Esercizio

Si ha motivo di ritenere che il farmaco in sperimentazione *Cervellex* possa migliorare gli esiti degli esami di Matematica degli studenti.

In 4 pazienti volontari viene iniettata é una quantità X di Cervellex (espresso in mg) e viene registrato l'esito Y della prima sessione di esami.

I risultati sono illustrati nella seguente tabella:

Dose farmaco (X)	10	13	14	19
Voto (Y)	18	23	21	26

- 1) Calcola la retta di regressione tra le due variabili ed il coefficiente di correlazione.
- 2) Calcola approssimativamente quale possibile voto è ragionevole prevedere con una dose di 11 mg di *Cervellex*.

1) Equazione retta di regressione:

$$y = mx + q$$

dove

$$m = \frac{\sum_{i=1}^{4} (x_i - \mu_X)(y_i - \mu_Y)}{\sum_{i=1}^{4} (x_i - \mu_X)^2}$$

e q si trova imponendo che la retta passa per il baricentro (μ_X, μ_Y) .

1) Equazione retta di regressione:

dove

$$m = \frac{\sum_{i=1}^{4} (x_i - \mu_X)(y_i - \mu_Y)}{\sum_{i=1}^{4} (x_i - \mu_X)^2}$$

V = mX + q

e q si trova imponendo che la retta passa per il baricentro (μ_X, μ_Y) .

Si ha che:

$$\mu_X = \frac{10+13+14+19}{4} = \frac{56}{4} = 14$$

$$\mu_Y = \frac{18+23+21+26}{4} = \frac{88}{4} = 22$$

Xi	y _i	$x_i - \mu_X$	$y_i - \mu_Y$	$(x_i - \mu_X)(y_i - \mu_Y)$	$(x_i - \mu_X)^2$
10	18				
13	23				
14	21				
19	26				

Xi	Уi	$x_i - \mu_X$	$y_i - \mu_Y$	$(x_i - \mu_X)(y_i - \mu_Y)$	$(x_i - \mu_X)^2$
10	18	-4			
13	23	-1			
14	21	0			
19	26	5			

Xi	y _i	$X_i - \mu_X$	$y_i - \mu_Y$	$(x_i - \mu_X)(y_i - \mu_Y)$	$(x_i - \mu_X)^2$
10	18	-4	-4		
13	23	-1	1		
14	21	0	-1		
19	26	5	4		

Xi	Уi	$x_i - \mu_X$	$y_i - \mu_Y$	$(x_i - \mu_X)(y_i - \mu_Y)$	$(x_i - \mu_X)^2$
10	18	-4	-4	16	
13	23	-1	1	-1	
14	21	0	-1	0	
19	26	5	4	20	

Xi	Уi	$X_i - \mu_X$	$y_i - \mu_Y$	$(x_i - \mu_X)(y_i - \mu_Y)$	$(x_i - \mu_X)^2$
10	18	-4	-4	16	16
13	23	-1	1	-1	1
14	21	0	-1	0	0
19	26	5	4	20	25

Xi	y _i	$x_i - \mu_X$	$y_i - \mu_Y$	$(x_i - \mu_X)(y_i - \mu_Y)$	$(x_i - \mu_X)^2$
10	18	-4	-4	16	16
13	23	-1	1	-1	1
14	21	0	-1	0	0
19	26	5	4	20	25
			Σ	35	42

Xi	y _i	$x_i - \mu_X$	$y_i - \mu_Y$	$(x_i - \mu_X)(y_i - \mu_Y)$	$(x_i - \mu_X)^2$
10	18	-4	-4	16	16
13	23	-1	1	-1	1
14	21	0	-1	0	0
19	26	5	4	20	25
			Σ	35	42

Pertanto

$$m = \frac{\sum_{i=1}^{4} (x_i - \mu_X)(y_i - \mu_Y)}{\sum_{i=1}^{4} (x_i - \mu_X)^2} = \frac{35}{42} = \frac{5}{6}$$

