Linear Regression, part 2

March 23

- Today
 - Finish up 1 topic relating to simple regression
 - Review some previously-discussed concepts
 - Lecture on multiple regression
- Tomorrow
 - Practical
- Homework
 - due in 2 weeks (April 10)
- Next week
 - no lecture
 - Practical (more practice with regression)
- Next lecture
 - April 10
 - no practical that week

March 23

- End-of-quarter dates
 - Final Practical: May 12 (used for review)
 - Exam: May 15
 - Final assignment available: May 15
 - Deadline final assignment: May 29
 - Final grades: June 12
 - Resit final assignment available: June 12
 - ideally completed in pairs
 - Resit deadline for final assignment/Resit exam day: June
 26
 - Resit final grades: July 6
- Resit of whole course is also available next year

What happens when you violate assumptions?

- Model doesn't generalize
- What can you do?
 - residuals
 - transformation of data? (e.g., take the log values of one [or more] of your variables)
 - must transform ALL values of the variable
 - choose a different method
 - highly influential points
 - if good theoretical reason, remove
 - run model with and without the outlier

To exclude or not to exclude

Nonlinear Relationships

Fitting a Polynomial Curve In RStudio

Review of R²

Total Sum of Squares (SSt) - Residual Sum of Squares (SSr) = Model Sum of Squares (SSm)

Model Sum of Squares
Total Sum of Squares

<u>Explained Variance</u> = R² Total Variance

 $R^2 \times 100 = Percentage Explained Variance (so <math>R^2$ of 1 would represent perfect explanation)

Review of F

Total Sum of Squares (SSt)

Residual Sum of Squares (SSr) = Model Sum of Squares (SSm)

Residual Mean Squares (MSr)

Mean Squares for the Model (MSm)

Mean Squares for the Model Residual Mean Squares

Explained Variance Unexplained Variance

R² versus F

- R²
 - explained variance / total variance
 - measure of effect size
 - measure of fit of regression line to data
- F
 - explained variance / unexplained variance
 - test statistic
 - used to determine whether the fit of regression line to data is significant

Review of test statistics & statistical significance

- Test statistics (e.g., F, t) compare explained to unexplained variance
- The probabilities of obtaining particular values of test statistics under the null hypothesis are known
 - Assume there is no pattern in the population (=null hypothesis)
 - We take a random sample from the population
 - Most likely, the random sample will have no pattern in it either
 - But, under randomness, it COULD

Review of test statistics & statistical significance

- We compute the ratio of explained to unexplained variance (F)
 - If there is a strong effect in the sample, F will be high
 - You are unlikely to get that high of an F (that is, that high of a ratio of explained to unexplained variance) if there's no pattern in the population

Mathematicians have figured out the probabilities for every possible value of F (see the F distribution) assuming no pattern in the population

Review of test statistics & statistical significance

- Statistical significance
 - When the probability (p-value) of a test statistic falls below a threshold (conventionally 0.05)
 - Less than 5% chance you would get a random sample with this high of a ratio of explained to unexplained variance in it if the population you sampled from has no such pattern in it

Review of t Statistic

- Like F, t also compares explained to unexplained variance
- But we use t to examine whether the betas are significantly different from 0
 - explained variance: difference between a beta and 0
 - unexplained variance: how variable the value of beta would see across different samples
 - standard deviation of the sampling distribution
 - estimated via standard error

Role of R², F, and t in Im() output

summary(albumSales.1)

>Coefficients:

		Std. Error	1	
				<2e-16 ***
adverts	9.612e-02	9.632e-03	9.979	<2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 65.99 on 198 degrees of freedom

Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313

F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16

What do we actually use linear regression for

- Prediction
- Stating that there is a relationship between two variables
 - but isn't this what correlation does?
 - true power of linear regression is when there are more than one predictor variable
 - multiple regression

Multiple Regression

- What if we wanted to predict album sales based on
 - amount of money spent on advertising
 - how often the song was played on the radio
- Our regression equation changes

```
Outcome_i = b_0 + b_1 * Predictor_{1i} + b_2 * Predictor_{2i} ... + b_n Predictor_{ni}
```

- We are no longer dealing with a line!
 - if n=2, then we have a regression <u>surface</u>
 - if n>2, difficult to visualize

Additional Assumption of Multiple Regression: Problem of Multicollinearity

- multicollinearity: when your predictors are correlated with each other
 - increases the standard error of the betas
 - your sample's betas less likely to be representative of the population's betas
 - difficult to know which predictors are important

Assessing Multicollinearity

```
vif(name_of_model)
```

- returns VIF values for each predictor
- problems:
 - largest VIF > 10
 - average VIF is substantially > 1
- if problems: use cor() to check which pairwise combinations of predictors are collinear
 - Pearson's r > 0.8 indicates highly correlated

R² with Multiple Regression

- SSt, SSr, SSm calculated similarly for multiple regression
- Multiple R² goes up with more predictors
 - adding predictors, even meaningless ones, will eat up unexplained variance randomly by chance
- We we also must pay attention to Adjusted R²
 - Penalizes you for having many predictors
 - Tells us how much explained variance we would expect in the population

Significance in Multiple Regression

- Use overall p-value the same way as in simple regression
- Now the p-values of the betas matter!
 - indicate whether each predictor is significant
 - ...we still don't care much about the intercept's p-value though

Multiple Regression in RStudio

The problem of multiple possible models

- another possible predictor for album sales
 - physical attractiveness of the band
- possible models
 - sales ~ adverts + airplay + attract
 - sales ~ adverts + airplay
 - sales ~ airplay + attract
 - sales ~ adverts + attract
 - sales ~ adverts

— ...

The problem of multiple possible models

- Bigger is not always better
 - Remember R² penalty
- We need a process for finding a model containing the "best" combination of predictors
 - method of progressing through various models
 - method of comparing models to know which one is better

Methods of Model Selection

- Disagreement across authors/statisticians
- Hierarchical (the one advocated by the book)
 - model 1 includes predictors shown meaningful by previous research
 - model 2 includes additional predictors you hypothesize to be important
 - 3. models 3+ remove "statistically redundant" predictors
- Backward Step-wise
 - 1. model 1 contains all predictors
 - models 2+ remove predictors 1-by-1 until you arrive at a "best" model
- Put all predictors in and leave them there!

Methods of Model Selection

- Our approach
 - Combination of hierarchical and backward stepwise
 - model 1: we'll start with all predictors that we consider to be (potentially) theoretically important
 - models 2+: we'll remove 1 predictor at a time, considering whether the new model is an improvement over the previous one

Akaike Information Criterion (AIC)

- measure of fit that penalizes the model for having more predictors
 - similar to multiple R²
- bigger AIC values indicate worse fit
- We use AIC to compare different models
 - these models must have the same data

Comparing models

- drop1(name_of_model, test="F")
 - returns information about AIC of current model and different models if you were to drop particular predictors
- What to consider
 - does AIC drop (people sometimes say by more than 2)?
 - is the predictor non-significant?
 - does the predictor make theoretical sense?

Model Selection in RStudio

Reporting a Linear Regression

- Reproduce the information from the summary() function regarding the betas in a new table, and include this table as an appendix
 - include coefficients, SEs, t scores, and p-values
- In the text itself:
 - The final model's formula was sales ~ adverts + airplay + attract. All main effects were very significant: p<0.001, and the model was highly significant overall ($F_{3,196}$ =129.5, p<0.001) and achieved a high variance explanation (mult. R^2 =0.6647, adj. R^2 =0.6595). All regression coefficients, as well as their standard errors, t scores, and p-values, are provided in the appendix, and checking of model assumptions revealed no problems.