Inductive Framework for Multi-Aspect Streaming Tensor Completion with Side Information

Madhav Nimishakavi¹ Bamdev Mishra² Manish Gupta²
Partha Talukdar¹

¹Indian Institute of Science

²Microsoft

Outline

Introduction

2 Preliminaries

3 Side Information infused Incremental Tensor Analysis (SIITA)

4 Results

Introduction

• A **Tensor** is a multi-way extension of a matrix.

• Tensors are used for representing multidimensional data.

- In practice, many multidimensional datasets are often incomplete.
- **Tensor Completion** is the task of predicting or imputing missing values in a partially observed tensor.

- However, in many real world applications the data is dynamic.
 Some examples include,
 - Online recommendation systems.
 - Social networks.
 - ...
- Dynamic Tensor Completion is the task of predicting missing values in a dynamically growing partially observed tensor.

 Most of the existing works make an assumption that the tensor grows only in one mode.

Figure : Streaming tensor sequence

This assumption is restrictive!

 Recently Song et al. [4] proposed the more general Multi-aspect streaming tensor completion.

Figure: Multi-aspect streaming tensor sequence

- Besides the tensor, additional side information data is also available in the form of matrices in many applications.
 - For example, movie × genre matrix for online movie recommendation etc.
- Incorporating the side information matrices into tensor completion can help achieve better results, particularly in sparse settings.

• We propose a framework to handle the following sequences.

(a) Streaming sequence with side information

(b) Multi-aspect streaming sequence with side information

Preliminaries

Definition (Multi-aspect streaming Tensor Sequence) [4]: A tensor sequence of N^{th} -order tensors $\{\mathcal{X}^{(t)}\}$ is called a multi-aspect streaming tensor sequence if for any $t \in \mathbb{Z}^+$, $\mathcal{X}^{(t-1)} \in \mathbb{R}^{l_1^{t-1} \times l_2^{t-1} \times \dots \times l_N^{t-1}}$ is the sub-tensor of $\mathcal{X}^{(t)} \in \mathbb{R}^{l_1^{t} \times l_2^{t} \times \dots \times l_N^{t}}$, i.e.,

$$\mathcal{X}^{(t-1)} \subseteq \mathcal{X}^{(t)}$$
, where $I_i^{t-1} \leq I_i^t$, $\forall 1 \leq i \leq N$.

Here, t increases with time, and $\mathcal{X}^{(t)}$ is the snapshot tensor of this sequence at time t.

Preliminaries (cont.)

Definition (Multi-aspect streaming Tensor Sequence with Side Information): Given a time instance t, let $\mathbf{A}_i^{(t)} \in \mathbb{R}^{I_i^t \times M_i}$ be a side information (SI) matrix corresponding to the i^{th} mode of $\mathcal{X}^{(t)}$, we have,

$$\mathbf{A}_{i}^{(t)} = \begin{bmatrix} \mathbf{A}_{i}^{(t-1)} \\ \Delta_{i}^{(t)} \end{bmatrix}, \text{ where } \Delta_{i}^{(t)} \in \mathbb{R}^{[I_{i}^{(t)} - I_{i}^{(t-1)}] \times M_{i}}.$$

let the side information set $\mathcal{A}^{(t)} = \{\mathbf{A}_1^{(t)}, \dots, \mathbf{A}_N^{(t)}\}$. Given an N^{th} -order multi-aspect streaming tensor sequence $\{\mathcal{X}^{(t)}\}$, we define a multi-aspect streaming tensor sequence with side information as $\{(\mathcal{X}^{(t)}, \mathcal{A}^{(t)})\}$.

Preliminaries (cont.)

Problem Definition: Given a multi-aspect streaming tensor sequence with side information $\{(\mathcal{X}^{(t)}, \mathcal{A}^{(t)})\}$, the goal is to predict the missing values in $\mathcal{X}^{(t)}$ by utilizing only entries in the relative complement $\mathcal{X}^{(t)} \setminus \mathcal{X}^{(t-1)}$ and the available side information $\mathcal{A}^{(t)}$.

SIITA

 We propose Side Information infused Incremental Tensor Analysis (SIITA).

