

Report on the Radio Testing

For

Lansinoh Laboratories Saglık Gerecleri Tasarım Sanayi Tic. Ltd. Sti.

on

Lansinoh BLE4.1 Module

Report no. TRA-030097-47-00A

24th May 2016

Report Number: TRA-030097-47-00A

Issue: A

REPORT ON THE RADIO TESTING OF A Lansinoh Laboratories Saglık Gerecleri Tasarım Sanayi Tic. Ltd. Sti. Lansinoh BLE4.1 Module WITH RESPECT TO SPECIFICATION FCC 47CFR 15.247 & IC RSS-247

TEST DATE: 22nd February - 3rd March 2016

D Winstanley

Written by: D Winstanley Radio Senior Test Engineer

J Charters

Approved by: Department Manager - Radio

Date: 24th May 2016

Disclaimers:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

Element Materials Technology Warwick Ltd. Registered in England and Wales. Registered Office: 5 Fleet Place, London, EC4M 7RD Company Reg No. 02536659

1 Revision Record

Issue Number	Issue Date	Revision History
А	24 th May 2016	Original

RF915 3.0 Page 3 of 56

2 Summary

TEST REPORT NUMBER: TRA-030097-47-00A

WORKS ORDER NUMBER TRA-030097-00

PURPOSE OF TEST: USA: Testing of radio frequency equipment per

the relevant authorization procedure of chapter 47

of CFR (code of federal regulations) Part 2,

subpart J.

Canada: Testing of radio apparatus for TAC (technical acceptance certificate) per subsections 4(2) of the Radiocommunication Act and 21(1) of

the Radiocommunication Regulations.

TEST SPECIFICATION(S): 47CFR15.247 & RSS-247

EQUIPMENT UNDER TEST (EUT): Lansinoh BLE4.1 Module

FCC IDENTIFIER: 2AHGRBLE4V1M

CERTIFICATION NUMBER

EUT SERIAL NUMBER: not applicable

MANUFACTURER/AGENT: Lansinoh Laboratories Saglık Gerecleri

Tasarım Sanayi Tic. Ltd. Sti.

ADDRESS: A.O.S.B. M. KEMAL BULVARI 10006 SOK

NO:64 35620 CIGLI IZMIR TURKIY

CLIENT CONTACT: BARBAROS KARADAĞ

***** +90 232 328 05 56

<u>barbaroskaradag@lansinoh.com.tr</u>

ORDER NUMBER: Not Applicable

TEST DATE: 22nd February - 3rd March 2016

TESTED BY: D Winstanley

Element

RF915 3.0 Page 4 of 56

2.1 Test Summary

		Requireme	ent Clause	Applicable	Result / Note	
Test Method and Desc	ription	RSS	47CFR15	to this equipment		
Radiated spurious emissi (restricted bands of opera and cabinet radiation)		Gen, 8.10	15.205		Pass	
AC power line conducted emissions		Gen, 8.8	15.207 15.107		Pass	
Occupied bandwidth		247, 5.2 (1)	15.247(a)(2)		Pass	
Conducted carrier	Peak	247 5 4 (4)	45 247/b)/2)		Pass	
power	Max.	247, 5.4 (4)	15.247(b)(3)			
Conducted / radiated RF out-of-band	power	247, 5.5	15.247(d)		Pass	
Power spectral density, conducted		247, 5.2 (2)	15.247(e)		Pass	
Calculation of duty correction		-	15.35(c)		N/A	
Unintentional Radiated Emissions			15.109		Pass	

Notes:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF915 3.0 Page 5 of 56

3 Contents

1			Record	
2				
3	2.1 Con		Summary	
4			on	
5			cifications	
-	5.1		native References	
	5.2	Devi	ations from Test Standards	9
6			of Terms	
7			nt Under Test	
	7.1		Identification	
	7.2 7.3		em Equipment	
	7.3. ⁻		Mode of Operation	
	7.3.		Reception	
	7.4		Radio Parameters	
	7.4.		General	
	7.4.	2	Antennas	
	7.4.3		Product specific declarations	
	7.5		Description	
8			Ons	
9	9.1		Setupk Diagram	
	9.1 9.2		eral Set-up Photograph	
10			Il Technical Parameters	
	10.1		nal Conditions	
	10.2		ing Test Conditions	
11	R		ed emissions	
	11.1		nitions	
	11.2		Parameters	
	11.3		Limit	
	11.4		Method	
	11.5	Test	Set-up Photograph	19 10
	11.6 11.7		Results	
12			ver-line conducted emissions	
12	12.1	Defir	nition	26 26
	12.2		Parameters	
	12.3		Limit	
	12.4		Method	
	12.5		Set-up Photograph	
	12.6		Equipment	
	12.7		Results	
13			ed Bandwidth	
	13.1 13.2		Parameters	
	13.3		Limit	
	13.4		Method	
	13.5		Equipment	
	13.6		Results	
14			um peak conducted output power	
	14.1		nition	
	14.2		Parameters	
	14.3 14.4		Limit	
	14.4 14.5		Method	
	14.5 14.6		Results	
15		ut-of-	band and conducted spurious emissions	40
_	15.1		nition	
	15.2		Parameters	
	15.3	Test	Limit	40
	15.4		Method	
	15.5	Test	Equipment	41

