Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Mécanismes	TD1 - Sujet

Mécanique MECA2 - Mécanismes

TP1

Robovolc – Réducteur Alstom Exercices divers

Programme PSI/MP 2022 (<u>LIEN</u>)		
Id	Compétence développée	Connaissances associées
B2-16	Modifier un modèle pour le rendre isostatique.	Mobilité du modèle d'un mécanisme. Hyperstatisme du modèle. Substitution de liaisons.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Mécanismes	TD1 - Sujet

Exercice 1: Extrait X-ENS PSI 2017 - ROBOVOLC

Véhicule basique

Cette partie n'était pas dans le sujet de concours.

On suppose dans un premier temps que :

- Le châssis du véhicule est supposé indéformable
- Chaque roue R_i réalise une liaison ponctuelle avec le sol plan de normale verticale
- Chaque roue est reliée au châssis du véhicule par l'intermédiaire d'une pièce intermédiaire P_i reliée
 - Au châssis par une liaison pivot d'axe vertical (orientation)
 - A la roue par une liaison pivot d'axe horizontal (motorisation)
- Il y a 6 roues

On donne le schéma suivant représentant un essieu :

Question 1: Déterminer le nombre de mobilités m

Question 2: Déterminer le nombre d'inconnues cinématiques I_c

Question 3: Déterminer le nombre d'inconnues statiques $\boldsymbol{I_s}$

Question 4: Déterminer le nombre d'équations cinématiques E_c

Question 5: Déterminer le nombre d'équations statiques E_s

Question 6: En déduire le degré d'hyperstatisme h à l'aide des formules cinématique

et statique

Question 7: Expliquer en quelques mots l'origine du degré d'hyperstatisme identifié

Question 8: Préciser ce qu'il faudrait ajouter au mécanisme pour qu'il soit isostatique

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Mécanismes	TD1 - Sujet

Véhicule ROBOVOLC

Le véhicule est en réalité réalisé comme présenté sur le schéma cinématique ci-dessous :

Les deux rotules à doigts en B et C permettent les rotations sur les directions \vec{x} et \vec{y} .

Figure 11 : illustration des mouvements de déformation du châssis

Question 9: Montrer que système est isostatique commenter le résultat Question 10: Préciser l'influence de la présence de deux rotules au lieu de rotules à doigts en B et C sur les résultats obtenus

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Mécanismes	TD1 - Sujet

Exercice 2: Réducteur ALSTOM

La société Alstom transport est spécialisée dans la fabrication de trains et tramways. En 2008, le développement d'une nouvelle gamme de tramways CITADIS a conduit le site du Creusot (71) à développer un nouveau bogie nommé Ixege, en deux déclinaisons (porteur équipé de 4 freins à disques et moteur équipé de 2 freins à disques et de 2 moteurs) :

Un réducteur est placé entre le moteur et les roues afin de transmettre la puissance. Cette étude concerne ce réducteur dont le plan est fourni.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Mécanismes	TD1 - Sujet

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Mécanismes	TD1 - Sujet

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Mécanismes	TD1 - Sujet

L'analyse fonctionnelle du besoin nous conduit à étudier la phase de vie du réducteur lors de son utilisation :

N°	Expression	Critères	Niveau	Flexibilité
	Le moteur transmet la puissance	Puissance maximale	316.3 KW	+ 0 KW
	aux roues par l'intermédiaire du	Vitesse de rotation maximale	2604	+ 0
FS1	réducteur	vitesse de l'otation maximale	tr/min	tr/min
	reducteur	Couples moteur extrêmes	+ 1160 Nm	+ 0 Nm
		<u> </u>	- 1160 Nm	- 0 Nm
		Rotation du réducteur autour de l'axe de la	χ°	+ Y °
FS2	Le réducteur ne doit pas toucher	roue		- Y °
	le châssis	Déplacements par rapport au châssis dans	X mm	+Y mm
		les 3 directions spatiales	77.2.2.2	
		Rotulage entre les 2 pièces autorisé dans		
FS3	Le moteur est en liaison complète	un cône d'axe l'axe de l'arbre de sortie	Χ°	+ Y °
	avec l'arbre d'entrée du réducteur	moteur de demi angle au sommet		
		Couple maximal transmis	1160 Nm	+ 0 Nm
	Le réducteur est en liaison	Déplacements autorisés sans déformation	0 mm	±0 mm
FS4	complète avec la roue	Rotations autorisées sans déformations	0°	±0°
		Couple maximal transmis	6264 Nm	+ 0 Nm
	- 4.4	Orientation de la bielle par rapport à	10°	±Υ°
FS5	La bielle arrête le réducteur en	l'arbre d'entrée réducteur		
	rotation autour de l'axe de la roue	Bras de levier de l'action autour de l'axe de rotation de la roue	247.91 mm	± Y mm
FS6	Le réducteur ne doit pas gêner les	Niveau sonore du bruit émis en utilisation	X dB	± Y dB
	passagers par le bruit produit	à vitesse maximale		
	Le réducteur ne doit pas être	Protection contre le ballaste	1	
FS7	altéré par le milieu extérieur	Peinture anti corrosion	1	
		Etanchéité	1	
FS8	Le réducteur est en accord avec	Respect des normes	1	
	les normes en vigueur	-		
FS9	Le réducteur ne doit pas gêner les	Niveau sonore du bruit émis en utilisation	X dB	± Y dB
F59	humains proches des voies de chemin de fer	à vitesse maximale	Хав	± Y ab
	chemm de lei			

