3. Прямая на плоскости

3.1. Уравнение прямой

Пусть дана прямая l на плоскости, на которой фиксирована некоторая аффинная система координат $\overrightarrow{Oe_1e_2}$.

Возьмем точку $M_0(x_0,y_0)\in l$ и ненулевой вектор $\overrightarrow{a}(a_1,a_2)$, параллельный l.

Вектор \overrightarrow{a} называется **направляющим** для l.

Teop 1. Точка M(x,y) принадлежит прямой l тогда и только тогда, когда

$$\begin{cases} x-x_0=a_1t\\ y-y_0=a_2t \end{cases}$$
 (параметрические уравнения прямой) (1)

для некоторого $t \in \mathbb{R}$.

Док-во. Пусть $M(x,y)\in l$. Тогда $\overrightarrow{M_0M}$ и \overrightarrow{a} коллинеарны и по Теореме 1 они линейно зависимы: $\alpha\overrightarrow{M_0M}+\beta\overrightarrow{a}=\overrightarrow{0}$ для ненулевого набора α,β . Отсюда $\overrightarrow{M_0M}=t\overrightarrow{a}$ для $t=-\frac{\beta}{\alpha}$, т.к. $\alpha\neq 0$. Получаем равенство координат этих векторов (1).

Если есть (1), то $\overrightarrow{M_0M}=t\overrightarrow{a}$ и векторы $\overrightarrow{M_0M}$ и \overrightarrow{a} коллинеарны по Теореме 1. Значит $M\in l$.

Получим некоторые другие виды уравнений.

 $(1) \Rightarrow$

$$a_2(x - x_0) = a_1(y - y_0) (2)$$

(2)
$$\Rightarrow$$
 (1): если $a_1 \neq 0$, то $y-y_0 = a_2(\frac{x-x_0}{a_1})$ и $x-x_0 = a_1(\frac{x-x_0}{a_1})$.

 $(2) \Rightarrow$

$$Ax + By + C = 0$$
 (общее уравнение прямой) (3)

для $A=a_2,\, B=-a_1$ и $C=-a_2x_0+a_1y_0.$

(3) \Rightarrow (2): всегда существует точка $M_0(x_0,y_0)$, координаты которой удовлетворяют (3). Подставив ее в (3), найдем $C=-Ax_0-By_0$. Подставляя это C обратно в (3), получаем уравнение $A(x-x_0)=(-B)(y-y_0)$, т.е. уравнение (2).

Заметим здесь, что (-B, A) — направляющий вектор для (3). Если $a_1, a_2 \neq 0$, то (2) \Rightarrow

$$\frac{x-x_0}{a_1} = \frac{y-y_0}{a_2}$$
 (каноническое уравнение прямой) (4)

если $a_1=0$, то $x-x_0=0$, а если $a_2=0$, то $y-y_0=0$. Если $M_1(x_1,y_1), M_2(x_2,y_2)\in l$, то возьмем $\overrightarrow{a}=\overrightarrow{M_1M_2}(x_2-x_1,y_2-y_1)$ и $M_0 = M_1$:

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$$
 (уравнение прямой через две точки) (5)

В декартовой системе координат $a_1=|\overrightarrow{a}|\cos \varphi,\, a_2=|\overrightarrow{a}|\sin \varphi$ для $\varphi=0$ $(\overrightarrow{e_1},\overrightarrow{a})$. Отсюда $k=rac{a_2}{a_1}=\operatorname{tg} arphi$ и

$$y = kx + b$$
 (уравнение **с угловым коэффициентом**) (6)

3.2. Взаимное расположение прямых

Множество общих точек прямых $A_1x + B_1y + C_1 = 0$ и $A_2x + B_2y + C_2 = 0$ — решения системы $\begin{cases} A_1x + B_1y + C_1 = 0 \\ A_2x + B_2y + C_2 = 0 \end{cases}$

Возможны следующие случаи:

