STAT72000 — Probability and Statistics

LECTURE 10 - POINT ESTIMATION AND INTERVAL ESTIMATION

Recap:

- ☐ Continuous Variable Distributions
- ☐ Discrete Variable Distributions
- Population and Sample

Agenda

- Point Estimation
- ☐ The Central Limit Theorem
- ☐ Interval Estimation

- •Population: A population is a complete collection of the entire set of objects under investigation. e.g. population of families, students, birds...
- **Parameter:** the numbers that describe characteristics of scores in the population

- Sample: A sample is usually drawn from the population for study.
- •Statistics: the numbers that describe characteristics of scores in the sample

Let $X_1, X_2, ..., X_n$ be random samples from a population:

- The sample mean \overline{X} is used to estimate the population mean μ
- The sample variance s^2 is used to estimate the population variance σ^2
- If we know $X \sim Bin(n, p)$, the sample proportion $\hat{p} = \frac{X}{n}$ is used to estimate the unknown population proportion p
- A quantity calculated from data, is called a statistic.
- The statistic that is used to estimate an unknown constant(parameter) of a distribution is called a point estimator.
- e.g. $\hat{p} = \frac{X}{n}$ is called a *point estimator* of p, or simply called *estimator*.

If X and Y are discrete random variables:

Measure	Parameters (Population)	Statistic (Sample)		
Mean: E(X)	$\mu = \sum_{i=1}^{N} X_i \cdot p(X_i)$	$\hat{\mu} = \bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$		
Variance: V(X)	$\sigma^2 = E[(X - E(X))^2]$ = $\sum_{i=1}^{N} (X_i - \mu)^2 \cdot p(X_i)$	$\hat{\sigma}^2 = s^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$		
Sd. Deviation: sd(X)	$\sigma = \sqrt{\sigma^2}$	$S=\sqrt{S^2}; \qquad \hat{\sigma}=\sqrt{\hat{\sigma}^2}$		
Covariance: Cov(X,Y)	$\sigma_{X,Y} = E[(X - E(X)(Y - E(Y))] = \sum_{i=1}^{N} (X_i - \mu_X)(Y_i - \mu_Y) \cdot p(X_i, Y_i)$	$\hat{\sigma}_{X,Y} = s_{X,Y} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n-1}$		
Correlation Coefficient: Cor(X,Y)	$r_{X,Y} = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y}$	$\hat{r}_{X,Y} = \frac{\hat{\sigma}_{X,Y}}{\hat{\sigma}_X \hat{\sigma}_Y}$		

Point Estimation - Example

An automobile manufacturer has developed a new type of bumper, which is supposed to absorb impacts with less damage than previous bumpers. The manufacturer has used this bumper in a sequence of **25** controlled crashes against a wall, each at 10 mph, using one of its compact car models.

- Let X the number of crashes that result in no visible damage. If X is observed to be x=15.
- Estimate p, the proportion of all such crashes that result in no damage
 - Estimator: $\hat{p} = \frac{X}{n} = \frac{15}{25} = 0.6$
 - In most problem, there will be more than on estimator.

How good is a point estimator?

- Bias of Estimator
- Variance of Estimator
- Mean Squared Error (MSE)

Measure the Goodness of an Estimator

Ideally, an estimator should be both accurate and precise.

- Accuracy: How close an estimated value is to the true value. The accuracy of an estimator is measured by its bias. If E(θ̂) = θ, then the estimator is said to be unbiased (θ is parameter, θ̂ is an estimator).
- Precision: How close estimated values are to each other; Usually refers to the stability of an estimate result. The precision is measured by its standard deviation, or uncertainty.

Unbiased Estimator

Definition:

- Unbiased estimator: The point estimator $\hat{\theta}$ is an unbiased estimator for the parameter θ , if $E(\hat{\theta}) = \theta$.
- Bias: if the estimator is not unbiased, then the difference $(E(\hat{\theta}) \theta)$ is called the bias.

