

LDM – Systems

E-mail: info@ldm-systems.ru URL: www.ldm-systems.ru

Загрузочный кабель ByteBlasterMV

LDM-PB 2.01

Особенности

Загрузочный кабель ByteBlasterMV LDM-PB 2.01 предназначен:

- Обеспечивает конфигурирование семейств FPGA, выполненных по технологии SRAM: Stratix[®] II, Stratix GX, Stratix, Cyclone[™] III, Cyclone[™] II, Cyclone, APEX [™] II, APEX 20K (включая APEX 20K, APEX 20KE, и APEX 20KC), ACEX[®] 1K, Mercury[™] ,FLEX[®] 10K (включая FLEX 10KA и FLEX 10KE), FLEX 8000, FLEX 6000 и Excalibur[™].
- Обеспечивает программирование семейств CPLD, выполненных по технологии EEPROM: MAX[®] II, MAX 9000, MAX 7000S, MAX 7000AE, MAX 7000B и MAX 3000A.
- Обеспечивает программирование конфигурационных микросхем EPC2, EPC4, EPC8 и EPC16.

Поддержка программирования микросхем, питаемых как 3,3В, так и 5В.

Обеспечивает быстрый и дешевый способ внутрисистемного программирования.

Поддерживается загрузка данных непосредственно из среды проектирования MAX+PLUS II и Quartus II.

Совместимость со стандартным 25-и контактным параллельным портом (LPT) персонального компьютера. Пользовательский 10-и контактный разъем для подключения к плате.

Функциональные особенности

ByteBlasterMV подключается к стандартному параллельному порту персонального компьютера (LPT-порт).

ByteBlasterMV питается через шлейф программирования, подключаемый к разъему платы, на которой располагается микросхема, поддерживает работу микросхем с питанием как 3.3B, так и 5.0B.

Режимы загрузки

ByteBlasterMV поддерживает два режима загрузки (таблица 1).

Таблица 1.

	– используется для конфигурирования		
Пассивный последовательный режим PS	микросхем: APEX 20K, FLEX 10K,		
	FLEX 8000, FLEX 6000 и ACEX 1K		
Режим JTAG	– индустриальный стандартный		
	интерфейс для программирования		
	микросхем: APEX 20K, FLEX 10K,		
	MAX 9000, MAX 7000S, MAX 7000A,		
	MAX 3000A, MAX [®] II, ACEX 1K, EPC2,		
	EPC4, EPC8 и EPC16		

Соответствие сигналов интерфейса и контактов параллельного порта приведено в таблице 2. Схема ByteBlasterMV приведена на рисунке 2. Все последовательные резисторы имеют сопротивление 100 Ом, подтягивающие резисторы - 2.2 кОм.

Таблица 2.

Контакт	PS Mode	JTAG Mode
2	DCLK	TCK
3	nCONFIG	TMS
8	DATA0	TDI
11	CONF_DONE	TDO
13	nSTATUS	-
15	VCC	VCC
18-25	GND	GND

Рис. 2. Схема ByteBlasterMV

10-контактный разъем показан на рисунке 3, назначение его контактов показано в таблице 3.

Рис. 3. 10-контактный разъем ByteBlasterMV

Таблица 3.

Контакт	PS-режим		JTAG-режим	
	Обозначение	Описание	Обозначение	Описание
1	DCLK	Тактовый сигнал	TCK	Тактовый сигнал
2	GND	Земля	GND	Земля
3	CONF_DONE	Контроль состояния конфигурации	TDO	Выход данных
4	VCC	Напряжение питания	VCC	Напряжение питания
5	nCONFIG	Контроль состояния конфигурации	TMS	Управление конечным автоматом JTAG
6	-	Не используется	-	Не используется
7	nSTATUS	Состояние конфигурации	-	Не используется
8	-	Не используется	-	Не используется
9	DATA0	Вход данных	TDI	Вход данных
10	GND	Земля	GND	Земля

Питание ByteBlasterMV осуществляется от платы, на которой установлено программируемое устройство. При использовании макетных плат или сокетов для программирования, необходимо обязательно установить по питанию блокировочные конденсаторы. Невыполнение этого требования может привести к

сбоям при программировании и даже выходу из строя программируемой микросхемы.

Диапазон питающего напряжения:

- 4.5 5.5 для устройств с VCC=5B;
- 2.5 3.6 для устройств с VCC=3B.

На рисунке 4 показано подключение ByteBlasterMV для конфигурирования микросхем серий FLEX 10K, FLEX 8000, FLEX 6000, подключение микросхем серий MAX 9000 и MAX 7000 - на рисунке 5.

Рис.4. Подключение ByteBlasterMV для конфигурирования микросхем серий FLEX 10K, FLEX 8000 и FLEX 6000

Рис. 5. Подключение ByteBlasterMV для конфигурирования микросхем серий MAX 9000 и MAX 7000

При установке нескольких микросхем в одной плате возможно их каскадирование для программирования или задания конфигурации через один JTAG разъем. На рисунке 6 показано каскадирование микросхем типа FLEX 10К.

Рис. 6. Схема каскадного подключения микросхем