Carter K. Cocke cartercocke.github.io

Education

California Institute of Technology

Expected 2028

Ph.D. in Mechanical Engineering

Pasadena, CA

o Advisor: Dr. Kaushik Bhattacharya

University of Utah

2022

M.S. in Mechanical Engineering

Salt Lake City, UT

o Advisor: Dr. Ashley D. Spear

University of Utah

2022

Honors B.S. in Mechanical Engineering, summa cum laude

Salt Lake City, UT

Solid Mechanics Emphasis, Honors Ecology and Legacy Minor

Research Experience

University of Utah Multiscale Mechanics & Materials Laboratory

Aug. 2019 – Aug. 2022

Salt Lake City, UT

MS/BS Research Assistant

Funded by: Department of Energy (DOE) Nuclear Energy University Program (NEUP)

Topic: Estimating macroscale ductility using microstructure-sensitive scaling relationships

- Published one first-author journal article (one additional first-author publication under-review) detailing novel methods in FFT-based crystal plasticity modeling
- Leveraged and extended FFT-based methods to win two first-place awards in additive manufacturing-based research challenges (NIST AM-Bench & AFRL AM Challenge)
- Developed serial and parallelized Python, Fortran, and C++ code for computational solid and materials science research applications
- Leveraged high-performance computing (HPC) for running OpenMP and MPI parallelized codes on a Linux cluster environment using the Slurm workload manager

Los Alamos National Laboratory

May 2021 – Aug. 2021

Graduate Research Assistant

Remote

- Developed a method to model material indentation using a large strain EVPFFT model through formulation and code modifications
- Substantially improved EVPFFT simulation execution time through serial code optimizations, OpenMP parallelization, and external library implementations

Publications

- o **C. K. Cocke**, H. Mirmohammad, M. Zecevic, B. Phung, R. Lebensohn, O. Kingstedt, A. Spear, "Implementation and experimental validation of nonlocal damage in a large-strain elasto-viscoplastic FFT-based framework for predicting ductile fracture in 3D polycrystalline materials," *Under review*.
- C. K. Cocke, A. Rollett, R. Lebensohn, A. Spear, "The AFRL Additive Manufacturing Modeling Challenge: Predicting Micromechanical Fields in AM IN625 Using an FFT-Based Method with Direct Input from a 3D Microstructural Image," *Integrating Materials Manufacturing and Innovation*, 2021. https://doi.org/10.1007/s40192-021-00211-w

Conference Presentations (*presenter)

- A. Rollett*, J. Pauza, **C. K. Cocke**, R. Lebensohn, A. Spear, "Combining Modeling & Measurement in Metals Additive," *AM-Bench 2022*, Bethesda, MD, August 2022.
- C. K. Cocke*, H. Mirmohammad, M. Zecevic, B. Phung, R. Lebensohn, O. Kingstedt, A. Spear,
 "Implementation and experimental validation of nonlocal damage in a large-strain elasto-viscoplastic
 FFT-based framework for predicting ductile fracture in 3D polycrystalline materials," WCCM 15, Virtual, August 2022.
- C. K. Cocke*, H. Mirmohammad, M. Zecevic, B. Phung, R. A. Lebensohn, O. T. Kingstedt, A. D. Spear,
 "Implementation and experimental validation of nonlocal damage in a large-strain elasto-viscoplastic
 FFT-based framework for predicting ductile fracture in 3D polycrystalline materials," ESMC 11, Galway,
 Ireland, July 2022.
- C. K. Cocke*, H. Mirmohammad, M. Zecevic, B. Phung, R. Lebensohn, O. Kingstedt, A. Spear,
 "Implementation and experimental validation of nonlocal damage in a large-strain elasto-viscoplastic FFT-based framework for predicting ductile fracture in 3D polycrystalline materials," 3DMS 6,
 Washington, D.C., June 2022.
- C. K. Cocke*, A. Rollett, R. Lebensohn, A. Spear, "The AFRL AM Modeling Challenge: Predicting Micromechanical Fields in AM IN625 Using an FFT-Based Method with Direct Input from a 3D Microstructural Image," USNCCM 16, Virtual, July 2021.
- C. K. Cocke*, A. Rollett, R. Lebensohn, A. Spear, "The AFRL AM Modeling Challenge: Predicting Micromechanical Fields in AM IN625 Using an FFT-based Method with Direct Input from a 3D Microstructural Image," 3DMS 5, Virtual, June 2021.
- A. Rollett*, R. Suter, R. Lim, M. Wilkin, Y. Zhang, P. Promoppatum, C. K. Cocke, A. Spear, R. Lebensohn, J. Gordon, "Probing Microstructural Evolution in Deformation with Electrons and X-rays," *TMS 2021*, Virtual, March 2021.

Teaching Experience

• Teaching Assistant: Continuum Mechanics (ME EN 5530/6530)

Fall 2021

Professional Experience

Corning

June 2018 – June 2019

Engineering Intern

Salt Lake City, UT

- Reduced automation downtime and improved operator safety of several systems through custom designed (SolidWorks) and machined metal and plastic parts (manual/CNC milling)
- o Improved cycle time and enhanced user safety of a testing fixture by redesigning the electronics system and reworking PLC ladder logic

Honors & Awards

 $2022: 1^{st}$ Place: NIST AM-Bench - Best modeling results predicting subcontinuum tensile behavior of as-built IN625

2022: Travel Award: 15th World Congress on Computational Mechanics (WCCM 15)

2022: Session Chair: 11th European Solid Mechanics Conference (ESMC 11)

2021: 1st Place: ASME/IEEE Heat Sink Design Competition 2021 (1st of 20+ international submissions)

2020: 1st Place: AFRL Additive Manufacturing (AM) Modeling Challenge #4.

2019: Larry DeVries Scholarship: awarded to outstanding mechanical engineering students

2019: Mechanical Engineering Tuition Waiver

2017–2021: Utah Flagship Scholarship

Projects

Heat Sink Design Competition: Team leader for a competition-winning natural convection heat sink designed using Ansys and COMSOL computational fluid dynamics (CFD) software

Keyboard Design: Completely designed and built a custom keyboard number pad from scratch (PCB, electronics, case, code) using KiCad, SolidWorks, Blender, and C

Skills

Programming: Python, Fortran, MATLAB, C++, C **Tools:** Git, Linux, Slurm, OpenMP, MPI, CUDA, LaTeX

Software: DREAM.3D, ParaView, ABAQUS, FRANC3D, COMSOL, SolidWorks