A.03.02 – Processos Politrópicos

(Sistemas Fechados)

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-04-03 16h42m39s

- Processos Politrópicos
 - Apresentação

2 Tópicos de Leitura

Processos Politrópicos – Definição

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

40 + 40 + 43 + 43 +

Processos Politrópicos – Definição

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

Onde:

• P é a pressão do sistema

40 + 40 + 43 + 43 +

Processos Politrópicos – Definição

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

Onde:

- P é a pressão do sistema
- v é o volume específico do sistema

Processos Politrópicos - Definição

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

Onde:

- P é a pressão do sistema
- v é o volume específico do sistema
- *n* é o expoente politrópico

Processos Politrópicos - Definição

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

A equação é utilizada na forma:

$$P_1v_1^n = P_2v_2^n$$

Onde:

- P é a pressão do sistema
- v é o volume específico do sistema
- *n* é o expoente politrópico

Em processos politrópicos,

• um parâmetro de processo, n, é mantido constante

Em processos politrópicos,

- um parâmetro de processo, n, é mantido constante
- e não necessariamente uma propriedade do sistema.

Em processos politrópicos,

- um parâmetro de processo, n, é mantido constante
- e não necessariamente uma propriedade do sistema.
- porém uma propriedade pode ficar constante, como veremos.

Em processos politrópicos,

- um parâmetro de processo, n, é mantido constante
- e não necessariamente uma propriedade do sistema.
- porém uma propriedade pode ficar constante, como veremos.

Um exemplo trivial é reconhecer que para n = 0, tem-se:

Em processos politrópicos,

- um parâmetro de processo, n, é mantido constante
- e não necessariamente uma propriedade do sistema.
- porém uma propriedade pode ficar constante, como veremos.

Um exemplo trivial é reconhecer que para n = 0, tem-se:

$$Pv^0 = \text{const.} \rightarrow P = \text{const.}$$

$$Pv^n = \text{const.}$$

$$Pv^n = c_1$$

$$\log\left(Pv^n=c_1\right) \to$$

$$\log (Pv^n = c_1) \rightarrow$$

$$\log(Pv^n) = \log(c_1) \equiv c_2 \rightarrow$$

$$\log (Pv^n = c_1) \rightarrow \log(Pv^n) = \log(c_1) \equiv c_2 \rightarrow \log(Pn) \log v = c_2 \rightarrow 0$$

$$\log (Pv^n = c_1) \rightarrow \log(Pv^n) = \log(c_1) \equiv c_2 \rightarrow \log(Pn) \log v = c_2 \rightarrow \log(Pn) \log v$$

$$\log (Pv^n = c_1) \rightarrow \log(Pv^n) = \log(c_1) \equiv c_2 \rightarrow \log Pn \log v = c_2 \rightarrow \log P = c_2 - n \log v \qquad \therefore \qquad \text{uma equação na forma}$$

$$\log (Pv^n = c_1) \rightarrow$$

$$\log (Pv^n) = \log(c_1) \equiv c_2 \rightarrow$$

$$\log Pn \log v = c_2 \rightarrow$$

$$\log P = c_2 - n \log v \qquad \therefore \qquad \text{uma equação na forma}$$

$$y = A + Bx \qquad \text{para } y \equiv \log P, \quad x \equiv \log v, \quad \text{etc.}$$

Assim:

- Todo processo politrópico
- é representado por um segmento de reta
- que une os estados inicial e final
- em coordenadas $\log P \times \log v$.

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A. *Termodinâmica* 7^a *Edição*. Seção 4-1.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

