

4. Answer any TWO of the followings

[a] Consider a two-layer neural network used for binary classification. The network has an input layer with 2 neurons, a hidden layer with 2 neurons, and an output layer with 1 neuron. The activation function for the hidden layer is ReLU (Rectified Linear Unit), and for the output layer, it's a sigmoid function. The network is trained using the binary cross-entropy loss function and stochastic gradient descent (SGD) with a learning rate of 0.01. The initial weights and biases are as follows: Weights from input to hidden layer: W₁ = [[0.5, -0.6], [-0.4, 0.8]], Bias for hidden layer: b₁ = [0.2, -0.2], Weights from hidden to output layer: W₂ = [0.3, -0.5], Bias for output layer: b₂ = 0. Consider the network is trained with a single training sample (X = [1.0, 2.0], Y = 0). Perform the forward pass to calculate activations at hidden layer and output layer, and then compute the loss. [4] [CO2] Consider the neural network in 4[a] again and perform the backpropagation to update the weights and biases. Calculate the updated weights W₁, W₂, and biases b₁, b₂ after one iteration. Show your calculations for the forward pass, loss calculation, and backpropagation steps.

21 0.5 (0.5) (0.8) (1.0)

Z1 = 13 + W1+ 22 + W2 + b) = 1 + 0.5 + 2 + (-04) + 0.2 = -0.1

a1= Relu(21)=0

Z= i, *w3+ i, *w4+h = 1*(-0-6)+ 2* (0.8)-0.2 = 0.8

Qz = Relu(22): 0-8

 $Z_3 = Q_1^*W_5 + Q_3^*W_6 + b_3 = 0 * 6.3 + 6.8 * (-0.5) + 0 = -0.4$ $Q_3: \text{ Signoid } (2_3) = \frac{1}{1 + e^{-2_3}} = \frac{1}{1 + e^{-0.4}} = 0.401$

(0.2 -1 02) 3.0.2-161

Relu(2,): 50 4240

s forward pass

Wegus varden

> dos function

m=1

$$J = -(y \log \hat{y} + (1-y) \log(1-\hat{y}))$$

$$= -(o \log o.401 + (1-o) \log(1-o.401))$$

$$= -\log o.599 = o.225$$

Weights update? -> 40

Volu gar for which y's min'

y:(m-5)2

value of weight for which

$$\omega = \omega - \eta \frac{\partial J}{\partial \omega}$$

Backpurpagation

$$\frac{\partial J}{\partial \omega_{5}} = \frac{\partial J}{\partial a_{3}} \cdot \frac{\partial a_{3}}{\partial z_{3}} \cdot \frac{\partial z_{3}}{\partial \omega_{5}}$$

$$J = -(y \log \hat{y} + (1-y) \log(1-\hat{y}))$$

$$\hat{y} = q_3$$

$$J = -(y \log a_3 + (+y) \log (1-a_2))$$

$$\partial J = -(y - (1-y)) = - [y - (1-y)]$$

$$\frac{\partial J}{\partial a_3} = -\left(\frac{y}{a_3} - \frac{(1-y)}{(1-a_3)}\right) = -\left[\frac{y(1-a_3) - a_3(1-y)}{a_3(1-a_3)}\right]$$

$$= - \left[\frac{y - yq_3 - q_3 + q_2y}{q_3(1-q_2)} \right]$$

$$\frac{\partial}{\partial z_3}$$

$$Q_3 = \frac{1}{1 + e^{-Z_3}}$$

$$\frac{\partial y}{\partial x} = \frac{-1}{(1+e^{-x})^2} \left(-e^{-x}\right)$$

$$= \frac{e^{-x}}{(+e^{-x})^2}$$

$$= \frac{1}{(1+e^{-\alpha})} \cdot \frac{e^{-\alpha}}{(1+e^{-\alpha})}$$

$$= \frac{a_3-4}{a_2(4a_3)} \cdot a_2(4a_3) \cdot a_1 = (a_3-4) a_1$$

$$= 0.3 - 0.01 (0.401 - 0).0 = 0.3 \checkmark$$

$$\frac{\partial J}{\partial w_6} = \frac{\partial J}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_6}$$

$$1 \qquad 2 \qquad 4$$

$$3 \quad \sqrt{4}$$

$$4 \quad \sqrt{4}$$

$$\frac{\partial z_3}{\partial w_6}$$
?

