Math 3501 - Probability and Statistics I

2.1 - Random variables of discrete type

Note: A sample space S may be difficult to describe if the elements of S are not numbers.

Possible solution: Assign to each element $s \in S$ an appropriate real number x.

Example

A coin is tossed and the outcome is observed. $H \longrightarrow$

The outcome space is $S = \{H, T\}$.

Let X be a function defined on S such that

$$X(H) = 0$$
 and $X(T) = 1$.

This is a real-valued function that has the outcome space \underline{S} as its domain and the set of real numbers $\{x: x=0,1\}$ as its range.

Random variable

Definition

Given a random experiment with an outcome space S, a random variable is a real-valued function with domain S.

The space of X is the set of real numbers

$$\{x:X(s)=x,s\in S\}\;,$$
 \leftarrow range of X

where $s \in S$ means that the element s belongs to the set S.

Remark

- 1) There are many ways of defining a function X on S, so one might wonder which function to use?
- 2) While observing a random experiment, the experimenter may take some type of measurement (or measurements):
 - such measurement may be regarded as the outcome of a random variable.
- 3) It may be that the set S has elements that are real numbers:
 - we can define X(s) = s, so that X is the identity function and the space of X is also S.
 - eg. Rolla die: S= {1,2,..., 6}) if all we want is to record the observed face, then we may define x(5)=5

Example

Random experiment: roll a fair die.

Sample space
$$S = \{1, 2, 3, ..., 6\}$$

Rell two four dice $S = \{ (i,j) : i,j \in \{1,...,6\} \}$

Pomble 1.V.s:

Y, (5)= i+j

records the run of the has faces

⟨i | j⟩ ← record the maximum cheeved value.

X3(0) = i ← records only the value charved in 1st die

Remark

Let X denote a random variable with space S.

S the space of X and the sample space of the random experiment

Suppose that we know how the probability is distributed over the various subsets

A of S, that is, we know

 $P(X \in A)$,

De wont to determine
The 5 quantity and study
some consequences!

for each subset $A \subset S$.

When often speak of the distribution of the random variable X, meaning the distribution of probability associated with the space S of X.

soul of chos 2+3: otady the probability distributions of some special 2.v.s.

Discrete outcome space

Definition

An outcome space S is said to be *discrete* if it contains a <u>countable number</u> of points, that is, either:

- i) S contains a finite number of points; or
- ii) the points of S can be put into a one-to-one correspondence with \mathbb{N} .

Discrete random variable

Definition

A random variable defined on a discrete outcome space *S* is called a *discrete* random variable.

The probability distribution of a discrete random variable is said to be of the discrete type.

Note: A discrete random variable can assume at most a countable number of values.

of sample space S in descrete sinfinite contable

Probability mass function

Definition

Let X be a discrete random variable with space S.

The probability mass function (pmf) of X, denoted f(x) or $f_X(x)$ is given by

$$f(x) = P(X = x)$$
 $x \in \mathbb{R}$.

Properties:

(a) f(x) > 0 for $x \in S$ and f(x) = 0 for $x \notin S$, that is S is the support of f

$$(b) \sum_{x \in S} f(x) = 1$$

(c)
$$P(X \in A) = \sum_{x \in A} f(x)$$
, where $A \subset \mathbb{R}$

range of the e.v. X

Cumulative distribution function

Definition

Let X be a discrete random variable with space S.

The cumulative distribution function (cdf) of X, denoted F(x) or $F_X(x)$, is defined as

$$F(x) = P(X \le x) , \qquad x \in \mathbb{R} .$$

Note: The cdf of X is sometimes referred to as the distribution function of the random variable X.

This definition is general in the sense that applies to all types of 1.v.s

Discrete uniform distribution

and the support is finite

Note: When a pmf is constant on its support, we say that the distribution is uniform (over that space).

The random variable \underline{X} has a discrete uniform distribution over the first m positive integers if its pmf is

$$f(x) = \frac{1}{m} \qquad x = \underbrace{1, 2, 3, \dots, m}. \qquad \text{if } x = \underbrace{1, 2, 3, \dots, m}.$$

Example

A <u>fair six-faced</u> die has a discrete uniform distribution over the first <u>6</u> positive integers.

