

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 July 2001 (05.07.2001)

PCT

(10) International Publication Number
WO 01/48818 A1

(51) International Patent Classification⁷: H01L 23/48,
G01R 1/073, H01H 59/00

LARDER, Richard, A.; 2717 Kennedy Street, Livermore,
CA 94550 (US).

(21) International Application Number: PCT/US00/35448

(74) Agent: MERKADEAU, Stuart, L.; Formfactor, Inc.,
5666 La Ribera Street, Livermore, CA 94550 (US).

(22) International Filing Date:

27 December 2000 (27.12.2000)

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

Published:

— With international search report.

[Continued on next page]

(54) Title: RESILIENT INTERCONNECT STRUCTURE FOR ELECTRONIC COMPONENTS AND METHOD FOR MAKING THE SAME

A1

(57) Abstract: An interconnection element of a spring (body), and a method for fabricating the interconnection element. The interconnection element is of a size suitable for directly contacting a semiconductor or a packaged semiconductor device such as in an LGA package. The method includes fabricating a multi-tiered structure to form a compact, resilient interconnect structure. Fabricating each tier or leaf includes providing a base substrate material, and applying a masking material over the base substrate material. An opening is patterned in the masking material and a resilient element is formed in the opening. A large substrate with a plurality of such interconnection elements can be used as a wafer-level contactor. The method includes repeating this process one or more times to fabricate a chip-level interconnection element.

— *Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

RESILIENT INTERCONNECT STRUCTURE FOR ELECTRONIC COMPONENTS AND METHOD FOR
MAKING THE SAMEBACKGROUND OF THE INVENTIONField of the Invention

The invention relates to an interconnection (contact) element suitable for effecting pressure connections between electronic components and is particularly useful for contacting semiconductor packages or for contacting a semiconductor directly.

Description of Related Art

Interconnection or contact elements may be used to connect devices of an electronic component or one electronic component to another electronic component. For example, an interconnection element may be used to connect two circuits of an integrated circuit chip or including an application specific integrated circuit (ASIC). Interconnection elements may also be used to connect the integrated circuit chip to a chip package suitable for mounting on a printed circuit board of a computer or other electronic device. Interconnection elements may further be used to connect the integrated circuit chip to a test device such as a probe card assembly or other printed circuit board (PCB) to test the chip.

Generally, interconnection or contact elements between electronic components can be classified into at least the two broad categories of "relatively permanent" and "readily demountable."

An example of a "relatively permanent" interconnection element is a wire bond. Once two electronic components are connected to one another by a bonding of an interconnection element to each electronic component, a process of unbonding must be used to separate the components. A wire bond interconnection element, such as between an integrated circuit chip or die and inner leads of a chip or package (or

inner ends of lead frame fingers) typically utilizes a "relatively permanent" interconnection element.

One example of a "readily demountable" interconnection element is the interconnection element between rigid pins of 5 one electronic component received by resilient socket elements of another electronic component, for example, a spring-loaded LGA socket or a zero-insertion force socket. A second type of a "readily demountable" interconnection element is an interconnection element that itself is 10 resilient or spring-like or mounted in or on a spring or resilient medium. An example of such an interconnection element is a tungsten needle of a probe card component. The interconnection element of a probe card component is typically intended to effect a temporary pressure connection 15 between an electronic component to which the interconnection element is mounted and terminals of a second electronic component, such as a semiconductor device under test.

With regard to spring interconnection elements, generally, a minimum contact force is desired to effect 20 reliable pressure contact to an electronic component (e.g., to terminals of an electronic component). For example, a contact (load) force of approximately 15 grams (including as little as 2 grams or less and as much as 150 grams or more, per terminal) may be desired to effect a reliable electrical 25 pressure connection to a terminal of an electronic component.

A second factor of interest with regard to spring interconnection elements is the shape and metallurgy of the portion of the interconnection element making pressure 30 connection to the terminal of the electronic component. With respect to the tungsten needle as a spring interconnection element, for example, the contact end is limited by the metallurgy of the element (i.e., tungsten) and, as the tungsten needle becomes smaller in diameter, it

becomes commensurately more difficult to control or establish a desired shape at the contact end.

In certain instances, spring interconnection elements themselves are not resilient, but rather are supported by a 5 resilient membrane. Membrane probes exemplify this situation, where a plurality of microbumps are disposed on a resilient membrane. Again, the technology required to manufacture such interconnection elements limits the design choices for the shape and metallurgy of the contact portion 10 of the interconnection elements.

Commonly-owned U.S. Patent Application No. 08/152,812 filed November 16, 1993 (now U.S. Patent No. 5,476,211, issued December 19, 1995), and its counterpart commonly-owned co-pending "divisional" U.S. Patent Application No. 15 08/457,479 filed June 1, 1995, U.S. Patent Application No. 08/570,230 and U.S. Patent Application No. 09/245,499, filed February 5, 1999, by Khandros, disclose methods for making spring interconnection elements. In a preferred embodiment, these spring interconnection elements, which are 20 particularly useful for micro-electronic applications, involve mounting an end of a flexible elongate element (e.g., wire "stem" or "skeleton") to a terminal on an electronic component, coating the flexible element and adjacent surface of the terminal with a "shell" of one or 25 more materials. One of skill in the art can select a combination of thickness, yield strength, and elastic modulus of the flexible element and shell materials to provide satisfactory force-to-deflection characteristics of the resulting spring interconnection elements. Exemplary 30 materials for the core element include gold. Exemplary materials for the coating include nickel and its alloys. The resulting spring interconnection element is suitably used to effect pressure, or demountable, interconnections between two or more electronic components, including 35 semiconductor devices.

Commonly-owned, co-pending U.S. Patent Application No. 08/340,144, filed November 15, 1994 and its corresponding PCT Patent Application No. PCT/US94/13373, filed November 16, 1994 (WO95/14314, published May 16, 1995), both by

5 Khandros and Mathieu, disclose a number of applications for the aforementioned spring interconnection elements, and also disclose techniques for fabricating tip structures at the ends of the interconnection elements. For example, a plurality of negative projections or holes, which may be in
10 the form of inverted pyramids ending in apexes, are formed in the surface of a sacrificial layer (substrate). These holes are then filled with a contact structure comprising layers of material such as gold or rhodium and nickel. A flexible elongate element is mounted to the resulting tip
15 structure and can be overcoated in the manner described hereinabove. In a final step, the sacrificial substrate is removed. The resulting spring interconnection element has a tip structure having controlled geometry (e.g., a sharp point) at its free end.

20 Commonly-owned, co-pending U.S. Patent Application No. 08/452,255, filed May 26, 1995 and its corresponding PCT Patent Application No. PCT/US95/14909, filed November 13, 1995 (WO96/17278, published June 6, 1996), both by Eldridge, Grube, Khandros and Mathieu, disclose additional techniques
25 and metallurgies for fabricating tip structures on sacrificial substrates, as well as techniques for transferring a plurality of interconnection elements mounted thereto, en masse, to terminals of an electronic component.

Commonly-owned, co-pending U.S. Patent Application No.
30 08/788,740, filed January 24, 1997 and its corresponding PCT Patent Application No. PCT/US96/08107, filed May 24, 1996 (WO96/37332, published November 28, 1996), both by Eldridge, Khandros and Mathieu, disclose techniques whereby a plurality of tip structures are joined to a corresponding
35 plurality of elongate interconnection elements that are

already mounted to an electronic component. Also disclosed are techniques for fabricating "elongate" tip structures in the form of cantilevers. The cantilever tip structures can be tapered, between one end thereof and an opposite end thereof. The cantilever tip structures are suitable for mounting to already-existing (i.e., previously fabricated) raised interconnection elements extending (e.g., free-standing) from corresponding terminals of an electronic component.

10 Commonly-owned, co-pending U.S. Patent Application No. 08/819,464, filed March 17, 1997, by Eldridge, Khandros and Mathieu, representatively discloses a technique whereby a plurality of elongate interconnection elements having different lengths than one another can be arranged so that 15 their outer ends are disposed at a greater pitch than their inner ends. The inner, "contact" ends may be collinear with one another, for effecting connections to electronic components having terminals disposed along a line, such as a center line of the component.

20 As electronic components get increasingly smaller and the spacing between terminals on the electronic components get increasingly tighter or the pitch gets increasingly finer, it becomes increasingly more difficult to fabricate interconnections including spring interconnection elements 25 suitable for making electrical connection to terminals of an electronic component. Co-pending and commonly-owned U.S. Patent Application No. 08/802,054, titled "*Microelectronic Contact Structure, and Method of Making Same,*" discloses a method of making spring interconnection elements through 30 lithographic techniques. In one embodiment, that application discloses forming a spring interconnection element (including a spring interconnection element that is a cantilever beam) on a sacrificial substrate and then transferring and mounting the interconnection element to a 35 terminal on an electronic component. In that disclosure,

the spring interconnection element is formed in the substrate itself through etching techniques. In co-pending, commonly-owned U.S. Patent Application No. 08/852,152, titled "*Microelectronic Spring Contact Elements*," spring 5 interconnection elements are formed on a substrate, including a substrate that is an electronic component, by depositing and patterning a plurality of masking layers to form an opening corresponding to a shape embodied for the spring interconnection element, depositing conductive 10 material in the opening made by the patterned masking layers, and removing the masking layer to form the free-standing spring interconnection element.

Co-pending and commonly-owned U.S. Patent Application No. 09/023,859, titled "*Microelectronic Contact Structures and Methods of Making Same*," describes an interconnection element having a base end portion (post component), a body portion (beam component) and a contact end portion (tip component) and methods separately forming each portion and joining the post portion together as desired on an 20 electronic component.

Co-pending and commonly-owned U.S. Patent Application No. 09/107,924 and its parent, U.S. Patent No. 5,772,451 issued June 30, 1998, both entitled "*Sockets for Electronic Components and Methods of Connecting to Electronic Components*," show a socketing device for mating to a 25 packaged semiconductor.

What is needed is a method of fabricating interconnection elements suitable for present fine-pitch electrical connections that is scalable for future 30 technologies. Also needed are improved methods of making interconnection elements, particularly methods that are repeatable, consistent, and inexpensive.

SUMMARY OF THE INVENTION

An interconnection element and method of making an interconnection element are disclosed. In one embodiment, the interconnection element comprises a spring (body) 5 comprising a first resilient element with a first contact region and a second contact region and a first securing region, and a second resilient element with a third contact region and a second securing region. The second resilient element is coupled to the first resilient element through 10 respective securing regions. The second resilient element is positioned such that upon sufficient displacement of the first contact region toward the second resilient element, the second contact region will contact the third contact region.

15 In one aspect, the method comprises successively fabricating a multi-tiered structure to form a compact, resilient interconnect structure. Fabricating each tier or layer involves, in one instance, patterning a plurality of layers of masking material over a substrate. A resilient 20 element is formed and deposited after patterning and cleaned as needed and prepared for a subsequent layer. The method forms, in one embodiment, an interconnection element coupled to the substrate having a body of a plurality of resilient elements, a first resilient element with a first contact 25 region and a second contact region and a first securing region, and a second resilient element with a third contact region coupled to the first resilient element through respective securing regions.

30 A second aspect of the method of forming a contact element comprises successively alternately patterning a plurality of masking layers and interconnection material layers over an attachment element of an interconnection element coupled to a substrate, the alternately patterned layers defining a body coupled to the attachment element, 35 having a plurality of resilient elements, a portion of

adjacent resilient elements separated by a masking layer, and removing the masking layers to form an interconnection element extending from the surface of the substrate.

By forming a body of the interconnection element with a plurality of resilient elements, the mechanical properties of the interconnection element are improved over single beam spring interconnection elements, particularly in sub-micron pitch spacing range of current and future technologies of contact pads or terminals of an integrated circuit. For example, the multiple-leaf portion body of the interconnection element of the invention can achieve improved mechanical properties such as spring constant, compliance, and lower material stress over single beam spring interconnection elements in fine-pitch applications.

The interconnection element of the invention, and the interconnection element formed by the different aspects of the method of the invention, are suitable for making either temporary or permanent electrical connection between contact pads or terminals of an electronic component such as a PCB and a semiconductor chip. In this regard, a method of making electrical connections is disclosed. In one aspect, the method comprises patterning a plurality of interconnection elements on the surface of a first substrate, each interconnection element having an attachment element coupled to a first substrate and a body comprising a plurality of resilient elements, the attachment element coupled to a first surface of the body, a second surface of the body having a contact region capable of contacting a terminal of a chip-scale device. The first substrate, such as an electronic component, is brought together with a second substrate, such as an electronic component, so that the contact regions of the interconnection elements are in contact with the second substrate. For making temporary connection, the first substrate is brought together with another substrate, such as an electronic component, where

the contact regions of the second substrate are electrical contacts such as terminals. The interconnection elements react resiliently to maintain contact pressure and, in one embodiment, to maintain an electrical connection between the 5 two components. For making permanent connection, the first substrate, or electronic component, is brought together with the second substrate, or electronic component, and the contact regions of the interconnection elements are joined or bonded, such as by soldering, welding, or brazing or with 10 a conductive adhesive, to, for example, a terminal of the other substrate, or electronic component. In one embodiment, the interconnection elements are compliant and may accommodate differential thermal expansion between the two substrates, or electronic components.

15 By fabricating a body of the interconnection element with a plurality of resilient elements, the mechanical properties of the interconnection element are improved over single beam spring interconnection elements, particularly in fine pitch spacing ranges of current and future technologies 20 of contacts or terminals of an integrated circuit. This is useful for mating to a packaged semiconductor as in a socket for an LGA or BGA packaged device. This also is useful for mating directly to a semiconductor as in a chip-scale packaging application. In addition, this is useful for 25 other chip-scale contacts such as probing a semiconductor device on a wafer. For example, the multiple resilient element (e.g., multiple-leaf) body of the interconnection element of the invention offers improved mechanical properties such as a higher spring constant, improved 30 compliance, and lower material stress over similarly sized single beam spring interconnection elements in sub-micron applications.

35 An electronic component is also disclosed. In one aspect, the electronic component comprises a plurality of interconnection elements, coupled to a substrate and

configured in a relation to contact an array of contact pads of a chip-scale device, each interconnection element comprising a first resilient element and second resilient element. The first resilient element includes a first and 5 second contact region and a securing region. The second resilient element includes a third contact region and is coupled to the first resilient element through respective securing regions. The second resilient element is positioned such that upon sufficient displacement of the 10 first contact region towards the second resilient element, the second contact region will contact the third contact region. The plurality of interconnection elements are arranged, for example, in an array to accommodate the connection or coupling of the interconnection elements with, 15 for example, corresponding contact pads or terminals of a second electronic component.

An electronic component according to the invention is particularly suitable for making temporary or permanent electrical connection with a second electronic component. 20 Disposed on an electronic component, the interconnection elements are particularly suitable for electrical connection with a second electronic components having "fine-pitch" contact pads or terminals, for example, spacing of at least less than 5 mils (130 μ m), such as 2.5 25 mils (65 μ m). As will be evident from the description that follows, minimized pitch between interconnection elements of an electronic component of the invention is achieved in part by modifying the thickness of the body or spring portion of the interconnection element of the electronic component. 30 Instead of a single beam body, the interconnection elements of the electronic component are comprised of a plurality of resilient elements to improve the mechanical properties of each interconnection element. A desired spring constant of multiple, coordinated springs reinforce and support the 35 primary spring and interconnection element (e.g., tip). A

leaf portion body also improves the compliance of the body at a reduced material stress. Applications to larger scale devices, including, for example, devices with contact pitches of about 50-100 mil (1.3-2.6 mm) and even larger are 5 feasible as well.

Other embodiments, features, and advantages of the invention will become apparent in light of the following description thereof.

10

BRIEF DESCRIPTION OF THE DRAWINGS

The features, aspects, and advantages of the invention will become more thoroughly apparent from the following detailed description, appended claims, and accompanying drawings in which:

15

Figure 1 is a cross-sectional side view of an example of an interconnection element having a single beam spring coupled to an electronic component.

Figure 2 shows the interconnection element of **Figure 1** in contact with a second electronic component.

20

Figure 3 is a cross-sectional side view of an example of an interconnection element having a spring of multiple leaf portions coupled to an electronic component.

Figure 4 shows the interconnection element of **Figure 3** in contact with a second electronic component.

25

Figure 5 is a graphical representation of the force applied to a single-beam interconnection element and a leaf-portioned interconnection element, respectively, versus deflection distance of the interconnection element.

30

Figure 6 shows the material stress for a single-beamed interconnection element and a leaf-portioned interconnection element, respectively, versus deflection distance of the interconnection element.

35

Figure 7 is a cross-sectional side view of a structure having a triangularly-shaped feature formed in a surface of a substrate with conductive layers overlying a surface of

the substrate and the triangularly-shaped feature in accordance with an embodiment of forming an interconnection element of the invention on a sacrificial substrate.

