Professor: Hans Knüpfer Tutor: Leon Happ

Aufgabe 1

Sei $\mathcal K$ die Menge aller Mengen, die (1.1) erfüllen. Sei U eine offene Menge. Wir definieren die Folge abgeschlossener Mengen

$$A_n = \{x \in U : d(x, U^c) \ge \frac{1}{n}\} \subset U.$$

Da zu jedem $x \in U$ ein $N \in \mathbb{N}$ existiert mit $U_{\frac{1}{n}}(x) \subset U$, ist dieses $x \, \forall n \geq N$ in der Menge A_n enthalten. Daraus folgt $A_n \nearrow U$ und damit $\mu(A_n) \nearrow \mu(U)$. Außerdem ist U die inklusionsminimale offene Menge, die U enthält. Daher sind alle offenen Mengen in \mathscr{K} enthalten. Insbesondere sind also auch \emptyset und X enthalten. Wir betrachten nun den Fall μ σ -endlich, aber nicht endlich. Sei dafür $B \in \mathscr{K}$ mit $\mu(B)$ endlich. Dann darf $\mu(B^c)$ nicht endlich sein, da sonst $\mu(X) = \mu(B) + \mu(B^c) < \infty$ wäre.

Für $M = \{U \in \mathcal{B}(\mathbb{R}) \colon U \supset B$, offen $\}$ gilt $\inf\{\mu(U)|U \subset M\} = \mu(B)$. Es existiert daher eine Folge von offenen Mengen $(U_n)_{n \in \mathbb{N}} \in M$ mit $U_n \searrow B$. Wir betrachten die Folge $(U_n^c)_{n \in \mathbb{N}}$. Es gilt $U_n^c \subset B^c \forall n \in \mathbb{N}$, wobei U_n^c abgeschlossen ist. Gilt $U_n \searrow B$, so folgt $U_n^c \nearrow B^c$. Daher gilt $\sup\{\mu(U^c)|U \in M\} \ge \mu(B^c)$. Da aber $U_n^c \subset B^c$ folgt aus der Monotonie des Maßes $\mu(U_n^c) \le \mu(B^c)$ und damit $\mu(B^c) = \sup\{\mu(U^c)|U \in M\} = \sup\{\mu(U)|U \subset B^c, \text{abgeschlossen}\}$.

Für $M=\{U\in \mathscr{B}(\mathbb{R})\colon U\subset B, \text{abgeschlossen}\}$ gilt $\sup\{\mu(U)|U\subset M\}=\mu(B).$ Es existiert daher eine Folge von offenen Mengen $(U_n)_{n\in\mathbb{N}}\in M$ mit $U_n\nearrow B.$ Wir betrachten die Folge $(U_n^c)_{n\in\mathbb{N}}.$ Es gilt $U_n^c\supset B^c\forall n\in\mathbb{N},$ wobei U_n^c offen ist. Gilt $U_n\nearrow B,$ so folgt $U_n^c\searrow B^c.$ Daher gilt $\inf\{\mu(U^c)|U\in M\}\le \mu(B^c).$ Da aber $U_n^c\supset B^c$ folgt aus der Monotonie des Maßes $\mu(U_n^c)\ge \mu(B^c)$ und damit $\mu(B^c)=\inf\{\mu(U^c)|U\in M\}=\inf\{\mu(U)|U\subset B^c, \text{offen}\}.$

Insgesamt erhalten wir $\mu(B^c) = \sup\{\mu(U)|U \subset B^c, \text{abgeschlossen}\} = \inf\{\mu(U)|U \subset B^c, \text{offen}\}$ und damit $B^c \in \mathcal{K}$.

