NULE FUNKCIJE I ZNAK FUNKCIJE

NULE FUNKCIJE

Nule funkcije su mesta gde grafik seče x osu a dobijaju se kao rešenja jednačine y = 0 (to jest f(x) = 0)

Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y osom. Njega dobijamo kada u datoj funkciji

stavimo da je x = 0 (naravno , ako je 0 u oblasti definisanosti) i nadjemo vrednost za y.(to je ustvari f(0))

ZNAK FUNKCIJE

Odredjivanje znaka funkcije je ustvari odredjivanje intervala u kojem je funkcija pozitivna i intervala u kojem je funkcija negativna.

Gde je y > 0 tu je funkcija pozitivna a grafik iznad x ose.

Gde je y < 0 tu je funkcija negativna a grafik je ispod x ose.

Kod odredjivanja znaka često koristimo tablicu ali je prethodno neophodno da i brojilac i imenilac rastavimo na činioce .

Nama je bitno da kod odredjivanja znaka zapamtite sledeće: Pitamo se od čega nam zavisi znak funkcije!

Izraz za koji smo sigurni da je pozitivan ne ulazi u razmatranje kod odredjivanja znaka!

Još jedna stvar, jesu Nule funkcije i Znak funkcije posebne tačke u ispitivanju funkcije ali su vezane za Oblast definisanosti i ostale tačke u ispitivanju...

To znači da nam svaka tačka priča neku priču ali je vezana za ostale tačke u ispitivanju.

Evo nekoliko primera (Naravno, uvek moramo prvo odrediti Domen, pa tek onda Nule i Znak....)

1. Odrediti Oblast definisanosti, Nule i Znak funkcija:

a)
$$y = \frac{x-1}{x+2}$$

b)
$$y = \frac{x^2 - 4}{9 - x^2}$$

v)
$$f(x) = \frac{x^2 - 5x + 7}{x - 2}$$

g)
$$f(x) = \frac{x^2 + 2x + 1}{x^2 + 1}$$

Rešenja:

a)
$$y = \frac{x-1}{x+2}$$

$$x+2\neq 0 \to x\neq -2 \to D_f = (-\infty,-2) \cup (-2,\infty)$$

Ovo znači da funkcija u x = -2 ima potencijalnu vertikalnu asimptotu (pogledajmo sliku)

Nule funkcije

Znači rešavamo jednačinu y=0, to jest $\frac{x-1}{x+2} = 0$. Pazite, ovde samo brojilac izjednačavamo sa 0, jer smo se u Domenu već ogradili da u imeniocu ne sme da bude 0.

$$\frac{x-1}{x+2} = 0 \rightarrow x-1 = 0 \rightarrow x=1$$
 Funkcija seče x osu u tački x = 1.

Da vidimo gde seče y osu. Zamenimo da je x = 0.

$$f(0) = \frac{0-1}{0+2} = -\frac{1}{2}$$

Na slici to bi izgledalo:

Znak funkcije

Rešavamo nejednačine $\frac{x-1}{x+2} > 0 \land \frac{x-1}{x+2} < 0$. Idemo tablično jer tako dobijamo oba rešenja odjednom.

	₁ -∞ -2	2 1	ا م
x-1	-	-	+
x+2	-	+	+
$\frac{x-1}{x+2}$	+	-	+
	iznad	ispod x-ose	iznad
	x-ose	x-ose	x-ose

Zapisujemo:

$$y > 0$$
 za $x \in (-\infty, -2) \cup (1, \infty)$

$$y < 0$$
 za $x \in (-2,1)$

A na grafiku bi ovo značilo:

Grafik funkcije je u žutim oblastima, u belim nema funkcije!

b)
$$y = \frac{x^2 - 4}{9 - x^2}$$

Domen

$$9 - x^2 \neq 0 \rightarrow (3 - x)(3 + x) \neq 0 \rightarrow x \neq 3 \land x \neq -3$$

Oblast definisanosti će biti: $D_f = (-\infty, -3) \cup (-3, 3) \cup (3, \infty)$

3

Nule funkcije

$$y = \frac{x^2 - 4}{9 - x^2} = 0 \rightarrow x^2 - 4 = 0 \rightarrow (x - 2)(x + 2) = 0 \rightarrow x = 2 \lor x = -2$$

Za sad znamo gde su potencijalne vertikalne asimptote i gde funkcija seče x osu.

