Numerical interpolation and integratio

Ivo Roghair, Edwin Zondervan, Martin van Sint Annaland

Chemical Process Intensification, Process Systems Engineering, Eindhoven University of Technology

Today's outline Introduction Precovine constant Linear Polynomial Splines

Part I

Numerical interpolation

Interpolation problem

Definitio

Given a set of points \mathbf{x}_k , $k=0,\dots,n$, $\mathbf{x}_i\neq\mathbf{x}_j$ with associated function values f_k , $k=0,\dots,n$, or simply: $\{\mathbf{x}_k,k_k\}_{k=0}^n$. The interpolation problem is defined as: find a polynomial p_n such that this interpolates the values of f_k on the points \mathbf{x}_k :

 $p_n(x_k) = f_k, \quad k = 0, ..., n$

heorem

The interpolation problem for $\{x_k, f_k\}_{k=0}^n$ has a unique solution when $x_i \neq x_j$ for $i \neq j$. Note that we cannot allow multiple function values f_k for the same value of x_k .

What is interpolation?

Interpolation means constructing additional data points within the range of, and using, a discrete set of known data points.

It is typically performed on a uniformly spread data set, but this is not strictly necessary for all methods

- . Comparison of two data sets which are given at different positions
 - · An experimental data set may have been recorded at a constant rate, but the numerical solution is computed at irregular intervals
- · Reconstruction of field values distant of computing nodes · A CFD simulation on a regular grid containing structures that are not grid-conformant requires interpolation to the structures
- · Calculation of a physical property at a condition between those of a lookup table
 - . The viscosity of a substance may have been measured at 20°C and 30°C but not at the desired 28.5°C

Is interpolation the same as curve fitting?

NO

- . Curve-fitting requires additionally some way of computing the error between function (curve) and data
- . Curve-fitting does not strictly enforce the function to match the data exactly
- . Curve-fitting may be done on multiple datapoints at one
- · Curve-fitting is much more expensive to do, requires optimisation

Several important numerical interpolation methods are discussed today:

- · Piecewise constant interpolation
- · Linear interpolation
 - Bilinear interpolation
- · Polynomial interpolation (Newton's method)
- Spline interpolation

Today's data set

Data set $f_n(x_n)$ represented by o at discrete intervals $x_n \in \{0, 5\}$

We start with x1 and y1:

e00000

Linear interpolation

Data set $f_n(x_n)$ represented by \circ at discrete intervals $x_n \in \{0, 5\}$

 Linear interpolation to (x, y) between 2 data points (x2, y2) and (x_3, y_3) :

and
$$(x_3, y_3)$$
:
 $y - y_2 = y_3 - y_2$

· Reordered, and more formally:

$$y = y_n + (y_{n+1} - y_n) \frac{x - x_n}{x_{n+1} - x_n}$$

Piecewise constant interpolation

· Nearest-neighbor interpolation in the

continuous range $x \in [0, 5]$. How to treat the point

halfway (e.g. at $x = 2.5$)?	
$x \in [0, 0.5]$	$\rightarrow f(x) = f(0)$
$x \in]0.5, 1.5]$	$\rightarrow f(x) = f(1)$
$x \in]1.5, 2.5]$	$\rightarrow f(x) = f(2)$
$x \in]2.5, 3.5]$	$\rightarrow f(x) = f(3)$
x ∈[3.5, 4.5]	$\rightarrow f(x) = f(4)$

. Not often used for simple problems, but e.g. for 2D (Voronoi)

Linear interpolation

- · While linear interpolation is fast, and relatively easy to program, it is not very accurate
- · At the nodes, the derivatives are discontinuous i.e. not differentiable
- . Error is proportional to the square of the distance between nodes

Example: Linear interpolation in Matlab

Consider the data set in sim_exp_dataset.mat, containing a normalized concentration and time vector for an experiment and a simulation. The simulation was performed with adaptive node distance to save computation time, thus the concentration is not known at the same times. We are not able to compare vet.


```
% Linear interpolation
c_sim_new = interp(t_sim_c_sim_t_exp, 'linear');
diff = abs(c_sup=c_sim_new);
subplot(2.1,1);
plot(t_exp, c_sim_hew', t_exp, c_sim_new, 'r-o');
subplot(2.1,2);
subplot(2.1,2);
stem(t_exp, diff);
% Compute the L2-norm
norm(diff)
```