Figure 8 shows the structure of **Figure 7** after 5 depositing a first masking material layer over a surface of the substrate and exposing the triangularly-shaped feature through an opening in the first masking material layer.

Figure 9 shows the structure of **Figure 7** after 10 depositing a first tip material in the opening in the first masking material layer.

Figure 10 shows the structure of **Figure 7** after depositing a second tip material in the opening in the first masking material layer.

Figure 11 shows the structure of **Figure 7** after 15 planarizing the first masking material layer and the second tip material.

Figure 12(a) shows the structure of **Figure 7** after removing the first masking material layer in accordance with one aspect of an embodiment of the invention.

20 **Figure 12(b)** shows the tip portion of **Figure 12(a)** after affixing the fabricated tip structure to a spring of a separately fabricated interconnection element in accordance with one aspect of an embodiment of the invention.

Figure 13(a) shows the structure of **Figure 7** after 25 depositing an adhesion/seed material over a portion of the planarized surface in accordance with a second aspect of an embodiment of the invention.

Figure 13(b) shows the structure of **Figure 7** after patterning a second masking material layer over the 30 substrate having an opening aligned to the tip, the opening extending laterally and/or transversely over the substrate from the tip in accordance with a second aspect of an embodiment of the invention.

Figure 13(c) shows the structure of **Figure 7** after 35 depositing a second conductive material in the opening of

the second masking material layer in accordance with a second aspect of an embodiment of the invention.

5 **Figure 13(d)** shows the structure of **Figure 7** after planarizing the second masking material and the second conductive material in accordance with a second aspect of an embodiment of the invention.

10 **Figure 14(a)** shows the structure of **Figure 7** after removing the masking material layers to form an interconnection element including a spring having a single leaf portion and a tip structure in accordance with a third aspect of an embodiment of the invention.

15 **Figure 14(b)** shows the structure of **Figure 14(a)** after affixing the tip structure and spring to a separately fabricated post and spring (in this example consisting of one leaf portion) in accordance with a third aspect of an embodiment of the invention.

20 **Figure 14(c)** shows the structure of **Figure 14(b)** after separating the tip structure from its substrate to form a free-standing interconnection element on a substrate in accordance with a third aspect of an embodiment of the invention.

25 **Figure 15(a)** shows the structure of **Figure 7** after depositing a third masking material layer over a portion of the planarized surface in accordance with a fourth aspect of an embodiment of the invention.

30 **Figure 15(b)** shows the structure of **Figure 7** after depositing a seed material over a portion of the substrate in accordance with a fourth aspect of an embodiment of the invention.

35 **Figure 15(c)** shows the structure of **Figure 7** after depositing a fourth masking material layer over a portion of the substrate defining an opening over the second conductive material in accordance with a fourth aspect of an embodiment of the invention.

Figure 15(d) shows the structure of **Figure 7** after depositing a third conductive material in the opening of the fourth masking material layer in accordance with a fourth aspect of an embodiment of the invention.

5 **Figure 15(e)** shows the structure of **Figure 7** after planarizing the third masking material layer and the third conductive material in accordance with a fourth aspect of an embodiment of the invention.

10 **Figure 15(f)** shows the structure of **Figure 7** after depositing and patterning additional masking material layers, seed materials, and conductive materials to form two additional leaf portions in accordance with a fourth aspect of an embodiment of the invention.

15 **Figure 16(a)** shows the structure of **Figure 7** after removing the masking material layers to form an interconnection element including a spring having four leaf portions and a tip structure in accordance with a fifth aspect of an embodiment of the invention.

20 **Figure 16(b)** shows the structure of **Figure 16(a)** after affixing the tip structure and spring to a separately fabricated post to form a free-standing interconnection element on a substrate in accordance with a fifth aspect of an embodiment of the invention.

25 **Figure 17(a)** shows the structure of **Figure 7** after depositing a post masking material layer over the surface of the substrate and forming an opening to the seed material in accordance with a sixth aspect of an embodiment of the invention.

30 **Figure 17(b)** shows the structure of **Figure 7** after depositing a post material in the opening to the seed material in accordance with a sixth aspect of an embodiment of the invention.

Figure 17(c) shows the structure of **Figure 7** after planarizing the post masking material layer and the post

material in accordance with a sixth aspect of an embodiment of the invention.

5 **Figure 17(d)** shows the structure of **Figure 7** after removing the masking material layers in accordance with a sixth aspect of an embodiment of the invention.

Figure 17(e) shows the structure of **Figure 7** after affixing the interconnection element formed in accordance with a sixth aspect of an embodiment of the invention to an electronic component.

10 **Figure 18** shows a top view illustration of an application for an embodiment of the interconnection element of the invention wherein a plurality of interconnection elements are affixed to an electronic component and contact a plurality of contact pads or terminals arranged along the 15 edge of a second electronic component.

20 **Figure 19** shows a top view illustration of a second application for an embodiment of the interconnection element of the invention wherein a plurality of interconnection elements are affixed on an electronic component and contact a plurality of contact pads or terminals arranged in a row 25 on a second electronic component.

25 **Figure 20(a)** shows a top view illustration of a first application for an embodiment of the interconnection element of the invention wherein a plurality of interconnection elements are affixed to an electronic component in a diagonal array and contact a plurality of contact pads or terminals on a second electronic component.

30 **Figure 20(b)** shows a top view illustration of a second application for an embodiment of the interconnection element of the invention wherein a plurality of interconnection elements are affixed to an electronic component in a diagonal array and contact a plurality of terminals on a second electronic component.

35 **Figure 21(a)** shows a top perspective view of a layout of adjacent interconnection elements fabricated with close

spacing tolerances in accordance with an embodiment of the invention.

5 **Figure 21(b)** shows a cross-sectional view of the layout of interconnection elements of **Figure 21(a)** in accordance with an embodiment of the invention.

Figure 21(c) shows a top perspective view of a layout of adjacent interconnection elements fabricated with close spacing tolerances in accordance with another embodiment of the invention.

10 **Figure 21(d)** shows a cross-sectional view of the layout of interconnection elements of **Figure 21(c)** fabricated in accordance with an embodiment of the invention.

15 **Figure 21(e)** shows a top view illustration of a plurality of interconnection elements affixed to an electronic component in an overlayed fashion so that their tips align in accordance with an embodiment of the invention.

20 **Figure 21(f)** shows a top view illustration of a plurality of interconnection elements affixed to an electronic component in an overlayed fashion so that their tips are staggered in accordance with an embodiment of the invention.

25 **Figure 22(a)** shows a top view of a first exemplary layout of a leaf portion over a substrate in accordance with the invention.

Figure 22(b) shows a top view of a second exemplary layout of a leaf portion over a substrate in accordance with the invention.

30 **Figure 22(c)** shows a top view of a third exemplary layout of a leaf portion over a substrate in accordance with the invention.

Figure 22(d) shows a top view of a fourth exemplary layout of a leaf portion over a substrate in accordance with the invention.

Figure 22(e) shows a top view of a fifth exemplary layout of a leaf portion over a substrate in accordance with the invention.

5 **Figure 22(f)** shows a top view of a sixth exemplary layout of a leaf portion over a substrate in accordance with the invention.

Figure 22(g) shows a top view of a seventh exemplary layout of a leaf portion over the substrate in accordance with the invention.

10 **Figure 23(a)** shows a cross-sectional side view of a seventh exemplary layout of a leaf portion over a substrate in accordance with the invention.

15 **Figure 23(b)** shows a cross-sectional side view of an eighth exemplary layout of a leaf portion over a substrate in accordance with the invention.

Figure 24(a) shows an embodiment of an interconnection element of the invention having a plurality of leaf portions of different dimensions.

20 **Figure 24(b)** shows the interconnection element of **Figure 24(a)** subjected to a force at its tip.

Figure 25(a) shows an embodiment of an interconnection element of the invention having a plurality of leaf portions coupled to one another through non-aligned supports.

25 **Figure 25(b)** shows the interconnection element of **Figure 25(a)** subjected to a force at its contact region.

Figure 26(a) shows an embodiment of an interconnection element of the invention having a plurality of variable length leaf portions.

30 **Figure 26(b)** shows the interconnection element of **Figure 26(a)** subjected to a force at its contact region.

Figure 27(a) shows an embodiment of an interconnection element of the invention having a plurality of leaf portions coupled to one another at their proximal and distal ends.

35 **Figure 27(b)** shows the interconnection element of **Figure 27(a)** subjected to a force at its contact region.

Figure 28(a) shows an embodiment of an interconnection element of the invention having a plurality of leaf portions coupled to another by staggered supports and a contact region of a tip coupled to a surface of a superiorly-located 5 leaf portion between its ends.

Figure 28(b) shows the interconnection element of **Figure 28(a)** subjected to a force at its contact region.

Figures 29(a) shows a side view of an embodiment of an 10 interconnection element of the invention having a plurality of cylindrical leaf portions coupled to one another by staggered supports.

Figure 29(b) shows a second side view of the interconnection element of **Figure 29(a)**.

15 **Figure 29(c)** shows a top perspective view of the interconnection element of **Figure 29(a)**.

Figure 29(d) shows the interconnection element of **Figure 29(a)** subjected to a force at its contact region.

20 **Figure 30** shows a top perspective view of an embodiment of a leaf portion of an interconnection element of the invention having a cylindrical shape with a "clover leaf"-shaped opening.

Figure 31 shows a top perspective view of an embodiment of a leaf portion of an interconnection element of the invention having a "H"-shape.

25 **Figure 32** shows a top perspective view of an embodiment of a leaf portion of an interconnection element of the invention having a rectangular shape with a rectangularly-shaped opening.

30 **Figure 33(a)** shows a cross-sectional side view of a layout of adjacent interconnection elements collectively forming an apparatus suitable as a micro-switch.

Figure 33(b) shows a top perspective view of the layout of **Figure 33(a)**.

35 **Figure 33(c)** shows a planar top view of the layout of **Figure 33(a)**.

Figure 34 shows a second method of fabricating an interconnection element on a substrate and shows a substrate having a tip structure formed through a masking material layer.

5 **Figure 35** shows the structure of **Figure 34** after removing the masking material layer that defines the pattern for the tip structure.

10 **Figure 36** shows the structure of **Figure 34** after introducing a first conductive material mask layer over the substrate.

Figure 37 shows the structure of **Figure 34** after planarizing the first conductive material mask layer and the tip structure.

15 **Figure 38** shows the structure of **Figure 34** after patterning a second masking material layer and introducing a first body material.

Figure 39 shows the structure of **Figure 34** after removing the second masking material layer.

20 **Figure 40** shows the structure of **Figure 34** after introducing a second conductive material layer mask over the structure.

Figure 41 shows the structure of **Figure 34** after planarizing the second conductive material layer mask and the first body material.

25 **Figure 42** shows the structure of **Figure 34** after introducing a third conductive material layer mask over the structure.

30 **Figure 43** shows the structure of **Figure 34** after patterning a third masking material layer over the structure.

Figure 44 shows the structure of **Figure 34** after exposing the first body material through the patterning of second masking material layer.

Figure 45 shows the structure of **Figure 34** after patterning a second masking material layer to define an opening for a second body material.

5 **Figure 46** shows the structure of **Figure 34** after introducing a second body material.

Figure 47 shows the structure of **Figure 34** after removing the second masking material layer.

10 **Figure 48** shows the structure of **Figure 34** after introducing a fourth conductive material layer mask over the structure.

Figure 49 shows the structure of **Figure 34** after planarizing the fourth conductive material layer mask and the second body material.

15 **Figure 50** shows the structure of **Figure 34** after forming a plurality of body material layers and a post structure.

Figure 51 shows the structure of **Figure 34** after removing a plurality of conductive material layer masks.

20 **Figure 52** shows the structure of **Figure 34** after removing a seed layer to expose an underlying release layer of the substrate.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to interconnection elements, 25 including contact elements. According to one aspect of the invention, the invention contemplates a method of forming an interconnection element having a body including a plurality of resilient or flexural elements, e.g., leaf portions. The invention also relates to a method of bringing together two substrates, such as an electronic component having a 30 plurality of interconnection elements with a second electronic component having an array of contact pads or terminals.

Suitable electronic components include, but are not 35 limited to, an active semiconductor device, a memory chip, a

portion of a semiconductor wafer, a ceramic substrate, an organic substrate, a PCB, an organic membrane, a polyimide sheet, a space transformer, a probe card, a chip carrier, and a socket. The electronic component may be an active 5 device or a passive device that supports one or more electronic connections. In general, suitable electronic components include, but are not limited to, devices comprising an integrated circuit having at least two contacts or terminals providing electrical access to the 10 circuit. Such a device is representatively demonstrated by an integrated circuit chip (or microchip) having a plurality of exposed contacts or terminals providing access to the integrated circuit of the device.

The interconnection element or elements of the 15 invention may be fabricated on or independent of the electronic component to which it is or they are joined. In the case of independent fabrication, the invention contemplates that the interconnection element or elements can be fabricated with a shape, size, and metallurgy that 20 are not limited by the materials and layout considerations associated with the manufacture of the electronic component. Independent fabrication also avoids the exposure of the electronic component to the process conditions associated with forming the interconnection element.

25 Disposed on an electronic component such as a space transformer of a probe card assembly, the interconnection elements of the invention are designed to accommodate contact pads or terminals of electronic components having very small pitch or spacing tolerances. In one embodiment, 30 the interconnection elements adopt alternating orientation (e.g., left-right-left-right) so as to achieve a greater pitch between their post portion than at the tip portion. In another embodiment, the interconnection elements adopt alternating lengths (e.g., short-long-short-long) so as to 35 achieve a greater pitch between the post portion than at the

tip portion of adjacent interconnection elements.

Similarly, alternating interconnection elements can be fabricated to have a greater pitch at their tip portions than their post portions. In summary, the interconnection

5 elements, whether fabricated on or independent of the electronic component to which they are joined may adopt a variety of orientations to accommodate various configurations associated with the electronic components which they connect.

10 **Figure 1** and **Figure 2** illustrate one embodiment of a spring interconnection element. Methods of formation of such a spring interconnection element are described in detail in Application No. 09/205,023 entitled "Lithographic Contact Elements." **Figure 1** shows interconnection element

15 10 comprising post 13, beam or body 14, and tip structure 16. Post 13 is disposed on terminal 11 of electronic component 9. Post 13 has a height, h_2 . Body 14 is coupled at one end to post 13. For consistency, in the discussion that follows the end of an elongate beam body that is
20 coupled to the post will be referred to as the proximal end. Of course, one of skill in the art will recognize that when discussing a body structure that is a beam or a plurality of beams or leaf portions, elements need not be positioned at ends of the beam.

25 In one embodiment shown in **Figure 1**, body 14 is a single beam having a thickness equivalent to a height, t_1 , and length, l_B . At the other end of body 14 (e.g., the distal end) and coupled to a side opposite post 13 is contact or tip structure 16. Tip structure 16 has a height, 30 h_1 , from the surface of body 14.

Figure 2 shows interconnection element 10 under load such as when accommodating a substrate under test. In this case, substrate 20 having terminal 21 is brought into contact with interconnection element 10 and an inferiorly-directed (e.g., downward) force, F , is applied at tip
35

structure 16 of interconnection element 10 to deflect interconnection element 10 at its distal end towards electronic component 9. **Figure 2** shows deflected interconnection element 10 separated from electronic 5 component 9 at its distal end by a height, h_3 .

Under load, such as when contacting substrate 20, body 14 of interconnection element 10 deflects by an amount represented in **Figure 2** by δ . A spring constant, k , may be calculated for this deflection as follows:

10
$$k = F/\delta.$$

Controlling the spring constant for each interconnection element of an electronic component, such as in a probe card assembly, allows a consistent contact force to be applied to each terminal, such as terminal 21 of a substrate under test 15 (such as substrate 20). Hundreds to thousands of interconnection elements may be utilized in a probing operation and many tens of thousands in a wafer-scale contactor. Thus, consistent spring force is particularly significant.

20 Decreasing device sizes allows a corresponding increase in contact or terminal density. In order for interconnection elements on a second electronic component to accommodate the increased array density by a corresponding interconnection element array on the second electronic 25 component, the interconnection element array must correspondingly become more dense. One way to increase the density of an interconnection element array on an electronic component is to reduce the size of the individual interconnection elements. Thus, an interconnection element, 30 such as interconnection element 10 of **Figure 1**, may be reduced in its length, l_B , and its width (not shown) to permit a greater density (e.g., smaller pitch) array on an electronic component (e.g., increase the number of interconnection elements that occupy a given space).

Reduction in the length and width of a particular interconnection element (e.g., reduction in the surface area of the interconnection element) affects the mechanical properties of the interconnection element. For example, the 5 spring constant of a resilient interconnection element, k , is directly related to the geometry (e.g., length, width, and thickness) of the interconnection element. Thus, reduction in thickness for a given length and width beam, correspondingly reduces the spring constant of the 10 interconnection element ($k \propto \text{thickness}^3$). A reduction of the spring constant generally reduces the amount of load or force that may be applied to interconnection elements for a given deflection. Similarly, a reduction in the width of an interconnection element for a given length and thickness, 15 correspondingly reduces the spring constant of the interconnection element ($k \propto \text{width}$), as does a reduction in length for a given width and thickness ($k \propto \text{length}^{-3}$).