15.6	Test Results	42
16	Power spectral density	45
16.1	Definition	45
16.2	Test Parameters	45
16.3		
16.4	Test Method	46
16.5	Test Equipment	46
16.6	Test Results	46
17	Radiated emissions – unintentional radiation / receiver emissions	
17.1	Definitions	50
17.2	Test Parameters	50
17.3		
17.4		
17.5		52
17.6		52
18	Measurement Uncertainty	56

4 Introduction

This report TRA-030097-47-00A presents the results of the Radio testing on a Lutrons UK Ltd., Lansinoh BLE4.1 Module to specification 47CFR15 Radio Frequency Devices and RSS-247 Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment.

The testing was carried out for Lutrons UK Ltd. by Element, at the address(es) detailed below.

 \Box Element Hull \boxtimes Element Skelmersdale Unit E Unit 1 South Orbital Trading Park Pendle Place Hedon Road Skemersdale West Lancashire Hull HU9 1NJ WN8 9PN UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

Element is accredited for the above sites under the US-EU MRA, Designation number UK0009.

IC Registration Number(s):

Element Hull 3483A Element Skelmersdale 3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF915 3.0 Page 8 of 56

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- Industry Canada RSS-247, Issue 1, May 2015 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
- Industry Canada RSS-Gen, Issue 4, November 2014 General Requirements for Compliance of Radio Apparatus

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF915 3.0 Page 9 of 56

6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DSSS Direct Sequence Spread Spectrum
Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment Under Test

FCC Federal Communications Commission FHSS Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada

ITU International Telecommunication Union

LBT Listen Before Talk

m metre max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format

Pt-mptPoint-to-multipointPt-ptPoint-to-pointRFRadio FrequencyRHRelative HumidityRMSRoot Mean Square

Rx receiver s second

SVSWR Site Voltage Standing Wave Ratio

Tx transmitter

UKAS United Kingdom Accreditation Service

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \boldsymbol{\Omega} & \text{ohm} \end{array}$

RF915 3.0 Page 10 of 56

Report Number: TRA-030097-47-00A

7 Equipment Under Test

7.1 EUT Identification

Name: Lansinoh BLE4.1 ModuleSerial Number: not applicable

Model Number: ST Microelectronics BlueNRG-MS

Software Revision: Module Firmware 7.1eBuild Level / Revision Number: V1-01

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Equipment : Host PCB for Control & Power

Manufacturer : Lutrons Ltd
Model : Not applicable
Serial number : Not applicable

Equipment : Power Supply For Host PCB
Manufacturer : Wendeny Jell Electronics

 Model
 : BPM10\$09G02

 Serial number
 : 82-31-299-1234

7.3 EUT Mode of Operation

7.3.1 Transmission

The mode of operation for Tx tests was as follows: Permanently transmitting on a selected channel for modulated and unmodulated carrier

7.3.2 Reception

The mode of operation for Rx tests was as follow: Receiving on a channel previously selected.

RF915 3.0 Page 11 of 56

7.4 EUT Radio Parameters

7.4.1 General

Frequency band operation (MHz):	2400 – 2483.5
Modulation type(s):	GFSK
Occupied channel bandwidth(s):	2MHz
Channel spacing:	2MHz
Declared output power(s):	4 dBm
Warning against use of alternative antennas in user manual (yes/no):	Not applicable
Nominal Supply Voltage:	3.3 Vdc
Duty cycle:	1% (Typical Use)

7.4.2 Antennas

Туре:	PCB Trace
Frequency range:	2400 – 2483.5 MHz
Impedance:	50 Ohms
Gain:	1.95 dBi
Polarisation:	Omni
Connector type:	Integral

7.4.3 Product specific declarations

Multiple antenna configuration(s), e.g. MIMO:	Not Applicable
Fixed pt-pt operations (yes/no):	No
Installation manual advice on pt-pt operational restrictions (yes/no):	Not Applicable
Fixed pt-mpt operations (yes/no):	No
Simultaneous tx (yes/no):	Not Applicable

7.5 EUT Description

The EUT is a Bluetooth 4.1 radio module

RF915 3.0 Page 12 of 56

8 Modifications

No modifications were performed during this assessment.

