1. Funciones trigonométricas

En \mathbb{R}^2 , el círculo unitario es

$$S_1 := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \}.$$

Por lo tanto, si $(x, y) \in S_1$, entonces

$$y = \sqrt{1 - x^2}.$$

Note que $y \in [0, 1]$.

Definición 1.

$$\pi \coloneqq 2 \int_{-1}^{1} \sqrt{1 - t^2} \, \mathrm{d}t.$$

Sea $t \in [-1, 1]$. Entonces, el área delimitada por la circunferencia unitaria, el eje x y el radio de ángulo θ_t que va del origen al punto $(t, \sqrt{1-t^2})$ es

$$\int_{t}^{1} \sqrt{1 - x^2} \, \mathrm{d}x + \frac{t\sqrt{1 - t^2}}{2}.$$

Definición 2. Sea $A: [-1,1] \rightarrow \left[0,\frac{\pi}{2}\right]$,

$$A(t) := \int_{t}^{1} \sqrt{1 - x^2} \, dx + \frac{t\sqrt{1 - t^2}}{2}.$$

Proposición 3. La función A tiene las siguientes propiedades:

- 1. Es continua en [-1, 1].
- 2. Es derivable en (-1,1) y

$$A'(t) = -\frac{1}{2\sqrt{1-t^2}}.$$

- 3. Es decreciente.
- 4. Para cada $t \in (-1, 1)$,

$$A''(t) = -\frac{x}{2(1-x^2)^{\frac{3}{2}}}.$$

5. $A(-1) = \frac{\pi}{2}$, $A(0) = \frac{\pi}{4}$, A(1) = 0.

Demostración. 3. Se tiene notando que A(t) < 0 para cada $t \in (-1, 1)$.

Con estas propiedades es posible realizar un esbozo de la gráfica de A: A'' es negativa en (0,1), por lo que en este intervalo en cóncava; por otro lado A'' es positiva en (-1,0), por lo que es convexa.

Definición 4. Definimos cos: $[0,\pi] \to [-1,1]$ y sin: $[0,\pi] \to [0,1]$, mediante

$$\cos\theta \coloneqq A^{-1}\left(\frac{\theta}{2}\right),\,$$

$$\sin\theta \coloneqq \sqrt{1 - \cos^2\theta}.$$

Proposición 5. cos y sin tienen las siguientes propiedades:

- 1. Son funciones continuas.
- 2. Para $\theta \in \left[0, \frac{\pi}{2}\right]$, $\cos \theta \ge 0$ y para $\theta \in \left[\frac{\pi}{2}, \pi\right]$, $\cos \theta \le 0$.
- 3. Para $\theta \in [0, \pi]$, $\sin \theta \ge 0$.
- 4. Ambas son diferenciables en $(0,\pi)$. Además $\cos'\theta = -\sin\theta \ y \sin'\theta = \cos\theta$.
- 5. $\cos\left(\frac{\pi}{2}\right) = 0$, $\cos(\pi) = -1$, $\cos(0) = 1$, $\sin(0) = 0$, $\sin\left(\frac{\pi}{2}\right) = 1$, $\sin(\pi) = 0$.
- 6. cos es decreciente.
- 7. sin es creciente en $\left[0,\frac{\pi}{2}\right]$ y decreciente en $\left[\frac{\pi}{2},\pi\right]$.
- 8. cos es cóncava en $\left[0,\frac{\pi}{2}\right]$ y convexa en $\left[\frac{\pi}{2},\pi\right]$.
- 9. sin es cóncava en $[0, \pi]$

Demostración. 1. Ambas funciones son continuas debido a su construcción.

- 2. Se sigue de la definición de cos.
- 3. Se sigue de la definición de sin.
- 4. Utilizando el teorema de la función inversa, obtenemos

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\cos\theta = \frac{\mathrm{d}}{\mathrm{d}\theta}A^{-1}\left(\frac{\theta}{2}\right) = -\frac{1}{2}2\sqrt{1-\cos^2\theta} = -\sin\theta.$$

La derivada de $\sin \theta$ se obtiene directamente de la definición.