Trovo q:

$$\mu_Y = m\mu_X + q \implies 22 = \frac{5}{6} \cdot 14 + q$$

da cui

$$q = 22 - \frac{35}{3} = \frac{31}{3}$$

L'equazione della retta di regressione è:

$$y=\frac{5}{6}x+\frac{31}{3}$$

$$\rho = \frac{\sum_{i=1}^{4} (x_i - \mu_X)(y_i - \mu_Y)}{\sqrt{\sum_{i=1}^{4} (x_i - \mu_X)^2 \sum_{i=1}^{4} (y_i - \mu_Y)^2}}$$

$$\rho = \frac{\sum_{i=1}^{4} (x_i - \mu_X)(y_i - \mu_Y)}{\sqrt{\sum_{i=1}^{4} (x_i - \mu_X)^2 \sum_{i=1}^{4} (y_i - \mu_Y)^2}}$$

Sappiamo che

$$\sum_{i=1}^{4} (x_i - \mu_X)(y_i - \mu_Y) = 35 \text{ (già fatto)}$$

$$\rho = \frac{\sum_{i=1}^{4} (x_i - \mu_X)(y_i - \mu_Y)}{\sqrt{\sum_{i=1}^{4} (x_i - \mu_X)^2 \sum_{i=1}^{4} (y_i - \mu_Y)^2}}$$

Sappiamo che

$$\sum_{i=1}^{4} (x_i - \mu_X)(y_i - \mu_Y) = 35 \text{ (già fatto)}$$

$$\sum_{i=1}^{4} (x_i - \mu_X)^2 = 42 \text{ (già fatto)}$$

$$\rho = \frac{\sum_{i=1}^{4} (x_i - \mu_X)(y_i - \mu_Y)}{\sqrt{\sum_{i=1}^{4} (x_i - \mu_X)^2 \sum_{i=1}^{4} (y_i - \mu_Y)^2}}$$

Sappiamo che

$$\sum_{i=1}^{4} (x_i - \mu_X)(y_i - \mu_Y) = 35 \text{ (già fatto)}$$

$$\sum_{i=1}^{4} (x_i - \mu_X)^2 = 42 \text{ (già fatto)}$$

$$\sum_{i=1}^{4} (y_i - \mu_Y)^2 = \dots \text{ da fare}$$

y _i	$y_i - \mu_Y$	$(y_i - \mu_Y)^2$
18	-4	
23	1	
21	-1	
26	4	

y _i	$y_i - \mu_Y$	$(y_i - \mu_Y)^2$
18	-4	16
23	1	1
21	-1	1
26	4	16

y _i	$y_i - \mu_Y$	$(y_i - \mu_Y)^2$
18	-4	16
23	1	1
21	-1	1
26	4	16
	Σ	34

y _i	$y_i - \mu_Y$	$(y_i - \mu_Y)^2$
18	-4	16
23	1	1
21	-1	1
26	4	16
	Σ	34

Quindi
$$\sum_{i=1}^{4} (y_i - \mu_Y)^2 = 34$$

е

$$\rho = \frac{\sum_{i=1}^{4} (x_i - \mu_X)(y_i - \mu_Y)}{\sqrt{\sum_{i=1}^{4} (x_i - \mu_X)^2 \sum_{i=1}^{4} (y_i - \mu_Y)^2}} = \frac{35}{\sqrt{42 \cdot 34}} = \frac{35}{\sqrt{1428}} = \frac{35}{37,79} = 0,93$$

2) Il possibile voto che è ragionevole prevedere con una dose di 11 mg è dato dal valore y che la retta di regressione assume in corrispondenza dell'ascissa x = 11

$$y = \frac{5}{6} \cdot 11 + \frac{31}{3} = \frac{55}{6} + \frac{31}{3} = \frac{55 + 62}{6} = \frac{117}{6} = 19,5$$