What is claimed is:

1	1: A method comprising:
2	processing a group of instructions in topological dependence order;
3	selecting an instruction, associated with at least one operand, to schedule;
4	allocating a register to one or more of the operands;
5	determining if the live range of the operand spans a function call;
6	if so, attempting to allocate a preserved register;
7	if not, attempting to allocate a scratch register; and
8	if the determination is unknown, treating the live range as tentative; and
9	if the allocation was successful, scheduling the instruction.
1	2: The method of claim 1, wherein allocating a register to one or more of the operand
2	includes:
3	determining if the operand's use begins a live range or ends a live range;
4	if the operand's use begins a live range, attempting to allocate a register;
5	if the operand's use ends a live range, marking the register associated with the
6	operand as available for reallocation.
1	3: The method of claim 1, wherein attempting to allocate a preserved register includes:
2	determining if a preserved register is available for allocation from a list of
3	previously used preserved registers; and
4	if so, allocating the available preserved register for the live range defined by the operand.

- 1 4: The method of claim 3, further including, if a preserved register is not available from
- 2 the list of previously used preserved registers,
- attempting to find a tentative live range that includes a preserved register that is in
- 4 the list of previously used preserved registers; and
- 5 if successful, allocating this preserved register for the live range defined by the operand,
- 6 and reserving a different preserved register for the tentative live range.
- 5: The method of claim 4, further including, if the attempt to find a tentative live range
- 2 that includes a preserved register that is in the list is not successful,
- adding a new preserved register to the list of previously used preserved registers; and
- 4 allocating this new preserved register to the live range defined by the operand.
- 1 6: The method of claim 1, wherein attempting to allocate a scratch register includes:
- determining if a scratch register is available for allocation;
- 3 if so, allocating a scratch register for the live range defined by the operand;
- 4 if not,
- 5 attempting to steal a scratch register from a live range marked as tentative;
- 6 determining if the attempted theft was successful;
- 7 if so, allocating the stolen scratch register to the live range defined by the

8	operand; and
9	if not, attempting to allocate a preserved register.
1	7: The method of claim 1, wherein treating the live range as tentative further includes:
2	if both a scratch register and a preserved register are available for allocation,
3	reserving both the scratch register and the preserved register to the live range;
4	allowing another instruction to be processed; and
5	waiting for more information about the live range.
1	8: The method of claim 7, further including, when more information is available:
2	if the last use of the live range has been scheduled, allocating the reserved scratch
3	register to the live range defined by the operand, and freeing the reserved preserved
4	register;
5	if a function call has been scheduled before the last use of the live range or the
6	reserved scratch register has been stolen, allocating the preserved register to the live
7	range defined by the operand and freeing the reserved scratch register.
1	9: The method of claim 7, wherein reserving a preserved register for the tentative live
2	range includes:
3	preferring to reserve a currently unused preserved register that is in the list of

- 4 previously used preserved registers, before reserving a new unused preserved register for
- 5 the tentative live range.
- 1 10: The method of claim 9, wherein treating the live range as tentative further includes:
- 2 if a scratch register is not available for allocation, attempting to allocate a
- 3 preserved register to the live range.
- 1 11: The method of claim 1, wherein allocating a register to at least one or more of
- 2 operands associated with the instruction includes:
- if no proper registers are available for allocation, inserting a register spill; and
- 4 either re-attempting to allocate a register, or selecting another instruction to
- 5 schedule.
- 1 12: An article comprising:
- 2 a machine readable medium having a plurality of machine accessible instructions,
- 3 wherein when the instructions are executed, the instructions provide for:
- 4 processing a group of instructions in topological dependence order;
- 5 selecting an instruction, associated with at least one operand, to schedule;
- 6 allocating a register to one or more of the operands;
- determining if the live range of the operand spans a function call;
- 8 if so, attempting to allocate a preserved register;

