

Contents

SENSING

In this phase we will try to understand the problem, the challenge that we are trying to solve and how we are going to address it.

VISIONING

In this phase we will try to build the features and explore and analyse the data.

PROTOTYPING

In this phase we will be building training, testing and evaluating our models to measure its performance

SCALING

In this phase we will propose what to do with the models.

Introduction

Modern Day Cable TV Services:

TV viewership has evolved over time from traditional analog cable television services to present day, DTH based digitally integrated services, offering a multitude of options and features at the fingertips of the viewer.

Modern Day DTH Services

What is the context of doing an tv viewership demographics?

In the digital era, companies are moving towards AI driven technologies where they can understand their customers, segment them on basis of their viewership patterns, and provided recommended content based on these qualitative behaviour of their users.

In the best interest of the business, providing correct content to reduce churn is the main motive behind building an intelligent age classification system.

What does our Dataset speak?

household id	session start session	on_endchannel_name	e title - origin	all broadcast sta	art original broad	loast end sessi	ion type sessio	on sub type	genre sub g	enre playback speed	episode title series title gender dob	
432215008	2016-04-09 08:36:52	2016-04-09 08:51:52	Nick Junior	Paw Patrol	2016-04-08 10:30:00	2016-04-08 10:45:00	TIMESHIFT	SERIES LINK	BOOKING	Kids/Youth For ages 6-1	4 1000 Pups and the Mischievous Kittens	Please Spec
432215006	2016-04-27 10:03:48	2016-04-27 10:03:48	Nick Junior	Paw Patrol	2016-04-27 10:00:00	2016-04-27 10:15:00	TIMESHIFT	BUFFER	Kids/Youth	For ages 6-14 1000 Pup:	Save a Sniffle Please Specify 1900-01-01	
432215006	2016-04-27 17:03:48	2016-04-27 17:03:48	Nick Junior	Paw Patrol	2016-04-27 17:00:00	2016-04-27 17:15:00	TIMESHIFT	BUFFER	Kids/Youth	For ages 6-14 1000 Pups	Save a Sniffle Please Specify 1900-01-01	
432215006	2016-04-18 09:02:46	2016-04-18 09:17:46	Nick Junior	Paw Patrol	2016-04-18 08:45:00	2016-04-18 09:00:00	TIMESHIFT	BUFFER	Kids/Youth	For ages 6-14 1000	Please Specify 1900-01-01	
432215006	2016-04-22 17:28:45	2016-04-22 17:28:45	Nick Junior	Paw Patrol	2016-04-22 17:15:00	2016-04-22 17:30:00	TIMESHIFT	BUFFER	Kids/Youth	For ages 6-14 1000	Please Specify 1900-01-01	
											· '	i P

We are provided a dataset in the CSV format that contains the following columns.

['household_id', 'session_start', 'session_end', 'channel_name', 'title','original_broadcast_start',
'original_broadcast_end', 'session_type', 'session_sub_type', 'genre', 'sub_genre', 'playback_speed','episode_title', 'series_title', 'gender', 'dob']

These columns help us to answer the following context:

- What is the household id of the user?
- When did they start a session?
- What tv channel did they watch?
- What did they view in the channel?
- When did they have their signals broadcasted?
- What type of session was the broadcast?
- What type of session sub type was it?
- What kind of genre did it fall under?
- What kind of sub genre did it fall under?
- What was the title of the episode?
- What was the title of the series?
- What is the gender of the viewer?
- What is the dob of the client?

Challenge

The Challenge:

Sensing

So now that in the previous steps of this phase we have understood the following information:

- What is the business context?
- Who are my stakeholders?
- What information is in the dataset?

The challenge therefore is:

Can we predict the user age/age group based on their viewership behaviour?

```
*** Some of the information gained from the dataset **
How many household ids are there? 3863142
How many household ids are unique? 2813
How many channels are there ? 238
Number of unique titles in total ? 12627
Types of sessions available? { 'LIVE', 'REPLAY', 'VOD',
'TIMESHIFT' }
Types of sub sessions available? {'LIVE', 'REPLAY', 'TVOD',
'SVOD', 'SINGLE RECORDING', 'BUFFER', 'MYPRIME', 'SINGLE TIME
BASED BOOKING', 'REPEAT TIME BASED BOOKING', 'SERIES LINK
BOOKING' }
How many genres are there? 14
How many sub-genres are there? 72
How many types of playback speed are there? 793
How many episode titles are there? 22628
How many series title are there? 5056
How many gender types are there? { 'Please Specify', 'To be
specified', 'Female', 'Male'}
How many users have unique dob? 987
```


Visioning

Prototyping

Tackling the Outliers: Preprocessing Step I.

