SYNOPSYS®

DesignWare[®] GTECH Library

Databook

Copyright Notice and Proprietary Information

© 2022 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Free and Open-Source Software Licensing Notices

If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. www.synopsys.com

Contents

Chapter Preface	8
Revision History	8
Documentation for DesignWare® Building Block IP	8
Obsoleted IP	
Chapter GTECH Library	9
GTECH_NOT	
Inverter	
GTECH_BUF	
Non-Inverting Buffer	11
GTECH_AND2	
2-Input AND Gate	12
GTECH_AND3	13
3-Input AND Gate	
GTECH_AND4	14
4-Input AND Gate	14
GTECH_AND5	15
5-Input AND Gate	15
GTECH_AND8	16
8-Input AND Gate	16
GTECH_NAND2	17
2-Input NAND Gate	17
GTECH_NAND3	18
3-Input NAND Gate	18
GTECH_NAND4	19
4-Input NAND Gate	19
GTECH_NAND5	
5-Input NAND Gate	
GTECH_NAND8	
8-Input NAND Gate	
GTECH_OR2	
2-Input OR Gate	22

GTECH_OR3	23
3-Input OR Gate	23
GTECH_OR4	24
4-Input OR Gate	24
GTECH_OR5	25
5-Input OR Gate	25
GTECH_OR8	26
8-Input OR Gate	26
GTECH_NOR2	27
2-Input NOR Gate	27
GTECH_NOR3	28
3-Input NOR Gate	28
GTECH_NOR4	29
4-Input NOR Gate	
GTECH_NOR5	
5-Input NOR Gate	
GTECH_NOR8	
8-Input NOR Gate	
GTECH_XOR2	
2-Input XOR Gate	
GTECH_XOR3	
3-Input XOR Gate	
GTECH_XOR4	
4-Input XOR Gate	
GTECH_XNOR2	
2-Input Exclusive-NOR Gate	
GTECH_XNOR3	
3-Input Exclusive-NOR Gate	
GTECH_XNOR4	
4-Input Exclusive-OR Gate	
GTECH_AND_NOT	
2-Input AND Gate, Inverted Input	
GTECH_OR_NOT	
2-Input OR Gate, Inverted Input	
GTECH_AO21 OR	
2-Input AND into 2-input OR	
GTECH_OA21	
2-Input OR into 2-input AND	
GTECH_AO22	
2-Input ANDs into One 2-input OR	42

GTECH_OA22	43
2-Input ORs into One 2-input AND	43
GTECH_AOI21	44
2-Input AND into 2-input NOR	44
GTECH_OAI21	45
2-Input OR into 2-input NAND	45
GTECH_AOI22	
2-Input ANDs into One 2-input NOR	46
GTECH_OAI22	47
2-Input ORs into One 2-input NAND	47
GTECH_AOI222	48
Three 2-Input ANDs into One 3-input NOR	48
GTECH_AOI2N2	
2-Input AND and 2-Input NOR into One 2-input NOR	49
GTECH_OAI2N2	5 0
2-Input OR and 2-Input NAND into One 2-input NAND	5 0
GTECH_MAJ23	51
Two-of-Three Majority Function	
GTECH_MUX2	
2-Bit Multiplexer	
GTECH_MUXI2	
2-Bit Multiplexer	
GTECH_MUX4	
4-Bit Multiplexer	
GTECH_MUX8	
8-Bit Multiplexer	
GTECH_ADD_AB	
Half Adder	
GTECH_ADD_ABC	
Full Adder	
GTECH_TBUF	
Non-Inverting 3-State Buffer	
GTECH_INBUF	
Input Buffer	
GTECH_OUTBUF	
Output Buffer	
GTECH_INOUTBUF	
Input-Output Buffer	
GTECH_FD1	
D Flip-Flop	62

GTECH_FD14	63
D Flip-Flop - 4 Bit	63
GTECH_FD18	64
D Flip-Flop - 8 Bit	64
GTECH_FD1S	66
D Flip-Flop with Scan Test Pins	66
GTECH_FD2	
D Flip-Flop with Clear	67
GTECH_FD24	68
D Flip-Flop with Clear - 4 Bit	68
GTECH_FD28	69
D Flip-Flop with Clear - 8 Bit	69
GTECH_FD2S	71
D Flip-Flop with Clear, Scan	71
GTECH_FD3	72
D Flip-Flop with Clear, Set	72
GTECH_FD34	73
D Flip-Flop with Clear, Set - 4 Bit	73
GTECH_FD38	74
D Flip-Flop with Clear, Set - 8 Bit	74
GTECH_FD3S	76
D Flip-Flop with Clear, Set, and Scan	76
GTECH_FD4	77
D Flip-Flop with Set	77
GTECH_FD44	78
D Flip-Flop with Set - 4 Bit	78
GTECH_FD48	79
D Flip-Flop with Set - 8 Bit	79
GTECH_FD4S	81
D Flip-Flop with Set, Scan	81
GTECH_FJK1	82
JK Flip-Flop	82
GTECH_FJK1S	83
JK Flip-Flop with Scan Test Pins	83
GTECH_FJK2	84
JK Flip-Flop with Clear	84
GTECH_FJK2S	85
JK Flip-Flop with Clear, Scan	85
GTECH_FJK3	86
JK Flip-Flop with Clear, Set	86

GTECH_FJK3S	 . 87
JK Flip-Flop with Clear, Set, and Scan	 . 87
GTECH_LD1	 . 88
D Latch	 . 88
GTECH_LD2	 . 89
D Latch, Active Low	 . 89
GTECH_LD2_1	 . 90
D Latch, Active Low, Single Output	 . 90
GTECH_LD3	 . 91
D Latch with Clear	 . 91
GTECH_LD4	 . 92
D Latch, Active Low with Clear	 . 92
GTECH_LD4_1	 . 93
D Latch, Active Low, Single Output with Clear	 . 93
GTECH_LSR0	 . 94
SR Latch	 . 94
GTECH_ONE	 . 95
Logic High	 . 95
GTECH_ZERO	 . 96
Logic Low	 . 96
GTECH_ISO0_EN0	 . 97
Isolation Buffer- Forced to 0	 . 97
GTECH_ISO0_EN1	 . 98
Isolation Buffer- Forced to 0	 . 98
GTECH_ISO1_EN0	 . 99
Isolation Buffer- Forced to 1	 . 99
GTECH_ISO1_EN1	 100
Isolation Buffer- Forced to 1	 100
GTECH_ISOLATCH_EN0	 101
Isolation Latch - Zero Enable	 101
GTECH_ISOLATCH_EN1	 102
Isolation Latch - One Enable	102

Preface

Revision History

Table 1-1 Revision History

Date	Description
January 2021	Corrected the title for GTECH_AOI21 on page 44
October 2011	Fixed last row of truth table for GTECH_AO22 on page 42.

Documentation for DesignWare® Building Block IP

For a general guide to documentation for DesignWare[®] Building Block IP, see "Documentation" in the *DesignWare Building Block IP Release Notes*.

Obsoleted IP

For a list of obsoleted DesignWare Building Block IP (if any), see "Obsoleted IP for New Designs" in the *DesignWare Building Block IP Release Notes*.

GTECH Library

Synopsys provides the GTECH technology-independent library to aid users in developing technology-independent parts. Also, DesignWare IP often use these cells for their implementation. This generic technology library, called gtech.db, contains common logic elements. gtech.db can be found under the Synopsys root directory in libraries/syn. Simulation models are located under the Synopsys root directory in packages/gtech/src (VHDL) and packages/gtech/src_ver (Verilog).

This chapter contains datasheets that describe the generic parts. Each datasheet contains pin descriptions and a truth table, in addition to examples of how to instantiate the part in VHDL and in Verilog.

