

A methodology to develop simplified kinetic schemes for detonations simulations

Fernando Veiga-López, Ashwin Chinnayya and Josué Melguizo-Gavilanes

Contents

- Motivation and objective
- 1D Model
- 1D Results
- 2D Results
- Conclusions and future efforts

Numerical soot-foil obtained with and stoichiometric H₂-O₂ detonation

Motivation and objective

- Modeling chemistry is still a challenge
- Flames: Several approaches
 - Efforts because of industrial needs (turbulent combustion)
 - Huge detailed mechanisms for HC (~100 species; ~1000 reactions)
 - Improved reduction techniques
- Detonations: usually single-step Arrhenius
 - Fair qualitative agreement
 - Lack for quantitative predictions (initiation, quenching)
 - Conventional 0D (induction time) or 1D (ideal ZND) fitting procedures

Motivation and objective

- Propose a new fitting procedure for reduced chemical mechanisms for stoichiometric hydrogen-oxygen detonations
 - Steady 1D curved (κ) detonations
 - $_{\odot}$ Matching the predicted critical curvatures (κ_{crit})
 - Predictive reduced chemistry

Check the implications on multi-dimensional simulations

Pictures taken from Klein et al. report FM95-04

1D model including small curvature

Mathematical formulation

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho \frac{\left(\dot{\sigma} - wM^2\alpha\right)}{1 - M^2}$$

$$\frac{\mathrm{d}w}{\mathrm{d}t} = w \frac{\left(\dot{\sigma} - w\alpha\right)}{1 - M^2}$$

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -\rho w^2 \frac{\left(\dot{\sigma} - w\alpha\right)}{1 - M^2}$$

$$\frac{\mathrm{d}Y_k}{\mathrm{d}t} = \frac{W_k \dot{\omega}_k}{\rho}, \quad (k = 1, \dots, N)$$

$$\dot{\sigma} = \sum_{k=1}^{N} \left(\frac{\overline{W}}{W_k} - \frac{h_k}{c_p T}\right) \frac{\mathrm{d}Y_k}{\mathrm{d}t} \quad \text{Thermicity}$$

$$\alpha = \frac{1}{A} \frac{\mathrm{d}A}{\mathrm{d}x} = \kappa \left(\frac{D}{w} - 1\right) \quad \text{Detonation curvature term}$$

1D model including small curvature

Mathematical formulation

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho \frac{\left(\dot{\sigma} - wM^2\alpha\right)}{1 - M^2}$$

$$\frac{\mathrm{d}w}{\mathrm{d}t} = w \frac{(\dot{\sigma} - w\alpha)}{1 - M^2}$$

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -\rho w^2 \frac{(\dot{\sigma} - w\alpha)}{1 - M^2}$$

$$\frac{\mathrm{d}Y_k}{\mathrm{d}t} = \frac{W_k \dot{\omega}_k}{\rho}, \ (k = 1, \dots, N)$$

$$\dot{\sigma} = \sum_{k=1}^{N} \left(\frac{\overline{W}}{W_k} - \frac{h_k}{c_p T} \right) \frac{\mathrm{d}Y_k}{\mathrm{d}t} \quad \text{Thermicity}$$

$$\alpha = \frac{1}{A} \frac{dA}{dx} = \kappa \left(\frac{D}{w} - 1 \right)$$
 Detonation curvature term

$$T_o = 300 \text{ K}$$
; $p_o = 100 \text{ kPa}$; $2H_2 + O_2$

Single step chemistry

$$F \to P$$
 $k_T = k \exp\left(-\frac{E_a}{R_u T}\right)$

Initiation
$$F \to Y$$
 $k_I = k_C \exp \left[-\frac{E_I}{R_u} \left(\frac{1}{T_I} - \frac{1}{T} \right) \right]$

Branching
$$F + Y \rightarrow 2Y$$
 $k_B = k_C \exp \left[-\frac{E_B}{R_u} \left(\frac{1}{T_B} - \frac{1}{T} \right) \right]$

