

STESA-GRU: Spatio Temporal Self Attended Gated Recurrent Units for Video Object Segmentation

Diego Valderrama & Mateo Rueda

INTRODUCTION

INTRODUCTION

- Separate objects from a video sequence background
- Beneficial applications
 - Video editing
 - Scene understanding
 - Autonomous vehicles

INTRODUCTION

- Semi-supervised task
- Predict masks from the first frame ground-truth
- Motion based or detection based approaches

BASELINE

RVOS

- Encoder Decoder architecture
- Resnet 101 as backbone
- LSTM spatio-temporal
- Segmentation per instance
- Off-line approach

SPATIO-TEMPORAL RECURRENCE

APPROACH

APPROACH

- Conv GRU spatio-temporal
 - Two hidden states
 - Conv reset gate
 - Conv update gate
 - Conv "current"
 - Reset hidden

$$r_g = \sigma \Big(W_{xr} x_t + W_{hr} h_{t-1} + b_r \Big)$$

$$u_g = \sigma \Big(W_{xu} x_t + W_{hu} h_{t-1} + b_u \Big)$$

$$c = \sigma \Big(W_{xc} x_t + b_c \Big)$$

$$r_h = r_g * \Big(h S_{t-1} + h T_{t-1} \Big)$$

$$\tilde{h}_t = tanh \Big(c + r_h \Big)$$

$$h = (u_g * h S_{t-1}) + (1 - u_g) * \tilde{h}_t$$

APPROACH

- Self- Attention
 - o 2D Non Local Block Module after res3
 - Auxiliary Loss

$$Loss = mIoU_{NLB} + mIoU_{P}$$

STESA-GRU

EXPERIMENTS

DAVIS 2017

- 60 videos Train split
- 30 videos Val split
- 30 videos Test-dev

YOUTUBE VOS V1

• 3471 videos - Train split

- Region similarity (IoU)
- F-Measure score

TRAINING DETAILS

- Frames and annotations have been resized to 256x448
- Each mini-batch is composed of 4/3 videos and 5 consecutive frames
- 5/10 epochs in YouTube-VOS and 40/20 in DAVIS 2017
- Learning rate of 10⁻⁶ with Adam optimizer
- Single GPU TESLA K40c

RESULTS

Model	OL	$\mathcal{J}-\mathcal{F}$ mean	\mathcal{J}	\mathcal{F}
PremVOS [13]	Yes	71,6	67,5	75,7
MRF [2]	Yes	67,5	64,5	70,5
OnAVOS [22]	Yes	56,5	53,4	59,6
FeelVOS [21]	No	57,8	55,2	60,5
RGMP [16]	No	52,9	51,4	54,4
RVOS [20]	No	50,3	47,9	52,6
Ours	No	42.6	40.6	44.6
Ours w/o AL	No	44.3	42.9	45.7
$\overline{RVOS_{w/o}}$	No	33,6	32,1	35,0
$\operatorname{Ours}_{w/o}$	No	36,1	33,9	38,4

Table 1. Comparison against state-of-the-art results for semi-supervised video object segmentation in DAVIS-2017 test-dev. OL refers to online learning. $RVOS_{w/o}$ and $Ours_{w/o}$ are the models without the pre-training on YouTube-VOS dataset. Ours w/o AL refers to our model pretrained without the auxiliary loss

RESULTS

RESULTS

Model	FT	$\mathcal{J}-\mathcal{F}$ mean	\mathcal{J}	$\overline{\mathcal{F}}$
Ours	No	41.5	40.1	42.9
Ours w/o AL	No	42.9	40.8	44.9
Ours	Yes	42.6	40.6	44.6
Ours w/o AL	Yes	44.3	42.9	45.7

Table 2. Comparison between model which are just pretrained and those that are fine-tuned in DAVIS dataset. All the results are on DAVIS-2017 test-dev set. FT refers to fine-tuning on DAVIS dataset. Ours w/o AL refers to our model without the auxiliary loss

Model	r_g	$\mathcal{J}-\mathcal{F}$ mean	\mathcal{J}	\mathcal{F}
Ours w/o NLB	1	35,6	34,2	37,0
Ours w/o NLB	2	31,7	30,1	33,3

Table 3. Ablation study about number of reset gates (r_g) on GRU implementation in DAVIS 2017 dataset without pre-training in YouTube-VOS.

Recurrence	NLB	$\mathcal{J}-\mathcal{F}$ mean	\mathcal{J}	$\overline{\mathcal{F}}$
GRU	Res3	35,4	33,5	37,4
GRU	Res4	34,6	32,4	36,8
GRU	Res5	30,4	28,9	32,0
LSTM	Res3	31,7	30,0	33,4
LSTM	Res4	31,2	29,8	32,5
LSTM	Res5	32,1	30,6	33,7

Table 4. Ablation study about the effect of using the NLB module after different parts of the decoder architecture with different kind of recurrence in DAVIS 2017 dataset without pre-training in YouTube-VOS

Model	NLB	$\mathcal{J}-\mathcal{F}$ mean	\mathcal{J}	\mathcal{F}
STESA-GRU	Res3	36,1	33,9	38,4
$STESA$ - GRU_2	Res4	33,7	31,9	35,6

Table 5. Ablation study about the effect of using the NLB module with auxiliary loss after different positions in DAVIS 2017 dataset without pre-training in YouTube-VOS

CONCLUSIONS

- End-to-end trainable spatio temporal recurrent network with a self-attention module
- Comparable results to method which not use online learning in DAVIS test-dev set
- It is necessary to prove training with different learning rate values
- Evaluate the model in YouTube-VOS validation set