Ecuaciones Diferenciales 2025-1

Modelos de circuitos eléctricos

Semana 11: Teoría

Profesores del curso:

Hermes Pantoja Carhuavilca Sergio Quispe Rodríguez Patricia Reynoso Quispe Cristina Navarro Flores Daniel Camarena Pérez

Índice

1 Resolución de circuitos mediante sistemas de ecuaciones

Objetivos

■ **Modelar** las corrientes en circuitos RCL en paralelo como sistemas de ecuaciones diferenciales.

RESOLUCIÓN DE CIRCUITOS MEDIANTE SISTEMAS DE ECUACIONES

Logro

■ **Modela** las corrientes en circuitos RCL en paralelo como sistemas de ecuaciones diferenciales. (L.7.11.2.3)

Sistemas de ecuaciones diferenciales en circuitos

Redes eléctricas

Una red eléctrica con más de una malla también da origen a ecuaciones diferenciales lineales simultáneas de primer orden.

Para obtener las ecuaciones diferenciales que modelan estos circuitos, haremos uso de la primera y segunda ley de Kirchhoff

Ley de Corrientes de Kirchhoff (KCL)

Enunciado

En cualquier nodo de una red eléctrica, la suma algebraica de las corrientes que entran y salen es cero.

$$\sum_{k \in \text{entrantes}} I_k \; = \; \sum_{k \in \text{salientes}} I_k$$

- Un nodo es un punto de interconexión entre tres o más elementos.
- La ley se basa en el principio de conservación de carga.

Ley de Voltajes de Kirchhoff (KVL)

Enunciado

En cualquier lazo cerrado, la suma algebraica de las caídas de voltaje es cero.

$$\sum_{k=1}^{m} V_k = 0$$

- Se sigue del principio de conservación de energía.
- Al recorrer el lazo, se asignan signos positivos o negativos a cada caída de voltaje según la orientación del recorrido:
 - Al ir de polo negativo a positivo de una fuente, se toma +E, y si la orientación es opuesta se toma -E.
 - En resistencias (u otros elementos pasivos), $V_R = RI$, el signo depende de la dirección del recorrido relativa al sentido de la corriente. Por ejemplo, si el recorrido sigue el sentido de la corriente el signo será positivo, y viceversa.

Ejemplo de KVL

- Se toma recorrido en sentido horario.
- Al atravesar la batería de -a +, es +E.
- Luego las caídas en resistencias se suman como $-IR_1$ y $-IR_2$.

$$-E + IR_1 + IR_2 = 0$$

Circuito eléctrico con dos mallas

Determine un sistema de ecuaciones diferenciales de primer orden que permiten encontrar las corrientes i_2 y i_3 que fluyen en el circuito que se muestra en la figura

Solución:

Aplicando la ley de nodos de Kirchhoff en el punto B_1 :

$$i_1 = i_2 + i_3.$$
 (1)

Aplicando la ley de mallas de Kirchhoff a la malla $A_1B_1B_2A_2A_1$:

$$+E(t)-i_1R_1-L_1\frac{di_2}{dt}-i_2R_2=0 (2)$$

Aplicando la ley de mallas de Kirchhoff a la malla $A_1B_1C_1C_2B_2A_2A_1$:

$$+E(t)-i_1R_1-L_2\frac{di_3}{dt}=0$$
 (3)

Usando (1) eliminamos la variable i_1 de las ecuaciones (2) y (3), resultado en el sistema:

$$L_{1}\frac{di_{2}}{dt} + (R_{1} + R_{2})i_{2} + R_{1}i_{3} = E(t)$$
$$L_{2}\frac{di_{3}}{dt} + R_{1}i_{2} + R_{1}i_{3} = E(t)$$

Considere el circuito modelado anteriormente. Encuentre las corrientes i_2 y i_3 si E(t)=0 V, $L_1=2$ H, $L_2=1$ H, $R_1=1$ $\Omega.$ $R_2=2$ Ω **Respuesta:**

$$i_2(t) = c_1 e^{-2t} - c_2 e^{-\frac{1}{2}t}$$
 $i_3(t) = c_1 e^{-2t} + 2c_2 e^{-\frac{1}{2}t}$

Considere el circuito modelado anteriormente. Encuentre las corrientes i_2 y i_3 si $E(t)=20~V,\, L_1=2~H,\, L_2=1~H,\, R_1=1~\Omega.~R_2=2~\Omega$ Respuesta:

$$i_2(t) = c_1 e^{-2t} - c_2 e^{-\frac{1}{2}t}$$

 $i_3(t) = c_1 e^{-2t} + 2c_2 e^{-\frac{1}{2}t} + 20$

Considere el circuito modelado anteriormente. Encuentre las corrientes i_2 y i_3 si $E(t)=2sin(3t)\ V,\ L_1=2\ H,\ L_2=1\ H,\ R_1=1\ \Omega.\ R_2=2\ \Omega$ Respuesta:

$$i_2(t) = c_1 e^{-2t} - c_2 e^{-\frac{1}{2}t} + \frac{90}{481} sin(3t) - \frac{96}{481} cos(3t)$$
 $i_3(t) = c_1 e^{-2t} + 2c_2 e^{-\frac{1}{2}t} + \frac{116}{481} sin(3t) - \frac{252}{481} cos(3t)$

Circuito eléctrico con dos mallas RL y RC

Determine un sistema de ecuaciones diferenciales de primer orden que permiten encontrar las corrientes i_1 y i_2 que fluyen en el circuito que se muestra en la figura

Solución:

