Monetary Policy and the Limits to Arbitrage: Insights from a New Keynesian Preferred Habitat Model

Walker Ray SF Fed & LSE

October 23, 2019

St. Louis Fed

Bernanke: "QE works in practice but not in theory"

Bernanke: "QE works in practice but not in theory"

• Large and immediate response of the yield curve

Bernanke: "QE works in practice but not in theory"

- Large and immediate response of the yield curve
- Develop a GE model which takes seriously limits to arbitrage
 - Derive theoretical conditions under which QE works
 - Quantify the aggregate effects of QE

Bernanke: "QE works in practice but not in theory"

- Large and immediate response of the yield curve
- Develop a GE model which takes seriously limits to arbitrage
 - Derive theoretical conditions under which QE works
 - Quantify the aggregate effects of QE
- Bond market imperfections play a role in the transmission of conventional monetary policy
- Crucial for designing monetary policy going forward

- Ingredients:
 - ▶ Households do not have full access to bond markets
 - ▶ Key investors are risk averse

- Ingredients:
 - ▶ Households do not have full access to bond markets
 - ▶ Key investors are risk averse
 - endogenous degree of segmentation/preferred habitat

- Ingredients:
 - Households do not have full access to bond markets
 - ► Key investors are risk averse
 - endogenous degree of segmentation/preferred habitat
- Dual equilibrating role of the yield curve:
 - 1. Macro channel: Intertemporal decisions of long-lived agents
 - 2. Finance channel: Short-run portfolio demands from investors

- Ingredients:
 - Households do not have full access to bond markets
 - ► Key investors are risk averse
 - endogenous degree of segmentation/preferred habitat
- Dual equilibrating role of the yield curve:
 - 1. Macro channel: Intertemporal decisions of long-lived agents
 - 2. Finance channel: Short-run portfolio demands from investors
- By affecting equilibrium bond prices and allocations, policy works through both channels

- Theoretical results:
 - QE works if and only if bond markets are disrupted

- Theoretical results:
 - QE works if and only if bond markets are disrupted
 - Declining risk-bearing capacity mitigates the transmission of conventional policy (and FG)

- Theoretical results:
 - QE works if and only if bond markets are disrupted
 - Declining risk-bearing capacity mitigates the transmission of conventional policy (and FG)
- Quantitative results:
 - \blacktriangleright QE \approx 50-75 b.p. cut in policy rate in normal times

- Theoretical results:
 - QE works if and only if bond markets are disrupted
 - Declining risk-bearing capacity mitigates the transmission of conventional policy (and FG)
- Quantitative results:
 - ightharpoonup QE pprox 50-75 b.p. cut in policy rate in normal times
 - \blacktriangleright Conventional policy during crisis $\approx 80\%$ as effective as in normal times

- Theoretical results:
 - QE works if and only if bond markets are disrupted
 - Declining risk-bearing capacity mitigates the transmission of conventional policy (and FG)
- Quantitative results:
 - ightharpoonup QE pprox 50-75 b.p. cut in policy rate in normal times
 - ightharpoonup Conventional policy during crisis pprox 80% as effective as in normal times
- Designing policy going forward:
 - Conventional policy: more aggressive in financial crises

- Theoretical results:
 - QE works if and only if bond markets are disrupted
 - Declining risk-bearing capacity mitigates the transmission of conventional policy (and FG)
- Quantitative results:
 - ightharpoonup QE pprox 50-75 b.p. cut in policy rate in normal times
 - ightharpoonup Conventional policy during crisis pprox 80% as effective as in normal times
- Designing policy going forward:
 - Conventional policy: more aggressive in financial crises
 - ▶ QE rule can be stabilizing

Literature Contributions

- "Preferred habitat" as a key channel for understanding bond markets
 - D'Amico and King (2013), Hamilton and Wu (2012), Greenwood and Vayanos (2014), Gorodnichenko and Ray (2017), Greenwood and Vissing-Jorgensen (2018)
- Few formal models
 - Vayanos and Vila (2009)
- QE in general equilibrium: Market segmentation vs. forward guidance
 - ► Gertler and Karadi (2013), Chen et al (2012), Carlstrom et al (2017), Christensen and Rudebusch (2012), Bauer and Rudebusch (2014), Bhattarai et al (2015)
- Frictions and expected future policy
 - McKay et al (2016), Farhi and Werning (2017), Gabaix (2016), Angeletos and Lian (2018)

