Ekonometria Finansowa

Wielowymiarowe modele szeregów czasowych

mgr Paweł Jamer¹

29 listopada 2015

Model VAR

Model Wektorowej Autoregresji (VAR)

Niech dany będzie szereg czasowy $\boldsymbol{Y}_t = [Y_{1,t}, Y_{2,t}, \dots, Y_{n,t}]'$. Modelem wektorowej autoregresji o p opóźnieniach szeregu \boldsymbol{Y}_t nazwiemy model opisany równaniem

$$\mathbf{Y}_t = \sum_{i=1}^p \mathbf{A}_i \mathbf{Y}_{t-i} + \epsilon_t,$$

gdzie

- $\mathbb{E}(\epsilon_t) = \mathbf{0}$,
- \bullet $\mathbb{E}\left(\epsilon_{t}\epsilon_{t}'\right)=\Omega$ macierz dodatnio określona,
- $\mathbb{E}(\epsilon_t \epsilon_s') = \mathbf{0}$ dla $t \neq s$.

Uwaga. Model wektorowej autoregresji o p opóźnieniach przyjęło się oznaczać symbolem VAR (p).

Właściwości

Model VAR:

- ma często dobre właściwościami prognostyczne i symulacyjne,
- dopuszcza pełną dowolność co do wartości parametrów,
- uwzględnia występowanie zależności pomiędzy zmiennymi,
- traktuje wszystkie zmienne jako objaśniane oraz objaśniające,
- nie jest związany z żadną konkretną teorią ekonomiczną,
- wymaga oszacowania wielu parametrów.

Reprezentacja VAR(1)

Rozpatrzmy proces VAR(p)

$$\mathbf{Y}_t = \sum_{i=1}^p \mathbf{A}_i \mathbf{Y}_{t-i} + \epsilon_t.$$

Proces ten zapisać możemy jako

$$\begin{bmatrix} \mathbf{Y}_t \\ \mathbf{Y}_{t-1} \\ \vdots \\ \mathbf{Y}_{t-(p-1)} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 & \cdots & \mathbf{A}_{p-1} & \mathbf{A}_p \\ \mathbf{I} & \cdots & \mathbf{0} & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \cdots & \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_{t-1} \\ \mathbf{Y}_{t-2} \\ \vdots \\ \mathbf{Y}_{t-p} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\epsilon}_t \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix},$$

a zatem jako proces VAR(1).

Model VMA

Model Wektorowej Średniej Ruchomej (VMA)

Niech dany będzie szereg czasowy $\boldsymbol{Y}_t = [Y_{1,t}, Y_{2,t}, \dots, Y_{n,t}]'$. Modelem wektorowej średniej ruchomej o q opóźnieniach szeregu \boldsymbol{Y}_t nazwiemy model opisany równaniem

$$\mathbf{Y}_t = \mathbf{\epsilon}_t + \sum_{i=1}^q \mathbf{M}_i \mathbf{\epsilon}_{t-i},$$

gdzie

- $\mathbb{E}(\epsilon_t) = \mathbf{0}$,
- \bullet $\mathbb{E}\left(\epsilon_{t}\epsilon_{t}'\right)=\Omega$ macierz dodatnio określona,
- $\mathbb{E}\left(\epsilon_{t}\epsilon_{s}'\right)=\mathbf{0}$ dla $t\neq s$.

Uwaga. Model wektorowej średniej ruchomej o q opóźnieniach przyjęło się oznaczać symbolem VMA (q).

Reprezentacja $VMA(\infty)$

Dowolny model wektorowej autoregresji przedstawić można w postaci modelu wektorowej średniej ruchomej o nieskończonej liczbie opóźnień

$$\mathbf{Y}_t = \boldsymbol{\epsilon}_t + \sum_{i=1}^{\infty} \mathbf{M}_i \boldsymbol{\epsilon}_{t-i}.$$

W szczególności model VAR (1) przyjmuje postać

$$\mathbf{Y}_t = \mathbf{\epsilon}_t + \sum_{i=1}^{\infty} \mathbf{A}^i \mathbf{\epsilon}_{t-i},$$

Stabilność Definicja

Stabilność

Model VAR nazywamy stabilnym, jeżeli

$$\lim_{k\to\infty}\left(\mathbf{A}^k\right)=\mathbf{0},$$

gdzie \boldsymbol{A} jest macierzą parametrów reprezentacji VAR (1) analizowanego modelu VAR.

Intuicja. Wpływ zaburzenia ϵ_t na \boldsymbol{Y}_t wygasa w miarę czasu.