$$Z_3 = a_1 w_5 + a_2 w_6 + b_3$$

$$\frac{\partial Z_3}{\partial \omega_6} = Q_2$$

$$\frac{\partial J}{\partial w_{4}} = (1)(2)(4)$$

$$= \frac{a_{3} - 4}{a_{1}(4 - a_{3})} \cdot a_{2} (1 - a_{1}) \cdot a_{2} = (a_{2} - 4)a_{2}$$

$$WC = WC - \eta \frac{\partial J}{\partial WC}$$

$$= WC - \eta (a_2 - y)a_2$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial q_3} \cdot \frac{\partial q_2}{\partial z_3} \cdot \frac{\partial z_3}{\partial q_1} \cdot \frac{\partial q_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_1}$$

$$1 \qquad 2 \qquad 6 \qquad 7$$

$$\begin{array}{c} \boxed{5} \quad \frac{\partial Z_3}{\partial q_1} \end{array}$$

$$\frac{\partial^2 3}{\partial a_1} = ws$$

$$\alpha_1 = Rdu(z_1) = \begin{cases} 0 & \text{if } z_1 \le 0 \\ z_1 & \text{if } z_1 > 0 \end{cases}$$

$$\frac{\partial a_1}{\partial z_1} = \begin{cases} 0 & \text{if } z_1 \neq 0 \\ 1 & \text{if } z_1 \neq 0 \end{cases}$$

$$= \frac{Q_3 - 4}{a_3(1-a_3)} \cdot a_3(1-a_3) \cdot a_5 \cdot \begin{cases} 0 & \text{if } \geq_1 \leq_0 \end{cases} \cdot i_1$$

$$= (a_3-y)\omega_5$$
. $\begin{cases} 0 & \text{if } 2,50 \\ 1 & \text{if } 2,70 \end{cases}$. i_1

$$=(0.401-0)(0.3)(0)\cdot(1.0)=0$$

$$\frac{\partial J}{\partial \omega_{2}} = \frac{\partial J}{\partial a_{3}} \cdot \frac{\partial a_{3}}{\partial z_{3}} \cdot \frac{\partial z_{3}}{\partial a_{1}} \cdot \frac{\partial a_{1}}{\partial z_{1}} \cdot \frac{\partial z_{1}}{\partial \omega_{2}}$$

$$(1) \qquad (2) \qquad (5) \qquad (6) \qquad (8)$$

$$8 \frac{\partial z_1}{\partial \omega_2}$$
?

$$Z_1 = i_1 \omega_1 + i_2 \omega_2 + b_1$$

$$\frac{\partial Z_1}{\partial \omega_2}$$
 = i_2

$$\frac{\partial J}{\partial \omega_2} = 1 \quad \boxed{2} \quad \boxed{5} \quad \boxed{6} \quad \boxed{8}$$

$$= \frac{a_3 - 4}{a_3(1-a_3)} (a_3)(1-a_3) \quad \omega_5 \quad 0 \quad \text{if } z_1 \le 0 \\ 1 \quad \text{if } z_1 > 0 \quad i_2$$

=
$$(a_3-y)(\omega_5)(0)$$
 if $z_1 \leq 0$
 $(z_1 \leq 0)$

$$\omega_{2} = \omega_{2} - \eta \frac{\partial J}{\partial \omega_{2}}$$
= -0.4 - (0.01) (0) = -0.4

$$\frac{\partial J}{\partial \omega_3} = \frac{\partial J}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial \omega_3}$$

$$\begin{array}{cccc}
9 & \frac{\partial Z_3}{\partial a_2} & ? \\
Z_3 & = a_1 \omega_5 + a_2 \omega_6 + b_3 \\
\frac{\partial Z_3}{\partial a_2} & = \omega_6
\end{array}$$

$$\begin{array}{ccc}
\hline
0 & \underline{\partial a_2} & ? \\
\underline{\partial z_2} & ?
\end{array}$$

$$a_2 = \text{Relu}(z_2) = \begin{cases} 0 & \text{if } z_1 \le 0 \\ z_2 & \text{if } z_2 > 0 \end{cases}$$

$$\frac{\partial a_2}{\partial z_2} = \begin{cases} 0 & \text{if } z_2 \le 0 \\ 1 & \text{if } z_2 > 0 \end{cases}$$

