# Databases Final Project: Final Report

## **Project Description:**

Our project was done in a Jupyter notebook. We imported data from kaggle and accessed it locally. Our project is an in depth analysis of a large dataset on tennis statistics at the ATP professional level. There are some user interactive portions in the notebook for our queries.

## **Changes from Phase I:**

There are a lot of changes from the original plan. We have more queries that we wanted to display results for and analyze. We presented our data in various ways such as heatmaps, bar charts, and graphs. Our relational data model is much larger since we imported them from an ATP tennis database from kaggle. So instead of downloading data from an API, we used the csv files straight from kaggle. We found that there was a lot more we could work with and we weren't limited to data that we selected by hand. Fortunately, there was some country data in there already that we played around with. We still have some user input for our queries such as player names or country abbreviations that can be input to see data specific to those inputs. There is a slight emphasis on report generation for us since we are working locally and can utilize plots and data frames. We decided to do this instead of the interactive webpage because we believe this would generate more interesting results that we can learn from the giant amount of data. We were able to learn a lot more from the data using this approach compared to just querying results based on user inputs, so we prioritized our analysis of the data.

#### How we loaded the database with values:

We downloaded the csv files off of kaggle along with a .sqlite file. The sqlite file is a database file that uses the SQLite database management system. So this acted as our database that we ran queries from. The source is here: <a href="https://www.kaggle.com/datasets/guillemservera/tennis/data">https://www.kaggle.com/datasets/guillemservera/tennis/data</a>
After downloading the data, we import it into the Python notebook by:

## Software platform:

We used a Jupyter notebook along with an sqlite file to query from our data files. Use the latest version of python if possible.

## User's guide:

To run our code follow these steps:

1. Download the Jupyter notebook and ensure a python environment is running.

- Download the data files and sqlite file. Visit: <a href="https://www.kaggle.com/datasets/guillemservera/tennis/data?select=database.sqlite">https://www.kaggle.com/datasets/guillemservera/tennis/data?select=database.sqlite</a> and download the data. Unzip the file.
- 3. Put the archive file in the same directory as the Python notebook.
- 4. Hit "run all" in the Jupyter notebook. (you may have to install some modules via the command line)
- 5. Interact with the prompts to query specific country or player data.

## Areas of specialization:

We have an interesting interface demonstrating significant accomplishment and expanded education. We are able to learn a lot of cool patterns and discoveries from our analysis. We kind of just asked some general interesting questions about the statistics and did a bunch of queries and plots to see if we could find any patterns. We would then go into specifics to further investigate our findings. Some of the patterns we saw proved to be unexpected. It's pretty educational to learn that statistics in sports can help predict future results. We found it very interesting that patterns exist in something as complex as a sporting event and we got to participate in analyzing sports data to notice these patterns.

## **Selling Points:**

- Size of our dataset: we are working with a lot of data (in the millions)
- The process it takes to find and analyze the data points we have: since we are analyzing our data, a lot of trial and error was required to find the queries that we wanted to display. Instead of choosing specific queries, we cycled through different queries and chose the most interesting data.
- Presentation of our findings: the visuals we came up with make it easy to see patterns
- Coverage: we cover a lot of aspects when it comes to tennis statistics (obviously not all), but we
  explore many different aspects that have potentially interesting findings such as age, country,
  handedness, and ranking
- How interactable our project is and how our project graphically displays the results of the queries from the user input: the data we have can be categorized in many ways, we chose to allow users to interact with specific player and specific country statistics; there is potential for others but our project allows this to be done easily

#### Limitations:

- Limited by the type of queries we have presented: obviously there are infinite amount of different queries we can come up with for our data, we can only present the ones that we came up with
- Interactability: we didn't make all portions interactable, there is a lot of potential for interactability for users since we can prompt information
- With more time we can make it fully interactable. A user would be able to input and look up queries with a much wider variety of information.

#### **Output:**

It is best to view the output in our Jupyter notebook. Here are some of the output that we had that is interesting to look at:

|    | ranking_year | number_of_players |
|----|--------------|-------------------|
| 0  | 1990         | 1602              |
| 1  | 1991         | 1603              |
| 2  | 1992         | 1697              |
| 3  | 1993         | 1693              |
| 4  | 1994         | 1729              |
| 5  | 1995         | 1831              |
| 6  | 1996         | 1901              |
| 7  | 1997         | 1990              |
| 8  | 1998         | 2062              |
| 9  | 1999         | 2042              |
| 10 | 2000         | 2033              |
| 11 | 2001         | 2091              |
| 12 | 2002         | 2135              |
| 13 | 2003         | 2188              |
| 14 | 2004         | 2296              |
| 15 | 2005         | 2395              |
| 16 | 2006         | 2528              |
| 17 | 2007         | 2447              |
| 18 | 2008         | 2435              |
| 19 | 2009         | 2365              |
| 20 | 2010         | 2270              |
| 21 | 2011         | 2362              |
| 22 | 2012         | 2489              |
| 23 | 2013         | 2691              |
| 24 | 2014         | 2766              |
| 25 | 2015         | 2843              |
| 26 | 2016         | 2762              |
| 27 | 2017         | 2536              |
| 28 | 2018         | 2523              |
| 29 | 2019         | 2265              |
| 30 | 2020         | 2034              |
| 31 | 2021         | 2384              |
| 32 | 2022         | 2776              |
| 33 | 2023         | 2488              |
|    |              |                   |

