ECE215/S – Principles of Electronic Cyber Warfare Equation Sheet - Midterm Objectives 1.1-1.8, 2.1-2.4

DC Circuits Analysis

Ohm's Law	V = IR
Power Law	$P = IV = \frac{V^2}{R} = I^2R$ $R_{eq} = R_1 + R_2 + \dots + R_n$
Series	$R_{eq} = R_1 + R_2 + \ldots + R_n$
Voltage Divider	$V_x = \frac{R_x}{R_{ea}} V_{series}$
Parallel	$R_{eq} = (\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n})^{-1}$
\rightarrow 2 resistors	$R_{eq} = R_1 + R_2 + \dots + R_n$ $V_x = \frac{R_x}{R_{eq}} V_{series}$ $R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}\right)^{-1}$ $R_{eq} = \frac{R_x R_y}{R_x + R_y}$
Current Divider	$I_x = \frac{R_{eq}}{R_r} I_{parallel}$
\rightarrow 2 resistors	$I_x = \frac{R_y}{R_x + R_y} I_{parallel}$

AC Circuits Analysis

AC equation
$$v(t) = V_{bias} + V_m \cos 360^{\circ} ft + \phi$$

Frequency $f = \frac{1}{\text{period}} = \frac{1}{T}$

Bias $V_{bias} = \frac{v_{\text{max}} + v_{\text{min}}}{2}$

Amplitude $V_m = \frac{v_{\text{max}} - v_{\text{min}}}{2}$

RMS $V_{rms} = \frac{V_m}{\sqrt{2}} = 0.707 * V_m$
 $V_{rms} = \frac{V_m}{\sqrt{2}} = 0.707 * V_m$

Motors, Power Converters

Transformers

Turns ratio
$$a = \frac{N_1}{N_2} = \frac{v_1(t)}{v_2(t)} = \frac{i_2(t)}{i_1(t)}$$

Complex Math

$$\begin{array}{c|c} \text{Imag Number} & j = \sqrt{-1} \\ \frac{1}{j} = -j \\ \text{Rectangular} & Re + jIm \\ = A\cos\phi + jA\sin\phi \\ \text{Phasor} & A\underline{/\phi} \\ \text{Amplitude} & A = \sqrt{Re^2 + Im^2} \\ \text{Phase} & \phi = \tan^{-1}\left(\frac{Im}{Re}\right) \end{array}$$

R-C and R-L Circuits

Angular Frequency	$\omega = 2\pi f$
Resistor Impedance	$Z_R = R$
Capacitor Impedance	$Z_C = \frac{1}{j\omega C}$ $Z_L = j\omega L$
Inductor Impedance	$Z_L = j\omega L$
R-C Circuit Cutoff	$f_{\text{cutoff}} = \frac{1}{2\pi RC}$
R-L Circuit Cutoff	$f_{\text{cutoff}} = \frac{R}{2\pi L}$
Bandwidth	$BW = f_{high} - f_{low}$
Gain	$G_{abs} = \left \frac{V_{out}}{V_{in}} \right $

Engineering Notation

10^{12}	T (tera)
10^{9}	G (giga)
10^{6}	M (mega)
10^{3}	k (kilo)
10^{-3}	m (milli)
10^{-6}	μ (micro)
10^{-9}	n (nano)
10^{-12}	p (pico)
10^{-15}	f (femto)
10^{-18}	a (atto)