Impossibilities

Arrovian impossibilities:

Arrow: $[IIA_2 \mid PO_2 \mid TRat \mid non-dict_2 \mid m \ge 3]$

[IIA | PO | non-dict | $m \ge 3$] (SWF)

Cond-May: $[Anon | Neutral | PR | m, n \ge 3]$

Mas-Col-Sonn: [IIA_2 | PR_2 | Rat | non-olig_2 | $n \ge 4$] Strong Cond-May: [Neutral_2 | PR_2 | α | Anon_2 | (m,n?)] Strong Mas-Col-Sonn: [IIA | PR_2 | α | non-weak-dict | (m,n?)]

Condorcet extensions and reinforcement: [Cond-Ext | Reinf | m >= 3]

resoluteness: [Anon | Neutral | Resolute for all n, m]

scoring rules and α^* : [non-triv. monotonic scoring rule | α^*]

Manipulability:

Gibb-Satt: [Resolute | non-Imp | Stratpr | non-dict | m >= 3] [Resolute | Cond-Ext | StMon | m, n >= 3]

[Resolute | Cond-Ext | Particip | $n \ge 12$, $m \ge 4$]

Extension Manipulability:

[non-Imp | QuTRat | RK-Stratpr | non-weak-dict | m >= 3]

[PO | PR | RK-Stratpr | non-dict | m >= 3]

[PO | Maj | RF-Particip | m >= 5]

[PO | Anon | RF-Stratpr | m >= 5] (with weak pref.)

SDS:

[SDS puts prob. 1 on Cond winners | non-manip. | m, n >= 3]

non-Imp | non-manip. | non-rand-dict | m >= 3]

Exercise theorems (1 - 32):

- 2a Anti-Plurality is Monotonic, but not PO
- 2b Baldwin's rule is PO, but not Monotonic
- 3 instant-runoff suffers from strategic abstention and manipulation
- 4b knock-out elim. tree are monotonic
- 4c m >= 5 => knock-out tree not PO
- 8 resolute => (rat $\Leftrightarrow \alpha$) and (rat => strictly + trans. rat)
- 11 $mon_2 + (\forall x,y \exists RN: \forall RN': RN | \{x,y\} = RN' | \{x,y\} => f(RN',\{x,y\}) = \{x\}) => PO_2$
- 12 \exists anon+neutr+PO+res strict SCF \Leftrightarrow n not divided by any q in {2,...,m}
- 14 narrow Borda: PO, IIA, not TrRat. Broad Borda: PO, TrRat, not IIA
- 26 Tournaments contain Ham. paths/Kemeny ranking is a Ham. path
- 32a a selected by some elim. tree ⇔ a in TC

Characterizations

SCF Properties

 \subseteq

Relating to rationalizability:

 α (contraction): $B \subseteq A \Rightarrow S(A) \cap B \subseteq S(B)$ y (expansion): $S(A) \cap S(B) \subseteq S(A \cup B)$

 β + (str. expansion): $B\subseteq A$, $S(A)\cap B!=\{\}$ => $S(B)\subseteq S(A)$

 ρ + (str. retentiveness): $\forall A, x \text{ in } A, \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \rho \text{ (retentiveness):} \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \subseteq S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \in S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \in S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \in S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \in S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \in S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \in S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \in S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{D}(x)) \in S(A) \\ \forall A, x \text{ in } S(A), \bar{D}(x) \stackrel{!}{=} \{ : S(\bar{$

S-retentive set B != {}: $\forall x \text{ in B, } \overline{D}(x) != {}: S(\overline{D}(x)) \subseteq B$

Relating to set rationalizability:

 $\hat{\alpha}$ (set contraction): X = S(A u B) ⊆ A ∩ B => S(A) = S(B) = X

 \hat{y} (set expansion): $X = S(A) = S(B) \Rightarrow S(A \cup B) = X$

set rat.: $\exists R \subseteq F(U)^2: X = S(A) \Leftrightarrow X \text{ in } Max(R, F(A))$

 (stable:
 â and ŷ

 (guasi-trans. rat:
 stable and α

trans. rat. rat.

