시계열분석팀 2주차 교안 🏅

[목차]

- 1. 1주차 복습
- 2. 모형의 필요성
- 3. ACF, PACF
- 4. AR모형
- 5. MA모형
- 6. AR모형과 MA모형의 쌍대성
- 7. ARMA모형
- 8. 정리
- 9. 모형적합절차
- 10. R실습
- 11. 부록

1. <mark>1주차 복습</mark>

(1) 정상성

- ① E(y_t) = μ < ∞ : 평균
- ② $Var(y_t) = E(y_t \mu)^2 = \gamma_0 < \infty$: 분산
- ③ $Cov(y_t, y_{t+k}) = E(y_t \mu)(y_{t+k} \mu) = \gamma_k < \infty \quad \forall k$: 자기공분산
 - → 시간t에 관계없이 평균과 분산이 일정하며, 자기공분산yk 가 시차(k)에만 의존함

(2) 정상화

- ① 시계열 자료의 그래프를 그려본 후 비정상 시계열인지 확인
- ② 분산이 일정하지 않은 경우 <mark>분산안정화</mark> (로그변환, 제곱근 변환, Box-cox변환)
- ③ 분산 변환 후 추세/계절성을 갖는다면 <mark>회귀/평활/차분</mark>을 통해 정상화
- ④ 시계열의 정상부분(stationary component)와 비정상 부분을 분해
- ⑤ 비정상을 유발하는 성분(추세, 계절성)을 제거하여 정상 시계열을 획득

(3) 백색잡음

- $Y_t \sim WN(0, \sigma_Y^2)$

- ① $E(Y_t) = 0$
- ② $Var(Y_t) = \sigma^2$
- ③ $Cov(Y_t, Y_{t+k}) = 0$ (약정상성조건에 '공분산이 0'이라는 조건이 추가됨)
- 백색잡음은 가장 대표적인 정상시계열
- 많은 확률과정들이 백색잡음으로부터 생성될 수 있다는 측면에서 매우 중요

2. 모형의 필요성

정상성을 만족시키는 Y₊ 의 공분산행렬

$$\Gamma = \begin{pmatrix} Cov(Y_1, Y_1) & Cov(Y_1, Y_2) & \dots & Cov(Y_1, Y_n) \\ Cov(Y_2, Y_1) & Cov(Y_1, Y_2) & \dots & Cov(Y_2, Y_n) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(Y_n, Y_1) & Cov(Y_n, Y_1) & \dots & Cov(Y_n, Y_n) \end{pmatrix}$$

$$= \begin{pmatrix} \gamma(0) & \gamma(1) & \dots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \dots & \gamma(n-2) \\ \vdots & \vdots & \ddots & \gamma(n-1) \\ \gamma(n-1) & \gamma(n-2) & \dots & \gamma(0) \end{pmatrix}$$

만약 백색잡음 과정이라면, 대각선 $\gamma(0)$ 을 제외한 나머지가 모두 0이 된다.

따라서 백색잡음 과정이라면 모델링이 필요 없다.

백색잡음 과정이 아니라면, 공분산 $\gamma(1), \gamma(2), \dots \gamma(n-1)$ 모두 추정해야 하는 모수가 된다.

특정모형을 통해 모수를 추정할 수 있으며, 이는 Y_t 의 ACF, PACF그래프를 보고 결정하게 된다.

3. ACF, PACF

- (1) ACF(Autocorrelation Function): 자기상관 함수
 - ✓ 자기공분산함수 : 시간에 따른 상관의 척도

$$\gamma(k) = \gamma_k = Cov(X_t, X_{t+k}) = E[(X_t - \mu)(X_{t+k} - \mu)]$$

✓ 자기상관함수(autocorrelation function)

$$\rho(\mathbf{k}) = \rho_k = Corr(X_t, X_{t+k}) = \frac{Cov(X_t, X_{t+k})}{\sqrt{Var(X_t)}\sqrt{Var(X_{t+k})}} = \frac{\gamma(k)}{\gamma(0)},$$

$$O/\mathbb{Z}/\gamma_0 = Var(X_t) = E[(X_t - \mu)^2]$$

- ✔ 자기 공분산함수와 자기상관함수의 성질
- 1) $\gamma_0 = Var(Z_t); \rho_0 = 1$
- 2) $|\gamma_k| \le \gamma_0$; $|\rho_0| \le 1, k = 1, 2, 3, ...$

- 3) $\gamma_k = \gamma_{-k}$; $\rho_k = \rho_{-k}$, k = 1, 2, 3, ...
- ✓ 표본자기공분산함수(sample autocovariance function)

$$\widehat{\gamma_k} = \frac{\sum_{t=1}^{n-k} (X_t - \overline{X})(X_{t+k} - \overline{X})}{n}, k = 0,1,2,..., \quad \text{Et, } X = \sum_{t=1}^{n} X_t / n$$

✓ 표본자기상관함수(sample autocorrelation function:SACF)

$$\hat{\rho} = \frac{\widehat{Y_k}}{\widehat{Y_0}}$$
, $k = 0, 1, 2, ...$, $E(\widehat{\rho_k}) = \rho_k$

→ 자기상관함수는 시차 k에서 자기상관관계가 존재하는지 나타내는 척도이다. 즉, 서로 다른 두 시점이 상호 연관관계를 나타내는 척도이다.

(2) PACF(Partial Autocorrelation Function): 편자기상관 함수

✓ 편자기상관함수 : 두 변수를 제외한 모든 변수의 영향을 제거한 상태에서, 두 변수사이의 순수한 상호 연관관계

예시)

X를 껌 판매량, Y를 범죄 발생건수라고 하자. 시간에 따라 관측된 두 변수들 사이의 상관계수를 구해보면 매우 상관이 높은 것으로 나타날 것이다. 이는 두 변수사이에 밀접한 관계가 있어서라기보다는 시간이 지남에 따라 인구가 증가하면서 껌의 판매량이 늘고 범죄발생건수도 증가했기 때문이라고 볼 수 있다. 따라서 X와 Y의 순수한 상관관계를 구하기 위해서는 X와 Y에서 시간의 효과를 제거한 후 상관계수를 구해야 할 것이다. 이를 **부분상관계수**(partial correlation coefficient)라고 한다.

