

SEQUENCE LISTING

<110> GLUCKSMANN, Maria A.

MEYERS, Rachel

KAPELLER-LIBERMANN, Rosana

SILOS-SANTIAGO, Inmaculada

<120> 22437, A NOVEL HUMAN SULFATASE AND USES THEREFOR

<130> 10147-61U1

<140> NOT YET ASSIGNED

<141> 2001-10-03

<150> US 60/257,082

<151> 2000-12-21

<160> 12

<170> PatentIn Ver. 2.1

<210> 1

<211> 3513

<212> DNA

<213> Homo sapiens

<400> 1

cgcgtccggg cagattcacg tcgttccag ccaagtggac ctgatcgatg gcccctctga 60
atttatcacg atatttgatt tattagcgat gccccctggc ttgtgtgtta cgcacacaca 120
cgtgcacaca aggctctggc tcgcttcct ccctcggtt cagctcctgg gcgaatccca 180
catctgtttc aactctccgc cgagggcgag caggagcgag agtgtgtcga atctgcgagt 240
gaagagggac gagggaaaag aaacaaagcc acagacgcaa cttgagactc ccgcattcca 300
aaagaagcac cagatcagca aaaaaagaag atggggccccc cgagcctcgat gctgtgtttg 360
ctgtccgcaa ctgtgttctc cctgctgggt ggaagctcgat cttccctgtc gcaccaccgc 420
ctgaaaggca ggtttcagag ggaccgcagg aacatccgcc ccaacatcat cctggtgctg 480
acggacgacc aggatgtgaa gctgggttcc atgcaggatgaa tgaacaagac ccggcgcata 540
atggagcagg gcgggacgca ctcatcaac gccttcgtga ccacacccat gtgctgcccc 600
tcacgcttcc ccatccctac cgcaagatc gtccacaacc acaacaccta caccaacaat 660
gagaactgct ctcgcctc ctggcaggca cagcacgaga gccgcaccc tggcgat 720
ctcaatagca ctggctaccg gacagcttcc ttggaaagt atcttaatgaa atacaacggc 780
tcctacgtgc caccggctg gaaggagtggtt gtcggactcc ttaaaaactcc ccgcttttat 840
aactacacgc tgtgtcgaa cggggtaaa gagaagcaccg gctccgacta ctccaaggat 900
tacctcacag acctcatcac caatgacacgc gtgagcttcc tccgcacgtc caagaagatg 960
tacccgcaca ggccagtccat catggatcatc agccatgcag ccccccacgg ccctgaggat 1020
tcagccccac aatattcaccg cctcttccca aacgcacatctc agcacatcac gccgagctac 1080
aactacgcgc ccaacccgga caaacactgg atcatgcgct acacggggcc catgaagccc 1140
atccacatgg aattcaccaa catgctccag cgaaagcgat tgcagaccct catgtcggtg 1200
gacgactcca tggagacgat ttacaacatg ctgggttggaa cgggcgcagat ggacaacacg 1260

