Mark Scheme (Results) Summer 2008

GCE

GCE Mathematics (6666/01)

June 2008 6666 Core Mathematics C4 Mark Scheme

Question		Sch	neme				Marks
1. (a)	<u>x</u> 0	0.4	0.8	1.2	1.6	2	
1. (a)	<i>y</i> e ⁰	$e^{0.08}$	e ^{0.32}	$e^{0.72}$	$e^{1.28}$	e^2	
	or <i>y</i> 1	1.08329	1.37713	2.05443	3.59664	7.38906	
					av	er e ^{0.32} and e ^{1.28} o wrt 1.38 and 3.6 nixture of e's and decimals	D B1
						Outside bracket $\frac{1}{2} \times 0.4$ or 0.2	D1.
(b) Way 1	Area $\approx \frac{1}{2} \times 0.4$;×	$\left[e^{0} + 2(e^{0.08} +$	$e^{0.32} + e^{0.72} +$	$-e^{1.28}$) + e^2	ļ	For structure of trapeziur rule [<u>-</u> _{M1./}
	$=0.2 \times 24.61203$	164 = 4.92	22406 = <u>4.9</u>	<u>922</u> (4sf)		4.922	A1 cao [3]
Aliter (b) Way 2	Area $\approx 0.4 \times \left[\frac{e^0}{}\right]$	$\frac{+e^{0.08}}{2} + \frac{e^{0.08} + e^{0.32}}{2}$	$\frac{e^{0.32} + e^{0.72}}{2} + \frac{e^{0.32} + e^{0.72}}{2} + \frac{e^{0.32} + e^{0.72}}{2}$	$-\frac{e^{0.72}+e^{1.28}}{2}+\frac{e^{1.28}}{2}$	$\frac{(28+e^2)^2}{2}$ 0.4 and all terms	I a divisor of 2 o s inside brackets	B1
, 2	which is equiva Area $\approx \frac{1}{2} \times 0.4$;×		a ^{0.32} + a ^{0.72} +	a ^{1.28}) + a ²	ordi middle	e of first and las nates, two of the e ordinates inside ts ignoring the 2	e <u>M1</u> √
	$= 0.2 \times 24.61203$	=				4.922	A1 cao [3]

Note an expression like Area $\approx \frac{1}{2} \times 0.4 + e^0 + 2(e^{0.08} + e^{0.32} + e^{0.72} + e^{1.28}) + e^2$ would score B1M1A0

Allow one term missing (slip!) in the () brackets for

The M1 mark for structure is for the material found in the curly brackets ie \int first yordinate + 2(intermediate ft y ordinate) + final y ordinate

Question Number	Scheme		Marks
2. (a)	$\begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$		
	$\int x e^x dx = x e^x - \int e^x .1 dx$	Use of 'integration by parts' formula in the correct direction. (See note.) Correct expression. (Ignore dx)	M1 A1
	$= x e^x - \int e^x dx$		
	$= xe^x - e^x (+ c)$	Correct integration with/without $+ c$	A1 [3]
(b)	$\begin{cases} u = x^2 & \Rightarrow \frac{du}{dx} = 2x \\ \frac{dv}{dx} = e^x & \Rightarrow v = e^x \end{cases}$		
	$\int x^2 e^x dx = x^2 e^x - \int e^x \cdot 2x dx$	Use of 'integration by parts' formula in the correct direction . Correct expression. (Ignore d <i>x</i>)	M1 A1
	$= x^2 e^x - 2 \int x e^x dx$		
	$= x^2 e^x - 2(xe^x - e^x) + c$	Correct expression including + c. (seen at any stage! in part (b)) You can ignore subsequent working.	A1 ISW
	$\begin{cases} = x^{2}e^{x} - 2xe^{x} + 2e^{x} + c \\ = e^{x}(x^{2} - 2x + 2) + c \end{cases}$	Ignore subsequent working	[3]
			6 marks

Note integration by parts in the correct direction means that u and $\frac{dv}{dx}$ must be assigned/used as u=x and $\frac{dv}{dx}=e^x$ in part (a)

+ c is not required in part (a).

