

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO							
Disciplina:				Código da Disciplina:			
Conversão de Energia				EEE402			
Course:				Į.			
Energy Conversion Systems	S						
Materia:							
Conversión de energía.							
Periodicidade: Semestral	Carga horária total:	120	Carga horária semana	al: 04 - 00 - 02			
Curso/Habilitação/Ênfase:			Série:	Período:			
Engenharia Eletrônica			4	Noturno			
Engenharia Eletrônica			4	Diurno			
Engenharia Elétrica			4	Noturno			
Engenharia Elétrica			4	Diurno			
Professor Responsável:		Titulação - Graduaç	- ção	Pós-Graduação			
Daniel Ribeiro Gomes		Engenheiro Elet	tricista	Mestre			
Professores:		Titulação - Graduaç	 ção	Pós-Graduação			
Daniel Ribeiro Gomes		Engenheiro Eletricista Mestre					
Edval Delbone		Engenheiro Ind	ustrial e Eletricista	Doutor			
OF	SIFTIVOS - Conheci	mentes Habili	dadas a Atitudas	•			

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Apresentar ao aluno aspectos relacionados aos princípios físicos da conversão eletromecânica de energia e suas aplicações em maquinas elétricass, partindo da teoria geral do eletro magnetismo e as leis fundamentais, passando pelos aspectos de aplicações de materiais eletromagnéticos em equipamentos transformadores de energia e conversores de energia. Aplicar conceitos a analise e modelagem matemática de transformadores monofásicos e trifásicos, em sistema normalizado em por unidade. Analise de circuitos magnéticos com diferentes relutâncias, mono e duplamente excitados.conceito de forca e conjugado magnético. Conceitos de energia e co-energia, Conversão eletromecânica de energia e maquinas girantes. Conceito de campo girante e de induzido. Maquinas síncronas de polos lisos e salientes, princípios de funcionamento e aplicações.Gerador e motor síncrono.Maquina de indução, conceito do escorregamento, principio de funcionamento e aplicações. Modelo matemático e circuito equivalente. MIT - motor de indução trifásico. Maquinas de corrente continua. Princípios de funcionamento e aplicações.

CONHECIMENTOS

- C1 Conversores de energia;
- C2 Circuitos Magneticos;
- C3 Energia e Conjugado Magnético;
- C4 Transformadores e Reatores;
- C5 Geradores e motores síncronos;
- C6 Maquinas de Indução
- C7 Motores de Corrente Contínua;

2020-EEE402 página 1 de 9

HABILIDADES

- H1 Conhecer os tipos de conversores e conversão eletromecânica;
- H2- Conhecer o circuito magnético e suas aplicações
- H3 Entender o funcionamento e fluxo de potências em sistemas de geração de energia elétrica com diversos tipos de conversores;
- H4 Entender o funcionamento de transformadores, motores de indução, geradores síncronos e motores de corrente contínua, através de conceitos teóricos, modelos e ensaios no laboratório;

ATITUDES

- Al Ter disposição, disciplina e vontade de aprender;
- A2 Ser assíduo (principalmente no laboratório);
- A3 Saber inserir-se no trabalho em grupo (laboratório)

EMENTA

Conversores de energia: formas de conversão em energia elétrica e vice-versa; conversores eletromecânicos: funcionamento básico; fluxo de potências; reatores e Transformadores: funcionamento; modelagem; aplicações e ensaios; campos magnéticos pulsantes e girantes: conceitos e aplicações; Motores Trifásicos de Indução(MTI): funcionamento; formas construtivas; modelagem; aplicações; funcionamento como freio e gerador; ensaios; acionamentos CA de velocidade variável: diagrama esquemático; funcionamento; ensaios de MTI alimentados com conversores VSI/PWM; Geradores Síncronos(GS): principais tipos(polos lisos, salientes, fixos e brushless); funcionamento; modelagem para polos lisos; grupos geradores com GS: diagrama esquemático; acionadores mecânicos típicos; reguladores de tensão e de velocidade; funcionamento; exercícios; ensaios; motores de corrente contínua: principais tipos de excitação(independente, derivação, série e composta); funcionamento; modelagem e ensaios; acionamentos CC de velocidade variável: diagrama esquemático; conversores CA/CC e CC/CC utilizados; operação em 4 quadrantes do motor CC.

