

Do Central Banks Respond to House Price Movements?

A Bayesian DSGE Approach

Longcan Li

Supervisor: Dr Qazi Haque

School of Economics and Public Policy Faculty of Arts, Business, Law and Economics **The University of Adelaide**

24 November 2023

Outline

- 1 Introduction
- 2 A New Keynesian Model with Housing
- 3 Econometric Methodology
- 4 Quantatitive Analysis
- 5 Cross Country Analysis
- 6 Robust Checks
- 7 Conclusion Remarks

Section 1 Introduction

Background

- Housing impacts both wealth and collateral capacity (Mishkin, 2007)
- House prices influence business cycles (lacoviello and Neri, 2010)
- Whether monetary policy should react to house price movements (lacoviello, 2005)
- Empirically examining whether the central bank directly responded to house prices

Past Literature

Response to Housing (Bjørnland and Jacobsen, 2010; Aastveit et.al, 2023)

- Interest rates respond to house prices in IRFs, intermediary role of inflation
- Housing coefficient positive in certain years

Bayesian DSGE Approach (Lubik and Schorfheide, 2007; Kitney, 2015)

Bayesian DSGE study response to exchange rates, changes in credit spreads

Research Purpose

Contribution to literature

- Empirically examine central banks' response to house prices in chosen years, regions
- · Analyze and compare IRFs, isolate interest rates' response to housing and inflation

Methodology

• Estimate a New Keynesian DSGE model with housing, using the Bayesian technique

Section 2 A New Keynesian Model with Housing

Households

· Patient households utility and budget constraint:

$$\max_{c'_{t}, h'_{t}, L'_{t}, B'_{t}} E_{0} \sum_{t=0}^{\infty} \beta^{t} \left\{ \ln c'_{t} + j_{t} \ln h'_{t} - \frac{(L'_{t})^{\eta}}{\eta} \right\}$$

$$c'_{t} + q_{t} h'_{t} + \frac{R_{t-1} b'_{t-1}}{\pi_{t}} = b'_{t} + w'_{t} L'_{t} + q_{t} h'_{t-1} + F_{t} + T'_{t}$$
(1)

Households

Patient households utility and budget constraint:

$$\max_{c'_{t}, h'_{t}, L'_{t}, B'_{t}} E_{0} \sum_{t=0}^{\infty} \beta^{t} \left\{ \ln c'_{t} + j_{t} \ln h'_{t} - \frac{(L'_{t})^{\eta}}{\eta} \right\}$$

$$c'_{t} + q_{t} h'_{t} + \frac{R_{t-1} b'_{t-1}}{\pi_{t}} = b'_{t} + w'_{t} L'_{t} + q_{t} h'_{t-1} + F_{t} + T'_{t}$$
(1)

Impatient households utility and budget constraint:

$$\max_{c_t'',h_t'',L_t'',B_t''} E_0 \sum_{t=0}^{\infty} \beta''^t \Big\{ \ln c_t'' + j_t \ln h_t'' - \frac{(L_t'')^{\eta}}{\eta} \Big\}$$

$$c_t'' + q_t h_t'' + \frac{R_{t-1} b_{t-1}''}{\pi_t} = b_t'' + w_t'' L_t'' + q_t h_{t-1}'' + T_t''$$
 (2)

Impatient households borrowing constraint:

$$b_t'' \le m'' E_t(\frac{q_{t+1} h_t'' \pi_{t+1}}{R_t}) \tag{3}$$

Entrepreneur

· Intermediate goods production function:

$$Y_{w,t} = A_t K_{t-1}^{\mu} h_{t-1}^{\nu} (L_t')^{\alpha(1-\mu-\nu)} (L_t'')^{(1-\alpha)(1-\mu-\nu)}$$
(4)

Entrepreneur

Intermediate goods production function :

$$Y_{w,t} = A_t K_{t-1}^{\mu} h_{t-1}^{\nu} (L_t')^{\alpha(1-\mu-\nu)} (L_t'')^{(1-\alpha)(1-\mu-\nu)}$$
(4)

• Entrepreneurs utility function and budget constraint:

$$\max_{c_t} E_0 \sum_{t=0}^{\infty} \gamma^t \ln c_t$$

$$\frac{Y_{w,t}}{X_t} + b_t + q_t h_{t-1} - w_t' L_t' - w_t'' L_t'' = c_t + q_t h_t + \frac{R_{t-1} b_{t-1}}{\pi_t} + I_t + \xi_{k,t}$$
 (5)

