Maximum-Weight Bipartite Matching

Shusen Wang

Weighted Bipartite Graph

- Bipartite graph: G = (U, V, E).
- Edges have weights: w_{ij} .

Weighted Bipartite Graph

- Bipartite graph: G = (U, V, E).
- Edges have weights: w_{ij} .
- Adjacency matrix:

	v_1	v_2	v_3	v_4
u_1	4	0	3	0
u_2	0	0	5	0
u_3	2	0	4	0
u_4	0	4	3	0
u_5	5	0	0	2

Bipartite Matching in Weighted Graph

- Bipartite graph: G = (U, V, E).
- Matching is a subset of edges without common vertices.
- Denote the matching by set $S \subseteq \mathcal{E}$.

Bipartite Matching in Weighted Graph

• Sum of weights in matching \mathcal{S} :

$$f(\mathcal{S}) = \sum_{(u,v)\in\mathcal{S}} w_{uv}.$$

• In this example,

$$f(S) = 3 + 4 + 5 = 12.$$

Bipartite Matching in Weighted Graph

• Sum of weights in matching S:

$$f(\mathcal{S}) = \sum_{(u,v)\in\mathcal{S}} w_{uv}.$$

• In this example,

$$f(S) = 4 + 5 + 4 + 2 = 20.$$

Maximum-Weight Bipartite Matching

• Sum of weights in matching \mathcal{S} :

$$f(\mathcal{S}) = \sum_{(u,v)\in\mathcal{S}} w_{uv}.$$

• Objective: Finding matching \mathcal{S} that has the maximum weight:

$$\max_{\mathcal{S}} f(\mathcal{S}).$$

Application 1: Match candidates and positions

- Edge weights quantify candidates' skills.
- Maximize the weights of matching. (Match the right person with the right job position to maximize the company's interest.)

Application 2: Pet adoptions

- Edge weight quantifies how much a person loves a pet.
- Maximize the weights of matching. (Maximize people's happiness.)

Application 3: Dating

- Edge weights quantify how well two persons match (e.g., similar hoppy).
- Maximize the weights of matching.
 (Maximize the change of success.)

Maximum Matching

- Adopting a pet can bring happiness to people.
- A weight quantifies how much a person loves a pet.
- Maximize the weights of matching. (Maximize people's happiness.)

Minimum Matching

- Adopting a pet can cost time and money.
- A weight quantifies how a person dislike a pet.
- Minimize the weights of matching. (Maximize people's happiness.)

- If we have an algorithm for finding minimum matching.
- Then we can use it for finding maximum matching.

- If we have an algorithm for finding minimum matching.
- Then we can use it for finding maximum matching.
 - 1. Flip the signs of all the weights.
 - 2. Run the minimum matching algorithm.

Hungarian Algorithm for Minimum-Weight Bipartite Matching

Minimum-Weight Bipartite Matching

	v_1	v_2	v_3
u_1	8	25	50
u_2	50	35	75
u_3	22	48	150

Minimum-Weight Bipartite Matching

	v_1	v_2	v_3
u_1	8	25	50
u_2	50	35	75
u_3	22	48	150

The minimum sum of weight is 50 + 35 + 22 = 107.

- Hungarian algorithm is for finding the minimum-weight bipartite matching.
- In the graph, the cardinality of \mathcal{U} and \mathcal{V} must be the same:

$$|\mathcal{U}| = |\mathcal{V}| = n$$
.

• Time complexity: $O(n^3)$.

	v_1	v_2	v_3
u_1	8	25	50
u_2	50	35	75
u_3	22	48	150

Reference:

 Harold W. Kuhn. The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly, 2: 83–97, 1955.

