Algorithm	Description	Lecture
	Terrain Generation Algorithms	
Prim's	For building perfect mazes, in a grid choose a random frontier to add to	4
Algorithm	the spanning tree eventually creating the maze (or spanning tree)	
Aldous-	Same as Prim's but add longer segments which tends to reduce	4
Broder/Wilson	branching. Take a random walk and connect it without cycles	
Recursive	Can get good mountain profiles, so it is good for 2D maps (left to right	5
Midpoint	movement). Choose a random midpoint on a random line and connect	
Bisection	the ends of the line to a point on the normal at the midpoint. Repeat	
Perlin Noise	For terrain generation. Pseudo random. Make a unit square, and find	5
	"random" vectors at the corners of the square. Use a fade function on	
	the relative location of the point and then linearly interpolate (can use a	
	s curve as well)	
	Game Physics Algorithms	
Euler	Basic physics to calculate the new position of an object given velocity	6
Integration	and acceleration	
Verlet	Uses the previous point's position to calculate the new position, doesn't	10
Integration	use velocity directly. $P_{i+1} = P_i + (P_i - P_{i-1}) * \frac{\Delta t_i}{\Delta t_{i+1}} + a * \Delta t_i^2$	
	Collisions	
Ritter's	Heuristic for finding a bounding circle. O(n)	7
Welzl's	Uses double layer of recursion to also find the minimum enclosing circle	8
Minkowski Sum	X+Y: {a+b a \in X, b \in Y}	8
Willikowski Sulli	Why is it useful again?	8
Minkowski	Base for collision detection between convex shapes. X-Y (same as	8
Difference	above). If the point (0,0) is included in the convex hull of the difference	
Difference	then the two objects intersect	
Gilbert-Johnson-	Algorithm to find if the point (0,0) lies in the Minkowski difference.	9
Keerthi	Relies on dot products to figure out the direction and closest point.	
Binary Search	Use the binary search to find at what time should the object be	9
for	rewinded to so that it does not penetrate.	
Interpenetration	rewinded to 30 that it does not penetrate.	
merpenetration	Pathfinding	
Manhattan	$d(p,q) = \Delta x + \Delta y $	11
Distance		
Hexagonal	$d(p,q) = \max(\Delta x , \Delta y), \text{ if } \Delta x \neq \Delta y$	11
Distance	$d(p,q) = \Delta x + \Delta y $	
Dijkstra's	Determine the single source shortest path but is super inefficient	11
A*	Combines greedy and dijkstra's apparently. Optimal compared to either.	11
	Note the heuristic is uses can't be an overestimate of minimum distance	
Hierarchical	More efficient for searching large spaces and in practice 2-3 levels are	12
Path-Finding	enough	
Ramer-Douglas-	Similar path to A* but uses fewer points to get to the destination. Also it	12
Peucker	is recursive	
Rapidly	A heuristic algorithm which is fast and accommodates a lot of variability.	12
Exploring	Although it is not guaranteed to work but you can iterate it so that it	
Random Tree	works. (is fast)	
	1	1

Shortest Path Roadmap (Reduced Visibility Graph)	Used to find a path in a continuous space. Uses visibility to find the closes reflex vertex to go to. Some drawbacks are that it is expensive and paths touch the obstacles	13
Brute Force		13
Triangulation		
Ear Cutting	Cut ears off polygons since every polygon has two polygons.	13
Delaunay	Another triangulation algorithm that tends to avoid thin triangles.	14
Hertel	Optimal for triangulation, by connecting diagonals to the reflex vertices	14
Mehlhorn		
Marshmellow	Spacefilling volumes, start growing marshmellows until the encounter	14
	other marshmellows or reach walls or can't grow anymore	
Rotating	Diameter calculation, gives us diameter of a convex polygon	15
Calipers		
Silver's	Uses a reservation based approaching doing pathfinding in an extra axis	15
	where that axis is time	
	Visibility	
Bresenham's	Line drawing?	16
Art Gallery	Want to place the minimum number of cameras that cover the entire	16
Theorem	area. The proof involves a three colouring and putting a camera on a	
	vertex inside all triangles of that colour	
Asano's	Planar/angular sweet algorithm to determine visibility and works with	16
	polygons with hole and arbitrary line segments	
	Artificial Intelligence	
Decision Trees	Use trees with if statements or something	17
Finite State	FSM bra	17
Machines		
Hierarchical	Better organization of an FSM	17
FSM		
Behaviour Trees	Like a combo of FSM and Decision Trees	17
Boids: Craig	To model a flock of birds and it models the steering behaviours	18
Reynolds		
GOAP	I hopefully should know this stuff	20
Hierarchical	Subgoals and such and it can be static or dynamic	
Task Network		
(HTN)		
	Map Exploration	140
Yamauchi	Exploration based on pursuing closest frontiers.	19
Chowdry	Exhaustive exploration	19
5	Other	
Position History	Solve dead reckoning or something	23
Based Dead		
Reckoning		