MATHEMATICS METHODS

TEST 1 RESOURCE FREE

TIME ALLOWED: 20 MIN

TOTAL MARKS: 21

QUESTION 1

For the line 3x + 3y = 12

(a) Sketch the line

(b) Mark the angle of inclination the line makes with the x axis. Determine this angle. Justify your answer.

QUESTION 2

(1, 1 marks)

Express the following in terms of angles between 0° and 90° and the state their exact value:

(a)
$$\cos 120^\circ = -\cos 60^\circ$$

QUESTION 3

(4 marks)

Find the exact value of $\frac{\cos 60^{\circ} \cos 45^{\circ}}{\cos 30^{\circ}}$ expressed with a rational denominator.

$$= \frac{1}{2} \times \frac{1}{\sqrt{2}} = \frac{1}{2\sqrt{2}} \times \frac{2}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}$$

$$= \frac{\sqrt{6}}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}$$

(a) Shown below are four rules and their corresponding graphs. For each, state whether or not it satisfies the conditions to be a function.

(i)
$$y = \frac{3}{x-1} + 1$$
 Yes/No

(ii)
$$x = 5$$
 Yes No

(iii)
$$\frac{1}{\sqrt{x^2 - x - 2}}$$

(iv)
$$x-4y^2=1$$
 Yes/No

(b) For each function, state its domain and range.

RULE	DOMAIN	RANGE
$y = \frac{3}{x - 1} + 1$	XEIR X≠1	YER Y #1 V
x = 5		
$\frac{1}{\sqrt{x^2 - x - 2}}$	XER X<-1 /	yeir y >0 V
$x - 4y^2 = 1$		The control was a control to the con

(3 marks)

Simplify and express with a rational denominator: $\frac{\sqrt{7}-6}{\sqrt{7}+6}$

$$\frac{\sqrt{7-6}}{\sqrt{7+6}} \times \frac{\sqrt{7-6}}{\sqrt{7-6}} = \frac{(\sqrt{7-6})(\sqrt{7-6})}{(\sqrt{7+6})(\sqrt{7-6})}$$

$$= \frac{7-12\sqrt{7+36}}{7-36}$$

$$= 43-12\sqrt{7}$$

QUESTION 6

(2 marks)

Write 255^{0} as an angle in radians as a simplified fraction in terms of π

QUESTION 7

(1 mark)

A function is defined as $f(x) = x^2 + 2x - 8$. Write an expanded expression for f(2x)

$$f(2x) = (2x)^2 + 2(2x) - 8$$

= $4x^2 + 4x - 8$

MATHEMATICS METHODS TEST 1 RESOURCE RICH

TIME ALLOWED: 40 MINUTES

TOTAL MARKS: 39

NAME:

OUESTION 8 (5 marks)

Three towns Brooks River (B), Fryman Mill (M) and Swann Place (S) are to cultivate the triangular piece of land that they immediately surround. M is 2000m due South of B. S is on a bearing of 145° from B and 052° from M. Calculate the area of this piece of land.

QUESTION 9 (3,1 marks)

The area of a sector AOB, in a circle centre O and radius 4 cm is $\frac{16\pi}{3}$ cm². Find the size of $\angle AOB$:

a. in radians in terms of π .

a. in radians in terms of
$$\pi$$
.

All $a = \frac{1}{2} \times 4^2 \times 6$

And $a = \frac{1}{2} \times 4^2 \times 6$

And $a = \frac{1}{2} \times 4^2 \times 6$

b. in degrees

QUESTION 10 (6 marks)

Two observers are on opposite sides of a tower, and collinear with its base. The first finds the angle of elevation of the top of the tower to be 42°, the second finds it to be 30°. If the tower is 28m high, how far apart are the observers?

QUESTION 11 (8 marks)

At 7pm a ship heading North and travelling at 18 km/hr observes a lighthouse on a bearing of 030° . At 8pm the lighthouse is observed on a bearing of 055° . At what time will the ship be due West of the lighthouse – and how close will it be at this time?

QUESTION 12 (5, 2 marks)

A wireless mast is supported by two wires MP and MQ, each attached to it at the point M, 12m from the base A of the mast. Q, P and A are all on level ground, Q being due East and P due South of the mast. If MP and MQ are respectively 15m and 18m long:

(b) Find the angle QMP between the wires
$$In \triangle mOP$$
, $261 = 15^{2} + 18^{2} - 2 \times 15 \times 18 \times 100 \times 100$

QUESTION 13 (6 marks)

An equilateral triangle of side length 9 cm has circles with centres at each of the vertices drawn to pass through the other two vertices. Find the area common to the three circles.

$$\Theta = \frac{\pi}{3}$$
Area (sector) = $\frac{1}{2}r^{2}\Theta$

$$= \frac{1}{2}x9^{2}x \frac{\pi}{3}$$

$$= 42.4cm^{2}V$$
Area (segment) = $\frac{1}{2}r^{2}(\Theta - \sin\Theta)$

$$= \frac{1}{3}x9^{2}(\frac{\pi}{3} - \sin\theta)$$

$$= 7.34cm^{2}V$$

$$= 57.1 cm^{2}V$$

QUESTION 14 (3 marks)

The owner of a shop that sells computers calculates that his total weekly profit is given by the rule:

Total profit in dollars =
$$mx - c$$
,

where m is the profit per computer sold, x is the number of computers sold in the week and c is the fixed weekly cost of running the shop.

If he sells ten computers in a week his total profit is \$360.

If he only sells five computers in the week he makes a loss of \$190.

(a) Calculate
$$m$$
 and c . (10,360) (5,-190)

 $m = \frac{360 - (-190)}{10 - 5}$
 $profit = 110x - c$
 sub (10,360)

 $m = \frac{550}{5}$
 $360 = 110(10) - c$
 $m = 110$
 $c = 1100 - 360$

(b) What is the least number of computers he can sell and still make a profit?

$$P = 110x - 740$$
 $740 = 110x$
 $\frac{749}{110} = x$
 $6.73 = x$
 $x = 7$ computers $\sqrt{ }$