

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

Dr. Pilászy György

Digitális technika 1 05. előadás

(Kombinációs hálózatok átmeneti jelenségei)

Lektorálta: Dr. Horváth Tamás

Minden jog fenntartva. Jelen könyvet, illetve annak részleteit a szerzők írásbeli engedélye nélkül tilos reprodukálni, adatrögzítő rendszerben tárolni, bármilyen formában vagy eszközzel elektronikus vagy más módon közölni.

Kombinációs hálózatok átmeneti jelenségei (hazárdok)

Az előző fejezetekben megismert logikai kapuk, mint kereskedelmi termékek a valóságban nem végtelenül gyorsan működnek. Az egyes gyártók katalógusaikban fel is tüntetik a kapuáramkörök időbeli viselkedését. Ezek a késleltetések a hálózat bemenetén fellépő "0"→"1", "1"→"0" váltások során átmeneti kimeneti kombináció megjelenését idézhetik elő. Ezek az átmeneti jelenségek sajnos számos külső tényezőtől függenek (pl.: hőmérséklet, öregedés, kábelen fellépő jelkésleltetés, páratartalom, stb.), ezért az ilyen hibajelenségek véletlenszerűen jöhetnek létre, ami megnehezíti a hibák felismerését, behatárolását. Az ilyen rendszertelenül fellépő hibajelenségeket a véletlen jellegük miatt hazárdjelenségeknek nevezzük.

A jelterjedési késleltetések okai

Egy logikai építőelem kimenetének megváltozása időt igényel. A kimeneti jel új értékének eléréséhez szükséges időt a megvalósított kapu megszólalási idejének nevezzük (propagation delay). Ezt az időt a katalógusokban feltüntetik, alapvetően ez a paraméter szabja meg az építőelem maximális működési sebességét. A logikai építőelemek belső kialakításától függően ez az idő különböző lehet "H" \rightarrow "L" vagy "L" \rightarrow "H" váltások esetében.

Megszólalási késleltetés ábrázolása és konkrét értékei az SN7404 áramkör esetében

Ezek a katalógusban megadott értékek csak egy tartományban adottak, az egyes példányok értékei ezen belül tetszőlegesen változhatnak például a hőmérséklet, az öregedés hatására.

Az összekötő vezetékek szórt induktivitása és kapacitása jelkésleltetést okoz. Az áramköri elemek sebessége olyan nagy, hogy az összekötő vezetékeken fellépő jelterjedési késleltetésekkel összemérhetőek, ezért nem hanyagolható el a huzalozás időbeli viselkedése sem.

Nagyságrendileg 2·10⁸ m/s sebességgel becsülhetjük a vezetékben terjedő jel sebességét, ami például egy 4 méter hosszú vezeték esetében már 20ns késleltetést okoz.

A következőkben az összekötő vezetékeken fellépő jelkésleltetést egy koncentrált paraméterű késleltető elemmel modellezzük. Ehhez vezessük be az alábbi ábrán látható késleltető szimbólumot. A késleltető működését a mellette található idődiagramok szemléltetik, a bemenetre adott jelváltozást a kimenet Δt idő múlva követi. Ez a Δt érték minden alkatrész esetében megadható és az összeköttető vezeték valamint a bemenetére kapcsolódó logikai kapu késleltetését modellezi.

Koncentrált paraméterű késleltető modell

Statikus hazárd

A jelterjedési késleltetés hatásának vizsgálatára az alábbi kétszintű logikai hálózatot kiegészítettük az előző pontban bevezetett koncentrált paraméterű késleltetővel. Tételezzük fel, hogy minden vezeték és kapu késleltetése Ons, csak a beépített $\Delta t_1 \dots \Delta t_3$ elemek késleltetik a jelterjedését. A vizsgálatunk során tételezzük fel, hogy a hálózat bemenetét szomszédos változás éri

Kétszintű kombinációs hálózat

Vizsgálójelként kapcsoljunk a hálózat A,B,C bemeneteire 111 bináris kombinációt, majd változtassuk meg 101 értékre. Tételezzük fel, hogy a késleltetési viszonyok között az alábbi egyenlőtlenség teljesül: $\Delta t_1 < \Delta t_2 + \Delta t_3$.

