COMP 424 – Final Exam Tutorial

Practice Questions for Final Exam

~ Nicolas Angelard-Gontier ~ nicolas.angelard-gontier@mail.mcgill.ca

Exam Format

- Very similar to the Midterm with more MC questions
 - Multiple Choice Questions:
 (definitions & algorithm properties)

both pre-midterm & post-midterm material

- Problem Sets:

Some pre-midterm exercises, but mostly post-midterm material

Today: parts of some big chapters

1. Search (only part of it)

2. Bayesian Networks

3. Temporal Inference with Hidden Markov Models (HMM)

4. Markov Decision Process (MDP)

5. Utility

1. Search

(uninformed)

Depth-first search

Breadth-first search

1. Search

(informed)

Admissible heuristic:

 $h(n) \le \text{shortest path from } n \text{ to } \underline{\text{any}} \text{ goal}$

Dominant heuristic:

h2(n) >= h1(n) for all n AND h1 & h2 are admissible

1. Search

(optimization on continuous space)

Hill Climbing:

Search the first move for Max (trying to update α)

Search the first move for Min (update β to 3)

Consider the second move for Min: not better than 3! (no change to β)

Consider the third move for Min: not better than 3. Return 3 from min node (write [3,3]). Update α at top level for Max.

Consider second move for Max, passing in $[3, +\infty]$

Consider first move of Min Update β and notice inconsistency [3,2] Return 2 to top **immediately**, (no change to α , as 3 is better)

Consider third move of Max, passing in $[3, +\infty]$

Consider first move of Min Update β to 14

Consider second move of Min Update β to 5

Alpha - Beta prunning

Example

Third move: update β and notice inconsistency [3,2] Return 2 to top, but this time it doesn't save us any effort Return 3 at the top level (done!)

Consider the following graph:

• <u>Joint distribution</u>: Pr(X, Y) =

•

Consider the following graph:

- Joint distribution: Pr(X, Y) = Pr(X) * Pr(Y | X)
- Bayes rule: Pr(X | Y) =

Consider the following graph:

- Joint distribution: Pr(X, Y) = Pr(X) * Pr(Y | X)
- Bayes rule: $Pr(X \mid Y) = Pr(X,Y) / Pr(Y)$ • $Pr(Y \mid X) * Pr(X) / Pr(Y)$

Posterior = Likelihood * Prior / Normalization cst.

Consider the following graph:

Enumerate the parameters that must be learned.

Consider the following graph:

Enumerate the parameters that must be learned.

$$\theta_{X} = P(X)$$

$$\theta_{Y,1} = P(Y|X=1)$$

$$\theta_{Y,0} = P(Y|X=0)$$

- Consider the following graph:
- Given samples:

X	Υ	# of instances
0	0	1
0	1	2
1	0	3
1	1	4

Compute MLE:

- Consider the following graph:
- Given samples:

X	Υ	# of instances
0	0	1
0	1	2
1	0	3
1	1	4

Compute MLE:

$$- P(X=1) = (3+4) / (1+2+3+4) = 7 / 10$$

$$- P(Y=1 \mid X=1) = (4) / (4+3) = 4 / 7$$

$$- P(Y=1 \mid X=0) = (2) / (2+1) = 2 / 3$$

- Consider the following graph:
- Given samples:

X	Y	# of instances
0	0	1
0	1	2
1	0	3
1	1	4

 Give the maximum a posterior estimate for each parameter after applying Laplace smoothing:

- Consider the following graph:
- Given samples:

X	Υ	# of instances
0	0	1
0	1	2
1	0	3
1	1	4

 Give the maximum a posterior estimate for each parameter after applying Laplace smoothing:

$$-P(X=1) = (4+3 +1) / (1+2+3+4 +2) = 8 / 12$$

$$- P(Y=1 \mid X=1) = (4 +1) / (3+4 +2) = 5 / 9$$

$$- P(Y=1 \mid X=0) = (2 +1) / (1+2 +2) = 3 / 5$$

- Missing Data: same as before but with extra entry: <X=0, Y=?>
- We will apply the (soft) EM algorithm on these instances. Initialize the model using MLE parameter estimates.
- Show the computation of the first E-step:

Χ	Υ
0	0
0	1
0	1
1	0
1	0
1	0
1	1
1	1
1	1
1	1
0	?

