실력 완성 | 수학 I

1-3-1.지수함수의 뜻과 그래프

족보닷컴

수학 계산력 강화

(1)지수함수의 그래프의 평행이동과 대칭이동

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2019-02-13
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

지수함수의 그래프의 평행이동

지수함수 $y=a^x(a>0, a\neq 1)$ 의 그래프를 x축 방향으로 m만큼, y축 방향으로 n만큼 평행이동한 그래프의 식은 $y=a^{x-m}+n$

- \blacksquare 함수 $y = \sqrt{2} \cdot 2^x + 1$ 의 그래프에 대한 다음 설명 중 옳 은 것은 ○표, 옳지 않은 것은 ×표를 ()안에 써넣어라.
- **1.** $y=2^x$ 의 그래프를 평행 이동한 그래프이다.

)

- **2.** 점근선은 $y = \sqrt{2}$ 이다.

3. 점 $\left(\frac{1}{2}, 3\right)$ 을 지난다.

- ightharpoons 함수 $y=2^{x-1}-5$ 의 그래프에 대한 다음 설명 중 옳은 것은 ○표, 옳지 <u>않은</u> 것은 ×표를 ()안에 써넣어라.
- **4.** 제1, 2, 3사분면을 지난다.
- ()
- **5.** 그래프는 점 $\left(0, -\frac{9}{2}\right)$ 을 지난다.
- **6.** $x_1 < x_2$ 이면 $f(x_1) < f(x_2)$ 이다. ()
- 7. $g(x) = 2^x$ 그래프를 x축의 방향으로 1만큼, y축의 방향으로 5만큼 평행이동한 그래프이다.

() ☑ 다음 함수의 점근선의 방정식과 치역을 구하여라.

- **8.** $y = 2^{x-1} + 3$
- 9. $y=2^{4-2x}-1$
- **10.** $y = -3^{x-1} 4$
- **11.** $y = \frac{3^x}{9} + 5$
- **12.** $y = \left(\frac{1}{2}\right)^{x+2} 4$
- **13.** $y = 4 \cdot 2^x$
- \blacksquare 다음 함수의 그래프를 x축의 방향으로 a만큼, y축의 방 향으로 b만큼 평행 이동한 그래프의 식을 구하여라.
- **14.** $y = -3^x$, a = 2, b = -2
- **15.** $y = \left(\frac{1}{4}\right)^x$, a = 3, b = -1
- **16.** $y=4^x$, a=1, b=3

 \blacksquare 다음 지수함수의 그래프를 x축의 방향으로 m만큼, y축 의 방향으로 n만큼 평행이동한 그래프의 식을 구하고, 그 래프를 그려라.

17.
$$y=2^x [m=1, n=2]$$

18.
$$y = \left(\frac{1}{2}\right)^x [m = -1, n = -1]$$

19.
$$y=3^x [m=-1, n=1]$$

20.
$$y = \left(\frac{1}{3}\right)^x [m = 2, n = 1]$$

 $oldsymbol{\square}$ 다음 함수의 그래프가 주어진 그림과 같을 때, 상수 $a,\ b$ 의 값을 구하여라.

21.
$$y = -a^{x-1} + b$$

22.
$$y = \left(\frac{1}{2}\right)^{x+a} + b$$

23.
$$y = 9^{-(x-a)} + b$$

24. $y = -2^{x+a} - b$

25. $y = 4^{x-a} + b$

- \blacksquare 다음 물음에 알맞은 a, b, c의 값을 구하여라.
- **26.** 함수 $y = a^x$ 의 그래프를 x축의 방향으로 b만큼, y축의 방향으로 c만큼 평행이동하면 함수 $y = 4\left(2^{x-3} - \frac{1}{2}\right) - 4$ 의 그래프와 겹쳐진다.
- **27.** 지수함수 $y = 14 \cdot 2^x + 5$ 는 지수함수 $y = 2^x$ 의 그래 프를 x축으로 a만큼, y축으로 b만큼 평행이동한 함 수이다. 이때 $14 \cdot 2^a + b$ 의 값은 c이다.
- ☑ 다음 물음에 답하여라.
- **28.** 함수 $y=3^{2x}$ 의 그래프를 x축의 방향으로 p만큼, y축의 방향으로 q만큼 평행이동하였더니 함수 $y=81\cdot 3^{2x}+\frac{1}{2}$ 의 그래프가 되었다. p+q의 값을 구 하여라.

