

Algorithmique et Structures de Données II

Année universitaire 2020-2021

Dr. Marwa CHAIEB

Récursivité

Définition

☐ Un algorithme est dit récursif lorsqu'il est défini en fonction de lui-même.

Exercice 1

Ecrire une fonction récursive Nb_Chiffres qui retourne le nombre de chiffres d'un nombre entier positif N donné.

Exercice 2

Ecrire une procédure récursive permettant de convertir un nombre N donné (en base 10) en une base b (2 <=b <= 10).

Exercice 3

Ecrire une fonction récursive qui, étant donné un entier positif n, renvoie la somme des n premiers entiers.

Exercice 4: Recherche Dichotomique

Définir récursivement une fonction qui indique si un entier x appartient ou non à un tableau d'entiers T trié par ordre croissant. Cette fonction utilisera le principe de la dichotomie.

Exercice 5

Ecrivez une fonction récursive Pair qui teste si un tableau d'entiers T ne contient que des entiers pairs.

Exercice 6

Soit T un tableau contenant N entiers.

Ecrire une procédure récursive qui calcule en même temps la plus petite valeur et la plus grande valeur dans T.

Exercice 7

Sur les chaînes de caractères, on dispose des 3 opérations suivantes :

- Dernier : Chaine → Caractere
- Debut : Chaine → Chaine
- *AjoutF* : Chaine X Caractere → Chaine
 - L'opération *Dernier* délivre le dernier caractère de la chaîne passée en argument.
 - L'opération *Début* délivre la chaîne passée en argument privée de son dernier élément.
 - L'opération *AjoutF* délivre la chaîne passée en argument à laquelle on a rajouté à la fin le caractère donné en argument.

Dans la suite la chaîne vide sera notée « ChVide »

- 1 Ecrire une fonction récursive qui calcule la longueur d'une chaîne.
- 2 Ecrire une fonction récursive qui teste si une chaîne1 est extraite d'une chaîne2, i.e. les caractères de chaîne1 sont présents (dans l'ordre mais pas nécessairement de façon contiguë) dans chaine2.

Exemples:

EstExtraite('ABC', 'KVABTC')=Vrai

EstExtraite('ABC', 'ANMCB')=Faux

Dans la suite, on supposera que les chaînes décrivent des représentations décimales (en base10) d'entiers.

3 – Ecrire une fonction récursive qui teste si une telle chaîne est croissante (i.e. les chiffres se présentent dans la chaîne dans un ordre croissant)

Exemples:

Croissante('2468')=Vrai

Croissante('2466')=Vrai

Croissante('2168')=Faux

4- Ecrire une fonction récursive qui retourne le successeur d'une chaine de caractère exemple:

Succ("231")="232"

Succ("219")="220"

Succ("99")="100"

NB: Pour cette question vous pouvez utiliser les fonctions inverses suivantes:

int: convertit un caractère en un chiffre

char: convertit un chiffre en un caractère

Exercice 8

On se propose d'étudier le jeu décrit par les règles suivantes :

On dispose de n jetons réversibles, alignés. Chaque jeton à une face marquée 1 et une face marquée 0. Au départ, seules les faces 0 des n jetons sont visibles. Le but du jeu est de retourner les différents jetons de façon que les seules faces visibles soient les 1

No. Jeton 123.	n	
Configuration	initiale 000	0
Configuration	finale 111	.1

Le retournement des jetons obéit aux règles suivantes :

Règle 1: On peut toujours retourner le premier jeton (celui qui est le plus à gauche)

Règle 2 : On peut retourner le ième jeton, pourvu que soient visibles les faces 0 des (i-2) premiers jetons et la face 1 du (i-1) ème jeton

Pour passer de la configuration initiale à la configuration finale en respectant les règles précédentes, on pourra introduire deux fonctions mutuellement récursives :

- Une procédure notée Bag(jet, k) qui transforme un tableau de n jetons dont les k premiers sont à 0 en un nouveau tableau dont les k premiers sont à 1.
- Une procédure notée Debag(jet, k) qui transforme un tableau de n jetons dont les k premiers sont à 1 en un nouveau tableau de n jetons dont les k premiers sont à 0.

Ecrire les procédures Bag(jet, k) et Debag(jet, k).