A logikai hálózat az $F(A,B,C)=A\cdot B+\overline{B}\cdot C$ logikai függvényt valósítja meg. Késleltetések nélkül a kimenet értéke: F(111)= "1", a változást követően pedig F(101)= "1". Az A,B,C=111 bemeneti kombináció esetén a "felső" ÉS kapu kimenete $f_1=1$ értékű, a VAGY kapun keresztül haladva ez adja a kimeneten érzékelhető F="1" logikai értéket. Az A,B,C=101 bemeneti kombináció esetén az "alsó" ÉS kapu kimenete $f_2=1$ értékű, a VAGY kapun keresztül haladva ez adja a kimeneten érzékelhető F=1 logikai értéket. A váltást követően, a késleltetések miatt először a VAGY kapu felső bemenete "0" értékű lesz Δt_1 idő múlva, majd az alsó bemeneten $\Delta t_2+\Delta t_3$ idő múlva jelenik csak meg az "1" érték. A kettő pillanat között $\Delta t_2+\Delta t_3$ - Δt_1 időtartamra a VAGY kapu egyik bemenetén sincs "1" érték, emiatt a kimeneten "0" értékű pulzust figyelhetünk meg. A leírtakat szemlélteti a következő ábra.

A kimeneten megjelenő pulzus hossza a késleltetési viszonyoktól függ, előfordulhat, hogy egyáltalán nem tapasztalunk pulzust a kimeneten, de a hálózat ettől még magában hordozza a hibás működés lehetőségét. Ne felejtsük el, hogy ezek a változások függhetnek a hőmérséklettől, a páratartalomból, a berendezés öregedésétől.

Fogalmazzuk meg általánosan a fenti vizsgálat során tapasztalt jelenséget. Adott két szomszédos bemeneti kombináció X_1 valamint X_2 és mindkét kombináció fellépésekor a függvény érték azonos $F(X_1)=F(X_2)=F$. Ha a bemeneti kombináció ezen két kombináció egyikéről a másikra változik és ezalatt a kimeneten olyan F^* érték jelenik meg, amelyik nem azonos az F értékkel, azaz $F(X_1)=F(X_2)=F\neq F^*$, vagyis a hálózat kimenetén a késleltetési viszonyoktól függően az $F \to F^* \to F$ függvényérték sorozat játszódik le, akkor a hálózatban **statikus hazárd** van.

A fenti példában szereplő hálózatot Karnaugh táblán is ábrázolhatjuk. Figyeljük meg, hogy a szomszédos bemeneti változás hatására mindkét prímimplikáns kimeneti értéke invertálódik, ezért a második kapuszinten lévő VAGY kapu bemenetén átmenetileg egyik sem biztosít logikai "1" értéket. Ha módosítjuk a mintermek lefedését úgy, hogy az összes szomszédos átmenet is le legyen fedve prímimplikánsokkal, akkor a fenti statikus hazárd kiküszöbölhető.

Statikus hazárd felismerése és megszüntetése

Az eredeti $F(A,B,C)=A\cdot B+\overline{B}\cdot C$ függvényben talált statikus hazárd kiküszöböléséhez az AC prímimplikánst hozzá kell vennünk: $F(A,B,C)=A\cdot B+\overline{B}\cdot C+A\cdot C$.A hazárdmentes megvalósítás elvi logikai rajzát és időbeli viselkedését mutatja az alábbi ábra.

Hazárdmentes hálózat és időbeli viselkedése

Figyeljük meg, hogy a hazárdmentesítés céljából hozzá vett AC prímimplikáns nem függ a B változó megváltozásától, ezért tudja biztosítani a folyamatos "1" értéket a VAGY kapu legalsó bemenetén. A VAGY művelet tulajdonságai miatt, ha f_3 =1, akkor az f_1 és f_2 bemeneteken fellépő változás nincs hatással az F kimenetre.

Közömbös bejegyzések kezelése a hazárdmentesítés során

A logikai függvények minimalizálásának tárgyalásakor láttuk, hogy a közömbös bejegyzések tetszőlegesen rögzíthetők "0" vagy "1" értékre a számunkra kedvezőbb függvényalak megtalálása érdekében. A következőkben azt vizsgáljuk, hogy milyen hatással lesz ez a legegyszerűbb hazárdmentes alak megtalálására.

