### 2-3 Trees & Red-Black Trees

Initially prepared by Dr. İlyas Çiçekli; improved by various Bilkent CS202 instructors.

#### 2-3 Trees

#### **Definition**:

A 2-3 tree is a tree in which each internal node has either two or three children, and all leaves are at the same level.

- 2-node: a node with two children
- 3-node: a node with three children



no 1 or 0 child allowed grows/shrink from the root side

- → A 2-3 tree is not a binary tree
- → A 2-3 tree is never taller than a minimum-height binary tree
- $\rightarrow$  A 2-3 tree with N nodes never has height greater than  $\lceil \log_2(N+1) \rceil$
- $\rightarrow$  A 2-3 tree of height h always has at least 2<sup>h</sup>-1 nodes.

#### 2-3 Trees

#### T is a 2-3 tree of height h if

- 1. T is empty (a 2-3 tree of height 0), or
- 2. T is of the form



where r is a node that contains one data item and  $T_L$  and  $T_R$  are both 2-3 trees, each of height h-1, or





where r is a node that contains two data items and  $T_L$ ,  $T_M$  and  $T_R$  are 2-3 trees, each of height h-1.





## 2-3 Trees -- Example



#### C++ Class for a 2-3 Tree Node

```
classTreeNode {
private:
    TreeItemTypesmallItem, largeItem;
    TreeNode *leftChildPtr, *midChildPtr, *rightChildPtr;

    // friend class-can access private class members
    friend classTwoThreeTree;
};
```

#### extra storage

- When a node is a 2-node (contains only one item)
  - Place it in smallItem
  - Use leftChildPtr and midChildPtr to point to the node's children
  - Place NULL in rightChildPtr

### **Traversing a 2-3 Tree**

- Inorder traversal visits the nodes in a sorted search-key order
  - Leaf node:
    - Visit the data item(s)
  - 2-node:
    - Visit its left subtree
    - Visit the data item
    - Visit its right subtree

- 3-node:
  - Visit its left subtree
  - Visit the smaller data item
  - Visit its middle subtree
  - Visit the larger data item
  - Visit its right subtree



### Searching a 2-3 Tree

- Searching a 2-3 tree is similar to searching a binary search tree
  - For a 3-node, compare the searched key with the two values of the 3-node and select one of its three subtrees according to these comparisons
- Searching a 2-3 tree is O(log N)
  - Searching a 2-3 tree and the shortest BST has approximately the same efficiency.
    - A binary search tree with N nodes cannot be shorter than  $\lceil \log_2(N+1) \rceil$
    - A 2-3 tree with N nodes cannot be taller than \[log\_2(N+1)\]



### **Inserting into a 2-3 Tree**



Starting from the following tree, insert [ 39 38 37 36 35 34 33 32 ]



#### **Insert 39**

Find the node into which you can put 39

Insertion into a 2-node leaf is simple



#### **Insert 38**

Find the node into which you can put 38



Insertion into a 3-node causes it to divide



#### **Insert 37**

Find the node into which you can put 37

Insertion into a 2-node leaf is simple



#### **Insert 36**

Find the node into which you can put 36





Insert 35, 34, 33

# **2-3 Trees -- Insertion Algorithm**

#### Splitting a leaf in a 2-3 tree



## 2-3 Trees -- Insertion Algorithm

#### Splitting an internal node in a 2-3 tree





## 2-3 Trees -- Insertion Algorithm

#### Splitting the root of a 2-3 tree



2-3 tree grows from the root side

### **Deleting from a 2-3 tree**

- Deletion strategy is the inverse of insertion strategy.
- Deletion starts like normal BST deletion (swap with inorder successor)
- Then, we merge the nodes that have become underloaded.