• Step 1: Subtract row minima.

	v_1	v_2	v_3
u_1	8	25	50
u_2	50	35	75
u_3	22	48	150

- Step 1: Subtract row minima.
 - Subtract the smallest entry of each row from all the entries in the row.

	v_1	v_2	v_3
u_1	8 -8	25 -8	50 -8
u_2	50	35	75
	-35	-35	-35
u_3	22	48	150
	-22	-22	-22

- Step 1: Subtract row minima.
 - Subtract the smallest entry of each row from all the entries in the row.
 - The minimum of the row is equal to 0.

	v_1	v_2	v_3
u_1	0	17	42
u_2	15	0	40
u_3	0	26	128

- Step 1: Subtract row minima.
 - Subtract the smallest entry of each row from all the entries in the row.
 - The minimum of the row is equal to 0.
- Step 2: Subtract column minima.
 - Subtract the smallest entry of each column from all the entries in the column.

	v_1	v_2	v_3
u_1	0 -0	17 -0	42 -40
u_2	15 -0	0 -0	40 -40
u_3	0 -0	26 -0	128 -40

- Step 1: Subtract row minima.
 - Subtract the smallest entry of each row from all the entries in the row.
 - The minimum of the row is equal to 0.
- Step 2: Subtract column minima.
 - Subtract the smallest entry of each column from all the entries in the column.
 - The minimum of the column is equal to
 0.

	v_1	v_2	v_3
u_1	0	17	2
u_2	15	0	0
u_3	0	26	88

- Step 3A: Cover all zeros with a minimum number of lines.
 - Use either horizontal or vertical lines.
 - Minimize the total number of lines.

- Step 3A: Cover all zeros with a minimum number of lines.
 - Use either horizontal or vertical lines.
 - Minimize the total number of lines.

- The number of line is 3.
- It is NOT the minimum.

- Step 3A: Cover all zeros with a minimum number of lines.
 - Use either horizontal or vertical lines.
 - Minimize the total number of lines.

- The number of line is 2.
- It is the minimum.

- Step 3A: Cover all zeros with a minimum number of lines.
- Step 3B: Decide whether to stop.
 - If *n* lines are required, the algorithm stops.
 - If less than *n* lines are required, continue with Step 3C.
- The number of line is 2.
- Number of vertices is n = 3.
- Thus continue to Step 3C.

- Step 3A: Cover all zeros with a minimum number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it *k*) that is not covered by a line.

Step 3: Repeat the following:

- Step 3A: Cover all zeros with a minimum number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it *k*) that is not covered by a line.

The smallest element that is not covered is k = 2.

Step 3: Repeat the following:

- Step 3A: Cover all zeros with a minimum number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it k) that is not covered by a line.
 - Subtract k from all uncovered elements.

The smallest element that is not covered is k = 2.

- Step 3A: Cover all zeros with a minimum number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it k) that is not covered by a line.
 - Subtract k from all uncovered elements.

- Step 3A: Cover all zeros with a minimum number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it k) that is not covered by a line.
 - Subtract k from all uncovered elements.
 - Add k to all elements that are covered twice.

- Step 3A: Cover all zeros with a minimum number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it *k*) that is not covered by a line.
 - Subtract k from all uncovered elements.
 - Add k to all elements that are covered twice.

Step 3: Repeat the following:

• Step 3A: Cover all zeros with a minimum number of lines.

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

Step 3: Repeat the following:

 Step 3A: Cover all zeros with a minimum number of lines.

At least 3 lines are needed.

Step 3: Repeat the following:

- Step 3A: Cover all zeros with a minimum number of lines.
- Step 3B: Decide whether to stop.
 - If *n* lines are required, the algorithm stops.

The algorithm stops.

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

- Choose a matching among the zeros.
- Think of the zeros as edges.

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

- Choose a matching among the zeros.
- Think of the zeros as edges.

- The edge (u_3, v_1) must be chosen.
- Because it is the only zero in the row.

- Cover the row of u_3 .
- Cover the column of v_1 .

- The edge (u_2, v_2) must be chosen.
- Because it is the only zero in the column.

- Cover the row of u_2 .
- Cover the column of v_2 .

- The edge (u_1, v_3) must be chosen.
- Because it is the only zero.

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

The matching is

$$S = \{(u_3, v_1), (u_1, v_3), (u_2, v_2)\}.$$

Maximum Matching

- Pet adoption is a max matching problem.
- A weight quantifies how much a person loves a pet.
- Maximize the weights of matching. (Maximize people's happiness.)

Hungarian Algorithm for Maximum Matching

Idea: Max Matching → Min Matching

- Flip the signs of all the weights.
- It is equivalent to the minimum matching.
- Run the Hungarian algorithm.

