COMPITO DI CONTROLLI AUTOMATICI

Ingegneria dell'Informazione ed Elettronica 27 Gennaio 2020

Esercizio 1. [9.5 punti] Data

$$G(s) = 10 \frac{(1+10s)(1+s^2)}{s(1+s)^2 (1+\frac{s}{100})}$$

- i) si determini il diagramma di Bode (modulo e fase) della risposta in frequenza del sistema;
- ii) si determini il diagramma di Nyquist di $G(j\omega)$ per $\omega \in \mathbb{R}$ (non è richiesto il calcolo di eventuali asintoti ma una stima delle eventuali intersezioni con gli assi ottenibile dal confronto dei diagrammi di Bode di modulo e fase);
- iii) si studi attraverso il criterio di Nyquist la stabilità BIBO del sistema retroazionato

$$W(s) = \frac{KG(s)}{1 + KG(s)},$$

al variare di K in $\mathbb{R}, K \neq 0$.

Suggerimento: nell'eventualità in cui non si sia stati in grado di determinare la/le intersezione/i con l'asse reale al punto precedente, la/le si indichi con un simbolo/dei simboli e si faccia riferimento ad esso/essi per discutere la stabilità BIBO di W(s).

Esercizio 2. [9.5 punti] Data

$$G(s) = \frac{s^2 + 3s + 18}{(s^2 + 3)(s + 6)}$$

e sapendo che s=-3 è punto doppio del luogo, si traccino i luoghi positivo e negativo, individuando asintoti, punti doppi, intersezioni con l'asse immaginario e ricorrendo alla tabella di Routh per determinare la posizione di alcuni rami (ci sono situazioni in cui l'analisi precedente non è sufficiente per decidere se alcuni rami sono interamente contenuti nel semipiano reale positivo, in quello negativo o attraversano l'asse immaginario). Infine, si determini il numero di poli a parte reale positiva e/o nulla (e di conseguenza la BIBO stabilità di $W(s) = \frac{KG(s)}{1+KG(s)}$) al variare del parametro reale K.

Esercizio 3. [6.5 punti] Data la funzione di trasferimento

$$G(s) = 10 \frac{1 + 10s}{\left(1 + \frac{s}{10}\right)^2}$$

è richiesto

i) il progetto di un controllore stabilizzante $C_1(s)$ che attribuisca al risultante sistema retroazionato W(s) tipo 1 ed errore a regime alla rampa lineare $e_{rp}^{(2)}$ pari a 0.01, ed alla funzione di trasferimento in catena aperta $C_1(s)G(s)$ $\omega_A \simeq 100$ rad/s, $m_{\phi} \simeq 90^{\circ}$.

ii) il progetto di un controllore stabilizzante $C_2(s)$ di tipo PID (eventualmente P, PI o PD) che attribuisca al risultante sistema retroazionato W(s) tipo 1 ed errore a regime alla rampa lineare $e_{rp}^{(2)}$ pari a 0.01, ed alla funzione di trasferimento in catena aperta $C_2(s)G(s)$ $\omega_A \simeq 10.000$ rad/s, $m_{\phi} \simeq 90^{\circ}$.

Teoria. [5 + 0.5 punti] Sia $G(s) \in \mathbb{R}(s)$ una funzione razionale propria con guadagno di Evans $K_E = 1$, ovvero

$$G(s) = \frac{n(s)}{d(s)},$$

con $n(s), d(s) \in \mathbb{R}[s]$ monici e coprimi e deg $d(s) \ge \deg n(s)$. Si enunci e dimostri la regola che determina quali punti dell'asse reale appartengono al luogo positivo e al luogo negativo di G(s).

Si dimostri che se il grado relativo $n-m=\deg d(s)-\deg n(s)$ di G(s) vale 2 e valgono le seguenti condizioni:

- (a) tutti gli zeri di G(s) hanno parte reale negativa e

(b) $\sum_{i=1}^{n} p_i < \sum_{i=1}^{m} z_i$ allora W(s) è certamente BIBO stabile per K positivo e sufficientemente grande.

SOLUZIONI

Esercizio 1. i) I diagrammi di Bode sono in figura

Il modulo di Bode (asintotico) scende con pendenza $-20 \, \mathrm{dB/dec}$ fino a 40 dB per $\omega = 10^{-1}$ rad/s, poi prosegue piatto fino ad $\omega = 100$ rad/s, dove riprende a scendere con pendenza $-20 \, \mathrm{dB/dec}$. Il modulo reale evidenzia un picco di antirisonanza infinito (anche se la figura lo rappresenta erroneamente finito) per $\omega = 1$ rad/s, poi risale e raggiunge un tratto orizzontale di valore 40 dB e poi riscende con pendenza $-20 \, \mathrm{dB/dec}$.

