Fiche Mathématiques PCSI - 1A

Mathieu Waharte

2019 - 2022

PCSI

Bases et Fonctions usuelles

- périodicité : $\forall x \in D_f, x + T \in D_f$ et f(x + T) = f(x)
- \bullet fbornée sur $A \Leftrightarrow |f|$ majoré sur A.
- $\bullet f \circ f^{-1} = Id_E$ si f strictement monotone alors c'est une bijection
- asymptote oblique si $\lim_{x \to \pm \infty} f(x) (ax + b) = 0$

•
$$(g \circ u)' = u' \times g' \circ u$$
 $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}} \quad \left| |a| - |b| \right| \le |a + b| \le |a| + |b|$$

une bijection et sa bijection réciproque ont le même sens de variation

$$e^x \ge x + 1$$
; $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$; $\forall x > -1, \ln(1 + x) \le x$; $\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1$; $\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$

$$\alpha, \beta > 0: \lim_{x \to +\infty} \frac{(\ln(x))^{\alpha}}{x^{\beta}} = 0 \; ; \lim_{x \to 0} x^{\beta} |\ln(x)|^{\alpha} = 0 \; ; \lim_{x \to +\infty} \frac{e^{\alpha x}}{x^{\beta}} = +\infty \; ; \lim_{x \to -\infty} |x|^{\beta} e^{\alpha x} = 0$$

$$x^{\alpha} = e^{\alpha \ln x}$$
; $(a^x)' = \ln(a)a^x$; $\log_n(x) = \frac{\ln(x)}{\ln(n)}$

$$ch(x) = \frac{e^x + e^{-x}}{2}$$
; $sh(x) = \frac{e^x - e^{-x}}{2}$

sh impaire et sh'(x) = ch(x); ch paire et ch'(x) = sh(x) $ch^2(x) - sh^2(x) = 1$

$$th(x) = \frac{sh(x)}{ch(x)}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2 x \quad ; \sin(2x) = 2\cos(x)\sin(x)$$

$$\cos a \cos b = \frac{\cos(a+b) + \cos(a-b)}{2} ; \sin a \sin b = \frac{-\cos(a+b) + \cos(a-b)}{2} ; \sin a \cos b = \frac{\sin(a+b) + \sin(a-b)}{2} ;$$

$$\sin a \cos b = \frac{\sin(a+b) + \sin(a-b)}{2}$$

$$\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$$
; $\cos a - \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}$;

$$\sin a + \sin b = 2\sin\frac{a+b}{2}\cos\frac{a-b}{2}$$
; $\sin a - \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2}$

arcsin défini sur
$$[-1;1]$$
, impaire, dérivable sur $]-1;1[$ et arcsin' $(x)=\frac{1}{\sqrt{1-x^2}}$

arcos défini sur
$$[-1;1]$$
, pas paire, dérivable $]-1;1[$ et arcos' $(x)=\frac{-1}{\sqrt{1-x^2}}$ arctan : $\mathbb{R} \to]-\frac{-\pi}{2};\frac{\pi}{2}[$, impaire, dérivable sur \mathbb{R} et arctan' $(x)=\frac{1}{1+x^2}$

Nombre Complexes

$$z \in i\mathbb{R} \Leftrightarrow z = -\bar{z} \text{ et } z \in \mathbb{R} \Leftrightarrow z = \bar{z} \; ; |z| = |\bar{z}| \; ; z\bar{z} = |z|^2$$

$$\operatorname{si} \exists \lambda \in \mathbb{R}^+, z' = \lambda z \text{ alors } \left| |z| - |z'| \right| \leq |z + z'| \leq |z| + |z'|$$

$$\operatorname{cos} \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \; ; \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \; ; (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

$$e^{i\theta} + e^{i\theta'} = e^{i\frac{\theta + \theta'}{2}} \left(e^{i\frac{\theta - \theta'}{2}} + e^{i\frac{-\theta + \theta'}{2}} \right) \; ; \arg(\bar{z}) \equiv -\arg(z)[2\pi] \; ; \arg(z^n) = n \arg(z)[2\pi]$$

$$\operatorname{arg}(zz') \equiv \arg(z) + \arg(z')[2\pi] \; ; \arg(-z) \equiv \pi + \arg(z)[2\pi]$$

$$e^z = e^a \cdot e^{ib} = e^a(\cos b + i\sin b) \; \; ; \; |e^z| = e^{Re(z)} \; \; ; \; e^z = e^{z'} \Leftrightarrow \arg(z - z') \in 2\pi \mathbb{Z}$$

 $z_k = z_0 \times w_k$, z_0 une racine particulière.

Primitives et Equations Différentielles

primitive de exp complexe :
$$\mathbf{F}(x) = \frac{1}{\lambda}e^{\lambda x}$$
 de $f(x) = e^{\lambda x}$, $\lambda \in \mathbb{C}$
$$\frac{u'}{u^2} \to -\frac{1}{u} + \ln \ ; \frac{1}{a^2 + x^2} \to \frac{1}{a}\arctan(\frac{x}{a}) + \ln \ ; \tan' u = u'(1 + \tan^2 u) \text{ ou } \frac{u'}{\cos^2 u}$$

f	F	Condition	
$u'u^n \ (n \in \mathbb{N})$	$\frac{1}{n+1}u^{n+1}$	$u(x) \neq 0 \text{ sur I si } n \in \mathbb{Z}^-$	
$\frac{u'}{u^n} \ (n \in \mathbb{N})$	1 1	$u(x) \neq 0$ sur I	
$u' \cdot u^{\alpha} \ (\alpha \notin \mathbb{Z})$	$\frac{-\overline{n-1}\overline{u^{n-1}}}{\frac{1}{\alpha+1}u^{\alpha+1}}$	u(x) > 0 sur I	
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	u(x) > 0 sur I	
$u'e^u$	e^u	rien	
$\frac{u'}{u}$	$\ln u $	$u(x) \neq 0$ sur I	
$u'\sin u$	$-\cos u$	rien	
$u'\cos u$	$\sin u$	rien	
$\frac{u'}{\sqrt{1-u^2}}$ $-u'$	$\arcsin(u)$	$u(x) \in]-1;1[$	
$\frac{-u'}{\sqrt{1-u^2}}$	arcos(u)	$u(x) \in]-1;1[$	
$\frac{u'}{1+u^2}$	$\arctan(u)$	rien	

$$f(x) \leq g(x) \Rightarrow \int_a^b f(x) \, \mathrm{d}x \leq \int_a^b g(x) \, \mathrm{d}x$$

$$\underline{\mathrm{IPP}} : u \text{ et } v \text{ de classe } C^1, \int_a^b u'(x)v(x) \, \mathrm{d}x = [u(x)v(x)]_a^b - \int_a^b u(x)v'(x) \, \mathrm{d}x$$

$$\underline{\mathrm{Changement de variable}} : \varphi \text{ de classe } C^1 \text{ sur } [a,b] \text{ et } f \ C^0 \text{ sur } \varphi([a,b]).$$

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \, \mathrm{d}x = \int_a^b f(\varphi(t)) \ \varphi'(t) \, \mathrm{d}t.$$

- Premier odre [y' + a(x)y = b(x)]:
 - normaliser (= tout mettre sur le y)
 - \bullet équation homogène (on met 0 au lieu de $b(x)) \ S_H = C e^{-A(x)}$
 - solution particulère (de tête sinon par méthode de variation de la constante)

$$y_p(x) = C(x)e^{-A(x)}$$
 avec $C'(x) = b(x)e^{A(x)}$

• solution finale : $S_E(I) = \{x \in I \mapsto y_H + y_p\}$

Problème de Cauchy (une solution) : $\begin{cases} y' + a(x)y = b(x) \\ y(x_0) = y_0 \end{cases}$

• Second ordre [ay'' + by' + cy = f(x)]:

• équation caractéristique $(ar^2 + br + c = 0)$

	,	
	S_H avec $a, b, c \in \mathbb{C}, (C_1, C_2) \in \mathbb{C}^2$	S_H avec $a, b, c \in \mathbb{R}, (C_1, C_2) \in \mathbb{R}^2$
$r_1 \neq r_2$		• $\underline{\text{si } r_1, r_2 \in \mathbb{R}} : y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
	$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$	• $\underline{\text{si } r_1, r_2 \in \mathbb{C} (r_1 = \alpha + i\beta \text{ et } r_2 = \bar{r_1})}$:
		$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
$r_1 = r_2$	$y(x) = (C_1 x + C_2)e^{rx}$	$y(x) = (C_1 x + C_2)e^{rx}$

- $f(x) = Ae^{\lambda x} (a, b, c, A, \lambda \in \mathbb{C})$:
 - λ non racine de l'équation caractéristique $\rightarrow y_p(x) = B e^{\lambda x}$
 - $-\lambda$ racine simple de l'équation caractéristique $\to y_p(x) = Bxe^{\lambda x}$
 - λ racine double de l'équation caractéristique $\rightarrow y_p(x) = Bx^2 e^{\lambda x}$
- $f(x) = B\cos(\omega x)$ ou $B\sin(\omega x)$ $(a, b, c, B, \omega \in \mathbb{R})$:
 - $-i\omega$ non racine de l'eq caractéristique $\to y_p(x) = C\cos(\omega x) + D\sin(\omega x)$
 - $i\omega$ racine simple de l'eq caractéristique $\rightarrow y_p(x) = x(C\cos(\omega x) + D\sin(\omega x))$
 - $-i\omega$ racine double de l'eq caractéristique $\to y_p(x) = x^2(C\cos(\omega x) + D\sin(\omega x))$
- $f(x) = P(x)e^{\lambda x}$ $(a,b,c \in \mathbb{K}$ et P un polynôme de degré n) :
 - λ non racine de l'équation caractéristique $\to y_p(x) = Q(x) e^{\lambda x} \; \deg(Q) = n$
 - $-\lambda$ racine simple de l'équation caractéristique $\to y_p(x) = xQ(x)e^{\lambda x}$
 - $-\lambda$ racine double de l'équation caractéristique $\to y_p(x) = x^2 Q(x) e^{\lambda x}$

- Problème de Cauchy (une solution) : $\begin{cases} ay'' + by' + cy = f(x) \\ y(x_0) = y_0 \text{ et } y'(x_0) = y'_0 \end{cases}$
- Si f(x) ou $b(x) = \sum$ fonctions \Rightarrow Solution $= \sum$ solution chaque fonction $+ S_H$

Ensembles, Applications et Relations d'équivalence

 $\mathcal{E} \subset \mathcal{F}$ ssi $\forall x \in \mathcal{E}, x \in \mathcal{F}$; $\mathcal{E} = \mathcal{F} \Leftrightarrow (\mathcal{E} \subset \mathcal{F})$ et $(\mathcal{F} \subset \mathcal{E})$ $P(\mathcal{E})$: ensemble des sous-ensembles de \mathcal{E} ; complémentaire d'une partie \mathcal{A} de \mathcal{E} : $C_{\mathcal{E}}^{\mathcal{A}} = \{x \in \mathcal{E} \mid x \notin \mathcal{A}\}$ $\mathcal{F}(\mathcal{E},\mathcal{F}) = \mathcal{F}^{\mathcal{E}}$ ensemble des applications de \mathcal{E} dans \mathcal{F}

restriction de f à A : $f_{|A}$: $\begin{cases} A \to F \\ a \mapsto f(a) \end{cases}$

injection : au + un antécédant et $\forall (x,y) \in \mathbf{E}^2, f(x) = f(y) \Rightarrow x = y$

surjection : au - un antécédent et $\forall (x,y) \in \mathcal{E} \times \mathcal{F}, y = f(x) \ \ (\text{ou} \ f(\mathcal{E}) = \mathcal{F})$

<u>bijection</u>: injection et surjection

relation binaire \mathcal{R} : vraie pour des (x,y), noté $x\mathcal{R}$, et fausse pour autre, noté $x\mathcal{R}y$ réflexive: $\forall x \in \mathcal{E}, x\mathcal{R}x$

 $\underline{\text{symétrique}} : \forall (x, y) \in \mathcal{E}^2, x \mathcal{R} y \Rightarrow y \mathcal{R} x$

antisymétrique : $\forall (x,y) \in E^2, (x\Re y \text{ et } y\Re x) \Rightarrow x = y$

<u>transitive</u>: $\forall (x, y, z) \in E^3, (x\Re y \text{ et } y\Re z) \Rightarrow x\Re z$

relation d'équivalence : réflexive, symétrique, transitive

<u>relation d'ordre</u>: réflexive, antisymétrique, transitive

$$cl(x) = \{ y \in E, x \Re y \}$$

Sommes, Produits, Coefficients binomiaux

$$\frac{\text{t\'elescopage}:}{\sum_{k=m}^{n}(u_{k+1}-u_{k})} = u_{n+1}-u_{m} ; \prod_{k=m}^{n}\frac{u_{k+1}}{u_{k}} = \frac{u_{n+1}}{u_{m}}$$

$$(u_{n}) \text{ arithm\'etrique}: \sum_{k=m}^{n}u_{k} = \frac{u_{m}+u_{n}}{2} \times (n-m+1)$$

$$(u_{n}) \text{ g\'eom\'etrique} (\text{et } q \neq 1): \sum_{k=m}^{n}u_{k} = u_{m} \times \frac{1-q^{n-m+1}}{1-q}$$

$$a^{n}-b^{n} = (a-b)\left(\sum_{k=0}^{n-1}a^{k}b^{n-1-k}\right); (a+b)^{n} = \sum_{k=0}^{n}\binom{k}{n}a^{k}b^{n-k}$$

$$\binom{p}{n} = \frac{n!}{p!(n-p)!} = \binom{n-p}{n} = \binom{p-1}{n-1} + \binom{p}{n-1}; p \cdot \binom{p}{n} = n \cdot \binom{p-1}{n-1}$$

$$\sum_{m \leq i,j \leq n}a_{i,j} = \sum_{i=m}^{n}\sum_{j=m}^{n}a_{i,j}; \sum_{m \leq i \leq j \leq n}a_{i,j} = \sum_{i=m}^{n}\sum_{j=i}^{n}a_{i,j} = \sum_{j=m}^{n}\sum_{i=m}^{j}a_{i,j}$$

$$\sum_{m \leq i,j \leq n}a_{i,j} = \sum_{m \leq i \leq j \leq n}a_{i,j} + \sum_{m \leq j \leq i \leq n}a_{i,j} + \sum_{i=m}^{n}a_{i}; \sum_{k=1}^{n}k^{2} = \frac{n(n+1)(2n+1)}{6}$$

Entiers naturels et dénombrement

- $a|b\Rightarrow b=na$ (b multiple de a, a diviseur de b) $a\mathbb{N}$, l'ensemble des multiples de a $\mathcal{D}(b)$, l'ensemble des diviseurs de b ; division euclidienne : a=bq+r $0\leq r < b$. | est une relation d'ordre ; $a|b\Leftrightarrow \operatorname{pgcd}(a,b)=a$; $\operatorname{pgcd}(a,0)=a$; $\operatorname{pgcd}(a,1)=1$; $\operatorname{pgcd}(a,b)=1 \to \operatorname{premiers}$ entres-eux. | algo d'Euclide : $\operatorname{pgcd}(a,b)=\operatorname{pgcd}(a,r)$ | algo d'Euclide : $\operatorname{pgcd}(a,b)=\operatorname{pgcd}(a,r)$ | $\operatorname{pgcd}(a,b)=\operatorname{pgcd}(a,b)$; $\operatorname{ppcm}(ca,cb)=c\operatorname{ppcm}(a,b)$; $\operatorname{pgcd}(a,b)\times\operatorname{ppcm}(a,b)=a\times b$ | $\operatorname{d\'ecomposition}$ en facteurs $\operatorname{premiers}$: $\operatorname{n}=\prod_{p\in\mathcal{P}}p^{\alpha_p}$ | α_p : $\operatorname{p-valuation}$ de n | algo $\Leftrightarrow \forall p\in\mathcal{P}, \alpha_p\leq\beta_p$; $\operatorname{pgcq}(a,b)=\prod_{p\in\mathcal{P}}p^{\min(\alpha_p,\beta_p)}$; $\operatorname{ppcm}(a,b)=\prod_{p\in\mathcal{P}}p^{\max(\alpha_p,\beta_p)}$
- Card(E)= |E| = #E ; E injectif dans F \Leftrightarrow Card(E)≤Card(F) E surjectif à F \Leftrightarrow Card(E)≥Card(F) ; |E|=|F|, $f:E\to F$, on a : f injective \Leftrightarrow surjective Card(A∪B) = Card(A) + Card(B) - Card(A∩B) ; Card(B\A)= Card(B) - Card(A∩B)

$$\operatorname{Card}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \operatorname{Card}(A_{i}) ; \operatorname{Card}(A \times B) = \operatorname{Card}(A) \times \operatorname{Card}(B)$$

F^E, l'ensemble des applications de E dans F est fini et $\operatorname{Card}(F^{E}) = \left(\operatorname{Card}(F)\right)^{\operatorname{Card}(E)}$ Les (a_1, a_2, \dots, a_p) de A^p sont les p-listes, il y en a $\operatorname{Card}(A^p) = \operatorname{Card}(A)^p$ Si $1 \le p \le n$, il y a $\frac{n!}{(n-p)!}$ p-listes \ne de A = nb d'injections de E dans F |E| = p et |F| = n n!: nombre de permutations de A (bijections de A dans A) ; $\operatorname{Card}(\mathcal{P}(A)) = 2^{\operatorname{Card}(A)}$ Si |E| = n, le nb de parties de E à p éléments $(0 \le p \le n)$ est : $\binom{p}{n} = \frac{n!}{p!(n-p)!}$

	p-uplets	p-uplets sans répétitions	ensemble de E à p éléments ($ E =n$)
ordre compte	OUI	OUI	NON
répétition	OUI	NON	NON
cardinal n^p $\frac{n!}{(n-p)}$		$\frac{n!}{(n-p)!}$	$\binom{p}{n}$

Système Linéaire

- échelonnée \Leftrightarrow si 1 ligne et les $b_{\rm ext}=0$, le 1^{er} pivot est à droite de celui de la ligne k-1.
- échelonnée réduite \Leftrightarrow nulle OU pivot = 1 et seuls \neq 0 sur les colonnes.

pivot = 1^{er} coeff $\neq 0$ de la ligne $\ ; \ \mathrm{rg}(A) = \mathrm{nb}$ de pivots de A

inconnus principales = pivots étant des inconnus.

système de Cramer : ayant autant de lignes, de colonnes et d'inconnus.

