Modular Arithmetic (Congruence also covered)

Modular Arithmetic

- ★ System of arithmetic for integers.
- * Wrap around after reaching a certain value called modulus.
- ★ Central mathematical concept in cryptography.

Congruence

 \star In cryptography, congruence(\equiv) instead of equality(=).

Examples:

Congruence

 \star In cryptography, congruence(\equiv) instead of equality(=).

Examples:

$$15 \equiv 3 \pmod{12}$$

$$23 \equiv 11 \pmod{12}$$

$$33 \equiv 3 \pmod{10}$$

$$10 \equiv -2 \pmod{12}$$

$$\therefore a \equiv b \pmod{m}$$

i.e.
$$a = km + b$$

	1		1		3
12	15	12	23	10	33
	12		12		30
	3		11		3
	0		k		
12	10	m	а		
	0				
	10		Ь		

(-2)

+

Valid or Invalid

★
$$38 \equiv 2 \pmod{12}$$
 ✓

★
$$38 \equiv 14 \pmod{12}$$
 ✓

★
$$5 \equiv 0 \pmod{5}$$
 ✓

One more analogy

Length: 35

No. of Wraps (Quotient)	Remaining thread (Remainder)	Congruence
1	25	35 ≡ 25 mod 10
2	15	35 ≡ 15 mod 10
3	5	35 ≡ 5 mod 10

 \bigoplus

- 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
- 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- 3. [(a mod n) x (b mod n)] mod $n = (a \times b)$ mod n

- 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
- 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- 3. $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$

Example:

```
[(15 mod 8) + (11 mod 8)] mod 8 = (15 + 11) mod 8
= 26 mod 8
= 2
```


- 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
- 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- 3. [(a mod n) x (b mod n)] mod $n = (a \times b) \mod n$

Example:

```
[(15 mod 8) - (11 mod 8)] mod 8 = (15 - 11) mod 8
= 4 mod 8
= 4
```


- 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
- 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- 3. $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$

Example:

```
[(15 mod 8) x (11 mod 8)] mod 8 = (15 x 11) mod 8
= 165 mod 8
= 5
```


Property	Expression		
Commutative Laws	(a + b) mod n = (b + a) mod n (a x b) mod n = (b x a) mod n		
Associative Laws	$[(a + b) + c] \mod n = [a + (b + c)] \mod n$ $[(a \times b) \times c] \mod n = [a \times (b \times c)] \mod n$		
Distributive Laws	[a x (b + c)] mod n = [(a x b) + (a x c)] mod n		
Identities	$(0 + a) \mod n = a \mod n$ $(1 \times a) \mod n = a \mod n$		
Additive Inverse	For each a∈Z _n , there exists a '-a' such that a + (-a) ≡ 0 mod n		

Fast Modular
Arithmetic
(Modular
exponentiation)

Modular Exponentiation

- It is a type of exponentiation performed over a modulus.
- ❖ a^b mod m or a^b (mod m).

Examples:

2³³ mod 30

3¹⁰⁰ mod 29

Solve 233 mod 30.

```
23<sup>3</sup> mod 30 = -7<sup>3</sup> mod 30 || 23 mod 30 can be 23 or -7.

= -7<sup>3</sup> mod 30

= -7<sup>2</sup> x -7 mod 30

= 49 x -7 mod 30

= -133 mod 30

= -13 mod 30

= 17 mod 30
```

 \bigoplus

Solve 31⁵⁰⁰ mod 30.

```
31^{500} \mod 30 = 1^{500} \mod 30
= 1 \mod 30
= 1
31^{500} \mod 30 = 1
```

```
Solve 242<sup>329</sup> mod 243.
```

```
242^{329} \mod 243 = -1^{329} \mod 243
= -1^{329} \mod 243 \parallel -1^{328} \times -1^{1}
= -1 \mod 243
= 242
242^{329} \mod 243 = 242
```

Solve 11⁷ mod 13.

Solve 88⁷ mod 187.

```
88^{1} \mod 187 = 88

88^{2} \mod 187 = 88^{1} \times 88^{1} \mod 187 = 88 \times 88 = 7744 \mod 187 = 77

88^{4} \mod 187 = 88^{2} \times 88^{2} \mod 187 = 77 \times 77 = 5929 \mod 187 = 132
```

 $88^7 \mod 187 = 88^4 \times 88^2 \times 88^1 \mod 187 = (132 \times 77 \times 88) \mod 187$

= 894,432 mod 187

 $88^7 \mod 187 = 11$

What is "the last two digits" of 295?

```
29^{1} \mod 100 = 29 \text{ or } -71

29^{2} \mod 100 = 29^{1} \times 29^{1} \mod 100 = 29 \times 29 = 841 \mod 100 = 41 \text{ or } -59

29^{4} \mod 100 = 29^{2} \times 29^{2} \mod 100 = 41 \times 41 = 1681 \mod 100 = 81 \text{ or } -19

29^{5} \mod 100 = 29^{4} \times 29^{1} \mod 100

= -19 \times 29 \mod 100
```

= -551 mod 100

 $= -51 \mod 100$

= 49

88⁷ mod 187 nesoacademy.org = 49

nesoacademy.org

Solve 3100 mod 29.

```
3^{1} \mod 29 = 3 mod 29 = 3 or -26.

3^{2} \mod 29 = 3^{1} \times 3^{1} \mod 29 = 3 x 3 mod 29 = 9 mod 29 = 9 or -20.

3^{4} \mod 29 = 3^{2} \times 3^{2} \mod 29 = 9 x 9 mod 29 = 81 mod 29 = 23 or -6.

3^{8} \mod 29 = 3^{4} \times 3^{4} \mod 29 = -6 x -6 mod 29 = 36 mod 29 = 7 or -22.

3^{16} \mod 29 = 3^{8} \times 3^{8} \mod 29 = 7 x 7 mod 29 = 49 mod 29 = 20 or -9.

3^{32} \mod 29 = 3^{16} \times 3^{16} \mod 29 = -9 x -9 mod 29 = 81 mod 29 = 23 or -6.

3^{64} \mod 29 = 3^{32} \times 3^{32} \mod 29 = -6 x -6 mod 29 = 36 mod 29 = 7 or -22.

3^{100} \mod 29 = 3^{64} \times 3^{32} \times 3^{4} \mod 29.

= 3^{100} \mod 29 = 252 mod 29

= 3^{100} \mod 29 = 20
```

 \bigoplus