2024/01/25 19:00-21:00

等边三角形 ABC 的边长为 840. 点 D 与 A 位于线 BC 的同一侧,使得 BD \bot BC. 经过点 D 的线 ℓ 与线 BC 平行,且与边 \overline{AB} 和 \overline{AC} 分别相 交于点 E 和 F 点。点 G 位于 ℓ 上,使得 F 在 E 和 G 点之间, $\triangle AFG$ 是等腰的,且 $\triangle AFG$ 的面积与 $\triangle BED$ 的面积的比值为 8:9. 求 AF.

相似:角形面积 2比 = 相似比的石 AF =AE = = ·840 = 168 × L = 1336]

2. **(2023 AIME II Problem 3)** Let $\triangle ABC$ be an isosceles triangle with $\angle A = 90^{\circ}$. There exists a point P inside $\triangle ABC$ such that $\angle PAB = \angle PBC = \angle PCA$ and AP = 10. Find the area of $\triangle ABC$.

设 $\triangle ABC$ 为等腰三角形, $\angle A=90^\circ$. $\triangle ABC$ 内存在一个点 P, 使得 $\angle PAB=\angle PBC=\angle PCA$ 且 AP=10. 求 $\triangle ABC$ 的面积。

W1 (= - }

3. Let ABC be a triangle with AB > AC. Its circumcircle is Γ and its incentre is I. Let D be the contact point of the incircle of ABC with BC.

Let K be the point on Γ such that $\angle AKI$ is a right angle.

Prove that AI and KD meet on Γ .

高能· Ck = BD 对图28kc角

高ie BK = BF

高记 ABFK ~ OCEK

[角粉红定证]

LAKI=90°

AD 图有平分红(=)

[切线长定理]

PA= PB

L回点共图了 ① 四边形对角和 = 180°

一) 可找出回点去图。

「囫囵角」。在同一个图中、同孤或等3瓜的对名的图图角相等。

国国的为国际的国心的的一样》直径对应的国际=90°

以直径为针血的直角E 句形 其 直知なな国と

「三角形的内心」

- =) AI角形 LA
- ⇒ I是 △ABC 南平3代的なら

7. (2022 AIME II Problem 7) A circle with radius 6 is externally tangent to a circle with radius 24. Find the area of the triangular region bounded by the three common tangent lines of these two circles.

半径为 6 的圆与半径为 24 的圆外切。求这两个圆的三条公切线所围成的三角形区域的面积。

设 ABCD 为平行四边形,且 $\angle BAD < 90^\circ$. 与边 \overline{DA} , \overline{AB} , \overline{BC} 相切的圆与对角线 \overline{AC} 相交于点 P 和 Q, 且 AP < AQ (如图所示)。假设 AP = 3, PQ = 9 且 QC = 16. 则 ABCD 的面积可以用 $m\sqrt{n}$, 的形式表示,其中 m 和 n 是正整数,n 不能被任何素数的平方整除。求 m+n.

Ceva 定理: 设 ABC 为三<u>角形</u>,D, E, F 分别为边 BC, CA, AB 上的点。直线 AD, BE, CF交于一点当且仅当

$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = 1$$

 $\triangle ABC$ 的内切圆分别切 BC, CA, AB 于 D, E, F. 求证: AD, BE, CF 共点.

Classin

Stewart 定理: 给定一个三角形 $\triangle ABC$,其边长为 a,b,c,边对应的项点分别为 A, B, C. 在边 BC 上取一点 D,使得 BD=m, DC=n. 连接 AD,我 们有 AD=d. 则我们有 $b^2m+c^2n=amn+d^2a$.

Problem

Triangle ABC has BC=20. The incircle of the triangle evenly trisects the median AD. If the area of the triangle is $m\sqrt{n}$ where m and n are integers and n is not divisible by the square of a prime, find m+n.

由切线 K定理、CE=CF BE=BG

AC=10, BC=20, $AB=AG+BG=AG+BE=10+262 \times 10^{2}$. $AB=AG+BG=10+262 \times 10^{2}$. AB=A

起がいいます。
$$10^2 \cdot 10 + (10+2\hat{n} \times)^2 \cdot 10 = 2000 + (3x)^2 \cdot 20$$

$$(8x)^2 + (404) \times (2x)^2 = 180 \times (2x)^2 \cdot 100 \times (2x)^2 \times (2x)^2$$

- 128.18.8.2 = 4/21.18 = 24/7.2 = 24/14

Ptolemy's Theorem: If quadrilateral ABCD is a cyclic quadrilateral, then $AC \times BD = AB$

 $\times CD + AD \times BC$.

Pholeny. 12 12.

 $(6/3)^2 = 8x + 8^2$

对有样6万