A. Timon and Pumbaa

time limit per test: 1 second
memory limit per test: 256 megabytes

Timon has a candies and his friend, Pumbaa, has b candies, so Pumbaa asked Timon to tell him the value of a - b. However, Timon will tell him the value of a - b if the value is ≥ 0 ; otherwise, he will lie and say 0. Since it was a hard task for Timon, he's asking for your help.

Given two numbers a and b, find the answer.

Input

Only one line containing two numbers a, b ($1 \le a, b \le 10^9$).

Output

Print the answer as specified in the statement.

Examples

input	Сору
9 1	
output	Сору
8	
input	Сору
1 9	
output	Сору

B. Drawing 'X'

time limit per test: 1 second
memory limit per test: 256 megabytes

Some day, an artist wanted to draw an X mark on the wall in a fashionable way.

He wanted to do so by grouping snippets of slashes I, backslashes I, asterisks * and a capital **X** letter in an $N \times N$ square as shown in the sample. Can you help him?

Input

Only one line containing one odd number N ($3 \le N \le 49$).

Output

Print the fashionable drawing.

Example

C. Finding Minimums

time limit per test: 1 second

memory limit per test: 256 megabytes

You are given N numbers, and you should divide them into consecutive groups of size K, then print the minimum among each group. If the last group is of size < K, print the minimum number found just after the last number received.

For more explanation, see the notes.

Input

First line contains two numbers N_1K ($1 \le K \le N \le 10^5$) – the number of values, and the range length after which you should print the minimum.

Second line contains N numbers ($-10^9 \le x \le 10^9$).

Output

Print the answer in a single line.

Examples

input	Сору
8 3 4 -1 2 3 5 8 2 7	
output	Copy
-1 0 2	
input	Сору
8 4 4 -1 2 3 5 8 2 7	
output	Сору

-1 e Note

In the first test case:

- 1. The minimum number among [4, -1, 2] is -1.
- The minimum number among [3, 5, 0] is 0.
- 3. The minimum number among [2, 7] is 2.

4	-1	2	3	5	0	2	7
4	-1	2	3	5	0	2	7
	-1			0			2

In the second test case:

- 1. The minimum number among [4, -1, 2, 3] is -1.
- 2. The minimum number among [5, 0, 2, 7] is 0.

D. Range Sum

time limit per test: 1 second€

memory limit per test: 256 megabytes

You are given a range represented by two integers L and R, and you should find the sum of the numbers in the range between L and R inclusive.

Input

First line contains a number T ($1 \leq T \leq 10^5$) – the number of test cases.

Each of the next T lines contains two numbers L, R ($1 \le L, R \le 10^9$).

Output

For each test case, print the sum.

Example

E. Hady Rides the Train

time limit per test: 0.5 seconds

memory limit per test: 256 megabytes

Hady wants to ride a train. He knows his seat number, but he doesn't know the corresponding row or column number of his seat. However, he knows that each row consists of exactly 4 seats. The train seats are numbered from zero as shown in the figure:

Given the seat number, can you find the corresponding row and column numbers of the seat?

Input

Only one line containing td ($0 \le td \le 10^{18}$) – the seat number.

Output

The row and column numbers of the seat.

The row and column numbers of the seat.	
Examples	
input	Сору
S	
output	Copy
1 2	
input	Сору
2	
output	Copy
0 2	
input	Copy
0	
output	Copy
5.5	

V Company of the Comp	
output	Сару
0 0	
input	Сару
13	
output	Сару
3 2	

F. Break Number

time limit per test: 1 second[®] memory limit per test: 256 megabytes

Let's define f(x) as the number of times at which the integer x can be divided by 2.

You are given N numbers, and you should print the maximum f(x) among all these numbers.

Input

The first line contains one number N ($1 \le N \le 10^5$).

The second line contains N space-separated numbers where each number is between 1 and 10^{18} (inclusive).

Output

Print the maximum f(x) among all numbers.

Examples

input	Сору
3 18 24 7	
output	Сору
3	

input	Сору
4 14 7 9 5	
output	Сору
1	

Note

In the first test case:

- 1. f(18) is equal to 1; because we can divide 18 by 2 resulting in 9, but we cannot divide 9 by 2 (9 is not divisible by 2).
- 2. f(24) is equal to 3; because we can divide 24 by 2 resulting in 12; again we can divide 12 by 2 (12 is divisible by 2) resulting in 6; again we can divide 6 by 2 (6 is divisible by 2) resulting in 3, but we cannot divide 3 by 2 (3 is not divisible by 2); so we could divide 24 three times.
- 3. f(7) is equal to 0; because we cannot divide 7 by 2.

G. Construct the Sum

time limit per test: 1 second[©] memory limit per test: 256 megabytes

You are given two integers n and s, and you have to find distinct positive integers, such that each of them is $\leq n$, and their summation = s. Otherwise, state that this is impossible.

Input

The first line contains a number T ($1 \le T \le 100$) – number of test cases.

Each of the next T lines contains two space-separated integers n, s ($1 \le n \le 10^5, 1 \le s \le 10^{18}$).

Output

For each test case, if there is no possible answer, print -1 on a single line. Otherwise, print the set of numbers that satisfy the above condition on a single line. You can print the numbers in any order. If there are multiple answers, you can print any of them.

Example

input	Сору
4	
5 3	
7 10 6 4 2 10	
6 4	
2 10	
output	Сору
2 1	
2 1 4 3 2 1	
3 1	
-1	

H. Simple Mod

time limit per test: 1 second[©] memory limit per test: 256 megabytes

Hady has a positive number N and a simple equation:

$$(X^2+Y^2) \operatorname{MOD} N=0$$

Your task is to find any values for X, Y that satisfy the equation, such that X and Y are non-negative integers.

Input

Only one integer N ($1 \le N \le 10^{100}$).

Output

If you can find any two non-negative integers such that $(X,Y \leq 10^9)$, print them. Otherwise, print "No solutions".

Examples

input	Сору
5	
output	Сору
4 3	
input	Сору
100000100	
output	Сору
10 10000	
input	Сору
50	
output	Сору
5 5	