Photometrische Bestimmung von Chinolingelb in Götterspeise

Chinolingelb ist ein Farbstoff, der für die Färbung von Götterspeise zugelassen ist. In einer Zitronen-Götterspeise ist er als E 104 der färbende Zusatz. Die hier dargestellten Werte sind Verdünnungen des reinen Farbstoffes. Die Götterspeise (Probe) wurde zuvor 1:4 verdünnt, d.h. 1 Teil Götterspeise und 3 Teile Wasser.

Tabelle: Extinktionswerte des verdünnten Farbstoffes und der Probe

Wellenlänge in	Extinktion	Extinktion	Extinktion	Extinktion
nm	E 104	E 104	E 104	Probe
	β= 5 mg/L	β= 3 mg/L	β= 2 mg/L	1: 4
400	0,330	0,198	0,132	0,281
410	0,390	0,234	0,156	0,332
415	0,405	0,243	0,162	0,344
420	0,399	0,239	0,160	0,339
430	0,360	0,216	0,144	0,306
440	0,260	0,156	0,104	0,221
450	0,128	0,077	0,051	0,109
460	0,040	0,024	0,016	0,034
470	0,010	0,006	0,004	0,009
480	0,000	0,000	0,000	0,000
490	0,000	0,000	0,000	0,000

Aufgaben:

- 1.) Zeichnen Sie für β = 5 mg/L ein Absorptionsspektrum.
- 2.) Bei welcher Wellenlänge muss man die Bestimmung durchführen?
- 3.) Erläutern Sie, welche Folgen eine falsche Wellenlänge für die Bestimmung der Probe besitzt.
- 4.) Bestimmen Sie β zeichnerisch und ermitteln Sie die Massenkonzentration in der Probe.

Analyse eines binären Gemisches

Quantitative photometrische bestimmung von Tartrazin (E 102) und Cochenillerot A (E124) im binären Farbstoffgemisch "Apfelsinchenbrause"

Apfelsinchenbrause ist eine Limonade, die die Farbstoffe Tartrazin und Cochenillerot A enthält.

Absorptionsspektren von Tartrazin und Cochillerot in Wasser

Extinktionswerte zur Anfertigung von Kalibriergraden bei λ = 516 nm und 423 nm :

Cochenillerot – Lösungen	E 516 nm	E _{423 nm}
β= 2 mg/L	0,085	0,021
β= 5 mg/L	0,213	0,055
β= 10 mg/L	0,425	0,109

Tartrazin- Lösungen	E 516 nm	E _{423 nm}
β= 2 mg/L	0,000	0,113
β= 5 mg/L	0,000	0,280
β= 10 mg/L	0,001	0,561

Extinktionswerte für die Probe Apfelsinchenbrause (Verdünnung 1:2)

$$E_{516 \text{ nm}} = 0.159$$
 $E_{423 \text{ nm}} = 0.433$

ADI Werte in mg pro Kilogramm und Tag:

Tartrazin: 7,5 mg/kg· d Cochenillerot: 0,15 mg/kg· d

Aufgaben:

- 1.) Ermitteln Sie die Farbstoffklasse der beiden Farbstoffe mit Hilfe eines Buches.
- 2.) Geben Sie λ max für jeden der Farbstoffe an.
- 3.) Zeichen Sie für beide Stoffe Kalibriergraden (in jedem Diagramm beide Wellenlängen).
- 4.) Was muss man bei der Bestimmung von Tartrazin beachten?
- 5.) Bestimmen Sie die Massenkonzentration für beide Farbstoffe in der Brause (Verdünnung beachten!).
- 6.) Bewerten Sie die toxikologischen Risiken beim Genuss der Brause. Durchschnittsgewicht 70 kg (Erwachsene) 35 kg (Kind)