Transformada Z Bilateral

Ing. José Miguel Barboza Retana Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Verano 2019-2020

Funciones en Tiempo Discreto

Señal Digital

Una señal digital tiene variables independientes discretas y valores discretos

¿realidad analógica vs representación en un dominio digital?

Conversión analógica/digital

Tres pasos en la conversión de una señal analógica a digital:

- 1. Muestreo es la conversión de una señal de variable continua a otra de variable discreta. Si $x_a(t)$ es la entrada al bloque de muestreo, entonces la salida puede ser tomada en instantes equidistantes $x_a(nT)$, con T el **intervalo de muestreo**.
- 2. Cuantificación es la conversión de la señal de variable discreta y valores continuos a otra señal de variable discreta pero con valores discretos. A la diferencia entre el valor continuo y su aproximación se le denomina error de cuantificación.
- 3. Codificación consiste en la asignación de una representación usualmente binaria a los valores cuantificados.

Conversión analógica/digital

Muestreo periódico

El análisis matemático se simplifica utilizando señales en tiempo discreto. Así, con el **muestreo periódico** o **uniforme** la relación

Relación entre dominios continuo y discreto

Las variables t y n de las señales de variable continua y discreta respectivamente están relacionadas a través del intervalo de muestreo T

$$t = nT = \frac{n}{F_s}$$

donde a F_s se le denomina tasa de muestreo.

Representaciones de funciones de variable discreta

Representación gráfica

A n se le denomina número de muestra y a x(n) la n-ésima muestra de la señal.

Representación funcional

$$x(n) = \begin{cases} 1 & para \ n = 1 \\ 5 - n & para \ 2 \le n \le 4 \\ 0 & el \ resto \end{cases}$$

Esta es la representación más usual en el análisis matemático de funciones discretas.

Representación tabular

En programas computacionales para manipulación y modelado digital de sistemas, como por ejemplo el **MATLAB**TM o el **GNU/Octave** las funciones se representan usualmente de esta manera: por un lado con los números de muestra n, y por otro con los valores de las muestras x(n).

Representación como secuencia

Una secuencia de duración infinita con el origen en n=0 (indicado con "↑") se representa como

$$x(n) = \{..., 0, 0, 1, 3, 2, 1, 0, ...\}$$

Si la secuencia es 0 para n < 0 se puede representar como

$$x(n) = \{0, 1, 3, 2, 1, 0, ...\}$$

y si es finita

$$x(n) = \{0, 1, 3, 2, 1\} = \{0, 1, 3, 2, 1\}$$

Donde la flecha "1" se omite si la primera muestra en la secuencia corresponde a la muestra en 0.

Representación continua de impulsos

Para el análisis matemático de señales y sistemas en tiempo discreto es útil representar la función muestreada $x_a(nT)$ por medio de impulsos de Dirac con áreas modificadas de acuerdo al valor de cada muestra.

Así, definase la función muestreada $\hat{x}_a(t)$ como

$$\hat{x}_a(t) = \sum_{n = -\infty}^{\infty} x_a(t)\delta(t - nT) = \sum_{n = -\infty}^{\infty} x_a(nT)\delta(t - nT)$$

(1)

Dada la función de variable discreta x(n), en términos continuos

$$\hat{x}_{a}(t) = \sum_{n=-\infty}^{\infty} x(n)\delta(t - nT)$$

$$= \sum_{n=-\infty}^{\infty} x_{a}(nT)\delta(t - nT) = \sum_{n=-\infty}^{\infty} x_{a}(t)\delta(t - nT)$$

Si $x_a(t)$ tiene una respuesta en frecuencia $X_a(j\omega)$, encuentre el espectro correspondiente de x(n). ¿Qué relación debe existir entre el periodo de muestreo T y el espectro $X_a(j\omega)$ para que la señal original $x_a(t)$ pueda ser reconstruida a partir de $\hat{x}_a(t)$?

(2)

Solución: Puesto que se cumple

$$\hat{x}_a(t) = \sum_{n = -\infty}^{\infty} x_a(t)\delta(t - nT) = x_a(t)\sum_{n = -\infty}^{\infty} \delta(t - nT)$$

entonces, aplicando la transformada de Fourier a ambos lados, utilizando las propiedades de la convolución, y tomando en cuenta que

$$\mathcal{F}\left\{\sum_{n=-\infty}^{\infty} \delta(t-nT)\right\} = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0)$$

(3)

se obtiene con $\omega_0 = 2\pi/T$

$$\mathcal{F}\{\hat{x}_{a}(t)\} = X_{a}(j\omega) * \frac{2\pi}{2\pi T} \sum_{n=-\infty}^{\infty} \delta(\omega - k\omega_{0})$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{a}(j\omega) * \delta(\omega - k\omega_{0})$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{a}(j\omega - jk\omega_{0})$$

Esto corresponde a una replicación con traslape aditivo del espectro, $X_a(j\omega)$, donde las réplicas guardan una distancia de ω_0 entre sí