tacatcgat acaccggcga ccacggttac cacatcgcc agtttggcct ggtgaaaggg 1320
aatccatgc catatgagtt tgacatcagg gtcccggtct acgtgagggg ccccaacgtg 1380
gaagccggct gtctgaatcc ccacatcgtc ctcaacattg acctggcccc caccatcctg 1440
gacattgcag gcctggacat acctgcggat atggacggga aatccatcct caagctgctg 1500
gacacggagc ggccgggtgaa tcggttcac ttgaaaaaga agatgagggt ctggcgggac 1560
tccttcttgg tggagagagg caagctgcta cacaagagag acaatgacaa ggtggacgcc 1620
caggaggaga actttctgcc caagtaccag cgtgtgaagg acctgtgtca gcgtgctgag 1680
taccagacgg cgtgtgagca gctgggacag aagtggcagt gtgtggagga cgccacgggg 1740
aagctgaagc tgcataagtg caagggcccc atgcggctgg gccggcagcag agccctctcc 1800
aacctcggtgc ccaagtacta cgggcagggc agcgaggcct gcacctgtga cagcggggac 1860
tacaagctca gcctggccgg acgcccggaaa aaactttca agaagaagta caagggcagc 1920
tatgtccgca gtcgctccat ccgctcagtg gccatcgagg tggacggcag ggtgtaccac 1980
gtaggcctgg gtgatgccgc ccagccccga aacctoacca agcggcactg gccaggggcc 2040
cctgaggacc aagatgacaa ggtatgggg gacttcagtg gcactggagg cttcccgac 2100
tactcagccg ccaacccat taaagtgaca catcggtgct acatcctaga gaacgacaca 2160
gtccagtgta acctggacct gtacaagtcc ctgcaggcct gaaaagacca caagctgcac 2220
atcgaccacg agattgaaac cctgcagaac aaaattaaga acctgaggaa agtccgaggt 2280
cacctgaaga aaaagccggc agaagaatgt gactgtcaca aaatcagcta ccacacccag 2340
cacaaggcc gcctcaagca cagaggctcc agtctgcata ctttcaggaa gggcctgcaa 2400
gagaaggaca aggtgtggct gttgcgggag cagaagcgcga agaagaaaact ccgcaagctg 2460
ctcaagcgcc tgcagaacaa cgacacgtgc agcatgccag gcctcacgtg cttcacccac 2520
gacaaccagc actggcagac ggccgccttc tggacactgg ggcctttctg tgcctgcacc 2580
agcccaaca ataacacgta ctggtgcatg aggaccatca atgagactca caatttcctc 2640
ttctgtgaat ttgcaactgg cttccttagag tactttgatc tcaacacaga cccctaccag 2700
ctgatgaatg cagtgaacac actggacagg gatgtcctca accagctaca cgtacagctc 2760
atggagctga ggagctgcaa ggttacaag cagtgttaacc cccggactcg aaacatggac 2820
ctgggactta aagatggagg aagctatgag caatacaggc agtttcagcg tcgaaaatgg 2880
ccagaaaatga agagaccttc ttccaaatca ctgggacaaac tggggaaagg ctggaaaggt 2940
taagaaacaa cagaggtgga cttccaaaaa catagaggca tcacctgact gcacaggcaa 3000
tgaaaaacca tgggggtgat ttccagcaga cctgtgtat tggccaggag gcctgagaaa 3060
gcaagcacgc actctcagtc aacatgacag attctggagg ataaccagca ggagcagaga 3120
taacttcagg aagtccattt ttgcccctgc ttttgcattt gattatacct caccagctgc 3180
acaaaatgca tttttcgta tcaaaaagtc accactaacc ctccccccaga agtcacaaa 3240
ggaaaacgga gagagcggc gagagagatt tccttgaaa tttctccaa gggcggaaagt 3300
cattggaatt tttaaatcat agggaaaag cagtcctgtt ctaaatcctc ttatttttt 3360
ggtttgcac aaagaaggaa ctaagaagca ggacagaggc aacgtggaga ggctgaaaac 3420
agtgcagaga cgtttgacaa ttagtgcgtt gcacaaaaga gatgacattt acctagcact 3480
ataaaaccctg gttgcctctg aagaaactgc ctt 3513

<210> 2
<211> 870
<212> PRT
<213> Homo sapiens

<400> 2
Met Gly Pro Pro Ser Leu Val Leu Cys Leu Leu Ser Ala Thr Val Phe
1 5 10 15