* X: 껌 판매량, Y: 범죄발생건수 , Z : 시간

Z의 효과를 배제한 후의 X와 Y의 부분상관계수

$$\rho_{XY,Z} = \frac{E\{[X - E(X|Z)] \cdot [Y - E(Y|Z)]\}}{\sqrt{E\{[X - E(X|Z)]^2 \cdot E[Y - E(Y|Z)]^2}}$$

조건부 기댓값 E(X|Z) 는 X를 Z에 회귀시킨 최적선형 예측값으로 X가 Z에 의해 설명되는 부분

조건부 기댓값 E(Y|Z) 는 Y를 Z에 회귀시킨 최적선형 예측값으로 Y가 Z에 의해 설명되는 부분

$$X^* = X - E(X|Z)$$
: $X \subseteq Z$ 에 회귀시킨 후 의 자차

$$Y^* = Y - E(Y|Z)$$
: $Y = Z$ 에 회귀시킨 후 의 잔차

X*,Y*: 원래변수 X,Y가 간직하고 있던 정보 중에서 Z와 무관한 부분

 X^*, Y^* 의 상관계수 $\rho_{X^*Y^*}$ 는 변수Z에 관하여 수정한 후의 X와 Y의 부분상관계수 ρ_{XYZ} 와 같아진다.

 X^*, Y^* 는 Z와는 무관한 변수 X, Y의 순수한 상관계수를 의미

✓ 부분자기상관계수(partial correlation); PACF ΦԽ

 $: Z_{t}, Z_{t+1}, ..., Z_{t+k-1}, Z_{t+k}$ 가 관측되었을 때, k시차만큼 떨어진 Z_{t}, Z_{t+k} 의 순수한 상관관계를 나타냄

→ Z_{t} ,와 Z_{t+k} 에서 Z_{t+1} , Z_{t+2} ..., Z_{t+k-1} 의 효과를 제거한 후의 상관계수

정상확률과정 Z_{+} , $(Z_{+}) = 0$

 Z_{t} 를 $Z_{t+1}, Z_{t+2}, ..., Z_{t+k-1}$ 에 회귀시킨 최적선형 예측

$$E(Z_{t}|Z_{t+1}, Z_{t+2}, \dots, Z_{t+k-1}) = \alpha_{1}Z_{t+1} + \alpha_{2}Z_{t+2} + \dots + \alpha_{k-1}Z_{t+k-1}$$

 Z_{t+k} 를 $Z_{t+k-1}, Z_{t+k-2}, ..., Z_{t+1}$ 에 회귀시킨 최적선형 예측

$$E(Z_{t+k}|Z_{t+k-1},...,Z_{t+1}) = \beta_1 Z_{t+k-1} + \beta_2 Z_{t+k-2} + \dots + \beta_{k-1} Z_{t+1}$$

PACF $\phi_{kk} = Corr\{Z_t^*, Z_{t+k}^*\}$

$$\begin{split} Z_{t}^* &= Z_t - (\alpha_1 Z_{t+1} + \alpha_2 Z_{t+2} + \dots + \alpha_{k-1} Z_{t+k-1}) \\ Z_{t+k}^* &= Z_{t+k} - (\beta_1 Z_{t+k-1} + \beta_2 Z_{t+k-2} + \dots + \beta_{k-1} Z_{t+1}) \end{split}$$

 \sqsubseteq_{i}^{t} , α_{i} , β_{i} $(1 \leq i \leq k-1)$ \sqsubseteq

$$E\left(Z_{t}-(\alpha_{1}Z_{t+1}+\alpha_{2}Z_{t+2}+\cdots+\alpha_{k-1}Z_{t+k-1})\right)^{2},\ E\left(Z_{t+k}-(\beta_{1}Z_{t+k-1}+\beta_{2}Z_{t+k-2}+\cdots+\beta_{k-1}Z_{t+1})\right)^{2}$$
 를 최소로하는 최소제곱추정량

표본부분자기상관함수(sample partial autocorrelation function : SPACF); φ̂_{kk}

4. AR모형(Auto Regressive Model): 자기회귀 모형

(1) 정의

- 현재의 관측값을 과거 관측값들의 함수형태로 나타냄
- P시점 전까지 관측값의 선형결합으로 표현
- 자기자신을 과거에 회귀시키기 때문에 이런 표현을 쓴다
- ϵ_{t} 은 평균 0, 분산 σ_{ϵ}^{2} 를 갖는 **백색잡음**

$$Z_{\mathrm{t}}-\mu=\phi_{1}(Z_{t-1}-\mu)+\phi_{2}(Z_{t-2}-\mu)+\cdots+\phi_{p}ig(Z_{t-p}-\muig)+arepsilon_{t}$$

$$=\sum_{j=1}^{p}\phi_{j}ig(Z_{t-j}-\muig)+arepsilon_{t}$$
이때, $\dot{Z}_{t}=Z_{t}-\mu$ 라고 한다면,

$$\dot{\mathbf{Z}}_{\mathsf{t}} = \sum_{j=1}^{p} \phi_{j} \dot{\mathbf{Z}}_{t-j} + \varepsilon_{t}$$

- 후항연산자($BX_t = X_{t-1}$) 를 사용하여 표현 -> 간단하게 표현 가능

$$\phi(B)(Z_t - \mu) = \phi(B)\dot{Z}_t = \varepsilon_t$$

이때, $\phi(B)=1-\phi_1B-\phi_2B^2-\cdots-\phi_pB^p$ 라고하고 **특성함수(characteristic function)**라고 부름

- ✓ AR(p)모형의 조건
- 정상성과 인과성을 만족시켜야 함
- 정상성 : 시계열의 통계적 특성이 시점에 의존하지 않아야 된다는 특성
- 인과성: t시점의 관측값이 과거 시점의 오차항으로 설명될 수 있다는 특성
- → p차 모형을 증명하기는 어려운 부분이 있으므로, AR(1)모형을 통해 알아보자

(2) AR(1)

- 마코프(Markov)과정이라도고 불림
- 1시차 전의 확률변수가 1차 자기회귀모형의 독립변수로 사용
- Φ 는 자기회귀모형의 계수로 우리가 자료를 바탕으로 추정해야할 대상
- ϵ_t 는 백색잡음으로서, 모든 시점 t에 대해 $E(\epsilon_t)=0$ 고 $Var(\epsilon_t)=\sigma^2$ 으로 일정하며, 서로 다른 시점 S, t에서 $Cov(\epsilon_t,\epsilon_s)=0$ 을 만족
- 1) 표현

$$\dot{Z}_t = \phi Z_{t-1} + \varepsilon_t$$
 또는 $Z_t = \delta + \phi Z_{t-1} + \varepsilon_t$
 $\phi(B) = 1 - \phi B$ 를 이용한다면 $\phi(B) \dot{Z}_t = \varepsilon_t$

2) 인과성 조건

표현식을 다시 써보면

$$\vec{Z}_{t} = \phi \left(\phi \vec{Z}_{t-2} + \varepsilon_{t-1} \right) + \varepsilon_{t}$$

시계열분석팀 교안 2주차 : 염예빈

$$\begin{split} &=\phi^2\left(\phi Z_{t-3}^{\,\cdot}+\varepsilon_{t-2}\right)+\varepsilon_t+\phi\varepsilon_{t-1}\\ &\vdots\\ &=\varepsilon_t+\phi\varepsilon_{t-1}+\phi^2\varepsilon_{t-2}+\cdots=\sum_{i=0}^\infty\phi^j\varepsilon_{t-j} \end{split}$$

① $|\phi| < 1$

 $\mathbf{Z}_{\mathsf{t}} = \sum_{j=0}^{\infty} \phi^{j} \varepsilon_{t-j}$ 이므로, 과거시점의 선형결합으로 표현이 된다.