 α and y (Schwartz): For all x in AnB:

 α : x in S(A u B) => x in S(A) \cap S(B) y: x in S(A) \cap S(B) => x in S(A u B)

 α and β + (WARP): If B⊆A, S(A) \cap B!= {}:

 α : $S(A) \cap B \subseteq S(B)$ β +: $S(B) \subseteq S(A) \cap B$

 $\hat{\alpha}$ (alternative characterization): $\forall V, W, S(V) \subseteq W \subseteq V, S(V) = S(W)$

Set base relation: $X R_s Y \Leftrightarrow X = S(X u Y)$

SCFs, SWFs, <u>SPFs</u> and <u>SDSs</u>

JCI 3, JVVI 3, <u>JI I 3</u> di	٠.٠	, <u> </u>		ر ا	ı	I	I	I	I	I		1	I		ı			I	1	
	У	α	rat	ŷ	â	Anon	Neut	Mon	РО	Parti	SP	CExt	Reinf	\vdash			C1/2/3	Мај	Stable	
Plurality	Y				â	Anon	Neut	Mon	РО	Parti	SP	CExt			PR	Canc			Stable	Select alternative(s) ranked first by most voters
Seq Maj Comparisons					â	Anon	Neut	Mon	РО			CExt			PR				Stable	Make majority comparisons in fixed sequence
Plurality with runoff					â	Anon	Neut	Mon	РО	Parti		CExt			PR				Stable	Two alternatives with highest plurality scores face off in majority comparison
Instant runoff					â	Anon	Neut	Mon	РО	Parti	SP				PR				Stable	Succ. delete alternatives with lowest plurality score
Borda's rule					â	Anon	Neut	Mon	РО	Parti	SP	CExt	Reinf		PR	Canc	C2		Stable	Score of alternative = number of alternatives below it, summed over all voters, highest score wins
Scoring rules																				Score of alternative summed up over all voters, highest score wins
Baldwin's rule						Anon	Neut	Mon	РО			CExt								Succ. delete alternatives with lowest Borda score
Black's rule				(â	Anon	Neut					CExt			PR				Stable	Condorcet winner if it exists, else Borda winner
Kemeny's rule				(â		Neut	Mon	РО	Parti		CExt	Reinf	IIA	PR				Stable	Maximize number of pairwise matches: argmax_R sum_i R∩Ri
Young's rule				(â												C3		Stable	Alternatives that can be made Cond winners by removing a minimal number of voters
Copeland's rule CO				(â				РО								C1		Stable	Alternatives with maximal number of pairwise victories
Top Cycle TC				ŷ	α^	Anon	Neut	Mon	РО		RK- SP	CExt			PR			Maj	Stable	inclusion-minimal dominating set = undominated alternatives in the transitive closure
Uncovered Set UC	Y			(â	Anon	Neut	Mon	РО		RK- SP	CExt					(Maj	Stable	undominated alternatives in C (x C y \Leftrightarrow D(y) \subseteq D(x) \Leftrightarrow \overline{D} (x) \subseteq \overline{D} (y)) = alternatives that can reach everything in two steps
Banks Set BA					â	Anon	Neut	Mon	РО			CExt			PR		(Maj	Stable	maximal el. of all inclusion-maximal transitive subsets = maximal el. of trans. subsets that cannot be extended from above
Tourn. Equil. Set TEQ						Anon	Neut	Mon				CExt			PR			Maj		unique fixpoint of ° = union of inclusion-minimal TEQ-retentive sets = for each selected x, TEQ($\bar{D}(x)$) must be selected
Bipartisan Set BP				ŷ	â	Anon	Neut	Mon			RK- SP	CExt			PR			Maj	Stable	alternatives that the unique optimal lottery assigns pos. prob. (optimal lottery $p \Leftrightarrow \forall x: p(\bar{D}(x)) \geq p(D(x)) \Leftrightarrow \forall x: u_p(x) = p(\bar{D}(x)) - p(D(x)) \geq 0$
Random Dictator	У	α	rat	ŷ	â	Anon	Neut	Mon	РО	Parti	SP	CExt	Reinf		PR				Stable	select a random voter's top choice
Maximal Lottery						Anon	Neut	Mon	РО	Parti		CExt	Reinf							unique lottery s.t. $p^TM \ge 0$ (component-wise), $M_xy = n_xy - n_yx$ = no other lottery is preferred by an exp. maj., i.e. $p^TMq \ge 0$
Probabilistic Copeland										Parti	SP									probability ~ to Copeland score
Probabilistic Borda										Parti	*	impo	sing!)							probability ~ to Borda score