Calcul Matriciel

Symbole de Kronecker :
$$\delta_{i,j} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$$

 $\mathcal{M}_{n,p}(\mathbb{K})$ = ensemble des matrices de taille $n \times p$ à coeffs dans \mathbb{K} .

 $0_{n,p}$, matrice nulle, I_n matrice identité (commutent avec toutes matrices)

$$A \in \mathcal{M}_{n,p}(\mathbb{K}), \ B \in \mathcal{M}_{p,q}(\mathbb{K}) \Rightarrow AB = (c_{i,j}) \in \mathcal{M}_{n,q}(\mathbb{K}) \text{ avec } c_{i,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j}$$

$$A \in \mathcal{M}_{n,p}(\mathbb{K}) \text{ et } B \in \mathcal{M}_{p,q}(\mathbb{K}) \Rightarrow {}^{t}(A \times B) = {}^{t}A \times {}^{t}B$$

D ou $\Delta = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ matrice diagonale

 $\mathrm{T}_n^+(\mathbb{K})=$ ensemble des matrices triangulaires supérieures (T_n^- pour les inférieures)

Le produit de 2 matrices diag (trig sup,...) est diag (trig sup,...) et les coeff de la diag se multiplient entres-eux

Si ${}^tA = A \Rightarrow$ matrice symétrique $(S_n(\mathbb{K}))$, si ${}^tA = -A$, matrice antisymétrique $(A_n(\mathbb{K}))$

$$I_n^k = I_n$$
 et $0_n^k = 0_n$ et $A^0 = I_n$

Si
$$A$$
 et B commutent : $(A \times B)^k = A^k \times B^k$ et $(A+B)^p = \sum_{k=0}^p \binom{k}{p} A^k \times B^{p-k}$

A inversible $\Leftrightarrow \exists ! B \in \mathscr{M}_n(\mathbb{K})$ to $AB = BA = I_n$ leur ensemble est $\mathscr{GL}_n(\mathbb{K})$

$$(\lambda A \times \mu B)^{-1} = \frac{1}{\mu} B^{-1} \times \frac{1}{\lambda} A^{-1}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ inversible ssi } ad - bc \neq 0 \text{ et } A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

<u>Méthode du pivot de Gauss-Jordan</u>: on applique à I_n les opération pour échelonner réduire la matrice, la matrice à partir de I_n et A^{-1}

 $\underline{\text{transposition}}: L_i \leftrightarrow L_j \quad \underline{\text{dilatation}}: L_i \leftarrow \lambda L_i \quad \underline{\text{transvection}}: L_i \leftarrow L_i + \lambda L_j$

Nombres Réels

$$n = \lfloor x \rfloor \text{ ou } \mathcal{E}(x) \Leftrightarrow n \leq x < n+1 \Leftrightarrow x-1 < n \leq x$$

$$a_n = \frac{\lfloor 10^n x \rfloor}{10^n} \text{ (approxi décimale par défaut) et } b_n = \frac{\lfloor 10^n x \rfloor + 1}{10^n} \text{ (... par excès)} ;$$

$$a_n \leq x \leq b_n$$

toute partie non et majorée/minorée de R admet une borne sup/inf.

Suites Numériques

 $\mathbb{R}^{\mathbb{N}}$ = ensemble des suites réelles

arithmétique:
$$u_n = u_p + (n-p)r$$
 et $\sum_{k=p}^n u_k = (n-p+1) \times \frac{(u_p + u_n)}{2}$
géométrique: $u_n = u_p \times q^{n-p}$ et $\sum_{k=p}^n u_k = u_p \times \frac{1-q^{n-p+1}}{1-q}$

Méthode (suite arithmético-géométrique de $u_{n+1} = au_n + b$) :

- 1. on cherche le point fixe l = al + b
- 2. on montre que $v_n = u_n l$ est géométrique
- 3. on trouve l'expression générale de v_n
- 4. on en déduit celle de u_n

Suite récurrente d'ordre 2 :

	complexe ; Δ de $r^2 = ar + b$	réelle ; Δ de $r^2 = ar + b$
$r_1 \neq r_2$	$\exists!(\lambda,\mu)\in\mathbb{C}^2,\forall n\in\mathbb{N}$	$\exists ! (\lambda, \mu) \in \mathbb{C}^2, \forall n \in \mathbb{N}$
	$u_n = \lambda r_1^n + \mu r_2^n$	$\underline{\Delta > 0:} u_n = \lambda r_1^n + \mu r_2^n$
		$\Delta < 0(r_{1,2} = r e^{\pm i\theta}) :$
		$u_n = r^n [\lambda \cos(\theta n) + \mu \sin(\theta n)]$
$r_1 = r_2$	", $u_n = (\lambda n + \mu)r^n$	", $u_n = (\lambda n + \mu)r^n$

- u_n converge vers l si : $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} \ (n \ge n_0 \Rightarrow |u_n l| \le \varepsilon)$
- u_n converge en $+\infty$ si : $\forall A > 0 \ \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} \ (n \ge n_0 \Rightarrow |u_n l| \ge A)$
- u_n converge en $-\infty$ si : $\forall A > 0 \ \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} \ (n \ge n_0 \Rightarrow |u_n l| \le A)$

 (u_n) et (v_n) , deux suites réelles, sont adjacentes si : $(u_n) \nearrow$; $(v_n) \searrow$; $(u_n - v_n) \xrightarrow[+\infty]{} 0$ alors (u_n) et (v_n) convergent vers l et $u_n \le l \le v_n$

 $(u_{\varphi(n)})_{n\in\mathbb{N}}$ avec $\varphi:\mathbb{N}\to\mathbb{N}$ strictement \neq est suite extraite (u_n) et converge vers la même limite que (u_n)

Méthode (étude de $u_{n+1} = f(u_n)$):

- 1. calcul des 1 er termes \rightarrow idées
- 2. on vérifie que la suite est bien définie : $\forall n \in \mathbb{N}, u_n \in I$ (pour calculer $u_{n+1} = f(u_n)$
- 3. on cherche le sens de varia de $(u_n \Rightarrow \text{ on étudie le signe } u_{n+1} u_n = f(u_n) u_n$
- 4. si (u_n) est monotone, on prouve qu'elle est majorée ou minorée $(\rightarrow \text{converge})$
- 5. si converge vers l, si f continue, f(l) = l
- $u_n = o(v_n)$ si $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$ (transitive et symétrique) non additionnable (ou -) $u_n \ v_n \leftrightarrow u_n = v_n + o(v_n)$ $u_n \to 0 \Rightarrow \ln(1+u_n) \sim u_n \ ; e^{u_n} 1 \sim u_n \ ; \sin(u_n) \sim u_n \ ; \cos(u_n) 1 \sim \frac{u_n^2}{2}$

Polynômes

 $\mathbb{K}[X]$ = ensemble des polynômes à coeff de \mathbb{K} .

deg (polunôme nul) = $-\infty$; a_n est le coeff dominant ; si $a_n = 1$, P est unitaire

$$\mathbb{K}_n[X] = \{P \mid \deg(P) \le n\}$$

$$P = \sum_{k=0}^{p} a_k X^k \text{ et } Q = \sum_{k=0}^{q} b_k X^k \Rightarrow PQ = \sum_{n \le 0} c_n X^n \text{ avec } c_n = \sum_{k=0}^{n} a_k b_{n-k}$$

le binôme de Newton et $P^n - Q^n$ s'appliquent aussi

$$\deg(P+Q) \leq \max(\deg P, \deg Q) \; \; ; \; \deg(\lambda P) = -\infty \; \text{si} \; \lambda = 0 \; \; ; \; \deg(PQ) = \deg P + \deg Q$$
 si deg $P \neq 0$ et deg $Q \leq 1$, $\deg(P \circ Q) = \deg P \times \deg Q$

$$P|Q \Rightarrow P^n|Q^n \ P|Q \text{ et } Q|P \Rightarrow \exists \lambda \in \mathbb{K}^*, \ P = \lambda Q(\text{même } a_n)$$

$$\exists Q \in \mathbb{K}[X], PQ = 1 \Leftrightarrow P \in \mathbb{K}^*$$

Méthode (division eucl de A par B si deg A = ? ou très grand et racines de B connues):

$$\exists ! (Q, R) \in \mathbb{K}[X]^2 \text{ tq } A = BQ + R \text{ avec deg } R \text{ j deg } B$$

$$B = X^2 + X - 2$$
 de racines 1 et -2

$$\Rightarrow$$
 deg $R \le 1$ donc $R = aX + b$ $(a, b) \in \mathbb{R}^2 \Rightarrow A = BQ + aX + b$

Pour
$$X = 1$$
: $A(1) = B(1) \times Q(1) + a + b$

$$\Leftrightarrow 2 = 0 + a + b$$

$$\frac{\text{Pour } X = -2:}{\Rightarrow} \begin{cases} 2 = a + b \\ 41 = -2a + b \end{cases} \Leftrightarrow a = -13 \text{ et } b = 15$$

 $(X-a)^{\alpha} | P$ avec α : multiplicité de la racine a (0 si pas racine) deg $P' = \deg P - 1$ $((X-a)^n)^{(k)} = \begin{cases} (X-a)^{n-k} \times \frac{n!}{(n-k)!} & \text{si } k \le n \\ 0 & \text{si } k \ge n+1 \end{cases}$

$$\left((X-a)^n \right)^n = \begin{cases} 0 & \text{if } k \ge n+1 \end{cases}$$

Formules de Taylor:

$$\overline{P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k}}; \ P(X + a) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} X^{k}$$

Si m= multiplicité de la racine a: $P(a)=P'(a)=\cdots=P^{(m-1)}(a)=0$ et $P^{(m)}(a)\neq 0$

 $A|B \Leftrightarrow$ les racines de A sont racines de B de $m_B \geq m_A$

P est irréductible ssi pas factorisable en \prod de 2 polynômes de deg ≥ 1

les polynômes complexes irréductibles sont de deg 1 et les réels de deg ≤ 2

P scindé dans $\mathbb{K}[X]$ ssi $\sum_{k=1}^{\infty} m_k = \deg P$ (m_k multiplicité de ses racines)

$$P = a_0 + a_1 X + \dots + a_n X^n \text{ scind\'e et } x_1, \dots, x_n \text{ ses racines :}$$

$$\sum_{k=1}^n x_k = -\frac{a_{n-1}}{a_n} \text{ et } \prod_{k=1}^n x_k = (-1)^k \frac{a_0}{a_n}$$

Limites, Continuité

- $f(x) \xrightarrow[x \to a]{} l \in \mathbb{R} : a \in \mathbb{R} : \forall \varepsilon > 0 \ \exists \delta > 0, \ \forall x \in \mathcal{I} \ |x a| \le \delta \Rightarrow |f(x) l| \le \varepsilon$ $a = +\infty : \ \forall \varepsilon > 0 \ \exists A \in \mathbb{R}, \ \forall x \in \mathcal{I} \ x \ge \Rightarrow |f(x) l| \le \varepsilon$
- $f(x) \xrightarrow[x \to a]{} +\infty : a \in \mathbb{R} : \forall M \in \mathbb{R} \ \exists \delta > 0, \ \forall x \in \mathcal{I} \ |x a| \le \delta \Rightarrow f(x) \ge M$
- $f(x) \xrightarrow[x \to a]{} l \in \mathbb{R} : a \in \mathcal{I} : \forall \varepsilon > 0 \ \exists \delta > 0, \ \forall x \in \mathcal{I} \ a \delta \leq x < a \Rightarrow |f(x) l| \leq \varepsilon$
- continuité en a : $\forall \varepsilon > 0 \ \exists \delta > 0, \ \forall x \in I \ |x a| \le \delta \Rightarrow |f(x) f(a)| \le \varepsilon$ $\Leftrightarrow f(x) \xrightarrow[x \to a]{} f(a)$ (limite atteinte)
- prolongement par continuité (unicité) : $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ si $f(x) \xrightarrow[x \to a]{} l \in \mathbb{R}$

alors un prolongement de f est $g: \left\{ \begin{array}{l} \mathbf{I} \to \mathbb{R} \\ x \mapsto \left\{ \begin{array}{l} f(x) \text{ si } x \neq a \\ l \text{ si } x = a \end{array} \right. \end{array} \right.$

• f est k-lipschitzienne si $\exists k \in \mathbb{R}_+^*, \ \forall (x,y) \in \mathcal{I}^2 \ |f(x) - f(y)| \le k|x - y| \ (\mathrm{donc} \ f \ \mathrm{est} \ C^0)$

Espaces Vectoriels

- EV de réf : \mathbb{K}^n ; $\mathbb{K}[X]$; $\mathcal{M}_{n,p}(\mathbb{K})$; $\mathbb{K}^{\mathbb{R}} = \mathscr{F}(\mathbb{R}, \mathbb{K})$
- L'union de SEV est aussi un SEV (pas l'intersection)
- espace engendré: $\operatorname{Vect}(e_1, \dots, e_n) = \left\{ \sum_{i=1}^n \lambda_i e_i \mid \forall i \in [1; n], \lambda_i \in \mathbb{K} \right\}$ Si $(e_1, \dots, e_n) \in E$ alors $\operatorname{Vect...}$ est un SEV de E et c'est le plus petit SEV de E à contenir les e_i .
- $F + G = \{f + g \mid f \in F \text{ et } g \in G\}$ c'est un SEV de E et le + petit à contenir F et G
- somme directe: $F \oplus G \Leftrightarrow F \cap G = \{0_E\}$
- \bullet F et G supplémentaires de E ssi $E=F\oplus G$
- (e_1, \dots, e_n) est libre ssi $\forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$, $\sum_{i=1}^n \lambda_i e_i = 0_E \Rightarrow \forall i \in [1; n], \lambda_i = 0$
- (e_1, \dots, e_n) est liée ssi $\exists i \in [1, n], e_i \in \text{vect}(e_1, \dots, e_{i-1}, e_{i+1}, \dots, e_n)$

- $\mathscr{F}=(P_0,\cdots,P_n)$ est échelonnée ssi $0\leq d^\circ P_0<\cdots< d^\circ P_n$ et si échelonnée alors libre.
- (e_1, \dots, e_n) génératrice de $E \Leftrightarrow E = \text{Vect}(e_1, \dots, e_n)$
- base = libre + génératrice

 $(1, X, \dots, X^n)$ base canonique de $\mathbb{K}_n[X]$

 $(E_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ base canonique de $\mathscr{M}_{n,p}(\mathbb{K})$

 $(e_i)_{1\leq i\leq n}$ où $e_i=(0,\cdots,1,\cdots,0)$ est la base canonique de \mathbb{K}^n

• \mathscr{B} une base de F (n éléments), \mathscr{B}' une base de G (p éléments), si $E = F \oplus G$ alors $\mathscr{B}'' = \mathscr{B} \cup \mathscr{B}'$ est une base de E (dite adaptée à la décomposition de $E = F \oplus G$)

