Computer Architecture

PROCESSOR REGISTER

PROFESSOR SAMIR ABOU EL-SEOUD

Definition

- ▶ It is a special, high-speed <u>storage</u> area within the <u>CPU</u>. All <u>data</u> must be represented in a register before it can be processed. For example, if two numbers are to be multiplied, both numbers must be in registers, and the result is also placed in a register. (The register can contain the <u>address</u> of a <u>memory</u> location where data is <u>stored</u> rather than the actual data itself.)
- ► The number of registers that a CPU has and the size of each (number of bits) help determine the power and speed of a CPU. For example a 32-bit CPU is one in which each register is 32 bits wide. Therefore, each CPU instruction can manipulate 32 bits of data.

Continuation

- Usually, the movement of data in and out of registers is completely <u>transparent</u> to <u>users</u>, and even to <u>programmers</u>. Only <u>assembly language</u> programs can manipulate registers. In <u>high-level languages</u>, the <u>compiler</u> is responsible for translating high-level operations into low-level operations that <u>access registers</u>.
- ▶ In <u>computer architecture</u>, a processor register is a small amount of <u>storage</u> available as part of a <u>CPU</u> or other digital processor. Such registers are (typically) addressed by mechanisms other than <u>main memory</u> and can be accessed more quickly. Almost all computers, <u>load-store architecture</u> or not, load data from a larger memory into registers where it is used for arithmetic, manipulated, or tested, by some <u>machine instruction</u>. Manipulated data is then often stored back in main memory, either by the same instruction or a subsequent one. Processor registers are normally at the top of the <u>memory hierarchy</u>, and provide the fastest way to access data.

Computer Memory Hierarchy

A "memory hierarchy" in <u>computer storage</u> distinguishes each level in the "hierarchy" by response time. Since response time, complexity, and capacity are related, the levels may also be distinguished by the controlling technology.

Computer Memory Hierarchy

Categories of registers

Registers are normally measured by the number of bits they can hold, for example, an "8-bit register" or a "32-bit register". A processor often contains several kinds of registers, that can be classified accordingly to their content or instructions that operate on them:

- **▶** User-accessible registers
- Conditional registers
- **▶** General purpose registers (GPRs)
- Floating point registers (FPRs)
- Special purpose registers (SPRs)

Registers

- ▶ User-accessible registers The most common division of user-accessible registers is into data registers and address registers.
- ▶ Data registers can hold numeric values such as integer and floating-point values, as well as characters, small bit arrays and other data. In some older and low end CPUs, a special data register, known as the accumulator, is used implicitly for many operations.
- ► Address registers hold addresses and are used by instructions that indirectly access primary memory.

- Conditional registers hold <u>truth values</u> often used to determine whether some instruction should or should not be executed
- Floating point registers (FPRs) store floating point numbers in many architectures.
- Constant registers hold read-only values such as zero, one, or pi.
- Vector registers hold data for vector processing done by SIMD instructions (Single Instruction, Multiple Data).
- Special purpose registers (SPRs) hold program state; they usually include the program counter and status register.

Instruction registers store the instruction currently being executed.

Registers related to Fetching Information from RAM

These are a collection of storage registers located on separate chips from the CPU (unlike most of the above, these are generally not *architectural* registers):

- Memory Address Register (MAR)
- Memory Buffer Register (MBR)
- Memory Data Register (MDR)
- Program Counter Register (PC)
- Instruction Register (IR)

- Memory address register (MAR): Is connected to the address lines of the system bus. It specifies the address in memory for a read or write operation.
- Memory buffer register (MBR): Is connected to the data lines
 of the system bus. It contains the value to be stored in memory
 or the last value read from memory.
- Program counter (PC): Holds the address of the next instruction to be fetched.
- Instruction register (IR): Holds the last instruction fetched.