Ser Leu Leu Gly Gly Ser Ser Ala Phe Leu Ser His His Arg Leu Lys
20 25 30

Gly Arg Phe Gln Arg Asp Arg Arg Asn Ile Arg Pro Asn Ile Ile Leu
35 40 45

Val Leu Thr Asp Asp Gln Asp Val Glu Leu Gly Ser Met Gln Val Met
50 55 60

Asn Lys Thr Arg Arg Ile Met Glu Gln Gly Gly Thr His Phe Ile Asn
65 70 75 80

Ala Phe Val Thr Thr Pro Met Cys Cys Pro Ser Arg Ser Ser Ile Leu
85 90 95

Thr Gly Lys Tyr Val His Asn His Asn Thr Tyr Thr Asn Asn Glu Asn
100 105 110

Cys Ser Ser Pro Ser Trp Gln Ala Gln His Glu Ser Arg Thr Phe Ala
115 120 125

Val Tyr Leu Asn Ser Thr Gly Tyr Arg Thr Ala Phe Phe Gly Lys Tyr
130 135 140

Leu Asn Glu Tyr Asn Gly Ser Tyr Val Pro Pro Gly Trp Lys Glu Trp
145 150 155 160

Val Gly Leu Leu Lys Asn Ser Arg Phe Tyr Asn Tyr Thr Leu Cys Arg
165 170 175

Asn Gly Val Lys Glu Lys His Gly Ser Asp Tyr Ser Lys Asp Tyr Leu
180 185 190

Thr Asp Leu Ile Thr Asn Asp Ser Val Ser Phe Phe Arg Thr Ser Lys
195 200 205

Lys Met Tyr Pro His Arg Pro Val Leu Met Val Ile Ser His Ala Ala
210 215 220

Pro His Gly Pro Glu Asp Ser Ala Pro Gln Tyr Ser Arg Leu Phe Pro
225 230 235 240

Asn Ala Ser Gln His Ile Thr Pro Ser Tyr Asn Tyr Ala Pro Asn Pro
245 250 255

Asp Lys His Trp Ile Met Arg Tyr Thr Gly Pro Met Lys Pro Ile His
260 265 270

Met Glu Phe Thr Asn Met Leu Gln Arg Lys Arg Leu Gln Thr Leu Met
275 280 285

Ser Val Asp Asp Ser Met Glu Thr Ile Tyr Asn Met Leu Val Glu Thr
290 295 300

Gly Glu Leu Asp Asn Thr Tyr Ile Val Tyr Thr Ala Asp His Gly Tyr
305 310 315 320

His Ile Gly Gln Phe Gly Leu Val Lys Gly Lys Ser Met Pro Tyr Glu
325 330 335

Phe Asp Ile Arg Val Pro Phe Tyr Val Arg Gly Pro Asn Val Glu Ala
340 345 350

Gly Cys Leu Asn Pro His Ile Val Leu Asn Ile Asp Leu Ala Pro Thr
355 360 365

Ile Leu Asp Ile Ala Gly Leu Asp Ile Pro Ala Asp Met Asp Gly Lys
370 375 380

Ser Ile Leu Lys Leu Leu Asp Thr Glu Arg Pro Val Asn Arg Phe His
385 390 395 400

Leu Lys Lys Lys Met Arg Val Trp Arg Asp Ser Phe Leu Val Glu Arg
405 410 415

Gly Lys Leu Leu His Lys Arg Asp Asn Asp Lys Val Asp Ala Gln Glu
420 425 430

Glu Asn Phe Leu Pro Lys Tyr Gln Arg Val Lys Asp Leu Cys Gln Arg
435 440 445

Ala Glu Tyr Gln Thr Ala Cys Glu Gln Leu Gly Gln Lys Trp Gln Cys
450 455 460

Val Glu Asp Ala Thr Gly Lys Leu Lys Leu His Lys Cys Lys Gly Pro
465 470 475 480

Met Arg Leu Gly Gly Ser Arg Ala Leu Ser Asn Leu Val Pro Lys Tyr
485 490 495

Tyr Gly Gln Gly Ser Glu Ala Cys Thr Cys Asp Ser Gly Asp Tyr Lys
500 505 510

Leu Ser Leu Ala Gly Arg Arg Lys Lys Leu Phe Lys Lys Tyr Lys
515 520 525

Ala Ser Tyr Val Arg Ser Arg Ser Ile Arg Ser Val Ala Ile Glu Val
530 535 540

Asp Gly Arg Val Tyr His Val Gly Leu Gly Asp Ala Ala Gln Pro Arg
545 550 555 560

Asn Leu Thr Lys Arg His Trp Pro Gly Ala Pro Glu Asp Gln Asp Asp
565 570 575

Lys Asp Gly Gly Asp Phe Ser Gly Thr Gly Gly Leu Pro Asp Tyr Ser
580 585 590

Ala Ala Asn Pro Ile Lys Val Thr His Arg Cys Tyr Ile Leu Glu Asn
595 600 605