RF915 3.0 Page 13 of 56

9 EUT Test Setup

9.1 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

RF915 3.0 Page 14 of 56

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

RF915 3.0 Page 15 of 56

10 General Technical Parameters

10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied 3.3V dc from host PCB.

10.2 Varying Test Conditions

There are no specific frequency stability requirements for the type of device. The results contained in this report demonstrate that the occupied bandwidth is contained within the authorised band and the manufacturer has declared sufficient frequency stability (refer to section 7.4).

Variation of supply voltage is required to ensure stability of the declared output power. During carrier power testing the following variations were made:

	Category	Nominal	Variation
	Mains	110 V ac +/-2 %	85 % and 115 %
	Battery	New battery	N/A
\boxtimes	Other	3.3Vdc	N/A

RF915 3.0 Page 16 of 56

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Chamber 1

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6 EUT Channels / Frequencies Measured: 2402 MHz / 2442 MHz / 2480 MHz

EUT Channel Bandwidths: 1 MHz

Deviations From Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz

Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: quasi-peak

Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: 24 °C +15 °C to +35 °C (as declared)

Humidity: 28 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.3 V dc $3.3 \text{ V dc} \pm 10 \%$ (as declared)

11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

RF915 3.0 Page 17 of 56

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dBµV/m at the regulatory distance, using:

Where.

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;

PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental):

CF is the distance factor in dB (where measurement distance different to limit distance);

This field strength value is then compared with the regulatory limit.

Figure i Test Setup

RF915 3.0 Page 18 of 56

11.5 Test Set-up Photograph

11.6 Test Equipment

Type of Equipment	Maker/Supplier	Maker/Supplier Model Ele Number Nu		Calibration Due Date	Calibration Interval
Bilog	Chase	CBL611/A	UH191	26/02/2017	24
ESVS10	R&S	ESVS10	L352	07/08/2016	12
Spectrum Analyser	R&S	FSU46	U281	24/04/2016	12
Horn Antenna	EMCO	3115	TRL139	25/09/2017	24
Pre-Amplifier	Agilent	8449B	TRL572	10/02/2016	12

RF915 3.0 Page 19 of 56

Report Number: TRA-030097-47-00A

11.7 Test Results

1 – Bottom Channel (30 MHz to 1 GHz).

Date: 1.MAR.2016 16:13:19

2 – Bottom Channel (1 GHz to 6 GHz).

3 - Bottom Channel (6 GHz to 12 GHz).

4 – Bottom Channel (12 GHz to 18 GHz).

5 - Bottom Channel (18 GHz to 25 GHz).

6 - Lower Band Edge.

RF915 3.0 Page 20 of 56

	High Power; Channel: 2402MHz									
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (μV/m)	Limit (μV/m)
Pk	4804.32	52.27	5.10	33.10	35.84	0.00	0.00	54.63	538.89	5012
Av	4804.32	43.48	5.10	33.10	35.84	0.00	0.00	45.84	195.88	500
Pk	9607.08	52.25	7.80	37.90	36.71	0.00	0.00	61.24	1153.45	5012
Av	9607.08	41.23	7.80	37.90	36.71	0.00	0.00	50.22	324.34	500
Pk	12008.74	52.58	8.50	39.30	36.18	0.00	0.00	64.20	1621.81	5012
Av	12008.74	40.38	8.50	39.30	36.18	0.00	0.00	52.00	398.11	500
Pk	19534.00	54.20	10.80	37.20	35.55	0.00	-9.54	57.11	716.77	5012
Av	19534.00	41.69	10.80	37.20	35.55	0.00	-9.54	44.60	169.78	500

RF915 3.0 Page 21 of 56

Report Number: TRA-030097-47-00A

7 - Middle Channel (30 MHz to 1 GHz).

Date: 2.MAR.2016 09:28:21

9 - Middle Channel (6 GHz to 12 GHz).

10 - Middle Channel (12 GHz to 18 GHz).

11 - Middle Channel (18 GHz to 25 GHz).

RF915 3.0 Page 22 of 56

	High Power; Channel: 2442 MHz									
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (µV/m)	Limit (μV/m)
Pk	4883.52	53.29	5.20	33.30	35.87	0.00	0.00	55.92	625.17	5012
Av	4883.52	43.34	5.20	33.30	35.87	0.00	0.00	45.97	198.84	500
Pk	7325.25	51.19	6.40	36.40	36.06	0.00	0.00	57.93	787.95	5012
Av	7325.25	39.68	6.40	36.40	36.06	0.00	0.00	46.42	209.41	500
Pk	12208.61	53.03	8.60	39.10	35.95	0.00	0.00	64.78	1733.80	5012
Av	12208.61	40.92	8.60	39.10	35.95	0.00	0.00	52.67	430.03	500
Pk	19534.00	55.31	10.80	37.20	35.55	0.00	-9.54	58.22	814.48	5012
Av	19534.00	43.15	10.80	37.20	35.55	0.00	-9.54	46.06	200.85	500

RF915 3.0 Page 23 of 56

Report Number: TRA-030097-47-00A

12 - Top Channel (30 MHz to 1 GHz).