 $\hat{\theta}_1$ is a biased estimator; $\hat{\theta}_2$ is an unbiased estimator

Estimators with Minimum Variance

The variance of an estimator is a measure of how much the estimator varies from sample to sample:

$$Var(\hat{\theta}) = E(\hat{\theta}^2) - \left[E(\hat{\theta})\right]^2$$

- $\geq \hat{\theta}_1$ is a better estimator (with smaller variance than the $\hat{\theta}_2$)
- > Ideally a good estimator is the minimum variance unbiased estimator (MVUE)

Mean Squared Error (MSE)

The **Mean Squared Error (MSE)** is the most often used to evaluate the overall goodness of an estimator, which combines the bias and variance (uncertainty)

• Let θ be a parameter, and $\hat{\theta}$ as an estimator of θ :

•
$$MSE = E\left[\left(\hat{\theta} - \theta\right)^2\right] = \left[E(\hat{\theta} - \theta)\right]^2 + \sigma_{\hat{\theta}}^2 = Bias^2 + Var(\hat{\theta})$$

MSE - Example

Let $X \sim Bin(n, p)$, where p is unknown.

Find the MSE of the estimator: $\hat{p} = \frac{X}{n} = \frac{\text{\# of successes}}{\text{\# of trials}}$

- Figure Given $X \sim Bin(n, p)$, we have: $\mu_X = np$, $\sigma_X^2 = p(1 p)$
- $\triangleright MSE_{\hat{p}} = bias^2 + var(\hat{p})$
 - ightharpoonup bias: $E(\hat{p}) = E\left(\frac{X}{n}\right) = \frac{E(X)}{n} = \frac{np}{n} = p$, so the bias = 0
 - $ightharpoonup ext{var}(\hat{p}) = E[\hat{p}^2] [E(\hat{p})]^2 = E\left[\left(\frac{X}{n}\right)^2\right] \left[E\left(\frac{X}{n}\right)\right]^2 = \frac{1}{n^2}[E(X^2) [E(X)]^2] = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n}$
 - $> MSE_{\hat{p}} = 0 + \frac{p(1-p)}{n} = \frac{p(1-p)}{n}$
 - > When n is increased, MSE decreased.

The **Central Limit Theorem** is by far the most important result in statistics!

Main Idea: If we draw a large enough sample from a population, then the distribution of the sample mean is approximately normal distribution, no matter what population the sample was drawn from.

Given: Let $X_1, X_2, ... X_n$ be a simple random sample drawn from a population with mean μ and variance σ^2 .

- Let the sample mean be: $\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$
- Draw many rounds of such samples, we have $\overline{X}1, \overline{X}2, ... \overline{X}s$, then \overline{X} approaches to a **Normal Distribution**, with mean equals to μ and variance equals $\frac{\sigma^2}{n}$
- Approximately, $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$

Law of Large Numbers

- •Draw observations at random from any population (any types of distributions) with finite mean μ .
- •If you take samples of **larger and larger size** from any population, then the **mean of the sampling** distribution, tends to get closer and closer to the true population mean, μ

The value of sample size n: how large is large enough?

- If the sample is drawn from a nearly **symmetric distribution**, the normal approximation can be good even for a fairly small value of n, (n>5).
- If the population is heavily skewed, a fairly large n may be necessary (n>30).

- **❖** Central Limit Theorem: As *n* gets larger and larger, the **sample means** follow a normal distribution.
- ❖ The larger n gets, the smaller the standard deviation of the sample means distribution gets.
- * $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$

Example

Let X denote the number of flaws in a 1-inch length of copper wire. The **probability mass function (PMF)** of X is presented in the table.

One hundred wires are sampled from this population. What is the probability that **the average number** of flaws per wire in this sample is less than 0.5?

