СОВМЕСТИМОСТЬ ТЕХНИЧЕСКИХ СРЕДСТВ ЭЛЕКТРОМАГНИТНАЯ

ТРЕБОВАНИЯ К ШИРИНЕ ПОЛОСЫ РАДИОЧАСТОТ И ВНЕПОЛОСНЫМ ИЗЛУЧЕНИЯМ РАДИОПЕРЕДАТЧИКОВ

МЕТОДЫ ИЗМЕРЕНИЙ И КОНТРОЛЯ

Издание официальное

Предисловие

- 1. РАЗРАБОТАН И ВНЕСЕН Техническим комитетом по стандартизации в области электромагнитной совместимости технических средств (ТК 30)
- 2. ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации 26 апреля 1995 г. в качестве межгосударственного стандарта ГОСТ 30318—95.

Постановлением Госстандарта России от 12 марта 1996 г. № 164 ГОСТ 30318—95 введен в действие в качестве государственного стандарта Российской Федерации с момента принятия указанного постановления и признан имеющим одинаковую силу с ГОСТ Р 50016—92 на территории Российской Федерации в связи с полной аутентичностью их содержания

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Беларуси
Республика Казахстан	Госстандарт Республики Казахстан
Киргизская Республика	Киргизстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикгосстандарт
Туркменистан	Главная государственная инспекция Туркменистана
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. Стандарт соответствует Общесоюзным НОРМАМ 19-86, Регламенту радиосвязи
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 22579—86	2.6.2
ГОСТ 23611—79	Вводная часть, приложение 1
ГОСТ 24375—80	Вводная часть, приложение 1
ГОСТ 26886—86	2.3.4

6. ПЕРЕИЗДАНИЕ, октябрь 2005 г.

© ИПК Издательство стандартов, 2000 © Стандартинформ, 2005

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения национального органа Российской Федерации по стандартизации

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Совместимость технических средств электромагнитная

ТРЕБОВАНИЯ К ШИРИНЕ ПОЛОСЫ РАДИОЧАСТОТ И ВНЕПОЛОСНЫМ ИЗЛУЧЕНИЯМ РАДИОПЕРЕДАТЧИКОВ

<u>ΓΟCT 30318—95</u> <u>ΓΟCT P 50016—92</u>

Методы измерений и контроля

Electromagnetic compatibility of technical means.

Frequency bandwidth and off-band emission requirements of radiotransmitters. Test and control methods

ОКСТУ 6500

Дата введения 1996-07-01

Настоящий стандарт распространяется на действующие, выпускаемые, устанавливаемые и вновь разрабатываемые (модернизируемые) радиопередатчики народнохозяйственного применения и устанавливает следующие основные параметры ширины полосы радиочастот и внеполосных излучений радиопередатчиков: необходимую ширину полосы частот, контрольную ширину полосы частот, ширину полосы частот внеполосного радиоизлучения на уровне X дE в полосе частот от E кE на E и методы их измерений и контроля.

Стандарт не распространяется на переносные радиопередатчики спасательных средств, радиопередатчики, используемые для передачи сигналов тревоги и бедствия, и радиопередатчики, работающие в полосе частот ниже 30 МГц с пиковой мощностью менее 1 Вт.

Настоящий стандарт является обязательным при стандартизации и сертификации технических средств в области ЭМС.

Термины, применяемые в настоящем стандарте, и их пояснения приведены в ГОСТ 23611, ГОСТ 24375 и приложении 1, условные обозначения величин и их единицы измерения — в приложении 2.

1. ТРЕБОВАНИЯ К ШИРИНЕ ПОЛОСЫ РАДИОЧАСТОТ И ВНЕПОЛОСНЫМ ИЗЛУЧЕНИЯМ РАДИОПЕРЕДАТЧИКОВ

- 1.1. Исходным параметром при нормировании ширины полосы радиочастот и внеполосных радиоизлучений является необходимая ширина полосы частот, которую вычисляют по формулам, приведенным в табл. 1. При расчете необходимой ширины полосы частот используют параметры модуляции, указанные в технических условиях (ТУ) на данный тип радиопередатчика.
- 1.2. Ширина полосы радиочастот нормируется на уровне минус 30 дБ относительно заданного (исходного) уровня 0 дБ. Полоса, соответствующая этому уровню, принята за контрольную ширину полосы частот, нормы на которую вычисляют по формулам, приведенным в табл. 1.
- 1.3. Внеполосные излучения нормируются по значениям полосы частот радиоизлучения на уровнях минус X дБ относительно заданного (исходного) уровня 0 дБ. Уровни X дБ указаны в табл. 1, а нормированные значения ширины полосы на этих уровнях вычисляют по формулам, приведенным в табл. 1.

. Таблица 1 Формулы для расчета норм на ширину полосы радиочастот и внеполосные излучения

	T					<u> </u>
			Формулы для	н расчета		1
Класс излучения	Дополнительная	необходимой	контрольной	внеполосн	ых излучений	Примечание
класс излучения	характеристика	ширины	ширины	на уровне	ширина по-	Примечание
		полосы частот	полосы частот	минус X, дБ	лосы B_{x} , Гц	
		В _н , Гц	<i>В</i> _к , Гц		- д, - ц	
			тудная мод	-		
	1.1. Сит	нал с информаці	ей в квантовані	ной или цифр	овой форме	i
Телеграфия,		KB,	$B_{\!\scriptscriptstyle m H}$	40	1,3 B _H	Значение коэф-
незатухающие	датчики фик-	где <i>K</i> =5 —		50	1,6 B _H	фициента К уста-
колебания	сированной	для линий,		60	2,0 B _H	навливают для
A1AAN,	службы	подверженных				различных типов
A1BBN	Радиопе-	замираниям;				радиопередатчиков
	редатчики	<i>K</i> =3 — для				в ТУ в зависи-
	сухопутной и	линий без				мости от назначения радиопере-
	морской под- вижных	замираний				датчика и диапа-
	служб мощ-					зона используе-
	ностью более					мых частот
	100 BT					
	Радиопе-	5 B	1,4 B _H	40	2,6 B _H	
	редатчики су-		, 11			
	хопутной и					
	морской под-					
	вижных служб					
	мощностью					
	100 Вт и менее		1 4 0	40	1 (D	1 Homers man
	Радиопере-	5 B	$1,4 B_{\rm H}$	40 50	2,6 B _H 4,6 B _H	1. Нормы распространяются на
	датчики воз-			60	8,2 B _H	скорости манипу-
	воздушной			00	0,2 D _H	ляции $B \le 20$ Бод.
	подвижной					В случае В>20 Бод
	службы					вводят ограниче-
	_					ния, согласован-
						ные с заказчиком.
						2. Контроль
						осуществляют до
						уровня минус
Тахгажг хүсж		2 1/ 15 2	2 M 6 0 D	35	$\begin{vmatrix} 2 & M_2 + 10,0 & B \end{vmatrix}$	40 дБ
Тональная	_	$2 M_2 + 5B$	$2 M_2 + 6.8 B$	33	$ 2 M_2 + 10,0 B $	
телеграфия, A2AAN,						
A2BBN						
Тональная	_	$M_2 + 5 B$	$\emph{\textbf{\textit{B}}}_{\! ext{ iny H}}$	40	1,25 B _H	За исключе-
телеграфия,			- n	50	1,55 B _H	нием радиопере-
одна боковая				60	$2,0 B_{\rm H}$	датчиков воздуш-
полоса час-						ной и морской
тот, полная						подвижных служб,
несущая,						требования к ко-
H2BBN						торым приведены
						в табл. 2 и 3 соот-
H2BFN	Сигнал из-	<i>M</i> ₂	D	40	1,25 B _H	ветственно
парги	бирательного	<i>IM</i> 2	$ extcolor{black}{ extcolor{black}{B_{ m H}}}$	50	$1,25 B_{\rm H}$ $1,55 B_{\rm H}$	
	вызова с ис-			60	$2,0$ $B_{\rm H}$	
	пользованием				H	
	последова-					
	тельного од-					
	ночастотного					
	кодирования					
	· · · · -					

Продолжение табл. 1

-						
			Формулы ,	иля расчета		
Класс излучения	Дополнительная	необходимой	контрольной	внеполосны	іх излучений	Примечание
KARCO HOLY TOTAL	характеристика	ширины полосы частот $B_{\rm H}$, Гц	ширины полосы частот $B_{\mathbf{k}}$, Γ ц	на уровне минус <i>X</i> , дБ	ширина по- лосы <i>B</i> _x , Гц	Примечание
Тональная телеграфия, одна боковая	Вторичное уп- лотнение канала, образуемого	5 B	<i>B</i> _H	40 50 60	1,3 B _H 1,6 B _H 2,0 B _H	
полоса частот, несущая, J2BBN	передатчиком ЈЗЕ, тональными посылками на поднесущей 1 или 1,6 кГц	5 B	1,36 B _H	40	2,6 B _H	Распространяется на радиопередатчики сухопутной подвижной службы мощностью 100 Вти менее
Многока- нальная то- нальная теле- графия, одна боковая полоса частот, ослаб- ленная несу- щая, R7BCF		<i>M</i> ₂	1,2 В _н	40 50 60	2,1 B _H 4,0 B _H 6,9 B _H	
Многока- нальная то- нальная теле- графия, одна боковая полоса частот, подав- ленная не- сущая, J7BCF		M_2-M_1	1,2 B _H	40 50 60	2,1 B _H 4,0 B _H 6,9 B _H	
	•	1.2	2. Телефония		•	•
Телефония, две боковые полосы частот, одноканальная, A3EJN	Радиопере- датчики фикси- рованной служ- бы без пред- коррекции АЧХ	2 M ₂	1,9 B _H	40 50 60	3,3 B _H 6,0 B _H 10,5 B _H	
	Радиопере- датчики фикси- рованной службы с предкоррек- цией АЧХ и пе- редатчики под- вижной службы	2 M ₂	2,5 B _H	40 50 60	4,5 B _H 7,8 B _H 13,8 B _H	
	Радиопере- датчики воздуш- ных судов воз- душной подвиж- ной службы	2 M ₂	2,5 B _H	40 50 60	4,5 B _H 8,0 B _H 14,0 B _H	
Телефония, одна боковая полоса частот, полная несущая, H3EJN, ослабленная несущая, R3EJN	Радиопере- датчики фик- сированной службы	<i>M</i> ₂	1,15 B _H	35 40 50 60	1,25 $B_{\rm H}$ 1,6 $B_{\rm H}$ 2,9 $B_{\rm H}$ 5,4 $B_{\rm H}$	

			Формулы д	ия расчета		
Класс излучения	Дополнительная характеристика	необходимой ширины полосы частот $B_{\mathbf{H}}$, Γ ц	контрольной ширины полосы частот $B_{\mathbf{k}}$, Гц	внеполосны на уровне минус X, дБ	их излучений ширина по- лосы <i>B</i> _x , Гц	Примечание
	Радиопередат- чики сухопугной подвижной служ- бы мощностью более 100 Вт	<i>M</i> ₂	1,2 <i>B</i> _H	40 50 60	2,1 B _H 4,0 B _H 6,9 B _H	
	Радиопередат- чики сухопутной подвижной служ- бы мощностью 100 Вт и менее	<i>M</i> ₂	1,8 <i>B</i> _H	40 50 60	3,4 B _H 6,0 B _H 11,0 B _H	
Телефония, одна боковая полоса частот, подавленная	Радиопередат- чики фиксиро- ванной службы	M_2-M_1	1,15 B _H	35 40 50 60	1,25 B _H 1,6 B _H 2,9 B _H 5,4 B _H	
несущая, J3EJN	Радиопередат- чики сухопутной подвижной служ- бы мощностью более 100 Вт	M_2-M_1	1,2 B _H	40 50 60	2,2 B _H 4,0 B _H 6,9 B _H	
	Радиопередат- чики сухопутной подвижной служ- бы мощностью 100 Вт и менее	M_2-M_1	1,8 B _H	40 50 60	3,4 B _H 6,0 B _H 11,0 B _H	
Телефония, передача на неза- висимых полосах частот, ослаблен- ная или подав- ленная несущая, B8EJN	Телефония на двух независи- мых полосах частот	2 M ₂	1,05 B _H	35 40 50 60	1,15 B _H 1,5 B _H 2,7 B _H 4,9 B _H	
	Телефония на четырех независимых полосах частот	4 M ₂	1,05 B _H	35 40 50 60	$1,15 B_{\rm H} \\ 1,5 B_{\rm H} \\ 2,7 B_{\rm H} \\ 4,9 B_{\rm H}$	
		1.3. Звуков	вое радиовеща	ние		
Радиовещание, две боковые полосы частот, A3EGN		2 M ₂	1,2 Вн	40 45 50 60	1,35 B _H 1,40 B _H 1,9 B _H 3,3 B _H	
Радиовещание, одна боковая полоса частот, несущая, R3EGN		<i>M</i> ₂	1,15 B _H	35 40 50 60	1,2 B _H 1,4 B _H 2,4 B _H 4,4 B _H	