13 - Top Channel (1 GHz to 6 GHz).

14 - Top Channel(6 GHz to 12 GHz).

Date: 2.MAR.2016 10:49:36

Figure 15 – Top Channel (12 GHz to 18 GHz).

Date: 2.MAR.2016 10:50:43

16 – Top Channel (18 GHz to 25 GHz).

17 – Upper Band Edge.

RF915 3.0 Page 24 of 56

	High Power; Channel: 2480 MHz										
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (μV/m)	Limit (μV/m)	
Pk	4959.46	52.90	5.20	33.50	35.90	0.00	0.00	55.70	609.54	5012	
Av	4959.46	43.09	5.20	33.50	35.90	0.00	0.00	45.89	197.02	500	
Pk	7439.31	51.93	6.40	36.70	36.09	0.00	0.00	58.94	885.12	5012	
Av	7439.31	40.27	6.40	36.70	36.09	0.00	0.00	47.28	231.21	500	
Pk	12398.95	51.91	8.60	38.80	35.73	0.00	0.00	63.58	1510.08	5012	
Av	12398.95	39.64	8.60	38.80	35.73	0.00	0.00	51.31	367.71	500	
Pk	19838.00	54.55	11.10	37.20	35.93	0.00	-9.54	66.92	739.40	5012	
Av	19838.00	42.10	11.10	37.20	35.93	0.00	-9.54	54.47	176.35	500	

RF915 3.0 Page 25 of 56

12 AC power-line conducted emissions

12.1 Definition

Line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network.

12.2 Test Parameters

Test Location: Element North Skelmersdale
Test Chamber: Low Frequency Laboratory
Test Standard and Clause: ANSI C63.10-2013, Clause 6.2

EUT Channels / Frequencies Measured: 2442 MHz
EUT Modulation: GFSK

Deviations From Standard: None

Measurement BW: 10 KHz

Measurement Detectors: Quasi-Peak and Average, RMS

Environmental Conditions (Normal Environment)

Temperature: 24 °C +15 °C to +35 °C (as declared)

Humidity: 23 % RH 20 % RH to 75 % RH (as declared)

Supply: $3.3 \text{ V dc} \pm 10 \%$ (as declared)

12.3 Test Limit

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in Table 3.

Table 3 - AC Power Line Conducted Emission Limits

Frequency		ted limit BµV)
(MHz)	Quasi-Peak	Average**
0.15 to 0.5	66 to 56 [*]	56 to 46 [*]
0.5 to 5	56	46
5 to 30	60	50

^{*}The level decreases linearly with the logarithm of the frequency.

RF915 3.0 Page 26 of 56

^{**}A linear average detector is required.

12.4 Test Method

With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure ii, the power line emissions were measured on a spectrum analyzer / EMI receiver.

AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.

Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

Figure ii Test Setup

12.5 Test Set-up Photograph

RF915 3.0 Page 27 of 56

12.6 Test Equipment

Type of Equipment	Maker/Supplier	Model Number	Element Number	Calibration Due Date	Calibration Interval
LISN	R&S	ESH3-Z5.831.5	U195	04/06/2016	12
EMI Receiver	R&S	ESHS10	U003	25/06/2016	12

RF915 3.0 Page 28 of 56

12.7 Test Results

Transmit mode Results

AC power-line conducted emissions, Transmit mode Results measured using the average detector									
Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.430000	19.0	2000.0	10.000	GND	L1	0.1	28.2	47.3	PASS
0.435000	19.7	2000.0	10.000	GND	N	0.1	27.4	47.2	PASS
0.935000	10.2	2000.0	10.000	GND	N	0.2	35.8	46.0	PASS
1.015000	10.1	2000.0	10.000	GND	L1	0.2	35.9	46.0	PASS
1.410000	8.6	2000.0	10.000	GND	N	0.2	37.4	46.0	PASS
1.720000	8.8	2000.0	10.000	GND	N	0.2	37.2	46.0	PASS
11.035000	3.8	2000.0	10.000	GND	L1	0.9	46.2	50.0	PASS
11.125000	2.4	2000.0	10.000	GND	N	0.8	47.6	50.0	PASS
11.465000	4.2	2000.0	10.000	GND	L1	0.9	45.8	50.0	PASS
12.315000	3.3	2000.0	10.000	GND	N	0.9	46.7	50.0	PASS
12.570000	2.8	2000.0	10.000	GND	N	0.9	47.2	50.0	PASS
12.905000	4.4	2000.0	10.000	GND	N	0.9	45.6	50.0	PASS
13.845000	0.6	2000.0	10.000	GND	Ν	1.0	49.4	50.0	PASS
15.540000	-0.7	2000.0	10.000	GND	Ν	1.2	50.7	50.0	PASS
17.580000	0.6	2000.0	10.000	GND	N	1.4	49.4	50.0	PASS