Physics And Maths Tutor.com

Question Number	Scheme	Marks
3. (a)	From question, $\frac{dA}{dt} = 0.032$ $\frac{dA}{dt} = 0.032$ seen or implied from working.	B1
	$\left\{ A = \pi x^2 \implies \frac{\mathrm{d}A}{\mathrm{d}x} = \right\} 2\pi x$ 2\pi x by itself seen or implied from working	B1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}t} \div \frac{\mathrm{d}A}{\mathrm{d}x} = (0.032) \frac{1}{2\pi x}; \left\{ = \frac{0.016}{\pi x} \right\}$ $0.032 \div \text{Candidate's } \frac{\mathrm{d}A}{\mathrm{d}x};$	M1;
	When $x = 2 \mathrm{cm}$, $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{0.016}{2 \pi}$	
	Hence, $\frac{dx}{dt} = 0.002546479$ (cm s ⁻¹) awrt 0.00255	A1 cso [4]
(b)	$V = \underline{\pi x^2(5x)} = \underline{5\pi x^3}$ $V = \underline{\pi x^2(5x)} \text{ or } \underline{5\pi x^3}$	
	$\frac{dV}{dx} = 15\pi x^2$ $\frac{dV}{dx} = 15\pi x^2$ or ft from candidate's V in one variable	B1 √
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 15\pi x^2 \cdot \left(\frac{0.016}{\pi x}\right); \left\{= 0.24 x\right\}$ Candidate's $\frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$;	M1√
	When $x = 2 \text{cm}$, $\frac{\text{d}V}{\text{d}t} = 0.24(2) = \underline{0.48} (\text{cm}^3 \text{s}^{-1})$ $\underline{0.48} \text{or } \underline{\text{awrt } 0.48}$	A1 cso [4]
		8 marks

Question			Marks
Number	Scheme		- Wal K3
4. (a)	$3x^2 - y^2 + xy = 4$ (eqn *)		
		Differentiates implicitly to include either $\pm ky \frac{dy}{dx}$ or $x \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$)	M1
	$\left\{ \frac{\partial \mathbf{x}}{\partial \mathbf{x}} \times \right\} 6x - 2y \frac{\mathrm{d}y}{\mathrm{d}x} + \left(y + x \frac{\mathrm{d}y}{\mathrm{d}x} \right) = \underline{0}$	Correct application $\underline{\underline{}}$ of product rule	B1
		$(3x^2 - y^2) \rightarrow \left(\underline{6x - 2y \frac{dy}{dx}}\right) \text{ and } (4 \rightarrow \underline{0})$	<u>A1</u>
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6x - y}{x - 2y} \right\} \text{or} \left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6x + y}{2y - x} \right\}$	not necessarily required.	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{3} \implies \frac{-6x - y}{x - 2y} = \frac{8}{3}$	Substituting $\frac{dy}{dx} = \frac{8}{3}$ into their equation.	M1 *
	giving $-18x - 3y = 8x - 16y$		
	giving $13y = 26x$	Attempt to combine either terms in x or terms in y together to give either ax or by .	dM1*
	Hence, $y = 2x \Rightarrow y - 2x = 0$	simplifying to give $y - 2x = 0$ AG	A1 cso [6]
(b)	At $P \& Q$, $y = 2x$. Substituting into eqn *		
	gives $3x^2 - (2x)^2 + x(2x) = 4$	Attempt replacing y by $2x$ in at least one of the y terms in eqn \ast	M1
	Simplifying gives, $x^2 = 4 \Rightarrow \underline{x = \pm 2}$	Either $x = 2$ or $x = -2$	<u>A1</u>
	$y = 2x \implies y = \pm 4$		
	Hence coordinates are $(2,4)$ and $(-2,-4)$	Both $(2,4)$ and $(-2,-4)$	<u>A1</u> [3]
			9 marks

