### Transferência de Massa: Coeficientes de Difusão

## Isabel Coelhoso e João Crespo

jgc@fct.unl.pt

Mestrado Integrado Engenharia Química e Biológica

Fenómenos de Transferência II

#### Coeficiente de Difusão

$$\mathbf{J}_{A} = -D_{AB}\nabla C_{A}$$

D = f(soluto, meio ambiente, P, T)

Valores típicos de D:

**Gases:**  $1 \times 10^{-5} - 1 \times 10^{-4} \text{ m}^2/\text{s}$ 

**Líquidos:**  $0.5 \times 10^{-9} - 2 \times 10^{-9} \text{ m}^2/\text{s}$ 

**Sólidos:**  $1 \times 10^{-24} - 1 \times 10^{-12} \text{ m}^2/\text{s}$ 

#### Coeficiente de Difusão

$$\mathbf{J}_{A} = -D_{AB}\nabla C_{A}$$

Constante de proporcionalidade entre fluxo e força motriz

$$D_{AB} = \frac{-J_{A,z}}{dc_A/dz} = (\frac{M}{L^2t})(\frac{1}{M/L^3 \cdot 1/L}) = \frac{L^2}{t}$$

• Semelhante à viscosidade cinemática, v, e à difusividade térmica,  $\alpha$ 

| Gas pair                                   | Temperature<br>(°K) | Diffusion<br>coefficient<br>(cm <sup>2</sup> sec <sup>-1</sup> ) |
|--------------------------------------------|---------------------|------------------------------------------------------------------|
|                                            | 282                 | 0.196                                                            |
| Air-CH <sub>4</sub>                        | 273.0               | 0.102                                                            |
| Air-C <sub>2</sub> H <sub>5</sub> OH       | 282                 | 0.148                                                            |
| Air-CO <sub>2</sub>                        | 317.2               | 0.177                                                            |
| A in XX                                    | 282                 | 0.710                                                            |
| Air–H <sub>2</sub><br>Air–D <sub>2</sub>   | 296.8               | 0.565                                                            |
| Air–D <sub>2</sub><br>Air–H <sub>2</sub> O | 289.1               | 0.282                                                            |
| All-H <sub>2</sub> O                       | 298.2               | 0.260                                                            |
|                                            | 312.6               | 0.277                                                            |
|                                            | 333.2               | 0.305                                                            |
| Air-He                                     | 282                 | 0.658                                                            |
| Air-O <sub>2</sub>                         | 273.0               | 0.176                                                            |
| Air-n-hexane                               | 294                 | 0.080                                                            |
| Air-n-heptane                              | 294                 | 0.071                                                            |
| Air-benzene                                | 298.2               | 0.096                                                            |
| Air-toluene                                | 299.1               | 0.086                                                            |
| Air-chlorobenzene                          | 299.1               | 0.074                                                            |
| Air-aniline                                | 299.1               | 0.074                                                            |
| Air-nitrobenzene                           | 298.2               | 0.086                                                            |
| Air-2-propanol                             | 299.1               | 0.099                                                            |
| Air-butanol                                | 299.1               | 0.087                                                            |
| Air-2-butanol                              | 299.1               | 0.089                                                            |
| Air-2-pentanol                             | 299.1               | 0.071                                                            |
| Air-ethylacetate                           | 299.1               | 0.087                                                            |
| CH <sub>4</sub> -Ar                        | 307.2               | 0.218                                                            |
| CH <sub>4</sub> -He                        | 298                 | 0.675                                                            |
| CH <sub>4</sub> -H <sub>2</sub>            | 298.0               | 0.726                                                            |
| CH4-H2O                                    | 307.7               | 0.292                                                            |
| C114-1120                                  | 2058                | 0.212                                                            |

$$D_{AB} = 1,858x10^{-3} \frac{T^{\frac{3}{2}}}{P\sigma_{AB}^{2}\Omega_{D}} \sqrt{\frac{1}{M_{A}} + \frac{1}{M_{B}}}$$

D<sub>AB</sub> = coeficiente de difusão da espécie A na espécie B em cm<sup>2</sup>/s M<sub>A</sub> e M<sub>B</sub> = massas moleculares das substâncias gasosas A e B.

