(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 20. Dezember 2001 (20.12.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/96366 A2

(51) Internationale Patentklassifikation⁷: C07K 5/06, A61K 38/04, C07C 257/00

(21) Internationales Aktenzeichen: PCT/EP01/06814

(22) Internationales Anmeldedatum:

15. Juni 2001 (15.06.2001)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität: 100 29 015.9 15. Juni 2000 (15.06.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CURACYTE AG [DE/DE]; Gollierstr. 70, 80339 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): STÜRZEBECHER, Jörg [DE/DE]; Hubertusstrasse 38, D-99094 Erfurt (DE). STEINMETZER, Torsten [DE/DE]; Ricarda-Huch-Weg 23, D-07743 Jena (DE). KÜNZEL, Sebastian [DE/DE]; St.-Jacob-Str. 6, D-07743 Jena (DE). SCHWEINITZ, Andrea [DE/DE]; Gustav-Fischer-Str. 15, D-07745 Jena (DE).

(74) Anwalt: BÖSL, Raphael; Bardehle, Pagenberg, Dost, Altenburg, Geissler, Isnbruck, Galileiplatz 1, 81679 München (DE).

(81) Bestimmungsstaaten (national): AU, BR, CA, CR, JP, NO, NZ, US, ZA.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

A2

(54) Title: INHIBITORS FOR THE BLOOD-CLOTTING FACTOR XA

(54) Bezeichnung: HEMMSTOFFE FÜR DEN GERINNUNGSFAKTOR XA

(57) Abstract: The invention relates to derivatives of amidino-benzylamine, especially derivatives of 4-amidino-benzylamine, with two bonded amino acids. These derivatives represent a novel group of highly active and very selective F Xa-inhibitors for treating cardiovascular diseases and thrombotic events.

(57) Zusammenfassung: Die Erfindung betrifft Derivate des Amidino-Benzylamins, insbesondere solche des 4-Amidino-benzylamins, mit zwei gebundenen Aminosäuren, die eine neue Gruppe von hochaktiven und sehr selektiven F Xa-Hemmstoffen zur Behandlung kardiovaskulärer Erkrankungen und thrombotischer Ereignisse darstellen.

Hemmstoffe für den Gerinnungsfaktor Xa

Die Erfindung betrifft neue Hemmstoffe für den Gerinnungsfaktor Xa zur Behandlung von kardiovaskulären Erkrankungen und zur Verhinderung thromboembolischer Ereignisse.

Die gegenwärtig klinisch eingesetzten Antikoagulantien vom Heparin-Typ bzw. die Vitamin-K-Antagonisten werden nicht allen Anforderungen an ein "ideales" Antithrombotikum gerecht. Deshalb wird mit kleinmolekularen Hemmstoffen der Gerinnungsenzyme, speziell von Thrombin und Faktor Xa (F Xa), nach Alternativen gesucht. Ein besonderer Vorteil von F Xa-Hemmstoffen im Vergleich zu Thrombin-Hemmstoffen könnte die geringere Blutungsneigung sein, die sich bei verschiedenen Tierversuchen gezeigt hat. So wurde bei antithrombotisch effektiven Dosen die Blutungszeit nur minimal beeinflußt (J.M. Herbert et al., J. Pharmacol. Exp. Ther. 276, 1030-1038, 1996; K. Sato et al., Br. J. Pharmacol. 123, 92-96, 1998).

10

15

20

25

Die ersten nichtpeptidischen Verbindungen mit hoher Affinität für F Xa waren symmetrische Bis-benzamidine ($K_i = 13$ nM für die wirksamste Verbindung BABCH) (J. Stürzebecher et al., Thromb. Res. 54, 245-252, 1998). Auch das Naphthamidin-Derivat DX-9065a besitzt zwei basische Gruppen und hemmt F Xa selektiv mit einem $K_i = 24$ nM (T. Hara et al., Thromb. Haemost. 71, 314-319, 1994). Der mit DX-9065a strukturell verwandte Inhibitor YM-60828 (K. Sato et al. Eur. J. Pharmacol. 339, 141-146, 1997) ist noch wirksamer ($K_i = 1.3$ nM). Inzwischen wurde eine ganze Reihe weiterer bis-basischer Verbindungen beschrieben, bei denen z. B. zwei Benzamidin-Reste über einen Oxazolin-Ring ($K_i = 18$ nM) (M.L. Quan et al., Bioorg. Med. Chem. Lett. 7, 2813-2818, 1997) bzw. eine

Carboxymethylalkyl-Kette ($K_i = 34$ nM) verknüpft sind (T.P. Maduskuie et al., J. Med. Chem. 41, 53-62, 1998). Nachteil der bis-basischen Verbindungen ist insbesondere die geringe Bioverfügbarkeit nach oraler Gabe.

