Digital Signatures

CMA definitions, Fiat-Shamir transform, RSA-FDH, Schnorr, DSA, Lamport, Signcryption, Group sig., etc.

Signature Uses

- Used to provide integrity, authenticity in public-key setting
- E.g., company sending periodic updates to software on clients
 - (PK_C, SK_C); PK_C embedded in original software
 - (U, $\sigma = Sign_{SKC}(U)$) sent to client
 - Client runs Verify(PK_C, σ, U) ² "accept"
- Intuitively, don't want A to:
 - Produce U', s.t., Verify(PK_C, σ , U') = "accept", and/or
 - Produce σ' , s.t., Verify(PK_C, σ' , U) = "accept"

Logistical Issues

- Signature replay attacks possible (use timestamps, nonces)
- Need to have reliable transmission/distribution mechanism for PK
- PKI, CAs,...

Signatures vs. MACs

- Both provide integrity, but MAC in shared-key setting
- Pros of Signatures
 - Setup once, even for multiple receivers
 - Publicly verifiable
 - Transferable
 - Non-repudiable
- Cons:
 - MACs faster, |MACs| < |Signatures|
 - In single-recipient case, MACs better

Basic Definition

- A signature scheme consists of 3 algorithms:
 - (PK,SK) <- KeyGen(1ⁿ): randomized
 - σ < Sign_{SK}(m): randomized
 - {"accept", "reject"} <- Verify_{PK}(m,σ): deterministic
- Message-spaces, and signature-spaces well-defined
- E.g., $m, \sigma \in G$, |G| = q, for prime q, etc.
- If σ <— Sign_{SK}(m), then "accept" <— Verify_{PK}(m,σ), except with negl. probability, for all legal messages m, and well-formed (PK,SK)

Standard CMA Model

- Standard EUF-CMA: similar to CCA2
- Signature Forgery Game for scheme Π, adversary A:
 - Challenger runs KeyGen(1ⁿ) -> (PK,SK)
 - A given PK, adaptively requests q signatures¹: $(m_1,...,m_q) \in \{0,1\}^n$, gets $(\sigma_1,...,\sigma_q)$, where $\sigma_i < -$ Sign_{SK} (m_i)
 - A outputs (m^*, σ^*)
 - A wins if $(m^* \notin (m_1,...,m_q)$ AND Verify_{PK} (m^*,σ^*) = accept). Set game output = 1
- Π is existentially unforgeable against adaptive chosen message attacks (EUF-CMA) if for all PPT adversaries A, there is a negl. Function, s.t.,

Pr [ForgeryGame_{A, Π}(n) = 1] \leq negl(n)

Weak CMA

- EUF-WeakCMA adversary submits all messages before seeing PK
- Signature Forgery Game for scheme Π, adversary A:
 - A sends challenger $(m_1,...,m_q) \in \{0,1\}^n$
 - Challenger runs KeyGen(1ⁿ) —> (PK,SK), creates signatures $(m_1,\sigma_1),...,(m_q,\sigma_q)$, where σ_i <— Sign_{SK} (m_i)
 - A given PK, $(m_1, \sigma_1), ..., (m_q, \sigma_q)$
 - A outputs (m^*, σ^*)
 - A wins if $(m^* \notin (m_1,...,m_q)$ AND Verify_{PK} (m^*,σ^*) = accept). Set game output = 1
- Π is existentially unforgeable against weak chosen message attacks (EUF-CMA) if for all PPT adversaries A, there is a negl. Function, s.t.,

Pr [ForgeryGame_{A, Π}(n) = 1] \leq negl(n)

Strong/Full CMA

- Strong EUF-CMA requires A cannot produce (valid) new signature even on a previously signed message
- Signature Forgery Game for scheme Π, adversary A:
 - Challenger runs KeyGen(1ⁿ) -> (PK,SK)
 - Proceeding adaptively, A requests q signatures: $(m_1,...,m_q) \in \{0,1\}^n$, gets $(\sigma_1,...,\sigma_q)$, where $\sigma_i < -$ Sign_{SK} (m_i)
 - A outputs (m^*, σ^*)
 - A wins if $(((m^*,\sigma^*) \notin (m_1,\sigma_1),...,(m_q,\sigma_q))$ AND $(Verify_{PK}(m^*,\sigma^*) = accept)$). Set game output = 1
- Π is strongly existentially unforgeable against adaptive chosen message attacks (EUF-CMA) if for all PPT adversaries A, there is a negl. Function, s.t.,

