p.95.3 $\sqrt[n]{2}$ $d(\alpha)=0$ $(\alpha\rightarrow0)$; $\beta(\alpha)=0$ $\alpha\rightarrow0$) Jui 3/-30. $\sqrt{2\beta\beta}: \ \Delta(x) + \beta(x) = 0(x).$ が: 中子中可知: da)=カ(な)・ス 中 limカ(な)=0 $\beta(\alpha) = \eta_2(\alpha) \cdot \alpha$ $\lim_{\alpha \to 0} \eta_2(\alpha) = 0$ $u = O(x) + \beta(x) = O(x)$ 方注2. 好好 $\lim_{x\to 0} \frac{d(x)}{x} = 0$, $\lim_{x\to 0} \frac{\beta(x)}{x} = 0$ $\lim_{x\to 0} \frac{d(x) + \beta(x)}{x} = \lim_{x\to 0} \frac{d(x)}{x} + \lim_{x\to 0} \frac{\beta(x)}{x} = 0 + 0 = 0$ $2p \ d(x) + \beta(x) = O(x).$ P.85.4 计算下引进数在扩送点处处的智慧。 (1) $y = x \cdot \sin x$, $x_0 = \frac{x}{4}$ $dy = d(x \sin x) = \sin x dx + x d\sin x = (\sin x + x \cdot \cos x) dx$ $dy|_{z=\pi} = (\sin \frac{\pi}{4} + \frac{\pi}{4} \cos \frac{\pi}{4}) dx = \frac{1}{\sqrt{2}} (1 + \frac{\pi}{4}) dx$

(2)
$$y = (HX)^{\alpha}$$
, $x_0 = 0$ (d>0)
$$dy = \alpha (HX)^{\alpha - 1} dx$$

$$dy|_{X=0} = \alpha (HO)^{\alpha - 1} dx = \alpha dx$$

P.95.5 水下3八个多数流影。

(1) $y = \frac{1-\Lambda}{1+\Lambda} (\chi + 1)$ $dy = d(\frac{1-\Lambda}{1+\Lambda}) = \frac{(H\Lambda)d(HX) - (I-X)d(HX)}{(H\Lambda)^2} = \frac{-(H\Lambda)d(\chi - (I-X)d\chi}{(HX)^2} = \frac{-2d\chi}{(HX)^2}$ (2) $y = \chi \cdot e^{\chi}$, $dy = dcx e^{\chi}$) = $\chi de^{\chi} + e^{\chi} d\chi$

 $= \pi e^{x} dx + e^{x} dx = (x+1) \cdot e^{x} dx.$