Cyclistic Case Study Jan21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for January 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

```
library(tidyverse)
library(lubridate)
library(data.table)
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Jan21 <- read_csv("C:/Users/theby/Documents/202101-divvy-tripdata.csv")
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

View(Jan21)

```
nrow(Jan21)
```

```
## [1] 96834
```

```
dim(Jan21)
```

```
## [1] 96834 13
```

```
head(Jan21)
```

```
## # A tibble: 6 × 13
##
                     ridea…¹ started at
     ride id
                                                    ended at
                                                                          start...2 start...3
##
     <chr>
                     <chr>
                             <dttm>
                                                    <dttm>
                                                                          <chr>
                                                                                  <chr>
## 1 E19E6F1B8D4C4... electr... 2021-01-23 16:14:19 2021-01-23 16:24:44 Califo... 17660
## 2 DC88F20C2C55F... electr... 2021-01-27 18:43:08 2021-01-27 18:47:12 Califo... 17660
## 3 EC45C94683FE3... electr... 2021-01-21 22:35:54 2021-01-21 22:37:14 Califo... 17660
## 4 4FA453A75AE37... electr... 2021-01-07 13:31:13 2021-01-07 13:42:55 Califo... 17660
## 5 BE5E8EB4E7263... electr... 2021-01-23 02:24:02 2021-01-23 02:24:45 Califo... 17660
## 6 5D8969F88C773... electr... 2021-01-09 14:24:07 2021-01-09 15:17:54 Califo... 17660
   # ... with 7 more variables: end station name <chr>, end station id <chr>,
## #
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
## #
       member_casual <chr>, and abbreviated variable names ¹rideable_type,
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

```
tail(Jan21)
```

```
## # A tibble: 6 × 13
##
   ride id
                  ridea…¹ started at
                                                                       start...2 start...3
                                                  ended at
##
                     <chr> <dttm>
                                                  <dttm>
## 1 44DE07FCDD3AD... docked... 2021-01-17 13:20:12 2021-01-17 14:15:33 Lake S... 13300
## 2 B1A5336E1412D... classi... 2021-01-19 19:03:17 2021-01-19 20:10:03 Lake S... 13300
## 3 57EA5CB7DCD75... classi... 2021-01-05 18:42:27 2021-01-05 19:33:33 Lake S... 13300
## 4 815B319A078CC... classi... 2021-01-07 17:59:47 2021-01-07 19:34:03 Lakefr... KA1504...
## 5 6DB04151565CE... classi... 2021-01-06 19:20:31 2021-01-06 20:41:57 Lakefr... KA1504...
## 6 8008C9C998083... docked... 2021-01-17 13:20:02 2021-01-17 14:17:00 Lake S... 13300
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
## # start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member_casual <chr>, and abbreviated variable names <sup>1</sup>rideable_type,
## #
       2start_station_name, 3start_station_id
```

summary(Jan21)

```
ride id
                      rideable type
                                          started at
                                        Min. :2021-01-01 00:02:05.00
##
   Length:96834
                      Length:96834
                      Class :character
                                        1st Ou.:2021-01-08 20:55:02.75
##
   Class :character
   Mode :character
                      Mode :character
                                        Median :2021-01-15 06:05:04.00
##
                                        Mean :2021-01-15 17:57:29.96
##
                                        3rd Qu.:2021-01-22 09:28:48.50
##
                                        Max. :2021-01-31 23:57:00.00
##
##
      ended at
                                    start_station_name start_station_id
##
   Min. :2021-01-01 00:08:39.00
                                   Length:96834
                                                      Length:96834
   1st Qu.:2021-01-08 21:14:23.75
                                   Class :character
                                                      Class :character
##
   Median :2021-01-15 06:19:58.50
                                   Mode :character Mode :character
##
   Mean :2021-01-15 18:12:46.10
##
##
   3rd Qu.:2021-01-22 09:41:18.75
   Max. :2021-02-01 15:33:15.00
##
##
                     end station id
                                          start lat
                                                          start lng
##
   end station name
##
   Length:96834
                      Length:96834
                                        Min. :41.64 Min. :-87.78
   Class :character Class :character
                                        1st Qu.:41.88
##
                                                        1st Ou.:-87.66
##
   Mode :character Mode :character
                                        Median :41.90
                                                        Median :-87.64
##
                                        Mean :41.90
                                                        Mean :-87.65
##
                                        3rd Qu.:41.93
                                                        3rd Qu.:-87.63
##
                                        Max. :42.06
                                                       Max. :-87.53
##
##
      end_lat
                      end_lng
                                   member_casual
   Min. :41.64
                   Min. :-87.81
                                   Length:96834
##
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                   Class :character
##
   Median :41.90
                   Median :-87.64
                                   Mode :character
                   Mean :-87.65
   Mean :41.90
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.07
                   Max. :-87.51
                        :103
##
  NA's
         :103
                   NA's
```

