ADV: Trigonometry (Adv), T1 Trigonometry and Measure of Angles

(Adv)

Trig Ratios, Sine and Cosine Rules (Y11)

Teacher: Troy McMurrich

Exam Equivalent Time: 100.5 minutes (based on HSC allocation of 1.5 minutes approx.

per mark)

T1 Trigonometry and Measure of Angles

HISTORICAL CONTRIBUTION

- T1 Trigonometry and Measure of Angles is a mixture of content that previously belonged to the Standard 2, Mathematics and Ext1 courses. Our analysis has it accounting for an estimated 6.3% of past papers.
- This topic has been split into four sub-topics for analysis purposes: 1-Trig Ratios, Sine and Cosine Rules (2.5%), 2- 3D Trigonometry (0.7%), 3-Bearings (1.3%) and 4-Circular Measure (1.8%).
- This analysis looks at the largest sub-topic Trig Ratios, Sine and Cosine Rules.

HSC ANALYSIS - What to expect and common pitfalls

- *Trig Ratios, Sine and Cosine Rules* is most commonly examined using non-right angled trigonometry, often involving "2-triangle" examples.
- It has been examined in 8 times in the last decade (most recently in 2021) in questions of varying difficulty, producing sub-50% mean marks on 3 occasions.
- This area presents a great opportunity for high scoring, with the 2021 exam allocating 5 very achievable marks over 2 questions.
- Using one exact trig ratio to find others for further calculations has caused problems in the past and should be reviewed (see 2015 Adv 13a).
- The specific syllabus mention of the "ambiguous case" warrants attention and 2021 Q18 along with T1 EQ-Bank 2 should be reviewed.

Questions

1. Trigonometry, 2ADV T1 2016 HSC 1 MC

For the angle
$$heta,\sin heta=rac{7}{25}$$
 and $\cos heta=-rac{24}{25}.$

Which diagram best shows the angle θ ?

2. Trigonometry, 2ADV T1 2013 HSC 2 MC

The diagram shows the line $\emph{\textbf{l}}$.

What is the slope of the line $\emph{\textbf{l}}$?

- (A) $\sqrt{3}$
- (B) $-\sqrt{3}$
- (c) $\frac{1}{\sqrt{3}}$
- (D) $-\frac{1}{\sqrt{3}}$

3. Trigonometry, 2ADV T1 2019 HSC 11a

Using the sine rule, find the value of \boldsymbol{x} correct to one decimal place. (2 marks)

4. Trigonometry, 2ADV T1 2021 HSC 12

A right-angled triangle \boldsymbol{XYZ} is cut out from a semicircle with centre \boldsymbol{O} . The length of the diameter \boldsymbol{XZ} is 16 cm and $\angle \boldsymbol{YXZ}$ = 30°, as shown on the diagram.

- a. Find the length of \boldsymbol{XY} in centimetres, correct to two decimal places. (2 marks)
- b. Hence, find the area of the shaded region in square centimetres, correct to one decimal place. (3 marks)

5. Trigonometry, 2ADV T1 2006 HSC 1d

Find the value of $m{ heta}$ in the diagram. Give your answer to the nearest degree. (2 marks)

6. Trigonometry, 2ADV T1 2016 HSC 12c

Square tiles of side length 20 cm are being used to tile a bathroom.

The tiler needs to drill a hole in one of the tiles at a point P which is 8 cm from one corner and 15 cm from an adjacent corner.

To locate the point \boldsymbol{P} the tiler needs to know the size of the angle $\boldsymbol{\theta}$ shown in the diagram.

Find the size of the angle θ to the nearest degree. (3 marks)

7. Trigonometry, 2ADV T1 2012 HSC 13a

The diagram shows a triangle ABC. The line 2x + y = 8 meets the x and y axes at the points A and B respectively. The point C has coordinates (7,4).

- i. Calculate the distance $m{AB}$. (2 marks)
- ii. It is known that AC=5 and $BC=\sqrt{65}$ (Do NOT prove this) Calculate the size of $\angle ABC$ to the nearest degree. (2 marks)
- iii. The point N lies on AB such that CN is perpendicular to AB. Find the coordinates of N. (3 marks)

8. Trigonometry, 2ADV T1 2006 HSC 4a

In the diagram, ABCD represents a garden. The sector BCD has centre B and $\angle DBC = \frac{5\pi}{6}$

The points $\boldsymbol{A},\boldsymbol{B}$ and \boldsymbol{C} lie on a straight line and $\boldsymbol{A}\boldsymbol{B}=\boldsymbol{A}\boldsymbol{D}=\boldsymbol{3}$ metres.