Piecewise constant Linear Polynomial Splines

Higher-dimensional field interpolation in Matlab

2D or higher-dimensional fields of data can be interpolated in Matlab using the interp2, interp3 or even interpn functions, the method can be adjusted:

- Similar to 1D linear interpolation, the derivatives are discontinuous on the grid nodes
- Also consider tri-linear interpolation (for 3D fields), or bicubic interpolation (2D, but third order)

Bi-linear interpolation

When a 2D field of some quantity is known, we can interpolate the solution to an arbitrary position in the 2D domain p(x, y) using 4 field values f_0 . f_0 . f_0 and f_1 .

000000

$$\begin{split} g_1 &= f_{01} \frac{x_1 - x}{x_1 - x_0} + f_{11} \frac{x - x_0}{x_1 - x_0} \\ &= f_{01} \frac{x_1 - x}{\Delta x} + f_{11} \frac{x - x_0}{\Delta x} \\ g_2 &= f_{00} \frac{x_1 - x}{\Delta x} + f_{10} \frac{x - x_0}{\Delta x} \end{split}$$

$$\rho = g_2 \frac{y_1 - y}{\Delta y} + g_1 \frac{y - y_0}{\Delta y} \qquad \qquad f_{00} = 4.0 \qquad \qquad g_2 \qquad f_{10} = 6.0$$

O00000

 $f_{11} = 1.0$

 The order of interpolation (x or y direction first) does not matter; the results are equal

A practical example

Field interpolation is used in e.g. CFD simulations, e.g. a fluidized bed simulation using a discrete particle model, where particles are found in between the grid nodes used for velocity computation.

Polynomial interpolation

The examples that we have seen, are simplified forms of Newton polynomials. We can interpolate our data with a polynomial of degree n:

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$$

00000000

Construction of Newton polynomials

Formally, the polynomials $p_n(x)$ are described using prefactors $f[x_0, \dots, x_k]$ and polynomial terms $w_m(x)$:

$$p_n(x) = \sum_{k=0}^{n} f[x_0, ..., x_k] w_k(x)$$

The polynomial terms are computed via:

$$w_0(x)=1,\ w_1(x)=(x-x_0),\ w_2(x)=(x-x_0)\cdot (x-x_1),$$

$$w_0(x) = 1$$
, $w_1(x) = (x - x_0)$, $w_2(x) = (x - x_0) \cdot (x - x_1)$,
 $w_m(x) = (x - x_0) \cdot (x - x_1) \cdot \cdot \cdot (x - x_{m-1}) = w_{m-1} \cdot (x - x_{m-1})$

$$w_m(x) = \prod_{j=1}^{m-1} (x - x_j), \quad m = 0, \dots, n$$

The prefactors are forward divided differences, which can be computed as:

$$f[x_{k-1}, \dots, x_r] \equiv \frac{f[x_{r-k+1}, \dots, x_r] - f[x_{r-k}, \dots, x_{r-1}]}{x_r - x_{r-k}}$$

Polynomial interpolation via Vandermonde matrix

Consider the data points $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$, the Vandermonde matrix V. coefficient vector a and function value vector v:

$$V_{m,n} = \begin{pmatrix} x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^{n-1} \\ x_2^0 & x_2^1 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n^0 & x_m^1 & x_m^2 & \cdots & x_m^{m-1} \end{pmatrix} \quad a = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

The coefficients of a polynomial through the data points can be obtained by solving the linear system Va = y.

4.5000 1.0000 So we found the equation: $p_1(x) = -1.8333x^2 + 4.5x - 1$

These Vandermonde-systems are often ill-conditioned, so we need another, more stable, method!

