Bus Routes

Problem

Bucket is planning to make a very long journey across the countryside by bus. Her journey consists of \mathbf{N} bus routes, numbered from 1 to \mathbf{N} in the order she must take them. The buses themselves are very fast, but do not run often. The i-th bus route only runs every \mathbf{X}_i days.

More specifically, she can only take the i-th bus on day X_i , $2X_i$, $3X_i$ and so on. Since the buses are very fast, she can take multiple buses on the same day.

Bucket must finish her journey by day **D**, but she would like to start the journey as late as possible. What is the latest day she could take the first bus, and still finish her journey by day **D**?

It is guaranteed that it is possible for Bucket to finish her journey by day **D**.

Input

The first line of the input gives the number of test cases, T. T test cases follow. Each test case begins with a line containing the two integers N and D. Then, another line follows containing N integers, the i-th one is X_i .

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the latest day she could take the first bus, and still finish her journey by day \mathbf{D} .

Limits

Time limit: 10 seconds. Memory limit: 1 GB.

 $1 \le T \le 100$.

 $1 \le X_i \le D$.

 $1 \le N \le 1000$.

It is guaranteed that it is possible for Bucket to finish her journey by day **D**.

Test Set 1

 $1 \le \mathbf{D} \le 100$.

Test Set 2

 $1 \le \mathbf{D} \le 10^{12}$.

Sample

Sample Input

```
3
3 10
3 7 2
4 100
11 10 5 50
1 1
```

Sample Output

```
Case #1: 6
Case #2: 99
Case #3: 1
```

In Sample Case #1, there are $\mathbf{N} = 3$ bus routes and Bucket must arrive by day $\mathbf{D} = 10$. She could:

- Take the 1st bus on day 6 ($X_1 = 3$),
- Take the 2nd bus on day 7 (X₂ = 7) and
- Take the 3rd bus on day 8 (**X**₃ = 2).

In Sample Case #2, there are \mathbf{N} = 4 bus routes and Bucket must arrive by day \mathbf{D} = 100. She could:

- Take the 1st bus on day 99 (X₁ = 11),
- Take the 2nd bus on day 100 (X₂ = 10),
- Take the 3rd bus on day 100 ($X_3 = 5$) and
- Take the 4th bus on day 100 ($X_4 = 50$),

In Sample Case #3, there is N = 1 bus route and Bucket must arrive by day D = 1. She could:

• Take the 1st bus on day 1 (X₁ = 1).