Señales Elementales

Impulso unitario

El impulso unitario $\delta(n)$ está definido como:

$$\delta(n) = \begin{cases} 1 & para \ n = 0 \\ 0 & para \ n \neq 0 \end{cases}$$

Escalón unitario

El escalón unitario u(n) se define como:

$$u(n) = \begin{cases} 0 & para \ n < 0 \\ 1 & para \ n \ge 0 \end{cases}$$

Nótese que

$$u(n) = \sum_{i=-\infty}^{\infty} \delta(i)$$

Rampa unitaria

La rampa unitaria se obtiene de

$$u_r(n) = \sum_{i=-\infty}^n u(i-1)$$

lo que resulta en

$$u_r(n) = \begin{cases} 0 & para \ n < 0 \\ n & para \ n \ge 0 \end{cases}$$

Señal exponencial real

La señal exponencial se define como

$$x(n) = a^n$$

y su comportamiento depende de la constante a. El comportamiento es estable si |a| < 1 o inestable si |a| > 1.

Señal exponencial compleja: magnitud y fase

Si a es complejo entonces la señal exponencial puede expresarse como

$$a = re^{j\psi} \Rightarrow x(n) = r^n e^{j\psi n}$$

es decir, un fasor de magnitud r^n con fase ψn .

Señal exponencial compleja: Parte real e imaginaria

Utilizando la identidad de Euler se obtiene

$$x(n) = r^n \cos(\psi n) + jr^n \sin(n\psi)$$

cuyas partes real e imaginaria se ilustran.

Señal exponencial compleja: representación integrada

Otra representación de una señal exponencial compleja se presenta en la siguiente figura:

Transformada z Bilateral

Transformada de Laplace de una señal discreta

Tómese ahora la representación $\hat{x}_a(t)$ de una señal muestreada. Su transformada de Laplace es

$$\mathcal{L}\{\hat{x}_a(t)\} = \int_{-\infty}^{\infty} \left[\sum_{n=-\infty}^{\infty} x_a(nT)\delta(t-nT) \right] e^{-st} dt$$

$$=\sum_{n=-\infty}^{\infty}x_a(nT)\int_{-\infty}^{\infty}\delta(t-nT)e^{-st}dt$$

$$=\sum_{n=-\infty}^{\infty}x_a(nT)e^{-snT}$$

Transformada z bilateral

Si se define $z = e^{sT}$ y considerando que $x(n) = x_a(nT)$ se obtiene

$$\mathcal{L}\{x(n)\} = \mathcal{L}\{\hat{x}_a(t)\} = \sum_{n = -\infty}^{\infty} x_a(nT)e^{-snT}$$
$$= \sum_{n = -\infty}^{\infty} x(n)z^{-n} = X(z)$$

conocido como la Transformada z bilateral de x(n), que converge dentro de la región de convergencia (ROC) de la serie.

La relación entre la secuencia discreta x(n) y su representación X(z) en el dominio z se denota como:

$$x(n) \longrightarrow X(z)$$
 ó $x(n) \stackrel{z}{\smile} X(z)$

Relación entre los planos s y z

La relación $z=e^{sT}$ es un mapeo conforme del plano $s=\sigma+j\omega$ al plano complejo z. Puesto que

$$z = e^{(\sigma + j\omega)T} = e^{\sigma T} e^{j\omega T}$$

entonces una línea vertical en el plano s, para la cual σ es constante, es transformada en un círculo de radio $e^{\sigma T}$.

¿Cómo deben ser las regiones de convergencia de la transformada z de señales izquierdas, derechas y bilaterales?

Convergencia de X(z)

Si se expresa z en su forma polar $z = re^{j\varphi}$, con r = |z| y $\varphi = \angle z$:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)r^{-n}e^{-j\varphi n}$$

Dentro de la ROC de X(z), $|X(z)| < \infty$, por lo que:

$$|X(z)| = \left| \sum_{n = -\infty}^{\infty} x(n) r^{-n} e^{-j\varphi n} \right| \le \sum_{n = -\infty}^{\infty} |x(n) r^{-n}|$$

es decir, si $x(n)r^{-n}$ es absolutamente sumable entonces |X(z)| es finita

Región de convergencia

Para encontrar la **ROC** se debe entonces encontrar el rango de valores de r para los que la secuencia $x(n)r^{-n}$ es absolutamente sumable. Ahora bien, la desigualdad

$$|X(z)| \le \sum_{n=-\infty}^{\infty} |x(n)r^{-n}|$$

puede reescribirse como:

$$|X(z)| \le \sum_{n=-\infty}^{-1} |x(n)r^{-n}| + \sum_{n=0}^{\infty} |x(n)r^{-n}| = \sum_{n=1}^{\infty} |x(-n)r^n| + \sum_{n=0}^{\infty} |x(n)r^{-n}|$$

y ambas sumatorias deben converger si |X(z)| debe ser finito.

Convergencia para señal izquierda

Para la primera suma

$$\sum_{n=1}^{\infty} |x(-n)r^n|$$

deben existir valores de r suficientemente pequeños para que $x(-n)r^n$ sea absolutamente sumable $(r < r_1)$.

