Introduction to Analysis Collection

HAOMING WANG

18 June 2019

Abstract

This is the collection of lecture notes for the *Introduction to Analysis* course in Spring 2019. The purpose of this course is to bridge the gap between *Calculus* and *Advanced Calculus*.

Reference Materials:

高木貞治, 解析概論 (中译本: 高等微积分 (第 3 版修订版), 人民邮电出版社) Richard Courant and Fritz John, Introduction to Calculus and Analysis (I) (II) Protter and Morrey, A first course in real analysis

Contents

1	Con	Completeness of the real numbers				
	1.1	Real number	3			
	1.2	Sequence	5			
	1.3	Nested Intervals	9			
	1.4	Limit superior / inferior	11			
	1.5	Cauchy seq	13			
2	Seri	ies	15			
	2.1	Positive series	15			
	2.2	Alternating series	17			
	2.3	Rearrangement theorem	18			
	2.4	Multiplying absolutely convergent series	23			
3	Metric space					
	3.1	Metric space	26			
	3.2	Open and compact on metric space	28			
	3.3	Functions on metric space	34			
	3.4	Uniformly continuous function	37			
	3.5	Limit superior / inferior for function	38			
4	Convergence of sequence / series of functions					
	4.1	Pointwise / uniformly convergent	42			
	1.2	Complete metric space	11			

Chapter 1

Completeness of the real numbers

1.1 Real number

Definition 1. Let $S \subseteq \mathbb{R}$ and $r \in \mathbb{R}$, we say that

- 1. *r* is an upper (lower) bound of *S* if $\forall s \in S, r \geq (\leq)s$;
- 2. r is the greatest (least) element of S if r is an upper (lower) bound of S and $r \in S$, denoted by $r = \max S(\min S)$.
- 3. r is the least upper (greatest lower) bound of S if r is the least (greatest) element of the set of upper (lower) bound of S, denoted by $r = \sup S(\inf S)$.

Remark 1. r is a least upper bound of S means any element of S which is smaller than r is not an upper bound of S, that is $\forall \epsilon > 0, \exists s \in S, \text{ s.t.}$

$$r - \epsilon < s < r$$
.

Thus if for some $l \in \mathbb{R}$, $S \subseteq \mathbb{R}$ and $\sup S > l$, then $\exists s \in S$, s.t. s > l; In the other word, if $s < (\leq)l$ for $\forall s \in S \Rightarrow \sup S \leq l$.

We write $\sup S = \infty$ (inf $S = -\infty$) if and only if S has no upper (lower) bound. If this is the case we say $\sup S(\inf S)$ does not exist. We say S is bounded from above (below) iff S has an upper (lower) bound.

Definition 2 (Dedekind Cut). Let $A, B \subseteq \mathbb{R}$, we say that (A, B) is a Dedekind cut if

- 1. $A, B \neq \emptyset$;
- 2. $A \cup B = \mathbb{R}$;
- 3. $\forall a \in A, b \in B, a < b$.

We usually call A(B) the lower (upper) part of (A, B).

We assume that \mathbb{R} has the **Dedekind's Gapless Property**: If (A, B) is a Dedekind cut of \mathbb{R} , then exactly one of the following happens:

1. max *A* exists but min *B* does not;

2. min *B* exists but max *A* does not.

We call max A in 1. (or min B in 2.) the **cutting** of (A, B).

Exercise 1. We may define Dedekind cuts on $\mathbb Q$ and $\mathbb Z$ similarly, does Dedekind Gapless Property hold for $\mathbb Q$ and $\mathbb Z$?

Proof. 1. Let $A := \{q \in \mathbb{Q} | q^2 < 2\}$, $B := \{q \in \mathbb{Q} | q^2 > 2\}$. It is direct to see that $A, B \neq \emptyset$.

If $\exists r \in \mathbb{Q}$, s.t. $r^2 = 2$, then $\exists p, q \in \mathbb{N}$, s.t. r = p/q and p, q are not both even. Then $p^2/q^2 = 2 \Rightarrow p^2 = 2q^2 \Rightarrow p^2$ is even $\Rightarrow p$ is even $\Rightarrow p^2$ can be divided by $4 \Rightarrow q^2$ can be divided by $4 \Rightarrow q^2$ can be divided by $4 \Rightarrow q^2$ is even, which leads to a contradiction. Thus $\forall r \in \mathbb{Q}, r^2 \neq 2$. Thus $A \cup B = \mathbb{Q}$.

Finally $\forall q_a \in A, q_b \in B$ one has $q_a^2 < 2 < q_b^2 \Rightarrow q_a < q_b$. Thus (A, B) is a Dedekind cut of \mathbb{Q} . It is direct to see that (A, B) has no Dedekind's gapless property:

For example, if $p \in A$, then $p \in \mathbb{Q}$ and $p^2 < 2$, put $\epsilon = 2 - p^2$, then we should find a $q \in \mathbb{Q}$ such that $q^2 < 2$ and q > p, which means

$$p^2 < q^2 < 2$$

we consider there exists a function r of p, ϵ , such that r > 0 and $r \in \mathbb{Q}$, and put q = p + r, thus q > p and $q \in \mathbb{Q}$, we now prove that $q^2 < 2$. Since

$$2 - q^2 = 2 - (p^2 + r^2 + 2pr) = \epsilon - r^2 - 2pr$$

We now try to find a suitable structure of r to make $r^2 + 2pr < \epsilon$. Since p > 0 and $\epsilon = 2 - p^2$, $0 < \epsilon < 2$. Consider $r = \epsilon/2$ then

$$r^2 = \frac{\epsilon^2}{4} = \frac{\epsilon}{2} \cdot \frac{\epsilon}{2} < \frac{\epsilon}{2}.$$

Consider $r = \epsilon/((2p+1)2) < \epsilon/2$ and

$$2pr = 2p \cdot \frac{\epsilon}{(2p+1)2} < \frac{\epsilon}{2},$$

then we have $r^2 + 2pr < \epsilon$ and

$$q^2 < 2$$
,

by defining

$$q = p + \frac{\epsilon}{2(2p+1)} = \frac{3p^2 + 2p + 2}{4p + 2},$$

thus there is no maximal element in A and correspondingly, there is no minimal element in B as well.

2. trivial.

Theorem 1 (Weierstrass Theorem). Let $\emptyset \neq S \subseteq \mathbb{R}$, if S has an upper bound, then $\sup S$

Proof. Let *B* be the set of all upper bound of *S*, and define $A := \mathbb{R} \setminus B$.

CLAIM 1: (A, B) is a Dedekind cut of \mathbb{R} :

- 1. $S \neq \emptyset \Rightarrow \forall s \in S, s-1 \notin B \Rightarrow s-1 \in A \Rightarrow A \neq \emptyset$; And S has an upper bound $\Rightarrow B \neq \emptyset$;
- 2. $A = \mathbb{R} \backslash R \Rightarrow A \cup B = \mathbb{R}$;
- 3. If $\exists a \in A, b \in B$, s.t. $a \geq b$ where b is an upper bound of S while a is not, thus $\exists s' \in S$, s.t. $a < s' \leq b < a$, which leads to a contradiction. Thus $\forall a \in A, b \in B$ one has a < b.

CLAIM 2: min *B* exists:

If min $B \not\exists$, then by Dedekind's gapless property, max $A\exists$, denoted by a_0 . $a_0 \in A \Leftrightarrow a_0 \notin B \Leftrightarrow a_0$ is not an upper bound of $S \Leftrightarrow \exists s_0 \in S$, s.t. $a_0 < s$. Choose $x \in \mathbb{R}$ such that $a_0 < x < s_0$, thus max $A < x \Rightarrow x \in B \Rightarrow x$ is an upper bound of S but $x < s_0$ which leads to a contradiction.

Exercise 2 (Archimedean Property). *Show that* $\forall r \in \mathbb{R}, r > 0 \Rightarrow \exists n \in \mathbb{N}$, s.t. n > r. (or say $\exists n \in \mathbb{N}$, s.t. 1/n < r).

Proof. Let $r \in \mathbb{R}$, $S := \{n \in \mathbb{N} | n \le r\}$, since $r > 0, 0 \in S \Rightarrow S \ne \emptyset$. Then $S \subseteq \mathbb{R}$ and S is bounded above (by r), thus S has a least upper bound in \mathbb{R} , let $s = \sup S$.

Now consider the number s-1. Since s is the supremum of S, s-1 cannot be an upper bound of S by definition. Thus $\exists m \in S$ such that

$$m > s - 1 \Rightarrow m + 1 > s$$

But as $m \in \mathbb{N}$, it follows that $m+1 \in \mathbb{N}$. Because m+1 > s, it follows that $m+1 \notin S$ and so m+1 > r. Furthermore, for $\forall r > 0, 1/r > 0$ then $\exists n \in \mathbb{N}$, s.t. $n > 1/r \Rightarrow 1/n < r$.

1.2 Sequence

Definition 3 (sequence). A sequence $a_n(n \in \mathbb{N})$ is a map $\mathbb{N} \xrightarrow{a} \mathbb{R}$ where $n \mapsto a(n)$, denoted by a_n .

Definition 4 (Convergence). Let $a_n (n \in \mathbb{N})$ be a sequence in \mathbb{R} and $l \in \mathbb{R}$, we say that a_n converges to l as $n \to \infty$ if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \ge N$, $|a_n - l| < \epsilon$, denoted by $a_n \to l$ (as $n \to \infty$).

If such l exists, we call it the limit of $\{a_n\}$ and denote is as $\lim_{n\to\infty} a_n = l$, and call $\{a_n\}$ a convergent sequence; otherwise we call it a **divergent** sequence. Furthermore, we say $\lim_{n\to\infty} a_n = \infty$ if $\forall M > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \geq N$, $a_n \geq M$.

Exercise 3. Show that

- 1. $\lim_{n\to\infty} a_n = l$ and $\lim_{n\to\infty} a_n = m \Rightarrow l = m$;
- 2. $a_n(n \in \mathbb{N})$ is convergent $\Rightarrow \{a_n | n \in \mathbb{N}\}$ is bounded;
- 3. *if* $a_n < b_n$ *for all* $n \in \mathbb{N}$, $\lim_{n \to \infty} a_n = l$, $\lim_{n \to \infty} b_n = m \Rightarrow l \leq m$.

Proof. 1. $\lim_{n\to\infty} a_n = l$ and $\lim_{n\to\infty} a_n = m \Rightarrow$ for $\forall \epsilon > 0$, $\exists N, M \in \mathbb{N}$, s.t. $\forall n \geq N$ one has $|a_n - l| < \epsilon/2$ and $\forall n \geq M$ has $|a_n - m| < \epsilon/2$, thus for $\forall n \geq \max\{N, M\}$, has

$$|l - m| = |l - a_n + a_n - m| < |a_n - l| + |a_n - m| < \epsilon$$

holds for $\forall \epsilon > 0 \Rightarrow l = m$.

2. Suppose $a_n \to l$ as $n \to \infty$, then given an $\epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N$ we have $|a_n - l| < \epsilon \Rightarrow l - \epsilon < a_n < l + \epsilon$, thus a_n has upper bound

$$\max\{a_1,\cdots,a_{n-1},l+\epsilon\},\$$

and lower bound

$$\min\{a_1,\cdots,a_{n-1},l-\epsilon\}.$$

3. if l > m, let $\epsilon = l - m$, then $\exists N \in \mathbb{N}$, s.t. $\forall n \geq N$ has $|a_n - l| < \epsilon/2$ and $|b_n - m| < \epsilon/2$ thus

$$a_n < \frac{l+m}{2} < b_n,$$

which leads to a contradiction, thus $l \leq m$.

Remark 2. Changing or removing finitely many terms in $a_n (n \in \mathbb{N})$ does not effect a_n 's being convergent (and its limit)/ divergent.

Proposition 1. If $\lim_{n\to\infty} a_n = l$ and $\lim_{n\to\infty} b_n = m$ then

- 1. $\lim_{n\to\infty}(a_n\pm b_n)=l\pm m$;
- 2. $\lim_{n\to\infty} a_n b_n = lm$;
- 3. if $m \neq 0$ and $b_n \neq 0$ for all but finitely many n then $\lim_{n \to \infty} a_n/b_n = l/m$.

Proof. 1. For $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \geq N$, $|a_n - l| \leq \epsilon/2$ and $\exists M \in \mathbb{N}$, s.t. $\forall n \geq M$, $|b_n - m| \leq \epsilon/2$, thus $\forall n \geq \max\{N, M\}$, one has

$$|(a_n \pm b_n) - (l \pm m)| = |(a_n - l) \pm (b_m - m)|$$

$$\leq |a_n - l| + |b_n - m|$$

$$\leq \epsilon,$$

thus $(a_n \pm b_n) \to l \pm m$ as $n \to \infty$.

2. Since a_n , b_n are convergent, thus they are bounded. Choose C > 0 such that $|b_n| \le C$ for all $n \in \mathbb{N}$ and $|l| \le C$, then for $\forall \epsilon > 0$, $\exists N, M \in \mathbb{N}$, s.t. $\forall n \ge N$ one has $|a_n - l| \le N$

 $\epsilon/(2C)$ and $\forall n \geq M$ has $|b_n - m| \leq \epsilon/(2C)$, thus $\forall n \geq \max\{N, M\}$ one has

$$|a_nb_n - lm| = |a_nb_n - lb_n + lb_n - lm|$$

$$\leq |a_n - l| \cdot |b_n| + |b_n - m| \cdot |l|$$

$$\leq (|a_n - l| + |b_n - m|) \cdot |C|$$

$$\leq \epsilon$$

thus $a_n b_n \to lm$.

3. all we need to show is $\lim_{n\to\infty} 1/b_n = 1/m$ which is trivial.

Exercise 4 (Squeeze theorem). *If* $\lim_{n\to\infty} a_n = l$ *and* $\lim_{n\to\infty} b_n = m$ *and* $a_n \le c_n \le b_n$, *show that* $l = m \Rightarrow \lim_{n\to\infty} c_n = l$.

Proof. Since $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = l$, for $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N$ has $|a_n - l| < \epsilon/3$ and $|b_n - l| < \epsilon/3$. And since $a_n \leq c_n \leq b_n$, we have that $0 \leq c_n - a_n \leq b_n - a_n$. Thus for $\forall n \geq N$, we have

$$|c_{n} - l| = |c_{n} - a_{n} + a_{n} - l|$$

$$\leq |c_{n} - a_{n}| + |a_{n} - l|$$

$$\leq |b_{n} - a_{n}| + |a_{n} - l|$$

$$= |b_{n} - l + l - a_{n}| + |a_{n} - l|$$

$$\leq |b_{n} - l| + 2|a_{n} - l|$$

$$\leq \varepsilon.$$

thus $\lim_{n\to\infty} c_n = l$.

Exercise 5. If a > 1 show that $\lim_{n \to \infty} 1/a^n = 0$.

Proof. Since $a > 1 \Rightarrow b := a - 1 > 0$, thus

$$0 \le \frac{1}{a^n} = \frac{1}{(1+b)^n} \le \frac{1}{1+nb} \to 0$$

as $n \to \infty$, thus $\lim_{n \to \infty} 1/a^n = 0$ by Squeeze theorem.

Definition 5. A seq. $a_n (n \in \mathbb{N})$ in \mathbb{R} is

- 1. nondecreasing monotone/increasing if $a_n \leq a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by a_n , nonincreasing monotone/decreasing if $a_n \geq a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by a_n .
- 2. strictly increasing if $a_n < a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by $a_n \nearrow \nearrow$; strictly decreasing if $a_n > a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by $a_n \searrow \nearrow$.

Theorem 2 (Monotone Seq. Property). If $a_n \nearrow and \{a_n | n \in \mathbb{N}\}$ has an upper bound, then $\lim_{n\to\infty} a_n = \sup\{a_n | n \in \mathbb{N}\}$; $a_n \searrow and \{a_n | n \in \mathbb{N}\}$ has an lower bound, then $\lim_{n\to\infty} a_n = \inf\{a_n | n \in \mathbb{N}\}$.

Proof. $\{a_n|n\in\mathbb{N}\}$ has an upper bound $\Rightarrow l:=\sup\{a_n|n\in\mathbb{N}\}$ exists by Weierstrass theorem. Thus for $\forall \epsilon>0, l-\epsilon$ is not an upper bound of $\{a_n\}$, then $\exists N\in\mathbb{N}$, s.t. $a_N>l$ and since $a_n\nearrow$, we have that $\forall n\ge N, l-\epsilon< a_n\le l\Rightarrow \lim_{n\to\infty}a_n=l$.