La fase di Bode (asintotica) parte da -90° ed in $\omega = 10^{-1}$ rad/s sale di 90° . In corrispondenza a $\omega = 10^{0} = 1$ rad/s i diagrammi asintotici dei due termini che hanno punto di spezzamento per tale pulsazione si compensano perfettamente e quindi l'asintotico non subisce nessuna variazione. Poi, in $\omega = 10^{2}$ rad/s la fase scende di 90° portandosi a -90° .

La fase reale sale da -90° fino a poco meno di -45° , poi per effetto del polo doppio in -1 inizia a scendere. Quando si riporta ad un valore prossimo a -90° subentra il termine trinomio con smorzamento nullo, i.e., $1+s^2$, che alza la fase istantaneamente di 180° . Infine l'ultimo termine binomio corrispondente al polo semplice e stabile in -100 porta giù la fase gradualmente a -90° .

ii) Il diagramma di Nyquist è in figura

Si vede che il diagramma di Nyquist relativo alle pulsazioni positive parte per $\omega=0^+$ dal punto improprio parallelamente al semiasse immaginario negativo, poi si porta vicino al semiasse reale positivo con modulo che cala. Il modulo continua a calare e il diagramma si trova a passare attraverso l'origine (per $\omega=1$) che taglia parallelamente all'asse immaginario dal basso verso l'alto. Successivamente il diagramma ruota in verso orario con modulo che prima cresce portandosi ad un massimo relativo $A\approx 100$ (40 dB nel diagramma dei moduli) e poi va a zero gradualmente mentre la fase si porta a -90° . Si noti

che confrontando modulo e fase nei diagrammi di Bode, si nota che quando la fase assume valore 0° (all'incirca attorno a $\omega = 10 \text{ rad/s}$) il modulo vale circa 40 dB, ovvero 100, quindi il diagramma attraversa l'asse reale solo in 100.

iii) Si noti preliminarmente che $n_{G_+}=0$. L'analisi del numero di giri (aggiunta la parte relativa alle ω negative ed il semicerchio di raggio infinito percorso in senso orario) conduce facilmente a determinare i seguenti casi:

- K > 0: si ha N = 0 e $n_{G_{+}} = 0$ da cui $n_{W_{+}} = 0$;
- $K < -\frac{1}{A} \approx -\frac{1}{100}$: si ha N = -3 e $n_{G_+} = 0$ da cui $n_{W_+} = 3$;
- $K = -\frac{1}{A} \approx -\frac{1}{100}$: la W(s) ha due poli immaginari puri (e uno reale positivo);
- $-\frac{1}{100} \approx -\frac{1}{A} < K < 0$: si ha N = -1 e $n_{G_+} = 0$ da cui $n_{W_+} = 1$.

In definitiva, si ha sempre instabilità tranne per K > 0.

Esercizio 2. La funzione di trasferimento G(s) presenta due zeri complessi $-\frac{3}{2} \pm i\frac{3}{2}\sqrt{7}$, due poli immaginari puri in $\pm i\sqrt{3}$ ed un polo reale in -6. Sviluppando l'equazione dei punti doppi si ottiene

$$s[s^3 + 6s^2 + 69s + 180] = s(s+3)(s^2 + 3s + 60)$$

dove la fattorizzazione si ottiene dividendo il termine di terzo grado per il fattore s+3 (che si conosce in quanto il testo afferma che s=-3 è punto doppio del luogo). L'equazione non ha altre soluzioni ammissibili oltre a s=0,-3, essendo le altre due radici complesse e il denominatore di G(s) di grado 3. Cercando le intersezioni con l'asse immaginario si trova l'equazione:

$$[K(18 - \omega^2) + 6(3 - \omega^2)] + i\omega(3 - \omega^2 + 3K) = 0$$

Annullando la parte immaginaria si ha $\omega = 0$ oppure $\omega^2 = 3K + 3$, che sostituite nella parte reale porgono rispettivamente K = -1 e K(K + 1) = 0, da cui di nuovo $K = -1, \omega = 0$ oppure $K = 0, \omega = \pm \sqrt{3}$.

La tabella di Routh per $d(s) + Kn(s) = s^3 + (K+6)s^2 + 3(K+1)s + 18(K+1)$ è

$$\begin{array}{c|cccc}
3 & 1 & 3(K+1) \\
2 & K+6 & 18(K+1) \\
1 & 3\frac{K(K+1)}{K+6} \\
0 & 18(K+1) &
\end{array}$$

ed un'analisi dei segni della prima colonna al variare di K porge 1 variazione di segno per K < -6 e per -6 < K < -1, 2 variazioni di segno per -1 < K < 0, e nessuna variazione di segno per K > 0. I valori K = 0, -1 sono già stati trovati nell'analisi delle intersezioni con l'asse immaginario, mentre il valore K = -6 non permette il completamento della

tabella ma non corrisponde a zeri immaginari.

