Differentiation Exercise

1. Use the definition of derivative to compute f'(x) for each of the following.

(a)
$$f(x) = \sqrt{4x - 1}$$

(b)
$$f(x) = \sqrt{2 + x^2}$$

(c)
$$f(x) = \frac{1}{2x+1}$$

(d)
$$f(x) = \cos x$$

(e)
$$f(x) = \tan x$$

(f)
$$f(x) = \ln x$$

2. Find $\frac{dy}{dx}$ for each of the following.

(a)
$$y = -8x^5 + \sqrt{3}x^3 + 2\pi x^2 - 12$$

(b)
$$y = (x^{100} + 2x^{50} - 3)(7x^8 + 20x + 5)$$

(c)
$$y = \frac{x^5 - x + 2}{x^3 + 7}$$

(d)
$$y = (x^3 - 2x^2 + 7x - 3)^4$$

(e)
$$y = \frac{1}{(3x^2 + 5)^4}$$

$$(f) \ \ y = \sqrt{2x+7}$$

$$(g) y = \left(\frac{x+2}{x-3}\right)^3$$

(h)
$$y = x^{\frac{1}{2}} \cos(2x^3 + x - 10)$$

$$(j) y = \ln\left((\ln x)^5\right)$$

$$(k) y = \sin^3(5x+4)$$

(l)
$$y = \tan^3(\ln x)$$

$$(m) y = \frac{x}{\cos^2(2x)}$$

(n)
$$y = \sin^2(4x) - 4\cos(x^2 - 1) + \sin(x\ln x)$$

(o)
$$y = e^{3x^2 + 5x - 2}$$

(p)
$$y = \ln \left(\frac{e^x + 2x + 1}{e^x - 3x - 1} \right)$$

(q)
$$y = \frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$$

$$(r) y = \log_x(2x+3)$$

$$(s) y = \sin^{-1}\left(\sqrt{1-x^2}\right)$$

- 3. Find $\frac{dy}{dx}$ for each of the following.
 - (a) $x^2 + y^2 4x + 6y + 12 = 0$
 - (b) $xy + y^2 = 1$
 - (c) $x + \sin y = xy$
 - (d) $\tan(xy) = y$
 - (e) $y = \tan^2(x+y)$
 - (f) $xy^3 2x^2 = xy + 5$
 - (g) $\sin(x^2 + y) = 3xy^2 + y^2$
 - $(h) x\sqrt{x+y} = 8 xy$
 - (i) $x^2(x-y)^2 = x^2 y^2$
 - (j) $y^2 = \frac{x-1}{x+1}$
 - (k) $x^4 = x^2y^2 + 2\ln y$
 - (l) $x^2 + y^2 = 2x \cos(y^3)$
- 4. Find $\frac{dy}{dx}$ for each of the following.
 - (a) $y = \sqrt[5]{\frac{x-1}{x+1}}$
 - (b) $y = \frac{x^2 \sqrt[3]{7x 14}}{(1 + x^2)^4}$
 - (c) $y = \frac{x^{\frac{3}{4}}\sqrt{x^2+1}}{(3x+2)^5}$
 - (d) $y = \frac{x^3}{1-x} \sqrt[3]{\frac{3-x}{(3+x)^2}}$
 - (e) $y = \sqrt[3]{\frac{(x+2)(3x-1)^4}{(2-x)^5}}$
 - (f) $u = 2^{\sin x}$
 - $(g) \ y = 3^{\tan \frac{1}{x}}$
 - (h) $y = x^{\ln x}$
 - (i) $y = (\sin x)^x$
 - (j) $y = (1+x)^{\frac{1}{x}}$
 - (n) $y = \sin(x^{\cos x})$
- 5. (a) Given $y = \frac{u^2 1}{u^2 + 1}$ and $u = \sqrt[3]{x^2 + 2}$, find $\frac{dy}{dx}$ in terms of x.
 - (b) Given $y = \frac{1}{\sqrt{3u^2 + 4}}$ and $u = e^{-x}$, find $\frac{dy}{dx}$ in terms of x.

