Final In-Class Exam

Date: May 7

(4:05 PM - 5:20 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.
- There are three (3) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 14 pages including four (4) blank pages and one (1) page of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is open slides and open notes.

GOOD LUCK!

Question	Pages	Score	Maximum
1. Parallel DFT	2–5		30
2. Trapping the Median	7–9		30
3. Files on Compact Discs	12		15
Total			75

3.7			
Name:			
INAME.			

QUESTION 1. [30 Points] Parallel DFT. Given the coefficient vector $\langle a_0, a_1, \ldots, a_{n-1} \rangle$ of a polynomial $P(x) = a_0 + a_1 x + a_2 x^2 + \ldots a_{n-1} x^{n-1}$, the Par-Rec-DFT function shown below (in Figure 1) computes another vector $\langle y_0, y_1, \ldots, y_{n-1} \rangle$, where $y_i = P((\omega_n)^i)$ and ω_n is the primitive n-th root of unity. The output vector $\langle y_0, y_1, \ldots, y_{n-1} \rangle$ is called the *Discrete Fourier Transform* (DFT) of the input vector $\langle a_0, a_1, \ldots, a_{n-1} \rangle$. We assume for simplicity that n is a power of 2.

```
Par-Rec-DFT( \langle a_0, a_1, \dots, a_{n-1} \rangle )
(Input is the coefficient vector \langle a_0, a_1, \dots, a_{n-1} \rangle of a polynomial P(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}. The
output is another vector \langle y_0, y_1, \dots, y_{n-1} \rangle, where y_i = P((\omega_n)^i) and \omega_n is the primitive n-th root of unity. We
assume for simplicity that n is a power of 2.)
      1. if n = 1 then return \langle a_0 \rangle
     2. else
     3.
                \langle y_0^{even}, y_1^{even}, \dots, y_{\frac{n}{2}-1}^{even} \rangle \leftarrow \textit{spawn} \text{ PAR-Rec-DFT}(\ \langle a_0, a_2, \dots, a_{n-2} \rangle \ ) \quad \  \{\textit{even numbered coefficients}\}
                \langle y_0^{odd}, y_1^{odd}, \dots, y_{\frac{n}{2}-1}^{odd} \rangle \leftarrow
                                                              PAR-REC-DFT( \langle a_1, a_3, \dots, a_{n-1} \rangle ) {odd numbered coefficients}
     5.
                sync
     6.
                w_0 \leftarrow 1
                parallel for j \leftarrow 1 to \frac{n}{2} - 1 do
                                                                                                                           \left\{i.e., w_j \leftarrow e^{\frac{2\pi i}{n}}, where i = \sqrt{-1}\right\}
                     w_i \leftarrow n-th primitive root of unity
                \langle s_0, s_1, \dots, s_{\frac{n}{2}-1} \rangle \leftarrow \text{Prefix-Sum}(\langle w_0, w_1, \dots, w_{\frac{n}{2}-1} \rangle, \times) \quad \{ \text{prefix sum using the product operator} \}
     9.
                                                                                                                              \{compute \ y \ from \ y^{even} \ and \ y^{odd}\}
                parallel for i \leftarrow 0 to \frac{n}{2} - 1 do
   10.
                     y_j \leftarrow y_j^{even} + s_j y_j^{odd}
    11.
                     y_{\frac{n}{2}+j} \leftarrow y_j^{even} - s_j y_j^{odd}
    12.
    13.
                return \langle y_0, y_1, \dots, y_{n-1} \rangle
```

Figure 1: A parallel recursive divide-and-conquer algorithm for computing the Discrete Fourier Transform (DFT) of a 1D array (vector).

1(a) [10 Points] Write down a recurrence relation describing the work done (i.e., T_1) by PARREC-DFT, and solve it.

1(b) [10 Points] Write down a recurrence relation describing the span (i.e., T_{∞}) of PAR-REC-DFT, and solve it. Please assume that the span of a *parallel for* loop with n iterations is $\mathcal{O}(\log n + k)$, where k is the maximum span of a single iteration.

1(c) [10 Points] Find the parallel running time (i.e., T_p) and parallelism of PAR-REC-DFT.

QUESTION 2. [30 Points] Trapping the Median. Given an array A[1:n] of n distinct numbers as input, the function Trap-Median shown below (in Figure 2) returns another array A'[1:n'] containing n' distinct numbers from A such that w.h.p. in n, $n' = \mathcal{O}\left(n^{\frac{3}{4}}\right)$ and A' still includes the median of A. We assume for simplicity that n is an odd positive integer.

```
Trap-Median( A, n )
(Input is an array A[1:n] of n distinct numbers, where n is an odd positive integer. Output is an array A'[1:n']
containing n' distinct numbers from A such that w.h.p. in n, n' = \mathcal{O}\left(n^{\frac{3}{4}}\right) and A' contains the median of A.)
    1. choose each entry of A with probability n^{-\frac{1}{4}} independent of others, and collect them in an array B
    2. m \leftarrow |B|
    3. if \left|\frac{m}{2} - \sqrt{n}\right| > 0 and \left[\frac{m}{2} + \sqrt{n}\right] \leq m then
             sort B using an optimal sorting algorithm
             x \leftarrow B\left[\left|\frac{m}{2} - \sqrt{n}\right|\right], \ y \leftarrow B\left[\left[\frac{m}{2} + \sqrt{n}\right]\right]
             r_x \leftarrow \text{number of items in } A \text{ with value } \leq x
             r_y \leftarrow number of items in A with value \leq y
             if r_x < \frac{n+1}{2} < r_y then
                                              \{if \ x \ is \ smaller \ than \ the \ median \ of \ A, \ and \ y \ is \ larger \ than \ the \ median\}
                 n' \leftarrownumber of items in A with value between x and y
                                                                                               \{count \ each \ z \ in \ A \ with \ x < z < y\}
                 allocate an array A'[1:n']
   10.
                  scan A again, and copy each number z \in (x, y) from A to A'
   11.
                  return A'
   12.
             else\ return\ {
m NIL}
   13.
   14. else return nil
```

Figure 2: Trap the median of n numbers in a set of size asymptotically smaller than n.