Asp Thr Val Gln Cys Asp Leu Asp Leu Tyr Lys Ser Leu Gln Ala Trp
610 615 620

Lys Asp His Lys Leu His Ile Asp His Glu Ile Glu Thr Leu Gln Asn
625 630 635 640

Lys Ile Lys Asn Leu Arg Glu Val Arg Gly His Leu Lys Lys Lys Arg
645 650 655

Pro Glu Glu Cys Asp Cys His Lys Ile Ser Tyr His Thr Gln His Lys
660 665 670

Gly Arg Leu Lys His Arg Gly Ser Ser Leu His Pro Phe Arg Lys Gly
675 680 685

Leu Gln Glu Lys Asp Lys Val Trp Leu Leu Arg Glu Gln Lys Arg Lys
690 695 700

Lys Lys Leu Arg Lys Leu Leu Lys Arg Leu Gln Asn Asn Asp Thr Cys
705 710 715 720

Ser Met Pro Gly Leu Thr Cys Phe Thr His Asp Asn Gln His Trp Gln
725 730 735

Thr Ala Pro Phe Trp Thr Leu Gly Pro Phe Cys Ala Cys Thr Ser Ala
740 745 750

Asn Asn Asn Thr Tyr Trp Cys Met Arg Thr Ile Asn Glu Thr His Asn
755 760 765

Phe Leu Phe Cys Glu Phe Ala Thr Gly Phe Leu Glu Tyr Phe Asp Leu
770 775 780

Asn Thr Asp Pro Tyr Gln Leu Met Asn Ala Val Asn Thr Leu Asp Arg
785 790 795 800

Asp Val Leu Asn Gln Leu His Val Gln Leu Met Glu Leu Arg Ser Cys
805 810 815

Lys Gly Tyr Lys Gln Cys Asn Pro Arg Thr Arg Asn Met Asp Leu Gly
820 825 830

Leu Lys Asp Gly Gly Ser Tyr Glu Gln Tyr Arg Gln Phe Gln Arg Arg
835 840 845

Lys Trp Pro Glu Met Lys Arg Pro Ser Ser Lys Ser Leu Gly Gln Leu
850 855 860

Trp Glu Gly Trp Glu Gly
865 870

<210> 3
<211> 2610
<212> DNA
<213> Homo sapiens

<400> 3

atggccccc cgagcctcggt gctgtgttttgc ctgtccgaa ctgtgttctc cctgctgggt 60
ggaagctcggt ccttcctgtc gcaccacccgc ctgaaaggca ggtttcagag ggaccgcagg 120
aacatccgcc ccaacatcat cctggtgctg acggacgacc aggtatgtgga gctgggttcc 180
atgcaggtga tgaacaagac ccggcgcattc atggagcagg gccccacgca cttcatcaac 240
gccttcgtga ccacacccat gtgctgcccc tcacgcttccct ccattctcac cggcaagtac 300
gtccacaacc acaacaccta caccaacaat gagaactgct cctcgccctc ctggcaggca 360
cagcacgaga gccgcaccc ttccgtgtac ctcaatagca ctggctaccg gacagcttc 420
ttcgggaagt atcttaatga atacaacggc tcctacgtgc caccggctg gaaggagtgg 480
gtcggactcc ttaaaaactc ccgttttat aactacacgc tgtgtcgaa cggggtgaaa 540
gagaagcacg gtcggacta ctccaaggat tacctcacag acctcatcac caatgacacgc 600
gtgagcttct tccgcacgtc caagaagatg taccgcaca ggccagtccct catggtcatac 660
agccatgcacg ccccccacgg ccctgaggat tcagccccac aatattcacg cctcttccca 720
aacgcacatctc agcacatcac gcccggactac aactacacgc ccaacccggaa caaacactgg 780
atcatgcgtc acacggggcc catgaagccc atccacatgg aattcacca catgctccag 840
cggaagcgtc tgcagacccat catgtcggtg gacgactcca tggagacgtat ttacaacatg 900
ctggttgaga cggggcggact ggacaacacg tacatgtat acaccggca ccacgggtac 960
cacatcgcc agtttggctt ggtgaaaggaa aatccatgc catatgagtt tgacatcagg 1020
gtcccggttct acgtgagggg ccccaacgtg gaagccggct gtctgaatcc ccacatcgtc 1080
ctcaacatttgc acctggccccc caccatcctg gacattgcag gcctggacat acctgcggat 1140
atggacggga aatccatccttcaagctgctg gacacggagc ggccgggtgaa tcgggttccac 1200
ttgaaaaaga agatgagggt ctggcgggac tccttcttgg tggagagagg caagctgcta 1260
cacaagagag acaatgacaa ggtggacgccc caggaggaga actttctgcc caagtaccag 1320