- **29.** 함수 $y=2^{x-1}-1$ 의 그래프를 x축의 방향으로 a만큼, y축의 방향으로 b만큼 평행 이동한 그래프가 함수 $y=2^x$ 의 그래프와 일치하였다. 이때, 두 실수 a, b에 대하여 a+b의 값을 구하여라.
- **30.** 함수 $y=4^x$ 의 그래프를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동하면 함수 $y = \frac{1}{2} \cdot 2^{2x-2} + 1$ 의 그래프와 겹쳐진다고 할 때, mn의 값을 구하여라.
- **31.** 함수 $y=2^{2x}$ 의 그래프를 함수 $y=3\cdot 4^{x+1}-2$ 의 그래프로 옮기는 평행 이동에 의해 원점은 점 (m, n)으로 옮겨진다. 이 때, m-n의 값을 구하여
- **32.** 다음 그림에서 두 함수 $y = \left(\frac{3}{2}\right)^x$, $y = \left(\frac{3}{2}\right)^x + 3$ 의 그래프와 두 직선 x=1, x=3으로 둘러싸인 도형의 넓이를 구하여라.

33. 두 함수 $y=2^x$, $y=8\cdot 2^x$ 의 그래프와 두 직선 y = 1, y = 4로 둘러싸인 도형의 넓이를 구하여라.

02 / 지수함수의 그래프의 대칭이동

지수함수 $y=a^x(a>0, a\neq 1)$ 의 그래프를

- (1) x축에 대하여 대칭이동한 그래프의 식 $\Rightarrow y = -a^x$
- (2) y축에 대하여 대칭이동한 그래프의 식 $\Rightarrow y = \left(\frac{1}{x}\right)^x$
- (3) 원점에 대하여 대칭이동한 그래프의 식 \Rightarrow $y=-\left(\frac{1}{a}\right)^x$
- $\stackrel{\text{tal}}{}$ x축에 대한 대칭이동은 y대신 -yy축에 대한 대칭이동은 x대신 -x원점에 대한 대칭이동은 x대신 -x, y대신 -y를 대입
- \blacksquare 함수 $y = \left(\frac{1}{2}\right)^{x-2} + 1$ 의 그래프에 대한 다음 설명 중 옳 은 것은 ○표, 옳지 않은 것은 ×표를 ()안에 써넣어라.
- **34.** 치역은 {*y* | *y* > 1}이다. ()
- **35.** x의 값이 증가하면 y의 값도 증가한다. ()
- **36.** 점 (1, 3)을 지난다. ()
- **37.** 점근선의 방정식은 y = -1이다. ()
- ightharpoonspice 함수 $y = 2^{-x+2} 3$ 의 그래프에 대한 설명 중 옳은 것은 ○표, 옳지 않은 것은 ×표를 ()안에 써넣어라.
- **38.** 점근선은 y = -3이다. ()
- **39.** 치역은 $\{y | y > 3\}$ 이다.
- **40.** 점 (2, -2)를 지난다. ()
- **41.** x의 값이 증가하면 y의 값도 증가한다. ()
- **42.** $y=2^{-x}$ 의 그래프를 x축 방향으로 -2만큼 y축 방향으로 -3만큼 평행이동하여 얻어진다. ()

- \blacksquare 다음 함수의 그래프를 x축, y축, 원점에 대하여 대칭 이 동한 그래프의 식을 각각 구하여라.
- **43.** $y = -\left(\frac{1}{2}\right)^{-x}$
- **44.** $y = 3^{-x}$
- **45.** $y = -4^x$
- **46.** $y = 5^x$
- \blacksquare 함수 $y=a^x$ 의 그래프가 다음 그림과 같을 때, 다음 함수 의 그래프를 그리시오.

47. $y = -a^x$

48. $y = -a^{-x}$

49. $y = \left(\frac{1}{a}\right)^x$

 $50. \quad y = -\left(\frac{1}{a}\right)^x$

- ightharpoons 지수함수 $y=2^x$ 의 그래프가 다음과 같을 때, 대칭이동한 그래프의 식을 구하고, 그래프를 그려라.
- 51. 원점에 대하여 대칭이동

52. y축에 대하여 대칭이동

53. x축에 대하여 대칭이동

Arr 지수함수 $y = \left(\frac{1}{2}\right)^x$ 의 그래프가 다음과 같을 때, 대칭이 동한 그래프의 식을 구하고, 그래프를 그려라.

