

ÁCIDO-BASE | QUÍMICA 2.º BACH EJERCICIOS

ALBA LÓPEZ VALENZUELA

[Química II, UNEX] Indique la base o el ácido conjugado, en disolución acuosa, de las siguientes especies y escriba en cada caso, la reacción ácido-base correspondiente: a) CH ₃ COOH; b) NH ₃ ; c) Cl ⁻ ; d) NO ₂ ⁻ ; e) HF; f) H ₂ CO ₃ g) H ₃ O ⁺
Escribir los equilibrios de disociación de las siguientes especies, indicando las especies conjugadas y razonar si actúan como ácidos, bases o anfóteros frente al agua, según la teoría de Brønsted-Lowry: a) $CO_3^{\ 2^-}$; b) HS^- ; c) OH^- ; d) HCN ; e) C_6H_5COOH ; f) HCO_3^- g) HCl ; h) $NaOH$.
3 Completa los equilibrios, indicando el nombre de las especies y sus pares conjugados.
a) $H_3O^+ + \underline{\hspace{1cm}} \longrightarrow \underline{\hspace{1cm}} + NH_4^+$ c) $\underline{\hspace{1cm}} + CO_3^{2-} \longrightarrow Cl^- + \underline{\hspace{1cm}}$ b) $\underline{\hspace{1cm}} + OH^- \longrightarrow NH_3 + \underline{\hspace{1cm}}$ d) $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} \longrightarrow HF + OH^-$
[EBAU, Extremadura 2019] Para los siguientes iones y moléculas: 1) HS^- ; 2) NH_4^+ ; 3) HNO_3 ; 4) CO_3^{2-} ; 5) $H_2PO_4^{-}$
(a) Escribir la reacción de cada compuesto con el agua.
(b) Al reaccionar con el agua, justificar de acuerdo a la teoría de Brønsted-Lowry, el carácter ácido, básico o anfótero de cada compuesto.
[PAU, Extremadura 2010] a) Defina los conceptos de ácido y base según la teoría de Arrhenius.
b) Clasifique por su acidez, de mayor a menor, las siguientes disoluciones: 1) Disolución de pH 10; 2) disolución de pOH 5 3) disolución con concentración de iones OH - 10 ⁻¹² м; 4) disolución con concentración de protones 10 ⁻⁸ м.
Fortaleza de los ácidos y las bases
6 A partir de las constantes de acidez, ordena de mayor a menor fortaleza los siguientes ácidos: ácido acético, ácido sulfúrico ácido cianhídrico, ácido fluorhídrico.
7 Haciendo uso de los valores de K_a , indica cuáles de los siguientes aniones se comportan como bases de Brønsted-Lowry ion acetato, ion cloruro, ion nitrato, ion cianuro, ion cianato: OCN^- , ion hidrógenosulfato.
8 Si HA tiene p $K_a = 3.45$ y HB tiene un p $K_a = 6$, ¿cuál de los dos ácidos es más fuerte?
9 El ácido acético del vinagre, CH ₃ COOH, reacciona con bicarbonato de sodio, NaHCO ₃ desprendiendo un gas. Escribe la reacción química, justifícala a través de los valores de las constantes e indica qué sustancia es el gas.
\blacksquare Según los valores de las constantes de acidez $K_{\rm a}$ y basicidad $K_{\rm b}$ indica cuáles serán los productos de estas reacciones:
a) $HSO_4^- + HSO_3^- \longrightarrow$
b) HS ⁻ + HCN —→
c) $HS^- + HCO_3^- \longrightarrow$ d) $HCl + HS^- \longrightarrow$
e) $NH_3 + CH_3 - NH_2 \longrightarrow$
f) $NH_2OH + NH_3 \longrightarrow$
- *