Convergencia para señal derecha

Para que la segunda suma

$$\sum_{n=0}^{\infty} |x(n)r^{-n}|$$

Converja, se necesitan valores de r suficientemente grandes para que $x(n)r^{-n}$ sea absolutamente sumable. Por ellos, la **ROC** serán los puntos fuera de una circunferencia $r > r_2$.

Convergencia de señal bilateral

Como ambas sumas deben converger la ROC de X(z) es la región anular del plano z, $r_2 < r < r_1$, lo que concuerda con el análisis anterior basado en el mapeo $z = e^{sT}$.

Ejemplo: Transformada z de funciones finitas

(1)

Calcule la transformada z de:

1.
$$x_1(n) = \{1,2,5,7,0,1\}$$

2.
$$x_2(n) = \{1, 2, 5, 7, 0, 1\}$$

3.
$$x_3(n) = \delta(n)$$

4.
$$x_4(n) = \delta(n+k), k > 0$$

Ejemplo: Transformada z de funciones finitas

(2)

Solución:

1.
$$x_1(n) = \{1,2,5,7,0,1\}$$

 $X_1(z) = 1 + 2z^{-1} + 5z^{-2} + 7z^{-3} + 1z^{-5}, \text{ROC} = z \in \mathbb{C} \setminus \{0\}$

2.
$$x_2(n) = \{1, 2, 5, 7, 0, 1\}$$

 $X_2(z) = z^3 + 2z^2 + 5z + 7 + z^{-2}, \text{ROC} = z \in \mathbb{C} \setminus \{0, \infty\}$

3.
$$x_3(n) = \delta(n)$$

 $X_3(z) = 1$, ROC = $z \in \mathbb{C}$

4.
$$x_4(n) = \delta(n+k), k > 0$$

 $X_4(z) = z^{+k}, \text{ROC} = z \in \mathbb{C} \setminus \{\infty\}$

Ejemplos de transformada z de funciones exponenciales

Ejemplo: Transformada z de función exponencial cuasal (1)

Determine la transformada z de:

$$x(n) = \alpha^n u(n)$$

Ejemplo: Transformada z de función exponencial cuasal (2)

Solución: Se tiene que

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} = \sum_{n=0}^{\infty} \alpha^n (z^{-1})^n = \sum_{n=0}^{\infty} (\alpha z^{-1})^n$$

que converge si
$$|\alpha z^{-1}| < 1$$
 ($|z| > |\alpha|$) a $\frac{1}{1-\alpha z^{-1}}$.

Nótese que si $\alpha = 1$, se tiene la transformada z del escalón unitario:

$$x(n) = u(n) \circ X(z) = \frac{1}{1 - z^{-1}}, \qquad ROC: z > 1$$

Ejemplo: Transformada z de f. exponencial anticuasal (1)

Determine la transformada z de:

$$x(n) = -\alpha^n u(-n-1)$$

Ejemplo: Transformada z de f. exponencial anticuasal (2) Solución:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n} = -\sum_{n = -\infty}^{-1} \alpha^n z^{-n} = -\sum_{m = 1}^{\infty} \alpha^{-m} z^m$$
$$= -\sum_{m = 1}^{\infty} (\alpha^{-1} z)^m$$

que converge sólo si $|\alpha^{-1}z| < 1$, es decir, si $|z| < |\alpha|$, a:

$$X(z) = -\left(\frac{1}{1 - \alpha^{-1}z} - 1\right) = -\frac{\alpha^{-1}z}{1 - \alpha^{-1}z} = \frac{1}{1 - \alpha z^{-1}}$$

Nótese que esta expresión es idéntica a la obtenida para $x(n) = \alpha^n u(n)$

Ambiguedad de expresiones algebraicas sin ROC

Se concluye que la forma compacta de la transformada z no especifica una única señal en el dominio del tiempo. Esto sólo ocurre indicando además la **ROC**.

El término transformada z indica entonces no sólo la expresión X(z), sino también su **ROC**.

ROC de Transformada

Se $\tilde{\mathbf{n}}$ al $x(n)$	Transformada z , $X(z)$	ROC
$\delta(n)$	1	Plano z
u(n)	$\frac{1}{1-z^{-1}}$	z > 1
$a^n u(n)$	$\frac{1}{1 - az^{-1}}$	z > a
$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-(a^n)u(-n-1)$	$\frac{1}{1 - az^{-1}}$	z < a
$-n(a^n)u(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\cos(\omega_0 n)u(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
$\mathrm{sen}(\omega_0 n) u(n)$	$\frac{z^{-1} \sec \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$	z > 1
$a^n \cos(\omega_0 n) u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
$a^n \operatorname{sen}(\omega_0 n) u(n)$	$\frac{az^{-1} \sin \omega_0}{1 - 2az^{-1} \cos \omega_0 + a^2 z^{-2}}$	z > a

Transformada z bilateral de algunas funciones comunes

Propiedades de la transformada z bilateral

Linealidad

Si
$$x_1(n) \circ - X_1(z)$$
 y $x_2(n) \circ - X_2(z)$, entonces

$$x(n) = ax_1(n) + a_2x_2(n)$$
 \longrightarrow $X(z) = a_1X_1(z) + a_2X_2(z)$

Desplazamiento en el tiempo

Si
$$x(n) \hookrightarrow X(z)$$
, entonces $x(n-k) \hookrightarrow z^{-k}X(z)$

La ROC de $z^{-k}X(z)$ es la misma de X(z) excepto

•
$$z = 0$$
 si $k > 0$ y

$$z = \infty$$
 si $k < 0$.

