

planetmath.org

Math for the people, by the people.

$\begin{array}{c} \textbf{proof of convergence criterion for infinite} \\ \textbf{product} \end{array}$

 ${\bf Canonical\ name} \quad {\bf ProofOfConvergenceCriterionForInfiniteProduct}$

Date of creation 2013-03-22 15:35:36 Last modified on 2013-03-22 15:35:36 Owner cvalente (11260) Last modified by cvalente (11260)

Numerical id 10

Author cvalente (11260)

Entry type Proof Classification msc 26E99 Consider the partial product $P_n = \prod_{i=1}^n p_i$.

By definition we say that the infinite product $\prod_{n=1}^{\infty} p_n$ is convergent iff P_n is convergent.

Suppose every $p_n > 0$

In is a continuous bijection from \mathbb{R}^+ to \mathbb{R} , therefore $\lim_{n\to\infty} a_n = a \iff$ $\lim_{n\to\infty} \ln(a_n) = \ln(a)$, provided $a_n > 0$ and a > 0.

so saying $P_n \to P > 0$ is equivalent to saying that $\ln(P_n)$ converges.

Since $\ln(P_n) = \ln(\prod_{i=1}^n p_i) = \sum_{i=1}^n \ln(p_i)$, the infinite product converges to a positive value iff the series $\sum_{n=1}^{\infty} \ln(p_n)$ is convergent.

In particular, if the infinite product converges to a positive value, then $\ln(p_n) \to 0 \implies p_n \to 1.$

 $P_n \to 0$, is equivalent to saying $\sum_{n=1}^{\infty} \ln(p_n) = -\infty$

For the second part of the theorem:

 $\prod_{n=1}^{\infty} (1+p_n)$ converges absolutely to a positive value iff $\sum_{n=1}^{\infty} p_n$ converges absolutely.

as we have seen, $1+p_n\to 1 \Longrightarrow p_n\to 0$ consider: $\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$ (this is easy to prove since by Taylor's expansion $\ln(1+x)=x+O(x^2)$)

Since $p_n \to 0$ we can say that $\lim_{n\to\infty} \frac{\ln(1+p_n)}{p_n} = 1$ and by the limit comparison test, either both $\sum_{n=1}^{\infty} \ln(1+p_n)$ and $\sum_{i=1}^{n} p_i$ converge or diverge.