Data Integration and Knowledge Discovery with the International Shark Attack Database

Department of Computer Science

College of Computing and Informatics

July 26, 2016 ITCS 6265 Summer 2016

Research Team

Sailesh Bhamidipati
Sonal Kaulker
Pown Arthi Thimiri Dayasagar
Jai Kiran Duvvu
Dr. Pamela Thompson

Statement of Purpose

The objective of this research is to improve our understanding of the presence of sharks during tourist seasons in middle Atlantic and south eastern coastal waters, specifically North Carolina and South Carolina. Our study will focus on the analysis of existing data from the International Shark Attack database, weather and water data from NOAA, calculated moon phase dates, fish, crab and turtle populations. The quantitative analysis on this data will lead to new and interesting knowledge that may provide the basis for an app providing advanced information on the likelihood of sharks in coastal waters where tourists swim, surf and wade.

An additional focus of this research is to analyze social media activity relative to shark presence. Tweets will be mined with specific data ranges and locations in order to assess social media activity with respect to shark sightings, attacks, and even activities that are related to shark presence such as schools of fish. Once the nature of this activity is understood, a recommendation for a standardized way to tweet will be considered with interested and strategic partners in order to ultimately provide an additional feed to the app described above.

The process: CRISP-DM

Cross Industry Standard Process – Data Mining

Summer of 2015 brought a record number of attacks.

Summer of 2015 – many attacks

Researchers described "perfect storm" of conditions relative to many theories:

- Population lots of tourists, increased human activity
- Moon phases this is disputed
- Weather, global warming
- Water conditions
- Shark preservation efforts
- Fish migration (food source)

"Every time we go to the beach, we are invading a natural world that is already occupied by animals and plants in that area. We need to remember that when we enter the sea it's not the equivalent of going to the YMCA pools . . . It's a wild world out there."

George H. Burgess, director of the International Shark Attack File at the University of Florida's Florida Museum of Natural History

"The population has been going up and the number of people going in the water is always increasing. The risk of any shark bite is already incredibly low—far less likely than drowning or many other rare risks. But, the more people you have going into the water, the better the odds are that something bad is going to happen, whether it's a shark bite or getting pulled under on a riptide."

Dr. Chuck Bangley, ECU Shark Researcher

(from http://www.scientificamerican.com/article/shark-bites-are-up-but-attack-risk-is-down/)

Visit http://www.profthompson.net for interesting articles and resources related to shark attacks

- George Burgess also mentions parts of North Carolina have been abnormally dry or have experienced moderate drought conditions for several weeks.
- The salinity, or salt content, of ocean water close to shore is higher than usual, which is being cited as a possible reason for the surge in the shark attacks.
- Baby and other sea turtles may draw sharks to the North Carolina shores.
- Is it the warming ocean causing the sharks to follow prey that are migrating due to warmer temperatures perhaps caused by climate change?
- The annual migration of menhaden fish, a favorite shark food, appears linked to water temperature, which jumped 10 degrees in a week during the heat wave of 2015 (Burgess, Scientific American)
- What is true? What are the other factors? Is there hidden knowledge that can be discovered?

Domain Understanding: Water

Salinity, Turbidity, Oxygen, Sea Water Temperature from East Cribbing Station in NC (used for all data, average readings during frequent attack times)

Oxygen: Gulf coast experiences "dead zones" caused by low oxygen levels due to fertilizer run off

Suspected as cause of higher shark attacks due to low fish populations

Daily measure included in our research

Domain Understanding: Weather

Temperature, Precipitation, Moving Average Precipitation, Wind Speed, Wind Direction

Daily readings from NOAA

Daily measures included in our research

Sharks like warmer weather, will migrate as seasons change

People go to the beach when it is hot

Domain Understanding: Crabs

Sharks eat crabs.

Crabs have more frequent movement during full and new moon phases.

Crab landings data for NC (daily) is available courtesy of Alan Bianchi, North Carolina Division of Marine Fisheries

Domain Understanding: Turtles

Sharks eat turtles

NC and SC have many nests

Turtles move from ocean to beaches for nesting and false crawl (they go to beach but don't lay eggs)

Turtle data for NC and SC courtesy of

Michelle Pate and Dr. Matthew Godfrey, State Coordinators, SC and NC Wildlife Resources Commissions

Privacy and security concerns are always important!

