امتحان الدرس 1 الأفـــلاك الجـزيئية

الكيمياء

الفصل الدراسي الأول 2022 - 2023

العام الدراسي 2022 - 2023

الزمن : ساعتان وربع

امتحان الفترة الدراسية الأولى - للصف الحادى عشر المجال الدراسى : ﴿كيمياء القسم العلمى﴾

تعليمات هامة

يقع الامتحان في قسمين

القسم الأول/ الأسئلة الموضوعية: (20) درجة وتشمل السؤالين (الأول والثاني)

القسم الثاني / الأسئلة المقالية: (32) درجة وتشمل الأسئلة (الثالث والرابع و الخامس والسادس)

أجب عن جميع الأسئلة

- اقرأ السؤال جيداً قبل الإجابة عنه.
 - كل إجابة مشطوبة تعتبر لاغية.
- أجب عن الأسئلة بخط واضح واكتب بالقلم الأزرق

مع تمنياتنا لكم بالنجاح والتوفيق ،،،،،

أولاً: الأسطلة الموضوعية (20) درجة

درجات	10)	الأول	سؤال
ر تواک)	IU)		

(5 × 1 × 5 ورجات) : الرجات : ا	كتب المصطلح العلمى الذي تدل عليه العبارات الآتية	أ
ة في الجزئيات.	1 تفترض أن الإلكترونات تشغل الأفلاك الذريا	
	2 تفترض تكوين فلك جزيئي من الأفلاك الذر التعالي	
- 0%	3 فلك ترابطي ينتج من تداخل الأفلاك الذرية	
ر ب عندما یتداخل فلکیـن ذرییـن رأسـاً د	نوع من الروابط ينتج من التداخل المحورة 4 لـرأس.	
ے عندمـا <mark>یتداخـل فلکیـن ذرییـن جنبـاً</mark>	نـوع مـن الروابـط ينتـج مـن التداخـل الجانبـر 5 لجنـب.	
(5 × 1 × 5 درجات)	سع علامة (√) أو عـــلامة (X) في العبارات الآتية:	.0
	تعتمـد طاقـة الرابطـة سـيجما (٦) علـم المترابطتيـن وعلـس عـدد الروابـط التــي	
	2 يمكن أن يحتوي أحد الجزئيات على الرابطة	
مـن الرابطـة التسـاهمية ()	الرابطـة التسـاهمية سـيجما (δ) أضعـف بـاي (π).	
ابطة التساهمية الأحادية ()	الرابطة التساهمية باي (π) توجد في الر	

ر (Cl₂) عـدد الروابـط التسـاهمية الأحاديـة سـيجما فـي جـزئ الكلـور (.......)

5

والثنائية فقط.

يسـاوي 2.

السؤال الثاني (10 درجات)

(5 = 1 × 5) عنوات			: ä	بارات الآتيا	بحة في الع	الإجابة الصح	ئے	ļ
්	بة ثلاثية هو جز	نساهمي	ى رابطة i	حتوي على	ت التالية ي	أحد الجزئيان	1	
N ₂ ()	Cl ₂ ()	Br	· ()	0	₂ ()
	ىي	ф (O ₂) (ي الجزئ	.کسجین ف	، ذرتي الأ	الرابطة بيز	2	
	S.	لات لين	1 (6)	وع سيجما	ية من الن	نساهمية أحاد	i ()
			(6)	وع سيجما (ية من النر	تساهمية ثناأ	()
	(π)	النوع باي	б) ومن ا	وع سيجما (ية من النو	نساهمية ثنائ •	i ()
			4	رπ) وع باي	ية من النو	نساهمية ثنائ	i ()
ېروفورم (₃ CHCl)	في جزئ الكلو	مختلفة	فلاك ال	رية بين الأ	ىت المحو		3	
4 (1 9	Vew Er	a)of Ed	ucation 2		ھ و 1	()
اي (π)	. سيجما (6) وب	ں روابط	ياتها علم	تحتوي جزئ	ت التالية	أحد المركبا	4	
CH ₂ Br ₂ () (C ₂ H ₄ ()	CH ₃ CH ₃	()	CH ₄	()
الكلور لتكوين	ئ 3PZ من ذرة	مع الفلك	دروجین د	ن ذرة الهيد	ك 15 مر	يتداخل الفا	5	
	ة تناسقية) رابط)			رابطة أيونية	()
	ة تساهمية باي) رابط)		ة سيجما	رابطة تساهميا	()

(5 = 1 × 5) **درجات**

أكمل العسبارات الآتية:

عـدد أزواج الإلكترونـات المشـاركة بتكويـن الروابـط التسـاهمية بـاي (π) فـي جـزئ النيتروجيـن (N2) يسـاوي مـن الإلكترونـات .	1
عدد روابط سيجما (б) في جزئ المركب CH3 CH2 CH3 تساوي	2
عدد الروابط باي (π) في جزئ H-C≡N يساوي	3
تداخل فلك S مع فلك أ لتكوين رابطة سيجما يسمى فلك	4
تتكون الرابطتان π في جزئ النتروجين نتيجة تداخل الأفلاك	5
New Era of Education	

ثانياً: الأسئلة القالية (32 درجة)