Pr [ForgeryGame_{A, Π}(n) = 1] \leq negl(n)

Unforgeability

- Existential Forgery: A forges a signature for at least one message, has no control over the message
- Selective Forgery: A forges a signature for a particular message chosen by her
- Universal Forgery: A finds an efficient signing algorithm that can forge signatures on any message(s)
- Total Break: A finds signer's signing key
- Max. level of security is against Existential Forgery: If A can't do even this, she can't do anything harder either...
- Lowest level of security security against total break: Ability to do a total break implies A can do SF, UF and EF too
- The most secure signature schemes are existentially unforgeable (EUF)

Hash-and-Sign

A hashed signature scheme consists of 3 algorithms:

```
• (PK,SK) <— Gen(1<sup>n</sup>)
```

- (pk,sk) <- KeyGen(1ⁿ)
- s <- HashGen(1ⁿ)
- Set PK = (pk,s), SK = (sk,s)
- $\sigma < Sign_{SK}(m \in \{0,1\}^*)$
 - Compute σ <— Sign_{SK}(H^s(m))
- {"accept", "reject"} < Verify_{PK}(m,σ)
 - If Verify_{PK}(H^s(m),σ) ² "accept", return 1

Hash-and-Sign

- Correctness property easily carries over
- Security too carries over
 - Informally, if sig. scheme is (standard or strong/weak) EUF-CMA, and H is collision resistant, hash-and-sign paradigm is secure, for m ∈ {0,1}* (arbitrary-length)

RSA Signatures

- An RSA signature scheme consists of 3 algorithms:
 - (PK,SK) <- KeyGen(1ⁿ)
 - (N,e,d) <- GenRSA(1ⁿ)
 - Set PK = (N,e), SK = (N,d)
 - $\sigma \leftarrow Sign_{SK}(m \in Z_N^*)$
 - Compute σ = m^d mod N
 - {"accept", "reject"} <— Verify_{PK}(m,σ)
 - Accept if m ² σ^e mod N

Some RSA attacks

- RSA sigs. aren't EUF-CMA secure
- No-message attack:
 - Find a $\sigma \in Z_N^*$
 - Compute $m = \sigma^e \mod N$; (m,σ) is valid forgery
- Malleability attack:
 - A has message $m \in Z_N^*$
 - A picks $m_1, m_2 \in Z_N^*$, s.t., $m = m_1 \cdot m_2 \mod N$, gets $\sigma_1, \sigma_2 \in Z_N^*$
 - A outputs $(\sigma_1 \bullet \sigma_2)^e$ mod N, which is a valid forgery¹
- 1: $(\sigma_1 \bullet \sigma_2)^e \mod N = (m_1^d \bullet m_2^d)^e \mod N = m_1 \bullet m_2 = m_1$

A just outputs $(\sigma_1 \bullet \sigma_2)^e$ mod N and exits. Verifying $(\sigma_1 \bullet \sigma_2)^e$ mod N $\stackrel{?}{=}$ m is done by challenger

RSA-FDH

- RSA Full Domain Hash
- Prevent malleability attacks by hashing messages
- An RSA-FDH signature scheme consists of 3 algorithms:
 - (PK,SK) <- KeyGen(1ⁿ)
 - $(N,e,d) \leftarrow GenRSA(1^n)$
 - Choose H: $\{0,1\}^* -> Z_N^*$
 - Set PK = (N,e), SK = (N,d)
 - $\sigma < Sign_{SK}(m \in \{0,1\}^*)$
 - Compute $\sigma = H(m)^d \mod N$
 - {"accept", "reject"} <— Verify_{PK}(m,σ)
 - Accept if $\sigma^e \stackrel{?}{=} H(m) \mod N$

RSA-FDH

- Practical? Somewhat...
 - RSA PKCS #1 v.2.1 variant of RSA-FDH
 - RSA PKCS #1 salts (randomizes) message, then repeatedly hashes
 - If salt = NULL, RSA PKCS #1 is same as RSA-FDH
- Cannot use regular hash function, e.g., SHA-2, etc.
 - Range of SHA-2, etc. fixed (160 bits, 256 bits,...)
 - H's range needs to cover all of Z_N*
 - Small-range H practical attacks known...

