DCA0204, Módulo 1 Listas e Complexidade

Daniel Aloise

baseados em slides do prof. Leo Liberti, École Polytechnique, França

DCA, UFRN

Sumário

- Revisão
- Complexidade
- Listas

Revisão

endereço

Célula de memória

- tem um endereço
- armazena um dado d

Célula de memória

- tem um endereço
- armazena um dado d

Duas operações

Move dado da célula para a CPU (read)

Move dado da CPU para a célula (write)

Célula de memória

- tem um endereço
- armazena um dado d

Duas operações

Move dado da célula para a CPU (read)

Move dado da CPU para a célula (write)

Representação da memória: uma sequência de células

d_0	d_1	d_2	d_3	d_4	d_5
0x0	0x1	0x2	0x3	0x4	0x5

Célula de memória

- tem um endereço
- armazena um dado d

Duas operações

Move dado da célula para a CPU (read)

Move dado da CPU para a célula (write)

Representação da memória: uma sequência de células

d_0	d_1	d_2	d_3	d_4	d_5
0x0	0x1	0x2	0x3	0x4	0x5

Uma função $D:\mathbb{A} \to \mathbb{D}$

A: conjunto de endereços

D: conjunto de dados

Hipóteses

- Iremos assumir que a memória do computador é infinita para propósitos teóricos.
- → Na prática ela é finita
- Cada dado pode ser armazenado em uma única célula

Diferentes elementos de dados podem ter tamanhos diferen

Nomeando memória

Uma variável de um programa é apenas um nome para um pedaço da memória

x denota:

0x4	0x5	0x6	0x7

Nomeando memória

Uma variável de um programa é apenas um nome para um pedaço da memória

x denota:

- Nós simplesmente associamos um nome ao endereço inicial
- O tamanho do pedaço de memória é dado pelo type do nome

Nomeando memória

Uma variável de um programa é apenas um nome para um pedaço da memória

x denota:

- Nós simplesmente associamos um nome ao endereço inicial
- O tamanho do pedaço de memória é dado pelo type do nome
- Tipos básicos: int, long, char, float, double
- **Tipos compostos**: Produtos cartesianos dos tipos básicos if y.a ∈ int and y.b ∈ float then y ∈ int × float

Operações Básicas

- Atribuição: escreve um valor na célula(s) de memória nomeadas pela variável (i.e. "variável=valor")
- **▶** Aritmética: $+, -, \times, \div$ para números inteiros e de ponto flutuante
- Teste: avalia uma condição lógica: se verdadeiro, muda endereço para a próxima instrução a ser executada.
- Salto do Loop: ao invés de realizar a próxima instrução na memória, salta para a próxima instrução em um dado endereço

Operações Básicas

- Atribuição: escreve um valor na célula(s) de memória nomeadas pela variável (i.e. "variável=valor")
- Aritmética: $+, -, \times, \div$ para números inteiros e de ponto flutuante
- Teste: avalia uma condição lógica: se verdadeiro, muda endereço para a próxima instrução a ser executada.
- Salto do Loop: ao invés de realizar a próxima instrução na memória, salta para a próxima instrução em um dado endereço

ATENÇÃO! Nestes slides, "=" é usado para significas duas coisas diferentes:

- 1. em atribuições, "<u>variável</u> = <u>valor</u>" significa "por <u>value</u> na célula cujo endereço é nomeado por <u>variável</u>"
- 2. nos testes, "<u>variável</u> = <u>valor</u>" é VERDADEIRO se a célula cujo endereço é nomeado por <u>variável</u> contem <u>valor</u>, and FALSO otherwise

em C/C++/Java "=" é usado para atribuições, e "==" para testes

Operações compostas: programas

Programas são construídos recursivamente a partir de operações básica

Se A, B são operações, então concatenação "A; B" é uma operação

Semântica: execute A, então execute B

Operações compostas: programas

Programas são construídos recursivamente a partir de operações básica

Se A, B são operações, então concatenação "A; B" é uma operação

Semântica: execute A, então execute B

If A, B são operações e T é um teste, "if (T) A else B" é uma operação

Semântica: se T é verdadeiro execute A, senão B

Operações compostas: programas

Programas são construídos recursivamente a partir de operações básica

Se A, B são operações, então concatenação "A; B" é uma operação

Semântica: execute A, então execute B

If A, B são operações e T é um teste, "if (T) A else B" é uma operação

Semântica: se T é verdadeiro execute A, senão B

Se A é uma operação e T é um teste, "while (T) A" é uma operação

Semântica: 1: (se (T) A senão (go to 2)) (go to 1) 2:

```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
n ? s ? i ?
```

```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
n \boxed{\mathbf{2}} s ? i ?
```

```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
n 2 s 0 i ?
```

```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
1: input n;
2: int s = 0;
3: int i = 1;
4: while (i \leq n) do
                                          S
                              n
```

