Weekly Report

M2 Ibuki Takeuchi

- Last week
 - Preparation for seminar
 - Calculate policy gradient

- Analytical calculation
 - Use dummy parameter θ to discuss what θ^a , θ^τ have in common
 - θ^{π} is a tuple of θ^{a} , θ^{τ}

•
$$\nabla_{\theta}V^{\theta^{\pi}}(s) = \nabla_{\theta}[r(s,\pi(s|\theta^{\pi})) + \gamma V^{\theta^{\pi}}(s'(\theta^{\pi}))]$$

$$= \nabla_{\theta}r(s,\pi(s|\theta^{\pi})) + \gamma \nabla_{\theta}\{V^{\theta^{\pi}}(s'(\theta^{\pi}))\}$$

$$= \nabla_{\theta}r(s,\pi(s|\theta^{\pi})) + \gamma \nabla_{\theta}s'(\theta^{\pi})\nabla_{s'}V^{\theta^{\pi}}(s')|_{s'=s'(\theta^{\pi})}$$

$$+\gamma \nabla_{\theta}V^{\theta^{\pi}}(s')|_{s'=s'(\theta^{\pi})}$$
1st step's term

recursive term

- Detail calculation of $\nabla_{\theta^{\tau}} V^{\theta^{\pi}}(s)$
 - $s'(\theta^{\pi}) = s'(\theta^{\pi}|s)$: next state (τ second after)

•
$$\nabla_{\theta^{\tau}} r(s, \pi(s|\theta^{\pi})) = \nabla_{\theta^{\tau}} \tau(s|\theta^{\tau}) \{-s'(\theta^{\pi})^{T} Q s'(\theta^{\pi}) - a(s|\theta^{\pi})^{T} R a(s|\theta^{\pi}) + \lambda \}$$

$$\nabla_{\tau} r(s, \pi(s|\theta^{\pi}))$$

• $\nabla_{\theta^{\tau}} s'(\theta^{\pi}) = \nabla_{\theta^{\tau}} \tau(s|\theta^{\tau}) \{ f(s'(\theta^{\pi})) + g(s'(\theta^{\pi})) a(s|\theta^{a}) \}$ $\nabla_{\tau} s'(\theta^{\pi})$

•
$$\nabla_{\theta^{\tau}} V^{\theta^{\pi}}(s) = \nabla_{\theta^{\tau}} \tau(s|\theta^{\tau}) \{$$

$$-s'(\theta^{\pi})^{T} Q s'(\theta^{\pi}) - a(s|\theta^{\pi})^{T} R a(s|\theta^{\pi}) + \lambda$$

$$+ \gamma (f(s'(\theta^{\pi})) + g(s'(\theta^{\pi})) a(s|\theta^{a}))) \nabla_{s'} V^{\theta^{\pi}}(s')|_{s'=s'(\theta^{\pi})} \}$$

$$+ \gamma \nabla_{\theta} V^{\theta^{\pi}}(s')|_{s'=s'(\theta^{\pi})}$$

- Considering the equation
 - Is there region in parameter space where policy gradient steep?

- Strategy
 - If there is the reason, why the policy gradient suddenly changed, in $\nabla_{\theta^{\tau}} V^{\theta^{\pi}}(s)$, $\nabla_{\theta^{\alpha}} V^{\theta^{\pi}}(s)$
 - Ahead for master thesis(?)

- If not, it means the reason above is in DDPG's approximation
 - For master thesis, compare $\nabla_{\theta^{\tau}}V^{\theta^{\pi}}(s)$, $\nabla_{\theta^{a}}V^{\theta^{\pi}}(s)$ for theoretical hyper parameter settings