Univariate Analysis Description and Visualization

Prof. Bisbee

Vanderbilt University

Lecture Date: 2023/09/20

Slides Updated: 2023-09-20

Agenda

- 1. Definitions and scope
- 2. Opening and defining the data
- 3. Variable classes
- 4. Univariate description

Definition

- Uni + variate
 - One + variable
 - Analysis of one variable

Scope

- How to analyze a single variable?
- How to think scientifically?
 - Typically, scientific theories concern more than one variable
 - I.e., education + wages; gender + voting
 - What might be a theory about education in isolation?
- Is there no point to univariate analysis?

Univariate Analysis is **ESSENTIAL**

- Both from a practical data perspective...
 - Informs how we "wrangle" the data
- ...and from a scientific theory perspective
 - Generates hypotheses

Set-up and Load Data

• As always, create your topic folder first

Open R via RStudio and require(tidyverse)

```
require(tidyverse)
```

- Download nba_players_2018.Rds and save to the data folder
- Open with readRDS() function + <- assignment

```
nba <- readRDS('../data/nba_players_2018.Rds')</pre>
```

Introducing the data

Data on every NBA player active in the 2018-2019 season

Name	Definition
namePlayer	Player name
idPlayer	Unique player id
slugSeason	Season start and end
numberPlayerSeason	Which season for this player
isRookie	Rookie season, true or false
slugTeam	Team short name
idTeam	Unique team id
gp	Games Played
•••	•••

Data_Wrangling_hw.pdf has the full codebook

Thinking like a scientist

- What questions do we have? What hypotheses might we want answered?
- Overwhelming? Let's start simpler
- Total points (pts)
 - What does this measure?
 - What kind of variable is it?

```
glimpse(nba %>% select(pts))
```

```
## Rows: 530
## Columns: 1
## $ pts <dbl> 1727, 17, 1108, 165, 729, 37, 211, 32, 108, 7,...
```

Thinking like a scientist

- How can we analyze a single variable?
- Want to summarize it somehow
 - For example, look at the mean() and the median()

Thinking like a scientist

419.0

• Or we could summarise the overall distribution with summary()

```
summary(nba$pts)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
```

759.5

2818.0

In English:

0.0

There is at least one player who didn't score at all (Min.)

516.2

- At least one player scored 2,818 points (Max.)
- 25% of players scored less than 115 points (1st Qu.)
- 25% of players scored more than ???
- What does a decimal mean here?

115.0

- We could try and remember all these statements
- Or we could just visualize the data

```
nba %>%
  ggplot(aes(x = pts)) +
  geom_histogram()
```


- Plotting the histogram reveals some things!
 - There are **MANY** players who didn't score any points
 - There are VERY FEW who scored many
- We can combine the substantive interpretation with the visualization by plotting vertical lines for the quartiles
 - A "quartile" is 25% increments
 - A "decile" is 10% increments, a "quantile" is 20% increments
 - A "percentile" is 1% increments

```
nba %>%
  ggplot(aes(x = pts)) +
  geom_histogram() +
  geom_vline(xintercept = quantile(nba$pts,c(.25,.5,.75)))
```


We can save and update plots using the object assignment operator < -

```
p <- nba %>%
  ggplot(aes(x = pts)) +
  geom_histogram()

p <- p + geom_vline(xintercept =
  quantile(nba$pts,c(.25,.5,.75)),linetype = 'dashed',color = 'red')

p <- p + xlab('Total Points') + ylab('Number of Players')

p <- p + theme(panel.background = element_rect(fill = 'white'))

p <- p + labs(title = 'Points by Players',subtitle = '2018-2019 NBA Season')</pre>
```

p

Visualization informs science

- Looking at the data can help generate research questions, theories, and hypotheses
 - Question: Why do some players not score any points?
 - Theory: Players need minutes to score points.
 - Hypothesis: The number of points a player scores should be positively correlated with their minutes.