- Missing Data: same as before but with extra entry: <X=0, Y=?>
- We will apply the (soft) EM algorithm on these instances. Initialize the model using MLE parameter estimates.
- Show the computation of the first E-step:
 - From before we have:

$$P(Y=1 \mid X=0) = 2/3$$

so we have weights

Y=1: 2/3

Y=0:1/3

Χ	Υ
0	0
0	1
0	1
1	0
1	0
1	0
1	1
1	1
1	1
1	1 ?
0	?

- Missing Data: same as before but with extra entry: <X=0, Y=?>
- We will apply the (soft) EM algorithm on these instances. Initialize the model using MLE parameter estimates.
- What are the parameters obtained for the first M-step?

X	Υ
0	0
0	1
0	1
1	0
1	0
1	0
1	1
1	1
1	1
1	1
0	?

- Missing Data: same as before but with extra entry: <X=0, Y=?>
- We will apply the (soft) EM algorithm on these instances. Initialize the model using MLE parameter estimates.
- What are the parameters obtained for the first M-step?
 - P(X=1) = 7 / 11
 - P(Y=1 | X=1) = 4 / 7 (same as before)
 - P(Y=1 | X=0) = (2+2/3) / [(2+2/3)+(1+1/3)] = 2 / 3 converged!
- Note: for this example, the data does not provide us with more info and has converged in 1 step. No further E-step is required.

X	Υ
0	0
0	1
0	1
1	0
1	0
1	0
1	1
1	1
1	1
1	1
0	?

- Encodes time dependence
- Markov assumption:
 - "The <u>future</u> is <u>independent</u> of the <u>past</u> <u>given</u> the <u>present</u>"
 - $-X_{t+1} \perp X_{t-1} | X_t$

Stationary process:

ie: the probabilities don't change over time

Recall from our discussion of Bayes Nets:

•
$$P(X, E) = P(X_1) \prod_{t=1}^{T-1} P(X_{t+1}|X_t) \prod_{t=1}^{T} P(E_t|X_t)$$

Initial state probability

Emission probabilities

State transition probabilities

Parameters:

- "Forward Algorithm": $\alpha_s(t)$ --> proba of <u>current state and observations</u> up until now
 - $\rightarrow Pr(X_t=s,E_{1:t})$
- "Backward Algorithm": $\beta_s(t)$
 - --> proba of <u>next observations given current state</u>
 - $\rightarrow Pr(E_{t+1:T}|X_t=s)$
- "Viterbi Algorithm": $\delta_s(t)$
 - --> most likely <u>sequence</u> of states given set of observations
 - --> forward algo (replace sum by max) & backpointers
 - $--> max_{X_{1:t-1}} Pr(X_{1:t-1}, E_{1:t}, X_t = s)$
- "Baum-Welch Algorithm": (also called "forward-backward algorithm")
 - --> E.M. with HMMs
 - --> Predict parameters & most likely sequence given only observations!
 - --1--> Start with rnd. params.
 - --2--> E-step: run *Viterbi* to get sequence of states
 - --3--> M-step: update parameters with MLE based on previous seq.
 - --4--> repeat 2 & 3

- A student either understands (*Und*), or is confused (*Conf*). The TA can <u>observe</u> that the student is *silent*, or *asking* questions.
- The probability that a student came to the tutorial already understanding the material is 0.3. $\pi_{und} = 0.3$ $\pi_{conf} = 0.7$

- A student either understands (*Und*), or is confused (*Conf*). The TA can <u>observe</u> that the student is *silent*, or *asking* questions.
- The probability that a student came to the tutorial already understanding the material is 0.3. $\pi_{und} = 0.3$ $\pi_{conf} = 0.7$
- There is a 40% chance that a confused student will start to understand the material.