- → 인과성 충족
- ② $|\phi| = 1$

$$Z_t = Z_{t-1} + \varepsilon_t$$
 or $Z_t = -Z_{t-1} + \varepsilon_t$

- → 확률보행모델(Randomwalk Process)이 된다. (정상성조건과 함께 설명)
- ③ $|\phi| > 1$

$$\begin{split} Z_{t+1} &= \phi_1 Z_t + \varepsilon_{t+1} \\ \phi_1 Z_t &= Z_{t+1} - \varepsilon_{t+1} \\ Z_t &= \frac{1}{\phi_1} Z_{t+1} - \frac{1}{\phi_1} \varepsilon_{t+1} = \frac{1}{\phi_1} \Big(\frac{1}{\phi_1} Z_{t+2} - \frac{1}{\phi_1} \varepsilon_{t+2} \Big) - \frac{1}{\phi_1} \varepsilon_{t+1} \\ &= \frac{1}{\phi_1} \Big(\frac{1}{\phi_1} Z_{t+3} - \frac{1}{\phi_1} \varepsilon_{t+3} \Big) \frac{1}{\phi_1^2} \varepsilon_{t+2} - \frac{1}{\phi_1} \varepsilon_{t+1} = \cdots \\ \Big(\frac{1}{\phi_1} \Big)^m Z_{t+j} - \sum_{i=1}^m \Big(\frac{1}{\phi_1} \Big)^j \varepsilon_{t+j} \end{split}$$

- → m→∞ 이면 전자항은 0으로 수렴하여 후자항만 남게된다. 후자항이 과거 오차항이 아니라 미래의 오차항에만 의존하므로 인과성을 충족시키지 못한다.
- 3) 정상성 조건

정상성 조건 : 1) 평균이 일정, 2) 분산이 일정, 3) 공분산이 시차에만 의존 분산을 구해보면,

$$\gamma_0 = Var(Z_t) = E[(Z_t - \mu)^2] = E(\dot{Z}_t^2), \quad (E(\varepsilon_t \varepsilon_s) = 0, t \neq s)$$

$$= \sum_{j=0}^{\infty} \phi^{2j} E(\varepsilon_{t-j}^2) = \sigma_{\varepsilon}^2 \sum_{j=0}^{\infty} \phi^{2j}$$

자기공분산을 구해보면,

$$\begin{split} \gamma_k &= \operatorname{Cov}(Z_t, Z_{t+k}) = \operatorname{E}[(Z_t - \mu)(Z_{t+k} - \mu)] = \operatorname{E}(\dot{Z}_t Z_{t+k}) \\ &= \operatorname{E}\left[\left(\sum_{j=0}^\infty \phi^j \varepsilon_{t-j}\right) \left(\sum_{i=0}^\infty \phi^i \varepsilon_{t+k-i}\right)\right] \\ &= \sigma_\varepsilon^2 \sum_{j=0}^\infty \phi^j \phi^{j+k} = \phi^k \sigma_\varepsilon^2 (= \phi^k \gamma_0) \end{split}$$

AR(1)모형이 정상시계열이기 위해선, 분산과 공분산이 유한이어야 한다.

- 즉, $\sum_{j=0}^{\infty} \phi^{2j} < \infty$ 이어야 하므로, $|\phi| < 1$ 를 만족해야 한다.
- 이 조건이 만족되면, $\gamma_0=rac{\sigma_{arepsilon}^2}{(1-\phi^2)}, \ \gamma_k=\ \phi^k\gamma_0, \ k=1,2,...$
- 이 되므로, γ_k 가 시차 k만의 함수가 된다.
 - → AR(1)의 정상성조건 : | φ | < 1
 - → $1 \phi_1 B = 0$ 을 B에 관해서 풀면 특성함수의 해는 $B = \frac{1}{\phi_1}$ 이 되고, $|\phi_1| < 1$ 은 $\left|\frac{1}{\phi_1}\right| > 1$ 과 같아진다. 이는 $'\phi(B) = 0$ 의 근의 절대값이 1보다 커야한다'와 동치이다.

<참고> 확률보행과정(Random walk Process)

- 만약 $\phi=1$ 이면 $Z_t=Z_{t-1}+\varepsilon_t$, $(\varepsilon_t\sim WN(0,\sigma^2)$, $Z_0=0)$ 이되며, 이는 확률보행과정(Random Walk)라고 한다.
- 원점 $(Z_0=0)$ 에서 출발하여 $Z_t=arepsilon_t$ 이고, $Z_t=\sum_{i=1}^t arepsilon_i$ 는 t시간후의 위치를 나타냄
- 시점 t에서 어떤 사람이 임의의 방향으로 움직이는 보폭이라고 생각할 수 있음
- 대표적 비정상시계열
- ✓ 평균 : 일정

$$E(Z_t) = E(Z_{t-1} + \varepsilon_t) = E(Z_{t-2} + \varepsilon_{t-1} + \varepsilon_t)$$

= \cdots = E(Z_0 + \varepsilon_t + \varepsilon_{t-1} + \cdots + \varepsilon_t) = 0

✓ 분산 : t에 의존

$$Var(Z_t) = Var\left(\sum_{i=1}^{t} \varepsilon_i\right) = t\sigma_{\varepsilon}^2$$

✓ 자기공분산: t에 의존

$$\gamma_{k} = Cov(Z_{t}, Z_{t+k}) = E\left[\left(\sum_{i=1}^{t} \varepsilon_{i}\right) \left(\sum_{j=1}^{t+k} \varepsilon_{j}\right)\right] = E\left(\sum_{i=1}^{t} \varepsilon_{i}^{2}\right) = t\sigma_{\varepsilon}^{2}$$