Hungarian Algorithm for Maximum Matching

Idea: Max Matching → Min Matching

- Flip the signs of all the weights.
- It is equivalent to the minimum matching.
- Run the Hungarian algorithm.

Hungarian Algorithm for Maximum Matching

- Step 1: Subtract row minima.
 - Subtract the smallest entry of each row from all the entries in the row.

	ν_1	ν_2	ν_3	ν_4
ι_1	0	-3	-5	0
	- (-5)	-(-5)	-(-5)	- (-5)
l_2	0	-2	-1	-4
	-(-4)	-(-4)	-(-4)	-(-4)
l_3	-3	-5	0	0
	-(-5)	-(-5)	- (-5)	- (-5)
ι_4	0	0	-2	-5
	- (-5)	- (-5)	-(-5)	-(-5)

11

- Step 1: Subtract row minima.
 - Subtract the smallest entry of each row from all the entries in the row.
 - The minimum of the row is equal to 0.

	v_1	v_2	v_3	v_4
u_1	5	2	0	5
u_2	4	2	3	0
u_3	2	0	5	5
u_4	5	5	3	0

- Step 1: Subtract row minima.
 - Subtract the smallest entry of each row from all the entries in the row.
 - The minimum of the row is equal to 0.
- Step 2: Subtract column minima.
 - Subtract the smallest entry of each column from all the entries in the column.

	v_1	v_2	v_3	v_4
u_1	5 -2	2 -0	0 -0	5 -0
u_2	4 -2	2 -0	3 -0	0 -0
u_3	2 -2	0 -0	5 -0	5 -0
u_4	5 -2	5 -0	3 -0	0 -0

 u_1

 u_2

 u_3

 u_4

- Step 1: Subtract row minima.
 - Subtract the smallest entry of each row from all the entries in the row.
 - The minimum of the row is equal to 0.
- Step 2: Subtract column minima.
 - Subtract the smallest entry of each column from all the entries in the column.
 - The minimum of the column is equal to
 0.

v_1	v_2	v_3	v_4
3	2	0	5
2	2	3	0
0	0	5	5
3	5	3	0

- Step 3A: Cover all zeros with a minimum u_1 number of lines.
 - Use either horizontal or vertical lines.
 - Minimize the total number of lines.

- Step 3A: Cover all zeros with a minimum u_1 number of lines.
- Step 3B: Decide whether to stop.
 - If *n* lines are required, the algorithm stops.
 - If less than *n* lines are required, continue with Step 3C.
- The number of line is 3.
- Number of vertices is n = 4.
- Thus continue to Step 3C.

- Step 3A: Cover all zeros with a minimum u_1 number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it *k*) that is not covered by a line.

- Step 3A: Cover all zeros with a minimum u_1 number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it *k*) that is not covered by a line.

- Step 3A: Cover all zeros with a minimum number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it *k*) that is not covered by a line.
 - Subtract k from all uncovered elements.

- Step 3A: Cover all zeros with a minimum u_1 number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it *k*) that is not covered by a line.
 - Subtract k from all uncovered elements.

 u_2

 u_3

- Step 3A: Cover all zeros with a minimum u_1 number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it k) that is not covered by a line.
 - Subtract k from all uncovered elements.
 - Add k to all elements that are covered twice.

v_1	v_2	v_3	v_4
	0		Į.
3	2	0	+2
0	0	1	•
0	0		
U	0	5	+2
1	3	1	ф

 u_2

 u_3

- Step 3A: Cover all zeros with a minimum u_1 number of lines.
- Step 3B: Decide whether to stop.
- Step 3C: Create additional zeros.
 - Find the smallest element (call it k) that is not covered by a line.
 - Subtract k from all uncovered elements.
 - Add k to all elements that are covered twice.

${v}_1$	v_2	v_3	v_4
2	2		+,_
3	2	U	
0	0	1	0
0	0	F	• 7
0	U	3	
1	3	1	ф

- Step 3A: Cover all zeros with a minimum u_1 number of lines.
 - Use either horizontal or vertical lines.
 - Minimize the total number of lines.

Step 3: Repeat the following:

- Step 3A: Cover all zeros with a minimum u number of lines.
- Step 3B: Decide whether to stop.
 - If *n* lines are required, the algorithm stops.

