Corrigé Type de la série TD N°4

Exercice 1

Primal

• Max
$$Z = 2x1 + 4x2 + 3x3$$

 $3x1 + 4x2 + 2x3 \le 60$
 $2x1 + x2 + 2x3 \le 40$
 $x1 + 3x2 + 2x3 \le 80$
 $x1, x2, x3 \ge 0$

• Min
$$Z = 20x1 + 24x2$$

 $x1 + x2 \ge 30$
 $x1 + 2x2 \ge 40$
 $x1, x2 \ge 0$

• Max
$$Z = 10x1 + 6x2$$

 $x1 + 4x2 \le 40$
 $3x1 + 2x2 = 60$
 $2x1 + x2 \ge 25$
 $x1, x2 \ge 0$

Dual

• Min w =
$$60y1 + 40y2 + 80y3$$

 $3y1 + 2y2 + y3 \ge 2$
 $4y1 + y2 + 3y3 \ge 4$
 $2y1 + 2y2 + 2y3 \ge 3$
 $y1 \ge 0, y2 \ge y3 \ge 0$

• Max
$$w = 30y1 + 40y2$$

 $y1 + y2 \le 20$
 $y1 + 2y2 \le 24$
 $y1 \ge 0, y3 \ge 0$

• Min w =
$$40y1 + 60y2 - 25y3$$

 $y1 + 3y2 - 2y3 \ge 10$
 $4y1 + 2y2 - y3 \ge 6$
 $y1 \ge 0$, $y3 \ge 0$, $y2$ quelconque

Exercice 2

i) Qu'en est-il de l'algorithme dual du simplexe?

L'algorithme dual du simplexe permet de passer d'une solution de base du primal à une autre qui satisfait aux conditions d'optimalité: un vecteur de coût relatif dont les composantes sont non négatives. L'algorithme termine lorsque la solution de base est réalisable pour le primal.

ii) Qu'en est-il de l'algorithme primal-dual?

L'algorithme primal-dual permet de passer à chaque itération d'une solution réalisable pour le problème dual à une autre, et d'une solution irréalisable pour le primal qui satisfait aux conditions d'optimalité (le théorème des écarts complémentaires) à une autre. L'algorithme termine lorsque la solution primale est réalisable.

Exercice 3

1. Donner le dual PL (D) de ce primal (P)

$$Min w = 80y1 + 24y2 + 36y3$$

Sous les contraintes:

$$5y1+y2+3y3 \ge 40$$

 $4y1+2y2+2y3 \ge 50$
 $y1,y2,y3\ge 0$

2. Résoudre le primal PL (P) par le simplexe

Max
$$z = 40x_1 + 50x_2 + 0s_1 + 0s_2 + 0s_3$$

Sous les contraintes:

$$5x_1 + 4x_2 + s_1 = 80$$
$$x_1 + 2x_2 + s_2 = 24$$

$$3x_1 + 2x_2 + s_3 = 36$$

$$x_1 \ge 0, x_2 \ge 0$$

x ₁	X2	s ₁	S ₂	\$3	bi	ratio	base
5	4	1	0	0	80	80/4	\mathbf{s}_1
1	2	0	1	0	24	24/2	S ₂
3	2	0	0	1	36	36/2	S 3
-40	-50	0	0	0	0		•

x ₁	X ₂	\mathbf{s}_1	S ₂	\$3	bi	ratio	base
3	0	1	-2	0	32	32/3	S 1
1/2	1	0	1/2	0	12	12*2	X2
2	0	0	-1	1	12	12/2	S 3
-15	0	0	25	0	600		

X ₁	X2	s ₁	S ₂	\$3	bi	ratio	Base
0	0	1	-1/2	-3/2	14		S 1
0	1	0	3/4	-1/4	9		X2
1	0	0	-1/2	1/2	6		x ₁
0	0	0	17.5 =35/2	7.5 =15/2	690		

La solution est:

$$x_1 = 6, x_2 = 9, s_1 = 14,$$

 $s_2 = 0, s_3 = 0$
 $z = 690$

3. Déduire la solution du dual (D)

A l'optimum, le primal et le dual sont liés par les règles suivantes:

- les fonctions objectifs z et w ont la même valeur optimale z=cx* = y*b=w
- la valeur marginale d'une variable dans un programme est égale à l'opposé de la valeur optimale de la variable associée dans l'autre programme et réciproquement
- les variables du primal $(\mathbf{x_1}, \mathbf{x_2})$, étant toutes différentes de 0, alors les contraintes associées du dual sont saturées, d'où pour le dual à résoudre:

$$5y1+y2+3y3 = 40$$

 $4y1+2y2+2y3 = 50$

- la première variable d'écart $\mathbf{s_1}$ est non nulle donc la première valeur $y_1=0$, d'où le dual à résoudre est : $y_2+3y_3=40$

$$2y2+2y3 = 50$$

	z = 690	x1	x2	s1	s2	s 3
Primal	valeurs optimales	6	9	14	0	0
	valeurs marginales	0	0	0	-17.5	-7.5
Dual	$\mathbf{w} = 690$	t1	t2	y1	y2	y3
	valeurs optimales	0	0	0	17.5	7.5
	valeurs marginales	-6	-9	-14	0	0

Au fait, il n'existe que quatre situations possibles pour une paire de problèmes liés par la dualité :

- 1. Les deux problèmes possèdent des solutions optimales finies (liées par les relations ci-dessus)
- 2. Le problème primal est non borné et le problème dual est impossible
- 3. Le problème primal est impossible et le problème dual est non borné
- 4. Les deux problèmes sont impossibles

Exercice 4

a)
$$\max z = 6x_1 + 5x_2 x_1 + x_2 \le 85x_2 \le 22 x_1 + x_2 \le 85x_2 = 8 (Farine) 5x_2 + s_2 = 22 (Chocolat) 3x_1 + s_3 = 12 (Noix de coco) x_1 , x_2 , s_1 s_2 s_3 \geq 0$$

Forme tableau Coefficients Var									
			Var						
	$ x_1 $	x_2	a_{S_1}	S_2	S3	bi	base		
f			S						
0	1	1	o 1	0	0	8	S ₁		
0	0	5	$\frac{0}{1}$ 0	1	0	22	S2		
0	3	0	u = 0	0	1	12	S3		
1	-6	- 5	^u _t 1	0	0	0	f		
0	0	1	i 1	0	-1/3	4	S_I		
0	0	5	o^{\prime} 0	1	0	22	S_2		
0	1	0	0	0	1/3	4	x_1		
1	0	-5	1	0	0	24	f		
0	0	1	1	0	-1/3	4	x_2		
0	0	0	5	-1	-5/3	-2	s_2		
0	1	0	0	0	1/3	4	x_1		
1	0	0	5	0	1/3	44	f		

$$n \ est : f = 44$$

 $x_1 = 4$
 $x_2 = 4$
 $s_2 = 2$
 $s_1 = 0$
 $s_3 = 0$

b)
max
$$z = 6x_1 + C_2 x_2$$

 $x_2 = 4 - s_1 + (1/3) s_3$
 $x_1 = 4 - (1/3) s_3$
 $z = 6(4 - (1/3) s_3) + C_2 (4 - s_1 + (1/3) s_3)$
 $z - (-s_1C_2) - s_3((1/3) C_2 - 2) = 4(6 + C_2)$
 $\Rightarrow -C_2 \le 0 \Rightarrow C_2 \ge 0$
et $(1/3) C_2 - 2 \le 0 \Rightarrow (1/3) C_2 \le 2 \Rightarrow C_2 \le 6$

On en déduit que $C_2 \in [0, 6]$

c) d'après les coût marginaux, il nous reste en stock 2 quantité de chocolat, donc la quantité minimale pour que plan de fabrication optimal ne soit pas compromis, il faut avoir en réserve 22-2 =20 quantité de chocolat

d)

$$\max z = 6x_1 + 5x_2 + 8x_3$$

 $x_1 + x_2 \le 8$
 $5x_2 + (1/3) x_3 \le 22$
 $3x_1 + (2/3) x_3 \le 12$
 $x_1, x_2, x_3 \ge 0$

e) Déterminer le dual PL* de ce primal PL

$$\max z = 6x_1 + 5x_2$$

$$x_1 + x_2 \le 8$$

$$5x_2 \le 22$$

$$3x_1 \le 12$$

$$x_1 \ge 0, x_2 \ge 0$$

$$\begin{aligned} & \min w = 8y1 + 22y2 + 12y3 \\ & y1 + 5y2 + 3y3 \ge 6 \\ & y1 \ge 22 \\ & y1 \ge 0, \, y2 \ge 0, \, y3 \ge 0 \end{aligned}$$

f) En déduire la solution du dual PL*

$$z = cx^* = y^*b = w$$

Primal	z = 44	x1	x2	s1	s2	s 3
	valeurs optimales	4	4	0	2	0
	valeurs marginales	0	0	-5	0	-1/3
Dual	$\mathbf{w} = 44$	t1	t2	y1	y2	y3
	valeurs optimales	0	0	5	0	1/3
	valeurs marginales	-4	-4	0	-2	0