Calcul matriciel

Exercice 1 Soient les matrices

$$A = \begin{bmatrix} 0 & 2 & -1 \\ -2 & -1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} -2 & 1 \\ 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Le produit ABC est-il possible? Si oui, le calculer. Même question pour CAB.

Exercice 2 Soit la matrice A définie par

$$A = \left[\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ -1 & 4 \end{array} \right].$$

Pour $p \ge 1$ entier, on note I_p la matrice identité dans $\mathcal{M}_p(\mathbb{R})$. Existe-t-il des matrices B à coefficients réels ou complexes telles que $BA = I_p$? Telles que $AB = I_p$? Si oui les calculer.

Exercice 3 Soit la matrice A définie par

$$A = \left[\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{array} \right],$$

et soit $B = A - I_3$. Calculer B^n , pour $n \ge 1$. En déduire A^n , $n \ge 1$. Calculer A^{-1} en fonction de B.

Exercice 4 a) Soit $(x_i)_{1 \le i \le k}$ une famille de vecteurs libres de $\mathbb{C}^n \equiv \mathcal{M}_{n,1}(\mathbb{C})$ et soient $(\alpha_i)_{1 \le i \le k}$ des nombres complexes non nuls. Soit M la matrice définie par

$$M = \sum_{i=1}^{k} \alpha_i x_i x_i^*$$

Déterminer l'image, le rang, et le noyau de M.

b) Même question pour la matrice $A = [a_{i,j}]_{1 \le i,j \le n}$, avec $a_{i,j} = \cos(\theta_i + \theta_j)$.

Exercice 5 a) Soient

et

$$M = \left[\begin{array}{cccc} x & a & b & c \\ a & x & c & b \\ b & c & x & a \\ c & b & a & x \end{array} \right].$$

Calculer P = MA et $\det P$.

b) En déduire que

$$\det M = (x + a + b + c)(x - a + b - c)(x + a - b - c)(x - a - b + c).$$

Exercice 6 Montrer par récurrence sur n la formule suivante pour le calcul du déterminant de Van Der Monde

$$(\forall (\alpha_i)_{1 \leq i \leq n} \in \mathbb{C}^n) \quad D(\alpha_1, \alpha_2, ..., \alpha_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \vdots & & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \dots & \alpha_n^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} (\alpha_j - \alpha_i).$$

Exercice 7 Montrer que :

- a) Le produit de deux matrices carrées triangulaires inférieures (respectivement supérieures) est une matrice triangulaire inférieure (respectivement supérieure).
- b) L'inverse (s'il existe) d'une matrice triangulaire inférieure (respectivement supérieure) est une matrice triangulaire inférieure (respectivement supérieure).
- c) Les éléments diagonaux d'une matrice triangulaire inversible et de son inverse sont inverses les uns des autres.

Exercice 8 Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $\sigma(A)$ son spectre.

- a) Montrer que si A est orthogonale, alors $det(A) = \pm 1$.
- b) Montrer que si A est unitaire, alors $|\det(A)| = 1$ et $\sigma(A) \subset \{z \in \mathbb{C} \mid |z| = 1\}$.
- c) Montrer que si A est inversible, alors $\sigma(A^{-1}) = \{\lambda^{-1} \mid \lambda \in \sigma(A)\}.$
- d) Montrer que $\sigma(A^*) = \{\bar{\lambda} \mid \lambda \in \sigma(A)\}.$
- e) On suppose que $A^2 = A$. Calculer $\sigma(A)$.
- f) On suppose A strictement triangulaire (i.e. triangulaire, dont les éléments diagonaux sont nuls). Montrer que $A^n = [0]$.

Exercice 9 Toutes les matrices considérées appartiennent à $\mathcal{M}_n(\mathbb{C})$.

- a) Est-il possible d'avoir $AB BA = \lambda I$ avec $\lambda \neq 0$? On pourra comparer la trace des deux membres.
- b) On suppose que A et B sont inversibles. Montrer que si AB + BA = [0] alors n est pair.
- c) Montrer que si A est diagonalisable, on a $\mathbb{C}^n = \ker(A) \oplus \operatorname{Im}(A)$.

