2. [4 marks]

a)
$$\binom{13}{2}\binom{39}{2} = 78 * 9139 = 712842$$

b)
$$\binom{13}{2}\binom{39}{3} + \binom{13}{1}\binom{39}{4} + \binom{13}{0}\binom{39}{5} = 78 * 9139 + 13 * 82251 + 1 * 575757 = 2357862$$

c)
$$\binom{13}{2}\binom{13}{2} = 286 * 78 = 22308$$

d)
$$\binom{12}{1}\binom{12}{2}\binom{2}{2} = 12 * 66 * 1 = 792$$

- 3. [3 + 3 marks]
 - a) Let n be a positive integer with n>2, then

$${\binom{n}{2}} + {\binom{n-1}{2}} = \frac{n!}{2!(n-2)!} + \frac{(n-1)!}{2!(n-3)!}$$

$$= \frac{n!}{2(n-2)!} + \frac{(n-2)(n-1)!}{(n-2)2(n-3)!}$$

$$= \frac{n! + (n-2)(n-1)!}{2(n-2)!}$$

$$= \frac{(n+(n-2))(n-1)!}{2(n-2)!}$$

$$= \frac{2(n-1)(n-1)!}{2(n-2)!}$$

$$= \frac{(n-1)(n-1)(n-2)!}{(n-2)!}$$

$$= (n-1)^2$$

which is a perfect square for all n > 2.

b) From the binomial theorem, we know that for any real numbers a and b, and any positive integer n,

$$(a+b)^n = \binom{n}{0}a^0b^n + \binom{n}{1}a^1b^{n-1} + \binom{n}{2}a^2b^{n-2} + \dots + \binom{n}{n}a^nb^0$$

So, if we let a = -x and b = 1 + x in the binomial theorem, then

$$(-x + (1+x))^n = (1)^n = 1$$

$$= \binom{n}{0} (-x)^0 (1+x)^n + \binom{n}{1} (-x)^1 (1+x)^{n-1} + \binom{n}{2} (-x)^2 (1+x)^{n-2} + \dots + \binom{n}{n} (-x)^n (1+x)^0$$

$$= (1+x)^n - \binom{n}{1} x (1+x)^{n-1} + \binom{n}{2} x^2 (1+x)^{n-2} - \dots + (-1)^n \binom{n}{n} x^n$$

4. [2 + 3 marks]

a) Here we are counting combinations with repetition where n = 4 and r = 32, thus

$$\binom{4+32-1}{32} = \binom{35}{32} = \frac{35!}{32!3!} = 6545$$

b) For this one we start with x1 = 1, x2 = 2, x3 = 3, x4 = 4, leaving r = 32-1-2-3-4 = 22, thus

$$\binom{4+22-1}{22} = \binom{25}{22} = 2300$$

5. [2 + 2 + 2 marks]

Let (A, \mathcal{R}_1) and (B, \mathcal{R}_2) be two posets. By definition of partial orders we know the following to be true.

- a) For all $a \in A$ and $b \in B$, $(a, a) \in \mathcal{R}_1$ and $(b, b) \in \mathcal{R}_2$, respectively.
- b) For all $a, x \in A$, if $(a, x) \in \mathcal{R}_1$ and $(x, a) \in \mathcal{R}_1$ then a = x. For all $b, y \in B$, if $(b, y) \in \mathcal{R}_2$ and $(y, b) \in \mathcal{R}_2$ then b = y.
- c) For all $a, b, c \in A$, if $(a, b) \in \mathcal{R}_1$ and $(b, c) \in \mathcal{R}_1$ then $(a, c) \in \mathcal{R}_1$. For all $x, y, z \in B$, if $(x, y) \in \mathcal{R}_2$ and $(y, z) \in \mathcal{R}_2$ then $(x, z) \in \mathcal{R}_2$.

Now, let \mathcal{R} be a relation on $A \times B$ defined by

$$\mathcal{H} = \left\{ \left((a, b), (x, y) \right) | (a, x) \in \mathcal{H}_1, (b, y) \in \mathcal{H}_2 \right\}$$

To show that \mathcal{R} is a partial order on $A \times B$ we must show that it is a) reflexive, b) antisymmetric, and c) transitive.

- a) Let $(a, b) \in A \times B$. Since $(a, a) \in \mathcal{H}_1$ and $(b, b) \in \mathcal{H}_2$ from above, then by definition of \mathcal{H} , $((a, b), (a, b)) \in \mathcal{H}$. Thus, \mathcal{H} is reflexive.
- b) Let $(a, b), (x, y) \in A \times B$ and suppose that ((a, b), (x, y)) and ((x, y), (a, b)) are in \mathcal{R} . By definition of \mathcal{R} , it is true that (a, x) and (x, a) are in \mathcal{R}_1 and (b, y) and (y, b) are in \mathcal{R}_2 . Because \mathcal{R}_1 and \mathcal{R}_2 are both antisymmetric, we may conclude that a = x and b = y, respectively. Therefore, (a, b) = (x, y) and thus \mathcal{R} is antisymmetric.
- c) Let $(a, b), (x, y), (c, d) \in A \times B$ and suppose that ((a, b), (x, y)) and ((x, y), (c, d)) are in \mathcal{R} . By definition of \mathcal{R} , it is true that (a, x) and (x, c) are in \mathcal{R}_1 and (b, y) and (y, d) are in \mathcal{R}_2 . Because \mathcal{R}_1 and \mathcal{R}_2 are both transitive, we may conclude that $(a, c) \in \mathcal{R}_1$ and $(b, d) \in \mathcal{R}_2$, respectively. Therefore, by the definition of \mathcal{R} , this implies that $((a, b), (c, d)) \in \mathcal{R}$ and thus \mathcal{R} is transitive.

By the above properties, \mathcal{R} is a partial order on $A \times B$.