Sei nun $\forall n \in \mathbb{N} \colon B_n \in \mathscr{K}$. Dann gibt es zu $\epsilon > 0$ abgeschlossene Mengen A_n und offene Mengen U_n mit $A_n \subset B_n \subset U_n$ und $\mu(U_n \setminus A_n) \leq \frac{\epsilon}{2^{n+1}}$. Wir definieren $S \coloneqq \bigcup_{n \in \mathbb{N}} A_n$ und $U \coloneqq \bigcup_{n \in \mathbb{N}} U_n$. Dann gilt $S \subset \bigcup_{n \in \mathbb{N}} B_n \subset U$ und $\mu(U \setminus S) \leq \sum_{n=1}^{\infty} \mu(U_n \setminus A_n) \leq \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n+1}} = \epsilon$. Die Menge U ist offen, die Menge S im Allgemeinen aber nicht abgeschlossen. Allerdings sind die Mengen $S^k \coloneqq \bigcup_{n=1}^k A_n$ abgeschlossen und es gilt $\mu(S^n) \nearrow \mu(S)$. Daher existiert ein $N \in \mathbb{N}$ mit $\mu(S^N) \geq \mu(S) - \epsilon$. Mit der Wahl $A \coloneqq S^N$ erhalten wir also $A \subset \bigcup_{n \in \mathbb{N}} B_n \subset U$ und $\mu(U \setminus A) \leq 2\epsilon$. Daraus folgt für $\epsilon \searrow 0$ die Aussage $\mu\left(\bigcup_{n \in \mathbb{N}} B_n\right) = \sup\left\{\mu(U) | U \subset \bigcup_{n \in \mathbb{N}} B_n$, abgeschlossen $\right\} = \inf\left\{\mu(U) | U \subset \bigcup_{n \in \mathbb{N}} B_n$, offen $\right\}$

Aufgabe 2

(a) Es gilt für $\delta = \frac{1}{n}$.

$$\mathscr{H}^{s}_{\delta}([0,1]) = \inf \left\{ \sum_{j \in \mathbb{N}} \operatorname{diam}(B_{j})^{s} \colon [0,1] \subset \bigcup_{j \in \mathbb{N}} B_{j}, \operatorname{diam}(B_{j}) \leq \delta \right\}$$

 $B_j=([\frac{j-1}{n},\frac{j}{n}])$ für $1\leq j\leq n$ stellt eine Überdeckung von [0,1] dar mit diam $(B_j)\leq \frac{1}{n}$

$$\leq \sum_{j=1}^{n} \operatorname{diam}(\left[\frac{j-1}{n}, \frac{j}{n}\right])^{s}$$
$$= n \cdot \left(\frac{1}{n}\right)^{s}$$
$$= n^{1-s}$$

Es gilt nun $\mathscr{H}^s([0,1]) = \lim_{n \to \infty} \mathscr{H}^s_{\frac{1}{n}}([0,1]) = \lim_{n \to \infty} n^{1-s} = 0$ für s > 1. Aufgrund der Translationsinvarianz, Subadditivität und Monotonie von \mathscr{H}^s gilt also $\mathscr{H}^s(A) = 0 \forall A \subset \mathbb{R}$.

(b) Sei $A \subset \bigcup_{j \in \mathbb{N}} B_j$ mit $\operatorname{diam}(B_j) \leq \delta$. Wegen $H^{s^*}(A) < \infty$ existieren Familien $(B_j)_{j \in \mathbb{N}}$ mit $\sum_{j \in \mathbb{N}} \operatorname{diam}(B_j)^{s^*} < \infty$. Wir betrachten also eine solche Familie $(B_j)_{j \in \mathbb{N}}$. Es gilt dann für $s = s^* + \epsilon$, $\epsilon > 0$

$$\sum_{j\in\mathbb{N}} \operatorname{diam}(B_j)^s = \sum_{j\in\mathbb{N}} \operatorname{diam}(B_j)^{(s^*+\epsilon)} \le \sum_{j\in\mathbb{N}} \operatorname{diam}(B_j)^s \cdot \delta^{\epsilon} = \delta^{\epsilon} \cdot \sum_{j\in\mathbb{N}} \operatorname{diam}(B_j)^s.$$

Für $\delta \to 0$ gilt dann also

$$\lim_{\delta \to 0} \underbrace{\delta^{\epsilon}}_{\to 0} \cdot \underbrace{\sum_{j \in \mathbb{N}} \operatorname{diam}(B_j)^s}_{= 0} = 0$$

und damit $\mathcal{H}^s(A) = 0$.

