Übung "Grundbegriffe der Informatik"

Karlsruher Institut für Technologie

Matthias Schulz, Gebäude 50.34, Raum 034

email: schulz@ira.uka.de

Gesucht: Turingmaschine T, die für Eingabe w in e_+ landet, falls

Turingmaschine T_w bei Eingabe w

irgendwann anhält, sonst in e_- .

Gesucht: Turingmaschine T, die für Eingabe w in e_+ landet, falls

Turingmaschine T_w bei Eingabe w

irgendwann anhält, sonst in e_- .

Angenommen, T existiert.

Erweitere Übergangsfunktion f,g,m: $(e_+,x)\mapsto (e_+,x,1)$, um T' zu erhalten.

Also: Turingmaschine T' hält, falls sie in e_- landet, und geht in Endlosschleife, falls sie in e_+ landet.

Also: Turingmaschine T' hält, falls sie in e_- landet, und geht in Endlosschleife, falls sie in e_+ landet.

Also: T' hält bei Eingabe von w genau dann, wenn T_w bei Eingabe von w nicht anhält.

Also: Turingmaschine T' hält, falls sie in e_- landet, und geht in Endlosschleife, falls sie in e_+ landet.

Also: T' hält bei Eingabe von w genau dann, wenn T_w bei Eingabe von w **nicht** anhält.

Also: Turingmaschine T' hält, falls sie in e_- landet, und geht in Endlosschleife, falls sie in e_+ landet.

Also: T' hält bei Eingabe von w genau dann, wenn T_w bei Eingabe von w **nicht** anhält.

Preisfrage: Was macht T^\prime bei Eingabe der eigenen Codierung?

Also: T' hält bei Eingabe von w genau dann, wenn T_w bei Eingabe von w **nicht** anhält.

Preisfrage: Was macht T^{\prime} bei Eingabe der eigenen Codierung?

$$T'=T_v$$
.

Also: T' hält bei Eingabe von w genau dann, wenn T_w bei Eingabe von w **nicht** anhält.

Preisfrage: Was macht T^\prime bei Eingabe der eigenen Codierung?

$$T'=T_v$$
.

Also: T_v hält bei Eingabe von v genau dann, wenn T_v bei Eingabe von v **nicht** anhält.

Damit muss die Annahme der Existenz von T falsch sein!

Gegeben: Codierungen c_1, c_2 und (Codierung eines) Wort(es) w.

Gesucht: Turingmaschine, die überprüft, ob $T_{c_1}(w) = T_{c_2}(w)$.

Gegeben: Codierungen c_1, c_2 und (Codierung eines) Wort(es) w.

Gesucht: Turingmaschine, die überprüft, ob $T_{c_1}(w) = T_{c_2}(w)$.

Annahme: T macht das!

Gegeben: Codierungen c_1, c_2 und (Codierung eines) Wort(es) w.

Gesucht: Turingmaschine, die überprüft, ob $T_{c_1}(w) = T_{c_2}(w)$.

Annahme: T macht das!

Konstruiere Turingmaschine $I = (\{0\}, 0, X, f, g, m) = T_i$ mit

$$\forall x \in X : (f, g, m)(0, x) = (0, x, 1)$$

Gegeben: Codierungen c_1, c_2 und (Codierung eines) Wort(es) w.

Gesucht: Turingmaschine, die überprüft, ob $T_{c_1}(w) = T_{c_2}(w)$.

Annahme: T macht das!

Konstruiere Turingmaschine $I = (\{0\}, 0, X, f, g, m) = T_i$ mit

$$\forall x \in X : (f, g, m)(0, x) = (0, x, 1)$$

Sei w beliebig.

Wende T auf Eingabe w, i, w an.

Gegeben: Codierungen c_1, c_2 und (Codierung eines) Wort(es) w.

Gesucht: Turingmaschine, die überprüft, ob $T_{c_1}(w) = T_{c_2}(w)$.

Annahme: T macht das!

Sei w beliebig.

Wende T auf Eingabe w, i, w an.

T akzeptiert **genau dann**, wenn $T_w(w)$ **nicht** hält.

 \bar{T} : Vertausche akzeptierende/ablehnende Zustände:

 \bar{T} akzeptiert **genau dann**, wenn $T_w(w)$ hält.

 \bar{T} : Vertausche akzeptierende/ablehnende Zustände:

 \bar{T} akzeptiert **genau dann**, wenn $T_w(w)$ hält.

 $ar{T}$ entscheidet das Halteproblem!

ACHTUNG!

ACHTUNG!

Wir haben NICHT gezeigt, dass man das Halteproblem doch entscheiden kann!

