Matlab/Simulink для телекоммуникационных задач

Лекторы:

Янситов Константин Константинович

Общая структура систем передачи информации

Система передачи информации

- Задача, решаемая системой передачи, состоит в том, чтобы передать сообщение *m* от источника к получателю.
- Канал часть системы передачи, природа и характеристики которой заданы, а их изменение нежелательно, затруднено или невозможно.
- Сообщение источника может быть представлено в такой форме, в которой невозможна его эффективная передача по каналу. Поэтому в систему обычно включаются устройства передачи и приема, которые выполняют преобразование сообщения m в сигнал s и преобразование принятого сигнала r в принятое сообщение \widehat{m} .

Общая структура систем передачи информации

Ограниченность спектрального ресурса

Общая структура систем передачи информации Модуляция

• Процесс формирования сигнала по сообщению называется *модуляцией*. В процессе модуляции выполняется изменение параметров сигнала в соответствии с сообщением, подлежащим передаче.

$$s(t) = A\cos(2\pi f t + \varphi)$$
$$[s(t) = A \Psi(f, t, \phi)]$$

A — амплитуда несущего сигнала

f — частота колебания

arphi – начальная фаза

Амплитудная модуляция. АМ

$$s(t) = A(t)\cos(2\pi f t + \varphi)$$

Амплитудная модуляция. АМ. Спектр

Форма сигнала во временной области

Форма сигнала в частотной области

Информационное колебание

> Несущее колебание

> Итоговое колебание

Частотная модуляция. ЧМ(FM)

$$s(t) = A\cos(2\pi f(t)t + \varphi)$$

Сигнал

Частотая модуляция

Частотная модуляция. ЧМ(FM)

Частотная модуляция. ЧМ(FM)

Фазовая модуляция. ФМ

$$s(t) = A\cos(2\pi f t + \varphi(t))$$

Сравнение АМ/ЧМ/ФМ

• Если выбрана фазовая модуляция и модулируемый сигнал непрерывный и принимает большие значения, то ФМ в пределе переходит в частотную модуляцию. Но это относится только к непрерывным изменениям функции фазы.

Сравнение АМ/ЧМ/ФМ

Аналоговый сигнал и цифровой сигнал

- Различия между аналоговым и цифровым сигналами:
- Аналоговый непрерывен по времени и по уровню, в то время как цифровой дискретен по времени и по уровню (квантован). То есть характеристики колебаний изменяются на каждом отсчете (дискрете, выборке). Цифровой сигнал состоит из символов. Символом называется сигнал на интервале времени между двумя последовательными отсчетами.

Аналоговый сигнал и цифровой сигнал

Амплитудная модуляция

Квадратурно-амплитудная модуляция

Фазовая модуляция

Частотная модуляция

Дискретная амплитудная модуляция

Сигналы дискретной амплитудой модуляции (АМ) имеют вид:

$$s_i(t) = A_i \varphi(t),$$

где $\varphi(t)$ – некоторая нормированная функция, заданная на интервале [0,T] и определяющая форму сигнала i=0,1,2,..., q-1

Набор амплитуд сигнала A_i можно определить как:

$$A_i = \sqrt{E} \left(1 - \frac{2i}{q - 1} \right)$$

Тогда $A_0 = \sqrt{E}$, $A_{q-1} = -\sqrt{E}$ и все промежуточные значения амплитуд располагаются равномерно в интервале $[-\sqrt{E}; \sqrt{E}]$

Дискретная частотная модуляция

Сигналы частотной модуляции (ЧМ) (frequency shift keying, FSK) имеют вид:

$$s_i(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_i t), 0 < t < T,$$

где E — энергия сигнала

T — период следования сигналов (период символа)

 $f_i = rac{l_i}{T}$ – центральная частота i-ого сигнала

 l_i - целое число.