P = pressão total em atm

 $\sigma_i = diâmetro de colisão (Å) (i = A ou B)$ 

 $\sigma_{AB}$  = distância limite (Å)

T = temperatura em Kelvin

 $\Omega$  = integral de colisão (adimensional)

 $\sigma_{AB} = \acute{E}$  uma distância limite de colisão entre as moléculas A e B, ou seja, quando uma molécula B em movimento vindo ao encontro de uma molécula A parada, a molécula B chegará a uma distância limite, na qual é repelida pela primeira, conforme a figura abaixo.





$$\sigma_{AB} = \frac{\sigma_A + \sigma_B}{2}$$

$$\varepsilon_{AB} = \sqrt{\varepsilon_A \varepsilon_B}$$

$$\Omega_{_D} = f (k T / \boldsymbol{\xi}_{AB})$$

Distância limite de colisão

Energia de interacção

Integral de colisão
Função da T e do potencial intermolecular

Estes valores encontram-se tabelados!

#### Variação com a Pressão e a Temperatura

$$D_{AB_{T_2,P_2}} = D_{AB_{T_1,P_1}} \left(\frac{P_1}{P_2}\right) \left(\frac{T_2}{T_1}\right)^{3/2} \frac{\Omega_{D|T_1}}{\Omega_{D|T_2}}$$

$$D_{AB} \alpha T^{3/2}$$

$$D_{AB} \alpha 1/P$$

### Difusão em Misturas de Gases

$$D_{1-\text{mistura}} = \frac{1}{\dot{y_2} / D_{1-2} + \dot{y_3} / D_{1-3} + \dots + \dot{y_n} / D_{1-n}}$$

$$y_2' = \frac{y_2}{y_2 + y_3 + \dots + y_n}$$

#### Difusão em Misturas de Gases

Determine o coeficiente de difusão do CO numa mistura gasosa cuja composição é:

$$y_{O2} = 0.20$$
  
 $y_{N2} = 0.70$ 

 $y_{CO} = 0.10$ 

A mistura está à temperatura de 298 K e à pressão de 2 atm.

Os coeficientes de difusão do CO em oxigénio e azoto são:

$$\mathcal{D}_{\text{CO-O2}} = 0.185 \times 10^{-4} \text{ m}^2/\text{s}$$
 273 K, 1 atm  $\mathcal{D}_{\text{CO-N2}} = 0.192 \times 10^{-4} \text{ m}^2/\text{s}$  288 K, 1 atm

$$\mathcal{D}_{\text{CO-mistura}} = 0.102 \times 10^{-4} \text{ m}^2/\text{s}$$

| Solute <sup>a</sup>                                                                                                                              | Solvent    | $D(\cdot 10^{-5} \mathrm{cm^2/sec})$                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------|
| Acetone Benzene n-Butyl acetate Ethyl alcohol (15°) Ethyl ether Ethyl acetate Mothyl acetate                                                     | Chloroform | 2.35<br>2.89<br>1.71<br>2.20<br>2.14<br>2.02                                 |
| Methyl ethyl ketone  Acetic acid Aniline Benzoic acid Cyclohexane Ethyl alcohol (15°) n-Heptane Methyl ethyl ketone (30°) Oxygen (29.6°) Toluene | Benzene    | 2.13<br>2.09<br>1.96<br>1.38<br>2.09<br>2.25<br>2.10<br>2.09<br>2.89<br>1.85 |
| Acetic acid<br>Benzoic acid<br>Nitrobenzene (20°)<br>Water                                                                                       | Acetone    | 3.31<br>2.62<br>2.94<br>4.56                                                 |

Equação de Nernst-Einstein

Lei de Stokes

$$\frac{1}{6\pi\mu R_A} \sim u_A$$

$$D_A = \mu_A RT$$

Mobilidade partícula

$$D_A = \frac{k_B T}{6\pi\mu R_A}$$

Equação de Stokes - Einstein

Soluções diluídas e moléculas esféricas!





$$D\left(\frac{\text{prolate}}{\text{ellipsoid}}\right) = \frac{k_B T}{6\pi\mu \left[\frac{(a^2 - b^2)^{1/2}}{\ln\left(\frac{a + (a^2 - b^2)^{1/2}}{b}\right)}\right]}$$



$$D\left(\begin{array}{c}\text{oblate}\\\text{ellipsoid}\end{array}\right) = \frac{k_B T}{6\pi\mu \left[\frac{(a^2 - b^2)^{1/2}}{\tan^{-1}\left[\left(\frac{a^2 - b^2}{b^2}\right)^{1/2}\right]}\right]}$$

