高三数学参考答案及评分意见

一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.

题号	1	2	3	4	5	6	7	8
答案	С	В	D	С	A	D	A	В

二、选择题: 本题共 4 小题,每小题 5 分,共 20 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.

题号	9	10	11	12	
答案	ACD	AC	ABD	ABD	

三、填空题:本题共4小题,每小题5分,共20分.

13. 180 14.
$$\frac{4\sqrt{21}\pi}{3}$$
 15. $\sqrt{3}$ 16. $\left(\frac{3}{2}, +\infty\right)$

四、解答题: 本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

17. (10分)

解: (1) 在 $\triangle ABC$ 中,由余弦定理 $a^2 = b^2 + c^2 - 2bc \cos A$ 得

(2) 因为 $AC \perp AD$, 所以 $\angle CAD = 90^{\circ}$,

因为
$$\angle BAD = 45^{\circ}$$
,所以 $S_{\triangle ABD} = \frac{1}{2}AB \cdot AD \cdot \sin \angle BAD = \frac{1}{2} \times \sqrt{2} \times \frac{2}{3} \times \frac{\sqrt{2}}{2} = \frac{1}{3}$.

 \cap	\triangle	
. ()	711	

18. (12分)

* **		
解: (1)证明: 在四棱锥	$ABCD - A_1B_1C_1D_1 +$	$:: AB // CD$, $CD \subset $ 平面 ABB_1A_1 ,
$AB \subset $ 平面 ABB_1A_1 , ∴ C	CD//平面ABB ₁ A ₁ .	2 分
$\because AA_{1}/\!\!/DD_{1}, DD_{1} \not\subset \Psi$	面 $ABB_{l}A_{l},AA_{l}$ 二平面	$\tilde{A}BB_{1}A_{1}$,
$\therefore DD_1 /\!\!/ $ 平面 ABB_1A_1 .		3 分
\mathbb{X} :: $DC \cap DD_1 = D$,	严面ABB ₁ A ₁ // 平面CD	DD_1C_1 ,
$\because CD_1 \subset $ 平面 CDD_1C_1 ,	∴ CD ₁ //平面ABB ₁ A ₁ .	5 分
(2) $:: AA_1 \perp $ 平面 $ABCD$,	$AB \perp AD$,可得 AA_1 ,	AB,AD 两两垂直,
以 AD, AB, AA ₁ 所在直线	线分别为 x 轴, y 轴,	z 轴,建立空间直角坐标系 $A-xyz$.
$\because CD_1$ 与平面 $ABCD$ 所	f成角为∠ D₁CD ,∴∠I	$D_1CD=60^0.$
$\because CD = 2, \therefore DD_1 = 2\sqrt{2}$	$\overline{3}$. \mathbb{X} :: $AB = 2CD = 4$	AD = 3,
A(0,0,0), B(0,4,0),	$C(3,2,0), B_1(0,4,2\sqrt{2})$	$(\overline{3}), D_1(3,0,2\sqrt{3}). \dots 7 $
设平面 ACD ₁ 的法向量	$m = (x, y, z), \because \overrightarrow{AC} =$	$=(3,2,0), \overrightarrow{AD_1}=(3,0,2\sqrt{3}),$
$\therefore \mathbf{m} \cdot \overrightarrow{AC} = 0, \mathbf{m} \cdot \overrightarrow{AD_1} =$	= 0,	
所以 $\begin{cases} 3x + 2y = 0, \\ 3x + 2\sqrt{3}z = 0 \end{cases}$	$\Leftrightarrow z = -\sqrt{3}$,得 $x = 2$,	y = -3,
可得 $\boldsymbol{m} = (2, -3, -\sqrt{3}).$		9分
设平面 BCC_1B_1 的法向量	$x \mathbf{n} = (x, y, z), \because \overrightarrow{BB_1}$	$= (0,0,2\sqrt{3}), \overrightarrow{BC} = (3,-2,0),$
所以 $\begin{cases} 2\sqrt{3}z = 0\\ 3x - 2y = 0 \end{cases}$, 令 x	$z=2$, \emptyset $y=3, z=0$,	
可得 $\mathbf{n} = (2,3,0)$.		·······11 分

因为
$$\left|\cos\langle m,n\rangle\right| = \left|\frac{m\cdot n}{|m||n|}\right| = \frac{5\sqrt{13}}{52}$$

19. (12分)

 $x \in (m,+\infty)$ 时有 f'(x) > 0, 所以 f(x) 在(0,m) 上单调递减,

综上可得,当 $m \le 0$ 时,f(x)在 $(0,+\infty)$ 上单调递增;

当
$$m > 0$$
时, $f(x)$ 在 $(0,m)$ 上单调递减,在 $(m,+\infty)$ 上单调递增. ······5 分

(2) 证明: 当m > 0时,要证 $mf(x) \ge 2m - 1$ 成立,

只需证
$$f(x) \ge \frac{2m-1}{m} = 2 - \frac{1}{m}$$
成立,

因为
$$m > 0$$
,由(1)知, $f(x)_{\min} = f(m) = 1 + \ln m$.