Stabilność Twierdzenie

Twierdzenie

Model VAR (p) jest stabilny, gdy

$$\det\left(\boldsymbol{I}-\sum_{i=1}^{p}\boldsymbol{A}_{i}z^{i}\right)\neq0$$

dla $|z| \leq 0$.

Stabilność Testowanie

Rekursywna estymacja parametrów.

Szacuje się parametry modelu VAR na podstawie pierwszych τ obserwacji, gdzie τ przyjmuje kolejno wartości T_0, T_0+1, \ldots, T . Jako T_0 wybiera się najmniejszą wartość dla której możliwe jest zbudowanie modelu. Następnie rysuje się wykresy szeregów uzyskanych oszacowań wraz ze średnimi błędami szacunku.

Testy statystyczne.

- Test CUSUM.
- Test Chowa.

Rozszerzenia modelu VAR Zmienne deterministyczne

W równaniu modelu VAR często uwzględnia się zmienne deterministyczne (np. stałą, trend, sezonowość):

$$\mathbf{Y}_t = \mathbf{A}_0 \mathbf{D}_t + \sum_{i=1}^{\rho} \mathbf{A}_i \mathbf{Y}_{t-i} + \epsilon_t,$$

gdzie

- **D**_t macierz zmiennych deterministycznych,
- A_0 macierz parametrów związanych z D_t .

Rozszerzenia modelu VAR

Zmienne egzogeniczne

Innym typem często uwzględnianych w modelu VAR zmiennych są zmienne stochastyczne nie podlegające modelowaniu (zmienne egzogeniczne):

$$\mathbf{Y}_t = \sum_{i=1}^p \mathbf{A}_i \mathbf{Y}_{t-i} + \mathbf{B} \mathbf{Z}_t + \epsilon_t,$$

gdzie

- Z_t macierz zmiennych egzogenicznych,
- ullet B macierz parametrów związanych z $oldsymbol{Z}_t$.

Egzogeniczność Definicje

Słaba egzogeniczność

Zmienna z_t jest nazywana słabo egzogeniczną dla wektora parametrów θ jeżeli estymacja parametrów θ z modelu warunkowego warunkowanego zmienną z_t nie powoduje utraty informacji względem estymacji tych parametrów z modelu pełnego.

Silna egzogeniczność

Zmienna z_t jest nazywana silnie egzogeniczną dla wektora parametrów θ , jeżeli jest ona dla niego słabo egzogeniczna oraz prognoza Y_t może zostać przeprowadzona bez utraty dokładności na podstawie modelu warunkowego pod warunkiem z_t .

Selekcja optymalnego p

Metody selekcji optymalnej wartości parametru p :

- przesłanki teoretyczne,
- kryteria informacyjne,
- testy istotności parametrów dla ostatnich opóźnień,
- analiza reszt modelu (np. statystyka Ljunga-Boxa).

Selekcja optymalnego *p* Kryteria informacyjne

Wyboru optymalnej wartości parametru *p* dokonuje się minimalizując wartość wybranego kryterium informacyjnego.

Kryterium Akaike

$$AIC = -2\frac{\ln\left(L\right)}{T} + k\frac{2}{T}$$

Kryterium Schwarza

$$SC = -2\frac{\ln(L)}{T} + k\frac{\ln(T)}{T}$$

Kryterium Hannana-Quinna

$$HQ = -2\frac{\ln(L)}{T} + k\frac{\ln(\ln(T))}{T}$$

Estymacja

Jeżeli każde z równań modelu VAR posiada ten sam zbiór zmiennych objaśniających, to estymacja parametrów całego modelu może zostać przeprowadzona poprzez zastosowanie metody najmniejszych kwadratów do każdego z równań osobno.

Alternatywą jest zastosowanie metody największej wiarogodności do wszystkich równań modelu łącznie.

Definicja

Kopula

Funkcja $C: \mathbb{I}^2 \to \mathbb{I}$ spełniająca następujące warunki

$$C(0,t) = C(t,0) = 0,$$

$$O(1, t) = C(t, 1) = t$$

dla $t, u_1, u_2, v_1, v_2 \in \mathbb{I}, u_1 \leqslant u_2, v_1 \leqslant v_2,$

Intuicja. Kopula to dystrybuanta wielowymiarowa, której dystrybuanty brzegowe pochodzą z rozkładu jednostajnego na I.

Twierdzenie Sklara

Twierdzenie

Niech:

- F dystrybuanta łączna 2-wymiarowa,
- F_1, F_2 dystrybuanty brzegowe F.

