

# Mathematical Analysis

1st Year Computer Science

Mihai Nechita \*

Last updated: November 4, 2023

#### **Contents**

| Real numbers                          | 2  |
|---------------------------------------|----|
| Sequences                             | 5  |
| Series. Power series                  | 8  |
| Limits, continuity, differentiability | 17 |

<sup>\*</sup>math.ubbcluj.ro/~mihai.nechita. If you find any typos, please let me know on Teams or by email.

#### \* Real numbers

Let us start with some standard notation:  $\emptyset$  is the empty set;  $\mathbb{N} = \{1, 2, ...\}$  the set of natural numbers;  $\mathbb{Z} = \{..., -1, 0, 1, ...\} = \{m - n \mid m, n \in \mathbb{N}\}$  the set of integers;  $\mathbb{Q} = \{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\}$  the set of rational numbers;  $\mathbb{R}$  the set of real numbers.

You are very much used with the real numbers. However, it is not trivial to define them in a rigorous way, see for example [1] or [2] for different methods of constructing  $\mathbb{R}$  from  $\mathbb{Q}$ . We will straightforwardly start working with the real numbers – for this reason some of their properties, e.g. definition 1.5, will simply be given as definitions.

**Definition 1.1.** Let *A* be a subset of  $\mathbb{R}$ , denoted as  $A \subseteq \mathbb{R}$ . We define  $x \in \mathbb{R}$  to be

a lower bound for A if  $x \le a$ ,  $\forall a \in A$ ; an upper bound for A if  $x \ge a$ ,  $\forall a \in A$ .

We define

$$lb(A) := \{x \in \mathbb{R} \mid x \le a, \forall a \in A\}$$
 the set of lower bounds of  $A$ ,  $ub(A) := \{x \in \mathbb{R} \mid x \ge a, \forall a \in A\}$  the set of upper bounds of  $A$ .

We define  $x \in \mathbb{R}$  to be

the minimum of A if  $x \in lb(A) \cap A$ ; the maximum of A if  $x \in ub(A) \cap A$ , denoted by  $\min(A)$ , respectively  $\max(A)$ . In other words, we have that  $\min(A) \in A$  and  $\min(A) \leq a$ ,  $\forall a \in A$ ;  $\max(A) \in A$  and  $\max(A) \geq a$ ,  $\forall a \in A$ .

Note that there are sets which do no have minimum or maximum, e.g. (0, 1).

**Definition 1.2.** A set  $A \subseteq \mathbb{R}$  is defined to be

- bounded (from) below if  $lb(A) \neq \emptyset$ ;
- bounded (from) above if  $ub(A) \neq \emptyset$ ;
- bounded if it is both bounded below and above;
- unbounded if it is not bounded.

**Definition 1.3.** We say that  $x \in \mathbb{R}$  is the *supremum* of  $A \subseteq \mathbb{R}$ ,  $x := \sup(A)$ , if and only if:

- 1.  $x \ge a$ ,  $\forall a \in A$ , that is  $x \in ub(A)$ .
- 2. if *u* is an upper bound for *A*, then  $x \le u$ .

The supremum is the least upper bound, i.e.  $\sup(A) := \min(ub(A))$ .

**Definition 1.4.** We say that  $x \in \mathbb{R}$  is the *infimum* of  $A \subseteq \mathbb{R}$ ,  $x := \inf(A)$ , if and only if:

- 1.  $x \le a$ ,  $\forall a \in A$ , that is  $x \in lb(A)$ .
- 2. if *u* is a lower bound for *A*, then  $x \ge u$ .

The infimum is the greatest lower bound, i.e.  $\inf(A) := \max(lb(A))$ .

**Definition 1.5** (Completeness Axiom). Every set  $A \subseteq \mathbb{R}$  that is bounded above has a supremum. Similarly, every set  $A \subseteq \mathbb{R}$  that is bounded below has an infimum.

Note that if A has a maximum, then  $\sup(A) = \max(A)$ . Similarly, if A has a minimum, then  $\inf(A) = \min(A)$ . Also, if  $\sup(A) \in A$ , then  $\max(A) = \sup(A)$ .

**Example 1.6.** (a) 
$$A = \{\frac{1}{n} \mid n \in \mathbb{N}\}, \sup(A) = 1 = \max(A), \inf(A) = 0, \not\equiv \min(A).$$

(b) 
$$A = \{x \in \mathbb{Q} \mid x^2 \le 2\}, \sup(A) = \sqrt{2}, \nexists \max(A), \inf(A) = -\sqrt{2}, \nexists \min(A).$$

**Theorem 1.7.** Let  $A \subseteq \mathbb{R}$  be a bounded set. For  $\sup(A)$  and  $\inf(A)$  the following are true:

$$\forall \varepsilon > 0, \exists x \in A \text{ such that } \sup(A) - \varepsilon < x,$$

$$\forall \varepsilon > 0, \exists x \in A \text{ such that } x < \inf(A) + \varepsilon.$$

*Proof.* By definition, for any  $y < \sup(A)$ , say  $y = \sup(A) - \varepsilon$  with  $\varepsilon > 0$ , we have that  $y \notin ub(A)$ . Hence there exists  $x \in A$  such that y < x. Similar proof for  $\inf(A)$ .

**Proposition 1.8.** Let  $A \subseteq B \subseteq \mathbb{R}$  be (nonempty) bounded sets. Then

$$\inf(B) \le \inf(A) \le \sup(A) \le \sup(B)$$

and

$$\sup(A \cup B) = \max\{\sup(A), \sup(B)\},\$$
  
$$\inf(A \cup B) = \min\{\inf(A), \inf(B)\}.$$

*Proof.* It follows directly from the definitions.

**Definition 1.9.** Define the *extended real line*  $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}$ , where  $\infty$  and  $-\infty$  are such that

$$\forall x \in \mathbb{R}, -\infty < x < \infty.$$

If a set *A* is not bounded above, we define  $\sup(A) := \infty$ . If a set *A* is not bounded below, we define  $\inf(A) := -\infty$ .

[Seminar] The empty set  $\emptyset$  is bounded by any number. In  $\overline{\mathbb{R}}$ ,  $\sup(\emptyset) = -\infty$ ,  $\inf(\emptyset) = \infty$ .

**Definition 1.10.** A set  $V \subseteq \mathbb{R}$  is a *neighborhood (vecinity)* of  $x \in \mathbb{R}$  if

$$\exists \varepsilon > 0 \text{ such that } (x - \varepsilon, x + \varepsilon) \subseteq V.$$

A set  $V \subseteq \mathbb{R}$  is a *neighborhood* of  $\infty$  if  $\exists a \in \mathbb{R}$  such that  $(a, \infty) \subseteq V$ .

A set  $V \subseteq \mathbb{R}$  is a *neighborhood* of  $-\infty$  if  $\exists a \in \mathbb{R}$  such that  $(-\infty, a) \subseteq V$ .