Exercice 10 Soient A, B et C trois matrices de $\mathcal{M}_n(\mathbb{C})$. On suppose que les matrices A et B sont inversibles et on définit, par blocs, la matrice $M = \begin{bmatrix} A & C \\ [0] & B \end{bmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$.

- **4.1** Montrer que M est inversible, d'inverse $M^{-1} = \begin{bmatrix} A^{-1} & D \\ [0] & B^{-1} \end{bmatrix}$ où $D \in \mathcal{M}_n(\mathbb{C})$ est à préciser.
- **4.2** Soit $b \in \mathbb{C}^{2n}$, montrer (sans calculer M^{-1}) que la résolution du système linéaire Ma = b (de taille $(2n) \times (2n)$) peut se ramener à la résolution de deux systèmes linéaires de taille $n \times n$.

Note: Le système linéaire Aa = b est dit de taille $m \times n$ si $A \in \mathcal{M}_{m,n}(\mathbb{C})$.

Exercice 11 Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice diagonalisable. Montrer que si $(\forall a \in \mathbb{C}^n) \langle Aa \mid a \rangle = 0$, alors A = [0].

Exercice 12 a) Soient u et v deux vecteurs de \mathbb{R}^n et $\alpha \in \mathbb{R}^*$. Montrer que si $\alpha \neq v^t u$, alors la matrice $I - \frac{1}{\alpha} u v^t$ est inversible et $\left(I - \frac{1}{\alpha} u v^t\right)^{-1} = I - \frac{1}{\beta} u v^t$, où on a noté $\beta = v^t u - \alpha$.

b) Soit A une matrice inversible de taille n, et u et v deux vecteurs de \mathbb{R}^n . Donner une condition qui assure que la matrice $A + uv^t$ est inversible et calculer son inverse.

Exercice 13 Normes de vecteurs dans \mathbb{C}^n .

- a) Soit a un vecteur quelconque de \mathbb{C}^n . Trouver les plus petites constantes κ_i telles que $||a||_1 \le \kappa_1 ||a||_2$, $||a||_1 \le \kappa_2 ||a||_\infty$, $||a||_2 \le \kappa_3 ||a||_1$, $||a||_2 \le \kappa_4 ||a||_\infty$, $||a||_\infty \le \kappa_5 ||a||_1$, $||a||_\infty \le \kappa_6 ||a||_2$.
- b) Montrer que l'application $a \mapsto \left(\sum_{i=1}^n |\alpha_i|^p\right)^{1/p}$ n'est pas une norme sur \mathbb{C}^n lorsque $0 et <math>n \geq 2$.

Exercice 14 Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, il existe une suite $(A_k)_{k\geq 0}$ de matrices inversibles de $\mathcal{M}_n(\mathbb{C})$ telle que

$$\lim_{k \to +\infty} A_k = A.$$

Exercice 15 Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne semi-définie positive.

- a) Montrer qu'il existe $S \in \mathcal{M}_n(\mathbb{C})$ hermitienne et semi-définie positive telle que $A = S^2$.
- b) Montrer que $\ker A = \ker S$.

c) Soit $S \in \mathcal{M}_n(\mathbb{C})$ hermitienne semi-définie positive telle que $A = S^2$. Montrer A et S ont les mêmes sous-espaces propres. En déduire que S est unique.

Exercice 16 Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice quelconque. Montrer qu'il existe une matrice hermitienne semi-définie positive $S \in \mathcal{M}_n(\mathbb{C})$ et une matrice $Q \in \mathcal{M}_n(\mathbb{C})$ unitaire telles que A = SQ. Montrer que cette représentation est unique si A est inversible.

