Package 'admtools'

October 4, 2024

```
Title Estimate and Manipulate Age-Depth Models
Version 0.4.0
Description Estimate age-depth models from stratigraphic and sedimentological data,
      and transform data
      between the time and stratigraphic domain.
URL https://github.com/MindTheGap-ERC/admtools,
      https://mindthegap-erc.github.io/admtools/
BugReports https://github.com/MindTheGap-ERC/admtools/issues
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.2
Depends R (>= 2.10),
Imports ape
LazyData true
Suggests knitr, rmarkdown, spelling, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
Language en-US
NeedsCompilation no
Author Niklas Hohmann [aut, cre] (<a href="https://orcid.org/0000-0003-1559-1838">https://orcid.org/0000-0003-1559-1838</a>)
Maintainer Niklas Hohmann < N.H. Hohmann@uu.nl>
Repository CRAN
Date/Publication 2024-10-03 23:01:00 UTC
```

2 Contents

Contents

add_adm_to_multiadm	3
anchor	4
CarboCATLite_data	5
condensation	6
condensation_fun	6
flux_const	7
flux_linear	7
flux_quad	8
get_completeness	9
get_data_from_eTimeOpt	9
	10
£ = =	11
$\mathcal{E} = -$	11
get_hiat_no	
$\mathcal{C} = -1$	13
get_L_tp	
6 = =	14
£ =	14
6 = =	15
6 = =	16
$\mathcal{B}^{-}=1$	16
6 = =	17
-	17
-	18
-	18
-	19
	19
<u> </u>	20
= 0	21
max_time	
mean_adm	
median_adm	
merge_adm_to_multiadm	
merge_multiadm	
min_height	
min_time	24
plot.adm	25
r ··· ··· ··· ··· · · · · · · · · · · ·	26
plot.sac	26
1	27
1	27
plot_condensation	28
±	28
plot_sed_rate_l	29
plot_sed_rate_t	30
quantile adm	30

sac_to_adm	I
sedrate_to_multiadm	1
sed_rate_from_matrix	2
sed_rate_gen_from_bounds	3
sed_rate_1	4
sed_rate_1_fun	5
sed_rate_t	5
sed_rate_t_fun	6
set_L_unit	6
set_T_unit	7
split_multiadm	7
strat_cont_gen_from_tracer	8
strat_cont_to_multiadm	9
strat_to_time	0
strat_to_time.list	1
strat_to_time.numeric	1
strat_to_time.phylo	2
summary.adm	3
summary.multiadm	3
summary.sac	4
timetree	4
time_to_strat	5
time_to_strat.list	5
time_to_strat.numeric	6
time_to_strat.phylo	7
tp_height_det	8
tp_time_det	8
tp_time_floating_scale	9
tp_time_norm	9
tp_to_adm	0
tp_to_sac	1
T_axis_lab	2
5.	4

add_adm_to_multiadm

add adm object ot multiadm object

Description

add adm object ot multiadm object

```
add_adm_to_multiadm(x, ...)
```

4 anchor

Arguments

x multiadm object

... adm objects to be added to x

Value

a multiadm object

anchor

anchor age-depth model

Description

anchors a deterministic age-depth model (adm object) at a tie point that is associated with uncertainty.

Usage

```
anchor(x, index = "last", t_anchor = NULL, n = 1000L)
```

Arguments

x age-depth model

index "last" or "first", or an integer (marked by L, e.g. 2L), specifying at which tie

point the age-depth model will be anchored. If i is passed as integer, the i-th tie

point is anchored.

t_anchor time at which the adm is anchored. must be a function that takes no arguments

and returns the timing of the tie point. see example or vignettes for details

n integer, number of samples drawn from the tie point

Value

a collection of age-depth models (a multiadm object)

Examples

```
t_anchor = function() rnorm(1) # normally distributed uncertainty
x = tp_to_adm(t = c(1,2, 3), h = c(2,3, 4)) # simple age-depth model
m = anchor(x, index = "last", t_anchor = t_anchor, n = 100) # anchor age-depth model
plot(m)
m = anchor(x, index = 2L, t_anchor = t_anchor, n = 100)
plot(m)
```

CarboCATLite_data 5

CarboCATLite_data

Example data from CarboCATLite

Description

Data exported from CarboCATLite model run, equivalent to scenario A from Hohmann et al. (2024). See therein for details.

Usage

CarboCATLite_data

Format

A list with the following fields:

- time_myr: time points in Myr from the model run
- height_2_km_offshore_m: sediment thickness accumulated 2 km from shore
- height_4_km_offshore_m: sediment thickness accumulated 4 km from shore
- height_6_km_offshore_m: sediment thickness accumulated 6 km from shore
- height_8_km_offshore_m: sediment thickness accumulated 8 km from shore
- height_10_km_offshore_m: sediment thickness accumulated 10 km from shore
- height_12_km_offshore_m: sediment thickness accumulated 12 km from shore
- eustatic_SL_m: eustatic sea level used for the model run.

Source

Elapsed model time, sea level, and accumulated sediment thickness taken from the scenario A model run here

References

- Burgess, Peter. "CarboCAT: A cellular automata model of heterogeneous carbonate strata." Computers & geosciences 53 (2013): 129-140. doi:10.1016/j.cageo.2011.08.026
- Burgess, Peter. (2023). CarboCATLite (v1.0.1). Zenodo. doi:10.5281/zenodo.8402578
- Hohmann, Niklas; Koelewijn, Joël R.; Burgess, Peter; Jarochowska, Emilia. 2024. "Identification of the mode of evolution in incomplete carbonate successions." BMC Ecology and Evolution 24, 113. doi:10.1186/s12862024022872.
- Hohmann, Niklas, Koelewijn, Joël R.; Burgess, Peter; Jarochowska, Emilia. 2023. "Identification of the Mode of Evolution in Incomplete Carbonate Successions Supporting Data."
 Open Science Framework. doi:10.17605/OSF.IO/ZBPWA, published under the CC-BY 4.0 license.