We denote all the neighborhoods of x by  $\mathcal{V}(x) := \{V \subseteq \mathbb{R} \mid V \text{ is a neighborhood of } x\}.$ 

**Definition 1.11.** Let  $A \subseteq \mathbb{R}$ . The following set is called the *interior* of A

$$\operatorname{int}(A) := \{ x \in \mathbb{R} \mid \exists V \in \mathcal{V}(x) \text{ such that } V \subseteq A \},$$

and the following set is called the *closure* of *A* 

$$cl(A) := \{ x \in \mathbb{R} \mid \forall V \in \mathcal{V}(x), \ V \cap A \neq \emptyset \}.$$

**Proposition 1.12.** For any  $A \subseteq \mathbb{R}$ , it holds that  $int(A) \subseteq A \subseteq cl(A)$ .

*Proof.* To prove that  $\operatorname{int}(A) \subseteq A$  we prove that if  $x \in \operatorname{int}(A)$ , then  $x \in A$ . Let  $x \in \operatorname{int}(A)$ , then  $\exists \varepsilon > 0$  such that  $(x - \varepsilon, x + \varepsilon) \subseteq A$ . Since  $x \in (x - \varepsilon, x + \varepsilon)$ , we have that  $x \in A$ . To prove that  $A \subseteq \operatorname{cl}(A)$  we show that if  $x \in A$ , then  $x \in \operatorname{cl}(A)$ . Let  $x \in A$ . Then for any  $V \in \mathcal{V}(x)$  it holds that  $x \in V$ , giving that  $x \in V \cap A$ . Hence  $x \in \operatorname{cl}(A)$  since  $V \cap A \neq \emptyset$ .  $\square$ 

**Definition 1.13.** If A = int(A), then A is called *open*. If A = cl(A), then A is called *closed*.

**Remark 1.14.** To prove that a set A is open, it is sufficient to prove that  $A \subseteq \text{int}(A)$ . To prove that a set A is closed, it is sufficient to prove that  $\text{cl}(A) \subseteq A$ .

**Proposition 1.15.** The following statements are true:

- The complement of an open set is closed.
- The complement of a closed set is open.

*Proof.* Let us prove the first statement, the other one being similar. Consider A an open set, i.e. A = int(A), and denote by  $A^c = \{x \in \mathbb{R} \mid x \notin A\}$  its complement. To prove that  $A^c$  is closed, we prove that  $\operatorname{cl}(A^c) \subseteq A^c$ . Consider  $x \in \operatorname{cl}(A^c)$  and let's assume that  $x \notin A^c$ , i.e.  $x \in A$ , aiming to obtain a contradiction. Since A is open, there exists  $V \in V(x)$  such that  $V \subseteq A$ , giving that  $V \cap A^c = \emptyset$ : contradiction with  $x \in \operatorname{cl}(A^c)$ . Hence the assumption  $x \notin A^c$  is false, and we have that if  $x \in \operatorname{cl}(A^c)$ , then  $x \in A^c$ . In other words,  $\operatorname{cl}(A^c) \subseteq A^c$ .  $\square$ 

**Proposition 1.16.** Any union of open sets is open. Any intersection of closed sets is closed. Any finite intersection of open sets is open. Any finite union of closed sets is closed.

*Proof.* (Optional) Left as extra homework.

### Sequences

A set  $\{x_n \mid n \in \mathbb{N}\}$  is called a sequence and is denoted by  $(x_n)_{n \in \mathbb{N}}$  or simply  $(x_n)$ . A sequence  $(x_n)$  is bounded above (or below) if the set  $\{x_n \mid n \in \mathbb{N}\}$  is bounded above (or below). A sequence  $(x_n)$  is increasing if  $x_{n+1} \geq x_n$ ,  $\forall n \in \mathbb{N}$ , and decreasing if  $x_{n+1} \leq x_n$ ,  $\forall n \in \mathbb{N}$ . A sequence is monotone if it is either increasing or decreasing.

**Definition 2.1.** A sequence  $(x_n)$  has a limit  $\ell \in \overline{\mathbb{R}}$ , and we write  $\lim_{n \to \infty} x_n = \ell$  or  $x_n \to \ell$ , if

$$\forall V \in \mathcal{V}(\ell), \exists N_V \in \mathbb{N} \text{ such that } x_n \in V, \forall n \geq N_V.$$

If  $\ell \in \mathbb{R}$ , we say that  $(x_n)$  converges to  $\ell$ :  $\forall \varepsilon > 0$ ,  $\exists N_{\varepsilon} \in \mathbb{N}$  such that  $|x_n - \ell| < \varepsilon$ ,  $\forall n \ge N_{\varepsilon}$ .  $x_n \to \infty$  if  $\forall a > 0$ ,  $\exists N_a \in \mathbb{N}$  such that  $x_n > a$ ,  $\forall n \ge N_a$ .  $x_n \to -\infty$  if  $\forall a < 0$ ,  $\exists N_a \in \mathbb{N}$  such that  $x_n < a$ ,  $\forall n \ge N_a$ .

**Proposition 2.2.** A sequence  $(x_n)$  converges to  $\ell \in \mathbb{R}$  if and only if  $\lim_{n \to \infty} |x_n - \ell| = 0$ .

**Proposition 2.3.** Any convergent sequence is bounded.

*Proof.* TBA (left to the reader).

Theorem 2.4 (Weierstrass). Any monotone and bounded sequence is convergent.

*Proof.* Assume that the sequence is increasing, for example. Let  $S = \{x_n \mid n \in \mathbb{N}\}$  and consider  $\sup(S) \in \mathbb{R}$  (we know that S is bounded). From theorem 1.7 we have that

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N} \text{ such that } \sup(S) - \varepsilon < x_{N_{\varepsilon}}.$$

As  $(x_n)$  is increasing,  $\sup(S) - \varepsilon < x_{N_{\varepsilon}} \le x_n \, \forall n \ge N_{\varepsilon}$ . Hence  $\sup(S) - x_n < \varepsilon$ ,  $\forall n \ge N_{\varepsilon}$ . The sequence converges to  $\sup(S)$  by definition 2.1. Similarly, a decreasing and bounded sequence converges to its infimum.

**Proposition 2.5.** Any monotone sequence has a limit in  $\overline{\mathbb{R}}$ .

*Proof.* If the sequence is bounded and monotone, then it is convergent by the Weierstrass theorem. If the sequence is unbounded and monotone, then its limit will be infinite.  $\Box$ 

**Theorem 2.6** (Squeeze/Sandwich theorem). Let  $(x_n)$ ,  $(y_n)$ ,  $(z_n)$  be sequences for which there is an  $n_0 \in \mathbb{N}$  such that

$$x_n \leq y_n \leq z_n, \, \forall n \geq n_0,$$

and

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n.$$

Then

$$\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=\lim_{n\to\infty}z_n.$$

*Proof.* Let  $\ell := \lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n$  and assume first that  $\ell \in \mathbb{R}$ . Let  $\varepsilon > 0$ . Then

$$\exists N_1 \in \mathbb{N} \text{ such that } |x_n - \ell| < \varepsilon, \forall n \ge N_1$$

and

$$\exists N_2 \in \mathbb{N} \text{ such that } |z_n - \ell| < \varepsilon, \forall n \ge N_2.$$

Taking  $N_{\varepsilon} := \max\{N_1, N_2\}$ , we have that

$$|y_n - \ell| \le \max\{|x_n - \ell|, |z_n - \ell|\} < \varepsilon, \forall n \ge N_{\varepsilon},$$

hence the conclusion. When  $\ell$  is infinite the proof is similar.

