STAT 260 Lecture Notes

Set 30 - Hypothesis Testing With Two Proportions

Sample 1: n_1 observations, population proportion p_1 , sample proportion $\hat{p_1}$ Sample 2: n_2 observations, population proportion p_2 , sample proportion $\hat{p_2}$

We want to estimate $p_1 - p_2$ to see if there is a difference between the two population proportions.

$$\widehat{p_1 - p_2} = \widehat{p_1} - \widehat{p_2} = \frac{X_1}{n_1} - \frac{X_2}{n_2}$$

Theorem: For large sample sizes we have that

is approximately standard normal.

A $(1-\alpha)100\%$ confidence interval for p_1-p_2 then is

$$(\hat{p_1} - \hat{p_2}) \pm z_{\alpha/2} \sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n_1} + \frac{\hat{p_2}(1 - \hat{p_2})}{n_2}}$$

Example 1

In a greenhouse 50 tomato seeds are planted and 90% germinate, whereas 80 tomato seeds are planted outdoors and 95\% germinate. Test if there is a difference in the germination proportion to planting in the greenhouse versus planting outdoors.

• We are testing the parameter ρι-ρz = true difference in proportion of germination between greenhouse (ρι) and outdoors (ρz)

• The null and alternation !

Ho': $\rho_1 = \rho_2$ \Longrightarrow Ho': $\rho_1 - \rho_2 = 0$ \longleftrightarrow write in form of $\rho_1 - \rho_2 = 0$ \longleftrightarrow $\rho_1 - \rho_2 + \rho_2 = 0$ \longleftrightarrow $\rho_1 - \rho_2 +$ • The null and alternative hypotheses are

• The test statistic is

$$Z = \frac{(\hat{\rho}_1 - \hat{\rho}_2) - (\rho_1 - \rho_2)}{\int_{\rho_1}^{\rho_1} (1 - \hat{\rho}_1) + \hat{\rho}_2^2 (1 - \hat{\rho}_2)}$$

• The observed value of the test statistic is

$$\frac{7005}{50} = \frac{(90-.95)-(0)}{(.95)(.05)} = -1.02$$
• The p-value is

• The p-value is

$$\rho\text{-value} = P(2 < -1.02) + P(2 > 1.02)
= 2 \cdot P(2 < -1.02)
= 2(0.1539)
= 0.3078$$

· Our conclusion is p-value = 0.3078 is bigger than any reasonable à valve (or we can use strength of evidence and say there is little to no evidence against the since p-value > 0.10) so our p-value is big and we keep Ho.

There is not enough evidence to say there is a difference in proportions of germination between the Example 2 greenhouse and the outdoors.

Using the setup from Example 1, construct a 95% confidence interval for

The CI we found of [-0.1459, 0.0459] estimates

PI-PZ.

J. and outdoors

greenhouse

The choice to put the greenhouse first was arbitrary. If we swap the order of the groups we get a CI for $\rho_1 - \rho_2$ of [-0.0459], 0.1459].

outdoors greenhouse

Swapping order of groups swaps signs and order of the upper and lower bounds.

Note that 0 is still in this CI though, so the interpretation of saying $p_1-p_2=0$, so $p_i=p_2$ is the same!

In other words: The order of your groups dues not matter, we get the same conclusion either way.