Amennyiben a feladat előírásai garantálják, hogy a közömbös bejegyzésekhez tartozó bemeneti kombinációk nem léphetnek fel a hálózat működése során, úgy a legegyszerűbb kétszintű hazárdmentes alak előállításakor nem kell a közömbös bejegyzéssel szomszédos átmenetek lefedését biztosítanunk. Tekintsük az alábbi példát. Ha a közömbös bejegyzés nem léphet fel, akkor a legegyszerűbb kétszintű hazárdmentes diszjunktív alak előállításához elegendő két prímimplikáns megvalósítása, vagyis a keresett függvény algebrai alakja:

$$F(A,B,C) = A \cdot B + \overline{B} \cdot C$$

Bizonyos esetekben előfordulhat, hogy a logikai hálózat kimenetére csatlakozó berendezés működését egy rövid impulzus megzavarhatja, emiatt biztosítanunk kell a teljes hazárdmentességet. A fenti példa esetében elsőre azt gondolhatjuk, hogy elegendő az AC prímimplikánst hozzávenni a megoldáshoz s készen is vagyunk. A kapott megoldás valóban hazárdmentes lesz, azonban nem a legegyszerűbb. Ha ugyanis a közömbös bejegyzést "O" értékre rögzítjük, akkor kevesebb kapubemenettel lehet a hazárdmentes alakot előállítani. A következő ábrán ezt szemléltetjük.

Az első megoldás 9 kapubemenettel valósítható meg, míg a második esetben mindössze 7 bemenet szükséges.

Vegyük azt is észre, hogy ha a megvalósított hálózatot nézzük, a két megoldás nem ugyan azzal a logikai függvénnyel írható le, de mindkét megoldás megfelel az eredeti specifikációnak.

Dinamikus hazárd

Tekintsük a következő kettőnél több szintű kombinációs hálózatot, melyben a késleltetési viszonyok modellezése érdekében feltüntettük a koncentrált késleltetőket. A késleltetések között az alábbi egyenlőtlenség álljon fenn: $\Delta t_1 < \Delta t_2 + \Delta t_3 < \Delta t_4$

Az f_3 részhálózatot már jól ismerjük az előző pontból, tudjuk, hogy statikus hazárdot tartalmaz. A mostani F függvény az f_3 és egy f_4 jelű nagyon egyszerű függvény ÉS kapcsolataként áll elő. Kapcsoljuk a hálózat bemenetére az A,B,C =111 \rightarrow 101 szomszédos bemeneti változást.

Három szintű kombinációs hálózat és időbeli viselkedése

Az előírt függvényérték F(111) =1, F(101)=0. Noha a hálózat bemenetén egyetlen szomszédos változást hoztunk létre, melynek hatására $1 \rightarrow 0$ változást várnánk, ezzel szemben a hálózat kimenetén $1 \rightarrow 0 \rightarrow 1 \rightarrow 0$ jelsorozatot észleltük.

Fogalmazzuk meg általánosan ezt a jelenséget.

Legyen két szomszédos bemeneti kombináció X_1 és X_2 , melyekhez eltérő kimeneti érték tartozik: $F(X_1) \neq F(X_2)$. Amennyiben a hálózat kimenetén az $X_1 \rightarrow X_2$ szomszédos bemeneti változás hatására az $F(X_1) \rightarrow F(X_2)$ változás helyett az $F(X_1) \rightarrow F(X_2) \rightarrow F(X_2)$ változás játszódhat le a késleltetési viszonyoktól függően, akkor a hálózatban **dinamikus hazárd** van.

A dinamikus hazárd kialakulásának szükséges (de nem elégséges) feltétele, hogy legalább háromszintű hálózatunk legyen, úgy, hogy az egyik szint statikus hazárdot tartalmaz.

A következőkben nézzük meg, hogy a fenti hálózatban hogyan ismerhetjük fel a dinamikus hazárdot. Az F kimenet felől nézve a harmadik szint az f_3 és f_4 függvények ÉS kapcsolata. Nézzük tehát az f_3 és f_4 Karnaugh táblázatait.

Az f_3 Karnaugh táblázatában bejelöltük a prímimplikánsokat, így láthatóvá vált a statikus hazárd pontos helye. Az f_4 táblázatában nincs statikus hazárd. Az F Karnaugh táblázatába átjelöltük a statikus hazárdot tartalmazó szomszédos átmenetet. Figyeljük meg, hogy az F függvényben a bejelölt helyen az előírt függvényérték változik az átmenet során. Mivel erre a jelölt helyre esik egy statikus hazárd és ugyanezen átmenetnél az f_3 függvény is változik, ezért dinamikus hazárd léphet fel.