In certain situations, it may be desirous to reduce the size of an interconnection element without reducing the 20 amount of load or force desired to be applied to the interconnection element. In order to accommodate an acceptable force, for example, on an interconnection element having a substantially rectangular beam in a high density interconnection element array, the thickness of the body of 25 an interconnection element may be increased. In **Figure 1**, for example, the thickness of body 14, t_1 , may be increased to account for a decreased length, l_B , and width. However, increasing the thickness of the body generally increases the stress of the body. Increasing the stress of a body 30 decreases the longevity or number of compression cycles to failure of the interconnection element.

The stress of a particular body material is generally a measurement of the deformation of the material under a force or load. In general, a material may withstand a certain

amount of stress in which the deformation is reversible. Beyond this point, the deformation reversibility decreases to a point of "permanent set" corresponding to the yield stress of the material. The yield stress is material 5 dependent. In general, in spring applications such as representatively described for the interconnection element of the invention, the maximum stress on an interconnection element material is designed to be less than about one-half the 0.2 percent offset yield stress of the material for 10 maximum longevity of operation.

The interconnection element of the invention addresses an objective of increasing the density of interconnection elements on an electronic component by adjusting the thickness of each interconnection element, assuming that the 15 length and width are set to a predetermined maximum permitted by the geometry. In this manner, an increase in the density of interconnection elements on an electronic component may be achieved without a corresponding reduction in spring constant or a reduction in the acceptable load or 20 force applied to the interconnection elements. The increased thickness of the portion of the interconnection element of the invention may also be achieved without a reduction in the allowable maximum stress on the material.

Figure 3 and **Figure 4** illustrate one embodiment of an 25 interconnection element of the invention. **Figure 3** shows interconnection element 30 comprising post 33, body 34, and contact or tip structure 36. Post 33 is disposed as a first attachment element on terminal 11 of electronic component 9. Post 33 has a height, h_2 , over substrate 9. Body 34 is 30 coupled at one end of post 33. Body 34 includes a plurality (in this case, four) flexural elements or leaf portions 35 each having a thickness or height, t_2 , that collectively define a width (not shown), a thickness or height, t_3 and length, l_B . The superiorly-located leaf portion 35 defines a 35 superior surface for body 34 to which tip structure 36, as a

second attachment element, is coupled. Tip structure 36 has a height, h_1 , from the superior surface of spring 34. In this embodiment, tip structure 36 is coupled to body 14 at an end opposite post 13. Again, it is to be appreciated
5 that this configuration is only illustrative.

Figure 4 shows interconnection element 30 under load such as when accommodating a substrate under test. In this case, substrate 20 having terminal 21 is brought into contact with interconnection element 30 through an
10 inferiorly-directed force, F , applied at tip structure 36 of interconnection element 30 to deflect interconnection element 30. The deflection, δ_2 , of interconnection element 30 causes tip structure 36 to "wipe" contact pad or terminal 21 in a lateral direction as the interconnection element
15 deflects. This wiping action serves, in one sense, to improve the connection between tip structure 36 and contact pad or terminal 21 by cutting through debris or build-up on the contact or terminal.

In one embodiment, the height of the post, h_2 , is
20 greater than the height of the tip structure, h_1 , so that post 33 determines the over-travel or deflection distance of body 34. A suitable over-travel or deflection distance according to current technologies is 2-8 mils (50-200 microns). As shown in **Figure 4**, electronic component 20
25 "bottoms-out" on the superior surface of body 34. In this configuration, the superior surface of body 34 may be coated with an insulative layer to limit possible errant currents.

Other alternatives for limiting the over-travel or deflection distance of the interconnection element of the
30 invention are also suitable. For example, the height of tip structure, h_1 , can be greater than the height of the post, h_2 . In this situation, electronic component 20 will not bottom-out on the superior surface of body 34. To protect the distal end of the inferiorly-located leaf portion of
35 body 34 from contacting the surface of electronic component

9, travel stop 37 (indicated in dotted lines) may be added. Alternatively, post stop 38 (also indicated in dotted lines) may be fabricated to a predetermined height adjacent interconnection element 30 to limit the superiorly-directed 5 advancement of electronic component 20. Alternative travel stop 37 and post stop 38, respectively, are, in one aspect, comprised of an insulating material.

Figure 5 and Figure 6 graphically compare the force and stress of a single beam body and a leaf portion body 10 interconnection element according to the invention. Figure 5 shows that the amount of force to deflect a body is greater for a single beam structure having a thickness t_1 such as shown in Figure 1 as compared to a single leaf portion having a thickness t_2 shown, for example, in Figure 3 15 provided the thicknesses are set as shown.

Figure 6 shows a graphical representation of the stress of a material for a single beam body and a leaf portion of, for example, a multiple-leaf body of an interconnection element according to the invention. Figure 6 shows that for 20 a given deflection distance, corresponding, for example, to a contact force shown in Figure 5, the stress on a body material, σ , is greater for a single beam of thickness, t_1 , than a leaf portion of thickness, t_2 , of a multiple-leaf body. In order to remain below the maximum stress, σ_{max} , the 25 deflection distance of the single beam body must be limited. Increasing the thickness of the single beam further limits the deflection distance even more.

In general, in the example of an interconnection element having a rectangular body or spring such as shown in 30 Figure 1 (single beam) and Figure 3 (multiple leaf), the spring constant of an interconnection element is directly related to the thickness of the interconnection element. Thus, reducing the thickness of a body portion of an interconnection element reduces the spring constant

($k_{leaf} < k_{beam}$) which correspondingly reduces the contact force required to deflect the interconnection element a predetermined distance. In order to achieve a desired spring constant of, for example, the spring constant of the beam, k_{beam} , multiple (n) leaf portions each having a thickness, t_2 , are combined such that $n \cdot k_{leaf} \approx k_{beam}$. It is to be appreciated that the spring constant of an interconnection element, including a multiple leaf interconnection element described in the invention will vary with the application (e.g., the length of the beam spring, interconnection material, the desired deflection distance, etc.).

As shown in **Figure 6**, the stress on a single leaf portion of, for example, a multiple-leaf body (the multiple-leaf body collectively having a similar material thickness to a single beam) is much less for a given deflection distance (e.g., a given amount of force) as compared to the single beam body. Accordingly, a single leaf portion may have a much greater compliance and be subjected to a much greater deflection than a single beam body of equivalent spring constant and remain below the maximum stress of the material. Thus, in designing an interconnection element according to the invention, the thickness of each leaf portion, t_2 (see **Figure 3**) may be determined to be below the maximum stress and the number of leaf portions may be selected to achieve a desired spring constant.

The following example compares a single beam body (spring) interconnection element such as interconnection element 10 with a leaf-portioned body (spring) interconnection element such as interconnection element 30. In this example, each interconnection element is limited to a body length, l_B , of 10 mils (250 μm) and a maximum stress, σ_{MAX} , of 1×10^5 pounds per square inch (psi) or 7000 kilograms-force per square centimeter (kg/cm^2). The body of each

interconnection element is comprised of a nickel-cobalt (NiCo) alloy with a Young's modulus of 30×10^6 psi (2.1×10^6 kg/cm²).

In the case of a single beam body having a thickness, 5 t_1 , of 0.001 inches (25.4 μm) and a constant width of 0.0055 inches (139.7 μm), the maximum spring deflection is 2.2×10^{-4} inches (5.6 μm) and the force is 4.1 gram-force (gmf). The spring constant is 18.7 gmf/mil (0.74 gmf/ μm).

In the case of a two-leaf structure with equivalent 10 spring rate, the spring constant for each leaf portion ($k_{1/2}$) is approximately 9.3 gmf/mil (0.36 gmf/ μm) for a thickness, t_2 , of 0.00079 inches (2.0 μm). Such a configuration allows a deflection distance of 2.8×10^{-4} inches (7.1 μm) to develop 15 100 ksi stress. By combining two leaf portions, a spring constant of 18.6 gmf/mil (0.73 gmf/ μm) is produced, approximately the spring constant of the single beam described above. The multi-leaf body, however, is capable of a deflection of 2.8×10^{-4} inches (7.1 μm) as compared to 2.2×10^{-4} inches (5.6 μm) for the single beam body, an 20 improvement of 127 percent in allowed deflection. For a three leaf-portioned body, the improvement in allowed deflection is 145 percent; for a four leaf-portioned body, 162 percent.

It is to be appreciated that the above example 25 representatively compares a single beam interconnection element with a multiple leaf portion interconnection element. Accordingly, the dimensions of the interconnection element bodies and values of spring constant and deflection distance are similarly representative and not intended to 30 confine the invention. For example, multiple leaf structures having individual spring constants on the order of 0.05 to 0.3 gmf/mil (0.002 to 0.02 gmf/ μm) or greater are useful in interconnection elements employing multiple leaf portions (e.g., two or more) according to current state of 35 the art applications.

As contact pad or terminal densities on electronic components increase, the area of corresponding interconnection elements of a corresponding electronic component configured to connect to or probe the contact pads or terminals will be reduced. Thus, for example, the length and width of individual interconnection elements on an electronic component will be determined by the array of the corresponding contact pad or terminal array of the electronic component to be contacted. The invention offers the ability to achieve a desired spring constant, contact force, and deflection distance and meet the increased contact pad or terminal density requirements of current and future technologies.

15 A. Fabrication of a Multi-Leaf or Multi-Tier Spring
Interconnect Element

Figures 7-17(e) illustrate one method of making an interconnection element in accordance with one embodiment of the invention. In one aspect, an interconnection element that is a cantilever including a post, a body comprising a plurality of leaf portions, and a tip structure will be fabricated in this embodiment. It is to be appreciated that at a given time, a number of interconnection elements can be formed on a substrate. The method described below focuses on the formation of a single interconnection element. The discussion, however, applies also to the fabrication of a number of interconnection elements on a substrate, such as a sacrificial substrate or an electronic component, at a given time. Typically, each of the interconnection elements fabricated on a substrate will have substantially similar characteristics (e.g., dimensions, shape, etc.). It is also appreciated, however, that the characteristics of the interconnection elements of a substrate can be individually

controlled and determined for given application requirements.

Figure 7 shows structure 100 including substrate 110 that is a sacrificial substrate such as, for example, a 5 semiconductor (e.g., silicon) substrate. For illustration purposes, substrate 110 is oriented to show a finished interconnection element. The orientation during manufacturing may be quite different. The method of making an interconnection element will be described according to 10 current processing methodologies including device scale. It is to be appreciated that the principles of the invention may be adapted to future methodologies and that the techniques described are scalable.

Formed in a surface of substrate 110 is a pyramidal-shaped feature. Methods for forming a pyramidal-shaped feature are described in detail in commonly-owned pending 15 PCT Application No. PCT/US97/08606, published November 20, 1997 as WO97/43653. In PCT Application No. PCT/US97/08606, a method is described whereby a pyramidal-shaped feature 20 is formed by the patterning of a masking material having a preferably square opening measuring, according to current technologies, approximately 1-4 mils (25-100 μm) on a side over a semiconductor substrate. Next, the substrate is etched to form the pyramidal-shaped depression. In the 25 case of certain silicon semiconductor substrates, silicon will tend to be self-limiting as the etching proceeds along the crystal plane, such as at approximately 54.74° for silicon. In other words, the depression will extend to a depth that is dictated by the size of the mask opening and 30 the nature of the substrate. For example, with square openings of 2.5 mils (63.5 μm) per side, the depth of the depression will be approximately 2 mils (50.8 μm) in wafer-grade silicon.

Other methods of forming pyramidal-shaped features 35 are described in commonly-owned U.S. Patent No. 5,809,128

and co-pending and commonly-owned U.S. Patent Application No. 08/802,054, titled "Microelectronic Contact Structure, and Method of Making Same."

Overlying the surface of substrate 110 is release layer 125. Release layer 125 is, for example, a metal such as aluminum or titanium-tungsten, deposited to a thickness of approximately 5000 angstroms (Å) using conventional deposition techniques. Overlying release layer 125 on the surface of substrate 110 is seed layer 130. Seed layer 130 is, for example, copper, palladium, or titanium-tungsten that facilitates a further deposition technique such as an electroplating process such as by establishing an appropriate potential for an electrolytic process. In one embodiment, seed layer 130 of titanium-tungsten is introduced over the surface of substrate 110 to a thickness of approximately 5000 Å using conventional (e.g., sputter) deposition techniques. Alternatively, a bilayer of two materials may be introduced as seed layer 130. In one embodiment, a layer of gold or palladium is introduced at a thickness of, for example, a few thousand angstroms followed by the introduction of a second material such as titanium-tungsten. Seed layer 130 may be introduced as a blanket layer over substrate 110 or as multiple, non-contiguous regions.

Figure 8 shows structure 100 after the introduction and patterning of first masking material layer 135 over substrate 110. First masking material layer 135 is, for example, a photopolymer (e.g., a positive or negative photoresist) that is spin-coated onto the surface of substrate 110 to a thickness of the desired height of a tip structure of an interconnection element taking into consideration the possibility of planarizing a portion of first masking material layer 135 with tip structure material. Approximately 1-4 mils (25-100 µm) is a useful

height range for many applications. First masking material layer 135 is patterned to have an opening over feature 120.

Next, as shown in **Figure 9**, first tip material 137 is introduced in the opening in first masking material layer 135. Suitable materials for first tip material 137 include, but are not limited to, palladium (Pd), gold (Au), and rhodium (Rh) and their alloys, including nickel (Ni) and cobalt (Co) alloys. First tip material 137 is introduced, in one example, to a thickness of about 1 to 5 μm but more 5 can be used--even tens of microns or more. Suitable introduction techniques include, but are not limited to, electroplating, chemical vapor deposition, sputter 10 deposition, and electroless plating. In this example, first tip material 137 serves as an outer contact layer in the 15 finished product.

Figure 10 shows a process of forming an interconnection element according to an embodiment of the invention where second tip material 140 is introduced to a suitable thickness. This may be at least the height of first masking 20 material layer 135 (the height of opening 120) or greater than such height. Suitable introduction techniques include, but are not limited to, electroplating, chemical vapor deposition, sputter deposition, and electroless plating. In one embodiment, second tip material 140 is an alloy of 25 nickel and cobalt (NiCo) introduced by an electroplating process to a height greater than the height of first masking material layer 135 (i.e., overplating). A suitable total height is about 1-4 mils (25.4-101.6 μm), particularly about 3 mils (76.2 μm).

30 **Figure 11** shows structure 100 after planarizing second tip material 140 and first masking layer 135 in accordance with an embodiment of the invention. The planarization is accomplished, for example, by a mechanical polish or a chemical-mechanical polish with a suitable slurry. Suitable

mechanical polishes include diamond-based materials and silicon carbide. Suitable slurries for a chemical-mechanical polish of the materials described above include silicon dioxide, aluminum oxide, and cesium oxide in a pH-adjusted slurry. The planarization described in **Figure 11** defines the height of the tip structure of an interconnection element.

In a first aspect of an embodiment of the invention, the tip structure of first tip material 137 and second tip material 140 may be removed and separately affixed to an interconnection element, such as for example, an interconnection element containing a post and a body formed on an electronic component. **Figure 12(a)** shows structure 100 after removing first masking material layer 135. In the example where first masking material layer 135 is a photoresist, first masking material layer 135 may be removed by an etch (e.g., oxygen ashing), reactive ion etching, laser ablation, or wet etching. The removal of first masking material layer 135 may also remove seed layer 130. Alternatively, an additional procedure (e.g., etch) may be performed to remove seed layer 130 and expose release layer 125. Once first masking material layer 135 and seed layer 140 are removed, the tip structure of first tip material 137 and second tip material 140 may be separated from substrate 110 at release layer 125. In the example where release layer 125 is aluminum, the tip structure may be removed from substrate 110 by dissolving release layer 125 using a sodium hydroxide (NaOH) solution as known in the art. Other methods of separation including but not limited to chemical etching and heat are also suitable, as known in the art. In the example where seed layer 130 is a bilayer of gold followed by titanium-tungsten, a portion of seed layer 130 that may remain on the tip structure may serve as appropriate contact material.

Before the tip structure is separated from substrate 110, the tip structure may be combined with a post and a body as shown in **Figure 12(b)** by, for example, brazing, soldering, or welding. **Figure 12(b)** shows an example of 5 interconnection element 1500 coupled to electronic component 1000. Interconnection element 1500 includes post 1650, coupled to terminal 1010 of electronic component 1000 and body 1550. Body 1550 includes multiple (e.g., four shown) cantilever leaf portions. A method of forming the leaf 10 portions of a body will be discussed below with respect to a further aspect of an embodiment of the invention. For present purposes, **Figure 12(b)** shows the tip structure of first tip material 137 and second tip material 140 secured to a superior surface of body 1550 at an end opposite post 15 1650 in this example.