RF915 3.0 Page 29 of 56

	AC power-line conducted emissions, Transmit mode Results measured using the quasi-peak detector									
Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment	
0.325000	33.8	2000.0	10.000	GND	N	0.1	25.8	59.6	PASS	
0.430000	41.0	2000.0	10.000	GND	L1	0.1	16.3	57.3	PASS	
0.440000	40.1	2000.0	10.000	GND	L1	0.1	17.0	57.1	PASS	
0.610000	28.1	2000.0	10.000	GND	N	0.1	27.9	56.0	PASS	
0.925000	31.8	2000.0	10.000	GND	Ν	0.2	24.2	56.0	PASS	
1.020000	31.7	2000.0	10.000	GND	Ν	0.2	24.3	56.0	PASS	
1.440000	29.4	2000.0	10.000	GND	Ν	0.2	26.6	56.0	PASS	
1.725000	29.1	2000.0	10.000	GND	N	0.2	26.9	56.0	PASS	
2.165000	26.8	2000.0	10.000	GND	Ν	0.2	29.2	56.0	PASS	
2.835000	24.8	2000.0	10.000	GND	L1	0.3	31.2	56.0	PASS	
3.725000	24.0	2000.0	10.000	GND	L1	0.3	32.0	56.0	PASS	
4.330000	21.4	2000.0	10.000	GND	L1	0.4	34.6	56.0	PASS	
11.465000	20.0	2000.0	10.000	GND	L1	0.9	40.0	60.0	PASS	
11.975000	19.2	2000.0	10.000	GND	L1	1.0	40.8	60.0	PASS	
13.250000	19.1	2000.0	10.000	GND	L1	1.1	40.9	60.0	PASS	

RF915 3.0 Page 30 of 56

Receive mode Results

Conducted emissions on Mains 9kHz-30MHz ESHS10 + UH195

	AC power-line conducted emissions, Receive mode Results measured using the average detector									
Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment	
0.330000	11.3	2000.0	10.000	GND	N	0.1	38.2	49.5	PASS	
0.430000	19.5	2000.0	10.000	GND	N	0.1	27.8	47.3	PASS	
0.435000	19.8	2000.0	10.000	GND	N	0.1	27.3	47.2	PASS	
0.945000	10.2	2000.0	10.000	GND	N	0.2	35.8	46.0	PASS	
0.975000	10.0	2000.0	10.000	GND	N	0.2	36.0	46.0	PASS	
1.410000	8.6	2000.0	10.000	GND	N	0.2	37.4	46.0	PASS	
1.725000	9.2	2000.0	10.000	GND	N	0.2	36.8	46.0	PASS	
11.040000	5.4	2000.0	10.000	GND	L1	0.9	44.6	50.0	PASS	
11.120000	3.7	2000.0	10.000	GND	L1	0.9	46.3	50.0	PASS	
12.905000	4.7	2000.0	10.000	GND	L1	1.1	45.3	50.0	PASS	
13.080000	3.5	2000.0	10.000	GND	N	1.0	46.5	50.0	PASS	
13.665000	10.7	2000.0	10.000	GND	L1	1.1	39.3	50.0	PASS	
13.845000	0.3	2000.0	10.000	GND	L1	1.2	49.7	50.0	PASS	
14.690000	-1.0	2000.0	10.000	GND	N	1.1	51.0	50.0	PASS	
15.030000	2.9	2000.0	10.000	GND	N	1.1	47.1	50.0	PASS	

