

Lesson 8: Regularization, Optimization and Searching

CARSTEN EIE FRIGAARD

AUTUMN 2020

L08: Agenda

ML Algorithm and Model Selection: Three-way Holdout for Hyperparameter Tuning, and k-fold CV revisited.

Regularization and Optimization:

Regulizers,

Exercise: L09/regulizers.ipynb Optimizers (no-exe).

Searching:

Gridsearch,

Randomsearch,

Exercise: L09/gridsearch.ipynb

ML Algorithm Selection and Model Selection

Manually Choosing an Algorithm and Tuning a Model..

- algorithm selection.
- model selection.
- model evaluation.
- re-iteration and re-selection!

Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning

Selection Se

trade-off for chosesing k is discussed, and practical tips for the optimal choice of k are given based on empirical evidence. Different statistical tests for algorithm comparisons are presented, and strategies for dealing with multiple comparisons.

alternative methods for algorithm selection, such as the combined F-test 5x2 cross-

validation and nested cross-validation, are recommended for comparing machine

"Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning",

Sebastian Raschka, 2018.

learning algorithms when datasets are small

ML Algorithm Selection and Model Selection

Manually Choosing an Algorithm and Tuning a Model..

- algorithm selection:
 - choose an algo that 'fits' the problem, ...perhaps via searching??
- model selection:
 - looking for 'optimal' model capacity,
 - tuning model hyperparameters..
 - model weights regularizers..(for NN's)
 - gradient descent optimizers..(for NN's)
- model evaluation:
 - the performance metric score function,
 - how do you evaluate generalization performance?
 - holdout method (train-test split) and k-fold CV,
 - three-way split (train-validate-test split)...
- re-iteration and re-selection!

NOTE: Model selection: \sim selection the best capacity/hyperparameter for a given model—NOT choosing the ML algo/model itself!

Model Evaluation

Simple Holdout Method (Train-Test Split)..

Model Evaluation and Selection

Three-way Holdout for Hyperparameter Tuning (Train-Validate-Test Split)...

Model Evaluation

k-fold Cross-Validation Procedure, for k=5..

Model Evaluation and Selection

k-fold Cross-Validation for Hyperparameter Tuning (Somewhat Similar to

Regularization

Adding a Penalty to the Cost Function

For a linear regressor, our cost function was

$$J(\mathbf{X}, \mathbf{y}; \mathbf{w}) = ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 \propto \mathsf{MSE}(\mathbf{X}, \mathbf{y}; \mathbf{w})$$

But now enters a **penalty factor**, Ω , that scaled with α adds extra cost to J,

$$\tilde{J}(\mathbf{X}, \mathbf{y}; \mathbf{w}) = ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 + \alpha \Omega(\mathbf{w})$$

so this becomes **a-tug-of-war** between the two terms in \tilde{J} .

The effect of the added penalty is to:

- put a contraint on the norm of the weights, w, disallowing 'em to grow wildely,
- leading to reduced overfitting, disabling the model to learn the background noise in the data.

\mathcal{L}_2 Regularization

Ridge Penalization

Aka Weight Decay, aka Tikhonov regularization

$$\Omega(\mathbf{w}) = ||\mathbf{w}||_2^2 = \mathbf{w}^{\mathsf{T}}\mathbf{w}$$

$$\tilde{J}_{\text{ridge}}(\mathbf{X}, \mathbf{y}; \mathbf{w}) = J(\mathbf{X}, \mathbf{y}; \mathbf{w}) + \alpha \mathbf{w}^{\top} \mathbf{w}$$

with $\mathbf{w} = [w_1 \ w_2 \ \cdots \ w_n]^{\top}$ without the bias element w_0 in the regulizer term, Ω , and recalling the Euclidean norm

$$\mathcal{L}_2^2: ||\mathbf{x}||_2^2 = \mathbf{x}^{\top}\mathbf{x}$$

and give-or-take some additional 1/2 or 1/n constant, that we do not care about.

\mathcal{L}_2 Regularization

Ridge Penalization

A graphical view for a linear regressor

3D: ideal convex loss in $J - \mathbf{w}$ space.

2D: flat $w_2 - w_1$ view with some feature scaling.