## **Deleting from a 2-3 Tree -- Example**



#### **Delete 70**

- Swap with inorder successor
- Delete value from leaf
- Delete the empty leaf
- Shrink the parent (no more mid-pointer)

### **Deleting from a 2-3 Tree -- Example**



#### **Delete 100**

- Delete value from leaf
- Distribute the children → Doesn't work
- Redistribute the parent and the children

## **Deleting from a 2-3 Tree -- Example**



#### **Delete 80**

- Swap with inorder successor
- Delete value from leaf
- Merge by moving 90 down and removing the empty leaf
- Merge by moving 50 down, adopting empty node's child and removing the empty node
- Remove empty root

all leaves should be on same level

## 2-3 Trees -- Deletion Algorithm

- To delete an item X from a 2-3 tree:
  - First, we locate the node n containing X.
  - If n is not a leaf, we find X's inorder successor and swap it with X.
  - After the swap, the deletion always begins at the leaf.
  - If the leaf contains another item in addition to X, we simply delete X from that leaf, and we are done.
  - If the leaf contains only X, deleting X would leave the leaf without a data item.
     In this case, we must perform some additional work to complete the deletion.
- Depending on the empty node and its siblings, we perform certain operations:
  - Delete empty root
  - Merge nodes
  - Redistribute values
- These operations can be repeated all the way upto the root if necessary.

# **2-3 Trees -- Deletion Operations**

#### **Deleting the root**



## **2-3 Trees -- Deletion Operations**

### **Redistributing values (and children)**





## **2-3 Trees -- Deletion Operations**

#### Merging





### 2-3 Trees -- Analysis

- We can use a 2-3 tree in the implementation of tables.
- A 2-3 tree has the advantage of always being balanced.
- Thus, insertion and deletion operations are O(log N)
- Retrieval based on key is also guaranteed to O(log N)

#### **2-3-4 Trees**

- A 2-3-4 tree is like a 2-3 tree, but it allows 4-nodes, which are nodes that have four children and three data items.
- There is a close relation between 2-3-4 trees and red-black trees.
  - We will look at those a bit later
- 2-3-4 trees are also known as 2-4 trees in other books.
  - A specialization of M-way tree (M=4)
  - Sometimes also called 4<sup>th</sup> order B-trees
  - Variants of B-trees are very useful in databases and file systems
    - MySQL, Oracle, MS SQL all use B+ trees for indexing
    - Many file systems (NTFS, Ext2FS etc.) use B+ trees for indexing metadata (file size, date etc.)
- Although a 2-3-4 tree has more efficient insertion and deletion operations than a 2-3 tree, a 2-3-4 tree has greater storage requirements.

## 2-3-4 Trees -- Example



#### **2-3-4 Trees**

T is a 2-3-4 tree of height h if

- 1. T is empty (a 2-3-4 tree of height 0), or
- 1. T is of the form  $T_L$   $T_R$





where r is a node containing two data items and  $T_L$ ,  $T_M$  and  $T_R$  are 2-3-4 trees, each of height h-1, or



where r is a node containing three data items and  $T_L$ ,  $T_{ML}$ ,  $T_{MR}$ , and  $T_R$  are 2-3-4 trees, each of height h-1.







#### C++ Class for a 2-3-4 Tree Node

```
classTreeNode {
private:

          TreeItemTypesmallItem, middleItem, largeItem;

          TreeNode *leftChildPtr, *lMidChildPtr;
          TreeNode *rMidChildPtr, *rightChildPtr;

friendclassTwoThreeFourTree;
};
```

- When a node is a 3-node (contains only two items)
  - Place the items in smallItem and middleItem
  - Use leftChildPtr, lMidChildPtr, rMidChildPtr to point to the node's children
  - Place NULL in rightChildPtr
- When a node is a 2-node (contains only one item)
  - Place the item in smallItem
  - Use leftChildPtr, lMidChildPtr to point to the node's children
  - Place NULL in rMidChildPtr and rightChildPtr

## 2-3-4 Trees -- Operations

- Searching and traversal algorithms for a 2-3-4 tree are similar to the 2-3 algorithms.
- For a 2-3-4 tree, insertion and deletion algorithms that are used for 2-3 trees, can similarly be used.
- But, we can also use a slightly different insertion and deletion algorithms for 2-3-4 trees to gain some efficiency.