Domain Understanding: Moon Phases

- Moon phases affect water levels
- Full moon and new moon cause levels to rise higher than normal during tides
- Effect starts 2-4 days before a phase and extends 2-4 days after
- Spring tides happen when the sun and moon are on the same side of the earth (New Moon) or when the sun and moon are on opposite sides of the earth (Full Moon).
- One study shows no effect: http://benthamopen.com/contents/pdf/TOFISHSJ/TOFISHSJ/TOFISHSJ-6-71.pdf

Data Preparation

UNC CHARLOTTE

Data Preparation

Numeric values: Discretized, Normalized for new attributes (3 bin)

Precipitation: 5 day moving average added

Moon phases: extended for Full, New Moon

Crab Data: For attack = Y, added by date

Crab Data: For attack = N, Necessary imputations were made

NOTE: Class imbalance problem! Handled with *stratified* sampling of Attack=No Subset so that 1/3 of records remain with adequate representation for each date.

Modeling: Exploratory Data Analysis

FIRST ROUND: with the discretized data base using R, WEKA

Classification: Naïve Bayes

Clustering: Simple EM (Expected Maximization)

Association Rule: Apriori

NOTE: See github http://www.github.com/AKDDResearch/Shark-Attack for complete

Source of data and files for this research

Modeling: Classification (discretized dataset, reduced dimensionality)

=== Run information ===

Attribute

No Yes

Naive Bayes:

weka.classifiers.baves.NaiveBaves Relation: june_aug_weka_csv_discretized_reduced_to_1_3_random_noweka.filters.unsupervised.attribute.Remove-R1-3-weka.filters.unsupervised.attribute.Remove-R2-3weka.filters.unsupervised.attribute.Remove-R2-weka.filters.unsupervised.attribute.Remove-R2weka.filters.unsupervised.attribute.Remove-R2-weka.filters.unsupervised.attribute.Remove-R2weka.filters.unsupervised.attribute.Remove-R2-weka.filters.unsupervised.attribute.Remove-R5weka.filters.unsupervised.attribute.Remove-R6-weka.filters.unsupervised.attribute.Remove-R10weka.filters.unsupervised.attribute.Remove-R3-weka.filters.unsupervised.attribute.Remove-R3 Instances: 285 Attributes: 11 Turtle_Discretize Attack MoonPhaseExtended DissolvedO2_discretize salinity discretize turbidity_discretize temperature_discretize pressure_discretize windspeed_discretize precipitationmva_discretize Crab Landings Discretize Test mode: 10-fold cross-validation === Classifier model (full training set) === **Naive Bayes Classifier** Class

Modeling: Clustering

Simple EM (Expected Maximization)

Simple EM Maximization (see NOTE at end) === Run information === Scheme: weka.clusterers.EM -I 100 -N -1 -X 10 -max -1 -II-cv 1.0E-6 -II-iter 1.0E-6 -M 1.0E-6 -K 10 Relation: june_aug_weka_csv_discretized_reduced_to_1_3_random_noweka.filters.unsupervised.attribute.Remove-R1-3,5-6-weka.filters.unsupervised.attribute.Remove-R2weka.filters.unsupervised.attribute.Remove-R2-4-weka.filters.unsupervised.attribute.Remove-R2weka.filters.unsupervised.attribute.Remove-R3-weka.filters.unsupervised.attribute.Remove-R3-4weka.filters.unsupervised.attribute.Remove-R4-weka.filters.unsupervised.attribute.Remove-R8 Instances: 285 Attributes: 11 Turtle Discretize Attack MoonPhaseExtended DissolvedO2_discretize salinity discretize turbidity discretize pressure discretize windspeed discretize precipitationmya discretize Crab_Landings_Discretize Test mode: evaluate on training data === Clustering model (full training set) ===

