N-gram Language Models

COMP90042

Natural Language Processing

Lecture 3

Language Models

- NLP is about explaining language
 - Why some sentences are more fluent than others
- E.g. in speech recognition:
 - recognise speech > wreck a nice beach
- We measure 'goodness' using probabilities estimated by language models
- Language model can also be used for generation

Talk to Transformer

See how a modern neural network completes your text. Type a custom snippet or try one of the examples. Learn more below.

GENERATE ANOTHER

Completion

Today we have a lecture on Natural Language Processing. It's a very unusual subject, but a very interesting subject, and this is the first time that it's been covered in a Livefist podcast. And, of course, we're going to talk about what makes Natural Language Processing a little different from other language processing areas: namely its social nature. We're going to talk about the question of artificial intelligence, which is something that we've spoken about here and a lot of people on the Livefist messageboard talk about a lot. What is the nature of AI? Is it an essentially self-regulating system, an ultimate mind, the best machine of its kind? What is the nature of intelligence, and how does it work?

Language Models

- Useful for
 - Speech recognition
 - Spelling correction
 - Query completion
 - Optical character recog.
- Other generation tasks
 - Machine translation
 - Summarisation
 - Dialogue systems

- Q lots of
- Q lots of fins
- Q lots of love
- Q lots of discharge
- Q lots of synonym

Outline

- Deriving n-gram language models
- Smoothing to deal with sparsity
- Generating Language
- Evaluating language models

COMP90042

Probabilities: Joint to Conditional

Our goal is to get a probability for an arbitrary sequence of *m* words

$$P(w_1, w_2, ..., w_m)$$

First step is to apply the chain rule to convert joint probabilities to conditional ones

$$P(w_1, w_2, ..., w_m) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)...$$

$$P(w_m|w_1, ..., w_{m-1})$$

$$P(w_m|w_1, ..., w_{m-1})$$

$$P(w_m|w_1, ..., w_{m-1})$$

COMP90042

The Markov Assumption

Still intractable, so make a simplifying assumption:

$$P(w_i | w_1...w_{i-1}) \approx P(w_i | w_{i-n+1}...w_{i-1})$$

For some small *n*

When n = 1, a unigram model

$$P(w_1, w_2, ... w_m) = \prod_{i=1}^m P(w_i)$$

When n = 2, a bigram model

$$P(w_1, w_2, ... w_m) = \prod_{i=1}^m P(w_i | w_{i-1})$$

When n = 3, a trigram model

$$P(w_1, w_2, ... w_m) = \prod_{i=1}^m P(w_i | w_{i-2} w_{i-1})$$

Maximum Likelihood Estimation

For unigram models,

$$P(w_i) = \frac{C(w_i)}{M}$$

For bigram models,

$$P(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

For n-gram models generally,

$$P(w_i | w_{i-n+1}...w_{i-1}) = \frac{C(w_{i-n+1}...w_i)}{C(w_{i-n+1}...w_{i-1})}$$

Book-ending Sequences

- Special tags used to denote start and end of sequence
 - <s> = sentence start (= in E18)

Trigram example

Corpus:

```
<s> <s> yes no no no yes </s>
<s> <s> no no no yes yes yes no </s>
```

What is the probability of

under a trigram language model?

$$= \frac{1}{2} * 1 * \frac{1}{2} * \frac{2}{5} * \frac{1}{2} = 0.1$$

COMP90042

Several Problems

- Language has long distance effects need large n
 - The lecture/s that took place last week was/were on preprocessing.
- Resulting probabilities are often very small
 - Use log probability to avoid numerical underflow
- No probabilities for unseen words
 - Special symbol to represent them (e.g. <UNK>)
- Words in new contexts
 - By default, zero count for any n-gram we've never seen before, zero probability for the sentence
 - Need to smooth the LM!

Smoothing

Smoothing

- Basic idea: give events you've never seen before some probability
- Must be the case that P(everything) = 1
- Many different kinds of smoothing
 - Laplacian (add-one) smoothing
 - Add-k smoothing
 - Jelinek-Mercer interpolation
 - Katz backoff
 - Absolute discounting
 - Kneser-Ney
 - And others...

Laplacian (Add-one) Smoothing

 Simple idea: pretend we've seen each n-gram once more than we did.

