

Машинное обучение в гидрологии

Вводная лекция

Семенова Наталья Кирилловна snkone132@mail.ru

Из чего состоит курс?

- Теоретическая часть 3 лекции:
 - Постановка задач машинного обучения
 - Методы классификации
 - Линейные модели, регрессия
 - Композиции алгоритмов
- Практическая часть 3 семинара:
 - Первичный и визуальный анализ данных с Python
 - Построение моделей классификации и регрессии
 - Практические домашние задания

Содержание лекции

- 1. Современное машинное обучение
- 2. Основные понятия и обозначения
 - Задание данных и постановка задачи
 - Модели и методы обучения
 - Обучение и переобучение
- 3. Примеры прикладных задач
 - Задача классификации
 - Задача регрессии

Какие задачи сейчас решаются с помощью машинного обучения?

Какие задачи сейчас решаются с помощью машинного обучения?

Распознавание речи

Какие задачи сейчас решаются с помощью машинного обучения?

Медицинская диагностика, разработка лекарств

Карта мира машинного обучения

- Искусственный интеллект название всей области (как то биология, химия)
- Машинное обучение только раздел искусственного интелекта
- Нейронные сети раздел машинного обучения (не единственный!)
- Глубокое обучение архитектура нейросетей, один из подходов к их построению и обучению

В современном машинном обучении можно выделить 4 основных направления

Классическое машинное обучение

Первые классические алгоритмы пришли в 50х

- <u>С учителем:</u> данные размечены заранее (Supervised Learning)
- <u>Без:</u> машине приходится искать закономерности в данных самостоятельно (Unsupervised Learning)

С учителем машина обучается быстрее и точнее. Поэтому в боевых задачах методы обучения с учителем используются чаще.

Обучение с учителем

Классификация

Разделение объектов по заранее известному признаку. Носки по цветам, музыку по жанрам

Регрессия

Та же классификация, только вместо категории предсказывается число.

Нарисовать линию по точкам

Обучение с учителем

Классификация

Где применяется:

- Спам-фильтры
- Определение языка
- Поиск похожих документов
- Анализ тональности
- Распознавание рукописных букв и цифр

Регрессия

Где применяется:

- Прогноз стоимости ценных бумаг
- Банковская сфера
- Медицинские диагнозы
- Анализ спроса, объема продаж

Обучение без учителя

- Размеченные данные дорогая редкость.
- Чаще всего обучение без учителя используют для анализа данных, а не как основной алгоритм.
- Используется для кластеризации и поиска зависимостей

Кластеризация

Разделение объектов по неизвестному признаку.

Машина сама определяет, как будет лучше

Обучение без учителя

- Размеченные данные дорогая редкость.
- Чаще всего обучение без учителя используют для анализа данных, а не как основной алгоритм.
- Используется для кластеризации и поиска зависимостей

Кластеризация

Где применяется:

- Сегментация рынка
- Объединение близких точек на карте
- Сжатие изображений
- Детекторы аномального поведения

Кластеризация

Ставим три ларька с шаурмой оптимальным образом

(иллюстрируя метод К-средних)

1. Ставим ларьки с шаурмой в случайных местах

2. Смотрим в какой кому ближе идти

3. Двигаем ларьки ближе к центрам их популярности

4. Снова смотрим и двигаем

5. Повторяем много раз

6. Готово, вы великолепны!

Обучение без учителя

Уменьшение размерности

Сведение признаков в абстракции более высокого уровня

Поиск правил

Поиск закономерностей в потоке «заказов»

Уменьшение размерности

Где используется:

- Рекомендательные системы
- Определение тематики и поиска схожих документов
- Анализ фейковых изображений
- Риск-менеджмент

Объединяем несколько признаков в одну «абстракцию». Да, теряем информацию о конкретных объектах. Но абстракция полезнее деталей. Плюс обучение происходит быстрее.

Уменьшение размерности

Определение тематик текстов - латентно семантический анализ (LSA) алгоритм).

Идея заключается в том, что частота появления слов зависит от тематики текста. В научных словах больше технических слов, в текстах женских журналов – косметики.

(чернее - чаще)

Необходимо объединять слова и документы в один признак, не теряя скрытые связи (в разных документах разные слова могут обозначать одно понятие)

Сингулярное разложение (SVD) – метод, выявляющий полезные тематические кластеры из слов, которые встречаются вместе.

Патентно-семантический Анализ (LSA)

вместе)

Поиск правил

- Прогноз акций и распродаж, анализ покупок, расстановка товара
- В реальности классические способы заключаются в переборе пар всех купленных товаров, плохо обобщают закономерности и плохо воспроизводят их на новых данных

Обучение с подкреплением

«Брось робота в лабиринт и пусть ищет выход»

- Данных нет. Есть среда и взаимодействие со средой.
- Главная задача не анализ данных, а выживание в среде.
- Рассчитать все ходы невозможно. Цель минимизировать ошибки.
- Грубо говоря: штрафуем за ошибки и награждаем за правильные поступки.

Обучение с подкреплением

Где используют:

- Самоуправляемые автомобили
- Компьютерные игры
- Автоматическая торговля

Из очень известного:

Alpha Zero – машина, которая в течение 24 часов достигла сверхчеловеческого уровня игры в шахматы, сёги и го, победив чемпионов мира среди программ!

