Multi robot systems

Schnebli Zoltán 1

¹Babeş-Bolyai University, Faculty of Mathematics and Computer Science

Introduction

· Motivation?

· Automization

 $\cdot\,$ Make robots do complex tasks by themselves

1

Research results

Collaborative Multi-Robot Exploration

· Minimizes time

· Constructs a map about the environment

Process

· send each agent to the closest frontier cell

· decrease the utility value of a point if a robot is nearby

· construct the map if there are no unknown points

 \cdot with the use of realtive position

Experiments:

- · randomly placed robots
- · 2, 3, 4 robots
- · increasing the map size with the nr. of robots
- · faster with 100s, 200, 300s then the non-optimized

· Results with the 2 robots

Recent research results

Multi-Robot System for Artistic Pattern Formation

· make robots form a pattern

 \cdot make the transition between pattern smooth and efficient

Use case of pattern formation

- · exploration
- · alignment of aerial vehicles
- · cooperative control over a mobile network
- · escorting and rescue mission

Ideea

- \cdot creating goal positions from the input pattern
- · multi-robot goal assignment
- · (short path and fast convergence)
- · avoid collision
- · repeat step 2 until finished