$$T_{conf,und} = Pr(Und|Conf) = 0.4 \quad T_{conf,conf} = Pr(Conf|Conf) = 0.6$$

- A student either understands (*Und*), or is confused (*Conf*). The TA can observe that the student is silent, or asking questions.
- The probability that a student came to the tutorial already understanding the material is 0.3. $\pi_{und} = 0.3$ $\pi_{conf} = 0.7$
- There is a 40% chance that a confused student will start to understand the material.

$$T_{conf,und} = Pr(Und|Conf) = 0.4 \quad T_{conf,conf} = Pr(Conf|Conf) = 0.6$$

• If the student already understands, there is a 80% chance that

they will continue to understand in the next time step.
$$T_{\textit{und},\textit{und}} = Pr(\textit{Und}|\textit{Und}) = 0.8 \quad T_{\textit{und},\textit{conf}} = Pr(\textit{Conf}|\textit{Und}) = 0.2$$

- A student either understands (*Und*), or is confused (*Conf*). The TA can <u>observe</u> that the student is *silent*, or *asking* questions.
- The probability that a student came to the tutorial already understanding the material is 0.3. $\pi_{und} = 0.3$ $\pi_{conf} = 0.7$
- There is a 40% chance that a confused student will start to understand the material.

$$T_{conf,und} = Pr(Und|Conf) = 0.4 T_{conf,conf} = Pr(Conf|Conf) = 0.6$$

• If the student already understands, there is a 80% chance that they will continue to understand in the next time step.

they will continue to understand in the next time step.
$$T_{und,und} = Pr(Und|Und) = 0.8 \quad T_{und,conf} = Pr(Conf|Und) = 0.2$$

 The probability of a student who understands the material asking questions is 0.1

$$E_{ask,und} = Pr(Ask|Und) = 0.1$$
 $E_{sil,und} = Pr(Sil|Und) = 0.9$

- A student either understands (*Und*), or is confused (*Conf*). The TA can <u>observe</u> that the student is *silent*, or *asking* questions.
- The probability that a student came to the tutorial already understanding the material is 0.3. $\pi_{und} = 0.3$ $\pi_{conf} = 0.7$
- There is a 40% chance that a confused student will start to understand the material.

$$T_{conf,und} = Pr(Und|Conf) = 0.4 \quad T_{conf,conf} = Pr(Conf|Conf) = 0.6$$

• If the student already understands, there is a 80% chance that they will continue to understand in the next time step.

they will continue to understand in the next time step.
$$T_{und,und} = Pr(Und|Und) = 0.8 \quad T_{und,conf} = Pr(Conf|Und) = 0.2$$

 The probability of a student who understands the material asking questions is 0.1

$$E_{ask,und} = Pr(Ask|Und) = 0.1$$
 $E_{sil,und} = Pr(Sil|Und) = 0.9$

• If they don't understand, it's a 50/50 chance whether they ask questions or stay silent.

$$E_{ask,conf} = Pr(Ask|Conf) = 0.5$$
 $E_{sil,conf} = Pr(Sil|Conf) = 0.5$

$$\pi_{und} = 0.3$$
 $\pi_{conf} = 0.7$

$$T_{conf,und} = Pr(Und|Conf) = 0.4 \quad T_{conf,conf} = Pr(Conf|Conf) = 0.6$$

$$T_{und,und} = Pr(Und|Und) = 0.8 \quad T_{und,conf} = Pr(Conf|Und) = 0.2$$

$$\begin{array}{ll} E_{\textit{ask,und}} \!=\! Pr(\textit{Ask}|\textit{Und}) \!=\! 0.1 & E_{\textit{sil,conf}} \!=\! Pr(\textit{Sil}|\textit{Conf}) \!=\! 0.5 \\ E_{\textit{ask,conf}} \!=\! Pr(\textit{Ask}|\textit{Conf}) \!=\! 0.5 & E_{\textit{sil,und}} \!=\! Pr(\textit{Sil}|\textit{Und}) \!=\! 0.9 \end{array}$$

