Encoder, Decoder, DeMUX

Encoder

Octal to Binary Encoder (8 to 3 Encoder)

The 8 to 3 Encoder or octal to Binary encoder consists of **8 inputs**: Y7 to Y0 and **3 outputs**: A2, A1 & A0. Each input line corresponds to each octal digit and three outputs generate corresponding binary code. The figure below shows the logic symbol of octal to the binary encoder.

Octal to Binary Encoder (8 to 3 Encoder)

INPUTS							OUTPUTS			
Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0	A2	A1	Α0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

```
A2 = Y7 + Y6 + Y5 + Y4

A1 = Y7 + Y6 + Y3 + Y2

A0 = Y7 + Y5 + Y3 + Y1
```

The above two Boolean functions A2, A1, and A0 can be implemented using four input OR gates.

Implementation using OR Gate

<u>Decoder</u>

Block Diagram:

Truth Table:

Enable	INP	UTS	OUTPUTS					
E	A ₁	A ₀	Y ₃	Y ₂	Υ ₁	Υ ₀		
0	Х	Х	0	0	0	0		
1	0	0	0	0	0	1		
1	0	1	0	0	1	0		
1	1	0	0	1	0	0		
1	1	1	1	0	0	0		

 $Y_3 = E.A_1.A_0$ $Y_2 = E.A_1.A_0$ $Y_1 = E.A_1.A_0$

Y0=E.A₁'.A₀'

Logical circuit of the above expressions is given below:

<u>1x4</u>

Selectio	n Inputs	Outputs					
s_1	s_0	Υ3	Y2	Υ1	Υ0		
0	0	0	0	0	I		
0	1	0	0	I	0		
1	0	0	I	0	0		
1	1	I	0	0	0		

From the above Truth table, we can directly write the **Boolean functions** for each output as

$$Y_3 = s_1 s_0 I$$

$$Y_2=s_1s_0{}^\prime I$$

$$Y_1={s_1}^{\prime}s_0I$$

$$Y_0={s_1}^{\prime}{s_0}^{\prime}I$$

1x8 using 2 1x4

Selection Inputs			Outputs							
s ₂	s ₁	s ₀	Y7	Y 6	Y 5	Y4	ν ₃	Y2	Y 1	Y 0
0	0	0	0	0	0	0	0	0	0	I
0	0	1	0	0	0	0	0	0	I	0
0	1	0	0	0	0	0	0	I	0	0
0	1	1	0	0	0	0	I	0	0	0
1	0	0	0	0	0	I	0	0	0	0
1	0	1	0	0	I	0	0	0	0	0
1	1	0	0	I	0	0	0	0	0	0
1	1	1	I	0	0	0	0	0	0	0