RF915 3.0 Page 31 of 56

	AC power-line conducted emissions, Receive mode Results measured using the quasi-peak detector									
Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment	
0.230000	31.7	2000.0	10.000	GND	L1	0.1	30.8	62.4	PASS	
0.325000	34.0	2000.0	10.000	GND	N	0.1	25.6	59.6	PASS	
0.430000	41.3	2000.0	10.000	GND	L1	0.1	15.9	57.3	PASS	
0.435000	41.9	2000.0	10.000	GND	N	0.1	15.3	57.2	PASS	
0.625000	28.7	2000.0	10.000	GND	N	0.1	27.3	56.0	PASS	
0.950000	32.4	2000.0	10.000	GND	N	0.2	23.6	56.0	PASS	
0.990000	31.5	2000.0	10.000	GND	L1	0.2	24.5	56.0	PASS	
1.420000	29.9	2000.0	10.000	GND	N	0.2	26.1	56.0	PASS	
1.700000	30.1	2000.0	10.000	GND	N	0.2	25.9	56.0	PASS	
2.260000	26.9	2000.0	10.000	GND	N	0.2	29.1	56.0	PASS	
3.685000	22.7	2000.0	10.000	GND	L1	0.3	33.3	56.0	PASS	
3.740000	22.6	2000.0	10.000	GND	N	0.3	33.4	56.0	PASS	
3.815000	22.3	2000.0	10.000	GND	N	0.3	33.7	56.0	PASS	
11.975000	19.1	2000.0	10.000	GND	N	0.9	40.9	60.0	PASS	
12.905000	20.1	2000.0	10.000	GND	L1	1.1	39.9	60.0	PASS	

RF915 3.0 Page 32 of 56

13 Occupied Bandwidth

13.1 Definition

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

13.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: IC: ANSI C63.10-2013, Clause 6.9 FCC: ANSI C63.10-2013, Clause 11.8

EUT Channels / Frequencies Measured: 2402 / 2442 / 2480

EUT Test Modulations: GSFK

Deviations From Standard: None

Measurement BW:

(IC requirement: 1% to 5% OBW; 100 kHz

FCC requirement: 100 kHz)

Spectrum Analyzer Video BW: 300 kHz

(requirement at least 3x RBW)

Measurement Span: (requirement 2 to 5 times OBW) 5 MHz

Measurement Detector: Peak

Environmental Conditions (Normal Environment)

Temperature: 25 °C +15 °C to +35 °C (as declared)

Humidity: 22 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.3 V dc ±10 % (as declared)

13.3 Test Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

RF915 3.0 Page 33 of 56

13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iii Test Setup

13.5 Test Equipment

Equipment		Equipment	Element	Due For	Calibration
Description	Manufacturer	Туре	No	Calibration	Interval
Spectrum Analyser	R&S	FSU26	U281	24/04/2016	12

13.6 Test Results

FCC 15.247. Modulation: GFSK; Data rate: 1Mbit; Power setting: 7 dBm								
Channel Frequency (MHz)	ency /MU=)		6dB Bandwidth (kHz)	Result				
2402	2401.616	2402.337	721.153	PASS				
2442	2441.608	2442.345	737.179	PASS				
2480	2479.608	2480.345	737.179	PASS				

RF915 3.0 Page 34 of 56

Date: 22.FEB.2016 13:19:02

RF915 3.0 Page 35 of 56

Date: 22.FEB.2016 13:15:47

RF915 3.0 Page 36 of 56

Date: 22.FEB.2016 13:17:01

RF915 3.0 Page 37 of 56

14 Maximum peak conducted output power

14.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

The maximum conducted output power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

14.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.9.1

EUT Channels / Frequencies Measured: 2402 / 2442 / 2480

EUT Channel Bandwidths: 1 MHZ
Deviations From Standard: None
Measurement BW: 1 MHz

Spectrum Analyzer Video BW: (requirement at least 3x RBW) 3 MHZ

Measurement Detector: Peak

Voltage Extreme Environment Test Range: Mains Power = 85 % and 115 % of Nominal (FCC only

requirement);

Battery Power = new battery.

Environmental Conditions (Normal Environment)

Temperature: 20 °C +15 °C to +35 °C (as declared)

Humidity: 45 % RH 20 % RH to 75 % RH (as declared)

14.3 Test Limit

For systems employing digital modulation techniques operating in the bands 902 to 928 MHz, 2400 to 2483.5 MHz and 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W.

RF915 3.0 Page 38 of 56

Report Number: TRA-030097-47-00A

14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iv Test Setup

14.5 Test Equipment

Type of Equipment	Maker/Supplier	Model Number	Element Number	Calibration Due Date	Calibration Interval
Spectrum analyser	R&S	FSU 46	U281	24/04/2016	12

14.6 Test Results

Modulation: GFSK; Data rate: 1 Mbit/s; Max Power setting								
Channel Frequency (MHz)	Analyzer Level (dBm)	Cable loss (dB)	Power (mW)	Result				
2402	6.41	0.00	4.375	PASS				
2442	6.42	0.00	4.385	PASS				
2480	6.43	0.00	4.395	PASS				

RF915 3.0 Page 39 of 56

15 Out-of-band and conducted spurious emissions

15.1 Definition

Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

15.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.11

EUT Channels / Frequencies Measured: 2402 / 2442 / 2480

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:
(requirement at least 3x RBW)

Measurement Detector:

None

300 kHz

Measurement Range: 30 MHz to 26.5 GHz

Environmental Conditions (Normal Environment)

Temperature: 25 °C +15 °C to +35 °C (as declared)

Humidity: 24 % RH 20 % RH to 75 % RH (as declared)

Supply: $3.3 \text{ V dc} \pm 10 \%$ (as declared)

15.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in FCC 47CFR15.209(a) / RSS-Gen is not required.

