Pending

Alexandre Carlessi

Sahand Kashani-Akhavan

 $\mathrm{June}\ 9,\ 2013$

Contents

0.1	Introdu	uction	2
0.2	GPU p	programmability evolution	3
		GPGPU	
	0.3.1	Introduction	3
	0.3.2	GPGPU concepts	4
0.4	NVIDI	A CUDA	6
	0.4.1	CUDA Program Structure	7
	0.4.2	CUDA thread organization	7
		CUDA memory structure	
	0.4.4	Maximizing global memory bandwidth	10
	0.4.5	Performance summary	12

0.1 Introduction

For 30 years, one of the primary ways of speeding up electronic devices has been to increase CPU clock speeds. From around speeds of 1 MHz in the 1980s, clock speeds have risen to more than 4 GHz in 2013. Although increasing CPU clock speeds is by far not the *only* way to increase performance, it has been a reliable source for improvement. However, fundamental limits in the fabrication of integrated circuits makes it no longer feasible to just increase clock speeds of existing architectures as a way to gain more performance. For years, supercomputers have used another way to increase performance, which consists of performing more *parallel* work by increasing the *number* of processors used in machines.

To apply this idea to personal computers, the industry has steadily been shifting towards multi-core CPUs. This trend can easily be seen since the introduction of the first dual-core consumer CPUs in 2005, up to the current high-end 16-core workstation CPUs. As such, parallel computing is no longer a *niche* that only exotic supercomputers once claimed to perform. Indeed, more and more electronic devices have started to incorporate parallel computing capabilities as an effort to provide functionality well beyond those of their predecessors.

However, CPUs are not the first devices with parallel computing in mind, as GPUs have applied this idea earlier. A graphics processing unit, also known as a GPU, is a specialized electronic circuit initially designed for fast memory manipulations needed to accelerate the creation of images in a frame buffer, which are then outputted to a display for viewing. Nowadays, GPUs are present in almost all electronics, including, but not limited to embedded systems, mobile phones, personal computers, workstations, and game consoles. Modern GPUs have highly parallel structures, making them much more effective than general-purpose CPUs for algorithms which process large blocks of data in parallel. Thus, GPUs have become very efficient at manipulating imagery, which consists of applying an algorithm parallely to all output pixels, which explains their abundant use in computer graphics.

In this report, we explore the implementation of a form of multiple-precision arithmetic on GPUs in order to leverage their high bandwidth capabilities.

0.2 GPU programmability evolution

GPUs were initially designed to accelerate texture mapping, polygon rendering, and geometry. The first GPUs had a fixed-function rendering pipeline, and could not be used for anything other than common geometry transformations and pixel-shading functions that were pre-defined in hardware.

With the introduction of the NVIDA GeForce 3 in 2001, GPUs added programmable shading to their capabilities, which allowed developers to define their own straight-line shading programs to perform custom effects on the GPU. Bypassing the fixed-function rendering pipeline opened the door towards many future graphics novelties, such as cel shading, mip mapping, shadow volumes, oversampling, interpolation, bump mapping, and many others.

The 2 main shaders were the fragment shader (also known under the name of pixel shader), and the vertex shader (also known under then name of geometry shader). The vertex shader processed each geometric vertex of a scene and could manipulate their position and texture coordinates, but could not create any new vertices. The vertex shader's output was sent to the fragment shader for further processing. The fragment shader processed each pixel and computed its final color, as well as other per-pixel attributes by using supplied textures as inputs. Soon, shaders could execute code loops and lengthy floating point math instead of straight-line code, which pushed them to quickly become as flexible as CPUs, while being orders of magnitude faster for image processing operations. The shaders were written to apply transformations to a large set of elements parallely, such as to each pixel of the screen, or to every vertex of a 3D geometric model.

GPUs had different processing units for each type of shader, but with its introduction in 2006, the NVIDIA GeForce 8800 GTX merged the separate programmable graphics stages to an array of unified processors, which allowed dynamic partitioning of the computing elements to the different shaders, thus attaining better load balancing.

The unified processor array of the GeForce $8800~\mathrm{GTX}$ is shown on Figure 1. This unified design made GPUs architecturally closer to CPUs.

0.3 Early GPGPU

0.3.1 Introduction

GPU hardware designs evolved towards more unified processors, and were getting more similar to high-performance parallel computers. Computations performed by programmable shaders mostly involved matrix and vector operations, for which GPUs were very well suited (processing blocks of data in parallel). The availability of high speed linear algebraic operations, as well as the unified procesors pushed scientists to start studying the use of GPUs for non-graphical calculations. This was achieved through the use of GPGPU techniques.