We created a heatmap to learn that the number of players over the years is increasing. We learned that the sport of tennis is likely growing.

| player_name         | ranked_first | years_being_first |
|---------------------|--------------|-------------------|
| Novak Djokovic      | 355          | 12                |
| Roger Federer       | 307          | 9                 |
| Pete Sampras        | 285          | 8                 |
| Ivan Lendl          | 228          | 8                 |
| Rafael Nadal        | 193          | 10                |
| John McEnroe        | 136          | 6                 |
| Jimmy Connors       | 104          | 8                 |
| Andre Agassi        | 100          | 5                 |
| Bjorn Borg          | 94           | 4                 |
| Lleyton Hewitt      | 80           | 3                 |
| Stefan Edberg       | 71           | 3                 |
| Jim Courier         | 58           | 2                 |
| Gustavo Kuerten     | 43           | 2                 |
| Andy Murray         | 37           | 2                 |
| Carlos Alcaraz      | 31           | 2                 |
| Mats Wilander       | 16           | 2                 |
| Daniil Medvedev     | 13           |                   |
| Andy Roddick        | 13           | 2                 |
| Boris Becker        | 12           |                   |
| Ilie Nastase        | 10           | 2                 |
| Marat Safin         | 9            | 2                 |
| Juan Carlos Ferrero | 8            |                   |
| Yevgeny Kafelnikov  | 6            |                   |
| Thomas Muster       | 6            |                   |
| Marcelo Rios        | 6            |                   |

We were able to find the players that have topped the rank the most weeks all time. Here we learned who the most successful players have been by the numbers.



This chart shows the age of the top ranked players each each. We learned that the pattern seems to indicate that a player dominates for a certain amount of time and then retires for a new player to take over. The chart is basically showing how our legendary players age.



We did this for other ranking positions and found similar trends. This might indicate that tennis comes in waves where each generation has a group of players that do well.

| year | player_name         | age |
|------|---------------------|-----|
| 2022 | Carlos Alcaraz      | 19  |
| 2000 | Marat Safin         | 20  |
| 2001 | Lleyton Hewitt      | 20  |
| 2023 | Carlos Alcaraz      | 20  |
| 1977 | Bjorn Borg          | 21  |
| 1980 | John McEnroe        | 21  |
| 2001 | Marat Safin         | 21  |
| 2002 | Lleyton Hewitt      | 21  |
| 2003 | Andy Roddick        | 21  |
| 1974 | Jimmy Connors       | 22  |
| 1981 | John McEnroe        | 22  |
| 1992 | Jim Courier         | 22  |
| 1993 | Pete Sampras        | 22  |
| 2003 | Lleyton Hewitt      | 22  |
| 2004 | Andy Roddick        | 22  |
| 2008 | Rafael Nadal        | 22  |
| 1975 | Jimmy Connors       | 23  |
| 1979 | Bjorn Borg          | 23  |
| 1982 | John McEnroe        | 23  |
| 1983 | Ivan Lendl          | 23  |
| 1993 | Jim Courier         | 23  |
| 1994 | Pete Sampras        | 23  |
| 1998 | Marcelo Rios        | 23  |
| 1999 | Carlos Moya         | 23  |
| 2003 | Juan Carlos Ferrero | 23  |

We discovered the youngest players to have topped the rankings.

| hand | cases   | ranking_by_hand   |
|------|---------|-------------------|
| L    | 278010  | 674.2971439876263 |
| R    | 2234345 | 731.5845811636073 |

We found the average rankings for handedness (L-lefties, R-righties).

```
rank
         lefties_percentage
                         20.0
   2
         31.41831238779174
                                    %sql
   3
         19.53195319531953
                                    SELECT
                                       (SUM(CASE WHEN hand = 'L' THEN 1 ELSE 0 END) / CAST(COUNT(*) AS REAL)) * 100 AS lefties_percentage
         15.01123595505618
   4
                                       player_rankings
       15.985630893578806
   5
                                       rank <= 100
   6
        15.92442645074224
   7
       12.398921832884097
   8
         9.712230215827338
   9
       13.689407540394974
                                   lefties_percentage
       12.455035971223023
  10
                                  14.816479737474994
```

