# AT89C52单片机原理



第8章 单片机并行扩展技术

## 1 单片机内部的并行I/O口及应用

#### 单片机内部有四个8位并行I/O口:

- **?** P0、P1、P2和P3
- ? P0~P3这4个并行I/O口都可以作准双向通用I/O口
- ? P0、P2和P3口还有复用的第二功能

#### 每个口都包含:

- ¾ 一个(8位)锁存器(即特殊功能寄存器P0~P3)
- **3** 一个输出驱动器
- **邓** 和两个三态缓冲器

### 功能:

## 1.1 P0

#### 控制=0:

?P0口可作通用I/O口, 是漏级开路的。因此必须外接 上拉电阻,以保证"1"信号正 常输出。

#### 控制=1:

? P0口分时作为地址/数

据总线使用。

内部结构: 如图所示

#### 特点:

- ▶ 通用I/O口:输出时接上拉电阻,输入时先写入"1";
- ▶ 20P0回的每位输出可驱动8个LSTTL负载。



当外部扩展存储器或I/O口时,由EA、PC指针从外部程序存储器取指令码、执行指令MOVC、MOVX时,控制信号=1,使MUX与反向器3连通,作分时地址/数据总线。

### 功能: P1口作通用I/O口

## 1.2 P1

P1口也是一个"准双向"口,作输入口时要先将输出驱动管截止。

即先执行一条指令

**MOV P1,#0FFH** 

内部结构: 如图所示

举例:从P1口的低四位输入数据

MOV P1,#00001111b;先给P1口低四位写1

MOV A,P1 ; 再读P1口的低四位

#### 特点:

- ▶ 只作通用I/O口:输入时先向对应的锁存器写入"1";
- ▶ 20PIP臼的每位输出可驱动4个LSTTL负载。



### 功能:

## 1.3 P2

### 控制=0:

P2口用作通用I/O口

与P1口类似

控制=1:

P2口用作高8位地址总<sup>写锁存器-</sup>

线

内部结构: 如图所示



#### 特点:

- ▶ P2口作高8位地址输出线时,与P0口的低8位地址一起构成16位的地址总线;
- ▶作通用I/O口使用时,功能与P1口一样;
- ▶ P2只的每位输出可驱动4个LSTTL负载。

### 功能:

1.4 P3 🗆

读锁存器

第二输出功能 Vcc

- ? 第二输出功能端=1:
  - P3口用作通用I/O口
- ? P3口用作第二功能
  - ?三根第二功能输出引脚 TXD、WR和RD
  - 五根第二功能输入引脚 INTO、INT1、 T0、T1 和RXD

内部总线 — D P3. n Q — T1 — T1 — F3. n 引脚 — 第二输入功能

内部结构:如图所示

#### 特点:

▶ P3口的输出可驱动4个LSTTL负载。

## 1.5 MCS-51内部并行I/O口的应用

"读锁存器"和"读引脚"

PO、P2、P3口复用作片外扩展系统的系统总线

直接输入/输出

2021-5-13

## P0~P3编程和使用的方法

### 一、"读锁存器"和"读引脚"的指令

### 1. "读锁存器"的指令

P0~P3作目的操作数的指令,能实现"读—修改—写"口锁存器的操作,这类指令有:

#### (1) 字节操作指令

ANL Px, —

ORL Px, —

XRL Px, —

**DEC** Px

DJNZ Px, rel

#### (2) 位操作指令

JBC PX.Y,rel

**CPL PX.Y** 

**CLR PX.Y** 

**SETB PX.Y** 

MOV PX.Y,C

INC Px

其中: X是口的序号0~3, Y是位的序号0~7

8

### 2. "读引脚"的指令

"读引脚"指令的特点是: P0~P3 作为源操作数出现在指令中,但在读引脚数据之前,必须对所读的口或口位的D锁存器写入"1".

要正确读引脚数据,必须先写一条MOV PX,#0FFH指令或能对所读的口或口位的D锁存器写入"1"的指令,而后紧接着写下面的指令:

### (1) 字节操作指令

MOV A, Px

MOV direct, Px

XCH A, PX

**PUSH PX** 

ADD A, PX

ADDC A, PX

SUBB A, PX

ANL A, PX

ORL A, PX

XRL A, PX

ANL direct, PX

ORL direct, PX

XRL direct, PX



#### (2) 位操作指令

同理,必须先写一条SETB PX.Y或能对所读口位的D锁存器写入"1"的指令,在其后再紧跟如下指令。

MOV C, PX.Y

ANL C, PX.Y

ORL C, PX.Y

JNB PX.Y, rel

JB PX.Y, rel

2021-5-13

### 二、P0、P2、P3口复用作片外扩展系统的系统总线



MCS-51单片机没有提供专门的外扩三总线的引脚,而是由P0、P2 和股3口引脚构成三总线结构,外部芯片通过这三总线进行扩展。 11

# 8. 1 概 述

### 在组成单片机应用系统时:

- ② 首先遇到的问题就是存储器的扩展。单片机内部设置的存储器一般容量较小,满足不了实际需要,因此需要配置外部存储器,包括程序存储器和数据存储器。
  - ? 其次要解决的问题是I/O口的扩展。

当外围设备较多时,仅有的几个内部I/O接口就不够用,在大多数应用系统中,MCS-51单片机都需要扩展输入/输出接口芯片,有时还需要扩展定时器、串行口、数模转换器(D/A)和模数转换器(A/D)以满足实际需要。

## 扩展 方法

- 1、根据单片机的型号和应用系统的要求 确定扩展存储器的类型、容量或I/O口的类型 包括芯片的类型、个数、容量、特点、要求
- 2、确定作程序存储器 /PSEN数据存储器 /RD、/WR混合存储器 /RD、/PSEN
- 3、进行地址统筹,为各器件分配地址
- 4、根据位扩展、字扩展,确定片选方式
- 5、如何与三总线连接?

