| 1 201 201 11 | 082742 — Elettrotecnica (E-O)<br>Prof. F. Bizzarri |
|--------------|----------------------------------------------------|
| MILANO       |                                                    |

| Cognome   | Nome  |
|-----------|-------|
| Matricola | Firma |

## **AVVERTENZE**

- La prova dura 3 ore
- I punteggi massimi per ogni quesito sono indicati nella tabella sottostante; un punteggio complessivo inferiore a 16 punti invalida la prova.

| Quesito o | E1        | E2             | E3        | E4        | Voto Finale |
|-----------|-----------|----------------|-----------|-----------|-------------|
| Esercizio | 2.0 punti | -8.0/8.0 punti | 9.0 punti | 9.0 punti |             |
| Voto      |           |                |           |           |             |

Riportare i risultati e i passaggi salienti nel riquadro relativo ad ogni esercizio

Enunciare e discutere la legge di Ampere-Maxwell.

Le legge di Ampere - Haxvell fu teanimate de Haxvell che
"connene" la legge di Ampere pu trasare un equisalenti delle
legge di Faradaj - Heury che leganse varioquani di un compo elettrico
al un compo maquelico, legge di Ampre

DE de ma presenti concentrate con de de anche ne F=0

(ruen a nono connenti concentrate con di equale ne F=0

(ruen a nono concenti concentrate con di equale ne fine ma compo in agui do Fine fine ma contentra di un compo in agui do

E el cui fermo ottronore

S nie non contentra rel

tempo genero B.





Il circuito in Figura 7, per  $t=t_0^->0$  evolve in regime stazionario. Sapendo che

- $\alpha < 1$ ,
- $e(t) = E_0 > 0 \text{ per } t < t_0$ ,
- $e(t) = E_0 + E_1 > 0 \text{ per } t > t_0$ ,

determinare la corrente  $i_2(t_0^-)$  e  $i_2(t)$  per  $t \in (t_0^+, +\infty)$ .



Figura 7

in 
$$t_o$$
:  $\sqrt{\frac{1}{2}}$   $R_1$   $R_2$   $R_1$   $R_2$   $R_2$   $R_3$   $E_0$   $E_0$   $R_4$   $R_4$ 

in 
$$t_0$$
:  $I_1(0^+) = I_1(0^-)$  perdu  $e(1)$  é dissemblemes

we in (vanishele di stata) é pui coulimne

degli moperni. In general, mirea,  $I_2(0^+) \neq I_2(0^-)$ 
 $I_2(t) = 1 \cdot L \cdot L \cdot dir e quindi  $I_2(t_0^+) = L \cdot dir \cdot R_2 \cdot dt$ 
 $t > t_0$$ 

Pasoloo x nicovare li(t) put e (to, +10) e quindi

Micon jett 
$$V_{R1}$$
 $J_{2}(t) + J_{1}(t) = \alpha J_{2}(t) + (R_{2}J_{2}(t) - eH)/R_{1} = \emptyset$ 
 $V_{R2}$ 
 $V_{R2}$ 
 $V_{R2}$ 
 $V_{R3}$ 
 $V_{R4}$ 
 $V_{R$ 

**E4** 

con pulsaneur a

Il circuito in Figura 8 evolve in regime sinusoidale. Determinare /> pkuse eth va exple del generatore indipendente di tensione e(t), associato al fasore  $\overline{E}$ .

$$\overline{A} = \overline{A} =$$

$$\overline{V}_{2} = \overline{E} - J \omega L \overline{L}$$
  $\overline{L}_{3} = \overline{L}_{1} - (\overline{E} - J \omega L \overline{L}) \overline{R}^{-1}$ 

eft 
$$\longleftrightarrow E$$

$$\overline{V}_{2} = \overline{E} - J\omega L \overline{L} \qquad \overline{J}_{2} = \overline{J}_{1} - (\overline{E} - J\omega L \overline{L}) R^{-1}$$

$$\overline{V}_{2} = (\overline{E} - J\omega L \overline{L}) n^{-1} \quad \overline{J}_{2} = -n \left( \overline{J}_{L} - (\overline{E} - J\omega L \overline{J}_{L}) R^{-1} \right)$$

$$\overline{J}_2 + u\overline{l}_L + JwC\overline{l}_2 = 0$$

$$-n\left(\overline{I_L} - (\overline{E} - J\omega L \overline{I_L})R^{-1}\right) + u\overline{I_L} + J\omega C\left(\overline{E} - J\omega L \overline{I_L}\right)u^{-1} = 0$$

$$u\overline{E}R^{-1} - J\omega L \overline{I_L}R^{-1}n + J\omega Cu^{-1}\overline{E} + \omega^{2}CLu^{-1}\overline{I_L} = 0$$

$$\overline{I_L}\left(\frac{\omega^{2}CL}{u} - J\omega L u\right) = -\left(\frac{n\overline{E}}{R} + J\omega C\overline{E}\right)$$

$$\overline{A} = \frac{1}{2} \overline{E} \overline{L}^{*} = -\frac{1}{2} \overline{E} \left( \frac{(u^{2} + 3\omega RC)(\omega^{2}LRC + 3\omega Lu^{2})}{(\omega^{2}LRC)^{2} + (\omega Lu^{2})^{2}} \right) \overline{E}^{*}$$

$$= -\frac{1}{2} \left[ \frac{1}{||\mathbf{x}||^2 ||\mathbf{x}||^2 + ||\mathbf{x}||^2 + ||\mathbf{x}||^2}{(|\mathbf{w}|^2 + ||\mathbf{x}||^2 + ||\mathbf{x}||^2 + ||\mathbf{x}||^2)^2} \right]^{\frac{1}{8}}$$



Test 1.



$$E = \frac{1}{2}L\lambda_{L}^{2} - \frac{1}{2}.1.1 = \frac{1}{2}$$

test 2

$$2eq = 1 + \frac{1}{4 + 2j} = 1 + \frac{1}{4 - 2} = 1 + 0.5j$$

tet 3

$$\frac{1}{2} \sec \left(\omega t + \frac{3}{4}\pi\right) = \frac{1}{2} \cos \left(\omega t + \frac{3}{4}\pi - \frac{\pi}{2}\right) =$$

$$= \frac{1}{2} \cos \left(\omega t + \frac{\pi}{4}\right) \iff \frac{1}{2} e^{-\frac{\pi}{2}} \frac{\sqrt{2}}{4} (1+5) =$$

$$= \frac{1}{2} \cos \left(\omega t + \frac{\pi}{4}\right) \iff \frac{1}{2} e^{-\frac{\pi}{2}} \frac{\sqrt{2}}{4} (1+5) =$$

test 4

$$P = \frac{1}{4} + \frac{1}{2} = \left(\frac{1}{1} + \frac{5}{12}\right) \frac{1}{11} + \left(-\frac{1}{2} + \frac{1}{12}\right) \frac{1}{12} = \frac{1}{11} + \frac{1}{12} + \frac{1}{12} \frac{1}{12}$$

Test 5

Tet6

$$\frac{1}{2}\overline{V}\overline{\Lambda}^* = \frac{1}{2}\overline{V}\left(J\omega\overline{V} + \frac{\overline{V}-4\overline{V}}{3}\right)^* = \frac{1}{2}|\overline{V}|^2\left(-1-J\omega\right)^*$$

$$=-\frac{1}{2}|\overline{V}|^{2}(2+5\omega)$$

Test 7 3 condidale, 1 maglie C \_\_\_\_\_ 2. v. di stato