cgtgtgaagg acctgtgtca gcgtgcttag taccagacgg cgtgtgagca gctgggacag 1380
aagtggcagt gtgtggagga cgccacgggg aagctgaagc tgataactgt caagggcccc 1440
atgcggctgg gcggcagcag agccctctcc aacctcgatc ccaagttacta cgggcagggc 1500
agcgaggcct gcacctgtga cagcggggac tacaagctca gcctggccgg acgcccggaaa 1560
aaactcttca agaagaagta caaggccagc tatgtccgca gtcgctccat ccgctcagtg 1620
gccatcgagg tggacggcag ggtgttaccac gttaggcctgg gtatgccgc ccagccccga 1680
aacctcacca agcggcactg gccaggggcc cctgaggacc aagatgacaa ggatggtggg 1740
gacttcagtg gcactggagg cttcccgac tactcagccg ccaaccccat taaagtgaca 1800
catcggtct acatccatga gaacgacaca gtccagtg acctggaccc gtacaagtcc 1860
ctgcaggcct ggaaagacca caagctgcac atcgaccacg agattgaaac cctgcagaac 1920
aaaattaaga acctgaggga agtccgaggt cacctgaaga aaaagcggcc agaagaatgt 1980
gactgtcaca aaatcagcta ccacacccag cacaaggcc gcctcaagca cagaggctcc 2040
agtctgcatt ctttcaggaa gggctgcaa gagaaggaca aggtgtggct gttgcggag 2100
cagaagcgcga agaagaaact cccgaagctg ctcaaggcgc tgcaagaacaa cgacacgtgc 2160
agcatgccag gcctcacgtg cttcacccac gacaaccagc actggcagac ggcgccttcc 2220
tggacactgg ggccttctg tgctgcacc agcgcacaca ataacacgtt ctggtgcatg 2280
aggaccatca atgagactca caatttcctc ttctgtaat ttgcaactgg cttcctagag 2340
tactttgatc tcaacacaga ccccttaccag ctgatgaatg cagtgaacac actggacagg 2400
gatgtcctca accagctaca cgtacagtc atggagctga ggagctgcaa gggttacaag 2460
cagtgttaacc cccggactcg aaacatggac ctgggactta aagatggagg aagctatgag 2520
caatacaggc agtttcagcg tcgaaagtgg ccagaaatga agagaccttc ttccaaatca 2580
ctgggacaac tgtggaaagg ctggaaaggt 2610

<210> 4
<400> 4
000

<210> 5
<400> 5
000

<210> 6
<400> 6
000

<210> 7
<400> 7
000

<210> 8
<400> 8
000

<210> 9
<400> 9
000

<210> 10
<400> 10
000

<210> 11
<211> 4397
<212> DNA
<213> Homo sapiens

<400> 11

gagcgagagt gtgtcgagt agtgtgcgtc tgtgtgtccc ggcgagggtg cgcgctcgcc 60
gccgggagcg cggccagccg agtccggagg catcgggagg tcgagagccg ccgggacccc 120
agctctgcgt tcactgc(ccc gtccggagct ggacttcggg gccggggccg gggcgtgcg 180
ccggggacag gcagggccgg gtcgcgggccc gcgcgtcccc caggccggag atctgcgagt 240
gaagagggac aaggaaaag aaacaagcc acagacgcaa cttgagactc ccgcattcca 300
aaagaagcac cagatcagca aaaaaagaag atgggcccccc cgagcctcgt gctgtgctt 360
ctgtccgcaa ctgtgttctc cctgctgggt ggaagctcgg cttcctgtc gcaccaccgc 420
ctgaaaaggca ggttttagag ggaccgcagg aacatccccc ccaacatcat cctggtgctg 480
acggacgacc aggatgtgga gctgggttcc atgcaggta tgaacaagac ccggcgcatac 540
atggagcagg gccccacca cttcatcaac gccttcgtga ccacacccat gtgctgcccc 600
tcacgcctt ccatcctcac cggcaagtac gtccacaacc acaacaccta caccacaaat 660
gagaactgct cctcgccctc ctggcaggca cagcacgaga gccgcacctt tgccgtgtac 720
ctcaatagca ctggctaccg gacagtttc ttccggaaat atcttaatga atacaacggc 780
tcctacgtgc caccggctg gaaggagtgg gtcggactcc ttaaaaactc ccgttttat 840
aactacacgc tgggtcgaa cgggtgaaa gagaagcacg gctccgacta ctccaaggat 900
tacccatcag acctcatcac caatgacagc gtgagtttct tccgcacgta caagaagatg 960
tacccgcaca gggcagtctt catggtcatac agccatgcag ccccccacgg ccctgaggat 1020
tcagccccac aatattcacg cctttccca aacgcatac agcacatcac gccgagctac 1080
aactacgcgc ccaacccgga caaacactgg atcatgcgt acacggggcc catgaagccc 1140
atccacatgg aattcacca catgctccag cggaaagcgct tgcaagaccct catgtcggtg 1200
gacgactcca tggagacat ttacaacatg ctggttgaga cggcgagct ggacaacacg 1260
tacatcgat acaccgcga ccacggttac cacatggcc agttggcct ggtgaaagg 1320
aaatccatgc catatgagtt tgacatcagg gtccgttct acgtgagggg ccccaacgtg 1380
gaagccggct gtctgaatcc ccacatcgta ctcaacattt acctggcccc caccatcctg 1440
gacattgcag gcctggacat acctgcggat atggacggga aatccatcct caagctgctg 1500
gacacggagc gggcggtgaa tcggttcac ttgaaaaaga agatgagggt ctggcgggac 1560
tccttcttgg tggagagagg caagctgcta cacaagagag acaatgacaa ggtggacgcc 1620
caggaggaga actttctgcc caagtaccag cgtgtgaagg acctgtgtca gctgtgtgag 1680
taccagacgg cgtgtgagca gctgggacag aagtggcagt gtgtggagga cgccacgggg 1740
aagctgaagc tgcataagtg caagggcccc atgcggctgg gcccggcagcag agccctctcc 1800
aacctcggtgc ccaagtacta cggcgaggcc agcgaggct gcacctgtga cagcggggac 1860

