The asymptotic behaviour of coefficients of large powers of functions.

Danièle GARDY *
L.R.I., CNRS-URA 410,
Bât. 490, Université Paris XI,
91405 Orsay Cedex, France

Abstract

We review existing results on the asymptotic approximation of the coefficient of order n of a function $f(z)^d$, when n and d grow large while staying roughly proportional. Then we present extensions of these results to allow more general relationships between n and d and to take into account a multiplicative factor $\psi(z)$.

1 Introduction

Generating functions of the type $\phi(z) = f(z)^d$, where f is a given function with positive coefficients and d is a parameter which tends to infinity, appear in several problems of discrete probability theory, combinatorial enumeration, etc. These problems often require an estimate of the n^{th} coefficient of f^d , which we denote by $[z^n]\{f(z)^d\}$, for large n and d.

For example, let X_1, \dots, X_d be d random variables, independent and with the same probability distribution defined by the generating function f(z). Their sum $S_d = \sum_{i=1}^d X_i$ has for generating function $f^d(z)$, whose coefficient of order n is the probability $\Pr(S_d = n)$. The average value of S_d is d f'(1), and its variance is also of order d. The situations where n = d $f'(1) + o(\sqrt{d})$, n = o(d) or d = o(n) describe the behaviour of the sum respectively close to the mean (in a range where the central limit theorem applies), before or beyond the mean (in an area of large deviations).

Coefficients of the type $[z^n]\{f^d(z)\}$ appear for example in asymptotic coding theory [10], in the evaluation of some parameters on forests of trees [17, 21], in the evaluation of diagonal coefficients of some bivariate functions F(z,u), and in a class of asymptotic

^{*}This work was partially researched while visiting at the Computer Science Department of Brown University, Providence R.I. 02912 (U.S.A.), and partially supported by the PRC-CNRS Mathématique-Informatique and by ESPRIT-II Basic Research Action No. 3075 (project ALCOM).

distributions related to urn models, which require computing the coefficient $[y^n]\{f(x,y)^d\}$ of a bivariate function: See [14, 15] for a survey of results on urn models and [7, 9] for some applications to relational database theory. Related problems also appear in the evaluation of trie parameters [5] or of the number of lattice points in a ball [16, 20], and in the analysis of a random walk on an hypercube [4].

The present paper is intended as a survey of results on the asymptotic estimation of coefficients of the type $[z^n]\{f^d(z)\}$; it also presents some as yet unpublished results. Its plan is as follows: In order to unify the presentation, we introduce some notations, then recall the basis of the main technic (a saddle-point approximation) in Section 2. Section 3 presents results pertaining to the asymptotic approximation of $[z^n]\{f(z)^d\}$, for large n and d growing at a similar rate. We then extend these results to allow different growth rates for n and d. In Section 4, we allow a multiplicative factor $\psi(z)$ and study the coefficient $[z^n]\{f(z)^d\psi(z)\}$. Finally we indicate some applications, mostly related to urn models and Stirling numbers, in Section 5.

2 Notations and methods

2.1 Notations

We consider in this paper functions of one variable which have a power series expansion $f(z) = \sum_{k\geq 0} f_k z^k$. We assume in the sequel that the function f satisfies the following property:

Assumption A_1 :

The function f has real positive coefficients with $f_0 \neq 0$ and $f_1 \neq 0$, and a strictly positive, possibly infinite, radius of convergence R. Its coefficients are such that $GCD\{k: f_k \neq 0\} = 1$.

The condition on the GCD can be stated in an equivalent form: There exists no entire function g and no integer $m \geq 2$ such that $f(z) = g(z^m)$. The condition on f_0 simply means that when f(z) has valuation p, we can factor out z^p : If $f(z) = z^p(f_0 + f_1z + \cdots)$, then $f^d(z) = z^{dp}(f_0 + f_1z + \cdots)^p$. The restriction on f_1 is a technical one, which might be removed, but this extension implies more restrictive conditions on the relative growths of n and d than those given in some theorems of this paper.