GTECH_NOT

Inverter

Truth Table

Α	Z
0	1
1	0

end sim;

Pin Description

Pin	Width	Direction
Α	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std_logic_1164.all;
use GTECH.GTECH_components.all;

entity GT_not_inst is
  port(in1 : in std_logic;
      out1 : out std_logic);

end GT_not_inst;

architecture sim of GT_not_inst is
begin
  U1 : GTECH_NOT
    port map( A => in1,
    Z => out1);
```

```
module GT_not_inst ( in1, out1 );
  input in1;
  output out1;

GTECH_NOT
    U1 (.A(in1), .Z(out1) );
endmodule
```


GTECH_BUF

Non-Inverting Buffer

Truth Table

Α	Z
0	0
1	1

Pin Description

Pin	Width	Direction
Α	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
module GT_buf_inst ( in1, out1 );
  input in1;
  output out1;

GTECH_BUF
    U1 (.A(in1), .Z(out1) );
endmodule
```


2-Input AND Gate

Truth Table

Α	В	Z
0	X	0
X	0	0
1	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std_logic_1164.all;
use GTECH.GTECH_components.all;

entity GT_and2_inst is
  port(in1, in2: in std_logic;
        out1 : out std_logic);
end GT_and2_inst;

architecture sim of GT_and2_inst is
begin
  U1: GTECH_AND2
    port map(A => in1, B => in2,
        Z => out1);
end sim;
```


3-Input AND Gate

Truth Table

Α	В	С	Z
0	X	X	0
X	0	X	0
X	X	0	0
1	1	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std_logic_1164.all;
use GTECH.GTECH components.all;
                                             output out1;
entity GT_and3_inst is
  port(in1, in2, in3 : in std logic;
                                             GTECH AND3
       out1 : out std_logic);
end GT_and3_inst;
architecture sim of GT and3 inst is
                                           endmodule
begin
  U1 : GTECH AND3
    port map(A => in1, B => in2,
             C \Rightarrow in3, Z \Rightarrow out1);
end sim;
```


4-Input AND Gate

Truth Table

Α	В	С	D	Z
0	X	X	X	0
X	0	X	X	0
X	X	0	X	0
X	X	X	0	0
1	1	1	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

library IEEE, GTECH;

5-Input AND Gate

Truth Table

Α	В	С	D	Ε	Z
0	X	X	X	X	0
X	0	X	X	X	0
X	X	0	X	X	0
X	X	X	0	X	0
X	X	X	X	0	0
1	1	1	1	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Е	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

library IEEE, GTECH; use IEEE.std_logic_1164.all; use GTECH.GTECH components.all;

architecture sim of GT_and5_inst is
begin

8-Input AND Gate

Truth Table

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Е	1	Input
F	1	Input
G	1	Input
Н	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

1

end sim;

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH_components.all;
entity GT and8 inst is
  port(in1, in2, in3, in4, in5, in6,
        in7, in8 : in std logic;
        out1 : out std_logic);
end GT and8 inst;
architecture sim of GT and8 inst is
begin
  U1 : GTECH AND8
    port map(A => in1, B => in2,
               C \Rightarrow in3, D \Rightarrow in4,
               E \Rightarrow in5, F \Rightarrow in6,
               G \Rightarrow in7, H \Rightarrow in8,
               Z => out1);
```


2-Input NAND Gate

Truth Table

Α	В	Z
0	X	1
X	0	1
1	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
                                        module GT_nand2_inst (in1, in2,
use IEEE.std logic 1164.all;
                                                             out1);
use GTECH.GTECH_components.all;
                                          input in1, in2;
                                          output out1;
entity GT nand2 inst is
 port(in1, in2: in std_logic;
                                          GTECH NAND2
                                            U1 (.A(in1), .B(in2),
      out1 : out std_logic);
end GT_nand2_inst;
                                                .Z(out1));
architecture sim of GT nand2 inst is
                                        endmodule
begin
 U1 : GTECH NAND2
   port map (A => in1, B => in2,
             Z => out1);
end sim;
```


3-Input NAND Gate

Truth Table

Α	ВС		Z
0	X	X	1
X	0	X	1
X	X	0	1
1	1	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

4-Input NAND Gate

Truth Table

Α	В	С	D	Z
0	X	X	X	1
X	0	X	X	1
X	X	0	X	1
X	X	X	0	1
1	1	1	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

5-Input NAND Gate

Truth Table

Α	В	С	D	Ε	Z
0	X	X	X	X	1
X	0	X	X	X	1
X	X	0	X	X	1
X	X	X	0	X	1
X	X	X	X	0	1
1	1	1	1	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Е	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

8-Input NAND Gate

Truth Table

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Е	1	Input
F	1	Input
G	1	Input
Н	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

library IEEE, GTECH; use IEEE.std logic 1164.all; use GTECH.GTECH components.all; entity GT_nand8_inst is port(in1, in2, in3, in4, in5, in6, in7, in8 : in std_logic; out1 : out std logic); end GT nand8 inst; architecture sim of GT_nand8_inst is begin U1 : GTECH NAND8 port map(A => in1, B => in2, $C \Rightarrow in3, D \Rightarrow in4,$ $E \Rightarrow in5, F \Rightarrow in6,$ $G \Rightarrow in7, H \Rightarrow in8,$ Z => out1);end sim;

2-Input OR Gate

Truth Table

Α	В	Z
0	0	0
1	X	1
X	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

use GTECH.GTECH components.all;

entity GT or2 inst is

end sim;

library IEEE, GTECH; use IEEE.std_logic_1164.all;

```
port(in1, in2: in std_logic;
        out1 : out std_logic);
end GT_or2_inst;
architecture sim of GT_or2_inst is
```

Verilog

endmodule

3-Input OR Gate

Truth Table

Α	В	С	Z
0	0	0	0
1	X	X	1
X	1	X	1
X	X	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

4-Input OR Gate

Truth Table

Α	В	С	D	Z
0	0	0	0	0
1	X	X	X	1
X	1	X	X	1
X	X	1	X	1
X	X	X	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

5-Input OR Gate

Truth Table

Α	В	С	D	Ε	Z
0	0	0	0	0	0
1	X	X	X	X	1
X	1	X	X	X	1
X	X	1	X	X	1
X	X	X	1	X	1
X	X	X	X	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Е	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

8-Input OR Gate

Truth Table

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Е	1	Input
F	1	Input
G	1	Input
Н	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH components.all;
entity GT_or8_inst is
  port(in1, in2, in3, in4, in5, in6,
        in7, in8 : in std_logic;
        out1 : out std_logic);
end GT or8 inst;
architecture sim of GT_or8_inst is
begin
  U1 : GTECH_OR8
    port map(A => in1, B => in2,
               C \Rightarrow in3, D \Rightarrow in4,
               E \Rightarrow in5, F \Rightarrow in6,
               G \Rightarrow in7, H \Rightarrow in8,
               Z => out1);
```


2-Input NOR Gate

Truth Table

Α	В	Z
0	0	1
1	X	0
X	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

3-Input NOR Gate

Truth Table

Α	В	C	Z
0	0	0	1
1	X	X	0
X	1	X	0
X	X	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

4-Input NOR Gate

Truth Table

Α	В	С	D	Z
0	0	0	0	1
1	X	X	X	0
X	1	X	X	0
X	X	1	X	0
X	X	X	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

5-Input NOR Gate

Truth Table

Α	В	С	D	Ε	Z
0	0	0	0	0	1
1	X	X	X	X	0
X	1	X	X	X	0
X	X	1	X	X	0
X	X	X	1	X	0
X	X	X	X	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Е	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

8-Input NOR Gate

Truth Table

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Е	1	Input
F	1	Input
G	1	Input
Н	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH_components.all;
entity GT nor8 inst is
  port(in1, in2, in3, in4, in5, in6,
        in7, in8 : in std logic;
        out1 : out std_logic);
end GT nor8 inst;
architecture sim of GT nor8 inst is
begin
  U1 : GTECH NOR8
    port map(A => in1, B => in2,
               C \Rightarrow in3, D \Rightarrow in4,
               E \Rightarrow in5, F \Rightarrow in6,
               G \Rightarrow in7, H \Rightarrow in8,
               Z => out1);
```


2-Input XOR Gate

Truth Table

Α	В	Z
0	0	0
0	1	1
1	0	1
1	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

3-Input XOR Gate

Truth Table

Α	В	С	Z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

4-Input XOR Gate

Truth Table

Α	В	С	D	Z	Α	В	С	D	Z
0	0	0	0	0	1	0	0	0	1
0	0	0	1	1	1	0	0	1	0
0	0	1	0	1	1	0	1	0	0
0	0	1	1	0	1	0	1	1	1
0	1	0	0	1	1	1	0	0	0
0	1	0	1	0	1	1	0	1	1
0	1	1	0	0	1	1	1	0	1
0	1	1	1	1	1	1	1	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

2-Input Exclusive-NOR Gate

Truth Table

Α	В	Z
0	0	1
0	1	0
1	0	0
1	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
                                        module GT_xnor2_inst (in1, in2,
use IEEE.std logic 1164.all;
                                                             out1);
use GTECH.GTECH components.all;
                                          input in1, in2;
                                          output out1;
entity GT_xnor2_inst is
  port(in1, in2: in std_logic;
                                          GTECH XNOR2
                                          U1 (.A(in1), .B(in2),
      out1
            : out std_logic);
end GT xnor2 inst;
                                                .Z(out1));
architecture sim of GT_xnor2_inst is
                                        endmodule
begin
 U1 : GTECH_XNOR2
   port map(A => in1, B => in2,
             Z => out1);
end sim;
```


3-Input Exclusive-NOR Gate

Truth Table

Α	В	С	Z
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

end sim;

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_XNOR4

4-Input Exclusive-OR Gate

Truth Table

Α	В	С	D	Z	Α	В	С	D	Z
0	0	0	0	1	1	0	0	0	0
0	0	0	1	0	1	0	0	1	1
0	0	1	0	0	1	0	1	0	1
0	0	1	1	1	1	0	1	1	0
0	1	0	0	0	1	1	0	0	1
0	1	0	1	1	1	1	0	1	0
0	1	1	0	1	1	1	1	0	0
0	1	1	1	0	1	1	1	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_AND_NOT

2-Input AND Gate, Inverted Input

Truth Table

Α	В	Z
0	X	0
X	1	0
1	0	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std_logic_1164.all;
use GTECH.GTECH_components.all;

entity GT_and_not_inst is
  port(in1, in2: in std_logic;
        out1 : out std_logic);
end GT_and_not_inst;

architecture sim of GT_and_not_inst is
begin
  U1 : GTECH_AND2
    port map(A => in1, B => in2,
        Z => out1);
end sim;
```