New Keynesian Preferred Habitat Framework

- Time $t \in [0, \infty)$ is continuous. Consumption and production:
 - Infinitely-lived households work and consume
 - ▶ Firms produce using labor, face price frictions

New Keynesian Preferred Habitat Framework

- Time $t \in [0, \infty)$ is continuous. Consumption and production:
 - Infinitely-lived households work and consume
 - ▶ Firms produce using labor, face price frictions
- Bonds with maturity $\tau \in [0, T]$. Bond market investors:
 - ▶ HHs save and borrow through a passive index fund
 - ▶ Habitat investors with maturity-specific demand
 - Short-lived arbitrageurs render term structure arbitrage-free

New Keynesian Preferred Habitat Framework

- Time $t \in [0, \infty)$ is continuous. Consumption and production:
 - Infinitely-lived households work and consume
 - Firms produce using labor, face price frictions
- Bonds with maturity $\tau \in [0, T]$. Bond market investors:
 - ▶ HHs save and borrow through a passive index fund
 - ▶ Habitat investors with maturity-specific demand
 - Short-lived arbitrageurs render term structure arbitrage-free
- Government:
 - ► Central bank sets the short nominal rate (and conducts QE)
 - Lump-sum taxes/transfers from investors to HHs

$$dx_t = \varsigma^{-1} (r_t - \bar{r}) dt \tag{IS}$$

$$dx_t = \varsigma^{-1} (r_t - \bar{r}) dt$$
 (IS)

$$\mathrm{d}\mathbf{x}_{t} = \varsigma^{-1} \left(r_{t} - \bar{r} \right) \mathrm{d}t \tag{IS}$$

$$dx_t = \varsigma^{-1} (r_t - \bar{r}) dt$$
 (IS)

$$dx_t = \varsigma^{-1} \left(r_t - \overline{r} \right) dt \tag{IS}$$

• Modification of a benchmark NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{\mathbf{r}}_{t} \equiv \int_{0}^{T} \eta(\tau) R_{t,\tau} \, \mathrm{d}\tau$$
 (ER)

• Modification of a benchmark NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{r}_t \equiv \int_0^T \eta(\tau) \mathbf{R}_{t,\tau} \, \mathrm{d}\tau$$
 (ER)

• Modification of a benchmark NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{r}_t \equiv \int_0^T \frac{\eta(\tau) R_{t,\tau} \, \mathrm{d}\tau}{}$$
 (ER)

• Modification of a benchmark NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au$$
 (ER)

$$d\mathbf{r_t} = -\kappa_r(\mathbf{r_t} - \phi_x \mathbf{x_t} - \mathbf{r}^*) dt + \sigma_r dB_{r,t}$$
 (TR)

• Modification of a benchmark NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au$$
 (ER)

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$
 (TR)

• Modification of a benchmark NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au$$
 (ER)

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$
 (TR)

• Modification of a benchmark NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au$$
 (ER)

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$
 (TR)

Aggregate Dynamics

• Modification of a benchmark NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au$$
 (ER)

• Rule for policy rate r_t (= $\lim_{\tau \to 0} R_{t,\tau}$):

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$
 (TR)

Aggregate Dynamics

• Modification of a benchmark NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au$$
 (ER)

• Rule for policy rate r_t (= $\lim_{\tau \to 0} R_{t,\tau}$):

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$
 (TR)

• Closing the model: equilibrium term structure determination

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$ilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau} \\ = \frac{\alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})}{} ext{(PH)}$$

