Opgavesæt 9 **3.b kemi A**

Kevin Zhou

24. april 2025

Note:

Databog fysik kemi (2007) er benyttet ved beregningerne.

Opgave 1: Adipinsyre

Løsning:

a. Siden de to carboxylsyregrupper er de funktionelle grupper med højst prioritering, skal navnet ende på -disyre. Derudover indeholder den længste kæde af C-atomer netop seks C-atomer, og hexan må da være i navnet (se fig. 1). Da der kun er én mulighed for, hvor de to syregrupper kan sidde, så behøver vi ikke angive nummeret på C-atomerne, hvorpå de sidder. Det systematiske navn for adipinsyre bliver således hexandisyre.

Figur 1: Navngivning af adipinsyre

 ${f b.}$ Lad ${
m H_2Adp}$ betegne adipinsyre. Så må titreringsreaktionen fra start til første ækvivalenspunkt (bemærk, at adipinsyre er dihydron) så være

$$H_2Adp(aq) + OH^-(aq) \longrightarrow HAdp^-(aq) + H_2O(l).$$

Det ses, at reaktionsforholdet mellem NaOH og adipinsyre er 1:1.

Figur 2: Aflæsning på titrerkurven

Ved det første ækvivalenspunkt må der gælde, at $n(\text{H}_2\text{Adp}) = n(\text{NaOH})$, hvor $n(\text{H}_2\text{Adp})$ er stofmængden af adipinsyre i den oprindelige mættede opløsning. Vi aflæser på titrerkurven (se fig. 2), at det tilsatte volumen NaOH-opløsning ved første ækvivalenspunkt er V(NaOH) = 18,4 mL. Da vi fra videoen har, at stofmængdekoncentrationen af NaOH-opløsningen er c(NaOH) = 0,0891 M og volumen af den mættede opløsning er V(adipinsyre) = 5,00 mL, så kan vi udregne $c(\text{H}_2\text{Adp})$.

$$\begin{split} c(\mathbf{H}_2\mathbf{Adp}) &= \frac{n(\mathbf{H}_2\mathbf{Adp})}{V(\mathbf{H}_2\mathbf{Adp})} \\ &= \frac{c(\mathbf{NaOH}) \cdot V(\mathbf{NaOH})}{V(\mathbf{H}_2\mathbf{Adp})} \\ &= \frac{0,0891 \text{ M} \cdot 18,4 \text{ mL}}{5,00 \text{ mL}} \\ &\approx 0,328 \text{ M} \end{split}$$

Stofmængdekoncentrationen af adipinsyre i den mættede opløsning er altså $c(H_2Adp) = 0.329$ M.

c. For at bestemme molekylformlen for esteren, finder vi først den empiriske formel. Fra elementaranalysen har vi, at der i 100 g af stoffet må være

$$n(C) = \frac{65,09 \text{ g}}{12,01 \text{ g/mol}} = 5,4197 \text{ mol}$$

$$n(H) = \frac{10,14 \text{ g}}{1,008 \text{ g/mol}} = 10,0595 \text{ mol}$$

$$n(O) = \frac{24,77 \text{ g}}{16,00 \text{ g/mol}} = 1,5481 \text{ mol}$$

Vi beregner nu stofmængdeforholdene.

$$\begin{split} \frac{n(\mathrm{C})}{n(\mathrm{O})} &= \frac{5{,}4197 \; \mathrm{mol}}{1{,}5481 \; \mathrm{mol}} = 3{,}5008 \approx 3{,}5 \\ \frac{n(\mathrm{H})}{n(\mathrm{O})} &= \frac{10{,}0595 \; \mathrm{mol}}{1{,}5481 \; \mathrm{mol}} = 6{,}4979 \approx 6{,}5 \end{split}$$

Forholdet mellem stofmængderne af C, H og O er altså med stor nøjagtighed 7:13:2. Esterens empiriske formel må da være $C_7H_{13}O_2$. Imidlertid har vi fra esterens strukturformel (se fig. 3), at esteren netop indeholder fire O-atomer (for R betegner alkylgrupper). Vi ganger da den empiriske formel op med 2, og får, at molekylformlen for esteren må være $C_{14}H_{26}O_4$.

