Algebra 2

10. november 2024

1 Uvod v teorijo grup

1.1 Osnovni pojmi teoriji grup

Definicija 1.1. Naj bo S neprazna množica. Operacija na množice S je preslikava $*: S \times S \to S$, $(a,b) \mapsto a * b$. Operacija * je asociativna, če $\forall a,b,c \in S$. (a*b)*c = a*(b*c).

Operacija * je komutativna, če $\forall a, b \in S . a * b = b * a$.

Definicija 1.2. Neprazna množica S skupaj z operacijo * je polgrupa, če je operacija * asociativna.

Definicija 1.3. Naj bo S množica z operacijo *. Pravimo, da je $e \in S$ enota (oz. nevtralni element) za operacijo *, če $\forall x \in S$. e * x = x * e = x.

Trditev 1.1. Če v množici S obstaja enota za operacijo *, potem je ena sama.

Definicija 1.4. Polgrupa z enoto je *monoid*.

Definicija 1.5. Naj bo S množica z operacijo * in $e \in S$ enota. Naj bo $x \in S$.

- Element $l \in S$ je levi inverz elementa x, če l * x = e.
- Element $d \in S$ je desni inverz elementa x, če x * d = e.
- Element $y \in S$ je inverz elementa x, če x * y = y * x = e.

Trditev 1.2. Če je S monoid, $x \in S$, l levi inverz x ter d desni inverz x, potem l = d.

Definicija 1.6. Pravimo, da je element $x \in S$ obraljiv, če obstaja inverz od x.

Definicija 1.7. Naj bo S z operacijo * monoid. Pravimo, da je S grupa, če je vsak element iz S obrnljiv. Če je operacija * komutativna, pravimo, da je S Abelova grupa.

V grupah ponavadi uporabljamo *miltiplikativni zapis*: operacija: ·, enota: 1, inverz od x: x^{-1} , potenca: x^{n} . V Abelovih grupah uporabljamo *aditivni zapis*: operacija: +, enota: 0, inverz od x: -x, potenca: nx.

Multiplikativni zapis	Aditivni zapis (Abelova grupa)	
G ima natanko eno enoto	G ima natanko en ničeln element	
Vsak element iz G ima natanko en inverz	Vsak element iz G ima natnako en nasprotni element	
$(x^{-1})^{-1} = x$	-(-x) = x	
$(xy)^{-1} = y^{-1}x^{-1}$	-(x+y) = -x - y	
$x^{m+n} = x^m x^n$	(m+n)x = mx + nx	
$(x^m)^n = x^{mn}$	n(mx) = (nm)x	
V splošnem $(xy)^n \neq x^n y^n$	n(x+y) = nx + ny	
$xy = xz \Rightarrow y = z$	$x + y = x + z \Rightarrow y = z$ (pravila krajšanja)	
$yx = zx \Rightarrow y = z$	$x+y-x+z \Rightarrow y-z$ (pravna Krajsanja)	
$xy = 1 \Rightarrow yx = 1$		

Tabela 1: Lastnosti računanja v grupah

Zgled. Nekaj primerov grup.

- 1. $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$, $(\mathbb{Q} \setminus \{0\}, \cdot)$ so Abelove grupe.
- 2. Naj bo X neprazna množica. Definiramo $\mathrm{Sim}(X) = \{ \text{vse bijektivne preslikave } f: X \to X \}.$ $(\mathrm{Sim}(X), \circ)$ je grupa, imenujemo jo $simetrična\ grupa\ množice\ X.$

V posebnem primeru, ko je X končna dobimo $\mathrm{Sim}(\{1,2,\ldots,n\})=S_n.$ Torej običajne permutacije.

Zgled (Simetrije kvadrata). Simetrije kvadrata K so izometrije $f: \mathbb{R}^2 \to \mathbb{R}^2$, da je f(K) = K.

Primeri simetrij: r - rotacija za 90° okoli središča kvadrata, z - zrcaljenje čez fiksno os simetrije ter kompozicije r in z. Iz geometrije lahko vidimo, da je $zr = r^3z$. To pomeni, da je vsak kompozitum r in z oblike r^kz .

Kvadrat ima kvečjemu 8 simetrij, ker je vsaka simetrija določena s sliko oglišča 1 in informacijo, ali smo naredili zrcaljenje ali ne. Dobimo množico simetrij $D_{2\cdot 4} = \{id, r, r^2, r^3, z, rz, r^2z, r^3z\}$. $D_{2\cdot 4}$ je diedrska grupa moči 8.

Zgled (Diedrska grupa moči 2n). Imamo naslednje simetrije pravilnega n-kotnika:

- r rotacija za $\frac{2\pi}{n}$ okoli središča.
- z zrcaljenje čes neko fiksno os simetrije.

Velja: $zr = r^{n-1}z$.

Množica vseh simetrij je $D_{2n} = \{1, r, r^2, \dots, r^{n-1}, z, rz, r^2zn, \dots, r^{n-1}z\}$. D_{2n} je diedrska grupa moči 2n.

