King Mongkut's University of Technology Thon Burrens

Final-term Examination

Seillester M2011 ลิยีพระจะมหาศักราช

MEE 224 Thermal Engineering

Credits 3

Department of Control system and Instrumentation Engineering

25 November 2013

13:00 - 16:00

Note: 1. You are not allowed to bring lecture notes and any other texts to the examination room.

- 2. Calculators are permitted.
- 3. Answer all six questions.
- 4. If you have any doubt that the given information does not clarify, you may assume.
- 5. Tables of thermodynamic properties and charts are provided.

Total marks $20 \times 6 = 120$

Dr. Wanchai Asvapoositkul

Basic Principle Formulations

Simple Compressible Closed System:

Conservation of mass:

$$m_1 = m_2$$

Conservation of energy:

$$Q = U_2 - U_1 + W$$

Mechanical work of simple compressible system: $W = \int p \, dV$

Open system, Steady Flow: one inlet, one outlet

Conservation of mass:

$$m'_i = m'_e = \rho_i A_i \overline{v}_i = \rho_e A_e \overline{v}_e$$

Conservation of energy:

$$q - w = h_e - h_i + \left(\frac{v_e^2 - v_i^2}{2}\right) + g(z_e - z_i)$$

Properties of pure substances:

Specific heats:

$$c_v = \left(\frac{\partial u}{\partial T}\right)_v \text{ and } c_p = \left(\frac{\partial h}{\partial T}\right)_p$$

The specific volume of the mixture (liquid and vapor): $v = v_f + x (v_g - v_f)$

An ideal gas equation of state:

$$\frac{p_{1}v_{1}}{T_{1}}=\frac{p_{2}v_{2}}{T_{2}}$$

Enthalpy

$$h = u + p v$$

 $du = c_v dT$, $dh = c_p dT$

Gas Law

$$p v = R T$$

The isentropic relations of ideal gases with constant specific heats

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{P_2}{P_1}\right)^{\frac{(k-1)}{k}} = \left(\frac{v_1}{v_2}\right)^{k-1}$$

Air at room temperature are $c_p = 1.005 \text{ kJ/kg·K}$, $c_v = 0.718 \text{ kJ/kg·K}$, R = 0.287 $kJ/kg \cdot K$, and k = 1.4

Clausius inequality

$$\oint \left(\frac{dQ}{T}\right) \le 0$$

Name: Student ID.

Entropy

$$dS = \left(\frac{dQ}{T}\right)_{\text{int rev}}$$

สามักษะสมุณ เพาวิทยาลัยเทคในใสยีพระจอมแกล้วอมทั

T ds relation

$$T ds = du + p dv$$

 $T ds = dh - v dp$

Compression ratio

$$r = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{V_{\text{BDC}}}{V_{\text{TDC}}}$$

MEP

$$MEP = \frac{w_{net}}{v_{max} - v_{min}}$$

1.1 What is a thermal energy reservoir? Give some examples.

Ans:

1.2 Is it possible for a heat engine to operate without rejecting any waste heat to a low-temperature reservoir?

Ans:

1.3 What is an isentropic process?

Ans:

1.4 What is a compression process of gas between the same pressure limits that requires the minimum work?

Ans:

- 1.5 How does the thermal efficiency of an ideal cycle, in general, compare to that of a Carnot cycle operating between the same temperature limits?
 Ans.
- 1.6 How do gas power cycles differ from vapor power cycles? Ans:
- 1.7 How does a diesel engine differ from a gasoline engine? Ans:

	Student ID.									
1.8 Define the than unity? Ans.	สานาทุษธรรม coefficient of performance of a heat pump in words. Can it be greater									
1.9 Define spe Ans.	ecific humidity and relative humidity of air-conditioning in words.									
1.10 What is t Ans.	he difference between a refrigerator and an air conditioner?									
of the computants of the computant of the computants of the computants of the computant of the	standard Otto cycle has a thermal efficiency of 40%. At the beginning pression process, air is at 95 kPa and 27°C, and 750 kJ/kg of heat is air during the constant-volume heat-addition process. Determine ression ratio, (b) the pressure and temperature at the end of the heat cess, (c) the net work output, and (d) the mean effective pressure for the ned Air is an ideal gas with constant specific heats. $[c_p = 1.005 \text{ kJ/kg·K}, \text{J/kg·K}, \text{R} = 0.287 \text{ kJ/kg·K}, \text{ and } k = 1.4]$									
Answer:	CR =									
	$P_{\text{max}} = \dots kPa$									
	$T_{\text{max}} = \dots ^{\circ}C$									
	$Q_{\text{out}} = \dots kJ/kg$									
	$W_{\text{netout}} = \dots kJ/kg$									
	$MEP = \dots kPa$									

Name:	Student ID. Thinness
	งหาวิทยาลัยเทคใน โลยีพระจอมเกล้าะน _บ ะ

Name: Student ID. . Student ID.

