Tarea 1 MA0918 : Procesos Estocásticos Prof: Jose A. Ramírez

Michael Abarca Jiménez 28 de Abril del 2020

Ejercicio 1.15 Sea $(X_t)_{t \in [0,1]}$ un proceso Gaussiano centrado. Asumimos que el mapeo $(t,\omega) \to X_t(\omega)$ de $[0,1] \times \Omega$ a \mathbb{R} es medible. Denotamos la función de covarianza de X por K.

1. Mostrar que el mapeo $t \to X_t$ de [0,1] a $L^2(\Omega)$ es continuo si y solamente si K es continua en $[0,1]^2$. En lo que sigue, asumimos que esta condición se cumple.

Demostración. Primeramente, si asumimos que $K(s,t) := K(X_t, X_s)$ es continua

$$||X_{t+h} - X_t||_{L^2(\Omega)}^2 = \mathbb{E}\left(|X_{t+h} - X_t|^2\right)$$

$$= \mathbb{E}\left(X_{t+h}^2 - 2X_{t+h}X_t + X_t^2\right)$$

$$= K(t+h, t+h) - 2K(t+h, t) + K(t, t)$$

Al hacer $h \to 0$ se concluye $t \to X_t$ continuo en $L^2(\Omega)$.

Ahora bien, si asumimos que $t \to X_t$ continuo en $L^2(\Omega)$,

$$\begin{split} |K(u+t,v+s)-K(u,v)| &\leq |K(u+t,v+s)-K(u,v+s)| + |K(u,v+s)-K(u,v)| \\ &= |\mathbb{E}\left(X_{u+t}X_{v+s}\right) - \mathbb{E}\left(X_{u}X_{v+s}\right)| + |\mathbb{E}\left(X_{u}X_{v+s}\right) - \mathbb{E}\left(X_{u}X_{v}\right)| \\ &\leq \mathbb{E}\left(|X_{v+s}||X_{u+t}-X_{u}|\right) + \mathbb{E}\left(|X_{u}||X_{v+s}-X_{v}|\right) \\ &\leq ||X_{v+s}||_{L^{2}(\Omega)}||X_{u+t}-X_{u}||_{L^{2}(\Omega)} + ||X_{u}||_{L^{2}(\Omega)}||X_{v+s}-X_{v}||_{L^{2}(\Omega)} \end{split}$$

Fijando un punto (u, v), $||X_{v+s}||_{L^2(\Omega)}$ es acotado para s pequeño por continuidad de $t \to X_t$, y se puede concluir continuidad de K.

2. Sea $h:[0,1] \to \mathbb{R}$ una función medible tal que $\int_0^1 |h(t)| \sqrt{K(t,t)} \, dt < \infty$. Muestre que para casi todo ω , la integral $\int_0^1 h(t) X_t(\omega) \, dt$ es absolutamente convergente. Definimos $Z = \int_0^1 h(t) X_t \, dt$

Demostración.

$$\int_{\Omega} \int_{0}^{1} |X_{t}(w)| |h(t)| dt dw = \int_{0}^{1} \int_{\Omega} |X_{t}(w)| |h(t)| dw dt$$

$$= \int_{0}^{1} ||X_{t}||_{L^{1}(\Omega)} |h(t)| dt$$

$$\leq \int_{0}^{1} ||X_{t}||_{L^{2}(\Omega)} |h(t)| dt$$

$$= \int_{0}^{1} \sqrt{K(t,t)} |h(t)| dt < \infty$$

lo cual muestra convergencia absoluta.

3. Ahora suponemos algo más fuerte, $\int_0^1 |h(t)| dt < \infty$. Muestre que Z es el límite en $L^2(\Omega)$ de las variables

$$Z_n = \sum_{i=0}^{n} X_{\frac{i}{n}} \int_{\frac{i-1}{n}}^{\frac{i}{n}} h(t) dt$$

e infiera que Z es una variable aleatoria Gaussiana.

Demostración.

$$\mathbb{E}|Z_{n}-Z|^{2} = \int_{\Omega} \left| \int_{0}^{1} h(t) [X_{t}(w) - \sum_{i=0}^{n} X_{\frac{i}{n}} \mathbb{I}_{I_{n}}(t)] dt \right|^{2} dw$$

$$= \int_{\Omega} \left(\int_{0}^{1} h(t) [X_{t}(w) - \sum_{i=0}^{n} X_{\frac{i}{n}} \mathbb{I}_{I_{n}}(t)] dt \right) \left(\int_{0}^{1} h(s) [X_{s}(w) - \sum_{i=0}^{n} X_{\frac{i}{n}} \mathbb{I}_{I_{n}}(s)] ds \right) dw$$

$$= \int_{\Omega} \left(\int_{0}^{1} \int_{0}^{1} h(t) h(s) [X_{t}(w) - \sum_{i=0}^{n} X_{\frac{i}{n}} \mathbb{I}_{I_{n}}(t)] [X_{s}(w) - \sum_{i=0}^{n} X_{\frac{i}{n}} \mathbb{I}_{I_{n}}(s)] dt \right)$$

4. Asumimos que K es dos veces continuamente diferenciable. Muestre que para cada $t \in [0, 1]$ el siguiente límite existe en $L^2(\Omega)$

$$\hat{X}_t := \lim_{s \to t} \frac{X_s - X_t}{s - t}$$

Verificar que $(\hat{X}_t)_{t \in [0,1]}$ es un proceso Gaussiano y calcule su función de covarianza.