Example 1 (Decimal expression gives real number). Suppose $d_i \in \mathbb{N}$ and $0 \le d_i \le 9$ for $i \in \mathbb{N}$, and define

$$a_n = \frac{d_1}{10} + \frac{d_2}{10^2} + \dots + \frac{d_n}{10^n}$$

for $n \in \mathbb{N}$, then it is direct to see that $a_n \nearrow$ and

$$a_n \le \frac{9}{10} + \frac{9}{10^2} + \dots + \frac{9}{10^n}$$

$$= \frac{9}{10} \left(\frac{1 - \frac{1}{10^{n+1}}}{1 - \frac{1}{10}} \right)$$

$$< \frac{9}{10} \left(\frac{1}{1 - \frac{1}{10}} \right)$$

$$= 1$$

and hence $\lim_{n\to\infty} a_n$ exists, and we can define a real number by $\lim_{n\to\infty} a_n =: 0.d_1d_2\cdots$

Example 2 (The natural base *e*). Define a seq. $a_n = (1 + 1/n)^n (n \in \mathbb{N})$, then we have

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n}$$

$$= \binom{n}{0} + \binom{n}{1} \frac{1}{n} + \binom{n}{2} \frac{1}{n^{2}} + \dots + \binom{n}{n} \frac{1}{n^{n}}$$

$$= \sum_{j=0}^{n} \binom{n}{j} \frac{1}{n^{j}} = \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} \cdot \frac{1}{n^{j}}$$

$$= \sum_{j=0}^{n} \frac{1}{j!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{j-1}{n}\right)$$

$$< \sum_{j=0}^{n+1} \frac{1}{j!} \left(1 - \frac{1}{n+1}\right) \left(1 - \frac{2}{n+1}\right) \dots \left(1 - \frac{j-1}{n+1}\right)$$

Thus $a_n \nearrow \nearrow$. On the other hand, for $\forall n \in \mathbb{N}$, we have

$$a_n < \sum_{j=0}^{n+1} \frac{1}{j!} = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$$

$$< 1 + 1 + \frac{1}{2} + \dots + \frac{1}{2^n}$$

$$= 1 + \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}}$$

$$< 3$$

Thus a_n has an upper bound and hence a_n converges, and we define $\lim_{n\to\infty} a_n =: e$.

Definition 6 (subsequence). Let $\mathbb{N} \stackrel{a.}{\longrightarrow} \mathbb{R}$ be a sequence, a subsequence $a_{n_m}(m \in \mathbb{N})$ is a composite map

$$\mathbb{N} \xrightarrow{n.} \mathbb{N} \xrightarrow{a.} \mathbb{R}$$

where n is a strictly monotone injection and $m \mapsto n(m)$ denoted by n_m .

That is for any $m_1, m_2 \in \mathbb{N}, m_1 > m_2 \Rightarrow n(m_1) = n_{m_1} > n_{m_2} = n(m_2).$

Exercise 6. Let $\mathbb{N} \xrightarrow{a.} X$ be a sequence in metric space¹ (X,d), $a_{n_m}(m \in \mathbb{N})$ is a subsequence of $a_n(n \in \mathbb{N})$, show that if $\exists l \in X$ s.t. $\lim_{n \to \infty} a_n = l \Rightarrow \lim_{m \to \infty} a_{n_m} = l$.

Proof. For any $\epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \geq N$, $d(x_n, l) < \epsilon$. On the other hand, $n \neq 0$ $\exists lim_{m \to \infty} n(m) = \infty \Rightarrow$ and hence $\exists M \in \mathbb{N}$, s.t. $\forall m \geq M \Rightarrow n_m \geq N \Rightarrow d(a_{n_m}, l) < \epsilon \Rightarrow 0$ $\exists lim_{m \to \infty} a_{n_m} = l$.

1.3 Nested Intervals

Definition 7 (Nested). A seq. of intervals $I_n(n \in \mathbb{N})$ is nested if $I_n \neq \emptyset$ and $I_{n+1} \subseteq I_n$ for $\forall n \in \mathbb{N}$.

Example 3. If we have a seq. of nested intervals $I_n(n \in \mathbb{N})$, do we have $\cap_{n \in \mathbb{N}} I_n \neq \emptyset$? The answer is not sure. For example,

- 1. $I_n = (0, 1/n), n \in \mathbb{N}$, then for any $r \in \mathbb{R}, \exists N \in \mathbb{N}$, s.t. 1/N < r by Archimedean Property, thus $r \notin I_N$, and hence $\cap_{n \in \mathbb{N}} I_n = \emptyset$;
- 2. $I_n = [n, \infty), n \in \mathbb{N}$, then for any $r \in \mathbb{R}, \exists N \in \mathbb{N}$, s.t. r < N by Archimedean Property, thus $r \notin I_N$, and hence $\cap_{n \in \mathbb{N}} I_n = \emptyset$;

Theorem 3 (Theorem of Nested Interval). If $I_n(n \in \mathbb{N})$ is a seq. of bounded closed nested intervals, then $\cap_{n \in \mathbb{N}} I_n \neq \emptyset$. (In the other word, there exists a real number $c \in \mathbb{R}$ such that $c \in \cap_{n \in \mathbb{N}} I_n$)

Proof. Write $I_n = [a_n, b_n] (n \in \mathbb{N})$, then $I_n (n \in \mathbb{N})$ is nested $\Leftrightarrow a_n \leq b_n$ and $a_n \nearrow$ and $b_n \searrow$. And furthermore, for $\forall n, m \in \mathbb{N}$,

$$a_n \leq a_{\max\{m,n\}} \leq b_{\max\{m,n\}} \leq b_m,$$

in the other word, for $\forall m \in \mathbb{N}$, b_m is an upper bound of $\{a_n | n \in \mathbb{N}\}$, thus seq. a_n converges. Let $c = \lim_{n \to \infty} a_n$, then given $m \in \mathbb{N}$, for $\forall n \in \mathbb{N}$, $a_n \leq b_m$ thus

$$c = \lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_m = b_m.$$

¹The concept of metric space will be given in Chapter 3.

On the other hand, $c = \sup\{a_n | n \in \mathbb{N}\}$, thus for all $m \in \mathbb{N}$, we have

$$a_m \leq c \leq b_m$$

thus $c \in I_m$ for $\forall m \in \mathbb{N} \Rightarrow c \in \cap_{n \in \mathbb{N}} I_n$.

Exercise 7. *Show that* $\cap_{n\in\mathbb{N}}I_n\neq\emptyset$ *, if*

- 1. $I_n = (a_n, b_n)$, nested and $a_n \nearrow and b_n \nearrow$?
- 2. $I_n = (a_n, \infty)$, nested and $\{a_n | n \in \mathbb{N}\}$ is bounded from above.

Proof. 1. Just as analyzed before, there exist $c \in \mathbb{R}$ such that $c = \lim_{n \to \infty} a_n$, and $c = \sup\{a_n | n \in \mathbb{N}\}$ and hence $a_n \le c \le b_m$ for $\forall n, m \in \mathbb{N}$. Note that $a_n \le c$ implies that $a_n < c$ for $\forall n \in \mathbb{N}$, otherwise if $\exists n' \in \mathbb{N}$, s.t. $a_{n'} = c$ then

$$a_{n'+1} \ge a_{n'} = c$$
,

which leads to the contradiction. In the same way $c \leq b_m$ implies that $c < b_m$ for $\forall m \in \mathbb{N}$. Thus there $\exists c \in \mathbb{R}$ such that

$$a_n < c < b_m$$

for $\forall n, m \in \mathbb{N} \Rightarrow c \in \cap_{n \in \mathbb{N}} I_n$.

2. Since $I_n=(a_n,\infty)$ is a nested interval, $a_n\nearrow\Rightarrow a_n$ converges since a_n is upper bounded. That is $\exists c\in\mathbb{R}$, s.t. $c=\lim_{n\to\infty}a_n=\sup\{a_n\}$, thus for $\forall n\in\mathbb{N},c\geq a_n$, that is

$$c+1>c\geq a_n$$

for $\forall n \in \mathbb{N} \Rightarrow c+1 \in \cap_{n \in \mathbb{N}} I_n$.

Exercise 8. Show that Theorem of Nested Interval implies Dedekind's Gapless Property.

Proof. Let (A, B) be a Dedekind cut of \mathbb{R} , pick a from A and b from B, and form an interval $I_0 = [a, b]$. Then (a + b)/2 lies in the middle of I_0 and must belong to A or B. If (a + b)/2 belongs to A, we let

$$a_1 = \frac{a+b}{2}, \quad b_1 = b$$

and if (a + b)/2 belongs to B, let

$$a_1 = a$$
, $b_1 = \frac{a+b}{2}$

and hence we can form a new interval $I_1 = [a_1, b_1]$ whose length is half of the former I_0 . Repeat this process, we obtain a seq. of nested intervals

$$I_0 \supseteq I_1 \supseteq \cdots \supseteq I_n \supseteq \cdots$$
,

where $I_n = [a_n, b_n], b_n - a_n = (b_{n-1} - a_{n-1})/2$. Thus there exists $s \in \mathbb{R}$ lies in the $\bigcap_{n \in \mathbb{N}} I_n$ by the theorem of nested intervals, and either $s \in A$ or $s \in B$.

Assume that $s \in A$, for any $s' \in \mathbb{R}$, s < s', exists b_n such that $s < b_n < s'$ since $b_n \to s$, thus $s' \in B$. That is $s \in A$ and for any s' > s, $s' \in B$. In the other word, s is the maximal element of A and B has no minimal element in this case, since assume s' is the minimal element of B then $\exists b_n$, s.t. $b_n < s'$ and $b_n \in B$, which is a contradiction.

Remark 3. Summary, we have discussed

- 1) Dedekind's Gapless Property;
- 2) Weierstrass Theorem;
- 3) Monotone Seq. Property;
- 4) Theorem of Nested Interval. which have the relationship:

$$\begin{array}{ccc} 1) & \Longrightarrow 2) \\ \uparrow & & \downarrow \\ 4) & \longleftarrow 3) \end{array}$$

These 5 properties are equivalent and we call the these the **Completeness of the real** numbers.

1.4 Limit superior / inferior

Let $a_n(n \in \mathbb{N})$ be a bounded (upper bdd. and lower bdd.) seq. in \mathbb{R} , we define **upper seq.** of a_n as

$$u_n := \sup\{a_m | m \ge n\},\$$

and **lower seq. of** a_n as

$$l_n := \inf\{a_m | m \ge n\},\,$$

for $n \in \mathbb{N}$. Thus give $n \in \mathbb{N}$, we have that for $\forall m \geq n$

$$l_n \leq a_m \leq u_n$$
,

We now show that l_n and u_n is monotone. Assume that $\exists n \in \mathbb{N}$, s.t. $u_n < u_{n+1}$, let $\epsilon = (u_{n+1} - u_n)/2$, then

$$u_{n+1} - \epsilon > u_n = \sup\{a_m | m \ge n\},$$

thus for $\forall m \geq n$, $u_{n+1} - \epsilon > a_m$ and hence $u_{n+1} - \epsilon$ is an upper bound of $\{a_m | m \geq n+1\}$, which leads to a contradiction. Thus for $\forall n \in \mathbb{N}, u_n \geq u_{n+1} \Rightarrow u_n$, and l_n in the same way.

Thus we have that for any $n, m \in \mathbb{N}$,

$$l_m \leq l_{\max\{m,n\}} \leq u_{\max\{m,n\}} \leq u_n,$$

thus l_1 is a lower bound for $\{u_n|n \in \mathbb{N}\}$ and u_1 is an upper bound of $\{l_n|n \in \mathbb{N}\}$ and hence $u_n, l_n(n \in \mathbb{N})$ are convergent by Monotone seq. property. We define the **limit superior** of a_n as the limit of u_n :

$$\overline{\lim}_{n\to\infty} a_n := \lim_{n\to\infty} u_n = \lim_{n\to\infty} \sup_{m>n} a_m = \inf_{n\in\mathbb{N}} \sup_{m>n} a_m$$

The last equals sign is because $u_n \searrow$ and hence converges to its greatest lower bound by Monotone seq. property. And the **limit inferior** of a_n as the limit of l_n :

$$\underline{\lim}_{n\to\infty} a_n := \lim_{n\to\infty} l_n = \lim_{n\to\infty} \inf_{m\geq n} a_m = \sup_{n\in\mathbb{N}} \inf_{m\geq n} a_m$$

Exercise 9. *Let* $a_n (n \in \mathbb{N})$ *, show that*

$$a_n$$
 converges $\Leftrightarrow \overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n$

and if any of both sides holds, then

$$\lim_{n\to\infty} a_n = \overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n$$

Proof. \Rightarrow : Suppose that $\lim_{n\to\infty} a_n = s$. Then for any $\epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \ge N$, $|a_n - s| < \epsilon/2$, thus $s - \epsilon/2 < a_n < s + \epsilon/2$ for $\forall n \ge N$. Thus the upper seq. u_n of a_n has

$$s - \frac{\epsilon}{2} < a_n \le u_n \le s + \frac{\epsilon}{2},$$

for $\forall n \geq N$. The third inequality symbol is because if $\exists n' \geq N$ such that $u_{n'} > s + \epsilon/2$, then there exist a real number q such that $s + \epsilon/2 < q < u_{n'}$ and $q > s + \epsilon/2 > a_n$ for $\forall n \geq N$ and hence $q > a_n$ for $\forall n \geq n'$, and then $u_{n'}$ is not the least upper bound of $\{a_n | n \geq n'\}$ which is contrary. Thus $|u_n - s| \leq \epsilon/2 < \epsilon$, thus

$$\lim_{n\to\infty} u_n = \overline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} a_n = s,$$

and $\lim_{n\to\infty} l_n = \underline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} a_n = s$ in the same way.

 \Leftarrow : Suppose $\lim_{n\to\infty} u_n = \lim_{n\to\infty} l_n = s$, then for $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N$ one has $|u_n - s| < \epsilon/3$ and $|l_n - s| < \epsilon/3$ and $|u_n - l_n| \leq |u_n - s| + |l_n - s| < 2\epsilon/3$, since $l_n \leq a_n \leq u_n$ then $0 \leq a_n - l_n \leq u_n - l_n$. Then we have that

$$|a_n - s| = |a_n - l_n + l_n - s|$$

$$\leq |a_n - l_n| + |l_n - s|$$

$$\leq |u_n - l_n| + |l_n - s|$$

$$\leq \epsilon$$

for
$$\forall n \geq N \Rightarrow \lim_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n = s$$
.

Exercise 10. Let $a_n, b_n (n \in \mathbb{N})$ be two bdd. seq. show that

- 1. $\overline{\lim}_{n\to\infty}(a_n+b_n)\leq \overline{\lim}_{n\to\infty}a_n+\overline{\lim}_{n\to\infty}b_n;$
- 2. $\underline{\lim}_{n\to\infty} a_n + \underline{\lim}_{n\to\infty} b_n \leq \underline{\lim}_{n\to\infty} (a_n + b_n)$.

Proof. 1. Let $u_n = \sup_{m \geq n} a_m, v_n = \sup_{m \geq n} b_m, w_n = \sup_{m \geq n} (a_m + b_m)$. If $\exists n' \in \mathbb{N}$ such that $w_{n'} > u_{n'} + v_{n'}$, then $\exists r \in \mathbb{R}$ s.t. $u_{n'} + v_{n'} < r < w_{n'}$ and hence for any $m \geq n'$, $a_m \leq u_{n'}$, $b_m \leq v_{n'}$ and

$$a_m + b_m \le u_{n'} + v_{n'} < r$$

which means r is an upper bound of $\{a_m|m \geq n'\}$ which leads to a contradiction with $w_{n'}$ is the least upper bound of $\{a_m|m \geq n'\}$. Thus for $\forall n \in \mathbb{N}, u_n + v_n \leq w_n$, and since $\lim_{n\to\infty} u_n$, $\lim_{n\to\infty} v_n$ exists, we have that

$$\lim_{n\to\infty}(u_n+v_n)=\lim_{n\to\infty}u_n+\lim_{n\to\infty}v_n\leq\lim_{n\to\infty}w_n$$

that is

$$\overline{\lim}_{n\to\infty} a_n + \overline{\lim}_{n\to\infty} b_n \leq \overline{\lim}_{n\to\infty} (a_n + b_n).$$

2. The same as 1. \Box

And in the same way, we can prove that

- 1. $\overline{\lim}_{n\to\infty}(a_n\cdot b_n)\leq \overline{\lim}_{n\to\infty}a_n\cdot \overline{\lim}_{n\to\infty}b_n$;
- 2. $\underline{\lim}_{n\to\infty} a_n \cdot \underline{\lim}_{n\to\infty} b_n \leq \underline{\lim}_{n\to\infty} (a_n \cdot b_n)$.

In general, the properties does not hold for subtraction.