000000000

000000000 Construction of Newton polynomials: example

Sample data

 $x_1 \mid f[x_1] = f_1 \quad f[x_0, x_1] = \frac{f_1 - f_2}{2}$

Construction of Newton polynomials: example

$$\begin{split} p_2(x) &= 1 \cdot w_m(0) + \frac{8}{3} \cdot w_m(1) + \left(-\frac{11}{6} \right) \cdot w_m(2) \\ &= 1 \cdot 1 + \frac{8}{3} \cdot (x - 0) + \left(-\frac{11}{6} \right) \cdot (x - 0)(x - 1) = -\frac{11}{6} x^2 + 4\frac{1}{2} x + 1 \end{split}$$

Polynomial fitting in Matlab: example

x_cont,y_cont4)

Develop the $p_2(x)$, $p_3(x)$ and $p_4(x)$ from the following data set

COOCCEOC

We use the built-in polyfit(x,y,n) and polyval(p,x) functions:

Construction of Newton polynomials: example

For each three points, a new polynomial interpolant can be derived:

$$p_2(x) = -\frac{11}{6}x^2 + 4\frac{1}{2}x + 1$$

$$p_2(x) = 4 - \frac{x^2}{3}$$

$$p_2(x) = \frac{7x^2}{6} - 7\frac{1}{2}x + 13$$

$$p_2(x) = \frac{8}{3}x^2 - 18x + \frac{1}{3}x^2 - \frac{1}{3}x^2 + \frac{1}{3}x^2 - \frac{1}{3}x^2 + \frac{1}{3}x^2 - \frac{1}{3}x^2 + \frac{1}{3}x^2 - \frac$$

000000000

$$f(x) = \frac{x^3}{2} - \frac{10x^2}{3} + \frac{11x}{2} + 1$$

Exercise

v cont10):

Develop the $p_4(x)$ and $p_{10}(x)$ interpolants from the following data sets:

f(x) =
$$\frac{1}{x^2 + \frac{1}{2x}}$$
 x ∈ [-1,1] 25

x3a = linspace(-1, 1, 5); 15

x3b = linspace(-1, 1, 11); 10

y3a = 1 / (x3a. '2 + (1/25)); 5

y3b = 1 / (x3b. '2 + (1/25)); 5

x_cont = linspace(-1, 1, 1001); 10

y = polyfit(x3b, y3a, 40); 10

y= polyfit(x3b, y3b, 10); 10

y= polyfit(x3b, y3b, 10); 10

y= polyfit(x3b, y3b, 10); 10

= poly

- An polynomial interpolant of order n requires n + 1 data points
 - · More data points: interpolant does not always cross the points . Fewer data points: interpolant is not unique
- · Higher-degree polynomials at equidistant points may cause strong oscillatory behaviour (Runge's phenomenon)
 - . Mitigation of the problem on Chebyshev (i.e. non uniform
 - grid)... ... or by performing piecewise interpolation (next topic)
- Matlab functions polyfit(x,v,n) and polyval(p,x new) were demonstrated

Spline interpolation

A spline is a numerical function that represents a smooth, higher order, piecewise polynomial interpolants of a data set.

- . Smooth: the interpolant is continuous in the first and second derivatives
- · Higher order: The most common type of splines uses
- third-order polynomials (cubic splines) · Piecewise polynomial: The interpolant is constructed between

each two consecutive tabulated points

Spline interpolation in Matlab

We can generate a random data set, and interpolate using interp1:

```
% Generate random data set
r=0:25:
v = rand(size(x)):
% Interpolant on a fine mesh
xc = linspace(0,25,1001);
yc = interp1(x,y,xc,'spline');
plot(x.v.'o'.xc.vc.'-r')
```


Numerical integration

What is numerical integration?

To determine the integral I(x) of an integrand f(x), which can be used to compute the area underneath the integrand between x = aand y = h

$$I(x) = \int_{a}^{b} f(x) dx$$

Today we will outline different numerical integration methods.

- · Riemann integrals
- Trapezoidal rule
- · Simpson's rule

Today's outline

- Introduction

Why do chemical engineers need integration?

- · Obtaining the cumulative particle size distribution from a particle size distribution
- . The concentration outflow over time may be integrated to yield the residence time distribution
- . Integration of a varying product outflow yields the total product outflow
- · Quantitative analysis of mixture components via e.g. GC/MS
- Not all function have an explicit antiderivative, e.g. \(\int e^{x^2} dx \) or $\int \frac{1}{\ln x} dx$

Today's outline

- Riemann integrals

Errors in Riemann integrals

We define the exact integral as $I = \int_a^b f(x) dx$, and L_n , R_n and M_n represent the left, right and midpoint rule approximations of Ihased on n intervals

Writing $f_{\text{max}}^{(k)}$ for the maximum value of the k-th derivative, the upper-bounds of the errors by Riemann integrals are:

•
$$|I - L_n| \le \frac{f_{\max}^{(1)}(b - a)^2}{2n}$$

• $|I - R_n| \le \frac{f_{\max}^{(1)}(b - a)^2}{2n}$
• $|I - M_n| \le \frac{f_{\max}^{(2)}(b - a)^3}{2n}$

Note that while $|I - L_n|$ and $|I - R_n|$ give the same upper-bounds of the error, this does not mean the same error. Rather, the error is of opposite sign!

