

1. IPWの拡張

- ●多種類介入へのIPWの適用
 - 提案する損失関数の式

$$L_{IPW} = \sum_{i=1}^{n} \frac{(y_i - \hat{y}_i)^2}{p(z = z_i | x = x_i)}$$

一般化傾向スコアを 多種類介入に拡張

> 組み合わせ数が 2^{K} 個と、 指数的に増加するため

介入種類が多いと、一般化傾向スコアを求めるのは難しい

最終的に「結果y」の予測精度が高くなるような、 一般化傾向スコアの評価方法を検討する

2.一般化傾向スコアの評価

●因果探索による評価

(介入が3種類($\mathbf{z} = \{z_1, z_2, z_3\}$) の場合)

因果探索

- 因果関係を明確にできれば、より厳密な一般化傾向スコアの評価になる
- グラフの種類は非常に多く、全探索は難しいため、**貪欲アルゴリズム**で探索

2. 一般化傾向スコアの評価

●因果探索の貪欲アルゴリズム

(介入が3種類($\mathbf{z} = \{z_1, z_2, z_3\}$) の場合)

 $p(z_1|x, z_2), p(z_1|x, z_3), ...など$

(※) 検証用データに おけるAUCなど このときの $p(\mathbf{z}|\mathbf{x})$ を 一般化傾向スコアに

研究2目次

- ・はじめに
- ●関連研究
- ●提案手法
- ●数値実験

人工データの生成方法

- ●全体のコンセプト
 - 学習データ & 検証用データ

ID	x_1	x_2	•••	x_5	z_1	Z_2	•••	Z_5	у
1	-0.34	2.10	•••	1.21	1	0	•••	1	31.1
2	1.12	-0.05	•••	3.34	1	1	•••	0	25.2
3	1.67	-0.11	•••	2.21	0	0	•••	1	11.6
:	:	:	:	:	•	:	:	:	:

※表はイメージ

● 「介入z」を、①に依存せず一様的に生成する

依存性をもつ

人工データの生成方法

- 事前準備
 - **重みベクトル** (*w_x*, *w_z*) を設定
 - 線形結合により、ベクトル (x, z) をスカラー (x_s, z_s) に変換する
 - 「健康の度合い」「介入の度合い」を表しやすくする

目指す人工データの分布

研究2「IPWを用いた医療における多種類介入のバイアス除去学習」

Tokyo Tech

人工データの生成方法

● 確率的生成の方法

■ スカラー (x_s, z_s) を活用して、以下の手順で各変数を確率的に生成する

 \boldsymbol{Z}

X

■ $\{[x,z],y\}$ を、実験用データとして使用する

2. 状態 (x_s) に対し、介入 $\mathbf{z}(z_s)$ を生成

$$p(\mathbf{z}|\mathbf{x}) \propto f(z_s - \frac{\mathbf{w}_z^T \mathbf{1}}{1 + \exp(\boldsymbol{\alpha} \cdot x_s)})$$

- ・前ページのような分布になる
- ・ $f(\cdot)$: 平均0, 分散 σ^2 のガウス密度関数
- ·α(>0):介入戦略の極端さ
- $\cdot \sigma^2$: 意思決定のブレの大きさ
- ↑ テストデータでは、完全ランダムに生成

$$y = 10 \cdot \frac{1}{1 + \exp(\beta_1 \cdot x_s)} \cdot \frac{1}{1 + \exp(\beta_2 \cdot z_s)} + \varepsilon$$

- ・不健康患者に介入なし → yが大きい
- · β₁ (> 0): 「状態」の結果への敏感さ
- · β₂ (> 0):「介入」の結果への敏感さ
- · ε: 正規乱数

実験の設定

●タスク

- - バイアスのある「学習データ」「検証用データ」で学習
 - バイアスのない「テストデータ」で予測精度を評価
 - 学習:検証用:テスト = 1,000:1,000:1,000(件)
 - 100セットの人工データそれぞれで評価し、平均をとる

●モデルの前提

- 各介入 Z_k の確率出力モデル: ロジスティック回帰
- y を予測するモデル: Random Forest

実験の設定

- 評価指標
 - **決定係数** (R²) : 1に近いほど高精度
- ●比較手法(一般傾向スコアp(z|x)の評価方法)
 - 1. 「Naive」: 考慮しない方法 (p(z|x)=1)
 - 2. **「多クラス分類」**: 32(= 2⁵)クラスのロジスティック回帰
 - 3. 「条件付き独立」: $p(\mathbf{z}|\mathbf{x}) = \prod_{k=1}^{5} p(z_k|\mathbf{x})$
 - 4. 「提案手法」: 因果探索による評価