	Silent	Asking	Silent	Silent
Understands	0.27	$\alpha_{und}(2)$	0.0732	0.0683
Confused	$lpha_{\mathit{conf}}(1)$	0.132	0.0432	$\alpha_{conf}(4)$

$$\pi_{und} = 0.3$$
 $\pi_{conf} = 0.7$

$$T_{conf,und} = Pr(Und|Conf) = 0.4 \qquad T_{conf,conf} = Pr(Conf|Conf) = 0.6$$

$$T_{und,und} = Pr(Und|Und) = 0.8 \qquad T_{und,conf} = Pr(Conf|Und) = 0.2$$

$$\begin{array}{ll} E_{ask,und} = Pr(Ask|Und) = 0.1 & E_{sil,conf} = Pr(Sil|Conf) = 0.5 \\ E_{ask,conf} = Pr(Ask|Conf) = 0.5 & E_{sil,und} = Pr(Sil|Und) = 0.9 \end{array}$$

	Silent	Asking	Silent	Silent
Understands	0.27	$\alpha_{und}(2)$	0.0732	0.0683
Confused	$lpha_{\mathit{conf}}(1)$	0.132	0.0432	$\alpha_{conf}(4)$

$$\alpha_{conf}(1) = \pi_{conf} * E_{sil,conf} = 0.7 * 0.5 = 0.35$$

$$\pi_{und} = 0.3$$
 $\pi_{conf} = 0.7$

$$T_{conf,und} = Pr(Und|Conf) = 0.4 \quad T_{conf,conf} = Pr(Conf|Conf) = 0.6$$

$$T_{und,und} = Pr(Und|Und) = 0.8 \quad T_{und,conf} = Pr(Conf|Und) = 0.2$$

$$\begin{array}{ll} E_{ask,und} \!=\! Pr(Ask|Und) \!=\! 0.1 & E_{sil,conf} \!=\! Pr(Sil|Conf) \!=\! 0.5 \\ E_{ask,conf} \!=\! Pr(Ask|Conf) \!=\! 0.5 & E_{sil,und} \!=\! Pr(Sil|Und) \!=\! 0.9 \end{array}$$

	Silent	Asking	Silent	Silent
Understands	0.27	$\alpha_{und}(2)$	0.0732	0.0683
Confused	$lpha_{\mathit{conf}}(1)$	0.132	0.0432	$\alpha_{conf}(4)$

$$\alpha_{conf}(1) = \pi_{conf} * E_{sil,conf} = 0.7 * 0.5 = 0.35$$

$$\alpha_{und}(2) = [\alpha_{und}(1) * T_{und,und} + \alpha_{conf}(1) * T_{conf,und}] * E_{ask,und}$$
$$= [0.27 * 0.8 + 0.35 * 0.2] * 0.1 = 0.0356$$

$$\pi_{und} = 0.3$$
 $\pi_{conf} = 0.7$

$$T_{conf,und} = Pr(Und|Conf) = 0.4 \qquad T_{conf,conf} = Pr(Conf|Conf) = 0.6$$

$$T_{und,und} = Pr(Und|Und) = 0.8 \qquad T_{und,conf} = Pr(Conf|Und) = 0.2$$

$$\begin{array}{ll} E_{ask,und} = Pr\left(Ask|Und\right) = 0.1 & E_{sil,conf} = Pr\left(Sil|Conf\right) = 0.5 \\ E_{ask,conf} = Pr\left(Ask|Conf\right) = 0.5 & E_{sil,und} = Pr\left(Sil|Und\right) = 0.9 \end{array}$$

	Silent	Asking	Silent	Silent
Understands	0.27	$\Rightarrow \alpha_{und}(2)$	0.0732	0.0683
Confused	$lpha_{\mathit{conf}}(1)$	0.132	0.0432	$\alpha_{conf}(4)$

$$\alpha_{conf}(1) = \pi_{conf} * E_{sil,conf} = 0.7 * 0.5 = 0.35$$

$$\begin{aligned} \alpha_{\mathit{und}}(2) &= [\alpha_{\mathit{und}}(1) * T_{\mathit{und},\mathit{und}} + \alpha_{\mathit{conf}}(1) * T_{\mathit{conf},\mathit{und}}] * E_{\mathit{ask},\mathit{und}} \\ &= [0.27 * 0.8 + 0.35 * 0.2] * 0.1 = 0.0356 \end{aligned}$$

$$\alpha_{conf}(4) = [\alpha_{und}(3) * T_{und,conf} + \alpha_{conf}(3) * T_{conf,conf}] * E_{sil,conf}$$
$$= [0.0732 * 0.2 + 0.0432 * 0.6] * 0.5 = 0.02028$$

Consider the MDP below. The switch action only works with propa 0.8. The stay action is deterministic. All rewards are 0 except for performing the stay action in S2. The discount factor is 1/2.

stay switch

a) what is the optimal policy?

