Introduction to the Gan-Gross-Prasad and Ichino-Ikeda conjectures I

Raphaël Beuzart-Plessis

Université d'Aix-Marseille

Arithmetic Geometry in Carthage, Summer School, June 2019

Hecke theory

• Let $f \in S_2(N)$ cuspidal modular form of weight 2 level $N \geqslant 2$ i.e. $f : \mathcal{H} = \{Im(z) > 0\} \to \mathbb{C}$ holom st

$$f(\frac{az+b}{cz+d}) = (cz+d)^2 f(z), \ \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) = \{ \gamma \in SL_2(\mathbb{Z}) \ | \ \gamma \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} [N] \}$$

and f "vanishes at the cusps". Fourier expansion : $f = \sum_{n \ge 1} a_n q^n$, $q = e^{2i\pi z}$.

• $Y_0(N) = \Gamma_0(N) \setminus \mathcal{H} \hookrightarrow X_0(N) = \Gamma_0(N) \setminus \mathcal{H}^*$ where $\mathcal{H}^* = \mathcal{H} \cup \mathbf{P}^1(\mathbb{Q})$ the completed modular curve of level N. Then

$$S_2(N) \simeq \Omega^1(X_0(N)), \ f \mapsto \omega_f = f(z)dz.$$

• *L*-function : $L(s, f) = \sum_{n \geqslant 1} \frac{a_n}{n^s}$ ($\Re(s) > 2$). Then, we have (Hecke)

$$(2\pi)^{-s}\Gamma(s)L(s,f)=\int_0^\infty f(iy)y^sd^\times y.$$

 \Rightarrow L(s, f) has analytic contn to \mathbb{C} and a functional eqn $s \leftrightarrow 2 - s$.

Hecke operators and Euler factorization

• Hecke operators : $T_p \curvearrowright S_2(N) = \Omega^1(X_0(N)), p \nmid N$ prime, given by the correspondence

$$X_0(N) \underset{\alpha}{\longleftarrow} X_0(pN) \xrightarrow{\beta} X_0(N)$$
$$\omega_{T_pf} = \beta_* \alpha^* \omega_f,$$

where α is induced from identity and β from $z \mapsto \begin{pmatrix} p & \\ & 1 \end{pmatrix}$.z = pz.

• Eulerian product : if f is eigen for all Hecke operators, new (i.e. does not come by pullback from $X_0(M)$, $M \mid N \mid M \neq N$) and normalized ($a_1 = 1$) then

$$L(s, f) = \prod_{p} (1 - a_p p^{-s} + \mathbf{1}_N(p) p^{1-2s})^{-1}, \quad \Re(s) > 2$$

where $\mathbf{1}_N(p)=1$ if $p\nmid N$ and 0 otherwise. Moreover, in this case the FE takes the form

$$N^{s/2}(2\pi)^{-s}\Gamma(s)L(s,f)=arepsilon(f)N^{1-s/2}(2\pi)^{s-2}\Gamma(2-s)L(2-s,f)$$
 with $arepsilon(f)=\pm 1$.

Relation to elliptic curves

• Let $E: y^2 = x^3 + ax + b$, $4a^3 + 27b^2 \neq 0$, an elliptic curve over \mathbb{Q} . We define its *L*-function:

$$L(s, E) = \prod_{p} (1 - a_p p^{-s} + \mathbf{1}_N(p) p^{1-2s})^{-1}, \quad \Re(s) > 3/2$$

where N is the conductor and $a_p = p - |E(\mathbb{F}_p)|$ for almost all p.

Theorem (Wiles, Taylor-Wiles, BCDT)

There exists a normalized new Hecke-eigenform $f_E \in S_2(N)$ st

$$L(s, f_E) = L(s, E).$$

• Application : L(s, E) has analytic contn and a FE.

• Hecke's integral formula at s = 1 (central point) gives

$$L(1,f) = 2\pi \int_0^\infty f(iy)yd^{\times}y = -2i\pi \int_0^{i\infty} \omega_f.$$

• Application (Manin-Drinfeld) : for E/\mathbb{Q} elliptic curve we have

$$\frac{\textit{L}(\textit{E},1)}{\Omega_{\textit{E}}} \in \mathbb{Q}$$

where $\Omega_E = \int_{E(\mathbb{R})} \omega$ for $\omega \in \Omega^1(E/\mathbb{Q})$.

