

Erebus Labs

STEM SENSORS

BUDGET

Version 1.3 *2/1/2014*

SCOTT LAWSON BRYAN BUTTON CHRIS CLARY MAX COPE

VERSION HISTORY

Version #	Implemented By	Revision Date	Reason
1.3	Scott Lawson	2/1/2014	Fixed Header and cover sheet typos Split Total Anticipated Budge & Remaining Costs
1.2	Scott Lawson	1/31/2014	Added development boards cost to section 2.2 Fixed type in BOM costs
1.1	Scott Lawson	1/30/2014	Changed to Standardized Format Added microcontroller costs
1.0	Scott Lawson	1/28/2014	Initial Release

NOTE TO READER

This is a template obtained from:

http://www2.cdc.gov/cdcup/library/templates/default.htm

Template Name: Product Design

UP Template Version: 12/31/07

TABLE OF CONTENTS

1	INTRO	DDUCTION	5
	1.1	Purpose of The Document	5
	1.2	Objective Statement	5
	1.3	Overview	5
2	DEVE	LOPMENT COSTS	6
	2.1	Ledger	6
	2.2	Remaining Costs	7
	2.3	Total Anticipated Budget	8
3	вом о	COSTS	9
A	PPEND	IX A: GLOSSARY	
	A.1	Acronyms	10
	A.2	System Architecture	10

1 INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

This document describes the budget allotted and cost estimations for the Erebus Labs STEM Sensor. This document is intended to be a living document. As such, it should be updated whenever new budget-related information is available. The reader should be aware that information contained in this document may change at any time.

1.2 OBJECTIVE STATEMENT

Encourage an interest in STEM in K-12 students by delivering a working prototype of an affordable, simple and flexible device to collect environmental data.

1.3 **OVERVIEW**

This document is divided into two sections:

1. Development Costs

This section contains estimated costs related to the development of the STEM Sensor. This section is further divided into two sections: a ledger to track purchases that have already been made, and expected future costs.

2. Bill of Materials Costs

These are costs associated with the production of a single sensor unit, excluding amortized development costs. As design/part decisions are made, the BOM will be updated to reflect those decisions, and the ranges will be replaced with known values.

2 DEVELOPMENT COSTS

2.1 **LEDGER**

Date Entered Item Part # Cost (Ea) Quantity Ext. Co 2/1/2014 PSoC3 Development Board CY8CKIT-030 \$0.00 2 \$0.00 2/1/2014 PSoC3 Development Board CY8CKIT-030 \$89.00 2 \$178 2/1/2014 PSoC MiniProg 3 CY8CKIT-002 \$0.00 4 \$0
2/1/2014 PSoC3 Development Board CY8CKIT-030 \$89.00 2 \$178
Total \$178

2.2 **REMAINING COSTS**

When purchases are made and entered into the ledger, this table should be updated to reflect the expected remaining costs.

Item	Cost (Ea)	Quantity	Ext. Cost	Cost Factors	
Sensor	1.00 - 25.00	5 – 8	$5.00 - 50.00_1$	Type, Quantity of each type	
μController	0	5 – 8	0.00	PSoC3 – Free samples anticipated	
Batteries	0.75 - 12.00	$5 - 16_2$	$12.00 - 60.00_2$	Rechargeable, composition, form factor	
Passives ₄	0.05 - 2.00	50 – 100	$20.00 - 30.00_1$	Values and tolerances required	
Interfaces ₅	0.50 - 8.00	16 – 25	8.00 - 50.00	Wireless vs. Wired	
PCBs ₆	4.00 – 18.00	4 – 6	24.00 - 48.00	PCB Area, sensor requirements	
Other SI ₇	0.50 - 2.00	16 – 30	$8.00 - 50.00_1$	Battery selection, sensor output	
Packaging	3.00 - 75.00	2-3	9.00 - 225.00	Materials: laser-cut acrylic vs. 3D-printer	
Total: 100.00			100.00 - 500.00		

- 1. Extended cost does not scale linearly with quantity because it is assumed that the maximum quantity would not be entirely comprised of the most expensive components.
- 2. Quantity and extended cost assume either a small amount of expensive rechargeable proprietary batteries, or a larger amount of cheap (AA or 9V) batteries.
- 3. Resistors, capacitors, inductors, LEDs
- 4. Antennas, transceivers, receivers, cable jacks
- 5. Assumes a PCB for the base unit as well as separate PCBs for the interchangeable sensors.