- 9 if not, attempting to allocate a scratch register; and
- if the determination is unknown, treating the live range as tentative; and
- if the allocation was successful, scheduling the instruction.
 - 1 13: The article of claim 12, wherein the instructions providing for allocating a register to
- 2 one or more of the operand includes instructions providing for:
- determining if the operand's use begins a live range or ends a live range;
- 4 if the operand's use begins a live range, attempting to allocate a register;
- if the operand's use ends a live range, marking the register associated with the
- 6 operand as available for reallocation.
- 1 14: The article of claim 12, wherein the instructions providing for attempting to allocate
- 2 a preserved register includes instructions providing for:
- determining if a preserved register is available for allocation from a list of
- 4 previously used preserved registers; and
- 5 if so, allocating the available preserved register for the live range defined by the operand.
- 1 15: The article of claim 14, further including instructions providing for, if a preserved
- 2 register is not available from the list of previously used preserved registers.
- attempting to find a tentative live range that includes a preserved register that is in
- 4 the list of previously used preserved registers; and

- 5 if successful, allocating this preserved register for the live range defined by the operand,
- 6 and reserving a different preserved register for the tentative live range.
- 1 16: The article of claim 15, further including instructions providing for, if the attempt to
- 2 find a tentative live range that includes a preserved register that is in the list is not
- 3 successful,
- 4 adding a new preserved register to the list of previously used preserved registers; and
- 5 allocating this new preserved register to the live range defined by the operand.
- 1 17: The article of claim 12, wherein the instructions providing for attempting to allocate
- 2 a scratch register includes instructions providing for:
- determining if a scratch register is available for allocation;
- 4 if so, allocating a scratch register for the live range defined by the operand;
- 5 if not,
- attempting to steal a scratch register from a live range marked as tentative;
- determining if the attempted theft was successful;
- 8 if so, allocating the stolen scratch register to the live range defined by the
- 9 operand; and
- if not, attempting to allocate a preserved register.

1 18: The article of claim 12, wherein the instructions providing for treating the live range

- 2 as tentative further includes instructions providing for:
- 3 if both a scratch register and a preserved register are available for allocation,
- 4 reserving both the scratch register and the preserved register to the live range;
- 5 allowing another instruction to be processed; and
- 6 waiting for more information about the live range.
- 1 19: The article of claim 18, further including instructions providing for, when more
- 2 information is available:
- if the last use of the live range has been scheduled, allocating the reserved scratch
- 4 register to the live range defined by the operand, and freeing the reserved preserved
- 5 register;
- if a function call has been scheduled before the last use of the live range or the
- 7 reserved scratch register has been stolen, allocating the preserved register to the live
- 8 range defined by the operand and freeing the reserved scratch register.
- 1 20: The article of claim 18, wherein the instructions providing for reserving a preserved
- 2 register for the tentative live range includes instructions providing for:
- 3 preferring to reserve a currently unused preserved register that is in the list of
- 4 previously used preserved registers, before reserving a new unused preserved register for
- 5 the tentative live range.

1	21: The article of claim 20, wherein the instructions providing for treating the live range
2	as tentative further includes instructions providing for:
3	if a scratch register is not available for allocation, attempting to allocate a
4	preserved register to the live range.
1	22: The article of claim 12, wherein the instructions providing for allocating a register to
2	at least one or more of operands associated with the instruction includes instructions
3	providing for:
4	if no proper registers are available for allocation, inserting a register spill; and
5	either re-attempting to allocate a register, or selecting another instruction to
6	schedule.
1	23: An apparatus comprising:
2	an instruction scheduler to:
3	process a group of instructions in topological dependence order, and
4	select an instruction, associated with at least one operand, to schedule
5	schedule an instruction, if the register allocation was successful; and
6	a register allocator to:
7	allocate register to a live range associated with one or more operand,
8	determine if the live range of the operand spans a function call,
9	if so, attempt to allocate a preserved register,
	, , ,

