

Highly active Pt/In₂O₃-ZrO₂ catalyst for CO₂ hydrogenation to methanol with enhanced CO tolerance: The effects of ZrO₂

Kaihang Sun ^a, Chenyang Shen ^a, Rui Zou ^a, Chang-jun Liu ^{a,b,*}

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

^b Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, China

ARTICLE INFO

Keywords:
 CO₂ hydrogenation
 Methanol
 CO tolerance
 In₂O₃
 Pt
 Metal-support interaction
 DFT study

ABSTRACT

The supported Pt catalyst is normally not active for CO₂ hydrogenation to methanol at the presence of CO. Herein, ZrO₂ is added into Pt/In₂O₃ for CO₂ hydrogenation to methanol with CO as a co-feed gas. High activity with enhanced CO tolerance is achieved on Pt/In₂O₃-ZrO₂. For example, the space-time yield of methanol reaches 0.569 g_{methanol} g_{cat}⁻¹ h⁻¹ at 300 °C and 5 MPa under feed gas containing 4% CO of 21,000 cm³·h⁻¹·g_{cat}⁻¹. With the addition of ZrO₂, a stronger electron transfer occurs between Pt and the In₂O₃-ZrO₂ solid solution support. This leads to weaker CO adsorption, which suppresses over-reduction of In₂O₃ and enhances CO tolerance of the Pt catalyst. The oxygen vacancy of In₂O₃ modified by ZrO₂ promotes CO₂ activation. The synergy between Zr-modified oxygen vacancy (In-O_v-Zr) and Pt catalyst facilitates methanol synthesis from CO₂ hydrogenation via formate route. This is different from Pt/In₂O₃, which takes CO hydrogenation route.

1. Introduction

With the rapid development of renewable energy, CO₂ hydrogenation to methanol has attracted increasing attentions worldwide [1]. Cu/ZnO catalyst has been extensively investigated for CO₂ hydrogenation to methanol. It is based on the industrial Cu/ZnO catalyst for methanol synthesis from syngas. Studies are being conducted to enhance the activity and improve the stability of Cu/ZnO catalyst [2]. Besides, intensive efforts have been made in recent years to seek for new active catalysts for selective hydrogenation of CO₂ to methanol [3–6].

In 2013, our research group predicted, via density functional theory (DFT) studies, that In₂O₃ with oxygen vacancies is promising for hydrogenation of CO₂ to methanol [7]. This prediction was then experimentally confirmed in 2015 [8] and 2016 [9]. The In₂O₃-based catalysts have now attracted increasing attention because of their high methanol selectivity for CO₂ hydrogenation to methanol [10–22]. The oxygen vacancy on In₂O₃ can promote CO₂ activation and hydrogenation, which have been confirmed by experimental [8,9,23] and theoretical studies [7,15,24–26]. To boost the hydrogenation ability of In₂O₃, various metals, such as Pd [21,22,27], Pt [13,28], Ir [12,29], Au [16], Ag [30], Ru [10], Rh [11,19] and Ni [14,18,31], have been introduced to In₂O₃. The electronic properties of supported metals can be influenced by the presence of oxygen vacancy on In₂O₃, resulting in a strong

metal-support interaction [25,30]. In addition, the reaction mechanism over the In₂O₃-based catalysts has been investigated as well. The interface between the metal and defective In₂O₃ can be considered as the active site for methanol production via the formate, reverse water-gas shift (RWGS) or CO hydrogenation route [25,32,33]. The electronic properties of In₂O₃ can be tuned by the interplay with ZrO₂ as well. Martin et al. [9] and Jiang et al. [34] reported that the surface electronic properties of In₂O₃ can be modified by the presence of ZrO₂, and the stability of intermediates or transition states can be also changed. Yang et al. [35] confirm that the strong electron transfer from ZrO₂ to In₂O₃ plays an important role in methanol synthesis through the formate route. Tsoukalou et al. [36] and Chen et al. [37] made efforts to identify the active phase of In₂O₃/ZrO₂ catalyst for methanol synthesis from CO₂ and H₂. The In-O_v-Zr sites (O_v represents oxygen vacancy), created by the interaction between In₂O₃ and ZrO₂, are crucial for the high activity with the enhanced stability towards methanol production [36]. Frei et al. [38] further demonstrated that the presence of monoclinic ZrO₂ favors the formation of more and possibly diverse oxygen vacancies of In₂O₃. Numpilai et al. [39] found that the higher adsorption of CO₂ and H₂ on the In₂O₃/ZrO₂ catalyst facilitates methanol production and suppresses the formation of CH₄.

On the other hand, the endothermic RWGS reaction to generate carbon monoxide is a side reaction of CO₂ hydrogenation to methanol,

* Corresponding author at: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
 E-mail address: cjl@tju.edu.cn (C.-j. Liu).

normally at elevated temperatures. The industrial feed gas of CO₂ hydrogenation usually contains CO as well. The presence of CO would cause the over-reduction of In₂O₃, resulting in deactivation [23]. Furthermore, Araújo et al. [40] reported that the metal-promoted In₂O₃ catalyst (i.e., Pd-In₂O₃ and Ni-In₂O₃) lost nearly 20–40% of the initial activity with the increasing CO concentration in the feed gas. The deactivation can be attributed to the over-reduction of In₂O₃ and the strong adsorption of CO on the supported metals, which inhibits H₂ activation. Therefore, it is necessary to develop the In₂O₃-supported metal catalyst with enhanced CO tolerance. In addition, the supported platinum catalyst has not been confirmed to be active for CO₂ hydrogenation to methanol under the presence of carbon monoxide. It must be helpful from the fundamental aspects if one can make the supported Pt catalyst active for methanol synthesis from a mixture of CO₂ and carbon monoxide.

In this work, we attempted to load ZrO₂ into Pt/In₂O₃ catalyst with a low Pt loading. The obtained Pt/In₂O₃-ZrO₂ catalyst exhibits a high methanol space-time yield (STY) with enhanced CO tolerance at reaction temperature up to 300 °C. From the catalyst characterizations and DFT studies, the addition of ZrO₂ leads to weaker CO adsorption, inhibits the over-reduction induced by CO, promotes the formation of In-O_v-Zr site, and facilitates the methanol production from CO₂ hydrogenation via the formate route.

2. Experimental section

2.1. Catalyst preparation

In₂O₃-ZrO₂ support was prepared via the co-precipitation method. 0.441 g of ZrO(NO₃)₂•xH₂O (Macklin Biochemical Co., Ltd, Shanghai, 99.5%) and 2.026 g of In(NO₃)₃•4 H₂O (HWRK Chem, 99.99%) were dissolved in 50 mL of deionized water, followed by vigorous stirring at 80 °C until fully dissolved. About 3.78 g of Na₂CO₃•10 H₂O (Tianjin Kermel Chemical Reagent, 99%) were dissolved in 60 mL of deionized water as the precipitant solution. The precipitant solution was added dropwise into the precursor solution at 80 °C until the pH value reached 9. The mixture was stirred for another 3 h at the same temperature. The precipitate was then washed with deionized water three times. The obtained cake was dried at 80 °C for 12 h prior to calcination in static air at 450 °C for 3 h. The preparation procedure for In₂O₃ was the same as our previous work [28].

The Pt/In₂O₃-ZrO₂ catalyst was synthesized by the deposition-precipitation method. Firstly, a desired amount of platinum nitrate hydrate (Aladdin Chemicals, Shanghai, 18.02 wt% of metal platinum basis) was dissolved in 50 mL of deionized water. Then, 0.4975 g of the as-prepared In₂O₃-ZrO₂ powder was added into the solution, followed by vigorous stirring for 1 h at room temperature. After the temperature reached 80 °C, 0.2 g of urea was added into the mixture under continuous stirring for 3 h. The formed precipitate was washed with 500 mL of deionized water and dried at 60 °C overnight. The as-prepared sample was calcined at 450 °C for 3 h to obtain the Pt/In₂O₃-ZrO₂ catalyst. The Pt/In₂O₃ catalyst was prepared by the same procedure as the Pt/In₂O₃-ZrO₂ catalyst.

2.2. Characterization

The specific surface area (S_{BET}) was calculated using the Brunauer–Emmett–Teller (BET) model based on the 77 K N₂ adsorption/desorption isotherms measured on the ASAP 2460 instrument (Micromeritics).

The chemical components of the catalyst were identified by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) measurements, using a Perkin Elmer Optima 5300DV system.

Powder X-ray diffraction (XRD) was used to investigate the textural structure of the catalyst, using a Rigaku D/max 2500v/pc diffractometer with Cu K α radiation (40 kV, 200 mA). The scanning rate was set to 4°/min within the 2θ range of 10°~80°. The phase identification was made by comparison with the Joint Committee on Powder Diffraction Standards (JCPDSs).

Transmission electron microscopy (TEM) measurements were performed on the FEI Titan G2 60–300 microscope equipped with an image corrector. High angle annular dark field scanning TEM (HAADF-STEM) was operated with a Super-X EDX detector system. The sample powder was suspended in ethanol and then dispersed ultrasonically for 5 min. A drop of the suspension was deposited on a copper grid coated with carbon.

X-ray photoelectron spectroscopy (XPS) analyses were performed on a ThermoFischer ESCALAB 250Xi spectrometer using Al K α ($\hbar\nu = 1486.6$ eV) radiation. Ar⁺ sputtering was used to remove ca. 4 nm of the surface to detect element distribution in the bulk. The spectra of O 1s, In 3d and Zr 3d core level were recorded. The binding energy of C 1s (284.8 eV) was used as a reference for calibration.