Funkcionális hazárd

Adott a következő kétszintű logikai hálózat statikus hazárdtól mentes megvalósítása. A hálózat bemenetére az A,B,C=010→001 nem szomszédos bemeneti kombináció váltást kapcsoljuk. A váltás során a B és a C bemenet értéke változik "egyszerre". Az előírt függvényérték mindkét bemeneti kombináció esetén azonos F(010)=F(001)=1 azonban az átkapcsolás során mégis pulzust tapasztalunk a kimeneten. A nem szomszédos változást modellezzük szomszédos jelváltozások sorozatával. A feladatunkban megadott két kombináció között kétféle ilyen sorozatot tudunk megadni: a) 010→000→001 és b) 010→011→001. Ha az átkapcsolás során a késleltetésektől függően az a) szerinti sorozat játszódik le, akkor nem tapasztalunk pulzust, azonban a b) sorozat esetén igen.

Ha egy logikai hálózat bemenetén nem szomszédos változás lép fel, akkor a hálózat a késleltetési viszonyoktól függően különböző sorrendben érzékelheti a bemenetek megváltozását. Ha az átmenet során, ettől az érzékelési sorrendtől függően átmenetileg az előírt függvényértékektől eltérő kombináció jelenik meg a hálózat kimenetén, akkor a hálózat **funkcionális hazárdot** tartalmaz.

A funkcionális hazárd kiküszöbölésére felmerülhet bennünk a pótlólagos késleltetés beépítésének ötlete. Késleltetni például páros számú inverter beépítésével is lehet. A fenti példánk esetében, ha a C bemenetet késleltetnénk meg, akkor a 010→000→001 irányba terelnénk a változást és látszólag eltűnne a pulzus. Sajnos azonban ez a megoldás ritkán vezet eredményre, mert ha az egyik irányú átmenetnél el is tünteti a pulzust, a visszairányú változásnál sajnos még meg is hosszabbíthatja a pulzus idejét.

Gyakran úgy küszöbölik ki a funkcionális hazárdot, hogy a hálózat kimenetét letiltják a változás időtartamára. Ehhez pontosan ismerni kell a bemenetek megváltozásának időpontjait. Ezt az úgynevezett szinkronizációt a későbbiekben bemutatásra kerülő elemi sorrendi hálózatok felhasználásával és egy periodikusan váltakozó órajel segítségével lehet megvalósítani. Az órajel segítségével a bemeneti jelből mintákat veszünk, majd a kombinációs hálózat ezekből a szinkronizált bemeneti értékekből állítja elő a kimenetet. A hálózat kimenetét a bemenet mintavételezésétől eltérő pillanatokban mintavételezve állítjuk elő a szinkronizált kimeneti jelet.

Megjegyezzük, hogy az itt bemutatott szinkronizáció a kombinációs hálózatban fellépő statikus- és dinamikus hazárdok ellen is megoldást nyújthat. A mindennapi tervezés során gondosan mérlegelni kell a hazárdjelenségek várható következményeit és célszerű ettől függővé tenni, hogy szükséges-e egyáltalán a hazárdmentesítés.

Hazárdmentes alak előállítása számjegyes minimalizálás során

A tanult számjegyes minimalizálás során kétszintű függvényalak adódik eredményül. Láttuk, hogy kétszintű hálózatban a lefedések megfelelő megválasztásával a statikus hazárd kiküszöbölhető. Nézzük meg, hogy a számjegyes minimalizálás során milyen feltételekkel és milyen módosításokkal tudjuk szisztematikusan előállítani a legegyszerűbb kétszintű hazárdmentes függvényalakot. Figyeljük meg, hogy a számjegyes minimalizálás II. oszlopa tartalmazza az összes előforduló szomszédos átmenetet. Mivel a statikus hazárd kiküszöbölésének feltétele valamennyi előforduló szomszédos átmenet fedése, ezért a prímimplikáns tábla oszlopainak felírásánál elő kell írnunk az összes kettes hurok lefedésének biztosítását is. A ketteshurkokkal bővített lefedés során kapott megoldás statikus hazárdtól mentes lesz.

