BÀI 3: THIẾT KẾ BỘ LỌC FIR (1)

3.1. Các loại bộ lọc FIR pha tuyến tính.

Bộ lọc FIR loại 1: h(n) đối xứng, N lẻ,

$$\beta = 0; \alpha = (N-1)/2$$

$$\begin{split} H(e^{j\omega}) &= [\sum_{n=0}^{\frac{N-1}{2}} a(n) \cos \omega n] e^{-j\frac{N-1}{2}\omega} \\ a(0) &= h(\frac{N-1}{2}) \\ a(n) &= 2h(\frac{N-1}{2}-n) \end{split}$$

```
function [a,w,L,Hr]=FIR_t1(h)
N=length(h);
L=(N-1)/2;
a=[h(L+1) 2*h(L:-1:1)];
n=[0:1:L];
w=linspace(0,2*pi,100)';
Hr=cos(w*n)*a';
```

Ví dụ cho bộ lọc FIR pha tuyến tính loại 1

```
h=[1.5 -2.5 3 -2 4 -2 3 -2.5 1.5];

[a,w,L,Hr]=FIR_t1(h);

plot(w/pi,abs(Hr));

title('Dap ung bien do cua bo loc FIR 1');

grid on;
```

Bài tập:

Bài 1: Xác định đáp ứng tần số cho bộ lọc FIR loại 2: Viết **function FIR_t2**. Thực hiện tính toán với đáp ứng xung

$$h2 = [1.5 - 2.5 \ 3 \ 3 - 2.5 \ 1.5]$$

Bài 2: Xác định đáp ứng tần số cho bộ lọc FIR loại 3: Viết **function FIR_t3**. Thực hiện tính toán với đáp ứng xung

$$h3 = [1.5 - 2.5 \ 3 \ 0 - 3 \ 2.5 - 1.5]$$

Bài 3: Xác định đáp ứng tần số cho bộ lọc FIR loại 4: Viết **function FIR_t4**. Thực hiện tính toán với đáp ứng xung

$$h4 = [1.5 - 2.5 3 - 3 2.5 - 1.5]$$

3.2. Thiết kế bộ lọc FIR bằng phương pháp cửa số.

Biên độ đáp ứng tần số của bộ lọc thông thấp lý tưởng

Biên độ đáp ứng tần số của bộ lọc thông thấp thực tế

- Thiết kế bộ lọc bằng phương pháp cửa số.
- Bước 1: Chọn loại cửa số
- Bước 2: Chiều dài M cửa số (Bậc M của bộ lọc)
- Bước 3: Tìm hàm cửa số
- Bước 4: Tìm đáp ứng xung cuả bộ lọc lý tưởng
- Bước 5: Tìm đáp ứng xung của bộ lọc thực tế (bộ lọc cần thiết kế)

Chọn cửa sổ để cắt ngắn chiều dài đáp ứng xung:

Cửa số	Hàm	Chiều dài
Chữ nhật	boxcar(N)	$1.8\pi/\Delta\omega$
Tam giác	triang(N)	$6,1\pi/\Delta\omega$
Hanning	hanning(N)	$6,2\pi/\Delta\omega$
Hamming	hamming(N)	$6,6\pi/\Delta\omega$
Blackman	blackman(N)	$11\pi/\Delta\omega$

Đáp ứng xung của bộ lọc thông thấp lý tưởng pha tuyến tính

$$h_{d}(n) = \frac{\sin[\omega_{c}(n-\alpha)]}{\pi(n-\alpha)}$$

với
$$\alpha = \frac{N-1}{2}$$

function hd=thongthap(wc,N)

$$alpha=(N-1)/2;$$

$$n=[0:1:(N-1)];$$

$$h_{d}(n) = \frac{\sin[\omega_{c}(n-\alpha)]}{\pi(n-\alpha)}$$

$$\alpha = \frac{N-1}{2}$$

Đáp ứng xung của bộ lọc thông cao lý tưởng pha tuyến tính

$$h_{d}(n) = \frac{\sin[\pi(n-\alpha)]}{\pi(n-\alpha)} - \frac{\sin[\omega_{c}(n-\alpha)]}{\pi(n-\alpha)}$$

với
$$\alpha = \frac{N-1}{2}$$

hd=thongthap(pi,N)-thongthap(wc,N)

