- 4. A piece-wise polynomial, Bezier approximation curve of order n=2 needs to be designed to fit a set of points $\{\mathbf{p}_k\}$.
 - (a) What set of blending functions need to be specified and, hence, what is the parametric form of the curve Q(u)? [4]
 - (b) Using your previous answer, or otherwise, derive a matrix form of Q(u). [6]
 - (c) Write down the first derivative of the curve, Q'(u), and state the boundary condition which will ensure C_1 continuity for successive piecewise approximations. [4]
 - (d) Given $\Delta Q(u) = Q(u + \delta) Q(u)$ and $\Delta^2 Q(u) = \Delta Q(u + \delta) \Delta Q(u)$, what are the constant terms,

$$\{\Delta^2 Q(0), \Delta Q(0), Q(0)\}$$

[8]

- needed to accelerate the drawing of Q(u)?
- (e) How many multiplies and adds would be needed to trace part of a quadratic Bezier patch over one $u + \delta u$ or $v + \delta$ step? [3]