Czy może istnieć nic?

Jacek Winiarczyk

1 Wstęp

Czym jest nic? Wyobrażenie sobie obiektu wykonanego z niczego nie jest łatwe. Żeby wiedzieć gdzie jest nic trzeba mieć wokół $co\acute{s}$ dla porównania 1 . Stworzenie takiego obiektu wydaje się natomiast łatwe - należy tylko zabrać materię z jego przestrzeni i tyle. Nic twórczego, a jednak wykonanie tego jest problematyczne.

2 Problemy z *niczym* w materialnym pojemniku

Stworzenie pustej przestrzeni, bez cząsteczek, czyli klasycznej **próżni**, wydaje się być banalne, należy wziąć wytrzymałą butlę, pompę i odessać powietrze. Jest próżnia - temat zamknięty?

No nie. W normalnych warunkach (na poziomie morza) na ścianki butli naciska powietrze o sile 101 325N na metr kwadratowy. Gdyby zabrać powietrze z butli na ścianki od wewnątrz nie będzie działać żadna siła i cząsteczki butli będące w ciągłym ruchu zaczną się od butli odrywać i wypełniać w niej przestrzeń.

Można pomyśleć że schłodzenie butli zmniejszy ruch cząstek i zaprzestanie ich odrywaniu. Jest to jednak niemożliwe ponieważ zgodnie z 3. zasadą termodynamiki otrzymanie temperatury 0 K (braku jakiegokolwiek ruchu) jest niewykonalne w skończonej liczbie kroków 2 , więc zawsze będą istnieć odrywające się cząsteczki.

3 Problemy ze skonstruowaniem próżni w Kosmosie

zanieczyszczenie orbity Ziemi, pył kosmiczny

Do każdego miejsca we wszechświecie dociera światło gwiazd, a jest ono energią. $E = hf = mc^2$. Powstaje pytanie czy ze słońca będącego na jednym końcu wszechśwta do obserwatora będącego na drugim dotarłaby wystarczająca ilość energii by zamienić się w masę i zaburzyć próżnię?

Mierząc światło słoneczne spektrometrem można się dowiedzieć o długości fali i jej intensywności.

Rysunek 1: Zależność natężenia promieniowania od długośći fali światła słonecznego

Najintensywniejszym kolorem św
tała słonecznego jest niebieskozielony o długości $\lambda\approx 500$ nm. Podstawiając tę informację do wzoru Wiena otrzymuje się temperaturę fotosfery
 $T=\frac{b}{\lambda}\approx 5$ 796 K. Ze wzoru Stefana-Boltzmanna wychodzi moc słońca na każdy jego metr kwadratowy
 $\Phi_{wyslane}=\sigma T^4\approx 63,9\cdot 10^6\frac{W}{m^2}$. Przyjmując promień słońca za 696 000
km otrzymuje się pole powierzchni $A{=}4\pi R^2\approx 6,087\cdot 10^{18}~m^2$.

¹Powrót do filozoficznego pytania "Dlaczego istnieje raczej coś niż nic?"

 $^{^2}T \rightarrow 0 \text{ K} \Longleftrightarrow \Delta S \rightarrow 0 \Longleftrightarrow W \rightarrow \infty$

Poniższe wyliczenie są błędne

Z powyższych danych można policzyć z jaką mocą słońce promieniuje we wszystkich kierunkach $P=\Phi_{wyslane}A\approx 1,945\cdot 10^{29}$ W. Następnie należy policzyć ile tej mocy dociera do obserwatora na drugim krańcu wszechświata ($\varnothing=8,8\cdot 10^{26}$ m). $\Phi_{odebrane}=\frac{P}{4\pi d^2}=\frac{\Phi_{wyslane}4\pi R^2}{4\pi d^2}=\frac{\Phi_{wyslane}R^2}{d^2}=3,997\cdot 10^{-17}\frac{W}{m^2}$ Przyjmując że obserwator ma 1 m^2 to w ciągu jednej sekundy dociera energia $E=\Phi_{odebrane}\cdot 1m^2\cdot 1s=3,997\cdot 10^{-17}J$

dopracuj, co z ubytkiem po drodze? Paradoks Olbersa

Oprócz energii Słońce (jak każda gwiazda) emituje neutrina. Jest to spowodowane cyklem protonowym, dzięki któremu gwiazda zamienia wodór w hel i energię.