Escalamiento en el dominio z

Si $x(n) \longrightarrow X(z)$, ROC: $r_1 < |z| < r_2$, entonces

$$a^n x(n) \longrightarrow X(a^{-1}z)$$
, ROC: $|a|r_1 < |z| < |a|r_2$

para todo $a \in \mathbb{C}$.

Demostración:

$$\mathcal{Z}\{a^{n}x(n)\} = \sum_{n=-\infty}^{\infty} a^{n}x(n)z^{-n} = \sum_{n=-\infty}^{\infty} x(n)(a^{-1}z)^{-n} = X(a^{-1}z)$$

Conjugación

Si x(n) tiene como transformada z a X(z) con ROC R entonces

$$x^*(n) \longrightarrow X^*(z^*), \qquad ROC:R$$

Si x(n) es real entonces $X(z) = X^*(z^*)$

Inversión temporal

$$x(n) \circ - X(z), \qquad ROC: r_1 < |z| < r_2$$

 $x(-n) \circ - X(z^{-1}), \qquad ROC: \frac{1}{r_2} < |z| < \frac{1}{r_1}$

Diferenciación en el dominio z

$$x(n) \circ - X(z)$$

$$nx(n) \circ - z \frac{d}{dz} X(z)$$

Convolución de dos secuencias

Si

$$x_1(n) \circ - X_1(z),$$
 $ROC: R_1$
 $x_2(n) \circ - X_2(z),$ $ROC: R_2$

entonces

$$x(n) = x_1(n) * x_2(n) \circ X(z) = X_1(z)X_2(z)$$

la **ROC** es al menos $R_1 \cap R_2$.

Teorema del valor inicial

Si x(n) es causal $(x(n) = 0, \forall n < 0)$, entonces:

$$x(0) = \lim_{z \to \infty} X(z)$$

Puesto que x(n) es causal:

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n} = x(0) + x(1)z^{-1} + \cdots$$

Si $z \to \infty$ todos los términos z^{-1} , z^{-2} , etc. tienden a cero y por tanto:

$$x(0) = \lim_{z \to \infty} X(z)$$

Propiedades de la transformada z bilateral

Propiedad	Dominio n	Dominio z	ROC
Notación	x(n)	X(z)	$R = \{ z \mid r_2 < z < r_1 \}$
	$x_1(n)$	$X_1(z)$	R_1
	$x_2(n)$	$X_2(z)$	R_2
Linealidad	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z) + a_2X_2(z)$	por lo menos $R_1\cap R_2$
Desplazamiento en n	x(n-k)	$z^{-k}X(z)$	$R \setminus \{0\}$ si $k > 0$ y $R \setminus \{\infty\}$ si $k < 0$
Escalado en z	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Reflexión en n	x(-n)	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$
Conjugación	$x^*(n)$	$X^{*}(z^{*})$	\vec{R}
Parte real	$\operatorname{Re}\{x(n)\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Incluye R
Parte imaginaria	$\operatorname{Im}\{x(n)\}$	$\frac{1}{2} [X(z) - X^*(z^*)]$	Incluye R
Derivación en z	nx(n)	$-z \frac{dX(z)}{dz}$	$r_2 < z < r_1$
Convolución	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	Por lo menos $R_1 \cap R_2$
Teorema del valor inicial	Si $x(n)$ es causal	$x(0) = \lim_{z \to \infty} X(z)$	

Transformada z inversa

Utilizando el **teorema integral de Cauchy** y la fórmula integral de Cauchy se demuestra que se cumple

$$\frac{1}{2\pi j} \oint_C z^{n-1-k} dz = \begin{cases} 1 & k=n \\ 0 & k \neq n \end{cases}$$

para un contorno de integración C que rodea al origen.

Transformada z inversa: Derivación

(2)

A partir de la definición de la transformada z para una señal de variable discreta x(k)

$$X(z) = \sum_{k=-\infty}^{\infty} x(k)z^{-k}$$

se obtiene multiplicando ambos lados por z^{n-1} , e integrando en un contorno cerrado que contienen al origen, y que está dentro de la ROC:

$$\oint_C X(z)z^{n-1}dz = \oint_C \sum_{k=-\infty}^{\infty} x(k)z^{-k+n-1}dz$$

Como la serie converge dentro de *C*, la integral y la sumatoria pueden ser intercambiadas:

$$\oint_C X(z)z^{n-1}dz = \sum_{k=-\infty}^{\infty} x(k) \oint_C z^{-k+n-1}dz$$

que con el resultado anterior sólo es diferente de cero para k = n, es decir:

$$x(n) = \frac{1}{2\pi i} \oint_C X(z) z^{n-1} dz$$

(1)

Encuentre la transformada z inversa de la expresión

$$X(z) = \frac{1}{1 - \alpha z^{-1}}$$

si se sabe que la señal correspondiente es causal.