Univariate Description

- Testing this hypothesis comes later
- For now, let's also describe the minutes variable

```
summary(nba$minutes)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.0 322.8 1069.0 1121.6 1836.5 3028.0
```

- At minimum, every player played at least 1 minute
- Does the distribution of this variable look similar to the points?

```
nba %>%
  ggplot(aes(x = minutes)) +
  geom_histogram(alpha = .3) +
  geom_vline(xintercept = quantile(nba$minutes,c(.25,.5,.75))) +
  labs(title = 'Minutes by Players',subtitle = '2018-2019 NBA
Season',x = 'Minutes Played',y = 'Number of Players')
```


Other Variables

• Thus far, pts and minutes are both dbl

```
glimpse(nba %>% select(pts,minutes))
```

What about other variable types?

Other Variabes

glimpse(nba)

```
## Rows: 530
## Columns: 37
## $ namePlayer
                         <chr> "LaMarcus Aldridge", "Quincy Ac...
## $ idPlayer
                         <dbl> 200746, 203112, 203500, 203518,...
## $ slugSeason
                         <chr> "2018-19", "2018-19", "2018-19"...
## $ numberPlayerSeason <dbl> 12, 6, 5, 2, 1, 0, 0, 0, 0, ...
## $ isRookie
                         <lgl> FALSE, FALSE, FALSE, FALSE, FAL...
                         <chr> "SAS", "PHX", "OKC", "OKC", "MI...
## $ slugTeam
## $ idTeam
                         <dbl> 1610612759, 1610612756, 1610612...
## $ gp
                         <dbl> 81, 10, 80, 31, 82, 10, 38, 19,...
## $ gs
                         <dbl> 81, 0, 80, 2, 28, 1, 2, 3, 1, 0...
                         <dbl> 684, 4, 481, 56, 280, 13, 67, 1...
## $ fgm
                         <dbl> 1319, 18, 809, 157, 486, 39, 17...
## $ fga
## $ pctFG
                         <dbl> 0.519, 0.222, 0.595, 0.357, 0.5...
                         <dbl> 10, 2, 0, 41, 3, 3, 32, 6, 25, ...
## $ fg3m
                         <dbl> 42, 15, 2, 127, 15, 12, 99, 23,...
## $ fg3a
## $ pctFG3
                         <dbl> 0.2380952, 0.1333333, 0.0000000...
                         <dbl> 0.847, 0.700, 0.500, 0.923, 0.7...
## $ pctFT
                         <dbl> 674, 2, 481, 15, 277, 10, 35, 5...
## $ fg2m
                         <dbl> 1277, 3, 807, 30, 471, 27, 79, ...
## $ fg2a
```

- Already introduced you to dbl, fct, chr and int
- Taking a step back: Outside R, data science uses "categorical" variables
 - 1. Mutually exclusive: observations can only be in one category
 - 2. Exhaustive: every observation is assigned to a category
- For example, isRookie
 - 1. Mutually exclusive: Players are either in their rookie season in 2018-2019, or are not
 - 2. Exhaustive: these categories define every player in the data

- Categorical variables can be divided into the following sub-types
- **Ordered:** There is a sensible order (i.e., education)
 - Should be arranged intuitively (i.e., LTHS, HS Degree, Some coll, etc.)
 - To summarize, calculate the proportions for each category.
 - If there are too many categories, use the "mode"

- Categorical variables can be divided into the following sub-types
- Ordered, Binary: An ordered categorical variable with just two levels
 - Should be arranged in intuitive order (i.e., is not a rookie / is a rookie)
 - To summarize, just convert to a [0,1] number and take the mean

- Categorical variables can be divided into the following sub-types
- Unordered: No sensible order of categories (i.e., major degree)
 - Order by most commonly occurring categories
 - As before, use the mode for too many categories

- Categorical variables can be divided into the following sub-types
- Unordered, Binary: No sensible order and only two levels (i.e., edible)

- Categorical variables are meaningfully different from continuous variables
 - Continuous variables are ordered and can theoretically be divided into arbitrarily small measures
 - Technically can be defined as either interval or ratio variables
 - In practice, we rarely worry about this distinction, but we **DO** care about continuous versus categorical variables

- fct is a class that is unique to R
 - Meant for ordered categorical variables
 - fct stores the order and assigns a numeric value + a definition
 - Most of the time, better to store as a chr (but not always)

Variables

- R may store categorical variables as chr, fct, lgl, int, or even dbl
- Continuous variables typically stored as int or dbl
- Up to the data scientist to look at the data and determine
- Simple process
 - 1. Look at a few observations and make a guess about the variable type
 - 2. Create a plot or table based on that guess
 - 3. If the result is sensible, proceed. OTW go back to #1.

