Analysis 2 Lecture notes, University (of Technology) Graz based on the lecture by Wolfgang Ring

Lukas Prokop

April 26, 2018

Contents

1	Mat	thematical Redux and topological fundamentals	2
	1.1	Metric	2
	1.2	Cauchy-Schwarz inequality	3
	1.3	Euclidean norm	3
	1.4	Metric space	4
	1.5	Open sets, convergence and accumulation points	4
	1.6	Norm	6
	1.7	Contact point	7
	1.8	Topology	11
2	Vari	iations of continuity notions	13
3	Con	npactness	16
	3.1	Normed vector spaces	21
4	Inte	egral calculus	25
	4.1	Regulated functions	29
5	Inte	gration of regulated functions	37
	5.1	Integration methods	52
		5.1.1 Partial integration	52
		5.1.2 Integration by substitution	55

6	6 Elaboration on differential calculus			
	5.4	Hölder's ineqaulity	. 67	7
	5.3	Young's inequality	. 63	3
	5.2	Improper integrals	. 59)

This lecture took place on 2018/03/06.

Mathematical Redux and topological fundamentals

Metric

Definition 1.1. Let $X \neq \emptyset$ be a set. We define a map $d: X \times X \to [0, \infty)$. d should behave like a geometrical distance. We require $\forall x, y, z \in X$:

- d(x, y) = d(y, x) [called symmetry]
- $d(x, y) = 0 \iff x = y$ [called positive definiteness]
- $\forall x, y, z \in X : d(x, z) \le d(x, y) + d(y, z)$ [called triangle inequality]

Then d is called metric *or* distance function *on X*. (*X*, *d*) *is called* metric space.

Example 1.1.

•
$$X \subseteq \mathbb{C}$$
, $d(x, y) = |x - y|$. It satisfies $|x - z| \le |x - y| + |y - z|$

•
$$X \subseteq \mathbb{R}^n$$
, $||x - y|| = \langle x - y, x - y \rangle^{\frac{1}{2}}$

Claim.

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

$$||x|| = \langle x, x \rangle^{\frac{1}{2}} = \sqrt{\sum_{i=1}^{n} x_i^2}$$

$$||x|| = \sqrt{x_1^2 + x_2^2}$$

It holds that $||x + y|| \le ||x|| + ||y||$ [triangle inequality].

Proof.

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^{2} + 2 \langle x, y \rangle + ||y||^{2}$$

$$\leq ||x||^{2} + 2 ||x|| ||y|| + ||y||^{2}$$
 [see Cauchy-Schwarz inequality]
$$= (||x|| + ||y||)^{2}$$

$$||x - y||^{2} = \langle x - y, x - y \rangle$$

$$= ||x||^{2} - 2 \langle x, y \rangle + ||y||^{2}$$

$$||x + y||^{2} + ||x - y||^{2} = 2 (||x||^{2} + ||y||^{2})$$

Cauchy-Schwarz inequality

Theorem 1.1 (Cauchy-Schwarz inequality).

$$|\langle x, y \rangle| \le ||x|| ||y||$$

Proof.

$$0 \le \langle x - \lambda y, x - \lambda y \rangle = ||x||^2 - 2\lambda \langle x, y \rangle + \lambda^2 ||y||^2 \qquad \forall \lambda \in \mathbb{R}$$
 Let $\lambda = \frac{\langle x, y \rangle}{||y||^2}$. Then,

$$0 \le ||x||^2 - 2 \frac{\left|\langle x, y \rangle\right|^2}{\|y\|^2} + \frac{\left|\langle x, y \rangle\right|^2}{\|y\|^4} \cdot \|y\|^2$$

$$\implies 0 \le ||x||^2 - \frac{\left|\langle x, y \rangle\right|^2}{\|y\|^2}$$

$$\implies \left|\langle x, y \rangle\right|^2 \le ||x||^2 \cdot \|y\|^2$$

Euclidean norm

Definition 1.2. $||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$ is called Euclidean norm (length) of vector $x \in \mathbb{R}^n$. $||x|| = \langle x, x \rangle^{\frac{1}{2}}$ It holds that

- 1. $\|\lambda x\| = |\lambda| \|x\| \, \forall x \in \mathbb{R}^n, \lambda \in \mathbb{R}$
- 2. $||x|| = 0 \iff x = 0 \text{ in } \mathbb{R}^n$
- $3. \ \|x+y\| \le \|x\| + \|y\|$

In general: Let V be a vector space over \mathbb{R} . A map $\|\cdot\|$, which assigns every vector x a non-negative real number satisfying the properties above, is called norm on V. Then $(V, \|\cdot\|)$ is called a normed vector space.

Let $X \subseteq \mathbb{R}^n$ (V is a normed vector space), then d(x, y) = ||x - y|| is a metric on X.

$$||y - x|| = ||(-1)(x - y)|| = |-1| \cdot ||x - y|| = ||x - y||$$

$$d(x, y) = 0 \iff ||x - y|| = 0 \iff x - y = 0 \iff x = y$$

$$d(x, z) = ||z - x|| = ||z - y + y - x|| \le ||z - y|| + ||y - x|| = d(z, y) + d(y, x)$$

Metric space

Example 1.2 (metric space). *Metric space, distance is not a norm. Consider an area in* \mathbb{R}^3 .

d(x, y) is the shortest path, connecting x and y in X. See Figure 1

Example 1.3 (French railway). All connections between two cities pass through Paris except one city is Paris.

Example 1.4. $X = \mathbb{R}^2$. Let $p \in \mathbb{R}^2$ be fixed.

$$d(x,y) = \begin{cases} |x-y| & \text{if } x, y, p \text{ are on one line} \\ |x-p| + |p-y| & \text{if } x, y, p \text{ are not on one line} \end{cases}$$

Open sets, convergence and accumulation points

Now we put some terminology into the context of a metric space. (X, d) is a metric space.

Definition 1.3. *Let* $x \in X$, $r \ge 0$.

$$K_r(x) = \{ z \in X \mid d(x, z) < r \}$$

Is an open sphere with radius r and center x.

Definition 1.4.

$$\overline{K_r(x)} = \{z \in X \mid d(x, z) \le r\}$$

Closed sphere with center x and radius r.

Figure 1: Example in \mathbb{R}^3 . The red line illustrates the shortest path

Definition 1.5 (Sequences in *X*). Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in *X* (hence, $x_n\in X\forall n\in\mathbb{N}$)

1. $(x_n)_{n\in\mathbb{N}}$ is called convergent and limit $x\in X$ if

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : n \geq N \implies d(x_n, x) < \varepsilon$$

Denoted as $\lim_{n\to\infty} x_n = x$.

2. $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence if

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : n, m \ge N \implies d(x_n, x_m) < \varepsilon$$

Every convergent sequence is also a Cauchy sequence.

Proof. Let $(x_n)_{n\in\mathbb{N}}$ be convergent with limit x. Let $\varepsilon > 0$ be arbitrary. Because $(x_n)_{n\in\mathbb{N}}$ is convergent, there exists $N \in \mathbb{N}$ such that $n \geq N \implies d(x_n, x) < \frac{\varepsilon}{2}$. Now let $n, m \geq N$. Then it holds that

$$d(x_n, x_m) \le \underbrace{d(x_n, x)}_{<\frac{\varepsilon}{2}} + \underbrace{d(x, x_m)}_{<\frac{\varepsilon}{2}} < \varepsilon$$

Definition 1.6. (X, d) is called complete metric space if every Cauchy sequence in X is also convergent (has a limit).

 \mathbb{R} is complete. \mathbb{R}^n is also complete. $\mathbb{Q} \subseteq \mathbb{R}$ is incomplete.

Definition 1.7. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of X is called "accumulation point" (dt. Häufungspunkt) of the sequence. $\forall \varepsilon > 0$, it holds that $K_{\varepsilon}(x)$ contains infinitely many sequence elements.

This lecture took place on 2018/03/08.

TODO

$$d(x,y) = 0 \iff x = y$$

$$\forall x, y \in X : d(x,y) = d(y,x)$$

$$d(x,z) \le d(x,y) + d(y,z) \forall x, y, z \in X$$

Norm

Let *V* be a vector space. $\|\cdot\|$ is called *norm on V*.

$$||x|| = 0 \iff x = 0$$

$$\forall \lambda \in \mathbb{R}, \mathbb{C} : \forall x \in V : ||\lambda x|| = |\lambda| ||x||$$

$$\forall x, y, z \in V : ||x + y|| \le ||x|| + ||y||$$

Let $X \subseteq V$ be a subset of normed vector space V. Then X is a metric space with d(x, y) = ||x - y||.

For $V = \mathbb{R}^n$. Then

$$||x|| = \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}}$$

is a norm on \mathbb{R}^n . $||x||_2$ is called *Euclidean norm on* \mathbb{R}^n .

Other norms in \mathbb{R}^n :

$$||x||_{\infty} = \max\{|x_i| | i = 1, ..., n\}$$

 $||x||_1 = \sum_{i=1}^n |x_i|$

for $1 \le p < \infty$.

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Figure 2: Visualizing $||x||_1$

e.g. $||x||_1$ in \mathbb{R}^2

$$||x - y|| = |x_1 - y_1| + |x_1 - y_2|$$

is the so-called *Manhattan metric*.

The concepts "subsequence", "final element of a sequence", "reordering of a sequence" correspond one-by-one to metric spaces.

Definition 1.8 (Accumulation point). Let $(X_n)_{n\in\mathbb{N}}$ be a sequence in X. $x\in X$ is called accumulation point of sequence X if $\forall \varepsilon > 0$ the sphere $K_{\varepsilon}(x)$ contains infinitely many elements.

Lemma 1.1. $x \in X$ is accumulation point of sequence $(x_n)_{n \in \mathbb{N}}$ if and only iff there exists a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ such that $x = \lim_{k \to \infty} x_{n_k}$.

Proof. See Analysis 1 course

Contact point

Let $B \subseteq X$, X is a metric space. Then B with d is a metric space itself.

Figure 3: Contact points in set B

Definition 1.9. *Let* $B \subseteq X$ *and* $x \in X$. *We say,* x *is a* contact point of B *if* $\forall \varepsilon > 0 : K_{\varepsilon}(x) \cap B \neq \emptyset$.

[$y \in X$ is not a contact point of $B \iff \exists \varepsilon > 0 : K_{\varepsilon}(y) \cap B = \emptyset$] See Figure 3.

We let $\overline{B} = \{ x \in X \mid x \text{ is contact point of } B \}.$

 \overline{B} is called closed hull of B.

B is called closed if $B = \overline{B}$, hence, every contact point is also element of *B*.

Remark 1.1. Because $\forall x \in B \text{ holds } K_r(x) \cap B \supseteq \{x\} \forall r > 0 \text{ is } x \text{ always contact point of } B. Also <math>B \subseteq \overline{B}$ (always)

Lemma 1.2. x is contact point of $B \iff \exists (x_n)_{n \in \mathbb{N}} \text{ with } x_n \in B \text{ and } \lim_{n \to \infty} x_n = x.$

Proof. Let *x* be a contact point of *B*.

Direction \Rightarrow : Because $K_{\frac{1}{n}}(x) \cap B \neq \emptyset$, choose $X_n \in K_{\frac{1}{n}}(x) \cap B$. The sequence $(x_n)_{n \in \mathbb{N}}$ has property $d(x_n, x) < \frac{1}{n}$. Let $\varepsilon > 0$ be arbitrary. Choose $N \in \mathbb{N}$ sch that $N > \frac{1}{\varepsilon}$ (consider the Archimedean axiom). Then for $n \geq N$, $d(x_n, x) < \frac{1}{n} \leq \frac{1}{N} < \varepsilon$, hence $\lim_{n \to \infty} x_n = x$.

Direction \Leftarrow : Let $x = \lim_{n \to \infty} x_n$ and $x_n \in B$. Let $\varepsilon > 0$ be arbitrary and $N \in \mathbb{N}$ such that $d(x_n, x) < \varepsilon \forall n \ge N$. Then $d(x_n, x) < \varepsilon$, hence

$$x_N \in \underbrace{K_\varepsilon(x) \cap B}_{\neq \emptyset}$$

So *x* is contact point of *B*.

Lemma 1.3. It holds that $\forall B \subseteq X : \overline{B} = \overline{\overline{B}}$, hence \overline{B} itself is closed.

Proof. Show that $x \in \overline{B}$. Let $x \in \overline{\overline{B}}$.

$$\iff \forall \varepsilon > 0 : K_\varepsilon(x) \cap \overline{B} \neq \emptyset$$

Therefore let $\varepsilon > 0$ be arbitrary and $x \in \overline{B}$.

Show that $K_{\varepsilon}(x) \cap B \neq \emptyset$.

Because $x \in \overline{\overline{B}} : \exists y \in \overline{B} : y \in K_{\frac{\varepsilon}{2}}(x)$. Because $y \in \overline{B} : \exists z \in B : z \in K_{\frac{\varepsilon}{2}}(y)$. Hence,

$$d(z,x) \le \underbrace{d(z,y)}_{<\frac{\varepsilon}{2}} + \underbrace{d(y,x)}_{<\frac{\varepsilon}{2}} < \varepsilon$$

so $z \in K(x, \varepsilon) \cap B$. So x is contact point of $B \implies x \in \overline{B}$.

Lemma 1.4. *Let X be a metric space.*

- $A_i \subseteq X$ be closed $\forall iinI$. Then $A = \bigcap_{i \in I} A_i = \{x \in X | x \in A_i \forall i \in I\}$ is closed itself.
- $A_1, ..., A_n \subseteq X$ are closed. Then $\bigcup_{k=1}^n A_k$ is closed in X.
- φ is closed, X is closed.

Proof. See Analysis 1 course.

Definition 1.10. Let $x \in X$ is called accumulation point of set $B \subseteq X$ if $\forall \varepsilon > 0$: $(K_{\varepsilon}(x) \setminus \{x\}) \cap B \neq \emptyset$.

Remark 1.2. Accumulation points only exist in the context of sets. Accumulation values only exist in the context of sequences.

For example (+1, -1, +1, -1, +1, ...) has accumulation values +1 and -1.

Lemma 1.5. Let $x \in X$ is accumulation point on $B \iff$ every sphere $K_{\varepsilon}(x)$ contains infinitely many points of B.

Proof. Direction \Leftarrow is trivial.

Direction \Rightarrow : Choose $x_1 \in (K_1(x) \setminus \{x\}) \cap B$, hence $x_1 \neq x$, $x_1 \in B$ and $d(x_1, x) < 1$. Let $r_1 = 1$.

Inductive: choose $r_n = \min(\frac{1}{n}, d(x_{n-1}, x))$ and $x_n \in (K_{r_n}(x) \setminus \{x\}) \cap B$. Then $d(x_n, x) > 0$ (because $x_n \neq x$) where $d(x_n, x) < r_n < \frac{1}{n}$.

$$0 < d(x_n, x) < \frac{1}{n}$$

Furthermore, $d(x_n, x) < r_n \le d(x_{n-1}, x)$. So $x_n \ne x_{n-1}$.

Inductive: $x_n \neq x_{n-1} \neq x_{n-2} \neq \cdots \neq x_1$. Now consider arbitrary $\varepsilon > 0$ and N large enough such that $\frac{1}{N} < \varepsilon$.

Then it holds that $\forall n \geq N : 0 < d(x_n, x) < \frac{1}{n} \leq \frac{1}{N} < \varepsilon$. So $K_{\varepsilon}(x) \cap B$ contains infinitely many points $x_N, x_{N+1}, x_{N+2}, \dots$

Definition 1.11. Let $U \subseteq X$ and $x \in U$. We say x is an inner point of U if $\exists r > 0 : K_r(x) \subseteq U$. We let $\mathring{U} = \{x \in U \mid x \text{ is inner point of } U\}$ and call it interior of U (offenen Kern von U or das Innere von U). $O \subseteq X$ is called open (open set), if every point $x \in O$ is also an inner point of O. Hence $\mathring{O} = O$.

Example 1.5. Let $K_r(x)$ with r > 0 be an open sphere in X. Then $K_r(x)$ is an open set in X.

Why? Let $y \in K_r(x)$. Show that y is an inner point of the sphere. d(y,x) = s < r. Define r' = r - s > 0. Claim: $K'_r(y) \subseteq K_r(x)$.

TODO drawing

TODO

So it holds that $z \in K_r(x)$ and therefore $K_{r'}(y) \subseteq K_r(x)$.

Lemma 1.6. Let $U \subseteq X$ be arbitrary. Then $\mathring{U} \subseteq X$ be an open set in X.

Proof. Let $x \in \mathring{U}$, hence x is an inner point of U. Show that x is an inner point of \mathring{U} , also $\exists r > 0 : K_r(x) \subseteq \mathring{U}$.

