Chapitre 1, Données de panel_ Notions de cours et Applications :

Etude de l'impact du tourisme sur la croissance économique

- I. Notions de Cours : Différentes alternatives de l'analyse pooled
 - 1. Modèle pooled MCO:

C'est un modèle à effet uniforme, où on néglige la nature des données transversales et chronologiques ; c'est un modèle à effet uniforme à NT - (K + 1) degrés de liberté d'estimation (MCO) du modèle.

$$y_{it} = \mu + \sum_{k=1}^{K} X_{k \ it} \ \beta_k + \varepsilon_{it}$$
 $\forall \ i = 1, \dots, N \ et \ \forall \ t = 1, \dots, T$

2. Modèle de panel à Effet fixe, MEF, (appelé aussi Modèle de la Covariance) : One-Way Fixed Effects Model

Ce modèle est couramment utilisé dans le cadre des données de panel <u>où la dimension individuelle/spatiale est très importante.</u>

C'est un modèle qui tient compte des spécificités des individus (i.e. de l'hétérogénéité des comportements des individus) sous forme d'effets fixes en spécifiant un terme constant, μ_i , spécifique à chaque individu/unité spatiale.

Le modèle MEF est défini par l'équation de comportement de l'individu i observé à l'instant t suivante,

(1)
$$y_{it} = \mu_i + \sum_{k=1}^{K} X_{k it} \beta_k + \varepsilon_{it} \qquad \forall i = 1, \dots, N \text{ et } t = 1, \dots, T$$

$$où$$

l'indice i définit la dimension individuelle/cross — section des unités spatiales; L'indice t définit la dimension temporelle;

 y_{it} vecteur (1,1) dépendant des observations individuelles — temporelles; X_{it} vecteur (1, K) des régresseurs;

 β vecteur(K,1) des paramètres structurels inconnus; μ_i l'effet spécifique spatial/individuel, local observé et invariant dans le temps; $\varepsilon_{it} \sim BB(0, \sigma_{\epsilon}^2)$

D'hypothèses:

$$E(\varepsilon_{it}) = 0, \ \forall i, t$$

$$E(\varepsilon_{it}\varepsilon_{js}) = \delta_{ts}\delta_{ij} \ \sigma^{2} = \begin{cases} \sigma^{2} \ si \ i = j \ et \ t = s \\ 0 \ ailleurs \end{cases}$$

$$\delta_{ts} = \begin{cases} 1 \ t = s \\ 0 \ ailleurs \end{cases}$$

$$\epsilon_{t}$$

$$\delta_{ij} = \begin{cases} 1 \ i = j \\ 0 \ ailleurs \end{cases}$$

Remarques:

Le modèle (1) est connu aussi sous le nom de modèle à variables muettes individuelles (variable dummy) où l'hétérogénéité des comportements, μ_i , est explicitée par N variables binaires/indicatrices (sous condition pratique que N n'est pas trop grand). Il est défini comme suit.

$$y_{it} = \sum_{k=1}^{K} X_{k \ it} \ \beta_k + \sum_{i=1}^{N} \mu_i \ d_{it} + \varepsilon_{it} \qquad \forall \ i=1,\cdots,N \ et \ t=1,\cdots,T$$

$$où \qquad \qquad \forall t, \ d_{it} = \begin{cases} 1 & si \ l'observation \ est \ relative \ \grave{a} \ l'individu \ i \\ 0 & sinon \end{cases}$$

alors, l'équation de comportement de l'individu i observée durant les T périodes,

$$\begin{aligned} \mathbf{s}^{'} \acute{\mathbf{e}} \mathbf{crit} \ \mathbf{comme} \ \mathbf{suit} \\ y_{it} &= \sum_{k=1}^{K} X_{k \ it} \ \beta_k + \mu_i + \varepsilon_{it} \quad \ \forall \ t = 1, \cdots, T. \end{aligned}$$

C'est un modèle:

- qui peut être estimé par les MCOs,
- les tests et les intervalles de confiance se calculent de la manière habituelle (en utilisant les erreurs-types robustes à l'hétéroscédasticité),
- difficile à utiliser pour un très grand nombre d'individus.
- Dans la modélisation des donnés de panel, il est possible de tenir compte aussi de l'effet spécifique temporel, λ_t , \Rightarrow Two-Way Fixed Effects Model défini par :

$$(1') \hspace{1cm} y_{it} = \mu_i + \lambda_t + \sum_{k=1}^K X_{k \ it} \ \beta_k + \varepsilon_{it} \hspace{1cm} \forall \ i=1,\cdots,N \ et \ t=1,\cdots,T$$

 μ_i effet spécifique spatial/individuel, local observé et invariant dans le temps; λ_t effet spécifique temporel, invariant dans l'espace;

$$\varepsilon_{it} \sim i.i.d.(0,\sigma_{\varepsilon}^2)$$

Rappelons aussi que μ_i , λ_t et ε_{it} sont des composantes de la variables dépendante, y_{it} , qui sont non expliqués par X_{it} .

i)
→ L'estimation du modèle MEF se fait en trois étapes :

En 1ère étape, on centre le modèle MEF par l'opérateur Within, dit aussi opérateur intraindividuel ou projecteur orthogonal, défini par

$$W_{(NT,NT)} = I_N \otimes \left(I_T - \frac{J_T}{T}\right)$$
 $où$
 $J_T = S_T S_T^{'} = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$
 $et \quad S_T = [1]_{(T,1)}, vecteur unitaire.$

Ceci revient à dévier et à transformer chaque variable par rapport à sa moyenne, impliquant ainsi un modèle centré/transformé défini par

$$\begin{aligned} y_{it} - \overline{y_{1.}} &= \sum_{k=1}^{K} \beta_{k} \left(X_{k \, it} - \overline{X_{k \, i}} \right) + \varepsilon_{it} - \overline{\varepsilon_{1.}} & \forall \ t = 1, \cdots, T. \\ & \iff y_{it}^{W} = \sum_{k=1}^{K} \beta_{k} X_{k \, it}^{W} + \varepsilon_{it}^{W} \\ & \iff y_{i_{-}}^{W} = X_{i}^{W} \beta + \varepsilon_{i}^{W} \end{aligned}$$

avec $y_{it}^W = y_{it} - \overline{y_{1.}}$ et $\overline{y_{1.}} = \frac{\sum_{t=1}^{T} y_{it}}{T}$ définit la moyenne de y pour l'individu i \Leftrightarrow qui est $r\acute{e} - \acute{e}crit$ de façon compacte suivante: $Y^W = X^W \beta + \varepsilon^W$ où $Y^W = \sum_{t=1}^{W} y_{tt} + \sum_{t=1}^$

Dans une 2ème étape, cette régression transformée par $W_{(NT,NT)}$ est estimée par OLS

$$\Rightarrow \widehat{\beta_{(K,1)_{OLS}}} = \widehat{\beta_{(K,1)_W}} = \widehat{\beta_{(K,1)_{intra-l}}} = (X^{W'}X^{W})^{-1}X^{W'}Y^{W} \stackrel{\text{def}}{=} (X'WX)^{-1}X'WY$$

$$C'est \ l'estimateur \ Within \ \widehat{\beta_{(K,1)_W}} \ (sous \ sa \ dénomination \ anglaise);$$

il est meilleur estimateur linéaire sans biais.

Dans une 3ème étape, les effets spécifiques spatiaux seront estimés comme suit:

$$\widehat{\mu_{i OLS}} = \overline{y_{1.}} - \sum_{k=1}^{K} \beta_k \ \overline{X_{k i}} = \frac{1}{T} \sum_{t=1}^{T} \left(y_{it} - \sum_{k=1}^{K} \beta_k X_{k it} \right) \qquad \forall i = 1, \dots, N$$

Tout ce qui est attribuable aux différences constantes dans le temps entre les individus est exclu de l'estimateur intra - i. Il utilise uniquement l'information contenue dans les fluctuations observées pour chaque individu autour de son niveau moyen. Dans un $2^{\text{ème}}$ temps, il est toujours possible de récupérer les effets fixes (et la constante, si elle existe). Cependant,

dans de nombreuses estimations, notamment micro-économiques, l'objectif n'est pas d'identifier les effets spécifiques mais d'inférer (de déduire) les déterminants de la variable à expliquer en contrôlant pour l'hétérogénéité inobservée.

Egalement, on observe que le modèle intra - i inclut aussi moins de variables à estimer que le modèle à variables dummy. De même, on doit noter que l'estimateur des MCOs du modèle à variables dummy est strictement identique à celui de l'estimateur intra - i.

L'avantage principal de cette procédure d'ajustement-centrée est que l'estimation du vecteur des paramètres, β , implique l'utilisation d'une matrice inverse de régresseurs d'ordre (K,K) (i.e. la matrice $(X^{c'}X^{c})^{-1}$) plutôt que (K+N,K+N) qui est connu comme un ralentissement de l'estimation et une détérioration considérable de l'exactitude et de la précision de l'estimation surtout lorsque N est large.

Sous l'hypothèse supplémentaire que les perturbations ε sont normales, l'estimateur within, $\widehat{\beta_{(K,1)_W}}$, est également NORMAL tel que :

$$\widehat{\beta_{(K,1)_{W}}} \sim \mathcal{N}(\beta, \sigma_{W}^{2}(X'WX)^{-1})$$

$$et$$

$$[NT - (N+K)] \frac{\widehat{\sigma_{W}^{2}}}{\sigma_{W}^{2}} \sim \mathcal{X}_{[NT-(N+K)]}^{2}$$

$$Rappelons que$$

$$V(\widehat{\beta_{(K,1)_{W}}}) = \sigma_{W}^{2}(X'WX^{W})^{-1} = \sigma_{W}^{2}(X'WX)^{-1} = \sigma_{W}^{2} \left[\sum_{i} \sum_{t} (X_{it} - X_{i.})'(X_{it} - X_{i.}) \right]^{-1}$$

$$et$$

$$\widehat{\sigma_{OLS}^{2}} = \widehat{\sigma_{W}^{2}} = \frac{\widehat{\varepsilon_{W}}'\widehat{\varepsilon_{W}}}{NT - (N+K)} = \frac{(Y^{W} - X^{W}\widehat{\beta_{MCO}})'(Y^{W} - X^{W}\widehat{\beta_{MCO}})}{NT - (N+K)}$$

$$= \frac{(WY - WX\widehat{\beta_{MCO}})'(WY - WX\widehat{\beta_{MCO}})}{NT - (N+K)}$$

où σ_W^2 est estimé par la somme des carrés des résidus de la régression intra — individuelle divisée par le nbre de degrés de liberté associés à l'estimation du modèle MEF, soit NT — (N+K).

