LAMINATED GLASS HAVING PHOTOCHROMIC COLORED REGION

Publication number: JP3115142 (A)

Also published as:
Publication date: 1991-05-16

Publication date: 1991-05-16 [] JP2986813 (B2)
Inventor(s): ITO HITOSHI; KAWASAKI EIJI; MURAYAMA TETSUO; MAEDA

SHUICHI; MITSUHASHI KAZUO

Applicant(s): NISSAN MOTOR; MITSUBISHI CHEM IND

Classification:

- international: B32B17/06; B32B7/02; B32B17/10; B60J1/00; C03C27/12;

B32B7/02; B32B17/06; B60J1/00; C03C27/12; (IPC1-

7): B32B7/02; B32B17/06; C03C27/12

- European: B32B17/10E28

Application number: JP19890252371 19890929 **Priority number(s):** JP19890252371 19890929

Abstract of JP 3115142 (A)

PURPOSE:To obtain the laminated glass with the boundary between the colored and uncolored regions kept unclear by providing a concn. gradient around the boundary between the region having a photochromic composition of a transparent support interposed between two transparent supports and the region free of the composition.

the region free of the composition. CONSTITUTION:A polyvinyl butyral sheet 3 and a polyvinyl butyral sheet 4 contg. 0.5wt.% photochromic composition are interposed between the transparent supports 1 of inorg. glass to form the laminated glass. In this case, the tapered sheet 4 is welded to the sheet 3 at the weld zone (B region).; When the content of the photochromic composition of the sheet 4 is controlled to an appropriate value (preferably to 0.01-5.0wt.%) and the thickness of the sheet 4 to an appropriate value (preferably to 10-400mum), the visible light transmittance is continuously increased at the region B. Namely, the laminated glass with the photochromic colored region made unclear at the region B is obtained.

Data supplied from the esp@cenet database — Worldwide

平3-115142 ⑫ 公 開 特 許 公 報 (A)

@int.Cl. 5

織別配号

庁内整理番号

❸公開 平成3年(1991)5月16日

C 03 C B 32 B 27/12 7/02 17/06

1 0 3

8821-4G 6804-4F 7148-4F

審査請求 未請求 請求項の数 2 (全8頁)

会発明の名称

フオトクロミツク感光着色領域を有する合わせガラス

20特 顧 平1-252371

N

22出 顧 平1(1989)9月29日

内

伊 個発 明 쬻 者

仁 神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社

個発 明 者 Ш 崎 英 神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社

内

明 個発 者 村 Ш

郎 彻

神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社

総合研究所内

勿出 類人 日産自動車株式会社

神奈川県横浜市神奈川区宝町2番地

他出 80 人 三菱化成株式会社

東京都千代田区丸の内 2丁目5番 2号

29代 理 人 弁理士 杉村 暁秀 外5名

最終頁に続く

フォトクロミック感光着色領域 1.発明の名称 を有する合わせガラス

2.特許請求の範囲

1. 少なくとも2枚の透明支持体と、2枚の透 明支持体の間に挟まれた透明シートよりなり、該 透明シートには部分的にフォトクロミック組成物 を含有する領域と含有しない領域を有し、その境 界近傍でフォトクロミック組成物が連続的に濃度 勾配を有して含有されていることを特徴とするフ ォトクロミック感光着色領域を有する合わせガラ

2. 少なくとも2枚の透明支持体と、2枚の透 明支持体の間に挟まれたフォトクロミック組成物 を含有する透明シートよりなり、該透明シートに は部分的に紫外線吸収剤を含有した領域と含有し ない領域を有し、その境界近傍で紫外線吸収剤が 連続的な濃度勾配をもって含有されていることを 特徴とするフォトクロミック感光着色領域を有す る合わせガラス。

3. 発明の詳細な説明

(産業上の利用分野)

この発明は、フォトクロミック感光着色領域を 有する合わせガラスに関する。

(従来の技術)

従来のフォトクロミック感光着色領域を含有す る合わせガラスとしては、例えば第9回に示すよ うなものがある。 1 は透明支持体、 2 はフォトク ロミック組成物を部分的に印刷、浸渍、またはス プレーなどの操作によって表面処理しフォトクロ ミック感光着色領域を設けたポリピニルプチラー ル中間膜である。

(発明が解決しようとする課題)

これに太陽光などの紫外線を含んだ光が入射す ると着色領域と非着色領域の境界線が鮮明に現わ れた、品性を損なうと同時に、自動車などのフロ ンドガラスとして用いられる場合にはその着色境 '界線が目ざわりとなる問題がある。これに関して 自動車の場合は着色領域と非着色領域の境界が鮮 明になることが規制され、色の濃さが徐々に連続 的に変化することとなっている。また建築用では 高級感が損なわれるという問題点があった。

