§ 7.4 任意项级数 绝对收敛

1°交错级数 — 正、负项相间的级数.

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n \not \equiv \sum_{n=1}^{\infty} (-1)^n u_n \quad (\sharp + u_n > 0)$$

莱布尼茨定理: 如果交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 满足条件:

(1)
$$u_n \ge u_{n+1}$$
 $(n=1, 2, \cdots)$;

$$(2)\lim_{n\to\infty}u_n=0,$$

则级数收敛,且其和 $S \leq u_1$.

2°任意项级数 — 正项和负项任意出现的级数.

定理1 若级数 $\sum_{n=1}^{\infty} |u_n|$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛.

定理7.12 如果任意项级数
$$\sum_{n=1}^{\infty} u_n$$
满足条件 $\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = l$,则

- (1) 当 / < 1 时,级数绝对收敛;
- (2) 当1>1时,级数发散;

定理1* 如果任意项级数 $\sum_{n=1}^{\infty} u_n$ 满足条件 $\lim_{n\to\infty} \sqrt{|u_n|} = \rho$,则

- (1) 当 ρ <1 时,级数绝对收敛;
- (2) 当 $\rho > 1$ 时, 级数发散;

$$\lim_{n\to\infty}\frac{n!}{n^n}=0$$

$$\lim_{n\to\infty}\frac{x^n}{n!}=0, \ \forall x\in R$$

7. 判定下列交错级数的敛散性.

(1)
$$1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\cdots$$

因为
$$\sum_{n=1}^{\infty} \left| (-1)^{n-1} \frac{1}{\sqrt{n}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 发散,

而对
$$\forall n \in \mathbb{N}, \frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n+1}},$$
且 $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0,$

$$\exists \lim_{n\to\infty}\frac{1}{\sqrt{n}}=0,$$

由Leibniz定理知交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 条件收敛.

7. 判定下列交错级数的敛散性.

(2)
$$1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \cdots$$

解 级数的通项

$$u_{n} = \frac{(-1)^{n-1}}{n!}$$

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_{n}} \right| = \lim_{n \to \infty} \frac{(n+1)!}{\frac{1}{n!}}$$

$$= \lim_{n \to \infty} \frac{1}{n+1}$$

$$= 0 < 1$$

所以, 级数
$$1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\cdots$$
 绝对收敛.

7. 判定下列交错级数的敛散性.

(3)
$$1-\frac{2}{3}+\frac{3}{5}-\frac{4}{7}+\cdots$$

m 级数的通项 $u_n = (-1)^{n-1} \frac{n}{2n-1}$

因为
$$\lim_{n\to\infty}|u_n|=\lim_{n\to\infty}\frac{n}{2n-1}=\frac{1}{2}\neq 0,$$

即
$$\lim_{n\to\infty}u_n\neq 0$$

因此, 交错级数
$$1-\frac{2}{3}+\frac{3}{5}-\frac{4}{7}+\cdots$$
 发散.

8. 判定下列级数哪些是绝对收敛, 哪些是条件收敛.

(1)
$$1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} - \cdots$$

解 级数的通项 $u_n = \frac{(-1)^{n-1}}{(2n-1)^2}$

$$\lim_{n \to \infty} \frac{|u_{n+1}|}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{\frac{(2n-1)^2}{1}}{\frac{1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{n^2}{(2n-1)^2} = \frac{1}{4},$$
又 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛,

所以级数 $1-\frac{1}{3^2}+\frac{1}{5^2}-\frac{1}{7^2}+\frac{1}{9^2}-\cdots$ 绝对收敛.

8. 判定下列级数哪些是绝对收敛, 哪些是条件收敛.

(2)
$$\frac{1}{2} - \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} - \frac{1}{4 \cdot 2^4} + \cdots$$

 \mathbf{M} 级数的通项 $u_n = \frac{(-1)^{n-1}}{n \cdot 2^n}$

$$|u_n| = \frac{1}{n \cdot 2^n} \leq \frac{1}{2^n}$$

又 $\sum_{n=1}^{\infty} \frac{1}{2^n}$ 收敛,

所以,级数 $\frac{1}{2} - \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} - \frac{1}{4 \cdot 2^4} + \cdots$ 绝对收敛.

