Algorithmen und Datenstrukturen Klausur SS 2018

Angewandte Informatik Bachelor

Name	
Matrikelnummer	

Aufgabe 1	Verständnisfrage	6	
Aufgabe 2	AVL-Baum	14	
Aufgabe 3	Algorithmus von Dijkstra	15	
Aufgabe 4	Tiefensuchbaum und Artikulationspunkte	13	
Aufgabe 5	Binäre und binomiale Heaps	12	
Summe		60	

Aufgabe 1 Verständnisfrage

(6 Punkte)

Für eine Anwendung wird <u>sowohl das Löschen des kleinsten Elements</u> <u>als auch das Löschen des größten Elements</u> benötigt:

```
DataStructure data = ...;
// ...
min = data.delMin();
max = data.delMax();
// ...
```

Welche der folgenden Datenstrukturen bietet hierfür effiziente Operationen (O(log n) oder besser) an. Kennzeichnen Sie mit "+" für ja bzw. "-" für nein.

Datenstruktur	unterstützt sowohl das Löschen des größten als auch das Löschen des kleinsten Elements effizient
Sortiertes Feld	+
Sortierte einfach verkettete Liste	-
AVL-Baum	+
Неар	_
Hashtabelle	_
B-Baum	+

a) Fügen Sie in folgendem AVL-Baum die Zahlen 6 und dann 12 ein:

Einfügen: 6

Einfügen: 12

b) Löschen Sie in folgendem AVL-Baum die Zahl 10, 15 und dann 25. Halten Sie dabei die folgende Regel ein: Wird ein Knoten mit zwei Kindern gelöscht, dann wird er durch das Minimum im rechten Teilbaum ersetzt.

Löschen: 10

Löschen: 15

Löschen: 25

Aufgabe 3 Algorithmus von Dijkstra

(15 Punkte)

Gegeben ist ein ungerichteter Graph mit Kosten als Gewichte. Bestimmen Sie mit dem Algorithmus von Dijkstra <u>vom Startknoten s = 4 zu allen anderen Knoten</u> jeweils einen günstigsten Weg.

- a) Tragen Sie in folgende Tabelle nach jedem Besuchsschritt folgendes ein:
 - der besuchte Knoten b
 - die Kosten d[v] für den günstigsten Weg von Startknoten s nach v
 - den Vorgängerknoten p[v] für den günstigsten Weg von Startknoten s nach v.

<u>Wichtig</u>: Haben mehrere Kandidaten denselben d-Wert, dann wird der Kandidat mit kleinster Nummer als nächster Knoten besucht.

<u>Hinweis:</u> Es brauchen nur die d- und p-Werte eingetragen werden, die sich geändert haben. Die endgültigen p- und d-Werte können durch Umrandung besonders gekennzeichnet werden.

b	d[1]	d[2]	d[3]	d[4]	d[5]	d[6]	d[7]	d[8]	d[9]	d[10]	p[1]	p[2]	p[3]	p[4]	p[5]	p[6]	p[7]	p[8]	p[9]	p[10]
4	2	6	∞	0	3	∞	∞	1	5	∞	4	4	-	-	4	-	-	4	4	
8									2										8	
1		5										1								
9						3				9						9				9
5		4										5								
6			4				7			8			6				6			6
2																				
3							6									·	3			
7										7										7
10																				

b) Geben Sie den gefundenen günstigsten Weg von 4 nach 10 an.

$$4 - 8 - 9 - 6 - 3 - 7 - 10$$

c) Welche Kosten hat der günstigste Weg von 4 nach 10?

7

Aufgabe 4 Tiefensuchbaum und Artikulationspunkte (13 Punkte)

Gegeben sei folgender ungerichteter Graph:

a) Geben Sie den <u>Tiefensuchbaum mit Rückwärtskanten</u> (TR) mit <u>Wurzel 3</u> an. <u>Betrachten Sie die Nachbarn eines Knotens in der durch die Knotennummerierung gegebenen Reihenfolge.</u>

- b) Begründen Sie mit Hilfe des TR, warum Knoten 3 und 7 Artikulationspunkte (APe) und Knoten 8 kein Artikulationspunkt ist? Folgender Begriff darf verwendet werden: Ein Rückwärtsweg ist ein Weg in einem Tiefensuchbaum mit einer beliebig langen Folge von Vorwärtskanten und dann genau einer Rückwärtskante.
 - Knoten 3 ist ein AP, da 3 die Wurzel ist und mehr als 1 Kind hat.
 - Knoten 7 ist ein AP, da 7 im TR ein Kind hat (z.B. 8), von dem es keinen Rückwärtsweg zu einem Vorfahren von 7 gibt.
 - Knoten 8 ist kein AP, da jedes Kind von 8 (nämlich 9 und 10)) einen Rückwärtsweg zu einem Vorfahren von 8 (nämlich 7) hat.

Aufgabe 5 Binäre und binomiale Heaps

(12 Punkte)

a) <u>Löschen</u> Sie in folgendem binären Heap <u>zuerst</u> die größte Zahl und <u>fügen</u> Sie <u>dann</u> die Zahl 9 <u>ein</u>. Der Heap ist absteigend heap-geordnet: d.h. in jeder Elternknoten ist größer oder gleich als seine Kindknoten.

b) Löschen Sie in folgendem binomialen Heap zweimal die größte Zahl.

 B_2

 B_3