Neural Network Metrics for Viterbi Decoding in Molecular Communication Channels

Peter Hartig

February 16, 2020

Outline

Viterbi Setup

Maximum Likelihood sequence decoding can be formalized as

Viterbi Setup Continued

Each state change is decided by the metric $Pr(y_i|\mathbf{x})$. In a linear channel with length I impulse response, this metric becomes $Pr(y_i|\mathbf{x}_{i-1}^i)$.

Example with channel impulse response length 2 and constellation size 2.

Incorporating Neural Net into Viterbi Decoding

Problem 1

Viterbi algorithm requires the distribution $Pr(y_i|\mathbf{x}_{i-1}^i)$.

Solution

Have a neural network learn $Pr(y_i|\mathbf{x}_{i-1}^i)$.

Problem 2

Generating training data $Pr(y_i|\mathbf{x}_{i-1}^i)$ requires knowledge of the channel and its (current) parameters.

Solution

Decompose $Pr(y_i|\mathbf{x}_{i-1}^i)$ into

$$Pr(y_{i}|\mathbf{x}_{i-1}^{i}) = \frac{Pr(\mathbf{x}_{i-1}^{i}|y_{i})Pr(y_{i})}{Pr(\mathbf{x}_{i-1}^{i})}$$
(6)

Metrics for $Pr(x_{i-1}^i|y_i)$

Metrics for $Pr(y_i)$

Gaussian Mixture Model using Expectation-Maximization algorithm

Outline

Detection Performance

Without ISI

With ISI

Detection Performance

Reduced Training data (100 vs. 1000 symbols)

Next Steps

- ▶ Improve decoding performance with neural net.
- ▶ Apply to a sampled molecular communications channel.
 - Estimate matched filter
- Generate training data for molecular communications channel and test "transfer learning" to real data.

Thank You.

Questions or Comments?