5:
$$s = s + i$$
;

6:
$$i = i + 1$$
;

8: output s;

$$i \leq n \equiv 1 \leq 2$$
: true

```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
n 2 s 1 i 1
```

```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
1: input n;
2: int s = 0;
3: int i = 1;
```

4: while
$$(i \le n)$$
 do

5:
$$s = s + i$$
;

6:
$$i = i + 1$$
;

8: output
$$s$$
;

$$i \leq n \equiv 2 \leq 2$$
: true

S

```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
n 2 s 3 i 2
```

```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;
```

$$i \le n \equiv 3 \le 2$$
: false

7: end while

8: output s;

```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s ;
```

output s = 3

3

Complexidade

Complexidade

- Inúmeros programas diferentes podem levar ao mesmo resultado: qual é então o melhor?
- Avalia-se a sua complexidade de tempo (e/ou espaço)
 - time complexity: quantas "operações básicas"
 - space complexity: quanta memória
 - usada pelo programa durante sua execução
- Pior caso: valores máximos durante uma execução
- Melhor caso: valores mínimo durante uma execução
- Caso médio: valores médios

P: um programa

 t_P : número de operações básicas realizadas por P

$$t_P = 1$$

• $\forall P \in \{\text{atribuição}, \text{aritmética}, \text{teste}\}$:

$$t_P = 1$$

Concatenação: para P, Q programas:

$$t_{P;Q} = t_P + t_Q$$

• $\forall P \in \{\text{atribuição}, \text{aritmética}, \text{teste}\}$:

$$t_P = 1$$

Concatenação: para P, Q programas:

$$t_{P;Q} = t_P + t_Q$$

Teste: para P,Q programas e R um teste:

$$t_{ t if}$$
 (T) P else $Q = t_T + \max(t_P, t_Q)$

max: política do pior caso

• $\forall P \in \{\text{atribuição}, \text{aritmética}, \text{teste}\}$:

$$t_P = 1$$

Concatenação: para P, Q programas:

$$t_{P;Q} = t_P + t_Q$$

■ Teste: para P,Q programas e R um teste:

$$t_{ t if}$$
 (T) P else $Q = t_T + \max(t_P, t_Q)$

max: política do pior caso

Loop: é um pouquinho mais complicado
 (depende em como e quando o loop termina)

Exemplo de complexidade de um loop

O loop completo

Seja P o programa a seguir:

- 1: i = 0;
- 2: while (i < n) do
- 3: *A*;
- 4: i = i + 1;
- 5: end while
- Assuma que A não muda o valor de i
- Corpo do loop executado n vezes
- \bullet $t_P(n) = 1 + n(t_A + 3)$
- Por que '3'? Bem, $t_{(i < n)} = 1$, $t_{(i+1)} = 1$, $t_{(i=\cdot)} = 1$

Ordens de complexidade

No programa acima, suponha $t_A = \frac{1}{2}n$

- No programa acima, suponha $t_A = \frac{1}{2}n$
- Então $t_P = \frac{1}{2}n^2 + 3n + 1$

- No programa acima, suponha $t_A = \frac{1}{2}n$
- Então $t_P = \frac{1}{2}n^2 + 3n + 1$
- Ninguém se importa com as constantes 2,3: o que importa é que t_P "se comporta melhor do" que a função n^2

$$\frac{1}{2}n^2 + 3n + 1 \text{ is }$$

$$O(n^2)$$

- No programa acima, suponha $t_A = \frac{1}{2}n$
- Então $t_P = \frac{1}{2}n^2 + 3n + 1$
- Ninguém se importa com as constantes 2,3: o que importa é que t_P "se comporta melhor do" que a função n^2

$$\frac{1}{2}n^2 + 3n + 1 \text{ is}$$

$$O(n^2)$$

• A função f(n) é da ordem de g(n) (notação: O(g(n))) se:

$$\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ (f(n) \le cg(n)) \tag{4}$$