- [PAU, Extremadura 2007] a) ¿Qué es el pH de una disolución? ¿y el pOH? ¿Pueden ser ambos simultáneamente menores que 6?
 - b) ¿Qué se entiende por grado de disociación? ¿Qué se entiende por ácido fuerte?
- Ordena las siguientes disoluciones de la más ácida a la más básica: a) $[H_3O^+] = 1 \times 10^{-3} \text{ M}$; b) pOH = 2.7; c) $[OH^-] = 1 \times 10^{-4} \text{ M}$; d) pH = 3.5; e) $[H_3O^+] = 1 \times 10^{-13} \text{ M}$.
- 13 Calcula el pH de las siguientes disoluciones:
 - (a) Ácido acético 0.2 м.
 - (b) Amoniaco 0.1 м.
 - (c) Ácido clorhídrico 0.01 м.
 - (d) 0.4 g de NaOH disueltos en 100 mL de agua.
 - (e) Se toman 2 mL de una disolución de HNO₃ al 83 % en masa y densidad 1.54 g/mL y se llevan a 500 mL.
 - (f) Se mezclan volúmenes iguales de la disolución de NaOH y de HNO₃.
 - (g) $HCl 1 \times 10^{-9} M.$
 - (h) Ba(OH)₂ 1×10^{-9} M.

Solución: g) pH = 7; h) pH = 7

14 Calcula:

- (a) El pH de 100 mL de una disolución de ácido nítrico preparada tomando 1 mL del ácido comercial del 25 % de riqueza y densidad 1.15 g/mL.
- (b) El pH de la disolución resultante de mezclar 75 mL de la disolución anterior con 25 mL de hidróxido potásico 0.25 m.
- 15 Calcula:
 - (a) El pH de la disolución resultante de mezclar 50 mL de HCl 1 m con 75 mL de NaOH 0.5 m.
 - (b) El volumen en mL de disolución acuosa 0.1 m de NaOH que hay que añadir a 100 mL de agua para que el pH resultante sea 12.
- Calcula las concentraciones de iones oxonio e iones hidróxido en una disolución acuosa cuyo pH es 10.
- 17 Indicar todas las especies químicas presentes en una disolución acuosa de cloruro de hidrógeno.
- 18 Calcula la constante de ionización de un ácido débil monoprótico sabiendo que en una disolución acuosa 0.4 m de dicho ácido se ioniza al 1.5 %.
- Se dispone de una disolución de ácido benzoico, C_6H_5COOH , con constante de acidez $K_a=6.5\times 10^{-5}$. Calcula $[H_3O^+]$, el pH del medio y el grado de ionización del ácido.

Solución: $[H_3O^+] = 1.77 \times 10^{-3} \text{ M}, \text{ pH} = 2.75, \alpha = 0.035$

- La K_a del ácido nitroso vale 4.5×10^{-4} . Calcula los gramos de este ácido que se necesitan para preparar 100 mL de disolución acuosa de pH 2.5.
- [21] Calcula la cantidad en gramos de ácido fórmico, HCOOH, que necesitamos para preparar 200 mL de disolución de pH 2.

Solución: 5.21 g

- Si la K_b del amoniaco es 1.8×10^{-5} , ¿cuál debe ser la molaridad de la disolución para que el pH sea 10?
- Una disolución 0.5 м de anilina, $C_6H_5NH_2$, tiene un pH de 11.2. Determina su K_b y el grado de disociación. Solución: $K_b = 5 \times 10^{-6}$; $\alpha = 3.17 \times 10^{-3}$
- Se disuelven 20 g de trietilamina, $(C_2H_5)_3N$, en agua hasta conseguir un volumen de 100 mL. Cuando se alcanza el equilibrio, la amina se ha ionizado en un 2.2 %. Calcula el pH de la disolución y la K_b de la amina.

Solución: pH = $12.64 \text{ y } K_{\text{b}} = 9.9 \times 10^{-4}$

Calcula la concentración inicial de un ácido monoprótico débil de constante 2.5×10^{-5} necesaria para obtener una disolución con pH = p K_a – 2.

