Tipo di dato

- Un **dato** indica un valore che una variabile può assumere
- Un **tipo di dato** è un modello matematico che sta ad indicare una collezione di valori sui quali sono ammesse certe operazioni

Tipo di dato

- Attributo di una variabile, che ne specifica ed individua:
 - L'insieme dei valori che può assumere
 - L'insieme di operazioni effettuabili su di essa
 - Il modo con cui ci si può riferire ad essa

– Esempio:

Età: numero intero

Tipo di dato

• Si parla di tipo astrato di dato come di un oggetto matematico costituito dalla tripla:

$$T = \langle D, C, O \rangle$$
 dove

- D rappresenta il dominio
- C rappresenta le costanti
- O rappresenta gli operatori
 - Funzioni
 - Predicati

Tipo di dato Esempio

- Tipo dei complessi
 - Dominio
 - Sottoinsieme dei numeri complessi
 - Costanti
 - Parte reale
 - Parte immaginaria
 - Operazioni
 - Addizione +: complesso × complesso → complesso
 - Non ci interessiamo della rappresentazione interna dei valori e delle operazioni

Dichiarazione di Tipo

- Le istruzioni operative di un programma operano su rappresentazioni delle entità del programma.
- Occorrono delle istruzioni dichiarative che consentono di definire come rappresentare tali entità in termini di variabili mediante una totale caratterizzazione espressa in termini di
 - un nome
 - un tipo

Dichiarazione di Tipo Utilità

- Definizione del dominio di applicazione del programma
- Comprensione del funzionamento di un algoritmo
- Verifica della correttezza del programma
 - Traduttore
 - Programmatore
- Definizione dello spazio di memoria necessario
- Rappresentazione interna
 - Esempio: 18 e 18.0 (intero o reale)

Definizione di Tipo Meccanismi Linguistici

- Istruzioni e costrutti linguistici necessari per informare l'esecutore su
 - dominio della variabile
 - insieme di operazioni effettuabili su di essa
 - modo attraverso cui ci si può riferire ad essa
- A volte si ricorre all'indicazione esplicita dei valori permessi per ogni variabile
 - Costanti di tipo

Definizione di Tipo nei Linguaggi di Programmazione

- I moderni linguaggi di programmazione mettono a disposizione
 - Un insieme di tipi di uso più comune
 - Tipi predefiniti
 - Gli strumenti per poter costruire qualunque tipo di dati

Tipi Standard

- Tipi più comuni di variabili
 - Interi
 - Reali
 - Logici
 - Caratteri
- Valori rappresentabili limitati
 - Dimensioni della memoria che dovrà ospitarne le variabili
 - Tipo numerico
 - Tipo alfanumerico

- Valori nell'insieme dei numeri interi
 - Stringa di cifre, eventualmente preceduta dal segno
 - Positivi
 - Negativi
- Operazioni basilari
 - somma, prodotto, differenza, quoziente, resto, elevamento a potenza

- I valori non sono in numero infinito nell'aritmetica dei calcolatori
 - Per ogni macchina esistono
 - il più grande intero
 - il più piccolo intero

rappresentabile in una locazione di memoria

- Non valgono alcune proprietà dell'aritmetica (limiti fisici)
 - Risultato di un'operazione non rappresentabile nell'unità di memoria
 Overflow
 - $x \oplus y = x + y$ solo se |x + y| < max
- indica l'addizione eseguita dal computer
- Legge associativa (x+y)+z=x+(y+z)

solo se
$$|x + y| < max$$

 $|y + z| < max$

• Sistema in base 10

0 1 2 3 4 5 6 7 8 9

• Sistema in base 2

0 1

• Sistema in base 16

Come passare da base 10 ad un'altra base b?

