# TD n°6 : Groupe symétrique 5 et 8/11/2024

## Exercice 1. Échauffement?

Petit pot pourri de questions pour commencer.

- 1. Quel est le groupe engendré par (12345) et (12) dans  $\mathfrak{S}_5$ ? Par (12345) et (123) dans  $\mathfrak{S}_5$ ?
- 2. Démontrer que pour n > 5, les 3-cycles sont conjugués dans  $\mathfrak{A}_n$ .

### Correction de l'exercice 1:

1. En conjugant (12) par les puissances (12345), on obtient tous les (ii+1) et (15). En conjugant à présent ces transpositions entre elles, nous obtenons toutes les permutations. Par exemple,

$$(13) = (12)(23)(12).$$

Les permutations engendrant  $\mathfrak{S}_5$ , il en découle que  $\langle (12345), (12) \rangle = \mathfrak{S}_5$ .

Les deux permutations étant paires, il est déjà possible d'affirmer que le groupe engendré sera contenu dans  $\mathfrak{A}_5$ . En conjugant  $(1\,2\,3)$  par  $(1\,2\,3\,4\,5)^2$ , nous obtenons  $(3\,4\,5)$ . En conjugant  $(1\,2\,3)$  par des puissances de  $(3\,4\,5)$ , nous obtenons tous les 3-cycles du type  $(1\,2\,a)$ . Or, un 3-cycle dans  $\mathfrak{S}_5$  s'écrit nécessairement  $(i\,i+1\,b)$  pour un certain i. En conjugant les  $(1\,2\,a)$  par des puissances de  $(1\,2\,3\,4\,5)$ , nous obtenons tous les 3-cycles, qui engendrent  $\mathfrak{A}_5$ . Par conséquent,

$$\langle (1\,2\,3\,4\,5), (1\,2\,3) \rangle = \mathfrak{A}_5.$$

- 2. Soit (abc) un 3-cycle. Soit  $\sigma \in \mathfrak{S}_n$  qui envoie 1,2 et 3 sur a,b et c. Alors  $\sigma(123)\sigma^{-1}=(abc)$ . C'est également le cas de la conjugaison par  $\sigma(45)$ . L'une des deux permutations  $\sigma$  ou  $\sigma(45)$  est paire ce qui conclut que (123) et (abc) sont conjugués sous  $\mathfrak{A}_n$ .
- 3. Le cardinal de  $\mathfrak{S}_5$  s'écrit 120 = 8 \* 3 \* 5.

Un 5-Sylow est de cardinal 5 ; c'est le sous-groupe engendré par un 5-cycle. Il y en a 4\*3\*2/4=6 et ils sont isomorphes à  $\mathbb{Z}/5\mathbb{Z}$ .

Un 3-Sylow est de cardinal 3; c'est le sous-groupe engendré par un 3-cycle. Il y en a 5\*4\*3/3\*2=10 et ils sont isomorphes à  $\mathbb{Z}/3\mathbb{Z}$ .

Un 2-Sylow est de cardinal 8 et contient chaque type cyclique qui donne des permutations d'ordre 2-primaire puisque les 2-Sylow sont conjugués et contiennent tous les 2-sous-groupes. Un 2-Sylow contient ainsi un 4-cycle et une transposition qui normalise le sous-groupe engendré. Supposons que mon 2-Sylow contienne (1 2 3 4). Le normalisateur du sous-groupe engendré commute au carré (1 3)(2 4). Les seules tranpositions qui peuvent normaliser sont ainsi (1 3) et (2 4) et donnent le même 2-Sylow. Le seul sous-groupe isomorphe à  $\mathbb{Z}/4\mathbb{Z}$  dans notre 2-Sylow est celui engendré par le 4-cycle. Ainsi, un 2-Sylow est la partie 2-primaire du normalisateur du sous-groupe engendré par un 4-cycle. Il y en a donc 5\*4\*3\*2/4\*2=15 et ils sont isomorphes à  $\mathbb{D}_8$ .

## Exercice 2. Autour de la signature

Soit  $n \geq 2$  un entier.