Aussi, on a

$$\begin{split} *\;E(\varepsilon_{it}^{W}) &= E(\varepsilon_{it} - \overline{\varepsilon_{1.}}) = E(\varepsilon_{it}) - E(\overline{\varepsilon_{1.}}) = 0 \quad \text{ où } \varepsilon_{it} - \overline{\varepsilon_{1.}} = \varepsilon_{it}^{W} \\ *\;E(\varepsilon_{it}^{W^{2}}) &= E[(\varepsilon_{it} - \overline{\varepsilon_{1.}})(\varepsilon_{it} - \overline{\varepsilon_{1.}})'] \\ &= V(\varepsilon_{it}) + V(\overline{\varepsilon_{1.}}) - 2\;Cov(\varepsilon_{it}, \overline{\varepsilon_{1.}}) \\ &= \sigma_{\varepsilon}^{2} + \frac{\sigma_{\varepsilon}^{2}}{T} - \frac{2}{T}Cov(\varepsilon_{it}, \varepsilon_{it}) \\ &= \sigma_{\varepsilon}^{2} + \frac{\sigma_{\varepsilon}^{2}}{T} - \frac{2}{T}V(\varepsilon_{it}) \\ &= \sigma_{\varepsilon}^{2} + \frac{\sigma_{\varepsilon}^{2}}{T} - \frac{2}{T}\sigma_{\varepsilon}^{2} \\ \Leftrightarrow V(\varepsilon_{it}^{W}) &= E(\varepsilon_{it}^{W^{2}}) = \sigma_{\varepsilon}^{2} \left(1 - \frac{1}{T}\right) \end{split}$$

Variance résiduelle de la dimension intra – individuelle.

3. Modèle Moindres Carrés à variables dummy_LSDV modèle :

L'équation de comportement (1) de l'individu i observé durant les T périodes est définie

$$(2) y_{i} = S_{T} \mu_{i} + X_{i} \beta + \varepsilon_{i} \forall i = 1, \dots, N$$

$$avec$$

$$y_{i} = [y_{it}]_{(T,1)}; S_{T} = [1]_{(T,1)}; X_{i} = \begin{bmatrix} X_{1 i1} & X_{2 i1} & \cdots & X_{K i1} \\ X_{1 i2} & X_{2 i2} & \cdots & X_{K i2} \\ \vdots & \vdots & \cdots & \vdots \\ X_{1 iT} & X_{2 iT} & \cdots & X_{K iT} \end{bmatrix} = [X_{k it}]_{(T,K)}$$

$$\beta_{(K,1)} = \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{K} \end{pmatrix}; \varepsilon_{i} = [\varepsilon_{it}]_{(T,1)}$$

A un niveau plus agrégé encore où on empile les N individus observés chacun sur les T périodes, on définit la forme compacte du modèle:

$$\begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} = \begin{bmatrix} S_{T} & \Box \\ \vdots \\ S_{T} \end{bmatrix} \begin{bmatrix} \mu_{1} \\ \vdots \\ \mu_{N} \end{bmatrix} + \begin{bmatrix} X_{1} \\ \vdots \\ X_{N} \end{bmatrix} \beta + \begin{bmatrix} \varepsilon_{1} \\ \vdots \\ \varepsilon_{N} \end{bmatrix}$$

$$\Leftrightarrow Y_{(NT,1)} = (I_{N} \otimes S_{T}) \alpha_{(N,1)} + X_{(NT,K)} \beta_{(K,1)} + \varepsilon_{(NT,1)}$$

$$\Leftrightarrow Y_{(NT,1)} = D_{(NT,N)} \alpha_{(N,1)} + X_{(NT,K)} \beta_{(K,1)} + \varepsilon_{(NT,1)} \qquad (3)$$

$$\Leftrightarrow Y_{(NT,1)} = [D_{(NT,N)} X_{(NT,K)}] \begin{bmatrix} \alpha_{(N,1)} \\ \beta_{(K,1)} \end{bmatrix}_{(N+K,1)} + \varepsilon_{(NT,1)}$$

$$\Leftrightarrow Y_{(NT,1)} = Z_{(NT, N+K)} \delta_{(N+K,1)} + \varepsilon_{(NT,1)} \qquad (4)$$

 $D_{(NT,N)}$ matrice de N variables indicatrices/muettes individuelles,

$$D_{(NT,N)} = \begin{bmatrix} d_1 & \cdots & d_{i_{(NT,1)}} & \cdots & d_N \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & \cdots & \cdots & 0 \\ \vdots & \vdots & & & \vdots \\ 0 & 0 & \ddots & & 1 \\ \vdots & & & & \vdots \\ 0 & & & & & 1 \end{bmatrix} = \begin{bmatrix} S_{T_{(T,1)}} & 0_{(T,1)} & \cdots & 0_{(T,1)} \\ 0_{(T,1)} & S_{T_{(T,1)}} & \cdots & 0_{(T,1)} \\ \vdots & & \ddots & & \vdots \\ 0_{(T,1)} & \cdots & 0_{(T,1)} & S_{T_{(T,1)}} \end{bmatrix} = \begin{bmatrix} S_T & & \Box \\ & \ddots & & \\ \Box & & & S_T \end{bmatrix}$$

$$X_{(NT,K)} = \begin{bmatrix} x_{111} & \cdots & x_{K11} \\ \cdot & \cdots & \cdot \\ x_{11T} & \cdots & x_{K1T} \\ x_{121} & \cdots & x_{K21} \\ \cdot & \cdots & \cdot \\ x_{12T} & \cdots & x_{K2T} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ x_{1N1} & \cdots & x_{KN1} \\ \cdot & \cdots & \cdot \\ x_{1NT} & \cdots & x_{KNT} \end{bmatrix}$$

On a $\alpha_{(N,1)}$ vecteur des N paramètres spécifiques spatiaux, $\beta_{(K,1)}$ vecteur de K paramètres uniformes.

RQUE: Pour plus de précision économétrique, on a concaténé(i.e. enchaîner):

* Horizontalement les matrices $X_{(NT,K)}$ et $D_{(NT,N)} \Rightarrow Z_{(NT, N+K)} = [D_{(NT,N)} \quad X_{(NT,K)}]$

 $\text{*Verticalement, les vecteurs des paramètres } \alpha_{(N,1)}\text{et } \beta_{(K,1)} \Rightarrow \ \delta_{(N+K,1)} = \begin{bmatrix} \alpha_{(N,1)} \\ \beta_{(K,1)} \end{bmatrix}_{(N+K,1)}.$

Comme la matrice $X_{(NT,K)}$ ne comporte pas de vecteur unitaire (<u>car de façon logique</u>, <u>on considère un modèle sans constante globale puisque des constantes individuelles sont déjà</u> <u>prises en compte</u>), la matrice $Z_{(NT, N+K)} = [I_N \otimes S_T \ X_{(NT,K)}]$ des variables explicatives est

de plein rang colonne (on a indépendance dans les vecteurs colonnes). Ainsi, on remarque que rien ne s'oppose, théoriquement à ce que les coefficients du modèle (4) (i.e. les K coefficients uniformes de β et les N coefficients spécifiques spatiaux de α) soient estimés par les MCOs,

$$\widehat{\delta_{MCO}} = \left[\widehat{\alpha_{(N,1)}}\right]_{(N+K,1)} = (Z'Z)^{-1}Z'Y = \widehat{\delta_{LSDV}}$$

$$\widehat{V}(\widehat{\delta_{MCO}}) = \widehat{\sigma^2}(Z'Z)^{-1}$$

$$avec$$

$$\widehat{\sigma^2} = \frac{\widehat{\epsilon}'\widehat{\epsilon}}{NT - (N+K)} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \widehat{\epsilon_{it}^2}}{NT - (N+K)}$$

$$et$$

$$\widehat{\epsilon_{it}} = y_{it} - \widehat{\mu}_i - \sum_{k=1}^{K} X_{k it} \, \widehat{\beta}_k$$
(5)

L'estimateur, $\widehat{\delta_{MCO}} = \left[\widehat{\frac{\alpha_{(N,1)}}{\beta_{(K,1)}}} \right]_{(N+K,1)}$, obtenu ainsi directement, est connu comme

estimateur LSDV, noté δ_{LSDV} (Least Square with Dummy Variables), où les estimations des constantes spécifiques, μ_i , sont obtenues directement en régressant, en particulier, la variable Y sur un ensemble de variables binaires/dummy, défini par la matrice $D_{(NT,N)}$, qui permet d'identifier les différents individus.

Sur le plan pratique appliqué, l'estimation des effets spécifiques individuels, les μ_i , ne se fait pas d'une manière directe selon l'expression (5), compte tenu de l'importance de la dimension individuelle lorsqu'on utilise les données de panel (où on peut se heurter à un problème de capacité de calcul) car l'estimation de $\widehat{\delta_{MCO}} = \left[\widehat{\alpha_{(N,1)}}\atop\widehat{\beta_{(K,1)}}\right]_{(N+K,1)}$ exige l'inversion de la matrice $(Z'Z)_{(N+K,N+K)}$ et pour N large cette opération devient non attractive, non motivante.

De ce fait, il est nécessaire d'utiliser la technique de régression partitionnée ou de manière équivalente appliquer le théorème de <u>Frish-Waugh-Lovell</u> qui donne les mêmes résultats et qui utilise l'inversion d'une matrice d'ordre juste (K, K). On procède, ainsi, préalablement à l'estimation du (K, 1) vecteur des paramètres uniformes, $\beta_{(K,1)}$, en transformant l'expression (3) par la matrice régulière (i.e. idempotente et symétrique) M_D , où

$$M_{D} = I_{NT} - D(D'D)^{-1}D'$$
où
$$\begin{cases}
M_{D} = M_{D}' \\
M_{D}^{2} = M_{D} \\
M_{D}D = 0
\end{cases}$$

Alors, l'approche par le théorème de Frish-Waugh-Lovell est :

$$\frac{M_D appliqu\'ee sur le Mod\`ele (3): Y_{(NT,1)} = D_{(NT,N)} \alpha_{(N,1)} + X_{(NT,K)} \beta_{(K,1)} + \varepsilon_{(NT,1)}}{\Longrightarrow} M_D Y = M_D X \beta + M_D \varepsilon \qquad (6)$$

$$\widehat{\beta_{COV}} = (X' M_D X)^{-1} X' M_D Y$$

Et,

$$\widehat{\alpha_{(N,1)}} = (D'D)^{-1}D'(Y - X \widehat{\beta_{COV}}) = \frac{1}{T}D'(Y - X \widehat{\beta_{COV}}) = \begin{bmatrix} \overline{Y_{1.}} \\ \vdots \\ \overline{Y_{N.}} \end{bmatrix} - \begin{bmatrix} \overline{X_{1,1.}} & \overline{X_{2,1.}} & \overline{X_{K,1.}} \\ \vdots & \vdots & \vdots \\ \overline{X_{1,N.}} & \overline{X_{2,N.}} & \overline{X_{K,N.}} \end{bmatrix} \begin{bmatrix} \widehat{\beta_{1}} \\ \vdots \\ \widehat{\beta_{K}} \end{bmatrix}$$

où

$$\frac{1}{T}D'Y = [\overline{Y_1} \cdots \overline{Y_N}] \quad et \quad \frac{1}{T}D'X = [\overline{X_1} \cdots \overline{X_N}]'$$

