LATEX

Móra Péter

Informatika 1 előadás, 2009. október 26.

1. Matematikai formulák szerkesztése

1.1. Képletek

Az alábbi	parancsok	közül	néhányhoz	be	kell	$t\"{o}lteni$	az	alábbi	$h\acute{a}rom$	csoma-
got:										

\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amssymb}

Ezek a csomagok ismertek, elterjedtek, ezért nem foglalkozunk azzal, hogy mely parancshoz szükségesek.

LATEX parancs:

\[x_1 \]

Eredmény:

 x_1

LATEX parancs:

 $\ [x^2 \]$

Eredmény:

 x^2

LATEX parancs:

\[\sqrt[3]{2} \]

Eredmény:

 $\sqrt[3]{2}$

 $\[\] x^{y^2} \]$

Eredmény:

$$\sqrt[3]{x^{y^2}}$$

LATEX parancs:

 $[x_1^a = x^a_1 \le x^{a_1}]$

Eredmény:

$$x_1^a = x_1^a \neq x^{a_1}$$

LATEX parancs:

 $[\frac{1}{2} = \frac{1}{2}]$

Eredmény:

$$\frac{1}{2} = \frac{1}{2}$$

LATEX parancs:

 $[(\frac{12}^2 = \left(\frac{1}{rac12 \right)^2}]$

Eredmény:

$$(\frac{1}{2})^2 = \left(\frac{1}{2}\right)^2$$

LATEX parancs:

 $[(1/(\frac{1}{\pi c12})^3)^2 =$

 $\left(\frac{1}{\left(\frac{1}{\left(\frac{12\right)^3}\right)^3}\right)^2}$

$$(1/(\frac{1}{2})^3)^2 = \left(1/\left(\frac{1}{2}\right)^3\right)^2 = \left(\frac{1}{\left(\frac{1}{2}\right)^3}\right)^2$$

 $\[x \in \left[0, \frac{12 \cdot 12}{12} \right] \]$

Eredmény:

$$x \in \left[0, \frac{1}{2}\right)$$

LATEX parancs:

 $\[\left[\right]$ \[\left(1,2,\frac12 \right. \]

Eredmény:

$$\left(1,2,\frac{1}{2}\right.$$

LATEX parancs:

 $[\left[\left(1,2,\right) \right]$

Eredmény:

$$(1,2, \frac{1}{2})$$

 $\[\left(x=0\right)^2 \right]$

Eredmény:

$$\left. \frac{\cos(x)}{2} \right|_{x=0}^{2}$$

LATEX parancs:

 $\[\sin(\cos(\log(2))) \ne sin(\cos(\log(2))) \]$

Eredmény:

 $\sin(\cos(\log(2))) \neq \sin(\cos(\log(2)))$

 $\[a \sin(a) \le a \sin(a) \]$

Eredmény:

 $a\sin(a) \neq a\sin(a)$

LATEX parancs:

\[a\mathop{\mathrm{tg}}(a) \]

Eredmény:

 $a \operatorname{tg}(a)$

LATEX parancs:

\[\mathrm{PRQNC},\mathbb{PRQNC},\mathcal{PRQNC} \]

Eredmény:

 $\mathrm{PRQNC}, \mathbb{PRQNC}, \mathcal{PRQNC}$

LATEX parancs:

Eredmény:

 $(\mathbf{u}\times\mathbf{v})\cdot\mathbf{z}$

LATEX parancs:

 $\[\lim_{x\to \infty} \int x (x)^{1+x} = 1 \]$

$$\lim_{x \to \infty} \frac{x}{1+x} = 1$$

L^AT_EX parancs:

$$\[\sum_{k=0}^{n} \sum_{n} \lim_{k \to \infty} 1 \$$

Eredmény:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

LATEX parancs:

 $[a\, b\: c\; d\quad e\quad f\ g^h\!i\]$

Eredmény:

$$abcd$$
 e $fghi$

A _ törhető szóköz, a ~ nem törhető szóköz, a \! pedig negatív szóköz. Ezek közül nem kell tudni: \: \;

LATEX parancs:

 $[\int_0^{\pi} \sin(x), \mathbf{d}x = [-\cos(x)]_0^{\pi} = 2]$

Eredmény:

$$\int_0^{\pi} \sin(x) \, \mathrm{d}x = [-\cos(x)]_0^{\pi} = 2$$

LATEX parancs:

Kiemelt képlet:

 $\[\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac$

Eredmény: Kiemelt képlet:

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

Szövegközi képlet:

 $\sum_{k=1}^{\int y} \frac{k^2} = \frac{\pi^2}{6}$, ez a képlet a szöveggel egy sorba kerül

Eredmény: Szövegközi képlet: $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$, ez a képlet a szöveggel egy sorba kerül

LATEX parancs:

Kiemelt módban szövegközi képlet:

 $[2 \frac{1}^{k-1}^{\int x^2} = \frac{pi^2}{0}]$

Eredmény: Kiemelt módban szövegközi képlet:

$$2\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

LATEX parancs:

Szövegközi módban kiemelt képlet:

 $2 \frac{12 \left(k^2\right) = \frac{1}^{\infty} \frac{12 \left(k^2\right) = \frac{1}^{2} 6}{n}}{n}$

Eredmény: Szövegközi módban kiemelt képlet: $2\frac{1}{2}\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}$, baj: széttolja a sorokat

LATEX parancs:

 $\[\int_a^b f(x) \, \\$

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

 $[\int_a^b f(x), \mathbf{d}x]$

Eredmény:

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

LATEX parancs:

 $\[\sum_{k=1}^{\left(\frac{k^2} \right) } 1{,}64493 \]$

Eredmény:

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \approx 1,64493$$

LATEX parancs:

 $\label{limits_k=1}^{\displaystyle \left(\frac{k^2} \times 1_{k,}^{64493}\right)} $$ \end{sum} $$ infty \ \frac{k^2} \times 1_{k,}^{64493} $$$

Eredmény:

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \approx 1,64493$$

L⁴T_EX parancs:

Eredmény:

$$H := \{x : x \in \mathbb{N} \text{ \'es } x \text{ pr\'emhatv\'any}\}$$

L^AT_EX parancs:

 $[\{a,b,c\} \} = \{a,b,c,d,e\}]$

$$\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$$

$$\[\Lambda := \cup_{i\in I} \lambda_i \]$$

Eredmény:

$$\Lambda := \cup_{i \in I} \lambda_i$$

LATEX parancs:

Eredmény:

$$\Lambda := \bigcup_{i \in I} \lambda_i$$

LATEX parancs:

$$[(A\cup B) \cap (A\cup C) = A\cup(B\cap C)]$$

Eredmény:

$$(A \cup B) \cap (A \cup C) = A \cup (B \cap C)$$

LATEX parancs:

 $\[A\$ (B\cup C) = (A\setminus B) \cap (A\setminus C) \]

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

$$[10 \mod 3 = 1]$$

azaz

\[10 \equiv 1 \pmod{3} \]

Eredmény:

$$10 \bmod 3 = 1$$

azaz

$$10 \equiv 1 \pmod{3}$$

LATEX parancs:

$$[-(1 pm 1) = -1 pm 1 in {-2,0}]$$

Eredmény:

$$-(1\pm 1) = -1 \mp 1 \in \{-2, 0\}$$

LATEX parancs:

$$\[S_n := a_1+a_2+\dots +a_n \]$$

Eredmény:

$$S_n := a_1 + a_2 + \dots + a_n$$

Magyar szabvány szerint a pontokat lentre igazítjuk:

LATEX parancs:

$$[S_n := a_1+a_2+\ldots +a_n]$$

$$S_n := a_1 + a_2 + \ldots + a_n$$

Mátrixok esetén minden oszlopra megadhatjuk, hogy hogyan igazítsa az elemeket. Az *lrc* jelentése balra, jobbra, középre.