## 半导体存储器的分类

按读写方式分类



2021-5-13

# 半导体存储器的基本结构

E矩阵存储体

E译码驱动器

E读写电路

E地址总线

E数据总线

E 控制总线

E 电源线



2021-5-13

### 单片机对外扩展三总线



与计算机扩展连接芯片的外部引脚线都可以归属为三总线 结构,扩展连接的一般方法实际上是三总线对接。要保证单片 机和扩展芯片协调一致地工作,要共同满足其工作时序。

# 8.1.2 地址锁存器和译码器

? 地址锁存器

## 地址锁存器

MCS-51单片机的P0口是分时复用的地址/数据总线,因此在进行程序存储器扩展时,必须利用地址锁存器将地址信号锁存起来。



#### 带三态缓冲输出的8D锁存器74LS373或8282



地址锁存器---74LS373 和8282 (8位三态同相锁存器)

引脚功能: 1D~8D: 8位并行数据输入端

1Q~8Q:8位并行数据输出端

G: 数据输入信号为1时, Q 端数据 = D端数据, 为0时Q端数据保持。

②吃1-5-13输出使能端(片选端),低电平有效



## 3—8译码器 74LS138



2021-5-13

# 74LS138真值表

| $G_1$ $G_{2A}$ $G_{2B}$ | C B A | $\overline{\mathbf{Y}}_{7} \overline{\mathbf{Y}}_{6} \overline{\mathbf{Y}}_{5} \overline{\mathbf{Y}}_{4} \overline{\mathbf{Y}}_{3} \overline{\mathbf{Y}}_{2} \overline{\mathbf{Y}}_{1} \overline{\mathbf{Y}}_{0}$ |
|-------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 0 0                   | 0 0 0 | 1 1 1 1 1 1 0                                                                                                                                                                                                     |
| 1 0 0                   | 0 0 1 | 1 1 1 1 1 0 1                                                                                                                                                                                                     |
| 1 0 0                   | 0 1 0 | 1 1 1 1 0 1 1                                                                                                                                                                                                     |
| 1 0 0                   | 0 1 1 | 1 1 1 0 1 1 1                                                                                                                                                                                                     |
| 1 0 0                   | 1 0 0 | 1 1 1 0 1 1 1                                                                                                                                                                                                     |
| 1 0 0                   | 1 0 1 | 1 1 0 1 1 1 1                                                                                                                                                                                                     |
| 1 0 0                   | 1 1 0 | 1 0 1 1 1 1 1                                                                                                                                                                                                     |
| 1 0 0                   | 1 1 1 | 0 1 1 1 1 1 1                                                                                                                                                                                                     |
| 20基宣状态                  | × × × | 1 1 1 1 1 1 1 21                                                                                                                                                                                                  |



### 存储器扩展的基本方法

- 1、存储器扩展的基本问题。
  - 1) 扩展容量: 16根地址线最大可扩展到64K
- 2) 扩展要解决的问题: 地址线、扩展芯片在64K 范围所占的地址范围
- 3)存储器扩展的编址:存储芯片的选择、片内单元的编址
  - 4) 选择芯片的方法: 片选技术

- 2、存储器扩展的片选技术
  - 一般产生片选有两种方法: 线选法和译码法。

#### (1) 线选法

线选法用低位地址线对片内的存储单元进行寻址,所需的地址线由片内地址线决定,用余下的高位地址线分别接至芯片的片选端,以区分各芯片的地址范围。例如要扩展8K容量的外RAM,地址线和片选如下:

地址线:  $\log_2(8K) = \log_2(2^{13}) = 13$ 条 $(A_{12} \sim A_0)$ 

片选线: 余下的 $A_{15} \sim A_{13}$ 分别接至芯片的片选端。 $A_{15} \sim A_{13}$ 轮

流出现低电平,可保证一次只选一片。

用线选法扩展存储器的缺点

- 1 各芯片间地址不连续,而习惯上使用连续地址。
- ② 有相当数量的地址不能使用,否则造成片选混乱。

## (2) 译码法

译码法将低位地址总线直接连至各芯片的地址线,将高位地址总线经地址译码器译码后作为各芯片的片选信号。

一般使用2/4译码器、3/8译码器,对P2口高位地址线进行译码,适用于大规模扩展。

## 8.2 外部程序存储器的扩展

硬件电路如图所示。

单片机访问外部程序存储器所使用的控制信号有:

ALE: 低8位地址锁存控制信号

PSEN:外部程序存储器"读取"控制信号



图8—1 MCS-51单片机程序存储器的扩展

### 1. 常用EPROM芯片介绍 (名称/8)



#### 常用程序存储器芯片

#### 1、EPROM电路

常用的EPROM芯片为:

8K×8 16K×8 32K×8 64K×8 2764、27128、27256、27512等

#### 工作电源线 编程电源线 $V_{CC}$ 28 **PGM** 27 编程脉冲 NC 26 输入线 $A_6$ 25 $A_5$ $A_9$ 24 地址输入线 读出选通线 $\mathbf{A}_4$ 23 $A_0 \sim A_i$ 2764 22 <del>OE</del> $A_2$ 27128 $A_{10}$ 片选线 21 $\mathbf{A}_1$ 27256 20 $A_0$ 27512 19 三态数据线 $Q_0$ 18 $\mathbf{Q}_1$ $D_0 \sim D_7$ 16 地线 **GND** 15

2021-5-13

27

# 2、扩展电路实例

扩展一片EPROM

**27256** 

扩展两片EPROM

2764





### **EPROM** 2764——程序存储器

### 2764 工作方式真值表

| /CE | /OE | PGM | VPP | D0~D7 | 方式   |  |
|-----|-----|-----|-----|-------|------|--|
| 0   | 0   | 1   | +5V | 输出    | 读    |  |
| 1   | ×   | ×   | +5V | 高阻    | 维持   |  |
| 0   | 1   | 0   | VPP | 输入    | 编程   |  |
| 0   | 0   | 1   | VPP | 输出    | 编程校验 |  |
| 1   | ×   | ×   | VPP | 高阻    | 编程禁止 |  |

注: VPP为编程脉冲,可以为 +5V,+12.5v,+21V,+25V等 PGM是编程脉冲输入线



2021-5-13

## 地址空间——地址段不惟一

| A15  | A14                 | A13  | A12                          | A11  | A10  | <b>A9</b> | <b>A8</b> | A7~A0 | 存储器 |
|------|---------------------|------|------------------------------|------|------|-----------|-----------|-------|-----|
| P2.7 | P2.6                | P2.5 | P2.4                         | P2.3 | P2.2 | P2.1      | P2.0      | P0    |     |
| X    | X                   | 0    | 0                            | 0    | 0    | 0         | 0         | 0~0   |     |
|      | 000B<br>010B        |      | 0000H , 4000H, 8000H , C000H |      |      |           |           | IC1   |     |
|      |                     |      | 1                            | 1    | 1    | 1         | 1         | 1~1   |     |
|      | 10 <mark>0</mark> B |      |                              |      |      |           |           |       | 1   |
|      | 11 <mark>0</mark> B |      | 164                          | TH,  | SEEE | l, 9FI    | SFH.      | DFFFH |     |
| Х    | Х                   | 1    | 0                            | 0    | 0    | 0         | 0         | 0~0   |     |
|      | 001B                |      | 2000H, 6000H, A000H, E000H   |      |      |           |           | IC2   |     |
|      | 011B                |      | 1                            | 1    | 1    | 1         | 1         | 1~1   |     |
|      | 10 <mark>1</mark> B |      |                              |      |      | DE        |           |       | 1   |
|      | 11 <b>1</b> B       |      | 3FFFH、7FFFH、BFFFH、FFFFH      |      |      |           |           |       |     |

## 8.3 外部数据存储器的扩展

P0口为 RAM的复用地址 /数据总线,

P2口的三根 线用于对RAM进 行页面寻址。

在对外部 RAM读/写期间, CPU产生 /RD/WR信号。



2021-5-13 33

## 静态RAM扩展

静态RAM在应用时存取速度快、使用方便并且价格比较的低廉。但它在掉电时,内部的数据会丢失。典型6116 (2K)、6264(8K)、62128(16K)、62256(32K)等芯片。为了避免掉电数据丢失,自动保护的静态RAM,如:DS1225、DS1235。

#### 各重要的引脚含义如下:

A0-Ai: 地址输入线,决定存储器的容量;

I/O0-I/O7: 双向三态数据线;

CE: 片选信号输入线;

OE: 读选通输入信号线;

WE: 写选通输入信号;

V<sub>P</sub>:编程电源输入线;

 $\mathbf{V}_{cc}$ : 工作电源输入线(常为+5V);

GND:工作时接地线。

### 静态RAM芯片



#### 8031扩展2KBRAM



### 数据存储器典型扩展电路

#### MCS-51扩展6264的电路连接方法:

数据线: PO口接RAM的 $D_0 \sim D_7$ ;

地址线: 6264容量为8KB, 213=8KB, 需要A0~A12共13根地址线。P0口

经地址锁存器后接RAM的 $A_0 \sim A_7$ ; P2.0  $\sim$  P2.4接RAM的 $A_8 \sim A_{12}$ 。

控制线: ALE接373的LE,RD接RAM的OE、WR接RAM的WE,只有一片RAM,且系统无其他I/O接口及外围设备扩展,片选CE可以接地。扩展电路如图所示。



6264的地址范围为: 0000H~1FFFH。

注意 74LS373 的OE和RAM6264的CE。

[例] 在上页图的数据存储器扩展电路中,将片内RAM 以50H单元开始的16个数据,传送到片外数据存储器0000H开始的单元中。程序如下:

ORG 1000H

DMV: MOV R0, #50H ; 数据指针指向片内50H单元

MOV R7, #16 ;待传送数据个数送计数寄存器

MOV DPTR, #0000H;数据指针指向数据存储器6264的0000H单元

AGN: MOV A, @R0 ; 片内待输出的数据送累加器A

MOVX @DPTR, A ;数据输出至数据存储器6264

INC R0

INC DPTR ;修改数据指针

DJNZ R7, AGN ; 判断数据是否传送完成

SJMP \$

**END** 

# 扩展两片SRAM

6264





# 6264引脚图和工作方式



|   | ₩E | Œ1 | CEz | ŌĒ | 方式      | Do∼D τ |
|---|----|----|-----|----|---------|--------|
|   | Χ  | Н  | Χ   | Χ  | 未选中(均电) | 高阻     |
|   | Χ  | Χ  | L   | Χ  | 未选中(均电) | 高阻     |
|   | H  | L  | H   | H  | 输出禁止    | 高阻     |
|   | H  | L  | H   | L  | 读       | Dout   |
| • | L  | L  | Н   | Н  | 卐       | Dn     |

