

Contextualização

- Foram explorados ao todo seis autoencoders com finalidades e casos de uso diferentes desde autoencoders básicos com finalidades de reconstrução, remoção de ruído e deteção de anomalias até autoencoders generativos.
- Foram utilizados três datasets no total que foram utilizados para determinados autoencoders.
- O objetivo é experimentar e visualizar os resultados obtidos em autoencoders com diferentes casos de uso.

Datasets

Datasets Utilizados durante o Projecto 01

Autoencoders

Autoencoders e resultados obtidos 02

Conclusão

03 Conclusão e trabalho futuro

Autoencoders

01 Datasets

Fashion MNIST

- Dataset bastante popular e muito utilizado para validar algoritmos.
- 60000 imagens de treino e 10000 de teste.
- Está dividido em 10 classes sendo estas Tshirt, Calças, Pullover, Vestido, Casaco, Sandálias, Camisola, Sneakers, Mochila e Botas.
- Foi utilizado para treinar um autoencoder básico de reconstrução, um de remoção de ruído e um generativo.

Cartoon Set

- Coleção de imagens de avatar 2D.
- Composto por 100 mil imagens 256x256.
- Foi utilizado para treinar um autoencoder básico de reconstrução e um generativo.
- Pode se obter através do link:
 https://google.github.io/cartoonset/index.html

Eletrocardiogramas

- Conjunto de 5000 eletrocardiogramas rotulados com 0 se for um ritmo anormal e 1 se for um ritmo normal
- Foi utilizado apenas para treinar um autoencoder básico de deteção de anomalias
- Pode ser obtido através do link:
 http://www.timeseriesclassification.com/description.php?Dataset=ECG5000

Autoencoder Básico Aplicado ao Fashion MNIST

Autoencoder Básico Aplicado ao **Cartoon Set**

Autoencoder Básico Para Remoção de Ruído

Autoencoder Básico Para Deteção de Anomalias

- Treinar modelo com electrocardiogramas normais.
- Considerar um electrocardiograma como anômalo caso o erro de reconstrução for maior que um valor fixo.
- Este valor fixo pode ser calculado através do erro médio dos exemplos normais.

Autoencoder Básico Para Deteção de Anomalias

Erros de reconstrução de todos os eletrocardiogramas normais

Erros de reconstrução de todos os eletrocardiogramas anormais

Autoencoder Generativo Aplicado ao Fashion MNIST

Autoencoder Generativo Aplicado ao Cartoon Set

Trabalho Futuro

- Criar um autoencoder com um dataset ainda mais complexo, talvez com imagens do dobro da resolução (512x512).
- Explorar o mundo dos GANs

