

Università degli studi di Trento

Laboratorio di fisica II

Esperienza 1

MISURE VOLT -AMPEROMETRICHE

Autori: Canteri Marco Biasi Lorenzo Damiani Emily

Professore: William J. Weber

7 ottobre 2015

Abstract

In questa esperienza misureremo il valore di una resistenza analizzando con un tester ICE le differenze di potenziale ai suoi capi e la corrente che gli passa attraverso. Verificheremo quindi il comportamento ohmico di tale resistenza. Lo facciamo in due modi, utilizzando un circuito con amperometro a monte e un circuito con amperometro a valle. Inoltre utilizzeremo due fondo scala diversi per ciascun circuito.

Indice

1 Obiettivi

- Determinare il valore di resistenze tramite misure volt-amperometriche con il tester ICE, in configurazione amperometro "a monte" e "a valle".
- Verificare il comportamento ohmico della resistenza e confrontare i valori ottenuti e le loro incertezze tra di loro e con il valore ottenuto da un multimetro digitale.

2 Strumenti

- Due tester ICE (tolleranza 5% fondoscala)
- resistenza da misurare
- generatore di tensione variabile
- breadboard
- cavi di collegamento

3 Procedura di misura

Abbiamo eseguito 4 misure di resistenza in totale. Le prime due misure sono state eseguite con un circuito con amperomentro a monte rappresentato in figura (1a), le altre due sono state eseguite con amperometro a valle in figura (1b). Entrambe le coppie con 2 fondo scale diverse. Abbiamo effettuato la misura di differenza di potenziale e corrente con due tester ICE. L'incertezza di tali misure sono dovute esclusivamente alla risoluzione ΔX della scala del tester: 5% del fondo scala. Quindi l'incertezza standard è:

$$\sigma X = \frac{\Delta X}{\sqrt{12}}$$

In realtà l'incertezza sulla misura è data anche dalle caratteristiche non ideali dei tester utilizzati. Nella seconda parte abbiamo analizzato i circuiti del tester utilizzato e introdotto alcuni elementi di correzione sulle misure effettuate per avere il valore più corretto della resistenza da misurare.

Figura 1: Circuiti usati per la misura

- 4 Circuito amperometro a monte
- 5 Cirucito amperometro a valle
- 6 Analisi circuito tester ICE

Figura 2: Schema semplificato tester ICE amperometro

Figura 3: Schema semplificato tester ICE voltmetro

6.1 Analisi circuito amperometro a valle

Figura 4: Schema aperometro a valle con generica lancetta collegata a bobina

Il circuito con l'amperometro a valle una volta collegato il circuito dell'amperometro in figura (2) tramite la bocchetta A_i e il circuito del voltmetro in figura (3) può essere schematizzato come nella figura immediatamente sopra. Analizziamo per primo il comportamento dell'amperometro, abbiamo R_x che è la nostra resistenza da misurare, mentre le restanti nel caso $i \neq 6$ sono rispettivamente:

$$R_{sh} = \sum_{k=0}^{i-1} R_{i-k} \qquad R_S = R_A + \sum_{k=1}^{5} R_{k+1}$$
 (1)

Nel caso i=6 valgono semplicemente $R_S=720\,\Omega,R_{sh}=6400\,\Omega$. Per risolvere il circuito utilizziamo la legge di Kirchhoff sulle correnti

$$i = i_{sh} + i_A \tag{2}$$

Inoltre sappiamo dalla legge di Ohm

$$i_{sh} = \frac{\Delta V}{R_{sh}}, \quad i_A = \frac{\Delta V}{R_S} \implies i_{sh} = i_A \frac{R_S}{R_{sh}}$$
 (3)

Se inseriamo l'equazione appena trovata nell'equazione (2) otteniamo

$$i = i_A \left(1 + \frac{R_S}{R_{sh}} \right) = i_A \left(\frac{R_S + R_{sh}}{R_{sh}} \right) = i_A \left(\frac{8000}{R_{sh}} \right)$$
 (4)

La bobina mobile dello strumento che utilizziamo produce una deflessione della lancetta pari al 100% quando è percorso da una corrente di 40 μA , quindi la corrente misurata i_m con un fondo scala FS vale

$$i_m = FS\left(\frac{i_A}{40\,\mu A}\right) \tag{5}$$

Combinando questa equazione con la (4) otteniamo

$$i_m = i \frac{FS \, R_{sh}}{40\mu A \, 8000} \tag{6}$$

Notiamo ora che il prodotto $FSR_{sh} = 0.32$ è sempre costante esattamente uguale a $8000 * 40 \times 10^{-6}$. Per cui

$$i_m = i (7)$$

Ovvero la corrente misurata dall'amperometro è esattamente quella che entra all'interno dell'amperometro e che esce, quindi la corrente misurata è effettivamente la corrente che attraversa la resistenza R_x che dobbiamo misurare e non occorre correggerla.

