Artificial Intelligence for Robotics – Lab

Prof. Dr. Erwin A. Prassler: erwin.prassler@h-brs.de

Maximilian Schöbel: maximilian.schoebel@h-brs.de

Patrick Nagel: patrick.nagel@h-brs.de

Assignment 2

Due Date: Tuesday, 23.10.2018, 08:00

- 1. (1 Points) Why is a special notation needed to classify algorithms? Doesn't it suffice to merely measure the runtime in seconds? Explain.
- 2. (2 Points) Let $g: \mathbb{N} \to \mathbb{R}_+$ be an arbitrary function. The set of functions $f: \mathbb{N} \to \mathbb{R}_+$, which do not grow faster than the function g after a specific point n_0 , is denoted as O(g(n)). More specifically: $O(g(n)) := \{f(n) \mid \exists c \in \mathbb{R} \text{ and } \exists n_0 \in \mathbb{N} : 0 \leq f(n) \leq c \cdot g(n) \ \forall n \geq n_0\}$ Formally proof:
 - $f(n) = 100n^2 \in O(n^2)$
 - $f(n) = n^6 + 100n^5 \in O(n^6)$
- 3. (1 Points) What is the running time of the following python-code in O-Notation? Assume, that ANY_CONST is an arbitrary constant in your program, which receives a 2d array arr as parameter.

```
sum = 0
for i in range(0, J):
    for j in range(0, K):
        if arr[i][j] <= ANY_CONST:
        sum = sum + arr[i][j]
print(sum)</pre>
```

4. (3 Points) For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

	1	1	1	1	1	1	1 1
	second	minute	hour	day	month	year	century
lg n							
$\frac{\lg n}{\sqrt{n}}$							
n							
$n \lg n$							
n^2							
n^3							
2^n							
n!							