Espaces Vectoriels de dimension finie

- E de dimension finie si il y a une partie finie et génératrice
- théo base extraite : $\mathscr G$ génératrice de E, alors $\exists \mathscr B$ base de E tq $\mathscr B \subset \mathscr G \Rightarrow E$ de dim finie admet une base
- \bullet thé base incomplète : ${\mathscr L}$ libre de E, alors $\exists {\mathscr B}$ base de E tq ${\mathscr L} \subset {\mathscr B}$
- \bullet Comme toute les bases ont le même card, alors on dit que $\dim(E) = |\mathscr{B}|$
- $\dim(E)=n$ et $|\mathscr{F}|=n$ alors \mathscr{F} base de $E\Leftrightarrow\mathscr{F}$ génératrice $\Leftrightarrow\mathscr{F}$ libre et $|\mathscr{L}|\leq |\mathscr{B}|\leq \mathscr{G}$.
- F un SEV de E, $\dim(F) \leq \dim(E)$ et $E = F \Leftrightarrow \dim(E) = \dim(F)$
- En dim finie, existence des supplémentaires
- formule de Grassmann : $\dim(F+G) = \dim(F) + \dim(G) \dim(F \cap G)$
- \mathscr{F} une famille, $rg(\mathscr{F}) = dim(Vect(\mathscr{F}))$
- dim E = n et $|\mathscr{F}| = p$ alors :
 - $\operatorname{rg}(\mathscr{F}) \leq \min(n, p)$
 - \mathscr{F} génératrice $\Leftrightarrow \operatorname{rg}(\mathscr{F}) = n$
 - \mathscr{F} libre $\Leftrightarrow \operatorname{rg}(\mathscr{F}) = p$

• $\dim(E \times F) = \dim(F) + \dim(E)$

Dérivation

Soient $(a, b) \in \mathbb{R}^2$ to a < b et soit $f : [a; b] \to \mathbb{R}$

- théorème de Rolle : si f continue sur [a, b], dérivable sur]a; b[et f(a) = f(b) alors $\exists c \in]a : b[$ tq f'(c) = 0
- TAF: si f continue sur [a;b] et dérivable sur [a;b] alors $\exists c \in]a:b[$ tq $f'(c)=\frac{f(b)-f(a)}{b-a}$
- <u>IAF</u>: si f continue sur [a;b], dérivable sur]a;b[et $\exists M\in\mathbb{R}\ \forall x\in]a;b[$ $|f'(x)|\leq M$ alors f est M-lipschitzienne

formule de Leibniz:
$$k \in \mathbb{N}$$
, $(f,g) \in \mathscr{C}^k(I,\mathbb{R})^2$ alors $fg \in \mathscr{C}^k(I,\mathbb{R})$ et $(fg)^{(k)} = \sum_{i=0}^k \binom{i}{k} f^{(i)} g^{(k-i)}$

Applications Linéaires

fendomorphisme de $E \Leftrightarrow f \in \mathcal{L}(E,E) = \mathcal{L}(E)$

f forme linéaire sur $E \, \Leftrightarrow f \in \mathscr{L}(E,\mathbb{K}) = E^*$

f un isomorphisme de E dans $F \, \Leftrightarrow f \in \mathscr{L}(E,F)$ et f bijective

f automorphisme de $E \Leftrightarrow f$ endomorphisme et isomorphisme donc $f \in \mathscr{GL}(E),$ groupe linéaire

Si
$$f \in \mathcal{L}(E)$$
 et $n \in \mathbb{N}$, $f^n = \underbrace{f \circ \cdots \circ f}_{\text{n fois}} \in \mathcal{L}(E)$

- $u \in \mathcal{L}(E, F)$, A SEV de E et B de F, u A) SEV de F et $u^{-1}(B)$ SEV de $E \Rightarrow$ $Ker(u) = u^{-1}(\{0_F\})$ SEV de E et Im(u) = u(E) SEV de F
- $f \in \mathcal{L}(E, F)$, f surjective $\Leftrightarrow \operatorname{Im}(f)$ f injective $\Leftrightarrow \operatorname{Ker}(f) = \{0_E\}$
- Si $F \oplus G = E$, alors $\forall x \in E \exists ! (x_F, x_G) \in F \times G, x = x_F + x_G$

et on a
$$p_F$$
:
$$\begin{cases} E \to E \\ x \mapsto x_F \end{cases}$$
 projection, sur F parallèlement à G .

- $p_F \in \mathcal{L}(E)$ et $p_F \circ p_F = p_F$; $\operatorname{Ker}(p_F) = G$ et $\operatorname{Im}(p_F) = F$; $p_F \circ p_G = 0_{\mathcal{L}(E)}$ $\Rightarrow p \in \mathcal{L}(E)$ et $p \circ p = p \Leftrightarrow E = \operatorname{Ker}(p) \oplus \operatorname{Im}(p)$ et p projection sur $\operatorname{Im}(p)$
- Si $F \oplus G = E$, $s_F : \begin{cases} E \to E \\ x \mapsto x_F x_G \end{cases}$ • $s_F \in \mathcal{L}(E)$ et $s_F \circ s_F = Id_E$; $\operatorname{Ker}(s_F + Id_E) = G$ et $\operatorname{Ker}(s_F - Id_E) = F$
- $s_F = 2p_F Id_E$; $s_F \circ s_G = -Id_E$
- $u \in \mathcal{L}(E, F)$ injective et \mathcal{L} libre de $E \Rightarrow u(\mathcal{L})$ libre de F
- $u \in \mathcal{L}(E, F)$ et (e_1, \dots, e_n) génératrice de $E \Rightarrow \operatorname{Im}(u) = \operatorname{Vect}(u(e_1), \dots, u(e_n))$ (et si u surjective, $(u(e_1), \dots, u(e_n))$ génératrice de F)
- (e_1, \dots, e_n) base de E et $(f_1, \dots, f_n) \in F^n \Rightarrow$ unicité de $u \in \mathcal{L}(E, F)$ tq $\forall i [\![1, n]\!], u(e_i) = f_i$.
- u isomorphisme et \mathcal{B} base de $E \Leftrightarrow u(\mathcal{B})$ base de F
- $\operatorname{rg}(u) = \dim(\operatorname{Im}(u))$ \mathscr{B} base de $E \Rightarrow \operatorname{rg}(u) = \operatorname{rg}(u(\mathscr{B}))$ et $\operatorname{rg}(u) \leq \min(\dim E, \dim F)$. $\operatorname{rg}(g \circ f) \leq \min(\operatorname{rg}(f), \operatorname{rg}(g))$ et $= \operatorname{rg}(f)$ si g isomorphisme, de même pour f.
- Théorème du rang : dim $E = \dim(Ker(f)) + \dim(Im(f))$
- dim $E = \dim F \Rightarrow f$ injective $\Leftrightarrow f$ surjective $\Leftrightarrow f$ biective.
- $(a,b) \in \mathbb{K}^2, b \neq 0, E_{a,b} = \{(u_n) \in \mathbb{K}^{\mathbb{N}}, \forall n \in \mathbb{N}u_{n+2} = a u_{n+1} + b u_n\}$ et $(E): x^2 - ax - b = 0$, on a:
- $E_{a,b}$ est un K-EV de dim 2
- (E) a 2 solution $p \neq q \Rightarrow ((p^n)_{n \in \mathbb{N}}, (q^n)_{n \in \mathbb{N}})$ base de $E_{a,b}$
- (E) a 1 solution double $p \Rightarrow ((p^n)_{n \in \mathbb{N}}, (np^n)_{n \in \mathbb{N}})$ base de $E_{a,b}$

• Si
$$\mathbb{K} = \mathbb{R}$$
 et $\Delta_{(E)} < 0$ $p = p e^{i\theta}$ $p > 0$ et $\theta \in \mathbb{R}$, on a :
$$\forall n \in \mathbb{N}, u_n = p^n(\alpha \cos(n\theta) + \beta \sin(n\theta)) \text{ avec } \alpha = \Re(A) + \Re(B) \text{ et } \beta = \Im(A) - \Im(B)$$
 et $u_n = A p^n + B q^n$.

Matrice

$$\mathscr{B} = (e_1, \cdots, e_n) \text{ base de } E, \mathscr{C} = (f_1, \cdots, f_p) \text{ base de } F$$

$$\mathscr{F} = (u_1, \cdots, u_q) \in E^q \text{ et } f \in \mathscr{L}(E, F) :$$

$$u_1 \quad \dots \quad u_j \quad \dots \quad u_q$$

$$e_1 \begin{pmatrix} a_{1,1} & \dots & a_{1,j} & \dots & a_{1,q} \\ \vdots & & \vdots & & \vdots \\ a_{i,1} & \dots & a_{i,j} & \dots & a_{i,q} \\ \vdots & & \vdots & & \vdots \\ e_n \begin{pmatrix} a_{n,1} & \dots & a_{n,j} & \dots & a_{n,q} \end{pmatrix} \in \mathscr{M}_{n,q}(\mathbb{K})$$

$$f(e_1) \dots f(e_j) \dots f(e_q)$$

$$f_1 \begin{pmatrix} a_{1,1} & \dots & a_{1,j} & \dots & a_{1,q} \\ \vdots & & \vdots & & \vdots \\ a_{i,1} & \dots & a_{i,j} & \dots & a_{i,q} \\ \vdots & & \vdots & & \vdots \\ f_p \begin{pmatrix} a_{i,1} & \dots & a_{i,j} & \dots & a_{i,q} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,j} & \dots & a_{n,q} \end{pmatrix} \in \mathcal{M}_{p,n}(\mathbb{K})$$

• $\operatorname{Mat}_{\mathscr{C}}(f(x)) = \operatorname{Mat}_{\mathscr{B},\mathscr{C}} \operatorname{Mat}_{\mathscr{B}}(x) \; ; \operatorname{Mat}_{\mathscr{B}}(\lambda \operatorname{Id}_{E}) = \lambda I_{n} \; \lambda \in \mathbb{K}$

•
$$\underline{\text{Si } F \oplus G \text{ et } \mathscr{B} \text{ base : }} \operatorname{Mat}_{\mathscr{B}}(p_{F}) = \begin{pmatrix} I_{r} & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} \text{ et } \operatorname{Mat}_{\mathscr{B}}(s_{F}) = \begin{pmatrix} I_{r} & 0_{r,n-r} \\ 0_{n-r,r} & -I_{n-r} \end{pmatrix}$$

$$\begin{cases} \mathscr{L}(E,F) \to \mathscr{M}_{p,n}(\mathbb{K}) \\ f \mapsto \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(f) \end{cases} \text{ isomorphisme donc } \dim(\mathscr{L}(E,F)) = \dim E \times \dim F$$

 $\operatorname{Mat}_{\mathscr{B},\mathscr{D}}(g \circ f) = \operatorname{Mat}_{\mathscr{C},\mathscr{D}}(g) \times \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(f)$

- $\operatorname{Mat}_{\mathscr{B}}(f^q) = \operatorname{Mat}_{\mathscr{B}}(f)^q$; f automorphisme $\Leftrightarrow \operatorname{Mat}_{\mathscr{B}}(f)$ inversible et $\operatorname{Mat}_{\mathscr{B}}(f^{-1}) = \operatorname{Mat}_{\mathscr{B}}(f)^{-1}$
- $f_A: X \mapsto AX \in \mathcal{L}(\mathcal{M}_{n,1}(\mathbb{K}), \mathcal{M}_{p,1}(\mathbb{K}))$: appli linéaire canonique associé à A

 $\underline{\text{matrice de passage de } \mathcal{B} \text{ à } \mathcal{B}' :} P_{\mathcal{B} \to \mathcal{B}'} = \operatorname{Mat}_{\mathcal{B}}(\mathcal{B}') \text{ et } (P_{\mathcal{B} \to \mathcal{B}'})^{-1} = P_{\mathcal{B}' \to \mathcal{B}}$ $\operatorname{Mat}_{\mathcal{B}}(x) = P_{\mathcal{B} \to \mathcal{B}'} \operatorname{Mat}_{\mathcal{B}'}(x)$

 $A = QA'P^{-1}$ avec $f \in \mathcal{L}(E, F)$, $A = \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(f)$, $A' = Mat_{\mathscr{B}',\mathscr{C}'}(f)$, $Q = P_{\mathscr{C} \to \mathscr{C}'}$ et $P = P_{\mathscr{B} \to \mathscr{B}'}$ et si $f \in \mathcal{L}(E)$, Q = P et on note D = A', de plus $A^q = PD^qP^{-1}$

 $\operatorname{Ker}(A) = \{ X \in \mathcal{M}_{n,A}(\mathbb{K}) \mid AX = 0 \} \; ; \operatorname{Im}(A) = \{ AX \mid X \in \mathcal{M}_{n,1}(\mathbb{K}) \} \; ; \operatorname{rg}(A) = \dim(\operatorname{Im}(A))$ $x \in \operatorname{Ker}(f) \Leftrightarrow \operatorname{Mat}_{\mathscr{B}}(x) \in A \; ; \; y \in \operatorname{Im}(f) \Leftrightarrow \operatorname{Mat}_{\mathscr{C}}(y) \in \operatorname{Im}(y) \; ; \operatorname{rg}(A) = \operatorname{rg}(f)$

• $\operatorname{rg}(A) = \operatorname{rg}(C_1, C_2, \dots, C_n)$; $n = \operatorname{rg}(A) + \dim(\operatorname{Ker}(A))$ n, nombre de colonnes de A

 $A \in \mathcal{M}_{p,n}(\mathbb{K}) : \operatorname{rg}(A) \le \min(n,p) ; \operatorname{rg}(AB) \le \min(\operatorname{rg}(A), \operatorname{rg}(B))$ Si $A \in \mathcal{M}_n(\mathbb{K})$ (ou $B \in \mathcal{M}_n(\mathbb{K})$), $\operatorname{rg}(AB) = \operatorname{rg}(B)$ (ou $\operatorname{rg}(B)$)

 $A \in \mathscr{M}_{p,n}(\mathbb{K}) \text{ alors } \exists (P,Q) \in \mathscr{GL}_n(\mathbb{K}) \times \mathscr{GL}_p(\mathbb{K}), \ A = Q \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{p-r,r} & 0_{p-r,n-r} \end{pmatrix} P^{-1} \Leftrightarrow \operatorname{rg}(A) = r$ $\operatorname{rg}(A^T) = \operatorname{rg}(A)$

• $A \in \mathcal{M}_n(\mathbb{K}), A \text{ inversible } \Leftrightarrow \operatorname{rg}(A) = n \Leftrightarrow \operatorname{Ker}(A) = \{0_{n,1}\} \Leftrightarrow \operatorname{Im}(A) = \mathcal{M}_{n,1}(\mathbb{K})$

 $E_{a,b} \times E_{c,d} = \delta_{b,c} E_{a,d}$

Déterminant

- $\det(I_n) = 1$; det multilinéaire (linéaire par rapport à chaque colonne) Soit $M \in \mathcal{M}_n(\mathbb{R})$ et N = M avec 2 colonnes échangées, on a : $\det(M) = -\det(N)$ (antisymétrie)
- colonne de A nulle $\Rightarrow \det(A) = 0$

2 colonnes de
$$A$$
 égales $\Rightarrow \det(A) = 0$

$$\det(C_1, \dots, C_n) = \det(C_1, \dots, C_i + \sum_{\substack{j=1 \ j \neq i}}^n \lambda_j C_j, \dots, C_n)$$

$$\det(\lambda A) = \lambda^n \det(A) \quad (A \in \mathscr{M}_n(\mathbb{K}))$$

- T matrice triangulaire $(\in \mathcal{M}_n(\mathbb{K})) \Rightarrow \det(T) = \prod_{i=1}^n t_{i,i}$ $(M, N) \in \mathcal{M}_n(\mathbb{K})^2$:
- M inversible $\Leftrightarrow \det(M) \neq 0$ donc $\operatorname{rg}(M) < n \Leftrightarrow \det(M) = 0$
- $-\det(MN) = \det(M) \det(N)$
- $det(M^{-1}) = \frac{1}{det(M)}$ (si M inversible)
- $-\det(M^T) = \det(M)$

 $\Delta_{i,j}$ (mineur d'indice (i,j)) : det de M où on a enlevé la i-ème ligne et la j-ième colonne Développement de $\det(M)$:

- suivant la *i*-ème ligne : $\det(M) = \sum_{j=1}^{n} (-1)^{i+j} m_{i,j} \Delta_{i,j} \quad (m_{i,j} \text{ coeff de } M)$
- suivant la j-ième colonne : $\det(M) = \sum_{i=1}^n (-1)^{i+j} m_{i,j} \Delta_{i,j}$
- $\mathscr{F} = (x_1, \dots, x_n)$, $\det_{\mathscr{B}}(\mathscr{F}) = \det(Mat_{\mathscr{B}}(\mathscr{F}))$; $= 0 \Leftrightarrow \mathscr{F}$ liée ; \mathscr{F} base de $E \Leftrightarrow \det_{\mathscr{B}}(\mathscr{F}) \neq 0$
- $f \in \mathcal{L}(E)$, $\det(f) = \det(Mat_{\mathscr{B}}(f))$ <u>M</u>indépendant de \mathscr{B} ; $\det(f \circ g) = \det(f) \times \det(g)$; f bijective $\Leftrightarrow \det(f) \neq 0$ et donc $\det(f^{-1}) = \det(f)^{-1}$

