MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 – MARCH 2011 SOLUTION KEY

Round 3

A) $\pi \cdot \pi = \pi^2$ It's just that simple – no conversion necessary! If the question had been multiply the inch equivalent of 3 feet by the foot equivalent of 3 inches, the product would be $36(1/4) = 9 = 3^2$.

For the disbelievers,

In the case of degree-radian conversion, $180^{\circ} = \pi$ radians (halfway around a circle)

Therefore,
$$\pi^{\circ} = \frac{\pi^2}{180}$$
 radians and $\frac{\pi^2}{180} \cdot 180 = \underline{\pi^2}$

B)
$$2\sin(x) + 3\cot(x) = 0 \Rightarrow \frac{2\sin^2(x) + 3\cos(x)}{\sin(x)} = 0 \Rightarrow 2(1 - \cos^2(x)) + 3\cos(x) = 0$$

 $\Rightarrow 2\cos^2(x) - 3\cos(x) - 2 = (2\cos x + 1)(\cos x - 2) = 0 \Rightarrow \cos x = -\frac{1}{2} \Rightarrow x = \underline{120}, \underline{240}.$

C) Let
$$z^4 = (rcis\theta)^4 = r^4cis(4\theta) = -8 + 8\sqrt{3}i = Acis\alpha$$
, where $\alpha \in Q2$
Converting to trigonometric form, $-8 + 8\sqrt{3}i = 16cis(\frac{2\pi}{3})$, because for $x + yi$

$$A^2 = x^2 + y^2$$
 and $\tan \alpha = \frac{y}{x} \rightarrow A^2 = 64 + 64 \cdot 3 = 256 \rightarrow A = 16$ and $\tan \alpha = \sqrt{3} \rightarrow \theta = \frac{2\pi}{3}$

Thus,
$$r^4 cis(4\theta) = 16 cis\left(\frac{2\pi}{3}\right) \Rightarrow \begin{cases} r^4 = 16 \\ 4\theta = \frac{2\pi}{3} + 2n\pi \end{cases} \Rightarrow \begin{cases} r = 2 \\ \theta = \frac{\pi(1+3n)}{6}, \text{ for } n = 0,1,2,3 \end{cases}$$

Thus, the roots are $2cis(\theta)$, where $\theta = \frac{\pi}{6}, \frac{2\pi}{3}, \frac{7\pi}{6}$ and $\frac{5\pi}{3}$.

Converting back to rectangular form,
$$2cis\left(\frac{\pi}{6}\right) = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = \sqrt{3} + i$$
 etc.

Thus, the four roots are: $\sqrt{3} + i$, $-1 + \sqrt{3}i$, $-\sqrt{3} - i$, $1 - \sqrt{3}i$