# Homework 1 Report - PM2.5 Prediction

學號: R06942018, 姓名: 何適楷, 系級: 電信碩一

#### 1 Problem 1

(1%) 請分別使用每筆 data9 小時內所有 feature 的一次項(含 bias 項)以及每筆 data9 小時內 PM2.5 的一次項(含 bias 項)進行 training,比較並討論這兩種模型的 root mean-square error (根據 kaggle 上的 public/private score)。

|       | public  | private |
|-------|---------|---------|
| PM2.5 | 8.39306 | 8.38727 |
| ALL   | 7.36575 | 7.40026 |

使用所有 Feature 所 train 出來的 RMSE 都比只有用 PM2.5 所得到的低,很直覺的原因就是除了 PM2.5 本身,其他物質也含有 PM2.5 的相關因素,所以所有 feature 下去 train 的資訊量多,自然得到的 RMSE 就會少。從物理的角度去看,排放 PM2.5 的來源不可能只排放純 PM2.5,一定伴隨其他物質,所以其他物質跟 PM2.5 一起擴散,自然會挾帶 PM2.5 的資訊了。

### 2 Problem 2

(2%) 請分別使用至少四種不同數值的 learning rate 進行 training (其他參數需一致),作圖並且討論其收斂過程。

我使用了六種不同的 Learning Rate 來檢視不同情況的收斂過程,並且都疊代 3000 次,下圖是疊代次數與 Loss 的作圖。使用方法是最原始的 gradient descent。



Figure 1: 疊代次數對 Loss 的變化

可以發現  $LearningRate=4.16\times10^{-10}$  趨近於臨界值,超過這個數值之後 ( $LearningRate=4.17\times10^{-10}$ ) 時,Loss 降到一定程度之後就會發散,另外, $LearningRate<4.16\times10^{-10}$ ,都會收斂,但是收斂速度都比臨界值  $LearningRate=4.16\times10^{-10}$  慢。

#### 3 Problem 3

(1%) 請分別使用至少四種不同數值的 regulization parameter 進行 training (其他參數需一至), 討論其 root mean-square error (根據 kaggle 上的 public/private score)。

| linear model      | public   | private  |
|-------------------|----------|----------|
| $\lambda = 0$     | 7.39410  | 7.36525  |
| $\lambda = 10$    | 7.39799  | 7.36239  |
| $\lambda = 100$   | 7.61795  | 7.33514  |
| $\lambda = 1000$  | 8.08020  | 7.80975  |
| $\lambda = 10000$ | 10.40934 | 10.58393 |
| $\lambda = 10000$ | 14.69773 | 14.36112 |

我使用的是 linear model,可以看出加了  $\lambda$  之後 private 和 public 的 RMSE 都是上升趨勢,代表原本的 model 的'accuracy' 已經非常,增加  $\lambda$  只是徒增'bias' 而已。

| second order model | public   | private |  |  |
|--------------------|----------|---------|--|--|
| $\lambda = 0$      | 13.09529 | 9.52875 |  |  |
| $\lambda = 10$     | 12.78238 | 7.36465 |  |  |
| $\lambda = 100$    | 12.08264 | 7.62782 |  |  |
| $\lambda = 1000$   | 9.75414  | 7.97926 |  |  |
| $\lambda = 10000$  | 7.94495  | 8.17507 |  |  |
| $\lambda = 10000$  | 9.27351  | 8.31054 |  |  |

這個 model 加了二次項,明顯的,一開始隨著  $\lambda$  的增加,RMSE 開始變小,代表一開始有 overfitting 的情形,但是加到一個程度之後,RMSE 又開始增加了,代表這個 model 的 bias 太大,已無法精確描述這些 data 了。

## 4 (collaborator: 陳致維, b04901165) Problem 4

(1%) 請這次作業你的 best\_hw1.sh 是如何實作的?(e.g. 有無對 Data 做任何 Preprocessing? Features 的選用有無任何考量?訓練相關參數的選用有無任何依據?)

一開始,我先使用所有原始的資料去做,得到

$$RMSE = 22.69823$$
 (1)

$$iteraion = 268000 \quad times$$
 (2)

(3)

進一步,我先做 normalzie,得到

$$RMSE = 22.65505$$
 (4)

$$iteraion = 136000 \quad times$$
 (5)

$$public = 9.07673 \tag{6}$$

RMSE 幾乎都沒有動,但是疊代次數如同上課所說,normalize 之後 Loss function 比較會接近高維的球面,比起橢圓面更快能達到收斂。這時候 public score 得到 9.07 的分數,與自己的 train data 有明顯的差異,經過觀察資料,發現有些資料點明顯示測站量測錯誤,所以過濾以下資料:

- 1. PM2.5 超過 600
- 2. PM2.5 小於等於 0
- 3. Rainfall, NO, NO2, NOx 以外有超過 5 個以上的非正數

這時候我們得到 error 明顯下降

$$RMSE = 4.73346$$
 (7)

$$iteraion = 121000 \quad times$$
 (8)

$$public = 8.51940 \tag{9}$$

$$private = 8.77867 \tag{10}$$

觀察資料發現,有些資料點可能跟 PM2.5 的濃度無關,所以我計算各個 feature 與 PM2.5 預測值的相關係數,把相關係數 <0.22 的資料濾掉,得到

