Exercices - Sommes et produits finis

Cornou Jean Louis

8 octobre 2025

1 Calculs divers

1.1

Soit n et p deux entiers naturels non nuls. Calculer les sommes suivantes :

1.
$$\sum_{i=1}^{n} \sum_{j=1}^{p} j^3 \ln(i)$$
.

2.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} ij$$
.

3.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{i}{j}$$
.

4.
$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{i^2}{j}.$$

5.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \min(i, j)$$
.

6.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} 2^{\min(i,j)} 3^{\max(i,j)}.$$

7.
$$\sum_{k=1}^{n} k2^{k}$$
.

8.
$$\sum_{k=1}^{n} k!k$$
.

9.
$$\sum_{k=1}^{n} (-1)^k k^3$$
.

10.
$$\sum_{k=2}^{n} \frac{1}{k^2 - 1}.$$

1.2

Soit $n \in \mathbb{N}^*$. Calculer les produits suivants :

1.
$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right)$$
.

$$2. \prod_{i=1}^{n} \prod_{j=1}^{n} i^{j}.$$

3.
$$\prod_{k=1}^{n} 2^{\frac{1}{k(k+1)}}.$$

4.
$$\prod_{k=1}^{n} 2k$$
.

5.
$$\prod_{k=1}^{n} (2k+1)$$
.

6.
$$\prod_{k=0}^{n} e^{-k}$$
.

1.3

Soit n et p deux entiers naturels non nuls. Calculer $\sum_{k=1}^{n} \frac{1}{k(k+p)}$.

1.4

1. Déterminer trois réels *a, b, c* tels que

$$\forall x \in \mathbb{R} \setminus \{-2, -1, 0\}, \frac{1}{x(x+1)(x+2)} = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{x+2}$$

2. En déduire, pour tout $n \in \mathbb{N}^*$, la valeur de $\sum_{k=1}^n \frac{1}{k(k+1)(k+2)}$

1.5

Soit $n \in \mathbb{N}^*$. Montrer les égalités suivantes :

1.
$$\prod_{k=1}^{n} (4k-2) = \prod_{k=1}^{n} (n+k).$$

2.
$$\sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k} = \sum_{k=1}^{n} \frac{1}{n+k}.$$

1.6

Soit n et p deux entiers naturels.

1. Montrer que
$$\sum_{k=n}^{p} \binom{k}{n} = \binom{p+1}{n+1}$$
.

2. On suppose
$$n \le p$$
. Déterminer $\sum_{k=n}^{p} (k+1) \binom{k}{n}$.

3. On suppose
$$n$$
 et p non nuls. Calculer $\sum_{k=0}^{n} \prod_{j=0}^{p-1} (k+j)$.

1.7

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{(-1)^k}{k} \binom{n}{k}$.

- 1. Calculer, pour tout $n \in \mathbb{N}^*$, $u_{n+1} u_n$.
- 2. Exprimer, pour tout $n \in \mathbb{N}^*$, u_n sous forme d'une autre somme plus simple.

1.8

Montrer que

$$\forall n \in \mathbb{N}, \sum_{k=1}^{2n} {2n \choose k} (-1)^k 2^{k-1} = 0$$

1.9

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^n \left\lfloor x + \frac{k}{n} \right\rfloor$.

1.10

Soit $n \in \mathbb{N}$. En écrivant $(n+1)^4$ à l'aide d'une somme télescopique, recalculer la valeur de $\sum_{k=0}^{n} k^3$.

1.11

Soit $n \in \mathbb{N}^*$. Pour tout complexe z, on pose $P_n(z) = \prod_{k=1}^n \left(1 + \frac{z}{k}\right)$.

- 1. Soit $z \in \mathbb{C}^*$. Déterminer une relation entre $P_n(z)$ et $P_n(z-1)$.
- 2. Soit $p \in \mathbb{N}^*$. Exprimer $P_n(p)$ à l'aide de coefficients binomiaux.

1.12

Soit $n \in \mathbb{N}$.

- 1. Calculer $(1+i)^{4n}$.
- 2. En déduire les valeurs des sommes

$$\sum_{p=0}^{2n} (-1)^p \binom{4n}{2p} \quad \text{et} \quad \sum_{p=0}^{2n-1} (-1)^p \binom{4n}{2p+1}$$

1.13

Soit $n \in \mathbb{N}^*$. On considère les fonctions polynomiales $P: x \mapsto (x+1)^n$ et $Q: x \mapsto (x-1)^n$.

- 1. Calculer de deux manières différentes PQ et PP'.
- 2. En déduire la valeur des sommes

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 \quad \text{et} \quad \sum_{k=0}^{n} k \binom{n}{k}^2$$

1.14

Pour tout entier naturel n non nul, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$. Montrer que pour tout entier n supérieur ou égal à 2, $H_n \notin \mathbb{N}$.