Mediante divisioni successive per la base b fino ad arrivare a quella che produce quoziente nullo

 $1972_{10} = 11110110100_2 = 7B4_{16}$

Tipo degli Interi Rappresentazione dei Valori Negativi

- Rappresentare il segno nel primo bit
 - 2 rappresentazioni per lo zero
 - Differente gestione per somma e sottrazione

• DEC	C BIN	DE	CC BIN
0	0000	-8	1000
1	0001	-7	1001
2	0010	-6	1010
3	0011	-5	1011
4	0100	-4	1100
5	0101	-3	1101
6	0110	-2	1110
7	0111	-1	1111

La regola meccanica per trovare il negativo di un binario è cambiare i bit 0 in 1 e i bit 1 in 0 e poi aggiungere 1

Tipo degli Interi Rappresentazione in Complemento a 2

- Cambiare tutti gli 0 in 1 e viceversa
- Aggiungere 1

- Esempio:
$$4_{10} = 0100_2$$

 $0100 \rightarrow 1011 + 1 = 1100 \equiv -4$

• Valori rappresentabili con *n* bit: 2ⁿ

$$- Da -2^{n-1} a +2^{n-1} -1$$

- I valori negativi iniziano sempre per 1
- Allineamento automatico per la somma

- Overflow nell'addizione
 - Esempi corretti

– Esempio con overflow

Tipo dei Reali

- Valori nell'insieme dei numeri reali
 - Parte intera
 - Parte decimale
 - Differenza tra il numero e la sua parte intera
 - < 1
 - Sequenza potenzialmente infinita di cifre
 - In alcuni casi esiste un'ultima cifra diversa da zero, seguita da una successione infinita di zeri

Tipo dei Reali

- Non formano un continuo nell'aritmetica dei calcolatori
 - Occorre discretizzare l'asse continuo dei valori reali
 - Ciascuno rappresenta un intervallo del continuo
 - Insieme di infiniti valori reali
 - Ad ogni numero reale è associata una rappresentazione
 - Intervallo in cui ricade
- Dominio = sottoinsieme finito e limitato dei numeri reali definito dall'implementazione

Tipo dei Reali

- Rappresentazione ottenuta per troncamento o arrotondamento
 - Possibili errori di precisione anche consistenti
- Esiste un valore massimo
 - Overflow
 - Rappresentazione indefinita per tutti i valori maggiori

Tipo dei Reali Rappresentazione in Virgola Fissa

- r = n,m
 - − *N* bit per la parte intera *n*
 - − *M* bit per la parte decimale *m*
- Naturalmente allineati per addizione e sottrazione
- Cattiva gestione della memoria
 - Possibile spreco di memoria
 - Aumento delle probabilità di overflow
 - Parte intera
 - Parte decimale

Tipo dei Reali Rappresentazione in Virgola Fissa

ESEMPIO

4 cifre per la parte intera4 cifre per la parte decimale

Tipo dei Reali Rappresentazione in Virgola Mobile

• $r = \pm m \cdot b^e \rightarrow \boxed{\pm m e}$ (*b* fissata) *m* mantissa

$$-13,18*10^{0}$$

$$-1,318*10^{1}$$

$$-0.1318 * 10^{2}$$

$$-0.01318 * 10^{3}$$

mantissa normalizzata: $1/b \le |m| < 1$

Tipo dei Reali Rappresentazione in Virgola Mobile

- $z = \pm m \cdot b^e$ \rightarrow $\boxed{\pm m e}$ (b fissata)
 - 1 bit per il segno
 - − *N* bit per il valore assoluto della mantissa *m*
 - Cifre più significative non nulle
 - Numero reale $(1/b \le m < 1)$
 - − *M* bit per l'esponente *e*
 - Ordine di grandezza della prima cifra significativa
 - Riferito alla base b = 2
 - Numero intero
 - Rappresentazione corrispondente

Tipo dei Reali Rappresentazione in Virgola Mobile

- Ottimizzazione della gestione della memoria
 - Cifre significative
- Allineamento manuale per addizione e sottrazione
 - Riportare i valori allo stesso esponente
- Comoda per la moltiplicazione
 - Prodotto delle mantisse
 - Somma degli esponenti

