Simulating Branching Processes in Python

1. Probability Distributions

```
1.1 Use np.random
```

1.2 Use sns.displot to display the distribution

- 2. Simulating discrete-time branching processes
 - 2.1 Simulate the process
 - 2.2 Graph the process
 - 2.3 Obtain the mean
- 3. Calculate the extinction probability with simulations
- 4. Calculate the extinction probability with numerical methods
 - 4.1 Graph q = f(q)
 - 4.2 Newton-Raphson method
 - 4.2 Solve q=f(q) with fsolve

1. Probability Distributions

$$p_n = \mathbb{P}(Z_{i,t} = n) \qquad n = 0, 1, 2, \dots$$

 p_n is the probability that case i infects n individuals in generation t

Z is the number of secondary cases – $Z_{i,t}$ number of people infected by individual i in generation t

As an example we will use the **Poisson distribution**, which is a discrete probability distribution

$$Z \sim Poisson(\lambda)$$

$$\mathbb{P}(Z_{i,t=n}) = rac{e^{-\lambda}\lambda^n}{n!}$$

Mean = λ

[2 1 1]

Variance = λ

Therefore, for our model $\lambda=R_0$

Probability distributions can be used via np.random

To generate random numbers that follow a poisson distribution, we can use:

np.random.poisson(lam,size)

lam is in our case R_0

size is the amount of random numbers generated

The output is an array with the numbers generated

```
In [1]: #Import numpy
import numpy as np
#Generate random numbers Poisson distribution
print(np.random.poisson(1.5,1))
print(np.random.poisson(1.5,3))
[0]
```

Every time we run the code, we get different random numbers

To visualize the output of random number generators, we will use the library sns.displot

```
In [2]: #Import matplolib
import matplotlib.pyplot as plt
#Import seaborn
import seaborn as sns
```

```
In [3]: #Generate random numbers Poisson distribution
Ro = 1.5
size = 1000
random_numbers = np.random.poisson(Ro,size)

#Display numbers
sns.displot(random_numbers)
#sns.displot(random_numbers, kind = "kde")

#Aesthetics of the graph
plt.xlabel("Number of secondary cases ($Z$)")
plt.title("Distribution of secondary cases (Poisson)")
plt.show()
```


2. Simulating discrete-time branching processes

Figure 1

To computationally model this process we will use an array:

	X_0	X_1	X_2	X_3	X_4
Simulation 1					
Simulation 2					
Simulation 3					
• • •			• • •		
Simulation 100					

```
Figure 2
        #Initial parameters
In [4]:
         number_simulations = 100
         number_generations = 5
         R0 = 1.5
         #Initialize information array
         array_info = np.zeros((number_simulations, number_generations))
         #Verify the shape of the array
         # output --> (rows,columns)
         print(np.shape(array_info))
        (100, 5)
In [5]:
        #Fill the array
         #Loop that goes over each simulation
         for i in range(number_simulations):
             \#X_0 = 1 for all simulations
             number_info = 1
             array_info[i,0] = number_info
             #Loop that goes over each generation
             #Starts in 1, because X 0 is already filled
             for j in range(1,number_generations):
                 \#Z for every individual in X_t-1
                 number_secondary_cases = np.random.poisson(R0,number_info)
```

#Sum of secondary cases in t to obtain Xt
number_info = np.sum(number_secondary_cases)

#Fill the array element
array_info[i,j]=number_info

The amount of secondary cases caused by each individual (Z) is drawn from the same probability distribution, in this example we use the Poisson distribution

Figure 3

To calculate the mean of X_t for all generations, we will use <code>np.mean(array,axis)</code> array is the array for which we want to calculate the mean <code>axis=0</code> calculates the mean by columns <code>axis=1</code> calculates the mean by rows

```
In [7]: #Calculate the average
    mean_info = np.mean(array_info,axis=0)

#Plot results (X_t vs t)
#Plot every simulation
for i in range(number_simulations):
    plt.plot(range(number_generations),array_info[i,:],alpha=0.2)

#Plot mean
plt.plot(range(number_generations),mean_info,"r--")

#Aesthetics of the graphs
plt.title("$X_t$ vs t")
plt.xlabel("Generations (t)")
plt.ylabel("Number of cases in each generation ($X_t$)")
plt.xticks([0,1,2,3,4],["0","1","2","3","4"])
plt.show()
```


3. Calculate the extinction probability with simulations

We want to know how many of the total amount of simulations have no individuals infected in $t_{\it final}$, which in this case is t=4

```
#We use the information contained in the array
In [8]:
         #We check how many of the 100 simulations have X 4 = 0
         #Count how many simulations become extinct in t final
         Amount_simu_extincted = 0
         #Loop over each simulation
         for i in range(number_simulations):
             #Take info of last generation
             last_generation = array_info[i,-1]
             #Check if it is equal to zero
             if last generation == 0:
                 Amount simu extincted = Amount simu extincted + 1
         print(Amount_simu_extincted)
         #Probability of extinction
         prob_extinction = Amount_simu_extincted/number_simulations
         print(prob_extinction)
         #Probability of outbreak
         prob_outbreak = 1 - prob_extinction
         print(prob_outbreak)
```

53 0.53 0.47 For the case of $Z \sim Poisson(R_0)$, with $R_0 = 1.5$, the probability of extinction is q. Therefore, the probability of outbreak is 1 - q. For 100 simulations.