Because $x \in \mathring{U}$, r > 0 exists: $K_r(x) \subseteq U$. Claim: Every point $y \in K_r(x)$ is also an inner point of U. Obvious (previous example), because r' > 0 exists such that $K_{r'}(y) \subseteq K_r(x) \subseteq U$ so $y \in \mathring{U}$ and $K_r(x) \subseteq \mathring{U}$.

Theorem 1.2. *Let X be a metric space.*

$$A \subseteq X$$
 is closed in $X \iff O = X \setminus A = A^C$ is open

Proof. Direction \Leftarrow . Let *A* be closed and *O* + *A*^C. We choose *x* ∈ *O* and show that *x* is in the interior of *O*.

Assume the opoosite.

$$\forall \varepsilon > 0 : \underbrace{\neg \left(K_\varepsilon(x) \subseteq O \right)}_{\Longleftrightarrow K_\varepsilon(x) \cap O^c \neq \emptyset}$$

where $O^C = A$. So x is contact point of A. Because A is closed, it holds that $x \in A$. This contradicts with $x \in O = A^C$.

Direction \Rightarrow . TODO $K_r(x) \cap \underbrace{A}_{=O^c} = \emptyset$. Hence x is not a contact point of A.

So every contact point of *A* is also an element of *A* and *A* is closed.

Theorem 1.3. *Let X be a metric space. Then it holds that*

- If $O_i \subseteq X$ is open in $X \forall i \in I$. Then also $O = \bigcup_{i \in I} O_i$ is open in X.
- If O_1, O_2, \ldots, O_n is open in X, then $\bigcap_{k=1}^n O_k$ is open in X.
- *X is open,* Ø *is open.*

Proof. By Lemma 1.4, Theorem 1.2 and De Morgan's Laws:

$$\left(\bigcup_{i\in I} A_i\right)^C = \bigcap_{i \in I} A_i^C$$

Topology

Definition 1.12. Given a set X. If a subset $T \subseteq \mathcal{P}(X)$ is defined such that the elements $O \in T$ (hence $O \subseteq X$) satisfy the conditions of Theorem 1.3, then T is called topology on X. (X, T) is called topological space.

The sets $O \in T$ are called open sets in terms of T. The complements $A = O^C$ for $O \in T$ are called closed sets.

Definition 1.13. Let $x \in U \subseteq X$. We claim that U is a neighborhood of x, if r > 0 exists such that $x \in K_r(X) \subseteq U$

See Figure 4

Remark 1.3. $O \subseteq X$ is open iff O is neighborhood of every point $x \in O$.

Definition 1.14. Let X and Y be metric spaces and $x_0 \in X$. Let $f: X \to Y$ be given. We say f is continuous in x_0 if

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x \in X : d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) < \varepsilon$$

Here, d_X is a metric on X and d_Y is a metric on Y.

Figure 4: Neighborhood of *x*

This lecture took place on 2018/03/13.

TODO I missed the first twenty minutes (including Satz 3 and 4)

Proof. Direction \Rightarrow .

Let f be continuous in X and let $O \subseteq Y$ be open. Let $U = f^{-1}(O)$ and choose $x_0 \in U$. Then $f(x_0) \in O$, hence O is a neighborhood of $f(x_0)$. By Theorem 5.2 (b), it follows that $U = f^{-1}(O)$ is a neighborhood of x_0 .

Hence, *U* is neighborhood of every of its points, hence open in *X*.

Direction \Leftarrow .

Let the preimages of open sets be open and $x_0 \in X$ and $y_0 = f(x_0)$. Let V be a neighborhood of $y_0 = f(x_0)$, hence $\exists \varepsilon > 0 : K_{\varepsilon}(f(x_0)) \subseteq V$. Because $K_{\varepsilon}(f(x_0))$ is an open set, it holds that $f^{-1}(K_{\varepsilon}(f(x_0))) \in x_0$ is open in X.

Therefore, there exists $\delta > 0$ such that $K_{\delta}(x_0) \subseteq f^{-1}(K_{\varepsilon}(f(x_0))) \subseteq f^{-1}(V)$. Hence, $f^{-1}(V)$ is a neighborhood of x_0 . Then by Theorem 5.2 (b), it follows that f is continuous in x_0 (chosen arbitrarily). Hence f is continuous on X.

Variations of continuity notions

Definition 2.1. Let $f: X \to Y$ be given. We call "f uniformly continuous on X" if

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x, y \in X \land d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \varepsilon$$

Remark 2.1. *Compare it with the definition of "continuous in X":*

$$\forall x \in X \forall \varepsilon > 0 \exists \delta > 0 : \forall y \in X : d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \varepsilon$$

The difference is the location of the $\forall x \in X$ *quantifier.*

Every uniformly continuous map is continuous.

Example: $f:(0,\infty)\to(0,\infty)$ with $f(x)=\frac{1}{x}$ is continuous, but not continuously continuous.

Definition 2.2. $f: X \to Y$ is called Lipschitz continuous with Lipschitz constant $L \ge 0$ if $\forall x, y \in X: d_Y(f(x), f(y)) \le L \cdot d_X(x, y)$.

Rudolf Lipschitz [1832–1903], University of Bonn

Theorem 2.1. Every Lipschitz continuous function is uniformly continuous.

Proof. For $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{L+1}$. Then it holds that $d_X(x,y) < \delta = \frac{\varepsilon}{L+1} \implies d_Y(f(x),f(y)) \le L \cdot d_X(x,y) < \frac{L}{L+1} \cdot \varepsilon < \varepsilon$.

• Most often $X \subseteq V$, $Y \subseteq W$. V and W are normed vector spaces and d(x,y) = ||x-y||

Definition 2.3. A Lipschitz continuous map $f: X \to X$ with Lipschitz constant L < 1 is called contraction on X. Compare with Figure 5

Theorem 2.2 (Banach fixed-point theorem). Let $f: X \to X$ be a contraction and X be complete. Then there exists a uniquely defined $\hat{x} \in X$ such that $\hat{x} = f(\hat{x})$. \hat{x} is called fixed point on f. Furthermore it holds that $x_0 \in X$ is arbitrary and $x_n = f(x_{n-1})$ for all $n \ge 1$.

$$\lim_{n\to\infty} x_n = \hat{x}$$

TODO drawing Banach's fixed point theorem

Proof. Let $x_0 \in X$ be arbitrary. x_n is constructed inductively by $x_n = f(x_{n-1})$ for all $n \ge 1$.

Claim. $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in X.

Figure 5: A contraction maps to points closer to each other

$$d(x_n, x_{n+k}) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+k-1}, x_{n+k})$$

by triangle inequality

$$= d(x_n, x_{n+1}) + d(f(x_n), f(x_{n+1})) + d(f(x_{n+1}), f(x_n + 2)) + \dots + d(f(x_{n+k-2}), f(x_{n+k-1}))$$

$$\leq d(x_n, x_{n+1}) + L(d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+k-2}, x_{n+k-1}))$$

this inequality is given by contraction

$$= d(x_{n}, x_{n+1})(1 + L) + L (d(f(x_{n}), f(x_{n+1})) + \dots + d(f(x_{n+k-3}), f(x_{n+k-2})))$$

$$\leq d(x_{n}, x_{n+1})(1 + L) + L^{2} [d(x_{n}, x_{n+1} + \dots + d(x_{n+k-3}, x_{n+k-2})]$$

$$\leq \dots \leq d(x_{n}, x_{n+1})(1 + L + L^{2} + \dots + L^{k-1})$$

$$= d(f(x_{n-1}, f(x_{n})) \left(\sum_{j=0}^{k-1} L^{j} \right) \leq Ld(x_{n-1}, x_{n}) \cdot \left(\sum_{j=0}^{k-1} L^{j} \right)$$

$$\leq L^{n} d(x_{0}, x_{1}) \cdot \left(\sum_{j=1}^{k-1} L^{j} \right)$$

$$\leq \sum_{j=0}^{\infty} L^{j} = \frac{1}{1-L}$$

$$\leq \frac{L^{n}}{1-L} d(x_{0}, x_{1}) \forall n \in \mathbb{N} \forall k \in \mathbb{N}_{0}$$

 $d(x_n,x_{n+k}) \le \frac{L^n}{1-L}d(x_0,x_1) \forall n \in \mathbb{N} \forall k \in \mathbb{N}_0$

with $0 \le L < 1$.

$$\frac{L^{n}}{1-L}d(x_{0},x_{1}) < \varepsilon \iff$$

$$L^{n} < \frac{\varepsilon}{d(x_{0},x_{1})+1}(1-L) \qquad (L>0)$$

$$\iff n \underbrace{\ln L}_{<0} < \ln \frac{\varepsilon}{d(x_{0},x_{1})+1}(1-L)$$

$$\iff n > \frac{1}{\ln L} \ln \frac{\varepsilon}{d(x_{0},x_{1})+1}(1-L)$$

Hence $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in X. X is complete, hence $\exists \hat{x} \in X$: $\hat{x} = \lim_{n \to \infty} x_n$. Because $\hat{x} = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(\hat{x})$ where the last equality is given by continuity of f. Therefore $\hat{x} = f(\hat{x})$ is a fixed point on f.

It remains to prove uniqueness:

Let $\tilde{x} = f(\tilde{x})$. Then it holds that $d(\hat{x}, \tilde{x}) = d(f(\hat{x}), f(\tilde{x})) \le Ld(\hat{x}, \tilde{x})$ with L < 1. If $d(\hat{x}, \tilde{x}) > 0$, then $1 \le L$. This is a contradiction. Hence $d(\hat{x}, \tilde{x}) = 0$ must hold, hence $\hat{x} = \tilde{x}$.

• The Fixed Point Theorem provides an algorithm for numeric com-Remark 2.2. putation of \hat{x} .

• It can reformulate problems f(x) = 0 (in \mathbb{R}^n) to

$$f(x) + x = g(x) = x$$

• Attention: The conditions of the Fixed Point Theorem cannot be changed to the structure

$$d(f(x), f(y)) < L \cdot d(x, y) \wedge L \leq 1$$

or

$$d(f(x), f(y)) \le L \cdot d(x, y) \land L < 1$$

This will be discussed in the practicals.

Lemma 2.1. Let X be a complete metric space. Let $A \subseteq X$ be closed. Then (A, d) is itself a complete, metric space.

Proof. Let $(x_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in A ($x_n \in A$). Then $(x_n)_{n\in\mathbb{N}}$ is also a Cauchy sequence in X. Because X is complete, there exists $\hat{x} = \lim_{n\to\infty} x_n$. Therefore \hat{x} is a contact point of A. Because A is closed, it holds that $\hat{x} \in A$.

Therefore every Cauchy sequence in A has a limit point in A, hence A is complete.

Compactness

Definition 3.1. A metric space (X, d) is called compact if every sequence $(x_n)_{n \in \mathbb{N}}$ has a convergent subsequence.

Specifically, this definition is called sequence compactness. The other definition defines compactness as closed and bounded subset of an Euclidean space. The latter definition only works for a subset of branches in mathematics. Therefore the generalization is recommended to be remembered.

Lemma 3.1. *Let X be a compact, metric space. Then X is complete.*

Proof. Let $(x_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in X. By compactness, it follows that $\exists (x_{n_k})_{k\in\mathbb{N}}$ with $\lim_{k\to\infty} x_{n_k} = \hat{x}$. Choose $\varepsilon > 0$ arbitrary and L large enough such that $k \geq L \implies d(x_{n_k}, \hat{x}) < \frac{\varepsilon}{2}$. Furthermore choose $N \in \mathbb{N}$ large enough such that $n, m \geq N \implies d(x_n, x_m) < \frac{\varepsilon}{2}$ (satisfied, because $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence). Choose $K \geq L$ and $n_k \geq N$. Let n_k be fixed this way. Then it holds $\forall n \geq N : d(x_n, \hat{x}) \leq d(x_n, x_{n_k}) + d(x_{n_k}, \hat{x}) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. The first summand $\frac{\varepsilon}{2}$ results from the Cauchy sequence property, the second summand $\frac{\varepsilon}{2}$ results by convergence of (x_{n_k}) . Hence $(x_n)_{n\in\mathbb{N}}$ is convergent with limit \hat{x} .

Definition 3.2. A metric space X is called bounded if there exists $M \ge 0$, such that $d(x, y) \le M \forall x, y \in X$.

It holds for arbitrary $x \in X$ that $\forall y \in X : y \in K_M(x)$. So, $X \subseteq K_M(x)$. On the contrary, let $X \subseteq \overline{K_M(x)}$ and let $y \in X$ and $z \in X$ be arbitrary. Then it holds that $d(y,z) \le d(y,x) + d(x,z) \le M + M = 2M$. Hence, X is bounded.

So, *X* is bounded
$$\iff \exists x \in X \land M \ge 0 : X \subseteq \overline{K_M(x)}$$
.

Lemma 3.2. Every compact, metric space is also bounded.

Proof. Assume *X* is unbounded.

We construct a sequence of points $(x_n)_{n\in\mathbb{N}}$ with $d(x_n,x_m)\geq 1 \forall n,m\in\mathbb{N}$ with $n\neq m$.

We use the following auxiliary result: Let $B = \bigcup_{j=1}^{n} K_1(z_j)$ for arbitrary $n \in \mathbb{N}$ and arbitrary $z_j \in X$. Then B is bounded. This result will be part of the practicals.

We construct $(x_n)_{n\in\mathbb{N}}$ inductively. Choose arbitrary $x_0\in X$. Assume (x_1,\ldots,x_{n-1}) are already found. Then it holds that

$$\underbrace{X}_{\text{unbounded}} \nsubseteq \bigcup_{j=1}^{n-1} K_1(x_j)$$
bounded

hence $\exists x_n \in X \setminus \bigcup_{j=1}^{n-1} K_1(x_j)$. Because $x_n \notin K_1(x_j)$ for $j = 0, \ldots, n-1$ it holds that $d(x_n, x_j) \ge 1 \forall j < n$. We get $(x_n)_{n \in \mathbb{N}}$ with $d(x_n, x_m) \ge 1 \forall n \in \mathbb{N} \forall m < n$, hence $m \ne n$. Because $d(x_n, x_m) \ge 1$, i.e. $(x_n)_{n \in \mathbb{N}}$ does not contain any Cauchy sequence as subsequence, $(x_n)_{n \in \mathbb{N}}$ does not have a convergent subsequence. Therefore X is not compact.

This lecture took place on 2018/03/15.

Every compact metric space is bounded. Every compact metric space is complete. In $\mathbb{C}(\mathbb{R}^n)$ it holds that $A \subseteq \mathbb{C}$ is closed. Then A with metric d(x,y) = |x-y| is complete as metric space.

If *A* is additionally bounded, then *A* is compact (see course Analysis 1, Bolzano-Weierstrass).

Attention! Let V be an infinite-dimensional, complete, normed vector space. For example, $V = C([a,b],\mathbb{R}) = \{f:[a,b] \to \mathbb{R} \mid f \text{ is continuous in } [a,b] \}$ with norm $\|f\|_{\infty} = \max \{|f(x)|: x \in [a,b] \}$ and metric $\|f-g\|_{\infty} = \max \{|f(x)-g(x)|: x \in [a,b] \}$. $C([a,b],\mathbb{R})$ is a complete, normed vector space. It holds that $\overline{K_1(0)}$ is not compact in $C([a,b],\mathbb{R})$ (i.e. V, for every infinite-dimensional vector space).

Again: do not remember "compactness" not as closed and bounded, as this only holds in the finite-dimensional case.

In the last proof, we have shown: If a sequence $(x_n)_{n\in\mathbb{N}}$ with $x_n\in X$ and $d(x_n,x_m)\geq 1$ (or $\geq \varepsilon$) $\forall n\neq m\implies X$ is not compact.

Definition 3.3. X is called totally bounded, if for every $\varepsilon > 0$, finitely many points $X_1^{\varepsilon}, X_2^{\varepsilon}, \ldots, X_{N(\varepsilon)}^{\varepsilon}$ such that $X \subseteq \bigcup_{i=1}^{N(\varepsilon)} K_{\varepsilon}(X_i^{\varepsilon})$.

Hence, for every $x \in X$, there exists some X_i^{ε} such that $d(X, X_i^{\varepsilon}) < \varepsilon$.

Remark 3.1 (For the practicals). Let X be totally bounded, then there does not exist some sequence $(x_n)_{n\in\mathbb{N}}$ with $d(x_n,x_m)\geq \varepsilon \forall n\neq m$. It holds, that X is compact if and only if X is totally bounded and complete.

Theorem 3.1. Let $f: X \to Y$ be continuous. Let X be compact. Then image $f(X) \subseteq Y$ is also compact.

Be aware, that this proof is a common exam question and students often begin with the wrong order.

