МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Лабораторная работа 1.2.5

Исследование прецессии уравнавешанного гироскопа

Авторы: Петров Олег Б02-202

1 Аннотация

Цель работы: Исследование вынужденной регулярной прецессии гироскопа. Установление зависимости скорости вынужденной прецессии от величины момента сил трения, действующих на ось гироскопа. Определения скорости вращения ротора гироскопа и сравнение ее с расчитанной по скорости прецесии.

Оборудование: гироскоп,секундомер,набор грузов,отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

2 Теоретические сведения

2.1 Измерение частоты вращения ротора

Гироскопом называется быстро вращающиеся твердое тело для, для которого, момент импульса относительно одной оси значительно больше момента импульса относительно других, например, вокруг оси OZ:

 $\overrightarrow{L}_z \gg \overrightarrow{L}_y, \quad \overrightarrow{L}_x$ (1)

Гироскоп уровновешен, если его центр масс неподвижен. А устойчивость вращения гироскопа связана с тем, что приращение момента импульса при действии внешних сил в течении короткого промежутка времени много меньше самого момента импульса и практически не иеняет его, то есть:

$$|\Delta \overrightarrow{L}| = |\int \overrightarrow{M} dt| \ll |\overrightarrow{L}| \tag{2}$$

Рассмотрим гироскоп вращающийся только относительно оси OZ со скорость ω . Для того чтобы гироскоп начал совершать регуярную прецессию вокруг вертикальной оси OY с угловой скорсть Ω необходимо приложить к нему момент внешних сил \overrightarrow{M} направленный вдоль оси OX. при этом если выполнено условие:

$$\overrightarrow{L_{\Omega}} \ll \overrightarrow{L_{\omega}} \tag{3}$$

То момент имульса гироскопа относительно главной оси \overrightarrow{L} практически не меняется со временем по модулю и связан с моментом приложенных сил \overrightarrow{M} и скоростью прецессии Ω следующим соотношением:

$$\overrightarrow{M} = \frac{d\overrightarrow{L}}{dt} = \overrightarrow{\Omega} \times \overrightarrow{L} \tag{4}$$

Для изучения регулярной прецесии уравновешанного гироскопа подвесим к нему дополнительные грузы. Это смещает общий центр масс и создает момент силы тяжести, вызывающий прецессию. Тогда скорость вращения ротора гироскопа равна:

$$\omega = \frac{L}{I_z} = \frac{M}{I_z \Omega},$$
 где $M = mgl$ (5)

2.2 Измерение момента инерции ротора

Момент инерции ротора измеряем по периоду крутильных колебаний на жесткой проволке. Чтобы исключить модуль кручения проволки f, подвешиваем цилиндр правильной формы с известным моментом инерции I

$$T = 2\pi \sqrt{\frac{I}{f}}, \qquad I = I_{\pi} \frac{T^2}{T_{\pi}^2} \tag{6}$$

2.3 Измерени момента сил трения

Так как силы трения имеют составляющую, не лежащую в плоскости осей вращения, они меняют момент импульса и по направлению, и по величине. Для ротора гироскопа действие сил трение скомпенсировано электромотором, для осей карданова подвеса компенсации нет. В результате чего ось гироскопа будет опускатья в направлении действия груза. Момент сил трения $M_{\rm Tp}$ может быть вычислен по формуле:

$$M_{\rm Tp} = \frac{\Delta \alpha}{t} L \tag{7}$$

3 Результаты эксперимента и обраюотка данных

3.1 Измерение момента импульса ротора

Отклоним рычаг на 5-6 градусов в верх и подвесим к нему груз. Результаты измерении числа оборотов, времени движения и всего осатльного заносим в табличу один ??. Установим параметры системы и систематические погрешности:

$$l = 121 \pm 1$$
 mm, $g = 9.815 \pm 0.005$ m c^{-2}

$$\Delta m = 1 \text{ r}, \quad \Delta T = 0.1 \text{ c}$$

Расчет угла, на который опускается вертикальная ось, заносим в таблицу и производим по формуле:

$$\Delta \alpha = \frac{\Delta h}{l} \cdot \frac{180}{\pi}$$

$N_{ar{f o}}$	m,	t, c	N	Δh , mm	$\Delta \alpha, \circ$	T, c	$\Delta \alpha/T, \circ \cdot c^{-1}$
1	61	168.4	1	5	2.37	168.4	0.014
2	61	170.9	1	5	2.37	170.9	0.014
3	93	221.3	2	8	3.79	110.7	0.017
4	93	222.6	2	7	3.32	111.3	0.015
5	93	221.6	2	8	3.79	110.8	0.017
6	142	216.6	3	9	4.26	72.2	0.020
7	142	215	3	8	3.79	71.7	0.018
8	142	215.8	3	9	4.26	71.9	0.020
9	214	143	3	4	1.90	47.7	0.013
10	214	143	3	3	1.42	47.7	0.010
1	335	122.2	4	5	2.37	30.6	0.019
12	335	123.7	4	5	2.37	30.9	0.019
13	335	125.1	4	4	1.90	31.3	0.015
14	335	122.7	4	5	2.37	30.7	0.019

Таблица 1: Все измерения величин

Усредняем значения периода для выборки с одинаковой массой и заносим результаты в таблицу ??. Погрешность измерения периода оцениваем по формуле:

$$\sigma_{ ext{chyq}}^T = \sqrt{\sum_i (T_i - \langle T \rangle)^2/N}, \quad \sigma_{ ext{chct}}^T = \Delta T/N$$

$$\sigma_T = \sqrt{\sigma_{ ext{cjyq}}^2 + \sigma_{ ext{cuct}}^2}$$

Тогда скорость прецесии и ее погрешность вычисляем по формуле по формуле:

$$\Omega = \frac{2\pi}{T}, \quad \sigma_{\Omega} = \frac{\Omega}{T} \cdot \sigma_{T}$$

И аналогично для вычисления момента сил тяжести имеем:

$$M = mgl, \quad \sigma_M = M\sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta l}{l}\right)^2}$$

Средние относительные погрешности измерений Ω и M, таким образом получаются $\varepsilon_{\Omega}=0.3\%$ и $\varepsilon_{M}=1.3\%$.

$N_{ar{o}}$	m,	T, c	σ_T ,c	$\Omega, 10^-2c$	$\sigma_{\Omega}, 10^{-2} \text{ c}$	$M, 10^{-}2{ m Hm}$	$\sigma_{M}, 10^{-2} \; {\rm Hm}$
1	61	169.7	1.6	3.70	0.03	7.2	0.1
2	93	110.9	0.1	5.66	0.01	11.0	0.1
3	142	71.9	0.1	8.73	0.01	16.9	0.2
4	214	47.7	0.1	13.18	0.03	25.4	0.2
5	335	30.9	0.1	20.36	0.05	39.8	0.3

Таблица 2: Все измерения величин

Построим график зависимости $M(\Omega)$ пользуясь методом наименьших квадратов(МНК):

Рис. 1: График зависимости M от Ω

Воспользовавшись формулой (??) получим, что коэффицент наклона графика $k=M/\Omega=L$. Пользуясь формулами МНК найдем коэффицент:

$$L = \frac{\langle M\Omega \rangle - \langle \Omega \rangle \langle M \rangle}{\langle \Omega^2 \rangle - \langle \Omega \rangle^2} = 1.95 \frac{\text{Kf M}^2}{\text{c}}$$