Property	TeCPSGD[3]	OLSTEC[2]	MAST[4]	AirCP[1]	SIITA
Streaming Multi-Aspect Streaming Side Information Sparse Solution	✓	✓	√	√	√ √ √

Table: Summary of different tensor streaming algorithms.

$$\min_{\substack{\mathcal{G} \in \mathbb{R}^{r_1 \times \dots \times r_N} \\ \mathbf{U}_i \in \mathbb{R}^{M_i \times r_i}, i=1:N}} F(\mathcal{X}^{(t)}, \mathcal{A}^{(t)}, \mathcal{G}, \{\mathbf{U}_i\}_{i=1:N}), \tag{1}$$

where

$$F(\mathcal{X}^{(t)}, \mathcal{A}^{(t)}, \mathcal{G}, \{\mathbf{U}_n\}_{i=1:N}) =$$

$$\stackrel{\text{observed tensor at t}}{=} P_{\Omega}(\mathcal{X}^{(t)}) - P_{\Omega}(\mathcal{G} \times_{1} \mathbf{A}_{1}^{(t)} \mathbf{U}_{1} \times_{2} \dots \times_{N} \mathbf{A}_{N}^{(t)} \mathbf{U}_{N}) \Big\|_{F}^{2}$$

$$+ \lambda_{g} \|\mathcal{G}\|_{F}^{2} + \sum_{i=1}^{N} \lambda_{i} \|\mathbf{U}_{i}\|_{F}^{2}. \quad (2)$$

Since
$$\{(\boldsymbol{\mathcal{X}}^{(t-1)}, \boldsymbol{\mathcal{A}}^{(t-1)})\}\subseteq \{(\boldsymbol{\mathcal{X}}^{(t)}, \boldsymbol{\mathcal{A}}^{(t)})\}$$
, we have
$$F(\boldsymbol{\mathcal{X}}^{(t)}, \boldsymbol{\mathcal{A}}^{(t)}, \boldsymbol{\mathcal{G}}^{(t-1)}, \{\boldsymbol{\mathsf{U}}_{i}^{(t-1)}\}_{i=1:N}) = \underbrace{F(\boldsymbol{\mathcal{X}}^{(t-1)}, \boldsymbol{\mathcal{A}}^{(t-1)}, \boldsymbol{\mathcal{G}}^{(t-1)}, \{\boldsymbol{\mathsf{U}}_{i}^{(t-1)}\}_{i=1:N})}_{\text{formal term between } t \text{ and } t-1} + \underbrace{F(\boldsymbol{\mathcal{X}}^{(\Delta t)}, \boldsymbol{\mathcal{A}}^{(\Delta t)}, \boldsymbol{\mathcal{G}}^{(t-1)}, \{\boldsymbol{\mathsf{U}}_{i}^{(t-1)}\}_{i=1:N})}_{\text{delta term between } t \text{ and } t-1}$$
 (3)

We propose the following incremental update scheme,

$$\left\{ \begin{array}{l} \mathbf{U}_{i}^{(t)} = \mathbf{U}_{i}^{(t-1)} - \gamma \frac{\partial \mathcal{F}^{(\Delta t)}}{\partial \mathbf{U}^{(t-1)}}, i = 1:N \\ \mathcal{G}^{(t)} = \mathcal{G}^{(t-1)} - \gamma \frac{\partial \mathcal{F}^{(\Delta t)}}{\partial \mathcal{G}^{(t-1)}}, \end{array} \right\} \text{ SGD style updates}$$

where γ is the step size for the gradients. $\mathcal{R}^{(\Delta t)}$, needed for computing the gradients of $F^{(\Delta t)}$, is given by

$$\mathcal{R}^{(\Delta t)} = \mathcal{X}^{(\Delta t)} - \mathcal{G}^{(t-1)} \times_1 \mathbf{A}_1^{(\Delta t)} \mathbf{U}_1^{(t-1)} \times_2 \dots \times_N \mathbf{A}_N^{(\Delta t)} \mathbf{U}_N^{(t-1)}.$$
(4)

Algorithm 1: Proposed SIITA Algorithm

```
Input : \{X^{(t)}, A^{(t)}\}, \lambda_i, i = 1 : N, (r_1, \dots, r_N)
Randomly initialize \mathbf{U}_{:}^{(0)} \in \mathbb{R}^{M_i \times r_i}, i = 1: N and \mathbf{G}^{(0)} \in \mathbb{R}^{r_i \times \cdots \times r_N};
            \mathbf{U}_{i}^{(t)_{0}} := \mathbf{U}_{i}^{(t-1)}, i = 1 : N;
            G^{(t)_0} := G^{(t-1)}:
            for k = 1:K do
                          {Inner iterations}
                          Compute \mathcal{R}^{(\Delta t)} from (4) using \mathbf{U}_{i}^{(t)}, i=1:N and \boldsymbol{\mathcal{G}}^{(t)}, i=1:N and \boldsymbol{\mathcal{G}}^{(t)}
                         Compute \frac{\partial F^{(\Delta t)}}{\partial \mathbf{U}^{(t)} k - 1} for i = 1 : N;
                         \text{Update } \mathbf{U}_i^{(t)_k} \text{ using } \frac{\partial F^{(\Delta t)}}{\partial \mathbf{U}_:^{(t)_k-1}} \text{ and } \mathbf{U}_i^{(t)_k-1} \text{ ; } \{\text{Updating Factor Matrices}\}
                         Compute \frac{\partial F(\Delta t)}{\partial \sigma(t)t};
                         Update \mathcal{G}^{(t)k} using \mathcal{G}^{(t)k-1} and \frac{\partial F^{(\Delta t)}}{\partial \mathcal{F}^{(t)k-1}}; {Updating Core Tensor}
            \mathbf{U}_{:}^{(t)}\coloneqq\mathbf{U}_{:}^{(t)_{K}};\qquad \boldsymbol{\mathcal{G}}^{(t)}\coloneqq\boldsymbol{\mathcal{G}}^{(t)_{K}};
end
Return: U_{:}^{(t)}, i = 1 : N, \mathcal{G}^{(t)}.
```