Identification Scheme

- Identification = establishing identity
- Authentication (signatures): verifying an established identity
- Traditionally used to construct sig. schemes
 - E.g., Amos Fiat—Adi Shamir transform, '86
 - F-S transform has problems, but is used nevertheless¹...
 - Also used in Zero-Knowledge Proof (ZKP) construction

Identification Protocol

- Interactive, challenge-response protocol
- Played between two players: prover (P), verifier (V)
- Arthur-Merlin 3-round protocol¹
- General ID protocol:
 - P's PK is published
 - (I,state) <- P(SK), sends I to V
 - c <- V(PK,1ⁿ), sends c to P
 - r <- P(SK,state,c), sends r to V
 - V(PK,c,r) ² I, then accept P's identity

Arthur-Merlin Protocols

- Fascinating class of interactive decision problems in complexity theory (see complexity zoo¹ for details; there's a petting zoo too!)
- Complexity classes: not just P vs. NP: entire hierarchy from A—Z!
 - AM, MA, BPP, PSpace, NISZK, NIPZK, NPSpace,...,
 ZPP, and many more...
 - 417 and counting!
- But... this isn't a complexity theory class

Fiat-Shamir Transform

- Provides a way to convert any ID scheme into a sig. scheme
 - (PK,SK) <- Gen(1ⁿ)
 - (pk,sk,challengeSet) <— GenID(1ⁿ)
 - Choose H: {0,1}* -> challengeSet
 - $\sigma < Sign_{SK}(m \in \{0,1\}^*)$
 - Compute (I,state) <- P(SK)
 - Compute c <- H(I,m)
 - Compute r = P(SK,state,c)
 - Set $\sigma = (c, r)$
 - {"accept", "reject"} <- Verify_{PK}(m,σ)
 - Compute I = Verify_{PK}(c, r)
 - If H(I, m) ² c, return "accept"

Schnorr Identification Scheme

- (PK,SK) <— Gen(1ⁿ) /* Run by P */
 - $(G, q, g) < -GroupGen(1^n) / *log q = n * /$
 - Pick $x < -Z_q$, set $y = g^x$
 - Set PK = (G, q, g, y), SK = x
- P picks $k \in \mathbb{Z}_q^*$, set $I = g^k$, sends I to V
- $c \in Z_q \leftarrow V(PK, 1^n)$, sends c to P
- P does r = cx + k mod q, sends r to V
- V accepts if g^r y^{-c} ² I

Schnorr Signature Scheme

- Fiat-Shamir(Schnorr ID scheme) —> Schnorr sig.
 scheme
- $(PK,SK) \leftarrow Gen(1^n)$
 - (G, q, g)<- GroupGen(1ⁿ) /* log q = n */
 - Pick $x < -Z_q$, set $y = g^x$, pick H: $\{0,1\}^* > Z_q$
 - Set PK = (G, q, g, y), SK = x
- $\sigma < Sign_{SK}(m \in \{0,1\}^*)$
 - Picks $k \in Z_q$, set $I = g^k$,
 - Compute c <- H(I,m)
 - Compute r = cx + k mod q
 - Set $\sigma = (c, r)$

Schnorr Signature Scheme

- {"accept", "reject"} <- Verify_{PK}(m, σ = (c,r))
 - Compute $I = g^r \cdot y^{-c}$
 - If H(I, m) ² c, return "accept"

Digital Signature Algorithm (DSA)

 Used in Digital Signature Standard (DSS) issued by NIST

 F (ID scheme) —> Sig. scheme; F — transformation function

But F slightly different from F-S transform

DSA's ID scheme

Prover Alice. $SK_A = x$, $PK_A = (G,g,q,y = g^x)$

1. Picks $k \in \mathbb{Z}_q^*$, computes $I = g^k$

- 2. Send I
- 4. Send challenge = α ,r

3. Pick $\alpha, r \in Z_q$

- 5. Compute $s = (k^{-1} \cdot (\alpha + x \cdot r) \mod q)$
- 6. Send response, s
 - Accept Alice's identity as valid iff: ((s≠0) AND (g^{αs-1} y^{rs-1} ≟I))

DSA's ID scheme

- Correctness:
 - s = 0 with negl. probability this only happens when s = -xr mod q
 - If s ≠ 0, Step 7 works correctly
 - How?

