Sistemas homogeneos.

Definición Un sistema de ecuaciones lineales se denomina *homogéneo* si el término constante en cada ecuación es cero.

$$a_{11} \chi_{1} + a_{12} \chi_{2} + \dots + a_{1n} \chi_{n} = 0$$

$$a_{21} \chi_{1} + a_{22} \chi_{2} + \dots + a_{2n} \chi_{n} = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1} \chi_{1} + a_{m2} \chi_{2} + \dots + a_{mn} \chi_{n} = 0$$

Observación (sistema homogeneo).

Dado un sistema de ecuaciones homogeneo

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0$
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0$

es claro que
$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
. Lo interesante

en los sistemas homogeneos es encontrar

Soluciones no triviales del sistema de ecuaciones, es decir que soluciones no nulas.

Teorema 2.3 Si $[A \mid \mathbf{0}]$ es un sistema homogéneo de m ecuaciones lineales con n variables, donde m < n, entonces el sistema tiene un número infinito de soluciones.

si en un sistema de ecuaciones lineales homogeneo hay más variables que ecuaciones entonces el sistema tiene infinitas soluciones

Ejemplo (aplicación teorema anterior).

(1) El Sistema
$$2x+3y-5z=0$$
 tiene $-x-2y+3z=0$

infinitas soluciones.

(2) E) sistema
$$x+y+z+w=0$$
 +iene $-x-y+z-w=0$ $y+2z+2w=0$

infinitas soluciones.