Software-defined Network with Ravel

Lecture by Fangping Lan
PhD student in Prof. Anduo Wang's group

Prerequisites

- PostgreSQL Database
- SQL Language
 - updates, views, triggers, rules, etc.
- Mininet

Our Goals

- What's Software-defined network(SDN)?
- Principles and features of Ravel
- Architecture of Ravel
- Ravel examples

Control Plane and Data Plane

Network paradigm:

Data plane and control plane resides within the physical device

- Forwarding: Data plane
 - Directing a data packet to an out-going link
 - Individual router using a forwarding table
- Routing: Control plane
 - Computing paths the packets will follow
 - Individual router creating a forwarding table

Management Plane Challenges

- Indirect control
 - change weight instead of paths
 - complex optimization problem
- Uncoordinated control
 - cannot control which router updates first
- Interacting protocols and mechanisms
 - Routing and forwarding
 - Naming and addressing
 - Access control
 - Quality of service
 - •

Management Plane Challenges

- Indirect control
 - change weight instead of paths
 - complex optimization problem
- Uncoordinated control
 - cannot control which router updates first
- Interacting protocols and mechanisms
 - Routing and forwarding
 - Naming and addressing
 - Access control
 - Quality of service

•

Software-defined network is to simplify management plane

Decouple control and data planes by providing open standard API

Decouple control and data planes by providing open standard API

Decouple control and data planes by providing open standard APIs

Decouple control and data planes by providing open standard APIs

Software-defined network is an approach to building computer networks that separates and abstracts elements of networks

- Openflow is a multivendor standard defined by Open Network Foundations for implementing SDN in networking equipments
 - defines the communication between an SDN controller and network equipments.
 - to packet forwarding

- Programming abstractions are crucial for the vision of SDN
 - high-level abstractions to make programming easy
 - what are "right" abstractions?

Network Keeps Evolving

- New/changing requirements for abstractions
- Abstraction runtime needs reengineering
- Orchestrate controls across abstractions

Ravel's Perspective

- SDN control revolves around data representation
- adopt a plain data representation
- use a universal data language

A Database-defined Network

- Relation the plain data representation
 - Table stored relation
 - View virtual relation

A Database-defined Network

- Relation the plain data representation
 - Table stored relation
 - View virtual relation
- SQL the universal language
 - Query, update, trigger, rule

 Ad-hoc programmable abstraction via views

- Ad-hoc programmable abstraction via views
- Orchestration across abstractions via view mechanism

- Ad-hoc programmable abstraction via views
- Orchestration across abstractions via view mechanism
- Orchestration across applications via data mediation

- Ad-hoc programmable abstraction via views
- Orchestration across abstractions via view mechanism
- Orchestration across applications via data mediation
- Network control via SQL

- Attractive features:
 - Abstraction
 - Orchestration
 - SQL

Abstraction: Network Tables

Reachability Matrix

fid	src	dst	vol	
1	h ₁	h ₄	5	
2	h ₂	h ₃	9	

. . .

Topology

sid	nid
S ₁	S ₂
S ₁	S ₄
S ₁	h ₁

Configuration

fid	sid	nid
1	S ₁	S ₄
1	S ₄	h ₄

. . .

- -

- Firewall view
 - monitoring unsafe flows violating access control(ACL) policy

Access Control

end1	end2	allow
h ₁	h ₄	0
h ₂	h ₃	1

12

- Firewall view
 - monitoring unsafe flows violating access control(ACL) policy

```
CREATE VIEW acl_violation(
   SELECT fid FROM rm
   WHERE (src, dst)
   IN (
       SELECT end1, end2 FROM acl
       WHERE allow = 0
   )
)
```

Access Control

end1	end2	allow
h ₁	h ₄	0
h ₂	h ₃	1

12

- Firewall view
 - monitoring unsafe flows violating access control(ACL) policy
- Firewall control
 - repairing violation

CREATE RULE acl_repair AS
ON DELETE TO acl_violation
DO INSTEAD
DELETE FROM rm WHERE fid = OLD.fid

Access Control

end1	end2	allow
h ₁	h ₄	0
h ₂	h ₃	1

12 •

- Firewall view
 - monitoring unsafe flows violating access control(ACL) policy
- Firewall control
 - repairing violation
- More...
 - routing, stateful firewall, load balancer, etc.

