ogje. Curso de Lógica Matemática (2024-2) Alvarado ESFM Cristo Daniel Alvarado Espina. aniel Alvarado ESFM

Daniel Alvarado

13 de octubre de 2024

Cristo Daniel Alvarado Es

Índice ge	riel All			risto Dan
				risto
	eneral ner orden s			
T. 1.	Danier			Cristo
Indice go	eneral			
		iel Alve		
1. Lógica de prim	ner orden			2
1.1. Notas vieja	s		30	\ldots $\frac{1}{2}$
2 Lógica do prim	nor orden	iej Br	~C	16
2.1. Fundament	os	Da _{iti}		16
2.2. Axiomas Lo	ogicos)	Margu	17
2.2. Axiomas Lo		iel.		
		risto	riel Alvarad	
			niel	
ijel Alvarado F			miel Al	
		Cristo		
			niel	

Capítulo 1

Lógica de primer orden

1.1. Notas viejas

Definición 1.1.1

Decimos que una fórmula φ es:

- 1. Satisfacible si existe un modelo m tal que $m \vDash \varphi$.
- 2. Contradictoria si todo modelo cumple que $m \nvDash \varphi$.
- 3. Una tautología si todo modelo m cumple que $m \models \varphi$.

Ejemplo 1.1.1

Tomemos de ejemplo a $\Rightarrow p_1p_2$. cualquier modelo que haga a p_1 y p_3 verdaderas, o ambas falsas satisfacen la FBF, p_1 , $\neg \Rightarrow p_1p_3$ o $\neg (p_1 \Rightarrow \neg p_1)$. Por lo cual, esta fórmula es satisfacible.

En cambio, $\neg(p_1 \Rightarrow p_1)$ es contradictoria y, por ende $p_1 \Rightarrow p_1$ y $\neg p_1 \Rightarrow \neg p_1$ son tautologías.

Definición 1.1.2

Sea Σ un conjunto de fórmulas. Decimos que Σ es

- 1. Satisfacible si existe un modelo m tal que $m \models \Sigma$.
- 2. Contradictoria si todo modelo cumple que $m \nvDash \Sigma$.
- 3. Una tautología si todo modelo m cumple que $m \models \Sigma$.

Ejemplo 1.1.2

El conjunto de fórmulas $\Sigma = \{ \Rightarrow p_1 p_2, p_1, \neg p_2 \}$ no es satisfacible (en este caso, es contradictorio).

Observación 1.1.1

Se tiene lo siguiente:

- 1. Una tautología \Rightarrow satisfacible.
- 2. φ es satisfacible $\iff \neg \varphi$ es una contradicción.
- 3. Satisfacible es lo mismo que no contradictoria.

Definición 1.1.3

Si Σ es un conjunto de FBF y φ es alguna otra fórmula, entonces decimos que φ es **consecuencia lógica** de Σ , o que Σ **implica lógicamente** a φ , escrito como $\Sigma \vDash \varphi$, si para todo modelo m tal que $m \vDash \Sigma$ se tiene que $m \vDash \varphi$.

Ejemplo 1.1.3

El conjunto de FBF $\{ \Rightarrow p_1p_2, p_1 \} \vDash p_2$.

Observación 1.1.2

Se tiene lo siguiente:

- 1. Un conjunto de FBF $\Sigma \nvDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es satisfacible.
- 2. Además, un conjunto de FBF $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ no es satisfacible.

Lema 1.1.1

Sea Σ un conjunto de fórmulas y sean $\mathrm{Var}(\Sigma)$ el conjunto de las variables p_i que aparecen en las fórmulas de Σ . Si m_1 y m_2 son dos modelos tales que

$$m_1|_{\operatorname{Var}(\Sigma)} = m_2|_{\operatorname{Var}(\Sigma)}$$

entonces, $\overline{m_1}|_{\Sigma} = \overline{m_2}|_{\Sigma}$. En particular, para cada fórmula φ que sea elemento de Σ , entonces $m_1 \models \varphi$ si y sólo si $m_2 \models \varphi$, más aún $m_1 \models \Sigma$ si y sólo si $m_2 \models \Sigma$.

Demostración:

Sin pérdida de generalidad, Σ es cerrado bajo subformulas.

Procederemos por inducción sobre $\varphi \in \Sigma$, demostraremos que $\overline{m_1}(\varphi) = \overline{m_2}(\varphi)$. Si φ coincide con algún p_i , entonces $p_i \in \text{Var}(\Sigma)$ y, por tanto

$$\overline{m_1}(p_i) = m_1(p_i) = m_2(p_i) = \overline{m_2}(p_i)$$

Ahora hacemos el paso inductivo.

- 1. Tenemos el caso en que φ es de la forma $\neg \psi$ y suponemos que $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. Se tiene que $\overline{m_1}(\neg \psi) = F \iff \overline{m_1}(\psi) = V \iff \overline{m_2}(\psi) = V \iff \overline{m_2}(\neg \psi) = F$. Por lo tanto, $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. El caso en que sea verdadero es análogo.
- 2. Tenemos el caso en que φ es de la forma $\Rightarrow \varphi_1 \psi$ y, supontemos que $\overline{m_1}(\varphi_1) = \overline{m_2}(\varphi_1)$ y $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. Se tiene que $\overline{m_1}(\Rightarrow \varphi_1 \psi) = F \iff \overline{m_1}(\varphi_1) = V$ y $\overline{m_1}(\psi) = F \iff$ (por hipótesis de inducción) $\overline{m_2}(\varphi_1) = V$ y $\overline{m_2}(\psi) = F \iff \overline{m_2}(\Rightarrow \varphi_1 \psi) = F$. El caso en que sean verdaderas es análogo. Por tanto, $\overline{m_1}(\Rightarrow \varphi_1 \psi) = \overline{m_2}(\Rightarrow \varphi_1 \psi)$.

Lo cual completa el paso inductivo.

Corolario 1.1.1

Si Σ es un conjunto finito de fórmulas, entonces se puede verificar 'Mecánicamente' si es el caso, que $\Sigma \vDash \varphi$.

El procedimiento para verificar el modelo, se hace mediante la tabla de verdad de las variables y las FBF de Σ .

Definición 1.1.4

Decimos que un conjunto de fórmulas bien formadas Σ es **finitamente satisfacible** si cualquier subconjunto finito $\Delta \subseteq \Sigma$ es satisfacible.

Teorema 1.1.1 (Teorema de Compacidad de Gödel)

Si Σ es un conjunto (arbitrario) de fórmulas tal que $\Sigma \vDash \varphi$, entonces existe un $\Delta \subseteq \Sigma$ finito tal que $\Delta \vDash \varphi$.

El teorema que Gödel probó originalmente fue este:

Teorema 1.1.2 (Teorema de Gödel)

Un conjunto de fórmulas Σ es satisfacible si y sólo si es finitamente satisfacible.

Veamos por qué el teorema de Gödel implica el teorema de compacidad de Gödel. Se tiene que $\Sigma \nvDash \varphi \iff$ existe un modelo m tal que $m \vDash \Sigma \cup \{\neg \varphi\}$. Es decir, si y sólo si $\Sigma \cup \{\neg \varphi\}$ es satisfacible, es decir que es finitamente satisfacible (por el teorema de Gödel), es decir que para todo $\Delta \subseteq \Sigma$ finito se cumple que

$$\Delta \cup \{\neg \varphi\}$$

es satisfacible. Y esto sucede si y sólo si para todo $\Delta \subseteq \Sigma$ finito existe m tal que $m \models \Delta \cup \{\neg \varphi\}$, si y sólo si para todo $\Delta \subseteq \Sigma$ finito $\Delta \nvDash \varphi$, con lo cual

$$\Sigma \nvDash \varphi \iff \Delta \nvDash \varphi$$

para todo $\Delta \subseteq \Sigma$ finito, que es el teorema de compacidad en su forma contrapositiva.

Lema 1.1.2

Sea Σ un conjunto finitamente satisfacible, y sea φ cualquier fórmula, entonces o bien $\Sigma \cup \{\varphi\}$ es finitamente satisfacible o $\Sigma \cup \{\neg \varphi\}$ lo es.

Demostración:

Supongamos que no, es decir que tanto $\Sigma \cup \{\varphi\}$ como $\Sigma \cup \{\neg \varphi\}$ no son finitamente satisfacibles, por lo cual existen $\Delta_1, \Delta_2 \subseteq \Sigma$ finitos tales que $\Delta_1 \cup \{\varphi\}$ y $\Delta_2 \cup \{\neg \varphi\}$ no son satisfacibles. Entonces $\Delta_1 \cup \Delta_2$ no puede ser satisfacible, pues si m es un modelo tal que $m \models \Delta_1 \cup \Delta_2$, entonces $m \models \varphi$ contradice el hecho de que $\Delta_1 \cup \{\varphi\}$ es no satisfacible y si $m \models \neg \varphi$ contradice el hecho de que $\Delta_2 \cup \{\neg \varphi\}$ no es satisfacible, siendo $\Delta_1 \cup \Delta_2 \subseteq \Sigma$, se contradice el hecho de que Σ es finitamente satisfacible#_c. Luego se tiene el resultado.

