Problème : Séries numériques.

1 Partie I : Étude de
$$R_n = \sum_{p=n+1}^{+\infty} \frac{(-1)^p}{p}, n \in \mathbb{N}$$
.

- 1. (a) Rappeler l'énoncé d'un théorème (y compris l'évaluation du reste) permettant de montrer que la série de terme général $\frac{(-1)^p}{p}$ est convergente, où $p \in \mathbb{N}^*$.
 - (b) À l'aide d'une suite géométrique montrer que :

$$\forall n \in \mathbb{N} , R_n = (-1)^{n+1} \int_0^1 \frac{x^n}{1+x} dx.$$

(a) Par intégration par parties, montrer qu'il existe un entier $\beta \in \mathbb{N}^*$ et un réel k différent de 0 tel que :

$$R_n = k \frac{\left(-1\right)^{n+1}}{n^{\beta}} + \mathcal{O}\left(\frac{1}{n^{\beta+1}}\right) .$$

- (b) En déduire la nature de la série de terme général R_n .
- 3. Déterminer la somme $\sum_{n=0}^{+\infty} R_n$.

Partie II : Étude de $r_n = \sum_{n=n+1}^{+\infty} \frac{(-1)^p}{\sqrt{p}}, \ n \in \mathbb{N}$.

- 1. On note, pour $n \in \mathbb{N}^*$, $U_n = \sum_{n=1}^n \frac{1}{\sqrt{p}}$.
 - (a) Montrer qu'il existe un réel L tel que :

$$\lim_{n \to +\infty} \left(U_n - \int_1^n \frac{dx}{\sqrt{x}} \right) = L + 2.$$

- (b) Soit θ un réel strictement supérieur à 1. Justifier l'existence de $\sum_{n=n+1}^{+\infty} \frac{1}{n^{\theta}}$ et en trouver un équivalent quand n tend vers l'infini.
- 2. On pose, pour $n \in \mathbb{N}^*$, $v_n = U_n 2\sqrt{n} L$.
 - (a) Étudier la série de terme général $v_{n+1} v_n$ et en déduire que v_n équivaut à $\frac{1}{2\sqrt{n}}$ lorsque n tend vers
 - (b) Déterminer un équivalent de $v_n \frac{1}{2\sqrt{n}}$ lorsque n tend vers l'infini; en déduire que U_n est de la forme :

$$U_n = A\sqrt{n} + B + \frac{C}{\sqrt{n}} + O\left(\frac{1}{n\sqrt{n}}\right)$$
.

- 3. (a) Montrer qu'il existe un réel S tel que $\sum_{p=1}^{+\infty} \frac{(-1)^p}{\sqrt{p}} = S$.
 - (b) Exprimer r_{2n} en fonction de S et des sommes partielles U_n et U_{2n} .
 - (c) En déduire qu'il existe deux réels a et b que l'on déterminera, tels que :

$$r_{2n} = a + \frac{b}{\sqrt{n}} + \mathcal{O}\left(\frac{1}{n\sqrt{n}}\right).$$

Exprimer S en fonction de L et déterminer la nature de la série de terme général r_n .

1

3 Partie III : Étude de
$$q_n(x) = \sum_{p=n+1}^{+\infty} \frac{(-1)^p}{p^x}, x \in]0, +\infty[, n \in \mathbb{N}]$$
.

On rappelle que la fonction gamma est définie par, $\forall x \in]0, +\infty[$,

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

1. Montrer que $\forall x \in]0, +\infty[, \forall p \in \mathbb{N}^*,$

$$\frac{1}{p^x} = \frac{1}{\Gamma(x)} \int_0^{+\infty} t^{x-1} e^{-pt} dt .$$

2. Vérifier que q_n est défini pour tout $n \in \mathbb{N}$, puis montrer que :

$$q_n(x) = \frac{(-1)^{n+1}}{\Gamma(x)} \int_0^{+\infty} \frac{t^{x-1} e^{-(n+1)t}}{1 + e^{-t}} dt .$$

- 3. En déduire que la série de terme général $q_n\left(x\right)$ converge, et mettre sa somme sous forme intégrale.
- 4. Retrouver le résultat de la question I 3) .

4 Partie IV: Étude de $x_n = \sum_{p=n+1}^{+\infty} (-1)^p f(p), n \in \mathbb{N}$.

Soit $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ convexe, décroissante sur $]0, +\infty[$, de limite nulle en $+\infty$.

- 1. (a) Donner un exemple d'une telle fonction f.
 - (b) Montrer que x_n est défini pour tout $n \in \mathbb{N}$.
- 2. Montrer que:

$$\forall n \in \mathbb{N}, \quad 2x_n - (-1)^{n+1} f(n+1) = \sum_{p=n+1}^{+\infty} (-1)^p \left(f(p) - f(p+1) \right)$$

et en déduire que la série $\sum x_n$ est convergente.

3. On suppose de plus que f(p) est équivalent à f(p+1) lorsque p tend vers l'infini . Déterminer un équivalent de x_n lorsque p tend vers l'infini .

5 Partie V : Étude de $q_0(x)$.

- 1. Montrer que q_0 est continue sur $]0, +\infty[$.
- 2. Montrer que q_0 est de classe \mathcal{C}^1 sur $]0,+\infty[$. Énoncer avec précision le théorème utilisé.
- 3. Déterminer $\lim_{x\to+\infty}q_0(x)$.
- 4. Déduire du IV 2) que q_0 admet un prolongement continu à $[0, +\infty[$ encore noté q_0 .
- 5. (a) Montrer que:

$$\forall x \in [0, +\infty[, q_0(x) = q_0(0) + \frac{x}{2} \sum_{p=1}^{+\infty} (-1)^p \int_p^{p+1} \frac{dt}{t^{x+1}} .$$

- (b) En déduire que q_0 est dérivable en 0 et déterminer $q_0'\left(0\right)$ en fonction de $\sum_{p=1}^{+\infty}\left(-1\right)^p\ln\left(1+\frac{1}{p}\right)$.
- 6. Déterminer $\sum_{p=1}^{+\infty} (-1)^p \ln \left(1 + \frac{1}{p}\right).$