Write Up for P4: Behavior Cloning

Files submitted	1
Files list	1
Functional code	1
Model architecture and training strategy	2
Architecture	2
Reduce overfitting & parameters tuning	3
Data creation	3
Track 1	3
Track 2	3
Data augmentation	4
Data process	4
Discussion	5

Files submitted

Files list

This document is a write up for the 4th project. My submission includes the following files: Git repository: https://github.com/mmarouen/CarND-Behavioral-Cloning-P3

- Model.py code for building and saving the model
- Model2.h5 2nd track model object
- WriteUp_P4_Behavior_Cloning.pdf Writeup, this file
- Model_generator.py includes a generator implementation. <u>Not used because very slow.</u> I keep it for reference.

Google drive: https://drive.google.com/open?id=1uAiaHx4QdtSlg7Rlr3NCusLo0iENRhwR

• Model1.h5 1st track model object (size > 25 mb)

Functional code

I wrote and trained the models on the environment provided by Udacity. For the first track, I trained using only the provided data (+ augmentations). So the first track model should duplicable.

I used the following folder structure:

```
-- CarND-Behavior-Cloning-P3
```

|--model.py

|--drive.py

|--video.py

--Data

I--IMG

|--driving_log.csv

--Data2

|--IMG

|--driving_log.csv

NB: **Data** and **Data2** contain data for track 1 and track 2 respectively. I could not mix both because of memory problems.

NB: Images URL in driving_log.csv must start with IMG/... not with absolute path

NB: URL for the data folder must be set in model.py via "file_url" line 14

```
13
14 file_url=',./data/'
```

⇒ To train the model: python model.py

NB: Please set epochs count as follows epochs=10 for first track, 20 for the second track

```
98 model.fit(Xtrain,ytrain,batch_size=48,shuffle=True,validation_split=0.2,epochs=10)
```

- ⇒ To drive the car on the 1st track: python drive.py model.h5
- ⇒ To drive the car on the 2nd track: python drive.py model2.h5

Model architecture and training strategy

Architecture

I used a model architecture inspired by AlexNet. The main ideas are:

- -Increase features depth + decrease image size, filter shape
- -Decrease image size by Maxpooling, Conv layer does not alter size I came to this architecture as follows:I started initially with 2 Conv layers I noticed that training error was not optimal.
- ⇒ So I started densifying the network by increasing features and adding some CONV layers.
- ⇒ Batch normalization + grayscale help the model generalize

Concerning nvidia structure:

I compared with the suggested nvidia architecture but I didn't notice an improvement. My explanation is that data collection process also plays an important role. I did not find enough information about that. So I prefer to keep below architecture

Name	Layer	Description	Output Shape
	Input	160x320x3	1
Preprocessing block	Scaling	Scale in [-1 1]	N_train x 160x320x3
	Convert to Gray	Convert images to grayscale	N_train x 160x320x1
	Cropping	Removes upper and bottom rows	N_train x 70x320x1
CONV 1	CONV 5x5	Stride: 1x1, same padding, filter depth: 16	N_train x 70x320x16
	BatchNorm → ReLU → Dropout 0.5		N_train x 70x320x16
	Max POOL 2x2	Stride: 2x2	N_train x 36x180x16
CONV 2	CONV 5x5	Stride: 1x1, same padding, filter depth: 32	N_train x 36x180x32
	BatchNorm → ReLU → Dropout 0.5		N_train x 36x180x32
	Max POOL 2x2	Stride: 2x2	N_train x 18x180x32
CONV 3	CONV 3x3	Stride: 1x1, same padding, filter depth: 64	N_train x 18x180x64
	BatchNorm → ReLU → Dropout 0.5		N_train x 18x180x64
	Max POOL 2x2	Stride: 2x2	N_train x 9x90x64
CONV 4	CONV 3x3	Stride: 1x1, same padding, filter depth: 64	N_train x 9x90x64
	BatchNorm → ReLU → Dropout 0.5		N_train x 9x90x64
	Max POOL 2x2	Stride: 2x2	N_trainx 4x45x64
FC1	Sigmoid \rightarrow BN \rightarrow ReLU \rightarrow Dropout 0.5		N_train x 128
FC2	Sigmoid \rightarrow BN \rightarrow ReLU \rightarrow Dropout 0.5		N_train x 64
FC3	Final layer		N_train x 1

Reduce overfitting & parameters tuning

I try to follow the following process to reduce overfitting and to increase generalization capability of the model:

- 1. Minimize training error independently from validation error:
 - a. Increase features volume
 - b. Increase layers count
 - c. Include batch normalization
 - d. Scale data in [-1 .. 1]
 - e. Convert to grayscale if the colors are not very relevant
 - f. Use efficient backprop techniques such as 'adam' optimizer

```
97 model.compile(optimizer='adam',loss='mse')
```

- g. Have more data
- h. Increase number of epochs
- ⇒ Eventually I reach a minimum error. That error becomes my target for the validation error
- 2. Minimize validation error to reach target error:
 - a. Gradually adding dropout layers + reduce keep_prob
 - b. Include batch normalization
 - c. Change mini batch size
 - d. Get more data
 - e. Increase number of epochs

Data creation

Track 1

I only used the provided data.

Track 2

I collected 11,123 frames corresponding to approximately 4 laps.

root@865a7e90f3b0:/home/workspace# wc -l data2/driving_log.csv
11123 data2/driving_log.csv

I try to keep the car centered in the lanes as follows:

I also include examples of recovering from left (read left → right)

Recovering from right (read left → right)

Data augmentation

The process of data augmentation is the same for both tracks. I follow the recommended approach presented in the course. It multiplies the count of total data by a factor of 6:

1. Use data from 3 cameras: Here's an example of the same frame from 3 cameras

2. Flip each frame vertically

Data process

Once data augmentation is finished, we endup with the following data quantity:

	Track 1	Track 2
Total raw	8,037	11,123
Total augmented	48,222	66,738
Training (80%)	38,577	53,390
Validation (20%)	9,645	13,348

Discussion

This project was beneficial for me to apply neural network modeling on Keras and using car driving data, I think that this is a very interesting E2E application.

I have 2 remarks:

- I believe that it's better to split the validation data **before** augmentation. That way, we make sure that validation data is exactly the real distribution.
- I tried generators but it was very slow even after tweaking some parameters of *fit generator* function. One epoch takes around 5h!