Algorithms and Complexity

Spring 2018 Aaram Yun

This page is intentionally left blank

Today

>> Equivalence between search-based formulation and decision-based formulation

P versus NP? PF versus PC?

- >> Two formulations are equivalent!
- \gg Theorem: $\mathcal{NP} = \mathcal{P} \iff \mathcal{PC} \subset \mathcal{PF}$
- \gg So, conversely, $\mathcal{NP} \neq \mathcal{P} \iff \mathcal{PC} \nsubseteq \mathcal{PF}$

Backward direction

- \gg If $\mathcal{PC} \subset \mathcal{PF}$ then $\mathcal{NP} \subseteq \mathcal{P}$
- >> Proof: this part is straightforward

>> Proof: this part is straightforward

$$proof$$
) If $S \in NP$, $\exists R \in PC$ s.t. $S = S_R$
 $\Rightarrow R \in PC \subseteq PF$
 $\Rightarrow A : eff. TM which solves R
 $\Rightarrow A : eff. TM which solves R
 $\Rightarrow A : eff. TM which solves R

Algorithms and Complexity, Spring 2018 $R \in P$

(B runs A. If A outputs $R \in R$

If A outputs $R \in R$
 $R \in PC \subseteq PF$
 $R \in PC \subseteq PF$$$$

Forward direction

 $x \in S_R$

- \gg If $\mathcal{NP} \subseteq \mathcal{P}$ then $\mathcal{PC} \subseteq \mathcal{PF}$
- >> Proof: this part is slightly trickier
 - >> Assuming $\mathcal{NP} \subseteq \mathcal{P}$, and if $R \notin \mathcal{PC}$ and $x \in \{0,1\}^*$, we need to show how to find some $y \in R(x)$ efficiently
 - \gg Easy to check if such y exists or not (due to $\mathcal{NP} \subseteq \mathcal{P}$)
 - >> But how to actually *find* one such y? (or, how to find something when you can make only yes/no questions)

Forward direction

- » Answer: binary search!
 - » Consider "Twenty questions"
 - you ask only yes/no questions, but can find something, after all

It Is there any y sit. (x,x) e ?? NP-question. Yes "Is there any y st. (x,y)6R and y starts with a 0?" s.t. (x,y)6R REPC $|y| \leq p(|x|)$

 $S_R = \{X \mid \exists Y, (\exists I, Y) \in R\}$ is not enough. (even though $S_R \in NP \subseteq P$) $S_{R}^{\prime} = \{(\chi, Z) \mid \exists y \in \{0, 1\}^{*}\} (\chi, Zy) \in \mathbb{R} \}$ We can see that SRENPEP. ->] A: efficient TM solving SR If $(X,Z) \notin S_R$, then A(X,Z) = 0If $(4,z) \in S_R$, then A(x,z) = 1.

We can construct B: eff. TM solving R. $B(x) := Run A(x, \varepsilon) \qquad ((x, \varepsilon) \in S_R \rightleftharpoons) \exists y, (x, y) \in R)$ If A(X, E) = 0, then return \bot . Let ZE If A(X, z0)=1 then $Z \leftarrow Z$ else $z \leftarrow z$ $\text{until} (x,z) \in \mathbb{R}$ return Z

Why decision problems?

- >> Traditionally, complexity theory considered mostly decision problems
 - $\gg \mathcal{P}$ versus \mathcal{NP} problem, not \mathcal{PF} versus \mathcal{PC} problem
 - » Even though search problems are more 'useful' than decision problems
- >> The equivalence is one reason why