Auch Hemmstoffen für F Xa, die nur eine basische Gruppe enthalten, wurden beschrieben. N-substituierte Amidino-phenoxypyridine (K_i = 0,11 nM für BX-807834) wurden auf der Basis von BABCH entwickelt (R. Mohan et al., Bioorg. Med. Chem. Lett. 8, 1877-1882, 1998; G.B. Phillips et al. J. Med. Chem. 41, 3557-3562, 1998). Amide des Nα-Adamantyloxycarbonyl-3amidinophenylalanins (K_i = 74 nM für die wirksamste Verbindung) sind selektive Hemmstoffe des F Xa (S. Sperl et al., Biol. Chem. 381, 321-329, 2000), während Nα-arylsulfonyl-aminoacylierte Ester des 3-Amidinophenylalanins eine geringe Hemmwirkung (K_i = 840 nM für TAPAM) besitzen (J. Stürzebecher et al., Thromb. Res. 54, 245-252, 1998). Die WO 96/10022 offenbart Hemmstoffe, die überhaupt keine starke Ladung mehr besitzen (K_i = 3,0 nM für die wirksamste Verbindung).

5

10

15

20

25

30

Bisher wurden nur wenige Peptide als Hemmstoffe für F Xa beschrieben, die sich von der Substrat-Sequenz Ile-Glu-Gly-Arg ableiten. Die von Kettner und Shaw (Thromb. Res. 22, 645-652, 1981) beschriebenen Chlormethylketone hemmen F Xa irreversibel und sind nicht für in vivo-Anwendungen geeignet. Dagegen sind die Peptide SEL 2489 (K_i = 25 nM) und SEL 2711 (K_i = 3 nM) außerordentlich wirksam (J. A. Ostrem et al., Biochemistry 37, 1053-1059, 1998). Auch einige Peptidyl-Arginin-Aldehyde wurden beschrieben, die neben Argininal in P1-Position ein D-Arginin bzw. eine unnatürliche basische Aminosäure in P3 besitzen (Z. H. Jonathan, Bioorg. Med. Lett. 9, 3459-3464, 1999.) Dagegen sind bisher keine Peptidyl-Agmatin-Derivate als Hemmstoffe für F Xa bekannt, obwohl dieser Inhibitor-Typ bei der Weiterentwicklung von Thrombin-Inhibitoren zu erheblichen Fortschritten geführt hat. Dabei waren die Erfolge bei Verbindungen des D-Phe-Pro-Arg-Typs mit C-terminalem Agmatin und davon abgeleiteten Derivaten besonders bemerkenswert. Es wurden picomolare K_i-Werte für die Thrombin-Hemmung erreicht und die orale Bioverfügbarkeit verbessert (T.J. Tucker et al., J.

5

10

15

20

25

- 3 -

Med. Chem. 40, 1565-1569 und 3687-3693, 1997). Dabei wurde allerdings keine Hemmung des F Xa beobachtet. So hemmt Melagatran, welches C-terminal einen 4-Amidino-benzylamin-Rest besitzt und sehr unspezifisch ist, F Xa mit einem K_i = 2,8 μ M. Dagegen werden Trypsin (K_i = 4,0 nM) und Thrombin (K_i = 2,0 nM) mehr als drei Größenordnungen stärker gehemmt (D. Gustafsson et al., Blood Coagul. Fibrinolysis 7, 69-79, 1996).

Der Erfindung liegt die Aufgabe zu Grunde, einen auch für therapeutische Anwendungen geeigneten Wirkstoff anzugeben, der den Gerinnungsfaktor Xa mit hoher Aktivität und Spezifität hemmt und der mit möglichst geringem Syntheseaufwand herstellbar ist.