GTECH_OR_NOT

2-Input OR Gate, Inverted Input

Truth Table

Α	В	Z
X	0	1
1	X	1
0	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
                                         module GT or not inst (in1, in2,
use IEEE.std_logic_1164.all;
                                                              out1);
use GTECH.GTECH components.all;
                                           input in1, in2;
                                           output out1;
entity GT_or_not_inst is
  port(in1, in2: in std_logic;
                                           GTECH OR NOT
      out1 : out std logic);
                                           U1 (.A(in1), .B(in2),
end GT_or_not_inst;
                                                 .Z(out1));
architecture sim of GT_or_not_inst is
                                        endmodule
 U1 : GTECH OR NOT
   port map (A => in1, B => in2,
             Z => out1);
end sim;
```


GTECH_AO21

2-Input AND into 2-input OR

Truth Table

A	В	С	Z
0	X	0	0
X	0	0	0
X	X	1	1
1	1	X	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_OA21

2-Input OR into 2-input AND

Truth Table

Α	В	С	Z
0	0	X	0
X	X	0	0
X	1	1	1
1	X	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_AO22

2-Input ANDs into One 2-input OR

Truth Table

Α	В	С	D	Z
0	X	X	0	0
0	X	0	X	0
X	0	0	X	0
X	0	X	0	0
1	1	X	X	1
X	X	1	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_OA22

2-Input ORs into One 2-input AND

Truth Table

Α	В	С	D	Z
0	0	X	X	0
X	X	0	0	0
X	1	1	X	1
X	1	X	1	1
1	X	X	1	1
1	X	1	X	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_AOI21

2-Input AND into 2-input NOR

Truth Table

A	В	С	Z
0	X	0	1
X	0	0	1
X	X	1	0
1	1	X	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_OAI21

2-Input OR into 2-input NAND

Truth Table

Α	ВС		Z
0	0	X	1
X	X	0	1
X	1	1	0
1	X	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
                                          module GT_oai21_inst (in1, in2, in3,
use IEEE.std logic 1164.all;
                                                                out1);
use GTECH.GTECH components.all;
                                            input in1, in2, in3;
                                            output out1;
entity GT oai21 inst is
  port(in1, in2, in3 : in std_logic;
                                            GTECH OAI21
                                              U1 (.A(in1), .B(in2),
       out1 : out std logic);
end GT oai21 inst;
                                                   .C(in3), .Z(out1));
architecture sim of GT_oai21_inst is
                                          endmodule
 U1 : GTECH_OAI21
    port map(A => in1, B => in2,
             C \Rightarrow in3, Z \Rightarrow out1);
end sim;
```


GTECH_AOI22

2-Input ANDs into One 2-input NOR

Truth Table

Α	В	С	D	Z
0	X	X	0	1
0	X	0	X	1
X	0	0	X	1
X	0	X	0	1
1	1	X	X	0
1	1	X	X	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

DL Verilog library IEEE, GTECH; modu

end sim;

GTECH_OAI22

2-Input ORs into One 2-input NAND

Truth Table

Α	В	С	D	Z
0	0	X	X	1
X	X	0	0	1
X	1	1	X	0
X	1	X	1	0
1	X	X	1	0
1	X	1	X	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_AOI222

Three 2-Input ANDs into One 3-input NOR

Truth Table

Α	В	С	D	E	F	z
X	0	X	0	X	0	1
X	0	X	0	0	X	1
X	0	0	X	X	0	1
X	0	0	X	0	X	1
0	X	X	0	X	0	1
0	X	X	0	0	X	1
0	X	0	X	X	0	1
0	X	0	X	0	X	1
X	X	X	X	1	1	0
X	X	1	1	X	X	0
1	1	X	X	X	X	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_AOI2N2

2-Input AND and 2-Input NOR into One 2-input NOR

Truth Table

Α	В	С	D	Z
1	1	X	X	0
X	X	0	0	0
0	X	X	1	1
X	0	X	1	1
0	X	1	X	1
X	0	1	X	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_OAI2N2

2-Input OR and 2-Input NAND into One 2-input NAND

Truth Table

Α	В	С	D	Z
1	X	0	X	0
X	1	0	X	0
1	X	X	0	0
X	1	X	0	0
0	0	X	X	1
X	X	1	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
D	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_MAJ23

Two-of-Three Majority Function

Truth Table

Α	В	С	Z
0	0	X	0
0	X	0	0
X	0	0	0
X	1	1	1
1	X	1	1
1	1	X	1

end sim;

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
Z	1	Output

HDL Usage Through Instantiation use GTECH.GTECH_components.all;

GTECH_MUX2

2-Bit Multiplexer

Truth Table

S	Z
0	A
1	В

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
S	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

GTECH_MUXI2

2-Bit Multiplexer

Truth Table

Α	В	S	Z
0	X	0	1
1	X	0	0
X	0	1	1
X	1	1	0

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
S	1	Input
Z	1	Output

out1);

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
                                          module GT_muxi2_inst (in1, in2, sel,
use IEEE.std logic 1164.all;
use GTECH.GTECH_components.all;
                                            input in1, in2, sel;
                                            output out1;
entity GT_muxi2_inst is
 port(in1, in2, sel: in std logic;
                                            GTECH MUXI2
       out1 : out std_logic);
                                              U1 (.A(in1), .B(in2),
end GT muxi2 inst;
architecture sim of GT_muxi2_inst is
                                          endmodule
begin
 U1 : GTECH MUXI2
    port map (A => in1, B => in2,
             S \Rightarrow sel, Z \Rightarrow out1);
end sim;
```


GTECH_MUX4

4-Bit Multiplexer

Truth Table

В	A	Z
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Pin Description

Pin	Width	Direction
D0	1	Input
D1	1	Input
D2	1	Input
D3	1	Input
Α	1	Input
В	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH components.all;
entity GT mux4 inst is
  port(in1, in2, in3, in4,
       sel1, sel2: in std logic;
       out1
               : out std logic);
end GT mux4 inst;
architecture sim of GT_mux4_inst is
begin
  U1 : GTECH MUX4
    port map(D0 => in1, D1 => in2,
              D2 \Rightarrow in3, D3 \Rightarrow in4,
               A \Rightarrow sel1, B \Rightarrow sel2,
               Z => out1);
```

end sim;