- 26 A 25 °C, una disolución acuosa de amoniaco contiene 0.17 g de este compuesto por litro y está ionizado en un 4.3 %. Calcula:
 - (a) La concentración de iones amonio e hidróxido.
 - (b) La K_b del amoniaco.
 - (c) El pH de la disolución.
- 27 El ácido láctico es un ácido débil que podemos indicar como HL. Al medir el pH de una disolución 0.05 м de este ácido se obtiene un valor de 2.59. Calcula:
 - (a) La concentración H⁺ de la disolución.
 - (b) El valor de la constante de acidez.
 - (c) La concentración de OH de la disolución.

Solución: a)
$$[H^+] = 2.57 \times 10^{-3} \text{ m}$$
; b) 1.39×10^{-4} ; c) $3.89 \times 10^{-12} \text{ m}$

- 28 [EBAU, Extremadura 2017] Una disolución de ácido acético CH₃COOH tiene una concentración de 0.06 м. Sabiendo que para el ácido acético $K_a = 1.8 \times 10^{-5}$, calcular:
 - (a) El pH de la disolución.
 - (b) El grado de disociación del ácido acético.
 - (c) La concentración que debería tener una disolución de ácido clorhídrico HCl para que su pH sea el mismo que la disolución de ácido acético.
- [29] [EBAU, Extremadura 2020] Se preparan 5 L de disolución de un ácido monoprótico débil (HA) de masa molar 37 g mol⁻¹, disolviendo 18.5 g de esta sustancia. El pH de la disolución es 2.30. Calcular:
 - (a) El grado de disociación del ácido (α), expresado en %.
 - (b) Constante del ácido (K_a) .
- [BAU, Extremadura 2020] El pH de una disolución acuosa de un ácido monoprótico (HA) es 5,25. Sabiendo que K_a = 6.16×10^{-10} , calcular:
 - (a) la concentración inicial del ácido, expresada en mol L⁻¹;
 - (b) el grado de disociación del ácido (α), expresado en %.
- [EBAU, Extremadura 2018] Una disolución acuosa de un ácido monoprótico de concentración 0.1 mol L⁻¹ tiene un pH = 1.52.
 - (a) Calcular su constante de disociación.
 - (b) ¿Qué concentración debería tener la disolución para que el pH fuera 2?
- 32 Se dispone de una disolución de ácido acético 0.055 n. Calcula:
 - (a) El grado de disociación del ácido acético.
 - (b) La normalidad que debería tener una disolución de HCl para que el pH fuera igual al de la disolución de ácido acético.
- 33 El pH de 1 L de disolución de sosa caústica es 13. Calcular:
 - (a) los gramos de álcali utilizados en prepararla.
 - (b) el volumen de agua que hay que añadir a 1 L de la disolución anterior para que el pH sea 12.
- [PAU, Extremadura 2012] En un laboratorio se tienen dos matraces, uno conteniendo 15 mL de HCl cuya concentración es $0.05\,\mathrm{m}$ y el otro $15\,\mathrm{mL}$ de ácido etanoico (acético) de concentración $0.05\,\mathrm{m}$. K_{a} (ácido etanoico) = 1.8×10^{-5} .
 - (a) Calcule el pH de cada una de ellas.
 - (b) ¿Qué cantidad de agua se deberá añadir a la más ácida para que el pH de las dos disoluciones sea el mismo?
- Calcula el pH y el porcentaje de ionización del HF a las siguientes concentraciones: $1 \text{ m}, 0.1 \text{ m} \text{ y } 1 \times 10^{-4} \text{ m}$. ¿Qué conclusión puedes extraer de los resultados?

Solución: pH = 1.73 y 1.85 %; pH = 2.24 y 5.74 %; pH = 1.73 y 81.17 %; el α aumenta con la dilución

