Test4_YM

May 14, 2018

```
In [40]: import pandas as pd
        import numpy as np
        import statsmodels.api as sm
        from patsy import dmatrices, dmatrix
```

@author: Yiming Cai

0.0.1 Question (a)

Use OLS to estimate the parameters of the model

$$logw = \beta_1 + \beta_2 educ + \beta_3 exper + \beta_4 exper^2 + \beta_5 smsa + \beta_6 south + \epsilon$$

Give an interpretation to the estimated 2 coefficient.

```
Out[2]:
                 logw educ age exper smsa south nearc daded momed
         0 6.306275
                          7
                                29
                                        16
                                                                    9.94 10.25

    1
    6.175867
    12
    27
    9
    1

    2
    6.580639
    12
    34
    16
    1

                                                                0 8.00 8.00
                                                        0
                                                       0
                                                                0 14.00 12.00
         3 5.521461 11
                               27
                                        10
                                                1
                                                        0
                                                                1 11.00 12.00
         4 6.591674
                                               1
                                                                    8.00
                                                                           7.00
                          12
                               34
                                        16
```

```
In [3]: y, X = dmatrices("logw ~ educ + exper + np.square(exper) + smsa + south", df)
```

The OLS estimation result is given as follows:

Dep. Variable:	logw	R-squared:	0.263
Model:	OLS	Adj. R-squared:	0.262
Method:	Least Squares	F-statistic:	214.6
Date:	Mon, 14 May 2018	Prob (F-statistic):	3.70e-196
Time:	20:28:05	Log-Likelihood:	-1365.6

No. Observations: Df Residuals: Df Model: Covariance Type:	n	3010 3004 5 onrobust	AIC: BIC:			43. 79.
=======================================	coef	std err	t	P> t	[0.025	0.975]
Intercept educ exper np.square(exper) smsa south	4.6110 0.0816 0.0838 -0.0022 0.1508 -0.1752		23.315 12.377	0.000 0.000 0.000	0.075 0.071 -0.003	-0.002
Omnibus: Prob(Omnibus): Skew: Kurtosis:		52.759 0.000 -0.261 3.476	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.		1. 62. 2.63e 1.26e	-14

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.26e+03. This might indicate that there are strong multicollinearity or other numerical problems.

0.0.2 Answer (a)

Other things being equal, taking one year education, the expected log of wage (logw) would increase by 0.086. Or put it another way, because

$$log(\frac{w2}{w1}) = 0.0816 \Rightarrow \frac{w2}{w1} = e^{0.0816} = 1.085 \Rightarrow w2 = (1 + 8.5\%)w1 \Rightarrow$$

one additional year of education is associated with 8.5% increase on expected wage level.

0.0.3 **Question (b)**

OLS may be inconsistent in this case as **educ** and **exper** may be endogenous. Give a reason why this may be the case. Also indicate whether the estimate in part (a) is still useful.

0.0.4 Answer (b)

educ and exper might be endogenous due to ommited variables. For example, individual's characteristics are likely to influence individual's educ and exper. Individual with higher intellectual ability and motivation would likely to obtain higher education, i.e., more number of years of schooling (educ). Also, people with hard-working ethics tend to have more working experience. All these characteristics are likely to positively

influence wage level but not included in the model. Therefore, **educ** and **exper** are endogenouse, resulting estimate in part(a) being inconsistent.

0.0.5 **Question (c)**

Give a motivation why age and age2 can be used as instruments for exper and exper2.

0.0.6 Answer(c)

Older people tend to have longer working experience, nevertheless, the wage is unlikely to influenced by age itself. Therefore, **age** and **age** $\{2\}$ is likely to be correlated with **exper** and **exper** $\{2\}$ but uncorrelated with error term (ϵ), which suffice them to be instruments for exper and exper $\{2\}$.