**Theorem 2.7** (Cantor's nested intervals). Let  $(a_n)$  be increasing and  $(b_n)$  decreasing such that  $a_n \le a_{n+1} \le b_{n+1} \le b_n$ ,  $\forall n \in \mathbb{N}$ . Consider the closed intervals  $I_n := [a_n, b_n]$ , with  $I_{n+1} \subseteq I_n$ . If  $\lim_{n\to\infty} (b_n - a_n) = 0$ , then there exists  $x \in \mathbb{R}$  such that

$$\bigcap_{n=1}^{\infty} I_n = \{x\}.$$

*Proof.* Consider the bounded sets  $A := \{a_n \mid n \in \mathbb{N}\}$  and  $B := \{b_n \mid n \in \mathbb{N}\}$ . For any  $k \in \mathbb{N}$ , we have that

$$a_k \le \sup(A) \le b_k$$

and

$$b_k \ge \inf(B) \ge a_k$$
.

Hence by the squeeze theorem we have that  $\sup(A) = \inf(B)$  and  $\bigcap_{n=1}^{\infty} I_n = {\sup(A)}.$ 

**Theorem 2.8** (Bolzano-Weierstrass). Any bounded sequence has a convergent subsequence.

*Proof.* Consider the bounded set  $A := \{x_n \mid n \in \mathbb{N}\}$ . Let  $a_1 := \inf(A)$  and  $b_1 := \sup(A)$ , and define  $I_1 := [a_1, b_1]$ . Bisect  $I_1$  and notice that at least one of the two halves must contain infinitely many terms from the sequence. Take  $I_2 := [a_2, b_2]$  to be the half that does. Continuing this procedure we obtain for each  $k \in \mathbb{N}$  an interval  $I_k := [a_k, b_k]$  containing (at least) a term  $x_{n_k} \in A$ , such that  $I_{k+1} \subseteq I_k$  and  $b_k - a_k \to 0$ .

From Cantor's nested intervals theorem 2.7 we have that there exists  $x \in \mathbb{R}$  such that  $\bigcap_{n=1}^{\infty} I_n = \{x\}$ , and hence the subsequence  $(x_{n_k})$  converges to x.

**Definition 2.9.** For a sequence  $(x_n)$  we define the set of its *limit points* by

$$LIM(x_n) := \{x \in \overline{\mathbb{R}} \mid \text{there exists a subsequence } (x_{n_k}) \text{ s.t. } x_{n_k} \to x\},$$

and

$$\liminf_{n\to\infty} x_n := \inf \left( \text{LIM}(x_n) \right),$$

$$\limsup_{n\to\infty} x_n := \sup \left( \text{LIM}(x_n) \right).$$

**Example 2.10.** For 
$$x_n = \frac{(-1)^n n}{n+1}$$
, LIM $(x_n) = \{-1, 1\}$ ,  $\liminf_{n \to \infty} x_n = -1$ ,  $\limsup_{n \to \infty} x_n = 1$ .

**Proposition 2.11.**  $\lim_{n\to\infty} x_n = \ell \in \overline{\mathbb{R}}$  if and only if  $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n = \ell$ .

**Definition 2.12** (Cauchy sequence). A sequence  $(x_n)$  is called *Cauchy (or fundamental)* if

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N} \text{ such that } |x_m - x_n| < \varepsilon, \forall m, n \ge N_{\varepsilon}.$$

**Proposition 2.13.** Any Cauchy sequence is bounded.

*Proof.* For  $\varepsilon = 1$ , there exists  $N_1 \in \mathbb{N}$  such that  $|x_m - x_n| < 1$ ,  $\forall m, n \ge N_1$ . In particular,  $|x_n - x_{N_1}| < 1$ ,  $\forall n \ge N_1$ , hence the terms after index  $N_1$  are bounded. The terms before index  $N_1$  are also bounded since there is a finite number of them. We thus conclude that the entire sequence is bounded.

**Theorem 2.14.** A sequence is convergent if and only if it is Cauchy.

*Proof.* Let's consider first a convergent sequence  $(x_n)$  with  $x_n \to \ell$ . For any  $\varepsilon > 0$ , there exists  $N_{\varepsilon} \in \mathbb{N}$  such that  $|x_n - \ell| < \frac{\varepsilon}{2}$ , for any  $n \ge N_{\varepsilon}$ . Then  $|x_m - x_n| \le |x_m - \ell| + |x_n - \ell| < \varepsilon$ , for any  $n \ge N_{\varepsilon}$ . Hence the sequence  $(x_n)$  is Cauchy.

Assume now that  $(x_n)$  is a Cauchy sequence. From the previous proposition we have that  $(x_n)$  must be bounded, and thus it has a convergent subsequence  $(x_{n_k}), x_{n_k} \to x \in \mathbb{R}$ . Let  $\varepsilon > 0$ . There exists thus  $K_{\varepsilon} \in \mathbb{N}$  such that  $|x_{n_k} - x| < \varepsilon$ ,  $\forall k \ge K_{\varepsilon}$ . Also, there exists  $N_{\varepsilon} \in \mathbb{N}$  such that  $|x_m - x_n| < \varepsilon$ ,  $\forall m, n \ge N_{\varepsilon}$ . In particular,  $|x_{n_k} - x_n| < \varepsilon$ ,  $\forall k, n \ge N_{\varepsilon}$ . Hence  $|x_n - x| \le |x_n - x_{n_k}| + |x_{n_k} - x| < 2\varepsilon$ ,  $\forall n \ge \max\{K_{\varepsilon}, N_{\varepsilon}\}$ , meaning that  $x_n \to x$ .  $\square$ 

**Example 2.15.** The sequence defined by  $x_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$  is not convergent. Indeed, one can see, for example, that

$$x_{2n}-x_n=\frac{1}{n+1}+\ldots+\frac{1}{2n}>\frac{n}{2n},$$

hence  $x_{2n} - x_n > \frac{1}{2}$  for any  $n \in \mathbb{N}$ . Thus  $(x_n)$  is not convergent since it is not Cauchy.

#### Series. Power series

For a sequence  $(x_n)$ , the sum  $\sum_{n=1}^{\infty} x_n$  is called a *series* and  $s_n := \sum_{k=1}^{n} x_k$  is called the *partial sum of the series*. The summation in a series can start from any index, not necessarily 0 or 1. A series is also often written as  $\sum_{n>1} x_n$ .