 \longrightarrow <u>Identification de la matrice</u> M_D : On a

$$M_{D} = I_{NT} - D(D'D)^{-1}D' \text{ avec } D_{(NT,N)} = I_{N} \otimes S_{T}$$

$$\Leftrightarrow$$

$$M_{D} = I_{N} \otimes I_{T} - (I_{N} \otimes S_{T}) \left[(I_{N}' \otimes S_{T}')(I_{N} \otimes S_{T}) \right]^{-1}(I_{N}' \otimes S_{T}')$$

$$= I_{N} \otimes I_{T} - (I_{N} \otimes S_{T}) \left[I_{N} \otimes S_{T}' S_{T} \right]^{-1}(I_{N}' \otimes S_{T}')$$

$$= I_{N} \otimes I_{T} - (I_{N} \otimes S_{T}) \left[TI_{N} \right]^{-1}(I_{N}' \otimes S_{T}')$$

$$= I_{N} \otimes I_{T} - \left(I_{N} \otimes \frac{S_{T}S_{T}'}{T} \right)$$

$$\Rightarrow$$

$$M_{D} = I_{N} \otimes \left(I_{T} - \frac{J_{T}}{T} \right) = W_{(NT,NT)}$$

$$alors$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\widehat{\beta_{COV}} = (X'M_{D}X)^{-1}X'M_{D}Y = (X'WX)^{-1}X'WY = \widehat{\beta_{W}}$$

Remarquons que l'estimateur $\widehat{\beta_{COV}}$ du paramètre β dans le cadre du modèle de la covariance, où la spécificité individuelle/spatiale se présente sous forme d'un effet fixe, est égale à

l'estimateur utilisant la transformation Within, $W_{(NT,NT)}$, dans le cadre d'un modèle à erreurs composées élémentaires, i.e. Modèle MEF. A ce niveau, l'estimation du paramètre β est définie en terme du théorème de Frish-Waugh-Lovell.

On rappelle l'énoncé du théorème de Frish-Waugh-Lovell :

L'inférence est conditionnelle sur les effets individuels où l'estimation est obtenue en régressant Y sur X et sur variables dummy D.

Les estimations du paramètre β sont numériquement identiques dans les deux procédures (i) et (ii), i.e.

$$\widehat{\beta_{COV}} = \widehat{\beta_W}$$

 $M_D = I_{NT} - D(D'D)^{-1}D'$ est le projecteur sur la variété linéaire, i. e. I_{NT} , orthogonale à la variété linéaire engendrée par les D (i. e. la partie $D(D'D)^{-1}D'$).

 \longrightarrow On ajoute, aussi, les autres formules associées aux estimateurs $\widehat{\beta_{COV}}$ et $\widehat{\alpha_{(N,1)}}$:

$$\begin{split} SCR_{W\ ou\ M_D} &= \hat{\varepsilon}'_{M_Dou\ W} \hat{\varepsilon}_{M_Dou\ W} = Y'\ M_D Y - \widehat{\ \rho_{COV}}' X' M_D Y \\ \hat{\sigma}^2_{M_Dou\ W} &= \frac{SCR_{W\ ou\ M_D}}{NT - (N+K)}\ Variance\ estim\'ee\ du\ terme\ d'erreursidiosyncratiques\ . \end{split}$$

*o*ù

K définit le nombre de régresseurs (constante et variables muettes exclues); $\hat{\varepsilon}'_{M_DouW}\hat{\varepsilon}_{M_DouW}$ est la somme des carrés des résidus de la régression intra.

Alors, on a
$$V(\widehat{\beta_{COV}}) = \widehat{\sigma}_{M_{DOUW}}^{2}(X'M_{D}X)^{-1}$$

$$V(\widehat{\alpha_{(N,1)}}) = \frac{\widehat{\sigma}_{M_{DOUW}}^{2}}{T} I_{N} + \frac{1}{T}D'XV(\widehat{\beta_{COV}})X'D\frac{1}{T}$$

En particulier sur le modèle transformé par M_D , on récupère dans un 2ème temps les effets fixe

$$\widehat{\alpha}_{l} = \overline{y}_{l} - \overline{x}_{l}' \widehat{\beta} = \overline{y}_{l.} - \widehat{\beta}_{1} \overline{x}_{1,l.} - \dots - \widehat{\beta}_{K} \overline{x}_{K,l.}$$

$$V(\widehat{\alpha}_{l}) = \frac{1}{T} \widehat{\sigma}_{M_{D}ou\ W}^{2} + \overline{x}_{l}' V(\widehat{\beta}) \overline{x}_{l}$$

$$Cov(\widehat{\alpha}_{l}, \widehat{\alpha}_{l}) = \overline{x}_{l}' V(\widehat{\beta}) \overline{x}_{l} \quad \text{où } \overline{x}_{l.} = [\overline{x}_{1,l.}, \dots, \overline{x}_{K,l.}]$$

Remarque:

Notons que la partie/variété linéaire engendrée par la matrice D est au fait que le projecteur orthogonal $B_{(NT,NT)}$:

$$D(D'D)^{-1}D' = (I_N \otimes S_T) [(I_N' \otimes S_T')(I_N \otimes S_T)]^{-1}(I_N' \otimes S_T')$$

$$= (I_N \otimes S_T) [I_N \otimes S_T'S_T]^{-1}(I_N' \otimes S_T')$$

$$= (I_N \otimes S_T) [TI_N]^{-1}(I_N' \otimes S_T')$$

$$= I_N \otimes \frac{S_TS_T'}{T}$$

$$= I_N \otimes \frac{J_T}{T} = B_{(NT,NT)}$$

\rightarrow Propriétés de la matrice $D_{(NT,N)}$:

$$DS_N = (I_N \otimes S_T)S_N = S_N \otimes S_T = S_{NT} \quad (Exhaustivit\acute{e})$$

$$D'D = (I_N \otimes S_T)'(I_N \otimes S_T) = I_N \otimes S_T'S_T = TI_N \quad (Orthogonalit\acute{e})$$

$$DD' = (I_N \otimes S_T)(I_N \otimes S_T)' = I_N \otimes S_TS_T' = I_N \otimes J_T$$

$$\frac{1}{T}D'Y = [\overline{Y_1} \cdots \overline{Y_N}] \ et \ \frac{1}{T}D'X = [\overline{X_1} \cdots \overline{X_N}]'$$

$$où \ \overline{Y_l} = \frac{\sum_{t=1}^T y_{lt}}{T} \quad \text{la moyenne de y en l'unit\'e spatiale i,}$$

 $\overline{X_i}' = \frac{\sum_{t=1}^{T} x_{it}'}{T}$ est un (K, 1) vecteur des moyennes individuelles des variables explicatives.

4. Spécification du modèle, MEC et procédure d'estimation :

Au niveau du modèle MEC, la spécificité individuelle et temporelle apparaît sous forme stochastique car les agents économiques qu'on essaye de tester et de quantifier leurs comportements, peuvent présenter certaines spécificités non observables.

 \longrightarrow Dans sa forme la plus générale, le modèle MEC considère un effet spatial/individuel, u_t , et un effet temporel, v_t ,

$$w_{it} = u_i + v_t + \varepsilon_{it}$$

Le résidu comprend deux termes u_i et v_t caractéristiques resp. de l'individu i et du temps t: dans les variables omises (supposées indépendantes de X_{it}) figure une (ou des) variable(s) caractéristique(s) de l'individu i et/ou du temps t. ε_{it} est une perturbation à caractère aléatoire habituel.

En effet, lorsqu'on estime des demandes de facteurs ou une fonction de production sur des données d'entreprises, par exemple, on peut envisager qu'une variable «qualité du management », non mesurable, intervienne dans la relation sous la forme d'un effet individuel/spatial spécifique figurant dans les perturbations. Pareillement, si l'on tente

d'examiner, sur des panels d'individus, la rentabilité (en terme de salaire) des études, il est clair qu'un facteur personnel non évaluable, qui a trait aux qualités propres de l'individu, joue dans l'explication recherchée. L'omission, faute de pouvoir le mesurer, de ce facteur personnel dans la liste des variables explicatives conduit probablement à l'existence d'un effet individuel/spatial spécifique dans les perturbations.

L'effet temporel correspond à l'omission, dans la liste des variables explicatives, de variables dont la valeur est identique pour tous les individus en un point donné du temps : il peut s'agir, par exemple, du niveau des prix, des tendances de la conjoncture ou encore, de façon plus générale, du « climat » d'optimisme ou de pessimisme régnant dans le milieu des affaires.

--> Ecriture du modèle MEC,

L'équation de comportement de l'individu i observé à l'instant t est définie,

(13)
$$y_{it} = \mu + \sum_{k=1}^{K} X_{k it} \beta_k + w_{it} \forall i = 1, \dots, N \text{ et } t = 1, \dots, T$$

$$où$$

$$w_{it} = u_i + v_t + \varepsilon_{it}$$

 u_i effet stochastique, spécifique spatial/individuel, local observé et invariant dans le temps; v_t effet stochastique, spécifique temporel, supposé négligeable;

 ε_{it} est une perturbation à caractère aléatoire habituel;

$$u_i \sim N(0, \sigma_u^2)$$

$$v_t \sim N(0, \sigma_v^2)$$

$$\varepsilon_{it} \sim N(0, \sigma_\varepsilon^2)$$

Du fait de la non prise en compte de l'effet spécifique temporel dans les perturbations, on présente ainsi une version simplifiée du modèle MEC. Dans la pratique, cette simplification s'avère le plus souvent justifiée étant donné la faible quantité d'information en terme de variabilité qu'apporte la dimension temporelle.

---> Hypothèses sur les composantes du terme d'erreurs,

$$(13.1) \qquad *E(w_{it}) = 0, \ \forall i,t$$

$$\sigma_u^2 + \sigma_\varepsilon^2 \text{ si } i = j \text{ et } t = s \text{ (Homoscédasticité)}$$

$$*E(w_{it}w_{js}) = \delta_{ij} \ \sigma_u^2 + \delta_{ij}\delta_{ts} \ \sigma_\varepsilon^2 = \begin{cases} \sigma_u^2 \text{ si } i = j \text{ et } t \neq s \text{ (Equicorrélation des erreurs dans le temps} \\ i.e. \ autocorrélation indépendante du temps) \\ 0 \ ailleurs \text{ (i.e. où } i \neq j \text{ [et } t = s \text{]; Corrélation} \\ contemporaine nulle). \end{cases}$$

$$\delta_{ts} = \begin{cases} 1 & t = s \\ 0 \ ailleurs \\ et \end{cases}$$

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 \ ailleurs \end{cases}$$

* Hypothèse d'Orthogonalité: $E[X_{k it}w_{it}] = 0 \Rightarrow hypothèse$ cruciale (importante et critique) qui signifie notamment l'absence de corrélation entre les effets spécifiques et les régresseurs.