|          | 0       | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| AMB_TEM  | -0.1101 | -0.1066 | -0.1031 | -0.1013 | -0.0971 | -0.0919 | -0.0846 | -0.0765 | -0.0685 |
| CH4      | 0.0858  | 0.0891  | 0.0975  | 0.1071  | 0.1124  | 0.1187  | 0.1276  | 0.1296  | 0.1257  |
| CO       | 0.192   | 0.2008  | 0.2229  | 0.2481  | 0.2781  | 0.3065  | 0.322   | 0.3193  | 0.3035  |
| NMHC     | 0.1437  | 0.1522  | 0.1698  | 0.1859  | 0.2061  | 0.2272  | 0.2505  | 0.2563  | 0.2437  |
| NO       | 0.0693  | 0.0824  | 0.1048  | 0.1229  | 0.1418  | 0.154   | 0.1496  | 0.1332  | 0.1195  |
| NO2      | 0.2035  | 0.2069  | 0.2171  | 0.2326  | 0.2546  | 0.2784  | 0.3024  | 0.3076  | 0.2912  |
| NOx      | 0.1757  | 0.1845  | 0.2019  | 0.2213  | 0.2458  | 0.2681  | 0.283   | 0.2794  | 0.2615  |
| 03       | 0.0312  | 0.0318  | 0.0277  | 0.0238  | 0.0226  | 0.0255  | 0.0341  | 0.0478  | 0.0648  |
| PM10     | 0.3551  | 0.3663  | 0.3784  | 0.3918  | 0.404   | 0.4192  | 0.4406  | 0.4646  | 0.4768  |
| PM2.5    | 0.2253  | 0.3208  | 0.4167  | 0.5123  | 0.5024  | 0.4034  | 0.4111  | 0.5207  | 0.7366  |
| RAINFALI | -0.0466 | -0.044  | -0.0434 | -0.0425 | -0.0441 | -0.0469 | -0.046  | -0.0418 | -0.0378 |
| RH       | -0.0274 | -0.0246 | -0.0191 | -0.0138 | -0.0098 | -0.0091 | -0.0104 | -0.0143 | -0.0153 |
| SO2      | 0.1786  | 0.1835  | 0.1892  | 0.1987  | 0.2125  | 0.2285  | 0.2481  | 0.2606  | 0.2588  |
| THC      | 0.1323  | 0.1396  | 0.1558  | 0.1697  | 0.1851  | 0.2019  | 0.22    | 0.224   | 0.2146  |
| WD_HR    | 0.0715  | 0.059   | 0.0698  | 0.073   | 0.0714  | 0.071   | 0.0657  | 0.0546  | 0.0576  |
| WIND_DII | 0.059   | 0.0457  | 0.0388  | 0.05    | 0.0542  | 0.0636  | 0.0631  | 0.0545  | 0.0556  |
| WIND_SPI | -0.0609 | -0.0648 | -0.0661 | -0.0683 | -0.0735 | -0.0752 | -0.0796 | -0.073  | -0.065  |
| WS_HR    | -0.0542 | -0.0549 | -0.0545 | -0.0571 | -0.0604 | -0.0654 | -0.0657 | -0.0593 | -0.0549 |

Figure 2: 相關係數列表

$$RMSE = 4.83 \tag{11}$$

$$iteraion = 10000 \quad times$$
 (12)

$$public = 8.77385 \tag{13}$$

$$private = 8.96263 \tag{14}$$

很失望地,結果竟然變差了,我的猜測是 linear regression 自然會把某些無相關的 data'平均'掉,所以加工的 data 反而會遺失一些資訊,導致 error 變差。而且,我的資料應該是 overfitting 了,所以我進一步進行 regularize,加上  $\lambda=1000$ 

$$RMSE = 5.78 \tag{15}$$

$$iteraion = 50000 \quad times$$
 (16)

$$public = 7.77929 \tag{17}$$

$$private = 7.53077 \tag{18}$$

$$\lambda = 1000 \tag{19}$$

結果變好了。另一方面,我覺得 PM2.5 可能與二次項有關,所以我增加了二次項得到

$$RMSE = 5.00318$$
 (20)

$$iteraion = 280000 \quad times$$
 (21)

$$public = 7.55813 \tag{22}$$

$$private = 7.92696 \tag{23}$$

$$\lambda = 100 \tag{24}$$

因為二次項很容易 overfitting,所以我也實做了一個 cross validation,用來找適當了  $\lambda$ 

```
set 0 train: 6.61261 test 7.51206

set 1 train: 6.65750 test 7.28893

set 2 train: 6.82466 test 6.43016

set 3 train: 6.82599 test 6.57384

set 4 train: 6.80907 test 6.45316

set all train: 6.56021
```

Figure 3: cross validation

因為事後才得知相關係數會不好,所以將相關係數去掉:

$$RMSE = 5.41866$$
 (25)

$$iteraion = 30000 \quad times$$
 (26)

$$public = 7.54058 \tag{27}$$

$$private = 7.48302 \tag{28}$$

$$\lambda = 400 \tag{29}$$

結果更好了,另外放寬了塞選資料的條件把"Rainfall, NO, NO2, NOx 以外有超過 5 個以上的非正數"中的 5 改為 10,而且聽說同學用 Linear 就做得比我好了,所以就嘗試看看,結果也變好了!

$$RMSE = 6.25529$$
 (30)

$$iteraion = 5000 \quad times$$
 (31)

$$public = 7.28675 \tag{32}$$

$$private = 7.33939 \tag{33}$$

$$\lambda = 0 \tag{34}$$

只能說用盡心機,繞了一大圈,還是繞回 linear regression,從 public、private 分數來看,linear regression 還是略勝有二次項的 model,不過看到有 RMSE 小於 7 的同學,想必有其他 model 的方式吧,希望助教能在助教課多加指點了。