str(Jan21)

```
## spc_tbl_[96,834 \times 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : chr [1:96834] "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377D
## $ ride id
В" ...
                      : chr [1:96834] "electric bike" "electric bike" "electric bike" ...
## $ rideable type
                       : POSIXct[1:96834], format: "2021-01-23 16:14:19" "2021-01-27 18:43:08" ...
##
   $ started at
                       : POSIXct[1:96834], format: "2021-01-23 16:24:44" "2021-01-27 18:47:12"
##
   $ ended at
## $ start station name: chr [1:96834] "California Ave & Cortez St" "California Ave & Cortez St" "California Ave
& Cortez St" "California Ave & Cortez St" ...
## $ start_station id : chr [1:96834] "17660" "17660" "17660" "17660" ...
## \ end_station_name : chr [1:96834] NA NA NA NA ...
## $ end_station_id : chr [1:96834] NA NA NA NA ..
##
   $ start lat
                       : num [1:96834] 41.9 41.9 41.9 41.9 ...
##
   $ start_lng
                       : num [1:96834] -87.7 -87.7 -87.7 -87.7 ...
##
   $ end_lat
                       : num [1:96834] 41.9 41.9 41.9 41.9 ...
                       : num [1:96834] -87.7 -87.7 -87.7 -87.7 ...
##
   $ end lna
                      : chr [1:96834] "member" "member" "member" ...
##
   $ member_casual
##
    - attr(*, "spec")=
##
    .. cols(
##
         ride id = col character(),
     . .
##
         rideable_type = col_character(),
     . .
##
         started_at = col_datetime(format = ""),
         ended_at = col_datetime(format = ""),
##
##
         start_station_name = col_character(),
##
         start_station_id = col_character(),
##
         end station name = col character(),
     . .
##
         end station id = col character(),
     . .
##
         start lat = col double(),
         start lng = col double(),
##
     . .
##
         end lat = col double(),
     . .
##
         end_lng = col_double(),
##
     . .
         member_casual = col_character()
##
    ..)
##
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
Jan21$date <- as.Date(Jan21$started_at)
Jan21$month <- format(as.Date(Jan21$date), "%m")
Jan21$month <- month.name[as.numeric(Jan21$month)]
Jan21$day <- format(as.Date(Jan21$date), "%d")
Jan21$year <- format(as.Date(Jan21$date), "%Y")
Jan21$day_of_week <- format(as.Date(Jan21$date), "%A")
Jan21$ride_length <- difftime(Jan21$ended_at,Jan21$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed

```
is.numeric(Jan21$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
Jan21$ride_length <- as.numeric(as.character(Jan21$ride_length))
is.numeric(Jan21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Jan21 <- na.omit(Jan21)</pre>
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Jan21 <- subset(Jan21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 60 seconds or 1 minute.

```
Jan21 <- subset (Jan21, ride_length > 59)
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the **mean**, **median**, **max** (maximum), and **min** (minimum) of *ride_length*.

