BÀI TẬP LÝ THUYẾT TUẦN 3

Nhập môn Trí tuệ Nhân tạo

Nguyễn Hồng Yến – MSSV: 23280099

GVHD: PGS.TS Nguyễn Thanh Bình

Phân tích các giải thuật tìm kiếm: BFS, DFS, UCS

Thuộc tính của DFS

Complete?	Không. DFS có thể đi vào nhánh vô hạn và không quay lại; chỉ hoàn thành nếu không gian trạng thái hữu hạn và có loại bỏ trạng thái lặp.
Time	$O(b^m)$, với b là hệ số phân nhánh và m là độ sâu tối đa của không gian trạng thái.
Space	O(bm),do chỉ lưu đường đi hiện tại và tối đa b nút tại mỗi mức sâu.
Optimal?	Không. DFS có thể tìm thấy lời giải sâu hơn dù tồn tại lời giải nông hơn; không đảm bảo chi phí nhỏ nhất ngay cả khi chi phí bước đi bằng nhau.

Lý do ngắn gọn

- Complete: nhánh vô hạn làm tìm kiếm không bao giờ quay lại các nhánh khác để gặp mục tiêu.
- Time: trong trường hợp xấu nhất mở rộng tất cả nút đến độ sâu m.
- Space: ngăn xếp tìm kiếm lưu tối đa m mức, mỗi mức tối đa b nút biên.
- Optimal: mở rộng theo chiều sâu, không theo chi phí hay độ sâu nhỏ nhất.

Thuộc tính của BFS

Complete?	Có. BFS luôn tìm được lời giải nếu không gian trạng thái hữu hạn, vì nó duyệt theo từng mức độ sâu tăng dần.
Time	$O(b^{d+1})$, trong đó b là hệ số phân nhánh và d là độ sâu của lời giải nông nhất.
Space	$O(b^{d+1})$, do cần lưu toàn bộ các nút trong hàng đợi (fringe) của các mức đã mở rộng.
Optimal?	Có, nếu chi phí của mỗi bước đi là như nhau, BFS sẽ tìm ra lời giải có độ sâu nhỏ nhất.

Lý do ngắn gọn

- Complete: Duyệt theo độ sâu tăng dần nên không bỏ sót lời giải nào.
- Time: Số lượng nút mở rộng tăng theo lũy thừa bậc d.
- Space: Cần lưu toàn bộ nút của các mức trước đó trong hàng đợi FIFO.
- Optimal: Lời giải đầu tiên được tìm thấy là lời giải nông nhất khi chi phí đồng nhất.

Thuộc tính của UCS

Complete?	Có. UCS luôn tìm được lời giải nếu chi phí của mỗi bước đi
	dương (lớn hơn 0).
Time	$O(b^{1+\lfloor C^*/\varepsilon \rfloor})$, với C^* là chi phí của lời giải tối ưu và ε là chi
	phí bước đi nhỏ nhất.
Space	$O(b^{1+\lfloor C^*/arepsilon floor})$, do cần lưu tất cả các nút trong hàng đợi ưu tiên
	(priority queue).
Optimal?	Có. UCS đảm bảo tìm được đường đi có chi phí thấp nhất
	(tối ưu toàn cục).

Lý do ngắn gọn

- Complete: Không bị kẹt ở nhánh vô hạn nếu mọi chi phí bước đều dương.
- Time: Phụ thuộc vào số lượng nút có chi phí nhỏ hơn chi phí tối ưu.

- $\bullet\,$ Space: Cần lưu trữ tất cả nút sinh ra trước khi mở rộng nút có chi phí thấp nhất.
- Optimal: Mở rộng nút theo chi phí tăng dần nên luôn tìm được đường đi chi phí nhỏ nhất.