Copy or trace the diagram into your writing booklet.

- i. Show that $\angle DAB = \frac{2\pi}{3}$. (1 mark)
- ii. Find the length of \emph{BD} . (2 marks)
- iii. Find the area of the garden ABCD. (2 marks)

9. Trigonometry, 2ADV T1 SM-Bank 2

Determine all possible dimensions for triangle ABC given AB=6.2 cm, $\angle ABC=35^{\circ}$ and AC=4.1.

Give all dimensions correct to one decimal place. (3 marks)

10. Trigonometry, 2ADV T1 2005 HSC 3b

The lengths of the sides of a triangle are 7 cm, 8 cm and 13 cm.

- i. Find the size of the angle opposite the longest side. (2 marks)
- ii. Find the area of the triangle. (1 marks)

11. Trigonometry, 2ADV T1 2011 HSC 8a

In the diagram, the shop at \boldsymbol{S} is 20 kilometres across the bay from the post office at \boldsymbol{P} . The distance from the shop to the lighthouse at \boldsymbol{L} is 22 kilometres and $\angle \boldsymbol{SPL}$ is 60°.

Let the distance PL be \boldsymbol{x} kilometres.

- i. Use the cosine rule to show that $x^2 20x 84 = 0$. (1 mark)
- ii. Hence, find the distance from the post office to the lighthouse. Give your answer correct to the nearest kilometre. (2 mark)

12. Trigonometry, 2ADV T1 2017 HSC 13a

Using the cosine rule, find the value of $m{x}$ in the following diagram. (3 marks)

13. Trigonometry, 2ADV T1 2021 HSC 18

The diagram shows a triangle ABC where AC = 25 cm, BC = 16 cm, $\angle BAC$ = 28° and angle ABC is obtuse.

Find the size of the obtuse angle ABC correct to the nearest degree. (3 marks)

14. Trigonometry, 2ADV T1 2015 HSC 13a

The diagram shows ΔABC with sides AB=6 cm, BC=4 cm and AC=8 cm.

i. Show that $\cos A = rac{7}{8}$. (1 mark)

ii. By finding the exact value of $\sin A$, determine the exact value of the area of ΔABC . (2 marks)

15. Trigonometry, 2ADV T1 2007 HSC 4c

An advertising logo is formed from two circles, which intersect as shown in the diagram.

The circles intersect at $m{A}$ and $m{B}$ and have centres at $m{O}$ and $m{C}$.

The radius of the circle centred at ${\bf C}$ is 1 metre and the radius of the circle centred at ${\bf C}$ is $\sqrt{3}$ metres. The length of ${\bf OC}$ is 2 metres.

- i. Use Pythagoras' theorem to show that $\angle OAC = \frac{\pi}{2}$. (1 mark)
- ii. Find $\angle ACO$ and $\angle AOC$. (2 marks)
- iii. Find the area of the quadrilateral *AOBC*. (1 mark)
- iv. Find the area of the major sector ACB. (1 mark)
- v. Find the total area of the logo (the sum of all the shaded areas). (2 marks)

16. Trigonometry, 2ADV T1 2009 HSC 5c

The diagram shows a circle with centre O and radius 2 centimetres. The points A and B lie on the circumference of the circle and $\angle AOB = \theta$.

i. There are two possible values of $\, heta\,$ for which the area of $\,\Delta AOB\,$ is $\,\sqrt{3}\,$ square centimetres. One value is $\,\frac{\pi}{3}\,$.

Find the other value. (2 marks)

- ii. Suppose that $heta=rac{\pi}{3}$
- (1) Find the area of sector AOB (1 mark)
- (2) Find the exact length of the perimeter of the minor segment bounded by the chord ${\it AB}$ and the arc ${\it AB}$. (2 marks)

17. Trigonometry, 2ADV T1 2018 HSC 14a

In ΔKLM , KL has length 3, LM has length 6 and $\angle KLM$ is 60°. The point N is chosen on side KM so that LN bisects $\angle KLM$. The length LN is x.

