

Elevation Data Integration Approaches for Deep Learning-Based 2-m Temperature Downscaling

<u>Antigoni Moira</u>¹, Stelios Karozis¹, Theodoros Giannakopoulos², Effrosyni Karakitsou¹, Nikolaos Gounaris¹ and Athanasios Sfetsos¹

¹Environmental Research Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Greece

²Computational Intelligence Laboratory, Institute of Informatics and Telecommunications, NCSR "Demokritos", Greece

Workshop on Al-driven Data Engineering and Reusability for Earth and Space Sciences (DARES'25)

Contents

- **Background** -> Weather forecast | Problem statement | Previous work
- **Methodology** -> Integration strategies | Elevation-derived features
- **Experimental Setup** -> Dataset & pre-processing | Training & validation
- **Results** Integration strategies | Elevation-derived features | Summary
- Conclusions
- Future work
- References

Background → Weather Forecast

Numerical Weather Prediction (NWP) Models

- → Deterministic modeling
- → Solve differential equations to simulate atmospheric processes
- → Rely on real-time observations and supercomputers

Weather forecast trade-offs

- → Time Range vs. Accuracy
- → Global vs. Regional Focus
- → Spatial Resolution vs. Forecast Range

Fig. 1 [1] Fig. 2 [2]

3

Background → Problem Statement

When Forecast Models Use Low Spatial Resolution?

1. Global Weather Models

- Cover the entire Earth
- Typical resolution: 10–50 km grid spacing

2. Climate Models

- Forecast decades to centuries ahead
- Typical resolution: 50–200 km grid spacing

Why High Spatial Resolution is important?

Could guide more confident decision-making in sectors like:

- → Agriculture
- → Energy
- → Transportation
- → Environment and Disaster Management
- → Etc

Fig. 3 [3]

Background → Previous work

- 1. Publication: A deep learning approach for spatial error correction of numerical seasonal weather prediction simulation data [4]
 - Seasonal predictions
 - CAE with Evidence transfer
- 2. MSc Thesis: Use of Deep Learning methods and land cover/use data to improve the spatial resolution of Numerical Weather Prediction (NWP) simulations
 - Comparison of CNN-based models
 - Gradual downscaling
 - Integration of elevation
- 3. EU Project Nevermore: Development of models and tools for simulating and assessing the impacts and risks of climate change

Methodology → Integration strategies

Enhanced Deep Super-Resolution Network (EDSR)

Fig. 4

Methodology → Elevation-derived features

Experimental Setup → Dataset & pre-processing

ERA5 reanalysis Dataset [7]

Data type	Gridded		
Projection	Regular latitude-longitude grid		
Horizontal coverage	Global		
Horizontal resolution	Reanalysis: 0.25° x 0.25° (atmosphere), 0.5° x 0.5° (ocean waves)		
Temporal coverage	1940 to present		
Temporal resolution	Hourly		
File format	GRIB		
Update frequency	Daily		

Pre-Processing Steps

- 1. **Upscaling:** Bicubic interpolation to match target resolution (from 0.25 ° x 0.25 ° to 0.5 ° x 0.5 °)
- **2. Normalization:** Z-score standardization
- **3. Shuffling:** Randomize data order to remove temporal bias
- **4. Splitting:** 70% training, 15% validation, 15% testing

Variable: 2-meter air temperature (T2m)

• **Period:** 2000 – 2020

• **Temporal resolution:** 6-hourly (00:00, 06:00, 12:00, 18:00 UTC)

• Spatial domain: Latitude 80° N to 0°, Longitude 60° W to 85° E

A model-agnostic input approach with no model or temporal bias

& elevation data from the U.S. Geological Survey 3D Elevation Program DEM [8]

Experimental Setup → Training & validation

Validation Metrics:

- Mean Squared Error (MSE)
- Mean Absolute Error (MAE)
- Peak Signal-to-Noise Ratio (PSNR)
- Structural Similarity Index Measure (SSIM)

Loss function:

MAE (L1 loss) → less sensitive to outliers, reflects average deviation in original units

Optimizer & Learning Rate:

- Adam optimizer
- ReduceLROnPlateau schedule (70 epochs)

Training Details:

- Batch Size: 32
- Training: 250 epochs
- Early Stopping: 100 epochs

Results → Integration strategies

Combination of Early & Late Fusion elevation data integration gave the best results

	No DEM	Early Fusion	Late Fusion	Early&Late Fusion
		1 431011	1 431011	i usion
MAE ↓	0.00167	0.00153	0.00156	0.00141
MSE ↓	0.000012	0.000010	0.000010	0.000008
PSNR↑	49.3268	49.9457	49.9583	50.8118
SSIM↑	0.9947	0.9955	0.9953	0,9962
Land Mean MAE↓	0.00266	0.00241	0.00249	0.00223
Land Mean MAE in °C↓	0.17062	0.15454	0.15987	0.14298
Land Max MAE in °C ↓	1.32484	1.44314	1.15182	1.01760
Training time per epoch ↓	56s	57s	76s	76s
Inference time per sample \downarrow	4.22ms	3.04ms	3.37ms	3.35ms
Trainable params ↓	93,089	93,377	107,105	107,393

The *Early & Late Fusion* exhibits the smallest variability in MAE

Results > Elevation-derived features

Differences between approaches are minimal across metrics.