6 condensation_fun

condensation

condensation with height

Description

returns (instantaneous) condensation (time preserved per length increment) for a section

Usage

```
condensation(x, h, mode = "rcll", ...)
```

Arguments

x adm or multiadm object

h numeric vector, positions where condensation is determined mode string, handed over to *sed_rate_t*, see ?sed_rate_t for details ... parameters passed to *get_time*, see ?get_time for details

Value

if x is an adm object, a numeric vector of condensations. if x is a multiadm object, a list of condensations

condensation_fun

condensation function

Description

returns a function that determines instantaneous condensation (time preserved per strat. increment)

Usage

```
condensation_fun(x, mode = "rcll", ...)
```

Arguments

x adm object

mode string, handed over to *sed_rate_t*, see ?sed_rate_t for details
... parameters passed to *get_time*, see ?get_time for details

Value

a function

flux_const 7

flux_const

constant deterministic tracer flux

Description

For usage with strat_cont_to_multiadm; defines constant tracer flux in the time domain

Usage

```
flux_const()
```

Value

a function factory that takes no arguments

See Also

```
flux_linear(), flux_quad(), strat_cont_gen_from_tracer()
```

Examples

```
## Not run:
# see this vignette for an example
vignette("adm_from_trace_cont")
## End(Not run)
```

flux_linear

linear deterministic tracer flux

Description

For usage with $strat_cont_to_multiadm$: defines linear tracer flux in the time domain Tracer flux is the linear function passing through the points (x0, y0) and (x1, y1)

Usage

```
flux_linear(x0 = 0, y0 = 1, x1 = 1, y1 = 2)
```

Arguments

x0	numeric, abscissa
y0	numeric, ordinate
x1	numeric, abscissa
y1	numeric, ordinate

flux_quad

Value

a function factory that takes no arguments. Upon each evaluation, it returns a linear function passing through the points (x0, y0) and (x1, y1)

See Also

```
flux_const(), flux_quad(), strat_cont_gen_from_tracer()
```

flux_quad

quadratic deterministic tracer flux

Description

For usage with $strat_cont_to_multiadm$: defines quadratic tracer flux in the time domain defined by the function $f(x) = ax^2 + bx + c$

Usage

```
flux_quad(a = 1, b = 1, c = 1)
```

Arguments

a numericb numericc numeric

Value

a function factory that takes no arguments. Upon each evaluation, it returns the quadratic function $f(x) = ax^2 + bx + c$

See Also

```
flux_linear(), flux_const(), strat_cont_gen_from_tracer()
```

get_completeness 9

get_completeness

Determine stratigraphic (in)completeness

Description

Determine stratigraphic (in)completeness

Usage

```
get_completeness(x)
get_incompleteness(x)
```

Arguments

Х

an adm object

Details

Stratigraphic (in)completeness is expressed as a proportion, i.e. a number between 0 and 1

Value

Number between 0 and 1, the stratigraphic (in)completeness

Examples

```
my_adm = tp_to_adm(t = 1:4, h = c(1,2,2,4))
get_completeness(my_adm)
get_incompleteness(my_adm)
```

```
get_data_from_eTimeOpt
```

extract data from eTimeOpt results

Description

Extracts data from eTimeOpt. The type of data extracted depends on the output setting used for eTimeOpt. If you want ot extract specific data, adjust the output parameter in eTimeOpt to return the correct data (e.g. 2 for r^2 envelope). See eTimeOpt documentation for details on this. Then call this function on the return variable.

```
get_data_from_eTimeOpt(res, index = 1)
```

10 get_height

Arguments

res results generated by eTimeOpt

index which output should be extracted? See description for details

Value

a list with three entries "sed_rate": numeric vector, sedimentation rates "height": numeric vector, heights "results": matrix with length(height) rows and length(sed_rate) columns. results of eTimeOpt

See Also

sed_rate_from_matrix() to use define sedimentation rates based on this functions outputs, sedrate_to_multiadm()
to estimate age-depth models from the outputs.

get_height

determine stratigraphic height deposited at specific time

Description

Takes an adm object and a vector of times, and returns the stratigraphic heights deposited at said times

Usage

```
get_height(x, t, destructive = TRUE, out_dom_val_h = "default", ...)
```

Arguments

x an adm or multiadm object

t vector of times

destructive logical - should destructive intervals be considered? See Details

out_dom_val_h "strat_limits", "default", or a vector with one or two entries. What value is

assigned to times that are not covered by the age-depth model?

... parameters handed over to is_destructive

Details

if destructive is true, NA is returned for times that coincide with destructive intervals. This is achieved by calling *is_destructive* with arguments passed by

out_dom_val specified the return value for times that are not covered by the age-depth model. For "default", NA is returned. For "strat_limits", the lowest resp. highest stratigraphic position is returned. For a vector of length one, this value is assigned to both sides. For a vector or length 2 or more, the first and second entries are assigned on the left (resp. right) side

get_hiat_duration 11

Value

a vector with same length as t, containing the strat heights deposited

get_hiat_duration

extract hiatus duration

Description

returns a vector of hiatus durations

Usage

```
get_hiat_duration(x)
```

Arguments

Х

an adm object

Value

a vector with one element per hiatus: the duration of the hiatus

See Also

- get_hiat_pos() to determine only stratigraphic position of hiatuses
- get_hiat_no() to determine number of hiatuses in an adm
- get_hiat_list() to get hiatus position, stat & end time

get_hiat_list

extract hiatus info

Description

returns a list with hiatus position and timing (start & end)

Usage

```
get_hiat_list(x)
```

Arguments

Χ

an adm object

12 get_hiat_no

Value

a list with one element per hiatus. each element is a named vector with the following entries:

- "height" : stratigraphic position of hiatus
- "start": time when hiatus begins
- "end": time when hiatus ends

See Also

- get_hiat_pos() to determine only stratigraphic position of hiatuses
- get_hiat_no() to determine number of hiatuses in an adm
- get_hiat_duration() to determine duration of hiatuses

get_hiat_no

get no. of hiatuses

Description

Determines the number of hiatuses in an age-depth model

Usage

```
get_hiat_no(x)
```

Arguments

Х

an adm object

Value

An integer, no. of hiatuses in the age-depth model

See Also

- get_hiat_pos() to determine stratigraphic positions of hiatuses
- get_hiat_list() to determine position and timing of hiatuses
- get_hiat_duration() to determine duration of hiatuses

Examples

```
my_adm = tp_to_adm(t = 1:4, h = c(1,2,2,3)) # one hiatus get_hiat_no(my_adm)
```

get_hiat_pos 13

get_hiat_pos

get hiatus positions

Description

Determines stratigraphic position of hiatuses

Usage

```
get_hiat_pos(x)
```

Arguments

Х

an adm object

Value

numeric vector with stratigraphic positions of hiatuses

See Also

- get_hiat_list() to get hiatus positions and durations
- get_hiat_no() to determine number of hiatuses
- get_hiat_duration() to determine duration of hiatuses