3. A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of 3 MPa and 50 kPa. The temperature of the steam at the turbine inlet is 700°C, and the mass flow rate of steam through the cycle is 35 kg/s. Show the cycle on a *T-s* diagram with respect to saturation lines, and determine (a) the thermal efficiency of the cycle and (b) the net power output of the power plant.

Answer: $\eta_{th} = \dots$

Wnet =MW

Name:	Student ID
4. Given data:	Refrigerant 134a (properties refer to p-h diagram)
	Average temperature at the evaporator coil =าสิยาสิยาทาใน ใกยีพระจอมเกล้ารูบบร
	Average temperature at the condenser coil = 40 °C
	The compressor power = 2.90 kW
Assumption: A	An ideal vapor-compression refrigeration cycle operates at steady state
Find:	Draw the operating cycle on given diagram & complete the table
below.	
	The mass flow rate of refrigerant in kg/s
	The refrigerating capacity, in tons (1 ton of refrigeration = 3.516 kW) The coefficient of performance

State	T (°C)	P (MPa)	h (kJ/kg)	s (kJ/kg-K)	Phase description
1					
2					
3					
4					

The mass flow rate of refrigerant = kg/s
The refrigerating capacity = tons
COP. =

The refrigerating capacity,

tons

Name:	Student ID	สานกันที่ที่รักษ
144444 11111111111111111111111111111111	~	AND INCOMES AND PROPERTY.

5. Air from a workspace enters an air conditioner unit at 30. Color bulb and 25 °C wet bulb. The volume flow rate of the air is 278 l/s. The air leaves the air conditioner and returns to the space at 25 °C dry bulb and 6.5 °C dew-point temperature. Sketch the process on the psychrometric. Determine the heat transfer rate from the air, in kW, and the mass flow rate of condensate water, if any, in kg/h. Assuming that the condensate is removed from the cooling section at the same temperature of the leaving wet bulb temperature.

State	T _{db} (°C)	T _{wb} (°C)	T _{dp} (°C)	h (kJ/kg dry air)	RH (%)	V (m³/kg dry air)	ω (g water /kg dry air)
1			,				
2							

Name:	Student ID.	14110000343496468011

6. Use your knowledge of Thermodynamics to explain how to save energy in heat engines such as car engines and heat pumps such as refrigerators. Hint: use Carnot principle to adjust temperatures or heat transfer of such devices in order to improve their performance.

ซานเกซส์ผู้รัฐ PRESSURE (MPa)_{ภาวิทยาลัยเทค}ในใลยีพระจอบเกล็วธนาคิ

เหาวิทยาลัยเทคในโลยีพระจอมแกล้วธนา^เ

890 | Thermodynamics

TABLE	A 4												
Satura	ted water-	Temperatu	re table										
		•	fic volume, m ³ /kg		<i>Internal energy,</i> kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg · K		
Temp.,	Sat. press.,	Sat. liquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. Iiquid,	Evap.,	Sat.	
T °C	P _{sat} kPa	v_f	v_g	u_t	U _{tg}	u _g	he	h _{fg}	h _g	5,	Stg	Sg	
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8 9487 8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661	
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7 8466 7 6832	8.5567 8.4520 8.3517 8.2556 8.1633	
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.3710 7 2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540	
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151	
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1 4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256,4 2243,1 2229,7 2216,0 2202,1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292	
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827	
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650	
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302	