- No programa acima, suponha $t_A = \frac{1}{2}n$
- Então $t_P = \frac{1}{2}n^2 + 3n + 1$
- Ninguém se importa com as constantes 2,3: o que importa é que t_P "se comporta melhor do" que a função n^2

$$\frac{1}{2}n^2 + 3n + 1 \text{ is }$$

$$O(n^2)$$

• A função f(n) é da ordem de g(n) (notação: O(g(n))) se:

$$\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ (f(n) \le cg(n)) \tag{5}$$

• Para $\frac{1}{2}n^2 + 3$, c = 1 e $n_0 = 2$

Alguns exemplos

Funções	Ordem
an + b com a, b constantes	O(n)
polinômio de grau d' em n	$O(n^d)$ com $d \ge d'$
$n + \log n$	O(n)
$n+\sqrt{n}$	O(n)
$\log n + \sqrt{n}$	$O(\sqrt{n})$
$n \log n^3$	$O(n \log n)$
$\frac{an+b}{cn+d}$, a,b,c,d constantes	O(1)

- Faça sempre um esforço de achar a melhor função (a que cresce mais devagar) g(n) ao dizer "f(n) é O(g(n))"
- Ninguém diz que 2n + 1 é $O(n^4)$ (embora tecnicamente seja verdade) diz-se sim que 2n + 1 é O(n)

Observação

- A ordem de complexidade é uma descrição assintótica de $t_P(n)$
- Se $t_P(n)$ não depende de n, sua ordem de complexidade é O(1) (i.e. constante)
- **Exemplo**: looping 10^{1000} vezes um código O(1) ainda resulta em um programa O(1)
- Em outras palavras, n precisa ser um parâmetro do programa para que a ordem de complexidade não seja O(1).

Complexidade de loops simples

- 1: input *n*;
- **2**: int s = 0;
- 3: int i = 1;
- 4: while $(i \le n)$ do
- 5: s = s + i;
- 6: i = i + 1;
- 7: end while
- **8**: output *s*;

- ightharpoonup t(n) is O(n)

Complexidade de loops simples

- 1: input *n*;
- **2**: int s = 0;
- 3: int i = 1;
- 4: while $(i \le n)$ do
- 5: s = s + i;
- 6: i = i + 1;
- 7: end while
- **8**: output *s*;

- b t(n) = 3 + 5n + 1 = 5n + 4
- ightharpoonup t(n) is O(n)

- 1: for i = 0; i < n 1; i = i + 1 do
- 2: for j = i + 1; j < n; j = j + 1 do
- 3: print i, j;
- 4: end for
- 5: end for

$$t(n) = 1 + \underbrace{(5(n-1)+6) + \dots + (5+6)}_{n-1}$$

$$= 1 + 5((n-1) + \dots + 1) + \underbrace{6(n-1) = \frac{5}{2}n(n-1) + 6n - 5}_{=\frac{5}{2}n^2 + \frac{7}{2}n - 5}$$

lacksquare t(n) is $O(n^2)$

Arrays

Como vetores na matemática

- Um vetor $x \in \mathbb{Q}^n$ é uma n-tupla (x_1, \dots, x_n) para $n \in \mathbb{N}$
- Na computação: x é o nome para um endereço de memória com n células sucessivas
- Indexação começa a partir do 0 (última célula é chamada x_{n-1})

$x: \left[\begin{array}{c c c} x_0 & x_1 & x_2 & x_3 & x_3 \end{array}\right]$; ² 4
--	------------------

Como vetores na matemática

- Um vetor $x \in \mathbb{Q}^n$ é uma n-tupla (x_1, \dots, x_n) para $n \in \mathbb{N}$
- Na computação: x é o nome para um endereço de memória com n células sucessivas
- Indexação começa a partir do 0 (última célula é chamada x_{n-1})

- Um array é allocado quando a memória é reservada
- O tamanho do array é decidido no momento de sua alocação
- Normalmente, o temanho do array não muda
- Quando o array não é mais útil, a memória reservada para ele pode ser desalocada ou liberada

