Sequence to Sequence Models

Gustavo Aguilar

Outline

- Quick overview
- Encoder-decoder framework
- Attention mechanisms
- **Applications**
- Other attention methods
- Questions

- **Document classification**
- Sequence labeling
- Language modeling

$$P_{\theta}(y \mid x_1, x_2, \ldots, x_n)$$

- Document classification
- Sequence labeling
- Language modeling

$$P_{\theta}(y_1, y_2, \dots, y_n \mid x_1, x_2, \dots, x_n)$$

- Document classification
- Sequence labeling
- Language modeling

$$P_{\theta}(x_i \mid x_1, x_2, \dots, x_{i-1})$$

But what about these cases?

- Input length ≠ output length
- Input and output not aligned
- Unknown output length

For example:

- Translating languages
- Answering questions
- Summarizing passages
- Chatting with a bot

Sequence to sequence (seq2seq) models

- The encoder
 - o process the input sequence
 - o returns a single latent vector z
- The decoder
 - takes the latent vector z
 - generates the output sequence

$$P_{\theta}(z \mid x_1, x_2, \dots, x_n)$$
 $P_{\phi}(y_1, y_2, \dots, y_m \mid z)$

"Sequence to Sequence Learning with Neural Networks" (2014) Ilya Sutskever, Oriol Vinyals, Quoc V. Le

A closer look to seq2seq models

- **English:** I like the NLP class
- Spanish: Me gusta la clase de NLP

 $P_{\theta}(z \mid x_1, x_2, \ldots, x_n)$

 $P_{\phi}(y_i \mid z, y_{< i})$

Any potential problem with this model?

- Compressing very long sequences into z
- The decoder struggles finding the relevant parts from the input only using z
- Hard to recover when the initial decoded tokens are wrong

Any idea to handle those issues?

- When decoding, pay attention to important parts of the input (not only z)
 - E.g., to translate to the word "clase", focus on the word "class"
 - Use probabilities to weight the words

Attention steps:

- 1. Get the **encoder outputs** and the **decoder hidden vector**
- 2. Define a **scoring function** that uses both variables
- 3. Convert the scores into **probabilities**
- 4. Weight the encoder outputs with the resulting probabilities
- 5. Sum across the weighted outputs
- 6. Combine the **weighted sum** with the **decoder hidden vector**

Get the context vectors

- Get the context vectors
- Get the query vector

$$h = [h_1, h_2, ..., h_n]$$

 $q_4 = \text{Decoder}_{\phi}(input_4, state_3)$

- Get the context vectors
- Get the query vector
- Define a score function

$$h = [h_1, h_2, ..., h_n]$$

 $q_4 = \text{Decoder}_{\phi}(input_4, state_3)$
 $u_i = v^{\intercal}tanh(W[h_i + q_i])$

- Get the context vectors
- Get the query vector
- Define a score function
- Convert scores into probabilities

$$h = [h_1, h_2, ..., h_n]$$

$$q_4 = \text{Decoder}_{\phi}(input_4, state_3)$$

$$u_i = v^{\mathsf{T}}tanh(W[h_i + q_j])$$

$$\alpha_i = \frac{exp(u_i)}{\sum_{k}^{N} exp(u_k)}$$

- Get the context vectors
- Get the query vector
- Define a score function
- Convert scores into probabilities
- Do a weighted sum over context

$$h = [h_1, h_2, ..., h_n]$$

$$q_4 = \text{Decoder}_{\phi}(input_4, state_3)$$

$$u_i = v^{\mathsf{T}}tanh(W[h_i + q_j])$$

$$\alpha_i = \frac{exp(u_i)}{\sum_k^N exp(u_k)}$$

$$c = \sum_k^N \alpha_i h_i$$

- Get the context vectors
- Get the query vector
- Define a score function
- Convert scores into probabilities
- Do a weighted sum over context
- Combine it with the decoder output

$$h = [h_1, h_2, \dots, h_n]$$

$$q_4 = \text{Decoder}_{\phi}(input_4, state_3)$$

$$u_i = v^{\mathsf{T}}tanh(W[h_i + q_j])$$

$$\alpha_i = \frac{exp(u_i)}{\sum_k^N exp(u_k)}$$

$$c = \sum_k^N \alpha_i h_i$$

Bahdanau's (additive) attention:

$$e_{ij} = v_a^{\top} \tanh\left(W_a s_{i-1} + U_a h_j\right)$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

