Highlights from Class #1 – Zoe Kraus Today's highlights on Monday? – Maleen Kidiwela

Warm-up question (break-out) – Traffic on Interstate 5 as a continuum problem

- suggest a value for averaging length r
- Why?

Class-prep answers (break-out)

For Monday class

- Read Raymond Notes Ch 2, (2.3 2.8).
- (Focus on the 1-D model descriptions, not the Earth properties yet)

I am also preparing a short CR/NC writing assignment (1 point) in Canvas (Assignment Group - Pre-class prep).

- It will be due in Canvas at the start of class.
- I anticipate the whole thing will be around ~half a page.
- The goal to help us get into the topic, and the points from this and similar exercises will contribute to class participation grades.
- The writing assignment should help you to be prepared to discuss what you see as the key feature of a spring, and of a dashpot, and to be prepared to discuss stress, strain, and elastic behavior.
- I will send another message when it is posted in Canvas.

Dealing with a continuum

Environment	The continuum	How it responds
Temperature T	Material properties	Constitutive properties
• Pressur <i>e P</i>	ullet density $ ho$	 thermal conductivity
• Force F	charge state E	 electrical conductivity
• Electromagnetic <i>H</i> , <i>B</i> , <i>E</i>	 magnetization state 	 elastic constants
		Viscosity
		 magnetic permeability

Force vs stress in 1-D

- *F*(*t*) applied force
- *l*₀ initial length
- *I*(*t*) deformed length
- *u*(*t*) elongation
- A cross-sectional area

We want to discover relationship between force and response (shape change) independent of the geometry.

- Stress is force per unit area $\sigma(t) = F/A$
- **Strai**n is *fractional* elongation $e(t) = u(t)/l_0$
- Goal is to relate σ and e independent of geometry

Issues

- Large strains necking (no, not that necking)
- Silly-putty demo
- What happens to total force in the neck?
- What happens to stress in the neck?

Linear Elastic Behavior – Hookean solid (an idealization) $\sigma(t) = \mu e(t)$

Linear viscous Behavior – Newtonian fluid (an idealization)

$$\sigma(t) = \eta \dot{e}(t)$$

The dot indicates a time derivative

 \dot{e} is a strain *rate* η is a viscosity

Failure (an idealization)

There is a critical stress σ_0 called the yield stress

- Below σ_0 there is no deformation
- At σ_0 the deformation can be anything
- Can be brittle failure, or perfect plasticity, or work hardening

Failure – A work-hardening plastic material

A more realistic model for real materials