Ahora procederemos a probar el teorema de Gödel.

Demostración:

Se probará la doble implicación:

- \Rightarrow): Es inmediato.
- \Leftarrow): Sean $\varphi_1, \varphi_2, ...$ una enumeración 'efectiva' de todas las fórmulas (checar la observación). Recursivamente, definimos conjuntos de fórmulas $\Sigma_0 \subseteq \Sigma_1 \subseteq \cdots$ tales que $\Sigma_0 = \Sigma$, y
 - 1. Cada Σ_n es finitamente satisfacible.
 - 2. Para cada $n \in \mathbb{N}$, o bien $\varphi_n \in \Sigma_{n+1}$ o bien $\neg \varphi_n \in \Sigma_{n+1}$

en este contexto, definimos:

$$\Sigma_{n+1} = \begin{cases} \Sigma_n \cup \{\varphi_n\} & \text{si este conjunto es finitamente satisfacible} \\ \Sigma_n \cup \{\neg \varphi_n\} & \text{en caso contrario} \end{cases}$$

Esta definición es consistente con la recursión por el lema anterior.

Ahora, definimos $\Sigma_{\infty} = \bigcup_{n \in \mathbb{N}} \Sigma_n$. Analicemos a este conjunto.

- 1. Σ_{∞} es finitamente satisfacible. En efecto, sea $\Delta \subseteq \Sigma$ un subconjunto finito, entonces existe $n \in \mathbb{N}$ tal que $\Delta \subseteq \Sigma_n$, luego como Σ_n es finitamente satisfacible, Δ es satisfacible. Por lo cual Σ_{∞} es finitamente satisfacible.
- 2. Para cada fórmula ψ o bien $\psi \in \Sigma_{\infty}$ ó $\neg \psi \in \Sigma_{\infty}$ y no ambas. Esto es inmediato con la enumeración efectiva de todas las fórmulas bien formadas.
- 3. Σ_{∞} es maximal finitamente satisfacible.

Sea $m: \operatorname{Var}(\Sigma_{\infty}) \to \{V, F\}$, dado por $m(p_n) = V$ si y sólo si $p_n \in \Sigma_{\infty}$. Se probará el siguiente lema:

Lema 1.1.3

Para cualquier fórmula ψ , $\overline{m}(\psi) = V$ si y sólo si $\psi \in \Sigma_{\infty}$ y $\overline{m}(\psi) = F$ si y sólo si $\neg \psi \in \Sigma_{\infty}$.

Demostración:

Procederemos por inducción sobre ψ .

- El caso base es inmediato por definición.
- $\overline{m}(\neg \psi) = V \iff \overline{m}(\psi) = F \iff \psi \notin \Sigma_{\infty} \iff \neg \psi \in \Sigma_{\infty}.$
- $\overline{m}(\Rightarrow \xi \psi) = F \iff \overline{m}(\xi) = F \text{ y } \overline{m}(\psi) = V \iff \neg \xi, \psi \in \Sigma_{\infty} \text{ si y sólo si } \Rightarrow \psi \xi \notin \Sigma_{\infty} \text{ (esto es cierto por la maximalidad de } \Sigma_{\infty} \text{ al ser finitamente satisfacible)}.$

por inducción se tiene lo deseado.

En conclusión, el modelo definido cumple que $m \vDash \psi$ si y sólo si $\psi \in \Sigma_{\infty}$. En particular, $m \vDash \Sigma$, y Σ es satisfacible.

Observación 1.1.3

Tuplas. Considere los números naturales. Podemos establecer una biyección entre las tuplas finitas de números naturales junto con el cero, y los números naturales, de esta forma:

Si $n \in \mathbb{N}$, por el TFA podemos expresar a $n = q_1^{\alpha_1} \cdot \ldots \cdot q_m^{\alpha_m}$. Establecemos la biyección dada como sigue: $n \mapsto (\alpha_1, \ldots, \alpha_{m-1}, \alpha_m - 1)$. De esta forma podemos enumerar algo con tuplas. Lo que Gödel hace es que hace ciertas asignaciones: $\neg = 0, \Rightarrow = 1, 2 = p_1, 3 = p_2$, etc... Esta enumeración es llamada **enumeración de Gödel**.

Cuando decimos lo de enumeración, nos referimos a esto. Básicamente enumeramos a todas las fórmulas bien formadas. Cuando decimos que la enumeración es efectiva, hacemos referencia a que podemos hacerlo de forma mecánica.

1.2. Lista de Axiomas Lógicos

Definición 1.2.1 (Axiomas Lógicos)

Se tienen los siguientes axiomas. Cualquier fórmula que caiga en alguno de los siguientes casos.

- 1. $\varphi \Rightarrow (\psi \Rightarrow \varphi)$.
- 2. $\varphi \Rightarrow ((\psi \Rightarrow \neg \varphi) \Rightarrow \neg \psi)$.
- 3. $\varphi \Rightarrow \varphi'$ siempre que φ' sea el resultado de sustituir una subfórmula de la forma $\neg \neg \psi$ por ψ , o viceversa.
- 4. $\varphi \Rightarrow \varphi[\psi \Rightarrow \xi \leftrightarrow \neg \xi \Rightarrow \neg \psi]$.
- 5. $\varphi \Rightarrow \varphi[\neg \psi \Rightarrow \psi \leftrightsquigarrow \psi]$.
 - 6. $(\varphi \Rightarrow (\xi \Rightarrow \psi)) \Rightarrow ((\varphi \Rightarrow \xi) \Rightarrow (\varphi \Rightarrow \psi))$.

Junto con una única regla de inferencia, llamada Modus Ponens, la cual consiste en que

$$\begin{array}{ccc} \varphi & \Rightarrow & \psi \\ \varphi & & \\ \hline & \ddots & \psi \end{array}$$

Un ejemplo de 3. sería que $(p_1 \Rightarrow p_2) \Rightarrow (p_1 \Rightarrow \neg \neg p_2)$. Cuando ponemos [.] al lado de una fórmula, nos referimos a cualquier subfórmula interna dentro de la original. Cuando ponemos \iff es que podemos sustituir uno por otro.

Definición 1.2.2

Sea Γ un conjunto de fórmulas,
y sea φ una fórmula.

- 1. Una demostración de φ a partifr de Γ es una sucesión finita de fórmulas $(\varphi_1, ..., \varphi_n)$ tales que, para cada i se cumple una de las siguientes:
 - I) φ_i es un axioma lógico.
 - II) φ_i es un elemento de Γ .
 - III) Existen j, k < i tales que: φ_j es la fórmula $\varphi_k \Rightarrow \varphi_i$.
- 2. φ es demostrable a partir de Γ , o bien φ es un teorema de Γ , si existe una demostración de φ a partir de Γ . Esto se simboliza por $\Gamma \vdash \varphi$.

Observación 1.2.1

$$\varphi \lor \psi \text{ es } \neg \varphi \Rightarrow \psi, \text{ y } \varphi \land \psi \text{ es } \neg (\psi \Rightarrow \neg \varphi). \ \varphi \iff \psi \text{ es } (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$$

Ejemplo 1.2.1

Se cumple que $\{\neg C, A \Rightarrow C, A \lor (B \Rightarrow C), \neg C \Rightarrow (C \Rightarrow E), B\} \vdash E$. Probemos que esto es cierto:

	1)	$(A \Rightarrow C$	$) \Rightarrow$	$(\neg C \Rightarrow \neg A)$	Ax. 4	CLIB
	2)	A	\Rightarrow	C	Premisa	
	3)	$\neg C$	\Rightarrow	$\neg A$	Modus ponens	
	4)	$\neg C$			Premisa	
~	5)	$\neg A$			3,4 Modus ponens	
	6)	$\neg A$	\Rightarrow	$(B \Rightarrow C)$	Premisa	
	7)	B	\Rightarrow	C	6,5 Modus ponens	
	(8)	B			Premisa	
	9)	C			7,8 Modus ponens	
	10)	$\neg C$	\Rightarrow	$(C \Rightarrow E)$	Premisa	
	11)	C	\Rightarrow	E	10,4 Modus ponens	
	12)	E			11,9 Modus ponens	
0		4575	·:.	E	11.00	

Ejemplo 1.2.2

 $\{\varphi \wedge \psi\} \vdash \varphi$. En efecto:

1)
$$\neg(\psi \Rightarrow \neg \varphi)$$
 Premisa
2) $\neg \varphi$ $\Rightarrow \psi \Rightarrow \neg \varphi$ Ax. 1
3) $(\neg \varphi \Rightarrow (\psi \Rightarrow \neg \varphi)) \Rightarrow (\neg(\psi \Rightarrow \neg \varphi) \Rightarrow \neg \neg \varphi)$ Ax. 4
4) $\neg(\psi \Rightarrow \neg \varphi)$ $\Rightarrow \neg \neg \varphi$ 3,2 M.P.
5) $\neg \neg \varphi$ 4,1 M.P.
6) $\neg \neg \varphi$ $\Rightarrow \varphi$ Ax. 3
7) φ 6,5 M.P.

esta demostración es llamada simplificación.

