Using Human Brain Activity to Guide Machine Learning

Ruth Fong

ruthfong@robots.ox.ac.uk

MBCC Workshop October 29, 2017 "We hold these truths to be self-evident, that not all cat gifs are created equal..." [Fong 15]

"Cat"-ness

Which is the more "cat"-like photo?

Learnability

- We never ask a novice to learn all information at once.
- Yet, machine learning and computer vision algorithms typically use a "sink-or-swim", "all-or-nothing" approach to learning.

Motivating Questions

- 1. Can we learn how *canonical* an example of an object is from human brain activity?
- 2. Does using brain-derived annotations of *canonical-ness* improve object classification?
- 3. If so, which brain regions best improve object classification?

VS

Biologically-Informed Learning Paradigm

1. Collect Activity Vectors

Brain Areas

- extrastriate body area (EBA)
- fusiform face area (FFA)
- lateral occipital cortex (LO)
- occipital face area (OFA)
- parahippocampal place area (PPA)
- retrosplenial cortex (RSC)
- transverse occipital sulcus (TOS)

2. Train a classifier on fMRI Activity Vectors

P(human | EBA)

Based on the brain activity in the EBA region, what's the probability that an image contains a human?

3. Train "Vanilla-Flavored" Image Classifier as our Baseline

4. Train "Activity-Weighted" Classifier

(weight examples based on activity weight from neural data)

Activity Weighted Loss

Binary Classification

Datum: $\vec{x} \in \mathbb{R}^D$ Label: $y \in \{+1, -1\}$ Function: $f: \mathbb{R}^D \to \{+1, -1\}$ Prediction: $z = y \cdot f(\vec{x})$

Loss Functions

• Prediction given by z:

$$z = y \cdot f(\vec{x})$$

 Typical Loss Function: Hinge Loss

$$\phi(z) = \max(0, 1 - z)$$

Activity Weighted Loss

• Suppose we had a cost, c, for training sample, in addition to the datum vector, x, and its label, y.

$$\phi(\vec{x},z) = \max(0,(1-z)M(\vec{x},z))$$
 where
$$M(\vec{x},z) = \begin{cases} c(\vec{x}) & \text{if } z < 1\\ 0 & \text{otherwise} \end{cases}$$

Optimization Problem

$$\min \frac{1}{2} ||\vec{w}||^2 + C \sum_{l=1}^{L} \phi(\vec{x_l}, y_l \cdot f(\vec{x_l}))$$

- 4 mutually exclusive object categories (1386 total images)
 - Humans (219 images, 34%)
 - Animals (180 images; 28%)
 - Buildings (151 images; 23%)
 - Foods (59 images; 9%)

- 1. Generate image features (HOG or CaffeNet) for each image
- 2. Divide images into training and test sets (80% training; 20% test)
- 3. Learn activity weights from fMRI data of training images using an RBF-kernel SVM and 5-fold cross validation
- 4. Use activity weights to train another SVM on image features from training set (baseline: no weights)
- 5. Test SVM models with image features from test set

1. Set up 4 partitions that randomly split training (80%) and test (20%) data.

2. Set up 127 parallel experiments for the 127 combinations of 7 ROIs.

2. Set up 5 balanced classification problems.

Results

People

Animals

Buildings

Foods

People

Animals

Buildings

Foods

Which Regions Are Most Helpful?

- 7 Regions:
 - eba, ffa, ppa, lo, rsc, tos, ofa
- 127 Combinations:
 - eba+ffa, eba+ffa+ppa, etc.

Analysis of ROIs (HOG)

Next Steps

- 1. Extend to CNNs
- 2. Compare with other tasks and sources of guidance
- 3. Guide feature learning more directly

Related works:

- 1. Focal Loss: Lin et al., ICCV 2017
- 2. Learn similar features to EEG prediction: Spampinato et al., CVPR 2017
- 3. CNNs vs. fMRI vs. EEG: Cichy et al., Scientific Reports 2016

Thanks

David Cox, Walter Scheirer, Dustin Stansbury, Cox Lab, Gallant Lab, "Bear" Questions?

Analysis of ROIs (HOG)

		Mean Acc*	> Avg. Mean Acc (66.36%)
- 1	EBA	72.02%	1
2	EBA, FFA	70.90%	1
3	EBA, LO	69.80%	1
64	EBA, FFA, LO, OFA, PPA, RSC, TOS	69.93%	1
65	FFA	64.64%	0
66	FFA, LO	64.86%	0
67	FFA, OFA	65.67%	0
127	FFA, LO, OFA, PPA, RSC, TOS	67.15%	1
	Overall Average:	66.36%	54.33%
	Average for all bolded ROI combinations:	69.91%	<u>98.44%</u>

		Mean Acc*	> Avg. Mean Acc (66.36%)
1	EBA	72.02%	1
2	EBA, FFA	70.90%	1
3	EBA, LO	69.80%	1
64	EBA, FFA, LO, OFA, PPA, RSC, TOS	69.93%	1
65	FFA	64.64%	0
66	FFA, LO	64.86%	0
67	FFA, OFA	65.67%	0
127	FFA, LO, OFA, PPA, RSC, TOS	67.15%	1
	Overall Average:	66.36%	54.33%
	Average for all bolded ROI combinations:	67.06%	<u>60.94%</u>
	Overall Average:	66.36%	54.33%