	Cluster			
Attribute	0	_	2 (0.17)	3 (0.65)
	(0.11)			
Turtle_Discretize				
Medium	6.1868	10.8648	20.8048	66.1436
Low	23.4523	3.2824	11.3272	106.9381
High	3.1305			11.3903
Very High	2.9729	1.1292	1.9987	4.8992
[total]	35.7424	22.0697	53.8166	189.3712
Attack				
No	31.965	15.8598	5.5238	170.6514
Yes	1.7775	4.21	46.2927	16.7198
[total]	33.7424	20.0697	51.8166	187.3712
MoonPhaseExtended				
Full	5.4434	5.4229	16.705	45.4288
Third quarter	2.7519			25.0269
New	12.7777	1.9686	14.3133	54.9404
First quarter	4.9532	4.5346	9.5607	21.9515
Waning gibbous	1.8467	2.8068	4.4876	15.8588
Waxing gibbous	3.7436	3.1043	5.8625	8.2897
Waning crescent	1.8039	2.3745	1.9528	9.8688
Waxing crescent	6.422			12.0064
[total]	39.7424	26.0697	57.8166	193.3712
DissolvedO2 discretize				
Low	7.2264	3.2664	8.219	6.2882
Medium	17.1091	13.4138	41.5236	180.9535
High	10.4069	4.3895	3.074	1,1296
[total]		21.0697		188.3712
salinity discretize				
High	1.5592	2.8721	19.4847	158.0839
Medium	31.9402			29.1534
Low		12.6808		
[total]		21.0697		
turbidity discretize				
Low	26.6803	15.8878	47.8739	184.558
High		1.0415		
Medium	6.0394			1.9043
[total]		21.0697		
temperature discretize	011/124	21.0037	52.5100	130.0/12
High	24 126	9.5087	49 2901	186 0752
Medium		10.504		
Low		1.057		
[total]	34.7424			188.3712
[cocat]	34./424	21.009/	22.0100	100.3/12

Modeling: Clustering

Simple EM (Expected Maximization)

```
pressure discretize
 Medium
                             23.7769 9.3064 31.2966 132.6201
                             5.9865 8.4276 19.3288 47.2571
 High
                              4.9791 3.3357 2.1912 8.494
 [total]
                             34.7424 21.0697 52.8166 188.3712
windspeed discretize
                             22.4374
                                              6.6265 129.0741
 Medium
                              9.5352 11.1864 28.6779 57.6005
 High
                              2.7698 1.0213 17.5122 1.6966
 [total]
                             34.7424 21.0697 52.8166 188.3712
precipitationmva_discretize
 Low
                             30.6367 17.9498
                                               49.55 161.8635
 Medium
                              1.2302 2.0038 2.2526 24.5134
 High
                              2.8755 1.1162 1.0139 1.9944
 [total]
                             34.7424 21.0697 52.8166 188.3712
Crab Landings Discretize
 High
                              6.0063
                                       9.2566 33.8044 41.9328
 Medium
                             14.3684 2.2614 8.8114 73.5588
                             14.3678 9.5517 10.2008 72.8797
                             34.7424 21.0697 52.8166 188.3712
 [total]
Time taken to build model (full training data): 5.74 seconds
=== Model and evaluation on training set ===
Clustered Instances
       25 ( 9%)
       15 ( 5%)
       48 (17%)
      197 (69%)
```

Modeling: Association Rule Mining

As water temp and salinity increase, Dissolved oxygen levels decrease. Temp and Salinity removed for Association Rule Mining. Best rules:

- 5. MoonPhaseExtended=New DissolvedO2_discretize=Low 7 ==> Attack=Yes 7 conf:(1)
- 11. Turtle Discretize=High MoonPhaseExtended=New 6 ==> Attack=Yes 6 conf:(1)
- 18. MoonPhaseExtended=New DissolvedO2_discretize=Low turbidity_discretize=Low 5 ==> Attack=Yes 5 conf:(1)

Dissolved Oxygen levels and "jubilee" effect: http://oceanservice.noaa.gov/education/kits/estuaries/media/supp estuar10d disolvedox.html