**Definition 3.1.** The series  $\sum_{n=1}^{\infty} x_n$  converges iff the sequence of partial sums  $(s_n)$  converges.

**Example 3.2.** The *geometric series*  $\sum_{n=0}^{\infty} q^n$  converges iff |q| < 1, with sum  $\frac{1}{1-q}$ .

**Example 3.3.** The *harmonic series*  $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$  diverges since  $(s_n)$  is not a Cauchy sequence.

**Example 3.4** (Euler's number).  $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ .

*Proof.* (Optional) Let  $s_n = 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!}$ . Start from  $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$  and expand

$$\left(1+\frac{1}{n}\right)^n = 1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\ldots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdot\ldots\cdot\left(1-\frac{n-1}{n}\right) \leq s_n.$$

We have that

$$\left(1+\frac{1}{n}\right)^n \le s_n.$$

Consider now an index  $k \ge n$ . We have that

$$\left(1 + \frac{1}{k}\right)^k \ge 1 + 1 + \frac{1}{2!}\left(1 - \frac{1}{k}\right) + \dots + \frac{1}{n!}\left(1 - \frac{1}{k}\right)\left(1 - \frac{2}{k}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{k}\right)$$

and taking  $k \to \infty$  we obtain that  $e \ge s_n$ . We conclude with the squeeze theorem for

$$\left(1+\frac{1}{n}\right)^n \le s_n \le e,$$

obtaining that the series  $\sum_{n=0}^{\infty} \frac{1}{n!}$  converges and its sum is e.

**Proposition 3.5.** If the series  $\sum_{n=1}^{\infty} x_n$  is convergent, then  $\lim_{n\to\infty} x_n = 0$ .

*Proof.* Consider the partial sum  $s_n$ . We have that  $x_n = s_n - s_{n-1}$ , hence the conclusion.  $\square$ 

8

It thus follows that if  $\lim_{n\to\infty} x_n \neq 0$ , then the series  $\sum_{n=1}^{\infty} x_n$  is divergent.

**Example 3.6.** Series like  $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} (\frac{1}{n} - \frac{1}{n+1}) = 1$  are called *telescoping series*. The partial sum of a telescoping series can be easily computed since after cancellations the only remaining terms are the first one and the last one.

If the sequence  $(x_n)$  has only nonnegative terms  $x_n \ge 0$ , then the sequence of partial sums  $(s_n)$  is increasing. The series  $\sum_{n=1}^{\infty} x_n$  then converges iff  $(s_n)$  is bounded.

**Theorem 3.7** (Comparison test). Let  $\sum_{n=1}^{\infty} x_n$ ,  $\sum_{n=1}^{\infty} y_n$  be series with nonnegative terms. If there is an  $n_0 \in \mathbb{N}$  such that

$$x_n \le y_n$$
,  $\forall n \ge n_0$ , then

(a) If 
$$\sum_{n=1}^{\infty} y_n$$
 converges, then  $\sum_{n=1}^{\infty} x_n$  also converges.

(b) If 
$$\sum_{n=1}^{\infty} x_n$$
 diverges, then  $\sum_{n=1}^{\infty} y_n$  also diverges.

*Proof.* Consider the sequences of partial sums. In case (a), both sequences are bounded. In case (b), both sequences are unbounded.  $\Box$ 

**Example 3.8.** If 
$$p \le 1$$
, then  $\sum_{n=1}^{\infty} \frac{1}{n^p} = \infty$  since  $\frac{1}{n^p} \ge \frac{1}{n}$  and  $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$ . E.g.  $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \infty$ .

**Theorem 3.9.** Let  $\sum_{n=1}^{\infty} x_n$ ,  $\sum_{n=1}^{\infty} y_n$  be series with nonnegative terms. If

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\ell, \text{ then }$$

- if  $\ell \in (0, \infty)$ , then the series  $\sum_{n=1}^{\infty} x_n$  and  $\sum_{n=1}^{\infty} y_n$  have the same nature.
- if  $\ell = 0$ , then if the series  $\sum_{n=1}^{\infty} y_n$  converges, the series  $\sum_{n=1}^{\infty} x_n$  also converges.
- if  $\ell = \infty$ , then if the series  $\sum_{n=1}^{\infty} y_n$  diverges, the series  $\sum_{n=1}^{\infty} x_n$  also diverges.

**Theorem 3.10** (Ratio test). Let  $\sum_{n=1}^{\infty} x_n$  be a series with nonnegative terms such that

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=\ell.$$

- If  $\ell < 1$ , then the series  $\sum_{n=1}^{\infty} x_n$  is convergent.
- If  $\ell > 1$ , then the series  $\sum_{n=1}^{\infty} x_n$  is divergent.

The test is *inconclusive* when  $\ell = 1$ .

*Proof.* The idea is that  $\sum_{n\geq 1} x_n$  behaves like a geometric series with ratio  $\ell$ . We will only give a proof when  $\ell < 1$ , the other case being similar.

Take  $\varepsilon > 0$  such that  $q := \ell + \varepsilon < 1$ . There exists  $N \in \mathbb{N}$  such that

$$\frac{x_{n+1}}{x_n} - \ell < \varepsilon, \, \forall n \ge N,$$

giving that  $x_{n+1} < x_n \cdot q$ ,  $\forall n \ge N$ . Hence  $x_n < q^{n-N}x_N$ , that is  $x_n < q^n \frac{x_N}{q^N}$ . Since q < 1, the series converges by comparison with the geometric series  $\sum_{n \ge 1} q^n$ .

**Theorem 3.11** (Root test). Let  $\sum_{n=1}^{\infty} x_n$  be a series with nonnegative terms such that

$$\lim_{n\to\infty}\sqrt[n]{x_n}=\ell.$$

- If  $\ell < 1$ , then the series  $\sum_{n=1}^{\infty} x_n$  is convergent.
- If  $\ell > 1$ , then the series  $\sum_{n=1}^{\infty} x_n$  is divergent.

The test is *inconclusive* when  $\ell = 1$ .

*Proof.* Idea:  $\sum_{n>1} x_n$  behaves like a geometric series with ratio  $\ell$ , as in the ratio test.  $\square$ 

**Example 3.12.** The series  $\sum_{n\geq 0} \frac{x^n}{n!}$  converges for any  $x\in\mathbb{R}$ . We will see later that  $\sum_{n\geq 0} \frac{x^n}{n!}=e^x$ . We have that  $\frac{x_{n+1}}{x_n}=\frac{x}{n+1}\to 0<1$ , hence the series converges by the ratio test.

**Theorem 3.13** (Cauchy condensation test). Let  $(x_n)$  be a decreasing sequence with  $x_n > 0$ . Then the series  $\sum_{n=1}^{\infty} x_n$  and  $\sum_{n=0}^{\infty} 2^n x_{2^n}$  have the same nature.