GPGPU, a shorthand for General Purpose computing on Graphics Processing Units, consists of using a GPU, which typically only handles computations related to computer graphics, to perform computations for applications which are traditionally handled by a CPU. Such a consideration is possible since GPUs support a functionally complete set of operations on arbitrary bits, and can thus

Figure 1: Unified programmable processor array of the GeForce 8800 GTX

compute any value.

At the time, programmers could only interface with GPUs through graphics APIs such as OpenGL or DirectX. However, APIs had been designed to only support features required in graphics. To access the GPU's computational resources, programmers had to map their problem into graphics operations so the computations could be launched through OpenGL or DirectX API calls. With this consideration in mind, programmers had to arrange their data in such a way to "trick" the GPU in performing the calculations defined in the programmers' shaders as if they were graphics calculations, whereas in reality, they were scientific computations.

0.3.2 GPGPU concepts

There are 4 main GPGPU concepts.

- Data arrays are equivalent to GPU textures. The native data layout for CPUs is the one-dimensional array. Higher dimensional arrays are available for programmer convenience, but are actually implemented as onedimensional arrays, and compilers use linear transformations to adapt the indices accordingly.
 - On the other hand, GPUs use two-dimensional arrays as their native data layout and are, in fact, textures. To make a data array available to the GPU, the CPU would need to create the data, then map it to a GPU texture which a shader could later read and process. In order to correctly use the memory available to a GPU, one needs to find a mapping between the CPU array indices, and the GPU texture coordinates. Once the mapping is done, the CPU would then transfer the data towards the GPU texture.
- 2. Computation code, also called a *kernel*, is equivalent to a shader. There is a fundamental difference between the computing model of CPUs and GPUs, and this impacts the way one needs to think algorithmically. GPUs

follow the data-parallel programming paradigm, whereas CPUs follow the sequential programming paradigm.

As such, CPU code is usually implemented as a loop-oriented program, since it has to iterate over all elements of a data structure, and apply a function to each one. In contrast, GPUs have highly parallel structures which can apply the same code to large blocks of data parallely, assuming that there is no dependency among the operations.

To show the contrast in the programming model, let's compare how one would compute the addition of 2 N-element vectors and store the result in the first vector.

Assume we have the following 2 vectors already pre-filled with their respective data:

```
int a[N];
int b[N];
```

The CPU code to perform this vector addition would look like this:

```
for (int i = 0; i < N; i += 1)
{
    a[i] = a[i] + b[i];
}</pre>
```

Note that the CPU will have to loop over all indices of the 2 arrays, and add each element one by one in a sequential way. It is important to note that each of the N computations are completely independent, as there are no data dependencies between elements in the result vector. For example, once we have computed a[0] = a[0] + b[0], its result will be of no help when it comes to computing a[1] = a[1] + b[1].

As such, assuming we have a computation unit with N parallel structures, we could be able to compute the vector addition without the need of any loop by assigning one vector element addition to each computation unit. This is easily done by adapting the index of the vector elements that are provided to each computation unit.

This is the core idea behind GPGPU computing: separating the identical, but independent calculations from one another, and assigning them to different execution units which can then execute them at the same time. Algorithms are extracted into computational kernels which are no longer vector expressions, but scalar templates of the algorithm that form a single output value from a set of input values. These algorithms are implemented in shaders which will then calculate the independent computations parallely.

For the vector addition used above, the 2 vectors will have to be written into textures by the CPU, then the shader will read the appropriate elements from the texture to perform its independent computation.

3. Computations are equivalent to "drawing". Indeed, the final output of a GPU is an "image", therefore all computations have to, in some way or

another, write their "results" to the frame buffer for it to be available to the programmer.

The programmer must tell the graphics API (either OpenGL or DirectX) to draw a rectangle over the whole screen, so that the fragment shader can apply its code to each pixel independently and output an answer. If the API were not instructed to draw something that fills the whole screen, then the fragment shader's code would not be applied to all the data in the textures we created, but only to a subset of it.

By rendering the simple rectangle, we can be sure that the kernel is executed for each data item in the original texture.

4. On CPUs, data is read from memory locations, and results are written to memory locations. On GPUs, we just saw that the final output is written to the frame buffer.

However, a huge number of algorithms are not straight-line code, and require the GPU's result to be used as input for another subsequent computation. To achieve this on a GPU, we need to execute another rendering pass. This is achieved by writing the current result to another texture, binding this texture as well as other input or output textures, and potentially also binding another shader for the algorithm to continue. This is known as the ping-pong technique since one has to keep juggling between textures until the algorithm is done and the result is outputted to the frame buffer.

