Целочисленная арифметика многократной точности

Милёхин Александр НПМмд-02-21

Цель лабораторной работы

Ознакомление с алгоритмами целочисленной арифметики многократной точности, а также их последующая программная реализация.

Длинная арифметика

Высокоточная (длинная) арифметика — это операции (базовые арифметические действия, элементарные математические функции и пр.) над числами большой разрядности (многоразрядными числами), т.е. числами, разрядность которых превышает длину машинного слова универсальных процессоров общего назначения (более 128 бит).

Сложение неотрицательных целых чисел

- Вход. Два неотрицательных числа $u=u_1u_2\dots u_n$ и $v=v_1v_2\dots v_n$; разрядность чисел n; основание системы счисления b.
- Выход. Сумма $w=w_0w_1\dots w_n$, где w_0 цифра переноса, всегда равная 0 либо 1.
- 1. Присвоить j=n, k=0 (j идет по разрядам, k следит за переносом).
- 2. Присвоить $w_j=(u_j+v_j+k)\pmod{b}$, где $k=\left[\frac{u_j+v_j+k}{b}\right].$
- 3. Присвоить j=j-1. Если j>0, то возвращаемся на шаг 2; если j=0, то присвоить $w_0=k$ и результат: w.

Вычитание неотрицательных целых чисел

- Вход. Два неотрицательных числа $u=u_1u_2\dots u_n$ и $v=v_1v_2\dots v_n, u>v$; разрядность чисел n; основание системы счисления b.
- Выход. Разность $w = w_0 w_1 \dots w_n = u v$.
- 1. Присвоить j=n, k=0 (k заём из старшего разряда).
- 2. Присвоить $w_j=(u_j-v_j+k)\pmod b$; $k=\left\lceil\frac{u_j-v_j+k}{b}\right\rceil$.
- 3. Присвоить j=j-1. Если j>0, то возвращаемся на шаг 2; если j=0, то результат: w.

Умножение неотрицательных целых чисел столбиком

- Вход. Числа $u=u_1u_2\dots u_n$, $v=v_1v_2\dots v_m$; основание системы счисления b.
- Выход. Произведение $w = uv = w_1w_2 \dots w_{m+n}$.
- 1. Выполнить присвоения:

$$w_{m+1}=0, w_{m+2}=0, \ldots, w_{m+n}=0, j=m$$
 (j перемещается по номерам разрядов числа v от младших к старшим).

2. Если $v_{j} = 0$, то присвоить $w_{j} = 0$ и перейти на шаг 6.

Умножение неотрицательных целых чисел столбиком

- 3. Присвоить i = n, k = 0 (значение i идет по номерам разрядов числа u, k отвечает за перенос).
- 4. Присвоить $t=u_i\cdot v_j+w_{i+j}+k, w_{i+j}=t\pmod b, k=\left[\frac{t}{h}\right].$
- 5. Присвоить i=i-1. Если i>0, то возвращаемся на шаг 4, иначе присвоить $w_i=k$.
- 6. Присвоить j = j 1. Если j > 0, то вернуться на шаг 2. Если j = 0, то результат: w.

Быстрый столбик

- Вход. Числа $u=u_1u_2\dots u_n$, $v=v_1v_2\dots v_m$; основание системы счисления b.
- Выход. Произведение $w = uv = w_1w_2\dots w_{m+n}.$
- 1. Присвоить t = 0.
- 2. Для s от 0 до m+n-1 с шагом 1 выполнить шаги 3 и 4.
- 3. Для i от 0 до s с шагом 1 выполнить присвоение $t = t + u_{n-i} \cdot v_{m-s+i}$.
- 4. Присвоить $w_{m+n-s}=t\pmod{b}, t=\left[\frac{t}{b}\right]$. Результат: w.

Деление многоразрядных целых чисел

- Вход. Числа $u=u_n\dots u_1u_0$, $v=v_t\dots v_1v_0, n\geq t\geq 1, v_t\neq 0.$
- Выход. Частное $q=q_{n-t}\dots q_0$, остаток $r=r_t\dots r_0$.
- 1. Для j от 0 до n-t присвоить $q_j=0$.
- 2. Пока $u \ge vb^{n-t}$, выполнять: $q_{n-t} = q_{n-t} + 1, u = u vb^{n-t}$.
- 3. Для $i=n,n-1,\ldots,t+1$ выполнять пункты 3.1 3.4: 3.1. если $u_i\geq v_t$, то присвоить $q_{i-t-1}=b-1$, иначе присвоить $q_{i-t-1}=\frac{u_ib+u_{i-1}}{v_t}$. 3.2. пока $q_{i-t-1}(v_tb+v_{t-1})>u_ib^2+u_{i-1}b+u_{i-2}$ выполнять $q_{i-t-1}=q_{i-t-1}-1$. 3.3. присвоить $u=u-q_{i-t-1}b^{i-t-1}v$. 3.4. если u<0, то присвоить $u=u+vb^{i-t-1}$, $q_{i-t-1}=q_{i-t-1}-1$.
- 4. r = u. Результат: q и r.

Результаты выполнения лабораторной работы

Я изучил алгоритмы целочисленной арифметики, а также реализовал их программно на языке Python.

Спасибо за внимание