In Practice

- Let's look at field goals (fgm)
- What type of variable should this be?
 - Technically not continuous, since it can't be divided into fractions (i.e., what is 35.5 field goals?)
 - But we typically don't care about this distinction
 - We just want to make sure it is not a categorical variable (i.e., less than 20 FGs, 20-40 FGs...etc. would be categorical)
- To check, follow the process!

The Process: #1 Look

```
nba %>%
  select(namePlayer,slugTeam,fgm) %>%
  arrange(-fgm)
```

```
## # A tibble: 530 × 3
##
      namePlayer
                             slugTeam
                                         fgm
     <chr>
                             <chr>>
                                       <dh1>
##
   1 James Harden
                             HOU
                                         843
##
   2 Bradley Beal
                             WAS
                                        764
   3 Kemba Walker
##
                             CHA
                                        731
##
   4 Giannis Antetokounmpo MIL
                                        721
   5 Kevin Durant
                                        721
##
                             GSW
##
                             OKC
                                        707
   6 Paul George
   7 Nikola Vucevic
##
                             ORI
                                        701
##
  8 LaMarcus Aldridge
                             SAS
                                         684
   9 Damian Lillard
##
                             POR
                                         681
                                         681
## 10 Karl-Anthony Towns
                             MIN
## # ... with 520 more rows
```

The Process: #2 Create

```
nba %>%
  ggplot(aes(x = fgm)) +
  geom_density()
```


The Process: #3 Evaluate

- Looks like a continuous variable to me!
- Summarize it!

```
## # A tibble: 1 × 2
## mean_fg med_fg
## <dbl> <dbl>
## 1 191. 157
```

- mean() is more easily understood, but more sensitive to outliers
- median() is harder to explain to a general audience, but more sensible when there are outliers

Other Variables: Use the process!

- What kind of variable is field goal percentage?
- Follow the process!

INSERT CODE HERE

Another example

- Player age
- What kind of variable do we think this might be?
 - Continuous? It is ordered and divisible to arbitrary fractions! (Just ask any 6 and three quarters year old)
 - But is it also useful to think of it as a categorical? In the context of NBA players, there aren't many categories!
- Time for the process!

The Process: #1 Look

```
nba %>%
  select(namePlayer,agePlayer) %>%
  arrange(-agePlayer)
```

```
## # A tibble: 530 × 2
##
     namePlayer agePlayer
   <chr>
                       <db1>
##
  1 Vince Carter
                          42
##
  2 Dirk Nowitzki
                        41
##
  3 Jamal Crawford
                        39
##
  4 Udonis Haslem
                         39
## 5 Pau Gasol
                        38
##
  6 Kyle Korver
                          38
  7 Jose Calderon
##
                        37
## 8 Tony Parker
                        37
   9 Dwyane Wade
##
                         37
## 10 Channing Frye
                          36
## # ... with 520 more rows
```

The Process: #2 Create

```
nba %>%
  ggplot(aes(x = agePlayer)) +
  geom_density()
```


The Process: #2 Create

```
nba %>%
  ggplot(aes(x = factor(agePlayer))) +
  geom_bar(stat = 'count')
```


The Process: #2 Create

The Process: #3 Evaluate

```
quantile(nba$agePlayer,c(.1,.25,.5,.75,.9,.95))
```

```
## 10% 25% 50% 75% 90% 95%
## 21 23 26 29 32 34
```


Some more examples!