To simplify the notations in the sequel, we define two operators on a function f:

$$\Delta f(z)=z\frac{f'}{f}(z); \qquad \delta f(z)=\frac{f''}{f}(z)-\frac{f'^2}{f^2}(z)+\frac{f'(z)}{zf(z)}.$$

These operators are related by: $z\delta f(z) = (\Delta f)'(z)$. When the function f has real positive coefficients, it is not difficult to show that, for all real positive z smaller than R, the radius of convergence of f, the value of $\delta f(z)$ is strictly positive and the function Δf is increasing.

2.2 The saddle-point approximation

Before studying a function $f^d(z)$, we first recall results valid for any analytic function ϕ . Its coefficient of order n is given by Cauchy's formula, where the integration contour is a closed curve around the origin of the complex plane which stays inside the convergence domain:

 $[z^n]\phi(z) = \frac{1}{2i\pi} \oint \phi(z) \frac{dz}{z^{n+1}}.$

We immediately deduce from it an upper bound $|[z^n]\phi(z)| \leq (1/2\pi) \oint |\phi(z)z^{-n-1}|dz$. Integrating on a circle of radius ρ smaller than the radius of convergence of ϕ gives $|[z^n]\phi(z)| \leq \phi(\rho)\rho^{-n}$, and the best (smallest) upper bound is obtained, when possible, for ρ such that $\rho\phi'(\rho)/\phi(\rho) = n$.

For example, let us assume that ϕ is the generating function of a random variable X, of mean μ , and let $n=(1+\delta)\mu$. Then $\Pr(X=n)=[z^n]\phi(z)$ is bounded from above by $\phi(\rho)\rho^{-n}$. Setting $\rho=e^t$ and using the fact that $\phi(e^t)=E(e^{tX})$, we get:

$$\Pr\left(X = (1+\delta)\mu\right) \le \frac{E(e^{tX})}{e^{t(1+\delta)\mu}}.$$

This is Chernoff's bound, which often gives useful information on the probability that a random variable is at distance at least $1 + \delta$ of its mean.

Now assume that X is itself obtained by summing d independent random variables with a common distribution: $\phi(z) = f^d(z)$. Then we have that $\Pr(X = n) \leq f^d(\rho)\rho^{-n}$, and this bound is tightest for ρ such that $\rho f'(\rho)/f(\rho) = n/d$.

The upper bound can be refined to give an approximation of $[z^n]\phi(z)$: Instead of bounding ϕ on the integration circle, we look closely at the points which give the main contribution to the integral. This is the basis of the saddle point method (see for example [3] for a general presentation and Hayman [13][22, Ch.5] for applications to the approximation of generating function coefficients). It turns out that, if we can choose for radius of the integration circle the point ρ defined by the equation $\rho\phi'(\rho)/\phi(\rho) = n$, the main part of the integral often comes from the vicinity of ρ , which is a saddle point. Defining $h(z) = \log \phi(z) - (n+1)\log z$, we get:

$$[z^n]\phi(z) = \frac{1}{2i\pi} \oint e^{h(z)} dz \approx \frac{e^{h(\rho)}}{\sqrt{2\pi h''(\rho)}} = \frac{\phi(\rho)}{\rho^{n+1} \sqrt{2\pi h''(\rho)}}.$$

This approximation holds for a large class of functions $\phi(z) = f^d(z)$, when n/d belongs to an interval [a, b] (0 < a < b) and $n, d \to +\infty$ [2, 11, 12].

The application of the saddle-point method to the asymptotic evaluation of coefficients of a function is closely related to Laplace's method for approximating an integral. Although this method is usually applied to integrals depending on one parameter, Fulks [6] and Pederson [19] have studied integrals depending on two parameters, which are in the same vein as the problem of evaluating $[z^n]\{f^d(z)\}$, where we have two parameters n and d.