- 1. Montrer qu'il existe un unique morphisme non trivial  $\mathfrak{S}_n \to \{\pm 1\}$ . En déduire que  $\mathfrak{A}_n$  est le seul sous-groupe d'indice 2 de  $\mathfrak{S}_n$ .
- 2. Montrer que tout morphisme  $\mathfrak{A}_n \to \{\pm 1\}$  est trivial. En déduire que  $\mathfrak{A}_4$  ne possède pas de sous-groupe d'ordre 6.

#### Correction de l'exercice 2:

- 1. Puisque les transpositions sont conjuguées et que le but est abélien, elles ont toutes même image. Si l'image des transposition vaut 1, comme les transpositions engendrent  $\mathfrak{S}_n$ , le morphisme est trivial. Sinon, il coïncide avec la signature.
  - Un sous-groupe H d'indice 2 est distingué. Il produit donc un morphisme  $\mathfrak{S}_n \to \mathfrak{S}_n/H \cong \{\pm 1\}$  non trivial dont H est le noyau. D'après la première question, ce morphisme est la signature et  $H = \mathfrak{A}_n$ .
- 2. Tout 3-cycle c vérifie  $c = (c^{-1})^2$ . Ainsi, l'image de tout 3-cycle par un tel morphisme est triviale. Comme les 3-cycles engendrent  $\mathfrak{A}_n$ , un tel morphisme est trivial.
  - Un sous-groupe d'ordre 6 de  $\mathfrak{A}_4$  est d'indice 2, donc correspond à un morphisme non trivial vers  $\{\pm 1\}$ .

## Exercice 4. Action exceptionnelle

Nous cherchons à retrouver l'action "poisson et chauve-souris" de  $\mathfrak{S}_5$ .

- 1. Démontrer que les 5-Sylows de  $\mathfrak{A}_5$  sont au nombre de 6.
- 2. En déduire une action de  $\mathfrak{S}_5$  transitive sur 6 éléments.
- 3. Démontrer qu'une telle action est fidèle.
- 4. Essayer de la retrouver explicitement avec des dessins de pentacles, et sa restriction à  $\mathfrak{A}_5$  avec un icosaèdre (l'énoncé de cette question est très floue, je suis d'accord).

### Correction de l'exercice 3:

- 1. D'après le théorème des Sylows, nous avons  $n_5|12$  et  $n_5 \equiv 1 \mod 5$ . De plus, tous les 5-cycles ne sont pas puissances les un des autres, ce qui implique qu'il y a plusieurs 5-Sylows. On trouve donc 12 à partir de ces conditions.
- 2. On fait agir  $\mathfrak{S}_5$  par conjugaison sur ses 5-Sylows. Le théorème de Sylow affirme en particulier que l'action est transitive.
- 3. Soit  $x \in X$  muni d'une telle action. Comme X = Orb(x), on obtient que  $6|[\mathfrak{S}_5 : \text{Stab}(x)]|[\mathfrak{S}_5 : K]$  où K est le noyau de l'action. Puisque les seuls sous-groupes distingués de  $\mathfrak{S}_5$  sont {Id},  $\mathfrak{A}_5$  et  $\mathfrak{S}_5$ , on en déduit que K est trivial, i.e. que l'action est fidèle.
- 4. On fait agir  $\mathfrak{S}_5$  sur les "coloriages"  $^1$  suivants par permutation des sommets

 $<sup>1.\ \</sup> Pr\'ecis\'ement \ les \ boucles \ passant \ une \ et \ une \ seule fois \ par \ chaque \ sommet$ 



Vous voyez qu'il a un "coloriage" pentagone/pentacle et cinq "coloriages" chauve-souris/poisson. On remarque que  $(3\,4\,5)$  envoie le pentagone/pentacle sur la paire d'animaux c et que  $(1\,2\,3\,4\,5)$  permute les paires d'animaux. L'action est donc transitive. On vérifie en regardant son noyau qu'il contient bien un 5-cycle et une paire de transpositions : c'est donc le normalisateur d'un 5-cycle et on a identifié les actions  $^2$ .

Pour l'icosaèdre, on a que  $\mathfrak{A}_5$  est le groupe d'isométries directes de l'icosaèdre. Les triplets d'arêtes formant un repère orthonormé sont au nombre de 6, et c'est sur eux que l'on agit.

<sup>2.</sup> Demandez-moi des précisions par mail si vous voulez !