Consider the MDP below. The switch action only works with propa 0.8. The stay action is deterministic. All rewards are 0 except for performing the stay action in S2. The discount factor is 1/2.

stay switch

a) what is the optimal policy?

$$\pi^*(S1) = switch$$

 $\pi^*(S2) = stay$

T(s, switch, s') = 0.8
 T(s, stay, s) = 1
 R(S1, a) = 0 for all a
 R(S2, stay) = 1
 R(S2, switch) = 0
 The discount factor (g) is 0.5

 $\pi^*(S2) = stay$ $\pi^*(S1) = switch$

• b) compute the optimal value function

T(s, switch, s') = 0.8
 T(s, stay, s) = 1
 R(S1, a) = 0 for all a
 R(S2, stay) = 1
 R(S2, switch) = 0
 The discount factor (g) is 0.5

$$\pi^*(S2) = stay$$
 $\pi^*(S1) = switch$

b) compute the optimal value function

$$V^{*}(S1) = R(S1, \pi^{*}(S1)) + \gamma \sum_{s} [T(S1, \pi^{*}(S1), s) * V^{*}(s)]$$

$$V^{*}(S2) = R(S2, \pi^{*}(S2)) + \gamma \sum_{s} [T(S2, \pi^{*}(S2), s) * V^{*}(s)]$$

T(s, switch, s') = 0.8
 T(s, stay, s) = 1
 R(S1, a) = 0 for all a
 R(S2, stay) = 1
 R(S2, switch) = 0
 The discount factor (g) is 0.5

$$\pi^*(S2) = stay$$
 $\pi^*(S1) = switch$

b) compute the optimal value function

$$V^{*}(S1) = R(S1, \pi^{*}(S1)) + \gamma \sum_{s} [T(S1, \pi^{*}(S1), s) * V^{*}(s)]$$

$$V^{*}(S2) = R(S2, \pi^{*}(S2)) + \gamma \sum_{s} [T(S2, \pi^{*}(S2), s) * V^{*}(s)]$$

$$V^{*}(S2) = 1 + 0.5[0 * V^{*}(S1) + 1 * V^{*}(S2)] = 1 + 0.5 * V^{*}(S2)$$

$$V^{*}(S2) = 2$$

$$V^{*}(S1) = 0 + 0.5[0.2 * V^{*}(S1) + 0.8 * V^{*}(S2)] = 0.1 * V^{*}(S1) + 0.4 * 2$$

$$V^{*}(S1) = 8/9$$

T(s, switch, s') = 0.8
 T(s, stay, s) = 1
 R(S1, a) = 0 for all a
 R(S2, stay) = 1
 R(S2, switch) = 0
 The discount factor (g) is 0.5

$$\pi^*(S2) = stay$$
 $\pi^*(S1) = switch$ $V^*(S1) = 8/9$ $V^*(S2) = 2$

 c) perform the first 2 steps of value iteration (start with initial values of 0)

T(s, switch, s') = 0.8
 T(s, stay, s) = 1
 R(S1, a) = 0 for all a
 R(S2, stay) = 1
 R(S2, switch) = 0
 The discount factor (g) is 0.5

$$\pi^*(S2) = stay$$
 $\pi^*(S1) = switch$ $V^*(S1) = 8/9$ $V^*(S2) = 2$

• c) perform the first 2 steps of value iteration (start with initial values of 0) $V(S) = max_a[R(S,a) + \gamma \sum_{s'} [T(S,a,s') * V(s')]]$