3 Asymptotic approximations of coefficients

3.1 The case n constant

We include this case for the sake of completeness, although it presents no real difficulty. If n is constant, the saddle-point method does not work; however a direct analysis can give some information. For example, the following result simply means that the first coefficients of $f(z)^d$ behave as those of $(f_0 + f_1 z)^d$.

Theorem 1:

If the function f has real positive coefficients, such that $f_0 \neq 0$ and $f_1 \neq 0$, then, for $d \to +\infty$ and for any fixed n:

$$[z^n]\{f^d(z)\} = \binom{d}{n} f_0^{d-n} f_1^n (1 + O(1/d)).$$

This is proved by expanding the coefficient into a sum of (a fixed number of) multinomial coefficients, which are themselves easily approximated. If we allow n to grow, both the number of terms in the sum and the terms themselves are unbounded, and this proof no longer holds.

3.2 A general formula when $n = \Theta(d)$

The problem of finding the asymptotic value of $[z^n]\{f(z)^d\}$, when $n, d \to +\infty$ and n and d are roughly proportional, was studied for example by Daniels [2] and Greene and Knuth [12], mostly for probability generating functions. As noted by Good [11], this result is actually valid for a larger class of functions, such as entire functions or functions defined on an open disk; moreover it can be improved to give further terms of an asymptotic development. We give below the main result [2][11, p.868].

Theorem 2:

Let f be a function satisfying the assumption A_1 of Section 2.1, and let R be its radius of convergence. Assume that n/d belongs to an interval [a,b], 0 < a < b, and that $n,d \to +\infty$. Define ρ and σ^2 by $\Delta f(\rho) = n/d$ and $\sigma^2 = \rho^2 \delta f(\rho)$. If $\rho < R$, then:

$$[z^n]{f(z)^d} = \frac{f(\rho)^d}{\sigma \rho^n \sqrt{2\pi d}} (1 + o(1)).$$

We can simplify Theorem 2 further if n/d has a finite, non null, limit:

Corollary 1:

Under the assumptions of Theorem 1, if there exist two real strictly positive constants k and m such that n = kd + m, then:

$$[z^n]{f(z)^d} = \frac{A^d}{B\rho_0^m\sqrt{d}}(1+o(1)),$$

for suitable constants $A = f(\rho_0)\rho_0^{-k}$ and $B = \sigma\sqrt{2\pi}$, and with ρ_0 the solution (independent of n and d) of $\Delta f(z) = k$. Note that σ too is a constant: $\sigma^2 = \rho_0^2 \delta f(\rho_0)$. If n = kd, i.e. m = 0, then we have the simpler formula:

$$[z^n]{f(z)^d} = \frac{A^d}{B\sqrt{d}}(1+o(1)).$$

It is possible to get some information on the variation of the term A when the quotient n/d is finite and bounded away from 0. Let A = A(k) with k = n/d. On a closed interval of $]0, +\infty[$ including $\Delta f(1)$, A(k) is a unimodal function of k, first increasing then decreasing, with a maximum $A(\Delta f(1)) = f(1)$.

3.3 Function defined by an implicit equation

A recent paper by Meir and Moon [17] deals with the approximation of the coefficient of z^n in $f(z)^d$, when $d, n \to +\infty$ and d = O(n), and with f defined by an implicit equation: $f(z) = z\phi(f(z))$ and f(0) = 0. This improves on a former result by Flajolet and Steyaert [21], which was proved for d = o(n), more precisely for $d \le \sqrt{n}/\log^3(n)$. Meir and Moon give the following result:

Theorem 3:

Let ϕ be a function satisfying the assumption A_1 of Section 2.1 and define a function f by $f(z) = z\phi(f(z))$ and f(0) = 0. Let $d = \alpha n + \lambda\sqrt{n} + o(\sqrt{n})$, with α a constant such that $0 \le \alpha < 1$ and that $(\Delta\phi)^{-1}(1-\alpha)$ exists, and with λ a finite (positive or negative, possibly null) constant. Then, for $n, d \to +\infty$

$$[z^n]\{f(z)^d\} = \frac{d}{n\sigma\sqrt{2\pi n}}e^{-\lambda^2/2\sigma^2}\rho^{d-n}\phi(\rho)^n(1+o(1)),$$

where ρ is defined by $\Delta \phi(\rho) = 1 - \alpha$ and σ^2 by

$$\sigma^2 = \rho^2 \frac{\phi''(\rho)}{\phi(\rho)} + \alpha(1 - \alpha) = \rho^2 \delta \phi(\rho).$$