- i. Find the exact value of the area of ΔKLM . (1 mark)
- ii. Hence, or otherwise, find the exact value of \boldsymbol{x} . (2 marks)

18. Trigonometry, 2ADV T1 2013 HSC 14c

The right-angled triangle ABC has hypotenuse AB=13. The point D is on AC such that DC=4, $\angle DBC=\frac{\pi}{6}$ and $\angle ABD=x$.

Using the sine rule, or otherwise, find the exact value of $\sin x$. (3 marks)

19. Trigonometry, 2ADV T1 2005 HSC 9b

The triangle ABC has a right angle at B, $\angle BAC = \theta$ and AB = 6. The line BD is drawn perpendicular to AC. The line DE is then drawn perpendicular to BC. This process continues indefinitely as shown in the diagram.

- i. Find the length of the interval BD, and hence show that the length of the interval EF is $6\sin^3\theta$. (2 marks)
- ii. Show that the limiting sum

$$BD + EF + GH + \cdot \cdot \cdot$$

is given by $6\sec\theta\tan\theta$. (3 marks)

Copyright © 2004-21 The State of New South Wales (Board of Studies, Teaching and Educational Standards NSW)

Worked Solutions

1. Trigonometry, 2ADV T1 2016 HSC 1 MC

Since $\sin \theta > 0$ and $\cos \theta < 0$,

$$rac{\pi}{2} < heta < \pi$$
 $\Rightarrow B$

2. Trigonometry, 2ADV T1 2013 HSC 2 MC

Gradient is negative

(slopes from top left to bottom right)

$$\tan 60^{\circ} = \sqrt{3}$$

$$\therefore$$
 Gradient is $-\sqrt{3}$

$$\Rightarrow B$$

3. Trigonometry, 2ADV T1 2019 HSC 11a

$$\frac{x}{\sin 40^{\circ}} = \frac{8}{\sin 110^{\circ}}$$
$$x = \frac{8 \times \sin 40^{\circ}}{\sin 110^{\circ}}$$
$$= 5.47$$
$$= 5.5 (1 \text{ d.p.})$$

4. Trigonometry, 2ADV T1 2021 HSC 12

a.
$$\cos 30^{\circ} = \frac{XY}{16}$$

$$XY = 16 \cos 30^{\circ}$$

$$= 13.8564$$

$$= 13.86 \text{ cm (2 d.p.)}$$

b. Area of semi-circle $=\frac{1}{2} \times \pi r^2$ $=\frac{1}{2}\pi \times 8^2$ $=100.531~\mathrm{cm}^2$

Area of
$$\Delta XYZ=rac{1}{2}ab\sin C$$

$$=rac{1}{2} imes16 imes13.856 imes\sin30^\circ$$

$$=55.42~\mathrm{cm}^2$$

∴ Shaded Area =
$$100.531 - 55.42$$

= 45.111
= $45.1 \text{ cm}^2 \text{ (1 d.p.)}$

5. Trigonometry, 2ADV T1 2006 HSC 1d

Using the sine rule

$$\frac{\sin \theta}{5} = \frac{\sin 33^{\circ}}{9}$$

$$\sin \theta = \frac{5 \times \sin 33^{\circ}}{9}$$

$$= 0.30257...$$

$$\therefore \theta = 17.612...$$

$$= 18^{\circ} \text{ (nearest degree)}$$

6. Trigonometry, 2ADV T1 2016 HSC 12c

$$\alpha + \theta = 90$$

Using the cosine rule,

$$\cos lpha = rac{20^2 + 15^2 - 8^2}{2 \times 20 \times 15} = 0.935$$
 $lpha = 20.7...$

$$\therefore \theta = 90 - 20.7...$$

$$= 69.22...$$

$$= 69^{\circ} \text{ (nearest degree)}$$

- 7. Trigonometry, 2ADV T1 2012 HSC 13a
- i. Find distance AB:

Find A,
$$y = 0$$

$$2x + 0 = 8$$
$$x = 4 \Rightarrow A(4, 0)$$

Find B,
$$x = 0$$

$$0+y=8 \Rightarrow B(0,8)$$

Using Pythagoras:

$$AB^2 = OB^2 + OA^2$$
$$= 8^2 + 4^2$$
$$= 80$$

$$\therefore AB = \sqrt{80}$$
$$= 4\sqrt{5} \text{ units}$$

ii. Find $\angle ABC$:

