

A 2.4σ observation of the Higgs Boson through the $H \to ZZ \to 4\ell$ golden channel

Vinh Q. Tran

 Describe particles and phenomenon in terms of interactions between fundamental fields.

Standard Model of Elementary Particles

- Describe particles and phenomenon in terms of interactions between fundamental fields.
- Success in explaining three of the four fundamental forces.

Standard Model of Elementary Particles

- Describe particles and phenomenon in terms of interactions between fundamental fields.
- Success in explaining three of the four fundamental forces.
- The Higgs field plays a crucial role in the model, in that it allows for a mass-giving mechanism.

Standard Model of Elementary Particles

- Describe particles and phenomenon in terms of interactions between fundamental fields.
- Success in explaining three of the four fundamental forces.
- The Higgs field plays a crucial role in the model, in that it allows for a mass-giving mechanism.
- Up to the 2000s, evidence for the Higgs boson was still missing.

Standard Model of Elementary Particles

 No neutrino → No missing energy and information loss.

- No neutrino → No missing energy and information loss.
- No hadron → Avoid complex modeling of hadron interactions and jets.

- No neutrino → No missing energy and information loss.
- No hadron → Avoid complex modeling of hadron interactions and jets.
- Clear signature!

Four-lepton background

• Main source of events are the *ZZ* decays. These cannot be completely removed.

(e) $gg \to ZZ$ box diagram (crossed)

(d) $gg \to ZZ$ box diagram

Four-lepton background

- Main source of events are the *ZZ* decays. These cannot be completely removed.
- Others include: Drell-Yahn $(Z/\gamma^* + X)$ and $t\bar{t}$.

 (\mathbf{c}) u-channel quark exchange

(d) $gg \to ZZ$ box diagram

(e) $gg \to ZZ$ box diagram (crossed)

Four-lepton background

- Main source of events are the *ZZ* decays. These cannot be completely removed.
- Others include: Drell-Yahn $(Z/\gamma^* + X)$ and $t\bar{t}$.
- These are reducible with careful event selection.

(b) t-channel quark exchange (c) u-channel quark exchange

(d) $gg \to ZZ$ box diagram

(e) $gg \to ZZ$ box diagram (crossed)

Compact Muon Solenoid

- Compact Muon Solenoid
- The detector center-piece: The superconducting solenoid, generating a 3.8T magnetic field.

- Compact Muon Solenoid
- The detector center-piece: The superconducting solenoid, generating a 3.8T magnetic field.
- Array of subdetectors measuring charge, momentum, and energy or particles.

- Compact Muon Solenoid
- The detector center-piece: The superconducting solenoid, generating a 3.8T magnetic field.
- Array of subdetectors measuring charge, momentum, and energy or particles.

- Compact Muon Solenoid
- The detector center-piece: The superconducting solenoid, generating a 3.8T magnetic field.
- Array of subdetectors measuring charge, momentum, and energy or particles.

- Compact Muon Solenoid
- The detector center-piece: The superconducting solenoid, generating a 3.8T magnetic field.
- Array of subdetectors measuring charge, momentum, and energy or particles.

- Compact Muon Solenoid
- The detector center-piece: The superconducting solenoid, generating a 3.8T magnetic field.
- Array of subdetectors measuring charge, momentum, and energy or particles.

- Compact Muon Solenoid
- The detector center-piece: The superconducting solenoid, generating a 3.8T magnetic field.
- Array of subdetectors measuring charge, momentum, and energy or particles.
- Detector geometry is in terms of ϕ and $\eta = -\ln(\tan \theta/2)$.

- Compact Muon Solenoid
- The detector center-piece: The superconducting solenoid, generating a 3.8T magnetic field.
- Array of subdetectors measuring charge, momentum, and energy or particles.
- Detector geometry is in terms of ϕ and $\eta = -\ln(\tan \theta/2)$.
- $\eta_e \le 2.5$, $\eta_{E/HCAL} \le 3.0$, $\eta_{\mu} \le 2.4$

• Observations are from the CMS 2011-2012 runs with $\sqrt{s}=7.8~{\rm TeV}$.

- Observations are from the CMS 2011-2012 runs with $\sqrt{s} = 7.8 \text{ TeV}$.
- Monte Carlo simulations of events are generated to guide the analysis and event selections.