Figur 3: Esteren indeholder netop fire O-atomer

d. Vi betragter ¹H-NMR-spektret for alkoholen. En opsummerende tabel ses i tabel 1.

Signal nr.	Kemisk skift (aflæst) δ/ppm	Integral/areal (relativt antal ækvi- valente ¹ H-atomer)	Opsplitning	Antal nabo- ¹ H'er	Tilordning	Kemisk skift (tabel) δ/ppm
1	0,93	3	Triplet	2	CH_3-CH_2	0,9
2	1,39	2	Sekstet	5	$-\mathrm{CH}_2\mathrm{-CH}_2\mathrm{-CH}_3$	1,3
3	1,53	2	Kvintet	4	$-\mathrm{CH}_2\mathrm{-CH}_2\mathrm{-CH}_2\mathrm{-OH}$	1,5
4	2,24	1	Singlet	0	$-\mathrm{OH}$	0,5-5
5	3,62	2	Triplet	2	$-\mathrm{CH}_2\!-\!\mathrm{C}\mathbf{H}_2\!-\!\mathrm{OH}$	3,5

Tabel 1: Tilordning af absorptionsbånd i ¹H-NMR-spektret

Der er fem signaler i spektret, hvilket betyder, at der er fem forskellige grupper af ækvivalente ¹H-kerner. Siden R er en alkylgruppe, så fremgår det klart fra arealerne af signal nr. 1, 2, 3 og 5, at alkoholen indeholder én CH₃-gruppe og tre CH₂-grupper. Signal nr. 4 kan tilordnes OH-gruppen.

Fra opsplitningerne har vi så, at ¹H-kernerne hørende til signal 1 må koble til de to ¹H-kerner hørende til signal 2. Derudover fremgår det også fra opsplitningerne samt kemiske skift, at ¹H-kernerne hørende til signal nr. 5 må koble til ¹H-kernen hørende til hydroxy-gruppen i signal nr. 4 samt ¹H-kernerne hørende til signal nr. 3. Til sidst må ¹H-kernerne hørende til signal 3 både koble til ¹H-kernerne hørende til signal nr. 5 og dem, der hører til signal nr. 2.

Altså vil det sige, at vi har CH₃-gruppen bundet til en CH₂-gruppe, der er bundet til en CH₂-gruppe, der er bundet til endnu en CH₂-gruppe, der er bundet til OH-gruppen. Strukturformlen for alkoholen ses i fig. 4, hvor ¹H-kernerne, der svarer til hvert signal er numereret.

Figur 4: Strukturen for R-OH

Opgave 2: Avobenzon - et kemisk filter i solcreme

Løsning:

a. Vi ser fra absorptionsspektret (fig. 5), at absorptionen er størst i området 330 nm til 380 nm, hvilket ligger indenfor området af UV-A. Altså beskytter avobenzon især mod ultraviolet stråling fra solen i form af UV-A.

Figur 5: Absorptionsspektrum

b. Avobenzon B kan udvise stereoisomeri, da der ikke er omdrejningsfrihed ved dobbeltbindingen (se fig. 6), og der sidder fire distinkte grupper på de to C-atomer, hvorimellem dobbeltbindingen sidder.

Vi ser nu på prioriteringerne af substituenterne på C-atomerne, hvorimellem dobbeltbindingen sidder. Grupperne med højst prioritet er markeret med 1 i fig. 6, og de laveste med 2. Det ses, at grupperne med højst prioritet sidder på samme side af dobbeltbindingen, hvilket vil sige, at der er tale om Z-formen.

Figur 6: Avobenzon B kan udvise stereoisomeri

c. Det er klart, at reaktion (1) er en eliminationsreaktion, da der dannes en tripelbinding mellem to C-atomer under fraspaltning af et mindre molekyle. Tilsvarende må reaktion (2) være en additionsreaktion, idet en binding i en tripelbinding brydes, og der lægges et molekyle til. Det færdiggjorte reaktionsskema for (2) ses i fig. 7.

Figur 7: Reaktionsskema for reaktion (2)

d. Der gælder, at fasen med octan-1-ol er upolær, hvor fasen med vand er polær. Ved pH = 4 har avobenzon ikke afgivet en hydron, og er overvejende upolær grundet de mange C-H-bindinger. Derfor kan den bedre opløses i octan-1-ol, som også er upolær.