Aplicando la ley de nodos de Kirchhoff en el nodo superior:

$$i_1 = i_2 + i_3.$$
 (4)

Aplicando la ley de mallas de Kirchhoff a la malla de la izquierda:

$$+E(t)-L\frac{di_{1}}{dt}-Ri_{2}=0 (5)$$

Aplicando la ley de mallas de Kirchhoff en la malla grande (La caida de voltaje en un condensador es Q_3/C):

$$+E(t) - L\frac{di_1}{dt} - \frac{Q_3}{C} = 0 ag{6}$$

De (5) y (6)

$$Q_3 = CRi_2 \quad \Rightarrow \quad i_3 = \frac{dQ_3}{dt} = CR\frac{di_2}{dt}.$$

Por lo tanto, de (4) y (5) se obtiene el sistema

$$i_1 - i_2 - CR\frac{di_2}{dt} = 0$$

$$L\frac{di_1}{dt} + Ri_2 = E(t)$$

Resuelva el sistema anterior considerando $E(t)=60~V,~L=1~H,~R=50~\Omega,~C=10^{-4}~F$ y las corrientes i_1 y i_2 inicialmente son cero.

Respuesta:

$$i_1(t) = \frac{6}{5} - \frac{6}{5}e^{-100t} - 60te^{-100t}$$
 $i_2(t) = \frac{6}{5} - \frac{6}{5}e^{-100t} - 120te^{-100t}$

Red eléctrica

Determine un sistema de ecuaciones diferenciales de primer orden que permiten encontrar las corrientes I_1 y I_2 que fluyen en el circuito que se muestra en la figura, desde el instante que se cierra el switch.

Solución

Aplicando la ley de mallas de Kirchhoff a la malla de la izquierda:

$$+E(t)-L\frac{dI_1}{dt}-R_1I_1+R_1I_2=0 (7)$$

Aplicando la ley de mallas de Kirchhoff en la malla de la derecha

$$-\frac{1}{C}\int I_2(t)dt - R_2I_2 - R_1I_2 + R_1I_1 = 0$$
 (8)

Derivando (8)

$$-\frac{I_2}{C} - (R_1 + R_2)I_2'(t) + R_1I_1'(t) = 0$$

Por lo tanto, reemplazando (7) en el resultado anterior se obtiene el sistema

$$\begin{split} \frac{dI_1}{dt} &= -\frac{R_1}{L}I_1 + \frac{R_1}{L}I_2 + \frac{E(t)}{L} \\ \frac{dI_2}{dt} &= -\frac{R_1^2}{L(R_1 + R_2)}I_1 + \frac{1}{(R_1 + R_2)}\left(\frac{R_1^2}{L} - \frac{1}{C}\right)I_2 + \frac{R_1}{L(R_1 + R_2)}E(t) \end{split}$$

Resuelva el sistema anterior considerando $E(t)=12\ V,\,R_1=4$ ohms, $R_2=6$ ohms, $C=0.25\ F,\,L=1\ H.$ Suponga que todas las corrientes y cargas son iguales a cero en el instante que el switch es cerrado.

Solución

El sistema que buscamos resolver es

$$I_1' = -4I_1 + 4I_2 + 12$$
 $I_2' = -\frac{8}{5}I_1 + \frac{6}{5}I_2 + \frac{24}{5}$

Sujeto a las condiciones $I_1(0) = I_2(0) = 0$. Al resolver este sistema, obtenemos

$$I_1 = 5e^{-\frac{4}{5}t} - 8e^{-2t} + 3$$
$$I_2 = 4e^{-\frac{4}{5}t} - 4e^{-2t}$$

Preguntas

1) Comprensión de los Elementos Fundamentales:

Explique cómo el capacitor responde inicialmente al voltaje constante y cómo su corriente cambia con el tiempo hasta llegar al estado estable.

2) Implementación de Algoritmos:

Modele el sistema de ecuaciones diferenciales que describe el comportamiento de las corrientes en el circuito en paralelo. Incluya todas las corrientes individuales a través del resistor (I_R) , el inductor (I_L) , y el capacitor (I_C) .

Nota:

- Aplique la Ley de Kirchhoff de corrientes (KCL) en el nodo donde se conectan el resistor, el inductor y el capacitor.
- Escriba las ecuaciones de corriente para cada componente en función del voltaje aplicado y sus propiedades específicas.
- Combine estas ecuaciones para formar el sistema de ecuaciones diferenciales que describen el comportamiento del circuito.

Continuación...

3) Aplicación Práctica de Conceptos Teóricos:

Resuelva el sistema de ecuaciones diferenciales obtenido en la pregunta anterior utilizando las condiciones iniciales proporcionadas. Determine las expresiones para $I_R(t)$, $I_L(t)$ y $I_C(t)$.

- Aplique las condiciones iniciales (corrientes y cargas iguales a cero) para encontrar las constantes de integración.
- Exprese las soluciones en términos de tiempo y verifique que satisfacen tanto las ecuaciones diferenciales como las condiciones iniciales.

4) Desafío de Pensamiento Crítico:

Suponga que la fuente de voltaje E(t) cambia a una función sinusoidal $E(t)=12\sin(t)$. Explique cómo afectaría esto al sistema de ecuaciones diferenciales y qué diferencias esperaría observar en las corrientes $I_R(t), I_L(t)$ y $I_C(t)$ en comparación con la fuente de voltaje constante.

Conclusiones

- El análisis de circuitos eléctricos requiere el empleo de las Leyes de Kirchhoff.
- 2 Las corrientes en un circuito puede ser determinado solucionando un sistema de ecuaciones diferenciales lineales.

Gracias

