Assignment 3

Duc Viet Le CS536

February 22, 2017

Problem 1.

a. In the second segment sent from Host A to B:

• Sequence Number: 127 + 80 = 207

Source-Port: 302Destination-Port: 80

b. If the first segment arrives before the second segment, in the acknowledgment of the first arriving segment:

• Sequence Number: 207

• Source-Port: 80

• Destination-Port: 302

- c. If the second segment arrive before the first segment, in the acknowledgment of the first arriving segment:
 - Sequence Number: 127

to tell A that it has received everything up to 126.

d. Draw:

Problem 2.

- a. The intervals of the time when TCP slow start is operating is $[1,6] \cup [23,26]$
- b. The intervals of the time when TCP congestion avoidance is operating is $[6, 16] \cup [17, 22]$
- c. By a triple duplicate ACK. Otherwise, the cwnd would drop to 1
- d. By a timeout as the cwnd dropped to 1
- e. ssthresh = 32 because TCP congestion avoidance starts at that point
- f. $ssthresh \approx 42/2 = 21$ since the *cwnd* is around 24 in the next round.
- g. $ssthresh \approx 28/2 = 14$ since there is a time out when cwnd is around 28.
- h. During 7^{th} round. As we can see, during slow start phase (i.e. round 1-6), there are 63 segments sent. the $64 96^{th}$ segments are sent in the next round (i.e. 7^{th} round).
- i. ssthresh = 4 which is half of the current cwnd. And the cwnd for the next round is ssthresh + 3 = 7 as TCP enters the fast retransmit phase.
- j. Suppose TCP Tahoe:
 - ssthresh = 42/2 = 21
 - cwnd = 4. Since the TCP slow-start begins at round 17^{th} , after two round, the cwnd has to be 4.
- k. Suppose TCP Tahoe
 - Round 17^{th} : 1 packets
 - Round 18^{th} : 2 packets
 - Round 19^{th} : 4 packets
 - Round 20^{th} : 8 packets
 - Round 21^{st} : 16 packets
 - Round 22^{nd} : 21 packets (this is the current ssthresh)

Therefore, total packets sent are 52 packets.