# Introduction to Transcriptomics

HackBio

Melyssa Minto
West Lab, Duke Neurobiology
Computational Biology and Bioinformatics



#### **Central Dogma of Biology**





#### Most of our genome is non-protein coding





## Diversity of RNA in the genome





## Diversity of RNA in the genome





#### Overview of eukaryotic transcription





#### Overview of eukaryotic transcription





## Overview of eukaryotic transcription





## mRNA splicing

#### B. Eukaryotic transcription unit

β-globin transcription unit on genome





#### mRNA splicing





#### How is transcription captured?

- Extract RNA from cell
- RNA preparation
- Sequencing library preparation
- Sequencing
- Data capture
- Data analysis



#### **RNA Library Preparation**

#### Isolate and purify RNA

- 1. Extraction
- 2. Amplification regions of interest
- 3. Fragment RNA





rnaseq.uoregon.edu 12

#### **RNA Library Preparation**





rnaseq.uoregon.edu 13

## Sequencing tools





## Sequencing tools



- 1. RNA Pol is loaded at the bottom of each assay
- 2. DNA is isolated & incorporated on assay
- 3. As DNA passes through channel and RNAPol reads DNA the nucleotides produce a fluorescent flash



```
@A00257:355:HK7CTDRXX:1:2101:3522:1204 1:N:0:GACTACGA
CNCTTGAATGCTGAGATTACAGATGTGCTCATAGACAACAGTAGCCACATC
@A00257:355:HK7CTDRXX:1:2101:3577:1204 1:N:0:GACTACGA
CNGGGAGAACCAGGTTAAAATTGAAGGTAGAAAACACTATAAGATGGAGGA
@A00257:355:HK7CTDRXX:1:2101:3703:1204 1:N:0:GACTACGA
CNTATCCATATAAGAATTCAACAGAGAAACGGCAGGAAGACCCTTACCACT
```



```
@A00257:355:HK7CTDRXX:1:2101:3522:1204 1:N:0:GACTACGA
CNCTTGAATGCTGAGATTACAGATGTGCTCATAGACAACAGTAGCCACATC
@A00257:355:HK7CTDRXX:1:2101:3577:1204 1:N:0:GACTACGA
CNGGGAGAACCAGGTTAAAATTGAAGGTAGAAAACACTATAAGATGGAGGA
@A00257:355:HK7CTDRXX:1:2101:3703:1204 1:N:0:GACTACGA
CNTATCCATATAAGAATTCAACAGAGAAACGGCAGGAAGACCCTTACCACT
```



Sequence identifier

Actual sequence



Sequence identifier

Actual sequence



Sequence identifier

@ML-P2-14:9:000H003HG:1:11102:17290:1073 1:N:0:TCCTGAGC+GCGATCTA
TTTGGTAACAGCATGAATTATTCTAGCCACTAAAACTCTATGAACATCTTGTGAAGGTTTCAGATAGAGCCTGAAGTACACAGAGAACAATTCTTAAAAAA
+

Actual sequence



Sequence identifier

@ML-P2-14:9:000H003HG:1:11102:17290:1073 1:N:0:TCCTGAGC+GCGATCTA
TTTGGTAACAGCATGAATTATTCTAGCCACTAAAACTCTATGAACATCTTGTGAAGGTTTCAGATAGAGCCTGAAGTACACAGAGAACAATTCTTAAAAAA+
+

