Homework 1

Your Name

September 27, 2021

Section 2.1

Let $m: \mathcal{A} \to [0, \infty)$ be a set function where \mathcal{A} is a σ -algebra. Assume m is countably additive over countable disjoint collections of sets in \mathcal{A} .

Problem 1

Given sets A, B, and C, if $A \subset B$ and $B \subset C$, then $A \subset C$.

Proof. Other symbols you can use for set notation are

- $A \supset B \supseteq C \subset D \subseteq E$. Also $\emptyset vs \emptyset$
- \cup and $\cup_{k=1}^{\infty} E_k$
- \cap and $\cap_{x \in \mathbb{N}} \{ \frac{1}{\sqrt[3]{x}} \}$
- \bigcup and $\bigcap_{k=0}^{n}$ and \bigcap
- most Greek letters $\sigma\pi\theta\lambda_i e^{i\pi}$
- $\int_0^2 \ln(2) x^2 \sin(x) dx$
- ≤<≥>=≠

If you want centered math on its own line, you can use a slash and square bracket.

$$\left\{\sum_{k=1}^{\infty}l(I_k):A\subseteq\bigcup_{k=1}^{\infty}\{I_k\}\right\}$$

The left and right commands make the brackets get as big as we need them to be. $\hfill\Box$

Given	
<i>Proof.</i> Let $\epsilon > 0$. If you have use two \$\$ on either side.	a shorter statement that you still want centered
	$\exists \text{ some } \delta > 0 \mid \dots$
Problem 3	
Proof.	
Section 2.2	
Problem 6	
Blah	
Problem 7	
Blah	
Problem 10	
Blah	

Problem 2