Überraschend wurde gefunden, dass acyliertes Amidino-benzylamin gemäß der im Patentanspruch 1 angeführten allgemeinen Formel I, insbesondere Verbindungen des 4-Amidino-benzylamins, bei denen X, R₁, R₂ und R₃ natürliche und/oder unnatürliche Aminosäuren ergeben, Faktor Xa sehr wirksam und selektiv inaktivieren und die Gerinnung von menschlichem Blutplasma effektiv hemmen. Einen besonders aktiven Hemmstoff von Faktor Xa bildet dabei Amidino-benzylamin, wenn die Amidinogruppe in 4-Position steht, als Aminosäuren Glycin und D-Serin-tert.-butylether gebunden sind und wenn die Verbindung eine N-terminale Schutzgruppe R₄ aus einem Aryl- bzw. Aralkyl-sufonyl-Rest aufweist.

Neben Faktor Xa wurden durch die Glycin-Derivate andere Enzyme deutlich weniger gehemmt, so dass die erfindungsgemäßen Derivate des Amidinobenzylamins eine neue Gruppe von hochaktiven und sehr selektiven F Xa-Hemmstoffen darstellen. Im Gegensatz dazu hemmen Verbindungen, die als R₁ kein H tragen (z. B. Alanin-Deriate) Faktor Xa nicht mehr selektiv, sondern sind auch starke Hemmstoffe von Trypsin, Thrombin und Plasmin.

Die Verbindungen liegen in der Regel als Salze mit Mineralsäuren, bevorzugt als Hydrochloride, vor oder als Salze mit geeigneten organischen Säuren.

Die Verbindungen der allgemeinen Formel I können in prinzipiell bekannter Weise, wie nachfolgend beschrieben, hergestellt werden:

Die Ausgangsverbindung 4-Cyanobenzylamin wird über Gabrielsynthese (G. Wagner und I. Wunderlich, Pharmazie 32, 76-77, 1977; B.C. Bookser und T.C. Bruice, J. Am. Chem. Soc. 113, 4208-4218, 1991) aus 4-Cyanobenzylbromid hergestellt. Aus dem so hergestellten 4-Cyanobenzylamin wird das Boc-geschützte Acetyloxamidino-benzylamin gewonnen. Die Ankopplung der weiteren Aminosäuren und der Schutzgruppe R4 erfolgt mittels Standardkopplungsmethoden mit Boc als N-terminale Schutzgruppe. Die zweite Aminosäure kann auch direkt als N-aryl- bzw. N-aralkyl-sulfonyl-geschützte Aminosäure gekoppelt werden. Die Peptidanaloga werden sequentiell, beginnend vom Acetyloxamidino-benzylamin, aufgebaut. Die meisten Produkte kristallisierten gut und lassen sich damit einfach reinigen. Die Reinigung der Hemmstoffe erfolgt in der letzten Stufe über präparative, reversed-phase HPLC.

Die Erfindung soll nachstehend anhand von drei Ausführungsbeispielen näher erläutert werden:

Ausführungsbeispiel 1:

15

25

20 Synthese von Benzylsulfonyl-D-Ser(Bz)-Gly-4-Amidino-benzylamid x HCl

1.1 Boc-4-Cyano-benzylamid

20 g (0,151 mol) 4-Cyano-benzylamin wurden in 300 ml H₂O, 150 ml Dioxan und 150 ml 1 N NaOH gelöst. Unter Eiskühlung wurden 37,5 ml Di-tert.-butyldicarbonat zugetropft und eine Stunde bei 0 °C sowie weitere 24 Std. bei Raumtemperatur gerührt. Das Dioxan wurde im i.V. entfernt und der wässrige Rückstand 3-mal mit Essigester extrahiert. Die vereinigten Extrakte wurden 3-mal mit 5 %-iger KHSO₄- und 3-mal mit gesättigter NaCl-Lösung gewaschen, über

- 5 -

Na₂SO₄ getrocknet und i.V. eingeengt (weiße Kristalle). HPLC: Acetonitril/H₂O, Elution bei 44,1 % Acetonitril; Ausbeute: 30,48 g (0,131 mol), 87 %.

