An Extension of Plücker Relations with Applications to Subdeterminant Maximization

Nima Anari Thuy-Duong Vuong

Stanford

November 19, 2022

Problem Definition

■ Input: Rectangular matrix $A \in \mathbb{R}^{m \times n}$, $m \le n$. Paramater $k \le m, n$

Problem Definition

- Input: Rectangular matrix $A \in \mathbb{R}^{m \times n}$, $m \le n$. Paramater $k \le m, n$
- Output: Compute

$$\mathsf{maxdet}_k(A) := \mathsf{max} \bigg\{ |\mathsf{det}(A_{I,J})| \ \bigg| \ I \in {[m] \choose k}, J \in {[n] \choose k} \bigg\}$$

Main result

Theorem (AV'20)

There is a polynomial time algorithm that on input $A \in \mathbb{R}^{m \times n}$, outputs sets of indices $I \in {[m] \choose k}$ and $J \in {[n] \choose k}$ guaranteeing

$$k^{O(k)} \cdot |\det(A_{I,J})| \ge \max \det_k(A).$$

■ Special case: $k = \min\{m, n\}$ i.e. maximal subdeterminant. Equivalent formulation: largest volume simplex problem.

■ Special case: $k = \min\{m, n\}$ i.e. maximal subdeterminant. Equivalent formulation: largest volume simplex problem.

■ [Nik'15]: 2^{O(k)}-approximation [Di+14]: matching lower bound.

$$detlb(A) := max\Big\{\sqrt[k]{maxdet_k(A)} \ \Big| \ k \ge 0\Big\}.$$

$$\mathsf{detlb}(A) := \mathsf{max}\Big\{\sqrt[k]{\mathsf{maxdet}_k(A)} \ \Big| \ k \geq 0\Big\}.$$

$$\mathsf{herdisc}(A) := \max_{J \subseteq [n]} \min_{x \in \{\pm 1\}^{|J|}} ||A_{[m],J}x||_{\infty}$$

$$\operatorname{detlb}(A) := \max \Big\{ \sqrt[k]{\operatorname{maxdet}_k(A)} \ \Big| \ k \geq 0 \Big\}.$$

$$\operatorname{herdisc}(A) := \max_{J \subseteq [n]} \min_{x \in \{\pm 1\}^{|J|}} ||A_{[m],J}x||_{\infty}$$

$$[\operatorname{LSV'86},\operatorname{Mat'13}]$$

$$1/2\operatorname{detlb}(A) \leq \operatorname{herdisc}(A) \leq O(\log(mn)\sqrt{\log n})\operatorname{detlb}(A)$$

$$\operatorname{Conjecture: RHS} \to O(\log n) + O(1)\operatorname{-approx} \operatorname{detlb} \Rightarrow O(\log n)\operatorname{-approx} \operatorname{of} \operatorname{herdisc}.$$

$$\operatorname{detlb}(A) := \max \left\{ \sqrt[k]{\operatorname{maxdet}_k(A)} \;\middle|\; k \geq 0 \right\}.$$

$$\operatorname{herdisc}(A) := \max_{J \subseteq [n]} \min_{x \in \{\pm 1\}^{|J|}} ||A_{[m],J}x||_{\infty}$$

$$[\operatorname{LSV'86},\operatorname{Mat'13}]$$

$$1/2\operatorname{detlb}(A) \leq \operatorname{herdisc}(A) \leq O(\log(mn)\sqrt{\log n})\operatorname{detlb}(A)$$

$$\operatorname{Conjecture: RHS} \to O(\log n) + O(1)\operatorname{-approx} \operatorname{detlb} \Rightarrow O(\log n)\operatorname{-approx} \operatorname{of} \operatorname{herdisc}.$$

$$[\operatorname{NT'14}]: \log^{3/2} n\operatorname{-approx} \operatorname{of} \operatorname{herdisc} \operatorname{using} \gamma_2.$$

Warm up: maximal case (k = m)

1 Initialize S_{col} ← S_{col}^{0}

Warm up: maximal case (k = m)

- **1** Initialize $S_{\text{col}} \leftarrow S_{\text{col}}^0$
- 2 at each step, moves to local maximum $T_{\rm col}$ in 1-neighborhood" of $S_{\rm col}$ i.e. $|T_{\rm col}\Delta S_{\rm col}| \leq 2$

General case

Consider

$$A := \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

exchange only 1 row/column, stuck with $\det = 0$ \Rightarrow need 2 exchanges per iteration!

