Signed subtraction

- Negative numbers are generally stored in 2's complement notation.
 - Reminder: 1's complement → bits are the bitwise NOT of the equivalent positive value.
 - 2's complement > 1's complement value plus one; results in zero when added to equivalent positive value.
- Subtraction can then be performed by using the binary adder circuit with negative numbers.

At the core of subtraction

- Subtraction of a number is simply the addition of its negative value.
- This the negative value is found using the 2's complement process.

$$-7-3=7+(-3)$$

$$-3-2=-3+(-2)$$

Signed Subtraction example

What about bigger numbers

 $00011010 = 26_{10}$

 $11100110 = -26_{10}$

Subtraction circuit

- 4-bit subtractor: X Y
 - X plus 2's complement of Y
 - X plus 1's complement of Y plus 1

Feed 1 as Carry-In in the least significant FA.

Addition/Subtraction circuit

- The full adder circuit can be expanded to incorporate the subtraction operation
 - Remember: 2's complement = 1's complement + 1
 - We connect Sub to Cin

Food for Thought

- What happens if we add these two positive signed binary numbers 0110 + 0011 (i.e., 6 + 3)?
 - The result is 1001.
 - But that is a negative number (-7)!
- What happens if we add the two negative numbers 1000 + 1111 (i.e., -8 + (-1))?
 - The result is 0111 with a carry-out. 🗵
- We need to know when the result might be wrong.
 - This is usually indicated in hardware by the Overflow flag!
 - More about this when we'll talk about processors.

Subtracting unsigned numbers

- General algorithm for X Y: (for sign-and-magnitude representation)
 - Get the 2's complement of the subtrahend Y (the term being subtracted).
 - 2. Add that value to the minuend X (the term being subtracted from).
 - If there is an end carry (C_{out} is high), the final result is positive and does not change (set sign bit of output to o).
 - 4. If there is no end carry (C_{out} is low), get the 2's complement of the result and set the sign bit of output to 1.

Unsigned subtraction example

Unsigned subtraction example

Week 4: Sequential Circuits

Last Week

Build A Counter?

- Can you build a device that counts number of key presses?
 - After key is pressed once, hex display should show 1
 - After key is pressed again, show 2
 - Third time: show 3
 - Then reset to o

Something else to consider...

Computer specs use terms like "16 GB of RAM" and "5GHz processors".

- What do these terms mean?
 - RAM = Random Access Memory
 - 16GB = 16 billion chars (bytes)
 - 5 GHz = 5 billion clock pulses per second.
- But what does this mean in circuitry?
 - How do you use circuits to store values?
 - What is the purpose of a clock signal?

This Week

Two kinds of circuits

- So far, we've dealt with combinational circuits:
 - Circuits where the output values are entirely dependent and predictable from the input values.
- Another class of circuits: sequential circuits
 - Circuits that also depend on both the inputs and the previous state of the circuit.

Sequential circuits

- This creates circuits whose internal state can change over time, where the same input values can result in different outputs.
- Why would we need circuits like this?
 - Memory values
 - Reacting to changing inputs

THEN ANOTHER TRUE AND THEN
TWO MORE FALSE ONES AND THEN
THREE TRUES IN A ROW...THEY
ALWAYS HAVE THREE TRUES IN A
ROW SOME PLACE...THEN ANOTHER
FALSE AND ANOTHER TRUE...

Creating sequential circuits

- Essentially, sequential circuits have feedback in the circuit.
 - How is this accomplished?
 - What is the result of having the output of a component or circuit be connected to its input?

Feedback

Storing and Reusing Values

I want to store the output of an AND gate and reuse it as input.

Store Q...

Does the following work?

How do we reason about this circuit?

Waveform Diagrams

Gate Delay

- Outputs don't change instantaneously.
 - Electrons have to move, transistors open/close...
 - Even in combinatorial circuits.

- Gate Delay or Propagation Delay:
 - "The length of time it takes for an input change to result in the corresponding output change."

Gate Delays

Ideal

Considering delays

Feedback Circuit Example (AND)

 Some gates don't have useful results when outputs are fed back on inputs.

 O_T and O_{T+1} represent the values of O at a time T, and a point in time immediately after (T+1)

A	$Q_{\mathtt{T}}$	$Q_{\mathtt{T+1}}$
0	0	0
0	1	0
1	0	0
1	1	1

If A=0, Q_{T+1} becomes 0 no matter what Q_T was.

