Comp6211e: Optimization for Machine Learning

Tong Zhang

Lecture 3: Karush-Kuhn-Tucker Conditions

Optimization

We consider the following form of constrained optimization problem

$$\min_{x} f(x)$$
 subject to $g_j(x) \le 0$ $(j = 1, ..., k)$ and $h_j(x) = 0$ $(j = 1, ..., m)$,

where $x \in \mathbb{R}^d$ is a parameter to be optimized. Each $g_j(x)$ and $h_j(x)$ is a real-valued function.

Lagrangian Functions

In order to solve (1), we can form the Lagrangian function

$$L(x, \mu, \lambda) = f(x) + \mu^{\top} g(x) + \lambda^{\top} h(x),$$

where $\mu \in \mathbb{R}^k$ and $\lambda \in \mathbb{R}^m$. Here $g(x) = [g_1(x), \dots, g_k(x)]$ and $h(x) = [h_1(x), \dots, h_m(x)]$.

KKT Conditions

Theorem

Assume that f(x), g(x), h(x) are continuously differentiable. Assume x_* is a local optimal solution of (1). If the gradients of the active inequality constraints and the gradients of the equality constraints are linearly independent at x_* , then the following KKT conditions hold.

Stationarity

$$\nabla_{\mathsf{X}}\mathsf{L}(\mathsf{X}_*,\mu,\lambda)=\mathsf{0}.$$

Primal Feasibility:

$$g(x_*) \leq 0, \qquad h(x_*) = 0.$$

Dual Feasibility:

$$\mu_j \geq 0 \quad \forall j = 1, \ldots, k.$$

Complementary Slackness:

$$\mu_j g_j(x_*) = 0 \quad \forall j = 1, \ldots, k.$$

Counter Example of KKT

As a counter example of KKT condition when the necessary regularity condition is violated, we consider the following problem:

$$\min_{\mathbf{x}}[x_1+x_2^2] \qquad \text{ subject to } \quad x_1^2 \leq 0.$$

Proof of KKT with k = 1 and m = 0

To show that there exists μ_1 such that:

Complementary Slackness:

$$\mu_1 g_1(x_*) = 0.$$

• Dual Feasibility:

$$\mu_1 \geq 0$$
.

Stationarity:

$$\nabla f(\mathbf{x}_*) + \mu_1 \nabla g_1(\mathbf{x}_*) = 0.$$

6/19

Proof of Complementary Slackness

Consider a local solution x_* of (1).

If $g_1(x_*) < 0$ then we can remove the constraint without affecting the local solution. This means we can set $\mu_1 = 0$, and the KKT conditions hold.

Therefore we only need to consider the case $g_1(x_*) = 0$. This implies the complementary slackness condition $\mu_1 g_1(x_*) = 0$.

KKT Conditions 7/19

Dual Feasibility

Now consider any direction Δx such that $\nabla g_1(x_*)^{\top} \Delta x < 0$.

Consider the solution $x' = x_* + t\Delta x$ for $t \to 0_+$. We know that $g(x') \le 0$ when t is sufficiently small.

$$f(x') = f(x_*) + t \nabla f(x_*)^{\top} \Delta x + o(t) \ge f(x_*).$$

It follows that

$$\nabla f(x_*)^{\top} \Delta x \geq 0$$

8 / 19

for all Δx such that $\nabla g_1(x_*)^{\top} \Delta x < 0$.

Dual Feasibility

Since $\nabla g_1(x_*) \neq 0$ by the assumption of the theorem, we may define

$$\mu_1 = -\nabla f(x_*)^{\top} \nabla g_1(x_*) / \|\nabla g_1(x_*)\|_2^2.$$

We have $\mu_1 \geq 0$.

Proof of Stationarity

Let $\Delta x = \nabla f(x_*) + (\mu_1 + t)\nabla g_1(x_*)$ for some $t \to 0_+$, we have

$$\nabla g_1(x_*)^{\top}[-\Delta x] = -t\|\nabla g_1(x_*)\|_2^2 < 0.$$

Therefore $\nabla f(x_*)^{\top}[-\Delta x] \geq 0$. Let $t \to 0$, we know that

$$\Delta x^{\top} \Delta x = \nabla f(x_*)^{\top} \Delta x \leq 0.$$

10 / 19

This implies the stationarity condition.

Example

Example

Find the solution of the following optimization problem of $x \in \mathbb{R}^2$:

$$\min_{x} [x_1^2 + x_2^2 + x_3^2] \qquad \text{subject to } x_1 + x_2 + x_3 \ge 1.$$

The solution is $x_1 = x_2 = x_3 = 1/3$.

Convex Formulation

In the convex formulation, we assume that f(x) is a convex function but not necessarily differentiable.

Each $g_i(x)$ is a continuously differentiable convex function.

Each $h_j(x) = 0$ is a linear constraint, so that the set of constraints $h_j(x) = 0$ for j = 1, ..., m can be reformulated as

$$Ax + b = 0. (2)$$

KKT conditions for Convex Formulation

For convex functions, KKT conditions are both necessary and sufficient, under mild regularity conditions.