- Observations are from the CMS 2011-2012 runs with $\sqrt{s} = 7.8 \text{ TeV}$.
- Monte Carlo simulations of events are generated to guide the analysis and event selections.
- Four-lepton events requirements:
 - $|d_{xy}| < 0.5 \text{ cm}, |d_z| < 1.0 \text{ cm}$

- Observations are from the CMS 2011-2012 runs with $\sqrt{s} = 7.8 \text{ TeV}$.
- Monte Carlo simulations of events are generated to guide the analysis and event selections.
- Four-lepton events requirements:
 - $|d_{xy}| < 0.5$ cm, $|d_z| < 1.0$ cm
 - $SIP = \frac{d_{3D}}{\sigma_{d_{3D}}} < 0.4$

- Observations are from the CMS 2011-2012 runs with $\sqrt{s} = 7.8 \text{ TeV}$.
- Monte Carlo simulations of events are generated to guide the analysis and event selections.
- Four-lepton events requirements:
 - $|d_{xy}| < 0.5 \text{ cm}, |d_z| < 1.0 \text{ cm}$
 - $SIP = \frac{d_{3D}}{\sigma_{d_{3D}}} < 0.4$
 - $I_{rel} = \sum p_{T,i}/p_{T,\ell} < 0.4$

$$\Delta R_i = \sqrt{\Delta \phi_{i,\ell}^2 + \Delta \eta_{i,\ell}^2} < 0.4$$

- Observations are from the CMS 2011-2012 runs with $\sqrt{s} = 7.8 \, \mathrm{TeV}$.
- Monte Carlo simulations of events are generated to guide the analysis and event selections.
- Four-lepton events requirements:
 - $|d_{xy}| < 0.5$ cm, $|d_z| < 1.0$ cm
 - $SIP = \frac{d_{3D}}{\sigma_{d_{3D}}} < 0.4$
 - $I_{rel} = \sum p_{T,i}/p_{T,\ell} < 0.4$

$$\Delta R_i = \sqrt{\Delta \phi_{i,\ell}^2 + \Delta \eta_{i,\ell}^2} < 0.4$$

• Charge conservation cut and transverse momentum cut: $\sum_i q_i = 0$, $p_{\mathrm{T},e} > 7$ GeV, $p_{\mathrm{T},\mu} > 5$ GeV

- Charge conservation cut and transverse momentum cut: $\sum_i q_i = 0$, $p_{\mathrm{T},e} > 7$ GeV, $p_{\mathrm{T},\mu} > 5$ GeV
- Remove 90-95% of Drell-Yahn $(Z/\gamma^* + X)$ and $t\bar{t}$, 20-30% of irreducible ZZ background. 95% of the signal still remain

- Charge conservation cut and transverse momentum cut: $\sum_i q_i = 0$, $p_{\mathrm{T},e} > 7$ GeV, $p_{\mathrm{T},\mu} > 5$ GeV
- Remove 90-95% of Drell-Yahn $(Z/\gamma^* + X)$ and $t\bar{t}$, 20-30% of irreducible ZZ background. 95% of the signal still remain
- Pair into lepton-antileptons pairs, each of these are assumed to be the product of *Z* decay.

- Charge conservation cut and transverse momentum cut: $\sum_i q_i = 0$, $p_{\mathrm{T},e} > 7$ GeV, $p_{\mathrm{T},\mu} > 5$ GeV
- Remove 90-95% of Drell-Yahn $(Z/\gamma^* + X)$ and $t\bar{t}$, 20-30% of irreducible ZZ background. 95% of the signal still remain
- Pair into lepton-antileptons pairs, each of these are assumed to be the product of *Z* decay.
- Require the invariant mass of the lighter *Z* boson to be within 12-120 GeV, and the heavier within 40-120 GeV.

- Charge conservation cut and transverse momentum cut: $\sum_i q_i = 0$, $p_{\mathrm{T},e} > 7$ GeV, $p_{\mathrm{T},\mu} > 5$ GeV
- Remove 90-95% of Drell-Yahn $(Z/\gamma^* + X)$ and $t\bar{t}$, 20-30% of irreducible ZZ background. 95% of the signal still remain
- Pair into lepton-antileptons pairs, each of these are assumed to be the product of Z decay.
- Require the invariant mass of the lighter *Z* boson to be within 12-120 GeV, and the heavier within 40-120 GeV.
- Remove extra 25% of ZZ background, while keeping 90% of the signal.