To recap all that is needed for GPGPU on graphics APIs, one needs to create data on the CPU, map it to GPU textures, write shaders to perform computations based on the data in the textures, and finally write the result back to the frame buffer.

Early GPGPU programming can quickly become quite tedious, even for simple algorithms, as one must understand the complete graphics rendering pipeline in order to trick the GPU in thinking it's performing graphics calculations, whereas the programmers are actually manipulating their data on GPU textures, and writing their kernels in shaders.

Indeed, graphics APIs were not intended for scientific computations, and are thus not easily programmable. In order to fully benefit from the parallel processing power of GPUs without having to know anything about the graphics rendering pipeline, more computational oriented languages were created.

0.4 NVIDIA CUDA

The Compute Unified Device Architecture, more commonly known under the name CUDA, is a parallel computing platform and programming model developed by NVIDIA in 2006, and implemented by the GPUs they produce.

CUDA was designed for GPGPU programming, as developers can compile C code for CUDA capable GPUs, thus avoiding the tedious work of mapping their algorithms to graphics concepts. Essentially, CUDA's main advantage is that developers have explicit access to the GPU's virtual instruction set, as well as its device memory. By using CUDA, developers can use GPUs in a similar

way as CPUs, without having to know anything about the graphics rendering pipeline.

CUDA also exposes several GPU hardware features that are not accessible through graphics APIs, the most important of which is access to GPU shared memory, an area of on-chip GPU memory which can be accessed in parallel by several blocks of threads. CUDA also supports a thread synchronization primitive, allowing cooperative parallel processing of on-chip data, greatly reducing the high-latency off-chip bandwidth requirements of many parallel algorithms.

0.4.1 CUDA Program Structure

A CUDA program consists of multiple interleavings of CPU code segments, and GPU code segments. CPU code is called *host* code, whereas GPU code is called *device* code. The segments that exhibit little data parallelism are implemented as host code, whereas the data parallel segments are implemented as device code.

Figure 2: Cuda program execution phases

All the code is written in ANSI C extended with keywords for labeling dataparallel functions called *kernels*, and their associated data structures. The compilation process separates the host code from the device code, passing the host code to the host's standard C compiler, and the device code to the NVIDIA C compiler (nvcc).

In CUDA, computations are carried out by *threads*, a large number of which are generated by kernels to exploit data parallelism. Kernels specify the code to be executed by *all* threads during a parallel segment. Since all threads execute the same code, thus CUDA programming model follows the *SIMT* (Single Instruction Multiple Thread) programming style.

0.4.2 CUDA thread organization

When a kernel is launched, a *grid* of parallel threads are executed. Threads in a grid are organized into a two-level hierarchy, as shown in Figure 3. A grid consists of one or more thread blocks, each of which contain the same number of threads. Each thread block has a unique 1D, 2D, or 3D block identifier (note that for simplicity, a 2D identifier is drawn in Figure 3). Similarly, each thread within a block has a unique 1D, 2D, or 3D thread identifier.

- A thread block is a batch of threads that can cooperate with each other by:
 - Synchronizing their execution
 - For hazard-free shared memory accesses
 - Efficiently sharing data through a low-latency shared memory
- Two threads from two different blocks cannot cooperate

Figure 3: Two-level CUDA thread organization

Once a kernel is launched, the CUDA runtime generates the corresponding grid of threads, which are then assigned to execution resources on a block-by-block basis. To have some numbers, NVIDIA's Fermi (compute capability 2.0) and Kepler (compute capability 3.0) architectures can have a maximum of 1024 threads concurrently running in a block.

CUDA execution resources are organized into streaming multiprocessors (SMs), two of which are shown in Figure 4. A maximum number of blocks can be assigned to each SM (8 on Fermi GPUs, and 16 on Kepler GPUs) as long as there are enough resources to satisfy the needs of all the blocks. If any of the resources needed for the simultaneous execution of the blocks are unavailable, less blocks will be scheduled for execution on the SM. The remaining blocks will execute once the resources needed are available again.

Although blocks are scheduled to be run on an SM, it is the threads of that block that execute the computations. All threads of a block are scheduled for execution in structures called warps, each of which contain 32 continuous threads (identified by their threadIdx values).

