- 4. Вложение вещественных чисел в комплексные.
- 5. Извлечение корня из комплексного числа. Корни из 1

Лемма 1

Отображение $f: \mathbb{R} \to \mathbb{C}$, заданное формулой f(a) = (a,0) — мономорфизм.

Доказательство. • Очевидно, f — инъекция.

- ullet Нужно проверить, что это гомоморфизм. Пусть $a,b\in\mathbb{R}.$
- f(a+b) = (a+b,0) = (a,0) + (b,0) = f(a) + f(b).

•
$$f(ab) = (ab, 0) = (a, 0) \cdot (b, 0) = f(a)f(b)$$
.

Комментарии: логично, что инъекция, разным действительным ставятся в соответствие разные комплексные. Мономорфизм — это тип гомоморфизма. Поэтому проверим, собственно, что это гомоморфизм. Гомоморфизм это вот:

• Пусть K, L — кольца. Отображение $f: K \to L$ называется гомоморфизмом, если $\forall \ a, b \in K$:

$$f(a+b)=f(a)+f(b) \quad \text{ } u \quad f(ab)=f(a)f(b).$$

Ядро гомоморфизма f — это $\mathrm{Ker}(f) = \{x \in K \ : \ f(x) = 0\}.$

Образ гомоморфизма f — это

$$\operatorname{Im}(f) = \{ y \in L : \exists x \in K : f(x) = y \}.$$

Проверили, да, действительно, гомоморфизм. А инъекция в гомоморфизме – это мономорфизм.

• Очевидно, $\mathrm{Im}(f)\simeq \mathbb{R}$. Таким образом, \mathbb{C} имеет подполе $\mathrm{Im}(f)$, изоморфное \mathbb{R} . В дальнейшем мы будем отождествлять каждое вещественное число a с комплексным (a,0).

Im(f) – эта запись означает образ гомоморфизма f

To есть
$$Im(f) = \{y \in C : \exists x \in R : f(x) = y\}$$

Подполе C, изоморфное R, это как раз числа вида (а, 0)

ullet Теперь можно сказать, что для любого $z=(a,b)\in\mathbb{C}$ выполнено:

$$z \cdot \overline{z} = N(z) = N(\overline{z})$$
 (все это равно по $a^2 + b^2$) и $z + \overline{z} = 2 \mathrm{Re}(z) = 2 \mathrm{Re}(\overline{z})$ (все это равно по $2a$).

ullet Сопряженные компдлексные числа $z,\overline{z}\in\mathbb{C}\setminus\mathbb{R}$ — корни квадратного уравнения с вещественными коэффициентами $t^2-2\mathrm{Re}(z)\cdot t+\mathcal{N}(z)=0.$

$$z = (a, b)$$

$$\bar{z} = (a, -b)$$

 $z\bar{z}=(a,b)(a,-b)=a^2+b^2$, да, это норма z

- Комплексное с опряжение: $\overline{z} := (a, -b)$.
- Норма z это $N(z) := a^2 + b^2$.

Со сложением понятно, действительная часть у z и сопряжённого одна и та же ©

Последнее – привет теорема Виета

Корни из 1

- Отдельно рассмотрим корни n степени из 1 решения уравнения $z^n=1$.
- ullet Из сказанного выше следует, что модуль всех корней из 1 равен 1. Так как rg(1)=0, все различные аргументы считаются по формуле

$$\psi_k = \frac{2\pi k}{n},$$
 где $k \in \{0, \dots, n-1\}.$ (1)

Комментарии:

arg — это угол φ . Поэтому arg(1) = 0; то есть ψ должно делиться на 2π .

- \bullet Обозначим их $\varepsilon_0, \ldots, \varepsilon_{n-1}$ (корень ε_k имеет аргумент ψ_k).
- ullet Корни из 1 степени n лежат на окружности радиуса 1 в вершинах правильного n-угольника, одна из которых в 1.
- ullet По формуле Муавра $arepsilon_k = arepsilon_1^k$. Значит, все корни из 1 это степени $arepsilon_1$.

- На рисунке справа изображены корни степени 4 из 1. Один из них это i=(0,1) $(\arg(i)=\frac{\pi}{2})$.
- ullet Остальные корни из 1 степени 4 это $-1 = i^2$, $-i = i^3$ и $1 = i^4$.
- Комплексное число z = (a, b) может быть записано в виде z = a + bi, который многим из вас более привычен.
- Еще одно часто встречающееся обозначение комплексное число z с |z|=1 и $\arg(z)=lpha$ часто записывают в виде $z=e^{lpha i}$.
- Таким образом, $e^{\alpha i} = (\cos(\alpha), \sin(\alpha))$.