- (c) Given $y = 2x^2 + 1$ and u = 2x 1, find $\frac{dy}{du}$ in terms of u.
- 6. (a) If F(x) = f(g(x)), where f(-2) = 8, f'(-2) = 4, f'(5) = 3, g(5) = -2 and g'(5) = 6, find F'(5).
 - (b) Find f' in terms of g and/or g' for each of the following.
 - (i) $f(x) = (g(x))^2$
 - (ii) $f(x) = \sin(g(x))$
 - (iii) $f(x) = g(\sin x)$
 - (c) Let f and g be two differentiable functions such that f(g(x)) = x and $f'(x) = 1 + (f(x))^2$. Show that $g'(x) = \frac{1}{1+x^2}$.
- 7. (a) Find the equation of the tangent line to the graph of $y = x^2 \cos x 1$ at $x = \pi$.
 - (b) Find the points on the curve $y = 2x^3 + 3x^2 12x + 1$ at which the tangent lines are horizontal.
 - (c) Find the equations of both lines that are tangent to the curve $y = 1 + x^3$ and are parallel to the line 12x y = 1.
 - (d) Find the equations of the tangent lines to the curve $y = \frac{x-1}{x+1}$ that are parallel to the line x-2y=2.
- 8. (a) For what values of a and b is the line 2x + y = b tangent to the curve $y = ax^2$ when x = 2?
 - (b) For what value(s) of c is the curve $y = \frac{c}{x+1}$ tangent to the line through the points (0,3) and (5,-2)?
- 9. The equation of a curve C is $y = x^3 2x^2 4$.
 - (a) Find the point(s) on C at which the tangent line(s) to C
 - (i) is/are parallel to the line 4x y = 3.
 - (ii) $\operatorname{cut}(s)$ the x-axis at the point (-1,0).
 - (b) Write down the equations of the corresponding tangent lines in (a)(i) and (ii).
- 10. Let $f(x) = 2x^3 + 5x^2 12$.
 - (a) Find the equation of the tangent line to the graph of y = f(x) at x = 1.
 - (b) Find the value(s) of m for which the line y = mx is tangent to the graph of y = f(x).
- 11. (a) A curve is defined by the equation $2x^4 2x^2y^2 y^3 + 1 = 0$ and (1, 1) is a point on the curve. Find the slope of the tangent line to the curve at this point.
 - (b) Let C be the curve defined by the equation $x = 2y^2 y^3$. Find the equation(s) of the tangent line(s) to C such that the slope of each tangent line is one.
- 12. (a) If $f(x) = x^3 + x 9$, find $(f^{-1})'(1)$.
 - (b) If $g(x) = 2x + \cos x$, find $(g^{-1})'(1)$.

- (c) If $h(x) = \frac{4x^3}{x^2 + 1}$, find $(h^{-1})'(2)$.
- 13. Let f be a differentiable function such that f(0) = 3, f'(0) = 5, f(1) = 7, f'(1) = 9, $f\left(\frac{\pi}{2}\right) = 11$ and $f'\left(\frac{\pi}{2}\right) = 15$.
 - (a) Compute g'(7), where $g(x) = \frac{1}{f^{-1}(x)}$ and f^{-1} is the inverse function of f.
 - (b) Find the derivative of h at x = 0, where $h(x) = f\left(\cos^{-1}\frac{x}{3}\right)$.
- 14. Find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$ for each of the following functions.
 - (a) $y = \ln x$
 - (b) $y = \frac{1}{ax + b}$, where a and b are constants with $a \neq 0$.
 - (c) $y = e^x(x-1)$
 - (d) $y = \sin^2 x$
- 15. Find $\frac{d^2y}{dx^2}$ in terms of x and y for each of the following. Hence evaluate $\frac{d^2y}{dx^2}$ at the point (0,1).
 - (a) $x^2 + 4y^2 = 4$
 - (b) $x^3 3xy + y^3 = 1$
- 16. (a) If $y = \frac{x+a}{x+b}$, where a and b are constants, show that $2\left(\frac{dy}{dx}\right)^2 + (1-y)\frac{d^2y}{dx^2} = 0$.
 - (b) If $y = \frac{1}{\sqrt{1+x^2}}$, show that $(1+x^2)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + y = 0$.