Temperature-programmed reduction of hydrogen (H₂-TPR) and temperature-programmed desorption (TPD) of CO and CO₂ experiments, and H₂ pulse experiments were conducted on a Micromeritics Autochem II 2920 chemisorption analyzer equipped with an online HPR-20 EGA mass spectrometer (MS). For the H₂-TPR experiment, about 50 mg of the sample was placed into a U-shaped quartz tube and purged by flowing helium at 200 °C for 1 h. After cooling down to –10 °C by liquid nitrogen under flowing helium, the sample was then heated to 500 °C at a rate of 10 °C/min under flowing hydrogen (10%). The effluent gas was analyzed by a thermal conductivity detector (TCD). Similarly, for the CO-TPD experiment, about 100 mg of the sample was reduced by the flowing hydrogen (10%) at 200 °C for 1 h. The sample was then purged by flowing helium until the temperature reached 50 °C. After CO adsorption at the same temperature for 1 h, the sample was purged again by flowing helium for 1 h to remove physically absorbed CO. Lastly, the sample was heated to 500 °C at a rate of 10 °C/min. The signals of $m/z = 28$ and 44 assigned to CO and CO₂ in the effluent gas were recorded by an online mass spectrometer, respectively. The CO₂-TPD experiment was carried out with the same procedure as the CO-TPD experiment except CO₂ was applied as absorbate. As for the H₂ pulse experiments, about 100 mg of the sample was loaded into the U-shaped quartz tube, followed by reduction by a mixture of 10% H₂ in argon at 200 °C for 1 h. After cooling down to 50 °C under flowing helium, 10 pulses of the diluted H₂ (10% hydrogen in argon) were injected into the quartz tube at the same temperature. The metal dispersion was calculated based on the consumption of hydrogen.

An inVia Reflex Renishaw Raman Spectroscopy System with a 532 nm laser as the excitation source was used to obtain the Raman spectra of the samples. The laser power was set at 5 mW and the integration time was 6 s.

The relative amount of oxygen vacancy on the catalyst was analyzed by Electron paramagnetic resonance (EPR) spectra. The measurement was carried out on a Bruker A300 EPR spectrometer operated at the X-band frequency.

2.3. Catalytic activity test

The catalytic activity tests for CO₂ hydrogenation to methanol over the Pt/In₂O₃ and the Pt/In₂O₃-ZrO₂ catalysts were conducted in a vertical fixed bed reactor. 0.2 g of the catalyst, diluted with 1.0 g of SiC, was loaded into the reactor. Prior to the catalytic test, the catalyst was purged by pure N₂ for 0.5 h at room temperature. After reduction under a 10% H₂ flow at 200 °C for 1 h, the feed gas (H₂/CO₂/CO/N₂ = 76/15/4/5 and 76/10/9/5; molar ratio) with a flowrate of 70 Ncm³/min was introduced into the reactor to increase the pressure until the pressure reached 5 MPa. The catalytic activity was measured from 200 to 300 °C with a constant gas hourly space velocity (GHSV) of 21,000 cm³·h⁻¹·g_{cat}⁻¹. The effluent gas was analyzed by an online gas chromatograph (Agilent 7890A) equipped with a two-column system connected to a flame ionized detector (FID) and a thermal conductivity

detector (TCD), respectively. To prevent the condensation of methanol, the valves and lines between the reactor outlet and the GC inlet were heated to 140 °C during the whole test.

CO₂ conversion in methanol synthesis from CO₂-CO hybrids has been simulated and analyzed using the way described in the literature [40]. The methanol STY was calculated based on the molar flowrate of internal insert N₂. The correction factor F is defined as the following equation:

$$F = \frac{A_{\text{methanol}} / n_{\text{methanol}}}{A_{N_2} / n_{N_2}} \quad (1)$$

where A_{methanol} and A_{N₂} are the integrated areas of methanol and N₂ in gas chromatography. n_{methanol} and n_{N₂} are the molar flowrate of methanol and N₂. The methanol STY is calculated according to Eq. (2).

$$\text{Methanol STY} = \frac{A_{\text{methanol}}}{A_{N_2} \times W_{\text{cat}} \times F} \times n_{N_2}^{\text{out}} \times M_{\text{methanol}} \quad (2)$$

W_{cat} is the weight of catalyst. M_{methanol} is the molar mass of methanol molecule. n_{N₂}^{out} was calculated based on the N₂ concentration of feed gas and the flowrate.

The CO₂ conversion and methanol selectivity were calculated, based on the composition of the effluent, using the following equations:

$$X_{\text{CO}_2} = \frac{(F_{\text{CO,out}} - F_{\text{CO,in}}) + F_{\text{CH}_4,\text{out}} + F_{\text{methanol,out}}}{F_{\text{CO}_2,\text{out}} + (F_{\text{CO,out}} - F_{\text{CO,in}}) + F_{\text{CH}_4,\text{out}} + F_{\text{methanol,out}}} \times 100\% \quad (3)$$

$$S_{\text{MeOH}} = \frac{F_{\text{methanol,out}}}{(F_{\text{CO,out}} - F_{\text{CO,in}}) + F_{\text{CH}_4,\text{out}} + F_{\text{methanol,out}}} \times 100\% \quad (4)$$

Fig. 1. Catalytic activity tests of the Pt/In₂O₃-ZrO₂ and Pt/In₂O₃ catalysts. (a) methanol STY from 200 to 300 °C under 4% CO in the feed gas; (b) stability at 300 °C for 50 h under 4% CO in the feed gas; (c) methanol STY at 300 °C under different CO concentrations in the feed gas; CO₂ conversion and methanol selectivity under (d) 4% and (e) 9% CO in the feed gas. The reaction pressure of all the tests was set to 5 MPa. The carbon balance is 100 ± 1% for all the tests.

$$\text{Carbon balance} = \frac{F_{\text{CO,out}} + F_{\text{CO}_2,\text{out}} + F_{\text{CH}_4,\text{out}} + F_{\text{methanol,out}}}{F_{\text{CO,in}} + F_{\text{CO}_2,\text{in}}} \times 100\% \quad (5)$$

where F represents the molar flowrate of the component in the effluent gas at standard condition. The carbon balance is also examined by Eq. (5).

2.4. DFT calculations

The details of the DFT calculations are given in the [Supplementary Information](#). The defective $\text{Pt}_4/\text{In}_2\text{O}_3\text{-ZrO}_2(111)$ surface was constructed in the same way previously used for the study of $\text{Pt}_4/\text{In}_2\text{O}_3(111)$ [25]. The results of ICP-OES, XRD, XPS and Raman spectra indicate that the $\text{In}_2\text{O}_3\text{-ZrO}_2$ support is in form of solid solution, with which the textural structure is In_2O_3 -like but with different electronic structure. Therefore, three In atoms were replaced by Zr atoms in each layer of the $\text{In}_2\text{O}_3(111)$ slab model with a 12 Å vacuum layer. The dimension of the optimized $\text{In}_2\text{O}_3\text{-ZrO}_2(111)$ slab model was 14.56 Å × 14.56 Å × 20.04 Å. The slab model consisted of 72 O atoms, 9 Zr atoms and 39 In atoms distributed in three In-O-In tri-layers. Similarly, an optimized Pt₄ cluster with a tetrahedral structure was supported on the $\text{In}_2\text{O}_3\text{-ZrO}_2(111)$ surface to obtain the $\text{Pt}_4/\text{In}_2\text{O}_3\text{-ZrO}_2$ model. The oxygen vacancy was created by removing a surface O atom and the defective $\text{Pt}_4/\text{In}_2\text{O}_3\text{-ZrO}_2$ model was named as “ $\text{Pt}_4/\text{In}_2\text{O}_3\text{-ZrO}_2\text{-D}$ ”. The defective $\text{Pt}_4/\text{In}_2\text{O}_3$ model was constructed following the same procedures for comparison, which was named as “ $\text{Pt}_4/\text{In}_2\text{O}_3\text{-D}$ ”.

3. Results and discussions

3.1. Catalytic activity test

As shown in Fig. 1a, the methanol STY of $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ catalyst reaches 0.569 g_{methanol} g_{cat}⁻¹ h⁻¹ under the feed gas containing 4% CO with a low Pt loading weight of 0.53 wt% (according to the results of ICP-OES below). It is only 0.458 g_{methanol} g_{cat}⁻¹ h⁻¹ over the $\text{Pt}/\text{In}_2\text{O}_3$ catalyst with a similar Pt loading weight of 0.56 wt% under the same condition. The methanol STY based on the loading weight of Pt is also calculated. It is 107.36 g_{methanol} g_{Pt}⁻¹ h⁻¹ for the $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ catalyst and 80.89 g_{methanol} g_{Pt}⁻¹ h⁻¹ for the $\text{Pt}/\text{In}_2\text{O}_3$ catalyst, respectively. This demonstrates that the addition of ZrO₂ to $\text{Pt}/\text{In}_2\text{O}_3$ cannot only enhance the catalytic activity but also improve the utilization of Pt. Additionally, the results of stability tests, shown in Fig. 1b, indicate that $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ catalyst can maintain 93.8% of the initial activity after a 50-h reaction under 4% CO in the feed gas at 300 °C and 5 MPa, whereas the $\text{Pt}/\text{In}_2\text{O}_3$ catalyst loses almost 15% of its initial activity after a 10-h reaction. As shown in Fig. 1c, the effect of CO concentration on catalytic activity is investigated as well. The $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ catalyst reaches the highest methanol STY of 0.601 g_{methanol} g_{cat}⁻¹ h⁻¹ under the feed gas without CO at 300 °C and 5 MPa. This result indicates that the methanol STY on the $\text{Pt}/\text{In}_2\text{O}_3$ catalyst can be slightly enhanced by the addition of ZrO₂. With the increase of CO concentration in the feed gas, the $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ catalyst remains 96.5% and 88.2% of its activity under 4% and 9% CO concentration at 300 °C and 5 MPa, respectively. However, the $\text{Pt}/\text{In}_2\text{O}_3$ catalyst loses nearly 19.7% and 24.4% of its activity under the same reaction condition. This further confirms that the enhanced activity with better stability under the CO-containing feed gas is achieved by the addition of ZrO₂. The results of $\text{Pt}/\text{In}_2\text{O}_3$ catalyst are well consistent with the recent work that the activity of In_2O_3 supported Pd and Ni catalysts is suffered from the presence of CO in feed gas [40].

