Public Key Cryptography Part 2

RSA Algorithm

- Named after Ron Rivest, Adi Shamir, and Len Adleman who invented this algorithm at MIT in 1977.
- It is a Block Cipher.
- Plaintext and ciphertext are integers between 0 and (n 1) for some n.

Some Relevant Facts about Numbers

- Prime number p:
 - p is an integer
 - $p \ge 2$
 - The only divisors of p are 1 and p
- Examples
 - 2, 5, 7, 11, 13, 17, 19 are primes
 - -3, 0, 1, 6 are not primes
- **Prime decomposition** of a positive integer *n*:

$$n = p_1^{e_1} \times p_2^{e_2} \times \dots \times p_k^{e_k}$$

- Example:
 - $-200 = 2^3 \times 5^2$

Fundamental Theorem of Arithmetic

The prime decomposition of a positive integer is unique

Greatest Common Divisor

- The Greatest Common Divisor (GCD) or Highest
 Common Factor (HFC) of two positive integers a and b,
 denoted gcd(a, b), is the largest positive integer that divides both a and b.
- The above definition is extended to arbitrary integers.
- Examples:

$$gcd(18, 30) = 6$$
 $gcd(0, 20) = 20$
 $gcd(-21, 49) = 7$

Two integers a and b are said to be relatively prime if

$$gcd(a, b) = 1$$

- Example:
 - Integers 15 and 28 are relatively prime.

RSA Algorithm

Key Generation

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \mod \phi(n) = 1$

Public key $KU = \{e, n\}$

Private key $KR = \{d, n\}$

Encryption

Plaintext: M < n

Ciphertext: $C = M^e \pmod{n}$

Decryption

Ciphertext:

Plaintext: $M = C^d \pmod{n}$

RSA Cryptosystem

Setup:

- n = p.q, with p and q primes
- e relatively prime to $\phi(n) = (p-1)(q-1)$
- d inverse of e in $Z_{\phi(n)}$

Keys:

- Public key: $K_E = (n, e)$
- Private key: $K_D = (n, d)$

• Encryption:

- Plaintext M in Z_n
- $C = M^e \mod n$

• Decryption:

$$\blacksquare M = C^d \bmod n$$

Example

Setup:

•
$$p = 7$$
, $q = 17$

$$◆ n = 7.17 = 119$$

$$\bullet \phi(n) = (7-1)\cdot(17-1)=6\cdot16 = 96$$

•
$$e = 5$$
 [relatively prime to $\phi(n)$]

•
$$d = 77 [77x5 \mod \phi(n) = 1]$$

Keys:

- public key: (119, 5)
- private key: (119, 77)

Encryption:

•
$$C = 19^5 \mod 119 = 66$$

Decryption:

•
$$M = 66^{77} \mod 119 = 19$$

Online RSA Tool

https://people.cs.pitt.edu/~kirk/cs1501/notes/rsademo

Another Example

Figure 3.11 Example of RSA Algorithm

Complete RSA Example

Setup:

■
$$p = 5, q = 11$$

$$n = 5.11 = 55$$

$$\phi(n) = (5-1)\cdot(11-1) = 4\cdot10 = 40$$

- **■** *e* = 3
- $d = 27 [e \cdot d = 3 \cdot 27 = 81 = 2 \cdot 40 + 1]$

- Encryption
 - $\blacksquare C = M^3 \mod 55$
- Decryption

$$■$$
M = C^{27} mod 55

M	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
\boldsymbol{C}	1	8	27	9	15	51	13	17	14	10	11	23	52	49	20	26	18	2
M	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
\boldsymbol{C}	39	25	21	33	12	19	5	31	48	7	24	50	36	43	22	34	30	16
M	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
C	53	37	29	35	6	3	32	44	45	41	38	42	4	40	46	28	47	54

References

- Book: Cryptography and Network Security Principles and practice, 7th Edition.
 - Section 9.1: Principles of Public-key Cryptosystems
 - Section 9.2: The RSA Algorithm