Module 2- Descriptive Statistics

Descriptive Statistics

```
library(tidyverse)
# read data
low_birth <- read.csv("./lowbwt_ALL.csv")</pre>
# select relevant variables
low_birth <- dplyr::select(low_birth, age, race, smoke, bwt)</pre>
# change smoking status to a factor
low_birth <- mutate(low_birth,</pre>
                     smoke = ifelse(smoke == 1, "yes", "no"))
```

We recommend the use of the package {gtsummary} for descriptive tables.

Numerical Summaries

NOTE: you will need to install the {gtsummary} package. Run install.packages("gtsummary")

Age

Race

black

other

white

in the Console. # install and load gtsummary

```
# install.packages("gtsummary")
library(gtsummary)
#StandWithUkraine
```

create overall summary table

```
low_birth %>%
  tbl_summary(missing_text = "(Missing)", # counts missing values
    statistic = list(all_continuous() ~ "{mean} ({sd})"), # what to do with continuous()
    label = list(age ~ "Age",
                                     # label variables
                 race ~ "Race",
                 smoke ~ "Smoking Status",
                 bwt ~ "Birth Weight")) %>%
  bold_labels() %>%
  italicize_levels()
                                             N = 189^{1}
                             Characteristic
```

23 (5)

26 (14%)

67 (35%)

96 (51%)

	Smo	king Status	74 (39%)
	Birth	n Weight	2,945 (729)
	¹ Mea	an (SD); n (%)	
# create	summary table by smoking	g status	
low_birth	1 %>%		
tbl_sur	nmary(by = "smoke", # s	stratify b	y smoking
	<pre>missing_text = "(M:</pre>	issing)",	
stat	i <mark>stic = list(all_continu</mark> c	ous() ~ "{	mean} ({sc
labe	= list(age ~ "Age",		
	race ~ "Race",		
	smoke ~ "Smoking	g Status",	
	la de LID à de la Ada d	II \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0

10 (14%)

```
statistic = list(all_c
  label = list(age ~ "Ag
                race ~ "R
                smoke ~ "
                bwt ~ "Birth Weight")) %>%
bold_labels() %>%
italicize_levels()
                        Characteristic no, N = 115^{1} yes, N = 74^{1}
                                         23 (5)
                                                    23 (5)
                        Age
                        Race
```

	other	55 (48%)	12 (16%)				
	white	44 (38%)	52 (70%)				
	Birth Weight	3,055 (752)	2,773 (660)				
	¹ Mean (SD); n (%)						
Graphical Summaries							

16 (14%)

black

first you need to create a summary table low_birth_race_summary <-</pre>

low_birth %>%

We can also describe this data with plots.

bar graph of race using base R

```
group_by(race) %>%
   summarise(count = n())
# view summary table
low_birth_race_summary
# A tibble: 3 \times 2
  race count
  <chr> <int>
1 black
           26
2 other
3 white
```

```
# plot the barplot using the summary table
barplot(height = low_birth_race_summary$count,
        names = low_birth_race_summary$race)
```

40

50 **-**

20

10

1000

boxplot of age using base R

boxplot(low_birth\$age)

20 **-**

-0.4

-0.2

2000

3000

4000

5000

0.0

0.2