1.15

Soit $(a_n)_{n\in\mathbb{N}}$ une suite d'entiers naturels. On pose

$$S: \mathbb{N} \to \mathbb{N}, n \mapsto \sum_{k=0}^{n} a_k$$

À quelle condition nécessaire et suffisante sur la suite $(a_n)_{n\in\mathbb{N}}$ la fonction S est-elle injective? surjective? bijective?

2 Complexes et trigonométrie

2.1

Soit $z \in \mathbb{C} \setminus \mathbb{U}$. Montrer que

$$\left|\frac{1-z^n}{1-z}\right| \le \frac{1-|z|^n}{1-|z|}$$

2.2

Soit $n \in \mathbb{N}$, $(x, y) \in \mathbb{R}^2$. Calculer les sommes suivantes

$$1. \sum_{k=0}^{n} \cos(kx + y).$$

$$2. \sum_{k=0}^{n} \binom{n}{k} \cos(kx+y).$$

$$3. \sum_{k=0}^{n} k \cos(kx + y).$$

2.3

Soit $n \in \mathbb{N}^*$. Soit $\omega = \exp\left(\frac{2i\pi}{n}\right)$.

- 1. Soit $p \in \mathbb{Z}$. Calculer la somme $\sum_{k=1}^{n} \omega^{kp}$.
- 2. Soit $z \in \mathbb{C}$. Montrer que $\sum_{k=1}^{n} (z + \omega^k)^n = n(z^n + 1)$.

2.4

Soit $n \in \mathbb{N}^*$. On pose $\omega = \exp\left(\frac{2i\pi}{n+1}\right)$. Soit $P: z \mapsto \sum_{k=0}^n a_k z^k$ une fonction polynomiale à coefficients complexes de degré au plus n. Soit M un réel positif tel que

$$\forall z \in \mathbb{U}, |P(z)| \leq M$$

- 1. Calculer $\sum_{i=0}^{n} P(\omega^{i})$.
- 2. En déduire que $|P(0)| \le M$.

2.5

Soit $n \in \mathbb{N}^*$. On pose $j = \exp(2i\pi/3)$ puis

$$A = \sum_{\substack{k=0\\k \equiv 0[3]}}^{n} \binom{n}{k} \qquad B = \sum_{\substack{k=0\\k \equiv 1[3]}}^{n} \binom{n}{k} \qquad C = \sum_{\substack{k=0\\k \equiv 2[3]}}^{n} \binom{n}{k}$$

- 1. Calculer A + B + C, $A + jB + j^2C$ et $A + j^2B + jC$.
- 2. En déduire la valeur de A.

2.6

Soit z_1 et z_2 deux complexes et $n \in \mathbb{N}^*$.

- 1. Montrer que $|z_1| + |z_2| \le |z_1 + z_2| + |z_1 z_2|$.
- 2. On pose M = max($|z_1|$, $|z_2|$). Montrer que $|z_1^n z_2^n| \le n M^{n-1} |z_1 z_2|$.
- 3. Soit $z \in \mathbb{C}$. on suppose que $\sum_{k=1}^{n-1} z^k = nz^n$. Montrer que $|z| \le 1$.

2.7

Soit $n \in \mathbb{N}^*$, z_1, z_2, \dots, z_n une famille de complexes tous non nuls. On suppose que

$$\left| \sum_{k=1}^{n} z_k \right| = \sum_{k=1}^{n} |z_k|$$

Montrer que ces complexes ont tous le même argument modulo 2π .

2.8

Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$ tel que $2^n x / \pi \notin \mathbb{Z}$. Montrer que

$$\sum_{k=1}^{n} \frac{1}{\sin(2^{k}x)} = \frac{\cos(x)}{\sin(x)} - \frac{\cos(2^{n}x)}{\sin(2^{n}x)}$$

2.9 ₩

Soit *p* un entier naturel impair. On pose $\omega = \exp(2i\pi/p)$ et $\delta = \exp(i\pi/p)$, puis

$$\Delta = \prod_{0 \le i < j \le p-1} \left(\omega^j - \omega^i \right)$$

1. Montrer que

$$\sum_{0\leq i< j\leq p-1}(i+j)=\frac{p(p-1)^2}{2}.$$

2. Montrer que

$$\delta^{\frac{p(p-1)^2}{2}} = 1$$

3. En déduire que

$$\Delta = (2i)^{p(p-1)/2} \prod_{0 \le i < j \le p-1} \sin\left(\frac{\pi(j-i)}{p}\right)$$

4. On admet que $\Delta^2 = p^p(-1)^{(p-1)/2}$. Montrer que

$$\Delta = i^{p(p-1)/2} p^{p/2}$$