PAGE 2 CASE 51786AUSM1

CLAIM AMENDMENTS

The below listing of claims will replace all prior versions, and listings, of claims in the application.

1-14. (Cancelled)

î,

15. (Currently Amended) A method for treating a patient suffering from chronic inflammation comprising administering to said patient an effective amount of a benzimidazole compound of formula II

$$\begin{array}{cccc}
R^3 & & & \\
N & & & \\
R^1 & & & \\
\end{array}$$
(II)

or a physiologically compatible salt thereof, in which

means a monocyclic or bicyclic C₆₋₄₂ aryl phenyl group optionally substituted with up to three of the following substituents; which are independently of one another selected from the group consisting of [[*]] F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NHR⁴, C(NH)NHR⁴, C(NH)NHR⁴, C(NR⁴)NHR⁴, C(NR⁴)NHR⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCONHR⁴, XOCOOR⁴, XCOOH, XCOOR⁴, XCONH)R⁴, XC(NOR⁴)R⁴, XCONHR⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴;

means a monocyclic or bicyclic C₆₋₁₀ aryl phenyl group optionally substituted with up to three of the following substituents, which are independently of one another selected from the group consisting of [[+]] F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴, C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴), (SO₂R⁴),

PAGE 3 CASE 51786AUSM1

XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴[[₅]];

R³ stands for one or two substituents which are each independently of one another selected from the group consisting of [[-]] hydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCONH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, er 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴[[-]];

R⁴ and R⁴, independently of one another, mean C₁₋₄perfluoroalkyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkinyl, C₃₋₇cycloalkyl, (C₁₋₃alkyl-C₃₋₇cycloalkyl), C₁₋₃alkyl-C₆₋₁₀aryl, C₁₋₃alkyl-5 to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S and O, or C₆₋₁₀aryl, or 5- to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S and O atoms,

wherein the C_{6-10} aryl and heteroaryl groups-are <u>is</u> optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅[[$_{7}$]] or optionally carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group, and wherein a 5-membered cycloalkyl ring-optionally has an N or O ring-member, and wherein a 6- or 7-membered cycloalkyl ring optionally-has one or two ring members selected from N and O₇ wherein ring nitrogens optionally are substituted with C₁₋₃-alkyl or C₁₋₃-alkanoyl,

R⁵ and R⁵, independently of one another, mean hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkinyl, (wherein in each case a carbon atom is optionally replaced by O, S; SO, SO₂, NH, NC₁₋₃alkyl or NC₁₋₃alkanoyl), C₃₋₇cycloalkyl-C₀₋₃alkyl, wherein a 5-membered cycloalkyl ring-optionally has an N or O ring member and a 6-or 7-membered cycloalkyl ring-optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl, or C₆₋₁₀aryl, or 5- to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S, and O,

wherein the mentioned alkyl, alkenyl and alkinyl groups are optionally substituted with one of the previously mentioned cycloalkyls, or aryls, or heteroaryls,

Α

PAGE 4 CASE 51786AUSM1

wherein all previously mentioned alkyl and cycloalkyl radicals are optionally substituted with up to two substituents selected from CF₃, C₂F₅, OH, O C₁₋₃alkyl, NH2 NH2, NHC₁₋₃ alkyl, NHC₁₋₃alkanoyl, N(C₁₋₃ alkyl)₂, N(C₁₋₃ alkyl)(C₁₋₃alkanoyl), COOH, CONH₂, and COOC₁₋₃alkyl, and all previously mentioned aryl and heteroaryl groups are optionally substituted with one or two substituents selected from F₁ Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅ or optionally carry an annelated methanediylbisoxy₇ or ethane-1,2-diylbisoxy group[[,]]; or

R⁵-and R⁵-together with the nitrogen atom form a 5-to 7-membered group, which optionally contains another oxygen, nitrogen or sulfur atom and is optionally substituted by C₁₋₄ alkyl, C₁₋₄ alkoxy-C₀₋₂ alkyl, C₁₋₄ alkoxy-carbonyl, aminocarbonyl or phenyl,

