

Analisa untuk Memprediksi Karyawan yang Keluar (Churn)

Dibimbing

Data Science Batch 23B

Rini Kustiah Rahmadiana

Latar Belakang

salah satu tantangan utama yang dihadapi perusahaan adalah mengelola turnover karyawan atau churn. Churn karyawan dapat menyebabkan kerugian finansial, kehilangan produktivitas, dan menurunkan moral di tempat kerja. Oleh karena itu, penting bagi perusahaan untuk dapat mengantisipasi dan mencegah churn karyawan sebanyak mungkin.

Dengan kemajuan dalam bidang machine learning (ML) dan analisis data, perusahaan memiliki kesempatan untuk menggunakan pendekatan prediktif untuk mengidentifikasi karyawan yang berisiko tinggi untuk churn di masa depan.

Dengan memanfaatkan teknik ML seperti model klasifikasi, perusahaan dapat menganalisis data historis dan variabelvariabel penting untuk membangun model yang dapat memprediksi churn karyawan dengan tingkat akurasi yang tinggi.

Prediksi adalah kunci untuk membuka pintu masa depan. Dengan alat ML, kita dapat membaca isyarat yang tersembunyi dalam data untuk mengantisipasi langkahlangkah berikutnya

TOPIK

Penggunaan ML untuk memprediksi karyawan yang churn

Konten

Latar_Belakang

Kesimpulan

Data Feature dan EDA

Insight

Machine Learning

Rekomendasi

Dalam Dataset ini kami ingin mengetahui tentang 2 hal, yaitu:

- 1. Faktor apa saja yang paling berpengaruh yang membuat karyawan churn?
- 2. Membuat model Machine Learning tentang kasus ini.

https://www.kaggle.com/datasets/ninopadilla13/employee-churn

Kolom						
1.	avg_monthly_hrs					
2.	department					
3.	filed_complaint					
4.	last_evaluation					
5.	n_projects					
6.	recently_promoted					
7.	salary					
8.	satisfaction					
9.	status					
10.	tenure					

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 14249 entries, 0 to 14248 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	avg_monthly_hrs	14249 non-null	int64
1	department	13540 non-null	object
2	filed_complaint	2058 non-null	float64
3	last_evaluation	12717 non-null	float64
4	n_projects	14249 non-null	int64
5	recently_promoted	300 non-null	float64
6	salary	14249 non-null	object
7	satisfaction	14068 non-null	float64
8	status	14249 non-null	object
9	tenure	14068 non-null	float64
dtype	es: float64(5), int6	54(2), object(3)	
	4 4 115		

memory usage: 1.1+ MB


```
# number of missing values per column
df.isna().sum()
```

```
avg monthly hrs
                         0
department
                       709
filed complaint
                     12191
last evaluation
                      1532
n projects
recently_promoted
                     13949
salarv
satisfaction
                       181
status
tenure
                       181
dtype: int64
```

```
df = df.dropna(subset=['tenure'])
```

```
df.filed_complaint.fillna(0, inplace=True)
df.recently_promoted.fillna(0, inplace=True)
df['last_evaluation_missing'] = df.last_evaluation.isnull().astype(int)
df.last_evaluation.fillna(0, inplace=True)
```

df['department'].fillna('Missing',inplace=True)

df.department.replace('information_technology', 'IT', inplace=True)

# Transformed Dataset df.sample(10)														
				avg_monthly_hrs	department	filed_complaint	last_evaluation	n_projects	recently_promoted	salary	satisfaction	status	tenure	last_evaluation_missing
			3 188	support	0.0	0.707017	3	0.0	low	0.800805	Employed	2.0	0	
				8 155	management	0.0	1.000000	4	0.0	low	0.851027	Employed	3.0	0
			4 255	engineering	1.0	0.889249	5	0.0	low	0.762451	Employed	4.0	0	

df.isnull().sum() avg monthly hrs department filed complaint last evaluation n projects recently_promoted salarv satisfaction status tenure last_evaluation_missing dtype: int64 Tidak ada lagi data yang missing # drop duplicated rows df = df.drop duplicates() # sanity check df.duplicated().sum() 0

```
Data Encoder
```

```
# Transforming Categorical Data (One Hot Encoding)

OHE_Cols = ['salary']

for col in OHE_Cols:
   data1 = pd.get_dummies(df[[col]],dtype=int)
   data2 = df.drop(columns=col)

df = pd.concat([data1, data2], axis = 1)
```