GTECH_MUX8

8-Bit Multiplexer

Truth Table

С	В	Α	Z
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Pin Description

Pin	Width	Direction
D0	1	Input
D1	1	Input
D2	1	Input
D3	1	Input
D4	1	Input
D5	1	Input
D6	1	Input
D7	1	Input
Α	1	Input
В	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH components.all;
entity GT mux8 inst is
 port(in1, in2, in3, in4,
       in5, in6, in7, in8, sel1
       sel2, sel3: in std_logic;
       out1
              : out std logic);
end GT mux8 inst;
architecture sim of GT mux8 inst is
begin
  U1 : GTECH MUX8
    port map(D0 => in1, D1 => in2,
             D2 => in3, D3 => in4,
             D4 => in5, D5 => in6,
                                          endmodule
             D6 =  in7, D7 =  in8,
              A \Rightarrow sel1, B \Rightarrow sel2,
```


GTECH_ADD_AB

Half Adder

Truth Table

В S COUT 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
S	1	Output
COUT	1	Output

HDL Usage Through Instantiation VHDL

GTECH_ADD_ABC

Full Adder

Truth Table

Α	В	С	S	COUT
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Pin Description

Pin	Width	Direction
Α	1	Input
В	1	Input
С	1	Input
s	1	Output
COUT	1	Output

HDL Usage Through Instantiation VHDL

GTECH_TBUF

Non-Inverting 3-State Buffer

Truth Table

E	Z
1	A
0	high Z

Pin Description

Pin	Width	Direction
Α	1	Input
E	1	Input
Z	1	Output

HDL Usage Through Instantiation VHDL

rary IEEE, GTECH; modu

GTECH_INBUF

Input Buffer

Truth Table

Pin Description

PAD_IN	DATA_IN	
0	0	
1	1	
Z	X	

Pin	Width	Direction
PAD_IN	1	Input
DATA_IN	1	Output

HDL Usage Through Instantiation VHDL

GTECH_OUTBUF

Output Buffer

Truth Table

DATA_OUT	OE	PAD_OUT
X	0	Z
1	1	1
0	1	0
Z	1	X

Pin Description

Pin	Width	Direction
DATA_OUT	1	Input
OE	1	Input
PAD_OUT	1	Output

HDL Usage Through Instantiation VHDL

GTECH_INOUTBUF

Input-Output Buffer

Truth Table

DATA_OUT	OE	PAD_INOUT	PAD_INOUT
X	0	Z	X
X	0	1	1
X	0	0	0
1	1	1	1
0	1	0	0
Z	1	X	X

Pin Description

Pin	Width	Direction
DATA_OUT	1	Input
OE	1	Input
DATA_IN	1	Output
PAD_INOUT	1	Input/Output

HDL Usage Through Instantiation VHDL

library IEEE, GTECH; use IEEE.std_logic_1164.all; use GTECH.GTECH_components.all; entity GT_inoutbuf_inst is port(in1, enable: in std_logic; inout1 : inout std_logic; out1 : out std_logic); end GT_inoutbuf_inst; architecture sim of GT_inoutbuf_inst is begin U1 : GTECH_INOUTBUF port map(DATA_OUT => in1, OE => enable, PAD INOUT =>

D Flip-Flop

Truth Table

D	СР	Q	QN
0	\rightarrow	0	1
1	\uparrow	1	0
X	0	Q	QN
X	1	Q	QN

Pin Description

Pin	Width	Direction
D	1	Input
CP	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std_logic_1164.all;
use GTECH.GTECH_components.all;

entity GT_fd1_inst is
  port(in1, cp: in std_logic;
       q, qb : out std_logic);
end GT_fd1_inst;

architecture sim of GT_fd1_inst is
begin
  U1 : GTECH_FD1
  port map(D => in1, CP => cp,
       Q => q, QN => qb);
end sim;
```

```
Verilog

module GT_fd1_inst (in1, cp, q, qb);
   input in1, cp;
```

endmodule

D Flip-Flop - 4 Bit

Truth Table

D <i>n</i> ^a	СР	Q <i>n</i> ^a	QN <i>n</i> ^a
0	\rightarrow	0	1
1	\uparrow	1	0
X	0	Q	QN
X	1	Q	QN

a. The *n* denotes an individual signal of the D, Q, or QN bus.

Pin Description

Pin	Width	Direction
D0	1	Input
D1	1	Input
D2	1	Input
D3	1	Input
CP	1	Input
Q0	1	Output
Q1	1	Output
Q2	1	Output
Q3	1	Output
QN0	1	Output
QN1	1	Output
QN2	1	Output
QN3	1	Output

HDL Usage Through Instantiation VHDL Verilog

```
library IEEE, GTECH;
use IEEE.std_logic_1164.all;
use GTECH.GTECH_components.all;
entity GT fd14 inst is
  port(in\overline{0}, in\overline{1}, in2, in3,
                     : in std logic;
         q0, q1, q2, q3, q\overline{b}0, qb1,
qb2, qb3 : out std_logic);
end GT_fd14_inst;
architecture sim of GT fd14 inst
is
begin
  U1 : GTECH FD14
     port map (D0 \Rightarrow in0, D1 \Rightarrow in1,
                 D2 => in2, D3 => in3,
                  CP => cp,
                  Q0 \Rightarrow q0, Q1 \Rightarrow q1,
                  Q2 => q2, Q3 => q3,
                  QN0 \Rightarrow qb0, QN1 \Rightarrow
qb1
                  QN2 \Rightarrow qb2, QN3 \Rightarrow
qb3
                  );
end sim;
```


D Flip-Flop - 8 Bit

Truth Table

D <i>n</i> ^a	СР	Q <i>n</i> ^a	QN <i>n</i> ^a
0	\rightarrow	0	1
1	\uparrow	1	0
X	0	Q	QN
X	1	Q	QN

a. The *n* denotes an individual signal of the D, Q, or QN bus.

Pin Description

Pin	Width	Direction
D0	1	Input
D1	1	Input
D2 - D6	1	Input
D7	1	Input
CP	1	Input
Q0	1	Output
Q1	1	Output
Q2 - Q6	1	Output
Q7	1	Output
QN0	1	Output
QN1	1	Output
QN2 - QN6	1	Output
QN7	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH components.all;
entity GT fd18 inst is
  port(in0, in1, in2, in3,
       in4, in5, in6, in7,
                : in std logic;
       q0, q1, q2, q3, q4,
       q5, q6, q7, qb0, qb1,
       qb2, qb3, qb4, qb5, qb6,
       qb7 : out std logic);
end GT fd18 inst;
architecture sim of GT fd18 inst is
begin
  U1 : GTECH FD18
    port map(D0 => in0, D1 => in1,
              D2 => in2, D3 => in3,
              D4 => in4, D5 => in5,
              D6 => in6, D7 => in7,
              CP => cp,
              Q0 => q0, Q1 => q1,
              Q2 => q2, Q3 => q3,
              Q4 =  q4, Q5 =  q5,
              Q6 = q6, Q7 = q7,
              QN0 \Rightarrow qb0, QN1 \Rightarrow qb1
              QN2 \Rightarrow qb2, QN3 \Rightarrow qb3
              QN4 => qb4, QN5 => qb5
              QN6 =  ab6, QN7 =  ab7
end sim;
```

```
module GT fd18 inst (in0, in1, in2,
          in3, in4, in5, in6, in7, cp,
          q0, q1, q2, q3,
          q4, q5, q6, q7,
          qb0, qb1, qb2, qb3,
          qb4, qb5, qb6, qb7);
  input in0, in1, in2, in3, in4,
        in5, in6, in7, cp;
  output q0, q1, q2, q3, q4, q5,
         q6, q7,
         qb0, qb1, qb2, qb3 qb4, qb5,
         qb6, qb7;
  GTECH FD18
    U1 (.D0(in0), .D1(in1), .D2(in2),
        .D3(in3), .D4(in4), .D5(in5),
        .D6(in6), .D7(in7), .CP(cp),
        .Q0(q0), .Q1(q1), .Q2(q2),
        .Q3(q3), .Q4(q4), .Q5(q5),
        .Q6(q6), .Q7(q7),
        .QN0(qb0), .QN1(qb1),
        .QN2(qb2), .QN3(qb3));
endmodule
```


GTECH_FD1S

D Flip-Flop with Scan Test Pins

Truth Table

D	TI	TE	СР	Q	QN
0	X	0	\uparrow	0	1
1	X	0	\uparrow	1	0
X	0	1	\uparrow	0	1
X	1	1	\uparrow	1	0
X	X	X	0	Q	QN
X	X	X	1	Q	QN

Pin Description

Pin	Width	Direction
D	1	Input
TI	1	Input
TE	1	Input
СР	1	Input
Q	1	Output
QN	1	Output

Verilog

HDL Usage Through Instantiation **VHDL**

D Flip-Flop with Clear

Truth Table

D	СР	CD	Q	QN
0	↑	1	0	1
1	↑	1	1	0
X	0	1	Q	QN
X	1	1	Q	QN
X	X	0	0	1

Pin Description

Pin	Width	Direction
D	1	Input
СР	1	Input
CD	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

D Flip-Flop with Clear - 4 Bit

Truth Table

D <i>n</i> a	СР	CD	Q <i>n</i> ^a	QN <i>n</i> a
0	1	1	0	1
1	↑	1	1	0
X	0	1	Q	QN
X	1	1	Q	QN
X	X	0	0	1

a. The *n* denotes an individual signal of the D, Q, or QN bus.

Pin Description

Pin	Width	Direction
D0	1	Input
D1 - D3	1	Input
CP	1	Input
CD	1	Input
Q0	1	Output
Q1 - Q3	1	Output
QN0	1	Output
QN1 - QN 3	1	Output

Verilog

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std_logic_1164.all;
use GTECH.GTECH components.all;
entity GT_fd24_inst is
  port(in0, in1, in2, in3,
       cp, clr : in std logic;
       q0, q1, q2, q3, qb0, qb1,
       qb2, qb3 : out std logic);
end GT fd24 inst;
architecture sim of GT fd24 inst
is
begin
  U1 : GTECH FD24
    port map(D0 => in0, D1 => in1,
             D2 => in2, D3 => in3,
             CP \Rightarrow cp, CD \Rightarrow clr,
             Q0 => q0, Q1 => q1,
             Q2 => q2, Q3 => q3,
            QN0 => qb0, QN1 =>
```


D Flip-Flop with Clear - 8 Bit

Truth Table

D <i>n</i> a	СР	CD	Q <i>n</i> ^a	QN <i>n</i> ^a
0	1	1	0	1
1	↑	1	1	0
X	0	1	Q	QN
X	1	1	Q	QN
X	X	0	0	1

a. The *n* denotes an individual signal of the D, Q, or QN bus.