means C₁₋₁₀alkanediyl, C₂₋₁₀alkenediyl, C₂₋₁₀alkinediyl, (C₀₋₅alkanediyl-

- C₃₋₇cycloalkanediyl-C₀₋₅alkanediyl), <u>or</u> (C₀₋₅alkanediylarylene-C₀₋₅alkanediyl), or (C₀₋₅alkanediyl-heteroarylene-C₀₋₅-alkanediyl), wherein the aryl and heteroaryl groups are <u>is</u> optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, wherein-a-5-membered cycloalkyl ring optionally has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl-ring optionally has one or two-ring-members selected from N and O, wherein ring nitrogens optionally are substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl, wherein in the mentioned aliphatic groups, one or two carbon atoms are each
 - optionally replaced by O, NH, NR⁴, NCOR⁴, or NSO₂R⁴, and wherein alkyl or cycloalkyl groups are optionally substituted with up to two substituents selected from F, OH, OR⁴, OCOR⁴, =O, NH₂, NR⁴R⁴, NHCOR⁴, NHCONHR⁴, NHSO₂R⁴ SH, and SR⁴[[₇]];
- B means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COR⁵, C(NOH)R⁵, C(NOR⁵)R⁵, C(NO(COR⁵))R⁵, COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁶, CONR⁵R⁵, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R⁵, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR⁵), PO(OH)(NHR⁵), or PO(NHR⁵)(NHR⁵), or tetrazelyl, in each case bonded to a carbon atom of group A[[-1]];
- or the entire group Y-A-B is $N(SO_2R^4)(SO_2R^4)$ or $NHSO_2R^4[[_7]]$;
- X means a bond, CH_2 , $(CH_2)_2$, $CH(CH_3)$, $(CH_2)_3$, $CH(CH_2CH_3)$, $CH(CH_3)CH_2$, or $CH_2CH(CH_3)[[_7]]$; and
- Y means a bond, O, S, SO, SO₂, NH, NR⁴, NCOR⁴, or NSO₂R⁴.

PAGE 5 CASE 51786AUSM1

- 16. (Currently Amended) A method according to claim 15, wherein
 - means a monocyclic or bicyclic C₆₋₁₂ aryl phenyl group optionally substituted with up to three of the following substituents, which are independently of one another selected from the group consisting of [[-]] F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCONH, COOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R⁴, and R⁴.
- 17. (Currently Amended) A method according to claim 15, wherein[[-]]
 - means a monocyclic or bicyclic C₆₋₁₀ aryl phenyl group optionally substituted with up to three of the following substituents, which are independently of one another selected from the group consisting of [[*]] F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, and R⁴.
- 18. (Currently Amended) A method according to claim 15, wherein

 R³ stands for one or two substituents, which independently of one another, each

 mean: are selected from the group consisting of[[:]] hydrogen, F, Cl, Br, XOH,

 XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴,

 XC(NO(COR⁴))R⁴, XCN, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴,

 NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴),

 XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, er and R⁴.
- 19. (Currently Amended) A method according to claim 15, wherein R⁴ and R⁴, independently of one another, mean CF₃, C₂F₅, C_{1.4}alkyl, C_{2.4}alkenyl, C_{2.4}alkinyl, C_{3.6}cycloalkyl, (C_{1.3}alkyl-C_{3.6}cycloalkyl), C_{1.3}alkylaryl, C_{4.3} alkylheteroaryl, or monocyclic aryl, or 5—to 6-membered heteroaryl with 1-2 heteroatoms_selected from N, S and O₇ wherein the aryl and heteroaryl groups are is optionally substituted with one or two substituents selected from F, Cl. Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or optionally carry an annelated

PAGE 6 CASE 51786AUSM1

methanediylbisoxy or ethane-1,2-diylbisoxy group, and wherein a 5-membered eycloalkyl ring optionally has a ring member-selected-from N-and-O, and-a-6-membered cycloalkyl ring optionally has one or two-ring-members-selected from N and O, wherein ring nitrogens optionally-are substituted-with $C_{1,3}$ alkanoyl.