由
$$g'(m) = \frac{1}{m} - \frac{1}{m^2} = \frac{m-1}{m^2}$$
,可得 $m \in (0,1)$ 时有 $g'(m) < 0$, $m \in (1,+\infty)$ 时有 $g'(m) > 0$,所以 $g(m)$ 在 $(0,1)$ 上单调递减,在 $(1,+\infty)$ 上单调递增,

所以有 $1+\ln m \ge 2-\frac{1}{m}$,从而当m>0时, $mf(x)\ge 2m-1$ 成立. …………12 分

20. (12分)

解: (1) 由题意得:
$$\frac{S_n}{a_{n+1}} - \frac{S_n}{a_n} = -\frac{1}{2}$$
,

又
$$a_1 = 1$$
, 所以 $\frac{S_1}{a_1} = 1$,

所以数列 $\left\{\frac{S_n}{a_n}\right\}$ 是以 1 为首项, $\frac{1}{2}$ 为公差的等差数列,

所以
$$S_{n+1} = \frac{n+2}{2} a_{n+1}$$
, 两式相減得 $a_{n+1} = \frac{n+2}{2} a_{n+1} - \frac{n+1}{2} a_n$, 即 $\frac{n}{2} a_{n+1} = \frac{n+1}{2} a_n$,

因为
$$\frac{1}{\sqrt{n}\cdot(n+1)} = \frac{1}{\sqrt{n}\cdot\sqrt{n+1}\cdot\sqrt{n+1}} = \frac{1}{\sqrt{n+1}}\cdot\frac{1}{\sqrt{n}\cdot\sqrt{n+1}}$$

$$= \frac{1}{\sqrt{n+1}} \times \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right) \times \frac{1}{\sqrt{n+1} - \sqrt{n}} = \frac{1}{\sqrt{n+1}} \times \left(\sqrt{n+1} + \sqrt{n}\right) \times \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)$$

$$< 2\left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right), \qquad 10$$

$$\Rightarrow \qquad 10$$

$$\Rightarrow \qquad 10$$

$$< \sqrt{2}\left[\left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \dots + \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)\right] = \sqrt{2}\left(1 - \frac{1}{\sqrt{n+1}}\right) < \sqrt{2}.$$

21. (12分)

所以由概率乘法公式得:
$$P(X_1 = 0) = \frac{1}{3} \times \frac{2}{3} = \frac{2}{9}$$
, $P(X_1 = 1) = \frac{1}{3} \times \frac{1}{3} + \frac{2}{3} \times \frac{2}{3} = \frac{5}{9}$, $P(X_1 = 2) = \frac{2}{3} \times \frac{1}{3} = \frac{2}{9}$.

所以 X_1 的分布列为:

X_1	0	1	2	
P	$\frac{2}{9}$	$\frac{5}{9}$	$\frac{2}{9}$	••••••

····3 分

(2) 由全概率公式可知:

$$\mathbb{X} a_1 = P(X_1 = 1) = \frac{5}{9}$$
,

所以数列 $\left\{a_n - \frac{3}{5}\right\}$ 是以 $a_1 - \frac{3}{5}$ 为首项,以 $-\frac{1}{9}$ 为公比的等比数列,

所以
$$a_n - \frac{3}{5} = \left(-\frac{2}{45}\right) \times \left(-\frac{1}{9}\right)^{n-1} = \frac{2}{5} \times \left(-\frac{1}{9}\right)^n$$
,即 $a_n = \frac{3}{5} + \frac{2}{5} \times \left(-\frac{1}{9}\right)^n$ ………7分

(3) 由全概率公式得:

$$P(X_{n+1} = 2) = P(X_n = 1)P(X_{n+1} = 2 \mid X_n = 1) + P(X_n = 2)P(X_{n+1} = 2 \mid X_n = 2)$$
$$+P(X_n = 0)P(X_{n+1} = 2 \mid X_n = 0)$$

$$= \left(\frac{2}{3} \times \frac{1}{3}\right) \times P\left(X_n = 1\right) + \left(\frac{1}{3} \times 1\right) \times P\left(X_n = 2\right) + 0 \times P\left(X_n = 0\right),$$

$$\mathbb{X} a_n = \frac{3}{5} + \frac{2}{5} \times \left(-\frac{1}{9}\right)^n,$$

所以
$$b_{n+1} = \frac{2}{9} \times \left[\frac{3}{5} + \frac{2}{5} \times \left(-\frac{1}{9} \right)^n \right] + \frac{1}{3} b_n$$
,

22. (12分)

解: (1) 设
$$P$$
 点坐标为 (x,y) ,则由题意得: $|y+\frac{1}{4}| = \sqrt{x^2 + \left(y - \frac{1}{4}\right)^2}$,2 分

整理得: $y = x^2$.

(2) 如图,不妨设三个顶点中有两个在y轴右侧(包括y轴),且设A、B、C

三点的坐标分别为 (x_1, y_1) 、 (x_2, y_2) 、 (x_3, y_3) ,BC的斜率为k(k>0),则有

又A、B、C三点在抛物线W上,

所以
$$y_1 = x_1^2$$
, $y_2 = x_2^2$, $y_3 = x_3^2$,

由于|AB|=|BC|,

$$\mathbb{E}\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=\sqrt{\left(x_{3}-x_{2}\right)^{2}+\left(y_{3}-y_{2}\right)^{2}}\text{ ,}$$

所以
$$\frac{1}{k} + 2x_2 = k(k - 2x_2), \quad k^2 - \frac{1}{k} = (2k + 2)x_2 \ge 0,$$

所以正方形边长为

$$\sqrt{1+k^2}(x_3-x_2) = \sqrt{1+k^2}(k-2x_2)$$

$$=\sqrt{1+k^2}\left[k-\frac{k^3-1}{k(k+1)}\right]$$

当且仅当k=1时, 即B点为原点时等号成立.