08 - Approximate Bayesian inference and Monte-Carlo - 02

Master in Foundations of Data Science
Bayesian Statistics and Probabilistic Programming
Fall 2018-2019

Josep Fortiana

Wednesday, November 14, 2018

Universitat de Barcelona

08 - Monte-Carlo - 02

Monte-Carlo computation of expectations

Rejection sampling

Importance sampling

SIR algorithm (Sampling Importance Resampling)

08 - Monte-Carlo - 02

Monte-Carlo computation of expectations

Rejection sampling

Importance sampling

SIR algorithm (Sampling Importance Resampling)

One-dimensional function

For a function g(X) of a r.v. X, with pdf f(x),

$$\gamma \equiv \mathsf{E}[g(X)] = \int g(x) \cdot f(x) \, dx.$$

Generate $x_1, \ldots, x_n \sim f$. The average:

$$\overline{g}_n = \frac{1}{n} \sum_{i=1}^n g(x_i),$$

approximates γ .

One-dimensional function

Under usual conditions the sequence $\{\overline{q}_n\}$ is convergent to γ .

The simulation standard error of the estimate is estimated by:

$$\operatorname{se}_{\overline{g}_n} = \sqrt{\frac{\sum_{i=1}^n (g(x_i) - \overline{g}_n)}{(n-1) n}}.$$

For a *d*-dimensional function

For a function g(X) of a random vector $X = (X_1, \dots, X_d)$, where:

$$g: \mathbb{R}^d \longrightarrow \mathbb{R}$$
, and $\mathsf{E}[|g(\mathbf{X})|] < +\infty$,

generate $X_1, \ldots, X_n \sim X$, evaluate $q_i = q(X_i)$. 1 < i < n. and set:

$$\overline{g}_n = \frac{g_1 + \cdots + g_n}{n}.$$

Properties

 \overline{g}_n is a good estimator of $\gamma \equiv E[g(X)]$, as it is:

Unbiased:

$$\mathsf{E}[\overline{g}_n] = \frac{1}{n} \sum_{i=1}^n \mathsf{E}[g(\boldsymbol{X}_i)] = \frac{n\gamma}{n} = \gamma.$$

• Consistent: SLLN $\Longrightarrow \overline{g}_n \xrightarrow{a.s.} \gamma$.

Example: The quadrature of a function

The Monte Carlo integral (quadrature) of a function $a: \mathbb{R}^2 \to \mathbb{R}$:

$$\theta := \int_0^1 \int_0^1 g(x_1, x_2) dx_1 dx_2.$$

on a rectangle $[0,1] \times [0,1]$ is a particular case of this procedure.

Indeed, $\theta = E[g(X)]$, where $X := (U_1, U_2)$, U_1 and U_2 are i.i.d. r.v. $\sim \text{Unif}(0, 1)$.

Pseudocode for the quadrature of a function

From i = 1 to n.

- 1. Generate independent $U_1 \sim \text{Unif}(0,1)$ and $U_2 \sim \text{Unif}(0, 1)$.
- 2. Set $q_i = q(U_1, U_2)$.

Finally:

$$\widehat{\theta}_n = \frac{g_1 + \dots + g_n}{n}.$$

Error estimation

Monte Carlo integration of functions has an error of order $n^{-1/2}$, where n is the number of samples, independently from dimension.

Usually determinist numerical integration methods have error rates of order $n^{-2/d}$, where d is the integral dimension and n is the number of points in the partition.

Thus, Monte Carlo is a competitive method for large-dimensional problems.

Curse of dimensionality

A sample of uniform points on $[0, 1]^d$, with a large d, does not fill efficiently the whole d-cube.

08 - Monte-Carlo - 02

Monte-Carlo computation of expectations

Rejection sampling

Importance sampling

SIR algorithm (Sampling Importance Resampling)

A candidate function, given the target pdf g

We seek (or design) another pdf p such that:

- g, p have equal support $(g(x) > 0 \iff p(x) > 0)$.
- There is a constant M such that $g(x) \leq M \cdot p(x)$ for all x.
- We know how to generate RN distributed as p

Accept-reject procedure

Generate a pair of random numbers (u, v),

u from the distribution with pdf p,

v from a Unif(0, 1),

If
$$v \leq \frac{g(u)}{M \cdot p(u)}$$
, then keep u in the list,

Otherwise throw it away.

Continue until the list is sufficiently long.

Rejection sampling for the stomach cancer mortality dataset

Simulating the posterior pdf $g(\theta_1, \theta_2 | \mathbf{y})$ from a Beta-Binomial likelihood and a non-informative prior as in last session.

Choice of candidate function $p(\cdot)$:

- The bivariate normal resulting from the Laplace approximation (fails: does not majorize q)
- A bivariate Student's t with the same location and scale (succeeds: it has heavier tails)

Student's t pdf

The univariate Student's t pdf with ν degrees of freedom is:

$$f(t) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\pi \nu} \cdot \Gamma(\nu/2)} \times \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2},$$

for $t \in \mathbb{R}$.

