Lecture Summary: The Gram-Schmidt Process

Source: The Gram-Schmidt process.pdf

Key Points

• Definition of Gram-Schmidt Process:

- The Gram-Schmidt process converts any basis $\{x_1, x_2, \ldots, x_n\}$ of an inner product space into an orthonormal basis $\{w_1, w_2, \ldots, w_n\}$.
- An orthonormal basis is a set of mutually orthogonal vectors, each with norm 1:

$$\langle w_i, w_i \rangle = 0$$
 for $i \neq j$, $||w_i|| = 1$.

• Procedure for Gram-Schmidt Process:

- 1. Start with a basis $\{x_1, x_2, \ldots, x_n\}$.
- 2. Define $v_1 = x_1$ and $w_1 = \frac{v_1}{\|v_1\|}$.
- 3. For $i \geq 2$, define:

$$v_i = x_i - \sum_{j=1}^{i-1} \langle x_i, w_j \rangle w_j, \quad w_i = \frac{v_i}{\|v_i\|}.$$

4. The result is an orthonormal basis $\{w_1, w_2, \dots, w_n\}$.

• Key Concepts:

- The Gram-Schmidt process relies on projections to iteratively remove components of x_i in the direction of the previous orthonormal vectors.
- Each v_i is orthogonal to all v_j for j < i, ensuring orthogonality.

• Examples:

- Example in \mathbb{R}^3 : Starting basis $\{(1,2,2),(-1,0,2),(0,0,1)\}$:
 - * Step 1: $v_1 = (1, 2, 2), w_1 = \frac{1}{3}(1, 2, 2).$
 - * Step 2: $v_2 = (-1, 0, 2) \langle (-1, 0, 2), w_1 \rangle w_1$.

$$\langle (-1,0,2), w_1 \rangle = \frac{1}{3}(-1 \cdot 1 + 0 \cdot 2 + 2 \cdot 2) = \frac{3}{9}.$$

$$v_2 = (-1, 0, 2) - \frac{1}{3}(1, 2, 2) = (-\frac{4}{3}, -\frac{2}{3}, \frac{4}{3}), \quad w_2 = \frac{1}{3}(-4, -2, 4).$$

* Step 3: $v_3 = (0,0,1) - \langle (0,0,1), w_1 \rangle w_1 - \langle (0,0,1), w_2 \rangle w_2$.

$$w_3 = \frac{1}{3}(2, -2, 1).$$

* Orthonormal basis:

$$\left\{\frac{1}{3}(1,2,2),\frac{1}{3}(-4,-2,4),\frac{1}{3}(2,-2,1)\right\}.$$

• Applications of Gram-Schmidt Process:

- Converting any basis into an orthonormal basis for simplified computations in linear algebra.
- Facilitating projections and decompositions, such as in QR decomposition of matrices.
- Useful in functional analysis, signal processing, and data science.

Simplified Explanation

Gram-Schmidt Process: A step-by-step method to convert any basis into an orthonormal basis by iteratively removing components along previous directions.

Example in \mathbb{R}^3 : Start with (1,2,2), (-1,0,2), (0,0,1):

- Normalize (1,2,2) to get the first orthonormal vector.
- Subtract projections to make (-1,0,2) orthogonal to (1,2,2), then normalize.
- Repeat for (0,0,1) to make it orthogonal to both previous vectors, then normalize.

Applications: The Gram-Schmidt process is critical in transforming vector spaces, enabling simplified calculations, particularly with projections and decompositions.

Conclusion

In this lecture, we:

- Defined the Gram-Schmidt process.
- Demonstrated its use in generating orthonormal bases from arbitrary bases.
- Highlighted applications in linear algebra and computational mathematics.

The Gram-Schmidt process is a foundational tool in linear algebra, widely used in both theoretical and applied contexts.