Assignment Project Exam Help ecture https://tutorcs.com

Automata: our 1st computation model

Assignment Project Exam Help

https://tutorcs.com

Input to our Automata (Strings) $\leftarrow \mathbb{Z}^*$

Thite (26 abc ---)
$$\sum_{k=0}^{\infty} |\omega_{k}| |\omega_{i} \in \mathbb{Z}$$
}

 $\leftarrow \begin{cases} 0. \text{ Assignment Projectal Extant Help} \\ \sum_{k=0}^{\infty} |\omega_{k}| |\omega_{i} \in \mathbb{Z} \end{cases}$
 $\leftarrow \begin{cases} 0. \text{ Assignment Projectal Extant Help} \\ |\omega_{i}| |\omega_{i}|$

(Finitely Many) States

Starting State

Assignment Project Exam Help

https://tutorcs.com

Transition Function

Assignment Project Exam Help

https://tutorcs.com

Accepting State

Assignment Project Exam Help

https://tutorcs.com

Formal Definition

Example Automata (automatic door)

Assignment Project Exam Help

https://tutorcs.com

Example from text

FIGURE

(does not sero)

Resources used?

• Time ? Space ?

Assignment Project Exam Help

https://tutorcs.com

Language of Automata

1 (M)
$$\subseteq$$
 Z** Assignment-Project Exam-Help
https://tutores.com

4

Regular Language

```
is regular if = Finite Automata M S.t.
      \(\)_=\(\)_(M)\\
Assignment Project Exam Help
           https://tutorcs.com
in other words
 regular reveChat: cstutorcs
 = Finite Auto mata M. such that
     accepts is if and only if WEL
   M accepte w if wEL
```

Example of Regular Language (Odd/Even)

Assignment Project Exam Help

https://tutorcs.com
$$\geq 2$$

we so 13^{n} | brong representation of wo We Chat: cstutorcs is even s .

Meven s.t. Meven accepts if and only if

we is from Leven.

Example of Regular Language (Odd/Even)

Leven :=
$$\{\omega \mid | \text{last distr of } \omega \text{ is } \emptyset \}$$
.

$$Q = \{g_0, g_1\}$$

Meven :
$$\begin{cases} 0 & \text{https://tutores.com} = \{g_0, g_1\} \\ \text{WeChat: estutores} \end{cases}$$

$$\begin{cases} 0 & \text{for } 0 \\ 0 & \text{for } 0 \end{cases}$$

$$\begin{cases} 0 & \text{for } 0 \\ 0 & \text{for } 0 \end{cases}$$

$$\begin{cases} 0 & \text{for } 0 \\ 0 & \text{for } 0 \end{cases}$$

$$\begin{cases} 0 & \text{for } 0 \\ 0 & \text{for } 0 \end{cases}$$

Another Example

via this machine we know that

https://tutorcs.com

FIGURE 1.22

Recipe for showing that a language is regular

```
L -> design a corresponding machine M.

such that M accepts if and only if

Assignment Project Exam Help

https://tutorcs.com

ex ) Leven Loos We Chât: estutores
```

How to show that a language is not regular?

• Do they even exist?

Set of all possible languages

Assignment Project Exam Help

https://tutorcs.com

Creating more regular languages

• Union, Concatenation, Star, Complement >> L is regular, - if Li is regular Asysighmeni Project Exam Help than LIUL2 is also regular https://tutorcs.com is also regular 1 is regular, $1 \pm 1 \le regular$ $1 \pm 1 \le regular$ 1*:= *) Lk

Complement:
$$M_{L} = (Q, go, S, Z, J)$$

$$L(M'_{L}) = L^{C}Q - S$$

Assignment Project Exam Help

D= 0, x0 https://tutores.com

Proof for Concatenation / Star ?

What is the difficulty?

Assignment Project Exam Help

https://tutorcs.com