

NOSC / TR 1740 A 0 49268



NOSC / TR 171

IC FILE COPY

**Technical Report 171** 

# EVALUATION OF MULTIPORT FIBER-OPTIC BUNDLE COUPLERS

DE Altman TA Meador

28 October 1977

Test and Evaluation, 1 July 1976 to 30 September 1977

Prepared for NAVAL AIR SYSTEMS COMMAND Washington, DC 20360

Approved for public release; distribution is unlimited

NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CALIFORNIA 92152





#### NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152

## AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

RR GAVAZZI, CAPT USN

**HL BLOOD** 

Commander

**Technical Director** 

#### ADMINISTRATIVE INFORMATION

Work was conducted by personnel of NOSC under Program Element 62762, Project WF54583, Task Area A03A-360G/003B and Work Unit F227. This report covers work performed between 1 July 1976 and 30 September 1977 and was approved for publication 28 October 1977.

Released by WE Richards, Head Communications Research and Technology Division, and

RS Rios, Head Information Transfer Division Under authority of RO Eastman, Head Communications Systems and Technology Department, and

CA Rose, CDR USN, Head Command Control and Communications Systems Department UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

|                                                                                                                                       | READ INSTRUCTIONS BEFORE COMPLETING FORM           |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                                                                                                                       | CESSION NO. 3. RECIPIENT'S CATALOG NUMBER          |
| NOSC Technical Report 171 (TR 171) ✓                                                                                                  |                                                    |
| 4. TITLE (and Subtitle)                                                                                                               | 9 5. TYPE OF REPORT & PERIOD COVER                 |
| EVALUATION OF MULTIPORT FIBER-OPTIC BUNDLE                                                                                            | Test and Evaluation rept.                          |
| COUPLERS .                                                                                                                            | 1 Jul 1976 to 30 September 1977,                   |
| COUPLERS                                                                                                                              | L SERPORNING ORG. REPORT HUMBER                    |
| 7. ANTHOR(s)                                                                                                                          | 8. CONTRACT OR GRANT NUMBER(*)                     |
|                                                                                                                                       |                                                    |
| DE Altman                                                                                                                             |                                                    |
| TAMeador                                                                                                                              | (6)                                                |
| 9. HERFORMING ORGANIZATION NAME AND ADDRESS                                                                                           | 10. PROGRAM ELEMENT, PROJECT, TAS                  |
| Naval Ocean Systems Center V                                                                                                          | 62762; WF54583 A03A-360G/003B                      |
| San Diego, CA 92152                                                                                                                   | (NOSC F227)                                        |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                                               | 12. REPORT DATE                                    |
|                                                                                                                                       | 111                                                |
| Naval Air Systems Command                                                                                                             | 28 October 1977                                    |
| Washington, DC 20360                                                                                                                  | 24                                                 |
| 14. MONITORING AGENCY NAME & ABDRESS(II different from Control                                                                        | lling Office) 15. SECURITY CLASS. (of this report) |
| (12)942                                                                                                                               | UNCLASSIFIED                                       |
| ( ) alpo                                                                                                                              |                                                    |
|                                                                                                                                       | 154. DECLASSIFICATION DOWNGRADING                  |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                                           |                                                    |
| Approved for public release; distribution is unlimited.  14) NOSC/TR-171                                                              |                                                    |
| 7/100C/11-212                                                                                                                         |                                                    |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20,                                                                      | II dillarent from Reports                          |
| The bist Ribbillon STATEMENT (of the abstract shibited in block 20,                                                                   |                                                    |
|                                                                                                                                       |                                                    |
|                                                                                                                                       |                                                    |
|                                                                                                                                       |                                                    |
| 18. SUPPLEMENTARY NOTES                                                                                                               |                                                    |
|                                                                                                                                       |                                                    |
|                                                                                                                                       |                                                    |
|                                                                                                                                       |                                                    |
|                                                                                                                                       |                                                    |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by                                                                  | block number)                                      |
|                                                                                                                                       | block number)                                      |
| 19. KEY WORDS (Continue on reverse side if necessary and identity by Fiber-optic couplers  Data bus                                   | block number)                                      |
| Fiber-optic couplers                                                                                                                  | block number)                                      |
| Fiber-optic couplers Data bus                                                                                                         | block number)                                      |
| Fiber-optic couplers Data bus Electro-optical transmission                                                                            |                                                    |
| Fiber-optic couplers  Data bus  Electro-optical transmission  20. ABSTRACT (Continue on reverse side if necessary and identify by its | olock number)                                      |
| Fiber-optic couplers Data bus Electro-optical transmission                                                                            | olock number)                                      |
| Fiber-optic couplers  Data bus  Electro-optical transmission  20. ABSTRACT (Continue on reverse side if necessary and identify by its | olock number)                                      |
| Fiber-optic couplers  Data bus  Electro-optical transmission  20. ABSTRACT (Continue on reverse side if necessary and identify by its | olock number)                                      |
| Fiber-optic couplers  Data bus  Electro-optical transmission  20. ABSTRACT (Continue on reverse side if necessary and identify by its | olock number)                                      |
| Fiber-optic couplers  Data bus  Electro-optical transmission  20. ABSTRACT (Continue on reverse side if necessary and identify by its | olock number)                                      |

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

93 159 48

# CONTENTS

| INTRODUCTION page 3                |
|------------------------------------|
| BACKGROUND3                        |
| MULTIPORT COUPLER OPERATION 4      |
| COUPLER PROCUREMENT AND TESTING 6  |
| CONCLUSIONS 12                     |
| Observations 13 Recommendations 13 |
| APPENDIX A: LABORATORY DATA 15     |

# **ILLUSTRATIONS**

- Coupler operation . . . page 4 Multiport couplers . . . 7 2 3 Coupler loss-measuring setup . . . 8 Nine-port coupler construction details . . . 10 **TABLES** Data for coupler number three . . . page 8
- Summary of coupler performance data . . . 9 3 Test results . . . 12

| ACCESSION<br>NTIS | White Section (                             |
|-------------------|---------------------------------------------|
| DDC               | Baff Section [                              |
| UNANNOUN          | CED                                         |
| JUSTIFICAT        | 10N                                         |
| ву                | TOTAL ADMITT COSTS                          |
| DISTRIBUT         | ION/AVAILABILITY CORES                      |
| DISTRIBUT         | ION/AVAILABILITY COLES VAIL. and/or SP. CIA |

#### INTRODUCTION

This effort was carried out as part of the Fiber-Optic Device Technology Program, the purpose of which is to develop and evaluate the feasibility and practicability of Naval fiber-optic technology. The goal has been to evaluate the performance of multiport fiber-optic couplers designed for use with multifilament fiber bundles in data-bus systems. The results obtained are to be used to identify further tasks required for coupler development. Such tasks will be carried out under the Fiber-Optic Device Technology and Manufacturing Technology programs.