Proof. Let $(y_n)_{n\in\mathbb{N}}$ be an arbitrary sequence in f(X). Show that $(y_n)_{n\in\mathbb{N}}$ has a convergent subsequence. Because $y_n \in f(X)$, there exists at least one x_n with $y_n = f(x_n)$. Then $(x_n)_{n\in\mathbb{N}}$ is a sequence in X, X is compact, hence there exists a subsequence $(x_{n_k})_{k\in\mathbb{N}}$ with $\lim_{k\to\infty} x_{n_k} = \hat{x} \in X$. Because f is continuous, it holds that $\lim_{k\to\infty} f(x_{n_k}) = \lim_{k\to\infty} y_{n_k} = f(\hat{x}) = \hat{y}$. So $(y_n)_{n\in\mathbb{N}}$ has a convergent subsequence. Hence $f(X) \subseteq Y$ is compact.

Theorem 3.2 (Conclusion). Let X be compact, $f: X \to \mathbb{R}$ continuous on X. Then there exists \underline{x} and $\overline{x} \in X$, such that

$$f(\underline{x}) \le f(x) \le f(\overline{x}) \qquad \forall x \in X$$

Hence, f has a maximum and a minimum.

Proof. $f(X) \subseteq \mathbb{R}$ is compact (Theorem 3.1), hence f(X) is bounded and complete, hence closed in \mathbb{R} . There exists $\xi \in \mathbb{R}$ with $\xi = \sup f(X)$, because f(X) is complete and ξ is a contact point of f(X), it holds that $\xi \in f(X)$, hence $\exists \overline{x} \in X : \xi = f(\overline{x})$. Furthermore, ξ is an upper bound of $f(X) \to f(X) \le \xi = f(\overline{x}) \forall X \in X$.

For *x*, it works the same way.

Theorem 3.3. Let $f: X \to Y$ is continuous on X and X is compact. Then f is uniformly continuous on X.

Indirect proof. Assume X is compact, $f: X \to Y$ is continuous, but not uniformly continuous. Uniform continuity:

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x, y \in X : d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \varepsilon$$

Not uniformly continuous:

$$\exists \varepsilon > 0 \forall \delta_n = \frac{1}{n} (n \in \mathbb{N}) \exists x_n, y_n \in X : d_X(x_n, y_n) < \frac{1}{n} \land d_Y(f(x_n), f(y_n)) \ge \varepsilon$$

Now choose some (x_n) and (y_n) . We will use a specific ε later. Because X is compact, there exists a convergent subsequence of $(x_n)_{n \in \mathbb{N}}$, hence $\lim_{k \to \infty} x_{n_k} = \hat{x}$. The sequence $(y_{n_k})_{k \in \mathbb{N}}$ has a convergent subsequence itself:

$$\lim_{l\to\infty}y_{(n_k)_l}=\hat{y}$$

Because $(x_{n_k})_{n \in \mathbb{N}}$ is convergent, the subsequence $(x_{(n_k)_l})_{l \in \mathbb{N}}$ converges towards the same limit \hat{x} .

$$\tilde{x}_l \coloneqq x_{n_{k_l}} \qquad \tilde{y}_l \coloneqq y_{n_{k_l}}$$

because $l \le x_{n_l}$ and

$$d_X(\tilde{x}_l, \tilde{y}_l) = d_X(x_{n_{k_l}}, y_{n_{k_l}}) \underbrace{\qquad}_{\text{by assumption}} \frac{1}{n_{k_l}} \le \frac{1}{l}$$

Claim. For $\hat{x} = \lim_{l \to \infty} \tilde{x}_l$ and $\hat{y} = \lim_{l \to \infty} \tilde{y}_l$, it holds that $\hat{x} = \hat{y}$. Let $\varepsilon' > 0$ be arbitrary, l large enough such that

- $\frac{1}{l} < \frac{\varepsilon'}{3}$
- $d_X(\tilde{x}_l, \hat{x}) < \frac{\varepsilon'}{3}$
- $d_X(\tilde{y}_l, \hat{y}) < \frac{\varepsilon'}{3}$

Therefore it holds that

$$d_X(\hat{x},\hat{y}) \leq d_X(\hat{x},\tilde{x}_l) + d_X(\tilde{x}_l,\tilde{y}_l) + d_X(\tilde{y}_l,\hat{y}) < \frac{\varepsilon'}{3} + \frac{1}{l} + \frac{\varepsilon'}{3} < \varepsilon'$$

Therefore it holds that $d_X(\hat{x}, \hat{y}) = 0$, hence $\hat{x} = \hat{y}$. Because f is continuous and $\tilde{x}_l \to \hat{x}$ and $\tilde{y}_l \to \hat{x}$, there exists $l \in \mathbb{N}$ such that

$$d_Y(f(\tilde{x}_l),f(\hat{x}))<\frac{\varepsilon}{2}$$

and also

$$d_Y(f(\tilde{y}_l),f(\hat{x}))<\frac{\varepsilon}{2}$$

where ε is the epsilon from the very beginning of the proof.

$$\implies d_Y(f(\tilde{x}_l), f(\hat{x})) + d_Y(f(\tilde{y}_l), f(\hat{x})) < \varepsilon$$

This contradicts to

$$d_Y(f(\tilde{x}_l), f(\tilde{y}_l)) = d_Y(f(x_{n_{k_l}}), f(y_{n_{k_l}})) \ge \varepsilon$$

Hence, *f* is uniformly continuous.

Subsets of $(\mathbb{R}^n, \|\cdot\|)$ (or $(V, \|\cdot\|)$) as metric spaces.

We consider $\Omega \subseteq V$ where V is a normed vector space. (Ω, d) is d(x, y) = ||x - y|| is a metric space.

$$K_r^{\Omega}(x) = \left\{ y \in \Omega \, \middle| \, \left\| y - x \right\| < r \right\}$$

is a sphere with center x and radius r in Ω .

$$K_r^V(x) = \{ y \in V \mid ||y - x|| < r \}$$

obvious: $K_r^{\Omega}(x) = \Omega \cap K_r^{V}(x)$.

TODO drawing 08

Lemma 3.3. Let $O' \subseteq \Omega \subseteq V$.

Then it holds that O' is open in $\Omega \iff$ there exists $O \subseteq V$ is open in V such that $O' = O \cap \Omega$.

Proof. \Rightarrow Let $O' \subseteq \Omega$ be open in Ω and $x \in O'$ be arbitrary. Then there exists $r(x) > 0 : x \in K^{\Omega}_{r(x)}(x) = K^{V}_{r(x)}(x) \cap \Omega \subseteq O'$. Then it holds that

$$O' = \bigcup_{x \in O'} = \{x\} \subseteq \bigcup_{x \in O'} K_{r(x)}^{\Omega}(x) = \left(\bigcup_{x \in O'} (K_{r(x)}^{V}(x)) \cap \Omega\right) = \left(\bigcup_{x \in O'} K_{r(x)}^{V}(x)\right) \cap \Omega \subseteq O'$$

$$= O \subseteq V \text{ is open in } V$$

So every \subseteq in this inclusion chain is actually an equality. So $O' = O \cap \Omega$.

 \Leftarrow Let $O' = O \cap \Omega$ and $x \in O'$ be chosen arbitrarily. Because $x \in O$ and O is open in V.

$$\exists r > 0 : K_r^V(x) \subseteq O \implies \underbrace{K_r^V(x) \cap \Omega}_{-K^\Omega(x)} \subseteq O \cap \Omega = O'$$

So O' is open in Ω .

Remark 3.2. $A' \subseteq \Omega$ is closed in $\Omega \iff \exists A \subseteq V$ closed in V with $A' = A \cap \Omega$.

Remark 3.3. Let T be an arbitrary topological space with topology τ on T (a system of open sets). Furthermore let $\Omega \subseteq T$.

Then Ω itself is a topological space with $O' \subseteq \Omega$ is open $\iff \exists O \subset T$ open in T with $O' = O \cap \Omega$.

Also called "subspace topology", "trace topology" or "relative topology".

Attention!

$$O' \subseteq \Omega$$
 open in $\Omega \implies O'$ open in V

does *not* hold in general.

Example 3.1.

$$\Omega = [0,1] \cap [0,1)$$

 $K_{\frac{1}{2}}(p) \cap \Omega$ is open in Ω but not open in \mathbb{R}^2 .

Analogously,

$$A' \subseteq \Omega$$
 is closed $\implies A'$ closed in V

does not hold in general.

Remark 3.4. *K* is compact in $\Omega \implies K$ is compact in V

Let $(x_n)_{n\in\mathbb{N}}$ is a sequence in K. Compactness $\implies \exists (x_{n_k})_{k\in\mathbb{N}} : x_{n_k} \to \hat{x} \text{ for } k \to \infty$ and $K \subseteq \Omega \subseteq V$.

Then $(x_n)_{n\in\mathbb{N}}$ also has a convergent subsequence in V.

Normed vector spaces

Definition 3.4. Let V be a vector space and $\|\cdot\|_1$ and $\|\cdot\|_2$ are normed on V. We say, $\|\cdot\|_1$ is equivalent to norm $\|\cdot\|_2$, if $0 < m \le M$ exist such that

$$m \|v\|_1 \le \|v\|_2 \le M \|v\|_1 \, \forall v \in V$$

Remark 3.5. Equivalence of norms is an equivalence relation.

reflexivity Let m = M = 1. TODO **symmetry**

$$m \|v\|_{1} \leq \|v\|_{2} \implies \|v\|_{1} \leq \frac{1}{m} \|v\|_{2} \wedge \|v\|_{2} \leq M \cdot \|v\|_{1} \implies \frac{1}{M} \|v\|_{2} \leq \|v\|_{1}$$

$$\implies \underbrace{\frac{1}{M}}_{m'} \|v\|_{2} \leq \|v_{1}\| \leq \underbrace{\frac{1}{m}}_{M'} \|v\|_{2}$$

hence the equivalence relations of norms are symmetrical.

transitivity Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be equivalent. Let $\|\cdot\|_2$ and $\|\cdot\|_3$ be equivalent.

$$\begin{split} m \cdot ||v||_1 &\leq ||v||_2 \leq M \, ||v||_1 \, \forall v \in V \\ m' \cdot ||v||_2 &\leq ||v||_3 \leq M' \, ||v||_2 \, \forall v \in V \\ \Longrightarrow m \cdot m' \, ||v||_1 \leq m' \, ||v||_2 \leq ||v||_3 \leq M' \, ||v||_2 \leq M \cdot M' \, ||v||_1 \end{split}$$

This lecture took place on 2018/03/20.

Addendum:

• Let $(x_n)_{n\in\mathbb{N}}$ be in (X, d), then it holds that

$$\underbrace{x = \lim_{n \to \infty} x_n}_{\text{in } X} \iff \underbrace{\lim_{n \to \infty} d(x_n, x) = 0}_{\text{in } \mathbb{R}}$$

 $(\iff \lim_{n\to\infty} ||x_n - x|| = 0 \text{ in normed vector spaces } V)$

• Inversed triangle inequality: Let *V* be a normed vector space. Let $x, y \in V$.

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||$$

Hence,

$$||x|| - ||y|| \le ||x - y||$$

By exchanging x and y,

$$||y|| - ||x|| \le ||x - y||$$

Hence, it holds that

$$\big|||x|| - \big||y\big||\big| \le \big||x - y\big||$$

• Define the map $n: V \to [0, \infty)$ on $(V, \|\cdot\|)$ with $n(x) = \|x\|$. Then n is continuous on V because

$$|n(x_1) - n(x_2)| = |||x_1|| - ||x_2||| \le ||x_1 - x_2||$$

Hence, *n* is Lipschitz continuous with constant 1.

Regarding the equivalence of norms:

Lemma 3.4. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be equivalent norms on V. Then it holds that

- 1. $\lim_{n\to\infty} ||x_n x||_1 = 0 \iff \lim_{n\to\infty} ||x_n x||_2 = 0$, hence $(x_n)_{n\in\mathbb{N}}$ is convergent with limit x in regards of $||\cdot||_1 \iff (x_n)_{n\in\mathbb{N}}$ is convergent with limit x in regards of $||\cdot||_2$.
- 2. $O \subseteq V$ is open in regards of $\|\cdot\|_1 \iff O$ is open in regards of $\|\cdot\|_2$, hence $\tau_1 = \tau_2$ (topologies are equivalent).
- 3. $K \subseteq V$ is compact in regards of $\|\cdot\|_1 \iff K$ is compact in regards of $\|\cdot\|_2$.

Proof. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent, hence $\exists m, M > 0 : m \|x\|_1 \le \|x\|_2 \le M \|x\|_1 \ \forall x \in V$.

1. Let $\varepsilon > 0$ and $\lim_{n \to \infty} ||x_n - x||_1 = 0$. Choose $N \in \mathbb{N}$ such that $n \ge N \implies ||x_n - x||_1 < \frac{\varepsilon}{M}$. For those n it holds that

$$||x_n - x||_2 \le M ||x_n - x||_1 < \frac{\varepsilon}{M} \cdot M = \varepsilon$$

Hence, $\lim_{n\to\infty} ||x_n - x||_2 = 0$.

2. $K_r^2(x) = \{ y \in V | ||y - x||_2 < r \}$. For $y \in K_r^2(x)$ it holds that

$$m \|y - x\|_1 \le \|y - x\|_2 < r$$

hence,

$$\|y-x\|_1 < \frac{r}{m} \implies y \in K^1_{\frac{r}{m}}(x)$$

hence $K_r^2(x) \subseteq K_{\frac{r}{M}}^1(x)$. Let $y \in K_{\frac{r}{M}}^1(x)$. Then it holds that,

$$||y - x||_2 \le M ||y - x||_1 < M \cdot \frac{r}{M} = r$$

hence $y \in K_r^2(x)$. $\Longrightarrow K_{\frac{r}{M}}^1(x) \subseteq K_r^2(x)$. Now let O be open in regards of $\|\cdot\|_2$, hence

$$\forall x \in O \exists r > 0: K^2_r(x) \subseteq O \implies K^1_{\frac{r}{M}}(x) \subseteq K^2_r(x) \subseteq O$$

so O is open in regards of $\|\cdot\|_1 \implies O$ is open in regards of $\|\cdot\|_2$ analogously.

3. Let K be compact in regards of $\|\cdot\|_1$ and $(x_n)_{n\in\mathbb{N}}$ be a sequence in K. Then there exists a subsequence $(x_{n_k})_{k\in\mathbb{N}}$ with $\|x_{n_k} - x\|_1 \to 0$ for $k \to \infty$ $\xrightarrow{\text{by the first property}} \|x_{n_k} - x\|_2 \to 0$. Hence $(x_{n_k})_{k\in\mathbb{N}}$ is also a convergent subsequence in regards of $\|\cdot\|_2$.

Remark 3.6 (Proven in the practicals). Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}^k

$$||x||_{\infty} = \max\left\{\left|x^{i}\right| \mid i=1,\ldots,n\right\}$$

$$x = \begin{bmatrix} x^1 \\ x^2 \\ \vdots \\ x^k \end{bmatrix}$$

It holds that $\lim_{n\to\infty} ||x_n - x||_{\infty} = 0 \iff \lim_{n\to\infty} |x_n^i - x^i| = 0$ for all $i \in \{1, \dots, k\}$.

Theorem 3.4 (Bolzano-Weierstrass theorem in \mathbb{R}^k). Let $K \subseteq \mathbb{R}^k$ be closed and bounded. Then K is compact in $(\mathbb{R}^k, \|\cdot\|_{\infty})$.

Proof. Let $||x||_{\infty} \leq M \forall x \in K \iff |x^i| \leq M \forall x \in K \text{ and } i \in \{1, ..., k\}$. Choose $(x_n)_{n \in \mathbb{N}}$ an arbitrary sequence in $K(x_n^i)_{n \in \mathbb{N}}$ is a bounded sequence in \mathbb{R} . Because $(x_n^1)_{n \in \mathbb{N}}$ is bounded, there exists a convergent subsequence $(x_{n_{i_1}}^1)_{i_1 \in \mathbb{N}}$

$$\lim_{l_1 \to \infty} x_{n_{l_1}}^1 = x^1$$

Consider $(x_{n_{l_1}}^2)_{l_1\in\mathbb{N}}$, a subsequence of a bounded sequence, hence bounded itself. By the Bolzano-Weierstrass theorem in \mathbb{R} , there exists a convergent subsequence $(x_{n_{l_{1}l_2}}^2)_{l_2\in\mathbb{N}}$ with $\lim_{l_2\to\infty}x_{n_{l_{1}l_2}}^2=x^2$. Consider $x_{n_{l_{1}l_2}}^1$ as subsequence of $x_{n_{l_1}}^1$ is already convergent, hence $\lim_{l_2\to\infty}x_{n_{l_{1}l_2}}^1=x^1$. Furthermore, up to index i, it holds that:

$$\lim_{l_k \to \infty} x_{n_{l_{1l_2...l_k}}} = x^i \qquad \text{for } i = 1, ..., k$$

Hence, with $\tilde{x_{l_k}} = x_{n_{l_{1_{l_2...l_k}}}}$ gives a subsequence of x_n , converging by each coordinate. Thus,

$$\lim_{l_k \to \infty} \left\| \tilde{x}_{l_k} - x \right\|_{\infty} = 0$$

Because $\tilde{x}_{l_n} \in K$ and K be closed, it holds that $x \in K$. Hence K is compact.