8. 判定下列级数哪些是绝对收敛, 哪些是条件收敛.

(4)
$$\sum_{n=1}^{\infty} \frac{\sin(na)}{(n+1)^2}$$

解 级数的通项 $u_n = \frac{\sin(na)}{(n+1)^2}$

$$|u_n| = \frac{|\sin(na)|}{(n+1)^2} \le \frac{1}{(n+1)^2} < \frac{1}{n^2}$$

$$n = 1, 2, 3, \cdots$$

又
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 收敛,

所以,级数
$$\sum_{n=1}^{\infty} \frac{\sin(na)}{(n+1)^2}$$
 绝对收敛.

§ 7.5 幂级数

- 一、幂级数的概念
- 二、幂级数的收敛性
- 三、幂级数的性质

一、幂级数的概念

1 定义1: 形如

$$\sum_{n=0}^{\infty} a_n (x-x_0)^n = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \dots + a_n (x-x_0)^n + \dots$$

的级数称为 $(x-x_0)$ 的幂级数. a_n 称为幂级数的系数.

当
$$x_0$$
=0时,

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots = \sum_{n=0}^{\infty} a_n x^n$$

2 收敛性:

例如 级数
$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots + x^n + \cdots$$

- (1) 当|x| <1时, 级数绝对收敛; $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$,
- (2) 当|x|≥1时,级数发散.

北京工為大學 BELING TECHNOLOGY AND BUSINESS UNIVERSITY

(1) 收敛点与收敛域:

定义2 如果当 $x_0 \in R$ 时,幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 收敛,

则称 x_0 为幂级数的收敛点,否则称为发散点.

幂级数的全部收敛点构成的集合称为幂级数的收敛域.

全部发散点构成的集合称为幂级数的发散域.

例如 级数

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \quad 收敛域: (-1,1).$$
 发散域: $(-\infty, -1] \cup [1, +\infty)$

(2) 和函数:

定义3 在收敛域内幂级数 $\sum_{n=0}^{n}a_n(x-x_0)^n$ 的和是x的函数S(x),称S(x)为幂级数的和.

$$S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

幂级数的部分和 $S_n(x)$, $\lim_{n\to\infty} S_n(x) = S(x)$

余项:
$$R_n(x) = S(x) - S_n(x)$$
,

$$\lim_{n\to\infty} R_n(x) = 0 \quad (x 在收敛域上)$$

二、幂级数的收敛性

定理1*(阿贝尔(Abel)定理)

阿贝尔(Abel)(挪威) 1802–1829

如果级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x=x_0(x_0\neq 0)$ 处收敛,则它 在满足不等式 $|x|<|x_0|$ 的一切x处绝对收敛;

如果级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x=x_0$ 处发散,则它在满足不等式 $|x|>|x_0|$ 的一切x处发散.

证 (1) 因 $\sum_{n=0}^{\infty} a_n x_0^n$ 收敛,所以 $\lim_{n\to\infty} a_n x_0^n = 0$ 从而数列 $\{a_n x_0^n\}$ 有界, 即存在常数 M > 0,使得 $|a_n x_0^n| \le M$, $n=1,2,3,\cdots$

$$|a_{n}x^{n}| = |a_{n}x_{0}^{n} \cdot \frac{x^{n}}{x_{0}^{n}}| = |a_{n}x_{0}^{n}| \cdot |\frac{x}{x_{0}}|^{n} \leq M \cdot |\frac{x}{x_{0}}|^{n}$$

$$|x| < |x_{0}|,$$
等比级数 $\sum_{n=0}^{\infty} M |\frac{x}{x_{0}}|^{n}$ 收敛;
于是 $\sum_{n=0}^{\infty} |a_{n}x^{n}|$ 收敛;

因此
$$\sum_{n=0}^{\infty} a_n x^n$$
 在 $|x| < |x_0|$ 处绝对收敛;

推论1 如果幂级数 $\sum a_n x^n$ 不是仅在x=0一点收敛, 也不是在整个数轴上都收敛,则必有一个完全确定 的正数R存在,它具有下列性质:

当|x|<R 时, 幂级数绝对收敛;

当|x|>R时,幂级数发散;

当x=R与x=-R时,幂级数可能收敛也可能发散.