• Since
$$g^{\alpha s^{-1}} \cdot y^{rs^{-1}}$$

$$= g^{\alpha s^{-1}} \cdot g^{xrs^{-1}}$$

$$= g^{(\alpha+xr)s^{-1}}$$

$$= g^{(\alpha+xr)\cdot k\cdot (\alpha+xr)^{-1}}$$

$$= I$$

- Fun, isn't it!?
- Next, transform DSA's ID scheme into a signature scheme

DSA

Prover Alice. $SK_A = x$, $PK_A = (G,g,q,y = g^x)$

- 2. Pick an $m \in \{0,1\}^*$ to sign
- 3. $\sigma \leftarrow Sign_{SKA}(m)$
 - 3.1. Pick $k \in \mathbb{Z}_q^*$, set $r = F(g^k)$
 - 3.2.Compute $s = (k^{-1} \cdot (H(m) + x \cdot r) \mod q)$
 - 3.3.If r, s = 0, start over with fresh k
- 4. Output $\sigma = (r,s)$

Verifier Bob

6. Accept iff: $((r,s \neq 0) \text{ AND} F(g^{H(m) \cdot s^{-1}} \cdot y^{r \cdot s^{-1}}) \stackrel{?}{=} r)$

DSA

- Use good PRF for $k \in \mathbb{Z}_q^*$ (must be really random)
 - ... else, Bob immediately gets $SK_A = x$
- Since $s = k^{-1} \cdot (H(m) + xr) \mod q$
 - Bob knows $\sigma = (r,s)$, and m
 - G, g, |G| = q, of course are public
 - Only 2 unknowns: k, x

DSA

- Dangerous to re-use same k for 2 different signatures (by same Alice)
- $s_1 = k^{-1}$ $(H(m_1) + x \cdot r) \mod q$
- $s_2 = k^{-1}$ $(H(m_2) + x \cdot r) \mod q$
- Do $s_1-s_2 = k^{-1}$ $(H(m_1) H(m_2)) \mod q^1$
- Get k, then easy to get x
- Sony Playstation (PS3) master-key-extraction attack 2010

Security?

- But... we've only talked about correctness, what about security?
- Plain RSA not EUF-CMA secure
- RSA-FDH proven EUF-CMA secure
 - Sketch: reduction-based proof
 - A RSA-FDH adversary. Assume A exists, plays EUF-CMA game
 - B Factoring, H-collision adversary, plays factoring game
 - B can, by interacting with A, break factoring assumption or find collision in H
 - Contradiction. Qed.

Security?

- Schnorr ID scheme, Schnorr sig. scheme proven EUF-CMA secure
 - Sketch: reduction-based proof
 - A Schnorr adversary. Assume A exists, plays EUF-CMA game
 - B Discrete Log (DL) adversary, plays DL game
 - B can, by interacting with A, break DL assumption
 - Contradiction. Qed.

Security?

- DSA? Haha :-)
 - No proof exists¹
 - Based on DL hardness assumption
 - Intuitively, should be hard to forge, if DL assumption holds
 - But still widely used...
 - No known attacks if used sensibly (see slide 27, 28 for a "non-sensible" use)

Lamport's Signature Scheme

- Leslie Lamport, 1979 (of LaTeX fame, among others)
- Scheme *not* based on number-theoretic assumptions!
 - Elegant, very appealing!¹
- Rather, based on hash functions
- "One-time-secure" signature scheme
 - An SK is used to sign only a single message

• Set $SK_A = [x_{1,0} \ x_{2,0} \ x_{3,0} \ x_{1,1} \ x_{2,1} \ x_{3,1}]; \ x_{i,j} \in \{0,1\}^n$

• Set
$$PK_A = [y_{1,0} \ y_{2,0} \ y_{3,0}]$$

 $y_{1,1} \ y_{2,1} \ y_{3,1}]; y_{i,j} = H(x_{i,j})$

- Consider $m = (m_1 | | m_2 | | m_3) = "011"$
- For signing m, release x_{i,m_i} for each bit i of m:
 - So, $\sigma = (x_{1,0}, x_{2,1}, x_{3,1})$

- Verification:
 - Given $\sigma = (x_{1,0}, x_{2,1}, x_{3,1})$, PK_A, and m = 011
 - Check if σ is valid
- Accept as valid iff: $H(x_i) \stackrel{?}{=} y_{i,m_i}$; $\forall 1 \le i \le 3$
 - If $H(x_1) \stackrel{?}{=} y_{1,0}$, and
 - If $H(x_2) \stackrel{?}{=} y_{2,1}$, and
 - If $H(x_3) \stackrel{?}{=} y_{3,1}$
- For successful forgery, A must find H⁻¹ of un-used elements in PK

Easily generalizes to n-bit messages, but high storage overhead

• Use:

- When traditional public-key crypto sigs. cannot be used
- Quantum-resistant (potentially)
- Proven secure?
 - Yes, assuming H is one-way
 - Reduction-based proof works in usual way

- Optimizations:
 - Use a Merkle hash-tree for storing PK only roothash need to be published
 - For SK, store a single PRF seed, generate 2n SK components when required, n = |m|
 - Winternitz optimization reduces |PK|, |SK|, but increases computation...