Examples

```
my_adm = tp_to_adm(t = 1:4, h = c(1,2,2,3)) # one hiatus at height 2 get_hiat_pos(my_adm)
```

get_L_tp

get height/length tie point

Description

extracts the height/length time points from an age-depth model or sediment accumulation curve

Usage

```
get_L_tp(x, ...)
```

Arguments

x age-depth model (adm/multiadm) or sediment accumulation curve (sac)

... other options, currently not used

14 get_time

Value

numeric vector of the time/length tie points

See Also

```
get_T_tp() to extract time tie points
```

get_L_unit

extract length unit

Description

extracts the length unit from adm or multiadm object

Usage

```
get_L_unit(x, ...)
```

Arguments

x adm or multiadm object

... other parameters

Value

character - the length unit of x

See Also

```
get_T_unit() set_L_unit()
```

get_time

Determine times based on age-depth model

Description

Takes an age-depth model and vector of stratigraphic positions to determine the corresponding time of formation

```
get_time(x, h, hiat_mode = "start",
bdry_pts_hiat = "destructive", out_dom_val_t = "default")
```

get_total_duration 15

Arguments

X	an adm or multiadm object
h	vector of stratigraphic positions
hiat_mode	"start", "end", or "destroy". If a stratigraphic position coincides with a hiatus, what should be returned?
bdry_pts_hiat	"consistent" or "destructive". How are hiatuses at the start/end of the adm treated?
out_dom_val_t	:"default", "time_limits", or a numeric value. What value is returned for heights

not covered by the age-depth model?

Details

If a stratigraphic position coincides with a hiatus, should the start time or the end time of the hiatus be returned? Using "destroy" returns NA If the adm starts/ends with a hiatus, should the time returned be consistent with *hiat_mode*, or should it be NA?

Value

numeric vector. Times of deposition of the provided heights in h

Description

Total duration covered

Usage

```
get_total_duration(x, ...)
```

Arguments

x age-depth model (adm/multiadm) or sediment accumulation curve (sac)
... other options, currently unused

Value

numeric, total duration covered by the age-depth models/sediment accumulation curve

See Also

```
min_time() and max_time() to extract the first/last tie point in time
```

 get_T_tp

```
get_total_thickness get total thickness
```

Description

for sediment accumulation curves, returns the difference between the highest and lowest point of the curve. For age-depth models, returns the total thickness of sediment accumulated.

Usage

```
get_total_thickness(x, ...)
```

Arguments

x an age-depth model (adm/multiadm) or a sediment accumulation curve (sac) ... other options, currently unused

Value

numeric, total sediment thickness accumulated

See Also

max_height() and min_height() to extract the highest/lowest stratigraphic point

get_T_tp

extract time tie points

Description

Extracts the time tie points from an age-depth model or sediment accumulation curve

Usage

```
get_T_tp(x, ...)
```

Arguments

x age-depth model (adm/multiadm) or sediment accumulation curve (sac)

... other options, currently unused

Value

a vector, containing the time tie points

See Also

```
get_L_tp() to extract length/height tie points
```

get_T_unit 17

get_T_unit

extract Time unit

Description

extracts the Time unit from adm or multiadm object

Usage

```
get_T_unit(x, ...)
```

Arguments

x adm or multiadm object

other parameters

Value

character - the time unit of x

See Also

```
set_T_unit() get_L_unit()
```

is_adm

Is an adm object a valid age-depth model

Description

Constructors for adm objects such as tp_to_adm do not check whether the inputs define a valid age-depth mode, e.g. one where the law of superposition holds. This function performs these checks

Usage

```
is\_adm(x, quietly = TRUE)
```

Arguments

x an object

quietly logical. should descriptive warnings be shown?

Value

logical. Is the input a valid adm object?

is_multiadm

Examples

```
x = tp\_to\_adm(t = c(2,1), h = c(1,2)) # reversed order of time tie points is\_adm(x) # returns FALSE
```

is_destructive

Is deposition destructive?

Description

Determines whether specified time is destructive or not

Usage

```
is_destructive(x, t, mode = "rcll",
bdry_pts_hiat = "destructive", out_dom_mode = "default")
```

Arguments

x an adm or multiadm object

t vector of times

mode string, either "rcll", "lcrl", "open", or "closed"

bdry_pts_hiat string, "destructive" or "consistent". If the adm starts/ends with a hiatus, should

the start/end be removed, or treated consistently with mode?

out_dom_mode ""default", "destructive", or "conservative"

Value

logical vector of same length as t. Is deposition at time t destructive?

is_multiadm

is valid multiadm object?

Description

is valid multiadm object?

```
is_multiadm(x, quietly = TRUE)
```

is_sac 19

Arguments

x object to be testedquietly logical, should a descriptive warning be returned?

Value

Logical. Is the object a valid multiadm object?

is_sac

is valid sac objects

Description

checks if the object is a valid sac object

Usage

```
is_sac(x)
```

Arguments

Х

the object to check

Value

logical. Is x a valid sac object?

L_axis_lab

plot height axis label

Description

plot height axis label

```
L_axis_lab(
  label = "Height",
  unit = TRUE,
  sep = " ",
  brac = c("[", "]"),
  line = 2,
  outer = FALSE,
  at = NA,
  adj = NA,
```

20 make_legend

```
padj = NA,
cex = NA,
col = NA,
font = NA,
...
)
```

Arguments

label	Axis label
unit	Logical or character, should unit be plotted
sep	separator between label and unit
brac	brackets surrounding unit
line	parameter passed to mtext, see ?mtext for details
outer	parameter passed to mtext, see ?mtext for details
at	parameter passed to mtext, see ?mtext for details
adj	parameter passed to mtext, see ?mtext for details
padj	parameter passed to mtext, see ?mtext for details
cex	parameter passed to mtext, see ?mtext for details
col	parameter passed to mtext, see ?mtext for details
font	parameter passed to mtext, see ?mtext for details
	further graphical parameters passed to <i>mtext</i> , see ?mtext for details