Для оценки погрешноси L имеем:

$$\begin{split} \sigma_L^{\text{случ}} &= \frac{1}{\sqrt{3}} \sqrt{\frac{\langle M^2 \rangle - \langle M \rangle^2}{\langle \Omega^2 \rangle - \langle \Omega \rangle^2} - k^2} = 0.03 \; \frac{\text{Kf M}^2}{\text{c}}, \quad \sigma_L^{\text{chct}} = L \sqrt{\left\langle \frac{\sigma_M}{M} \right\rangle^2 + \left\langle \frac{\sigma_\Omega}{\Omega} \right\rangle^2} = 0.02 \; \frac{\text{Kf M}^2}{\text{c}} \\ \sigma_L &= \sqrt{\sigma_{\text{chct}}^2 + \sigma_{\text{случ}}^2} = 0.03 \; \frac{\text{Kf M}^2}{\text{c}}, \quad \varepsilon_L = 1.5\% \end{split}$$

Таким образом получаем итоговое значение момента импульса $L=1.95\pm~0.03~{
m m}^2{
m c}^{-1}.$

3.2 Измерение момента инерции ротора

Измерим момент инерции ротора гироскопа относительно оси симметрии I. Для этого подвесим ротор и цилиндр к концу стальной нити и возбудим крутильные колебания. Время для N=20 колебний ротора и цилиндра заносим в таблицу $\ref{eq:constraint}$? Расчеты будем проводить по формулам $\ref{eq:constraint}$. Параметры системы:

$$m_{\text{II}} = 1616.9 \text{ pp}, \quad R_{\text{II}} = 38.5 \text{ mm}$$

 $\Delta T=1~\mathrm{c},~\Delta m_{\mathrm{II}}=0.1~\mathrm{rp},~\Delta R_{\mathrm{II}}=0.1~\mathrm{mm}$

 $\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline N_{0} & N = 20, T, c & N = 20, T_{\pi}, c & T, c & T_{\pi}, c \\ \hline 1 & 63.6 & 78.8 & 3.18 & 3.94 \\ \hline 2 & 64.2 & 78.7 & 3.21 & 3.935 \\ \hline 3 & 66.6 & 81 & 3.33 & 4.05 \\ \hline \end{array}$

Таблица 3: Результаты измеренй периода

За итоговое значение периода принимаем усредненный по выборке $\langle T \rangle$, погрешность измерения периода оцениваем как:

$$\sigma_{\text{случ}}^T = \sqrt{\sum_i (T_i - \langle T \rangle)^2/N}, \quad \sigma_{\text{сист}}^T = \Delta T/N, \quad \sigma_T = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2}$$

Для T и $T_{\rm ц}$ получаем конкретные значения периода и погрешностей:

$$T_{\text{II}} = 3.975 \text{ c}, \quad \sigma_{T_{\text{II}}} = 0.006 \text{ c} \quad \varepsilon_{T_{\text{II}}} = 0.07\%$$

$$T = 3.240 \text{ c}, \quad \sigma_T = 0.006 \text{ c} \quad \varepsilon_T = 0.13\%$$

Тогда для момента инерции цилиндра $I_{\rm u}$ и его погрешности имеем:

$$I_{\rm II} = m_{\rm II} \cdot R_{\rm II}^2 = 1.198 \ 10^{-3} \ {\rm kg \cdot m}^2, \quad \sigma_{I_{\rm II}} = I_{\rm II} \sqrt{\left(\frac{\Delta m_{\rm II}}{m_{\rm II}}\right)^2 + \left(\frac{2\Delta R_{\rm II}}{R_{\rm II}}\right)^2} \approx 0.006 \ 10^{-3} {\rm kg \cdot m}^2, \quad \varepsilon_{I_{\rm II}} = 0.5\%$$

Тогда для итогового значения момента импульса I и его погрешности имеем:

$$I = I_{\text{I}} \cdot \frac{T^2}{T_{\text{I}}^2} = 0.796 \ 10^{-3} \text{kg} \cdot \text{m}^2$$