Продолжение табл. 1

			Формулы дл	я расчета		
Класс излучения	Дополнительная характеристика	необходимой ширины	контрольной ширины	_		Примечание
		полосы частот В _н , Гц	$B_{\rm K}$, Гц	на уровне минус <i>X</i> , дБ	ширина по- лосы <i>В</i> _х , Гц	_
					-	_
Фотограния	1		1.4. Факсимило — В	1	D + 2 M	
Факсимиле модуляцией песущей, мо- улированной по частоте поднесущей, две боковые полосы час- от, АЗС		2 C + 3 M ₂	$B_{ m H}$	35	$B_{\rm H}+2~M_2$	
Факсимиле модуляцией есущей, мо- улированной о частоте однесущей, дна боковая олоса час- от, ослаб- енная несу- дая, R3C		$C+1,5 M_2$	$B_{\rm H}+M_2$	40 50 60	$B_{\rm H} + 2 M_2$ $B_{\rm H} + 3 M_2$ $B_{\rm H} + 4 M_2$	
		1.5.	Сложные излуч	нения		
Сложное салучение в вух незави- имых боко- ых полосах астот, подав- енная или слабленная есущая, 19	Одна боковая полоса частот — телефония, другая — многоканальная тональная телеграфия	2 M ₂	1,1 <i>B</i> _H	40 50 60	2,0 B _H 3,7 B _H 6,4 B _H	
		2. ЧАСТ	готная мод	РИЦИЯ		
2.	1. Телеграфия, п	ередача цифро	вой информации	і методами ча	стотной манипул	иишкі
Частотная елеграфия и манипуляция	$0.5 \leq m < 1.5$	2,6 <i>B</i> √ <i>m</i>	1,23 B _H	40 50	$4,8 B \sqrt{m}$ $7,3 B \sqrt[3]{m}$	$m=\frac{2D}{B}$
ри передаче ифровой				60	$10,7 B \sqrt[3]{m}$	
нформации, ⁷ 1B, F1E, F1D	$1,5 \leq m \leq 5$	B+2,4D	$4,3 B\sqrt{m}$	40	$5,8 \textbf{\textit{B}} \sqrt{m}$ $8,1 \textbf{\textit{B}} \sqrt{m}$	
				50 60	$\begin{array}{c c} 8,1 & B \vee m \\ 11,0 & B \sqrt{m} \end{array}$	
	5 ≤ m < 7	B+2,4 D	4,3 B √ <i>m</i>	40	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	50	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
					0,1 20 1 110	

Продолжение табл. 1

			Формулы дл	я расчета		
Класс излучения	Дополнительная	необходимой	контрольной	внеполосн	ых излучений	Примечание
	характеристика	ширины полосы частот $B_{\rm H}$, Γ ц	ширины полосы частот B_{K} , Гц	на уровне минус <i>X</i> , дБ	ширина по- лосы <i>В</i> _х , Гц	
	$7 \le m \le 12$	B+2,4D	B(m+7)	40	B(1,2 m+7)	
				50	$8,1 B\sqrt{m}$	
				60	$11,0 B\sqrt{m}$	
	$12 \le m \le 16$	B+2,4D	B(m+7)	40	B(1,2 m+7)	
				50	B(1,2 m + 15)	
				60	$11,0 B\sqrt{m}$	
	m > 16	B+2,4D	B(m+7)	40	B(1,2 m + 7)	
				50	B(1,2 m + 15)	
				60	B(1,3 m + 23)	
Четырехчас-	Радиопере-	1. Для син-	B_{H}	40	B(4 m + 13)	$m = \frac{2D}{3B}$
тотная двух-	датчики фик-	хронизирован-		50	B(4,6 m + 26)	3 B
канальная телеграфия, F7BDX	сированной и подвижной служб	ных каналов В + 2,2 D		60	B(5,1 m + 47)	
	Радиопере- датчики воз-	2. Для не- синхронизи-	B_{H}	40	$11,0 B \sqrt[3]{m^2}$	
	душных судов	рованных ка-		50	$17.0 B \sqrt[3]{m^2}$	
	воздушной	налов 4 <i>B</i> +		60		
	подвижной	+ 2,2 <i>D</i> , где		00	$39,0 B \sqrt[3]{m^2}$	
	службы 1,5 ≤ <i>m</i> <10	В — наиболь- шая скорость				
	1,5 ≤ 11.10	телеграфирова-				
		ния в каналах				
Частотная		$(N_c-1) \wedge F+$	$B_{\rm H}$	50	1,6 B _H	
манипуляция		$ \begin{array}{c c} (N_f-1) \Delta F + \\ + B_{H_{\text{F1B}}} \end{array} $	_ n		, 11	
поднесущих		$B_{H_{\text{FIR}}}$ необхо-		60	3,0 B _H	
частот, F1ВХF		димая ширина			- , · · · · ·	
		полосы частот				
		для класса из-				
		лучения F1BXF				
Частотно-		2 B	2,5 B _H	60	7,0 B _H	
манипулиро- ванная двумя и						
более частота-						
ми, несущая,						
F7D, F7E						
Частотная		2 B	2,5 B _H	60	7,0 B _H	
манипуляция двумя и более						
частотами,						
F8B, F9B						
Минималь-	При норми-		1,18 B*	40	1,54 B*	При ус-
ная частотная	рованной поло-			50	1,84 B _H	ловии, ког-
манипуляция с фильтрацией	се Гауссового формирующего			60	2,05 B _H	да
фильтрацией сигнала в	фильтра ($B_{\rm H}$ T)	1,18 <i>B</i> *				$D \sim B$
фильтре с	1,0	1,14 B				$D \sim \frac{B}{4}$
Гауссовой	0,7	1,1 B				_ 1
формой АЧХ,	0,5 0,3	1,07 B 0,93 B				$T=\frac{1}{R}$

Продолжение табл. 1

	_					
			Формулы д	ля расчета		
Класс излучения	Дополнительная		контрольной	внепол	осных излучений	Примечание
islace has y format	характеристика	необходимой ширины полосы частот $B_{ m H}$, Γ ц	ширины полосы частот $B_{\mathbf{k}}$, Гц	на уровне минус <i>X</i> , дБ	ширина по- лосы <i>В</i> _х , Гц	Примечание
	2.2. Отн	осительная фазо	вая телеграфия	я, фазовая	манипуляция	
Фазовая манипуляция при передаче цифровой информации, G1B, G1D, G1E, G1F, G1W, G7D, G7E, G7F, G7W		5 B	1,4 B _H	40 50 60	2,6 B _H 4,6 B _H 8,2 B _H	
Узкополосная относительная фазовая телеграфия, G1B	Радиопередатчики морской подвижной службы гектометровых и декаметровых волн	1,1 <i>B</i>	2,4 B _H	40 50 60	3,6 B _H 5,1 B _H 6,1 B _H	Рекомен- дуется скорость телеграфирова- ния 100 или 200 Бод
Относительная фазовая манипуляция поднесущих частот, G1BXF		$(N_f-1) F + 5 B$	$B_{\mathtt{H}}$	50 60	1,6 B _H 3,0 B _H	
Несущая манипулированная по амплитуде и фазе D7W	S-позици- онная квадра- турная амп- литудная мо- дуляция	$\frac{B^*}{\log_2 S}$	1,5 B*	40	1,7 B*	Для сиг- налов, у кото- рых α ~ 0,5
		2.	3. Телефония			
Телефония, F3EJN	$0,25 \leq m \leq 1,3$	$2 M_2 + 2 D$	$B_{ m H}$	40 50 60	$(7.8 m + 3) M_2$ $(8.4 m + 4.4) M_2$ $(9 m + 6) M_2$	$m=\frac{D}{3\ M_2}$
	m > 1,3	$2 M_2 + 2 D$	$B_{\scriptscriptstyle m H}$	40 50 60	$(7.8 m + 4) M_2$ $(8.4 m + 6) M_2$ $(8.8 m + 8) M_2$	
		2.4.	Радиовещан	ie		
Звуковое радиовещание (монофонический канал), F3EGN		$2 M_2 + 2 D$	1,15 B _H	_	<u> </u>	При стереофоническом радиовещании норма увеличивается на 20 % по сравнению с монофоническим
Передача ТВ с исполь- зованием час- тотной моду- ляции, F3F		$2 M_2 + 2 D$	1,2 B _H	_	_	

			Формулы для	расчета		
Класс	Дополнительная		контрольной	внепол	осных излучений	_
излучения	характеристика	необходимой ширины полосы частот $B_{ m H}$, Γ ц	ширины полосы частот $B_{\mathbf{k}}$, Гц	на уровне минус <i>X</i> , дБ	ширина по- лосы <i>В</i> _х , Гц	Примечание
		2.5.	. Факсимиле			
Факсимиле с частотной модуляцией несущей частоты фотосигналом в	Передача черно-белого штрихового (текстового) изображения	$2 M_2 + 2,2 D$ $M_2 = \frac{N}{2}$	1,2 B _H	40 50 60	1,6 B _H 2,1 B _H 2,7 B _H	$m = \frac{D}{M_2}$
импульсной форме, F1C, F3C	Передача полутонового	$2 M_2 + 2,2 D$	1,2 B _H	40	$B_{\rm H} \cdot 10^{\frac{5,1}{11,8+3,2m}}$	
130	и цветного изображения			50	$B_{\rm H} \cdot 10^{\frac{8,1}{11,8+3,2m}}$	
				60	$B_{\rm H} \cdot 10^{\frac{11,1}{11,8+3,2m}}$	
		2.6. Сл	Ожные излучен	ия	•	
Частотно- модулирован- ное (ЧМ) ко- лебание ра- диорелейных линий с час- тотным раз-	С применением составных сигналов (аппаратура «Горизонт-М», ДТР-12, ТР-120)	$(n-1)$ $F_{\text{кор}}$ + $+2M_2+1.8D$; для «Горизонт-М» $n=3$; для ДТР-12, ТР-120 $n=3$ (один передатчик),	$(n+1)F_{\text{kop}} + + 1,54 D$	_	_	При работе радиопередатчика в линейном режиме и установке фильтров в тракте
делением ка- налов (ЧРК), F8EJF		n = 6 (два передатчика); контроль осуществляют при работе одного передатчика (D определяют по табл. 4)	$(n+3)F_{\text{kop}} + + 1,06 D$	_	_	При работе радиопередатчика в режиме насыщения
ЧМ коле- бание радио- релейной системы пря- мой види-	$60 \le N_{\rm c} \le 6000$	2 <i>M</i> ₂ + 2 <i>D</i> (<i>D</i> определяют по табл. 4)	0,3 Вн	_	_	Измерения и контроль B_{K} осуществляют на этапе госиспытаний
мости, моду- лированное сигналом системы пе- редачи с ЧРК, F8EJF	<i>N</i> _c ≥ 720	В системах с пилот-сигналом взамен M_2 подставляют $f_{\rm ps}$	0,7 В _н	_	_	То же
ЧМ колебание радиорелейной системы прямой видимости, модулированное сигналом ТВ и поднесущими звука, F8WWN		$2 M_2 + D_{\text{разм TB}}$ звука. В системах с пилот-сигналом взамен M_2 под-ставляют f_{ps}	0,7 B _H			>-