Határozzuk meg számjegyes minimalizálással a következő logikai függvény legegyszerűbb kétszintű hazárdmentes diszjunktív alakját.

$$F(A,B,C) = \sum_{1}^{4} (0,1,3,4,7,11,12,14,15)$$

I.	II.	III.
0 🗸	0,1 (1) → (a)	3,7,11,15 (4,8
1 🗸	0,4 (4)→(b)	3,11,7,15 (8, 4
4 ✓	1,3 (2)→(c)	
3 ✓	4,12 (8) → (d)	
12 ✓	3,7 (4) ✓	
7 ✓	3,11 (8) 🗸	
11 ✓	12,14 (2) → (e)	
14 ✓	7,15 (8) 🗸	
15 ✓	11,15 (4) 🗸	
	14,15 (1)→(f)	

A prímimplikánsok algebrai alakja:

- (a) $\overline{A} \cdot \overline{B} \cdot \overline{C}$
- (b) $\overline{A} \cdot \overline{C} \cdot \overline{D}$
- (c) $\overline{A} \cdot \overline{B} \cdot D$
- (d) $B \cdot \overline{C} \cdot \overline{D}$
- (e) $A \cdot B \cdot \overline{D}$
- (f) $A \cdot B \cdot C$
- (g) $C \cdot D$

Mintermek Prímimplikánsok	0	1	3	4	7	11	12	14	15	0 1	0 4	1 3	4 12	3 7	3 11	12 14	7 15	11 15	14 15
(a) 0,1(1)	8	8								×									
(b) 0,4 (4)	8			8							×								
(c) 1,3 (2)		8	8									×							
(d) 4,12 (8)				8			8						X						
(e) 12,14 (2)							8	8								×			
(f) 14,15 (1)								8	8										×
(g) 3,7,11,15 (4,8)			8		×	×			8					X	X		X	X	

Írjuk fel a prímimplikáns táblát és bővítsük ki a kettes hurkokkal.

A prímimplikáns tábla alapján a segédfüggvény:

$$S = a \cdot b \cdot c \cdot d \cdot e \cdot f \cdot g$$

Ebben a példában az összes prímimplikáns "lényeges" lett a hazárdmentesítés miatt.

$$F(A,B,C,D) = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot D + B \cdot \overline{C} \cdot \overline{D} + A \cdot B \cdot \overline{D} + C \cdot D$$

A kapott eredményt ábrázolhatjuk Karnaugh táblában is, így könnyen ellenőrizhetjük a hazárdmentességet.

Amennyiben közömbös bejegyzéseket is tartalmaz a függvény, úgy figyelembe kell venni a hazárdokkal szembeni megengedést.

Ha a feladat specifikációja garantálja, hogy a közömbösökhöz tartozó bemeneti kombinációk nem léphetnek fel a hálózat bemenetén, akkor nem kell bevennünk a lefedésbe azokat a kettes hurkokat, amelyeknek egyik vagy mindkét indexe közömbös bejegyzést jelöl.

Ha a megvalósításban semmiféle statikus hazárd nem megengedett, úgy sajnos nincs más algoritmikus lehetőségünk, mint az összes lehetséges kombinációban rögzíteni a közömbösök értékét, majd a teljesen határozottá tett feladat variánsokat minimalizálni. Végül a legegyszerűbb alakot a kapott megoldások közül kiválaszthatjuk. Ez azt jelenti, hogy például három közömbös bejegyzés esetén nyolcféleképpen tehetjük teljesen specifikálttá a feladatot, vagyis nyolc megoldást kell elkészítenünk.

Határozzuk meg számjegyes minimalizálással a következő logikai függvény legegyszerűbb kétszintű hazárdmentes diszjunktív alakját, ha tudjuk, hogy a közömbös bejegyzésekhez tartozó bemeneti kombinációk fizikailag nem fordulhatnak elő a hálózat bemenetén.

$$F(A, B, C) = \sum_{i=1}^{4} [(7, 8, 9, 10, 11, 15)(3, 5, 13)]$$

Írjuk fel a prímimplikáns táblát és bővítsük ki közömböst nem tartalmazó kettes hurkokkal

Mintermek Prímimplikánsok	7	8	9	10	11	15	8 9	8 10	9 11	10 11	7 15	11 15
(a) 8,9,10,11 (1,2)		X	8	X	8		X	X	X	X		
(b) 3,7,11,15 (4,8)	Х				Х	Х					Х	х
(c) 5,7,13,15 (2,8)	Х					Х					Х	
(d) 9,11,13,15 (2,4)			Х		Х	Х						Х

A prímimplikáns tábla alapján a segédfüggvény:

$$S = (b+c) \cdot a \cdot (b+c+d) \cdot (b+c) \cdot (b+d) = a \cdot (b+c) \cdot (b+d) = a \cdot (b+bd+bc+cd) = a \cdot (b \cdot (1+c+d)+c \cdot d) = a \cdot (b+c \cdot d) = a$$

A keresett legegyszerűbb kétszintű hazárdmentes megoldás tehát: $F(A,B,C,D) = A \cdot \overline{B} + C \cdot D$

