CROSS RIVER UNIVERSITY OF TECHNOLOGY, CALABAR SECOND SEMESTER EXAMINATION 2017/2018 SESSION DEPARTMENT OF COMPUTER SCIENCE

COURSE CODE: CSC 2205 TIME DURATION: 2hours

COURSE TITLE: DIGITAL LOGIC AND DESIGN

INSTRUCTION: Answer four questions only

QUESTION ONE

- a. By letting diodes perform the logical AND or OR function and then amplifying the result with a transistor, we can avoid some of the limitations of resistor-transistor logic (RTL). State limitations of RTL.
- b. Give one advantage and two disadvantages of diode logic (DL).
- c. Fill in the blank spaces from I to VI.
- i. The additive inverse defines _____
- ii. The binary operator (.) defines
- iii. The binary operator (+) defines ______
- iv. The multiplicative inverse of $\alpha = 1/\alpha$ defines _____
- v. The multiplicative identity is _____
- vi. The additive identity is
- d. Answer true or false from questions i to iii.
- i. A typical logic gate has a FAN-IN of 1 or 2.
- ii. A typical transistor-transistor logic (TTL) gate has a fan-out of 10.
- iii. Diode logic (DL) cannot performs a **NOT** function.
- iv. The annulment law states that A term AND ed with a "0" equals 0 or OR ed with a "0" will equal 1.
- v. Two separate terms NAND ed together is not the same as the two terms inverted (Complement) and OR ed.
- ei. What is another name for EMITTER-COUPLED LOGIC (ECL)?
- eii. What is the full meaning of the abbreviation CMOS.
- f. Complete the table below representing the Boolean algebra for XOR operation.

QUESTION TWO

- a. Using the laws of Boolean algebra and deMorgan's law, simplify the following expressions.
- i. Q = (A+B)(A+C)
- ii. $Z = \overline{A + B + C}$
- iii. $Q = \overline{A + B} + AB$
- iv. $S = \overline{A + B + C} + \overline{AB} + \overline{BC}$
- vi. $F = \overline{AB + (B + C)} + \underline{D}$

NOTE: FOR EACH STEP IN SIMPLIFYING THE EXPRESSION, STATE THE LAW THAT APPLIES.

b. Write the Boolean expression for the logic circuit below.

QUESTION THREE

a. FILL THE TRUTH TABLE BELOW

X	Y	Z	X.Y.Z	(X + Y + Z)	Х ФҮ	$\mathbf{y} \oplus \mathbf{z}$	x⊕z
0	0	0					
0	0	1					
1	0	1					
1	1	0					
1	1	1					

- b. What is are logic gates?
- c. State deMorgan's theorem.

QUESTION FOUR (a)

- i. Covert 9E.AF2₁₆ into an equivalent binary number.
- ii. Convert 362.35₈ into a decimal number.
- iii. Convert 25.625₁₀ into a binary number.
- iv. Convert 11010110₂ into an equivalent hexadecimal number.
- v. Convert 29C₁₆ into an equivalent binary number.
- b. Given a subtraction problem on a decimal number: 58032-59. Find the difference using the method of complements.
- c. Subtract the given hex number. 5DC 3AF
- d. Using Binary Coded Decimal, add the given numbers. 24 + 48.

QUESTION FIVE

- a. Express the Boolean function F = A + B'C as standard sum of minterms.
- b. Write a short note on the following: canonical form, sum of minterm, product of maxterm microprocessor and standard form.
- c. Express the Boolean function F = xy + x'z as a product of maxterms

QUESTION SIX

- a. Draw a truth table representing minterm and maxterm.
- b. Convert Boolean expression in standard form F=y'+xz'+xyz
- c. Expand the following expression and discard the redundant term (A+B'+0) (B+C+0) (A+C'+0) (A+B+0) (A+C'+0)

CROSS RIVER UNIVERSITY OF TECHNOLOGY, CALABAR SECOND SEMESTER EXAMINATION 2017/2018 SESSION DEPARTMENT OF COMPUTER SCIENCE

COURSE CODE: CSC 2203 TIME DURATION: 2hours

COURSE TITLE: INTRODUCTION TO DIGITAL DESIGN

INSTRUCTION: Answer Question One and Any Other 3 Questions

- 1a. Draw a circuit diagram for $X = (D + (\overline{A + B}) C).E.F.(\overline{A + F})$
- 1b. Evaluate $X = [\overline{(A + B)} + (A + C)]$. $(\overline{A + D + C})$ Given A = 1, B = 0, C = 0 and D = 1
- 1c. Using a three input function given below, construct the truth table and draw the circuit diagram for it. F = A B + B C + A C
- 2. Differentiate between; (A) Analog and digital systems in terms of signal, waves, impedance, representation and memory.
- 2b. Analog and digital signal.
- 3. Using the Boolean laws and deMorgan's law, simplify the following expression:

1.
$$Q = (A + B)(A + C)$$
. 2. $F = \overline{A + B + C}$ 3. $F = \overline{A + B} + AB$
4. $F = \overline{A + B + C} + \overline{AB} + \overline{BC}$

- 4a. Simplify the function given below stating the laws used in each step $F(x,y,z) = \overline{x}yz + \overline{X}y\overline{z} + xz$
- b. Write short notes on the following (i) Logic gate (ii) Boolean Algebra
- 5a. Design a circuit diagram for a diagram for a two input function given: $(A + B) (A + \overline{B} (\overline{A} + B)$
- b. Convert 1010.011₂ into a decimal number.
- 6a. Draw the symbols for AND, OR, NOT, XOR, NAND and NOR gates.
- b. Draw a two input value Truth Tables for XOR, NAND and NOR