→ 분산과 자기공분산이 시간의 함수이므로 정상확률과정이 아님

4) AR(1)의 ACF

 $\mathsf{AR}(1)$ 표현식에서 양변에 $\mathsf{Z}_{t-k}^{\;\;\cdot}$ 를 곱한 후 기대값을 취한다

$$\begin{split} \mathbf{E} \left(\dot{\mathbf{Z}}_{\mathsf{t}} \mathbf{Z}_{t-k}^{\, \cdot} \right) &= \phi E \left(\mathbf{Z}_{t-1}^{\, \cdot} \mathbf{Z}_{t-k}^{\, \cdot} \right) + \mathbf{E} (\varepsilon_{\mathsf{t}} \mathbf{Z}_{t-k}) \\ \mathbf{k} \geq 1 \, \text{일 때, } \mathbf{E} (\varepsilon_{\mathsf{t}} \mathbf{Z}_{t-k}) &= 0 \quad (\mathbf{Z}_{t-k} = \mu + \sum_{j=0}^{\infty} \phi^{j} \varepsilon_{t-k-j} \, \textit{O} / \textit{\tiny\square}\vec{\mathcal{Z}}, \varepsilon_{t} \textit{\tiny2} \textit{/} \textit{\tiny\perp}\vec{\mathcal{Z}} \textit{\tiny-} \textit{\tiny2} \tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2} \textit{\tiny2}$$

- → 이때, 정상시계열이라면 | φ | < 1 이다.
- \rightarrow $\phi > 0$ 인경우에는 지수적으로 감소
- → ϕ < 0인 경우에는 양의 값과 음의 값을 번갈아가지며 지수적으로 감소
- 5) AR(1)의 PACF
- ① k=1

$$Z_{t} = \phi_{1}Z_{t-1} + \varepsilon_{t}$$
$$\phi_{11} = \rho(1)$$

② k=2

$$\begin{split} \phi_{22} &= Corr\big[\big(Z_t - \widehat{Z_t}\big), \big(Z_{t-2} - \widehat{Z_{t-2}}\big)\big] = Corr\big[(Z_t - \phi_1 Z_{t-1}), (Z_{t-2} - \phi_1 Z_{t-1})] \\ &= \frac{Cov\big[(Z_t - \phi_1 Z_{t-1}), (Z_{t-2} - \phi_1 Z_{t-1})]}{\sqrt{Var(Z_t - \phi_1 Z_{t-1}) \cdot Var(Z_{t-2} - \phi_1 Z_{t-1})}} \\ &= \frac{Cov\big[(Z_t - \phi_1 Z_{t-1}), (Z_{t-2} - \phi_1 Z_{t-1})]}{\sqrt{E\big[(Z_t - \phi_1 Z_{t-1})^2\big] \cdot E\big[(Z_{t-2} - \phi_1 Z_{t-1})^2\big]}} = \frac{Cov\big[(Z_t - \phi_1 Z_{t-1}), (Z_{t-2} - \phi_1 Z_{t-1})]}{\sqrt{(\gamma_0 - 2\phi_1 \gamma_1 + \phi^2 \gamma_0)^2}} \end{split}$$

$$= \frac{\operatorname{Cov}[(Z_t - \phi_1 Z_{t-1}), (Z_{t-2} - \phi_1 Z_{t-1})]}{\gamma_0 - 2\phi_1 \gamma_1 + \phi^2 \gamma_0} = \frac{\gamma_2 - \phi_1 \gamma_1 - \phi_1 \gamma_1 + \phi^2 \gamma_0}{\gamma_0 - 2\phi_1 \gamma_1 + \phi^2 \gamma_0}$$
$$= \frac{\rho_2 - 2\phi_1 \rho_1 + \phi_1^2}{1 - 2\phi_1 \rho_1 + \phi_1^2} = \frac{\phi_1^2 - 2\phi_1^2 \rho_1 + \phi_1^2}{1 - 2\phi_1^2 + \phi_1^2} = 0$$

③ k=3이후

$$\phi_{kk} = 0$$

- → 시차1에서만 Φ 의 부호에 따라 0이 아니고 2이상의 시차에서는 0이 됨

<참고>

 Z_{k+1} 를 $Z_1, Z_2, ..., Z_k$ 로 표현하는 회귀하는 식 $Z_{k+1} = \varphi_{k1} Z_k + \varphi_{2k} Z_{k-1} + \cdots \varphi_{kk} Z_1$ 을 생각해보자 오차항 $(Z_{k+1} - \varphi_{k1} Z_k - \varphi_{2k} Z_{k-1} - \cdots \varphi_{kk} Z_1)$ 의 제곱 의 평균을 최소로하는 $\varphi' = (\varphi_{k1}, \varphi_{k2}, ..., \varphi_{kk})$ 를 구해 그 값을 원래 회귀식에 넣으면

 $\text{argminE}(Z_{k+1}\text{-}\varphi_{k1}Z_k-\varphi_{2k}Z_{k-1}-\cdots\ \varphi_{kk}Z_1)^2$

$$\widehat{Z_{k+1}} = \varphi_{k1} Z_k + \varphi_{2k} Z_{k-1} + \cdots \varphi_{kk} Z_1$$

각 항의 계수인 $\varphi_{k1}, \varphi_{k2}, ..., \varphi_{kk}$ 의 의미는 나머지 항이 고정되어 있을 때 Z_{k+1} 과 Z들의 관계이다. 회귀식 해석과 상통한다.

만약, AR(p)모형을 생각한다면, $Z_t=\phi_1Z_{t-1}+\phi_2Z_{t-2}+\cdots \phi_pZ_{t-p}+\epsilon_t$ 이다. 애초에 Z_{k+1} 을 p시점 이전 값인 $Z_{k+1-p},\dots Z_k$ 로 밖에 표현할 수 없으므로

$$\widehat{Z_{k+1}} = \phi_{k1} Z_k + \phi_{k2} Z_{k-1} + \cdots + \phi_{kp} Z_{k+1-p} + 0 Z_{k-p} + \cdots 0 Z_1$$
 이 된다.

따라서 p이후로 PACF은 0이된다.