Figure 13(a) shows a second aspect of an embodiment of the invention. Starting from structure 100 as shown in **Figure 11**, **Figure 13(a)** shows structure 100 after rendering a portion of first masking material layer 135 conductive to 20 define an electrode area for a body of the interconnection element that is to be formed by an electroplating process. In one embodiment, a portion of an area over first masking material layer 135 is covered with a thin adhesion/seed layer. Typical adhesion materials include, but are not 25 limited to, titanium, tungsten, molybdenum, chrome, and copper, alone or as an alloy. Typical seed materials include, but are not limited to, gold, copper, silver, platinum and palladium. Another example of an adhesion/seed layer is an adhesion layer of palladium-tin chloride and a 30 seed layer of electroless palladium. Seed layer 145 may be introduced via a blanket deposition, such as a sputter deposition. For an electroplated nickel-cobalt layer, for example, a seed layer having a thickness according to current technologies of about between 1500 to 6000 Å, may be 35 suitably introduced by, for example, a blanket sputter

deposition process over the surface of first masking material 135. Alternatively, seed layer 145 may be introduced as a plurality of "traces," each trace corresponding to an area over a first masking material layer 135 where the body of the interconnection element is to be formed to serve, in one manner, as an electroform whereupon the body can be fabricated.

In yet another embodiment, a stencil (shadow mask) may be introduced over the surface of first masking material layer 135. A stencil may be used, for example, to introduce a discontinuous adhesion/seed layer. The stencil typically will have a plurality of openings extending laterally from an area above the corresponding tip structure (indicated by first tip material 137 and second tip material 140) to define areas for the body of the interconnection elements. The stencil may suitably be a thin (e.g., about 2 mils (50.8 μ m) thick for current technologies) foil of stainless steel, tungsten, or molybdenum that may be punched or etched to have openings. The stencil can be any suitable material having any suitable thickness that will permit seed layer 145 to be deposited onto first masking material layer 135 in a pattern of conductive traces corresponding to the shape of the opening in the stencil. With the stencil in place (typically, slightly above the surface of substrate 110), seed layer 145 is deposited, such as by sputtering, onto the exposed surface of first masking layer 135. The stencil may then be removed.

Consideration should be given, in certain instances, to the selection of the material for the masking material layer and the process for deposition of the seed layer. In general, the masking material should be stable in the environment of the deposition method. Compatibility considerations are within the level of ordinary skill in the art.

Next, as shown in **Figure 13(b)**, an area over substrate 110 is covered by second masking material layer 150, again such as a photopolymer (e.g., photoresist) bearing in mind the consideration of using multiple masking materials in the 5 presence of conductive layers, including seed layers.

Second masking material layer 150 is patterned to define opening 151 over structure 100.

Second masking material layer 150 defines an area over structure 100 for a first leaf portion (e.g., a cantilever 10 leaf portion) of a body in accordance with one embodiment of the invention. The area corresponding to opening 151 in second masking material layer 150 will be determined, in this embodiment, based, in part, on the desired area for the leaf. The desired area of opening 151 will depend, to a 15 large extent in one embodiment, on the density and disposition (distribution) of a contact pad or terminal array that an electronic component of a plurality of interconnection elements will be probing or contacting. For example, for an electronic component having a pitch of 20 approximately 6 mils (152 μ m) or less between contacts or terminals, the length and width of an interconnection element in an array must be sized so that it can contact one contact pad or terminal and allow, for example, an adjacent interconnection element of the array to contact an adjacent 25 contact pad or terminal. One way this is achieved is shown by the illustration shown in **Figure 20(a)** and **Figure 20(b)**. In **Figure 20(a)**, for example, contacts or terminals 710 are disposed on an electronic component having a pitch of, for example, 6 mils (152 μ m). Interconnection elements 715 are 30 disposed diagonally on electronic component 720 (shown in dashed lines). Interconnection elements 725 are cantilever interconnection elements having a rectangular body of a plurality of leaf portions (not shown in **Figure 20(a)**). Each interconnection element has a length of approximately 35 12 mils (304.8 μ m) and a width of 3 mils (76.2 μ m) or a

total area of 24 mil² ($2.3 \times 10^4 \mu\text{m}^2$). Such an area will correspond, in one embodiment, to the area of each leaf portion of a cantilever spring of an interconnection element such as illustrated in the process of **Figures 7-17(e)**.

5 The thickness of second masking material layer 150 will determine in part the thickness of a leaf portion of the body of the interconnection element formed by the process in this embodiment. Thus, second masking material layer 150 is introduced to a desired thickness of a leaf portion of a
10 body of the interconnection element bearing in mind a subsequent planarization step. A suitable thickness of a leaf portion will be determined based in part on considerations of the desired spring constant, the deflection distance of the body, and the stress property of
15 the material chosen for the leaf portion of a body. In one embodiment, for a nickel-cobalt body (having a Young's modulus of 30×10^6 psi ($2.1 \times 10^6 \text{ kg/cm}^2$) and maximum stress, σ_m of 1×10^5 psi (7000 kg/cm^2), a leaf portion having a length of 21 mils ($533 \mu\text{m}$) and a thickness of about 0.5 mil ($12.7 \mu\text{m}$)
20 will support about 1 mil ($25.4 \mu\text{m}$) of compliance.

Figure 13(c) shows structure 100 after introducing first body material 155 over the surface of substrate 110. In one embodiment, first body material 155 is conductive material introduced by an electroplating process with an
25 electroplate alloy such as nickel-cobalt. In **Figure 13(c)**, first body material 155 is introduced to a thickness greater than the thickness of second masking material layer 150. As noted, it is to be appreciated that the amount introduced and the thickness of first body material 155 will depend, in
30 part, on the desired thickness of the particular leaf portion of the body.

 As shown in **Figure 13(d)**, after the introduction of first body material 155 over substrate 110, first body material 155 and second masking material 150 are planarized

by way of, for example, a grinding process or a chemical-mechanical polish such as described above to form a leaf portion of the interconnection element on substrate 110.

Planarization of first body material 155 and second masking material 150 controls the final thickness of the leaf portion of the body (i.e., controls the thickness of first body material 155) thus allowing a determinable and consistent leaf portion to be fabricated.

In a third aspect of an embodiment of the invention, the tip structure of first tip material 137 and second tip material 140 and a leaf portion of first body material 155 may be removed and separately affixed to an interconnection element, such as for example, an interconnection element containing a post and, optionally, a body of one or more leaf portions formed on an electronic component. **Figure 14(a)** shows structure 100 after the further processing step of removing first masking material layer 135 and second masking material layer 150. In the example where first masking material layer 135 and second masking material layer 150 is a photoresist, the layers may be removed by an etch (e.g., oxygen ashing), reactive ion etching, laser ablation, or wet etching. Once the masking material layers are removed, the tip structure and leaf portion body may be removed from substrate 110 by, for example, dissolving release layer 125 using a sodium hydroxide (NaOH) solution as known in the art.

Before the tip structure and leaf portion body are separated from substrate 110, the leaf portion may be combined with a post and, optionally, one or more leaf portions as shown in **Figure 14(b)** by, for example, brazing, soldering, or welding. **Figure 14(b)** shows an example of interconnection element 1550 coupled to electronic component 1580. Interconnection element 1550 includes post 1572 and leaf portion 1575. The affixing of the leaf portion of first body material 155 to leaf portion 1575 provides a

spacer between the leaf portions. The amount of connecting material can be varied to adjust this spacing. **Figure 14(c)** shows a free-standing interconnection element after the separation of substrate 110 from the tip structure.

5 **Figure 15(a)** shows a fourth aspect of an embodiment of the invention. Starting from structure 100 as shown in **Figure 13(d)**, **Figure 15(a)** shows depositing of third masking material layer 158 over a surface of structure 100. In this embodiment, third masking material layer 158 is, for
10 example, a photoresist similar to the previous masking material layers. Third masking material layer 158 may also be a metal layer (e.g., copper), conductive polymer, or other layer preferred for later removal by etching (wet or dry) or solvent removal. The thickness of third masking
15 material layer 158 defines, in part, the thickness of a gap between adjacent leaf portions of a spring of the interconnection element. Third masking material layer 158 also defines a portion of first body material 155 to which a subsequent leaf portion of a body of the interconnection
20 element may be coupled. Stated alternatively, third masking material layer 158 serves, in this embodiment, to provide an area less than the entire surface area of first body material 155 to connect a second leaf portion and inhibit the plating together of adjacent leaf portions. Opening 159
25 provides access to first body material 155 to allow plating to a portion of first body material 155.

30 In one embodiment, third masking material layer 158 is a layer of photoresist similar to the previous masking material layers. Third masking material layer 158 may be, for example, on the order of 0.1 to 5 μm .

35 In the discussion that follows, the masking material layers, including third masking material layer 158 will be removed leaving a free standing inverted interconnection element on substrate 110 and an air gap between adjacent leaf portions of the body of the interconnection element.

As an alternative to introducing a removable masking material layer to be removed to form an air gap between adjacent leaf portions, a thin layer of an "interleaf" material may be introduced that inhibits the complete plating of adjacent leaf portions and will not inhibit the deflection of individual leaf portions. Suitable interleaf material includes, but is not limited to, TEFILON® polymers (commercially available from E.I. duPont de Nemours & Co. of Wilmington, Delaware) diamond, brass, or a PARALENE® polymer (commercially available from E.I. duPont de Nemours).
10 Opening 159 is patterned with the interleaf material to first body material 155 to allow plating of a subsequent leaf portion to the leaf portion that is first body material 155.

15 **Figure 15(b)** shows the introduction of another adhesion/seed layer. Adhesion/seed layer 160 may be, in one embodiment, similar to adhesion/seed layer 145 and may be introduced via a blanket deposition. For an electroplated nickel-cobalt, for example, an adhesion/seed layer of gold 20 or copper having a thickness of 3000-5000 Å may be suitably introduced over the surface of third masking material layer 158.

As shown in **Figure 15(c)**, an area of structure 100 is covered with fourth masking material layer 161, again such 25 as a photoresist similar to the previous masking material layers bearing in mind considerations of using multiple masking material layers in the presence of conductive layers. Fourth masking material layer 161 is patterned to define opening 162 that defines an area for a second leaf 30 portion of the body of the interconnection element. In one embodiment, the patterning of fourth masking material layer 161 defines an area (e.g., a length and width for a cantilever leaf portion) similar to second masking material layer 150. The considerations of the thickness of fourth 35 masking material layer 161 are similar to the considerations

discussed above with reference to second masking material layer 150. In other embodiments, leaf portions of a spring may have different areas. Leaf portions may be dissimilar not only in length (as illustrated in **Figures 24(a)** and 5 **24(b)**), but even profile. The configuration of the individual leaf portions can be selected by the designer for optimal performance in a particular environment. The invention provides a mechanism for individually configuring leaf portions to suit a designer's needs.

10 Next, as shown in **Figure 15(d)**, second body material 163 is introduced over substrate 110. In one embodiment, second body material is a conductive material introduced through an electroplating process with an electroplated alloy such as nickel-cobalt. Second body material 163 is 15 introduced to a thickness greater than the thickness of fourth masking material layer 161 of a second leaf portion of the body of the interconnection element.

As shown in **Figure 15(e)**, after the introduction of second body material 163 over substrate 110, second body material 163 and fourth masking material layer 161 are planarized by way of, for example, a grinding process or a chemical-mechanical polish to form a second leaf portion of a body of the interconnection element. As noted above, in the case of a cantilever leaf portion of a body, the 25 thickness will depend to a large extent on the desired spring constant, the deflection distance, and the material stress. In one embodiment, the thickness of second body material 163 will be similar to the thickness of first body material 155. In other embodiments, such as those 30 illustrated below, leaf portions of a body may have different thicknesses and different profiles to modify the properties of the interconnection element.

The above-described process and patterning of masking material layers, introducing a seed layer, introducing a 35 conductive material, and planarizing a masking material

layer and the body material may be repeated numerous times to form additional leaf portions of a body of an interconnection element. The number of leaf portions will depend, primarily, on the desired spring constant for a 5 predetermined deflection distance and material stress for the material of the interconnection element of the invention. **Figure 15(f)** shows structure 100 after the subsequent introduction, patterning, and planarizing steps of forming two additional leaf portions of a body of the 10 interconnection element. In total, an interconnection element shown in **Figure 15(f)** has a body of four leaf portions.

Figure 16(a) and **Figure 16(b)** show a fifth aspect of one embodiment of the invention. In this aspect, the 15 fabrication of the component for the interconnection element formed by the lithographic techniques described is substantially complete with the formation of a spring interconnection element having a tip structure of first tip portion 137 and second tip portion 140 and a body of 20 multiple (e.g., four) leaf portions denoted principally by body material 155, 163, 166, and 170. **Figure 16(a)** shows structure 100 after removing the masking material layers (e.g., masking material layers 135, 150, 158, 161, 164, 167, 168, and 169). In the example where each of the masking 25 material layers are a photoresist, the step of removing the masking material layers may be accomplished with an etch (e.g., oxygen ashing), reactive ion etching, laser ablation, or wet etching. An additional etch may be required to remove excess or undesired portions of the various seed 30 layers. However, because the seed layers are typically thin (e.g., about 5000 Å according to current technologies), any excess or undesired seed layer material is typically removed with the removal of the masking material layer(s). In this manner, **Figure 16(a)** shows an interconnection element

affixed at its tip to substrate 110 and a body of four laterally and/or transversely extending leaf portions.

The sacrificial substrate of **Figure 16(a)** including a tip structure and body of an interconnection element may be 5 affixed to a separately-fabricated post to form an interconnection element on an electronic component as shown in **Figure 16(b)**. In this manner, sacrificial substrate 110 is aligned with post 1650 so that the inferiorly located leaf portion of the body (relative to the tip structure) may 10 be affixed to post portion 1650 at a proximal end of the leaf portion (an end opposite the tip structure end of the leaf portion) to create a cantilever body as shown in **Figure 16(b)**. The body may be affixed to post 1650 by, for example, soldering, welding, or brazing. Separately 15 fabricated post 1650 is coupled to electronic component 1010 at a contact pad or terminal of electronic component 1010. Post 1650 may be formed directly on an electronic component or transferred from a sacrificial substrate.

Once the body of the interconnection element is affixed 20 to post 1650, the tip structure is separated from sacrificial substrate 110 at release layer 125. In the example where release layer 125 is aluminum, one method of separating the tip from sacrificial substrate 110 is by reacting release layer 125 with a sodium hydroxide (NaOH) 25 solution. **Figure 16(b)** shows the final interconnection element coupled to electronic component 1010. Any remaining unwanted seed material 130 adjacent first tip material 137 may be removed with a subsequent etch or retained as contact material.

30 Instead of separating the interconnection element containing a tip structure and a body from sacrificial substrate 110, a sixth aspect of an embodiment of the invention contemplates the forming of a post for the interconnection element on the sacrificial substrate.

35 **Figures 17(a)-17(e)** illustrate this process.

Figure 17(a) shows structure 100 of **Figure 15(f)** after the patterning of post masking material layer 199 over structure 100 including an opening to the inferiorly located leaf portion (leaf portion defined by conductive material 170) at the proximal end of conductive material 170 (i.e., proximal relative to the location of the tip structure of the interconnection element on the end of the leaf portion defined principally by reference numeral 155). Post masking material 199 is, for example, photoresist material similar to other masking material layers. Prior to patterning post masking material layer 199, an adhesion/seed layer may be patterned over leaf portion 170 similar, in one embodiment, to adhesion/seed layer 145 described above. As noted above, the described adhesion/seed layers facilitate, in one aspect, an electrolytic process of introducing interconnection material. It is to be appreciated that such adhesion/seed layers may not be necessary, particularly where the masking material that is used to fabricate the interconnection element is conductive material. One example of such a process is described with reference to **Figures 34-52** and the accompanying text.

Post masking material layer 199 is, for example, photoresist material similar to other masking material layers (e.g., first masking material layer 135, second masking material layer 150, third masking material layer 158, fourth masking material layer 161, fifth masking material layer 164, sixth masking material layer 167, seventh masking material layer 168, and eighth masking material layer 171). Post masking material layer 199 is patterned to a suitable height for a post of an interconnection element including consideration for a subsequent planarization step to define the height of the post. The thickness of post masking material layer 199 will primarily determine the distance that the main body portion (i.e., spring and tip) of the interconnection element is

spaced away from the surface of an electronic component. In an example where resiliency is desired, the dimension of the post, the body, and the tip structure may be coordinated to maximize the contact force of the tip structure with, for 5 example, a terminal of an electronic component, and minimize the potential "bottoming out" of the deflected body. For current technologies according to the method described, a suitable height of post masking material 199 is approximately 1-30 mils (25-750 μm), and preferably 3-8 mils 10 (75-200 μm).

