$S = \iiint (\frac{1}{6} (6 \mathcal{R}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 6 f^{\alpha\beta} \tau (\Delta + \mathcal{K})_{\alpha\beta} + 8 r_{2} \partial_{\beta} \mathcal{R}_{\alpha i \theta} \partial^{\theta} \mathcal{R}^{\alpha\beta i} - 4 r_{2} \partial_{\beta} \mathcal{R}_{\alpha \theta i} \partial^{\theta} \mathcal{R}^{\alpha\beta i} + 4 r_{2} \partial_{\beta} \mathcal{R}_{i \theta \alpha} \partial^{\theta} \mathcal{R}^{\alpha\beta i} - 2 r_{2} \partial_{i} \mathcal{R}_{\alpha \beta \theta} \partial^{\theta} \mathcal{R}^{\alpha\beta i} + 2 r_{2} \partial_{\beta} \mathcal{R}_{\alpha i \theta} \partial^{\theta} \mathcal{R}^{\alpha\beta i} + 4 r_{2} \partial_{\beta} \mathcal{R}_{i \theta \alpha} \partial^{\theta} \mathcal{R}^{\alpha\beta i} - 2 r_{2} \partial_{i} \mathcal{R}_{\alpha \beta \theta} \partial^{\theta} \mathcal{R}^{\alpha\beta i} + 2 r_{2} \partial_{\theta} \mathcal{R}_{\alpha i \beta} \partial^{\theta} \mathcal{R}^{\alpha\beta i} + 6 r_{2} \partial_{i} \mathcal{R}_{i \beta} \partial^{\theta} \mathcal{R}^{\alpha i} - 6 r_{2} \partial_{\theta} \mathcal{R}_{i \beta} \partial^{\theta} \mathcal{R}^{\alpha i} - 4 r_{2} \partial_{\alpha} f_{i \theta} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} \partial^{\theta} f^{\alpha i} - 4 r_{2} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} \partial^{\theta} f^{$

Wave operator

Saturated propagator

Source constraint.

Spin-parity form	Covariant form	Multiplicities
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
$0^+\sigma^{\parallel}==0$	$\partial_{\beta}\sigma_{\alpha}^{\alpha\beta} = 0$	1
$1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
$1 \cdot \tau^{\parallel \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
1-σ ¹ == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}==0$	3
$\bar{l} k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} =$	$= 0 \left[\partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\alpha \beta} + 2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\chi \alpha \beta} \right] = 0$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$2 \sigma^{\parallel \alpha \beta \chi} == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta \alpha \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} +$	5
	$4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\alpha}\sigma^{\delta}_{\delta} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\beta\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\alpha}_{\delta} = 0$	
	$3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\alpha\beta\delta} + 2\partial_{\epsilon}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^$	
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta}_{\delta}{}^{\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\beta}_{\delta}$	
$2^+_{1} \tau^{\parallel^{\alpha\beta}} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}_{\chi}$	
$2^+_{\sigma^{\parallel}}^{\alpha\beta} == 0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\sigma^{\chi}_{\chi}^{\delta} = 2\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{\chi}_{\chi}^{\delta} + 3(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi})$	5

30

Massive spectrum

Total expected gauge generators:

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot}^{2}} > 0$
Square mass:	$\frac{t}{r} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 && t. > 0