Operações com arrays

Para um array de tamanho n:

Operações	Complexidade
Ler valor da <i>i</i> -ésima componente	O(1)
Escrever valor na <i>i</i> -ésima componente	O(1)
Tamanho	O(1)
Remover elemento (célula)	O(n)
Inserir elemento (célula)	O(n)
Mover subsequência para posição i	O(n)

Mover subsequência L para posição i:

extrai subsequência contígua L do array, e a reinsere depois da posição i e antes da posição i+1

Norma de um vetor em \mathbb{R}^5

1: input $x \in \mathbb{Q}^5$; 2: int i = 0; 3: float a = 0; 4: while (i < 5) do 5: $a = a + x_i \times x_i$; 6: end while 7: $a = \operatorname{sqrt}(a)$;

- Calcula $\sqrt{\sum_{i=0}^4 x_i^2}$
- Complexidade: O(1) (por quê?)

Loop incompleto

```
1: input x \in \{0,1\}^n;

2: int i = 0;

3: while (i < n \land x_i = 1) do

4: x_i = 0;

5: i = i + 1;

6: end while

7: if (i < n) then

8: x_i = 1;

(1,1,0,0) (1,0,0,0)

(0,0,1,0) (1,1,1,0)

(1,1,1,1) (0,0,0,0)
```

- 9: **end if**
- 10: output x;
 - Componentes de x podem ser apenas 0 ou 1
 - Loop continua sobre todas as componentes enquanto seu valor for 1; na primeira componente 0, o algoritmo para.
 - Complexidade?

Complexidade de pior caso do exemplo anterior

- Entre todas as possíveis entradas do algoritmo, encontre aquela que resulta na pior complexidade
- No caso acima, x = (1, 1, ..., 1) sempre faz o loop continuar até o fim, i.e. para n iterações Thm.

 $(1,1\ldots,1)$ é a entrada que resulta na pior complexidade

Proof

Suponha que isto seja falso, então existe um vetor $x \neq (1, \ldots, 1)$ resultando em t(n) > n. Uma vez que $x \neq (1, \ldots, 1)$, x contem pelo menos um componente 0. Seja j < n o menor índice de um componente tal que $x_j = 0$: na iteração j o loop termina, e t(n) = j, que é menor do que n: contradição.

■ Dado que as outras operações são O(1), temos O(n)

Complexidade de pior caso do exemplo anterior

- Entre todas as possíveis entradas do algoritmo, encontre aquela que resulta na pior complexidade
- ▶ No caso acima, x = (1, 1, ..., 1) sempre faz o loop continuar até o fim, i.e. para n iterações Thm.

 $(1,1\ldots,1)$ é a entrada que resulta na pior complexidade

Proof

Suponha que isto seja falso, então existe um vetor $x \neq (1, \ldots, 1)$ resultando em t(n) > n. Uma vez que $x \neq (1, \ldots, 1)$, x contem pelo menos um componente 0. Seja j < n o menor índice de um componente tal que $x_j = 0$: na iteração j o loop termina, e t(n) = j, que é menor do que n: contradição.

● Dado que as outras operações são O(1), temos O(n)

Dificuldade desta abordagem: identificar a "pior" entrada e provar que ela é de fato a pior dentre todas as outras.

- A análise de caso médio necessita de um espaço de probabilidades:
 - assuma que o evento $x_i = b$ é independente dos eventos $x_j = b$ para todo $i \neq j$
 - s assuma que cada célula x_i do array contem 0 ou 1 com igual probabilidade $\frac{1}{2}$

- A análise de caso médio necessita de um espaço de probabilidades:
 - assuma que o evento $x_i = b$ é independente dos eventos $x_j = b$ para todo $i \neq j$
 - assuma que cada célula x_i do array contem 0 ou 1 com igual probabilidade $\frac{1}{2}$
- Para qualquer vetor tendo as primeiras k+1 componentes $(\underbrace{1,\ldots,1}_k,0)$, o loop é executado k vezes

(para todo $0 \le k < n$)

Vetor binário tendo as primeiras k componentes iguais a 1 tem probabilidade $\left(\frac{1}{2}\right)^{k+1}$