Parameter $\alpha < 1$.

1 Start from a "good" location $S := (S_{\text{row}}, S_{\text{col}}) \leftarrow (S_{\text{row}}^0, S_{\text{col}}^0)$.

Parameter $\alpha < 1$.

- $\textbf{1} \ \, \mathsf{Start} \ \, \mathsf{from} \ \, \mathsf{a} \ \, \mathsf{"good"} \ \, \mathsf{location} \ \, \mathcal{S} := (\mathcal{S}_{\mathrm{row}}, \mathcal{S}_{\mathrm{col}}) \leftarrow (\mathcal{S}_{\mathrm{row}}^0, \mathcal{S}_{\mathrm{col}}^0).$
- 2 Move to $W := (W_{\text{row}}, W_{\text{col}})$ in "2-neighborhood" of S.

Parameter $\alpha < 1$.

- **1** Start from a "good" location $S := (S_{\text{row}}, S_{\text{col}}) \leftarrow (S_{\text{row}}^0, S_{\text{col}}^0)$.
- 2 Move to $W := (W_{row}, W_{col})$ in "2-neighborhood" of S.
- **3** If this move improve the objective by $\geq 1/\alpha$ i.e. $\alpha |\det(A_W)| > |\det(A_S)|$ then update $S \leftarrow W$ and go to step 2. Else output *S*.

Parameter $\alpha < 1$.

- **1** Start from a "good" location $S := (S_{\text{row}}, S_{\text{col}}) \leftarrow (S_{\text{row}}^0, S_{\text{col}}^0)$.
- 2 Move to $W := (W_{row}, W_{col})$ in "2-neighborhood" of S.
- **3** If this move improve the objective by $\geq 1/\alpha$ i.e. $\alpha |\det(A_W)| > |\det(A_S)|$ then update $S \leftarrow W$ and go to step 2. Else output S.

Runtime: $\log_{1/\alpha}(OPT/|\det(A_{S^0})|) \Rightarrow \text{ start with }$ $poly\{n, m\}^k$ -approximation

Local Search: (r, α) local-maxima

■ For indices $S = (S_{\text{row}}, S_{\text{col}})$, $T = (T_{\text{row}}, T_{\text{col}})$, let $d(S, T) := |S\Delta T|/2 = |S_{\text{row}}\Delta T_{\text{row}}|/2 + |S_{\text{col}}\Delta T_{\text{col}}|/2$

■ Let *r*-neighborhood of *S* be

$$\mathcal{N}_r(S) := \{T \mid d(S,T) \leq r\}.$$

■ S is (r, α) -local maxima iff $|\det(A_S)| \ge \alpha |\det(A_T)| \forall T \in \mathcal{N}_r(S)$. Observation: Local Search outputs $(2, \alpha)$ -local maxima.

Approximation Ratio: $k^{O(k)}$

Lemma

A $(2,\alpha)$ -local maximum S is an $(k/\alpha)^{O(k)}$ -approximate global optimum:

 $(k/\alpha)^{O(k)} \cdot |\det(A_S)| \ge \max\det_k(A).$

Approximate 2-exchange

Theorem (Exchange Property)

Let S, T be indices of two $k \times k$ submatrices, and assume that $S \neq T$. Then

$$|\det(A_S)| \cdot |\det(A_T)| \le O(k^2) |\det(A_{S\Delta U})| \cdot |\det(A_{T\Delta U})|$$

for some $U \in \mathcal{E}(S, T)$.

 $\mathcal{E}(S,T)$ be set of $U=(U_{\mathrm{row}},U_{\mathrm{col}})$ satisfying $S\Delta U,T\Delta U$ are valid location pairs, and $|U_{\mathrm{row}}|+|U_{\mathrm{col}}|\leq 4$.

Example

Figure: $U \in \mathcal{E}(S, T), U_{\text{col}} = \emptyset$

Exchange Property ⇒ Approximation Ratio

- Substitute $S := (2, \alpha)$ -local maxima. T arbitrary.
- Observe: $S\Delta U \in \mathcal{N}_2(S)$.

