Материалы к семинару по уравнениям в частных производных -14.04.2020

Свойства гармонических функций

Задачник под ред. Шамаева - параграф 5.1

Основные свойства гармонических функций, необходимые для решения задач, перечислены в начале параграфа 5.1.

Некоторые комментарии:

• 1. В определении гармонической функции важно, что $u \in C^2(\Omega)$. Очень часто студенты дают определение гармонической функции только на основании условия $\Delta u = 0$. Между тем существуют примеры, правда, довольно хитрые, того, что $\Delta u = 0$, а u - негладкая.

Однако, если потребовать, чтобы u была решением уравнения $\Delta u=0$ в классическом смысле, то есть с соблюдением нужной гладкости, то u оказывается даже аналитической (а не только бесконечно гладкой). Отсюда вытекает, например, что если u – гармоническая в области Ω и тождественно равна нулю на некоторой подобласти $\Omega_1 \in \Omega$, то она равна нулю и во всей Ω . Действительно, если мы возьмем точку x на границе Ω_1 и рассмотрим $U_{\epsilon}(x)$, то u в этой окрестности представлена сходящимся степенным рядом, и ряд может сходиться только к нулю во всей окрестности $U_{\epsilon}(x)$. Так мы можем дотянуться цепочкой пересекающихся окрестностей до любой точки в Ω . Это рассуждение, как в ТФКП, что не странно, поскольку действительная и мнимая часть аналитической функции комплексного переменного являются гармоническими функциями.

• 2. Теорем о среднем две:

- а) о поверхностном среднем, которая говорит о том, что значение гармонической функции в центре n-мерной сферы может быть вычислено как среднее значение по этой сфере, берется поверхностный интеграл.
- б) о пространственном среднем, следствие первой теоремы. Теперь речь идет о значении функции в центре шара, интеграл берется по шару.

Верна и обратная теорема: если функция u непрерывна в области Ω и для нее в каждой точке Ω справедлива теорема о среднем, то u – гармоническая в Ω .

 3. Геометрическое представление о поведении гармонической функции дают принцип максимума (о том, что строгий максимум и минимум гармонической функции в области может достигаться только на границе) и лемма о нормальной производной. Полезно представить себе график простейшей гармонической функции u=xy, чтобы понять, как она ведет себя на границе. Кроме того, мы знаем из прошлого представление любой гармонической функция в \mathbb{R}^2 в полярных координатах.

- 4. Неравенство Харнака справедливо только для неотрицательной функции (студенты любят об этом забывать).
- 5. Теорема Лиувилля есть простое следствие из неравенства Харнака, получается в пределе $R \to \infty$. Для того, чтобы утверждение теоремы Лиувилля было справедливо, достаточно ограниченности только сверху (или только снизу).
- 6. Теорема о потоке нам хорошо известна из прошлого семестра, с ее помощью мы определяли условия разрешимости задачи Неймана.
- 7. Полезно помнить, что производная любого порядка он гармонической функции также является гармонической функцией, а также линейная комбинация гармонических функций гармоническая, это обыгрывается во многих задачах.

В разделе 5.1 много задач с решениями, посмотрите их, я думаю, там все будет понятно. Поэтому обсуждать буду оставшиеся задачи, в которых есть что-то нетривиальное.

5.2. Студенты любят решать эту задачу так: $u \in L_2(\mathbb{R}^n)$, значит $|u| \to 0$, при $|x| \to \infty$, значит u ограничена и постоянна по теореме Лиувилля, так как ноль на бесконечности, то $u \equiv 0$.

Ответ получается правильный, но решение неправильное. Дело в том, что для того, чтобы $|u|\to 0$ при $|x|\to \infty$, недостаточно требования $u\in L_2(\mathbb{R}^n)$. Нужно еще требовать $\frac{\partial^k u}{\partial x_i^k}\in L_2(\mathbb{R}^n,\,i=1,...,n,\,k>\frac{n}{2}.$ А без этого функция может быть даже неограниченной.

