FOSTEX

Features

- The state-of-the-art hybrid material is offered to the diaphragm. Its ideal internal loss and stiffness bring the propagation velocity similar to the near-metal diaphragm.
- UDR tangential surround & spider are equipped to realize the less antiresonance and superior amplitude characteristic.
- Newly developed zinc die-cast frame based on the strength analysis by the fine-element method.
- Pure magnesium center cap is directly mounted onto the voice coil to make the diaphragm mechanical 2-way.
- The low strain magnetic circuit using the large alnico magnet brings the low distortion and rich midrange frequency reproduction.
- The normalizing processed pure iron pole piece is employed for highly transparent and natural sound reproduction in overall bandwidth.

Specifications

&

Thiele/Small Parameters

I IIIEIE/		ıaıı ı	ara			
Size	:	130	mm/	5.1	in	
Voice Coil Diameter						
	:	25	mm/	1	in	
Cast / Stamped	:	Cas	t			
Impedance	:	8	Ω			
Reproduction Frequency Response						
	: fs	s - 30	kHz			
Sound Pressure Level						
	:	91.5	5 dB/W	(m)		
Rated Input	:	25	W			
Music Power	:	75	W			
Magnet Material	:	Aln	ico			
Magnet Weight	:	1,490	g / 3	.28	lb	
Net Weight		2,860	g / 6.	305	lb	

a:	51.2 mm
D:	102.2 mm
Sd:	$0.0082\mathrm{m}^2$
Zn:	8Ω
Fs:	60 Hz
Re:	6.8Ω
Le:	0.0455 mH
Qms:	5.422
Qes:	0.28
Qts:	0.27
Mms:	5 g
BL:	6.5 Telsa/m
Vas:	14L
Xmax:	0.75 mm
Eff/η0:	0.92 %
Cms:	1.537 mm/N
EBP:	214.29

FE138ES-R

Frequency Response / Impedance

Dimensions & Mounting Information

Overall Diameter	:	154 mm/	6.0 in
Baffle Hole Diam	eter		
	:	123 mm/	4.8 in
Depth		105.2 mm /	4.1 in

■外形寸法

■バッフル加工穴

- ネジ位置を図化しています。
- ★鬼目ナットを使用する場合、 φ6mm (M4用) の穴を開け てください。

■規格

- *振動板の星形の形状に合わせて インピーダンス ····・・ 8 Ω 最低共振周波数 · · · · · 60Hz 再生周波数带域 · · · · · · · fo~30kHz 出力音圧レベル ······· 91.5dB/w(1m)
 - 入力 ······ 75W(Mus.) 5g
 - 実効振動半径(a) · · · · · · 5.12cm マグネット重量 ······· 1.490g
 - 総重量 ······ 2.860g
 - バッフル開口寸法 ······ ø 125mm

■構造図

■周波数特性

十注/如口到器网

板取図

組立手順

1.ヘッドの組立

23番の補強桟は裏板には接しない 構造により、板の響きによるピー クを抑制しています。底板の前後 に注意して組み立てましょう。

2.ネックの組立

ネック部分の組立では上下の面が すれないよう注意しましょう。

3.音道1の組立

ここでは18番の板が17番の板より飛び出ないように注意します。 段差がついて18番の板が飛び出たらカンナやヤスリで削りましょう。

4.音道ブロック1の組立

13番の板に取付位置を必ず鉛筆等 で印を付けてから (17/18) 番、 19番の板を接着します。

5.音道ブロック2の組立

14番の板に取付位置を必ず鉛筆等 で印を付けてから接着します。上 下の位置を必ず確かめて作業を進 めます。

6.音道ブロックの結合

4と5で作ったブロックを結合させます。 この時に側板16番、前板12番をハタ金やコーナークランプ等で借り止めしながら、ブロックを囲んで現物合わせで接着すると良いで 音道をふさがないように良く確認し

7.前・後・側板の接着

前板、後板、側板を接着します。接着剤をしっかり付けて空気漏れのないように注意しま

組立後隙間があればこの段階で、 接着削等を 隙間に塗り込んで空気漏れを防ぎます。

8.上下/ネックの接着

上下板を取り付けますが、この時点で段差が あればカンナやヤスリで十分に調整してから 接着します。ネック部分は先に接着してから 本体の接着をします。

5.最終組立

最後にヘッド部分を含めた残りの部材を接着 します。ヘット部分は接着後上から重量をかけて十分に圧着してください。 前面の22番はアクセントの要素で取り付けていますので、パランスよく位置を確認してから接着しましょう。

ターキーについて

スワンタイプのこのバックロードエンクロージャーは、長岡鉄男先生の代表作ともいえるでしょ う。点音源とバックロードを組み合わせたこの原案のなか、残念ながら長岡先生ご生前に13cmの ユニットが無かったためにFE138ES-R用のこのタイプの設計図は残されていません。

D101S(スワン) 発表後、すでに20年以上の経過を経おり、さまざまなバリエーションが生まれ、 同時にこの方式のメリット、設計ポイントも次第に明確になりつつあります。

これらの多くのバリエーションを基礎にスワン (10cm) レア (16cm) に変わる音場型バックロ ードの中核として、FE138ES-Rの駆動力にマッチした構造を具体化したものがこのターキーです。

■ターキー設計指標

fc=25Hz 音道=2.25m V=3.36リッター スロート:66cm² 開口:365cm²

板厚: 18mm 素材: シナ・アビトン積層合板 吸音材:カーボン・ウール等 (指定箇所に限る)

■ターキー無響室 (1m)特性

共鳴管タイプを作ろう

この共鳴管エンクロージャーは、長岡鉄男先生の方舟(試 聴室) でのメインスピーカーとなったネッシーを参考に 13cmにアレンジしたものです。定尺3枚で2本作り上 げるサイズとしています。

設置場所により別途50cm角程度の底板を追加して安 定性を高めるのも良いでしょう。

製作例/板取図等は、2007年12月発刊の「analog」 vol.18に掲載されています。

*「analog」は(株)音元出版の定期刊行誌です。

参考書籍のご案内

FE138ES-R用にオリジナルエンクロージャー設計を考えるとき、やはり参考書があると非 常に便利です。ゼロからアイディアを練るのもスピーカー自作の楽しみですが、参考例を ベースにFE138ES-R用に再設計することも成功への近道です。

長岡鉄男先生の作品例は道標になる代表的な例です。現在、音楽之友社より基礎技術解説 編を含め、新たに「長岡鉄男のオリジナルスピーカー」が再編集され、発刊されました。 スピーカー自作の座右の書としてぜひ、3冊揃えておきたい書籍でしょう。 お求めには、お近くの書店までお問い合わせ下さい。

音楽之友社刊 \blacksquare

こんなスピーカー見たことない長岡鉄男のオリジナルスピーカー設計術[基礎知識編]¥1,500-こんなスピーカー見たことない**長岡鉄男のオリジナルスピーカー設計術[図面集編 I]¥1,600**-こんなスピーカー見たことない長岡鉄男のオリジナルスピーカー設計術[図面集編 II]¥1,600-

