White Noise and Random Walks

White Noise

> y_t is a white-noise process (series) if y_1 , y_2 ,... y_t ... are i.i.d zero mean random variables from a certain distribution (usually normal)

Correlogram

- Autocorrelation lag with lag k is the the correlation between the time series y_t and y_{t-k}
- Autocorrelation lag with lag 0 is always 1
- The Correlogram is the plot of the autocorrelations for values of lag k=0, 1, 2,...

Correlogram a white noise

► Correlogram of a white noise

Correlogram a white noise

Random Walk

Random Walk

lacksquare A time series y_t is called a random walk if

$$y_t = y_{t-1} + \epsilon_t,$$

where ϵ_t is a white-noise

A random walk can be written as

$$y_t = y_0 + \epsilon_1 + \epsilon_2 + \ldots + \epsilon_t$$

Random Walk with drift

lacksquare A time series y_t is called a random walk if

$$y_t = y_{t-1} + d + \epsilon_t,$$

where ϵ_t is a white-noise

A random walk can be written as

$$y_t = y_0 + dt + \epsilon_1 + \epsilon_2 + \ldots + \epsilon_t$$

Forecasting with Random Walks

The Correlogram

- \blacktriangleright Autocorrelation lag with lag k is the the correlation between the time series y_t and y_{t-k}
- Autocorrelation lag with lag 0 is always 1
- The Correlogram is the plot of the autocorrelations for values of lag $k=0,\,1,\,2,...$

The Correlogram - Example

► Correlogram of a white noise

The Correlogram - Example

- Correlogram of a time series with trend
- Usually a trend in the data will show in the correlogram as a slow decay in the autocorrelation

The Correlogram - Example

The Correlogram of Random Walks

Differencing Time Series

The Correlogram of Random Walks

Random Walks and Stocks

[1] "MSFT"

Estimate the random walk model

For a given time series y we can fit the random walk model with a drift by

- first differencing the data,
- then fitting the white noise (WN) model to the differenced data using the arima() command with the order = c(0, 0, 0)) argument.
- The arima() command displays information or output about the fitted model. Under the Coefficients: heading is the estimated drift variable, named the intercept. Its approximate standard error (or s.e.) is provided directly below it. The variance of the WN part of the model is also estimated under the label sigma².

```
[1] "MSFT"
```

```
Call: arima(x = dy, order = c(0, 0, 0))
```

sigma^2 estimated as 22.34: log likelihood = -838.15, aid

```
Coefficients:
intercept
```

```
0.5923
```

```
s.e. 0.2815
```

Forecasting with Random Walks

Suppose that we know $y_0,y_1,...,y_T$ and we want to forecast y_{T+l} for some fixed l>0

 \blacktriangleright Point forecast: the estimated l step-ahead is

$$\hat{y}_{T+l} = y_T + l\hat{\mu}_c,$$

where $\hat{\mu}_c$ is the estimated mean of the white-noise. $\hat{\mu}_c$ can be \bar{c}

$$\bar{c} = \frac{\epsilon_1 + \epsilon_2 + \dots + \epsilon_T}{T}$$

The standard error of the forecast is $s_c\sqrt{l}$, where s_c is the estimated standard deviation of σ_c ,

$$s_c^2 = \frac{1}{n-1} \sum_{i=1}^{T} (\epsilon_i - \bar{c})^2$$

You are given:

i) The random walk model

$$y_t = y_0 + \epsilon_1 + \epsilon_2 + \epsilon_3 + \ldots + \epsilon_t,$$

where $\epsilon_i, (i=1,2,...,t)$ denote observations from a white noise process.

ii) The following ten observed values of ϵ_t :

t	1	2	3	4	5	6	7	8	9	10
y_t	2	5	10	13	18	20	24	25	27	30

iii)
$$y_0 = 0$$

Calculate the 9 step-ahead forecast, $\hat{y}_{19}.$

You are given:

i) The random walk model

$$y_t = y_0 + \epsilon_1 + \epsilon_2 + \epsilon_3 + \ldots + \epsilon_t,$$

where $\epsilon_i, (i=1,2,...,t)$ denote observations from a white noise process.

ii) The following ten observed values of ϵ_t :

t	1	2	3	4	5	6	7	8	9	10
y_t	2	5	10	13	18	20	24	25	27	30

iii)
$$y_0 = 0$$

Calculate the standard error of the 9 step-ahead forecast, $\hat{y}_{19}.$

We have

$$\epsilon_t = y_t - y_{t-1} \implies \epsilon_1, \epsilon_2, ..., \epsilon_{10} = 2, 3, 5, 3, 5, 2, 4, 1, 2, 3$$

 $\implies s_c^2 = \frac{1}{9} \sum_{i=1}^{10} \left(\epsilon_i - 3\right)^2 = 16/9$

$$\Rightarrow \bar{c} = \frac{\epsilon_1 + \epsilon_2 + \dots + \epsilon_{10}}{\epsilon_1 + \epsilon_2 + \dots + \epsilon_{10}} = 3$$

$$\implies \bar{c} = \frac{\epsilon_1 + \epsilon_2 + \dots + \epsilon_{10}}{10} = 3$$

Hence, the standard error is $s_c\sqrt{l}=\frac{4}{3}\sqrt{9}=4$