Mobile Applications of Secret Handshakes over Bluetooth LE

Gabriel Capella João Henrique

Fraternidades Secretas

Gabriel Capella João Henrique

Annual International Conference on Mobile Computing and Networking (MobiCom 2016)

Yan Michalevsky (Stanford University)

Suman Nath (Microsoft Research)

Jie Liu Microsoft (Microsoft Research)

Annual International Conference on Mobile Computing and Networking (MobiCom 2016)

Yan Michalevsky (Stanford University)

Suman Nath (Microsoft Research)

Jie Liu Microsoft (Microsoft Research)

Comunidades Secretas

- Membros querem identificar-se uns aos outros
- Anonimato para pessoas externas à comunidade
- As mensagens podem ser secretas

O servidor é seguro?

	Seg	Ter	Qua	Qui	Sex	Sab	Dom
7:00 - 8:00	0	0	0	0	0	0	0
8:00 - 9:00	0	0	30	0	0	0	0
9:00 - 10:00	0	0	42	0	0	0	0
10:00 - 11:00	0	0	5	0	0	0	0
11:00 - 12:00	0	0	0	0	0	0	0
12:00 - 13:00	0	0	0	0	0	0	0
13:00 - 14:00	0	1	0	0	0	0	0
14:00 - 15:00	0	20	0	0	0	0	0
15:00 - 16:00	0	13	0	0	0	0	0
16:00 - 17:00	0	2	0	5	0	0	0
17:00 - 18:00	0	0	0	0	0	0	10

Mensagens trocadas entre João e Capella em determinados horários do dia

Há sempre conexão?

Bluetooth LE

Consumo?

Objetivos do artigo

- Não utilizar servidor central
 - Comunicação peer-to-peer
- Economizar energia
 - Utilizando bluetooth de baixa energia (BLE)
- Ser possível no contexto atual
 - Em vários dispositivos e com a tecnologia já existente neles

Bluetooth Low Energy (BLE)

Prós

- Baixíssimo consumo de bateria
- Presente na maior parte dos aparelhos atuais

Contras

- Limitação superior na quantidade de dados transmitida
- Modo que o pareamento atual é feito é inseguro

Comunicando via Bluetooth

Pareado

- O protocolo atual permite que seja feito o pareamento das seguintes formas:
 - Sem proteção
 - Comparação numérica
 - Senha
 - Método Externo

Conectado

 Momento em que o dispositivo já está pareado, possibilitando a troca de mensagens

Anunciando

Conectado

 O protocolo Bluetooth LE tem a capacidade de anunciar sua existência de tempos em tempos (advertising)

 Existe uma opção onde, para cada anúncio, gera-se um endereço MAC diferente, evitando assim personificação

Handshakes Secretos

- Handshake: reconhecimento mútuo de aparelhos para começar o protocolo de comunicação
- Um dispositivo n\u00e3o conhece o outro
- Realizam um procedimento para saber se é confiável falar com o outro
 - Se falhar, nenhum sabe nada sobre o outro
 - Se funcionar, descobrem que pertencem ao mesmo grupo

"Consider a CIA agent who wants to authenticate herself to a server, but does not want to reveal her CIA credentials unless the server is a genuine CIA outlet. Consider also that the CIA server does not want to reveal its CIA credentials to anyone but CIA agents – not even to other CIA servers."

Álgebra

Sejam G_1 , G_2 e G_3 grupos cíclicos, $u \in G_1$, $v \in G_2$ e $a, b \in Z_n$. Seja (·) uma operação nesse grupo, por exemplo uma multiplicação sobre uma curva elíptica. Um emparelhamento (e) é uma função $G_1 \times G_2 \square G_3$, tal que:

 $s \cdot P_B$

Alice

$$r \cdot P_A$$

Bob

$$K_A = e(s \cdot P_B, r \cdot T_A) = e(P_B, P_A)^{rst}$$

$$K_B = e(s \cdot T_B, r \cdot P_A) = e(P_B, P_A)^{rst}$$

 $Enc_{K_A}(challenge_A)$ $response_A, Enc_{K_B}(challenge_B)$ $response_B$

Resultados Experimentais

Dois smartphones com Windows Phone, com 1 handshake a cada 8 segundos, por 8296 segundos (aprox. 2 horas e 18 minutos)

- 96% de sucesso usando o handshake secreto como protocolo de pareamento.
- Baixo overhead na comunicação
- Baixo consumo energético

Conclusões

- Comunicação e reconhecimento anônimos entre entidades
- Canal de comunicação autenticado, encriptado e seguro
- Consumo de energia viável para uma aplicação móvel
- Handshakes secretos s\u00e3o pr\u00e1ticos para o pareamento no protocolo

BLE

Perguntas?

Referências:

- "An Analysis of Power Consumption in a Smartphone" https://www.usenix.org/legacy/event/atc10/tech/full_papers/Carroll.
 pdf
- "MASHaBLE: Mobile Applications of Secret Handshakes over Bluetooth Low Energy" https://web.stanford.edu/~yanm2/files/sechandble.pdf
- "Secret Handshakes from Paired-Based Key Agreements" http://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/hcwong/Pdfs/h
 andshakes.pdf