Demostración. Para demostrar que dicho límite existe, veamos que para $h_1 \to 0, h_2 \to 0$ independientemente se tiene

$$\left\| \frac{X_{t+h_1} - X_t}{h_1} - \frac{X_{t+h_2} - X_t}{h_2} \right\|_{L^2(\Omega)} \to 0$$

Note que

$$\left\| \frac{X_{t+h_1} - X_t}{h_1} - \frac{X_{t+h_2} - X_t}{h_2} \right\|_{L^2(\Omega)}^2 = A - 2B + C$$

donde

$$A = \frac{1}{|h_{1}|^{2}} \mathbb{E}(X_{t+h_{1}} - X_{t})^{2} = \frac{\mathbb{E}(X_{t+h_{1}})^{2} + \mathbb{E}(X_{t})^{2} - 2\mathbb{E}(X_{t+h_{1}}X_{t})}{|h_{1}|^{2}}$$

$$B = \frac{1}{|h_{1}h_{2}|} \mathbb{E}(X_{t+h_{1}} - X_{t})(X_{t+h_{2}} - X_{t}) = \frac{\mathbb{E}(X_{t+h_{1}}X_{t+h_{2}}) + \mathbb{E}(X_{t})^{2} - \mathbb{E}(X_{t+h_{1}}X_{t}) - \mathbb{E}(X_{t+h_{2}}X_{t})}{|h_{1}h_{2}|}$$

$$C = \frac{1}{|h_{2}|^{2}} \mathbb{E}(X_{t+h_{2}} - X_{t})^{2} = \frac{\mathbb{E}(X_{t+h_{2}})^{2} + \mathbb{E}(X_{t})^{2} - 2\mathbb{E}(X_{t+h_{2}}X_{t})}{|h_{2}|^{2}}$$

Note que si se toma $g(x) = K(x, t + h_1) - K(x, t)$ a su vez se tiene

$$A = \frac{K(t + h_1, t + h_1) + K(t, t) - 2K(t + h_1, t)}{|h_1|^2}$$
$$= \frac{g(t + h_1) - g(t)}{|h_1|^2}$$

Sin pérdida de generaldiad, suponiendo $h_1 > 0$, como g es dos veces continuamente diferenciable, $\exists t^* \in (t, t + h_1)$ tal que

$$A = \frac{g'(t^*)}{h_1} = \frac{1}{h_1} \left[\frac{\partial K(t^*, t + h_1)}{\partial u} - \frac{\partial K(t^*, t)}{\partial u} \right]$$

De nuevo, por diferenciablilidad de las derivadas parciales de K, $\exists t^{**} \in (t, t + h_1)$ tal que

$$A = \frac{\partial K(t^*, t^{**})}{\partial v \partial u}$$

tomando $h_1 \to 0$, por continuidad $A \to \frac{\partial K(t,t)}{\partial v \partial u}$, y lo mismo aplica para C. Y así para probar que \hat{X}_t existe quedaría verificar que

$$B \to \frac{\partial K(t,t)}{\partial v \partial u}$$

Usando $g(x) = K(t + h_1, x) - K(t, x)$ se tiene

$$q(t + h_2) - q(t) = K(t + h_1, t + h_2) - K(t, t + h_2) - K(t + h_1, t) + K(t, t) = |h_1 h_2|B$$

y bajo mismo razonamiento se llega a $B \to \frac{\partial K(t,t)}{\partial v \partial u}$. Por lo tanto \hat{X}_t existe, ya que se comprobó que es de Cauchy, y $L^2(\Omega)$ es de Cauchy.

Ahora, note que $\frac{X_s - X_t}{s - t}$ es una variable Gaussiana centrada, ya que X_t es un proceso Gaussiano. Como \hat{X}_t es límite en L^2 de variables Gaussianas, se concluye que es Gaussiana. Y como combinaciones lineales de variables de la forma $\frac{X_s - X_t}{s - t}$ son Gaussianas centradas, se tiene \hat{X}_t proceso Gaussiano.

Calculemos la función de covarianza $\hat{K}(t,s)$:

$$\mathbb{E}\left[\frac{X_{t+h} - X_t}{h} \frac{X_{s+h} - X_s}{h}\right] = \frac{K(t+h, s+h) - K(t+h, s) - K(t, s+h) + K(t, s)}{h}$$

Definitiendo g(x) = K(x, s+h) - K(x, s) como se hizo anteriormente $\exists s_h \to s, t_h \to t$ tales que

$$\mathbb{E}\left[\frac{X_{t+h} - X_t}{h} \frac{X_{s+h} - X_s}{h}\right] = \frac{\partial^2 K(t_h, s_h)}{\partial u \partial v}$$

Como K es dos veces continuamente diferenciables en $[0,1]^2$, $\exists C > 0$ tal que

$$\left| \mathbb{E} \left[\frac{X_{t+h} - X_t}{h} \frac{X_{s+h} - X_s}{h} \right] \right| \leq \left| \frac{\partial^2 K(t_h, s_h)}{\partial u \partial v} \right| \leq C$$

y así al invocar el teorema de convergencia dominada

$$\hat{K}(t,s) = \mathbb{E}\left[\hat{X}_t \hat{X}_s\right]$$

$$= \lim_{h \to 0} \mathbb{E}\left[\frac{X_{t+h} - X_t}{h} \frac{X_{s+h} - X_s}{h}\right]$$

$$= \frac{\partial^2 K(t,s)}{\partial u \partial v}$$