Для сохранения ортогональности ЧМ-сигнала, величины l_i должны быть различны при различных i

Дискретная частотная модуляция

Пусть базисные функции:

$$\varphi_i(t) = \sqrt{\frac{2}{T}}\cos(2\pi f_i t)$$

Тогда, докажем, что функции будут ортогональны друг другу:

$$(\varphi_i, \varphi_k) = \sin \frac{(2\pi(l_i + l_k))}{2\pi(l_i + l_k)} + \sin \frac{(2\pi(l_i - l_k))}{2\pi(l_i - l_k)} = \begin{cases} 1, i = k \\ 0, i \neq k \end{cases}$$

Количество базис-функций совпадает с количеством сигналов и можно записать, что $s_i(t) = \sqrt{E} \varphi_i(t)$, а сигнальные точки тогда будут иметь вид:

$$s_0 = (\sqrt{E}, 0, 0, \dots, 0)$$

$$s_1 = (0, \sqrt{E}, 0, \dots, 0)$$

$$\dots$$

$$s_{q-1} = (0, 0, 0, \dots, \sqrt{E})$$

Дискретная фазовая модуляция

Сигнал фазовой модуляции (ФМ, phase shift keying, PSK) имеет следующий вид:

$$s_i(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_0 t - \theta_i), 0 < t < T$$

где E — энергия сигнала

T — период следования сигналов (период символа)

$$f_0 = \frac{1}{T}$$
 – несущая частота сигнала

$$s_{i}(t) = \sqrt{E}\cos(\theta_{i})\sqrt{\frac{2}{T}}\cos(2\pi f_{0}t) + \sqrt{E}\sin(\theta_{i})\sqrt{\frac{2}{T}}\sin(2\pi f_{0}t) = s_{i_{1}}\varphi_{1}(t) + s_{i_{2}}\varphi_{2}(t)$$

где $s_{i_1} = \sqrt{E}\cos(\theta_i)$ и $s_{i_2} = \sqrt{E}\sin(\theta_i)$ - коэффициенты разложения по ортонормированным функциям

$$\varphi_1(t) = \sqrt{\frac{2}{T}}\cos(2\pi f_0 t)$$

$$\varphi_2(t) = \sqrt{\frac{2}{T}}\sin(2\pi f_0 t)$$

Синфазный и квадратурный сигнал. I/Q-сигнал

- I/Q сигнал это аббревиатура от «in-phase» (синфазный) и «quadrature» (квадратурный).
- Комплексный сигнал можно представить на квадратурную и синфазную составляющую:

$$s(t) = I(t)\cos(2\pi f t + \varphi) + Q(t)\cos\left(2\pi f t + \varphi + \frac{\pi}{2}\right) =$$

$$= I(t)\cos(2\pi f t + \varphi) - Q(t)\sin(2\pi f t + \varphi)$$
"In-phase"
Quadrature
Q-component
Q-component

Синфазный

Квадратурный

Синфазный и квадратурный сигнал. I/Q-сигнал

Квадратурный модулятор

Квадратурный демодулятор

$$s(t) = I(t)\cos(\omega_0 t + \varphi_0) + Q(t)\sin(\omega_0 t + \varphi_0)$$

Необходимые тригонометрический формулы:

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$
$$\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$
$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

Квадратурный демодулятор

$$s(t)\cos(\omega_{0}t + \varphi_{0}) = \\ [I(t)\cos(\omega_{0}t + \varphi_{0}) + Q(t)\sin(\omega_{0}t + \varphi_{0})]\cos(\omega_{0}t + \varphi_{0}) = \\ = I(t)\cos(\omega_{0}t + \varphi_{0})\cos(\omega_{0}t + \varphi_{0}) + Q(t)\sin(\omega_{0}t + \varphi_{0})\cos(\omega_{0}t + \varphi_{0}) = \\ = I(t)\frac{1}{2}[\cos(\omega_{0}t + \varphi_{0} - (\omega_{0}t + \varphi_{0})) + \cos(\omega_{0}t + \varphi_{0} + (\omega_{0}t + \varphi_{0}))] + \\ + Q(t)[\sin(\omega_{0}t + \varphi_{0} - (\omega_{0}t + \varphi_{0})) + \sin(\omega_{0}t + \varphi_{0} + (\omega_{0}t + \varphi_{0}))] = \\ = I(t)\frac{1}{2}[\cos(0) + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[\sin(0) + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = LPF(Low\ Pass\ Filter) = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 +$$