### Correlação de Wilke-Chang (AIChE Journal, 1955)

Soluções diluídas

$$\frac{D_{AB}\mu_B}{T} = \frac{7.4 \times 10^{-8} (\Phi_B M_B)^{1/2}}{V_A^{0.6}}$$

### Depende:



#### $\Phi_{\rm B}$ (parâmetro de associação)

Para diluição infinita equação de Hayduk-Laudie

$$D_{AB} = 13.26 \times 10^{-5} \,\mu_B^{-1.14} V_A^{-0.589}$$

Equação de Scheibel

$$\frac{D_{AB}\mu_B}{T} = \frac{K}{V_A^{1/3}} \qquad K = (8.2 \times 10^{-8}) \left[ 1 + \left( \frac{3V_B}{V_A} \right)^{2/3} \right]$$

**Table 24.4** Molecular Volumes at Normal Boiling Point for Some Commonly Encountered Compounds

| Compound                        | Molecular<br>volume,<br>cm <sup>3</sup> /g mole | Compound                           | Molecular volume, in cm <sup>3</sup> /g mole |
|---------------------------------|-------------------------------------------------|------------------------------------|----------------------------------------------|
| Hydrogen, H <sub>2</sub>        | 14.3                                            | Nitric oxide, NO                   | 23.6                                         |
| Oxygen, O <sub>2</sub>          | 25.6                                            | Nitrous oxide, N <sub>2</sub> O    | 36.4                                         |
| Nitrogen, N <sub>2</sub>        | 31.2                                            | Ammonia, NH <sub>3</sub>           | 25.8                                         |
| Air                             | 29.9                                            | Water, H <sub>2</sub> O            | 18.9                                         |
| Carbon monoxide, CO             | 30.7                                            | Hydrogen sulfide, H <sub>2</sub> S | 32.9                                         |
| Carbon dioxide, CO <sub>2</sub> | 34.0                                            | Bromine, Br <sub>2</sub>           | 53.2                                         |
| Carbonyl sulfide, COS           | 51.5                                            | Chlorine, Cl <sub>2</sub>          | 48.4                                         |
| Sulfur dioxide, SO <sub>2</sub> | 44.8                                            | Iodine, I <sub>2</sub>             | 71.5                                         |

**Trabalho de casa:** Determine o valor do coeficiente de difusão do oxigénio em água à temperatura de 25°C utilizando as correlações de Wilke-Chang e Scheibel e compare com o valor experimental  $D_{\text{oxigénio-áqua}} = 2.1 \times 10^{-9} \text{ m}^2/\text{s}$ .

.

$$\frac{D_{AB}\mu_{B}}{T} = \frac{7.4 \times 10^{-8} (\Phi_{B} M_{B})^{1/2}}{V_{A}^{0.6}}$$

$$T = V_A^{1/3}$$

$$K = (8.2 \times 10^{-8}) \left[ 1 + \left( \frac{3V_B}{V_A} \right)^{2/3} \right]$$

### Coeficientes de Difusão em Sólidos

Difusão através de:

- Meios porosos
- Meios não porosos (densos)
- Meios compósitos

## Importância da difusão em meios porosos e não porosos

- Processos catalíticos (catálise heterogénea)
- Processos com membranas (permeação de gases e vapores)
- Permeação através de embalagens
- Libertação controlada de fármacos, agroquímicos,....

#### Difusão em Meios Porosos

#### Sólidos Impermeáveis



Coeficiente de difusão nos poros

$$D_{eff} = D \frac{\varepsilon}{\tau}$$

Porosidade

**Tortuosidade** 

(descreve a razão entre a "distância real" e a "distância nominal")

#### Difusão em Meios Porosos



λ **(m), livre percurso médio**, distância média percorrida por uma molécula entre 2 colisões sucessivas

$$\lambda = \frac{k_B \cdot T}{\sqrt{2} \cdot \pi \cdot d_{colis\tilde{a}o}^2 p}$$