Wówczas:

• istnieje kopula C taka, że dla dowolnego punktu $(x_1, x_2) \in \overline{\mathbb{R}}^2$ zachodzi

$$F(x_1, x_2) = C(F_1(x_1), F_2(x_2)).$$
 (1)

Ponadto:

- jeśli F_1 , F_2 są ciągłe, to C jest wyznaczona jednoznacznie.
- jeśli funkcja C jest kopulą, a F_1 , F_2 są dystrybuantami, to zależność (1) wyznacza dystrybuantę wielowymiarową F.

Twierdzenie Sklara Wnioski

Interpretacja. Problem modelowania wielowymiarowego szeregu czasowego rozdzielić można na dwa podproblemy

- modelowania jednowymiarowych szeregów składowych,
- modelowania współzależności łączących te szeregi.

Uwaga. Twierdzenie Sklara przenosi się bez zmian również na przypadek rozkładów warunkowych.

Uwaga. Łączenie jednowymiarowych szeregów czasowych za pomocą różnych kopul pozwala skupić się na modelowaniu różnych współzależności.

Miary współzależności Współczynnik Kendalla

Współczynnik au Kendalla

Niech $X_{i,1}, X_{i,2} \sim X_i$ dla i=1,2. Wówczas współczynnikiem τ Kendalla zmiennych X_1 i X_2 nazwiemy

$$\tau(X_1, X_2) = P((X_{1,1} - X_{1,2})(X_{2,1} - X_{2,2}) > 0) - P((X_{1,1} - X_{1,2})(X_{2,1} - X_{2,2}) < 0).$$

Twierdzenie

Niech X_1 i X_2 będą ciągłymi zmiennymi losowymi o współzależnościach opisanych kopulą C. Wówczas τ Kendalla zmiennych losowych X_1 i X_2 daje się przedstawić jako

$$\tau(X_1, X_2) = 4 \int_0^1 \int_0^1 C(u, v) dC(u, v) - 1.$$

Miary współzależności Współczynnik Spearmana

Współczynnik ρ Spearmana

Niech X_1 i X_2 będą ciągłymi zmiennymi losowymi o dystrybuantach odpowiednio F_1 i F_2 . Niech ρ oznacza współczynnik korelacji Pearsona. Wówczas współczynnikiem ρ Spearmana nazwiemy

$$\rho_{S}(X_{1}, X_{2}) = \rho(F_{1}(X_{1}), F_{2}(X_{2})).$$

Twierdzenie

Niech X_1 i X_2 będą ciągłymi zmiennymi losowymi o współzależnościach opisanych kopulą C. Wówczas ρ Spearmana zmiennych losowych X_1 i X_2 daje się przedstawić jako

$$\rho_{S}(X_{1}, X_{2}) = 12 \int_{0}^{1} \int_{0}^{1} C(u, v) du dv - 3$$

Miary współzależności Współczynniki zależności asymptotycznych

Współczynnik zależności w dolnym ogonie

Niech X_1 i X_2 będą ciągłymi zmiennymi losowymi o dystrybuantach odpowiednio F_1 i F_2 . Wówczas współczynnikiem zależności w dolnym ogonie nazwiemy granicę

$$\lambda_{L} = \lim_{\alpha \to 0+} P\left(X_{2} \leqslant F_{2}^{-1}\left(\alpha\right) \mid X_{1} \leqslant F_{1}^{-1}\left(\alpha\right)\right)$$

o ile granica ta istnieje.

Miary współzależności Współczynniki zależności asymptotycznych

Współczynnik zależności w górnym ogonie

Niech X_1 i X_2 będą ciągłymi zmiennymi losowymi o dystrybuantach odpowiednio F_1 i F_2 . Wówczas współczynnikiem zależności w górnym ogonie nazwiemy granicę

$$\lambda_U = \lim_{\alpha \to 1^-} P\left(X_2 > F_2^{-1}(\alpha) \mid X_1 > F_1^{-1}(\alpha)\right)$$

o ile granica ta istnieje.

Miary współzależności Współczynniki zależności asymptotycznych

Twierdzenie

Niech X_1 i X_2 będą ciągłymi zmiennymi losowymi o współzależnościach opisanych kopulą C. Wówczas współczynniki zależności asymptotycznych zmiennych losowych X_1 i X_2 dają się przedstawić jako

$$\lambda_{L}(X_{1}, X_{2}) = \lim_{\alpha \to 0+} \frac{C(\alpha, \alpha)}{\alpha},$$

$$\lambda_{U}(X_{1}, X_{2}) = 2 - \lim_{\alpha \to 1-} \frac{1 - C(\alpha, \alpha)}{1 - \alpha}.$$

Estymacja Metoda IFM

Zastosowanie twierdzenia Sklara pozwala przedstawić funkcję log-wiarogodności wielowymiarowego szeregu czasowego jako:

$$\ell\left(oldsymbol{ heta},oldsymbol{lpha}_{1},oldsymbol{lpha}_{2}
ight) = \sum_{i=1}^{2}\ell_{i}\left(oldsymbol{lpha}_{i}
ight) + \ell_{\mathcal{C}}\left(oldsymbol{ heta},oldsymbol{lpha}_{1},oldsymbol{lpha}_{2}
ight),$$

gdzie

- ℓ_i funkcja log-wiarogodności i-tego jednowymiarowego szeregu czasowego brzegowego,
- ℓ_C funkcja log-wiarogodności kopuli,
- α_i wektor parametrów i-tego jednowymiarowego szeregu czasowego brzegowego,
- θ wektor parametrów kopuli.

