Основы комбинаторики и теории чисел

Боднар Олег Леонидович

Содержание

1	Элементы теории множеств	2
	1.1 Основные термины и определения	2
2	Заключение	3

1 Элементы теории множеств

Теория множеств - это раздел математики, в котором изучают общие свойства множеств. Данная теория лежит в основе большинства математических дисциплин, в том числе математического анализа, геометрии и теории вероятности.

1.1 Основные термины и определения

Определение 1. *Множеством* называется произвольный набор (совокупность, класс, семейство) каких либо объектов. Объекты, входящие во множество, называются его элементами. Если объект x является элементом множества A, то говорят, что x принадлежит A, и пишут $x \in A$.

Три базовых понятия: множество, элемент и принадлежность. Множество - это то, чему принадлежат элементы. Элементы - это то, что принадлежит множеству. А принадлежность - это то, как относится элемент к множеству.

Два способа записи множеств:

1) Перечисление

Например $A = \{6, 28, 496\}$ или $N = \{0, 1, 2, 3, 4, \ldots\}$. При этом каждый элемент должен встречаться в перечислении ровно один раз: запись $\{1, 1, 2, 3\}$ нужно признать либо не имеющей смысла, либо эквивалентной $\{1, 2, 3\}$. Иногда рассматривают *мультимножества*, в которые каждый элемент может входить несколько раз. При записи множеств не важен порядок, в котором идут элементы. Если множество содержит конечное число элементов, оно называется *конечным*, в противном случае - *бесконечным*

2) Set builder notation (формулировка определяющего свойства).

Например, $\{x\mid x>0\}$ - множество всех положительных x. Можно также явно указать какому объемлющему множеству все элементы. Например, $\{x\in\mathbb{R}\mid x>0\}$ - множество всех положительных действительных чисел. Иногда вместо черты (|) используют двоеточие (:), особенно когда черта уже встречается в формуле. Например, запись $\{x\in\mathbb{R}:|x|<1\}$. Слева от черты могут стоять более сложные выражения. Например, $\{(a,b,c)\mid a^2+b^2=c^2,\ a,b,c\in\mathbb{N},\ a,b,c>0\}$ обозначает множество всех пифагоровых троек, $\{a^2\mid a\in\mathbb{N}\}$ обозначает множество всех полных квадратов.

Определение 2. Множество A является *подмножеством* множества B (или "лежит в множестве B или "включено в B"), если любой элемент множества A также принадлежит множеству B. Обозначение: $A \subseteq B$.

Множества A и B равны если $A \subset B$ и $B \subset A$. Обозначение: A = B.

Если $A\subset B$, но $A\neq B$, то A называют собственным или строгим подмножеством. Обозначение $A\subsetneq B$.

2 ЗАКЛЮЧЕНИЕ 3

2 Заключение

Здесь будет заключение.