Appunti Fisica I

Luca Seggiani

5 Aprile 2024

1 Sistemi di riferimento rotanti

Consideriamo il caso in cui il nostro sistema mobile non inerziale ruota con una certa velocità angolare $\vec{\omega}$. Si può ricavare l'accelerazione di trascinamento:

$$\vec{a_T} = 2\vec{\omega} \times \vec{v'} - \vec{\omega} \times (\vec{\omega} \times \vec{r}) = 2\vec{\omega} \times \vec{v'} - \omega^2 \vec{R}$$

Da cui si ha la relazione fra accelerazioni:

$$\vec{a} = \vec{a'} + \vec{a_T} = \vec{a'} + 2\vec{\omega} \times \vec{v'} - \omega^2 \vec{R}$$

Dove:

- $2\vec{\omega} \times \vec{v'}$ è l'accelerazione di Coriolis, diependente dalla velocità del SM sul sistema in rotazione.
- $-\omega^2 \vec{R}$ è un'accelerazione centrifuga dovuta alla forza centripeta che mantiene l'oggetto in rotazione.

Possiamo quindi esprimere le forze apparenti con:

$$m\vec{a'} = \sum \vec{F} + \vec{F}_{app} \Rightarrow \vec{F}_{app} = m(-2\vec{\omega} \times \vec{v'} + \omega^2 \vec{R})$$

dove le due componenti di \vec{F}_{app} rappresentano rispettivamente la forza di coriolis e la forza centrifuga.

Possiamo dimostrare che queste due componenti sono necessarie facendo l'esempio di un moto circolare uniforme, e osservando la relazione fra l'accelerazione osservata dal punto in rotazione e quella osservata da un sistema di riferimento inerziale fermo rispetto al moto. Sia $\vec{a'}$ l'accelerazione rispetto al sistema in quiete, abbiamo:

$$\vec{a'} = -\omega^2 \vec{R}, \quad \vec{v} = -\vec{\omega} \times \vec{R}$$

che sono le formule dell'accelerazione centripeta e della velocità tangenziale di un punto in rotazione di moto circolare uniforme. Possiamo allora applicare la relazione: $\vec{a} = \vec{a'} + \vec{a_T}$, con $\vec{a_T}$ accelerazione apparente:

$$\vec{a} = \vec{a'} + \vec{a_T} \Rightarrow \vec{a'} = \vec{a} - \vec{a_T}$$

$$\vec{a'} = \vec{a} - 2\vec{\omega} \times \vec{v'} + \omega^2 \vec{R}$$

A questo punto, sappiamo \vec{a} essere nulla in quanto il punto in rotazione è effettivamente in quiete rispetto al suo sistema di riferimento (non inerziale), ergo:

$$\Rightarrow \vec{a'} = -2\omega^2 \vec{R} + \omega^2 \vec{R} = -\omega^2 \vec{R}$$

che è coerente con quanto detto prima.

Dal punto di vista opposto, ovvero con $\vec{a'}$ uguale all'accelerazione del punto in rotazione dal suo stesso punto di riferimento, avremo:

$$\vec{a'} = 0$$
, $\vec{a'} = -\omega^2 \vec{R}$, $\vec{v} = -\vec{\omega} \times \vec{R}$

di cui le ultime due analoghe al caso precedente. Possiamo allora applicare nuovamente la relazione:

$$\vec{a'} = \vec{a} - 2\vec{\omega} \times \vec{v'} + \omega^2 \vec{R} = -\omega^2 \vec{R} + \omega^2 \vec{R} = 0$$

che è nuovamente coerente con quanto detto prima, come dovrebbe essere.

Dimostrazione dell'accelerazione di trascinamento

Diamo adesso una dimostrazione formale della formula riportata sopra. Impostiamo, come prima, S come sistema di riferimento stazionario, e S' come sistema in rotazione. Avremo allora le relazioni:

$$\begin{cases} \vec{r} = \vec{r'} + \vec{r}_{OO'}(t) \\ \vec{v} = \vec{v'} + \vec{v_t} \\ \vec{a} = \vec{a'} + \vec{a_T} \end{cases}$$

Notiamo a questo punto che per una qualsiasi posizione $\vec{r'}$ rispetto al sistema mobile S', la relativa posizione in S sarà, in termini di derivate:

$$\frac{d}{dt}\vec{r} = \frac{d}{dt}\vec{r'} + \vec{\omega} \times \vec{r} \tag{1}$$

e visto che la derivata della posizione non è altro che la velocità, avremo anche:

$$\vec{v} = \vec{v'} + \vec{\omega} \times \vec{r} \tag{2}$$

Useremo queste due ultime equazioni nel corso della dimostrazione. Impostiamo allora l'accelerazione, come definita dalla relazione precedente:

$$\vec{a} = \frac{d}{dt}\vec{v} = \frac{d}{dt}(\vec{v'} + \vec{\omega} \times \vec{r}) = \frac{d}{dt}\vec{v'} + \frac{d}{dt}(\vec{\omega} \times \vec{r})$$

si applica la (2) e la regola di derivazione del prodotto (vettoriale):

$$= \frac{d}{dt}\vec{v'} + \vec{\omega} \times \vec{v'} + \frac{d}{dt}\vec{\omega} \times \vec{r} + \vec{\omega} \times \frac{d}{dt}\vec{r}$$

si applica la (1), e si riconosce che $\frac{d}{dt}\vec{v'}=\vec{a'}$ e $\frac{d}{dt}\vec{r'}=\vec{v'}$:

$$=\frac{d}{dt}\vec{v'}+\vec{\omega}\times\vec{v'}+\frac{d}{dt}\vec{\omega}\times\vec{r}+\vec{\omega}\times(\frac{d}{dt}\vec{r'}+\vec{\omega}\times\vec{r})=\frac{d}{dt}\vec{v'}+\vec{\omega}\times\vec{v'}+\frac{d}{dt}\vec{\omega}\times\vec{r}+\vec{\omega}\times\vec{v'}+\vec{\omega}\times(\vec{\omega}\times\vec{r})$$

Da cui l'equazione finale:

$$\vec{a} = \vec{a'} + \frac{d}{dt}\vec{\omega} \times \vec{r} + 2\vec{\omega} \times \vec{v'} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$$

di cui notiamo l'ultimo fattore può essere riportato anche come $(-\omega^2 \vec{r})$. Classifichiamo tutti i termini dell'equazione:

- $\vec{a'}$ è semplicemente l'accelerazione rispetto al sistema di riferimento mobile;
- $\frac{d}{dt}\vec{\omega} \times \vec{r}$ è una forza (qua accelerazione) conseguente della variazione di velocità angolare del moto, nota come forza di Eulero;
- $2\vec{\omega} \times \vec{v'}$ è l'accelerazione di Coriolis, che agisce su corpi in movimento rispetto al sistema di riferimento mobile, e influenza ad esempio le correnti dei venti terrestri, provocando fenomeni quali gli uragani (che sulla terra girano in senso antiorario sopra l'equatore e orario sotto).
- $\vec{\omega} \times (\vec{\omega} \times \vec{r})$ oppure $(-\omega^2 \vec{r})$ è l'accelerazione centrifuga.

Tutte queste forze sono apparenti! Esistono soltanto come conseguenza del sistema di riferimento scelto, e non dall'interazione fra corpi. In questo non rispettano le leggi di Newton.