Using cosine rule

$$\cos \angle ABC = \frac{AB^{2} + BC^{2} - AC^{2}}{2 \times AB \times BC}$$

$$= \frac{\left(4\sqrt{5}\right)^{2} + \left(\sqrt{65}\right)^{2} - 5^{2}}{2 \times 4\sqrt{5} \times \sqrt{65}}$$

$$= \frac{80 + 65 - 25}{8 \times \sqrt{325}}$$

$$= \frac{120}{40\sqrt{13}}$$

$$= \frac{3}{\sqrt{13}}$$

$$= 0.83205...$$

$$\therefore \angle ABC = 33.690...$$

$$= 34^{\circ} \text{ (nearest degree)}$$

iii. Find
$$N$$
:

$$AB$$
 is $2x + y = 8$

$$\Rightarrow$$
 Gradient $AB = -2$

 \therefore Gradient of $CN = \frac{1}{2}$ $(m_1m_2 = -1 \text{ for } \perp \text{ lines})$

Equation of CN, $m = \frac{1}{2}$ through (7, 4)

$$y - 4 = \frac{1}{2}(x - 7)$$

$$2y - 8 = x - 7$$

$$x-2y+1=0$$

MARKER'S COMMENT: Many students could not find the correct equation on *CN* because they took its gradient to be the reciprocal of *AB* and not the *negative* reciprocal.

N is intersection of AB and CN

$$2x + y - 8 = 0 \dots (1)$$

$$x - 2y + 1 = 0 \dots (2)$$

Multiply
$$(1) \times 2$$

$$4x + 2y - 16 = 0 \dots (3)$$

Add
$$(2) + (3)$$

$$5x - 15 = 0$$

$$x = 3$$

Substitute x = 3 into (1)

$$2(3) + y - 8 = 0 \Rightarrow y = 2$$

 $\therefore N(3,2)$

8. Trigonometry, 2ADV T1 2006 HSC 4a

Show
$$\angle DAB = \frac{2\pi}{3}$$

$$\angle DBA = \pi - \frac{5\pi}{6} \quad (\pi \text{ radians in straight angle } ABC)$$

$$= \frac{\pi}{6} \text{ radians}$$

$$\therefore \angle BDA = \frac{\pi}{6}$$
 radians (base angles of isosceles $\triangle ADB$)

$$\therefore \angle DAB = \pi - \left(\frac{\pi}{6} + \frac{\pi}{6}\right) \text{ (angle sum of } \Delta ADB)$$

$$= \frac{2\pi}{3} \text{ radians } \dots \text{ as required}$$

ii. Using the cosine rule:

$$BD^{2} = AD^{2} + AB^{2} - 2 \times AD \times AB \times \cos \frac{2\pi}{3}$$

$$= 9 + 9 - (2 \times 3 \times 3 \times -0.5)$$

$$= 27$$

$$\therefore BD = \sqrt{27}$$

$$= 3\sqrt{3} \text{ m}$$

iii. Area of
$$\Delta ADB=rac{1}{2}ab\sin C$$

$$=rac{1}{2}\times 3\times 3\times \sinrac{2\pi}{3}$$

$$=rac{9}{2} imesrac{\sqrt{3}}{2}$$

$$=\frac{9\sqrt{3}}{4}\ m^{_2}$$

Area of sector BCD

$$= \frac{\frac{5\pi}{6}}{2\pi} \times \pi r^2$$

$$= \frac{5\pi}{12} \times (3\sqrt{3})^2$$

$$= \frac{45\pi}{4} \text{ m}^2$$

 \therefore Area of garden ABCD

$$= \frac{9\sqrt{3}}{4} + \frac{45\pi}{4}$$
$$= \frac{9\sqrt{3} + 45\pi}{4} m^{2}$$

9. Trigonometry, 2ADV T1 SM-Bank 2

Using the sine rule:

$$\frac{\sin\angle ACB}{6.2} = \frac{\sin 35^{\circ}}{4.1}$$

$$\sin\angle ACB = \frac{6.2 \times \sin 35^{\circ}}{4.1}$$

$$= 0.8673...$$

$$\angle ACB = 60.15...^{\circ} \text{ or } 119.84...^{\circ}$$

If
$$\angle ACB = 60.15^{\circ}$$
,
 $\angle BAC = 180 - (35 + 60.15) = 84.85^{\circ}$

$$\begin{split} \frac{BC}{\sin 84.85} &= \frac{4.1}{\sin 35^{\circ}} \\ BC &= 7.11... \\ &= 7.1 \text{ cm} \end{split}$$

