

555 110th Ave NE, Bellevue, WA 98004

chengli.netlify.app

☐ chengli.cli99@gmail.com

? github.com/cli99

4194967797

Background

I am a senior researcher at Microsoft and am passionate about bringing AI research into production. My work has focused on understanding and optimizing inference/training of Deep Learning (DL) models, particularly on Transformers (LLMs). At Microsoft, I work on improving the performance/usability of transformer models in production (e.g. GitHub Copilot, DALL·E-2, etc.), building systematic profiling/optimization stacks for DL, and integrating SOTA system technologies into Microsoft DeepSpeed, an open-source DL optimization software suite that enables unprecedented scale and speed for training and inference.

EDUCATION

University of Illinois Urbana-Champaign

Champaign, IL

Ph.D. in Computer Science

August 2020

GPA: 3.95/4.0

Thesis: Performance Benchmarking, Analysis and Optimization of Deep Learning Inference

University of Michigan

Ann Arbor, MI

M.S. in Computer Science and Engineering

GPA: 3.96/4.0

May 2015

Shanghai Jiao Tong University

Shanghai, China

B.S. in Electrical Engineering

August 2013

GPA: 3.85/4.0

Ann Arbor, MI

University of Michigan *B.S. in Computer Engineering*

ineering May 2013

GPA: 3.63/4.0

WORK EXPERIENCE

Microsoft Bellevue, WA

Senior Researcher

August 2020 - Present

- o Analyzed the performance bottleneck of business critical AI models (Copilot, DALL·E-2, transformers at WebXT), and make system optimizations to improve the latency/throughput/cost. Collaborated with functional teams across Microsoft and external partners.
- Applied and integrated SOTA DL system technologies (e.g. FlashAttention, lower-bit quantization, CPU/NVME offloading) into Microsoft DeepSpeed inference and training.
- Built tools/user support (profiling, auto-tuning, Hugging Face integration etc.) to improve the usability of DeepSpeed for Microsoft 1P users, third-party customers, and the open-source community.

Alibaba Group Sunnyvale, CA

Research Intern

May - August 2019

- Extended MLModelScope with automatic across-stack analysis capability.
- o Used MLModelScope to benchmark and characterize public, MLPerf and Al Matrix models across systems of interest.
- o Performed model/framework/system advising using the data collected, and explore its applicability in the Alibaba Cloud.

IBM Thomas J. Watson Research Center

Yorktown Heights, NY

Research Intern

May - August 2018

- Evaluated existing techniques for Deep Learning performance estimation on different models and systems, and understood the sources of inaccuracy.
- Developed an analysis tool that generates layer benchmarks, finds patterns within models, and performs performance prediction for Deep Learning models across hardware.

9th Programming and Tuning Massively Parallel Systems and Al School

Barcelona, Spain

Teaching Assistant

July 2018

- o Designed GPU labs and projects for the summer school students.
- o Advised the students during the summer school's hackathon.

IBM Thomas J. Watson Research Center

Yorktown Heights, NY

Research Intern

May - August 2017

- Developed MLModelScope a hardware/software agnostic platform for consistent benchmarking and analysis of Deep Learning inference at scale.
- Profiled and optimized the GPU-accelerated alternating least square(ALS) algorithm for Matrix Factorization.

University of Illinois Urbana-Champaign

Champaign, IL

Lead Teaching Assistant for CS483 - Applied Parallel Programming

August - December 2016

 Designed GPU labs, exams, and projects for a class of 200 students. Maintained the assignment and the project submission systems - WebGPU and RAI.

SELECTED PUBLICATIONS

(Refer to Google Scholar for the full list)

1. A Comprehensive Study on Post-Training Quantization for Large Language Models

Zhewei Yao, Cheng Li*, Xiaoxia Wu, Stephen Youn, Yuxiong He

(arXiv'23)

- 2. Understanding INT4 Quantization for Transformer Models: Latency Speedup, Composability, and Failure Cases (arXiv'23) Cheng Li*, Xiaoxia Wu*, Reza Yazdani Aminabadi, Zhewei Yao, Yuxiong He
- 3. DySR: Adaptive Super-Resolution via Algorithm and System Co-design Syed Zawad, Cheng Li, Zhewei Yao, Elton Zheng, Yuxiong He, Feng Yan

(ICLR'23)

4. DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale

(SC'22)

- Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Ammar Ahmad Awan, **Cheng Li**, Du Li, Elton Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase, Yuxiong He
- 5. Random-LTD: Random and Layerwise Token Dropping Brings Efficient Training for Large-scale Transformers (arXiv'22) Zhewei Yao, Xiaoxia Wu, Conglong Li, Connor Holmes, Minjia Zhang, Cheng Li, Yuxiong He
- 6. The Design and Implementation of a Scalable DL Benchmarking Platform Cheng Li*, Abdul Dakkak*, Jinjun Xiong, Wen-Mei Hwu

(IEEE CLOUD'20, Best Paper)

7. DLSpec: A Deep Learning Task Exchange Specification Cheng Li*, Abdul Dakkak*, Jinjun Xiong, Wen-Mei Hwu

(USENIX OpML'20)

8. XSP: Across-Stack Profiling and Analysis of Machine Learning Models on GPUs Cheng Li*, Abdul Dakkak*, Jinjun Xiong, Wei Wei, Lingjie Xu, Wen-Mei Hwu

(IPDPS'20, Best Paper)

- 9. Benanza: Automatic uBenchmark Generation to Compute "Lower-bound" Latency and Inform Optimizations of Deep Learning Models on GPUs

 Cheng Li*, Abdul Dakkak*, Jinjun Xiong, Wen-Mei Hwu

 (IPDPS'20)
- 10. DLBricks: Composable Benchmark Generation to Reduce Deep Learning Benchmarking Effort on CPUs Cheng Li, Abdul Dakkak, Jinjun Xiong, Wen-Mei Hwu (ICPE'20)
- 11. Al Matrix: A Deep Learning Benchmark for Alibaba Data Centers Wei Zhang, Wei Wei, Lingjie Xu, Lingling Jin, Cheng Li

(arXiv'19)

12. MLModelScope: Evaluate and Introspect Cognitive Pipelines Cheng Li, Abdul Dakkak, Jinjun Xiong, Wen-Mei Hwu

(IEEE Services'19)

13. TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep Learning Inference in Function as a Service Environments (IEEE CLOUD'19)

Abdul Dakkak, Cheng Li, Simon Garcia de Gonzalo, Jinjun Xiong, Wen-Mei Hwu

14. Accelerating Reduction and Scan Using Tensor Core Units
Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, Wen-Mei Hwu

(ICS'19)

- 15. Evaluating Characteristics of CUDA Communication Primitives on High-Bandwidth Interconnects (ICPE'19, Best Paper)
 Carl Pearson, Abdul Dakkak, Sarah Hashash, Cheng Li, I-Hsin Chung, Jinjun Xiong, Wen-Mei Hwu
- 16. Accelerating Reduction Using Tensor Core Units Abdul Dakkak, Cheng Li, Jinjun Xiong, Wen-Mei Hwu

(HPCaML'19)

17. SCOPE: C3SR Systems Characterization and Benchmarking Framework

Carl Pearson, Abdul Dakkak, Cheng Li, Sarah Hashash, Jinjun Xiong, Wen-mei Hwu

(arXiv'18)

LANGUAGES