STARKES STUDIUM.
PRIMA ZUKUNFT.

TECHNIK

WIRTSCHAFT

Autonome Systeme: Achitecture and Planning

Prof. Dr.-Ing. Raoul D. Zöllner

Campus Heilbronn

Planning Based on Reinforcement Learning (Chapter 10)

Book: Reinforcement Learning An

Introduction: second edition

R. S. Sutton & G. Barto

MIT press

Course: Deep RL course

Hugging Face – The AI community building the future.

Reinforcement Learning: Introduction

- Agent learns how to behave by interacting with the environment
- At each state $(s \square \in S)$
 - Agent takes an action $(a \square \in A)$
 - ► Transitions to state $(s(\square_{+1}) \in S)$
 - ightharpoonup Obtains a reward ($R\Box$)

Observability

- Full Observability:
 - Agent directly observes environment
 - $O_t = S_t^a = S_t^e$
 - Formally this is a MDP
- Partial Observability:
 - Agent indirectly observes environment
 - ▶ agent state ≠ environment state
 - Formally this is a POMDP

Elements of Reinforcement Learning

- Apart from the agent and the environment, there are four main sub-elements in RL system
 - Policy
 - Reward Signal
 - Value function
 - Model of environment

Policy

- Policy (π) → defines agents way of behaving at a given time
- Mapping from perceived states of the environment to actions to be taken in those states
- It is core of RL as it determines the behavior
- Policy may be stochastic specifying probabilities for each action

Policy:

If d <= brake safe distance: decelerate

else: maintain

TECHNIK

NFORMATIK

Reward Signal

- Reward signal defines the goal of a RL problem
 - maximization problem
 - minimization problem
- It determines the effectiveness of an action(good or bad)
- Reward can be sparse or continuous
- Policy can be altered based on the basis of reward

Action: lane_change (bad) reward: penalty because of collision

Action: follow (good) reward: positive reward

Value function

- Value function is a prediction of reward in long run
- Total amount of reward an agent can accumulate over the future starting from a state

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

- γ → discount factor; γ ∈ [0,1]
- \triangleright γ close to 0: Myopic (short-sighted) evaluation
- $ightharpoonup \gamma$ close to 1: Far-sighted evaluation
- We seek actions that result in states of highest value
- Value is more important than reward as they determine long run policy

Model of environment

- It mimics the behavior of environment
- Given a state and action, Model predicts
 - Next state
 - Next reward
- Model based RL algorithms:
 - Model of environment is used to predict the course of action in future states
 - Dynamics can be modeled or learned from experience
- Model free RL algorithms:
 - Operate in absence of complete knowledge of environment dynamics
 - Learn directly by experience or trial and error

Model based reinforcement-learning

- Used when dynamics of environment is not complex
- Advantages:
 - Dynamics is accurate and efficient
- Disadvantages:
 - Computationally intensive
- Algorithms:
 - Dynamic Programming: Solves Bellman equation iteratively
 - Monte Carlo Tree search (MCTS):
 - Search for action over the action sequences in the environment
 - Predict the outcome of action using the learned model

Model free reinforcement-learning

- Used when dynamics of environment are unknown or complex
- Advantages:
 - Less computationally intensive
 - Can learn directly from raw sensor data
- Disadvantages:
 - High variance
 - Slower convergence rate
- Algorithms:
 - Q-learning: uses a Q-Table that stores rewards for all state-action pairs
 - Deep-Q-Learning: uses neural networks to approximate Q-Table

Solution Methods for reinforcement-learning

- Policy-based methods: Learn a policy function directly
 - Deterministic Policy:
 - $a = \pi(s);$ will always return the same action given a state
 - Probabilistic Policy:
 - $\pi(a|s) = P[A|s]$; probability distribution over a set of actions given a state
- Value-based methods: Learns the value function mapping state to its value

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

The policy then will select states with highest value

Two types of value-based methods

State Value function

For each state.

the state-value function outputs
the expected return
if the agent starts in that state
and then follows the policy forever after.

Action value function

For each state and action,

the action-value function outputs
the expected return
if the agent starts in that state
and takes the action
and then follows the
policy forever after.