 $Zgled \; (\text{Monoid} \to \text{Grupa}). \; \text{Naj bo} \; (S,*) \; \text{monoid}. \; \text{Definiramo} \; S^* = \{\text{obrnljive elementi iz } S\}, \; \text{potem} \; S^* \; \text{je grupa za} \; *.$

Primer. Naj bo $S = (\mathbb{R}^{n \times n}, \cdot), S^* = \{A \in \mathbb{R}^{n \times n} \mid \det A \neq 0\} = \operatorname{GL}_n(\mathbb{R}).$ GL $_n(\mathbb{R})$ je splošna linearna grupa $n \times n$ matrik. Zgled (Direktni produkt grup). Naj bodo G_1, G_2, \ldots, G_n grupe z operacijami $*_1, *_2, \ldots, *_n$. Na množice $G_1 \times G_2 \times \ldots \times G_n$ vpeljamo operacijo $(g_1, g_2, \ldots, g_n) * (h_1, h_2, \ldots, h_n) = (g_1 *_1 h_1, g_2 *_2 h_2, \ldots, g_n *_n h_n).$ Potem $(G_1 \times G_2 \times \ldots \times G_n, *)$ je grupa.

1.2 Ponovitev o permutacijah

Izrek 1.3. Vsaka permutacija je produkt disjunktnih ciklov.

Definicija 1.8. Cikli dolžine 2 so *transpozicije*.

Trditev 1.4. Vsaka permutacija $\pi \in S_n$ je produkt transpozicij. Teh transpozicij je vedno sodo mnogo ali vedno liho mnogo.

Definicija 1.9. Permutacija je soda (oz. liha), če je produkt sodo (oz. liho) mnogo transpozicij.

Definicija 1.10. Znak permutacije je $sgn(\pi) = \begin{cases} 1; & \pi \text{ je soda} \\ -1; & \pi \text{ je liha} \end{cases}$.

Trditev 1.5. $sgn(\pi \rho) = sgn(\pi) \cdot sgn(\rho)$.

1.3 Podgrupe

Definicija 1.11. Naj bo G grupa in $H \subseteq G$, $H \neq \emptyset$. H je podgrupa grupe G, če je H za isto operacijo tudi grupa. Oznaka $H \subseteq G$.

Opomba. Očitno o podgrupah:

- 1. Naj bo G grupa. Vedno velja: $\{1\} \leq G$ in $G \leq G$.
- 2. Če je $H \leq G$, potem (nujno!) $1 \in H$, kjer 1 je enota v G.

Opomba. Pri monoidih se enota ne deduje nujno, npr. (\mathbb{Z},\cdot) in $(\{0\},\cdot)$.

Trditev 1.6. Naj bo G grupa, $H \subseteq G$, $H \neq \emptyset$. Naslednje trditve so ekvivalentne:

- 1. $H \leq G$.
- 2. $\forall x, y \in H . xy^- 1 \in H$.
- 3. H je zaprta za množenje in invertiranje.

Dokaz. Definicija podgrupe.

Posledica 1.6.1. Naj bo G končna grupa in $H \subseteq G$, $H \neq \emptyset$. Velja:

 $H \leq G \Leftrightarrow H$ je zaprta za množenje.

Dokaz. Ker je G končna, ko potenciramo $x \in H$, ena izmed potenc zagotovo ponovi.

Opomba. V končnih grupih ni potrebno preverjati zaprtost za invertiranje.

Primer. Primeri podrgup.

- 1. Vse prave podrgupe v grupi $(\mathbb{Z}, +)$ so oblike $n\mathbb{Z}, n \in \mathbb{N}$.
- 2. Definiramo $\mathrm{SL}_n(\mathbb{R}) = \{ A \in \mathrm{GL}_n(\mathbb{R}) \mid \det A = 1 \}$. Potem $\mathrm{SL}_n(\mathbb{R}) \leq \mathrm{GL}_n(\mathbb{R})$. $\mathrm{SL}_n(\mathbb{R})$ imenujemo specialna linearna grupa.
- 3. Definiramo $O(n) = \{ A \in GL_n(\mathbb{R}) \mid AA^T = A^TA = I \}$. Potem $O(n) \leq GL_n(\mathbb{R})$.
- 4. Definiramo $SO(n) = \{A \in O(n) \mid \det A = 1\}$. Potem $SO(n) \leq O(n)$. Grupo SO(n) imenujemo specialne ortogonalne matrike.