For unigram models (V= the vocabulary),

$$P_{add1}(w_i) = \frac{C(w_i) + 1}{M + |V|}$$

For bigram models,

$$P_{add1}(w_i | w_{i-1}) = \frac{C(w_{i-1}w_i) + 1}{C(w_{i-1}) + |V|}$$

Add-one Example

<s> the rat ate the cheese </s>

What's the bigram probability *P(atelrat)* under add-one smoothing?

$$=\frac{C(rat\ ate)+1}{C(rat)+|V|}=\frac{2}{6}$$

 $V = \{ \text{ the, rat, ate, cheese, } </s> \}$

What's the bigram probability *P(atelcheese)* under add-one smoothing?

$$= \frac{C(cheese \ ate) + 1}{C(cheese) + |V|} = \frac{1}{6}$$

Add-k Smoothing

- Adding one is often too much for rowe words.
 Instead, add a fraction k
- AKA Lidstone Smoothing

$$P_{addk}(w_i | w_{i-1}, w_{i-2}) = \frac{C(w_{i-2}, w_{i-1}, w_i) + k}{C(w_{i-2}, w_{i-1}) + k | V|}$$

- Have to choose *k*
 - number of "classes" is huge (n-grams), so can have a big effect

COMP90042

Lidstone Smoothing

Context = alleged

- 5 observed bi-grams
- 2 unobserved bi-grams

2	
ΔJ	

			Lidstone smo	pothing, $\chi = 0.1$
	counts	unsmoothed probability	effective counts	smoothed probability
impropriety	8	0.4	7.826	0.391
offense	5	0.25	4.928	0.246
damage	4	0.2	3.961	0.198
deficiencies	2	0.1	2.029	0.101
outbreak	1	0.05	1.063	0.053
infirmity	0	0	0.097	0.005
cephalopods	0	0	0.097	0.005
	20	1.0	20	1.0
	Ca	As+ 1		$(8 + 0.1) / (20 + 7 \times 0.1)$
		VIXK+	Total Co	17

17

Lidstone Smoothing

Context = *alleged*

- 5 observed n-grams
- 2 unobserved n-grams

			I idetone emoc	othing, $\alpha = 0.1$
	counts	unsmoothed probability	effective counts	smoothed probability
impropriety offense	8 5	0.4 0.25	7.826 4.928	0.391
damage	4	0.2	3.961	0.198
deficiencies outbreak	2 1	0.1 0.05	2.029 1.063	0.101 0.053
infirmity cephalopods	0	0 0	0.097 0.097	0.005 -0.005
	20	1.0	20	1.0
				(<mark>8</mark> + 0.1)
		(<u>0</u> ± 0 1) / (20 + 7 x 0.1)	

COMP90042 L3

Lidstone Smoothing

Context = *alleged*

- 5 observed n-grams
- 2 unobserved n-grams

			Lidstone smoothing, $\alpha = 0.1$			
	counts	unsmoothed probability	effective counts	smoothed probability		
impropriety	8	0.4	7.826	0.391		
offense	5	0.25	4.928	0.246		
damage	4	0.2	3.961	0.198		
deficiencies	2	0.1	2.029	0.101		
outbreak	1	0.05	1.063	0.053		
infirmity	0	0	0.097	0.005		
cephalopods	0	0	0.097	0.005		
	20	1.0	20	1.0		
				\		

/x lotal (0.391 x 20)

 $(8 + 0.1) / (20 + 7 \times 0.1)$

 $(0 + 0.1) / (20 + 7 \times 0.1)$

19

Absolute Discounting

- 'Borrows' a fixed probability mass from observed n-gram counts
- Redistributes it to unseen n-grams

COMP90042 L3

> Absolute Discounting borrowall from all sorved 5 observed mes.

Context = *alleged*

- 5 observed n-grams
- 2 unobserved n-grams

			Lidstone smoothing, o		Discounting	g, $d \neq 0.1$
	counts	unsmoothed probability	effective counts	smoothed probability	effective counts	smoothed probability
impropriety	8	0.4	7.826	0.391	7/9	0.395
offense	5	0.25	4.928	0.246	4.9	0.245
damage	4	0.2	3.961	0.198	3.9	0.245 0.195 0.095 0.045
deficiencies	2	0.1	2.029	0.101	1.9	0.095
outbreak	1	0.05	1.063	0.053	0.9	0.045
infirmity	0	0	0.097	0.005	0.25	0.013
cephalopods	0	0	0.097	0.005	0.25	0.013 otal

(0.1 x 5) / 2

total amount of discounted probability mass $(0.1 \times 5) / 20$

21

Backoff

- Absolute discounting redistributes the probability mass equally for all unseen n-grams
- Katz Backoff: redistributes the mass based on a lower order model (e.g. unigram)

the amount of probability mass that has been discounted for context w_{i-1} ((0.1 x 5) / 20 in previous slide)