Exercice 17 Soit $A = [a_{i,j}] \in \mathcal{M}_n(\mathbb{C})$. On pose

$$(\forall i \in \{1, \dots, n\}) \quad \gamma_i = \sum_{\substack{j=1\\j \neq i}}^n |a_{i,j}|$$

et on note D_i le disque $D_i = \{z \in \mathbb{C} \mid |z - a_{i,i}| \leq \gamma_i \}.$

- a) Montrer que $\sigma(A) \subset \bigcup_{i=1}^n D_i$ (théorème de Gerschgorin-Hadamard).
- b) Montrer qu'une matrice $A = [a_{i,j}] \in \mathcal{M}_n(\mathbb{C})$ à diagonale strictement dominante, i.e.

$$(\forall i \in \{1, \dots, n\}) |a_{i,i}| > \sum_{\substack{j=1\\j \neq i}}^{n} |a_{i,j}|,$$

est inversible.

c) Soit $A = [a_{i,j}] \in \mathcal{M}_n(\mathbb{C})$ une matrice à diagonale strictement dominante. On définit

$$(\forall i \in \{1, \dots, n\}) \ \tau_i = |a_{i,i}| - \sum_{\substack{j=1 \ j \neq i}}^n |a_{i,j}| \ \text{et} \ \tau = \min_{1 \le i \le n} \tau_i.$$

Montrer que $||A^{-1}||_{\infty} \le 1/\tau$.

Exercice 18 Soit $A \in \mathcal{M}_{n,m}(\mathbb{C})$ une matrice de rang m. Pour toute norme $\|\cdot\|$ définie sur \mathbb{C}^n , montrer que la fonction $a \mapsto \|Aa\|$ est une norme sur \mathbb{C}^m .

Exercice 19 a) Soit $D \in \mathcal{M}_n(\mathbb{C})$ une matrice diagonale. Montrer que, pour tout $p \in [1, +\infty[$,

$$||D||_p = ||D||_{\infty} = \max_{1 \le i \le n} |d_{i,i}|.$$

b) Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice diagonalisable. Montrer qu'il existe une norme matricielle $\|\cdot\|$ telle que $\varrho(A) = \|A\|$.

Exercice 20 Pour n entier ≥ 1 , on définit l'application φ

$$\varphi \colon \mathcal{M}_n(\mathbb{C}) \longrightarrow \mathbb{R}_+$$

$$A \longmapsto \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{i,j}|^2}$$

- a) Montrer que φ est une norme matricielle. On la notera $\|\cdot\|$ dans la suite.
- b) Soient $(\mu_i)_{1 \leq i \leq n}$ les valeurs singulières de $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que

$$||A||^2 = \operatorname{tr}(A^*A) = \sum_{i=1}^n \mu_i^2.$$

- c) En déduire que $\|A\|_2 \leq \|A\| \leq \sqrt{n} \|A\|_2.$
- d) Montrer les inégalités $\frac{1}{\sqrt{n}} \|A\|_p \le \|A\| \le \sqrt{n} \|A\|_p$, pour p = 1 et $p = \infty$.
- e) Montrer que pour toute matrice unitaire $U \in \mathcal{M}_n(\mathbb{C})$, on a $||U|| = \sqrt{n}$ et ||AU|| = ||UA|| = ||A||.

Exercice 21 1) Pour tout réel α , on note A_{α} la matrice

$$A_{\alpha} = \begin{bmatrix} \alpha & 1 \\ 1 & \alpha \end{bmatrix}.$$

- a) Quelles sont les valeurs propres de A_{α} ?
- b) Pour quelles valeurs de α , A_{α} est-elle inversible?
- c) Calculer les normes $||A_{\alpha}||_1$, $||A_{\alpha}||_2$ et $||A_{\alpha}||_{\infty}$.
- 2) Mêmes questions pour la matrice

$$B_{\alpha} = \begin{bmatrix} \alpha & 1 & 0 \\ 1 & \alpha & 1 \\ 0 & 1 & \alpha \end{bmatrix}.$$

Exercice 22 Une matrice $B = [b_{i,j}] \in \mathcal{M}_n(\mathbb{R})$ est dite être une M-matrice si ses éléments diagonaux sont strictement positifs, ses éléments extra-diagonaux sont négatifs et pour tout $i, \sum_j b_{i,j} > 0$.

- a) Montrer que toute M-matrice est inversible.
- b) Montrer que tous les coefficients de l'inverse d'une M-matrice sont positifs.
- c) Montrer que l'ensemble des M-matrices est une cône convexe non fermé.