Algorithms

Single-Peakedness Algorithm:

```
A = alternatives still to be placed
while |A| >= 2:
    l, r = current left/right innermost alt.
    B = <the bottom-ranked alternatives>
    L = {x in B|∃i:r Pi x Pi l and ∃y in A: y Pi x}
    R = {x in B|∃i:l Pi x Pi r and ∃y in A: y Pi x}
    if |B|>2 or |L|>1 or |R|>1 or L,r overlap:
        return False
    <place x in L next to l, y in R next to r,
        z in B arbitrarily>
```

Computing TC:

```
B = CO(A,PM) # start with Copeland winners
while <B just got bigger>:
B = B ∪ (∪{D̄(a)|a in B})
```

Computing UC:

by matrix multiplication and two-step characterization
 I + M + M^2 for adj. matrix M, return rows without 0s

Computing some Banks Set element:

```
B = \{\}
C = A
while C != \{\}:
pick a from C
B = B \cup \{a\}
C = \cap \{\overline{D}(b) \mid b \text{ in } B\}
return a
```

Computing TEQ:

- for all a compute TEQ($\bar{D}(a)$) recursively
- for t in TEQ($\bar{D}(a)$), mark the edge (t -> a)
- use the TC algorithm (without CO init., i.e. O(n³)) on the subgraph given by the marked edges

Theorems

Consistency condition relationships:

```
α and γ ⇔ rationalizability α and β+ ⇔ transitive rationalizability γ in maj. SCF => ρ+ \^{α}+ monotonicity + IIA => strong monotonicity
```

Strategyproofness:

```
preferences trans. in domain => majority winner SCF satisf. stratpr. and particip. strongly monotonic => R^K-Stratpr.
maj. + R^K-stratpr. => R^K-particip.
BP, TC, UC are R^K-Stratpr.
resolute => (strong mon. ⇔ any voter can move around alternatives as long as alternatives below the winner stay below, without changing the result)
```


Arrow's Proof:

Field expansion lemma:

q is SWF, sat. IIA + PO. If a DG b for some a, b, G, then x DG y for all x, y.

Group contraction lemma:

g is SWF, sat. IIA + PO. If G is decisive, $|G| \ge 2$, there exists a decisive proper subset of G.

Exercise theorems (32 - 52):

```
32b |A| \ge 8 = \infty no elim. tree always selects a CO winner
```

36a (∃(A',PM'): UC-ind. subgr. is (A,PM)) \Leftrightarrow |A|=1 or (A,PM) has no Cond. winner

46 monotonic scoring rule, lex tiebreak. => participation

50a UC is R^F-manipul

50b TC is R^F-stratpr.

51 maj. + R^K-stratpr. + non-imp => Cond-cons.

More Theorems:

Cond. winners are never Borda losers, Cond. losers are never Borda winners BP: $p(x) > 0 <=> u_p(x) = 0$; |BP| is odd; p(x) is 0 or quotient of odd numbers Max. lottery: Condorcet winners picked with prob. 1

Definitions

SCF properties:

IIA: $\forall A,RN,RN': \forall i: Ri \mid A = Ri' \mid A => f(RN,A) = f(RN',A)$

monotonicity: a in $f(RN, A) \Rightarrow$ a in $f(RN', A) \Leftrightarrow$ $(RN \sim RN', i reinforces a)$

positive responsive: a in f(RN, A) and $Ri \mid A \mid = Ri' \mid A \Rightarrow f(RN', A) = \{a\}$

binary: $\forall A, R_{N}, R_{N'}: (\forall x, y: f(RN, \{x, y\}) = f(R_{N'}, \{x, y\})) => f(RN, A) = f(RN', A)$

majoritarian: Anon + Neutr + PR_2 + binary (only depends on majority rule base relation)

reinforcement: $\forall A,R_{N},R_{N'}: f(RN,A) \cap f(RN',A) := {} => f(RN u RN', A) = f(RN,A) \cap f(RN',A)$

cancellation: $\forall A,RN: (\forall x,y: n_xy = n_yx => f(RN,A) = A)$

strong monotonicity: RN = RN' except x Pi y, y Pi' x for some x notin $f(RN) \Rightarrow f(RN') = f(RN)$