Estymacja Metoda IFM

Przedstawiona postać funkcji $\ell\left(\boldsymbol{\theta},\alpha_{1},\alpha_{2}\right)$ sugeruje możliwość rozdzielenia procesu estymacji parametrów modelu metodą największej wiarogodności na dwa etapy:

- estymację parametrów jednowymiarowych szeregów czasowych α_1 i α_2 na podstawie odpowiednio $\ell_1(\alpha_1)$ i $\ell_2(\alpha_2)$,
- ② estymację parametrów kopuli θ na podstawie $\ell_C(\theta, \hat{\alpha}_1, \hat{\alpha}_2)$, gdzie $\hat{\alpha}_1$ i $\hat{\alpha}_2$ to estymatory parametrów odpowiednio α_1 i α_2 uzyskane w pierwszym kroku estymacji.

Powyższa metoda estymacji nosi nozwę metody IFM.

Estymacja Metoda IFM

Uwaga Zastało udowodnione, że metoda IFM posiada satysfakcjonujące właściwości statystyczne.

Uwaga. Metoda IFM pozwala stanowczo uprościć proces estymacji parametrów złożonego modelu wielowymiarowego poprzez rozłożenie go na dwa o wiele prostsze podproblemy, estymacji parametrów jednowymiarowych modeli brzegowych oraz estymacji parametrów opisujących współzależności tych modeli.

Przykład Kopule eliptyczne

Kopula normalna

Kopulą normalną o korelacji liniowej ρ nazwiemy funkcję

$$C_{\rho}^{g}\left(u_{1},u_{2}
ight)=rac{1}{2\pi\sqrt{1-
ho^{2}}}\int_{-\infty}^{z_{u_{1}}}\int_{-\infty}^{z_{u_{2}}}e^{rac{2
ho s_{1}s_{2}-s_{1}^{2}-s_{2}^{2}}{2\left(1-
ho^{2}
ight)}}ds_{1}ds_{2},$$

gdzie

• z_{u_i} — kwantyl u_i standardowego rozkładu normalnego.

Przykład Kopule eliptyczne

Kopula t-Studenta

Kopulą t-Studenta o ν stopniach swobody i korelacji liniowej ρ nazwiemy funkcję

$$C_{\nu,\rho}^{t}\left(u_{1},u_{2}\right) =$$

$$\frac{1}{2\pi\sqrt{1-\rho^2}}\int_{-\infty}^{t_{\nu}^{-1}(u_1)}\int_{-\infty}^{t_{\nu}^{-1}(u_2)}\left(1+\frac{s_1^2+s_2^2-2\rho s_1s_2}{\nu\left(1-\rho^2\right)}\right)^{-\frac{\nu+2}{2}}ds_1ds_2,$$

gdzie

- $t_{\nu}^{-1}(u_i)$ kwantyl u_i rozkładu t-Studenta o ν st. swobody.
- $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$, dla $\alpha > 0$.

Przykład Model Copula-GARCH

Model Copula-GARCH

Niech $r_{1,t}, r_{2,t} \sim \mathsf{GARCH}$. Niech współzależności $r_{1,t}$ i $r_{2,t}$ opisuje kopula C. Modelem Copula-GARCH szeregów czasowych $r_{1,t}$ i $r_{2,t}$ nazwiemy model opisany dystrybuantą wielowymiarową postaci

$$F\left(r_{1,t},r_{2,t}\mid \boldsymbol{\mathcal{R}}_{t-1}\right)=C\left(F_{1}\left(r_{1,t}\mid \boldsymbol{\mathcal{R}}_{t-1}\right),F_{2}\left(r_{2,t}\mid \boldsymbol{\mathcal{R}}_{t-1}\right)\mid \boldsymbol{\mathcal{R}}_{t-1}\right),$$

gdzie

- F_i dystrybuanta $r_{i,t}$ dla i = 1, 2,
- F dystrybuanta łączna $r_{1,t}$ i $r_{2,t}$.

Pytania?

Dziękuję za uwagę!