1.5 Cauchy seq.

Given a seq. $a_n(n \in \mathbb{N})$ in \mathbb{R} , can we determine whether a_n converges or not without referring a limit candidate l, but concluding according to the mutual behavior of the terms of $a_n(n \in \mathbb{N})$?

Definition 8 (Cauchy Sequence). A seq. $a_n (n \in \mathbb{N})$ in \mathbb{R} is a Cauchy seq. if $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n, m \geq N \Rightarrow |a_n - a_m| < \epsilon$.

Exercise 11. Show that

- 1. a_n is convergent $\Rightarrow a_n$ is Cauchy seq.
- 2. a_n is Cauchy seq. $\Rightarrow a_n$ is bounded.

Proof. 1. assume that a_n converges to l, then for any $\epsilon > 0$, $\exists N \in \mathbb{N}, \forall n \geq N$ one has $|a_n - l| < \epsilon/2$, then for any $m, n \geq N$ we have

$$|a_m - a_n| \le |a_m - l| - |a_n - l| < \epsilon$$

thus $a_n (n \in \mathbb{N})$ is Cauchy seq.

2. For $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n, m \geq N$ one has $|a_m - a_n| \leq \epsilon$, thus for $\forall m \geq N \Rightarrow |a_N - a_m| \leq \epsilon \Rightarrow a_n - \epsilon \leq a_m \leq a_N + \epsilon$, thus $a_n(n \in N)$ has upper and lower bound

$$\max\{a_1,\cdots,a_N,a_N+\epsilon\}, \quad \min\{a_1,\cdots,a_N,a_N-\epsilon\},$$

thus a_n is bounded.

Theorem 4. Let $a_n (n \in \mathbb{N})$ be a seq. in \mathbb{R} , then a_n is convergent $\Leftrightarrow a_n$ is Cauchy seq.

Proof. \Leftarrow : a_n is Cauchy seq. $\Rightarrow a_n$ is bdd. \Rightarrow the upper/lower seq. u_n, l_n of a_n converges. Thus $\lim_{n\to\infty} u_n - \lim_{n\to\infty} l_n = \lim_{n\to\infty} (u_n - l_n)$. For $\forall \epsilon > 0$, there is some $N \in \mathbb{N}$ s.t. $\forall m, n \geq N, |a_n - a_m| < \epsilon/3$. In particular, $\forall n \geq N \Rightarrow |a_n - a_N| < \epsilon/3$ and hence

$$a_N - \frac{\epsilon}{3} < a_n < a_N + \frac{\epsilon}{3}$$

which means $a_N - \epsilon/3$ is a lower bound of $a_n (n \ge N)$ and is not greater that $\{a_n | n \ge N\}$'s greatest lower bound l_N , and the same to $a_N + \epsilon/3$, thus

$$a_N - \frac{\epsilon}{3} \le l_N \le u_N \le a_N + \frac{\epsilon}{3}$$

and since $l_n \nearrow$ and $u_n \searrow$, we have that for $\forall n \geq N$

$$0 \le u_n - l_n \le u_N - l_N \le \frac{2\epsilon}{3} < \epsilon$$

thus $\lim_{n\to\infty} (u_n - l_n) = 0 \Rightarrow \lim_{n\to\infty} u_n = \lim_{n\to\infty} l_n \Rightarrow a_n$ converges.

Exercise 12. Let $S \subseteq \mathbb{R}$, if $|s-s'| \leq 3$ for $\forall s, s' \in S$, show that

- 1. *S* is bdd.;
- 2. $\sup S \inf S \le 3$;

Proof. 1. If *S* has no upper bound, then for any $s \in S$, define M = s + 4, then $\exists s' \in S$ s.t. $s' > M = s + 4 \Rightarrow s' - s = |s' - s| > 4$, which is contrary.

2. Let $u = \sup S, l = \inf S$, suppose u - l > 3, then let $\epsilon = u - l - 3$, we have that $\exists s \in S$, s.t.

$$u - \frac{\epsilon}{3} < s \le u,$$

and $\exists s' \in S \text{ s.t.}$

$$l \le s' < l + \frac{\epsilon}{3},$$

then

$$u - l - \frac{2\epsilon}{3} < s - s' \le u - l$$

thus $3 + \epsilon/3 < s - s' = |s - s'| \le 3 + \epsilon \Rightarrow |s - s'| > 3$, which is contrary. \Box

Chapter 2

Series

2.1 Positive series

Definition 9. Let $a_n(n \in \mathbb{N})$ be a seq. in \mathbb{R} , we say that the series $\sum_{n=0}^{\infty} a_n$ (or $\sum_{n=0}^{\infty} a_n$) converges to a real number s if

$$\lim_{n\to\infty} s_n = s,$$

where $s_n := \sum_{j=1}^n a_j$ is called the n - th partial sum of $\sum_n a_n$.

If such s exists (resp. does not exist), we say that the series $\sum_n a_n$ convergent (resp. divergent). For a series $\sum_n a_n$ and $l, m \in \mathbb{N}, l < m$, we let $s_{l,m} := \sum_{j=l}^m a_j$ the (l, m) - tail of $\sum_n a_n$. If a series $\sum_n a_n$ converges, we denote it as $\sum_n a_n < \infty$.

Exercise 13. If a series $\sum_n a_n < \infty$, show that $\lim_{n\to\infty} a_n = 0$.

 $\sum_n a_n$ converges $\Leftrightarrow s_n$ converges by definition and $\Leftrightarrow s_n$ is Cauchy seq., i.e. $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n, m \geq N$, (assume that n > m)

$$|s_n - s_m| = |a_{m+1} + \dots + a_n|$$

= $|a_{m+1} + a_{m+2} + \dots + a_{m+1+(n-1)}|$
 $\leq \epsilon$.

In particular, for $\forall \epsilon > 0, \exists N \in \mathbb{N}$ and for $\forall k > N, \forall l \geq 0$, then $|a_k| + \cdots + |a_{k+l}| < \epsilon \Leftrightarrow \sum_n |a_n|$ convergent $\Leftrightarrow \exists M > 0, \forall n \in \mathbb{N}, s_n = \sum_{j=1}^n a_j \leq M$, since $s_n \nearrow$. Collectively, we have some conclusions:

- 1. series $\sum_n a_n$ converges \Leftrightarrow for $\forall \epsilon > 0, \exists N \in \mathbb{N}$ and for $\forall k > N, \forall l \geq 0, |a_k + \cdots + a_{k+l}| < \epsilon$;
- 2. series $\sum_{n} b_n$, where $b_n \geq 0$, converges $\Leftrightarrow \exists M > 0, \forall n \in \mathbb{N}, \sum_{j=1}^{n} b_j \leq M$.
- 3. series $\sum_{n} |a_n|$ converges $\Rightarrow \sum_{n} a_n$ converges.

Example 4. Given series $\sum_{n} 1/n$. we have that

$$s_1 = 1$$

$$s_2 = 1 + \frac{1}{2}$$

$$s_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2}$$

$$s_8 \ge 1 + \frac{2}{2} + \frac{1}{5} + \dots + \frac{1}{8} \ge 1 + \frac{2}{2} + \frac{4}{8} = 1 + \frac{3}{2}$$

In general, for $\forall m \in \mathbb{N}$, $s_{2^m} \ge 1 + m/2$ which has no upper bound $\Leftrightarrow \sum_n 1/n$ diverges.

Example 5. Given series $\sum_{n} 1/n^2$. we have that $1/n^2 < 1/((n-1)n) = 1/(n-1) - 1/n$. Then

$$s_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}$$

$$< 1 + 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n}$$

$$= 2 - \frac{1}{n}$$

$$< 2.$$

thus s_n has upper bound $2 \Leftrightarrow \sum_n 1/n^2$ converges.

Definition 10. Given a seq. $a_n (n \in \mathbb{N})$, we say that

- 1. $\sum_{n} a_n$ converges absolutely if $\sum_{n} |a_n|$ converges;
- 2. $\sum_{n} a_n$ converges conditionally if $\sum_{n} |a_n|$ diverges but $\sum_{n} a_n$ converges.

Theorem 5 (Comparison Test). *If* $a_n, b_n \ge 0 (n \in \mathbb{N})$, then $\exists C > 0$ and $N \in \mathbb{N}$, $n \ge N \Rightarrow a_n \le Cb_n \Rightarrow [\sum_n b_n < \infty \Rightarrow \sum_n a_n < \infty]$.

Proof. If $\sum_n b_n$ converges, then for $\forall n \geq N$,

$$a_1 + \dots + a_n = a_1 + \dots + a_N + a_{N+1} + \dots + a_n$$

 $\leq a_1 + \dots + a_N + C \cdot (b_{N+1} + \dots + b_n)$
 $\leq a_1 + \dots + a_N + C \cdot M =: H,$

where M is an upper bound of $\sum_{j=1}^{n} b_j$, thus $\sum_{j=1}^{n} a_j$ as upper bound $H \Leftrightarrow \sum_{j=1}^{n} a_j$ converges.

Theorem 6 (Limit Form of Comparison Test). *If* a_n , $b_n \ge 0 (n \in \mathbb{N})$, and if $\lim_{n\to\infty} a_n/b_n$ exists $\Rightarrow [\sum_n b_n < \infty \Rightarrow \sum_n a_n < \infty]$.

Proof. Let $l = \lim_{n \to \infty} a_n/b_n$, then for $\epsilon = 1, \exists N \in \mathbb{N}$, s.t. $\forall n \ge N, a_n/b_m < l+1 \Rightarrow a_n < (l+1)b_n$, which follows the proof by Comparison test. Furthermore if $l \ne 0$, then

for $\epsilon = 1/2, \exists N_l \in \mathbb{N}$, s.t. $\forall n \geq N_l$, s.t.

$$\frac{l}{2} \leq \frac{a_n}{b_n} \leq \frac{3l}{2},$$

and hence $b_n \le a_n \cdot 2/l$ and $a_n \le b_n \cdot 3l/2$, therefore $\sum_n b_n$ converges $\Leftrightarrow \sum_n a_n$ converges.

Exercise 14. If $a_n, b_n \geq 0 (n \in \mathbb{N})$, show that if $\overline{\lim}_{n \to \infty} a_n/b_n$ exists $\Rightarrow [\sum_n b_n < \infty \Rightarrow \sum_n a_n < \infty]$.

Proof. Let $u_n = a_n/b_n$ and $\lim_{n\to\infty} u_n = l$, then $l = \inf_{n\in\mathbb{N}} u_n$ and for $\epsilon = 1, \exists n' \in \mathbb{N}$ s.t.

$$l \le u_{n'} < l + 1$$

and hence for $\forall n \geq n'$ we have that

$$\frac{a_n}{b_n} \le u_{n'} < l + 1$$

thus $a_n < (l+1) \cdot b_n$ for $\forall n \ge n'$ and finish the proof by comparison test.

Exercise 15 (Ratio and Root test). *If* a_n , $b_n \ge 0 (n \in \mathbb{N})$, *show that*

- 1. $\lim_{n\to\infty} a_{n+1}/a_n < 1 \Rightarrow \sum_n a_n < \infty$; $\lim_{n\to\infty} a_{n+1}/a_n > 1 \Rightarrow \sum_n a_n$ diverges.
- 2. $\lim_{n\to\infty} (a_n)^{1/n} < 1 \Rightarrow \sum_n a_n < \infty$; $\lim_{n\to\infty} (a_n)^{1/n} > 1 \Rightarrow \sum_n a_n$ diverges.

Proof. Trivial.

2.2 Alternating series

Definition 11. A series $\sum_n a_n$ is called alternating series, if $\exists b_n > 0 (n \in \mathbb{N})$ s.t. $a_n = (-1)^{n-1}b_n (n \in \mathbb{N})$.

Theorem 7 (Leibniz's Criterion). Let $\sum_n a_n$ be an alternating series, and $b_n = |a_n|_{\searrow 0}$ as $n \to \infty$, then $\sum_n a_n < \infty$.

Proof. Since $b_n = (-1)^{n-1}a_n$, for any $k, l \in \mathbb{N}$ the tail of $\sum_n a_n$ is

$$|a_k + \dots + a_{k+l}| = (-1)^{k-1} |b_k - b_{k+1} + \dots + (-1)^l b_{k+l}|$$

= $|b_k - b_{k+1} + \dots + (-1)^l b_{k+l}|$

define $\lambda_{k,l} = b_k - b_{k+1} + \cdots + (-1)^l b_{k+l}$. Then if l is even, then

$$\lambda_{k,l} = (b_k - b_{k+1}) + \dots + (b_{k+l-2} - b_{k+l-1}) + b_{k+l} \ge 0,$$

and if l is odd, then

$$\lambda_{k,l} = (b_k - b_{k+1}) + \dots + (b_{k+l-1} - b_{k+l}) \ge 0,$$

thus $\lambda_{k,l} \geq 0$ for $\forall k, l \in \mathbb{N}$. And hence

$$|a_k + \dots + a_{k+l}| = |\lambda_{k,l}| = \lambda_{k,l}$$

$$= \begin{cases} b_k - (b_{k+1} - b_{k+2}) - \dots - (b_{k+l-1} - b_{k+l}), & l \text{ is even} \\ b_k - (b_{k+1} - b_{k+2}) - \dots - (b_{k+l-2} - b_{k+k-1}) - b_{k+l}, & l \text{ is odd} \end{cases}$$

$$\leq b_k$$

Since $\lim_{n\to\infty} b_n = 0 \Rightarrow \forall \epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $n \geq N \Rightarrow |b_n| < \epsilon \Rightarrow |a_n + \cdots + a_{n+l}| \leq b_n < \epsilon$ for $\forall l \in \mathbb{N}$, thus $\sum_n a_n$ converges.

2.3 Rearrangement theorem

Given a seq. $a_n (n \in \mathbb{N})$, we can separate all terms into two subseq.s:

$$a_{n_1}, a_{n_2}, \cdots$$
 and $a_{n'_1}, a_{n'_2}, \cdots$

where $n_1 < n_2 < \cdots$ and $n'_1 < n'_2 < \cdots$ and $\{n_1, n_2, \cdots\} \cup \{n'_1, n'_2, \cdots\} = \mathbb{N}$, such that $a_{n_j} \ge 0 (j \in \mathbb{N})$, $a_{n'_k} \le 0 (k \in \mathbb{N})$. Let $p_j \coloneqq a_{n_j} (j \in \mathbb{N})$ and $q_k \coloneqq a_{n'_k} (k \in \mathbb{N})$.

Exercise 16. Show that $\sum_n |a_n| < \infty \Leftrightarrow \sum_j p_j < \infty$ and $\sum_k q_k < \infty$. Moreover, if any side holds, then

$$\sum_{n} |a_n| = \sum_{j} p_j + \sum_{k} q_k$$

and

$$\sum_{n} a_n = \sum_{j} p_j - \sum_{k} q_k.$$

Proof. 1. \Rightarrow : since $\sum_n |a_n| < \infty$, any partial sum of a_n has upper bound such as M, then for any $j \in \mathbb{N}$:

$$p_1 + \dots + p_j = |a_{n_1}| + \dots + |a_{n_j}|$$

$$\leq \sum_{n=1}^{n_j} |a_n|$$

$$\leq M,$$

Thus any partial sum of p_j has upper bound M and hence $\sum_j p_j < \infty$. And $\sum_k q_k < \infty$ in the same way.

2. \Leftarrow : The partial sum of $\sum_n |a_n|$ can be decompose by the partial sums of $\sum_n p_n$ and $\sum_n q_n$ which have upper bounds, thus partial sum of $\sum_n |a_n|$ has upper bound, and $\sum_n |a_n| < \infty$.

3. Define the partial sum of $\sum_n |a_n|$, $\sum_n a_n$, $\sum_n p_n$, $\sum_n q_n$ as

$$A_m := \sum_{i=1}^m |a_i|, \quad S_m := \sum_{i=1}^m a_i$$

$$P_m := \sum_{i=1}^m p_i = \sum_{i=1}^m |a_{n_i}|, \quad Q_m := \sum_{i=1}^m q_i = \sum_{i=1}^m |a_{n_i'}|$$

Then for any $m \in \mathbb{N}$, we have that

$$A_m \leq P_m + Q_m \leq A_{\max\{n_m, n'_m\}},$$

thus $\lim_{n\to\infty} A_n = \lim_{n\to\infty} (P_n + Q_n) = \lim_{n\to\infty} P_n + \lim_{n\to\infty} Q_n$ since $\sum_n p_n, \sum_n q_n$ exists, and the squeeze theorem. And hence $\sum_n |a_n| = \sum_j p_j + \sum_k q_k$.

On the contrary, for any $m \in \mathbb{N}$, we can represent the partial sum of $\sum_n a_n$ as

$$s_m = P_1 - Q_v$$

where $l, v \to \infty$ as $m \to \infty$, thus $\sum_n a_n = \sum_n p_n - \sum_n q_n$.