#### BACKGROUND

Military data-bus technology has been developed to fulfill platform operational requirements for increased maneuverability, survivability, reliability, and maintainability. The fundamental approach is to use a single common transmission path, called a bus, for most signal transfer within an electronic system. Use of the bus is obtained by system equipments through terminals which perform signal conversion, message processing, and traffic monitoring. Terminals obtain access to the bus by means of couplers. A coupler diverts a portion of the signal power present on the bus to the terminal and directs signal power originating at the terminal onto the bus.

Research, development, and operational experience have been combined to codify aircraft data-bus technology resulting in the promulgation of two standards, MIL-STD-1553A and MIL-G-85013. Surface-platform data-bus technology is being developed through the Shipboard Data Multiplex System (SDMS) program under NAVSEA sponsorship. The aircraft standards and the evolving shipboard system utilize wire-guided communications. On aircraft the use of shielded twisted-pair cable is specified and the SDMS uses coaxial cable.

Wire transmission is vulnerable to disruption by electromagnetic interference from such sources as switching equipment, transmitters, lightning strikes, or a nuclear electromagnetic pulse. On the other hand, glass fibers are transmissive only in the optical portion of the electromagnetic spectrum and are insensitive to radiation at lower frequencies. Thus, a system employing fiber-optic technology should enjoy a higher degree of immunity to electromagnetic interference than one utilizing metallic transmission.

Two fundamental configurations are noteworthy in fiber-optic data-bus design <sup>1,2</sup>. One, the serially tapped bus, is based upon the allocation of a dedicated coupler to each terminal. Each coupler, analogous to a coaxial tee, is spliced into the data bus near the terminal it serves. As with a similarly constructed wire bus, the end-to-end loss of such a system of cascaded lossy components increases exponentially with the number of couplers. The second configuration, the star, or radial-arm bus, uses a single multiport coupler which is shared by, and connected directly to all terminals. The multiport coupler represents a single lumped loss which increases linearly with the number of terminals. Thus, a bus of many terminals will have a much lower loss when built with the multiport coupler.

<sup>&</sup>lt;sup>1</sup>Milton, AF, and Brown, LW, Nonreciprocal Access to Multiterminal Optical Data Highways, IEEE/OSA CLEA, Washington, DC, May 1973

<sup>&</sup>lt;sup>2</sup>Hudson, MC, and Thiel, FL, Applied Optics, 13, 2540, 1974

#### MULTIPORT COUPLER OPERATION

The multiport coupler accepts optical power from any input terminal connected to it and distributes that power equally among all output terminals. Typically, a multiport coupler consists of a scrambling block and connecting waveguides as shown in figure 1a. These parts are assembled and placed in a housing which provides access to the connecting waveguides through connectors to which terminated fiber bundles are attached. The bundles extend between the coupler and the terminals.

Optical power travels through a cable to the coupler where it enters a connecting waveguide. Because of the nature of the optical power source and the fiber-optic bundles, the spatial characteristics of the power entering the waveguide can be approximated by a cone of light. The cone of light in figure 1a leaving any waveguide on the left side of the block spreads across the cross-section of the block and over all the waveguides on the right. The maximum input-cone angle that will experience total internal reflection at the side surface of the block is determined by the refractive index difference at this boundary. Figure 1b shows a variation of the multiport coupler represented in figure 1a. A mirrored surface on the right-hand side of the mixing block directs the optical power back toward the left-hand side where it entered. In this configuration, the input waveguides also serve as output waveguides.



Figure 1. Coupler operation.

Previous discussions of multiport coupler theory have shown that for efficient operaation, a coupler must match or exceed the numerical aperture (NA) of the connecting fiber bundles and that the cross sectional area of the scrambling block must equal the sum of the cross sectional areas of the connecting fiber bundles. The NAs of the bundles, waveguides, and scrambling block are determined by the difference of the indices of refraction of their core (N<sub>core</sub>) and cladding (N<sub>clad</sub>) materials. In particular, the limiting NA is

$$NA = (N_{core}^2 - N_{clad}^2)^{1/2}$$
 (1)

so that the waveguides and block will internally reflect light rays entering at angles  $(\theta)$  to their axes of up to

$$\theta_{\text{max}} = \sin^{-1}(\text{NA}) \tag{2}$$

The optical power entering the scrambling block within  $\theta_{max}$  will fan out until reflected at the core/clad interface. In so doing, it will spread over the cross sectional area of the block which, to conserve power, must equal the sum of the areas of the data-bus bundles. Thus, the maximum cross sectional dimension, D, and the minimum length, L, of the optical path in the scrambling block are determinable. In the reflective coupler of figure 1b, D will be of the same magnitude as in figure 1a. However, L need only be half the value of L in figure 1a since the optical power will traverse the length twice. Distribution of the optical power over the output ports of a coupler should be uniform to equalize the power levels at all terminals under all transmission conditions. Thus, the length, L, of the mixing block must be adequate. Milton<sup>3</sup> and Biard<sup>4</sup> have reported the necessary relationship between L, D, and NA. Milton<sup>5</sup> has shown that the distributed optical power will vary in intensity over the surface of distribution as an empirical function of  $\{(L/D) \tan(\theta_{max})\}$ . Biard<sup>6</sup> has derived an expression for the relationship of L, D, scrambling block core index, and a specific distribution of input optical power which will distribute power uniformly over the output surface of the block:

$$\frac{L}{D} = \frac{(N^2 - NA^2)^{1/2}}{NA}$$
 (3)

where

L = scrambling-block length

D = scrambling-block cross-sectional dimension

N = scrambling-block index of refraction

NA = numerical aperture of optical power entering the scrambling block

The significance of this expression is that coupler scrambling-block dimensions and coupler operation are dependent upon fixed characteristics of the fiber-optic bundles with which a coupler is to be used, and that employing a given coupler with different bundles may give a different coupler performance.