Transformed Dataset
df.sample(10)

salary_high	salary_low	salary_medium	avg_monthly_hrs	department	filed_complaint	last_evaluation	n_projects	recently_promoted	satisfaction	status	ter
0	1	0	156	product	0.0	0.638501	4	0.0	0.779843	Employed	
G	0	1	131	support	1.0	0.432786	5	0.0	0.902914	Employed	
0	1	0	221	engineering	1.0	0.805053	4	0.0	0.932998	Employed	
0	0	1	198	sales	0.0	0.924947	4	0.0	0.625847	Employed	

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 14068 entries, 0 to 14248
Data columns (total 13 columns):
    Column
                             Non-Null Count Dtype
    salary high
                             14068 non-null int32
    salary low
                             14068 non-null int32
    salary medium
                             14068 non-null int32
    avg monthly hrs
                             14068 non-null int64
    department
                             14068 non-null object
    filed complaint
                             14068 non-null float64
    last evaluation
                             14068 non-null float64
    n projects
                             14068 non-null int64
    recently promoted
                             14068 non-null float64
    satisfaction
                             14068 non-null float64
    status
                             14068 non-null object
 11
    tenure
                             14068 non-null float64
 12 last evaluation missing 14068 non-null int32
dtypes: float64(5), int32(4), int64(2), object(2)
memory usage: 1.3+ MB
```


EXPLORATORY DATA ANALYSIS

Univariate Analysis

Dari Boxplot terlihat adanya outlier di salary_high,last_evaluation, recently_promoted,tenure dan last_evaluation_missing, namun bisa diabaikan karena tidak terlalu berpengaruh.

KDE plot for knowing the distribution form

- avg_monthly_hrs sebarannya adalah normal skew
- filed_complaint, sebaran distribusi '0 (tdk komplain) sangat tinggi dibanding distribusi'1'(komplain)
- last_evaluation, sebaran distribusi ke arah skew negatif, dengan ekor /melandai ke kiri
- 4. n_project, sebaran distribusi ke arah skew positif, dengan ekor /melandai ke kanan
- 5. recently_promoted,sebaran distribusi '0' (tdk promosi) sangat tinggi dibanding distribusi'1'(promosi)
- satisfaction,sebarannya adalah negatif skew
- 7 tenure,sebaran distribusi ke arah skew positif, dengan ekor /melandai ke kanan
- 8. last_evaluation_missing,sebarannya adalah normal skew
- 9. salary_high, sebarannya adalah normal skew
- salary_low, sebarannya adalah normal skew
- 11. salary_medium, sebarannya adalah normal skew

Bivariate Analysis

status = 1 berarti karyawan keluar (churn), dan status = 0 berarti sebaliknya Dapat dikatakan bahwa pada last_evaluation_missing yang banyak jumlahnya adalah yang 0 (tidak churn).

HEATMAP

Dari heatmap diatas dapat dilihat bahwa warna terang menunjukkan nilai - nilai yang berkolerasi dari satu kolom ke kolom lainnya. dengan kata lain kolom 'avg_monthly_hrs','filed_complaint','las t evaluation'.

'n_projects','recently_promoted',
'satisfaction',

'status','tenure','last_evaluation_missin g' tidak terlalu memiliki korelasi yang kuat karena < 0.5.

Violinplot