Trditev 1.8. Naj bosta $H, K \leq G$. Če velja $HK = KH$, potem je $HK \leq G$.		
$Dokaz$. Karakterizacija podrgupe in definicija produkta podgrup. \Box		
$Opomba$. Ni nujno, da produkt podgrup HK komutativen. Torej ni nujno vsak element $hk \in HK$ se da zapisati kot $k'h' \in KH$ za neki $k' \in K$ in $h' \in H$.		
Definicija 1.13. Naj bo $H \leq G$, $a \in G$. Definiramo množico $aHa^{-1} = \{aha^{-1} \mid h \in H\}$. Potem $aHa^{-1} \leq G$. Temu se reče konjungiranje podgrupe H z elementom a .		
$Dokaz$. Karakterizacija podrgupe. \Box		
 Trditev 1.9. Naj bo G grupa. Definiramo Z(G) = {y ∈ G ∀x ∈ G . yx = xy}. Potem Z(G) ≤ G. Tej grupi pravimo center grupe G. Naj bo a ∈ G. Definiramo C_G(a) = {y ∈ G ya = ay}. Potem C_G(a) ≤ G. Tej podgrupi pravimo centralizator elementa a v G. 		
Dokaz. Karakterizacija podrgupe.		
1.4 Odseki podgrup in Lagrangeev izrek		
Naj bo G grupa in $H \leq G$. Definiramo relacijo na G s predpsiom $\forall a, b \in G$. $a \sim b : \Leftrightarrow a^{-1}b \in H$.		
Trditev 1.10. Relacija \sim je ekvivalenčna relacija na G .		
Dokaz. Preverimo refleksivnost, simetričnost in tranzitivnost.		
Definicija 1.14. Naj bo G grupa, $H \leq H$, $a \in G$. Ekvivalenčni razred elementa $a \in G$ je množica $[a] = \{b \in G \mid a \sim b\}$.		
$Opomba. \ [a] = \{ah \mid h \in H\} =: aH.$		
Definicija 1.15. Množico aH imenujemo levi odsek grupe G po podgrupi H .		
$Opomba$. V grupo G lahko vpeljamo tudi relacijo \approx s predpisom $\forall a,b \in G$. $a \approx b :\Leftrightarrow ab^{-1} \in H$. To je ekvivalenčna relacija. Ekvivalentni razredi so $[a] = \{ha \mid h \in H\} =: Ha$, ki jih imenujemo $desni \ odseki$.		
Definicija 1.16. Faktorska (oz. kvocientna) množica glede na relacijo \sim je množica $G/_{\sim}=\{aH\mid a\in G\}=:G/H.$		
$Opomba.\ G/H$ ni nujno grupa.		
Opomba. Kadar sta dva odseka enaka? $aH = bH \Leftrightarrow a \sim b \Leftrightarrow a^{-1}b \in H$.		
Opomba. Naj bo G končna grupa. Potem je G/H tudi končna množica.		
Definicija 1.17. Naj bo G končna grupa. Moč množce G/H označimo z $G:H$ (oz $[G:H]$) in jo imenujemo $indeks$ $podgrupe\ H\ v\ grupi\ G.$		
Izrek 1.11 (Lagrangeev izrek). Če je G končna grupa in $H \leq G$, potem je		
$ G = H \cdot G:H .$		
$Dokaz$. Recimo, da $ G:H =r$. Pokažemo, da $ a_iH = H $ za vse $i=1,\ldots,r$.		
Posledica 1.11.1. Moč vsake podgrupe končne grupe deli moč grupe.		
$Opomba$. Če je grupa G Abelova in $H \leq G$, potem odseki pišemo kot $a+H$. Velja: $G/H = \{a+H \mid a \in G\}$. Vpeljamo operacijo na G/H : $(a+H)+(b+H)=(a+b)+H$. Ta operacija je dobro definirana, ker je G Abelova.		
Trditev 1.12. G/H je za to operacijo Abelova grupa.		
Dokaz. Enostavno preverimo aksiome.		
Primer. Naj bo $G = \mathbb{Z}$ in $H = n\mathbb{Z}$, $n \in \mathbb{N}$. Potem $\mathbb{Z}/n\mathbb{Z} = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$. Operacija + na $\mathbb{Z}/n\mathbb{Z}$ je seštevanje po modulu n . Grupa $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$ je grupa ostankov po modulu n , $ \mathbb{Z}_n = n$.		
Posledica 1.12.1. Za vsako število $n \in \mathbb{N}$ obstaja vsaj ena grupa moči n .		
o a constant of the constant o		
3		

 $\textbf{Trditev 1.7.} \ \textit{Naj bosta} \ \textit{H} \ \textit{in} \ \textit{K} \ \textit{podgrupi grupe} \ \textit{G}. \ \textit{Potem} \ \textit{H} \cap \textit{K} \leq \textit{G}. \ \textit{Enako velja za preseke poljubnih družin podgrup.}$

Definicija 1.12. Naj bosta $H, K \leq G$. Definiramo $HK = \{hk \mid h \in H, k \in K\}$. Temu pravimo produkt podgrup.

Zgled. HK ni nujno podgrupa v G. Vzemimo $G = S_3, H = \{id, (1\ 2)\}, K = \{id, (1\ 3)\}.$

Dokaz. Karakterizacija podrgupe.

1.5	Generatorji grup.	Ciklične grupe