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

• Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

$$\max_{\boldsymbol{b}_{t,\tau}} E_t \, \mathrm{d}\boldsymbol{W}_t - \frac{a}{2} Var_t \, \mathrm{d}\boldsymbol{W}_t$$
s.t.
$$\mathrm{d}\boldsymbol{W}_t = \left(\boldsymbol{W}_t - \int_0^T \boldsymbol{b}_{t,\tau} \, \mathrm{d}\tau \right) r_t \, \mathrm{d}t + \int_0^T \boldsymbol{b}_{t,\tau} \frac{\mathrm{d}P_{t,\tau}}{P_{t,\tau}} \, \mathrm{d}\tau$$
 (BC)

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

$$\max_{b_{t,\tau}} E_t \, \mathrm{d}W_t - \frac{a}{2} Var_t \, \mathrm{d}W_t$$
s.t.
$$\mathrm{d}W_t = \left(W_t - \int_0^T b_{t,\tau} \, \mathrm{d}\tau\right) r_t \, \mathrm{d}t + \int_0^T b_{t,\tau} \frac{\mathrm{d}P_{t,\tau}}{P_{t,\tau}} \, \mathrm{d}\tau \qquad (BC)$$

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

$$\max_{b_{t,\tau}} E_t \, \mathrm{d}W_t - \frac{a}{2} Var_t \, \mathrm{d}W_t$$
s.t.
$$\mathrm{d}W_t = \left(W_t - \int_0^T b_{t,\tau} \, \mathrm{d}\tau\right) r_t \, \mathrm{d}t + \int_0^T b_{t,\tau} \frac{\mathrm{d}P_{t,\tau}}{P_{t,\tau}} \, \mathrm{d}\tau \qquad (BC)$$

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

$$\max_{b_{t,\tau}} E_t \, \mathrm{d}W_t - \frac{\mathsf{a}}{2} Var_t \, \mathrm{d}W_t$$
s.t.
$$\mathrm{d}W_t = \left(W_t - \int_0^T b_{t,\tau} \, \mathrm{d}\tau\right) r_t \, \mathrm{d}t + \int_0^T b_{t,\tau} \frac{\mathrm{d}P_{t,\tau}}{P_{t,\tau}} \, \mathrm{d}\tau \tag{BC}$$

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

• Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

• Arbitrageurs with mean-variance trade-off in wealth:

$$\max_{b_{t,\tau}} E_t \, \mathrm{d}W_t - \frac{a}{2} Var_t \, \mathrm{d}W_t$$
s.t.
$$\mathrm{d}W_t = \left(W_t - \int_0^T b_{t,\tau} \, \mathrm{d}\tau\right) r_t \, \mathrm{d}t + \int_0^T b_{t,\tau} \frac{\mathrm{d}P_{t,\tau}}{P_{t,\tau}} \, \mathrm{d}\tau \qquad (BC)$$

• Market clearing: $b_{t, au} = - ilde{b}_{t, au}$

• Equilibrium affine term structure: $-\log P_{t,\tau} = A_r(\tau)r_t + C(\tau)$

- Equilibrium affine term structure: $-\log P_{t,\tau} = A_r(\tau)r_t + C(\tau)$
- Effective borrowing rate:

$$\tilde{r}_t = \underbrace{\left[\int_0^T \frac{\eta(\tau)}{\tau} A_r(\tau) d\tau\right]}_{\equiv \hat{A}_r} r_t + \underbrace{\left[\int_0^T \frac{\eta(\tau)}{\tau} C(\tau) d\tau\right]}_{\equiv \hat{C}}$$

Aggregate dynamics

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

$$dx_t = \varsigma^{-1} \left(\hat{A}_r r_t + \hat{C} - \bar{r} \right) dt$$

- Equilibrium affine term structure: $-\log P_{t,\tau} = A_r(\tau)r_t + C(\tau)$
- Effective borrowing rate:

$$\tilde{r}_t = \underbrace{\left[\int_0^T \frac{\eta(\tau)}{\tau} A_r(\tau) d\tau\right]}_{\equiv \hat{A}_r} r_t + \underbrace{\left[\int_0^T \frac{\eta(\tau)}{\tau} C(\tau) d\tau\right]}_{\equiv \hat{C}}$$