Riemann integrals

Basic idea: Subdivide the interval [a, b] into n subintervals of equal length $\Delta x = \frac{b-a}{n}$ and use the sum of area to approximate the integral.

with
$$\bar{x}_i = \frac{x_{i-1} + x_i}{2}$$

Today's outline

- Trapezoid rule

Trapezoid rule

Since the sign of the approximation error of the left and right endpoint rules is opposite, we can take the average of these approximations:

$$T_n = \frac{L_n + R_n}{2}$$

The total area is obtained by geometric reconstruction of trapezoids:

$$T_n = \sum_{i=1}^n \frac{f(x_{i+1}) + f(x_i)}{2} \Delta x_i$$

Note that this can be rewritten for equidistant intervals:

$$T_n = \frac{b-a}{2n} \left(f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n) \right)$$

Today's outline

- Introduction
- Riemann integrals
- Trapezoid ru
- Simpson's rule
- Conclusion

Error in trapezoid integration

The trapezoid rule result over n intervals T_n approximates the exact integral $I=\int_a^b f(x)dx$. The upper-bounds of the error is given as:

$$|I - T_n| \le \frac{f_{\max}^{(2)}(b-a)^3}{12n^2}$$

Recall that the midpoint rule approximates with an upper-bound error of

$$|I - M_n| \le \frac{f_{\max}^{(2)}(b-a)^3}{24n^2}$$

The midpoint rule approximation has lower error bounds than the trapezoid rule. A linear function is, however, better approximated by the trapezoid rule.

Towards higher-order integration

Compare how the midpoint and trapezoid functions behave on convex and concave parts of a graph.

In convex parts (bending down), the midpoint rule tends to overestimate the integral (trapezoid underestimates). In concave parts (bending up), the midpoint rule tends to underestimate the integral (trapezoid overestimates).

Towards higher-order integration

The errors of the midpoint rule and trapezoid rule behave in a similar way, but have opposite signs.

• Midpoint:
$$|I - M_n| \le \frac{f_{\max}^{(2)}(b - a)^3}{24n^2}$$

• Trapezoid:
$$|I - T_n| \le \frac{f_{max}^{(2)}(b-a)^3}{12n^2}$$

For a quadratic function, the errors relate as:

$$|I - M_n| = \frac{1}{2}|I - T_n|$$

Taking the weighted average of these two yields the Simpson's rule:

$$S_{2n} = \frac{2}{3}M_n + \frac{1}{3}T_n$$

The 2n means we have 2n subintervals: the n trapezoid intervals are subdivided by the midpoint rule.

npson's rule

Simpson's rule

We write $f(x_k) = f_k$. The integral of an interval $i \in [x_0, x_2]$ is approximated as:

$$S_i = \frac{\Delta x}{3} (f_0 + 4f_1 + f_2)$$

The next interval, S_j with $j \in [x_2, x_4]$ with midpoint $x_3 = \frac{x_2 + x_4}{2}$ is approximated as:

$$S_j = \frac{\Delta x}{3} (f_2 + 4f_3 + f_4)$$

If we sum these two intervals we obtain:

$$\begin{split} I &\approx S_i + S_j = \left[\frac{\Delta x}{3} \left(f_0 + 4 f_1 + f_2 \right) \right] + \left[\frac{\Delta x}{3} \left(f_2 + 4 f_3 + f_4 \right) \right] \\ &= \frac{\Delta x}{3} \left(f_0 + 4 f_1 + 2 f_2 + 4 f_3 + f_4 \right) \end{split}$$

Simpson's rule

Consider the interval $i \in [x_0, x_2]$, subdivided in three equidistant interpolation points: x_0, x_1, x_2 .