Hay varias demostraciones que son de utilidad. Como las siguientes:

Ejercicio 1.2.1

Pruebe lo siguiente:

- 1. $\{\varphi \Rightarrow \psi, \neg \psi\} \vdash \neg \varphi$ (llamada **Modus Tollens**).
- 2. $\{\varphi\} \vdash \varphi \lor \psi$ (llamada **Adición**).
- 3. $\{\varphi \lor \psi, \neg \varphi\} \vdash \psi$ (llamada Silogismo Disyuntivo).
- 4. $\{\varphi, \psi\} \vdash \varphi \land \psi$ (llamada **Conjunción**).
 - 5. $\{\varphi \Rightarrow \psi\} \vdash \neg \psi \Rightarrow \neg \varphi$. (llamada **Transposición**).

Demostración:

Probemos cada inciso.

De (1):

1)
$$\varphi \Rightarrow \psi$$
 Premisa
2) $(\varphi \Rightarrow \psi) \Rightarrow (\neg \psi \Rightarrow \neg \psi)$ Ax. 4
3) $\neg \psi \Rightarrow \neg \psi$ 2,1 M.P.
4) $\neg \psi$ Premisa
5) $\neg \varphi$ 3,4 M.P.

De (2):

1)
$$\varphi$$
 Premisa
2) φ \Rightarrow $(\neg \psi \Rightarrow \varphi)$ Ax. 1
3) $\neg \psi \Rightarrow \varphi$ \Rightarrow $\neg \varphi \Rightarrow \neg \neg \psi$ Ax.4.
4) $\neg \psi \Rightarrow \varphi$ \Rightarrow $\neg \varphi \Rightarrow \neg \neg \psi$ Ax.4.
5) $\neg \varphi \Rightarrow \neg \neg \psi$ 4,3 M.P.
6) $\neg \varphi \Rightarrow \neg \neg \psi$ \Rightarrow $\neg \varphi \Rightarrow \psi$ Ax. 3
7) $\neg \varphi \Rightarrow \psi$ 6,5 M.P.
8) $\varphi \lor \psi$ 7)

De (3):

1)
$$\varphi \lor \psi$$
 Premisa
2) $\neg \varphi \Rightarrow \psi$ 1)
3) $\neg \varphi$ Premisa
4) ψ 2,3 M.P.
 $\therefore \psi$

De (4):

All	De (4):						
		(1 $)$	φ				Premisa
		2)	ψ		4.15		Premisa
		3)	ψ	\Rightarrow	$((\psi \Rightarrow$	$\neg \varphi) \Rightarrow \neg \psi$	Ax. 2
		4)	$(\psi \Rightarrow \neg \varphi)$	\Rightarrow	$\neg \psi$		1,3 M.P.
1		5)	ψ	\Rightarrow	$\neg\neg\psi$		Ax. 3
1967		6)	$\neg \neg \psi$				2,5 M.P.
Silvin		7)	$\neg(\psi$	\Rightarrow	$\neg \varphi)$	isto	4,6 M.T.
		(8)	φ	\wedge	ψ	Cir	7)
				·:.	$\varphi \wedge \psi$		

Ejercicio 1.2.2

Demuestre que existe una demostración de lo siguiente:

1.
$$\{F \lor (G \lor H), (G \lor H) \Rightarrow (I \lor J), (I \lor J) \Rightarrow (F \lor H), \neg F\} \vdash H.$$

2.
$$\{Q \Rightarrow (R \Rightarrow S), (R \Rightarrow S) \Rightarrow T, (S \lor U) \Rightarrow \neg V, \neg V \Rightarrow (R \iff \neg W), \neg T, \neg (R \iff \neg W)\} \vdash \neg Q \land \neg (S \lor U).$$

3.
$$\{A \Rightarrow B, C \Rightarrow D, \neg B \lor \neg D, \neg \neg A, (E \land F) \Rightarrow C\} \vdash \neg (E \land F).$$

4.
$$\{E \Rightarrow (F \land \neg G), (F \lor G) \Rightarrow H, E\} \vdash H.$$

5.
$$\{J \Rightarrow K, J \lor (L \lor \neg L), \neg K\} \vdash \neg L \land \neg K$$
.

$$6. \ \{(R \Rightarrow \neg S) \land (T \Rightarrow \neg U), (V \Rightarrow \neg W) \land (X \Rightarrow \neg Y), (T \Rightarrow W) \land (U \Rightarrow S), V, R\} \vdash \neg T \land \neg U.$$

Demostración:

De (1):

```
Cristo Daniel
                          F
                                          (G \vee H)
                                                      Premisa
                          G
                                          H
                                                      Premisa
                          (G \vee H)
                                          (I \vee J)
                                                      Premisa
                          (I \vee J)
                                          (F \vee H)
                     4)
                                                      Premisa
                          F
                                          H
                     5)
                                                      Premisa
                          \neg F
                     6)
                                                      Premisa
                     7)
                          G
                                          H
                                                      1,6 S.D.
                                                      3,7 M.P.
                     8)
                          Ι
                                          J
                          F
                                          H
                     9)
                                                      4,8 M.P.
                          H
                                                      9,6 S.D.
                     10)
                                          \overline{H}
```

De (2):

De (2):		driple				
	1)	Q	\Rightarrow	$(R \Rightarrow S)$	Premisa	
	2)	$(R \Rightarrow S)$	\Rightarrow	T	Premisa	
	3)	$(S \vee U)$	\Rightarrow	$\neg V$	Premisa	
	4)	$\neg V$	\Rightarrow	$(R \iff \neg W)$	Premisa	
	5)	$\neg T$			Premisa	
	6)	$\neg(R)$	\iff	$\neg W)$	Premisa	
	7)	eg eg V			4,6 M.T.	
	8)	$\neg \neg V$	\Rightarrow	$V = \sqrt{2}$	Ax. 3.	
	9)	V			8,7 M.P.	
	10)	$\neg(S \lor U)$		1510	3,9 M.T.	
	11)	$\neg(R \Rightarrow S)$			2,5 M.T.	
	12)	$\neg Q$			1,11 M.T.	
	13)	$\neg Q$	\wedge	$\neg(S \lor U)$	12,10 Conj.	
	-	S		$\neg Q \land \neg (S \lor U)$		

De (4):

1)
$$E \Rightarrow (F \land \neg G)$$
 Premisa
2) $(F \lor G) \Rightarrow H$ Premisa
3) E Premisa
4) $F \neg G$ 1,3 M.P.
5) F 4 Simp.
6) $F \lor G$ 5 Ad.
7) H 2,6 M.P.
9

 \overline{H}

De (5):

1)	J	\Rightarrow	K	Premis	a
2)	J	V	$(K \vee \neg L)$	Premis	a
3)	$\neg K$			Premis	a
4)	$\neg J$			1,3 M.T) V
5)	K	\vee	$\neg L$	$2,4~\mathrm{S.D}$).
6)	$\neg L$			5,3 S.L).
7)	$\neg L$	\wedge	$\neg K$	3,6 Con	j
			$\neg L \wedge \neg K$		
$(R \Rightarrow$	$\neg S$)	^	$(T \Rightarrow \neg l)$	7) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Premisa
	$\neg W'$)		Premisa

De (6):

90,	1) $(R \Rightarrow \neg S)$	$\land (T \Rightarrow \neg U)$) Premisa	
Tr. Oct.	$2) (V \Rightarrow \neg W)$	$\land (X \Rightarrow \neg Y)$	Premisa	
	$(T \Rightarrow W)$	$\land (U \Rightarrow S)$	Premisa	451
CEDY	4) V		Premisa	30 2
ED	5) R		Premisa	900
70	6) R	$\Rightarrow \neg S$	1 Simp.	
2.30	$\overrightarrow{7}$ $\neg S$		6,5 M.P.	
111.00	8) V	$\Rightarrow \neg W$	2 Simp.	Skir
	$9) \neg W$		8,4 M.P.	10 10
	10) T	$\Rightarrow W$	3 Simp.	300
30 1	$11)$ $\neg W$	$\Rightarrow \neg T$	10 Transp.	12181100
1200	$12)$ $\neg T$		11,9 M.P.	
11gr	13) U	\Rightarrow S	3 Simp.	
	$14)$ $\neg S$	$\Rightarrow \neg U$	13 Transp.	The Property of the Property o
11e1	$15) \neg U$		14,7 M.P.	290
Sili	(15) $\neg T$	\wedge $\neg U$	12,15 Conj.	1.731.00
AC 20	2,000	$T \wedge \neg U$	<u> </u>	NIV Co
17127				_
				DIO.
01/8	(6 + (1):1)	1 1 4 1/1		
	(Conmutatividad			T. O.
Es facil de probar (t	eniendo en mente la	defincion) que:		
1. $\varphi \Rightarrow \varphi[\xi \land \psi \leftrightarrow$	$\rightsquigarrow \psi \land \mathcal{E}$].			
Ξ. Υ / Υ[S / (Ψ ·	7 , , 5].			1)10

Daniel Alvarad

Observación 1.2.2 (Conmutatividad del \land y \lor)

1.
$$\varphi \Rightarrow \varphi[\xi \land \psi \leftrightsquigarrow \psi \land \xi]$$
.