Meir and Moon actually prove in passing the following result:

$$[t^n]\{\phi(t)^d\} = \frac{e^{-\lambda^2/2\sigma^2}}{\sigma\sqrt{2\pi d}} \frac{\phi(\rho)^d}{\rho^n} (1+o(1)),$$

and their range of validity is for $n=(1-\alpha)d+\lambda\sqrt{d}+o(\sqrt{d})$. For $\alpha>0$, this is basically an extension of Theorem 2 (to allow $\lambda\neq 0$) applied to $n=kd+O(\sqrt{d})$ with a constant $k=1-\alpha$ in]0,1]. Theorem 3 is then obtained by an application of the Lagrange inversion formula:

 $[z^n]{f(z)^d} = \frac{d}{n}[t^{n-d}]{\phi(t)^n}.$

When $\alpha=0$ but $\lambda>0$, Theorem 3 gives an approximation valid for $d=\lambda\sqrt{n}(1+o(1))$, i.e. $d^2=\lambda^2n(1+o(1))$. If $\alpha=\lambda=0$, the result holds for $d=o(\sqrt{n})$ i.e. $d^2=o(n)$. This means that Meir and Moon have results for $d\approx\alpha n$ (when $\alpha\neq 0$) or for $d^2=O(n)$ (when $\alpha=0$). If $\lambda=0$ and $\alpha\neq 0$, and if we have $f(z)=z^qg(z)$ with $g(0)\neq 0$, then either one of Theorem 2 or Theorem 3 can be applied indifferently to evaluate the coefficient $[z^n]\{f^d(z)\}=[z^{n-qd}]\{g^d(z)\}$, for $d=\alpha n+o(\sqrt{n})$.

3.4 The case n = o(d)

We study now the case where d and n both grow large, but n stays much smaller than d. Theorem 4 is an extension of Theorem 2 to the case n = o(d).

Theorem 4:

Let f satisfy the assumption A_1 of Section 2.1 and let n = o(d), with $n, d \to +\infty$. Define ρ as the unique real positive solution of $\Delta f(z) = n/d$. Then:

$$[z^n]\{f(z)^d\} = \frac{f(\rho)^d}{\rho^n \sqrt{2\pi n}} (1 + o(1)).$$

Theorem 4 is proved by integrating on a circle going through the saddle point ρ , which becomes o(1) for n = o(d). The singularities are beyond the integration contour as soon as n and d are large enough. The detailed proof can be found in [8].

Theorem 4 is closely related to a result of Odlyzko and Richmond [18], which holds for a class of polynomials f, and for n and d such that, with q denoting the degree of f, $qd-n\to +\infty$. Their result covers the case n=o(d), when f is the generating function of a probability distribution with finite support.

If we have more information on the respective orders of growth of n and d, we can obtain a useful approximation of the saddle point ρ and give a more precise form of Theorem 4. The following corollary, for example, deals with the cases when $n = o(\sqrt{d})$ or $n = o(d^{2/3})$.