0.0.7 **Question (d)**

Run the first-stage regression for **educ** for the two-stage least squares estimation of the parameters in the model above when **age**, **age2**, **nearc**, **dadeduc**, **and momeduc** are used as additional instruments. What do you conclude about the suitability of these instruments for schooling?

```
In [21]: df.head()
```

```
Out [21]:
                      educ
                            age
                                 exper
                                         smsa
                                               south
                                                      nearc
                                                             daded
                                                                    momed
                                                              9.94
         0 6.306275
                         7
                             29
                                     16
                                                   0
                                                          0
                                                                    10.25
         1 6.175867
                        12
                             27
                                     9
                                            1
                                                   0
                                                              8.00
                                                                     8.00
         2 6.580639
                        12
                             34
                                    16
                                            1
                                                   0
                                                          0 14.00
                                                                    12.00
         3 5.521461
                        11
                             27
                                     10
                                            1
                                                   0
                                                          1
                                                            11.00 12.00
         4 6.591674
                        12
                             34
                                     16
                                            1
                                                   0
                                                              8.00
                                                                     7.00
```

In [22]: y2, X2 = dmatrices("educ ~ age + np.square(age) + nearc + daded + momed + smsa + sout

Dep. Variable:	educ	R-squared:	0.247
Model:	OLS	Adj. R-squared:	0.245
Method:	Least Squares	F-statistic:	140.4
Date:	Mon, 14 May 2018	Prob (F-statistic):	2.14e-179
Time:	20:28:44	Log-Likelihood:	-6808.2
No. Observations:	3010	AIC:	1.363e+04
Df Residuals:	3002	BIC:	1.368e+04
Df Model:	7		
Covariance Type:	nonrobust		
	/ nonrobust 		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-5.6524	3.976	-1.421	0.155	-13.449	2.144

age	0.9896	0.279	3.551	0.000	0.443	1.536
np.square(age)	-0.0170	0.005	-3.518	0.000	-0.027	-0.008
nearc	0.2646	0.099	2.670	0.008	0.070	0.459
daded	0.1904	0.016	12.199	0.000	0.160	0.221
momed	0.2345	0.017	13.773	0.000	0.201	0.268
smsa	0.5296	0.102	5.217	0.000	0.331	0.729
south	-0.4249	0.091	-4.667	0.000	-0.603	-0.246
Omnibus:	========	13.809	 Durbin-Wat	======== 5son:	========	1.796
Prob(Omnibus):		0.001	Jarque-Bera (JB):		17.748	
Skew:		-0.053	Prob(JB):		0.0	00140
Kurtosis:		3.361	Cond. No.		7.7	2e+04
	========				========	=====

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.72e+04. This might indicate that there are strong multicollinearity or other numerical problems.

The above result suggests:

There are enough instruments.

The p-values suggest instruments are correlated with educ.

Therefore, these instruments are suitable for schooling. However, the validity of these instruments require following Sargon test.

0.0.8 Question (e)

Estimate the parameters of the model for log wage using two-stage least squares where you correct for the endogeneity of education and experience. Compare your result to the estimate in part (a).

As suggested by Quesiton (b) and Question (c). age, age2, nearc, dadeduc, and momeduc can be used as instruments for educ, and age and age^2 would be instruments for expr and $expr^2$ respectively.

============			=========
Dep. Variable:	exper	R-squared:	0.685
Model:	OLS	Adj. R-squared:	0.685
Method:	Least Squares	F-statistic:	933.7
Date:	Mon, 14 May 2018	Prob (F-statistic):	0.00
Time:	20:29:12	Log-Likelihood:	-6808.2
No. Observations:	3010	AIC:	1.363e+04
Df Residuals:	3002	BIC:	1.368e+04
Df Model:	7		

Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.3476	3.976	-0.087	0.930	-8.144	7.449
age	0.0104	0.279	0.037	0.970	-0.536	0.557
np.square(age)	0.0170	0.005	3.518	0.000	0.008	0.027
nearc	-0.2646	0.099	-2.670	0.008	-0.459	-0.070
daded	-0.1904	0.016	-12.199	0.000	-0.221	-0.160
momed	-0.2345	0.017	-13.773	0.000	-0.268	-0.201
smsa	-0.5296	0.102	-5.217	0.000	-0.729	-0.331
south	0.4249	0.091	4.667	0.000	0.246	0.603
Omnibus:		13.809	Durbin-Wa	======= tson:		1.796
<pre>Prob(Omnibus):</pre>		0.001	Jarque-Bera (JB):		1	7.748
Skew:		0.053	Prob(JB):		0.0	00140
Kurtosis:		3.361	Cond. No.		7.7	2e+04

nearc daded

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.72e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In [25]: y4, X4 = dmatrices("np.square(exper) ~ age + np.square(age) + nearc + daded + momed + expr2_stage1_mod = sm.OLS(y4, X4).fit() print (expr2_stage1_mod.summary())