Remarque: En résumé, on peut écrire le modèle MEC comme suit,

$$E(y_{it}) = \sum_{k=1}^{K} X_{k \ it} \ \beta_k$$
 i. e. pas de prise en compte d'un effet spécifique au premier ordre.
$$Cov(y_{it}y_{js}) = \delta_{ij} \ \sigma_u^2 + \delta_{ij}\delta_{ts} \ \sigma_\varepsilon^2$$

i. e. la prise en compte d'un effet spécifique au deuxième ordre.

La structure (13.1) conduit à définir pour une même unité spatiale i la matrice de variances-covariances des écarts comme suit :

(13.2)
$$E\left(W_{i_{(T,1)}}W'_{i_{(1,T)}}\right) = E\left[\begin{pmatrix} w_{i1} \\ \vdots \\ w_{iT} \end{pmatrix} \quad (w_{i1} \quad \cdots \quad w_{iT})'\right]$$

$$= \begin{bmatrix} \sigma_u^2 + \sigma_{\varepsilon}^2 & \sigma_u^2 & \cdots & \sigma_u^2 \\ \sigma_u^2 & \sigma_u^2 + \sigma_{\varepsilon}^2 & \vdots \\ \vdots & \ddots & \sigma_u^2 \\ \sigma_u^2 & \cdots & \sigma_u^2 & \sigma_u^2 + \sigma_{\varepsilon}^2 \end{bmatrix}$$

$$= \sigma_u^2 J_T + \sigma_{\varepsilon}^2 I_T$$

$$= \Sigma_{(T,T)}$$

Remarquons que la valeur de $E\left(W_{i_{(T,1)}}W'_{i_{(1,T)}}\right) = \Sigma_{(T,T)}$ est indépendante de l'unité spatiale i considérée.

Notons aussi que la structure de cette matrice var-covariances résiduelles constitue la particularité fondamentale du modèle dans la mesure où, en dehors de la diagonale, se trouvent des termes non nuls. Ces derniers matérialisent une autocorrélation particulière qui ne dépend pas du temps séparant deux observations, i.e. une autocorrélation intra-individuelle résiduelle attribuée par la présence de l'erreur spécifique u_i .

En empilant les données pour l'ensemble des observations, individu par individu, on définit la matrice de variances-covariances comme suit,

$$\Omega_{(NT,NT)} = \begin{bmatrix} \Sigma_{(T,T)} & & & \\ & \ddots & & \\ & & \Sigma_{(T,T)} \end{bmatrix}$$
$$= I_{N} \otimes \Sigma_{(T,T)}$$

⇒ L'absence de corrélation entre les individus (i. e. nullité des termes en dehors de la diagonale) rend la structure de cette matrice relativement simple, en bloc diagonale.

Mais, il est encore possible d'écrire cette matrice $\Omega_{(NT,NT)}$ de façon plus « parlante », en faisant apparaître les projecteurs orthogonaux, Between et Within. En effet, on a

Où, on a:

- Les covariances entre les perturbations de deux unités spatiales différentes sont nulles ;
- Les covariances entre les perturbations d'une même unité spatiale i mais à des dates différentes sont égales à σ_u^2 ;
- La variance du résidu relatif à l'unité spatiale i à l'instant t est égale à $\sigma_u^2 + \sigma_\varepsilon^2$.

13

$$\begin{split} E\left(W_{i_{(T,1)}}W'_{i_{(1,T)}}\right) &= \Sigma_{(T,T)} = \ \sigma_{u}^{2} \ J_{T} + \ \sigma_{\varepsilon}^{2} \ I_{T} = T \ \sigma_{u}^{2} \frac{J_{T}}{T} + \ \sigma_{\varepsilon}^{2} \frac{J_{T}}{T} - \ \sigma_{\varepsilon}^{2} \frac{J_{T}}{T} + \ \sigma_{\varepsilon}^{2} \ I_{T} \\ &= \ \sigma_{\varepsilon}^{2} \left[\left(I_{T} - \frac{J_{T}}{T} \right) + \frac{T \ \sigma_{u}^{2} + \sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2}} \frac{J_{T}}{T} \right] \\ \text{Soit} \quad \Sigma_{(T,T)} &= \ \sigma_{\varepsilon}^{2} \left[\left(I_{T} - \frac{J_{T}}{T} \right) + \frac{1}{\theta^{2}} \frac{J_{T}}{T} \right] \ \text{avec} \ \theta^{2} = \frac{\sigma_{\varepsilon}^{2}}{T \ \sigma_{u}^{2} + \sigma_{\varepsilon}^{2}} \\ \text{Et} \\ \Omega_{(NT,NT)} &= \ I_{N} \otimes \Sigma_{(T,T)} = \ \sigma_{\varepsilon}^{2} \left[I_{N} \otimes \left(\left(I_{T} - \frac{J_{T}}{T} \right) + \frac{1}{\theta^{2}} \frac{J_{T}}{T} \right) \right] \\ &= \ \sigma_{\varepsilon}^{2} \left[\left(I_{N} \otimes \left(I_{T} - \frac{J_{T}}{T} \right) \right) + \frac{1}{\theta^{2}} \left(I_{N} \otimes \frac{J_{T}}{T} \right) \right] \\ D'où, \\ \Omega_{(NT,NT)} &= \ \sigma_{\varepsilon}^{2} \left(W + \frac{1}{\theta^{2}} \ B \right) = \ \sigma_{\varepsilon}^{2} \mathcal{V}_{(NT,NT)} \end{split} \tag{13.3}$$

 \Rightarrow Cette expression de la matrice $\Omega_{(NT,NT)}$ est formée par des projecteurs orthogonaux, W et B, connus et par de simples coefficients inconnus, σ_{ε}^2 et θ^2 , à estimer : ce qui signifie qu'on a une simplification de l'existence dans le Panel.

Etant donné les propriétés des projecteurs orthogonaux, W et B, l'écriture (13.3) nous permet d'obtenir directement, l'expression de l'inverse de cette matrice $\Omega_{(NT,NT)}$:

$$\Omega_{(NT,NT)}^{-1} = \frac{1}{\sigma_{\varepsilon}^2} (W + \theta^2 B) = \frac{1}{\sigma_{\varepsilon}^2} \mathcal{O}_{(NT,NT)}^{-1}$$
(13.4)

Remarquons que ceci est vérifié aisément en calculant le produit $\Omega\Omega^{-1}$ qui n'est autre que l'identité, I_{NT} .

Remarque:

Aussi, l'expression (13.3) implique que la matrice $\Omega_{(NT,NT)}$ apparaît comme combinaison linéaire des projecteurs orthogonaux, W et B, i.e :

$$(13.3) \Rightarrow \Omega_{(NT,NT)} = \sigma_{\varepsilon}^{2} W + (\sigma_{\varepsilon}^{2} + T \sigma_{u}^{2}) B$$

$$\Leftrightarrow$$

$$\Omega_{(NT,NT)} = [W \quad B] \begin{bmatrix} \sigma_{\varepsilon}^{2} & 0 \\ 0 & \sigma_{\varepsilon}^{2} + T \sigma_{u}^{2} \end{bmatrix} \begin{bmatrix} W \\ B \end{bmatrix} = C \ V \ C'$$

$$Ce \ qui \ définit$$

la décomposition spectrale de la matrice var - cov résiduelle, $\Omega_{(NT,NT)}$, où les opérateurs

W et B sont ces vecteurs propres, associés aux valeurs propres respectives σ_{ε}^2 et ($\sigma_{\varepsilon}^2 + T \sigma_u^2$). avec

V définit la matrice des valeurs propres

$$\begin{cases} \Omega W = \sigma_{\varepsilon}^{2} W \\ \Omega B = (\sigma_{\varepsilon}^{2} + T \sigma_{u}^{2})B \end{cases}$$

<u>Du fait de l'autocorrélation intra-individuelle</u>, le meilleur estimateur sans biais est celui des MCGs. Via l'expression (13.4), on peut développer son écriture en fonction des variances et covariances Between et Within des variables en jeu :

$$\begin{split} \hat{\beta}_{MCG} &= (X'\Omega^{-1} \, X)^{-1} X' \Omega^{-1} \, Y = (X'\mho^{-1} \, X)^{-1} X' \mho^{-1} \, Y \\ &= (X'W \, X + \, \theta^2 \, X'B \, X \,)^{-1} \, (X'W \, Y + \, \theta^2 \, X'B \, Y) \\ &= \exp \theta^2 = \frac{\sigma_{\varepsilon}^2}{\mathrm{T} \, \sigma_u^2 + \, \sigma_{\varepsilon}^2} \\ La \, variance \, de \, cet \, estimateur \, MCG \, \, est \, minimale: \\ V\big(\hat{\beta}_{MCG}\big) &= (X'\Omega^{-1} \, X)^{-1} = \, \sigma_{\varepsilon}^2 \, (X'\mho^{-1} \, X)^{-1} = \, \sigma_{\varepsilon}^2 \, [X' \, (W + \, \theta^2 B)X]^{-1} \\ &= \, \sigma_{\varepsilon}^2 \, (X'W \, X + \, \theta^2 \, X'B \, X)^{-1} \end{split}$$

Ainsi, la méthode des MCGs utilise à la fois les dimensions Between et Within (i.e. dimensions inter-individuelle et intra-individuelle) de l'information disponible, prises dans une proportion particulière.

