Final Project Presentation

ECE 5404: Advanced Analog IC Design

Instructor: Dr. Yang (Cindy) Yi

Group 7: Muhammad Farhan Azmine, Li Ruizhe, Ummay Sumaya Khan

Outlines

Introduction on reviewed paper

- Liquid state machine (LSM)
- Spike timing-dependent plasticity (STDP)

Liquid State Machine Architecture

- o Overall architecture
- o Reservoir Unit
- Training Unit

Digital spiking neuron implementation

- o Reservoir neuron
- Unsupervised STDP learning engine
- o Output neuron
- o Supervised STDP learning engine

Improvement over the reviewed work

- o Hardware optimization
- Resource overhead reduction

Benchmark and Result

- Training Setup and Benchmark
- Result and Discussion

Contribution

All three members contributed equally for the project.

- Ummay: Integration and simulation of top LSM design by developing reservoir unit and training unit.
- Farhan: Developed reservoir neuron and output neuron along with their learning engine.
- o Ruizhe: Improvement over the work of reviewed paper and optimization.

Introduction

- Reviewed Paper:
 - Energy-efficient FPGA based SNN accelerators with supervised & unsupervised STDP^[1]

$$\Delta w^{+} = A_{+}(w) \cdot e^{-\frac{|\Delta t|}{\tau_{+}}} \quad if \, \Delta t > 0,$$

$$\Delta w^{-} = A_{-}(w) \cdot e^{-\frac{|\Delta t|}{\tau_{-}}} \quad if \, \Delta t < 0,$$

Figure: Liquid State Machine [1]

Figure: Standard STDP curve [1]

Overall LSM Architecture

Operation mechanism

- The input spike enters the reservoir unit through a predefined crossbar interface.
- Output of the reservoir unit (RU) is sent to the output training unit (TU) and spike parts are fed back to the reservoir element as a recurrent response.

LSM Schematic

Reservoir Unit Schematic

Reservoir Unit Simulation

Training Unit Schematic

Training Unit Simulation

Implementation of Spiking Neuron

- Synaptic input processing module
- Spike generation module
- Learning module

Implementation of digital neuron

 Full Digital Neuron Architecture

$$\begin{cases} ES_{+}(t) = ES_{+}(t-1)(1-1/\tau_{ES_{+}}) + \sum w_{i} \cdot E_{+}(i) \\ ES_{-}(t) = ES_{-}(t-1)(1-1/\tau_{ES_{-}}) + \sum w_{i} \cdot E_{+}(i) \\ IS_{+}(t) = IS_{+}(t-1)(1-1/\tau_{IS_{+}}) + \sum w_{i} \cdot E_{-}(i) \\ IS_{-}(t) = IS_{-}(t-1)(1-1/\tau_{IS_{-}}) + \sum w_{i} \cdot E_{-}(i) \end{cases}$$

Synaptic Response Unit

Reservoir Neuron Schematic

Reservoir Neuron Simulation

Learning Engine of Reservoir Neuron

Learning Engine
of Reservoir
Neuron
Schematic

Learning Engine of Reservoir Neuron Simulation

Implementation of Output neuron Schematic

Output Neuron Simulation

Output Neuron Learning Engine Implementation

- Sparsification stage,
 - CT is always 1
 - > ST is 1 for desired and 0 for the other
- Classification stage,
 - > ST is always 1
 - CT is 1 for desired and 0 for the other

Output Neuron -Learning Engine Schematic

Output Neuron -Learning Engine Simulati on

Benchmark and Result

- Benchmark and Data Processing
 - Spectrum Sensing dataset from RWTH Achen University^[2]
 - Input contains one feature data of received energy signal
 - Central Frequency of channel (Fc = 3750Mhz)
 - Bandwidth (**Bw** = **1500Mhz**)
 - Frequency resolution(Fr = 200Khz)
 - Total samples (7500)
 - Train data(6000)(80%)
 - Test data(1500)(20%)
 - Encoding scheme Rate encoding

