O CURSO DE MÉTODOS FORMAIS Introdução à Lógica Computacional

Marcelo Finger
Sala 210C — mfinger@ime.usp.br

Departamento de Ciência da Computação Instituto de Matemática e Estatística Universidade de São Paulo

2022

Tópicos

- 1 Introdução ao Curso
- ② Brincadeiras Lógicas
- 3 Introdução Histórica

Ρκόχιμο Τόριςο

- Introdução ao Curso
- ② Brincadeiras Lógicas
- Introdução Histórica

• Lógica Proposicional Clássica

Marcelo Finger

- Lógica Proposicional Clássica
 - Sintaxe, Semântica, Resolvedores SAT

- Lógica Proposicional Clássica
 - Sintaxe, Semântica, Resolvedores SAT
- Lógica Clássica de 1a Ordem

Marcelo Finger

- Lógica Proposicional Clássica
 - Sintaxe, Semântica, Resolvedores SAT
- Lógica Clássica de 1a Ordem
- Verificação de programas sequênciais

Marcelo Finger

CRITÉRIOS DE AVALIAÇÃO

$$MP = \frac{2*P1 + 3*P2}{5}(comSUB)$$

ME: média aritmética simples dos exercícios

$$MF = \left\{ egin{array}{ll} rac{ME + 2*MP}{3}, & \textit{se } MP \geq 5 \textit{ e } \textit{nME} \geq 5 \\ \min\{ME, MP\}, & \textit{caso contrário} \end{array} \right.$$

BIBLIOGRAFIA

Lógica Para Computação

Flávio Soares C. da Silva Marcelo Finger Ana Cristina Vieira de Melo

Cengage Learning, 2a Edição

BIBLIOGRAFIA SECUNDÁRIA

Logic in computer science, Michael Huth and Mark Ryan.
 Capítulos 1, 2 e 4

Vários livros disponíveis na internet:

- Teach yourself logic.
- A friendly introduction to Logic
- etc

Nota — Pontos de vista: matemática, filosofia, computação

Marcelo Finger DC
O Curso de Métodos Formais

Ρκόχιμο Τόριςο

- Introdução ao Curso
- 2 Brincadeiras Lógicas
- ③ INTRODUÇÃO HISTÓRICA

MU-Puzzle

("Gödel, Escher e Bach", Hofstadter)

Transforme MI em MU:

- Adicione um U no final de qualquer coisa que termine com I
- Dobre qualquer coisa após o M (mude Mx para Mxx)
- Troque qualquer III por U.
- Remova qualquer UU.

MU-Puzzle

("Gödel, Escher e Bach", Hofstadter)

Transforme MI em MU:

- Adicione um U no final de qualquer coisa que termine com I
- Dobre qualquer coisa após o M (mude Mx para Mxx)
- Troque qualquer III por U.
- Remova qualquer UU.

MI o MIU o MIIU o MIIIU o MUU o MUUU o MU

Zebra-Puzzle

5 casas

- Cor da casa
- Nacionalidade do morador
- Bebida preferida
- Cigarro preferido Marca de Carro
- Animal de estimação

10 / 18

AFIRMAÇÕES

São cinco casas alinhadas. O inglês mora na casa vermelha. O espanhol é dono do cachorro. O café é bebido na casa verde. O ucraniano bebe chá. A casa verde fica imediatamente à direita da casa de marfim. O dono da Ferrari é dono de caramujos. Kombi é da casa amarela. O leite é bebido na casa do meio. O norueguês mora na primeira casa. O homem que tem uma BMW vive ao lado do homem com a raposa. Kombi é guardada na casa ao lado da casa onde o cavalo é mantido. Dono do fusca bebe suco de laranja. Os japoneses dirigem Honda. O norueguês mora ao lado da casa azul.

Próximo Tópico

- Introdução ao Curso
- ② BRINCADEIRAS LÓGICAS
- 3 Introdução Histórica

Duas Origens da Lógica Moderna

(Pulando lógica aristotélica, lógica medieval (área enorme))

- Origem algébrica: Álgebra Booleana (1854)
- Origem conjuntística: Cantor e a existência de conjuntos incontáveis (1874)
 - Infinito potencial: ∞
 - Infinito atual: $\aleph_0, \aleph_1, \ldots, \aleph_n, \ldots$
 - Hipótese do Contínuo: $card(\mathbb{R}) = \aleph_1$?