- A análise de caso médio necessita de um espaço de probabilidades:
 - assuma que o evento $x_i = b$ é independente dos eventos $x_j = b$ para todo $i \neq j$
 - assuma que cada célula x_i do array contem 0 ou 1 com igual probabilidade $\frac{1}{2}$
- Para qualquer vetor tendo as primeiras k+1 componentes $(\underbrace{1,\ldots,1}_k,0)$, o loop é executado k vezes (para todo 0 < k < n)

Vetor binário tendo as primeiras k componentes iguais a 1 tem probabilidade $\left(\frac{1}{2}\right)^{k+1}$

Se o vetor é $(\underbrace{1,\ldots,1}_n)$ o loop é executado n vezes

A probabilidade de termos este vetor é $\left(\frac{1}{2}\right)^n$

ullet O loop é executado k vezes com probabilidade $\left(rac{1}{2}
ight)^{k+1}$, para k < n

- O loop é executado k vezes com probabilidade $\left(\frac{1}{2}\right)^{k+1}$, para k < n
- ullet O loop é executado n vezes com probabilidade $\left(\frac{1}{2}\right)^n$

- ullet O loop é executado k vezes com probabilidade $\left(\frac{1}{2}\right)^{k+1}$, para k < n
- ullet O loop é executado n vezes com probabilidade $\left(\frac{1}{2}\right)^n$
- Valor esperado para o número de iterações do loop:

$$\sum_{k=0}^{n-1} k 2^{-(k+1)} + n 2^{-n} \le \sum_{k=0}^{n-1} k 2^{-k} + n 2^{-n} = \sum_{k=0}^{n} k 2^{-k}$$

- ullet O loop é executado k vezes com probabilidade $\left(\frac{1}{2}\right)^{k+1}$, para k < n
- ullet O loop é executado n vezes com probabilidade $\left(\frac{1}{2}\right)^n$
- Valor esperado para o número de iterações do loop:

$$\sum_{k=0}^{n-1} k 2^{-(k+1)} + n 2^{-n} \le \sum_{k=0}^{n-1} k 2^{-k} + n 2^{-n} = \sum_{k=0}^{n} k 2^{-k}$$

Thm.

$$\lim_{n \to \infty} \sum_{k=0}^{n} k 2^{-k} = 2$$

Proof

Série geométrica $\sum_{k\geq 0}q^k=\frac{1}{1-q}$ for $q\in[0,1)$. Derivando w.r.t. q, obtem-se $\sum_{k\geq 0}kq^{k-1}=\frac{1}{(1-q)^2}$; multiplicando-se por q, tem-se $\sum_{k\geq 0}kq^k=\frac{q}{(1-q)^2}$. Para $q=\frac{1}{2}$, tem-se $\sum_{k\geq 0}k2^{-k}=(1/2)/(1/4)=2$.

- ullet O loop é executado k vezes com probabilidade $\left(\frac{1}{2}\right)^{k+1}$, para k < n
- ullet O loop é executado n vezes com probabilidade $\left(\frac{1}{2}\right)^n$
- Valor esperado para o número de iterações do loop:

$$\sum_{k=0}^{n-1} k 2^{-(k+1)} + n 2^{-n} \le \sum_{k=0}^{n-1} k 2^{-k} + n 2^{-n} = \sum_{k=0}^{n} k 2^{-k}$$

Thm.

$$\lim_{n \to \infty} \sum_{k=0}^{n} k 2^{-k} = 2$$

Proof

Série geométrica $\sum_{k\geq 0}q^k=\frac{1}{1-q}$ for $q\in[0,1)$. Derivando w.r.t. q, obtem-se $\sum_{k\geq 0}kq^{k-1}=\frac{1}{(1-q)^2}$; multiplicando-se por q, tem-se $\sum_{k\geq 0}kq^k=\frac{q}{(1-q)^2}$. Para $q=\frac{1}{2}$, tem-se $\sum_{k\geq 0}k2^{-k}=(1/2)/(1/4)=2$.