Exchange Property ⇒ Approximation Ratio

- Substitute $S := (2, \alpha)$ -local maxima. T arbitrary.
- Observe: $S\Delta U \in \mathcal{N}_2(S)$.

$$|\det(A_S)| \cdot |\det(A_T)| \le O(k^2) |\det(A_{S\Delta U})| \cdot |\det(A_{T\Delta U})|$$

Exchange Property \Rightarrow Approximation Ratio

- Substitute $S := (2, \alpha)$ -local maxima. T arbitrary.
- Observe: $S\Delta U \in \mathcal{N}_2(S)$.

$$|\det(A_S)| \cdot |\det(A_T)| \le O(k^2) |\det(A_{S\Delta U})| \cdot |\det(A_{T\Delta U})|$$

$$|\det(A_{\mathcal{S}})| \cdot |\det(A_{\mathcal{T}})| \leq O(k^2) \frac{|\det(A_{\mathcal{S}})|}{\alpha} \cdot |\det(A_{\mathcal{T}\Delta U})|$$

Exchange Property ⇒ Approximation Ratio

- Substitute $S := (2, \alpha)$ -local maxima. T arbitrary.
- Observe: $S\Delta U \in \mathcal{N}_2(S)$.

$$|\det(A_S)| \cdot |\det(A_T)| \le O(k^2) |\det(A_{S\Delta U})| \cdot |\det(A_{T\Delta U})|$$

$$|\det(A_S)| \cdot |\det(A_T)| \le O(k^2) \frac{|\det(A_S)|}{\alpha} \cdot |\det(A_{T\Delta U})|$$

$$|\det(A_T)| \leq O(k^2) \frac{1}{\alpha} |\det(A_{T\Delta U})|$$

■ Observe: $d(T\Delta U, S) \leq d(T, S) - 1$

(Continue)

■ Substitute T = OPT. Note: $d(T, S) \le 2k$.

$$\begin{aligned} |\det(A_T)| &\leq O(\frac{k^2}{\alpha}) |\det(A_{\mathcal{T}_1})| \leq (O(\frac{k^2}{\alpha}))^2 |\det(A_{\mathcal{T}_2})| \\ &\leq \dots \leq (O(\frac{k^2}{\alpha}))^{2k} |\det(A_{\mathcal{T}_{2k}})|, \end{aligned}$$

where $T_i = T_{i-1}\Delta U_i$. Note

$$d(T_{2k}, S) \le d(T_{2k-1}, S) - 1 \le \cdots \le 2k - 2k = 0$$

so $T_{2k} = S$.

Proof of Exchange Property

Classical Plucker relation:

$$\det(A_{[m],S})\det(A_{[m],T}) = \sum_{i \in S \setminus T} \delta_j^i \det(A_{[m],S\Delta\{i,j\}}) \cdot \det(A_{[m],T\Delta\{i,j\}})$$

where $j \in T \setminus S$.

Proof of Exchange Property

Classical Plucker relation:

$$\det(A_{[m],S})\det(A_{[m],T}) = \sum_{i \in S \setminus T} \delta^i_j \det(A_{[m],S\Delta\{i,j\}}) \cdot \det(A_{[m],T\Delta\{i,j\}})$$

where $j \in T \setminus S$.

2-dimensional Plucker relation (new!):
 Similar algebraic expression, but involves terms of form

$$\det(A_{S_{\mathrm{row}}\Delta U_{\mathrm{row}},S_{\mathrm{col}}\Delta U_{\mathrm{col}}})\cdot\det(A_{T_{\mathrm{row}}\Delta U_{\mathrm{row}},T_{\mathrm{col}}\Delta U_{\mathrm{col}}})$$

where
$$U = (U_{\text{row}}, U_{\text{col}}) \in \mathcal{E}(S, T)$$
.

Plucker relation

Classical:

Plucker relation

Classical:

$$\begin{pmatrix} \begin{bmatrix} 8 & 8 & 1 & 6 & 1 & 0 \\ 3 & 8 & 5 & 7 & 2 & 4 \\ 4 & 8 & 9 & 5 & 3 & 3 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} \\ \\ \\ \end{bmatrix} \end{pmatrix} + \begin{pmatrix} \begin{bmatrix} \\ \\ \\ \end{bmatrix} \end{pmatrix} + \begin{pmatrix} \begin{bmatrix} \\ \\ \\ \end{bmatrix} \end{pmatrix}$$

■ 2-dimensional:

$$\begin{pmatrix}
8 & 8 & 1 & 6 & 1 & 0 \\
3 & 8 & 5 & 7 & 2 & 4 \\
4 & 8 & 9 & 5 & 3 & 3 \\
4 & 8 & 9 & 2 & 2 & 3 \\
3 & 7 & 9 & 5 & 3 & 3 \\
4 & 8 & 6 & 1 & 3 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 0 \\
5 & 2 & 4 \\
4 & 8 & 5 & \\
9 & 2 & 3 \\
3 & 7 & 5 \\
4 & 8 & 1
\end{pmatrix} + \cdots$$

Triangle inequality: $|a + b| \le |a| + |b|$.