```
mean(Jan21$ride_length)
 ## [1] 882.3271
 median(Jan21$ride_length)
 ## [1] 566
 max(Jan21$ride_length)
 ## [1] 1189555
 min(Jan21$ride_length)
 ## [1] 60
Run a statistical summary of the ride_length.
 summary(Jan21$ride_length)
 ##
         Min.
                 1st Qu.
                            Median
                                         Mean
                                                 3rd Qu.
                                                               Max.
 ##
         60.0
                   345.0
                              566.0
                                        882.3
                                                   980.0 1189555.0
Compare the members and casual users
 aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = mean)
 ##
      Jan21$member_casual Jan21$ride_length
 ## 1
                    casual
                                    1593.6252
                                     729.8724
 ## 2
                    member
 aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = median)
 ##
      {\tt Jan21\$member\_casual\ Jan21\$ride\_length}
 ## 1
                    casual
 ## 2
                    member
                                           531
 aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = max)
 ##
      Jan21$member_casual Jan21$ride_length
 ## 1
                    casual
                                      1189555
 ## 2
                                        73601
                    member
 aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = min)
 ##
      Jan21$member_casual Jan21$ride_length
 ## 1
                    casual
 ## 2
                    member
Aggregate the average ride length by each day of the week for members and users.
```

aggregate(Jan21\$ride_length ~ Jan21\$member_casual + Jan21\$day_of_week, FUN = mean)

```
##
      {\tt Jan21\$member\_casual\ Jan21\$day\_of\_week\ Jan21\$ride\_length}
## 1
                                     Friday
                                                    1427.2133
                   casual
## 2
                   member
                                      Friday
                                                      711.6515
## 3
                   casual
                                     Monday
                                                      1199.5780
## 4
                                     Monday
                                                      690.1516
                   member
## 5
                                                      2006.9722
                   casual
                                    Saturday
## 6
                   member
                                    Saturday
                                                      795.2698
## 7
                                                      1860.1673
                   casual
                                     Sunday
## 8
                   member
                                      Sunday
                                                      786.4764
## 9
                   casual
                                    Thursday
                                                      1232.9294
## 10
                   member
                                    Thursday
                                                      699.1626
## 11
                   casual
                                     Tuesday
                                                      1399.1814
## 12
                   member
                                     Tuesday
                                                       701.6795
## 13
                   casual
                                   Wednesday
                                                      1576.5839
## 14
                                                      734.3590
                   member
                                   Wednesday
```

Sort the days of the week in order.

```
Jan21$day_of_week <- ordered(Jan21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"))</pre>
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Jan21$ride_length ~ Jan21$member_casual + Jan21$day_of_week, FUN = mean)
head(x)</pre>
```

```
##
     Jan21$member_casual Jan21$day_of_week Jan21$ride_length
## 1
                  casual
                                    Sunday
                                                    1860.1673
## 2
                  member
                                                     786.4764
                                     Sunday
## 3
                  casual
                                     Monday
                                                    1199.5780
## 4
                  member
                                    Monday
                                                     690.1516
## 5
                                   Tuesday
                                                    1399.1814
                  casual
                  member
                                   Tuesday
                                                     701.6795
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                      <int>
                                                        <dbl>
## 1 casual
                                       2355
                                                        1860.
                         1
## 2 casual
                         2
                                       1654
                                                        1200.
## 3 casual
                         3
                                       1472
                                                        1399.
## 4 casual
                         4
                                       1663
                                                        1577.
## 5 casual
                                       1885
                                                        1233.
## 6 casual
                         6
                                       2203
                                                        1427.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Jan21$member_casual)
```

```
##
## casual member
## 14583 68039
```

```
table(Jan21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 60763 2085 19774
```

```
table(Jan21$day_of_week)
```

```
##
                                                           Friday
##
      Sunday
                 Monday
                          Tuesday Wednesday
                                              Thursday
                                                                    Saturday
##
        9969
                  11304
                            10685
                                       11437
                                                  12320
                                                            13059
                                                                       13848
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Days of the Week

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Jan21$day_of_week,Jan21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
                        casual 2355
          Sunday
## 2
          Monday
                        casual 1654
## 3
         Tuesday
                        casual 1472
## 4
       Wednesday
                         casual 1663
## 5
        Thursday
                        casual 1885
## 6
          Friday
                        casual 2203
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends 10000 7500 7500 2500 Sunday vs Saturday Sunday vs Saturday

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Jan21$rideable_type,Jan21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual
## 1
    classic bike
                         casual
                                 8164
## 2
      docked bike
                         casual
                                 2084
## 3 electric_bike
                         casual 4335
## 4 classic bike
                         member 52599
## 5
      docked bike
                         member
## 6 electric_bike
                         member 15439
```

Plot for bike user vs bike type.

Rides and Ride Types

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Jan21, "Jan21.csv")