Access Control

end1	end2	allow
h ₁	h ₄	0
h ₂	h ₃	1

12 •

- Routing
 - a process of path selection in any networks

shortest path between h1 and h4 13

- Routing
 - a process of path selection in any networks

Shortest path view

fic	b	 path
1		, S ₁ , S ₄ ,

Topology

sid	nid	active
Sī	S ₄	1
Sī	S ₃	1
S ₁	h ₁	1

Configuration

fid	sid	nid
1	Sī	S ₄
1	S ₄	h ₄

. .

shortest path between h1 and h4

- Routing
 - a process of path selection in any networks

Shortest path view

fid	•	path
1		, S ₁ , S ₄ ,

Topology

sid	nid	active
S ₁	S ₄	0
S ₁	S ₃	1
S ₁	h₁	1

Configuration

fid	sid	nid
1	S ₁	S ₄
1	S ₄	h ₄

. . .

broken path h_1 — S_1 — S_4 — h_4 h_2 — S_2 — S_3 — h_3

- Routing
 - a process of path selection in any networks

Shortest path view

fid	 path
1	, S ₁ , S ₄ ,

Topology

sid	nid	active
S ₁	S ₄	0
S_1	S ₃	1
S ₁	h₁	1

Configuration

fid	sid	nid
1	S ₁	S ₄
1	S ₄	h ₄

. .

broken path $h_1 \quad S_1 \times S_4 \quad h_4$ $h_2 \quad S_2 \quad S_3 \quad h_3$

- Routing
 - a process of path selection in any networks

Shortest path view

fid	 path	
1	, S ₁ , S ₃ , S ₄ ,	

Topology

sid	nid	active
S ₁	S ₄	0
S ₁	S ₃	1
S ₁	h ₁	1

Configuration

fid	sid	nid
1	Sī	S ₄
1	S ₄	h ₄

. . .

re-route h_1 S_1 S_2 h_4 h_4 h_2 S_2 S_3 h_3

- Routing
 - a process of path selection in any networks

Shortest path view

fid	 path
1	, S ₁ , S ₃ , S ₄ ,
4	

Topology

sid	nid	active
S ₁	S ₄	0
S ₁	S ₃	1
S ₁	h ₁	1

Configuration

fid	sid	nid
1	S ₁	S ₃
1	S ₃	S ₄
1	S ₄	h ₄

new shortest path between h1 and h4

- Routing
 - a process of path selection in any networks

Shortest path view

fid	 path
1	, S ₁ , S ₃ , S ₄ ,
4	

Topology

sid	nid	active
S ₁	S ₄	0
S ₁	S ₃	1
S ₁	h ₁	1

Configuration

fid	sid	nid
1	S ₁	S ₃
1	S ₃	S ₄
1	S ₄	h ₄

new shortest path between h1 and h4

Orchestration across Applications

apps

priority high load balancer access control

sid	load
10	3
11	1

src	dst	allow
1	10	0
1	11	1

 path	

tenant virtual net

•••	host	server
	1	10

OpenFlow networks

Reachability Matrix

fid	sid	nid

Configuration

fid	sid	nid

14

sid	load
10	3
11	1

src	dst	allow
1	10	0
1	11	1

shortest path

•••	path	

tenant virtual net

 host	server
 1	10

tenant request host 1 to server 10

Reachability Matrix

fid	sid	nid

Configuration

fid	sid	nid

sid	load
10	4
11	1

src	dst	allow
1	10	0
1	11	1

shortest path

•••	path	

tenant virtual net

 host	server
 1	10

tenant request host 1 to server 10

Reachability Matrix

fid	sid	nid

Configuration

fid	sid	nid

sid	load
10	3
11	2

src	dst	allow
1	10	0
1	11	1

shortest path

•••	path	

tenant virtual net

 host	server
 1	10

tenant request host 1 to server 10

Reachability Matrix

fid	sid	nid

Configuration

fid	sid	nid

sid	load	
10	3	
11	2	

src	dst	allow
1	10	0
1	11	1

shortest path

•••	path	

tenant virtual net

 host	server
 1	11

tenant request host 1 to server 10

Reachability Matrix

fid	sid	nid

Configuration

fid	sid	nid

priority high load balancer access control

sid	load	
10	3	
11	2	

src	dst	allow
1	10	0
1	11	1

•	path	

tenant virtual net

 host	server
 1	11

tenant request host 1 to server 10

Reachability Matrix

fid	sid	nid

Configuration

fid	sid	nid

shortest path

 path	

tenant request host 1 to server 10

Configuration

fid	sid	nid

OpenFlow networks

OpenFlow networks

Orchestrated updates: install alternative route that is load-balanced and safe

Ravel Review

- Ad-hoc programmable abstraction via views
- Orchestration across abstractions via view mechanism
- Orchestration across applications via data mediation
- Network control via SQL

Demo

- Ravel website
 - http://ravel-net.org/
 - Download Ravel: http://ravel-net.org/download
 - Walkthrough video: http://ravel-net.org/videos/walkthrough.mp4
 - Tutorial: http://ravel-net.org/manual
- Paper: Ravel: A Database-Defined Network
 - http://anduowang.github.io/docs/sosr16.pdf
- Github
 - https://github.com/ravel-net/ravel

Project Task

- Download and Play with Ravel
- Create an load balancer application
- Orchestrate load balancer, fw, routing applications with an ascending priority
- You can use any interesting topology with Mininet
- Show your results in a pdf.

Thanks

Questions?