El Método de los Elementos Finitos

Rafa Rodríguez Galván

20 de marzo de 2018

Plan

- Formulación débil de EDP
- Buen planteamiento del problema
- Aproximación mediante el método de Galerkin
- Estimaciones de error para el método de Galerkin
- El método de los elementos finitos
- Implementación en el ordenador

Conocimientos previos

Lo ideal sería tener una idea muy general sobre...

- Qué es un espacio de Hilbert
- Qué es la formulación variacional de una EDP

Formulación variacional

Un problema modelo: dado $\Omega \subset \mathbb{R}^n$, hallar $u \in V := C^2(\Omega)$ tal que

$$\begin{cases} u - \Delta u = f & \text{en } \Omega, \\ u|_{\partial\Omega} = 0. \end{cases}$$

Multiplicando por $v \in C^2(\Omega)$ e integrando por partes:

$$\int_{\Omega} u \, v + \int_{\Omega} \nabla u \nabla v = \int_{\Omega} f \, v \quad \forall v \in V.$$

Problema variacional: hallar $u \in V := \{u \in C^1(\Omega), u|_{\partial\Omega} = 0\}$ tal que

(P)
$$a(u,v) = F(v) \quad \forall v \in V,$$

donde
$$a(u, v) = \int_{\Omega} u \, v + \int_{\Omega} \nabla u \nabla v \quad \mathsf{y} \quad F(v) = \int_{\Omega} f \, v.$$

- Problema mal planteado en $V \sim C^2(\Omega)$ o $V \sim C^1(\Omega)$.
- **Idea**: tomar un espacio más amplio (que contiene a $C^1(\Omega)$):

$$V:=H_0^1(\Omega).$$

Buen planteamiento de problemas de

contorno

Buen planteamiento de la formulación variacional

Problema bien planteado en el sentido de Hadamard:

- Existe una única solución
- Depende continuamente de los datos

Teorema Lax-Milgram

Condición suficiente para que el problema (P) esté bien planteado:

- V espacio de Hilbert
- $a(\cdot, \cdot)$ bilineal, continua, coerciva
- $F(\cdot)$ lineal continua (es decir, $F \in V'$)

Problema aproximado

Dado $V_h \subset V$ finito-dimensional, hallar $u_h \in V_h$ tal que:

$$(P_h) a(u_h, v) = F(v) \quad \forall v_h \in V_h.$$

Resultados ([BS08], secciones 2.5, 2.8):

- Teorema: \exists ! solución de (P_h)
- Proposición: el error es a-ortogonal a V_h
- Lema de Céa: u_h minimiza el error (en norma de energía, o sea norma en V):

$$\|u-u_h\|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \|u-v\|_V,$$

siendo

- C la constante de continuidad y
- α la constante de coercividad.
- Si C "grande" o α "pequeño" \Rightarrow problemas!!

Método de Galerkin

Dado $V_h \subset V$ finito-dimensional, hallar $u_h \in V_h$ tal que:

$$(P_h) a(u_h, v) = F(v) \forall v_h \in V_h.$$

Idea:

- Fijar una base $\{\varphi_i\}_{i=1}^N$ de V_h .
- Entonces, (P_h) se convierte en un sistema lineal de ecuaciones

$$AU = b$$

• El vector U contiene las coordenadas de la solución aproximada u_h en la base $\{\varphi_i\}_{i=1}^N$:

$$u_h(\mathbf{x}) = \sum_{i=1}^N U_i \varphi_i(\mathbf{x}) \quad \forall \mathbf{x} \in \Omega.$$

∃! solución del sistema anterior

El método de los elementos Finitos

El método de los elementos Finitos

Bibliografía

- Ern-Guermond [EG04], capítulo 1
- Brenner-Scott [BS08], capítulo 3
- G. Allaire [All07], capítulo 6

El método de los elementos Finitos

Idea:

1 Definir una «triangulación» (un mallado de Ω)

$$\mathcal{T}_h = \{K_i\}_{i=1}^N$$
 tal que $\Omega \simeq \bigcup_{i=1}^n K_i$

- **2** En cada *elemento*, K, aproximar la solución por un polinomio v_h^K
- lacktriangle Definir un espacio global V_h finito-dimensional tal que

(usualmente,
$$V_h \subset C(\overline{\Omega})$$
)

$$\forall v_h \in V_h, \quad v_h|_K = v_h^K$$

- \bigcirc Aproximar la solución en V_h mediante el método de Galerkin
- Lema de Céa + Error en interpolación polinómica

⇒ Estimaciones de error para el MEF.

