Values

- lues
 2 1. The limit of the sequence $\left\{\frac{(-1)^n n^2 + 3n}{2n^2 + 5}\right\}$ is

 (a) 1/2 (b) $\pm 1/2$ (c) ∞ (d) $-\infty$ (e) None of these

- 2 2. The limit of the sequence $\left\{\frac{2n^2+3}{5-3n^2}\text{Sin}^{-1}\left(\frac{n+2}{2n-3}\right)\right\}$ is (a) -1 (b) $\pi/10$ (c) $-\pi/9$ (d) $\pi/6$

- (e) None of these
- 2 3. The sum of the series $\sum_{n=1}^{\infty} \left(-\frac{3}{4}\right)^{n+1}$ is (a) 9/28 (b) 9/4 (c) -3/7 (d) -3 (e) None of these

- 2 4. The sum of the series $\sum_{n=1}^{\infty} n \left(\frac{7}{4}\right)^n$ is

- (d) −∞
- (e) None of these
- 5. The limit of the sequence of functions $\left\{\left(1+\frac{x}{2n}\right)^n\right\}$ on the interval $0 \le x < 1$ is

 (a) 1 (b) $e^{x/2}$, (c) x/2 (d) Does not exist (e) None of these

- 6. Prove that the Maclaurin series for e^{3x} converges to e^{3x} for all x.
- 7. What is the interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{n+1}{n4^n} x^n?$$

Justify all results.

8. Find the Taylor series about x = 4 for the function

$$f(x) = \frac{1}{(x-2)^2}.$$

Express your answer in sigma notation simplified as much as possible. You must use a technique that guarantees that the Taylor series converges to the function. What is the radius of convergence of the series?