T(s, switch, s') = 0.8
 T(s, stay, s) = 1
 R(S1, a) = 0 for all a
 R(S2, stay) = 1
 R(S2, switch) = 0
 The discount factor (g) is 0.5

$$\pi^*(S2) = stay$$
 $\pi^*(S1) = switch$ $V^*(S1) = 8/9$ $V^*(S2) = 2$

• c) perform the first 2 steps of value iteration (start with initial values of 0) $V(S) = max_a[R(S,a) + \gamma \sum_{s'} [T(S,a,s') * V(s')]]$

S1:
$$a = stay$$
 $0 + 0.5 [1*V(S1) + 0*V(S2)] = 0$
 $a = switch$ $0 + 0.5 [0.2*V(S1) + 0.8*V(S2)] = 0$
S2: $a = stay$ $1 + 0.5 [0*V(S1) + 1*V(S2)] = 1$
 $a = switch$ $0 + 0.5 [0.8*V(S1) + 0.2*V(S2)] = 0$

$$---> V(S1) = 0 & V(S2) = 1$$

T(s, switch, s') = 0.8
 T(s, stay, s) = 1
 R(S1, a) = 0 for all a
 R(S2, stay) = 1
 R(S2, switch) = 0
 The discount factor (g) is 0.5

$$\pi^*(S2) = stay$$
 $\pi^*(S1) = switch$

$$V^*(S1) = 8/9 \quad V^*(S2) = 2$$

• c) perform the first 2 steps of value iteration (start with initial values of 0) $V(S) = max_a[R(S,a) + \gamma \sum_{s'} [T(S,a,s') * V(s')]]$ ---> V(S1) = 0 & V(S2) = 1

S1:
$$a = stay$$
 $0 + 0.5 [1*V(S1) + 0*V(S2)] = 0$
 $a = switch$ $0 + 0.5 [0.2*V(S1) + 0.8*V(S2)] = 0.4$
S2: $a = stay$ $1 + 0.5 [0*V(S1) + 1*V(S2)] = 1.5$
 $a = switch$ $0 + 0.5 [0.8*V(S1) + 0.2*V(S2)] = 0.1$

$$---> V(S1) = 0.4 \& V(S2) = 1.5$$

- Alice wants to take a trip to Chicago, but she has no car.
- A plane ticket costs \$400, and the advertised travel time is 2 hours.
- \$200 can get her a ticket on an 8 hour train trip.
- Or, she can spend 18 hours on a bus for only \$50.
- Every hour she spends on the commute costs her another \$20 of wasted opportunity, and there's a 40% chance that there will be traffic, which doubles the time for all three modes of travel.
- (a) Draw a decision graph for this problem

- Represent decision models graphically:
 - Random variables are represented as oval nodes.
 - Parameters associated with such nodes are probabilities.
 - Decisions (actions) are represented as rectangles.
 - Utilities are represented as diamonds.
 - Parameters associated with such nodes are utility values for all possible values of the parents.
- Restrictions on nodes:
 - Utility nodes have no out-going arcs.
 - Decision nodes have no incoming arcs.
- Computing the optimal action can be viewed as an inference task.

- plane ticket costs \$400, travel time is 2 hours.
- \$200 can get her a ticket on an 8 hour train trip.
- Or, she can spend 18 hours on a bus for only \$50.
- Every hour costs her \$20 of wasted opportunity,
- 40% there will be traffic, which doubles the time.
- (a) Draw a decision graph for this problem

- plane ticket costs \$400, travel time is 2 hours.
- \$200 can get her a ticket on an 8 hour train trip.
- Or, she can spend 18 hours on a bus for only \$50.
- Every hour costs her \$20 of wasted opportunity,
- 40% there will be traffic, which doubles the time.
- (b) Which ticket should Alice buy to minimize trip cost?

- plane ticket costs \$400, travel time is 2 hours.
- \$200 can get her a ticket on an 8 hour train trip.
- Or, she can spend 18 hours on a bus for only \$50.
- Every hour costs her \$20 of wasted opportunity,
- 40% there will be traffic, which doubles the time.
- (b) Which ticket should Alice buy to minimize trip cost?