Value

invisible NULL

See Also

```
plot.adm() for plotting of adms
```

make_legend plot legend

Description

plots a legend for the multiadm plot

Usage

```
make_legend()
```

Value

invisible NULL

max_height 21

max_height

get highest stratigraphic tie point

Description

get highest stratigraphic tie point

Usage

```
max_height(x)
```

Arguments

Х

age-depth model (adm) or sediment accumulation curve (sac)

Value

number, stratigraphic position of the highest stratigraphic tie point

See Also

```
min_height(), get_total_thickness()
```

max_time

last time tie point

Description

last time tie point

Usage

```
max_time(x)
```

Arguments

Х

age-depth model (adm) or sediment accumulation curve (sac)

Value

number, last time tie point of the age-depth model/sediment accumulation curve

See Also

```
min_time(), get_total_duration()
```

22 median_adm

 $mean_adm$

get mean ADM

Description

returns the mean adm of a multiadm object

Usage

```
mean_adm(x, h)
```

Arguments

x a multiadm object

h the heights at which to evaluate the adm

Value

an adm object

See Also

median_adm() and quantile_adm() for median and quantile adms, respectively

median_adm

get median ADM

Description

returns the median adm of a multiadm object

Usage

```
median_adm(x, h)
```

Arguments

x a multiadm object

h the heights at which to evaluate the adm

Value

an adm object

See Also

mean_adm() for the mean age-depth model, quantile_adm() for the more general implementation

merge_adm_to_multiadm combine multiple adm ojects into multiadm object

Description

combine multiple adm ojects into multiadm object

Usage

```
merge_adm_to_multiadm(...)
```

Arguments

... adm objects

Value

object of class multiadm

merge_multiadm

merge multiple multiadm objects

Description

merge multiple multiadm objects

Usage

```
merge_multiadm(...)
```

Arguments

... adm objects

Value

multiadm object

24 min_time

min_height

get lowest stratigraphic tie point

Description

get lowest stratigraphic tie point

Usage

```
min_height(x)
```

Arguments

Х

an age-depth model (adm) or sediment accumulation curve (sac)

Value

number, stratigraphic position of lowest tie point

See Also

```
get_total_thickness(), max_height()
```

min_time

first time tie point

Description

first time tie point

Usage

```
min_time(x)
```

Arguments

Χ

age-depth model (adm) or sediment accumulation curve (sac)

Value

number, timing of first tie point of the age-depth model/sediment accumulation curve

See Also

```
max_time(), get_total_duration()
```

plot.adm 25

plot.adm

plotting adm objects

Description

plotting adm objects

Usage

```
## S3 method for class 'adm'
plot(
    x,
    lwd_destr = 1,
    lwd_acc = 1,
    lty_destr = 3,
    lty_acc = 1,
    col_destr = "black",
    col_acc = "black",
    ...
)
```

Arguments

```
x an adm object
lwd_destr line width of hiatuses
lwd_acc line width of conservative intervals
lty_destr linetype of hiatuses
lty_acc line type of conservative intervals
col_destr color of erosive intervals
col_acc color of conservative intervals
... arguments passed to plot
```

See Also

L_axis_lab() and T_axis_lab() for plotting time and axis labels, the vignette on plotting available via browseVignettes(package = "admtools")

26 plot.sac

plot.multiadm

plot multiadm object

Description

plots the median age (red) and the 95 % envelope (blue) of a multiadm object

Usage

```
## S3 method for class 'multiadm' plot(x, ...)
```

Arguments

x multiadm object

... parameters passed to plot

Value

a plot of the multiadm object

Examples

```
## Not run:
# see
vignette("adm_from_trace_cont")
# and
vignette("adm_from_sedrate")
# for example plots.
## End(Not run)
```

plot.sac

plot sediment accumulation curve

Description

plot sediment accumulation curve

```
## S3 method for class 'sac' plot(x, ...)
```

plot.stratlist 27

Arguments

x object of class *sac*... further parameters (currently ignored)

Value

invisible NULL

plot.stratlist

plot strat list

Description

plots a stratlist, i.e. a list of values associated with stratigraphic positions (typically returned by time_to_strat). will plot the element with matching ord_name against stratigraphic positions.

Usage

```
## S3 method for class 'stratlist'
plot(x, orientation = "du", ord_name = "y", ...)
```

Arguments

x stratlist object
orientation character, either "du" (down-up) or "lr" (left-right). Orientation of plotting
ord_name name of the ordinate. Values plotted against time
... further arguments passed to plot

plot.timelist plot time lists

Description

plot time lists

Usage

```
## S3 method for class 'timelist' plot(x, ...)
```

Arguments

x a time list

... other options passed to plot

plot_erosive_intervals

plot_condensation

plot condensation in height

Description

plots condensation (time per stratigraphic increment) throughout the section

Usage

```
plot_condensation(x, h = "default", mode = "rcll", ...)
```

Arguments

```
    x an adm object
    h "default" or a numeric vector of height where the sed rate is evaluated
    mode string, handed over to sed_rate_t, see ?sed_rate_t for details
    ... parameters passed to get_time, see ?get_time for details
```

Value

invisible null

Description

mark erosive time intervals

```
plot_erosive_intervals(
  density = NULL,
  angle = 45,
  col = "azure3",
  border = NA,
  lty = 1,
  lwd = 1
)
```

plot_sed_rate_1 29

Arguments

density	parameter passed to rect, see	?rect for details
angle	parameter passed to rect, see	?rect for details
col	parameter passed to rect, see	?rect for details
border	parameter passed to rect, see	?rect for details
lty	parameter passed to rect, see	?rect for details
lwd	parameter passed to rect, see	?rect for details

Value

invisible NULL

Description

plot sed. rate in height

Usage

```
plot_sed_rate_l(x, h = "default", mode = "rcll", ...)
```

Arguments

x an adm object

h "default" or a numeric vector of height where the sed rate is evaluated

mode string, handed over to *sed_rate_t*, see ?sed_rate_t for details

... parameters passed to *get_time*, see ?get_time for details

Value

invisible null

30 quantile_adm

plot_sed_rate_t

plot sedimentation rate in time

Description

plot sedimentation rate in time

Usage

```
plot_sed_rate_t(x, mode = "rcll")
```

Arguments

x adm object

mode string, "rcll" or "lcrl". Should the sedimentation rate be Right Continuous with

Left Limits (rcll) or Left Continuous with Right Limits (lcrl)