We learned the percentage of lefties for each top 10 position as well as what percentage of the top 100 are lefties.

| hand | total_cases | ranking_by_hand   | percentage_of_total |
|------|-------------|-------------------|---------------------|
| L    | 278010      | 674.2971439876263 | 11.065713245142506  |
| R    | 2234345     | 731.5845811636073 | 88.9342867548575    |

This shows what percentage of players are lefties. The percentage is lower than any of the percentage of lefties in the high rankings. This must mean that being left-handed gives an advantage!

| ioc | country_points |
|-----|----------------|
| ESP | 36384117.0     |
| USA | 32983420.0     |
| FRA | 26052278.0     |
| GER | 19536655.0     |
| ARG | 18709291.0     |
| ITA | 14498405.0     |
| RUS | 13312107.0     |
| AUS | 13006544.0     |
| SUI | 11621000.0     |
| SRB | 11267457.0     |
| CZE | 10570540.0     |
| GBR | 9477252.0      |
| SWE | 9420275.0      |
| CRO | 7190220.0      |
| AUT | 6691896.0      |
| BRA | 6433650.0      |
| NED | 6137481.0      |
| BEL | 5259736.0      |
| JPN | 4887741.0      |
| CAN | 4629628.0      |
| SVK | 4113360.0      |
| CHI | 3853831.0      |
| RSA | 3844179.0      |
| ROU | 2788844.0      |
| UKR | 2487952.0      |
|     |                |

We took a look at what countries have accumulated the most total points.



This chart shows the top 10 countries with the highest ranking players in the past 50 years. The larger the bar, the better the performance of that country in that year. In the current year, we can see that Serbia and Spain are dominating with Russia following in third.

| player_name   | rank | ioc | year | player_name    | rank | ioc | year | player_name    | rank | points | ioc | year |
|---------------|------|-----|------|----------------|------|-----|------|----------------|------|--------|-----|------|
| Jimmy Connors | 1    | USA | 1974 | Taylor Fritz   | 5    | USA | 2023 | Carlos Alcaraz | 1    | 6820.0 | ESP | 2023 |
| Jimmy Connors | 1    | USA | 1975 | Taylor Fritz   | 7    | USA | 2023 | Carlos Alcaraz | 1    | 6820.0 | ESP | 2023 |
| Jimmy Connors | 1    | USA | 1976 | Taylor Fritz   | 8    | USA | 2023 | Carlos Alcaraz | 1    | 6820.0 | ESP | 2023 |
| Jimmy Connors | 1    | USA | 1977 | Taylor Fritz   | 9    | USA | 2023 | Carlos Alcaraz | 1    | 7420.0 | ESP | 2023 |
| Jimmy Connors | 1    | USA | 1978 | Taylor Fritz   | 10   | USA | 2023 | Carlos Alcaraz | 1    | 6815.0 | ESP | 2023 |
| Jimmy Connors | 1    | USA | 1979 | Frances Tiafoe | 10   | USA | 2023 | Carlos Alcaraz | 1    | 6815.0 | ESP | 2023 |
| John McEnroe  | 1    | USA | 1980 | Frances Tiafoe | 11   | USA | 2023 | Carlos Alcaraz | 1    | 7675.0 | ESP | 2023 |
| John McEnroe  | 1    | USA | 1981 | Frances Tiafoe | 12   | USA | 2023 | Carlos Alcaraz | 1    | 7675.0 | ESP | 2023 |
| John McEnroe  | 1    | USA | 1982 | Tommy Paul     | 12   | USA | 2023 | Carlos Alcaraz | 1    | 9675.0 | ESP | 2023 |
| Jimmy Connors | 1    | USA | 1982 | Tommy Paul     | 13   | USA | 2023 | Carlos Alcaraz | 1    | 9375.0 | ESP | 2023 |
| John McEnroe  | 1    | USA | 1983 | Frances Tiafoe | 13   | USA | 2023 | Carlos Alcaraz | 1    | 9225.0 | ESP | 2023 |
| Jimmy Connors | 1    | USA | 1983 | Frances Tiafoe | 14   | USA | 2023 | Carlos Alcaraz | 1    | 9225.0 | ESP | 2023 |
| Ivan Lendl    | 1    | USA | 1983 | Tommy Paul     | 14   | USA | 2023 | Carlos Alcaraz | 1    | 9395.0 | ESP | 2023 |
| John McEnroe  | 1    | USA | 1984 | Frances Tiafoe | 15   | USA | 2023 | Carlos Alcaraz | 1    | 9815.0 | ESP | 2023 |
| Ivan Lendl    | 1    | USA | 1984 | Tommy Paul     | 15   | USA | 2023 | Carlos Alcaraz | 1    | 9815.0 | ESP | 2023 |
| John McEnroe  | 1    | USA | 1985 | Ben Shelton    | 15   | USA | 2023 | Rafael Nadal   | 2    | 6020.0 | ESP | 2023 |
| Ivan Lendl    | 1    | USA | 1985 | Frances Tiafoe | 16   | USA | 2023 | Rafael Nadal   | 2    | 5770.0 | ESP | 2023 |
| Ivan Lendl    | 1    | USA | 1986 | Tommy Paul     | 16   | USA | 2023 | Rafael Nadal   | 2    | 5770.0 | ESP | 2023 |
| Ivan Lendl    | 1    | USA | 1987 | Ben Shelton    | 16   | USA | 2023 | Carlos Alcaraz | 2    | 6730.0 | ESP | 2023 |
| Ivan Lendl    | 1    | USA | 1988 | Frances Tiafoe | 17   | USA | 2023 | Carlos Alcaraz | 2    | 6730.0 | ESP | 2023 |
| Ivan Lendl    | 1    | USA | 1989 | Tommy Paul     | 17   | USA | 2023 | Carlos Alcaraz | 2    | 6730.0 | ESP | 2023 |
| Ivan Lendl    | 1    | USA | 1990 | Ben Shelton    | 17   | USA | 2023 | Carlos Alcaraz | 2    | 6480.0 | ESP | 2023 |
| Jim Courier   | 1    | USA | 1992 | Tommy Paul     | 18   | USA | 2023 | Carlos Alcaraz | 2    | 6780.0 | ESP | 2023 |
| Jim Courier   | 1    | USA | 1993 | Frances Tiafoe | 19   | USA | 2023 | Carlos Alcaraz | 2    | 6780.0 | ESP | 2023 |
| Pete Sampras  | 1    | USA | 1993 | Tommy Paul     | 19   | USA | 2023 | Carlos Alcaraz | 2    | 6780.0 | ESP | 2023 |