ΓΟCT 30318-95/ΓΟCT P 50016-92

Продолжение табл. 1

			Формулы для	пасчета			
			Формулы для				
Класс излучения	Дополнительная характеристика	необходимой ширины полосы частот <i>В</i> _н , Гц	контрольной ширины полосы частот $B_{\mathbf{K}}$, Γ ц	внеполо на уровне минус <i>X</i> , дБ	осных излучений ширина по- лосы B_{x} , Гц	Примечание	
		3. ИМПУЛ	ьсная модул	яция			
			ики средств ради			I	
Немодули- рованная несущая	Выходной каскад ра- диопередат-	0,86 α t	$41,9 \ \alpha \sqrt{t} \ B_{\rm H}$ для $t \le 0,5$;	40	89,7 $\alpha \sqrt[3]{t^2} B_{\rm H}$ для $t < 0,32$;	$B_{\rm H}$ — в мега- герцах (МГц);	
PONAN	чика—магне- трон		29,1 а В _н для t > 0,5		74,1 $\alpha \sqrt{t}$ $B_{\rm H}$ для 0,32 $\leq t <$ 1,6; 93,3 α $B_{\rm H}$ для $t \geq$ 1,6	<i>t</i> — в микро- секундах (мкс)	
				50	$132 \alpha \sqrt[3]{t^2} B_{\rm H}$ для $t < 1$; $132 \alpha \sqrt{t} B_{\rm H}$ для $1 \le t < 5$; $295 \alpha B_{\rm H}$ для $t > 5$		
				60	197,7 $\alpha \sqrt[3]{t^2} B_{\rm H}$		
	Выходной каскад ра- диопередат-	$\frac{0.86}{\alpha t}$	24,4 α В _н для α < 0,11;	40	$14.8 \sqrt{\alpha} B_{H}$ для $\alpha \le 0.045$;		
	чика на ЭВП с сеточным управлением		$8,14\sqrt{\alpha} B_{H}$ для $0,11 \le \alpha \le 0,14;$		8,7 ³ α B _н для α > 0,045		
			5,8 ³ √α В _н для α >0,14	50 60	$12.8 \sqrt[3]{m^2} B_{\rm H}$ $18.6 \sqrt[3]{\alpha} B_{\rm H}$		
	Вновь раз- рабатываемые	$\frac{7,6^*}{t\sqrt{\alpha}}$	_	40	B*		
	передатчики	для α > 0,008;		50	$\sqrt{10}$ $B_{\rm H}^*$		
		$\frac{64^*}{t}$		60	10,0 B*		
		для α ≤ 0,008					
Импульсная передача с амплитудной модуляцией несущей, К1В	Выходной каскад радио- передатчика на ЭВП с се- точным управ- лением	$2 M_{\text{max}} + \frac{4}{t}$	4 B _H	40 50 60	5,5 B _H 8,0 B _H 15,0 B _H	$M_{ m max} - { m B}$ мегагерцах (МГц); $B_{ m H}$ (МГц); $t-{ m B}$ микросекундах (мкс);	
Частотно- модулирован- ная импульс- ная несущая, Q1B	Выходной каскад радио- передатчика на клистроне или ЭВП с сеточ- ным управле- нием	2 D	$\lg B_{K} = \lg B_{H} + \frac{12}{24,7+10 \lg D^{3} t}$	40	$ \begin{aligned} &\lg B_{40} = 0,75 - \\ &- 0,251 \lg D^3 t + \\ &+ \lg B_{\rm H} \\ & \text{для } D^3 t < 10; \\ &\lg B_{40} = \\ &= \frac{17}{24,7+10 \lg D^3 t} + \\ &+ \lg B_{\rm H} \\ & \text{для } D^3 t \ge 10 \end{aligned} $	В _н (МГц); D (МГц); t (мкс)	

Окончание табл. 1

			Формуль	і для расчета		
Класс излучения	Дополни- тельная	необходимой ширины			сных излучений	Примечание
	характеристика	полосы частот $B_{\rm H}$, Гц	ширины полосы частот B_{κ} , Γ ц	на уровне минус <i>X</i> , дБ	ширина по- лосы <i>В</i> _х , Гц	
				60	$ \begin{split} \lg B_{50} &= 1 -\\ &- 0,25 \lg D^3 \ t +\\ &+ \lg B_{\rm H}\\ \text{для } D^3 \ t < 100;\\ \lg B_{50} &=\\ &= \frac{21,5}{24,7 + 10 \lg D^3 \ t} +\\ &+ \lg B_{\rm H}\\ \text{для } D^3 \ t \geq 100\\ \lg B_{60} &= 1,25 -\\ &- 0,25 \lg D^3 \ t +\\ &+ \lg B_{\rm H}\\ \text{для } D^3 \ t < 1000;\\ \lg B_{60} &=\\ &= \frac{26}{24,7 + 10 \lg D^3 \ t} +\\ &+ \lg B_{\rm H} \end{split}$	
	Вновь разрабаты- ваемые пе-	$2 D + \frac{7.6^*}{\sqrt{\alpha} t}$ для $\alpha > 0.008$;	_	40	для <i>D</i> ³ <i>t</i> ≥ 1000 <i>B</i> [*] _H	
	редатчики	$2D + \frac{64^*}{t}$		50	√10 B _H *	
		для α≤0,008		60	10,0 B *	
	1	; 1	3.2. Сложные і	и злучения	1	I
Радио- релейные системы		$\frac{3,2}{t}$	$1,12\sqrt{\frac{t}{\delta}}B_{\rm H}$	40	$2\sqrt{\frac{t}{\delta}}B_{H}$	
с фазово- импульсной модуляцией,				50	$3,56 \sqrt{\frac{t}{\delta}} B_{\rm H}$ $6,32 \sqrt{\frac{t}{\delta}} B_{\rm H}$	$\delta = \frac{2 \delta_r \delta_f}{\delta_r + \delta_f}$
M7EJT				60	$6,32 \sqrt{\frac{t}{\delta}} B_{\rm H}$	

^{*}Рекомендуемые значения для вновь разрабатываемых радиоэлектронных средств.

Соединение нормированных отсчетных точек, координаты которых по оси ординат соответствуют указанным уровням, а по оси абсцисс — логарифму относительной расстройки по частоте, дает ограничительную линию для внеполосного спектра с одного края излучения. Ограничительная линия для внеполосного спектра с другого края спектра излучения проходит симметрично первой по отношению к средней частоте спектра (см. пример, приведенный в приложении 3).

- 1.4. Измеренные значения контрольной ширины полосы частот и внеполосных излучений не должны более чем на 20 % превышать нормируемые значения на тех же уровнях. Указанный допуск включает погрешность метода измерений, приведенного в разд. 2.
- 1.5. Требования к внеполосным излучениям радиопередатчиков ВЧ диапазона воздушных судов воздушной подвижной службы, работающих классами излучений H2BBN, H3EJN, J3EJN, J7BCF, JXX, приведены в табл. 2.

Таблица 2 Требования к внеполосным излучениям радиопередатчиков ВЧ диапазона воздушных судов воздушной подвижной службы, работающих классами излучений H2BBN, H3EJN, J3EJN, J7BCF, JXX

Полоса частот	Ослабление спектральных составляющих относительно пиковой мощности огибающей, дБ, не менее
От $f_{ m np} \pm 1,5$ к Γ ц до $f_{ m np} \pm 4,5$ к Γ ц	30
Or $f_{\rm np}$ \pm 4,5 кГц до $f_{\rm np}$ \pm 7,5 кГц Or $f_{\rm np}$ \pm 7,5 кГц и более	38 43

 Π р и м е ч а н и е. Присвоенная частота радиопередатчика — $f_{\rm np}$ на 1400 к Γ ц выше частоты несущей или ее остатка.

1.6. Требования к внеполосным излучениям радиопередатчиков морской подвижной службы, работающих классами излучений H2BBN, H3EJN, J3EJN, R3EJN, приведены в табл. 3.

Таблица 3 Требования к внеполосным излучениям радиопередатчиков морской подвижной службы, работающих классами излучений H2BBN, H3EJN, J3EJN, R3EJN

Полоса частот	Порядок комбинационных составляющих	Уровень внеполосных составляющих на любой дискретной частоте, дБ, относительно		
	двухтонового сигнала, попадающих в данные полосы частот излучений классов J3EJN, H3EJN (H2BBN)	пиковой мощности огибающей	одной из основных составляющих спектра модулирующего двухтонового сигнала	
От $f_{\rm np} \pm 1,5$ к Γ ц до $f_{\rm np} \pm 4,5$ к Γ ц	3	31	25	
От $f_{\rm mp} \pm 4,5 \; { m к} \Gamma { m II}$ до $f_{\rm mp} \pm 7,5 \; { m k} \Gamma { m II}$	5 и 7	38	32	
От $f_{\rm np} \pm 7,5 \;$ к Γ ц до $f_{\rm np} \pm 10,0 \;$ к Γ ц	9	43*	37*	

^{*}С абсолютным значением мощности не более 50 мВт.

 $[\]Pi$ р и м е ч а н и е. Присвоенная частота радиопередатчика — $f_{\rm np}$ на 1400 $\Gamma_{\rm H}$ выше частоты несущей или ее остатка.

Таблица 4 Расчет пиковой девиации частоты, создаваемой многоканальным сообщением, $D=3.76~\Delta~f_{\rm x}\cdot10^{0.05~P_{\rm sarp}}$

Количество каналов ТЧ <i>N</i> _c	Эффективное значение девиации частоты, создаваемое измерительным уровнем одного канала ТЧ $\Delta f_{\mathbf{k}}$, МГц	Средняя мощность многоканального сообщения $(P_{ m sarp})$, дБм	Средняя мощность одного канала ТС $\lambda (P_{ ext{K.cp}})$, дБм
$12 \le N_{\rm c} < 60$	0,1*	2,6 + 2 lg N _c	_
$60 \le N_{\rm c} \le 240$	0,2*	~ (минус $1.5 + 5.5 \lg N_c$)	_
$240 < N_{\rm c} \le 1020$	0,2	$P_{\rm K,cp}$ + 10 lg $N_{\rm c}$	Минус 13
$N_{\rm c} > 1020$	0,14	$P_{\rm K,cp}$ + 10 lg $N_{\rm c}$	Минус 13

^{*} Указано максимальное значение; для конкретных систем может быть применено меньшее значение.

 Π р и м е ч а н и е. Для аппаратуры ТРРС («Горизонт-М», ДТР-12, ТР-120) значения $\Delta f_{\rm K}$ указаны в ТУ.

2. МЕТОДЫ ИЗМЕРЕНИЙ И КОНТРОЛЯ ШИРИНЫ ПОЛОСЫ ЧАСТОТ И ВНЕПОЛОСНЫХ ИЗЛУЧЕНИЙ

2.1. Общие требования к измерениям и контролю

- 2.1.1. На результаты измерений не должны оказывать влияние излучения источников радиопомех (высоковольтных линий электропередачи, других радиоэлектронных средств и т. п.).
- 2.1.2. При контроле радиопередатчиков с перекрытием диапазона частот более 1,1 измерения проводят на трех частотах диапазона (в начале, середине и в конце диапазона).

При коэффициенте перекрытия менее 1,1 измерения проводят на одной частоте, близкой к середине диапазона.

- 2.1.3. Измерения и контроль следует осуществлять с использованием средств измерений, требования к которым приведены в приложении 4.
- 2.1.4. Обозначение и сравнение старых и новых обозначений классов излучений приведены в приложениях 5 и 6.
- 2.1.5 Для радиопередатчиков, работающих классами излучений R3EGN, R3EJN, I3EJN, H3EJN, R7BCF, допускается проводить контроль выполнения требований настоящего стандарта только для излучения класса J3EJN.

