

MACHINE LEARNING PROJECT

ONLINE TRANSACTION DATA ANALYSIS
AND FORECASTING FOR PRINCE OF
SONGKHLA UNIVERSITY COOPERATIVE
CREDIT AND SAVING, LIMITED

HTTPS://WWW.CANVA.COM/DESIGN/DAGT1J1-C84/BGZ2IX7LCSMSBHWMT4AITG/VIEW? UTM_CONTENT=DAGT1J1-C84&UTM_CAMPAIGN=DESIGNSHARE&UTM_MEDIU M=LINK&UTM_SOURCE=EDITOR

Wathunyu Phetpaya Code 6710120039, Computer Engineering

Outline

HTTPS://GITHUB.COM/WATHUNYU123/ML

Problem

Data Transformation

Data Distribution

Data Preparation

Data Training

Result

5 - 7

9 - 11

Problem: Background

Emphasizing the need for capacity planning to accommodate growth

• The savings cooperative is experiencing exponential growth in its mobile app usage as members increasingly adopt digital banking services. The organization needs to develop a robust strategy to accommodate this surge in demand and ensure seamless user experiences.

Data Transformation


```
data2567, data2566, data2565, data2564 = import_data(path, files, '2567'), import_data(path, files, '2566'), import_data(path, files, '2566'),
         ("data2567", data2567),
         ("data2566", data2566),
          ("data2565", data2565),
           ("data2564", data2564),
show_detail(
         datasets,
         shape True
         column True,
         info-True
         describe True,
         is_null=True,
         dtype-True
# Columns to be plotted
columns = ['TransCode', 'TransType', 'TransAmount', 'TransFee']
labels = ['TransCode', 'TransType', 'TransAmount', 'TransFee']
for label, df in datasets:
         plot_boxplot(df, columns, labels, filename=f'(image_path)boxplot_(label).png')
plot_histograms(
        datasets datasets
         filename=f'{image_path}hist_(datasets[0][0])_(datasets[1][0])_(datasets[2][0])_(datasets[3][0]){png}
for label, df in datasets:
         df['Tran_Date'] = pd.to_datetime(df['Tran_Date'], format='XYXmXd')
         df['YearHonth'] = df['Tran_Date'].dt.to_period('M')
          transcode_counts = df.groupby(['YearMonth', 'TransCode']).size().unstack(fill_value=0)
          save_dataframe_as_image(df-transcode_counts, filename-f'(image_path)transcode_counts_(label)(png)')
```

- Convert .xlsx to Dataframe
- Convert string type of datetime to datetime type
- Group age to 6 range
 - o 0-18
 - 19-30
 - o 31-40
 - 41-50
 - 51-60
 - o 61+

Data Distribution

Data Distribution

Data Distribution

Data Preparation


```
model rf, model svm, model nn= None, None, None
105
          X_train, X_test, y_train, y_test = None, None, None, None
106
107
          # Prepare the data for the model
108
          data = transcode counts by age.reset index()
109
          data['YearMonth'] = data['YearMonth'].astype(str)
110
111
          # Convert categorical variables to dummy/indicator variables
112
          X = pd.get dummies(data[['AgeRange']], drop first=True) # Only AgeRange for now
113
          X = pd.concat([X, data[transcode_counts_by_age.columns]], axis=1) # Add TransCode columns
114
115
          # Create the target variable (e.g., predicting counts for a specific TransCode)
116
          target_columns = transcode_counts_by_age.columns # All TransCodes as targets
117
          y = X[target columns]
118
119
          # Ensure column names are strings
120
          X.columns = X.columns.astype(str) # Convert all column names to strings
121
          y.columns = y.columns.astype(str) # Convert all column names to strings
122
123
          # Split the data into training and testing sets
124
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
125
126
          # Get the dummy column names from training data
          age_range_dummy_cols = X_train.columns[X_train.columns.str.startswith('AgeRange_')]
127
```

- Split dataset (2564 2567)
 - 80 % for traing
 - 20 % for testing

Data Training

Method 1: Random Forest Regression

Data Training

Method 2: Support Vector Machine

Data Training

Method 3: Neural Network

Error Comparison Table

Metric	Random Forest	SVM	Neural Network
MSE	12780.29179814815	3135324.6340004043	127261186621465.58
MAE	46.469074074074065	778.4731053463337	3748915.6730751633

Neural Network's best choice for the data result where the age range of 0-18 remains 0, which is most consistent with reality

ThankYou

For Your Attention