Value

invisible NULL

quantile_adm

get quantile ADM

Description

returns the quantile adm of a multiadm object

Usage

```
quantile_adm(x, h, p)
```

Arguments

x a multiadm object

h the heights at which to evaluate the adm p percentile, as number between 0 and 1

Value

an adm object

See Also

```
median_adm() to extract the median adm, mean_adm() for the mean adm
```

sac_to_adm 31

sac_to_adm

turn sed. acc curve into adm

Description

turn sed. acc curve into adm

Usage

```
sac_to_adm(x)
```

Arguments

Χ

object of class sac

Value

object of class adm

See Also

tp_to_adm() for the generator of adm

sedrate_to_multiadm

Estimate age-depth model from sedimentation rates & tie points

Description

Combines information on tie points and sedimentation rates to estimate age-depth models and their associated uncertainty. For an example, see vignette("adm_from_sedrate").

```
sedrate_to_multiadm(
  h_tp,
  t_tp,
  sed_rate_gen,
  h,
  no_of_rep = 100L,
  subdivisions = 100L,
  stop.on.error = TRUE,
  T_unit = NULL,
  L_unit = NULL
)
```

32 sed_rate_from_matrix

Arguments

h_tp : function, returns stratigraphic positions of tie points

t_tp : function, returns times of tie points

sed_rate_gen : function, returns function describing sedimentation rate

h : numeric, heights where the adm is calculated

no_of_rep : integer, number of repetitions

subdivisions maximum no of subintervals used in numeric integration. passed to *integrate*,

see ?stats::integrate for details

stop.on.error logical passed to integrate, see ?stats::integrate for details

 T_unit time unit L_unit length unit

Value

object of class multiadm

Examples

```
## Not run:
# see this vignette for an example
vignette("adm_from_sedrate")
## End(Not run)
```

sed_rate_from_matrix make sed rate gen from matrix

Description

Construct a sedimentation rate generator (function factory) from a matrix, e.g. one returned from get_data_from_eTimeOpt. This generator can be passed on to sedrate_to_multiadm to estimate age-depth models from it. If mode is "deterministic", the generator evaluates the sedimentation rates at heights specified by height, if the mode is "poisson" it is evaluated at heights that are determined based on a poisson point process. At these heights, the value of the sedimentation rate is determined based on the (pseudo) pdf that is determined by the matrix values.

```
sed_rate_from_matrix(
  height,
  sedrate,
  matrix,
  mode = "deterministic",
  rate = 1,
```

```
expand_domain = TRUE,
  transform = identity
)
```

Arguments

height vector of heights

sedrate vector of sed. rates x values

matrix matrix of sed rate y values. Must have as many columns as length(height) and

as many rows as length(sedrate).

mode character, "deterministic" or "poisson". Determines at which stratigraphic heights

the sed rate is determined. If "deterministic" this will be the heights in height, if "poisson" the heights where the sed rate is determined follows a poisson point

process with rate specified by rate

rate numeric, rate of the Poisson point process determining frequency of sedimenta-

tion rate changes.

expand_domain should sedimentation rates be defined below/above the highest/lowest height in

the section? If TRUE, the sed rate values are the values at the closest interpolated

point, if FALSE it will be NA

transform a function, the identity function by default. How should the values of the

(pseudo)pdf defined by the entries of matrix be transformed? Using this function allows to (nonlinearly) rescale the values in matrix to put more emphasis on

higher/lower values

Value

a function factory for usage with sedrate_to_multiadm

See Also

sedrate_to_multiadm() for estimating sedimentation rates based on the outputs, get_data_from_eTimeOpt() for extracting data from the eTimeOpt function of the astrochron package.

```
sed_rate_gen_from_bounds
```

seg rate gen from upper/lower bounds

Description

seg rate gen from upper/lower bounds

```
sed_rate_gen_from_bounds(h_1, s_1, h_u, s_u, rate = 1)
```

sed_rate_1

Arguments

h_1	height values for lower bounds
s_1	sed rate values for lower bounds
h_u	height values for upper bounds
s_u	sed rate values for upper bounds
rate	rate of poisson point process

Value

a function factory for usage with sedrate_to_multiadm

See Also

sedrate_to_multiadm() for estimating age-depth models using the outputs, sed_rate_from_matrix()
for other means of defining sedimentation rates

sed_rate_l

sedimentation rate in stratigraphic height

Description

determines instantaneous sedimentation rate at a specified stratigraphic position

Usage

```
sed_rate_l(x, h, mode = "rcll", ...)
```

Arguments

x adm object

h numeric vector, stratigraphic positions

mode string, handed over to sed_rate_t, see ?sed_rate_t for details

... parameters passed to *get_time*, see ?get_time for details

Value

a vector of sed rates (if x is an adm object), or a list of sedimentation rates

sed_rate_1_fun 35

sed_rate_l_fun

sed rate in height function

Description

returns a function that determines sed. rates in height

Usage

```
sed_rate_l_fun(x, mode = "rcll", ...)
```

Arguments

x an adm object

mode string, handed over to *sed_rate_t*, see ?sed_rate_t for details
... parameters passed to *get_time*, see ?get_time for details

Value

a function

sed_rate_t

sedimentation rate in time domain

Description

infers the instantaneous sedimentation rate from adm objects

Usage

```
sed_rate_t(x, t, mode = "rcll")
```

Arguments

x adm or multiadm object

t vector of times at which sedimentation rates are determined

mode string, "rcll" or "lcrl". at non-differential points, is the sed rate left or right

continuous?