Для радиопередатчиков, использующих классы излучений B8EJN и B9WWX, проводится контроль только для излучения B8EJN.

2.1.6. Контрольную ширину полосы частот и внеполосные излучения радиопередатчиков измеряют по структурной схеме, приведенной на черт. 1 (в обобщенном виде).

Структурная схема измерений ширины полосы радиочастот и внеполосных излучений радиопередатчиков

1— имитатор телеграфных сигналов; 2— генератор сигналов низкочастотный; 3— генератор шума; 4— передающее устройство измерителя переходных помех; 5— генератор испытательных телевизионных сигналов; 6— формирующий фильтр; 7— квадратичный вольтметр; 8— радиопередатчик; 9— модулометр; 10— измеритель мощности; 11— аттенюатор; 12— элемент связи (направленный ответвитель); 13— анализатор спектра; 14— девиометр; 15—эквивалент антенны; 16— частотомер

Черт. 1

При измерениях используют ту часть схемы, которая соответствует методике измерений данного класса излучения.

2.1.7. Для радиопередатчиков, работающих классами излучений F9B, F9E, F9D, контроль проводят по структурной схеме черт. 1 с дополнением со стороны переключателя генератором псевдослучайной последовательности с генератором тактовых сигналов. После аттенюатора к схеме подключают селективный микровольтметр.

2.2. Испытательные сигналы для проведения измерений и контроля радиопередатчиков

2.2.1. При контроле радиопередатчиков, работающих классами излучений A1AAN, A1BBN, A2AAN, H2BBN, J2BBN, F1BCN, F1D, F1E, F2B, F7E, F7B, F8B, G1B, G1E, G1F, G1W, G2D, G7D, G7E, G7F, G7W, измерения проводят при модуляции радиопередатчика испытательным сигналом типа «прямоугольные телеграфные точки».

При контроле радиопередатчиков, работающих классами излучений A1AAN, A1BBN, A2AAN, H2BBN, J2BBN, G1BCN, F1D, F1E, F2B, F7E, F7B, F8B, G1E, G1F, G1W, G2B, G2D, G7D, G7E, G7F, G7W, измерения проводят при максимальной скорости манипуляции, оговоренной в ТУ на испытуемый радиопередатчик.

При контроле радиопередатчиков морской подвижной службы, работающих классом излучения G1BCN в режиме узкополосной относительной фазовой телеграфии (УОФТ), измерения проводят при скорости телеграфирования $B=0.88~B_{\rm max}$.

При контроле радиопередатчиков, работающих классами излучений F1BCN, F1D, F1E, F2B, измерения проводят при максимальных штатных значениях девиации частоты на максимальной скорости манипуляции и при наиболее часто применяемых сочетаниях девиации и скорости манипуляции.

2.2.2. При контроле радиопередатчиков, работающих классами излучений F7BDX, F7D, F7E, F8B (G7D, G7E, G7F, G7W), испытательный сигнал формируется путем манипуляции обоих каналов радиопередатчика «телеграфными точками», скорость и синхронизация которых выбраны таким образом, чтобы мгновенная частота (фаза) радиопередатчика последовательно принимала все четыре значения в течение равных промежутков времени (черт. 2).

Формирование испытательного сигнала для радиопередатчиков, работающих классом излучения F7BDX

 f_1 — частота, соответствующая «отжатию» в первом и втором каналах; f_2 — частота, соответствующая «нажатию» в первом и «отжатию» во втором каналах; f_3 — частота, соответствующая «отжатию» в первом и «нажатию» во втором каналах; f_4 — частота, соответствующая «нажатию» в первом и втором каналах; U— манипулирующее напряжение

Черт. 2

При контроле радиопередатчиков, работающих классом излучения F7BDX, измерения проводят при максимальном разносе частот и максимальной скорости манипуляции (по одному из каналов).

П р и м е ч а н и е. Если при измерениях с использованием указанных манипулирующих сигналов радиопередатчик соответствует требованиям настоящего стандарта (разд. 2) в части синхронного режима работы каналов, следует считать, что радиопередатчик будет соответствовать требованиям и в части асинхронного режима работы каналов.

2.2.3. При контроле радиопередатчиков, работающих классом излучения F1C или F3C, испытательный сигнал представляет собой синусоидальный сигнал с частотой 1,9 кГц, модулированный

по амплитуде с коэффициентом модуляции, равным 90 %, частотой 1,1 кГц. Ширину полосы частот измеряют при девиации частоты на выходе радиопередатчика, равной 1500 Гц.

- 2.2.4. При контроле радиопередатчиков, работающих классом излучения АЗС или RЗС, испытательный сигнал представляет собой синусоидальный сигнал с частотой 1,9 кГц, модулированный по частоте синусоидальным сигналом с частотой 550 Гц и девиацией 400 Гц (имитация передачи черно-белых штриховых изображений). Коэффициент глубины модуляции на выходе радиопередатчика устанавливают равным 90 %.
- 2.2.5. При контроле радиопередатчиков, работающих классом излучения F3EGN, испытательный сигнал представляет собой синусоидальный сигнал с частотой, равной максимальной модулирующей частоте с коэффициентом нелинейных искажений, не превышающим 1 %. Измерения проводят при максимальной девиации частоты. Девиацию устанавливают с точностью не хуже 5 %.

П р и м е ч а н и е. Нормы на контрольную ширину полосы частот излучений вещательных радиопередатчиков с широкополосным линейным трактом модуляции выполняются, если не превышается установленное максимальное значение девиации частоты при соблюдении норм на нелинейные искажения и фон радиопередатчиков.

2.2.6. При контроле радиопередатчиков, работающих классами излучений A3EJN, A3EGN, H3EJN, J3EJN, R3EGN, R7BCF, J7BCF, F3EJN, B8EJN, B9WWX, измерения проводят на шумовых испытательных сигналах, сформированных с помощью фильтров.

При контроле радиопередатчиков, работающих классом излучения A3EGN или R3EGN, используют фильтр, формирующий вещательный сигнал (п. 4.2 приложения 4).

При контроле радиопередатчиков, работающих классами излучений R7BCF, J7BCF, B9WWX, а также радиопередатчиков подвижной службы, работающих классами излучений A3EJN, R3EJN, H3EJN, J3EJN, F3EJN, в качестве формирующего фильтра применяют любой фильтр, имеющий полосу пропускания телефонного канала, используемого в данной службе.

Во всех остальных случаях в качестве формирующего фильтра используют фильтр, формирующий речевой сигнал (п. 4.1 приложения 4). Для передатчиков, работающих классами излучений В8ЕЈN, В9WWX, шумовой испытательный сигнал подается через формирующие фильтры в каждый из каналов,

2.2.7. При контроле радиопередатчиков, работающих классом излучения F8EJF, в качестве испытательного сигнала используется шумовой сигнал от передатчика измерителя переходных помех (ИПП).

При контроле радиопередатчиков, работающих классом излучения D7W, в качестве испытательного сигнала используют сигнал от генератора псевдослучайной последовательности (ПСП) импульсов.

- 2.2.8. При контроле радиопередатчиков, работающих классами излучений F3F, F8WWN, в качестве испытательного сигнала используют сигнал от генератора испытательных телевизионных сигналов
- 2.2.9. При контроле радиопередатчиков, работающих классами излучений M7E, PONAN или K1B, Q1B, измерения проводят в режиме модуляции радиопередатчика некодированными импульсами, длительность которых должна быть наименьшей из предусмотренных в ТУ на испытуемый радиопередатчик. В случае невозможности работы радиопередатчика в режиме только коротких импульсов допускается производить измерения в рабочем или испытательном режиме модуляции.

2.3. Установка уровней испытательных сигналов

- 2.3.1. Уровни испытательных сигналов при контроле радиопередатчиков, работающих классами излучений A1AAN, A1BBN, A2AAN, A3C, H2BBN, J2BBN, F1BCN, F1C, F1D, F1E, F2B, F3C, F7E, F7B, F8B, G1B, G1E, G1F, G1W, G2B, G2D, G7D, G7E, G7F, G7W, задаются уровнем немодулированной (неманипулированной) несущей, а для излучения класса R3C уровнем поднесущей.
- 2.3.2. Уровни шумовых испытательных сигналов при контроле радиопередатчиков, работающих классами излучений A3EJN, A3EGN, R3EJN, R3EGN, B8EJN, H3EJN, J3EJN, R7BCF, J7BCF, B9WWX, F3EJN, устанавливают следующим образом.

На вход радиопередатчика от низкочастотного генератора подают синусоидальный сигнал с частотой 600 Гц при использовании фильтра, формирующего речевой сигнал, 1000 Гц при использовании фильтра, имеющего полосу пропускания телефонного канала, или 300 Гц при использовании фильтра, формирующего вещательный сигнал.

Уровень входного синусоидального сигнала устанавливают таким образом, чтобы обеспечива-

лась 100 %-ная модуляция радиопередатчика, работающего классом излучения A3EJN или A3EGN, номинальная пиковая мощность радиопередатчиков, работающих классами излучений R3EGN, R3EJN, B8EJN, H3EJN, J3EJN, R7BCF, J7BCF, B9WWX, или номинальная девиация частоты радиопередатчика, работающего классом излучения F3EJN.

Фиксируют среднеквадратичное напряжение этого сигнала $U_{\rm sin}$. Затем на вход радиопередатчиков работающих классами излучений A3EJN, A3EGN, R3EJN, H3EJN, J3EJN, R7BCF, J7BCF, B8EJN, B9WWX, через тот же формирующий фильтр подают шумовой сигнал, уровень которого устанавливают таким образом, чтобы эффективное напряжение шума (U_{ii}), измеряемое

тем же вольтметром, было равно S U_{\sin} . Если невозможно обеспечить коэффициент модуляции, равный 100 % (при излучении класса АЗЕЈN или АЗЕGN), допускается устанавливать среднеквадратичное значение напряжения шумового сигнала по соотношению $U_{\rm III}=2~S~U_{\rm sin}'$.

Значение коэффициента S для различных случаев указано в табл. 5.

Значение коэффициента Ѕ

Таблица 5

Класс излучения	Дополнительная характеристика	S
A3EGN, A3EJN	Радиовещание и телефония	0,35
	Радиопередатчики воздушных судов воздушной подвижной службы	0,47
H3EJN, R3EJN, R3EGN, J3EJN, J7BGF, F3EJN, R7BCF	Радиовещание и телефония, включая радиопередатчики подвижной службы, многоканальная тональная телеграфия	0,47
B8EJN	Телефония 2 канала	0,33
	Телефония 4 канала	0,23

Необходимый уровень шумового сигнала при измерениях классов излучений R3EJN, R3EGN, J3EJN, B8EJN, J7BCF может устанавливаться с помощью измерителя выходной мощности радиопередатчика таким образом, чтобы при подаче шумового сигнала средняя выходная мощность радиопередатчика составляла 0,25 от его номинальной пиковой мощности.

При контроле радиопередатчиков, которые работают только с определенными типами электроакустических преобразователей (микрофон, ларингофон и т. д.) и имеют ограничители динамического диапазона входного сигнала, уровень шумового сигнала ($U_{\rm m}$) на входе радиопередатчика устанавливают равным $S U_{\sin \text{ ном}}$.

При контроле радиопередатчиков, у которых нормируется среднеквадратичное значение входного напряжения, среднеквадратичное напряжение шумового сигнала должно устанавливаться равным этому значению.

