Brainstation

Capstone Sprint 2

At-Risk Students - Support for Success

Contents

- Overview: Business Problem & Solution
- Data
- EDA
- Baseline Models
- Next Steps
- References

Escalating College Dropout Rates: A Growing Concern

With historical student data, can student withdrawal actions be predicted by identifying critical indicators?

We hope to use Data Science To Recognize Clues And Patterns That Precede College Student Dropouts.

Early Identification of At-Risk Students

Early Intervention

Implement
Student Support
Strategies

Student Succeeds

Increased Retention Rates

Data

Features: Age | Gender | Country GDP |
Country Unemployment Rate | Country
Inflation Rate | Day/Night Schedule | Course
| Marital Status | Nationality | International
Admission Grade | Qualifications (including
Parents) | Parents Occupation | Scholarship
Info | Tuition Info | Curricular Units | Target –
Dropout / Not Dropout

 Collection of student enrollment – academic path, demographics, and social-economic factors.

Binarize the Target Variable: Dropped or Not

EDA

- Numerous features with high cardinality
- One-Hot Encoded
- 244 features for X data

Some features show a correlation with the Target: ex. Tuition fees up to date. This shows higher numbers of student struggling with tuition payments that result in dropping out.

Basic Modeling

 Initial modeling using Logistic Regression gives a somewhat good accuracy

Accuracy: 84.75 Train Accuracy: 87.88 Test Accuracy: 84.75						
Classification Report:						
	Precision	Recall	F1-Score	Support		
0	0.85	0.93	0.89	569		
1	0.85	0.70	0.77	316		
Accuracy			0.85	885		
Macro Avg	0.85	0.81	0.83	885		
Weighted Avg	0.85	0.85	0.84	885		

PCA with .95 &.90 component

	Train Score	Test Score
Base Logistic	87.88	84.75
PCA 95%	89.46	85.08
PCA 90%	89.09	84.41

Next Steps

Further Feature Engineering:

- Binning of categorical features with high cardinality using domain knowledge and

.map or .cut

Qualification (Student & Parents): 34 Distinct Values
1 - Secondary Education - 12th Year of Schooling or Equivalent
2 - Higher Education - Bachelor's Degree
3 - Higher Education - Degree
4 - Higher Education - Master's
5 - Higher Education - Doctorate
6 - Frequency of Higher Education
9 - 12th Year of Schooling - Not Completed
10 - 11th Year of Schooling - Not Completed
11 - 7th Year (Old)
12 - Other - 11th Year of Schooling
13 - 2nd year complementary high school course

New (Binned) Qualification Values: 9 Distinct Values
Unknown
Nonliterate
Elementary
Middle School Incomplete
Middle School
Secondary Incomplete
Secondary
Higher
Vocational

- 2. Use of Up/Down Sampling for the unbalanced Features: Target variable
- 3. Assess using the SWOT Analysis (Strength, Weakness, Opportunities and Threats)
- 4. Strategize & Implement further Modeling: Decision Tree, SVM, Hyperparameters and Pipeline

Thank you

References:

- Learnopoly College Dropout Rate Statistics
- Educationdata.org College Dropout Rates
- Data Source: Predict Students' Dropout and Academic Success