EU(Plane) =
$$-400 - 20 * [0.6*2 + 0.4*4] = -456$$

EU(Train) = $-200 - 20 * [0.6*8 + 0.4*16] = -424 < ---$
EU(Bus) = $-50 - 20 * [0.6*18 + 0.4*36] = -554$
Ticket Time
--> $a* = Train \text{ with } EU(a*) = -424$

- plane ticket costs \$400, travel time is 2 hours.
- \$200 can get her a ticket on an 8 hour train trip.
- Or, she can spend 18 hours on a bus for only \$50.
- Every hour costs her \$20 of wasted opportunity,
- 40% there will be traffic, which doubles the time.
- (c) How much should she be willing to pay a fortune teller to tell her with 100% certainty whether there will be trafic?

Value of Perfect Information

 Suppose we knew X=x, then we would choose a_x* such that:

$$EU(a_x^*|E, X = x) = \max_{a} \sum_{i} U(c_i)P(c_i|E, a, X = x)$$

 X is a random variable whose value is unknown, so we must compute expected gain over all possible values:

$$VPI_E(X) = \left(\sum_x P(X = x|E)EU(a_x^*|E, X = x)\right) - EU(a^*|E)$$

This is the value of knowing X exactly!

- plane ticket costs \$400, travel time is 2 hours.
- \$200 can get her a ticket on an 8 hour train trip.
- Or, she can spend 18 hours on a bus for only \$50.
- Every hour costs her \$20 of wasted opportunity,
- 40% there will be traffic, which doubles the time.
- (c) How much should she be willing to pay a fortune teller to tell her with 100% certainty whether there will be trafic?

$$\begin{array}{lll} EU(Plane|Tr=0) & = -400 - \ 40 = -440 \\ EU(Train|Tr=0) & = -200 - 160 = -360 \\ EU(Bus|Tr=0) & = -50 - 360 = -410 \\ \\ EU(Plane|Tr=1) & = -400 - \ 80 = -480 \\ EU(Train|Tr=1) & = -200 - 320 = -520 \\ EU(Bus|Tr=1) & = -50 - 720 = -770 \\ \end{array} \right\} \quad a_{Tr=1}^* = Plane, \ EU(a_{Tr=1}^*|Tr=1) = -480 \\ = -480 \\ EU(Bus|Tr=1) & = -50 - 720 = -770 \\ \end{array}$$

• (c) How much should she be willing to pay a fortune teller to tell her with 100% certainty whether there will be trafic?

$$\begin{array}{lll} EU(Plane|Tr=0) & = -400 - \ 40 = -440 \\ EU(Train|Tr=0) & = -200 - 160 = -360 \\ EU(Bus|Tr=0) & = -50 - 360 = -410 \\ \end{array} \\ \begin{array}{lll} a_{Tr=0}^* = Train, \ EU(a_{Tr=0}^*|Tr=0) = -360 \\ EU(Plane|Tr=1) & = -400 - \ 80 = -480 \\ EU(Train|Tr=1) & = -200 - 320 = -520 \\ EU(Bus|Tr=1) & = -50 - 720 = -770 \\ \end{array} \\ \begin{array}{lll} a_{Tr=1}^* = Plane, \ EU(a_{Tr=1}^*|Tr=1) = -480 \\ a_{Tr=1}^* = Plane, \ EU(a_{Tr=1}^*|Tr=1) = -480 \\ \end{array}$$

Recall from (b), $a^* = Train$ with $EU(a^*) = -424$

$$\begin{split} VPI(X) &= \Big(\sum_{x} P(Tr = x)EU(a^*_{Tr = x}|Tr = x)\Big) - EU(a^*) \\ &= P(Tr = 0)EU(a^*_{Tr = 0}|Tr = 0) + P(Tr = 1|E)EU(a^*_{Tr = 1}|Tr = 1) - EU(a^*) \\ &= (-360 \times 0.6 + -480 \times 0.4) - (-424) = 16 \end{split}$$

Good Luck!

Questions?

~ Nicolas Angelard-Gontier ~ nicolas.angelard-gontier@mail.mcgill.ca