RF915 3.0 Page 40 of 56

15.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure v Test Setup

15.5 Test Equipment

Equipment	uipment Equ		Element	Due For	Calibration
Description	Manufacturer	Туре	No	Calibration	Interval
Spectrum Analyser	R&S	FSU26	U281	24/04/2016	12

RF915 3.0 Page 41 of 56

15.6 Test Results

Modulation: GSFK; Data rate: 1 MBit; Power setting: 7 dbm								
Channel Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level (dBm)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result		
2402	2405	12.9	14.5	N/A	N/A	PASS		

No significant emission within 20dBs of the limit

Date: 22.FEB.2016 16:08:21

RF915 3.0 Page 42 of 56

Modulation: GSFK; Data rate: 1 MBit; Power setting: 7 dbm								
Channel Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level (dBm)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result		
2442	2440	12.9	14.5	N/A	N/A	PASS		

No significant emission within 20dBs of the limit

Date: 22.FEB.2016 15:59:01

RF915 3.0 Page 43 of 56

Modulation: GSFK; Data rate: 1 MBit; Power setting: 7 dbm								
Channel Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level (dBm)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result		
2480	2475	12.9	14.5	N/A	N/A	PASS		

-51.18

-200.00

Date: 22.FEB.2016 15:55:52

20.000 G

RF915 3.0 Page 44 of 56

16 Power spectral density

16.1 Definition

The power per unit bandwidth.

16.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.10

EUT Channels / Frequencies Measured: 2402 / 2442 / 2480

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:
(requirement at least 3x RBW)

Measurement Span:
(requirement 1.5 times Channel BW)

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 25 °C +15 °C to +35 °C (as declared)

Humidity: 24 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.3 V dc 3.3 V dc $\pm 10\%$ (as declared)

16.3 Test Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RF915 3.0 Page 45 of 56

16.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vi, the peak emission of the EUT was measured on a spectrum analyser, with path losses taken into account.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure vi Test Setup

16.5 Test Equipment

Equipment		Equipment	Element	Due For	Calibration
Description	Manufacturer	Туре	No	Calibration	Interval
Spectrum Analyser	R&S	FSU26	U281	24/04/2016	12

16.6 Test Results

Modulation: GFSK; Data rate: 1Mbit/s.									
Channel Frequency (MHz)	Frequency Level Cable loss		Power (dBm)	Result					
2402	5.97	0.00	5.97	PASS					
2442	6.02	0.00	6.02	PASS					
2480	6.02	0.00	6.02	PASS					

RF915 3.0 Page 46 of 56

Date: 22.FEB.2016 13:06:44

RF915 3.0 Page 47 of 56

Date: 22.FEB.2016 13:05:18

RF915 3.0 Page 48 of 56

Date: 22.FEB.2016 13:08:21

RF915 3.0 Page 49 of 56

17 Radiated emissions – unintentional radiation / receiver emissions

17.1 Definitions

Receiver spurious emissions

The radio frequency signals generated within the receiver, which may cause interference to other equipment. This includes the period during which the equipment is scanning or switching channels.

Unintentional radiator

A device that generates RF energy which is not intended to be radiated for reception by a radio receiver.

17.2 Test Parameters

Test Location: Element North West / Element Hull

Test Chamber: Chamber 1

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6 EUT Channels / Frequencies Measured: 2402 MHz / 2442 MHz / 2480 MHz

EUT Channel Bandwidths: 1 MHz

Deviations From Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz
Above 1 GHz: 1 MHz

Up to 1 GHz: quasi-peak
Above 1 GHz: Peak

Environmental Conditions (Normal Environment)

Temperature: 24 °C +15 °C to +35 °C (as declared)

Humidity: 22 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.3 V dc $3.3 \text{ V dc} \pm 10 \%$ (as declared)

17.3 Test Limit

Measurement Detector:

Note:

Only radio communication receivers operating in stand-alone mode within the band 30 to 960 MHz, as well as scanner receivers, are subject to requirements, as described above. All other receivers are exempted from any certification, testing, labelling and reporting requirements.

However, all receivers in all frequency bands shall comply with the limits set forth in FCC 47CFR15B / IC RSS-Gen even in cases where testing, reporting and/or certification are not required.