54. 원점에 대하여 대칭이동

55. *y*축에 대하여 대칭이동

56. x축에 대하여 대칭이동

☑ 다음 함수의 그래프 중에서 평행 이동 또는 대칭 이동하 여 함수 $y=3^x$ 의 그래프와 겹칠 수 있는 것은 \bigcirc 표, 겹 칠 수 <u>없는</u> 것은 ×표를 ()안에 써넣어라.

57.
$$y = \sqrt{3} \times 3^x$$
 ()

58.
$$y = 3^{2x+6}$$

59.
$$y = \frac{1}{3^x} + 2$$

60.
$$y = 9 \times (\sqrt{3})^x - 1$$

☑ 다음 함수의 그래프 중에서 평행 이동 또는 대칭 이동하 여 함수 $y=9^x$ 의 그래프와 겹칠 수 있는 것은 \bigcirc 표, 겹칠 수 없는 것은 ×표를 ()안에 써넣어라.

61.
$$y = \sqrt{9^x} + 1$$

62.
$$y = \frac{1}{3^{2x}}$$

63.
$$y = 3 \cdot 9^x$$

64.
$$y = 9^{2x+3}$$

☑ 다음 함수의 그래프 중에서 평행 이동 또는 대칭 이동하 여 함수 $y=4^x$ 의 그래프와 겹칠 수 있는 것은 \bigcirc 표, 겹 칠 수 없는 것은 ×표를 ()안에 써넣어라.

65.
$$y = \left(\frac{1}{2}\right)^{2x-3}$$

66.
$$y = (2\sqrt{2})^{\frac{4}{3}x} - 2$$

67.
$$y = 4^{2x-3}$$

68.
$$y = \left(\frac{1}{16}\right)^{0.5x - 3}$$

☑ 다음 함수의 그래프 중에서 평행 이동 또는 대칭 이동하 여 함수 $y=5^x$ 의 그래프와 겹칠 수 있는 것은 \bigcirc 표, 겹 칠 수 없는 것은 ×표를 ()안에 써넣어라.

69.
$$y = 5^{2x-4}$$

70.
$$y = \left(\frac{1}{5}\right)^x$$

71.
$$y = 5^{x-1} + 2$$

72.
$$y = \frac{5^x}{25}$$

- ☑ 다음 물음에 답하여라.
- **73.** 지수함수 $y = 2^x$ 의 그래프를 x축의 방향으로 -3만큼, y축의 방향으로 1만큼 평행이동한 후 y축에 대하여 대칭이동한 그래프의 식을 구하여라.
- **74.** 함수 $y = a^{x-1}$ 의 그래프를 x축에 대하여 대칭이동 한 후 x축 방향으로 1만큼, y축 방향으로 2만큼 평 행 이동한 그래프가 점 (1, -2)을 지날 때, 양수 a의 값을 구하여라.
- **75.** 좌표평면에서 지수함수 $y=a^x$ 의 그래프를 x축에 대하여 대칭이동 시킨 후, x축의 방향으로 2만큼, y축의 방향으로 3만큼 평행이동시킨 그래프가 점 (4, 0)을 지난다. 양수 a의 값을 구하여라.
- **76.** 함수 $y=2^{2-x}+1$ 이 그래프를 x축의 방향으로 -1만큼, y축의 방향으로 -3만큼 평행 이동한 후, 다시 원점에 대하여 대칭 이동한 그래프의 식을 구 하여라.
- 77. 함수 $f(x) = a^x(a > 1)$ 의 그래프를 y축에 대하여 대칭이동시킨 후 y축의 방향으로 -24만큼 평행이 동하면 함수 y=q(x)그래프와 일치한다. f(4)=8일 때, q(-8)의 값을 구하여라.
- 78. 함수 $y=-5^x$ 의 그래프를 y축에 대하여 대칭 이 동한 후, 다시 x축의 방향으로 1만큼, y축의 방향으 로 -4만큼 평행 이동한 그래프의 식을 구하여라.