Detecting and correcting outliers:

Our dataset is extremely huge (more than 3.8 million rows with 16 different features). Handling outliers is the first task in our preprocessing steps. On close inspection, we get to see that the following information:

1. The NaN rows

(Fig 1: We can see that columns 'Episode_title', 'Series Title', 'Original Broadcast Start', 'Original Broadcast end', 'Playback Speed' and 'Title' has empty values present with 2.8million rows in 'Episode_title' being empty rows. This accounts for more than till 73% of the total rows in the dataset)

2. The non imputable rows:

(Fig 2: 65% of the DOB are entered as 1900. It is extremely hard to understand a mean age and apply statistical imputations to replace this, as it will tip the scale towards this bias.)

Action taken: Dropped rows that are corrupted, cannot be replaced for a clean dataset.

	index	0
0	household_id	0
1	session_start	0
2	session_end	0
3	channel_name	0
4	title	5
5	original_broadcast_start	12181
6	original_broadcast_end	12181
7	session_type	0
8	session_sub_type	0
9	genre	0
10	sub_genre	0
11	playback_speed	782
12	episode_title	2805111
13	series_title	1771372
14	gender	0
15	dob	0

Fig 1.

	index	dob
0	1900-01-01	2568362
1	1970-01-02	10216
2	1981-02-24	8458
3	1960-01-06	7020
4	1942-11-21	6528
5	1955-08-17	6381
6	1964-10-25	6349
7	1982-04-27	5974
8	1976-05-08	5634
9	1970-11-07	5496

Fig 2.

Visioning

Prototyping

Information from the cleaned dataset I: Age Groups

The Age Groups:

Based on the new cleaned dataset, we have calculated the ages of the users from their DOB, and have aggregated them into 6 different age groups, listed as follows:

- 1. <25
- 2. 25-35
- 3. 35-45
- 4. 45-55
- 5. 55-65
- 6. 66+

The chart shows that the middle age, 35-45 age group is the modal class in the distribution.

Assuming that majority of the users will be having a family. We will try to establish a link in the following slide.

Ranked Age group and Age distribution of the users

Top 25 Title Watched by Users

Introspective into the viewing pattern:

In the previous slide we had tried to establish that since the modal age group is middle age, we are assuming that this group of users have a family.

In this chart, from the channel we can see that most watched channel was Nick Junior, while the most watched title is the Big Band theory.

These kind of information is painting a picture of the qualitative viewing patterns of the users.

Top 25 Channels and Titles watched by Users

Visioning

Prototyping

Preprocessing II: Encoding

Encoding:

In the last stage of this phase, we will try to encode our data.

The preprocessing and data transformation for our dataset is a bit tricky due to the following reasons:

Our dataset comprises of a lot of categorical columns like, "Title", "Channel_name", "Gender", "Session_type", "Genre", etc. Computers are not trained to process strings/ textual data and this information needs to be converted into numbers that can be used by a computer to build a model.

- Essentially, there are 2 methods by which text can be converted to numbers:
 - Word Vectorizer
 - Label Encoding

Word Vectorizer converts words to word vectors using embeddings, but it is more applicable in a sequence of texts (example, text in a document). Since we don't have text in a sequential format, this method is not advisable for our experiment.

Label Encoding on the other hand makes more sense as it maps and encodes each text to a value.

For example, if we are converting the titles, "Titanic", "Avatar", "The Godfather" to encoded labels, the computer will assign 1,2,3 for the titles respectively. The problem with this encoding is, the computer will assume that labels for $3 \ge 2 \ge 1$ ("The Godfather" > "Avatar" > "Titanic") which is not the case. To solve this, we have to use OneHotEncoding. There is a drawback of increasing dimensionality while using One Hot Encoding technique, but for the moment we will not consider this, and use a limited number of rows to build and test our model.

** One hot encoding transforms: a single variable with n observations and d distinct values, to d binary variables with n observations each. Each observation indicating the presence (1) or absence (0) of the dth binary variable.

df.dtypes

household_id	int64
channel_name	object
title	object
session_type	object
session_sub_type	object
genre	object
sub_genre	object
episode_title	object
series_title	object
gender	object
dob	object
age_group	int64
user_age	int64
dtype: object	

Non numeric columns having categorical information needs to be encoded

Visioning

Modelling

Modelling:

This is the stage where we will build a model on our encoded dataset. For the purpose of our experiment, I will try to establish a relationship between titles viewed, type of sub type session, genre and channel name patterns linked to a the household_id, and gender to predict and classify their age.

