Mock Final Exam, Math 241, Spring 2018

1. (a) The plane P has normal vector $\langle -2,1,-2 \rangle$ and passes through (1,1,-1). Find the shortest vector \vec{v} from (2,3,5) to P.

\vec{v} is (circle one): (A) $\vec{v} = \langle \frac{16}{9}, \frac{-8}{9}, \frac{-16}{9} \rangle$; (B) $\vec{v} = \langle \frac{-8}{3}, \frac{4}{3}, \frac{-8}{3} \rangle$; (C) $\vec{v} = \langle \frac{8}{3}, \frac{-4}{3}, \frac{8}{3} \rangle$; (D) $\vec{v} = \langle \frac{-16}{9}, \frac{8}{9}, \frac{16}{9} \rangle$;

(b) Find the area of the triangle in \mathbb{R}^3 which has corners at (1,2,2), (1,2,3), and (1,6,6).

(circle one): (A) 2; (B)
$$\frac{3}{2}$$
; (C) 1; (D) 4;

(c) Find the volume of the parallelepiped determined by the vectors $\langle 2, 1, 3 \rangle$, $\langle 1, 0, 3 \rangle$, and $\langle 4, 2, 1 \rangle$.

2. (a) Find the limit:

$$L = \lim_{(x,y)\to(0,0)} \frac{xy}{2 - \sqrt{xy + 4}}$$

(circle one): (A)
$$L = 2$$
; (B) $L = 4$; (C) $L = -4$; (D) DNE;

(b) Find the limit:

$$\lim_{(x,y)\to(0,0)} \frac{7x^3y^3}{x^6+5y^6}$$

(circle one): (A)
$$L = 0$$
; (B) $L = \frac{1}{2}$; (C) $L = \frac{5}{8}$; (D) DNE;

(c) Find the limit

$$\lim_{(x,y)\to(0,0)} \frac{2x^2y + 3x^4y}{x^4 + 2y^3}$$

(circle one): (A)
$$L = 0$$
; (B) $L = 2$; (C) $L = \frac{1}{2}$; (D) DNE;

(d) Find the limit

$$\lim_{(x,y)\to(0,0)} \frac{5x^2y^2}{x^2+3y^2}$$

(circle one): (A)
$$L = 0$$
; (B) $L = 2$; (C) $L = \frac{1}{3}$; (D) DNE;

- 3. Consider the surface *S* given by z = f(x, y) where $f(x, y) = 4 + 3e^{(x^2-1)(y^2-1)}$.
 - (a) Find an equation of the tangent plane to the surface at the point (1,1,7).

Equation for the tangent plane is (circle one):

(A)
$$z-7=3(x-1)+3(y-1)$$
;

(A)
$$z-7=3(x-1)+3(y-1);$$
 (B) $z-7=6(x-1)+6(y-1);$

$$(C)$$
 $z-7=0$

(D)
$$z-7=6(x+1)+6(y+1)$$
;

(b) Find all five of the points on S where the tangent plane has (0,0,1) as a normal vector.

The five points are:

$$(x, y, z) = ($$
 , ,) $(x, y, z) = ($, , $(x, y, z) = ($, , $(x, y, z) = ($, , ,

$$(x, y, z) = ($$
 , ,) $(x, y, z) = ($, ,

$$(x,y,z)=(\qquad ,\qquad ,\qquad)$$

(a) Consider the function $f(x, y) = 2x^3 - 2x^2 + 4xy + 4y^2$. Using the second derivative test, find and classify its critical points.

The critical points of f(x, y) are (circle one):

- (A) (0,0), a saddle point, and $(1,-\frac{1}{2})$, a local minimum;
- (*B*) (0,0), a local minimum, and $(1,-\frac{1}{2})$, a local maximum;
- (C) (0,0), a saddle point, and $(-1,\frac{1}{2})$, a local minimum;
- (0,0), a saddle point, and $(-1,-\frac{1}{2})$, a local maximum;
- (b) In what unit direction does the maximum rate of change of $g(x, y, z) = \frac{x}{y+z}$ occur at the point (8, 1, 3)?