- **79.** 함수 $y = 2^{-x}$ 의 그래프를 x축에 대하여 대칭 이 동한 후, 다시 x축의 방향으로 -3만큼, y축의 방향 으로 2만큼 평행 이동한 그래프의 식을 구하여라.
- 80. 지수함수 $y = a^x$ 의 그래프를 x축의 방향으로 2만 큼, y축의 방향으로 3만큼 평행이동한 후 x축에 대 하여 대칭이동한 그래프가 점 (1, -5)를 지날 때, 양수 a의 값을 구하여라.
- **81.** 함수 $y = 3^{x-1} + 2$ 의 그래프를 x축의 방향으로 2 만큼, y축의 방향으로 -3만큼 평행 이동한 후, 다 시 x축에 대하여 대칭 이동한 그래프의 식을 구하 여라.
- 82. 함수 $y=2^x+a$ 의 그래프를 y축에 대하여 대칭 이 동한 그래프와 x축의 방향으로 b만큼 평행 이동한 그래프가 모두 점 (1, 4)를 지날 때, 2ab의 값을 구 하여라. (단, a, b는 상수)

정답 및 해설

- 1) 🔾
- 2) ×
- \Rightarrow ㄴ. $y = \sqrt{2} \cdot 2^x + 1 = 2^{x + \frac{1}{2}} + 1$ 의 점근선은 y = 1
- 3) 🔾
- 4) ×
- ⇒ 제1, 3, 4사분면을 지난다.
- 5) 🔾
- 6) 🔾
- 7) ×
- $\Rightarrow g(x) = 2^x$ 그래프를 x축의 방향으로 1만큼, y축의 방향으로 -5만큼 평행이동한 그래프이다.
- 8) 점근선 : y=3, 치역 : $\{y \mid y>3\}$
- 9) 점근선 : y=-1, 치역 : $\{y \mid y>-1\}$
- $\Rightarrow y = 2^{4-2x} 1 = \left(\frac{1}{4}\right)^{x-2} 1$ 의 그래프는 다음과 같 다.

- 10) 점근선 : y = -4, 치역 : $\{y \mid y < -4\}$
- $\Rightarrow y = -3^{x-1} 4$ 의 그래프는 다음 과 같다.

- 11) 점근선 : y = 5, 치역 : $\{y \mid y > 5\}$
- $\Rightarrow y = \frac{3^x}{9} + 5 = 3^{x-2} + 5$ 의 그래프는 다음과 같다.

- 12) 점근선 : y = -4, 치역 : $\{y \mid y > -4\}$
- 13) 점근선 : y=0, 치역 : $\{y \mid y>0\}$

 $\Rightarrow y = 4 \cdot 2^x = 2^{x+2}$ 의 그래프는 다음과 같다.

- 14) $y = -3^{x-2} 2$
- 15) $y = \left(\frac{1}{4}\right)^{x-3} 1$
- $\Rightarrow y = \left(\frac{1}{4}\right)^{x-3} 1$
- 16) $y = 4^{x-1} + 3$
- $\Rightarrow y = 4^{x-1} + 3$
- 17) $y = 2^{x-1} + 2$

지수함수 $y=2^x$ 의 그래프를 x축의 방향으로 1만 큼, y축의 방향으로 2만큼 평행이동한 그래프의 식은 $y-2=2^{x-1}$

$$y = 2^{x-1} + 2$$

18) $y = \left(\frac{1}{2}\right)^{x+1} - 1$

지수함수 $y = \left(\frac{1}{2}\right)^x$ 의 그래프를 x축의 방향으로 -1만큼, y축의 방향으로 -1만큼 평행이동한 그 래프의 식은

$$y - (-1) = \left(\frac{1}{2}\right)^{x - (-1)}$$
 $\therefore y = \left(\frac{1}{2}\right)^{x + 1} - 1$

19) $y = 3^{x+1} + 1$

지수함수 $y=3^x$ 의 그래프를 x축의 방향으로 -1만큼, y축의 방향으로 1만큼 평행이동한 그래프의 식으 $y-1=3^{x-(-1)}$ $y = 3^{x+1} + 1$

$$20) \ \ y = \left(\frac{1}{3}\right)^{x-2} + 1$$

지수함수 $y = \left(\frac{1}{3}\right)^x$ 의 그래프를 x축의 방향으로 2 만큼, y축의 방향으로 1만큼 평행이동한 그래프의

$$y-1 = \left(\frac{1}{3}\right)^{x-2}$$
 $\therefore y = \left(\frac{1}{3}\right)^{x-2} + 1$

21)
$$a = \frac{1}{2}$$
, $b = 4$

 \Rightarrow 함수 $y=-a^{x-1}+b$ 의 그래프의 점근선의 방정식이 y = 4이므로 b = 4즉, 함수 $y=-a^{x-1}+4$ 의 그래프가 점 (-1, 0)을 지나<u>므로</u> $0 = -a^{-2} + 4$, $a^2 = \frac{1}{4}$

$$\therefore a = \frac{1}{2} \ (\because a > 0)$$

22)
$$a = -2$$
, $b = 2$

 \Rightarrow 함수 $y = \left(\frac{1}{2}\right)^{x+a} + 2$ 의 그래프가 점근선의 방정식 이 y=2이므로 b=2즉, 함수 $y = \left(\frac{1}{2}\right)^{x+a} + 2$ 의 그래프가 점 (0, 6)을 지나므로 $6 = \left(\frac{1}{2}\right)^a + 2$ $\therefore a = -2$