Value

for adm objects, a vector giving sed. accumulation rates at time t. For multiadm objects, a list with accumulation rates

set_L_unit

sed_rate_t_fun

sedimentation rate function

Description

returns a function that returns sedimentation rate

Usage

```
sed_rate_t_fun(x, mode = "rcll")
```

Arguments

x an adm object

mode string, "rcll" or "lcrl". Should the sedimentation rate be Right Continuous with

Left Limits (rcll) or Left Continuous with Right Limits (lcrl)

Value

a function

set_L_unit

set length units

Description

set length units for adm and multiadm objects

Usage

```
set_L_unit(x, L_unit, ...)
```

Arguments

x adm or multiadm object

L_unit time unit

... further parameters

Value

an adm or multiadm object with the L unit assigned

See Also

```
set_T_unit() get_L_unit()
```

set_T_unit 37

 set_T_unit

set time units

Description

set time units for adm and multiadm objects

Usage

```
set_T_unit(x, T_unit, ...)
```

Arguments

x adm or multiadm object

T_unit time unit

... further parameters

Value

an adm or multiadm object with the time unit assigned

See Also

```
set_L_unit() get_T_unit()
```

split_multiadm

split multiadm objects into adm

Description

split multiadm objects into adm

Usage

```
split_multiadm(x)
```

Arguments

Χ

a multiadm object

Value

list with objects of class adm

Description

Generates a function factory for usage with *strat_cont_to_multiadm* based on empirical tracer measurements in the section

Usage

```
strat_cont_gen_from_tracer(
  bin_borders,
  df,
  distribution = "normal",
  cap = TRUE,
  cap_val = 0
)
```

Arguments

bin_borders borders of sampling bins
df data frame with proxy records

distribution character, currently only "normal" implemented. Specifies the distribution of

proxies

cap logical. Should values below cap_valbe replaced?

cap_val numeric. If cap = TRUE, values below cap_valwill be replaced by cap_val

Value

```
a functional for usage with strat_cont_to_multiadm
```

See Also

```
flux_const(), flux_linear(), flux_quad() to define tracer fluxes
```

Examples

```
## Not run:
# see this vignette for a use case
vignette("adm_from_trace_cont")
## End(Not run)
```

strat_cont_to_multiadm 39

```
strat\_cont\_to\_multiadm
```

estimate age-depth model from tracer

Description

Estimates age-depth models by comparing observed tracer values in a section with assumptions on tracer flux in time. See vignette("adm_from_trace_cont") for a full example.

Usage

```
strat_cont_to_multiadm(
  h_tp,
  t_tp,
  strat_cont_gen,
  time_cont_gen,
  h,
  no_of_rep = 100L,
  subdivisions = 100L,
  stop.on.error = TRUE,
  T_unit = NULL,
  L_unit = NULL
)
```

Arguments

h_tp	function, returning tie point heights
t_tp	function, returning tie points times
strat_cont_gen	function, describing tracer data observed in the section
time_cont_gen	function, describing tracer changes in time
h	numeric vector, heights where the age depth model is described
no_of_rep	integer, number of age depth models generated
subdivisions	integer, max no. of subintervals used by integration procedure. passed to $integrate$, see ?stats::integrate for details
stop.on.error	logical passed to integrate, see ?stats::integrate for details
T_unit	NULL or character, time unit
L_unit	NULL or character, length unit

Value

Object of class multiadm

strat_to_time

Examples

```
## Not run:
# see this vignette for an example
vignette("adm_from_trace_cont")
## End(Not run)
```

strat_to_time

transform objects from strat. to time domain

Description

Takes an object and transforms it from the time domain into the stratigraphic domain using the provided age-depth model. Currently implemented for the "phylo", "list", and "numeric" class. Wraps around get_time.

Usage

```
strat_to_time(obj, x, ...)
```

Arguments

obj the object to be transformed
x age-depth model
... other parameters

Value

an object of the same type as obj

See Also

time_to_strat() to transform data from the time to the stratigraphic domain, strat_to_time.phylo(),
strat_to_time.numeric() and strat_to_time.list() for details on how to transform phylogenetic trees, vectors, and lists. See get_time() for the underlying procedure.

strat_to_time.list 41

```
strat_to_time.list transform list from height to time domain
```

Description

Lists are useful to keep data closely associated. This function transforms a list that contains observations associated with a stratigraphic position (recorded in the element with name "h") into a list where the observations are associated with time.

Usage

```
## S3 method for class 'list'
strat_to_time(obj, x, ...)
```

Arguments

obj	a list with one element named "h", which will be interpreted as stratigraphic positions
x	an adm object
	options passed to get_time

Value

a timelist (inherits from list). A list with one named element "t" instead of the element "h". This element contains the times of the stratigraphic positions in "h".

See Also

```
time_to_strat.list() for the transformation from time to height domain, get_time() for the
underlying procedure, time_to_strat() for the higher level function
```

Examples

```
# see vignette("admtools") for an example
```

strat_to_time.numeric transform numeric vectors from height to time domain

Description

This function transforms numeric vectors from the stratigraphic to the time domain Fundamentally a wrapper around get_time for consistent syntax

42 strat_to_time.phylo

Usage

```
## S3 method for class 'numeric'
strat_to_time(obj, x, ...)
```

Arguments

obj a numeric vector representing stratigraphic positions.

x an adm object

... options passed to get_time

Value

A numeric vector with times of deposition of the entries in obj

See Also

time_to_strat.numeric() for the transformation from time to height domain, get_time() for the underlying procedure, time_to_strat() for the higher level function, strat_to_time.list() and strat_to_time.phylo() for the transformation of lists and phylogenetic trees.

Examples

```
# see vignette("admtools") for an example
```

```
strat\_to\_time.phylo transform\ phylo\ object
```

Description

transform phylo object from the stratigraphic domain to the time domain

Usage

```
## S3 method for class 'phylo'
strat_to_time(obj, x, ...)
```

Arguments

obj the phylo object to be transformed x age-depth model

... parameters passed to get_time

Value

a phylo object, representation of the tree in the time domain

summary.adm 43

See Also

get_time() for the underlying procedure, strat_to_time() for the higher level function, and time_to_strat.phylo() for the transformation of phylo objects from the time to the strat domain.

summary.adm

summary of age-depth model

Description

Displays some summary numbers of an age-depth models

Usage

```
## S3 method for class 'adm'
summary(object, ...)
```

Arguments

```
object an adm object ... other variables, are ignored
```

Value

Invisible NULL, prints summary to the console

Examples

```
my_adm = tp_to_adm(t = 1:5, h = c(2,2,3), L_unit = "m", T_unit = "Myr") summary(my_adm)
```

summary.multiadm

summary of age-depth model

Description

Displays some summary numbers of an age-depth models

Usage

```
## S3 method for class 'multiadm'
summary(object, ...)
```

44 timetree

Arguments

object a multiadm object
... other variables, are ignored

Value

Invisible NULL, prints summary to the console

summary.sac

summary of sediment accumulation curve

Description

displays some summary numbers of sediment accumulation curve

Usage

```
## S3 method for class 'sac'
summary(object, ...)
```

Arguments

object sediment accumulation curve (sac)
... other variables, are ignored

Value

invisible NULL

timetree

example time tree

Description

```
Time tree generated using the ape package. Code used to generate is set.seed(1) tree_in_time = ape::rlineage(birth = 1.8, death = 0.2, Tmax = 2)
```

Usage

timetree

Format

An object of class phylo of length 4.

time_to_strat 45

time_to_strat

transform objects from time domain to strat. domain

Description

Takes an object and transforms it from the time domain into the stratigraphic domain using the provided age-depth model. Currently implemented for the "phylo", "list", and "numeric" class.