 Example: Minimum extended cost is based on a 2in x 2in base unit PCB with two 1in x 1in sensor PCBs at \$2.00 per square inch, x2 prototypes.
- 6. Other semiconductors: op-amps, voltage regulators, discrete transistors

2.3 TOTAL ANTICIPATED BUDGET

Item	Cost (Ea)	Quantity	Ext. Cost	Cost Factors	
Sensor	1.00 - 25.00	5 – 8	$5.00 - 50.00_1$	Type, Quantity of each type	
μController	1.50 - 5.00	5 – 8	7.50 – 40.00	Onboard Features, power consumption	
Batteries	0.75 – 12.00	$5 - 16_2$	$12.00 - 60.00_2$	Rechargeable, composition, form factor	
Passives ₄	0.05 - 2.00	50 – 100	$20.00 - 30.00_1$	Values and tolerances required	
Interfaces ₅	0.50 - 8.00	16 – 25	8.00 - 50.00	Wireless vs. Wired	
PCBs ₆	4.00 – 18.00	4 – 6	24.00 - 48.00	PCB Area, sensor requirements	
Other SI ₇	0.50 - 2.00	16 – 30	$8.00 - 50.00_1$	Battery selection, sensor output	
Packaging	3.00 – 75.00	2 – 3	9.00 - 225.00	Materials: laser-cut acrylic vs. 3D-printer	
Software	0.00	0.00	0.00	Only utilizing free development software	
Development Boards	10.00 - 60.00	4	40.00 – 240.00	Options available for selected controller	
Total:				300.00 - 700.00	

- 1. Extended cost does not scale linearly with quantity because it is assumed that the maximum quantity would not be entirely comprised of the most expensive components.
- 2. Quantity and extended cost assume either a small amount of expensive rechargeable proprietary batteries, or a larger amount of cheap (AA or 9V) batteries.
- 3. Resistors, capacitors, inductors, LEDs
- 4. Antennas, transceivers, receivers, cable jacks
- 5. Assumes a PCB for the base unit as well as separate PCBs for the interchangeable sensors.

 Example: Minimum extended cost is based on a 2in x 2in base unit PCB with two 1in x 1in sensor PCBs at \$2.00 per square inch, x2 prototypes.
- 6. Other semiconductors: op-amps, voltage regulators, discrete transistors

3 BOM COSTS

Low Price-point Example: one base unit with two external interchangeable sensors. Single unit cost assuming volume is low enough that there are no quantity discounts. Excludes amortized development cost.

Item	Cost (Ea)	Quantity	Ext. Cost	Notes
Sensor	\$4.00	2	\$8.00	Temperature Sensor, CO sensor
μController	\$5.52	1	\$5.52	PSoC3 CY8C3245PVI-150
Batteries	\$0.50	4	\$2.00	AA Batteries
Passives	\$0.50	1	\$0.50	Misc resistors, capacitors, LEDs
Interfaces	\$0.50	4	\$2.00	Generic jack for sensors, USB for base
PCBs	\$6.00	1	\$6.00	2"x2" base PCB, 1"x2" PCB per sensor
Packaging	\$3.00	1	\$3.00	Laser-cut acrylic from EPL, hand assembled
Total:				\$27.02

Note: This example makes assumptions about future decisions for the purpose of estimating the cost of a single unit, and should only be used as a general reference.

The cost may be reduced in Q3 or Q4 of 2014 by changing the microcontroller to the Cypress PSoC4 when the PSoC4 model with onboard USB support becomes available.

APPENDIX A: GLOSSARY

A.1 ACRONYMS

Acronym	Meaning		
ADC	Analog-to-Digital Converter		
BOM	Bill of Materials		
СО	Carbon Monoxide		
CSV	Comma-separated-value formatted file		
EEPROM	Electrically Erasable Programmable Read-Only Memory		
EPL	The Portland State University Engineering and Prototyping Lab		
I ² C	The Inter-Integrated Circuit communication protocol		
ISR	Interrupt Service Routine		
K-12	Kindergarten through 12 th grade school		
LED	Light Emanating Diode		
PCB	Printed Circuit Board		
PSoC	Programmable System On Chip		
SI	Silicon		
SPI	Serial Peripheral Interface Bus		
STEM	Science, Technology, Engineering and Math		
TRM	Technical Reference Manual		
USB	Universal Serial Bus		

A.2 SYSTEM ARCHITECTURE

Base Unit

The central device that manages power, communication, and data storage, and has one or more sensors attached to it.

Sensor

The individual data collection devices such as VOC detectors and thermometers that are attached to the base unit.

User Interface

The program that will be run on a laptop or desktop computer that allows the user to view and interact with the data collected.

System The operational product comprised of base units with attached sensors and a user interface