Issues with Katz Backoff

$$P_{katz}(w_i|w_{i-1}) = \begin{cases} \frac{C(w_{i-1}, w_i) - D}{C(w_{i-1})}, & \text{if } C(w_{i-1}, w_i) > 0\\ \alpha(w_{i-1}) \times \frac{P(w_i)}{\sum_{w_j: C(w_{i-1}, w_j) = 0} P(w_j)}, & \text{otherwise} \end{cases}$$

- I can't see without my reading ____
- C(reading, glasses) = C(reading, Francisco) = 0
- C(Fransciso) > C(glasses)
- Katz backoff will give higher probability to Francisco

Kneser-Ney Smoothing Masker

- Redistribute probability mass based on how many number of different contexts word w has appeared in
- This measure is called "continuation probability"

COMP90042

Kneser-Ney Smoothing

$$P_{KN}(w_i|w_{i-1}) = \begin{cases} \frac{C(w_{i-1}, w_i) - D}{C(w_{i-1})}, & \text{if } C(w_{i-1}, w_i) > 0\\ \alpha(w_{i-1}) P_{cont}(w_i), & \text{otherwise} \end{cases}$$

where

$$P_{cont}(w_i) = \frac{|\{w_{i-1} : C(w_{i-1}, w_i) > 0\}|}{\sum_{w_i} |\{w_{i-1} : C(w_{i-1}, w_i) > 0\}|}$$

- $P_{cont}(w_i) = \frac{|\{w_{i-1}: C(w_{i-1}, w_i) > 0\}|}{\sum_{w_i} |\{w_{i-1}: C(w_{i-1}, w_i) > 0\}|}$ the word high continuation counts for glasses (means glasses, black glasses, buy glasses, prescription)
- Low continuation counts for Francisco (San Francisco)

Interpolation

- A better way to combine different order n-gram models
- Weighted sum of probabilities across progressively shorter contexts
- Interpolated trigram model:

$$p_{\rm Interpolation}(w_m\mid w_{m-1},w_{m-2})=\lambda_3 p_3^*(w_m\mid w_{m-1},w_{m-2})$$
 Learned based on held out data
$$\lambda_1 p_1^*(w_m).$$

$$\sum_{n=1}^{n_{\rm max}} \lambda_n=1$$

Continuation

Interpolated Kneser-Ney Smoothing

Interpolation instead of back-off

- where $\beta(w_{i-1}) =$
 - normalising constant so that $P_{IKN}(w_i|w_{i-1})$ sums to 1.0 $= P_{IKN}(w_i|w_{i-1}) = P_{IKN}(w_i|w_{i-1})$

In Practice

- Commonly used Kneser-Ney language models use 5-grams as max order
- Has different discount values for each n-gram order.

Generating Language

COMP90042 L3

Generation

- Given an initial word, draw the next word according to the probability distribution defined by the language model.
- Include (n-1) start tokens for n-gram model, to provide context to generate first word
 - never generate <s>
 - generating </s>)terminates the sequence

- Sentence = <s>
- P(? | <s>) = "a"

- Sentence = $\langle s \rangle a$
- P(? | a) = "cow"

- Sentence = <s> a cow
- P(? I cow) = "eats"

- Sentence = <s> a cow eats
- P(? I eats) = "grass"

- Sentence = <s> a cow eats grass
- P(? I grass) = "</s>"

- Sentence = <s> a cow eats grass </s>
- Done!

How to Select Next Word?

- Argmax: takes highest probability word each turn
 - Greedy search

- Beam search decoding:
 - Keeps track of top-N highest probability words each turn
 - Produces sentences with near-optimal sentence probability
- Randomly samples from the distribution (e.g. temperature sampling)

Evaluating Language Models

COMP90042

Evaluation

Extrinsic

▶ E.g. spelling correction, machine translation

Intrinsic

Perplexity on held-out test set

Perplexity

- Inverse probability of entire test set
 - Normalized by number of word tokens (including </s>)
- The lower the better

$$PP(w_1, w_2, \dots w_m) = \sqrt[m]{\frac{1}{P(w_1, w_2, \dots w_m)}}$$
equivalently
$$\text{over } \text{perplexi-ty. better } \text{for } \text{perplexi-ty.} \text{ better } \text{for } \text{$$

Unknown (OOV) words a problem (omit)

40

COMP90042

Example Perplexity Scores

VolumeUnigramBigramTrigramPerplexity962170109

- Corpus: Wall Street Journal
- Train partition: 38 million word tokens, almost 20K word types (vocabulary)
- Test partition: 1.5 million word tokens

A Final Word

- N-gram language models are a simple but effective way to capture the predictability of language
- Information can be derived in an unsupervised fashion, scalable to large corpora
- Require smoothing to be effective, due to sparsity

N-greun bouse (Me.

Reading

• E18 Chapter 6 (skip 6.3)