Overview of the genetic variability of genes FUT1, FUT2 and FUT3 in various pig populations

> Introduction

- Milk oligosaccharide structures are conditioned by glycosyltransferases, including fucosyltransferases (FUT)
- FUT gene family :
 - In humans : **11** genes (FUT1 → FUT11)
 - In pigs : **9** genes (FUT1 → FUT4, FUT7 → FUT11)
- Our focus : genes FUT1, FUT2 and FUT3
 - Involved in formation of Lewis blood group antigens
 - If the enzyme is inactive : decreased diversity in milk oligasaccharides
- Our goal: study the variability of the FUT1, FUT2 and FUT3 genes in various pig populations
 - Are there alleles **specific** to some breeds?
 - Are there alleles that produce non-functional enzymes?

> Fundamentals

- In eukaryotes, protein-coding genes can have introns and exons
 - **Introns** are removed during the mRNA maturation process
 - Exons remain in the final mature mRNA and carry the coding sequence (CDS)

> Fundamentals

 Function of protein determined by its shape and AA sequence

> What is a variant?

- When a genome is sequenced, it can be aligned on a reference genome
- If the sequence is different, it is called a variant
- Different types of variants :

Reference	CAGTATGCTA
SNP	CAGTTTGCTA
Deletion	CATT-TGCTA
Insertion	CATTAGTGCTA

- Variants can impact the protein produced :
 - SNP in coding sequence (CDS) :
 - New codon codes for the same AA (synonymous)
 - New codon codes for a different AA (missense)
 - New codon is STOP (nonsense)
 - Insertion/deletion (indel) in CDS:

 FUT1, FUT2 an Reading if rame shifts (frameshift)

> What is a variant?

- Variants can impact the protein produced :
 - SNP in coding sequence (CDS):
 - New codon codes for the same AA (synonymous)
 - New codon codes for a different AA (missense)
 - New codon is STOP (nonsense)
 - Insertion/deletion (indel) in CDS :
 - Reading frame shifts (frameshift)

Reference	DNA	ATGCATGTGTATAGGCCA
	AA	M H V Y R P
Insertion	DNA	ATGCATGTGTA <u>A</u> TAGGCCA
	AA	M H V STOP

- Variants outside of CDS (UTR, introns, down/upstream) :
 - Promoters and regulatory regions can be affected

> FUT genes in pigs

 Great variability in terms of gene structure (length, number of exons/introns, etc...)

> FUT genes in pigs

 Great variability in terms of gene structure (length, number of exons/introns, etc...)

For humans:

Lewis group a/b : FUT2, FUT3 Lewis group x/y : FUT1, FUT3

> Lewis groups and HMOs

Group 2: Nonsecretor, Lewis-positive (Se-Le+)

Group 3: Secretor, Lewis-negative (Se+Le-) Lewis a-b-

Group 4: Nonsecretor, Lewis-negative (Se-Le-) Lewis a-b-

p. 11

> Our goal

- Examine variants and haplotype (unique variant combination) diversity of FUT1, FUT2 and FUT3 across multiple pig populations
 - Use available data: 194 animals
 - 2 unknown populations : WU and UCM

BAY	10
CMJR	20
CR	6
CRxLW	1
LIM	15
LR	14
LW	10
MS	10
MSxLW	10
PBO	15
PI	20
UCM	20
WU	42

> FUT1, FUT2 and FUT3 variants

- Annotation with VEP
- Filters:
 - Quality >= 30
 - Biallelic only

	Variant consequence	FUT1	FUT2	FUT3
	Frameshift variant	2	0	2
	Missense variant	7	4	2
	Synonymous variant	3	3	4
	5' UTR variant	1	0	0
	3' UTR variant	6	45	2
	Intron variant	3	91	277
	Upstream gene variant	9	36	19
	Downstream gene variant	12	7	9
	Splice donor 5th base variant	0	0	1
INRAO	Stop gained	0	1	0
FUT1, FUT 11/04/202		43	187	316

> PCA - FUT1

> Majority haplotypes - FUT1

• 55 haplotypes in total, 25 observed at least twice

> Majority haplotypes in overall population

• FUT1:

- I (26,4%)
- III (21%)
- IV (23,6%)
- Total: 71%

• FUT2:

- IV (31,1%)
- V (17,4%)
- II (7,3%)
- Total: 55,8%

• FUT3

- -1(38,6%)
- II (25,4%)
- Total: 64%

11/04/2023

> Haplotype combinations

> Conclusions

- No strong evidence of inactive FUT1, FUT2 or FUT3
- FUT3 highly conserved
- Meishan population distinct for FUT1 and FUT2, less for FUT3
- Work reproducible and compatible with other genes
- Perspective :
 - Apply to other FUT genes
 - Compare variants found with human variants

> Thank you!

> PCA - FUT2

> PCA - FUT3

➤ Majority haplotypes - FUT2

 97 haplotypes in total, 27 observed at least twice

➤ Majority haplotypes - FUT3

• 91 haplotypes in total, 16 observed at least twice