Figure 17(b) shows structure 100 after introducing post material 205 in the opening and post masking material layer 199 via, for example, an electroplating process. In one example, post material 205 is nickel-cobalt similar to the 15 body of the interconnection element (e.g., first body material 155, second body material 163, third body material 166, and fourth body material 170). Post material 205 is preferably introduced to a thickness of at least the thickness of post masking material layer 199, and generally 20 greater than the thickness of post masking material layer 199 (e.g., overplating).

Figure 17(c) shows structure 100 after planarizing post material 205 and post masking material layer 199 to define a desired thickness for the post of the interconnection 25 element. The planarization may be accomplished in a manner similar to the planarization procedures described above.

Figure 17(d) shows structure 100 after removing the masking material layers. In the example where the various masking material layers (e.g., first masking material layer 30 135, second masking material 150, third masking material layer 158, fourth masking material layer 161, fifth masking material layer 165, sixth masking material layer 167, seventh masking material layer 168, eighth masking material layer 171 and post masking material layer 199 illustrated

together in **Figure 17(c)**) are photoresist, an oxygen ashing, reactive ion etching, laser ablation or wet chemical etch step may be used to remove the masking material layers. The removal of the masking material layers leaves the 5 interconnection element affixed at its tip structure to sacrificial substrate 110 as shown in **Figure 17(d)**.

One technique for mounting the interconnection element shown in **Figure 17(d)** to an electronic component is by retaining the interconnection element on the sacrificial 10 substrate as shown in **Figure 17(d)** and aligning post 205 with a corresponding terminal on an electronic component, whereupon post 205 may be suitably soldered, brazed, welded, etc., to a contact pad or terminal. It is to be appreciated that any suitable technique and/or material for affixing the 15 post of the interconnection element to a contact pad or terminal of an electronic component may be employed. Once the interconnection element is affixed to an electronic component, sacrificial substrate 110 may be removed in a suitable manner, such as the dissolution of release layer 20 125 by sodium hydroxide (NaOH), chemical etching, heating, etc. Any remaining unwanted seed material layer 130 adjacent first tip material 130 may be removed with a subsequent etch or retained as contact material.

Figure 17(e) shows the interconnection element having 25 tip structure 201 of first tip portion 137 and second tip portion 140, body 200, and post 205 coupled to contact pad or terminal 212 of electronic component 210. Electronic component 210 is, for example, a space transformer of a probe card assembly or another integrated circuit. 30 Electronic component 210 is, for example, a semiconductor- or ceramic-based substrate having contact pads or terminals on opposing surfaces. In the case of a commercially available ceramic-based electronic component 210, for example, the electronic component includes terminals 212 and 35 215 on opposing surfaces of the electronic component.

Terminals 212 and 215 are connected, for example, to conductive circuits 216 running through the electronic component such as, for example, a molybdenum or tungsten or molybdenum/tungsten circuit. Terminals 212 and 215 on 5 electronic component 210 are, for example, copper, nickel, and gold terminals that may be suitable for connecting to an interconnection element by, for example, soldering. In one example, the copper facilitates the electroplating process and is the upper layer. The nickel acts a barrier between 10 the gold and the copper.

Figure 17(e) shows an interconnection element having body 200 of four leaf portions. Adjacent leaf portions are coupled to one another at their proximal ends to form a cantilever spring. The area at which the leaf portions are 15 coupled is represented by supports 202. In the embodiment described supports 202 comprise a portion of adhesion/seed layer and a portion of body material selected to comprise a sufficient thickness to resist bending forces and maintain structural integrity. Spacing is provided by gaps 201 where 20 masking material was originally deposited, as described above. It is to be appreciated that, according to this embodiment, supports 202 may be fabricated as discrete structures apart from the fabrication of a subsequent leaf portion such as, for example, by introducing and seeding an 25 opening of a masking material and depositing a conductive material for supports 202. Planarization of the masking material and the conductive material may also be desirous. The thickness of supports 202 may also be varied.

As is evident in **Figure 17(e)** (and **Figures 14(c)** and 30 **16(b)**), a plurality of elongate or cantilever interconnection elements such as described can be affixed to an electronic component having a plurality of contacts or terminals on the surface thereof. In this embodiment, each interconnection element has a post, a body, and a tip 35 structure opposite the post. Each interconnection element

is affixed at its post to a corresponding contact pad or terminal of an electronic component. The tip structure of each interconnection element extends above the surface of the electronic component to a position that is laterally 5 and/or transversely offset from the post forming a free standing, cantilever structure. When affixed to an electronic component, the interconnection element of the invention has a height of "L2," this being the distance between the highest portion of the tip structure and the 10 inward-most portion where the post is affixed to electronic component 210. A representative height, L2, for an interconnection element according to current technologies is, for example, 10-20 mils and will depend, in part, on considerations of contact pad or terminal spacing on an 15 electronic component to be contacted or probed by an array of interconnection elements, deflection distance of the interconnection element, and the spring constant of the interconnection element.

In **Figure 17(e)**, the distance between the underside of 20 the inferiorly-located leaf portion of body 200 and the surface of electronic component 210 represents the distance that the interconnection element can deflect (absent any stops) in response to a compressive force applied at the tip structure. The height of post 205 and contact pad or 25 terminal 212 (and any bonding material thickness) primarily determines this distance. A similar relationship applies between the superiorly-located leaf portion of body 200 and the end of tip 201. Reference is made to **Figure 4** and the accompanying text that describe the travel of the 30 interconnection element.

The above embodiments described an interconnection element coupled to a substrate that is or is part of an electronic component and the interconnection element serves as a conductive path from a contact pad or terminal. It is 35 to be appreciated that the interconnection element of the

invention need not be coupled to a contact pad or terminal and need not serve as a conductive path. Instead, an interconnection element that is, for example, a mechanical spring is also contemplated.

5 The lithographic technique of forming an interconnection element on a sacrificial substrate is representative of one technique of forming the interconnection elements of the invention. A second technique where the interconnection element is formed 10 directly on an electronic component is also contemplated. Reference is made to Patent Application No. 09/205,022 filed December 2, 1998 entitled "*Lithographic Contact Elements*," and Patent Application No. 09/205,023 filed December 2, 1998 entitled "*Lithographic Contact Elements*," co-owned by the 15 assignee of the invention described herein, which describe such a technique and which are incorporated by reference. It is to be appreciated that the techniques described herein of forming interconnection elements having a body with a plurality of leaf portions can be incorporated into the 20 discussions of forming interconnection elements on an electronic component described in these other applications.

B. Exemplary Applications of Spring Interconnect Structures

Figure 18 illustrates an application wherein a 25 plurality of interconnection elements 500 such as those described hereinabove are arranged on a substrate such as a space transformer of a probe card assembly and affixed thereto in the manner described hereinabove, so that their tip structure ends are disposed in a manner suitable for 30 making contact with the bond pad of a semiconductor device having its contact pads or terminals arranged along its periphery. This application is similar to the application described in co-pending, commonly-owned U.S. Patent Application No. 08/802,054, titled "*Microelectronic Contact Structure, and Method of Making Same*." In **Figure 18**, each 35

interconnection element 500 includes post 502 (denoted by "x") and tip structure 504 and is mounted to an electronic component such as a space transformer (schematically illustrated by the dashed line 510) of a probe card assembly. Tip structures 504 are arranged in a pattern, mirroring the pattern of contact pads or terminals 522 (illustrated schematically by circles) of an electronic component (schematically illustrated by dashed line 520) such as a semiconductor device. Interconnection elements 500 "fan-out" from their tip structures 504, so that each of their posts 502 is disposed at a greater pitch (spacing from one another) than their tip structures 504.

Figure 19 illustrates another application (also similarly described in co-pending, commonly-owned U.S. Patent Application No. 08/802,054) wherein a plurality of interconnection elements 600 such as those described hereinabove are arranged on a substrate such as a space transformer of a probe card assembly and affixed thereto in the manner described hereinabove, so that their tip structures are disposed in a manner suitable for making contact with the contact pads or terminals of a semiconductor device having its contact pads or terminals arranged in a row along a center line thereof. In **Figure 19**, each interconnection element, generally denoted by reference numeral 600, includes post 602 (denoted by "x") and tip structure 604, and are mounted to an electronic component such as a space transformer of a probe card assembly (schematically illustrated by dashed line 610). Tip structures 604 are arranged, in a pattern mirroring that of contact pads or terminals 622 (illustrated schematically by circles) of an electronic component (schematically illustrated by dashed line 620) such as a semiconductor device. In this example, the pitch of contact pads or terminals 622 in an xy-direction is 2 mils (50.8 μ m) by 1.414 mils (35.9 μ m), respectively. Interconnection

elements 600 are arranged in the following sequence. First interconnection element 600a is relatively short (e.g., has the length in an x-direction of, in this embodiment, approximately 60 mils (1524 μm)), and is disposed to extend 5 towards one side (right, as used) of electronic component 620. Second interconnection element 600b is adjacent first interconnection element 600a and is also relatively short (e.g., a length in an x-direction of, in this embodiment, approximately 60 mils (1524 μm)), and is disposed to extend 10 towards an opposite side (left, as used) of electronic component 620. Third interconnection element 600c is adjacent second interconnection element 600b and is relatively long (e.g., has a length in an x-direction of, in this embodiment, approximately 80 mils (2032 μm)), and is disposed to extend towards the one side (right, as used) of 15 electronic component 620. Finally, fourth interconnection element 600d is adjacent third interconnection element 600c and is also relatively long (e.g., has a length in an x-direction of, in this embodiment, approximately 80 mils 20 (2032 μm)), and is disposed to extend towards the opposite side (left, as used) of electronic component 620. In this manner, tip structures 604 are disposed at a fine pitch commensurate with that of contact pads or terminals 622, and posts 602 are disposed at a significantly greater pitch from 25 one another.

Figure 20(a) shows a third application wherein a plurality of interconnection elements 715 such as those described hereinabove are arranged on a substrate such as electronic component 720 (shown in dashed lines) and affixed 30 thereto in the manner described hereinabove, to accommodate the contacting of a densely packed array of contact pads or terminals 710 on electronic component 700. In this embodiment, interconnection elements 715 are arranged in a diagonal array in an x-y plane over contact pads or

terminals 710 to accommodate a pitch between contact pads or terminals 710 that is not suitable for a longitudinally or laterally extending array of interconnection elements.

Interconnection elements 715 are arranged over contact pads 5 or terminals 710 such that the tip structures of interconnection elements 715 contact the contact pads or terminals 710. Posts 725 are located at the proximal end of the rectangular body of interconnection elements 715. As illustrated in **Figure 20(a)**, in one embodiment, 10 interconnection elements 715 are arranged in a non-aligned relation relative to their contacting of contact pads or terminals 710 in the same row of electronic component 700.

Figure 20(b) illustrates an application wherein a plurality of interconnection elements 716 such as those 15 described hereinabove are arranged on a substrate such as electronic component 721 (shown in dashed lines) and affixed thereto in the manner described hereinabove, to accommodate the contacting of a densely packed array (3 across) of contact pads or terminals 711 on electronic component 701.

20 As illustrated in **Figure 20(b)**, in one embodiment, interconnection elements 716 are arranged in an aligned relation relative to their contacting of contact pads or terminals 711 in the same row of electronic component 701.

Figure 20(a) and **Figure 20(b)** illustrate that the 25 length ("l") and width ("w") of an individual interconnection element may be limited by the spacing of contact pads or terminals 710. To maintain the desired spring constant, deflection distance, and a material stress less than the maximum stress, interconnection elements 715 or 30 716 must be increased in the z-direction (coming out of page of **Figure 20(a)** and **Figure 20(b)**). The multiple leaf portion body of the interconnection element of the invention accommodates this requirement.

C. Exemplary Layouts of Spring Interconnect Structures

By using photolithographic techniques as described above, the interconnection elements according to the invention may be fabricated with an area array pitch 5 corresponding to the reduced pitch of state-of-the-art electronic components. Accordingly, the interconnection elements according to the invention are well-suited to the fine-pitch, close-tolerance environment of micro-electronic components. **Figures 21(a)-21(b)** illustrate one layout where 10 pitch between adjacent interconnection elements may be further minimized. **Figure 21(a)** and **21(b)** show two different views of adjacent interconnection elements 740A and 740B. Adjacent interconnection elements 740A and 740B may be fabricated directly on an electronic component or on 15 a sacrificial substrate and transferred to an electronic component similar to the process steps above with respect to **Figures 7-17(e)** and the accompanying text. In this embodiment, adjacent interconnection elements are stacked at slight angles to separate the tip structures. As 20 interconnection elements are depressed, the body of the adjacent interconnection elements do not contact each other, at least in one embodiment.

Interconnection element 740A includes post 730A, body 745A and tip structure 760A. Interconnection element 740B 25 includes post 730B, body 745B and tip structure 760B. As a further enhancement, interconnection element 740B includes spacers 732B and 733B to align interconnection element 740B at a similar height (in a z-direction) as interconnection element 740A. Interconnection element 740A also includes 30 spacers 731A and 732A to separate, in this example, body 745A of interconnection element 740A from underlying interconnection element 740B. In the manner where interconnection elements 740A and 740B are formed simultaneously, spacer 733B of interconnection element 740A 35 and body 745A of interconnection element 740B may be

patterned and formed simultaneously. It is to be appreciated that, according to this method, spacer 733B will be formed through the same multiple pattern masking, seeding, deposition, and planarization steps as body 745A.

5 Thus, spacer 733B will be a composite of seed material and conductive material.

Spacers 732A and 732B may be patterned in the same masking material layer (e.g., a masking material layer patterned after seeding an area over body 745A and an area 10 corresponding to subsequently formed body 745B). Spacers 732A and 732B are optional and can be reduced in size to provide, in one aspect, clearance as the interconnection elements are deflected. To the extent they are present, spacers 732A and 732B may be formed of the same conductive 15 material deposition. Spacer 731A is patterned and formed at the same time as body 745B of interconnection element 740B. According to this method, spacer 731A will be formed through the same multiple pattern masking, seeding, deposition, and planarization steps as body 745B. Thus, spacer 731A will be 20 a composite of seed material and conductive material.

In this embodiment, using photolithographic techniques, the length of the rectangularly-shaped body 745A and 745B of adjacent interconnection elements 740A and 740B, respectively, may be varied. Adjacent interconnection 25 elements 740A and 740B are fabricated along the same axis (e.g., x-axis) at their posts (post 730A and 730B) and along a second axis (e.g., y-axis) at their tip structures (tip structures 760A and 760B). As noted, body 745A of interconnection element 740A is patterned directly over post 30 730B of interconnection element 740B. Accordingly, in an x-direction, the posts (730A and 730B) are axially aligned. At the tip structure of each interconnection element (760A and 760B), interconnection elements 740A and 740B are axially aligned along a y-axis. Thus, **Figures 21(a)** and 35 **21(b)** show adjacent interconnection elements that have a

greater pitch between their tip structures than their posts. Such a configuration is suitable, for example, to generate an electronic component with a plurality of interconnection elements for probing a second electronic component having 5 its contact pads or terminals arranged along its periphery and having an ultra-fine pitch. It is to be appreciated that the actual pitch between posts and tip structures according to this embodiment can vary to accommodate the pitch of contact pads or terminals on an electronic 10 component to be contacted.

Figure 21(c) and **Figure 21(d)** describe a second orientation of adjacent interconnection elements according to an embodiment of the invention. Interconnection element 840A includes post 830A, body 845A, and tip structure 860A. 15 Interconnection element 840A also includes spacers 831A and 832A formed over post 830A. Spacers 831A and 832A, in this example, separate body 845A from underlying interconnection element 840B. In one embodiment, the spacer is designed so the springs remain separate throughout a range of 20 simultaneous displacement. Interconnection element 840B includes post 830B, body 845B, and tip structure 860B. Interconnection element 840B further includes spacers 832B and 833B that align tip structure 860B with tip structure 860A of interconnection element 840A along a z-axis (similar 25 height). In **Figures 21(c)** and **21(d)**, interconnection elements 840A and 840B are axially aligned at both their posts and their tip structures.

Using photolithographic techniques, the rectangularly-shaped body of each of the adjacent interconnection elements 30 in **Figures 21(c)** and **21(d)** is fabricated to approximately the same length and the resulting interconnection element is offset by the distance between the posts along the same axis. Such a configuration is suitable, for example, to generate an electronic component with a plurality of 35 interconnection elements for probing a second electronic

component having its contact pads or terminals arranged in an ultra-fine pitch row along a center line thereof. Again, it is to be appreciated that the actual pitch between posts and tip structures according to this embodiment can vary to 5 accommodate the pitch of contact pads or terminals of an electronic component to be contacted.

