# Project 3

Application of Marked Branching Techniques to XVA
Calculation

Anna Valiullina, Magdalen Dobson, Yi Wei, Ki Beom Lee

### Plan of the Presentation

- Financial and Mathematical Background
- Marked Branching Diffusion
- CVA with Marked Branching Diffusion
- Pricing an American Option with Marked Branching Diffusion

## Financial Background

- Option
- Types of the option:
  - o European / American



K - strike priceT - time of maturity



 Black-Scholes formulas -- closed-form solution of European option pricing

$$egin{aligned} C(X_t,t) &= N(d_1)X_t - N(d_2)Ke^{-r(T-t)} \ d_1 &= rac{1}{\sigma\sqrt{T-t}}\left[\ln\!\left(rac{X_t}{K}
ight) + \left(r + rac{\sigma^2}{2}
ight)(T-t)
ight] \ d_2 &= d_1 - \sigma\sqrt{T-t} \end{aligned}$$

### Financial Background -- Credit Value Adjustment(CVA)

- Measure of the price of risk
- CVA = (1-R) \* Default probability \* Exposure

Monte Carlo method -- Simulate the random variable (the stock price)
 along multiple paths and take the mean



Nested Monte Carlo for American option and CVA of American option

Most important PDE

$$\partial_t u + \mathcal{L}u + \beta(t)(F(u) - u) = 0, \qquad u(T, x) = g(x)$$

Where 
$$\mathcal{L} = \sum_{i=1}^{n} b_i(t, x) \partial_i + \frac{1}{2} \sum_{i,j=1}^{n} \sum_{k=1}^{d} \sigma_{i,k}(t, x) \sigma_{j,k}(t, x) \partial_{ij}$$

and eta(t) is the intensity of a Poisson jump Process

A Poisson Jump Process with intensity = 1



Poisson Jump Process

$$P(X_t - X_s = k) = \frac{e^{-\beta(t-s)}(\beta(t-s))^k}{k!}$$

### **Problem Formulation**

$$\partial_t u + \mathcal{L}u + \beta(t)(F(u) - u) = 0$$
$$u(T, x) = \psi(x)$$

$$\mathcal{L} = \mu \partial_x + \frac{1}{2} \sigma^2 \partial_{xx} \qquad F(u) = \sum_{i=0}^{M} a_i u^i$$

## Feynman – Kac Formula

$$u(t,x) = \mathbb{E}_{t,x}^{\mathbb{Q}}\left[e^{-\int_t^T \beta(s)ds}\psi(X_T) + \int_t^T e^{-\int_t^T \beta(s)ds}\beta(r)F(u(r,X_r))dr\right]$$

$$dX_t = \mu dt + \sigma dW_t$$

$$\mathcal{L} = \mu \partial_x + \frac{1}{2} \sigma^2 \partial_{xx}$$

## **Branching Diffusion Process**

$$dz_t^i = \mu dt + \sigma dW_t^i$$

$$\mathcal{L} = \mu \partial_x + \frac{1}{2} \sigma^2 \partial_{xx} \\
z^1(t) = x \\
\tau_i \sim exp(\beta)$$

$$p_k = \frac{|a_k| * ||\psi||_{\infty}^k}{\sum_{i=0}^M |a_i| * ||\psi||_{\infty}^i}$$



### **Useful Notation**

$$n(z^{t,x}(T))$$

 $w_y(z^{t,x}(T))$ 

- Total number of live particles at time T from the branching started by the particle at time t located at position x
- Total number of y-type branchings until time T from the branching started by the particle at time t located at position x

## Marked Branching Diffusion

$$u(t,x) = \mathbb{E}_{t,x} \left[ \prod_{i=0}^{n(z_i^{t,x})(T)} (\psi(z_i^{t,x}(T)) \prod_{j=1}^{M} \left( \frac{a_j}{p_j} \right)^{\omega_j(z_i^{t,x}(T))} \right]$$

