计算机组成习题

---Cache与虚存

❖ 某计算机的存储系统由Cache和主存组成。若所访问的字在Cache中,则存取它需要10ns;将所访问的字从主存装入Cache需要60ns。假定Cache的命中率为0.9,计算该存储系统访问一个字的平均存取时间。

二、

- ❖ 假设一4路组相联Cache,数据存储空间大小为64KB,块大小为16字节,主存地址32位,主存一个字包含4个字节,Cache采用写回策略,每个数据块包括1位有效位,Cache每个字用1位脏位来表示是否被修改。
 - ▶(1)CPU如何解释主存地址(主存地址格式)
 - ▶(2)计算实现该Cache所需总存储容量

三、

- ❖ 计算机系统包含32K字的主存, Cache容量4K字, 每组4 Blocks, 每Block 64个字。假设Cache开始是空的, CPU顺序从存储单元0, 1, 2到4351中读取字, 然后再重复这样的取数9次, Cache速度是主存速度的10倍(与 "Cache速度比主存快10倍"的区别?), 采用LRU替换算法, 假定块替换的时间忽略不计。
 - >(1)计算上述取数过程的命中率
 - ▶(2)计算采用Cache后的加速比

四、

- ❖ 考虑一个Cache, 其存取时间为2.5ns, 行大小为64字节, 命中率 H=0.95。主存使用块传送方式, 第一个字(4字节) 存取时间为50ns, 其后每个字存取时间为5ns。
 - ▶(1)出现一次Cache缺失的存取时间是多少?假设此时Cache等待,直到该行从主存传送到Cache,然后再从Cache读取
 - ▶(2)假设行大小增大到128字节,命中率提升到0.97,是否会降低平均存 取时间

五、

❖ 给定一个32位的虚拟地址空间和一个24位的物理地址,对于下面不同的分页大小P,请确定虚拟页号(VPN)、虚拟页内偏移量(VPO)、物理页号(PPN)和物理页内偏移量(PPO)的位数。

P	#VPN位数	#VPO位数	#PPN位数	#PPO位数
1KB	22	10		
2KB	21	11		
4KB	20	12		
8KB	19	13		

六、

❖ 假定一个计算机系统中有一个TLB和一个L1 Data Cache。该系统 按字节编址,虚拟地址16位,物理地址12位;页大小为128字节, TLB采用4路组相联映射,共有16个页表项;L1 Data Cache采用直 接映射方式,块大小为4字节,共16行。在系统运行到某一时刻。 TLB、页表和L1 Data Cache中的部分内容(用十六进制表示)如 下图所示。

组号	标记	实页 号	有效 位									
0	03		0	09	1D	1	00		0	07	10	1
1	13	2D	1	02		0	04		0	0A		0
2	02	_	0	08		0	06		0	03		0
3	07	_	0	63	12	1	0A	34	1	72		0

▶(a)TLB内容(4路组相联, 4组, 16个页表项)

六、

虚页 号	实页 号	有效 位					
000	08	1					
001	03	1					
002	14	1					
003	02	1					
004	_	0					
005	16	1					
006	_	0					
007	07	1					
008	13	1					
009	17	1					
00A	09	1					
00B	_	0					
00C	19	1					
00D	—	0					
00E	11	1					
00F	0D	1					

p ,	,				y	y
行索 引	标记	有效 位	字节3	字节 2	字节 1	字节 0
0	19	1	12	56	C9	AC
1	_	0	_	_	_	_
2	1B	1	03	45	12	CD
3	_	0	_	_	_	_
4	32	1	23	34	C2	2A
5	0D	1	46	67	23	3D
6	_	0	_	_	_	_
7	10	1	12	54	65	DC
8	24	1	23	62	12	3A
9		0			—	
A	2D	1	43	62	23	C3
В	_	0	_	_	_	_
С	12	1	76	83	21	35
D	16	1	A3	F4	23	11
Е	33	1	2D	4A	45	55
F	_	0	_	_	_	_

▶(b)部分页表内容(前16项) (C)L1 Data Cache内容(直接映射, 16行, 块大小4字节)

六、

❖ 请回答下列问题:

- ▶(1)虚拟地址中哪几位表示虚拟页号、哪几位表示页内偏移量?虚拟页号中哪几位表示TLB标记?哪几位表示TLB组索引?
- ▶(2)物理地址中哪几位表示物理页号、哪几位表示页内偏移量?在访问 Cache时,物理地址如何划分成标记字段、行索引字段和块内地址字 段?
- ▶(3)CPU从地址067AH中取出的值是多少?要求对CPU读取地址067AH中内容的过程进行详细说明。

七、

❖ 在组相联映射方式下:

▶主存: 2M Bytes

➤ Cache: 32K Bytes

➤Block: 256 Bytes

➤Way : 8 Ways (Cache每组包含8个Block)

❖ 请计算:

- ➤Cache 组数
- >主存每组块数
- >主存地址分为哪几个部分, 每部分的位数
- ➤Cache的Tag的位数:

此外,试问在组相联映射方式下,会否出现Cache不满,但新块需启动替换才能调入的现象?