(Weakening of unchosen alternatives)

SPF properties:

SPF anon: $R_i = R'_{\pi}(i) \Rightarrow f(RN) = f(RN'), \quad \pi: N \Rightarrow N$

SPF neutr: RN = $\pi(RN')$ => $\pi(f(RN))$ = f(RN'), π : U -> U

SPF Cond-cons: $\forall RN, R \text{ in } f(RN)$: x, y adj. in R and x R y => x RM y

SPF LIIA: R in f(RN), R' in f(RN'), x, y adj in R and R'

and $\forall i: Ri | \{x,y\} = Ri' | \{x,y\} => R | \{x,y\} = R' | \{x,y\}$

SPF PO: $\forall RN, x, y, R \text{ in } f(RN)$: $(\forall i: x Pi y) => x P y$

Fishburn's Classification

C1: depends on RM

C2: depends on (n_xy)_xy, not C1

C3: neither C1 nor C2

SCFs and variants:

SCF: f: $R(U)^n \times F(U) \rightarrow F(U)$

SWF: f: $R(U)^n \rightarrow R(U)$

SPF: f: $R(U)^n \rightarrow F(R(U))$

SDS: f: R(U)ⁿ -> $[0,1]^{\cup}$, Σ f(RN)(x) = 1

Kelly/Fishburn extensions:

 $X R^K Y \Leftrightarrow \forall x \text{ in } X, y \text{ in } Y: x R y$

 $X R^F Y \Leftrightarrow (\forall x \text{ in } X \setminus Y, y \text{ in } Y : x R y) \text{ and } (\forall x \text{ in } X, y \text{ in } Y \setminus X : x R y)$

Transitivity notions:

transitive: xRy and yRz => xRz

quasi-transitive: xPy and yPz => xPz

acyclic: $x_1 P x_2 P ... P x_n => x_1 R x_n$

Preference domains:

dichotomous: $D_DI(U) = \{R \text{ in } R(U) \mid \forall x,y,z: xPy => zIx \text{ or } zIy\}$

single-peaked: D^>_SP: $\forall x,y,z,i$: (x>y>z) or (z>y>x) => (x Pi y => y Pi z) single-caved: D^>_SC: $\forall x,y,z,i$: (x>y>z) or (z>y>x) => (y Pi x => z Pi y)

value-restricted: $\forall x,y,z \exists a \text{ in } \{x,y,z\}$: (a never worst) or (a never best) or (a never middle)

More Definitions:

more discriminating: fewer alt. on average, over all labelled

tournaments of size m

S°: $S^{\circ}(A) = \{B \subseteq A \mid B \text{ incl-min. S-retentive}\}$

SDS manipul.: $\exists RN,RN',u: U \rightarrow R: (u(x) \rightarrow u(y) \Leftrightarrow x Ri y)$

and E(f(RN')) > E(f(RN))

dominant set: B in Dom(A,PM) $\Leftrightarrow \forall x$ in B, y notin B: x PM y

Dictatorship and variants:

decisive group (a vs. b): $\forall RN: (\forall i \text{ in } G: a \text{ Pi b}) \Rightarrow a \text{ P b}$

> a P b "a DG b"

semidecisive group: (a vs. b) \forall RN: (\forall i in G: a Pi b and \forall j notin G: b Pj a) => a P b "a $\tilde{D}G$ b"

dictator: $x Pi y \Rightarrow x P y$ weak dictator: $x Pi y \Rightarrow x R y$

oligarchy: decisive group of weak dictators collegium: intersection of all decisive groups