The CO₂ conversion and methanol selectivity at the presence of carbon monoxide are shown in Fig. 1d and e as well. 19.3% of CO₂ conversion with a high methanol selectivity (>70%) is achieved by the addition of ZrO₂ under the feed gas containing 4% CO at 300 °C and 5 MPa. Due to the increasing H₂/CO₂ ratio in the feed gas containing 9% CO, the CO₂ conversion slightly increases from 14.3% to 15.8% over $\text{Pt}/\text{In}_2\text{O}_3$ and 19.3 to 20.1% over $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$, as shown in Fig. 1e. The

CO₂ conversion over $\text{Pt}/\text{In}_2\text{O}_3$ is lower than that on $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$. This is attributed to the negative effects of over-reduction of In_2O_3 and the poisoning of Pt site by carbon monoxide. The weaker CO adsorption induced by the addition of ZrO₂ facilitates the endothermic RWGS reaction at elevated temperatures, resulting in a lower methanol selectivity over $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ than that over $\text{Pt}/\text{In}_2\text{O}_3$ at 275 and 300 °C. Table S1 shows a comparison of the reported In_2O_3 -based catalysts for the methanol synthesis from CO₂ hydrogenation. Pt is normally formed a bi-metallic catalyst with other metal for CO₂ hydrogenation to methanol, except with In_2O_3 and $\text{In}_2\text{O}_3\text{-ZrO}_2$ as the support.

3.2. Catalyst characterizations

3.2.1. Textural structure and chemical component

To clarify the chemical components of the as-prepared catalysts, ICP-OES analyses were conducted. As shown in Table 1, the loading weight of Pt of the $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ and $\text{Pt}/\text{In}_2\text{O}_3$ samples is 0.53 and 0.56 wt%, respectively. The metal dispersion of Pt catalyst of $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ and $\text{Pt}/\text{In}_2\text{O}_3$ is 78.7% and 43.9%, respectively. The addition of ZrO₂ significantly increases the active Pt sites. The specific surface area of $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ and $\text{Pt}/\text{In}_2\text{O}_3$ is 112 and 81 m²/g, respectively. As shown in Fig. 2a-d, the supported Pt nanoparticles are well-dispersed on $\text{In}_2\text{O}_3\text{-ZrO}_2$ and In_2O_3 with the particle size of ca. 1.26 and ca. 1.88 nm, respectively, after hydrogen reduction at 200 °C for 1 h. The lattice fringe of 0.22 nm can be observed in Fig. 2a and c, which are assigned to Pt(111) facet [28]. The XRD patterns of the $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ and the $\text{Pt}/\text{In}_2\text{O}_3$ catalysts are shown in Fig. S1. The sample labeled as “H₂ Reduction” in Fig. S1 is the sample after H₂ reduction whereas the sample named as “AR” represents the sample after reaction at 300 °C and 5 MPa. The diffraction peaks of all these ten samples are assigned to In_2O_3 belonging to the Ia3(206) space group according to PDF#06-0416. The diffraction peaks at 21.5°, 30.7°, 35.5°, 45.7°, 51.0° and 60.7° are assigned to the diffraction from the (211), (222), (400), (431), (440) and (622) planes. No characteristic diffraction peaks of metallic Pt or PtO due to the low Pt loading and the small size of the well-dispersed Pt nanoparticles. As shown in Fig. S2, no additional diffraction peak can be identified over the $\text{In}_2\text{O}_3\text{-ZrO}_2$ compared with In_2O_3 . This indicates that the crystal structure of $\text{In}_2\text{O}_3\text{-ZrO}_2$ is In_2O_3 -like. Su et al. [41] reported that the peak at $2\theta = 21.5^\circ$ distinguishes the bulk phase of In_2O_3 from that of tetragonal ZrO₂. Furthermore, the inset image in Fig. S2 also confirms the downshift of (222) facet of In_2O_3 , which is caused by the lattice expansion resulted from penetration of the Zr atom into In_2O_3 . The absence of scattering features of Raman spectra for tetragonal ZrO₂ at 642 cm⁻¹ indicates that the existence of ZrO₂ is not in the form of tetragonal phase [42]. These results confirm that the $\text{In}_2\text{O}_3\text{-ZrO}_2$ support is in the form of solid solution. A new diffraction peak located at 33.0° is observed on the $\text{Pt}/\text{In}_2\text{O}_3$ sample after the reaction at 300 °C and 5 MPa under 9% CO in the feed gas. This peak is assigned to the (101) facet of metallic In, according to PDF#05-0642. This confirms the formation of metallic In after the reaction [40]. As for all the $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ samples, no diffraction peak of metallic In can be observed after the reaction. These results demonstrate that the dramatic decrease of activity on the $\text{Pt}/\text{In}_2\text{O}_3$ catalyst can be attributed to the over-reduction of In_2O_3 caused by CO in feed gas [23]. The addition of ZrO₂ enhances the stability by suppressing the over-reduction induced

Table 1

The composition, the Pt particle size and dispersion of $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ and $\text{Pt}/\text{In}_2\text{O}_3$.

Sample	Pt (wt %)	In (wt %)	Zr (wt %)	Pt particle size (nm)	Pt dispersion (%)
$\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$	0.53	68.46	11.36	1.26 ^a	78.7
$\text{Pt}/\text{In}_2\text{O}_3$	0.56	82.36	/	1.88 ^a	43.9

^a Determined by HAADF-STEM images in Fig. 2.

Fig. 2. (a) TEM image and (b) HAADF-STEM image of Pt/In₂O₃-ZrO₂ sample after H₂ reduction, (c) TEM image and (d) HAADF-STEM image of Pt/In₂O₃ sample after H₂ reduction.

by CO under the reaction conditions.

As shown in Fig. 3a, the binding energies located at 444.4 and 452.0 eV are assigned to In 3d_{5/2} and In 3d_{3/2}, which confirms the presence of In³⁺ [12]. The In 3d signal exhibits a similar shape and position after Ar⁺ sputtering, which indicates the stable phase of In₂O₃ in the catalyst. The binding energies of Zr 3d core level in Fig. 3b centered at 182.2 and 184.6 eV and assigned to Zr 3d_{5/2} and Zr 3d_{3/2}, confirm the presence of Zr⁴⁺ [43]. More importantly, the Zr 3d signals show the unaltered shape and position with a similar intensity as well after Ar⁺ sputtering. The molar ratio of In/Zr was calculated based on the spectra of the surface and 4 nm ablated by Ar⁺ sputtering, as shown in Fig. 3d. The molar ratio of In/Zr is 4.8 for the surface and 4.4 for the bulk, close to the result of ICP (4.6) and DFT model (4.3). These indicate the uniform distribution of Zr atoms in both surface and bulk of the catalyst. As shown in Fig. 3c, the binding energies at 529.9 and 531.3 eV can be assigned to the lattice oxygen and the adsorbed oxygen species over oxygen vacancy [36]. The binding energy at 532.3 eV is attributed to the OH group. The relative concentration of oxygen vacancy (C_{ov}) can be calculated by C_{ov} = A_{ov}/(A_{ov}+A_{OL}), where A represents the integrated peak area of the related binding energy in Fig. 3c [27]. The relative concentration of oxygen vacancy for the surface and the bulk of Pt/In₂O₃-ZrO₂ is 25.5% and 15.4%, respectively. This indicates that the presence of Zr in the bulk structure of In₂O₃ can suppress the over-reduction, resulting in better stability under the reaction conditions. As shown in Fig. S3, the binding energy of In 3d_{5/2} shifts towards a lower value due to the addition of ZrO₂. Moreover, the binding energies assigned to lattice oxygen (530.2 to 529.9 eV) and adsorbed oxygen species (531.7 to 531.1 eV) over the oxygen vacancy show an obvious downshift while the binding energy of the Zr 3d core level exhibits the slightly upshift, as shown in Fig. 3b. The electronic structures of In atoms and O atoms on the surface of Pt/In₂O₃-ZrO₂ are regulated by the

addition of ZrO₂, which is well distributed in both surface and bulk phases. Combined with the results of XRD, Raman spectra, EPR and XPS, the electronic properties of oxygen vacancy are modified by ZrO₂.