Pin Description

Pin	Width	Direction
D0	1	Input
D1	1	Input
D2 - D7	1	Input
СР	1	Input
CD	1	Input
Q0	1	Output
Q1	1	Output
Q2 - Q7	1	Output
QN0	1	Output
QN1	1	Output
QN2 - QN7	1	Output

HDL Usage Through Instantiation VHDL Verilog

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH components.all;
entity GT fd28 inst is
  port(in0, in1, in2, in3,
        in4, in5, in6, in7,
        cp, clr : in std_logic;
        q0, q1, q2, q3, q4,
       q5, q6, q7, qb0, qb1,
        qb2, qb3, qb4, qb5, qb6,
        qb7 : out std logic);
end GT fd28 inst;
architecture sim of GT fd28 inst
is
begin
  U1 : GTECH FD28
    port map (D0 \Rightarrow in0, D1 \Rightarrow in1,
              D2 => in2, D3 => in3,
               D4 => in4, D5 => in5,
               D6 =  in6, D7 =  in7,
               CP \Rightarrow cp, CD \Rightarrow clr,
               Q0 => q0, Q1 => q1,
               Q2 => q2, Q3 => q3,
               Q4 => q4, Q5 => q5,
              Q6 = q6, Q7 = q7,
              QN0 \Rightarrow qb0, QN1 \Rightarrow
qb1,
             QN2 => qb2, QN3 =>
qb3,
             QN4 => qb4, QN5 =>
qb5,
              QN6 \Rightarrow qb6, QN7 \Rightarrow qb7
              );
end sim;
```

```
module GT fd28 inst (in0, in1, in2,
          in3, in4, in5, in6, in7, cp,
          clr, q0, q1, q2, q3,
          q4, q5, q6, q7,
          qb0, qb1, qb2, qb3,
          qb4, qb5, qb6, qb7);
  input in0, in1, in2, in3, in4,
        in5, in6, in7, cp, clr;
  output q0, q1, q2, q3, q4, q5,
         q6, q7,
         qb0, qb1, qb2, qb3 qb4, qb5,
         qb6, qb7;
  GTECH FD28
    U1 (.D0(in0), .D1(in1), .D2(in2),
        .D3(in3), .D4(in4), .D5(in5),
        .D6(in6), .D7(in7),
        .CP(cp), .CD(clr),
        .Q0(q0), .Q1(q1), .Q2(q2),
        .Q3(q3), .Q4(q4), .Q5(q5),
        .Q6(q6), .Q7(q7),
        .QN0(qb0), .QN1(qb1),
        .QN2(qb2), .QN3(qb3));
endmodule
```


GTECH_FD2S

D Flip-Flop with Clear, Scan

Truth Table

D	TI	TE	СР	CD	Q	QN
0	X	0	↑	1	0	1
1	X	0	↑	1	1	0
X	0	1	\uparrow	1	0	1
X	1	1	\uparrow	1	1	0
X	X	X	0	1	Q	QN
X	X	X	1	1	Q	QN
X	X	X	X	0	0	1

Pin Description

Pin	Width	Direction
D	1	Input
TI	1	Input
TE	1	Input
СР	1	Input
CD	1	Input
Q	1	Output
QN	1	Output

Verilog

endmodule

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH_components.all;
entity GT fd2s inst is
  port(in1, ti, te,
       cp, clr : in std logic;
       q, qb : out std_logic);
end GT fd2s inst;
architecture sim of GT fd2s inst
begin
  U1 : GTECH FD2S
    port map(D => in1, CP => ti,
              CD => clr,
              TI \Rightarrow te, TE \Rightarrow cp,
              Q \Rightarrow q, QN \Rightarrow qb;
end sim;
```


D Flip-Flop with Clear, Set

Truth Table

D	СР	CD	SD	Q	QN
0	↑	1	1	0	1
1	↑	1	1	1	0
X	0	1	1	Q	QN
X	1	1	1	Q	QN
X	X	0	1	0	1
X	X	1	0	1	0
X	X	0	0	0	0

Pin Description

Pin	Width	Direction
D	1	Input
СР	1	Input
CD	1	Input
SD	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

D Flip-Flop with Clear, Set - 4 Bit

Truth Table

Pin Description

D <i>n</i> a	СР	CD	SD	Q <i>n</i> a	QN <i>n</i> ^a
0	↑	1	1	0	1
1	\uparrow	1	1	1	0
X	0	1	1	Q	QN
X	1	1	1	Q	QN
X	X	0	1	0	1
X	X	1	0	1	0
X	X	0	0	0	0

Pin	Width	Direction
D0	1	Input
D1 - D3	1	Input
CP	1	Input
CD	1	Input
SD	1	Input
Q0	1	Output
Q1 - Q3	1	Output
QN0	1	Output
QN1 - QN 3	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH components.all;
entity GT fd34 inst is
  port(in0, in1, in2, in3,
       cp, clr, set: in std logic;
       q0, q1, q2, q3, qb0, qb1,
       qb2, qb3 : out std logic);
end GT fd34 inst;
architecture sim of GT fd34 inst is
begin
  U1 : GTECH FD34
    port map(D0 => in0, D1 => in1,
              D2 => in2, D3 => in3,
              CP \Rightarrow cp, CD \Rightarrow clr,
              SD => set,
                                         00
=> q0, Q1 => q1,
              Q2 => q2, Q3 => q3,
             QN0 \Rightarrow qb0, QN1 \Rightarrow qb1,
              QN2 => qb2, QN3 => qb3
              );
end sim;
```

```
module GT_fd34_inst (in0, in1, in2,
          in3, cp, clr, set,
          q0, q1, q2, q3,
          qb0, qb1, qb2, qb3);
  input in0, in1, in2, in3, cp,
         clr, set;
  output q0, q2, q3, q4,
         qb0, qb1, qb2, qb3;
  GTECH FD34
    U1 (.D0(in0), .D1(in1), .D2(in2),
        .D3(in3), .CP(cp), .CD(clr),
        .SD(set), .Q0(q0),
        .Q1(q1), .Q2(q2), .Q3(q3),
        .QN0(qb0), .QN1(qb1),
        .QN2(qb2), .QN3(qb3));
endmodule
```

a. The n denotes an individual signal of the D, Q, or QN bus.

D Flip-Flop with Clear, Set - 8 Bit

Truth Table

D <i>n</i> ^a	СР	CD	SD	Q <i>n</i> a	QN <i>n</i> ^a
0	↑	1	1	0	1
1	↑	1	1	1	0
X	0	1	1	Q	QN
X	1	1	1	Q	QN
X	X	0	1	0	1
X	X	1	0	1	0
X	X	0	0	0	0

Pin Description

Pin	Width	Direction
D0	1	Input
D1	1	Input
D2 - D7	1	Input
СР	1	Input
CD	1	Input
SD	1	Input
Q0	1	Output
Q1	1	Output
Q2 - Q7	1	Output
QN0	1	Output
QN1	1	Output
QN2 - QN7	1	Output

a. The n denotes an individual signal of the D, Q, or QN bus.

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH components.all;
entity GT fd38 inst is
  port(in0, in1, in2, in3,
       in4, in5, in6, in7,
       cp, clr, set: in std_logic;
       q0, q1, q2, q3, q4,
       q5, q6, q7, qb0, qb1,
       qb2, qb3, qb4, qb5, qb6,
       qb7 : out std logic);
end GT fd38 inst;
architecture sim of GT fd38 inst is
begin
  U1 : GTECH FD38
    port map(D0 => in0, D1 => in1,
              D2 => in2, D3 => in3,
              D4 => in4, D5 => in5,
              D6 =  in6, D7 =  in7,
              CP \Rightarrow cp, CD \Rightarrow clr,
              SD => set,
              Q0 => q0, Q1 => q1,
              Q2 => q2, Q3 => q3,
              Q4 => q4, Q5 => q5,
              Q6 = q6, Q7 = q7,
             QN0 \Rightarrow qb0, QN1 \Rightarrow qb1,
             QN2 => qb2, QN3 => qb3,
             QN4 = > qb4, QN5 = > qb5,
             QN6 \Rightarrow qb6, QN7 \Rightarrow qb7
              );
end sim;
```

```
module GT fd38 inst (in0, in1, in2,
          in3, in4, in5, in6, in7, cp,
          clr, set, q0, q1, q2, q3,
          q4, q5, q6, q7,
          qb0, qb1, qb2, qb3,
          qb4, qb5, qb6, qb7);
  input in0, in1, in2, in3, in4,
        in5, in6, in7, cp, clr, set;
  output q0, q1, q2, q3, q4, q5,
         q6, q7,
         qb0, qb1, qb2, qb3 qb4, qb5,
         qb6, qb7;
  GTECH FD38
    U1 (.D0(in0), .D1(in1), .D2(in2),
        .D3(in3), .D4(in4), .D5(in5),
        .D6(in6), .D7(in7),
        .CP(cp), .CD(clr), .SD(set),
        .Q0(q0), .Q1(q1), .Q2(q2),
        .Q3(q3), .Q4(q4), .Q5(q5),
        .Q6(q6), .Q7(q7),
        .QN0(qb0), .QN1(qb1),
        .QN2(qb2), .QN3(qb3));
endmodule
```