If
$$\angle ACB = 119.85^{\circ}$$
,
 $\angle BAC = 180 - (35 + 119.85) = 25.15^{\circ}$

$$\frac{BC}{\sin 25.15} = \frac{4.1}{\sin 35^{\circ}}$$

$$BC = 3.03...$$

$$= 3.0 \text{ cm}$$

- ... Possible dimensions are:
 - 7.1 cm, 6.2 cm, 4.1 cm or
 - 3.0 cm, 6.2 cm, 4.1 cm.

10. Trigonometry, 2ADV T1 2005 HSC 3b

i.

 $\angle ABC$ is opposite the longest side Using the cosine rule

$$\cos \angle ABC = \frac{7^2 + 8^2 - 13^2}{2 \times 7 \times 8}$$
$$= -\frac{1}{2}$$

Since $\cos 60^{\circ} = \frac{1}{2}$ and \cos is negative

in 2nd quadrant,

$$\angle ABC = 180 - 60$$
$$= 120^{\circ}$$

ii. Using the sine rule

Area
$$\Delta ABC=rac{1}{2} ab \sin C$$

$$=rac{1}{2} imes 7 imes 8 \sin 120^{\circ}$$

$$=28 imes rac{\sqrt{3}}{2}$$

$$=14\sqrt{3} ext{ cm}^{2}$$

- 11. Trigonometry, 2ADV T1 2011 HSC 8a
- i. Using the cosine rule

$$egin{align} \cos 60^\circ &= rac{x^2 + SP^2 - SL^2}{2 imes x imes 20} \ &rac{1}{2} &= rac{x^2 + 20^2 - 22^2}{40x} \ &20x &= x^2 - 84 \ \end{matrix}$$

$$\therefore x^2 - 20x - 84 = 0 \quad ... \text{ as required}$$

ii. Find LP:

$$x^{2} - 20x - 84 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{20 \pm \sqrt{20^{2} - 4 \times 1 \times (-84)}}{2}$$

$$= \frac{20 \pm \sqrt{736}}{2}$$

$$= 23.546... (x > 0)$$

$$= 24 \text{ km (nearest km)}$$

12. Trigonometry, 2ADV T1 2017 HSC 13a

Cosine Rule:

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

$$13^{2} = (x - 4)^{2} + (x + 4)^{2} - 2(x - 4)(x + 4)\cos 60^{\circ}$$

$$169 = x^{2} - 8x + 16 + x^{2} + 8x + 16 - (x^{2} - 16)$$

$$169 = x^{2} + 48$$

$$x^{2} = 121$$

$$\therefore x = 11, \quad (x \neq -11)$$

13. Trigonometry, 2ADV T1 2021 HSC 18

Using the sine rule:

$$rac{\sin heta}{25} = rac{\sin 28^{\circ}}{16}$$
 $\sin heta = rac{25 imes \sin 28^{\circ}}{16}$
 $\sin heta = 0.73355$
 $heta = 47^{\circ}$

$$\therefore \angle ABC = 180 - 47$$
$$= 133^{\circ}$$

- 14. Trigonometry, 2ADV T1 2015 HSC 13a
- i. Show $\cos A = \frac{7}{8}$

Using the cosine rule

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$= \frac{8^2 + 6^2 - 4^2}{2 \times 8 \times 6}$$

$$= \frac{64 + 36 - 16}{96}$$

$$= \frac{84}{96}$$

$$= \frac{7}{8} \dots \text{ as required}$$

ii.

$$a^{2} + 7^{2} = 8^{2}$$

$$a^{2} + 49 = 64$$

$$a^{2} = 15$$

$$a = \sqrt{15}$$

$$\therefore \sin A = \frac{\sqrt{15}}{8}$$

$$\therefore$$
 Area $\triangle ABC = rac{1}{2}bc\sin A$
$$= rac{1}{2} imes 8 imes 6 imes rac{\sqrt{15}}{8}$$

$$= 3\sqrt{15} \ ext{cm}^2$$

♦ Mean mark 40%.

i.