tacaagctca gcctggccgg acgcccggaaa aaactttca agaagaagta caaggccagc 1920
tatgtccgca gtcgcctccat ccgctcagtg gccatcgagg tggacggcag ggtgtaccac 1980
gttaggcctgg gtgatgccgc ccagccccga aacctcacca agcggcactg gccaggggcc 2040
cctgaggacc aagatgacaa ggatggtggg gacttcagtg gcactggagg cttcccgac 2100
tactcagccg ccaacccat taaagtgaca catcggtgct acatcctaga gaacgacaca 2160
gtccagtgtg acctggaccc gtacaagtcc ctgcaggcct gaaaagacca caagctgcac 2220
atcgaccacg agattgaaac cctgcagaac aaaattaaga acctgaggga agtccgaggt 2280
cacctgaaga aaaagccggcc agaagaatgt gactgtcaca aaatcagcta ccacacccag 2340
cacaaggcc gcctcaagca cagaggctcc agtctgcata cttcaggaa gggcctgcaa 2400
gagaaggaca aggtgtggct gttgcgggag cagaagcga agaagaaaact ccgcaagctg 2460
ctcaagcgcct tgcaaaacaa cgacacgtgc agcatgccag gcctcacgtg cttcaccac 2520
gacaaccagc actggcagac ggcgccttc tggacactgg ggcccttctg tgcctgcacc 2580
agcgcacaca ataacacgta ctggtgcatg aggaccatca atgagactca caatccctc 2640
ttctgtgaat ttgcaactgg cttcttagag tactttgatc tcaacacaga cccctaccag 2700
ctgatgaatg cagtgaacac actggacagg gatgtcctca accagctaca cgtacagctc 2760
atggagctga ggagctgcaa gggttacaag cagtgttacc cccggactcg aaacatggac 2820
ctgggactta aagatggagg aagctatgag caatacaggc agtttcagcg tcgaaaagtgg 2880
ccagaaatga agagaccccttc ttccaaatca ctgggacaac tggggaaagg ctgggaaggt 2940
taagaaacaa cagaggtgga cctccaaaaa catagaggca tcacctgact gcacaggcaa 3000
tgaaaaacca tgggggtgat ttccagcaga cctgtgttat tggccaggag gcctgagaaa 3060
gcaagcacgc actctcagtc aacatgacag attctggagg ataaccagca ggagcagaga 3120
taacttcagg aagtccattt ttgcccctgc ttttgcttg gattatacct caccagctgc 3180
acaaaaatgca tttttcgta tcaaaaatgc accactaacc ctccccaga agtcacaaaa 3240
ggaaaacgga gagagcggc gagagagatt tccttgaaaa tttctcccaa gggcggaaagt 3300
catttggaaatt tttaaatcat agggaaaag cagtcctgtt ctaaatccctt ttattttttt 3360
ggtttgcac aaagaaggaa ctaagaagca ggacagaggc aacgtggaga ggctgaaaac 3420
agtgcagaga cgtttgacaa tgagtca gacaaaaaga gatgacattt acctagcact 3480
ataaaaccctg gttgcctctg aagaaactgc cttcattgtt tatatgtgac tatttacatg 3540
taatcaacat gggactttt agggaaacct aataagaaaat cccaattttc aggagtgggt 3600
gtgtcaataa acgctctgtg gccagtgtaa aagaaaatcc ctgcagttg tggacatttc 3660
tgttccctgtc cagataccat ttctcctagt atttcttctg tatgtcccag aactgatgtt 3720
ttttttttaa ggtactgaaa agaaatgaag ttgatgtatg tcccaagttt tgatgaaact 3780
gtatttgtaa aaaaaatttt gtagtttaag tattgtcata cagtgttcaa aacccagcc 3840
aatgaccagc agttggatg aagaaccttt gacattttgt aaaaggccat ttctttctt 3900
ggagttttt ggtgtgtctg tttttttaaa gtattcaaga tactaccagt caacatctt 3960
ttggaaagaaa atgccttggg tttagaagat tttcttaaaa ggggagtaga tgggtttaga 4020
ttgactaaaa agtctaccat acttcaaggg actacaggta agtctcatag tataccagct 4080
ttggtactic attttttaaa aaagtattaa tcaattgcaa agaaaattcgc cttggccaac 4140
ccttcttctgt gtatcaggtt gtctaacctg atacaaggtag ttgacagatt tcaactatca 4200
atcaccagtc caacccattt ctcatttaac agatgacgga gataatccct aaaagcacc 4260
acatttgttt caatgccccca aacaggccaa ggctccctag caactcccta gtggcggttt 4320
ttaacttctc agaaactgtt accatttattt gaaataggct tccttaacct ccttaccct 4380
taacccaaca gggattt