The Elevation & Slope combination yields slight improvements over using elevation alone and is recommended as the most effective approach.

Results → Summary

Mean MAE in those pixels: $0.3877 \,^{\circ}$ C

Mean MAE in those pixels: $0.2925 \,^{\circ}$ C

Fig. 10

Conclusions

- → Developed an input model-agnostic method for downscaling T2m, capable of doubling spatial resolution (from 0.5°×0.5° to 0.25°×0.25° grids)
- → Achieved a low average error of approximately 0.14 °C per cell
- → Delivered a 16% reduction in MAE across the entire domain through integration of geospatial information
- → Improved performance in complex terrains, with ~0.1 °C lower error in the most challenging areas

Future work

1. Extension to Other Climate Variables

- Precipitation
- Wind
- Multi-variable modeling (simultaneous downscaling of multiple variables)
- Use of data cubes for efficient multi-dimensional processing

2. Finer-scale downscaling using higher-resolution reanalysis datasets

- ERA5-Land (9km)
- CERRA-Land (5.5km)

3. Predictor Exploration at Each Downscaling Level

For example:

- 100 km \rightarrow 50 km: Climate zones
- 50 km → 25 km: Elevation and derived features (aspect, slope)
- <25 km: Land use data

4. Model Architecture & Training Optimizations

- Deeper EDSR models
- Explore GAN-based architectures

5. Use of temporal models

ConvLSTMs

References

- 1. Edwards, P. N. (2010). History of climate modeling. WIREs Climate Change, 2(1), 128–139. https://doi.org/10.1002/wcc.95
- 2. UNDRR and WMO (2023), Technical guidance on application of climate information for comprehensive risk management, United Nations Office for Disaster Risk Reduction and World Meteorological Organization.
- 3. Washington et al.(2008). The computational future for climate and Earth system models: on the path to petaflop and beyond. https://doi.org/10.1098/rsta.2008.0219
- 4. Karozis, S., Klampanos, I. A., Sfetsos, A., & Vlachogiannis, D. (2023). A deep learning approach for spatial error correction of numerical seasonal weather prediction simulation data. Big Earth Data, 7(2), 231–250. https://doi.org/10.1080/20964471.2023.2172820
- 5. Digital Elevation Model (DEM). Geoportal.gov.pl. https://www.geoportal.gov.pl/en/data/digital-elevation-model-dem/
- 6. Bhakare, S., et al. (2024). Intercomparison of Machine Learning Models for Spatial Downscaling of Daily Mean Temperature in Complex Terrain. Atmosphere, 15(9), 1085. https://doi.org/10.3390/atmos15091085
- 7. C3S. (2018). ERA5 hourly data on single levels from 1940 to present [Dataset]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/CDS.ADBB2D47
- 8. U.S. Geological Survey, The 3d elevation program (3dep). (2023) https://www.usgs.gov/core-science-systems/ngp/3dep

Thank you!

Questions?

Bonus slides

Bonus slides → Metrics

Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Peak Signal-to-Noise Ratio (PSNR)

$$PSNR = 10 \cdot \log_{10} \left(\frac{L^2}{MSE} \right)$$

Land MAE

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Structural Similarity Index Measure (SSIM)

$$SSIM(x,y) = [l(x,y)]^{\alpha} \cdot [c(x,y)]^{\beta} \cdot [s(x,y)]^{\gamma}$$

Land MAE in °C

Bonus slides > Integration strategies training history

Bonus slides → Elevation-derived features training history

Bonus slides > Integration strategies MAE comparison

Bonus slides → Elevation-derived features MAE comparison

Bonus slides -> Elevation-derived features metrics table

	Aspect	Slope	Elevation & Aspect	Elevation &Slope
MAE ↓	0.00141	0.00142	0.00142	0.0014
MSE ↓	0.000008	0.000009	0,000008	0.000008
PSNR ↑	50.7447	50.7145	50.7910	50,8345
SSIM ↑	0.9962	0.9961	0,9962	0.9962
Land Mean MAE↓	0.00223	0.00225	0.00224	0.00222
Land Mean MAE in °C↓	0.14352	0.14457	0.14364	0.14242
Land Max MAE in °C↓	1.04202	1.09875	0,86288	1.03497
Training time per epoch ↓	76s	77s	76s	81s
Inference time per sample↓	3.44ms	3.41ms	3,38ms	3.41ms
Trainable params↓	107,393	107,393	107,969	107,969

Bonus slides → Outputs "Central Europe" (1)

Bonus slides → Outputs "Central Europe" (2)

Bonus slides → Outputs "Greece" (1)

Bonus slides → Outputs "Greece" (2)

Bonus slides → Outputs "Italy" (1)

Bonus slides → Outputs "Italy" (2)

Bonus slides → Slope and Aspect Equations

$$ext{slope} = an^{-1} \Biggl(\sqrt{ \left(rac{\partial z}{\partial x}
ight)^2 + \left(rac{\partial z}{\partial y}
ight)^2} \Biggr)$$

$$\operatorname{aspect} = an_2^{-1}(-rac{\partial z}{\partial y},rac{\partial z}{\partial x})$$

$$rac{\partial z}{\partial x}pproxrac{z_{i,j+1}-z_{i,j-1}}{2\,\Delta} \ rac{\partial z}{\partial y}pproxrac{z_{i+1,j}-z_{i-1,j}}{2\,\Delta}$$