MATH 417, HOMEWORK 13

CHARLES ANCEL

Chapter V.27

Exercise 2. Find all prime ideals and all maximal ideals of \mathbb{Z}_1 2.

Proof. We will examine the proper ideals of \mathbb{Z}_{12} and determine which are prime and which are maximal. The proper ideals are $\langle 0 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$, $\langle 4 \rangle$, and $\langle 6 \rangle$.

- $\langle 0 \rangle$: The quotient ring $\mathbb{Z}_{12}/\langle 0 \rangle$ is isomorphic to \mathbb{Z}_{12} , which is not an integral domain. Thus, $\langle 0 \rangle$ is not prime.
- $\langle 2 \rangle$: The quotient ring $\mathbb{Z}_{12}/\langle 2 \rangle$ is isomorphic to \mathbb{Z}_2 , which is a field. Therefore, $\langle 2 \rangle$ is a maximal ideal, and hence prime.
- $\langle 3 \rangle$: The quotient ring $\mathbb{Z}_{12}/\langle 3 \rangle$ is isomorphic to \mathbb{Z}_3 , which is a field. Therefore, $\langle 3 \rangle$ is a maximal ideal, and hence prime.
- $\langle 4 \rangle$: The quotient ring $\mathbb{Z}_{12}/\langle 4 \rangle$ is isomorphic to \mathbb{Z}_4 , which is not an integral domain. Thus, $\langle 4 \rangle$ is not prime.
- $\langle 6 \rangle$: The quotient ring $\mathbb{Z}_{12}/\langle 6 \rangle$ is isomorphic to \mathbb{Z}_6 , which is not an integral domain. Thus, $\langle 6 \rangle$ is not prime.

In conclusion, the only prime ideals of \mathbb{Z}_{12} are $\langle 2 \rangle$ and $\langle 3 \rangle$, and they are also maximal. There are no other prime or maximal ideals in \mathbb{Z}_{12} .

Exercise 8. Find all $c \in \mathbb{Z}_5$ such that $\mathbb{Z}_5[x]/\langle x^2 + x + c \rangle$ is a field.

Proof. We want to find all $c \in \mathbb{Z}_5$ such that the quotient ring $\mathbb{Z}_5[x]/\langle x^2 + x + c \rangle$ is a field. This occurs if and only if the polynomial $x^2 + x + c$ is irreducible over \mathbb{Z}_5 . A polynomial of degree 2 is irreducible over a field if it does not have any roots in that field.

We check for zeros of $x^2 + x + c$ in \mathbb{Z}_5 for each $c \in \mathbb{Z}_5$.

- For c = 0, the polynomial $x^2 + x$ has zeros at x = 0 and x = 4.
- For c = 1, the polynomial $x^2 + x + 1$ does not have any zeros in \mathbb{Z}_5 .
- For c=2, the polynomial x^2+x+2 does not have any zeros in \mathbb{Z}_5 .
- For c=3, the polynomial x^2+x+3 has zeros at x=1 and x=3.
- For c=4, the polynomial x^2+x+4 has a zero at x=2.

Therefore, $\mathbb{Z}_5[x]/\langle x^2+x+c\rangle$ is a field if and only if c=1 or c=2. These are the values for which the polynomial x^2+x+c is irreducible over \mathbb{Z}_5 .

Exercise 14. Mark each of the following true or false.

- a. Every prime ideal of every commutative ring with unity is a maximal ideal.
- b. Every maximal ideal of every commutative ring with unity is a prime ideal.
- c. \mathbb{Q} is its own prime subfield.
- d. The prime subfield of \mathbb{C} is \mathbb{R} .
- e. Every field contains a subfield isomorphic to a prime field.
- f. A ring with zero divisors may contain one of the prime fields as a subring.
- g. Every field of characteristic zero contains a subfield isomorphic to \mathbb{Q} .
- h. Let F be a field. Since F[x] has no divisors of 0, every ideal of F[x] is a prime ideal.
- i. Let F be a field. Every ideal of F[x] is a principal ideal.
- j. Let F be a field. Every principal ideal of F[x] is a maximal ideal.

Proof. Analyzing each statement for truthfulness:

- a. Every prime ideal of every commutative ring with unity is a maximal ideal. False. Prime ideals are not necessarily maximal in general.
- b. Every maximal ideal of every commutative ring with unity is a prime ideal. True. In commutative rings, maximal ideals are always prime.
- c. $\mathbb Q$ is its own prime subfield.

True. \mathbb{Q} is a prime field as it has no proper subfields.

d. The prime subfield of \mathbb{C} is \mathbb{R} .

False. The prime subfield of \mathbb{C} is \mathbb{Q} .

e. Every field contains a subfield isomorphic to a prime field.

True. Every field contains a smallest subfield, which is the prime field.

- f. A ring with zero divisors may contain one of the prime fields as a subring. True. For example, matrix rings over \mathbb{Q} contain \mathbb{Q} and have zero divisors.
- g. Every field of characteristic zero contains a subfield isomorphic to \mathbb{Q} . True. Fields of characteristic zero have \mathbb{Q} as their prime subfield.
- h. Let F be a field. Since F[x] has no divisors of 0, every ideal of F[x] is a prime ideal.