Performance of a multiport coupler can be specified by the level of optical power available at all output ports relative to the level of input power. Ideally, the only decrease in level should result from power division in the coupler, that is:

Po, 
$$j = \left(\frac{1}{N}\right)$$
Pi, k (4)

where

Po, j = Power available at output port j

N = number of output ports

Pi, k = power input at port k

This performance is never attained because factors other than division loss cause attenuation of optical power within the coupler. Chief among these factors are reflections, losses at the

<sup>&</sup>lt;sup>3</sup>Milton, AF, and Lee, AB, Applied Optics, 15, 244 (1976)

<sup>&</sup>lt;sup>4</sup>Biard, JR, and Shaunfield, JE, Optical Couplers, AFAL-TR-74-314, December 1974

<sup>&</sup>lt;sup>5</sup>Milton, op cit, p 248

<sup>&</sup>lt;sup>6</sup>Biard, op cit, p 71

core/clad interface, and cross-sectional area misalignment caused by necessary mechanical tolerances. Multiport coupler performance can be described by the following:

$$T = \frac{(Po, j)k}{Pi. k}$$
 transmission between any two ports (5a)

$$T^* = \frac{\Sigma(Po, j)k}{Pi, k}$$
 total transmission of the coupler (5b)

$$V = \frac{(Po, j)k}{(Po, j)\ell}$$
 port-to-port transmission variation (5c)

where

(Po, j)k = power exiting any port j with power input at any other port k

Pi, k = power input at port k

 $\Sigma(Po, j)k = power exiting all ports save input port k$ 

 $\frac{(Po, j)k}{(Po, j)\ell} = \text{ratio of output power at any one port } j \text{ with power input at port } k \text{ to power output at port } j \text{ with power input at port } \ell$ 

These ratios provide a means of specifying device performance. They also enable one to compare diverse coupler designs.

#### COUPLER PROCUREMENT AND TESTING

For the purposes of procurement and testing, the following fiber-optic cable characteristics were specified:

- Fiber cable to consist of a jacketed bundle of fibers
- Fibers to have step refractive-index profile
- 0.6 ≥ NA ≥ 0.5 at all wavelengths between 8000Å and 9500Å
- Fibers to be of glass composition
- Fiber diameters to lie within the range  $0.002 \le \text{diameter} \le 0.005$  inch
- Number of fibers sufficient to fill a cross-sectional circular area with diameter 0.047 inch
- Fiber optical attenuation to be less than 600 dB/km at all wavelengths between 8000Å and 9500Å

The following types and quantities of couplers were procured from Spectronics, Incorporated:

- eight 6-port couplers
- four 9-port couplers

### • two 16-port couplers

The coupler types are shown in figure 2.



Figure 2. Multiport couplers.

The couplers were tested with two 15-metre sections of fiber cable, fabricated by American Optical Company. Bundle numerical aperture was measured at 0.5, bundle loss was measured at 390 dB/km at 8500Å. The cables were terminated at either end with ferrules, Sealectro Corporation part 55-907-0149-89. Ferrule inside diameter was nominally 0.045 inch. One bundle-end was illuminated by a current-regulated tungsten lamp. An image of the rectangular emitting area of the lamp was focused on the end of the bundle using a pair of short focal length lenses capable of exceeding the NA of the bundle. A stop between the lenses and the fiber bundle limited the NA of the illumination to that specified. Since the image of the lamp radiating area was larger than the bundle diameter, the spatial aperture of the bundle was also filled. Interposed between the condensing and focusing lenses was an interference filter to limit the test spectrum to the specified range.

One end of the other bundle was positioned coaxially with a 1-cm diameter PIN photodiode. A load resistor was connected across the diode and a microvoltmeter was used to measure the resultant voltage. The diode was not reverse biased, but was operated in the photovoltaic mode to give the most linear relation between output voltage and input optical power. Figure 3 illustrates the test setup.

Testing of each coupler was initiated by connecting the two free ends of the fiber-optic cables through the splice connector which aligned them in a butt joint. Butting the ends established a zero loss reference. After determination of the zero loss reference the two ends were



Figure 3. Coupler loss-measuring setup.

disconnected from the splice connector and connected to the coupler to be tested in each of all possible input/output port combinations. The ratio of the reference level to the coupler output, measured at a port, was taken as the coupler transmission factor, T, for the pair of ports involved. Test results for a nine port coupler are shown in table 1.

TABLE 1. DATA FOR COUPLER NUMBER THREE.

|                |      |      |      | O    | utput Por | ts   |      |      |      |      |
|----------------|------|------|------|------|-----------|------|------|------|------|------|
| Input<br>Ports | 1    | 2    | 3    | 4    | 5         | 6    | 7    | 8    | 9    | T*   |
| 1              | -    | .040 | .042 | .035 | .042      | .038 | .041 | .047 | .039 | .328 |
| 2              | .046 | -    | .039 | .040 | .043      | .040 | .041 | .043 | .036 | .328 |
| 3              | .042 | .040 | -    | .034 | .040      | .035 | .035 | .042 | .046 | .304 |
| 4              | .041 | .041 | .030 | -    | .035      | .034 | .035 | .038 | .031 | .285 |
| 5              | .041 | .040 | .036 | .031 | -         | .038 | .037 | .043 | .036 | .302 |
| 6              | .042 | .040 | .035 | .032 | .040      | -    | .028 | .042 | .034 | .293 |
| 7              | .041 | .040 | .034 | .034 | .039      | .033 | -    | .033 | .031 | .290 |
| 8              | .050 | .044 | .044 | .040 | .046      | .042 | .030 | -    | .039 | .335 |
| 9              | .039 | .038 | .034 | .030 | .039      | .034 | .032 | .039 | -    | .285 |
| V              | .78  | .86  | .68  | .75  | .76       | .78  | .68  | .81  | .67  | -    |
|                |      |      |      |      |           |      |      |      |      | 4    |

The input ports are listed in the left hand column while output ports are listed in the top row. The tabulated numbers are the transmission factor, T, measured between ports. T\*, the total transmission of the coupler is in the far right hand column. V, on the bottom row, is the port-to-port transmission variation, and represents the optical-signal range from successive input ports. Data for all couplers are found in Appendix A. Table 2 summarizes the average T, T\*, and V<sub>max</sub> for all couplers. Also included is V<sub>coupler</sub> determined by the maximum and minimum T's of the coupler.