Probabilité

- univers (Ω) : ensemble des issues possibles
- <u>éventualité ou issue</u> : tout ω tq $\omega \in \Omega$
- <u>événement</u>: partie de Ω ; se réalise si $\omega \in A$ (lévénement); θ : événement impossible

 Ω : événement certain ; $\{\omega_i\}$: événement élémentaire

A et B incompatibles $\Leftrightarrow A \cup B = \emptyset$; A implique B si $A \subset B$

- (A_1, \dots, A_n) système complet d'événements (s.c.e) si :
 - $\forall (i, j) \ A_i \cup A_j = \emptyset \text{ avec } i \neq j$
 - $\Omega = \bigcap^{n} A_{i}$
- \bullet $(\Omega, \mathscr{P}(\Omega))$: espace probabilisé $\ (\mathscr{P}(\Omega) = \text{ensemble des parties de }\Omega)$ est dit finie si on a (Ω, \mathbb{P}) avec Ω fini et \mathbb{P} une proba sur Ω

$$\begin{split} \mathbb{P}(\bar{A}) &= 1 - \mathbb{P}(A) \; \; ; \, \mathbb{P}(\emptyset) = 0 \; \; ; \, \text{si } A \subset B, \, \mathbb{P}(A) \leq \mathbb{P}(B) \text{ et } \mathbb{P}(B \backslash A) = \mathbb{P}(B) - \mathbb{P}(A) \; \; ; \\ \mathbb{P}(A \cap B) &= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B) \end{split}$$

•
$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(P \cap A_i)$$
 avec $(A_i)_{1 \leq i \leq n}$ un s.c.e.

la somme de proba = 1 ; probra
∈ [0,1] ; $\mathbb{P}(A) = \sum_{\substack{i \in [\![1,n]\!]\\ 1 = \dots \in A}} \mathbb{P}(\{\omega_i\})$

Si équiprobabilité :
$$\mathbb{P}(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)}$$

 $\mathbb{P}(A \mid B) = \mathbb{P}_B(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \text{ (proba conditionelle) donc } \mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}_B(A)$ • formule proba composés : si $\mathbb{P}\left(\bigcap_{i=1}^{n-1} A_i\right) \neq 0$, on a

$$\mathbb{P}\Big(\bigcap_{i=1}^{n-1} A_i\Big) = \mathbb{P}(A_1) \times \mathbb{P}_{A_1}(A_2) \times \cdots \times \mathbb{P}_{A_1 \cap \cdots \cap A_{n-1}}(A_n) .$$

• <u>formule proba totales</u>: si $(A_1, ..., A_n)$ s.c.e et $\mathbb{P}(A_i) > 0$, on a $\mathbb{P}(B) = \sum_{i=1}^n \mathbb{P}_{A_i}(B) \mathbb{P}(A_i)$.

• formule de Baye :
$$(A_1, ..., A_n)$$
 s.c.e, $\mathbb{P}(A_i) \neq 0$ et $\mathbb{P}(B) \neq 0$,
$$\mathbb{P}(A_i \mid B) = \frac{\mathbb{P}(B \mid A_i)\mathbb{P}(A_i)}{\sum_{j=1}^n \mathbb{P}(B \mid A_j)\mathbb{P}(A_j)} .$$

- A et B indépendants si $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
- (A_1, \dots, A_n) mutuellement indé si $\forall I \subset [\![1, n]\!], I \neq \emptyset$ on a $\mathbb{P}\Big(\bigcap_{i \in I} A_i\Big) = \prod_{i \in I} \mathbb{P}(A_i)$.

Variables aléatoires réelles

- $X(\Omega) = \{x_1, \dots, x_p\}$ alors $(X = x_i)_{1 \le i \le p}$ s.c.e et si $B \subset \mathbb{R}$ $\mathbb{P}(X \in B) = \sum_{x \in B} \mathbb{P}(X = x)$.
- $f: X \to \mathbb{R}$,

$$Y(\Omega) = \{ f(x_1), ..., f(x_p) \}, \ \forall y \in Y(\Omega) \ \mathbb{P}(Y = y) = \sum_{\substack{i=1 \\ \text{si } f(x_i) = y}}^{p} \mathbb{P}(X = x_i) = \sum_{x \in f^{-1}(\{y\})} \mathbb{P}(X = x)$$

• $\mathbb{E}(X) = \sum_{x \in X(\Omega)} x \, \mathbb{P}(X = x)$; X centrée si $\mathbb{E}(X) = 0$; \mathbb{E} linéaire ; $\mathbb{E}(\lambda) = \lambda$; si $X \leq Y$, $\mathbb{E}(X) < \mathbb{E}(Y)$.

$$f: \mathcal{X}(\Omega) \to \mathbb{R}, \, \mathcal{Y} = f(\mathcal{X}) \text{ donc } \mathbb{E}(\mathcal{Y}) = \sum_{x \in \mathcal{X}(\Omega)} f(x) \, \mathbb{P}(\mathcal{X} = x).$$

- <u>inégalité de Markov</u> : a > 0 et X positive alors $\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$.
- $\mathbb{V}(X) = \mathbb{E}(X \mathbb{E}(X))$ et $\sigma(X) = \sqrt{\mathbb{V}(X)}$ $(a,b) \in \mathbb{R}^2, \mathbb{V}(aX+b) = a^2\mathbb{V}(X)$; $\mathbb{V}(X) = a \Leftrightarrow X = \mathbb{E}(X)$ <u>Koenig - Huyengs :</u> $\mathbb{V}(X = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

 $\underline{\text{inégalité de Bienaymé - Tchebytchev}} : \varepsilon > 0, \, \mathbb{P}(\, | X - \mathbb{E}(X) \, | \, \geq \varepsilon) \leq \frac{\mathbb{V}(X)}{\varepsilon^2}.$

• $(x,y) \in X(\Omega) \times Y(\Omega)$ si $\mathbb{P}((X = x) \cap (Y = y)) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$ alors X et Y indépendants.

X, Y indépendantes, $f: X(\Omega) \to \mathbb{R}$ et $g: Y(\Omega) \to \mathbb{R}$ alors f(X) et g(Y) indépendants.

"
$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$
 et $\mathbb{V}(X + Y) = \mathbb{V}(X) + \mathbb{V}(Y)$.

•
$$(X_1, \ldots, X_n)$$
 mutuellement indépendantes si $\forall (x_1, \cdots, x_n) \in X_1(\Omega) \times \cdots \times X_n(\Omega)$
 $\mathbb{P}\left(\bigcap_{i=1}^n (X_i = x_i)\right) = \prod_{i=1}^n \mathbb{P}(X_i = x_i)$ OU si $A_i \in \mathscr{P}(X_i(\Omega)), \mathbb{P}\left(\bigcap_{i=1}^n (X \in A_i)\right) = \prod_{i=1}^n \mathbb{P}(X \in A_i)$

$$(X_1, \ldots, X_n)$$
 2 à 2 indépendantes $\Rightarrow \mathbb{V}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathbb{V}(X_i)$

$$\underline{\text{loi conjointe}:} (\mathbf{X}, \mathbf{Y}): \left\{ \begin{array}{l} \mathbf{X}(\Omega) \times \mathbf{Y}(\Omega) \to [0; 1] \\ \\ (x, y) \mapsto \mathbb{P}\big((\mathbf{X} = x) \cap (\mathbf{Y} = y) \big) \end{array} \right.$$

1^e loi marginale de (X,Y) la loi de X et la 2nd celle de Y

Donc
$$\forall x \in \mathcal{X}(\Omega) \ \mathbb{P}(\mathcal{X} = x) = \sum_{y \in \mathcal{Y}(\Omega)} \mathbb{P}((\mathcal{X} = x) \cap (\mathcal{Y} = y))$$

Loi	Danamahtna	V(O)	Loi do puebo	$\mathbb{E}(\mathbf{V})$	$\pi I(\mathbf{V})$
LOI	Paramètre	$X(\Omega)$	Loi de proba	$\mathbb{E}(X)$	$\mathbb{V}(X)$
Quasi-certaine	$a \in \mathbb{R}$		$\mathbb{P}(X=a)=1$	a	0
Bernoulli	$p \in [0; 1]$	{0,1}	$\mathbb{P}(X = 1) = p , \mathbb{P}(X = 0) = 1 - p$	p	p(1-p)
Binomiale	$(p,n) \in [0,1] \times \mathbb{N}^*$	$\boxed{[\![0,n]\!]}$	$k \in [0, n] \mathbb{P}(X = k) = {k \choose n} p^k (1 - p)^{n-k}$	np	np(1-p)
Uniforme	n	[1, n]	$k \in \llbracket 0, n \rrbracket \mathbb{P}(\mathbf{X} = k) = \frac{1}{\operatorname{Card}(\llbracket 0, n \rrbracket)}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$
Géométrie	$p \in]0;1[$	N*	$k \in \mathbb{N}^*, \mathbb{P}(X = k) = p (1 - p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Poisson	$\lambda > 0$	N	$k \in \mathbb{N}, \ \mathbb{P}(\mathbf{X} = k) = \frac{\lambda^k}{k!} e^{-k}$	λ	λ

Intégration

$$\underline{\text{in\'egalit\'e triangulaire}:} \; \Big| \int_a^b f(x) \; \, \mathrm{d}x \Big| \leq \int_a^b |f(x)| \; \, \mathrm{d}x$$

- $f \in \mathcal{C}^0(I, \mathbb{R})$, si f positive sur I et si $\exists x_0 \in I$ tq $f(x_0) > 0$ alors $\int_a^b f > 0$ " et si $\int_a^b f = 0$ alors f nulle sur I.
- $\sigma = (\sigma_0, \dots, \sigma_n)$ avec $\sigma_i = a + i \frac{b-a}{n}$, si $f \in \mathscr{C}^0([a, b], \mathbb{R})$, alors on a les sommes de

Riemann:
$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{i=0}^{n-1} f(\sigma_i) = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{i=1}^{n} f(\sigma_i) = \int_a^b f.$$

 $\underline{\text{IAF à } f: I \to \mathbb{C}: f \ \mathscr{C}^1 \text{ et } M \text{ tq } |f'| \leq M \text{ alors } \forall (x,y) \in [a,b]^2, |f(x)-f(y)| \leq M|x-y| }$

<u>formule de Taylor avec reste intégral</u> : $a \in I$ et $f \in \mathcal{C}^{n+1}(I, \mathbb{K})$ alors on a $\forall x \in I$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

inégalité de Taylor-Lagrange :
$$f \in \mathscr{C}^{n+1}(I,\mathbb{R})$$
 et $M \in \mathbb{R}^+$ tq $\forall t \in I | f^{(n+1)}(t) | \leq M$ on a : $\forall x \in I, \left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k \right| \leq M \frac{|x-a|^{n+1}}{(n+1)!}$.

PSI

Compléments d'algèbre linéaire

$$\det(V(\alpha_1, \dots, \alpha_n)) = \prod_{1 \le i < j \le n} (\alpha_j - \alpha_i)$$

 $E^* = \mathcal{L}(E, \mathbb{K})$

• H hyperplan : H SEV de E et $\dim(H) = \dim(E) - 1$ $\Leftrightarrow \forall x_0 \in E \setminus H, E = \text{Vect}(x_0) \oplus H$ $\Leftrightarrow \exists \varphi \in E^*$ tel que Ker $\varphi = H$ et φ non nul

 $\varphi, \psi \in E^*$, Ker $\varphi = \text{Ker } \psi \Leftrightarrow \exists \lambda \in \mathbb{K}^*, \psi = \lambda \varphi$.

• A et B semblables $\Leftrightarrow \exists P \in \mathscr{GL}_n(\mathbb{K}), A = PBP^{-1} \Leftarrow A$ et B ont même trace, rang, déterminant et polynômes annulateurs

 $\operatorname{tr} \in E^*$ non nulle; $\operatorname{tr}({}^tA) = \operatorname{tr}(A)$; $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

$$P(u) = \sum_{i=0}^{n} a_i u^i \in \mathcal{L}(E) \text{, leur ensemble est } \mathbb{K}[u] \quad (PQ)(u) = P(u) \circ Q(u) = P(u) \circ Q(u)$$

$$\forall u \in \mathcal{L}(E), E \text{ dim finie, } \exists P \in \mathbb{K}[X], P(u) = 0_E \quad A \text{ et } {}^tA \text{ ont même poly annulateurs.}$$

• matrices par bloc : $\det\left(\begin{array}{c|c}A&B\\\hline 0_{n,m}&C\end{array}\right)=\det(A)\times\det(C)$; $\det(M)=\prod^n\det(A_{i,i})$ si M triangulaire ou diagonale par blocs.

$$\dim\left(\prod_{i=1}^n E_i\right) = \sum_{i=1}^n \dim(E_i) , \text{ le produit est un EV.}$$

$$\bigoplus_{i=1}^n E_i \Leftrightarrow \forall (x_1, \dots, x_n) \in \prod_{i=1}^n E_i, \sum_{i=1}^n x_i = 0_E \Rightarrow x_i = 0_{E_i}$$

$$\Leftrightarrow \dim\left(\sum_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} \dim(E_i)$$

 $\Leftrightarrow \mathcal{B}$ base de $\sum_{i=1}^{n} E_i$ avec \mathcal{B} concaténation de bases des E_i

•
$$\sum_{i=1}^{n} E_i = \text{Vect}(\mathscr{B}) \text{ et } \dim\left(\sum_{i=1}^{n} E_i\right) \leqslant \sum_{i=1}^{n} \dim(E_i)$$
.

•
$$E = \bigoplus_{i=1}^{n} E_i \Leftrightarrow \dim(E) = \sum_{i=1}^{n} \dim(E_i) \text{ ET } \bigoplus_{i=1}^{n} E_i \text{ ET } E = \sum_{i=1}^{n} E_i \text{ (2 des 3 à vérifier)}$$

$$\mathscr{B} = \bigcup_{i=1}^n \mathscr{B}_i$$
 base adapté E_i

 $(u,v) \in \mathcal{L}(E)^2$ tel quel $u \circ v \Leftrightarrow v \circ u$ et $P \in \mathbb{K}[X]$, $E, \{0_E\}$, $\operatorname{Im}(u)$, $\operatorname{Ker}(u)$, $\operatorname{Im}(v)$, $\operatorname{Ker}(v)$, $\operatorname{Im}(P(u))$, $\operatorname{Ker}(P(u))$ stables par $u \in F$ stable par $u \Leftrightarrow u(F) \subset F$.

•
$$E = \bigoplus_{i=1}^{n}$$
 et $\mathscr{B} = \bigcup_{i=1}^{n} \mathscr{B}_{i}$ alors, $\forall i \in [1, n], E_{i}$ stable par $u \Leftrightarrow \operatorname{Mat}_{\mathscr{B}}(u) = \operatorname{diag}(A_{1}, \dots, A_{n})$
 $A_{i} \in \mathscr{M}_{d_{i}}(\mathbb{K})$ et $\operatorname{Mat}_{\mathscr{B}_{i}}(u_{E_{i}}) = A_{i}$.

Réduction

- $\lambda \in \mathbb{K}$ valeur prore si $\exists x \in E \setminus \{0_E\}, u(x) = \lambda x$.
- $x \in E$ vecteur prore si $\exists \lambda \in \mathbb{K}$, $u(x) = \lambda x$ et $x \neq 0_E$. $Sp(u) = \{ \text{ valeurs propres u} \}$ $E_{\lambda} = \text{Ker}(u - \lambda I d_E)$ $\chi_u = \det(X I d_E - u), \chi_u(u) = 0_E$

 $\chi_u \in \mathbb{K}[u]$ est unitaire et de degré dim E et $\chi_u(X) = X^n - tr(u)X^{n-1} + \dots + (-1)^n \det(u)$ Si A et B semblables $\chi_A = \chi_B$ et $\chi_A = \chi_{A^T} Sp(u)$ est l'ensemble de ses racines

$$\chi_{u} = \prod_{i=1}^{n} (X - x_{i}) \ x_{i} \in \mathbb{C} \text{ alors } \det(u) = \prod_{i=1}^{n} x_{i} \text{ et } \operatorname{tr}(u) = \sum_{i=1}^{n} x_{i}$$

$$\chi_{u} = \prod_{i=1}^{n} (X - \lambda_{i})^{m_{i}} \text{ alors } \det(u) = \prod_{i=1}^{n} \lambda_{i}^{m_{i}} \text{ et } \operatorname{tr}(u) = \sum_{i=1}^{n} m_{i} \lambda_{i}$$

$$\bigoplus_{i=1}^{n} E_{\lambda}(u) \quad A = \begin{pmatrix} B & (*) \\ 0 & C \end{pmatrix} B, C \text{ matrices carrées } \chi_{A} = \chi_{B} \cdot \chi_{C}$$

F stable par u alors $\chi_{u_F}|\chi_u$

• $1 \leqslant \dim(E_{\lambda}(u)) \leqslant m_{\lambda} \leqslant n \quad (m_{\lambda} = 1 \Rightarrow \dim(E_{\lambda}(u)) = 1)$ u automorphisme $\Leftrightarrow 0 \notin Sp(u)$

$$u \text{ diago} \Leftrightarrow E = \bigoplus_{\lambda \in Sp(u)} E_{\lambda}(u)$$

 $\Leftrightarrow \dim E = \sum_{\lambda \in Sp(u)} \dim(E_{\lambda}(u))$
 $\Leftrightarrow \text{ il existe une base de } E \text{ form}$

 \Leftrightarrow il existe une base de E formée de vecteurs propres de u

 $\Leftrightarrow \chi_u \text{ scind\'e ET } \forall \lambda \in Sp(u), \ \dim(E_\lambda(u)) = m_\lambda$

 $\Leftrightarrow \exists P \in \mathbb{K}[X]$ scindé à racines simples tel que $P(u) = 0_E$

$$\Leftrightarrow \prod_{\lambda \in Sp(u)} (X - \lambda)$$
 annule u

 $\Leftarrow \chi_u$ scindé à racines simples

A symétrique réelle \Rightarrow A diagonalisable.