Distribusi 'avg_monthly_hrs' untuk setiap nilai 'n_projects' di status karyawan yang churn /Left.

Terlihat pada project 2 :skewnya positif, project 3 : skew normal, project 4,5,6,7 : skew negatif. rentang jam kerja terbanyak saat project ke 3

Distribusi 'avg_monthly_hrs' untuk setiap nilai 'tenure' di status karyawan yang churn /Left

Terlihat rata-rata tenure,skewnya normal hanya dimasa kerja 2 tahun. sedang di tahun ke 3 skewnya positif, ditahun ke 4, 5 dan 6 tahun masa kerja skewnya negatif.

Distribusi 'n_projects' untuk setiap nilai 'tenure' di status karyawan yang churn /Left.

Terlihat ditenure 3,skewnya positif dan di tenure 2,5,6 tahun skewnya normal dan di tenure 4 skewnya negatif.

Distribusi 'last_evaluation' untuk setiap nilai 'tenure' di status karyawan yang churn /Left

Terlihat rata-rata tenure, skewnya negatif.

Pairplot

Dari hasil analisa terdapat kesimpulan: Karyawan yang churn rata-rata salarynya rendah, rata-rata jam kerjanya diatas 200 jam/bulan, rata-rata tidak puas pada perusahaan, rata-rata masa kerjanya diatas 3 tahun.

Deep Dive EDA

Berapa rata-rata, median, maksimum, minimum lama bekerja dan Bagaimana distribusi lama bekerja karyawan?

Karyawan terbanyak bekerja selama 3 tahun sebanyak sekitar 6000 orang.

Berapa jumlah karyawan yang masih aktif dan berhenti (churned)?

Dari barplot terlihat bahwa jumlah karyawan yang aktif sekitar 10,000 orang dan karyawan yang churn sekitar 3000 orang

Bagaimana distribusi jam kerja bulanan untuk karyawan yang churn/left dan employed berdasarkan departemennya?

Berdasar Barplot diatas terlihat jam kerja karyawan yang churn/left lebih lama dibanding karyawan yang masih aktif yaitu diatas 200 jam/bulan

Bagaimana tingkat kepuasan karyawan yang left/churn dan yang employed?

terlihat bahwa tingkat kepuasan karyawan yang churn/left lebih rendah dari yang employed yaitu rata-rata 40%

mencari rata-rata tenure dari employee yang berhenti(churn) dan dan tidak churn

Rata-rata tenure (masa kerja) untuk yang churn lebih lama dari yang employed

Bagaimana distribusi karyawan yang churn/left dan employed berdasarkan tenure di departemen?

terlihat bahwa karyawan yang churn terbanyak di masa kerja 3 tahun keatas

Bagaimana distribusi karyawan yang churn/left dan employed di departemen berdasarkan proyek?

Dari plot diatas,berdasarkan proyek terlihat bahwa dari divisi Procurement/ manajemen jumlah yang churn adalah yang terbanyak

Machine Learning

Model Comparison - Classifier

	Algoritm	ROC_AUC_Mean	ROC_AUC_Std	Recall_Mean	Recall_Std	Precision_Mean	Precision_Std	F1_score_Mean	F1_score_Std
4	Random Forest	97.47	0.10	96.46	0.58	90.51	0.33	93.31	0.31
3	KNN	93.31	0.29	92.53	0.14	82.68	0.40	87.32	0.21
4	Decision Tree Classifier	91.59	0.25	95.13	0.28	88.79	0.09	91.83	0.24
2	SVM	88.99	0.40	85.35	0.84	78.75	0.32	81.92	0.56
0	Logistic Regression	76.70	0.60	68.88	0.07	71.04	0.89	69.94	0.40
5	Gausian NB	75.56	0.62	82.16	0.42	61.13	0.31	70.10	0.23

Random Forest: Algoritma Random Forest memiliki kinerja yang paling tinggi di antara semua algoritma yang dievaluasi. Ini ditunjukkan dengan nilai ROC AUC_Mean sebesar 97.44, yang menandakan bahwa model ini memiliki kemampuan yang sangat baik dalam membedakan antara kelas positif dan negatif. Selain itu, F1-score_Mean yang mencapai 93.31 menunjukkan bahwa model ini mencapai keseimbangan yang baik antara recall dan precision.