 $k_B = 1.381 \times 10^{-23} \text{ J/K} - \text{constante de Boltzmann}$ 

p - pressão do lado da alimentação

 $d_{colisão}$  - diâmetro de colisão (diâmetro de Lennard-Jones) entre os gases que se difundem

$$K_n = \lambda / d$$
 Número de Knudsen

| Gas                              | Kinetic<br>diameter,<br>dk (Å) [22] | Lennard–Jones<br>diameter, d <sub>LJ</sub> (Å)<br>[48] |
|----------------------------------|-------------------------------------|--------------------------------------------------------|
| Не                               | 2.6                                 | 2.551                                                  |
| H <sub>2</sub>                   | 2.89                                | 2.827                                                  |
| O <sub>2</sub>                   | 3.46                                | 3.467                                                  |
| N <sub>2</sub>                   | 3.64                                | 3.798                                                  |
| CO                               | 3.76                                | 3.69                                                   |
| $CO_2$                           | 3.3                                 | 3.941                                                  |
| CH <sub>4</sub>                  | 3.8                                 | 3.758                                                  |
| $C_2H_6$                         | _                                   | 4.443                                                  |
| $C_2H_4$                         | 3.9                                 | 4.163                                                  |
| C <sub>3</sub> H <sub>8</sub>    | 4.3                                 | 5.118                                                  |
| C <sub>3</sub> H <sub>6</sub>    | 4.5                                 | 4.678                                                  |
| n-C <sub>4</sub> H <sub>10</sub> | 4.3                                 | 4.971                                                  |
| i-C4H10                          | 5                                   | 5.278                                                  |
| H <sub>2</sub> O                 | 2.65                                | 2.641                                                  |
| H <sub>2</sub> S                 | 3.6                                 | 3.623                                                  |



 $\lambda$  (m), livre percurso médio d (m), diâmetro de poro Kn (-), número de Knudsen (=  $\lambda$  / d)

 $1 \text{ nm} < d_{poro} < 100 \text{ nm}$ 

$$\lambda > d$$
Kn > 1



 Transporte através do sólido explicado por colisões gás – sólido

#### Condições para uma difusão de Knudsen:

d<sub>pore</sub> [nm] p [bar] <1000 0.1 <100 1 <10 10 <2 50

#### **Exemplos:**

Ar a T ambiental e 1 atm,  $\lambda > 60$  nm  $H_2$  a 300 °C e pressão de 1 atm,  $\lambda > 200$  nm

O coefficiente de difusão de Knudsen a partir da teoria cinética das esferas rígidas. (O material do meio poroso é considerado inerte)

$$D_{eff,i}^{k} = \frac{\varepsilon \cdot D_{i}^{k}}{\tau} = \frac{\varepsilon \cdot d_{pore}}{\tau \cdot 3} \cdot \left(\frac{8RT}{\pi MW_{i}}\right)^{1/2}$$

- D<sup>k</sup> depende de:
  - $-MW_{i}^{-1/2}$
  - $T^{1/2}$
- D<sup>k</sup> é independente:
  - da pressão
  - do peso molecular do qualquer outro gas presente na mistura! Compare com a aula sobre difusão de gases (equação de Hirschfelder).

- $D_i^k$  [m²/s], coeficiente de difusão de Knudsen do gas i
- $D_{eff,i}^{k}$  [m<sup>2</sup>/s], coeficiente de difusão de Knudsen efectivo do gas i
- $\epsilon$  [-], porosidade do meio poroso
- $\boldsymbol{\tau}$  [-], tortuosidade do meio poroso

 Comum em separação de misturas gasosas utilizando membranas inorgânicas porosas ou zeólitos

Selectividade de separação de uma difusão de Knudsen

$$\alpha_{ij.Knudsen} = \left(\frac{MW_j}{MW_i}\right)^{1/2}$$

- Processos normalmente com baixa selectividade
  - as diferenças dos pesos moleculares dos gases são pequenas

#### Trabalho de casa:

Considerando o transporte de O<sub>2</sub> e de CO<sub>2</sub> através de uma rolha de cortiça natural numa garrafa de vinho a 23 °C e a 1 bar:

- (i) calcule o livre percurso médio para os gases O2 e de CO2.
- (ii) Calcule o número de Knudsen.
- (iii) Será que este transporte segue um comportamento difusivo de Knudsen?