10 if not, attempt to allocate a scratch register, and 11 if the determination is unknown, treat the live range as tentative. 1 24: The apparatus of claim 23, wherein the register allocator is capable of: 2 determining if the operand's use begins a live range or ends a live range; 3 if the operand's use begins a live range, attempting to allocate a register; 4 if the operand's use ends a live range, marking the register associated with the 5 operand as available for reallocation. 1 25: The apparatus of claim 23, wherein the register allocator is capable of, when 2 attempting to allocate a preserved register: 3 determining if a preserved register is available for allocation from a list of previously used preserved registers; and 4 5 if so, allocating the available preserved register for the live range defined by the operand. 1 26: The apparatus of claim 25, wherein the register allocator is capable of, if a preserved 2 register is not available from the list of previously used preserved registers: 3 attempting to find a tentative live range that includes a preserved register that is in 4 the list of previously used preserved registers; and 5 if successful, allocating this preserved register for the live range defined by the operand, 6 and reserving a different preserved register for the tentative live range.

- 1 27: The apparatus of claim 26, wherein the register allocator is capable of, if the attempt
- 2 to find a tentative live range that includes a preserved register that is in the list is not
- 3 successful:
- 4 adding a new preserved register to the list of previously used preserved registers; and
- 5 allocating this new preserved register to the live range defined by the operand.
- 1 28: The apparatus of claim 23, wherein the register allocator is capable of, when
- 2 attempting to allocate a scratch register:
- determining if a scratch register is available for allocation;
- 4 if so, allocating a scratch register for the live range defined by the operand;
- 5 if not,
- attempting to steal a scratch register from a live range marked as tentative;
- determining if the attempted theft was successful;
- 8 if so, allocating the stolen scratch register to the live range defined by the
- 9 operand; and
- if not, attempting to allocate a preserved register.
 - 1 29: The apparatus of claim 23, wherein the register allocator is capable of, when treating
- 2 a live range as tentative:
- if both a scratch register and a preserved register are available for allocation,

- reserving both the scratch register and the preserved register to the live range;
 allowing another instruction to be processed; and
 waiting for more information about the live range.
- 30: The apparatus of claim 29, wherein the register allocator is capable of, when more information is available:
- if the last use of the live range has been scheduled, allocating the reserved scratch register to the live range defined by the operand, and freeing the reserved preserved register;
- if a function call has been scheduled before the last use of the live range or the.
- 7 reserved scratch register has been stolen, allocating the preserved register to the live
- 8 range defined by the operand and freeing the reserved scratch register.
- 1 31: The apparatus of claim 30, wherein the register allocator is capable of, when
- 2 reserving a preserved register for the tentative live range
- 3 preferring to reserve a currently unused preserved register that is in the list of previously
- 4 used preserved registers, before reserving a new unused preserved register for the
- 5 tentative live range.
- 1 32: The apparatus of claim 31, wherein the register allocator is capable of, when treating
- 2 a live range as tentative:

- 3 if a scratch register is not available for allocation, attempting to allocate a 4 preserved register to the live range. 1 33. The apparatus of claim 23, the register allocator is capable of: 2 if no proper registers are available for allocation, inserting a register spill; and 3 either re-attempting to allocate a register, or selecting another instruction to 4 schedule. 1 34. The apparatus of claim 23, wherein the register allocator includes: 2 a scratch register allocator to allocate scratch registers to live ranges that do not 3 span a function call; 4 a preserved register allocator to allocate preserved registers to live ranges that 5 span a function call; and 6 a tentative register allocator to allocate either a scratch or a preserved register to 7 live ranges that are not immediately known whether or not they span a function call. 1 35: A system comprising:
- 2 a set of instructions to be compiled;
- a set of preserved registers capable of storing values that are to be preserved across
- 4 function calls;
- 5 a set of scratch registers capable to storing values that do not need to be preserved across