LATEX parancs:

Eredmény:

$$cos(\alpha) 1
-1 - sin(\alpha)$$

LATEX parancs:

Eredmény:

$$\left(\begin{array}{cc}
\cos(\alpha) & 1\\
-1 & -\sin(\alpha)
\end{array}\right)$$

A pontok esetében: v, mint vertikális, d, mint diagonális dots.

LATEX parancs: LATEX parancs:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & \dots & a_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} \end{pmatrix}_{[n \times m]}$$

Eredmény:

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{cc} e & f \\ g & h \end{array}\right] = \left[\begin{array}{cc} ae + bg & af + bh \\ ce + dg & cf + dh \end{array}\right]$$

LATEX parancs:

```
\[ \left| x \right| =
  \begin{cases}
    x & \text{ha } x>0\\
    -x & \text{egyébként}
  \end{cases} \]
```

$$|x| = \begin{cases} x & \text{ha } x > 0\\ -x & \text{egyébként} \end{cases}$$

LaTeX parancs:

Eredmény:

$$\mathbb{N} \stackrel{\text{def}}{:=} \{ n : n \in \mathbb{Z}, n \ge 0 \}$$

LaTeX parancs:

$$\[\sin^2(x) + \cos^2(x) \operatorname{stackrel}{?}{=} 1 \]$$

Eredmény:

$$\sin^2(x) + \cos^2(x) \stackrel{?}{=} 1$$

LATEX parancs:

 $\label{loss} $$ \prod_{-2, -1}_{\text{negativ számok}}, 0, \operatorname{ldots}^{\text{pozitiv számok}} $$$

Eredmény:

$$\underbrace{\ldots, -3, -2, -1}_{\text{negatív számok}}, 0, \underbrace{1, 2, 3, 4, \ldots}_{\text{pozitív számok}}$$

1.2. Matematikai jelek

LATEX parancs:

$$\label{lem:condition} $$ \[a \ge b, c \le d, e \setminus g \neq f, g \rightarrow h, i \neq j, k \rightarrow l, m \rightarrow l \]$$

Eredmény:

$$a \ge b, c \le d, e \not\ge f, g \not\le h, i \ne j, k \not< l, m \not> n$$

Elég speciális karaktereket is ki lehet csalni, pl. \ngeq . Szükség esetén ezek Kileban megtaláljátok.

LaTeX parancs:

Eredmény:

$$A \subset B, C \supset D, E \not\subset F, G \not\supset H, I \subseteq J, K \not\subseteq L, \dots$$

LATEX parancs:

 $\label{eq:condition} $$ \sum_{x \in \mathbb{N} \in \mathbb{N} \in \mathbb{N}} \mathbb{C}, \quad y \in \mathbb{R} \in \mathbb{R} \in \mathbb{N}$

Eredmény:

$$\exists x \in \mathbb{C}, \forall y \notin \mathbb{R} \ni z, \mathbb{N} \not\ni x$$

LATEX parancs:

\[\not\forall x, \not\exists y, \nexists y, \hat{f},
 \tilde{H}, \widehat{fg}, \widetilde{H_i} \]

Eredmény:

$$\not\exists x, \not\exists y, \not\exists y, \hat{f}, \tilde{H}, \widehat{fg}, \widetilde{H_i}$$

LATEX parancs:

\[\left\{ \ell \mid \ell \ge 0, \ell \le 0, \ell \ne 0 \right\} = \emptyset \]

$$\{\ell\mid\ell\geq0,\ell\leq0,\ell\neq0\}=\emptyset$$

$$[[1.5] = \floor 1.5 \rfloor = 1]$$

Eredmény:

$$[1.5] = |1.5| = 1$$

LATEX parancs:

Eredmény:

$$\lceil \frac{3}{2} \rceil = \left\lceil \frac{3}{2} \right\rceil = 2$$

A kis és nagy görög betűk közül érdemes párat ismerni.