36	•		da por 300 mL de ácido clor	·hídrico 0.5 м у 400 mL с	łe ácido nítrico 0.3 м, más	
37	agua hasta un volumen total de 1 L? **En 50 m.J. de une displusión de écide pulíticies 0.05 v en dispulyon 1 (a de pulítica de se dis Superior de guerre con					
3/	En 50 mL de una disolución de ácido sulfúrico 0.05 м se disuelven 1.6 g de sulfato de sodio. Suponiendo que no ca el volumen de la disolución, calcula la concentración de cada uno de los iones y el pH.					
Ácidos polipróticos						
38 ♣ Calcula el pH de una disolución de ácido fosfórico 0.01 м.						
	HCN	NaCl	CH ₃ COOK	$\mathrm{NH_4F}$	NaNO ₂	
	NaCN	$Ba(NO_3)_2$	CH ₃ COONH ₄	C ₆ H ₅ COONa	CaHPO ₄	
	NH_3	$Ba(OH)_2$	CH_3NH_2	$\mathrm{NH_4CN}$	CH ₃ NH ₃ Cl	
40	De las sustancias ácidas y básicas del ejercicio anterior (no sales), indica sus pares conjugados según la teoría de Brønsted-Lowry.					
41	El nitrato de amonio es una sal que se utiliza como fertilizante. Al añadir al suelo una disolución acuosa de dicha sal, ¿se producirá alguna variación del pH ?					
42	[EBAU, Extremadura 2018] a) Razonar el carácter ácido, básico o neutro de disoluciones de las siguientes sales: NH ₄ ; KCN; NaCl; CH ₃ COONa.					
	b) Escribir las reacciones de hidrólisis de las sales anteriores que procedan.					
Datos: constantes.						
43	El color de las flores de la hortensia (hydrangea) depende, entre otros factores del pH del suelo en el que se encuentra, de forma que para valores de pH entre 4.5 y 6.5 las flores son azules o rosas; mientras que a pH superior a 8 las flores son blancas.					
	Dadas las siguientes disoluciones acuosas: Ca(NO ₃) ₂ , (NH ₄) ₂ SO ₄ , NaClO Y NH ₃ , indique razonadamente:					
(a) ¿Qué disolución/es añadiría al suelo si quisiera obtener hortensias de color blanco?						
(b) ¿De qué color serán las hortensias si añadiese al suelo una disolución de (NH ₄) ₂ SO ₄ .						
44	♣ Calcula el pH	de las siguientes disolucio	ones: a) KCN 0.1 м; b) NH	₄ Cl 0.1 м.		
45	5					
			Efecto del ion común			
46	b) A 100 mL de la disolución anterior se le añaden 10 mL de disolución 1 m de NH ₄ Cl. Suponiendo que los volúmenes son aditivos, calcula el pH y el porcentaje de disociación del amoniaco en esas condiciones. c) ¿Son coherentes los resultados con el principio de Le Châtelier?					
47	Solución: pH = 11.63 y 0.42 %; pH = 10.26 y 1.98 × 10^{-2} % \clubsuit a) Razona si el grado de disociación de un ácido es constante o depende de las condiciones.					
7/						
		o) ¿La concentración del ácido influye en el grado de disociación? c) ¿Cómo afecta la presencia de otras sustancias en disolución?				
		•	ado de disociación del ácido	fórmico la disolución er	n el medio de ácido clorhí-	

Дв Determina el pH de una disolución 0.1 м de ácido benzoico, С₆H₅COOH. ¿Cuántos moles de HCl debemos añadir a 1 L de esta disolución para que el pH del medio sea 1.5? Supón que la adición de HCl no modifica el volumen de la disolución.

drico, formiato de calcio o cloruro de calcio.

Solución: pH = 2.6; 0.032 mol.

...... Disoluciones reguladoras, amortiguadoras, tampón o búffer

- 49 👲 Calcula el pH y el grado de disociación del ácido benzoico en 100 mL de una disolución que contiene 1.22 g de ácido benzoico y 2.88 g de benzoato de sodio. ¿Cuál será el pH de la disolución después de añadir a la disolución anterior 10 mL de ácido clorhídrico 0.1 N?
- 互 💂 En un matraz de 250 mL se introducen 5 mL de ácido acético puro de densidad 1.05 g/mL y se añade agua destilada hasta enrasarse. Calcular: a) el grado de disociación y el pH; b) ¿qué concentración de acetato de sodio será necesaria para que al añadírsela a la disolución anterior, obtengamos un pH de 5?
- 뒼 🎍 ¿En qué proporción hay que mezclar una disolución 0.5 м de metilamina, СН₃NH₂, y una disolución 1 м de cloruro de metilamonio, CH₃NH₃Cl, para obtener una disolución amortiguadora de pH 10.5? Dato: p $K_{\rm b}$ (metilamina) = 3.44

