Theory of Computation, Fall 2023 Assignment 9 Solutions

Q1. Define $g: \mathcal{N} \times \mathcal{N} \to \mathcal{N}$ to be

$$g(m,n) = f(f(\ldots f(n)\ldots)),$$

where there are m compositions. g can also be written as follows.

$$g(0,n) = f(n)$$
$$g(m+1,n) = f(g(m,n))$$

Since f is primitive recursive, so is g.

We have that F(n) = g(n, n). That is,

$$F(n) = g(id_{1,1}(n), id_{1,1}(n)).$$

F is the composition of primitive recursive functions. Therefore, F is primitive recursive.

Q2. Fix an arbitrary $k \geq 2$. For $i \in [1, k]$, define P_i as follows.

$$P_i(n_1, \dots, n_k) = \begin{cases} 1, & \text{if } (n_i = \max\{n_1, \dots, n_k\}) \land (\forall j < i, n_j \neq \max\{n_1, \dots, n_k\}) \\ 0, & \text{otherwise} \end{cases}$$

 P_i is a primitive recursive predicate since P_i can also be written as

$$P_i(n_1,\ldots,n_k) = (n_i > n_1) \land \cdots \land (n_i > n_{i-1}) \land (n_i \ge n_{i+1}) \land \cdots \land (n_i \ge n_k)$$

Note that

$$\varphi_k(n_1,\ldots,n_k) = \sum_{i=1}^k P_i(n_1,\ldots,n_k) \cdot n_i$$

That is, φ_k is a composition of primitive recursive functions. Thus φ_k is primitive recursive.

Q3. Since $A \in \mathcal{P}$, A is decided by some deterministic Turing machine M_A with polynomial running time.

Construct a deterministic Turing machine $M_{\overline{A}}$ as follows.

 $M_{\overline{A}} = \text{on input } w$:

- 1. Run M_A on w
- 2. If M_A accepts w
- 3. Reject w
- 4. Else $(M_A \text{ rejects } w)$
- 5. Accept w

It is easy to see that $M_{\overline{A}}$ decides \overline{A} in polynomial time. Therefore, $\overline{A} \in \mathcal{P}$.

- Q4. By the conclusion of Q3, we know that $A \in \mathcal{P}$ implies that $\overline{A} \in P$. Since $\mathcal{P} \subseteq \mathcal{NP}$, we have $A \in \mathcal{NP}$ and $\overline{A} \in \mathcal{NP}$. Therefore, $A \in \mathcal{NP} \cap \text{co-}\mathcal{NP}$.
- Q5. The following Turing machine V is a polynomial-time verifier for L.

V = on input "G":

- 1. If p does not represent a cycle in G
- 2. reject
- 3. traverse along p
- 4. accept if p visit every vertex of G exactly once, and reject otherwise