 \vec{v} is (circle one):

(A)
$$\langle \frac{1}{4}, \frac{-1}{2}, \frac{-1}{2} \rangle$$
; (B) $\langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle$;

(C)
$$\langle \frac{1}{3}, \frac{-2}{3}, \frac{-2}{3} \rangle$$
; (D) $\langle \frac{-1}{3}, \frac{2}{3}, \frac{2}{3} \rangle$;

6. Let C be the curve of $\dot{r}(t) = \langle 3\cos t, 5\sin t, 4\cos t \rangle$ for $0 \le t \le \pi$.				
(a) Evaluate $\int_C xyz dy$.				
(circle one): (A) 30; (B) 150; (C) 0; (D) 600;				
(b) What is the average value of $f(x, y, z) = x^2 + y^2$ on curve C ?				
(circle one): (A) 85π ; (B) 25; (C) 17π ; (D) 17;				
7. (a) Let $R = \{(x, y, z) \mid 0 \le z \le 9 - x^2 - y^2\}$. Compute $\iiint_R 3x^2 dV$.				
(circle one): (A) $\frac{81\pi}{4}$; (B) 4π ; (C) $\frac{3^6\pi}{4}$; (D) $\frac{27\pi}{8}$;				
(b) Let $H = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 4, x \ge 0, \text{ and } y \ge 0\}$. Compute $\iiint_H 5x^2 + z dV$.				
(circle one): (A) $\frac{16\pi}{3}$; (B) $\frac{5\pi^2}{3}$; (C) $\frac{32\pi}{3}$; (D) $\frac{8\pi}{3}$;				
8. (a) Let c be a constant and consider the vector field				
$\vec{F}(x, y) = \langle 2c^2(y+c) + \sin(x) - cy, 2cx + 2y + y^3 \rangle$				
(i) For $c = 0$, \vec{F} is conservative. In this case find a potential function f for \vec{F} .				
f(x, y) =				
(ii) Find the other value of c for which \vec{F} is conservative.				
(circle one): (A) $c = 0$; (B) $c = 2$; (C) $c = \frac{1}{3}$; (D) $c = \frac{3}{2}$;				

5. Let f(x, y, z) = 2x + 2y + 4z + 3, and $g(x, y, z) = x^2 + y^2 + z^2 - 24$.

subject to the constraint: g(x, y, z) = 0?

subject to the constraint: g(x, y, z) = 0?

f(x, y, z)

f(x, y, z)

(circle one): (A) -24; (B) -27; (C) -21;

(C) 11;

(D) 23;

(D) -14;

(circle one): (A) 24; (B) 27;

(a) What is the maximum value of

(b) What is the minimum value of

	(circle one):	$(\Lambda) \stackrel{\overrightarrow{F}}{=} ic concernative.$	(B) \vec{F} is not conservative;	
	(Circle one).	(A) F is conservative,	(b) F is not conservative,	
(ii)	(ii) $\vec{G}(x, y, z) = \langle 2xyz + y + z, x^2z + x + z, x^2y + x + y \rangle$			
	(circle one):	(A) \vec{G} is conservative;	(B) \vec{G} is not conservative;	
(iii)	i) $\vec{H}(x, y, z) = \langle e^x \cos(y), -e^x \sin(y) + z^2 - 3z, 8yz \rangle$			
	(circle one):	(A) \vec{H} is conservative;	(B) \vec{H} is not conservative;	
(iv)	(iv) $\vec{J}(x, y, z) = \langle 2yz\sin(x)\cos(x), z - z\cos^2(x), y\sin^2(x) \rangle$			
	(circle one):	(A) \vec{J} is conservative;	(B) \vec{J} is not conservative;	
(c) Consider the vector field \vec{F} and the curve C parameterized by $\vec{r}(t)$ below.				
$\vec{F}(x, y, z) = \langle 2yz + 2xy^2, 2xz + z + 2x^2y, 2xy + y \rangle,$				
$C: \vec{r}(t) = \langle t, t^3 + 2, 2t^2 - 2t^4 \rangle$, for $0 \le t \le 1$.				
Evaluate the integral $\int_C \vec{F} \cdot d\vec{r}$.				
Evaluate the integral $J_C T$ are				
		(circle one): (A) 6	; (B) 9; (C) 5; (D) 4;	
9. Find the mass of the lamina that occupies the region $D = \{(x, y) 0 \le x \le 2, 0 \le y \le x\}$, whose density at any point in D is $\rho(x, y) = 2y\sqrt{x^2 - y^2}$.				
		(circle one): (A) $\frac{4}{3}$;	; (B) $\frac{2}{3}$; (C) 4; (D) $\frac{8}{3}$;	
10. (a) Consider the transformation $T(u, v) = (x(u, v), y(u, v)) = (v \sin u, -v \cos u)$.				
i. Compute the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$ of T .				
(circle one): (A) u ; (B) v ; (C) $-u$; (D) $-v$;				
ii. Let $S = \{(u, v) 0 \le u \le \pi, 1 \le v \le 3\}$ and $R = T(S)$. Compute $\iint_R x^2 + y^2 dA$.				
(circle one): (A) 18π ; (B) 20π ; (C) 22π ; (D) -18π ;				

 $(b) \ \ Identify whether these vector fields are conservative or not.$

(i) $\vec{F}(x, y) = \langle y^2 + ye^{xy}, 2xy + xe^{xy} \rangle$

(b) Let *R* be the parallelogram with corners at (0,0), (3,1), (4,-3), and (7,-2). Evaluate $\iint_R (3x+y)$, d*A*.