TABLE 2. SUMMARY OF COUPLER PERFORMANCE DATA.

| Coupler<br>Serial No | No of<br>Ports | T <sub>max</sub> | T <sub>min</sub> | Tavg  | T*avg | v <sub>max</sub> | V <sub>coupler</sub> |
|----------------------|----------------|------------------|------------------|-------|-------|------------------|----------------------|
| 1                    | 16             | .0223            | .0095            | .0158 | .237  | .53              | .43                  |
| 2                    | 16             | .0250            | .0035            | .0171 | .257  | .48              | .34                  |
| 3                    | 9              | .050             | .028             | .038  | .305  | .67              | .60                  |
| 4                    | 9              | .052             | .032             | .039  | .312  | .74              | .61                  |
| 6                    | 9              | .036             | .017             | .026  | .210  | .54              | .47                  |
| 10                   | 9              | .036             | .010             | .0257 | .206  | .33              | .27                  |
| 7                    | 6              | .074             | .043             | .059  | .294  | .68              | .58                  |
| 8                    | 6              | .062             | .037             | .043  | .241  | .74              | .65                  |
| 9                    | 6              | .057             | .031             | .046  | .230  | .58              | .51                  |
| 11                   | 6              | .073             | .032             | .047  | .236  | .51              | .44                  |
| 12                   | 6              | .045             | .026             | .039  | .193  | .60              | .58                  |
| 13                   | 6              | .055             | .032             | .045  | .223  | .68              | .58                  |
| 14                   | 6              | .058             | .036             | .046  | .233  | .75              | .62                  |
| 15                   | 6              | .068             | .047             | .058  | .288  | .75              | .69                  |

Table 2 shows a wide variation in performance within all groups of couplers. For instance, in the group of 9-port couplers, the best and worst values of  $T_{avg}$  were 0.038 and 0.0257. Ideally, these devices should exhibit values given by equation (4). In this case,

$$T = \frac{Po, j}{Pi, k} = \frac{1}{9} = 0.11 \tag{6}$$

The deviation of actual coupler performance from this value can be explained by considering the construction details of these particular devices. Figure 4 shows the essential parts of a 9-port Spectronics coupler. The rectangular scrambling block has rectangular waveguides attached to one face and a reflecting silver composition deposited upon the opposing face as shown in figure 4. The block and waveguides are all of square cross-section, are composed of the same material, and are clad with the same material. The waveguides are pieced together from two perpendicular sections joined by a prism with one face mirrored as in figure 4. Each is of such cross-sectional dimension as to circumscribe the circularly terminated bundle as in figure 4. Optical power enters the coupler through one waveguide where it is redirected by the silvered prism toward the scrambling block. In the block, the direction of the power is reversed by the mirrored surface and spreads over all the waveguides. Within the coupler, attenuation of the power results from propagation through interfaces where index discontinuities exist, at the waveguide/cable, and the waveguide/prism interfaces, and where the power is reflected at the mirrored surfaces.

Transmission through the interfaces is given by

$$T = (1-R) \tag{7}$$



Figure 4. Nine-port coupler construction showing two of the nine waveguides in place.

where R, the coefficient of reflectivity, is given for normal incidence by,

$$R = \left(\frac{N_2 - N_1}{N_2 + N_1}\right)^2 \tag{8}$$

and  $N_2$  and  $N_1$  are the indices of refraction of the adjacent media. For the materials used, R of the waveguide/cable interface is 0.056, R of the waveguide/prism interface is 0.002, and R of the waveguide/scrambling block interface is negligible. Now an expression for transmission within the coupler can be given as

$$T_1 = T_2^2 \ T_3^4 \ R_m^3 \tag{9}$$

where

T<sub>1</sub> is transmission from coupler input port to coupler output port

T<sub>2</sub> is transmission through waveguide/cable interface

T<sub>3</sub> is transmission through waveguide/prism interface

R<sub>m</sub> is mirrored surface reflectivity, here 0.96

and, for the values given,

$$T_1 = (1-0.056)^2 (1-0.002)^4 (.96)^3 = 0.782$$

Additional loss is incurred at the waveguide/cable interface where the area mismatch pictured in figure 4 fails to couple all of the exiting optical power into the circular cable. Assuming uniform density of optical power across the waveguide, the resultant transmission factor can be expressed as a ratio between the cross-sectional areas of the fiber bundle and waveguide, ie,

$$C = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}$$

The transmission from input to output through the couplers can be expressed as:

$$T = T_1 \cdot C \cdot 1/N \tag{10}$$

For the 16-port coupler,

$$T = (0.782) \left(\frac{\pi}{4}\right) (0.0625) = 0.0384$$

for the 9-port coupler,

$$T = (0.782) \left(\frac{\pi}{4}\right) (0.111) = 0.0682$$

and, for the 6-port coupler,

$$T = (0.782) \left(\frac{\pi}{4}\right) (0.167) = 0.102$$

Thus, the performances indicated in table 2 fall below those predicted by equation (10) for the couplers. The mechanisms probably responsible for the unpredicted loss include:

- Surface imperfections on the scrambling block and waveguides
- Mechanical tolerance buildup
- Lack of control of the refractive index of the adhesive used in joining waveguides, prisms, and scrambling block
- Inclusion of opaque matter in the cladding material which was observed to have flowed over the end of the waveguides of the connector/waveguide interface
- Absorption in the glass and cladding material

The port-to-port transmission variation, V, expresses the fact that each of the above loss mechanisms can apply to a different degree to each port-to-port path through the coupler. Measurement of the individual loss mechanisms can only be performed during coupler assembly and was beyond the scope of this investigation.

Another feature of the couplers, related to the variation, V, is the nonreciprocity of Ts between some ports. The nonreciprocity may possibly arise from variations in transmission-path characteristics caused by the factors discussed above. The nonuniformity of path characteristics would cause the spatial characteristics of the optical power to vary which, in turn, would effect a variation in performance as pointed out in the discussion of coupler operation.

#### CONCLUSIONS

The evaluation effort described in this report has focused upon multiport fiber-optic couplers designed for use with multifilament fiber-optic bundles. Moderate deviation from expected performance has been noted, eg, measured transmission of each coupler has fallen below that predicted, and wide variation in port-to-port transmission, T, has been noted. A convenient method of summarizing the results and comparing them with predicted performance is to consider  $T_{\rm avg}$  in table 2 and T of equation (10) as

$$T (dB)$$
 coupler =  $10 \times \log_{10} (T_{avg})$ 

and

$$T (dB)$$
 predicted =  $10 \times \log_{10} (T)$ 

Vmax can also be so considered, and

$$V (dB) = -(10 \times log V_{max})$$

These give T(dB) as a negative value, indicative of transmission loss, and V(dB) as a dynamic range. The results are summarized in table 3.