Subsection 1

Mallados o «triangulaciones»

Mallado de Ω

Supondremos:

$$\Omega = \cup_{i=1}^N \mathcal{K}_i, \quad \mathring{\mathcal{K}}_i \cap \mathring{\mathcal{K}}_j = \emptyset, \ i \neq j, \quad \mathcal{K}_i, \mathcal{K}_j \in \mathcal{T}_h,$$
 donde \mathcal{K}_i ...
$$\begin{cases} \text{1d: intervalos} \\ \text{2d: polígonos (usualmente triángulos o rectángulos)} \\ \text{3d: poliedros (usualmente tetraedros o prismas)} \end{cases}$$

• Todo $K \in \mathcal{T}_h$ se puede obtener como transformación afín de un elemento de referencia \widehat{K} :

$$T_K:\widehat{K}\to K$$

- Hipótesis: «elementos geométricamente conformes»¹ Dados dos elementos K_i , K_i ($i \neq j$), entonces $K_i \cap K_i$ es:
 - O bien vacío
 - O bien un vértice, un lado o una cara común

¹Ver e.g [EG04]. Hipótesis fundamental para elementos finitos continuos

Subsection 2

Aproximación local por polinomios

Definición abstracta de elemento finito

Definition (Ciarlet [Cia78], Ern-Guermond [EG04])

Un Elemento finito en \mathbb{R}^n es un triple (K, P, Σ) tal que:

- (i) $K = \text{compacto de } \mathbb{R}^n \text{ con interior no vacío y frontera lipschtiziana}$
- (ii) P = espacio de polinomios en K de dimensión N_p
- (iii) $\Sigma = {\sigma_1, \sigma_2, ..., \sigma_{N_n}} \subset V'$ tales que la aplicación lineal

$$\sigma: P \longrightarrow \mathbb{R}^{N_p},$$
 $q \longmapsto \sigma(q) = (\sigma_1(q), \sigma_2(q), ..., \sigma_{N_p}(q))$

es biyectiva. Las formas lineales $\{\sigma_1, \sigma_2, ..., \sigma_{N_p}\}$ se llaman grados de libertad locales

Observación:

En ocasiones (por ejemplo [Cia78]) la biyectividad de σ no se incluye en la definición de elemento finito. En ese caso, es una propiedad adicional y a los elementos que la verifican se les llama "unisolventes".

Elementos finitos de Lagrange

Definition

 (K, P, Σ) es un elemento finito de Lagrange si sus grados de libertad están definidos de las siguiente forma:

$$\sigma_i(p) := p(a_i), \quad \forall i = 1, ..., N_p,$$

donde $\{a_1,...,a_{N_p}\}\subset K$ es un conjunto de puntos llamados «**nodos**»

Proposition

- **1** Existe una base $\{p_1, ..., p_{N_p}\}$ de P tal que $\sigma_i(p_i) = \delta_{ij}$
 - $\hookrightarrow \textit{funciones base locales ("local shape functions") del elemento finito}$
- ② Todo $p \in P$ verifica: $p(x) = \sum_{i=1}^{N_p} \sigma_i(p) p_i(x)$.
 - Demostración 1: Sean $p_i(x)$ las funciones base de interpolación de Lagrange en el soporte $\{a_1, \ldots, a_{N_n}\}$. Entones $\sigma_i(p_i) = p_i(a_i) = \delta_{ij}$
 - Demostración 2: Consecuencia directa de la biyectividad de σ .

Observación: La demostración 2 significa que esta proposición es válida para cualquier elemento finito (no necesariamente de Lagrange).

Elementos finitos de Legendre

Polinomios de Legendre:

Definición recursiva:

$$L_0(x) = 1$$
, $L_1(x) = x$ $L_k(x) = \frac{2k-1}{k}L_{k-1}(x) - \frac{k-1}{k}L_{k-2}(x)$

- $\{L_0, L_1, \dots, L_n\}$ base de $\mathbb{P}_n = \{\text{polinomios de grado } n\}$
- Ortogonalidad en $\widehat{K} = [-1, 1]$:

$$\int_{-1}^{1} L_i(x)L_j(x) = 2/(2i+1)\delta_{ij}$$

Elementos finitos con bases de Legendre

Definition

 (K, P, Σ) es un elemento finito de Legendre si sus grados de libertad están definidos de la siguiente forma:

$$\sigma_i(p) := \alpha_i, \quad \forall i = 0, ..., N_p,$$

donde $(\alpha_0,...,\alpha_{N_p}) \in \mathbb{R}^{N_p+1}$ son las coordenadas de p(x) en la base de Legendre $\{L_0(x),...,L_{N_p}(x)\}$

Numerical analysis and optimization an introduction to mathematical modelling and numerical simulation.

Oxford University Press, Oxford, 2007.

The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer-Verlag, third edition edition, 2008.

The Finite Element Method for Elliptic Problems.

North-Holland, Amsterdam, 1978.

A. Ern and J.-L. Guermond.
Theory and Practice of Finite Elements.

Springer, 2004.