Theorem 3.5 (Norm equivalence in \mathbb{R}^k). *In* \mathbb{R}^k , *all norms are equivalent.*

Proof. We show: Let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^n . Then $\|\cdot\|$ is equivalent to $\|\cdot\|_{\infty}$. By transitivity of norm equivalence, two arbitrary norms are equivalent to each other.

1. Let (e_1, e_2, \dots, e_k) be the canonical basis in \mathbb{R}^k .

$$x = \begin{bmatrix} x^1 \\ \vdots \\ x^k \end{bmatrix} = \sum_{j=1}^k x^j e_j$$

Furthermore let $M' = \max\{\|e_j\| : j = 1, ..., k\}$ with $\|e_j\| \neq 0$ and M' > 0. Then it holds that

$$||x|| = \left\| \sum_{j=1}^{k} x^{j} e_{j} \right\| \leq \sum_{j=1}^{k} \left\| x^{j} e_{j} \right\| = \sum_{j=1}^{k} \left| x^{j} \right| \left\| e_{j} \right\| \leq M' \sum_{j=1}^{k} \underbrace{\left| x_{j} \right|}_{\leq ||x||} \leq \underbrace{M' \cdot k}_{M} ||x||_{\infty} = M ||x||_{\infty}$$

2. We consider $\nu : \mathbb{R}^k \to [0, \infty)$. $\nu(x) = ||x||$ as map on $(\mathbb{R}^k, ||\cdot||_{\infty})$.

Claim. v is continuous on $(\mathbb{R}^k, ||\cdot||_{\infty})$.

Proof. Show that,

$$|v(x) - v(y)| = |||x|| - ||y||| \le ||x - y|| \le M ||x - y||$$
inversed triangle ineq. because of (1)

Hence ν is Lipschitz continuous.

Figure 6: Illustration of a partition

We consider $S_{\infty}^{k-1} = \{x \in \mathbb{R}^k\} ||x||_{\infty} = 1 = \text{boundary}(K_1^{\infty}(0), S_{\infty}^{k-1} \text{ is bounded.})$

Let $(x_n)_{n\in\mathbb{N}}$ is a sequence in S^{k-1}_{∞} with $x=\lim_{n\to\infty}x_n$. Because $n(x)=\|x\|_{\infty}$ is continuous, it holds that

$$\lim_{n \to \infty} ||x_n||_{\infty} = ||x||$$
=1 =1

Hence $x \in S_{\infty}^{k-1}$. Hence, S_{∞}^{k-1} is closed in $(\mathbb{R}^k, \|\cdot\|_{\infty})$. Hence S_{∞}^{k-1} is compact in $(\mathbb{R}^k, \|\cdot\|_{\infty})$, $\nu: S_{\infty}^{k-1} \to [0, \infty)$, with S_{∞}^{k-1} compact, is continuous. Has

a minimum n on S_{∞}^{k-1} . Thus there exists $\overline{x} \in S_{\infty}^{k-1} : \underline{m} = \left\| \underline{\overline{x}} \right\| \le 1$

 $||x|| \forall x \in S_{\infty}^{-1}$. Let $x \in \mathbb{R}^k$ be arbitrary with $x \neq 0$. Then it holds that $\frac{x}{||x||_{\infty}} \in S_{\infty}^{k-1}$ and it holds that

$$m \le \left\| \frac{x}{\|x\|_{\infty}} \right\| = \frac{1}{\|x_{\infty}\|} \|x\| \implies m \|x\|_{\infty} \le \|x\|$$

Inequality also holds true for x = 0.

Integral calculus

Definition 4.1. Let a < b with $a, b \in \mathbb{R}$. We consider functions of [a, b]. We call $(x_j)_{j=0}^n$ a partition of [a, b] if $a = x_0 < x_1 < x_2 < \cdots < x_n = b$. x_j decomposes [a, b] in subintervals (x_{j-1}, x_j) . $\varphi : [a, b] \to \mathbb{R}$ is called step function in [a, b] in regards of partition $(x_j)_{j=0}^n$ if $\varphi|_{(x_{j-1}, x_j)} = c_j$, so constant for $j = 1, \ldots, n$.

 φ is called step function in [a, b] if there exists a partition such that φ is a subsequence.

$$\tau[a,b] = \{\varphi : [a,b] \to \mathbb{R} : \varphi \text{ is subsequence}\}$$

• Let $(\xi_i)_{i=0}^m$ be a partition of [a,b] and $(x_j)_{i=0}^n$ is a partition as well. Then we call $(\xi_i)_{i=0}^m$ a refinement of [a,b] and $(x_i)_{i=1}^n$ as well. Then $(\xi_i)_{i=0}^n$ is a refinement of $(x_j)_{i=0}^k \text{ if } \{x_0, x_1, \dots, x_n\} \subseteq \{\xi_0, \xi_1, \dots, \xi_m\}$

TODO drawing

Functions values in boundaries x_{i-1} and x_i do not have any constraints and will be relevant for an integral. A φ can be a step function in terms of many, various partitions.

Lemma 4.1. Let $\varphi \in \tau[a,b]$ be a step function in terms of partition $(x_j)_{j=0}^n$ and let $(x_i)_{i=0}^n$ be a refinement of $(x_j)_{i=0}^n$ in terms of $(x_i)_{i=0}^m$.

Proof. Refinement: For every $j \in \{0, ..., n\}$ there exists $i_j \in \{0, ..., m\}$ such that $X_j = \xi_{i_j}$. $i_0 = 0$, $i_n = m$. $i_{j-1} < i_j$.

Let $i \in \{1, ..., m\}$. Then there exists a uniquely determined $j \in \{1, ..., n\}$ such that $\xi_{i-1} < \xi_i \le \xi_j$

TODO drawing

Then it holds that $(\xi_{i-1}, \xi_i) \subseteq \underbrace{(\xi_{i_{j-1}})}_{=(x_{j-1}, x_j)}$, ξ_{i_j} and $\varphi|_{(\xi_{i-1}, \xi_j)} = c_j = \text{const.}$ So φ is a subsequence in regards of $(\xi_i)_{i=0}^m$.

Definition 4.2. Let $\varphi \in \tau[a,b]$ in terms of partition $(X_j)_{j=0}^n$ with $\varphi|_{(X_{j-1},X_j)} = c_j$ and $\Delta X_i = X_i - X_{j-1} > 0$ for g = 1, ..., n. Then we define ...

$$\int_{a}^{b} \varphi \, dx = \sum_{j=1}^{n} c_{j} \triangle x_{j}$$

is called integral of φ in terms of partition $(x_i)_{i=0}^n$

This lecture took place on 2018/03/22.

Step function φ . $\varphi|_{x_{i-1},x_i} = c_i$

$$\delta x_j = x_j - x_{j-1}$$

$$\int_a^b \varphi \, dx = \sum_{j=1}^n c_j \cdot \delta x_j$$

Lemma 4.2. Let $(x_i)_{i=0}^n$ be a partition of [a,b] and $(\xi_i)_{i=0}^m$ be a refinement of $(x_j)_{j=0}^n$. Furthermore let φ be a subsequence with respect to $(x_j)_{i=0}^n$ (so also with respect to $(\xi_j)_{i=0}^m$). Then the integrals of φ with respect to $(x_j)_{i=0}^n$ and $(\xi_i)_{i=0}^m$ are equal.

Figure 7: Integral of a step function as sum of areas of rectangles

Proof. There exist indices i_j for j = 0, n such that $x_j = \xi_{ij}$.

$$i_{0} = 0 i_{n} = m i_{j-1} < i_{j}$$

$$\delta x_{j} = x_{j} - x_{j-1} = \xi_{i_{j}} - \xi_{i_{j-1}} = \xi_{i_{j}} - \xi_{i_{j-1}} = \sum_{\substack{i=i_{j-1}+1\\ \text{telescoping sum}}}^{i_{j}} (\xi_{i} - \xi_{i-1}) = \sum_{\substack{i=i_{j-1}+1\\ \text{telescoping sum}}}^{i_{j}} \delta \xi_{i}$$

$$\varphi|_{x_{j-1},x_{j}} = c_{j} \implies \varphi|_{(\xi_{i-1},\xi_{i})} = c_{j} \text{ for } i = i_{j-1} + 1, \dots, i_{j}$$

$$\tilde{c}_{i} = \varphi|_{(\xi_{i-1},\xi_{i})}$$

$$\sum_{\substack{i=1\\ \text{integral of } \varphi \text{ w.r.t } (\xi_{i})_{i=0}^{m}}}^{m} \tilde{c}_{i}\delta \xi_{i} = \sum_{j=1}^{n} c_{j} \sum_{\substack{i=i_{j-1}+1\\ \text{supply}}}^{i_{j}} \delta \xi_{i} = \sum_{j=1}^{n} c_{j} \delta x_{j}$$

$$\text{integral of } \varphi \text{ w.r.t } (\xi_{i})_{i=0}^{m}$$

This is the integral of φ with respect to $(x_j)_{j=0}^n$.

Lemma 4.3. Let φ be a step function with respect to $(x_j)_{j=0}^n$ and $(w_i)_{i=0}^L$. Then the integrals of φ with respect to $(x_j)_{j=0}^n$ and with respect to $(w_l)_{l=0}^L$ equal.

Proof. Let $\{\xi_i \mid i=1,\ldots,m\} = \{x_j \mid j=0,\ldots,n\} \cup \{w_l \mid l=0,\ldots,L\}$ with $\xi_0=a$, $\xi_m=x_n=w_L=b$ and $\xi_{i-1}<\xi_i$ for $i=1,\ldots,m$. Then $(\xi_i)_{i=0}^m$ is a refinement of $(x_j)_{j=0}^n$ as well as $(w_l)_{l=0}^L$. By Lemma 4.2, the integral of φ with respect to $(x_j)_{j=0}^n=0$ integral of φ with respect to $(\xi_i)_{i=1}^m=0$ integral of φ with respect to $(w_l)_{l=0}^L$. Here we discard the statement "with respect to $(x_j)_{j=0}^n$ ".

Lemma 4.4. *Let* f, g *be step functions on* [a,b]. f, $g \in \tau[a,b]$.

• for $\alpha, \beta \in \mathbb{R}$, let $\alpha f + \beta g \in \tau[a, b]$ and

$$\int_{a}^{b} (\alpha f + \beta g) dx = \alpha \int_{a}^{b} f dx + \beta \int_{a}^{b} g dx$$

Hence, the integral is linear on [a,b]. $\tau[a,b]$ is a vector space.

- $f \le g$ in [a,b], then $\int_a^b f dx \le \int_a^b g dx$ (monotonicity).
- $\left| \int_a^b f \, dx \right| \le \int_a^b \left| f \right| \, dx \, (\left| f(x) \right| s \text{ also a step function})$

Proof. 1. Let $f, g \in \tau[a, b]$. Let $(\xi_i)_{i=0}^m$ be a partition such that $f|_{(\xi_{i-1}, \xi_i)} = c_i$ and $g|_{(\xi_{i-1}, \xi_i)} = d_i$. Then

$$\int_{a}^{b} (\alpha f + \beta g) dx = \sum_{i=1}^{m} (\alpha c_{i} + \beta d_{i}) \delta \xi_{i} = \alpha \sum_{i=1}^{m} c_{i} \delta \xi_{i} + \beta \sum_{i=1}^{m} d_{i} \delta \xi_{i} = \alpha \int_{a}^{b} f dx + \beta \int_{a}^{b} g dx$$

Furthermore,

$$(\alpha f + \beta g)|_{(\xi_{i-1},\xi_i)} = \alpha c_i + \beta d_i = \text{const.}$$

Thus,

$$\alpha f + \beta g \in \tau[a,b]$$

- 2. Let $h \in \tau[a, b]$ with $h(x) \ge 0 \forall x \in [a, b]$ be a step function and $\int_a^b h \, dx = \sum_{i=1}^m \underbrace{h_i}_{\ge 0} \delta \xi_i \ge 0$ TODO Hence, it holds that $0 \le \int_a^b h \, dx = \int_a^b (g f) \, dx = \int_a^b g \, dx \int_a^b f \, dx$.
- 3. $f \le |f|$, hence $\int_a^b f dx \le \int_a^b |f| dx$ and also $-f \le |f|$, so

$$\int_{a}^{b} (-f) dx = -\int_{a}^{b} f dx \le \int_{a}^{b} |f| dx$$

$$\implies \left| \int_{a}^{b} f dx \right| \le \int_{a}^{b} |f| dx$$

It is left to prove: $|f| \in \tau[a, b]$ (i.e. |f| is a step function)

Let $f|_{(\xi_{i-1},\xi_i)} = c_i \implies |f||_{(\xi_{i-1},\xi_i)} = |c_i| = \text{constant. Hence } |f| \in \tau[a,b].$

Definition 4.3. Let $a \subseteq \mathbb{R}^k$. We call $\chi_A : \mathbb{R}^n \to \mathbb{R}$ with

$$\chi_A(x) = \begin{cases} 1 & if \ x \in A \\ 0 & else \end{cases}$$

a characteristic function (indicator function) of set A. Often denoted as $\chi_A = 1$.

Remark 4.1. TODO drawings

Let A = (a',b') with $a \le a' < b' \le b$. Then $\chi_{(a',b')} \in \tau[a,b]$. Also for $x \in [a,b]$, it holds that $\chi_{\{x\}} = \tau[a,b]$. Therefore every linear combination of characteristic functions of open subintervals (a',b') of [a,b] as characteristic functions of one-point sets $\chi_{\{x\}}, x \in [a,b]$ a step function on [a,b].

$$\sum_{i=1}^n \alpha_j \chi_{(a_j,b_j)} + \sum_{k=1}^m \beta_k \chi_{\{x_k\}} \in \tau[a,b]$$

On the opposite, $f \in \tau[a,b]$, hence

$$f|_{(x_{j-1},x_j)} = c_j$$
 and $f(x_j) = d_j$

$$f = \sum_{i=1}^{n} c_j \chi_{(x_{j-1}, x_j)} + \sum_{i=0}^{n} d_j \chi_{\{x_j\}} = (*)$$

for $x \in (x_{i-1}, x_i)$ it holds that $\xi_{(x_{i-1}, x_i)}(x) = 1$.

$$\chi_{(x_{l-1},x_l)}(x) = 0$$
 for $l \neq j$

$$\chi_{\{x_l\}}(x) = 0$$
 for $l = 0, ..., n$

i.e. $\sum_{j=1}^{n} c_{l}\chi_{(x_{l-1},x_{l})}(x) + \sum_{l=0}^{n} d_{j}\chi_{\{x_{l}\}}(x) = c_{j} \cdot 1 + 0 = c_{j}$ hence $(*) = c_{j}$ on (x_{j-1},x_{j}) . Therefore $f \in \tau[a,b] \iff f$ is linear combination of characteristic functions of open intervals or one-pointed sets.

Regulated functions

Definition 4.4. Let X be a metric space $A \subseteq X$ and $x \in X$ is an accumulating point¹ of A. Let $f: A \to \mathbb{R}$. We say, f has limit $c \in \mathbb{R}$ in x ($\lim_{\xi \to x} f(\xi) = c$) if

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall \xi \in A, \xi \neq x \text{ and } d(\xi, x) < \delta : \left| f(\xi) - c \right| < \varepsilon$$

¹An accumulation point has 3 equivalent definitions (sequence, intersection, infinitely many elements in sphere).

Remark 4.2. $x \in A$ and $c = f(x) \implies f$ is continuous in x.

We usually consider $A = [a, b] \subseteq \mathbb{R}$, $x \in [a, b]$.

It is possible, that f in x has a limit, $x \in A$ and $c = \lim_{\xi \to x} f(\xi) \neq f(x)$.