TABLE 3. TEST RESULTS.

| Coupler<br>Serial<br>Number | Number<br>of <b>P</b> orts | T(dB) Measured | T(dB) Predicted | V(dB) |
|-----------------------------|----------------------------|----------------|-----------------|-------|
| 1                           | 16                         | -18            | -14.2           | 2.7   |
| 2                           | 16                         | -17.6          | -14.2           | 3.1   |
| 3                           | 9                          | -14.2          | -11.7           | 1.7   |
| 4                           | 9                          | -14.0          | -11.7           | 1.3   |
| 6                           | 9                          | -15.8          | -11.7           | 2.6   |
| 10                          | 9                          | -15.9          | -11.7           | 4.8   |
| 7                           | 6                          | -12.3          | - 9.9           | 1.6   |
| 8                           | 6                          | -13.1          | - 9.9           | 1.3   |
| 9                           | 6                          | -13.3          | - 9.9           | 2.3   |
| 12                          | 6                          | -13.2          | - 9.9           | 2.9   |
| 12                          | 6                          | -14.0          | - 9.9           | 2.2   |
| 13                          | 6                          | -13.4          | - 9.9           | 1.6   |
| 14                          | 6                          | -13.3          | - 9.9           | 1.2   |
| 15                          | 6                          | -12.3          | - 9.9           | 1.2   |

The feasibility of the concept represented by the evaluated couplers is clear: the predicted transmission performance has been approached; performance improvement can probably be obtained by development of precision manufacturing methods; the couplers are manufacturable and available for system evaluation.

#### **OBSERVATIONS**

Four observations were made during the evaluation:

- 1. The connectors to which the fiber cables attached were brass and subject to shaving by the stainless steel ferrules on the cables. The shavings were deposited upon the outward looking face of the connecting waveguides resulting in a decrease in light transmission. Correction of this condition required disassembly of the couplers to clean the waveguide faces.
- During cleaning of the faces, it was noticed that the compound used to clad the waveguides had flowed over the faces of many of the waveguides. Debris had been trapped in the overflow which had solidified.
- 3. Some of the solvents used to clean the faces of the waveguides attacked the cladding material leaving pits in it adjacent to the faces of the waveguides.
- 4. The cable ferrules could be modified to provide a square termination for the cable fibers. This would eliminate the  $\pi/4$  loss factor in equation (10) and result in an increase in T of 1 dB. It would also require a keyed connector.

#### RECOMMENDATIONS

The following recommendations are made:

- 1. Analysis of the waveguide and scrambling-block cladding materials and methods should be undertaken to ascertain the effects of the present materials upon coupler performance, to identify other likely cladding materials, and to develop more suitable methods of applying the cladding to keep it from flowing after application.
- Analysis of the deposited reflective materials should be undertaken to assure satisfactory performance of the mirrored interfaces on the waveguide prisms and scrambling block.
- 3. Precision manufacturing methods should be developed to minimize loss due to mechanical tolerance buildup.
- 4. A connector should be developed that would ensure the aperture matching of cable and waveguide as well as eliminate connector degradation caused by abrasion during plug insertion.

# APPENDIX A LABORATORY DATA

PRECEDING PAGE BLANK

 Coupler Serial No.
 1
 READ:
  $T^* \times 10^{-3}$  

 Number of Ports
 16
  $V \times 10^{-3}$  

 1/n .0625
  $T \times 10^{-4}$  

 1-1/n .9375

|    | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | T*  |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1  | -   | 173 | 142 | 164 | 136 | 142 | 101 | 120 | 167 | 151 | 210 | 182 | 145 | 195 | 109 | 161 | 229 |
| 2  | 176 | -   | 182 | 167 | 176 | 139 | 170 | 139 | 200 | 192 | 214 | 179 | 154 | 204 | 126 | 192 | 261 |
| 3  | 142 | 179 | -   | 142 | 126 | 129 | 120 | 120 | 173 | 158 | 170 | 145 | 142 | 182 | 110 | 167 | 221 |
| 4  | 158 | 172 | 142 | -   | 148 | 139 | 145 | 120 | 173 | 176 | 170 | 167 | 151 | 214 | 126 | 195 | 240 |
| 5  | 134 | 188 | 129 | 151 | -   | 120 | 110 | 123 | 179 | 158 | 161 | 145 | 120 | 151 | 114 | 169 | 215 |
| 6  | 139 | 145 | 134 | 139 | 123 | -   | 117 | 98  | 148 | 145 | 148 | 142 | 107 | 151 | 95  | 154 | 199 |
| 7  | 120 | 192 | 145 | 173 | 126 | 139 | -   | 139 | 182 | 167 | 182 | 161 | 134 | 188 | 101 | 148 | 229 |
| 8  | 123 | 134 | 123 | 120 | 123 | 95  | 123 | -   | 145 | 134 | 139 | 134 | 117 | 164 | 95  | 129 | 250 |
| 9  | 173 | 214 | 188 | 182 | 179 | 148 | 167 | 154 | 1   | 209 | 158 | 188 | 126 | 214 | 107 | 192 | 260 |
| 10 | 151 | 198 | 167 | 173 | 158 | 142 | 151 | 139 | 200 | -   | 185 | 145 | 142 | 170 | 112 | 151 | 239 |
| 11 | 192 | 207 | 173 | 167 | 167 | 139 | 161 | 136 | 164 | 185 | -   | 173 | 134 | 207 | 101 | 182 | 249 |
| 12 | 170 | 192 | 148 | 170 | 148 | 139 | 142 | 134 | 182 | 145 | 164 | -   | 148 | 173 | 114 | 145 | 231 |
| 13 | 167 | 192 | 173 | 173 | 137 | 120 | 145 | 136 | 145 | 164 | 145 | 167 | -   | 192 | 95  | 176 | 233 |
| 14 | 185 | 217 | 192 | 217 | 158 | 148 | 170 | 164 | 207 | 167 | 214 | 170 | 185 | -   | 142 | 173 | 270 |
| 15 | 123 | 151 | 142 | 142 | 126 | 104 | 107 | 98  | 117 | 134 | 117 | 129 | 98  | 154 | -   | 139 | 188 |
| 16 | 167 | 223 | 188 | 217 | 179 | 161 | 145 | 142 | 210 | 167 | 217 | 167 | 185 | 198 | 151 | -   | 272 |
| V  | 625 | 600 | 640 | 553 | 687 | 640 | 594 | 598 | 557 | 657 | 539 | 686 | 529 | 705 | 629 | 661 |     |