Portanto, a complexidade de caso médio é constante O(1)

Arrays "denteados"

- Array denteado: um vetor cujas componentes são vetores de tamanhos diferentes
- E.g. $x = ((x_{00}, x_{01}), (x_{10}, x_{11}, x_{12}))$

x:	x_0 :	x_{00}	x_{01}	
	x_1 :	x_{10}	x_{11}	x_{12}

Arrays "denteados"

- Array denteado: um vetor cujas componentes são vetores de tamanhos diferentes
- E.g. $x = ((x_{00}, x_{01}), (x_{10}, x_{11}, x_{12}))$

Caso especial: quantos todos os subvetores têm o mesmo tamanho, temos uma matriz: int x[][] = new int [2][3];

$$x = \left(\begin{array}{ccc} x_{00} & x_{01} & x_{02} \\ x_{10} & x_{11} & x_{12} \end{array}\right)$$

 Arrays denteados podem ser usados para representar relações em um conjunto finito

- Arrays denteados podem ser usados para representar relações em um conjunto finito
- Seja $V = \{v_1 \dots, v_n\}$ e E um conjunto de relações entre elementos de V

E é um conjunto de pares ordenados (u,v)

- Arrays denteados podem ser usados para representar relações em um conjunto finito
- Seja $V = \{v_1 \dots, v_n\}$ e E um conjunto de relações entre elementos de V

E é um conjunto de pares ordenados (u,v)

- Representação:
 - array de n componentes
 - a i-ésima componente é o array das componentes v_j relacionadas a v_i

- Arrays denteados podem ser usados para representar relações em um conjunto finito
- Seja $V = \{v_1 \dots, v_n\}$ e E um conjunto de relações entre elementos de V

E é um conjunto de pares ordenados (u,v)

- Representação:
 - array de n componentes
 - a i-ésima componente é o array das componentes v_j relacionadas a v_i
- Exemplo: $V = \{1, 2, 3\}$, $E = \{(1, 1), (1, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$

	1	1	2	
E:	2	3		
	3	1	2	3

Applicação: Redes

Deficiências no uso de arrays

- "Essencialmente" de tamanho fixo
- Tamanho precisa ser conhecido a priori
- A mudança de posições relativas de elementos é ineficiente

Listas

Lista duplamente encadeada

ullet Né N: um elemento da lista

```
N. {\tt prev} = {\tt endereço do nó anterior na lista} \ N. {\tt next} = {\tt endereço do nó posterior na lista} \ N. {\tt datum} = {\tt dado armazenado no nó}
```

- nós sentinela ±: antes do primeiro elemento, depois do último elemento, nenhum dado armazenado
- Todo nó tem dois ponteiros, e é apontado por dois outros nós

Remova um nó

Remove nó atual (this)

Neste exemplo, this= X_2

```
1: this.prev.next = this.next;
```

2: this.next.prev = this.prev;

Complexidade de pior caso: O(1)

Insere um nó

Insere nó atual (this) após nó X_1

Neste exemplo, this= N

```
1: this.prev = X<sub>1</sub>;
2: this.next = X<sub>1</sub>.next;
3: X<sub>1</sub>.next = this;
4: this.next.prev = this;
```

Complexidade de pior caso: O(1)

Find next

- Dada uma lista L e um nó X, encontre a próxima ocorrência do elemento b
- Se $b \in L$ retorne o nó onde b é armazenado, senão retorne \bot

```
1: while (X.datum \neq b \land X \neq \bot) do
```

- 2: X = X.next
- 3: end while
- 4: return X

Warning: todo teste custa 2 operações básicas, ineficiente

Find next

- Dada uma lista L e um nó X, encontre a próxima ocorrência do elemento b
- Se $b \in L$ retorne o nó onde b é armazenado, senão retorne \bot

```
1: while (X.datum \neq b \land X \neq \bot) do
```

- 2: X = X.next
- 3: end while
- 4: return X

Warning: todo teste custa 2 operações básicas, ineficiente

```
1: \bot.datum = b

2: while (X.datum \neq b) do

3: X = X.next Agora t_{\text{test}} = 1

4: end while

5: return X
```

Operações em listas

Para uma lista duplamente encadeada de tamanho n:

Operação	Complexidade
Read/write valor do i-ésimo nó	O(n)
Size	O(1)
Find next	O(n)
Está vazia?	O(1)
Read/write valor do primeiro/último nó	O(1)
Remover elemento	O(1)
Inserir elemento	O(1)
Mover subsequência para posição i	O(1)
Concatenar	O(1)

Fim do módulo 1