Link between value-function and policy:

$$\pi^*(s) = rg \max_a Q^*(s,a)$$
 Choose action with maximum value

Path Planning problem

- Robot starts at S
- ▶ Destination → G
- Objective:
 - Planning
 - Obstacle Avoidance
- Actions:
 - ► Up ↑
 - ▶ Down ↓
 - ► Left ←
 - ► Right →

0	1	2
3	4	5
6	7	8

State Indexing

Q-Learning

Step 1:

- Initialize Q arbitrarily, e.g Q = 0 for all states, actions
- discount factor = 0.99

Step 2:

- Choose action using epsilon greedy:
 - If epsilon is big, choose a random action
 - Otherwise, choose action with maximum value

Step 3:

- Perform action:
 - Observe Reward
 - Transition to next state

Q-Learning

Step 4:

Update Q:

- Termination condition:
 - reached goal or reached 5 steps

Solution: Step 1

- Initialize Q-Table with 0
- Set rewards
 - ► -5; if obstacle
 - ► 10; if goal
 - ▶ 1; otherwise
- $ightharpoonup \gamma = 1$
- α = 0.5

	↑	\	←	\rightarrow
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0
7	0	0	0	0
8	0	0	0	0

Solution: Step 2 & Step 3

- Choose action using E-greedy
 - Initialize € with 1
 - generate a random number, r in (0,1)
 - action:
 - ▶ random; if $r < \epsilon$
 - with maximum Q-value; otherwise

- reward = 1
- Next state → state 1

0	1	2
3	4	5
6	7	8

S	→	()
		G

random action: go right

Solution: Step 4

Update Q-Table using

TD Error

- Q(0,right) = 0 + 0.5(1 + 1 * 0 0) = 0.5
- Update epsilon using epsilon decay
- Check termination condition:
 - end episode ; if true
 - ► repeat the steps → otherwise

	↑	\downarrow	←	\longrightarrow
0	0	0	0	0.5
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0
7	0	0	0	0
8	0	0	0	0

Repeat in next state

0	1	2
3	4	5
6	7	8

Q(1,down) = 0 + 0.5(-5 + 1 * 0 - 0) = -0.5

	↑	\downarrow	←	\rightarrow
0	0	0	0	0.1
1	0	-2.5	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0
7	0	0	0	0
8	0	0	0	0

Q-Table after 10 episodes

Optimal Policy

	↑	\	←	\rightarrow
0	0	7.3	0	3.6
1	0	-3.6	6.2	-4
2	0	0.94	4.4	0.9
3	4.9	8.3	-4	-0.9
4	3.2	5.4	5.7	0.75
5	-3	0	-3.8	0
6	0.9	0	0	8.2
7	0.22	0	2	9.4
8	0	0	0	0

Monte Carlo Approach

- Learning at the end of episode
- Take actions using epsilon-greedy until the episode ends
- Update the Value-function using:

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$
New value of state t Former estimation of value of state t (= Expected return starting at that state) Former estimation of value of state t timestep t (= Expected return starting at that state)

 $G \square$ is the cumulative reward

$$G \square = R \square + \gamma R \square_{+1} + \gamma^2 R \square_{+2} + \dots$$

Monte Carlo Approach Solution

S

6

G

$$R = 1$$

$$R = -5$$

$$R = 1$$

•	$G_0 =$	1+	-5 -	+ 1	+	1	+ 1	+	10	= 9
---	---------	----	------	-----	---	---	-----	---	----	-----

- $V(S_0) = V(S_0) + \alpha * [G_0 V(S_0)]$
- $V(S_0) = 0 + 0.5 * [9 0] = 4.5$
- Similarly, V can be updated for all states
- Then, the state with maximum V will be selected for optimal policy

S	1	2
3	4	5
6	7 _	G

$$R = 1$$

$$R = 10$$

Deep-Q-Network (DQN)

- ► The Q-Table is approximated as a neural network
- Good for large state spaces

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma max_a Q(S_{t+1}, a) - Q(S_t, A_t)]$$

New Q-value Q-value Rate Reward optimal Q-value of next state Pormer Q-value estimation

TD Target

TD Error

Deep-Q-Network (DQN)

DQN Algorithm

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Sampling

Training

Assignment

Solve the path planning problem using DQN