TODO drawing

Definition 4.5. Now let $A \subseteq \mathbb{R}$ and x is a accumulation point of A. Let $f: A \to \mathbb{R}$ be given. We say f has a right-sided limit c in x with $c = \lim_{\xi \to x^+} f(\xi) = c$ if $\forall \varepsilon > 0 \exists \delta > 0: \forall \xi \in A, \xi > x$

$$\wedge |\xi - x| = \xi - x < \delta \implies |f(\xi) - c| < \varepsilon$$

The left-sided limit follows analogously.

$$c = \lim_{\xi \to x^{-}} f(\xi)$$

$$c = \lim_{\xi \to x^+} f(\xi) \qquad d = \lim_{\xi \to x^-} f(\xi)$$

TODO drawing

Lemma 4.5 (Sequence criterion for limits of functions). *Let* $f : A \subseteq X \to \mathbb{R}$ *be given.* x *is an accumulation point of* A. *Then it holds that*

$$\lim_{\xi \to x} f(\xi) = c \iff \forall (\xi_n)_{n \in \mathbb{N}} : \xi_n \in A, \xi_n \neq x \ and \ \lim_{n \to \infty} \xi_n = x \ it \ holds \ that \ \lim_{n \to \infty} f(\xi_n) = c$$

For one-sided limits $A \subseteq \mathbb{R}$ it holds that

$$c = \lim_{\xi \to x^+} f(\xi) \iff \forall (\xi_n)_{n \in \mathbb{N}} : \xi \in A \qquad \xi_n > x \ with \ \lim_{n \to \infty} \xi_n = x \ it \ holds \ that \ \lim_{n \to \infty} f(\xi_n) = c$$

Remark 4.3. Attention! We, therefore, use two different definitions of limits.

Lemma 4.6 (Cauchy criterion of limits of functions). Let $f: A \subseteq X \to \mathbb{R}$. Let x be an accumulation point of A. Let X be a metric space. Then it holds that f has a limit in x if and only if

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall \xi, \eta \in A : \xi \neq x_i : \eta \neq x :$$

with $d(\xi, x) < \delta$ and $d(\eta, x) < \delta$ it holds that $|f(\xi) - f(\eta)| < \varepsilon$. Analogously for one-sided limits with $A \subseteq \mathbb{R}$. Additionally, we need the constraint that $\xi > X$ and $\eta > x$ for $\lim_{\xi \to x^+} f(\xi)$ or equivalently, $\xi < x$ and $\eta < x$ for $\lim_{\xi \to x^-} f(\xi)$.

TODO normalize and visualize equivalent statements for left-sided and right-sided limit (using Ring's notes)

Proof. \Leftarrow Let $c = \lim_{\xi \to x} f(\xi)$ and let $\varepsilon > 0$ be chosen arbitrarily. Then there exists $\delta > 0$ such that $d(\xi, x) < \delta$ and $\xi \neq x$

$$\implies \left| f(\xi) - c \right| < \frac{\varepsilon}{2}$$

For ξ , η : $d(\xi, x) < \delta$ and $d(\eta, x) < \delta$ with ξ , $\eta \neq x$ is therefore

$$\left| f(\xi) - f(\eta) \right| = \left| f(\xi) - c + c - f(\eta) \right| \le \left| f(\xi) - c \right| + \left| f(\eta) - c \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{=} \varepsilon$$

- ⇒ Assume the Cauchy criterion holds. We show that
 - 1. for every sequence $(\xi_n)_{n\in\mathbb{N}}$, $\xi_n\in A\setminus\{x\}$ with $\lim_{n\to\infty}\xi_n=x$ it holds that $(f(\xi_n))_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{R} and therefore convergent in \mathbb{R}
 - 2. all Cauchy sequences have the *same* limit *c*.

We prove (1.)

Let $(\xi_n)_{n\in\mathbb{N}}$ be as above. Let $\varepsilon > 0$ be arbitrary. and N_{ε} large enough such that $\forall n \in N_{\varepsilon}$ it holds that $d(\xi_n, x) < \delta$ (δ chosen appropriately to ε according to the Cauchy criterion).

By the Cauchy criterion, $|f(\xi_n) - f(\xi_m)| < \varepsilon$ for all $m, n \ge N_{\varepsilon}$. Therefore $(f(\xi_n))_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{R} . If \mathbb{R} is complete, then there exists $c = \lim_{n \to \infty} f(\xi_n)$. QED.

We prove (2.)

Let $\xi_n \to x$ as above and $\xi_n' \to x$ as above and $c = \lim_{n \to \infty} f(\xi_n)$ as well as $c' = \lim_{n \to \infty} f(\xi_n')$. Let $\varepsilon > 0$ be arbitrary, N_{ε} such that $n \ge N_{\varepsilon} \implies \left| f(\xi_n) - c \right| < \frac{\varepsilon}{3}$ and $N_{\varepsilon}' \in \mathbb{N}$ such that $n \ge N_{\varepsilon}' \implies \left| f(\xi_n') - c' \right| < \frac{\varepsilon}{3}$.

Furthermore choose $\delta > 0$ such that

$$d(\xi, x) < \delta \wedge d(\eta, x) < \delta \implies |f(\xi) - f(\eta)| < \frac{\varepsilon}{3}$$

(because of the Cauchy criterion). M_{ε} such that

$$n \ge M_{\varepsilon} \implies d(\xi_n, x) < \delta \land M'_{\varepsilon} : n \ge M'_{\varepsilon} \implies d(\xi'_n, x) < \delta$$

Let $n \ge \max\{N_{\varepsilon}, N'_{\varepsilon}, M_{\varepsilon}, M'_{\varepsilon}\}$.

This lecture took place on 2018/04/10.

Then it holds that

$$|c - c'| \le \underbrace{\left|c - f(\xi_n)\right|}_{<\frac{\varepsilon}{3}} + \underbrace{\left|f(\xi_n) - f(\xi_n')\right|}_{<\frac{\varepsilon}{3}} + \underbrace{\left|f(\xi_n') - c'\right|}_{<\frac{\varepsilon}{3}} \qquad \forall \varepsilon > 0$$

Hence, c = c'. We have shown that $\exists c \in \mathbb{R} : \forall (\xi_n)_{n \in \mathbb{N}}$ with $\lim_{n \to \infty} \xi_n = x$ it holds that $\lim_{n \to \infty} f(\xi_n) = c$. So $\lim_{\xi \to \infty} f(\xi) = c$ because of Lemma 4.5. QED.

Definition 4.6 (Regulated function). *Let* a < b, $f : [a,b] \rightarrow \mathbb{R}$. *We call* f a regulated function on [a,b] *if*

- 1. $\forall x \in (a, b)$, f in x has a right-sided and a left-sided limit.
- 2. in x = a, f has a right-sided limit.
- 3. in x = b, f has a left-sided limit.

$$\mathcal{R}[a,b] = \{ f : [a,b] \to \mathbb{R} \mid f \text{ is a regulated function} \}$$

Definition 4.7 (Equivalent definition). 1. $\forall x \in [a, b)$, f has a right-sided limit in x

2. $\forall x \in (a, b]$, f has a left-sided limit in x

Example 4.1. Let f be continuous in [a,b]. Let $\varphi \in \tau[a,b]$ be a regulated function. Then $\varphi \in \mathcal{R}[a,b]$.

Rationale:

Let $x_0 = a < x_1 < \dots < x_n = b$ and $\varphi|_{(x_{i-1},x_i)} = c_i$.

Let $x \in [a, b]$ be chosen arbitrarily.

Case 1 *Let* $x \in (x_{i-1}, x_i)$ *for some* $j \in \{1, ..., n\}$

$$\implies \lim_{\xi \to x} \varphi(\xi) = c_j$$

Choose δ small enough such that $(x-\delta, x+\delta) \subseteq (x_{j-1}, x_j)$. $\forall \xi$ with $\xi \in (x-\delta, x+\delta)$ it holds that

$$\left|\varphi(\xi)-c_j\right|=0$$

Case 2 *Let* $x = x_j$ *for* j = 1, ..., n - 1.

$$\implies \lim_{\xi \to x_j^+} \varphi(\xi) = c_{j+1}$$

$$\lim_{\xi \to x_j^-} \varphi(\xi) = c_j$$

Compare with Figure 8.

Case 3 Let $x = x_0 = a \implies \lim_{\xi \to a^+} \varphi(\xi) = c_1$.

$$x = x_n = b \implies \lim_{\xi \to b^-} \varphi(\xi) = c_n$$

Figure 8: Regulated function

Let $f : [a,b] \to \mathbb{R}$ be monotonically increasing oder monotonically decreasing. Then $f \in \mathcal{R}[a,b]$. The proof will be done in the practicals.

Definition 4.8 (Boundedness). Let $X \neq \emptyset$ be a set. $f: X \to \mathbb{K}$ with $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. We say: f is bounded on X, if $f(X) \subseteq \mathbb{K}$ is a bounded set in \mathbb{K} . Hence, $\exists m \geq 0 : |f(x)| \leq m \forall x \in X$. We let,

$$\mathcal{B}(X) = \left\{ f : X \to \mathbb{K} \mid f \text{ is bounded} \right\}$$

 $\mathcal{B}(X)$ has vector space structure. $f, g \in \mathcal{B}(X), \lambda \in \mathbb{K}$.

$$(f+g)(x) = f(x) + g(x)$$

$$(\lambda \cdot f)(x) = \lambda \cdot f(x)$$

 $f+g\in\mathcal{B}(X)$ and $\lambda f\in\mathcal{B}(X)$. Let $\big|f(x)\big|\leq m \forall x\in X$ and $\big|g(x)\big|\leq m' \forall x\in X$. Then it holds that

$$\left| (f+g)(x) \right| = \left| f(x) + g(x) \right| \le \left| f(x) \right| + \left| g(x) \right| \le m + m'$$

Remark 4.4. It is very interesting, that X does not require any kind of algebraic structure.

We let

$$||f||_{\infty} = \sup \left\{ |f(x)| \mid x \in X \right\} = \min \left\{ m \ge 0 \mid |f(x)| \le m \forall x \in X \right\}$$

Some work is required to show that $\|\cdot\|_{\infty}$ is a norm on $\mathcal{B}(X)$.

Hence, $(\mathcal{B}(X), \|\cdot\|_{\infty})$ is a normed vector space. Convergence in $\mathcal{B}(X)$: It holds that $f_n \to f$ in $(\mathcal{B}(X), \|\cdot\|_{\infty})$ if and only if $\forall \varepsilon > 0 \exists N \in \mathbb{N} : n \geq N \implies \|f_n - f\|_{\infty} < \varepsilon$.

$$||f_n - f||_{\infty} < \varepsilon \iff \sup \{|f_n(x) - f(x)| : x \in X\}$$

 $\iff |f_n(x) - f(x)| \le \varepsilon \forall x \in X$

Hence, $f_n \to f$ in $(\mathcal{B}(X), \|\cdot\|_{\infty}) \iff \forall \varepsilon > 0 \exists N \in \mathbb{N} : n \ge N \implies |f_n(x) - f(x)| \le \varepsilon \forall x \in X$. We say " f_n converges uniformly to f on X".

Theorem 4.1 (Approximation theorem for regulated function). Let $f : [a,b] \to \mathbb{R}$. Then it holds that $f \in \mathcal{R}[a,b] \iff \forall \varepsilon > 0$ there exists some step function $\varphi \in \tau[a,b]$ such that $|\varphi(x) - f(x)| < \varepsilon \forall x \in [a,b]$ ($||\varphi - f||_{\infty} < \varepsilon$).

Especially $\varepsilon_n = \frac{1}{n}$ and φ_n as above. Then it holds that $\|\varphi_n - f\|_{\infty} < \frac{1}{n}$, hence $f = \lim_{n \to \infty} \varphi_n$ uniformly on [a, b].

Proof. Direction \Rightarrow . Let $f \in \mathcal{R}[a,b]$.

Proof by contradiction. We negate our hypothesis:

$$\exists \varepsilon > 0 : \forall \varphi \in \tau[a, b] \exists x \in [a, b] : |\varphi(x) - f(x)| \ge \varepsilon \tag{1}$$

Assume (1) holds for $f \in [a,b]$. We construct nested intervals $[a_n,b_n]$ with $[a_{n+1},b_{n+1}] \subseteq [a_n,b_n]$ and $b_{n+1}-a_{n+1}=\frac{1}{2}(b_n-a_n)$ and (1) holds on $[a_n,b_n] \forall n \in \mathbb{N}$. Hence $\forall \varphi \in \tau[a_n,b_n] \exists x \in [a_n,b_n]$ such that $|\varphi(x)-f(x)| \ge \varepsilon$. This is what we want to show.

Let $a_0 = a$ and $b_0 = b$. Then (1) holds on $[a_0, b_0]$ by assumption. $n \to n+1$: Construction of $[a_{n+1}, b_{n+1}]$. Let $m_n = \frac{1}{2}(a_n + b_n)$. We need to prove: (1) holds either on $[a_n, m_n]$ or on $[m_n, b_n]$.

Because if the opposite of (1) holds on $[a_n, m_n]$ as well as $[m_n, b_n]$, then there exists $\varphi_1^n \in \tau[a_n, m_n]$ with $|\varphi_n^1(x) - f(x)| < \varepsilon \forall x \in [a_n, m_n]$ and if the opposite of (1) holds on $[m_n, b_n]$:

$$\exists \varphi_n^2 \in \tau[m_n,b_n]: \left|\varphi_n^2(x) - f(x)\right| < \varepsilon \forall x \in [m_n,b_n]$$

Let

$$\varphi^{n}(x) = \begin{cases} \varphi_{n}^{1}(x) & \text{if } x \in [a_{n}, m_{n}] \\ \varphi_{n}^{2}(x) & \text{if } x \in (m_{n}, b_{n}] \end{cases}$$

Then φ^n is piecewise constant, hence $\varphi^n \in \tau[a_n, b_n]$ and it holds that

$$\left|\varphi^{n}(x) - f(x)\right| = \begin{cases} \underbrace{\left|\varphi_{1}^{n}(x) - f(x)\right|}_{<\varepsilon} & \text{for } x \in [a_{n}, m_{n}] \\ \underbrace{\left|\varphi_{2}^{n}(x) - f(x)\right|}_{<\varepsilon} & \text{for } x \in [m_{n}, b_{n}] \end{cases} < \varepsilon$$

This contradicts with (1) on $[a_n, b_n]$.

Hence: (1) holds on $[a_n, m_n]$ or on $[m_n, b_n]$.

Choose $[a_{n+1}, b_{n+1}]$ as one of the subintervals in which (1) holds.

Let $X \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$ (by completeness of \mathbb{R}).

1. Let $x \in (a, b)$. Let ε as above such that (1) holds on every interval $[a_n, b_n]$. Let $c_+ = \lim_{\xi \to x^+} f(\xi)$ and $c_- = \lim_{\xi \to x^-} f(\xi)$ (possible, because $f \in \mathcal{R}[a, b]$). Limes property: $\exists \delta > 0 : |\xi - x| < \delta$ and $\xi < x$, then $|f(\xi) - c_-| < \varepsilon$ and $|\xi - x| < \delta$ and $x < \delta$ then $|f(\xi) - c_+| < \varepsilon$.

Additionally, choose δ sufficiently small enough such that $(x - \delta, x + \delta) \subseteq [a, b]$. Let

$$\hat{\varphi}(\xi) = \begin{cases} 0 & \text{for } \xi \in [a,b] \setminus (x-\delta, x+\delta) \\ c_{-} & \text{for } \xi \in (x-\delta, x) \\ c_{+} & \text{for } \xi \in (x, x+\delta) \\ f(x) & \text{for } \xi = x \end{cases}$$

 $\hat{\varphi} \in \tau[a, b]$ and it holds that

$$\forall \xi \in (x - \delta, x + \delta) : \left| \hat{\varphi}(\xi) - f(\xi) \right| = \begin{cases} \frac{\left| c_{-} - f(\xi) \right|}{<\varepsilon} & \text{for } \delta \in (x - \delta, x) \\ \frac{\left| f(x) - f(x) \right|}{<\varepsilon} & \text{for } \xi = x \\ \frac{\left| c_{+} - f(\xi) \right|}{<\varepsilon} & \text{for } \xi \in (x, x + \delta) \end{cases} < \varepsilon$$

Now let N be sufficiently large enough such that $[a_N, b_N] \subseteq (x - \delta, x + \delta)$ (possible because $([a_n, b_n])_{n \in \mathbb{N}}$ gives nested intervals tightening on x). Then it holds on $[a_N, b_N]$ that:

$$\hat{\varphi}|_{[a_N,b_N]} \in \tau[a_N,b_N]$$

and $\forall \xi \in [a_N, b_N] \subseteq (x - \delta, x + \delta)$ it holds that $|\hat{\varphi}(\xi) - f(\xi)| < \varepsilon$. This contradicts with (1) on $[a_N, b_N]$.

We also need to cover the special cases x = a and x = b. But this works analogously with one-sided limits.

Direction \Leftarrow : Let $f = \lim_{n \to \infty} \varphi_n$ uniform on [a, b]. Show that $\forall x \in [a, b)$ there exists a right-sided limit of f in x.