892 | Thermodynamics

TABLE A	- 5											
Saturate	ed water-	Pressure t	able									
			fic volume, m³/kg		i <i>nternal e.</i> kJ/kg	_	Enthalpy, kJ/kg				<i>Entropy,</i> kJ/kg · K	
Press.,	Sat. temp.,	Sat. liquid,	Sat. vapor,	Sat. Iiquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,
P kPa	T _{sat} °C	v_t	v_g	u,	u _{fg}	ug	h,	h _{fg}	hg	\$ _f	S _{fg}	Sg
1.0 1.5 2.0 2.5	6.97 13.02 17.50 21.08	0.001000 0.001001 0.001001 0.001002	87.964 66.990 54.242	29.302 54.686 73.431 88.422	2355.2 2338.1 2325.5 2315.4	2384.5 2392.8 2398.9 2403.8	29.303 54.688 73.433 88.424	2484.4 2470.1 2459.5 2451.0	2539,4	0.1956 0.2606 0.3118	8.4621 8.3302	8.8270 8.7227 8.6421
3.0 4.0 5.0 7.5	24.08 28.96 32.87 40.29	0.001003 0.001004 0.001005 0.001008	45.654 34.791 28.185 19.233	100.98 121.39 137.75 168.74	2306.9 2293.1 2282.1 2261.1	2407.9 2414.5 2419.8 2429.8	100.98 121.39 137.75 168.75	2443.9 2432.3 2423.0 2405.3	2553.7 2560.7 2574.0	0.3543 0.4224 0.4762 0.5763	8.2222 8.0510 7.9176 7.6738	8.3938 8.2501
10 15 20	45.81 53.97 60.06	0.001010 0.001014 0.001017	14.670 10.020 7.6481	191.79 225.93 251.40	2245.4 2222.1 2204.6	2437.2 2448.0 2456.0	191.81 225.94 251.42	2392.1 2372.3 2357.5	2583.9 2598.3 2608.9	0.7549	7.4996 7.2522 7.0752	8.1488 8.0071 7.9073
25 30 40 50	64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	6.2034 5.2287 3.9933 3.2403	271.93 289.24 317.58 340.49	2190.4 2178.5 2158.8 2142.7	2462.4 2467.7 2476.3 2483.2	271.96 289.27 317.62 340.54	2345.5 2335.3 2318.4 2304.7	2617.5	0.8932 0.9441		7.8302 7.7675
75 100 101.325 125 150	91.76 99.61 5 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0	2662.4 2675.0 2675.6 2684.9 2693.1		6.2426 6.0562 6.0476 5.9100 5.7894	7.3545 7.2841
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	486.82 504.50 520.47 535.08 548.57	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0	2700.2 2706.3 2711.7 2716.5 2720.9	1.6072		7.1270 7.0877 7.0529
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	561.11 572.84 583.89 594.32 604.22	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2724.9 2728.6 2732.0 2735.1 2738.1	1.7274 1.7526	5.2645	6.9650 6.9402 6.917
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.37483 0.34261 0.31560	639.54 655.16 669.72	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5	2756.2	1.8205 1.8604 1.8970 1.9308 1.9623	4.8285	6.820 6.788 6.759
700 750	164.95 167.75	0.001108 0.001111			1875.6 1865.6	2571.8 2574.0	697.00 709.24	2065,8 2056.4	2762.8 2765.7	1.9918 2.0195		_

