Министерство науки и высшего образования Российской Федерации Новосибирский государственный технический университет

 \mathbf{y} равнения математической физики Лабораторная работа №2

 Φ акультет: Φ ПМИ Γ руппа: Π М-63

Студент: Кожекин М.В.

Вариант: 5

1. Цель работы

Разработать программу решения нелинейной одномерной краевой задачи методом конечных элементов. Сравнить метод простой итерации и метод Ньютона для решения данной задачи.

2. Задание

- 1. Выполнить конечноэлементную аппроксимацию исходного уравнения в соответствии с заданием. Получить формулы для вычисления компонент матрицы и вектора правой части для метода простой итерации.
- 2. Реализовать программу решения нелинейной задачи методом простой итерации с учетом следующих требований:
 - язык программирования С++ или Фортран;
 - предусмотреть возможность задания неравномерных сеток по пространству и по времени, разрывность параметров уравнения по подобластям, учет краевых условий;
 - матрицу хранить в ленточном формате, для решения СЛАУ использовать метод -разложения;
 - предусмотреть возможность использования параметра релаксации.
- 3. Выполнить линеаризацию нелинейной системы алгебраических уравнений с использованием метода Ньютона. Получить формулы для вычисления компонент линеаризованных матрицы и вектора правой части
 - 4. Реализовать программу решения нелинейной задачи методом Ньютона.
 - 5. Протестировать разработанные программы.
- 6. Исследовать реализованные методы на различных зависимостях коэффициента от решения (или производной решения) в соответствии с заданием. На одних и тех же задачах сравнить по количеству итераций метод простой итерации и метод Ньютона. Исследовать скорость сходимости от параметра релаксации.

Вариант 5: Базисные функции линейные.

$$-div(\lambda(u)grad(u) + \sigma \frac{du}{dt} = f$$

3. Анализ

Произведя временную аппроркимацию по двуслойной неявной схеме исходное уравнение примет вид:

$$-div(\lambda(u)grad(u) + \frac{\sigma}{\Delta t_s}u_s = f + \frac{\sigma}{\Delta t_s}u_{s-1}$$

В ходе конечноэлементной аппроксимации нелинейной начально-краевой задачи получается система нелинейных уравнений

$$\mathbf{A}(\mathbf{q_s})\mathbf{q_s} = \mathbf{b}(\mathbf{q_s})$$
 у которой

$$G_{i,j} = \int_{\Omega} \lambda(\frac{du}{dx}) grad\psi_i grad\psi_j d\Omega =$$

$$G_{0,0} = \sum_{k=0}^{1} \int_{\Omega} \lambda(\frac{q_{1} - q_{0}}{h}) \psi_{k} grad \psi_{0} grad \psi_{0} d\Omega =$$

$$= \sum_{k=0}^{1} \int_{\Omega} \lambda(\frac{q_{1} - q_{0}}{h}) \psi_{k} grad \psi_{0} grad \psi_{0} d\Omega =$$

$$= \frac{\lambda_{0} (\frac{q_{1} - q_{0}}{h}) + \lambda_{1} (\frac{q_{1} - q_{0}}{h})}{2h} = G_{1,1}$$

$$G_{0,1} = \sum_{k=0}^{1} \int_{\Omega} \lambda(\frac{q_{1} - q_{0}}{h}) \psi_{k} grad \psi_{0} grad \psi_{1} d\Omega =$$

$$= \sum_{k=0}^{1} \int_{\Omega} \lambda(\frac{q_{1} - q_{0}}{h}) \psi_{k} grad \psi_{0} grad \psi_{1} d\Omega =$$

$$= -\frac{\lambda_{0} (\frac{q_{1} - q_{0}}{h}) + \lambda_{1} (\frac{q_{1} - q_{0}}{h})}{2h} = G_{1,0}$$

$$G = \frac{\lambda_{0} (\frac{q_{1} - q_{0}}{h}) + \lambda_{1} (\frac{q_{1} - q_{0}}{h})}{2h} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$\begin{split} M_{i,j} &= \frac{\sigma}{\Delta t_s} \int_{\Omega} \psi_i \psi_j d\Omega \\ M_{0,0} &= \frac{\sigma}{\Delta t_s} \int_{\Omega} \psi_0 \psi_0 d\Omega = \frac{\sigma h}{\Delta t_s} \int_0^1 \xi^2 d\xi = \frac{\sigma h}{\Delta t_s} \frac{\xi^3}{3} \Big|_0^1 = \frac{\sigma h}{3\Delta t_s} = M_{1,1} \\ M_{0,1} &= \frac{\sigma}{\Delta t_s} \int_{\Omega} \psi_0 \psi_1 d\Omega = \frac{\sigma h}{\Delta t_s} \int_0^1 \xi (1 - \xi) d\xi = \frac{\sigma h}{\Delta t_s} \left(\frac{\xi^2}{2} - \frac{\xi^3}{3}\right) \Big|_0^1 = \frac{\sigma h}{6\Delta t_s} = M_{1,0} \\ M &= \frac{\sigma h}{6\Delta t_s} \begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix} \end{split}$$

