МГТУ им. Н. Э. Баумана, кафедра ИУ5 курс "Методы машинного обучения"

Лабораторная работа №1

«Создание "истории о данных" (Data Storytelling)»

ВЫПОЛНИЛ:

Сергеев М.К.

Группа: ИУ5-22М

ПРОВЕРИЛ:

Гапанюк Ю.Е.

Задание:

- Выбрать набор данных (датасет);
- Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:
 - 1. История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию;
 - 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков;
 - 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов;
 - 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика;
 - 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.
- Сформировать отчет и разместить его в своем репозитории на github.

Описание набора данных:

Ранг - Рейтинг продаж;

Название - Название игры;

Платформа – Игровая платформа (например, PC, PS4 и т.д.);

Год - Год выпуска игры;

Жанр - Жанр игры;

Издатель - Издатель игры;

NA_Sales - Продажи в Северной Америке (в миллионах);

EU_Sales - Продажи в Европе (в миллионах);

JP_Sales - Продажи в Японии (в миллионах);

Other_Sales - Продажи в остальном мире (в миллионах);

Global_Sales - Общий объем продаж по всему миру.

Выполнение работы:

Импортирование необходимых библиотек

```
In [91]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          from google.colab import drive
          drive.mount('/content/drive')
         Drive already mounted at /content/drive; to attempt to forcibly remount,
          call drive.mount("/content/drive", force remount=True).
         Исследуем основные характеристики датасета
In [92]:
          data = pd.read csv("/content/drive/MyDrive/data/Video Games Sales.csv")
In [93]:
           data.head()
                   Name Platform Year_of_Release
                                                       Publisher NA_Sales EU_Sales JP_Sa
                                                 Genre
Out[93]:
          0
               Wii Sports
                             Wii
                                         2006.0
                                                 Sports
                                                         Nintendo
                                                                    41.36
                                                                             28.96
              Super Mario
                            NES
                                         1985.0 Platform
                                                                    29.08
                                                                              3.58
                                                         Nintendo
                                                                                       6
          2 Mario Kart Wii
                             Wii
                                         2008.0
                                                        Nintendo
                                                                    15.68
                                                                             12.76
                                                 Racing
               Wii Sports
                             Wii
                                         2009.0
                                                 Sports
                                                         Nintendo
                                                                    15.61
                                                                             10.93
                Pokemon
                                                  Role-
                                                        Nintendo
                                                                    11.27
                                                                              8.89
                                                                                      10
                                         1996.0
            Red/Pokemon
                             GB
                                                Playing
                   Blue
In [94]:
          data.shape
          (16719, 16)
Out[94]:
In [95]:
          data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 16719 entries, 0 to 16718
         Data columns (total 16 columns):
           #
              Column
                               Non-Null Count Dtype
          _____
                                 -----
           0
               Name
                                 16717 non-null object
           1
               Platform
                                 16719 non-null object
           2
             Year of Release 16450 non-null float64
           3
             Genre
                               16717 non-null object
           4
             Publisher
                               16665 non-null object
                                16719 non-null float64
           5
             NA Sales
                                16719 non-null float64
               EU Sales
           6
           7
               JP_Sales
                               16719 non-null float64
               Other_Sales 16719 non-null float64
Global_Sales 16719 non-null float64
           8
           9
           10 Critic Score
                               8137 non-null float64
```

8137 non-null float64

11 Critic Count

```
12User_Score10015 non-null object13User_Count7590 non-null float6414Developer10096 non-null object15Rating9950 non-null object
            dtypes: float64(9), object(7)
            memory usage: 2.0+ MB
In [96]:
             data.isnull().sum()
                                     2
Out[96]: Name Platform
                                       0
           Year_of_Release 269
            Genre
                                    2
            Publisher
                                     54
            NA_Sales
                                     0
           EU_Sales 0

JP_Sales 0

Other_Sales 0

Global_Sales 0

Critic_Score 8582

Critic_Count 8582

User_Score 6704
            User Count
                                  9129
            Developer
                                  6623
            Rating
                                   6769
            dtype: int64
In [97]:
            data['Genre'].value counts()
           Action 3370
Sports 2348
Misc 1750
Role-Playing 1500
Out[97]: Sports
           Shooter 1323
Adventure 1303
Racing 1249
           Racing 1249
Platform 888
Simulation 874
Fighting 849
            Strategy 683
Puzzle 580
            Name: Genre, dtype: int64
In [98]:
            plt.figure(figsize=(13,10))
            sns.heatmap(data.corr(), cmap = "Oranges", annot=True, linewidth=3)
Out[98]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8f952c7190>
```


Из матрицы корреляции видно, что наиболее сильно коррелируют показателипродаж Северной Америки и Европы

```
In [99]: plt.figure(figsize=(15, 10))
    sns.countplot(x="Genre", data=data, order = data['Genre'].value_counts()
    plt.xticks(rotation=90)
(array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11]),
```

Out[99]: (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]), <a list of 12 Text major ticklabel objects>)

Из гистограммы видно, что больше всего игр в жанре "Action", меньше игра в жанре "Sports" и т.д.

Out[100...