Exercise 17. *If* $\sum_n a_n$ *converges conditionally, show that*

- 1. $\sum_i p_i = \infty$ and $\sum_k q_k = \infty$;
- 2. $\lim_{i\to\infty} p_i = \lim_{k\to\infty} q_k = 0$.

Proof. 1. Denote the partial sum of $\sum_n a_n$, $\sum_j p_j$, $\sum_k q_k$ as s_n , P_j , Q_k respectively, then we have that $\lim_{n\to\infty} s_n = \lim_{n\to\infty} (P_j - Q_k)$ exists, then either both $\lim_{n\to\infty} P_j$, $\lim_{n\to\infty} Q_k$ exist or neither exists, since $\sum_n a_n$ converges conditionally $\Rightarrow \lim_{n\to\infty} P_j = \infty$ and $\lim_{n\to\infty} Q_k = \infty$.

2. Since

$$\lim_{j\to\infty}p_j=\lim_{j\to\infty}a_{n_j}=\lim_{n\to\infty}a_n=0,$$

and $\lim k \to \infty q_k = 0$ as well in the same way.

Exercise 18. If $\sum_n a_n$, $\sum_n b_n$ converges, show that $\sum_n (a_n \pm b_n) = \sum_n a_n \pm \sum_n b_n$.

Proof. Denote the partial sum of $\sum_n (a_n + b_n)$, $\sum_n a_n$, $\sum_n b_n$ as S_n , A_n , B_n respectively, then for any $n \in \mathbb{N}$

$$S_n = A_n + B_n$$

and hence

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (A_n + B_n) = \lim_{n\to\infty} A_n + \lim_{n\to\infty} B_n$$

since $\lim_{n\to\infty} A_n$, $\lim_{n\to\infty} B_n$ exists, thus $\sum_n (a_n + b_n) = \sum_n a_n + \sum_n b_n$, and $\sum_n (a_n - b_n) = \sum_n a_n - \sum_n b_n$ in the same way.

Exercise 19. Inserting 0s to a series will not affect its convergence / divergence and its sum (if the sum exists).

Proof. Consider the tail of series. Trivial.

Recall that a sequence a_n is a map $\mathbb{N} \stackrel{a}{\longrightarrow} \mathbb{R}$ where $n \mapsto a(n)$ denoted by a_n . A subsequence a_{n_n} is a composite map

$$\mathbb{N} \xrightarrow{n.} \mathbb{N} \xrightarrow{a.} \mathbb{R}$$

where n. is a strictly monotone injection and $m \mapsto n(m)$ denoted by n_m . A **rearrangement** is also a composite map

$$\mathbb{N} \xrightarrow{n(\cdot)} \mathbb{N} \xrightarrow{a.} \mathbb{R}$$

where $n(\cdot)$ is a bijection. (To distinguish it from the notion of subseq., we don't use subscripts here)

Now we gonna explore two questions: if a series \sum_n converges, $a_{n(m)}(m \in \mathbb{N})$ is a rearrangement of $a_n(n \in \mathbb{N})$, then

- 1. whether $\sum_{m} a_{n(m)}$ converges ?
- 2. whether $\sum_{n} a_n = \sum_{m} a_{n(m)}$?

Exercise 20. Let $\sum_n a_n$ be a positive series, show that

$$\sum_{n} a_n = \sup \Lambda$$

including the case $\sum_n a_n = \infty$. Here $\Lambda = \{a_{n_1} + \cdots + a_{n_k} | n_1 < \cdots < n_k, k \in \mathbb{N}\}$ represents the set of every sum of finite terms of $a_n(n \in \mathbb{N})$.

Proof. 1. \leq : since $\sum_n a_n$ is the limit of the partial sum s_n (which is the sum of finite terms, i.e. $s_n \in \Lambda$ for any $n \in \mathbb{N}$), and since $a_n \geq 0$, s_n monotone, then

$$\sum_{n} a_n = \lim_{n \to \infty} s_n = \sup_{n \in \mathbb{N}} s_n \le \sup \Lambda$$

2. \geq : If $\sup \Lambda > \sup s_n$, let $\epsilon := \sup \Lambda - \sup s_n$, then $\exists \lambda = a_{n_1} + \cdots + a_{n_{k_{\lambda}}} \in \Lambda$ such that

$$s_m \leq \sup_{n \in \mathbb{N}} s_n < \sup \Lambda - \frac{\epsilon}{2} < \lambda \leq \sup \Lambda$$

for $\forall m \in \mathbb{N}$, but

$$\lambda = a_{n_1} + \dots + a_{n_{k_\lambda}} \le s_{n_{k_\lambda}}$$

which leads to a contradiction.

3. If $\sum_{n} a_n = \infty$, it is direct to see that sup $\Lambda = \infty$ as well by 1.

Exercise 21. If $\sum_n a_n$ is a convergent positive series, show that for every rearrangement $a_{n(m)} (m \in \mathbb{N})$ of $a_n (n \in \mathbb{N})$, we have that $\sum_n a_n = \sum_m a_{n(m)}$.

Proof. If $\sum_n a_n$ is positive series, then $\sum_m a_{n(m)}$ is positive series as well.

$$\sum_{n} a_{n} = \sup \Lambda_{a_{n}} = \sup \Lambda_{a_{n(m)}} = \sum_{m} a_{n(m)}$$

where Λ_{a_n} and $\Lambda_{a_{n(m)}}$ are the set of every sum of finite terms of a_n and $a_{n(m)}$ respectively. That is the proof follows by the $\Lambda_{a_n} = \Lambda_{a_{n(m)}}$.

Exercise 22 (Dirichlet's Rearrangement Theorem (1829)). If $\sum_n a_n$ converges absolutely, show that for every rearrangement $a_{n(m)}(m \in \mathbb{N})$ of $a_n(n \in \mathbb{N})$, we have that $\sum_n a_n = \sum_m a_{n(m)}$.

Proof. $\sum_n a_n$ converges absolutely $\Rightarrow \sum_m a_{n(m)}$ converges absolutely. Furthermore

$$\sum_{n} a_{n} = \sum_{j} p_{j} - \sum_{k} q_{k}$$

$$= \sum_{\mu} p_{j\mu} - \sum_{\nu} q_{k\nu}$$

$$= \sum_{m} a_{nm}.$$

Theorem 8 (Riemann's Rearrangement Theorem(1852)). If $\sum_n a_n$ converges conditionally, then for $\forall r \in \mathbb{R}$, there exists a rearrangement $a_{n(m)}(m \in \mathbb{N})$ of $a_n(n \in \mathbb{N})$ such that $\sum_m a_{n(m)} = r$.

Proof. We will only use two known fact:

- 1. $\sum_i p_i = \infty$ and $\sum_k q_k = \infty$;
- 2. $\lim_{j\to\infty} p_j = \lim_{k\to\infty} q_k = 0$.

Given a $L \in \mathbb{R}$, start with p_1 , plus by p_2 and so on till p_{m_1-1} where

$$\sum_{i=1}^{m_1-1} p_i \le L \quad \text{but} \quad \sum_{i=1}^{m_1} p_i > L.$$

Then minus by q_1, q_2 and so on till $q_{m'_1-1}$ where

$$\sum_{i=1}^{m_1} p_1 - \sum_{j=1}^{m'_1-1} q_j > L \quad \text{but} \quad \sum_{i=1}^{m_1} p_1 - \sum_{j=1}^{m'_1} q_j \leq L.$$

This process can be repeat since $\sum_j p_j = \infty$ and $\sum_k q_k = \infty$ and hence any tail of $\sum_j p_j, \sum_k q_k$ has no upper bound, therefore the *cross* action can always happen, in the other word, $m_i, m_i' (i \in \mathbb{N})$ exists.

Thus we can form a rearrangement χ_n of $\sum_n a_n$ as

$$p_1, \cdots, p_{m_1}, -q_1, \cdots, -q_{m'_1}, \cdots$$

Now we will show that this rearrangement converges to L, i.e. $\lim_{n\to\infty} \chi_n = L$. Consider $\chi_{\cdots+m'_{l-1}+m_l-1}$ which implies the point lies in the left of L and will cross the l in next jump, and we denote it by $\chi_{m'_{l-1}+m_l-1}$ for simply. And hence we have that

$$|\chi_{m'_{l-1}+m_k+k'}-L| < p_{m_l}$$

if $0 \le k' < m'_l - m'_{l-1}$. And similarly

$$|\chi_{m_l+m_l'+k}-L| < q_{m_l'}$$

if $0 \le k < m_{m+1-m_1}$.

And since $\lim_{l\to\infty} p_{m_l} = \lim_{l\to\infty} q_{m'_l} = 0$, for $\forall \epsilon > 0, \exists N_0 \in \mathbb{N}$ s.t. $l \geq N_0 \Rightarrow p_{m_l}$ and $q_{m'_l} < \epsilon$. Let $N = m'_{N_0-1} + m_{N_0}$, then $n \geq N \Rightarrow |\chi_n - L| < \epsilon$.

Remark 4 (2S = S). Dirichelet made the following observation in 1827: Consider a alternating series

$$S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \cdots$$

which is convergent (conditionally) by Leibniz's Criterion, and hence

$$2S = 2 - 1 + \frac{2}{3} - \frac{2}{4} + \frac{2}{5} - \frac{2}{6} + \frac{2}{7} - \frac{2}{8} + \frac{2}{9} - \frac{2}{10} + \cdots$$

$$= '(2 - 1) - \frac{2}{4} + \left(\frac{2}{3} - \frac{2}{6}\right) - \frac{2}{8} + \left(\frac{2}{5} - \frac{2}{10}\right) + \cdots$$

$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \cdots$$

$$= S$$

Remark 5. In summary, given a series $\sum_n a_n$, and its any rearrangement $\sum_m a_{n(m)}$, then

- 1. If $a_n \ge 0$ for $\forall n \in \mathbb{N} \Rightarrow \sum_n a_n = \sum_m a_{n(m)}$;
- 2. If $\sum_{n} |a_n| < \infty \Rightarrow \sum_{n} a_n = \sum_{m} a_{n(m)}$;
- 3. If $\sum_n |a_n| = \infty$ but $\sum_n a_n < \infty \Rightarrow \sum_m a_{n(m)}$ could be anything.

2.4 Multiplying absolutely convergent series

Proposition 2. Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge absolutely, let

$$c_n = a_n b_0 + \dots + a_0 b_n = \sum_{j+k=n; j,k \geq 0} a_j b_k,$$

then $\sum_{n} |c_n| < \infty$ and $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n) \cdot (\sum_{n=0}^{\infty} b_n)$.

Proof. 1. $\sum_{n} |c_n| < \infty$

For all n,

$$\sum_{m=0}^{n} |c_m| = \sum_{m=0}^{n} \left| \sum_{\substack{j+k=m \ j,k \ge 0}} a_j b_k \right| \le \sum_{m=0}^{n} \sum_{\substack{j+k=m \ j,k \ge 0}} |a_j| |b_k|$$

$$\le \left(\sum_{j=0}^{n} |a_j| \right) \cdot \left(\sum_{k=0}^{n} |b_k| \right).$$

Since $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converges absolutely, the partial sums of $|a_n|$, $|b_n|$ have upper bounds, denoted by M, N respectively, then $\sum_{m=0}^{n} |c_m|$ has a upper bound $M \cdot N$ and hence $\sum_{n=0}^{\infty} c_n$ converges absolutely.

2.
$$\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n) \cdot (\sum_{n=0}^{\infty} b_n).$$

Let $A_n := a_0 + \cdots + a_n$; $B_n := b_0 + \cdots + b_n$ and $C_n := c_0 + \cdots + c_n$, we claim that $\lim_{n \to \infty} (A_n B_n - C_n) = 0$. Then

$$|A_n B_n - C_n| = \sum_{\substack{j+k > n \\ 0 \le j, k \le n}} |a_j b_k|$$

$$\leq \left(\sum_{j=\lfloor n/2 \rfloor}^n |a_j|\right) \cdot \left(\sum_{k=0}^n |b_k|\right) + \left(\sum_{j=0}^n |a_j|\right) \cdot \left(\sum_{k=\lfloor n/2 \rfloor}^n |b_k|\right)$$

where $\sum_{k=0}^{n} |b_k|$, $\sum_{j=0}^{n} |a_j|$ are bounded, and tails $\sum_{j=\lfloor n/2\rfloor}^{n} |a_j|$, $\sum_{k=\lfloor n/2\rfloor}^{n} |b_k| \to 0$ as $n \to \infty$ since $\sum_{n} a_n$, $\sum_{n} b_n$ are converges abs. Thus $\lim_{n\to\infty} |A_n B_n - C_n| = 0$ and since $\lim_{n\to\infty} A_n$, $\lim_{n\to\infty} B_n$, $\lim_{n\to\infty} C_n$ exists, we have that

$$\sum_{n=0}^{\infty} c_n = \lim_{n \to \infty} C_n$$

$$= \lim_{n \to \infty} A_n B_b = \lim_{n \to \infty} A_n \cdot \lim_{n \to \infty} B_n$$

$$= \left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right)$$

Theorem 9. If $\sum_n a_n$, $\sum_n b_n cvg$. abs., $\mathbb{N} \xrightarrow{(j(\cdot),k(\cdot))} \mathbb{N} \times \mathbb{N}$ is bijection where $n \mapsto (j(n),k(n))$, let $c_n := a_{j(n)}b_{k(n)} (n \in \mathbb{N})$, then $\sum_n |c_n| < \infty$ (cvg. abs.) and $\sum_n c_n = (\sum_n a_n)(\sum_n b_n)$.

Proof. 1. $\sum_{n} c_n$ cvg. abs.

For $\forall n \in \mathbb{N}$, let $l = \max\{j(1), \dots, j(n), k(1), \dots, k(n)\}$. Then

$$|c_1| + \dots + |c_n| = |a_{j(1)}b_{k(1)}| + \dots + |a_{j(n)}b_{k(n)}|$$

$$\leq \left(\sum_{j=1}^l |a_j|\right) \cdot \left(\sum_{k=1}^l |b_k|\right)$$

$$\leq M \cdot N$$

Thus $\sum_{n} c_n$ cvg. abs.

2.
$$\sum_n c_n = (\sum_n a_n)(\sum_n b_n)$$
.

Let $A_n = a_1 + \cdots + a_n$, $B_n = b_1 + \cdots + b_n$ and $C_n = c_1 + \cdots + c_n (n \in \mathbb{N})$. And define the bijection $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$ by the second one in Figure 2.1. Then

$$A_n B_n = (a_1 + \dots + a_n)(b_1 + \dots + b_n)$$

$$= \sum_{1 \le j,k \le n} a_j b_k$$

$$= C_{n,2}$$

Thus $\lim_{n\to\infty} A_n B_n = \lim_{n\to\infty} C_{n^2} = \lim_{n\to\infty} C_n \Rightarrow \sum_n c_n = (\sum_n a_n)(\sum_n b_n).$

Figure 2.1: 3 kinds of bijections $(j(\cdot), k(\cdot))$

Chapter 3

Metric space

This chapter refers to Chapter 2 of General Topology Notes for details.

3.1 Metric space

Definition 12 (Metric Space). Let $X \times X \xrightarrow{d} \mathbb{R}$ be a function, we cay that d is a metric on X or (X,d) is a metric space if for $\forall x,x',x'' \in X$ have

- 1. Positivity: $d(x, x') \ge 0$ and d(x, x'') = 0 iff x = x';
- 2. Symmetry: d(x, x') = d(x', x);
- 3. Triangle inequality: $d(x, x') \le d(x, x'') + d(x'', x')$.

Exercise 23. Show that the triangle inequality is equivalent with for $\forall x, x', x'' \in X$

$$d(x, x') \ge |d(x, x'') - d(x', x'')|.$$

Proof. ≥⇒≤: since $d(x, x') \ge |d(x, x'') - d(x', x'')| \ge d(x, x'') - d(x', x'')$, we have that $d(x, x'') \le d(x, x') + d(x', x'')$.

 $\leq \Rightarrow \geq$: if $\exists x, x', x''$ such that d(x, x') < |d(x, x'') - d(x', x'')|, then

$$d(x,x') < |d(x,x'') - d(x',x'')|$$

$$\leq |d(x,x') + d(x',x'') - d(x',x'')|$$

$$\leq d(x,x')$$

thus d(x, x') < d(x, x'), which leads to a contradiction.

Example 6. Here are some metric examples:

1. define $d_2(x,y) := \left(\sum_i^m |x_i - y_m|^2\right)^{1/2}$, $x,y \in \mathbb{R}^m$. Then d_2 is a metric on \mathbb{R}^m by cauchy inequality.

