Formula Sheet

• Sample mean and variance:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \quad s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

• Median:

$$(0.5)(n+1)$$

• Addition rule:

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

• Multiplication rule:

$$P(E_1 \cap E_2) = P(E_1) \times P(E_2|E_1)$$

• Conditional probability:

$$P(E_2|E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)}$$

• Rules of total probability:

$$P(E_1) = P(E_2) \times P(E_1|E_2) + P(E_2^C) \times P(E_1|E_2^C)$$

• Expected value:

$$\mu_Y = \sum y_i P(Y = y_i)$$

• Variance:

$$\sigma_Y^2 = \sum (y_i - \mu_Y)^2 P(Y = y_i)$$

• Linear combinations of random variables:

$$\mu_{aX+b} = a\mu_X + b, \quad \sigma_{aX+b}^2 = a^2 \sigma_X^2$$

• Binomial B(n, p):

*

$$P(Y = j) = \binom{n}{j} p^j (1 - p)^{n-j},$$

where

$$\binom{n}{j} = \frac{n!}{j!(n-j)!}$$
 and $n! = n(n-1)\cdots 1$

*

$$\mu_Y = np, \quad \sigma_Y^2 = np(1-p)$$

• Standardization:

$$Z = \frac{1}{\sigma_Y} (Y - \mu_Y)$$

• Sampling distribution of the sample mean:

$$\mu_{\bar{Y}} = \mu, \sigma_{\bar{Y}} = \frac{\sigma}{\sqrt{n}}$$

• Normal approximation: $Y \sim B(n, p)$ can be approximated by N(np, np(1-p))

• Continuity correction: P(Y = n) = P(n - 0.5 < Y < n + 0.5)

• $1 - \alpha$ confidence interval for μ :

* Two-sided: $\bar{Y} \pm t_{n-1}(\alpha/2) \times SE_{\bar{Y}}$

* Upper one-sided: $(-\infty, \bar{Y} + t_{n-1}(\alpha) \times SE_{\bar{Y}})$

* Lower one-sided: $(\bar{Y} - t_{n-1}(\alpha) \times SE_{\bar{Y}}, \infty)$

where

$$SE_{\bar{Y}} = \frac{s}{\sqrt{n}}$$

• $1 - \alpha$ confidence interval for $\mu_1 - \mu_2$:

* Two-sided: $(\bar{Y}_1 - \bar{Y}_2) \pm t_{\nu}(\alpha/2) \times SE_{\bar{Y}_1 - \bar{Y}_2}$

* Upper one-sided: $(-\infty, (\bar{Y}_1 - \bar{Y}_2) + t_{\nu}(\alpha) \times SE_{\bar{Y}_1 - \bar{Y}_2})$

* Lower one-sided: $((\bar{Y}_1 - \bar{Y}_2) - t_{\nu}(\alpha) \times SE_{\bar{Y}_1 - \bar{Y}_2}, \infty)$

where the degrees of freedom ν will be given and

$$SE_{\bar{Y}_1 - \bar{Y}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

 \bullet One-sample t test:

H_0	H_A	Test statistic	Rejection region	<i>p</i> -value
$\mu = c$	$\mu \neq c$	_ 77	$ T > t_{n-1}(\alpha/2)$	$2 \times P(t_{n-1} > T)$
$\mu \ge c$	$\mu < c$	$T = \frac{\bar{Y} - c}{SE_{\bar{y}}} \stackrel{H_0}{\sim} t_{n-1}$	$T < -t_{n-1}(\alpha)$	$P(t_{n-1} < T)$
$\mu \leq c$	$\mu > c$	•	$T > t_{n-1}(\alpha)$	$P(t_{n-1} > T)$

 \bullet Two-sample t test:

H_0	H_A	Test statistic	Rejection region	<i>p</i> -value
$\mu_1 - \mu_2 = c$	$\mu_1 - \mu_2 \neq c$	$T = \frac{(\bar{Y}_1 - \bar{Y}_2) - c}{\mathrm{SE}_{\bar{Y}_1 - \bar{Y}_2}} \stackrel{H_0}{\sim} t_{\nu}$ with	$ T > t_{\nu}(\alpha/2)$	$2 \times P(t_{\nu} > T)$
$\mu_1 - \mu_2 \ge c$	$\mu_1 - \mu_2 < c$	$\frac{\text{SE}_{\bar{Y}_1 - \bar{Y}_2}}{(\text{SE}_1^2 + \text{SE}_2^2)^2}$	$T < -t_{\nu}(\alpha)$	$P(t_{\nu} < T)$
$\mu_1 - \mu_2 \le c$	$\mu_1 - \mu_2 > c$	$\nu = \frac{(SE_1 + SE_2)}{SE_1^4/(n_1 - 1) + SE_2^4/(n_2 - 1)}$	$T > t_{\nu}(\alpha)$	$P(t_{\nu} > T)$

• Comparison of paired samples: calculate the difference between each pair of observations and then perform inference (confidence interval and t test) on these differences as if it were a one-sample analysis.