1. нет решений — прямые параллельны:

$$\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = 0, \quad \begin{vmatrix} A_1 & -C_1 \\ A_2 & -C_2 \end{vmatrix} \neq 0 \quad \text{ или} \quad \begin{vmatrix} B_1 & -C_1 \\ B_2 & -C_2 \end{vmatrix} \neq 0,$$

поэтому $A_1B_2=A_2B_1$, и если, например, $A_1\neq 0$, то $A_2=\lambda A_1$, отсюда $A_1B_2=\lambda A_1B_1$, умножая это на A_1^{-1} получаем $B_2=\lambda B_1$,

$$A_2=\lambda A_1,\quad B_2=\lambda B_1,\quad C_2\neq \lambda C_1;$$

2. бесконечно много решений — прямые совпадают:

$$A_2 = \lambda A_1$$
, $B_2 = \lambda B_1$, $C_2 = \lambda C_1$;

3. единственное решение — прямые пересекаются:

$$egin{array}{c|c} A_1 & B_1 \\ A_2 & B_2 \\ \end{array}
eq 0, \quad \text{т.е. } A_1 B_2
eq A_2 B_1 \text{, отсюда получаем, что}$$

не существует такого числа λ чтобы выполнялись равенства $A_2=\lambda A_1$, $B_2=\lambda B_1$.

3.3. Расстояние от точки до прямой

Опр. *Расстоянием* от точки до прямой называется длина перпендикуляра, опущенного из точки на эту прямую.

Опр. Вектор называется **перпендикулярным** прямой, если он перпендикулярен любому вектору, параллельному данной прямой.

Утв 1. В декартовой системе координат вектор $\overrightarrow{n}(A,B)$ перпендикулярен прямой Ax+By+C=0.

Док-во. Для прямой Ax+By+C=0 вектор $\overrightarrow{a}(-B,A)$ является направляющим (т.е. параллелен ей). Запишем $\overrightarrow{a}\overrightarrow{n}=A(-B)+BA=0=|\overrightarrow{a}||\overrightarrow{n}|\cos(\overrightarrow{a},\overrightarrow{n})$. Так как $\overrightarrow{a},\overrightarrow{n}\ne\overrightarrow{0}$, получаем $(\overrightarrow{a},\overrightarrow{n})=\frac{\pi}{2}$.

Ненулевой вектор, перпендикулярный прямой называется **нормальным вектором** данной прямой.

Утв 2. Расстояние от точки $M(x_1,y_1)$ до прямой Ax+By+C=0, заданных в декартовой системе координат, вычисляется по формуле

$$\frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}.$$

Док-во. Пусть M — точка, не лежащая на прямой l:Ax+By+C=0, а M_0M — перпендикуляр из M к l, где $M_0(x_0,y_0)\in l$. Тогда $\overrightarrow{n}M_0M=|\overrightarrow{n}||\overrightarrow{M_0M}|\cos(\overrightarrow{n},\overrightarrow{M_0M})=A(x_1-x_0)+B(y_1-y_0)$. Выражаем $|\overrightarrow{M_0M}|=\pm\frac{Ax_1+By_1-Ax_0-By_0}{\sqrt{A^2+B^2}}=\pm\frac{Ax_1+By_1+C}{\sqrt{A^2+B^2}}$, тогда расстояние равно $\frac{|Ax_1+By_1+C|}{\sqrt{A^2+B^2}}$.

3.4. Угол между прямыми

Опр. Углом между двумя прямыми называется наименьший из углов, образованных этими прямыми.

Из определения, угол между прямыми α всегда $0 \leqslant \alpha \leqslant \frac{\pi}{2}$.