$\text{In } \Delta AOC$

$$AO^{2} + AC^{2} = 1^{2} + \sqrt{3}^{2}$$

$$= 1 + 3$$

$$= 4$$

$$= OC^{2}$$

 $\therefore \Delta AOC$ is right-angled and $\angle OAC = \frac{\pi}{2}$

ii.
$$\sin \angle ACO = \frac{1}{2}$$

$$\therefore \angle ACO = \frac{\pi}{6}$$

$$\sin \angle AOC = \frac{\sqrt{3}}{2}$$

$$\therefore \angle AOC = \frac{\pi}{3}$$

iii. Area AOBC

$$= 2 imes ext{Area} \, \Delta AOC$$

$$=2 imesrac{1}{2} imes b imes h$$

$$=2\times\frac{1}{2}\times1\times\sqrt{3}$$

$$=\sqrt{3}\ m^2$$

iv.
$$\angle ACB = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3}$$

$$\therefore \angle ACB \, (\text{reflex}) = 2\pi - \frac{\pi}{3}$$

$$=\frac{5\pi}{3}$$

Area of major sector ACB

$$= \frac{\theta}{2\pi} \times \pi r^{2}$$

$$= \frac{\frac{5\pi}{3}}{2\pi} \times \pi (\sqrt{3})^{2}$$

$$= \frac{5\pi}{6} \times 3$$

$$= \frac{5\pi}{2} \text{ m}^{2}$$

v.
$$\angle AOB = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$$

$$\therefore$$
 $\angle AOB$ (reflex) $= 2\pi - \frac{2\pi}{3}$ $= \frac{4\pi}{3}$

Area of major sector AOB

$$= \frac{\frac{4\pi}{3}}{2\pi} \times \pi \times 1^{2}$$
$$= \frac{2\pi}{3} \text{ m}^{2}$$

... Total area of the logo

$$= \frac{5\pi}{2} + \frac{2\pi}{3} + \text{Area } AOBC$$

$$= \frac{15\pi + 4\pi}{6} + \sqrt{3}$$

$$= \left(\frac{19\pi + 6\sqrt{3}}{6}\right) \text{m}^2$$

16. Trigonometry, 2ADV T1 2009 HSC 5c

i. Area
$$\triangle AOB = \frac{1}{2}ab\sin\theta$$

$$= \frac{1}{2} \times 2 \times 2 \times \sin\theta$$

$$= 2\sin\theta$$

$$2\sin\theta = \sqrt{3} \quad \text{(given)}$$

$$\sin\theta = \frac{\sqrt{3}}{2}$$

$$\therefore \theta = \frac{\pi}{3}, \ \pi - \frac{\pi}{3}$$

$$= \frac{\pi}{3}, \ \frac{2\pi}{3}$$

 \therefore The other value of θ is $\frac{2\pi}{3}$ radians

ii. (1) Area of sector
$$AOB=\pi r^2 imes rac{ heta}{2\pi}$$

$$=rac{1}{2}r^2 heta$$

$$=rac{1}{2} imes 2^2 imes rac{\pi}{3}$$

$$=rac{2\pi}{3} ext{ cm}^2$$

ii. (2) Using the cosine rule:

$$AB^{2} = OA^{2} + OB^{2} - 2 \times OA \times OB \times \cos \theta$$

$$= 2^{2} + 2^{2} - 2 \times 2 \times 2 \times \cos \left(\frac{\pi}{3}\right)$$

$$= 4 + 4 - 4$$

$$= 4$$

$$\therefore AB = 2$$

$$Arc\ AB = 2\pi r imes rac{ heta}{2\pi} \ = r heta$$

$$=\frac{2\pi}{3}$$
 cm

$$\therefore \text{ Perimeter} = \left(2 + \frac{2\pi}{3}\right) \text{cm}$$

- 17. Trigonometry, 2ADV T1 2018 HSC 14a
- i. Using sine rule:

Area
$$\Delta KLM = \frac{1}{2} \times 3 \times 6 \times \sin 60^{\circ}$$

$$= \frac{9\sqrt{3}}{2} u^{2}$$

ii. Area $\Delta KLN + \text{Area } \Delta NLM = \text{Area } \Delta KLM$

$$rac{1}{2} imes 3 imes x imes \sin 30^\circ + rac{1}{2} imes x imes 6 imes \sin 30^\circ = rac{9\sqrt{3}}{2}$$