(2)

Solución: Aplicando la integral de definición se obtiene

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

$$= \frac{1}{2\pi j} \oint_C \frac{1}{1 - \alpha z^{-1}} z^{n-1} dz$$

$$= \frac{1}{2\pi j} \oint_C \frac{z}{z - \alpha} z^{n-1} dz$$

$$= \frac{1}{2\pi j} \oint_C \frac{z^n}{z - \alpha} dz$$

Como C debe estar dentro de la **ROC**, y la señal es causal, entonces se escoge una circunferencia de radio mayor que $|\alpha|$.

(3)

En

$$x(n) = \frac{1}{2\pi j} \oint_C \frac{z^n}{z - \alpha} dz$$

se observa que para n > 0 se tiene un cero de orden n en z = 0, o ningún cero cuando n = 0, y en ambos casos hay un polo en $z = \alpha$.

En estos casos se puede aplicar la fórmula integral de Cauchy para obtener directamente

$$x(n) = z^n \Big|_{z=\alpha} = \alpha^n$$

$$x(n) = \frac{1}{2\pi j} \oint_C \frac{z^n}{z - \alpha} dz$$

Para n < 0 la función f(z) tiene un polo de orden n en z = 0, que también está dentro de C, por lo que dos polos $z_1 = 0$ y $z_2 = \alpha$ contribuyen al valor de la integral.

Con n = -1 y la fórmula integral de Cauchy:

$$\frac{1}{2\pi j} \oint_C \frac{1}{z(z-\alpha)} dz = \frac{1}{z-\alpha} \Big|_{z=0} + \frac{1}{z} \Big|_{z=\alpha}$$
$$= -\frac{1}{\alpha} + \frac{1}{\alpha} = 0$$

(6)

Con n = -2:

$$\frac{1}{2\pi j} \oint_C \frac{1}{z^2 (z - \alpha)} dz = \frac{1}{2\pi j} \oint_C \frac{-\frac{1}{\alpha}}{z^2} + \frac{-\frac{1}{\alpha^2}}{z} + \frac{\frac{1}{\alpha^2}}{z - \alpha} dz$$
$$= 0 - \frac{1}{\alpha^2} + \frac{1}{\alpha^2} = 0$$

Esto se puede repetir para todo n < -2 resultando en x(n) = 0. Por tanto, resumiendo ambos casos en una ecuación se obtiene:

$$x(n) = \alpha^n u(n)$$

Transformada z inversa por expansión en series

La idea de este método es expandir X(z) en una serie de potencias de la forma:

$$X(z) = \sum_{n=-\infty}^{\infty} c_n z^{-n} = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

que converge en la región de convergencia asociada a X(z).

Ejemplo: Transformada z inversa por división polinomial (1)

Calcule la secuencia en tiempo discreto x(n) si su transformada z tiene como expresión algebraica

$$X(z) = \frac{1 + \frac{1}{2}z^{-1}}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}}$$

Para las regiones de convergencia

- 1. ROC: |z| > 1
- 2. ROC: |z| < 1/2

Ejemplo: Transformada z inversa por división polinomial (2)

Solución: Debido a que la ROC |z| > 1 es el exterior de un círculo y X(z) es racional, entonces x(n) es una señal causal. Para calcularla se ordenan el numerador y el denominador del mayor coeficiente al menor y se divide:

Con lo que se deduce
$$x(n) = \{1, 2, \frac{5}{2}, \frac{11}{4}, \frac{23}{8}, \dots\}.$$

Ejemplo: Transformada z inversa por división polinomial (2)

La **ROC** |z| < 1/2 corresponde a una señal anticausal. Para este caso se ordenan el numerador y el denominador de menor a mayor y se divide:

$$\frac{\frac{1}{2}z^{-1} + 1}{-(\frac{1}{2}z^{-1} - \frac{3}{2} + z)} \qquad \frac{\frac{1}{2}z^{-2} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{5}{2}z^{-1} - \frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{3}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{1}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{1}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{1}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{1}{2}z^{-1} + 1}{z + 5z^{2} + 13z^{3} + 29z^{4} + 61z^{5} + \dots}$$

$$\frac{\frac{1}{2}z^{-1} - \frac{1}{2}z^{-1} + \frac{1}{2$$

y finalmente
$$x(n) = \{..., 61, 29, 13, 5, 1, 0\}$$

Transformada z inversa con series: Limitaciones

Este método no provee la forma cerrada de x(n) y resultada tedioso si se desea determinar x(n) para n grande.

Es además inestable numéricamente si se automatiza para ser calculado en computador.

Es posible utilizar series conocidas para encontrar las correspondientes transformadas z.