GTECH_FD3S

D Flip-Flop with Clear, Set, and Scan

Truth Table

D	TI	TE	СР	CD	SD	Q	QN
0	X	0	↑	1	1	0	1
1	X	0	\uparrow	1	1	1	0
X	0	1	\uparrow	1	1	0	1
X	1	1	\uparrow	1	1	1	0
X	X	X	0	1	1	Q	QN
X	X	X	1	1	1	Q	QN
X	X	X	X	0	1	0	1
X	X	X	X	1	0	1	0
X	X	X	X	0	0	0	0

Pin Description

Pin	Width	Direction
D	1	Input
TI	1	Input
TE	1	Input
СР	1	Input
CD	1	Input
SD	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH_components.all;
entity GT fd3s inst is
  port(in1, ti, te,
        cp, clr, set : in
std_logic;
       q, qb : out std_logic);
end GT_fd3s_inst;
architecture sim of GT_fd3s_inst
is
begin
  U1 : GTECH FD3S
    port map(D => in1, CP => ti,
              CD => clr, SD => set,
              TI \Rightarrow te, TE \Rightarrow cp,
              Q \Rightarrow q, QN \Rightarrow qb;
end sim;
```


D Flip-Flop with Set

Truth Table

D	СР	SD	Q	QN
0	↑	1	0	1
1	↑	1	1	0
X	0	1	Q	QN
X	1	1	Q	QN
X	X	0	1	0

Pin Description

Pin	Width	Direction
D	1	Input
СР	1	Input
SD	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

D Flip-Flop with Set - 4 Bit

Truth Table

D <i>n</i> ^a	СР	SD	Q <i>n</i> a	QN <i>n</i> ^a
0	↑	1	0	1
1	↑	1	1	0
X	0	1	Q	QN
X	1	1	Q	QN
X	X	0	1	0

Pin Description

Pin	Width	Direction
D0	1	Input
D1 - D3	1	Input
СР	1	Input
SD	1	Input
Q0	1	Output
Q1 - Q3	1	Output
QN0	1	Output
QN1 - QN 3	1	Output

a. The n denotes an individual signal of the D, Q, or QN bus.

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH components.all;
entity GT fd44 inst is
  port(in0, in1, in2, in3,
        cp, set: in std_logic;
        q0, q1, q2, q3, qb0, qb1,
        qb2, qb3 : out std logic);
end GT fd44 inst;
architecture sim of GT fd44 inst is
begin
  U1: GTECH FD44
    port map(D0 \Rightarrow in0, D1 \Rightarrow in1,
              D2 => in2, D3 => in3,
               CP => cp,
               SD => set,
               Q0 => q0, Q1 => q1,
               Q2 => q2, Q3 => q3,
              QN0 \Rightarrow qb0, QN1 \Rightarrow qb1,
               QN2 \Rightarrow qb2, QN3 \Rightarrow qb3
```


D Flip-Flop with Set - 8 Bit

Truth Table

D <i>n</i> ^a	СР	SD	Q <i>n</i> a	QN <i>n</i> a
0	↑	1	0	1
1	↑	1	1	0
X	0	1	Q	QN
X	1	1	Q	QN
X	X	0	1	0

Pin Description

Pin	Width	Direction
D0	1	Input
D1	1	Input
D2 - D7	1	Input
СР	1	Input
SD	1	Input
Q0	1	Output
Q1	1	Output
Q2 - Q7	1	Output
QN0	1	Output
QN1	1	Output
QN2 - QN7	1	Output

a. The n denotes an individual signal of the D, Q, or QN bus.

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH components.all;
entity GT fd48 inst is
  port(in0, in1, in2, in3,
        in4, in5, in6, in7,
        cp, set: in std logic;
        q0, q1, q2, q3, q4,
       q5, q6, q7, qb0, qb1,
        qb2, qb3, qb4, qb5, qb6,
        qb7 : out std logic);
end GT fd48 inst;
architecture sim of GT fd48 inst is
begin
  U1 : GTECH FD48
    port map(D0 => in0, D1 => in1,
              D2 => in2, D3 => in3,
              D4 => in4, D5 => in5,
              D6 =  in6, D7 =  in7,
              CP \Rightarrow cp, SD \Rightarrow set,
              Q0 => q0, Q1 => q1,
              Q2 => q2, Q3 => q3,
              Q4 => q4, Q5 => q5,
              Q6 = q6, Q7 = q7,
             QN0 \Rightarrow qb0, QN1 \Rightarrow qb1,
             QN2 \Rightarrow qb2, QN3 \Rightarrow qb3,
             QN4 => qb4, QN5 => qb5,
             QN6 \Rightarrow qb6, QN7 \Rightarrow qb7
              );
end sim;
```

```
module GT fd48 inst (in0, in1, in2,
           in3, in4, in5, in6, in7, cp,
           set, q0, q1, q2, q3,
           q4, q5, q6, q7,
           qb0, qb1, qb2, qb3,
           qb4, qb5, qb6, qb7);
   input in0, in1, in2, in3, in4,
         in5, in6, in7, cp, set;
   output q0, q1, q2, q3, q4, q5,
          q6, q7,
          qb0, qb1, qb2, qb3 qb4, qb5,
          qb6, qb7;
   GTECH FD48
     U1 (.D0(in0), .D1(in1), .D2(in2),
          .D3(in3), .D4(in4), .D5(in5),
         .D6(in6), .D7(in7),
         .CP(cp), .SD(set),
         .Q0(q0), .Q1(q1), .Q2(q2),
         .Q3(q3), .Q4(q4), .Q5(q5),
         .Q6(q6), .Q7(q7),
         .QN0(qb0), .QN1(qb1),
          .QN2(qb2), .QN3(qb3));
endmodule
```


GTECH_FD4S

D Flip-Flop with Set, Scan

Truth Table

D	TI	TE	СР	SD	Q	QN
0	X	0	↑	1	0	1
1	X	0	\uparrow	1	1	0
X	0	1	\uparrow	1	0	1
X	1	1	\uparrow	1	1	0
X	X	X	0	1	Q	QN
X	X	X	1	1	Q	QN
X	X	X	X	0	1	1

Pin Description

Pin	Width	Direction
D	1	Input
TI	1	Input
TE	1	Input
СР	1	Input
SD	1	Input
Q	1	Output
QN	1	Output

Verilog

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH_components.all;
entity GT fd4s inst is
  port(in1, ti, te,
       cp, set : in std logic;
       q, qb : out std_logic);
end GT fd4s inst;
architecture sim of GT fd4s inst
begin
  U1 : GTECH FD4S
    port map(D => in1, CP => ti,
              SD => te,
              TI \Rightarrow cp, TE \Rightarrow set,
              Q \Rightarrow q, QN \Rightarrow qb;
end sim;
```

endmodule

GTECH_FJK1

JK Flip-Flop

Truth Table

Pin Description

J	K	СР	Ø	QN
0	0		Q	QN
0	1	\uparrow	0	1
1	0	\uparrow	1	0
1	1	\uparrow	QN	Q
X	X	0	Q	QN
X	X	1	Q	QN

HDL Usage Through Instantiation VHDL

GTECH_FJK1S

JK Flip-Flop with Scan Test Pins

Truth Table

J	K	TI	TE	СР	Q	QN	
0	0	X	0	\rightarrow	Q	QN	
0	1	X	0	\uparrow	0	1	
1	0	X	0	\uparrow	1	0	
1	1	X	0	\uparrow	QN	Q	
X	X	0	1	\uparrow	0	1	
X	X	1	1	\uparrow	1	0	
X	X	X	X	0	Q	QN	
X	X	X	X	1	Q	QN	

