§5 Доказательство теоремы о примарном циклическом разложении.

Шаг 1. Примарное разложение

Из разложения

$$\ker \mu_{\mathcal{A}}(t) = \bigoplus_{i=1}^{r} \ker f_i(t)$$

, где $\mu_{\mathcal{A}}(t) = \prod_{i=1}^r f_i(t)$, $(f_i, f_j) = 1 \forall i \neq j$ (откуда $f_i = p_i(t)^k$, p_i - неприводим) следует, что достаточно доказать только то, что примарное пространство раскладывается в сумму циклических.

Поэтому будем считать, что $\mu_{\mathcal{A}}(t) = p^k(t)$, где p - неприводим

Шаг 2. Циклическое разложение.

Существует вектор v, такое что $p^k(A)v = 0$ и $p^{k-1}(A)v \neq 0$ (если бы такого вектора не было, то это p^{k-1} аннулировал бы V, что противоречит минимальности p^k).

Возьмем инвариантное подпространство L наибольшой размерности, такое что $L \cap \langle v \rangle_{\mathcal{A}} = 0$. Мы хотим показать, что $V = L \oplus \langle v \rangle_{\mathcal{A}}$. Будем доказывать от противного - предположим, что существует $u_0 \in V \setminus (L \oplus \langle v \rangle_{\mathcal{A}})$.

Рассмотрим последовательность $u_0, p(\mathcal{A})u_0, ..., p^k(\mathcal{A})u_0 = 0$. Последний ее элемент равен 0, то есть он лежит в $L \oplus \langle v \rangle_{\mathcal{A}}$. Теперь возьмем $u = p^l(\mathcal{A})u_0$, такой что $p^l(\mathcal{A})u_0 \notin L \oplus \langle v \rangle_{\mathcal{A}}$, а $p^{l+1}(\mathcal{A})u_0 \in L \oplus \langle v \rangle_{\mathcal{A}}$ (такое l существует, потому что при l = 0 вектор u_0 не лежит в $L \oplus \langle v \rangle_{\mathcal{A}}$, а при l = k вектор 0 лежит в $L \oplus \langle v \rangle_{\mathcal{A}}$)

Будем "подправлять вектор" $u \to u'$, чтобы $(\langle u' \rangle_{\mathcal{A}} + L) \cap \langle v \rangle_{\mathcal{A}} = 0$

 $p\mathcal{A}(u) = l + x, \ l \in L, \ x \in \langle v \rangle_{\mathcal{A}}, \ \exists f(t) : \ x = f(\mathcal{A})v.$ (в первом равенстве пользуемся тем фактом, что вектор $p(\mathcal{A})(u)$ лежит в прямой сумме, во втором - тем что вектор x лежит в циклическом подпространстве.)

ФАКТ:
$$p(t)|f(t)$$
, то есть $f(t) = p(t)g(t)$

Доказательство:

Применяя теорему о линейном представлении НОД, получаем, что если (f(t), p(t)) = 1, то $(f(t), p^k(t)) = 1$, а значит

$$a(\mathcal{A})f(\mathcal{A}) + b(\mathcal{A})p^{k}(\mathcal{A}) = Id$$

$$(a(\mathcal{A})f(\mathcal{A}) + b(\mathcal{A})p^{k}(\mathcal{A}))v = (Id)v$$

$$a(\mathcal{A})f(\mathcal{A})v + b(\mathcal{A})p^{k}(\mathcal{A})v = v$$

$$a(\mathcal{A})x = v$$

(в предпоследней строчке мы пользовались тем, что x = f(A)v и тем, что $p^k(\mathcal{A})v=0$)

$$p^{k-1}f(\mathcal{A})x=v\neq 0$$
, значит $p^{k-1}(\mathcal{A})x\neq 0$.

Если применить $p^{k-1}(A)$ к равенству pA(u) = l + x, то получим, что $p^{k}\mathcal{A}(u) = p^{k-1}(\mathcal{A})l + p^{k-1}(\mathcal{A})x$, то есть $0 = p^{k-1}(\mathcal{A})l + p^{k-1}(\mathcal{A})x$. Второе слогаемое на равно 0, значит мы получили нетривиальное представление 0 в прямой сумме, чего не может быть. Значит наибольший общий делитель не равен 1, в силу простоты p получаем, что он равен p. \square .

Теперь, достаточно взять u' = u - g(A)v. u' не лежит в $L \oplus \langle v \rangle_A$, потому что u тоже не нем не лежит, и при этом $p(A)u' = l \in L$.

Замечание:

$$\mu_{\mathcal{A},x}(t) = \frac{p^k(t)}{\gcd(f(t), p^k(t))} = \frac{\mu_{\mathcal{A},x}(t)}{\gcd(f(t), \mu_{\mathcal{A},x}(t))}$$

эммечиние. $\mu_{\mathcal{A},x}(t) = \frac{p^k(t)}{\gcd(f(t),p^k(t))} = \frac{\mu_{\mathcal{A},x}(t)}{\gcd(f(t),\mu_{\mathcal{A},x}(t))}$ Эта формула является прямой аналогией теоретико-групповой формулы:

$$ord(g^k) = \frac{ord(g)}{gcd(ord(g),k)}$$

 $ord(g^k) = rac{ord(g)}{gcd(ord(g),k)}$ Задача(разбиралась на практике):

$$L = L_1 \oplus L_2$$
.