定义4: 正数R 称为幂级数的收敛半径.

开区间 (-R,R) 称为幂级数的收敛区间.

幂级数的收敛域可能为

(-R,R), [-R,R), (-R,R], [-R,R],

- 规定 (1)幂级数只在x = 0处收敛, R = 0,
 - (2)幂级数对一切x都收敛, $R = +\infty$, 收敛区间: $(-\infty, +\infty)$.

定理7.13 如果幂级数 $\sum a_n x^n$ 的系数满足条件

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=l$$

则 (1)当
$$0 < l < +\infty$$
时, $R = \frac{1}{l}$; (2)当 $l = 0$ 时, $R = +\infty$;

$$(2)$$
当 $l=0$ 时, $R=+\infty$;

$$(3)$$
当 $l = +\infty$ 时, $R = 0$.

证 对级数 $\sum |a_n x^n|$ 应用比值判别法,

$$\lim_{n\to\infty} \left| \frac{u_{n+1}^{n=0}}{u_n} \right| = \lim_{n\to\infty} \frac{|a_{n+1}x^{n+1}|}{|a_nx^n|} = \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| = l|x|,$$

(1) 如果
$$\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = l \ (0 < l < +\infty)$$
存在,

由比值判别法,

$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = l \mid x \mid$$

当l|x|<1, 即|x|<l-1时,

级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 绝对收敛.

当l|x|>1, 即 $|x|>l^{-1}$ 时,

级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 发散.

所以幂级数的收敛半径 $R = \frac{1}{l}$.

(2) 如果
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = l = 0$$
, 则对 $\forall x \neq 0$, 均有

$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = l \mid x \mid$$

$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| = 0 < 1,$$

从而级数 $\sum_{n=0}^{\infty} a_n x^n$ 绝对收敛.

所以收敛半径 $R = +\infty$.

(3) 如果 $l = +\infty$,

则对 $\forall x \neq 0$,级数 $\sum_{n=0}^{\infty} |a_n x^n|$ 都发散,

因此收敛半径 R=0. 定理证毕.

例1 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ 的收敛半径和收敛域.

解 因
$$l = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\overline{n+1}}{\frac{1}{n}} = 1$$
,
所以 $R = 1$,

当
$$x = -1$$
时,级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} = -\sum_{n=1}^{\infty} \frac{1}{n}$ 发散,

当
$$x=1$$
时,级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ 收敛,

故幂级数的收敛域为: (-1, 1]. = ln 2

例2 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} x^{n-1}$ 的收敛半径和收敛域.

解 因
$$l = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^n}{(-1)^{n-1}} \right| = 1,$$

得收敛半径 R=1,

当
$$x = -1$$
时,级数 $\sum_{n=1}^{\infty} (-1)^{n-1} x^{n-1} = \sum_{n=1}^{\infty} 1$ 发散,

当
$$x=1$$
时,级数 $\sum_{n=1}^{\infty} (-1)^{n-1} x^{n-1} = \sum_{n=1}^{\infty} (-1)^{n-1}$ 发散,

故幂级数的收敛域为: (-1,1).

例3 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$ 的收敛半径和收敛域. $l = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$

$$\frac{1}{n=1} n^{n}$$

$$= \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$= \lim_{n \to \infty} \frac{1}{\frac{(n+1)^{n+1}}{n}}$$

$$= \lim_{n \to \infty} \left[\frac{1}{n+1} \cdot \left(\frac{n}{n+1} \right)^n \right]$$

$$= \lim_{n \to \infty} \frac{1}{n+1} \cdot \left(\frac{1}{n+1} \right)^n$$

$$= 0 \times e^{-1} = 0,$$

$$R = +\infty,$$

$$R=+\infty$$
,

所以幂级数的收敛域为: $(-\infty, +\infty)$.

 P_{237} 例 求幂级数 $\sum_{n=1}^{\infty} n! x^n$ 的收敛半径和收敛域.

