

planetmath.org

Math for the people, by the people.

representation ring

Canonical name RepresentationRing
Date of creation 2013-03-22 19:19:02
Last modified on 2013-03-22 19:19:02

Owner joking (16130) Last modified by joking (16130)

Numerical id 7

Author joking (16130)
Entry type Definition
Classification msc 20C99

Let G be a group and k a field. Consider the class

$$\mathcal{R} = \{X \mid X \text{ is a representation of } G \text{ over } k\}$$

and its subclass \mathcal{R}_f consisting of those representations which are finite-dimensional as vector spaces. We consider a special representation

$$\mathcal{F} = (V, \cdot)$$

where V is a fixed vector space with a basis \mathcal{B} which is in bijective correspondence with G. If $f: \mathcal{B} \to G$ is a required bijection, then we define ,,." on basis \mathcal{B} by

$$g \cdot b = gf(b)$$

where on the right side we have a multiplication in G. It can be shown that this gives us a well-defined representation and further more, if $X \in \mathcal{R}_f$, then there exists an epimorphism of representations

$$e:\mathcal{F}^n\to X$$

for some $n \in \mathbb{N}$ (\mathcal{F} is a "free" representation). In particular every finitedimensional representation is a quotient of a direct sum of copies of \mathcal{F} . This fact shows that a maximal subclass $\mathcal{X} \subset \mathcal{R}_f$ consisting of pairwise nonisomorphic representations is actually a set (note that \mathcal{X} is never unique). Fix such a set.

Definition. The representation semiring $\overline{R_k(G)}$ of G is defined as a triple $(\mathcal{X}, +, \cdot)$, where \mathcal{X} is a maximal set of pairwise nonisomorphic representations taken from \mathcal{R}_f . Addition and multiplication are given by

$$X + Y = Z$$

where Z is a representation in \mathcal{X} isomorphic to the direct sum $X \oplus Y$ and

$$X \cdot Y = Z'$$

where Z' is a representation in \mathcal{X} isomorphic to the tensor product $X \otimes Y$. Note that $\overline{R_k(G)}$ is not a ring, because there are no additive inverses.

The representation ring $R_k(G)$ is defined as http://planetmath.org/GrothendieckGrouptle Grothendieck ring induced from $R_k(G)$. It can be shown that the definition does not depend on the choice of \mathcal{X} (in the sense that it always gives us naturally isomorphic rings).

It is convenient to forget about formal definition which includes the choice of \mathcal{X} and simply write elements of $\overline{R_k(G)}$ as isomorphism classes of representations [X]. Thus every element in $R_k(G)$ can be written as a formal difference [X] - [Y]. And we can write

$$[X] + [Y] = [X \oplus Y];$$
$$[X][Y] = [X \otimes Y].$$