Reali in Virgola Mobile Esempio

$$\pi = 3,14159265...$$

= +0,314159265... · 10¹

- Rappresentazione con 5 cifre significative
 - Troncamento

$$3,1415 \rightarrow |+|31415|+1|$$

Arrotondamento

$$3,1416 \rightarrow |+|31416|+1|$$

Reali in Virgola Mobile Esempio

• Rappresentazione con 4 cifre significative

$$211.5 = +0.2115 \cdot 10^3 \rightarrow |+|2115| +3|$$

 $37.592 = +0.37592 \cdot 10^2 \rightarrow |+|3759| +2|$

• Allineamento per la somma

$$|+|2115|+3|$$
 $|+|3759|+2| \rightarrow |+|0375| +3|$
 $|+|2490|+3| = +249.0$

Reali in Virgola Mobile Esempio

- Rappresentazione con 2 cifre significative
 - Con arrotondamento

$$1,36 = +0.136 \cdot 10^{1} \rightarrow |+|14|+1|$$

$$-1,34 = -0.134 \cdot 10^{1} \rightarrow |-|13|+1|$$

• Errore di approssimazione nella sottrazione

$$1,36 - 1,34 = 0,02$$

Tipo dei Reali Proprietà

• Commutatività di somma e prodotto

$$x + y = y + x$$
 $x \cdot y = y \cdot x$
 $x \ge y \ge 0 \Longrightarrow (x - y) + y = x$

Simmetria rispetto allo zero

$$x - y = x + (-y) = -(y - x) (-x)$$

 $\cdot y = x \cdot (-y) = -(x \cdot y) (-x) \div y$
 $= x \div (-y) = -(x \div y)$

Monotonia

$$0 \le x \le a \quad 0 \le y \le b$$

$$x + y \le a + b \qquad x - b \le a - y$$

$$x \cdot y \le a \cdot b \qquad x \div b \le a \div y$$

Corso di Programmazione - Teresa Roselli - DIB

Tipo dei Reali Proprietà Mancanti

- Associativa
 - Può accadere che $(x + y) + z \neq x + (y + z)$
- Distributiva
 - Può accadere che $x \cdot (y + z) \neq (x \cdot y) + (x \cdot z)$

Tipo dei Valori Logici

- Rappresentano valori di verità
 - Falso, Vero
 - Falso < Vero
- Usati tipicamente nelle condizioni
 - Ottenibili come risultato di confronti

Tipo dei Valori Logici Operatori

- Per priorità decrescente:
 - -Not
 - -And
 - -Or

x	У	not x	x and y	x or y
F	F	V	F	F
F	V	V	F	V
V	F	F	F	V
V	V	F	V	V

- Sottoinsieme completo
 - Può simulare tutti gli altri operatori logici

Tipo dei Caratteri

- Insieme finito ed ordinato di simboli
 - Lettere dell'alfabeto
 - Cifre decimali
 - Punteggiatura
 - Simboli speciali
 - Spaziatura (*blank*), Ritorno carrello, A capo, Separatore di linea (EOL), ...
- Costanti di tipo Carattere racchiuse tra apici
 - Esempi: 'a' '8' '?' '@'
 - Per assegnare il valore ? alla variabile x si usa l'istruzione x='?'