実験結果

●予測精度

バイアスあり

バイアスなし

- あるパラメータの人工データにおける、<u>検証用データ</u>と<u>テストデータ</u>の評価
 - パラメータ: $\alpha = 2$, $\sigma^2 = 0.04$, $\beta_1 = 4$, $\beta_2 = 1$

	検証用データ(R ²)	テストデータ(<i>R</i> ²)
Naive	0.8902 ± 0.0530	0.7508 ± 0.1949
多クラス分類	0.8966 ± 0.0464	0.7933 ± 0.1438
条件付き独立	0.8951 ± 0.0485	0.7944 ± 0.1380
提案手法	0.8970 ± 0.0464	0.8004 ± 0.1336

※対応のあるt検定 で1%有意

- テストデータについて、提案手法が最高精度
- 検証用データにおける精度もほぼ不変

実験結果

●予測精度

バイアスなし

- 様々なパラメータの人工データにおける、<u>テストデータ</u>の評価
 - ベースのパラメータ: $\alpha = 2$, $\sigma^2 = 0.04$, $\beta_1 = 4$, $\beta_2 = 1$

	$\alpha = 20$	$\alpha = 0.5$	$\sigma^2 = 0.16$	$\sigma^2 = 0.01$	$\beta_1 = 7,$ $\beta_2 = 2$	$\beta_1 = 0.4,$ $\beta_2 = 0.1$
	介入戦略: 極端	介入戦略 : なだらか	意思決定の ブレ : 大	意思決定の ブレ : 小	交互作用:強	交互作用:弱
Naive	0.6335	0.8616	0.8650	0.4945	0.7286	0.8237
多クラス分類	0.6926	0.8713	0.8750	0.5970	0.7600	0.8549
条件付き独立	0.7015	0.8652	0.8722	0.6688	0.7536	0.8647
提案手法	0.7025	0.8728	0.8773	0.6621	0.7651	0.8661

多くの状況において、提案手法は対応能力が高い

ご清聴ありがとうございました

-Appendix-

※本来は発表内容でしたが、時間の都合上Appendixに置いたページがございます

CMF (Collective Matrix Factorization) [Singh, et al. (2008)]

(前提:患者の特徴量を考慮するため、**患者-患者属性の関係データ** $Y \in \mathbb{R}^{I \times K}$ を導入)

- <u>2つの行列</u>を同時に分解し、<u>3つの行列</u>を得る
- それぞれのMFは、リンク関数によって非線形変換を行う

メリット

- 複数の関係性の加味が可能(: 患者属性を特徴量として扱える)
- リンク関数による柔軟な出力

デメリット

- 特徴表現の解釈性が低い

(:要素に正と負の値が出現する)

NMF, CMFの比較

	性質	NMF	CMF	
解釈性	非負性		×	
拡張性	複数の関係性の加味	×		
加力区社	出力の柔軟性	出力の柔軟性 メ		

目標の達成のためには、

「NMFの解釈性」と「CMFの拡張性」の両方が必要

新たな手法を開発

PCMF (Positive Collective Matrix Factorization)

- 学習方法
 - <u>誤差逆伝播法</u>を使用
 - 「連鎖律による**勾配計算**」+「**最適化アルゴリズム**によるパラメータ更新」
 - $\hat{X} \cong X$, $\hat{Y} \cong Y$ となるように、パラメータ U, V, Z を更新する
- リンク関数
- 損失関数
- パラメータ初期値

設定方法は、論文に記載

PCMF補足①

● リンク関数

- 定義域が正であることを前提にしつつ、予測対象の性質・目的に応じ選択
- 特に本研究の数値実験においては、両行列ともにシグモイド関数を適用

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

■ ただし、入力に対して一律に共通の正の数(パラメータ)を引く

$$\hat{\boldsymbol{X}} = \sigma(\boldsymbol{U}'\boldsymbol{V}'^T - \boldsymbol{C}_X)$$

 $(C_X \in \mathbb{R}^{I \times J}:$ すべての要素が c_X (> 0) の行列)