Ejemplo: Transfromada z inversa por series de Taylor (1)

Determine la transformada z inversa de:

$$X(z) = In(1 + \alpha z^{-1}), \qquad ROC: |z| > |\alpha|$$

Ejemplo: Transfromada z inversa por series de Taylor (2)

Solución: Puesto que la serie de Taylor para $\ln(1+x)$, |x| < 1 es

$$ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$$

entonces

$$X(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \alpha^n z^{-n}}{n}$$

de donde se obtiene directamente $x(n) = \frac{(-1)^{n+1}\alpha^n}{n}u(n-1)$

Transformada z inversa con fracciones parciales

La expresión algebraica racional X(z) se puede descomponer como combinación lineal:

$$X(z) = \alpha_1 X_1(z) + \alpha_2 X_2(z) + \dots + \alpha_k X_k(z)$$

donde $\{X_i(z)\}$ son las transformaciones de las señales $\{x_i(n)\}$ disponibles en tablas.

Por linealidad se tiene que

$$x(n) = \alpha_1 x_1(n) + \alpha_2 x_2(n) + \dots + \alpha_k x_k(n)$$

Descomposición en fracciones parciales

Si X(z) es una función racional, entonces:

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

Nótese que si $a_0 \neq 1$, lo anterior se puede obtener dividiendo numerador y denominador por a_0 .

Una función impropia ($M \ge N$) siempre se puede representar como la suma de un polinomio y una función racional propia.

Funciones racionales impropias

En general, cualquier función racional impropia $(M \ge N)$ se puede expresar como:

$$X(z) = \frac{N(z)}{D(z)} = c_0 + c_1 z^{-1} + \dots + c_{M-N} z^{-(M-N)} + \frac{N_1(z)}{D(z)}$$

La transformada z inversa de un polinomio en términos de z^{-1} resulta en las primeras muestras causales de la señal.

Se prestará ahora especial atención a la transformada de funciones racionales propias.

Descomposición en fracciones parciales

(1)

Sea X(z) una función racional propia:

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

con $a_N \neq 0$ y M < N. Multiplicando por z^N tanto el numerador como el denominador:

$$X(z) = \frac{b_0 z^N + b_1 z^{N-1} + \dots + b_M z^{N-M}}{z^N + a_1 z^{N-1} + \dots + a_N}$$

puesto que N > M entonces

$$\frac{X(z)}{z} = \frac{b_0 z^{N-1} + b_1 z^{N-2} + \dots + b_M z^{N-M-1}}{z^N + a_1 z^{N-1} + \dots + a_N}$$

que es siempre propia

Descomposición en fracciones parciales

(2)

Para descomponer la función

$$\frac{X(z)}{z} = \frac{b_0 z^{N-1} + b_1 z^{N-2} + \dots + b_M z^{N-M-1}}{z^N + a_1 z^{N-1} + \dots + a_N}$$

como una suma de fracciones parciales, se factoriza el denominador en factores que contengan los polos $p_1, p_2,...,p_N$ de X(z)

$$\frac{X(z)}{z} = \frac{b_0 z^{N-1} + b_1 z^{N-2} + \dots + b_M z^{N-M-1}}{(z - p_1)(z - p_2) \dots (z - p_N)}$$

Caso: Polos diferentes de primer orden

Si todos los polos son diferentes y de primer orden, entonces se busca la expansión:

$$\frac{X(z)}{z} = \frac{A_1}{z - p_1} + \frac{A_2}{z - p_2} + \dots + \frac{A_N}{z - p_N}$$

donde

$$A_k = (z - p_k) \frac{X(z)}{z} \bigg|_{z = p_k}$$

Ejemplo: Descomposición en fracciones parciales (cont.) (1)

Encuentre la descomposición en fracciones parciales de

$$X(z) = \frac{1 + 3z^{-1} + \frac{11}{6}z^{-2} + \frac{1}{3}z^{-3}}{1 + \frac{5}{6}z^{-1} + \frac{1}{6}z^{-2}}$$

y con ella la transformada inversa x(n) de la función X(z), si se sabe que ésta es causal.

Ejemplo: Descomposición en fracciones parciales (cont.) (2)

Solución: Como X(z) es impropia se debe realizar una división polinomial para descomponer la función, de la cual se obtiene:

$$X(z) = 1 + 2z^{-1} + \frac{\frac{1}{6}z^{-1}}{1 + \frac{5}{6}z^{-1} + \frac{1}{6}z^{-2}}$$

Así, cada uno de los términos de la expresión de X(z) se transforman por separada utilizando la propiedad de linealidad.

Ejemplo: Descomposición en fracciones parciales (cont.) (3)

Para la fracción propia resultante se multiplica por $\frac{z^2}{z^2}$ y se obtiene:

$$\frac{\frac{1}{6}z^{-1}}{1 + \frac{5}{6}z^{-1} + \frac{1}{6}z^{-2}} \cdot \frac{z^{2}}{z^{2}} = \frac{\frac{1}{6}z}{z^{2} + \frac{5}{6}z + \frac{1}{6}}$$

$$= \frac{\frac{1}{6}z}{\left(z + \frac{1}{3}\right)\left(z + \frac{1}{2}\right)} = \frac{A_{1}}{\left(z + \frac{1}{3}\right)} + \frac{A_{2}}{\left(z + \frac{1}{2}\right)}$$

- Nótese que no fue necesario dividir por z pues la función racional resultante es propia desde un principio.
- Multiplicando ambos lados por (z+1/3) y haciendo $z \to -1/3$ se obtiene $A_1 = -\frac{1}{3}$.
- Por otro lado, multiplicando ambos lados por (z + 1/2) y haciendo z → -1/2 se obtiene $A_2 = \frac{1}{2}$.