LATEX parancs:

\[\theta \varepsilon \rho \tau \psi \upsilon
\pi \alpha \sigma \delta \phi \varphi \gamma \eta \kappa
\lambda \zeta \xi \chi \varsigma \beta \nu \mu \]

Eredmény:

Lateral Parancs:

\[\Theta \Omega \Psi \Upsilon \Pi \Sigma
\Delta \Phi \Gamma \Lambda \Xi \]

Eredmény:

ΘΩΨΥΠΣΔΦΓΛΞ

1.3.	Egyenlete	ek tín	usai
1.0.	L _S , cincuc	x orb	asai

 \LaTeX parancs:

\[x=1 \]

Eredmény:

x = 1

LATEX parancs:

\begin{equation}
 x=1
\end{equation}

Eredmény:

 $x = 1 \tag{1} \{?\}$

LATEX parancs:

\begin{equation*}
 x=1
\end{equation*}

Eredmény:

x = 1

LaTeX parancs:

```
begin{multline}
  \left(\cos(x)^{\sin(x)}{\right)'' = \\
  \left(\cos^{\sin(x)}(x) (\cos(x) \log(\cos(x))-
  \sin(x) \tan(x))\right)' = \\ (\cos(x) \log(\cos(x))-
  \sin(x) \tan(x))^2 \cos(x)^{\sin(x)}+{\}\
  (-\log(\cos(x)) \sin(x)-2 \sin(x)-
  \sec(x) \tan(x)) \cos(x)^{\sin(x)}
  \end{multline}
```

Eredmény:

$$(\cos(x)^{\sin(x)})'' = (\cos^{\sin(x)}(x)(\cos(x)\log(\cos(x)) - \sin(x)\tan(x)))' = (\cos(x)\log(\cos(x)) - \sin(x)\tan(x))^2\cos(x)^{\sin(x)} + (-\log(\cos(x))\sin(x) - 2\sin(x) - \sec(x)\tan(x))\cos(x)^{\sin(x)}$$
 (2) {?}

LATEX parancs:

```
\begin{gather}
  \sin' = \cos \\
  \cos' = -\sin \\
  \tan' = -\frac{1}{\cos^2} \nonumber
\end{gather}
```

$$\sin' = \cos$$

$$\cos' = -\sin$$

$$\tan' = -\frac{1}{\cos^2}$$
(3) {?}
$$(4) {?}$$

Lateral Parancs:

Eredmény:

$$\sin' = \cos \qquad \qquad \sinh' = \cosh \qquad (5) \{?\}$$

$$\cos' = -\sin \qquad \qquad \cosh' = \sinh \qquad (6) \{?\}$$

LATEX parancs:

\subsection{Hivatkozások}\label{sec:hiv}

Eredmény:

1.4. Hivatkozások

⟨sec:hiv⟩

Lateral Parancs:

Ez a fejezet a(z) \ref{sec:hiv}. sorszámot kapta.
Szebben: ez a fejezet \aref{sec:hiv}. sorszámot kapta.
\Aref{sec:hiv}. fejezetnél járunk, ami \apageref{sec:hiv}. oldalon van.

Eredmény: Ez a fejezet a(z) 1.4. sorszámot kapta. Szebben: ez a fejezet az 1.4. sorszámot kapta. Az 1.4. fejezetnél járunk, ami a 18. oldalon van.

LATEX parancs:

\begin{equation}\label{kiskutyafule}
 x^n + y^n = z^n
\end{equation}

$$x^n + y^n = z^n (7) kiskutyafule$$

A nagy Fermat-tétel azt mondta ki, hogy (\ref{kiskutyafule}) egyenletnek csak a triviális megoldása van, ha \$n>2\$. Névelővel: \az+\eqref{kiskutyafule} egyenlet.