(課題を解決するための手段)

即ちこの発明の第1の発明は、少なくとも2枚の透明支持体と、2枚の透明支持体の間に挟まれた透明シートよりなり、該透明シートには部分的にフォトクロミック組成物を含有する領域と含有

り返し耐久性に優れたスピロナフトオキサジン系 化合物誘導体を含有したものを用いるのが望まし い。このスピロナフトオキサジン系化合物誘導体 は 300~380 nmの紫外線の照射で無色から青色着 色状態に変化する。勿論、組成物の中に耐久性を 向上させるための添加剤を混ぜ込むことも可能で ある。

この発明の第1の発明の合せガラスにおいて、透明シートに連続的にフォトクロミック組成物の濃度勾配を有する領域を設定するにあたっては、例えば特開昭57-109615号公報に示されているようなスリットダイを通して共押し出しする製法(アグイ法)を用いて成形することができる。

また第2の発明の合せガラスにおいては、透明シートの精外線吸収剤を含有しない領域と連続的な減少する濃度勾配をもって紫外線吸収剤が含有されている領域において、該透明シートの裏面がフォトクロミック組成物で表面処理されているのが好ましい。

しない領域を有し、その境界近傍でフォトクロミック組成物が連続的に濃度勾配を有して含有されていることを特徴とするフォトクロミック感光着 色領域を有する合わせガラスに関するものであり、

第2の発明は少なくとも2枚の透明支持体と、2枚の透明支持体の間に決まれたフォトクロミック組成物を含有する透明シートよりなり、該透明シートには部分的に紫外線吸収剤を含有した領域を有し、その境界近傍で紫外線吸収剤が連続的な濃度勾配をもって含有されていることを特徴とするフォトクロミック感光着色領域を有する合わせガラスに関するものである。

上記第1の発明および第2の発明において透明 支持体としては、通常は無機ガラスが用いられる が、場合によってポリカーボネート樹脂板、アク リル樹脂板などの透明樹脂板を用いることができ る。また透明シートとしては、ポリビニルプチラ ール樹脂シートが好ましく用いられる。

この発明で用いるフォトクロミック組成物としては、着色状態の吸光係数が大きく、着消色の繰

(実施例)

以下、この発明を図面に基づいて実施例により 説明する。

実施例1

第1図、4の中間膜中のフォトクロミック剤の

含有量を適当な量(好ましくは0.01~5.0 重量部)に、またフォトクロミック剤を含有する中間膜の膜厚を適当な厚さ(好ましくは10~400 μm)に設定すると可視光線透過率は領域Bにて連続的に上昇することが判明した。第2図にはフォトクロミック組成物0.5 重量部を中間膜に含有したときの第1図積層体の着色時の可視光線透過率を示す。着色時の可視光線透過率は上記のガラスに2.0mH/cm²の紫外線(300 nm~380 nm)エネルギーを含むキセノンランプで照射しながら分光光度計で測定した。

第2図の結果を説明すると、シート中のフォトクロミック組成物の含有量の多い A 領域ではフォトクロミック剤の反応量も多くなるので可視光線透過率は低い値を示し、一方、膜厚が徐々に存棄するB 領域では含有量も徐々に少なくなるので可視光線透過率も徐々に上昇する。従って、第1図のように積層体を作成すると A 領域が均一に減が徐本に色する領域(透過率の低い領域)、 B 領域が依本に色むらなく連続的に着色濃度(透過率)が変

処理した部分である。3は紫外線吸収剤を含まない樹脂シート、5は紫外線吸収剤 (例えばチヌピン900 (チバガイギー㈱)製))を1.0 重量部分有する樹脂シートである。2のフォトクロミートである。200フォトクロミオーサン化合物8.0 重量%含有するフォトクロテオーサン化合物8.0 重量%含有するフォトクロティンクを透明シートの裏面に第3回、2に示しての後、加熱乾燥して処理した。

インク配合

成分	ポリピニル プチラール	シクロへ キサノン	可塑剤	スピロナフト オキサジン
配合量	4.0	66.5	21.5	8.0

* 三菱モンサント化成(株)製「DIIA」(商品名)

5のシートは3との接合部でテーパー形に融着されている。第3図に示すようなテーパー形に融着したシートは前述の如くスリットダイを通して共押し出しする製法(Tダイ法)によって得ることができる。このテーパーの形状は必要に応じてス