Pin Description

Width	Direction
1	Input
1	Output
1	Output
	1 1 1 1

Verilog

HDL Usage Through Instantiation **VHDL**

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH_components.all;
entity GT fjk1s inst is
  port(jin, kin, ti, te,
       cp: in std_logic;
       q, qb : out std_logic);
end GT fjk1s inst;
architecture sim of GT fjk1s inst
is
begin
  U1 : GTECH_FJK1S
    port map(J => jin, K => kin,
              CP => ti,
              TI \Rightarrow te, TE \Rightarrow cp,
              Q \Rightarrow q, QN \Rightarrow qb;
end sim;
```


GTECH_FJK2

JK Flip-Flop with Clear

Truth Table

J	K	СР	CD	CD Q	
0	0	↑	1	Q	QN
0	1	\uparrow	1 0		1
1	0	\uparrow	1 1		0
1	1	↑	1	QN	Q
X	X	0	1	Q	QN
X	X	1	1	Q	QN
X	X	X	0	0	1

Pin Description

Pin Widtl		Direction
J	1	Input
K	1	Input
СР	1	Input
CD	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

GTECH_FJK2S

JK Flip-Flop with Clear, Scan

Truth Table

J	K	TI	TE	СР	CD	Q	QN
0	0	X	0	↑	1	Q	QN
0	1	X	0	\uparrow	1	0	1
1	0	X	0	\uparrow	1	1	0
1	1	X	0	\uparrow	1	QN	Q
X	X	0	1	\uparrow	1	0	1
X	X	1	1	\uparrow	1	1	0
X	X	X	X	0	1	Q	QN
X	X	X	X	1	1	Q	QN
X	X	X	X	X	0	0	1

Pin Description

Pin	Width	Direction
J	1	Input
K	1	Input
TI	1	Input
TE	1	Input
СР	1	Input
CD	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH components.all;
entity GT_fjk2s_inst is
  port(jin, kin, ti, te,
       cp, clr : in std_logic;
       q, qb : out std logic);
end GT_fjk2s_inst;
architecture sim of GT fjk2s inst
begin
  U1 : GTECH FJK2S
    port map(J => jin, K => kin,
             CP => ti, CD => te,
             TI => cp, TE => clr,
             Q \Rightarrow q, QN \Rightarrow qb;
end sim;
```


GTECH_FJK3

JK Flip-Flop with Clear, Set

Truth Table

J	K	СР	CD	SD	Q	QN
0	0	↑	1	1	Q	QN
0	1	\uparrow	1	1	0	1
1	0	\uparrow	1	1	1	0
1	1	\uparrow	1	1	QN	Q
X	X	0	1	1	Q	QN
X	X	1	1	1	Q	QN
X	X	X	0	1	0	1
X	X	X	1	0	1	0
X	X	X	0	0	0	0

Pin Description

Pin	Width	Direction
J	1	Input
K	1	Input
СР	1	Input
CD	1	Input
SD	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH_components.all;
entity GT fjk3 inst is
  port(jin, kin, cp, clr,
       set: in std logic;
       q, qb : out std_logic);
end GT_fjk3_inst;
architecture sim of GT fjk3 inst is
begin
  U1 : GTECH FJK3
    port map(J => jin, K => kin,
              CP => cp,
              CD => clr, SD => set,
              Q \Rightarrow q, QN \Rightarrow qb;
end sim;
```


GTECH_FJK3S

JK Flip-Flop with Clear, Set, and Scan

Truth Table

J	K	TI	TE	СР	CD	SD	Q	QN
0	0	X	0	↑	1	1	Q	QN
0	1	X	0	\uparrow	1	1	0	1
1	0	X	0	\uparrow	1	1	1	0
1	1	X	0	\uparrow	1	1	QN	Q
X	X	0	1	\uparrow	1	1	0	1
X	X	1	1	\uparrow	1	1	1	0
X	X	X	X	0	1	1	Q	QN
X	X	X	X	1	1	1	Q	QN
X	X	X	X	X	0	1	0	1
X	X	X	X	X	1	0	1	0
X	X	X	X	X	0	0	0	0

Pin Description

Pin	Width	Direction
J	1	Input
K	1	Input
TI	1	Input
TE	1	Input
СР	1	Input
CD	1	Input
SD	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

GTECH_LD1

D Latch

Truth Table

D	G	Q	QN
0	1	0	1
1	1	1	0
X	0	Q	QN

Pin Description

Pin	Width	Direction
D	1	Input
G	1	Input
Q	1	Output
QN	1	Output

Verilog

HDL Usage Through Instantiation VHDL

GTECH_LD2

D Latch, Active Low

Truth Table

D	GN	Q	QN
0	0	0	1
1	0	1	0
X	1	Q	QN

Pin Description

Pin	Width	Direction
D	1	Input
GN	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

library IEEE, GTECH; use IEEE.std_logic_1164.all; use GTECH.GTECH_components.all; entity GT_ld2_inst is port(in1, enable: in std_logic; q, qb : out std_logic); end GT_ld2_inst; architecture sim of GT_ld2_inst is begin U1 : GTECH_LD2 port map(D => in1, GN => enable, Q => q, QN => qb); end sim;

GTECH_LD2_1

D Latch, Active Low, Single Output

Truth Table

D	GN	Q	
0	0	0	
1	0	1	
X	1	Q	

Pin Description

Pin	Width	Direction
D	1	Input
GN	1	Input
Q	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
                                        module GT_ld2_1_inst (in1, enable,
use IEEE.std logic 1164.all;
                                                               q);
use GTECH.GTECH_components.all;
                                          input in1, enable;
                                          output q;
entity GT_ld2_1_inst is
 port(in1, enable: in std logic;
                                         GTECH LD2 1
                                            U1 (.D(in1), .GN(enable),
       q, : out std_logic);
end GT ld2 1 inst;
                                                 .Q(q));
architecture sim of GT_ld2_1_inst is
                                        endmodule
begin
 U1 : GTECH LD2 1
    port map(D => in1, GN => enable,
             Q \Rightarrow q;
end sim;
```


GTECH_LD3

D Latch with Clear

Truth Table

D	G	CD	Q	QN
0	1	1	0	1
1	1	1	1	0
X	0	1	Q	QN
X	X	0	0	1

Pin Description

Pin	Width	Direction
D	1	Input
G	1	Input
CD	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

GTECH_LD4

D Latch, Active Low with Clear

Truth Table

D	GN	CD	Q	QN
0	0	1	0	1
1	0	1	1	0
X	1	1	Q	QN
X	X	0	0	1

Pin Description

Pin	Width	Direction
D	1	Input
GN	1	Input
CD	1	Input
Q	1	Output
QN	1	Output

HDL Usage Through Instantiation VHDL

GTECH_LD4_1

D Latch, Active Low, Single Output with Clear

Truth Table

D	GN	CD	Q
0	0	1	0
1	0	1	1
X	1	1	Q
X	X	0	0

Pin Description

Pin	Width	Direction
D	1	Input
GN	1	Input
CD	1	Input
Q	1	Output

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
                                         module GT_ld4_1_inst (in1, enable,
use IEEE.std logic 1164.all;
                                                                clr, q);
use GTECH.GTECH components.all;
                                           input in1, enable, clr;
                                           output q;
entity GT ld4 1 inst is
 port(in1, enable,
                                           GTECH LD4 1
       clr : in std logic;
                                             U1 (.D(in1), .GN(enable),
       q : out std_logic);
                                                  .CD(clr),
end GT ld4 1 inst;
                                                  .Q(q));
architecture sim of GT ld4 1 inst is
                                         endmodule
begin
  U1 : GTECH LD4 1
    port map(D => in1, GN => enable,
             CD => clr,
             Q \Rightarrow q;
end sim:
```


GTECH_LSR0

SR Latch

Truth Table

		Previous State		Next Stat	е
S	R	Q	QN	Q(<i>t</i> +1)	QN(<i>t</i> +1)
0	0	X	X	0	0
0	1	X	X	1	0
1	0	X	X	0	1
1	1	0	0	?	?
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	?	?

Pin Description

Pin	Width	Direction
S	1	Input
R	1	Input
Q	1	Output
QN	1	Output

X = Don't Care
? = Indeterminate

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std_logic_1164.all;
use GTECH.GTECH_components.all;

entity GT_lsr0_inst is
  port(set, clr : in std_logic;
        q, qb : out std_logic);
end GT_lsr0_inst;

architecture sim of GT_lsr0_inst is
begin
  U1 : GTECH_LSR0
    port map(S => set, R => clr,
        Q => q, QN => qb);
end sim;
```


GTECH_ONE

Logic High

Pin Description and Value

Pin	Width	Direction	Value
Z	1	Output	1

HDL Usage Through Instantiation VHDL

```
library IEEE, GTECH;
use IEEE.std_logic_1164.all;
use GTECH.GTECH_components.all;

entity GT_one_inst is
   port( out1 : out std_logic);
end GT_one_inst;

architecture sim of GT_one_inst is
begin
   U1 : GTECH_ONE
   port map( Z => out1 );
end sim;
```

```
module GT_one_inst ( out1 );
  output out1;

GTECH_ONE
   U1 (.Z(out1) );
endmodule
```