Let $\varepsilon > 0$ be arbitrary. $N \in \mathbb{N}$ sufficiently large such that $|f(\xi) - \varphi_N(\xi)| < \frac{\varepsilon}{2} \forall \xi \in [a,b]$. φ_N is piecewise constant. Choose $\delta > 0$ such that $\varphi_N|_{(x,x+\delta)} = c$. Now let $\xi, \eta \in (x,x+\delta)$ be chosen arbitrarily. Then it holds that

$$|f(\xi) - f(\eta)| \le \left| f(\xi) - \underbrace{c}_{=\varphi_N(\xi)} \right| + \left| \underbrace{c}_{=\varphi_N(\eta)} - f(\eta) \right|$$

$$= \left| \underbrace{f(\xi) - \varphi_N(\xi)}_{<\frac{\varepsilon}{2}} \right| + \left| \underbrace{\varphi_N(\eta) - f(\eta)}_{<\frac{\varepsilon}{2}} \right| < \varepsilon$$

Therefore f has a right-sided limit in x by the Cauchy criterion. f has left-sided limit in every point $x \in (a, b]$ analogously.

Corollary. Every regulated function $f \in \mathcal{R}[a,b]$ is bounded. Let $\varphi \in \tau[a,b]$ with $\|f - \varphi\|_{\infty} < 1$. φ is bounded, hence $\exists m \in [0,\infty)$: $|\varphi(x)| \leq m \forall x \in [a,b]$. Then it holds

that $|f(x)| \le |f(x) - \varphi(x)| + |\varphi(x)| < 1 + m \forall x \in [a, b]$, hence $f \in \mathcal{B}[a, b]$.

$$\mathcal{R}[a,b] \subseteq \mathcal{B}[a,b]$$

Corollary. Let $f \in \mathcal{R}[a,b] \iff f = \sum_{j=0}^{\infty} \psi_j$ with $\psi_j \in \tau[a,b]$ and the series converges uniformly on [a,b].

Proof. Direction \longleftarrow .

Let $f = \sum_{j=0}^{\infty} \psi_j$ with uniform convergence. Let $\varphi_n = \sum_{j=0}^{\infty} \psi_j \in \tau[a,b]$ and $f = \lim_{n \to \infty} \phi_n$ uniform on $[a,b] \xrightarrow{} f \in \mathcal{R}[a,b]$.

Satz 12

Direction \Longrightarrow .

Let $f \in \mathcal{R}[a,b]$ and $f = \lim_{n \to \infty} \varphi_n$ with $\varphi_n \in \tau[a,b]$ (by Satz 1?!).

$$\psi_{0} = \varphi_{0}$$

$$\psi_{j} = \varphi_{j} - \varphi_{j-1} \quad \text{for } j \ge 1$$

$$\sum_{j=0}^{n} \psi_{j} = \varphi_{0} + \sum_{j=1}^{n} (\varphi_{j} - \varphi_{j-1}) = \varphi_{0} + \sum_{j=1}^{n} \varphi_{j} - \sum_{j=0}^{n-1} \varphi_{j} = \varphi_{n}$$

converges uniformly to f.

Integration of regulated functions

Definition 5.1 (Definition with a theorem). Let $f \in \mathcal{R}[a,b]$ and $\varphi_n \in \tau[a,b]$ with $f = \lim_{n \to \infty} \varphi_n$ is uniform on [a,b]. We let

$$\int_{a}^{b} f \, dx = \lim_{n \to \infty} \int_{a}^{b} \varphi_n \, dx$$

for the integral of f on [a,b].

Theorem: This limit (on the right-hand side) always exists and is independent of the particular choice of the approximating sequence.

Proof. φ_n is chosen as above.

$$i_n = \int_a^b \varphi_n \, dx$$

Show: i_n is cauchy sequence in \mathbb{R} .

This lecture took place on 2018/04/12.

Let $\varepsilon > 0$ be chosen arbitrary. Choose $N \in \mathbb{N}$ such that

$$n \ge N \implies \left\| f - \varphi_n \right\|_{\infty} < \frac{\varepsilon}{2(b-a)}$$

For $n, m \ge N$ it holds for $x \in [a, b]$ that

$$\left| \varphi_n(x) - \varphi_m(x) \right| \le \left| \varphi_n(x) - f(x) \right| + \left| f(x) - \varphi_m(x) \right|$$

$$\le \left\| \varphi_n - f \right\|_{\infty} + \left\| f - \varphi_m \right\|_{\infty} < \frac{\varepsilon}{2(b-a)} + \frac{\varepsilon}{2(b-a)} = \frac{\varepsilon}{b-a}$$

 $|\varphi_n - \varphi_m|$ is a step function.

$$\left|\varphi_n - \varphi_m\right| \le \frac{\varepsilon}{b-a} \cdot \underbrace{\chi_{[a,b]}}_{\in \tau[a,b]}$$

Integral for subsequence is monotonous:

$$|i_{n} - i_{m}| = \left| \int_{a}^{b} \varphi_{n} \, dx - \int_{a}^{b} \varphi_{m} \, dx \right| = \left| \int_{a}^{b} (\varphi_{n} - \varphi_{m}) \, dx \right| \le \int_{a}^{b} \left| \varphi_{n} - \varphi_{m} \right| \, dx$$

$$\leq \int_{a}^{b} \frac{\varepsilon}{b - a} \cdot \chi_{[a,b]} \, dx = \frac{\varepsilon}{b - a} \underbrace{\int_{a}^{b} \chi_{[a,b]} \, dx}_{1,(b-a)} = \varepsilon$$
by monotonicity

So $(i_n)_{n\in\mathbb{N}}$ is a Cauchy sequence. \mathbb{R} is complete, hence $i=\lim_{n\to\infty}i_n$ exists.

Uniqueness: (dt. mithilfe des Reissverschlussprinzips)

Let $(\varphi_n)_{n\in\mathbb{N}}$, $(\Phi_n)_{n\in\mathbb{N}}$ be two sequences of step functions, converging uniformly towards f.

$$i_n = \int_a^b \varphi_n dx$$
 and $j_n = \int_a^b \Phi_n dx$
 $i = \lim_{n \to \infty} i_n$ $j = \lim_{n \to \infty} j_n$

Show that i = j.

Now we construct a sequence $(\mu_n)_{n\in\mathbb{N}}$ of step functions.

$$\underbrace{(\varphi_1,\Phi_1,\varphi_2,\Phi_2,\ldots)}_{(\mu_n)_{n\in\mathbb{N}}}$$

 μ_n is a sequence of step functions converging uniformly towards f (the proof is left as an exercise to the reader).

Because of part 1 of the proof:

$$m_n = \int_a^b \mu_n dx$$
 converges with limit m

 $(i_n)_{n\in\mathbb{N}}$ as well as $(j_n)_{n\in\mathbb{N}}$ are subsequences of $(m_n)_{n\in\mathbb{N}}$. Hence it holds that $i=\lim_{n\to\infty}i_n=m=\lim_{n\to\infty}j_n=j$.

Theorem 5.1 (Elementary properties of an integral). *Let* $f, g \in \mathcal{R}[a, b]$, $\lambda, \mu \in \mathbb{R}$. *Then it holds that*

Linearity

$$\lambda f + \mu g \in \mathcal{R}[a, b] \text{ and } \int_a^b (\lambda f + \mu g) dx = \lambda \int_a^b f dx + \mu \int_a^b g dx$$

Monotonicity If $f(x) \le g(x) \forall x \in [a, b] (f \le g)$ it holds that

$$\int_{a}^{b} f \, dx \le \int_{a}^{b} g \, dx$$

Boundedness $|f| \in \mathcal{R}[a,b]$ and

$$\left| \int_{a}^{b} f \, dx \right| \leq \int_{a}^{b} \left| f \right| \, dx$$

Proof. We prove linearity.

Let $x \in [a, b)$ and $c_+ = \lim_{\xi \to x_+} f(\xi)$ as well as $d_+ = \lim_{\xi \to x_+} g(\xi)$ ($f, g \in \mathcal{R}[a, b]$). Then it holds that

$$\lim_{\xi \to x^+} (\lambda f(\xi) + \mu g(\xi)) = \lambda \lim_{\xi \to x^+} f(\xi) + \mu \lim_{\xi \to x^+} g(\xi) = \lambda c_+ + \mu d_+$$

exists. Analogously for the left side, hence $\lambda f + \mu g \in \mathcal{R}[a, b]$.

Let $\varphi_n, \Phi_n \in \tau[a,b]$ with $\varphi_n \to f$ and $\Phi_n \to g$ is uniform on [a,b]. Hence $\lambda \varphi_n + \mu \Phi_n \to \lambda f + \mu g$ is continuous on [a,b].

Proof of this:

Let $\varepsilon > 0$ be arbitrary, N such that $n \ge N \implies \|\varphi_n - f\|_{\infty} < \frac{\varepsilon}{2(|\lambda|+1)}$ and M such that $n \ge M \implies \|\Phi_n - g\|_{\infty} < \frac{\varepsilon}{2(|\mu|+1)}$.

Then it holds that

$$\|\lambda \varphi_n + \mu \Phi_n - \lambda f - \mu g\|_{\infty} \le |\lambda| \|\varphi_n - f\|_{\infty} + |\mu| \|\Phi_n - g\|_{\infty}$$

$$< \frac{|\lambda|}{2(|\lambda| + 1)} \cdot \varepsilon + \frac{|\mu|}{2(|\mu| + 1)} \cdot \varepsilon < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

We continue:

$$\int_{a}^{b} (\lambda f + \mu g) dx = \lim_{n \to \infty} \int_{a}^{b} (\lambda \varphi_{n} + \mu \Phi_{n}) dx = \lim_{n \to \infty} (\lambda \int_{a}^{b} \varphi_{n} dx + \mu \int_{a}^{b} \Phi_{n} dx)$$

$$= \lambda \lim_{n \to \infty} \int_{a}^{b} \varphi_{n} dx + \mu \lim_{n \to \infty} \int_{a}^{b} \Phi_{n} dx$$

$$= \lambda \int_{a}^{b} f dx + \mu \int_{a}^{b} g dx$$

We prove monotonicity.

Show: Let $h \in \mathcal{R}[a, b]$ with $h \ge 0$ in [a, b]. Then it holds that $\int_a^b h \, dx \ge 0$.

We will show that $(\tilde{\varphi}_n)_{n\in\mathbb{N}}$ exists with $\tilde{\varphi}_n \to h$ uniform on [a,b] and $\tilde{\varphi}_n \geq 0$.

Therefore we prove: Let $(\varphi_n)_{n\in\mathbb{N}}$, $\varphi_n \in \tau[a,b]$ with $\varphi_n \to h$ uniform on [a,b].

Define $\tilde{\varphi}_n$ such that

$$\varphi_n = \sum_{j=1}^{m_n} c_j \chi_{(x_{j-1}, x_j)} + \sum_{j=0}^{m_n} d_j \chi_{\{x_j\}}$$

Let

$$\tilde{\varphi}_n = \sum_{j=1}^{m_n} \underbrace{\tilde{c}_j}_{>0} \chi_{(x_{j-1}, x_j)} + \sum_{j=0}^{m_n} \underbrace{h(x_j)}_{>0} \chi_{\{x_j\}}$$

and $\tilde{c}_i := \max c_i$, $0 \ge 0$. So it holds that $\tilde{\varphi}_n \ge 0$.

For $x = x_l$ ($l \in \{0, ..., m_n\}$) it holds that

$$\left| \tilde{\varphi}_{n}(x_{l}) - h(x_{l}) \right| = \left| \sum_{j=1}^{m_{n}} \tilde{c}_{j} \underbrace{\chi_{(x_{j-1},x_{j})}(x_{l})}_{=0 \text{ bc. } x_{l} \notin (x_{j-1},x_{j})} + \sum_{j=0}^{m_{n}} h(x_{j}) \underbrace{\chi_{\{x_{j}\}}(x_{l})}_{=\delta_{j,l}} - h(x_{l}) \right|$$

$$= |h(x_l) - h(x_l)| = 0 \le \left| \varphi_n(x_l) - h(x_l) \right|$$

For $x \in (x_{i-1}, x_i)$ it holds that

$$\begin{aligned} \left| \tilde{\varphi}_{n}(x) - h(x) \right| &= \left| \sum_{j=1}^{m_{n}} \tilde{c}_{j} \underbrace{\chi_{(x_{j-1}, x_{j})}(x)}_{\delta_{l, j}} + \sum_{j=0}^{m_{n}} h(x) \cdot \underbrace{\chi_{\{x_{j}\}}(x)}_{=0 \text{ bc. } x \neq x_{j}} - h(x) \right| \\ &= \left| \tilde{c}_{l} - h(x) \right| = \begin{cases} |c_{l} - h(x)| & \text{if } c_{l} \geq 0 \\ |h(x)| = h(x) & \text{if } c_{l} < 0 \end{cases} \end{aligned}$$

$$\leq \begin{cases} |c_l - h(x)| & \text{if } c_l \geq 0 \\ h(x) - c_l & \text{if } c_l < 0 \end{cases}$$

$$= \begin{cases} \left| \varphi_n(x) - h(x) \right| & \text{if } c_l = \varphi_n(x) \geq 0 \\ \left| h(x) - \varphi_n(x) \right| & \text{if } c_l = \varphi_n(x) < 0 \end{cases}$$

$$= \left| \varphi_n(x) - h(x) \right|$$

hence, $|\tilde{\varphi}_n(x) - h(x)| \le |\varphi_n(x) - h(x)|$ for $x \in (x_{l-1}, x_l)$ as well as $x = x_i$, hence

$$\|\tilde{\varphi}_n - h\|_{\infty} \le \underbrace{\|\varphi_n - h\|_{\infty}}_{\to 0 \text{ for } n \to \infty}$$

Hence $\|\tilde{\varphi}_n - h\|_{\infty} \to 0$ for $n \to \infty$, hence $\tilde{\varphi}_n$ converges uniformly to h. There exists

$$\int_{a}^{b} h \, dx = \lim_{n \to \infty} \int_{a}^{b} \underbrace{\tilde{\varphi}_{n}}_{\geq 0} \, dx \geq 0$$

Monotonicity: Let $f \le g$ in [a, b], hence $h = g - f \ge 0$ in [a, b]

$$\implies 0 \le \int_{a}^{b} h \, dx = \int_{a}^{b} g \, dx - \int_{a}^{b} f \, dx$$

$$\implies \int_{a}^{b} f \, dx \le \int_{a}^{b} g \, dx$$

And finally, boundedness is left.

Consider $|f| \in \mathbb{R}[a,b]$. Proving this is left as an exercise. $f \leq |f|$ in $[a,b] \implies \int_a^b f \, dx \leq \int_a^b |f| \, dx$.

TODO

$$-f \le \left| f \right| \text{ in } [a,b] \implies \int_a^b (-f) \, dx = -\int_a^b f \, dx \le \int_a^b \left| f \right| \, dx \implies \left| \int_a^b f \, dx \right| \text{TODO}$$

Remark 5.1. $\mathcal{R}[a,b]$ *is a vector space.*

1. $f,g \in \mathbb{R}[a,b] \implies \lambda f + \mu g \in \mathcal{R}[a,b]$. $\|\cdot\|_{\infty}$ is a norm on $\mathcal{R}[a,b]$. $(\mathcal{R}[a,b],\|\cdot\|_{\infty})$ is a normed vector space. Subspace of $(\mathcal{B}[a,b],\|\cdot\|_{\infty})$. We will show in the practicals that $(\mathcal{R}[a,b],\|\cdot\|_{\infty})$ is complete.

Theorem 5.2 (Mean value theorem of integral calculus). *Let* f *be continuous on* [a,b] *and* $p \in \mathcal{R}[a,b]$ *and* $p \in \mathcal{R}[a,b]$ *and there exists* $\xi \in [a,b]$ *such that*

$$\int_{a}^{b} f \cdot p \, dx = f(\xi) \cdot \int_{a}^{b} p \, dx$$

Proof. Let $m = \min\{f(z) : z \in [a, b]\}$ (exists because f is continuous and [a, b] is compact).

$$M = \max\{f(z) : z \in [a, b]\}$$

f([a,b]) = [m,M] (by the mean value theorem)

It holds that

$$m \cdot \underbrace{p(x)}_{\geq 0} \leq f(x) \cdot p(x) \leq M \cdot p(x)$$

By monotonicity,

$$m\int_{a}^{b} p(x) dx \le \int_{a}^{b} f p dx \le M \int_{a}^{b} p dx$$

Therefore, there exists $\eta \in [m, M]$.

$$\eta \cdot \int_{a}^{b} p(x) \, dx = \int_{a}^{b} f p \, dx$$

Mean value theorem: For $\eta \in [m, M]$ there exists $\xi \in [a, b]$ such that

$$\eta = f(\xi)$$
 (f is continuous!)