3.2.2. Temperature-programmed reduction and desorption experiments

To investigate the H₂ activation of the samples, H₂-TPR experiments were conducted. As shown in Fig. 4a, the reduction peak centered at 28 °C of the Pt/In₂O₃-ZrO₂ sample and 29 °C of the Pt/In₂O₃ sample are assigned to the reduction of PtO_x species. The lower intensity of this reduction peak of the Pt/In₂O₃ sample implies that the Pt species is partially reduced. The H₂ consumption peak at 67 °C of the Pt/In₂O₃ sample can be attributed to the H₂ dissociation by Pt species, which shifts towards the lower temperature of 44 °C on the Pt/In₂O₃-ZrO₂ sample. This indicates that the presence of ZrO₂ can promote the dissociation and the spillover of atomic H, which is in accordance with the literature [44]. The reduction peaks located at 148 and 194 °C of the Pt/In₂O₃ sample are assigned to the surface reduction of In₂O₃ and the reduction of PtO_x species. Due to the lower Pt loading weight, the amount of atomic H generated from Pt species over the present Pt/In₂O₃ sample is smaller than that over 1.07 wt% Pt/In₂O₃ sample in our previous work [28]. Therefore, the reduction peak for surface In₂O₃ can be detected in the H₂-TPR profile. No reduction peak of surface In₂O₃ can be observed on the Pt/In₂O₃-ZrO₂ sample, which is contributed to the more atomic hydrogen and the enhanced stability of surface oxygen atoms resulting from the addition of ZrO₂. The mechanism of methanol synthesis can be tuned due to the stabilization of intermediate by ZrO₂ [28,45]. In addition, the onset temperature of the bulk reduction of In₂O₃ is ca. 370 and ca. 440 °C for the Pt/In₂O₃ and Pt/In₂O₃-ZrO₂ samples, respectively. This is also the evidence that the stability under hydrogen atmosphere can be enhanced by ZrO₂.

As shown in Fig. 4b, the signals of CO evolution are related to the CO

Fig. 3. XPS spectra of Pt/In₂O₃-ZrO₂ with Ar⁺ sputtering. (a) In 3d (b) Zr 3d and (c) O 1s core level spectra; (d) the relative O_v concentration and the molar ratio of In/Zr based on the spectra of the surface and the bulk via the Ar⁺ sputtering.

Fig. 4. (a) H₂-TPR, (b) CO-TPD-MS and (c) CO₂-TPD-MS profiles of the Pt/In₂O₃-ZrO₂ and Pt/In₂O₃ samples.

desorption from the Pt/In₂O₃ and Pt/In₂O₃-ZrO₂ samples. The CO desorption peaks lower than 100 °C can be assigned to the physically adsorbed CO on both Pt/In₂O₃ and Pt/In₂O₃-ZrO₂ samples [30]. No obvious CO desorption peak can be observed on the Pt/In₂O₃-ZrO₂

sample whereas two broad CO desorption peaks at 377 and 560 °C are identified to be the moderate and strong CO adsorption sites on the Pt/In₂O₃ sample. The signals of CO₂ evolution are corresponded to the reaction between the sample and the desorbed CO so that the intensity of

the CO₂ desorption peak can be considered as a part of adsorbed CO. The CO₂ desorption peaks at 88 °C for the Pt/In₂O₃-ZrO₂ sample and 97 °C for the Pt/In₂O₃ sample are assigned to the physically adsorbed CO₂ [28]. The CO₂ desorption peaks at 434 and 500 °C on the Pt/In₂O₃-ZrO₂ sample are attributed to the strong CO₂ adsorption sites. The low intensities of these two peaks confirm the weaker CO adsorption over the Pt/In₂O₃-ZrO₂ sample. For the Pt/In₂O₃ sample, two sharp desorption peaks of CO₂ located at 421 and 585 °C on the Pt/In₂O₃ sample can be observed, which confirms the much stronger CO adsorption compared to the Pt/In₂O₃-ZrO₂ sample. These demonstrate that the CO adsorption is significantly inhibited by the addition of ZrO₂. Combined with the results of catalytic tests above, the better stability under the feed gas (containing CO) on the Pt/In₂O₃-ZrO₂ sample benefits from the weaker CO adsorption induced by ZrO₂.

As shown in Fig. 4c, the CO₂ desorption peaks in region (I) are assigned to the physically adsorbed CO₂ while the CO₂ desorption peaks in region (II) can be attributed to the CO₂ desorbed from the oxygen vacancy created by H₂ reduction [9,27]. The peaks in region (III) are contributed to the CO₂ desorbed from the thermal-induced oxygen vacancy [9,27]. The amount of oxygen vacancy induced by H₂ reduction and thermal desorption is decreased by the addition of ZrO₂, which indicates that the stability of surface oxygen atoms of In₂O₃ is improved. The signals of CO evolution confirm the presence of CO₂ dissociation on both Pt/In₂O₃ and Pt/In₂O₃-ZrO₂ samples, which is consistent with the theoretical results of Pt₄/In₂O₃ model catalyst [25]. The lower intensity of CO evolution peak of Pt/In₂O₃-ZrO₂ sample indicates that the CO₂ dissociation is inhibited by the addition of ZrO₂ compared to the Pt/In₂O₃ sample. This suggests that methanol synthesis over Pt/In₂O₃-ZrO₂ catalyst could not take the CO hydrogenation route. The enhanced activity originates from the alternation of reaction mechanism.

3.2.3. Raman and EPR spectra

According to the literature, Raman spectra can be used as an efficient way to quantify the oxygen vacancy over In₂O₃ [46]. Herein, the Raman spectra of the Pt/In₂O₃-ZrO₂ and Pt/In₂O₃ samples are shown in Fig. 5a. The features at ca. 306 (I₁) and ca. 367 (I₂) cm⁻¹ are assigned to the bending vibration δ(InO₆) of octahedra and stretching vibration of In-O-In, respectively [46]. The ratio of I₂/I₁ can characterize the amount of oxygen vacancy on the samples [12,28,30]. The amount of oxygen vacancy on the Pt/In₂O₃-ZrO₂ sample is smaller than that on the Pt/In₂O₃ sample under all conditions. This indicates that the presence of ZrO₂ optimizes the content of oxygen vacancy and improves the stability of surface oxygen atoms. Combined with the results of catalytic tests above, the relationship between the oxygen vacancy and the methanol STY at 300 °C and 5 MPa is shown in Fig. 5b. With the increase of CO concentration in feed gas, the amount of oxygen vacancy on all the samples increases. More importantly, a significant drop of methanol STY with a larger amount of oxygen vacancy can be observed on both two samples. This result confirms the fact that the decrease of methanol STY under the CO-containing feed gas can be attributed to the over-reduction of In₂O₃ resulting from CO. The extra oxygen vacancy formed by the over-reduction induced by H₂ or CO leads to the formation of metallic In and the disordered surface structure [23].

To further characterize the variation of oxygen vacancy as well as the electron transfer property of the catalyst influenced by the addition of ZrO₂, EPR analysis was performed. As shown in Fig. 5c, the intensity of EPR signal can be considered as the relative amount of oxygen vacancy on the sample. The range of magnetic field on each curve is from 3480 to 3545 G. The signal at 3510 G with a g factor of 2.003 on each sample is assigned to the singly ionized oxygen vacancy resulted from the delocalized electrons, which is paramagnetic [9,30]. Also, the intensities of the EPR signals on the Pt/In₂O₃-ZrO₂ sample are lower than that on the Pt/In₂O₃ sample, corresponding to the less oxygen vacancy. This is

Fig. 5. (a) Raman spectra, (b) the relationship between oxygen vacancy and catalytic activity and (c) EPR spectra of the Pt/In₂O₃-ZrO₂ and Pt/In₂O₃ samples.

consistent with the results of Raman spectra above.

3.3. DFT calculations

3.3.1. The interaction between Pt₄ cluster and the defective In₂O₃-ZrO₂(111)

The optimized structures of the Pt₄/In₂O₃_D and Pt₄/In₂O₃-ZrO₂_D models are shown in Fig. 6. The average length of Pt-Pt bond on the Pt₄/In₂O₃_D and Pt₄/In₂O₃-ZrO₂_D models is 2.61 and 2.71 Å, respectively, indicating the stronger interaction between Pt₄ cluster and defective In₂O₃-ZrO₂(111). The adsorption energy of Pt₄ cluster on the defective In₂O₃-ZrO₂(111) is -8.08 eV, which is much higher than that on the defective In₂O₃(111) (-4.28 eV). This demonstrates that stronger metal-support interaction is created via the addition of ZrO₂. In particular, the In-O_v-In site over the Pt₄/In₂O₃_D model and the In-O_v-Zr site over the Pt₄/In₂O₃-ZrO₂_D model are highlighted in Fig. 6. As shown in Table 2, the cohesive energy of the Pt₄ cluster on the Pt₄/In₂O₃_D and Pt₄/In₂O₃-ZrO₂_D models is -4.09 and -5.04 eV, respectively. The cohesive energy of the free Pt₄ cluster and Pt bulk is -3.02 and -5.26 eV, respectively. These confirm that the stability of Pt₄ cluster is significantly enhanced by the stronger metal-support interaction due to the addition of ZrO₂. The influences of the ZrO₂ on the electronic properties of Pt₄ cluster are investigated as well. As shown in Fig. 7, the d-band center value of the Pt₄/In₂O₃_D model is -2.27 eV whereas that of the Pt₄/In₂O₃-ZrO₂_D model shifts away from Fermi level (-2.43 eV) with the introduction of ZrO₂. This confirms the weaker adsorption of CO molecule [47], which is in accordance with the results of CO-TPD-MS above. Moreover, the total charge of Pt₄ cluster is -0.16 and -1.02 |e| for the Pt₄/In₂O₃_D and Pt₄/In₂O₃-ZrO₂_D models, respectively, based on the results of the Bader charge analyses shown in Fig. S4 and Table S2. The stronger electron transfer from the support to the supported Pt₄ cluster also confirms the presence of stronger metal-support interaction, which is consistent with the results of deformation charge density in Fig. 7.