Key Distribution

- One application of signatures to distribute public keys
- Digital certificate: Cert_{Alice} < Sign_{SKCA}(PK_{Alice})¹
- Alice sends (PK_{Alice}, Cert_{Alice}) to Bob; Bob does:
 {"accept", "reject"} <- Verify_{PKCA}(Cert_{Alice})
- Can send over insecure, un-authticated channel, as long as CA isn't compromised

PKI

- Public-key Infrastructure (PKI) defines how:
 - CA verifies Alice
 - Bob gets PKCA
- Some PKIs:
 - Single CA
 - Multiple CAs
 - Delegation/Certificate chains
 - Web-of-trust, e.g., PGP

PKI - Single CA

- CA trusted by everyone, accessible to everyone,
 e.g., govt. agency, dept., company, etc.
- Everyone gets copy of PK_{CA} (securely)
- CA could bundle PK_{CA} with other software
 - E.g., web-browser + PK_{CA}, browser automatically verifies certificates as they come
- CA needs to verify IDs carefully before issuing certificates

PKI- Multiple CAs

- Motivation: obvious
 - Single CA might get corrupted,
 -or might have lax verification process (single-factor auth., etc.),
 -or might be lax with its own SK_{CA} storage
- Alice gets Cert_{A1}, Cert_{A2}, Cert_{A3} from CA1, CA2,
 CA3, gives all to Bob
- Bob decide which to trust: security only as good as least-trusted CA

PKI-Multiple CAs

- OS, browsers pre-configured with multiple CA's PK
- Default: all treated equally trustworthy
- Fine-grained trust settings might help
 - E.g., (Cert_{CA1} AND Cert_{CA2}) OR (Cert_{CA3}) OR (Cert_{CA4} AND Cert_{CA5} AND Cert_{CA6})

PKI-Delegation

- Intuitive idea:
 - Cert_{Alice} <- Sign_{SKCharlie}(PK_{Alice})
 - Cert_{Bob} <- Sign_{SKAlice}(PK_{Bob})
 - Cert_{Denise} <- Sign_{SKBob}(PK_{Denise})
- Each Cert_i must also include info that issuer authorized to issue Cert_i.
- Root CA, 2nd level CAs, 3rd-level CAs, etc.
- More points of attack

PKI-Web-of-trust

- Informal: anyone can be a CA
- Alice has PK_{Bob}, PK_{Denise} obtains them at a conference
- George has:
 - Cert_{George} <- Sign_{SKBob}(PK_{George})
 - Cert_{George} < Sign_{SKCharlie}(PK_{George})
 - Cert_{George} <- Sign_{SKDenise}(PK_{George})
 - Cert_{Geroge} <- Sign_{SKTrent}(PK_{George})
- George presents all cert., Alice decides which to trust

Key Revocation

- Static: certificates expire at fixed time, unless reissued (with re-validated credentials)
- Dynamic: revocation-on-demand
 - Include unique serial number with each certificate
 - Publish revoked serial numbers on public revocation list (CRL)
 - Verifiers check CRL each time

PKI

- Don't want/like PKI? Too much hassle?
 - Real concern for many applications
- Use "PKI-less" public-key crypto
 - Identity-based Encryption (IBE)
 - Attribute-based crypto (ABE/ABS)
 - Or other signature paradigms (group, mesh, etc.)
 - None come cheap, but...

Signcryption

- Goal: provides (confidentiality + integrity), even against CCA2 adversaries
- Encrypt-then-authenticate
- ...Or, Authenticate-and-encrypt
- Assume underlying encryption algorithm is CCA2secure, and sig. scheme is EUF-CMA-secure

Signcryption: Attempt 1

Encryption keys: (EK_A, DK_A) Signing keys: (SK_A, VK_A)

1. Do C = $EK_B(m)$

2. Send(Alice, C, $SK_A(C)$)

4. Bob won't notice anything amiss

3. Strips off Alice's sig., replaces with (Charlie, C, $SK_C(C)$)

Signcryption: Attempt 2

Encryption keys: (EK_A, DK_A) Signing keys: (SK_A, VK_A)

