SEL 343 PDS – TRABALHO 1

Prof. Emiliano R Martins

O objetivo desse trabalho é exercitar os principais conceitos relacionados à DTFT. O trabalho não precisa ser entregue.

Parte 1 – Definição dos sinais exemplos

Para ilustrar os conceitos da DTFT, utilizaremos como função base uma função Gaussiana, da forma:

$$x(t) = Ae^{-\left(\frac{t}{\sigma}\right)^2}$$
Equação 1

Onde A é a amplitude da gaussiana e σ é a largura temporal da gaussiana. No nosso exemplo, vamos escolher, arbitrariamente, A=3 e $\sigma=10$. A função gaussiana possui transformada de Fourier analítica, que é dada por:

$$X(f) = \int_{-\infty}^{+\infty} x(t) e^{-i2\pi ft} dt = A\sigma\sqrt{\pi}e^{-(\pi\sigma f)^2}$$

Equação 2

Note que a transformada de uma gaussiana é outra gaussiana, mas agora no domínio da frequência.

A transformada de Fourier analítica vai servir como "cola" para esse trabalho: você pode conferir se os seus resultados deram certo fazendo referência à **Equação 2**.

Note que o espectro da gaussiana nunca termina. De fato, X(f) possui infinitas frequências, já que X(f) nunca é zero para frequências acima de algum valor determinado. Mas o decaimento exponencial nos permite atribuir uma frequência máxima para X(f), já que para valores de frequência muito maiores que $1/\sigma$ a amplitude de X(f) será muito pequena. Assim, vamos definir a frequência máxima de X(f) como sendo $f_0 = \frac{10}{\sigma}$

Para começar o trabalho, crie um vetor tempo com $N=1.2x10^4$ pontos, com passo temporal 100 vezes menor que σ . Para isso, basta dar os comandos

```
N = 1.2*10^4;
tpasso = sigma/100;
ti = -tpasso*(N-1)/2;
tf = -ti;
t = (ti:tpasso:tf);
```

no Matlab, onde ti é o primeiro valor do vetor t, tpasso é o incremento temporal e tf é o último valor armazenado no vetor t.

Confira se o vetor t realmente tem $N=1.2x10^4$ pontos utilizando o comando length(t).

Agora crie um vetor x composto por amostras da função gaussiana da *Equação 1*. Plote a função gaussiana contra o tempo. Para isso, basta dar a seguinte sequência de comandos.

```
figure(1) %abre a figura 1
plot(t,x) %plota x contra t
xlabel('tempo') %coloca legenda no eixo horizontal
ylabel('x(t)') %coloca legenda no eixo vertical
```

Note que, tanto o vetor t, como o vetor, x são discretos. De fato, ambos são simplesmente uma sequencia de números. Mas o que você vê na tela do computador parece uma função contínua porque o Matlab traça uma linha interpolando os pontos. Como estamos utilizando muitos pontos, dá a impressão que o plot é de uma função contínua. Caso você queria ver onde está cada ponto, basta dar o plot assim: plot(t,x,'b.') dessa forma, o Matlab põe uma bolinha em cada ponto e não faz a interpolação (faça um zoom na figura para você ver as bolinhas).

A figura 1 mostra uma coisa que parece mais um pauzinho do que uma gaussiana, mas se você fizer um zoom na figura você vai ver que é realmente uma gaussiana.

Agora, defina um vetor frequências com o mesmo número de pontos N, utilizando os seguintes comandos:

```
fpasso = 1/(50*sigma);
fi = -fpasso*(N-1)/2;
ff = -fi;
f = (fi:fpasso:ff);
```

A seguir, defina um vetor X contendo a transformada de Fourier da gaussiana e gere uma figura (2) contendo um plot de X contra a frequência f. No trabalho, coloque novamente o plot de X contra f, ao lado de um plot de X contra f com zoom, mostrando que X TF é também uma gaussiana, mas agora no domínio da frequência.