6264有2个片选端只须用其一个,一般用CE1,CE2直接接Vcc。





# 地址空间——地址段不惟一

| A15  | A14                 | A13  | A12         | A11                        | A10   | <b>A9</b> | <b>A8</b> | A7~A0 | 存储器 |  |
|------|---------------------|------|-------------|----------------------------|-------|-----------|-----------|-------|-----|--|
| P2.7 | P2.6                | P2.5 | P2.4        | P2.3                       | P2.2  | P2.1      | P2.0      | P0    |     |  |
| X    | X                   | 0    | 0           | 0                          | 0     | 0         | 0         | 0~0   | ]   |  |
|      | 000B<br>010B        |      | 000         | )0H 、                      | 4000E | I、800     | 0H , (    | C000H | IC1 |  |
|      |                     |      | 1           | 1                          | 1     | 1         | 1         | 1~1   |     |  |
|      | <b>100B</b>         |      | 4.51        |                            |       |           |           |       | 1   |  |
|      | 11 <mark>0</mark> B |      | 164         | TH.                        | SFFFH | l, 9FI    | TH,       | DFFFH |     |  |
| Х    | X                   | 1    | 0           | 0                          | 0     | 0         | 0         | 0~0   |     |  |
|      | 001B                |      | 20          | 00H、                       | 6000H | , A00     | 0H, E     | 2000Н | IC2 |  |
|      | 011B                |      | 1           | 1                          | 1     | 1         | 1         | 1~1   | 1   |  |
|      | 101B                |      |             |                            |       | DD        |           |       | 1   |  |
|      | 11 <mark>1</mark> B |      | <b>3F</b> T | 3FFFH, 7FFFH, BFFFH, FFFFH |       |           |           |       |     |  |





# 全译码——各芯片地址惟一

| A15            | A14        | A13  | A12  | A11          | A10          | <b>A9</b>  | <b>A8</b> | A7~A0 | 存储器 |  |
|----------------|------------|------|------|--------------|--------------|------------|-----------|-------|-----|--|
| P2.7           | P2.6       | P2.5 | P2.4 | P2.3         | P2.2         | P2.1       | P2.0      | P0    |     |  |
| C              | ВА         |      | . 2  | 1 210        | . 2.2        | . 2        | 1 210     |       |     |  |
| 0              | 0          | 0    | 0    | 0            | 0            | 0          | 0         | 0~0   |     |  |
| 000B           |            |      |      |              | 000          | <b>)0H</b> |           |       | IC1 |  |
|                |            |      | 1    | 1            | 1            | 1          | 1         | 1~1   |     |  |
| Y              | <b>)—C</b> | E    |      |              | 1 <b>F</b> ] | FFH        |           |       |     |  |
| 0              | 0          | 1    | 0    | 0            | 0            | 0          | 0         | 0~0   |     |  |
| <b>001B</b>    |            |      |      | <b>2000H</b> |              |            |           |       |     |  |
|                |            |      | 1    | 1            | 1            | 1          | 1         | 1~1   |     |  |
| $\mathbf{Y}$ 1 | C]         | E    |      |              | 3F1          | FFH        |           |       |     |  |

2021-5-13

44

## 线选法与译码法比较

- ? 线选法选址
  - ? 电路连接简单
  - ? 地址空间利用率低
  - ? 地址空间重叠严重
- ? 译码法选址
  - ? 采用译码器电路
  - ?部分译码仍有重叠的地址空间
  - ? 全译码地址空间利用率高,地址惟一



## 补1: 同时扩展程序存储器和数据存储器的方法

## SRAM 6116/6264——数据存储器





## **EPROM** 2732——程序存储器

### 2732 工作方式真值表

| /CE | /OE -VPP | D0~D7 | 方式   |
|-----|----------|-------|------|
| 0   | 0        | 输出    | 读    |
| 1   | ×        | 高阻    | 维持   |
| 0   | VPP      | 输入    | 编程   |
| 0   | 0        | 输出    | 编程校验 |
| 1   | VPP      | 高阻    | 编程禁止 |

注: VPP为编程脉冲,可以为 +5V,+12.5v,+21V,+25V等

焦点: 片选信号的产生

EPROM 与SRAM扩展







# 全译码——各芯片地址惟一

| A15          | A14        | A13  | A12   | A11   | A10          | <b>A9</b> | <b>A8</b> | A7~A0 | 存储器  |  |  |
|--------------|------------|------|-------|-------|--------------|-----------|-----------|-------|------|--|--|
| P2.7         | P2.6       | P2.5 | P2.4  | P2.3  | P2.2         | P2.1      | P2.0      | P0    |      |  |  |
| С            | В          | A    | . 2   | 1 2.0 | . 2.2        |           | 1 2.0     | . 0   |      |  |  |
| 0            | 0          | 0    | 0     | 0     | 0            | 0         | 0         | 0~0   |      |  |  |
| 000B         |            |      |       | 0000H |              |           |           |       |      |  |  |
|              | _          |      | 1     | 1     | 1            | 1         | 1         | 1~1   | 2764 |  |  |
| Y            | <b>0—C</b> | E    |       |       | 1 <b>F</b> ] | FFH       |           |       |      |  |  |
| 0            | 0          | 0    | 0     | 0     | 0            | 0         | 0         | 0~0   |      |  |  |
| (            | )00B       |      | 0000H |       |              |           |           |       |      |  |  |
| <b>Y0—CE</b> |            |      | 1     | 1     | 1            | 1         | 1         | 1~1   | 6264 |  |  |
|              |            |      |       |       | 1 <b>F</b> ] | FFH       |           |       |      |  |  |

