Homework 1

Michelle Tran

May 25, 2020

Proof by Contrapositive 1

We begin with some definitions.

Definition 1. An integer n is said to be even if there is an integer k such that n=2k. Otherwise, n is said to be odd.

Remark: It follows that odd integers can be written uniquely as n = 2k + 1 for some integer k.

Definition 2. We say that x is a rational number, denoted $x \in \mathbb{Q}$, if there exist integers p, q such that $x = \frac{p}{a}$.

(Recommended) Problem 1. Suppose that $a, b \in \mathbb{R}$ such that $ab \notin \mathbb{Q}$. Then we have $a \notin \mathbb{Q}$ or $b \notin \mathbb{Q}$.

Proof by Contradiction. Show that $\neg((a \notin \mathbb{Q}) \lor (b \notin \mathbb{Q})) \Rightarrow \neg(ab \notin \mathbb{Q})$ where $a, b \in \mathbb{R}$.

 $\neg((a \notin \mathbb{Q}) \lor (b \notin \mathbb{Q})) \equiv (a \in \mathbb{Q}) \land (b \in \mathbb{Q})$ by DeMorgan's Law.

 $\neg(ab \notin \mathbb{Q}) \equiv ab \in \mathbb{Q}$ by def. of negation.

Thus, we must show that if a and b are rational, then the product ab is also rational.

Symbolically: $(a \in \mathbb{Q}) \land (b \in \mathbb{Q}) \Rightarrow (ab \in \mathbb{Q}).$

By Definition 2, a and b can be written as $a=\frac{p}{q}$ and $b=\frac{m}{n}$, where $p,q,m,n\in\mathbb{Z}$. For $a,b\in\mathbb{Q},\ ab=\frac{p}{q}*\frac{m}{n}=\frac{pm}{qn}$ where $pm,qn\in\mathbb{Z}$ due to integer multiplication properties. Therefore, $ab\in\mathbb{Q}$ since $\frac{pm}{qn}$ is a quotient of two integers, as per Definition 2. As such, we have proven that $(a\in\mathbb{Q})\wedge(b\in\mathbb{Q})\Rightarrow(ab\in\mathbb{Q})$.

Hence, by the contrapositive proof, the statement if $ab \notin \mathbb{Q}$, then we have $a \notin \mathbb{Q}$ or $b \notin \mathbb{Q}$ is true. \square

(Recommended) Problem 2. Suppose $x, y \in \mathbb{Z}$ such that xy is even. Then either x is even or y is even.

Proof by Contrapositive. Show that $\neg(x \text{ is even } \lor y \text{ is even}) \Rightarrow \neg(xy \text{ is even})$ where $x, y \in \mathbb{Z}$. \equiv (x is odd \land y is odd) \Rightarrow (xy is odd) by DeMorgan's Law and the def. of negation.

By Definition 1, x and y can be written as: x = 2m + 1, y = 2n + 1 where $m, n \in \mathbb{Z}$.

xy = (2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn+m+n) + 1 = 2k+1 where k = 2mn+m+n.

Therefore, xy is odd, and as such, we have proven that (x is odd \land y is odd) \Rightarrow (xy is odd).

Hence, by the contrapositive proof, the statement if xy is even, then either x is even or y is even. \Box

(Recommended) Problem 3. Suppose $x, y \in \mathbb{Z}$ such that $x + y \ge 15$. Then either $x \ge 8$ or $y \ge 8$.

Proof by Contrapositive. Show that $\neg((x \ge 8) \lor (y \ge 8)) \Rightarrow \neg((x + y) \ge 15)$ where $x, y \in \mathbb{Z}$. $\equiv ((x < 8) \land (y < 8)) \Rightarrow ((x + y) < 15)$ by DeMorgan's Law and def. of negation.

Since x and y are integers, we can rewrite the expression $(x < 8) \land (y < 8)$ as $(x \le 7) \land (y \le 7)$.

 $x + y \le 7 + 7 = 14$. Thus, 14 is the greatest possible sum of x and y.

Since 14 < 15 is true, we see that it does follow that (x + y) < 15.

Hence, by the contrapositive proof, the statement if $x + y \ge 15$ then either $x \ge 8$ or $y \ge 8$.

(Recommended) Problem 4. Suppose $n \in \mathbb{Z}$ such that n^3 is even. Then n is even.

Proof by Contrapositive. Show that $\neg(n \text{ is even}) \Rightarrow \neg(n^3 \text{ is even})$. $\equiv (n \text{ is odd}) \Rightarrow (n^3 \text{ is odd})$ by the def. of negation.

Since n is odd, it can be represented generically as n=2k+1 where $k\in\mathbb{Z}$.

Thus, $n^3 = (2k+1)^3$ = $(4k^2 + 4k + 1)(2k + 1)$ = $8k^3 + 4k^2 + 8k^2 + 4k + 2k + 1$ = $8k^3 + 12k^2 + 6k + 1$

 $= 2(4k^3 + 6k^2 + 3k) + 1$ = 2t + 1 where $t \in \mathbb{Z}$.

Thus, when n is odd, n^3 is odd.

Hence, by the contrapositive proof, the statement if n^3 is even, then n is even. \Box