Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУКЗ «Системы автоматического управления»

ОТЧЁТ

ДОМАШНЯЯ РАБОТА № 2

«Исследование устойчивости линейных систем автоматического управления»

ДИСЦПЛИНА: «Общая теория автоматического управления»

Выполнил: студент гр. ИУК3-51Б	(Подпись)	(Смирнов Ф.С.) (Ф.И.О.)
Проверил:	(Подпись)	(Корнюшин Ю.П.) (Ф.И.О.)
Дата сдачи (защиты):		
Результаты сдачи (защиты):		
• , ,	- Балльная оценка:	
	- Оценка:	

Рис. 1. Структурная схема системы

1) Найдем передаточную функцию всей системы

$$\begin{split} W_p(s) &= \frac{_{K(s+1)}}{_{10,8*10^8(s+8)s^2}}; W(S)_{\mathfrak{I}} = \frac{_{W_{np}}}{_{1+W_{pas}}}; \\ W(S)_{\mathfrak{I}} &= W(s)_{\mathfrak{I}} = \frac{K(s+1)}{\left(10.8*10^8(s+8)s^2 + K(s+1)\right)} \\ &\qquad \qquad A(s) = 10.8*10^8(s^3+8s^2) + K(s+1) \\ a_0 &= 10.8*10^{\wedge}8, a_1 = K, a_2 = 86.4*10^{\wedge}8, a_3 = 10.8*10^{\wedge}8; \\ \mathbf{a}_{\mathsf{I}} &> 0; \text{ при K>0}. \end{split}$$

Составим матрицу Гурвица

$$G = \begin{pmatrix} a_1 & a_3 & 0 \\ a0 & a_2 & 0 \\ 0 & a_1 & a_3 \end{pmatrix} = \begin{pmatrix} K & 10.8 * 10^8 & 0 \\ 10.8 * 10^8 & 86.4 * 10^8 & 0 \\ 0 & K & 10.8 * 10^8 \end{pmatrix}$$

По критерию Гурвица для того, чтобы система была устойчива необходимо и достаточно, чтобы все определители на главной диагонали были больше нуля ($\forall \Delta_i > 0$). Найдем все миноры на главной диагонали:

$$\begin{split} & \Delta_1 = |K| = K > 0, \\ & \Delta_2 = \begin{pmatrix} K & 10.8 * 10^8 8 \\ 10.8 * 10^8 8 & 86.4 * 10^8 8 \end{pmatrix} = K * 86.4 * 10^8 8 - 10.8^2 * 10^{16} > 0; \\ & \Delta_3 = \begin{pmatrix} K & 10.8 * 10^8 8 & 0 \\ 10.8 * 10^8 8 & 86.4 * 10^8 8 & 0 \\ 0 & K & 10.8 * 10^8 \end{pmatrix} = 75.6 * 10^16 * K^2. \\ & \begin{cases} K > 0, \\ K < 125000 \\ K > 0 \end{cases} \end{split}$$

будет устойчива при $K \in [0; 125000]$

Воспользуемся критерием Михайлова.

$$a_0 = 10.8 * 10^8, a_1 = K, a_2 = 86.4 * 10^8, a_3 = 10.8 * 10^8;$$

 $A(j\omega) = (j\omega)^3 + K(j\omega)^2 + 86.4 * 10^8 j\omega + 10.8 * 10^8 = 10.8 * 10^8 + 10^8 j\omega + 10.8 * 10^8 + 10^8 j\omega + 10.8 * 10^8 j\omega +$

Ищем корни действительной и мнимой части:

$$V(\omega) = 0,$$

$$-\omega^{3} + 86.4 * 10^{8} = 0;$$

$$\omega(\omega^{2} - 86.4 * 10^{8}) = 0$$

$$\omega_{0} = 0; \omega_{1} = \sqrt{86.4 * 10^{8}};$$

$$U(\omega) = 0,$$

$$K\omega^{2} - 10.8 * 10^{8}$$

$$\omega_{2} = -\sqrt{10.8 * 10^{8}};$$

Из условия

 $\omega_0 < \omega_1 < \omega_2$, Получаем что система будет устойчива при $K \in [125000; +\infty]$

