DS501: Deep Learning

Prof. Randy Paffenroth rcpaffenroth@wpi.edu

Worcester Polytechnic Institute

Announcements

- The grader just finished her part of the grading for Case Study 3.
 - Grades will be posted soon.
- Case Study 4 is due next class!
 - I am excited to hear all of the 90 second pitches :-)
- The final exam is the next class!
- Anything I can help with?
 - We will have a review session today.

Today

- I plan to spend an hour talking about deep learning
 - I know that several of you expressed interest in this topic :-)
 - And this is one of the areas in which my students and I do research.
- Then I plan to spend the rest of the class reviewing for the final.
 - We covered a lot of stuff in the second half of the class and I want to make that we have time to answer all of your questions!

But first, you get to grade me!

- I really appreciate your feedback on the class.
 - It is best way for me to improve the class!
- In particular, there is a place on the form for written comments, and I deeply appreciate whatever you have to say!

Feature Engineering

- We have talked about this a few times.
 - Perhaps the data you are given in not the best data for making the predictions you want to make.
- The last question on Case Study 3 was a prime example.
 - How do you find features that make prediction easier?

Is this problem ubiquitous?

Coming up with features is difficult, timeconsuming, requires expert knowledge. "Applied machine learning" is basically feature engineering.

— Andrew Ng, Machine Learning and Al via

Brain simulations

Feature engineering

How do you do it? What are examples?

Y X X

P C A

Factor oraly 4.5

Noinalitation

T C A

sum regults =)

Features

extreral Mada

extreral Mada

- nithimaries

Deep learning

 Deep learning (deep structured) learning, hierarchical learning or deep machine learning) is a branch of machine learning based on a set of algorithms that attempt to model highlevel abstractions in data by using multiple processing layers, with complex structures or otherwise, composed of multiple non-linear transformations.

https://en.wikipedia.org/wiki/Deep_learning

By No machine-readable author provided. Gengiskanhg assumed (based on copyright claims). - No machine-readable source provided. Own work assumed (based on copyright claims)., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=442506

Deep learning: More specifically

- 1) Deep learning is a collection of different techniques, not a single technique.
- Deep learning aims to automatically learn feature hierarchies from data.
 - As opposed to "by hand" feature engineering.
- 3) Generally, deep learning is based on artificial neural networks.
 - Though that is not always true, depending on what an "artificial neural network" really is.

Is deep learning supervised or unsupervised?

Bnth Joe detection Learning Ahost Falos is Unsupprissed learning a Bout Joos Face is supervised

The idea in one picture

Probably looks familiar

Ok, we learned this already, right?

http://bytefish.de/static/images/blog/eigenfaces/subplot_eigenfaces.png

Non-linearity

Non-linear layer

What is f?

Sigmoid (is one popular choice)!

$$f(x) = \frac{1}{1 + e^{-x}}$$

Huh!? Why sigmoid?

One reason – The Universal Approximation Theorem

Let $\varphi(\cdot)$ be a nonconstant, bounded, and monotonically-increasing continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of continuous functions on I_m is denoted by $C(I_m)$. Then, given any function $f \in C(I_m)$ and $\varepsilon > 0$, there exists an integer N, real constants $v_i, b_i \in \mathbb{R}$ and real vectors $w_i \in \mathbb{R}^m$, where $i=1,\cdots,N$, such that we may define:

$$F(x) = \sum_{i=1}^{N} v_i \varphi\left(w_i^T x + b_i\right)$$

as an approximate realization of the function f where f is independent of arphi; that is,

$$|F(x) - f(x)| < \varepsilon$$

for all $x \in I_m$. In other words, functions of the form F(x) are dense in $C(I_m)$.

What makes it "deep" learning deep?

Just do it multiple times!

https://nivdul.wordpress.com/2015/11/17/exploring-deep-learning-with-li-zhe/

Different types of Deep Learning architectures (there are many :-)

- Convolutional Neural Network (CNN)
- Recurrent Neural Network
- Deep auto-encoders

Convolutional Neural Network

https://www.clarifai.com/technology

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45659236

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/in dex.php?curid=45673581

Recurrent Neural Network

Auto-encoders... the one I am most interested in.

- Did you ever run a compression algorithm on an already compressed file?
 - That is the idea :-)

Auto-encoders... the one I am most interested in.

Nice example

http://acsweb.ucsd.edu/~wfedus/pdf/courses/291_assignment3.pdf

Leading edge... research I am interested in!

V.S.

"Lle hlle swissroll" by Olivier Grisel - Generated using the Modular Data Processing toolkit and matplotlib.. Licensed under Creative Commons Attribution 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Lle_hlle_swissroll.png#mediaviewer/File:Lle_hlle_swissroll.png

Python Libraries

- Low level
 - Theano (http://deeplearning.net/software/theano/)
- High level
 - Pylearn2 (http://deeplearning.net/software/pylearn2/)
 - Keras (http://keras.io/)

- Get it :-)?

Lasagne (
 http://lasagne.readthedocs.org/en/latest/user/tutorial.html#before-we-start
)