2.3.3. При контроле радиопередатчиков, работающих классом излучения F8EJF, уровень шумового испытательного сигнала, подаваемого на вход оконечного оборудования телефонного ствола, $P_{\text{III.ИСП}}$ вычисляют по формуле

$$P_{\text{III,MCII}} = P_{\text{K,BX}} + P_{\text{3arn}},$$

где $P_{\kappa, \text{вх}}$ — номинальный уровень одного канала ТЧ на входе оконечного оборудования телефонного ствола радиорелейной линии (РРЛ);

 $P_{\text{загр}}$ — средняя мощность многоканального сообщения, определяемая по табл. 4. 2.3.4. При контроле радиопередатчиков, работающих классом излучения F8WWN, уровень испытательного сигнала (размах сигнала яркости, подаваемого на вход оконечного оборудования телевизионного ствола РРЛ) должен быть равен 1 В.

При контроле радиопередатчиков, работающих классом излучения D7W, параметры испытательного сигнала устанавливают в соответствии с ГОСТ 26886.

2.4. Измерения контрольной ширины полосы частот и внеполосных излучений

2.4.1. Контрольную ширину полосы частот и внеполосные излучения радиопередатчиков измеряют в соответствии со структурной схемой, приведенной на черт. 1.

При необходимости измерения можно проводить при связи анализатора спектра с радиопередатчиком «по полю». При этом следует использовать антенны, соответствующие требованиям измерений по широкополосности.

При необходимости измерительную аппаратуру помещают в экранированную камеру.

- 2.4.2. Измерительная аппаратура в соответствии со структурной схемой, приведенной на черт. 1, должна соответствовать требованиям, изложенным в приложении 4.
 - 2.4.3. Параметры анализатора спектра устанавливают исходя из следующих критериев.

Полосу пропускания узкополосного тракта анализатора спектра на уровне минус 3 дБ (Δf) при использовании периодических испытательных сигналов выбирают в три раза меньше частоты манипуляции, а для импульсных классов излучений — близкой к 1/10 t. При контроле импульсных классов излучений форма частотной характеристики узкополосного тракта анализатора спектра должна быть близкой к колоколообразной.

При использовании шумовых испытательных сигналов Δf должна быть не больше 0,05 B_{κ} .

Полосу обзора анализатора спектра (Π) (а при использовании анализатора спектра, подключаемого к тракту усилителя промежуточной частоты — УПЧ приемника, и ширину полосы пропускания приемника) устанавливают в 1,5-2 раза шире значений ширины полосы частот, рассчитанных по данным табл. 1.

Постоянную времени последетекторного фильтра и время анализа анализатора спектра выбирают в зависимости от класса излучения радиопередатчика следующим образом:

при измерении излучений классов A1AAN, A1BBN, A2AAN, H2BBN, J2BBN, F1BCN, G1DCN, F3EGN, F1C, F3C, F7BDX, F2B, F1E, F1D, F7D, F7E, F8B, F9B, G1D, G1E, G1F, G1W, G7D,G7E, G7F, G2B, G2D постоянная времени должна быть минимальной из устанавливаемых в анализаторе спектра; время анализа (*T*) должно соответствовать условию

$$T > \frac{II}{\Delta f^2}$$
,

при этом могут использоваться анализаторы спектра с линейным или логарифмическим детектором;

при измерении излучений классов A3EJN, A3EGN, R3EJN, R3EGN, B8EJN, H3EJN, J3EJN, R7BCF, J7BCF, B9WWX, F3EJN, F8EJF и D7W могут использоваться анализаторы спектра с линейным, квадратичным и логарифмическим детекторами, при этом постоянная времени (T_f) должна соответствовать условию

$$T_f > \frac{16}{\Delta f}$$
.

Время анализа выбирают исходя из следующих условий:

если наклон огибающей спектра (Q) в точке измерения составляет менее 30 дБ/октава, то время анализа прибором, имеющим линейный, квадратичный и логарифмический детекторы, вычисляют по формулам:

$$T_{\text{IIMH}} \ge 8.3 \ T_f \frac{\Pi}{B_k} \sqrt{3.4 \left(1 + \frac{3}{Q}\right)};$$

$$T_{\text{KB}} \ge 11.8 \ T_f \frac{\Pi}{B_k} \sqrt{3.4 \left(1 + \frac{3}{Q}\right)};$$

$$T_{\text{IIT}} > 11.8 \ T_f \frac{\Pi}{B_k} \sqrt{0.1 \ Q}.$$
(1)

Если наклон огибающей спектра (Q) в точке измерения превышает 30 дБ/октава, то время анализа вычисляют по формулам:

$$T_{\text{ЛИН}} \geq \frac{2.3 \ \Pi T_f | X_k|}{B_k};$$

$$T_{\text{KB}} \geq \frac{4.6 \ \Pi T_f | X_k|}{B_k};$$

$$T_{\text{JOT}} \geq \frac{4.6 \ \Pi T_f}{B_k} \lg \frac{U}{U - |X_k| + 1}.$$
(2)

Если при вычислении по формулам (1) и (2) время анализа окажется больше максимального времени развертки анализатора спектра, то измерения необходимо проводить с использованием ручной развертки.

Оценку величины Q осуществляют перед точными измерениями ширины контрольной полосы частот излучения следующим образом.

Полосу обзора анализатора спектра выбирают в три-четыре раза шире $B_{\rm k}$, после чего величину Q оценивают непосредственно по экрану анализатора спектра с логарифмическим детектором в соответствии с черт. 3 или по разности показаний аттенюаторов анализатора спектра при отсчете на отметке шкалы «0 дБ» последовательно значений $B_{\rm k}$ и 2 $B_{\rm k}$.

Примечание. Допускается оценивать величину Q по разности уровней Q' между полосами $B_{\rm K}$ и 1,5 $B_{\rm K}$. Тогда величину Q вычисляют по формуле

$$Q = 1.7 Q'$$
.

Оценка величины наклона огибающей спектра

Черт. 3

При измерениях излучений классов PONAN, K1B, Q1B постоянная времени последетекторного фильтра должна быть минимальной из устанавливаемых на анализаторе спектра.

Время анализа выбирают из условия $T > 50/F_c$.

2.4.4. Нулевой уровень, относительно которого отсчитывают измерительный уровень X дБ, на анализаторе спектра устанавливается следующим образом:

при измерениях излучений классов A1AAN, A1BBN, A2AAN, H2BBN, J2BBN, F1BCN, G1BCN,F3EGN, F1C, F3C, F7BDX, F1D, F1E, F2B, F7E, F7B, F8B, G1B, G1E, G1F, G1W, G2B, G2D, G7D, G7E, G7F, G7W — по уровню немодулированной (неманипулированной) несущей;

при измерениях излучений классов АЗС, R3С — по уровню немодулированной поднесущей;

ΓΟCT 30318-95/ΓΟCT P 50016-92

при измерениях излучений классов PONAN, K1B, Q1B — по уровню максимальной составляющей спектра испытуемого сигнала;

при измерениях излучений классов A3EJN, A3EGN, R3EJN, R3EGN, B8EJN, H3EJN, J3EJN, R7BCF, J7BCF, B9WWX, F3EJN, F8EJF, F8WWN, D7W — по максимальному уровню огибающей спектра в пределах боковой полосы частот; уровень несущей или ее остаток не учитывается.

Примечании. Если при измерениях излучения класса A3EGN максимальный уровень спектральной плотности мощности в пределах боковой полосы частот маскируется несущей, спектр на экране анализатора устанавливают таким образом, чтобы на уровне минус 10 дБ ширина полосы частот излучения была равна 4 кГц.

Амплитуду соответствующей спектральной составляющей на экране анализатора спектра устанавливают на отметку «0 дБ» или в качестве отметки нулевого уровня принимают любую фиксированную горизонтальную линию в верхней трети экрана (индикатора) анализатора спектра.

Установку нулевого уровня и собственно измерения контрольной ширины полосы частот и внеполосных излучений должны осуществлять при одних и тех же параметрах анализатора спектра: полосы пропускания узкополосного тракта, времени развертки и постоянной времени последетекторного фильтра.

2.4.5. После установки нулевого уровня осуществляют измерения контрольной ширины полосы частот и внеполосных излучений.

В случае использования анализатора спектра с логарифмическим детектором отсчет контрольной ширины полосы частот и внеполосных излучений осуществляют непосредственно по шкале анализатора спектра на соответствующих уровнях по частотному интервалу между крайними спектральными составляющими, превышающими этот уровень (черт. 4). Такой отсчет допускается, если погрешность данного анализатора спектра по логарифмической шкале не превышает 2 дБ. В противном случае отсчет проводится при использовании линейного детектора.

Анализатор спектра с линейным детектором производится при затухании отсчетных аттенюаторов анализатора спектра (в тракте ВЧ и ПЧ), превышающем значение уровня X дБ. После подачи на радиопередатчик модулирующего сигнала, не меняя полосы пропускания узкополосного тракта анализатора спектра и полосы обзора, затухание отсчетных аттенюаторов уменьшают на величину X дБ и с помощью частотомера отсчитывают измеряемую ширину полосы частот на отметке нулевого уровня (черт. 5) между спектральными составляющими справа и слева от средней части спектра.

Отсчет контрольной ширины полосы частот и внеполосных излучений на анализаторе спектра с логарифмическим детектором

Отсчет ширины полосы частот на уровне X дБ $(B_{\kappa},\ B_{\kappa})$ на анализаторе спектра с линейным или квадратичным детектором

Черт. 5

Если при этом измеряемая ширина полосы частот радиоизлучения выходит за пределы шкалы анализатора спектра, что приводит к необходимости увеличения полосы обзора, то после измерения полосы обзора необходимо повторить калибровку анализатора спектра по уровню немодулированной несущей. После этого повторяют описанные выше операции.

- 2.5. Методика измерения и контроля внеполосных излучений радиопередатчиков ВЧ диапазона воздушных судов воздушной подвижной службы, работающих классами излучений H2BBN, H3EJN, J3EJN, J7BCF, JXX
- 2.5.1. Уровень любой компоненты спектральной плотности мощности внеполосного излучения, подводимого к антенне или ее эквиваленту, при модуляции радиопередатчика шумовым испытательным сигналом, обеспечивающим номинальную пиковую мощность, не должен превышать величин, указанных в табл. 2.
- 2.5.2. Измерение и контроль внеполосных излучений радиопередатчиков проводят только в классе излучений J3EJN по структурной схеме, приведенной на черт. 6.

Структурная схема измерений внеполосных излучений радиопередатчиков воздушной подвижной службы

 $1,\,2$ — генераторы сигналов низкочастотные; 3— генератор шума; 4— формирующий фильтр; 5— квадратичный вольтметр; 6— радиопередатчик; 7— модулометр; 8— измеритель мощности; 9— аттенюатор; 10— элемент связи (направленный ответвитель); 11— анализатор спектра; 12— девиометр; 13— эквивалент антенны; 14— частотомер

Черт. 6

2.5.3. На вход радиопередатчика от низкочастотных генераторов подают два синусоидальных сигнала с частотами 1100 и 1500 Γ ц одинакового уровня U_s , обеспечивающего номинальную пиковую мощность, подводимую к антенне.

На анализаторе спектра обе компоненты модуляции точной регулировкой их низкочастотного уровня поддерживают равными и устанавливают на уровне минус 6 дБ усилением анализатора спектра. В этом случае уровень 0 дБ соответствует пиковой мощности излучения радиопередатчика в классе излучения J3EJN.

- 3.5.4. Отключают оба низкочастотных генератора и на вход радиопередатчика подключают генератор шума через формирующий фильтр речевого сигнала. Уровень сигнала от генератора шума на входе радиопередатчика устанавливают равным $0.47\ U_{\rm s}$ по среднеквадратичному вольтметру. Ширину полосы частот, занимаемую внеполосными излучениями, измеряют на уровнях минус 30, 38 и 43 дБ относительно установленного в п. 2.5.3 нулевого уровня. Ширина полосы частот не должна превышать величин, указанных в табл. 2.
- 2.6. Методика измерений и контроля внеполосных излучений радиопередатчиков морской подвижной службы, работающих классами излучений R3EJN, H3EJN, H2BBN, J3EJN
- 2.6.1. Уровень любой дискретной спектральной составляющей выходного сигнала радиопередатчика в пределах внеполосного спектра при модуляции радиопередатчика двухтоновым испытательным сигналом, обеспечивающим его модуляцию до номинальной пиковой мощности огибающей, не должен превышать величин, указанных в табл. 3.
- 2.6.2. Измерения и контроль внеполосных спектров излучений радиопередатчиков, работающих в режиме J3EJN, осуществляют по схеме, приведенной на черт. 7.