Entrepreneur

Intermediate goods production function:

$$Y_{w,t} = A_t K_{t-1}^{\mu} h_{t-1}^{\nu} (L_t')^{\alpha(1-\mu-\nu)} (L_t'')^{(1-\alpha)(1-\mu-\nu)}$$
(4)

Entrepreneurs utility function and budget constraint:

$$\max_{c_t} E_0 \sum_{t=0}^{\infty} \gamma^t \ln c_t$$

$$\frac{Y_{w,t}}{X_t} + b_t + q_t h_{t-1} - w_t' L_t' - w_t'' L_t'' = c_t + q_t h_t + \frac{R_{t-1} b_{t-1}}{\pi_t} + I_t + \xi_{k,t}$$
 (5)

Entrepreneur borrowing constraint:

$$b_t \le mE_t(\frac{q_{t+1}h_t\pi_{t+1}}{R_t}) \tag{6}$$

I_t is investment:

$$K_t = I_t + (1 - \delta)K_{t-1} \tag{7}$$

L.Li

Final Goods & Retailer

· Final output produced by firms:

$$Y_t = \left(\int_0^1 Y_t(z)^{\frac{\epsilon-1}{\epsilon}} dz\right)^{\frac{\epsilon}{\epsilon-1}} \tag{8}$$

The retailer faces an individual demand :

$$Y_t(z) = \left(\frac{P_t(z)}{P_t}\right)^{-\epsilon} Y_t \tag{9}$$

Final Goods & Retailer

Final output produced by firms:

$$Y_t = \left(\int_0^1 Y_t(z)^{\frac{\epsilon-1}{\epsilon}} dz\right)^{\frac{\epsilon}{\epsilon-1}} \tag{8}$$

The retailer faces an individual demand :

$$Y_t(z) = \left(\frac{P_t(z)}{P_t}\right)^{-\epsilon} Y_t \tag{9}$$

New Keynesian Phillips Curve:

$$\widehat{\pi}_t = -\frac{(1-\theta)(1-\theta\beta)}{\theta}\widehat{X}_t + \beta E_t \widehat{\pi}_{t+1} + \widehat{u}_t$$
 (10)

Central Bank

· Taylor rule without housing:

$$\widehat{R}_{t} = r_{R}\widehat{R}_{t-1} + (1 - r_{R}) \left[(1 + r_{\pi})\widehat{\pi}_{t-1} + r_{Y}\widehat{Y}_{t-1} \right] + \widehat{e}_{R,t}$$
(11)

Central Bank

· Taylor rule without housing:

$$\widehat{R}_{t} = r_{R}\widehat{R}_{t-1} + (1 - r_{R}) \left[(1 + r_{\pi})\widehat{\pi}_{t-1} + r_{Y}\widehat{Y}_{t-1} \right] + \widehat{e}_{R,t}$$
(11)

Taylor rule with housing:

$$\widehat{R}_{t} = r_{R}\widehat{R}_{t-1} + (1 - r_{R}) \left[r_{q}\widehat{q}_{t} + (1 + r_{\pi})\widehat{\pi}_{t-1} + r_{Y}\widehat{Y}_{t-1} \right] + \widehat{e}_{R,t}$$
(12)

Exogenous Process

- Housing preference shock $\emph{e}_{\emph{j},\emph{t}} \sim N(0,\sigma_{\emph{j}}^2)$:

$$j_t = \rho_j j_{t-1} + e_{j,t} \tag{13}$$

• Productivity shock $e_{A,t} \sim \mathsf{N}(\mathsf{0}, \sigma_A^2)$:

$$A_t = \rho_A A_{t-1} + e_{A,t} \tag{14}$$

• Inflation shock $e_{u,t} \sim N(0, \sigma_u^2)$:

$$u_t = \rho_u u_{t-1} + e_{u,t} \tag{15}$$

Section 3 **Econometric Methodology**

Data

Baseline sample period: 1990:Q1-2008:Q2, 4 US quarterly time series:

- R_t: quarterly federal funds rate
- π_t : annualized quarterly growth rate of the GDP deflator (seasonally adjusted)
- g_{Y_t} : per capita real GDP growth rate
- Δq_t : demeaned real house price growth rate

• The log-linearized DSGE model can be expressed as:

$$\Gamma_0 s_t = \Gamma_1 s_{t-1} + \Psi \epsilon_t + \Pi \eta_t \tag{16}$$

• The solution is a VAR in s_t :

$$s_t = \Phi_1(\theta_{\mathcal{M}}) s_{t-1} + \Phi_{\epsilon}(\theta_{\mathcal{M}}) \epsilon_t \tag{17}$$

