

The Cesarean Decision

PREDICTION VIA CLASSIFICATION

"Rate Of C-Sections Is Rising, at an 'Alarming' Rate"

FROM 6%
IN 1990 TO
21% IN
2018,
GLOBALLY

- C-SECTION
 CAN RAISE
 THE CHANCE
 OF DEATH BY
 AT LEAST 60%
- 3 FACTORS:
 FINANCIAL,
 LEGAL, AND
 TECHNICAL.

Evidence Based Approach

Understand anthropometric, health, and obstetric attributes that influence the rise in cesarean section births.

Build a Classification Model

Leveraging identified attributes, predict whether a birth will be cesarean.

Model Interpretation

Identify drivers through feature analysis, identify next steps.

DATA, CDC VITAL STATISTICS 2018

3,801,534 US Births

FEATURES
EXTRACTED
VARIABLES

anthropometric, health, and obstetric attributes

PREDICT, WILL
BIRTH BE CSECTION?

Build and test models, review feature importance

Data & Methodology

- Cesarean section on a rise-Does advanced maternal age explain the increase? A population register-based study. Rydahl, E., Declercq, E., Juhl, M., & Maimburg, R. D. (2019).
- Improving the Caesarean Decision by Robson Classification: A Population-Based Study by 5,323,500 Livebirth Data.Tontus, H. O., & Nebioglu, S. (2020).

Features

anthropometric, health, and obstetric attributes

Cigarettes Before Pregnancy	Infections Reported
Birth Month, & Day of Week	Months of Prenatal Care
Weight Gain by Mother	Previous Cesarean
Interval Since Last Pregnancy	Hypertension Eclampsia
Live Birth Order/Total birth Order	Infertility Treatment
Induction of Labor	Prior Preterm Birth
Mother's Age	Sex of Infant

Results

F1 Validation AUC

Random Tree Ensemble

Models were chosen based on data structure(binary, categorical) and interpretability.

RF bal

RF 4:1

RF Tuned

0%

RF

ROC Curves 1.0 baseline model 0.8 0.6 0.4 0.2 0.0 0.2 1.0 0.4 0.6 0.8 0.0 True Positive Rate

Results

Best Model- Random Forest Tuned

After hyperparameter tuning we have an F1 score of 87% and ROC AUC score of 81% on the validation set, an improvement from our previous models. The F1 for the test data set is: 87% and the AUC is 81%

Feature Ranking

- 1. Prior C-section
- 2. Mother's Age
- 3. Month
- 4. Day of week
- 5. Interval since last Pregnancy

Conclusions

Hypothesis confirmed that the model will have a higher proportion of False Negatives possibly due to elective or non health mandated C-sections

1-Vaginal Birth

2- C-section

Next Steps

- Apply model on test data from previous years to explore when the gap between health and elective c-sections occurs.
- Build regression models with infant outcomes, ie. Appar score as targets to contrast feature importance in both models
- Summarize additional attributes of the False negative group.