T<sub>avg</sub> . 0158 T\*<sub>avg</sub> .237

V<sub>max</sub> .529

V<sub>coupler</sub> .426

| Coupler Serial No. | 2     | READ: | $T^* \times 10^{-3}$ |
|--------------------|-------|-------|----------------------|
| Number of Ports    | 16    |       | $V \times 10^{-3}$   |
| 1/n                | .0625 |       | T X 10 <sup>-4</sup> |
| 1-1/n              | .9375 |       |                      |

|    | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | T*  |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1  | -   | 120 | 165 | 190 | 120 | 215 | 155 | 150 | 120 | 135 | 215 | 245 | 205 | 220 | 220 | 210 | 269 |
| 2  | 120 | -   | 150 | 145 | 120 | 160 | 145 | 120 | 90  | 95  | 170 | 175 | 155 | 165 | 160 | 150 | 212 |
| 3  | 150 | 140 | -   | 165 | 110 | 195 | 140 | 150 | 160 | 180 | 190 | 200 | 200 | 210 | 215 | 195 | 260 |
| 4  | 180 | 120 | 150 | -   | 130 | 215 | 190 | 180 | 150 | 165 | 170 | 205 | 185 | 220 | 215 | 210 | 269 |
| 5  | 125 | 120 | 170 | 140 | -   | 130 | 110 | 120 | 110 | 120 | 150 | 160 | 120 | 120 | 140 | 130 | 191 |
| 6  | 220 | 170 | 195 | 210 | 130 | -   | 190 | 165 | 160 | 180 | 225 | 210 | 170 | 190 | 220 | 205 | 284 |
| 7  | 160 | 155 | 155 | 190 | 105 | 180 | -   | 125 | 140 | 165 | 200 | 220 | 165 | 190 | 145 | 140 | 244 |
| 8  | 160 | 120 | 150 | 180 | 110 | 155 | 110 | -   | 120 | 120 | 190 | 180 | 150 | 160 | 130 | 120 | 212 |
| 9  | 120 | 85  | 165 | 155 | 100 | 160 | 135 | 130 | -   | 130 | 160 | 185 | 145 | 165 | 155 | 155 | 215 |
| 10 | 125 | 95  | 170 | 160 | 120 | 165 | 155 | 125 | 120 | -   | 180 | 175 | 160 | 165 | 175 | 150 | 224 |
| 11 | 210 | 160 | 190 | 190 | 145 | 230 | 200 | 190 | 160 | 190 | -   | 235 | 205 | 240 | 220 | 220 | 299 |
| 12 | 235 | 145 | 200 | 210 | 160 | 240 | 220 | 195 | 185 | 205 | 220 | -   | 230 | 250 | 250 | 235 | 321 |
| 13 | 210 | 155 | 200 | 190 | 115 | 160 | 165 | 160 | 145 | 170 | 200 | 230 | -   | 190 | 200 | 195 | 269 |
| 14 | 220 | 160 | 210 | 210 | 120 | 175 | 190 | 165 | 160 | 180 | 230 | 225 | 185 | -   | 220 | 215 | 287 |
| 15 | 225 | 170 | 220 | 220 | 140 | 210 | 140 | 125 | 155 | 185 | 220 | 250 | 190 | 220 | -   | 170 | 284 |
| 16 | 210 | 160 | 200 | 215 | 130 | 200 | 130 | 120 | 160 | 170 | 225 | 240 | 190 | 220 | 175 | -   | 275 |
|    | 510 | 500 | 682 | 636 | 625 | 542 | 500 | 615 | 486 | 585 | 652 | 640 | 522 | 480 | 520 | 510 |     |

T<sub>avg</sub> .0171
T\*<sub>avg</sub> .257
V<sub>max</sub> .480
V<sub>coupler</sub> .340

READ: T × 10<sup>-3</sup> Coupler Serial No. 3  $T^* \times 10^{-3}$ **Number of Ports** 9  $V \times 10^{-2}$ 1/n 0.11 1-1/n 0.89

|   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | T*  |
|---|----|----|----|----|----|----|----|----|----|-----|
| 1 | -  | 44 | 42 | 35 | 42 | 38 | 41 | 47 | 39 | 328 |
| 2 | 46 | -  | 39 | 40 | 43 | 40 | 41 | 43 | 36 | 328 |
| 3 | 42 | 40 | -  | 34 | 40 | 35 | 35 | 42 | 46 | 304 |
| 4 | 41 | 41 | 30 | -  | 35 | 34 | 35 | 38 | 31 | 285 |
| 5 | 41 | 40 | 36 | 31 | -  | 38 | 37 | 43 | 36 | 302 |
| 6 | 42 | 40 | 35 | 32 | 40 | -  | 28 | 42 | 34 | 293 |
| 7 | 41 | 40 | 34 | 34 | 39 | 33 | -  | 38 | 31 | 290 |
| 8 | 50 | 44 | 44 | 40 | 46 | 42 | 30 | -  | 39 | 335 |
| 9 | 39 | 38 | 34 | 30 | 39 | 34 | 32 | 39 | -  | 285 |
| V | 78 | 86 | 68 | 75 | 76 | 78 | 68 | 81 | 67 |     |

T<sub>avg</sub> .038 T\*<sub>avg</sub> .305 V<sub>max</sub> .67

V<sub>coupler</sub> .60

| Cou | pler Seria | al No. | 4    |    |    |    |    |    |    | READ | : T X 1 |
|-----|------------|--------|------|----|----|----|----|----|----|------|---------|
| Nun | nber of P  | orts   | 9    |    |    |    |    |    |    |      | T* X    |
| 1/n |            |        | 0.11 |    |    |    |    |    |    |      | VXI     |
| 1-1 | /n         |        | 0.89 |    |    |    |    |    |    |      |         |
|     | 1          | 2      | 3    | 4  | 5  | 6  | 7  | 8  | 9  | T*   |         |
| 1   | -          | 48     | 39   | 39 | 52 | 41 | 42 | 48 | 40 | 349  |         |
| 2   | 42         | -      | 37   | 38 | 45 | 45 | 44 | 36 | 41 | 320  |         |
| 3   | 37         | 39     | -    | 34 | 42 | 38 | 33 | 39 | 34 | 296  |         |
| 4   | 39         | 40     | 32   | -  | 40 | 34 | 34 | 40 | 34 | 293  |         |
| 5   | 45         | 42     | 35   | 34 | -  | 39 | 38 | 41 | 40 | 314  |         |
| 6   | 46         | 45     | 37   | 35 | 46 | -  | 40 | 45 | 39 | 333  |         |
| 7   | 40         | 40     | 33   | 35 | 44 | 41 | -  | 42 | 35 | 310  |         |
| 8   | 44         | 43     | 39   | 41 | 47 | 46 | 42 | -  | 41 | 298  |         |
| 9   | 38         | 39     | 33   | 34 | 41 | 39 | 35 | 39 | _  | 298  |         |