4397

<210> 12

<211> 885

<212> PRT

<213> Homo sapiens

<400> 12

Asp Ser Arg Ile Pro Lys Glu Ala Pro Asp Gln Gln Lys Lys Lys Met
1 5 10 15

Gly Pro Pro Ser Leu Val Leu Cys Leu Leu Ser Ala Thr Val Phe Ser
20 25 30

Leu Leu Gly Gly Ser Ser Ala Phe Leu Ser His His Arg Leu Lys Gly
35 40 45

Arg Phe Gln Arg Asp Arg Arg Asn Ile Arg Pro Asn Ile Ile Leu Val
50 55 60

Leu Thr Asp Asp Gln Asp Val Glu Leu Gly Ser Met Gln Val Met Asn
65 70 75 80

Lys Thr Arg Arg Ile Met Glu Gln Gly Gly Thr His Phe Ile Asn Ala
85 90 95

Phe Val Thr Thr Pro Met Cys Cys Pro Ser Arg Ser Ser Ile Leu Thr
100 105 110

Gly Lys Tyr Val His Asn His Asn Thr Tyr Thr Asn Asn Glu Asn Cys
115 120 125

Ser Ser Pro Ser Trp Gln Ala Gln His Glu Ser Arg Thr Phe Ala Val
130 135 140

Tyr Leu Asn Ser Thr Gly Tyr Arg Thr Ala Phe Phe Gly Lys Tyr Leu
145 150 155 160

Asn Glu Tyr Asn Gly Ser Tyr Val Pro Pro Gly Trp Lys Glu Trp Val
165 170 175

Gly Leu Leu Lys Asn Ser Arg Phe Tyr Asn Tyr Thr Leu Cys Arg Asn
180 185 190

Gly Val Lys Glu Lys His Gly Ser Asp Tyr Ser Lys Asp Tyr Leu Thr
195 200 205

Asp Leu Ile Thr Asn Asp Ser Val Ser Phe Phe Arg Thr Ser Lys Lys
210 215 220

Met Tyr Pro His Arg Pro Val Leu Met Val Ile Ser His Ala Ala Pro
225 230 235 240

His	Gly	Pro	Glu	Asp	Ser	Ala	Pro	Gln	Tyr	Ser	Arg	Leu	Phe	Pro	Asn
							245								255
Ala	Ser	Gln	His	Ile	Thr	Pro	Ser	Tyr	Asn	Tyr	Ala	Pro	Asn	Pro	Asp
							260								270
Lys	His	Trp	Ile	Met	Arg	Tyr	Thr	Gly	Pro	Met	Lys	Pro	Ile	His	Met
							275								285
Glu	Phe	Thr	Asn	Met	Leu	Gln	Arg	Lys	Arg	Leu	Gln	Thr	Leu	Met	Ser
							290								300
Val	Asp	Asp	Ser	Met	Glu	Thr	Ile	Tyr	Asn	Met	Leu	Val	Glu	Thr	Gly
							305								320
310								315							
Glu	Leu	Asp	Asn	Thr	Tyr	Ile	Val	Tyr	Thr	Ala	Asp	His	Gly	Tyr	His
							325								335
Ile	Gly	Gln	Phe	Gly	Leu	Val	Lys	Gly	Lys	Ser	Met	Pro	Tyr	Glu	Phe
							340								350
								345							
Asp	Ile	Arg	Val	Pro	Phe	Tyr	Val	Arg	Gly	Pro	Asn	Val	Glu	Ala	Gly
							355								365
								360							
Cys	Leu	Asn	Pro	His	Ile	Val	Leu	Asn	Ile	Asp	Leu	Ala	Pro	Thr	Ile
							370								380
								375							
Leu	Asp	Ile	Ala	Gly	Leu	Asp	Ile	Pro	Ala	Asp	Met	Asp	Gly	Lys	Ser
							385								400
								390							
Ile	Leu	Lys	Leu	Leu	Asp	Thr	Glu	Arg	Pro	Val	Asn	Arg	Phe	His	Leu
							405								415
								410							
Lys	Lys	Lys	Met	Arg	Val	Trp	Arg	Asp	Ser	Phe	Leu	Val	Glu	Arg	Gly
							420								430
								425							
									430						
Lys	Leu	Leu	His	Lys	Arg	Asp	Asn	Asp	Lys	Val	Asp	Ala	Gln	Glu	Glu
							435								445
								440							
Asn	Phe	Leu	Pro	Lys	Tyr	Gln	Arg	Val	Lys	Asp	Leu	Cys	Gln	Arg	Ala
							450								460
								455							
Glu	Tyr	Gln	Thr	Ala	Cys	Glu	Gln	Leu	Gly	Gln	Lys	Trp	Gln	Cys	Val
							465								480
								470							
									475						
Glu	Asp	Ala	Thr	Gly	Lys	Leu	Lys	Leu	His	Lys	Cys	Lys	Gly	Pro	Met
							485								495
								490							

