Notes: 1) Rejecting states are indicated by a red border.

- 2) Final states are indicated by a double border.
- 3) I did the graduate exercises, however, I am not in the graduate class, so feel free to ignore them. If you do check out those solutions, I'd appreciate any feedback!

Exercise 1.6

a) Language: $\{w \mid w \text{ begins with 1 and ends with 0}\}.$

c) Language: $\{w \mid w \text{ contains the substring 0101}\}.$

e) Language: $\{w \mid w \text{ starts with 0 and has odd length or starts with 1 and has even length }\}$.

i) Language: $\{w \mid \text{ Every odd position of w is 1 }\}.$

Exercise 1.18

a) Language: $\{w \mid w \text{ begins with 1 and ends with 0}\}$. Regular Expression: $1(0 \cup 1)*0$.

c) Language: $\{w \mid w \text{ contains the substring 0101}\}$. Regular Expression: $(0 \cup 1)*0101(0 \cup 1)*$.

e) Language: $\{w \mid w \text{ starts with 0 and has odd length or starts with 1 and has even length}\}$. Regular Expression: $0(00 \cup 01 \cup 10 \cup 11)^* \cup 1(00 \cup 01 \cup 10 \cup 11)^*(0 \cup 1)$.

i) Language: $\{w \mid \text{Every odd position of w is 1}\}$. Regular Expression: $\epsilon \cup (((1(0 \cup 1))^*) \cup ((1(00 \cup 01 \cup 10 \cup 11))^*) \cup 1)$.

Graduate Exercises (for fun)

$1.6\,f)$ Language: $L = \big\{w\,|\,w \text{ does not contain the substring 110 }\big\}.$

We begin by designing a DFA for the language $L^c := \{w \mid w \text{ contains the substring 110}\}$.

Now we can swap the accepting and non-accepting states of the DFA for L^c to obtain a DFA for the complementary language, namely $(L^c)^c = L$.

$1.18\,f$) Language: $\{w\,|\,w$ does not contain the substring 110 $\}.$

We can find a regular expression for this language by constructing a GNFA from the DFA produced in $1.6\,f$, and reducing it.

Assuming I didn't make any mistakes, we can recognize the given language with the regular expression $\epsilon \cup (0*((0 \cup 10)*1*))$. Reduced further: $(0 \cup 10)*1*$.