- Charge conservation cut and transverse momentum cut: $\sum_i q_i = 0$, $p_{\mathrm{T},e} > 7$ GeV, $p_{\mathrm{T},\mu} > 5$ GeV
- Remove 90-95% of Drell-Yahn $(Z/\gamma^* + X)$ and $t\bar{t}$, 20-30% of irreducible ZZ background. 95% of the signal still remain
- Pair into lepton-antileptons pairs, each of these are assumed to be the product of Z decay.
- Require the invariant mass of the lighter *Z* boson to be within 12-120 GeV, and the heavier within 40-120 GeV.
- Remove extra 25% of ZZ background, while keeping 90% of the signal.

Machine learning cut

 Graph Convolution Network on a fullyconnected graph. Each node represent a lepton.

Machine learning cut

- Graph Convolution Network on a fullyconnected graph. Each node represent a lepton.
- Features include particle ID (trainable encoded) and transverse momenta $p_{\mathrm{T},x}$, $p_{\mathrm{T},y}$.

Machine learning cut

- Graph Convolution Network on a fullyconnected graph. Each node represent a lepton.
- Features include particle ID (trainable encoded) and transverse momenta $p_{T,x}$, $p_{T,y}$.
- Train on events with four-lepton invariant mass of $m_{4\ell} \in [100; 160]$ GeV.

Machine learning cut

- Graph Convolution Network on a fullyconnected graph. Each node represent a lepton.
- Features include particle ID (trainable encoded) and transverse momenta $p_{\mathrm{T},x}$, $p_{\mathrm{T},y}$.
- Train on events with four-lepton invariant mass of $m_{4\ell} \in [100; 160]$ GeV.
- $P_{\rm D} = 80\%, P_{\rm F} = 30\%$

Machine learning cut

- Graph Convolution Network on a fullyconnected graph. Each node represent a lepton.
- Features include particle ID (trainable encoded) and transverse momenta $p_{\mathrm{T},x}$, $p_{\mathrm{T},y}$.
- Train on events with four-lepton invariant mass of $m_{4\ell} \in [100; 160]$ GeV.
- $P_{\rm D} = 80\%, P_{\rm F} = 30\%$

• The observed event distribution agree well with the Monte Carlo (MC) prediction.

- The observed event distribution agree well with the Monte Carlo (MC) prediction.
- Hypothesis testing:
 - Null hypothesis H_0 : Only ZZ background, prior characterized by the MC prediction, scaled by a constant factor.

- The observed event distribution agree well with the Monte Carlo (MC) prediction.
- Hypothesis testing:
 - Null hypothesis H_0 : Only ZZ background, prior characterized by the MC prediction, scaled by a constant factor.
 - Alternative hypothesis H_1 : Higgs signal + ZZ background, prior characterized by the background + a scaled gaussian peak at m_H , standard deviation σ_{m_H} .

- The observed event distribution agree well with the Monte Carlo (MC) prediction.
- Hypothesis testing:
 - Null hypothesis H_0 : Only ZZ background, prior characterized by the MC prediction, scaled by a constant factor.
 - Alternative hypothesis H_1 : Higgs signal + ZZ background, prior characterized by the background + a scaled gaussian peak at m_H , standard deviation σ_{m_H} .

p-value

 Because of low event counts, we use Poissonbased likelihood fitting.

p-value

- Because of low event counts, we use Poissonbased likelihood fitting.
- For each m_H prior, we perform regression on fixed choices of σ_{m_H} . However, the p-value is calculated as if σ_{m_H} is a free parameter.

p-value

- Because of low event counts, we use Poissonbased likelihood fitting.
- For each m_H prior, we perform regression on fixed choices of σ_{m_H} . However, the p-value is calculated as if σ_{m_H} is a free parameter.
- Significance of 2.4σ at $m_H \simeq 123.8$ GeV.

 Bootstrapping: Perturbing the observed data according to the uncertainties and repeat the analysis.

• Bootstrapping: Perturbing the observed data according to the uncertainties and repeat the analysis.

- Bootstrapping: Perturbing the observed data according to the uncertainties and repeat the analysis.
- The significances remain stable at 2.4σ .

- Bootstrapping: Perturbing the observed data according to the uncertainties and repeat the analysis.
- The significances remain stable at 2.4σ .
- Higgs mass: $m_H = 124.22 \pm 1.16$ GeV.

Conclusion

- A 2.4σ observation of Higgs boson through the four-lepton "golden" channel.
- Higgs mass of $m_H = 124.22 \pm 1.16$ GeV. Consistent with the theoretical prediction of $m_H = 125$ GeV!