# 8.4 1/0地址译码技术

1. 线选法

## 2. 全地址译码法

51或52系列提供给用户的 I/O口只有P1或P3口的部分口线。所接的外设较多时,就必须扩展I/O接口。

扩展的I/O口和外部数据存储器统一编址、采用相同的控制信号、相同的寻址方式和相同的指令。



## 扩展中的译码技术

- 分清片内地址线与片外地址线(容量)
- 要扩展的芯片个数,统筹考虑分配地址
- 分清程序存储器和数据存储器或I/O口
- 同类存储器防止地址重合

## 扩展RAM和I/O口



把单独的地址线(通常是P2口的某一根线)接到外围芯片的片选端上。只要该地址线为低电平,就选中该芯片。

| 外围器件           |     | 地址选择线(A <sub>15</sub> ~A <sub>0</sub> ) | 片内<br>地址<br>单元数 | 地址编码       |
|----------------|-----|-----------------------------------------|-----------------|------------|
| 6116           |     | 1111 0××× ××××                          | 2K              | F000~F7FFH |
| 8255           |     | 1110 1111 1111 11××                     | 4               | EFFC~EFFFH |
| 8155           | RAM | 11011110 ××××                           | 256             | DE00~DEFFH |
|                | I/O | 110111111111 1×××                       | 6               | DFF8~DFFDH |
| D/AC 0832      |     | 1011111111111                           | 1               | BFFFH      |
| 定时/计数器<br>8253 |     | 0111111111111 11××                      | 4               | 7FFC~7FFFH |

# 数据存储与I/O口同时扩展

2021-5-13 54



当芯片所需的片选信号多于可利用的地址线时,采用全地址译码法。将低位地址作为芯片的片内地址,用译码器对高位地址线译码,译出的信号作为片选线。



| 外围   | 器件  | 地址选择线(A <sub>15</sub> ~A <sub>0</sub> ) | 片内地<br>址单元<br>数 | 地址编码       |
|------|-----|-----------------------------------------|-----------------|------------|
| 6264 |     | 0 0 0 × ×××× ××××                       | 8K              | 0000~1FFFH |
| 82   | 55  | 0011 1111 1111 11 ××                    | 4               | 3FFC~3FFFH |
| 8155 | RAM | 01011110 ××××                           | 256             | 5E00~5EFFH |
|      | I/O | 010111111111 1 ×××                      | 6               | 5FF8~5FFDH |
| 08   | 332 | 0111 1111 1111 1111                     | 1               | 7FFFH      |
| 8253 |     | 10011111111111××                        | 4               | 9FFC~9FFFH |

# 数据存储与I/O口同时扩展

2021-5-13 56

# 8.5 并行接口

## 8.5.1 并行接口概述

## 并行接口与串行接口



#### 可编程并行I/O接口芯片扩展

可编程I/O接口芯片的特点:适应多种功能需求,使用灵活,可扩展多个并行I/O口,可以编程设定为输入或输出口,应用非常广泛。。

## 8.5.2 可编程芯片8255A

## 一、8255A的基本功能

8255A是一个通用可编程接口电路。其具有的资源为:

三个可编程的8位并行I/O口PA、PB和PC口,

PC口分高4位和低4位,高4位可与PA口合为一组(A组),低4位可与PB口合为一组(B组),PC口可按位置位/复位;

A口工作方式:方式0、1、2;

B口工作方式:方式0、1。

一个8位的数据口D0~D7。

能支持无条件、查询、中断控制方式。

## 二、8255A的内部结构和外部引脚

58

#### 1、内部结构



**数据总线缓冲器**:双向三态驱动器,与单片机的数据总线相连。

读/写控制逻辑:根据单片机的地址信息(A1、A0)与控制信息(/RD、/WR、RESET),控制片内数据、CPU控制字、外设状态信息的传送。

控制电路:根据CPU送来的控制字使所管I/O口按一定方式工作。对C口可按位实现"置位"或"复位"。控制电路分为两组:A组控制电路控制A口及C口的高4位(PC7~PC4),B组控制电路控制B口及C口的低4位(PC3~PC0)。

三个并行I/O端口: A口可编程为8位输入,或8位输出,或双向传送; B口可编程为8位输入,或8位输出,但不能双向传送; C口分为两个4位口,用于输入或输出,也可用作A口、B口的状态控制信号。

