

Лекция б Архитектуры нейронных сетей

Полыковский Даниил Храбров Кузьма

13 марта 2017 г.

Архитектуры CNN

ImageNet, описание

- 1000 классов
- ▶ около 1000 изображений в каждом классе
- около 1 000 000 изображений всего
- несколько номинаций: таких как распознование и детектирование/локализация

ImageNet, правила

ImageNet, прогресс

Objection classification error rate

Lenet ¹

¹http://yann.lecun.com/exdb/lenet

AlexNet²

²Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: ImageNet Classification with Deep Convolutional Neural Networks, 2012 http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

- ▶ 5 сверточных и 3 полносвязных слоя
- ▶ 60М параметров, 650к нейрнов
- эффективное распараллеливание на 2 GPU/CUDA
- ▶ свёртки 11×11, 5×5, 3×3
- ► ReLU, т.к. не надо вычислять exp

VGG³

A A-LRI 11 weight 11 weight layers layers	tht 13 weight layers	C 16 weight layers	D 16 weight	E 19 weight
	layers			10 weight
layers layers	-	layers		15 weight
	input (224 ×		layers	layers
input (224 × 224 RGB image)				
conv3-64 conv3-		conv3-64	conv3-64	conv3-64
LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool				
conv3-128 conv3-1		conv3-128	conv3-128	conv3-128
	conv3-128	conv3-128	conv3-128	conv3-128
maxpool				
conv3-256 conv3-2		conv3-256	conv3-256	conv3-256
conv3-256 conv3-2	256 conv3-256	conv3-256	conv3-256	conv3-256
		conv1-256	conv3-256	conv3-256
				conv3-256
maxpool				
conv3-512 conv3-5		conv3-512	conv3-512	conv3-512
conv3-512 conv3-5	12 conv3-512	conv3-512	conv3-512	conv3-512
		conv1-512	conv3-512	conv3-512
				conv3-512
maxpool				
conv3-512 conv3-5		conv3-512	conv3-512	conv3-512
conv3-512 conv3-5	12 conv3-512	conv3-512	conv3-512	conv3-512
		conv1-512	conv3-512	conv3-512
				conv3-512
maxpool				
FC-4096				
FC-4096				
FC-1000				
soft-max				

³http://arxiv.org/pdf/1409.1556.pdf

- ► VGG-19 (E): 144М параметров
- Very Deep Convolutional Networks for Large-Scale Image Recognition^a
- Только свертки 3х3

^aK. Simonyan, A. Zisserman

NIN^4

(b) Mlpconv layer

- ▶ "Полносвязные слои" (свертки 1х1) внутри свертки
- Глобальный пулинг для вытягивания изображения (+ доп. регуляризация)

Global Average Pooling

⁴https://arxiv.org/pdf/1312.4400v3.pdf

GoogLeNet⁵

Green box shows parallel region of GoogLeNet

⁵http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/ Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf

Revolution of Depth

► Нагляднее: http://josephpcohen.com/w/ visualizing-cnn-architectures-side-by-side-with-mxnet/

ResNet⁸

Рис.: Residual block

Рис.: Обучение "обычной" сети

- ▶ Результат на 56 слоях хуже. Проблема не в переобучении
- ▶ Решение заведомо существует: 20 слоев, затем F(x)=x
- ▶ Выучить F(x)=x тяжело, а F(x)=0 просто
- ► Residual block решает эту проблему

Существует множество модификаций ResNet: ResNet in ResNet 6 , DenseNet 7

⁶https://arxiv.org/pdf/1603.08029v1.pdf

⁷https://arxiv.org/pdf/1608.06993v1.pdf

⁸https://arxiv.org/pdf/1512.03385v1.pdf

Case study National Data Science Bowl

National Data Science Bowl¹⁰

Рис.: Примеры изображений из набора данных: всего 121 несбалансированный класс, 30 000 изображений

Победители 9 использовали архитектуру VGG-16, а так же ряд специальных трюков.

⁹http://benanne.github.io/2015/03/17/plankton.html

¹⁰https://www.kaggle.com/c/datasciencebowl

Data augmentation, #1

Data augmentation:

- ▶ rotation: random with angle between 0 and 360 dergee (uniform)
- ▶ translation: random with shift between -10 and 10 pixels (uniform)
- ▶ rescaling: random with scale factor between 1/1.6 and 1.6 (log-uniform)
- flipping: yes or no (bernoulli)
- ▶ shearing: random with angle between -20 and 20 degree (uniform)
- stretching: random with stretch factor between 1/1.3 and 1.3 (log-uniform)

Данные нужно аугментировать в реальном времени (иначе — значительное увеличение размера датасета). Не стоит недооценивать test-time аугментацию.

Data augmentation, #2

Рис.: Оригиналы и аугментированные образы

Cyclic pooling

Рис.: Schematic representation of a convnet with cyclic pooling

- объединение результатов извлечения признаков после прохода по нескольким копиям одной сети параллельно
- ▶ это позволило сократить размер батча в 4 раза (со 128 до 32)
- ▶ root-mean-square pooling оказался эффективнее других

Rolling feature maps

 ${\sf Puc.:}$ Schematic representation of a roll operation inside a convnet with cyclic pooling.

Советы

- ▶ leaky/parameterized ReLU: $f(x) = \max(x, a \cdot x), a \le 0$
- ▶ добавление к сверточным признакам других признаков перед полносвязным слоем (Hu moments, Zernile moments, atc)
- использовать предобученные модели
- ▶ self-training с тестовой выборкой
- аугментировать данные

Вопросы