83 77 74 75

T<sub>avg</sub> .039 T\*<sub>avg</sub> .312 V<sub>max</sub> .74

V<sub>coupler</sub> .61

| Coupler Serial No. | 6    | READ: T × 10 <sup>-3</sup> |
|--------------------|------|----------------------------|
| Number of Ports    | 9    | T* × 10 <sup>-3</sup>      |
| 1/n                | 0.11 | V × 10 <sup>-2</sup>       |
| 1-1/n              | 0.89 |                            |

|   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | T*  |
|---|----|----|----|----|----|----|----|----|----|-----|
| 1 | -  | 33 | 33 | 31 | 24 | 25 | 30 | 32 | 31 | 239 |
| 2 | 31 | -  | 27 | 32 | 22 | 25 | 28 | 25 | 24 | 214 |
| 3 | 32 | 29 | -  | 36 | 27 | 28 | 31 | 31 | 30 | 244 |
| 4 | 29 | 30 | 34 | -  | 17 | 30 | 30 | 32 | 31 | 206 |
| 5 | 23 | 22 | 26 | 28 | -  | 23 | 27 | 24 | 22 | 195 |
| 6 | 25 | 24 | 27 | 30 | 22 | -  | 29 | 25 | 21 | 203 |
| 7 | 23 | 23 | 27 | 25 | 21 | 25 | -  | 24 | 22 | 190 |
| 8 | 22 | 18 | 23 | 24 | 18 | 20 | 33 | -  | 27 | 185 |
| 9 | 27 | 23 | 28 | 30 | 23 | 25 | 23 | 28 | -  | 217 |
| V | 69 | 54 | 67 | 66 | 63 | 67 | 82 | 75 | 68 |     |

T<sub>avg</sub> .026 T\*<sub>avg</sub> .290 V<sub>max</sub> .54 V<sub>coupler</sub> .47

| Coupler Serial No. | 7   | READ: $T \times 10^{-3}$ |
|--------------------|-----|--------------------------|
| Number of Ports    | 6   | $T^* \times 10^{-3}$     |
| 1/n                | .17 | V × 10 <sup>-2</sup>     |

|   | 1  | 2  | 3  | 4  | 5  | 6  | T*  |
|---|----|----|----|----|----|----|-----|
| 1 | -  | 52 | 56 | 57 | 74 | 74 | 323 |
| 2 | 50 | -  | 45 | 57 | 57 | 62 | 271 |
| 3 | 53 | 43 | -  | 56 | 63 | 55 | 270 |
| 4 | 68 | 55 | 58 | -  | 53 | 55 | 290 |
| 5 | 73 | 56 | 66 | 53 | -  | 59 | 307 |
| 6 | 73 | 59 | 56 | 56 | 59 | -  | 303 |
| v | 68 | 73 | 68 | 93 | 72 | 74 | -   |

T<sub>avg</sub> 0.59 T\*<sub>avg</sub> .294 V<sub>max</sub> .68 V<sub>coupler</sub> .58

| Coupler Serial No. | 8   | READ: $T \times 10^{-3}$ |
|--------------------|-----|--------------------------|
| Number of Ports    | 6   | T* × 10 <sup>-3</sup>    |
| 1/n                | .17 | V × 10 <sup>-2</sup>     |
| 1-1/n              | .83 |                          |

|   | 1  | 2  | 3  | 4  | 5  | 6  | T*  |
|---|----|----|----|----|----|----|-----|
| 1 | -  | 49 | 50 | 55 | 47 | 61 | 62  |
| 2 | 51 | -  | 45 | 48 | 37 | 54 | 235 |
| 3 | 47 | 42 | -  | 45 | 39 | 48 | 221 |
| 4 | 56 | 48 | 46 | -  | 42 | 54 | 246 |
| 5 | 49 | 40 | 41 | 42 | -  | 48 | 220 |
| 6 | 62 | 54 | 47 | 51 | 45 | -  | 259 |
| V | 76 | 74 | 82 | 76 | 79 | 79 |     |

T<sub>avg</sub> .048 T\*<sub>avg</sub> .241 V<sub>max</sub> .74 V<sub>coupler</sub> .65

| Coupler Serial No. | 9   | READ: $T \times 10^{-3}$ |
|--------------------|-----|--------------------------|
| Number of Ports    | 6   | $T* \times 10^{-3}$      |
| 1/n                | .17 | V × 10 <sup>-2</sup>     |
| 1-1/n              | 83  |                          |

|   | 1  | 2  | 3  | 4  | 5  | 6  | T*  |
|---|----|----|----|----|----|----|-----|
| 1 | -  | 60 | 43 | 38 | 63 | 48 | 252 |
| 2 | 57 | -  | 45 | 44 | 56 | 55 | 257 |
| 3 | 45 | 46 | -  | 32 | 49 | 38 | 210 |
| 4 | 40 | 42 | 31 | -  | 41 | 32 | 185 |
| 5 | 61 | 50 | 51 | 41 | -  | 51 | 254 |
| 6 | 47 | 52 | 36 | 31 | 51 | -  | 217 |
| v | 65 | 70 | 61 | 70 | 65 | 58 | -   |

T<sub>avg</sub> .046 T\*<sub>avg</sub> .230 V<sub>max</sub> .58 V<sub>coupler</sub> .51

|       | er Serial<br>er of Po |    | 10<br>9 |    |    |    |    |    | REAL | D: T × 1 | 10-3 |
|-------|-----------------------|----|---------|----|----|----|----|----|------|----------|------|
| 1/n   |                       |    | 0.11    |    |    |    |    |    |      | VXI      | 0-2  |
| 1-1/n |                       |    | 0.89    |    |    |    |    |    |      |          |      |
|       |                       | 1  | 2       | 3  | 4  | 5  | 6  | 7  | 8    | 9        | T*   |
|       | 1                     | -  | 29      | 17 | 26 | 32 | 33 | 30 | 36   | 35       | 238  |
|       | 2                     | 25 | -       | 13 | 35 | 33 | 28 | 34 | 35   | 30       | 233  |
|       | 3                     | 15 | 12      | -  | 17 | 14 | 10 | 16 | 14   | 12       | 110  |
|       | 4                     | 27 | 36      | 20 | -  | 26 | 26 | 26 | 35   | 33       | 203  |
|       | 5                     | 34 | 33      | 15 | 25 | -  | 20 | 33 | 32   | 28       | 220  |
|       | 6                     | 32 | 28      | 11 | 25 | 20 | -  | 30 | 27   | 21       | 194  |
|       | 7                     | 29 | 33      | 18 | 26 | 33 | 31 | -  | 28   | 27       | 225  |
|       | 8                     | 34 | 34      | 15 | 33 | 32 | 26 | 27 | - 1  | 22       | 223  |
|       | 9                     | 35 | 29      | 13 | 33 | 28 | 22 | 26 | 23   | -        | 209  |
|       | v                     | 43 | 33      | 55 | 48 | 42 | 33 | 47 | 39   | 34       |      |

