CSF 432: Intro to Network and System Security

Week 04 - Review

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

Sources: Professor Messer's CompTIA N10-007 Network+ Course Notes

Binary Math

2 12	2 11	2 10	2 9	2 8	2 ⁷	2 6	2 5	2 4	2 ³	2 ²	2 1	2 º
4,096	2,048	1,024	512	256	128	64	32	16	8	4	2	1

0

Binary Math

- ☑ A way to represent numbers
- - ☑ binary

Binary Math

...
$$d_2b^2 + d_1b^1 + d_0b^0 + d_{-1}b^{-1} + d_{-2}b^{-2}$$
...

$$43.23 = 4 \cdot 10^{1} + 3 \cdot 10^{0} + 2 \cdot 10^{-1} + 3 \cdot 10^{-2}$$

Binary Math

- MBase 10

0 1 2 3 4 5 6 7 8 9

$$456 = 4 \cdot 10^2 + 5 \cdot 10^1 + 6 \cdot 10^0$$

Binary Math

- **☑** Base 2

0 1

Most Significant Bit Least Significant Bit

$$1010 = (1 \cdot 2^3) + (0 \cdot 2^2) + (1 \cdot 2^1) + (0 \cdot 2^0)$$

Binary Math

☑ Binary to decimal?

$$(1 \cdot 2^8) + (1 \cdot 2^5) + (1 \cdot 2^3) = 256 + 32 + 8 = 296$$

Binary Math

☑ Binary to decimal?

$$(1 \cdot 2^8) + (1 \cdot 2^5) + (1 \cdot 2^3) = 256 + 32 + 8 = 296$$

Binary Math

☑ Binary to decimal?

$$(1 \cdot 2^8) + (1 \cdot 2^5) + (1 \cdot 2^3) = 256 + 32 + 8 = 296$$

Binary Math

☑ Binary to decimal?

$$(1 \cdot 2^8) + (1 \cdot 2^5) + (1 \cdot 2^3) = 256 + 32 + 8 = 296$$

9

Binary Math

☑ Binary to decimal?

$$(1 \cdot 2^8) + (1 \cdot 2^5) + (1 \cdot 2^3) = 256 + 32 + 8 = 296$$

☑ Decimal to Binary?

₫ 236

IPv4 Addresses

IPv4 Addresses

Networking with IPv4

- ☑ IP Address, e.g., 192.168.1.165
- ☑ Subnet mask, e.g., 255.255.255.0
 - Used by the local device to determine what subnet it's on
 - ☑ The subnet mask isn't (usually) transmitted across the network
 - You'll ask for the subnet mask all the time
 - What's the subnet mask of this network?
- ☑ Default gateway, e.g., 192.168.1.1
 - The router that allows you to communicate outside of your local subnet
 - ☑ The default gateway must be an IP address on the local subnet

IPv4 Addresses

Special IPv4 addresses

- ☑ Loopback address
 - ☑ An address to yourself
 - Ranges from 127.0.0.1 through 127.255.255.254
 - ☑ An easy way to self-reference (ping 127.0.0.1)
- ☑ Reserved addresses

 - ₫ 240.0.0.1 through 254.255.255.254
- ✓ Virtual IP addresses (VIP)
 - Not associated with a physical network adapter
 - ☑ Virtual machine, internal router address

Classful Subnetting and IPv4 Subnet Masks

Class	Leading Bits	Network Bits	Remaining Bits	Number of Networks	Hosts per Network	Default Subnet Mask
Class A	0xxx (1-126)	8	24	128	16,777,214	255.0.0.0
Class B	10xx (128-191)	16	16	16,384	65,534	255.255.0.0
Class C	110x (192-223)	24	8	2,097,152	254	255.255.255.0
Class D (multicast)	1110 (224-239)	Not defined	Not defined	Not defined	Not defined	Not defined
Class E (reserved)	1111 (240-254)	Not defined	Not defined	Not defined	Not defined	Not defined

Classful Subnetting and IPv4 Subnet Masks

Classful Subnetting

- ✓ Very specific subnetting architecture
 - ☑ Not used since 1993
 - ☑ But still referenced in casual conversation
- ☑ Used as a starting point when subnetting
 - Standard values

Class	Leading Bits	Network Bits	Remaining Bits	Number of Networks	Hosts per Network	Default Subnet Mask
Class A	0xxx (1-126)	8	24	128	16,777,214	255.0.0.0
Class B	10xx (128-191)	16	16	16,384	65,534	255.255.0.0
Class C	110x (192-223)	24	8	2,097,152	254	255.255.255.0
Class D (multicast)	1110 (224-239)	Not defined	Not defined	Not defined	Not defined	Not defined
Class E (reserved)	1111 (240-254)	Not defined	Not defined	Not defined	Not defined	Not defined

Assigning IPv6 Addresses Internet Assigned Numbers Authority (IANA) provides address blocks to RIRs (Regional Internet Registries) RIRs assigns smaller subnet blocks to ISPs (Internet Service Providers) ISP assigns a /48 subnet to the customer 64 bits Frovided by IANA/RIR/ISP Locally Assigned Locally Assigned Host ID 2600: DDDD: 1111: 0001: 0000: 0000: 0000: 00001 Global Routing Prefix = 48 bits Subnet = 16 Host = 64 bits

Calculating IPv4 Subnets and Hosts

Calculating IPv4 Subnets and Hosts

VLSM (Variable Length Subnet Masks)

- ☑ Class-based networks are inefficient
- ☑ Allow network administrators to define their own masks
 - ☑ Customize the subnet mask to specific network requirements
- ☑ Use different subnet masks in the same classful network

Number of subnets = $2^{subnet\ bits}$ Hosts per subnet = $(2^{host\ bits}) - 2$ Seven Second Subnetting

		Ma	Networks	Addresses		
/1	/9	/17	/25	128	2	128
/2	/10	/18	/26	192	4	64
/3	/11	/19	/27	224	8	32
/4	/12	/20	/28	240	16	16
/5	/13	/21	/29	248	32	8
/6	/14	/22	/30	252	64	4
/7	/15	/23	/31	254	128	2
/8	/16	/24	/32	255	256	1

9

Seven Second Subnetting

Seven second subnetting

- ☑ Convert IP address and subnet mask to decimal
- ☑ Determine network/subnet address
- ☑ Determine broadcast address
- ☑ Calculate first and last usable IP address

Seven Second Subnetting

		Ma	Networks	Addresses		
/1	/9	/17	/25	128	2	128
/2	/10	/18	/26	192	4	64
/3	/11	/19	/27	224	8	32
/4	/12	/20	/28	240	16	16
/5	/13	/21	/29	248	32	8
/6	/14	/22	/30	252	64	4
/7	/15	/23	/31	254	128	2
/8	/16	/24	/32	255	256	1

CSF 432: Intro to Network and System Security

Week 04 - Review

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

jources: Professor Messer's CompTIA N10-007 Network+ Course Note

