

Санкт-Петербургский государственный университет Кафедра системного программирования

Сравнение производительности подсчёта треугольников: GraphBLAS vs Apache Spark

Команда 5: Аверин Павел, Кузнецов Арсений, Якшигулов Вадим

Постановка задачи подсчёта треугольников

Для неориентированного графа G = (V, E), без петель и кратных рёбер, нужно найти количество треугольников.

Треугольник — тройка вершин, попарно соединённых рёбрами.

Например, в данном графе два треугольника: (0,1,2) и (2,3,4)

Прикладное значение

Анализ социальных сетей:

- Подсчёт треугольников используется для вычисления коэффициента кластеризации
- Метрика показывает, насколько узлы склонны образовывать плотные группы
- Twitter и Facebook используют для анализа формирования сообществ
- Оценка "эффекта эхо-камеры"

Другие применения:

- Обнаружение спама и ботов
- Анализ биологических сетей
- Рекомендательные системы

Алгоритмы подсчёта треугольников

Пусть A — матрица смежности графа, L — нижнетреугольная часть A.

Базовый алгоритм:

$$\frac{\operatorname{trace}(A^3)}{6}$$

Алгоритм Burkhard:

$$\frac{\sum (A^2 \odot A)}{6}$$

где \odot — поэлементное умножение.

Алгоритм Sandia:

$$\sum ((L\times L)\odot L)$$

где × — матричное умножение.

Burkhard: GraphBLAS

- ullet GrB_mxm(C, A, ...) $C\langle A \rangle = A^2$ (маскированное умножение)
- GrB_reduce суммирование элементов матрицы

Burkhard: Spark — код

```
val matrixA = graph.edges
                                                (1)
  .map(e => ((e.srcId, e.dstId), 1L))
val firstTerm = matrixA
                                                (2)
  .map { case ((i,k),_) => (k, i) }
val secondTerm = matrixA
                                                (3)
  .map { case ((k,j),_) => (k, j) }
val matrixA2 = firstTerm.join(secondTerm)
                                                (4)
  .map { case (k,(i,j)) \Rightarrow ((i,j), 1L) }
  .reduceByKey(_ + _)
                                                (5)
val matrixC = matrixA2.join(matrixA)
val totalSum = matrixC
                                                (6)
  .map { case (_,(count,_)) => count }
  .reduce( + )
```

Burkhard: Spark — эквивалентность

- \bullet matrixA представление A как RDD[((i,j), 1)]
- ② (i,k) → (k,i) переиндексация (ключ = средняя вершина)
- (k,j) → (k,j) переиндексация (ключ = средняя вершина)
- f 0 join + reduceByKey умножение: $(A^2)_{ij} = \sum_k A_{ik} \cdot A_{kj}$
- $oldsymbol{\circ}$ join(matrixA) маскирование (оставляем только рёбра из A)
- reduce суммирование всех элементов

Sandia: GraphBLAS

GxB_select(L, NULL, NULL,

ullet GrB_reduce — суммирование всех элементов матрицы C

Sandia: Spark — код

```
val directedEdges = graph.edges.flatMap { e =>
                                                         (1)
  if (e.srcId < e.dstId)</pre>
    Some(((e.srcId, e.dstId), 1))
  else if (e.dstId < e.srcId)</pre>
    Some(((e.dstId, e.srcId), 1))
  else None
}.reduceBvKev(_ + _)
                                                         (2)
val triangles = directedEdges
  .map { case ((s, d), _) \Rightarrow (d, s)  }
  .join(directedEdges.map { case ((s, d), _) \Rightarrow (s, d)})
  .map { case (m, (st, e)) =>
                                                         (3)
    if (st < e) ((st, e), 1) else ((e, st), 1) }
  .filter { case ((st, e), ) => st < e }
  .join(directedEdges)
                                                         (4)
  .count()
                                                         (5)
```

Sandia: Spark — эквивалентность

- lacktriangle flatMap построение L: оставляем (i,j) только если i < j
- $oldsymbol{0}$ Первый join умножение: находим пути (i,k,j) в L
- $oldsymbol{0}$ map + filter нормализация: гарантируем i < j
- $oldsymbol{0}$ Второй join маскирование: проверяем $(i,j)\in L$
- ⑤ count() подсчёт треугольников

Итого:
$$\sum_{i < j} (L^2)_{ij} \cdot L_{ij}$$

Конфигурация оборудования

Характеристики вычислительной машины:

- **Процессор**: Apple M3 Pro (12 ядер)
 - 6 производительных ядер
 - ▶ 6 энергоэффективных ядер
- RAM: 36 GB (unified memory)
- **GPU**: Apple M3 GPU (18 ядер)
- Кэш:
 - ▶ L1: 256 KB
 - ▶ L2: 36 MB (32 MB производительные ядра, 4 MB энергоэффективные)
 - ▶ L3: 24 MB
- OC: macOS Sonoma 14.6.1