OLS Regression Results

===========			=======			=====	
Dep. Variable:	np.sq	uare(exper)	R-squared:		0.657		
Model:		OLS	Adj. R-squ	ared:		0.656	
Method:	Le	ast Squares	F-statisti	.c:		820.4	
Date:	Mon,	14 May 2018	Prob (F-st	catistic):		0.00	
Time:		20:29:23	Log-Likeli	hood:	-:	16020.	
No. Observations	3:	3010	AIC:		3.20	06e+04	
Df Residuals:		3002	BIC:			3.210e+04	
Df Model:		7					
Covariance Type:		nonrobust					
=============	coef	std err	t	P> t	[0.025	0.975]	
Intercept	 681.3828	84.846	8.031	0.000	515.021	847.744	
age	-54.0654	5.947	-9.091	0.000	-65.726	-42.405	
np.square(age)	1.2799	0.103	12.399	0.000	1.077	1.482	
nearc	-5.7804	2.114	-2.734	0.006	-9.926	-1.635	

-9.949

0.000

-3.967

-2.661

0.333

-3.3142

momed	-4.7333	0.363	-13.028	0.000	-5.446	-4.021
smsa	-11.8031	2.166	-5.450	0.000	-16.050	-7.556
south	10.6147	1.943	5.464	0.000	6.806	14.423
==========	=========		========			=====
Omnibus:		658.664	Durbin-Wat	cson:		1.823
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Ber	ca (JB):	301	8.668
Skew:		0.981	Prob(JB):)(JB):		
Kurtosis:		7.496	Cond. No.		7.7	2e+04
=======================================						=====

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.72e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Calculated the predicted values for educ, exper, exper²

```
In [26]: educ_explained = first_stage_mod.predict(X2)
```

Next, use the predicted values as variables the second stage OLS

In [30]: df_2sls.head()

Out[30]:		logw	smsa	south	educ_explained	exper_explained	exper2_explained
	0	6.306275	1	0	13.559710	9.440290	96.593284
	1	6.175867	1	0	12.589499	8.410501	78.458225
	2	6.580639	1	0	14.330376	13.669624	207.685943
	3	5.521461	1	0	14.363443	6.636557	43.802227
	4	6.591674	1	0	12.279697	15.720303	245.456999

In [31]: y, X_stage2 = dmatrices("logw ~ educ_explained + exper_explained+ exper2_explained+ st

Dep. Variable:	logw	R-squared:	0.219
Model:	OLS	Adj. R-squared:	0.218
Method:	Least Squares	F-statistic:	168.6

Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		May 2018 20:29:46 3010 3004 5 onrobust	Prob (F-statistic): Log-Likelihood: AIC: BIC:		1.84e-158 -1452.9 2918. 2954.	
=======================================	coef	std err	t	P> t	[0.025	0.975]
Intercept	4.4169	0.118	37.476	0.000	4.186	4.648
educ_explained	0.0998	0.007	14.874	0.000	0.087	0.113
exper_explained	0.0729	0.017	4.270	0.000	0.039	0.106
exper2_explained	-0.0016	0.001	-1.915	0.056	-0.003	3.88e-05
smsa	0.1349	0.017	7.880	0.000	0.101	0.169
south	-0.1590	0.016	-9.926	0.000	-0.190	-0.128
Omnibus:		58.101	Durbin-Watso	on:	1	.836
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	69	.727
Skew:		-0.274	Prob(JB):		7.23	e-16
Kurtosis:		3.505	Cond. No.		1.96	e+03

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.96e+03. This might indicate that there are strong multicollinearity or other numerical problems.

below is the estimate from (a), in comparison, the impact of education on wage becomes less but the effect of experience grows. The non-linear term exper^2 remains negative but almost doubles the effect.

