

ESTÁNDAR IEEE 754

Método de la secante

Métodos numéricos Universidad San Buenaventura Cali

MÉTODO DE LA SECANTE

El método de la secante parte de dos puntos (y no sólo uno como el método de Newton) y estima la tangente (es decir, la pendiente de la recta) por una aproximación de acuerdo con la expresión:

$$f'(x_0) = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Sustituyendo esta expresión en la ecuación $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ del método de Newton, obtenemos la expresión del método de la secante que nos proporciona el siguiente punto de iteración:

$$x_2 = x_1 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_0)$$

EJEMPLO:

Efectuaremos tres iteraciones para la función $f(x)=e^{-x^2}-x$ con $x_0=0$ y $x_1=1$ y hasta que $|E_a|<1\%$

SOLUCIÓN:

Sustituimos los valores de x en la función así que tenemos que

$$f(x_0) = 1$$
$$f(x_1) = -0.632120558$$

Sustituimos en la fórmula de la secante esos valores para calcular la primera aproximación, que denotamos como x_2

$$x_2 = x_1 - \frac{f(x_1)(x_0 - x_1)}{f(x_0) - f(x_1)} = 1 - \frac{(-0.632120558)(0 - 1)}{1 - (-0.632120558)} = 0.612699837$$

Ahora vamos a calcular el error aproximado:

$$|E_a| = \left| \frac{x_2 - x_1}{x_2} * 100\% \right| = \left| \frac{0.612699837 - 1}{0.612699837} * 100\% \right| = 63.2\%$$

Todavía no cumplimos nuestro objetivo, así que nos tocaría repetir el proceso de nuevo desde la sustitución de valores, usando x_1 y x_2 en vez de x_0 , hallando un nuevo punto, que llamaríamos x_3 , y así sucesivamente.

Continuamos el proceso hasta cumplir el objetivo. En la siguiente tabla resumiremos los resultados obtenidos hasta ahora:

APROX. A LA RAÍZ	ERROR APROX.
0	
1	100%
0.612699837	63.2%
0.653442133	6.23%
0.652917265	0.08%

Por lo tanto, concluimos que la aproximación a la raíz es $x_4 = 0.652917265$ con $|E_a| = 0.08\%$