Probability And Statistics

Tutorial 6

Harshit Gupta, Pavani Babburi

October 7, 2022

Question 1:

Generate an exponential random variable using the samples of a uniform random variable.

Question 2:

Give a method for generating a random variable having density function

$$f(x) = \begin{cases} \frac{x-2}{2} & \text{if} \quad 2 \le x \le 3\\ 1 - \frac{x}{6} & \text{if} \quad 3 \le x \le 6 \end{cases}$$

Question 3:

Give a method for generating a random variable having density function

$$f(x) = \begin{cases} e^{2x} & \text{if } -\infty \le x < 0 \\ e^{-2x} & \text{if } 0 \le x \le \infty \end{cases}$$

Question 4:

A binomial distribution with n=3 and p=0.4 is simulated by the inverse transform method with the uniform random numbers: 0.31, 0.71, 0.66, 0.48 and 0.19. How many of the generated random variables are equal to 2?

Question 5:

Generate a Poisson random variable using the Inverse Transform method.

Question 6:

Let $\{X_n, n=1,2,\cdots\}$ and $\{Y_n, n=1,2,\cdots\}$ be two sequences of random variables, defined on the sample space S. Suppose that we know:

$$X_n \xrightarrow{a.s.} X$$
 $Y_n \xrightarrow{a.s.} Y$

Prove that: $X_n + Y_n \xrightarrow{a.s.} X + Y$

2.

$$X_n \xrightarrow{p} X$$
 $Y_n \xrightarrow{p} Y$

Prove that: $X_n + Y_n \stackrel{p}{\longrightarrow} X + Y$

Question 7:

Let X_1, X_2, X_3, \cdots be a sequence of i.i.d. Uniform(0,1) random variables. The sequence Y_n is defined as:

$$Y_n = min(X_1, X_2, \cdots, X_n)$$

Prove the following convergence results independently (i.e, do not conclude the weaker convergence modes from the stronger ones).

1.
$$Y_n \stackrel{d}{\longrightarrow} 0$$

2.
$$Y_n \stackrel{p}{\longrightarrow} 0$$

3.
$$Y_n \stackrel{L^r}{\longrightarrow} 0$$
, for all $r \geq 1$

4.
$$Y_n \xrightarrow{a.s.} 0$$

Question 8:

Consider a sequence $\{X_n, n=1,2,3,...\}$ such that,

$$X_n(s) = \begin{cases} n^2, & \text{with probability } \frac{1}{n} \\ 0, & \text{if with probability } 1 - \frac{1}{n} \end{cases}$$
 (1)

Show that:

1.
$$X_n \stackrel{p}{\longrightarrow} 0$$

2. X_n does not converge in the r^{th} mean for any $r\geq 1$

Question 9:

Let X_2, X_3, X_4, \ldots be a sequence of a random variable such that:

$$F_{X_n}(x) = \begin{cases} 1 - (1 - \frac{1}{n})^{nx}, & x > 0 \\ 0, & \text{otherwise} \end{cases}$$
 (2)

Show that X_n converges in distribution to Exponential(1).

Question 10:

Let $X_1, X_2, X_3, ...$ be a sequence of random variables such that

 X_n is a geometric random variable, $Geometric(\frac{\lambda}{n})$, for n=1,2,3,...

where $\lambda>0$ is constant. Define a new sequence Y_n as

$$Y_n=rac{1}{n}X_n,$$

for n = 1, 2, 3, ...

Show that Y_n converges in distribution to $Exponential(\lambda)$.

Question 11:

Catastrophes occur at time $T_1, T_2, T_3, ...$ where $T_i = X_1 + X_2 + ... + X_i$ and the X_i are independent identically distributed positive random variables. Let $N(t) = max\{n : T_n \le t\}$ be the number of catastrophes which have occured by time t.

Prove that if $E(X_1)<\infty$ then $N(t)\to\infty$ and $N(t)/t\to 1/E(X_1)$ as $t\to\infty$, almost surely.