3.3.2. CO adsorption on the Pt₄/In₂O₃-ZrO₂_D model

To investigate the CO adsorption under the reaction conditions, Gibbs free energy of the CO adsorption on the Pt₄/In₂O₃_D and Pt₄/In₂O₃-ZrO₂_D models is calculated. As shown in Fig. 8a, the Gibbs free energy of CO adsorption on the Pt₄/In₂O₃_D and Pt₄/In₂O₃-ZrO₂_D models is -2.28 and -0.92 eV, respectively, at 200 °C and 5 MPa. The Gibbs free energy of CO adsorption is decreased with the increasing

Table 2

The cohesive energy (CE) of Pt₄ cluster.

	Pt ₄ /In ₂ O ₃ -ZrO ₂ _D	Pt ₄ /In ₂ O ₃ _D	Pt ₄ cluster (free)	Pt bulk
Pt ₄ adsorption	-8.08	-4.28		
E _{CE} (eV/per atom)	-5.04	-4.09	-3.02	-5.26

Fig. 7. Projected density of states (PDOS) of Pt 5d orbital and deformation charge density of the Pt₄/In₂O₃_D and Pt₄/In₂O₃-ZrO₂_D models. Yellow and blue iso-surface represent electron accumulation and depletion, respectively.

temperature due to the promoted CO desorption at the elevated temperature. Under the conditions of 300 °C and 5 MPa, the Gibbs free energy of CO adsorption on the Pt₄/In₂O₃-ZrO₂_D model is -0.72 eV. The value is much lower than that on the Pt₄/In₂O₃_D model (-2.11 eV) due to the variation of electronic structure of Pt induced by the introduction of ZrO₂. More importantly, the CO desorption over Pt/In₂O₃ is

Fig. 6. Optimized structures of the Pt₄/In₂O₃_D and Pt₄/In₂O₃-ZrO₂_D models. The dash line cycles in blue and red represent In-O_v-In and In-O_v-Zr site, respectively. Blue: Pt atoms; red: O atoms; Brown: In atoms; cyan: Zr atoms.

Fig. 8. (a) CO and (b) CO_2 adsorption on the $\text{Pt}_4/\text{In}_2\text{O}_3\text{-D}$ and $\text{Pt}_4/\text{In}_2\text{O}_3\text{-ZrO}_2\text{-D}$ models under the reaction conditions.

difficult with the presence of CO in the feed gas even at high temperature. In contrast, the CO adsorbed on the Pt site of $\text{Pt}/\text{In}_2\text{O}_3\text{-ZrO}_2$ catalyst prefers to be desorbed to gas phase and releases the active Pt site for H_2 activation, leading to the enhanced activity under the feed gas containing CO.

3.3.3. CO_2 activation on the $\text{Pt}_4/\text{In}_2\text{O}_3\text{-ZrO}_2\text{-D}$ model

CO_2 activation on the $\text{Pt}_4/\text{In}_2\text{O}_3\text{-D}$ model has been studied in our previous work [25]. The interfacial site between Pt_4 cluster and the surface oxygen vacancy of In_2O_3 is the active site for CO_2 activation. In the present work, four potential active sites for CO_2 activation on the $\text{Pt}_4/\text{In}_2\text{O}_3\text{-ZrO}_2\text{-D}$ model are investigated under the conditions of 5 MPa and 300 °C as shown in Fig. 8b. CO_2 molecule can be activated at the interface of Pt_4 cluster and defective $\text{In}_2\text{O}_3\text{-ZrO}_2$ surface to form bi- CO_2^* and mono- CO_2^* , which are marked as $\text{CO}_2\text{-1}$ and $\text{CO}_2\text{-3}$. The additional Zr site can be considered as the active site for CO_2 activation as well, which is named as $\text{CO}_2\text{-2}$. The presence of In-O_v-Zr site is confirmed by Tsoukalou et al. [36] on the $\text{In}_2\text{O}_3\text{/m-ZrO}_2$ catalyst. $\text{CO}_2\text{-4}$ represents the CO_2 molecule activated on the In-O_v-Zr site. The Gibbs adsorption energies of $\text{CO}_2\text{-1}$, $\text{CO}_2\text{-2}$ and $\text{CO}_2\text{-3}$ are positive values, which are 1.03, 0.73 and 0.78 eV, respectively. This indicates that the CO_2 activation on these three sites is not thermodynamically favorable, which leads to CO_2 desorption under the reaction conditions. In contrast, the Gibbs adsorption energy of $\text{CO}_2\text{-4}$ is -0.44 eV, which confirms that the CO_2 activation on this site is the most

thermodynamically favorable among these four sites. Based on the discussions above, $\text{CO}_2\text{-4}$ is the most stable configuration of CO_2 activation on the $\text{Pt}_4/\text{In}_2\text{O}_3\text{-ZrO}_2\text{-D}$ model. This configuration was thus used for the study of the reaction mechanism of methanol synthesis.

3.3.4. The reaction mechanism of CO_2 hydrogenation to methanol over the $\text{Pt}_4/\text{In}_2\text{O}_3\text{-ZrO}_2\text{-D}$ model

According to the literature, ZrO_2 can promote the dissociation and spillover of H_2 as well as the stabilization of reaction intermediates [44]. The CO hydrogenation route, the RWGS route and the formate route are investigated to clarify the effects of ZrO_2 on the formation and conversion of CO in different routes. The Gibbs free energy profile is shown in Fig. 9. The activation of CO_2 at the In-O_v-Zr site is exergonic by -0.44 eV through R1, which confirms that the In-O_v-Zr site is favorable for CO_2 activation under the reaction conditions. The CO hydrogenation route, initiated with the dissociation of CO_2 through R3 (Figs. S5 and S6), is studied firstly. This reaction is exergonic by -2.22 eV with a Gibbs activation barrier of 0.25 eV. This process is both kinetically and thermodynamically favorable. Since the activation barrier of CO_2 dissociation over the defective $\text{Pt}_4/\text{In}_2\text{O}_3\text{-D}$ model (0.18 eV without correction) [25] is lower than that on the $\text{Pt}_4/\text{In}_2\text{O}_3\text{-ZrO}_2\text{-D}$ model (0.31 eV without correction), the CO_2 dissociation is suppressed by the addition of ZrO_2 . Additionally, the backward Gibbs activation barrier for this reaction reaches 2.46 eV, which implies that the stability of surface O atoms is significantly enhanced by the introduction of ZrO_2 so that the

Fig. 9. Gibbs free energy profile of the methanol synthesis on the $\text{Pt}_4/\text{In}_2\text{O}_3\text{-ZrO}_2$ model at 300 °C and 5 MPa.

formation of oxygen vacancy by CO reduction is highly blocked. This is consistent with the results of CO₂-TPD-MS profiles, EPR spectra and Raman spectra above. The surface O* can react with H*, activated by the Pt₄ cluster through R4 to generate the OH*. This reaction is also kinetically and thermodynamically favorable with the Gibbs activation barrier of 0.95 eV and the Gibbs reaction energy of -0.63 eV. The produced OH* adsorbed on Zr site can migrate to another In site during the H₂ activation on the Pt site through R5, which is endergonic by +1.03 eV with a Gibbs activation barrier of 1.22 eV. The activated H* can continuously react with OH* to form surface H₂O* through R6, which is endergonic by +0.12 eV with a Gibbs activation barrier of 0.42 eV. CO* can react with a H* to generate HCO* via R8 after H₂O desorption through R7. This reaction is exergonic by -0.56 eV with a Gibbs activation barrier of 0.46 eV. However, the H₂ activation of CO* +OH* and the following migration of OH* are endergonic by 0.94 and 1.22 eV, respectively. This indicates that the hydrogenation of CO* +OH* is both kinetically and thermodynamically unfavorable. The presence of CO* on Pt₄ cluster inhibits the H₂ activation significantly. H₂CO* can be generated by the hydrogenation of HCO* through R9, which is exergonic by -0.26 eV with a Gibbs activation barrier of 0.74 eV. H₃CO* and H₂COH* can be produced by the hydrogenation of H₂CO* through R10 and the protonation of H₂CO* through R11, respectively. The hydrogenation of H₂CO* is strongly exergonic by -1.51 eV with a Gibbs activation barrier of 0.20 eV whereas the protonation of H₂CO* is endergonic by +0.13 eV with a Gibbs activation barrier of 0.62 eV. This indicates that the production of H₃CO* is more kinetically and thermodynamically favorable than the production of H₂COH* due to the lower Gibbs activation barrier and the exergonic nature. H₃CO* can react with a H* spillover from the Pt₄ cluster to the support surface to produce H₃COH* through R12. This reaction is endergonic by +0.78 eV with a Gibbs activation barrier of 1.15 eV. H₃COH* can be produced by the hydrogenation of H₂COH* through R13 as well, which is exergonic by -0.17 eV with a huge Gibbs activation barrier of 2.29 eV. This demonstrates that the hydrogenation of H₂COH* to H₃COH* is kinetically hindered so that the production of H₃COH* tends to undergo R12 rather than R13.

As for the RWGS route, CO₂* reacts with H* to form COOH* through R14 initially. This reaction is slightly endergonic by +0.13 eV with a Gibbs activation barrier of 0.46 eV. The hydrogenation of COOH* -through R15 is endergonic by +0.38 eV with a high Gibbs activation barrier of 1.51 eV. On one hand, the produced CO* and H₂O* desorbed from the active site with the Gibbs free energy cost of +0.59 eV. On the other hand, CO* can react with H* through R8 and produce H₃COH* after a series of elementary steps as mentioned above. This confirms that CO* prefers to react with H* rather than to be desorbed due to the lower Gibbs activation barrier of 0.46 eV. CO produced from COOH* is inhibited by the addition of ZrO₂, which is in accordance with the literature [34].