Waldspurger's formula

• $f \in S_2(N)$ new Hecke-eigenform and K/\mathbb{Q} imaginary quadratic of disc D. We consider the "base-change" L-function

$$L(s, f_K) = L(s, f)L(s, f \times \chi_K)$$

where $\chi_K : (\mathbb{Z}/D\mathbb{Z})^{\times} \to \{\pm 1\}.$

- Assume *N* prod of an odd number of distinct inert primes in $K \Rightarrow \varepsilon(f_K) = +1$.
- B: unique quaternion alg $/\mathbb{Q}$ st $B_{\infty} := B \otimes \mathbb{R} \simeq \mathbb{H}$, $B_p := B \otimes \mathbb{Q}_p$ division alg for $p \mid N$ and $B_p \simeq M_2(\mathbb{Q}_p)$ otherwise. Let $O_B \subset B$ max order and $Cl(O_B)$ its set of right ideal classes.
- Jacquet-Langlands : $\exists f' : Cl(O_B) \to \mathbb{C}$ with "same Hecke-eigenvalues as f".
- $\exists K \hookrightarrow B \text{ st } O_K \subset O_B \leadsto Cl(O_K) \to Cl(O_B), l \mapsto lO.$ Waldspurger's period :

$$y_K = \sum_{x \in C'(\Omega_1)} f'(x).|Aut(x)|$$

where $Aut(x) = \{ \gamma \in B^{\times} \mid \gamma x = x \} / O_{\kappa}^{\times}$.

- Waldspurger/Gross : $L(1, f_K) = |D|^{-1/2} \frac{(f, f)}{(f', f')} |y_K|^2$ where (f, f) and (f', f') are the L^2 -scalar products of f and f'.
- Applications : $L(1, f_K) \ge 0$, BSD in rank 0, p-adic L-fns...

- y_K and $\int_0^\infty f(iy)y^{k/2}d^{\times}y$ are classical realizations of "automorphic periods".
- The formulas of Hecke and Waldspurger generalize to higher rank groups :

Hecke → Rankin-Selberg theory

Waldspurger \rightarrow Gan-Gross-Prasad conjecture.

• Here we were dealing with the group GL(2) in the background. When restated in the appropriate adelic/automorphic setting we will see GL(2) in the foreground an the two formulas will look very similar.

Restatement of Hecke's and Waldspurger's formulas

- $\mathbb{A} = \mathbb{R} \times \prod_{p}' \mathbb{Q}_{p} = \{(x_{\infty}, (x_{p})_{p}) \in \mathbb{R} \times \prod_{p}' \mathbb{Q}_{p} \mid x_{p} \in \mathbb{Z}_{p} \text{ for a.a. } p\}$ the adèle ring of \mathbb{Q} , we have a diagonal embedding $\mathbb{Q} \hookrightarrow \mathbb{A}$;
- $f \in S_2(N)$ corresponds to a *smooth* function $\phi : \operatorname{GL}_2(\mathbb{Q}) \setminus \operatorname{GL}_2(\mathbb{A}) \to \mathbb{C}$ which is rapidly decreasing and generating an irreducible $\operatorname{GL}_2(\mathbb{A})$ -irreducible repn π by right translations (such function is called a *cusp form* and π a *cuspidal* automorphic repn);
- Similarly $f': Cl(\mathcal{O}_B) \to \mathbb{C}$ corresponds to a cusp form ϕ' on $B^{\times} \setminus B_{\mathbb{A}}^{\times}$ generating a $B_{\mathbb{A}}^{\times}$ -irred repn π' where $B_{\mathbb{A}} = B \otimes \mathbb{A}$.
- We have

$$\mathsf{GL}_2(\mathbb{A}) = \mathsf{GL}_2(\mathbb{R}) \times \prod_{\rho}' \mathsf{GL}_2(\mathbb{Q}_{\rho}), \ \textit{B}_{\mathbb{A}}^{\times} = \textit{B}_{\infty}^{\times} \times \prod_{\rho}' \textit{B}_{\rho}^{\times}$$

and the repns π , π' decompose as (restricted) tensor products

$$\pi=\pi_\infty \otimes igotimes_{
ho}' \pi_{
ho} = igotimes_{
ho}' \pi_{
ho}, \ \ \pi'=igotimes_{
ho}' \pi'_{
ho}$$

where π_{ν} , π'_{ν} are irred repns of the local groups $\mathsf{GL}_2(\mathbb{Q}_{\nu})$, B_{ν}^{\times} (here $\mathbb{Q}_{\infty} = \mathbb{R}$).