解因
$$l = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$= \lim_{n \to \infty} \frac{(n+1)!}{n!}$$

$$= +\infty,$$

于是 R=0,

所以级数只在x=0处收敛.

定理2* 如果幂级数 $\sum a_n(x-x_0)^n$ 的系数满足条件

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = l$$

 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$ 则 (1)当0< l<+∞时, $R = \frac{1}{l}$;

$$(2)$$
当 $l=0$ 时, $R=+\infty$; l

(3)当
$$l = +\infty$$
时, $R = 0$.

当 $|x-x_0|$ < R 时, 幂级数绝对收敛;

当 $|x-x_0|>R$ 时, 幂级数发散;

当 $x=x_0+R$ 与 $x=x_0-R$ 时, 幂级数可能收敛也可能发散.

收敛区间为 (x_0-R, x_0+R) .

例1* 求幂级数
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n \cdot n}$$
 的收敛半径和收敛域.

解因
$$l = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\overline{2^{n+1} \cdot (n+1)}}{\frac{1}{2^n \cdot n}} = \lim_{n \to \infty} \frac{n}{2(n+1)} = \frac{1}{2}$$

所以收敛半径 R=2,

故当|x-1| < 2, 即-1 < x < 3时, 级数绝对收敛;

当
$$x=-1$$
时,级数为 $\sum_{n=1}^{\infty}\frac{(-1)^n}{n}$ 收敛,

当 x=3时,级数为 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 故收敛域为[-1, 3).

例4 求幂级数 $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n}$ 的收敛半径和收敛域.

例4 求幂级数 $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n}$ 的收敛半径和收敛域.

$$\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n} \frac{t=2x+1}{\sum_{n=1}^{\infty} \frac{t^n}{n}}$$

$$l = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\overline{n+1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{n+1} = 1,$$

$$\mathbb{R} \mid R' = 1,$$

当|t|=|2x+1|<1, 即 -1<x<0时,级数绝对收敛;

当
$$x=-1$$
时,级数为 $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 收敛,

当
$$x=0$$
时,级数为 $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散,

故级数
$$\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n}$$
 的收敛域为: [-1, 0), 收敛半径为: $R=\frac{1}{2}$.

例4 求幂级数 $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n}$ 的收敛半径和收敛域.

解3 应用比值判别法
$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \left| \frac{\frac{(2x+1)^{n+1}}{n+1}}{\frac{(2x+1)^n}{n}} \right| = \lim_{n\to\infty} \left| \frac{n(2x+1)}{n+1} \right| = |2x+1|,$$

当|2x+1| <1, 即 -1 <x < 0时, 级数绝对收敛; 当|2x+1| <1, 即 x < -1 或 x > 0 时, 级数发散:

当
$$x=-1$$
时,级数为 $\sum_{n=1}^{\infty}\frac{(2x+1)^n}{n}=\sum_{n=1}^{\infty}\frac{(-1)^n}{n}$ 收敛,

当
$$x=0$$
时,级数为 $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散,

故级数
$$\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n}$$
 的收敛域为: [-1, 0), 收敛半径为: $R = \frac{1}{2}$.

例5 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n x^{2n}}{n}$ 的收敛半径和收敛域.

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{n+1}{3^n} = \lim_{n\to\infty} \frac{3n}{n+1} = 3, \quad R' = \frac{1}{3},$$

当
$$|t|=x^2<\frac{1}{3}$$
,即 $|x|<\frac{1}{\sqrt{3}}$ 时,级数绝对收敛,
当 $x^2>\frac{1}{3}$,即 $|x|>\frac{1}{\sqrt{3}}$ 时,级数发散,
当 $x=\pm\frac{1}{\sqrt{3}}$ 时, $\sum_{n=1}^{\infty}(-1)^{n-1}\frac{3^nx^{2n}}{n}=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n}$ 收敛.
所以原级数的收敛域为: $[-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}]$ 收敛半径 $R=\frac{1}{\sqrt{3}}$.

当
$$x^2 > \frac{1}{3}$$
, 即 $|x| > \frac{1}{\sqrt{3}}$ 时,级数发散,

当
$$x=\pm\frac{1}{\sqrt{3}}$$
 时, $\sum_{n=1}^{\infty}(-1)^{n-1}\frac{3^nx^{2n}}{n}=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n}$ 收敛.

