

UTFPR – COCIC Ciência da Computação Algoritmos e Estruturas de Dados 2

Árvores binária com balanceamento– Árvores AVL

Árvores AVL

- Estrutura de dados criada em 1962 por dois russos Adelson-Velsky e Landis.
- Motivação
 - Àrvores binárias de pesquisa (semi-)balanceadas apresentam desempenho ótimo para operações básicas.
- AVL é uma árvore binária de pesquisa balanceada.
 - ▶ Toda árvore AVL é binária de pesquisa mas o contrário não ocorre.
 - Como balanceamento é assegurado?
- Em uma AVL, **todo nó** apresenta o fator de balanceamento (FB): diferença de altura entre suas sub-árvores direita e esquerda
 - ▶ DEVE SER sempre I, 0 ou -I.

Árvore AVL - exemplo

Árvores AVL

- Operações (e.g. inserção, remoção) sobre AVLs
 - Assumem que a árvore é AVL antes da modificação
 - Não podem fazer com que árvore deixe de ser AVL após execução
 - Deve corrigir o FB de cada nó sempre que preciso.
- Correções ocorrem através de rotações em nós com FBs desbalanceados
- As rotações estendem os algoritmos de inserção e remoção em árvores binárias de pesquisa que já conhecemos.

Árvore AVL: Inserção

- I. Uso do algoritmo de inserção da árvore binária de pesquisa tradicional para:
 - Achar posição do nó a ser inserido na árvore
 - Efetivar a inserção no local achado
- ▶ 2. Assegurar que a árvore continua sendo AVL
 - Usar retorno da recursão p/ assegurar FB de todos os nós: desde o inserido até o raíz.
 - Se condição AVL para o FB de um nó quebrar aplica um tipo de rotação adequado
 - Rotação simples
 - Rotação dupla

Inserção AVL:Rotação simples à direita

FB=AlturaDireita - AlturaEsquera Insira a chave "3"

Rotação simples à direita: 8 vira filho DIREITO de 4 (seu filho esquerdo)

AVL – Rotação simples à esquerda

Ideia similar à da direita:

Dif. nó desbalanceado (ndesb) = 2 Dif. nó filho de ndesb = 1

> alt_d = 0 alt_e = 0 dif = 0 - 0 = 0

Árvore balanceada

Inserção AVL:Rotação dupla

FB=AlturaDireita - AlturaEsquera Insira chave "5"

Rotação dupla:

- 4 vira filho esquerdo de 5
- 8 vira filho direito de 5

Adaptado de: Ruli Manurung, "Data Structures and algorithms, IKI 10100, 2007.

Rotações simples na inserção: Síntese

- Seja X o nó cujo FB fugia à regra após uma inserção na sua sub-árvore X->TI, por exemplo.
- Rotação simples à esquerda:
 - X torna-se filho esquerdo do nó raiz de TI (juntamente com seus filhos, se for o caso)
 - Se o nó raiz de T1 tiver filhos à esquerda, esses serão filhos à direita de X.
- Rotação simples à direita (juntamente com seus filhos, se for o caso)
 - X torna-se filho direito do nó raiz de T1.
 - Se o nó raiz de T1 tiver filhos à direita, esses serão filhos à esquerda de X.

Rotação dupla - Síntese

- Seja X o nó cujo FB fugiu à regra após uma inserção em sua sub-árvore X->TI, por exemplo.
- A primeira rotação sempre se referirá ao nó raiz de TI
 - ▶ Simples à esquerda ou simples à direita
- A segunda rotação rotação sempre se referirá ao nó X
 - ▶ Simples à esquerda ou simples à direita

- Dobtenha uma árvore AVL através da inserção da seguinte sequência de valores:
 - 14, 17, 11, 7, 53, 4, 13, 12, 10,9

- Dobtenha uma árvore AVL através da inserção da seguinte sequência de valores:
 - 14, 17, 11, 7, 53, 4, 13

E se inseríssemos "12"?

E se inseríssemos "12"?

Aplicamos rotação dupla

E se inseríssemos "12"?