What happens next for later values of A?

 Q_{T+1} gets stuck at 0 and cannot change \otimes

Feedback Circuit Example (OR)

 Some gates don't have useful results when outputs are fed back on inputs.

In this truth table, Q_T and Q_{T+1} represent the values of Q at a time T, and a point in time immediately after (T+1)

A	$Q_{\mathtt{T}}$	Q_{T+1}
0	0	0
0	1	1
1	0	1
1	1	1

If A=1, Q_{T+1} becomes 1 no matter what Q_T was.

What happens next for later values of A?

 Q_{T+1} gets stuck at 1. Not very useful Θ

Feedback Examples (NAND, NOR)

 NAND, NOR gates w/ feedback have more interesting characteristics, which lend themselves to storage devices.

- What makes NAND and NOR feedback circuits different?
 - Unlike the AND and OR gate circuits (which get stuck), the output Q_{m+1} can be changed, based on A.

Feedback Example (NAND)

- Let's assume we set A=0
 - Then, output Q will go to 1.

■ If we set A=1, Q's value can change, but

there's a catch!

What happens
in these last
two scenarios?

A	$Q_{\mathtt{T}}$	Q_{T+1}
0	0	1
0	1	1
1	0	1
1	1	0

Unsteady state! Can't store 0 long!

NAND waveform behaviour

instantaneously

A	$Q_{\mathtt{T}}$	Q_{T+1}
0	0	1
0	1	1
1	0	1
1	1	0

Feedback Example (NOR)

- Let's assume we set A=1
- Then, output Q will go to 0.

If we leave A unchanged we can store 0 indefinitely!

■ If we flip A, we can change Q, but there's a

catch here too!

A	$Q_{\mathtt{T}}$	Q_{T+1}	
0	0	1	+
0	1	0	
1	0	0	
1	1	0	

Feedback behaviour

NAND behaviour

A	Q_{T}	Q_{T+1}	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

NOR behaviour

A	$Q_{\mathtt{T}}$	Q_{T+1}
0	0 1	
0	1	0
1	0	0
1	1	0

- Output Q_{T+1} can be changed, based on A.
- However, gates like these that feed back on themselves enter an unstable state.
 - The output is not stable.

NAND waveform behaviour

A	A Q _T Q	
0	0 0 1	
0	1	1
1	0	1
1	1	0

We want to avoid this. We should be able to store high and low values for as long as we want, and change those values as needed.

Latches

 If multiple gates of these types are combined, you can get stable behaviour.

These circuits are called latches.

- Let's see what happens when the input values are changed...
 - Assume that \overline{S} and \overline{R} are set to 1 and 0 to start.
 - The $\overline{\mathbb{R}}$ input sets the output $\overline{\mathbb{Q}}$ to 1, which sets the output \mathbb{Q} to 0.
 - Setting R to 1 keeps the output value Q at 1, which maintains both output values.

- (continuing from previous)
 - $\overline{\mathbb{S}}$ and $\overline{\mathbb{R}}$ start with values of 1, when $\overline{\mathbb{S}}$ is set to 0.
 - This sets output \mathbb{Q} to $\mathbb{1}$, which sets the output $\overline{\mathbb{Q}}$ to $\mathbb{0}$.
 - Setting \overline{S} back to 1 keeps the output value \overline{Q} at 0, which maintains both output values.
- Conclusion: the input 11
 maintains the previous
 output state!

S	R	$Q_{\mathtt{T}}$	$\overline{Q}_{\mathtt{T}}$	Q_{T+1}	\overline{Q}_{T+1}
0	0	Χ	Χ	1	1
0	1	Χ	Χ	1	0
1	0	Χ	Χ	0	1
1	1	0	1	0	1
1	1	1	0	1	0

- lacktriangle and $ar{\mathbb{R}}$ are called "set" and "reset" respectively.
- Note how the circuit "remembers" its signal when going from 10 or 01 to 11.
- Going from 00 to 11 produces unstable behaviour!
 - In the sense that we don't know what the output will be.
 It can be o or 1, depending on which input changes first.