#### Dados:

$$d_{O2} = 3,467 \text{ Å}$$

$$d_{CO2} = 3,941 \text{ Å}$$

$$k_B = 1.38 \cdot 10^{-23} \text{ J/K}$$

$$1 \text{ bar} = 10^5 \text{ Pa}$$

$$d_{poro} = 40 \text{ nm}$$

$$\lambda = \frac{k_B \cdot T}{\sqrt{2} \cdot \pi \cdot d_{soluto}^2 \cdot p}$$

#### Solução:

$$\lambda = 76 \text{ nm O}_2$$
  
 $\lambda = 59 \text{ nm CO}_2$ 

### Difusão Superficial



 $1 \text{ nm} < d_{poro} < 4 \text{ nm}$ 

- Moléculas de gás adsorvidas nas paredes do poro
- Relacionada com a mobilidade das moléculas à superfície
- Relacionada com a natureza química do gás e do material poroso
   (P. ex., Carvão activado: CO<sub>2</sub> > CH<sub>4</sub> > N<sub>2</sub> > H<sub>2</sub> > He)
- Referente a misturas gasosas e vapores
- Depende fortemente de T!

## Condensação Capilar



 $0.6 \text{ nm} < d_{poro} < 6 \text{ nm}$ 

- Moléculas de gás ou vapor condensam dentro dos poros e movem-se como líquidos
- Elevada selectividade para os gases ou vapores que condensam
- Relacionado com a natureza química do soluto

#### Exemplos:

Separação de CO<sub>2</sub> (c.p. = 304 K) e CH<sub>4</sub> a T ambiental; elevada redução da permeabilidade do gás metano não condensável quando a mistura é processada;

Separação SO<sub>2</sub>/H<sub>2</sub>, etc.

#### **Peneiros Moleculares**



#### $0.2 \text{ nm} < d_{poro} < 1 \text{ nm}$

- Tamanho de poro comparável ao tamanho do gás alvo
- Com elevada selectividade
- Relacionado com o tamanho do soluto
- Referente a misturas gasosas e vapores
  - Exemplo: separação alcanos lineares / alcanos ramificados, usando zeólitos

## Difusão em meios não poros sem partição de soluto

• Referente a misturas gases, vapores e líquidos!

1<sup>a</sup> lei de Fick



$$J_{i} = -D_{i} \cdot \frac{dc_{i}}{dz}$$

A estrutura do meio é considerada homogénia! e tratada como "Black box" (Caixa negra).

Equação de transporte de massa através do filme

$$J_i = \frac{D_i}{\delta} \Delta c_i$$

$$J_i = \frac{D_i}{\delta} \Delta p_i$$

Perfil de concentração, c, de um soluto *i* no seu transporte através de um filme não poroso em <u>estado estacionário</u> sem resistências externas ao transporte e <u>sem</u> partição.

Mais: Nas aulas sobre Transferência de massa entre fases!

# Modelo de Solubilização (Sorpção) - Difusão

**Solubilidade** é um parâmetro termodinâmico, representa a quantidade "sorvida" pelo meio em condições de equilíbrio



Considerado instantâneo

## Modelo de Solubilização (Sorpção) - Difusão

#### Difusão depende:

- Do tamanho do soluto que permeia
- Da natureza do material do meio sólido
- Pode ser necessário considerar efeitos de resistências externas ao transporte do soluto (<u>transferência de massa externa</u>)

Mais: Nas aulas sobre transferência de massa entre fases!

### Difusão em Meios Compósitos



Duas fases permeáveis: Dois coeficientes de difusão!

## Difusão em Meios Compósitos

A forma da equação depende da geometria. Para esferas:

$$\frac{D_{eff} - D}{D_{eff} + 2D} = \phi_s \frac{D_s - D}{D_s + 2D} \quad \text{(Maxwell, 1873)}$$

 $\phi_s$  - Fracção de volume das esferas no material compósito D - Coeficiente de difusão na fase contínua  $D_s$  - Coeficiente de difusão através das esferas (fase dispersa)



Se as esferas forem impermeáveis: 
$$\frac{D_{eff}}{D} = \frac{2(1 - \phi_s)}{2 + \phi_s}$$

Para: 
$$\phi_s = 0.1$$
  $\frac{D_{eff}}{D} = 0.86$   $D_s \rightarrow \infty$   $\frac{D_{eff}}{D} = 1.33$