Aggregate dynamics

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

$$dx_t = \varsigma^{-1} \left(\hat{A}_r r_t + \hat{C} - \bar{r} \right) dt$$

• \hat{A}_r : dual role of the yield curve

- Equilibrium affine term structure: $-\log P_{t,\tau} = A_r(\tau)r_t + C(\tau)$
- Effective borrowing rate:

$$\tilde{r}_t = \underbrace{\left[\int_0^T \frac{\eta(\tau)}{\tau} A_r(\tau) d\tau\right]}_{\equiv \hat{A}_r} r_t + \underbrace{\left[\int_0^T \frac{\eta(\tau)}{\tau} C(\tau) d\tau\right]}_{\equiv \hat{C}}$$

Aggregate dynamics

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

$$dx_t = \varsigma^{-1} (\hat{A}_r r_t + \hat{C} - \bar{r}) dt$$

- \hat{A}_r : dual role of the yield curve
- If determinacy conditions are met:

$$dr_t = -\lambda_1(\hat{A}_r)(r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$
$$x_t = \omega_x(\hat{A}_r)(r_t - r^{SS})$$

- Equilibrium affine term structure: $-\log P_{t,\tau} = A_r(\tau)r_t + C(\tau)$
- Effective borrowing rate:

$$\tilde{r}_t = \underbrace{\left[\int_0^T \frac{\eta(\tau)}{\tau} A_r(\tau) d\tau\right]}_{\equiv \hat{A}_r} r_t + \underbrace{\left[\int_0^T \frac{\eta(\tau)}{\tau} C(\tau) d\tau\right]}_{\equiv \hat{C}}$$

Aggregate dynamics

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

$$dx_t = \varsigma^{-1} \left(\hat{A}_r r_t + \hat{C} - \bar{r} \right) dt$$

- \hat{A}_r : dual role of the yield curve
- If determinacy conditions are met:

$$dr_t = -\lambda_1(\hat{A}_r)(r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$
$$x_t = \omega_x(\hat{A}_r)(r_t - r^{SS})$$

Characterizing \hat{A}_r (Output Sensitivity)

$$\hat{A}_r = h(\lambda) = \frac{\lambda(\lambda - \kappa_r)}{\varsigma^{-1}\kappa_r \phi_x}$$

Characterizing \hat{A}_r (Output Sensitivity)

$$\hat{A}_r = h(\lambda) = \frac{\lambda(\lambda - \kappa_r)}{\varsigma^{-1}\kappa_r\phi_x}$$

Characterizing \hat{A}_r (Output Sensitivity)

$$\hat{A}_r = h(\lambda) = \frac{\lambda(\lambda - \kappa_r)}{\varsigma^{-1}\kappa_r \phi_x}$$

Characterizing \hat{A}_r (Output Sensitivity)

$$\hat{A}_r = h(\lambda) = \frac{\lambda(\lambda - \kappa_r)}{\varsigma^{-1}\kappa_r\phi_x}$$

Characterizing \hat{A}_r (Output Sensitivity)

$$\hat{A}_r = h(\lambda) = \frac{\lambda(\lambda - \kappa_r)}{\varsigma^{-1}\kappa_r\phi_x}$$

Arbitrageur Portfolio Choice

Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau)\zeta_t$$

$$\zeta_t \equiv a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau)\zeta_t$$

$$\zeta_t \equiv a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau) \frac{\zeta_t}{\zeta_t}$$
$$\zeta_t \equiv a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau)\zeta_t$$

$$\zeta_t \equiv {}_{a}\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) \,\mathrm{d}\tau$$

Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau)\zeta_t$$

$$\zeta_t \equiv a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau)\zeta_t$$

$$\zeta_t \equiv a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

Characterizing \hat{A}_r (Term Structure Sensitivity)

$$\hat{A}_r = g(\lambda) = \int_0^T \eta(\tau) f(\nu(\lambda)\tau) d\tau$$

where
$$f(x) = \frac{1 - e^{-x}}{x}$$
 and $\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$

Characterizing \hat{A}_r (Term Structure Sensitivity)

$$\hat{A}_r = g(\lambda) = \int_0^T \eta(\tau) f(\nu(\lambda)\tau) d\tau$$

where
$$f(x) = \frac{1 - e^{-x}}{x}$$
 and $\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$