A crucial aspect about warps is that the hardware executes an instruction for all threads in the same warp before moving to the next instruction. This works well when all threads within a warp follow the same control flow path when working on their data. For example, if-then-else style branch statements work well when either all threads take the then statement, or all the threads take the else statement. If some threads execute the then part, and others execute the else part, the SIMT execution model no longer works and the warp will require multiple execution passes through the divergent paths, with one pass for each divergent path. These passes occur sequentially, thus increasing the execution time. The situation is even worse for while loops, since the each thread could potentially loop a different number of times compared to the others, therefore it is very important to try and keep thread divergence low.

Figure 4: SM thread block assignment

Figure 5: CUDA memory hierarchy

0.4.3 CUDA memory structure

In CUDA, the host and devices have separate memory spaces, as GPUs are typically hardware cards that come with their own DRAM. In order to provide data to a kernel, memory needs to be allocated on the device, and data has to be transferred to the allocated memory. Similarly, after kernel completion, device results must be transferred back from device memory to host memory. CUDA devices expose several different memories to developers, some of which are shown on Figure 5. Note that for simplicity, texture memory is not shown.

At the bottom of the figure, we see *global* memory, and *constant* memory, the 2 off-chip memories available on a CUDA GPU. Global memory, typically implemented as DRAM, can be written to, and read from the host. Because of its implementation technology, global memory suffers from long access latencies, and finite access bandwidth. In contrast, constant memory supports short-latency, high-bandwidth, read-only access by the device when all threads

simultaneously access the same location. Registers and shared memory are onchip memories, and are thus accessible at very high speeds, and in a parallel way.

0.4.4 Maximizing global memory bandwidth

Because of DRAM's high access latency, global memory is organized in such a way that when reading a certain location, several consecutive memory locations are returned. As such, if an application can make use of multiple consecutive global memory locations before moving to other locations, the DRAMs can supply the data at a much higher rate than if random locations are accessed.

When all threads in a warp execute a load instruction, the hardware detects if the threads are accessing consecutive global memory locations, and if it is the case, then it does not issue multiple separate load instructions, but will combine, or *coalesce* them into less load instructions. To achieve anywhere close to the peak advertised global memory bandwidth, it is important to take advantage of global memory coalescing, by organizing data in memory in such a way that each thread can read the data it needs at the same time as the other threads without requiring separate loads.

Example

Suppose 4 threads are trying to read a 4x4 matrix m[4][4]:

m[0]	m[1]	m[2]	m[3]
m[4]	m[5]	m[6]	m[7]
m[8]	m[9]	m[10]	m[11]
m[12]	m[13]	m[14]	m[15]

Normal CPU code for accessing such a matrix would ressemble the following:

```
for (int i = 0; i < 4; i++)
{
    for (int j = 0; j < 4; j++)
    {
        m[i][j] = ...;
    }
}</pre>
```

If we use 4 GPU threads, we get the following code:

```
for (int j = 0; j < 4; j++)
```

```
m[threadIdx.x][j] = ...;
```

This matrix is stored in memory as a continuous 1D array of data, and accessing the data on the GPU with 4 threads parallely would look like this (first loop iteration):

Figure 6: Non-coalesced memory access

Note that each thread tries to load its "line" at the same time as the others, resulting in 4 scattered global memory reads. What we would want to have, is reads of the following form:

Figure 7: Coalesced memory access

The code corresponding to the memory access pattern in Figure 7 is:

```
for (int j = 0; j < 4; j++)
{
    matrix[j][threadIdx.x] = ...;
}</pre>
```

But then, each thread would no longer be accessing the element it initially wanted, as all threads in Figure 7 are accessing thread 1's "line". The solution to this problem is to transpose the initial matrix, thus yielding the correct memory access pattern, as well as the minimum number of global memory accesses:

m[0]	m[4]	m[8]	m[12]
m[1]	m[5]	m[9]	m[13]
m[2]	m[6]	m[10]	m[14]
m[3]	m[7]	m[11]	m[15]

Figure 8: Transposed matrix

Figure 9: Correct coalesced memory access

Therefore, a "simple" port of CPU code is to transpose data arrays, since concurrent GPU threads can load columns more efficiently. One must strive for perfect per-warp memory coalescing by aligning starting addresses (may need padding for this), and accessing continuous memory regions, all in order to reduce global memory accesses, and to maximize bandwidth.

0.4.5 Performance summary

So, in order to maximize the use of all execution units on a CUDA GPU, it is important to make sure global memory reads and writes are coalesced whenever possible. If memory coalescing is not done, then all other "optimizations" would mostly be insignificant. In case global memory accesses are difficult to coalesce, it is better to try and use 1D texture lookups instead, as they are more suited for scattered access patterns. One should make use of shared memory as much as possible, as it is much faster than global memory. Finally, if possible, divergent branches should be avoided at all cost to avoid warp rescheduling.