ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНК	ОЙ		
ПРЕПОДАВАТЕЛЬ			
доц., канд. техн. нау			О. О. Жаринов
должность, уч. степень	звание	подпись, дата	инициалы, фамилия
	ОТЧЕТ О ЛА	АБОРАТОРНОЙ РАБС	OTE №7
РАЗРАБОТКА		ВАТЕЛЯ ИМПУЛЬСО ФРОВЫМ КОДОМ	В, УПРАВЛЯЕМОГО
	по ку	рсу: СХЕМОТЕХНИКА	
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ гр. № _	4142	подпись, дата	Д.Р. Рябов инициалы, фамилия

Вариант №7

Цель работы:

Разработать проект формирователя импульсов, параметры которых задаются внешним двоичным параллельным кодом, в среде программирования Quartus.

Вариант задания:

Задание заключается в формировании импульсов, параметры которых однозначно определяются цифровым управляющим 6-разрядным двоичным кодом. Устройство должно иметь 1 выход и 8 входов: 1) один вход для подачи тактовых импульсов, 2) один вход для подачи импульса загрузки управляющего кода, 3) 6 входов для подачи внешнего управляющего 6-разрядного двоичного кода. Варианты заданий приведены в таблице.

Bap.	1	2	3	4	5	6	7
K_1	N	1	N	N	2	N	3
K_0	N	N	1	2	N	3	N

Рисунок 1 — вариант задания

Решение:

В данной схеме выполнена реализация задачи, требующей подачи на выход сигнала «1» в течение трех тактов после сигнала записи "1", а затем подачи N тактов "0". Для этого используются различные компоненты:

Счетчики: для управления временными задержками используются два счетчика. Первый счетчик отвечает за формирование трех тактов "1", а второй - за отсчет N тактов "0".

Триггер "D" (мегафункция): Этот триггер служит для хранения данных с входа N. Он обновляется при поступлении сигнала записи "1".

Мегафункция (константа): Используется для хранения константного значения "3", которое используется в первом счетчике для задержки.

Обычный триггер "D": Применяется для запоминания того, что уже был сигнал записи "1". Это позволяет обеспечить сброс обоих счетчиков при

появлении нового сигнала записи "1".

В работе схемы первый счетчик создает задержку в три такта после активации сигнала записи "1", формируя три такта "1". После этого второй счетчик включается и генерирует N тактов "0". После завершения этого цикла счета, сигнал "1" подается на первый счетчик, и процесс повторяется.

Если во время работы схемы появляется новый сигнал записи "1", оба счетчика сбрасываются, и начинается новый цикл с первого счетчика.

Также важно отметить, что триггер "D" обновляется только при наличии сигнала записи "1", что обеспечивает корректное хранение данных и обновление счетчиков только в нужные моменты времени.

Схема устройства в Quartus:

Рисунок 2 – Схема устройства

Временная диаграмма:

Рисунки 3-6 – Выходной сигнал на временной диаграмме

Схема подключения ПЛИС:

Top View MAX II - EPM240F100C5

		Node Name	Direction	Location	I/O Bank	VREF Group	I/O Standard	Reserved
1	■	С	Input	PIN_C2	1		3.3-V LVTTL (default)	
2	■	n[5]	Input	PIN_A1	2		3.3-V LVTTL (default)	
3	■	n[4]	Input	PIN_A2	2		3.3-V LVTTL (default)	
4	■	n[3]	Input	PIN_A3	2		3.3-V LVTTL (default)	
5	□	n[2]	Input	PIN_A4	2		3.3-V LVTTL (default)	
6	■	n[1]	Input	PIN_A5	2		3.3-V LVTTL (default)	
7	₽	n[0]	Input	PIN_A6	2		3.3-V LVTTL (default)	
8	••	result	Output	PIN_E1	1		3.3-V LVTTL (default)	
9	iii>	write	Input	PIN F2	1		3.3-V LVTTL (default)	

Рисунок 7 — Схема подключения ПЛИС

Flow Status Successful - Fri Dec 15 04:03:39 2023
Quartus II Version 9.1 Build 222 10/21/2009 SJ Web Edition

 Revision Name
 lab 7

 Top-level Entity Name
 lab 7

 Family
 MAX II

Device EPM240F100C5

Timing Models Final Met timing requirements Yes

Total logic elements 20 / 240 (8 %) Total pins 9 / 80 (11 %)

Total virtual pins 0

UFM blocks 0 / 1 (0 %)

Рисунок 8 - Отчет о компиляции