Discrete uniform distribution

Let X be a random variable with a discrete uniform distribution over the first m positive integers.

The cdf of X is given by

given by
$$F(x) = P(X \le x) = \begin{cases} 0, & x < 1 \\ \frac{|x|}{m}, & 1 \le x < m \\ 1, & m \le x \end{cases},$$

where we have denoted by [x] the floor of $x \in \mathbb{R}$, that is, the greatest integer less than or equal to x.

F(n)= P(X < x) = { | 1/6 , of 1 < x < 2 | 1/6 , of 1 < x < 2 | 1/6 , of 1 < x < 3 | 3/6 , of 3 < x < 4 | 4/6 , of 4 < x < 5 | 5/6 , of 5 < x < 6 | 5/6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 6 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6 | 7 , of 5 < x < 6

Example

Roll a fair four-sided die twice, and let $\underline{\underline{X}}$ be the maximum of the two outcomes. Determine the pmf of X.

Sample apa $S = \{(i,j) : i,j \in \{1,2,3,1\}\}$ has 16 elements (all equally likely)

The number variable in $X(i,j) = \max\{i,j\}$ Space of X an the set of value X can take i i.e., $S_X = \{1,2,3,4\}$ The apa i of X ($S_X = \{1,2,3,4\}$) will be the support of the p-of of XWe only need to determine $S(x) = P\{X = x\}$ for x = 1,2,3,4 because S(x) = 0 obtained.

If
$$x=1$$
, $f(1) = P\{x=1\} = P\{(1,1)\} = \frac{1}{16}$
If $x=2$, $f(2) = P\{x=2\} = P\{(1,2), (2,2), (2,1)\} = \frac{3}{16}$

If
$$x=3$$
, then $f(3) = P\{X=3\} = P\{(1,3), (2,3), (3,3), (3,2), (3,1)\} = \frac{5}{16}$
If $x=4$, then $f(4) = P\{X=4\} = P\{(1,4), (2,4), (3,4), (4,4), (4,3), (4,2), (4,1)\} = \frac{7}{16}$

The pmf of
$$\times$$
 in then

$$\int (x) = \begin{cases}
\frac{1}{1} & \text{if } x = 1 \\
\frac{3}{1} & \text{if } x = 2 \\
\frac{5}{1} & \text{if } x = 3 \\
\frac{7}{1} & \text{if } x = 4 \\
0 & \text{otherwise}
\end{cases}$$

$$\frac{1}{x} = \frac{1}{x} = \frac{1}{x$$

P{x < 1}

The edf of x in

$$F(x) = P\{X \le x\} = \begin{cases}
0 & \text{if } x < 1 \\
1/16 & \text{if } 1 \le x < 2 \\
4/16 & \text{if } 3 \le x < 1
\end{cases}$$

$$1/16 & \text{if } 3 \le x < 1$$

$$1/16 & \text{if } 3 \le x < 1$$

$$1/16 & \text{if } 3 \le x < 1$$

$$1/16 & \text{if } 3 \le x < 1$$

$$1/16 & \text{if } 3 \le x < 1$$

$$1/16 & \text{if } 3 \le x < 1$$

Graphical representations

Note: the graph of a pmf is the set of points

$$\{[x,f(x)]:x\in S\}$$
,

where S is the space of X.

Alternative graphical representations:

- line graph ←
- probability histogram

Line graph

A line graph of the pmf f(x) of the random variable \underline{X} is a graph having a vertical line segment drawn from (x,0) to (x,f(x)) at each $x \in S$, the space of X.

Probability histogram

Whenever X can assume only integer values, a *probability histogram* of the pmf f(x) is a graphical representation that has a rectangle of height f(x) and a base of length 1 centered at x for each $x \in S$, the space of X.

Note:

- the area of each rectangle is equal to the respective probability f(x)
- the total area of a probability histogram is 1.