

## Algoritmos genéticos

- Essencialmente, é um método de busca.
- Na área da IA, os algoritmos genéticos (AGs) criaram uma subárea, conhecida como algoritmos evolutivo.
- É uma técnica de busca utilizada na ciência da computação para achar soluções aproximadas em problemas de otimização e busca,
- Foi proposta por John Henry Holland.

## Computação evolucionária

"Quanto melhor um indivíduo se adaptar ao seu meio ambiente, maior será sua chance de sobreviver e gerar descendentes." (DARWIN, 1859)

Também é considerado um método de busca paralela.

- Área da Inteligência Artificial, que engloba um conjunto de métodos computacionais;
- Inspirados na Teoria da Evolução das Espécies de Charles Darwin (DARWIN, 1859) para a solução de problemas:
  - Na natureza sobrevivem os indivíduos que possuem maior capacidade de se adaptarem ao meio ambiente;
  - Suas características genéticas são repassadas para as gerações seguintes e melhoradas;
  - A nova geração será composta por indivíduos com material genético melhor do que os da população anterior.

## A computação evolucionária

### Atualmente a computação evolucionária se divide:

- Programação evolucionária
  - Previsão do comportamento de máquinas de estado finitas.
- Estratégias evolucionárias
  - ênfase na auto-adaptação. O papel da recombinação é aceito, mas como operador secundário.
- Algoritmos genéticos
  - Indivíduos contém um genótipo formado por cromossomos
- Programação genética
  - Evolução de programas

# Terminologia

| Termo                  | conceito                                                                        |
|------------------------|---------------------------------------------------------------------------------|
| Indivíduo, Filho, pais | São propostas de soluções, um filho é uma solução derivada de soluções pais.    |
| População              | Um conjunto de soluções candidatas                                              |
| Fitness                | Qualidade                                                                       |
| Genotipo ou genoma     | Estrutura de dados do individuo                                                 |
| Cromossomo             | Uma solução                                                                     |
| Gene                   | Uma parte da solução                                                            |
| Alelo, fenótipo        | um valor do gene                                                                |
|                        |                                                                                 |
| Geração                | iteração                                                                        |
| Função de avaliação    | Função que avalia a solução e normalmente devolve a fitness (valor da solução). |

## Algoritmo

- 1. Gerar População Inicial
- Descartar uma parte dos Indivíduos menos aptos
- 3. Aplicar operadores de reprodução
- 4. Aplicar operadores de mutação
- 5. Se o critério de parada foi satisfeito, encerrar. Senão, voltar ao passo 2.



## Modelagem

- Indivíduos X Estados
- Cada indivíduo possui um código genético
- Esse código é chamado *cromossomo*
- Tradicionalmente, um cromossomo é um vetor de bits
- Vetor de bits nem sempre é o ideal

0 1 0 1 0 1 0

# Operadores

As operações foram inspiradas nos processos biológicos, são elas:

- Seleção natural
- Manipulação genética por mutação
- Manipulação genética por reprodução

## Principais métodos de seleção natural

Roleta



- Utiliza sucessivas disputas para realizar a seleção
- Para selecionar k indivíduos, realiza k disputas, cada disputa envolvendo n indivíduos escolhidos ao acaso
- O indivíduo de maior aptidão na disputa é selecionado
- É muito comum utilizar n = 3

### Amostragem Universal estocástica

- SUS Stochastic Universal Sampling
- Semelhante à Roleta, mas para selecionar *k* indivíduos utiliza *k* agulhas igualmente espaçadas, girando-as em conjunto uma só vez
- Apresenta resultados menos variantes que a Roleta



## Algoritmo Roleta

```
Inicio T= soma dos valores de aptidão de todos os indivíduos da população Repita N vezes para selecionar n indivíduos r= valor aleatório entre 0 e T Percorra sequencialmente os indivíduos da população, acumulando em S o valor de aptidão dos indivíduos já percorridos Se S>=r então Selecione o indivíduo corrente Fim se Fim Repita
```

## Algoritmo torneio

## Operador de mutação

- Operador randômico de manipulação
- Introduz e mantém a variedade genética da população
- Garante a possibilidade de se alcançar qualquer ponto do espaço de busca
- Contorna mínimos locais
- É um operador genético secundário
- Se seu uso for exagerado, reduz a evolução a uma busca totalmente aleatória
- Logo um indivíduo sofre mutações com probabilidade baixa (normalmente entre 0,001 e 0,1)