Правильное решение этой задачи основывается на теореме о среднем. Пусть x_0 – любая точка $\mathbb{R}^n.$ Тогда

$$|u(x_0)|^2 = \left(\frac{1}{|B_R^n(x_0)|} \int_{B_R^n(x_0)} 1 \cdot u(x) dx\right)^2 \le$$

[неравенство Гельдера]

$$\frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|^2} |B_R^n(x_0)| \|u(x)\|_{L_2(B_R^n(x_0))}^2 = \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|^2} |B_R^n(x_0)| \|u(x)\|_{L_2(B_R^n(x_0))}^2 = \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|^2} |B_R^n(x_0)| \|u(x)\|_{L_2(B_R^n(x_0))}^2 = \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|^2} |B_R^n(x_0)| \|u(x)\|_{L_2(B_R^n(x_0))}^2 = \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|^2} |B_R^n(x_0)| \|u(x)\|_{L_2(B_R^n(x_0))}^2 = \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|^2} |B_R^n(x_0)| \|u(x)\|_{L_2(B_R^n(x_0))}^2 = \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|^2} |B_R^n(x_0)| \|u(x)\|_{L_2(B_R^n(x_0))}^2 = \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|^2} |B_R^n(x_0)|^2 + \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|^2} |B_R^n(x_0)|^2 + \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx = \frac{1}{|B_R^n(x_0)|^2} |B_R^n(x_0)|^2 + \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} 1 \, dx \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|^2} \int\limits_{B_R^n(x_0)} u^2(x) \, dx = \frac{1}{|B_R^n(x_0)|$$

$$|B_R^n(x_0)|^{-1} ||u(x)||_{L_2(B_R^n(x_0))}^2 \le \operatorname{const} R^{-n} ||u(x)||_{L_2(\mathbb{R}^n)}^2 \to 0, \quad R \to \infty.$$

При помощи этого же приема решается 5.19. Здесь нужно записать

$$|u(x_0)|^2 = \left(\frac{1}{|B_R^3(x_0)|} \int_{B_R^n(x_0)} (1+|x|)^{\frac{3}{2}} \cdot \frac{u(x)}{(1+|x|)^{\frac{3}{2}}} dx\right)^2$$

и действовать, как выше.

В задаче **5.10** надо предварительно привести уравнение к каноническому виду. Ответ на пункт а) – нет, так как противоречие с тем, что в точке максимума вторые производные неположительны, на пункт б) – да, пример $\frac{x_1^2 + x_2^2}{4}$.

Задача **5.10** – на применение неравенства Харнака. Обычно подразумевается противоречие с этим неравенством. Здесь $R=1, x=(0,0,\frac{1}{2}), |x|=\frac{1}{2}.$

Задача **5.24** имеет очень элегантное решение. А именно, рассмотрим пространство большей размерности, \mathbb{R}^4 , и рассмотрим в нем функцию $w=u(x_1,x_2,x_3)\sin x_4$. Легко видеть, что $\Delta_4 w=\Delta_3 u\sin x_4-u\sin x_4=0$, то есть w - гармоническая. Так как $\sin x_4$ и u ограничены, то w ограничена, а значит, согласно теореме Лиувилля, постоянна. Но тогда $\Delta_3 u=0=u$.

Задача 5.21 решается тем же приемом.

Задача **5.15** основана на том, что гармоническую функцию можно продолжить из полупространства $x_3 > 0$ в $x_3 < 0$ нечетным образом:

$$u(x_1, x_2, x_3) = -u(x_1, x_2, -x_3).$$

Тогда получим непрерывную в \mathbb{R}^3 функцию, гармоническую в $x_3 < 0$ ($\Delta u = 0$), а на $x_3 = 0$ она гармоническая в силу обратной теоремы о среднем.

Задача **5.26** основана на том же приеме: продолжаем нечетным образом в нижнюю полуплоскость и получаем, что функция постоянна во всем \mathbb{R}^2 по теореме Лиувилля. Поскольку при y=0 функция равна нулю, то постоянная – ноль.

Задачу **5.25** решали в прошлом семестре, вспоминайте. Она на метод Φ урье.

Задачи для решения.

Шамаев: 5.1, 5.5, 5.14 (не разбирали, но задачи легкие), 5.3, 5.4, 5.7, 5.8, 5.11 (у этих задач есть решения, их необходимо разобрать), 5.10, 5.19, 5.20, 5.21 (доведите решение до конца).

Вариации на тему 5.19:

- а) как нужно изменить условие, чтобы единственной гармонической функцией, ему удовлетворяющей, была $u\equiv 0$?
 - б) модифицировать задачу к пространству \mathbb{R}^n .