• Midpoint:
$$M_i = f(\frac{x_0 + x_2}{2})2\Delta x = f(x_1)2\Delta x$$

• Trapezoid:
$$T_i = \frac{f(x_0) + f(x_2)}{2} 2\Delta x$$

• Simpson:
$$S_i = \frac{2}{3}M_i + \frac{1}{3}T_i$$

Note that M_i and T_i were computed on interval $x_2-x_0=2\Delta x$. Now we have:

$$\begin{split} S_i &= \frac{2}{3} [f(x_1) 2 \Delta x] + \frac{1}{3} \left[\frac{f(x_0) + f(x_2)}{2} 2 \Delta x \right] \\ &= \frac{4 \Delta x}{3} f(x_1) + \frac{\Delta x}{3} f(x_0) + f(x_2) = \frac{\Delta x}{3} \left\{ f(x_0) + 4 f(x_1) + f(x_2) \right\} \end{split}$$

ODDOOOOO

Simpson's rule

In general Simpson's rule can be written as:

$$\begin{split} \int_a^b f(x) dx &\approx \sum_{k=2}^n \frac{\Delta x}{3} \left(f_{k-2} + 4 f_{k-1} + f_k \right) \\ &\quad k \in 2 \\ k \text{ even} \end{split}$$

$$&= \frac{\Delta x}{k} \left(f_0 + 4 f_1 + 2 f_2 + 4 f_3 + 2 f_4 + \ldots + 2 f_{n-2} + 4 f_{n-1} + f_n \right)$$

The error is given by:

$$|I - S_n| \le \frac{f_{\text{max}}^{(4)}(b - a)^5}{180 n^4}$$

if integrand f is differentiable on [a, b].

Simpson's rule: example

Recall our example data, described by $f(x) = \frac{x^3}{2} - \frac{10x^2}{3} + \frac{11x}{2} + 1$ $I = \int_0^4 \frac{x^3}{2} - \frac{10x^2}{3} + \frac{11x}{2} + 1 = \frac{80}{9} \approx 8.888 \dots$

- Interpolating x_0 , x_1 and x_2 : $p_{2a}(x) = -\frac{11}{6}x^2 + 4\frac{1}{2}x + 1$ $\int_0^2 p_{2a} = \frac{59}{9} \approx 6.1111$
- Interpolating x₂, x₃ and x₄:
 p_{2b}(x) = ^{7x²}/₅ 7½ x + 13
 ∫₂⁴ p_{2b} = ²⁵/₉ ≈ 2.777 ...
 Adding the separate integrals:
- $\int_0^2 p_{2a} + \int_2^4 p_{2b} = \frac{80}{9}$

Using Simpson's rule: $I \approx \frac{\Delta x}{3} (f_0 + 4f_1 + 2f_2 + 4f_3 + f_4) = \frac{1}{3} (1 + 4 \cdot 3.6667 + 2 \cdot 2.6667 + 4 \cdot 1.0000 + 1.6667) = 8.88888 = \frac{80}{9}$

Simpson's method is of third order: it gives exact approximations of third order polynomials!

Today's outline

- Introduction
- Riemann integrals
- Trapezoid ru
- Simpson's rule
- Conclusion

Integration in Matlab

Integration can be done numerically in Matlab.

- trapz(x,y) uses the trapezoid rule to integrate the data. Make sure you use the x variable if your data is not spaced with Δx = 1. Can handle non-equidistant data.
- Integration of functions can be done using the integral (fun.xmin.xmax) function:

```
fun = @(x) exp(-x.^2);

I = integral(fun,0,10);

I =

0.886226925452758
```

What hasn't been discussed?

This course is by no means complete, and further reading is possible

- Legendre polynomials: Another way of performing the polynomial interpolation
- Gaussian quadrature: A third-order integration method that requires only two base points (in contrast to the third order Simpson's method, which requires three points)
- Adaptive techniques: Parts of a function that are relatively steady (no wild oscillations) and differentiable can be integrated with much larger step sizes than other parts of the function.
- Simpson's 3/8-rule: Yet another integration technique, requiring an additional data point

Summary

- · Interpolation is used to obtain data between existing data points
 - . (Bi-)Linear, polynomial and spline interpolation methods
 - · Construction of Newton polynomials
 - · Oscillations of high-order polynomials
- · Several techniques for numerical integration were discussed:
 - Riemann sums, trapezoid rule, Simpson's rule
 - . Upper-bound errors were given for each technique