### Operador de cruzamento

- Também chamado de *reprodução* ou *crossover*
- Combina as informações genéticas de dois indivíduos (pais) para gerar novos indivíduos (filhos)
- Versões mais comuns criam sempre dois filhos para cada operação
- Operador genético principal
- Responsável por gerar novos indivíduos diferentes (sejam melhores ou piores) a partir de indivíduos já promissores
- Aplicado a cada par de indivíduos com alta probabilidade (normalmente entre 0,6 e 0,99)

## Exemplo do cruzamento



# Abordagens para o Cruzamento

Cruzamento Um-Ponto

Cruzamento Multi-Pontos

• Cruzamento Uniforme

## Parâmetros genéticos

- Tamanho da população
- Taxa de cruzamento
- Taxa de mutação
- Intervalo de geração
- Critério de parada

## Aplicações

- Ajuste de curva
- Alocação de tarefas
- Configuração de sistemas complexos
- Seleção de Rotas (caixeiro viajante)
- Problemas de Otimização e de Aprendizagem de Máquina
- Problemas cuja solução seja um estado final e não um caminho

## Exemplo para uma modelagem não binária

### Problema do timetables

|             | 2"                               | 3ª                                        | 4ª                                                          | 5°                                                                                                                                                     | 6°                                                                                                                                                                                  | Sáb                                                                                                                                                                                                                                                                     |  |
|-------------|----------------------------------|-------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 19h00 DC240 | DC1/12                           | DS240                                     | DS140                                                       | DS340 A (remoto)                                                                                                                                       | xxxx                                                                                                                                                                                |                                                                                                                                                                                                                                                                         |  |
| 101100      | D3240                            | D3142                                     | Rafaela A06                                                 | Razer A13                                                                                                                                              | João E                                                                                                                                                                              | 2022                                                                                                                                                                                                                                                                    |  |
| 20500       | DC240                            | DC142                                     | DS240                                                       | DS140                                                                                                                                                  | DS340 A (remoto)                                                                                                                                                                    | *****                                                                                                                                                                                                                                                                   |  |
| 201100      | DS240                            | DS142                                     | Rafaella A06                                                | Razer A13                                                                                                                                              | João E                                                                                                                                                                              | XXXX                                                                                                                                                                                                                                                                    |  |
| 24500       | DC142                            | DS142                                     | DS340 A                                                     | DS140                                                                                                                                                  | DS640 (remoto)                                                                                                                                                                      | www.                                                                                                                                                                                                                                                                    |  |
| 211100      | DS143                            |                                           | João E A13                                                  | Razer A13                                                                                                                                              | Marly                                                                                                                                                                               | XXXX                                                                                                                                                                                                                                                                    |  |
| 22500       | DS143 DS142                      | DC142 DC142                               | DS340 A                                                     | DS140 DS640 (remoto)                                                                                                                                   |                                                                                                                                                                                     | xxxx                                                                                                                                                                                                                                                                    |  |
| DS143       |                                  | João E A13                                | Razer A13                                                   | Marly                                                                                                                                                  | ***                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |  |
|             | 19h00<br>20h00<br>21h00<br>22h00 | 19h00 DS240<br>20h00 DS240<br>21h00 DS143 | 19h00 DS240 DS142<br>20h00 DS240 DS142<br>21h00 DS143 DS142 | 19h00 DS240 DS142 DS240   20h00 DS240 DS240   20h00 DS240 DS240   Rafaella A06 Rafaella A06   21h00 DS143 DS142   DS340 A João E A13   DS340 A DS340 A | 19h00 DS240 DS140 DS140 Rafaela A06 Razer A13   20h00 DS240 DS140 DS140 DS140   20h00 DS143 DS142 DS340 A DS140   21h00 DS143 DS142 DS340 A DS140   22h00 DS143 DS142 DS340 A DS140 | 19h00 DS240 DS140 DS340 A (remoto)   20h00 DS240 DS140 DS340 A (remoto)   20h00 DS240 DS140 DS340 A (remoto)   Rafaella A06 Razer A13 DS340 A (remoto)   PS340 A DS140 DS640 (remoto)   PS340 A DS140 DS640 (remoto)   PS340 A DS140 DS640 (remoto)   PS140 DS143 DS142 |  |