(3) AR(p) 모형

1) 표현

$$\begin{split} Z_t - \mu &= \phi_1(Z_{t-1} - \mu) + \phi_2(Z_{t-2} - \mu) + \dots + \phi_p \big(Z_{t-p} - \mu\big) + \varepsilon_t \\ \phi(B)(Z_t - \mu) &= \phi(B)\dot{Z}_t = \varepsilon_t \end{split}$$

ε_t 는 백색잡음

2) 정상성 조건

- $\phi(\mathbf{X})=1-\phi_1B-\phi_2B^2-\cdots-\phi_pB^p=0$ 의 근들이 단위원 밖에 있어야함
- $\phi(X) = 0$ 의 근의 절댓값이 1보다 커야함

3) ACF, PACF

- ACF: 지수함수 또는 사인함수와 같은 곡선의 형태를 가져 점차 감소하는 모양을 가짐
- PACF: p차 이후 모두 0이 되어 절단된 모양을 가짐

5. MA모형(Moving Average Model): 이동평균 모형

(1) 정의

- 현재의 관측값을 과거시점오차들의 함수형태로 나타냄
- q시점 전까지의 오차들의 선형결합으로 표현
- θ 는 이동평균과정의 계수로 자료를 바탕으로 추정해야할 대상
- 이때, $\{\varepsilon_t\}\sim WN(0,\sigma^2)$ 이고 θ 는 각 항의 계수를 의미

$$\dot{\mathbf{Z}}_{\mathsf{t}} = \varepsilon_{t} - \theta_{1} \varepsilon_{t-1} - \theta_{2} \varepsilon_{t-2} - \dots - \theta_{q} \varepsilon_{t-q}$$

후항연산자를 사용하여 표현하면,

$$\begin{split} \mathbf{Z}_{\mathsf{t}} &= \varepsilon_t - B\theta_1 \varepsilon_t - B^2 \theta_2 \varepsilon_t - \dots - B^q \theta_q \varepsilon_t \\ &= \left(1 - B\theta_1 - B^2 \theta_2 - \dots - B^q \theta_q\right) \varepsilon_t \\ \mathbf{Z}_{\mathsf{t}} &= \theta(B) \varepsilon_\mathsf{t} \end{split}$$

이때, $\theta(B)=1-B\theta_1-B^2\theta_2-\cdots-B^q\theta_q$ 를 특성함수라고 한다.

- ✓ MA(q)모형의 조건
- 정상성, 인과성: 과거시점 오차들의 선형결합이기 때문에 항상 만족
- 가역성(invertibility)라는 새로운 조건을 만족시켜야 함
- → q차모형을 증명하기는 어려운 부분이 있으므로, MA(1)모형을 통해 알아보자

<참고> MA(q)과정의 정상성

MA(q)과정:

$$\dot{\mathbf{Z}}_{\mathsf{t}} = \varepsilon_{\mathsf{t}} - \theta_{1} \varepsilon_{\mathsf{t}-1} - \theta_{2} \varepsilon_{\mathsf{t}-2} - \dots - \theta_{q} \varepsilon_{\mathsf{t}-q}$$

✓ 평균

$$E(Z_t) = \mu$$

✔ 분산

$$Var(Z_t) = \sigma^2 (1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2) < \infty$$

✓ 자기공분산

$$\gamma_{k} = Cov(Z_{t}, Z_{t+k}) = E[(\varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \dots - \theta_{q}\varepsilon_{t-q})(\varepsilon_{t+k} - \theta_{1}\varepsilon_{t+k-1} - \dots - \theta_{q}\varepsilon_{t+k-q})]$$

이때, $\mathrm{E}(\varepsilon_t^2)=\sigma^2$, $E(\varepsilon_s\varepsilon_t)=0$ $(s\neq t)$ 이기 때문에, 시간t에 따른 함수가 아니다. $(\mathrm{k}>\mathrm{q}$ 이후에는 0이나온다.)

(2) MA(1)

- 1시차전의 오차항이 1차 이동평균모형의 독립변수로 사용
- ϵ_t 는 백색잡음으로서, 모든 시점 t에 대해 $E(\epsilon_t)=0$ 고 $Var(\epsilon_t)=\sigma^2$ 으로 일정하며, 서로 다른 시점 s, t에서 $Cov(\epsilon_t,\epsilon_s)=0$ 을 만족
- 1) 표현

$$\dot{Z}_{t}=arepsilon_{t}- heta_{1}arepsilon_{t-1}$$
후항연산자를 사용한다면, $=(1-B heta)arepsilon_{t}$

- 2) 정상성, 인과성 조건
- ① 평균

$$E(Z_t) = \mu$$

② 분산

$$Var(Z_t) = E[(\varepsilon_t - \theta_1 \varepsilon_{t-1})(\varepsilon_t - \theta_1 \varepsilon_{t-1})] = \sigma^2(1 + \theta_1^2) < \infty$$

③ 자기공분산

$$\begin{split} \gamma_k &= Cov(Z_t, Z_{t-k}) = E[(\varepsilon_t - \theta_1 \varepsilon_{t-1})(\varepsilon_{t-k} - \theta_1 \varepsilon_{t-k-1})] \\ &= \begin{cases} (1 + \theta^2)\sigma_\varepsilon^2 = \sigma_z^2, & k = 0 \\ -\theta \sigma_\varepsilon^2, & k = 1 \\ 0, & k \ge 2 \end{cases} \end{split}$$

- → 정상성을 항상 만족한다
- → 인과성: MA는 과거 오차항들의 선형결합이기에 항상 만족한다.
- 3) 가역성 조건

$$\gamma_k = \begin{cases} (1+\theta^2)\sigma_{\varepsilon}^2 = \sigma_z^2, & k=0 \\ -\theta\sigma_{\varepsilon}^2, & k=1 \\ 0, & k \geq 2 \end{cases}$$
 θ 대신에 $\frac{1}{\theta}$ 를 대입하면,
$$\gamma_k = \begin{cases} \left(1+\frac{1^2}{\theta}\right)\sigma_{\varepsilon}^2 = \sigma_z^2, & k=0 \\ -\frac{1}{\theta\sigma_{\varepsilon}^2}, & k=1 \\ 0, & k \geq 2 \end{cases}$$

이를 바탕으로 ACF를 구해본다면, $\rho_k = \begin{cases} \frac{\theta}{1+\theta^2}, & k=1\\ 0, & k \geq 2 \end{cases}$ 이다.

 $\theta = \theta$ 와 $\theta = \frac{1}{\theta}$ 일 때의 경우 값이 동일하게 나온다.

ACF만을 가지고는 어떤 모형을 적합시키는 것이 좋은지 알 수 없다. 따라서 ACF모형 사이의 일대일 관계를 성립시키기 위해 제약조건을 가해주어야 한다.

즉, 정상성조건과 유사하게 이동평균모수 θ 에 제약조건을 줌으로써 ACF와 모형사이에 일대일 관계가 성립하게 끔 해주면 모형 선택이 확실해진다.

이 제약조건이 '가역성'이다.

