

THEORETICALLY INFORMED MACHINE LEARNING (ML) MODELS FOR PREDICTING PESTICIDE LEACHING IN NEW YORK (August 2025, NABEC)

TGUS

ML: XGB

BACKGROUND

- Eastern Long Island 1970s insecticides in groundwater.
- Upstate diversely different from Long Island.
- Many eclectic pesticides and uses. Complex to forecast groundwater occurrence.
- Many non-detect results in monitoring.

Objectives

- Develop ML model that predicts leaching.
- Compare ML to theoretical model, same inputs.

MODELS AND DATA

Theoretical Groundwater Ubiquity Score (TGUS) [1]

$$t_{LRP} = \frac{t_1}{0.69} ln \left(\frac{\lambda \Phi}{K_{oc} f_{oc} \rho} \right)$$

 $t_1 = soil\ halflife[days],$

 $\lambda = preferential flow fraction$

application rate detection limit * distribution layer thickness

= organic carbon sorption partition coef. $\left| \frac{ml}{a} \right|$,

 $f_{oc} = soil\ organic\ carbon\ fraction,$ $\rho = soil \ bulk \ density \left[\frac{Mg}{2}\right]$

Machine Learning – Extreme Gradient Boosting

Final Probability

XGB classification flowchart. Final class probability is the sigmoid function applied to the sum of N log-odds outputs from each tree.

Data sources and selection

- Long Island groundwater analytical data (USGS [3]), 1832 cases and NYSDEC lab upstate, 761 cases.
- USDA NRCS soil surveys, NYSDEC Pesticide Sales and Use Reporting (PSUR), pesticide product labels, and pesticide properties databases and literature.
- Cases omitted for missing chem properties and Long Island analytes with pesticide use+sales < 50 lb over 6 years in zip code.

REFERENCES AND CREDITS

[1] Steenhuis, T. S., et. al. 2024.. J. of Hydrology and Hydromechanics. DOI: 10.2478/johh-2024-0016

[2] Chen, T. & Guestrin, C. 2016. DOI: 10.48550/arXiv.1603.02754

[3] Fisher, I. J., et. al. 2021. DOI: 10.1016/j.scitotenv.2020.141895

Algorithm and ML coding: Isaiah Guenther, Steven Pacenka Database:: Steven Pacenka, Naaran Brindt, Xin Shen, Xingliang Cao, Xiyue Luo, Yuchen Tao TGUS theoretical formula: Tammo Steenhuis

Poster: Isaiah Guenther, Steven Pacenka, Yuchen Tao.

Special thanks to Scott Steinchneider for ML advice.

Principal investigators: Tammo Steenhuis, Brian Richards

MODEL APPLICATION

Predict leaching with t_{LRP} :

 $pred. = \begin{cases} detect, & t_{LRP} \ge 100 \ days \\ nondetect, & t_{LRP} < 100 \ days \end{cases}$

1. CV train on 80% stratified data split. tune hyperparameters/threshold.

2. Select "fold" with max F1.

3. Test prediction performance on 20% held-out data set.

4. Repeat 50 iterations steps 2-3, record all predictions and metrics

RESULTS

Model	Peformance Metrics (train/test)		
	Precision [%]	Recall [%]	F_{β} [%]
TGUS Upstate (untrained)	-/20	-/99	-/56
XGB, upstate 6 vars	77/83	80/95	79/92
TGUS Long Isl. (untrained)	-/21	-/74	-/49
XGB, Long Island 6 vars	52/58	79/89	71/80
$Precision = \frac{TP}{TP + FP}$	$Recall = \frac{TP}{TP + FN}$	$F_{\beta} = (1 + \beta^2) * \frac{Preci}{(\beta^2 * Preci}$	$\frac{ision * Recall}{ecision) + Recall} \beta = 2$

Performance metrics from model outcomes: true positive (TP), false positive (FP), true negative (TN), false negative (FN).

Shapley beeswarm plot, six variable XGB model, upstate 20% testing dataset

left=lower effect, right=higher, blue=low variable, red=high variable

Conclusions

- XGB outperformed TGUS in most metrics, both locales.
- XGB learned patterns consistently with TGUS theory. This may corroborate TGUS method.

Considerations

- Limited datasets and empirical scope of ML tools.
- No analysis of feature interactions (yet).
- Two of eight TGUS params not readily available.