Um cromossomo pode ser:

| DS240 | DS240 | DS143 | DS143 | DS142 | DS142 | DS142 | DS142 |  |
|-------|-------|-------|-------|-------|-------|-------|-------|--|
|       |       |       |       |       |       |       |       |  |



### Exercício

Minimize a função:

$$f(x) = x^2 - 3x + 4$$

- Assumir que *x* ∈ [-10, +10]
- Codificar x como vetor binário
- Criar uma população inicial com 4 indivíduos
- Aplicar Mutação com taxa de 1%
- Aplicar Crossover com taxa de 60%
- Usar seleção por torneio.
- Usar 5 e 25 gerações.

### Exercício 2

Considere uma equação no formato ax^2+bx+c=0

Considere os pontos conhecidos:

| X | Eq |
|---|----|
| 1 | 11 |
| 2 | 21 |
| 3 | 35 |
| 4 | 53 |
| 5 | 75 |

Desenvolva um algoritmo para encontrar os valores de a,b e c. Considere a faixa de valores de 0 a 10.

Problema do Caixeiro Viajante

A Solução poderá ser apresentada individualmente:

Python (preferencialmente), ou em R, ou em Matlab, ou em C ou em Java.

Considere o seguinte problema de otimização (a escolha do número de 100 cidades foi feita simplesmente para tornar o problema intratável. A solução ótima para este problema não é conhecida):

Suponha que um caixeiro deva partir de sua cidade, visitar clientes em outras 99 cidades diferentes, e então retornar à sua cidade. Dadas as coordenadas das 100 cidades, descubra o percurso de menor distância que passe uma única vez por todas as cidades e retorne à cidade de origem.

Para tornar a coisa mais interessante, sorte as coordenadas das cidades (representada por x e y, em um espaço de 100 por 100 pixels. Para o desenvolvimento, recomendo definir a seed com um valor constante, para que as execuções comecem com um mesmo conjunto de dados.

#### **Problema do Caixeiro Viajante**

#### Codificação

- representação inteira: cada cromossomo conterá todos os números de 1 a 100 (cada número associado a uma cidade, e a ordem de aparecimento dos números no cromossomo vai indicar o percurso, sendo necessário fechar o percurso da última para a primeira cidade.
- Detalhe: como trata-se de um percurso fechado, a origem do percurso pode ser qualquer uma das cidades, ao menos para efeito da implementação computacional.
- número de possíveis percursos (soluções candidatas): 99! ≅ 9,33 × 10155
- função de adequação (fitness): o inverso da distância associada a cada percurso.
- solução ótima: desconhecida, em razão da impossibilidade de testar todas as soluções candidatas (único meio existente para se garantir a obtenção da solução ótima);

#### **Problema do Caixeiro Viajante**

### Codificação

- valores arbitrados pelo usuário (ou por vocês):
  - tipo de mutação: sorteio de duas cidades para troca de posição
  - taxa de mutação: 1%
  - tipo de crossover: OX (uma espécie de crossover de um ponto, caracterizado pela junção de uma parte de um cromossomo com a parte de um outro, mas com a substituição das cidades repetidas pelas ausentes, na sequência)
  - taxa de crossover: 60%
  - tipo de seleção: rank ou torneio (50% dos melhores)

### **Problema do Caixeiro Viajante**

Resultados esperados (naturalmente variável)

### Melhor indivíduo na população inicial



### Melhor indivíduo após 500 gerações



#### **Problema do Caixeiro Viajante**

Resultados esperados (naturalmente variável)

#### Melhor indivíduo após 2000 gerações



### Melhor indivíduo após 4000 gerações



número de indivíduos testados: 400.000 (dentre os possíveis  $9,33 \times 10^{155}$  candidatos) Tempo da simulação de aproximadamente de 3 minutos.

### Referências

• ZADEH, L. A. Fuzzy sets. 1965

• ABAR, Celina Aparecida Almeida Pereira. Lógica Fuzzy. PUC/SP. 2004.

• ZUBEN, Fernando J. V. Computação Evolutiva: Uma Abordagem Pragmática, 2011