Hence,

$$f(\xi) \int_{a}^{b} p \, dx = \int_{a}^{b} f \cdot p \, dx$$

 $f \cdot p$ is regulated function (over one-sided limits).

Lemma 5.1. Let $f \in \mathcal{R}[a,b]$ and $a \le \alpha < \beta < \gamma \le b$. Then

$$f|_{[\alpha,\beta]} \in \mathcal{R}[\alpha,\beta], f|_{\beta,\gamma} \in \mathcal{R}[\beta,\gamma]$$

 $f|_{[\alpha,\gamma]} \in \mathcal{R}[\alpha,\gamma]$ (immediate over onesided limit)

and it holds that

$$\int_{\alpha}^{\gamma} f \, dx = \int_{\alpha}^{\beta} f \, dx + \int_{\beta}^{\gamma} f \, dx$$

Compare with Figure 9.

Figure 9: Positive and negative area covered by the integral

Proof. Show that this statement holds for $\varphi \in \tau[a,b]$. Without loss of generality, $\alpha = a, \gamma = b$.

$$\gamma = \sum_{j=1}^m c_j \chi_{(x_{j-1},x_j)} + \sum_{j=0}^m \underbrace{0}_{\text{it does not matter for the integral}} \cdot \chi_{x_j}$$

Case 1 $\beta = x_l$ for some $l \in \{1, ..., m - 1\}$

$$\int_{\alpha}^{\gamma} \varphi \, dx = \sum_{j=1}^{m} c_j (x_j - x_{j-1})$$

$$\int_{\alpha}^{\beta} \varphi \, dx = \int_{\alpha}^{x_l} \varphi \, dx = \sum_{j=1}^{l} c_j (x_j - x_{j-1})$$

$$\int_{\beta}^{\gamma} \varphi \, dx = \int_{x_l}^{\gamma} \varphi \, dx = \sum_{j=l+1}^{m} c_j (x_j - x_{j-1})$$

And now,

$$\sum_{j=l+1}^{m} c_j(x_j - x_{j-1}) + \sum_{j=1}^{l} c_j(x_j - x_{j-1}) = \sum_{j=1}^{m} c_j(x_j - x_{j-1})$$

Case 2 $\beta \in (x_{l-1}, x_l)$ for some $l \in \{1, ..., m\}$.

$$\int_{\beta}^{\gamma} \varphi \, dx = c_l(x_l - \beta) + \sum_{j=l+1}^{m} c_j(x_j - x_{j-1})$$

$$\int_{\alpha}^{\beta} \varphi \, dx + \int_{\beta}^{\gamma} \varphi \, dx = \sum_{j=1}^{l-1} c_j(x_j - x_{j-1})$$

$$+c_l(\beta - x_{l-1}) + c_l(x_l - \beta) + \sum_{j=l+1}^{m} c_j(x_j - x_{j-1})$$

$$= \sum_{j=1}^{m} c_j(x_j - x_{j-1}) = \int_{\alpha}^{\gamma} \varphi \, dx$$

TODO verify previous lines Let $\varphi_n \in \tau[\alpha, \beta]$ with $\varphi_n \to f$ uniform on $[\alpha, \beta] \implies \varphi_n|_{[\alpha, \beta]} \to f|_{[\alpha, \beta]}$ uniform on $[\alpha, \beta]$ and also $\varphi_n|_{[\beta, \gamma]} \to f|_{[\beta, \gamma]}$ uniform on $[\beta, \gamma]$.

$$\int_{\alpha}^{\gamma} f \, dx = \lim_{n \to \infty} \int_{\alpha}^{\gamma} \varphi_n \, dx = \lim_{n \to \infty} \left(\int_{\alpha}^{\beta} \varphi_n \, dx + \int_{\beta}^{\gamma} \varphi_n \, dx \right)$$

$$= \lim_{n \to \infty} \int_{\alpha}^{\beta} \varphi_n \, dx + \lim_{n \to \infty} \int_{\beta}^{\gamma} \varphi_n \, dx$$
exists because $\varphi_n|_{[\alpha,\beta]} \to f|_{[\alpha,\beta]}$ uniform
$$= \int_{\alpha}^{\beta} f \, dx + \int_{\beta}^{\gamma} f \, dx$$

Remark 5.2 (Notation). Let $\alpha < \beta$, α , $\beta \in [a, b]$ and $f \in \mathcal{R}[a, b]$. We let

$$\int_{\beta}^{\alpha} f \, dx \coloneqq -\int_{\alpha}^{\beta} f \, dx$$

By this convention, it holds that

$$\int_{\alpha}^{\alpha} f \, dx = -\int_{\alpha}^{\alpha} f \, dx \implies \int_{\alpha}^{\alpha} f \, dx = 0$$

Lemma 5.2. Let $f \in \mathcal{R}[a,b]$ and $\alpha, \beta, \gamma \in [a,b]$ (without particular order). Then it holds that

$$\int_{\alpha}^{\gamma} f \, dx = \int_{\alpha}^{\beta} f \, dx + \int_{\beta}^{\gamma} f \, dx$$

Proof. Special case: 2 points are equal

$$\alpha = \gamma \implies \int_{a}^{\alpha} f \, dx = 0$$

$$\int_{\alpha}^{\beta} f \, dx + \int_{\beta}^{\alpha} f \, dx = \int_{\alpha}^{\beta} f \, dx - \int_{\alpha}^{\beta} f \, dx = 0$$

$$\beta = \gamma \qquad \beta = \alpha$$

Case: $\alpha < \beta < \gamma$ follows immediately

And just as a representative other case: $\alpha < \gamma < \beta$

$$\int_{\alpha}^{\beta} f \, dx = \int_{\alpha}^{\gamma} f \, dx + \int_{\gamma}^{\beta} f \, dx$$
by Lemma 2.1
$$-\int_{\beta}^{\gamma} f \, dx$$

$$\int_{\alpha}^{\beta} f \, dx + \int_{\beta}^{\gamma} f \, dx = \int_{\alpha}^{\gamma} f \, dx$$

This lecture took place on 2018/04/17.

Lemma 5.3. Let $f \in \mathcal{R}[a,b]$. Then there exists an at most countable set $A \subseteq [a,b]$ such that f is continuous in every point $x \in [a,b] \setminus A$.

Proof. Let $f \in \mathcal{R}[a,b]$ and $(\varphi_n)_{n \in \mathbb{N}}$ with $\varphi_n \in \tau[a,b]$ and $\varphi \to f$ converging uniformly on [a,b].

$$\varphi_n = \sum_{j=1}^{m_n} c_j^n \chi_{(X_{j-1}^n, X_j^n)} + \sum_{j=0}^{m_n} d_j^n \chi_{\{x_j^n\}}$$

$$x_0^n = a < x_1^n < \ldots < x_{m_n}^n = b$$

are separating points for φ_n

$$A = \{X_j^n : n \in \mathbb{N}, j \in \{0, \dots, m_n\}\}$$

A is a countable union of finite sets $A_n = \{x_0^n, x_{m_n}^n\}$. A is countable (as unions of finite sets are).

Now we show: f is continuous in every point $x \in [a,b]: x \notin A$. Let $\varepsilon > 0$ be arbitrary. Choose $N \in \mathbb{N}$ sufficiently large such that $\|\varphi_N - f\|_{\infty} < \frac{\varepsilon}{2}$. Because $x \in A$, there exists $j \in \{1, \ldots, m_N\}$ such that $x \in (x_{j-1}^N, X_j^N)$ is open. Choose $\delta > 0$

such that $(x - \delta, x + \delta) \subset (x_{j-1}^N, x_j^n)$, hence $\forall \xi \in (x - \delta, x + \delta)$ it holds that $\varphi_N(\xi) = c_j^N$. Now consider $\xi \in (x - \delta, x + \delta)$, hence $|\xi - x| < \delta$. Then it holds that

$$|f(\xi) - f(x)| = \left| f(\xi) - \underbrace{\varphi_N(x)}_{c_j^N = \varphi_N(\xi)} + \varphi_N(x) - f(x) \right|$$

$$\leq \underbrace{\left| f(\xi) - \varphi_N(\xi) \right|}_{\leq \left\| f - \varphi_N \right\|_{\infty}} + \underbrace{\left| \varphi_N(x) - f(x) \right|}_{\leq \left\| \varphi_N - f \right\|_{\infty}} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Hence f is continuous in x.

Remark 5.3 (Notation). Let $f \in \mathcal{R}[a,b]$. For $x \in [a,b)$, there exists $f_+(x) := \lim_{\xi \to x_+} f(\xi)$. For $x \in (a,b]$, there exists $f_-(x) := \lim_{\xi \to x_-} f(\xi)$. Because of Lemma 5.3, it holds that $f_+(x) = f_-(x) = f(x)$ for all $x \in [a,b] \setminus A$ and A is at most countable.

Definition 5.2 (One-sided derivatives). *Let* $g : [a, b] \to \mathbb{R}$ *and* $x \in [a, b)$. *We say* g *has the* right-sided derivative $g'_+(x)$ *if*

$$\lim_{\xi \to x_+} \frac{g(\xi) - g(x)}{\xi - x} =: g'_+(x)$$

exists. Analogously we define the left-sided derivative

$$g'_{-}(x) = \lim_{\xi \to x_{-}} \frac{g(\xi) - g(x)}{\xi - x}$$

for $x \in (a, b]$. Compare with Figure 10.

Remark 5.4. If g in x has a one-sided derivative, then it holds that

$$\lim_{\xi \to x_+} (g(\xi) - g(x)) = 0$$

Hence g is continuous in x.

Remark 5.5. $g : [a,b] \to \mathbb{R}$ is differentiable in point $x \in (a,b)$ with derivative $g'(x) \iff g$ has a left- and right-sided derivative in x and it holds that $g'_{-}(x) = g'_{+}(x) = g'(x)$.

Theorem 5.3 (Fundamental theorem of differential/integration calculus, variation 1). *Isaac Barrow* (1630–1677), *Isaac Newton* (1642–1726), *Gottfried Wilhelm von Leibniz* (1646–1716).

Let $f \in \mathcal{R}[a,b]$, $\alpha \in [a,b]$ and we define

$$F(x) = \int_{\alpha}^{x} f \, d\xi$$

Figure 10: In this example, the left- and right-sided derivatives are not equal. $f'_+(x) \neq f'_-(x)$

Then F is right-sided differentiable in every point $x \in [a,b)$ and in every $x \in (a,b]$ left-sided differentiable. Furthermore it holds that

$$F'_{+}(x) = f_{+}(x) \forall x \in [a, b)$$

$$\tag{2}$$

$$F'_{-}(x) = f_{-}(x) \forall x \in (a, b]$$
 (3)

Remark 5.6.

$$\frac{d}{dx}\left(\int_{\alpha}^{x} f \, d\xi\right) = f(x)$$

for all x such that f is continuous in x. For those x, F'(x) is differentiable in x with F'(x) = f(x).

Definition 5.3. Let $f \in \mathcal{R}[a,b]$ and $\varphi : [a,b] \to \mathbb{R}$ such that φ is one-sided differentiable on [a,b]. If $\Phi'_+(x) = f_+(x) \forall x \in [a,b)$ and $\Phi'_-(x) = f_-(x) \forall x \in (a,b]$ then we call Φ an antiderivative of regulated function f.

Proof of the Theorem 5.3. Let $x_1, x_2 \in [a, b]$ be arbitrary. Let F be defined as above. Then it holds that

$$|F(x_2) - F(x_1)| = \left| \int_{\alpha}^{x_2} f \, d\xi - \int_{\alpha}^{x_1} f \, d\xi \right|$$

$$= \left| \int_{\alpha}^{x_2} f \, d\xi + \int_{x_1}^{\alpha} f \, d\xi \right| = \left| \int_{x_1}^{x_2} f \, d\xi \right|$$

$$\leq \int_{x_1}^{x_2} |f| \, d\xi \leq \int_{x_1}^{x_2} \frac{\|f\|_{\infty}}{d\xi} \, d\xi = \|f\|_{\infty} \cdot |x_2 - x_1|$$

Hence *F* is Lipschitz continuous with Lipschitz constant $||f||_{\infty}$. So *F* is continuous in [*a*, *b*].

One-sided derivatives: Let $x \in [a, b)$ and $\varepsilon > 0$ be arbitrary. Choose $\delta > 0$ such that $\forall \xi \in [x, x + \delta)$ it holds that $|f(\xi) - f_+(x)| < \varepsilon$. For $\xi \in (x, x + \delta)$ it holds that

$$\left|\frac{F(\xi) - F(x)}{\xi - x} - f_{+}(x)\right| = \frac{1}{|\xi - x|} \underbrace{\int_{x}^{\xi} f \, dy - \underbrace{f_{+}(x)(\xi - x)}_{\int_{x}^{\xi} \underbrace{f_{+}(x)} \, dy}}_{\text{const.}}\right| = \frac{1}{|\xi - x|} \left|\int_{x}^{\xi} (f - f_{+}(x)) \, dy\right| \le \frac{1}{|\xi - x|} \int_{x}^{\xi} \underbrace{\left|f(y) - f_{+}(x)\right|}_{<\xi} \, dy$$

$$y \in (x, \xi) \subseteq (x, x + \delta)$$

$$<\frac{1}{\xi-x}\varepsilon\cdot\underbrace{\int_{x}^{\xi}1\,dy}_{|\xi-x|}=\varepsilon$$

Hence, $F'_{+}(x) = f_{+}(x)$. Analogously, $F'_{-}(x) = f_{-}(x)$ for $x \in (a, b]$.

Theorem 5.4 (Fundamental theorem of differential/integration calculus, variation 2). Let $f \in \mathcal{R}[a,b]$ and ϕ is an arbitrary antiderviative of f according to Definition 5.3. For $\alpha, \beta \in [a,b]$ arbitrary, it holds that

$$\int_{\alpha}^{\beta} f \, dx = \phi(\beta) - \phi(\alpha)$$

Remark 5.7. Let f be continuous and ϕ be an antiderivative of f. Hence, $\Phi'(x) = f(x) \forall x \in [a,b]$. Then it holds that

$$\int_{\alpha}^{\beta} \Phi' \, dx = \Phi(\beta) - \Phi(\alpha)$$

"Integral of a derivative of Φ gives $\Phi(\beta) - \Phi(\alpha)$ ".

Lemma 5.4. Let $A \subseteq [a,b]$ countable. $f:[a,b] \to \mathbb{R}$ is continuous and f is differentiable in every point $x \in [a,b] \setminus A$. Furthermore let $|f'(x)| \le L$ $(L \ge 0)$ for all $x \in [a,b] \setminus A$. Then f is Lipschitz continuous on [a,b] with constant L, hence

$$|f(x_2) - f(x_1)| \le L|x_2 - x_1| \, \forall x_1, x_2 \in [a, b]$$

Remark 5.8. Some people call it differentiable almost everywhere, but this expression collides with a different definition pronounced the same way from measure theory.

Proof. Let $x_1, x_2 \in [a, b]$, wlog. $x_1 < x_2$. Let $\varepsilon > 0$ be arbitrary. We define

$$F_{\varepsilon}(x) = |f(x) - f(x_1)| - (L + \varepsilon)(x - x_1)$$

for $x \in [x_1, b]$.

Let $\varepsilon > 0$ be arbitrary. We prove: $F_{\varepsilon}(x) \le 0 \forall x \in [x_1, b]$. In particular: $F_{\varepsilon}(x_2) \le 0$. Hence,

$$\left| f(x_2) - f(x_1) \right| \le (L + \varepsilon) \underbrace{(x_2 - x_1)}_{|x_2 - x_1|}$$

We prove by contradiction: Assume there exists $\varepsilon > 0$ and $x_{\varepsilon} > x_1$ such that $F_{\varepsilon}(x_{\varepsilon}) > 0$.

We recognize: Let $A' = [x_1, b] \cap A$ be countable.

- 1. hence $F_{\varepsilon}(A') \subseteq \mathbb{R}$ is countable
- 2. $F_{\varepsilon}(x_1) = 0$, $F_{\varepsilon}(x_{\varepsilon}) > 0 \implies x_{\varepsilon} > x_1$
- 3. F_{ε} is continuous on $[x_1, b]$. It holds that $0 \in F_{\varepsilon}([x_1, x_{\varepsilon}])$ and because $0 = F_{\varepsilon}(x_1)$ and $\varepsilon \in F_{\varepsilon}([x_1, x_{\varepsilon}])$ because $\varepsilon = F_{\varepsilon}(x_{\varepsilon})$.