Eredmény: A nagy Fermat-tétel azt mondta ki, hogy (7) egyenletnek csak a triviális megoldása van, ha n > 2. Névelővel: a (7) egyenlet.

LATEX parancs:

```
\begin{gather} $$ \sin^2(x) + \cos^2(x) = 1 \leq {eq:2} \\ \sin(2x) = 2\sin(x)\cos(x) \leq {eq:3} \\ end{gather} $$
```

Eredmény:

$$\sin^2(x) + \cos^2(x) = 1$$

$$\sin(2x) = 2\sin(x)\cos(x)$$
(8) [eq:2]
$$(9) [eq:3]$$

Lateral Parancs:

Az előző két egyenlet (($ref{eq:2}$) és ($ref{eq:3}$)) közismert összefüggés.

Eredmény: Az előző két egyenlet ((8) és (9)) közismert összefüggés.

Fordítsuk \emph{refcheck} csomaggal a fájlt. Ha olyan képletünk van, amely sorszámozott, de nem tudunk rá hivatkozni, akkor azt egy {?} jellel jelöli:

\begin{equation}

x+y

\end{equation}

Ha tudunk rá hivatkozni, de nem tesszük, akkor hivatkozási nevet nem keretezi, hanem kérdőjelek közé teszi.

\begin{equation}\label{eq:4}

x/y

\end{equation}

Eredmény: Fordítsuk *refcheck* csomaggal a fájlt. Ha olyan képletünk van, amely sorszámozott, de nem tudunk rá hivatkozni, akkor azt egy {?} jellel jelöli:

$$x + y \tag{10} \{?\}$$

Ha tudunk rá hivatkozni, de nem tesszük, akkor hivatkozási nevet nem keretezi, hanem kérdőjelek közé teszi.

$$x/y (11) ?eq: 4?$$

1.5. Táblázatok

LATEX parancs:

```
\begin{tabular}{lrc}
Név & Magasság & Virágzási idő \\
Sisakvirág & 90 & Július - Augusztus\\
Harangláb & 60 & Május - Június
\end{tabular}
```

Eredmény:

Név	Magasság	Virágzási idő
Sisakvirág	90	Július - Augusztus
Harangláb	60	Május - Június

LATEX parancs:

```
\begin{tabular}{|l|r|c|}
\hline
Név & Magasság & Virágzási idő \\ \hline
Sisakvirág & 90 & Július - Augusztus\\ \hline
Harangláb & 60 & Május - Június \\ \hline
\end{tabular}
```

Eredmény:

Név	Magasság	Virágzási idő
Sisakvirág	90	Július - Augusztus
Harangláb	60	Május - Június

Lateral Parancs:

XOR	α	$\neg \alpha$
α	0	1
$\neg \alpha$	1	0

```
\[ \begin{array}{|c|c|c|} \hline
  \text{XOR} & \alpha & \lnot \alpha \\ hline
  \alpha & 0 & 1 \\ hline
  \lnot\alpha & 1 & 0 \\ hline
  \end{array} \]
```

XOR	α	$\neg \alpha$
α	0	1
$\neg \alpha$	1	0

2. Tételszerű környezetek

Fontos, hogy az alábbi parancsokat a preambulumban adjuk ki:

```
\newtheorem{tetel}{Tétel}
\newtheorem{defi}{Definíció}
\newtheorem{lemma}[tetel]{Lemma}
```

LATEX parancs:

```
\begin{defi}\label{eq:5}
  Egy $n\ge0$ szám prím, ha pontosan két pozitív osztója van.
\end{defi}
```

Eredmény:

 $\langle \mathsf{eq} \colon \mathsf{5} \rangle$ 1. Definíció. Egy $n \geq 0$ szám prím, ha pontosan két pozitív osztója van.