2.
$$\varphi \Rightarrow \varphi[\xi \lor \psi \leftrightsquigarrow \psi \lor \xi]$$
.

Demostración:

Proposición 1.2.1 (Leyes de Morgan)

Se cumplen las siguiente (denominadas Leyes de Morgan):

1.
$$\neg(\xi \lor \psi) \iff \neg\xi \land \neg\psi$$
.

2.
$$\neg(\xi \land \psi) \iff \neg\xi \lor \neg\psi$$
.

nostración:

Demostración:

Lema 1.2.1

 $\emptyset \vdash \varphi \Rightarrow \varphi$. Es decir, que sin premisas es válido que $\varphi \Rightarrow \varphi$.

Demostración:

Veamos que:

1)
$$\varphi$$
 \Rightarrow $((\psi \Rightarrow \varphi) \Rightarrow \varphi)$ Ax. 1
1) $(\varphi \Rightarrow ((\psi \Rightarrow \varphi) \Rightarrow \varphi))$ \Rightarrow $((\varphi \Rightarrow (\psi \Rightarrow \varphi) \Rightarrow (\varphi \Rightarrow \varphi)))$ Ax. 6
1) $(\varphi \Rightarrow (\psi \Rightarrow \varphi))$ \Rightarrow $(\varphi \Rightarrow \varphi)$ Ax. 6
4) φ \Rightarrow $(\psi \Rightarrow \varphi)$ Ax. 1
4) φ \Rightarrow φ 4,3 M.P.

Lo cual termina la prueba

Teorema 1.2.1 (Metateorema de Deducción)

Sea Σ un conjunto de fórmulas y φ , ψ dos fórmulas. Entonces, $\Sigma \vdash (\varphi \Rightarrow \psi)$ si y sólo si $\Sigma \cup \{\varphi\} \vdash \psi$.

Demostración:

Probaremos las dos implicaciones:

 \Rightarrow): Suponga que $\Sigma \vdash (\varphi \Rightarrow \psi)$, entonces en $\Sigma \cup \{\varphi\}$ como $\Sigma \vdash (\varphi \Rightarrow \psi)$ entonces por M.P. al tener que $\{\varphi \Rightarrow \psi, \varphi\} \vdash \psi$, se sigue que $\Sigma \cup \{\varphi\} \vdash \psi$.

 \Leftarrow): Supongamos que $\Sigma \cup \{\varphi\} \vdash \psi$. La prueba se hará por inducción sobre la longitud de la demostración de ψ a partir de $\Sigma \cup \{\varphi\}$.

Sean $(\varphi_1, ..., \varphi_n, \psi)$ la demostración, Entonces, la hipótesis inductiva es que: $\Sigma \vdash \varphi \Rightarrow \varphi_k$ para $k \in \{1, ..., n\}$.

Hay 4 casos para ψ :

1. $\psi \in \Sigma$. Se tiene que:

1)
$$\psi$$
 Premisa
2) $\psi \Rightarrow \varphi \Rightarrow \psi$ Ax. 1
3) $\varphi \Rightarrow \psi$ 2,1 M.P
 $\therefore \varphi \Rightarrow \psi$

2. $\psi = \varphi$) En este caso lo que se quiere probar es que $\Sigma \vdash (\varphi \Rightarrow \varphi)$. Para lo cual se usa el lema anterior se tiene el resultado de forma inmediata (tomando el conjunto vacío).

3. ψ es axioma lógico. Es inmediato pues si es un axioma lógico, siempre se tiene que $\emptyset \vdash \varphi \Rightarrow \psi$. Luego, $\Sigma \vdash \varphi \Rightarrow \psi$.

4. Algún φ_i es $\varphi_k \Rightarrow \psi$. Como por inducción se tiene que $\varphi \Rightarrow \varphi_k$, en particular para i se tiene que:

1) Premisa
2)
$$\varphi$$
 $\Rightarrow \varphi_k$ Ax. 1
3) φ $\Rightarrow (\varphi_k \Rightarrow \psi)$ 2,1 M.P
3) $(\varphi \Rightarrow (\varphi_k \Rightarrow \psi)) \Rightarrow ((\varphi \Rightarrow \varphi_k) \Rightarrow (\varphi \Rightarrow \psi))$ Ax. 6
3) $(\varphi \Rightarrow \varphi_k)$ $\Rightarrow (\varphi \Rightarrow \psi)$ 3,2 M.P.
3) φ $\Rightarrow \psi$ 4,1 M.P.

Lo cual termina la demostración por inducción. Esto se abrevia con **P.C.**

Ejemplo 1.2.3

Considere:

arado ESFM

216	31 }					TSFM
Silvi					290	
1)	M		\Rightarrow	N		Premisa
2)	N		\Rightarrow	O		Premisa
3)	(M =	$\Rightarrow O$)	\Rightarrow	(N	$\Rightarrow P$)	Premisa
4)	\dot{M}	$\Rightarrow P$	\Rightarrow	\dot{Q}	- 20	Premisa
(5)	M	,		Ū		Suposición
6)	N					1,5 M.P.
7)	0					2,6 M.P.
8)	M		\Rightarrow	0		5-7 P.C.
9)	N		\Rightarrow	P		3,8 M.P.
10)	M					Suposición.
11)	N					1,10 M.P.
12)	P					9,11 M.P.
13)	M		\Rightarrow	P		10-12 P.C.
		٠ م	(,0	M	$\Rightarrow P$	

Cristo Dam

Ejercicio 1.2.3

200		Ox					
Ejercicio 1.2.3	A. T.			787	iel	E	35.
Complete la demo	stracio	on:					
A0 5	1)	V	, 19 ¹	\overline{W}	Premisa		
120c	2)	X	\Rightarrow	Y	Premisa		
11,97	3)	Z	\Rightarrow	W	Premisa		
1 1	4)	X	\Rightarrow	A	Premisa		The Property of the Property o
3}	5)	W	\Rightarrow	X	Premisa		70
	6)	$(V \Rightarrow Y) \land (Z \Rightarrow A)$	\Rightarrow	$(V \vee Z)$	Premisa		
	77)	\dot{V}	(Suposición		
1737	8)	W			1,7 M.P.	101	
	9)	X			5,8 M.P.		
161	10)	Y			2,9 M.P.		1 . 3
1977r	11)	V_{\perp}	\Rightarrow	Y	7-10 P.C.		ar.
	12)	Z			Suposición		100
	13)	W			3,12 M.P.	. 7	
	14)	X			5,13 M.P.		
16)	15)	A			4,14 M.P.		
2011	16)	Z	\Rightarrow	A	12-15 P.C.		
	17)	$(V \Rightarrow Y)$	\wedge	$(Z \Rightarrow A)$) 11,16 Conj.		11
1500		17/91.00	::	$Y \vee A$		•	
							£0.

Ejercicio 1.2.4

Cristo Daniel Alvarado Complete las demostraciones: Torial Alvarado ESFM

1)	P	\Rightarrow	Q	Premisa
2)	Q	\Rightarrow	R	Premisa
3)	P			Suposición
4)	Q			1,3 M.P.
5)	R			2,4 M.P.
6)	P	\Rightarrow	R	3-5 P.C.
			$P \Rightarrow R$	2130

2.

1)
$$Q$$
 Premisa
2) $Q \Rightarrow (P \Rightarrow Q)$ Ax. 2
3) $P \Rightarrow Q$ 2,1 M.P.
 $\therefore P \Rightarrow Q$

3.

1)
$$P \Rightarrow (Q \Rightarrow R)$$
 Premisa
2) $P \Rightarrow R$ Suposición
3) $Q \Rightarrow R$ 1,2 M.P.
4) $Q \Rightarrow Suposición$
5) $R \Rightarrow R$ Suposición
6) $P \Rightarrow R$ 2-5 P.C.
7) $Q \Rightarrow (P \Rightarrow R)$ 6 Eje. 2

4.

1)
$$P$$
 \Rightarrow $(Q \land R)$ Premisa
2) P Suposición
3) $Q \land R$ 1,2 M.P.
4) Q 3 Simp.
5) P \Rightarrow Q 1-4 P.C.
 \therefore $P \Rightarrow Q$

5.

1)	$(P \Rightarrow Q)$	\wedge	$(C \Rightarrow D)$	Premisa
2)	$(Q \vee D)$	\Rightarrow	$((E \Rightarrow (E \lor F)) \Rightarrow (P \land C))$	Premisa
3)	P	\Rightarrow	Q	1 Simp.
4)	C	\Rightarrow	D	1 Simp.
5)	E			Suposición.
6)	E	V	${}^{\cup}F$	5 Ad.
7)	E	\Rightarrow	$(E \vee F)$	5-6 P.C.
8)	P			Suposición.
9)	$Q \bigcirc \downarrow \downarrow$			3,5 M.P.
10)	$Q \lor D$			6 Ad.
11)	$(E \Rightarrow (E \lor F))$	\Rightarrow	$(P \wedge C)$	7,2 M.P.
			$P \iff R$	

Ejemplo 1.2.4

Este es un esquema general en el que se hacen las pruebas por contradicción:

```
(Q \wedge R)
     P
                               Premisa
     P
2)
                               Premisa
                R
    \neg R
3)
                           Suposición.
    \neg P
                              2,3 M.T.
    Q
                               4,1 S.D.
                R
6)
                                5 Simp.
    R
7)
    R
                \neg R
                                6,3 Ad.
8)
    R
                                3-7 P.I.
                R
```

Ejercicio 1.2.5

Complete las siguientes demostraciones:

1.