Question	Scheme		Marks
Number	** represents a constant (which must be consistent f	for first accuracy mark)	
5. (a)	$\frac{1}{\sqrt{(4-3x)}} = (4-3x)^{-\frac{1}{2}} = \underline{(4)^{-\frac{1}{2}}} \left(1 - \frac{3x}{4}\right)^{-\frac{1}{2}} = \underline{\frac{1}{2}} \left(1 - \frac{3x}{4}\right)^{-\frac{1}{2}}$	$\underline{(4)^{-\frac{1}{2}}}$ or $\frac{1}{2}$ outside brackets	<u>B1</u>
		Expands $(1+**x)^{-\frac{1}{2}}$ to give a simplified or an un-simplified $1+(-\frac{1}{2})(**x)$;	M1;
	$= \frac{1}{2} \left[\frac{1 + (-\frac{1}{2})(**x); + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(**x)^2 + \dots}{2!} \right]$ with $** \neq 1$	A correct simplified or an unsimplified $[$ $]$ expansion with candidate's followed through $(**x)$	A1√
	$= \frac{1}{2} \left[\frac{1 + (-\frac{1}{2})(-\frac{3x}{4}) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-\frac{3x}{4})^2 + \dots}{2!} \right]$	Award SC M1 if you see $(-\frac{1}{2})(**x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(**x)^2$	
	$= \frac{1}{2} \left[1 + \frac{3}{8}x; + \frac{27}{128}x^2 + \dots \right]$	$ \frac{\frac{1}{2} \left[1 + \frac{3}{8}x; \dots \right]}{\text{SC: } K \left[1 + \frac{3}{8}x + \frac{27}{128}x^2 + \dots \right]} $ $ \frac{\frac{1}{2} \left[\dots; \frac{27}{128}x^2 \right]}{\frac{1}{2} \left[\dots; \frac{27}{128}x^2 \right]} $	1
	$\left\{ = \frac{1}{2} + \frac{3}{16}x; + \frac{27}{256}x^2 + \dots \right\}$	Ignore subsequent working	
(b)	$(x+8)\left(\frac{1}{2} + \frac{3}{16}x + \frac{27}{256}x^2 + \dots\right)$	Writing $(x+8)$ multiplied by candidate's part (a) expansion.	[5] M1
	$= \frac{\frac{1}{2}x + \frac{3}{16}x^2 + \dots}{+4 + \frac{3}{2}x + \frac{27}{32}x^2 + \dots}$	Multiply out brackets to find a constant term, two x terms and two x^2 terms.	M1
	$= 4 + 2x; + \frac{33}{32}x^2 + \dots$	Anything that cancels to $4 + 2x$; $\frac{33}{32}x^2$	★ ★ A1; A1
			[4]
			9 marks

Question Number	Scheme		Mark	.S
6. (a)	Lines meet where:			
	$\begin{bmatrix} -9 \\ 0 \\ 10 \end{bmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 17 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$			
	i: $-9 + 2\lambda = 3 + 3\mu$ (1) Any two of j: $\lambda = 1 - \mu$ (2) k: $10 - \lambda = 17 + 5\mu$ (3)	Need any two of these correct equations seen anywhere in part (a).	M1	
	(1) - 2(2) gives: $-9 = 1 + 5\mu \implies \mu = -2$	Attempts to solve simultaneous equations to find one of either λ or μ	dM1	
	(2) gives: $\lambda = 1 - 2 = 3$	Both $\lambda = 3 \& \mu = -2$	A1	
	$\mathbf{r} = \begin{pmatrix} -9\\0\\10 \end{pmatrix} + 3 \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 3\\1\\17 \end{pmatrix} - 2 \begin{pmatrix} 3\\-1\\5 \end{pmatrix}$	Substitutes their value of either λ or μ into the line I_1 or I_2 respectively. This mark can be implied by any two correct components of $\left(-3,3,7\right)$.	ddM1	
	Intersect at $\mathbf{r} = \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix}$ or $\mathbf{r} = \underline{-3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}}$	$\frac{\begin{pmatrix} -3\\3\\7 \end{pmatrix}}{\text{or } -3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}}$ or $(-3, 3, 7)$	A1	
	Either check k: $\lambda = 3: \text{ LHS} = 10 - \lambda = 10 - 3 = 7$ $\mu = -2: \text{ RHS} = 17 + 5\mu = 17 - 10 = 7$ (As LHS = RHS then the lines intersect.)	Either check that $\lambda=3$, $\mu=-2$ in a third equation or check that $\lambda=3$, $\mu=-2$ give the same coordinates on the other line. Conclusion not needed.	B1	6]
(b)	$\mathbf{d}_1 = 2\mathbf{i} + \mathbf{j} - \mathbf{k} , \mathbf{d}_2 = 3\mathbf{i} - \mathbf{j} + 5\mathbf{k}$			
	As $\mathbf{d}_1 \bullet \mathbf{d}_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix} = \underline{(2 \times 3) + (1 \times -1) + (-1 \times 5)} = 0$	Dot product calculation between the two direction vectors: $(2\times3) + (1\times-1) + (-1\times5)$ or $6-1-5$	M1	
	Then I_1 is perpendicular to I_2 .	Result '=0' and appropriate conclusion	A1 [:	2]