The tug-of-war: what happens with $\tilde{\mathbf{w}}$, if \mathbf{w}^* is far from the origin $[w_1, w_2] = (0, 0)$?

\mathcal{L}_1 Regularization

Lasso penalization

Now, just replace the \mathcal{L}_2 with \mathcal{L}_1 and we have the Lasso regularizer

$$\Omega(\mathbf{w}) = ||\mathbf{w}||_1$$

$$\tilde{J}_{\mathrm{lasso}}(\mathbf{X},\mathbf{y};\mathbf{w}) = J(\mathbf{X},\mathbf{y};\mathbf{w}) + \alpha ||\mathbf{w}||_1$$

with the Manhattan norm

$$\mathcal{L}_1: ||\mathbf{x}||_1 = \sum_{i=1}^n \mathsf{abs}(x_i)$$

and the \mathcal{L}_1 penalty tends to drive weights to zero:

- automatic feature selection.
- outputs a sparce model,
- i.e few nonzero w's.

\mathcal{L}_1 and \mathcal{L}_2 Regularization

Elastic-net Penalization

And finally a combination of the two: an Elastic-net regularizer

$$\Omega(\mathbf{w}) = \beta ||\mathbf{w}||_1 + (1 - \beta)||\mathbf{w}||_2^2$$

$$\tilde{J}_{\text{elastic}}(\mathbf{X}, \mathbf{y}; \mathbf{w}) = J(\mathbf{X}, \mathbf{y}; \mathbf{w}) + \alpha \left(\beta ||\mathbf{w}||_1 + (1 - \beta)||\mathbf{w}||_2^2\right)$$

Regularization selection: via searching..

Optimizers

Momentum Optimization

Normal GD algo

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} J$$

but now with added (physical) momentum

$$\begin{array}{c} \mathbf{m} \leftarrow \beta \mathbf{m} - \eta \nabla_{\mathbf{w}} J \\ \mathbf{w} \leftarrow \mathbf{w} + \mathbf{m} \end{array}$$

Optimizer selection: via searching..

Optimizers

Or solvers in Scikit-learn..

sklearn.neural_network.MLPRegressor

class sklearn.neural network.MLPRegressor(hidden layer sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch size='auto', learning rate='constant', learning rate init=0.001, power t=0.5, max iter=200, shuffle=True, random state=None, tol=0.0001, verbose=False, warm start=False, momentum=0.9, nesterovs momentum=True, early stopping=False, validation fraction=0.1, beta 1=0.9, beta 2=0.999, epsilon=1e-08, n iter no change=10. max fun=15000)

Multi-layer Perceptron regressor.

This model optimizes the squared-loss using LBFGS or stochastic gradient descent.

New in version 0.18.

Parameters:

hidden layer sizes: tuple, length = n layers - 2, default=(100,)

The ith element represents the number of neurons in the ith hidden layer.

solver: {'lbfgs', 'sqd', 'adam'}, default='adam'

The solver for weight optimization.

- . 'lbfgs' is an optimizer in the family of guasi-Newton methods.
- · 'sad' refers to stochastic gradient descent.
- 'adam' refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba

Note: The default solver 'adam' works pretty well on relatively large datasets (with thousands of training samples or more) in terms of both training time and validation score. For small datasets, however, 'lbfgs' can converge faster and perform better.

activation: {'identity', 'logistic', 'tanh', 'relu'}, default='relu' Activation function for the hidden laver.

Optimizers

Or optimizers in Keras..

Search Keras documentation...

» Keras API reference / Optimizers

Available optimizers

- SGD
- RMSprop
- Adam
- Adadelta
- Adagrad
- Adamax
- Nadam
- Ftrl

Optimizers

Usage with compile() & fit()

osage with complice() a rice()

An optimizer is one of the two arguments required for compiling a Keras model:

```
from tensorflow import keras
from tensorflow.keras import layers
```

model.add(layers.Activation('softmax'))

model = keras.Sequential()
model.add(layers.Dense(64, kernel initializer='uniform', input shape=(10,)))

opt = keras.optimizers.Adam(learning rate=0.01)

model.compile(loss='categorical_crossentropy', optimizer=opt)

You can either instantiate an optimizer before passing it to model.compile(), as in the above example, or you can pass it by its string identifier. In the latter case, the default parameters for the optimizer will be used.

pass optimizer by name: default parameters will be used model.compile(loss='categorical_crossentropy', optimizer='adam')

Getting started Developer guides

About Keras

Keras API reference

Models API

Layers API

Callbacks API

Data preprocessing

Optimizers Metrics

Losses

Built-in small datasets

Keras Applications

Utilities

Code examples

Why choose Keras?