- 1. Do $\sigma = SK_A(m)$
- 2. Compute C = $EK_B(m||\sigma)$)

- 4. Do $(m||\sigma) < -DK_B(C)$
- 5. $VK_A(m,\sigma) \stackrel{?}{=}$ "accept"

Signcryption: Attempt 2

Encryption keys: (EK_A, DK_A) Signing keys: (SK_A, VK_A)

Encryption keys: (EK_C, DK_C) Signing keys: (SK_C, VK_C)

Encryption keys:(EK_B, DK_B) Signing keys: (SK_B, VK_B)

- 1. Do $\sigma = SK_A(m)$
- 2. Compute C = $EK_C(m | | \sigma))$
- - Send(Alice,C) 4. Do $(m||\sigma) \leftarrow DK_C(C)$
 - 5. Compute (Alice, C' = $EK_B(m | | \sigma))$
- 6. Send(Alice,C')
 - 7. Bob'll think (m,σ) came from Alice

Signcryption

- Both attempt 1, 2 work
 - Attempt 1 fix: Step 1 Alice does C = EK_B(Alice | | m)
 - Attempt 2 fix: Step 1,2 Alice does σ = SK_A(Charlie||m), then compute C = EK_C(Alice||m||σ))
- Signing include ID of recipient inside σ
- Encrypting include ID of sender inside C

Other Sig. Paradigms

- Up until now: traditional public-key signatures (both plain and hash-and-sign versions)
- Others?
 - Group sig.
 - Threshold sig.
 - Attribute-based sig.
 - Ring sig.
 - Mesh sig.
- Pick one: Group sig. (simply because they're widely used, and easy to discuss)

Group Sig.

- Basic idea: group of people, each wants to sign on behalf of group, anonymously
- Parties involved:
 - Group manager: issues SKs to all members, sets GPK
 - Group members: produce sig. verifiable by GPK
- Signatures:
 - Member ID anonymous, but tied in to group
 - Manager can trace signatures

Group Sig.

- A group sig. scheme defined by 4 algorithms:
 - (GPK,GMSK,SK[1..n]) <- GKeyGen(1^k,1ⁿ): randomized
 - $\sigma \leftarrow GSign_{SKi}(m \in \{0,1\}^*)$: randomized
 - {"accept", "reject"} < GVerify_{GPK}(m,σ): deterministic
 - $\{i, \bot\}$ <- Open(GMSK,m, σ): deterministic

Group Sig. Security

- What "security" are we looking for?
 - Correctness
 - EUF-CMA (unforgeability)
 - Members anonymity
 - Signatures' traceability to group
 - Unlinkability
 - Exculpability (protection against framing by rogue group members)
 - Collusion-resistance, and ...
- Ugh! Can we unify them into a single threat model? Yes!

Group Sig. Security

- Correctness
- Full-anonymity: A shouldn't be able to guess id i, given σ :
 - Even if she knows SK[1..n],
 - Even if she observes results of Verify_{GPK}(\bullet , \bullet),
 - Even if she observes results of OpenGMSK(•,•)!
- Full-traceability: A cannot create a σ that:
 - Cannot be opened
 - Cannot be traced to a group member
 - Even if GMSK is compromised!¹

1: Models situation where manager's secret key is leaked to A, does *not* model corrupt group manager — corrupt manager can do a lot more!

Group Sig. Security

- The 3 properties imply *all* other security properties — unified threat model
 - For static groups
 - If manager is honest-but-clumsy (loses keys)
- Necessary and sufficient properties for group sigs.
 - Get all other properties "for free"
- Bellare et al.'03 seminal paper in group sig.

M. Bellare, D. Micciano, B. Warinschi. Foundations of group signatures. In Proc. of Eurocrypt'03, pp.614—629.

Group Sig.

- Only seen static groups
- Dynamic:
 - Partially dynamic: New users join ("append-only")
 - Fully dynamic: Users join and leave
- Additional security property: Forward security
 - K: (StartTime_K, EndTime_K)
 - A shouldn't be able to forge sig. for times > i, if her key revoked at time interval i
 - Subtle point: Nor for back-dated times [1..i-1]!

Group Sig.

- What if group manager is corrupt?
 - Will try to issue bad keys, frame members, collude, etc.
 - Actually easy to deal with: ask manager to include a proof of work (POW) with every output
- This, and a lot more: Bellare et al. paper
- Really. go. read. it.