 $P \in \mathbb{K}[X], P(u) = 0_{\mathscr{L}(E)}$ alors les valeurs propres de u sont racines de P.

Si F stable par u et u diago alors $u_F \in \mathcal{L}(F)$ diago.

Si u trigo, alors les coefficients diagonaux de $\operatorname{Mat}_{\mathscr{B}'}(u)$ sont ses valeurs propres comptées avec multiplicité (\mathscr{B}' base de trigo) u trigonalisable $\Leftrightarrow \chi_u$ scindé.

Séries

• si
$$|q| < 1$$
, $\sum q^n$ CVG et $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$, sinon $\sum q^n$ DVG grossièrement.

•
$$\sum u_n \text{ CVG } \Rightarrow u_n \text{ lim inf } 0$$
; par contraposée, $u_n \not\to 0 \Rightarrow \sum u_n \text{ DVG grossièrement.}$

$$\sum \overline{z}_n$$
 CVG ssi $Im(z_n)$ et $Re(z_n)$ CVG

•
$$(u_n)_n$$
 CVG ssi $\sum (u_{n+1} - u_n)$ CVG

•
$$\sum u_n$$
 une SATP, $\sum u_n$ DVG $\Rightarrow \sum_{k=0}^n u_k \leqslant \sum_{k=0}^{+\infty} u_k$; $\sum u_n$ DVG $\Rightarrow \lim_{n \to +\infty} \sum_{k=0}^n u_k = +\infty$

$$\sum u_n$$
 CVG ssi $\left(\sum_{k=0}^n\right)_n$ est majorée.

• Soit
$$f \mathcal{C}^0$$
, \searrow et $\geqslant 0$ sur $[0, +\infty[$, $\sum f(n)$ CVG ssi $\left(\int_0^n f\right)_n$ CVG

$$\sum \frac{1}{n^{\alpha}} \text{ CVG ssi } \alpha > 1 \qquad H_n = \sum_{k=1}^n \frac{1}{k} \sim \ln n \ .$$

•
$$\sum u_n$$
 et $\sum v_n$ SATP, $0 \le u_n \le v_n$ alors si $\sum v_n$ CVG $\Rightarrow \sum u_n$ CVG et $\sum_{n=0}^{+\infty} u_n \le \sum_{n=0}^{-\infty} v_n$ + contraposée

• CVA
$$\Rightarrow$$
 CVG et $\left|\sum_{n=1}^{+\infty} u_n\right| \leqslant \sum_{n=1}^{+\infty} |u_n|$.

•
$$\sum v_n$$
 SATP, si $u_n = \mathcal{O}(v_n)$ ou $o(v_n)$ ou $\sim v_n$ alors $\sum u_n$ CVA.

$$\sum u_n$$
 et $\sum v_n$ SATP strictes telles que $u_n \sim v_n$ alors $\sum u_n$ et $\sum v_n$ ont même nature.

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

• $(u_n)_n$ non nulle à partir d'un certain rang, si $\lim_{n\to+\infty} \left|\frac{u_{n+1}}{u_n}\right| = l \in \mathbb{R}$ alors :

$$-l < 1 \Rightarrow \sum u_n$$
 CVA
 $-l > 1 \Rightarrow \sum u_n$ DVG grossièrement

• série de Cauchy:
$$\sum w_n$$
 avec $w_n = \sum_{k=0}^n u_k v_{n-k}$ (produit de Cauchy de v_n et u_n)

si
$$\sum u_n$$
 et $\sum v_n$ CVA alors $\sum w_n$ CVA et $\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$

si $((-1)^n u_n)_n$ est de signe constant, alors $(u_n)_n$ est alternée.

<u>CSSA</u>: $(u_n)_n$ alternée tq $(|u_n|)_n$ soit \searrow et $\lim_{n\to+\infty}u_n=0$ alors $\sum u_n$ CVG et $|R_n|\leqslant u_{n+1}$ et sont de même signe.

si
$$\alpha > 0$$
, $\sum \frac{(-1)^n}{n^{\alpha}}$ CVG mais CVA ssi $\alpha \in]0,1]$.

Les résultats précédents restent vrais quelque soit le rang n_0 à partir duquel les conditions sont vérifiées.

Espaces préhilbertiens et euclidiens

 $N: E \to \mathbb{R}$ norme si :

- $\forall x \in E, N(x) \ge 0$ (positivité)
- $\forall (x, \lambda) \in E \times \mathbb{K}, N(\lambda x) = |\lambda| N(x)$ (homogénité)
- $\forall x \in E, N(x) = 0 \Rightarrow x = 0_E$ (séparation)
- $\forall (x,y) \in E^2$, $N(x+y) \leq N(x) + N(y)$ (inégalité triangulaire)

si <,> produit scalaire sur Ealors $x \mapsto \sqrt{< x, x>}$ norme associée sur E

- pour $p \ge 1$, $x \mapsto ||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$ norme sur \mathbb{K}^n , idem sur $\mathbb{K}[X]$ et $\mathcal{M}_{n,p}(\mathbb{K})$
- $x \mapsto ||x||_{\infty} = \max_{1 \le k \le n} |x_k|$ norme sur \mathbb{K}^n , $\mathbb{K}[X]$ et $\mathcal{M}_{n,p}(\mathbb{K})$
- $f \mapsto ||f||_p = \left(\int_a^b |f|^p\right)^{\frac{1}{p}}$ et $f \mapsto ||f||_\infty = \sup_{t \in [a,b]} |f(t)|$ norme sur $\mathscr{C}^0([a,b],\mathbb{K})$

$$\forall (x_1, \dots, x_p) \in E^p, |N(x_1) - N(x_2)| \leq N(x_1 - x_2) \text{ et } N\left(\sum_{i=1}^p x_i\right) \leq \sum_{i=1}^p N(x_i)$$

<u>Inégalité de Bessel</u>: (e_1, \ldots, e_p) bon de $F, \forall x \in E, \sum_{i=1}^p |\langle e_i, x \rangle|^2 \leqslant ||x||^2$.

•
$$d:(x,y) \mapsto N(x-y)$$

 $d(x,y) \le 0$; $d(x,y) = d(y,x)$; $d(x,y) = 0 \Leftrightarrow x = y$; $d(x,z) \le d(x,y) + d(y,z)$

- $\bullet B_F(a,r) = \{x \in E \mid d(a,x) \leqslant r\} ; < \text{pour } B(a,r) ; = \text{pour } S(a,r)$ boule unité : $B_F(0_E,1)$ (ou $B(0_E,1)$)
- A convexe si $\forall (x, y, t) \in A^2 \times [0, 1], tx + (1 t)y \in A$ (B et B_F le sont mais pas S si $\dim(E) \ge 1$)
- A borné s $\exists M > 0, \, \forall x \in A, \, N(x) \leqslant M.$

 $(u_n)_n \in E^{\mathbb{N}}$ converge vers $l \in E$ si $N(u_n - l) \xrightarrow[+\infty]{} 0$; l est unique et indépendante du choix de N en dimension finie; mêmes opérations que limites sur $\mathbb{K}^{\mathbb{N}}$. $(u_n)_n$ est bornée si $\exists M, \forall n \in \mathbb{N} \ N(u_n) \leqslant M$

Toute suite convergente est bornée.

 $(u_n)_n$ converge vers l alors, $\forall \varphi: N \to \mathbb{N}$ strictement \nearrow , $(u_{\varphi(n)})_n$ converge vers l (suite extraite)

•
$$O$$
 ouvert si $\forall x \in O \exists r > 0, \ B(x,r) \subset O$ O ouvert ssi $E \setminus O$ fermé

$$E ; \emptyset ; \bigcup_{i \in I} O_i \text{ si } I \text{ fini ou infini } ; \bigcap_{i=1}^n O_i ; B(a,r) \ a \in E \text{ sont des ouverts.}$$

•intérieur de A:
$$Int(A) = \overset{\circ}{A} = \{x \in E \mid \exists r > 0 \ B(x,r) \subset A\}$$

$$E ; \emptyset ; \text{les } B_F ; \bigcup_{i=1}^n F_i ; \bigcap_{i \in I} F_i I \text{ fini ou infini sont des fermés.}$$

•adhérence:
$$\overline{A} = \{x \in E \mid \exists r > 0 \ B(x,r) \cap A \neq \emptyset\}$$

caractérisation séquentielle de l'adhérence:
$$\overline{A} = \{x \in E \mid \exists (a_n)_n \in A^{\mathbb{N}}, \ a_n \xrightarrow[+\infty]{} x\}$$

caractérisation séquentielle des fermés : Soit $A \subset E$, A fermé ssi $\forall (a_n)_n \in A^{\mathbb{N}}$ converge vers l, on a $l \in A$.

frontière : $Fr(A) = \overline{A} \backslash \overset{o}{A}$.

Continuité des fonctions vectorielles

 $a \in \overline{A}, f(x) \xrightarrow[x \to a]{} l \text{ si } \forall \varepsilon > 0 \ \exists \delta > 0, \forall x \in A \ ||x - a||_E \leqslant \delta \Rightarrow ||f(x) - l||_F \leqslant \varepsilon$

Si E et F sont de dim finie, c'est indépendant de la norme.

Propriétés sur opérations de limites et défnition de continuité sont identiques au cas E = $F = \mathbb{K}$.

$$\frac{\text{caractérisation séquentielle de la continuité}:}{f \text{ continue en } a \Leftrightarrow \forall (x_n)_n \in A^{\mathbb{N}}, \ x_n \xrightarrow[+\infty]{} a \Rightarrow f(x_n) \xrightarrow[+\infty]{} f(a)}$$

• F de dim finie de base (e_1, \ldots, e_p) , $\forall x \in A \ \exists (f_1(x), \ldots, f_p(x)) \in \mathbb{K}^p$, $f(x) = \sum_{k=1}^r f_k(x) e_k$

et
$$\exists (l_1, \ldots, l_p) \in \mathbb{K}^p, \quad l = \sum^p l_k e_k$$
.

$$f(x) \xrightarrow[x \to a \in \overline{A}]{} l$$
 ssi $\forall k \ f_k(x) \xrightarrow[x \to a]{} l_k$ (de même pour la continuité)

- E de dim finie, K un compact de E et $f \in \mathscr{C}^0(K,\mathbb{R})$ alors f(K) est borné et $\exists (\alpha,\beta) \in$ $K^2, \ \forall x \in K \ f(\alpha) \leqslant f(x) \leqslant f(\beta)$.
- Soit $f \in \mathcal{C}^0(E,\mathbb{R})$, $f^{-1}(\{0\})$, $f^{-1}(\mathbb{R})$ sont des fermés et $f^{-1}(\mathbb{R}_+^*)$ est un ouvert (image réciproque d'un fermé/ouvert par une fonction continue est un fermé/ouvert)

$f \in \mathcal{L}(E, F)$ (pas besoin de dim finie) :

 $\overline{f} \in \mathscr{C}^0(E,F)$ ssi f continue en 0_E ssi $\exists k > 0, \ \forall x \in E \ ||f(x)||_F \leqslant k \, ||x||_E$ ssi f lipschitzienne

- si E de dim finie et $f \in \mathcal{L}(E, F)$ alors f lipschitzienne (donc C^0)

$$(p_1,\ldots,p_n)\in\mathbb{N}^*,(x_1,\ldots,x_n)\mapsto\prod_{i=1}^nx_i^{p_i}$$
 est monomiale (déf)

 $f:\mathbb{K}^n\to\mathbb{K}$ est polynomiale si combinaison lin de fonctions monomiales, f est \mathscr{C}^0

• $f: E^p \to E$ multilinéaire, si E de dim finie, f est \mathscr{C}^0 . (det l'est) $\mathscr{GL}_n(\mathbb{K})$ ouvert

Probabilités à support fini

schéma de Bernoulli :
$$\Omega = \{0,1\}^n$$
, $X(\Omega) = \sum_{i=1}^n \omega_i$, $P(\{w\}) = p^{X(\omega)} (1-p)^{n-X(\omega)} \xrightarrow[+\infty]{} 0$ et

$$P(x=k) = \binom{n}{k} p^k (1-p)^{n-k} .$$

au plus dénombrable = fini ou $\cong \mathbb{N}$.

au plus denombrable = fini ou
$$\cong \mathbb{N}$$
. $(A_i)_{i \in I}$ s.c.e si $\forall (i,j) \in I^2, i \neq j \Rightarrow A_i \cap A_j = \emptyset$ et $\bigcup_{i \in I} A_i = \Omega$.

<u>tribu ou σ -algèbre</u>: tout $A \in \mathscr{P}(\Omega)$ tq $\Omega \in A$, $\forall B \in A$, $\overline{B} \in A$ et $\forall (a_n)_n \in A^{\mathbb{N}}$, $\bigcup_{n=0}^{\infty} a_n \in B$.

 $A = \{\emptyset, \Omega\}$ tribu grossière, $A = \mathscr{P}(\Omega)$ tribu pleine, $\mathscr{B} = \{A, \overline{A}, \emptyset, \Omega\}$ tribu engendrée Si Ω au plus dénombrable, on prend $\mathscr{P}(\Omega)$ comme tribu.

• $P:A\to\{0,1\}$ probabilité si $P(\Omega)=1$ et $\forall (A_n)_n\in A^{\mathbb{N}}$ incompatibles 2 à 2, $P(A_n)$ cvg et $P\left(\bigcup_{i=1}^{+\infty} A_i\right) = \sum_{i=1}^{+\infty} P(A_n)$, σ -additivité.

 $(p_n)_n \in \mathbb{R}^{\mathbb{N}}$ probabilité sur Ω au plus dénombrable ssi les $p_k > 0$ et $\sum P(\{p_n\})$ cvg et = 1.

$$\forall (A_i)_{1 \leqslant k \leqslant n} \in \mathcal{A}^n, \ P\Big(\bigcup_{k=1}^n A_k\Big) \leqslant \sum_{i=1}^n P(A_i).$$

théorème de la limite monotone :

-
$$(A_n)$$
 \nearrow alors $P(A_n)$ evg et $P\left(\bigcup_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P(A_n)$.

formule des probas composées :
$$P\left(\bigcap_{i=1}^{n} A_i\right) = P(A_k) P(A_1(A_2) \dots P_{A_1 \cap \dots \cap A_n}(A_n)$$
.

formules des probabes totales :
$$P(B) = \sum_{n=0}^{+\infty} P(A_n) P_{A_n}(B)$$
 (A_i) un s.c.e

A, B indépendantes si $P(A \cap B) = P(A)P(B)$ et indé conditionnelle C ssi $P_C(A \cap B) =$ $P_C(A)P_C(B)$.

$$(A_n)_n$$
 famille d'événements indépendants si $\forall J(\text{fini}) \subset I, \ P\Big(\bigcap_{i \in I} A_i\Big) = \prod_{i \in I} P(A_i)$.

• $X:\Omega\to\mathbb{R}$ variable aléatoire discrète ssi $X(\Omega)$ au plus dénombrable et $\forall x\in X(\Omega),\ (X=$ $(X \in U) = X^{-1}(U)$ $x) \in \mathcal{A}$ stable par max/min.

loi de probabilité $X: P_X: B \in X(\Omega) \mapsto \mathbb{P}(X \in B)$.