I have considered 2 approaches, for building this model.

- 1. Use logistic regression techniques to predict the age of user. Train the model on the above features with the response/target variable being the 'User_age'. Try to measure if the model is able to predict the age of an user based on the features.
- 2. Use Classification techniques like Random Forest, Decision Tree, Support Vector Machine and Naive Bayes algorithms to train and test on the features and the target variable.

For this iteration, I am resorting to supervised machine learning techniques and for the sake of speed of computation, I have sampled 10K rows and will be training and testing on it.

Visioning

Prototyping

Performance

Mean Metric Scores of various models

Visioning

Prototyping

K Fold Cross Validation

Visioning

Prototyping

Testing Title vs Age Prediction

Visioning

Prototyping

432216770

432216770

402216770

402216770

402216770

402216770

Title Recommender:

Here in this final step, I've tried to establish an item recommender based on titles watched by a household_id.

The assumption behind building this item similarity recommender are:

- 1. A household can have multiple viewers of multiple age groups.
- If we can predict potential titles, it gives us an idea of the age group based on the content of the title.
- 3. We can use these predictions to predict the age and the age group.

Fraining titles for the user userid: 432216770: LA Clippers Dance Squad Eawaii Five-0 I Am Cait My 6001b Life Charmed Priends Angie Tribeca The Inbetweeners South Park How I Met Your Mother The Hairy Bikers' Pubs That Built Britain Grey's Anatomy Brooklyn Nine-Nine Nike & Molly Nodern Family Noone Boy The Middle The Next Creat Eaker The Big Bang Theory Frasier Bad Education A Place in the Sun: Winter Sun Lip Sync Battle Rude Tube The Green Green Grass Eat. Chance. Bacace to the Country A Place in the Sun: Home or Away The Goldbergs Family Guy Say Yes to the Dress LA Ink Pather Ted Extreme Couponing All-Stars Once Upon A Time

Training Titles on UserId 432216770

Top 5 viewed items for household 432216770 Modern Family 14 The Goldbergs The Big Bang Theory Royal Pains Name: title, dtype: int64 print("Recommendation process going on for household 432216770:") is model.recommend(432216770) Recommendation process going on for household 432216770: No. of unique titles for the user: 39 no. of unique titles in the training set: 1432 Non zero values in cooccurence_natrix :42942 household id score rank 432216770 The Simpsons 0.215203 Two and a Half Men 0.195386 432216770 Keeping Up with the Kardashiana 0.194582

Criminal Minda 0.194532

Only Fools and Horses 0.185198

Malpoim in the Middle 0.183684

Say Yes to the Dress: Atlanta 0.182253

CS: Crime Scene Investigation 0.174231

Baby Daddy 0.191441

Futurama 0.175461

Building Title recommender

Recommending Titles to userID 432216770 based on Item Similarity

Visioning

Prototyping

Business Recommendations

Business Recommendations and Use Cases:

- 1. The title recommender can be used along with the models to predict suitable titles for varied age groups.
- 2. The potential to understand the demographic and viewing behaviour of the viewer can be used to target suitable ads.
- 3. Title based filtering can be used to filter ads for the targeted age groups/gender.
- 4. Genre/Sub-genre based content recommendations can be improved

Prototyping

Conclusion and Future Scope for improvements

Conclusion:

To build a predictive model based on customer behaviour is not easy. A deep domain knowledge is required to understand the users.

Based on the assumptions that a viewer is not restricted to only person in the household, and trying to quantify his/her viewing qualitative viewing patterns. Our models can predict to 98% accuracy the age of the viewer.

In the second iteration based on the title vs age prediction, we are trying to establish a more 1:1 relationship between quantifying What the user watches to what their age can be.

Future Scope:

- 1. Use unsupervised methods to understand customer behaviour and gain more insights.
- 2. Use Ensemble approaches to improve the accuracy of the predictions.
- 3. Train and test with a larger dataset.
- 4. Use more advanced techniques for preprocessing.
- 5. Look into other alternatives for encoding, since One-Hot Encoding increases dimensionality of the dataset by a very high magnitude.
- 6. Other features by feature engineering can be explored to potential patterns and gain more insights about an user