1.2 Boc-4-Acetyloxamidino-benzylamid

Nach Judkins et al. (Synthetic Comm. 26, 4351-4367, 1996) wurden 30,48 g (0,131 mol) Boc-4-Cyano-benzylamid mit 13,65 g (0,197 mol) Hydroxylamin x HCl und 34 ml (0,197 mol) DIEA in 300 ml abs. Ethanol gelöst. Es wurde 2 Std. unter Rückfluss gekocht und über Nacht bei Raumtemperatur gerührt. Danach wurde der Ansatz i.V. eingeengt, der Rückstand in ca. 200 ml Essigsäure gelöst und mit 18,67 ml (0,197 mol) Essigsäureanhydrid versetzt. Nach 1 Std. wurde erneut eingeengt, in Essigester gelöst und bei 0 °C je 3-mal mit 5 %iger KHSO4-und gesättigter NaCl-Lösung gewaschen. Nach dem Trocknen über Na₂SO₄ und Einengen i.V. fiel ein weißes Pulver an. HPLC: Acetonitril/H₂O, Elution bei 32,0 % Acetonitril; Ausbeute: 31,3 g (0,102 mol) 78 %.

15

20

10

1.3 4-Acetyloxamidino-benzylamin x HCl

5 mmol Boc-4-Acetyloxamidino-benzylamid werden in 20 ml 1 N HCl in Eisessig gelöst und 45 min bei Raumtemperatur stehen gelassen. Dann wird i.V. weitgehend eingeengt, das Produkt mit trockenem Diethylether gefällt, abgefrittet, nochmals mit frischem Ether gewaschen und i.V. getrocknet. Auf Grund der quantitativen Umsetzung wurde das Produkt ohne weitere Reinigung für den nächsten Syntheseschritt eingesetzt.

1.4 Boc-Gly-4-Acetyloxamidino-benzylamid

Die Kopplung von Boc-Gly-OH (Orpegen, Heidelberg) an 4-Acetyloxamidinobenzylamin erfolgte nach Frérot et al. (Tetrahedron 47, 259 ff., 1991). Dazu wurden 2,064 g (9,3 mmol) 4-Acetyloxamidino-benzylamin x HCl und 1,629 g (9,3 mmol) Boc-Gly-OH in ca. 25 ml DMF gelöst. Bei 0 °C wurden dann 4,84 g (9,3 mmol) PyBOP und 3,878 ml (27,9 mmol) TEA zugegeben und der pH-Wert

10

15

25

mit TEA auf 9 eingestellt. Nach 1 Std. Rühren bei Raumtemperatur wurde i.V. eingeengt, in Essigester aufgenommen und je 3-mal sauer, basisch und neutral gewaschen, getrocknet und eingeengt. Ausbeute: 3 g (8,2 mmol) 88 %.

5 1.5 Boc-Gly-4-Amidino-benzylamid x AcOH

3 g (8,2 mmol) Boc-Gly-4-Acetyloxamidino-benzylamid wurden in 200 ml 90 %iger Essigsäure gelöst. Anschließend wurden unter Argon 300 mg 10 % Palladium auf Aktivkohle zugesetzt. Argon wurde durch eine Wasserstoffatmosphäre ersetzt und der Ansatz unter kräftigem Rühren 24 Std. hydriert. Der Katalysator wurde abfiltriert und das Filtrat i.V. eingeengt. Ausbeute: 2,9 g (7,9 mmol) 96 %.

1.6 H-Gly-4-Amidino-benzylamid x 2 HCl

2,9 g (7,9 mmol) Boc-Gly-4-Amidino-benzylamid wurden in 100 ml 1 N HCl in Eisessig gelöst und 45 min bei Raumtemperatur stehen gelassen. Dann wurde i.V. weitgehend eingeengt und mit trockenem Diethylether gefällt, danach abgefrittet und das Produkt nochmals mit frischem Ether gewaschen. Nach Trocknen des Produkts i.V. wurde es ohne weitere Aufreinigung für die Synthese nach Punkt 1.8 eingesetzt.

20 <u>1.7 Benzylsulfonyl-D-Ser(Bz)-OH</u>

229 mg (1,173 mmol) H-D-Ser(Bz)-OH und 408 μl (2,345 mmol) DIEA wurden in 50 ml 50 % Acetonitril gelöst. Dann wurden 335 mg (1,76 mmol) Benzylsulfonylchlorid zugegeben und 12 Std. bei Raumtemperatur gerührt. Es wurde i.V. eingeengt, mit Essigester aufgenommen und je 3-mal sauer und neutral gewaschen. Nach Trocknen über Natriumsulfat wurde i.V. eingeengt. Ausbeute: 289 mg (0,827 mmol) 71 %.