Árvore AVL: Remoção

- I. Uso do algoritmo de inserção da árvore binária de pesquisa tradicional para:
 - Achar nó a ser removido
 - Substituir pelo maior nó na sub-árvore esquerda
- ▶ 2. Assegurar que a árvore continua sendo AVL
 - Aplicar a mesma idéia de rotações como na inserção, considerando que as rotações
 - Na inserção as rotações envolvem a sub-árvore que recebeu mais elemento (cujo crescimento causou o desbalanceamento)
 - Na remoção as rotações envolvem a sub-árvore que não teve o elemento removido cujo crescimento "indireto" causou o desbalanceamento.

Remova 55 (caso 1)

Remova 55 (caso 1)

Remova 50 (caso 2)

Remova 50 (caso 2)

Remova 60 (caso 3)

Remova 60 (caso 3)

Remova 55 (caso 3)

Remova 55 (caso 3)

Remova 50 (caso 3)

Remova 50 (caso 3)

Remova 40 (caso 3)

Remova 40: Rebalanceamento

Remova 40: após rebalanceamento

Rotação simples

• Remover 53

•Desbalanceamento detectado no FB do nó 14.

Rotação simples à direita

·Balanceado. Agora, remover I I

• Removendo II, diminuimos a sub-árvore à esquerda (pois usamos a maior chave) mas FBs não "quebram". Agora remover 8

• Remove 8, diminuimos a sub-árvore à esquerda (pois usamos a maior chave) e FB quebra no 7. Rotacionar na sub-árvore "mais cheia".

Rotação dupla: direita + esquerda

Exercício

• Remove 8, direita

Exercício

• Esquerda = Balanceado!!

Árvores AVL – Tabela de Rotações

Diferença de altura de um nó	Diferença de altura do nó filho do nó desbalanceado	Tipo de rotação	
2	1	Simples à esquerda	A
	0	Simples à esquerda	В
	-1	Dupla com filho para a direita e pai para a esquerda	C
-2	1	Dupla com filho para a esquerda e pai para a direita	D
	0	Simples à direita	E
	– 1	Simples à direita	F

Atualização dos FBs após rotações

Slides a seguir elaborados pelo Prof. Saulo Queiroz

Qual a configuração da AVL antes de uma rotação simples à direita em um nó arbitrário X?

Qual a configuração da AVL antes de uma rotação simples à direita em um nó arbitrário X?

R-Tal nó deve ter FB=-1 para que, após a inserção, passe a ser -2.

Qual a configuração da AVL antes de uma rotação simples à direita em um nó arbitrário X?

R-Tal nó deve ter FB=-1 para que, após a inserção, passe a ser -2

OBSERVAÇÃO(1+1+h)

Note que existem configurações onde FB(A)=-1 ou (mesmo 1). Nesses casos, porém, um aumento à esquerda (direita) causará rotação em A e não em X, como queremos ilustrar. Experimente testar!

Qual a configuração da AVL antes de uma rotação simples à direita em um nó arbitrário X?

R-Tal nó deve ter FB=-1 para que, após a inserção, passe a ser -2.

Qual a configuração da AVL antes de uma rotação simples à direita em um nó arbitrário X?

R-Tal nó deve ter FB=-1 para que, após a inserção, passe a ser -2. Após a inserção teremos:

Qual a configuração da AVL antes de uma rotação simples à direita em um nó arbitrário X?

R-Tal nó deve ter FB=-1 para que, após a inserção, passe a ser -2. Após a inserção teremos:

Qual a configuração da AVL antes de uma rotação simples à direita em um nó arbitrário X?

R-Tal nó deve ter FB=-1 para que, após a inserção, passe a ser -2. Após a ROTAÇÃO teremos:

Qual a configuração da AVL antes de uma rotação simples à direita em um nó arbitrário X?

R-Tal nó deve ter FB=-1 para que, após a inserção, passe a ser -2. Após a ROTAÇÃO teremos:

Demais atualizações ficará a seu encargo pesquisar!

Árvores AVL - Animações

Applets:

http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.h
tml

http://www.cs.jhu.edu/~goodrich/dsa/trees/avltree.html