ACHTUNG!

Wir haben NICHT gezeigt, dass man das Halteproblem doch entscheiden kann!

Wir haben gezeigt, dass unsere Annahme (Turingmaschine, die überprüft, ob zwei Turingmaschinen bei fester Eingabe gleiches Ergebnis liefern) **falsch** war!

Folgerung: Es gibt keine Turingmaschine, die für Codierungen w_1, w_2 entscheidet, ob zugehörige Turingmaschinen für alle Eingaben gleiche Ausgaben produzieren.

Folgerung: Es gibt keine Turingmaschine, die für Codierungen w_1, w_2 entscheidet, ob zugehörige Turingmaschinen für alle Eingaben gleiche Ausgaben produzieren.

Konstruktion: Bastle Turingmaschinen $T^{w_1,w}, T^{w_2,w}$, die

Folgerung: Es gibt keine Turingmaschine, die für Codierungen w_1, w_2 entscheidet, ob zugehörige Turingmaschinen für alle Eingaben gleiche Ausgaben produzieren.

Konstruktion: Bastle Turingmaschinen $T^{w_1,w}, T^{w_2,w}$, die

ullet zuerst überprüfen, ob die Eingabe w ist,

Folgerung: Es gibt keine Turingmaschine, die für Codierungen w_1, w_2 entscheidet, ob zugehörige Turingmaschinen für alle Eingaben gleiche Ausgaben produzieren.

Konstruktion: Bastle Turingmaschinen $T^{w_1,w}, T^{w_2,w}$, die

- ullet zuerst überprüfen, ob die Eingabe w ist,
- falls nicht, in eine Endlosschleife übergehen,

Folgerung: Es gibt keine Turingmaschine, die für Codierungen w_1, w_2 entscheidet, ob zugehörige Turingmaschinen für **alle** Eingaben gleiche Ausgaben produzieren.

Konstruktion: Bastle Turingmaschinen $T^{w_1,w}, T^{w_2,w}$, die

- ullet zuerst überprüfen, ob die Eingabe w ist,
- falls nicht, in eine Endlosschleife übergehen,
- falls doch, T_{w_1} bzw. T_{w_2} simulieren.

_

Folgerung: Es gibt keine Turingmaschine, die für Codierungen w_1, w_2 entscheidet, ob zugehörige Turingmaschinen für alle Eingaben gleiche Ausgaben produzieren.

 $T^{w_1,w}$ und $T^{w_2,w}$ verhalten sich für alle Eingaben außer w gleich.

Folgerung: Es gibt keine Turingmaschine, die für Codierungen w_1, w_2 entscheidet, ob zugehörige Turingmaschinen für alle Eingaben gleiche Ausgaben produzieren.

 $T^{w_1,w}$ und $T^{w_2,w}$ verhalten sich für alle Eingaben außer w gleich.

 $T^{w_1,w}$ und $T^{w_2,w}$ verhalten sich für alle Eingaben genau dann gleich, falls sie sich für w gleich verhalten.

Folgerung: Es gibt keine Turingmaschine, die für Codierungen w_1, w_2 entscheidet, ob zugehörige Turingmaschinen für alle Eingaben gleiche Ausgaben produzieren.

 $T^{w_1,w}$ und $T^{w_2,w}$ verhalten sich für alle Eingaben außer w gleich.

 $T^{w_1,w}$ und $T^{w_2,w}$ verhalten sich für alle Eingaben genau dann gleich, falls sich T_{w_1} und T_{w_2} für w gleich verhalten.

Folgerung: Es gibt keine Turingmaschine, die für Codierungen w_1, w_2 entscheidet, ob zugehörige Turingmaschinen für **alle** Eingaben gleiche Ausgaben produzieren.

 $T^{w_1,w}$ und $T^{w_2,w}$ verhalten sich für alle Eingaben außer w gleich.

 $T^{w_1,w}$ und $T^{w_2,w}$ verhalten sich für alle Eingaben genau dann gleich, falls sich T_{w_1} und T_{w_2} für w gleich verhalten.

Da das unentscheidbar ist, ist auch das "größere" Problem unentscheidbar.

_

Für $n,k\in\mathbb{N}_0,w\in\{0,1,x\}^*$ sei bbd(n,k,w) definiert als die größte Zahl von Einsen, die eine **anhaltende** Turingmaschine mit

- n+1 Zuständen,
- k + 3 Symbolen (unter denen sich 0, 1, x befinden)
- ullet bei Eingabe von w

am Ende auf das Band geschrieben haben kann.