Figure 21(e) and Figure 21(f) illustrate still further arrangements using similar overlaying patterning techniques for forming interconnection elements as described with 10 reference to Figures 21(a)-21(d). Figure 21(e) shows a plurality of interconnection elements formed according to the techniques described hereinabove, arranged on an electronic component (not shown). Interconnection elements 900A, 900B, 900C, and 900D are arranged so that their corresponding tip structures 960A, 960B, 960C, and 960D, 15 respectively, are aligned in a y-direction while posts 930A, 930B, 930C, and 930D are staggered in an x-direction.

Figure 21(f) shows a second configuration wherein a plurality of interconnection elements 980A, 980B, 980C, and 20 980D are arranged on an electronic component (not shown) so that their corresponding tip structures 985A, 985B, 985C, and 985D, respectively are staggered in an x-y direction as are their corresponding posts 990A, 990B, 990C, and 990D, 25 respectively. In this example, respective posts are larger (have a greater xy profile) than the tip structures in this embodiment.

The methods of forming interconnection elements described above using lithographic techniques including multiple masking and planarization steps should not be 30 interpreted as limiting the scope of the invention. It is to be appreciated, that there are other ways of forming interconnection elements to accommodate, for example, dense contact pad or terminal arrays of electronic component device geometries. The lithographic formation including 35 planarization steps described above permit the consistent

formation of interconnection elements, including cantilever spring interconnection elements, having similar size and mechanical (e.g., compliance) properties. It is to be appreciated, however, that there may be other ways of 5 forming interconnection elements, including multiple leaf portion interconnection elements that are suitable for the applications contemplated by the invention.

D. Exemplary Body Portions of Spring Interconnect

10 Structures

The above description of forming interconnection elements of the invention is related generally to the formation of cantilever spring interconnection elements having a generally rectangular body with multiple leaf 15 portions. It is to be appreciated, that the invention is not limited to interconnection elements having generally rectangular bodies. **Figures 22(a)-23(b)** show various representative, useful configurations for leaf portions of the body of an interconnection element formed, for example, 20 on sacrificial substrate 110. It is to be appreciated that there may be various other configurations suitable for particular applications for the interconnection elements of the invention. **Figures 22(a)-23(b)** are to be viewed as representative of these various configurations. Like 25 reference numerals from the structure formed in **Figures 7-17(e)** are used to indicate like components and/or materials where appropriate. It is also to be appreciated that, certain properties of an interconnection element adopting leaf portions having one or more of these alternative 30 configurations, will differ from the rectangular beam structure described above. For example, in calculating the maximum stress under load of the tapered structures illustrated in **Figure 22(a)** through **Figure 22(g)**, the width of the leaf portion should be considered.

Figure 22(a)-22(g) show top planar views of various configurations of a leaf portion of an interconnection element formed on substrate 110 in an xy plane. **Figure 22(a)** shows, for example, first body material 155a 5 configured to have a taper in the y-direction ("y-taper") as the material laterally extends (in an x-direction) from an area over the surface of, for example, second tip material 140. This configuration more evenly distributes the stress on the interconnection element by reducing the size of the 10 extremity of the leaf portion (e.g., the cantilever body) of the interconnection element. In **Figure 22(a)**, a laterally extending portion of first body material 155a is depicted with substantially linear edges. It is to be appreciated that the edges need not be substantially linear but may be 15 curved such as, for example, in a concave manner. **Figure 22(b)** shows laterally extending first body material 155b with substantially convex edges. The patterning of the masking material layer, such as first masking material layer 135, dictates the shape of the leaf portion.

20 **Figure 22(c)** shows a third configuration of a leaf portion of an interconnection element in accordance with a first embodiment of the invention. In this configuration, first body material 155c extends laterally (in an x-direction) and transversely (in a y-direction) from, for 25 example, second tip material 140 to form a curved leaf portion. **Figures 22(d) and 22(e)** show a fourth and a fifth configuration, respectively, where a leaf portion 155d and 155e, respectively, extend laterally and transversely. The laterally and transversely extending leaf portions may be 30 desirous, for example, when fabricating interconnection elements to particularly minimize the pitch between adjacent interconnection elements. **Figure 22(f)** shows a sixth configuration of a leaf portion wherein first body material 155f partially encircles second tip material 140.

35 **Figure 22(g)** shows a seventh configuration of a leaf portion

having an "S" shape in an xy plane. Again, the patterning of the masking material layer will dictate the shape of leaf portion of first body material 155g.

Figure 23(a) and **Figure 23(b)** show eighth and ninth 5 configurations, respectively, of a leaf portion of the interconnection element in accordance with an embodiment of the invention in an xz plane. **Figure 23(a)** shows first body material 155g having a planar upper surface and a concave lower surface. **Figure 23(b)** shows first body material 155h 10 having a planar superior surface and a linearly increasing inferior surface toward the extremity to form a beveled leaf portion. First body materials 155g and 155h can be formed in this manner in a number of ways, including varying the light source to shape the underlying and adjacent 15 photoresist that forms the masking material and electroplating in the presence of a resistive layer mask to distribute the electroplated material where desired.

The above description relates primarily to 20 interconnection elements having a body of cantilever leaf portions of similar dimension. It is to be appreciated that other configurations for the leaf portions are contemplated. The following figures are representative of the various 25 configurations contemplated by the invention. Each of the different configurations may be formed using the formation techniques described above with reference to **Figures 7-17(e)** with variations in one or more of the masking layer patterning, the body layer depositions, and the planarization steps.

Figure 24(a) and **Figure 24(b)** illustrate an embodiment 30 of an interconnection element having a body of leaf portions of various dimensions. In **Figure 24(a)**, interconnection element 1800 includes post 1810, body 1805, and tip structure 1815. Body 1805 includes four leaf portions 1801, 1802, 1803, and 1804. In this embodiment, the length and 35 the thickness of each leaf portion is varied. Thus, the

length of leaf portion 1801, "l₁," is shorter than the length of second leaf portion 1802, "l₂," which is shorter than the length of leaf portion 1803, "l₃," which is shorter than the length of leaf portion 1804, "l₄." The thickness of first
5 leaf portion 1801, "t₁," is similarly less than the thickness of second leaf portion 1802, "t₂," which has a material stress less than the maximum stress for a desired deflection distance, and is less than the thickness of third leaf portion 1803, "t₃," which is less than the thickness of
10 fourth leaf portion 1804, "t₄." **Figure 24(b)** shows interconnection element 1800 subjected to a force at tip structure 815 and illustrates the compliance of body 1805. An opposite configuration (i.e., shorter is thicker) is also contemplated for the situation where a similar spring
15 constant is desired among the leaf portions.

Figure 25(a) and **Figure 25(b)** show another alternative configuration for the interconnection element of the invention. In **Figure 25(a)**, interconnection element 1820 includes post 1822, tip structure 1823, and body 1825. Body
20 1825 includes four leaf portions 1821a, 1821b, 1821c, and 1821d of similar length each having a proximal and a distal end. Tip structure 1823 is coupled at the distal end of superiorly-located leaf portion 1821a. Post 1822 is coupled at the distal end of inferiorly-located leaf portion 1821d.
25 Supports 1824 coupled the adjacent leaf portions staggers between either the proximal end or the distal end of adjacent leaf portions. **Figure 25(b)** shows the interconnection element of **Figure 25(a)** with a force applied at tip structure 1823. The deflection of interconnection
30 element 1820 will generally not result in significant wiping of a contact pad or terminal.

Figure 26(a) and **Figure 26(b)** show yet another configuration for the interconnection element of the invention. In **Figure 26(a)**, interconnection element 1830 includes post 1832, tip structure 1833, and body 1835. Body
35

1835 includes three leaf portions 1831a, 1831b, and 1831c separated by supports 1834. In this configuration, tip structure 1833 is aligned with post 1832. The individual length of leaf portion 1831b is greater than either leaf portion 1831a or leaf portion 1831b. **Figure 26(b)** shows the interconnection element of **Figure 26(a)** with a force applied at tip structure 1833. The deflection of interconnection element 1830 will generally not result in significant wiping of a contact pad or terminal.

10 **Figure 27(a)** and **Figure 27(b)** show another embodiment of the interconnection element of the invention. **Figure 27(a)** shows interconnection element 1830 including post 1832, tip structure 1833, and body 1835. Body 1835 includes, in this case, two leaf portions. Each leaf portion is coupled to the adjacent leaf portion by supports 1834 and 1836 at a proximal end and at a distal end, respectively. The thickness of the superiorly-located leaf portion is greater than the thickness of the inferiorly-located leaf portion ($t_1 > t_2$). **Figure 27(b)** shows the structure of **Figure 27(a)** after subjecting the interconnection element to a force at tip structure 1833. **Figure 27(b)** shows that the inferiorly-located leaf portion of body 1835 buckles at point 1837 in response to the force applied at tip structure 1833. In this embodiment, the buckling is facilitated by the inferiorly-located leaf portion having a thickness less than the other leaf portion of body 1835. The buckling action may permit a reduction in the number of leaf portions necessary to achieve a desired deflection for a unit force. With this configuration, the wiping of the interconnection element against a contact pad or terminal in response to a force applied to the tip structure of interconnection element 1830 may be less than a cantilever configuration.

30 **Figure 28(a)** and **Figure 28(b)** show still another configuration for an interconnection element of the

invention. In **Figure 28(a)**, interconnection element 1840 includes post 1842, tip structure 1843, and body 1835. Body 1835 includes, in this case, three leaf portions 1846, 1847 and 1848. The superior and inferior surfaces of the leaf 5 portions may be a rectangular beam, including squares, with or without an opening therethrough. Adjacent leaf portions are separated by supports 1849. Supports 1849 are arranged in staggered fashion between adjacent leaf portions.

Figure 28(b) shows interconnection element 1840 with a force 10 applied at tip structure 1843. **Figure 28(b)** shows that the staggeredly-coupled leaf portions bow in opposite directions resulting in no wiping of the tip structure of the interconnection element against a contact pad or terminal.

Figures 29(a)-29(d) illustrate a further embodiment of 15 an interconnection element according to the invention.

Figure 29(a) shows a planar side view, **Figure 29(b)** a second planar side view, and **Figure 29(c)** shows a perspective top view of interconnection element 1850 having post 1852, tip structure 1853, and body 1855. In this embodiment, body 20 1855 includes four leaf portions 1856, 1857, 1858, and 1859 that are each cylindrical leaf portions having, with the exception of leaf portion 1856, an opening therethrough. The cylindrically-shaped leaf portions are coupled to one another through staggered supports 1854. It is to be 25 appreciated that the individual masking material layers may be modified to pattern cylindrical leaf portions as well as staggered supports or coupling. **Figure 29(d)** shows interconnection element 1850 having a force applied at tip structure 1853. **Figure 29(d)** schematically illustrates the 30 deformation of the leaf portions in response to a force applied at tip structure 1853 of body 1855 resulting in no wiping against a contact pad or terminal. Unlike interconnection elements having a plurality of cantilever leaf portions, there generally is no "travel-to-contact" 35 component whereby a displaced leaf portion travels a

distance to contact an adjacent leaf portion. Instead, an interconnection element of a plurality of cylindrical leaf portions behaves like a coil spring in that the leaf portions will continuously deform until the leaf portions 5 strike one another at a maximum deflection.

It is to be appreciated that a cylindrical or other leaf portion may or may not have an opening therethrough. In the situation where an opening is desired, the opening may or may not be circular. **Figure 30** shows leaf portion 10 1855 with a "clover-leaf" opening therethrough.

In general, the behavior of interconnection elements having stacked cylindrical leaf portions is different than the behavior of interconnection elements having layered cantilever leaf portions described above. Each cylindrical 15 leaf portion has a spring constant, k , and a deflection to reach maximum stress. The spring constant of the stacked cylindrical interconnection element is determined by the spring constant of an individual leaf portion ($k=k_{leaf}$) and the maximum deflection is determined by the deflection 20 distance of the total number of individual leaf portions: $\sigma_{max}=n \cdot \delta_{leaf}$, where n is the number of leaf portions. This differs, for example, from a stacked rectangular leaf portion like that of **Figure 3** (e.g., cantilever) interconnection element where the spring constant is 25 determined by the number of leaf portions ($k=n \cdot k_{leaf}$) and the maximum stress by the deflection distance of a leaf portion: $\sigma_{max}=\delta_{leaf}$.

Figure 31 illustrates still a further embodiment, where leaf portion 1870 of a body of interconnection element is 30 "H"-shaped with supports 1875 patterned at diagonals from one another. Such a pattern will tend to stress the material by working the middle portion of the "H"-shape in a torsional manner, in response to a load or force applied to the interconnection element. The reduction in stress will

permit a reduction in the number of leaf portions necessary for a desired deflection. **Figure 32** shows leaf portion 1880 having a rectangular configuration with an opening therethrough and support portions 1885 at diagonals. It is 5 to be appreciated that there are many other configurations in addition to the ones described above. Accordingly, the examples of interconnection elements and leaf portions described should be regarded in an exemplary rather than a restrictive sense.

10

E. Alternative Applications of Spring Interconnect Structures

In addition to the uses of the interconnection element of the invention as an interconnection element between two 15 electronic components, **Figures 33(a)-33(c)** show an embodiment where adjacent interconnection elements form a switch, e.g., a micro-switch, or a detector. **Figure 33(a)** shows a side view of adjacent interconnection elements 1905 and 1915. **Figure 33(b)** is a top perspective view of 20 interconnection elements 1905 and 1915. **Figure 33(c)** is a top view of interconnection elements 1905 and 1915.

Interconnection element 1905 includes post 1925 coupled to contact pad or terminal 1930 on electronic component 1900. Interconnection element 1905 also includes spring 25 1910 of a plurality (e.g., three) of leaf portions coupled to post 1925. The inferior leaf portion includes laterally extending tab portion 1950.

Interconnection element 1915 includes post 1930 coupled to contact pad or terminal 1940 on electronic component 30 1900. Interconnection element 1915 also includes body 1920 of, in this example, a single beam, coupled to post 1930.

Interconnection element 1905 and interconnection element 1915 may be formed according to techniques described above, for example, with regard to the formation of 35 interconnection elements according to **Figures 21(a)-21(d)**

and the accompanying text. Modifications regarding masking material openings and body (e.g., conductive) material deposition are accommodated to account for the alignment of the interconnection elements on electronic component 1900, 5 for tab portion 1950 of interconnection element 1905, and for the differences in body portions of the respective interconnection elements. Such modifications will be understood by those of ordinary skill in the art based on the teachings discussed above and are therefore not 10 presented herein.

Interconnection element 1905 and interconnection element 1915 have been illustrated and described without a tip structure. The embodiment described with reference to **Figures 33(a)-33(c)**, as with the other embodiments of 15 interconnection elements described herein, does not require a tip structure to function. The tip structure in other embodiments defined herein offers one contact point for the interconnection element. It is to be appreciated that this contact point need not be established by the interconnection 20 element, but can be established by an external source such as an electronic component or other substrate or structure contacting the interconnection element. For example, a contact point may be in the form of a traditional pad, a post, a pointed post, or other structure.

25 Referring to **Figures 33(a)-33(c)**, tab portion 1950 laterally extends from body 1910. Tab portion 1950 is separated from a superior surface of body 1920 of interconnection element 1915 by a distance, *lc*.

When a force, *F*, is applied to the superior surface of 30 body 1910, body 1910 is deflected toward the surface of electronic component 1900. Initially body portion 1910a is deflected. Body portion 1910a contacts body portion 1910b and deflects body portion 1910b toward electronic component 1900. Further deflection causes body portion 1910b to

contact body portion 1910c and deflect body portion 1910c toward electronic component 1900.

Tab portion 1950 extends from body portion 1910c and is adapted to contact the superior surface of body 1920 upon 5 sufficient deflection of body portion 1910c. The contacting of tab portion 1950 with a superior surface of body 1920 acts, in one sense, as a switch to, for example, close a circuit between the interconnection elements.

Alternatively, the electrical interconnection between 10 adjacent bodies 1910 and 1920 may be used to detect a capacitance between two electrodes. The capacitance can be correlated to a distance.

In one case, body 1920 may be fairly rigid and the deflection of tab portion 1950 onto body 1920 does not cause 15 body 1920 to significantly deflect toward the surface of substrate 1900. This is shown in the embodiment illustrated in **Figures 33(a)-33(c)** wherein body 1920 of interconnection element 1915 is more robust, particularly in the z-direction, than the leaf portions of body 1910 of 20 interconnection element 1905. The deflection of body 1910 toward the surface of substrate 1900 may be limited by, for example, a travel stop. Alternatively, body 1920 of interconnection element 1915 may deflect toward the surface of substrate 1900 in response to a force such as a force 25 applied by tab portion 1950 of interconnection element 1905. In such case, body 1920 of interconnection element 1915 may be comprised of a plurality of leaf portions. Finally, body 1920 may itself include a tab portion to, upon deflection, contact another interconnection element or a terminal, for 30 example, to close a circuit. In this manner, a device such as a tiered-relay may be formed.