Х	P(X=x)
0	0.48
1	0.39
2	0.12
3	0.01

Example

$$\mu = \sum x P(X = x) = 0.66$$

$$\rho = \sigma^2 = \sum x^2 P(X = x) - \mu^2 = 0.5244$$

\triangleright the average number of flaws of 100 wires: \overline{X}	$\overline{V}_{-N}(u^{\sigma^2}) \rightarrow \overline{V}_{-N}(0.66)$	0.5244
the average number of haws of 100 wires. A	$\Lambda \sim N(\mu, \frac{\pi}{n}) = \lambda \Lambda \sim N(0.00)$, 100

Find
$$P(\overline{X} < 0.5) \Rightarrow Z = \frac{x-u}{\sigma} = \frac{0.5-0.66}{\sqrt{0.005244}} = -2.21$$

> Therefore, $P(\overline{X} < 0.5) = P(Z < -2.21) = 0.0136$ (look up the z-table)

Only very low probability (1.36%) that 100 samples' average flaws per wire is less than 0.5.

X	P(X=x)
0	0.48
1	0.39
2	0.12
3	0.01

Exercise

At a college, the mean age of the students is 22.3 years, and the standard deviation is 4 years. A random sample of 64 students is drawn.

• What is the probability that the average age of these 64 students is greater than 23 years?

Exercise

- Distribution Properties of X: $\mu = 22.3$, $\sigma^2 = 4^2 = 16$
- The average of 64 samples: $\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow \overline{X} \sim N(22.3, (\frac{16}{64} = 0.25))$
- Find $P(\overline{X} > 23)$
 - $Z = \frac{x-u}{\sigma} = \frac{23-22.3}{\sqrt{0.25}} = 1.4$
 - $P(\overline{X} > 23) \Rightarrow P(Z > 1.4) \Rightarrow P(Z < -1.4) \Rightarrow \text{lookup the z-table} = 0.0808$

Therefore, the probability is 0.0808 that the average age of these 64 students is greater than 23 years

Interval Estimation

Point Estimate v.s. Interval Estimate

- ■A **point estimate**, because it is a single number, by itself provides no information about the precision and reliability of estimation. almost never exactly equal to the true values they are estimating.
- •An alternative to reporting a single sensible value for the parameter being estimated, is to calculate and report an interval of plausible values an **interval estimate** or confidence interval (CI)

Large Sample Confidence Intervals for a Population Mean

Review: The Central Limit Theorem:

- Let $X_1, X_2, ... X_n$ be a random sample drawn from a population with mean μ and variance σ^2
- Then the sample mean: $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$
 - $\square \mu$: population mean
 - $\square \sigma^2$: population variance
 - $\Box \frac{\sigma^2}{n}$: sample-mean's variance

Example: Assume that a large number of independent measurements, all using the same procedure, are made on the diameter of a mechanical component.

The **sample mean** of the measurements is **14.0** cm, and the **standard deviation** of the sample mean is **0.1** cm. Assume that the measurements are unbiased.

- The true diameter of the piston is **not** exactly equal to the sample mean of 14.0 cm
- The sample mean comes from a normal distribution, so the **standard deviation** can be used to determine how close it is likely to be to the true diameter.

The **sample mean** of the measurements is **14.0** cm, and the **standard deviation** of the sample mean is **0.1** cm.

Assume that the measurements are unbiased.

- ➤ The true diameter falls in the interval of (13.7, 14.3) with 99.7% confidence.
- The true diameter falls in the interval of (13.9, 14.1) with 68% confidence.

Example: A quality-control engineer wants to estimate the mean of weight of boxes that have been filled with cereal by a certain machine. He draws a simple random sample of **100** boxes from the production line that have been filled by that machine.

