forming a plasma in the vacuum chamber in a region above the substrate by means of an electrical power source from a reaction gas comprising a mixture of tetraethylorthosilicate and a fluorine-containing halocarbon gas selected from the group consisting of $[CX_4]$ CY_4 and CX_3 - $(CX_2)_n$ - CX_3 wherein X is hydrogen or halogen and n is an integer from 0 to 5 with the proviso that at least one X is fluorine and wherein Y is hydrogen or halogen and at least one Y is hydrogen and at least one Y is fluorine; and

subjecting the substrate to the plasma so as to deposit a layer of silicon oxide containing at least about 2.5 atomic percent of fluorine onto the substrate without the formation of voids in the film.

- 2. The method of claim 1 wherein the plasma is created from the tetraethylorthosilicate and C_2F_6 .
- 3. The method of claim 1 wherein the plasma is created by means of two power sources having different frequencies.
- 4. The method of claim 3 wherein the plasma is created by means of one power source having a frequency of about 13.56 MHz and a second power source having a frequency of between 50 KHz and 1000 KHz.
- 5. The method of claim 4 wherein the second power source has a frequency of about 400 KHz.
- 6. The method of claim 1 wherein a single power source having a frequency of about 13.56 MHz is used.
- 7. The method of claim 1 wherein said power source is a source of microwave power.
- 8. A method of forming a conformal thin film of silicon oxide over a substrate having spaced conductive lines thereon in a plasma chamber comprising mounting a substrate in said chamber;

introducing into the chamber in a region above said substrate as a plasma precursor gas vaporized tetraethylorthosilicate in a carrier gas including oxygen and a fluorocarbon selected from the group consisting of

 $[CX_4] \underline{CY_4}$ and CX_3 - $(CX_2)_n$ - CX_3

KATSUYUKI MUSAKA et al. Application No.: 09/187,551

Page 3

wherein X is hydrogen or fluorine and n is an integer from 0 to 5 with the proviso that at least one X is fluorine and wherein Y is hydrogen or halogen and at least one Y is hydrogen and at least one Y is fluorine;

and thereafter forming a plasma therefrom, so as to deposit a layer of silicon oxide containing at least about 2.5 atomic percent of fluorine over said conductive lines.

- 9. A method according to claim 8 wherein the plasma precursor gas contains a ratio of silicon:fluorine of about 14:1.
- 10. A method according to claim 8 wherein the conductive lines are less than 1 micron in width and no more than 1 micron apart.
 - 11.-26. PREVIOUSLY CANCELED

27. A method of forming a layer of silicon oxide over a substrate having spaced conductive lines thereon in a process chamber, the method comprising:

introducing a selected process gas comprising tetraethylorthosilicate and oxygen into the process chamber;

adding a flow of a halogen source to the selected process gas at a flow rate previously determined to achieve a desired stress in the layer from a plasma enhanced reaction of the selected process gas and the flow of the halogen source at the flow rate, the desired stress in the layer being a tensile stress instead of a compressive stress in another layer formed from another plasma enhanced reaction of the selected process gas without the flow of the halogen source; and

forming the layer from the plasma enhanced reaction of the selected process gas and the flow of the halogen source at the flow rate.

- 28. The method of claim 27 wherein the halogen source comprises a fluorine source.
- 29. The method of claim 28 wherein the fluorine source is selected from the group consisting of CF₄ and C₂F₆.
 - 30. CANCELED
- 31. The method of claim 27 wherein the desired tensile stress is less than about 0.4X10⁹ dynes/cm² in magnitude.
 - 32. The method of claim 31 wherein the fluorine source comprises C_2F_6 .

Silv

B

Pa