<u>La mise en œuvre de cet estimateur des MCGs est plutôt simple</u>: En effet, comme tout estimateur des MCGs, l'estimateur $\hat{\beta}_{MCG}$ est équivalent à l'estimateur des MCOs appliqués aux données transformés $y_{it} - (1 - \theta)By = y_{it} - (1 - \theta)y_i$. En effet, on a

$$\begin{split} \sigma_{\varepsilon}^2 \; \Omega^{-1} &= W + \theta^2 B = I_{NT} - B + \theta^2 B = I_{NT} - (1 - \theta^2) B \\ &= [I_{NT} - (1 - \theta) B] [I_{NT} - (1 - \theta) B] \end{split}$$

Egalement, cette mise en œuvre est équivalente à transformer le modèle (13) en le multipliant des deux côtés par la matrice $P = \Omega^{-\frac{1}{2}}$ et d'appliquer les MCOs aux données sphériques:

$$Soit \ la \ matrice \ de \ transformation \ P = \Omega^{-\frac{1}{2}} = \ I_{\rm NT} - (1-\theta) \ B_{(NT,NT)} \ \ où \ \theta = \sqrt{\frac{\sigma_{\varepsilon}^2}{T \ \sigma_{u}^2 + \sigma_{\varepsilon}^2}}$$

$$\xrightarrow{(13) \quad y_{it} = \mu + \sum_{k=1}^K X_{k it} \ \beta_k + w_{it} \ où \ w_{it} = u_i + \varepsilon_{it}} \longrightarrow Y_{(NT,1)} = X_{(NT,K+1)} \beta_{(K+1,1)} + w_{(NT,1)}$$

$$\xrightarrow{Par \ la \ transformation \ P, on \ a} \begin{cases} P \ Y = PX \ \beta + Pw \implies le \ mod \`ele \ sph\'eris\'e: \~Y = \~X\beta + \~w \\ où \\ \~Y = PY = [y_{it}]_{(NT,1)} - (1-\theta)[\vec{y}_{L}]_{(NT,1)} \ et \ \beta_{(K+1,1)} = \begin{pmatrix} \mu_{(1,1)} \\ \beta_{(K,1)} \end{pmatrix} \\ alors \end{cases}$$

$$\begin{cases} y_{it} - (1-\theta)\vec{y}_{L} = \theta\mu + \sum_{k=1}^K \beta_k [x_{k \ it} - (1-\theta)\vec{x}_{kL}] + [\underline{w}_{it} - (1-\theta)\vec{w}_{L}] \\ \forall \ i = 1, \cdots, N \quad et \quad t = 1, \cdots, T \\ où \ \eta_{it} \ v\'erifie \ les \ hypoth\`eses \ classiques \ des \ MCOs. \\ avec \\ E(\widetilde{w}) = E[Pw] = PE[w] = 0 \end{cases}$$

$$E(\widetilde{w}) = E[Pww'P'] = PE[ww']P' = P\Omega P' = \sigma_{\varepsilon}^2 P \eth P' = \sigma_{\varepsilon}^2 I_{\rm NT} \\ et \\ \hat{\beta}_{MCG} = (X'\Omega^{-1} X)^{-1} X'\Omega^{-1} Y = (\tilde{X}'\tilde{X})^{-1} \tilde{X}'\tilde{Y}$$

L'estimateur des MCGs² est convergent pour T fini lorsque N tend vers l'infini. Néanmoins, il n'est pas opératoire, i.e. il ne peut pas être mis en œuvre, puisque certains paramètres de la matrice de variances-covariances résiduelle demeurent a priori inconnus, à savoir les variances, σ_u^2 et σ_ε^2 qui interviennent dans la grandeur $\theta^2 = \frac{\sigma_\varepsilon^2}{T \, \sigma_u^2 + \sigma_\varepsilon^2}$. Autrement dit, $\frac{\theta^2}{2}$ est généralement inconnue et l'estimateur des MCGs ne peut être ainsi calculé. Dans la pratique, l'estimateur des Moindres Carrés Quasi Généralisé, MCQGs, est utilisé. La méthode d'estimation est réalisée en deux temps. Dans un 1er temps, la perturbation stochastique $\widehat{w_{it}}$ est estimée afin d'obtenir les valeurs du facteur de transformation des données $(1-\theta)$, i.e. on estime dans un 1er temps les variances σ_u^2 et σ_ε^2 pour en déduire une estimation de θ . La substitution de cette estimation $\widehat{\theta}$ à la vraie valeur (inconnue) de θ permet d'estimer le modèle (transformé) et de calculer ainsi ce qu'il est convenu d'appeler l'estimateur des MCQGs.

La mise en œuvre pratique de cette méthode d'estimation, MCQG, nécessite donc de disposer d'estimations des variances résiduelles inconnues, σ_u^2 et σ_ε^2 , i.e. d'examiner le problème d'estimation de θ^2 . On procède tout d'abord à l'interprétation de ce paramètre θ^2 :

16

² On rappelle que les propriétés de cet estimateur sont les propriétés usuelles des estimateurs des MCGs, i.e. sans biais et efficace.

 \rightarrow Interprétation de $\theta^2 = \frac{\sigma_{\varepsilon}^2}{T \sigma_u^2 + \sigma_{\varepsilon}^2}$: peut être interprété à partir des composantes Between et

Within de la variance de la perturbation (ou de y). A partir de la définition de w_{it} et de ses moments du second ordre, on a en effet,

$$\begin{aligned} w_{it} &= u_i + \varepsilon_{it} \\ La \ variance \ Within \ de \ w_{it} \ est \ \'egale \ \grave{a} \\ V(Ww_{it}) &= V(w_{it} - w_{i.}) = V(\varepsilon_{it} - \varepsilon_{i.}) = E(\varepsilon_{it} - \varepsilon_{i.})^2 = \ \sigma_\varepsilon^2 + \frac{1}{\mathsf{T}^2} \mathrm{E}[(\sum_{\mathsf{t}} \varepsilon_{it})^2] - \frac{2}{\mathsf{T}} \ \mathrm{E}[\varepsilon_{it} \sum_{\mathsf{t}} \varepsilon_{it}] \\ &= \sigma_\varepsilon^2 \left(1 + \frac{1}{\mathsf{T}} - \frac{2}{\mathsf{T}}\right) = \ \sigma_\varepsilon^2 \left(1 - \frac{1}{\mathsf{T}}\right) (= \sigma_{w_W}^2) \\ Et, la \ variance \ Between \ de \ w_{it} \ est \ d\'efinie \ par \\ V(Bw_{it}) &= V(w_{i.}) = V(u_i) + V(\varepsilon_{i.}) = \ \sigma_u^2 + \frac{\sigma_\varepsilon^2}{\mathsf{T}} (= \sigma_{w_B}^2) \\ D'o\grave{u}, \\ \theta^2 &= \frac{1}{\mathsf{T}-1} \frac{V(w_{it} - w_i)}{V(w_{i.})} \ d\'epend, \ \grave{a} \ un \ facteur \ \frac{1}{\mathsf{T}-1} \ pr\`es, \\ du \ rapport \ de \ la \ variance \ Within \ du \ r\'esidu \ \grave{a} \ la \ variance \ Between \ du \ r\'esidu. \end{aligned}$$

 \rightarrow Estimation convergente de θ^2 : (il existe différentes procédures d'estimer ce θ^2 , i.e.

estimer les variances σ_u^2 et σ_ε^2 , et on cite deux usuelles)

A partir de n'importe quel estimateur sans biais (ou convergent) $\hat{\beta}$ de β , on peut obtenir une estimation de $w: \hat{w} = Y - X\hat{\beta}$. Du fait que $w_{it} = u_i + \varepsilon_{it}$, il suffit alors d'effectuer une analyse de la variance sur \hat{w} pour en déduire des estimations de σ_u^2 et σ_ε^2 . Comme $\hat{\beta}_W$ est asymptotiquement, quand N et $T \to \infty$, équivalent aux MCGs, on peut conseiller son utilisation, (plutôt que celle de $\hat{\beta}_{MCO}$ ou $\hat{\beta}_B$ qui conduirait à des estimations moins efficaces asymptotiquement.

Cette démarche aboutit à des estimations convergentes. Mais, dans la pratique, quand T est fini, on peut se heurter à des difficultés, comme par exemple, l'obtention d'un $\widehat{\sigma}_u^2$ négatif ou d'un $\widehat{\theta}^2$ supérieure à l'unité.

On note que:

* lorsque
$$\widehat{\theta^2}=1$$
, i. e. $\widehat{\sigma_u^2}=0$ $\stackrel{\text{on retrouve}}{\Longrightarrow}$ le modèle MCO simple sur l'ensemble de l'échantillon, i. e.
$$(13)\ y_{it}=\mu+\sum_{k=1}^K X_{k\ it}\ \beta_k+w_{it} \qquad \forall\ i=1,\cdots,N\quad et\quad t=1,\cdots,T$$

où les effets spécifiques sont identiques pour les individus et sont compris dans la dérive: cela revient à ne pas avoir d'effetsspécifiques

* lorsque $\widehat{\theta^2}=0$, i. e. si $\widehat{\sigma_u^2}$ est grande par rapport à celle des erreurs idiosyncratiques $\widehat{\sigma_\varepsilon^2}$

où l'essentiel des écarts entre les individus est dû à des effets spécifiques constants dans le temps qui peuvent donc être modélisés comme des variables muettes

ou bien si T $\rightarrow \infty$ alors l'information sera essentiellement d'origine intra – individuelle $\xrightarrow{\text{on retrouve alors}}$ le modèle intra, i. e. le modèle (14) implique

$$y_{it} - \overline{y_{i.}} = \sum_{k=1}^{K} \beta_k [x_{kit} - \overline{x_{ki.}}] + \underbrace{[w_{it} - \overline{w_{i.}}]}_{= \eta_{it}} \quad \forall i = 1, \dots, N \quad et \quad t = 1, \dots, T$$

Par conséquent, le modèle MEC peut donc être interprété comme une moyenne pondérée du modèle MCO et du modèle à effets fixes. Il combine la variabilité intra — individuelle et la variabilité inter — individuelle de manière à minimiser la variance des erreurs.

> Pratiquement, il existe une solution plus simple et la plus souvent retenue, celle proposée par Swamy-Arora (1972) qui consiste à utiliser les variances estimées des perturbations issues de l'estimation du modèle MEC par les méthodes de régression Within d'une part et Between d'autre part (i.e. régressions intra-individuelle et interindividuelle) et cette procédure Swamy-Arora permet aussi d'obtenir des estimations convergentes et même sans biais de σ_u^2 et σ_ε^2 .