Alvarado ES

1)	$(P \vee Q)$	\Rightarrow	$(R \Rightarrow D)$	Premisa
2)	$(\neg D \lor E)$	\Rightarrow	$(P \wedge R)$	Premisa
3)	$\neg D$			Suposición
4)	$\neg D$	\vee	E	3 Ad.
5)	P	\wedge	R	2,4 M.P.
6)	P			5 Simp.
7)	P	\vee	Q	6 Ad.
8)	R	\Rightarrow	D	1,7 M.P.
9)	R			5 Simp.
10)	D			8,9 M.P.
11)	D	\wedge	$\neg D$	10, 3 Conj.
12)	$\neg \neg D$			3-11 P.I.
13)	D		0	12 Ax. 3
		•	D	P

2

1)

$$(P \lor Q)$$
 \Rightarrow
 $(R \land D)$
 Premisa

 2)
 $(R \lor F)$
 \Rightarrow
 $(\neg F \land G)$
 Premisa

 3)
 $(F \lor H)$
 \Rightarrow
 $(P \land I)$
 Premisa

 4)
 F
 Suposición

 5)
 F
 \lor
 H
 A
 A

 6)
 P
 \land
 A
 A
 A
 A

 7)
 P
 A
 A

Definición 1.2.3

Teorema 1.2.2 (Teorema de Completud)

Cualquier conjunto de fórmulas Γ que sea consistente, es satisfacible.

Demostración:

Corolario 1.2.1

Si Γ es un conjunto de fórmulas, entonces $\Gamma \vDash \varphi$ implica $\Gamma \vdash \varphi$.

Demostración:

Ya construimo sun conjunto Γ_{∞} con $\Gamma \subseteq \Gamma_{\infty}$ tal que:

- 1. Γ_{∞} es consistente.
- 2. Para toda fórmula φ , o bien $\varphi \in \Gamma_{\infty}$ ó $\neg \varphi \in \Gamma_{\infty}$.
- 3. $\varphi \in \Gamma_{\infty}$ si y sólo si $\Gamma_{\infty} \vdash \varphi$, y $\varphi \notin \Gamma_{\infty}$ si y sólo si $\neg \varphi \in \Gamma_{\infty}$, si y sólo si $\Gamma_{\infty} \nvdash \varphi$ si y sólo si $\Gamma_{\infty} \vdash \neg \varphi$.

Definimos $M: \text{Var} \to \{V, F\}$ de tal forma que $m(p_k) = V$ si y sólo si $p_k \in \Gamma_{\infty}$ (de forma análoga, $m(p_k) = F$ si y sólo si $p_k \notin \Gamma_{\infty}$).

Afirmamos que para toda fórmula φ , se tiene que $\overline{m}(\varphi) = V$ si y sólo s i $\varphi \in \Gamma_{\infty}$. Procederemos por inducción sobre φ .

- 1. Si φ es atómica, entonces se cumple por definición.
- 2. Paso inductivo: supongamos que se cumple para φ y ψ . Entonces,

$$\overline{m}(\neg \varphi) = V \iff \overline{m}(\varphi) = F$$
$$\iff \neg \varphi \in \Gamma$$

además,

$$\overline{m}(\varphi \Rightarrow \psi) = F \iff \overline{m}(\varphi) = V \text{ y } \overline{m}(\psi) = F$$

$$\iff \varphi \in \Gamma_{\infty} \text{ y } \neg \psi \in \Gamma_{\infty}$$

$$\iff \varphi \Rightarrow \psi \notin \Gamma_{\infty}$$

probaremos una doble implicación.

- \Rightarrow): Suponga que $\varphi, \neg \psi \in \Gamma_{\infty}$. Si $\varphi \Rightarrow \psi \in \Gamma_{\infty}$, entonces $\varphi \Rightarrow \psi \notin \Gamma_{\infty}$.
- \Leftarrow): Suponga que $\varphi \Rightarrow \psi \notin \Gamma_{\infty}$, entonces $\neg(\varphi \Rightarrow \psi) \in \Gamma_{\infty}$, por lo cual $\neg(\varphi \Rightarrow \neg\neg\psi) \in \Gamma_{\infty}$, es decir que $\varphi \land \neg \psi \in \Gamma_{\infty}$, luego $\Gamma_{\infty} \vdash \varphi$ y $\Gamma_{\infty} \vdash \neg \psi$.

por tanto, usando inducción se cumple que $m \models \Gamma_{\infty}$, en particular $m \models \Gamma$.

Capítulo 2

Lógica de primer orden

2.1. Fundamentos

Definición 2.1.1

Un lenguaje de primer orden cuenta con un alfabeto que consta de lo siguiente:

- 1. Variables (denotadas por Var), denotadas por $v_1, v_2, ...$ (a lo sumo una cantidad numerable).
- 2. Conectivas lógicas \neg , \Rightarrow .
- 3. Símbolo de igualdad =.
- 4. Cuantificador \forall , denominado **para todo**.
- 5. Símbolos de predicado (o Símbolo de relación), P_1, P_2, \dots
- 6. Símbolos de función, $f_1, F_2, ...$
- 7. Símbolos de constante $c_1, c_2, ...$

los primeros cuatro son llamados **símbolos lógicos**, y los últimos tres son llamados **símbolos no lógicos**. Puede que un lenguaje de primer orden no conste con alguno de los elementos de 5. a 7. o que conste de una cantidad finita. Cada uno de los 5. a 7. tiene asociada una **aridad** (que es un número entero).

Para que la idea quede más afianzada, se verán algunos ejemplos.

Ejemplo 2.1.1

El lenguaje de la Teoría de Grupos consta de $\{*, (\cdot)^{-1}, e\}$ donde * es una función binaria, $(\cdot)^{-1}$ es una función unaria y e es una constante.

Ejemplo 2.1.2

El lenguaje de la Teoría de Anillos consta de $\{\cdot, +, 0, 1\}$ donde \cdot y + son función binaria, y 0, 1 son constantes.

Ejemplo 2.1.3

El lenguaje de la Aritmética consta de $\{+,\cdot,s,<,1\}$, donde $+,\cdot$ son funciones binarias, s es una función unaria, < es una relación binaria y 1 es una constante.

Ejemplo 2.1.4

El lenguaje de la Teoría de Conjuntos, consta de $\{\in\}$, la cual es una relación binaria.

Definición 2.1.2

Definimos lo siguiente:

1. **Términos** son:

- I) v_i y c_i son términos.
- II) Si F_i es un símbolo de función n-aria, y $t_1, ..., t_n$ son términos, entonces $F_i t_1 \cdots t_n$ es un término (en notación polaca),

2. **Fórmulas** son:

- I) Si t_1, t_2 son términos, entonces $= t_1 t_2$ es una fórmula.
- II) Si R_i es un símbolo de relación de aridad n y tengo n-términos, entonces $R_1t_1\cdots t_n$ es una fórmula.
- III) Si φ, ψ son fórmulas y v_i es una variable, entonces $\neg \varphi, \Rightarrow \varphi \psi$ y $\forall v_i \varphi$ son fórmulas.

Ejemplo 2.1.5

La asociatividad se puede escribir como la siguiente fórmula:

$$\forall x \forall y \forall z = **xyz * x * yz$$

que básicamente es decir que:

$$\forall x, y, z, (x * y) * z = x * (y * z)$$

en un grupo cualquiera.

2.2. Axiomas Lógicos

Cualquier generalización de

- 1. Los de Lógica proposicional.
- 2. $(\forall x)(\varphi \Rightarrow \psi) \Rightarrow (\forall x\varphi \Rightarrow \forall x\psi)$.
- 3. $\varphi \Rightarrow \forall x \varphi \text{ si } x \text{ no es libre en } \varphi$.
- 4. x = x.
- 5. $x=y\Rightarrow (\varphi\Rightarrow \varphi\,[y/x])$ si φ es atómica, esta sustitución es para algunas x.
- 6. $\forall x \varphi \Rightarrow \varphi[t/x]$ si t es sustitubile por x.

Reglas de inferencia: M.P.

Teorema 2.2.1 (Metateorema)

Se tiene lo siguiente:

1. Instanciación universal. Si $\Sigma \vdash (\forall x)\varphi$ entonces, $\Sigma \vdash \varphi[t/x]$ siempre que t sea sustituible por x en φ .

2. Generalización existencial. Si $\Sigma \vdash \varphi[t/x]$ entonces, $\Sigma \vdash (\exists x) \varphi$ siempre que t sea sustituible por x en φ .