Presek sa y osom je $f(0) = \frac{0^2 - 4}{9 - 0^2} = -\frac{4}{9}$

Pogledajmo sliku:

Znak funkcije

Rastavimo funkciju na činioce $y = \frac{x^2 - 4}{9 - x^2} = \frac{(x - 2)(x + 2)}{(3 - x)(3 + x)}$ pa koristimo tablicu:

4

	-; -∞	3 -2	2 2	<u>2</u> :	3 00
x- 2	-	_	-	+	+
x+2	_	_	+	+	+
3-x	+	+	+	+	-
3+x	-	+	+	+	+
У	-	+	-	+	-

Ovo bi na grafiku izgledalo:

v)
$$f(x) = \frac{x^2 - 5x + 7}{x - 2}$$

$$x-2 \neq 0 \rightarrow x \neq 2 \rightarrow D_f = (-\infty, 2) \cup (2, \infty)$$

Nule funkcije

$$x^2 - 5x + 7 = 0$$

Ova kvadratna jednačina nema realna rešenja, jer je $a > 0 \land D < 0$ a znamo da je onda $x^2 - 5x + 7 > 0$.

Ovo znači da grafik nigde ne seče x osu!

Presek sa y osom je u
$$f(0) = \frac{0^2 - 5 \cdot 0 + 7}{0 - 2} = -\frac{7}{2} = -3,5$$
.

Znak funkcije

Pitamo se: od čega nam zavisi znak funkcije?

Zaključili smo u prethodnoj tački da je $x^2 - 5x + 7 > 0$ uvek, pa nam znak funkcije zavisi samo od izraza x - 2

$$y > 0$$
 za $x - 2 > 0 \rightarrow x > 2$

y < 0 za $x - 2 < 0 \rightarrow x < 2$

To bi na grafiku izgledalo:

g)
$$f(x) = \frac{x^2 + 2x + 1}{x^2 + 1}$$

Kako je $x^2+1>0$ to je $D_f=(-\infty,\infty)$ što znači da funkcija nema vertikalnih asimptota.

Nule funkcije

$$x^{2} + 2x + 1 = (x+1)^{2} = 0 \rightarrow x_{1} = x_{2} = -1$$

Funkcija seče x osu u tački (-1,0)

Presek sa y osom je u $f(0) = \frac{0^2 + 2 \cdot 0 + 1}{0^2 + 1} = 1$, znači u tački (0,1).

Znak funkcije

Razmišljamo....

Kako je $x^2 + 1 > 0$ uvek i $(x+1)^2 \ge 0$ uvek , to zaključujemo da je funkcija uvek pozitivna (sem naravno u (-1,0))

I da je ceo grafik iznad x ose.

2. Odrediti Oblast definisanosti, Nule i Znak funkcija:

$$a) y = \ln \frac{2x-1}{x+3}$$

$$b) \quad y = \frac{1}{\ln x - 1}$$

Rešenje:

$$a) y = \ln \frac{2x - 1}{x + 3}$$

Domen

$$\frac{2x-1}{x+3} > 0$$
, rešavamo tablično:

	- 3	3 1/	, 2
2x-1	-	-	+
x+3	-	+	+
2x-1	+	_	+
x+3	· ·		

$$D_f = (-\infty, -3) \cup (\frac{1}{2}, \infty)$$
 a na slici bi to izgledalo:

Nule funkcije

$$y = 0 \to \ln \frac{2x - 1}{x + 3} = 0 \to \frac{2x - 1}{x + 3} = 1$$
 (Jer znamo da je $\ln 1 = 0$)

Sad rešimo ovu jednačinu i dobijamo $2x-1=x+3 \rightarrow \boxed{x=4}$

Presek sa y osom NE POSTOJI jer x = 0 nije u oblasti definisanosti!

Znak funkcije

Da se podsetimo najpre da važi:

$$y = \ln \Theta$$

y > 0 za $\Theta > 1$ Ovo je uopšteno, gde je Θ bilo koja funkcija....

$$y < 0$$
 za $0 < \Theta < 1$

Primenjeno na naš slučaj, imamo:

$$y > 0$$
 za $\frac{2x-1}{x+3} > 1 \to \frac{2x-1}{x+3} - 1 > 0 \to \frac{2x-1-x-3}{x+3} > 0 \to \frac{x-4}{x+3} > 0$