MA(1)모형의 경우 $\theta(B) = 1 - B\theta = 0$ 의 근의 절대값이 1보다 클 조건인 $|\theta| < 1$ 이 그 조건이다.

→ MA(1)의 가역성조건 : |θ| < 1

4) MA(1)의 ACF

$$\begin{split} \gamma_k &= Cov(Z_t, Z_{t-k}) = E[(\varepsilon_t - \theta_1 \varepsilon_{t-1})(\varepsilon_{t-k} - \theta_1 \varepsilon_{t-k-1})] \\ &= \begin{cases} (1 + \theta^2)\sigma_\varepsilon^2 = \sigma_z^2, & k = 0 \\ -\theta \sigma_\varepsilon^2, & k = 1 & \text{을 } \gamma_0 \text{로 나누면,} \\ 0, & k \geq 2 \end{cases} \end{split}$$

$$\rho_{k} = \frac{\gamma_{k}}{\gamma_{0}} = \begin{cases} -\frac{\theta}{1+\theta^{2}}, & k = 1\\ 0, & k \ge 2 \end{cases}$$

- → 시차1일때만 0이 아니고, 시차 2이상부터 0이 됨
- 5) MA(1)의 PACF
- ① k=1

$$Z_{t} = \varepsilon_{t} - \theta_{1} \varepsilon_{t-1}$$

$$\varphi_{11} = \rho(1) = -\frac{\theta}{1 + \theta^{2}}$$

② k=2

$$\begin{split} & \varphi_{22} = Corr \big[\big(Z_t - \widehat{Z_t} \big) \big(Z_{t-2} - \widehat{Z_{t-2}} \big) \big] \\ & \frac{Cov \big[(Z_t - \rho_1 Z_{t-1}) (Z_{t-2} - \rho_1 Z_{t-1}) \big]}{\sqrt{Var} (Z_t - \rho_1 Z_{t-1}) Var (Z_{t-2} - \rho_1 Z_{t-1})} \\ & = \frac{Cov \big[(Z_t - \rho_1 Z_{t-1}) (Z_{t-2} - \rho_1 Z_{t-1}) \big]}{\sqrt{E(Z_t - \rho_1 Z_{t-1})^2 \cdot E(Z_{t-2} - \rho_1 Z_{t-1})^2}} = \frac{Cov \big[(Z_t - \rho_1 Z_{t-1}) (Z_{t-2} - \rho_1 Z_{t-1}) \big]}{\sqrt{(\gamma_0 - 2\rho_1 \gamma_1 + \rho_1^2 \gamma_0)^2}} \\ & = \frac{E \big[(Z_t - \rho_1 Z_{t-1}) (Z_{t-2} - \rho_1 Z_{t-1}) \big]}{\gamma_0 - 2\rho_1 \gamma_1 + \rho_1^2 \gamma_0} = \frac{\rho_2 - 2\rho_1^2 + \rho_1^2}{1 - 2\rho_1^2 + \rho_1^2} \\ & = \frac{-\rho_1^2}{1 - \rho_1^2} = \frac{-\left(-\frac{\theta}{1 + \theta^2}\right)^2}{1 - \left(-\frac{\theta}{1 + \theta^2}\right)^2} = \frac{-\theta^2}{1 + \theta_2 + \theta^4} \end{split}$$

같은 방식으로 계산하면 다음과 같은 식을 얻을 수 있다.

$$\phi_{kk} = \frac{-(-\theta)^k}{1 + \theta_2 + \dots + \theta^{2k}} = \frac{-(-\theta)^k (1 - \theta^2)}{1 - \theta^{2(k+1)}}, \quad k \ge 1$$

→ 시차가 증가할수록 지수적으로 감소하는 모양을 가짐

(3) MA(q)

1) 표현

$$\begin{split} \ddot{Z}_t = \ \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2} - \cdots - \ \theta_q \varepsilon_{t-q} \\ Z_t = \ \theta(B) \varepsilon_t \\ \text{O(CH)}, \ \theta(B) = 1 - B\theta_1 - B^2 \theta_2 - \cdots - B^q \theta_q \end{split}$$

ε_t 는 백색잡음

2) 가역성조건

- $\theta(B) = 1 B\theta_1 B^2\theta_2 \dots B^q\theta_q = 0$ 의 근이 단위원 밖에 있어야 함
- $\theta(B) = 0$ 의 근의 절댓값이 1보다 커야함

3) ACF, PACF

- ACF: q차 이후 모두 0이 되어 절단된 모양을 가짐

- PACF: 지수적으로 감소 또는 소멸하는 삼각함수의 혼합모양을 가짐

6. AR모형과 MA모형의 쌍대성

(1) 쌍대성(Duality)

- 유한차수의 AR모형을 무한차수의 MA모형으로, 유한차수의 MA모형을 무한차수의 AR모형을 나타낼 수 있는 성질
- 이때 AR은 정상성, 인과성을 만족하고, MA는 가역성을 만족함

- → AR(1), MA(1)모형으로 이를 확인해보자
- 1) $AR(1) \rightarrow MA(\infty)$

$$Z_{t} = \phi_{1}Z_{t-1} + \varepsilon_{t}$$
$$(1 - \phi_{1}B)Z_{t} = \varepsilon_{t}$$
$$Z_{t} = \frac{1}{1 - \phi_{1}B}\varepsilon_{t}$$

이때, 정상성을 만족한다면 $|\phi_1| < 1$ 이므로 등비급수로 표현가능

$$\begin{split} Z_t &= (1+\phi_1 B + \phi_1^2 B^2 + \phi_1^3 B^3 + \cdots) \varepsilon_t \\ &= \varepsilon_t + \phi_1 \varepsilon_{t-1} + \phi_1^2 \varepsilon_{t-2} + \phi_1^3 \varepsilon_{t-3} + \cdots = MA(\infty) \end{split}$$

2) $MA(1) \rightarrow AR(\infty)$

$$Z_{t} = \varepsilon_{t} - \theta \varepsilon_{t-1} = (1 - \theta_{1}B)\varepsilon_{t}$$
$$\frac{1}{1 - \theta_{1}B}Z_{t} = \varepsilon_{t}$$

이때 가역성을 갖는다면, $|\theta_1| < 1$ 이므로 등비급수로 표현가능

$$(1 + \theta_1 \mathbf{B} + \theta_1^2 \mathbf{B}^2 + \theta_1^3 \mathbf{B}^3 + \cdots) \mathbf{Z}_t = \varepsilon_t$$

$$\mathbf{Z}_t = -\theta_1 \mathbf{Z}_{t-1} - \theta_1^2 \mathbf{Z}_{t-2} - \theta_1^3 \mathbf{Z}_{t-3} + \cdots + \varepsilon_t = \mathsf{AR}(\infty)$$