Marcelo Finger DCC-IME-USI

Frege e o Projeto Formalista

- Frege propôs o Cálculo de Predicados para raciocinar sobre conjuntos potencialmente infinitos
- Paradoxo de Russell (1905): o conjunto $U = \{x | x \notin x\}$ não existe. Consequências:
 - O conjunto de todos os conjuntos não existe (não é um conjunto)
 - O cálculo de Frege é inconsistente
 - Surge a Lógica de Primeira Ordem, que permite apenas quantificação sobre elementos de um conjunto dado (domínio)

HILBERT E O PROJETO MECANICISTA

- Hilbert (1923) queria encontrar uma conjunto de axiomas a partir dos quais fosse possível demonstrar todas as verdades matemáticas de forma finitística (algorítmica/recursiva).
- Em 1930 Goedel axiomatiza a Lógica de Primeira Ordem (LPO)
- Em 1931 Goedel mostra que a aritmética não é recursiva
- Fim do programa mecanicista de Hilbert!
- Resultados a partir de 1931 mostram vários formalismos capazes de expressar Funções Recursivas Gerais: Lógica de 1a ordem, Cálculo Lâmbda, Funções Parciais Recursivas, Sistemas de Reescrita de Post.

MARCELO FINGER

O CURSO DE MÉTODOS FORMAIS

• Tese de Church: Recursivo = Computável

- Tese de Church: Recursivo = Computável
- Artigo de Alan Turing (1936/7):

- Tese de Church: Recursivo = Computável
- Artigo de Alan Turing (1936/7):
 - Existem números não computáveis

- Tese de Church: Recursivo = Computável
- Artigo de Alan Turing (1936/7):
 - Existem números não computáveis
 - A Lógica de 1a ordem não é decidível/recursiva

- Tese de Church: Recursivo = Computável
- Artigo de Alan Turing (1936/7):
 - Existem números não computáveis
 - A Lógica de 1a ordem não é decidível/recursiva
 - Máquinas de Turing universal e o problema da parada

- Tese de Church: Recursivo = Computável
- Artigo de Alan Turing (1936/7):
 - Existem números não computáveis
 - A Lógica de 1a ordem não é decidível/recursiva
 - Máquinas de Turing universal e o problema da parada
 - Máquinas de turing universais expressam as funções recursivas

- Tese de Church: Recursivo = Computável
- Artigo de Alan Turing (1936/7):
 - Existem números não computáveis
 - A Lógica de 1a ordem não é decidível/recursiva
 - Máquinas de Turing universal e o problema da parada
 - Máquinas de turing universais expressam as funções recursivas
- Tese de Church-Turing

- Tese de Church: Recursivo = Computável
- Artigo de Alan Turing (1936/7):
 - Existem números não computáveis
 - A Lógica de 1a ordem não é decidível/recursiva
 - Máquinas de Turing universal e o problema da parada
 - Máquinas de turing universais expressam as funções recursivas
- Tese de Church-Turing
- Primeiros computadores (1946): construir a máquina universal de Turing.

NASCIMENTO DA TEORIA DA COMPLEXIDADE

- Hartmanis e Stearns (1963–1965): criam o conceito de classe de complexidade
- Uma forma rigorosa de se referir a problemas de complexidade semelhante ou mais/menos complexos.
- Hierarquia de complexidade temporal: $TD(f(n)) \subseteq TD(f(n)^2)$
- Baseado em máquinas de Turing (até então não eram utilizadas)
- Hierarquia de espaço; tb tempo e espaço não-determinísticos.

Marcelo Finger DCC-IME-USI

SAT E A QUESTÃO P = NP

- Cook (1971): SAT é NP-completo; Levin (1973) descobriu outro problema NP-completo independentemente
- Teoria da prova de lógica proposicional é um problema central em computação
- Questão P=NP aberta até hoje
 Criticar é mais fácil do que fazer!
- Grande desenvolvimento em resolvedores SAT desde 1992.