Оркестрация:

- Kubernetes для управления задачами
- Docker-контейнеры для изоляции

Программное обеспечение

• GraphBLAS: SuiteSparse:GraphBLAS 10.0.3

• Apache Spark: 3.5.5

• Scala: 2.12

• Kubernetes: 1.32.6

• **Docker:** 28.3.3

Набор данных

Источник: Stanford Large Network Dataset Collection (SNAP)

Датасет	Вершины	Рёбра	Тип
loc-brightkite	58k	214k	Геолокация
soc-Epinions1	75k	508k	Соцсеть
roadNet-PA	1088k	1.5M	Дорожная сеть
soc-LiveJournal1	4.8M	68.9M	Соцсеть

Обоснование выбора:

- ullet Прогрессия размеров: 214k o 508k o 1.5M o 68.9M рёбер
- Разные типы графов: социальные сети, инфраструктура
- Разная плотность: RoadNet разреженный, остальные плотные

Выбор конфигураций

GraphBLAS: 6 конфигураций

- 6cpu/24Gi
- 3cpu/12Gi
- 2cpu/4Gi
- Алгоритмы: sandia, burkhard

Spark: 9 конфигураций

- 1×6cpu/24Gi один большой воркер
- 2×3сри/12Gi средняя распределённость
- 3×2cpu/8Gi много мелких воркеров
- Алгоритмы: sandia, burkhard, graphx
- Driver: 1сри/2Gi для всех

Постановка эксперимента

Предположения:

- Sandia будет быстрее Burkhard на всех платформах
- GraphX будет быстрее самописных алгоритмов на Spark
- GraphBLAS будет быстрее Spark во всех тестах
- GraphBLAS будет падать по ООМ на больших графах
- Spark на тех же графах выполнится из-за вытеснения на SSD
- Spark: умеренный параллелизм быстрее всего на мелких графах

Методология:

- 20 запусков каждой конфигурации
- Доверительные интервалы 95%

Ограничения исследования

Важно понимать:

- Тестирование проводится на одной физической машине
- Spark запускается с несколькими воркерами через Kubernetes
- Мы измеряем **оверхед распределённой архитектуры** в условиях single-node
- GraphBLAS оптимизирован для single-node, Spark для кластеров

Цель: Определить, при каких размерах графов и конфигурациях оверхед Spark становится неприемлемым на одной машине.

Результаты экспериментов

Таблица: GraphBLAS: среднее время выполнения (секунды)

	Sandia		Burkhard			
Датасет	6/24	3/12	2/4	6/24	3/12	2/4
Brightkite	✓ 0.11	✓ 0.12	√ 0.14	✓ 0.13	√ 0.13	√ 0.22
Epinions	√ 0.12	√ 0.13	√ 0.18	√ 0.17	√ 0.27	√ 0.33
RoadNet-PA	√ 0.18	√ 0.32	√ 0.41	√ 0.25	√ 0.26	√ 0.49
LiveJournal	√ 7.5	√ 15.5	√ 28.1	√ 41.9	√ 87.0	X OOM

Нормальность распределения данных проверена тестами
 Шапиро-Уилка и Д'Агостино (р > 0.05)

Результаты экспериментов (продолжение)

Таблица: Spark: среднее время выполнения (секунды)

	Sandia		Burkhard			
Датасет	1×6/24	2×3/12	3×2/8	1×6/24	2×3/12	3×2/8
Brightkite	√ 7.6	√ 7.0	√ 6.8	√ 76.5	√ 81.0	√ 77.0
Epinions	√ 26.2	√ 21.8	√ 20.9	X OOM	X OOM	X OOM
RoadNet-PA	√ 18.7	√ 17.3	√ 17.9	X OOM	X OOM	X OOM
LiveJournal	X OOM	X OOM	X OOM	X OOM	MOO X	X OOM

Датасет	1×6/24	GraphX 2×3/12	3×2/8
Brightkite	✓ 5.7	√ 5.7	√ 5.2
Epinions	✓ 8.0	√ 6.8	√ 6.8
RoadNet-PA	✓ 23.6	√ 21.7	√ 22.1
LiveJournal	✗ OOM	✗ OOM	✗ OOM

Сравнение алгоритмов GraphBLAS

Сравнение алгоритмов Spark

Масштабирование ресурсов GraphBLAS

Масштабирование ресурсов Spark

Выводы

Результаты:

- Sandia быстрее Burkhard от 1.2 до 11 раз
- GraphX быстрее от 1.1 до 3.2 раз (кроме roadNet-PA: -20%)
- ullet GraphBLAS быстрее Spark в 50-100imes на одной машине
- GraphBLAS: ООМ только Burkhard/2cpu на LiveJournal
- Spark: OOM на LiveJournal для всех конфигураций

Ключевые находки:

- Оверхед распределённой архитектуры Spark составляет $50\text{-}100\times$ в условиях одного узла
- Для графов до 70М рёбер GraphBLAS является оптимальным выбором на single-node системах
- Spark Burkhard демонстрирует join explosion, требует оптимизаций
- **Вывод:** Выбор системы зависит от размера данных и доступной инфраструктуры

Почему Sandia оказалась быстрее?

Цель: Понять, какие свойства графов определяют производительность алгоритмов

Подход:

- Анализ 16 графов: извлечение структурных свойств
- Корреляционный анализ: связь свойств с ускорением (Sandia/GraphX)
- Категоризация по степени ускорения
- Построение предсказательной модели

Конфигурация:

- Spark 1×6cpu/24Gi
- 16 графов: от 6k до 2M вершин
- Алгоритмы: GraphX (встроенный) vs Sandia (самописный)

Обзор реализации: GraphX

Алгоритм: Пересечение множеств соседей для каждого ребра

```
// 1. Собрать соседей для каждой вершины
val nbrSets = graph.collectNeighborIds(EdgeDirection.Either)

// 2. Для каждого ребра (u,v): пересечь N(u) и N(v)
def edgeFunc(ctx) = {
 val (smallSet, largeSet) = if (ctx.src.size < ctx.dst.size)
  (ctx.src, ctx.dst) else (ctx.dst, ctx.src)
 val intersection = smallSet intersect largeSet
  ctx.send(intersection.size / 2)
}
```

Особенности реализации:

- + Оптимизация: пересекаем меньшее с большим множеством
- + Встроенная структура VertexSet (хеш-таблица)
- Требует сбор всех соседей заранее (memory intensive)
- Создаёт множество для каждой вершины, даже если пересечений нет

Обзор реализации: Sandia

Алгоритм: Матричное умножение $L \times L$ с маской L

Особенности реализации:

- + Использует стандартные операции соединения (join)
- + Направление рёбер по ID (i < j) делит работу пополам
- + Разреженные структуры фильтруются естественным образом
- Создаёт промежуточный результат размером $\sum_{k} \binom{\deg(k)}{2}$
- Соединения зависят от распределения ключей (может быть неравномерным)

Результаты: категоризация по производительности

Таблица: Sandia выигрывает (Ускорение > 1.15)

Граф	GraphX, сек	Sandia, сек	Ускорение
RoadNet-TX	20.7	15.4	1.34×
RoadNet-PA	17.0	13.2	1.29×
CA-HepTh	2.26	1.79	1.26×
RoadNet-CA	25.1	20.0	1.26×
CA-GrQc	1.96	1.59	1.23×
Gnutella04	2.40	1.96	1.22×
Gnutella30	3.30	2.70	1.22×
AS-20000102	1.81	1.49	1.21×
Gnutella09	2.18	1.87	1.17×

Таблица: **GraphX выигрывает** (Ускорение < 0.85)

Граф	Speedup	
Soc-Epinions1	0.37×	
Email-Enron	0.67×	
Email-EuAll	0.70×	
Amazon0505	0.82×	

Таблица: **Borderline** (0.85–1.15)

Граф	Ускорение
Amazon0302	1.09×
AS-Caida	0.97×
Loc-Brightkite	0.90×

Performance: Sandia vs GraphX

Ключевые наблюдения:

- Максимальное преимущество Sandia: 1.34× (RoadNet-TX)
- Максимальное преимущество GraphX: 2.70× (Soc-Epinions1)

Корреляция свойств графа и ускорения Sandia

Средние значения по каждому свойству

Дисперсия степеней vs ускорение

Вывод: Sandia vs GraphX

Ключевые свойства графов:

- **σ степеней** ($\rho = -0.868$): GraphX выигрывает при высокой дисперсии (> 20)
- Макс. степень (ρ = -0.696): GraphX эффективен при наличии хабов (> 1000)
- **3** Плотность треугольников ($\rho = -0.695$): GraphX лучше на графах с высокой локальной связностью
- Средняя степень ($\rho = -0.632$): Sandia оптимален при avg_degree < 10

Слабая корреляция: коэф. кластеризации ($\rho = -0.352$), число вершин ($\rho = +0.34$) и плотность ($\rho = +0.294$)

Вывод: Выбор алгоритма определяется в первую очередь **неравномерностью распределения степеней**, а не размером или плотностью графа.