In the above embodiment, mechanical and electrical contact was established between two adjacent interconnection elements. It is to be appreciated that mechanical and 35 electrical contact may also be established in one

interconnection element so that the interconnection itself acts as a switch. One way this may be accomplished is forming an interconnection element similar to the interconnection elements described above with reference to 5 **Figures 7-17e** and the accompanying text and electrically isolating one or more leaf portions of the interconnection elements. The application of a force to the body of the interconnection element will cause the isolated leaf portion(s) to contact other leaf portions and electrical 10 contact.

F. Alternative Fabrication Techniques of a Multi-Leaf or Multi-Tier Spring Interconnection Element

15 **Figures 34-52** illustrate a second fabrication technique of forming a multiple leaf portion spring interconnection structure. As the starting point for this embodiment, a structure similar to the structure shown in **Figure 10** is presented. **Figure 34** shows structure 2110 that is, for 20 example, a sacrificial substrate such as a semiconductor substrate. Substrate 2110 has a pyramidal-shaped depression formed therein as an outline for a portion of a tip structure to be formed. Overlying the surface of substrate 2110 is release layer 2125 of, for example, a 25 metal such as aluminum deposited to a thickness of approximately 5,000 angstroms using conventional deposition techniques. Overlying release layer 2125 on the surface of substrate 2110 is seed layer 2130. Seed layer 2130 is, for example, copper, palladium, or titanium-tungsten that 30 establishes an appropriate potential for an electrolytic process. Overlying seed layer 2130 is first masking material layer 2135. First masking material layer 2135 is, for example, a photopolymer (e.g., a negative photoresist) introduced onto the surface of substrate 2110 to a thickness 35 of the desired height of a tip structure of an

interconnection element taking into consideration the possibility of planarizing a portion of first masking material 2135 with tip structure material. Approximately 1-4 mils (25-100 μm) is a useful height range. First masking material layer 2135 is patterned to have an opening over the pyramidal-shaped depression in substrate 2110. Alternatively, first conductive material layer mask 2150 may be introduced as a plurality of traces, each trace corresponding to an area over substrate 2110 as well as the tip structure formed in substrate 2110 where a body of an interconnection element is to be formed to serve, in one manner, as an electroform whereupon the body can be fabricated.

Figure 34 also shows tip structure material introduced onto substrate 2110. Similar to the tip structure material described above with reference to **Figure 9** and **Figure 10** and the accompanying text, the tip structure material includes first tip material 2137 of, for example, palladium, gold, rhodium and their alloys, including, but not limited to, alloys of nickel and cobalt introduced to a thickness of about 1 to 5 μm or more -- even tens of microns or more. Suitable introduction techniques include, but are not limited to, electroplating, chemical vapor deposition, sputter deposition, and electroless plating. The tip structure also includes second tip material 2140 of, for example, an alloy of nickel and cobalt introduced to a height approximating the height of first masking material layer 2135.

Figure 35 shows structure 2000 after the removal of first masking material layer 2135. In embodiment, wherein first masking material layer is a photoresist, first masking material layer 2135 may be removed by an etch, reactive ion etching, laser ablation, or wet etching.

Figure 36 shows structure 2000 after the introduction of first conductive material layer mask 2150. First

conductive material layer mask 2150 is, for example, a metal such as copper introduced by an electrolytic process. First conductive material layer mask 2150 is conformally introduced over the surface of substrate 2110. First 5 conductive material layer mask 2150 may be introduced by way of a blanket deposition over substrate 2110. Alternatively, first conductive material layer mask 2150 may be introduced as multiple, non-contiguous regions or traces, each region corresponding to an area over substrate 2110 as well as the 10 tip structure formed in substrate 2110 where a body of an interconnection element is to be formed to serve, in one manner, as an electroform wherupon the body can be fabricated.

Figure 37 shows structure 2000 after a planarization 15 procedure such as a chemical-mechanical polish to planarize first conductive material layer mask 2150 and the tip structure. A planarization procedure establishes, in one aspect, the height of the tip structure.

Figure 38 shows structure 2000 after the introduction 20 of second masking material layer 2160 serving as a pattern for a body portion, such as a leaf portion, of an interconnection element. Second masking material layer 2160 is, for example, a photopolymer such as a negative photoresist. Figure 38 also shows the introduction of first 25 body material 2155a over surface of substrate 2110. In one embodiment, first body material 2155a is a conductive material introduced by an electroplating process such as an electroplate alloy of nickel-cobalt. First body material 2155a is introduced to a thickness approximating the 30 thickness of second masking material layer 2160. It is to be appreciated that the amount deposited and the thickness of first body material 2155a will depend, in part, on the desired thickness of the particular leaf portion of the body of the interconnection element being formed.

Figure 39 shows structure 2000 after the removal of second masking material layer 2160. In the embodiment where second masking material layer 2160 is a photoresist, the material may be removed by etch, laser ablation, or wet etching.

After the removal of second masking material layer 2160, **Figure 40** shows the introduction over the surface of substrate 2110 of second conductive material layer mask 2170. In one embodiment, second conductive material layer mask 2170 is a material similar to first conductive material layer mask 2150, such as copper introduced through an electrolytic process.

As shown in **Figure 41**, after the introduction of second conductive material layer 2170 over substrate 2110, first body material 2155 and second conductive material layer mask 2170 are planarized by way of, for example, a mechanical polish or a chemical-mechanical polish to form a leaf portion of an interconnection element on substrate 2110. In one aspect, planarization of first body material 2155a and second conductive material layer mask 2170 establish the final thickness of the leaf portion of the body (i.e., control the final thickness of first body material 2155s).

Figure 42 shows structure 2000 after the introduction of third conductive material layer mask 2180. In one embodiment, third conductive material layer mask 2180 is similar to first conductive material layer mask 2150 and second conductive material layer mask 2170 and is, for example, electroplated copper. In this embodiment, third conductive material layer mask 2180 is introduced to a thickness on the order of 0.1 to 5 μm . Third conductive material layer mask 2180 defines, in one aspect, a gap or opening between adjacent leaf portions of the interconnection element body.

Figure 43 shows structure 2000 after the patterning of third masking material layer 2190 over the surface of

substrate 2110 and to have an opening to third conductive material layer mask 2180 at a point desired to be utilized as a support area between adjacent leaf portion of the interconnect element. In **Figure 43**, third masking material 5 layer 2190 is patterned at opening 2195 to expose an area portion of third conductive material layer mask 2180 at a proximal end of the structure relative to leaf portion of material 2155a.

Figure 44 shows structure 2000 after the removal of the 10 exposed portion of third conductive material layer mask 2180. In the example where third conductive material layer mask 2180 is copper, a wet chemical etching procedure may be used to remove the exposed copper.

After the removal of the exposed portion of third 15 conductive material layer mask 2180, **Figure 45** shows structure 2000 after patterning third masking material layer 2190 a second time to have an opening corresponding with an opening for a desired second leaf portion of the body of an interconnect element. **Figure 46** shows the structure 20 introduction of second body portion material 2155b over the surface of substrate 2110 in the patterned opening of third masking material layer 2190. In one example, second body material 2155b is similar to first body material 2155a (e.g., Ni-Co) and is introduced by an electrolytic process. 25 As illustrated in **Figure 46**, the leaf portion formed by first body material 2155a and second body material 2155b are separated by third conductive material layer mask 2180 with the exception of a support portion.

Figure 47 shows structure 2000 after the removal of 30 third masking material layer 2190. In the embodiment of third masking material layer 2190 is a photoresist, suitable removal methods are discussed above.

Figure 48 shows structure 2000 after the introduction of fourth conductive material layer mask 2210. In one 35 embodiment, fourth conductive material layer mask 2210 is

similar to the previously introduced conductive material layer mask (e.g., copper) and is introduced by an electrolytic process.

5 **Figure 49** shows structure 2000 after the planarization of fourth conductive material layer mask 2210 and second body material 2155b. The planarization step defines, in one aspect, the thickness of second body material 2155b.

10 **Figure 50** shows structure 2000 after the repetition of the above operations to form three additional leaf portions and post 2200 utilizing alternative operations of pattern mask, conductive material layer mask, and planarization.

15 **Figure 51** shows structures to leave a free-standing interconnection element. In the embodiment where the various conductive layer mask are formed of copper, a wet chemical etch process, selected for copper may be utilized.

20 **Figure 51** shows structure 2000 including interconnect element having a tip structure coupled to a body portion of five leaf portions of first body material 2155a, second body material 2155b, third body material 2155c, fourth body material 2155d, and fifth body material 2155e. Coupled at a proximal end of leaf portion defined by fifth body material 2155e, is post 2200. Following the removal of the conductive material layer masks, seed layer 2130 may be removed such as by an etching step as known in the art to 25 expose release layer 2125. **Figure 52** shows the structure after the removal of the exposed release layer 2125. At this point, the free-standing interconnection element may be transferred to, for example, an electronic component similar to the transfer described with respect to **Figure 17e** and the 30 accompanying text.

In the above embodiment, an interconnection element is formed on a sacrificial substrate and then transferred to an electronic component. It is to be appreciated, that the techniques described in this embodiment of forming an 35 interconnection element on a sacrificial substrate is again

representative of one technique of forming the interconnection element of the invention. A second technique wherein the interconnection element is formed directly on an electronic component is also contemplated.

5 Reference is made to Patent Application No. 09/205,022, filed December 2, 1998, entitled "*Lithographic Contact Elements*," and Patent Application No. 09/205,023, filed December 2, 1998, entitled "*Lithographic Contact Elements*," claimed by the assignee of the invention described herein 10 which describe such a technique and are incorporated herein by reference.

Still another embodiment of fabricating the interconnection element of the invention may be accomplished utilizing a process described by Adam L. Cohen, in an 15 article entitled "*3-D Micromachining by Electrochemical Fabrication*," in the publication "*Micromachine Devices*," Vol. 4, No. 3, March 1999 at pages 6-7. The article describes a selective electroplating process utilizing through-mask plating. Specifically, a conformable insulator 20 is patterned directly on an anode and pressed against a substrate to establish the electroplating mask. After electroplating, the mask is separated from the substrate. In the instant invention, one use of the process described by the referenced article is to substitute the conformable 25 insulated mask for the masking material layers and pattern the primary interconnection element components.

Various embodiments of the interconnection elements disclosed above are particularly suitable for making electrical connection with, for example, an electronic 30 component having "fine-pitch" contact pads or terminals, for example, spacing of at least less than 5 mils (130 μm), such as 2.5 mils (65 μm). Applications to larger scale devices, including devices with contact pitches of about 50-100 mil (1.3-2.6 mm) and even larger are feasible as well.

In the preceding detailed description, the invention is described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the 5 broader spirit and scope of the invention as set forth in the claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

CLAIMS

What is claimed is:

1. An interconnection element comprising:
a first resilient element with a first contact region and a second contact region and a first securing region; and
a second resilient element, with a third contact region
5 and a second securing region, coupled to the first resilient element through respective securing regions and positioned such that upon sufficient displacement of the first contact region toward the second resilient element, the second contact region will contact the third contact region,
10 wherein the interconnection element is of a size suitable for connecting two electronic devices.
2. The interconnection element of claim 1, further comprising an attachment element, wherein the second resilient element comprises a third securing region and is coupled to the first resilient element at the second securing region and the attachment element at the third securing region.
5
3. The interconnection element of claim 1, comprising a plurality of resilient elements coupled through respective securing regions and selected such that collectively the interconnection element has a spring constant determined by
5 a sum of the spring constants of the plurality of resilient elements.
4. The interconnection element of claim 1, comprising a plurality of resilient elements coupled through respective securing regions, each one of the plurality of resilient elements oriented to interact with an adjacent one of the
5 plurality of resilient elements upon sufficient displacement.

5. The interconnection element of claim 4, wherein the plurality of resilient elements are of similar form and oriented in an aligned relation, each resilient element adapted to sequentially engage an adjacent resilient element
5 upon sufficient displacement such that the engaged resilient element reinforces the displaced resilient element.
6. The interconnection element of claim 1, wherein each of the resilient elements are of similar form.
7. The interconnection element of claim 6, wherein each of the resilient elements comprises a rectangular beam, having a length, a width, and a thickness.
8. The interconnection element of claim 7, wherein one of the length and the thickness of the first resilient element is different than the respective length and thickness of the second resilient element.
9. The interconnection element of claim 7, wherein the length and the thickness of the first resilient element is similar to the respective length and thickness of the second resilient element.
10. The interconnection element of claim 7, wherein the thickness of at least one of the first resilient element and the second resilient element is less than one mil (25 microns).
11. The interconnection element of claim 7, wherein at least one of the first resilient element and the second resilient element has a length of about 12 mils (300 microns) and a width of about 3 mils (75 microns).

12. The interconnection element of claim 1, wherein the interconnection element is of a size suitable for directly contacting a semiconductor device.

13. The interconnection element of claim 1, wherein the interconnection element is of a size suitable for directly contacting a chip-scale device.

14. The interconnection element of claim 1, further comprising a substrate, wherein the second resilient element comprises a third securing region and is coupled to the first resilient element at the second securing region and 5 the substrate at the third securing region.

15. The interconnection element of claim 14, wherein the interconnection element is electrically coupled to the substrate.

16. The interconnection element of claim 15, wherein the substrate is one of a semiconductor, a ceramic, and a polymeric substrate.

17. The interconnection element of claim 1, further comprising a substrate, wherein the interconnection element is coupled to the substrate together with a plurality of other interconnection elements and the interconnection 5 element is of a size suitable for contacting a contact pad of a semiconductor device arranged with a plurality of other contact pads at a pitch less than about 10 mils.

18. The interconnection element of claim 1, wherein the contact of the second contact region with the third contact region comprises at least one of a mechanical and an electrical contact.

19. An interconnection element comprising:
 - a first resilient element with a first contact region and a second contact region and a first securing region; and
 - a second resilient element, with a third contact region
- 5 and a second securing region, coupled to the first resilient element through respective securing regions and positioned such that upon sufficient displacement of the first contact region toward the second resilient element, the second contact region will contact the third contact region,
- 10 wherein the interconnection element is capable of connecting two electronic devices.

20. The interconnection element of claim 19, wherein upon further displacement, the first contact region will displace the second resilient element.
21. The interconnection element of claim 19, further comprising an attachment element, wherein the second resilient element comprises a third securing region and is coupled to the first resilient element at the second securing region and the attachment element at the third securing region.
- 5
22. The interconnection element of claim 19, comprising a plurality of resilient elements coupled through respective securing regions and selected such that collectively the interconnection element has a spring constant determined by the sum of the spring constants of the plurality of resilient elements.
- 5
23. The interconnection element of claim 19, comprising a plurality of resilient elements coupled through respective securing regions, each one of the plurality of resilient elements oriented to interact with an adjacent one of the

5 plurality of resilient elements upon sufficient displacement.

24. The interconnection element of claim 23, wherein the plurality of resilient elements are of similar form and oriented in an aligned relation, each resilient element adapted to sequentially engage an adjacent resilient element
5 upon sufficient displacement such that the engaged resilient element reinforces the displaced resilient element.

25. The interconnection element of claim 19, wherein each of the resilient elements are of similar form.

26. The interconnection element of claim 25, wherein each of the resilient elements comprises a rectangular beam, having a length, a width, and a thickness.

27. The interconnection element of claim 26, wherein one of the length and the thickness of the first resilient element is different than the respective length and thickness of the second resilient element.

28. The interconnection element of claim 26, wherein the length and the thickness of the first resilient element is similar to the respective length and thickness of the second resilient element.

29. The interconnection element of claim 26, wherein the thickness of at least one of the first resilient element and the second resilient element is less than one mil (25 microns).

30. The interconnection element of claim 26, wherein at least one of the first resilient element and the second resilient element has a length of about 12 mils and a width of about 3 mils (75 microns).

31. The interconnection element of claim 19, wherein the interconnection element is of a size suitable for directly contacting a semiconductor device.
32. The interconnection element of claim 19, wherein the interconnection element is of a size suitable for directly contacting a chip-scale device.
33. The interconnection element of claim 19, further comprising a substrate, wherein the second resilient element comprises a third securing region and is coupled to the first resilient element at the second securing region and 5 the substrate at the third securing region.
34. The interconnection element of claim 33, wherein the interconnection element is electrically coupled to the substrate.
35. The interconnection element of claim 34, wherein the substrate is one of a semiconductor, a ceramic, and an organic substrate.
36. The interconnection element of claim 19, further comprising a substrate wherein the interconnection element is coupled to the substrate together with a plurality of other interconnection elements and the interconnection 5 element is of a size suitable for contacting a contact pad of a semiconductor device arranged with a plurality of other contact pads at a pitch less than about 10 mils.
37. An interconnection element comprising:
 - a first resilient element with a first contact region and a second contact region and a first securing region; and
 - 5 a second resilient element, with a third contact region and a second securing region, coupled to the first resilient

element through respective securing regions and positioned such that upon sufficient displacement of the first contact region toward the second resilient element, the second contact region will contact the third contact region,

10 wherein at least one of the first resilient element and the second resilient element is formed by lithographic patterning of material and deposition in a defined shape and of a size suitable for connecting two electronic devices.

