DEVOIR SURVEILLÉ 1 A

Calculatrice autorisée Mercredi 24 septembre 2025

EXERCICE 1 (12 POINTS)

1. On a réalisé 900 lancers d'un dé à 4 faces.

Les résultats sont inscrits dans le tableau ci-dessous :

Scores	1	2	3	4
Nombre d'apparitions	200	220	210	270

Déterminer la médiane de cette série. Détails attendus.

2. Le tableau suivant donne les poids (en kg) de 30 élèves d'une classe.

Poids (en kg)	52	56	60	64	68	72	75	78
Effectif	3	6	5	7	4	2	2	1

Calculer la moyenne et l'écart type de cette série. Détails attendus.

3. On effectue des mesures sur une chaîne de production d'une usine qui conditionne des pots de confiture.

Masse (en g)	480	485	490	495	500	505	510	515
Effectif	1	3	15	23	31	85	25	12

- a) Combien de pots ont été testés?
- b) Comparer les proportions de pots de masse strictement supérieure à 500 g et de masse strictement inférieure à 500 g.
- c) La chaîne de production est considérée comme conforme si :
 - l'étendue des masses est inférieure à 40 g;
 - la médiane vaut 505 g;
 - la moyenne \bar{x} vaut 500 g à 5 g près;
 - au moins 90% de la production est dans l'intervalle $[\bar{x}-2\sigma\,;\,\bar{x}+2\sigma]$ où σ est l'écart type de la production.

Que peut-on conclure quant à la conformité de la chaîne?

CORRECTION

- 1. On a N=900 lancers. Cumul des effectifs : 200; 420; 630; 900. La médiane correspond à la valeur au rang 450 (milieu de la série). On voit que $420 < 450 \le 630$, donc la médiane vaut 3.
- **2.** Effectif total : N = 30.

Moyenne:

$$\bar{x} = \frac{\sum x_i n_i}{N} = \frac{52 \times 3 + 56 \times 6 + 60 \times 5 + 64 \times 7 + 68 \times 4 + 72 \times 2 + 75 \times 2 + 78 \times 1}{30}$$
$$\bar{x} = \frac{1883}{30} \approx 62,8 \text{ kg.}$$

Écart type:

$$\sigma = \sqrt{\frac{\sum n_i (x_i - \bar{x})^2}{N}}$$

$$\sigma = \sqrt{\frac{1}{30} \left(3(52 - 62,8)^2 + 6(56 - 62,8)^2 + \dots + 1(78 - 62,8)^2 \right)}$$

$$\sigma \approx 7.7 \text{ kg.}$$

- 3. a) Nombre total de pots : N = 1 + 3 + 15 + 23 + 31 + 85 + 25 + 12 = 195.
 - b) Masse strictement $< 500 \,\mathrm{g}: 1+3+15+23+31 = 73 \,\mathrm{pots} \,\mathrm{sur} \,195 \,(\approx 37.4\%)$. Masse strictement $> 500 \,\mathrm{g}: 85+25+12 = 122 \,\mathrm{pots} \,\mathrm{sur} \,195 \,(\approx 62.6\%)$.
 - c) Vérification des critères :
 - Étendue: 515 480 = 35 < 40
 - Médiane : $N/2 = 97.5 \Rightarrow$ valeur entre les rangs 97 et 98. Le $97^{\rm e}$ et le $98^{\rm e}$ pot pèsent 505 g, donc médiane = 505
 - Moyenne:

$$\bar{x} = \frac{480 \times 1 + 485 \times 3 + 490 \times 15 + \dots + 515 \times 12}{195} \approx 500, 4 \text{ g}$$

(dans la tolérance de ś5 g)

• Écart type : $\sigma \approx 10.8$ g Intervalle $[\bar{x} - 2\sigma, \bar{x} + 2\sigma] \approx [478, 8; 521, 9]$ Nombre de pots dans lintervalle : tous sauf éventuellement les 480 g plus de 90%

Conclusion: tous les critères sont remplis, donc la chaîne est conforme.

EXERCICE 2 (8 POINTS)

On a tracé ci-dessous les courbes de quatre fonctions affines f_1 , f_2 , f_3 et f_4 . Répondre aux questions suivantes en **entourant** la ou les bonnes réponses **sur le sujet**.

- 1. Quel est le coefficient directeur de la fonction f_2 ?
 - A) -3

C) 1,5

B) $-\frac{3}{2}$

- D) $-\frac{2}{3}$
- **2.** Quel est le coefficient directeur de la fonction f_1 ?

- A) -2
- B) $\frac{1}{2}$

- C) -0.5
- D) 2
- **3.** Quelle est l'ordonnée à l'origine de la fonction f_3 ?
 - A) -3
 - B) $\frac{3}{2}$

- C) -1,5
- D) $\frac{2}{3}$
- 4. Parmi les quatre fonctions, laquelle a un coefficient directeur négatif et une ordonnée à l'origine positive?
 - A) f_1
 - B) f_2

- C) f_3
- D) f_4

CORRECTION

- **1.** Coefficient directeur de $f_2:-\frac{2}{3}$ (rép. D).
- **2.** Coefficient directeur de f_1 : $\frac{1}{2}$ (rép. B).
- **3.** Ordonnée à lorigine de f_3 : -3 (rép. A).
- 4. Coefficient directeur négatif et ordonnée à lorigine positive : f_2 (rép. B).