Characterizing \hat{A}_r (Term Structure Sensitivity)

$$\hat{A}_r = g(\lambda) = \int_0^T \eta(\tau) f(\nu(\lambda)\tau) d\tau$$

where
$$f(x) = \frac{1 - e^{-x}}{x}$$
 and $\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$

Characterizing \hat{A}_r (Term Structure Sensitivity)

$$\hat{A}_r = g(\lambda) = \int_0^T \eta(\tau) f(\nu(\lambda)\tau) d\tau$$

where
$$f(x) = \frac{1 - e^{-x}}{x}$$
 and $\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$

Characterizing \hat{A}_r (Term Structure Sensitivity)

$$\hat{A}_r = g(\lambda) = \int_0^T \eta(\tau) f(\nu(\lambda)\tau) d\tau$$

where
$$f(x) = \frac{1 - e^{-x}}{x}$$
 and $\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$

General Equilibrium

Existence and Uniqueness

There exists a unique positive eigenvalue of Υ $\lambda_1>0$ for which $g(\lambda_1)=h(\lambda_1)$, which fully characterizes the model equilibrium. Further, this implies $0<\hat{A}_r<1$.

Conventional Policy and Financial Disruptions

Notes: equilibrium changes in sensitivity to the short rate \hat{A}_r as risk aversion a increases.

Conventional Policy and Financial Disruptions

Notes: equilibrium changes in monetary shock reversion λ_1 as risk aversion a increases.

Conventional Policy and Financial Disruptions

Notes: equilibrium changes in output response ω_x to monetary shocks as risk aversion a increases.

Policy Implications

- More aggressive response to output \$\phi_x\$ results
- Higher inertia κ_r results
- Shifts in effective rate weights $\eta(\tau)$ results
- Forward guidance less effective as risk aversion increases details

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})
\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_t
d\beta_t = -\kappa_\beta \beta_t dt$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})$$
$$\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_{t}$$
$$d\beta_{t} = -\kappa_{\beta}\beta_{t} dt$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})
\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_t
d\beta_t = -\kappa_{\beta}\beta_t dt$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})
\beta_{t,\tau} = \bar{\beta}(\tau) + \frac{\theta(\tau)}{\theta_t}\beta_t
d\beta_t = -\kappa_\beta\beta_t dt$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})$$
$$\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_t$$
$$d\beta_t = -\kappa_\beta \beta_t dt$$

Affine functional form of bond prices

$$-\log P_{t,\tau} = A_r(\tau)r_t + A_{\beta}(\tau)\frac{\beta_t}{t} + C(\tau)$$

$$\implies \tilde{r}_t = \hat{A}_r r_t + \hat{A}_{\beta}\beta_t + \hat{C}$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})$$
$$\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_t$$
$$d\beta_t = -\kappa_\beta \beta_t dt$$

· Affine functional form of bond prices

$$-\log P_{t,\tau} = A_r(\tau)r_t + \frac{A_{\beta}(\tau)\beta_t}{A_{\beta}(\tau)\beta_t} + C(\tau)$$

$$\implies \tilde{r}_t = \hat{A}_r r_t + \hat{A}_{\beta}\beta_t + \hat{C}$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})$$
$$\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_t$$
$$d\beta_t = -\kappa_\beta \beta_t dt$$

· Affine functional form of bond prices

$$-\log P_{t,\tau} = A_r(\tau)r_t + A_{\beta}(\tau)\beta_t + C(\tau)$$

$$\implies \tilde{r}_t = \hat{A}_r r_t + \hat{A}_{\beta}\beta_t + \hat{C}$$

Output Response to QE

Notes: plots of output gap response to a QE shock as risk aversion increases.

Output Response to QE

Notes: plots of output gap response to a QE shock as risk aversion increases.