例5 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n x^{2n}}{n}$ 的收敛半径和收敛域.

解 应用比值判别法 $3^{n+1}x^{2(n+1)}$

$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty}$$

月比值判别法
$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \left| \frac{\frac{3^{n+1}x^{2(n+1)}}{n+1}}{\frac{3^nx^{2n}}{2^n}} \right| = \lim_{n\to\infty} \frac{3nx^2}{n+1} = 3x^2,$$

当 $3x^2$ <1,即 |x|< $\frac{1}{\sqrt{3}}$ 时,级数绝对收敛,

当
$$3x^2>1$$
,即 $|x|>\frac{1}{\sqrt{3}}$ 时,级数发散

当
$$3x^2>1$$
,即 $|x|>\frac{1}{\sqrt{3}}$ 时,级数发散,
当 $x=\pm\frac{1}{\sqrt{3}}$ 时, $\sum_{n=1}^{\infty}(-1)^{n-1}\frac{3^nx^{2n}}{n}=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n}$,收敛.
于是原级数的收敛域为: $[-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}]$,收敛半径: $R=\frac{1}{\sqrt{3}}$.

例2* 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n-1}$ 的收敛半径和收敛域.

解应用比值判别法

缺少偶次幂的项

$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \left| \frac{2n-1}{2n+1} \right| x^2 = x^2,$$

当 x^2 <1, 即 |x|<1时, 级数绝对收敛,

当 $x^2>1$, 即 |x|>1时,级数发散,

当x=1时,级数为 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ 收敛,

当x=-1时,级数为 $\sum_{n=1}^{\infty}\frac{(-1)^n}{2n-1}$ 收敛,

所以原级数的收敛区域为: [-1, 1],

收敛半径: R=1.

作业 P₂₅₄ 习题七 (A)

9. 求下列幂级数的收敛半径和收敛域.

(3)
$$\sum_{n=1}^{\infty} \frac{x^n}{(2n-1)(2n)}$$

(5)
$$\sum_{n=1}^{\infty} \frac{x^{n-1}}{3^{n-1}n}$$

(10)
$$\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{2^n} + 3^n \right] x^n$$

$$(11) \qquad \sum_{n=1}^{\infty} \frac{(x-2)^n}{n^2}$$

(14)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2x-3)^n}{2n-1}$$

练习题1 求幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{\sqrt{n}} (x - \frac{1}{2})^n$ 的收敛半径 和收敛域.

练习题2 求幂级数 $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} x^{2n}$ 的收敛半径和收敛区间.

练习题1 求幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{\sqrt{n}} (x-\frac{1}{2})^n$ 的收敛半径 和收敛域.

解
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{\sqrt{n+1}}{2^n} = \lim_{n\to\infty} \frac{2\sqrt{n}}{\sqrt{n+1}} = 2,$$
收敛半径 $R = \frac{1}{2},$
故当 $\left| x - \frac{1}{2} \right| < \frac{1}{2},$ 即 $0 < x < 1$ 时,级数绝对收敛;
当 $x = 0$ 时,级数为 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ 发散
当 $x = 1$ 时,级数为 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ 收敛
故收敛域为 $(0,1]$.

练习题2 求幂级数 $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} x^{2n}$ 的收敛半径和收敛区间.

解 应用比值判别法

缺少奇次幂的项

並用比值判別法

$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \frac{\frac{[2(n+1)]! x^{2(n+1)}}{[(n+1)!]^2}}{\frac{(2n)! x^{2n}}{(n!)^2}} = \lim_{n\to\infty} \left| \frac{(2n+2)(2n+1)x^2}{(n+1)^2} \right|$$

$$= 4x^2$$

 $=4x^{2}$, $\pm 4x^{2} < 1$, 即 $|x| < \frac{1}{2}$ 时,级数绝对收敛,

当 $4x^2>1$, 即 $|x|>\frac{1}{2}$ 时,级数发散,

所以原级数的收敛半径: $R = \frac{1}{4}$,

收敛区间为: $(-\frac{1}{1}, \frac{1}{1})$.