- He computes the average weight of the 100 boxes, which is $\overline{X} = 12.05$ oz, and the sample standard deviation is s = 0.1 oz.
- The population mean will not be exactly equal to the sample mean 12.05oz. So it is best to conduct a confidence interval around the 12.05, that is likely to cover the population mean

- μ : population mean
- σ^2 : population variance
- Given sample-mean: $\overline{X} = 12.05$, sample variance: $s^2 = 0.1^2 = 0.01$
- According to the Central Limit Theorem: the sample mean \overline{X} follows a normal distribution: $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$
- Approximate σ^2 with sample variance s^2
- Therefore, the sample mean $\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) => \overline{X} \sim N(\mu, \frac{0.01}{100})$
- With confidence at 95% level, $-1.96 < \frac{\overline{X} \mu}{\sqrt{\frac{0.01}{100}}} < 1.96$
- = > The population mean 95% interval: (12.0304, 12.0696)

Confidence Interval for population mean

The 95% confidence interval (CI) for μ can be expressed as:

$$(\overline{X} - 1.96 * \frac{\sigma}{\sqrt{n}}) < \mu < (\overline{X} + 1.96 * \frac{\sigma}{\sqrt{n}})$$

 $\blacksquare \left(\overline{X} - 1.96 * \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 * \frac{\sigma}{\sqrt{n}}\right)$ is the 95% Confidence Interval for population mean μ

Let $X_1, ..., X_n$ be a large (n>30) random sample from a population with mean μ and standard deviation σ , so that \overline{X} is approximately normal.

- Then a level $100(1-\alpha)\%$ confidence interval for μ is $\overline{X} \pm Z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$
- When the value of σ is unknown, it can be replaced with the sample standard deviation s.

Important Values of CI:

 $\overline{X} \pm 1 * \frac{\sigma}{\sqrt{n}}$ is the 68% confidence interval

$$\overline{X} \pm 1.645 * \frac{\sigma}{\sqrt{n}}$$
 is the 90% CI

$$\overline{X} \pm 1.96 * \frac{\sigma}{\sqrt{n}}$$
 is the 95% CI

$$\overline{X} \pm 2.58 * \frac{\sigma}{\sqrt{n}}$$
 is the 99% CI

$$\overline{X} \pm 3 * \frac{\sigma}{\sqrt{n}}$$
 is the 99.7% CI

Exercise

In a sample of 50 microdrills drilling a low-carbon alloy steel, the average lifetime was 12.68 with a standard deviation of 6.83.

- 1) Find the 95% confidence interval for the mean lifetime
- 2) Find the 80% confidence interval for the mean lifetime

Exercise

Given: n=50, \overline{X} =12.68, s=6.83

Question: find 95% CI and 80% CI

- ightharpoonup Formula is $\overline{X} \pm Z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$
- > 95% CI => $\alpha = 0.05 => z_{\alpha/2} = z_{0.025} = 1.96$
- ightharpoonup the 95% CI is: $12.68 \pm 1.96 * \frac{6.83}{\sqrt{50}} = 12.68 \pm 1.89$
- > the 95% interval is: (10.79, 14.57)

Small-sample Confidence Interval for Population Mean

- Sample size is large (n>30), central limit theorem, population mean approximates normal distribution
- Sample size is small: sample variance may not be close to population variance, population mean may not be approximately a normal distribution.

Student's t-Distribution

- Student's t-distribution with (n-1) degrees of freedom, is denoted as $t_{n-1} = \frac{X \mu}{s/\sqrt{n}}$
- **t-distribution** is a type of normal distribution that is used for small sample size.

■ **Definition:** Let $X_1, X_2, ... X_n$ be a small (e.g. n<30) sample from a **normal** population with mean μ . Then the quantity $\frac{\overline{X} - \mu}{s/\sqrt{n}}$ has a student's t distribution with (n-1) degrees of freedom, denoted as t_{n-1}

Z-score vs. T-score

$$\quad \blacksquare \ \, \mathsf{Z}\text{-}score = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$$

• t-score =
$$\frac{\overline{X} - \mu}{s/\sqrt{n}}$$

T-table

- v degrees of freedom (n-1)
- α the confidence level

	α								
ν	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.733	4.073