23)
$$a = \frac{1}{2}$$
, $b = -3$

24)
$$a = 1$$
, $b = 1$

$$\Rightarrow$$
 함수 $y=-2^{x+a}-b$ 의 그래프의 점근선의 방정식이

$$y=-1$$
이므로
$$-b=-1 \qquad \therefore b=1$$
 즉, 함수 $y=-2^{x+a}-1$ 의 그래프가 점 $(0,-3)$ 을 지나므로
$$-3=-2^a-1 \qquad \therefore a=1$$

25)
$$a = \frac{1}{2}$$
, $b = -2$

 \Rightarrow 함수 $y=4^{x-a}+b$ 의 그래프의 점근선의 방정식이 y =-2이므로 b=-2 즉, 함수 $y=4^{x-a}-2$ 의 그래프가 점 (1, 0)을 지 나므로 $0=4^{1-a}-2$ $\therefore a=\frac{1}{2}$

26)
$$a=2$$
, $b=1$, $c=-6$

27)
$$a = -\log_2 14$$
, $b = 5$, $c = 6$

$$y = 14 \times 2^x + 5 = 2^{x-a} + b$$
에서 $b = 5$ 이고, $2^{-a} = 14$ 이다.
$$\therefore a = -\log_2 14$$

$$\therefore 14 \times 2^a + b = 14 \times 14^{-1} + 5 = 1 + 5 = 6$$

28)
$$-\frac{3}{2}$$

29) 0

 \Rightarrow 함수 $y=2^{x-1}-1$ 의 그래프를 x축의 방향으로 a만큼, y축의 방향으로 b만큼 평행 이동한 그래프 $y = 2^{(x-a)-1} - 1 + b$: $y = 2^{x-1-a} - 1 + b$ 이 함수의 그래프가 함수 $y=2^x$ 의 그래프와 일치 하므로 -1-a=0, -1+b=0

$$\therefore \ a = -1, \ b = 1$$

$$\therefore a+b=0$$

30) $1 + \log_4 3$

31)
$$\log_4 \frac{4}{3}$$

 \Rightarrow $y=2^{2x}=4^x$ 의 그래프를 x축으로 m만큼 y축으로 n만큼 평행 이동시키면 $y=4^{(x-m)}+n=12 imes4^x-2$ 와 같으므로

$$4^{-m} = 12$$
 $\therefore -m = \log_4 12, n = -2$

$$\therefore m-n = -\log_4 12 + 2 = \log_4 \frac{16}{12} = \log_4 \frac{4}{3}$$

32) 6

두 함수는 평행이동으로 겹쳐지는 관계이므로 둘 러싸인 도형의 넓이는 그림에서 직사각형 넓이와 같다.

 $\stackrel{\triangle}{\rightarrow}$, $2 \times 3 = 6$

33) 9

 $\Rightarrow y=8\cdot 2^x=2^{x+3}$ 의 그래프는 $y=2^x$ 의 그래프를 x축 방향으로 -3만큼 평행이동한 그래프이다. 따라서 구하려는 도형의 넓이는 가로의 길이가 3, 세로의 길이가 3인 직사각형의 넓이와 같으므로 도형의 넓이는 $3 \times 3 = 9$

34) 🔾

 \Rightarrow 함수 $y = \left(\frac{1}{2}\right)^{x-2} + 1$ 의 그래프는 x의 값이증가하 면 y의 값이 감소한다.

 $\Leftrightarrow \left(\frac{1}{2}\right)^{1-2} + 1 = 2 + 1 = 3$ 이므로 점 (1, 3)을지난다.

 \Rightarrow 함수 $y = \left(\frac{1}{2}\right)^{x-2} + 1$ 의 그래프의 점근선의방정식 은 y=1이다.

38) 🔾

점근선은 y=-3이다.

39) ×

⇒ 치역은 {y | y>-3}이다.

40) 🔾

41) ×

 \Rightarrow x값이 증가하면 y값은 감소한다.

