Equipopularity in the Separable Permutations

Cheyne Homberger

This talk investigates pattern occurrences within permutation classes, and classifies the patterns which occur the same number of times within the separable class.

For any permutation σ , define a permutation statistic $\nu_{\sigma}:\mathfrak{S}\to\mathbb{Z}_{\geq 0}$ which counts the number of occurrences of the pattern σ in a given permutation. For example, $\nu_{213}(462513)=2$ since the first, third, and fourth entries as well as the third, fifth, and sixth entries form 213 patterns. For another example, ν_21 counts the number of inversions of a permutation. Note that every permutation statistic can be expressed through combinations of counts of permutation patterns [4].

For a permutation class $\mathcal C$ and a pattern σ , define the *popularity* of σ within $\mathcal C$ to be the sequence

$$\nu_{\sigma}(\mathcal{C}_1)$$
, $\nu_{\sigma}(\mathcal{C}_2)$, $\nu_{\sigma}(\mathcal{C}_3)$, $\nu_{\sigma}(\mathcal{C}_4)$, ...,

where C_n denotes the length n permutations of the class. For a given class, two patterns are *equipopular* if they have the same popularity. It is easy to show in the class of all permutations, all k-patterns are equipopular; the situation quickly becomes more interesting when restricted to proper classes.

Prior research has focused on pattern popularity within principal permutation classes. Bóna [2, 3] showed that the patterns 213, 231, and 312, were equipopular in the class Av 132 and provided full enumerations of the popularity of the length 3 patterns in this class. A similar study of the class Av 123 showed that the popularity of 231 is idential to that of 231 in Av 132 [6]. Rudolph [7] provided sufficient conditions for patterns to be equipopular in Av 132 and Chua and Sankar [5] showed that these conditions are necessary, classifying the equipopular patterns in this class.

References

[1] ALBERT, M.H., HOMBERGER, C., AND PANTONE, J. Equipopularity

- Classes in the Separable Permutations. *Electron. J. Comb.* 22, 2 (2015), Paper 2, 18 pp.
- [2] BÓNA, M. The absence of a pattern and the occurrences of another. *Discret. Math. Theor. Comput. Sci.* 13, 2 (2010), 89–102.
- [3] BÓNA, M. Surprising symmetries in objects counted by Catalan numbers. *Electron. J. Comb.* 19, 1 (2012), Paper 62, 12 pp.
- [4] BRÄNDÉN, P. AND CLAESSON, A. Mesh patterns and the expansion of permutation statistics as sums of permutation patterns. *Electron. J. Comb. 18*, 2 (2012), Paper 5, 14 pp.
- [5] CHUA, L., SANKAR, K. R. Equipopularity classes of 132-Avoiding Permutations. *Electron. J. Comb.* 21, 1 (2014), Paper 59, 17 pp.
- [6] HOMBERGER, C. Expected Patterns in Permutation Classes. *Electron. J. Comb.* 19, 3 (2012), Paper 43, 12 pp.
- [7] RUDOLPH, K. Pattern popularity in 132-avoiding permutations. *Electron. J. Comb.* 20, 1 (2013), Paper 8, 15 pp.