Измерительную аппаратуру выбирают в соответствии с приложением 3.

П р и м е ч а н и е. Пиковую мощность огибающей выходного сигнала радиопередатчика допускается измерять по методике, изложенной в ГОСТ 22579.

Структурная схема измерения внеполосных излучений радиопередатчиков морской подвижной службы

 $1,\ 2-$ низкочастотные генераторы сигналов; 3- радиопередатчик; 4- измеритель средней или пиковой мощности; 5- эквивалент антенны; 6- делитель; 7- анализатор спектра

Черт. 7

2.6.3. На вход радиопередатчика подают сигнал от одного из генераторов с частотой 470 Гц и уровнем, при котором на выходе радиопередатчика обеспечивается мощность

$$P'_{\rm cp} = P'_{\rm пик} = 0.25 \ P_{\rm пик. Hom},$$
 (3)

где $P_{\text{пик,ном}}$ — номинальная пиковая мощность огибающей.

Затем, не отключая сигнал от первого низкочастотного генератора, на радиопередатчик подают сигнал от второго низкочастотного генератора с частотой 2550 Гц, уровень которого устанавливают таким образом, чтобы на входе радиопередатчика обеспечивалась мощность

$$P_{\rm cp} = 0.5 P_{\rm muk.hom};$$

$$P_{\rm muk} = P_{\rm muk.hom}.$$
(4)

- 2.6.4. Полосу обзора анализатора спектра устанавливают не менее 20 к Гц, полосу пропускания анализирующего фильтра 50-150 Гц. Скорость анализа устанавливают в соответствии с требованиями π . 2.4.3.
- 2.6.5. Спектральные составляющие модулирующего сигнала устанавливают по горизонтали в центре шкалы анализатора спектра.
- В случае равенства уровней спектральных составляющих модулирующего сигнала их путем регулировки коэффициента передачи анализатора спектра устанавливают на отметку «0 дБ» или на другую заменяющую ее отметку, расположенную в верхней трети шкалы анализатора спектра. Если уровни спектральных составляющих модулирующего сигнала не равны, то путем небольшого изменения уровней модулирующих сигналов добиваются их равенства, следя, чтобы не нарушались соотношения формулы (4), а затем выравненные уровни спектральных составляющих модулирующего сигнала устанавливают на отметку «0 дБ» или заменяющую ее отметку шкалы анализатора спектра.
- 2.6.6. Уровни комбинационных составляющих 3—9-го порядка или любых других составляющих, попадающих в полосы частот, указанные в табл. 3, при использовании анализатора спектра с логарифмической шкалой измеряют непосредственно по шкале анализатора спектра, а при использовании анализатора спектра с линейной шкалой с помощью аттенюатора анализатора спектра согласно его описанию. Измеренные уровни должны быть ослаблены по отношению к уровню спектральных составляющих модулирующего сигнала не менее, чем указано в табл. 3.

По измеренным величинам ослабления спектральных составляющих, лежащих в полосах частот $f_{\rm np}$ + 7,5 кГц, вычисляют их мощности. Мощность каждой из этих составляющих в соответствии с табл. 3 не должна превышать 50 мВт.

2.6.7. Измерения и контроль внеполосных спектров излучений радиопередатчиков, работающих в режиме H3EJN, проводят по схеме черт. 7, из которой исключаются элементы, обведенные пунктиром.

Уровень несущей радиопередатчика устанавливают таким образом, чтобы на его выходе обеспечивалась мощность в соответствии с формулой (3). Затем на радиопередатчик подают сигнал от низкочастотного генератора с частотой 2000 Гц, уровень которого устанавливают таким образом, чтобы на выходе радиопередатчика обеспечивалась мощность в соответствии с формулой (4).

После этого измеряют уровни составляющих пп. 2.6.4—2.6.6.

- 2.6.8. Измерения и контроль внеполосных спектров излучений радиопередатчиков, работающих в режиме H2BBN, проводят при установке радиопередатчика в режим постоянного «нажатия» по методике, изложенной в п. 2.6.7.
- 2.6.9. Измерения и контроль внеполосных спектров излучений радиопередатчиков, работающих в режиме R3EJN, проводят при установке данного радиопередатчика в один из режимов J3EJN или H3EJN. Измерения осуществляют по методике, изложенной в пп. 2.6.2—2.6.4 или 2.6.7 соответственно.

ПРИЛОЖЕНИЕ 1 Справочное

ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ, И ИХ ПОЯСНЕНИЯ

Термин	Пояснение
Класс излучения Необходимая ширина полосы радиочастот Внеполосное радиоизлучение Полоса частот радиоизлучения на уровне минус <i>X</i> дБ Контрольная ширина полосы частот излучения	По ГОСТ 24375
Время установления телеграфного сигнала (импульса)	Время, в течение которого ток телеграфного сигнала (импульса) изменяется от 0,1 до 0,9 (или наоборот) величины, достигаемой в установившемся режиме; в случае асимметричного сигнала время установления в начале и в конце сигнала может быть различным
Относительное время установления телеграфного сигнала (импульса) Пиковая мощность радиопередатчика Средняя мощность радиопередатчика Присвоенная полоса радиочастот Ограничительная линия внеполосного излучения	импульса на уровне половины его амплитуды По ГОСТ 24375 По ГОСТ 24375 По ГОСТ 24375

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ВЕЛИЧИН, ПРИМЕНЯЕМЫХ В НАСТОЯЩЕМ СТАНДАРТЕ

- **В** скорость телеграфирования, Бод;
- $B_{\rm B}$ полоса пропускания Гауссовского формирующего фильтра на уровне минус 3 дБ;
- $B_{\rm H}$ необходимая ширина полосы частот, $\Gamma_{\rm H}$;
- $B_{\rm K}$ контрольная ширина полосы частот, $\Gamma_{\rm U}$;
- $B_{\rm x}$ полоса частот радиоизлучения на уровне X дБ, Γ ц;
- C частота поднесущей, Γ ц;
- пиковая девиация частоты (половина разности между максимальной и минимальной величинами мгновенной частоты), Гц;
- **D**разм ТВ размах девиации частоты, создаваемый видеосигналом, Гц;
 - ΔF разнос поднесущих по частоте, Γ ц;
 - F_{0} полоса обзора анализатора спектра, Γ ц;
 - $F_{\text{кор}}$ частота корреляторного сигнала, равная частотному разносу между элементарными сигналами составного сигнала, Γ ц;
 - δ_f длительность заднего фронта, с;
 - $f_{\text{сч}}$ частота частотомера, Γ ц;
 - $f_{\rm ps}$ частота пилот-сигнала, Гц;
 - f_{mn} присвоенная радиочастота, Γ ц;
 - Δf ширина статической полосы пропускания узкополосного тракта анализатора спектра на уровне минус 3 дБ. Ги:
 - $F_{\rm c}$ частота следования импульсов, Γ ц;
 - f несущая частота, МГц;K числовой коэффициент
 - К числовой коэффициент, зависящий от допустимого искажения сигнала;
 - M_1 минимальная частота модуляции, $\Gamma_{\rm U}$;
 - M_2 максимальная частота модуляции (верхняя поднесущая звука), Γ ц;
 - $M_{\rm max}$ максимальная частота синусоидального сигнала, модулирующего вершину импульса класса излучения К1В, Γ ц;
 - т индекс частотной модуляции;
 - N максимально возможное число белых и черных элементарных посылок в секунду при передаче факсимиле;
 - N_f число поднесущих частот;
 - *n* число частотно-разнесенных сигналов в составном сигнале;
 - $N_{\rm c}$ число каналов ТЧ группового тракта системы радиосвязи, в которой используется аппаратура с частотным разделением каналов (ЧРК);
 - δ_0 погрешность измерения в соответствии с техническим описанием;
 - δr длительность переднего фронта, с;
 - наклон огибающей спектра в его внеполосной части, дБ/октава;
 - S позиционность квадратурной амплитудной модуляции (S-KAM);
 - т время анализа (длительность прямого хода развертки), с;
 - T_f постоянная времени последетекторного фильтра, с;
 - t длительность импульса, с;
 - $t_{\rm cq}$ время считывания частотомером, с;
 - $P_{\text{к.вх}}$ номинальный уровень одного канала ТЧ на входе оконечного оборудования телефонного ствола радиорелейной линии (РРЛ);
- $P_{\text{загр}}$ средняя мощность многоканального сообщения, определяемая по табл. 4, Вт;
- U динамический диапазон логарифмического усилителя анализатора спектра, дБ;
- Usin эффективное значение уровня сигнала, обеспечивающее коэффициент модуляции, равный 100 %;
- U'_{sin} эффективное значение уровня сигнала, обеспечивающее коэффициент модуляции, равный 50 %;
- $U_{\sin \text{ ном}}$ среднеквадратичное значение номинального напряжения, создаваемого электроакустическим преобразователем, указанное в ТУ на этот преобразователь, В;
 - X значение относительного уровня, д**Б**;
 - α относительное время установления телеграфного сигнала (импульса).

ПРИЛОЖЕНИЕ 3 Справочное

ПРИМЕР ПОСТРОЕНИЯ ОГРАНИЧИТЕЛЬНОЙ ЛИНИИ И КОНТРОЛЯ ВНЕПОЛОСНЫХ СПЕКТРОВ ИЗЛУЧЕНИЙ

1. Исходные данные для расчета

Тип передатчика — вещательный передатчик. Класс излучения — A3EGN.

2. Координаты точек ограничительной линии

 $X_{\rm K} = -30$ дБ; 1,2 $B_{\rm H}$.

 $\vec{X} = -40$ дБ; 1,35 \vec{B}_{H} .

X = -45 дБ; 1,4 $B_{\rm H}$

X = -50 дБ; 1,9 $B_{\rm H}$. X = -60 дБ; 3,3 $B_{\rm H}$.

График ограничительной линии, построенный по координатам указанных выше точек, представлен на черт. 8.

Пример сравнения измеренных и нормируемых значений для излучения класса АЗЕ (радиовещание)

Черт. 8

3. Сравнение результатов измерений с нормируемыми величинами

Измеренные значения (в данном примере — условные) ширины полосы частот на уровнях, указанных в п. 2, отнесенные к необходимой ширине полосы частот, отмечены на черт. 8 знаками «•».

По результатам сравнения измеренных значений (условных) с нормируемыми величинами, приведенными на черт. 8, следует сделать вывод, что ширина контрольной полосы частот и внеполосные спектры излучений данного (условного) передатчика вплоть до уровня минус 45 дБ соответствуют нормам, а внеполосные спектры излучений ниже уровня минус 45 дБ — не соответствуют нормам.

ОБЩИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ИЗМЕРЕНИЙ И КОНТРОЛЯ И РЕКОМЕНДУЕМЫЕ К ПРИМЕНЕНИЮ РАДИОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

1. Анализаторы спектра

1.1. Диапазон частот анализатора спектра должен перекрывать рабочий диапазон частот испытуемого радиопередатчика.

Допускается производить измерения по участкам диапазона анализаторами спектра различных типов.

1.2. Полоса обзора анализатора спектра должна обеспечивать измерение огибающей спектра сигнала в полосе частот, соответствующей минимальному контрольному уровню.

Примечание. При отсутствии анализатора спектра с требуемой полосой обзора допускается измерение огибающей контролируемого спектра по участкам.

1.3. Полоса пропускания анализатора спектра на уровне минус 3 дБ должна быть:

при использовании периодических испытательных сигналов — в три раза меньше частоты манипуляции; для импульсных излучений — 0.1/t;

для шумовых испытательных сигналов — $0.05~B_{\kappa}$.