(c) Sei $A \subset \bigcup_{j \in \mathbb{N}} B_j$ mit $\operatorname{diam}(B_j) \leq \delta$. Wegen $H^{s^*}(A) > 0$ existieren Familien $(B_j)_{j \in \mathbb{N}}$ mit $\sum_{j \in \mathbb{N}} \operatorname{diam}(B_j)^{s^*} > 0$. Wir betrachten also eine solche Familie $(B_j)_{j \in \mathbb{N}}$. Es gilt dann für $s = s^* - \epsilon, \ \epsilon > 0$

$$\sum_{j\in\mathbb{N}} \operatorname{diam}(B_j)^s = \sum_{j\in\mathbb{N}} \operatorname{diam}(B_j)^{(s^*-\epsilon)} \ge \sum_{j\in\mathbb{N}} \operatorname{diam}(B_j)^s \cdot \delta^{-\epsilon} = \delta^{-\epsilon} \cdot \sum_{j\in\mathbb{N}} \operatorname{diam}(B_j)^s.$$

Für $\delta \to 0$ gilt dann also

$$\lim_{\delta \to 0} \underbrace{\delta^{\epsilon}}_{\to \infty} \cdot \underbrace{\sum_{j \in \mathbb{N}} \operatorname{diam}(B_j)^s}_{>0} = \infty$$

und damit $\mathcal{H}^s(A) = \infty$.

- (d) Abzählbares $A = \{x_1, \dots, \}$ kann dargestellt werden als $A = \bigcup_{j \in \mathbb{N}} \{x_j\}$. Dabei ist diam $(\{x_j\})^s = 0$ und damit $\sum_{j \in \mathbb{N}} \text{diam}(B_j)^s = \sum_{j \in \mathbb{N}} 0 = 0$, also $\mathscr{H}^s(A) = 0 \forall s > 0$ und daher dim A = 0.
- (e) Wir können A schreiben als Vereinigung von offenen Intervallen. Da jedes offene Intervall eine rationale Zahl enthält, ist die Vereinigung Insbesondere abzählbar. Für jede Überdeckung $(C_i)_{i\in\mathbb{N}}$ eines Intervalls (a,b) gilt

$$\sum_{i \in \mathbb{N}} \operatorname{diam}(C_i) \ge b - a > 0.$$

Abbildung 1: f_1, f_2 und f_3 .

(Der Beweis hierfür erfolgt analog zu $\sum_{i\in\mathbb{N}}$) diam $(C_i)\geq 1$ für $(C_i)_{i\in\mathbb{N}}$ mit $[0,1]\subset\bigcup_{i\in\mathbb{N}}C_i$.) Insbesondere gilt also aufgrund der Monotonie von \mathscr{H}^s $\mathscr{H}^1(A)\geq b-a>0$. Wegen $\mathscr{H}^s(A)=0$ $\forall s>1$ gilt daher

$$\dim A = \inf\{s \ge 0 : \mathcal{H}^s(A) = 0\} = 1.$$

Aufgabe 3

(a) Wir führen eine Fallunterscheidung durch.

 $0 \leq x < \frac{1}{3} \text{ In diesem Fall gilt } |f_{k+1}(x) - f_k x| = |\frac{1}{2} f_k(3x) - \frac{1}{2} f_{k-1}(3x)| = \frac{1}{2} |f_k(3x) - f_{k-1}(3x)|. \text{ Daher gilt also } \max_{x \in [0,\frac{1}{3}]} |f_{k+1}(x) - f_k x| \leq \frac{1}{2} \max_{x \in [0,1]} |f_k(x) - f_{k-1}(x)|.$

 $\frac{1}{3} \leq x \leq \frac{2}{3} \text{ Dann gilt } f_{k+1}(x) = f_k(x) = f_{k-1}(x) = \frac{1}{2}. \text{ Daraus folgt } \max_{x \in \left[\frac{1}{3}, \frac{2}{3}\right]} |f_{k+1}(x) - f_k x| = 0 \leq \frac{1}{2} \max_{x \in [0,1]} |f_k(x) - f_{k-1}(x)|.$

 $\frac{2}{3} < x \leq 1 \text{ In diesem Fall gilt } |f_{k+1}(x) - f_k x| = |\frac{1}{2}(1 + f_k(3x - 2)) - \frac{1}{2}(1 + f_{k-1}(3x - 2))| = \frac{1}{2}|f_k(3x - 2) - f_{k-1}(3x - 2)|. \text{ Daher gilt also } \max_{x \in [\frac{2}{3}, 1]}|f_{k+1}(x) - f_k x| \leq \frac{1}{2}\max_{x \in [0, 1]}|f_k(x) - f_{k-1}(x)|.$

Insgesamt folgt die Behauptung.