S	R	Q_{T}	$\overline{Q}_{\mathtt{T}}$	Q_{T+1}	\overline{Q}_{T+1}
0	0	0	1	0	1
0	0	1	0	1	0
0	1	Χ	Χ	0	1
1	0	Χ	Χ	1	0
1	1	X	Х	0	0

- In this case, S and R are "set" and "reset".
- In this case, the circuit "remembers" previous output when going from 10 or 01 to 00.
- As with \overline{SR} latch, unstable behaviour is possible, but this time when inputs go from 11 to 00.

SR latch timing diagram

 Important to note that the output signals don't change instantaneously.

More on instability

- Unstable behaviour occurs when a \$\overline{SR}\$ latch goes from 00 to 11, or a \$SR\$ latch goes from 11 to 00.
 - The signals don't change simultaneously, so the outcome depends on which signal changes first.
- Because of the unstable behaviour, 00 is considered a forbidden state in NAND-based \$\overline{SR}\$ latches, and 11 is considered a forbidden state in NOR-based SR latches.

Reading from latches

- Now we have circuit units that can store high or low values. When can we read from them?
 - For instance, when do we know when the output is ready to be sampled?
 - If the output is high, how can we tell the difference between a single high value and two high values in a row?
- Need some sort of timing signal, to let the circuit know when the output may be sampled.
 - → clock signals.

Clock signals

- "Clocks" are a regular pulse signal, where the high value indicates that the output of the latch may be sampled.
- Usually drawn as:

But looks more like:

Signal restrictions

- What's the limit to how fast the latch circuit can be sampled?
- Determined by:
 - latency time of transistors
 - Setup and hold time
 - setup time for clock signal
 - Jitter
 - Gibbs phenomenon
- Frequency = how many pulses occur per second, measured in Hertz (or Hz).

Clocked SR latch

- Adding another layer of NAND gates to the SR latch gives us a clocked SR latch (or gated SR latch)
 - Basically, a latch with a control input signal \mathbb{C} .
- The input C is often connected to a pulse signal that alternates regularly between 0 and 1 (clock)

- Same behaviour as SR latch, but with timing:
 - Start off with S=0 andR=1, like earlier example.
 - If clock is high, the first NAND gates invert those values, which get inverted again in the output.
 - Setting both inputs to 0 maintains the output values.

- Continued from previous:
 - Now set the clock low.
 - Even if the inputs change, the low clock input prevents the change from reaching the second stage of NAND gates.
 - Result: the clock needs to be high in order for the inputs to have any effect.

Clocked SR latch

- This is the typical symbol for a clocked SR latch.
- This only allows the S and R signals to affect the circuit when the clock input (C) is high.
- Note: the small NOT circle after the Q output is simply the notation to use to denote the inverted output value. It's not an extra NOT gate.

$Q_{\scriptscriptstyle \mathrm{T}}$	S	R	$Q_{\scriptscriptstyle \mathrm{T+1}}$	Result
0	0	0	0	no change
0	0	1	0	reset
0	1	0	1	set
0	1	1	?	333
1	0	0	1	no change
1	0	1	0	reset
1	1	0	1	set
1	1	1	?	333

- Wait!
- Where's the clock?
- There's a better way to look at this....

C	S	R	$Q_{\scriptscriptstyle \mathrm{T+1}}$	Result
0	X	Х	$Q_{\mathtt{T}}$	no change
1	0	0	$Q_{\mathtt{T}}$	no change
1	0	1	0	reset
1	1	0	1	set
1	1	1	?	Undefined

- Assuming the clock is 1, we still have a problem when S and R are both 1, since the state of Q is indeterminate.
 - Better design: prevent S and R from both going high.

D latch

$Q_{\mathtt{T}}$	D	Q_{T+1}
0	0	0
0	1	1
1	0	0
1	1	1

- By making the inputs to R and S dependent on a single signal D, you avoid the indeterminate state problem.
- The value of D now sets output Q low or high whenever C is high.

D latch

- This design is good, but still has problems.
 - i.e. timing issues.
 - How can we maintain state?

Latch timing issues

- Consider the circuit on the right:
- When the clock signal is high, the output looks like the waveform below:

Output keeps toggling back and forth.

C ...what happens next?

Latch timing issues

- Consider the circuit on the right:
- When the clock signal is high, the output looks like the waveform below:

Output keeps toggling back and forth.

D-Latch is transparent!

- Transparent means that
 - Any changes to its inputs are visible to the output when control signal (Clock) is 1.
- Key Take-away: The "output of a latch should not be applied directly or through combinational logic to the input of the same or another latch when they all have the same control (clock) signal."