4. Calculate the extinction probability with numerical methods

To obtain the extinction probability q, we have to solve the equation q=f(q). f(s) is the probability generating function, which is specific to each probability distribution.

$$f(s) = \sum_{n=0}^{\infty} p_n s^n$$

It is not possible to find an analytical solution of q=f(q) for every distribution, therefore we need to use numerical methods

The first step to solve q = f(q) is to graph y = q and y = f(q). The point(s) where these graphs intersect each other will give us a first approximation of the solution(s) of q = f(q).

For example, for the case of the Poisson distribution (as it was calculated in the homework)

$$f(s) = e^{\lambda(s-1)}$$

Therefore,

$$q=f(q) o q=e^{\lambda(q-1)}$$

So we need to graph y=q and $y=e^{\lambda(q-1)}$

```
In [9]:
         #Define functions
         \#y=q
         def func1(x):
             ans = x
             return ans
         \#y=f(q)
         def func2(Ro,x):
             ans = np \cdot exp(Ro*(x-1))
             return ans
         #Define function parameters
         #q range (0,1) because q is a prob.extinction
         q=np.linspace(0,1)
         #Ro
         Ro=1.5
         #Graph functions
         plt.plot(q,func1(q))
         plt.plot(q,func2(Ro,q),color="orange")
```


At first glance, we can see that there are 2 solutions $q\sim 1$ and $q\sim 0.4$

To have more accurate solutions q=f(q), we will use fsolve from scipy optimize. This function is based on the Newton-Raphson method.

Newton-Raphson Method

Root-finding algorithm which produces successively better approximations to the roots (or zeroes) f(x)=0 of a function y=f(x).

Steps:

- 1. Start with an initial guess x_1 which is reasonably close to the root.
- 2. Take the tangent line to y = f(x) at x_1 .
- 3. Given that the slope of the tangent line is $m=f'(x_1)$, we can use the **formula of the tangent line** to calcuate the x-intercept of the tangent line i.e. x_2 . x_2 is a better approximation to the root than x_1 . (See Figure 4)
- 4. Use x_2 to perform steps 2 and 3.
- 5. Repeat steps 2,3 and 4 repeatedly to obtain an accurate approximation to the root. (See Figure 5)

Formula of the tangent line

We can write the equation of the tangent line, given that we have two points in the line (x_a,y_a) and (x_b,y_b)

$$m=f'(x_a)=rac{\Delta Y}{\Delta X}=rac{y_b-y_a}{x_b-x_a}$$

In this case, we have $(x_b,y_b)=(x_2,0)$ and $(x_a,y_a)=(x_1,f(x_1))$. Therefore,

$$m = f'(x_1) = rac{\Delta Y}{\Delta X} = rac{0 - f(x_1)}{x_2 - x_1}$$

$$f'(x_1) = \frac{-f(x_1)}{x_2 - x_1}$$

Calculation x_2

$$x_2=x_1-rac{f(x_1)}{f'(x_1)}$$

Generalization | Newton-Raphson method

$$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$$

Figure 4

Figure

5

Solve q=f(q)

To solve q=f(q) we will find the roots of 0=f(q)-q.

For this we will use fsolve from scipy.optimize, such that fsolve(func,x1)

func in our case is f(q)-q

x1 is the initial guess of the root (obtained from the graphs)

The output is the solution of solving f(q)=q for q. This is the probability of extinction q.

```
In [10]:
         from scipy.optimize import fsolve
          #define the function f(q)-q
          def func3(x):
             Ro=1.5
             ans1 = x
             ans2 = np.exp(Ro*(x-1))
             ans = ans2-ans1
             return ans
          #Initial guess obtained from the graph
          #Use fsolve to obtain the solution
          solution = fsolve(func3,x1)
          print(solution)
          #Initial guess obtained from the graph
          x1=1
          #Use fsolve to obtain the solution
          solution = fsolve(func3,x1)
          print(solution)
```

```
[0.41718836]
[1.]
```

The extinction probability is q=0.41718836 o 41.7% and q=1 for a Poisson distribution and $R_0=1.5$