The algorithm stops.

- The edge (u_1, v_3) must be selected.
 - Otherwise, u_1 would have no matching.

	v_1	v_2	v_3	v_4
u_1	3	2		7
u_2	0	0	1	0
u_3	0	0	5	7
u_4	1	3	1	0

- The edge (u_1, v_3) must be selected.
 - Otherwise, u_1 would have no matching.
 - Cover the row of u_1 .
 - Cover the column of v_3 .

	v_1	v_2	v_3	v_4
u_1	3	2		7
u_2	0	0		0
u_3	0	0	5	7
u_4	1	3	1	0

- The edge (u_4, v_4) must be selected.
 - Otherwise, u_4 would have no matching.

	v_1	v_2	v_3	v_4
u_1	3	2		7
u_2	0	0	1	0
u_3	0	0	5	7
u_4	1	3	1	0

- The edge (u_4, v_4) must be selected.
 - Otherwise, u_4 would have no matching.
 - Cover the row of u_4 .
 - Cover the column of v_4 .

	v_1	v_2	v_3	
u_1	3	2		
u_2	0	0	1	0
u_3	0	0	5	7
u_4	1	3		

• Select edges (u_2, v_1) and (u_3, v_2) .

• Select edges (u_2, v_1) and (u_3, v_2) .

• Or select edges (u_3, v_1) and (u_2, v_2) .

• Return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_2, v_1), (u_3, v_2)\}.$$

• Or return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_3, v_1), (u_2, v_2)\}.$$

	v_1	v_2	v_3	v_4
u_1	3	2	(0)	7
u_2	\bigcirc	0	1	0
u_3	0	0	5	7
u_4	1	3	1	0

Return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_2, v_1), (u_3, v_2)\}.$$

• Or return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_3, v_1), (u_2, v_2)\}.$$

	v_1	v_2	v_3	v_4
u_1	3	2	(o)	7
u_2	0	(0)	1	0
u_3	6	0	5	7
u_4	1	3	1	0

• Return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_2, v_1), (u_3, v_2)\}.$$

- The matching is equal to 15.
- Or return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_3, v_1), (u_2, v_2)\}.$$

Return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_2, v_1), (u_3, v_2)\}.$$

- The matching is equal to 15.
- Or return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_3, v_1), (u_2, v_2)\}.$$

• The matching is equal to 15.

Summary

Maximum-Weight Bipartite Matching

- Weighted bipartite graph: $G = (U, V, \mathcal{E})$. (Edges have weights: w_{uv} .)
- Matching is a subset of edges without common vertices.
- Denote the matching by set $S \subseteq \mathcal{E}$.
- Sum of weights in matching S:

$$f(\mathcal{S}) = \sum_{(u,v)\in\mathcal{S}} w_{uv}.$$

• Find matching S that has the maximum weight:

$$\max_{\mathcal{S}} f(\mathcal{S}).$$

- Maximum matching: $\max_{\mathcal{S}} f(\mathcal{S})$.
- Minimum matching: $\min_{\mathcal{S}} f(\mathcal{S})$.
- The maximum matching problem can be reduced to minimum matching problem by flipping the signs of weights.
- Algorithms that solve minimum matching can also solve the maximum matching problem.

Hungarian Algorithm

- Hungarian algorithm finds minimum-weight bipartite matching.
- It requires $|\mathcal{U}| = |\mathcal{V}| = n$.
- Time complexity: $O(n^3)$.

Questions

Question 1

- The right is the adjacency matrix of a bipartite graph.
- Find the minimum matching in the graph.

	v_1	v_2	v_3	v_4	v_5
u_1	20	15	18	24	25
u_2	18	20	12	14	15
u_3	21	23	25	27	26
u_4	17	18	21	23	22
u_5	19	22	16	21	20

Question 2

- The right is the adjacency matrix of a bipartite graph.
- Find the maximum matching in the graph.

	v_1	v_2	v_3	v_4	v_5
u_1	20	15	18	24	25
u_2	18	20	12	14	15
u_3	21	23	25	27	26
u_4	17	18	21	23	22
u_5	19	22	16	21	20

Thank You!