A partir de la régression Between, on a :

$$BY = BX\beta + Bw$$

On obtient le résidu estimé:
 $\widehat{w}_{B(NT,1)} = BY - BX \, \widehat{\beta}_B$

$$Soit \ \hat{\sigma}_{w_B}^2 \ d\acute{e}fini \ par \ \hat{\sigma}_{w_B}^2 = \frac{\hat{w}_B' \widehat{w}_B}{N-(K+1)}$$

$$avec \left\{ \begin{matrix} N \ moyennes \ individuelles \\ K \ nbre \ de \ paramètres \ \grave{a} \ estimer \ dans \ le \ mod\`{e}le \ transform\'e. \\ v\'erifie \ que \\ E \Big(\hat{\sigma}_{w_B}^2 \Big) = \ T \ \sigma_u^2 + \ \sigma_\varepsilon^2 \quad (on \ peut \ dire \ que \ \hat{\sigma}_{w_B}^2 = \ T \ \sigma_u^2 + \sigma_\varepsilon^2) \end{matrix} \right.$$

En effet, on a (comme preuve):

$$\begin{split} \widehat{w}_{B} &= M_{BX} \ Bw \quad avec \quad M_{BX} = I_{NT} - BX \ (X'B \ X)^{-1}X'B = I_{NT} - P_{BX} \\ &et \\ &E[\widehat{w}_{B}'\widehat{w}_{B}] = E\Big[tr\big(w' \ BM_{BX}Bw \ \big)\Big] = tr\big[BM_{BX}B \ E(w \ w' \)\big] = tr\big[BM_{BX}B \ \Omega\big] \\ &= tr\Big[BM_{BX}B \ \left(\sigma_{\varepsilon}^{2}\left(W + \frac{1}{\theta^{2}} \ B\right)\right)\Big] \\ &= \frac{\sigma_{\varepsilon}^{2}}{\theta^{2}}tr[BM_{BX}B] \\ or \ BM_{BX}B &= M_{BX}B \ et \ tr[M_{BX}B] = tr[B - BX \ (X'B \ X)^{-1}X'B] = tr[B] - tr[BX \ (X'B \ X)^{-1}X'B] \\ or, on \ a \ tr[B] &= tr\Big[I_{N} \otimes \frac{J_{T}}{T}\Big] = tr(I_{N}). \ tr\left(\frac{J_{T}}{T}\right) = N. \frac{T}{T} = N \\ de \ m\hat{e}me, tr[BX \ (X'B \ X)^{-1}X'B] &= tr[\ (X'B \ X)^{-1}X'BX] = tr\ (I_{K+1}) = K+1 \\ Alors, E[\widehat{w}_{B}'\widehat{w}_{B}] &= \frac{\sigma_{\varepsilon}^{2}}{\theta^{2}} \big(N - (K+1)\big) = (T \ \sigma_{u}^{2} + \sigma_{\varepsilon}^{2}) \big(N - (K+1)\big) \\ et, on \ retrouve \ ainsi \ l'expression \ E\big(\widehat{\sigma}_{w_{B}}^{2}\big) &= T \ \sigma_{u}^{2} + \sigma_{\varepsilon}^{2}. \end{split}$$

Pareillement, à partir de la régression Within, on a :

$$WY = WX\beta + Ww$$

$$le \ r\acute{e}sidu \ estim\acute{e} \ obtenu:$$

$$\widehat{w}_{W(NT,1)} = WY - WX \ \hat{\beta}_{W}$$

$$tel \ que \ \widehat{\sigma}_{w_{W}}^{2} \ d\acute{e}fini \ par$$

$$\widehat{\sigma}_{w_{W}}^{2} = \frac{\widehat{w}_{W}^{\prime} \ \widehat{w}_{W}}{(NT - N - K)}$$

$$v\acute{e}rifie \ que$$

$$E(\widehat{\sigma}_{w_{W}}^{2}) = \sigma_{\varepsilon}^{2} \quad (on \ peut \ dire \ que \ \widehat{\sigma}_{w_{W}}^{2} = \sigma_{\varepsilon}^{2})$$

$$avec$$

$$NT \ nombre \ d'observations \ dans \ tout \ l'\acute{e}chantillon,$$

N moyennes individuelles, K nbre de paramètres à estimer dans le modèle transformé.

Et de la même manière, on a (comme preuve):

$$\begin{split} \widehat{w}_W &= M_{WX} \, Ww \\ E[\widehat{w}_W' \widehat{w}_W] &= E\big[tr\big(w' \, WM_{WX}Ww \, \, \big)\big] = tr[WM_{WX}W \, E(w \, w' \,)] = tr[WM_{WX}W \, \Omega] \\ &= \sigma_\varepsilon^2 \, tr[M_{WX}W] \, \text{ où } \, WM_{WX}W = M_{WX}W \\ &= \sigma_\varepsilon^2 \, tr[W - WX \, (X'W \, X)^{-1}X'W] \\ or, on \, a \, tr[W] &= tr \left[I_N \bigotimes \left(I_T - \frac{J_T}{T}\right)\right] = N \, tr \left(I_T - \frac{J_T}{T}\right) = N \left[tr(I_T) - tr \left(\frac{J_T}{T}\right)\right] = N(T-1) \\ de \, m \hat{e} me, tr[WX \, (X'W \, X)^{-1}X'W] &= tr[\, (X'W \, X)^{-1}X'WX] = tr \, (I_K) = K \\ Alors, E[\widehat{w}_W' \widehat{w}_W] &= \sigma_\varepsilon^2 (N(T-1) - K) \\ et, on \, retrouve \, ainsi \, l'expression \, E\left(\widehat{\sigma}_{w_W}^2\right) = \sigma_\varepsilon^2 \end{split}$$

Ainsi, on obtient à partir des perturbations des estimations Between et Within, des estimations sans biais des variances σ_u^2 et σ_{ε}^2 .

---> L'estimateur des Moindres Carrés Quasi Généralisés, MCQGs :

Son expression correspond à celle des MCGs avec pour matrice var-covariance résiduelle, $\Omega_{(NT,NT)}$, une estimation obtenue dans une première étape :

$$\hat{\beta}_{MCQG} = \left(X' \widehat{\Omega}^{-1} X \right)^{-1} X' \widehat{\Omega}^{-1} Y \qquad (15.1)$$

$$où$$

$$\widehat{\Omega}_{(NT,NT)} = \widehat{\sigma}_{\varepsilon}^{2} \left(W + \frac{1}{\widehat{\theta}^{2}} B \right) = \widehat{\sigma}_{\varepsilon}^{2} \widehat{\mathbb{U}}_{(NT,NT)} \qquad (15.2)$$
avec, pour $\widehat{\theta}^{2}$, l'une des estimations présentées ci – dessus.

On pourra prendre ainsi $\widehat{\theta}^{2} = \frac{\widehat{\sigma}_{WW}^{2}}{\widehat{\sigma}^{2}}$

5. Inférence : Tests d'existence de spécificités individuelles. Appelé aussi Tests d'homogénéité des comportements ou Test de Redondance (Redundant Test) _ test de poolabilité.

Dans notre cours, on a supposé l'existence d'une hétérogénéité inter-individuelle des comportements, hétérogénéité prise en compte par l'adjonction d'effets spécifiques individuels, fixes aux « véritables » variables explicatives. Il paraît naturel de tester l'existence d'une telle hétérogénéité. Ceci revient à discerner/distinguer entre le modèle à effet uniforme (à NT - (K + 1) degrés de liberté) :

(10)
$$y_{it} = \mu + \sum_{k=1}^{K} X_{k it} \beta_k + \varepsilon_{it} \qquad \forall i = 1, \dots, N \text{ et } \forall t = 1, \dots, T$$

Et, le modèle avec effets spécifiques individuels fixes (à NT - (N + K) degrés de liberté) :,

(11)
$$y_{it} = \mu_i + \sum_{k=1}^K X_{k it} \beta_k + \varepsilon_{it} \qquad \forall i = 1, \dots, N \text{ et } \forall t = 1, \dots, T$$

Sous l'hypothèse de normalité des résidus, les tests usuels, le Student-test et le Fisher-test, sont exécutés dans ce contexte (d'existence ou non d'une telle hétérogénéité).

En particulier, si on teste le corps d'hypothèses suivant :

$$\begin{cases} H_0 \colon \mu_i = \ \mu_j, & \text{pour certaines unit\'es spatiales i et j où i} \neq j \\ H_a \colon \mu_i \neq \ \mu_j \end{cases}$$

Test à une seule restriction \implies C'est le Student – test défini par la statistique:

$$\widehat{\mathbf{t}_{\widehat{\mu_{l}}-\widehat{\mu_{J}}}} = \frac{\widehat{\mu_{l}} - \widehat{\mu_{J}}}{\widehat{\sigma_{\widehat{\mu_{l}}-\widehat{\mu_{J}}}}} \stackrel{s. H_{0}}{\longrightarrow} \mathcal{T}(NT - (N+K))$$

Décision, rejet de H_0 si $\widehat{\mathfrak{t}_{\widehat{\mu_i}-\widehat{\mu_i}}} > \widehat{\mathfrak{t}_{(NT-(N+K))}^{\alpha=5\%}}$

Le cas général est défini par la question pertinente s'il n'existe pas d'effets spécifiques <u>individuels/spatiaux</u> \Rightarrow on teste alors, l'hypothèse jointe de base, qui est une hypothèse contraignante celle d'une homogénéité complète des comportements où :

$$\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_N = \mu & \text{(et le modèle correspondant est le modèle contraint (10))} \\ H_a: \text{sinon ou bien } \overline{H_0} \end{cases}$$

Test d'hypothèse jointe, H_0 , à plusieurs restrictions qui signifie qu'on teste N-1 égalités H_0 : $\mu_1=\mu_2$; $\mu_2=\mu_3$, etc qui se fait très classiquement par un Fisher – test défini par la statistique

$$\widehat{\mathcal{F}} = \frac{\left(SCR_c - SCR\right)/N - 1}{\frac{SCR}{NT - (N + K)}} \xrightarrow{s. H_0} \mathbb{F}(N - 1, NT - (N + K))$$

$$avec$$

SCR_c est la somme des carrés des résidus associés à l'estimation du modèle (10)ne comporta aucune variable indicatrice spécifique aux individus

SCR est celle associée au modèle non contraint, (11), comportant ces variables. Décision du test:

 $Si\ \hat{\mathcal{F}} \geq au\ fractile\ \mathbb{F}^{1-\alpha}_{\left(N-1,NT-(N+K)\right)}$, rejet de H_0 ; i. e. le modèle doit inclure des effets spécifiques funcions de la contractile $\mathbb{F}^{1-\alpha}_{\left(N-1,NT-(N+K)\right)}$ $Si\ \hat{\mathcal{F}} < \mathbb{F}^{1-\alpha}_{(N-1,NT-(N+K))}$, accepter H_0 ; i. e. les effets fixes sont superflus (parasites, surplus).

Rappelons que le nombre de degré de liberté employé au numérateur est (N-1) et non N, car tester que N coefficients, μ_i , sont tous égaux revient à tester que (N-1) différences, $\mu_{i+1} - \mu_i$, $i = 1, \dots, N$, sont toutes nulles.

Cependant, l'interprétation/ l'explication qu'on donne au rejet de l'hypothèse de base, H_0 , doit être réfléchie (prudente). En effet, en pratique, ce rejet doit être compris avant tout comme un signe d'existence d'une hétérogénéité des comportements. La question de savoir si l'inclusion d'effets fixes, spécifiques individuels dans le modèle suffit à en rendre compte totalement, doit ensuite être étudiée soigneusement. Pour ce faire, on peut, par exemple, regrouper les individus/unités spatiales selon la valeur prise par leur effet spécifique (par exemple, ceux pour lesquels cet effet est négatif, resp. positif) et estimer, par la suite, un modèle pour chacun des groupes ainsi constitués (en signe de référence, par exemple, voir Hultberg-Nadiri-Sickles 1999).

