Calcul et informatique quantique: une introduction formelle

Antoine Groudiev

ENS UIm

18 Janvier 2024

Plan

Modèles de calcul quantiques

Introduction à l'informatique quantique Circuits quantiques Langages, automates, grammaires quantiques

Théorie de la complexité quantique

Classe BQP Rapport à la thèse de Church-Turing

Algorithme de Deutsch-Jozsa

Plan

Modèles de calcul quantiques

Introduction à l'informatique quantique Circuits quantiques Langages, automates, grammaires quantiques

Introduction

On manipule non pas des bits, mais des qubits.

Définition (Superposition quantique)

$$|\Psi\rangle = \alpha |\Psi\rangle + \beta |\Psi\rangle$$

où $\alpha, \beta \in \mathbb{C}$ sont appelés les *amplitudes d'états*.

Remarque (Condition de normalisation)

$$|\alpha|^2 + |\beta|^2 = 1$$

Circuits quantiques

Figure - Un exemple de circuit (Algorithme de Deutsch-Jozsa)

$$X: \alpha|0\rangle + \beta|1\rangle \mapsto \beta|0\rangle + \alpha|1\rangle$$

Sous forme de matrice :

$$X\cong\begin{pmatrix}0&1\\1&0\end{pmatrix}$$

Porte de Hadamard

$$H\congrac{1}{\sqrt{2}}egin{pmatrix}1&1\1&-1\end{pmatrix}$$

Résultat direct :

$$egin{cases} H|0
angle = rac{1}{\sqrt{2}}(|0
angle + |1
angle) \ H|1
angle = rac{1}{\sqrt{2}}(|0
angle - |1
angle) \end{cases}$$

Langage quantique

Retour sur les langages classiques

Soit Σ un alphabet, et $L \subseteq \Sigma^*$ un langage. L peut être défini alternativement comme un sous-ensemble de Σ^* , ou par sa fonction caractéristique χ_L :

$$\chi_L(w) = \begin{cases} 1 & \text{si } w \in L \\ 0 & \text{sinon} \end{cases}$$

Langage quantique Définition

On peut par analogie définir un *langage quantique* comme une fonction associant des probabilités à des mots :

Définition (Langage quantique)

Un langage quantique sur l'alphabet Σ est une fonction f telle que :

$$f: \Sigma^{\star} \rightarrow [0,1]$$

Remarque

f est un langage classique lorsque $f(\Sigma^*) \subseteq \{0,1\}$.

Automate quantique fini

Définition (AQF)

Un Automate Quantique Fini $A = (H, s_{\text{init}}, H_{\text{accept}}, P_{\text{accept}}, \Sigma, \delta)$ consiste en :

- un espace de Hilbert H de dimension n
- un vecteur initial normalisé $s_{\mathsf{init}} \in H$ (i.e. $||s_{\mathsf{init}}||^2 = 1$)
- un sous-espace $H_{\mathsf{accept}} \subseteq H$, et un opérateur P_{accept} projettant sur H_{accept}
- un alphabet Σ
- une fonction $\delta:\Sigma\to U_n(\mathbb{C})$, associant à chaque lettre une matrice unitaire U_a (c'est-à-dire $U_aU_a^\dagger=I_n$)

On note $\delta^*(w = w_1 \cdots w_{|w|}) = \delta(w_{|w|}) \cdots \delta(w_1) = U_{w_{|w|}} \cdots U_{w_1}$. Enfin, le langage reconnu par \mathcal{A} est :

$$f_{\mathcal{A}}: w \mapsto \|P_{\mathsf{accept}}\delta^{\star}(w)s_{\mathsf{init}}\|^2$$

Machine de Turing quantique

Définition (MTQ)

Une Machine de Turing Quantique $M = (H, \Gamma, b, \Sigma, \delta, q_0, Q_{\text{accept}})$ consiste en :

- un espace de Hilbert Q des états
- un autre espace de Hilbert Γ de la bande
- un symbole blanc $\sqcup \in \Gamma$
- un alphabet d'entrée et de sortie Σ
- un état (vecteur) initial $q_0 \in Q$
- un sous-espace $Q_{\text{accept}} \subseteq Q$
- une fonction de transition δ telle que :

$$\delta: \Sigma \times Q \otimes \Gamma \to \Sigma \times Q \otimes \Gamma \times \{L, R\}$$

Plan

Théorie de la complexité quantique Classe BQP Rapport à la thèse de Church-Turing

Classe BQP (Bounded-error Quantum Polynomial time)

Définition (BQP)

La classe Bounded-error Quantum Polynomial time (BQP) est l'ensemble des problèmes de décision qui peuvent être résolus en temps polynomial par une machine de Turing quantique, avec une erreur maximale de $\frac{1}{3}$.

Positionnement par rapport aux classes de complexité classiques

Figure – Inclusions connues et supposées de BQP

Thèse (Thèse de Church-Turing)

Une fonction sur les entiers naturels peut être calculée si et seulement si elle est calculable par une machine de Turing.

Thèse (Thèse étendue de Church-Turing)

Une machine de Turing probabiliste peut efficacement simuler tout modèle de calcul réaliste.

Thèse (Thèse quantiquement-étendue de Church-Turing)

Tout système de calcul physique peut être efficacement simulé par une machine de Turing quantique.

Plan

Modèles de calcul quantiques

Introduction à l'informatique quantique

Circuits quantiques

Langages, automates, grammaires quantiques

Théorie de la complexité quantique

Classe BQP

Rapport à la thèse de Church-Turing

Algorithme de Deutsch-Jozsa

On considère une fonction f fonctionnant sur n bits ou qubits :

$$f: \{0,1\}^n \to \{0,1\}$$

Cette fonction est supposée être soit *constante*, soit *équilibrée* :

$$|f^{-1}(\{0\})| = n \vee |f^{-1}(\{1\})| = n \vee \left(|f^{-1}(\{0\})| = |f^{-1}(\{1\})| = \frac{n}{2}\right)$$

(C'est à dire qu'elle produit soit que des 0, soit que des 1, soit exactement la moitié de 0 et l'autre moitié de 1.)

Solution classique

Dans le pire cas, un algorithme classique déterministe doit mesurer plus de la moitié des valeurs de f pour les 2^n valeurs entrées possibles, i.e. $2^{n-1}+1$; la meilleure complexité en temps est dès lors exponentielle. (Néanmoins, ce problème peut être résolu avec une probabilité élevée avec un algorithme probabiliste, le problème est donc dans BPP.)

Algorithme de Deutsch

On suppose que f est implémentée par une porte sous la forme :

$$f:|x\rangle|y\rangle\mapsto|x\rangle|f(x)\oplus y\rangle$$

Figure – Circuit de l'algorithme de Deutsch

Algorithme de Deutsch

L'état du premier qubit est finalement :

$$\frac{1}{2} \big[\big(1 + (-1)^{f(0) \oplus f(1)} \big) |0\rangle + \big(1 - (-1)^{f(0) \oplus f(1)} \big) |1\rangle \big]$$

qui vaut $|0\rangle$ si et seulement $f(0) \oplus f(1) = 0$.

Cas général (n quelconque)

Figure – Circuit de l'algorithme de Deutsch