Statistical Tests, Correlation and Regression

Math & Stats Tutorial
Day 6

Prabesh Dhakal 20 May 2019

REVIEW

- 1. Reviewed previous topics
- 2. Density Distribution
- 3. Process of Hypothesis Testing
- 4. p-Value
- 5. Chi-square Test

Statistics Tutorial Day 6

PLAN FOR TODAY

- 1. Critical Value/Rejection Region
- 2. Tails of tests
- 3. Central Limit Theorem
- 4. t-Test & F-test
- 5. Correlation

PROCESS FOR HYPOTHESIS TESTING

Step 1	Specify H_0 , H_1 , and an acceptable level of α (significance level)
Step 2	Define a sample-based test statistic and the <u>rejection region</u> for the specified ${\cal H}_0$
Step 3	Collect the sample data and calculate the test statistic
Step 4	Decide to either reject or fail to reject \boldsymbol{H}_0
Step 5	Interpret the results/make recommendation for action

Rejection Region/Critical Value

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278

Test: 1 tailed vs 2 tailed

One Tailed Test (Left Tail)	Two-Tailed Test	One Tailed Test (Right Tail)		
$H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$		
When population parameter is believed to be lower than the assumed one.	It determines whether the sample tested falls within or outside a certain range of values.	When population parameter is believed to be higher than the assumed one.		
Reject H_0 if test statistic < critical value	Reject H_0 if test statistic < critical value or test statistic > critical value	Reject H_0 if test statistic > critical value		

Statistics Tutorial Day 6

CENTRAL LIMIT THEOREM

Core Idea

Sample mean follows a normal distribution

$$F-Test$$

F-Test is used to **compare variance** of two groups and check if they are different from each other.

 H_0 : ratio of variance = 1

 H_1 : ratio of variance $\neq 1$

Assumption: data is normally distributed

Problem: very weak if data deviates from a normal distribution

Recommendation: use non-parametric tests (eg. Levine's Test)

F-Distribution

F Table for diff. alphas: http://www.socr.ucla.edu/Applets.dir/F Table.html

t-Test

t-Test is used to **compare means** of two groups and check if they are different from each other.

Assumption: data from both groups are sampled randomly from a normal distribution and have similar variance

Works well with smaller sample size (sweet spot: n = 20 to 30)

Test statistic:
$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_1^2 + \frac{s_2^2}{n_1} + \frac{s_2^2}{n_2}}}}$$

t - Test Decisions

t Distribution

t vs z distribution: https://www.geogebra.org/m/zxUzwgkH

R

- 1. Download the R file and Data File uploaded today
- 2. Save the files into one folder.
- 3. Open the R file.

PLAN FOR NEXT WEEK

That's it for today! :-)

Next week, we are going to discuss:

- 1. A few more tests (ANOVA ...)
- 2. Correlation and Regression

If you want to reach me, mail me at: prabesh.dhakal@stud.leuphana.de