*Proof.* Let  $S_n = x_1 + x_2 + \ldots + x_n$  and  $T_n = x_1 + 2x_2 + \ldots + 2^n x_n$ . Since  $x_n > 0$ , the two series will have the same nature if and only if  $S_n$  and  $T_n$  are both bounded/unbounded.

For any  $n \in \mathbb{N}$  there exists  $k \in \mathbb{N}$  s.t.  $2^k \le n \le 2^{k+1} - 1$ . Since  $(x_n)$  is decreasing and positive, we can group the terms in the following ways

$$S_n = x_1 + x_2 + \ldots + x_n \le x_1 + x_2 + \ldots + x_{2^{k+1}-1}$$

$$\le x_1 + (x_2 + x_3) + \ldots + (x_{2^k} + \ldots + x_{2^{k+1}-1})$$

$$\le T_k,$$

and

$$S_n = x_1 + x_2 + \dots + x_n \ge x_1 + x_2 + \dots + x_{2^k}$$

$$\ge x_1 + x_2 + (x_3 + x_4) + \dots + (x_{2^{k-1}+1} + \dots + x_{2^k})$$

$$\ge \frac{x_1}{2} + \frac{1}{2} T_k.$$

We obtained that  $0 \le \frac{1}{2}T_k \le S_n \le T_k$ , hence  $(S_n)$  bounded if and only if  $(T_n)$  is bounded.  $\square$ 

**Example 3.14.** The series  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  converges if and only if p > 1.

*Proof.* By the Cauchy condensation test,  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  has the same nature as  $\sum_{n=1}^{\infty} \frac{2^n}{2^{np}} = \sum_{n=1}^{\infty} (2^{1-p})^n$ , which converges if and only if  $2^{1-p} < 1$ , i.e for p > 1.

**Theorem 3.15** (Kummer's test). Let  $(x_n)$  be a positive sequence and consider another positive sequence  $(c_n)$ .

(a) If

$$\lim_{n\to\infty}\left(c_n\frac{x_n}{x_{n+1}}-c_{n+1}\right)>0,$$

then  $\sum_{n>1} x_n$  is convergent.

(b) If 
$$\sum_{n\geq 1} \frac{1}{c_n} = \infty$$
 and

$$\lim_{n\to\infty}\left(c_n\frac{x_n}{x_{n+1}}-c_{n+1}\right)<0,$$

then  $\sum_{n\geq 1} x_n$  is divergent.

*Proof.* Let us start with (a). Since that limit is positive, there exist r > 0 and  $n_0 \in \mathbb{N}$  such that

$$c_n x_n - c_{n+1} x_{n+1} \ge r x_{n+1}, \quad \forall n \ge n_0.$$

Denote by  $s_n = x_1 + \ldots + x_n$ . Adding all these inequalities for  $k \in \{n_0, \ldots, n\}$  we have that

$$c_{n_0}x_{n_0}-c_{n+1}x_{n+1}\geq r(s_{n+1}-s_{n_0}),$$

which gives  $s_{n+1} \le s_{n_0} + \frac{1}{r}c_{n_0}x_{n_0}$ . Hence  $(s_n)$  is bounded and the series converges.

Let us now consider (b). Since the limit is negative, there exists  $n_0 \in \mathbb{N}$  such that

$$c_n x_n < c_{n+1} x_{n+1}, \quad \forall n \geq n_0.$$

Hence for  $n > n_0$ , we have that  $c_{n_0}x_{n_0} < c_nx_n$ , which gives

$$\frac{1}{c_n} < \frac{1}{c_{n_0} x_{n_0}} x_n.$$

Since 
$$\sum_{n\geq 1} \frac{1}{c_n} = \infty$$
, we conclude that  $\sum_{n\geq 1} x_n = \infty$ .

Many convergence tests can be obtained by taking particular sequences in Kummer's test. We will restrict to the following one.

**Theorem 3.16** (Raabe-Duhamel). Let  $\sum_{n\geq 1} x_n$  be a series with positive terms such that

$$\lim_{n\to\infty} n\left(\frac{x_n}{x_{n+1}} - 1\right) = R.$$

- If R > 1, then the series  $\sum_{n=1}^{\infty} x_n$  is convergent.
- If R < 1, then the series  $\sum_{n=1}^{\infty} x_n$  is divergent.

*Proof.* Take  $c_n = n$  in Kummer's test (theorem 3.15).

**Example 3.17.** Study the convergence of the series  $\sum_{n\geq 0} \frac{n!}{a(a+1)\dots(a+n)}$ , with a>0.

*Proof.* The ratio test is inconclusive since  $\frac{x_{n+1}}{x_n} = \frac{n+1}{a+n+1} \to 1$ . Let us then try the Raabe-Duhamel test:

$$\lim_{n\to\infty} n\left(\frac{x_n}{x_{n+1}} - 1\right) = \lim_{n\to\infty} n\left(\frac{a+n+1}{n+1} - 1\right) = a.$$

Hence if a > 1 the series converges; and if a < 1 the series diverges. When a = 1 the series is  $\sum_{n=0}^{\infty} \frac{1}{n+1} = \infty$ .

A series  $\sum_{n\geq 1} x_n$  is called an *alternating series* if  $x_n x_{n+1} \leq 0$ ,  $\forall n \in \mathbb{N}$ . A fundamental class of alternating series are series of the form  $\sum_{n\geq 1} (-1)^n a_n$  or  $\sum_{n\geq 1} (-1)^{n+1} a_n$ , with  $a_n > 0$ .

**Example 3.18.** The series 
$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$
 converges to ln 2.

*Proof.* Let us prove convergence by considering the partial sums  $s_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$ . Notice that  $s_{2k+2} - s_{2k} = \frac{1}{2k+1} - \frac{1}{2k+2} > 0$  and that  $s_{2k+3} - s_{2k+1} = \frac{1}{2k+3} - \frac{1}{2k+2} < 0$ . This means that the subsequence  $(s_{2k})$  is increasing, while the subsequence  $(s_{2k+1})$  is decreasing. Notice also that  $s_{2k+1} - s_{2k} = \frac{1}{2k+1}$  and  $s_{2k} < s_{2k+1}$ , so both subsequences are also bounded and converge to the same limit. To find the sum of the alternating series, recall (from the seminar) that

$$\lim_{n \to \infty} 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n = \gamma \in (0, 1), \text{ hence}$$

$$s_{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \dots - \frac{1}{2n} = 1 + \frac{1}{2} + \dots + \frac{1}{2n} - 2(\frac{1}{2} + \dots + \frac{1}{2n})$$

$$= \underbrace{1 + \frac{1}{2} + \dots + \frac{1}{2n} - \ln(2n)}_{\rightarrow \gamma} - \underbrace{\left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n\right)}_{\rightarrow \gamma} + \ln 2 \rightarrow \ln 2.$$

**Theorem 3.19** (Leibniz test). Let  $(x_n)$  be a decreasing sequence with  $x_n \to 0$ . Then the series  $\sum_{n>1} (-1)^n x_n$  is convergent.