- 20. (Currently Amended) A method according to claim 15, wherein R⁵ and R⁵, independently of one another, are optionally C₁₋₈alkyl (wherein a carbon atom is optionally replaced by O, NH, NC₁₋₃alkyl, or NC₁₋₃alkanoyl), or C₃₋₇cycloalkyl-C₀₋₃alkyl, wherein-a-5-membered cycloalkyl ring optionally has a ring member selected from N and O, and a-6-or 7 membered cycloalkyl ring optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with G₄₋₃-alkyl or C₄₋₃ alkanoyl, wherein the mentioned C₁₋₈alkyl group is optionally substituted with one of the previously mentioned cycloalkyls, or a 5- to 6-membered heteroaromatic group with 1-2 heteroatoms-selected from N, S and O,
 - wherein all previously mentioned alkyl and cycloalkyl groups are optionally substituted with up to two substituents selected from CF₃, OH, and OC₁₋₃alkyl, and the previously-mentioned heteroaryl-groups are optionally-substituted with one or two substituents selected from F, CI, CF₃, CH₃, C₂H₆, OCH₃₁, and OC₂H₅₁
 - or R⁵ and R⁵ together with the nitrogen atom form a 5- to 7-membered heterocyclic group which optionally-contains another oxygen, nitrogen or sulfur atom and is optionally substituted by C_{1.4} alkyl, C_{4.4} alkoxy-C_{0.2} alkyl, C_{4.4} alkoxy-carbonyl, aminocarbonyl-or-phonyl.
- 21. (Currently Amended) A method according to claim 15, wherein
 - A means C₁₋₁₀alkanediyl, C₂₋₁₀alkenediyl, C₂₋₁₀alkinediyl, <u>or</u> (C₀₋₅alkanediyl-C₃₋₇cycloalkanediyl-C₀₋₅ alkanediyl), or (C₀₋₅-alkanediyl-heteroarylene-C₀₋₅ alkanediyl), wherein when a heteroaryl group is present it is optionally substituted-with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, and wherein a 5-membered cycloalkyl ring optionally has a ring member selected from N and O, and a 6- or 7membered cycloalkyl ring optionally has one or two ring members selected

PAGE 7 CASE 51786AUSM1

from N and O, wherein ring nitrogens optionally are substituted with $C_{4,3}$ alkahoyl,

wherein in the aliphatic groups one or two carbon atoms are optionally replaced by O, NH, NC₁₋₃alkyl, NC₁₋₃alkanoyl, or NSO₂C₁₋₃alkyl, and wherein alkyl or cycloalkyl groups are optionally substituted with up to two F atoms or by one of the substituents selected from OH, OC₁₋₃alkyl, OC₁₋₃alkanoyl, =O, NH₂, NHC₁₋₃-alkyl, N(C₁₋₃ alkyl)₂, NHC₁₋₃alkanoyl, N(C₁₋₃ alkyl)(C₁₋₃ alkanoyl), NHCOOC₁₋₃alkyl, NHCONHC₁₋₃alkyl, NHSO₂C₁₋₃alkyl, SH, and SC₁₋₃alkyl.

- 22. (Currently Amended) A method according to claim 15, wherein
 - B means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R⁵, CONHOH, or CONHOR⁵, or tetrazelyl, in each case bonded to a carbon atom of group A.
- (Previously Presented) A method according to claim 15, wherein
 X means a bond or CH₂.
- 24. (Previously Presented) A method according to claim 15, wherein Y means a bond, O, S, NH, NR⁴, NCOR⁴ or NSO₂R⁴.
- 25. (Cancelled)
- 26. (Previously Presented) A method according to claim 15, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.

27-28. (Cancelled)

7:5

- 29. (Currently Amended) A method according to claim 15, wherein
 - means a menocyclic or bicyclic C₆₋₄₂-aryl phenyl group optionally substituted with up to three of the following substituents, which are independently of one another selected from the group consisting of [[±]] F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCONHOH, XCOOH, XCOOR⁴, XCONHO₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R⁴, and R⁴;

PAGE 8 CASE 51786AUSM1

- means a monocyclic or bicyclic C₆₋₄₀ aryl phenyl group optionally substituted with up to three of the following substituents, which are independently of one another selected from the group consisting of [[÷]] F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOROH, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOR⁴, XNHCONHR⁴, and R⁴;
- is one or two substituents, which independently of one another, each mean: are selected from the group consisting of[[*]] hydrogen, F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, er and R⁴;
- R⁴ and R^{4'}, independently of one another, mean CF₃, C₂F₅, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkinyl, C₃₋₆cycloalkyl, (C₁₋₃alkyl-C₃₋₆cycloalkyl), C₁₋₃alkylaryl, C₁₋₃ alkylheteroaryl, or monocyclic aryl, or 5- to 6-membered heteroaryl with 1-2 heteroatoms selected from N₇S and O₇, wherein the aryl and heteroaryl groups are is optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or optionally carry an annelated methanediylbisoxy or ethane-1,2-diylbisoxy group, and wherein a 5-membered cycloalkyl ring optionally has a ring-member selected from N and O₇ and a 6-membered cycloalkyl ring optionally has one or two ring members selected from N and O₇ wherein ring nitrogens optionally are substituted with C₁₋₃ alkyl-or C₁₋₃ alkanovl;
- R⁵ and R⁵, independently of one another, are C₁₋₆alkyl (wherein a carbon atom is optionally replaced by O, NH, NC₁₋₃alkyl, <u>or NC₁₋₃alkanoyl)</u>, or C₃₋₇cycloalkyl-C₀₋₃alkyl, wherein a 5-membered cycloalkyl-ring optionally has a ring member selected from N-and O, and a 6- or 7-membered cycloalkyl-ring optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with C₁₋₃-alkyl or C₁₋₃-alkanoyl, wherein the mentioned C₁₋₆alkyl group is optionally substituted with one of the previously mentioned cycloalkyls, or a 5- to 6-membered heteroaromatic group with 1-2 heteroatoms selected from N, S and O₇