В этом случае анализатор спектра должен иметь последетекторную усредняющую цепочку с постоянной времени $t' \ge 16/\Delta f$.

- 1.4. Динамический диапазон анализатора спектра должен обеспечивать измерение максимального контрольного уровня.
- 1.5. Неравномерность амплитудно-частотной характеристики анализатора спектра в установленной полосе частот не должна превышать 3 дБ.
 - 1.6. Погрешность измерения уровней должна быть не более 2,0 дБ.
 - 1.7. Анализаторы спектра представлены в табл. 6.

Таблица 6

Анализаторы спектра

Тип прибора	Диапазон частот	Полоса обзора	Полоса пропускания на уровне 3 дБ	Погрешность установки частоты	Погрешность измерения уровня	Динами- ческий диапазон, дБ
C4—77	20 Гц — 600 кГц	50 Гц — 200 кГц	3 Гц — 3 кГц	$\pm (10^{-6} f + 4 + 4 f + 6) Гц$	0,8 дБ	70 — 90
C4 - 82	300 Гц — 1,5 ГГц	0 — 1,5 ГГц	3 Гц — 3 МГц	' '	2 дБ	70 - 80
CK4 — 83	10 Гц — 1 МГц	0 — 1 МГц	3,16 Гц — 31,6 кГц	± 10 ⁻⁷ f+ + 0,1 Гц	\pm (1,5 $-$ 30) %	90
CK4 — 84	30 Гц — 110 МГц	0 — 110 МГц	3,16 Гц — 316 кГц	$\pm 10^{-7} f$	± (0,5—1,5) дБ	85
CK4 — 85	100 Гц — 39,6 ГГц	0,500 Гц — 20 ГГц	$10 - 3 \cdot 10^6$ Гц	$\pm 10^{-7} f$	± 1 дБ	60 - 90

2. Генераторы шумовых сигналов

- 2.1. Неравномерность спектральной плотности мощности шума в полосе измерения от 50 до 2500 Гц должна быть не более 2 дБ.
- 2.2. Уровень мощности шума на выходе генератора должен обеспечивать нормальный режим модуляции. Допускается использовать генератор шума с меньшим уровнем мощности совместно с усилителем. Частотная характеристика усилителя должна иметь неравномерность не более 1 дБ (в полосе частот 0,9 $M_1 1,2$ M_2 , где M_1 и M_2 нижняя и верхняя частоты модулирующих сигналов).

Усилитель должен иметь коэффициент нелинейных искажений не более 3 % (при подаче на вход усилителя синусоидального сигнала последовательно на частотах 300, 600 и 1000 Гц).

2.3. Погрешность установки выходного уровня должна быть не более 6 %.

3. Имитаторы телеграфных сигналов

3.1. Преобладание «телеграфных точек» не должно превышать 3 %. Относительное время установления импульсов не должно превышать 2 %. Должна обеспечиваться стандартная скорость манипуляции (от 47 до 4800 Бод) с относительной погрешностью не более 10. Имитатор должен иметь два канала с выходным напряжением сигнала, обеспечивающим работу радиопередатчика в штатном режиме.

4. Формирующий фильтр

- 4.1. Схема фильтра, формирующего спектр речевого сигнала, приведена на черт. 9, а его частотная характеристика на черт. 10.
- **4.2.** Схема фильтра, формирующего спектр вещательного сигнала, приведена на черт. 11, а его частотная характеристика на черт. 12.
- 4.3. Допускаются отклонения частотных характеристик фильтров от кривых, приведенных на черт. 10 и 12, в отдельных участках на величину до 2 дБ.
 - 4.4. Формирующие фильтры должны быть метрологически аттестованы.

Схема фильтра, формирующего спектр речевого сигнала

Частотная характеристика фильтра, формирующего спектр речевого сигнала

Черт. 10

Схема фильтра, формирующего спектр вещательного сигнала

Частотная характеристика фильтра, формирующего спектр вещательного сигнала

5. Аттенюаторы

- 5.1. Аттенюаторы во всей полосе контролируемых частот должны обеспечивать ослабление β дБ, значение которого определяется из условия $P_0 P_{\rm H.\Pi} |X| \ge \beta \ge P_0 P_{\rm B.\Pi}$ и иметь допустимую мощность рассеивания $P_{\rm att}$, соответствующую условию $P_{\rm att} \ge P_0$, где P_0 средняя мощность, подводимая к аттенюатору, дБмкВт, $P_{\rm B.\Pi}$, соответственно верхний и нижний пределы измерения средней мощности измерительного прибора, дБмкВт.
- 5.2. Коэффициент стоячей волны (КСВ) по напряжению входа (выхода) аттенюатора не должен превышать 1,4.
 - 5.3. Погрешность установки затухания не должна быть более 1 дБ.
- 5.4. КСВ по напряжению каждого вспомогательного элемента высокочастотного тракта не должен превышать 1,5.

6. Рекомендуемые к применению радиоизмерительные приборы

6.1. Приборы для измерения мощности и их характеристики приведены в табл. 7.

ΓΟCT 30318-95/ΓΟCT P 50016-92

Таблица 7

Приборы для измерения мощности

Тип прибора	Диапазон частот, ГГц	Пределы измерения мощности, Вт	Допустимая импульсная мощность, кВт	Коэффициент стоячей волны напряжения
M3 — 91	17,44 — 25,86	$10^{-7} - 10^{-2}$	_	1,4
M3 - 92	25 ,86 — 37,5	$10^{-7} - 10^{-2}$	_	1,4
M3 - 91/1	0 — 17,85	$10^{-4} - 1$	_	1,15

6.2. Электронно-счетные частотомеры и их характеристики приведены в табл. 8.

Таблица 8

Электронно-счетные частотомеры

		Погрешность измерения частоты		
Тип прибора	Диапазон измеряемых частот	в режиме непрерывной генерации	в режиме импульсной модуляции	
Ч3 — 58	10 Гц — 18 ГГц	2,5 · 10 ⁻⁷	_	
Ч3 — 61	8,15 — 37,5 ГГц	$\delta_0 + 1$ сч.ед.	$\delta_0 + \frac{150}{f} + 1$ сч.ед.	
43 - 63/1	0,1 Гц — 1500 МГц	$5 \cdot 10^{-7} + 1$ сч.ед.	_	
Ч3 — 65	0,01 Гц — 500 МГц	$\frac{1 \cdot 10^{-9}}{f_{\text{CH}}}$	$\delta_0 + \frac{150}{f} + 1$ сч.ед., где $\delta_0 - 5 \cdot 10^{-7}$	
Ч3 — 71	10 Гц — 37,5 ГГц	$\pm (\delta_0 + \frac{1}{f_x t_{cq}})$	10 — 100 κΓιι	

6.3. Генераторы сигналов низкочастотные и их характеристики приведены в табл. 9.

Таблица 9

Генераторы сигналов низкочастотные

Тип прибора	Диапазон частот	Основная погрешность установки частоты, %	Входное напряжение, В
Г3 — 111	20 Гц — 2 МГц	$\pm \left(3 + \frac{50}{f}\right)$	5
ГЗ — 112	10 Гц — 10 МГц	$\pm \left(2 + \frac{30}{f}\right)$	5
$\Gamma 3 - 119$	20 Гц — 20 МГц	$\pm 5 \cdot 10^{-7} f$	1
$\Gamma 3 - 122$	0,001 — 20 МГц	$\pm 5 \cdot 10^{-7} f$	2,5

7. Генераторы шума

- **7.1.** Генератор шума Г2—37.
- 7.1.1. Диапазон частот 15 Γ ц 6,5 М Γ ц. 7.1.2. Уровень выходного сигнала 3 мкB 1 B.
- 7.1.3. Погрешность установки выходного сигнала 4 % от конечного значения шкалы.
- **7.2.** Генератор шума Г2—57.
- 7.2.1. Диапазон частот 0,1 Γ ц 1 M Γ ц; 0,1 10 M Γ ц. 7.2.2. Уровень выходного сигнала 0,1 10 B.
- 7.2.3. Погрешность установки выходного сигнала 5 % от конечного значения шкалы.

ΓΟCT 30318-95/ΓΟCT P 50016-92

8. Двухканальный имитатор телеграфных сигналов ДИТС-32

- 8.1. Вид испытательного сигнала (тест-сигнала) точки, любая 5- или 7-элементная комбинация, комбинация 1:15, коррекция, квазипериодическая последовательность из 2^9-1 элементов (рекуррентный тест-сигнал), нажатие.
- 8.2. Скорости манипуляции стандартные от 47 до 2400 Бод (47, 50, 75, 94, 100, 141, 150, 188, 200, 282, 300, 1200 и 2400 Бод) с относительной погрешностью не более $6 \cdot 10^{-5}$.
- 8.3. При использовании внешнего генератора скорость манипуляции может быть любой от 40 до 2500 Бод с относительной погрешностью, определяемой стабильностью частоты внешнего генератора.
 - 8.4. Имитатор имеет два независимых от скорости и вида манипуляции канала.
- 8.5. Каждый канал имеет регулируемый тональный и импульсный выходы, а также три дополнительных нерегулируемых импульсных выхода. Уровень сигналов на импульсном выходе $-0-60~\mathrm{B}$ и 25 B, на тональном $-0-5.5~\mathrm{B}$.
 - 8.6. Несущие частоты тональных выходов 900, 1200, 1620, 1980, 3000 и 4000 Γ ц \pm 2 %.
 - 8.7. Преобладания импульсных посылок не превышают 1 %.

9. Вольтметры

- 9.1. Вольтметры и их характеристики приведены в табл. 10.
- 10. Измерители коэффициента модуляции
- 10.1. Измерители коэффициента модуляции (модулометры) и их характеристики приведены в табл. 11.

Таблица 10

Вольтметры

Тип прибора	Диапазон измерения напряжений, В	Диапазон частот	Погрешность измерения, %
B3—57 B3—48 B3—49 B3—59	$ \begin{array}{r} 10^{-5} - 300 \\ 3 \cdot 10^{-4} - 300 \\ 10^{-2} - 100 \\ 2,65 \cdot 10^{-4} - 300 \end{array} $	5 Γμ — 5 ΜΓμ 10 Γμ — 50 ΜΓμ 20 Γμ — 1000 ΜΓμ 10 Γμ — 100 ΜΓμ	$ \begin{array}{c} 1 - 4 \\ 2,5 - 10 \\ - \\ 0,4 - 2,5 \end{array} $

Таблица 11

Измерители коэффициента модуляции (модулометры)

Try - my fana	Диапазон несущих частот, МГц		Диапазон модулирующих частот, кГц		Пределы измерения		Чувстви- тельность,	
Тип прибора	в режиме ЧМ	в режиме АМ	в режиме ЧМ	в режиме АМ	в режиме ЧМ, кГц	в режиме АМ, %	мВ	
CK3 — 39	0,1-50	0,1-50	0,03 — 15	0.03 - 15	10 — 30	0,1 - 100	50	
CK3 — 46	5-6 $10-1500$	5-6 $10-500$	0,05 — 30	0,05-30	1 — 300	1 — 100	30 — 100	

ОБОЗНАЧЕНИЯ КЛАССОВ ИЗЛУЧЕНИЙ

- 1.1. Излучения должны обозначаться в соответствии с необходимой шириной полосы частот и их классификацией.
- 1.2. Для полного обозначения излучения перед обозначением класса следует с помощью четырех знаков указать необходимую ширину полосы. Необходимая ширина полосы должна выражаться тремя цифрами и одной буквой. Букву располагают на месте запятой, отделяющей целую часть от дробной в десятичной дроби, и она обозначает единицу измерения полосы частот. Первый знак не должен быть ни нулем, ни буквой К, М или G.
 - 1.2.1. Необходимая ширина полосы должна выражаться:

```
от 0,001 до 999 Гц — в герцах (буква Н);
от 1,00 до 999 кГц — в килогерцах (буква К);
от 1,00 до 999 МГц — в мегагерцах (буква М);
от 1,00 до 999 ГГц — в гигагерцах (буква G).
```

Примеры:

6 кГц = 6К00	$1,25 \text{ M}\Gamma$ μ = $1\text{M}25$
12,5 к Γ ц = 12 K 5	$2 M\Gamma \mu = 2M00$
$180,4 \text{к} \Gamma \text{ц} = 180 \text{K} \text{Ч}$	$10 \text{ M}\Gamma\text{H} = 10\text{M}0$
$180,5 \text{к} \Gamma \text{ц} = 181 \text{K}$	$202 \text{ M}\Gamma \text{u} = 202 \text{M}$
$180,7$ κ Γ μ = 181 K	5,65 ГГц = 5G65
	180,4 κ Γ μ = 180 κ Ч 180,5 κ Γ μ = 181 κ

1.2.2. Необходимую ширину полосы определяют:

по формулам, приведенным в табл. 1;

расчетами в случаях, когда формулы не предусмотрены в табл. 1;

с помощью измерений в случаях, когда не предусмотрены по формулам и расчетами.