Ved pH=12 har avobenzon afgivet en hydron og bliver da til en ion. Den får derfor en stærk polær karakter, og kan bedre opløses i vandfasen end ved pH=4. Det følger så direkte fra definitionen for D, at D aftager fra pH=4 til pH=12. Dette er i overensstemmelse med, at $D=3,3\cdot 10^4$ ved pH=4 og D=10 ved pH=12.

Opgave 3: Bio-ortogonal kemi

Løsning:

a. Vi beregner den formelle stofmængdekoncentration af A i opløsningen.

$$c(A) = \frac{n(A)}{V}$$

$$= \frac{m(A)}{V \cdot M(A)}$$

$$= \frac{19 \text{ mg}}{5.0 \text{ mL} \cdot 408.5 \text{ g/mol}}$$

$$\approx 0.0093 \text{ M}$$

Den formelle stofmængdekoncentration af A i opløsningen er altså c(A) = 0.0093 M.

b. Vi undersøger først, om reaktionen følger Arrhenius-ligningen ved at lave et Arrhenius-plot, hvilket ses i fig. 8 og så lave lineær regression. Det ses, at punkterne på $(\frac{1}{T}, \ln(k))$ -grafen tilnærmelsesvist ligger på en ret linje, hvilket vil sige, at reaktionen følger Arrhenius-ligningen.

Figur 8: Arrheniusplot lavet med Logger Pro

Fra Arrhenius-ligningen

$$\ln\left(k\right) = -\frac{E_a}{R} \cdot \frac{1}{T} + \ln\left(k_0\right)$$

har vi så, at linjens hældningskoefficient må være $\alpha = -\frac{E_a}{R}$. Vi kan da udregne aktiveringsenergien ud fra hældningskoefficienten:

$$\begin{split} E_a &= -\alpha \cdot R \\ &= -(-4121 \text{ K}) \cdot 8{,}314 \text{ } \frac{\text{J}}{\text{mol} \cdot \text{K}} \\ &\approx 3{,}43 \cdot 10^4 \text{ J/mol} \\ &= 34{,}3 \text{ kJ/mol} \end{split}$$

Aktiveringsenergien for reaktionen er altså $E_a = 34.3 \text{ kJ/mol.}$

c. Vi starter med at sammenligne forsøg nr. 1 og 2. Her er $[B]_0$ ens, hvor $[A]_0$ er dobbelt så stor i forsøg nr. 1 som i nr. 2. Siden vi har

$$2 \cdot v_0(\text{forsøg } 2) = 2 \cdot 0.69 \cdot 10^{-4} \text{ M}^{-1} \cdot \text{s}^{-1}$$

= $1.38 \cdot 10^{-4} \text{ M}^{-1} \cdot \text{s}^{-1}$
 $\approx v_0(\text{forsøg } 1),$

så må x = 1.

Vi sammenligner nu forsøg nr. 4 og nr. 5. Her er $[A]_0$ ens, hvor $[B]_0$ er dobbelt så stor i forsøg nr. 4 som i nr. 5. Siden vi har

$$2 \cdot v_0$$
 (forsøg 5) = $2 \cdot 0.35 \cdot 10^{-4} \text{ M}^{-1} \cdot \text{s}^{-1}$
= $0.70 \cdot 10^{-4} \text{ M}^{-1} \cdot \text{s}^{-1}$
= v_0 (forsøg 4),

så må vi også have y = 1.

Vi kan nu finde et udtryk for hastighedskonstanten ud fra hastighedsudtrykket.

$$v = k \cdot [A] \cdot [B] \iff k = \frac{v}{[A] \cdot [B]}$$

Vi beregner det aritmetiske gennemsnit af hver k tilhørende hvert delforsøg, som udregnes med det ovenstående udtryk.

$$k = \frac{1}{5} \sum_{k=1}^{5} \frac{v_0(\text{forsøg } k)}{[A]_0(\text{forsøg } k) \cdot [B]_0(\text{forsøg } k)}$$
$$\approx 0.97 \text{ M}^{-1} \cdot \text{s}^{-1}$$

Vi har altså fået $x=1,\,y=1$ og $k=0.97\,\mathrm{M}^{-1}\cdot\mathrm{s}^{-1}.$