

planetmath.org

Math for the people, by the people.

proof of Yoneda lemma

Canonical name ProofOfYonedaLemma
Date of creation 2013-03-22 18:30:16
Last modified on Owner GodelsTheorem (21277)
Last modified by GodelsTheorem (21277)

Numerical id

Author GodelsTheorem (21277)

Entry type Proof

Classification msc 18A25

We give a proof of Yoneda's Lemma. Thus, we have to show that $\mathcal{C} \to \hat{\mathcal{C}}$ is a faithful functor. Let X and Y be two objects belonging to \mathcal{C} , we want to show that

```
\psi: \operatorname{Hom}(X,Y) \to \operatorname{Hom}(X(.),Y(.))
f \mapsto (f_K: X(K) \to Y(K))_K is bijective.
```

Let's start with injectivity. Let f and g be two morphisms from X to Y which are having the same mappings for the points $f_K = g_K$ for all K. Let's show that f = g. What happens for the X-points? For the X-points, we have f = g and the range of f_X and of g_X of the X-point of X which is Id_X is exactly the X-points of Y which are f and g. Hence f = g.

Now for surjectivity: let $\psi: X(.) \to Y(.)$ a morphism of functors. We need to show that this morphism comes from an arrow f which should be the range of Id_X by the map ϕ_X . Thus, let $f = \psi_X(Id_X)$. Let's verify that $f_K = \psi_K$ for all K. Let $p: K \to X$ be a K-point of X. p is a morphism between the two types of points K and X and in this case we have the following commutative diagram:

Idon'tknowhow to do diagram swith latex, it's too hard

If you make Id(X) turn in the diagram one verifies that $\psi_K(p) = f \circ p = f_K(p)$ which proves the surjectivity.