2) Построим годограф Михайлова для значения коэффициента передачи разомкнутой системы равного половине его граничных значений.

$$K_{cp} = \frac{125000}{2} = 6250$$

w=0:0.1:1;

K=6250

 $A=(K*w.^2-10.8*10^8)+1i*(w.^3+86.4*10^8*w);$

plot(real(A),imag(A)), grid on

Рис. 2. Годограф Михайлова для значения коэффициента передачи K_{cv} =6250

Из рисунка видно, что при $K=K_{cp}$ система устойчива, т.к. $\Delta \arg A\ (j\omega)|_{\omega=0}^{\infty}=n^{\frac{\pi}{2}}=3^{\frac{\pi}{2}}$, где n=3 — порядок передаточной функции.

3) Построим график переходной функции

Для К=12500 найдем переходную функцию по второй теореме разложения.

$$h(t) = L^{-1} \left\{ \frac{W_3(S)}{S} \right\} = L^{-1} \left\{ \frac{B(S)}{A(S)} \right\},$$

$$h(t) = \sum_{k=1}^{5} \frac{B(S_k)}{A'(S_k)} e^{S_k t}$$

$$\frac{12500(s+1)}{\left(10.8 * 10^8 (s+8) s^2 + 12500(s+1)\right)}$$

Корни знаменателя A(S) = 0

-1.0800 + 0.0000i; S_20 ; $S_3=-0$; S_40 ; $S_5=-0$;

Рис. 3. График переходной функции для значения коэффициента передачи K =12500 Определим время регулирования. Для этого найдем h_{ycm} :

$$h_{ extit{ycm}} = \displaystyle \lim_{t o \infty} \! h(t) = 1$$
 (Из уравнения)

Вычислим
$$\Delta=0.05h_{ycm}=0.05\cdot 1=0.05$$
. Т.к $\left|h_{y\mathrm{CT}}-h(t_{\mathrm{per}})\right|<\Delta$, то $h(t_{per})\in[h_{ycm}-\Delta;h_{ycm}+\Delta]=[0.95;1.05]$.

Находим время регулирования согласно рис.3 . $t_{per} \approx 220~ce\kappa$.

Рис.4. График переходной функции

Определим перерегулирование системы: $\sigma = \frac{hycm_{max}}{h_{ycm}}$

Значение h_{max} найдем по Рис.4. h_{max} =1.64

Перерегулирование системы составляет $\sigma = 61\%$.

Максимальное значение h(t) показано на рис. 5.

Рис. 5. Максимальное значение h(t)

4) Определим запас устойчивости по фазе и амплитуде для значения коэффициента передачи разомкнутой системы равного половине его граничных значений.

$$K_{cp} = 6250.$$

$$\frac{6250(s+1)}{(10.8*10^8(s+8)s^2 + K(s+1))}$$

$$W_p(j\omega) = \frac{6250(j\omega) + 6250}{(-8*10.8*10^8\omega^2) + j(6250\omega - 10.8*10^8\omega^3)}$$

График частотной передаточной функции в близи точки [-1;0j] изображен на рис. 6 и 7.

Рис. 6. График АФЧХ

Рис. 7. График частотной передаточной функции в близи точки [-1;0j] Из графика $\cos \varphi = \frac{0,87}{1}$, $\varphi = \arccos \frac{0,87}{1} \approx 30^\circ$, $h \approx 0,5$.

Рис. 8. График ФЧХ,ЛАЧХ

$$arphi=rac{\pi-2.6}{\pi}180^{\circ}pprox31^{\circ}$$
, $hpprox-15$ дБ

5) Построим траектории движения полюсов передаточной функции системы при изменении коэффициента передачи разомкнутой системы.

Траектории движения полюсов при изменении К от 0 до 464 показаны на рисунке.

6) Определим приемлемое значение коэффициента передачи *К*, при котором перерегулирование не превосходит 30%.

$$\sigma = rac{h_{
m VCT}_{max}}{h_{
m VCT}} \;\; h_{max}$$
 K=6500; (Из графика)

Рис. 40. График h(t) при K=65000

Выводы

При увеличении коэффициента передачи К прямой цепи быстродействие замкнутой системы уменьшается и увеличивается колебательность.