\mathcal{T} iempo: 2,5 horas \mathcal{P} untaje \mathcal{T} otal: 34 puntos \mathcal{J} unio de 2014

III Examen Parcial

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar todos los pasos y procedimientos que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No son procedentes las apelaciones que se realicen sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

- 1. Sea $\mathcal{T}: \mathbb{R}^2 \to \mathcal{P}_2(\mathbb{R})$, tal que $\mathcal{T}(a,b) = b 2ax + (2a-c)x^2$. Determine si \mathcal{T} es transformación lineal o no. (4 pts)
- 2. Sea $\mathcal{T}: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$, tal que $\mathcal{T}(a+bx+cx^2) = (-a,2a+2b-c,c-2b)$ una transformación lineal. Obtenga:
 - (a) Núcleo de \mathcal{T} y nulidad de \mathcal{T} (5 pts)
 - (b) Rango de \mathcal{T} y una base de la imagen de \mathcal{T} (5 pts)
- 3. Considere la matriz A definida como $A = \begin{pmatrix} -4 & 2 \\ 2 & -4 \end{pmatrix}$
 - (a) Verifique que $\lambda = -6$ y $\lambda = -2$ son los únicos valores propios de A (3 pts)
 - (b) Determine tres vectores propios asociados con el valor propio $\lambda = -2$ (4 pts)
- 4. Sea $\mathcal{T}: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$, tal que $\mathcal{T}(a+bx+cx^2) = -2a + (2b-c+a)x + bx^2 + 2cx^3$ una transformación lineal. Si se tiene que $\mathcal{B}_1 = \{x, 1, x^2\}$ y $\mathcal{B}_2 = \{x^3, -x, 2, x^2\}$ son bases del dominio y del codominio de \mathcal{T} , respectivamente, conteste lo que se pide en cada caso:
 - (a) Determine la matriz representativa de \mathcal{T} relativa a las bases enunciadas. (5 pts)
 - (b) Utilizando la matriz de representación de \mathcal{T} que obtuvo en el inciso (a), verifique que $\mathcal{T}(2-3x+4x^2)=8x^3-3x^2-8x-4$. (3 pts)
- 5. Si se sabe que $M = \begin{pmatrix} -2 & -1 & -2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$ es la matriz representativa de $\mathcal{T}: \mathbb{R}^3 \to \mathcal{P}_2(\mathbb{R})$ relativa a las bases canónicas del dominio y del codominio de \mathcal{T} , respectivamente, y que \mathcal{T} es tanto inyectiva como sobreyectiva, determine la fórmula explícita para $\mathcal{T}^{-1}: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ (5 pts)