Normalisasi Data dan Outlier

PERTEMUAN 5
DATA MINING
TIM TEACHING
SISTEM INFORMASI BISNIS
JURUSAN TEKNOLOGI INFORMASI

Outlier

Outlier

- Outlier adalah objek data yang menyimpang secara signifikan dari objek data lainnya dan berperilaku berbeda.
- Outlier adalah suatu objek yang menyimpang secara signifikan dari objek lainnya.
- Hal ini dapat disebabkan oleh kesalahan pengukuran atau pelaksanaan.
- Analisis data outlier disebut dengan outlier analysis atau outlier mining.

Outlier

- Outlier tidak bisa disebut sebagai noise atau error.
- Sebaliknya, mereka diduga tidak dihasilkan dengan metode yang sama seperti objek data lainnya
- Outlier dapat dibagi menjadi 3 bagian, yaitu:
 - Global (or Point) Outliers
 - Collective Outliers
 - Contextual (or Conditional) Outliers

Global Outlier

Global Outlier

- Outlier global adalah titik data yang menyimpang secara signifikan dari keseluruhan distribusi kumpulan data
- Kesalahan dalam pengumpulan data, kesalahan pengukuran, atau kejadian yang benar-benar tidak biasa dapat mengakibatkan outlier global
- Outlier global dapat mendistorsi hasil analisis data dan memengaruhi performa model pembelajaran mesin.

Collective Outliers

- Collective Outliers adalah sekelompok titik data yang secara kolektif menyimpang secara signifikan dari keseluruhan distribusi kumpulan data.
- Collective Outliers mungkin bukan outlier jika dipertimbangkan secara individu, namun sebagai sebuah kelompok, mereka menunjukkan perilaku yang tidak biasa.
- Teknik untuk mendeteksi pencilan kolektif mencakup clustering algorithms, density-based methods, dan subspace-based approaches.

Contoh Collective Outlier

Contextual Outliers

- Contextual Outliers adalah titik data yang menyimpang secara signifikan dari perilaku yang diharapkan dalam konteks atau subkelompok tertentu.
- Contextual Outliers mungkin bukan outlier jika dipertimbangkan dalam keseluruhan kumpulan data, namun menunjukkan perilaku yang tidak biasa dalam konteks atau subgrup tertentu.
- Teknik untuk mendeteksi outlier kontekstual mencakup contextual clustering, contextual anomaly detection, context-aware machine learning.

Contoh Contextual Oulier

Normalisasi Data

Normalisasi Data

 Normalisasi Data dalam CRISP-DM, termasuk dalam tahapan Data Preparation

Normalisasi Data

Normalisasi Data

- Teknik Normalisasi dalam Data Mining digunakan untuk mengurangi rentang nilai suatu atribut, seperti -1.0 hingga 1.0.
- Normalisasi data terutama digunakan untuk mengurangi data yang berlebihan, sehingga membantu mengurangi ukuran data untuk mempercepat pemrosesan informasi.
- Dalam kebanyakan kasus, Teknik Normalisasi Data dalam Data Mining diimplementasikan dalam model klasifikasi.

Normalisasi Data

- Beberapa manfaat yang didapatkan dengan melakukan Normalisasi Data, antara lain:
 - Menerapkan Data Mining dalam Kumpulan data yang telah ternormalisasi akan lebih mudah
 - Teknik Normalisasi dalam Data Mining yang diterapkan pada kumpulan data yang dinormalisasi memberikan hasil yang lebih akurat dan efektif.
 - Ekstraksi data dari database menjadi lebih cepat setelah data distandarisasi.
 - Pada data yang dinormalisasi, metode analisis data yang lebih khusus dapat digunakan.

Teknik Normalisasi Data

- Beberapa Teknik normalisasi data yang sering digunakan dalam data mining, antara lain:
 - Min-Max Normalization (Linear Scaling)
 - Z-Score Normalization (Standardization)
 - Decimal Scaling

Min-Max Normalization

- Min-Max Normalization atau yang bisa disebut dengan linear Scaling adalah teknik yang digunakan dalam prapemrosesan data untuk mengubah data numerik menjadi skala umum, biasanya antara 0 dan 1.
- Teknik ini sangat berguna ketika menangani fitur yang memiliki rentang nilai berbeda.

•
$$x' = \frac{x - \min(X)}{\max(X) - \min(X)}$$

- Dimana
 - x'adalah nilai ternormalisasi
 - x adalah nilai asli
 - min(X) dan max(X) adalah nilai minimum dan maksimum pada dataset

Visualisasi Min-Max Normalization

Contoh Min-Max Normalization

Student	Math Score English Score	
Alice	85	78
Bob	72	90
Charlie	60	65
David	92	85
Emma	78	80

Math Score

- Minimum Math Score $(\min(X_{Math})) = 60$
- Maximum Math Score $(\max(X_{Math})) = 92$
- English Score
 - Minimum English Score $(\min(X_{English})) = 65$
 - Minimum Math Score $(\max(X_{English})) = 90$

Contoh Min-Max Normalization

Math Scores:

• Alice:
$$x' = \frac{85-60}{92-60} = \frac{25}{32} \approx 0.78$$

• Bob:
$$x' = \frac{72-60}{92-60} = \frac{12}{32} = 0.375$$

• Charlie:
$$x' = \frac{60-60}{92-60} = 0$$

• David:
$$x' = \frac{92-60}{92-60} = 1$$

• Emma:
$$x' = \frac{78-60}{92-60} = \frac{18}{32} = 0.5625$$

English Scores:

• Alice:
$$x' = \frac{78-65}{90-65} = \frac{13}{25} = 0.52$$

• Bob:
$$x' = \frac{90-65}{90-65} = 1$$

• Charlie:
$$x' = \frac{65-65}{90-65} = 0$$

• David:
$$x' = \frac{85-65}{90-65} = \frac{20}{25} = 0.8$$

• Emma:
$$x' = \frac{80-65}{90-65} = \frac{15}{25} = 0.6$$

Contoh Min-Max Normalization

- Kesimpulan yang didapatkan
 - Sekarang, skornya telah dinormalisasi antara 0 dan 1.
 - Normalisasi ini memungkinkan kita membandingkan skor antar mata pelajaran yang berbeda tanpa bias pada skala yang berbeda.
 - Misalnya, skor 0,78 dalam Matematika untuk Alice menunjukkan bahwa dia mendapat skor 78% dari selisih antara skor Matematika minimum dan maksimum dalam kumpulan data.
 - Demikian pula, skor 0,52 dalam bahasa Inggris untuk Alice menunjukkan bahwa dia mendapat skor 52% dari selisih antara skor bahasa Inggris minimum dan maksimum.

Z-Score Normalization

 Z-Score Normalization, disebut juga Standard Score Normalization atau Standardization teknik statistik yang digunakan untuk mengubah data menjadi distribusi normal standar dengan mean 0 dan standar deviasi 1.

•
$$z = \frac{x - \mu}{\sigma}$$

- Dimana
 - z adalah nilai ternormalisasi
 - x adalah nilai data asli
 - μ adalah nilai Means (rata-rata)
 - σ adalah standar deviasi, didapatkan dari $\sigma = \sqrt{\frac{\sum_{i=1}^{n}(x_i \bar{x})^2}{n-1}}$

Visualisasi Z-Score Normalization

Contoh Z-Score Normalization

Employee	Performance Rating	
Alice	85	
Bob	72	
Charlie	60	
David	92	
Emma	78	

• Mean (
$$\mu$$
) = $\frac{85+72+60+92+78}{5} = \frac{387}{5} = 77.4$

Standard Deviation (σ) ≈ 11.67

For Alice:

$$z_{
m Alice} = rac{85-77.4}{11.67} pprox rac{7.6}{11.67} pprox 0.65$$

For Bob:

$$z_{
m Bob} = rac{72-77.4}{11.67} pprox rac{-5.4}{11.67} pprox -0.46$$

For Charlie:

$$z_{ ext{Charlie}} = rac{60-77.4}{11.67} pprox rac{-17.4}{11.67} pprox -1.49$$

For David:

$$z_{
m David} = rac{92-77.4}{11.67} pprox rac{14.6}{11.67} pprox 1.25$$

For Emma:

$$z_{
m Emma} = rac{78-77.4}{11.67} pprox rac{0.6}{11.67} pprox 0.05$$

Contoh Z-Score Normalization

Kesimpulan

- Skor z positif menunjukkan peringkat di atas rata-rata, sedangkan skor z negatif menunjukkan peringkat di bawah rata-rata. Skor z 0 berarti peringkatnya tepat pada mean.
 - Peringkat kinerja Alice berada di atas rata-rata yang ditunjukkan dengan z-score positif sebesar 0,65.
 - Peringkat kinerja Bob berada di bawah rata-rata yang ditunjukkan dengan z-score negatif sebesar -0,46.
 - Peringkat kinerja Charlie berada jauh di bawah rata-rata yang ditunjukkan dengan z-score negatif sebesar -1,49.
 - Peringkat kinerja David jauh di atas rata-rata yang ditunjukkan dengan z-score positif sebesar 1,25.
 - Penilaian kinerja Emma sangat mendekati mean yang ditunjukkan dengan z-score sebesar 0,05.

Decimal Scaling

- Decimal Scaling adalah teknik normalisasi data yang melibatkan pergeseran titik desimal dari setiap titik data ke kiri atau kanan untuk membawa nilai dalam rentang yang diinginkan.
- Metode ini sangat berguna ketika data asli mencakup rentang besaran yang luas.
- Dengan menskalakan data dengan cara ini, dipertahankan perbedaan relatif antara titik-titik data sambil memastikan titik-titik tersebut berada dalam rentang yang ditentukan.

Decimal Scaling

- Cara kerja Decimal Scaling:
 - Determine the Scaling Factor, Pilih faktor skala, yang biasanya pangkat 10. Faktor skala menentukan seberapa banyak Anda menggeser koma desimal
 - Normalize the Data, untuk setiap titik data, bagilah dengan faktor skala yang dipilih.
 Tindakan ini menggeser koma desimal ke kiri jika faktor skala lebih besar dari 1 atau ke kanan jika faktor skala kurang dari 1.
- $x' = \frac{x}{10^j}$
- Dimana
 - x' adalah nilai ternormalisasi
 - x adalah nilai data asli
 - j adalah Jumlah tempat desimal yang diperlukan untuk mewakili nilai terbesar dalam kumpulan data.

Contoh Decimal Scaling

Month	Product A	Product B	Product C
January	5000	75000	100000
February	6000	80000	110000
March	5500	70000	105000

- Nilai maksimum adalah 110000
- Nilai Faktor Skala adalah 100000

For Product A:

• January:
$$x' = \frac{5000}{100000} = 0.05$$

• February:
$$x' = rac{6000}{100000} = 0.06$$

• March:
$$x' = rac{5500}{100000} = 0.055$$

For Product B:

• January:
$$x'=rac{75000}{100000}=0.75$$

• February:
$$x' = rac{80000}{100000} = 0.8$$

• March:
$$x' = rac{70000}{100000} = 0.7$$

For Product C:

• January:
$$x'=rac{100000}{100000}=1$$

• February:
$$x' = rac{110000}{100000} = 1.1$$

• March:
$$x' = \frac{105000}{100000} = 1.05$$