*Proof.* Consider the partial sum  $s_n = \sum_{k=1}^n (-1)^k x_k$ . We will prove that  $(s_n)$  is convergent by showing that it is a Cauchy sequence. For  $n, p \in \mathbb{N}$  consider

$$|s_{n+p} - s_n| = |(-1)^{n+1} x_{n+1} + \dots + (-1)^{n+p} x_{n+p}|$$

$$= |\underbrace{x_{n+1} - x_{n+2}}_{\geq 0} + \underbrace{x_{n+3} - x_{n+4}}_{\geq 0} + \dots + (-1)^{p-2} x_{n+p-1} + (-1)^{p-1} x_{n+p}|$$

$$= x_{n+1} - \underbrace{x_{n+2} + x_{n+3}}_{\leq 0} - x_{n+4} + \dots \pm x_{n+p-1} \mp x_{n+p}$$

$$\leq x_{n+1}.$$

Since  $x_n \to 0$ ,  $|s_{n+p} - s_n|$  can be made arbitrarily small, so  $(s_n)$  is Cauchy.

**Definition 3.20.** A series  $\sum_{n\geq 1} x_n$  is called *absolutely convergent* if  $\sum_{n\geq 1} |x_n|$  is convergent.

**Proposition 3.21.** Any absolutely convergent series is also convergent.

*Proof.* If 
$$\sum_{k=1}^{n} |x_k|$$
 gives a Cauchy sequence, then  $\sum_{k=1}^{n} x_k$  also gives a Cauchy sequence.  $\Box$ 

**Theorem 3.22** (Cauchy). Let  $\sum_{n\geq 1} x_n$  be an *absolutely convergent series* and let  $\sigma: \mathbb{N} \to \mathbb{N}$  be a bijection. Then  $\sum_{n\geq 1} x_{\sigma(n)}$  is also absolutely convergent and  $\sum_{n\geq 1} x_{\sigma(n)} = \sum_{n\geq 1} x_n$ . In other words, any rearrangement of an absolutely convergent series has the same sum.

**Definition 3.23.** A series  $\sum_{n\geq 1} x_n$  is called *conditionally convergent* (or semi-convergent) if  $\sum_{n\geq 1} x_n$  converges, but  $\sum_{n\geq 1} |x_n|$  diverges.

**Theorem 3.24** (Riemann). Let  $\sum_{n\geq 1} x_n$  be a *conditionally convergent series* and let  $x\in \overline{\mathbb{R}}$ . Then there exists a bijection  $\sigma: \mathbb{N} \to \mathbb{N}$  such that  $\sum_{n\geq 1} x_{\sigma(n)} = x$ . In other words, a conditionally convergent series can be rearranged to converge to any value or diverge to  $\pm \infty$ .

**Example 3.25.** Rearranging the terms in the alternating harmonic series one can obtain a different sum. Indeed, consider  $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$ , and reorder the terms in the following way: one positive, two negative. Then

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \dots = \frac{1}{2}(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots) = \frac{1}{2}\ln 2.$$

**Definition 3.26.** Let  $(a_n)$  be a sequence of real numbers and let  $c \in \mathbb{R}$ . The series

$$\sum_{n=0}^{\infty} a_n (x-c)^n$$

is called a *power series* centered at *c*.

**Theorem 3.27.** Consider the power series  $\sum_{n=0}^{\infty} a_n (x-c)^n$ . There exists a unique  $R \in [0, \infty]$ , called the *radius of convergence* of the power series, such that the power series

- converges absolutely when |x c| < R.
- diverges when |x c| > R.

**Theorem 3.28.** If the limit

$$\lim_{n\to\infty}\sqrt[n]{|a_n|}=L\in[0,\infty]$$

exists, then the power series  $\sum_{n=0}^{\infty} a_n(x-c)^n$  has the radius of convergence

$$R = \begin{cases} \frac{1}{L}, & \text{if } L \in (0, \infty) \\ 0, & \text{if } L = \infty \\ \infty, & \text{if } L = 0. \end{cases}$$

*Proof.* It follows from the root test for series with positive terms.

Corollary 3.29. If the limit

$$\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=L\in[0,\infty]$$

exists, then the power series  $\sum_{n=0}^{\infty} a_n(x-c)^n$  has the radius of convergence

$$R = \begin{cases} \frac{1}{L}, & \text{if } L \in (0, \infty) \\ 0, & \text{if } L = \infty \\ \infty, & \text{if } L = 0. \end{cases}$$

*Proof.* It follows from  $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = L$ .

**Definition 3.30.** The convergence set of a power series is

$$C := \{ x \in \mathbb{R} \mid \sum_{n=0}^{\infty} a_n (x - c)^n \text{ converges} \}.$$

**Remark 3.31.** The convergence set C contains the open interval (c - R, c + R) and possibly the endpoints  $\{c - R, c + R\}$ .

**Example 3.32.** The power series  $\sum_{n\geq 0} x^n$  has radius of convergence R=1, it converges absolutely for |x|<1 and diverges when |x|>1 (by the root test or the ratio test). The convergence set is (-1,1) and for  $x\in (-1,1)$  we have that

$$\sum_{n\geq 0} x^n = \frac{1}{1-x}, \quad \sum_{n\geq 0} (-x)^n = \frac{1}{1+x}.$$

**Example 3.33.** The power series  $\sum_{n\geq 1} \frac{x^n}{n}$  has radius of convergence R=1, it converges absolutely for |x|<1 and diverges when |x|>1 (by the root test or the ratio test). Moreover, the series converges for x=-1 (alternating harmonic series) and diverges for x=1 (harmonic series), hence its convergence set is C=[-1,1).

**Theorem 3.34.** Consider a power series with radius of convergence *R*, given by

$$s(x) = \sum_{n=0}^{\infty} a_n (x - c)^n.$$

Then for any  $x \in (c - R, c + R)$ , the power series can be differentiated term by term and

$$s'(x) = \sum_{n=1}^{\infty} n a_n (x - c)^{n-1},$$

and for any  $t \in (c - R, c + R)$  the power series can be integrated term by term

$$\int_{c}^{t} s(x) dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (t-c)^{n+1}.$$

**Example 3.35.** The power series  $\sum_{n\geq 1} \frac{x^n}{n!}$  converges absolutely for any  $x\in\mathbb{R}$  (ratio test). Let  $\exp(x) := \sum_{n\geq 1} \frac{x^n}{n!}$  and differentiate term by term, then  $\exp'(x) = \exp(x)$  and  $\exp(0) = 1$ .

## Limits, continuity, differentiability

**Definition 4.1.** Let  $A \subseteq \mathbb{R}$ . We say that  $x_0 \in \overline{\mathbb{R}}$  is an accumulation point (or cluster point) if

$$\forall V \in \mathcal{V}(x_0), \ V \cap (A \setminus \{x_0\}) \neq \emptyset.$$

We denote by A' the set of the accumulation points of A. We say that  $x_0 \in A$  is an *isolated* point if  $x_0 \in A \setminus A'$ .

