МО_ Лекція (3) 12.10.2021

Приклад. Знайти оптимальний розв'язок задачі ЛП симплекс-методом.

$$f(x_1, x_2) = 2x_1 + x_2 \rightarrow max$$

$$\begin{cases} 10x_1 - 11x_2 \le 5, \\ 3x_1 + 2x_2 \le 6, \\ x_1 + x_2 \ge 1, \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0.$$

Розв'язання.

Будемо ілюструвати знаходження оптимального розв'язку графічно. Побудуємо область допустимих розв'язків і градієнт цільової функції (рис. 1).

Знайдемо розв'язок задачі лінійного програмування (ЛП) симплексметодом.

Приводимо задачу лінійного програмування (ЛП) до канонічної форми.

$$z(x_1, x_2, x_3, x_4, x_5) = 2x_1 + x_2 \rightarrow max$$

$$\begin{cases} 10x_1 - 11x_2 + x_3 = 5, \\ 3x_1 + 2x_2 + x_4 = 6, \\ x_1 + x_2 - x_5 = 1, \end{cases}$$

$$x_j \ge 0, \ j = \overline{1,5}.$$

Приводимо систему обмежень до канонічного вигляду.

$$\begin{cases} 10x_1 - 11x_2 + x_3 = 5, \\ 3x_1 + 2x_2 + x_4 = 6, \\ -x_1 - x_2 + x_5 = -1, \end{cases}$$

Виразимо базисні змінні x_3, x_4, x_5 через небазисні змінні x_1, x_2 .

$$\begin{cases} x_3 = 5 - (10x_1 - 11x_2), \\ x_4 = 6 - (3x_1 + 2x_2), \\ x_5 = -1 - (-x_1 - x_2). \end{cases}$$

Цільова функція вже записана через небазисні змінні, тому додаткових перетворень виконувати не треба.

Складаємо симплекс таблицю:

	Небаз	исні змінні	
Базисні змінні	$-x_1$	$-x_2$	Вільні члени
x_3	10	-11	5
X_4	3	2	6
X_5	-1	-1	-1
Коефіцієнти цільової функції	-2	-1	0

Так як серед вільних членів β_i , є від'ємні, то немає початкового базисного розв'язку.

Перевіряємо випадок відсутності розв'язку через несумісність системи обмежень. Так як в рядку з від'ємним β_3 , серед коефіцієнтів α_{3j} є від'ємні, то допустима область не порожня.

Для переходу в іншу точку допустимої області D необхідно в системі обмежень (в симплекс-таблиці) поміняти місцями базисну і небазисну змінні.

У рядку з $\beta_3 = -1$ виберемо від'ємний елемент α_{31} .

Перший стовпець буде *розв'язувальним стовицем*. Тим самим ми визначили індекс змінної, яка буде вводитися в базис. Змінна x_1 буде вводитися в базис.

Номер *розв'язувального рядка s* вибираємо з умови:

$$\frac{\beta_s}{\alpha_{sr}} = \min_{\substack{i: \frac{\beta_i}{\alpha_{ir}} \geq 0}} \frac{\beta_i}{\alpha_{ir}}.$$

В даному випадку

$$\min_{i:\frac{\beta_{i}}{\alpha_{i1}} \geq 0} \frac{\beta_{i}}{\alpha_{i1}} = \min_{i:\frac{\beta_{i}}{\alpha_{i1}} \geq 0} \left\{ \frac{5}{10}, \frac{6}{3}, \frac{-1}{-1} \right\} = \frac{5}{10}.$$

Змінна x_3 буде виводитися з базису.

Елемент $\alpha_{11} = 10$, який стоїть на перетині розв'язувального рядка і розв'язувального стовпця буде *розв'язувальним елементом*.

Далі виконуємо крок модифікованих Жорданових виключень. Покажемо покрокове заповнення нової симплекс-таблиці, виконуючи відразу пункт 5.

1) У новій симплекс-таблиці на місце розв'язувального елемента ставимо число 1 і ділимо на розв'язувальний елемент.

	Небазис		
Базисні змінні	$-x_3$	$-x_2$	Вільні члени
x_1	1/10		
x_4			
x_5			
Коефіцієнти цільової функції			

2) Решту елементів розв'язувального рядка переносимо в нову симплекстаблицю без змін і ділимо на розв'язувальний елемент.