2. define $d_1(x,y) := \sum_{i=1}^m |x_i - y_i|$, $x,y \in \mathbb{R}^m$. Then d_1 is a metric on \mathbb{R}^m .

3. define $d_{\infty}(x,y) := \max\{|x_i - y_i|\}, i \in \{1,2,\cdots,m\}, x,y \in \mathbb{R}^m$. Then d_{∞} is a metric on \mathbb{R}^m .

 d_2 can be proved to be a metric by Cauchy inequality:

Exercise 24 (Cauchy inequality). *For any* (x_1, \dots, x_n) , $(y_1, \dots, y_n) \in \mathbb{R}^n$, *show that*

$$(x_1y_1 + \cdots, x_ny_n)^2 \le (x_1^2 + \cdots + x_n^2)(y_1^2 + \cdots + y_n^2)$$

and =\$ holds iff $\exists a, b \in \mathbb{R}$ which are not all 0.

Proof. Consider the polynomial
$$p(t) = \sum_{i=1}^{n} (x_i t + y)^2 = t^2 \sum_{i=1}^{n} x_i^2 + 2 \sum_{i=1}^{n} x_i y_i + \sum_{i=1}^{n} y_i^2 \ge 0$$
, thus $\Delta = 4 \left(\sum_{i=1}^{n} x_i y_i \right)^2 - 4 \sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2 \le 0 \Rightarrow \left(\sum_{i=1}^{n} x_i y_i \right)^2 \le \sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2$.

Example 7 (p-adic). If p is a prime number, $x \in \mathbb{Q}$, define

$$|x|_{p-adic} := \begin{cases} p^{-m}, & x = \frac{a}{b} \cdot p^m, x \neq 0, \\ 0, & x = 0, \end{cases}$$

where $a, b, m \in \mathbb{Z}$, (a, p) = (b, p) = 1. For $\forall x, y \in \mathbb{Q}$, define $d_{p-adic}(x, y) = |x - y|_{p-adic}$, then d_{p-adic} is a metric on \mathbb{Q} .

Assume $x = (a/b)p^m$, $y = (s/t)p^n \in \mathbb{Q}$ where $a, b, s, t, m, n \in \mathbb{Z}$, (a, p) = (b, p) = (s, p) = (t, p) = 1, m > n, then $|x|_{p-adic} = p^{-m} < |y|_{p-adic} = p^{-n}$, and

$$|x - y|_{p-adic} = |(a/b)p^m - (s/t)p^n|_{p-adic}$$
$$= \left| \frac{adp^{m-n} - bc}{bd} p^n \right|_{p-adic}.$$

it is easy to check $adp^{m-n} - bc$, $bd \in \mathbb{Z}$ and $(adp^{m-n} - bc$, p) = (bd, p) = 1, thus

$$|x - y|_{p-adic} = p^{-n} = |y|_{p-adic} = \max\{|x|_{p-adic}, |y|_{p-adic}\}.$$

Thus for any $x, y, z \in \mathbb{Q}$, we have that

$$\begin{split} d_{p-adic}(x,y) &= \max\{|x|_{p-adic}, |y|_{p-adic}\} \\ &\leq \max\{|x|_{p-adic}, |z|_{p-adic}\} + \max\{|z|_{p-adic}, |y|_{p-adic}\} \\ &= d_{p-adic}(x,z) + d_{p-adic}(y,z), \end{split}$$

which follows the triangle inequality, the other two conditions is trivial.

3.2 Open and compact on metric space

Definition 13 (Open Ball). Let (X, d) be a metric space, for $\forall r > 0$ and $x_0 \in X$, we let

$$B_r(x_0) := \{ x \in X | d(x, x_0) < r \},$$

and call it the open ball with center x_0 and radius r; let

$$\overline{B_r(x_0)} := \{x \in X | d(x, x_0) \le r\},\,$$

and call it the close ball with center x_0 and radius r.

Example 8 (discrete metric). For $\forall x, x' \in \mathbb{R}^2$, define metric d(x, x') = 0 if x = x', and d(x, x') = 1 if $x \neq x'$, then $B_1(x) = \{x\}$, $\overline{B_1(x)} = \mathbb{R}^2$, $B_{1,1}(x) = \mathbb{R}^2$.

Definition 14 (Open Set). $S(\subseteq X)$ is called an Open Set of X with respect to d, if $\forall x_0 \in S$, $\exists r > 0$ such that $B_r(x_0) \subseteq S$; $F(\subseteq X)$ is Close Set of X w.r.t. d if $X \setminus F$ is open set of X w.r.t. d.

Exercise 25. Prove that $B_r(x)$ is open set and $\overline{B_r(x)}$ is close.

Proof. For $\forall x' \in B_r(x)$, we have d(x, x') < r, donate r - d(x, x') by s, then for $\forall x'' \in B_{s/2}(x')$ satisfy

$$d(x,x'') \le d(x,x') + d(x',x'')$$

$$\le d(x,x') + \frac{s}{2}$$

$$< r,$$

thus $x'' \in B_r(x)$ and $B_{s/2}(x') \subseteq B_r(x)$ and $B_r(x)$ is a open set. For $\forall x' \in X \setminus \overline{B_r(x)}$ has d(x,x') > r. Denote d(x,x') - r by t, then for $\forall x'' \in B_{t/2}(x')$ satisfy

$$d(x,x'') \ge |d(x,x') - d(x',x'')|$$

$$\ge d(x,x') - d(x',x'')$$

$$\ge d(x,x;) - \frac{t}{2}$$

$$> r.$$

Thus $B_{t/2}(x') \subseteq X \setminus \overline{B_r}$ and $X \setminus \overline{B_r}$ is an open set, thus $\overline{B_r}$ is a close set.

Exercise 26. Let (X, d) be a metric space. show that

- 1. $X, \emptyset \subseteq_{open} X$;
- 2. $O_1, O_2 \subseteq_{open} X \Rightarrow O_1 \cap O_2 \subseteq_{open} X$;
- 3. $O_{\alpha} \subseteq_{open} X$, $(\alpha \in A) \Rightarrow \bigcup_{\alpha \in A} O_{\alpha} \subseteq_{open} X$ (α not necessarily be integral or countable);
- 4. All above corresponding statements for close set are true.

- *Proof.* 1. Obviously X is an Open set thus \emptyset is a close set. If \emptyset is not an open set, then $\exists x \in \emptyset$, $\forall r > 0$ such that $B_r(x) \not\subseteq \emptyset$, which is impossible. Thus \emptyset is an open set (logically) and X is a close set;
- 2. $\forall x \in O_1 \cap O_2$, $\exists r_1, r_2 > 0$, s.t. $B_{r_1}(x) \subseteq O_1$ and $B_{r_2}(x) \subseteq O_2$. Thus $\forall x' \in B_{\min\{r_1, r_2\}}(x) = B_{r_1}(x) \cap B_{r_2}(x) \Rightarrow x' \in O_1 \cap O_2 \Rightarrow B_{\min\{r_1, r_2\}}(x) \subseteq O_1 \cap O_2$, thus $O_1 \cap O_2$ is open. Collectively, the intersection of any finite open sets is an open set;
- 3. For $\forall x \in \bigcup_{\alpha \in A} O_{\alpha}$, \exists at least one $\alpha' \in A$, s.t. $x \in O_{\alpha'}$, then $\exists r > 0$, s.t. $B_r(x) \subseteq O_{\alpha'} \subseteq \bigcup_{\alpha \in A} O_{\alpha}$, thus $\bigcup_{\alpha \in A} O_{\alpha}$ is an open set;
- 4. Take complementary set: The union of finite close sets is close; the intersection of any close sets is close.

Remark 6. First 3 statements are the essential intuition for the definition of Topology.

Exercise 27. Show that an open set is the union of open balls.

Proof. Given an open set O, for any $o \in O$, $\exists r_o > 0$, s.t. $B_{r_o}(o) \subseteq O$, define $O' = \bigcup_{o \in O} B_{r_o}(o)$. Thus for $\forall x \in O'$, $\exists o'$, s.t. $x \in B_{r'_o}(o') \subseteq O \Rightarrow O' \subseteq O$; On the other hand, for any $y \in O$, $\exists r_y > 0$, s.t. $B_{r_y}(y) \subseteq O \Rightarrow y \in B_{r_y}(y) \subseteq O' \Rightarrow O \subseteq O'$. Thus $O = O' = \bigcup_{o \in O} B_{r_o}(o)$.

Definition 15 (Convergence). Let (X,d) be a metric space, $a_n \in X$, $(n \in \mathbb{N})$, $L \in X$, define $\lim_{n\to\infty} a_n = L$ w.r.t. d, if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$, $\forall n \geq N$ s.t. $d(a_n, L) < \epsilon$, that is $a_n \in B_{\epsilon}(L)$.

Exercise 28. Show that

- 1. $\lim_{n\to\infty} a_n = L \Leftrightarrow \lim_{n\to\infty} d(a_n, L) = 0$;
- 2. $\lim_{n\to\infty} a_n = L \Leftrightarrow \forall L \in U \subseteq_{open} X, \exists N \in \mathbb{N}, \forall n \geq N \text{ s.t. } a_n \in U.$

Proof. (1) Trivial; (2) \Rightarrow : Suppose that $\lim_{n\to\infty} a_n = L$, for $\forall U$ that $L \in U$, $\exists r > 0$, s.t. $B_r(L) \subseteq U$, and $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, s.t. $a_n \in B_r(L) \subseteq U$; \Leftarrow : Suppose $L \in U \subseteq_{open} X$, then $\exists r > 0$ such that $B_r(L) \subseteq U$. Since $B_r(L)$ is also an open set, then $\exists N \in \mathbb{N}$, for $\forall n \geq N$, s.t. $a_n \in B_r(L) \subseteq U$.

We say $S \subseteq X$ is bounded w.r.t. d, if $\exists r > 0$ and $x_0 \in X$, s.t. $S \subseteq B_r(x_0)$.

Theorem 10 (Bolzano-Weierstrass theorem). *If* $a_n \in \mathbb{R}^m (n \in \mathbb{N})$ *is bounded w.r.t.* d_2 , then \exists a subsequence $a_{n_m} (m \in \mathbb{N})$ which converges.

Proof. We only prove \mathbb{R}^2 case. If we want to prove that the vector $a=(a_1,\cdots,a_m)\in\mathbb{R}^m\to L=(l_1,\cdots,l_m)\in\mathbb{R}^m$, all we need to prove is $\lim_{n\to\infty}a_i=l_i,(i=1,\cdots,m)$. Choose M>0, s.t. $a_n\in Q=[-M,M]\times[-M,M]$ for all $n\in\mathbb{N}$. Divide Q into 4 squares with equal size and choose one, say Q_1 , such that $|\{n|a_n\in Q\}|=\infty$. Select $n_1\in\mathbb{N}$, such that $a_{n_1}\in Q_1$. Repeat this and we have $\bigcap_{k=1}^\infty Q_k=\{a\}$. By theorem of nested interval we have that $\lim_{k\to\infty}a_{n_k}=a$.

Remark 7. The conclusion of Bolzano-Weierstrass theorem can be generalize to metric space (Remark 13).

Exercise 29. Let (X,d) be a metric space, $F \subseteq X$ show that $F \subseteq_{close} X \Leftrightarrow \forall a_n \in F(n \in \mathbb{N})$ and $\lim_{n\to\infty} a_n = a \in X$ then $a \in F$.

Proof. ⇒: Assume that *F* is close and $a_n \in F$. If $a_n \to a \in X \setminus F$, then $\exists r > 0$, s.t. $B_r(a) \in X \setminus F$. Since $\lim_{n \to \infty} a_n = a$, for *r*, there exists $N \in \mathbb{N}$, $\forall n \ge N$, s.t. $d(a_n, a) < r$, i.e. $a_n \in B_r(a) \subseteq X \setminus F$, which leads to a contradiction. ⇐: Suppose that $\forall a_n \in F(n \in \mathbb{N})$ and $\lim_{n \to \infty} a_n = a \in X$ then $a \in F$, and *F* is not close, which means $X \setminus F$ is not open, and $\exists x \in X \setminus F$, $\forall r > 0$, $B_r(x) \cap F \neq \emptyset$. Select $n \in \mathbb{N}$ such that $a_n = B_{\frac{1}{n}}(x) \cap F$. Thus $\lim_{n \to \infty} a_n = x \notin F$, which leads to a contradiction.

Remark 8. Set family of sets as $\{B_{1/n}(x)\}_{n\in\mathbb{N}}$ is a very useful skill.

Definition 16 (Open cover, Compact set). Let (X,d) be a metric space, $S \subseteq X$, $O_{\alpha} \in X(\alpha \in A)$, we say that $O_{\alpha}(\alpha \in A)$ form an open cover of S, if $S \subseteq \bigcup_{\alpha \in A} O_{\alpha}$. S is called a compact set if \forall open cover $O_{\alpha}(\alpha \in A)$ of S, $\exists \alpha_1, \dots, \alpha_m \in A$, s.t. $S \subseteq \bigcup_{i=1}^m O_{\alpha_i}$, where $\bigcup_{i=1}^m O_{\alpha_i}$ is called a finite subcover.

If there exists an open cover of F whose any finite subcover can not cover it, then F is not a compact set. for instance, let F = (0,1), $O_n = (1/n,2)$, $n \in \mathbb{N}$, then O_n is an open cover of F, however any finite subcover of O_n can not cover F.

Theorem 11 (Heine-Borel theorem). Let $S \subseteq \mathbb{R}^n$, then S is compact $\Leftrightarrow S$ is bounded and closed.

Proof. ⇒: Suppose that S is compact, select a point $s \in S$ arbitrarily, define $O_i = B_i(s)$, it is easy to check that $S \subseteq \cup_{i \in \mathbb{N}} O_i$, since for any $s' \in S$, we have that $s' \in B_{2d(s,s')}(s) \subseteq O_{\lceil 2d(s,s') \rceil}$. Since S is compact, there exists a finite subcover, thus S is bounded. Suppose S is compact, but S is not closed, which means $X \setminus S$ is not open and $\exists x \in X \setminus S$, s.t. $\forall r > 0$, $B_r(x) \cap S \neq 0$. Since S is bounded, define $\iota = \sup_{s \in S} d(s, x)$, define open cover

$$O_n = B_{\frac{t}{n}}(x) - B_{\frac{t}{n+1}}(x),$$

thus $O_i \cap O_j = \emptyset(i \neq j)$ and $O_i \cap S \neq \emptyset(\forall i)$. Thus O_n has no finite subcover, which leads to a contradiction and S is closed.

 \Leftarrow : Suppose that S is bounded and closed, and \exists an open cover $O_{\alpha}(\alpha \in A)$ of S which admits no finite subcover. Choose a cube Q containing S (S is bounded), divide Q into 4 equal-sized cubes and select one of them denoted by Q_1 , s.t. $Q_1 \cap S$ can not be covered by finitely many Q_{α} , select a point such that $s_1 \in Q_1 \cap S$. Repeat.

Obviously, $\lim_{n\to\infty} s_n = a$, notice that $s_n \in Q_n \cap S \subseteq S$, thus $\lim_{n\to\infty} s_n = a \in S$ for S is closed. Thus there exist O_i such that $a \in O_i$. Since O_i is open, $\exists r > 0$, s.t. $B_r(a) \subseteq O_i$.

Then $\exists N \in \mathbb{N}, \forall n \geq N$, s.t. $Q_n \subseteq B_r(a) \subseteq O_i$. Since $Q_n \cap S$ can not be covered by finitely many O_α , but could be covered by O_i , which leads to a contradiction.

Figure 3.1: Heine-Borel theorem

Theorem 12 (The Lebesgue number of an open cover). Let (X, d) be a metric space and $K(\subseteq X)$ a compact set. For any given open cover $O_{\alpha}(\alpha \in A)$ of K, there exists $\delta > 0$, s.t. for every $x \in K$ we have $B_{\delta}(x) \subseteq O'_{\alpha}$ for some $\alpha' \in A$ (α' depending on x).

Proof. Since K is compact, for any open cover of K, there exists an finite subcover of K, that is $\exists O_{\alpha_i}, i = 1, \dots, N$ such that

$$K \subseteq \bigcup_{i=1}^{N} O_{\alpha_i}$$
.