Question Number	Scheme	Marks
6. (c)	Equating \mathbf{i} : $-9 + 2\lambda = 5 \Rightarrow \lambda = 7$ $\mathbf{r} = \begin{pmatrix} -9 \\ 0 \\ 10 \end{pmatrix} + 7 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix}$ Substitutes candidate's $\lambda = 7$ into the line I_1 and finds $5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}$. The conclusion on this occasion is not needed.	B1 [1]
(d)	Let $\overrightarrow{OX} = -3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$ be point of intersection Finding the difference between their \overrightarrow{OX} (can be implied) and \overrightarrow{OA} . $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} - \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} = \begin{pmatrix} -8 \\ -4 \\ 4 \end{pmatrix}$ $\overrightarrow{AX} = \pm \begin{pmatrix} \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} - \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix}$ $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AX}$	M1 √ ±
	$\overrightarrow{OB} = \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} -8 \\ -4 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} \text{their } \overrightarrow{AX} \end{pmatrix}$	dM1√
	Hence, $\overrightarrow{OB} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-11\mathbf{i} - \mathbf{j} + 11\mathbf{k}}$ $\underbrace{\begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix}}$ or $\underline{-11\mathbf{i} - \mathbf{j} + 11\mathbf{k}}$ or $\underline{(-11, -1, 11)}$	A1 [3]
		12 marks

Question Number	Scheme	Marks
7. (a)	$\frac{2}{4-y^2} \equiv \frac{2}{(2-y)(2+y)} \equiv \frac{A}{(2-y)} + \frac{B}{(2+y)}$	
	Forming this identity. $2 \equiv A(2+y) + B(2-y)$ NB: A & B are not assigned in this question	M1
	Let $y = -2$, $2 = B(4) \implies B = \frac{1}{2}$	
	Let $y=2$, $2=A(4) \Rightarrow A=\frac{1}{2}$ Either one of $A=\frac{1}{2}$ or $B=\frac{1}{2}$	A1
	giving $\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$, aef $\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$, aef	A1 cao
	(If no working seen, but candidate writes down <i>correct partial fraction</i> then award all three marks. If no working is seen but one of <i>A</i> or <i>B</i> is incorrect then M0A0A0.)	[3]

Question	Sahama		Marks
Number	Scheme		
7. (b)	$\int \frac{2}{4 - y^2} \mathrm{d}y = \int \frac{1}{\cot x} \mathrm{d}x$	Separates variables as shown. Can be implied. Ignore the integral signs, and the '2'.	B1
	$\int \frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)} dy = \int \tan x dx$		
		$ln(\sec x)$ or $-ln(\cos x)$	B1
		Either $\pm a \ln(\lambda - y)$ or $\pm b \ln(\lambda + y)$	M1;
	$\therefore -\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) + (c)$	their $\int \frac{1}{\cot x} dx = LHS$ correct with ft	_
		for their $\it A$ and $\it B$ and no error with the "2" with or without + $\it c$	A1√
		Use of $y = 0$ and $x = \frac{\pi}{3}$ in an	
	$y = 0, x = \frac{\pi}{3} \implies -\frac{1}{2} \ln 2 + \frac{1}{2} \ln 2 = \ln \left(\frac{1}{\cos(\frac{\pi}{3})} \right) + c$	integrated equation containing c	M1*
	$\left\{0 = \ln 2 + c \implies \underline{c = -\ln 2}\right\}$		
	$-\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) - \ln 2$		
	$\frac{1}{2}\ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)$	Using either the quotient (or product) or power laws for logarithms CORRECTLY.	M1
	$ \ln\left(\frac{2+y}{2-y}\right) = 2\ln\left(\frac{\sec x}{2}\right) $		
	$ \ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)^2 $	Using the log laws correctly to obtain a single log term on both sides of the equation.	dM1*
	$\frac{2+y}{2-y} = \frac{\sec^2 x}{4}$		
	Hence, $\sec^2 x = \frac{8+4y}{2-y}$	$\sec^2 x = \frac{8+4y}{2-y}$	A1 aef
			[8]
			11 marks

