Deena 20104016

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as pp
```

Problem Statement

LINEAR REGRESSION

2]: a	a = pd.read_csv("Fitness.csv")						
]:	Row Labels Sum of Jan Sum of Feb Sum of Mar Sum of Total S			Sum of Total Sales			
0	А	5.62%	7.73%	6.16%	75		
1	В	4.21%	17.27%	19.21%	160		
2	С	9.83%	11.60%	5.17%	101		
3	D	2.81%	21.91%	7.88%	127		
4	Е	25.28%	10.57%	11.82%	179		
5	F	8.15%	16.24%	18.47%	167		
6	G	18.54%	8.76%	17.49%	171		
7	Н	25.56%	5.93%	13.79%	170		
8	Grand Total	100.00%	100.00%	100.00%	1150		

HEAD

1.					
]:	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179

Data Cleaning and Preprocessing

1 of 5

n [4]:		1/3				
ut[4]:		Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
•	0	Α	5.62%	7.73%	6.16%	75
	1	В	4.21%	17.27%	19.21%	160
	2	С	9.83%	11.60%	5.17%	101
	3	D	2.81%	21.91%	7.88%	127
	4	Е	25.28%	10.57%	11.82%	179

In [5]: 🗀

Outl	51	•	
out	ر ر	•	
	-		

	Sum of Total Sales		
count	9.000000		
mean	255.55556		
std	337.332963		
min	75.000000		
25%	127.000000		
50%	167.000000		
75%	171.000000		
max	1150.000000		

To display heading

Out[7]: <seaborn.axisgrid.PairGrid at 0x19d59d29df0>

2 of 5 31-07-2023, 14:45

TO TRAIN THE MODEL - MODEL BUILDING

Sum of Total Sales

0.925

0.900

```
In [10]: x = a[['Sum of Total Sales']]
In [11]: # to split my dataset into training and test data
         from sklearn.model_selection import train_test_split
```

31-07-2023, 14:45 3 of 5

```
In [12]: from sklearn.linear_model import LinearRegression
          lr = LinearRegression()
Out[12]: LinearRegression()
         coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[13]:
                            Co-efficient
           Sum of Total Sales
                                   1.0
In [14]: prediction= lr.predict(x_test)
Out[14]: <matplotlib.collections.PathCollection at 0x19d5bee3be0>
           170
           160
           150
           140
           130
           120
           110
           100
               100
                      110
                            120
                                  130
                                         140
                                               150
                                                     160
                                                            170
In [15]: <sup>L</sup>
Out[15]: 1.0
```

RIDGE & LASSO

4 of 5 31-07-2023, 14:45

```
In [20]: from sklearn.linear_model import ElasticNet
         a=ElasticNet()
Out[20]: ElasticNet()
In [21]: print(a.coef_)
         print(a.intercept_)
         print(a.score(x_test,y_test))
         [0.99999297]
         0.002182120751115235
         0.999999986337749
         [167.00100785 101.00147194 170.00098676]
In [22]: from sklearn import metrics
         print(" Mean Absolute Error :",metrics.mean_absolute_error(y_test,prediction))
         print(" Mean Squared Error :", metrics.mean_squared_error(y_test, prediction))
          Mean Absolute Error : 3.315866100213801e-14
          Mean Squared Error : 1.1443742198406145e-27
          Root Mean Absolute Error: 1.8209519763612112e-07
 In [ ]:
```

5 of 5