42) ×

 $\Rightarrow y = 2^{-(x-2)} - 3$ 이므로 $y = 2^{-x}$ 를 x축으로 2만큼 이동하고, y축 방향으로 -3만큼 이동한다.

43) x축 : $y = 2^x$, y축 : $y = -\left(\frac{1}{2}\right)^x$, 원점 : $y = \left(\frac{1}{2}\right)^x$

$$\Rightarrow -\left(\frac{1}{2}\right)^{-x} = -2^x \circ \underline{\square} = \underline{\square}$$

x축 : $y=2^x$, y축 : $y=-\left(\frac{1}{2}\right)^x$, 원점 : $y=\left(\frac{1}{2}\right)^x$

44) $x \stackrel{\text{R}}{=} : y = -\left(\frac{1}{3}\right)^x, y \stackrel{\text{R}}{=} : y = 3^x,$

 $\Rightarrow 3^{-x} = \left(\frac{1}{3}\right)^x \circ \Box \Box \Box \Box$

x축 : $y = -\left(\frac{1}{3}\right)^x$, y축 : $y = 3^x$, 원점 : $y = -3^x$

45) $x = 4^x$, $y = 4^x$, $y = (-\frac{1}{4})^x$,

원점 : $y = \left(\frac{1}{4}\right)^x$

ightharpoonup x축 : $y=4^x$, y축 : $-\left(rac{1}{4}
ight)^x$, 원점 : $y=\left(rac{1}{4}
ight)^x$

46) x축 : $y = -5^x$, y축 : $y = \left(\frac{1}{5}\right)^x$,

원점 : $y = -\left(\frac{1}{5}\right)^x$

 $\Rightarrow x \stackrel{\triangleleft}{\Rightarrow} : y = -5^x, y \stackrel{\triangleleft}{\Rightarrow} : y = \left(\frac{1}{5}\right)^x,$

원점 : $y = -\left(\frac{1}{5}\right)^x$

50)

 $\Rightarrow y = -\left(\frac{1}{a}\right)^x = -a^{-x}$ 의 그래프는 $y = a^x$ 의 그래프를 원점에 대하여 대칭이동한 것이므로 다음 그림과

지수함수 $y=2^x$ 의 그래프를 원점에 대하여 대칭 이동한 그래프의 식은 $-y=2^{-x}$, 즉 $y=-2^{-x}$ 이

52) $y = 2^{-x}$

지수함수 $y=2^x$ 의 그래프를 y축에 대하여 대칭이 동한 그래프의 식은 $y=2^{-x}$ 이다.

53) $y = -2^x$

지수함수 $y=2^x$ 의 그래프를 x축에 대하여 대칭이

동한 그래프의 식은 $-y=2^x$, 즉 $y=-2^x$ 이다.

54)
$$y = -\left(\frac{1}{2}\right)^{-x}$$

지수함수 $y = \left(\frac{1}{2}\right)^x$ 의 그래프를 원점에 대하여 대 칭이동한 그래프의 식은 $-y = \left(\frac{1}{2}\right)^{-x}$, 즉 $y = -\left(\frac{1}{2}\right)^{-x}$ 이다.

55)
$$y = \left(\frac{1}{2}\right)^{-x}$$

지수함수 $y = \left(\frac{1}{2}\right)^x$ 의 그래프를 y축에 대하여 대 칭이동한 그래프의 식은 $y = \left(\frac{1}{2}\right)^{-x}$ 이다.

56)
$$y = -\left(\frac{1}{2}\right)^x$$

지수함수 $y = \left(\frac{1}{2}\right)^x$ 의 그래프를 x축에 대하여 대 칭이동한 그래프의 식은 $-y = \left(\frac{1}{2}\right)^x$, 즉 $y = -\left(\frac{1}{2}\right)^x$

 \Rightarrow $y = \sqrt{3} \times 3^x = 3^{x + \frac{1}{2}}$ 이므로 지수함수 $y = \sqrt{3} \times 3^x$ 의 그래프는 $y=3^x$ 의 그래프를 x축의 방향으로 $-\frac{1}{2}$ 만큼 평행이동한 것이다.

 $\Rightarrow y = 3^{2x+6} = 3^{2(x+3)}$ 이므로 지수함수 $y = 3^{2x+6}$ 의 그 래프는 $y=3^x$ 의 그래프를 평행이동하거나 대칭이 동하여도 겹쳐질 수 없다.

