- Suppose a new simpler CPU has
 - -85% of capacitive load of old CPU
 - 15% voltage and 15% frequency reduction
- Q. What is the impact on power?

$$\frac{P_{\text{new}}}{P_{\text{old}}} =$$

2

Exercise

- Computer A: 2GHz clock, 10s CPU time
- · Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2x more clock cycles
- Q. How fast must Computer B clock rate be?

CPI Example

 For a given program, compiler 1 produced instruction sequence 1, while compiler 2 produced instruction sequence 2. Both sequences consist of instructions from classes A, B, and C (IC = Instruction Count). Calculate the average CPI for each sequence.

Instruction Class	Α	В	С
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

6.	Represent	-13	ĺΛ	(84(5%)
----	-----------	-----	----	---------

- D signed magnitude:
- 2) one's compliment:
- 3 two's compliment:
- Q. What is the range of memory addresses a 32-bit machine (e.g., MIPS) can access?

: ____ bytes = ___ GB

Exercise: Deciding Target Address

• PC = 0xa7f8001c

J 0000 10 01 1111 1110 0000 0000 0100 0100 06 bits / 26 bits

Exercise: Loading 32-bits Constants

 What is MIPS assembly code for 32-bit constant 0x003D 0900 into \$s0?

operation
111

• Represent -3.90625_{ten} in IEEE single precision format

11.

Exercise #2

*

2 Exercise

-*

 $1.0110_2 \times 2^3 + 1.1000_2 \times 2^2$

$$1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$$

$$1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$$

16.
$$A[300] = h + A[300]$$

$$\begin{pmatrix} 4-byte & array & A[] \\ h & in & s2 \\ base & address & of A & in & st1 \end{pmatrix}$$

· C code:

=)

```
while (save[i] == k) i += 1;
   -iin $s3
```

- k in \$55
- -Address of save[] in \$s6
- -4-byte array save[]

```
18
```

```
int purple(int g, h) {
    int f;
    f = g + h;
    return f;
}

int blue(int a) {
    int b = 3;
    int c = purple(4, 3)
    return a + b + c;
}

int red(int a) {
    return blue(5);
}
```

· purple

· blue