Ejemplo: Descomposición en fracciones parciales (cont.) (4)

Se cumple entonces:

$$\frac{-\frac{1}{3}}{\left(z+\frac{1}{3}\right)} + \frac{\frac{1}{2}}{\left(z+\frac{1}{2}\right)} = \frac{-\frac{1}{3}z^{-1}}{\left(1+\frac{1}{3}z^{-1}\right)} + \frac{\frac{1}{2}z^{-1}}{\left(1+\frac{1}{2}z^{-1}\right)}$$

$$-\frac{1}{3}\left(-\frac{1}{3}\right)^{n-1}u(n-1) + \frac{1}{2}\left(-\frac{1}{2}\right)^{n-1}u(n-1)$$

$$= \left[\left(-\frac{1}{3}\right)^{n} - \left(-\frac{1}{2}\right)^{n}\right]u(n-1)$$

donde se ha hecho uso de las propiedades de linealidad y de desplazamiento en el tiempo.

Ejemplo: Descomposición en fracciones parciales (cont.) (5)

Falta únicamente transformar los términos $1+2z^{-1}$ que corresponden en el tiempo discreto a $\delta(n)+2\delta(n-1)$. De este modo se cumple

$$x(n) = \delta(n) + 2\delta(n-1) + \left[\left(-\frac{1}{3}\right)^n - \left(-\frac{1}{2}\right)^n\right]u(n-1)$$

Ejemplo: Fracciones parciales con solo polos simples (1)

Determine la expansión en fracciones parciales de

$$X(z) = \frac{1 + z^{-1}}{1 - z^{-1} + \frac{1}{2}z^{-2}}$$

Ejemplo: Fracciones parciales con solo polos simples (2)

Solución: Multiplicando por $\frac{z^2}{z^2}$ se obtiene:

$$X(z) = \frac{z^2 + z}{z^2 - z + \frac{1}{2}} \Rightarrow \frac{X(z)}{z} = \frac{z + 1}{z^2 - z + \frac{1}{2}}$$

con los polos $p_{1,2}=\frac{1\pm\sqrt{1-2}}{2}=\frac{1}{2}\pm j\frac{1}{2}=\sqrt{\frac{1}{2}}e^{\pm j45^o}$ se puede realizar la siguiente descomposición:

$$\frac{X(z)}{z} = \frac{A_1}{z - p_1} + \frac{A_2}{z - p_2} \Rightarrow \frac{A_1}{1 - p_1 z^{-1}} + \frac{A_2}{1 - p_2 z^{-1}}$$

Ejemplo: Fracciones parciales con solo polos simples (3)

$$A_{1} = (z - p_{1}) \frac{X(z)}{z} \Big|_{z=p_{1}} = \frac{z+1}{z-p_{2}} \Big|_{z=p_{1}} = \frac{p_{1}+1}{p_{1}-p_{2}} = \frac{1}{2} - j\frac{3}{2}$$

$$= \frac{\sqrt{10}}{2} e^{-j71,6^{0}}$$

$$A_{2} = (z - p_{2}) \frac{X(z)}{z} \Big|_{z=p_{2}} = \frac{z+1}{z-p_{1}} \Big|_{z=p_{2}} = \frac{p_{2}+1}{p_{2}-p_{1}} = \frac{1}{2} + j\frac{3}{2}$$

$$= \frac{\sqrt{10}}{2} e^{j71,6^{0}}$$

Recuérdese que para el caso en que los coeficientes de los polinomios en el numerador son reales, entonces si $p_1 = p_2^*$ se cumple $A_1 = A_2^*$

Ejemplo: Fracciones parciales con solo polos simples (4)

Asumiendo que se trata de una señal causal, se obtiene de la tabla de transformadas

$$Z\{X(z)\} = x(n) = [A_1 p_1^n + A_1^* p_1^{*n}] u(n)$$

$$= |A_1| |p_1|^n [e^{j(\angle A_1 + n \angle p_1)} + e^{-j(\angle A_1 + n \angle p_1)}] u(n)$$

$$= 2|A_1| |p_1|^n \cos(\angle A_1 + n \angle p_1)$$

$$= \sqrt{\frac{10}{2^n}} \cos(n45^o - 71.6^o)$$

Caso de polos de orden múltiple

Si hay un polo de orden l, $(z - p_k)^l$, entonces la expansión en fracciones parciales tendrá términos:

$$\frac{A_{1k}}{z-p_k} + \frac{A_{2k}}{(z-p_k)^2} + \dots + \frac{A_{lk}}{(z-p_k)^l}$$

donde los coeficientes $\{A_{ik}\}$ pueden obtenerse por medio de derivaciones sucesivas