化する領域、そして C 領域が着色しない領域 (透過率の高い領域) となり着色領域と非着色領域の 境界を非鮮明な状態 (ボカシ模様) にすることが 可能になる。

なお、A、Bの領域の着色は、キセノンランプ 光源を遮断すると速やかに消色してC領域と同等 の可視光線透過率を示した。

本実施例で使用するフォトクロミック化合物は 下の式で示される耐熱性の良好なものである。

実施例2

第3図に示す合わせガラスを製造した。第3図において、1は第1図に示すものと同様の透明支持体であり、2はフォトクロミック組成物で裏面

リットダイの形状を変更可能な範囲で自由な形状 を得ることができる。

これらを温度140 ℃、圧力12 kg/cm²、時間30分の条件で圧着して第3図のような積層体を得た。

第3図、5の中間膜中の紫外線吸収剤の含有量を適当な量(好ましくは0.01~5.0 重量部)に適当な量(好ましくは0.01~5.0 重量部)を適当な量(好ましくは10~400 μm)に設めて連びでは、第3図において、光のの設定ですることが判明した。前、第3図において、光なのの、光がの中間膜中の紫外線吸収剤のもので、光が、第4図のは、第4図のは、2000)1.0 重量部を中間膜を高いて、第4図の結果を説明するといかの領域では紫外線吸収剤を含す。収別が存在しない人の領域では紫外線吸収剤を含んが、Bの領域にさしかかり紫外線吸収剤を含んだ

5のシートの膜厚が徐々に厚くなってくるので紫外線透過率も徐々に連続的に減少する。 Cの領域ではほとんど紫外線が透過しない状態となる。 従って、第3図のように積層体を作成すると A 領域が紫外線透過率の高い領域、 B 領域が徐々に連続的に紫外線透過率が減少する領域、 そして C 領域では紫外線がほとんど透過しない領域となる。

 もはや紫外線透過率もほとんど 0 となるのでフォトクロミック組成物も着色しない状態となり、着色領域 A と非着色領域 C の間を徐々に連続的に透過率が変化する領域 B で結ぶことが期待できるわけである。

図のように透明シートに印刷によってフォトクロミック感光層を形成させる場合に印刷に用いられるフォトクロミックインク中のフォトクロミック化合物の含有量はインク中の高分子物質(具体的にはポリビニルプチラール等)に対して0.1~50重量%、好ましくは0.5~20重量%の範囲である。なお、フォトクロミック感光層の膜厚は0.5 μ~1 mm、好ましくは10~250 μである。また、この感光層は必要に応じて可塑剤を含んでいてもよい。

第3図(実施例2)の積層体の着色時の可視光線透過率を第5図に示す。着色時の可視光線透過率は上記のガラスに2.0 mW/cm[®] の紫外線(300 nm~380 nm)エネルギーを含むキセノンランプで照射しながら分光光度計で測定した。

第5 図をみると、期待したようにBの領域で徐々に連続的に可視光線透過率が変化して着色領域で子が得られている。A領域が均一に濃く着色領領域(透過率の低い領域)、B領域が徐々にする領域(透過率を出領域と非着色領域の境界を非解明な状態(ボカシ模様)にすることが可能になって、日の領域の著色は、キセノンランとは、A,Bの領域の著色してC領域と同等の可視光線透過率を示した。

本実施例で使用するフォトクロミック化合物は 下記の構造式で示されるものである。

実施例3

第6 図に示す合わせガラスを製造した。実施例3 は、実施例2、第3 図に示したような共押し出

し法を用いてテーパー形に融着した紫外線吸収剤 を含有するシートを用いる代わりに、紫外線吸収 剤を含有するインクをドットを提供する製版を用 いて第6図、6に示すように透明シートの表面に グラビア印刷した場合を示す。ドットを提供する 製版としては写真製版によるコンベンショナル製 版や網点製版、機械彫刻製版、または、電子彫刻 製版が利用できる。さて、本発明においてはB領 域にて紫外線吸収剤が濃度勾配を有することが条 件となるが、グラビア印刷法を採用する場合は、 下記に示すような製版が使用される。例えば、コ ンベンショナル写真製版を使用する場合には、各 領域ごとのセル面積は同じでご領域のセルの深度 を深くして、B領域の深度を徐々に浅くしてゆく 方法や網点法による写真製版を使用する場合には セルの深度を変えることなくC領域のセルの面積 を広くしてB領域にて徐々に面積を狭くしていく 方法、または、機械製版や電子彫刻製版のように B領域にてセル面積と並びにセル深度を同時に変 化させる方法がある。