Arg Leu Gly Gly Ser Arg Ala Leu Ser Asn Leu Val Pro Lys Tyr Tyr
500 505 510

Gly Gln Gly Ser Glu Ala Cys Thr Cys Asp Ser Gly Asp Tyr Lys Leu
515 520 525

Ser Leu Ala Gly Arg Arg Lys Lys Leu Phe Lys Lys Lys Tyr Lys Ala
530 535 540

Ser Tyr Val Arg Ser Arg Ser Ile Arg Ser Val Ala Ile Glu Val Asp
545 550 555 560

Gly Arg Val Tyr His Val Gly Leu Gly Asp Ala Ala Gln Pro Arg Asn
565 570 575

Leu Thr Lys Arg His Trp Pro Gly Ala Pro Glu Asp Gln Asp Asp Lys
580 585 590

Asp Gly Gly Asp Phe Ser Gly Thr Gly Gly Leu Pro Asp Tyr Ser Ala
595 600 605

Ala Asn Pro Ile Lys Val Thr His Arg Cys Tyr Ile Leu Glu Asn Asp
610 615 620

Thr Val Gln Cys Asp Leu Asp Leu Tyr Lys Ser Leu Gln Ala Trp Lys
625 630 635 640

Asp His Lys Leu His Ile Asp His Glu Ile Glu Thr Leu Gln Asn Lys
645 650 655

Ile Lys Asn Leu Arg Glu Val Arg Gly His Leu Lys Lys Lys Arg Pro
660 665 670

Glu Glu Cys Asp Cys His Lys Ile Ser Tyr His Thr Gln His Lys Gly
675 680 685

Arg Leu Lys His Arg Gly Ser Ser Leu His Pro Phe Arg Lys Gly Leu
690 695 700

Gln Glu Lys Asp Lys Val Trp Leu Leu Arg Glu Gln Lys Arg Lys Lys
705 710 715 720

Lys Leu Arg Lys Leu Leu Lys Arg Leu Gln Asn Asn Asp Thr Cys Ser
725 730 735

Met Pro Gly Leu Thr Cys Phe Thr His Asp Asn Gln His Trp Gln Thr
740 745 750

Ala Pro Phe Trp Thr Leu Gly Pro Phe Cys Ala Cys Thr Ser Ala Asn
755 760 765

Asn Asn Thr Tyr Trp Cys Met Arg Thr Ile Asn Glu Thr His Asn Phe
770 775 780

Leu Phe Cys Glu Phe Ala Thr Gly Phe Leu Glu Tyr Phe Asp Leu Asn
785 790 795 800

Thr Asp Pro Tyr Gln Leu Met Asn Ala Val Asn Thr Leu Asp Arg Asp
805 810 815

Val Leu Asn Gln Leu His Val Gln Leu Met Glu Leu Arg Ser Cys Lys
820 825 830

Gly Tyr Lys Gln Cys Asn Pro Arg Thr Arg Asn Met Asp Leu Gly Leu
835 840 845

Lys Asp Gly Gly Ser Tyr Glu Gln Tyr Arg Gln Phe Gln Arg Arg Lys
850 855 860

Trp Pro Glu Met Lys Arg Pro Ser Ser Lys Ser Leu Gly Gln Leu Trp
865 870 875 880

Glu Gly Trp Glu Gly
885