	Небази			
Базисні змінні	$-x_3$ $-x_2$		Вільні члени	
x_1	1/10	-11/10	5/10	
X_4				
x_5				
Коефіцієнти цільової функції				

3) Решту елементів розв'язувального стовпця переносимо в нову симплекс-таблицю з протилежним знаком і ділимо на розв'язувальний елемент.

	Небазис	Вільні члени	
Базисні змінні	$-x_3$ $-x_2$		
x_1	1/10	-11/10	5/10
x_4	-3/10		
x_5	1/10		
Коефіцієнти цільової функції	2/10		

4) Решту елементів нової симплекс-таблиці знаходимо за правилом прямокутника (правилом обчислення визначника другого порядку). Причому розв'язувальний елемент *завжов* вважається таким, що стоїть на головній діагоналі.

Покажемо це на прикладі виділеної кольором клітинки.

$$\frac{10 \cdot (-1) - (-1) \cdot 5}{10} = -\frac{5}{10} = -\frac{1}{2}$$

	Небазис		
Базисні змінні	$-x_3$	$-x_2$	Вільні члени
X_1	1/10	-11/10	5/10
X_4	-3/10	53/10	9/2
<i>X</i> ₅	1/10	-21/10	-1/2
Коефіцієнти цільової функції	2/10	-16/5	1

Продовжуємо виконання етапу знаходження початкового базисного розв'язку.

	$-x_3$	$-x_2$	
x_1	$\frac{1}{10}$	$-\frac{11}{10}$	$\frac{1}{2}$
X_4	$-\frac{3}{10}$	$\frac{53}{10}$	$\frac{9}{2}$
x_5	$\frac{1}{10}$	$-\frac{21}{10}$	$-\frac{1}{2}$
Коефіцієнти цільової функції	$\frac{1}{5}$	$-\frac{16}{5}$	1

	$-x_3$	$-x_4$	
x_1	$\frac{2}{53}$	$\frac{11}{53}$	$\frac{76}{53}$
x_2	$-\frac{3}{53}$	<u>10</u> 53	45 53
<i>x</i> ₅	$-\frac{1}{53}$	<u>21</u> 53	<u>68</u> 53
Коефіцієнти цільової функції	<u>1</u> 53	32 53	197 53

Так як всі вільні члени невід'ємні, то отримано начальний базисний

розв'язок
$$x^{(0)} = \left(\frac{76}{53}, \frac{45}{53}, 0, 0, \frac{68}{53}\right), \ z\left(x^{(0)}\right) = \frac{197}{53}.$$

Якщо всі коефіцієнти в рядку коефіцієнтів цільової функції симплекстаблиці невід'ємні, то отримано оптимальний розв'язок задачі. В даному прикладі отриманий початковий базисний розв'язок є оптимальним розв'язком задачі.

Для вихідної задачі ЛП
$$x^* = \left(\frac{76}{53}, \frac{45}{53}\right), \ z\left(x^*\right) = \frac{197}{53}.$$

Метод штучного базису

Зведення системи обмежень задачі лінійного програмування, записаної в канонічній формі, до канонічного вигляду може виявитися досить трудомістким процесом. До того ж права частина перетвореної системи обмежень часто містить від'ємні компоненти. Тобто, немає початкового базисного розв'язку. У сформульованому раніше алгоритмі симплекс-методу за знаходження початкового базисного розв'язку відповідає 4 етап.

Іншим способом знаходження початкового базисного розв'язку ϵ метод штучного базису. Метод штучного базису або знаходить початковий базисний розв'язок, або встановлю ϵ , що вихідна система обмежень ϵ несумісна.

Розглянемо задачу лінійного програмування в канонічної формі:

$$c_{1}x_{1} + \dots + c_{n}x_{n} \to max,$$

$$\begin{cases} a_{11}x_{1} + \dots + a_{1n}x_{n} = b_{1}, \\ a_{21}x_{1} + \dots + a_{2n}x_{n} = b_{2}, \\ \dots \\ a_{m1}x_{1} + \dots + a_{mn}x_{n} = b_{m}, \end{cases}$$

$$x_{j} \geq 0, j = \overline{1, n}.$$

$$(1)$$

$$(2)$$

$$(3)$$

Матриця коефіцієнтів при невідомих системи обмежень (2) не містить одиничної матриці. Отримати одиничну матрицю можна, якщо до кожного рівняння в системі обмежень задачі додати одну змінну $x_{n+i} \ge 0$, $i = \overline{1,m}$. Такі змінні називаються *штучними*.

