Lecture 5

David Zynda

September 4, 2018

 $\epsilon = (T \cup B, (\succsim)_{i \in T \cup B})$

 $\mu: (T \cup B) \to (T \cup B)$

DA Algorithm (T-propsal)

- k proposals $\hat{P}^k: T \to B \cup \{\emptyset\}$
- k tentative accept $\hat{\mu}^k : B \to T \cup \{\emptyset\}$
- $\hat{\mu}^k = \hat{\mu}^{k+1}$

Definition: $\mu^* : (T \cup B) \to (T \cup B)$ is I-Optimal Stable match) if

- 1. μ^* B stable
- 2. $\mu^* \geq_I \mu$ for all stable μ

 $\mu^* >_I \mu$ if $\mu^* \geq_I \mu$ and for some $i \in I : \mu^*(i) \succsim_i \mu(i)$

Proposition: Suppose preferences are strict. Then for each $I \in \{T, B\}$: $\mu_{ID}^* : (T \cup B) \to (T \cup B)$ is an I-optimal stable match.

Definition: Say b is acheivable for t if there exists some stable match μ with $\mu(b) = t$.

Lemma 1:

In the T-proposal DA algorithm, the following holds for each k = 1, 2, ...: If $\hat{P}^k(t) = b$ and b is achievable for t, then $\hat{\mu}^k(b) = t$

Proof:

Suppose the result is not true. Then there exists some k such that:

- 1. for each l < k and each $t \in T$: if $\hat{P}^l(t) = b$ and b is acheivable for t, then $\hat{\mu}^l(b) = t$
- 2. There is some $t^* \in T$ such that $\hat{P}^k(t^*) = b^*$, b^* is acheivable for t^* and $\hat{\mu}^k(b^*) \neq t^*$

There is stable matching $\mu: (T \cup B) \to (T \cup B)$ with $\mu(t^*) = b^*$.

Now, $\hat{\mu}^k(b^*) \neq t^* \implies t^{**} = \hat{\mu}^k(b^*)$ and $t^* \neq t^{**}$

Observe $\mu(t^{**}) \neq b^*$

Will show: (t^{**}, b^*) blocks μ , contradicting the fact that μ is stable. $+t^{**} \succ_{b^*} \mu(b^*) + b^* \succsim_{t^{**}} \mu(t^{**})$

First

 $t^{**} \succ_{b^*} \mu(b^*) \implies \hat{P}^k(t^*) = \hat{P}^k(t^{**}) = b^*$

$$\hat{\mu}^k(b^*) = t^{**} \succ_{b^*} t^* = \mu(b^*)$$

Second

 $b^* \succsim_{t^{**}} \mu(t^{**})$

- observe that for each $l < k, \mu(t^{**}) \neq \hat{p}^l(t^{**})$
- if there were an $l \leq k$ such that $\hat{P}^l(t^{**}) = \mu(t^{**}) = b^{**}$, whoever is getting that offer b^{**} is acheivable to t^{**} by the fact that whoever got that offer is preferable.
- By (1) it must be the case that whoever got that offer $\hat{\mu}^l(\hat{\mu}(t^{**}) = b^{**}) = t^{**}$
- Its got to be the case by the DA Algorithm, $\hat{P}^{l+1}(t^{**}) = \mu(t^{**})$

- Then this implies $\hat{P}^k(t^{**}) = \mu(t^{**})$ but this cannot be
- We know on round k, $\hat{P}^{k}(t^{**}) = b^{*}$. We know that $\mu(t^{*}) = b^{*}$. So, that implies that $\mu(t^{**}) \neq b^{*}$ and $b^{*} \neq b^{**}$.

We know that $\hat{P}^k(t^{**}) \succsim_{t^{**}} b$ for $b \neq \{\hat{P}^l(t^{**}) : l = 1, 2, ..., k\}$ by the DA algorithm and strict preferences.

On round k make proposal to b^* : $b^* = \hat{P}^k(t^{**}) \succsim_{t^{**}} \mu(t^{**})$

Proof of Proposition for I = T

Fix a stable match $\mu: (T \cup B) \to (T \cup B)$. Required to prove: for each $t \in T$ agent, the $\mu_{TD}(t) \succsim_t \mu(t)$. Fix some $t \in T$ One possibility: if, for each k, $\hat{P}^k(t) \neq \mu(t)$. Does not choose best for whatever reason. In DA Algo (μ_{TD}) I make first offer to best, second to second best, so certainly here, $\mu_{TD}(t) \succ_t \mu(t)$

Suppose there is some k such that $\hat{P}^k(t) = \mu(t)$. By Lemma 2, $\hat{\mu}^k(\mu(t)) = t \implies \hat{P}^{k+1}(t) = \hat{P}^k(t)$. Then, $\hat{\mu}^{k+1}(\mu(t)) = t$

Under the DA Algorithm, this implies $\mu_{TD}(t) = \mu(t)$ and certainly $\mu_{TD}(t) \succsim_t \mu(t)$ and we are done. Strict preferences are important for the result.

Example 1

$$T = \{t_1, t_2, t_3\}$$
 and $B = \{b_1, b_2, b_3\}$

$$t_1:b_2\sim b_3\succ b_1\succ t_1$$

$$t_2:b_2\succ b_1\succ t_2\succ b_3$$

$$t_3:b_3\succ b_1\succ t_3\succ b_2$$

$$b_1: t_1 \succ t_2 \succ t_3 \succ b_1$$

$$b_2: t_1 \succ t_2 \succ b_2 \succ t_3$$

$$b_3: t_1 \succ t_3 \succ b_3 \succ t_2$$

If μ is stable and t_2 is matched,

$$\mu(t_2) \in \{b_2, b_1\}$$

If μ is stable and t_3 is matched,

$$\mu(t_3) \in \{b_3, b_1\}$$

Suppose that $\mu(t_2) = b_1$ then $\mu(t_3) = b_3 \implies \mu(t_1) = b_2$. Then, we have stable match 1.

Another possibility: $\mu(t_2) = b_2$. Then $\mu(t_3) = b_3$ and $\mu(t_1) = b_1$. But the (t_1, b_3) form a block, so that is not going to work.

So, if $\mu(t_2) = b_2$, it must be the case that $\mu(t_3) = b_1$ and $\mu(t_1) = b_3$. Then we have stable match 2.

In match 1, t_3 is pretty happy since he gets his best match. In match 2, t_2 gets his best. And, b_2 prefers match 1, but b_3 prefers match 2.

This can only happen because t_1 is indifferent.

Theorem (Knuth)

Suppose preferences are strict. If μ and μ' are stable matches, then $\mu >_T \mu'$ if and only if $\mu' >_B \mu$.

Definition Let $\mu': (T \cup B) \to (T \cup B)$ is an *I-Pessimal* stable match is:

- 1. it is stable
- 2. And $\mu \geq_I \mu'$ for all other stable matches μ .

Corollary

Suppose preferences are strict. Then μ_{ID} is J-pessimal.