Evaluation For Data Test

	precision	recall	f1-score	support
0 1	0.98 0.91	0.91 0.98	0.94 0.95	2143 2138
accuracy macro avg weighted avg	0.95 0.95	0.95 0.95	0.95 0.95 0.95	4281 4281 4281

True Positive (TP) adalah 1943, yang merupakan jumlah karyawan yang diprediksi aktif dan kenyataannya masih aktif. True Negative (TN) adalah 2100, yang merupakan jumlah karyawan yang diprediksi berhenti (churn) dan kenyataannya churn . False Positive (FP) adalah 200, yang merupakan jumlah karyawan yang diprediksi aktif, tetapi sebenarnya tidak aktif (churn). False Negative (FN) adalah 38, yang merupakan jumlah karyawan yang diprediksi tidak aktif (churn),kenyataannya aktif.

Lift Curve

Berdasarkan analisis cumulative gains, model menunjukkan kinerja yang baik karena berhasil mengidentifikasi karyawan sebesar 98% yang akan churn (berhenti) saat memfokuskan pada 20% dari populasi dengan probabilitas tertinggi.

Grafik ini menunjukkan efektivitas model prediksi dalam membedakan antara karyawan yang aktif (warna biru) dan karyawan yang churn (warna oranye). Lift adalah perbandingan antara akurasi model dengan baseline (random chance). Jika lift > 1, model lebih baik daripada baseline. Pada awal persentase sampel, kurva biru memiliki lift yang jauh lebih tinggi dibandingkan dengan kurva oranye dan baseline. Namun, seiring bertambahnya persentase sampel, kedua kurva mendekati satu sama lain dan baseline, menunjukkan penurunan efektivitas model.

Semua ini memberikan wawasan tentang bagaimana model memprediksi peluang karyawan uyang berhenti (churn).

N

Dari DEEP DIVE EDA diketahui bahwa :

1. Jumlah
keseluruhan
karyawan adalah
14068 dengan
komposisi
karyawan yang
loyal 10701 orang
dan yang keluar
3367 orang.

SIGH

- 2. Rata-rata karyawan yang churn masa kerjanya (tenure) diatas 3 tahun.
- 3. Rata-rata tingkat kepuasan karyawan yang churn 44% dan jam kerjanya 207 jam/bulan

- 4. karyawan yang churn terbanyak dari divisi sales 3646 orang, selanjutnya divisi engineering 2615 orang dan divisi IT 1158 orang
- 5. Karyawan yang churn terbanyak dari yang salarynya rendah (salary low)

MACHINE LEARNING

Model terbaik dari hasil permodelan yang dianalisa adalah Random Forest dengan accuracy 0.95, ROC 97.47, F-1 Score 0.95, Recall 0.98 dan Precision 0.91.

Lift Curve
cumulative gains, model
menunjukkan kinerja
yang baik
mengidentifikasi
karyawan sebesar 98%
yang akan churn
(berhenti) pada 20% dari
populasi.

REKOMENDASI

- 1. Sebaiknya jam kerja karyawan tidak lebih dari 200 jam/bulan
- 2. Untuk karyawan dengan masa kerja diatas 3 tahun diberikan insentif diluar gaji.
- 3. Untuk sales, diberikan award setiap pencapaian setiap bulan
- 4. Untuk divisi IT dan engineering diberikan pengembangan karir (pendidikan lanjutan/beasiswa)
- 5. Pengembangan karir untuk semua divisi mulai tahun ke-2
- 6. Meningkatkan keterlibatan karyawan dalam program-program yang diadakan perusahaan.
- 7. Memberikan kepemilikan saham kepada karyawan yang sudah bekerja diatas 2 tahun, sesuai dengan perhitungan managemen perusahaan.