本実施例 3 では電子彫刻製版機を用いて第 6 図の C 領域に対する製版の領域の彫刻深さを75 μm として B 領域に対する製版の領域の彫刻深さを C 領域から A 領域に向かって75 μm から 5 μm に連続的に変化するように彫刻して製版した。このように彫刻して製版を加工すると B 領域にて徐々に C 領域から A 領域に向ってセル面積が狭くなるように作成できる。

このようにして得られた製版を用い、以下に示すインク配合でポリビニルプチラール樹脂シートの表面に第6図、6に示すようにグラビア印刷法にて印刷した。

インク配合

	成分	ポリビニル ブチラール	シクロへ キサノン	DHA	チヌピン900		
	配合量	4.0	66.5	21.5	8.0		

一方、フォトクロミック組成物は実施例2と同様にして第6図、2に示すようなポリピニルプチ

ット印刷すると一般的に色むらが生じる場合がよくみられるが、本実施例のように目に見えない祭 外線吸収剤をドット印刷する場合は色むらを肉眼 で認識できないので製品としての十分価値のある ものとなる。

なお、実施例 2 と同様に A 、 B の領域の著色は、 キセノンランプ光源を遮断すると速やかに消色し て C 領域と同等の可視光線透過率を示した。

(発明の効果)

ラール樹脂シートの表面に印刷した。

第7図に紫外線吸収剤を印刷し、フォトクロミック組成物を印刷する前の第6図の積層体の紫外線透過率を示す。

第6図(実施例3)の積層体の着色時の可視光線透過率を第8図に示す。着色時の可視光線透過率は上記のガラスに2.0 mW/cm[®] の紫外線(300nm~380 nm) エネルギーを含むキセノンランプを照射しながら分光光度計で測定した。

第8図をみると、実施例2と同様にBの領域で徐々に連続的に可視光線透過率が変化している様子が得られている。A領域が均一に渡く着色領域(透過率の低い領域)、B領域が徐々に色色らなく連続的に着色濃度(透過率)が変化する領域、そしてC領域が着色しない領域(透過率の高い領域)となり着色領域と非着色領域の境界を非鮮明な状態(ボカシ模様)にすることが可能になる。

第9回の従来例に示すようにフォトクロミック 組成物のような着色成分を写真製版を用いて、ド

とにより、太陽光などの紫外線を有する光エネルギーをあてると、濃く着色する領域と全く着色しない領域を色むらなく徐々にしかも連続的に着色濃度が変化する領域でつなぐことが可能になり、着色領域と非着色領域の境界を非鮮明な状態(ボカシ模様)にできるという効果が得られる。

更に第1の発明によると、フォトクロミック組成物を含有するシートはフォトクロミック剤をポリピニルブチラール樹脂に直接混練して押し出し成形することにより簡単に得ることができるのでフォトクロミック組成物を印刷、浸漬、スプレーなどで表面処理する工程が必要でなくなるので、コスト的にも有利になる。

また第2の発明において透明シート裏面にフォトクロミック組成物で裏面処理した好ましい例の合わせガラスによると、太陽光線が合わせガラスに関射された場合、紫外線は紫外線吸収剤で吸収されるばかりでなく、フォトクロミック組成物も紫外線吸収剤として働くので、すべての領域においてほとんどの紫外線が遮蔽されるので、自動車

などの内装材の光劣化を防ぐ効果も得られる。

4. 図面の簡単な説明

第1図は、実施例1の合わせガラスの断面図、 第2図は、第1図の合わせガラスの着色時の可 視光線透過率を示すグラフ、

第3図は、実施例2の合わせガラスの断面図、 第4図は、実施例2の合わせガラスのフォトクロミック組成物印刷前の紫外線透過率を示すグラフ、

第5 図は、実施例2の合わせガラスのフォトクロミック組成物印刷後の着色時の可視光線透過率を示すグラフ、

第6図は、実施例3の合わせガラスの断面図、 第7図は、実施例3の合わせガラスのフォトク ロミック組成物印刷前の紫外線透過率を示すグラフ、

第8図は実施例3のフォトクロミック組成物印 刷後の着色時の可視光線透過率を示すグラフ、

第9図はフォトクロミック組成物を部分的に中 間膜に印刷した合わせガラスの断面図である。 1…透明支持体

2…フォトクロミック組成物

3…ポリビニルプチラール樹脂シート

4…フォトクロミック組成物を含む樹脂シート

5…紫外線吸収剤を含有する中間膜

6…グラビア印刷した紫外線吸収剤領域

第 1 図

第2図

第3図

第 4 図

第1頁の続き

@発 明 者 前 田 修 一 神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社

総合研究所内

@発 明 者 三 ツ 橋 和 夫 神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社

総合研究所内