<u>Зауваження.</u> Не обов'язково кількість введених штучних змінних повинна дорівнювати m. Їх необхідно вводити тільки в ті рівняння системи обмежень, які не розв'язані відносно базисних змінних.

Припустимо, що система обмежень (2) не містить жодного одиничного вектору, тоді штучну змінну вводимо в кожне рівняння:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n + x_{n+1} = b_1, \\ a_{21}x_1 + \dots + a_{2n}x_n + x_{n+2} = b_2, \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n + x_{n+m} = b_m, \\ x_j \ge 0, j = \overline{1, n+m}. \end{cases}$$

$$(4)$$

В результаті додавання змінних в рівняння системи обмежень (2) область допустимих розв'язків задачі розширилася. Задачу з системою обмежень (4)-(5) називають *розширеною* або *М-задачею*. Розв'язок розширеної задачі буде збігатися з розв'язком початкової задачі тільки за умови, що всі введені штучні змінні в оптимальному плані задачі вийшли із базису, тобто дорівнюють нулю.

Відповідно до алгоритму симплекс-методу в базис вводяться змінні, які покращують (збільшують) значення цільової функції. Тому для того, щоб процедура симплексних перетворень виключала з базису штучні змінні, ці змінні потрібно ввести в цільову функцію з від'ємними коефіцієнтами. Цільова функція М-задачі матиме вигляд:

$$c_1 x_1 + \dots + c_n x_n - M x_{n+1} - M x_{n+2} - \dots - M x_{n+m} \to max,$$
 (6)

Величина M вважається досить великим числом. Тоді, яке б мале значення не приймала штучна змінна x_{n+i} , значення цільової функції буде від'ємним. Тому процедура симплекс-методу відразу виключає відповідні штучні змінні з базису і забезпечує визначення базисного розв'язку, в якому все штучні змінні $x_{n+i} = 0$, $i = \overline{1,m}$.

Якщо в оптимальному плані розширеної задачі існує хоча б одне значення $x_{n+i} > 0$, це означає, що вихідна задача не має розв'язку (тобто система обмежень несумісна).

Для розв'язання розширеної задачі за допомогою симплекс-таблиць зручно використовувати таблиці, рядок коефіцієнтів цільової функції яких ділиться на два рядки. Тоді в (m+2)-ому рядку містяться коефіцієнти з M, а в (m+1)-ому — ті, які не містять M. Вектор, який підлягає включенню в базис, визначають за (m+2)-им рядком. Ітераційний процес за (m+2)-им рядком проводять до повного виключення всіх штучних змінних з базису, далі процес визначення оптимального плану продовжують за (m+1)-им рядком.

Взаємозв'язок між розв'язками вихідної і розширеної задач лінійного програмування не ϵ очевидним і визначається такою теоремою.

Теорема. Якщо в оптимальному розв'язку $\tilde{x}^* = (x_1^*, x_2^*, ..., x_n^*, 0, ..., 0)$ розширеної задачі штучні змінні $x_{n+i} = 0, i = \overline{1,m}$, то допустимий розв'язок $x^* = (x_1^*, x_2^*, ..., x_n^*)$ є оптимальним розв'язком вихідної задачі.

Доведення. Зауважимо, що у оптимальних розв'язків розширеної задачі $\tilde{x}^* = \left(x_1^*, x_2^*, \dots, x_n^*, 0, \dots, 0\right)$ і вихідної задачі $x^* = \left(x_1^*, x_2^*, \dots, x_n^*\right)$ значення цільових функцій збігаються.

$$f(x^*) = c_1 x_1^* + \dots + c_n x_n^* = c_1 x_1^* + \dots + c_n x_n^* - M \cdot 0 - M \cdot 0 - \dots - M \cdot 0 = f(\tilde{x}^*).$$

Доведемо, що план x^* – оптимальний розв'язок вихідної задачі.

