Calculus II

Assignment 11

20180720

Student ID:					
1	Find a form	nula for the general	term a	of the segmence	assuming that the

- 1. Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.
 - (a) $\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\}$

Name : _____

- (b) $\{1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}, \ldots\}$
- (c) $\{1, 0, -1, 0, 1, 0, -1, 0, \ldots\}$
- 2. Determine whether the sequence converges or diverges. If it converges, find the limit.
 - (a) $a_n = 1 (0.2)^n$
 - (b) $a_n = \frac{n^3}{n^3 + 1}$
- 3. Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?
 - (a) $a_n = (-2)^{n+1}$
 - (b) $a_n = \frac{1}{2n+3}$
- 4. Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.

 $3-4+\frac{16}{3}-\frac{64}{9}+\cdots$

- 5. Determine whether the series is convergent or divergent. If it is convergent, find its sum.
 - (a) $\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \cdots$ Hint: Harmonic Series.
 - (b) $\sum_{n=1}^{\infty} \sqrt[n]{2}$ Hint: Test for Divergence.

(c)
$$\sum_{n=1}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n+1)} \right)$$

6. Use the Integral Test to determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{1}{n^5}$$

7. * Find the limit of the sequence

$$\{\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \ldots\}$$

Notice: * is an optional question.

Reading materials : Textbook (Calculus 6ed Stewart) Section $12.1 \sim 12.3$, especially

- Section 12.1, Example 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12.
- Section 12.2, Example 1, 2, 3, 6, 7, 8, 9.
- Section 12.3, Example 1, 2, 3.

Or alternative Textbook (Calculus Early Transcendentals 6ed Stewart) Section $11.1 \sim 11.3$, especially

- Section 11.1, Example 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12.
- Section 11.2, Example 1, 2, 3, 6, 7, 8, 9.
- Section 11.3, Example 1, 2, 3.