

TD 2: Lois fondamentales

Lois de Kirchoff

Exercice 1: Donner l'expression littérale avant de faire l'application numérique

1) $E_1=10~V~; E_2=15~V~; R=1~k\Omega$ Calculer I

2) $I=0,3~A~;~E=5~V~;~R=8~\Omega$ Calculer U et V

3)
$$E_1=30~V~R=2~k\Omega$$
 Calculer E_2 pour que a) $I=10~mA$ b) $I=0$

4) Le générateur (E,R) impose U=80~V si $R_C=8~\Omega$ et le double si $R_C=32~\Omega$.

Calculer E et R

5) $E = 10 V R_1 = 3R_2$

Calculer U_1 , U_2 et V selon que K est ouvert ou fermé.

6) Calculer U dans les 4 cas possibles et pour les 2 circuits ci-dessous :

7) Calculer *U* pour les 2 circuits suivants :

$$E = 10 V; R_1 = 2 k\Omega; R_2 = 8 k\Omega$$
$$R_3 = 10 k\Omega$$

$$E=12\,V$$

Exercice 2 : Donner l'expression littérale avant de faire l'application numérique

1)
$$R_1=R_3=100~\Omega$$
 ; $R_2=200~\Omega$; $R_4=300~\Omega$ $I=1~A$

Calculer la résistance équivalente "vue" par le générateur de courant et les intensités dans ${\cal R}_2$ et ${\cal R}_3$.

2)
$$E = 64 V$$

 $R1 = 6,25 k\Omega$
 $R2 = 10 k\Omega$
 $R3 = 6 k\Omega$

Flécher et calculer les 3 courants

3) Calculer R' par rapport à R pour que U=E/4 Calculer U' par rapport à E.

EPITA/InfoSUPS1 Electronique

4)
$$E = 15 V$$

 $R_1 = 200 \Omega$
 $R_2 = 100 \Omega$
 $I_1 = 0.1 A$

Calculer U et I

5)
$$E_1 = 10 V$$

 $E_2 = 20 V$
 $R_1 = 2 k\Omega$
 $R_2 = 5 k\Omega$
 $R_3 = 10 k\Omega$

Calculer U

6) I = 2 mA $R = 1 k\Omega$

Calculer U_1 , U_2 et U_3