O neutrinach, bombardowanie, może o procesach w gwiazdach, ile np. słońce emituje neutrin

Tak też żeby w kosmosie było nic, wszędzie musi być nic, ponieważ gwiazda będąca na drugim końcu wszechświata jest w stanie zabużyć próżnie.

4 Czy *nic* jest względne?

O efekcie Unruha - dla stacjonarnego obserwatora w X może nie być cząsteczek, a dla poruszającego się z $v \approx c$ są

5 Czy nic może wogóle istnieć?

o kwantowej próżni, o cząsteczkach wirtualnych, kreacji par, fale grawitacyjne

6 Czy możemy zmierzyć nicość próżni?

Z zasady nieoznaczoności heisenberga:

$$\Delta x \Delta p_x \geqslant \frac{\hbar}{2}$$

$$\therefore \Delta E \Delta t \geqslant \frac{\hbar}{2}$$

$$\therefore \Delta mc^2 \Delta t \geqslant \frac{\hbar}{2}$$

$$\therefore \Delta m \geqslant \frac{\hbar}{2c^2 \Delta t}$$

Oznacza to że możliwe jest określenie masy w obrębie próżni z niepewnością $\geqslant \frac{\hbar}{2c^2\Delta t}$ Na przykład:

Jedną z najmniejszych mas ma neutrino $m=0,04eV=7,13\cdot 10^{-38}$ kg. Gdy przyjmie się niepewność pomiaru masy rzędu masy neutrina, wtedy niepewność pomiaru czasu jest $\geqslant \frac{\hbar}{2c^2\Delta m_{neutrino}}=8,228\cdot 10^{-15}$ s. Dla porównania czas połowicznego rozpadu 8 Be wynosi $81.9\cdot 10^{-18}$ s.

Gdyby chcieć mierzyć czas z jedną z największych dokładności na przykład czasem Plancka $\Delta t_{min} = t_{Plancka} = \frac{l_{Plancka}}{c} = 5,391 \cdot 10^{-44}, \text{ to masę można określić z niepewnością } \geq \frac{\hbar}{2c^2t_{Plancka}} = 1,088 \cdot 10^{-8}kg, dla porównania masa cząsteczki węgla wynosi <math>1,99 \cdot 10^{-26}kg$

Powyższe przykłady pokazują że nie możliwe jest stwierdzenie czy próżnia jest napewno pusta.

7 Podsumowanie

Wszystko ze wszystkim oddziałuje oraz nie istnieje ciało o $T=0\ K$, przez to bezruch jest niemożliwy, a nawet gdyby go uzyskać przyroda nie pozwoli mu istnieć przez m.in. oddziaływanie grawitacyjne. A skoro bezruch jest niemożliwy to utworzenie a tym bardziej utrzymanie próżni idealnej jest niewykonalne, nie wspominając o kreacji par i ciągłym bombardowaniu neutrinami które nie ułatwiają zadania. Pomijając to wszystko,nawet gdyby mieć próżnie to nie da się być w pełni pewnym że nic w niej nie ma.

8 Bibliografia

Witold Mizerski "Tablice Fizyczno-Astronomiczne" Lewrence M. Krauss "Wszechświat z niczego" Andrzej Dragan "Kwantechizm"

 $^{^3 \}mbox{Początkowo uważano że nie ma masy}$

Spis treści

\mathbf{Wstep}	1
Problemy z $niczym$ w materialnym pojemniku	1
Problemy ze skonstruowaniem próżni w Kosmosie	1
Czy nic jest względne?	2
Czy nic może wogóle istnieć?	2
Czy możemy zmierzyć nicość próżni?	2
Podsumowanie	2
Bibliografia	2
odo list	
pracuj, co z ubytkiem po drodze? Paradoks Olbersa	1 2 2
	oniższe wyliczenie są błędne