The formate route is blocked due to the high activation barrier of the initial hydrogenation of CO₂* to HCOO* over the defective Pt₄/In₂O₃ model [25]. Herein, the formate route is also calculated to investigate the effects of ZrO₂ on the reaction mechanism. The formate route is initiated with the direct hydrogenation of CO₂ to HCOO* through R17, which is exergonic by -0.92 eV with a Gibbs activation barrier of 0.68 eV. This reaction is switched to the kinetically and thermodynamically favorable step via the addition of ZrO₂. The formed mono-HCOO* is not stable and tends to transform to the more stable bi-HCOO* via R18 without any activation barrier [32]. The bi-HCOO* can react with a spillover H* on the catalyst surface to produce H₂COO* via R19, which is endergonic by +0.62 eV with a Gibbs activation barrier of 1.05 eV. The product of hydrogenation of H₂COO* is H₂COOH*. The formation of H₂COOH* through R20 is slightly exergonic by -0.02 eV with a Gibbs activation barrier of 0.61 eV. As the important intermediate of methanol synthesis from CO₂ and H₂, H₂CO* is produced by the hydrogenation of H₂COOH* through R21. This process is endergonic by +0.57 eV with a Gibbs activation barrier

of 0.83 eV. After the desorption of H₂O via R22, the formed H₂CO* can subsequently react with H* to H₃COH* via a series of elementary steps.

3.3.5. The effect of the ZrO₂ addition on the hydrogenation of CO₂

The formate route, RWGS route and CO hydrogenation route for methanol synthesis from CO₂ hydrogenation over the defective Pt/In₂O₃ catalyst have been studied in our previous work [25]. As for the formate route, the activation barrier of HCOO* formation is 1.60 eV, indicating that this route is kinetically unfavorable on the Pt₄/In₂O₃_D model. The RWGS route suffers from the high barrier of further hydrogenation of the produced CO* (by COOH*). Therefore, the formate route and the RWGS route are not feasible for methanol synthesis over the Pt/In₂O₃ catalyst. The activation barrier of CO₂ dissociation is increased from 0.18 to 0.31 eV induced by the ZrO₂-modification. More importantly, the CO hydrogenation route is hindered by the huge Gibbs free energy for H₂ activation and CO* hydrogenation on the Pt₄/In₂O₃-ZrO₂_D model, while these reactions are favorable (CO₂* → CO* → HCO* → H₂CO* → H₃CO* → H₃COH*) on the Pt₄/In₂O₃_D model. The active site for CO₂ conversion is altered from the interfacial site to the In-O_v-Zr site due to the addition of ZrO₂. The formation of HCOO* on the Pt₄/In₂O₃-ZrO₂_D model is kinetically and thermodynamically favorable, which is exergonic by -0.92 eV with the Gibbs activation barrier of 0.68 eV. In addition, the hydrogenation of COOH* is not feasible due to the huge Gibbs activation barrier of 1.51 eV so that the RWGS route is kinetically blocked. Thus, the results of DFT calculations confirm that the reaction mechanism of methanol synthesis from CO₂ hydrogenation over the Pt-In₂O₃ system is altered by the addition of ZrO₂.

3.3.6. The effect of produced H₂O over the Pt₄/In₂O₃-ZrO₂_D model

The effect of H₂O produced via R21 on the methanol synthesis from H₂CO* was investigated (Fig. S7). The hydrogenation of H₂CO* to H₃CO* via R23 is exergonic by -1.25 eV with a Gibbs activation barrier of 0.59 eV. The protonation of H₂CO* to H₂COH* through R24 is exergonic by -0.14 eV with a Gibbs activation barrier of 0.40 eV. Compared with the results of R9 and R10, the adsorbed H₂O* facilitates the formation of H₂COH* due to the lower Gibbs activation barrier and the alteration from endergonic to exergonic. However, the formation of H₃CO* is inhibited by the presence of H₂O* due to the higher Gibbs activation barrier. Furthermore, the production of H₃COH* from H₃CO* via R25 is endergonic by +0.89 eV with a Gibbs activation barrier of 1.34 eV, which is kinetically and thermodynamically unfavorable compared to R11. The hydrogenation of H₂COH* to H₃COH* through R26 is exergonic by -0.23 eV with a Gibbs activation barrier of 1.79 eV. This reaction is still kinetically hindered due to the high activation barrier. These suggest that the presence of adsorbed H₂O* is unfavorable for methanol production.

All of the elementary steps with the Gibbs free energies and activation barriers are summarized in Table 3. The structures of the initial, transition and final states are shown in Fig. S5 in detail. The structures of adsorbed species involved in methanol production are shown in Fig. S6.

In summary, the In-O_v-Zr site is created by the addition of ZrO₂, which modulates the electronic properties of oxygen vacancy as well as the supported Pt₄ cluster. The presence of ZrO₂ inhibits the CO formation from COOH* and decreases the CO adsorption over the Pt₄/In₂O₃-ZrO₂_D model. The synergy between the In-O_v-Zr site and Pt₄ cluster can facilitate methanol production through the formate route as: CO₂* → HCOO* → H₂COO* → H₂CO* → H₃CO* → H₃COH*.

4. Conclusions

From the experimental and theoretical studies discussed above, the Pt/In₂O₃-ZrO₂ catalyst, prepared via the deposition-precipitation method, shows superior activity with enhanced CO tolerance towards methanol production. The methanol STY reaches 0.569 g_{methanol} g_{cat}⁻¹ h⁻¹ under the feed gas including 4% CO at 300 °C and 5 MPa with the GHSV of 21,000 cm³·h⁻¹·g_{cat}⁻¹, which is much higher than that of the Pt/In₂O₃

Table 3

Gibbs reaction energies (ΔG) and activation barrier (G_{ab}) of each elementary step in methanol production on the Pt₄/In₂O₃-ZrO₂ model (in eV).

No.	Reaction	G_{ab}	ΔG
R1	$\text{CO}_2 + \cdot \rightarrow \text{CO}_2 \cdot$	/	-0.44
R2	$\text{H}_2 + \cdot \rightarrow 2 \text{H}^*$	/	-2.77
R3	$\text{CO}_2 \cdot \rightarrow \text{CO}^* + \text{O}^*$	0.25	-2.22
R4	$\text{CO}^* + \text{O}^* + \text{H}^* \rightarrow \text{CO}^* + \text{OH}^* + \cdot$	0.95	-0.63
R5	$\text{CO}^* + \text{OH}^* + \text{H}^* \rightarrow \text{Zr} \rightarrow \text{CO}^* + \text{OH}^* + \text{H}^* - \text{In}$	1.22	+ 1.03
R6	$\text{CO}^* + \text{OH}^* + \text{H}^* \rightarrow \text{CO}^* + \text{H}_2\text{O}^*$	0.42	+ 0.12
R7	$\text{CO}^* + \text{H}_2\text{O}^* \rightarrow \text{CO}^* + \text{H}_2\text{O(g)}$	/	+ 1.03
R8	$\text{CO}^* + \text{H}^* \rightarrow \text{HCO}^* + \cdot$	0.46	-0.56
R9	$\text{HCO}^* + \text{H}^* \rightarrow \text{H}_2\text{CO}^* + \cdot$	0.74	-0.26
R10	$\text{H}_2\text{CO}^* + \text{H}^* \rightarrow \text{H}_3\text{CO}^* + \cdot$	0.20	-1.51
R11	$\text{H}_2\text{CO}^* + \text{H}^* \rightarrow \text{H}_2\text{COH}^* + \cdot$	0.62	+ 0.13
R12	$\text{H}_3\text{CO}^* + \text{H}^* \rightarrow \text{H}_3\text{COH}^* + \cdot$	1.15	+ 0.78
R13	$\text{H}_2\text{COH}^* + \text{H}^* \rightarrow \text{H}_3\text{COH}^* + \cdot$	2.29	-0.17
R14	$\text{CO}_2 \cdot + \text{H}^* \rightarrow \text{COOH}^* + \cdot$	0.46	+ 0.13
R15	$\text{COOH}^* + \text{H}^* \rightarrow \text{CO}^* + \text{H}_2\text{O(g)} + \cdot$	1.51	+ 0.38
R16	$\text{CO}^* + \text{H}_2\text{O(g)} \rightarrow \text{CO(g)} + \text{H}_2\text{O(g)} + \cdot$	/	+ 0.59
R17	$\text{CO}_2 \cdot + \text{H}^* \rightarrow \text{HCOO}^* + \cdot$	0.68	-0.92
R18	$\text{HCOO}^* \rightarrow \text{bi-HCOO}^*$	/	-0.40
R19	$\text{HCOO}^* + \text{H}^* \rightarrow \text{H}_2\text{COO}^* + \cdot$	1.05	+ 0.62
R20	$\text{H}_2\text{COO}^* + \text{H}^* \rightarrow \text{H}_2\text{COOH}^* + \cdot$	0.61	-0.02
R21	$\text{H}_2\text{COOH}^* + \text{H}^* \rightarrow \text{H}_2\text{CO}^* + \text{H}_2\text{O}^*$	0.83	+ 0.57
R22	$\text{H}_2\text{CO}^* + \text{H}_2\text{O}^* \rightarrow \text{H}_2\text{CO}^* + \text{H}_2\text{O(g)} + \cdot$	/	-0.21
R23	$\text{H}_2\text{CO}^* + \text{H}_2\text{O}^* + \text{H}^* \rightarrow \text{H}_3\text{CO}^* + \text{H}_2\text{O}^* + \cdot$	0.59	-1.25
R24	$\text{H}_2\text{CO}^* + \text{H}_2\text{O}^* + \text{H}^* \rightarrow \text{H}_2\text{COH}^* + \text{H}_2\text{O}^* + \cdot$	0.40	-0.14
R25	$\text{H}_3\text{CO}^* + \text{H}_2\text{O}^* + \text{H}^* \rightarrow \text{H}_3\text{COH}^* + \text{H}_2\text{O}^* + \cdot$	1.34	+ 0.89
R26	$\text{H}_2\text{COH}^* + \text{H}_2\text{O}^* + \text{H}^* \rightarrow \text{H}_3\text{COH}^* + \text{H}_2\text{O}^* + \cdot$	1.79	-0.23