- [52] Calcula la riqueza de una sosa comercial, si 30 g de la misma precisan 50 mL de ácido sulfúrico 3 м para su neutralización
- 53 Se diluyen 110 mL de ácido sulfúrico concentrado hasta 2 L. Se necesitan 5 mL del ácido diluido para la completa neutralización de 18 mL de disolución de hidróxido de sodio 0.5 N. ¿Cuál es la concentración, en g/L, del ácido concentrado?
- 54 Calcular: (a) Los gramos de potasa que hay que añadir a 250 g de agua para obtener un pH de 10. Considerar que el volumen no varía.
 - (b) Los mL de disolución 0.1 N de ácido clorhídrico que serán necesarios para neutralizar la disolución anterior.
- Рага valorar 50 mL de una disolución de Ba(OH),, se han utilizado 47 mL de una disolución de HCl 0.5 м. Calcula la concentración de la base.

Solución: 0.235 M

- Рага valorar 50 mL de una disolución de NaOH se han utilizado 47 mL de una disolución de CH3COOH 0.5 м.
 - (a) Calcula la concentración de la base.
 - (b) 👲 Determina el pH del punto de equivalencia.
 - (c) Razona qué indicador se puede utilizar para esta valoración.

Solución: a) 0.47 м; b) pH = 9.06; c) fenolftaleína o azul de timol

- 57 Se ha preparado una disolución formada por 100 mL de ácido nítrico 0.5 m y 300 mL de hidróxido de sodio 0.5 m. Calcula su pH.
- [58] Se mezclan 0.2 mL de una disolución de ácido nítrico de densidad 1.42 g/mL y 69.5 % en peso, con 30 mL de una disolución de sosa 0.2 м. Calcula el pH de la disolución resultante.
- 59 Calcula el pH resultante de mezclar 18 mL de KOH 0.15 м con 12 mL de H₂SO₄ 0.1 м.

Solución: 12

- [60] Una mezcla de 46.3 g de hidróxido de potasio y 27.6 g de hidróxido de sodio puro, se disuelven en agua y la disolución se diluye con agua hasta 500 mL. Calcular: a) el pH; b) el número de mL de una disolución 0.5 m de ácido sulfúrico que se gastarán al neutralizar 30 mL de la disolución anterior.
- [61] Calcula las concentraciones de iones oxonio, iones hidróxido y el pH de las siguientes disoluciones:
 - (a) La disolución preparada por dilución hasta 500 mL de 1 mL de disolución de ácido nítrico al 86 % en riqueza y densidad $1.47 \, g/mL$.
 - (b) Una disolución preparada por adición de 1.71 g de hidróxido de bario a 100 mL de hidróxido de bario 0.1 m. Considerar que no varía el volumen.
- 鍓 🎍 Calcula el volumen de ácido perclórico 0.15 n necesario para neutralizar las siguientes bases: (a) 125 mL de hidróxido de bario 0.2 m; (b) 0.3 g de bicarbonato sódico sólido.

