上海大学 计算机学院 《计算机组成原理实验》报告 2

姓名 ___严昕宇__ 学号 __20121802__

时间 _2021.12.27 机位 _22 指导教师 _周时强

实验名称: 运算器实验

一、实验目的

- 1.学习数据处理部件的工作方式控制:
- 2.学习机器语言程序的运行过程。

二、实验原理

1. 数据处理单元

实验箱上的算术运算器和逻辑运算器用一片 CPLD(LC4526V-100)来实现,包括 8 种运算功能。手动方式下,它的功能由引脚插孔 S0、S1、S2 的编码来选择,见运算器选择表。它还产生运算器的状态标志 RCy。其输出直接 D、L 和 R 寄存器。

S2	S1	SO	功	·····································
0	0	0	A+W	加
0	0	1	A-W	
0	1	0	A W	或
0	1	1	A&W	与
1	0	0	A+W+C	带进位加
1	0	1	A-W-C	带进位减
1	1	0	~A	A 取反
1	1	1	A	输出 A

表 1 运算器选择表

带进位的加、减运算还应该另外给出进位 CyIN。

2. 向 DBUS 输出数据的寄存器

实验箱上可以向 DBUS 输出数据的寄存器有:直通门 D、左移门 L、右移门 R、程序计数器 PC、中断向量寄存器 IA、外部输入寄存器 IN 和堆栈寄存器 ST。 它们由 138 译码器的输入信号 X2, X1, X0 的编码来选择。见下方的输出寄存器选择表。

表 2 输出寄存器选择表

X2	X1	X0	功能
0	0	0	IN_OE 外部输入门
0	0	1	IA_OE 中断向量
0	1	0	ST_OE 堆栈寄存器
0	1	1	PC_OE PC 寄存器
1	0	0	D_OE 直通门
1	0	1	R_OE 右移门
1	1	0	L_OE 左移门
1	1	1	没有输出

三、实验内容

- 1. 实验任务一(计算 07H+6AH 后左移一位的值送 OUT 输出)
 - (1) 实验步骤
 - ① 连接线表,打开电源,设置实验箱进入手动模式;

表 3 实验连线表

连接	信号孔	接入孔	作用	有效电平
1	J1	J3	将 K23K16 接入 DBUS	
2	S 0	K0	运算器功能选择	
3	S 1	K1	运算器功能选择	
4	S2	K2	运算器功能选择	
5	X0	К3	输出寄存器选择	
6	X1	K4	输出寄存器选择	
7	X2	K5	输出寄存器选择	
8	AEN	K6	选通 A	低电平有效
9	WEN	K7	选通 W	低电平有效
10	OUTEN	K8	将 DBUS 上的数据打入 OUT 寄存器中	低电平有效
11	CK	已连	ALU 工作脉冲	上升沿打入

② 用实验一中的方法将数据 07H (00000111) 写入数据总线;

K23	K22	K21	K20	K19	K18	K17	K16
0	0	0	0	0	1	1	1

③ 置控制信号为;

K8(OUTEN)	K7(WEN)	K6(AEN)	K5(X2)	K4(X1)	K3(X0)	K2(S2)	K1(S1)	K0(S0)
1	1	0	0	0	0	1	1	1

④ 按住 STEP 脉冲键, CK 由高变低,这时寄存器 A 的黄色选择指示灯亮,表明选择 A 寄存器。放开 STEP 键, CK 由低变高,产生一个上升沿,数据 07H 应被写入 A 寄存器;

- ⑤ 用类似方法将数据 6AH (01101010) 写入寄存器 W;
- ⑥ 计算 A+W 的值 按"运算器选择表",置控制信号为

K8(OUTEN)	K7(WEN)	K6(AEN)	K5(X2)	K4(X1)	K3(X0)	K2(S2)	K1(S1)	K0(S0)
1	1	1	1	1	1	0	0	0

⑦ 左移 L 的内容送入 OUT 寄存器 按"输出寄存器选择表",置控制信号为

K8(OUTEN)	K7(WEN)	K6(AEN)	K5(X2)	K4(X1)	K3(X0)	K2(S2)	K1(S1)	K0(S0)
0	1	1	1	1	0	0	0	0

使用 STEP 脉冲键,产生 CK 脉冲;