38. The interconnection element of claim 37, further comprising an attachment element, wherein the second resilient element comprises a third securing region and is coupled to the first resilient element at the second securing region and the attachment element at the third securing region.

39. The interconnection element of claim 37, comprising a plurality of resilient elements coupled through respective securing regions and selected such that collectively the interconnection element has a spring constant determined by 5 the sum of the spring constants of the plurality of resilient elements.

40. The interconnection element of claim 37, comprising a plurality of resilient elements coupled through respective securing regions, each one of the plurality of resilient elements oriented to interact with an adjacent one of the 5 plurality of resilient elements upon sufficient displacement.

41. The interconnection element of claim 40, wherein the plurality of resilient elements are of similar form and oriented in an aligned relation, each resilient element adapted to sequentially engage an adjacent resilient element

5 upon sufficient displacement such that the engaged resilient element reinforces the displaced resilient element.

42. The interconnection element of claim 37, wherein each of the resilient elements are of similar form.

43. The interconnection element of claim 42, wherein each of the resilient elements comprises a rectangular beam, having a length, a width, and a thickness.

44. The interconnection element of claim 43, wherein one of the length and the thickness of the first resilient element is different than the respective length and thickness of the second resilient element.

45. The interconnection element of claim 43, wherein the length and the thickness of the first resilient element is similar to the respective length and thickness of the second resilient element.

46. The interconnection element of claim 43, wherein the thickness of at least one of the first resilient element and the second resilient element is less than one mil (25 microns).

47. The interconnection element of claim 43, wherein at least one of the first resilient element and the second resilient element has a length of 12 mils (300 microns) and a width of 3 mils (75 microns).

48. The interconnection element of claim 37, wherein the interconnection element is of a size suitable for directly contacting a semiconductor device.

49. The interconnection element of claim 37, wherein the interconnection element is of a size suitable for directly contacting a chip-scale device.

50. The interconnection element of claim 37, further comprising a substrate, wherein the second resilient element comprises a third securing region and is coupled to the first resilient element at the second securing region and 5 the substrate at the third securing region.

51. The interconnection element of claim 50, wherein the interconnection element is electrically coupled to the substrate.

52. The interconnection element of claim 51, wherein the substrate is one of a semiconductor, a ceramic, and an organic substrate.

53. The interconnection element of claim 37, further comprising a substrate, wherein the interconnection element is coupled to the substrate together with a plurality of other interconnection elements and the interconnection 5 element is of a size suitable for contacting a contact pad of a semiconductor device arranged with a plurality of other contact pads at a pitch less than about 10 mils (250 microns).

54. An interconnection element comprising:
a body comprising a plurality of resilient elements, a first resilient element defining a first surface of the body and a surface of a second resilient element defining a 5 second surface of the body; and
an attachment element coupled to one of the first surface and the second surface of the body and of a size

suitable for coupling to a contact region of an electronic device, and

10 wherein one of the plurality of resilient elements is deformed it engages another one of the plurality of resilient elements which reinforces the engaging resilient element.

55. The interconnection element of claim 54, wherein the plurality of resilient elements are coupled through respective securing regions and selected such that collectively the resilient elements define a predetermined 5 spring constant.

56. The interconnection element of claim 54, wherein the plurality of resilient elements are of similar form and oriented in an aligned relation.

57. The interconnection element of claim 56, wherein the resilient elements comprise a rectangular beam, having a length, a width, and a thickness.

58. The interconnection element of claim 57, wherein one of the length and the thickness of the first resilient element is different than the respective length and thickness of the second resilient element.

59. The interconnection element of claim 57, wherein the thickness of at least one of the first resilient element and the second resilient element is less than one mil (25 microns).

60. The interconnection element of claim 57, wherein at least one of the plurality of resilient elements has a length of about 12 mils (300 microns) and a width of about 3 mils (75 microns).

61. The interconnection element of claim 56, wherein the first resilient element comprises a portion of cylinder.

62. The interconnection element of claim 54, wherein the interconnection element is electrically coupled to a substrate.

63. The interconnection element of claim 62, wherein the substrate is one of a semiconductor, a ceramic, and a polymeric substrate.

64. The interconnection element of claim 54, further comprising a substrate, wherein the interconnection element is coupled to the substrate together with a plurality of other interconnection elements and the interconnection element is of a size suitable for contacting a contact pad of a semiconductor device arranged with a plurality of other contact pads at a pitch less than 10 mils (250 microns).

5 65. The interconnection element of claim 54, wherein the interconnection element is of a size suitable for directly contacting a semiconductor device.

66. The interconnection element of claim 54, wherein the interconnection element is of a size suitable for directly contacting a chip-scale device.

67. An electronic assembly comprising:

a plurality of interconnection elements coupled to a substrate and configured in a relation to contact an array of contact pads of an electronic device, each

5 interconnection element comprising:

a first resilient element with a first contact region and a second contact region and a first securing region; and

10 a second resilient element with a third contact region and a second securing region coupled to the first resilient element through respective securing regions and positioned such that upon sufficient displacement of the first contact region towards the second resilient element, the second contact region will contact the third contact region.

68. The electronic assembly of claim 67, wherein the plurality of interconnection elements comprise a plurality of resilient elements coupled through respective securing regions and selected such that collectively each of the 5 interconnection elements has a predetermined spring constant determined by the sum of the spring constants of the plurality of the resilient elements.

69. The electronic assembly of claim 68, wherein the resilient elements of each of the plurality of interconnection elements are of similar form and oriented in an aligned relation.

70. The electronic assembly of claim 69, wherein the resilient elements comprise a rectangular beam, having a length, a width, and a thickness.

71. The electronic assembly of claim 67, wherein the substrate is one of a semiconductor, a ceramic, and an organic substrate.

72. The electronic assembly of claim 67, wherein the interconnection elements are of a size suitable for contacting a contact pad of a semiconductor device arranged with a plurality of other contact pads at a pitch less than 5 about 10 mils (250 microns).

73. The electronic assembly of claim 67, wherein the interconnection elements are of a size suitable for contacting an array of contact pads on a semiconductor device.

74. The electronic assembly of claim 67, wherein the interconnection elements are of a size suitable for contacting an array of contact pads of a chip-scale device.

75. The electronic assembly of claim 67, wherein a first interconnection element and a second interconnection element are arranged on the substrate such that upon sufficient displacement of the first contact region of the first 5 interconnection element, the first interconnection element contacts the second interconnection element.

76. The electronic assembly of claim 75, wherein the contact of the first interconnection element and the second interconnection element is one of an electrical and a mechanical contact.

77. An interconnection element comprising:
a first resilient element having a contact point;
a second resilient element; and
an attachment element that defines a space between the 5 first resilient element and the second resilient element,
wherein a first projection through the attachment element is parallel to a second projection between the first resilient element and the second resilient element and to a third projection between the first resilient element and the 10 second resilient element and a vector between the first projection and the second projection has a direction different than a vector in the same plane between the first projection and the third projection, and

wherein upon the application of sufficient force on the
15 contact point, each of the first resilient element and the
second resilient element will deform.

78. The interconnection element of claim 77, wherein each
of the resilient elements are of similar form.

79. The interconnection element of claim 78, wherein each
of the resilient elements comprises a portion of a circle.

80. The interconnection element of claim 77, wherein at
least one of the resilient elements has an opening
therethrough.

81. The interconnection element of claim 77, wherein at
least one of the resilient elements comprises one of a
clover shape, a rectangular shape, and an H-shape.

82. The interconnection element of claim 77, wherein the
interconnection element is of a size suitable for directly
contacting a semiconductor device.

83. The interconnection element of claim 77, wherein the
interconnection element is of a size suitable for directly
contacting a chip-scale device.

84. A method of fabricating a chip-level interconnection
element comprising:

- (a) providing a base substrate material;
- (b) applying a masking material over the base
5 substrate material;
- (c) patterning an opening in the masking material;
- (d) forming a resilient element in the opening;
- (e) forming a securing element coupled to the
resilient element; and

10 (f) using the resulting product as a base substrate and repeating (b) through (f) as a sequential series one or more times.

85. The method of claim 84, further comprising, after the resulting product is formed and (b) through (f) repeated one or more times, removing the masking material.

86. The method of claim 84, wherein the resilient element and the securing element in a first sequential series are formed in a single operation.

87. The method of claim 84, wherein the resilient element and the securing element are formed in separate operations in a first sequential series, the forming of the securing element comprising patterning an opening in a masking 5 material over a surface of a resilient element and introducing securing element material.

88. The method of claim 84, wherein the forming of the resilient element and the securing element in a first sequential series further comprises depositing a structure material into the opening and overfilling the opening with 5 the structure material and removing a portion of the structure material.

89. The method of claim 88, wherein the removing of the portion of the structure material comprises one of mechanical and chemical mechanical polishing.

90. The method of claim 88, wherein the removing of the portion of the structure material comprises planarizing the structure material and the masking material.

91. The method of claim 84, wherein the forming of the resilient element and the securing element comprises plating a structure material into the opening.

92. The method of claim 91, wherein applying of masking material comprises electroplating.

93. The method of claim 91, further comprising, prior to plating a structure material, seeding the opening.

94. The method of claim 84, further comprising forming a portion of a first one of the securing elements and a portion of a second one of the securing elements in an aligned relation.

95. The method of claim 94, wherein the substantially all of the first one of the securing elements and the second one of the securing elements are in an aligned relation.

96. The method of claim 84, further comprising forming a first one of the resilient elements and a second one of the securing elements in substantially the same form.

97. The method of claim 84, further comprising forming a portion of a first one of the resilient elements and a portion of a second one of the resilient elements in an aligned relation.

98. The method of claim 84, wherein the thickness of a first one of the securing regions is defined by the thickness of the corresponding masking material.

99. The method of claim 84, wherein a first resilient element defines a superior surface of the interconnection element and a second resilient element defines an inferior

surface of the interconnection element, the method further comprising forming a tip feature coupled to the superior surface.

100. The method of claim 99, wherein the forming of the tip feature precedes the forming of the resilient element.

101. The method of claim 84, wherein the base substrate material is a first base substrate material and further comprising:

removing the interconnection element from the first base substrate material; and
5 affixing the interconnection element to a second base substrate material.

102. The method of claim 84, further comprising:

introducing an isolating material over a portion of a surface of the resilient element that is the base substrate; and

5 after the resulting product is formed and the steps repeated one or more times, removing the masking material and retaining the isolating material between adjacent resilient elements.

103. The method of claim 84, wherein patterning an opening in the masking material proceeds applying the masking material over the substrate.

104. A method of fabricating a chip-level interconnection element comprising:

patterning a plurality of masking layers over an attachment element coupled to a substrate; and

5 introducing structure material to create a form defined by the plurality of masking layers, the introduced structure material defining a body coupled to the attachment element

having a plurality of resilient elements coupled by securing elements, a portion of successive resilient elements
10 separated by a masking layer of the plurality of masking layers.

105. The method of claim 104, further comprising:

removing the masking layers to form a free-standing interconnection element extending from the surface of the substrate.

106. The method of claim 104, wherein the resilient elements and the securing elements are formed in a single operation of the introduction of structure material.

107. The method of claim 104, wherein the resilient element and the securing element are formed in separate operations of the introduction of structure material, the forming of the securing element comprising patterning an opening in a
5 masking material over a surface of a resilient element and introducing a structure material.

108. The method of claim 104, wherein the patterning of masking material comprises defining openings for the introduction of structure material, and the forming of the resilient element and the securing element further comprises
5 depositing structure material into the openings, overfilling the openings with structure material, and removing a portion of structure material.

109. The method of claim 108, wherein the removing of the portion of structure material comprises one of mechanical and chemical mechanical polishing.

110. The method of claim 109, wherein the removing of the portion of the structure material comprises planarizing

structure material and the corresponding patterned masking material layer.

111. The method of claim 104, wherein the patterning of masking material comprises defining openings for the introduction of structure material, and the forming of the resilient element and the securing element comprises plating 5 a structure material into the openings.

112. The method of claim 111, wherein the patterning of masking material comprises electroplating.

113. The method of claim 111, further comprising, prior to plating a structure material, seeding the opening.

114. A method comprising:

 patterning a plurality of interconnection elements on the surface of a first substrate, each interconnection element having an attachment element coupled to the first 5 electronic component, a body comprising a plurality of resilient elements, the attachment element coupled to a first surface of the body, a second surface of the body having a contact region capable of contacting a terminal of a chip-scale device; and

10 bringing the first substrate together with a second substrate so that the contact regions of the interconnection elements are in contact with the second substrate.

115. The method of claim 114, wherein the first substrate is an electronic component and the second substrate is an electronic component and the bringing the first substrate together with the second substrate comprises bringing the 5 contact regions of the interconnection elements in electrical contact with corresponding terminals on the second substrate.

Fig. 1

Fig. 2

Fig. 3**Fig. 4**

Fig. 5**Fig. 6**

Fig. 7**Fig. 8****Fig. 9****Fig. 10**

Fig. 13a

Fig. 11

Fig. 12a

Fig. 12b

Fig. 13c

Fig. 13d

Fig. 15a

Fig. 14a

Fig. 14b

Fig. 14c

Fig. 15b

Fig. 15c

Fig. 15d**Fig. 15e**

Fig. 16b

Fig. 17b

Fig. 17c

Fig. 17d

Fig. 17e

Fig. 18**Fig. 19**

Fig. 20a

Fig. 20b

Fig. 21a**Fig. 21b**

Fig. 21c**Fig. 21d**

Fig. 21e**Fig. 21f**

Fig. 22a**Fig. 22b****Fig. 22d****Fig. 22c****Fig. 22f****Fig. 22e****Fig. 23a****Fig. 22g****Fig. 23b**

Fig. 24a

Fig. 24b

Fig. 25a

Fig. 25b

Fig. 26a

Fig. 26b

Fig. 27a

Fig. 27b

Fig. 28a

Fig. 28b

Fig. 29a

Fig. 29b

Fig. 29c

Fig. 29d

Fig. 30**Fig. 31****Fig. 32**

Fig. 33a

Fig. 33b

Fig. 33c

Fig. 34**Fig. 35****Fig. 36****Fig. 37**

Fig. 38**Fig. 39****Fig. 40****Fig. 41**

Fig. 42**Fig. 43****Fig. 44****Fig. 45**

Fig. 46**Fig. 47****Fig. 48****Fig. 49**

Fig. 50**Fig. 51****Fig. 52**

INTERNATIONAL SEARCH REPORT

Intern. Application No
PCT/US 00/35448A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H01L23/48 G01R1/073 H01H59/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H01L G01R H01H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 52224 A (FORMFACTOR INC ;KHANDROS IGOR Y (US); PEDERSEN DAVID V (US)) 19 November 1998 (1998-11-19) figures 2A-20 ---	1-115
X	GB 1 446 196 A (PLESSEY CO LTD) 18 August 1976 (1976-08-18) column 1, line 43 -column 3, line 13; figure 1 ---	1-115
X	DE 197 36 674 C (SIEMENS AG) 26 November 1998 (1998-11-26) column 3, line 66 -column 5, line 8; figures 1-3 ---	1-115
		-/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the international search report

24 April 2001

04/05/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Edmeades, M

INTERNATIONAL SEARCH REPORT

Intern	Application No
PCT/US 00/35448	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 018, no. 223 (P-1729), 21 April 1994 (1994-04-21) -& JP 06 018555 A (MEISEI DENSHI KOGYO KK), 25 January 1994 (1994-01-25) abstract ---	1-115
A	PATENT ABSTRACTS OF JAPAN vol. 016, no. 558 (E-1294), 27 November 1992 (1992-11-27) -& JP 04 214650 A (NEC KYUSHU LTD), 5 August 1992 (1992-08-05) abstract ---	1-115
A	PATENT ABSTRACTS OF JAPAN vol. 009, no. 148 (P-366), 22 June 1985 (1985-06-22) -& JP 60 025073 A (NIPPON DENKI KK), 7 February 1985 (1985-02-07) abstract -----	1-115

INTERNATIONAL SEARCH REPORT

Information on patent family members

Interr	Application No
	PCT/US 00/35448

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9852224	A	19-11-1998	AU 3136697 A AU 7491598 A EP 0839323 A EP 0985231 A JP 11504725 T JP 2000512437 T US 6043563 A		05-12-1997 08-12-1998 06-05-1998 15-03-2000 27-04-1999 19-09-2000 28-03-2000
GB 1446196	A	18-08-1976	NONE		
DE 19736674	C	26-11-1998	WO 9910907 A EP 1021815 A TW 385465 B US 6191671 B		04-03-1999 26-07-2000 21-03-2000 20-02-2001
JP 06018555	A	25-01-1994	NONE		
JP 04214650	A	05-08-1992	NONE		
JP 60025073	A	07-02-1985	NONE		