Madhay Nimishakayi

Results

	MovieLens 100K	YELP		
Modes	user \times movie \times week	$user \times business \times year\text{-month}$		
Tensor Size	943×1682×31	1000×992×93		
Starting size	19×34×2	20×20×2		
Increment step	19, 34, 1	20, 20, 2		
Sideinfo matrix	1682 (movie) $ imes$ 19 (genre)	992 (business) $ imes$ 56 (city)		

Table: Summary of datasets used in the paper.

Multi-Aspect Streaming Setting

Figure : Evolution of Test RMSE (lower is better) of MAST and SIITA with each time step.

Multi-Aspect Streaming Setting (cont.)

Figure : Runtime comparison between MAST and SIITA at every time step.

Streaming Setting

Figure : Evolution of Test RMSE (lower is better) of TeCPSGD, OLSTEC and SIITA with each time step.

Streaming Setting (cont.)

Figure: Runtime comparison between TeCPSGD, OLSTEC and SIITA.

Static Setting

Dataset	Missing%	Rank	AirCP	SIITA
MovieLens 100K	20%	3	3.351	1.534
		5	3.687	1.678
		10	3.797	2.791
	50%	3	3.303	1.580
		5	3.711	1.585
		10	3.894	2.449
	80%	3	3.883	1.554
		5	3.997	1.654
		10	3.791	3.979

Table: Mean Test RMSE (lower is better) across multiple train-test splits in the Batch setting.

Static Setting (cont.)

Dataset	Missing%	Rank	AirCP	SIITA
YELP	20%	3	1.094	1.052
		5	1.086	1.056
		10	1.077	1.181
	50%	3	1.096	1.097
		5	1.095	1.059
		10	1.719	1.599
	80%	3	1.219	1.199
		5	1.118	1.156
		10	2.210	2.153

Table: Mean Test RMSE (lower is better) across multiple train-test splits in the Batch setting.

Nonnegative Setting

- Incorporating Nonnegative constraints into SIITA (NN-SIITA) is useful for unsupervised setting.
- Metrics for evaluating the clusters mined by NN-SIITA
 - Let w_p items of top w items in a cluster belong to the same category, then

For a cluster
$$p$$
, **Purity** $(p) = w_p/w$,

average-Purity =
$$\frac{1}{r_i} \sum_{p=1}^{r_i} Purity(p)$$
,

where r_i is the number of clusters along mode-i.

Nonnegative Setting (cont.)

Figure : Average Purity (higher is better) of clusters learned by NN-SIITA and NN-SIITA (w/o SI) at every time step in the unsupervised setting.

Nonnegative Setting (cont.)

Figure : Evolution of mean average purity (higher is better) with w for NN-SIITA and NN-SIITA (w/o SI) for both MovieLens 100K and YELP datasets.

Takeaways

- SIITA is the first ever algorithm that incorporates side information into dynamic tensor completion.
- SIITA can handle the more general Multi-aspect streaming setting.
- NN-SIITA is the first ever algorithm that incorporates
 Nonnegative constraints into dynamic tensor analysis.

Codes available at https://madhavcsa.github.io

Introduction
Preliminarios
Side Information infused Incremental Tensor Analysis (SIITA)
Results

Thank You!

Bibliography

- H. Ge, J. Caverlee, N. Zhang, and A. Squicciarini. Uncovering the spatio-temporal dynamics of memes in the presence of incomplete information. CIKM, 2016.
- [2] H. Kasai. Online low-rank tensor subspace tracking from incomplete data by cp decomposition using recursive least squares. In ICASSP, 2016.
- [3] M. Mardani, G. Mateos, and G. B. Giannakis. Subspace learning and imputation for streaming big data matrices and tensors.

IEEE Transactions on Signal Processing, 2015.

Bibliography (cont.)

[4] Q. Song, X. Huang, H. Ge, J. Caverlee, and X. Hu. Multi-aspect streaming tensor completion. In KDD, 2017.