STA2001 Tutorial 13

7-13. Let
$$X_1, X_2, \dots, X_{36}$$
 be a random sample of size 36 from the geometric dis-

- 1. 5.7-13. Let X_1, X_2, \dots, X_{36} be a random sample of size 36 from the geometric distribution with pmf $f(x) = (1/4)^{x-1}(3/4), x = 1, 2, 3, \dots$. Approximate
 - (a) $P(46 \le \sum_{i=1}^{36} X_i \le 49)$.
 - (b) $P(1.25 \le \bar{X} \le 1.50)$.

Hint: Observe that the distribution of the sum is of the discrete type.

X₁, ..., X₃₆ ... Geometric dis
$$P(\frac{1}{4})$$
 $E(X_i) = \frac{1}{P} = \frac{p}{3}$ $Var(X_i) = \frac{1-p}{p^2} = \frac{p}{3}$
 $E(X_i) = Y : (THM 5.3-2)$
 $E(Y) = \frac{1}{3} \cdot 36 = 98$ $Var(Y_i) = \frac{p}{3} \cdot 36 = 6$

(1) $P(46 \in Y \leq 69) = P(\frac{46-98-9.5}{9} \leq 7 \leq \frac{69-98+9.5}{9})$
 $= \sqrt{9}(9.375) - \sqrt{9}(-9.685) = 9.3802$

$$= P(1.75 \times 36 \leq 36.\overline{x} \leq 1.5 \times 36) = P(05 \leq Y \leq 50)$$

$$= P(\frac{05.78-0.5}{0} \leq Z \leq \frac{50-98+0.5}{0}) = \overline{Q}(1.675) - \frac{1}{2}$$

$$= \overline{Q}(-0.875)$$

实为透可能智用CLT

2. 5.9-3. Let S^2 be the sample variance of a random sample of size n from $N(\mu, \sigma^2)$. Show that the limit, as $n \to \infty$, of the mgf of S^2 is $e^{\sigma^2 t}$.

For X2 (n): mgf is: M(t)=(1-2t) \$, tet

THM 3.5-2: W= (n-1)\$ ~ \(\chi^2 \) ~ \(

- Reger La Book Man

3. Let $X_n \stackrel{d}{\to} X$ where $X \equiv x$ is a constant random variable. Prove the $X_n \stackrel{p}{\to} X$.

Note that $\stackrel{d}{\rightarrow}$ is the convergence in distribution and $\stackrel{p}{\rightarrow}$ is the convergence in probability.

Fix
$$\xi > 0$$
, then: $\Pr(|x_n - x| \leq \xi) = \Pr(|x_n - x| \leq \xi)$
= $\Pr(x - \xi \in X_n \leq x + \xi) \geq \Pr(|x - \xi \in X_n \leq x + \xi)$
= $\Pr(x + \xi) - \Pr(x - \xi) = \Pr(x - \xi) - \Pr(x - \xi) = \Pr(x - \xi) = |x_n(x + \xi) = |x_n(x - \xi) = |$