False. The absence of zero divisors does not imply that every ideal in F[x] is prime.

i. Let F be a field. Every ideal of F[x] is a principal ideal. True. F[x] is a principal ideal domain.

j. Let F be a field. Every principal ideal of F[x] is a maximal ideal. False. Not all principal ideals in F[x] are maximal.

Exercise 15. Find a maximal ideal of $\mathbb{Z} \times \mathbb{Z}$.

Proof. Let $p \in \mathbb{Z}_+$ be a prime number. We consider the ideal $\langle (1,p) \rangle$ in $\mathbb{Z} \times \mathbb{Z}$. This ideal consists of all pairs (a,bp) where $a,b \in \mathbb{Z}$.

We show that $\langle (1,p) \rangle$ is a maximal ideal by demonstrating that the quotient ring $\mathbb{Z} \times \mathbb{Z}/\langle (1,p) \rangle$ is a field.

- The quotient ring $\mathbb{Z} \times \mathbb{Z}/\langle (1,p) \rangle$ is isomorphic to \mathbb{Z}_p , which is a field. This is because the elements of the quotient ring can be represented as $(a,b)+\langle (1,p) \rangle$, where (a,b) are reduced modulo the ideal $\langle (1,p) \rangle$. In this reduction, the second component becomes $b \mod p$, while the first component can be any integer, thus collapsing the structure to \mathbb{Z}_p .
- Since \mathbb{Z}_p is a field (being the integers modulo a prime), the quotient ring $\mathbb{Z} \times \mathbb{Z}/\langle (1,p) \rangle$ is also a field.
- By definition, if the quotient of a ring by an ideal is a field, then that ideal is maximal.

Therefore, the ideal $\langle (1,p) \rangle$ in $\mathbb{Z} \times \mathbb{Z}$ is maximal for any prime $p \in \mathbb{Z}_+$.

Exercise 16. Find a prime ideal of $\mathbb{Z} \times \mathbb{Z}$ that is not maximal.

Proof. Consider the ideal $\langle (1,0) \rangle$ in $\mathbb{Z} \times \mathbb{Z}$. This ideal consists of all pairs (a,0) where $a \in \mathbb{Z}$. We show that $\langle (1,0) \rangle$ is a prime ideal but not maximal:

- (1) **Prime Ideal:** The quotient ring $\mathbb{Z} \times \mathbb{Z}/\langle (1,0) \rangle$ is isomorphic to \mathbb{Z} . This is because the elements of the quotient ring can be represented as $(a,b) + \langle (1,0) \rangle$, where (a,b) are reduced modulo the ideal $\langle (1,0) \rangle$. In this reduction, the first component becomes irrelevant, effectively collapsing the structure to \mathbb{Z} . Since \mathbb{Z} is an integral domain (but not a field), the quotient ring is an integral domain, implying that $\langle (1,0) \rangle$ is a prime ideal.
- (2) **Not Maximal:** However, $\langle (1,0) \rangle$ is not maximal in $\mathbb{Z} \times \mathbb{Z}$ because it is properly contained in larger ideals. For instance, the ideal $\langle (1,0), (0,1) \rangle$ contains $\langle (1,0) \rangle$ but is not the entire ring $\mathbb{Z} \times \mathbb{Z}$. The existence of such an intermediate ideal shows that $\langle (1,0) \rangle$ is not maximal.

Therefore, the ideal $\langle (1,0) \rangle$ in $\mathbb{Z} \times \mathbb{Z}$ is an example of a prime ideal that is not maximal.

Exercise 24. Let R be a finite commutative ring with unity. Show that every prime ideal in R is a maximal ideal.

Let P be a prime ideal in the finite commutative ring R with unity. We need to show that P is also a maximal ideal.

- 1. Quotient Ring is a Field Implies Maximal Ideal: An ideal I in a ring R is maximal if and only if the quotient ring R/I is a field.
- 2. Quotient Ring is an Integral Domain Implies Prime Ideal: An ideal I in a commutative ring R is prime if and only if the quotient ring R/I is an integral domain.
- 3. Finite Integral Domain is a Field: A key property in algebra is that every finite integral domain is a field. This is because in a finite integral domain, every non-zero element must have a multiplicative inverse (else the ring would have zero divisors due to finiteness, contradicting the integral domain property).
- 4. **Applying to** R/P: Since P is a prime ideal, R/P is an integral domain. Because R is finite, R/P is also finite. Therefore, R/P, being a finite integral domain, must be a field.
 - 5. Conclusion: Since R/P is a field, P is a maximal ideal in R.

Therefore, every prime ideal in a finite commutative ring with unity is a maximal ideal.

Proof. Let P be a prime ideal in a finite commutative ring R with unity. Since P is prime, the quotient ring R/P is an integral domain. As R is finite, so is R/P. By the property that every finite integral domain is a field, R/P is a field. Therefore, P is a maximal ideal in R.