$$\begin{split} b_i &= \int_{\Omega} f_s \psi_i d\Omega + \frac{1}{\Delta t_s} \int_{\Omega} \sigma u_{q-1}^h \psi_i d\Omega \left| u_{q-1} h = \sum_{k=0}^1 q_{k,s-1} \psi_k \right| \\ b_0 &= fh \int_0^1 \xi d\xi + \frac{\sigma}{\Delta t_s} \sum_{k=0}^1 \int_{\Omega} q_{k,q-1} \psi_k \psi_0 d\Omega \\ &= fh \frac{\xi^2}{2} \Big|_0^1 + \frac{\sigma}{\Delta t_s} \Big[q_{0,s-1} \int_{\Omega} \psi_0 \psi_0 d\Omega + q_{1,s-1} \int_{\Omega} \psi_1 \psi_0 d\Omega \Big] \\ &= \frac{fh}{2} + \frac{\sigma}{\Delta t_s} \Big[q_{0,s-1} \int_{\Omega} \xi^2 d\xi + q_{1,s-1} \int_{\Omega} \xi (1-\xi) d\xi \Big] \\ &= \frac{fh}{2} + \frac{\sigma}{\Delta t_s} \Big[q_{0,s-1} \frac{\xi^3}{3} \Big|_0^1 + q_{1,s-1} \Big(\frac{\xi^2}{2} - \frac{\xi^3}{3} \Big) \Big|_0^1 \Big] \\ &= \frac{fh}{2} + \frac{\sigma}{\Delta t_s} \Big[\frac{1}{3} q_{0,s-1} + \frac{1}{6} q_{1,s-1} \Big] = \frac{fh}{2} + \frac{\sigma}{6\Delta t_s} \Big[2q_{0,s-1} + q_{1,s-1} \Big] \\ b_1 &= fh \int_0^1 (1-\xi) d\xi + \frac{\sigma}{\Delta t_s} \sum_{k=0}^1 \int_{\Omega} q_{k,q-1} \psi_0 \psi_1 d\Omega \\ &= fh \frac{\xi^2}{2} \Big|_0^1 + \frac{\sigma}{\Delta t_s} \Big[q_{0,s-1} \int_{\Omega} \psi_0 \psi_1 d\Omega + q_{1,s-1} \int_{\Omega} \psi_1 \psi_1 d\Omega \Big] \end{split}$$

$$\begin{split} &= \frac{fh}{2} + \frac{\sigma}{\Delta t_s} \left[q_{0,s-1} \int_{\Omega} \xi (1-\xi) d\xi + q_{1,s-1} \int_{\Omega} (1-\xi)^2 d\xi \right] \\ &= \frac{fh}{2} + \frac{\sigma}{\Delta t_s} \left[q_{0,s-1} \left(\frac{\xi^2}{2} - \frac{\xi^3}{3} \right) \Big|_0^1 + q_{1,s-1} (1-\xi)^3 \Big|_0^1 \right] \\ &= \frac{fh}{2} + \frac{\sigma}{\Delta t_s} \left[\frac{1}{6} q_{0,s-1} + \frac{1}{3} q_{1,s-1} \right] = \frac{fh}{2} + \frac{\sigma}{6\Delta t_s} \left[q_{0,s-1} + 2q_{1,s-1} \right] \\ b &= \begin{pmatrix} \frac{fh}{2} + \frac{\sigma}{6\Delta t_s} \left[2q_{0,s-1} + q_{1,s-1} \right] \\ \frac{fh}{2} + \frac{\sigma}{6\Delta t_s} \left[q_{0,s-1} + 2q_{1,s-1} \right] \end{pmatrix} \end{split}$$

4. Исследования

$$u(x,t) = t \cdot x$$

coef	число узлов	число итераций	норма вектора
0	11	1,890	20.54
1	21	1,903	20.54
2	41	1,907	20.54
3	81	1,908	20.54
4	161	1,909	20.54
5	321	1,909	20.54
6	641	1,909	20.54
7	1,281	1,909	20.54

$$u(x,t) = t \cdot 10 \cdot x$$

coef	число узлов	число итераций	норма вектора
0	11	1,890	205.39
1	21	1,903	205.39
2	41	1,907	205.39
3	81	1,908	205.39
4	161	1,909	205.39
5	321	1,909	205.39
6	641	1,909	205.39
7	1,281	1,909	205.39

$$u(x,t) = t \cdot x^2$$

coef	число узлов	число итераций	норма вектора
0	11	1,868	165.9
1	21	1,883	165.9
2	41	1,887	165.9
3	81	1,889	165.9
4	161	1,890	165.9
5	321	1,890	165.9
6	641	1,890	165.9
7	1,281	1,891	165.9

$$u(x,t) = t \cdot x^3$$

coef	число узлов	число итераций	норма вектора
0	11	1,847	1,460.2
1	21	1,862	$1,\!460.2$
2	41	1,868	1,460.2
3	81	1,870	1,460.2
4	161	1,871	$1,\!460.2$
5	321	1,871	1,460.2
6	641	1,872	$1,\!460.2$
7	1,281	1,872	1,460.2

$$u(x,t) = t \cdot \sin(x)$$

coef	число узлов	число итераций	норма вектора
0	11	1,639	2.49
1	21	1,629	2.38
2	41	1,626	2.35
3	81	1,625	2.35
4	161	1,625	2.35
5	321	1,625	2.35
6	641	1,626	2.35
7	1,281	1,626	2.35

$$u(x,t) = t \cdot eps(x)$$

coef	число узлов	число итераций	норма вектора
0	11	1,788	24,668.34
1	21	1,787	24,238.96
2	41	1,789	24,140.8
3	81	1,792	24,116.91
4	161	1,794	24,110.98
5	321	1,795	24,109.5
6	641	1,796	24,109.13
7	1,281	1,796	24,109.04

5. Выводы