- Which of these variables is an unordered categorical variable?
- Follow the process and calculate which category in this variable is the most commonly occurring

INSERT CODE HERE

Career Prior to NBA (org)

 If you chose this as your unordered categorical variable, you probably saw something like the following in step #1 of the process

```
nba %>%
count(org) %>%
arrange(-n)
```

```
\# A tibble: 68 \times 2
##
      org
##
      <fct>
                                <int>
    1 <NA>
##
                                  157
##
   2 Other
                                   85
   3 Kentucky
                                   25
##
##
   4 Duke
                                   17
   5 California-Los Angeles
                                   15
##
##
    6 Kansas
                                   11
   7 Arizona
##
                                   10
##
  8 Texas
                                   10
    9 North Carolina
## 10 Michigan
                                    8
  # ... with 58 more rows
```

Career Prior to NBA (org)

- The most commonly occurring categories are NA and Other!
- Wrangle some data and re-calculate

```
nba %>%
  filter(!is.na(org)) %>%
  filter(org != 'Other') %>%
  count(org) %>%
  arrange(-n)
```

```
## # A tibble: 66 × 2
##
      org
##
      <fct>
                               <int>
   1 Kentucky
##
                                   25
    2 Duke
                                  17
##
   3 California-Los Angeles
                                  15
##
##
    4 Kansas
                                  11
##
   5 Arizona
                                  10
##
    6 Texas
                                  10
##
   7 North Carolina
##
    8 Michigan
##
    9 Villanova
```

Categorical: Unordered, Binary

- Which variable is an unordered binary categorical?
- Follow the process and summarize it

INSERT CODE HERE

Categorical: Unordered, Binary (idConference)

- Example of the default variable class (db1) not corresponding to the type of variable (unordered binary)
- Should wrangle into something better

```
nba <- nba %>%
  mutate(west_conference = ifelse(idConference == 1,1,0))
nba %>%
  summarise(propWest = mean(west_conference))
```

- Let's take a "conditional mean"
 - I.e., conditional on players going to Kentucky, how many points did NBA players score in the 2018-2019 season?
 - (Simpler is just to say "how many points did NBA players who went to Kentucky score?")
- Recall the group_by() command

```
nba %>%
  filter(!is.na(org)) %>%
  filter(org != 'Other') %>%
  group_by(org) %>%
  summarise(tot_pts = sum(pts,na.rm=T))
```

```
## # A tibble: 66 × 2
                              tot pts
##
      org
##
     <fct>
                                <dh1>
   1 Anadolu Efes S.K.
                                 1270
##
   2 Arizona
                                 5467
##
   3 Baylor
                                  861
##
   4 Boston College
                                 1659
## 5 Butler
                                 1255
##
  6 California
                                 1942
  7 California-Los Angeles
                                 9061
##
  8 Cincinnati
##
                                  531
   9 Colorado
##
                                 2367
## 10 Connecticut
                                 3634
## # ... with 56 more rows
```

- Some non-college organizations snuck in there
 - Anadolu Efes S.K. is a professional Turkish basketball team

```
nba %>%
  filter(!is.na(org)) %>%
  filter(org != 'Other') %>%
  filter(!str_detect(org,"CB|KK|rytas|FC|B.C.|S.K.|Madrid")) %>%
  group_by(org) %>%
  summarise(tot_pts = sum(pts,na.rm=T))
```

```
## # A tibble: 57 × 2
##
                              tot pts
      org
                                <dbl>
##
      <fct>
   1 Arizona
                                 5467
##
   2 Baylor
                                   861
##
   3 Boston College
                                 1659
##
   4 Butler
                                 1255
##
  5 California
                                 1942
##
  6 California-Los Angeles
                                 9061
   7 Cincinnati
##
                                  531
  8 Colorado
##
                                 2367
    9 Connecticut
                                 3634
  10 Creighton
                                 1230
##
  # ... with 47 more rows
```

Another Preview

- Do the same but for free throw percentage (pctFT)
- **NB**: should you summarise with sum() or mean()? Why?

INSERT CODE HERE

Quiz & Homework

- Go to Brightspace and take the **6th** quiz
 - The password to take the quiz is ####

Homework:

1. Work through Univariate_Analysis_hw.Rmd