Actual sequence



|                          |                                      | _                                                                                    |                                                              | _                                      | n Torrent                                                                            | -                                                            | and 5                                        | anger                                                                                |                                                              |                                              |                                                                                      |                                                                   |
|--------------------------|--------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                          | Q                                    | P_error                                                                              | ASCII                                                        | Q                                      | P_error                                                                              | ASCII                                                        | Q                                            | P_error                                                                              | ASCII                                                        | Q                                            | P_error                                                                              | ASCII                                                             |
|                          | 0                                    | 1.00000                                                                              | 33 !                                                         | 11                                     | 0.07943                                                                              | 44 ,                                                         | 22                                           | 0.00631                                                                              | 55 7                                                         | 33                                           | 0.00050                                                                              | 66 B                                                              |
|                          | 1                                    | 0.79433                                                                              | 34 "                                                         | 12                                     | 0.06310                                                                              | 45 -                                                         | 23                                           | 0.00501                                                                              | 56 8                                                         | 34                                           | 0.00040                                                                              | 67 C                                                              |
|                          | 2                                    | 0.63096                                                                              | 35 #                                                         | 13                                     | 0.05012                                                                              | 46 .                                                         | 24                                           | 0.00398                                                                              | 57 9                                                         | 35                                           | 0.00032                                                                              | 68 D                                                              |
|                          | 3                                    | 0.50119                                                                              | 36 \$                                                        | 14                                     | 0.03981                                                                              | 47 /                                                         | 25                                           | 0.00316                                                                              | 58 :                                                         | 36                                           | 0.00025                                                                              | 69 E                                                              |
| Sequence ider            | 4                                    | 0.39811                                                                              | 37 %                                                         | 15                                     | 0.03162                                                                              | 48 0                                                         | 26                                           | 0.00251                                                                              | 59;                                                          | 37                                           | 0.00020                                                                              | 70 F                                                              |
| Sequence luei            | 5                                    | 0.31623                                                                              | 38 €                                                         | 16                                     | 0.02512                                                                              | 49 1                                                         | 27                                           | 0.00200                                                                              | 60 <                                                         | 38                                           | 0.00016                                                                              | 71 G                                                              |
|                          | 6                                    | 0.25119                                                                              | 39 '                                                         | 17                                     | 0.01995                                                                              | 50 2                                                         | 28                                           | 0.00158                                                                              | 61 =                                                         | 39                                           | 0.00013                                                                              | 72 H                                                              |
