

ω-Automata

	Deter- ministic	Non-deter- ministic
Büchi		V
Muller	\checkmark	\checkmark
Rabin	\checkmark	V
Streett		V
Parity	√	V

Chomsky Hierarchy

Grammar Type Language Class		Automata Class	http://en.wikipedia.org/
0 (unrestricted)	Recursivly enumerable	Turing Machines	wiki/Omega-regular_languag
1 (context-sensitive)	Context-sensitive	Linear bounded Turing machines	
2 (context-free)	Context-free	Pushdown automata	
3 Regular Grammars <=	Regular Languages -> <=	Finite State Automata eq. E-NFA eq. NFA eq. Hopcroft (2001), p. 91 (105)	Regular Expressions =>

A: regular language B, C: ω -regular language L is a ω -regular language if • L = A^{ω}

- L = AB
- L = B∪C

ge