FALL 2011 FINAL EXAM FOR SM261 1330 DECEMBER 17, 2011

SHOW ALL WORK

PART 1. On this part (problems 1-5) you may **NOT** use a calculator. Show all your work.

- 1. Complete the following definitions.
 - **a.** A function T from \mathbb{R}^m to \mathbb{R}^n is called a linear transformation if...
 - **b.** A vector \vec{b} in \mathbb{R}^n is called a linear combination of the vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m\}$ in \mathbb{R}^n if...
 - **c.** A set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m\}$ in a subspace V of \mathbb{R}^n forms a basis for V if...
 - **d.** If V is a subspace of \mathbb{R}^n , then the dimension of V is...

2. Consider the linear system of equations

$$x + 2y - z = 3$$

$$3x + y + 2z = 14$$

$$2x - 6y + 8z = 16$$

a. If we write the system in the matrix form $A\vec{v} = \vec{b}$, what are A, \vec{v} and \vec{b} ?

b. Find the reduced row echelon form of the augmented matrix $[A|\vec{b}]$ for this system. Show all steps.

c. Describe all solutions to the system.

d. Is the set of all solutions a subspace of \mathbb{R}^3 ? Explain.

3. Find the determinant of the matrix

$$\begin{bmatrix} 0 & 3 & 2 & 0 \\ 3 & 5 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 0 & 3 & 0 & 0 \end{bmatrix}.$$

4. Let $A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$. Find AB^{-1} .

- **5.** Let S be the subspace of \mathbb{R}^2 defined by $S = \{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 | y = 3x \}.$
 - **a.** Find 3 numbers b, c, d so that im $\begin{bmatrix} 3 & b \\ c & d \end{bmatrix} = \mathbb{R}^2$.

b. Find 3 numbers b, c, d so that im $\begin{bmatrix} 3 & b \\ c & d \end{bmatrix} = S$.

c. Find 3 numbers b, c, d so that $\ker \begin{bmatrix} 3 & b \\ c & d \end{bmatrix} = S$.

This is the end of Part 1. Turn in your answers and proceed to Part 2.

PART 2. You may use a calculator on this part. Show all your work.

6. Define the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^2$ by

$$T \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix}.$$

Find the matrix of T with respect to the standard bases for \mathbb{R}^4 and \mathbb{R}^2 .

7. Consider the following matrices:

a.
$$\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$
 b. $\begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}$ **c.** $\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ **d.** $\begin{bmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{bmatrix}$

Identify each of the 4 corresponding linear transformations as a rotation, a projection, a scaling or a reflection.

8. Let A be the matrix

$$\begin{bmatrix} 1 & 2 & 3 & 2 & 1 \\ 3 & 6 & 9 & 6 & 3 \\ 1 & 2 & 4 & 1 & 2 \\ 2 & 4 & 9 & 1 & 2 \end{bmatrix}$$

We have

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 2 & 0 & 5 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

a. Find a basis for ker(A). Find dim(ker(A)).

b. Find a basis for im(A). Find rank(A).

9. Let
$$V = \text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4)$$
, where $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 3 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ -2 \\ 3 \\ 5 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 20 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, and $\vec{v}_4 = \begin{bmatrix} 0 \\ 2 \\ -1 \\ -2 \end{bmatrix}$.

a. Find a basis for V.

b. Is the vector $\begin{bmatrix} 1 \\ 6 \\ -1 \\ -3 \end{bmatrix}$ in V? Explain.

10. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation which satisfies $T\left[\begin{smallmatrix} 2\\4 \end{smallmatrix} \right] = \left[\begin{smallmatrix} 2\\1 \end{smallmatrix} \right]$ and $T\left[\begin{smallmatrix} 1\\3 \end{smallmatrix} \right] = \left[\begin{smallmatrix} 1\\5 \end{smallmatrix} \right]$. Find the matrix of T relative to the standard basis $\left\{ \left[\begin{smallmatrix} 1\\0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0\\1 \end{smallmatrix} \right] \right\}$.

- **11.** Let V be the subspace of \mathbb{R}^4 with basis $\left\{ \begin{bmatrix} 0\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\3\\3 \end{bmatrix}, \begin{bmatrix} 1\\4\\2\\3 \end{bmatrix} \right\}$.
 - **a.** Find an orthonormal basis for V.

b. Find the matrix of the orthogonal projection onto V.

12. Using least squares, fit a function f(t) = a + bt to the data points (0,2), (1,2), (1,4).

13. Let P be the parallelepiped in \mathbb{R}^3 defined by the vectors

$$\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}.$$

a. Find the volume of P.

b. Let T be the linear tranformation whose matrix is $A = \begin{bmatrix} 3 & 4 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. Find the volume of T(P).

- **14.** True or False. If true, give a reason. If false, give a reason or a counterexample.
 - **a.** If S and T are linear transformations from \mathbb{R}^n to \mathbb{R}^n , then the set of all vectors \vec{v} in \mathbb{R}^n such that $S(\vec{v}) = T(\vec{v})$ is a subspace of \mathbb{R}^n .

b. If the determinant of a 5×5 matrix A is 4, then $1 \le \operatorname{rank}(A) \le 4$.

c. The matrix of an orthogonal projection onto a subspace in \mathbb{R}^n is a symmetric matrix.

d. If V is a 3-dimensional subspace of \mathbb{R}^n and $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ is a basis of V, then $\{\vec{v_1}, \vec{v_1} + \vec{v_2}, \vec{v_1} + \vec{v_2} + \vec{v_3}\}$ is also a basis for V.

e. If two matrices have the same characteristic polynomial, then they are similar.

In Problems 15-17, do all calculations by hand and show all steps. You may check your work with a calculator.

15. Let A be the matrix

$$\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}.$$

a. Find the characteristic polynomial $f_A(\lambda)$ of A.

b. Find the eigenvalues of A.

c. For each eigenvalue λ , find a basis for the eigenspace E_{λ} .

d. Is A diagonalizable? If so, find an eigenbasis for A and a diagonal matrix D which is similar to A. If not, give your reasons.

16. The eigenvalues of

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 1 & -2 \end{bmatrix}$$

are $\lambda = -3, 3, 3$. Is A diagonalizable? If so, find an eigenbasis for A and a diagonal matrix D which is similar to A. If not, give your reasons.

17. The eigenvalues of

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

are $\lambda=2,3,3.$ Is A diagonalizable? If so, find an eigenbasis for A and a diagonal matrix D which is similar to A. If not, give your reasons.