SYLLABUS

Fundamentals of Energy Conversion; Fundamentals of Electromechanical Energy Conversion; Reactors and Transformers types, equivalent circuit, power and torque; Pulsating and Rotating Electromagnetic Fields; Three-Phase Induction Motors types ,equivalent circuit, power and torque; Induction Machines operating as a motor, brake and as a generator; AC Adjustable Speed Drive with induction motor and VSI/PWM inverter driver; AC Synchronous Generators; Moto-Generators-Sets with synchronous generators; DC Motors types, equivalent circuits, power and torque; DC Adjustable Speed Drives with DC motors and AC/DC and DC/DC converters drivers.

2020-EEE402 página 2 de 9

TEMARIO

energía: formas de conversión en energía eléctrica y Convertidores de viceversa; convertidores electromecánicos: funcionamiento básico; flujo de potencias; reactores y transformadores: funcionamiento; modelado; aplicaciones y ensayos; campos magnéticos pulsantes y girantes: conceptos y aplicaciones; Motores trifásicos de inducción (MTI): funcionamiento; formas constructivas; modelado; aplicaciones; funcionamiento como freno y generador; accionamientos CA de velocidad variable: diagrama esquemático; funcionamiento; ensayos de MTI alimentados con convertidores VSI / PWM; Generadores Síncronos (GS): principales tipos (por los lisos, salientes, fijos y sin escobillas); funcionamiento; modelado para polvos lisos; grupos generadores con GS: diagrama esquemático; accionamientos mecánicos típicos; reguladores de tensión y de velocidad; funcionamiento; ejercicios; ensayos; motores de corriente continua: principales tipos de excitación (independiente, derivación, serie y compuesta); funcionamiento; modelado y ensayos; accionamientos CC de velocidad variable: diagrama esquemático; convertidores CA / CC y CC / CC utilizados; operación en 4 cuadrantes del motor CC.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Problem Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas teóricas com apresentação conceitual dos temas e experimentos de laboratório, associados a teoria desenvolvida.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Circuitos elétricos de corrente continua e alternada e leis fundamentais da teoria eletromagnética.

CONTRIBUIÇÃO DA DISCIPLINA

Possibilitar ao aluno uma formação básica conceitual em conversão eletromecânica de energia e suas aplica coes a maquinas e equipamentos transformadores e conversores de energia elétrica.

BIBLIOGRAFIA

Bibliografia Básica:

DEL TORO, Vincent. Fundamentos de Máquinas Elétricas. Rio de Janeiro, RJ: Prentice Hall, 1994

FALCONE, A.G. Eletromecânica. transformadores e transdutores, conversão eletromecânica de energia, máquinas elétricas. São Paulo: Edgard Blucher, 1979

FITZGERALD, A. E; KINGSLEY JR., Charles, Umans, D Stephen; Máquinas elétricas: Sexta Edicao. São Paulo, SP: Bookman, 1975. 623 p.

2020-EEE402 página 3 de 9

Bibliografia Complementar:

GURU; HIZIROGLU. Electric Machinery and Transformers, 3a Ed. New York: Oxford University, 2001.

KOSTENKO; PIOTROVSKY. Electrical Machines. Moscow: Mirr, v1.

KOSTENKO; PIOTROVSKY. Electrical Machines. Moscow: Mirr, v2.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina semestral, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 ${\bf k}_1\colon \ 1\,, 0 \quad \ {\bf k}_2\colon \ 1\,, 0 \quad \ {\bf k}_3\colon \ 1\,, 0 \quad \ {\bf k}_4\colon \ 1\,, 0 \quad \ {\bf k}_5\colon \ 1\,, 0 \quad \ {\bf k}_6\colon \ 1\,, 0$

Peso de $MP(k_p)$: 7,0 Peso de $MT(k_T)$: 3,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Em relação às provas, o critério de avaliação e desempenho escolar da disciplina segue Resolução RN CEPE 07/2007.

As provas (notas P) são individuais sendo realizadas nos períodos previstos no calendário escolar da Engenharia.

As notas T1, T2, T3,T4, T5 e T6 são constituídas de avaliações individuais e Relatórios sendo que 80% da nota é correspondente à avaliação e 20 % referente à participação em aula.