T<sub>avg</sub> .0257 T\*<sub>avg</sub> .206 V<sub>max</sub> .33 V<sub>coupler</sub> .27

| Coupler Serial No. | 11  | READ: $T \times 10^{-3}$ |
|--------------------|-----|--------------------------|
| Number of Ports    | 6   | $T^* \times 10^{-3}$     |
| 1/n                | .17 | V × 10 <sup>-2</sup>     |
| 1-1/n              | 83  |                          |

|   | 1   | 2  | 3  | 4  | 5  | 6  | T*  |
|---|-----|----|----|----|----|----|-----|
| 1 | - 1 | 50 | 44 | 40 | 73 | 55 | 262 |
| 2 | 47  | -  | 37 | 56 | 40 | 50 | 230 |
| 3 | 41  | 36 | -  | 56 | 62 | 34 | 229 |
| 4 | 39  | 56 | 56 | -  | 47 | 33 | 231 |
| 5 | 68  | 39 | 62 | 46 |    | 37 | 253 |
| 6 | 57  | 50 | 35 | 32 | 37 | -  | 211 |
|   | 57  | 70 | 56 | 57 | 51 | 60 | -   |

T<sub>avg</sub> .047 T\*<sub>avg</sub> .236 V<sub>max</sub> .51 V<sub>coupler</sub> .44

| Coupler Serial No. | 12  | READ: $T \times 10^{-3}$ |
|--------------------|-----|--------------------------|
| Number of Ports    | 6   | T* × 10 <sup>-3</sup>    |
| 1/n                | .17 | V × 10 <sup>-2</sup>     |
| 1-1/n              | .83 |                          |

|   | 1  | 2  | 3  | 4  | 5  | 6  | T*  |
|---|----|----|----|----|----|----|-----|
| 1 | -  | 30 | 41 | 43 | 40 | 38 | 192 |
| 2 | 32 | -  | 42 | 36 | 43 | 38 | 191 |
| 3 | 40 | 40 | -  | 41 | 43 | 43 | 207 |
| 4 | 43 | 36 | 43 | -  | 45 | 38 | 205 |
| 5 | 40 | 42 | 44 | 43 | -  | 34 | 203 |
| 6 | 37 | 26 | 42 | 26 | 32 | -  | 163 |
|   | 74 | 62 | 93 | 60 | 71 | 79 | -   |

T<sub>avg</sub> .039 T\*<sub>avg</sub> .193 V<sub>max</sub> .60 V<sub>coupler</sub> .58

| Coupler Serial No. | 13  | READ: T × 10 <sup>-3</sup> |
|--------------------|-----|----------------------------|
| Number of Ports    | 6   | $T* \times 10^{-3}$        |
| 1/n                | .17 | V × 10 <sup>-2</sup>       |
| 1-1/n              | .83 |                            |

|   | 1  | 2  | 3  | 4  | 5  | 6  | T*  |
|---|----|----|----|----|----|----|-----|
| 1 |    | 50 | 55 | 47 | 54 | 46 | 252 |
| 2 | 48 | •  | 49 | 35 | 50 | 39 | 271 |
| 3 | 50 | 47 |    | 44 | 51 | 46 | 238 |
| 4 | 45 | 36 | 45 | -  | 45 | 34 | 205 |
| 5 | 44 | 48 | 51 | 42 | -  | 43 | 228 |
| 6 | 41 | 38 | 44 | 32 | 43 | -  | 198 |
|   | 82 | 72 | 80 | 68 | 80 | 74 | -   |

| Tavg                 | .045 |
|----------------------|------|
| T*avg                | .223 |
| Vmax                 | .68  |
| V <sub>coupler</sub> | .58  |

| Coupler Serial No. | 14  | READ: $T \times 10^{-3}$ |
|--------------------|-----|--------------------------|
| Number of Ports    | 6   | T* × 10 <sup>-3</sup>    |
| l/n                | .17 | V × 10 <sup>-2</sup>     |
| 1-1/n              | 83  |                          |

|   | 1  | 2  | 3  | 4  | 5  | 6  | T*  |
|---|----|----|----|----|----|----|-----|
| 1 |    | 46 | 47 | 56 | 56 | 48 | 253 |
| 2 | 47 | -  | 38 | 42 | 40 | 36 | 203 |
| 3 | 49 | 41 | -  | 47 | 44 | 40 | 221 |
| 4 | 57 | 50 | 49 | -  | 51 | 44 | 251 |
| 5 | 58 | 45 | 47 | 51 | -  | 42 | 243 |
| 6 | 51 | 44 | 45 | 46 | 42 | -  | 228 |
| V | 81 | 82 | 77 | 75 | 75 | 75 | -   |

| Tavg                 | .046 |
|----------------------|------|
| T*avg                | .233 |
| V <sub>max</sub>     | .75  |
| V <sub>coupler</sub> | .62  |

| Coupler Serial No. | 15  | READ: $T \times 10^{-3}$ |
|--------------------|-----|--------------------------|
| Number of Ports    | 6   | $T^* \times 10^{-3}$     |
| 1/n                | .17 | $V \times 10^{-2}$       |
| 1-1/n              | .83 |                          |

|   | 1  | 2  | 3  | 4  | 5  | 6  | T*  |
|---|----|----|----|----|----|----|-----|
| 1 | -  | 66 | 48 | 61 | 61 | 64 | 300 |
| 2 | 68 | -  | 52 | 64 | 51 | 63 | 298 |
| 3 | 51 | 54 | -  | 51 | 50 | 54 | 260 |
| 4 | 61 | 67 | 49 | -  | 50 | 60 | 296 |
| 5 | 58 | 52 | 47 | 58 | -  | 59 | 274 |
| 6 | 63 | 64 | 52 | 60 | 61 | -  | 300 |
|   | 75 | 79 | 90 | 79 | 82 | 92 | -   |

| Tavg                 | .058 |
|----------------------|------|
| T*avg                | .288 |
| V <sub>max</sub>     | .75  |
| V <sub>coupler</sub> | .69  |