Đáp ứng xung của bộ lọc thông dải lý tưởng pha tuyến tính

$$h_{d}(n) = \frac{\sin[\omega_{c2}(n-\alpha)]}{\pi(n-\alpha)} - \frac{\sin[\omega_{c1}(n-\alpha)]}{\pi(n-\alpha)}$$

$$v\acute{o}i \qquad \alpha = \frac{N-1}{2}$$

hd=thongthap(wc2,N)-thongthap(wc1,N)

Đáp ứng xung của bộ lọc chắn dải lý tưởng pha tuyến tính

$$h_{d}(n) = \frac{\sin[\pi(n-\alpha)]}{\pi(n-\alpha)} - \frac{\sin[\omega_{c2}(n-\alpha)]}{\pi(n-\alpha)} + \frac{\sin[\omega_{c1}(n-\alpha)]}{\pi(n-\alpha)}$$

$$v\acute{o}i \qquad \qquad \alpha = \frac{N-1}{2}$$

hd=thongthap(pi,N)-thongthap(wc2,N)+thongthap(wc1,N)

Tìm đáp ứng xung của bộ lọc thực tế

$$h(n) = h_d(n).w(n)$$

Ví dụ: Thiết kế bộ lọc thông thấp theo phương pháp cửa sổ Hamming với ω_p=0,2π; ω_s=0,4π.

```
wp=0.2*pi; ws=0.4*pi;
deltaw=abs(ws-wp);
M=ceil(6.6*pi/deltaw)+1;
w_ham=hamming(M);
wc = (ws + wp)/2;
hd=thongthap(wc,M);
h=hd.*w ham';
w=0:pi/511:pi;
h1=freqz(h,1,w);
plot(w/pi,abs(h1)); grid on
```

Bài tập 4.

Viết chương trình Matlab thiết kế bộ lọc số thông cao theo phương pháp cửa sổ với các tham số: ω_s =0,4 π , ω_p =0,6 π .

- a. Nếu dùng cửa sổ Barlett với chiều dài cửa sổ được tính theo công thức $M=6,1\pi/\Delta\omega$, hãy biểu diễn đồ thị cửa sổ, đáp ứng xung của bộ lọc, phổ biên độ của đáp ứng tần số $H_1(e^{j\omega})$
- b. Nếu dùng cửa sổ Hamming với chiều dài cửa sổ được tính theo công thức $M = 6,6\pi/\Delta\omega$, hãy biểu diễn đồ thị cửa sổ, đáp ứng xung của bộ lọc, phổ biên độ của đáp ứng tần số $H_2(e^{j\omega})$

Bài tập 5.

Viết chương trình Matlab thiết kế bộ lọc số thông dải theo phương pháp cửa sổ với các tham số: ω_{s1} =0,2 π , ω_{p1} =0,45 π ; ω_{p2} =0,7 π , ω_{s2} =0,85 π .

- a. Nếu dùng cửa số Barlett với chiều dài cửa số được tính theo công thức $M=6,1\pi/\Delta\omega$, hãy biểu diễn đồ thị cửa số, đáp ứng xung của bộ lọc, phổ biên độ của đáp ứng tần số $H_1(e^{j\omega})$
- b. Nếu dùng cửa sổ Hanning với chiều dài cửa sổ được tính theo công thức $M=6.2\pi/\Delta\omega$, hãy biểu diễn đồ thị cửa sổ, đáp ứng xung của bộ lọc, phổ biên độ của đáp ứng tần số $H_2(e^{j\omega})$