• The condition that f and f' have the same Hecke eigenvalues now reads $\pi'_p \simeq \pi_p$ for $p \nmid N$ (where $B_p^{\times} \simeq \operatorname{GL}_2(\mathbb{Q}_p)$).

• Let $A := \begin{pmatrix} \star \\ \star \end{pmatrix} \simeq \mathbb{G}_m^2 \hookrightarrow \operatorname{GL}_2$ (split torus), $T := R_{K/\mathbb{Q}} \mathbb{G}_m \hookrightarrow B^{\times}$ ou GL_2 (non-split torus assoc to K, the embedding coming from $M_2(\mathbb{Q}) \hookleftarrow K \hookrightarrow B$).

Periods :

Hecke period
$$\mathcal{P}_A(\varphi) = \int_{A(\mathbb{Q}) \backslash A(\mathbb{A})/Z(\mathbb{A})} \varphi(a) da, \ \ \varphi \in \pi;$$

Waldspurger period
$$\mathscr{Q}_{\mathcal{T}}(\phi) = \int_{\mathcal{T}(\mathbb{Q}) \setminus \mathcal{T}(\mathbb{A}) \setminus \mathcal{T}(\mathbb{A})} \phi(t) dt, \ \ \phi \in \pi \ \text{ou} \ \pi'.$$

• In this adelic context Hecke's and Waldspurger's formulas become :

$$\begin{split} & \mathscr{P}_{A}(\phi) \sim L(\frac{1}{2},\pi) \prod_{\nu} \mathscr{P}_{A_{\nu}}(\phi_{\nu}), \ \phi = \otimes_{\nu}' \phi_{\nu} \in \pi = \bigotimes_{\nu}' \pi_{\nu}; \\ & |\mathscr{P}_{T}(\phi)|^{2} \sim \frac{L(\frac{1}{2},\pi_{K})}{L(1,\pi,Ad)} \prod_{\nu} \mathscr{P}_{T_{\nu}}(\phi_{\nu},\phi_{\nu}), \ \phi = \otimes_{\nu}' \phi_{\nu} \in \pi'. \end{split}$$

- Here $L(s,\pi)$, $L(s,\pi_K)$ and $L(s,\pi,\operatorname{Ad})$ are (completed) automorphic L-functions (always normalized so that 1/2 is the center of symmetry) and \mathcal{P}_{A_V} , \mathcal{P}_{T_V} are "local periods" which are $A_V = A(\mathbb{Q}_V)$ and $T_V = T(\mathbb{Q}_V)$ -invariant forms on π_V , π_V' .
- Once again the first formula admits a deformation to all $s \in \mathbb{C}$ giving an integral repn of the L-function. This is not true in the 2nd case.

Local periods and ε-factors

$$\mathscr{P}_{A}(\phi) \sim L(\frac{1}{2},\pi) \prod_{\nu} \mathscr{P}_{A_{\nu}}(\phi_{\nu}), \ \phi = \otimes_{\nu}' \phi_{\nu} \in \pi;$$

$$|\mathscr{P}_T(\phi)|^2 \sim \frac{L(\frac{1}{2},\pi_K)}{L(1,\pi,Ad)} \prod_{\nu} \mathscr{P}_{T_{\nu}}(\phi_{\nu},\phi_{\nu}), \ \phi = \otimes_{\nu}' \phi_{\nu} \in \pi'.$$

 \bullet The local periods $\mathcal{P}_{A_{\nu}}$ are always non-vanishing (for some choice of $\phi_{\nu}).$ Therefore

$$L(\frac{1}{2},\pi)\neq 0 \Leftrightarrow \mathcal{P}_A\mid_{\pi}\not\equiv 0.$$

• This is not true for $\mathcal{P}_{T_{\nu}}$. Instead we have

$$\mathcal{P}_{T_{\nu}} \not\equiv 0 \Leftrightarrow \mathsf{Hom}_{T_{\nu}}(\pi'_{\nu}, \mathbb{C}) \neq 0.$$

• $L(s,\pi_K)$ has a FE $s\leftrightarrow 1-s$ involving a global sign $\varepsilon(\pi_K)=\prod_{\nu}\varepsilon(\pi_{K,\nu})$.