#### 2、外部引脚



40个引脚, DIP封装形式。

### **CPU侧**:

D0-D7, A1A0, CS, RD, WR

#### 外设侧:

PA0-PA7, PB0-PB7, PC0-PC3, PC4-PC7

202

### • 引脚

- 1) 数据线(8条): D0~D7为数据总线,用于传送CPU和8255之间的数据、 命令和状态字。
- 2) 控制线和寻址线(6条):
  - [?] RESET:复位信号,输入,高电平有效。一般和单片机的复位相 连。复位后,8255所有内部寄存器清0,所有口都为输入方式。
  - [?] /RD和/WR:读/写信号线,输入,低电平有效。当/RD为0时,8255 送出信息到CPU;反之亦然。
  - ? /CS: 片选线,输入,低电平有效。
  - [?] A0、A1:地址输入线。4种组合00、01、10、11分别用于选择A、B、C口和控制寄存器。
- 3) I/O口线(24条): PA0~PA7、PB0~PB7、PC0~PC7为24条双向三态 I/O总线,分别与A、B、C口相对应,用于8255和外设之间传送数据。
- 4) 电源线(2条): VCC为+5 V, GND为地线。

I/O端口地址: 8255A提供4个端口(使用A1A0);

命令:初始化—设置工作方式;

操作—向PA、PB、PC口写数据, 从PA、PB、PC口读数据。

#### 8255A的端口与命令关系表:

| <b>A1</b> | A0     | RD           | WR | CS | 操作                                           |               |
|-----------|--------|--------------|----|----|----------------------------------------------|---------------|
| 0         | 0      | 0            | 1  | 0  | A□─→数据总线                                     | <i>t</i> ♠    |
| 0         | 1      | 0            | 1  | 0  | B口—→数据总线                                     | 输入            |
| 1         | 0      | 0            | 1  | 0  | C口—→数据总线                                     |               |
| 0         | •      | 1            | •  | •  | 米万十日 台 4七 🗼 🖂                                |               |
| 0         | 0      | 1            | 0  | 0  | 数据总线 → A口                                    | 40.11         |
| 0         | 1      | 1            | 0  | 0  | 数据总线 → B口                                    | 输出            |
| 1         | 0      | 1            | 0  | 0  | 数据总线 → С□                                    |               |
| 1         | 1      | 1            | 0  | 0  | 数据总线→控制口或C口                                  |               |
| <b>T</b>  | -      |              | -  |    | ±₩ <del> +</del> Δ .   1 . ₩ <del> 7</del> Π |               |
| X         | X      | $\mathbf{X}$ | X  | 1  | 端口输出为高阻                                      | 禁止            |
| 1         | 1      | 0            | 1  | 0  | 非法                                           | <b>73 7 —</b> |
| X 2021-   | X 5_13 | 1            | 1  | 0  | 端口输出为高阻                                      | 62            |

## 三、 8255A的控制字与初始化编程

#### 8255A有两个控制字:

▶方式控制字 用于设定PA口、PB口和PC口的工作方式。 (控制寄存器只能写入不能读出)

► 置位/复位控制字 置位/复位控制字用于对PC口按位进行操作。

### 1、工作方式控制字

| 1   | D6           | D5                       | D4                 | D3                          | D2                                             | D1                   | D0                          |
|-----|--------------|--------------------------|--------------------|-----------------------------|------------------------------------------------|----------------------|-----------------------------|
| 标志位 | 00=7<br>01=7 | 式选择<br>式 0<br>式 1<br>式 2 | A口<br>0=輸出<br>1=輸入 | C口(高4<br>位)<br>0=輸出<br>1=輸入 | 式<br>组<br>生<br>方<br>1=<br>1=<br>1=<br>1=<br>1= | 口 出 ○=<br>□=輸<br>1=輸 | C口(低4<br>位)<br>0=輸出<br>1=輸入 |

## 工作方式控制字与C口按位置/复位冲突控制:

工作方式控制字—D7=1;

C口按位置/复位—D7=0。

2021-5-13 64

例1:要求使用8255A的A口工作于方式1作输入,B 口工作于方式0作输出,C口上半部输入,下半部输出, 8255A端口地址为7FF0H-7FF3H。请写出初始化程序。

控制字为: 10111000B=0B8H

初始化程序为:

MOV A, #0B8H
MOV DPTR, #7FF3H
MOVX @DPTR, A

#### 2、C口按位置/复位控制字

| 0   | D6 | D5            | D4 | D3 | D2                                                    | D1 | D0           |
|-----|----|---------------|----|----|-------------------------------------------------------|----|--------------|
| 标志位 |    | 不用<br>(一般置 0) |    |    | C 口的位选择<br>000=C 口位 0<br>001=C 口位 1<br><br>111=C 口位 7 |    | 1=置位<br>0=复位 |

例2:如上例,若A口工作于方式1作输入,在使用中断传送方式过程中,要写PC4的按位置位字:

MOV A, #00001001B
MOV DPTR, #7FF3H
MOVX @DPTR, A

## 例如:要将C端口的 $PC_3$ 置0, $PC_7$ 置1,可用下列程序段实现。



MOV A, #06H ; PC<sub>3</sub>置0控制字送A

MOX DPTR, #PortCtr ; 控制口地址 PortCtr送DPTR

MOVX @DPTR, A ; 对PC<sub>3</sub> 完成置0操作

MOV A, #0FH ; PC<sub>7</sub>置1控制字送A

MOVX @DPTR, A;对PC<sub>7</sub>完成置1操作

## 四、8255A的工作方式

## 三种工作方式:





图3 8255A的3种工作方式□

(a)方式0基本输入/输出方式;

(b)方式1选通输入/输出方式;