- 🄞 🎍 Calcula el pH de una disolución que se obtiene al diluir a 100 mL una mezcla formada por 50 mL de ácido acético 0.1 м y 20 mL de hidróxido sódico 0.1 м.
- 📤 ¿Cuál es el pH de una disolución de HCl 0.01 м? Calcular el cambio de pH si se agregaran 0.02 moles de acetato de sodio a 1 L de esta disolución.
- [EBAU, Extremadura 2017] En el laboratorio se dispone de una botella con la siguiente etiqueta: ácido nítrico (HNO₃), 40 % masa; densidad, 1.42 kg/L. Determinar:
 - (a) El pH de la disolución obtenida tomando 1 mL de contenido de la botella y añadiendo agua hasta completar un volumen total de 100 mL.
 - (b) Si se toman 5.5 mL de esta disolución y se le añade gota a gota una disolución 0.05 м de NaOH con fenolftaleína como indicador, ¿qué volumen de esta disolución será necesario para neutralizar el ácido?
- [66] [EBAU, Extremadura 2017] Se desea conocer la concentración de una disolución de HCl, para lo cuál se valoran 15 mL de esta disolución con KOH 0.5 M, gastándose 24 mL de esta especie.
 - (a) ¿Cuál será la concentración molar de la disolución de HCl?
 - (b) Razonar cuál será el pH en el punto de equivalencia.
- [EBAU, Extremadura 2019] En el laboratorio tenemos una botella que contiene una disolución acuosa de ácido clorhídrico de pH = 1.5.
 - (a) Calcular la concentración del ácido.
 - (b) Si se quiere neutralizar 50 mL del ácido anterior con una disolución acuosa de hidróxido de potasio 0.15 mol L⁻¹, calcular el volumen de disolución (en mL) de hidróxido de potasio que se necesita.
- 68 🎍 Se dispone de 200 mL de una disolución 0.5 м de HCl. De dicha disolución se preparan 4 alícuotas de 50 mL, a cada una de las cuales se le añaden 10 mL, 49.0 mL, 49.9 mL y 50.01 mL de NaOH 0.5 м.
 - (a) Calcula el pH de las 4 disoluciones resultantes. (b) Dibuja la curva de valoración resultante. (c) ¿Qué indicador eligiríamos? ¿Porqué?
- 69 Se toman 15 mL de ácido nítrico concentrado del 38 % es peso y densidad 1.23 g/mL y se diluyen en una cantidad de agua suficiente hasta alcanzar un volumen final de 500 mL. A continuación, se valoran 50 mL de esta disolución con amoniaco, necesitándose 38.5 mL de la disolución amoniacal. El indicador elegido fue rojo congo, zona de viraje 3-5. Calcula:
 - (a) El pH de la disolución amoniacal. (b) ¿Ha sido correcta la elección del indicador?
- 70 🎍 [Grado en Bioquímica, US] Una muestra de 0.5125 g procedente de una mezcla de hidróxido de magnesio e hidróxido de litio requiere 29.82 mL de HCl 0.6385 m para su valoración ácido-base. ¿Cuál es el porcentaje de cada hidróxido en la mezcla?

Solución: 70 % de Mg(OH)₂ y 30 % de LiOHÁcido-base y solubilidad.....

- [EBAU, Extremadura 2020] La constante del producto de solubilidad, Kps, del dihidróxido de calcio, Ca(OH)₂, es 5.5 × 10^{-6} , a 25 °C. Determinar:
 - a) el pH y la solubilidad (en g L⁻¹) de Ca(OH)₂ a esta temperatura;
 - b) la solubilidad de Ca(OH)₂ a esta temperatura en presencia de una disolución 1.5 mol L⁻¹ de KOH.
- [EBAU, Extremadura 2015] A 20 °C, el pH de una disolución saturada de AgOH es 10.1.
 - a) Calcular la solubilidad (g L⁻¹) de AgOH, a esta temperatura.
 - b) Calcular el producto de solubilidad de este compuesto a 20 °C.
- [PAU, Extremadura 2010] Una disolución saturada de Ca(OH)₂ contiene 0.165 g de soluto por cada 200 mL de disolución. Calcular:
 - a) La constante del producto de solubilidad del hidróxido de calcio.
- b) El pH de la disolución.

......General

[PAU, Extremadura 2015] Indicar, razonadamente, si son ciertas o falsas las siguientes afirmaciones. Las que no sean ciertas se deben escribir correctamente : a) Hay sales que disueltas en agua dan lugar a disoluciones de pH ácido; b) Hay sales que disueltas en agua dan lugar a disoluciones de pH básico; c) La mezcla en equilibrio de igual número de moles de un ácido débil y su base conjugada siempre da lugar a una disolución de pH neutro; d) Una disolución de HCl 10^{-2} M tiene un pOH = 10.