1.8 Benzylsulfonyl-D-Ser(Bz)-Gly-4-Amidino-benzylamid x TFA

151 mg (0,433 mmol) Benzylsulfonyl-D-Ser(Bz)-OH und 121 mg (0,433 mmol) H-Gly-4-Amidino-benzylamid x 2 HCl wurden in wenig abs. DMF gelöst. Unter Eiskühlung wurden 225 mg (0,433 mmol) PyBOP und 230 μl (1,32 mmol) DIEA zugegeben. Nach 1 Std. Rühren bei Raumtemperatur wurde i.V. eingeengt und das Produkt über HPLC gereinigt (Acetonitril/H₂O, 0,1 % Trifluoressigsäure, Elution bei 37,4 % Acetonitril). Ausbeute: 232 mg (0,356 mmol) 82 %.

Ausführungsbeispiel 2:

5

Hemmung von F Xa durch ausgewählte Verbindungen mit Y = Amidino

	Konfigu-				Position	
R ₄	ration R ₃	R ₃	R ₂	X-R ₁	Amidino	K _i , μM
H	L	CH ₂ -OH	Н	CH ₂	4	> 1000
Boc	L	CH ₂ -OH	Н	CH ₂	4	110
H	D	CH ₂ -OH	Н	CH ₂	4	> 1000
Ac	D	CH ₂ -OH	Н	CH ₂	4	> 1000
Bz-SO ₂	D	CH ₂ -OH	H	CH ₂	4	3,0
Bz-SO ₂	D	CH ₂ -O- Bz	Н	CH ₂	4	0,050
Bz-SO ₂	D	CH ₂ -O- tBu	Н	CH ₂	4	0,030
Bz-SO ₂	D	CH ₂ -O- tBu	Н	CH ₂ -CH ₃	4	0,044
Н	D	CH ₂ -O-	H	CH ₂	3	140

-8-

		Bz				
Boc	D	CH ₂ -O-Bz	Н	CH ₂	3	93
Bz-SO ₂	D	CH ₂ -O-	Н	CH_2	3	84

Bestimmung der Hemmwirkung

Zur Bestimmung der Hemmwirkung wurden 200 μI Tris-Puffer (0,05 M, 0,154 M NaCI, 5% Ethanol, pH 8,0; enthält den Inhibitor), 25 μI Substrat (Moc-D-Nle-Gly-Arg-pNA in H₂O; Pentapharm Ltd., Basel, Schweiz) und 50 μI F Xa (vom Rind, Diagnostic Reagents Ltd, Thame, GB) bei 25 °C inkubiert. Nach 3 min wurde die Reaktion durch Zugabe von 25 μI Essigsäure (50%) unterbrochen und die Absorption bei 405 nm mittels Microplate Reader (MR 5000, Dynatech, Denkendorf, Deutschland) bestimmt. Die K_i-Werte wurden nach Dixon (Biochem. J. 55, 170-171, 1953) durch lineare Regression mittels eines Computerprogramms ermittelt. Die K_i-Werte sind das Mittel aus mindestens drei Bestimmungen.

10

5

- 9 -

Ausführungsbeispiel 3:

Hemmung der Gerinnung von humanem Plasma durch Benzylsulfonyl-D-Ser(Bz)-Gly-4-Amidino-benzylamid

5

10

15

Konzentration	Verlängerung			
μΜ	der Gerinnungszeit (%)			
	aPTT	PT		
3,3	385	386		
1,7	260	266		
0,83	185	198		
0,42	146	153		
0,21	122	127		
0,1	111	119		

Bestimmung der Gerinnungshemmung

Zur Bestimmung der Prothrombin-Zeit (PT) wurden 100 μI Thromboplastin (Dade, Unterschleißheim) und 100 μl Inhibitor, gelöst in CaCl₂ (0,05 M, 5 % Ethanol) bei 37 °C für 2 min inkubiert und die Gerinnung durch Zugabe von 100 μl humanem Citrat-Plasma gestartet. Zur Bestimmung der aktivierten partiellen Thromboplastin-Zeit (aPTT) wurden 100 μl humanes Citrat-Plasma mit 100 μl aPTT-Reagenz (Roche Diagnostics, Mannheim) bei 37 °C für 3 min inkubiert und die Gerinnung durch Zugabe von 100 μl Inhibitor, gelöst in CaCl₂ (0,05 M, 5 % Ethanol) gestartet. Die Gerinnungszeiten wurden mit dem Koagulometer Thrombotrack (Immuno, Heidelberg) bestimmt.

