

Identification bactérienne sur ordinateur

Mener une démarche complète de façon autonome (la pratique) tout en révisant les concepts (la théorie)

Nanou BLACHIER - Alain GAY

rsaralyon Étude des micro-organismes (2a)

Calendrier

Octobre - Cours (6h) + 2 TP (2 x 2h)

Février - Cours (4h)

Mars - 3 TP (2 x 2h)

Mai - 1 TP (2 x 3h) + **Examen**

5 mois = nécessité de révisions

6 TP micro-organismes

ensemencement lecture				ecture
1 Caract. morphol. et culturaux	2h	2h		
2 Métabolisme énergétique	2h	2h	Ċ).
3 Métabolisme glucidique	2h	2h		
4 Métabolisme protidique	2h	2h		
5 Métabolisme lipidique	2h	2h		
6 Identification de 2 espèces	3h	3h		

TP 6 : démarche d'identification 2ème partie : lecture

- Identification de la <u>famille</u> ou du <u>genre</u>
 - Observations (morphologie, métabolismes)
 - Recherche dichotomique (arbre)
 - confirmation de la galerie
- 2. Identification de l'espèce
 - Lecture de la galerie
 - Interprétation des résultats
 - → taxonomie
- 3. Rédaction d'un compte-rendu

Nouveau scénario TP 6

Avant	Après		
6h de face à face, dont	- 2h face à face en salle		
- 3h ensemencement	info: présentation/G		
- 3h lecture	- 4h travail autonome		
laboratoire microbio.	plateforme eCampus		
cultures +/- hétérogènes	photos standardisées		
révision « papier »	révision / lien hypertexte		
manipulations	pas de manipulations		

Dispositif « TICE »

ressources sur eCampus: PDF PowerPoint Site Web

Fiche de consignes

Identification d'une bactérie

TP sur machine

Consignes

Généralités

L'identification porte sur 4 familles, nommées de F1 à F4 Pour chaque famille, il y a 2 espèces à identifier

Procédure

- 1. imprimer la fiche d'identification des familles Ident_famille.pdf
- pour remplir cette fiche et identifier la famille, utiliser les présentations FamilleF1.pps, FamilleF2.pps, etc., et suivre les instructions pour l'utilisation du site internet indiqué
- 3. Lancer le test correspondant : TestFamilleF1.htm, TestFamilleF2.htm, etc. pour connaître le mot

8 - type métabolique

Gélose HL avant incubation

Après incubation 24h 37°C

Indiquer le type métabolique et la mobilité

Rappel sur la mise en évidence des types métaboliques et de la mobilité

Etude du type métabolique

- Définition :
- comportement des bactéries vis à vis du glucose
- Mise en évidence sur un milieu renfermant :
 - du glucose
 - un indicateur de pH
 - un gradient d'oxygène
 - aucun autre accepteur d'électrons : absence de nitrate, sulfate ou thiosulfate ...

Mise en évidence du type métabolique sur Hugh et Leifson

Milieux semi-solides :

- 2 Milieux de Hugh et Leifson
- semi-solide 2g/l + glucose 1%
- bleu de bromothymol
- Création d'un gradient de rH
 - régénération du milieu
 - refroidissement : gélification
- Ensemencement de 2 milieux
 - par piqûre centrale au fil droit
 - couvrir 1 tube d'huile de paraffine

Exemples de types métaboliques

Famille F___

ETAPE	CRITERE	CHOIX	LECTURE
1	GRAM	+/-	
2	Forme et arrangement	bacilles ou colibacilles / coques	
3	Culture sur milieu ordinaire	si développement : - type de trouble - voile ou dépôt	
4	Culture en aérobiose	si développement : type colonie S/R/M	
5	Oxydase	oui / non	
б	Catalase (oui / non)	oui / non	
7	Type respiratoire	AS / AAF / ANS / micro	
8	Type métabolique	SO/SF/OF/I	

Identification

Famille	
Genre	

Résultats de la galerie miniaturisée Famille 1 - Espèce 1

OX NO2 +
N2 MOB +
McC +
OF/O +
OF/F +
Aide en cas de
doute :
ex de résultats
possibles

- ·Imprimez la fiche de lecture API 20 E
- ·traduisez les résultats de chaque caractère par + ou -
- remplissez le bulletin correspondant
- ·utilisez le logiciel taxonomie pour identifier l'espèce et imprimez le résultat donné par le logiciel

API 20 E

GLU → ARA

+

+/-

_

Galerie API 20 E

TEST SUBSTRAT		REACTION	REST	LECTURE	
TEST SUBS	SUBSTRAI	ENZIME	NEGATIF	POSITIF	LECTURE
ONPG	ortho-nitro-phenyl- galactoside	beta-galactosidase	incolore	jaune (1)	
<u>ADH</u>	arginine	arginine dihydrolase	jaune	rouge/ orangé (2)	
<u>LDC</u>	lysine	lysine décarboxylase	jaune	orangé	
<u>odc</u>	omiyhine	ornithine décarboxilase	jaune	rouge/ orangé (2)	
CIT	citrate de sodium	utilisation du citrate	vert pâle/ jaune	bleu vert/ vert (3)	
<u>H2S</u>	thiosulfate de sodium	production d'H ₂ S	incolore/grisâtre	dépôt noir/ fin liseré	
<u>URE</u>	urée	uréase	jaune	rouge/orangé	
TDA	terretoeloes	terretorioses degeninoses	TDA / immédiat		
IDA	TDA tryptophane	tryptophane desaminase	jaune	marron foncé	
			JAMES / immédiat ou IND / 2 mn		
			JAMES	JAMES	
IND tryptophane	production d'indole	incolore	rose		
	mypropriate pr	ypropilate production a maste	vert påle-jaune		
	<u> </u>		IND	IND	

Identification

Famille	
Genre	
Espèce	

Bénéfices escomptés

- meilleure <u>articulation</u> entre <u>pratique</u> (démarche d'identification) et <u>théorie</u> (révision des concepts et de la méthodologie)
- tout le monde travaille sur des situations « typiques » conformes (mêmes supports visuels)
- réduction du face a face (66%) et augmentation de l'<u>autonomie</u> et de la <u>responsabilisation</u> des étudiants

Autres conclusions

Limites:

- Moindre maîtrise des techniques de manipulation (ensemencements, tests)
- Dépendance vis à vis du dispositif informatique (salle informatique, imprimante, plateforme, accès web)

Perspectives d'évolution :

- Constitution d'une base de données sur notre collection de souches
- Tests d'auto-évaluation complémentaires