For any point $x \in K$ there exist $O_{\alpha_j} \in \{O_{\alpha_i}\}_{i=1}^N$, s.t. $x \in O_{\alpha_j}$ and exists $\delta_x > 0$, s.t. $B_{\delta_x/2}(x) \subseteq B_{\delta_x}(x) \subseteq O_{\alpha_j}$ for O_{α_j} is open. Obviously we have that $B_{\delta_x/2}(x)$ is an open cover of K, i.e.

$$K\subseteq\bigcup_{x\in K}B_{\delta_x/2}(x),$$

and $B_{\delta_x/2}(x)$ has an finite subcover of K, donate as $\{B_{\delta_{x_i}/2}(x_i)\}_{i=1}^M$. Let $\delta = \min\{\delta_{x_i}\}_{i=1}^M$. Then for any $y \in K$, there exists $B_{\delta_{x_j}/2}(x_j) \in \{B_{\delta_{x_i}/2}(x_i)\}_{i=1}^M$ such that $y \in B_{\delta_{x_j}/2}(x_j)$ and $d(y,x_j) < \delta_{x_j}/2$. and for any y' where $d(y',y) < \delta/2 < \delta_{x_j}/2$, we have $d(x_j,y') \leq d(x_j,y) + d(y,y') < \delta_{x_j}$, thus $y,y' \in B_{\delta_{x_j}}(x_j) \subseteq O_{\alpha'}$, or say $y,y' \in B_{\delta/2}(y) \subseteq B_{\delta_{x_j}}(x_j) \subseteq O_{\alpha'}$.

The theorem indicates for any open cover O_{α} of K, $\exists \delta > 0$, s.t. for $\forall x \in K, x' \in X$, is $d(x,x') < \delta$, then $\exists \alpha \in A$ we have $x,x' \in O_{\alpha}$. Such a $\delta > 0$ is called a **Lebesgue**

number of the given open cover $O_{\alpha}(\alpha \in A)$. Notice that the statement could be false if the compactness assumption is dropped.

Figure 3.2: The Lebesgue number of an open cover

Exercise 30 (Open set). Let $(X,d)=(\mathbb{R},d_2)$, K=(0,1), $O_{\alpha}=(1/2^{\alpha+1},1/2^{\alpha-1})(\alpha\in\mathbb{N})$. Thus $1/2^{\alpha}\in O_{\alpha}$ and $\notin O_{\alpha'}$ if $\alpha'\neq\alpha(\alpha,\alpha'\in\mathbb{N})$. It is easy to check O_{α} is an open cover of K, but $|1/2^{\alpha}-1/2^{\alpha+1}|=1/2^{\alpha+1}$ can be arbitrarily small if $\alpha\uparrow$. Thus there exists $x\in K$, $x'\in X$ can not be covered one O_{α} , no matter how close they are.

Exercise 31 (Unbounded set). Let $(X,d) = (\mathbb{R},d_2)$, $K = [1/3,\infty)$, $O_{\alpha} = (\alpha-1-1/2^{\alpha-1},\alpha)(\alpha \in \mathbb{N})$. Thus $x = \alpha-1/2^{\alpha} \in O_{\alpha}$ and $x' = \alpha \in O_{\alpha+1}$ and d(x,x') could be arbitrarily small as $\alpha \uparrow$. Thus there exists $x \in K$, $x' \in X$ can not be covered one O_{α} , no matter how close they are.

Definition 17 (Isolated point, limit point and accumulation point). Let (X,d) be a metric space and $S \subseteq X$. A point $x \in X$ is called:

- an **isolated point** of *S*, if $\exists \epsilon > 0$, s.t. $B_{\epsilon}(x) \cap S = \{x\} \ (\Rightarrow x \in S)$;
- a limit point of S, if $\forall \epsilon > 0$, s.t. $B_{\epsilon}(x) \cap S \setminus \{x\} \neq \emptyset$;
- an accumulation point of S, if \exists seq. $a_n \in S(n \in \mathbb{N})$, s.t. $x = \lim_{n \to \infty} a_n$.

Example 9. $S \subseteq X$ is as the figure, point $i \notin S$:

Then

point	iso. pts. of S	limit pts. of <i>S</i>	acc. pts. of S	$\in S$
i	×	×	×	×
а	×	$\sqrt{}$	$\sqrt{}$	×
b	×	$\sqrt{}$	$\sqrt{}$	
С	×	$\sqrt{}$	$\sqrt{}$	
d		×	$\sqrt{}$	
e	×	$\sqrt{}$	$\sqrt{}$	
h	×	$\sqrt{}$	$\sqrt{}$	×

Notice that x is a isolated point of $S \Rightarrow x \in S$; but x is a limit/accumulate point of $S \not\Rightarrow x \in S$.

Exercise 32. Let (X,d) be a metric space, $S \subseteq X$,

- 1. Show that x is an isolated/limit point of $S \Rightarrow x$ is a accumulate point of S;
- 2. Donate {iso. pts. ofS}, {limit pts. ofS} and {acc. pts. ofS} by I_S , L_S , A_S respectively. Show that $I_S \cup L_S = A_S$;
- 3. Suppose $E \subseteq K \subseteq X$, where E is infinite and K is compact, show that $L_E \neq \emptyset$; (Prove by contradiction)
- *Proof.* 1. If x is an isolated point of S, thus $x \in S$. Let $a_n \equiv x$, then $\lim_{n \to \infty} a_n = x$, thus x is an accumulate point of S; If x is a limit point of S, then for any $\epsilon > 0$, $B_{\epsilon}(x) \cap S \setminus \{x\} \neq \emptyset$. Let $a_n \in B_{1/n}(x) (n \in \mathbb{N})$, then $d(a_n, x) < 1/n$ for $\forall n \in N$, thus $\lim_{n \to \infty} a_n = x$, and x is an accumulate point of S.
- 2. We have obtained that $I_S, L_S \subseteq A_S$. Suppose $x \in A_S \setminus (I_S \cup L_S) \neq \emptyset$. Which means : (1) there exists seq. $a_n \in S$ such that $\lim_{n\to\infty} a_n = x$; (2) $\forall \epsilon > 0$, s.t. $B_{\epsilon}(x) \cap S \neq \{x\}$ $(\neg I_S)$;(3) $\exists \epsilon' > 0$, s.t. $B_{\epsilon'}(x) \cap S \setminus \{x\} = \emptyset$ $(\neg L_S)$. Let $B_{\epsilon}(x) \cap S = Q_{\epsilon} \neq \{x\}$, if $x \in Q_{\epsilon}$, then it leads to a contradiction with (3); If $x \notin Q_{\epsilon}$, then $Q_{\epsilon'} = \emptyset$, that is $Q_{\epsilon'}(x) \cap S = \emptyset$ and for $\forall s \in S \Rightarrow d(s,x) \geq \epsilon'$, which leads to a contradiction with (1). Thus $Q_S \setminus (I_S \cup I_S) = \emptyset$. Because $Q_S \setminus I_S \subseteq A_S$, we have $Q_S \setminus I_S \subseteq A_S$.

3. We claim there exists a limit point s of E in K, i.e. $\exists s \in K$ s.t. $\forall r > 0$, $B_r(s) \cap E \setminus \{s\} \neq \emptyset$.

Assume the contrary, that is $\forall s \in K$, $\exists r_s > 0$ s.t. $B_{r_s}(s) \cap E \setminus \{s\} = \emptyset$, and $B_{r_s}(s)(s \in K)$ form an open cover of K: $K = \bigcup_{s \in K} B_{r_s}(s)$. Since K is compact, there exists $s_1, \dots, s_n \in K$ s.t. $K = \bigcup_{i=1}^n B_{r_{s_i}}(s_i)$.

Define $S = \{s_1, \dots, s_n\}$, then

$$K \cap E \setminus S = \left(\bigcup_{i=1}^{n} B_{r_{s_i}}(s_i) \right) \cap E \setminus S$$
$$= \bigcup_{i=1}^{n} B_{r_{s_i}}(s_i E \setminus S)$$
$$= \emptyset$$

but since *E* is infinite set, *S* is finite set and $E \subseteq K \Rightarrow K \cap E \setminus S = E \setminus S \neq \emptyset$, which is contrary.

Remark 9. Refer to the proof method.

Exercise 33. Let $(X,d) = (\mathbb{R}, d_2)$, $S \subseteq \mathbb{R}$, show that if $\sup S$ (inf S) exists, then it is an accumulate point.

Proof. If sup $S\exists$, then for $\forall x \in S$, s.t. $x \le \sup S$ and for $\forall \epsilon > 0$, $\exists x' \in S$, s.t. sup $S - \epsilon < x'$. For any $n \in \mathbb{N}$, there exists $x_n \in S$ s.t. sup $S - 1/n < x' \le \sup S$, and $d(x_n, \sup S) < 1/n$, thus $x_n \to \sup S$ as $n \to \infty$. □

Exercise 34. Show that, if (X, d) be a metric space, then

$$S \subseteq_{close} X \Leftrightarrow A_S = S \Leftrightarrow L_S \subseteq S$$
.

Proof. For any $x \in S$, let $a_n = x$, then $\lim_{n \to \infty} a_n = x$, thus $S \subseteq A_S$. Since example (??), we have $S \subseteq_{close} X \Leftrightarrow A_S = S$. \Rightarrow Since $I_S \cup I_S = A_S$, we have $I_S \subseteq A_S = S$; \Leftarrow , for $I_S \subseteq A_S \subseteq S$, we have $I_S \subseteq A_S = S$.

3.3 Functions on metric space

Definition 18 (Limit of function). Let $(X, d_X), (Y, d_Y)$ be metric spaces. $a \in S \subseteq X$, $f: S \mapsto Y$, we say map f has limit at a if $\exists b \in Y$ s.t. for $\forall \epsilon > 0, \exists \delta > 0, \forall x \in S \cap B_{\delta}(a) \setminus \{a\} \Rightarrow f(x) \in B_{\epsilon}(b)$. Denoted as $\lim_{x \to a} f(x) = b$ and $B_{\delta}(a) \setminus \{a\} =: B_{\delta}^*(a)$, then

$$\lim_{x \to a} f(x) = b \Leftrightarrow f(S \cap B^*_{\delta}(a)) \subseteq B_{\epsilon}(b).$$

Definition 19 (Continuous). Let (X, d_X) , (Y, d_Y) be metric spaces. $a \in S \subseteq X$, $f : S \mapsto Y$, we say

- 1. map f is continuous at a if for $\forall \epsilon > 0, \exists \delta > 0$, for $\forall x \in B_{\delta}(a) \cap S$, s.t. $f(x) \in B_{\epsilon}(f(a))$, that is $f(B_{\delta}(a)) \subseteq B_{\epsilon}(f(a))$.
- 2. map f is a continuous map if f is continuous at every $a \in S$.

Exercise 35. Let $X \xrightarrow{f} Y$ be a continuous map between metric spaces, a sequence $x_n (n \in \mathbb{N})$ in X converges to $x \in X$, show that $f(x_n)(n \in \mathbb{N})$ in Y converges to $f(x) \in Y$. In the other word:

$$\lim_{n\to\infty} f(x_n) = f(x) = f(\lim_{n\to\infty} x_n).$$

Proof. Since f is continuous, then for $\forall \epsilon > 0, \exists \delta > 0$ s.t. $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$. And since $x_n \to x$, then $\exists N \in \mathbb{N}$ s.t. $\forall n \geq N, x_n \in B_{\delta}(x) \Rightarrow f(x_n) \in B_{\epsilon}(f(x))$.

Thus for
$$\epsilon > 0$$
, $\exists N \in \mathbb{N}$ s.t. $\forall n \geq N \Rightarrow d(f(x_n), f(x)) < \epsilon \Rightarrow \lim_{n \to \infty} f(x_n) = f(x) = f(\lim_{n \to \infty} x_n)$.

Exercise 36. (Y,d) is a metric space, $y_0 \in Y$, show that $Y \xrightarrow{d} \mathbb{R}$ where $y \mapsto d(y,y_0)$ is a continuous map.

Proof. Assume that the map d is not continuous, then $\exists y \in Y, \exists \epsilon > 0, \forall \delta > 0, \exists y' \in B_{\delta}(y)$ s.t.

$$|d(y) - d(y')| = |d(y, y_0) - d(y', y_0)| \ge \epsilon.$$

select $\delta < \epsilon$, then $d(y', y) < \delta < \epsilon$ and hence

$$|d(y,y_0) - d(y',y_0)| \ge \epsilon > d(y',y)$$

which leads to the contradiction with triangle inequality.

Remark 10. Thus if there exists a seq $y_n \rightarrow y$, then

$$d(y, y_0) = d(\lim_{n \to \infty} y_n, y_0) = \lim_{n \to \infty} d(y_n, y_0),$$

for any $y_0 \in Y$.

Exercise 37. Given a map $X \xrightarrow{f} Y$, $a \in X$, Show that

- 1. f is continuous at $a \Leftrightarrow for \ \forall V \subseteq_{open} Y$, where $f(a) \in V$, $\exists U \subseteq_{open} X$, where $a \in U$, such that $f(U) \subseteq V$.
- 2. f is a continuous map \Leftrightarrow for $\forall V \subseteq_{open} Y$, $f^{-1}(V) \subseteq_{open} X$.

Proof. 1. \Rightarrow : for $\forall V \subseteq_{open} Y$, where $f(a) \in V$, $\exists \epsilon > 0$, s.t. $B_{\epsilon}(f(a)) \subseteq V$, thus $\exists U = B_{\delta}(a)$. \Leftarrow : trivial.

- 2. \Rightarrow : Given an open set $V \subseteq_{open} Y$, for $\forall x \in f^{-1}(V)$, have $f(x) \in V$. Since V is open, $\exists r > 0$ s.t. $B_r(f(x)) \subseteq V$. Since f(x) is continuous map, $\exists \epsilon > 0$, s.t. $f(B_{\epsilon}(x)) \subseteq B_r(f(x)) \subseteq V \Rightarrow B_{\epsilon}(x) \in f^{-1}(V)$, thus $f^{-1}(V)$ is open.
- \Leftarrow : Given $x \in X$, $f(x) \in Y$, given r > 0, s.t. $B_r(f(x)) \subseteq Y$, then $f^{-1}(B_r(f(x))) \subseteq_{open} X$, and $x \in f^{-1}(B_r(f(x)))$. Thus $\exists \epsilon > 0$, s.t. $B_{\epsilon}(x) \subseteq f^{-1}(B_r(f(x)))$ and $f(B_{\epsilon}(x)) \subseteq B_r(f(x))$.

Remark 11. It can also be proved that f is cont. \Leftrightarrow for $\forall V \subseteq_{close} Y$, $f^{-1}(V) \subseteq_{close} X$. Suppose $V \subseteq_{close} Y$, then $X \setminus f^{-1}(V) = f^{-1}(X \setminus V) \subseteq_{open} X$, thus $f^{-1}(V) \subseteq_{close} X$.

Exercise 38. Given maps $X \xrightarrow{f} Y$, $Y \xrightarrow{g} Z$, show that

- 1. If f is continuous at x_0 , g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .
- 2. If f, g are continuous maps, then $g \circ f$ is a continuous map.

Proof. 1. For any V, s.t. $g(f(x_0)) \in V \subseteq_{open} Z$, $\exists U$, s.t. $f(x_0) \in U \subseteq_{open} Y$, $\exists W$, s.t. $x_0 \in W \subseteq X$, thus $g \circ f$ is continuous at x_0 .

2. For any $V \subseteq_{open} Z$, $\exists U \subseteq_{open} Y$, $\exists W \subseteq_{open} X$, thus $g \circ f$ is continuous.

Remark 12. Note that we prove this exercise using general sets instead of metrics. We replaced open ball with open set in last Exercise, this is a meaningful operation, which means we could **substitute the metric with set** (here is open set), which drives the concept of topology. Generally, topology is a family of sets which have the basic properties, using these sets, we can define open set no longer rely on metric d.

Theorem 13. Let $X \xrightarrow{f} \mathbb{R}$ be a continuous map between metric space, X is compact, then $\max_{x \in X} f(x)$, $\min_{x \in X} f(x)$ exists.

Proof. 1. f is bdd. and hence $\sup_{x \in X} f(x)$ exists (l.u.b. property):

Assume the contrary. Then $\forall n \in \mathbb{N}, \exists x_n \in X \text{ s.t. } f(x_n) > n \text{ and we can form a seq. } x_n(n \in \mathbb{N}) \text{ which is a infinite subset of a compact set, thus there exists } a \in X \text{ and a convergent subseq. } x_{n_k}(k \in \mathbb{N}) \to a \text{ as } k \to \infty \text{ (see Remark 13)}. And hence <math>\lim_{k\to\infty} f(x_{n_k}) = f(a) \text{ since } f \text{ is continuous, which leads to a contradiction with } f(x_{n_k}) \geq n_k.$ Thus f is bdd. (Thus continuous map on compact set is bounded)

2. Let $M = \sup_{x \in X} f(x)$, then $\exists x \in X$, s.t. f(x) = M:

Assume the contrary, i.e. $\forall x \in X, f(x) < M$. Then the map $X \xrightarrow{\phi} \mathbb{R}$ where $x \mapsto 1/(M-f(x))$ is well-defined continuous map, and hence ϕ is bounded by 1. Then for any $R \in \mathbb{R}_+, 1/R > 0$ and $\exists x \in X$ s.t.

$$M - \frac{1}{R} < f(x) \le M$$

thus $\phi(x) = 1/(M - f(x)) > R$ which leads to a contradiction with ϕ is bdd.