Receiver Radiated Limits

Frequency (MHz)	Field Strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

RF915 3.0 Page 50 of 56

17.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure viii, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver. The EUT was rotated in three orthogonal planes and the measurement antenna height scanned (below 1 GHz, from 1 to 4 m; above 1 GHz as necessary) in order to maximise emissions.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration at each frequency.

Pre-scan plots are shown with a peak detector and 100 kHz RBW.

Figure viii Test Setup

Test Setup Photograph(s)

RF915 3.0 Page 51 of 56

Report Number: TRA-030097-47-00A

17.5 Test Equipment

Type of Equipment	Maker/Supplier	Model Number	Element Number	Calibration Due Date	Calibration Interval
Bilog	Chase	CBL611/A	UH191	26/02/2017	24
ESVS10	R&S	ESVS10	L352	07/08/2016	12
Spectrum Analyser	R&S	FSU46	U281	24/04/2016	12
Horn Antenna	EMCO	3115	TRL139	25/09/2017	24
Pre-Amplifier	Agilent	8449B	TRL572	10/02/2016	12

17.6 Test Results

1 – Bottom Channel (30 MHz to 1 GHz).

Date: 3.MAR.2016 10:38:59

2 – Bottom Channel (1 GHz to 6 GHz).

3 – Bottom Channel (6 GHz to 18 GHz).

e: 3.MAR.2016 12:22:34

4 – Bottom Channel (18 GHz to 25 GHz).

High Power; Channel: 2402 MHz

RF915 3.0 Page 52 of 56

Detector	Freq. (MHz)	Measured Emission (dBµV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Field Strength (dBµV/m)	Extrap'n Factor (dB)	Field Strength (μV/m)	Limit (μV/m)
Pk	4801.21	51.42	5.10	33.10	35.84	44.24	-9.54	162.88	5012
Av	4801.21	45.82	5.10	33.10	35.84	44.24	-9.54	85.48	500

Date: 3.MAR.2016 11:35:18

5 – Middle Channel (30 MHz to 1 GHz).

6 – Middle Channel (1 GHz to 6 GHz).

7 – Middle Channel (6 GHz to 18 GHz).

8 - Middle Channel (18 GHz to 25 GHz).

High Power; Channel: 2442 MHz										
	Detector	Freq. (MHz)	Measured Emission (dBµV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Field Strength (dBµV/m)	Extrap'n Factor (dB)	Field Strength (µV/m)	Limit (μV/m)

RF915 3.0 Page 53 of 56

Report Number: TRA-030097-47-00A

High Power; Channel: 2442 MHz											
Detector	Freq. (MHz)	Measured Emission (dBµV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Field Strength (dBµV/m)	Extrap'n Factor (dB)	Field Strength (μV/m)	Limit (μV/m)		
Pk	4881.24	53.02	5.20	33.30	35.87	46.11	-9.54	202.01	5012		
Av	4881.24	48.34	5.20	33.30	35.87	41.43	-9.54	117.86	500		

RF915 3.0 Page 54 of 56

9 - Top Channel (30 MHz to 1 GHz).

Date: 3.MAR.2016 11:55:21

10 - Top Channel (1 GHz to 6 GHz).

11 – Top Channel (6 GHz to 18 GHz).

12 - Top Channel (18 GHz to 25 GHz).

High Power; Channel: high 2480 MHz											
Detector	Freq. (MHz)	Measured Emission (dBµV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Field Strength (dBµV/m)	Extrap'n Factor (dB)	Field Strength (μV/m)	Limit (uV/m)		
Pk	4957.19	54.51	5.20	33.50	35.90	47.77	-9.54	244.56	5012		
Av	4957.19	49.75	5.20	33.50	35.90	43.01	-9.54	141.38	500		

RF915 3.0 Page 55 of 56

18 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence:

[1] Radiated spurious emissions

Uncertainty in test result (30 MHz to 1 GHz) = **4.6 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.7 dB**

[2] AC power line conducted emissions

Uncertainty in test result = 3.4 dB

[3] Occupied bandwidth

Uncertainty in test result = 15.5 %

[4] Conducted carrier power

Uncertainty in test result (Power Meter) = 1.08 dB

[5] Conducted / radiated RF power out-of-band

Uncertainty in test result – up to 8.1 GHz = 3.31 dBUncertainty in test result – 8.1 GHz to 15.3 GHz = 4.43 dBUncertainty in test result (30 MHz to 1 GHz) = 4.6 dBUncertainty in test result (1 GHz to 18 GHz) = 4.7 dB

[6] Power spectral density

Uncertainty in test result (Spectrum Analyser) = 2.48 dB

RF915 3.0 Page 56 of 56