**Remark 4.2.**  $cl(A) = A' \cup \{\text{isolated points}\}.$ 

**Proposition 4.3.** Let  $A \subseteq \mathbb{R}$  and  $x_0 \in \overline{\mathbb{R}}$ , then  $x_0 \in A'$  if and only if there exists a sequence  $(x_n)$  in  $A \setminus \{x_0\}$  such that  $\lim_{n \to \infty} x_n = x_0$ .

*Proof.* Assume that  $x_0 \in A'$ , with  $x_0 \in \mathbb{R}$ , and consider the neighborhoods  $(x_0 - \frac{1}{n}, x_0 + \frac{1}{n})$ . Then each neighborhood must contain an  $x_n \in A \setminus \{x_0\}$  with  $|x_n - x_0| < \frac{1}{n}$ , hence  $x_n \to x_0$ . If  $x_0$  is infinite, the neighborhoods can be taken  $(-\infty, -n)$  or  $(n, \infty)$ , respectively.

Assume now that there exists a sequence  $(x_n)$  in  $A \setminus \{x_0\}$  such that  $\lim_{n \to \infty} x_n = x_0$ . Then for any  $V \in \mathcal{V}(x_0)$ , there exists  $N_V \in N$  such that  $x_n \in V$ , for any  $n \geq N_V$ . In particular,  $x_{N_V} \in V \cap (A \setminus \{x_0\})$ , for any  $V \in \mathcal{V}(x_0)$ , hence  $x_0 \in A'$ .

**Example 4.4.** For  $A = \{\frac{1}{n} \mid n \in \mathbb{N}\}$ , each element  $x \in A$  in an isolated point and  $A' = \{0\}$ .

**Definition 4.5.** Let  $A \subseteq \mathbb{R}$ ,  $f : A \to \mathbb{R}$  and  $x_0 \in A'$ . We say that  $\lim_{x \to x_0} f(x) = \ell \in \overline{\mathbb{R}}$  if

$$\forall V \in \mathcal{V}(\ell), \exists U \in \mathcal{V}(x_0) \text{ s.t. } f(x) \in V, \forall x \in U \cap (A \setminus \{x_0\}).$$

**Remark 4.6** ( $\varepsilon$ - $\delta$ ). Let  $A \subseteq \mathbb{R}$ ,  $f : A \to \mathbb{R}$  and  $x_0 \in A'$  finite. If  $\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$ , then

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } |f(x) - \ell| < \varepsilon, \forall x \in A \text{ with } |x - x_0| < \delta.$$

**Theorem 4.7.** Let  $A \subseteq \mathbb{R}$ ,  $f : A \to \mathbb{R}$  and  $x_0 \in A'$ . Then  $\lim_{x \to x_0} f(x) = \ell \in \overline{\mathbb{R}}$  iff

for any sequence  $(x_n)$  in  $A \setminus \{x_0\}$  with  $\lim_{n \to \infty} x_n = x_0$ , we have that  $\lim_{n \to \infty} f(x_n) = \ell$ .

**Theorem 4.8.** Let  $A \subseteq \mathbb{R}$ ,  $f : A \to \mathbb{R}$ ,  $x_0 \in \mathbb{R}$  s.t.  $x_0 \in (A \cap (-\infty, x_0))'$  and  $x_0 \in (A \cap (x_0, \infty))'$ . Then

$$\lim_{x \to x_0} f(x) = \ell \text{ iff } \lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = \lim_{\substack{x \to x_0 \\ x > x_0}} f(x) = \ell.$$

**Example 4.9.** (a)  $\operatorname{sgn}: \mathbb{R} \to \mathbb{R}$ ,  $\operatorname{sgn}(x) = \begin{cases} +1, & \text{if } x \ge 0 \\ -1, & \text{if } x < 0. \end{cases}$  has no limit at 0.

(b) 
$$f: \mathbb{R}^* \to \mathbb{R}$$
,  $f(x) = \sin(\frac{1}{x})$  has no limit at 0 since  $f(\frac{1}{2n\pi}) = 0$ ,  $f(\frac{1}{2n\pi + \pi/2}) = 1$ .

(c) 
$$f: \mathbb{R} \to \mathbb{R}$$
,  $f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$  has no limit at any  $x \in R$ .

**Definition 4.10.** Let  $A \subseteq \mathbb{R}$ ,  $f : A \to \mathbb{R}$  and  $x_0 \in A$ . We say that f is *continuous* at  $x_0$  if

$$\forall V \in \mathcal{V}(f(x_0)), \exists U \in \mathcal{V}(x_0) \text{ s.t. } f(x) \in V, \forall x \in U \cap A.$$

**Remark 4.11.** If  $x_0 \in A \cap A'$  is an accumulation point, then f is continuous at  $x_0$  if

$$\lim_{x \to x_0} f(x) = f(x_0).$$

**Remark 4.12.** If  $x_0$  is an isolated point of A, then  $\exists U \in \mathcal{V}(x_0)$  with  $U \cap A = \{x_0\}$ , and since  $f(x_0) \in V$ ,  $\forall V \in \mathcal{V}(f(x_0))$ , we have that f is continuous at  $x_0$ .

**Theorem 4.13.** Let  $A \subseteq \mathbb{R}$ ,  $f : A \to \mathbb{R}$  and  $x_0 \in A \cap A'$ . The following are equivalent:

- (a) f is continuous at  $x_0$ .
- (b)  $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } |f(x) f(x_0)| < \varepsilon, \forall x \in A \text{ with } |x x_0| < \delta.$
- (c) for any sequence  $(x_n)$  in A with  $\lim_{n\to\infty} x_n = x_0$ , we have that  $\lim_{n\to\infty} f(x_n) = f(x_0)$ .

**Remark 4.14.** Elementary operations – e.g. sums, products or compositions – of continuous functions are continuous (when defined).

**Definition 4.15.** For  $f: A \to \mathbb{R}$  denote by  $f(A) := \{f(x) \mid x \in A\}$  the image of A. We say that f is *bounded* if f(A) is *bounded*, i.e.  $\inf (f(A))$ ,  $\sup (f(A))$  are finite.

**Theorem 4.16** (Weierstrass). Let  $f : [a,b] \to \mathbb{R}$  be a continuous function. Then f is bounded and it attains its bounds, i.e. there exist min (f(A)), max (f(A)).

*Proof.* Let us first prove that f is bounded. Assuming that this is not the case, we have that for any  $n \in \mathbb{N}$  there exists  $x_n \in [a,b]$  such that  $|f(x_n)| > n$ . Since the sequence  $(x_n)$  is bounded, we have that it has a convergent subsequence  $(x_{n_k})$ , see theorem 2.8; denote its limit by x. We have that  $x_{n_k} \to x$  and f is continuous, hence  $f(x_{n_k}) \to f(x)$ . But  $|f(x_{n_k})| > n_k \to \infty$ , contradiction. Hence f is bounded on [a,b].

