HOME CHAPTERS LOGIN

3. Vector and Raster Approaches Print

The terms **raster** and **vector** were introduced back in Chapter 1 to denote two fundamentally different strategies for representing geographic phenomena. Both strategies involve simplifying the infinite complexity of the Earth's surface. As it relates to elevation data, the raster approach involves *measuring elevation at a sample of locations*. The vector approach, on the other hand, involves *measuring the locations of a sample of elevations*. I hope that this distinction will be clear to you by the end of this chapter.

Figure 7.4.1 compares how elevation data are represented in vector and raster data. On the left are elevation **contours**, a vector representation that is familiar with anyone who has used a USGS topographic map. The technical term for an elevation contour is *isarithm*, from the Greek words for "same" and "number." The terms *isoline*, *isogram*, and *isopleth* all mean more or less the same thing. (See any cartography text for the distinctions.)

As you will see later in this chapter, when you explore Digital Line Graph hypsography data using Global Mapper or dlgv 32 Pro, elevations in vector data are encoded as attributes of line features. The distribution of elevation points across the quadrangle is therefore irregular. Raster elevation data, by contrast, consist of grids of points at which elevation is encoded at regular intervals. Raster elevation data are what's called for by the NSDI Framework and the USGS National Map. Digital contours can now be rendered easily from raster data. However, much of the raster elevation data used in the National Map was produced from digital vector contours and hydrography (streams and shorelines). For this reason, we'll consider the vector approach to terrain representation first.

< 2. Theme: Elevation up 4. Contours >

The Nature of Geographic Information

Chapters

- ► Chapter 1: Data and Information
- Chapter 2: Scales and Transformations
- Chapter 3: Census Data and Thematic Maps
- ► Chapter 4: TIGER, Topology and Geocoding
- Chapter 5: Land Surveying and GPS
- Chapter 6: National Spatial Data Infrastructure I
- ▼ Chapter 7: National Spatial Data Infrastructure II
 - 1. Overview
 - 2. Theme: Elevation
 - 3. Vector and Raster Approaches
 - 4. Contours
 - 5. Contouring By Hand
 - 6. Digital Line Graph (DLG)
 - 7. Digital Elevation Model (DEM)
 - 8. Interpolation
 - 9. Slope
 - 10. Relief Shading
 - 11. Lidar
 - 12. Global Elevation Data
 - 13. Bathymetry

- 14. Statistical Surfaces
- 15. Theme: Hydrography
- 16. Theme: Transportation
- 17. Theme: Governmental Units
- 18. Theme: Cadastral
- 19. Summary
- 20. Bibliography
- ► Chapter 8: Remotely Sensed Image Data
- ► Chapter 9: Integrating Geographic Data

Navigation

- login
- Search

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

Navigation

- Home
- News
- About
- Contact Us
- PeopleResources
- Services
- Login

EMS

- College of Earth and Mineral Sciences
- Department of Energy and Mineral Engineering
- Department of Geography
- Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric
 Science
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

Programs

- Online Geospatial Education Programs
- iMPS in Renewable Energy and Sustainability Policy Program
- Office

 BA in Energy and Sustainability Policy Program Office

Related Links

- Penn State
 Digital
 Learning
 Cooperative
- Penn State
 World Campus
- Web Learning
 Penn State

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

Privacy & Legal Statements | Copyright Information The Pennsylvania State University © 2023