$$\frac{\partial z_2}{\partial \omega_3}$$
?
$$z_2 = i_1 \omega_3 + i_2 \omega_4 + b_2$$

$$\frac{\partial z_2}{\partial \omega_3} = i_1$$

$$\frac{\partial J}{\partial \omega_3} = 0 2 9 0 0 1$$

=
$$(a_8-y)$$
 (ω_6) (ω_6)

$$=(0.401-0)(-0.5)(1)(1) = -0.2005$$

$$\omega_3 = \omega_3 - \eta \frac{\partial J}{\partial \omega_3}$$

$$\frac{\partial J}{\partial \omega_{4}} = \frac{\partial J}{\partial a_{3}} \cdot \frac{\partial a_{3}}{\partial z_{3}} \cdot \frac{\partial z_{3}}{\partial a_{2}} \cdot \frac{\partial a_{2}}{\partial z_{2}} \cdot \frac{\partial z_{2}}{\partial \omega_{4}}$$

$$\frac{\partial J}{\partial \omega_{y}} = 1 \quad 2 \quad 9 \quad 6 \quad 12$$

=
$$(a_8-y)$$
 (ω_6) (ω_6)

$$=(0.401-0)(-0.5)(1)(2) = -0.401$$

$$\omega_{4} = \omega_{4} - \eta \frac{\partial J}{\partial \omega_{4}}$$

$$= 0.8 - (0.01)(-0.401) = 0.8 + 0.00401 = 0.80401$$

$$\frac{\partial J}{\partial b_3} = \frac{\partial J}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial b_3}$$

$$Z_3 : a_1 \omega_5 + a_2 \omega_6 + b_3$$

$$\frac{\partial z_3}{\partial b_3} = 1$$

$$\frac{\partial J}{\partial b_3} = (1)(2)(3)$$

$$= \underbrace{a_3 - y}_{a_3(y - a_3)} \cdot a_3(y - a_3) \cdot 1 = (a_3 - y)$$

$$b_3 = b_3 - \eta \underbrace{\partial J}_{\partial b_3}$$

$$= 0 - 0.01 (0.401-0) = -0.00401 \checkmark$$

$$\frac{1}{2} \frac{\partial J}{\partial b_1} = \frac{\partial J}{\partial a_3} \cdot \frac{\partial a_3}{\partial a_3} \cdot \frac{\partial a_3}{\partial a_1} \cdot \frac{\partial a_1}{\partial a_2} \cdot \frac{\partial a_1}{\partial b_1} \cdot \frac{\partial a_2}{\partial b_1} \cdot \frac{\partial a_2}{\partial a_2} \cdot \frac{\partial a_1}{\partial a_2} \cdot \frac{\partial a_2}{\partial a_2} \cdot \frac{\partial a_1}{\partial a_2} \cdot \frac{\partial a_2}{\partial a_2} \cdot \frac{\partial a_$$

$$\frac{\partial z_1}{\partial b_1}$$
?

$$= \underbrace{(a_3-4)}_{a_3(1-a_3)} \cdot a_3(1-a_3) \cdot w_5 \cdot \begin{cases} 0 & \text{if } z_1 \leq 0 \\ 1 & \text{if } z_1 > 0 \end{cases} \cdot 1$$

=
$$(a_3-4)$$
. ω_5 $\begin{cases} 0 & \text{if } z_1 \leq 0 \\ 1 & \text{if } z_1 > 0 \end{cases}$. 1

$$\frac{1}{2} \frac{\partial J}{\partial b_2} = \frac{\partial J}{\partial a_3} \cdot \frac{\partial a_3}{\partial a_3} \cdot \frac{\partial a_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial a_2} \cdot \frac{\partial a_$$

$$\frac{\partial z_2}{\partial b_2} ?$$

$$\frac{\partial z_2}{\partial b_2} = 1$$

$$= \underbrace{a_3 - 4}_{a_3(1-a_3)} \quad a_3(1-a_3) \quad \omega_6 \leq 0 \quad \text{if } z_2 \leq 0 \qquad \begin{cases} 1 \\ 1 \end{cases} \quad \text{if } z_2 > 0 \qquad \begin{cases} 1 \\ 1 \end{cases}$$