6. Un test d'absence de corrélation entre les effets spécifiques et les variables explicatives : le Hausman-Test (1978).

Le Hausman-Test (1978) répond à la critique de Mundlak en réalisant deux estimations et en comparant les performances de leurs coefficients de pente dans deux hypothèses différentes :

 H_0 : $Cov(x_{k it}, u_i) = 0$, i. e. absence de corrélation entre régresseurs et effets spécifiques , i. e. Exogénéité des régresseurs par rapport à l'erreur spécifique du modèle Du résultat de ce test dépend la mise en oeuvre de la méthode d'estimation qui sera finalement retenue

 $\hat{\beta}_{Within} = \hat{\beta}_{MCQG} \Longleftrightarrow \hat{\beta}_{MEF} = \hat{\beta}_{MEC} \text{, i. e. absence de différence significative entre les estimations}$ Within et MCQG;

i. e. les variables sont exogènes par rapport à l'erreur spécifique ⇔ on privilégie l'usage de l'estimateur $\hat{\beta}_{MCOG}$ qui est sans biais et plus efficace que l'estimateur $\hat{\beta}_{Within}$

C'est le modèle à effets aléatoires qui l'emporte

 H_a : $Cov(x_{k \ it}, u_i) \neq 0$, i. e. l'un au moins des régresseurs est corrélé avec l'erreur spécifique

 $\widehat{\beta}_{Within} \neq \widehat{\beta}_{MCQG} \iff \widehat{\beta}_{MEF} \neq \widehat{\beta}_{MEC} \text{ i. e. présence de différence significative entre les estimations}$ Within et MCQG; $\iff \text{on privilégie l'usage de l'estimateur } \widehat{\beta}_{Within} \text{qui guarantit des estimations}$ sans biais et convergentes des coefficients β_k

C'est le modèle à effets fixes qui l'emporte

Formellement, la statistique du Hausman – test (dérivée de celle du Wald – test) est donnée par:

$$\begin{split} H &= \big(\widehat{\beta}_{Within} - \widehat{\beta}_{MCQG}\big)' \big[\widehat{V}\big(\widehat{\beta}_{W}\big) - \widehat{V}\big(\widehat{\beta}_{MCQG}\big)\big]^{-1} \big(\widehat{\beta}_{Within} - \widehat{\beta}_{MCQG}\big) \xrightarrow{s.H_{0}} \mathcal{X}^{2}(K) \\ \text{où K: degré de liberté, définit par le nbre de régresseurs sans la constante.} \end{split}$$

Et, la décision est le rejet de H_0 si la Prob. critique < à seuil $\alpha\%$; et c'est le modèle MEF qui est privilégié pour le panel étudié.

II. Application : Etude de l'impact du tourisme sur la croissance économique

On mène une étude de l'impact du tourisme sur la croissance économique sur la base de données en moyennes quinquennales³ observées sur la période 1968-1997, composées de 63 pays. Chaque pays dispose théoriquement de six points d'observations.

Les principales variables d'intérêts sont le taux de croissance du PIB par tête- GROWTH-, le nombre de touristes (en log)- TOURISM-, le niveau du PIB par tête initial (1988)- LYO-, le taux de scolarisation primaire- PRIM-, le taux d'inflation- INFL- et l'indicateur de politique d'ouverture- SW -. Sur données de panel, on régresse le modèle de croissance économique:

³ Quinquennale, adj. qui s'étend sur cinq ans.

. xtdescribe

Delta(tri5) = 1 unit Span(tri5) = 6 periods

(id*tri5 uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max 6 6 6 6 6 6 6 6

Freq.	Percent	Cum.	Pattern
63	100.00	100.00	111111
63	100.00		XXXXXX

tri5	Freq.	Percent	Cum.
1	63	16.67	16.67
2	63	16.67	33.33
3	63	16.67	50.00
4	63	16.67	66.67
5	63	16.67	83.33
6	63	16.67	100.00
Total	378	100.00	

Variable	0bs	Mean	Std. Dev.	Min	Max
growth	357	.0098586	.0264009	0828881	.1092166
tourism	120	12.80934	1.760858	7.600903	16.8789
lyo	357	6.712912	1.108785	4.416319	9.592634
prim	368	85.00207	29.03906	8.001669	147.3614
infl	324	.4384221	1.658044	040074	18.31301
SW	366	. 270674	. 4258422	0	1

Variable		Mean	Std. Dev.	Min	Max	Observations
growth	overall	.0098586	.0264009	0828881	.1092166	N = 357
	between		.0155993	02847	.055284	n = 62
	within		.0213847	064387	.0999846	T-bar = 5.75806
tourism	overall	12.80934	1.760858	7.600903	16.8789	N = 120
	between		1.784817	8.29405	16.8789	n = 61
	within		.2251897	12.11619	13.50248	T-bar = 1.96721
lyo	overall	6.712912	1.108785	4.416319	9.592634	N = 357
	between		1.106729	4.676627	9.325356	n = 62
	within		.2100614	5.878072	7.630522	T-bar = 5.75806
prim	overall	85.00207	29.03906	8.001669	147.3614	N = 368
	between		26.70497	17.55525	132.2406	n = 62
	within		11.87192	33.90285	138.1902	T-bar = 5.93548
infl	overall	. 4384221	1.658044	040074	18.31301	N = 324
	between		.9880508	.0376138	5.089035	n = 61
	within		1.38742	-3.898802	14.32677	T-bar = 5.31148
sw	overall	.270674	. 4258422	0	1	N = 366
	between		.313667	0	1	n = 61
	within		.2903487	4626594	1.104007	T = 6

. regress growth tourism lyo prim infl sw, ro

Linear regression

Number of obs = 114 F(5, 108) = 13.97 Prob > F = 0.0000 R-squared = 0.4468 Root MSE = .02014

growth	Coef.	Robust Std. Err.	t P> t		[95% Conf.	Interval]
tourism	.0078449	.0014233	5.51	0.000	.0050236	.0106662
lyo	0037806	.0020623	-1.83	0.070	0078684	.0003072
prim	.0000935	.0001095	0.85	0.395	0001237	.0003106
infl	0028851	.0008289	-3.48	0.001	0045281	001242
sw	.0090248	.0046823	1.93	0.057	0002563	.0183059
_cons	0790599	.0158867	-4.98	0.000	1105502	0475697

Fixed-effects	(within) reg	Number	of obs	= 1:	14		
Group variable	Group variable: id					= !	58
R-sq: within	= 0.6368			Obs ner	group: min	=	1
-	1 = 0.0018			P	avq		. 0
	L = 0.0036				max		2
Overail	- 0.0030				max		-
				F(5,51)	ı	= 17.8	89
corr(u_i, Xb)	= -0.9431			Prob >	F	= 0.000	00
growth	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval	1]
tourism	.0270759	.0057555	4.70	0.000	.0155213	. 038630	04
lyo	0873547	.0135308	-6.46	0.000	114519	060190	04
infl	0007259	.0008021	-0.90	0.370	0023362	.000884	45
prim	.0006828	.0002603	2.62	0.011	.0001604	.00120	53
sw	.0107407	.0072223	1.49	0.143	0037586	.02523	99
_cons	.1805315	.1039866	1.74	0.089	0282302	.38929	33
sigma u	.07662421						_
sigma e	.01232982						
rho	. 97476057	(fraction	of variar	nce due t	:0 u_i)		

F test that all u_i=0: F(57, 51) = 4.16 Prob > F = 0.0000

_Iid_1-63 i.id (naturally coded; _Iid_1 omitted) note: _Iid_20 omitted because of collinearity note: _ Iid_21 omitted because of collinearity note: _Iid_34 omitted because of collinearity note: _ Iid_38 omitted because of collinearity note: Iid 53 omitted because of collinearity df MS Number of obs = 114 Source SS 7.57 F(62, 51) =Model .071390106 62 .001151453 Prob > F = 0.0000 Residual .00775325 .000152025 51 R-squared = 0.9020Adj R-squared = 0.7829 .079143355 113 .000700384 Root MSE = .01233 Total growth Coef. Std. Err. P>|t| [95% Conf. Interval] tourism .0270759 .0057555 4.70 0.000 .0155213 .0386304 -6.46 0.000 -.0873547 .0135308 -.114519 -.0601904 lyo 2.62 0.011 .0001604 .0006828 .0002603 .0012053 prim 0.370 infl -.0007259 .0008021 -0.90 -.0023362 .0008845 0.143 .0107407 .0072223 1.49 -.0037586 .0252399 Iid 2 -.1752464 .0459019 -3.82 0.000 -.2673983 -.0830946_Iid_3 -.1325757 .0310644 -4.27 0.000 -.1949401 -.0702114 _Iid_4 -.0539857 .0144011 -3.75 0.000 -.0828972 -.0250742 -.1771766 -3.39 0.001 -.2820054 -.0723479 _Iid_5 .0522164 -4.40 0.000 _Iid_6 -.2255026 .0512207 -.3283324 -.1226728 _Iid_7 -.1400042 .034563 -4.05 0.000 -.2093923 -.070616 -2.45 0.018 Iid 8 -.1168481 .0477145 -.212639 -.0210572 Iid 9 -.1365772 .0519349 -2.63 0.011 -.2408409 -.0323135 Iid 10 -.0171402 .0157143 -1.09 0.281 -.0486879 .0144076 _Iid_38 (omitted) _Iid_39 -.0214307 .0188014 -1.14 0.260 -.059176 .0163146 _Iid_40 -.1424438 .0213035 -6.69 0.000 -.1852124 -.0996752 _Iid_41 -.1598454 .0284195 -5.62 0.000 -.2168999 -.1027909 -.2631256 .0489437 -5.38 0.000 -.3613842 -.1648669 _Iid_43 .0388336 -.1914818 -4.93 0.000 -.2694435 _Iid_44 -.1523035 .0533613 -2.85 0.006 -.2594309 -.0451762 _Iid_45 .0466565 -.2341146 -5.02 0.000 -.3277815 _Iid_46 -.1628169 .040578 -4.01 0.000 -.2442806 _Iid_47 -.0593807 .0344714 -1.72 0.091 -.1285848 .0098235 _Iid_48 -.091657 .0225798 -4.06 0.000 -.1369878 _Iid_49 .0210966 -3.93 -.0829616 0.000 -.1253148 -.0406084 _Iid_50 -.1707535 .0279428 -6.11 0.000 -.226851 -.1146561 _Iid_51 -.1356847 .0513964 -2.64 0.011 -.2388673 -.0325022 _Iid_52 -.1437048 .0387004 -3.71 0.001 -.2213991 -.0660104 _Iid_53 0 (omitted) -.0950598 -6.20 0.000 -.1258492 Iid 54 .0153366 -.0642703 _Iid_55 -.1534824 -4.50 0.000 -.2218894 .0340743 -.0850755 -.0997078 -4.33 0.000 Iid 56 .0230139 -.1459103 -.0535054 _Iid_57 -.1735903 0.000 .0439687 -3.95 -.2618611 -.0853195 .0200697 -.0745549 -.1148465 -5.72 0.000 -.155138 Iid 58 _Iid_59 .0463149 -.1878816 -4.06 0.000 -.2808627 -.0949005 -.0498414 _Iid_60 -.0185726 .0155753 -1.19 0.239 .0126961 .0055035 _Iid_61 -.028124 .0167502 -1.68 0.099 -.0617515 -.2025895 -.2787001 .0379115 -5.34 0.000 Iid 62 -.1264789 .0355722 _Iid_63 -.1997571 -5.62 0.000 -.2711713 -.1283429 .5812171 .3182153 .1310041 2.43 0.019 .0552135 _cons

```
testparm _I*
        _Iid_2 = 0
 (1)
        _Iid_3 = 0
        __Iid_4 = 0
        __Iid_5 = 0
__Iid_6 = 0
 (4)
 (5)
        __Iid__7 =
 (6)
        _Iid_8 = 0
   7)
        __Iid_9 = 0
__Iid_10 = 0
 (8)
 ( 9)
        (10)
 (11)
        (12)
 (13)
        _{1id_15} = 0
 (14)
        _Iid_16 = 0
 (15)
 (16)
        _{\rm Iid_{17}} = 0
        _Iid_18 = 0
 (17)
        _{1id_19} = 0
 (18)
 (19)
        _{\rm Lid_{22}} = 0
        _Iid_23 = 0
 (20)
        __Iid_24 = 0
__Iid_25 = 0
__Iid_26 = 0
 (21)
 (22)
 (23)
 (24)
        _Iid_27 = 0
        (25)
 (26)
         (27)
        _Iid_31 = 0
 (28)
        __Iid__32 = 0
__Iid__33 = 0
 (29)
 (30)
       _____35 = 0
__Iid__35 = 0
__Iid__36 = 0
 (31)
 (32)
        _Iid_37
 (33)
       (34)
                 - 0
 (35)
 (36)
 (37)
                 = 0
 (38)
                 = 0
 (39)
 (40)
                 - 0
 (41)
 (42)
 (43)
 (44)
                 _ 0
 (45)
       __Iid__51
__Iid__52
 (46)
 (47)
       (48)
 (49)
 (50)
 (51)
                    0
 (53)
        (54)
 (56)
(57) _Iid_63 = 0
     F(57, 51) =
                    4.16
         Prob > F =
                     0.0000
```