GTECH_ZERO

Logic Low

Pin Description and Value

Pin	Width	Direction	Value
Z	1	Output	0

HDL Usage Through Instantiation VHDL

library IEEE, GTECH; use IEEE.std_logic_1164.all; use GTECH.GTECH_components.all; entity GT_zero_inst is port(out1 : out std_logic); end GT_zero_inst; architecture sim of GT_zero_inst is begin U1 : GTECH_ZERO port map(Z => out1); end sim;

```
module GT_zero_inst ( out1 );
  output out1;

GTECH_ZERO
   U1 (.Z(out1) );
endmodule
```


GTECH_ISO0_EN0

Isolation Buffer- Forced to 0

Truth Table

EN	DI	DO	Description
0	0	0	DI drives DO
0	1	1	DI drives DO
1	0	0	DI isolated. DO forced 0
1	1	0	DI isolated. DO forced 0

Pin Description

Pin	Width	Direction
DI	1	Input
DO	1	Output
EN	1	Input

HDL Usage Through Instantiation

VHDL

end inst;

library IEEE, GTECH; use IEEE.std_logic_1164.all; use GTECH.GTECH_components.all; entity GTECH ISOO ENO inst is port (inst_EN : in std_logic; inst DI : in std logic; DO inst : out std logic end GTECH_ISOO_ENO_inst; architecture inst of GTECH_ISOO_ENO_inst is begin -- Instance of GTECH ISO0 EN0 U1 : GTECH ISOO ENO port map (EN => inst EN, DI => inst DI, DO => DO inst);

```
module GTECH_ISOO_ENO_inst( inst_EN,
inst_DI, DO_inst );
input inst_EN;
input inst_DI;
output DO_inst;

// Instance of GTECH_ISOO_ENO
   GTECH_ISOO_ENO U1 ( .EN(inst_EN),
.DI(inst_DI), .DO(DO_inst) );
endmodule
```


GTECH_ISO0_EN1

Isolation Buffer- Forced to 0

Truth Table

EN	DI	DO	Description
0	0	0	DI isolated. DO forced 0
0	1	0	DI isolated. DO forced 0
1	0	0	DI drives DO
1	1	1	DI drives DO

Pin Description

Pin	Width	Direction
DI	1	Input
DO	1	Output
EN	1	Input

HDL Usage Through Instantiation

VHDL

library IEEE,GTECH; use IEEE.std_logic_1164.all; use GTECH.GTECH_components.all; entity GTECH_ISOO_EN1_inst is port (inst_EN : in std_logic; inst_DI : in std_logic; DO_inst : out std_logic); end GTECH_ISOO_EN1_inst; architecture inst of GTECH_ISOO_EN1_inst is begin -- Instance of GTECH_ISOO_EN1 U1 : GTECH ISOO EN1

port map (EN => inst EN, DI =>

inst DI, DO => DO inst);

end inst;

```
module GTECH_ISOO_EN1_inst( inst_EN,
inst_DI, DO_inst );
input inst_EN;
input inst_DI;
output DO_inst;

// Instance of GTECH_ISOO_EN1
  GTECH_ISOO_EN1 U1 ( .EN(inst_EN),
.DI(inst_DI), .DO(DO_inst) );
endmodule
```


GTECH_ISO1_EN0

Isolation Buffer- Forced to 1

Truth Table

EN	DI	DO	Description
0	0	0	DI drives DO
0	1	1	DI drives DO
1	0	1	DI isolated. DO forced 1
1	1	1	DI isolated. DO forced 1

Pin Description

Pin	Width	Direction
DI	1	Input
DO	1	Output
EN	1	Input

HDL Usage Through Instantiation

VHDL

end inst;

library IEEE,GTECH;

```
use IEEE.std_logic_1164.all;
use GTECH.GTECH_components.all;
entity GTECH_ISO1_EN0_inst is
    port (
        inst_EN : in std_logic;
        inst_DI : in std_logic;
        DO_inst : out std_logic
        );
    end GTECH_ISO1_EN0_inst;

architecture inst of GTECH_ISO1_EN0_inst is

begin
    -- Instance of GTECH_ISO1_EN0
    U1 : GTECH_ISO1_EN0
    port map ( EN => inst_EN, DI => inst_DI, DO => DO_inst );
```

```
module GTECH_ISO1_EN0_inst( inst_EN,
inst_DI, DO_inst );
input inst_EN;
input inst_DI;
output DO_inst;

// Instance of GTECH_ISO1_EN0
   GTECH_ISO1_EN0 U1 ( .EN(inst_EN),
.DI(inst_DI), .DO(DO_inst) );
endmodule
```


GTECH_ISO1_EN1

Isolation Buffer- Forced to 1

Truth Table

EN	DI	DO	Description
0	0	1	DI isolated. DO forced 1
0	1	1	DI isolated. DO forced 1
1	0	0	DI drives DO
1	1	1	DI drives DO

Pin Description

Pin	Width	Direction
DI	1	Input
DO	1	Output
EN	1	Input

HDL Usage Through Instantiation

VHDL

library IEEE,GTECH; use IEEE.std_logic_1164.all; use GTECH.GTECH_components.all; entity GTECH ISO1 EN1 inst is port (inst_EN : in std_logic; inst DI : in std logic; DO inst : out std logic end GTECH_ISO1_EN1_inst; architecture inst of GTECH_ISO1_EN1_inst is begin -- Instance of GTECH ISO1 EN1 U1 : GTECH ISO1 EN1 port map (EN => inst EN, DI => inst DI, DO => DO inst); end inst;

```
module GTECH_ISO1_EN1_inst( inst_EN,
inst_DI, DO_inst );
input inst_EN;
input inst_DI;
output DO_inst;

    // Instance of GTECH_ISO1_EN1
    GTECH_ISO1_EN1 U1 ( .EN(inst_EN),
.DI(inst_DI), .DO(DO_inst) );
endmodule
```


GTECH_ISOLATCH_EN0

Isolation Latch - Zero Enable

Truth Table

EN	DI	DO	Description
0	0	0	DI drives DO
0	1	1	DI drives DO
1	0	DO	DI isolated. DO latched
1	1	DO	DI isolated. DO latched

Pin Description

Pin	Width	Direction
DI	1	Input
DO	1	Output
EN	1	Input

HDL Usage Through Instantiation

VHDL

```
library IEEE,GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH_components.all;
entity GTECH ISOLATCH EN0 inst is
      port (
       inst_EN : in std_logic;
       inst DI : in std logic;
      DO inst : out std logic
    end GTECH ISOLATCH EN0 inst;
architecture inst of
GTECH_ISOLATCH_ENO_inst is
begin
    -- Instance of GTECH ISOLATCH EN0
   U1 : GTECH_ISOLATCH_EN0
  port map ( EN => inst EN, DI =>
inst DI, DO => DO inst );
end inst;
```

```
module GTECH_ISOLATCH_EN0_inst(
inst_EN, inst_DI, DO_inst);
input inst_EN;
input inst_DI;
output DO_inst;

// Instance of GTECH_ISOLATCH_EN0
   GTECH_ISOLATCH_EN0 U1 (
.EN(inst_EN), .DI(inst_DI),
.DO(DO_inst));
endmodule
```


GTECH_ISOLATCH_EN1

Isolation Latch - One Enable

Truth Table

EN	DI	DO	Description	
0	0	DO	DI isolated. DO latched	
0	1	DO	DI isolated. DO latched	
1	0	0	DI drives DO	
1	1	1	DI drives DO	

Pin Description

Pin	Width	Direction
DI	1	Input
DO	1	Output
EN	1	Input

HDL Usage Through Instantiation

VHDL

```
library IEEE,GTECH;
use IEEE.std logic 1164.all;
use GTECH.GTECH_components.all;
entity GTECH ISOLATCH EN1 inst is
      port (
       inst_EN : in std_logic;
       inst DI : in std logic;
       DO inst : out std logic
    end GTECH ISOLATCH EN1 inst;
architecture inst of
GTECH_ISOLATCH_EN1_inst is
begin
    -- Instance of GTECH ISOLATCH EN1
   U1 : GTECH ISOLATCH EN1
   port map ( EN => inst EN, DI =>
inst DI, DO => DO inst );
end inst;
```

```
module GTECH_ISOLATCH_EN1_inst(
inst_EN, inst_DI, DO_inst );

input inst_EN;
input inst_DI;
output DO_inst;

// Instance of GTECH_ISOLATCH_EN1
   GTECH_ISOLATCH_EN1 U1 (
.EN(inst_EN), .DI(inst_DI),
.DO(DO_inst) );
endmodule
```