2020-EEE402 página 4 de 9

OUTRAS INFORMAÇÕES	
	1

2020-EEE402 página 5 de 9

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

FEMM - Finite Element Method Magnetics
(http://www.femm.info/wiki/HomePage)
(Incep.//www.lemm.lineo/wiki/nomerage)

2020-EEE402 página 6 de 9

APROVAÇÕES

Prof.(a) Daniel Ribeiro Gomes Responsável pela Disciplina

Prof.(a) Edval Delbone Coordenador(a) do Curso de Engenharia Elétrica

Prof.(a) Sergio Ribeiro Augusto Coordenador do Curso de Engenharia Eletrônica

Data de Aprovação:

2020-EEE402 página 7 de 9

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 T	Intoducao ao Curso. Apresentação do plano de ensino da	0
	disciplina. Motivação para aplicações dos temas a serem tratados.	
1 L	Instruções gerais sobre as atividades de laboratório.	0
2 L	Treinamento sobre aspectos de segurança relacionados as	0
	atividades de laboratório.	
2 T	Revisão de conceitos do eletromagnetismo aplicado. Leis	0
	fundamentais/ Lei de Faraday, Lei de Ampère, Lei de Biot- Savart,	
	Lei de Lorentz, etc.	
3 L	EXP. 1- Circuitos Magnéticos	0
3 T	Introdução aos circuitos magnéticos, definição de forca	0
	magnetomotriz e relutância. Materiais magnéticos e suas	
	aplicações.Histerese e saturação curva BXH. Exercícios.	
4 L	EXP 2. Bobinas/Indutores - Leis de Faraday e Lenz (indução e sua	0
	polaridade).	
4 T	Indutâncias: própria e mútua. Noções para projeto de	11% a 40%
	indutores.Exercícios.	
5 T	Circuitos magnéticos mono excitados com múltiplos entreferros.	0
	Exercícios.	
5 L	EXP 3-Transformadores monofásicos(TM): contrução ; funcionamento	0
	;	
6 L	EXP 4 Ensaios De Curto Circuito e Vazio De Transformadores	0
6 T	Circuitos magnéticos e transformadores.Transformador Ideal e	0
	Real. Impedância de dispersão e núcleo magnético. Exercícios	
7 T	Perdas no ferro e perdas no cobre. Circuito elétrico equivalente.	0
	Exercicios	
7 L	EXP 5- Transformadores Monofásicos em Carga	0
8 L	Aula de reforço Exercicios.	0
8 T	Transformadores trifásicos e ligações. Normalização em por	0
	unidade (pu). Exercícios	
9 L	Aula de reforço . Exercícios.	0
9 T	Circuitos magnéticos mono e duplamente excitados.Forca e	0
	Conjugado. Exercicios	
10 T	Semana de Provas P1.	0
10 L	ExP 6 Transformadores em Circuitos Trifásicos	0
11 T	Energia, Co-energia, equação de forca e Conjugado Exercícios.	0
11 L	EXP 7 Simulação Numérica de Forcas e Conjugados parte 1	0
12 L	EXP 8 Simulação Numérica de Forcas e Conjugados parte 2	0
12 T	Energia, Co-energia, equação de forca e Conjugado. Equação de	0
	estado. Parte 1. Exercícios.	
13 L	EXP 9 Simulação Numérica de Forcas e Conjugados parte 3	0
13 T	Maquinas girantes, princípios de funcionamento , aspectos	0
	constritivos e aplicações.	
14 L	Exp 10- Introdução a maquinas Rotativas Parte 1	0
14 T	Campo girante, indução e escorregamento. Exercícios.	0

2020-EEE402 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

15 L	Exp 11- Introdução a maquinas rotativas Parte 2	0		
15 T	Maquina de indução. MIT- Motor de indução trifásico, rendimento e	0		
	regulação, Exercícios			
16 T	Circuito equivalente do motor de indução. Exercícios.	0		
16 L	Exp 12- Introdução a maquinas rotativas Parte 3	0		
17 L	Aula de reforço . Exercícios.	0		
17 T	Maquinas síncronas de polos lisos e salientes.Diagrama fasorial.	0		
	Exercícios.			
18 L	Aula de reforço . Exercícios.	0		
18 T	Condições de excitação da maquina síncrona e a curva de potencia	0		
	e de capabilidade. Exercícios.			
19 T	Maquinas de corrente continua.Principio de funcionamento,	0		
	aspectos construtivos e aplicações.			
19 L	Aula de reforço . Exercícios.	0		
20 T	Semana de provas P2	0		
20 L	Reposição de Experiencia	0		
Legenda: T = Teoria, E = Exercício, L = Laboratório				

2020-EEE402 página 9 de 9