5. Los valores de sin y cos en estos puntos se sigue de sus definiciones.

- 6. Del inciso 3, se sigue $\cos' \theta = -\sin \theta \le 0$.
- 7. Se sigue del inciso 2.
- 8. Calculando la segundas derivadas de cos y observando sus signos en los intervalos correspondientes, se tiene el resultado.
- 9. Calculando la segundas derivadas de sin y observando su signo, se tiene el resultado.

Podemos extender el dominio de cos a otros intervalos. Sea cos: $[\pi, 2\pi] \to \mathbb{R}$ mediante

$$\cos\theta = \cos(2\pi - \theta).$$

Proposición 6. Sean $a, b \in \mathbb{R}$ y $f : \mathbb{R} \to \mathbb{R}$ derivable tal que f'' + f = 0 y

$$f(0) = a, \quad f'(0) = b.$$

Entonces, $f(x) = a \cos x + b \sin x$.

Demostración. Supongamos que a = b = 0. Notemos que

$$(f'^2 + f^2)' = 2(f''f' + f'f)$$
$$= 2f'(f'' + f) = 0$$

Por lo tanto existe $c \in \mathbb{R}$ tal que para todo $x \in \mathbb{R}$, $f'(x)^2 + f(x)^2 = c$. En particular,

$$c = f'(0)^2 + f(0)^2 = b^2 + a^2 = 0.$$

Por lo tanto, f'(x) = f(x) = 0 para todo $x \in \mathbb{R}$.

Ahora, supongamos que $a, b \in \mathbb{R}$ no son ambos cero. Para cada $x \in \mathbb{R}$, hacemos $g(x) := f(x) - a \cos x - b \sin x$. Entonces,

$$g''(x) + g(x) = 0$$
, $g(0) = 0$, $g'(0) = 0$.

Por el análisis al inicio de la demostración, para todo $x \in \mathbb{R}, g(x) = 0.$

Proposición 7. Para cada $x, y \in \mathbb{R}$,

- 1. $\sin(x+y) = \sin y \cos x + \cos y \sin x$.
- 2. cos(x + y) = cos y cos x sin y sin x.

Demostración. Sea $y \in \mathbb{R}$ fijo. Definimos $f_y \colon \mathbb{R} \to \mathbb{R}$, mediante

$$f_y(x) = \sin(x+y).$$

Entonces, $f_y''(x) = -f_y(x)$. Además $f_y(0) = \sin y$ y $f_y'(x) = \cos y$. Por la proposición 6,

$$\sin(x+y) = \sin y \cos x + \cos y \sin x.$$

La identidad para cos(x + y) se obtiene de manera similar.

Definición 8. Sea $Z_c := \left\{ \frac{2n+1}{2}\pi : n \in \mathbb{Z} \right\}$. Sea $\tan : \mathbb{R} \setminus Z_c \to \mathbb{R}$ como

$$\tan \theta := \frac{\sin \theta}{\cos \theta}.$$

2. Ejercicios

- 1. Extender las definiciones de sin y cos a cualquier intervalo de la forma $[k\pi, (k+1)\pi]$, $k \in \mathbb{Z}$.
- 2. Hallar las gráficas de las siguientes funciones.
 - $a) \sin(2x)$.
 - b) $\tan \theta$, $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.
 - c) $\sin x \sin 2x$.
 - $d) x \sin x$.
 - $e) \frac{\sin x}{x}$.
- 3. Demostrar que

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}.$$

4. Sean $\alpha, \beta \in \mathbb{R}$. Demostrar que

$$\sin(\alpha x)\sin(\beta x) = \frac{1}{2}(\cos(\alpha - \beta)x - \cos(\alpha + \beta)x).$$
$$\cos(\alpha x)\cos(\beta x) = \frac{1}{2}(\cos(\alpha + \beta)x + \cos(\alpha - \beta)x).$$