BIOLOGICAL RHYTHMS: IT'S A MATTER OF TIME

- Examples of Biological Rhythms
- Rhythms: Environmental Geophysical
- Circadian Rhythms: Mechanism Melatonin
- Some features of the human circadian (24-hr.) biological clock
- The molecular mechanism of circadian rhythm
- Effects of sleep disorders
- Video

BIOLOGICAL RHYTHMS

Rhythm = sequence of events that repeat themselves in the same order and with the same time interval, over and over again.

Biological rhythm: a biological event or function with a pattern of activity that is repeated over and over again at a constant time interval.

What is a Rhythm?

Pattern

Sequence

Regularity

Progression

Time

Measure

Beat

Examples of Biological Rhythms

Heart rate

Breathing

Hormone secretion

Menstrual cycle

Body temperature

Sleep/wake cycle

Time

Chronobiology

Biological Rhythms are the product of an internal biological timekeeping system which is controlled by a biological clock

ENVIRONMENTAL RHYTHMS

Semi-Daily Rhythms

Tidal

Daily Rhythms

Solar

Monthly

Lunar

Quarterly

Seasons

Annual

Longer than a year

Types of biological rhythms with a geophysical counterpart

Period Length	Name	Chronobiological Name	Example
12.4 h	tidal	CIRCA TIDAL	Crab activity on shoreline
29 days	monthly	CIRCA LUNAR	Menstrual cycle, marine reproduction.
365 days	yearly	CIRCANNUAL	Hibernation, many reproductive cycles.
24 h	daily	CIRCADIAN (circa + diem)	Sleep-wake cycle etc.

Circadian rhythms

Your **circadian rhythm** (also known as your sleep/wake cycle or body clock) is a natural, internal system that's designed to regulate feelings of sleepiness and wakefulness over a 24-hour period.

- Circadian rhythms are endogenous.
- Endogenous rhythms are not exactly 24h.
- The periods of Circadian rhythms are genetically determined.
- Endogenous rhythms are temperature-compensated

Circadian rhythms

These 24-hour rhythms are driven by a <u>circadian clock</u>, and they have been widely observed in <u>plants</u>, <u>animals</u>, <u>fungi</u>, and <u>cyanobacteria</u>.

Although circadian rhythms are endogenous ("built-in", self-sustained), they are adjusted (entrained) to the local environment by external cues called <u>zeitgebers</u> (from German, "time giver"), which include <u>light</u>, temperature and redox cycles

MANY OF OUR BODY'S SYSTEMS ARE CALIBRATED TO THE APPEARANCE AND DISAPPEARANCE OF THAT NATAURAL LIGHT

NEURAL MECHANISMS OF CIRCADIAN RHYTHMS

Our Inner Clock

- Circadian rhythms help determine our sleep patterns.
- The body's master clock, or Supra Chiasmatic
 Nucleus (SCN): in the hypothalamus of Brain
- SCN controls the production of melatonin, a hormone that makes you sleepy – in the pineal body
- It receives information about incoming light from the optic nerves, which relay information from the eyes to the brain.

How the ups and downs of Melatonin affect sleep time

A **hormone** that's made by the pineal gland in the brain, melatonin helps control our daily sleep-wake cycles.

Our <u>circadian rhythm</u> influences how much melatonin the pineal gland makes, and so does the amount of light that we are exposed to each day.

Typically, melatonin levels start to **rise in the mid-to-late evening**, after the sun has set. They **stay elevated for most of the in the dark**. Then, they **drop in the early morning as the sun rises**, causing us to awaken.

Melatonin

- Foods such as tomatoes, walnuts, olives, rice, barley, strawberries, cherries, and cow's milk contain melatonin. When our body absorbs melatonin from these foods, we begin to feel calm and sleepy.
- It is often used by those who suffer from jet lag, shift-work-related sleep troubles, or insomnia.
- Melatonin supplements come in pill, liquid, chewable, or lozenge forms, in doses ranging from 1-10 mg.

