Problem Set 1 (Main classes 1-4)

Izzy Grosof

September 24, 2025 – Due October 1st

- 1. Suppose that days in Evanston are each mainly sunny, cloudy, or rainy. Each day has a 70% probability of being mainly sunny, 20% of being mainly cloudy, and 10% of being mainly rainy. On a mainly sunny day, I won't be rained on. On a mainly cloudy day, there's a 10% chance I'll be rained on. On a mainly rainy day, there's a 90% change I'll be rained on.
 - Today, I was rained on. Given this information, what's the probability that today was mainly sunny? Mainly cloudy? Mainly rainy?
- 2. Brent is a logistics student, studying how full storage units are at a local self-storage business. They represent the fullness of a storage unit as a number between 0 (empty) and 1 (completely stuffed). They find that lower fullness numbers tend to be more common. They decide the model the fullness of a storage unit as a random variable X with density $f_X(x)$ proportional to 1-x. Specifically, Brent models the fullness as a continuous random variable with probability density function

$$f_X(x) = \begin{cases} c(1-x) & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

where c is a constant. They need your help to find the value of c for which the formula in (1) gives a value probability distribution.

- (a) There is only one value of c for which the formula for $f_X(x)$ in (1) is a valid probability density function. What is that value of c?
- (b) What is the mean fullness of a storage unit, $\mathbb{E}[X]$?
- (c) What is the variance of the fullness of a storage unit, Var[X]?
- 3. We flip two fair coins, each heads or tails independently with 50% probability of either outcome. We define three events:
 - A: First coin flip is heads.
 - B: Second coin flip is heads.
 - C: Between the two flips, exactly one coin is heads.

We want to know which events are independent of each other.

- (a) Are A and B independent? Why?
- (b) Are A and C independent? Why?
- (c) Are B and C independent? Why?
- (d) Are A, B, and C mutually independent? Why?
- 4. Pearson's correlation coefficient (PCC, also known as r) is frequently used in statistics to measure the correlation between two random variables. The PCC of two random variables X and Y is defined by the following formula:

$$PCC(X,Y) := \frac{Cov(X,Y)}{\sqrt{\text{Var}[X]\text{Var}[Y]}}$$

+1.0	Perfect positive (+) association
+0.8 to 1.0	Very strong + association
+0.6 to 0.8	Strong + association
+0.4 to 0.6	Moderate + association
+0.2 to 0.4	Weak $+$ association
0.0 to +0.2	Very weak $+$ or no association
0.0 to -0.2	Very weak negative (-) or no association
-0.2 to -0.4	Weak - association
-0.4 to -0.6	Moderate - association
-0.6 to -0.8	Strong - association
-0.8 to -1.0	Very strong - association
-1.0	Perfect - association

Table 1: Pearson Correlation Coefficient, strength of association. Credit: Boston University School of Public Health.

The PCC of two random variables is always a number between -1 and 1, and can be interpreted as shown in Table 1.

Let X be a random variable representing the symptom severity for a person receiving treatment for flu infections, at the time they are first seen by a nurse. Let Y be a random variable represent the symptom severity for the same person after two weeks of treatment.

Let's model X as being distributed uniformly among severity levels $\{1,2,3,4\}$. Let's model Y as changing by at most two severity levels from X. Specifically, let's model Y as being distributed uniformly among severity levels $\{\max(X-2,0), X-1, X, X+1, X+2\}$. The $\max(\cdot, \cdot)$ function is included to ensure that the severity level is never negative.

- (a) What is the Pearson Correlation Coefficient PCC(X,Y) for these two random variables?
- (b) Using Table 1, what is the qualitative strength of association between X and Y?
- 5. Emma has proposed a new formula for the variance of a random variable, in addition to the formulas we've seen in class. Suppose that X, X_1 , and X_2 are all independent and identically distributed. Then Emma claims that

$$Var[X] = \frac{\mathbb{E}[(X_1 - X_2)^2]}{2}.$$

Is Emma always correct? Prove that her formula always holds, or provide a counterexample.

6. This is a programming problem – write a program in Python, as either a standalone file or as a Jupyter notebook. Include your answers in your solution directly, and also submit the code you write, either in the same document or as a separate upload.

Let U_1 and U_2 be two independent and identically distributed random variables with distribution Uniform (0,1). Define their sum S to be $U_1 + U_2$, and define their difference D to be $U_1 - U_2$.

- (a) Using 10^6 samples, estimate $\mathbb{E}[S]$, $\mathbb{E}[D]$, and $\mathbb{E}[SD]$.
- (b) Using your result in (a), estimate Cov(S, D).