Від супротивного. Допустимо, що x^* не є оптимальним розв'язком. Тоді існує такий оптимальний розв'язок $y^* = \left(y_1^*, y_2^*, ..., y_n^*\right)$, для якого $f\left(y^*\right) > f\left(x^*\right)$. Звідси для вектору $\tilde{y}^* = \left(\tilde{y}_1^*, \tilde{y}_2^*, ..., \tilde{y}_n^*, 0, ..., 0\right)$, що є розв'язком розширеної задачі, маємо:

$$f(\tilde{y}^*) = f(y^*) > f(x^*) = f(\tilde{x}^*).$$

Тобто

$$f(\tilde{y}^*) > f(\tilde{x}^*).$$

Отримали, що розв'язок \tilde{x}^* розширеної задачі не ϵ оптимальним, що суперечить умові теореми, а тому зроблене припущення про неоптимальність розв'язку x^* ϵ невірним.

Перевагами методу штучного базису ϵ простота, відсутність необхідності виконувати перетворення системи обмежень до канонічного вигляду, недоліком - збільшення розмірності задачі.

Приклад. Знайти оптимальний розв'язок задачі ЛП симплекс-методом з використанням методу штучного базису.

$$f = 2x_1 - x_2 + x_3 - x_4 - 3x_5 \rightarrow max,$$

$$\begin{cases} x_1 + 2x_2 + x_3 + 2x_4 + x_5 = 4, \\ 2x_1 + x_2 - 2x_3 + x_4 + x_5 = 6, \\ 2x_1 - x_2 + 2x_3 + x_4 + 2x_5 = 7, \end{cases}$$

$$x_j \ge 0, \ j = \overline{1,5}.$$

Система обмежень задачі не містить одиничної матриці і не містить жодного одиничного вектора, тому штучну змінну вводимо в кожне рівняння. Також штучні змінні вводимо в цільову функцію з довільно великим від'ємним числом M.

$$\left(\begin{array}{cccccc}
1 & 2 & 1 & 2 & 1 \\
2 & 1 & -2 & 1 & 1 \\
2 & -1 & 2 & 1 & 2
\end{array}\right).$$

Отримуємо таку задачу ЛП:

$$f = 2x_1 - x_2 + x_3 - x_4 - 3x_5 - M(x_6 + x_7 + x_8) \rightarrow max$$

$$\begin{cases} x_1 + 2x_2 + x_3 + 2x_4 + x_5 + x_6 = 4, \\ 2x_1 + x_2 - 2x_3 + x_4 + x_5 + x_7 = 6, \\ 2x_1 - x_2 + 2x_3 + x_4 + 2x_5 + x_8 = 7, \\ x_i \ge 0, \ j = \overline{1,8}. \end{cases}$$

Штучні змінні x_6, x_7, x_8 будуть базисними, а небазисними змінними будуть $x_1, ..., x_5$. Виразимо базисні змінні через небазисних:

$$\begin{cases} x_6 = 4 - (x_1 + 2x_2 + x_3 + 2x_4 + x_5), \\ x_7 = 6 - (2x_1 + x_2 - 2x_3 + x_4 + x_5), \\ x_8 = 7 - (2x_1 - x_2 + 2x_3 + x_4 + 2x_5). \end{cases}$$

Підставимо вирази для x_6, x_7, x_8 в цільову функцію.

$$f = 2x_1 - x_2 + x_3 - x_4 - 3x_5 - M(4 - x_1 - 2x_2 - x_3 - 2x_4 - x_5 + 6 - 2x_1 - x_2 + 2x_3 - x_4 - x_5 + 7 - 2x_1 + x_2 - 2x_3 - x_4 - 2x_5) = 2x_1 - x_2 + x_3 - x_4 - 3x_5 - M(17 - 5x_1 - 2x_2 - x_3 - 4x_4 - 4x_5).$$

Складаємо симплекс-таблицю. Рядок коефіцієнтів цільової функції розділимо на два рядки.

	$-x_1$	$-x_2$	$-x_3$	$-x_4$	$-x_{5}$	
x_6	1	2	1	2	1	4
x_7	2	1	-2	1	1	6
<i>x</i> ₈	2	-1	2	1	2	7
	-2	1	-1	1	3	0
M	-5	-2	-1	-4	-4	-17

	$-x_7$	$-x_2$	$-x_3$	$-x_4$	$-x_5$	
x_6	-1/2	3/2	2	3/2	1/2	1
x_1	1/2	1/2	-1	1/2	1/2	3
x_8	-1	-2	4	0	1	1
	1	2	-3	2	4	6
M	5/2	1/2	-6	-3/2	-3/2	-2