To prove that f attains its bounds, let's consider the upper bound and show that there exists  $x_M \in [a,b]$  such that  $f(x_M) = \sup(f(A))$ , i.e.  $f(x_M) = \max(f(A)) = \sup(f(A))$ . From theorem 1.7, we obtain a sequence  $(x_n)$  in [a,b] such that  $f(x_n) \to \sup(f(A))$ . Since the sequence  $(x_n)$  is bounded, it has a convergent subsequence  $(x_{n_k})$ ; let's call its limit  $x_M \in [a,b]$ . Since f is continuous, it follows that  $f(x_{n_k}) \to f(x_M)$ , but we know that  $f(x_{n_k}) \to \sup(f(A))$ , hence  $f(x_M) = \sup(f(A))$  and f reaches its upper bound.  $\Box$ 

**Theorem 4.17** (Intermediate value property). Let  $f : [a, b] \to \mathbb{R}$  be a continuous function. Then f has the intermediate value property, i.e. if  $y \in \mathbb{R}$  is in between f(a) and f(b), there exists  $c \in (a, b)$  such that f(c) = y.

*Proof.* Assume that f(a) < y < f(b) and consider the set  $S := \{x \in [a,b] \mid f(x) \le y\}$ . Take

$$c := \sup(S)$$

Let  $\varepsilon > 0$ , then  $\exists \delta > 0$  such that  $|f(x) - f(c)| < \varepsilon$ , whenever  $|x - c| < \delta$ . Since  $c = \sup(S)$ , we have from theorem 1.7 that there exists  $x_1 \in S$  such that  $c - \delta < x_1 \le c$ . From continuity we have that  $f(c) < f(x_1) + \varepsilon \le y + \varepsilon$ . Also, for  $x_2 \in (c, c + \delta)$ , we have from continuity that  $f(c) > f(x_2) - \varepsilon$ . From the definition of the supremum,  $x_2 \notin S$  hence  $f(x_2) > y$  and  $f(c) > y - \varepsilon$ . We conclude that  $y - \varepsilon < f(c) < y + \varepsilon$ , for any  $\varepsilon > 0$ . Hence f(c) = y.

**Definition 4.18.** Let  $A \subseteq \mathbb{R}$ ,  $f : A \to \mathbb{R}$  and  $x_0 \in A \cap A'$ . The *derivative* of f at  $x_0$  is

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \in \overline{\mathbb{R}}$$

If  $f'(x_0) \in \mathbb{R}$  (finite) we say that f is differentiable at  $x_0$ .

**Remark 4.19.**  $f'(x_0)$  represents the gradient of the tangent to the curve y = f(x) at the point  $(x_0, f(x_0))$ . The equation of the tangent is  $f(x) - f(x_0) = f'(x_0)(x - x_0)$ .

**Theorem 4.20.** Let  $A \subseteq \mathbb{R}$ ,  $f : A \to \mathbb{R}$  and  $x_0 \in A \cap A'$ . If f is differentiable at  $x_0$ , then f is continuous at  $x_0$ .

*Proof.* Since  $f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0}(x - x_0)$ , we have that  $\lim_{x \to x_0} f(x) = f(x_0) + 0 = f(x_0)$ .  $\square$ 

**Example 4.21.**  $f: \mathbb{R} \to \mathbb{R}$ , f(x) = |x| is not differentiable in 0 since  $\nexists \lim_{x \to 0} \frac{|x|}{x}$ .

Theorem 4.22 (Calculus Rules).

- (cf)'(x) = cf'(x), for any constant  $c \in \mathbb{R}$ .
- (f+g)'(x) = f'(x) + g'(x).
- (fg)'(x) = f'(x)g(x) + f(x)g'(x). (Product Rule)
- $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$ . (Quotient Rule)
- $(f \circ g)'(x) = f'(g(x))g'(x)$ . (Chain Rule)

**Proposition 4.23** (l'Hôpital's rule). Let I be an open interval,  $x_0 \in \overline{\mathbb{R}}$  and  $f, g: I \setminus \{x_0\} \to \mathbb{R}$  differentiable. If  $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$  or  $\pm \infty$ , and  $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} \in \overline{\mathbb{R}}$ , then

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

**Definition 4.24.**  $f: A \to \mathbb{R}$  has a local extremum (minimum or maximum) at  $x_0 \in A$  if

$$\exists V \in \mathcal{V}(x_0) \text{ s.t. } f(x_0) \leq f(x) \text{ or } f(x_0) \geq f(x), \ \forall x \in V \cap A.$$

**Theorem 4.25** (Fermat). Let  $f : (a, b) \to \mathbb{R}$  and  $x_0 \in (a, b)$ . If f is differentiable at  $x_0$  and  $x_0$  is a local extremum, then  $f'(x_0) = 0$ .

*Proof.* The lateral derivatives at  $x_0$  are equal. Since  $x_0$  is a local extremum, one of them is  $\geq 0$ , the other  $\leq 0$ . Hence  $f'(x_0) = 0$ .

**Theorem 4.26** (Rolle). Let  $f:(a,b)\to\mathbb{R}$  with f(a)=f(b). If is continuous on [a,b] and differentiable on (a,b), then there exists  $c\in(a,b)$  s.t. f'(c)=0.

*Proof.* Since f is continuous, it is bounded and it attains its bounds. Denote by  $x_m$  and  $x_M$  the minimum and maximum points of f on [a,b]. If at least one of  $x_m$  and  $x_M$  belongs to (a,b), then  $f'(x_m) = 0$  or  $f'(x_M) = 0$ . Otherwise,  $x_m, x_M \in \{a,b\}$  and  $f(x_m) = f(x_M)$ , hence the function is constant and its derivative is zero on (a,b).

**Theorem 4.27** (Mean value theorem). Let  $f:(a,b)\to\mathbb{R}$  be continuous on [a,b] and differentiable on (a,b). Then there exists  $c\in(a,b)$  s.t.

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

*Proof.* Consider the function  $g:(a,b)\to\mathbb{R}$ ,  $g(x):=f(x)-x\frac{f(b)-f(a)}{b-a}$ . Since g(a)=g(b), the conclusion follows from Rolle's theorem.

**Theorem 4.28** (Monotony). Let  $f:(a,b)\to\mathbb{R}$  be differentiable on (a,b). Then

$$f$$
 is increasing iff  $f' \ge 0$ ,

$$f$$
 is decreasing iff  $f' \leq 0$ .

*Proof.*  $\Rightarrow$  follows from the definition of the derivative;  $\Leftarrow$  from the mean value theorem. □

# References

- [1] W. Rudin, Principles of Mathematical Analysis 3rd ed, McGraw-Hill, 1976.
- [2] T. Tao, Analysis I, Springer, 2016.
- [3] J.E. Marsden, A. Tromba, Vector Calculus 6th ed, W.H. Freeman and Company, 2012
- [4] M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists, Springer, 2018
- [5] G. Strang, Linear Algebra and Learning from Data, Wellesley Cambridge Press, 2019