Theorem (Tunnell, Saito)

$$\mathsf{Hom}_{\mathcal{T}_{\mathcal{V}}}(\pi'_{\mathcal{V}},\mathbb{C}) \neq 0 \Leftrightarrow \varepsilon(\pi_{K,\mathcal{V}}) = \left\{ egin{array}{ll} +1 & \textit{if } B_{\mathcal{V}} \simeq M_2(\mathbb{Q}_{\mathcal{V}}) \\ -1 & \textit{if } B_{\mathcal{V}} \textit{ is a div alg.} \end{array} \right.$$

Thus:

$$\mathscr{P}_{\mathcal{T}_{\nu}}\not\equiv 0 \Leftrightarrow \mathsf{Hom}_{\mathcal{T}_{\nu}}(\pi'_{\nu},\mathbb{C}) \not= 0 \Leftrightarrow \epsilon(\pi_{K,\nu}) = \left\{ \begin{array}{ll} +1 & \text{if } \mathcal{B}_{\nu} \simeq \mathit{M}_{2}(\mathbb{Q}_{\nu}) \\ -1 & \text{if } \mathcal{B}_{\nu} \text{ is a div alg.} \end{array} \right.$$

- Starting with π on $GL_2(\mathbb{A})$ we now look for a quaternion alg B/\mathbb{Q} st $\varepsilon(\pi_{K,\nu}) = -1$ precisely when $B_{\nu} \not\simeq M_2(\mathbb{Q}_{\nu})$.
- ullet By class field theory this is possible iff the number of such v is even i.e. iff

$$\epsilon(\pi_{\mathcal{K}}) = \prod_{\nu} \epsilon(\pi_{\mathcal{K},\nu}) = +1.$$

- If this is the case, by Jacquet-Langlands theory we can also transfer π to π' on $B_{\mathbb{A}}^{\times}$ (that is $\pi'_p \simeq \pi_p$ for a.a. p).
- If $\varepsilon(\pi_K) = -1$ then $L(\frac{1}{2}, \pi_K) = 0$ by the FE.
- All in all we obtain

$$L(\frac{1}{2},\pi_K) \neq 0 \Leftrightarrow \exists (B,\pi')$$
 "as before" st $\mathcal{P}_T \mid_{\pi'} \neq 0$

Moreover the pair (B, π') if it exists is unique.

Generalizations:

$$A/Z \simeq \operatorname{GL}_1 \hookrightarrow \operatorname{GL}_2 \leadsto \operatorname{GL}_n \hookrightarrow \operatorname{GL}_{n+1}$$
 (Rankin-Selberg)
$$(T/Z \hookrightarrow B^{\times}/Z) \simeq (SO(2) \hookrightarrow SO(3)) \text{ or } (U(1) \hookrightarrow PU(2))$$
 $\leadsto (SO(n) \hookrightarrow SO(n+1)) \text{ or } (U(n) \hookrightarrow U(n+1)) \text{ (Gan-Gross-Prasad)}.$

Aside on automorphic L-functions

- G/\mathbb{Q} (or any number field) connected reductive gp, $\pi = \bigotimes_{\nu}' \pi_{\nu} \hookrightarrow \mathcal{A}_{(cusp)}(G(\mathbb{Q}) \backslash G(\mathbb{A}))$ irred (cuspidal) autom repn;
- ${}^LG = \widehat{G} \rtimes Gal(K/\mathbb{Q})$ Langlands L-group (here \widehat{G} is a conn red gp/ \mathbb{C}). ex : ${}^LGL_n = GL_n(\mathbb{C}), {}^LU(n, K/\mathbb{Q}) = GL_n(\mathbb{C}) \rtimes Gal(K/\mathbb{Q})$ where K/\mathbb{Q} quad,

$$Gal(K/\mathbb{Q}) = \{1, c\} \text{ and } cgc^{-1} = J^tg^{-1}J^{-1} \text{ where } J = \begin{pmatrix} & & 1 \\ & & \ddots & \\ & & & \end{pmatrix};$$