We took a look at top players from different countries. The first image depicts the best players from the USA ever (shortened list). The middle image shows the best current players from the USA. The right image shows the best current players from Spain. We allow the user to pick countries to check out and run the queries from their interactive input (these are just samples).

| 36 | Brandon Nakashima       | Win  | 70.0  | 20230731.0 | 7-6(5) 6-4     |
|----|-------------------------|------|-------|------------|----------------|
| 37 | Jannik Sinner           | Loss | 8.0   | 20230807.0 | W/O            |
| 38 | Max Purcell             | Win  | 78.0  | 20230807.0 | 7-6(2) 3-6 7-5 |
| 39 | Lorenzo Sonego          | Win  | 39.0  | 20230807.0 | 7-6(3) 6-0     |
| 40 | Corentin Moutet         | Win  | 72.0  | 20230828.0 | 6-2 7-5 6-3    |
| 41 | Grigor Dimitrov         | Loss | 19.0  | 20230828.0 | 6-3 6-4 6-1    |
| 42 | Aslan Karatsev          | Loss | 63.0  | 20230920.0 | 4-6 6-3 6-2    |
| 43 | Ye Cong Mo              | Win  | 668.0 | 20230920.0 | 7-5 6-3        |
| 44 | Alex De Minaur          | Loss | 12.0  | 20230927.0 | 6-3 5-7 7-6(6) |
| 45 | Roman Safiullin         | Loss | 50.0  | 20231002.0 | 6-3 6-2        |
| 46 | Tomas Martin Etcheverry | Loss | 32.0  | 20231023.0 | 6-7(5) 6-3 6-2 |
| 47 | Yannick Hanfmann        | Win  | 51.0  | 20231023.0 | 7-5 6-4        |
| 48 | Alex De Minaur          | Loss | 13.0  | 20231030.0 | 7-6(5) 4-6 7-5 |
| 49 | Leandro Riedi           | Win  | 152.0 | 20230915.0 | 6-7(7) 6-4 6-4 |
| 50 | Total                   |      |       |            | 50 Matches     |

Finally, we started looking at match data. This is a sample of a player's (Andy Murray) matches this year. We know that they played 50 matches this year and we know the results and ranking of their opponents.



We also charted the match data on winning or losing vs opponent rankings (for the selected player above, Andy Murray in this case) so that it is easier to visualize patterns in their performance. This player typically wins against lower ranked players, but struggles against the best.

## Relational table specification:

We want to note that due to the magnitude of data in the database we worked with, displaying the relational tables here is pretty unrealistic. There are 81 columns for one of our data tables. It is best to view the tables through Kaggle, we used all data files here:

https://www.kaggle.com/datasets/guillemservera/tennis/data?select=database.sqlite

Note: We do have our old relational tables in our phase I submission. Some of the columns are in our final database, but we have a lot more data we are working with now.

#### SQL code:

Best viewed in our Jupyter notebook or attached is a PDF of our notebook output titled Databases\_Project.pdf. The output for each query follows the query itself.