2(a) [12 Points] Prove that $n^{\frac{3}{4}} - n^{\frac{7}{16}} < m < n^{\frac{3}{4}} + n^{\frac{7}{16}}$ holds w.h.p. in n (in Step 2). Hint: Compute the expected value of m, and then use Chernoff bounds (or even Chebyshev's inequality) to show that both $Pr\left(m \le n^{\frac{3}{4}} - n^{\frac{7}{16}}\right)$ and $Pr\left(m \ge n^{\frac{3}{4}} + n^{\frac{7}{16}}\right)$ are low. 2(b) [12 Points] Show that $r_x < \frac{n+1}{2} < r_y$ holds w.h.p. in n (in Step 8). You may assume that $m = \Theta\left(n^{\frac{3}{4}}\right)$ holds w.h.p. in n (from part 2(a)).

Hint: Associate a 0-1 random variable to each element in B. Each variable takes the value 1 (when the corresponding element is smaller than the median of A) with probability $p=\frac{1}{2}$, and 0 (when the corresponding element is larger than the median of A) with probability $q=1-p=\frac{1}{2}$. Let X be the sum of these m mutually independent random variables which represents the the number of elements in B that are smaller than the median of the elements in A. Now if you can prove that $X>\frac{m}{2}-\sqrt{n}$ holds w.h.p. in n (perhaps using a Chernoff bound or even Chebyshev's inequality) then the element x chosen from location $\frac{m}{2}-\sqrt{n}$ of B (in Step 5) must be smaller than the median of A (i.e., $r_x<\frac{n+1}{2}$) w.h.p. in n. Similarly for r_y .

2(c) [**6 Points**] Show that the running time of Trap-Median is $\mathcal{O}(n)$ w.h.p. in n. You may use the results you proved in parts 2(a) and 2(b), if needed.

QUESTION 3. [15 Points] Files on Compact Discs. I have m > 0 files and a set S of n > 1 compact discs (CDs). I have copied each file to exactly two of the CDs in S. Different files may be copied to different CD pairs. Now given that for each file I know the two CDs I copied them to, I want to find a subset $S' \subseteq S$ such that each file is contained in at least one CD of S', and |S'| is as small as possible.

3(a) [15 Points] Give a polynomial-time 2-approximation algorithm for solving this problem. In other words, the size of the subset returned by your algorithm must not be more than 2 times larger than the size of the subset returned by an optimal algorithm.

Hint: Map this problem to one of the problems you saw in the class lectures on approximation algorithms, and use the 2-approximation algorithm for that problem to solve the problem in this task.

APPENDIX I: USEFUL TAIL BOUNDS

Markov's Inequality. Let X be a random variable that assumes only nonnegative values. Then for all $\delta > 0$, $Pr[X \ge \delta] \le \frac{E[X]}{\delta}$.

Chebyshev's Inequality. Let X be a random variable with a finite mean E[X] and a finite variance Var[X]. Then for any $\delta > 0$, $Pr[|X - E[X]| \ge \delta] \le \frac{Var[X]}{\delta^2}$.

Chernoff Bounds. Let X_1, \ldots, X_n be independent Poisson trials, that is, each X_i is a 0-1 random variable with $Pr[X_i = 1] = p_i$ for some p_i . Let $X = \sum_{i=1}^n X_i$ and $\mu = E[X]$. Following bounds hold:

Lower Tail:

- for
$$0 < \delta < 1$$
, $Pr\left[X \le (1 - \delta)\mu\right] \le \left(\frac{e^{-\delta}}{(1 - \delta)^{(1 - \delta)}}\right)^{\mu}$

- for
$$0 < \delta < 1$$
, $Pr[X < (1 - \delta)\mu] < e^{-\frac{\mu\delta^2}{2}}$

- for
$$0 < \gamma < \mu$$
, $Pr[X \le \mu - \gamma] \le e^{-\frac{\gamma^2}{2\mu}}$

Upper Tail:

- for any
$$\delta > 0$$
, $Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$

- for
$$0 < \delta < 1$$
, $Pr[X \ge (1+\delta)\mu] \le e^{-\frac{\mu\delta^2}{3}}$

- for
$$0 < \gamma < \mu$$
, $Pr[X \ge \mu + \gamma] \le e^{-\frac{\gamma^2}{3\mu}}$

APPENDIX II: THE MASTER THEOREM

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT(\frac{n}{b}) + f(n), & \text{otherwise,} \end{cases}$$

where, $\frac{n}{b}$ is interpreted to mean either $\lfloor \frac{n}{b} \rfloor$ or $\lceil \frac{n}{b} \rceil$. Then T(n) has the following bounds:

Case 1: If $f(n) = \mathcal{O}\left(n^{\log_b a - \epsilon}\right)$ for some constant $\epsilon > 0$, then $T(n) = \Theta\left(n^{\log_b a}\right)$.

Case 2: If $f(n) = \Theta\left(n^{\log_b a} \log^k n\right)$ for some constant $k \ge 0$, then $T(n) = \Theta\left(n^{\log_b a} \log^{k+1} n\right)$.

Case 3: If $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$ for some constant $\epsilon > 0$, and $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta\left(f(n)\right)$.