Termination
$$Y \to P$$
 $k_T = k_C$

1D model including small curvature

Mathematical formulation

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho \frac{\left(\dot{\sigma} - wM^2\alpha\right)}{1 - M^2}$$

$$\frac{\mathrm{d}w}{\mathrm{d}t} = w \frac{(\dot{\sigma} - w\alpha)}{1 - M^2}$$

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -\rho w^2 \frac{(\dot{\sigma} - w\alpha)}{1 - M^2}$$

$$\frac{\mathrm{d}Y_k}{\mathrm{d}t} = \frac{W_k \dot{\omega}_k}{\rho}, \ (k = 1, \dots, N)$$

$$\dot{\sigma} = \sum_{k=1}^{N} \left(\frac{\overline{W}}{W_k} - \frac{h_k}{c_p T} \right) \frac{\mathrm{d}Y_k}{\mathrm{d}t} \quad \text{Thermicity}$$

$$\alpha = \frac{1}{A} \frac{\mathrm{d}A}{\mathrm{d}x} = \kappa \left(\frac{D}{w} - 1 \right)$$
 Detonation curvature term

$$T_o = 300 \text{ K}$$
; $p_o = 100 \text{ kPa}$; $2H_2 + O_2$

Single step chemistry

$$F \to P$$
 $k_T = k \exp\left(-\frac{E_a}{R_u T}\right)$

tiation
$$F o Y$$

Initiation
$$F \to Y$$
 $k_I = k_C \exp \left[-\frac{E_I}{R_u} \left(\frac{1}{T_I} - \frac{1}{T} \right) \right]$

Branching
$$F + Y \rightarrow 2Y$$
 $k_B = k_C \exp \left[-\frac{E_B}{R_u} \left(\frac{1}{T_B} - \frac{1}{T} \right) \right]$

Termination
$$Y \rightarrow P$$

$$k_T = k_C$$

Chemistry: standard 0D fitting with induction time - D-kappa curves

Induction time vs. 1000/T

Mevel et al. IJHE, vol. 41, no. 16, pp. 6905-6916, 2016. Taileb et al. CNF, vol. 218, pp. 460-473, 2021.

Chemical parameters

Single step chemistry

$$k = 1.1 \times 10^9 \,\mathrm{s}^{-1}$$

$$E_a/R_u = 11277 \text{ K}$$

$$k_C = 2 \times 10^7 \text{ s}^{-1}$$

$$E_I/R_u = 25000 \text{ K}$$

$$E_B/R_u = 9300 \text{ K}$$

$$T_I = 2431 \text{ K}$$

$$T_B = 1430 \text{ K}$$

Chemistry: standard 0D fitting with induction time - D-kappa curves

Induction time vs. 1000/T

Mevel et al. IJHE, vol. 41, no. 16, pp. 6905-6916, 2016. Taileb et al. CNF, vol. 218, pp. 460-473, 2021.

Chemical parameters

Single step chemistry

$$k = 1.1 \times 10^9 \,\mathrm{s}^{-1}$$

$$E_a/R_u = 11277 \text{ K}$$

Three step chemistry

$$k_C = 2 \times 10^7 \text{ s}^{-1}$$

$$E_I/R_u = 25000 \text{ K}$$

$$E_B/R_u = 9300 \text{ K}$$

$$T_I = 2431 \text{ K}$$

$$T_B = 1430 \text{ K}$$

Detonation speed vs. curvature

Chemistry: standard 0D fitting with induction time - ZND profiles

Chemical parameters

Single step chemistry

$$k = 1.1 \times 10^9 \,\mathrm{s}^{-1}$$

 $E_a/R_u = 11277 \text{ K}$

$$k_C = 2 \times 10^7 \text{ s}^{-1}$$

$$E_I/R_u = 25000 \text{ K}$$

$$E_B/R_u = 9300 \text{ K}$$

$$T_I = 2431 \text{ K}$$

$$T_B = 1430 \text{ K}$$

- Chapman-Jouguet conditions do not match
- Thermicity profiles are smoother with simplified mechanisms

Chemistry: standard 0D fitting with induction time - D-kappa curves

Induction time vs. 1000/T

Mevel et al. IJHE, vol. 41, no. 16, pp. 6905-6916, 2016. Taileb et al. CNF, vol. 218, pp. 460-473, 2021.

Chemical parameters

Single step chemistry

$$k = 1.1 \times 10^9 \,\mathrm{s}^{-1}$$

$$E_a/R_u = 11277 \text{ K}$$

Three step chemistry

$$k_C = 2 \times 10^7 \text{ s}^{-1}$$

$$E_I/R_u = 25000 \text{ K}$$

$$E_B/R_u = 9300 \text{ K}$$

$$T_I = 2431 \text{ K}$$

$$T_B = 1430 \text{ K}$$

Detonation speed vs. curvature

	1-step	3-step	Mevel et al.	
$\kappa_{crit} \ \left[\mathrm{m}^{-1} \right]$	67.4	74.8	168.5	This study
$1/h_{crit}$ [m ⁻¹]	41.7	50	166.7	Reference