11. (a) Find the area of the torus, with major radius 3 and minor radius 1, parameterized by $r(\phi,\theta) = \langle (3+\cos\phi)\cos\theta, (3+\cos\phi)\sin\theta, \sin\phi \rangle$, for $(\phi,\theta) \in D = [0,2\pi] \times [0,2\pi]$

(b) Let *S* be the cone defined by $S = \{(x, y, z) \mid z = 1 - \sqrt{x^2 + y^2} \ge 0\}$. Compute $\iint_S x^2 dS$.

$$\iint_{S} x^2 \, \mathrm{d}S =$$

12. (a) Complete the following statement of Green's theorem:

Let C be a positively oriented, piecewise-smooth, simple, closed curve bounding a region D in \mathbb{R}^2 , and let $\vec{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$. If P(x,y) and Q(x,y) have continuous partial derivatives then:

(b) Suppose that D is the triangle with vertices (0,0), (1,0) and (1,1). Let C be the boundary of D, oriented counter-clockwise. Compute

$$\int_C \langle x^2, (x+1)y\rangle \cdot d\vec{r}$$

13. (a) Complete the following statement of Stokes' theorem:

Let *S* be an oriented, piecewise-smooth, surface in \mathbb{R}^3 that is bounded by a simple, closed piecewise-smooth boundary curve *C* with positive orientation. If $\vec{F}(x, y, z)$ is a vector field whose components have continuous partial derivatives then:

(b) Consider the vector field

$$\vec{F}(x, y, z) = \langle 2xy + z^2 + 1, 2x + x^2 + 2yz, y^2 + 2xz + 1 \rangle$$

Compute $\int_C \vec{F} \cdot d\vec{r}$, where *C* is the ellipse $4x^2 + y^2 = 4$ in the *xy*-plane which is oriented counterclockwise.

(c) Let

$$\vec{F}(x, y, z) = \langle ze^y, x\cos y, xz\sin y \rangle,$$

and *S* be the hemisphere $x^2 + y^2 + z^2 = 9$, $y \ge 0$, oriented in the direction of the positive *y*-axis. Compute $\iint_S \operatorname{curl}(\vec{F}) \cdot d\vec{S}$.

14. (a) Complete the following statement of the Divergence theorem:

Let E be a simple solid region and let S be its boundary surface with outward orientation. If $\vec{F}(x, y, z)$ is a vector field whose components have continuous partial derivatives then:

$$\iiint_{\square} \boxed{\qquad \qquad} dV = \iiint_{\square} \boxed{\qquad} \cdot \boxed{\qquad}$$

(b) Let *S* be the outwardly oriented boundary of the top half of the unit ball, that is,

$$S = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1, \text{ and } z > 0\} \cup \{(x, y, 0) \mid x^2 + y^2 \le 1\}$$

Compute

$$\iint_{S} \langle z^2 x, \frac{1}{3} y^3 + \cos(z), x^2 z + y^2 \rangle \cdot d\vec{S}$$

TRIGONOMETRIC IDENTITIES

$$\sin(\theta + \phi) = \sin\theta \cos\phi + \cos\theta \sin\phi$$

$$\cos(\theta + \phi) = \cos\theta \cos\phi - \sin\theta \sin\phi$$

$$\tan(\theta + \phi) = \frac{\tan(\theta) + \tan(\phi)}{1 - \tan\theta \tan\phi}$$

$$\sin(\theta - \phi) = \sin\theta \cos\phi - \cos\theta \sin\phi$$

$$\cos(\theta - \phi) = \cos\theta \cos\phi + \sin\theta \sin\phi$$

$$\tan(\theta - \phi) = \frac{\tan(\theta) - \tan(\phi)}{1 + \tan\theta \tan\phi}$$

$$\sin(\theta) \sin(\phi) = \frac{\cos(\theta - \phi) - \cos(\theta + \phi)}{2}$$

$$\cos(\theta) \cos(\phi) = \frac{\cos(\theta - \phi) + \cos(\theta + \phi)}{2}$$

$$\sin(\theta) \cos(\phi) = \frac{\sin(\phi + \theta) - \sin(\phi - \theta)}{2}$$

$$\sin(2\theta) = 2\sin\theta \cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

$$\sin^2\theta = \frac{1 - \cos(2\theta)}{2}$$

$$\cos^2\theta = \frac{1 + \cos(2\theta)}{2}$$

$$\tan\theta = \frac{\sin(2\theta)}{1 + \cos(2\theta)}$$