Rešićemo ovo pa ćemo lako zaključiti gde je y < 0

	ı –3	3	4
	- 🜣		α
x-4	-	_	+
x+3	-	+	+
<u>x-4</u> x+3	+	_	+

$$y > 0$$
 za $x \in (-\infty, -3) \cup (4, \infty)$

E sad , ne bi baš bilo najbolje da zapišemo da je y < 0 za $x \in (-3,4)$ zato što funkcija nije tu svuda definisana, već

moramo:
$$y < 0$$
 za $x \in (\frac{1}{2}, 4)$

Još da vidimo šta do sada znamo vezano za crtanje grafika:

$$b) \quad y = \frac{1}{\ln x - 1}$$

Zbog razlomka je $\ln x - 1 \neq 0 \rightarrow \ln x \neq 1 \rightarrow x \neq e$ a pošto ima i ln funkcija, mora biti x > 0, tako da je :

 $D_f = (0,e) \cup (e,\infty)$ a na slici za grafik nam je:

Nule funkcije

Ne postoje nule funkcije (odnosno, nema preseka sa x osom) jer mi samo brojilac izjednačavamo sa 0 a u brojiocu je 1. Ne postoje ni preseci sa y osom jer 0 nije u oblasti definisanosti.

Znak funkcije

Znak funkcije nam zavisi samo od izraza u imeniocu, pa je:

$$y > 0 \quad za \quad \ln x - 1 > 0 \rightarrow \ln x > 1 \rightarrow x > e$$

$$y < 0 \quad za \quad \ln x - 1 < 0 \rightarrow \ln x < 1 \rightarrow x < e \rightarrow x \in (0, e)$$

a na grafiku bi bilo:

3. Odrediti Oblast definisanosti, Nule i Znak funkcija:

a)
$$y = \frac{e^x}{x-1}$$

b)
$$y = e^{\frac{1}{x}} - x$$

Rešenje:

$$a) \quad y = \frac{e^x}{x-1}$$

Domen

Rekli smo da je funkcija e^x svuda definisana, tako da nam samo smeta razlomak:

$$D_f = (-\infty, 1) \cup (1, \infty)$$

Nule funkcije

Kako je $e^x > 0$ uvek zaključujemo da ova funkcija nema nule, a presek sa y osom je $f(0) = \frac{e^0}{0-1} = \frac{1}{-1} = -1$.

Znak funkcije

Razmišljamo: od čega nam zavisi znak funkcije? Rekosmo da je $e^x > 0$ uvek, tako da znak zavisi samo od x-1.

$$y > 0$$
 za $x-1 > 0 \rightarrow x > 1$

$$y < 0$$
 za $x - 1 < 0 \rightarrow x < 1$

Za sada znamo da grafik izgleda:

b)
$$y = e^{\frac{1}{x}} - x$$

Ovde nam jedino smeta razlomak u izložiocu $\to x \neq 0 \to D_f = (-\infty,0) \cup (0,\infty)$

Nule funkcije

E ovde sad nastaju problemi....

Jednačinu $e^{\frac{1}{x}} - x = 0$ ne možemo (ili je bolje reći da ne umemo) da rešimo (uči se samo na pojedinim fakultetima).

Šta raditi u takvim situacijama?

Razdvojimo funkcije:

$$e^{\frac{1}{x}} = x$$

Neka je
$$y_1 = e^{\frac{1}{x}}$$
 i $y_2 = x$.

Ideja je da nacrtamo posebno ova dva grafika I da vidimo na toj slici da li ima mesta gde se oni seku....

E sad, $y_2 = x$ je lako nacrtati , to je prava koja je simetrala I i III kvadranta.

Za $y_1 = e^{\frac{1}{x}}$ bi morali da ispitujemo sve tačke kao da je nova funkcija: Domen, Nule

Mi ćemo vam odmah dati konačne grafike budući da u ovom fajlu radimo samo Nule i Znak funkcije.

Na slici 1. je grafik funkcije $y_1 = e^{\frac{1}{x}}$, na slici 2. je grafik $y_2 = x$ a na slici 3. smo dobili mesto gde se ova dva grafika seku što je naša tražena NULA FUNKCIJE.

Radi preciznijeg crtanja početnog grafika možemo zaključiti da se naša nula nalazi izmedju 1 i 2 ili , ako hoćete još preciznije $x_1 \in (1;1,5)$.

Sa slike 3. vidimo da je:

$$y > 0 \quad za \quad (-\infty, 0) \cup (0, x_1)$$
$$y < 0 \quad za \quad (x_1, \infty)$$

Presek sa y osom ne postoji jer x=0 nije u oblasti definisanosti.