Demostración:

De (1): Como $\Sigma \vdash (\forall x)\varphi$, entonces existe una demostración que prueba $(\forall x)\varphi$. Por el axioma (5), se tiene que al ser t sustituible: $\forall x\varphi \Rightarrow \varphi[t/x]$, luego existe una demostración que prueba a $\varphi[t/x]$, añadiendo esta línea al teorema anterior, se sigue que $\Sigma \vdash \varphi[t/x]$.

De (2): Como $\Sigma \vdash \varphi[t/x]$, entonces existe una demostración que prueba $\Sigma \vdash \varphi[t/x]$. Procederemos por contradicción. Suponga que $\neg(\exists x)\varphi$, es decir $\neg(\exists x)\neg\neg\varphi$, luego $(\forall x)\neg\varphi$. Por (1), se sigue que $\neg\varphi[t/x]$, lo que es una contradicción del renglón de arriba.

Luego, $(\exists x)\varphi$.

Ejercicio 2.2.1

Demuestre que existe una demostración formal de válidez para lo siguiente:

- 1. $(\forall x)(Px \Rightarrow Qx)/: Pc \Rightarrow ((\forall y)(Qy \Rightarrow Sy) \Rightarrow Sc)$.
- 2. $(\forall x)(Px \Rightarrow (\forall y)(Qy \Rightarrow Sy))/$ $\therefore (\forall x)Px \Rightarrow (\forall y)(Qy \Rightarrow Sy).$
- 3. $(\exists x)Px \Rightarrow (\exists y)Qy/: (\exists x)(Px \Rightarrow (\exists y)Qy)$.

Demostración:

De (1):

ón: 🕥	SEM	*O Day		itago En
		Cristo		07
No.	<u> </u>		:6)	797
1)	$(\forall x)(Px \Rightarrow Qx)$		Premisa	TIP
2)	Pc		Hipótesis	· Marado
3)	$(\forall y)(Qy \Rightarrow Sy)$	ist	Hipótesis	131.00
4)	$Pc \Rightarrow Qc$		1 I.U.	VIXO
5)	$Qc \Rightarrow Sc$		3 I.U.	
6)	$Qc \Rightarrow Sc$		4,5, S.H.	
7)	Sc		6,2 M.P.	
8)	$(\forall y)(Qy \Rightarrow Sy)$	$\Rightarrow Sc$	3-7 P.C.	
9)	$Pc \Rightarrow$	$((\forall y)(Qy \Rightarrow Sy) \Rightarrow Sc$	2-8 P.C.	
	121210	$\therefore Pc \Rightarrow ((\forall y)(Qy \Rightarrow S))$		
				Wife.

De (2):

No.	gri	10		370	
1)	$(\forall x)(Px \Rightarrow (\forall y)($	$Qy \Rightarrow Sy))$	()1)		Premisa
2)	$(\forall x)Px$				Hipótesis
3)	$(\forall x)(Px \Rightarrow (\forall y)($	$Qy \Rightarrow Sy))$	$\Rightarrow ((\forall x)Px \Rightarrow (\forall x)((\forall y)(Qy = (\forall x))((\forall x)(Qy = (\forall x)(Qy = $	$\Rightarrow Sy)))$	1 Ax. 1
4)	$(\forall x)Px \Rightarrow (\forall x)(($	$\forall y)(Qy \Rightarrow Sy))$			1,3 M.P.
5)	$(\forall x)((\forall y)(Qy \Rightarrow x))$	(Sy)		•. 0	2,4 M.P.
6)	$(\forall y)(Qy \Rightarrow Sy)$				5 I.U.
7)	$(\forall x)Px$		$\Rightarrow ((\forall y)(Qy \Rightarrow Sy))$		2-6 P.C.
() L.		1 1	$\therefore (\forall x) Px \Rightarrow ((\forall y)(Qy \Rightarrow Sy))$)	

De (3):

	ALV	a Ta		Dani
	Danie.	EST		
No.				
1)	$(\exists x)Px \Rightarrow (\exists y)Qy$	1210	Premisa	
2) 3)	$\neg(\exists x)(Px \Rightarrow (\exists y)Qy)$		Negación	
3)	$\neg(\exists x)(\neg\neg(Px\Rightarrow(\exists y)Qy))$		2 Ax.	
4)	$(\forall x)(\neg(Px \Rightarrow (\exists y)Qy))$		Equiv.	
5)	$(\forall x)(\neg(\exists y)Qy \Rightarrow \neg Px)$		Equiv.	
6)	$(\forall x)((\forall y)\neg Qy \Rightarrow \neg Px)$		Equiv.	
7)	$(\forall x)(\forall y)\neg Qy \Rightarrow (\forall x)\neg Px$		Equiv.	
8)	$(\forall y) \neg Qy$	$\Rightarrow (\forall x)(\forall y)\neg Qy$	Ax.2	
9)	$(\forall y)\neg Qy \Rightarrow (\forall x)\neg Px$		7,8 I.U.	
10)	$\neg((\exists y)Qy) \Rightarrow \neg((\exists x)Px)$		Equiv	
11)	$(\exists x)(Px \Rightarrow (\exists y)Qy)$		2-10 Contradicción	
	Cille	$\therefore (\exists x)(Px \Rightarrow (\exists y)Qy)$	0	

Alternativa (y correcta):

No.	\ ()	V	990	
1)	$(\exists x)Px \Rightarrow (\exists y)Qy$		Premisa	
2)	Px		Hipótesis	
3)	$(\exists x)Px$	10)	2 G.E.	
4)	$(\exists y)Qy$		3,1 M.P.	
5)	$(Px \Rightarrow (\exists y)Qy)$		2-4 P.C.	
6)	$(\exists x)(Px \Rightarrow (\exists y)Qy)$	1970	5 G.E.	
		$(\exists x)(Px \Rightarrow (\exists y)Qy)$	111	

Observación 2.2.1

S.H. siginifca silogismo hipotético. El I.U (Instanciación universal) y G.E (generalización existencial) son: $(\forall x)\varphi \Rightarrow \varphi[t/x]$ y $\varphi[t/x] \Rightarrow (\exists x)\varphi$.

Faltan dos reglas por demostrar. Consdiere Σ un conjunto de fórmulas.

- 1. Generalización universal (G.U.) Si x no aparece libre en ninguna fórmula de Σ , se tiene que $\varphi \Rightarrow \forall x \varphi$.
- 2. Instanciación existencial (I.E.) Se expresa en tabla como sigue:

No.	4	A Popularies	: 20	
1)	$\exists x \varphi$	Ü	Cirio	
2)	$\varphi[w/x]$			
÷	:, 1			OSDIC.
n)	ψ w 1	no es libre en ninguna	fórmula de Γ ni en $\exists x \varphi$ y ψ	
n+1)	ψ	10	isto	_
	$\therefore \psi$	1.30.	CITIE	

Lema 2.2.1 (Lema al metateoreama)

Si Γ es un conjunto de fórmulas tal que $\Gamma \vdash (\forall y)\varphi$ y ζ no aparece libre en Γ y es sustituible en φ , entonces $\Gamma \vdash (\forall \zeta)\varphi[\zeta/x]$.

Demostración:

No.	1	A. T.
:	: Die	Premisas de Γ
k)	$(\forall x)\varphi$	
(k+1)	$\varphi[\zeta/x]$	I.U.
(k+2)	$(\forall \zeta)\varphi[\zeta/x]$	G.U.
-		$\therefore (\forall \zeta) \varphi[\zeta/x]$

Teorema 2.2.2 (Metateorema)

Se tiene lo siguiente:

- 1. Si Γ es un conjunto de fórmulas, x es una variable que no aparece libre en Γ y $\Gamma \vdash \varphi$ entonces $\Gamma \vdash (\forall x)\varphi$.
- 2. Si $\Gamma \cup \{\varphi[w/x]\} \vdash \psi$ entonces, $\Gamma \cup \{(\exists x)\varphi\} \vdash \psi$ siempre y cuando w no aparezca libre en Γ ni en ψ .

Demostración:

De (1): Mostraremos que el conjunto

$$\left\{\varphi\Big|\Gamma\vdash(\forall x)\varphi\right\}$$

incluye a Γ , todos los axiomas lógicos y, además, es cerrado bajo M.P.

- Axiomas Lógicos: Por definición si φ es axioma lógico entonces $(\forall x)\varphi$ también lo es.
- Elementos de Γ. Entonces,

No.		
1)	φ	Premisa
(2)	$\varphi \Rightarrow (\forall x)\varphi$	Ax.2
3)	$(\forall x)\varphi$	1,2 M.P.
		$(\forall x)\varphi$

• Cerrado bajo M.P. Supongamos que

$$\Gamma \vdash (\forall x)\varphi \quad \Gamma \vdash (\forall x)(\varphi \Rightarrow \psi)$$

Es decir:

Or.		1 AL	
		vier	
lo cual prue	eba la ceri	adura.	
Luego, por todos			
De (2): Proce	deremos p	or contradicció	n.
	No.	DSD10	ESP
	: ,\	io V	Premisas de Γ
	k)	$(\exists x)\varphi$	
	(k+1)	$\neg \psi$	Suposición
	:	:	Lineas para probar lo de abajo
	n)	$\varphi[w/x] \Rightarrow \psi$ $\neg \varphi[w/x]$	Prueba condicional
	n+1)		M.T.
		$(\forall w) \neg \varphi[w/x]$	G.U.
	n+3	$(\exists w)\varphi[w/x]$	Por k y el lema anterior
	(n+4)	ψ	Contradicción $k+1$)- $n+3$)
			$\overline{}$ ψ

Ejercicio 2.2.2

Muestre que existe una demostración en las siguientes fórmulas.

