

Dynamic Reordering

Traditional backtracking uses fixed ordering of variables & values, e.g., random order or place variables with many constraints first.

You can usually do better by choosing an order dynamically as the search proceeds.

- Most constrained variable
 when doing forward-checking, pick variable with fewest legal
 values to assign next (minimizes branching factor)
- Least constraining value
 choose value that rules out the fewest values from neighboring
 domains

Dynamic Reordering

(smallest domain)

Which country should we color next

What color should we pick for it?

E most-constrained variable

Which country should we color next

What color should we pick for it?

E most-constrained variable (smallest domain)

RED least-constraining value (eliminates fewest values fron neighboring domains)

When examining assignment $V_i = d_k$, remove any values inconsistent with that assignment from neighboring domains in constraint graph.

When examining assignment $V_i = d_k$, remove any values inconsistent with that assignment from neighboring domains in constraint graph.

When examining assignment $V_i = d_k$, remove any values inconsistent with that assignment from neighboring domains in constraint graph.

We have a conflict whenever a domain becomes empty.

When backing up, need to restore domain values, since deletions were done to reach consistency with tentative assignments considered during search.

Constraint Propagation (aka Arc Consistency)

Arc consistency eliminates values from domain of variable that can never be part of a consistent solution.

$$V_i \rightarrow V_i$$

Directed arc (V_i, V_j) is arc consistent if $\forall x \in D_i \exists y \in D_j$ such that (x,y) is allowed by the constraint on the arc

We can achieve consistency on arc by deleting values form D_i (domain of variable at tail of constraint arc) that fail this condition.

Constraint Propagation Example

Graph Coloring

Initial Domains are indicated

Different-color constraint

Graph Coloring

Initial Domains are indicated

Arc examined	Value deleted
V ₁ - V ₂	none

Graph Coloring Initial Domains are indicated

Arc examined	Value deleted
V ₁ - V ₂	none
V ₁ - V ₃	V ₁ (G)
V ₂ -V ₃	V ₂ (G)

Graph Coloring

Initial Domains are indicated

Arc examined	Value deleted
$V_1 - V_2$	none
$V_1 - V_3$	V ₁ (G)

Constraint Propagation Example

Graph Coloring

Initial Domains are indicated

Arc examined	Value deleted
$V_1 - V_2$	none
$V_1 - V_3$	V ₁ (G)
$V_2 - V_3$	V ₂ (G)
$V_1 - V_2$	V ₁ (R)

Graph Coloring

Initial Domains are indicated

Arc examined	Value deleted
$V_1 - V_2$	none
$V_1 - V_3$	V ₁ (G)
$V_2 - V_3$	V ₂ (G)
$V_1 - V_2$	V ₁ (R)
V ₁ -V ₃	none

Different-color constraint

Graph Coloring

Initial Domains are indicated

Arc examined	Value deleted
V ₁ - V ₂	none
$V_1 - V_3$	V ₁ (G)
$V_2 - V_3$	V ₂ (G)
V ₁ - V ₂	V ₁ (R)
V ₁ - V ₃	none
V ₂ -V ₃	none

Constraint Propagation (aka Arc Consistency)

Arc consistency eliminates values from domain of variable that can never be part of a consistent solution.

$$V_i \rightarrow V_i$$

Directed arc (V_i, V_j) is arc consistent if $\forall x \in D_i \exists y \in D_j$ such that (x,y) is allowed by the constraint on the arc

We can achieve consistency on arc by deleting values form D_i (domain of variable at tail of constraint arc) that fail this condition.

Assume domains are size at most <u>d</u> and there are <u>e</u> binary constraints.

A simple algorithm for arc consistency is O(ed3) – note that just verifying arc consistency takes O(d2) for each arc.