Віддаль від точки
$$M_0$$
 (x_0 ; y_0) до прямої $Ax+By+C=0$
$$d = \frac{Ax_0 + By_0 + C}{\sqrt{A^2 + B^2}}$$
 (3.13)

2 Площина у просторі

Деякі відомості про пряму у просторі

$A(x-x_0) + B(y-y_0) + + C(z-z_0) = 0, \vec{n} = \{A; B; C\}, M_0(x_0; y_0; z_0)$ (3.15)	\vec{n}	Рівняння площини, що проходить через задану точку M_0 і має
Ax + By + Cz + D = 0,		заданий нормальний вектор <i>п</i> Загальне рівняння
$\vec{n} = \{A; B; C\}, ABC \neq 0$		площини
$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$		Рівняння площини у відрізках на координатних осях (<i>a</i> , <i>b</i> , <i>c</i> – величини відрізків, які площина відтинає відповідно на осях <i>Ox</i> , <i>Oy</i> , <i>Oz</i>)
$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$	M_1 M_2 M M_3	Рівняння площини, що проходить через 3 задані точки M_1, M_2, M_3

$M_1(x_1; y_1; z_1), M_2(x_2; y_2; z_2),$ $M_3(x_3; y_3; z_3)$ (3.16)		
$ \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}, $ $ \vec{n}_1 = \{A_1; B_1; C_1\}, $ $ \vec{n}_2 = \{A_2; B_2; C_2\}. $ (3.17)	\vec{n}_1	Умова паралельності площин $A_1x + B_1y + C_1z + D_1 = 0,$ $A_2x + B_2y + C_2z + D_2 = 0$ $(\vec{n}_1 \parallel \vec{n}_2)$
$A_1 A_2 + B_1 B_2 + C_1 C_2 = 0,$ $\vec{n}_1 = \{A_1; B_1; C_1\},$ $\vec{n}_2 = \{A_2; B_2; C_2\}.$	\vec{n}_1	Умова перпендикулярності площин $A_1x + B_1y + C_1z + D_1 = 0,$ $A_2x + B_2y + C_2z + D_2 = 0,$ $(\vec{n}_1 \mid \vec{n}_2, \vec{n}_1 \cdot \vec{n}_2 = 0)$

Приклад № 1. Записати рівняння площини, що проходить через точку $M_0(2; -1; -3)$ перпендикулярно до вектора $\vec{n} = 2\vec{i} - \vec{j} + 2\vec{k}$.

Розв'язання. Заданий вектор \vec{n} буде нормальним вектором шуканої площини $\vec{n}=\{2;-1;2\}$. Використовуємо формулу (3.15). Маємо $2(x-2)-(y+1)+2(z+3)=0,\ 2x-y+2z+1=0$ - шукане рівняння площини.

3 Пряма у просторі Деякі відомості про пряму у просторі

$x - x_1 = y - y_1 = z - z_1$	$M_2(x_2; y_2; z_2)$	Рівняння прямої, що
$\frac{1}{x_2 - x_1} = \frac{1}{y_2 - y_1} = \frac{1}{z_2 - z_1}$		проходить через дві
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M (m. m. z.)	задані точки $M_1(x_1,y_1,z_1)$
(3.20)	$M_I(x_I; y_I, \mathbf{z}_1)$	$i M_2(x_2; y_2, z_2)$
$\frac{x - x_0}{z} = \frac{y - y_0}{z} = \frac{z - z_0}{z}$	_	Канонічне рівняння
${l} = {m} = {p}$	\bar{S}	прямої, $\vec{S} = \{l, m, p\}$ -
$\vec{S} = \{l; m; p\}$		напрямний вектор,
	$M_0(x_0, y_0; z_0)$	$M_0(x_0, y_0, z_0)$ – точка
(3.21)		прямої
$x = lt + x_0,$		Параметричне рівняння
$y = mt + y_0,$	\bar{s}	прямої, t - параметр,
(3.22)		$M_0(x_0, y_0, z_0)$ – точка
$z = pt + z_0$	$M_0(x_0, y_0, z_0)$	прямої
$\vec{S} = \{l; m; p\}$		
$A_1 x + B_1 y + C_1 z + D_1 = 0,$		Загальне рівняння
	\vec{n}_1	прямої – лінія перетину
$A_2 x + B_2 y + C_2 z + D_2 = 0$		двох непаралельних
		площин, $\vec{S} = \vec{n}_1 \times \vec{n}_2$ -
	\vec{S} \vec{n}_2	напрямний вектор
$\begin{vmatrix} i & j & k \end{vmatrix}$		прямої
$\vec{S} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix} (3.23)$		
$\begin{vmatrix} A_2 & B_2 & C_2 \end{vmatrix}$	7	