Université de Tours Licence 2 Mathématiques

TD 1 : Récurrence, divisibilité

Arithmétique Semestre 1

Exercice 1

Démontrer les formules suivantes pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}, \quad \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

Exercice 2

Énoncer puis démontrer par récurrence la formule du binôme de Newton.

Exercice 3

Soient $a, b, c \in \mathbb{Z}$. Démontrer les propriétés élémentaires suivantes :

- 1. Si $a \mid b$, alors pour tout $m \in \mathbb{Z}$, $a \mid mb$.
- 2. Si $a \mid b$ et si $b \mid c$, alors $a \mid c$.
- 3. Si $a \mid b$ et si $a \mid c$, alors pour tous $x, y \in \mathbb{Z}$, $a \mid bx + cy$.
- 4. Si $a \mid b$ et si $b \mid a$, alors a = b ou a = -b.
- 5. Si $c \neq 0$, alors $a \mid b$ si et seulement si $ac \mid bc$.

Exercice 4

- 1. Soit $n \in \mathbb{Z}$. Montrer que n est pair si et seulement si n^2 est pair.
- 2. Montrer que pour tout $n \in \mathbb{N}$, 6 divise $n^3 n$.
- 3. Montrer que pour tout $n \in \mathbb{N}$, 24 divise n(n+1)(n+2)(n+3).
- 4. Soit $n \in \mathbb{N}$ un entier impair. Montrer que 8 divise $n^2 1$.

Exercice 5

Déterminer les entiers $n \in \mathbb{Z}$ tels que

$$n-4 \mid 3n-17.$$

Exercice 6^* (Sous-groupes de $(\mathbb{Z},+)$)

Pour tout $n \in \mathbb{N}$, on note $n\mathbb{Z}$ l'ensemble défini par

$$n\mathbb{Z} = \{k \times n \mid k \in \mathbb{Z}\}.$$

C'est l'ensemble des multiples de n.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$.
- 2. Réciproquement, montrer que si \mathbf{G} est un sous-groupe de $(\mathbb{Z}, +)$, alors il existe $n \in \mathbb{N}$ tel que $\mathbf{G} = n\mathbb{Z}$. Indication : si $\mathbf{G} \neq \{0\}$, montrer que $\mathbf{G} \cap \mathbb{N}^* \neq \emptyset$.