

Model Development Phase Template

Date	05 June 2024	
Team ID	737568	
Project Title	AutoForesight : A Predictive Model for Streamlining Car Loan Repayment Planning	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

```
[72]: X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0,test_size=.25)
      print(X_train.shape)
      print(X_test.shape)
      print(y_train.shape)
      print(y_test.shape)
      (168016, 14)
      (56006, 14)
      (168016,)
      (56006,)
[73]: from sklearn.tree import DecisionTreeClassifier
      classifier = DecisionTreeClassifier(criterion = 'entropy',random_state = 0)
      classifier.fit(X_train, y_train)
[73]: 🔻
                        DecisionTreeClassifier
      DecisionTreeClassifier(criterion='entropy', random_state=0)
[74]: prediction = classifier.predict(X_test)
[75]: print("accuracy on training set: %f" % classifier.score(X_train, y_train))
      print("accuracy on test set: %f" % classifier.score(X_test, y_test))
      conf_mat = confusion_matrix(y_test, prediction)
      sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='d',
                 xticklabels=['Predicted Not-default', 'Predicted default'],
                  yticklabels=['Actual Not-default','Actual default'])
      plt.show()
```



```
[77]: from sklearn.naive_bayes import GaussianNB
      classifier = GaussianNB()
      classifier.fit(X_train, y_train)
[77]:
          GaussianNB
      GaussianNB()
      predict=classifier.predict(X_test)
[79]: print(f'Training set : {classifier.score(X_train,y_train)}')
      print(f'Testing set : {classifier.score(X_test,y_test)}')
      conf_mat = confusion_matrix(y_test,predict)
      sns.heatmap(conf_mat,annot=True,cmap='Reds',fmt='d',
                  xticklabels=['Predicted Not-default', 'Predicted default'],
                  yticklabels=['Actual Not-default','Actual default'])
      plt.show()
      Training set : 0.5454182934958576
      Testing set: 0.5442988251258793
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Random Forest	Ini	99.8%	# 25000 - 25000 - 20000 - 15000 - 10000 - 10000 - 2 27982 - 5000 - 5000
K Nearest Neighbors	(S) from Albaro.neighbors Supert DisighborsClassifier (DN = DisighborsClassifier) (DN = print(Training st "ADN.core(Lysin, y_train)) (DN = print(Training st "ADN.core(Lysin, y_train)) (DN = DisighborsClassifier) (DN = Disi	85.5%	- 25000 - 20104 7918 - 20000 - 15000 -