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Mécanismes	TD1 - Sujet

Nous nous intéressons plus particulièrement à l'arbre d'entrée. Les exigences de conception du réducteur dans le cadre de la transmission de puissance importante nous conduisent à devoir placer très précisément l'arbre d'entrée dans le carter du réducteur. L'analyse du besoin liée au placement de l'arbre d'entrée est la suivante :

Nous allons nous intéresser à l'étude du montage de l'arbre d'entrée dans le carter du réducteur.

Page **8** sur **15**

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Mécanismes	TD1 - Sujet

Modèle 1

Dans un premier temps, on propose le schéma cinématique suivant pour représenter le guidage de l'arbre dans le carter :

Les deux roulements de gauche sont modélisés comme une liaison pivot et le roulement de droite est supposé réaliser une liaison pivot glissante.

Question 1: Etablir le graphe des liaisons du montage

Question 2: Calculer le degré d'hyperstatisme du montage à l'aide des formules d'analyse cinématique et statique

Question 3: Déterminer la liaison équivalente statique 1/0

Question 4: En étudiant les systèmes cinématiques et statique, démontrer le résultat précédent

Question 5: Faites de même en étudiant les matrices cinématiques et statique

Question 6: Préciser les axes en rotation et/ou translation porteurs de l'hyperstatisme

Question 7: Sans modifier le mécanisme, quelle condition géométrique faut-il respecter pour garantir un fonctionnement optimal

Attention : les deux prochaines questions n'ont qu'un rôle pédagogique, elles n'ont pas de sens dans l'étude du réducteur.

Question 8: Proposer un schéma cinématique rendant ce système isostatique en ajoutant des liaisons et donc des pièces sans ajout de mobilités

Question 9: Proposer un schéma cinématique rendant ce système isostatique en modifiant des liaisons (pas de pièce ajoutée) sans ajout de mobilités

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Mécanismes	TD1 - Sujet

Modèle 2

On propose maintenant un modèle un peu plus réaliste tenant compte d'un léger rotulage dans le roulement de droite :

Question 10: Quel est son degré d'hyperstatisme ? Préciser intuitivement axes et mouvements concernés

Question 11: Analyser l'effet du changement de la liaison sur les systèmes cinématique et statique

Modèle 3

On propose finalement le schéma d'architecture suivant, représentatif du montage réel :

Question 12: Etablir le graphe des liaisons du montage

Question 13: Calculer le degré d'hyperstatisme de ce montage à l'aide des formules d'analyse cinématique et statique

Question 14: Le degré d'hyperstatisme a augmenté de 1, pourquoi ?

Question 15: Justifier technologiquement les raisons de l'hyperstatisme de ce mécanisme.