Influence of the fitting parameters

Single step chemistry

Influence of the fitting parameters

Single step chemistry

	$\gamma(0 - vN - CJ)$	<i>Q</i> [MJ/kg]	$k \; ; \; k_C \; [S^{-1}]$	D _{CJ} [m/s]	<i>T</i> _{vN} [K]	$l_{ind}[\mum]$
Mevel et al.	1.4 - 1.35 - 1.218	-	-	2839.9	1768.7	41
Ref. 1-step	1.33	4.8	6×10^9	2801.5	1674.8	87.9
New 1-step	1.35	4,606	1.08×10^{10}	2836.9	1769.5	36.2
Ref. 3-step	1.33	4.99	2×10^7	2850.4	1723.7	46.8
New 3-step	1.35	4,613	4×10^7	2836.2	1768.7	21.4

Chemistry: 1D fitting with critical curvature - D-kappa curves

Induction time vs. 1000/T

Chemical parameters

Single step chemistry

$$k = 1.08 \times 10^{10} \,\mathrm{s}^{-1}$$

$$E_a/R_u = 11277 \text{ K}$$

$$k_C = 4 \times 10^7 \text{ s}^{-1}$$

$$E_I/R_u = 25000 \text{ K}$$

$$E_B/R_u = 9300 \text{ K}$$

$$T_I = 2431 \text{ K}$$

$$T_B = 1430 \text{ K}$$

Chemistry: 1D fitting with critical curvature - D-kappa curves

Induction time vs. 1000/T

Chemical parameters

Single step chemistry

$$k = 1.08 \times 10^{10} \,\mathrm{s}^{-1}$$

$$E_a/R_u = 11277 \text{ K}$$

Three step chemistry

$$k_C = 4 \times 10^7 \text{ s}^{-1}$$

$$E_I/R_u = 25000 \text{ K}$$

$$E_B/R_u = 9300 \text{ K}$$

$$T_I = 2431 \text{ K}$$

$$T_B = 1430 \text{ K}$$

Detonation speed vs. curvature

Chemistry: 1D fitting with critical curvature - ZND profiles

Chemical parameters

Single step chemistry

$$k = 1.08 \times 10^{10} \text{ s}^{-1}$$

 $E_a/R_u = 11277 \text{ K}$

$$k_C = 4 \times 10^7 \text{ s}^{-1}$$

$$E_I/R_u = 25000 \text{ K}$$

$$E_B/R_u = 9300 \text{ K}$$

$$T_I = 2431 \text{ K}$$

$$T_R = 1430 \text{ K}$$

- Chapman-Jouguet conditions still do not match
- Thermicity profiles are closer to the detailed chemistry result

Numerical soot foils cell size (single-step)

Numerical soot foils cell size (single-step)

Numerical soot foils cell size (three-step)

Numerical soot foils cell size (three-step)

Interaction with an inert layer - previous results

	h_{crit} [mm]
Experimental	4.6
Mevel et al.	6
Ref. 1-step	24
New 1-step	
Ref. 3-step	20
New 3-step	

Taileb et al. CNF, vol. 218, pp. 460-473, 2021.

Interaction with an inert layer - promising improvement on quenching prediction (three-step)

	h_{crit} [mm]
Experimental	4.6
Mevel et al.	6
Ref. 1-step	24
New 1-step	TBD
Ref. 3-step	20
New 3-step	< 10

Interaction with an inert layer - promising improvement on quenching prediction (three-step)

Propagated for almost 5 cm interacting with and inert gas through a 10-mm height layer

	n_{crit} [mm]
Experimental	4.6
Mevel et al.	6
Ref. 1-step	24
New 1-step	TBD
Ref. 3-step	20
New 3-step	< 10

Conclusions and future efforts

- We propose a new fitting procedure for simplified chemical kinetics
- κ_{crit} as fitting target ($D \kappa$ curves)
- Promising preliminary results in 2D
 - Cell size histogram better agreement with the detailed scheme
 - Critical height reduction with three-step

$$h_{crit} = 20 \,\mathrm{mm} \rightarrow h_{crit} < 10 \,\mathrm{mm}$$

Conclusions and future efforts

- We propose a new fitting procedure for simplified chemical kinetics
- κ_{crit} as fitting target ($D \kappa$ curves)
- Promising preliminary results in 2D
 - Cell size histogram better agreement with the detailed scheme
 - Critical height reduction with three-step

$$h_{crit} = 20 \,\mathrm{mm} \rightarrow h_{crit} < 10 \,\mathrm{mm}$$

- Finish the 2D analysis for quenching limits
- Variable thermodynamics
- Check our procedure for different fuels
- Extend for friction and heat losses, problem dependent

28th International Colloquium on the Dynamics of Explosions and Reactive Systems

19th to 24th June 2022

Thank you for your attention!

Interaction with an inert layer - improve on quenching prediction (three-step)

 $h = 20 \,\mathrm{mm}$

