Full Hamiltonian

$$\mathbf{H} = -2\mathbf{J}_1 \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - 2\mathbf{J}_2 \sum_{\langle \langle i,j \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - 2\mathbf{J}_3 \sum_{\langle \langle \langle i,j \rangle \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - \mathbf{D} \sum_i |S_i^z|^2 - 2\lambda \sum_{\langle i,j \rangle} S_i^z S_j^z$$

 $\langle i,j \rangle$, $\langle \langle i,j \rangle \rangle$, and $\langle \langle \langle i,j \rangle \rangle \rangle$ denotes the nearest, second, and third neighbor spins. $J_{1,2,3}$ are the Heisenberg exchange constants between nearest, second, and third neighbor spins.

For Cubic lattice: $N_1 = N_2 = N_3 = 4$

For Hexagonal/Honeycomb lattice: $N_1 = 3$, $N_2 = 6$, $N_3 = 3$

For Triangular lattice: $N_1 = N_2 = N_3 = 6$

Heisenberg Exchange Constant

Single Ion Anisotropy + Anisotropy Symmetric Exchange[3]

- [1] N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and D. Xiao, Phys. Rev. B **91**, 235425 (2015).
- [2] Q. Wu, Y. Zhang, Q. Zhou, J. Wang, and X. C. Zeng, J. Phys. Chem. Lett. 9, 4260 (2018).
- [3] J. L. Lado, Fernández-Rossier, Joaquín, 2D Materials 4, 035002 (2017).