Association Rule Mining

=== Run information ===

Generated sets of large itemsets:

weka.associations.Apriori -N 15000 -T 0 -C 0.5 -D 0.05 -U 0.05 -M 0.01 -S 0.05 -A -c 2 Relation: june_aug_weka_csv_discretized_reduced_to_1_3_random_noweka.filters.unsupervised.attribute.Remove-R1-3,5-6-weka.filters.unsupervised.attribute.Remove-R2weka.filters.unsupervised.attribute.Remove-R2-4-weka.filters.unsupervised.attribute.Remove-R2weka.filters.unsupervised.attribute.Remove-R3-weka.filters.unsupervised.attribute.Remove-R3-4weka.filters.unsupervised.attribute.Remove-R4-weka.filters.unsupervised.attribute.Remove-R8weka.filters.unsupervised.attribute.Remove-R8-weka.filters.unsupervised.attribute.Remove-R10we ka. filters. unsupervised. attribute. Remove-R5-we ka. filters. unsupervised. attribute. Remove-R7-we ka. filters. unsupervised. Attribute. Attribute.weka.filters.unsupervised.attribute.Remove-R6-weka.filters.unsupervised.attribute.Remove-R6 Instances: 285 Attributes: 5 Turtle_Discretize Attack MoonPhaseExtended DissolvedO2_discretize turbidity_discretize === Associator model (full training set) === Apriori ====== Minimum support: 0.01 (3 instances) Minimum metric <confidence>: 0.5 Significance level: 0.05 Number of cycles performed: 20

Preliminary Results

Attributes that are interesting:

Turbidity

Turtle Discretized

Moon Phase

Temperature

Wind Speed

Wind Direction

Twitter Hash Tag Analysis

Recommendations

- DATA continue to improve the data collection and analysis with location awareness where possible (we used East Cribbing data for both NC and SC)
 - Attributes of interest:
 - Weather: Wind speed, Direction, Temperature, Turbidity
 - Environment: Crab Landings, Turtles
 - Sightings: A feed from social media, as close to real time as possible (need better classifier)
 - Other sources: coordination with apps, rescue personnel, beach patrols
 - STANDARDIZED HASH TAG
 - Collaboration (https://twitter.com/DorsalAus, Sharktivity, other researchers)
 - Publicity
 - Use:
 - Shark sightings (see @sharkreports, @dorsalau on Twitter)
 - Turtle activity
 - Schools of fish (draw sharks)
- CONTINUED STUDY
 - Research work on binnings, class imbalance, Chlorophyll A, fish, social media feed
 - COLLABORATION shark researchers
 - App for warnings, sightings collaboration with DORSAL, others
 - Grant

Recommendations

- Some Considerations
 - Will better awareness of conditions and sightings affect tourism? (Dr. Craig Depken, Economics at UNCC, investigating media reports of attacks and tourism
 - Will individuals try to "game" the system?
 - Are we ever able to say it is "safe" to swim?
 - How about liability?

Questions?

"Our results indicate that investing in increasing and communicating our understanding of the behavior, distribution and ecological role of sharks as well as the factors influencing the risk of shark bites, may ultimately be the most effective way to increase safety of people. If people learn to avoid being near shark food during feeding times, we become far less likely to end up an as accidental appetizer."

Dr. Francesco Ferretti, Stanford, commenting on a recent study in http://www.scientificamerican.com/article/shark-bites-are-up-but-attack-risk-is-down/

Selected References

Scientific American: Shark Bites are Up, But Attack Risk is Down? http://www.scientificamerican.com/article/shark-bites-are-up-but-attack-risk-is-down/

Hashtag Standards for Emergencies: https://docs.unocha.org/sites/dms/Documents/TB%20012_Hashtag%20Standards.pdf

Lunar Cycle Effects: http://benthamopen.com/contents/pdf/TOFISHSJ/TOFISHSJ-6-71.pdf

What 3 Words: http://what3words.com/

Dr. Pamela Thompson blog: http://www.profthompson.net

Dorsal app: https://www.dorsalapp.com/

Sharktivity map and app: http://www.atlanticwhiteshark.org/sharktivity-map/