1.3. Обозначение класса излучения представляет собой совокупность характеристик (см. приложение 2). Излучения должны классифицироваться и обозначаться в соответствии с их основными и дополнительными характеристиками.

С помощью первых трех условных обозначений описывают основные характеристики для классификации излучения, а для полного описания излучения необходимо добавить еще две дополнительные характеристики.

Первое обозначение — тип модуляции основной несущей.

Второе обозначение — характер сигнала (сигналов), модулирующего основную несущую.

Третье обозначение — тип передаваемой информации.

Четвертое обозначение — подробные данные о сигнале (сигналах).

Пятое обозначение — характер уплотнения.

Основные характеристики являются обязательными в обозначении излучения, а вместо дополнительных, если они не используются, ставятся прочерки.

Например, для телевидения видео 6M25C3F, звук 750KF3EGN.

- 1.4. Основные характеристики
- 1.4.1. Π е р в о е о б о з н а ч е н и е тип модуляции основной несущей.
- 1.4.1.2. Излучения, при которых основная несущая модулируется по амплитуде (включая случаи, когда поднесущие имеют угловую модуляцию):

двухполосная	¥.
однополосная:	
с полной несущей	Í
с ослабленной несущей или с переменным уровнем несущей В	Ł
с подавленной несущей	J
с независимыми боковыми полосами	3
с частично подавленной одной из боковых полос	2
1.4.1.3. Излучения, при которых основная несущая имеет угловую модуляцию:	
частотная модуляция	7
фазовая модуляция	
1.4.1.4. Излучения, при которых основная несущая имеет амплитудную и угловую модуляции либо	

1.4.1.5. Импульсные излучения* (последовательности импульсов):
немодулированных
модулированных по амплитуде
модулированных по ширине или длительности
модулированных по положению или фазе
при которых несущая имеет угловую модуляцию во время передачи импульсов
представляющие сочетание указанных выше способов или производимая другими методами
1.4.1.6. Прочие случаи, отличные от указанных выше, при которых излучение состоит из основной
несущей, модулированной либо одновременно, либо в заранее установленной последовательности сочетанием
двух или более следующих методов модуляции:
амплитудной, угловой, импульсной W
1.4.1.7. Прочие случаи
1.4.2. В торое обозначение — характер сигнала (сигналов), модулирующего основную несущую.
1.4.2.1. Отсутствие модулирующего сигнала
1.4.2.2. Один канал, содержащий квантованную или цифровую информацию без использования моду-
лирующей поднесущей**
1.4.2.3. Один канал, содержащий квантованную или цифровую информацию при использовании моду-
лирующей поднесущей**
1.4.2.4. Один канал с аналоговой информацией
1.4.2.5. Два канала или более, содержащие квантованную или цифровую информацию
1.4.2.6. Два канала или более с аналоговой информацией
1.4.2.7. Сложная система с одним или несколькими каналами, содержащими квантованную или циф-
ровую информацию, совместно с одним или несколькими каналами, содержащими аналоговую информа-
цию
1.4.2.8. Прочие случаи
1.4.3. Третье обозначение — тип передаваемой информации***
1.4.3.1. Отсутствие передаваемой информации N
1.4.3.2. Телеграфия для слухового приема
1.4.3.3. Телеграфия для автоматического приема
1.4.3.4. Факсимиле
1.4.3.5. Передача данных, телеметрия, телеуправление
1.4.3.6. Телефония (включая звуковое радиовещание)
1.4.3.7. Телевидение (видео)
1.4.3.8. Сочетание указанных выше типов
1.4.3.9. Прочие случаи
1.4.4. Четвертое обозначение — подробные данные о сигнале (сигналах).
1.4.4.1. Двухпозиционный код с разным количеством элементов и(или) разной длительности А
1.4.4.2. Двухпозиционный код с одинаковым числом элементов и одинаковой длительности без ис-
правления ошибок В
1.4.4.3. Двухпозиционный код с одинаковым числом элементов и одинаковой длительности с исправ-
лением ошибок
1.4.4.4. Четырехпозиционный код, в котором каждая позиция представляет элемент сигнала (из одно-
го или нескольких бит)
1.4.4.5. Многопозиционный код, в котором каждая позиция представляет элемент сигнала (из одного
или нескольких бит)
1.4.4.6. Многопозиционный код, в котором каждая позиция или комбинация позиций представляет
знак F
1.4.4.7. Передача звука радиовещательного качества (монофоническая)
1.4.4.8. Передача звука радиовещательного качества (стереофоническая или квадрофоническая) Н
1.4.4.9. Передача звука с приемлемым для коммерческой связи качеством (исключая те категории, ко-
торые приведены в пп. 1.4.4.10 и 1.4.4.11
1.4.4.10. Передача звука с приемлемым для коммерческой связи качеством при использовании инвер-
сии частот или расщепления полосы частот
1.4.4.11. Передача звука с приемлемым для коммерческой связи качеством при использовании отдель-
но частотно-модулированных сигналов для управления уровнем демодулированного сигнала
1.4.4.12. Монохромный сигнал
1.4.4.13. Цветной сигнал
1.4.4.14. Сочетание вышеуказанных сигналов
1.4.4.15. Случаи, не предусмотренные в вышеприведенных пунктах
1.4.5. Пятое обозначение — характер разделения каналов.

ΓΟCT 30318-95/ΓΟCT P 50016-92

1.4.5.1. Без разделения	
1.4.5.2. Кодовое разделение****	
1.4.5.3. Частотное разделение F	
1.4.5.4. Временное разделение	
1.4.5.5. Сочетание частотного и временного разделений W	,
1.4.5.6. Другие виды разделений Х	

^{*} Излучения, при которых основная несущая модулируется непосредственно сигналом, закодированным в квантованной форме (например, импульсно-кодовая модуляция), должны обозначаться в соответствии с п. 1.4.1.2 или 1.4.1.3.

ПРИЛОЖЕНИЕ 6 Справочное

СРАВНИТЕЛЬНАЯ ТАБЛИЦА СТАРОГО И НОВОГО ОБОЗНАЧЕНИЙ КЛАССОВ ИЗЛУЧЕНИЙ

Таблица 12

Класс излучений	Обозначение классов излучений	
класс излучении	старое	новое
Амплитудная модуляция	<u>-</u>	
Излучение немодулированной несущей	A 0	NON
Телеграфия		
Незатухающие колебания (амплитудная манипуляция)	Al	A1A* A1B*
Тональная (амплитудная манипуляция модулирующей уковой частоты)	A2	A2A A2B
Тональная, одна боковая полоса частот:		
полная несущая	A2A	H2A,H2B
подавленная несущая	A2J	J2B
Многоканальная тональная, одна боковая полоса частот:		
ослабленная несущая	A7A	R7B
подавленная несущая	A7J	J7B
Телефония		
Две боковые полосы частот (в том числе радиовещание)	A3	A3E
Одна боковая полоса частот:		
полная несущая	A3H	H3E
ослабленная несущая	A3A	R3E
подавленная несущая	A3J	J3E
Две независимых боковых полосы частот	A3B	B8E
Факсимиле		
Излучение с модуляцией основной несущей частоты епосредственно или с помощью модулированной по частоте однесущей:		
две боковые полосы частот	A4	A3C
одна боковая полоса частот, ослабленная несущая	A4A	R3C

^{**} Исключая временное разделение каналов.

^{***} В этом контексте слово «Информация» не включает информацию постоянного, неменяющегося характера, аналогичную той, которая обеспечивается излучениями стандартных частот, радиолокаторами с непрерывным и импульсным излучением и т. п.

^{****} Включая методы расширения спектра.

Окончание табл. 12

Класс излучений	Обозначение классов излучений		Обозначение кла
класс излучении	старое	новое	
Телевидение			
Излучение с частично подавленной боковой полосой частот	A5C	C3F	
Угловая модуляция			
Телеграфия одноканальная (ЧТ)	F 1	F1B	
Телефония (радиовещание, звуковое сопровождение елевидения)	F3	F3E	
Факсимиле при непосредственной модуляции несущей	F4	F1C	
Четырехчастотная двухканальная телеграфия (ДЧТ)	F6	F7B	
Импульсная модуляция			
Последовательность немодулированных импульсов	P0	P0N	
Телеграфия			
Амплитудная манипуляция импульсной несущей без спользования модулирующей звуковой частоты	P1D	K1B	
Излучение с использованием модуляции импульсов вуковой частотой:			
по амплитуде	P2D	K2B	
по ширине или длительности	P2E P2F	L2B M2B	
по положению или фазе	P2F	IVIZB	
Телефония		I	
При модуляции импульсов:			
по амплитуде	P3D	K3E	
по ширине или длительности	P3E P3F	L3E M3E	
по положению или фазе	ГЭГ	MISE	

 $^{{}^{*}}$ В третьем знаке новых условных обозначений классов излучений буква A означает слуховой прием, буква В — автоматический прием.

СОДЕРЖАНИЕ

1. Требования к ширине полосы радиочастот и внеполосным излучениям радиопередатчиков	1
2. Методы измерений и контроля ширины полосы частот и внеполосных излучений	12
2.1. Общие требования к измерениям и контролю	12
2.2. Испытательные сигналы для проведения измерений и контроля радиопередатчиков	13
2.3. Установка уровней испытательных сигналов	14
2.4. Измерения контрольной ширины полосы частот и внеполосных излучений	15
 Методика измерения и контроля внеполосных излучений радиопередатчиков ВЧ диапазона воздушных судов воздушной подвижной службы, работающих классами излучений H2BBN, H3EJN, J3EJ 	
J7BCF, JXX	19
2.6. Методика измерений и контроля внеполосных излучений радиопередатчиков морской подвижной службы, работающих классами излучений R3EJN, H3EJN, H2BBN, J3EJN	
Приложение 1. Термины, применяемые в настоящем стандарте, и их пояснения	
Приложение 2. Условные обозначения величин, применяемых в настоящем стандарте	
Приложение 3. Пример построения ограничительной линии и контроля внеполосных спектров излуче-	-
ний	23
Приложение 4. Общие требования к средствам измерений и контроля и рекомендуемые к примененик)
радиоизмерительные приборы	24
Приложение 5. Обозначения классов излучений	29
Приложение 6. Сравнительная таблица старого и нового обозначений классов излучений	31

Редактор *И.И. Зайончковская* Технический редактор *Н.С. Гришанова* Корректор *В.И. Варенцова* Компьютерная верстка *А.Н. Золотаревой*

Подписано в печать 05.10.2005. Формат $60x84^1/8$. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 4,18. Уч.-изд. л. 3,50. Тираж 21 экз. Зак. 205. С 1990.

ФГУП «Стандартинформ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru Hабрано в ИПК Издательство стандартов на ПЭВМ. Отпечатано во ФГУП «Стандартинформ»