Ejemplo: Fracciones parciales con polos dobles (1)

Determine la expansión en fracciones parciales de:

$$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$$

y encuentre la señal causal equivalente x(n)

Ejemplo: Fracciones parciales con polos dobles (2)

Solución: Multiplicando numerador y denominador por z^3 resulta en:

$$\frac{X(z)}{z} = \frac{z^2}{(z+1)(z-1)^2} = \frac{A_1}{(z+1)} + \frac{A_2}{(z-1)} + \frac{A_3}{(z-1)^2}$$

 A_1 y A_3 se encuentran fácilmente multiplicando por los denominadores parciales y haciendo $z = p_i$:

$$A_1 = (z+1)\frac{X(z)}{z}\Big|_{z=-1} = \frac{z^2}{(z-1)^2}\Big|_{z=-1} = \frac{1}{4}$$

$$A_3 = (z-1)^2 \frac{X(z)}{z} \Big|_{z=1} = \frac{z^2}{(1+z)} \Big|_{z=1} = \frac{1}{2}$$

Ejemplo: Fracciones parciales con polos dobles (3)

Para calcular A_2 se procede:

$$(z-1)^{2} \frac{X(z)}{z} = A_{1} \frac{(z-1)^{2}}{z+1} + A_{2}(z-1) + A_{3}$$

y se deriva con respecto a z:

$$\left. \frac{d}{dz} \left\{ \frac{(z-1)^2 X(z)}{z} \right\} \right|_{z=1} = A_1 \frac{d}{dz} \left[\frac{(z-1)^2}{z+1} \right] + A_2 \frac{d}{dz} [z-1]$$

$$= A_1 \left[\frac{2(z-1)(z+1) + (z-1)^2}{(z+1)^2} \right]_{z=1} + A_2$$

$$\left. \frac{d}{dz} \left(\frac{z^2}{z+1} \right) \right|_{z=1} = \frac{2z(z+1) - z^2}{(z+1)^2} \bigg|_{z=1} = \frac{3}{4} = A_2$$

Ejemplo: Fracciones parciales con polos dobles (4)

Por lo tanto, se cumple

$$X(z) = \frac{1}{4} \left[\frac{1}{1+z^{-1}} \right] + \frac{3}{4} \left[\frac{1}{1-z^{-1}} \right] + \frac{1}{2} \left[\frac{z^{-1}}{(1-z^{-1})^2} \right]$$

y si la señal buscada es causal, se obtiene con las propiedades de linealidad y la tabla de transformadas:

$$x(n) = \left[\frac{1}{4}(-1)^n + \frac{3}{4} + \frac{1}{2}n\right]u(n)$$

Inversión de términos

Para obtener la inversión de X(z) se utiliza entonces la linealidad junto con el hecho ya demostrado de que

$$Z^{-1}\left\{\frac{1}{1-p_k z^{-1}}\right\} = \begin{cases} (p_k)^n u(n) & si\ ROC: |z| > |p_k| \\ -(p_k)^n u(-n-1) & si\ ROC: |z| < |p_k| \end{cases}$$

Polos complejos conjugados

La ROC es $|z| > p_{max} = m \acute{a} x\{|p_1|, |p_2|, ..., |p_N|\}$ para la señal causal $x(n) = (A_1 p_1^n + A_2 p_2^n + \cdots + A_N p_N^n) u(n)$.

Si los coeficientes de la función racional son reales los polos complejos aparecen en pares conjugados, así como los coeficientes, por tanto:

$$x_k(n) = [A_k p_k^n + A_k^* p_k^{*n}] u(n)$$

Expresando en forma polar: $A_k = |A_k|e^{j\alpha_k}$, $p_k = |p_k|e^{j\beta_k}$

$$x_{k}(n) = |A_{k}||p_{k}|^{n} \left[e^{j(\beta_{k}n + \alpha_{k})} + e^{-j(\beta_{k}n + \alpha_{k})}\right] u(n)$$

$$= 2|A_{k}||p_{k}|^{n} \cos(\beta_{k}n + \alpha_{k}) u(n), \quad \text{ROC: } |z| > |p_{k}| = r_{k}$$

Efectos de los polos complejos conjugados

- Nótese entonces que un par de polos complejos conjugados da origen a una señal sinusoidal con envolvente exponencial, donde
 - La distancia del polo al origen determina la atenuación exponencial
 - El ángulo de los polos respecto al eje real determina la frecuencia de la oscilación.
- Los ceros afectan la amplitud y fase a través de su influencia en los coeficientes A_k .
- Para el caso de polos múltiples se utilizan tablas, pero es usual encontrar

$$\mathcal{Z}^{-1}\left\{\frac{pz^{-1}}{(1-pz^{-1})^2}\right\} = np^n u(n), \qquad ROC: |z| > |p|$$

Bibliografía

• [1] P. Alvarado, Señales y Sistemas. Fundamentos Matemáticos. Instituto Tecnológico de Costa Rica: Centro de Desarrollo de Material Bibliográfico, 2008.