Perguntas:

- 1.1) Quando você criou o vetor x, você efetivamente amostrou a função gaussiana no tempo (isso é uma afirmação, não uma pergunta). No nosso exemplo, qual foi o período de amostragem? E qual foi a frequência de amostragem?
- 1.2) No plot da figura (2) (sem zoom), mostre com uma setinha onde está a frequência de amostragem.
- 1.3) Confira que a nossa definição de frequência máxima como sendo $f_0 = \frac{10}{\sigma}$ faz sentido. Para isso, vá na figura (2) e veja qual o valor de X_TF na frequência f_0 e compare com o valor máximo de X_TF.
- 1.4) Com essas definições, o nosso período de amostragem é suficiente para amostrar a gaussiana sem perda de informação? Explique.

Parte 2 – Cálculo da DTFT de x[n]

Crie um vetor de frequências adimensionais com os seguintes comandos:

```
vi = -1.2;
vf = -vi;
vpasso = (vf-vi)/(N3-1);
v = (vi:vpasso:vf);
```

Agora escreva um algoritmo para calcular a DTFT do vetor x que você definiu na Parte 1 do trabalho. Chame esse vetor de X_DTFT. Plote o módulo de X_DTFT contra v.

Agora, utilize esse mesmo vetor X_DTFT e esse mesmo vetor v para plotar a TRANSFORMADA DE FOURIER da função gaussiana DO SINAL INTERMEDIÁRIO, que em sala chamamos de $f_d(t)$. Para isso, você pode multiplicar esses vetores por constantes, mas só isso.

Agora, utilize esse mesmo vetor X_DTFT e esse mesmo vetor v para plotar a TRANSFORMADA DE FOURIER da função gaussiana original, da qual extraímos o vetor x. Para isso, você pode multiplicar esses vetores por constantes, mas só isso. Compare a TF obtida da DTFT com a TF analítica (plote as duas juntas, utilizando linha para uma e bolinhas para a outra).

Explique todos os resultados eu você encontrou. Mostre rigorosamente como a TF da função pode ser obtida a partir da DTFT.

Parte 3 – Cálculo da transformada de Fourier de x(t) pela soma de Riemann.

Agora calcule a transformada de Fourier de x(t) na raça, isso é, sem utilizar diretamente os conceitos da DTFT. Para isso, temos que fazer a soma de Riemann para a transformada de Fourier.

Escreva um algoritmo que calcule a transformada de Fourier de x(t) aproximando a integral da transformada pela soma de Riemann. Utilize os mesmos vetores tempo e frequência da Parte 1. Compare os resultados assim obtidos com o resultado anterior (para melhor visualização, plote o resultado da soma de Riemann com o resultado analítico em uma mesma figura, mas coloque um como linha e o outro como bolinha. Por que surgiram cópias na soma de Riemann? De acordo com o que você aprendeu em Cálculo 1, a soma de Riemann só é idêntica à integral no limite que o espaçamento temporal vai para zero. De acordo com os seus resultados, isso é verdade? Em outras palavras: o primeiro período da soma de Riemann é igual ao resultado analítico? Por que? Qual a relação entre a soma de Riemann e a DTFT (no que elas diferem e no que elas são iguais)? Comente, explique, filosofe, se joga.

Parte 4 – Propriedades da DTFT

Agora defina o sinal diferença $y_d[n]$ como:

$$y_d[n] = x[n-1] - x[n]$$
Equação 3

Onde x[n] é novamente o vetor gerado na Parte 1 a partir da amostragem da **Equação 1**.

Agora calcule a DTFT de $y_d[n]$ de duas maneiras: 1- diretamente do vetor $y_d[n]$ e 2 – a partir da DTFT de x[n], utilizando a propriedade de diferenças. Compare os dois resultados.

Calcule analiticamente a função y(t), que é a derivada da função x(t):

$$y(t) = \frac{dx}{dt}$$

Agora amostre a função y(t) seguindo os mesmos passos da amostragem da Parte 1. Chame o vetor que armazena as amostras de y(t) de $y_a[n]$.

Compare $y_a[n]$ e $y_d[n]$. Eles são iguais ou diferentes? Por que?

Finalmente, partindo da **Equação 2**, encontre uma expressão analítica para a transformada de Fourier de y(t). Agora compare a DTFT de $y_d[n]$ com a transformada analítica da TF de y(t). Note que as amplitudes são iguais, ou seja, não foi necessário corrigir a amplitude quando relacionando a DTFT de $y_d[n]$ com a TF de y(t).

Explique o porquê de neste caso as amplitudes serem iguais.