59) (

 \Rightarrow $y=\frac{1}{3^x}+2=3^{-x}+2$ 이므로 지수함수 $y=\frac{1}{3^x}+2$ 의 그래프는 $y=3^x$ 의 그래프를 y축에 대하여 대칭이 동한 후 y축의 방향으로 2만큼 평행이동한 것이

60) \times

 $\Rightarrow y = 9 \times (\sqrt{3})^x - 1 = 3^2 \times 3^{\frac{1}{2}x} - 1 = 3^{\frac{1}{2}x+2} - 1$ 이므로 지수함수 $y=9\times(\sqrt{3})^x-1$ 의 그래프는 $y=3^x$ 의 그래프를 평행이동하거나 대칭이동하여도 겹쳐질 수 없다.

61) ×

 $\Rightarrow y = \sqrt{9^x + 1} = 3^x + 1$ 에서 함수 $y = \sqrt{9^x + 1}$ 의그래 프는 함수 $y=3^x$ 의 그래프를 y축의 방향으로 1만 큼 평행 이동한 것이므로 평행 이동 또는 대칭 이 동하여 함수 $y=9^x$ 의 그래프와 겹칠 수 없다.

 $\Rightarrow y = \frac{1}{3^{2x}} = \frac{1}{(3^2)^x} = \frac{1}{9^x} = 9^{-x}$ 에서 함수 의 그래프는 함수 $y=9^x$ 의 그래프를 y축에 대하여 대칭 이동 한 것이므로 대칭 이동하여 함수 $y=9^x$ 의 그래프 와 겹칠 수 있다.

 $\Rightarrow y = 3 \cdot 9^x = 9^{\frac{1}{2}} \cdot 9^x = 9^{x + \frac{1}{2}}$ 에서 함수 $y = 3 \cdot 9^x$ 의 그래프는 함수 $y=9^x$ 의 그래프를 x축의 방향으로 $-\frac{1}{2}$ 만큼 평행 이동한 것이므로 평행 이동하여 함 수 $y=9^x$ 의 그래프와 겹칠 수 있다.

 $\Rightarrow y = 9^{2x+3} = 9^{2\left(x+\frac{3}{2}\right)} = 81^{x+\frac{3}{2}}$ 에서 함수 $y = 9^{2x+3}$ 의 그래프는 함수 $y=81^x$ 의 그래프를 x축의 방향으 로 $-\frac{3}{9}$ 만큼 평행 이동한 것이므로 평행 이동 또 는 대칭 이동하여 함수 $y=9^x$ 의 그래프와 겹칠

 \Rightarrow $y = \left(\frac{1}{2}\right)^{2x-3} = 4^{-\left(x-\frac{3}{2}\right)}$ 이므로 평행이동, 대칭이동 하여 겹칠 수 있다.

66) 🔾

 $\Rightarrow y = (2\sqrt{2})^{\frac{4}{3}x} - 2 = 4^x - 2$ 이므로 평행이동 하여 $y=4^x$ 와 겹칠 수 있다.

67) ×

 $\Rightarrow y = \left(\frac{1}{16}\right)^{0.5x-3} = 4^{-(x-6)}$ 이므로 평행이동, 대칭이동 하여 겹칠 수 있다.

69) ×

함수 $y=25^x$ 의 그래프를 x축의 방향으로 2만큼 평행 이동한 것이므로 평행 이동 또는 대칭 이동 하여 함수 $y=5^x$ 의 그래프와 겹칠 수 없다.

70) 🔾

 $\Rightarrow y = \left(\frac{1}{5}\right)^x = 5^{-x}$ 에서 함수 $y = \left(\frac{1}{5}\right)^x$ 의 그래프는 함 수 $y=5^x$ 의 그래프를 y축에 대하여 대칭 이동한 것이므로 대칭 이동하여 함수 $y = 5^x$ 의 그래프와 겹칠 수 있다.

71) 🔾

 \Rightarrow 함수 $y=5^{x-1}+2$ 의 그래프는 함수 $y=5^x$ 의 그래 프를 x축의 방향으로 1만큼, y축의 방향으로 2만 큼 평행 이동한 것이므로 평행 이동하여 함수 $y=5^x$ 의 그래프와 겹칠 수 있다.

 \Rightarrow $y=rac{5^x}{25}=rac{5^x}{5^2}=5^{x-2}$ 에서 함수 $y=rac{5^x}{25}$ 의 그래프는 함수 $y=5^x$ 의 그래프를 x축의 방향으로 2만큼 평 행 이동한 것이므로 평행 이동하여 함수 $y=5^x$ 의 그래프와 겹칠 수 있다.