Usage

```
time_to_strat(obj, x, ...)
```

Arguments

obj the object to be transformed

x age-depth model for the transformation

other parameters

Value

an object of the same type as obj

See Also

strat_to_time() to transform data from the stratigraphic domain to the time domain, time_to_strat.phylo(),
time_to_strat.numeric() and time_to_strat.list() for details on how to transform phylo
objects, vectors, and lists. See get_height() for the underlying procedure.

time_to_strat.list

transform list from time to height domain

Description

Lists are useful to keep data closely associated. This function transforms a list that contains observations associated with a time (recorded in the element with name "t") into a list where the observations are associated with stratigraphic position.

Usage

```
## S3 method for class 'list'
time_to_strat(obj, x, ...)
```

Arguments

obj	a list with one element named "t", which will be interpreted as time
Х	an adm object
	options passed to get height

Value

a stratlist (inherits from list): A list with one named element "h" instead of the element "t", containing the stratigraphic positions corresponding to the times inf "t"

See Also

strat_to_time.list() for the transformation from height to time domain, time_to_strat.phylo()
and time_to_strat.numeric() for transformations of phylogenetic trees and vectors. See get_height()
for the underlying procedure.

Examples

```
# see vignette("admtools") for an example
```

```
time_to_strat.numeric transform vectors from time to height domain
```

Description

This function transforms numeric vectors from the time to the stratigraphic domain Fundamentally a wrapper around get_height for consistent syntax

Usage

```
## S3 method for class 'numeric'
time_to_strat(obj, x, ...)
```

Arguments

```
obj a numeric vector, interpreted as timing of events

x an adm object

options passed to get_height
```

Value

a numeric vector - stratigraphic position of the events

time_to_strat.phylo 47

See Also

strat_to_time.numeric() for the transformation from height to time domain, time_to_strat.phylo()
and time_to_strat.list() for transformations of phylogenetic trees and lists. See get_height()
for the underlying procedure.

Examples

```
# see vignette("admtools") for an example
```

time_to_strat.phylo

transform phylo object

Description

transform phylo object from the time domain to the stratigraphic domain

Usage

```
## S3 method for class 'phylo'
time_to_strat(obj, x, ...)
```

Arguments

obj the phylo object to be transformed

x age-depth model

... other parameters, currently ignored

Value

a phylo object, representation of the tree in the strat domain

See Also

get_height() for the underlying procedure, time_to_strat() for the higher level function, and strat_to_time.phylo() for the transformation of phylo objects from strat domain to the time domain. See time_to_strat.list() and time_to_strat.numeric() for the transformation of lists and numeric vectors tp_time_det

tp_height_det

deterministic tie points height domain

Description

defines deterministic stratigraphic tie points

Usage

```
tp_height_det(heights)
```

Arguments

heights

numeric vector. Stratigraphic positions of the tie points

Value

a function for usage with strat_cont_to_multiadm and sedrate_to_multiamd as h_tp input

See Also

tp_time_det() for deterministic tie points in time, tp_time_norm() for tie points following a
normal distribution, tp_time_floating_scale() for tie points for a floating scale,

tp_time_det

deterministic tie points in time domain

Description

defines deterministic tie points in time.

Usage

```
tp_time_det(times)
```

Arguments

times

numeric vector, times of the tie points

Value

a function for usage with strat_cont_to_multiadm and sedrate_to_mulitadm as t_tp input

See Also

tp_height_det() for deterministic tie points in height, tp_time_norm() for tie points following
a normal distribution

tp_time_floating_scale

```
tp_time_floating_scale
```

tie points for floating time scale

Description

Defines tie points for a floating (auxiliary) time scale for usage with $sedrate_to_multiadm$ and $strat_cont_to_multiadm$ as t_tp input. This floating time scale consists of two tie points in time, the first at time t = 0, the second at time t = 1. $tp_time_floating_scale$ is a synonym of $tp_time_det(times = c(0,1))$

Usage

```
tp_time_floating_scale()
```

Value

function for usage with strat_cont_to_multiadm and sedrate_to_multiamd as t_tp input

See Also

tp_time_norm() for tie points following a normal distribution, tp_height_det() for deterministic height tie points

Examples

```
## Not run:
# see this vignette for an example
vignette("adm_from_trace_cont")
## End(Not run)
```

tp_time_norm

time tie points with normal distribution

Description

defines a function factory that returns normally distributed times. FOr usage with sedrate_to_multiadm and strat_cont_to_multiadm.

Usage

```
tp_time_norm(mean, sd, force_order = TRUE)
```

50 tp_to_adm

Arguments

mean numeric vector, mean age of tie points

sd numeric vector, standard deviation of tie points

force_order logical, enforce strictly increasing times

Value

function for usage with strat_cont_to_multiadm and sedrate_to_multiamd as t_tp input

See Also

tp_time_floating_scale() for tie points for a floating scale, tp_height_det() for deterministic
height tie points

tp_to_adm

Construct age-depth model from tie points

Description

Turns tie points into an adm object that represents an age-depth model

Usage

```
tp_to_adm(t, h, T_unit = NULL, L_unit = NULL)
```

Arguments

t Vector, tie points in timeh Vector, tie points in heightT_unit character, time unit

L_unit character, length unit

Details

by default, intervals with no sediment accumulation are marked as destructive. tp_to_adm does not check whether the inputs define a valid age-depth model. For this, use is_adm

Value

object of class adm

See Also

 $is_adm()$ to check validity of adm objects, $get_T_tp()$ and $get_L_tp()$ to extract time and height/length tie points

tp_to_sac 51

Examples

```
my\_adm = tp\_to\_adm(t = 1:4, h = c(1,2,2,3), T\_unit = "kyr", L\_unit = "m") plot(my\_adm) # see vignette("admtools") for other examples
```

tp_to_sac

define sed. acc. curve

Description

defines sac (sediment accumulation curve) object from tie points

Usage

```
tp_to_sac(t, h, T_unit = NULL, L_unit = NULL)
```

Arguments

t numeric vector, time coordinates of tie points
h numeric vector, height coordinates of tie points
T_unit time unit
L_unit length unit