(c)方式2选通双向传输方式

8255A有三种工作方式:方式0、方式1、方式2。方式的选择是通过写控制字的方法来完成的。

方式0: 基本输入/输出方式

输入输出都无需握手信号,端口A、B、C都可作为输入或输出口使用。该方式适用于无条件与查询方式数据传送。

方式1: 选通输入/输出方式

输入、输出都通过应答关系实现,这时端口A或B用作数据口,端口C的一部分引脚用作握手信号线与中断请求线。该方式适用于查询与中断方式数据传送。

方式2: 选通双向传输方式

仅适用于端口A, 这时A口的PA7-PA0作为双向的数据总线, 端口C有5条引脚用作A的握手信号线和中断请求线, 而B口和C口余下的3位仍可工作于方式0或1。该方式适用于查询与中断方式数据传送。

## 四、8255A的工作方式

1、方式0—基本I/O方式

特点:

基本的输入/输出方式

3个口都可以提供简单的输入/输出操作,

无须"选通"和"状态"信号。

2个8位口,2个4位口

不需要任何选通信号,适合于无条件传输数据的设备,数据输出有锁存功能,数据输入有缓冲(无锁存)功能。

例3:用8255A(起始地址为7FF0H)PA.1口发出一个脉冲,编写相应程序。

MOVA,#80H ;PA口方式0输出,PB口方式0输出

MOV DPTR, #7FF3H ; PC口高、低4位均输出

MOVX @DPTR, A

MOV DPTR, #7FF0H

MOV A, #00H

MOVX @DPTR, A

MOV A,#02H

;PA1产生一个正向脉

冲

MOVX @DPTR, A

2021-5-13 **MOV** A, #00H

MOVX @DPTR, A

## 键盘与单片机接口

## 单个按键的连接与应用

常用的按键,都存在 两种状态: 断开和闭合。 当某一键被按下,则为闭 合状态; 键释放, 则为断 开状态。键盘电路的功能 就是将键的闭合和断开状 态用"0"和"1"来表示,然 后通过数据总线送到CPU 内部讲行键的识别。

#### 按键处理程序:



# 键盘接口

按键值编码方式:编码键盘与非编码键盘

编码键盘:采用专用的编码/译码器件,被按下的键由该器件译码输出相应的键码/键值。

特点:增加了硬件开销,编码因选用器件而异,编码固定,但编程简单。适用于规模大的键盘。

非编码键盘: 单片机系统多采用此类键盘

采用软件编码/译码的方式,通过扫描对每个被按下的键判别 输出相应的键码/键值。

特点:不增加硬件开销,编码灵活,适用于小规模的键盘,特别是单片机系统。但编程较复杂,占CPU时间,还须软件"消颤"。

# 按键组连接方式:独立式键盘与矩阵式键盘

独立式键盘:每键相互独立,各自与一条I/O线相连,CPU可直接读取该I/O线的高/低电平状态。

特点:占I/O口线多,但判键速度快,多用于设置控制键、功

能键。适用于键数少的场合。

矩阵式键盘:键按矩阵排列,各键处于矩阵行/列的结点处, CPU通过对连在行(列)的I/O线送已知电平的信号,然后读取列 (行)线的状态信息,逐线扫描,得出键码。

特点:键多时占用I/O口线少,但判键速度慢,多用于设置数

字键。适用于键数多的场合。

## 独立式键盘电路



每个按键单独占有一根I/O 接口引线。

#### 1.扫描法

列线输出,行线输入。

列线逐行输出0,某行有按键,行线输入有0,若无按键,行线输入全部为1。

#### 2.反转法

行朔线交换输入、输出,两步获取按键键号。

#### 矩阵式键盘



用I/O口线组成行、列结构,按键设置在行列的交点上。

# 键盘的工作方式

66 1 "

# 键盘扫描子程序的功能:

- ① 判断键盘上有无键按下;
- ② 去除键的机械抖动影响;
- ③ 求按下键的键号;
- ④ 键闭合一次仅进行一次键功能操作。





# 键盘处理程序任务

#### 1.键输入

检查键盘是否有键被按下,消除按键抖动。确定被按键的键号,获取键号。

#### 2.键译码

键号为键盘位置码,根据键号查表得出被按键的键值。键值:数字键 $0\sim9$ 、字符键 $0AH\sim0FH$ 、功能键 $10H\sim$ 。

#### 3.键处理

根据键值转移到不同程序段。

若键值属于数字、字符键,则调用显示数字和字符的子程序。

若键值属于功能键,则进行多分支转移,执行各个功能程序段。

# 2、方式1—选通输入/输出方式

A组包括A口和C口的高四位(PC7~PC4),A口可由程序设定为输入口或输出口,C口的高四位则用来作为输入/输出操作的控制和同步信号;B组包括B口和C口的低四位(PC3~PC0),功能和A组相同。

# (1) 方式1输入

当任一端口工作于方式1输入时,/STB与/IBF构成了一对 应答联络信号。

# (2) 方式1输出

当任一端口工作于方式1输出时,/OBF与/ACK构成了一对 应答联络信号。

2021-5-13

# (1)选通的输入方式

A组工作于方式1输入的控制字 B组工作于方式1输入的控制字 X X X X PC<sub>7</sub>、PC<sub>6</sub> 方式1 1输入,0输出 方式1 端口B输入 端口A输入  $PB_7 \sim PB_0$  $PA_7 \sim PA_0$ 中断允许位 中断允许位 INTER STB<sub>B</sub> STBA INTE PC2 PC4 **IBF**<sub>A</sub> **IBF**<sub>B</sub> **INTR**<sub>A</sub> RD RD