6	function calls; and
7	an integrated compiler having:
8	an instruction scheduler to:
9	process a group of instructions in topological dependence order, and
10	select an instruction, associated with at least one operand, to schedule
11	schedule an instruction, if the register allocation was successful; and
12	a register allocator to:
13	allocate register to a live range associated with one or more operand,
14	determine if the live range of the operand spans a function call,
15	if so, attempt to allocate a preserved register,
16	if not, attempt to allocate a scratch register, and
17	if the determination is unknown, treat the live range as tentative.
1	36: The system of claim 35, wherein the register allocator is capable of:
2	determining if the operand's use begins a live range or ends a live range;
3	if the operand's use begins a live range, attempting to allocate a register;
4	if the operand's use ends a live range, marking the register associated with the
5	operand as available for reallocation.
1	37: The system of claim 35, wherein the register allocator is capable of, when attempting
2	to allocate a preserved register:
3	determining if a preserved register is available for allocation from a list of

- 4 previously used preserved registers; and
- 5 if so, allocating the available preserved register for the live range defined by the operand.
- 1 38: The system of claim 37, wherein the register allocator is capable of, if a preserved
- 2 register is not available from the list of previously used preserved registers:
- attempting to find a tentative live range that includes a preserved register that is in
- 4 the list of previously used preserved registers; and
- 5 if successful, allocating this preserved register for the live range defined by the operand,
- 6 and reserving a different preserved register for the tentative live range.
- 1 39: The system of claim 38, wherein the register allocator is capable of, if the attempt to
- 2 find a tentative live range that includes a preserved register that is in the list is not
- 3 successful:
- 4 adding a new preserved register to the list of previously used preserved registers; and
- 5 allocating this new preserved register to the live range defined by the operand.
- 1 40: The system of claim 35, wherein the register allocator is capable of, when attempting
- 2 to allocate a scratch register:
- determining if a scratch register is available for allocation;
- 4 if so, allocating a scratch register for the live range defined by the operand;
- 5 if not,

6 attempting to steal a scratch register from a live range marked as tentative; 7 determining if the attempted theft was successful; 8 if so, allocating the stolen scratch register to the live range defined by the 9 operand; and 10 if not, attempting to allocate a preserved register. 1 41: The system of claim 35, wherein the register allocator is capable of, when treating a 2 live range as tentative: 3 if both a scratch register and a preserved register are available for allocation, 4 reserving both the scratch register and the preserved register to the live range; 5 allowing another instruction to be processed; and 6 waiting for more information about the live range. 1 42: The system of claim 41, wherein the register allocator is capable of, when more 2 information is available: 3 if the last use of the live range has been scheduled, allocating the reserved scratch 4 register to the live range defined by the operand, and freeing the reserved preserved 5 register; 6 if a function call has been scheduled before the last use of the live range or the 7 reserved scratch register has been stolen, allocating the preserved register to the live

range defined by the operand and freeing the reserved scratch register.

8

1	43: The system of claim 42, wherein the register allocator is capable of, when reserving a
2	preserved register for the tentative live range
3	preferring to reserve a currently unused preserved register that is in the list of previously
4	used preserved registers, before reserving a new unused preserved register for the
5	tentative live range.
1	44: The system of claim 43, wherein the register allocator is capable of, when treating a
2	live range as tentative:
3	if a scratch register is not available for allocation, attempting to allocate a
4	preserved register to the live range.
1	45. The system of claim 35, the register allocator is capable of:
2	if no proper registers are available for allocation, inserting a register spill; and
3	either re-attempting to allocate a register, or selecting another instruction to
4	schedule.
1	46. The system of claim 35, wherein the register allocator includes:
2	a scratch register allocator to allocate scratch registers to live ranges that do not
3	span a function call;

- 4 a preserved register allocator to allocate preserved registers to live ranges that
- 5 span a function call; and
- a tentative register allocator to allocate either a scratch or a preserved register to
- 7 live ranges that are not immediately known whether or not they span a function call.