catalyst (0.458 g_{methanol} g_{catalyst}⁻¹ h⁻¹). The results of XRD, XPS, Raman and EPR spectra confirm the In₂O₃-ZrO₂ support is in the form of solid solution. The catalyst characterizations also confirm the deactivation under the CO-containing feed gas is attributed to the over-reduction of In₂O₃ induced by CO. Based on the results of CO-TPD-MS and DFT calculations, CO adsorption is significantly weakened by the addition of ZrO₂, which results in the enhanced stability as well. The results of CO₂-TPD-MS profile also confirm the improved stability of surface oxygen atoms of In₂O₃ due to the presence of ZrO₂. Additionally, the electronic properties of oxygen vacancy are modified by ZrO₂ as well, which alters the active site for CO₂ activation from the interfacial site on the Pt/In₂O₃ catalyst to the In-O_v-Zr site on the Pt/In₂O₃-ZrO₂ catalyst. The synergy between the In-O_v-Zr site and Pt cluster leads to the alteration of methanol production from the CO hydrogenation route to the formate route. The present study shows that the Pt catalyst becomes highly active for CO₂ hydrogenation to methanol under the presence of CO with the In₂O₃-ZrO₂ solid solution as the support.

CRediT authorship contribution statement

Kaihang Sun: Investigation, Methodology, Data curation, Software, Writing – original draft. **Chenyang Shen:** Methodology, Software, Validation, Writing – review & editing. **Rui Zou:** Methodology, Validation. **Chang-jun Liu:** Conceptualization, Funding acquisition, Writing – review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 22138009) and the Fundamental Research Funds for the Central Universities of China.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2022.122018.

References

- X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis, Chem. Rev. 120 (2020) 7984–8034, <https://doi.org/10.1021/acs.chemrev.9b00723>.
- B. Liang, J. Ma, X. Su, C. Yang, H. Duan, H. Zhou, S. Deng, L. Li, Y. Huang, Investigation on deactivation of Cu/ZnO/Al₂O₃ catalyst for CO₂ hydrogenation to methanol, Ind. Eng. Chem. Res. 58 (2019) 9030–9037, <https://doi.org/10.1021/acs.iecr.9b01546>.
- Y. Yan, R.J. Wong, Z. Ma, F. Donat, S. Xi, S. Saqlain, Q. Fan, Y. Du, A. Borgna, Q. He, C.R. Müller, W. Chen, A.A. Lapkin, W. Liu, CO₂ hydrogenation to methanol on tungsten-doped Cu/CeO₂ catalysts, Appl. Catal. B 306 (2022), 121098, <https://doi.org/10.1016/j.apcatb.2022.121098>.
- J. Wang, M. Meeprasert, Z. Han, H. Wang, Z. Feng, C. Tang, F. Sha, S. Tang, G. Li, E. A. Pidko, C. Li, Highly dispersed Cd cluster supported on TiO₂ as an efficient catalyst for CO₂ hydrogenation to methanol, Chin. J. Catal. 43 (2022) 761–770, [https://doi.org/10.1016/S1872-2067\(21\)63907-4](https://doi.org/10.1016/S1872-2067(21)63907-4).
- L.F. Rasteiro, R.A. De Sousa, L.H. Vieira, V.K. Ocampo-Restrepo, L.G. Verga, J. M. Assaf, J.L.F. Da Silva, E.M. Assaf, Insights into the alloy-support synergistic effects for the CO₂ hydrogenation towards methanol on oxide-supported Ni₅Ga₃ catalysts: an experimental and DFT study, Appl. Catal. B 302 (2022), 120842, <https://doi.org/10.1016/j.apcatb.2021.120842>.
- K. Lee, U. Anjum, T.P. Araújo, C. Mondelli, Q. He, S. Furukawa, J. Pérez-Ramírez, S.M. Kozlov, N. Yan, Atomic Pd-promoted ZnZrO_x solid solution catalyst for CO₂ hydrogenation to methanol, Appl. Catal. B 304 (2022), 120994, <https://doi.org/10.1016/j.apcatb.2021.120994>.
- J. Ye, C. Liu, D. Mei, Q. Ge, Active oxygen vacancy site for methanol synthesis from CO₂ hydrogenation on In₂O₃(110): A DFT study, ACS Catal. 3 (2013) 1296–1306, <https://doi.org/10.1021/cs400132a>.
- K. Sun, Z. Fan, J. Ye, J. Yan, Q. Ge, Y. Li, W. He, W. Yang, C.-j. Liu, Hydrogenation of CO₂ to methanol over In₂O₃ catalyst, J. CO₂ Util. 12 (2015) 1–6, <https://doi.org/10.1016/j.jcou.2015.09.002>.
- O. Martín, A.J. Martín, C. Mondelli, S. Mitchell, T.F. Segawa, R. Hauer, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, Indium oxide as a superior catalyst for methanol synthesis by CO₂ hydrogenation, Angew. Chem. Int. Ed. 55 (2016) 6261–6265, <https://doi.org/10.1002/anie.201600943>.
- Q. Wu, C. Shen, N. Rui, K. Sun, C.-j. Liu, Experimental and theoretical studies of CO₂ hydrogenation to methanol on Ru/In₂O₃, J. CO₂ Util. 53 (2021), 101720, <https://doi.org/10.1016/j.jcou.2021.101720>.
- J. Wang, K. Sun, X. Jia, C.-j. Liu, CO₂ hydrogenation to methanol over Rh/In₂O₃ catalyst, Catal. Today 365 (2021) 341–347, <https://doi.org/10.1016/j.cattod.2020.05.020>.
- C. Shen, K. Sun, Z. Zhang, N. Rui, X. Jia, D. Mei, C.-j. Liu, Highly active Ir/In₂O₃ catalysts for selective hydrogenation of CO₂ to methanol: experimental and theoretical studies, ACS Catal. 11 (2021) 4036–4046, <https://doi.org/10.1021/acscatal.0c05628>.
- Z. Han, C. Tang, J. Wang, L. Li, C. Li, Atomically dispersed Ptⁿ⁺ species as highly active sites in Pt/In₂O₃ catalysts for methanol synthesis from CO₂ hydrogenation, J. Catal. 394 (2021) 236–244, <https://doi.org/10.1016/j.jcat.2020.06.018>.
- M.S. Frei, C. Mondelli, R. García-Muelas, J. Morales-Vidal, M. Philipp, O. V. Safonova, N. López, J.A. Stewart, D.C. Ferré, J. Pérez-Ramírez, Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO₂ hydrogenation, Nat. Commun. 12 (2021) 1960, <https://doi.org/10.1038/s41467-021-22224-x>.
- Z. Zhou, B. Qin, S. Li, Y. Sun, A. DFT-based, microkinetic study on methanol synthesis from CO₂ hydrogenation over the In₂O₃ catalyst, Phys. Chem. Chem. Phys. 23 (2021) 1888–1895, <https://doi.org/10.1039/DOPC05947A>.
- N. Rui, F. Zhang, K. Sun, Z. Liu, W. Xu, E. Stavitski, S.D. Senanayake, J. A. Rodriguez, C.-j. Liu, Hydrogenation of CO₂ to methanol on a Au⁵⁺-In₂O_{3-x} catalyst, ACS Catal. 10 (2020) 11307–11317, <https://doi.org/10.1021/acscatal.0c02120>.
- A. Pustovarenko, A. Dikhtirenko, A. Bavykina, L. Gevers, A. Ramírez, A. Russikh, S. Telalovic, A. Aguilar, J.-L. Hazemann, S. Ould-Chikh, J. Gascon, Metal-organic framework-derived synthesis of cobalt indium catalysts for the hydrogenation of CO₂ to methanol, ACS Catal. 10 (2020) 5064–5076, <https://doi.org/10.1021/acscatal.0c00449>.
- X. Jia, K. Sun, J. Wang, C. Shen, C.-j. Liu, Selective hydrogenation of CO₂ to methanol over Ni/In₂O₃ catalyst, J. Energy Chem. 50 (2020) 409–415, <https://doi.org/10.1016/j.jechem.2020.03.083>.
- N.H.M.D. Dostagir, C. Thompson, H. Kobayashi, A.M. Karim, A. Fukuoka, A. Shrotri, Rh promoted In₂O₃ as a highly active catalyst for CO₂ hydrogenation to

methanol, *Catal. Sci. Technol.* 10 (2020) 8196–8202, <https://doi.org/10.1039/D0CY01789B>.

[20] S. Dang, B. Qin, Y. Yang, H. Wang, J. Cai, Y. Han, S. Li, P. Gao, Y. Sun, Rationally designed indium oxide catalysts for CO₂ hydrogenation to methanol with high activity and selectivity, *Sci. Adv.* 6 (2020) eaaz2060, <https://doi.org/10.1126/sciadv.aaz2060>.

[21] Z. Cai, J. Dai, W. Li, K.B. Tan, Z. Huang, G. Zhan, J. Huang, Q. Li, Pd supported on MIL-68(Ind)-derived In₂O₃ nanotubes as superior catalysts to boost CO₂ hydrogenation to methanol, *ACS Catal.* 10 (2020) 13275–13289, <https://doi.org/10.1021/acscatal.0c03372>.