Sticky Prices

• What about when prices are not fixed?

$$dx_t = \varsigma^{-1}(\tilde{r}_t - \pi_t - \bar{r}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

Sticky Prices

What about when prices are not fixed?

$$dx_t = \varsigma^{-1}(\tilde{r}_t - \pi_t - \bar{r}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

• Results go through if determinacy condition is met:

$$\hat{A}_r > \frac{\delta}{\delta \phi_{\pi} + \rho \phi_{\mathsf{x}}}$$

Sticky Prices

What about when prices are not fixed?

$$dx_t = \varsigma^{-1}(\tilde{r}_t - \pi_t - \bar{r}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

Results go through if determinacy condition is met:

$$\hat{A}_r > \frac{\delta}{\delta \phi_{\pi} + \rho \phi_{\mathsf{x}}}$$

• If $\hat{A}_r = 1$ and $\phi_x = 0$, reduces to $\phi_\pi > 1$

Implications – Determinacy

Notes: determinacy condition as risk aversion a increases.

The model is determinate if the solid dark line lies above the dotted light line (light shaded region) and is indeterminate otherwise (dark shaded region).

Implications – Determinacy

Notes: determinacy condition as central bank response to inflation ϕ_{π} increases. The model is determinate if the solid dark line lies above the dotted light line (light shaded region) and is indeterminate otherwise (dark shaded region).

Implications – Determinacy

Notes: determinacy condition as central bank inertia κ_r increases. The model is determinate if the solid dark line lies above the dotted light line (light shaded region) and is indeterminate otherwise (dark shaded region).

Sticky price model with shocks

$$dx_t = \varsigma^{-1} (\tilde{r}_t - \pi_t - \bar{r} - z_{x,t}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t - z_{\pi,t}) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

Sticky price model with shocks

$$dx_t = \varsigma^{-1} (\tilde{r}_t - \pi_t - \bar{r} - z_{x,t}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t - z_{\pi,t}) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

Sticky price model with shocks

$$dx_{t} = \varsigma^{-1} \left(\tilde{r}_{t} - \pi_{t} - \bar{r} - \mathbf{z}_{x,t} \right) dt$$

$$d\pi_{t} = \left(\rho \pi_{t} - \delta x_{t} - \mathbf{z}_{\pi,t} \right) dt$$

$$dr_{t} = -\kappa_{r} \left(r_{t} - \phi_{\pi} \pi_{t} - \phi_{x} x_{t} - r^{*} \right) dt + \sigma_{r} dB_{r,t}$$

Shocks

$$d\mathbf{z}_{i,t} = -\kappa_{z_i} z_{i,t} \, \mathrm{d}t + \sigma_{z_i} \, \mathrm{d}B_{z_i,t}$$

Sticky price model with shocks

$$dx_t = \varsigma^{-1} (\tilde{r}_t - \pi_t - \bar{r} - z_{x,t}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t - z_{\pi,t}) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

Shocks

$$dz_{i,t} = -\kappa_{z_i} z_{i,t} dt + \sigma_{z_i} dB_{z_i,t}$$

Demand factors

$$\beta_{t,\tau} = \bar{\beta}(\tau) + \sum_{k} \beta_{k,t} \theta_{k}(\tau)$$
$$d\beta_{k,t} = -\kappa_{\beta_{k}} \beta_{k,t} dt + \sigma_{\beta_{k}} dB_{\beta_{k},t}$$

Sticky price model with shocks

$$dx_t = \varsigma^{-1} (\tilde{r}_t - \pi_t - \bar{r} - z_{x,t}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t - z_{\pi,t}) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

Shocks

$$dz_{i,t} = -\kappa_{z_i} z_{i,t} dt + \sigma_{z_i} dB_{z_i,t}$$

Demand factors

$$\beta_{t,\tau} = \bar{\beta}(\tau) + \sum_{k} \beta_{k,t} \theta_{k}(\tau)$$
$$d\beta_{k,t} = -\kappa_{\beta_{k}} \beta_{k,t} dt + \sigma_{\beta_{k}} dB_{\beta_{k},t}$$

Generalized Model

Sticky price model with shocks

$$dx_t = \varsigma^{-1} (\tilde{r}_t - \pi_t - \bar{r} - z_{x,t}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t - z_{\pi,t}) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