Tipo dei Caratteri Rappresentazione

- Corrispondenza biunivoca tra l'insieme dei caratteri e un sottoinsieme degli interi
 - Standard ASCII
 (American Standard Code for Information Interchange)
 - 7 bit \rightarrow 128 simboli (2⁷)
- Funzioni di trasferimento
 - ord(c)
 - numero d'ordine del simbolo c nella tavola di codifica
 - chr(i)
 - Simbolo il cui numero d'ordine è i

Tipo dei Caratteri Proprietà

- ord(chr(i)) = i chr(ord(c)) = c $-c_1 < c_2 \leftrightarrow \text{ord}(c_1) < \text{ord}(c_2)$
- Relazione d'ordine totale
 - Coerente con i sottoinsiemi delle lettere e delle cifre
 - ord('A') < ord('B') < ... < ord('Z')
 - ord('a') < ord('b') < ... < ord('z')
 - ord('0') < ord('1') < ... < ord('9')

Tipo dei Caratteri

Note

- Alcuni caratteri non sono stampabili
 - Esempio: CR (carriage return)
- I caratteri delle cifre sono diversi dalle cifre
 - Hanno come rappresentazione interna un valore diverso dalla cifra che rappresentano
- Relazione d'ordine totale
 - Proprietà riflessiva, antisimmetrica, transitiva

$$\forall x: x \leq x$$

$$\forall x, y: x \leq y \land y \leq x \longrightarrow x = y$$

$$\forall x, y, z: x \le y \land y \le z \longrightarrow x \le z$$

 $\forall x, y: x \le y \lor y \le x \text{ (relazione d'ordine totale)}$

Tipi di Dati Tassonomia

Definizione di Tipo

- Fornisce, tramite le istruzioni dichiarative:
 - L'indicazione di tutti i valori caratterizzanti il tipo
 - L'eventuale strutturazione di insiemi di valori
- Esempio: tipo t : T
 - -t è il nome che indica il tipo
 - − T ne è la descrizione

Tipi Semplici

• I cui elementi sono singoli valori

Tipi Ordinali

- Corrispondenza uno-a-uno fra i valori e un intervallo di interi
 - Ordinali dei relativi valori
- Operazioni consentite:
 - Confronto
 - Assegnamento
 - Funzioni predecessore-successore
 - pred(X)
 - succ(Y)

Tipi Ordinali

- Sono tipi ordinali quelli usati più di frequente
 - Solitamente predefiniti in ogni linguaggio
 - Interi, Logici, Caratteri
- Altri sono definibili dal programmatore
 - Enumerativi (il più spontaneo)
 - Elenco dei valori
 - Sottoinsieme (subrange) di un tipo scalare
 - Valori estremi

Tipi Ordinali Enumerativi

- Definiti elencando l'insieme dei valori che ad essi competono
 - tipo T: $(v_1, v_2, ..., v_n)$
- Gli insiemi di valori sono definiti ed ordinati.
- Per ogni tipo T deve valere:
 - I valori sono distinti (\forall i ≠ j: v_i ≠ v_j)
 - − L'ordine dipende dall'elencazione (i<j: v_i < v_j)
 - Gli unici valori del tipo sono quelli elencati (solo v_i , i=1...n appartiene al tipo T)

Tipi Ordinali Subrange

Quando un dato assume un intervallo di valori che è un *subrange* dei valori descritti da un certo tipo *ordinale* esistente il suo tipo può essere definito come un subrange di quel tipo ospite

- Basati su un tipo ordinale preesistente
 - Tipo Ospite
- Definiti specificando *il più piccolo valore* e *il più grande valore* dell'intervallo dei valori rappresentati dal subrange
 - tipo $T : [v_{\min} \dots v_{\max}]$
 - $-v_{min} < = v_{max}$ e devono essere dello stesso tipo

Tipi Ordinali Esempio

Enumerativo

- tipo giorno : (lun, mar, mer, gio, ven, sab, dom)
 - x: giorno (dichiarativa della variabile con identificatore x e di tipo giorno)
 - $x \leftarrow gio$ (assegnazione del valore gio alla variabile x)
 - se x < sab allora ...
 - pred(gio) = mer
 - succ(gio) = ven

Subrange

- tipo feriale : [lun ... sab]
- **N.B.** Non è permesso definire un subrange del tipo reale poichè esso non è un tipo ordinale