Demostración:

a):

	No.							
16)	1)	$(\forall x)(Px \Rightarrow Q$	Q(x)			100		Premisa
	2)	Sx						Suposición
	3)	$(\forall y)(Sy \Rightarrow P$	y)					Suposición
	4)	$Sx \Rightarrow Px$						
	5)	Px						
	6)	$Px \Rightarrow Qx$						
	\sim 7)	Qx						
	8)	$(\forall y)(Sy \Rightarrow P$	$y)$ \bigcirc \bigcirc \bigcirc		$\Rightarrow Qx$			P.C.
	9)	$Sx \Rightarrow ((\forall y)(S))$	$Sy \Rightarrow Py) \Rightarrow Q$	x)				P.C.
	10)	$(\forall x)(Sx \Rightarrow (($	$\forall y)(Sy \Rightarrow Py)$	$\Rightarrow Qx))$				G.U.
•		:6)	-		$\therefore (\forall z)(Sz)$	$\Rightarrow ((\forall y)(Sy))$	$\Rightarrow Py) \Rightarrow Qx))$	Julia
k	o): <						isto	
	×0			200			CIL	
7219		No.	V= 1518 ¹	- O				
		,	$x)(Px \Rightarrow Qx)$				Premis	
		2) (∀	$r(S_x \to T_x)$				Promis	

$$(\forall z)(Sz \Rightarrow ((\forall y)(Sy \Rightarrow Py) \Rightarrow Qx))$$

				. 14
No.	. 19	Con		
1)	$(\forall x)(Px \Rightarrow Qx)$		Premisa	20161
2)	$(\forall x)(Sx \Rightarrow Tx)$		Premisa	Dgr.
3)	$(\forall x)(Qx \Rightarrow Sx)$		Suposición	
4)	$Qy \Rightarrow Sy$		I.U	
(5)	$Py \Rightarrow Qy$		I.U.	
6)	$Py \Rightarrow Sy$			-19
7)	$Sy \Rightarrow Ty$		I.U.	D Syllin
8)	$Py \Rightarrow Ty$			×0 V
9)	$(\forall y)(Py \Rightarrow Ty)$		G.U.	1715
10)	$(\forall x)(Qx \Rightarrow Sx)$	$\Rightarrow (\forall y)(Py \Rightarrow Ty)$	3-10 P.C.	77-
011	P	$\therefore (\forall x)(Qx \Rightarrow Sx) \Rightarrow (\forall y)(Py \Rightarrow Ty)$	<u> </u>	

	AIV	Mar		DSIII.
				. 40
No.		990		Cip
1)	$(\exists x)Px$	$\Rightarrow (\forall y)((Py \lor Qy) \Rightarrow Sy)$	Premisa	
2)	$(\exists x)Px \wedge (\exists x)Sx$		Premisa	
3)	$(\exists x)Px$		Simp.	
4)	Pz		I.U.	
5)	$(\forall y)((Py \lor Qy) \Rightarrow Sy)$	70	M.P.	
6)	$(Pz \lor Qz) \Rightarrow Sz$		I.U.	
7)	$(Pz \vee Qz)$		Ad.	
8)	Sz		M.P.	
9)	$Pz \wedge Sz$		Conj.	
10)	$(\exists x)(Px \land Sx)$		G.E.	
11)	$(\exists x)(Px \land Sx)$		5-10 I.E.	
	Citiz	$\therefore (\exists x)(Px \land Sx)$		

urado ESFM

	10)	$(\exists x)(Px \land Sx)$. Е.	de
	_11)	$(\exists x)(Px \land Sx)$		5-10	I.E	() y
			$\therefore (\exists x)(Px \land Sx)$			
d):						
α).						
and d	No.		Do.		40	
10 10	1)	$(\exists x)Px \Rightarrow ($	$\forall y)(Qy \Rightarrow Sy)$		misa	
	2)	$(\exists x)(Px \land Qx)$			Sup	
	3)	$Pu \wedge Qu$:0)		I.E.	
	4)	Pu			$_{ m simp}$	
	5)	$(\exists x)Px$			G.E.	
	6)	$(\forall y)(Qy \Rightarrow Sy)$	isto		M.P.	
	7)	$Qu \Rightarrow Su$			M.P.	
	8)	Qu			M.P.	01
	9)	Su		Si	imp.	CLD
ie) ,	10)	$Pu \wedge Su$			Ad.	
	11)	$(\exists y)(Py \land Sy)$	- , , , , , , , , , , , , , , , , , , ,		I.E.	
-	12)		$\exists y)(Py \land Sy)$		P.C.	
		∴ (=	$\exists x)(Px \land Qx) \Rightarrow (\exists y)(Py)$	$\wedge Sy)$		
e):						
0).		act		D. Op.		2
	_	No.	• (10/2		(g_{0})
		1) $(\forall x)(\exists y)(Px \lor 0)$	Qy)	Premisa) -
		1) $\neg(\forall x)Px$		Sup.		
		1) $(\exists x) \neg Px$				
		1\ D				

3) Alve				el Alvarad
No.	BA	0,70		
1)	$(\forall x)(\exists y)(Px \vee Qy)$	Pre	misa	
1)	$\neg(\forall x)Px$		Sup.	
1) 1) 1) 1)	$(\exists x)\neg Px$			
1)	$\neg Px$			
$ \begin{array}{ccc} & 1 \\ & 1 \end{array} $	$(\exists y)(Px \lor Qy)$			
1)	$Px \lor Qy$			
1) 1)	Qy		I.E.	
1)	$(\exists y)Qy$	$\Rightarrow (\exists y)Qy$	I.E.	
1)	$(\forall x)Px \lor (\exists y)Qy$	$\rightarrow (\neg g) \otimes g$	P.C.	
2	(12)1 2 1 (29)49	$(\forall x)Px \vee (\exists y)Qy$	1.0.	Daniel Ali
		0.0(1.0)= 0.1 (-9) 49		
				-16
				1500
				risto Danie
		$\Rightarrow (\exists y)Qy$ $\therefore (\forall x)Px \lor (\exists y)Qy$		

f): Daisto Dais Alvarado ESFM

Or			1 1		75			Dani
N								
<i>-</i>	No.				40		0,01	
-	1)	$(\exists x) Px \vee (\forall y) (P)$	$Py \Rightarrow Qy$	1210			Premisa	
	2)	$(\forall x)(Sx \Rightarrow \neg Px)$)				Premisa	
6	3)	$(\forall x)(Px \Rightarrow Sx)$:01				Sup.	
	4)	$Py \Rightarrow Sy$					I.U	
ST.	5)	Py					Sup.	
K	6)	Sy						
	7)	$Sy \Rightarrow \neg Py$						
	8)	$\neg Py$. 3/ 17				
	9)	$Py \land \neg Py$						
~GH	10)	$\neg Py$					P.I.	
F.P.	11)	$(\forall y)\neg Py$. 40				I.U.	
90	12)	$\neg(\exists x)Px$					11	
T. Oc	13)	$(\forall y)(Py \Rightarrow Qy)$						
	14)	$(\forall x)(Px \Rightarrow Sx)$	=	$\Rightarrow (\forall y)(Py =$	$\Rightarrow Qy)$		431	
_	~ C	T. D.		$(\forall x)(Px =$	$\Rightarrow Sx) \Rightarrow (\forall y)($	$Py \Rightarrow Qy$	10	
.)								
g):								
		No.			1			
77100		1)	$(\exists x)Px \vee (\exists x$	$\exists u)Qu$	Pren	nisa		
		1)	$(\forall x)(Px \Rightarrow$		Pren			
		1)	$\neg(\exists y)Qy$	×.0		Sup.		

g): Alvarado Est	dristo,		race
8).			
151810	No.	. 3	Alvarado ESENI
All	$1) (\exists x) Px \vee (\exists y) Qy$	Premisa	ED.
- t	$1) (\forall x)(Px \Rightarrow Qx)$	Premisa	70
aniel Alvarado Ep.	1) $\neg(\exists y)Qy$	Sup.	200
290	1) $(\exists x)Px$		11.00
Taro	1) Pu		17
	1) $Pu \Rightarrow Qu$		TIP TO TO
	1) Qu		30 1
anic	1) $(\exists y)Qy$		-130
70	$(\exists y)Qy \land \neg(\exists y)Q$	2y	119m
arde	$(\exists y)Qy$	P.I	
h): hiel Alvarade		$\therefore (\exists y)Qy$	aniel Alvarado ES
			gilli
n):			1 30
0.00	No.	drist	118/10
.X.O	1 1 2 2	Ax. 4	
Alv	$1) (\forall x)x = x$	G.U.	or aniel Alvarad

