ECON 899 Problem Set 5

Jackson Crawford, Dalya Elmalt, Jon Kroah*

Due 12 Oct 2022

1 Setup

The dynamic programming problem for the <u>true</u> HH problem is:

$$\begin{split} V(k,\varepsilon,\Gamma,z) &= \max_{k'} \left\{ u \bigg((1+r(K,L)-\delta)k + w(K,L)\bar{e}\varepsilon - k' \bigg) + \beta \mathbb{E} \bigg[V(k',\varepsilon',\Gamma',z') \bigg| \varepsilon,z \bigg] \right\} \end{split}$$
 where Γ evolves according to
$$\Gamma' &= H(\Gamma,z,z') \end{split}$$

where

- ε is a HH's idiosyncratic employment state; $\varepsilon \in \{1, 0\}$
- z is the aggregate state of the economy; $z \in \{z^g, z^b\}$
- $\Gamma(\varepsilon,z)$ is the distribution of HHs across employment states ε and aggregate states z
- \bullet K, L are aggregate capital and labor stocks

We approximate this problem as follows:

$$V(k,\varepsilon,\bar{K},z) = \max_{k'} \left\{ u \left((1 + r(\bar{K},L) - \delta)k + w(\bar{K},L)\bar{e}\varepsilon - k' \right) + \beta \mathbb{E} \left[V(k',\varepsilon',\bar{K}',z') \middle| \varepsilon,z \right] \right\}$$

where \bar{K} evolves according to

$$\log(\bar{K}') = \begin{cases} a_0 + a_1 \log(\bar{K}) & \text{if } z = z^g \\ b_0 + b_1 \log(\bar{K}) & \text{if } z = z^b \end{cases}$$

where \bar{K} is average capital holdings across HHs.

2 Results

Following the algorithm in the Krusell-Smith handout, we obtain:

Aggregate State	Coefficients		Goodness-of-Fit
$z = z^g$	$\hat{a}_0 = 0.0881$	$\hat{a}_1 = 0.9649$	$R^2 = 0.9933$
$z = z^b$	$\hat{b}_0 = 0.0860$	$\hat{b}_1 = 0.9642$	$R^2 = 0.9933$

^{*}Referenced code from Phil Coyle and Katherine Kwok.