Corollary 2:

If f satisfies the assumption A_1 of Section 3.1 and if $n = o(\sqrt{d})$, with $n, d \to +\infty$, then:

$$[z^n]\{f^d(z)\} = \frac{f_0^d}{\sqrt{2\pi n}} \left(\frac{ef_1d}{f_0n}\right)^n (1 + o(1)) = \frac{f_0^d}{n!} \left(\frac{f_1d}{f_0}\right)^n (1 + o(1)).$$

If we only have the weaker condition $n = o(d^{2/3})$, then:

$$[z^n]\{f^d(z)\} = \frac{f_0^d}{\sqrt{2\pi n}} \left(\frac{ef_1d}{f_0n}\right)^n \exp\left(\frac{n^2}{d}(\frac{f_2}{f_1} - \frac{1}{2})\right) (1 + o(1)).$$

Intuitively, Corollary 2 means that, when $n = o(\sqrt{d})$, the first two coefficients of f determine the main term in the asymptotic expression of the coefficients of f^d . This result can be compared to the relevant one for an affine function (although an affine function does not satisfy assumption A_1): $[z^n]\{(f_0 + f_1z)^d\} = \binom{d}{n}f_0^{d-n}f_1^n$; Stirling's formula for the factorials gives an approximation equivalent to the first one of Corollary 2. When n increases with respect to d, the other coefficients are progressively introduced. As long as some relationship $n^l = o(d^q)$ holds, it is possible to get a result similar to Corollary 2. This requires a good approximation of the saddle point ρ , and might become quite involved according to which coefficients of f are null, but it would be possible to work it out for a given function f. However, if for example $n = d/\log d$, we cannot find a relationship $n^l = o(d^q)$ and we have to take all the coefficients of f into account.

3.5 The case d = o(n)

When the function f satisfies some functional equation, the result of Meir and Moon presented in Section 3.3 can sometimes be applied. More generally, we can prove analogs of Theorems 2 and 4 for some classes of functions, using similar technics.

Theorem 5:

Let $f(z)=e^{P(z)}$, where $P(z)=\sum_{0\leq i\leq q}P_iz^i$ is a polynomial of degree q with positive coefficients. Assume that the coefficients P_0 and P_1 are nonnull. If $n,d\to +\infty$ in such a way that d=o(n), define ρ as the unique real positive solution of zP'(z)=n/d. Then:

$$[z^n]\{e^{dP(z)}\} = \frac{e^{dP(\rho)}}{\rho^n\sqrt{2\pi n}}(1+o(1)).$$

If the function f is not entire, its singularities become important. For example, we can prove the following result for a meromorphic function with one pole on its circle of convergence:

Theorem 6:

Let f be a meromorphic function with positive coefficients, whose singularity of smallest modulus is a pole in 1: f(z) = g(z)/(1-z), where g is a function analytic for $|z| \le 1$. Assume that $f_1 \ne 0$, and define ρ by $\Delta f(\rho) = n/d$. Then, if d = o(n) and $n = o(d^{10/9})$, we have:

$$[z^n]\{f^d(z)\} = \sqrt{\frac{d}{2\pi}} \cdot \frac{f^d(\rho)}{n\rho^n} (1 + o(1)).$$

4 Introducing a factor $\psi(z)$

We now allow a multiplicative factor $\psi(z)$ and study $[z^n]\{f^d(z)\psi(z)\}$. The function ψ may itself depend on d or on other parameters, as long as the following property is satisfied:

Assumption A_2 :

The function ψ has positive coefficients, such that $\psi(0) \neq 0$, has a strictly positive radius of convergence, and either is fixed, or is a product of "large" powers of functions. In this case, it has the following form, where p is any fixed integer and the $d_i \to +\infty$:

$$\psi(z) = \prod_{i=1}^{p} g_i(z)^{d_i} \quad \text{with} \quad d_i = o(\frac{d}{\sqrt{n}}), 1 \le i \le p.$$
 (1)

We can justify the condition on ψ as follows: An extra factor $\psi(z)$ moves the saddle-point away from the value ρ_0 obtained for f^d ; this does not matter as long as the new saddle-point ρ stays close enough, within $o(1/\sqrt{n})$ of ρ_0 . The difference $\rho - \rho_0$ is $\Theta(\rho_0(\sum_i d_i/d))$, hence the condition (1).