For the probability
$$F_X$$
: F_X : F

loi uniforme, binomiale, géométrique, de Poisson: voir PCSI.

$$\mathcal{B}\left(n, \frac{\lambda}{n}\right)$$
 cvg en $+\infty$ vers $\mathcal{P}(\lambda)$

$$\mathbb{E}(X) = \sum_{n=0}^{+\infty} x_n P(X = x_n) \text{ (doit CVA) et } E\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) P(\{\omega\})$$

théorème de transfert :
$$E(\phi(X)) = \sum_{n=0}^{+\infty} \phi(x_n) P(X = x_n)$$
.

moment d'ordre
$$k$$
: $E(X^k) = \sum_{n=0}^{+\infty} x_n^k P(X = x_n)$.

$$n \text{ VA} : P(X_1 = x_1, \dots, X_n = x_n)^{n=0} = P(X_1 = x_1) \times \dots \times P(X_n = x_n)$$
$$(X + Y = z) = \bigcup_{x \in X(\Omega)} (X = x; Y = z - x) = \bigcup_{y \in Y(\Omega)} (X = z - y; Y = y) \quad \text{(stable par } P)$$

E(XY) = E(X)E(Y) si X, Y indé, $|E(XY)| \leq \sqrt{E^2(X)E^2(Y)}$ si X, Y moments d'ordre 2 et V(X + Y) = V(X) + V(Y) + Cov(XY)

Cov(X,Y) = E((X - E(X)(Y - E(Y)) | X, Y non corrélés si = 0 (symétrique, bilinéaire,)défnie positive \Rightarrow PS)

coefficient de corrélation linéaire :
$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}}$$
.

Espaces préhilbertiens et euclidiens

produit scalaire : symétrique, bilinéaire, défnie positive.

$$\underline{\operatorname{usuel sur } \mathbb{R}^{n} : (x,y) \mapsto \sum_{i=1}^{n} x_{i}y_{i}} \qquad \underline{\operatorname{sur } \mathbb{R}[X] : (P,Q) \mapsto \sum_{n=0}^{+\infty} a_{n}b_{b}}$$

$$\underline{\operatorname{sur } \mathscr{C}^{0}(I,\mathbb{R}) : (f,g) \mapsto \int_{I} fg} \qquad \underline{\operatorname{sur } \mathbb{C} : (z,z') \mapsto \operatorname{Re}(z\overline{z'})}$$

$$\underline{\operatorname{sur } \mathcal{M}_{n,p}(\mathbb{R}) : (A,B) \mapsto \operatorname{tr}(AB^{T}) = \sum_{\substack{1 \leq i \leq n \\ 1 \leq i \leq p}} a_{i,j}b_{i,j}$$

 $\| \cdot \| : x \mapsto \sqrt{\langle x, x \rangle}$ norme associée au produit scalaire.

$$||x+y||^2 = ||x||^2 + 2 < x, y > +||y||^2 \text{ et } \left\| \sum_{i=1}^n x_i \right\|^2 = \sum_{n=0}^{+\infty} ||x_i||^2 + 2 \sum_{1 \le i < j \le n} < x_i, x_j > 0$$

Cauchy-Schwartz : $\langle x, y \rangle^2 \leqslant \langle x, x \rangle \times \langle y, y \rangle$ et $|\langle x, y \rangle| \leqslant ||x|| \times ||y||$ égalité ssi (x,y) liée.

$$x$$
et y orthogonaux ssi $< x,y>=0 \quad F\perp G$ ssi $\forall (f,g)\in F\times G < f,g>=0$ $F^\perp=\{x\in E\,|\,\forall f\in F,< x,f>=0\}$

Thèoreme de Pythagore:
$$(x_1, \ldots, x_p)$$
 orthogonale finie $\Rightarrow \left\| \sum_{i=1}^p x_i \right\|^2 = \sum_{i=1}^p \|x_i\|^2$.

Si \mathscr{F} famille orthogonale finie sans le vecteur nul alors \mathscr{F} libre.

F<sup>\(\perp}\) SEV,
$$F \oplus F^{\(\perp}\), $F \subset (F^{\(\perp})^{\(\perp}\), $F \subset G \Rightarrow G^{\(\perp}\subset F^{\(\perp}\), $F^{\(\perp}\cap G^{\(\perp})=(F+G)^{\(\perp}\), $E^{\(\perp}=\{0_E\}$), $\{0_E\}^{\(\perp}=E$$$$$$</sup>

 (x_1, \ldots, x_p) orthonormale ssi $\langle x_i, x_j \rangle = \delta_{i,j}$.

 $\underline{\text{Gram-Schmidt}} : \mathscr{B} = (f_1, \dots, f_p)$

$$(g_1, \dots, g_p)$$
 bon tq $Vect(f_1, \dots, f_p) = Vect(g_1, \dots, g_p)$ $g_j = \frac{f_j - \sum_{i=1}^{j-1} \langle f_i, g_i \rangle g_i}{\| / / \|}$

$$F$$
 SEV de dim finie, $E = F \oplus F^{\perp} \Rightarrow p_F : x \mapsto \sum_{i=1}^p \langle x_i, g_i \rangle g_i$

 (g_1, \ldots, g_p) bon et projection // à F^{\perp} . $p_F(x)$ unique vecteur tel que $x - p_F(x) \in F^{\perp}$ et tel que $\forall i \in [1, p] < x - p_F(x), f_i > 0$ $((f_i)$ base de E et dim finie)

 $d(x,F) = ||x - p_F(x)|| = \inf_{f \in F} ||x - f||$ si F de dim finie, p_F est alors unique.

• Si
$$E$$
 euclidien, \exists une bon ; $\mathscr{B} = (e_1, \dots, e_n)$ bon et $u \in \mathscr{L}(E)$,

$$x = \sum_{i=1}^{n} \langle x_i, e_i \rangle e_i \langle x, y \rangle = \sum_{i=1}^{n} \langle x, e_i \rangle \langle y, e_i \rangle = X^T Y.$$

$$\operatorname{Mat}_{\mathscr{B}}(u) = (\langle u(e_j), e_i \rangle)_{1 \leqslant i, j \leqslant n}.$$

$$\dim F^{\perp} = \dim E - \dim F \Rightarrow F = (F^{\perp})^{\perp} \text{ et } F^{\perp} + G^{\perp} = (F \cap G)^{\perp}.$$

$$H = Vect(a)^{\perp}$$
 hyperplan, $a \neq 0_E \ \forall x \in E \ d(x, H) = \frac{|\langle x, a \rangle|}{\|a\|}$.

Intégrabilité

- $\mathscr{C}^{pm}(I,\mathbb{K}), f|_{]\sigma_i;\sigma_{i+1}[}$ bornée sur $I, \int_I f$ indépendant de $f(\sigma_i)$ $(\sigma_i)_{0\leqslant i\leqslant n}$ subdivision de f sur I.
- $f \in \mathscr{C}^{pm}(I, \mathbb{K})$, si $f \geqslant 0$ sur I et $\int_I f = 0$ alors f nulle sur I sauf en un nombre fini de points (les σ_i).
- $f \in \mathscr{C}^{pm}([a, b[, \mathbb{K}) \text{ si } f(x) \xrightarrow[a \to b^{-}]{} l \in \mathbb{K} \text{ alors } \int_{a}^{b} f \text{ CVG.}$

exp:
$$\int_0^{+\infty} e^{-at} dt$$
 CVG ssi $a > 0$

Riemann: $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \text{ CVG ssi } \alpha > 1 \text{ vers } \frac{1}{\alpha - 1} \text{ et } \int_{0}^{1} \frac{\mathrm{d}t}{t^{\alpha}} \text{ CVG ssi } \alpha < 1 \text{ vers } \frac{1}{1 - \alpha}.$

 $f \mathcal{C}^0([a,b],\mathbb{K})$, F primitive de f, alors $\int_a^b f$ cvg ssi F a une limite en b^- .

 $\underline{\text{IPP}}:(f,g)\in\mathscr{C}^1(]a,b[,\mathbb{K}) \text{ si } fg \text{ a des limites finies en } b^- \text{ et } a^+, \int_a^b fg' \text{ et } \int_a^b g'f \text{ ont même nature et IPP si cvg.}$

Gamma: $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$, $\Gamma(x+1) = x \Gamma(x)$ et $\Gamma(n) = (n-1)!$ $n \in \mathbb{N}^*$.

 $f \in \mathscr{C}^0([a, b[, \mathbb{R}^+)] \ge 0$ et F primitive, $\int_a^b f$ cvg si F bornée sur [a, b[, f, g] cpmx ≥ 0 et $f \le g$, $\int_a^b g$ cvg $\Rightarrow \int_a^b f$ cvg.

comparaison série-intégrale : $f \in \mathscr{C}^{pm}(\mathbb{R}^+, \mathbb{R}^+) \setminus \sum_{n} f(n)$ cvg ssi $\int_0^{+\infty} f$ cvg.

f cpmx <u>intégrable</u> sur I si $\int_I |f|$ cvg ; f intégrable $\Rightarrow \int_I f$ cvg et I.T. ; leur ensemble est un EV (\mathscr{L}^1) .

 $I=[a,\stackrel{.}{b}[,\stackrel{.}{f,g}$ cpmx et g intégrable, $f=\mathop{\mathscr{O}}(g), \sim g, o(g) \Rightarrow f$ intégrable.

 $f,g\geqslant 0$ et $f\sim g\Rightarrow \int_I f$ et $\int_I g$ de même nature.

fc
pmx de carré intégrable si $\int_I |f|^2$ intégrable, EV stable par plu
s $(\mathcal{L}^2).$

f,g carré intégrable, alors fg intégrable (pas réciproque) ; Cauchy-Schwartz (= si positi liée).

Séries de fonctions

• <u>CVS</u>: si $\forall t \in I, f_n(t) \xrightarrow{+\infty} f$ (unicité limite; équivalents interdits)

conserve positivité et \nearrow ou \searrow mais PAS \mathscr{C}^0 et \int .

$$\sum f_n \text{ CVS sur } I \Leftrightarrow \sum f_n(t) \text{ CVS } \forall t \in I \text{ alors } \Big(\sum_{n=0}^{+\infty} f_n\Big)(t) = \sum_{n=0}^{+\infty} f_n(t).$$

$$\sum f_n \text{ CVS} \Rightarrow S = S_n + R_n \text{ et } R_n \overset{\text{CVS}}{\to} \tilde{0}.$$

• CVU: $f_n \stackrel{\text{CVU}}{\to} f \text{ si } \forall \varepsilon > 0 \ \exists N \in \mathbb{N}, \forall n \in \mathbb{N} \ n \geqslant N \Rightarrow \forall t \in I \ |f_n(t) - f(t)| \leqslant \varepsilon, N$ indépendant de t.

CVU ⇒ CVS, on cherche tout de même la limite simple en premier.

 $(f_n) \stackrel{\text{CVU}}{\to} f \Leftrightarrow \exists N \in \mathbb{N}, \ n \geqslant N \Rightarrow f_n - f \text{ born\'e et } \|f_n - f\|_{\infty} \to 0 \text{ (on peut chercher } (\alpha_n) \text{ tq}$

 $\alpha_n \to 0$ et $||f_n - f||_{\infty} \leqslant \alpha_n$) $\sum f_n \text{ CVU} \Leftrightarrow \sum f_n \text{ CVS et } R_n \overset{\text{CVU}}{\to} \tilde{0} \text{ pour la CVU de } R_n \text{ on peut : trouver } \alpha_n, |R_n(t)| \leqslant$ $\alpha_n \ \forall t \in I \ \mathrm{OU} \ \|R_n\|_{\infty} \to 0.$

En pratique on l'obtient pas : CVN OU $||R_n||_{\infty} \to 0$ par CSSA ou autre majoration.

- CVN : si f_n sont bornées et $\sum ||f_n||_{\infty}$ cvg. CVN \Rightarrow CVU \Rightarrow CVS. Pour montrer la CVN, il suffit d'avoir (α_n) tq $\forall t \in I$, $|f_n(t)| \leq \alpha_n$ et $\sum \alpha_n$ cvg.
- Si $f_n \stackrel{\text{CVU}}{\to} f$ et les $f_n \mathscr{C}^0$ alors $f \mathscr{C}^0$ (de même avec CVU sur tout segment et $\sum f_n$). $(CVU \Rightarrow) CVU sur tout segment \Rightarrow CVS sur I.$

théorème de la double limite : si $f_n \stackrel{\text{CVU}}{\to} f$ et chaque $f_n \xrightarrow{a} l_n$ alors $f(t) \xrightarrow{a} \lim_{n \to +\infty} l_n$, i.e.

 $\lim_{t\to a} \left(\lim_{n\to +\infty} f_n(t)\right) = \lim_{n\to +\infty} \left(\lim_{t\to a} f_n(t)\right) \quad \text{(de même pour } \sum f_n, \text{ théorème de la limite terme}$ à terme) \Rightarrow si \neq , on a pas la CVU.

<u>permutation limite-intégrale</u>: $f_n \stackrel{\text{CVU}}{\underset{[a,b]}{\longrightarrow}} f$ et chaque $f_n \mathscr{C}^0 \Rightarrow f \mathscr{C}^0$ et $\lim_{n \to +\infty} \int_0^b f_n = \int_0^b f$.

(de même pour $\sum f_n$, intégration terme à terme sur un segment).

théorème de convergence dominée : les f_n cpmx, $f_n \stackrel{\text{CVS}}{\to} f$ cpmx et $\exists \varphi$ intégrable tq $\forall n \in$ $\mathbb{N}|f_n| \leqslant \varphi$ (indé de n) \Rightarrow les f_n et f intégrables et $\lim_{n \to +\infty} \int_I f_n = \int_I f$ (de même pour $\sum f_n$, théorème d'intégration terme à terme).

théorème d'intervesion limite-dérivée : les f_n \mathscr{C}^1 , f_n CVS et f'_n CVU sur tout segment $\Rightarrow f$ \mathscr{C}^1 et $\lim_{n \to +\infty} f'_n = f'$ donc $\left(\lim_{n \to +\infty} f_n\right)' = \lim_{n \to +\infty} f'_n$ et f_n CVU sur tout segment (de même pour $\sum f_n$, théorème dérivation terme à terme).

• $f_n \mathcal{C}^p$, les $\overline{f_n}, \dots, f_n^{(p-1)}$ CVS, $f_n^{(p)}$ CVU sur tout segment alors $f \mathcal{C}^p$ et $\forall k \in [1, p], f^{(k)} =$ $\lim_{n \to +\infty} f_n^{(k)} \text{ (de même pour } \sum_{n=0}^{\infty} f_n^{(k)}.$

Séries entières

série entière:
$$\sum a_n z^n (a_n) \in \mathbb{C}^{\mathbb{N}}$$

<u>lemne d'Abel</u>: $z_0 \in \mathbb{C}$ tq $(a_n z_0^n)$ bornée alors $\forall z \in \mathbb{C}, |z| \leq |z_0| \sum a_n z^n$ CVA.

rayon de convergence : $R = \sup\{r \ge 0 \mid (a_n r^n) \text{ bornée } \}$

$$-|z| < R \Rightarrow \sum a_n z^n \text{ CVA}.$$

-
$$|z| < R \Rightarrow \sum a_n z^n$$
 CVA.
- $|z| > R \Rightarrow \sum a_n z^n$ dvg grossièrement.

$$-|z| = R$$
: on ne sait rien!

Une série entière CVN donc CVU sur tout [-r; r], r < R mais pas CVN sur tout D(0, R).

•
$$\sum_{n=0}^{+\infty} a_n x^n \mathscr{C}^0 \text{ sur }] - R; R[\qquad \sum_{n=0}^{+\infty} a_n z^n \mathscr{C}^0 \text{ sur } D(0, R).$$

<u>règle d'Alembert</u>: si $\left| \frac{a_{n+1}z^{n+1}}{a_nz^n} \right| \to l \in \mathbb{R}^+ \cup \{+\infty\}$ existence limite!

$$-l < 1 : \sum a_n z^n \text{ CVA}.$$

-
$$l < 1$$
 : $\sum a_n z^n$ CVA.
- $l > 1$: $\sum a_n z^n$ dvg grossièrement.

$$a_n = \mathscr{O}(b_n)$$
 ou $o(b_n)$ ou $|a_n| \leqslant |b_n| \Rightarrow R_a \geqslant R_b$ $a_n \sim b_n \Rightarrow R_a = R_b$. $\sum a_n z^n$ et $\sum n a_n z^n$ ont même RdC.

RdC de
$$\sum (a_n + b_n)z^n \geqslant \min(R_a, R_b)$$
 et $= \text{si } R_a \neq R_b$.

RdC de
$$\sum c_n z^n \geqslant \min(R_a, R_b)$$
 et $\left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right) = \sum_{n=0}^{+\infty} c_n z^n$ produit de Cauchy.

<u>série entière primitive</u>: $\sum \frac{a_n}{n+1} x^{n+1}$ de même RdC que $\sum a_n x^n$; $x \mapsto \sum_{n=1}^{+\infty} \frac{a_n}{n+1} x^{n+1}$ primitive = 0 en 0 de S.