Квадратурная амплитудная модуляция

Сигнал квадратурной амплитудной модуляции (KAM, quadrature amplitude modulation, QAM) можно описать как:

$$s_i(t) = s_{i_1} \varphi_1(t) + s_{i_2} \varphi_2(t),$$

где $\varphi_1(t)$ и $\varphi_2(t)$ – ортонормированные функции, заданные на интервале [0,T] и определяющие форму сигнала, $i=0,1,2,\ldots$, q -1

 s_{i_1} и s_{i_2} — амплитудные множители, которые принимают дискретные значения, равномерно расположенные на некотором конечном интервале, и таким образом QAM-сигнал представляет собой сумму двух ортонормированных AM сигналов

$$S_{i_1} = A \left(1 - \frac{2i_1}{\sqrt{q} - 1} \right)$$

$$S_{i_2} = A \left(1 - \frac{2i_2}{\sqrt{q} - 1} \right)$$

Сигнальные созвездия

Двоичная фазовая манипуляция BPSK — binary phase-shift keying

Координаты			
Последовательность бит	Координаты в IQ		
0	(-1; 0)		
1	(1;0)		

Сигнальные созвездия

Квадратурная фазовая манипуляция QPSK - quadrature phase-shift keying

Координаты				
Последовательность бит	Координаты в IQ			
00	(-1; -1)			
01	(-1; 1)			
10	(1; -1)			
11	(1; 1)			

Сигнальные созвездия

Квадратурная модуляция 16 QAM - Quadrature Amplitude Modulation

Координаты		
Последовательность бит	Координаты в IQ	
0000	(-3; 3)	
0001	(-3; 1)	
0010	(-3; -3)	
0011	(-3; -1)	
0100	(-1; 3)	
0101	(-1; 1)	
0110	(-1; -3)	
0111	(-1; -1)	
1000	(3; 3)	
1001	(3; 1)	
1010	(3; -3)	
1011	(3; -1)	
1100	(1; 3)	
1101	(1; 1)	
1110	(1;-3)	
1111	(1;-1)	

Сигнальные созвездия

Сигнальное множество КАМ a) q = 4, б) q = 16, в) q = 64

Сигнальное множество КАМ a) q = 8, б) q = 32

Сигнальные созвездия

Название созвездия	Изображение	N _{Constelleation}	N bit per point
BPSK	0 1	2	1
QPSK	01 11 11 00 10 10	4	2
16-QAM	0000 0100 1100 1000 0 0 0 0 0 0 0 0 0 0	16	

 $N_{\text{bit per point}} = \log_2 N_{Constelleation}$

N_{bit per point} — количество бит, с помощью которых можно закодировать IQ-точку в выбранном созвездии, или же количество бит, которые можно передать одной точкой созвездия

 $N_{Constelleation}$ — количество всех точек созвездия

Сигнальные созвездия

 a_i - точки созвездия

N - число точек созвездия

P - мощность

$$P = \frac{1}{N} \sum_{i=1}^{N} a_i \cdot conj(a_i) = 1$$
$$a_i = \frac{z_i}{n}$$

n — нормировка

$$n = \sqrt{\frac{\sum_{i=1}^{N} z_i \cdot conj(z_i)}{N}}$$

Сигнальные созвездия и помехи Отображение Грея

Демодулятор с жёстким входом и выходом. Вариант 1

$$\overrightarrow{t_1} = \overrightarrow{r} - \overrightarrow{c_1}$$

$$\overrightarrow{t_2} = \overrightarrow{r} - \overrightarrow{c_2}$$

$$\overrightarrow{t_3} = \overrightarrow{r} - \overrightarrow{c_3}$$

$$\overrightarrow{t_4} = \overrightarrow{r} - \overrightarrow{c_4}$$

$$\overrightarrow{t_1} = \overrightarrow{r} - \overrightarrow{c_1}$$

Отношение сигнал-шум SNR (signal-to-noise ratio)

$$SNR = \frac{P_{signal}}{P_{noise}} = \left(\frac{A_{signal}}{A_{noise}}\right)^2$$

$$SNR$$
 (дБ) = $10 \log_{10} \left(\frac{P_{signal}}{P_{noise}} \right) = 20 \log_{10} \left(\frac{A_{signal}}{A_{noise}} \right)$

- где, P средняя мощность сигнала,
- А средняя амплитуда сигнала.

Энергия на передачу одного бита в канале

$$P_{signal} = \frac{kE_b}{T} = RE_b$$

где k – количество бит на символ,

T — длительность символа (c),

R — скорость передачи (бит/с),

 E_b – энергия на передачу одного бита.