We now present some theorems which extend the former ones to allow an extra factor ψ . Theorem 7 is an obvious extension of Theorem 1:

Theorem 7:

If f is a function with positive coefficients such that $f_0 \neq 0$ and $f_1 \neq 0$, and if the function ψ satisfies the assumption A_2 , then for n constant and $d \to +\infty$:

$$[z^n]\{f^d(z)\psi(z)\} = \binom{d}{n}f_0^{d-n}f_1^n\psi(0)(1+O(1/\sqrt{d})).$$

When n and d have the same growth rate, we can prove the following result, which is roughly Theorem 2 of [10] (the condition on ψ below is stronger than the assumption A_2):

Theorem 8:

Let f satisfy the assumption A_1 of Section 2.1, and let ψ be a function with positive coefficients and a strictly positive radius of convergence. Assume that the equation $\Delta f(z) = n/d$ has a real positive solution ρ smaller than the radius of convergence of f. Then, for $n, d \to +\infty$ and $n = \Theta(d)$:

$$[z^n]\{f^d(z)\psi(z)\} = \frac{f(\rho)^d \psi(\rho)}{\rho^{n+1} \sqrt{2\pi d \, \delta f(\rho)}} (1 + o(1)).$$

The case n = o(d) is settled by the following theorem, whose proof can be found in [8]:

Theorem 9:

Let f and ψ satisfy repectively the assumptions A_1 and A_2 and let n = o(d), with $n, d \to +\infty$. Define ρ as the unique real positive solution of $\Delta f(\rho) = n/d$. Then:

$$[z^{n}]\{f(z)^{d}\psi(z)\} = \frac{f(\rho)^{d} \cdot \psi(\rho)}{\rho^{n}\sqrt{2\pi n}}(1+o(1)).$$

If some relationship $n^l = o(d^q)$ holds, then we have the analog of Corollary 2:

Corollary 3:

If f satisfies the assumptions A_1 of Section 2.1, if ψ satisfies A_2 but with the stronger conditions $d_i = o(d/n)$, and if $n = o(\sqrt{d})$:

$$[z^n]\{f^d(z)\psi(z)\} = \psi(0)\frac{f_0^d}{\sqrt{2\pi n}}\cdot \left(\frac{ef_1d}{f_0n}\right)^n (1+o(1)).$$

If we only have $n = o(d^{2/3})$, then:

$$[z^n]\{f^d(z)\psi(z)\} = \psi(0)\frac{f_0^d}{\sqrt{2\pi n}} \left(\frac{ef_1d}{f_0n}\right)^n \exp\left(\frac{n^2}{d}(\frac{f_2}{f_1} - \frac{1}{2})\right) (1 + o(1)).$$

5 Some applications

An easy check of our formulæ is provided by the function $f(z) = e^z$. The saddle point is $\rho = n/d$ and we get, for $d \to +\infty$ and for n either fixed or going to infinity

$$[z^n]\{e^{dz}\}=d^m/n!=rac{e^nd^n}{n^n\sqrt{2\pi n}}(1+o(1)),$$

which is simply Stirling's formula for n!.

One of the basic constructions for obtaining combinatorial structures is to take a sequence of simpler objects. Let f(z) be the generating function enumerating these objects according to their size; the generating function enumerating the sequences of d basic objects, according to their global size, is $f(z)^d$, and the coefficient $[z^n]\{f(z)^d\}$ enumerates the number of sequences of d basic objects of size n. The same approach can also be used to analyze the abelian partitional complex, whose bivariate generating function has the form $\exp(xf(y))$.

However, we do not count the structures of size 0 and we have f(0) = 0 and $n \ge d$. Let us define f(y) = yg(y) with $g(0) \ne 0$; we have that $[z^n]\{f^d(z)\} = [z^{n-d}]\{g^d(z)\}$. The results presented above can now be applied to evaluate the number of composed objects of size $n \ge d$ which are a sequence of d simpler objects.