(2) 정리

- ① 유한차수의 정상 AR과정은 무한차수의 MA과정으로 표현 가능하고, 유한차수의 가역성을 갖는 MA과정은 무한차수의 AR과정으로 표현 가능하다.
- ② 유한차수의 AR과정의 ACF와 유한차수의 MA과정의 PACF는 **지수적으로 감소하는 형태**를, 유한차수의 AR 과정의 PACF와 유한차수의 MA과정의 ACF는 **절단된 형태**를 갖는다.
- ③ 유한차수의 AR과정에 대해선 가역성 조건은 필요하지 않으나 정상성을 위해서는 $\phi(B) = 0$ 의 근들이 단위 원 밖에 존재해야 한다는 조건이 필요하다. 반면에, 유한차수의 MA과정에 대해선 정상성 조건은 필요하지 않으나 가역성을 위해서는 $\theta(B) = 0$ 의 근들이 단위원 밖에 존재해야 한다는 조건이 필요하다.

7. ARMA모형 : 자기회귀이동평균모형

- 시계열 데이터를 순수한 자기회귀모형이나 이동평균모형으로만 설명하려면 p나 q값이 너무 커질 수 있는 문제가 발생
- 추정해야할 모수의 개수가 많아지면 일반적으로 추정의 효율성이 떨어지고 해석도 쉽지 않다.

- 자귀회귀부분과 이동평균부분이 동시에 사용된다면 추정해야할 모수의 개수를 줄일 수 있을 것
- → 자기회귀이동평균(autoregressive-moving average : ARMA)

(1) 표현

- ARMA(p,q)모형
- AR의 정상성과 MA의 가역성 조건을 둘다 만족해야 한다.

(2) ARMA(1,1)

$$Z_{t} = \phi_{1} Z_{t-1} + \varepsilon_{t} - \theta_{1} \varepsilon_{t-1}$$
$$(1 - \phi B) Z_{t} = (1 - \theta B) \varepsilon_{t}$$

<참고>

ARMA(1,0) = AR(1)

ARMA(0,1) = MA(1)

(3) ARMA모형의 조건

- 정상성과 가역성을 만족해야한다.
- → 정상성을 만족하기 위해 $\phi(B) = 0$ 의 근이 1보다 커야한다.
- → 가역성을 만족하기 위해 $\theta(B) = 0$ 의 근이 1보다 커야한다.

(4) ARMA모형의 ACF, PACF

- ACF: q+1 이후 지수적으로 감소하거나 싸인함수 형태로 소멸하는 모양을 가짐
- PACF: p+1 이후 지수적으로 감소하거나 싸인함수 형태로 소멸하는 모양을 가짐

8. 정리

(1) 모형의 정상성과 가역성

	AR(p)	MA(q)	ARMA(p,q)
정상성	조건필요	자체만족	조건필요
가역성	자체만족	조건필요	조건필요

(2) 모형의 ACF와 PACF 패턴

	AR(p)	MA(q)	ARMA(p,q)
ACF	지수적으로 감소	q+1차부터 절단	q+1시점부터 지수적으로 감소
PACF	p+1차부터 절단	지수적으로 감소	p+1시점부터 지수적으로 감소

9. <mark>모형 적합 절차</mark>

(1) 흐름

- 모형의 식별(model identification)단계 : 모형의 차수를 결정하는 과정

- 모수의 추정(model estimation)단계 : 식별된 모형의 모수들을 추정하는 과정

: φ_1, φ_2 ... $\varphi_p, \theta_1, \theta_2$, ... θ_q , 평균수준 μ , 백색잡음 과정의 분산 σ_ϵ^2

- 모형의 진단(diagonostics)단계: 잠정모형(tentative model)의 타당성 검토과정

(2) 모형의 식별

- ARMA(p,1)모형의 p와 q 를 결정하는 단계
- 간결의 원칙(principle of parsimony) 추정할 모수의 개수가 증가하면 최종 예측모형이 복잡해질 뿐만 아니라 추정의 효율성도 떨어 지므로 될 수 있으면 간단한 모형을 선호
- 시계열그림과 표본상관도표(sample correlogram) 이용, 비정상시계열은 정상시계열로 변환(분산안정화변환, 적절한 차분)
- ACF와 PACF를 보고 차수 결정
- 모형 선택의 기준으로 사용되는 통계량(AIC, BIC, SBC) 이용 (여러 모형의 AIC값을 계산해서 가장 작은 값을 갖는 모형 선택)

$$\checkmark$$
 AIC = $-2 \log L + 2m$

✓ BIC =
$$-2\log L + m\log n \quad (m = p + q + 1)$$

(3) 모수의 추정

- 최대가능도추정법 : Z_1, Z_2, Z_3, \dots 의 결합확률밀도함수인 가능도함수(likelihood function)를 최대로 하는 모수의 추정량을 구하는 방법
- 최소제곱추정법 : 오차제곱합을 최소로 하는 추정법
- 적률추정법 : 모집단의 적률에 대응되는 표본적률의 방정식을 풀어 추정량을 구하는 방법

$$\mu=E[Z_t]$$
의 적률추정량 : $\hat{\mu}=\overline{Z}=\sum_{t=1}^n Z_t/n$
$$\sigma_z^2=r_0=E(Z_t-\mu)^2$$
의 적률추정량 : $\hat{r}_0=\frac{1}{n}\sum_{t=1}^n (Z_t-\overline{Z}_t)^2$

(4) 모형의 진단

- ① 잔차분석: 잔차를 이용하여 모형에 대한 가정이 옳은지 알아보(1주차 클린업)
- ② 과대적합진단
- 잠정모형에 모수를 추가하여 더 많은 개수의 모수를 포함하는 모형을 적합
- 추가된 모수가 유의하다고 판정되거나 잠정모형의 모수추정값이 과대적합 후의 모수추정값과 큰 차이가 있거나 과대적합된 모형의 잔차들의 분산이 잠정모형의 잔차들의 분산보다 작은 경우 -> 추가된 모수들의 설명력이 있다고 판단, 잠정모형을 새로운 모형으로 대체
- ex) AR(1)모형이 잠정모형으로 선택된 경우 AR(2) 또는 AR(1,1)모형을 자료에 적합
- $\phi(B)(Z_t \mu) = \theta(B)\varepsilon_t$ 의 기본가정 : $\phi(B)$ 와 $\theta(B)$ 이 공통요인을 포함하지 않음
- 모수과잉(parameter redundancy)을 방지하기 위해 AR과 MA항을 동시에 추가하면 안됨
 - → 두개의 모수가 동시에 추가될 경우 공통요인(common factor) 또는 거의 공통인 요인이 모형 의 AR 부분과 MA 부분에 존재할 수 있기 때문에 공통항을 서로 상쇄시켜야 모수과잉의 현상이 일어 나지 않음