	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
Year_of_Release					
1980.0	10.59	0.67	0.00	0.12	11.38
1981.0	33.40	1.96	0.00	0.32	35.77
1982.0	26.92	1.65	0.00	0.31	28.86
1983.0	7.76	0.80	8.10	0.14	16.79
1984.0	33.28	2.10	14.27	0.70	50.36
1985.0	33.73	4.74	14.56	0.92	53.94
1986.0	12.50	2.84	19.81	1.93	37.07
1987.0	8.46	1.41	11.63	0.20	21.74
1988.0	23.87	6.59	15.76	0.99	47.22
1989.0	45.15	8.44	18.36	1.50	73.45
1990.0	25.46	7.63	14.88	1.40	49.39
1991.0	12.76	3.95	14.78	0.74	32.23
1992.0	33.89	11.71	28.91	1.65	76.17
1993.0	16.90	5.18	25.36	0.97	48.40
1994.0	28.16	14.88	33.99	2.20	79.18
1995.0	24.83	14.90	45.75	2.64	88.11

1996.0	86.76	47.26	57.44	7.69	199.15
1997.0	94.75	48.32	48.87	9.13	200.98
1998.0	128.36	66.90	50.04	11.01	256.45
1999.0	126.06	62.67	52.34	10.04	251.25
2000.0	94.50	52.77	42.77	11.62	201.58
2001.0	173.98	94.89	39.86	22.73	331.47
2002.0	216.19	109.75	41.76	27.27	395.51
2003.0	193.61	103.81	34.20	25.92	357.80
2004.0	222.51	107.28	41.65	47.24	419.05
2005.0	242.15	121.11	54.27	40.29	458.31
2006.0	262.13	127.89	73.74	53.95	518.22
2007.0	309.89	157.82	60.29	76.75	605.37
2008.0	348.69	181.14	60.25	81.42	671.79
2009.0	335.55	187.94	61.89	73.44	658.88
2010.0	300.65	171.42	59.49	58.57	590.59
2011.0	238.79	162.97	53.07	52.75	507.79
2012.0	153.26	114.59	51.80	36.19	355.84
2013.0	153.65	121.55	47.69	38.35	361.24
2014.0	132.27	122.74	39.69	36.83	331.51
2015.0	106.86	96.72	34.09	30.31	268.05
2016.0	44.93	51.22	19.31	14.48	130.10
2017.0	0.00	0.00	0.06	0.00	0.06
2020.0	0.27	0.00	0.00	0.02	0.29

```
In [101...
    data_by_year=data_by_year.apply(lambda x : x.astype("int"))
    data_by_year.plot.line(figsize=(10,10), grid="on");
    plt.ylabel("Millions_of_dollars");
```


Разбив игры по продажам в разные года по разным регионам, можно заметить, чтонаибольшие продажи игр по всему миру пришли на 2009 год. При этом, среди регионов больше всего игр было продано в Северной Америке, а меньше всего в Японии

```
In [102...
    data = pd.DataFrame([data['EU_Sales'], data['JP_Sales'], data['NA_Sales']
    regions = ['Europe', 'Japan', 'North America', 'Other']
    q = data.quantile(0.90)
    data = data[data < q]
    plt.figure(figsize=(12,8))

    colors = sns.color_palette("Set1", len(data))
    ax = sns.boxplot(data=data, orient='h', palette=colors)
    ax.set_xlabel(xlabel='Revenue per Game in Millions of Dollars', fontsize
    ax.set_ylabel(ylabel='Region', fontsize=16)
    ax.set_title(label='Distribution of Sales Per Game in Millions of Dollar
    ax.set_yticklabels(labels=regions, fontsize=14)
    plt.show()</pre>
```


Из диаграммы "Ящик с усами" видно, что Северная Америка лидирует по продажамигр как в размахе, так и по медианному значению

```
In [103...
    top_sale_reg = data[['NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales']]
    top_sale_reg = top_sale_reg.sum().reset_index()
    top_sale_reg = top_sale_reg.rename(columns={"index": "Region", 0: "Sales top_sale_reg
```

```
        Out[103...
        Region
        Sales

        0
        NA_Sales
        1674.46

        1
        EU_Sales
        744.53

        2
        JP_Sales
        242.07

        3
        Other_Sales
        227.81
```

```
In [104...
          labels = top sale reg['Region']
          sizes = top_sale_reg['Sales']
In [105...
          plt.figure(figsize=(10, 8))
          plt.pie(sizes, labels=labels, autopct='%1.1f%%', wedgeprops=dict(width=0
          ([<matplotlib.patches.Wedge at 0x7f8f9382a7d0>,
Out[105...
           <matplotlib.patches.Wedge at 0x7f8f937b3190>,
           <matplotlib.patches.Wedge at 0x7f8f937b3d10>,
           <matplotlib.patches.Wedge at 0x7f8f937ba850>],
           [Text(0.2723019312452782, -1.0657634156979174, 'NA Sales'),
           Text(0.2836793891660941, 1.062791609000726, 'EU_Sales'),
           Text(-0.7982850337767683, 0.7567965412500403, 'JP Sales'),
           Text(-1.0664161445551974, 0.2697343260173396,
                                                           'Other_Sales')],
           [Text(0.14852832613378808, -0.5813254994715913, '58.0%'),
           Text(0.15473421227241493, 0.5797045140003959, '25.8%'),
           Text(-0.4354282002418736, 0.4127981134091128, '8.4%'),
           Text(-0.581681533393744, 0.14712781419127613,
                                                           '7.9%')])
```


Из кольцевой диаграммы также видно, что Северная Америка имеет наибольшуюдолю продаж во всем мире
На основании проведенного анализа можно сделать следующий вывод:

- Наиболее популярным жанром игр во всем мире является "Action";Самую большую долю продаж в мире
- имеет Северная Америка;
- В 2009 году произошел скачок продаж видеоигр по всему миру, кроме Японии.