งหาวิทยาลัยเทคในไลยีพระจอมแกล้า<u>ยนา</u>ย

894 I Thermodynamics

TABLE A	4-6								_			
Superh	eate <u>d</u> water	r										
T	v	u	h	s	v	ш	ħ	s	V	u	h	s
<u>°C</u>	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P =	0.01 MP	a (45.81°	C)*	P = 0.05 MPa (81.32°C)			$P = 0.10 \text{ MPa } (99.61^{\circ}\text{C})$				
Sat.1	14.670	2437,2	2583.9	8 1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867		2592.0	8.1741		05115		7.555	1.5050	0505.0	0675.0	7.0611
100 150	17.196 19.513		2687.5 2783.0	8.4489 8.6893	3.4187 3.8897	2511.5 2585.7	2682.4 2780.2	7.6953 7.9413	1.6959 1.9367	2506.2 2582.9	2675.8 2776.6	
200	21.826		2879.6	8.9049	4.3562	2660.0	2877.8	8.1592		2658.2	2875.5	
250	24.136		2977.5		4.8206	2735.1	2976.2			2733.9	2974.5	
300	26.446		3076.7	9.2827	5.2841	2811.6	3075.8			2810.7	3074.5	
400	31.063		3280.0	9.6094	6.2094	2968.9	3279.3		3.1027		3278.6	
500	35.680		3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8.8362
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0			3302.8	3705.6	
700	44.911		3929.9		8.9813	3480.6	3929.7	9.6626		3480.4	3929.4	
800	49.527			10.6312	9.9047	3665.2	4160.4		4.9519		4160.2	
900	54.143				10.8280	3856.8		10.1000	5.4137		4398.0	
1000	58.758			11.0429	11.7513	4055.2		10.3000		4055.0 4259.8		9.9800
1100	63,373 67.989			11.2326 11.4132	12.6745 13.5977	4259.9 4470.8		10.4897 10.6704		4470.7		10.1698 10.3504
1200 1300	72.604			11.5857	14,5209	4687.3		10.8429	7.2605	4687.2		10.5229
1300									_			
	$P = 0.20 \text{ MPa } (120.21^{\circ}\text{C})$					0.30 MPa			P = 0.40 MPa (143.61°C)			
Sat.	0.88578			7.1270	0.60582		2724.9			2 2553.1	2738.1	
150	0.95986			7.2810	0.63402		2761.2			3 2564.4	2752.8	
200		2654.6		7.5081	0.71643		2865.9			4 2647.2	2860.9	
250		2731.4		7.7100 7.8941	0.79645 0.87535		2967.9 3069.6			2726.4 2805.1	2964.5 3067.1	
300 400		2808.8 2967.2		8.2236	1.03155		3275.5			5 2964.9	3273.9	
500		3131.4		8.5153	1.18672		3486.6			5 3129.8	3485.5	
600		3302.2		8.7793	1.34139		3704.0			3301.0	3703.3	
700		3479.9		9.0221	1.49580		3928,2			2 3479.0	3927.6	8.7012
800	2.47550	3664.7	4159.8	9.2479	1.65004	3664.3	4159.3	9.0605	1.2373	3663.9	4158.9	8.9274
900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725		3855.7	4396.9	
1000		4054.8		9.6599	1,95824		4642.0			9 4054.3	4641.7	
1100		4259.6		9.8497	2.11226		4893.1		ı	4 4259.2	4892.9	
1200			5150.4	10.0304	2.26624		5150.2			6 4470.2	5150.0	
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.8151	6 468 <u>6.7</u>	5412.8	9.8828
	P =	0.50 M	Pa (151.8	3°C)	P =	0.60 MP	a (158.83	3°C)	P =	0.80 MP	a (170.4	1°C)
Sat.	0.37483	2560.7	2748.1	6.8207	0.31560	2566.8	2756.2	6.7593	0.2403	5 2576.0	2768.3	6.6616
200	0.42503	2643.3	2855.8	7.0610	0.35212	2639.4	2850.6	6.9683	0.2608	8 2631.1	2839.8	6.8177
250	0.47443	2723.8	2961.0	7.2725		2721.2	2 9 57.6			1 271 5.9	2950.4	
300			3064.6	7.4614		2801.4	3062.0			5 2797.5	3056.9	
350		2883.0		7.6346		2881.6	3166.1		`	2 2878.6	3162.2	
400			3272.4	7.7956		2962.5	3270.8			9 2960.2	3267.7	
500			3484.5					8.0041				7.8692
600			3702.5	8.3544	1	3299.8		8.2695		6 3298.7		
700			3927.0		_	3478.1		8.5132		1 3477.2 0 3662.5		
800 900			4158.4 4396.6			3663.2 3855.1		8.7395 8.9518				5 8.8185
1000			4596.6			4053.8				1 4053.3		
1100			4892.6		1	4258.8						9.2090
1200			5149.8			4469.8						9.3898
1300			5412.6			4686.4		9.6955				9,5625
-000	/0214	. 555.0										_

^{*}The temperature in parentheses is the saturation temperature at the specified pressure.

^{*} Properties of saturated vapor at the specified pressure.