In [34]: print (mod.summary())

Dep. Variable:	logw	R-squared:	0.263	
Model:	OLS	Adj. R-squared:	0.262	
Method:	Least Squares	F-statistic:	214.6	
Date:	Mon, 14 May 2018	Prob (F-statistic):	3.70e-196	
Time:	20:42:57	Log-Likelihood:	-1365.6	
No. Observations:	3010	AIC:	2743.	
Df Residuals:	3004	BIC:	2779.	
Df Model:	5			
Covariance Type:	nonrobust			
=======================================				
	coef std err	t P> t	[0.025 0.975]	

Intercept	4.6110	0.068	67.914	0.000	4.478	4.744	
educ	0.0816	0.003	23.315	0.000	0.075	0.088	
exper	0.0838	0.007	12.377	0.000	0.071	0.097	
np.square(exper)	-0.0022	0.000	-6.800	0.000	-0.003	-0.002	
smsa	0.1508	0.016	9.523	0.000	0.120	0.182	
south	-0.1752	0.015	-11.959	0.000	-0.204	-0.146	
=======================================	=======	=======	========			===	
Omnibus:		52.759	Durbin-Watson:		1.853		
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera (JB):		62.	62.537	
Skew:		-0.261	Prob(JB):		2.63e	2.63e-14	
Kurtosis:		3.476	Cond. No.		1.26e	+03	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.26e+03. This might indicate that there are strong multicollinearity or other numerical problems.

0.0.9 Question (f)

Perform the Sargan test for validity of the instruments. What is your conclusion?

1. Calculate the residuals using formula \$e_{2SLS} = y - Xb_{2SLS} \$

```
In [35]: e_2sls = df.logw.values - stage2_mod.predict(X)
```

2 . Regress e_{2SLS} on Z, where Z is (constant, age, age2, nearc, dadeduc, momeduc, smsa, south)

Dep. Variable:	у	R-squared:	0.001	
Model:	OLS	Adj. R-squared:	-0.001	
Method:	Least Squares	F-statistic:	0.5282	
Date:	Mon, 14 May 2018	Prob (F-statistic):	0.814	
Time:	20:43:06	Log-Likelihood:	-1388.1	
No. Observations:	3010	AIC:	2792.	
Df Residuals:	3002	BIC:	2840.	
Df Model:	7			
Covariance Type:	nonrobust			
=======================================	coef std err	t P> t	[0.025 0.975]	

Intercept	0.1258	0.657	0.192	0.848	-1.162	1.414	
age	-0.0093	0.046	-0.203	0.839	-0.100	0.081	
np.square(age)	0.0002	0.001	0.199	0.842	-0.001	0.002	
nearc	0.0135	0.016	0.825	0.409	-0.019	0.046	
daded	-0.0041	0.003	-1.592	0.111	-0.009	0.001	
momed	0.0041	0.003	1.462	0.144	-0.001	0.010	
smsa	-0.0033	0.017	-0.200	0.842	-0.036	0.030	
south	0.0022	0.015	0.148	0.882	-0.027	0.032	
===========					========	====	
Omnibus:		54.658	Durbin-Watson:		1.864		
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera (JB):		65.671		
Skew:		-0.263	Prob(JB):		5.49	5.49e-15	
Kurtosis:		3.498	Cond. No.		7.7	7.72e+04	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.72e+04. This might indicate that there are strong multicollinearity or other numerical problems.
 - 3 . calculate nR^2 , and $nR^2 \sim \chi^2(m-k)$, where m = 8, k = 6

In [39]:
$$n = 3010$$

 $R_2 = z_{mod.rsquared}$
 $n * R_2$

Out[39]: 3.7023886431634678

since the critical value for $\chi^2(2)$ at 5% confidence level is 5.99 and 3.7 < 5.99, therefore, we reject the null hypothesis and correlation Z and /epsilon is 0.

Conclusion: the instrument variables are actually not valid, further refinements are required.