Übung 11 (Anorganik I)

1.	Welches der folgenden Elemente neigt am meisten zur Bildung von p_{π} - p_{π} -Bindungen?
	□ As □ P □ N □ Si □ Ge
2.	Welches der folgenden Elemente kann maximal vier Bindungen pro Atom bilden?
	□ _N
	□ _P
	C As
	□ Se
	□ Bi
3.	Welches ist die kleinste und welches die größte Oxidationszahl, die bei Elementen der 6.Hauptgruppe (16.Gruppe) des Periodensystems vorkommt?
	□ _{-2, +2}
	L +2,+6
	□ _{-4, +2}
	-2 , +6
	nur -2
4.	Welche der folgenden Verbindungen ergibt in einer 0.1 <i>M</i> wässrigen Lösung einen pH-Wert von 7.0?
	Arr Na ₂ S
	C KF
	NaNO ₃
	NH ₄ Cl
	\square CuSO ₄

5. Prüfungsaufgabe S 2014

Überprüfen Sie mit Hilfe des Periodensystems die folgenden Aussagen.

	richtig	falsch
Die Stärke der Säuren nimmt in folgender Reihe zu:		
$CH_4 < NH_3 < H_2O < HF$		
Die Stärke der Säuren nimmt in folgender Reihe ab:		
$HNO_3 > H_3PO_4 > H_4SiO_4$		
Schwefel kann in seinen Verbindungen das Elektronenoktett nicht		
überschreiten.		
Die Ionenradien nehmen in folgender Reihe ab:		
$O^{2-} > F^- > Na^+$		
Die Elektronegativität der Elemente steigt in der Reihenfolge:		
Te < S < Cl		
Cr besitzt im Grundzustand die Elektronenkonfiguration		
$[Ar] 4s^1, 3d^5$		
Die 1.Ionisierungsenergie der Elemente sinkt in der Reihe:		
Li > Na > K		
Sauerstoff kann ausschliesslich in den Oxidationsstufen		
0, -1 und -2 vorkommen.		

6. Welche der folgenden Verbindungen sind Hydride, welche sind Elementwasserstoffsäuren?

LiH, H₂S, AlH₃, SiH₄, HBr, H₂O, CaH₂

7. Die Metalle der I.-III.Hauptgruppe bilden mit Nichtmetallen stabile binäre (nur aus zwei Elementen bestehende) Verbindungen. Welche stöchiometrische Zusammen-setzung erwarten Sie für folgende Verbindungen?

$$Mg_xN_y \ ; \ Al_xBr_y \ ; \ Li_xO_y \ ; \ Na_xS_y \ ; \ Ca_xCl_y \ ; \ Ca_xP_y \ ; \ Li_xN_y$$

8. Prüfungsaufgabe S2012

- a) Formulieren Sie Reaktionsgleichungen für folgende Umsetzungen:
 - i) Reaktion beim Überleiten von Wasserdampf über glühenden Kohlenstoff.
 - ii) Wasserelektrolyse (Elektrodenreaktionen und Gesamtreaktion)

- b) Folgende Metalle werden in Wasser gegeben: Na, Ba, Ni, Cu
 - i) Welche Metalle werden von Wasser oxidiert. Begründen Sie Ihre Meinung kurz.
 - ii) Formulieren Sie stöchiometrisch korrekte Gleichungen.

$$E^{\circ} (Na^{+}/Na) = -2.71 \text{ V} ; E^{\circ} (Ba^{2+}/Ba) = -2.91 \text{ V} ;$$

$$E^{\circ} (Ni^{2+}/Ni) = -0.23 \text{ V} ; E^{\circ} (Cu^{2+}/Cu) = +0.34 \text{ V}$$

$$pH 7: E (H^{+}/H_{2}) = -0.41 \text{ V}$$

- c) Vergleichen Sie folgende Wasserstoff-Verbindungen hinsichtlich ihrer Säure- bzw Basestärke. Setzen Sie jeweils ein "<" (kleiner als) oder ">" (grösser als) zwischen die Verbindungen.
 - i) Säurestärke: HCl HI HClO₃ HIO₃
 - ii) Basestärke: HPO_4^{2-} $H_2PO_4^{-}$ NH_3 H_2O
- d) Skizzieren Sie die räumliche Struktur (mit freien E-Paaren) der Wasserstoff-Verbindungen:

B₂H₆, Si₂H₆, N₂H₄, H₂O₂ (VSEPR).

9. **Prüfungsaufgabe W 2016**

Formulieren Sie Gleichungen für folgende chemischen Prozesse. Die korrekten stöchiometrischen Faktoren müssen Sie selbst finden. Sollte eine Reaktion nicht ablaufen, so ist der Reaktionspfeil durchzustreichen.

$$Fe_2O_3 + C \rightarrow T > 1500 \text{ K}$$

$$AlH_3 + H_2O \rightarrow E^{\circ} (Ag^{+}/Ag) = + 0.81 \text{ V}$$

$$BaO + H_2O \rightarrow P_4O_6 + H_2O \rightarrow T > 1200 \text{ K}$$

10. **Prüfungsaufgabe S 2015**

Überprüfen Sie mit Hilfe des Periodensystems die folgenden Aussagen. Klassifizieren Sie diese Aussagen als richtig oder falsch. (Lösungen bitte ankreuzen)

	richtig	falsch
Der Atomradius sinkt in der Reihenfolge Na > Mg > Al.		
Die 1. Ionisierungsenergie sinkt in der Reihenfolge K > Na > Mg.		0
Der Metallcharakter der Elemente steigt in der Reihenfolge		
P < Si < Al < Mg		
Der basische Charakter der Elementoxide steigt in der Reihenfolge P ₄ O ₁₀ < SiO ₂ < Al ₂ O ₃ < MgO.		
Der saure Charakter der Elementoxide steigt in der Reihenfolge $P_4O_6 < As_4O_6 < Sb_4O_6$.	0	C
Die Elektronenkonfiguration von As ³⁺ lautet: [Ar] 4s ² 3d ¹⁰ .		C
Elementares Fluor reagiert gegenüber Chlorid als Oxidationsmittel.		
Die Elemente der 1. Gruppe sind stärkere Reduktionsmittel als die Elemente der 14. Gruppe.		C