Ансамбли

«Куча глупых деревьев учится распознавать ошибки друг друга»

- Идея проста: взять несколько простых, может не самых эффективных алгоритмов, но обучить их исправлять ошибки друг друга.
- Качество такой системы может получиться выше, чем каждого метода по отдельности.
- Где используется:
 - Любые классические алгоритмы
 - Поисковые системы
 - Компьютерное зрение

Стекинг:

одинаковые данные \rightarrow разные алгоритмы \rightarrow результаты подаются на вход решающему

Беггинг:

разные случайные данные -> одинаковые алгоритмы -> усредняем ответы

Бустинг:

Последовательное обучение, уделяем внимание ошибкам на прошлом шаге.
Аналог беггинга, но данные выбираются не случайно

Результатам позавидуют все!

Бустинг:

Последовательное обучение, уделяем внимание ошибкам на прошлом шаге.
Аналог беггинга, но данные выбираются не случайно

Нейросети и глубокое обучение

- Нейросеть набор нейронов и связей между ними.
- Нейрон функция с кучей входов и одним выходом.
- Связь канал по которому нейроны передают друг другу информацию.
 Все каналы имеют свой вес. Нейрон сам особо не разбирается, что к нему приходит – это регулируют веса

Neural Networks

Нейросети и глубокое обучение

 Нейроны расположены по слоям, дабы не допустить анархии.
 Внутри слоя нейроны никак не связаны и соединяются с лишь со следующим по порядку слоем.

Как мы видим, тут всё очевидно Программисты программируют!

Датасаенс!

Профессия будущего!

Буквально через пять лет...

Экспоненциально!!!

YMHUE POGOTU!

A-A-A-A-A-A-A-A-aaa!!!!!!

Есть два типа статей про машинное обучение

Ну а теперь серьезно...

Машинное обучение с учителем

Постановка задачи

Х – множество объектов

Ү – множество ответов

 $y: X \rightarrow Y$ – неизвестная зависимость (target function)

Дано:

 $X_{obs} = \{x_1, ... x_N\} \subset X$ – уже наблюдаемые объекты $y_i = y(x_i), i = \{1, ... N\}$ – известные ответы

Найти:

 $a: X \to Y$ — алгоритм, решающую функцию (decision function) наилучшим образом приближающую \mathbf{y} на всем множестве \mathbf{X}

Типы задач

- 1. Задача классификации
 - $Y = \{-1, 1\}$ классификация на 2 класса
 - $Y = \{1,...M\}$ классификация на М непересекающихся классов
 - $Y = \{0,1\}^M$ классификация на M пересекающихся классов
- 2. Задача регрессии
 - $Y = \mathbb{R} \text{ WAM } Y = \mathbb{R}^n$

Как задаются объекты? Признаки!

1. Каждому объекту наблюдения X сопоставляется вектор его признаков (характеристик, features)

$$X \rightarrow (x_1, x_2, \dots, x_L)$$

- 2. Типы признаков
 - Бинарные $x_i \in \{0,1\}$
 - 0 не было затора
 - 1 был затор
 - Номинальные, категориальные (тип осадков)
 - Порядковые (сила ветра)
 - Количественные $x_i \in \mathbb{R}$ (расход воды, толщина льда, температура)

Как происходит процесс обучения?

Как оценивать качество модели?

Вводим функционал качества.

L(a,x) – функция потерь (loss function) – величина ошибки алгоритма a на объекте x.

- В случае задачи классификации:
 - $L(a,x) = I(a(x) \neq y(x))$ индикатор ошибки (результат работы алгоритма не совпадает с реально существующей зависимостью)
- В задаче регрессии:
 - L(a,x) = |a(x) y(x)| абсолютное отклонение
 - $L(a,x) = (a(x) y(x))^2$ квадратичное отклонение
- Тогда на всей обучающей выборке X_{train} (эмпирический риск): $Q(a,X_{train}) = \frac{1}{N} \sum_{} L(a,x)$

$$Q(a, X_{train}) = \frac{1}{N} \sum_{x \in X_{train}} L(a, x)$$

Как оценивать качество модели?

Ставится задача о минимизации эмпирического риска.

Будет ли $Q(a, X_{test})$ тоже маленьким?

Вдруг мы подберем такой алгоритм, такие параметры модели, что он будет хорошо предсказывать данные на обучающей выборке, а на всех остальных плохо?

Такое явление называется переобучением (overfitting)!

Пример переобучения

M=1

M = 9

Как бороться с переобучением?

- Вводить ограничения на параметры модели (ограничение классов моделей, регуляризация)
- Метод выкинутой точки (Leave one out, LOO)
- Метод кросс-валидации (cross-validation, CV)

Полученные оценки качества модели усредняются, тем самым получается среднее качество модели на обучающей выборке

Задачи классификации

- 1. Предсказание образования ледового затора
- 2. Определение характера питания реки по гидрографу

Задачи регрессии

- 1. Предсказание желаемой переменной по метеорологическим и метеорологическим наблюдениям
 - Предсказание сезонно меженного стока по максимальному уровню грунтовых вот в зимний период (Draper and Smith, 1966)
 - Моделирование толщины снежного покрова (Айзель Г.В. 2016)
 - Зависимость слоя стока от слоя атмосферных осадков (Иофин 3.К. 2018)