73) $y = 2^{-x+3} + 1$

 \Rightarrow 지수함수 $y=2^x$ 의 그래프를 x축의 방향으로 -3만큼, y축의 방향으로 1만큼 평행이동하면 $y-1=2^{x+3}$: $y=2^{x+3}+1$ 지수함수 $y=2^{x+3}+1$ 의 그래프를 y축에 대하여 대칭이동하면 $y=2^{-x+3}+1$

74) $\frac{1}{4}$

⇨ 주어진 함수를 대칭이동과 평행이동을 각각하면 $y = -a^{x-2} + 2$ 가 되고 (1, -2)를 지나니 $-2 = -a^{-1} + 2$: $a = \frac{1}{4}$

75) $\sqrt{3}$

76)
$$y = -2^{1+x} + 2$$

 $\Rightarrow y = 2^{2-x} + 1$ 를 x축의 방향으로 -1만큼, y축의 방 향으로 -3만큼 평행 이동

$$\rightarrow y = 2^{2-(x+1)} + 1 - 3$$
 $\therefore y = 2^{1-x} - 2$

$$\therefore y = 2^{1-x} - 2$$

원점에 대하여 대칭 이동

$$\rightarrow -y = 2^{1-(-x)} - 2$$

$$y = -2^{1+x} + 2$$

- 77) 40
- 78) $y = -5^{-x+1} 4$
- $\Rightarrow y = -5^x$ 를 y축에 대하여 대칭 이동 $y=-5^{-x}$ 를 x축의 방향으로 1만큼, y축의 방향으 로 -4만큼 평행 이동

$$\rightarrow y = -5^{-(x-1)} - 4$$
 $\therefore y = -5^{-x+1} - 4$

$$y = -5^{-x+1} - 4$$

- 79) $y = -2^{-x-3} + 2$
- $\Rightarrow y = 2^{-x}$ 를 x축에 대하여 대칭 이동 $\rightarrow -y = 2^{-x}$ $\therefore y = -2^{-x}$

$$\rightarrow -y = 2^{-x}$$

x축의 방향으로 -3만큼, y축의 방향으로 2만큼

$$\rightarrow y = -2^{-(x+3)} + 2$$
 $\therefore y = -2^{-x-3} + 2$

$$y = -2^{-x-3} + 2^{-x-3}$$

- \Rightarrow 지수함수 $y=a^x$ 의 그래프를 x축의 방향으로 2만 큼, y축의 방향으로 3만큼 평행이동하면 $y-3=a^{x-2}$

 $y-3=a^{x-2}$ 의 그래프를 x축에 대하여 대칭이동하

면 $-y-3=a^{x-2}$: $y=-a^{x-2}-3$ 이 그래프가 점 (1, -5)를 지나므로

$$-5 = -a^{1-2} - 3$$
 : $a^{-1} = 2$

$$\therefore a = \frac{1}{2}$$

- 81) $y = -3^{x-3} + 1$
- $\Rightarrow y = 3^{x-1} + 2$ 을 축의 방향으로 2만큼, y축의 방향 으로 -3만큼 평행 이동

$$\rightarrow y = 3^{(x-2)-1} + 2 - 3$$
 $\therefore y = 3^{x-3} - 1$

$$y = 3^{x-3} - 1$$

x축에 대하여 대칭 이동

$$\rightarrow -y = 3^{x-3} - 1$$
 $\therefore y = -3^{x-3} + 1$

$$\therefore y = -3^{x-3} + 1$$

- 82) 14
- \Rightarrow 함수 $y=2^x+a$ 의 그래프를 y축에 대하여 대칭 이 동한 그래프의 식은 $y=2^{-x}+a$
 - 이 그래프가 점 (1, 4)를 지나므로

$$4 = 2^{-1} + a$$
 : $a = \frac{7}{2}$

$$\therefore a = \frac{7}{2}$$

한편, 함수 $y=2^x+a$ 의 그래프를 x축의 방향으로 b만큼 평행 이동한 그래프의 식은

$$y=2^{x-b}+a$$

$$y = 2^{x-b} + a$$
 $\therefore y = 2^{x-b} + \frac{7}{2}$

이 그래프가 점 (1, 4)를 지나므로

$$4 = 2^{1-b} + \frac{7}{2}, \ \frac{1}{2} = 2^{1-b}$$

$$-1 = 1 - b$$

$$\therefore b=2$$

$\therefore 2ab = 14$