- 10 -

Verwendete Abkürzungen:

Ac

Acetyl

Boc

tert.-Butyloxycarbonyl

Bz

Benzyl

5 DIEA

Diisopropylethylamin

DMF

N,N-Dimethylformamid

i.V.

im Vakuum

PyBOP

Benzotriazol-1-yl-N-oxy-tris(pyrrolidino)

phosphoniumhexafluorophosphat

10

TEA

Triethylamin

TFA

Trifluoressigsäure

THF

Tetrahydrofuran

tBu

tert.-Butyl

5

15

25

Patentansprüche

1. Hemmstoffe für den Gerinnungsfaktor Xa der allgemeinen Formel I:

$$R_4$$
 NH R_3 R_2 NH NH Y

in denen der Substituent Y in 3- oder 4-Position vorkommt und eine Amidino-Gruppe

NH-R₅

darstellt, in welcher R₅ ein H, ein OH oder einen Carbonylrest -CO-R bzw. Oxycarbonylrest -COO-R besitzt, wobei R ein verzweigtes oder unverzweigtes Alkyl mit 1-16 C-Atomen, ein substituierter oder unsubstituierter Aryl- oder Heteroarylrest oder ein substituierter oder unsubstituierter Aralkyl- oder Heteroaralkylrest sein kann,

X eine CH-Gruppe oder N ist,

 R_1 als H bzw. als ein verzweigtes oder unverzweigtes Alkyl mit 1-8 C-Atomen oder als ein $(CH_2)_n$ -OH mit n=1-5 ausgebildet ist,

20 R₂ ein H oder ein verzweigtes oder unverzweigtes Alkyl mit 1-8 C-Atomen ist,

 R_3 ein verzweigtes oder unverzweigtes Alkyl mit 1-8 C-Atomen oder ein $(CH_2)_n$ -O- R_6 , $(CH_2)_n$ -S- R_6 bzw. $(CH_2)_n$ -NH- R_6 mit n=1-5 ist und R_6 ein verzweigtes oder unverzweigtes Alkyl mit 1-16 C-Atomen, einen substituierten oder unsubstituierten Aryl- oder Heteroarylrest bzw. einen substituierten oder unsubstituierten Aralkyl- oder Heteroaralkylrest darstellt, und

R₄ einen Sulfonylrest -SO₂-R, einen Carbonylrest -CO-R, einen Oxycarbonylrest -COO-R oder ein H darstellt, wobei R ein verzweigtes oder unverzweigtes Alkyl

- 12 -

mit 1-16 C-Atomen, ein substituierter oder unsubstituierter Aryl- oder Heteroarylrest, ein substituierter oder unsubstituierter Aralkyl- oder Heteroaralkylrest, ein Adamantyl-, ein Campher- oder ein Cyclohexylmethylrest ist.

- 5 2. Hemmstoffe gemäß Anspruch 1, dadurch gekennzeichnet, dass im Amidinobenzylamid die Amidinogruppe in 4-Position steht und dass daran die Aminosäuren Gly und D-Ser(tBu) sowie als R₄ ein Aryl- oder ein Aralkylsulfonyl-Rest gebunden sind.
- 3. Verwendung der Hemmstoffe gemäß Anspruch 1 zur Herstellung von oral, subkutan, intravenös bzw. transdermal verabreichbaren Arzneimitteln zur Verhinderung bzw. Behandlung thromboembolischer Erkrankungen.
- Verwendung gemäß Anspruch 3, dadurch gekennzeichnet, dass die Hemmstof fe als Arzneimittel in Form von Tabletten, Dragées, Kapseln, Pellets, Supposito rien, Lösungen oder Pflaster etc. eingesetzt werden.
 - 5. Verwendung der Hemmstoffe gemäß Anspruch 1 als diagnostisches Mittel, insbesondere bei thrombotischen Ereignissen.