Figure 1: The graphical illustration of the proposed model trying to generate the t-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

"Neural Machine Translation by Jointly Learning to Align and Translate" (2015)

Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio

Bahdanau's (additive) attention:

"Neural Machine Translation by Jointly Learning to Align and Translate" (2015)

Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio

Luong's (multiplicative) attention:

$$\operatorname{score}(m{h}_t, ar{m{h}}_s) = egin{cases} m{h}_t^ op m{h}_s & dot \ m{h}_t^ op m{W}_{m{a}} ar{m{h}}_s & general \ m{v}_a^ op anh \left(m{W}_{m{a}}[m{h}_t; ar{m{h}}_s]
ight) & concat \end{cases}$$

$$h_t^{\mathsf{T}} \cdot h_s = |h_t^{\mathsf{T}}| |h_s| cos\theta$$

Figure 2: Global attentional model – at each time step t, the model infers a *variable-length* alignment weight vector \boldsymbol{a}_t based on the current target state \boldsymbol{h}_t and all source states $\bar{\boldsymbol{h}}_s$. A global context vector \boldsymbol{c}_t is then computed as the weighted average, according to \boldsymbol{a}_t , over all the source states.

Luong's (multiplicative) attention:

$$\operatorname{score}(m{h}_t, ar{m{h}}_s) = egin{cases} m{h}_t^ op ar{m{h}}_s & dot \\ m{h}_t^ op m{W}_a ar{m{h}}_s & general \\ m{v}_a^ op anh \left(m{W}_a [m{h}_t; ar{m{h}}_s]
ight) & concat \end{cases}$$

Allows us to have different embedding spaces

Figure 2: Global attentional model – at each time step t, the model infers a *variable-length* alignment weight vector \boldsymbol{a}_t based on the current target state \boldsymbol{h}_t and all source states $\bar{\boldsymbol{h}}_s$. A global context vector \boldsymbol{c}_t is then computed as the weighted average, according to \boldsymbol{a}_t , over all the source states.

Luong's (multiplicative) attention:

$$\operatorname{score}(m{h}_t, ar{m{h}}_s) = egin{cases} m{h}_t^ op m{h}_s & dot \ m{h}_t^ op m{W}_a ar{m{h}}_s & general \ m{v}_a^ op anh \left(m{W}_a [m{h}_t; ar{m{h}}_s]
ight) & concat \end{cases}$$

Is it the same as in Bahdanau's?

$$e_{ij} = v_a^{\top} \tanh \left(W_a s_{i-1} + U_a h_j \right)$$

Figure 2: Global attentional model – at each time step t, the model infers a *variable-length* alignment weight vector \boldsymbol{a}_t based on the current target state \boldsymbol{h}_t and all source states $\bar{\boldsymbol{h}}_s$. A global context vector \boldsymbol{c}_t is then computed as the weighted average, according to \boldsymbol{a}_t , over all the source states.

Luong's (multiplicative) attention:

English-German translations

src	Orlando Bloom and Miranda Kerr still love each other
ref	Orlando Bloom und Miranda Kerr lieben sich noch immer
best	Orlando Bloom und Miranda Kerr lieben einander noch immer .
base	Orlando Bloom und Lucas Miranda lieben einander noch immer.

Successful applications of seq2seq

"Show, Attend and Tell: Neural Image Caption Generation with Visual Attention" (2016) K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio

Other attention methods

Self-attention from the Transformer architecture

- Parallelization
- Faster and more effective training
- Self-attention
 - a cartesian product
 - for every word, we "attend" the entire sentence

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research

Jakob Uszkoreit* Google Research nikip@google.com usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Self-attention

Scaled dot-product attention:

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Where: $Q = W_Q q_{\leq t}$

$$K = W_K \bar{h}_s$$

$$V = W_V \bar{h}_s$$

"Attention Is All You Need" (2017)

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin

References

Papers:

- "Sequence to Sequence Learning with Neural Networks" (2014)
- "Neural Machine Translation by Jointly Learning to Align and Translate" (2015)
- "Effective Approaches to Attention-based Neural Machine Translation" (2015)
- "Attention Is All You Need" (2017)
- "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention" (2016)

Books:

Chapter 10. Encoder-Decoder Models, Attention, and Contextual Embeddings

Thank you!

Any question?

Practical Session

Implementation of seq2seq models (including attention):

• Sequence to Sequence Models (COSC 6336).ipynb