LATEX parancs:

```
\begin{tetel}
   Egy $n$ szám prímtényezős felbontása egyértelmű
      (a prímeket \aref{eq:5}. definícióban vezettük be).
\end{tetel}
\begin{proof}
   A bizonyítás indukcióval történik. A részleteket most nem vesszük.
\end{proof}
```

Eredmény:

1. Tétel. Egy n szám prímtényezős felbontása egyértelmű (a prímeket az 1. definícióban vezettük be).

Bizonyítás. A bizonyítás indukcióval történik. A részleteket most nem vesszük.

```
\begin{tetel}[Pythagoras]
  Egy derékszögű háromszög oldalaira teljesül az alábbi
  \emph{fontos} összefüggés:
   \[ a^2 + b^2 = c^2 \]
\end{tetel}
```

Eredmény:

2. Tétel (Pythagoras). Egy derékszögű háromszög oldalaira teljesül az alábbi fontos összefüggés:

$$a^2 + b^2 = c^2$$

LATEX parancs:

```
\begin{lemma}
   A $2$-nél nagyobb prímek páratlanok.
\end{lemma}
```

Eredmény:

3. Lemma. A 2-nél nagyobb prímek páratlanok.

3. Szöveg kiemelése, idézetek, lábjegyzetek, helyek

LATEX parancs:

```
,,A világnak több szerény zsenire van szüksége.
Olyan kevesen maradtunk \dots', (Oscar Levant)
```

Eredmény: "A világnak több szerény zsenire van szüksége. Olyan kevesen maradtunk ..." (Oscar Levant)

LATEX parancs:

```
\textqq{Egyszer elvesztem, és megkérdeztem egy rendőrt:
\textqq{segítene megkeresni a szüleimet?} Mire a rendőr:
\textqq{Nem is tudom, annyi helyre bújhattak\dots}}
(Woody Alen\footnote{Woody Allen 1935 december 1-én született író, rendező, színész.})
```

Eredmény: "Egyszer elvesztem, és megkérdeztem egy rendőrt: »segítene megkeresni a szüleimet?« Mire a rendőr: »Nem is tudom, annyi helyre bújhattak...«" (Woody Alen¹)

LATEX parancs:

Egy \emph{fontos szövegen belül is lehet \emph{nagyon} fontos
 rész}.\marginpar{Nini, margó!}

Eredmény: Egy fontos szövegen belül is lehet nagyon fontos rész.

Nini, margó!

¹Woody Allen 1935 december 1-én született író, rendező, színész.

Kérhetünk horizontális \hspace{2cm} és vertikálias \vspace{2cm} \\ helyet.

(Ezek a parancsok hasznosak pl. egy hirdetmény vagy egy dolgozat összeállításánál (ha a diák a feladat alá írja a megoldást), ám egy könyv vagy cikk esetén kerülendő a használatuk.) A vertikális helyet illik két bekezdés közé elhelyezni.

\bigskip

Ez már egy másik bekezdés. Kérhetünk egy alig észrevehető, kis üres helyet.

\smallskip

Újabb bekezdés.

Eredmény: Kérhetünk horizontális és vertikálias

helyet. (Ezek a parancsok hasznosak pl. egy hirdetmény vagy egy dolgozat összeállításánál (ha a diák a feladat alá írja a megoldást), ám egy könyv vagy cikk esetén kerülendő a használatuk). A vertikális helyet illik két bekezdés közé elhelyezni.

Ez már egy másik bekezdés. Kérhetünk egy alig észrevehető, kis üres helyet.

Újabb bekezdés.

LATEX parancs:

-, --, \LaTeX, \TeX elés, \TeX\ dokumentumszedő rendszer. A~magyarban használatos jelekhez lásd az első \LaTeX\ előadást.

Eredmény: -, -, -, LATEX, TEXelés, TEX dokumentumszedő rendszer. A magyarban használatos jelekhez lásd az első LATEX előadást.