnung $U_0=10^{-3}~{\rm V}$ führen zu deutlichen Abweichungen des stationären Verhaltens zwischen beiden Modellen.

Abbildung 2.1: Vergleich der Streckenmodelle für Eingangssprung $U_0=10^{-4}~{
m V}$

Abbildung 2.2: Vergleich der Streckenmodelle für Eingangssprung $U_0 = 5 \cdot 10^{-4} \; \mathrm{V}$

Abbildung 2.3: Vergleich der Streckenmodelle für Eingangssprung $U_0=10^{-3}~{
m V}$

3 Aufgabe: Reglerauslegung und Simulation mit dem linearen Modell

3.1 Einstellung der Reglerverstärkung

Durch Betrachtung des offenen linearen zeitdiskreten Regelkreises mit Messglied ergibt sich ein Bodediagramm mit einer Phasenreserve von $\Phi_R=50^\circ$ bei der Kreisfrequenz $\omega_R=6.92~{\rm s}^{-1}$. An dieser Stelle folgt bei einer Verstärkung von $K_I=1~{\rm s}^{-1}$ die Amplitude $|G(j\omega_R)|=11.2~{\rm dB}~\hat{=}~3.63$. Damit an dieser Stelle ein Durchtritt mit $|G(j\omega_R)|=0~{\rm dB}~\hat{=}~1$ stattfindet, muss die Reglerverstärkung folgendermaßen gewählt werden:

$$K_I = \frac{1}{G(j\omega_R)} = \frac{1}{3.63} = 0.275 \text{ [s}^{-1}\text{]}.$$

Abbildung 3.1: Bodeplot des offenen linearen zeitdiskreten Regelkreises bei $K_I=1~{
m s}^{-1}$

3.2 Verifikation des geschlossenen Regelkreises

Bei der Simulation des geschlossenen Regelkreises sollte sich ein Überschwingen einstellen, dass nach einer aus der Lehrveranstaltung Automatisierungstechnik bekannten Faustformel geschätzt wird:

$$\frac{\Phi_R}{1°} + \frac{\ddot{\mathbf{u}}}{1\%} \approx 70 \Rightarrow \ddot{\mathbf{u}} = 20\%.$$

Die Simulation ergibt für einen Eingangssprung von $U_0=0.5~\rm V$ allerdings eine leichte Abweichung für das Überschwingen mit $\ddot{\rm u}=17.6~\%$. Dies kann einerseits an der Ungenauigkeit einer solchen Faustformel oder andererseits an Abweichungen des linearisierten und diskretisierten Modells vom Original liegen.

Abbildung 3.2: Sprungantwort des geschlossenen Regelkreises bei $K_I=0.275~{
m s}^{-1}$

3.3 Bestimmung der kritischen Reglerverstärkung

Zur Bestimmung der kritischen Reglerverstärkung $K_{I,krit}$ wird die Konstante K_I solange erhöht, bis sich für im Zeitverlauf der Sprungantwort eine Schwingung mit konstanter Ampkitude einstellt. Dies ist für $U_0=0.5~\rm V$ bei $K_{I,krit}=2.214~\rm s^{-1}$ der Fall.

4 Aufgabe: Experimentation mit dem nichtlinearen kontinuierlichen Modell

4.1 Vergleich von linearem und nicht linearem Regelkreis

Eine Gegenüberstellung von verschiedenen Sprungantworten zeigt, dass die Linearisierung des zeitkontinuierlichen nichtlinearen Regelkreises bei geringen Auslenkungen aus dem Arbeitspunkt wie bei Sprüngen von $U_0=0.1~\rm V$ gut approximiert. Bei größeren Auslenkungen kommt es zu starken Abweichungen beider Modelle, so weist das nichtlineare System kaum noch Überschwingen auf beziehungsweise deutlich größere Anstiegszeiten als die Linearisierung.

Abbildung 4.1: Vergleich der geschlossenen Regelkreise für Eingangssprung $U_0=0.1~\mathrm{V}$

Abbildung 4.2: Vergleich der geschlossenen Regelkreise für Eingangssprung $U_0=0.5~\mathrm{V}$

Abbildung 4.3: Vergleich der geschlossenen Regelkreise für Eingangssprung $U_0=0.8~\mathrm{V}$

4.2 Bestimmung der kritischen Reglerverstärkungen

Die kritische Reglerverstärkung wird mit dem Vorgehen wie in Aufgabe 3 eingestellt. Dabei ergeben sich für die verschiedenen Sprunghöhen folgende Werte:

$$K_{I,krit}(U_0 = 0.1 \text{ V}) = 2.47 \text{ s}^{-1}$$

 $K_{I,krit}(U_0 = 0.5 \text{ V}) = 5.6 \text{ s}^{-1}$
 $K_{I,krit}(U_0 = 0.8 \text{ V}) = 17 \text{ s}^{-1}$.