The log-linearized DSGE model can be expressed as:

$$\Gamma_0 s_t = \Gamma_1 s_{t-1} + \Psi \epsilon_t + \Pi \eta_t \tag{16}$$

The solution is a VAR in s_t:

$$s_t = \Phi_1(\theta_{\mathcal{M}}) s_{t-1} + \Phi_{\epsilon}(\theta_{\mathcal{M}}) \epsilon_t \tag{17}$$

Observation equation

$$\mathcal{Y}_t = M + H s_t, \tag{18}$$

Match data to the observation equation:

$$\begin{bmatrix} R_t \\ \pi_t \\ g_{Y_t} \\ \Delta q_t \end{bmatrix} = \begin{bmatrix} r^* + \pi^* \\ \pi^* \\ g^* \\ - \end{bmatrix} + \begin{bmatrix} 400 \hat{R}_t \\ 400 \hat{\pi}_t \\ 100 (\hat{Y}_t - \hat{Y}_{t-1}) \\ 100 (\hat{q}_t - \hat{q}_{t-1}) \end{bmatrix}$$

(19)

• Priors :

$$\rho(\theta_{\mathcal{M}}|\mathcal{M}) \tag{20}$$

The likelihood function :

$$\mathcal{L}(\theta_{\mathcal{M}}|Y_{T},\mathcal{M}) = p(Y_{T}|\theta_{\mathcal{M}},\mathcal{M}) = \prod_{t=1}^{T} p(\mathcal{Y}_{t}|Y_{t-1},\theta_{\mathcal{M}},\mathcal{M})$$
(21)

• Priors :

$$\rho(\theta_{\mathcal{M}}|\mathcal{M}) \tag{20}$$

The likelihood function :

$$\mathcal{L}(\theta_{\mathcal{M}}|Y_{T},\mathcal{M}) = p(Y_{T}|\theta_{\mathcal{M}},\mathcal{M}) = \prod_{t=1}^{T} p(\mathcal{Y}_{t}|Y_{t-1},\theta_{\mathcal{M}},\mathcal{M})$$
(21)

Bayes' rule:

$$p(\theta_{\mathcal{M}}|Y_{\mathcal{T}},\mathcal{M}) = \frac{p(Y_{\mathcal{T}}|\theta_{\mathcal{M}},\mathcal{M})p(\theta_{\mathcal{M}}|\mathcal{M})}{p(Y_{\mathcal{T}}|\mathcal{M})}.$$
 (22)

• Priors :

$$p(\theta_{\mathcal{M}}|\mathcal{M})$$
 (20)

The likelihood function :

$$\mathcal{L}(\theta_{\mathcal{M}}|Y_{T},\mathcal{M}) = p(Y_{T}|\theta_{\mathcal{M}},\mathcal{M}) = \prod_{t=1}^{T} p(\mathcal{Y}_{t}|Y_{t-1},\theta_{\mathcal{M}},\mathcal{M})$$
(21)

Bayes' rule:

$$p(\theta_{\mathcal{M}}|Y_{\mathcal{T}},\mathcal{M}) = \frac{p(Y_{\mathcal{T}}|\theta_{\mathcal{M}},\mathcal{M})p(\theta_{\mathcal{M}}|\mathcal{M})}{p(Y_{\mathcal{T}}|\mathcal{M})}.$$
 (22)

Posterior kernel:

$$p(\theta_{\mathcal{M}}|Y_{\mathcal{T}},\mathcal{M}) \propto p(Y_{\mathcal{T}}|\theta_{\mathcal{M}},\mathcal{M})p(\theta_{\mathcal{M}}|\mathcal{M}) \equiv \mathcal{K}(\theta_{\mathcal{M}}|Y_{\mathcal{T}},\mathcal{M})$$
(23)

Calibration

Table 1: Calibrated Parameters

Description	Parameter	Value
Entrepreneurs' discount factor	γ	0.98
Patient households' discount factor	β	0.99
Impatient households' discount factor	$\dot{eta}^{\prime\prime}$	0.95
Labor disutility	η	1.01
Housing services weight	j	0.10
Housing share	ν	0.03
Capital share	μ	0.30
Capital depreciation rate	δ	0.03
Markup	Χ	1.05
Wage share	α	0.64
Entrepreneurs' loan-to-value	m	0.89
Households' loan-to-value	m''	0.55
Probability unchanged price	θ	0.75

