

Team Presentation

Tomas Calle

Juan Camilo Salazar

Marín

Mauricio Toro

https://github.com/tomasCalletce/Algorithms-to-F urther-the-Development-of-PLA-technologies

Training Process

Healthy-Cattle Images

Testing Process

Compression Algorithm Design

2	4	3			3	3
3	1	1	→		2	1
5	5	1		5	5	1
3		3		2		3
2		1	→			1
	5	1		5	5	1

Image compression algorithm - Interpolation Algorithm

The algorithms converts n values into 1 value that represents the average of n values.

Compression Algorithm Design

for

2	4
3	1

$$(2+4)/2 = 3 = x1$$

$$(3+1) / 2 = 2 = x2$$

$$(x1+ x2)/2 = 2$$

2

The algorithm iterates over blocks of 4 values and calculates the average of all values.

Compression Algorithm Complexity

	Time Complexity	Memory Complexity
Image compression	O(N*M)	O(N*M)
Image decompression	O(N*M)	O(N*M)

Run length algorithm combined with summations algorithm. N represents the number of rows in the photograph's pixel matrix and the M represents the number of columns in the photograph's pixel matrix.

Time and Memory Consumption

Average Compression Ratio

	Compression Ratio
Healthy Cattle	20 : 13
Sick Cattle	20 : 13

Average compression ratio for Healthy Cattle and Sick Cattle.

Report Accepted on arXiv

C. Patiño-Forero, M. Agudelo-Toro, and M. Toro. Planning system for deliveries in Medellín. ArXiv e-prints, Nov. 2016. Available at: https://arxiv.org/abs/1611.04156

arXiv.org > cs > arXiv:1611.04156

Computer Science > Data Structures and Algorithms

[Submitted on 13 Nov 2016]

Planning system for deliveries in Medellín

Catalina Patiño-Forero, Mateo Agudelo-Toro, Mauricio Toro

Here we present the implementation of an application capable of planning the shortest delivery route in the city of Medellín, Colombia. We discuss the different approaches to this problem which is similar to the famous Traveling Salesman Problem (TSP), but differs in the fact that, in our problem, we can visit each place (or vertex) more than once. Solving this problem is important since it would help people, especially stores with delivering services, to save time and money spent in fuel, because they can plan any route in an efficient way.

Comments: 5 pages, 9 figures

Subjects: Data Structures and Algorithms (cs.DS)

ACM classes: F.2.0; G.2.2

Cite as: arXiv:1611.04156 [cs.DS]

(or arXiv:1611.04156v1 [cs.DS] for this version)

THANK YOU!

Supported by

The first two authors are supported by a Sapiencia grant financed by Medellín municipality. All the authors would like to thank the "Vicerrectoría de Descubrimiento y Creación", of Universidad EAFIT, for their support on this research