Спектральная плотность мощности шума

$$P_{noise} = BN_o$$

Где B — полоса сигнала (Гц),

 N_0 — спектральная плотность мощности шума (Вт/с)

Центральная предельная теорема

Если X_i - независимые случайные величины с конечными

$$\sigma^2$$
 и μ , то $\frac{\sum_{i=1}^n X_i - n\mu}{\sigma\sqrt{n}} o \mathcal{N}(0,1)$ при $n o \infty$

Нормальное распределение

Плотность вероятности:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Нормальное распределение

n(t) — это случайная функция, значение которой в произвольный момент времени характеризуется гауссовой функцией плотностью вероятности:

$$p(n) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{n}{\sigma}\right)^2\right]$$

 σ - Среднее квадратическое отклонение

Спектральная плотность АБГШ

Спектральная плотность мощности АБГШ равномерна и бесконечна.

Считается только шум, входящий в полосу

Modulation Error Ration

 $(I_j;Q_j)$ – координаты идеальной точки созвездия (отправленная точка созвездия) $(\delta I_j;\delta Q_j)$ – вектор ошибки (отклонение точки созвездия от отправленной точки созвездия)

$$MER = 10 \log_{10} \left[\frac{\sum_{j=1}^{N} (I_j^2 + Q_j^2)}{\sum_{j=1}^{N} (\delta I_j^2 + \delta Q_j^2)} \right] dB$$

Bit error rate

Отношение числа ошибочно принятых бит, к общему количеству принятых бит

$$BER = \frac{N_{err}}{N_{bit}}$$

Нормированное отношение сигнал-шум (SNR) на ширину полосы и битовую скорость:

$$\frac{E_b}{N_0} = \frac{P_{signal}}{P_{noise}} \left(\frac{W}{R}\right)$$

$$E_b = P_{signal} T_{bit} = rac{P_{signal}}{R}$$
 – энергия бита

 $T_{bit}=rac{1}{R}$ - время передачи бита информации

R — битовая скорость

$$N_0 = rac{P_{noise}}{W}$$
 — спектральная плотность мощности шума

W — полоса сигнала

Домашнее задание

Задание:

- 1) Написать функцию mapping(), которая принимает на вход битовый вектор и отображает его на созвездие (BPSK, QPSK, 8PSK, 16-QAM). Не забыв про нормировку
- 2) Написать скрипт для иллюстрации работы созвездий
- 3) Написать функцию demapping(), которая принимает на вход IQ точки в комплексном представлении, а возвращает вектор из бит. Реализовывать необходимо в соответствии с «вариант 2» из лекции.
- 4) Написать функцию Error_check(), которая принимает на вход 2 битовых вектора и производит подсчёт количества ошибок в потоке и вероятность ошибки
- 5) Составить скрипт Bit-generator -> Mapping() -> Noise() -> Demapping() -> Error_check() -> MER()
- 6) Сравнить теоретические зависимости BER(Eb/N0) от экспериментальных данных. Сделать выводы
- 7) Провести исследование зависимости битовой ошибки от величины SNR. Построить и интерпретировать 2 графика BER(SNR) и BER(Eb/NO) для всех описанных созвездий
- 8) Дополнительное задание: Написать функцию MER, которая оценивает мощность шума по априорно неизвестному сигналу, но известному созвездию. Исследовать зависимость ошибки оценки MER от шума в канале по SNR для различных созвездий.

Сигнальные созвездия

Двоичная фазовая манипуляция BPSK — binary phase-shift keying

Координаты	
Последовательность бит	Координаты в IQ
0	(-1; 0)
1	(1;0)

Сигнальные созвездия

Квадратурная фазовая манипуляция QPSK - quadrature phase-shift keying

Координаты	
Последовательность бит	Координаты в IQ
00	(-1; -1)
01	(-1; 1)
10	(1;-1)
11	(1; 1)

Сигнальные созвездия

8PSK – 8 phase shift keying

Координаты требуется оценить самостоятельно, зная, что все точки равномерно распределены по окружности единичного радиуса. Всего точек на окружности 8

Сигнальные созвездия

Квадратурная модуляция 16 QAM - Quadrature Amplitude Modulation

Координаты	
Последовательность бит	Координаты в IQ
0000	(-3; 3)
0001	(-3; 1)
0010	(-3; -3)
0011	(-3; -1)
0100	(-1; 3)
0101	(-1; 1)
0110	(-1; -3)
0111	(-1; -1)
1000	(3; 3)
1001	(3; 1)
1010	(3;-3)
1011	(3; -1)
1100	(1; 3)
1101	(1; 1)
1110	(1;-3)
1111	(1;-1)