PAGE 9 CASE 51786AUSM1

wherein all previously mentioned alkyl and cycloalkyl groups are optionally substituted with up to two substituents selected from CF₃, OH, and OC₁₋₃alkyl[[--]]; and the previously-mentioned-heteroaryl groups are optionally substituted with one or two substituents-selected from F, Cl, CF₃, CH₃, C₂H₅, OCH₃, and OC₂H₅,

- or R⁵ and R⁵ together with the nitrogen atom form a 5- to 7-membered-heterocyclic group which optionally contains another oxygen, nitrogen or sulfur atom and is optionally substituted by C₁₋₄ alkyl, C₁₋₄ alkoxy-C₀₋₂ alkyl, C₄₋₄ alkoxy-carbonyl, aminocarbonyl or phenyl;
- A means C₁₋₁₀alkanediyl, C₂₋₁₀alkenediyl, C₂₋₁₀alkinediyl, or (C₀₋₅alkanediyl-C₃₋₇cycloalkanediyl-C₀₋₅ alkanediyl), or (C₀₋₆-alkanediyl-heteroarylene-C₀₋₅ alkanediyl), wherein when a heteroaryl group is present it is optionally substituted with one or two substituents selected from F, CI, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₆, and wherein a 5-membered cycloalkyl ring optionally has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with C₁₋₃ alkyl or C₁₋₃ alkaneyl, wherein in the aliphatic groups one or two carbon atoms are optionally replaced by O, NH, NC₁₋₃alkyl, NC₁₋₃alkanoyl, or NSO₂C₁₋₃alkyl, and wherein alkyl or cycloalkyl groups are optionally substituted with up to two F atoms or by one of the substituents selected from OH, OC₁₋₃alkyl, OC₁₋₃alkanoyl, =O, NH₂, NHC₁₋₃-alkyl, N(C₁₋₃ alkyl)₂, NHC₁₋₃alkanoyl, N(C₁₋₃alkyl)(C₁₋₃alkanoyl), NHCOOC₁₋₃alkyl, NHCONHC₁₋₃alkyl, NHSO₂C₁₋₃alkyl, SH, and SC₁₋₃alkyl;
- B means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R⁵, CONHOH, or CONHOR⁵, or tetrazolyl, in each case bonded to a carbon atom of group A;
- X means a bond or CH₂; and
- Y means a bond, O, S, NH, NR⁴, NCOR⁴ or NSO₂R⁴.
- 30. (Currently Amended) A method according to claim 15, wherein (a) in R⁴, R³-said-aryl groups are substituted or unsubstituted phenyl, biphenyl, naphthyl, indane, or fluorenyl; and (b) in R⁴, R⁵ and R⁵, said aryl groups are substituted or unsubstituted phenyl, biphenyl, naphthyl, indane, or fluorenyl, and said heteroaryl-group-are substituted or unsubstituted pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl,

PAGE 10 CASE 51786AUSM1

isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl.

31-33. (Cancelled)

34. (Previously Presented) A method according to claim 15, wherein said patient is suffering from a stroke.

35-44. (Cancelled)

- 45. (New) A method for treating a patient suffering from chronic inflammation_comprising administering to said patient an effective amount of the benzimidazole compound 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester or 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic acid.
- 46. (New) A method according to claim 45, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.
- 47. (New) A method according to claim 45, wherein said patient is suffering from a stroke.
- 48. (New) A method according to claim 47, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.