Analizziamo ora il comportamento del voltmetro, abbiamo che se collegato alla bocchetta B_i con $i \neq 7$

$$R_V = 38740 + \sum_{k=0}^{i-1} R_{V_i} \tag{8}$$

Nel caso i=7 abbiamo semplicemente $R_V=720\,\Omega.$ Utilizzando come prima Kirchhoff possimao scrivere

$$i_v = i_l + i_p \tag{9}$$

Dalla legge di Ohm

$$i_p = \frac{\Delta V'}{6400}$$
 $i_l = \frac{\Delta V'}{1600} \implies i_p = i_l \frac{1600}{6400}$ (10)

Da cui mettendo nella (9)

$$i_v = i_l \left(1 + \frac{1600}{6400} \right) = 1.25 i_l \implies i_l = 0.8 i_v$$
 (11)

Come prima la bobina mobile dello strumento che utilizziamo produce una deflessione della lancetta pari al 100% quando è percorso da una corrente di $40\,\mu A$, quindi la tensione misurata ΔV_m con un fondo scala FS vale

$$V_m = FS\left(\frac{i_l}{40\,\mu A}\right) = FS\left(\frac{0.8i_v}{40\,\mu A}\right) \tag{12}$$

Sia ΔV la differenza di potenziale tra A e B possiamo scrivere con la legge di Ohm e la resistenza efficace R_{eff}

$$i_v = \frac{\Delta v}{R_{eff}} = \frac{\Delta v}{R_V + 1280} \tag{13}$$

La (12) diventa

$$V_m = FS \frac{0.8\Delta V}{(R_V + 1280)40\,\mu A} = \Delta V \frac{FS}{R_V + 1280} \frac{0.8}{40\,\mu A} \tag{14}$$

Adesso basta notare che $FS/(R_V+1280)$ e vale esattamente $0.8/(40\times 10^{-6})$ possiamo concludere quindi

$$\Delta V_m = \Delta V \tag{15}$$

Ovvero la differenza di potenziale misurato dal voltmetro è proprio la differenza di potenziale ai suoi capi.

Però in questo circuito non si misura la d.d.p ai capi della resistenza da misurare, ma ad un capo dell'amperometro e a un capo della resistenza, si può correggere facilemente questa cosa tenendo conto che

$$\Delta V_m = \Delta V_A + \Delta V_R \tag{16}$$

7 Conclusioni

Appendices

A Tabelle dati

$\mathbf{i}[\mathbf{m}\mathbf{A}]$	$\mathbf{\Delta V}[\mathbf{V}]$
0	0
8.5	2.3
15.9	4.1
24	6.1
31.7	8.1
40.4	10
49.8	12.1
56.8	14.3
63.3	16
71.8	18.4

$\mathbf{i}[\mathbf{m}\mathbf{A}]$	$\Delta V[V]$
77.6	20
73.4	18.8
66.2	17
59.4	15
52.4	13.1
44.2	11
36.2	8.9
26.5	6.9
18.9	5.1
-0.5	0

(b) Fondo scala qualcosa

Tabella 1: Misurazioni con circuito amperometro a monte

$\mathbf{i}[\mathbf{m}\mathbf{A}]$	$\Delta V[V]$
0	0
8.5	2.3
15.9	4.1
24	6.1
31.7	8.1
40.4	10
49.8	12.1
56.8	14.3
63.3	16
71.8	18.4

$\mathbf{i}[\mathbf{m}\mathbf{A}]$	$\Delta V[V]$
77.6	20
73.4	18.8
66.2	17
59.4	15
52.4	13.1
44.2	11
36.2	8.9
26.5	6.9
18.9	5.1
-0.5	0

(b) Fondo scala qualcosa

Tabella 2: Misurazioni con circuito amperometro a valle

⁽a) Fondo scala qualcosa

⁽a) Fondo scala qual cos a