10. R실습

11. <mark>부록</mark>

(1) 단위근

- $\quad Z_t \phi_1 Z_{t-1} \phi_2 Z_{t-2} \dots \phi_p Z_{t-p} = \varepsilon_t \mathcal{Z}_{\leftarrow} \left(1 \phi_1 B \phi_2 B^2 \dots \phi_p B^p\right) Z_t = \varepsilon_t$
- 단, ε_t 는 서로 독립이며 평균이 0, 분산이 σ^2 인 백색잡음
- 정상성 조건 : $\phi(B) = (1 \phi_1 B \phi_2 B^2 \dots \phi_p B^p) = 0$ 의 근(root)의 절댓값이 1보다 큼
- 비정상 확률과정 : 1보다 크지 않은 근이 존재하는 경우
- 단위근(unit root) : $\phi(B) = 0$ 의 근 중 크기가 1인 근

단위근을 갖는 비정상 확률과정의 예 :

$$AR(1)$$
 $Z_t - \phi Z_{t-1} = \epsilon_t$

정상성 조건 : $\phi(B) = (1 - \phi B) = 0$ 의 근의 절대값이 1보다 커야 하므로 $|\phi| < 1$

만약
$$\phi=1$$
, 즉, 단위근을 갖는 경우
$$Z_t-Z_{t-1}=\epsilon_t \implies Z_t=\sum_{i=1}^t \epsilon_t \ (단 \ Z_0=0)$$

- → 단위근이 존재하는 불안정적인 시계열을 그대로 사용하면 표본 수가 증가함에 따라 회귀계수의 t-값도 증가하여 상관관계가 없 는 변수간에도 매우 강한 상관관계가 있는 것으로 나타나는 **가성회귀**(허구적 회귀: spurious regression)의 문제가 발생함.
- → 단위근 검정 : $\phi = 1$ 인지 여부를 판단하는 문제를 단위근 검정이라고 한다. 따라서 단위근 검정은 H_0 : $\phi = 1$ 를 검정하는 문제
- → 그래서 단위근검정을 통해서 검정을 통해 -> 차분을 하여 정상성조건을 만족시켜서 > 정상성을 만족하는 확률과정으로 바꾼다.

(2) Durbin-Levinson 알고리즘

회귀모형을 이용하여 PACF를 구하는 방법

종속변수 Z_{t+k} 를 $Z_{t+k-1}, Z_{t+k-2}, ..., Z_{t}$ 에 회귀시킨 회귀식

$$Z_{t+k} = \phi_{k1} Z_{t+k-1} + \phi_{k2} Z_{t+k-2} + \cdots + \phi_{kk} Z_t + \epsilon_{t+k}$$

양변에 Z_{t+k-j} $(j \ge 1)$ 를 곱한 후 기대값을 구하여 보면

$$\gamma_j = \phi_{k1} \gamma_{j-1} + \phi_{k2} \gamma_{j-2} + \dots + \phi_{kk} \gamma_{j-k}$$

양변을 %로 나누면

$$\rho_j = \phi_{k1} \rho_{j-1} + \phi_{k2} \rho_{j-2} + \dots + \phi_{kk} \rho_{j-k}$$

j=1,2,...,k에 대하여

$$\begin{cases} \rho_1 = \phi_{k1}\rho_0 & + \phi_{k2}\rho_1 & + \ \cdots + \phi_{kk}\rho_{k-1} \\ \rho_2 = \phi_{k1}\rho_1 & + \phi_{k2}\rho_0 & + \ \cdots + \phi_{kk}\rho_{k-2} \\ \vdots & \vdots & \vdots \\ \rho_k = \phi_{k1}\rho_{k-1} + \phi_{k2}\rho_{k-2} + \ \cdots + \phi_{kk}\rho_0 \end{cases}$$

연립방정식을 Cramer 공식을 이용

$$\phi_{11} = \rho_{1}, \quad \phi_{22} = \frac{\begin{vmatrix} 1 & \rho_{1} \\ \rho_{1} & \rho_{2} \end{vmatrix}}{\begin{vmatrix} 1 & \rho_{1} \\ \rho_{1} & 1 \end{vmatrix}} = \frac{\rho_{2} - \rho_{1}^{2}}{1 - \rho_{1}^{2}}, \quad \phi_{33} = \frac{\begin{vmatrix} 1 & \rho_{1} & \rho_{1} \\ \rho_{1} & 1 & \rho_{2} \\ \rho_{2} & \rho_{1} & \rho_{3} \end{vmatrix}}{\begin{vmatrix} 1 & \rho_{1} & \rho_{2} \\ \rho_{1} & 1 & \rho_{1} \\ \rho_{2} & \rho_{1} & 1 \end{vmatrix}}$$

$$\phi_{kk} = \frac{\begin{vmatrix} 1 & \rho_1 & \rho_2 & \cdots & \rho_{k-2} & \rho_1 \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{k-3} & \rho_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_1 & \rho_k \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 & \rho_2 & \cdots & \rho_{k-2} & \rho_{k-1} \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{k-3} & \rho_{k-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_1 & 1 \end{vmatrix}}$$

표본부분자기상관함수(sample partial autocorrelation function: SPACF) $\hat{\phi}_{kk}$ 위의 ϕ_{kk} 식에서 ρ_j 대신에 SACF $\hat{\rho}_j$ 를 대입하여 얻음

 k 가 커질 경우 행렬식의 계산을 하는 대신

 Durbin-Levinson 알고리즘, Durbin(1960), 이용

$$\begin{split} \hat{\phi}_{11} &= \hat{\rho}_1 \\ \hat{\phi}_{k+1,k+1} &= \frac{\hat{\rho}_{k+1} - \sum\limits_{j=1}^k \hat{\phi}_{kj} \hat{\rho}_{k+1-j}}{1 - \sum\limits_{j=1}^k \hat{\phi}_{kj} \hat{\rho}_j} \\ \hat{\phi}_{k+1,j} &= \hat{\phi}_{kj} - \hat{\phi}_{k+1,k+1} \hat{\phi}_{k,k+1-j}, \qquad j = 1,2,...,k \end{split}$$