|                          | 7                                    | 0.19953                                                                              | 40 (                                                         | 18                                     | 0.01585                                                                              | 51 3                                                         | 29                                           | 0.00126                                                                              | 62 >                                                         | 40                                           | 0.00010                                                                              | 73 I                                                              |
| GM - D2 - 14 - 0 - 000 I | 8                                    | 0.15849                                                                              | 41 )                                                         | 19                                     | 0.01259                                                                              | 52 4                                                         | 30                                           | 0.00100                                                                              | 63 ?                                                         | 41                                           | 0.00008                                                                              | 74 J                                                              |
| @ML-P2-14:9:000H         | 2003                                 | 0.12589                                                                              | 42 *                                                         | 20                                     | 0.01000                                                                              | 53 5                                                         | 31                                           | 0.00079                                                                              | 64 @                                                         | 42                                           | 0.00006                                                                              | 75 K                                                              |
| TTTGGTAACAGCATGA         | 10                                   | 0.10000                                                                              | 43 +                                                         | 21                                     | 0.00794                                                                              | 54 6                                                         | 32                                           | 0.00063                                                                              | 65 A                                                         |                                              |                                                                                      |                                                                   |
| +                        |                                      |                                                                                      |                                                              |                                        |                                                                                      |                                                              |                                              |                                                                                      |                                                              |                                              |                                                                                      |                                                                   |
| AAAAAEEEEEEEEE           |                                      |                                                                                      |                                                              |                                        |                                                                                      |                                                              |                                              |                                                                                      |                                                              |                                              |                                                                                      |                                                                   |
|                          |                                      | II_BASE=6                                                                            |                                                              |                                        |                                                                                      |                                                              |                                              |                                                                                      |                                                              |                                              |                                                                                      |                                                                   |
|                          | Q                                    |                                                                                      |                                                              | and the second second                  |                                                                                      |                                                              | Anna Carrier Control                         |                                                                                      |                                                              | vo vo verminimi parimi                       | <u></u>                                                                              |                                                                   |
|                          |                                      | P_error                                                                              | ASCII                                                        | Q                                      | P_error                                                                              | ASCII                                                        | Q                                            | P_error                                                                              | ASCII                                                        | Q                                            | P_error                                                                              | ASCII                                                             |
| Actual sequence          | 0                                    | 1.00000                                                                              | ASCII<br>64 @                                                | Q<br>11                                | P_error<br>0.07943                                                                   | ASCII<br>75 K                                                | Q<br>22                                      | P_error<br>0.00631                                                                   | ASCII<br>86 V                                                | Q<br>33                                      | P_error<br>0.00050                                                                   | ASCII<br>97 a                                                     |
