Proposition 1 : $G \rightarrow A$

Toute grammaire G régulière droite $\{X,V,P,S_G\}$ il existe un automate d'état finis A $\{X,S,S_0,II\}$ tq L(A)=L(G)

Proposition 2 : $A \rightarrow G$

Tout automate d'état finis A < X, S, S_0 , II > il existe une grammaire G régulière droite < X, V, P, $S_G > tq$ L(A) = L(G)

Proposition 3:

Toute grammaire G régulière droite (X, V, P, S_G) il existe une grammaire G' régulière gauche (X, V', P', S'_G) tq L(G)=L(G')

Grammaire → Automate

Exemple:

 $S_G \rightarrow abS_G/bA$

 $A \rightarrow bA/aB/b$

 $B \rightarrow aB / \epsilon$

 $S_G \mid_G abS_G \mid_G ababS_G \mid_G (ab)^2 bA \mid_G \dots$

définie A \leq X, S, S₀, II> S=V ,S₀= S_G , II=Ø

procédure de construction de II

pour toute production de $P(\alpha, \beta)$ faire

Si β =wB alors II=II \cup {(α , w, B)} Sinon si β =w avec w \in X* alors II=II \cup {(α , w, S_f)}

Automate → Grammaire

Exemple:

 $S_0 \rightarrow 1A/0B/\epsilon$

 $A \rightarrow 0A / 0B$

 $B \rightarrow 1S_0 / \epsilon$

G < X, V, P, $S_G >$ avec V = S, $S_G = S_0$ pour chaque $(S_i$, w, $S_j)$ faire $S_i \rightarrow wS_j$ pour chaque $S_f \in F$ faire $S_f \rightarrow \epsilon$

$\mathsf{GRD} \to \, \mathsf{GRG}$

G (GRD)	G' (GRG)
$S \rightarrow 0S / A$ $A \rightarrow 1A / \varepsilon$	$S \rightarrow S0 / A$ $A \rightarrow A1 / \varepsilon$

$$L(G) = L \text{ et } L(G') = L^R$$

$$A\!\to L$$

$$GRD \rightarrow A \rightarrow I$$

$$GRD \rightarrow A \rightarrow A^R \rightarrow L^R$$

$$\begin{array}{c} A \rightarrow L \\ GRD \rightarrow A \rightarrow L \\ GRD \rightarrow A \rightarrow A^{R} \rightarrow L^{R} \\ GRD \rightarrow A \rightarrow A^{R} \rightarrow GRD \rightarrow GRG \rightarrow (L^{R})^{R} \end{array}$$