TÉCNICAS DE AGRUPAMENTO

Cristiane Neri Nobre

Agrupamento versus Classificação

Classificação

- Aprendizado Supervisionado
 - >Amostras de treinamento são classificadas
 - >Número de Classes é conhecido
- Aprendizado por Exemplo

Agrupamento

- Aprendizado Não Supervisionado
- Aprendizado por Observação

Número de Clusters = 3

	a_1	a_2	•			a_n	
I_1	a	F	1	0	1	1	
I_2	b	M	0	0	1	1	
:	c	F	1	1	1	0	
•	d	F	1	0	0	0	
I _n	ę	M	1	1	0	1,	
nome gênero sintomas							

Conceito = Doença

Por exemplo, como agrupar estes animais*?

^{*} Exemplo extraído de http://dcm.ffclrp.usp.br/~augusto/teaching/ami/AM-I-Clustering.pdf

Por exemplo, como agrupar estes animais?

Por exemplo, como agrupar estes animais?

Por exemplo, como agrupar estes animais?

Agrupamento versus Classificação

Objetivo do agrupamento:

Dado um conjunto de **instâncias** descritos por múltiplos **atributos**:

- 1) Atribuir grupos (clusters) aos objetos particionando-os objetivamente em grupos homogêneos de maneira a:
- a) Maximizar a similaridade de objetos dentro de um mesmo cluster
- b) Minimizar a similaridade de objetos entre clusters distintos
- 2) atribuir uma descrição (rótulo) para cada cluster formado

O que é um cluster?

Como definir a noção de Cluster?

Bem separados

Um *cluster* é um conjunto de objetos no qual cada objeto está mais próximo (ou é mais similar) a objetos dentro do cluster do que qualquer objeto fora do cluster.

Baseados em Protótipos

Um *cluster* é um conjunto de objetos no qual cada objeto está mais próximo ao *protótipo que define o cluster* do que dos protótipos de quaisquer outros clusters.

Em geral: Protótipo = centróide

Como avaliar se as instâncias estão no mesmo grupo?

Pela distância!

Considere os pontos: $P1 = (X_1, X_2, ..., X_p), P_2 = (Y_1, Y_2, ..., Y_p),$ quais as distâncias entre estes dois pontos?

Manhattan

$$d(x, y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_p - y_p|$$

Minkowski

$$d(x, y) = \sqrt[m]{(x_1 - y_1)^m + (x_2 - y_2)^m + ... + (x_p - y_p)^m}$$

Distância Euclidiana

$$d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_p - y_p)^2}$$

Investigue outras distâncias!

Exercício

 Sejam X1 = (1,2) e X2 = (4,6).
Calcule as distâncias euclidianas e Manhattan entre X1 e X2.

$$X1 = (1,2)$$

 $X2 = (4,6).$

- D_Manhattan(X1, X2) = |4-1| + |6-2| = 3 + 4 = 7
- D_Euclidiana(X1,X2) = ?
- Ilustre no plano xy os segmentos representando tais distâncias.

Neste vídeo, aprendemos:

1. Sobre o funcionamento dos métodos de agrupamento

No próximo vídeo, veremos como é o funcionamento do algoritmo K-means, um algoritmo de agrupamento.