Data Analysis 4

Banneker Institute Jul 18 - 22

Goal of this week:

To solidify your knowledge of Bayesian statistics and equip you with the tools to tackle new datasets and complex models

My "Open Question" Policy...

My "Open Question" Policy...

Ask!

Where we're heading this week...

- 1. Review of Bayesian statistics and metrics
- 2. How do we "actually" analyze data?: Typical workflow
- 3. Graphical models to represent statistical models
- 4. Working through a toy problem
- 5. Wrapping up: Realistic considerations and when to ask for help

Bayesian Statistics and Metrics

$$p(\mathbf{M}|\mathbf{D}) = \frac{p(\mathbf{D}|\mathbf{M})p(\mathbf{M})}{p(\mathbf{D})}$$

$$p(\mathsf{M}|\mathsf{D}) = rac{p(\mathsf{D}|\mathsf{M})p(\mathsf{M})}{p(\mathsf{D})}$$

$$p(\mathsf{M}|\mathsf{D}) = rac{p(\mathsf{D}|\mathsf{M})p(\mathsf{M})}{p(\mathsf{D})}$$

$$p(\mathbf{M}|\mathbf{D}) = rac{p(\mathbf{D}|\mathbf{M})p(\mathbf{M})}{p(\mathbf{D})}$$

$$p(\mathsf{M}|\mathsf{D}) = \frac{p(\mathsf{D}|\mathsf{M})p(\mathsf{M})}{p(\mathsf{D})}$$

$$p(\mathbf{M}|\mathbf{D}) = rac{p(\mathbf{D}|\mathbf{M})p(\mathbf{M})}{p(\mathbf{D})}$$

$$p(\mathbf{M}|\mathbf{D}) = \frac{p(\mathbf{D}|\mathbf{M})p(\mathbf{M})}{p(\mathbf{D})}$$
The thing we ignore

Practice with Conditional Probability

What is the probability that Dogmeat wins given the fact that it's raining?

	Raining	Not Raining
Dogmeat wins	3	2
Dogmeat loses	1	6

What is Chi^2?

Why do we use it?

What is Chi^2:

- Geometrically: It's similar to "least squares"
- Mathematically: It's a descendent of a Gaussian Likelihood:

$$p(x_j) = \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp\left(-\frac{1}{2\sigma_j^2} \left(x_j - \hat{x}_j\right)^2\right),$$

where \hat{x}_j is the predicted value of x_j

Why do we use it:

- Almost everything is Gaussian (due to the law of large #s)
- It's "easy"

A metric is (typically) a scalar which measures the "goodness" of your model's fit to the data

It is something you're trying to optimize

Our Data Analysis Workflow

You do this part! (and map with graphical models)

We're (probably) NOT doing this!

Questions?