

Metro Traffic Volume in Minneapolis

Time Series Analysis Final Project

The Dataset

- UC Irvine Machine Learning Repository
- Documents hourly interstate
 Westbound traffic volume for station 301
- Monitors weather and holiday features to observe volume impact

|--|

Feature	Data type	Description	
holiday	categorical	US National holidays plus regional holiday, Minnesota State Fair	
temp	numeric	Average temp in kelvin	
rain_1h	numeric	Amount in mm of rain that occurred in the hour	
snow_1h	numeric	Amount in mm of snow that occurred in the hour	
clouds_all	numeric	Percentage of cloud cover	
weather_main	categorical	Short textual description of the current weather	
weather_descri ption	categorical	Longer textual description of the current weather	
date_time	datetime	Hour of the data collected in local CST time	
traffic_volume	numeric	Hourly I-94 ATR 301 reported westbound traffic volume	

Volume estimates are a major indicator of traffic flow

- Determination of necessary tax revenues depending on future need
- Design of new development within the metro system and local roadway systems, ie location, number and type of lanes, pavement thickness, etc.
- 3. Serve as a key indicator for various impact assessments— air and noise pollution, energy conservation, economics, etc.
- 4. Continuous monitoring of traffic performance

1

Exploratory Data Analysis

Numeric Features

Distributions of Numerical Variables

Categorical Features

Categorical Features

Seasonality

Seasonality

Graphical Representation

mean1= 3203.011119, mean2= 3310.810224 and var1= 3878882.025234, var2= 3910121.223393

Augmented Dickey Fuller Test

p-value = 5.3e-9 < 0.05, therefore ts is likely stationary

Autocorrelation

Partial Autocorrelation

Decomposition₂₀₀

Prediction

	Model	RSS	Log likelihood/ AIC/BIC/HQIC	Coef P-values	Ljung-Box	Jarque-Bera
	MA(3)	1.17e10	LL -6749.456 AIC 13508.912 BIC 13532.579 HQIC 13517.983	ma.L1 0.000 ma.L2 0.000 ma.L3 0.000 Sigma2 0.000	39.22 – cannot reject null of white noise	698.48 (Prob: 0) – not normally distributed
	AR(1)	1.25e10	LL -6718.620 AIC 13443.239 BIC 13457.439 HQIC 13448.682	Const 0.000 ar.L1 0.000 Sigma2 0.000	178.31 – cannot reject null of white noise	698.43 (Prob: 0) – not normally distributed
	AR(2)	1.26e10	LL -6599.958 AIC 13207.915 BIC 13226.849 HQIC 13215.172	Const 0.000 ar.L1 0.000 ar.L2 0.000 sigma2 0.000	1.73 – cannot reject null of white noise	491.26 (Prob: 0) – not normally distributed
	ARIMA(2,0, 1)	1.26e10	LL -6599.958 AIC 13201.893 BIC 13225.560 HQIC 13210.964	ar.L1 0.000 ar.L2 0.000 ma.L1 0.001 Sigma2 0.000	0.03 – likely white noise	375.18 (Prob: 0) – not normally distributed
3	ARIMA(2,1,1)	1.32e10	LL -6631.082 AIC 13270.164 BIC 13289.093 HQIC 13277.420	ar.L1 0.552 ar.L2 0.087 ma.L1 0.131 Sigma2 0.000	0.24 – cannot reject null of white noise	508.81 (Prob: 0) – not normally distributed

ARIMA(2,0,1)

Validation

Multivariate Analysis

Correlation between Numeric Variables

Granger Causality Test

- Tests the null hypothesis that the coefficients of past values in the regression equation is zero
- If a given p-value < 0.05 then the corresponding column X causes row Y

	traffic_volume_x	temp_x	clouds_all_x
traffic_volume_y	1.000	0.0000	0.0118
temp_y	0.000	1.0000	0.0002
clouds_all_y	0.001	0.0016	1.0000

Johanson's Cointegration Test

- When two or more TSs are cointegrated, they have a statistically significant relationship
- Null hypothesis: time series are not cointegrated

Johanson's Cointegration Test

```
Name :: Test Stat > C(95%) => Signif

traffic_volume :: 154.35 > 24.2761 => True
temp :: 28.37 > 12.3212 => True
Clouds_all :: 0.07 > 4.1296 => False
```

ADF Tests

- Temp ADF
 - P-val: 0.183
 - Not-Stationary

- 1st diff Temp ADF
 - o P-val: 0.000
 - Stationary

- Clouds ADF
 - o P-val: 0.000
 - Stationary

Selecting the VAR(p) model

 Iteratively fit increasing order of VAR model (orders 1-10)

 VAR(10) performs best on AIC, FPE, and HQIC

• VAR(3) performs best on BIC

	AIC	BIC	FPE	HQIC
0	19.44	19.45	2.764e+08	19.44
1	18.30	18.36	8.899e+07	18.33
2	18.22	18.33	8.212e+07	18.26
3	18.14	18.28*	7.520e+07	18.19
4	18.10	18.29	7.264e+07	18.17
5	18.08	18.32	7.119e+07	18.17
6	18.05	18.33	6.916e+07	18.16
7	18.02	18.34	6.689e+07	18.14
8	17.98	18.35	6. <mark>421e+07</mark>	18.12
9	17.95	18.37	6.261e+07	18.11
10	17.93*	18.39	6.137e+07*	18.11*

VAR(p) forecast is still a bad fit...

VAR(3)

VAR(10)