(b) Die Stetigkeit und Monotonie von f_k sowie f[0,1]=[0,1] folgen bereits, wenn $\forall k \in \mathbb{N}_0$ folgende Bedingungen gelten:

 $f_k(0) = 0$. Der Beweis folgt induktiv wegen $f_0(0) = 0$ und $f_{k+1}(0) = \frac{1}{2}f_k(3 \cdot 0) = \frac{1}{2}f_k(0)$, also $f_k(0) = 0$.

 $f_k(1) = 1$. Der Beweis folgt induktiv wegen $f_0(1) = 1$ und $f_{k+1}(1) = \frac{1}{2}(1 + f_k(3-2)) = \frac{1}{2}(1 + f_k(1)) = \frac{1}{2} \cdot 2 = 1$.

 $\lim_{x \to \frac{1}{3}} f_{k+1}(x) = \frac{1}{2}. \text{ Es gilt } \lim_{x \to \frac{1}{3}} f_{k+1}(x) = \frac{1}{2} f_k(3 \cdot \frac{1}{3}) = \frac{1}{2} f_k(1) = \frac{1}{2}.$

$$\lim_{x \searrow \frac{2}{3}} f_{k+1}(x) = \frac{1}{2}. \text{ Es gilt } \lim_{x \searrow \frac{2}{3}} f_{k+1}(x) = \frac{1}{2} (1 + f_k(3 \cdot \frac{2}{3} - 2)) = \frac{1}{2} (1 + f_k(0)) = \frac{1}{2}.$$

 $f'_k(x) \ge 0$. Der Beweis erfolgt wieder per Induktion. Zunächst gilt $f'_0(x) = 1 > 0$. Für den Induktionsschritt machen wir eine Fallunterscheidung.

$$\begin{split} 0 & \leq x < \frac{1}{3} \ f'_{k+1}(x) = \frac{3}{2} f'_{k}(3x) \ge 0. \\ \frac{1}{3} & \leq x \le \frac{2}{3} \ f'_{k+1}(x) = 0 \ge 0. \\ \frac{2}{3} & < x \le 1 \ f'_{k+1}(x) = \frac{3}{2} f'_{k}(3x - 2) \ge 0. \end{split}$$

Es gilt

$$\begin{aligned} \max_{x \in [0,1]} |f_1(x) - f_0(x)| &= \max(\max_{x \in [0,\frac{1}{3})} \frac{3}{2}x - x, \max_{x \in [\frac{1}{3},\frac{2}{3}]} |\frac{1}{2} - x|, \max_{x \in (\frac{2}{3},1]} |\frac{1}{2}(1 + 3x - 2) - x|) \\ &= \max(\max_{x \in [0,\frac{1}{3})} \frac{1}{2}x, \frac{1}{6}, \max_{x \in (\frac{2}{3},1]} |\frac{3}{2}x - \frac{1}{2} - x|) \\ &= \max(\frac{1}{6}, \frac{1}{6}, \max_{x \in (\frac{2}{3},1]} |\frac{1}{2}x - \frac{1}{2}|) \\ &= \max(\frac{1}{6}, \frac{1}{6}) \\ &= \frac{1}{6} \end{aligned}$$

Wegen Teilaufgabe a gilt:

$$\max_{x \in [0,1]} |f_{k+1}(x) - f_k x| \le \frac{1}{2} \max_{x \in [0,1]} |f_k(x) - f_{k-1}(x)|$$
$$\le \frac{1}{2^k} \max_{x \in [0,1]} |f_1(x) - f_0(x)|$$
$$= \frac{1}{2^k} \cdot \frac{1}{6}$$

Damit gilt also $\lim_{k\to\infty} \max_{x\in[0,1]} |f_{k+1}(x) - f_k x| = \lim_{k\to\infty} 2^{-k} \frac{1}{6} = 0$. Also ist $(f_k)_{k\in\mathbb{N}}$ eine gleichmäßig konvergente Funktionenfolge. Bei gleichmäßiger Stetigkeit bleibt Monotonie und Stetigkeit erhalten. Somit ist die Aussage bewiesen

- (c) Da f eine stetige Funktion auf einem kompakten Intervall ist, gilt $\inf\{x \in [0,1]: f(x) = y\} \in \{x \in [0,1]: f(x) = y\}$. Es gilt also $f(g(y)) = f(\inf\{x \in [0,1]: f(x) = y\}) = y$. Wäre g nicht injektiv, so gäbe es $x \neq y$ mit g(x) = g(y) und insbesondere also x = f(g(x)) = f(g(y)) = y. Das ist aber ein Widerspruch.
- (d) Behauptung: g ist monoton wachsend.