Remarque : le schéma d'architecture tenant compte de toutes les liaisons présentes dans le système est le seul permettant d'obtenir le vrai degré d'hyperstatisme.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	04/01/2023 Mécanismes	

Exercice 3: Etude des systèmes matriciels

Soit le système représenté par le schéma cinématique suivant :

Question 1: Proposer un graphe des liaisons du système Question 2: Calculer le degré d'hyperstatisme du montage

Cinématique

Question 3: Déterminer le système linéaire cinématique et sa matrice K_c associée

Question 4: Interpréter les équations de ce système pour déterminer m et h

Question 5: Déterminer r_c avec K_c et en déduire m et h

Statique

Question 6: Déterminer le système linéaire statique et sa matrice K_s associée

Question 7: Interpréter les équations de ce système pour déterminer m et h

Question 8: Déterminer r_s avec K_s et en déduire m et h

Question 9: Donner l'expression du torseur équivalent statique de la liaison et

montrer que l'analyse de m et h est simple à réaliser

Question 10: Proposer une modification de la liaison en A pour rendre le système isostatique et identifier ce que cela change dans les systèmes cinématique et statique

Dernière mise à jour	MECA 2	Denis DEFAUCHY	
04/01/2023	Mécanismes	TD1 - Sujet	

Exercice 4: Base de projection et système cinématique

Question 1: Déterminer le degré d'hyperstatisme du mécanisme

On donne les équations scalaires issues de la fermeture cinématique en B projetées dans les bases 0 et 1=2

$$\begin{cases} P_{21}\cos\theta_{10}=0 \\ P_{21}\sin\theta_{10}=0 \\ R_{32}+R_{10}+R_{03}=0 \\ U_{21}\cos\theta_{10}-\sin\theta_{10}\,R_{10}\lambda_{21}-\sin\theta_{30}\,R_{03}L_{31}=0 \\ U_{21}\sin\theta_{10}+\cos\theta_{10}\,R_{10}\lambda_{21}+\cos\theta_{30}\,R_{03}L_{31}=0 \\ 0=0 \end{cases} \begin{cases} P_{21}=0 \\ 0=0 \\ R_{32}+R_{10}+R_{03}=0 \\ U_{21}-\sin\theta_{31}\,R_{03}L_{31}=0 \\ R_{10}\lambda_{21}+\cos\theta_{31}\,R_{03}L_{31}=0 \\ 0=0 \end{cases}$$

Question 2: Déterminer le rang r_c du système dans la base 0 et valider m et h

Question 3: Déterminer le rang r_c du système dans la base 1 et valider m et h

Question 4: Identifier la mobilité à l'aide de cette étude

Question 5: Expliquer le/les degrés(s) d'hyperstatisme obtenus

On remarque l'intérêt du choix de la base pour mener cette analyse.

Dernière mise à jour	MECA 2	Denis DEFAUCHY	
04/01/2023	023 Mécanismes TD1 - Sujet		

On propose différentes modifications du système :

Question 6: Pour chacune de ces modifications, complétez le tableau suivant et comprenez le résultat

	1	2	3	4
m_u				
m_i				
m				
E_c				
$E_{\scriptscriptstyle S}$				
I_c				
I_S				
h				

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	2023 Mécanismes TD1 - S	

Exercice 5: Base de projection et système statique

Question 1: Déterminer le degré d'hyperstatisme du mécanisme

On donne les équations scalaires issues de l'application du PSF en B projetées dans les bases 0 et 1 :

$$\begin{cases} X_{10}^{2} \cos \theta_{10} - (Y_{10}^{1} + Y_{10}^{2}) \sin \theta_{10} = 0 \\ X_{10}^{2} \sin \theta_{10} + (Y_{10}^{1} + Y_{10}^{2}) \cos \theta_{10} = 0 \end{cases}$$

$$Z_{10}^{1} + Z_{10}^{2} = 0$$

$$-M_{10}^{1} \sin \theta_{10} = 0$$

$$M_{10}^{1} \cos \theta_{10} = 0$$

$$N_{10}^{1} = 0$$

$$X_{10}^{2} = 0$$

$$Z_{10}^{1} + Z_{10}^{2} = 0$$

$$0 = 0$$

$$M_{10}^{1} = 0$$

$$N_{10}^{1} = 0$$

Question 2: Déterminer le rang r_s du système dans la base 0 et valider m et h Question 3: Déterminer le rang r_s du système dans la base 1 et valider m et h

Question 4: Identifier la mobilité à l'aide de cette étude

Question 5: Expliquer le/les degrés(s) d'hyperstatisme obtenus

On remarque l'intérêt du choix de la base pour mener cette analyse.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	04/01/2023 Mécanismes	

On propose différentes modifications du système :

Question 6: Pour chacune de ces modifications, déterminer le nouveau degré Pour chacune de ces modifications, complétez le tableau suivant et comprenez le résultat

	1	2	3	4
m				
E_c				
E_s				
I_c				
I_S				
h				