/STB —— 输入选通信号,外设发来,表示数据已送入输入缓冲器。 IBF —— 输入缓冲器满信号,发给外设(通知外设数据未被取走,暂不能接收 新数据)

INTR<sub>2021-5-13</sub>中断请求信号,8255A发给单片机 INTE A, B —— 中断允许触发器

# A口在选通输入方式下的工作过程



- · /STB<sub>A</sub>有效
- 8255收到/STB<sub>A</sub>后自动做两件事:一是把 PA7~PA0上的输入数据存入A口的数据输入 缓冲/锁存器;
- · 二是使IBF<sub>A</sub>有效,阻止外设输入新的数据
- · 在INTE<sub>A</sub>和IBF<sub>A</sub>共同有效下发出中断请求
- 中断响应

选通信号输入端,低电平有效,由外设提供。当外设输入一个数据到 PA7~PA0时,该信号有效。

输入缓冲器满信号,高电平有效,由8255输出至外设。当IBF=1时,表示当前有一个新数据在输入缓冲器中,可作为一状态信号供CPU查询用。

8255送往CPU的中断请求信号,高电平有效。CPU响应中断后,可通过中断服务程序从A口的数据输入缓冲/锁存器读取输入设备送来的数据。

# (2)选通的输出方式

#### 方式1在选通输出情况下对应的控制信号:



/OBF — 输出缓冲器满信号,发给外设(单片机将数据已送到指定口,外部设备可以取走)

/ACK —— 外设响应信号,由外部设备发来(数据已被外设取走)

INTR —— 中断请求信号

INTE 2021-5B3 — 中断允许触发器

# A口在选通输出方式下的工作过程



- 单片机通过MOVX指令把输出数据 送到A口的数据输出缓冲/锁存器, 8255收到后使/OBF。有效
- · 外设收到/OBF<sub>4</sub>后自动做两件事:
  - 一是从PA7~PA0上取走输出数据;
  - 二是使/ACK<sub>A</sub>有效
- · 发出中断请求,让CPU输出新数据
- 中断响应

外设响应输入信号,低电平有效,由外设送给8255。有效时表示外设已经取走CPU通过8255输出的数据。

输出缓冲器满,低电平有效,由8255送给外设。有效时表示 CPU已经把数据写入 8255指定的端口,通 知外设可以把数据取 走。

8255送往CPU的中断请求信号,高电平有效。当外设已经接收了CPU通过8255输出的数据后,INTR=1,向CPU申请中断,要求CPU继续输出数据,CPU在中断程序中把数据写入8255。

# 3. 方式2: 带选通的双向传输方式

双向的传输方式:可以向外设发送数据;又可以接收从外设发来的数据(此时B口可以工作在方式0或方式1)。

方式2的基本定义如下:只能适用于A端口。一个8位的双向端口(A端口)和1个5位的控制端口(C端口PC7~PC3)。



## 8255状态字



例5:在8255与单片机的连接电路中,使用置位/复位控制字实现在8255的PC7输出方波。

解:8255的控制寄存器(7FFFH)的设定

D7: 恒为0;

D6-D4: 未使用;

D3-D1: PC口的位选择;

D0: 置位时为1, 复位时为0。

所以:

当PC7输出高电平时,

控制寄存器应该为: OFH;

PC7输出低电平时,

控制寄存器应该为: OEH。



# 程序清单:

**ORG** 0000H DPTR,#7FFFH MOV 写PC7=1的命令字 **A,#0FH LOOP: MOV MOVX** (a)DPTR,A R2, #80H **MOV** 延时 **DJNZ** R2, \$ MOV R2,#80H **A,#0EH** MOV 写PC7=0的命令字 **MOVX** @DPTR,A **DJNZ** R2, \$ 循环执行 **SJMP LOOP END** 

2021-5-13

# 五、8255应用举例

单片机地址线最低2位分别接8255A芯片的A1,A0。PA,PB,PC及控制寄存器的地址分别是7FFCH,7FFDH,7FFEH和7FFFH。



2021-5-13

假设图中8255的PA口接一组开关,PB口接一组指示灯,如果,要将MCS-51的寄存器R2的内容送指示灯显示,将开关状态读入MCS-51的累加器A,则8255初始化和输入/输出程序如下:

ORG 1000H

R8255: MOV DPTR, #7FFFH;

MOV A, #98H; 10011000B

MOVX @DPTR,A

MOV DPTR,#7FFDH; B口输出

MOV A,R2

MOVX @DPTR, A

MOV DPTR,#7FFCH; A口输入

MOVX A,@DPTR

RET

# 第八章结束

# 课程小节

- ▶ 计算机运算基础(数制、编码、运算、运算结果 处理)
- ▶基本概念(单片机内部资源、存储器结构、寻址 方式、中断、输入输出方式、存储器和接口扩展、 串行异步通信)
- ▶指令系统和汇编语言程序设计(程序结构、处理过程、指令和寻址方式的正确运用)
- ▶ 存储器扩展方式(程序存储器、数据存储器和接口;线选方法、译码方法)
- ▶ 单片机内串口和定时计数器的初始化编程和应用
- ▶ 外扩接口8255的初始化编程和应用

# 考试题型

- ▶ 填空题
- ▶ 选择题(单项)
- ▶ 判断题
- ▶ 程序分析和设计
- ▶ 简答题
- ▶ 存储器扩展
- ▶ 综合应用