Vv156 Lecture 6

Dr Jing Liu

UM-SJTU Joint Institute

October 11, 2016

The Intermediate-Value theorem

If f is continuous on a closed interval [a, b] and

k is any number strictly between f(a) and f(b), where $f(a) \neq f(b)$,

then there exits

a number c in the interval (a, b) such that f(c) = k.

- Let us assume

$$f(a) < k < f(b)$$

- Under this assumption, suppose g(x) = f(x) - k, then

$$g(a) < 0$$
 and $g(b) > 0$

- To show there exists a < c < b such that

$$f(c) = k$$

we need to show that there exist c such that

$$g(c) = 0$$
 for some $a < c < b$

- Let

$$S = \left\{ x \in [a, b] \mid g(x) < 0 \right\}$$

- Note the set S is nonempty since $a \in S$ and S is bounded from above by b.
- Since there is no gap in $\mathbb{R},$ then we take as given that $\mathsf{sup}\left(\mathcal{S}\right)$ exist, $% \left(\mathcal{S}\right) =\mathcal{S}\left(\mathcal{S}\right)$ and claim

$$c = \sup(\mathcal{S})$$

- To show this claim is correct, we need to show

$$g(x = c) = 0$$
, where $c = \sup(S)$

- Suppose $g(c) \neq 0$, since f and thus g is continuous at c, there exists $\delta > 0$

$$|g(x)-g(c)|<rac{1}{2}|g(c)|$$
 when $|x-c|<\delta$

- Now if g(c) < 0, then $c \neq b$ and for all x such that $|x - c| < \delta$.

$$g(c) + g(x) - g(c) < g(c) - \frac{1}{2}g(c) \iff g(x) < \frac{1}{2}g(c) < 0$$

- So the following is true, which means there are points $x \in \mathcal{S}$ bigger than c,

$$g(x) < 0$$
 for all x such that $|x - c| < \delta$.

- That leads us to a contradiction of c being an upper bound of S.
- Similarly, if g(c) > 0, then $c \neq a$ and for all x such that $|x c| < \delta$

$$g(c) + g(x) - g(c) > g(c) - \frac{1}{2}g(c) \iff g(x) > \frac{1}{2}g(c) > 0$$

- Thus

$$g(x) > 0$$
 for all x such that $|x - c| < \delta$.

- It follows that there exists $\mu>0$ such that $c-\mu\geq a$ and

$$g(x) > 0$$
 for $c - \mu \le x \le c$

- So $x = c - \mu$, which is less than c, is also an upper bound of \mathcal{S} , this leads to a contradiction of c being the least upper bound.

- The above forces us to conclude that

$$g(c)=0$$

- Finally, $c \neq a$ and $c \neq b$ since g is nonzero at the endpoints

- If the original assumption is not true, that is, f(b) < k < f(a) instead, then we apply the argument to the reflect of y = f(x) about x-axis, and prove there is c

$$-f(c) = -k$$

- Q: Can you, in theory, slice a rain drop on a windscreen exactly in half no matter how irregular its shape with a single straight-line cut?
- Q: In theory, can you always simultaneously slice two rain drops each exactly in half with a single straight-line cut, no matter the shapes of the rain drops nor their location on the windscreen.