Classical examples are the Stirling numbers of the first and the second type. Stirling numbers of the first type enumerate, among other things, the number of permutations of n objects with k cycles; their exponential generating function is $\sum_{n,k} s_{n,k} x^k y^n / n! = \exp(x \log(1/1 - y))$; hence

$$s_{n,k} = \frac{n!}{k!} [y^{n-k}] \{ f(y)^k \}$$
 with $f(y) = \frac{1}{y} \log \frac{1}{1-y} = \sum_{n \ge 0} \frac{y^n}{n+1}$.

For example, we can get an asymptotic equivalent for n = k + o(k), or equivalently k = n - o(n), but still $n - k \to +\infty$. The saddle point ρ is approximately 2(n - k)/k and

Corollary 2 gives, for $n = k + o(\sqrt{k})$:

$$s_{n,k} = \frac{n!}{k!\sqrt{2\pi(n-k)}} \left(\frac{ek}{2(n-k)}\right)^{n-k} (1+o(1)),$$

i.e., using Stirling's approximation for (n-k)! backwards:

$$s_{n,k} = \binom{n}{k} (k/2)^{n-k} (1 + o(1)).$$

Let $S_{n,k}$ be a Stirling number of second type, enumerating for example the number of partitions of n objects into k blocks. These numbers have for exponential generating function $\sum_{n,k} S_{n,k} x^k y^n / n! = \exp(x(e^y - 1))$, hence

$$S_{n,k} = \frac{n!}{k!} [y^{n-k}] \{ f(y)^k \}$$
 with $f(y) = \frac{e^y - 1}{y} = \sum_{n \ge 0} \frac{y^n}{(n+1)!}$.

For $n = k + o(\sqrt{k})$ and $n - k \to +\infty$, Corollary 2 applied to f(y) gives

$$S_{n,k} = \frac{n!}{k!\sqrt{2\pi(n-k)}} \left(\frac{ek}{2(n-k)}\right)^{n-k} (1+o(1)) = \binom{n}{k} (k/2)^{n-k} (1+o(1)).$$

This asymptotic expression, which is also given for example in [1, p. 825], is the same as the one for the Stirling numbers of the first type: From Corollary 2, only f_0 and f_1 are important if $n-k=o(\sqrt{k})$. However, if the difference n-k is of order at least \sqrt{k} , the next coefficients become important. For example, if $n-k\to +\infty$ with only $n-k=o(k^{2/3})$, then the second part of Corollary 2 shows that the Stirling numbers of the first and second type have a different behaviour:

$$s_{n,k} = \binom{n}{k} (k/2)^{n-k} e^{(n-k)^2/6k} (1 + o(1));$$

$$S_{n,k} = \binom{n}{k} (k/2)^{n-k} e^{-(n-k)^2/6k} (1 + o(1)).$$

Stirling numbers of the second type also appear in a classical occupancy problem of discrete probability theory: We throw n balls into k urns randomly and independently; what is the number of urns with at least one ball? Let $N_{n,d}$ be the number of ways of assigning the n balls to exactly d urns. If the balls are undistinguishable and if the urns have unbounded capacity, the associated generating function is [14]:

$$\Phi(x,y) = \sum_{n,d} N_{n,d} x^d \frac{y^n}{n!} = (1 + x(e^y - 1))^k.$$

Let $f(y) = (e^y - 1)/y$; we have $N_{n,d} = n! \binom{k}{d} [y^{n-d}] \{f(y)^d\}$, which can be expressed using Stirling numbers of the second type: $N_{n,d} = d! \binom{k}{d} S_{n,d}$.

6 Conclusion

We have presented results on the asymptotic approximation of coefficients of the type $[z^n]\{f^d(z)\}$, with applications, and on the asymptotic approximation of the coefficient $[z^n]\{f^d(z)\psi(z)\}$; examples of applications using such coefficients can be found in [10]. Possible extensions include:

- Allowing the second coefficient of f to be null: $f_1 = 0$. This corresponds to a function $f(z) = 1 + f_2 z^2 + \cdots$. Preliminary studies indicate that such an extension considerably restricts the respective ranges of n and d.
- Allowing d = o(n) for more general functions than those considered in Section 3.5. Here again we may have to introduce further growth restrictions on n and d, depending on the singularities of the funtion f(z); we may also have to use a technic more adapted to the nature of the singularities than the saddle point method.
- Removing the restriction that ψ has positive coefficients. This does not seem to pose any real difficulty, as opposed to the fact that the similar condition on f is essential.
- Obtaining further terms of an asymptotic expansion. This is similar to the extension
 of the results of Daniels [2] by Good [11], and should not introduce major difficulties.

