Отчет по лабораторной работе №8

Модель конкуренции двух фирм - вариант 13

Дорофеева Алёна Тимофеевна НПИбд-01-20

Содержание

1	L	<u> </u>	1
		адание	
3	E	Выполнение лабораторной работы	1
	3.1	Теоретические сведения	1
		Задача	
		Выводы	
	Список литературы		

1 Цель работы

Изучить модель конкуренции

2 Задание

- 1. Изучить модель конкуренции двух фирм
- 2. Построить графики изменения оборотных средств в двух случаях

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

N - число потребителей производимого продукта.

S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.

М – оборотные средства предприятия

au - длительность производственного цикла

p - рыночная цена товара

 $ilde{p}$ - себестоимость продукта, то есть переменные издержки на производство единицы продукции

 δ - доля оборотных средств, идущая на покрытие переменных издержек

k - постоянные издержки, которые не зависят от количества выпускаемой продукции

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{p}{S} = q \left(1 - \frac{p}{p_{cr}} \right)$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cr}}\right)p - k$$

Уравнение для рыночной цены p представим в виде:

$$\frac{dp}{dt} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + Nq \left(1 - \frac{p}{p_{cr}} \right) \right)$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном М уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq\left(1 - \frac{p}{p_{cr}}\right) = 0$$

равновесное значение цены р равно

$$p = p_{cr} \left(1 - \frac{M\delta}{\tau \tilde{p} N q} \right)$$

Тогда уравнения динамики оборотных средств приобретает вид

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} \left(\frac{p}{p_{cr}} - 1 \right) - M^2 \left(\frac{\delta}{\tau \tilde{p}} \right)^2 \frac{p_{cr}}{Nq} - k$$

Это уравнение имеет два стационарных решения, соответствующих условию dM/dt=0

$$\widetilde{M_{1,2}} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq \left(1 - \frac{\tilde{p}}{p_{cr}} \tilde{p} \frac{\tau}{\delta}\right), b = kNq \frac{(\tau \tilde{p})^2}{p_{cr} \delta^2}$$

Получается, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b << a^2$) и играют роль, только в случае, когда оборотные средства малы.

При b << a стационарные значения M равны

$$\widetilde{M_{+}} = Nq \frac{\tau}{\delta} \left(1 - \frac{\widetilde{p}}{p_{cr}} \right) \widetilde{p}, \widetilde{M_{-}} = k\widetilde{p} \frac{\tau}{\delta(p_{cr} - \widetilde{p})}$$

Первое состояние \widetilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \widetilde{M_{-}} неустойчиво, так, что при $M < \widetilde{M}_-$ оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу \widetilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

3.2 Задача

Вариант 13

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\Theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a1}{c1} M_1^2 \\ \frac{dM_2}{d\Theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

где

$$a_{1} = \frac{p_{cr}}{\tau_{1}^{2} \tilde{p}_{1}^{2} N q}$$

$$a_{2} = \frac{p_{cr}}{\tau_{2}^{2} \tilde{p}_{2}^{2} N q}$$

$$b = \frac{p_{cr}}{\tau_{1}^{2} \tilde{p}_{1}^{2} \tau_{2}^{2} \tilde{p}_{2}^{2} N q}$$

$$c_{1} = \frac{p_{cr} - \tilde{p}_{1}}{\tau_{1} \tilde{p}_{1}}$$

$$c_{2} = \frac{p_{cr} - \tilde{p}_{2}}{\tau_{2} \tilde{p}_{2}}$$

также введена нормировка $t=c_1\Theta$

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - \left(\frac{b}{c_1} + 0.0004\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами

$$M_0^1 = 4.8 M_0^2 = 4.3$$
 $p_{cr} = 11.5 N = 35 q = 1$
 $\tau_1 = 18 \tau_2 = 28$
 $\tilde{p}_1 = 7.8 \, \tilde{p}_2 = 5.7$

Обозначения:

N - число потребителей производимого продукта.

т - длительность производственного цикла

р – рыночная цена товара

 $ilde{p}$ – себестоимость продукта, то есть переменные издержки на производство единицы продукции.

q – максимальная потребность одного человека в продукте в единицу времени

 $\Theta = \frac{t}{c_1}$ - безразмерное время

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2

```
model lab8
 parameter Real p_cr = 11.5;
 parameter Real N = 35;
 parameter Real q = 1;
 parameter Real tau1 = 18;
 parameter Real tau2 = 28;
 parameter Real p1 = 7.8;
 parameter Real p2 = 5.7;
 parameter Real d = 0.0004;
parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
parameter Real b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
parameter Real c1 = (p_cr-p1)/(tau1*p1);
parameter Real c2 = (p_cr-p2)/(tau2*p2);
 Real M1_1(start=4.8);
 Real M2_1(start=4.3);
 Real M1_2(start=4.8);
 Real M2_2(start=4.3);
 equation
    der(M1_1) = M1_1 - (a1/c1)*M1_1*M1_1 - (b/c1)*M1_1*M2_1;
    der(M2_1) = (c2/c1)*M2_1 - (a2/c1)*M2_1*M2_1 - (b/c1)*M1_1*M2_1;
  equation
    der(M1_2) = M1_2 - (a1/c1)*M1_2*M1_2 - (b/c1)*M1_2*M2_2;
```

```
der(M2_2) = (c2/c1)*M2_2 - (a2/c1)*M2_2*M2_2 - (b/c1+d)*M1_2*M2_2;
```

end lab8;

График для случая 1, OpenModelica

График для случая 2, OpenModelica

```
using Plots
using DifferentialEquations
```

 $p_cr = 40$

```
N = 43
q = 1
tau1 = 20
tau2 = 14
p1 = 10.7
p2 = 19.1
d = 0.00026
a1 = p_cr / (tau1*tau1*p1*p1*N*q)
a2 = p_cr / (tau2*tau2*p2*p2*N*q)
b = p_cr / (tau1*tau1*p1*p1*tau2*tau2*p2*p2*N*q)
c1 = (p_cr - p1) / (tau1 * p1)
c2 = (p_cr - p2) / (tau2 * p2)
M1=2.6
M2=6.2
t = collect(LinRange(0, 20, 500))
tspan = (0, 20)
```

```
function f(dy, y, p, t)
    dy[1] = y[1] - (b/c1) * y[1] * y[2] - (a1/c1) * y[1]*y[1]
    dy[2] = (c2/c1) * y[2] - (b/c1) * y[1] * y[2] - (a2/c1) * y[2] * y[2]
end
prob = ODEProblem(f, [M1, M2], tspan)
sol = solve(prob, saveat=t)
plot(sol)
savefig("3.png")
function f(dy, y, p, t)
    dy[1] = y[1] - (b/c1) * y[1] * y[2] - (a1/c1) * y[1]*y[1]
    dy[2] = (c2/c1) * y[2] - (b/c1+d) * y[1] * y[2] - (a2/c1) * y[2] * y[2]
end
prob = ODEProblem(f, [M1, M2], tspan)
sol = solve(prob, saveat=t)
plot(sol)
savefig("4.png")
         u1(t)
u2(t)
 6000
 5000
```


График для случая 1, Julia

График для случая 2, Julia

4 Выводы

В ходе выполнения лабораторной работы была изучена модель конкуренции и построены графики.

Список литературы

- 1. Математические модели конкурентной среды
- 2. Разработка математических моделей конкурентных процессов