- For a.a. p, π_p is "unramified" (i.e. $\pi_p^{G(\mathbb{Z}_p)} \neq 0$ for a "good" model G/\mathbb{Z}_p) and classified by a conj class $\mathcal{L}(\pi_p) \subset {}^LG$ (the *Langlands-Satake parameter*);
- To $r: {}^LG \to \operatorname{GL}_n(\mathbb{C})$ alg repn and S finite set of places st π_p unr for $p \notin S$, we associate a partial automorphic L-function

$$L^{\mathcal{S}}(s,\pi,r) = \prod_{\rho \notin \mathcal{S}} \det(1 - \mathcal{L}(\pi_{\rho})\rho^{-s})^{-1} = \prod_{\rho \notin \mathcal{S}} \mathcal{L}(s,\pi_{\rho},r), \ \Re(s) \gg 0;$$

- It's expected that $L^S(s,\pi,r)$ has analytic contrained, when completed by suitable Euler factors at places in S, a FE;
- ex: r = St: ${}^L GL_n = GL_n(\mathbb{C}) \to GL_n(\mathbb{C})$ yields $L^S(s,\pi) = L^S(s,\pi,St)$, $r = \otimes : {}^L (GL_n \times GL_m) = GL_n(\mathbb{C}) \times GL_m(\mathbb{C}) \to GL_{nm}(\mathbb{C})$ yields $L^S(s,\pi \times \sigma) = L^S(s,\pi \boxtimes \sigma,\otimes)$;

Automorphic *L*-functions continued

- In these cases completed *L*-functions $L(s,\pi)$ and $L(s,\pi\times\sigma)$ have been defined and studied by Godement-Jacquet and Jacquet-Piatetski-Shapiro-Shalika / Shahidi.
- Other example : $r = \operatorname{Ad}: {}^LG \to \operatorname{GL}(\operatorname{Lie}({}^LG)) = \operatorname{GL}(\operatorname{Lie}(\widehat{G}))$ (or modulo the center). By recent work of Arthur, Mok and Kaletha-Minguez-Shin-White +Shahidi, when G is classical (unitary, special orthogonal or symplectic) there is a completed L-function $L(s, \pi, \operatorname{Ad})$ with analytic contra and FE.

Rankin-Selberg theory (Jacquet, Piatetski-Shapiro, Shalika)

- Let $\sigma \hookrightarrow \mathcal{A}_{cusp}(GL_n(\mathbb{Q}) \backslash GL_n(\mathbb{A}))$, $\pi \hookrightarrow \mathcal{A}_{cusp}(GL_{n+1}(\mathbb{Q}) \backslash GL_{n+1}(\mathbb{A}))$ be cuspidal autom repns;
- Rankin-Selberg period :

$$\phi\otimes\phi'\in\sigma\otimes\pi\mapsto \textit{\mathcal{P}_{GL_n}}(\phi\otimes\phi'):=\int_{\textit{$GL_n(\mathbb{Q})\backslash\textit{$GL_n(\mathbb{A})$}}}\phi(\textit{h})\phi'(\textit{h})\textit{d}\textit{h}.$$

• Jacquet-Piatetski-Shapiro-Shalika : for $\phi=\otimes'_{\nu}\phi_{\nu}\in\sigma$ and $\phi'=\otimes'_{\nu}\phi'_{\nu}\in\pi$ we have

$$\mathscr{P}_{GL_n}(\phi \otimes \phi') = L(\frac{1}{2}, \sigma \times \pi) \prod_{\nu} \mathscr{P}_{GL_n, \nu}(\phi_{\nu} \otimes \phi'_{\nu})$$

for some local periods $\mathcal{P}_{GL_n,V}$ and where $L(s,\sigma \times \pi)$ is the (completed) tensor L-function.

- This identity actually comes from an integral representation of $L(s, \sigma \times \pi)$ which is also used to define Euler factors at bad primes and to show analytic contn.
- We recover Hecke's formula when n = 1 and $\sigma = 1$.
- Once again $\mathcal{P}_{\mathsf{GL}_n,v} \not\equiv 0$ for all v and therefore

$$L(1/2, \sigma \times \pi) \neq 0 \Leftrightarrow \mathcal{P}_{\mathsf{GL}_n} \mid_{\sigma \otimes \pi} \not\equiv 0.$$