	$-x_7$	$-x_2$	$-x_8$	$-x_4$	$-x_5$	
x_6	0	5/2	-1/2	3/2	0	1/2
x_1	1/4	0	1/4	1/2	3/4	13/4
x_3	-1/4	-1/2	1/4	0	1/4	1/4
	1/4	1/2	3/4	2	19/4	27/4
M	1	-5/2	3/2	-3/2	0	-1/2

		$-x_7$	$-x_6$	$-x_8$	$-x_4$	$-x_5$	
	X_2	0	2/5	-1/5	3/5	0	1/5
	x_1	1/4	0	1/4	1/2	3/4	13/4
	x_3	-1/4	1/5	3/20	3/10	1/4	7/20
		1/4	-1/5	17/20	17/10	19/4	133/20
Ĩ	M	1	1	1	0	0	0

Всі штучні змінні вийшли з базису, тому відповідні стовпці можна видалити з симплекс-таблиці.

	$-x_4$	$-x_{5}$	
x_2	3/5	0	1/5
x_1	1/2	3/4	13/4
x_3	3/10	1/4	7/20
	17/10	19/4	133/20

Якщо всі коефіцієнти в рядку коефіцієнтів цільової функції симплекстаблиці невід'ємні, то отримано оптимальний розв'язок задачі.

Оптимальний розв'язок
$$x^* = \left(\frac{13}{4}, \frac{1}{5}, \frac{7}{20}, 0, 0\right), f\left(x^*\right) = \frac{133}{20}.$$

Обтрунтування симплекс-методу розв'язання задачі ЛП Критерій оптимальності

Нехай розв'язок $x^{(0)} = (\beta_1, ..., \beta_m, 0, ..., 0)$ ϵ базисним розв'язком. Щоб обґрунтувати симплекс-метод покажемо, що:

- 1) новий базисний розв'язок $x^{(1)}$, який отримано після перетворення симплекс-таблиці з розв'язувальним елементом α_{sr} , теж буде базисним розв'язком,
- 2) значення цільової функції в точці $x^{(1)}$ не менше за значення цільової функції в точці $x^{(0)}$: $(c, x^{(1)}) \ge (c, x^{(0)})$,
- 3) обгрунтувати випадок необмеженості цільової функції на допустимій множині,
- 4) якщо всі коефіцієнти в рядку цільової функції невід'ємні, то отримано оптимальний розв'язок задачі.

Виконаємо обгрунтування симплекс-методу.

1) Нехай $x^{(0)} = (\beta_1, ..., \beta_m, 0, ..., 0)$ — базисний розв'язок. Точка $x^{(1)}$, яку обчислено за симплекс-методом, буде мати такі координати:

$$x^{(1)} = \left(\beta'_1, \dots, \beta'_{s-1}, 0_{s-e \text{ mecmo}}, \beta'_{s+1}, \dots, \beta'_m, 0, \dots, 0, \beta'_s, 0, \dots, 0\right).$$

Щоб $x^{(1)}$ була базисною потрібно показати, що всі $\beta_i' \ge 0$.

- 1. $\beta_s' = \frac{\beta_s}{\alpha_{sr}} \ge 0$ (з правила вибору розв'язувального елемента),
- 2. Решта коефіцієнтів

$$\beta_{i}^{'} = \frac{\beta_{i} \cdot \alpha_{sr} - \beta_{s} \cdot \alpha_{ir}}{\alpha_{sr}} = \beta_{i} - \frac{\beta_{s}}{\alpha_{sr}} \alpha_{ir}.$$

Тоді:

- a) якщо $\alpha_{ir} \leq 0$, то $\beta_{i}^{'} \geq 0$;
- б) якщо $\alpha_{_{ir}}>0$, то розділивши на $\alpha_{_{ir}}$, отримаємо

$$\frac{\beta_i}{\alpha_{ir}} - \frac{\beta_s}{\alpha_{sr}} \ge 0 \text{ (T.K. } \frac{\beta_s}{\alpha_{sr}} = \min_{i:\alpha_{ir}>0} \frac{\beta_i}{\alpha_{ir}}).$$

 $\frac{\beta_i}{\alpha_{ir}}-\frac{\beta_s}{\alpha_{sr}}\geq 0 \ (\text{т.к.} \ \frac{\beta_s}{\alpha_{sr}}=\min_{i:\alpha_{ir}>0}\frac{\beta_i}{\alpha_{ir}}).$ Отже, всі $\beta_j^{'}\geq 0$, $j=1,\ldots,m$. Точка $x^{(1)}$ є базисним розв'язком.