Triangle inequality: $|a + b| \le |a| + |b|$. 1-dimensional:

$$\det(A_{[m],S})\det(A_{[m],T}) = \sum_{i \in S \setminus T} \delta^i_j \det(A_{[m],S\Delta\{i,j\}}) \cdot \det(A_{[m],T\Delta\{i,j\}})$$

Triangle inequality: $|a + b| \le |a| + |b|$. 1-dimensional:

$$\det(A_{[m],S})\det(A_{[m],T}) = \sum_{i \in S \setminus T} \delta^i_j \det(A_{[m],S\Delta\{i,j\}}) \cdot \det(A_{[m],T\Delta\{i,j\}})$$

$$|\det(A_{[m],S})| \cdot |\det(A_{[m],T})| \le k \max |\det(A_{[m],S\Delta\{i,j\}})| |\det(A_{[m],T\Delta\{i,j\}})|$$

Triangle inequality: $|a + b| \le |a| + |b|$.

1-dimensional:

$$\det(A_{[m],S})\det(A_{[m],T}) = \sum_{i \in S \setminus T} \delta^i_j \det(A_{[m],S\Delta\{i,j\}}) \cdot \det(A_{[m],T\Delta\{i,j\}})$$

$$|\det(A_{[m],S})| \cdot |\det(A_{[m],T})| \le k \max |\det(A_{[m],S\Delta\{i,j\}})| |\det(A_{[m],T\Delta\{i,j\}})|$$

2-dimensional:

$$\det(A_S)\det(A_T) = \sum_{U \in \mathcal{E}(S,T)} c(U)\det(A_{S\Delta U})\det(A_{T\Delta U}),$$

Triangle inequality: $|a + b| \le |a| + |b|$.

1-dimensional:

$$\det(A_{[m],S})\det(A_{[m],T}) = \sum_{i \in S \setminus T} \delta^i_j \det(A_{[m],S\Delta\{i,j\}}) \cdot \det(A_{[m],T\Delta\{i,j\}})$$

$$|\det(A_{[m],S})| \cdot |\det(A_{[m],T})| \le k \max |\det(A_{[m],S\Delta\{i,j\}})| |\det(A_{[m],T\Delta\{i,j\}})|$$

2-dimensional:

$$\det(A_S)\det(A_T) = \sum_{U \in \mathcal{E}(S,T)} c(U)\det(A_{S\Delta U})\det(A_{T\Delta U}),$$

where
$$\sum |c(U)| = O(k^2)$$

Triangle inequality: $|a + b| \le |a| + |b|$.

1-dimensional:

$$\det(A_{[m],S})\det(A_{[m],T}) = \sum_{i \in S \setminus T} \delta^i_j \det(A_{[m],S\Delta\{i,j\}}) \cdot \det(A_{[m],T\Delta\{i,j\}})$$

$$|\det(A_{[m],S})| \cdot |\det(A_{[m],T})| \le k \max |\det(A_{[m],S\Delta\{i,j\}})| |\det(A_{[m],T\Delta\{i,j\}})|$$

2-dimensional:

$$\det(A_S)\det(A_T) = \sum_{U \in \mathcal{E}(S,T)} c(U)\det(A_{S\Delta U})\det(A_{T\Delta U}),$$

where
$$\sum |c(U)| = O(k^2)$$

$$|\det(A_S)| \cdot |\det(A_U)| \le O(k^2) \max |\det(A_{S\Delta U})| \cdot |\det(A_{T\Delta U})|$$

Open problems

■ 2-dim Plucker relation \longleftrightarrow relations between size-k Pfaffians of

$$X = \begin{bmatrix} 0 & A \\ -A^T & 0 \end{bmatrix}$$

General skew symmetric Y: no such relation, but Exchange Property probably exist

 $= 2^{O(k)}$ -approximation? $\Rightarrow O(1)$ -approxmiation for detlb(A).