Question Number	Scheme		Marks
8. (a)	At $P(4, 2\sqrt{3})$ either $\underline{4 = 8\cos t}$ or $\underline{2\sqrt{3} = 4\sin 2t}$	$\underline{4 = 8\cos t} \text{or} \underline{2\sqrt{3}} = 4\sin 2t$	M1
	\Rightarrow only solution is $t = \frac{\pi}{3}$ where $0, t, \frac{\pi}{2}$	$\frac{t = \frac{\pi}{3} \text{ or awrt } 1.05 \text{ (radians) only}}{\text{stated in the range } 0,, t,, \frac{\pi}{2}}$	A1 [2]
(b)	$x = 8\cos t , \qquad y = 4\sin 2t$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -8\sin t \;, \frac{\mathrm{d}y}{\mathrm{d}t} = 8\cos 2t$	Attempt to differentiate both x and y wrt t to give $\pm p \sin t$ and $\pm q \cos 2t$ respectively	M1
	At P_{i} $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8\cos\left(\frac{2\pi}{3}\right)}{-8\sin\left(\frac{\pi}{3}\right)}$	Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$ Divides in correct way round and attempts to substitute their value of t (in degrees or radians) into their $\frac{dy}{dx}$ expression.	M1*
	$\left\{ = \frac{8\left(-\frac{1}{2}\right)}{\left(-8\right)\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58 \right\}$	You may need to check candidate's substitutions for M1* Note the next two method marks are dependent on M1*	
	Hence $m(\mathbf{N}) = -\sqrt{3}$ or $\frac{-1}{\frac{1}{\sqrt{3}}}$	Uses $m(\mathbf{N}) = -\frac{1}{\text{their } m(\mathbf{T})}$.	dM1*
	N: $y-2\sqrt{3}=-\sqrt{3}(x-4)$	Uses $y-2\sqrt{3} = (\text{their } m_N)(x-4)$ or finds c using $x=4$ and $y=2\sqrt{3}$ and uses $y=(\text{their } m_N)x+"c"$.	dM1*
	N: $\underline{y} = -\sqrt{3}x + 6\sqrt{3}$ AG	$y = -\sqrt{3}x + 6\sqrt{3}$	A1 cso AG
	or $2\sqrt{3} = -\sqrt{3}(4) + c \implies c = 2\sqrt{3} + 4\sqrt{3} = 6\sqrt{3}$ so N: $y = -\sqrt{3}x + 6\sqrt{3}$		
	$\begin{bmatrix} 30 & 14. & \left[\frac{y\sqrt{3}\lambda+\sqrt{3}}{2} \right] \end{bmatrix}$		[6]

Question	Scheme		Marks
8. (c)	$A = \int_{0}^{4} y dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} 4 \sin 2t \cdot (-8 \sin t) dt$	attempt at $A = \int y \frac{dx}{dt} dt$ correct expression (ignore limits and dt)	M1 A1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32\sin 2t \cdot \sin t dt = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32(2\sin t \cos t) \cdot \sin t dt$	Seeing $\sin 2t = 2\sin t \cos t$ anywhere in PART (c).	M1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -64 \cdot \sin^2 t \cos t dt$ $A = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} 64 \cdot \sin^2 t \cos t dt$	Correct proof. Appreciation of how the negative sign affects the limits. Note that the answer is given in the question.	A1 A G
			[4]
(d)	{Using substitution $u = \sin t \implies \frac{du}{dt} = \cos t$ } {change limits: when $t = \frac{\pi}{3}$, $u = \frac{\sqrt{3}}{2}$ & when $t = \frac{\pi}{2}$, $u = 1$ }		
	$A = 64 \left[\frac{\sin^3 t}{3} \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$ or $A = 64 \left[\frac{u^3}{3} \right]_{\frac{\sqrt{3}}{2}}^{1}$	$k \sin^3 t$ or ku^3 with $u = \sin t$ Correct integration ignoring limits.	M1 A1
	$A = 64 \left[\frac{1}{3} - \left(\frac{1}{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right) \right]$	Substitutes limits of either $\left(t=\frac{\pi}{2} \text{ and } t=\frac{\pi}{3}\right)$ or $\left(u=1 \text{ and } u=\frac{\sqrt{3}}{2}\right)$ and subtracts the correct way round.	dM1
	$A = 64\left(\frac{1}{3} - \frac{1}{8}\sqrt{3}\right) = \frac{64}{3} - 8\sqrt{3}$	$\frac{64}{3} - 8\sqrt{3}$ Aef in the form $a + b\sqrt{3}$, with awrt 21.3 and anything that cancels to $a = \frac{64}{3}$ and $b = -8$.	A1 aef isw [4]
	(Note that $a = \frac{64}{3}$, $b = -8$)	,	
			16 marks