Il luogo positivo ha 3 rami distinti: due complessi coniugati che si muovono dai poli complessi verso gli zeri complessi (senza intersecare l'asse immaginario e quindi rimanendo nel semipiano sinistro) ed un ramo interamente contenuto nell'asse reale da -6 verso $-\infty$ (asintoto), da cui la stabilità BIBO per ogni K > 0 (non per K = 0).

Il luogo negativo ha due rami complessi che dai poli complessi raggiungono il punto doppio s=0 per K=-1, quindi diventano reali, uno va verso $+\infty$ (asintoto), l'altro si ricongiunge con l'altro ramo che proviene sull'asse reale dal polo reale nel punto doppio s=-3 per K=-2, per poi uscire sul piano complesso verso i due zeri (senza attraversare l'asse immaginario, quindi restando nel semipiano sinistro). I due rami complessi per K che varia da 0 a -1 stanno a destra dell'asse immaginario (certamente non lo attraversano, non essendoci altre intersezioni oltre a quelle trovate), come conseguenza dell'analisi fatta con Routh (senza la quale avrebbero anche potuto trovarsi a sinistra), per cui in tale intervallo di K c'è un solo ramo nel semipiano sinistro, mentre gli altri due rami stanno nel semipiano destro.

Quindi ne consegue l'instabilità per ogni K < 0, più precisamente due poli immaginari puri ed uno negativo per K = 0, due poli a parte reale positiva ed uno negativo per 0 > K > -1, un polo doppio in s = 0 ed uno negativo per K = -1, ed un polo positivo e due a parte reale negativa per K < -1.

Esercizio 3. i) Il requisito a regime impone l'utilizzo di $\frac{10}{s}$, dopodichè il diagramma di Bode di

 $\frac{10}{s}G(s)$

taglia in $\omega \simeq 100\sqrt{10}$, mentre in $\omega_A \simeq 100$ abbiamo un modulo di +20 dB con un margine di fase di pochi gradi.

Pertanto è necessaria una rete a sella che causi un abbassamento di modulo di 20 dB e alzi la fase di 90°. A tale risultato possiamo pervenire, ad esempio, scegliendo lo zero della rete anticipatrice 1 decade prima di ω_A e mettendo un polo in alta frequenza (tale polo tuttavia non risulta necessario in quanto il controllore finale risulta comunque proprio a causa dell'integratore). La rete attenuatrice allora deve avere il polo che precede lo zero di due decadi. Possiamo allora scegliere un polo in $-\frac{1}{10}$ e uno zero doppio in -10, da cui la possibile soluzione seguente

$$C_1(s) = 10 \frac{\left(1 + \frac{s}{10}\right)^2}{s(1 + 10s)}$$

che causa tre cancellazioni zero/polo ammissibili e fa sì che

$$C_1(s)G(s) = \frac{100}{s}$$

soddisfi tutti i requisiti, garantendo la BIBO stabilità di W(s) per il Criterio di Bode.

ii) Nel secondo caso, per soddisfare le specifiche su tipo ed errore a regime dobbiamo nuovamente assumere $C_2'(s) = \frac{10}{s}$ ottenendo i medesimi diagrammi di Bode trovati alla fine della prima fase della sintesi per tentativi del punto i). Ciò ci dice che avremo bisogno o di un PI o di un PID.

A questo punto bisogna alzare il modulo di 60 dB e la fase di 90°, il che è possibile posizionando un singolo zero 3 decadi prima di ω_A^* e causando, quindi, una cancellazione zero/polo ammissibile. Pertanto un PI è sufficiente ed è il seguente

$$C_2(s) = 10 \frac{1 + \frac{s}{10}}{s} = \frac{10}{s} + 1$$

che fa sì che

$$C_2(s)G(s) = 100 \frac{1 + 10s}{s\left(1 + \frac{s}{10}\right)}$$

soddisfi tutti i requisiti, garantendo la BIBO stabilità di W(s) per il Criterio di Bode.

Teoria. Per la regola su quali punti dell'asse reale appartengano al luogo si veda il libro di testo, Capitolo 8, pagine 228-229.

Se il grado relativo di G(s) è 2 avremo nel luogo positivo m rami che vanno agli m zeri e due rami che vanno al punto improprio lungo un asintoto parallelo all'asse immaginario e passante per $(x_B,0)=\left(\frac{\sum_{i=1}^n p_i-\sum_{i=1}^m z_i}{n-m},0\right)$. Poiché al crescere di K verso $+\infty$ i rami o sono prossimi agli zeri oppure all'asintoto, se gli zeri sono stabili e l'asintoto sta nel semipiano sinistro, ovvero valgono le condizioni a) e b), allora da un certo K in poi la W(s) è sempre stabile.