Remark 13 (Generalize B-W theorem to metric space). Two facts:

- 1. Any infinite subset of a compact set *K* has a limit point in *K* (Exercise 32);
- 2. x is a limit point of $A \subseteq X$, where X is a metric space $\Leftrightarrow \exists seq. \ a_n \in A \setminus \{x\} (n \in \mathbb{N})$, s.t. $a_n \to x$ as $n \to \infty$.

These two facts generalize the Bolzano-Weierstrass theorem (Theorem 10) from \mathbb{R}^n space to general metric space as: A sequence $a_n(n \in N)$ in a compact metric space has a convergent subsequence.

3.4 Uniformly continuous function

Recall that the concept of continuous map: let $X \xrightarrow{f} Y$ be a map between metric space,

- *f* is continuous
- \Leftrightarrow *f* is continuous at every $x \in X$
- $\Leftrightarrow \forall \epsilon > 0, \forall x \in X, \exists \delta > 0 \text{ s.t. } \forall x' \in X, d(x, x') < \delta \Rightarrow d(f(x), f'(x)) < \epsilon$

(or say $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$). Note that here the order of x and ϵ does not matter, and δ relies on the choice of x and ϵ .

Definition 20 (Uniformly continuous, 均匀连续). Let $X \xrightarrow{f} Y$ be a map between metric space, we say f is uniformly continuous if

• $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. for } \forall x, x' \in X, d(x, x') < \delta \Rightarrow d(f(x), f(x')) < \epsilon.$

Remark 14. Now, δ only relies on the choice of ϵ . If f is uniformly continuous $\Rightarrow f$ is continuous.

For a given $\epsilon > 0$ and $x \in X$, consider the set

$$\Delta_x := \{ \delta > 0 | f(B_{\delta}(x) \subseteq B_{\epsilon}(f(x)) \}$$

Then if f is continuous at $x \Leftrightarrow \Delta_x \neq \emptyset$. And if f is continuous at x, define ϵ - **threshold** of f at x as

$$\delta_{f,\epsilon}(x) := \sup \Delta_x$$

Consider a map $(0,1] \to \mathbb{R}$ where $x \mapsto 1/x$, if any δ works for the given ϵ and x, then

$$\frac{1}{x-\delta} - \frac{1}{x} = \frac{\delta}{(x-\delta)x} < \epsilon$$

thus $\delta < \epsilon(x - \delta)x < x^2\epsilon \Rightarrow \delta_{f,\epsilon}(x) \le x^2\epsilon \to 0$ as $x \to 0$, thus there does not exist a δ for given ϵ such that works for all $x \in X$.

Theorem 14. If $X \xrightarrow{f} Y$ is a continuous map between metric space and X is compact, then f is uniformly continuous.

Proof 1. Given $\epsilon > 0$, for every $a \in X$, choose a number $\delta_a > 0$ s.t. $\forall x \in X$, $f(B_{\delta_a}(a)) \subseteq B_{\epsilon/2}(f(a))$. Then $B_{\delta_a}(a)(a \in X)$ is an open cover of X, then let $\delta > 0$ be a Lebesgue number of this cover.

Thus for
$$\forall x, x' \in X, d(x, x') < \delta \Rightarrow \exists a \in X, \text{ s.t. } x, x' \in B_{\delta_a}(a) \Rightarrow f(x), f(x') \in B_{\epsilon/2}(f(a)) \Rightarrow d(f(x), f(x')) \leq d(f(x), f(a)) + d(f(a), f(x')) < \epsilon/2 + \epsilon/2 = \epsilon.$$

Proof 2. Assume the contrary, that is there exists $\epsilon > 0$, $\forall \delta = 1/n(n \in \mathbb{N})$, exists $x_n, x_n' \in X$, s.t. $d(x_n, x_n') < \delta$ but $d(f(x_n), f(x_n')) > \epsilon$. And then we can form two sequence: x_1, x_2, \cdots and x_1', x_2', \cdots .

Since X is compact, and $x_n(n \in \mathbb{N})$ is a infinite subsets of $X \Rightarrow x_n(n \in \mathbb{N})$ has a limit point $a \in X$. And x_n has a subseq. $x_{n_k}(k \in \mathbb{N})$, s.t. $\lim_{k \to \infty} x_{n_k} = a$. The correspond subseq. x'_{n_k} is a infinite subset of compact set $X \Rightarrow x'_{n_k}$ has a limit point $b \in X$, and has a subseq. $x'_{n_{k_i}}(j \in \mathbb{N})$ s.t. $\lim_{j \to \infty} x'_{n_{k_i}} = b$. (Remark 13)

Since $x_{n_k} \to a$, then $x_{n_{k_i}} \to a$ as well (Exercise 6). Thus we have that

$$\lim_{j\to\infty}x_{n_{k_j}}=a,\quad \lim_{j\to\infty}x'_{n_{k_j}}=b,$$

and $d(x_{n_{k_j}}, x'_{n_{k_j}}) < 1/n_{k_j}$. Thus for any $\epsilon_1 > 0$, $\exists J$, s.t. $\forall j \geq J$ has $d(a, x_{n_{k_j}}) < \epsilon_1/3$ and $d(b, x'_{n_{k_i}}) < \epsilon_1/3$ and $d(x_{n_{k_i}}, x'_{n_{k_i}}) < \epsilon_1/3$ (Archimedean Property), thus

$$d(a,b) \leq d(a,x_{n_{k_j}}) + d(x_{n_{k_j}}, x'_{n_{k_j}}) + d(x'_{n_{k_j}}, b)$$

$$< \frac{\epsilon_1}{3} + \frac{\epsilon_1}{3} + \frac{\epsilon_1}{3} = \epsilon_1$$

thus $d(a,b) = 0 \Leftrightarrow a = b$. Since f is continuous, then (Exercise 35)

$$\lim_{j\to\infty} f(x_{n_{k_j}}) = f(a) = f(b) = \lim_{j\to\infty} f(x'_{n_{k_j}})$$

Then for any $j \in \mathbb{N}$, we have that

$$d(f(x_{n_{k_j}}), b) = d(f(x_{n_{k_j}}), \lim_{j' \to \infty} f(x'_{n_{k'_j}}))$$

$$= \lim_{j' \to \infty} d(f(x_{n_{k_j}}), f(x'_{n_{k'_j}}))$$

$$\geq \epsilon$$
(Remark 10)

and hence

$$d(a,b) = d(\lim_{j \to \infty} f(x_{n_{k_j}}), b)$$
$$= \lim_{j \to \infty} d(f(x_{n_{k_j}}), b)$$
$$> \epsilon$$

which leads to a contradiction.

3.5 Limit superior / inferior for function

Let *X* be metric space, $S \subseteq X$ and $S \xrightarrow{f} \mathbb{R}$ be a map, for $a \in X$, we define

$$\overline{f}^*(\delta) := \sup_{x \in B_{\delta}(a) \setminus \{a\}} f(x) = \sup\{f(x) | 0 < d(x, a) < \delta\}$$

$$\underline{f}^*(\delta) := \inf_{x \in B_{\delta}(a) \setminus \{a\}} f(x) = \inf\{f(x) | 0 < d(x, a) < \delta\}$$

It is direct to see that $\overline{f}^*_{\searrow}$ as $\delta \to 0$: Assume that if $\exists \delta < \delta'$ and $\overline{f}^*(\delta) > \overline{f}^*(\delta')$, let

$$\epsilon = \overline{f}^*(\delta) - \overline{f}^*(\delta')$$

then $\exists x \in B_{\delta}(a) \setminus \{a\} \subseteq B_{\delta'}(a) \setminus \{a\}$ such that

$$\overline{f}^*(\delta) \ge f(x) > \overline{f}^*(\delta) - \epsilon/2 > \overline{f}^*(\delta') = \sup_{x \in B_{\delta'}(a) \setminus \{a\}} f(x),$$

which is contrary. Thus similarly, $\underline{f}^*_{\nearrow}$ as $\delta \to 0$. For any $\delta, \delta' \in \mathbb{R}$, we have that

$$f^*(\delta) \le f^*(\min\{\delta, \delta'\}) \le \overline{f}^*(\min\{\delta, \delta'\}) \le \overline{f}^*(\delta')$$

thus $\underline{f}^*(\delta)$ has upper bound and $\overline{f}^*(\delta)$ has lower bound when $\delta \to 0$. And hence $\overline{f}^*(\delta)$ converges to its infimum: assume the contrary, if $\lim_{\delta \to 0} \overline{f}^*(\delta) > \inf_{\delta > 0} \overline{f}^*(\delta)^1$, then $\exists \epsilon > 0$ and $\delta' > 0$ s.t.

$$\inf_{\delta>0}\overline{f}^*(\delta) \leq \overline{f}^*(\delta') < \inf_{\delta>0}\overline{f}^*(\delta) + \epsilon < \lim_{\delta\to0}\overline{f}^*(\delta)$$

and hence $\forall \delta < \delta'$ has

$$\overline{f}^*(\delta) \leq \overline{f}^*(\delta') < \lim_{\delta \to 0} \overline{f}^*(\delta)$$

since $\overline{f}^*(\delta)$ as $\delta \to 0$. And it is contrary.

Thus $\overline{f}^*(\delta)$ converges to its infimum, $\underline{f}^*(\delta)$ converges to its supremum, and we can define

$$\limsup_{x \to a}^* f(x) = \overline{\lim_{x \to a}^*} f(x) := \inf_{\delta > 0} \overline{f}^*(\delta) = \inf_{\delta > 0} \sup_{x \in B_{\delta}(a) \setminus \{a\}} f(x) = \lim_{\delta \to 0} \overline{f}^*(\delta)$$

$$\lim_{x \to a}^* f(x) = \lim_{x \to a}^* f(x) := \inf_{\delta > 0} f^*(\delta) = \sup_{\delta > 0} \inf_{x \in B_{\delta}(a) \setminus \{a\}} f(x) = \lim_{\delta \to 0} f^*(\delta)$$

Corresponding, we can define the 'non - *' conception by containing the {a}:

$$\overline{f}(\delta) := \sup_{x \in B_{\delta}(a)} f(x) = \sup\{f(x) | 0 \le d(x, a) < \delta\}$$

$$\underline{f}(\delta) := \inf_{x \in B_{\delta}(a)} f(x) = \inf\{f(x) | 0 \le d(x, a) < \delta\}$$

and

In this section, $\delta \to 0$ is regarded as $\delta \to 0^+$ by default.

$$\limsup_{x \to a} f(x) = \overline{\lim}_{x \to a} f(x) \coloneqq \inf_{\delta > 0} \overline{f}(\delta) = \inf_{\delta > 0} \sup_{x \in B_{\delta}(a)} f(x) = \lim_{\delta \to 0} \overline{f}(\delta)$$

$$\liminf_{x \to a} f(x) = \underline{\lim}_{x \to a} f(x) \coloneqq \inf_{\delta > 0} \underline{f}(\delta) = \sup_{\delta > 0} \inf_{x \in B_{\delta}(a)} f(x) = \underline{\lim}_{\delta \to 0} \underline{f}(\delta)$$

Then it is direct to see that

$$\underline{\lim_{x \to a}} f(x) \le \underline{\lim_{x \to a}} f(x) \le \overline{\lim_{x \to a}} f(x) \le \overline{\lim_{x \to a}} f(x)$$

Example 10. Consider a map $\mathbb{R} \xrightarrow{f} \mathbb{R}$ where $x \mapsto 1$ if $x \neq 0$ and $0 \mapsto 0$, then

$$\frac{\overline{\lim}_{x \to 0}^* f(x) = 1, \qquad \underline{\lim}_{x \to 0}^* f(x) = 1}{\overline{\lim}_{x \to 0}^* f(x) = 1, \qquad \underline{\lim}_{x \to 0}^* f(x) = 0}$$

Exercise 39. Let X be metric space, $a \in S \subseteq X$ and $S \xrightarrow{f} \mathbb{R}$ be a map, show that

- 1. $\lim_{x\to a} f(x)$ exists $\Leftrightarrow \overline{\lim}_{x\to a}^* f(x)$ and $\underline{\lim}_{x\to a}^* f(x)$ exists and equal to each other.
- 2. f(x) is continuous at a exists $\Leftrightarrow \overline{\lim}_{x\to a} f(x)$ and $\underline{\lim}_{x\to a} f(x)$ exists and equal to each other.

Proof. Define $B_{\delta}^*(a) := B_{\delta}(a) \setminus \{a\}$.

1. \Rightarrow : $\exists l \in \mathbb{R}$ s.t. $\lim_{x \to a} f(x) = l$, then for any $\epsilon > 0$, $\exists \delta > 0$ s.t. $\forall x \in B^*_{\delta}(a) \Rightarrow l - \epsilon/2 < f(x) < l + \epsilon/2$. Then for any $x \in B^*_{\delta}(a)$, one has

$$\begin{split} l - \epsilon n < l - \frac{\epsilon}{2} &\leq \inf_{x \in B^*_{\delta}(a)} f(x) = \underline{f}^*(\delta) \\ &\leq f(x) \leq \sup_{x \in B^*_{\delta}(a)} f(x) = \overline{f}^*(\delta) \\ &\leq l + \frac{\epsilon}{2} < l + \epsilon. \end{split}$$

Since $\overline{f}^*(\delta)$ as $\delta \to 0$, then for any $\mu \le \delta \Rightarrow$

$$1 - \epsilon < f^*(\delta) \le \overline{f}^*(\mu) \le \overline{f}^*(\delta) < l + \epsilon.$$

Thus for any $\epsilon > 0$, $\exists \delta > 0$, s.t. $\mu \in B^*_{\delta}(0) \Rightarrow \overline{f}^*(\mu) \in B_{\epsilon}(l)$, thus

$$\overline{\lim_{x \to a}^{*}} f(x) = \lim_{\delta \to 0} \overline{f}^{*}(\delta) = l.$$

and $\underline{\lim}_{x\to a}^* f(x) = l$ in the same way.

 \Leftarrow : Assume that $\lim_{\delta \to 0} \overline{f}^*(\delta) = \lim_{\delta \to 0} \underline{f}^*(\delta) = r$. Then for any $\epsilon > 0, \exists \delta > 0$ s.t. $\forall \mu \in B^*_{\delta}(0)$ has

$$r - \epsilon < f^*(\mu) \le f(x) \le \overline{f}^*(\mu) < r + \epsilon$$

for any $x \in B_{\mu}^*(a)$. Thus for $\forall \epsilon > 0$, $\exists \mu > 0$, s.t. $\forall x \in B_{\mu}^*(a) \Rightarrow |f(x) - r| < \epsilon$, thus $\lim_{x \to a} f(x) = r$.

2. \Rightarrow : assume that f is continuous at a and f(a) = l, then for any $\epsilon > 0$, $\exists \delta > 0$ and for any $0 < \mu < \delta$ one has for any $x \in B_{\mu}(a) \subseteq B_{\delta}(a)$

$$l - \frac{\epsilon}{2} \le \underline{f}(\mu) \le f(x) \le \overline{f}(\mu) \le l + \frac{\epsilon}{2}$$

Thus for any $\epsilon > 0$, $\exists \delta > 0$, s.t. $\forall \mu \in B_{\delta}^*(0)$ has $\underline{f}(\mu)$, $\overline{f}(\mu) \in B_{\epsilon}(l) \Rightarrow \lim_{\delta \to 0} \underline{f}(\delta) = \lim_{\delta \to 0} \overline{f}(\delta) = l$.

 \Leftarrow : assume that $\lim_{\delta \to 0} \underline{f}(\delta) = \lim_{\delta \to 0} \overline{f}(\delta) = r$, then for any $\epsilon > 0$, $\exists \delta > 0$, s.t. $\forall 0 < \mu < \delta$ has

$$r - \epsilon < f(\mu) \le f(x) \le \overline{f}(\mu) < r + \epsilon$$

for $\forall x \in B_{\mu}(a)$. That is for any $\epsilon > 0$, $\exists \mu > 0$, $\forall x \in B_{\mu}(a)$ has $|f(x) - r| < \epsilon \Rightarrow f$ is continuous at a and f(a) = r.

