(XE 2007)

gate 1

EE24Btech11041 - Mohit

Q.7-Q.24	carry	two	marks	eacl	h
----------	-------	-----	-------	------	---

1)	1) The minimum number of terms required in the series expansion of e^x to evaluate at $x = 1$ correct to 3 places of decimals is (XE 200)								
	a) 8	b) 7	c) 6	d) 5					
2)	The iteration scheme $x_{n+1} = \frac{1}{1+x_n^2}$ converges to a real number x in the interval $(0,1)$ with The value of x correct up to 2 places of decimal is equal to								
	a) 0.65	b) 0.68	c) 0.73	d) 0.80					
3)	3) If the diagonal elements of a lower triangular square matrix A are all different from zero, then matrix A will always be (XE 200								
	a) symmetric	b) non-symmetric	c) singular	d) non-singu	ılar				
4)	If two eigenvalues of the $M = \begin{pmatrix} 2 & 6 & 0 \\ 1 & p & 0 \\ 0 & 0 & 3 \end{pmatrix}$ are -1 and 4, then the				(XE 2007)				
	a) 4	b) 2	c) 1	d) -1					
5)	Consider the system of	linear simultaneous equat	tions:						
	x + 10y = 5; $y + 5z = 1;$ $10x - y + z = 0$								
	On applying Gauss-Seid	del method, the value of x	correct up to 4 decimal	places is:	(XE 2007)				
	a) 0.0385	b) 0.0395	c) 0.0405	d) 0.0410					
6)		of x at which the curve c	_		g Lagrange (XE 2007)				
	a) 1.375	b) 0.0395	c) 0.0405	d) 0.0410					
7)	The equation of the stra	ight line of best fit using	the following data: by the	principle of lo	east squares				
		x 1 2 y 14 13	3 4 5 9 5 2						
	is:				(XE 2007)				
	a) $y = 18 - 3x$	b) $y = 18.1 - 3.1x$	c) $y = 18.2 - 3.2x$	d) $y = 18.3$	-3.3x				
8)	On solving the initial va	alue problem:							
		$\frac{dy}{dx} = xy^2$,	y(1) = 1		(1)				
	by Euler's method the	value of v at $x = 1.2$ with							

- a) 1.1000
- b) 1.1232
- c) 1.2210
- d) 1.2331

9) The local error of the following scheme:

$$y_{n+1} = y_n + \frac{h}{12} \left(5y'_{n+1} + 8y'_n - y'_{n-1} \right)$$
 (2)

by comparing with the Taylor series:

$$y_{n+1} = y_n + hy'_n + \frac{h^2}{2!}y''_n + \cdots$$
 (3)

is:

(XE 2007)

a) $O(h^4)$

b) $O(h^5)$

- c) $O(h^2)$
- d) $O(h^3)$
- 10) The area bounded by the curve $y = 1 x^2$ and the x-axis from x = -1 to x = 1 using Trapezoidal rule with step length h = 0.5 is: (XE 2007)
 - a) 1.20

b) 1.23

c) 1.25

d) 1.33

11) The iteration scheme:

$$x_{n+1} = \sqrt{a} \left(1 + \frac{3a^2}{x_n^2} \right) - \frac{3a^2}{x_n}, a > 0$$
 (4)

converges to the real number:

(XE 2007)

a) \sqrt{a}

b) a

c) $a\sqrt{a}$

- d) a^2
- 12) If the binary representation of two numbers m and n are 01001101 and 00101011, respectively, then the binary representation of m n is: (XE 2007)
 - a) 00010010
- b) 00100010
- c) 00111101
- d) 00100001
- 13) Which of the following statements are true in a C program?
 - P: A local variable is used only within the block where it is defined, and its sub-blocks
 - Q: Global variables are declared outside the scope of all blocks
 - R: Extern variables are used by linkers for sharing between other compilation units
 - S: By default, all global variables are extern variables

(XE 2007)

- a) P and Q
- b) P, Q and R
- c) P, Q and S
- d) P, Q, R and S

4

14) Consider the following recursive function g().

```
Recursive integer function g(m,n) result (r)
integer :: m,n
if (n == 0) then
    r=m
else if (m <= 0) then
    r = n + 1
else if ( (n - n/2*2) == 1) then
    r = g(m-2 , n/2)
end if
end</pre>
```

a) 2

b) 4

c) 6

d) 8

15) If the following function is called with x = 1

```
real function print_value(x)
real :: x , sum , term
integer :: i
i = 0
sum = 2.0
term = 1.0
do while (term > 0.00001)
    term = x * term/(i+1)
    sum = sum + term
    i = i + 1
end do
print_value = sum
end
```

The value returned will be close to

(XE 2007)

a) $\log_e 2$

- b) log_e 3
- c) 1 + e

d) *e*

16) Consider the following C program

```
#include <stdio.h>
  #include <string.h>
  void main()
  {
      char s[80], *p;
      int sum = 0;
      p = s;
      gets(s);
      while (*p)
10
      {
11
          if (*p == '1')
              sum = 2*sum + 1;
          else if (*p == '0')
14
              sum = sum * 2;
15
          else
16
              printf("invalid string");
          p++;
19
      printf("%d", sum);
20
  }
21
```

Which number will be printed if the input string is 10110?

(XE 2007)

a) 31

b) 28

c) 25

d) 22

Consider the following C program segment

17) The value of sum that will be printed by the program is

(XE 2007)

```
#include <stdio.h>
  void print_mat(int[][3]);
  void main() {
      int i, j, sum = 0;
      int m[3][3] = \{\{1, 3, 5\}, \{7, 9, 11\}, \{13, 15, 17\}\};
      for (i = 0; i < 3; i++) {
          for (j = 2; j > 1; j--) {
             sum += m[i][j] * m[i][j - 1];
11
          }
      }
13
      printf("%d", sum);
15
      print_mat(m); // FUNCTION CALL
16
  }
17
18
  void print_mat(int mat[][3]) {
19
      int (*p)[3] = &mat[1];
20
      printf("%d and %d", (*p)[1], (*p)[2]);
21
  }
```

a) 369

b) 361

c) 303

d) 261