Value

a sac object reflecting a sediment accumulation curve

See Also

 $sac_to_adm()$ to transform sediment accumulation curves into age-depth models, $get_T_tp()$ and $get_L_tp()$ to extract time and height/length tie points

 T_{axis_lab}

 T_axis_lab

plot time axis label

Description

plot time axis label

Usage

```
T_axis_lab(
  label = "Time",
  unit = TRUE,
  sep = " ",
  brac = c("[", "]"),
  line = 2,
  outer = FALSE,
  at = NA,
  adj = NA,
  padj = NA,
  cex = NA,
  col = NA,
  font = NA,
  ...
)
```

Arguments

label	Axis label
unit	Logical or character, should unit be plotted
sep	separator between label and unit
brac	brackets surrounding unit
line	parameter passed to mtext, see ?mtext for details
outer	parameter passed to mtext, see ?mtext for details
at	parameter passed to mtext, see ?mtext for details
adj	parameter passed to mtext, see ?mtext for details
padj	parameter passed to mtext, see ?mtext for details
cex	parameter passed to mtext, see ?mtext for details
col	parameter passed to mtext, see ?mtext for details
font	parameter passed to mtext, see ?mtext for details
	further graphical parameters passed to <i>mtext</i> , see ?mtext for details

Value

invisible NULL

T_axis_lab 53

See Also

plot.adm() for plotting of adms

Index

* datasets CarboCATLite_data, 5 timetree, 44	<pre>get_time, 14 get_time(), 40-43 get_total_duration, 15 get_total_duration(), 21, 24</pre>
<pre>add_adm_to_multiadm, 3 anchor, 4</pre>	<pre>get_total_thickness, 16 get_total_thickness(), 21, 24</pre>
CarboCATLite_data,5	is_adm, 17
condensation, 6	is_adm(), <i>50</i>
condensation_fun, 6	is_destructive, 18
	is_multiadm, 18
flux_const, 7	is_sac, 19
$flux_const(), 8, 38$	
flux_linear, 7	L_axis_lab, 19
flux_linear(), 7, 8, 38	L_axis_lab(), <u>25</u>
flux_quad, 8	
flux_quad(), 7, 8, 38	make_legend, 20
	max_height, 21
<pre>get_completeness, 9</pre>	max_height(), <i>16</i> , <i>24</i>
<pre>get_data_from_eTimeOpt, 9</pre>	max_time, 21
<pre>get_data_from_eTimeOpt(), 33</pre>	$\max_{\text{time}}(), 15, 24$
get_height, 10	mean_adm, 22
get_height(), 45-47	$mean_adm(), 22, 30$
<pre>get_hiat_duration, 11</pre>	median_adm, 22
get_hiat_duration(), 12, 13	$median_adm(), 22, 30$
get_hiat_list, 11	merge_adm_to_multiadm, 23
get_hiat_list(), <i>11-13</i>	merge_multiadm, 23
get_hiat_no, 12	min_height, 24
get_hiat_no(), <i>11–13</i>	min_height(), <i>16</i> , <i>21</i>
get_hiat_pos, 13	min_time, 24
get_hiat_pos(), <i>11</i> , <i>12</i>	min_time(), 15, 21
<pre>get_incompleteness(get_completeness), 9</pre>	
get_L_tp, 13	plot.adm, 25
get_L_tp(), 16, 50, 51	plot.adm(), 20, 53
get_L_unit, 14	plot.multiadm, 26
get_L_unit(), <i>17</i> , <i>36</i>	plot.sac, 26
get_T_tp, 16	plot.stratlist, 27
get_T_tp(), 14, 50, 51	plot.timelist, 27
get_T_unit, 17	plot_condensation, 28
get_T_unit(), <i>14</i> , <i>37</i>	plot_erosive_intervals, 28

INDEX 55

plot_sed_rate_1, 29	tp_height_det(), 48-50
plot_sed_rate_t, 30	<pre>tp_time_det, 48</pre>
	$tp_time_det(), 48$
quantile_adm, 30	<pre>tp_time_floating_scale, 49</pre>
quantile_adm(), 22	<pre>tp_time_floating_scale(), 48, 50</pre>
	tp_time_norm, 49
sac_to_adm, 31	tp_time_norm(), 48, 49
$sac_{to_adm()}, 51$	tp_to_adm, 50
sed_rate_from_matrix, 32	tp_to_adm(), <i>31</i>
sed_rate_from_matrix(), 10, 34	tp_to_sac, 51
sed_rate_gen_from_bounds, 33	
sed_rate_1, 34	
sed_rate_1_fun, 35	
sed_rate_t, 35	
sed_rate_t_fun, 36	
sedrate_to_multiadm, 31	
sedrate_to_multiadm(), <i>10</i> , <i>33</i> , <i>34</i>	
set_L_unit, 36	
set_L_unit(), <i>14</i> , <i>37</i>	
set_T_unit, 37	
set_T_unit(), <i>17</i> , <i>36</i>	
split_multiadm, 37	
strat_cont_gen_from_tracer, 38	
strat_cont_gen_from_tracer(), 7, 8	
strat_cont_to_multiadm, 39	
strat_to_time, 40	
strat_to_time(), <i>43</i> , <i>45</i>	
strat_to_time.list,41	
$strat_to_time.list(), 40, 42, 46$	
strat_to_time.numeric,41	
$strat_to_time.numeric(), 40, 47$	
strat_to_time.phylo,42	
strat_to_time.phylo(), 40, 42, 47	
summary.adm, 43	
summary.multiadm, 43	
summary.sac,44	
T_axis_lab, 52	
T_axis_lab(), 25	
time_to_strat, 45	
time_to_strat(), 40-42, 47	
time_to_strat.list, 45	
time_to_strat.list(), 41, 45, 47	
time_to_strat.numeric, 46	
time_to_strat.numeric(), 42, 45–47	
time_to_strat.numeric(), 42, 45-47 time_to_strat.phylo, 47	
time_to_strat.phylo(), 43, 45–47	
time_to_strat.phy10(), 43, 43-47	
tp height det. 48	
LD_IICIĞIIL_UCL, TU	