References

- M. ABRAMOWITZ and I. STEGUN. Handbook of Mathematical Functions. Dover, New York, 1964.
- [2] H.E. DANIELS. Saddlepoint approximations in statistics. Annals of Mathematical Statistics, 25:631-650, 1954.
- [3] N. G. deBRUIJN. Asymptotic Methods in Analysis. Dover, New York, 1981 (reprint).
- [4] P. DIACONIS, R.L.GRAHAM, and J.A. MORRISON. Asymptotic analysis of a random walk on a hypercube with many dimensions. *Random Structures and Algorithms*, 1(1):51-72, 1990.
- [5] P. FLAJOLET. On the performance evaluation of extendible hashing and trie searching. Acta Informatica, 20:345-369, 1983.
- [6] W. FULKS. A generalization of Laplace's method. American Mathematical Society Proceedings, 2(4):613-622, August 1951.
- [7] D. GARDY. Join sizes, urn models and normal limiting distributions. Technical Report 600, Laboratoire de Recherche en Informatique, Université de Paris-Sud, France, October 1990.

- [8] D. GARDY. On coefficients of powers of functions. Technical Report CS-91-53, Dept. of Computer Science, Brown University, Providence, R.I. (USA), August 1991.
- [9] D. GARDY. Normal limiting distributions for projection and semijoin sizes. SIAM Journal on Discrete Mathematics, 5(2), 1992.
- [10] D. GARDY and P. SOLE. Saddle-point techniques in asymptotic coding theory. In Algebraic Coding, First french-Soviet Workshop, pages 75-81, Paris, July 1991. Lecture Notes in Computer Science, Springer Verlag, No. 573.
- [11] I.J. GOOD. Saddle-point methods for the multinomial distribution. Annals of Mathematical Statistics, 28:861-881, 1957.
- [12] D.H. GREENE and D.E. KNUTH. Mathematics for the Analysis of Algorithms. Birkhäuser, 1982.
- [13] W.K. HAYMAN. A generalisation of Stirling's formula. Journal für die reine und angewandte Mathematik, 196:67-95, 1956.
- [14] N.L. JOHNSON and S. KOTZ. Urn models and their application. Wiley & Sons, 1977.
- [15] V. KOLCHIN, B. SEVAST'YANOV, and V. CHISTYAKOV. Random Allocations. Wiley & Sons, 1978.
- [16] J.E. MAZO and A.M. ODLYZKO. Lattice points in high-dimensional spheres. Technical report, AT&T Bell Laboratories, Murray Hill, USA, 1990.
- [17] A. MEIR and J.W. MOON. The asymptotic behaviour of coefficients of powers of certain generating functions. Journal Européen de Combinatoire, 11:581-587, 1990.
- [18] A.M. ODLYZKO and L.B. RICHMOND. On the unimodality of high convolutions of discrete distributions. Annals of Probability, 13(1):299-306, 1985.
- [19] R.N. PEDERSON. Laplace's method for two parameters. Pacific Journal of Mathematics, 15(2):585-596, 1965.
- [20] J.A. RUSH and N.J.A. SLOANE. Bound for packing superballs. Mathematika, 34:8-18, 1987.
- [21] J.-M. STEYAERT and P. FLAJOLET. Patterns and pattern-matching in trees: an analysis. Information and Control, 58(1-3):19-57, July/August/September 1983.
- [22] H.S. WILF. Generatingfunctionology. Academic Press, 1990.