อานักทองลูน งหาวิทยาลัยเทคในใลยีพระจอมเคล้า_{ยนร}

Appendix 1

895

TABLE	A6											
Supert	neated wat	er (<i>Contii</i>	nued)									
Τ	V	u	h	s	v	u	h	s	v	и	h	s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
		= 1.00 MI	-			= 1.20 /				1.40 MP		
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326			6.5217	0.14078	2591.8		
200	0.20602	2622.3	2828.3	6.6956	0.16934		2816.1	6.5909	0.14078	2602.7	2788.9 2803.0	6.4675 6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241			6.8313	0.16356	2698.9	2927.9	
300	0.25799	2793.7	3051.6	7.1246	0.21386			7.0335	0.18233	2785.7	3040.9	
350	0.28250	2875.7	3158.2	7.3029	0.23455			7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482		3261.3	7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464			7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395		3697.0	7.9456	0.28597	3295.1	3695.5	7.8730
700	0.44783	3476.3	3924.1	8.2755	0.37297			8.1904	0.31951	3474.4	3921.7	8.1183
800	0.49438	3661.7	4156.1	8.5024	0.41184			8.4176	0.35288	3660.3		8.3458
900	0.54083	3853.9	4394.8	8.7150	0.45059			8.6303	0.38614	3852.7	4393.3	
1000	0.58721	4052.7	4640.0	8 9155	0.48928			8.8310	0.41933	4051.7	_	8.7595
1100	0.63354	4257.9	4891.4	9.1057	0.52792	4257.5	4891.0	9.0212	0.45247	4257.0		8.9497
1200	0.67983	4469.0	5148.9	9.2866	0.56652		5148.5	9.2022	0.48558	4468.3	5148.1	9.1308
1300	0.72610	4685.8	5411.9	9.4593	0.60509	4685.5	5411.6	9.3750	0.51866	4685.1	5411.3	9.3036
	P	= 1.60 Mi	Pa (201.3	7°C)	P	= 1.80 f	MPa (207	.11°C)	P = 2.00 MPa (212.38°C)			
Sat.	0.12374	2594.8	2792.8	6,4200	0.11037	2597.3	2795	.9 6.3775	0.09959	2599.1	2798.3	6.3390
225	0.13293	2645.1	2857.8	6.5537	0.11678	2637.0			0.10381	2628.5		6.4160
250	0.14190	2692.9	2919.9	6.6753	0.12502	2686.7			0.11150	2680.3		6.5475
300	0.15866	2781.6	3035.4	6.8864	0.14025	2777.4	3029.	9 6.8246	0.12551	2773.2	3024.2	6.7684
350	0.17459	2866.6	3146.0	7.0713	0.15460	2863.6	3141.	.9 7.0120	0.13860	2860.5	3137.7	6.9583
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3	3251.	.6 7.1814	0.15122	2945.9	3248.4	7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5				3116.9	3468.3	7 4337
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7		.3 7.7543	0.19962	3291.5	3690.7	7.7043
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6			0.22326	3471.7		7.9509
800	0.30865	3659.5	4153.4	8.2834	0.27426	3658.8			0.24674	3658.0		8.1791
900	0.33780	3852.1	4392.6	8.4965	0.30020	3851.5			0.27012	3850.9		8.3925
1000	0.36687	4051.2	4638.2	8.6974	0.32606	4050.7			0.29342	4050.2		8.5936
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2			0.31667	4255.7		8.7842
1200	0.42488	4467.9	5147.7	9.0689	0.37766	4467.6				4467.2		8.9654
1300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.	5410	.6 9.1872	0.36308	4684.2	5410.3	9.1384
	Р	= 2.50 M	Pa (223.9	5℃)	P	= 3.00	MPa (233	3.85°C)	P =	3.50 MP	a (242.5	6°C)
Sat.	0.07995	2602.1	2801.9	6.2558	0.06667	2603.2	2803.	.2 6.1856	0.05706	2603.0	2802.7	6.1244
225	0.08026	2604.8	2805.5	6.2629			_					
250	0.08705	2663.3	2880.9	6.4107	0.07063	2644.7				2624.0		6.1764
300	0.09894	2762.2	3009.6	6.6459	0.08118	2750.8			1	2738.8		6.4484
350	0.10979	2852.5	3127.0	6.8424	0.09056	2844.4				2836.0		6.6601
400	0.12012	2939.8	3240.1	7.0170	0.09938	2933.6				2927.2		6.8428
450	0.13015	3026.2	3351.6	7.1768	0.10789					3016.1		7.0074
500	0.13999	3112.8	3462.8	7.3254	0.11620	3108.6				3104.5		7.1593
600	0.15931	3288.5	3686.8	7.5979	0.13245					3282.5		7.4357
700	0.17835	3469.3	3915.2	7.8455	0.14841	3467.0				3464.7 3652.5		7.6855
800	0.19722	3656.2	4149.2	8.0744	0.16420							7.9156
900	0.21597 0.23466	3849.4 4049.0	4389.3 4635.6	8.2882	0.17988 0.19549	3847.9 4047.7				3846.4 4046.4		7 8.1304 7 8.3324
1000 1100		4049.0		8.4897	1					4046.4		8.53324
1200	0.25330 0.27190	4456.3	4887.9 5146.0	8.6804 8.8618	0.21105					4252.5 4464.4		8.7053
									1			8.8786
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.0	5 5408	.8 8.9502	0.20750	4681.8	J400.U	0.0700