Prior Distribution

Table 2: Prior Distribution

Parameter	Distribution	Mean	S.D
$\overline{\psi}$	Gamma	2.0	1.0
ρ_i	Beta	0.5	0.2
ρ_A	Beta	0.5	0.2
$ ho_{\it u}$	Beta	0.5	0.2
r _R	Beta	0.75	0.1
r_{π}	Normal	1.5	0.1
r_Y	Normal	0.1	0.05
r_q	Normal	0.1	0.05
r*	Gamma	2.0	0.5
π^*	Gamma	2.3	2.0
g^*	Normal	0.4	0.2
σ_{R}	lve.gamma	0.5	0.1
$\sigma_{\mathcal{A}}$	lve.gamma	0.5	0.1
σ_{j}	lve.gamma	0.5	0.1
σ_{u}	lve.gamma	0.5	0.1

Posterior Distribution

Table 3: Posterior Distribution

		$r_q \neq 0$		$r_q = 0$			
Parameter	Mean	90% HPD interval	Mean	90% HPD interval			
ψ	4.40	[2.52,6.25]	4.66	[2.67,6.62]			
ρ_i	0.93	[0.89,0.96]	0.91	[0.89,0.94]			
ρ_A	0.44	[0.33,0.55]	0.31	[0.22,0.41]			
$ ho_{\it u}$	0.04	[0.01,0.08]	0.05	[0.01,0.09]			
r_R	0.49	[0.36,0.62]	0.50	[0.38,0.63]			
r_{π}	1.53	[1.37,1.69]	1.51	[1.35,1.68]			
r_Y	0.18	[0.11,0.25]	0.20	[0.14,0.27]			
r_q	0.11	[0.06,0.16]	_	_			
r*	1.95	[1.17,2.71]	1.99	[1.21,2.72]			
π^*	2.10	[0.02,4.14]	1.98	[0.09,3.80]			
g^*	0.51	[0.41,0.6]	0.49	[0.28,0.59]			
σ_{R}	0.07	[0.06,0.07]	0.07	[0.06,0.07]			
σ_{A}	0.10	[0.08,0.10]	0.10	[0.09,0.12]			
σ_{i}	0.20	[0.13,0.27]	0.17	[0.12,0.23]			
σ_{u}	0.07	[0.06,0.07]	0.07	[0.06,0.07]			

Section 4 **Quantatitive Analysis**

Model Comparison

K-R Ratio

2(log data density H1 - log dara density H0)= $2(\ln p(Y_T|\theta_H) - \ln p(Y_T|\theta_O))$

	Log data density
$r_q = 0 : \ln p(Y_T \theta_O)$	-917.72
$r_q \neq 0 : \ln p(Y_T \theta_H)$	-914.16
K-R ratio	7.12

Impulse Responses

Historical Shock Decomposition $r_q = 0$

Historical Shock Decomposition $r_q \neq 0$

Rolling Window Analysis

	T1	T2	T3	T4	T5	T6	T7	T8	T9
	1969 l-1979 l	1974 l-1984 l	1979 I-1989 I	1984 I-1994 I	1989 I-1999 I	1994 I-2004 I	1999 I-2009 I	2004 I-2014 I	2009 I-2019 I
K-R ratio	-3.9	-4.78	-2.32	-0.72	4.82	4.02	-1.68	-2.16	-0.02

• Time-varying housing parameter:

Section 5 Cross Country Analysis

Cross Country Analysis

· Chosen regions and sample periods:

Country	Years
Australia	1973:Q2-2008:Q2
New Zealand	1990:Q2-2008:Q2
United Kingdom	1987:Q2-2008:Q2
Euro Area	1996:Q2-2008:Q2
Canada	1973:Q2-2008:Q2

Canada housing coefficient r_q:

Section 6 Robust Checks

Robust Checks

- Alternative FHFA house price index
- Alternative prior
 - Interest rate smoothing
 - Inflation coefficient
 - House price coefficient
- Taylor rule
 - Contemporaneous
 - Forward-looking

Section 7 Conclusion Remarks

Conclusion Remarks

- Federal Reserve episodically responded to house price movements
- No response in Australia, New Zealand, UK, EA. Canada responded
- Significant housing coefficient in the Taylor rule affects the housing shock transmission
- Comparing IRFs, interest rates respond directly and positively to house price increase

Limitation & Future works

- More factors in the DSGE model
- More shocks to better capture observational errors
- Expand the model to an open economy model
- Estimating more parameters instead of calibration

Thank You