• 95% confidence interval for p:

* Two-sided: $\tilde{p} \pm 1.96 \times SE_{\tilde{p}}$

* Upper one-sided: $(0, \tilde{p} + 1.645 \times SE_{\tilde{p}})$

* Lower one-sided: $(\tilde{p} - 1.645 \times SE_{\tilde{p}}, 1)$

where

$$\tilde{p} = \frac{Y+2}{n+4}, \quad SE_{\tilde{p}} = \sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}$$

• 95% confidence interval for $p_1 - p_2$:

$$(\tilde{p}_1 - \tilde{p}_2) \pm 1.96 \times SE_{\tilde{p}_1 - \tilde{p}_2}$$

where

$$\tilde{p}_1 = \frac{Y_1 + 1}{n_1 + 2}, \quad \tilde{p}_2 = \frac{Y_2 + 1}{n_2 + 2}, \quad SE_{\tilde{p}_1 - \tilde{p}_2} = \sqrt{\frac{\tilde{p}_1(1 - \tilde{p}_1)}{n_1 + 2} + \frac{\tilde{p}_2(1 - \tilde{p}_2)}{n_2 + 2}}$$

• Chi-square goodness-of-fit test:

$$T = \sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i} \stackrel{H_0}{\sim} \chi_{k-1}^2,$$

 H_0 is rejected at the α level of significance if

p-value =
$$P(\chi_{k-1}^2 > T) < \alpha \text{ or } T > \chi_{k-1}^2(\alpha)$$

• Chi-square test of independence:

$$T = \sum_{i=1}^{r \times k} \frac{(o_i - e_i)^2}{e_i} \stackrel{H_0}{\sim} \chi^2_{(r-1)(k-1)},$$

 H_0 is rejected at the α level of significance if

$$p\text{-value }=P(\chi^2_{(r-1)(k-1)}>T)<\alpha \text{ or } T>\chi^2_{(r-1)(k-1)}(\alpha)$$

• ANOVA:

Source	df	SS (Sum of Squares)	MS (Mean Square)
Between groups	I-1	$\sum_{i=1}^{I} n_i (\bar{Y}_i - \bar{Y})^2$	SS/df
Within groups	n-I	$\sum_{i=1}^{I} (n_i - 1) s_i^2$	SS/df
Total	n-1	$\sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2$	

where

$$\bar{Y} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{n_i} Y_{ij}}{n} = \frac{\sum_{i=1}^{I} n_i \bar{Y}_i}{n}, \quad n = \sum_{i=1}^{I} n_i$$

 \bullet F test:

$$T = \frac{\text{MSB}}{\text{MSW}} \stackrel{H_0}{\sim} F_{I-1,n-I},$$

 H_0 is rejected at the α level of significance if

$$p$$
-value = $P(F_{I-1,n-I} > T) < \alpha \text{ or } T > F_{I-1,n-I}(\alpha)$

• The Bonferonni-adjusted $1 - \alpha$ confidence interval for $\mu_a - \mu_b$ is

$$(\bar{Y}_a - \bar{Y}_b) \pm t_{n-I}(\alpha/(2k)) \times SE_{\bar{Y}_a - \bar{Y}_b},$$

where

$$SE_{\bar{Y}_a - \bar{Y}_b} = \sqrt{MSW \times \left(\frac{1}{n_a} + \frac{1}{n_b}\right)}$$

• Correlation coefficient:

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right)$$

• Fitted regression line:

$$\hat{Y} = b_0 + b_1 X$$

where

$$b_1 = r \frac{s_Y}{s_X}, \quad b_0 = \bar{Y} - b_1 \bar{X}$$

- * Residuals: $e_i = Y_i \hat{Y}_i$ where $\hat{Y}_i = b_0 + b_1 X_i$
- * Error sum of suares: SSE = $\sum_{i=1}^n e_i^2$
- * Residual standard deviation: $s_e = \sqrt{\frac{\text{SSE}}{n-2}}$
- Coefficient of determination:

$$r^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2} - \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = 1 - \frac{\text{SSE}}{(n-1)s_{Y}^{2}}$$

• $1 - \alpha$ confidence interval for β_1 :

$$b_1 \pm t_{n-2}(\alpha/2) \times SE_{b_1},$$

where

$$SE_{b_1} = \frac{s_e}{s_X \sqrt{n-1}}$$

• Test of $H_0: \beta_1 = 0$ or $H_0: \rho = 0$:

$$T = \frac{b_1 - 0}{SE_{b_1}} = r\sqrt{\frac{n - 2}{1 - r^2}}$$

 H_0 is rejected at the α level of significance if

p-value =
$$2 \times P(t_{n-2} > |T|) < \alpha \text{ or } |T| > t_{n-2}(\alpha/2)$$