Beweis. Sei y > y' und x = g(y) sowie x' = g(y'). Da f monoton wächst, können wir schließen

$$f(x) = y > y' = f(x') \implies x > x'.$$

Damit erhalten wir $y > y' \implies g(y) = x > x' = g(y')$, g ist also monoton wachsend.

Nach Lemma 3.3(ii) ist g daher borelmessbar. g([0,1]) ist eine Teilmenge von [0,1]. Allerdings liegt keines der Elemente von g([0,1]) im Inneren eines Intervalls, auf dem f konstant bleibt. Betrachten wir nur die Intervalle, auf denen f_k nichtkonstant ist, so erhalten wir für f_0 das Intervall $I_{0,1}=[0,1]$. Aus diesem entfernen wir nun das mittlere offene Drittel und erhalten für f_1 die beiden kompakten Intervalle $I_{1,1}=\frac{1}{3}[0,1],\ I_{1,2}=\frac{1}{3}[2,3].$ Auf $I_{1,1}$ ist $f_2=\frac{1}{2}f_1(3x)$ genau auf denselben Intervallen wie $f_1(3x)$ nichtkonstant, also auf $I_{2,1}=\frac{1}{3}I_{1,1}=\frac{1}{9}[0,1]$ und $I_{2,2}=\frac{1}{3}I_{1,2}=\frac{1}{9}[2,3].$ Auf $I_{1,2}$ ist analog $f_2=\frac{1}{2}(1+f_1(3x-2))$ genau auf denselben Intervallen wie $f_1(3x-2)$ nichtkonstant, also auf $I_{2,3}=\frac{1}{3}(I_{1,1}+2)=\frac{1}{9}[6,7]$ und $I_{2,4}=\frac{1}{3}(I_{1,2}+2)=\frac{1}{9}[8,9].$ Induktiv erhalten wir die kompakten Intervalle $I_{n,k}$ für $n\in\mathbb{N},\ k=1,\ldots,2^n.$

Als Folgerung schließen wir $g([0,1]) \subset \mathcal{C}$.

(e) Wegen $g([0,1]) \subset \mathcal{C}$ ist auch $g(V) \subset \mathcal{C}$. Da \mathcal{C} aber eine Lebesgue-Nullmenge ist, muss aufgrund der Vollständigkeit des Lebesgue-Maßes auch g(V) als Teilmenge einer Nullmenge lebesgue-messbar sein.

Angenommen, g(V) wäre Borel-messbar, d.h. $g(V) \in \mathcal{B}(\mathbb{R})$. Da g Borel-messbar ist, würde das aber bereits $V \in \mathcal{B}(\mathbb{R})$ implizieren. Damit wäre V Borel-messbar und somit auch Lebesgue-messbar. Das ist ein Widerspruch zur Annahme, also kann g(V) nicht Borel-messbar sein.

Zusatzaufgabe

Die eine Richtung der Äquivalenz ist trivial. Es gelte $f^{-1}(\mathscr{A}) \subset \mathscr{E}$. Zu zeigen bleibt also $f^{-1}(\mathscr{F}) = f^{-1}(\sigma(\mathscr{A})) \subset \mathscr{E}$.

Beweis. Wir zeigen also, dass die Menge $\mathcal{M} = \{A \in \sigma(\mathscr{A}) | f^{-1}(A) \in \mathscr{E}\} = \sigma(\mathscr{A})$ ist.

- Wegen $\mathscr{A} \subset \mathscr{M}$ gilt $\emptyset, X \in \mathscr{M}$.
- Sei A in \mathcal{M} . Wegen Aufgabe 0.2b liegt dann auch A^c in \mathcal{M} .
- Seien $A_n \in \mathcal{M} \ \forall n \in \mathbb{N}$. Wegen Aufgabe 0.2c liegt dann auch $\bigcup_{n \in \mathbb{N}} A_n$ in \mathcal{M} .

Damit ist also $\sigma(\mathscr{A}) \subset \mathscr{M} \subset \sigma(\mathscr{A})$, was zu zeigen war.