МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Домашнее задание №4 «Исследование свойств непрерывных и дискретных объектов управления»

по дисциплине Математические основы теории систем

Вариант 5

Выполнил: Студент группы

R33362 Осинина Т. С.

Преподаватель: Слита Ольга

Валерьевна

Данные

Передаточная функция «вход-выход»: $W(s)=\frac{b_1s+b_0}{(a_4s+a_3)(a_2s^2+a_1s+a_0)}$, где $b_1=3$, $b_0=0.4$, $a_4=2$, $a_3=0.6$, $a_2=0$, $a_1=6$, $a_0=10$. Интервал дискретности $\Delta t=0.05$ с.

Метод перехода к дискретной системе модели «вход-состояние-выход» — Использование интегральной модели «вход-состояние-выход» непрерывного объекта управления

Задание №1

Записать ОУ в форме «вход-состояние-выход».

Решение

Сначала подставим коэффициенты, тогда передаточная функция «вход-выход» равна:

$$W(s) = \frac{3s + 0.4}{(2s + 0.6)(6s + 10)} = \frac{3s + 0.4}{(2s + 0.6)(6s + 10)}.$$

Приведем передаточную функцию к канонической форме управляемости.

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$

Где x — вектор состояния, u — входной сигнал, y — выходной сигнал, A, B, C — матрицы, которые можно получить из передаточной функции.

$$W(s) = \frac{3s + 0.4}{(2s + 0.6)(6s + 10)} = \frac{3s + 0.4}{12s^2 + 23.6s + 6} = \frac{\frac{3}{12}s + \frac{0.4}{12}}{s^2 + \frac{23.6}{12}s + \frac{6}{12}}$$
$$= \frac{0.25s + 0.033}{s^2 + 1.97s + 0.5}$$
$$A = \begin{bmatrix} 0 & 1 \\ -0.5 & -1.97 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0.25 & 0.033 \end{bmatrix}$$
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.5 & -1.97 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0.25 & 0.033 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Задание №2

Проверить свойства управляемости и наблюдаемости непрерывного ОУ.

Решение

Чтобы проверить управляемости и наблюдаемости непрерывного ОУ, нужно построить матрицы управляемости и наблюдаемости.

$$U=[B \quad A\cdot B]=egin{bmatrix} 0 & 1 \ 1 & -1.97 \end{bmatrix}$$
 $rank(U)=2=n\Rightarrow$ система полностью управляема

$$V = \begin{bmatrix} C \\ C \cdot A \end{bmatrix} = \begin{bmatrix} 0.25 & 0.033 \\ -0.0165 & 0.185 \end{bmatrix}$$
 $rank(V) = 2 = n \Rightarrow$ система полностью наблюдаема

Задание №3

Используя заданное значение интервала дискретности перейти к дискретному ОУ методом, указанном в задании.

Решение

Построим матрицы дискретного ОУ, используя интегральную модель исходного непрерывного ОУ.

$$x(k+1) = \bar{A}x(k) + \bar{B}u(k),$$

где под (k+1) и k понимается следующее представление моментов времени

$$t + \Delta t = (k+1)\Delta t$$
 $t = k\Delta t$

$$x[(k+1)\Delta t] = \bar{A}x[(k)\Delta t] + \bar{B}u[(k)\Delta t], \qquad y(k) = Cx(k),$$
 где $\bar{A} = e^{A\Delta t}, \bar{B} = (e^{A\Delta t} - I)A^{-1}B, \bar{C} = C.$

Вычислим $A\Delta t$.

$$A \cdot \Delta t = \begin{bmatrix} 0 & 1 \\ -0.5 & -1.97 \end{bmatrix} \cdot 0.05 = \begin{bmatrix} 0 & 0.05 \\ -0.025 & -0.0985 \end{bmatrix}$$
$$\bar{A} = e^{A\Delta t} = \begin{bmatrix} 1 & 1.05 \\ 0.98 & 0.91 \end{bmatrix}$$

$$\bar{B} = (e^{A\Delta t} - I)A^{-1}B = \begin{bmatrix} 0 \\ -1.96 \end{bmatrix}$$

$$x[(k+1)\Delta t] = \bar{A}x[(k)\Delta t] + \bar{B}u[(k)\Delta t], \qquad y(k) = Cx(k)$$

$$x[(k+1)\Delta t] = \begin{bmatrix} 1 & 1.05 \\ 0.98 & 0.91 \end{bmatrix} x[(k)\Delta t] + \begin{bmatrix} 0 \\ -1.96 \end{bmatrix} u[(k)\Delta t],$$

$$y(k) = \begin{bmatrix} 0.25 & 0.033 \end{bmatrix} x(k)$$

Задание №4

Составить схему моделирования непрерывного и дискретного ОУ в программе Simulink. Осуществить моделирование переходных процессов обоих ОУ. Результаты моделирования соответствующих переменных состояния совместить на одном графике.

Решение

Рисунок 1. Схема моделирования

Рисунок 2. Моделирование переходных процессов непрерывного ОУ

Рисунок 3. Моделирование переходных процессов дискретного ОУ

Рисунок 4. Моделирование переходных процессов обоих ОУ

Задание №5

Проверить свойства управляемости и наблюдаемости дискретного ОУ

Решение

Чтобы проверить управляемости и наблюдаемости дискретного ОУ, нужно построить матрицы управляемости и наблюдаемости.

$$U = \begin{bmatrix} \bar{B} & \bar{A} \cdot \bar{B} \end{bmatrix} = \begin{bmatrix} 0 & -2.05 \\ -1.96 & -1.7836 \end{bmatrix}$$

 $rank(U) = 2 = n \Rightarrow$ система полностью управляема

$$V = \begin{bmatrix} \overline{\mathsf{C}} \\ \overline{\mathsf{C}} \cdot \overline{\mathsf{A}} \end{bmatrix} = \begin{bmatrix} 0.25 & 0.033 \\ 0.2823 & 0.2925 \end{bmatrix}$$

 $rank(V) = 2 = n \Rightarrow$ система полностью наблюдаема

Код программы

```
%Данные
b 1 = 3
b 0 = 0.4
a 4 = 2
a_3 = 0.6
a_2 = 0
a_1 = 6
a_0 = 10
delta_t = 0.05
%Задание №1
A = [0 1;
    -0.5 -1.97]
B = [0;1]
C = [0.25 \ 0.033]
%Задание №2
U = [B A*B]
rank(U)
V = [C; C*A]
rank(V)
%Задание №3
e At = [1 1.05;
    0.98 0.91]
e_at_I =e_At-eye(2)
B_{-} = e_{at_{-}}I*inv(A)*B
C_{-} = C
%Задание № 5
U_{-} = [B_{-} e_{A}t*B_{-}]
rank(U_)
V_{-} = [C;C*e_At]
rank(V)
```

Выводы

В данной лабораторной работе было проведено исследование свойств непрерывных и дискретных объектов управления. Повторили перевод системы «вход-выход» в систему «вход-состояние-выход». Построили матрицы дискретного ОУ, используя интегральную модель исходного непрерывного ОУ. Системы полностью управляемы и наблюдаемы. Построили графики моделирования непрерывной и дискретной системы, по графикам можно сделать вывод, что непрерывная система устойчива, дискретная нет, что не противоречит системам, так как мы не проводили анализ системы на устойчивость.