Analytic Mappings

定义. $f(z) = \frac{az+b}{cz+d}$ 其中 $a,b,c,d \in \mathbb{C}$ 且 $ad-bc \neq 0$

定理. 分式线性映射保广义圆。(圆 ∪ 直线映射到圆 ∪ 直线)

定理. 分式线性映射保对称点。即对广义圆,圆心映射到圆心,圆心的对称点映射到无穷,边界映射到边界(可由最大模原理得出)

Problem 1

求分式线性映射 $w=\frac{az+b}{cz+d}$ 将单位圆盘 |z|<1 映射到单位圆盘 |w|<1 且使 z_1 映射到 0,这里 $|z_1|<1$ Solution

$$w = \frac{az+b}{cz+d}$$
$$= \frac{a(z-(-\frac{b}{a}))}{b(z-(-\frac{d}{a}))}$$

根据题意

$$w(z_1) = 0$$

根据保对称性, z_1 的对称点 $z_1' = \frac{1}{z_1}$ 满足

$$w(z_1') = \infty$$

记 $\frac{a}{c} = a'$ 则此时

$$w = a' \frac{z - z_1}{z - \frac{1}{z_1}}$$

= $(-\overline{z_1}a') \frac{z - z_1}{1 - \overline{z_1}z}$
= $A(\frac{z - z_1}{1 - \overline{z_1}z})$

根据最大模原理, |w|=1 时 |z|=1, 且 |z|=1 时

$$1 = \overline{z}z = |z|^2$$

所以 |w|=1 时

$$1 = |A| \left| \frac{z - z_1}{1 - \overline{z_1} z} \right| = |A| \left| \frac{z - z_1}{z \overline{z} - \overline{z_1} z} \right|$$
$$= \frac{|A|}{|z|} \frac{|z - z_1|}{|\overline{z} - \overline{z_1}|}$$
$$= \frac{|A|}{|z|}$$
$$= |A|$$

所以

$$A = e^{i\theta} \qquad \theta \in [0, 2\pi)$$

所以

$$w = e^{i\theta} \frac{z - z_1}{1 - \overline{z_1}z}$$
 $\theta \in [0, 2\pi), |z_1| < 1$

推论. $z_1 = 0$ 时 $w = e^{i\theta}z$ 对应逆时针旋转 θ 角

推论. 不变式 从单位圆盘到单位圆盘的映射满足

$$\frac{|\mathrm{d}w|}{1 - |w|^2} = \frac{|\mathrm{d}z|}{1 - |z|^2}$$

Proof. 因为从单位圆盘到单位圆盘的映射

$$w = \frac{az+b}{cz+d} = e^{i\theta} \frac{z-z_1}{1-\overline{z_1}z}$$

所以

$$a = e^{i\theta}$$

$$b = -z_1 e^{i\theta}$$

$$c = -\overline{z_1}$$

$$d = 1$$

又

$$\frac{\mathrm{d}w}{\mathrm{d}z} = \frac{ad - bc}{(cz + b)^2}$$

所以

$$\left|\frac{\mathrm{d}w}{\mathrm{d}z}\right| = \frac{1 - |z_1|^2}{|1 - \overline{z_1}z|^2} > 0$$

而

$$\begin{aligned} 1 - |w|^2 &= 1 - w\overline{w} \\ &= 1 - e^{i\theta} \frac{z - z_1}{1 - \overline{z_1} z} e^{-i\theta} \frac{\overline{z} - \overline{z_1}}{1 - z_1 \overline{z}} \\ &= \frac{(1 - \overline{z_1} z)(1 - z_1 \overline{z}) - (z - z_1)(\overline{z} - \overline{z_1})}{(1 - \overline{z_1} z)(1 - z_1 \overline{z})} \\ &= \frac{1 - z_1 \overline{z} - \overline{z_1} z + |z|^2 |z_1|^2 - z\overline{z} + z\overline{z_1} + z_1 \overline{z} - |z_1|^2}{|z - zz_1|^2} \\ &= \frac{1 - |z_1|^2 - |z|^2 + |zz_1|^2}{|z - zz_1|^2} \\ &= \frac{(1 - |z|^2)(1 - |z_1|^2)}{|z - zz_1|^2} \end{aligned}$$

所以

$$\left| \frac{\mathrm{d}w}{\mathrm{d}z} \right| = \frac{1 - |z_1|^2}{|1 - \overline{z_1}z|^2} = \frac{1 - |z_1|^2}{|1 - zz_1|^2}$$

所以

$$\frac{|\mathrm{d}w|}{1-|w|^2} = \frac{|\mathrm{d}z|}{1-|z|^2}$$

Problem 2

求分式线性映射使 $|z-z_0| < r \longrightarrow |w-w_0| < R$ 且使 $z_1 \to w_0$ 。这里 $|z_1-z_0| < r$ 。

Solution

 $|z-z_0| < r$ 到以 z_0 为圆心的单位圆的映射为

$$z' = \frac{z - z_0}{r}$$

以 z₀ 为圆心的单位圆到以 z₁ 为圆心到单位圆的映射为

$$w' = e^{i\theta} \frac{z' - z_1'}{1 - \overline{z_1'}z'}$$

从 $|w-w_0| < R$ 到以 z_1 为圆心到单位圆的映射为

$$w' = \frac{w - w_0}{R}$$

所以

$$w' = \frac{w - w_0}{R} = e^{i\theta} \frac{\frac{z - z_0}{r} - \frac{z_1 - z_0}{r}}{1 - (\frac{z_1 - z_0}{r})(\frac{z_1 - z_0}{r})}$$

解得

$$w = w_0 + e^{i\theta} Rr \frac{z - z_1}{r^2 - \overline{(z_1 - z_0)}(z - z_0)}$$
 $\theta \in [0, 2\pi)$ $|z_1 - z_0| < r$