Gan-Gross-Prasad conjecture for unitary groups

- Let K/\mathbb{Q} quad ext (not nec. imaginary), (V,h): n-diml Hermitian sp over K (i.e. the form h is non-deg, linear in the 1st variable and st $h(v,v')=\overline{h(v',v)}$).
- Set $V' := V \oplus^{\perp} K.e$ with h(e, e) = 1.
- $U(V) = \{g \in GL_K(V) \mid h(gv, gv') = h(v, v')\}$ and U(V') the corresp. unitary gps (seen as algebraic gps $/\mathbb{Q}$). Then $U(V) \hookrightarrow U(V')$.
- Let $\sigma \hookrightarrow \mathcal{A}_{cusp}(U(V)(\mathbb{Q}) \setminus U(V)(\mathbb{A}))$ and $\pi \hookrightarrow \mathcal{A}_{cusp}(U(V')(\mathbb{Q}) \setminus U(V')(\mathbb{A}))$ be cuspidal autom repns.
- GGP period :

$$\varphi \otimes \varphi' \in \sigma \otimes \pi \mapsto \mathcal{P}_{U(V)}(\varphi \otimes \varphi') := \int_{U(V)(\mathbb{Q}) \setminus U(V)(\mathbb{A})} \varphi(h) \varphi'(h) dh.$$

- As in the GL_2 case we need to vary the gps and representations : for V_0 another n-diml Herm space we have $V_p := V \otimes \mathbb{Q}_p \simeq V_{0,p}$ for a.a. p and we say that $\sigma_0 \hookrightarrow \mathcal{A}_{cusp}(U(V_0))$ is in the same L-packet as σ if $\sigma_p \simeq \sigma_{0,p}$ for a.a. p.
- This applies equality well to repns $\pi \hookrightarrow \mathcal{A}_{cusp}(U(V'))$ and $\pi_0 \hookrightarrow \mathcal{A}_{cusp}(U(V'_0))$ where $V'_0 = V_0 \oplus^{\perp} K.e.$
- Repns in the same *L*-packet share the same (automorphic) *L*-functions (as the Euler factors are the same for a.a. *p*).

- Let σ_K , π_K be the base-change of σ and π (Mok, Kaletha-Minguez-Shin-White) : these are automorphic repns on $\operatorname{GL}_n(K) \backslash \operatorname{GL}_n(\mathbb{A}_K)$ and $\operatorname{GL}_{n+1}(K) \backslash \operatorname{GL}_{n+1}(\mathbb{A}_K)$ whose components at a.a. p are given by an explicit recipe.
- Form their tensor *L*-function $L(s, \sigma_K \times \pi_K)$.

Conjecture (Gan-Gross-Prasad)

Assume that σ_K and π_K are 'generic'. The following are equivalent :

- ② There exist a n-diml Herm space V_0 and $\sigma_0 \hookrightarrow \mathcal{A}_{cusp}(U(V_0))$, $\pi_0 \hookrightarrow \mathcal{A}_{cusp}(U(V_0'))$ in the same L-packets as σ and π st $\mathcal{P}_{U(V_0)} \mid_{\sigma_0 \otimes \pi_0} \neq 0$.

Moreover the triple (V_0, σ_0, π_0) if it exists is unique.

Conjecture (Ichino-Ikeda, N.Harris)

For $\varphi = \otimes'_{\nu} \varphi_{\nu} \in \sigma$ and $\varphi' = \otimes'_{\nu} \varphi'_{\nu} \in \pi$, there is a 'precise' formula

$$|\mathscr{P}_{U(V)}(\phi \otimes \phi')|^2 \sim \frac{L(1/2,\sigma_K \times \pi_K)}{L(1,\sigma,\mathsf{Ad})L(1,\pi,\mathsf{Ad})} \prod_{\nu} \mathscr{P}_{U(V)_{\nu}}(\phi_{\nu} \otimes \phi'_{\nu},\phi_{\nu} \otimes \phi'_{\nu})$$

for some explicit local periods $\mathcal{P}_{U(V)_{V}}$ and where \sim means up to a rational factor and some abelian L-values.

Status

- The Gan-Gross-Prasad and Ichino-Ikeda conjectures are known under the restriction that (at least one of) $\sigma_{K,p}$ and $\pi_{K,p}$ are 'supercuspidal' for some prime p (W. Zhang, Z.Yun, H. Xue, B.-P.);
- Jiang-L.Zhang (after Ginzburg-Jiang-Rallis) have proved the implication $\mathcal{P}_{U(V)}|_{\sigma\otimes\pi}\neq 0 \Rightarrow L(1/2,\sigma_K\times\pi_K)\neq 0$ in general;
- Grobner-Lin: when K is imaginary, π , σ are tempered cohomological+other assumptions, the Ichino-Ikeda formula is true up to an algebraic number (which however might be zero).