Behauptung: Für jede berechenbare Funktion F(n, k, w) gibt es Tripel (n, k, w) mit bbd(n, k, w) > F(n, k, w).

Idee: Wenn F(n, k, w) berechenbar, dann auch $G(n, k, w) = 2^{F(n,k,w)+1} - 1$.

Idee: Wenn F(n, k, w) berechenbar, dann auch $G(n, k, w) = 2^{F(n,k,w)+1} - 1$.

Turingmaschine T berechnet G(n,k,w) bei Eingabe des Wortes

$$Repr_2(n)xRepr_2(k)xw$$
,

das heißt, am Ende steht $Repr_2(G(n,k,w))$ auf dem Band.

Idee: Wenn F(n, k, w) berechenbar, dann auch $G(n, k, w) = 2^{F(n,k,w)+1} - 1$.

Turingmaschine T berechnet G(n,k,w) bei Eingabe des Wortes

 $Repr_2(n)xRepr_2(k)xw$.

Turingmaschine T' macht aus Eingabe $Repr_2(n)xRepr_2(k)xw$ zuerst $Repr_2(n)xRepr_2(k)xRepr_2(n)xRepr_2(k)xw$ und simuliert dann T.

Idee: Wenn F(n, k, w) berechenbar, dann auch $G(n, k, w) = 2^{F(n,k,w)+1} - 1$.

Turingmaschine T berechnet G(n,k,w) bei Eingabe des Wortes

 $Repr_2(n)xRepr_2(k)xw$.

Turingmaschine T' macht aus Eingabe $Repr_2(n)xRepr_2(k)xw$ zuerst $Repr_2(n)xRepr_2(k)xRepr_2(n)xRepr_2(k)xw$ und simuliert dann T.

T' habe n' + 1 Zustände und k' + 3 Symbole.

Idee: Wenn F(n, k, w) berechenbar, dann auch $G(n, k, w) = 2^{F(n,k,w)+1} - 1$.

Turingmaschine T berechnet G(n,k,w) bei Eingabe des Wortes

 $Repr_2(n)xRepr_2(k)xw$.

T' habe n' + 1 Zustände und k' + 3 Symbole.

Betrachte T' bei Eingabe von $Repr_2(n')xRepr_2(k')x$.

Betrachte T' bei Eingabe von $w = Repr_2(n')xRepr_2(k')x$.

T' ändert Eingabe zu $Repr_2(n')xRepr_2(k')xw$ und simuliert dann T.

Betrachte T' bei Eingabe von $w = Repr_2(n')xRepr_2(k')x$.

T' ändert Eingabe zu $Repr_2(n')xRepr_2(k')xw$ und simuliert dann T.

T gibt $Repr_2(G(n',k',w))$ aus.

Betrachte T' bei Eingabe von $w = Repr_2(n')xRepr_2(k')x$.

T' ändert Eingabe zu $Repr_2(n')xRepr_2(k')xw$ und simuliert dann T.

T gibt $Repr_2(G(n',k',w))$ aus.

Also: T' schreibt das Wort $Repr_2(2^{F(n',k',w)+1}-1)$ auf das Band.

Betrachte T' bei Eingabe von $w = Repr_2(n')xRepr_2(k')x$.

T' ändert Eingabe zu $Repr_2(n')xRepr_2(k')xw$ und simuliert dann T.

T gibt $Repr_2(G(n',k',w))$ aus.

Also: T' schreibt das Wort $1^{F(n',k',w)+1}$ auf das Band.

Betrachte T' bei Eingabe von $w = Repr_2(n')xRepr_2(k')x$.

T' ändert Eingabe zu $Repr_2(n')xRepr_2(k')xw$ und simuliert dann T.

T gibt $Repr_2(G(n', k', w))$ aus.

Also: T' schreibt das Wort $1^{F(n',k',w)+1}$ auf das Band.

Da T' n'+1 Zustände und k'+3 Symbole hat, gilt

 $bbd(n',k',w) \geq$ Anzahl der Einsen, die T' bei Eingabe von w auf Band schreibt.

Betrachte T' bei Eingabe von $w = Repr_2(n')xRepr_2(k')x$.

T' schreibt das Wort $1^{F(n',k',w)+1}$ auf das Band.

Da T' n'+1 Zustände und k'+3 Symbole hat, gilt

 $bbd(n',k',w) \geq$ Anzahl der Einsen, die T' bei Eingabe von w auf Band schreibt.

Also gilt $bbd(n', k', w) \ge F(n', k', w) + 1$.

Da sich bbd(n,k,w) von jeder berechenbaren Funktion für mindestens ein Tripel (n,k,w) unterscheidet, kann bbd nicht berechenbar sein.