Performance Analysis

SNR	Model	2 TX-RX	4 TX-RX	6 TX-RX
-10 dB	LSM	68.39%	98.86%	99.71%
-20 dB	LSM	64.53%	88.35%	95.79%

Schematic for optimized design

$$V_{mem}(t) = V_{mem}(t-1) - \frac{V_{mem}(t-1)}{\tau} + R_{+} - R_{-}$$

$$R_{+} = \frac{ES_{+} - ES_{-}}{\tau_{ES_{+}} - \tau_{ES_{-}}}, \quad R_{-} = \frac{IS_{+} - IS_{-}}{\tau_{IS_{+}} - \tau_{IS_{-}}}$$

$$V_{mem}(t) = V_{mem}(t-1) - V_{mem}(t-1)/ au + \sum weight$$

[3]C. Lee, G. Srinivasan, P. Panda and K. Roy, "Deep Spiking Convolutional Neural Network Trained With Unsupervised Spike-Timing-Dependent Plasticity," in IEEE Transactions on Cognitive and Developmental Systems, vol. 11, no. 3, pp. 384-394, Sept. 2019, doi: 10.1109/TCDS.2018.2833071.

LSM hardware resource comparison

Power consumption

• LSM with original SRU

LSM with simplified SRU

Resource
utilization for a
reservoir neuron
with a SRU
and simplified
SRU

Name 1	Slice LUTs (53200)	Slice Registers (106400)	F7 Muxes (26600)	F8 Muxes (13300)	Bonded IOB (200)	BUFGCTRL (32)	
✓ N LSM_reservoir	2806	2595	94	36	27	1	
Exhibitory_0 (Synaptic_Input_Processor)	178	204	14	6	0	0	
> I new_square (new_square_root_106)	125	93	8	3	0	0	
new_SRU (new_SRU_simplified_105)	15	15	0	0	0	0	
piso_spike (PISO_spike_107)	13	22	0	0	0	0	
piso_weight (PISO_108)	23	58	6	3	0	0	

∨ N LSM_reservoir	3488	3029	94	36	35	1
✓ ■ Exhibitory_0 (Synaptic_Input_Processor)	326	271	14	6	0	0
■ Ein_PISO (PISO_spike_124)	12	18	0	0	0	0
ES_adder (SimpleAdder_123)	0	0	0	0	0	0
■ ISadder (SimpleAdder_125)	10	0	0	0	0	0
> I new_square (new_square_root_127)	126	93	8	3	0	0
piso_spike (PISO_spike_128)	13	22	0	0	0	0
piso_weight (PISO_129)	18	58	6	3	0	0
SRU (SRU_EP_EN_IP_IN_126)	146	64	0	0	0	0

Summary

- Implemented and verified the whole LSM in RTL with spectrum sensing dataset
- Optimized the digital neuron
 - Replaced synaptic response unit with a simplified design
 - Around 50% less power consumption and 20% less resource utilization

Future improvement

- Reducing the hardware utilization
- Running in complex dataset
- Prepare the design for regression problem
- Compare with another type of reservoir neural network, Echo state network

References

- [1] Liu, Yu, Sai Sourabh Yenamachintala, and Peng Li. "Energy-efficient FPGA spiking neural accelerators with supervised and unsupervised spike-timing-dependent-plasticity." ACM Journal on Emerging Technologies in Computing Systems (JETC) 15.3 (2019): 1-19.
- [2] Wang, L., Hu, J., Jiang, R., & Chen, Z. (2024). A Deep Long-Term Joint Temporal—Spectral Network for Spectrum Prediction. Sensors, 24(5), 1498.
- [3]C. Lee, G. Srinivasan, P. Panda and K. Roy, "Deep Spiking Convolutional Neural Network Trained With Unsupervised Spike-Timing-Dependent Plasticity," in IEEE Transactions on Cognitive and Developmental Systems, vol. 11, no. 3, pp. 384-394, Sept. 2019, doi: 10.1109/TCDS.2018.2833071.