Chapter 4

Convergence of sequence / series of functions

4.1 Pointwise / uniformly convergent

Definition 21. Let $X \xrightarrow{f_n} Y (n \in \mathbb{N})$ be a seq. of maps, Y is a metric space. We say that $f_n(n \in \mathbb{N})$ converges to a map $X \xrightarrow{f} Y$

- pointwise (逐点收敛): $\forall \epsilon > 0, \forall x \in X, \exists N_x \in \mathbb{N}, \text{ s.t. } \forall n \geq N_x \Rightarrow d(f_n(x), f(x)) < \epsilon;$
- uniformly (均匀收敛): $\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ s.t. } \forall x \in X, \forall n \geq N \Rightarrow d(f_n(x), f(x)) < \epsilon.$

Denoted as $f_n \to f$ and $f_n \xrightarrow{uni.} f$ as $n \to \infty$ respectively.

Example 11. Given a seq. of maps $X \xrightarrow{f_n} \mathbb{R}$ where $x \in X \in \mathbb{R}$ and $f_n(x) = x^n (n \in \mathbb{N})$. Then f_n converges pointwise if $X \subseteq (-1,1]$:

$$f_n \to f = \begin{cases} 1, & x = 1 \\ 0, & x \in (-1, 1) \end{cases}$$

Figure 4.1: pointwise convergent

However, f_n does not converges to f uniformly, since

$$|f_n(x) - f(x)| = \begin{cases} |1 - 1| = 0, & x = 1\\ |x^n - 0| = |x|^n, & x \in (-1, 1) \end{cases}$$

For any $\epsilon > 0$, to have $|f_n(x) - f(x)| < \epsilon$, we need $|x|^n < \epsilon$ for $x \in (-1,1)$, that is $n \ln |x| < \ln \epsilon \Leftrightarrow n > \ln \epsilon / \ln |x|$ which has no upper bound, thus there does not exist a $N \in \mathbb{N}$ such that $\forall n \geq N$ has $|f_n - f| < \epsilon$ for $x \in (-1,1)$.

Remark 15. Intuitively, a seq. of maps $f_n \xrightarrow{uni.} f$ means: a pipe with any radius ϵ whose shaft is f can encase all functions after the $f_{N_{\epsilon}}$ of the $f_n(n \in \mathbb{N})$.

Figure 4.2: uniformly convergent

Proposition 3. Let $X \xrightarrow{f_n} Y(n \in \mathbb{N})$ is a seq. of maps between metric spaces, which converges to map $X \xrightarrow{f} Y$ uniformly, if f_n is continuous at $a \in X$ for $\forall n \in \mathbb{N}$, then f is, too.

Proof. Note that for all $x \in X$ and $n \in \mathbb{N}$, we have that

$$d(f(x), f(a)) \le d(f(x), f_n(x)) + d(f_n(x), f_n(a)) + d(f_n(a), f(a));$$

Then for any $\epsilon > 0$, since $f_n \xrightarrow{uni.} f$ as $n \to \infty$, $\exists N_{\epsilon} \in \mathbb{N}$ s.t. $\forall x \in X, n \ge N_{\epsilon} \Rightarrow d(f_n(x), f(x)) < \epsilon/3$. In particular, $d(f_{N_{\epsilon}(x)}, f(x)) < \epsilon/3$ for $\forall x \in X$. On the other hand, since $f_{N_{\epsilon}}$ is continuous at a, then $\exists \delta_{N_{\epsilon}} > 0$ s.t. $d(x, a) < \delta_{N_{\epsilon}} \Rightarrow d(f_{N_{\epsilon}}(x), f_{N_{\epsilon}}(a)) < \epsilon/3$. Then given $\epsilon > 0$, $\exists \delta_{N_{\epsilon}} > 0$, s.t. for $\forall x \in B_{\delta_{N_{\epsilon}}}(a)$ one has

$$d(f(x), f(a)) \leq d(f(x), f_{N_{\epsilon}}(x)) + d(f_{N_{\epsilon}}(x), f_{N_{\epsilon}}(a)) + d(f_{N_{\epsilon}}(a), f(a))$$
$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Thus f is continuous at x.

4.2 Complete metric space

Definition 22 (Complete, 完备). A metric space (Y,d) is complete if every Cauchy sequence $a_n (n \in \mathbb{N})$ in Y converges. That is $\lim_{n\to\infty} a_n = a \in Y$.

Example 12. (\mathbb{R}^n, d_2) is complete; (\mathbb{Q}, d_2) is incomplete.

Proposition 4 (Uniform Cauchy). Let $X \xrightarrow{f_n} Y(n \in \mathbb{N})$ be a seq. of maps, and Y be a complete metric space. Then $f_n(n \in \mathbb{N})$ converges uniformly $\Leftrightarrow \forall \epsilon, \exists N, \text{ s.t. } \forall x \in X, [n, m \geq N \Rightarrow d(f_n(x), f_m(x)) < \epsilon]$ (such $f_n(n \in \mathbb{N})$ is called **uniform Cauchy seq.**).

Proof. \Rightarrow : (The completeness of Y is not need). Since $f_n \xrightarrow{uni.} f$, then for $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall x \in X, n \geq N \Rightarrow |f - f_n| < \epsilon/2$, then for $\forall x \in X, \forall n, m \geq N$ one has

$$|f_n - f_m| \le |f_n - f| + |f - f_m|$$

 $< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

 \Leftarrow : The assumption implies that for every fixed $x \in X$, the seq. $f_n(x)(n \in \mathbb{N})$ is a Cauchy seq. in Y and hence $\lim_{n\to\infty} f_n(x)$ exists, which we denoted as f(x). This define a map $X \xrightarrow{f} Y$. Now we will show that $f_n \xrightarrow{uni.} f$.

Since for $\forall x \in X$ and a fixed $m \in \mathbb{N}$, map $Y \xrightarrow{d} \mathbb{R}$ where $y \mapsto d(y, f_m(x))$ is continuous, then

$$d(f(x), f_m(x)) = \lim_{n \to \infty} d(f_n(x), f_m(x))$$

for all $x \in X$ (Remark 10). Since for $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall x \in X, [m, n \geq N \Rightarrow d(f_n(x), f_m(x)) < \epsilon/2]$. For every $x \in X, m \geq N$, let $n \to \infty$, we obtain that

$$d(f(x), f_m(x)) = \lim_{n \to \infty} d(f_n(x), f_m(x)) \le \frac{\epsilon}{2} < \epsilon$$

thus $f_n \xrightarrow{uni.} f$.

Remark 16. It is direct to see that: $f_n(n \in \mathbb{N})$ converges pointwise $\Leftrightarrow \forall \epsilon, \forall x, \exists N, \text{ s.t. } \in X, [n, m \ge N \Rightarrow d(f_n(x), f_m(x)) < \epsilon].$

The power of this proposition is to convert the seq. of functions $f_n(n \in \infty)$. to a series of functions $\sum_{n=1}^{\infty} g_n$, where we define $f_0 \equiv 0$ and

$$g_n = f_n - f_{n-1}, \quad n \in \mathbb{N},$$

then partial sum $s_n = g_1 + \cdots + g_n = f_n (n \in \mathbb{N})$, and hence $\sum_{n=1}^{\infty} g_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} f_n$.

Definition 23. Let $X \xrightarrow{g_n} \mathbb{R}(n \in \mathbb{N})$ be a seq. of functions, we say that $\sum_{n=1}^{\infty} g_n$ converges pointwise / uniformly the partial sum $s_n = g_1 + \cdots + g_n (n \in \mathbb{N})$ does.

Proposition 5 (Weierstrass's M - test). Let $X \xrightarrow{g_n} \mathbb{R}(n \in \mathbb{N})$ be a seq. of functions, if there exists a positive seq. $M_n(n \in \mathbb{N})$ in \mathbb{R} s.t.

1. $|g_n(x)| \leq M_n$ for all $x \in X$, $n \in \mathbb{N}$, and

2. $\sum_{n=1}^{\infty} M_n < \infty$, then $\sum_{n=1}^{\infty} g_n$ converges uniformly.

Proof. Let partial sum $s_n(x) = g_1(x) + \cdots + g_n(x)(x, \in X, n \in \mathbb{N})$, it is sufficient to show that $s_n (n \in \mathbb{N})$ is uniformly Cauchy seq. (since \mathbb{R} is complete metric space.) Simce series $\sum_n M_n < \infty$, for $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s.t. $\forall n > m \geq N \Rightarrow$ the tail $M_{m+1} +$ $\cdots + M_n = < \epsilon$, then for any such n, m, for $\forall x \in X$ we have that

$$|s_n(x) - s_m(x)| = |g_{m+1}(x) + \dots + g_n(x)|$$

$$\leq |g_{m+1}(x)| + \dots + |g_n(x)|$$

$$\leq M_{m+1} + \dots + M_n$$

$$< \epsilon$$

Thus $s_n(n \in \mathbb{N})$ converges uniformly and hence $\sum_{n=1}^{\infty} g_n$ converges uniformly.

Remark 17. The above conclusion still holds if modify \mathbb{R} to \mathbb{R}^k for some $k \in \mathbb{N}$.

Example 13. Consider series $\sum_{n=1}^{\infty} \sin(x^n)/3^n$ since

$$|g_n| = \left| \frac{\sin(x^n)}{3^n} \right| \le \frac{1}{3^n} =: M_n$$

thus $\sum_{n=1}^{\infty} \sin(x^n)/3^n$ converges uniformly. We can plot them out, define $s_n = \sum_{i=1}^n g_i$, then

with the MATLAB code:

```
gn = 1000; % grid number
   fn = 700; % func number
   X = linspace(-5,5,gn);
3
   Y = zeros(gn,fn);
   for n = 1:fn
5
       F = @(x) \sin(x.^n)./(3.^n);
6
       Y(:,n) = F(X)';
   end
   T = triu(ones(fn,fn));
9
   YY = Y*T;
10
11
   clf;
12
   subplot(1,2,1);
13
   hold on;
   for n = 1:fn
15
       plot(X,YY(:,n), LineWidth=1);
16
   end
17
   xlabel('$x$','Interpreter','latex');
   ylabel('$s_n(x)$','Interpreter','latex');
19
   hold off;
20
   subplot (1,2,2);
22
   plot(X,YY(:,end), LineWidth=1.5, Color='r');
23
   xlabel('$x$','Interpreter','latex');
24
   ylabel('$s_{700}(x)$','Interpreter','latex');
```

Exercise 40. *Let X be a metric space, and define*

$$C_b(X) := \{x \xrightarrow{f} \mathbb{R} | f \text{ is bounded continuous} \}.$$

For any $f \in C_b(X)$, we let

$$||f||_{\sup} := \sup_{x \in X} |f(x)|$$

For $f,g \in C_b(X)$, define

$$d(f,g) := ||f - g||_{\sup}$$

show that

1. (1.a)
$$||f||_{\sup} \ge 0$$
 and equality holds iff $f(x) \equiv 0$ for $\forall x \in X$; (1.b) $||f + g||_{\sup} \le ||f||_{\sup} + ||g||_{\sup}$ for all $f, g \in C_b(X)$; (1.c) $||cf||_{\sup} = |c| \cdot ||f||_{\sup}$ for all $f \in C_b(X)$, $c \in \mathbb{R}$;

- 2. d is a metric on $C_b(X)$;
- 3. $(C_b(X), d)$ is complete;

4. if
$$f_n \in C_b(X) (n \in \mathbb{N})$$
 and $f \in C_b(X)$, $[f_n \xrightarrow{uni.} f \Leftrightarrow f_n \xrightarrow{w.r.t. d} f]$ as $n \to \infty$.

Proof. Since $\forall f \in C_b(X)$ is bounded, then any $||f||_{\text{sup}}$ exists.

1. (1.a) trivial; (1.b) Assume that exists $f,g \in C_b(X)$ s.t. $\sup_{x \in X} (|f| + |g|) > \sup_{x \in X} |f| + \sup_{x \in X} |g|$. Then exists $x \in X$, s.t.

$$\sup_{x \in X} |f| + \sup_{x \in X} |g| < |f(x)| + |g(x)| \le \sup_{x \in X} (|f| + |g|)$$

which is contrary, thus

$$\begin{split} \|f + g\|_{\sup} &= \sup_{x \in X} |f + g| \le \sup_{x \in X} (|f| + |g|) \\ &\le \sup_{x \in X} |f| + \sup_{x \in X} |g| \\ &= \|f\|_{\sup} + \|g\|_{\sup} \end{split}$$

(1.c) $||cf||_{\sup} = \sup_{x \in X} |c \cdot f(x)| = \sup_{x \in X} |c| \cdot |f(x)| = |c| \cdot \sup_{x \in X} |f(x)| = |c| \cdot ||f||_{\sup}$. 2. We only prove the triangle inequality: for any $f, g \in C_b(X)$, we have

$$d(f,g) = \|f - g\|_{\sup} = \|f + (-g)\|_{\sup}$$

$$\leq \|f\|_{\sup} + \|-g\|_{\sup}$$

$$= \leq \|f\|_{\sup} + \|g\|_{\sup}.$$

3. Suppose $f_n(n \in \mathbb{N})$ is a Cauchy seq. in $(C_b(X), d)$, thus for any $\epsilon > 0, \exists N \in \mathbb{N}$, s.t. for $\forall n, m \geq N$, one has

$$d(f_n, f_m) = ||f_n - f_m||_{\sup} = \sup_{x \in X} |f_n - f_m| < \epsilon$$

thus for $\forall x \in X$, $|f_n(x) - f_m(x)| \le \sup_{x \in X} |f_n - f_m| < \epsilon$. Thus fix any $x' \in X$, then $f_n(x')(n \in \mathbb{N})$ is a Cauchy seq. in \mathbb{R} , and converges since \mathbb{R} is complete metric space, denote the limit as f(x'). It is direct to see that f is bounded, and we will show that f is continuous on X as well.

Since for any $n \in \mathbb{N}$, $f_n \in C_b(X) \Rightarrow f_n$ is continuous on X, thus for any $x \in X$, $\epsilon > 0$, $\exists \delta > 0$ s.t. for any $x' \in B_{\delta}(x)$ (w.r.t. d_2), we have that $d_2(f_n(x'), f_n(x)) < \epsilon/3$. And since for any $x \in X$, $f_n(x)$, as a Cauchy seq. in \mathbb{R} , converges to f(x), and hence $\exists N \in \mathbb{N}$, s.t. for $n \geq N$, $d_2(f(x), f_n(x)) < \epsilon/3$. Thus for any $n \geq N$, $x' \in B_{\delta}(x)$ (w.r.t. d_2), we have

$$d(f(x), f(x')) \le d(f(x), f_n(x)) + d(f_n(x), f_n(x')) + d(f_n(x'), f(x'))$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Thus f is continuous on $X \Rightarrow f \in C_b(X)$. Now we show that $f_n \to f$ w.r.t. d. Assume that f_n does not converges to f w.r.t. d, that is $\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists n \geq N$, s.t.

$$d(f,f_n) = ||f - f_m||_{\sup} = \sup_{x \in X} |f - f_n| \ge \epsilon > \frac{\epsilon}{2},$$

and hence $\exists x \in X \text{ s.t.}$

$$\frac{\epsilon}{2} < |f(x) - f_n(x)| \le \sup_{x \in X} |f - f_n|$$

which leads to a contradiction with $f_n(x)$ is Cauchy in \mathbb{R} and converges to f(x). Thus $f_n \to f \in C_b(X)$ w.r.t. d.

4. It is sufficient to show that bounded continuous $f_n(n \in \mathbb{N})$ is a uniform Cauchy seq. of functions $\Leftrightarrow f_n(n \in \mathbb{N})$ is a Cauchy seq. in $(C_b(X), d)$.

 \Rightarrow : $f_n(n \in \mathbb{N})$ are bounded continuous $\Rightarrow f_n \in C_b(X)(n \in \mathbb{N})$. And for any $\epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n > m \geq M$, has $|f_n(x) - f_m(x)| < \epsilon/2$ for $\forall x \in X$, thus $\sup_{x \in X} |f_n - f_m| \leq \epsilon/2 < \epsilon \Rightarrow d(f_m, f_n) < \epsilon \Rightarrow f_n(n \in \mathbb{N})$ are Cauchy seq. in $(C_b(X), d)$.

 \Leftarrow : $f_n(n \in \mathbb{N})$ are Cauchy seq. in $(C_b(X), d)$, then for $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s,t, $\forall n, m \geq N$ has $d(f_m, f_n) = \sup_{x \in X} |f_m - f_n| < \epsilon \Rightarrow \forall x \in X$ has $|f_m(x) - f_n(x)| < \epsilon \Rightarrow f_n(n \in \mathbb{N})$ are uniform Cauchy seq.

Since $(C_b(X), d)$ is complete, then

$$f_n \xrightarrow{w.r.t. d} f \Leftrightarrow f_n \text{ are Cauchy seq. in } (C_b(X), d)$$

 $\Leftrightarrow f_n \text{ are uniform Cauchy seq.}$
 $\Leftrightarrow f_n \xrightarrow{uni.} f.$