## Implementation

Goal: compute the expectation

$$\mathbb{E}_{t,x} \left[ \prod_{i=1}^{N_T} g(z_T^i) \prod_{k=0}^{\infty} \overline{a_k}^{\Omega_k} \right]$$

to solve a differential equation of the form

$$\partial_t u + \mathcal{L}u + \beta(t)(F(u) - u) = 0, \quad u(T, x) = g(x)$$

## Implementation, cont.

- Used Python classes to simulate the particle diffusion
- Choose probabilities to minimize the variance of the random variable
- Run multiple simulations to compute the expectation

$$\mathbb{E}_{t,x} \left[ \prod_{i=1}^{N_T} g(z_T^i) \prod_{k=0}^{\infty} \overline{a_k}^{\Omega_k} \right]$$

## Numerical Experiments

We replicated a numerical example from Henry-Labordere's paper with the parameters

$$u(T,x) = \mathbb{I}_{x>1}, \qquad F(u) = \frac{1}{3}(u^3 - u^2 - u^4)$$

### Results

| Monte Carlo<br>Trials (powers<br>of 2) | Published<br>Result | Published<br>Standard Dev | Our Result | Our Standard<br>Dev |
|----------------------------------------|---------------------|---------------------------|------------|---------------------|
| 12                                     | .2114               | .0078                     | .2111      | .0071               |
| 14                                     | .2156               | .0038                     | .2145      | .0036               |
| 16                                     | .2162               | .0019                     | .2135      | .0018               |
| 18                                     | .2131               | .0010                     | .2142      | .0009               |

### MBD for CVA

Suppose r = 0

 ${\it R}\,$  - recovery rate

 $\lambda_C$  - intensity of Poisson Jump process

$$\partial_t u + \mathcal{L}u - (1 - R)\lambda_C(u^+ - u) = 0, \quad u(T, x) = (X_s - K)^+$$

## Implementation for CVA Pricing

- Necessity of  $(X_s K)^+$  being bounded
- Necessity of  $||(X_s K)^+||^{\infty}$  being equal to 1
- Polynomial approximation of positive part

### Results and Problems

- We edited our implementation described above to price CVA using the differential equation above
- Problem for larger default probabilities
- Attempted workarounds: rescaling, high precision mathematics library

## Sample Results

| Default Probability | Analytic CVA Pricer | MBD Result       |
|---------------------|---------------------|------------------|
| 0                   | .22270258921        | .22560051870746  |
| .00001              | .222692861783       | .226228499639864 |
| .0001               | .22262627991        | .220218509027449 |
| .001                | .221552768189       | .233720340286112 |
| .01                 | .211410346282       | .225062397763253 |
| .1                  | .150147510736       | .480409331220962 |

## MBD for American option

g(x) - exercise payoff

Price of the option:

$$u(t,x) = \sup_{\tau \in [t,T]} \mathbb{E}_{t,x}^{\mathbb{Q}}[g(x)]$$



### From definition to MBD

$$u(t,x) = \sup_{\tau \in [t,T]} \mathbb{E}^{\mathbb{Q}}_{t,x}[g(x)]$$

$$\lim_{t \to [t,T]} \max(\partial_t u(t,x) + \mathcal{L}u(t,x), \quad g(x) - u(t,x)) = 0$$

$$\lim_{t \to [t,T]} \mathcal{E}^{\mathbb{Q}}_{t,x}[g(x)]$$

#### Problem

We can solve:

$$\partial_t u + \mathcal{L}u + \beta(F(u) - u) = 0;$$

$$\partial_t u + \mathcal{L}u + \beta(F(u) - u) = 0;$$
 
$$F(u) = \sum_{k=0}^M a_k u^k, \quad u(T, x) = g(x)$$

We need to solve: 
$$\partial_t u(t,x) + \mathcal{L}u(t,x) + \mathcal{L}g\mathbb{I}_{g(x)=u(t,x)} = 0, \qquad u(T,x) = g(x)$$

$$u(T,x) = g(x)$$

The main problem:

$$\mathbb{I}_{g(x)=u(t,x)}\backsim F(u)$$

### Results:

- Financial background
- Option pricing
- Valuation adjustment (CVA)

### Results:

- Marked Branching Diffusion
  - O CVA
  - American option pricing