♦ Mean mark 37%.

$$\frac{3}{4}x + \frac{3}{2}x = \frac{9\sqrt{3}}{2}$$

$$\frac{9}{4}x = \frac{9\sqrt{3}}{2}$$

$$\therefore x = \frac{9\sqrt{3}}{2} \times \frac{4}{9}$$
$$= 2\sqrt{3}$$

18. Trigonometry, 2ADV T1 2013 HSC 14c

Find $\angle ADB$

$$egin{aligned} egin{aligned} \angle ADB &= rac{\pi}{6} + rac{\pi}{2} & ext{(exterior angle of } \Delta BDC ext{)} \ &= rac{2\pi}{3} & ext{radians} \end{aligned}$$

Find AD

$$\tan\left(\frac{\pi}{6}\right) = \frac{4}{BC}$$

$$\frac{1}{\sqrt{3}} = \frac{4}{BC}$$

$$BC = 4\sqrt{3}$$

STRATEGY TIP: The hint to use the sine rule should flag to students that they will be dealing in nonright angled trig (i.e. $\triangle ABD$) and

to direct their energies at initially finding $\angle ADB$ and AD.

♦ Mean mark 36%

Using Pythagoras:

$$AC^{2} + BC^{2} = AB^{2}$$

$$AC^{2} + (4\sqrt{3})^{2} = 13^{2}$$

$$AC^{2} = 169 - 48$$

$$= 121$$

$$\Rightarrow AC = 11$$

$$\therefore AD = AC - DC$$

$$= 11 - 4$$

$$= 7$$

Using sine rule:

$$\frac{AB}{\sin \angle BDA} = \frac{AD}{\sin x}$$

$$\frac{13}{\sin\left(\frac{2\pi}{3}\right)} = \frac{7}{\sin x}$$

$$13 \times \sin x = 7 \times \sin\left(\frac{2\pi}{3}\right)$$

$$\sin x = \frac{7}{13} \times \sin\left(\frac{2\pi}{3}\right)$$

$$= \frac{7}{13} \times \frac{\sqrt{3}}{2}$$

$$=\frac{7\sqrt{3}}{26}$$

$$\therefore \text{ The exact value of } \sin x = \frac{7\sqrt{3}}{26}.$$

19. Trigonometry, 2ADV T1 2005 HSC 9b

i.

Show
$$EF = 6 \sin^3 \theta$$

In $\triangle ADB$

$$\sin heta = rac{DB}{6}$$

$$DB = 6 \sin \theta$$

$$\angle ABD = 90 - \theta$$
 (angle sum of $\triangle ADB$)

$$\therefore \angle DBE = \theta \ (\angle ABE \text{ is a right angle})$$

In $\triangle BDE$:

$$\sin \theta = \frac{DE}{DB}$$
$$= \frac{DE}{6 \sin \theta}$$

$$DE=6\sin^2 heta$$

$$\angle BDE = 90 - \theta$$
 (angle sum of ΔDBE)

$$\angle EDF = \theta$$
 ($\angle FDB$ is a right angle)

In $\triangle DEF$:

$$\sin heta = rac{EF}{DE}$$

$$= rac{EF}{6 \sin^2 heta}$$

$$\therefore EF = 6 \sin^3 \theta$$
 ...as required

ii. Show
$$BD + EF + GH \dots$$

$${\rm has\ limiting\ sum}\ = 6\sec\theta\tan\theta$$

$$\underbrace{6\sin\theta + 6\sin^3\theta + \dots}_{\text{GP where } a=6\sin\theta, \ r=\sin^2\theta}$$

Since
$$0 < \theta < 90^{\circ}$$

 $-1 < \sin \theta < 1$
 $0 < \sin^2 \theta < 1$

$$\therefore |r| < 1$$

$$\therefore S_{\infty} = \frac{a}{1-r}$$

$$= \frac{6 \sin \theta}{1 - \sin^2 \theta}$$

$$= \frac{6 \sin \theta}{\cos^2 \theta}$$

$$= 6 \times \frac{1}{\cos \theta} \times \frac{\sin \theta}{\cos \theta}$$

$$= 6 \sec \theta \tan \theta \dots \text{as required.}$$

Copyright © 2016-2022 M2 Mathematics Pty Ltd (SmarterMaths.com.au)