Hexadecimal Representations

1. Convert the following 32-bit binary patterns to octal and note: Bits and Bit Patterns)(a) 01110010 11110101 00111101 00001001	•
(b) 10100010 11011111 11101001 00111000	24267764470, A2 DF E9 38
(c) 01101110 10001111 10101101 01010010	15643726522, 6E 8F AD 52
(d) 01011001 11001110 00110111 10001101	13163433615, 59 CE 37 8D
(e) 10110001 11011001 11110101 01100100	26166372544, B1 D9 F5 64
(f) 01011101 10001110 00101111 10100011	13543427643, 5D 8E 2F A3

Character Representations

2.	Convert the following bits to ASCII (8 bit) characters. (See note: Representing Characters with Bit Patterns)
	(a) 01001000 01100101 01101100 01101100 011011
	(b) 01000011 01001101 01010011 00110010 00110011 00110000 CMS230
	(c) 01000110 01100001 01101100 01101100 00110001 00111000
	(d) 01010010 01101111 00100001 00100001 01101001 011011
	() 01000011 00110000 01101100 01101100 01100101 01100111 01100101
	(e) 01000011 00110000 01101100 01101100 01100101 01100111 01100101 College
	(f) 01010100 00110100 01110010 01110011T4rs
3.	Convert the following strings to a sequence of bytes. (Recall that in C, strings are really just an array of characters, terminated by the null character.) Give your answer in hex notation. (See note: Representing Characters with Bit Patterns)
	(a) "Ab12"41 98 31 32 00
	(b) "4& hH" <u>34 26 20 68 48 00</u> (e) "\$_mY" <u>24 5F 6D 59 00</u>
	(c) "y%Z6"

Other Base Systems

4.	Convert the following quantities to their base-10 (decimal) representations.	(See note:	Number
	Representation)		

(a) 102_3 _____

(d) 515₆ ______

(b) 41₅ _____

(e) 111₄ ______

(c) 62₈ _____

(f) 614₇ _____305

5. Convert the following decimal values to the specified base system. (See note: Binary and Hex Integer Representation)

(a) 342 to base 3 <u>110200</u>₃

(d) 5023 to base 6 <u>35131</u>₆

(b) 189 to base 4 ______2331₄_____

(e) 4782 to base 7 <u>16641</u>₇

(c) 1229 to base 5 _____14404₅____

(f) 7612 to base 9 <u>113879</u>

Unsigned Integer Representation

6.	Convert the follow sentation)	ving 8-bit patterns to	positive decimal numbers.	(See note: Number	r Repre-
	(a) 00001001	9	(d) 10000101	133	
	(b) 00111000	56	(e) 01100100	100	
	(c) 01010010	82	(f) 11001111	207	
7.	Convert the follow and Hex Integer I		numbers to 8-bit binary r	numbers. (See note:	Binary
	(a) 18	00010010	(d) 108	01101100	

(b) 25 ______

(e) 243 ______

Signed Integer Representation

8. Convert the following negative decimal numbers to 8-bit 2's complement binary numbers. (See note: Binary Addition and Two's Complement)

(a) -29 ______11100011

(d) -15 ______11110001

(b) -86 ______10101010

(e) -105 ______10010111

(c) -63 11000001

(f) -71 10111001

9. Convert the following 8-bit patterns to signed decimal numbers. Assume these patterns use 2's complement representation. (See note: Binary Addition and Two's Complement)

(a) 10001011 ______ (d) 10011101 ______

(b) 10111000 _______(e) 10001111 _______1

(c) 10101011 _______(f) 10010011 __________

10. Perform the following 2's complement additions. Give the end result (in binary format) and state whether or not an overflow occurs. (See note: Binary Addition and Two's Complement)

(a) 0111 0011 1101 0010

1101 0111 1001 1010

Solution: 0100 0101, no overflow

Solution: 01110001, overflow

(b) 1111 0111 1001 1010 1101 0111 1001 1010

Solution: 10010001, no overflow

Solution: 01110001, overflow

(c) 1111 0111 0101 1010 ._____

0101 0111 0011 1010 _____

Solution: 01010001, no overflow

Solution: 10010001, overflow

Floating Point Representation

11.			lowing decimal values to IEEE-75 ating Point Representation)	54 single precision (32-bit) floating point format.
	(a)	-2.875	11000000 00111000 00000	0000 00000000
	(b)	3.375	01000000 01011000 00000	000 00000000
	(c)	6.75	01000000 11011000 000000	00 00000000
	(d)	27.0	01000001 11011000 000000	00 00000000
	(e)	-12.5	11000001 01001000 000000	000 00000000
	(f)	-14.875	11000001 01101110 0000	0000 0000000
12.			llowing patterns to a decimal value point format. (See note: Float	ne, assuming they are IEEE-754 single precision ing Point Representation)
	(a)	01000001	10101100 00000000 00000000	21.5
	(b)	01000000	11101100 00000000 000000000	7.375
	(c)	01000001	01111100 00000000 000000000	15.75
	(d)	01000001	01100000 00000000 000000000	14.0
	(e)	11000001	11111100 00000000 000000000	-31.5
	(f)	11000001	11101110 00000000 000000000	-29.75