[22] M.S. Frei, C. Mondelli, R. García-Muelas, K.S. Kley, B. Puértolas, N. López, O. V. Safonova, J.A. Stewart, D. Curulla Ferré, J. Pérez-Ramírez, Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO₂ hydrogenation, *Nat. Commun.* 10 (2019) 3377, <https://doi.org/10.1038/s41467-019-11349-9>.

[23] A. Tsoukalou, P.M. Abdala, D. Stoian, X. Huang, M.G. Willinger, A. Fedorov, C. R. Müller, Structural evolution and dynamics of an In₂O₃ catalyst for CO₂ hydrogenation to methanol: an operando XAS-XRD and in situ TEM study, *J. Am. Chem. Soc.* 141 (2019) 13497–13505, <https://doi.org/10.1021/jacs.9b04873>.

[24] M. Dou, M. Zhang, Y. Chen, Y. Yu, DFT study of In₂O₃-catalyzed methanol synthesis from CO₂ and CO hydrogenation on the defective site, *New J. Chem.* 42 (2018) 3293–3300, <https://doi.org/10.1039/C7NJ04273F>.

[25] K. Sun, N. Rui, C. Shen, C.-j Liu, Theoretical study of selective hydrogenation of CO₂ to methanol over Pt₄/In₂O₃ model catalyst, *J. Phys. Chem. C* 125 (2021) 10926–10936, <https://doi.org/10.1021/acs.jpcc.1c00638>.

[26] A. Cao, Z. Wang, H. Li, J.K. Nørskov, Relations between surface oxygen vacancies and activity of methanol formation from CO₂ hydrogenation over In₂O₃ surfaces, *ACS Catal.* 11 (2021) 1780–1786, <https://doi.org/10.1021/acscatal.0c05046>.

[27] N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge, C.-j Liu, CO₂ hydrogenation to methanol over Pd/In₂O₃: effects of Pd and oxygen vacancy, *Appl. Catal. B* 218 (2017) 488–497, <https://doi.org/10.1016/j.apcatb.2017.06.069>.

[28] K. Sun, N. Rui, Z. Zhang, Z. Sun, Q. Ge, C.-j. Liu, A highly active Pt/In₂O₃ catalyst for CO₂ hydrogenation to methanol with enhanced stability, *Green. Chem.* 22 (2020) 5059–5066, <https://doi.org/10.1039/D0GC01597K>.

[29] X. Ye, C. Yang, X. Pan, J. Ma, Y. Zhang, Y. Ren, X. Liu, L. Li, Y. Huang, Highly selective hydrogenation of CO₂ to ethanol via designed bifunctional Ir_xIn₂O₃ single-atom catalyst, *J. Am. Chem. Soc.* 142 (2020) 19001–19005, <https://doi.org/10.1021/jacs.0c08607>.

[30] K. Sun, Z. Zhang, C. Shen, N. Rui, C.-j Liu, The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO₂ to methanol, *Green Energy Environ.* 7 (2022) 807–817, <https://doi.org/10.1016/j.gee.2021.05.004>.

[31] J. Zhu, F. Cannizzaro, L. Liu, H. Zhang, N. Kosinov, I.A.W. Filot, J. Rabeh, A. Brückner, E.J.M. Hensen, Ni-In synergy in CO₂ hydrogenation to methanol, *ACS Catal.* 11 (2021) 11371–11384, <https://doi.org/10.1021/acscatal.1c03170>.

[32] J. Ye, C.-j Liu, D. Mei, Q. Ge, Methanol synthesis from CO₂ hydrogenation over a Pd_x/In₂O₃ model catalyst: a combined DFT and kinetic study, *J. Catal.* 317 (2014) 44–53, <https://doi.org/10.1016/j.jcat.2014.06.002>.

[33] C. Shen, Q. Bao, W. Xue, K. Sun, Z. Zhang, X. Jia, D. Mei, C.-j Liu, Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO₂ hydrogenation to methanol over Ni/In₂O₃ catalyst: a theoretical study, *J. Energy Chem.* 65 (2022) 623–629, <https://doi.org/10.1016/j.jechem.2021.06.039>.

[34] X. Jiang, X. Nie, Y. Gong, C.M. Moran, J. Wang, J. Zhu, H. Chang, X. Guo, K. S. Walton, C. Song, A combined experimental and DFT study of H₂O effect on In₂O₃/ZrO₂ catalyst for CO₂ hydrogenation to methanol, *J. Catal.* 383 (2020) 283–296, <https://doi.org/10.1016/j.jcat.2020.01.014>.

[35] C. Yang, C. Pei, R. Luo, S. Liu, Y. Wang, Z. Wang, Z.-J. Zhao, J. Gong, Strong electronic oxide-support interaction over In₂O₃/ZrO₂ for highly selective CO₂ hydrogenation to methanol, *J. Am. Chem. Soc.* 142 (2020) 19523–19531, <https://doi.org/10.1021/jacs.0c07195>.

[36] A. Tsoukalou, P.M. Abdala, A. Armutlulu, E. Willinger, A. Fedorov, C.R. Müller, Operando X-ray absorption spectroscopy identifies a monoclinic ZrO₂:In solid solution as the active phase for the hydrogenation of CO₂ to methanol, *ACS Catal.* 10 (2020) 10060–10067, <https://doi.org/10.1021/acscatal.0c01968>.

[37] T.-y Chen, C. Cao, T.-b Chen, X. Ding, H. Huang, L. Shen, X. Cao, M. Zhu, J. Xu, J. Gao, Y.-F. Han, Unraveling highly tunable selectivity in CO₂ hydrogenation over bimetallic In-Zr oxide catalysts, *ACS Catal.* 9 (2019) 8785–8797, <https://doi.org/10.1021/acscatal.9b01869>.

[38] M.S. Frei, C. Mondelli, A. Cesarini, F. Krumeich, R. Hauert, J.A. Stewart, D. Curulla Ferré, J. Pérez-Ramírez, Role of zirconia in indium oxide-catalyzed CO₂ hydrogenation to methanol, *ACS Catal.* 10 (2020) 1133–1145, <https://doi.org/10.1021/acscatal.9b03305>.

[39] T. Numpilai, P. Kidkhunthod, C.K. Cheng, C. Wattanakit, M. Chareonpanich, J. Limtrakul, T. Witoon, CO₂ hydrogenation to methanol at high reaction temperatures over In₂O₃/ZrO₂ catalysts: influence of calcination temperatures of ZrO₂ support, *Catal. Today* 375 (2020) 298–306, <https://doi.org/10.1016/j.cattod.2020.03.011>.

[40] T.P. Araújo, A. Shah, C. Mondelli, J.A. Stewart, D. Curulla Ferré, J. Pérez-Ramírez, Impact of hybrid CO₂-CO feeds on methanol synthesis over In₂O₃-based catalysts, *Appl. Catal. B* 285 (2021), 119878, <https://doi.org/10.1016/j.apcatb.2021.119878>.

[41] J. Su, D. Wang, Y. Wang, H. Zhou, C. Liu, S. Liu, C. Wang, W. Yang, Z. Xie, M. He, Direct conversion of syngas into light olefins over zirconium-doped indium(III) oxide and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network, *ChemCatChem* 10 (2018) 1536–1541, <https://doi.org/10.1002/cctc.201702054>.

[42] G. Štefanić, S. Mušić, S. Popović, A. Sekulić, FT-IR and laser Raman spectroscopic investigation of the formation and stability of low temperature t-ZrO₂, *J. Mol. Struct.* 408–409 (1997) 391–394, [https://doi.org/10.1016/S0022-2860\(96\)09549-X](https://doi.org/10.1016/S0022-2860(96)09549-X).

[43] S. Tada, S. Kayamori, T. Honma, H. Kamei, A. Nariyuki, K. Kon, T. Toyao, K.-i Shimizu, S. Satokawa, Design of interfacial sites between Cu and amorphous ZrO₂ dedicated to CO₂-to-methanol hydrogenation, *ACS Catal.* 8 (2018) 7809–7819, <https://doi.org/10.1021/acscatal.8b01396>.

[44] Y.H. Wang, W.G. Gao, H. Wang, Y.E. Zheng, W. Na, K.Z. Li, Structure-activity relationships of Cu-ZrO₂ catalysts for CO₂ hydrogenation to methanol: interaction effects and reaction mechanism, *RSC Adv.* 7 (2017) 8709–8717, <https://doi.org/10.1039/CGRA28305E>.

[45] K. Samson, M. Śliwa, R.P. Socha, K. Góra-Marek, D. Mucha, D. Rutkowska-Zbik, J. F. Paul, M. Ruggiero-Mikołajczyk, R. Grabowski, J. Stoczyński, Influence of ZrO₂ structure and copper electronic state on activity of Cu/ZrO₂ catalysts in methanol synthesis from CO₂, *ACS Catal.* 4 (2014) 3730–3741, <https://doi.org/10.1021/cs500979c>.

[46] J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S.C.I. Wang, Y. Shen, Y. Tong, Oxygen vacancies promoting photoelectrochemical performance of In₂O₃ nanocubes, *Sci. Rep.* 3 (2013) 1021, <https://doi.org/10.1038/srep01021>.

[47] M. Mavrikakis, B. Hammer, J.K. Nørskov, Effect of strain on the reactivity of metal surfaces, *Phys. Rev. Lett.* 81 (1998) 2819–2822, <https://doi.org/10.1103/PhysRevLett.81.2819>.