Доказать, что $\mu_{A,L} = LCM(\mu_{A,L_1}, \mu_{A,L_2})$

Докажем, что
$$(\langle u' \rangle_{\mathcal{A}} + L) \cap \langle v \rangle_{\mathcal{A}} = 0$$

От противного, пусть пересечение не пусто, тогда $\exists \varphi(t), g(t), l'$, такие что:

$$\varphi(\mathcal{A})u' + l' = g(\mathcal{A})v.$$

Тогда:

$$\varphi(\mathcal{A})u' = q(\mathcal{A})v - l'.$$

Первый случай, $(\varphi(t), p(t)) = 1$:

$$\psi\varphi(\mathcal{A})u'\gamma p^k(\mathcal{A})u' = Idu'$$

$$\psi\varphi(\mathcal{A})u'=u'$$

$$\psi\varphi(\mathcal{A})u' = \psi(g(\mathcal{A})v - l')$$

$$u' = \psi(\mathcal{A})g(\mathcal{A})v - \psi\mathcal{A}l'.$$

В силу инвариантности $\psi(\mathcal{A})g(\mathcal{A})v \in \langle v \rangle_{\mathcal{A}}, \, \psi \mathcal{A}l' \in L$, но u' по предположению не лежит в $L \oplus \langle v \rangle_{\mathcal{A}}$. Противоречие

Второй случай $(\varphi(t), p(t)) = p(t)$, то есть $\varphi(t) = ph(t)$, так как p(A)u' = ph(t)l, то $\varphi(A)u'=ph(A)u'=h(A)l$, то есть h(A)l=g(A)v-l'. Получили два разложения в прямую сумму, чего не может быть. \square .

Замечание:

$$V = \bigoplus_{i=1}^{r} \mathbb{K}[t]/(p_i^{k_i}(t)).$$

Набор $\{\{(p_i, k_i)\dots\}\}$ - неприводимые многочлены со степенями(пары могут повторятся) определен однозначно. Без доказательства.

\S Алгоритм построения Жорданова базиса в случае базового поля C

Пусть (V, \mathcal{A}) - векторное пространство над $\mathbb C$ с оператором \mathcal{A} . Тогда:

$$\chi_{\mathcal{A}}(t) = \prod_{i=1}^{r} (t - \lambda_i)^{k_i}$$
, где $\lambda_i \neq \lambda_j$ при $i \neq j$.

$$V = \bigoplus_{i=1}^{r} \ker(\mathcal{A} - \lambda_i Id)^{k_i}$$

Дадим алгоритм построение базиса в каждом пространстве $\ker(\mathcal{A} - \lambda Id)^k$

Предложение. Имеет место следующий алгоритмы (метод спуска):

$$\ker(\mathcal{A} - \lambda Id)^k \subset \ker(\mathcal{A} - \lambda Id)^{k-1} \subset \ldots \ker \mathcal{A} - \lambda Id$$

Шаг І. Находим базис $\ker(\mathcal{A}-\lambda Id)^k$ по модулю $(\mathcal{A}-\lambda Id)^{k-1}$: $v_1^k, v_2^k, ... v_{i_1}^k$. Применим к ним $\mathcal{A}-\lambda Id$.

 \mathcal{I} емма. Если $v_1, \ldots, v_k \in \ker B^k$ - линейно независимые $mod\ B^{k-1}$, то $(B(v_1), \ldots, B(v_k)) \in \ker B^{k-1}$ - линейно независимые $mod\ B^{k-2}$.

Замечание Следующие три условия равносильные $(U \subset V, v_1, \dots, v_k$ - набор векторов):

- 1. $\exists u_1, \dots, u_n$ базис, такой что $u_1, \dots, u_n, v_1, \dots, v_k$ линейно независимые
- 2. $\forall u_1, \dots, u_n$ базис, такой что $u_1, \dots, u_n, v_1, \dots, v_k$ линейно независимые

3. если
$$\sum \alpha_i v_i \in U$$
, то $\alpha_1 = \alpha_2 \cdots = \alpha_n = 0$.

(доказательство предлагается проделать в уме)

Доказательство леммы

Если $B(v_1), \ldots, B(v_k)$ - линейно зависимые по модулю $\ker B^{k-2}$, то $\exists \alpha_i : \sum \alpha_i B(v_i) \in \ker B^{k-2} \Rightarrow B(\sum \alpha_i v_i) \in \ker B^{k-2} \Rightarrow \sum \alpha_i v_i \in \ker B^{k-1}$. Получили противоречие с линейной независимостью $mod\ B^{k-1}$.

Щаг II $BA - \lambda Id$ - нильпотентный оператор, $B^k = 0$.

 $Bv_1^k, Bv_2^k, ...Bv_{i_1}^k$ дополним до относительного базиса в $\ker Bk-1 \mod \ker B^{k-2}$: $v_1^{k-1}, \ldots, v_{i_1}^{k-1}, v_{i_1+1}^{k-1}, \ldots, v_{i_1+i_2}^{k-1}$

III Повторять эту процедуру до конца.

 \mathcal{I} емма Правые s рядов образуют базис $\ker B^s$.

Доказаельство:

переход от s к s+1

Каждый ряд линейно независимая. Допустим суммарно они линейно зависимые. Тогда применим B^s к комбинации линейной зависимости. Получим линейную комбинацию для векторов из s+1 ряда равную нулю \Rightarrow все ее коэфициенты равны 0. Значит исходная комбинация была их векторов из правых s рядов чего не может быть по предполжению индукции