| Actual sequence          |                                      |                                                                                      |                                                              |                                        |                                                                                      |                                                              |                                              |                                                                                      |                                                              |                                              |                                                                                      |                                                                   |
| Actual sequence          |                                      | 1.00000                                                                              | 64 @<br>65 A<br>66 B                                         | 11                                     | 0.07943                                                                              | 75 K                                                         | 22                                           | 0.00631                                                                              | 86 V                                                         | 33                                           | 0.00050                                                                              | 97 a                                                              |
| Actual sequence          | 0                                    | 1.00000<br>0.79433                                                                   | 64 @<br>65 A                                                 | 11<br>12                               | 0.07943<br>0.06310<br>0.05012                                                        | 75 K<br>76 L<br>77 M<br>78 N                                 | 22<br>23                                     | 0.00631<br>0.00501                                                                   | 86 V<br>87 W<br>88 X<br>89 Y                                 | 33<br>34                                     | 0.00050<br>0.00040                                                                   | 97 a<br>98 b<br>99 c<br>100 d                                     |
| Actual sequence          | 0<br>1<br>2                          | 1.00000<br>0.79433<br>0.63096                                                        | 64 @<br>65 A<br>66 B                                         | 11<br>12<br>13                         | 0.07943<br>0.06310<br>0.05012                                                        | 75 K<br>76 L<br>77 M                                         | 22<br>23<br>24                               | 0.00631<br>0.00501<br>0.00398                                                        | 86 V<br>87 W<br>88 X                                         | 33<br>34<br>35                               | 0.00050<br>0.00040<br>0.00032                                                        | 97 a<br>98 b<br>99 c                                              |
| Actual sequence          | 0<br>1<br>2<br>3                     | 1.00000<br>0.79433<br>0.63096<br>0.50119<br>0.39811<br>0.31623                       | 64 @<br>65 A<br>66 B<br>67 C                                 | 11<br>12<br>13<br>14                   | 0.07943<br>0.06310<br>0.05012<br>0.03981<br>0.03162<br>0.02512                       | 75 K<br>76 L<br>77 M<br>78 N                                 | 22<br>23<br>24<br>25                         | 0.00631<br>0.00501<br>0.00398<br>0.00316                                             | 86 V<br>87 W<br>88 X<br>89 Y<br>90 Z<br>91 [                 | 33<br>34<br>35<br>36                         | 0.00050<br>0.00040<br>0.00032<br>0.00025<br>0.00020<br>0.00016                       | 97 a<br>98 b<br>99 c<br>100 d<br>101 e<br>102 f                   |
| Actual sequence          | 0<br>1<br>2<br>3<br>4                | 1.00000<br>0.79433<br>0.63096<br>0.50119<br>0.39811<br>0.31623<br>0.25119            | 64 @<br>65 A<br>66 B<br>67 C<br>68 D<br>69 E<br>70 F         | 11<br>12<br>13<br>14<br>15             | 0.07943<br>0.06310<br>0.05012<br>0.03981<br>0.03162<br>0.02512<br>0.01995            | 75 K<br>76 L<br>77 M<br>78 N<br>79 O<br>80 P<br>81 Q         | 22<br>23<br>24<br>25<br>26                   | 0.00631<br>0.00501<br>0.00398<br>0.00316<br>0.00251<br>0.00200<br>0.00158            | 86 V<br>87 W<br>88 X<br>89 Y<br>90 Z                         | 33<br>34<br>35<br>36<br>37                   | 0.00050<br>0.00040<br>0.00032<br>0.00025<br>0.00020<br>0.00016<br>0.00013            | 97 a<br>98 b<br>99 c<br>100 d<br>101 e<br>102 f<br>103 g          |
| Actual sequence          | 0<br>1<br>2<br>3<br>4<br>5           | 1.00000<br>0.79433<br>0.63096<br>0.50119<br>0.39811<br>0.31623                       | 64 @<br>65 A<br>66 B<br>67 C<br>68 D<br>69 E                 | 11<br>12<br>13<br>14<br>15             | 0.07943<br>0.06310<br>0.05012<br>0.03981<br>0.03162<br>0.02512                       | 75 K<br>76 L<br>77 M<br>78 N<br>79 O<br>80 P<br>81 Q<br>82 R | 22<br>23<br>24<br>25<br>26<br>27             | 0.00631<br>0.00501<br>0.00398<br>0.00316<br>0.00251<br>0.00200                       | 86 V<br>87 W<br>88 X<br>89 Y<br>90 Z<br>91 [<br>92 \<br>93 ] | 33<br>34<br>35<br>36<br>37<br>38             | 0.00050<br>0.00040<br>0.00032<br>0.00025<br>0.00020<br>0.00016                       | 97 a<br>98 b<br>99 c<br>100 d<br>101 e<br>102 f                   |
| Actual sequence          | 0<br>1<br>2<br>3<br>4<br>5<br>6      | 1.00000<br>0.79433<br>0.63096<br>0.50119<br>0.39811<br>0.31623<br>0.25119            | 64 @<br>65 A<br>66 B<br>67 C<br>68 D<br>69 E<br>70 F         | 11<br>12<br>13<br>14<br>15<br>16       | 0.07943<br>0.06310<br>0.05012<br>0.03981<br>0.03162<br>0.02512<br>0.01995            | 75 K<br>76 L<br>77 M<br>78 N<br>79 O<br>80 P<br>81 Q         | 22<br>23<br>24<br>25<br>26<br>27<br>28       | 0.00631<br>0.00501<br>0.00398<br>0.00316<br>0.00251<br>0.00200<br>0.00158            | 86 V<br>87 W<br>88 X<br>89 Y<br>90 Z<br>91 [<br>92 \         | 33<br>34<br>35<br>36<br>37<br>38<br>39       | 0.00050<br>0.00040<br>0.00032<br>0.00025<br>0.00020<br>0.00016<br>0.00013            | 97 a<br>98 b<br>99 c<br>100 d<br>101 e<br>102 f<br>103 g          |
| Actual sequence          | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 1.00000<br>0.79433<br>0.63096<br>0.50119<br>0.39811<br>0.31623<br>0.25119<br>0.19953 | 64 @<br>65 A<br>66 B<br>67 C<br>68 D<br>69 E<br>70 F<br>71 G | 11<br>12<br>13<br>14<br>15<br>16<br>17 | 0.07943<br>0.06310<br>0.05012<br>0.03981<br>0.03162<br>0.02512<br>0.01995<br>0.01585 | 75 K<br>76 L<br>77 M<br>78 N<br>79 O<br>80 P<br>81 Q<br>82 R | 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29 | 0.00631<br>0.00501<br>0.00398<br>0.00316<br>0.00251<br>0.00200<br>0.00158<br>0.00126 | 86 V<br>87 W<br>88 X<br>89 Y<br>90 Z<br>91 [<br>92 \<br>93 ] | 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 0.00050<br>0.00040<br>0.00032<br>0.00025<br>0.00020<br>0.00016<br>0.00013<br>0.00010 | 97 a<br>98 b<br>99 c<br>100 d<br>101 e<br>102 f<br>103 g<br>104 h |