Величина α угла между прямыми $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$, заданными в декартовой системе координат, может быть вычислена через угол между направляющими векторами $\overrightarrow{a_1}(-B_1,A_1)$ и $\overrightarrow{a_2}(-B_2,A_2)$. Имеем

$$\cos(\overrightarrow{a_1}, \overrightarrow{a_2}) = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}.$$

Если $\cos(\overrightarrow{a_1},\overrightarrow{a_2})>0$, то это $\cos\alpha$, а если $\cos(\overrightarrow{a_1},\overrightarrow{a_2})<0$, то это $\cos(\pi-\alpha)=-\cos\alpha$. Отсюда можно записать

$$\cos \alpha = |\cos(\overrightarrow{a_1}, \overrightarrow{a_2})| = \frac{|A_1 A_2 + B_1 B_2|}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}.$$

На интервале $[0,\frac{\pi}{2}]$ функция \cos обратима, поэтому можно однозначно найти значение угла α .

?

Заметим, что это значение совпадает со значением угла между нормальными векторами прямых $\overrightarrow{n_1}(A_1,B_1)$ и $\overrightarrow{n_2}(A_2,B_2)$.

Если вместо рассматриваемых пар векторов взять какие-то коллинеарные им ненулевые векторы, то тоже получим это значение (множители вынесутся и сократятся).

Величина α угла между прямыми $y=k_1x+b_1$ и $y=k_2x+b_2$, может быть вычислена

$$\operatorname{tg} \alpha = \operatorname{tg} (\varphi_2 - \varphi_1) = \frac{\operatorname{tg} \varphi_2 - \operatorname{tg} \varphi_1}{1 + \operatorname{tg} \varphi_2 \operatorname{tg} \varphi_1} = \frac{k_2 - k_1}{1 + k_2 k_1},$$

если, скажем, $\varphi_2=\varphi_1+\alpha$ или $\alpha=\varphi_2-\varphi_1.$ Это выражение так же позволяет однозначно найти значение угла $\alpha.$

3.5. Уравнение пучка прямых

Опр. Совокупность прямых, проходящих через некоторую точку M, называется **пучком прямых** с центром M.

Две данные [различные] прямые $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$ определяют пучок прямых, которые проходят через точку пересечения этих прямых.

Утв 3. Пусть $A_1x + B_1y + C_1 = 0$ и $A_2x + B_2y + C_2 = 0$ — две различные прямые. Прямая тогда и только тогда принадлежит тому же пучку прямых, что и две данные, когда ее уравнение есть

$$\alpha(A_1x+B_1y+C_1)+\beta(A_2x+B_2y+C_2)=0$$
 (уравнение пучка прямых) (7)

для некоторого ненулевого набора чисел α, β .

Док-во. Обозначим $M_0(x_0,y_0)$ точку пересечения данных прямых l_1 и l_2 . Пусть прямая m принадлежит пучку прямых, проходящих через M_0 , и отлична от l_1 с l_2 (для самих l_1 , l_2 все и так ясно). Возьмем произвольно точку $M(x',y')\in m$, отличную от M_0 . После подстановки M в уравнение (7) становится очевидным, что если взять $\alpha=-(A_2x'+B_2y'+C_2)$ и $\beta=A_1x'+B_1y'+C_1$, то получим уравнение прямой m, которое имеет вид (7) и $\alpha,\beta\neq 0$.

Обратно. Очевидно, что координаты M_0 удовлетворяют уравнению (7), т.к. $M_0 \in l_1, l_2$. Чтобы $\alpha(A_1x+B_1y+C_1)+\beta(A_2x+B_2y+C_2)=(\alpha A_1+\beta A_2)x+(\alpha B_1+\beta B_2)y+\alpha C_1+\beta C_1=0$ было уравнением прямой достаточно показать, что его коэффициенты при x,y одновременно не равны нулю. Предположим, что это не так и $\begin{cases} \alpha A_1+\beta A_2=0\\ \alpha B_1+\beta B_2=0 \end{cases}$. Так как прямые l_1 и l_2 пересекаются, то определитель матрицы этой системы отличен от нуля. Поэтому она имеет лишь нулевое решение, а это противоречит тому, что $\alpha,\beta-$ ненулевой набор. Предположение неверно, а это доказывает, что (7) задает прямую.

След 1. Уравнение $\alpha(x-x_0)+\beta(y-y_0)=0$ задает пучок прямых, проходящих через точку $M_0(x_0,y_0).$