Some features of the human circadian (24-hr.) biological clock

THE MOLECULAR MECHANSM OF CIRCADIAN RHYTHM

RESEARCH SHOWS Your Genes Affect Your Sleep Clock

The NOBEL Prize in Physiology or Medicine Oct. 2017

CLOCK GENES

- 1988 **PERIOD**
- 1994 TIMELESS
- 1998 DOUBLE TIME

Worked on the gene called **PERIOD** that influenced the circadian rhythm of the fruit-fly

They induced mutations that shifted the cycle from 24 to 19 hrs and the other to 29 hrs

The protein was scattered in the nucleus of all cells of the fly and it was more in day than at night (turning on and off mechanism – switch master) Confirmed the presence of **TIMELESS** Gene

The TIMELESS worked with PERIOD and moved into the nucleus of cell and stopped production of PERIOD – like a security person ('Allow' & 'Stop')

the stability of PERIOD so that it does not buildup too quickly

The TIMELESS shuts up and teams up with PERIOD to enter into nucleus and PERIOD shuts down its own production

Once level of PERIOD goes low the whole process starts up again

THE MOLECULAR MECHANSM OF CIRCADIAN RHYTHM

THE MOLECULAR MECHANSM OF CIRCADIAN RHYTHM

The PERIOD gene starts making the PERIOD PROTEIN – Outside the Nucleus of cells

The DOUBLE TIME gene limits stability of PERIOD so that it does not build up too quickly

The TIMELESS gene shows up and

- transfers PERIOD enter into nucleus &
- PERIOD shuts up again

A calm, cool and collected 24 hour cycle

From Fruit-fly to Nobel Prize

© Nobel Media. III. N. Elmehed Michael Rosbash

© Nobel Media. III. N. Elmehed Michael W. Young

Effects

of sleep deprivation

SLEEP STAGES

SLEEP FUNCTIONS: (Why do we sleep?

- Restorative Functions
 - growth and repair
- Adaptive Functions
 - predator avoidance
 - energy conservation
- Cognitive Functions
 - learning, unlearning, reorganization

Why Can't I Sleep? 6 Surprising Factors:

A Daytime Interactions

- Women having +interactions with men sleep better at night;
- Men who sleep better will have +interactions in next day.

Bed Clothes

Sleep uniform: Cotton, loose clothes, fresh sock (in winter) induce good sleep

Spicy Dinner

Not conducive because of induction of acid-reluxes; stomach acid backs up, heartburns are bad for sleep

Fluffy- Pet allergies

Dog, cat pets are not friendly to put you to sleep

Hot shower/coffee/exercise

Not good since they keep you awake and alert

Cigarette smoke

Nicotine is a stimulant; Not good since they keep you awake and alert

Cortisol is the major glucocorticoid in humans.

2 primary **actions**:
Stimulates
gluconeogenesis—the
breakdown of protein
and fat to provide
metabolites that can be
converted to glucose in
the liver—and

Activates anti-stress and anti-inflammatory pathways.

Cortisol - The Stress Hormone

SLEEP DEPRIVATION EFFECTS

Early reports of bizarre or psychotic behavior

- Most common effects of sleep deprivation:
 - increased irritability
 - decreased concentration
 - Confusion/disorientation

SLEEP DEPRIVATION

EFFECTS

SLEEP DEPRIVATION EFFECTS

SLEEP DEPRIVATION

EFFECTS

SLEEP DEPRIVATION

EFFECTS

SLEEP DEPRIVATION EFFECTS

GREATER RISK FOR:

- Depression
- Irritability
- Anxiety
- Forgetfulness
- Fuzzy thinking

Depression and Sleep: Understanding the Connection

- People with insomnia have a higher risk of depression.
- On the other hand, depression can trigger sleep problems.
- Knowing the connection between depression and sleep can help you recognize symptoms and get treatment for both.

Clock summary

- Genes control pacemaker, the Supra Chiasm Nucleus (SCN)
- SCN occurs in vertebrates, but is distributed in brain cells in some insects
- SCN signals pineal to release melatonin from pineal cells
- Light the cause for circadian rhythm to commence
- The whole hypothalamus region of brain controls host of biological effects – SLEEP & Other Effects
- Circadian rhythm has roots in neuro-hormonal, neurochemical & genetic predisposition.

LET US WATCH THE VIDEO

Satchin Panda, Ph.D.