(8 درجات)	الثالث	السؤال
-----------	--------	--------

ما المقصود كل مما يلي: $3 = 1 \times 3$

	نظرية رابطة التكافؤ.	1
		•••••
اخرت دارات الله	نظرية الفلك الجزئي .	2
ىيجما . چ	الرابطة التساهمية س	3

قارن بین کل مما یلي: 3 = 0.5 × 6)

[1] حدد عدد الروابط سيجما (σ) وعدد الروابط باي (π) في كل من الجزئات الآتية:

عدد الروابط باي (π)	عدد الروابط سيجما (٥)	وجه المقارنة
		O = C = O
		$\begin{array}{c c} -C -C = C -C - \\ -C $
		-C ≡ C - C -

(2]أكمل الفراغات في الجدول التالي بما يناسبها $(4 \times 0.5 = 2$ درجة

¹ CH ₃ - ² CH ₂ ³ CH ₃	${}^{1}\mathbf{CH}_{3}\mathbf{-H}^{2}\mathbf{C} = {}^{3}\mathbf{CH}_{3}$	وجه المقارنة
		نوع التداخل في ذرة الكربون رقم (2)
	باطر	نوع الروابط التساهمية التي تكونها ذرة الكربون رقم (1)

السؤال الرابع (8 درجات)

علل لكل من العبارات الآتية: $3 = 1 \times 3$

باي فقط		ي احد الجز	مکن ان تحتو:	1 لا ي
1				•••••

- ع طبقاً لنظرية رابطة التكافؤ لا تكّون الغازات النبيلة ورابط تساهمية .

الميثان (CH₂=CH₂) أقل نشاطاً من الإيثين (CH₂=CH₂) .

3

٠				w
$_{7}$ N و $_{6}$ C و $_{1}$ H مـــاً بأن	كيات التالية عا	مد حدثيات الدك	15.3705	حدد عدد التمايط
	 	الحل شرحتيات احرد		ساو مود اعروابت
	•		**	

	.NH ₃	1
		•••••
الماء	.CH ₄	2
	.C ₂ H ₂	3
	*	
		•••••
	م د د د د د د د د د د د د د د د د د د د	
وب نظریة رابطة التكافؤ : 2 درجات)) وصح بایجار عیو	
	•••••	

السؤال الخامس (8 درجات)

الشكيل التالي والدي يمثيل الصيغة البنائية لحصص الأستيك والمطلوب الآتي: $3 = 1 \times 3$

1 الرابطة التي تربط ذرة الكربون رقم (1) بذرة الهيدروجين

الروابط التي تربط ذرة الكربون رقيم (2) بكل من ذرتي الأكسجين 2 الرابطة الأولى هي رابطةوالبرابطة الثيانية هيي رابطية

الشكل التالي والذي يمثل الصيغة البنائية لحمض الأكساليك حدد عدد الروابط سيجما وباي: (3 درجات

$$\mathbf{HO} - \mathbf{C} - \mathbf{C} + \mathbf{OH}$$

SALH

(2 درجات)		ل خريطة مفاهيم:	م التالية لعم	لتخدم المفاهيا	1
ة - تداخـل محـوري -	ابطـة بـاي - أفـلاك ذريـذ			رابطـة سـيجم ـلاك جزيئيـة -	_
	التعريب المالية	المن المناس	/		
			(8 درجات)	سؤال السادس	<u>-</u>
(3 = 1 × 3 عرجات)			سيراً علمياً:	سر ما يلي تف	Ġ
ط في جزئ	افؤ لشرح تكوين الرواب	، نظرية رابطة التك	لاعتماد على	لا يمكن اا الميثان.	1
	Vewere	of Educațion			•••
في جزئ الكلور.	وى من الرابطة سيجما	زئ الهيدروجين أق	ىيجما في جز	الرابطة س	2
					•••
بالإضافة.	يتفاعل الإيثين (C ₂ H ₄)	بالاستبدال بينما	میثان (CH ₄)	يتفاعل ال	3
					•••

 $(6 \times 6) = 3 = 0.5 \times 6$

قارن بين الرابطة سيجما (٥) والرابطة باي (π):

الرابطة باي (π)	الرابطة سيجما (م)	وجه المقارنة
		وجودها في الرابطة التساهمية الأحادية
		وجودها في الرابطة التساهمية الثنائية
		وجودها في الرابطة التساهمية الثلاثية

(2×2 = 1×2)

لديك المركبان التاليان وضُح الآتي:

H

$$C \equiv C$$

H

 $C = C - H$
 $C = C - H$

المركب الأكثر نشاطاً .

[2] المركب الأكثر ثباتاً ...

إنتمت الأسئلة مع تمنياتنا بالنجاح والتوفيق ،،،،

أحرص على اقتناء مذكرات منصة البلاطي

- مذكرة شرح لكل درس.
- مذكرة أسئلة لكل درس.
- مذكرة إجابة أسئلة لكل درس.
 - مذكرة امتحان لكل درس.
- مذكرة إجابة امتحان لكل درس.

الكيمياء

استمتع بتجربة التعلم مع منصة البلاطي

الفصل الدراسي الأول 2023 - 2023