Optimizers

scheduling

fit()

□ Usage with compile

Usage in a custom to

▶ Learning rate decay

Available optimizers

□ Core Optimizer API

apply gradients m

get weights metho

set weights metho

weights property

ML Models (or ML algorithms)

Models encountered so far

Some classifiers and regressors..

sklearn.neighbors.KNeighborsRegressor sklearn.linear_model.LinearRegression sklearn.linear_model.SGDClassifier sklearn.linear_model.SGDRegressor

Perhaps...

sklearn.naive_bayes.GaussianNB
sklearn.naive_bayes.MultinomialNB

Not really or not in depth

sklearn.linear_model.Perceptron sklearn.linear_model.LogisticRegression sklearn.svm.SVC sklearn.svm.SVR sklearn.neural_network.MLPClassifier sklearn.neural_network.MLPRegressor

Or even more exotic models like..

- superviced ensemble: AdaBoost, Bagging, DecisionTree, RandomForest,
- semi-supervised: ??
- unsupervised: K-means, manifolds, restricted Boltzmann machines,...
- clustering: K-means

ML Algorithm + Model Selection via Searching

What ML algorithm to choose?

- manual:
 - algorithm characteristics, \mathcal{O} complexity, etc. browsing through Scikit-learn documentation, ...and also based on data assumptions.
- semi-automatic:

brute-force model search, and fun with python!

```
models = {
  SVC(gamma="scale"),
  SGDClassifier(tol=1e-3, eta0=0.1),
  GaussianNB()
                                                prints..
                                                  Gaussian NB:
                                                                 p=1.00
for i in models:
                                                  SGDClassifier:
                                                                 p = 0.93
    i.fit(X_train, y_train)
                                                                 p = 0.98
                                                  SVC:
    y_pred_test = i.predict(X_test)
    p = precision_score(y_test, y_pred_test, average='micro')
    print(f'{type(i).__name__:13s}: precision={p:0.2f}')
NOTE: Python set = \{a, b\}
     Python dictionary= \{a:x, b:y\}
```

Model Selection via Grid Search

The hyperparamter-set for SGD linear regressor

```
class sklearn.linear_model.SGDRegressor(
 loss ='squared_loss', penalty
                                   ='12'.
 alpha =0.0001,
                        ll ratio
                                   =0.15,
 tol =None,
                        shuffle
                                   =True,
 verbose = 0.
                        epsilon
                                  =0.1.
                        power_t = 0.25,
 eta0 = 0.01.
 n_iter_no_change=5,
                        warm_start
                                  =False.
 fit_intercept =True,
                        max iter
                                   =None.
 average
             =False,
                       n iter
                                   =None
 random_state =None,
                        learning_rate='invscaling',
 early_stopping =False,
                        validation_fraction=0.1
```

Search best hyperparameters in a (smaller) set, say

```
model = SGDClassifier()
tuning_parameters = {
    'alpha': [ 0.001, 0.01, 0.1],
    'max_iter': [1, 10, 100, 100],
    'learning_rate':('constant','optimal','invscaling','adaptive')
}
...
grid_tuned = GridSearchCV(model, tuning_parameters, ..
```

Model Selection via Grid Search

How to select 'best' set of hyperparameter—using bute force?

Gridsearch seen in 3D for the two hyperspace dimensions:

- ▶ $alpha \in [1, 2, 3, ..]$
- ▶ $max_iter \in [1, 2, 3, ..]$

(NOTE: linear range for this plot only, should be 1, 10, 100 or similar.)

- \blacktriangleright why score and not J on z-axis?
- and what if there are many hyperparameters and many combinations? → Zzzzzzz!

Model Selection via Randomized Search

How to select 'best' set of hyperparameters—faster than brute force?

Replace GridSearchCV() with

RandomizedSearchCV(n_iter=100,...)

- faster, but will not yield the (sub) optimal score maximum.
- ...but does it matter in a huge hyperparameter search-space?