## **Inserting into a 2-3-4 Tree**

- Splits 4-nodes by moving one of its items up to its parent node.
- For a 2-3 tree, the insertion algorithm traces a path from the root to a leaf and then backs up from the leaf as it splits nodes.
- To avoid this return path after reaching a leaf, the insertion algorithm for a 2-3-4 tree splits 4-nodes as soon as it encounters them on the way down the tree from the root to a leaf.
  - As a result, when a 4-node is split and an item is moved up to node's parent, the parent cannot possibly be a 4-node and so can accommodate another item.

Insert[ 20 50 40 70 80 15 90 100 ] to this 2-3-4 tree

10 30 60



#### Insert 20

- Root is a 4-node → Split 4-nodes as they are encountered
- So, we split it before insertion
- And, then add 20



#### Insert 50 and 40

 No 4-nodes have been encountered → No split operation during their insertion



#### **Insert 70**

- A 4-node is encountered
- So, we split it before insertion
- And, then add 70



#### Insert 80 and 15

 No 4-nodes have been encountered → No split operation during their insertion



#### **Insert 90**

- A 4-node is encountered
- So, we split it before insertion
- And, then add 90

### Inserting into a 2-3-4 Tree -- Example



#### **Insert 100**

- A 4-node is encountered roof
- So, we split it before insertion
- And, then add 100

 We split each 4-node as soon as we encounter it during our search from the root to a leaf that will accommodate the new item to be inserted.

- The 4-node which will be split can:
  - be the root, or
  - have a 2-node parent, or
  - have a 3-node parent.

### **Splitting a 4-node root**



### Splitting a 4-node whose parent is a 2-node





### Splitting a 4-node whose parent is a 3-node



# Deleting from a 2-3-4 tree

- For a 2-3 tree, the deletion algorithm traces a path from the root to a leaf and then backs up from the leaf, fixing empty nodes on the path back up to root.
- To avoid this return path after reaching a leaf, the deletion algorithm for a 2-3-4 tree transforms each 2-node into either 3-node or 4-node as soon as it encounters them on the way down the tree from the root to a leaf.
  - If an adjacent sibling is a 3-node or 4-node, transfer an item from that sibling to our 2-node.
  - If adjacent sibling is a 2-node, merge them.

### **Red-Black Trees**

- In general, a 2-3-4 tree requires more storage than a binary search tree.
- A special binary search tree, the red-black-tree, can be used to represent a 2-3-4 tree, so that we can retain advantages of a 2-3-4 tree without a storage overhead.
  - 3-node and 4-nodes in a 2-3-4 tree are represented by a binary tree.
  - To distinguish the original 2-nodes from 2-nodes that are generated from 3-nodes and 4-nodes, we use red and black pointers.
  - All original pointers in a 2-3-4 tree are black pointers, red pointers are used for child pointers to link 2-nodes that result from the split of 3-nodes and 4nodes.

### **Red-Black Trees**

#### **Red-black tree representation**





### **Red-Black Trees -- Properties**

- Root is always a black node.
- The children of a red node (pointed by a red pointer) are always black nodes (pointed by a black pointer)
- All external nodes (leaves and nodes with a single child) should have the same number of black pointers on the path from the root to that external node.

perfect balance

### A 2-3-4 Tree and Its Corresponding Red-Black Tree





### C++ Class for a Red-Black Tree Node

```
enum Color {RED, BLACK};
classTreeNode {
private:
      TreeItemType Item;
      TreeNode *leftChildPtr, *rightChildPtr;
                  leftColor, rightColor;
      Color
                      only one color variable for node, no red or black pointers is ok too
friendclassRedBlackTree;
```

For a 4-node that is the root





For a 4-node whose parent is a 2-node









For a 4-node whose parent is a 3-node



For a 4-node whose parent is a 3-node



For a 4-node whose parent is a 3-node