Student's t with location and scale

A translation and scale transformation gives the univariate Student's t with ν degrees of freedom, location μ and scale σ :

$$f(x) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\pi \nu} \cdot \Gamma(\nu/2) \cdot \sigma} \times \left(1 + \frac{1}{\nu} \left(\frac{x-\mu}{\sigma}\right)^2\right)^{-(\nu+1)/2},$$

for $x \in \mathbb{R}$, $\mu \in \mathbb{R}$, $\sigma > 0$.

Multivariate Student's t pdf

Given $\mu \in \mathbb{R}^p$ (location), Σ a $p \times p$ positive definite (nonsingular) matrix (scale), the p-dimensional Student's t pdf:

$$f(\boldsymbol{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{\Gamma((\nu + p)/2)}{\Gamma(\nu/2) \cdot (\pi \nu)^{p/2} \cdot (\det |\boldsymbol{\Sigma}|)^{1/2}}$$
$$\times \left(1 + \frac{1}{\nu} (\boldsymbol{x} - \boldsymbol{\mu})' \cdot \boldsymbol{\Sigma}^{-1} \cdot (\boldsymbol{x} - \boldsymbol{\mu})\right)^{-(\nu + p)/2},$$

 $\mathbf{x} \in \mathbb{R}^p$

Computations

See the notebook.

08 - Monte-Carlo - 02

Monte-Carlo computation of expectations

Rejection sampling

Importance sampling

SIR algorithm (Sampling Importance Resampling)

Computing posterior expectations

Expectation $E(h(\theta)|y)$ of a function $h(\theta)$ of the parameters θ from the posterior pdf of a model with prior $g(\theta)$ and likelihood $f(y|\theta)$, given the data y.

Often the posterior pdf will be non-normalized:

$$g(\theta|y) \propto g(\theta) \cdot f(y|\theta)$$

We want to estimate this expectation by the method described in the previous section.

An auxiliary pdf

We substitute a pdf $p(\theta)$ for the posterior:

$$E(h(\theta)|y) = \frac{\int h(\theta) \cdot g(\theta) \cdot f(y|\theta) d\theta}{\int g(\theta) \cdot f(y|\theta) d\theta}$$
$$= \frac{\int h(\theta) \cdot \left(\frac{g(\theta) \cdot f(y|\theta)}{p(\theta)}\right) \cdot p(\theta) d\theta}{\int \left(\frac{g(\theta) \cdot f(y|\theta)}{p(\theta)}\right) \cdot p(\theta) d\theta}$$

Thus we avoid sampling from the presumably difficult posterior, doing it instead from $p(\theta)$.

Weights

Define the weight function:

$$w(\theta) \equiv \frac{g(\theta) \cdot f(y|\theta)}{p(\theta)}.$$

For an *n*-sample $(\theta_1, \ldots, \theta_n)$ drawn from $p(\theta)$, the importance sampling estimate of the posterior expectation is the average:

$$\overline{h}_{IS} = \frac{\sum_{i=1}^{n} h(\theta_i) \cdot w(\theta_i)}{\sum_{i=1}^{n} w(\theta_i)}$$

Simulation standard error

Estimated by:

$$\operatorname{se}_{\overline{h}_{IS}} = \frac{\sqrt{\sum_{i=1}^{n} (\left(h(\theta_{i}) - \overline{h}_{IS}\right) \cdot w(\theta_{i}))^{2}}}{\sum_{i=1}^{n} w(\theta_{i})}.$$

Choice of a suitable candidate $p(\theta)$

Hopefully it should be:

- Easy to sample from
- As close as possible to the target pdf
- Heavier tails than the target pdf (otherwise weights become very large)

Computations

See the notebook.

08 - Monte-Carlo - 02

Monte-Carlo computation of expectations

Rejection sampling

Importance sampling

SIR algorithm (Sampling Importance Resampling)

The SIR procedure

- Start as in importance sampling: choose a proposal pdf, generate an n-sample $(\theta_1, \ldots, \theta_n)$ from it, and the corresponding weights: $w_i = w(\theta_i)$, $1 \le i \le n$.
- Convert weights to probabilities:

$$p_i = \frac{W_i}{\sum_{j=1}^n W_j}, \qquad 1 \le i \le n.$$

• Generate a new *n*-sample (resample) from the *n* values $(\theta_1, \ldots, \theta_n)$ with probabilities (p_1, \ldots, p_n) .

Comparison (mostly intuitive) to rejection sampling

In rejection sampling, a given sample θ_i drawn from the proposal pdf $p(\theta)$ is accepted with probability equal to:

$$g(\theta_i)/c p(\theta_i)$$
.

In SIR θ_i appears in the resample with probability proportional to the weight:

$$w_i = g(\theta_i)/p(\theta_i)$$
.

Example: SIR vs. Rejection sampling

Example: SIR vs. Rejection sampling

See notebook.