Theorem

Assume that (1) is convex with linear equality constraint as in (2). Moreover, assume that there exists x satisfying (2) such that $g_j(x) < 0$ for all j. Then x_* is an optimal solution of (1) if and only if the KKT conditions of Theorem 1 are satisfied with a subgradient of $\nabla f(x_*)$.

Proof of Sufficiency

Assume that the KKT conditions hold. Then there exists a subgradient $\nabla f(x_*)$ of f(x) at x_* such that

$$\nabla f(x_*) + \sum_{j=1}^k \mu_j \nabla g_j(x_*) + \sum_{j=1}^m \lambda_j \nabla h_j(x_*) = 0.$$

and

$$\mu_j \nabla g_j(x_*)^\top (x - x_*) \leq 0$$

and

$$\lambda_j \nabla h_j(x_*)^{\top}(x-x_*) = 0.$$

Therefore

$$f(x) - f(x_*) \ge \nabla f(x_*)^{\top} (x - x_*) = -\sum_{j=1}^k \mu_j \nabla g_j(x_*)^{\top} (x - x_*) \ge 0.$$

Example

Example

Consider the SVM method below with C > 0. Given $\{(x_i, y_i) : i = 1, ..., n\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \{\pm 1\}$, we want to find $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ to solve

$$[w_*, b_*, \xi_*] = \arg\min_{w, b, \xi} \left[C \sum_{i=1}^n \xi_i + \frac{1}{2} ||w||_2^2 \right],$$
subject to $\xi_i \ge 0$, $(w^\top x_i + b) y_i + \xi_i \ge 1$ $(i = 1, \dots, n).$
(4)

T. Zhang (Lecture 3) KKT Conditions 15 / 19

KKT for SVM

The Lagrangian function is

$$L(w, b, \xi, \mu, \nu) = C \sum_{i=1}^{n} \xi_{i} + \frac{1}{2} ||w||_{2}^{2} - \sum_{i=1}^{n} \mu_{i} \xi_{i} - \sum_{i=1}^{n} \nu_{i} [(w^{\top} x_{i} + b) y_{i} + \xi_{i} - 1].$$

The KKT conditions are

- $\mu_i \xi_i = 0$ and $\nu_i [(\mathbf{w}^\top \mathbf{x}_i + \mathbf{b}) \mathbf{y}_i + \xi_i 1] = 0$ and $\mu_i \ge 0$ and $\nu_i \ge 0$.
- $\xi_i \geq 0$ and $(w^\top x_i + b)y_i + \xi_i \geq 1$
- $\nabla_{\mathbf{w},\mathbf{b},\xi} L(\mathbf{w},\mathbf{b},\xi,\mu,\nu) = \mathbf{0}.$

Simplified KKT for SVM

In summary, at the optimal solution, we have

$$\xi_i = (1 - (w^{\top} x_i + b) y_i)_+$$

and $L(\cdot)$ can be simplified as

$$L(w, b, \xi, \mu, \nu) = \frac{1}{2} ||w||_2^2 - \sum_{i=1}^n \nu_i [(w^\top x_i + b) y_i - 1].$$

Taking derivative with respect to w and b, we obtain

$$\nabla_{w,b}\left[\frac{1}{2}\|w\|_2^2 - \sum_{i=1}^n \nu_i[(w^\top x_i + b)y_i - 1]\right] = 0.$$

Optimality condition for unconstrained SVM

$$\min_{w,b} f(w,b) \qquad f(w,b) = \left[C \sum_{i=1}^{n} (1 - (w^{\top} x_i + b) y_i)_+ + \frac{1}{2} ||w||_2^2 \right]. \quad (5)$$

We obtain

$$\nabla_{w}f(w,b)=-\sum_{i=1}^{n}\nu_{i}x_{i}y_{i}+w=0,$$

and

$$\nabla_b f(w,b) = -\sum_{i=1}^n \nu_i y_i = 0,$$

where ν_i is a subgradient of $(u_i)_+$ at $u_i = 1 - (w^\top x_i + b)y_i$.

T. Zhang (Lecture 3) KKT Conditions 18 / 19

Excercise: KKT conditions for Lasso

Example

Consider the Lasso method. Given $X \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^n$, we want to find $w \in \mathbb{R}^d$ to solve

$$[w_*, \xi_*] = \arg\min_{w, b, \xi} \left[\|Xw - y\|_2^2 + \lambda \sum_{j=1}^d \xi_j \right],$$
 (6)

subject to
$$\xi_j \geq w_j, \quad \xi_j \geq -w_j \quad (j=1,\ldots,d).$$
 (7)

Lasso produces sparse solutions. Define the support of the solution as

$$\mathcal{S}=\{j: w_{*,j}\neq 0\}.$$

Find and simplify the KKT conditions in terms of S, X_S , $X_{\bar{S}}$, y, w_S . Here X_S contains the columns of X in S, $X_{\bar{S}}$ contains the columns of X not in S, and w_S contains the nonzero components of w_* .