⑧ 记录实验过程和现象,关闭电源。

(2) 实验现象

A 寄存器显示 09, W 寄存器显示 6A, 左移门显示 E2, OUT 显示 E2。

(3) 数据记录、分析与处理

A 寄存器显示 09, W 寄存器显示 6A, OUT 显示 E2, 实验结果与理论计算相符合。

(4) 实验结论

完成实验任务一的目的

2. 实验任务二 (把 39H 取反后同 64H 相或的值送入 R2 寄存器)

(5) 实验步骤

① 连接线表, 打开电源, 设置实验箱进入手动模式;

表 3 实验连线表

连接	信号孔	接入孔	作用	有效电平
1	J1	J3	将 K23K16 接入 DBUS	
2	S 0	K0	运算器功能选择	
3	S 1	K1	运算器功能选择	
4	S2	K2	运算器功能选择	
5	X0	К3	输出寄存器选择	
6	X1	K4	输出寄存器选择	
7	X2	K5	输出寄存器选择	
8	SA	K6	R0-R3 寄存器选择信号	
9	SB	K7	R0-R3 寄存器选择信号	
10	RRD	K8	读操作控制信号	低电平有效
11	RWR	K9	写操作控制信号	低电平有效
12	AEN	K10	选通 A	低电平有效
13	WEN	K11	选通 W	低电平有效
14	CK	已连	ALU 工作脉冲	上升沿打入

② 用实验一中的方法将数据 39H (00111001) 写入数据总线;

K23	K22	K21	K20	K19	K18	K17	K16
0	0	1	1	1	0	0	1

③ 置控制信号为;

K11(WEN)	K10(AEN)	K5(X2)	K4(X1)	K3(X0)	K2(S2)	K1(S1)	K0(S0)
1	0	1	1	1	1	1	1

- ④ 按住 STEP 脉冲键, CK 由高变低,这时寄存器 A 的黄色选择指示灯亮,表明选择 A 寄存器。放开 STEP 键, CK 由低变高,产生一个上升沿,数据 39H 应被写入 A 寄存器;
- ⑤ 用类似方法将数据 64H 写入寄存器 W;
- ⑥ 计算 39H 取反的值

K11(WEN)	K10(AEN)	K5(X2)	K4(X1)	K3(X0)	K2(S2)	K1(S1)	K0(S0)
1	1	1	0	0	1	1	0

按"运算器选择表",置控制信号为

此时直通门 D 上显示的 06 就是 39H 取反的值。之后将 AEN 置于 0 使取 反的值写入寄存器 A, 再 AEN 置于 1;

⑦ 39H 取反后同 64H 相或的值送入 R2 寄存器 按"运算器选择表"与"输出寄存器选择表",置控制信号为

K9(RWR)	K8(RRD)	K7(SB)	K6(SA)
0	1	1	0

使用 STEP 脉冲键,产生 CK 脉冲;

- ⑧ 记录实验过程和现象,关闭电源。
- (6) 实验现象

A 寄存器显示 06, W 寄存器显示 64, R2 寄存器显示 E6。

(7) 数据记录、分析与处理

A 寄存器显示 06, W 寄存器显示 64, R2 寄存器显示 E6, 实验结果与理论计算相符合。

(8) 实验结论 完成实验任务二的目的

四、建议和体会

1. 建议

在实验开始之前,我们应该首先对实验箱进行基础测试,避免因其导致实验结果产生误差。在实验中,接线必须在关闭+5V 电源的情况下进行,不能带电插、拔,以防意外。

2. 体会

在上课之前做的预习是十分重要的,可以从计算机组成原理的课本或者 计算机组成原理实验指导书中寻找实验原理以及实验流程。从书中自学原理, 可以帮助自己更好的掌握知识,锤炼了我们类比、组合、推导的能力,学以 致用,并将所学知识变成实际操作,这点让人受益匪浅。

通过2次实验,能感受到自己渐渐从入门到略懂一二,每一次都有一些收获,让我觉得这门课十分有意义。

五、思考题

如何将 R2 中的数据送至 A 寄存器中?

答: 先将 R2 寄存器中的数据送入直通门 D 中,然后再将 D 中的数据送入 A 寄存器中。