<u>série entière dérivée</u>: $\sum na_nx^{n-1}$ de même RdC que série normale ; $x \mapsto \sum^{+\infty}na_nx^{n-1}$ dérivée continue de S.

$$S: x \mapsto \sum_{n=0}^{+\infty} a_n x^n \, \mathscr{C}^{\infty} \text{ sur }] - R, R[\text{ et } S^{(p)}: x \mapsto \sum_{n=p}^{+\infty} \frac{n!}{p!} a_n x^{n-p}.$$

 $\forall n \in \mathbb{N}, a_n = \frac{S^{(n)}(0)}{n!}$ donc si $\sum a_n x^n$ et $\sum b_n x^n$ ont même somme au voisinage de 0 alors, $a_n = b_n$.

•
$$f$$
 DSE si $\exists \sum a_n x^n \text{ tq } \forall x \in]-r, r[f(x) = \sum_{n=0}^{+\infty} a_n x^n \text{ (donc cvg)} \Rightarrow f \mathscr{C}^0 \text{ et } a_n = \frac{f^{(n)}(0)}{n!}.$

<u>série de Taylor</u>: $\sum \frac{f^{(n)}(0)}{n!} x^n f \mathscr{C}^{\infty}$, seule série associée à f et $f \notin \mathscr{C}^{\infty} \Rightarrow f$ non DSE. $\{f \text{ DSE }\}\ \text{est un EV }; \ f \text{ DSE } \Rightarrow \bar{f}, \ \text{les } f^{(k)}, \ \text{Re}(f), \ \text{Im}(f) \ \text{le sont}.$

f DSE alors ses primitives sont
$$F: x \mapsto F(0) + \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$
.

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha \dots (\alpha - n + 1)}{n!} x^n \ \alpha \in \mathbb{R} \text{ et } R = 1.$$

Intégrales à paramètres

 $g: x \mapsto \int_I f$, $g: I \to \mathbb{K}$ et $f: (x,t) \in I \times J$ $I,J \subset \mathbb{R}$ intervalles non vides.

• théorème de continuité : $t \mapsto f(x,t)$ cpmx sur $J, x \mapsto f(x,t) \mathscr{C}^0$ sur $I, \exists \varphi$ cpmx et intégrable sur $J, \forall (x,t) \in I \times J \mid f(x,t) \mid \leqslant \varphi(t)$ (domination globale) OU pour x dans un segment de I (domination locale) $\Rightarrow g$ définie et \mathscr{C}^0 sur I.

<u>limites de g</u>: si a extrémité de I dans $\lim_{x\to a} g(x)$ on peut remplacer $x\to a$ par $x_n\xrightarrow[+\infty]{}a$. Si on a utilisé la domination locale, il faut raisonner par comparaison de limite.

<u>théorème de dérivation d'ordre $p:(x,t)\mapsto \frac{\partial^i f}{\partial x^i}$ </u> $i\in[1;p]$, $\forall t\in J x\mapsto \frac{\partial^p f}{\partial x^p}(x,t)\mathscr{C}^0$ sur I,

 $\forall k \in \llbracket 0, p-1 \rrbracket \ \forall x \in I \ t \mapsto \frac{\partial^k f}{\partial x^k}(x,t) \text{ cpmx et intégrable sur } J, \text{ domination globale ou locale } \text{sur } \frac{\partial^p f}{\partial x^p} \Rightarrow g \ \mathscr{C}^p \text{ et } \forall k \in \llbracket 0, p \rrbracket, \ g^{(k)} : x \mapsto \int_I \frac{\partial^k f}{\partial x^k} \ .$

Isométries vectorielles

isométrie vectorielle : $u \in \mathcal{L}(E)$, $\forall x \in E \ \|u(x)\| = \|x\|$; $Sp(u) \subset \{-1; 1\}$; c'est donc un automorphisme. $(\Leftrightarrow \text{endo orthogonal, conserve PS})$ $(O(E), \circ)$ groupe orthogonal.

u isométrie vectorielle $\Leftrightarrow \mathscr{B}$ bon, $u(\mathscr{B})$ bon $\forall \mathscr{B}$ bon $\Leftrightarrow \exists \mathscr{B}$ bon, $u(\mathscr{B})$ bon.

• $A \in \mathcal{M}_n(\mathbb{R})$ orthogonale si l'endo cannoniquement associé à A est une isométrie vectorielle.

A orthogonale $\Leftrightarrow {}^tAA = I_n \Leftrightarrow A^tA = I_n \Leftrightarrow A$ inversible et $A^{-1} = {}^tA \Leftrightarrow (C_1, \dots, C_n)$ bon de $\mathbb{R}^n \Leftrightarrow (L_1, \dots, L_n)$ bon de \mathbb{R}^n .

 \mathscr{B} bon, \mathscr{B}' bon ssi $\operatorname{Mat}_{\mathscr{B}}(\mathscr{B}')$ orthogonale et si oui $\operatorname{Mat}_{\mathscr{B}'}(\mathscr{B}) = {}^tP$. \Rightarrow si $\mathscr{B}, \mathscr{B}'$ bon et $u \in \mathscr{L}(E)$, $A' = {}^tPAP$, A et A' orthogonalement semblables.

 $(O_n(\mathbb{R}), \times)$ sous-groupe de $\mathscr{GL}_n(\mathbb{R}), \times)$ (on a que $O_n(\mathbb{R})$ compact) $A \in O_n(\mathbb{R})$ alors det $A = \pm 1$ (\Leftarrow faux !!)

 $(SO_n(\mathbb{R}), \times)$ groupe spécial orthogonal, sous groupe de $(\mathscr{GL}_n(\mathbb{R}), \times)$, ensemble des matrices de $O_n((\mathbb{R})$ de det> 0.

<u>réflexion</u>: symétrie orthogonale par rapport à un hyperplan $(\in O_n^-(\mathbb{R}))$.

E euclidien, \mathscr{B} et \mathscr{B}' bon alors $\det_{\mathscr{B}}(\mathscr{B}')=\pm 1$, \mathscr{B}' direct si +, indirecte si - . $\det_{\mathscr{B}}(x_1,\ldots,x_n)$ indépendant de \mathscr{B} avec \mathscr{B} bon directe et $n=\dim E$. produit mixte : $\det_{\mathscr{B}}(x_1,\ldots,x_n)$ ou $[x_1,\ldots,x_n]$.

- \mathbb{R}^3 :

 $\exists ! w \in E, \ \forall x \in E, \ [u, v, x] = < w, x >, w \text{ est le produit vectoriel } u \wedge v.$ \land est bilinéaire, antisymétrique ; $< u \land v, u > = < u \land v, x > = 0$; (u, v) libre ssi $u \land v \neq 0$; i, j, k) bon directe $\Rightarrow i \land j = k$.

- E de dim 2 :

$$\underline{\operatorname{isom\acute{e}trie\ directe}:} \ SO_2(\mathbb{R}) = \left\{ R(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \mid \theta \in [0, 2\pi[\} \\ R(\theta) \times R(\theta') = R(\theta + \theta') = R(\theta') \times R(\theta). \\ \underline{\operatorname{isom\acute{e}trie\ indirecte}:} \ O_2^-(\mathbb{R}) = \left\{ S(\theta) = \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} \right. \ S(\theta)^2 = I_2 \ \Rightarrow O_2(R) \backslash SO_2(\mathbb{R}) = O_2^-(\mathbb{R}).$$

- $E \operatorname{dedim} 3$:

$$u \in O_2(\mathbb{R}), \exists \text{ bon tq } u \text{ diagonale par bloc}: \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \text{ ou } \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix},$$
isométrie direct, $E_1(u)$ // indirect, $E_{-1}(u)$

rotations d'axe Vect(u) et angle $\pm \theta$, $Rot_{u,\pm \theta}$.

$Sp_{\mathbb{R}}(u)$	Sous-espace propre	nature de u	$\det(u)$
{1}	$E_1 = E$	$Id_E \ (\theta \cong 0[2\pi])$	1
{-1}	$E_{-1} = E$	$-Id_E \ (\theta \cong \pi[2\pi])$	1
$\{-1,1\}$	E_{-1} , E_1 droites orthogonales	symétrie orthogonale par rapport à E_1	-1

 $\underline{\dim 2}$

1) Calcul du det 2) det= 1 (rotation), tr = 0 / det = -1 (symétrie \perp), $E_1(A)$ axe de symétrie.

$Sp_{\mathbb{R}}(u)$	Sous-espace propre	nature de u	$\det(u)$
$-1 \text{ ou } \{1\}$	$E_{-1} = E \text{ ou } E_1 = E$	Id_E ou $-Id_E$	1 ou -1
{1}	E_1 droite	rotation d'axe E_1	1
{-1}	E_{-1} droite	rotation d'axe $E_{-1} \circ$ réflexion selon E_{-1}^{\perp}	-1
$\{-1,1\}$	E_{-1} droite et $E_1 = E_{-1}^{\perp}$	réflexion selon E_1	-1
$\{-1,1\}$	E_1 droite et $E_{-1} = E_1^{\perp}$	demi-tour d'axe E_1 (réflexion)	-1

 $\underline{\dim 3}$

- 1) Calcul du det 2) Si A symétrique, c'est un demi-tour (symétrie orthogonale), $E_1(A)$ donne les invariances. Si rotation, $tr = \pm \theta$, le produit mixte donne le signe de θ .
- endomorphisme symétrique : $\forall (x,y) \in E^2, \langle u(x), y \rangle = \langle x, u(y) \rangle$, donc $u \in S(E)$; S(E) SEV de $\mathcal{L}(E)$ de dim $\frac{n(n+1)}{2}$. $u \in S(E) \Rightarrow Im(u) = \left(Ker(u)\right)^{\perp}$. $u \in \mathcal{L}(E)$ et \mathscr{B} bon, $u \in S(E)$ ssi $\mathrm{Mat}_{\mathscr{B}}(u)$ symétrique.
- théorème spectrale : tout $u \in S(E)$, E euclidien admet une bon de vecteurs propres.

OU toute matrice symétrque réelle est diagonalisable dans une bon et $A = PD^{t}P$.

$$\forall M = \begin{pmatrix} a & (b) \\ (b) & a \end{pmatrix}, \text{ on trouve } c \text{ tq } M - cI_n = ((b)), \text{ puis } \operatorname{Ker}(M - cI_n) = \operatorname{Ker}((b)) = n - 1$$
(théo rang) \Rightarrow tout les vp avec multiplicité via $\operatorname{tr} = \sum_{\lambda \in Sp(M)} \lambda.$

Variable aléatoire discrète

<u>loi de X</u>: $P_X: U \mapsto P(x \in U)$ complétement déterminée par $(P(X = x))_{x \in X(\Omega)}$.

X positive si $P(X \ge 0) = 1$

fonction de répartition: $F_X: x \in \mathbb{R} \mapsto P(X \leqslant x) \quad \forall n \in \mathbb{N}^* \ P(X = n) = F_X(n) - F_X(n - n)$

loi géométrique : répétition infini de Bernoulli + temps d'attente ; seule loi sans mémoire i.e. $\forall (n,k) \in \mathbb{N}^2$, $P(X \geqslant n+k \mid X>n) = P(X>k)$

Poisson = loi binomiale, approximation valide ssi $p \ll 1$.

 $X \text{ VAD} \Rightarrow f(X) \text{ VAD}$ $Z = (X, Y) \text{ vecteur al\'eatoire discret}, <math>Z(\Omega) \subset X(\Omega) \times Y(\Omega)$

<u>loi conjointe</u> : $P(X = x, Y = y) = P(\{X = x\} \cap \{Y = y\}) \rightarrow \text{lois marginales (pas réciproque)}.$

 $\underline{\text{lois marginales}:}\ P(X=x) = \sum_{y \in Y(\Omega)} P(X=x, Y=y) \ \text{même pour } Y.$

L'ensemble des VAD est un \mathbb{R} -EV.

 X_i mutuellement indépendantes si $\forall (x_i) \in \prod_i X_i(\Omega)$ les $(X_i = x_i)$ sont indé \Rightarrow loi de

 (X_1,\ldots,X_n) et la loi produit des X_i .

lemne des coalitions généralisé : $(X_i)_{1 \le i \le n}$ mutuellement indé, $q \in [1, n-1]$ alors $f(X_1, \dots, X_q)$ et $g(X_{q+1}, \dots, X_n)$ indépendantes.

X admet une espérance ssi $\sum P(x \ge n)$ cvg.

formule de transfert : X à valeurs dnas $\{x_n \mid n \in \mathbb{N}\}$ dénombrable, x_n 2 à 2 distincts, $f: X(\Omega) \to \mathbb{R}$ alors f(X) d'espérance finie ssi $\sum f(x_n)P(X=x_n)$ CVA et donc $E(f(X)) = \sum_{n \in \mathbb{N}} f(x_n)P(X=x_n)$ CVA et donc $E(f(X)) = \sum_{n \in \mathbb{N}} f(X)$

$$\sum_{n=0}^{+\infty} f(x_n) P(X = x_n).$$

L'éspérance conserve l'ordre, est linéaire ; $P(X \ge 0) = 1) \Rightarrow X$ espérance finie et $E(X) \ge 0$; $P(X = a) = 1 \Rightarrow E(X) = a$.

X,Y indé $\Rightarrow E(XY)=E(X)E(Y)$ réciproque fausse. X^2 admet une espérance $\Rightarrow X$ admet une espérance.

$$\mathbb{V}(X) = E(X^2) - E(X)^2 = E((X - E(X))^2) \geqslant 0 \ \mathbb{V}(aX) = a^2 \mathbb{V}(X) \text{ et } \mathbb{V}(X + b) = \mathbb{V}(X)$$
$$\sigma = \sqrt{\mathbb{V}(X)}$$

- <u>inégalité de Markov</u>: X positive, $\forall a \in \mathbb{R}_+^* \ P(X \geqslant a) \leqslant \frac{E(X)}{a}$.
- <u>inégalité de Bienaymé-Tchebytchev</u>: $\forall \varepsilon > 0, \ P(|X E(X)| \ge \varepsilon) \le \frac{\mathbb{V}(X)}{\varepsilon^2}$.

 $\frac{\text{Cauchy-Schwartz}:}{\beta Y=0)=1.}X, Y \text{ sur un même espace}, E(Y)^2 \leqslant E(X^2)E(Y^2) = \text{ si } \exists (\alpha,\beta)\mathbb{R}^2 \setminus \{0,0\}, \ P(\alpha X+\beta Y=0)=1.$

Cov(X,Y) = E((X-E(X))(Y-E(y))) = E(XY) - E(XE(Y)) = 0 si X,Y indépendantes (réciproque faux)

$$\mathbb{V}(X_1, \dots, X_n) = \sum_{i=1}^n \mathbb{V}(X_i) + \sum_{i=1}^n \sum_{\substack{j=1\\i \neq j}}^n Cov(X_i, X_j).$$

fonction génératrice: X à valeurs dans \mathbb{N} , $G_X(t) = \sum_{n=0}^{+\infty} t^X P(X=n) = E(t^X)$.

de RdC $\geqslant 1$, $\forall t \in [-1,1]$ $G_X(t) \leqslant 1$ et $G_X(t) = 1$, \mathscr{C}^0 sur [-1,1] et \mathscr{C}^∞ sur]-1,1[au moins ; polynôme si $X(\Omega)$ fini.

$$n \in \mathbb{N}$$
 $P(X = n) = \frac{G_X^{(n)}(0)}{n!}$; $E(X) = G_X'(1)$ et $\mathbb{V}(X) = G_X''(1) + G_X'(1) - G_X'(1)^2$
 X, Y indé $\forall t \in [-1, 1]$ $G_{X+Y}(t) = G_X(t)$ $G_Y(t)$

<u>loi</u> faible des grands nombres : $(X_n)_{n\in\mathbb{N}^*}$ indés, de même loi, X_n^2 admet une espérance, $\sigma=$

$$\sigma(X_n) = \sigma(X_1), \ m = E(X_1) \text{ et } S_n = \sum_{i=1}^n X_i \Rightarrow P\left(\left|\frac{1}{n}S_n - n\right| \geqslant \varepsilon\right) \leqslant \frac{\sigma^2}{n\varepsilon^2}.$$

<u>Méthode</u>: regarder si support fini, si oui et exp type O/N: Bernoulli/Binomiale. Préciser $X(\Omega)$ à chaque fois.

Pour E(X), prouver la CVa puis calculer par S_n !!

$$\frac{k^2}{(k+1)!} = \frac{1}{(k-1)!} - \frac{1}{k} + \frac{1}{(k+1)!}$$

Toujours se ramener à X_1 quand n VAD de même loi!!

Systèmes d'équations différentielles linéaires

On trouve les coeffs des y_p du 2^{nd} ordre en remettant y_p dans (E). Structure d'EV, S_H SEV de $\mathscr{C}^1(I,\mathbb{K}^n)$ de dim n.

X' = AX + B, B simple ou nul et A constante et diago/trigo.

