Fixed-sample multi-arm clinical trial design for a Bernoulli distributed primary outcome

12/06/2019

Design setting

The trial will be designed to compare K experimental treatments to a shared control arm. Response X_{ik} , from patient $i = 1, ..., n_k$ in arm k = 0, ..., K, will be assumed to be distributed as $X_{ik} \sim Bern(\pi_k)$. Then, the hypotheses to be tested will be:

$$H_k: \tau_k = \pi_k - \pi_0 \le 0, \ k = 1, \dots, K.$$

The global alternative hypothesis, H_A , will be:

$$\pi_1 = \dots = \pi_K = \pi_0 + \delta_1.$$

The least favourable configuration for experimental arm k, LFC_k , will be:

$$\pi_k = \pi_0 + \delta_1, \ \pi_1 = \dots = \pi_{k-1} = \pi_{k+1} = \dots = \pi_K = \pi_0 + \delta_0.$$

The least favourable configuration for experimental arm k, LFC_k , will be:

$$\tau_k = \delta_1, \ \tau_1 = \dots = \tau_{k-1} = \tau_{k+1} = \dots = \tau_K = \delta_0.$$

Here, δ_1 and δ_0 are interesting and uninteresting treatment effects respectively.

Inputs

The following choices were made:

- K = 2 experimental treatments will be included in the trial.
- A significance level of $\alpha = 0.15$ will be used, in combination with **Dunnett's correction**.
- The response rate in the control arm will be assumed to be: $\pi_0 = 0.3$.
- The marginal power for each null hypothesis will be controlled to level $1 \beta = 0.8$ under each of their respective least favourable configurations.
- The interesting and uninteresting treatment effects will be: $\delta_1 = 0.15$ and $\delta_0 = 0$ respectively.
- The target allocation to each of the experimental arms will be: the same as the control arm.
- The sample size in each arm will not be required to be an integer.
- Plots will be produced.

Outputs

- The total required sample size is: N = 292.769.
- The required sample size in each arm is: $(n_0, \ldots, n_K) = (97.59, 97.59, 97.59)$.
- Therefore, the realised allocation ratios to the experimental arms are: $(r_1, \ldots, r_K) = (1, 1)$.
- The maximum familywise error-rate is: **0.15**.
- The minimum marginal power is: 0.799.
- The following critical threshold should be used with the chosen multiple comparison correction: 0.087.

pi0	pi1	pi2	FWERI1	FWERI2	FWERII1	FWERII2
0.3	0.30	0.30	0.1499712	0.0273161	0.0000000	0.0000000
0.3	0.45	0.45	0.0000000	0.0000000	0.3207992	0.0840125
0.3	0.45	0.30	0.0879297	0.0000000	0.2012510	0.0000000
0.3	0.30	0.45	0.0879297	0.0000000	0.2012510	0.0000000

pi0	pi1	pi2	Pdis	Pcon	P1	P2
0.3	0.30	0.30	0.1499712	0.0273161	0.0886437	0.0886437
0.3	0.45	0.45	0.9159875	0.6792008	0.7975941	0.7975941
0.3	0.45	0.30	0.8012465	0.0854321	0.7987490	0.0879297
0.3	0.30	0.45	0.8012465	0.0854321	0.0879297	0.7987490

pi0	pi1	pi2	PHER	FDR	pFDR	FNDR	Sens	Spec
0.3	0.30	0.30	0.0886437	0.1499712	1.0000000	0.0000000	0.0000000	0.9113563
0.3	0.45	0.45	0.0000000	0.0000000	0.0000000	0.3207992	0.7975941	0.0000000
0.3	0.45	0.30	0.0439648	0.0452136	0.0564291	0.1018743	0.7987490	0.9120703
0.3	0.30	0.45	0.0439648	0.0452136	0.0564291	0.1018743	0.7987490	0.9120703

Plots

- $FWER_{I1}$ - $FWER_{I2}$ - $FWER_{II1}$ - $FWER_{II2}$ - PHER

— FDR — pFDR — FNDR — Sensitivity — Specificity