#### Preprocessing





#### Preprocessing







#### Preprocessing







#### Preprocessing







**EMBL-EBI Functional Genomics** 

#### **Brain Transcriptome Databases**

**Table 1.** Highlighted brain transcriptome databases <sup>a</sup>

| Analysis            | Web Interface                                  | Reference                                 | Species | Age         | Sample                                                  | Method     | Isoform | Accession            |
|---------------------|------------------------------------------------|-------------------------------------------|---------|-------------|---------------------------------------------------------|------------|---------|----------------------|
| Spatiotemporal      | http://hbatlas.org                             | Johnson et al., 2009<br>Kang et al., 2011 | Human   | Lifespan    | Multi, macrodissection                                  | Microarray | -       | GSE13344<br>GSE25219 |
|                     | http://hbatlas.org/mouseNCXtranscriptome       | Fertuzinhos et al., 2014                  | Mouse   | Postnatal   | Ctx layer, microdissection                              | RNA-seq    | _       | SRP031888            |
|                     | http://www.blueprintnhpatlas.org               | Bakken et al., 2016                       | Macaque | Lifespan    | Multi, macrodissection, and LMD                         | Microarray | _       | At database          |
| Spatial             | http://human.brain-map.org                     | Hawrylycz et al., 2012                    | Human   | Adult       | Multi, macrodissection, and LMD                         | Microarray | -       | At database          |
|                     | http://genserv.anat.ox.ac.uk/layers            | Belgard et al., 2011                      | Mouse   | Adult       | Ctx layer, microdissection                              | RNA-seq    | +       | GSE27243             |
|                     | http://rakiclab.med.yale.edu/transcriptome     | Ayoub et al., 2011                        | Mouse   | Embryonic   | Ctx embryonic layer, LMD                                | RNA-seq    | +       | GSE30765             |
|                     | http://www.brainspan.org/lcm                   | Miller et al., 2014                       | Human   | Midfetal    | Multi, LMD                                              | Microarray | _       | At database          |
|                     | https://www.gtexportal.org                     | GTEx Consortium, 2015                     | Human   | Adult       | Many tissues and cell lines                             | RNA-seq    | +       | At database          |
| Temporal            | http://braincloud.jhmi.edu                     | Colantuoni et al., 2011                   | Human   | Lifespan    | Prefrontal Ctx, macrodissection                         | Microarray | _       | GSE30272             |
| Cell type- specific | http://brainrnaseq.org                         | Zhang et al., 2014                        | Mouse   | Adult       | Ctx, genetic labeling, immunopanning                    | RNA-seq    | +       | GSE52564             |
|                     |                                                | Zhang et al., 2016                        | Human   | Fetal/adult | Ctx, Hp, immunopanning                                  | RNA-seq    | _       | GSE73721             |
|                     | http://genetics.wustl.edu/jdlab/csea-tool-2    | Doyle et al., 2008                        | Mouse   | Adult       | Multi, genetic labeling, ribosome affinity purification | Microarray | -       | GSE13379             |
|                     | http://decon.fas.harvard.edu                   | Xu et al., 2014<br>Molyneaux et al., 2015 | Mouse   | Embryonic   | Ctx, transcription factor FACS                          | RNA-sea    | +       | GSE63482             |
|                     | http://hipposeq.janelia.org                    | Cembrowski et al., 2016                   | Mouse   | Adult       | Hp, genetic labeling, manual selection                  | RNA-seq    | _       | GSE74985             |
|                     | http://neuroseq.janelia.org                    | Sugino et al., 2017                       | Mouse   | Adult       | Multi, genetic labeling, manual selection               | RNA-seq    | +       | GSE79238             |
| Single-cell         | http://linnarssonlab.org/cortex                | Zeisel et al., 2015                       | Mouse   | Adult       | Ctx, Fluidigm                                           | RNA-seq    | _       | GSE60361             |
|                     | http://genebrowser.unige.ch/science2016        | Telley et al., 2016                       | Mouse   | Embryonic   | Ctx, ventricle dye, FACS, Fluidigm                      | RNA-seq    | _       | NA                   |
|                     | https://portals.broadinstitute.org/single_cell | Shekhar et al., 2016                      | Mouse   | Adult       | Retina, genetic labeling, Drop-seq                      | RNA-seq    | _       | GSE81905             |
|                     | https://portals.broadinstitute.org/single_cell | Habib et al., 2016                        | Mouse   | Adult       | Hp, single nuclei, FACS, sNuc-seq                       | RNA-seq    | _       | GSE84371             |
|                     | https://bit.ly/cortexSingleCell                | Nowakowski et al., 2017                   | Human   | Fetal       | Ctx, ganglionic eminence, Fluidigm                      | RNA-seq    | _       | PRJNA295469          |
|                     | http://gbmseq.org                              | Darmanis et al., 2017                     | Human   | Adult       | Ctx tumor, immunopanning, FACS                          | RNA-seq    | _       | GSE84465             |
| Integrative         | https://www.encodeproject.org                  | ENCODE Project Consortium, 2012           | Many    | Many        | Many tissues and cell lines                             | Multiomics | +       | Many                 |
|                     | http://celltypes.brain-map.org                 | Tasic et al., 2016                        | Mouse   | Adult       | Ctx, genetic labeling, FACS                             | RNA-seq    | _       | GSE71585             |

<sup>&</sup>lt;sup>a</sup>Ctx, Cortex; Hp, hippocampus; multi, multiple brain regions. Isoform column indicates availability of isoform information via web interface.



Keil et al. J Neurosci. 2018

#### Keeping up with the current research

OXFORD



**BMC Genomics** 





Bioinformatics

Bioinformatics

#### nature neuroscience



**BMC** Part of Springer Nature

**BMC Bioinformatics** 





