信息论第六次小测解答

中国科学技术大学《信息论 A》006125.01 班助教组 2024 年 5 月 10 日

第1题

Calculate $C(\Gamma)$ for:

解:

$$C(\Gamma) = \max_{P_X} I(X;Y), \tag{1}$$

s.t.
$$\mathbf{E}[c(X)] \le \Gamma$$
. (2)

对于这样的问题,我们需要先确定 Γ_{\min} 和 Γ_{\max} ,因为对于所有的 $\Gamma < \Gamma_{\min}$,容量代价函数的优化问题无可行解,视 $C(\Gamma) = 0$;而对于任意 $\Gamma > \Gamma_{\max}$,我们可以在约束 Γ_{\max} 下取到 $C(\Gamma)$ 的极值,这也便意味着 $C(\Gamma) = C(\infty)$,等价于无约束;对于任意的 $\Gamma_{\min} \leq \Gamma \leq \Gamma_{\max}$,容量代价函数的优化问题中的" \leq "可以变为"=" (Corollary 6.1).

 Γ_{\min} :

$$\mathbf{E}[c(X)] = \sum_{x \in \mathcal{X}} p(x)c(x) \ge \Gamma_{\min} := \min_{x \in \mathcal{X}} c(x),$$

 Γ_{max} : 当我们在无约束下求解 $\max_{P_X} I(X;Y)$ 得到一组 \mathcal{P}^* , 从中取得 $p^*(X)$ 使得 $\mathbf{E}[c(X)]$ 最小, 此时便有:

$$\Gamma = \sum p^*(x)c(x) := \Gamma_{\max} \le \max_{x \in \mathcal{X}} c(x).$$

(1)

只需 $P_X(0)=0$,即可得到 $\Gamma_{\min}=0$. 下面求 Γ_{\max} ,观察信道发现,X=1 和 X=2 具有非常特殊的对称性,因此我们猜测当 I(X;Y) 最大时, $P_X(1)=P_X(2)$,下面我们给出对称性假设的证明:

构建分布 $P_1: P_X(0) = 1 - a - b, P_X(1) = a, P_X(2) = b$ 和分布 $P_2: P_X(0) = 1 - a - b, P_X(1) = b, P_X(2) = a$,其中 $a \neq b$. 令分布 $P' = (P_1 + P_2)/2$,则:

$$\mathbf{E}[c(X)]_{P_1} = \mathbf{E}[c(X)]_{P_2} = \mathbf{E}[c(X)]_{P'},$$

$$I(X;Y)_{P_1} = I(X;Y)_{P_2}.$$

由 I(X;Y) 关于 P_X 是 concave 得:

$$0.5I(X;Y)_{P_1} + 0.5I(X;Y)_{P_2} = I(X;Y)_{P_3} = I(X;Y)_{P_2} \le I(X;Y)_{P_2}$$

故当 I(X;Y) 最大时, $P_X(1) = P_X(2)$.

根据对称性,设 $P_X(1) = P_X(2) = \epsilon$,则 $\mathbf{E}[c(X)] = 1 - 2\epsilon$,

$$I(X;Y) = H(Y) - H(Y|X) = 2\epsilon \ln \frac{1}{\epsilon} + (1 - 2\epsilon) \ln \frac{1}{1 - 2\epsilon} - 2\epsilon h_2(\delta), \tag{3}$$

对 ϵ 求导得到 I(X;Y) 取极值时:

$$\epsilon^* = \frac{1}{2 + e^{h_2(\delta)}},$$

则:

$$\Gamma_{\text{max}} = 1 - 2\epsilon^* = \frac{e^{h_2(\delta)}}{2 + e^{h_2(\delta)}},$$

$$C(\Gamma_{\max}) = \frac{2}{2 + e^{h_2(\delta)}} \ln(2 + e^{h_2(\delta)}) + \frac{e^{h_2(\delta)}}{2 + e^{h_2(\delta)}} \ln(1 + \frac{2}{e^{h_2(\delta)}}) - \frac{2}{2 + e^{h_2(\delta)}} h_2(\delta).$$

对于 $\Gamma_{\min} \leq \Gamma \leq \Gamma_{\max}$,优化问题 (1)、(2) 中 " \leq " 可以变为 "=",则 $\mathbf{E}[c(X)] = 1 - 2\epsilon = \Gamma$,将 $\epsilon = \frac{1-\Gamma}{2}$ 代入 (3) 即可,故:

$$C(\Gamma) = \begin{cases} (1 - \Gamma) \ln \frac{2}{1 - \Gamma} + \Gamma \ln \frac{1}{\Gamma} - (1 - \Gamma) h_2(\delta), & 0 \le \Gamma \le \frac{e^{h_2(\delta)}}{2 + e^{h_2(\delta)}} \\ \frac{2}{2 + e^{h_2(\delta)}} \ln (2 + e^{h_2(\delta)}) + \frac{e^{h_2(\delta)}}{2 + e^{h_2(\delta)}} \ln (1 + \frac{2}{e^{h_2(\delta)}}) - \frac{2}{2 + e^{h_2(\delta)}} h_2(\delta), & \Gamma > \frac{e^{h_2(\delta)}}{2 + e^{h_2(\delta)}} \end{cases}$$
(均以 e 为底)

1

3

(2)

只需 $P_X(0) = 1$,即可得到 $\Gamma_{\min} = 0$. 设 $P_X(0) = \epsilon$,则 $\mathbf{E}[c(X)] = 1 - \epsilon$,

$$I(X;Y) = H(X) - H(X|Y) = (1 - \delta)h_2(\epsilon),$$
 (4)

对 ϵ 求导得到 I(X;Y) 取极值时:

$$\epsilon^* = 0.5,$$

则:

$$\Gamma_{\rm max} = 0.5,$$

$$C(\Gamma_{\rm max}) = (1 - \delta)h_2(0.5).$$

对于 $\Gamma_{\min} \leq \Gamma \leq \Gamma_{\max}$,优化问题 (1)、(2) 中 " \leq " 可以变为 "=",则 $\mathbf{E}[c(X)] = 1 - \epsilon = \Gamma$,将 $\epsilon = 1 - \Gamma$ 代入 (4) 即可,故:

$$C(\Gamma) = \begin{cases} (1 - \delta)h_2(1 - \Gamma), & 0 \le \Gamma \le 0.5\\ (1 - \delta)h_2(0.5), & \Gamma > 0.5 \end{cases}$$