Shocks

$$dz_{i,t} = -\kappa_{z_i} z_{i,t} dt + \sigma_{z_i} dB_{z_i,t}$$

Demand factors

$$\beta_{t,\tau} = \bar{\beta}(\tau) + \sum_{k} \beta_{k,t} \theta_{k}(\tau)$$
$$d\beta_{k,t} = -\kappa_{\beta_{k}} \beta_{k,t} dt + \sigma_{\beta_{k}} dB_{\beta_{k},t}$$

Stabilizing LSAPs

- Can LSAPs be used to ensure determinacy?
- Endogenous QE purchases:

$$\mathrm{d}\beta_t = -\kappa_\beta \left(\beta_t - \phi_\pi^\beta \pi_t\right) \mathrm{d}t$$

Stabilizing LSAPs

- Can LSAPs be used to ensure determinacy?
- Endogenous QE purchases:

$$\mathrm{d}\beta_t = -\kappa_\beta \left(\beta_t - \frac{\phi_\pi^\beta}{\pi} \pi_t\right) \mathrm{d}t$$

QE and Determinacy

Notes: determinacy conditions as a function of risk aversion (x-axis) and endogenous response of QE to inflation (y-axis). Darker colors correspond to larger values of the unstable eigenvalue. The dotted black line demarcates the region of determinacy.

26

Concluding Remarks

- Develops a unified, parsimonious framework to study conventional and unconventional monetary policies
- Transmission depends crucially on the risk-bearing capacity of financial markets

Concluding Remarks

- Develops a unified, parsimonious framework to study conventional and unconventional monetary policies
- Transmission depends crucially on the risk-bearing capacity of financial markets
- Future work:
 - ► Monetary policy in open economies [Gourinchas, Ray, Vayanos (2019)]
 - Macroprudential policies
 - Debt management

Implications – Conventional Policy

Notes: equilibrium changes in sensitivity to the short rate \hat{A}_r and monetary shock reversion λ_1 as central bank response to output ϕ_x increases.

Implications – Conventional Policy

Notes: equilibrium changes in sensitivity to the short rate \hat{A}_r and monetary shock reversion λ_1 as central bank inertia κ_r increases.

Sensitivity to Long Rates

Notes: different weighting function $\eta(\tau)$ in the determination of the effective borrowing rate \tilde{r}_t .

Sensitivity to Long Rates

Notes: different weighting function $\eta(\tau)$ in the determination of the effective borrowing rate \tilde{r}_t .

Implications – Sensitivity to Long Rates

Notes: equilibrium changes in sensitivity to the short rate \hat{A}_r and monetary shock reversion λ_1 as the weighting function $\eta(\tau)$ shifts towards short-term bonds.

back

Forward Guidance

• Central bank announces a peg: $r_0 = r^{\diamond}$ and

$$\mathrm{d}r_t = \begin{cases} -\kappa_r^{\diamond}(r_t - r^{\diamond})\,\mathrm{d}t + \sigma_r^{\diamond}\,\mathrm{d}B_{r,t} & \text{if } 0 < t < t^{\diamond} \\ -\kappa_r(r_t - \phi_x x_t - r^*)\,\mathrm{d}t + \sigma_r\,\mathrm{d}B_{r,t} & \text{if } t \ge t^{\diamond} \end{cases}$$

Affine coefficient functions during peg:

$$-\log P_{t,\tau} = A_r^{\diamond}(\tau)r_t + C^{\diamond}(\tau)$$
$$\implies \tilde{r}_t = \hat{A}_r^{\diamond}r_t + \hat{C}^{\diamond}$$

Rational expectations dynamics for output:

$$\frac{\partial x_0}{\partial r^{\diamond}} = \omega_x - t^{\diamond} \varsigma^{-1} \hat{A}_r^{\diamond} , \quad \frac{\partial^2 x_0}{\partial r^{\diamond} \partial t^{\diamond}} = -\varsigma^{-1} \hat{A}_r^{\diamond}$$

Response to Forward Guidance

Notes: plots of $\frac{\partial x_0}{\partial r^{\diamond}}$ ("level") and $\frac{\partial^2 x_0}{\partial r^{\diamond} \partial t^{\diamond}}$ ("length") as risk aversion increases.