No.		C1275
1)	x = x	Ax. 4
1)	$(\forall x)x = x$	G.U.
	$(\forall x)(x=x)$	
12	7.0	

.002	$ \begin{array}{ccc} & (3) &$	y	т	71/970
Alv		$\therefore (\exists y)Qy$	e opiel r	
h): niel Alv		. 40	Daniel A	730
ato Do	No. $1) x = x$	Ax. 4		1 VIA.gor
	$1) (\forall x)x = x$	$\frac{\text{G.U.}}{(\forall x)(x=x)}$		iiel Alvarad
i): Danie		(,) (risto D	1<
cristo -	No.			Daniel Alt
0,	$1) (\forall x)(x = x)$		Sup.	Dairie
105	$ \begin{array}{ll} 1) & x = x \\ 1) & x = x \end{array} $	$\Rightarrow (y=x)$)
Cristo,	$ \begin{array}{ll} 1) & y = x \\ 1) & (x = y) \end{array} $	$\Rightarrow (y=x)$	M.P. P.C.	
M	1) $(\forall y)(x = y) \Rightarrow (y = x)$ 1) $(\forall x)(\forall y)(x = y) \Rightarrow (y = x)$	EST	G.U. G.U.	risto Danie
	sto De	$(\forall x)(\forall y)(x=y\Rightarrow y=$	=x)	Tribo
j):	isto janiel Ali			<
CEM	Dayrer	23 20 E		dristo
The state of the s				01,

		iel Ali	M	Day
	No.	Sure Yo Es.		cristo
drist	1)	u = v	Sup.	
	2) 3)	v = w $u = u$	Sup. Ax.	
	4)	u = v	Ax.	eto!
	5) 6)	$u = w$ $v = w \Rightarrow u = w$	Ax. P.C.	
	(7)	$u = v \Rightarrow (v = w \Rightarrow u = w)$	P.C.	
	8) 9)	$(\forall z)(u = v \Rightarrow (v = z \Rightarrow u = z))$ $(\forall y)(\forall z)(u = y \Rightarrow (y = z \Rightarrow u = z))$	G.U. G.U.	
	10)	$(\forall x)(\forall y)(\forall z)(x=y\Rightarrow (y=z\Rightarrow x=z))$		
		$\therefore (\forall x)(\forall y)(\forall z)(x=y\Rightarrow (y=z\Rightarrow x=z))$	2))	
	<u> </u>	iel Ar		GEM
No.	1			THE STATE OF THE S

						- 11	
		8)	` ' '	$(v = z \Rightarrow u = z))$	G.U		
		9)		$y \Rightarrow (y = z \Rightarrow u = z)$			•
		_10)		$c = y \Rightarrow (y = z \Rightarrow y)$) <u>. </u>	CX
			$\therefore (\forall x)(\forall y)(\forall z)$	$(x = y \Rightarrow (y = z =$	$\Rightarrow x = z)$		
k):							M
_	No.	1		-1767		- 75 I	
_		x = z		- Ogr		Sup.	
	\cup \cup \cap	y = w				Sup.	
	,	P(x,y)				Sup.	
		P(z,y)				Ax. 4	TIM
		P(z,w)				Ax. 4	135°
	,	P(x,y) =	$\Rightarrow P(z,w)$			P.C. (
	,		$(P(x,y)) \Rightarrow P(z)$	(x,w)		P.C.	
	- 4	~ /	(()	$(y) \Rightarrow P(z,w))$		P.C.	
	1)			$(P(x,y) \Rightarrow P(z,u)$	·))))	G.U.	-11
	1)	` / `		$v \Rightarrow (P(x,y) \Rightarrow P(x,y))$,,,,,	G.U.	45
. 2/ 12.	1)			$y = w \Rightarrow (P(x, y) =$		G.U.	10 5
	1)	$(\forall x)(\forall y)(\forall y)(\forall y)(\forall y)(\forall y)(\forall y)(\forall y)(\forall y$	$(\forall z)(\forall w)(x=z)$	$\Rightarrow (y = w \Rightarrow (P(x = w)))$	$(y) \Rightarrow P(z,w)))$	G.U.	10 DO
-00		$\therefore (\forall x)(\forall x)$	$y)(\forall z)(\forall w)(x =$	$z \Rightarrow (y = w \Rightarrow (P$	$(x,y) \Rightarrow P(z,w))$) , 1 </th <th>977 C</th>	977 C
1)							
l):						7161	
	No.				78	PITT	1
	$\frac{110.}{1)}$	x = z	43	<u> </u>	*0	Sup.	120
	1)	$\omega = z$			4.350	Sup.	1-12/

: 0.)	1)	$(\forall g)(\forall z)(\forall w)(x=z\Rightarrow (g=w\Rightarrow (f(x,g)\Rightarrow f(z,w))))$	G.U.	
	1)	$(\forall x)(\forall y)(\forall z)(\forall w)(x=z\Rightarrow (y=w\Rightarrow (P(x,y)\Rightarrow P(z,w))))$	G.U.	
0.,		$\therefore (\forall x)(\forall y)(\forall z)(\forall w)(x=z\Rightarrow (y=w\Rightarrow (P(x,y)\Rightarrow P(z,w))))$	11	
1):				
1):				
	No.	100 D3		
	1)	x = z	Sup.	
	1)	y = w	Sup.	
	1)	f(x,y) = f(x,y)	Ax.4	
	1)	f(x,y) = f(z,y)	Ax.5	
	1)	f(x,y) = f(z,w)	Ax.5	
	1)	$y = w \Rightarrow (f(x, y) = f(z, w))$	P.C.	
	1)	$x = z \Rightarrow (y = w \Rightarrow (f(x, y) = f(z, w)))$	P.C.	
Cristo D.	1)	$(\forall w)(x=z\Rightarrow (y=w\Rightarrow (f(x,y)=f(z,w))))$	G.U.	
	1)	$(\forall z)(\forall w)(x=z\Rightarrow (y=w\Rightarrow (f(x,y)=f(z,w))))$	G.U.	
	1)	$(\forall y)(\forall z)(\forall w)(x=z\Rightarrow (y=w\Rightarrow (f(x,y)=f(z,w))))$	G.U.	
	1)_	$(\forall x)(\forall y)(\forall z)(\forall w)(x=z\Rightarrow (y=w\Rightarrow (f(x,y)=f(z,w))))$	G.U.	
		$(\forall x)(\forall y)(\forall z)(\forall w)(x=z\Rightarrow (y=w\Rightarrow (f(x,y)=f(z,w))))$		
m).				
m):				71
		OEN,		
				isto Danii
	•			
		sto Daniel Alvarado ESFM		
		apiel FSF 1		

		· J All	aEM.	Cristo Dani
		anie.		· cto
	No.	9/0		
d.15	1)	$(\exists x)(\varphi(x)\vee\psi)$	Sup.	
	2)	$\varphi(x) \vee \psi$	I.E.	
	3)	$\psi \lor \varphi(x)$		
	4)	$\neg \psi \Rightarrow \varphi(x)$	HIP.	
	5)	$ \begin{array}{c} $	Sup.	
	6)	$\varphi(x)$	Sup.	
	7)		I.E.	
	8)	$(\exists x)\varphi(x)$		
	9)	$\neg \psi \Rightarrow (\exists x) \varphi(x)$	P.C.	
	10)	$\psi \lor ((\exists x)\varphi(x))$		
	11)	$((\exists x)\varphi(x))\vee\psi$		
	12)	$(\exists x)(\varphi(x) \lor \psi) \Rightarrow (((\exists x)\varphi(x)) \lor \psi$		
	13)	$((\exists x)\varphi(x))\vee\psi$	Sup.	
	14)	$\psi \vee ((\exists x)\varphi(x))$		
	15)	$\neg \psi \Rightarrow ((\exists x)\varphi(x))$	Sup. ado	
	16)	$\neg \psi$	Sup.	
	17)	$((\exists x)\varphi(x))$	M.P.	
	18)	$\varphi(x)$	I.E.	
	19)	$\neg \psi \Rightarrow \varphi(x)$	P.C.	
	20)	$\psi \lor \varphi(x)$		
	21)	$(\exists x)(\psi \lor \varphi(x))$	G.E.	
	22)	$(\exists x)(\psi \lor \varphi(x))$	Da 113	
	23)	$(((\exists x)\varphi(x)) \lor \psi) \Rightarrow (\exists x)(\psi \lor \varphi(x))$		
	24)	$(\exists x)(\varphi(x) \lor \psi) \iff (((\exists x)\varphi(x)))$		
		$(\exists x)(\varphi(x) \lor \psi) \iff (((\exists x)(\varphi(x)))$	$)ee\psi)$	
mhién se ni	uede had	eer por contradicción.		13
mbién se pu	20	of por contradiction.		11910-
			1,1500	
			dristo Daniel	niel Alvarad
				161,

aniel Alvarado E2 rede ha Esta también se puede hacer por contradicción.