On trouve Sp(A) puis les $E_{\lambda_i} \Rightarrow \vec{\mathrm{vp}} \Rightarrow X_H = \sum_{i=1}^n c_i V_i e^{\lambda_i} t$ $V_i \vec{\mathrm{vp}}$, puis repasser dans \mathbb{R} si

besoin, $+ X_p$.

<u>Méthode</u>: On résoud Y' = DY avec $D = P^{-1}AP$ et $Y = P^{-1}X$ puis on repasse à X et $A + \text{base de } \vec{\text{vp}}$

signe solution dépend du côté de a(x)! pas oublier 2^{nd} membre + ds la normalisation!! recollement et superposition! $(i\omega \text{ solution, pas }\omega)$

Calcul différentiel

Passage polaire!

 $f: U \to \mathbb{R} \mathscr{C}^1$ si f admet toute ses ∂_i sont \mathscr{C}^0 .

 $\underline{\text{diff\'erentielle}:} \ \mathrm{d}f(a): h \mapsto \partial_1 f(a) h_1 + \dots + \partial_p f(a) h_p \ \to \mathrm{si} \ f \ \mathscr{C}^1, \ f(a+h) \underset{\|h\| \to 0}{=} f(a) +$

df(a)h + o(||h||)

 $\nabla f(a) = (\partial_1 f(a), \dots, \partial_p f(a)) \quad df(a).h = \langle \partial f(a), h \rangle$ Règle de la chaîne : $f \mathcal{C}^1$, les $t \mapsto x_i(t) \mathcal{C}^1$, $\gamma(t) = (x_1(t), \dots, x_p(t)) \in U$.

Alors $g = f \circ \gamma$ existe et \mathscr{C}^1 et $g'(t) = \sum_{i=1}^p x_i(t) \partial_i f \circ \gamma(t)$.

$$\rightarrow \text{ex}: \frac{\partial g}{\partial u} = \frac{\partial f}{\partial x} \times \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \times \frac{\partial y}{\partial u}$$

- $f: U \to \mathbb{R} \mathscr{C}^1$, U convexe de \mathbb{R}^d , si $\partial_i = 0$ alors f indé de sa i-ème variable.

• a point critique ssi $\nabla f(a) = (0, \dots, 0)$; si U convexe, {extremums} \subset {points critiques} Théorème de Schwarz: $f \mathscr{C}^2$, $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} \Rightarrow$ contraposée pour montrer pas \mathscr{C}^2 .

1A

Équations différentielles ordinaires

simplement connexe : $\forall (x,y) \in \Omega^2$, il existe un chemin entre x et y.

Théorème de Cauchy-Lipschitz : Soit $f \in \mathcal{C}^1(]t_1, t_2[,\Omega)$, Ω ouvert connexe de \mathbb{R}^d , alors il existent une unique solution maximale à un système de Cauchy.

Version globale : Si $f:]t_1, t_2[\times \Omega \to \mathbb{R}^d]$ est globalement lipschitzienne en la deuxième variable et \mathscr{C}^0 des deux, alors il existe une unique solution globale. (globale \Rightarrow maximale)

Egalité de Duhamel :
$$\varphi_{t_0,y_0}$$
 vérifie $\varphi(t) = y_0 + \int_{t_0}^t f(u,\varphi(u)) du$.

<u>Théorème des bouts</u>: Soit $f:]a, b[\times \mathbb{R}^d \to \mathbb{R}^d \overset{\iota_0}{\mathscr{C}^1}$, alors soit $]t1, t_2[=\mathscr{D}_{\varphi}, \varphi]$ solution maximale alors φ "explose" en ses bords.

 \Rightarrow Pour $\Omega = \mathbb{R}^d$, toute solution bornée est globale (corrolaire).

sous-solution : u sous-solution si $u' \leq f(t, u)$ et $u(0) = y_0$.

équilibre : soluution stationnaire.

stable: $\forall \varepsilon > 0, \exists \eta > 0, \|y - y_0\| < \eta \text{ et } \forall t \|y(t) - y_0\| < \varepsilon.$

<u>asymptotiquement stable</u>: $\exists \eta > 0 \ \forall y_0 \in B(y_e, \eta), \ \mathscr{D}_y \supset [t_0, +\infty[\ \text{et} \ y(t) \lim_{n \to +\infty} y_e.$

$$\underline{\text{lin\'eaire autonome}:} \begin{cases} Y' = AY + B \\ Y(0) = Y_0 \end{cases} \qquad S = \text{Vect}(t \mapsto e^{At}) + y_p.$$

 y_e équilibre si solution de $Ay_e = b$, $y_e = A^{-1}b$ si $A \in \mathscr{GL}_n(\mathbb{K}) \implies y: t \mapsto e^{At}(y_0 - y_e) + y_e$ y_e stable ssi $\exists M, \|e^{At}\| \leqslant M \ \forall t \geqslant 0$ ou ssi $Sp(A) \subset \mathbb{R}^+$ si A diago (si \mathbb{R}_+^* , asymptotiquement stable)

 y_e aysmptotiquement stable si $\text{Re}(\lambda_i) < 0$ ou $Sp(Jac(f(y_{eq}))) \subset \mathbb{R}_+^* + i\mathbb{R}$.

<u>Méthode</u>: on applique Cauchy-Lipschitz, on trouve les solu stationaire $t \mapsto c$, c tq $f(t,c) = 0 \ \forall t$, on applique le corrolaire des bouts avec les sur/sous solutions.

Schémas numériques

erreur globale : $e_i = y(t_i) - u_i \implies$ schéma convergent ssi sup $|e_i| \xrightarrow{\Delta x \to +\infty} 0$.

 $e_i = \varepsilon_i + E_i$, $\varepsilon_i = y(t_{i+1}) - u_i$ et E_i amplification de e_{i+1} par le schéma \Rightarrow CVG ssi $\sum |\varepsilon_i| \underset{\Delta x \to 0}{\longrightarrow} 0$ et E_i indépendant de Δx .

 $\underline{\text{consistance}} : \sum |\varepsilon_i| \underset{\Delta_{x \to 0}}{\longrightarrow} 0.$

ordre k (min): $\exists C$, $\forall i \mid \varepsilon_i \mid \leqslant Ch_{i-1}^{k+1} \Rightarrow \text{consistant et } \exists C$, $\sum |C_i| \leqslant C\Delta x^k$.

Tout schéma stable et constant est convergent. Si il est d'ordre au moins $l \geqslant 1$ et stable, il est convergent et $\exists C > 0, \forall i \ |e_i| \leqslant C \Delta x^l$

stabilité: $F:(t,x,h)\mapsto F(t,x,h)$ est lipschitzienne en x.

<u>critère d'ordre :</u> f \mathscr{C}^p en t et x et F \mathscr{C}^p en h \Rightarrow schéma d'ordre $\geqslant p$ ssi

$$\forall k \in [0, p-1], \frac{\partial^k F}{\partial h^k}(t, x, 0) = \frac{f^{[k]}(t, x)}{k+1}. \qquad (f^{[k+1]} = \partial_t f^{[k]} + f \partial_x f^{[k]} \text{ et } f^{[0]} = f)$$

Euler explicite: F(t,x,h) = f(t,x) $u_{n+1} = u_n + \Delta t f(t,u_n)$ ordre 1 si $f \mathscr{C}^1$ point milieu: $F(t,x,h) = f(t+\frac{h}{2},x+\frac{h}{2}f(t,x))$ ordre 2 si $f \mathscr{C}^2$ Hun: $F(t,x,h) = \frac{1}{2}(f(t,x) + f(t+h,x+hf(t,x)))$ //

Euler implicite : $u_{n+1} = u_n + \Delta t f(t_{n+1}, u_{n+1})$ // si eq bien résolue Crank-Nicholson : $u_{n+1} = u_n + \frac{\Delta t}{2} (f(t_n, u_n) + f(t_{n+1}, u_{n+1}))$ //

Transformé de Fourier

 $\hat{f} = \mathscr{F}(f)(\xi) = \int_{\mathbb{R}} f(x)e^{-2i\pi\xi x} \, \mathrm{d}x \quad \check{f} = \mathscr{F}^{-1}(f) = \hat{f}(-x) \text{ et } \mathscr{F} \quad \mathscr{D}^{\alpha} \stackrel{\mathscr{F}}{\Leftrightarrow} (2i\pi\xi)^{\alpha}$

Théorème de Riemann-Lebesgue : $\mathscr{F}(L^1)\subset L^\infty\cap\mathscr{C}_{\to 0}$

Théorème: $f L^1$ tq $\hat{f} L^1$ alors $\mathscr{F}^{-1}(f)$ existe, est continue et $||f - \mathscr{F}^{-1}(f)||_1 = 0$. Et si $f \mathscr{C}^0$, \mathscr{F} isomorphisme.

 $fL^1 \Rightarrow \hat{f} \mathscr{C}_{\to 0}$ ainsi \mathscr{F} injective.

 \mathcal{S} , espace de Schwart : ensemble des fcts infiniment dérivables tel que $\forall k \, \forall l, \, x^l f^{(k)}(x) \xrightarrow{+\infty} 0$.

 $\mathscr{F}(S) = S \ (\Rightarrow \mathcal{F} \text{ isomorphisme}) \ ; \ (S, +, \dot) \ \text{EV et} \ (S, +, \times) \ \text{anneau}.$ Plancheret-Parseval : $f \in L^1 \cap L^2 \ (\text{ou} \ S) \ \text{alors} \ \hat{f} \ L^2 \ \text{et} \ \|f\|_2 = \|\hat{f}\|_2.$

EDP

<u>Définition</u>: équation sur $D_{\alpha}^{\beta} f$ (α , β multi-indices) avec des conditions aux bords de $D_{f_{\alpha}}$ si borné.

Equation de la chaleur

$$\begin{cases} \partial_t u - \mathcal{K} \Delta u = f & t \ge 0 \\ u(t = 0, .) = u_0 \end{cases}$$

Variables aléatoires et Statistique

• discrète:
$$X \sim \mathbb{U}(S)$$
, $P(X = x) = \frac{\mathbb{1}_S}{Card(S)}$ $X \sim \mathcal{B}(p)$, $P(X = 1) = p$ et $P(X = 0) = 1 - p$ $X \sim Bin(n, p)$, $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$ ($n \mathcal{B} \text{ indé } E = p$, $\mathbb{V} = np$) $X \sim \mathcal{P}(\lambda)$, $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$ (linéaire; $E, \mathbb{V} = \lambda$ obtenu par $E(X(X - 1)) = \lambda^2$ et lin $E(X^2) = \lambda^2 + \lambda$) $X \sim \mathcal{G}(p)$, $P(X = k) = p(1 - p)^{k-1}$
• densité: Si \mathscr{C}^0 alors $P(X \in A) = \int_A f$ $X \sim \mathcal{N}(m, \sigma^2)$, linéaire $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}$ $m = 0$, centrée et si $\sigma^2 = 1$, réduite; $\frac{\mathcal{N}(m, \sigma^2) - m}{\sigma} \sim \mathcal{N}(0, 1)$ $E = m$, $\mathbb{V} = \sigma^2$ $X \sim \text{Exp}(\lambda)$, $f(x) = \lambda e^{-\lambda x} \mathbb{1}_{\mathbb{R}^+}(x)$ $X \sim \Gamma(\alpha, \beta)$, $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \mathbb{1}_{\mathbb{R}^+}(x)$ fonction de répartition: F_X croissante \mathscr{C}^0 à droite $\lim_{E_X} F_X = 0$, $\lim_{E_X} F_X = 1 \Leftrightarrow F_X$ fet de

 $\underline{\text{fonction de répartition}:} \ F_X \ \text{croissante}, \ \mathscr{C}^0 \ \text{à droite}, \ \lim_{-\infty} F_X = 0, \lim_{+\infty} F_X = 1 \Leftrightarrow F_X \ \text{fct de}$

répartition.
$$X \sim \mathcal{B}(p), F_X = \begin{cases} 0 \text{ si } x < 0 \\ 1 - p \text{ si } x \in]0; 1[& X \sim \mathcal{N}(0, 1), \ \Phi(x) = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy \\ p \text{ sinon} \end{cases}$$

$$\Phi \text{ symétrique et } \Phi(-t) = 1 - \Phi(t) \qquad X \sim \operatorname{Exp}(\lambda), F_X(x) = (1 - e^{-\lambda x}) \, \mathbb{1}_{\mathbb{R}^+}(x)$$

Φ symétrique et $\Phi(-t) = 1 - \Phi(t)$ $X \sim \text{Exp}(\lambda), F_X(x) = (1 - e^{-\lambda x}) \mathbb{1}_{\mathbb{R}^+}(x)$ $P(X = x) = F_X(x) - F_X(x^-)$ $F_X(x) = \int_{-\infty}^x f_X \text{ ou } P(X \le x)$ <u>médiane</u>: résoudre $F_X(m) = \frac{1}{2}$ dans la bonne zone.

 $\underline{\text{espérance et variance}:} E(\varphi(x)) = \int_{\mathbb{R}} \varphi(x) f_X(x) \, dx \, \text{linéairé et croissante} \qquad \mathbb{V}(X) = E((X - x)) = \int_{\mathbb{R}} \varphi(x) f_X(x) \, dx \, \text{linéairé et croissante}$ $E(X)^{2} = E(X^{2}) - E(X)^{2} \quad \mathbb{V}(aX + b) = a^{2}\mathbb{V}(X) \ \sigma = \sqrt{\mathbb{V}(X)}$ <u>Markov</u>: $X \ge 0$, a > 0 $P(X \ge a) \le \frac{E(X)}{a}$ <u>Bienaymé-Tchebytchev</u>: X d'espérance

finie, a>0 $P(|X-E(X)|\geq a)\leq \frac{\sqrt[a]{(X)}}{a^2}$ <u>espérance totale</u>: A,B s.c.e $E(X)=E(X\mathbbm{1}_A)+E(X\mathbbm{1}_B)$ puis indé de $\mathbbm{1}_A$ et X $\triangle E(\mathbbm{1}_B)\neq 0$ généralement

convergence en loi : X_n cvg vers Y ssi $\forall t \, F_Y$ continue en t, $\lim_{n \to \infty} F_{X_n}(t_n) = F_Y(t)$

convergence en probabilité : Z_1, \ldots cvg en proba vers x, noté $Z_n \stackrel{P}{\to} x$ si $\forall \varepsilon > 0, P(|Z_n - x| > 0)$

$$X, Y \text{ ind\'e alors } E(XY) = E(X)E(Y) \quad \text{ind\'e} \Rightarrow \mathbb{V}\Big(\sum\Big) = \sum \mathbb{V}$$

n-échantillon : X_1, \ldots, X_n ind\'e de même loi (iid).

Théorème (loi faible des grands nombres) : X_1, \ldots, X_n iid avec $m = E(X_1)$ et $\sigma^2 = \mathbb{V}(X_1)$

alors, $\forall a > 0 \ P\left(\left|\frac{1}{n}\sum^{n}X_{i} - m\right| > a\right) \leq \frac{\sigma^{2}}{na^{2}}$ (on a aussi $E\left(\frac{1}{n}\sum X_{i}\right) = m$, moyenne empirique).

Théorème (loi forte des grands nombres) : X_1, \ldots, X_n iid, E et \mathbb{V} alors $\frac{1}{n} (\sum_{i=1}^n X_i) \stackrel{P}{\to} E(X_1)$.

Théorème central limite : X_1, \ldots, X_n iid espérance m et variance $\sigma^2 < \infty$, alors $\forall a \in \mathbb{R}$ $P\left(\frac{X_1 + \cdots + X_n - nm}{\sigma\sqrt{n}} \le a\right) \xrightarrow[+\infty]{} \Phi(a).$

Approximation d'une binomiale : • n grand (> 30) et np petit (< 5) : loi de Poisson, $\lambda = np$. (Stein)

• n grand (> 10) et np, n(1-p) assez grand (> 10) : $\frac{S_n - np}{\sqrt{np(1-p)}} \sim \mathcal{N}(0,1)$. (Moivre-Laplace)

 $\underline{\text{Test :}} \text{ on choisit } \begin{cases} H_0 \text{ si } X > s \\ H_1 \text{ sinon} \end{cases} \text{ avec } s \text{ seuil à déterminer. } H_0 \text{ est l'hypothèse nulle et } H_1$ l'alternative.

- (1) On choisit un modèle.
- (2) Formuler H_0 et H_1 .
- (3) Déterminer une statistique de test (ex : moyenne empirique de mesures indé).
- (4) Trouver une règle de rejet de H_0 i.e. on prend H_0 si X < s par ex, région de rejet.
- (5) Calcul du seuil s (ex: test de niveau $\alpha = 5\% \Rightarrow \forall m \leq 80 P(\hat{X} > s) \leq \alpha$, erreur de type 1).
- 6 Règle de décision, A.N. + décision (ex : $\mathbb{1}_{\hat{X}>80,025}$ test de niveau 5% de H_0 et H_1 puis $\hat{X}_{\text{obs}} = 80, 1 > s \Rightarrow$ décision)