Random-effects Group variable	Number	of obs	=	58			
R-sq: within				Obs per	group: m		1
	n = 0.5010					ivg =	2.0
overal.	1 = 0.4314				I	max =	2
				Wald ch	ni2(5)	=	69.81
corr(u_i, X)	= 0 (assumed)		Prob >	chi2	=	0.0000
	theta -						
min 5%	median	95%	max				
0.3399 0.472	0.4723	0.4723	0.4723				
growth	Coef.	Std. Err.	z	P> z	[95% C	Conf.	Interval]
tourism	.0091043	.0019265	4.73	0.000	.00532	285	.0128802
lyo	007757	.0031227	-2.48	0.013	01387	773	0016366
prim	.0001867	.0001291	1.45	0.148	00006	563	.0004397
infl	0023485	.0007261	-3.23	0.001	00377	716	0009254
sw	.0116479	.0057053	2.04	0.041	.00046	557	.0228301
_cons	0785983	.0207657	-3.79	0.000	11929	984	0378983
sigma_u	.0140329						
sigma_e	.01232982						
rho	.56433332	(fraction	of varian	ce due t	o u_i)		

Breusch and Pagan Lagrangian multiplier test for random effects

growth[id,t] = Xb + u[id] + e[id,t]

Estimated results:

	Var	sd = sqrt(Var)
growth	.0007004	.0264648
e	.000152	.0123298
u	.0001969	.0140329

Test: Var(u) = 0

chibar2(01) = 4.02 Prob > chibar2 = 0.0225

Variable	OLS	FE	LSDV	RE
tourism	0.0078	0.0271	0.0271	0.0091
	0.0014	0.0058	0.0058	0.0019
	0.0000	0.0000	0.0000	0.0000
1	-0.0038		-0.0874	-0.0078
lyo		-0.0874		
	0.0021	0.0135	0.0135	0.0031
	0.0695	0.0000	0.0000	0.0130
prim	0.0001	0.0007	0.0007	0.0002
	0.0001	0.0003	0.0003	0.0001
	0.3955	0.0114	0.0114	0.1481
infl	-0.0029	-0.0007	-0.0007	-0.0023
	0.0008	0.0008	0.0008	0.0007
	0.0007	0.3697	0.3697	0.0012
sw	0.0090	0.0107	0.0107	0.0116
- W				
	0.0047	0.0072	0.0072	0.0057
	0.0566	0.1431	0.1431	0.0412
_Iid_2			-0.1752	
			0.0459	
			0.0004	
Iid 3			-0.1326	
			0.0311	
			0.0001	
Iid 4			-0.0540	
_114_4				
			0.0144	
	I		0.0005	
Iid	_5			-0.1772
	_			0.0522
				0.0013
Iid	_6			-0.2255
				0.0512
				0.0001
Iid	_7			-0.1400
				0.0346
Iid				0.0002 -0.1168
	-°			0.0477
				0.0178
Iid	9			-0.1366
	-			0.0519
				0.0113
_Iid_1	10			-0.0171
				0.0157
				0.2805
_Iid_1	11			-0.2471
				0.0451
				0.0000
_Iid_1	12			0.0199
				0.0000
_Iid_1	13			-0.2450
				0.0513
	l			0.0000
Iid	14			-0.1036
I				0.0352
I				0.0049
Iid	15			-0.0436
I				0.0173
I				0.0149
Iid	16			-0.1188
				0.0348
				0.0013
Iid	17			-0.1137
I				0.0244
I				0.0000
Iid	18			-0.1675
				0.0316
I				0.0000
Iid	19			-0.2531
-11d-				
				0.0613
	20			0.0001
Iid	20			(omitted)
Iid	21			(omitted)
Iid:	22			-0.1709
				0.0429
				0.0002
	•			

	_Iid_23	-0.1904
		0.0421
		0.0000
	_Iid_24	-0.1018
		0.0256
	_Iid_25	0.0002 -0.1868
		0.0401
		0.0000
	_Iid_26	-0.1632
		0.0329
		0.0000
	_Iid_27	-0.2482
		0.0440
		0.0000
	_Iid_28	-0.1834 0.0323
		0.0000
	_Iid_29	0.0707
		0.0166
		0.0001
	_Iid_30	-0.0948
		0.0200
		0.0000
	_Iid_31	-0.1118
		0.0239 0.0000
	_Iid_32	-0.2444
		0.0424
		0.0000
	-	
ı	_Iid_33	0.0304
1		0.0131
1		0.0246
1	_Iid_34	(omitted)
1		,
1		
1	_Iid_35	-0.2080
1		0.0469
1		0.0000
1	_Iid_36	-0.2675
1		0.0530
1		0.0000
- 1	Iid 37	
	_Iid_37	-0.0670
	_Iid_37	-0.0670 0.0184
		-0.0670 0.0184 0.0006
	_Iid_37 _Iid_38	-0.0670 0.0184
		-0.0670 0.0184 0.0006
	_Iid_38	-0.0670 0.0184 0.0006
		-0.0670 0.0184 0.0006 (omitted)
	_Iid_38	-0.0670 0.0184 0.0006 (omitted) -0.0214 0.0188
	_Iid_38	-0.0670 0.0184 0.0006 (omitted) -0.0214
	_Iid_38	-0.0670 0.0184 0.0006 (omitted) -0.0214 0.0188 0.2597
	_Iid_38	-0.0670 0.0184 0.0006 (omitted) -0.0214 0.0188 0.2597 -0.1424 0.0213
	_Iid_38 _Iid_39 _Iid_40	-0.0670 0.0184 0.0006 (omitted) -0.0214 0.0188 0.2597 -0.1424
	_Iid_38	-0.0670 0.0184 0.0006 (omitted) -0.0214 0.0188 0.2597 -0.1424 0.0213
	_Iid_38 _Iid_39 _Iid_40	-0.0670 0.0184 0.0006 (omitted) -0.0214 0.0188 0.2597 -0.1424 0.0213 0.0000 -0.1598

_Iid_4	12			-0.2631
1	- 1			0.0489
1	- 1			0.0000
_Iid_4	13			-0.1915
1	- 1			0.0388
1				0.0000
Iid 4	14			-0.1523
	- 1			0.0534
1	- 1			0.0062
_Iid_4	. =			-0.2341
1				0.0467
				0.0000
_Iid_4	• 6			-0.1628
1	- 1			0.0406
1				0.0002
Iid_4	17			-0.0594
1	- 1			0.0345
1	- 1			0.0910
_Iid_4	18			-0.0917
1	- 1			0.0226
1	- 1			0.0002
_Iid_4	19			-0.0830
	- 1			0.0211
1	- 1			0.0003
_Iid_5	50			-0.1708
				0.0279
				0.0000
	ı			0.0000
1				
_Iid_8	51			-0.1357
	- 1			0.0514
_Iid_5				0.0110 -0.1437
	,			0.0387
	- 1			0.0005
_Iid_5	3			(omitted)
_Iid_5	4			-0.0951
	- 1			0.0153
_Iid_5	=			0.0000 -0.1535
	, ,			0.0341
	- 1			0.0000
_Iid_5	66			-0.0997
	- 1			0.0230
	- 1			0.0001
_Iid_5	57			-0.1736
	- 1			0.0440
_Iid_5				0.0002 -0.1148
				0.0201
	- 1			0.0000
_Iid_5	9			-0.1879
				0.0463
1				0.0002
_Iid_60			-0.0186	
			0.0156	
			0.2386	
_Iid_61			-0.0281	
			0.0168	
			0.0993	
_Iid_62			-0.2026	
			0.0379	
			0.0000	
_Iid_63			-0.1998	
			0.0356	
			0.0000	
_cons	-0.0791	0.1805	0.3182	-0.0786
	0.0159	0.1040	0.1310	0.0208
	0.0000	0.0886	0.0187	0.0002
N	114	114	114	114
df_r	108.0000	51.0000	51.0000	
df_m	5.0000	62.0000	62.0000	5.0000
r2	0.4468	0.6368	0.9020	
r2_a	0.4211	0.1953	0.7829	
rmse	0.0201	0.0123	0.0123	0.0146
F	13.9723	17.8855	7.5741	
	•		_	egend: '-''-
1			1	egend: b/se/p

. hausman FE RE, sigmamore

	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	FE	RE	Difference	S.E.
tourism	.0270759	.0091043	.0179716	.0065577
lyo	0873547	007757	0795977	.015762
prim	.0006828	.0001867	.0004962	.0002808
infl	0007259	0023485	.0016226	.0006166
we	.0107407	.0116479	0009073	.0064038

 $\mbox{b = consistent under Ho and Ha; obtained from xtreg} \\ \mbox{B = inconsistent under Ha, efficient under Ho; obtained from xtreg} \\$

Test: Ho: difference in coefficients not systematic

 $chi2(5) = (b-B)'[(V_b-V_B)^(-1)](b-B)$

= 35.07

Prob>chi2 = 0.0000