С учетом $\varepsilon_{I_{\mathfrak{q}}\gg\varepsilon_{T},\ \varepsilon_{T_{\mathfrak{q}}}}$ получаем,что $\varepsilon_{I_{\mathfrak{q}}\approx\varepsilon_{I}=0.5\%}$ и итого для погрешности измерения имееем:

$$\sigma_I = I\sqrt{\left(\varepsilon_{I_{\mathrm{II}}}\right)^2 + \left(2\varepsilon_T\right)^2 + \left(2\varepsilon_{T_{\mathrm{II}}}\right)^2} \approx \varepsilon_{I_{\mathrm{II}}} \cdot I = 0.004 \ 10^{-3} \mathrm{kg} \cdot \mathrm{m}^2$$

То есть получаем тоговое значение для момента инерции:

$$I = 0.796 \pm 0.004 \ 10^{-3} \text{kg} \cdot \text{m}^2, \varepsilon_I = 0.5\%$$

3.3 Измерение частоты вращения ротора

Зная момент импульса и момент инерции ротора, легко вычисляем частоту его вращения и погрешность измерения по формулам:

$$f = \frac{L}{2\pi I} = 390 \, \Gamma \text{H}, \quad \sigma_f = f \sqrt{\varepsilon_I^2 + \varepsilon_L^2} \approx \varepsilon_L \cdot f = 6 \, \Gamma \text{H}, \quad \varepsilon_f = 1.6\%$$

Итого для частоты имеем: $f = 390 \pm 6$ Γ ц Также при измерении частоты с помощью осциллографа и цифрового частотометра было получено значение:

$$f = 390 \pm 1$$
 Гц

3.4 Измерени момента сил трения

Во время эксперимента трение в вертикальной оси не было скомпенсированно. Поэтому ось гироскопа незначительно опускалась. Для оценки сил трения будем измерять высоту на которую вертикально опустился груз Δh за время t и рассчитывать с помощью него угол $\alpha = \Delta h/l$. Данные заносим в таблицу:

$N_{ar{o}}$	t, c	Δh , mm	$\Delta \alpha, \circ$	M_{Tp} , HM
1	168.4	5	2.37	4.9
2	170.9	5	2.38	4.7
3	221.3	8	3.79	5.8
4	222.6	7	3.31	5.1
5	221.6	8	3.79	5.8
6	216.6	9	4.27	6.7
7	215	8	3.79	6.0
8	215.8	9	4.26	6.7
9	143	4	1.89	4.5
10	143	3	1.42	3.4
11	122.2	5	2.37	6.6
12	123.7	5	2.37	6.5
13	125.1	4	1.89	5.2
14	122.7	5	2.37	6.6

Таблица 4: Измерение момента сил трения

Расчет значения в каждом измерении делаем по формуле:

$$M_{\rm \tiny Tp} = \frac{\Delta\alpha}{t}L = \frac{L}{2\pi t} \cdot \frac{\Delta h}{l}$$

За итоговое значение $M_{\rm TP}$ принимаем усредненное по всей выборке. В силу большой несовершенности методики измерений Δh , α существенную ошибку дает систематическая погрешность измерения $\sigma_{\Delta h}=0.5$ мм со средней относительной погрешностью $\varepsilon_{\Delta h}=9\%$. Все остальные факторы имеют значительно меньшую относительную погрешность, а потому их можно отбросить и считать, что

$$arepsilon_{M_{ ext{ iny Tp}}} = arepsilon_{\Delta h} = 9\%, \quad \sigma_{M_{ ext{ iny Tp}}} = arepsilon_{M_{ ext{ iny Tp}}} \cdot M_{ ext{ iny Tp}} = 0.5 \; ext{Hm}$$

Итого получаем значением момента силы трения:

$$M_{
m TP} = 5.6 \pm 0.5 \; {
m Hm}$$

4 Выводы

Получены результаты хорошо согласующие с теоретическими предсказаниями. Поддтверждена линйная зависимость между моментом сил и скоростью прецессии. Получено значение частоты $f=390\pm 6$ Γ ц хорошо согласующее с измеренным $f=390\pm 1$ Γ ц.