By the Intermediate Value Theorem, it follows that $[0, \varepsilon] \subseteq \text{TODO}$ By the Intermediate Value Theorem, it follows that $[0, \eta] \subseteq F_{\varepsilon}([x_1, x_{\varepsilon}])$.

ıncountable

 $F_{\varepsilon}(A')$ is countable, hence there exists $\gamma \in (0, \eta]$ such that $\gamma = F_{\varepsilon}(y)$ and $\gamma \notin A'$ $(\gamma > 0)^2$. Hence, $y \notin A'$. So f in y is differentiable. Let $B := F_{\varepsilon}^{-1}(\{\gamma\}) \cap ([x_1, x_{\varepsilon}] \setminus A')$. Then $B \neq \emptyset$.

 $B \subseteq [x_1, x_{\varepsilon}]$ is therefore bounded, $B \ne 0$. Hence, B has a supremum. Let $x = \sup B$. Choose $(y_n)_{n \in \mathbb{N}}$ with $y_n \in B$ and $y_n \to x$ for $n \to \infty$. Because F_{ε} is continuous, it holds that

$$\lim_{n\to\infty} F_{\varepsilon}(y_n) = F_{\varepsilon}(x)$$

hence $F_{\varepsilon}(x) = \gamma$. This implies $x \notin A$.

Furthermore it holds for $w \in (x, x_{\varepsilon}]$ that $F_{\varepsilon}(w) > \gamma$. Because assume the opposite $(F_{\varepsilon}(w) \le \gamma \text{ for } w > x)$. Furthermore it holds that $F_{\varepsilon}(x_{\varepsilon}) = \eta \ge \gamma$. Because of the Intermediate Value Theorem, $\exists y \ge w$ with $F_{\varepsilon}(y) = \gamma$. This contradicts with the supremum property of x.

²remember this as reference (*)

Now let $y \in (x, x_{\varepsilon}]$.

$$\varphi(y) = \frac{F_{\varepsilon}(y) - F_{\varepsilon}(x)}{y - x}$$

$$= \frac{\left| f(y) - f(x_1) \right| - \left| f(x) - f(x_1) \right|}{y - x} - \frac{(L + \varepsilon)(y - x_1 - x + x_1)}{y - x}$$

$$\leq \frac{f(y) - f(x)}{y - x} - (L + \varepsilon)$$
inversed triangle ineq.

Because $F_{\varepsilon}(y) > \gamma = F_{\varepsilon}(x)$ it holds that $\varphi(y) > 0$ for y > x. So,

$$\frac{\left|f(y) - f(x)\right|}{y - x} \ge L + \varepsilon$$

$$|f'(x)| = \lim_{y \to x_+} \left| \frac{f(y) - f(x)}{y - x} \right| \ge L + \varepsilon$$

This contradicts with the boundedness of the derivative by L and f is in $x \notin A$ differentiable.

So, equations 2 do not hold. Therefore $\forall x_1, x_2 \text{ with } x_1 < x_2 \text{ in } [a, b] \text{ and } \forall \varepsilon > 0$,

$$|f(x_2) - f(x_1)| \le (L + \varepsilon) |x_2 - x_1|$$

$$\implies |f(x_2) - f(x_1)| \le L |x_2 - x_1|$$

Corollary (Corollary to Lemma 5.4). Let $f,g:[a,b] \to \mathbb{R}$ differentiable for all points $x \in [a,b] \setminus A$ and A is countable. Furthermore let $f'(x) = g'(x) \forall x \notin A$. Then there exists $K \in \mathbb{R}$ such that $f(x) = g(x) + K \forall x \in [a,b]$.

Proof. Let h = f - g. Then it holds that

$$h'(x) = f'(x) - g'(x) = 0 \forall x \in [a, b] \setminus A$$

By Lemma 5.4 with L = 0, it follows that

$$|h(x_1) - f(x_2)| \le 0 \cdot |x_1 - x_2| = 0$$

$$\implies h(x_1) = h(x_2) \forall x_1, x_2 \in [a, b]$$

Hence, $h(x) = K \in \mathbb{R}$.

$$\implies f(x) = g(x) + h(x) = g(x) + K$$

This lecture took place on 2018/04/19.

By reference (*), $\gamma \in [0, \eta)$ (uncountable) and $\gamma \notin f(A)$ (countable).

$$\implies \forall u \in [x_1, b) \text{ with } F_{\varepsilon}(u) = \gamma$$

it holds that $u \notin A$, hence f is differentiable in u.

Proof of Theorem 5.4. Let $f \in \mathcal{R}[a,b]$, ϕ is an antiderivative of f, hence $\phi'_+ = f_+$, $\phi'_- = f_-$. Let $\alpha \in [a,b]$ be arbitrary. By the Theorem variant 1, $F(x) = \int_{\alpha}^{x} f \, d\xi$ is also an antiderivative of f. By Lemma ??, $\exists K \in \mathbb{R} : F(x) = \int_{\alpha}^{x} f \, d\xi = \phi(x) + K$. Determine K: Let $x = \alpha \implies F(\alpha) = \int_{\alpha}^{\alpha} f \, dx = 0 = \phi(\alpha) - K$ hence $K = \phi(\alpha)$. Hence,

$$\int_{\alpha}^{x} f \, d\xi = \phi(x) - \phi(\alpha)$$

Let $x = \beta$.

Remark 5.9 (Remark for the previous corollary). F, ϕ are differentiable on all points x for which f is continuous (all of them except for countable many). For those x, it holds that $F'(x) = \varphi'(x) = f(x)$.

Remark 5.10 (Notation). *Let* $f \in \mathcal{R}[a,b]$. *Then*

$$\int f \, dx$$

- is some particular antiderivative of f (usually some arbitrary chosen)
- the set of all antiderivatives of f

$$\int f \, dx = \{F : F \text{ is antiderivative of } f\}$$

If F_0 *is some fixed antiderivative, then*

$$\int f \, dx = \{ F_0 + K : K \in \mathbb{R} \}$$

Then $\int f dx$ *is the so-called* indefinite integral of f. *Notation:*

$$\int x^k dx = \frac{x^{k+1}}{k+1} + c \qquad (k \neq -1)$$

f	F	remark
χ^{α}	$\frac{x^{\alpha+1}}{\alpha+1}+c$	$\alpha \in \mathbb{R} \setminus \{-1\}$; restrict x such that x^{α} and $x^{\alpha+1}$ are defined
x^{-1}	$\ln x + c (x > 0)$	
$\left(\frac{1}{-x}\right) \cdot (-1) = x^{-1}$ e^x	$ \ln -x + c (x < 0) $	
e^x	e^x	
$\sin x$	$-\cos x$	
$\cos x$	$\sin x$	
$\sinh x$	cosh x	
$\cosh x$	sinh x	
$ \begin{array}{c} \frac{1}{1+x^2} \\ 1 \end{array} $	arctan x	
$\frac{1}{\sqrt{1-x^2}}$	arcsin x	x < 1
$-\frac{1}{\sqrt{1-x^2}}$	arccos x	

Table 1: Table of antiderivatives

Integration methods

In this chapter, we discuss how to determine the antiderivative of a function. Usually they are composites of basic functions. Some of these are given in Table 1.

Remark 5.11. Let $F,G:[a,b] \to \mathbb{R}$ in $x \in [a,b)$ right-sided differentiable. Then also $F \cdot G$ in x is right-sided differentiable and it holds that

$$(F \cdot G)'_{+}(x) = F'_{+}(x) \cdot G(x) + F(x) \cdot G'_{+}(x)$$

hence the product law holds.

Analogously, the same holds for the left-sided derivative.

Look up the proof in the course Analysis 1.

Partial integration

Definition 5.4 (Partial integration). *Let* f, g *be given. Let* F, G *be its antiderivatives respectively. Then* $F \cdot G$ *is an antiderivative of* $F \cdot g + f \cdot G$.

This is immediate, because

$$(F \cdot G)'_{+} = F'_{+} \cdot G + F \cdot G'_{+} = f_{+} \cdot G + F \cdot g_{+} = f_{+}G_{+} + F_{+} \cdot g_{+}$$

Hence, it holds that

$$\int_{a}^{b} (Fg + fG) dx = \underbrace{F(b) \cdot G(b) - F(a)G(a)}_{=:F \cdot G_{a}^{b}}$$

Usually, this is rewritten as

$$\int_{a}^{b} F \cdot g \, dx = F \cdot G|_{a}^{b} - \int_{a}^{b} fG \, dx$$

If F = u is continuously differentiable and G = v as well, then f = u' and g = v' and the law has the structure

$$\int_a^b uv' \, dx = u \cdot v|_a^b - \int_a^b u'v \, dx$$

Example 5.1. Let $a \neq -1$ and x > 0.

$$\int \underbrace{x^{a}}_{v'} \cdot \underbrace{\ln x}_{u} dx = \underbrace{\begin{vmatrix} u = \ln x & u' = \frac{1}{x} \\ v' = x^{\alpha} & v = \frac{x^{\alpha+1}}{\alpha+1} \end{vmatrix}}_{\text{scribble notes}} \underbrace{\frac{x^{\alpha+1}}{\alpha+1} \cdot \ln x - \int \frac{1}{x} \cdot \frac{x^{\alpha+1}}{\alpha+1} dx}_{\text{scribble notes}}$$

$$=\frac{x^{\alpha+1}}{\alpha+1}\cdot \ln x - \frac{1}{\alpha+1}\int x^{\alpha}\,dx = \frac{x^{\alpha+1}}{\alpha+1}\cdot \ln x - \frac{1}{(\alpha+1)^2}x^{\alpha+1}$$

Example 5.2. *Let* $k \in \{2, 3, 4, ...\}$.

$$\int \cos^{k}(x) dx = \begin{vmatrix} u = \cos^{k-1}(x) & u' = (k-1) \cdot \cos^{k-2}(x) \cdot (-\sin x) \\ v' = \cos x & v = \sin x \end{vmatrix}$$
$$\cos^{k-1}(x) \sin x + (k-1) \int \cos^{k-2}(x) \cdot \underbrace{\sin^{2}(x)}_{(1-\cos^{2}x)} dx$$
$$= \cos^{k-1}(x) \cdot \sin(x) + (k-1) \int \cos^{k-2}(x) dx - (k-1) \int \cos^{k}(x) dx$$

Then we can use the following identity:

$$k \int \cos^{k}(x) \, dx = \cos^{k-1}(x) \cdot \sin(x) + (k-1) \int \cos^{k-2}(x) \, dx$$

This gives a recursive formula:

$$\int \cos^k(x) \, dx = \frac{1}{k} \cos^{k-1}(x) \cdot \frac{k-1}{k} \sin(x) + (k-1) \int \cos^{k-2}(x) \, dx$$

Analogously,

$$\int \sin^k(x) \, dx = -\frac{1}{k} \sin^{k-1}(x) \cdot \cos(x) + \frac{k-1}{k} \int \sin^{k-2}(x) \, dx$$

Let $c_m = \int_0^{\frac{\pi}{2}} \cos^m(x) dx$. Then the following formula holds:

$$c_{2n} = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \dots \frac{1}{2} \cdot \frac{\pi}{2}$$
$$= \prod_{k=1}^{n} \frac{2k-1}{2k} \cdot \frac{\pi}{2}$$
$$c_{2n+1} = \prod_{k=1}^{n} \frac{2k}{2k+1}$$

Proof by induction. Let n = 1.

$$c_{2} = \int_{0}^{\frac{\pi}{2}} \cos^{2} x \, dx = \frac{1}{2} \cos x \sin x \Big|_{0}^{\frac{\pi}{2}} + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 \, dx = 0 - 0 + \frac{\pi}{4}$$

$$= \prod_{k=1}^{1} \frac{2k-1}{2k} \cdot \frac{\pi}{2}$$

$$c_{1} = \int_{0}^{\frac{\pi}{2}} \cos x \, dx = \sin x \Big|_{0}^{\frac{\pi}{2}} = 1 - 0 = 1$$

$$\prod_{k=1}^{0} \frac{2k}{2k+1} = 1$$
empty product

We make the induction step $n \rightarrow n + 1$:

$$c_{2(n+1)} = \frac{1}{2n+2} \cdot \underbrace{\cos^{2n+1}(x)}_{=0 \text{ for } x = \frac{\pi}{2}} \cdot \underbrace{\sin(x)}_{=0 \text{ for } x = 0} \Big|_{0}^{\frac{\pi}{2}} + \frac{2n+1}{2n+2} \int_{0}^{\frac{\pi}{2}} \cos^{2n}(x) dx$$
$$= \frac{2n+1}{2n+2} \prod_{k=1}^{n} \frac{2k-1}{2k} \cdot \frac{\pi}{2} = \prod_{k=1}^{n+1} \frac{2k-1}{2k} \cdot \frac{\pi}{2}$$

 $c_{2(n+1)+1}$ analogously.

Theorem 5.5 (Wallis product). *John Wallis* (1616–1703), result from 1655 Let $w_n = \prod_{k=1}^n \frac{(2k)^2}{(2k-1)(2k+1)} = \frac{2\cdot 2}{1\cdot 3} \cdot \frac{4\cdot 4}{3\cdot 5} \dots$ Then it holds that $\lim_{n\to\infty} w_n = \frac{\pi}{2}$.

Proof.

$$\frac{\pi}{2} \cdot \frac{c_{2n+1}}{c_{2n}} = \frac{\pi}{2} \cdot \prod_{k=1}^{n} \frac{\frac{2k}{2k+1}}{\prod_{k=1}^{n} \frac{2k-1}{2k} \cdot \frac{\pi}{2}} = \prod_{k=1}^{n} \frac{(2k)^{2}}{(2k-1)(2k+1)} = w_{n}$$

It remains to show that $\lim_{n\to\infty} \frac{c_{2n+1}}{c_{2n}} = 1$ in $[0, \frac{\pi}{2}]$ it holds that $0 \le \cos x \le 1$.

$$\implies \cos^{2n+2}(x) \le \cos^{2n+1}(x) \le \cos^{2n}(x)$$

So, $c_{2n+2} \le c_{2n+1} \le c_{2n}$ for $n \ge 1$.

$$1 \ge \frac{c_{2n+1}}{c_{2n}}$$

$$\implies 1 \ge \frac{c_{2n+1}}{c_{2n}} \ge \frac{c_{2n+2}}{c_{2n}} = \frac{\prod_{k=1}^{n+1} \frac{2k-1}{2k} \frac{\pi}{2}}{\prod_{k=1}^{n} \frac{2k-1}{2k} \frac{\pi}{2}}$$

$$= \frac{2n+2-1}{2n+2} \to 1 \text{ for } n \to \infty$$

Because of the sandwich lemma for convergent sequences, the intermediate expression must also converge to 1, hence

$$\lim_{n \to \infty} \frac{c_{2n+1}}{c_{2n}} = 1 \qquad \wedge \qquad \frac{\pi}{2} \cdot \lim_{n \to \infty} \frac{c_{2n+1}}{c_{2n}} = \lim_{n \to \infty} w_n$$

Integration by substitution

Definition 5.5 (Integration by substitution). Let $f:[a,b] \to \mathbb{R}$ be continuous. Let $t:[\alpha,\beta] \to [a,b]$ be continuously differentiable. Let F be an antiderivative of f (F is therefore continuously differentiable). Then $F \circ t: [\alpha,\beta] \to \mathbb{R}$ is also continuously differentiable and the chain rule holds:

$$(F \circ t)' = (F' \circ t) \cdot t' = (f \circ t) \cdot t'$$

Hence $F \circ t$ is an antiderivative of $(f \circ t) \cdot t'$. We apply it to integration:

$$\int_{\alpha}^{\beta} (f \circ t)(u) \cdot t'(u) \, du = (F \circ t)(\beta) - (F \circ t)(\alpha) = F(t(\beta)) - F(t(\alpha)) = \int_{t(\alpha)}^{t(\beta)} f(x) \, dx$$

Then we get the substitution integration method:

$$\int_{t(\alpha)}^{t(\beta)} f(x) \, dx = \int_{\alpha}^{\beta} f(t(u)) \cdot t'(u) \, du$$

Remark 5.12 (Mnemonic). Consider the left-hand side and right-hand side simultaneously. Let x = t(u) (expressions inside parentheses). Then $dx = t'(u) \cdot du$ (expressions on the right). Let $u = \alpha \implies x = t(\alpha)$ and $u = \beta \implies x = t(\beta)$ (interval boundaries).

Example 5.3.

$$\int_0^1 2x \sqrt{1-x^2} \, dx$$

Usually we have some expression, we want to substitute with u.

$$1 - x^{2} = u \qquad x = \sqrt{1 - u} = t(u)$$

$$x = 0 = t(1) \qquad x = 1 = t(0)$$

$$dx = \frac{1}{2} \cdot \frac{1}{\sqrt{1 - u}} \cdot (-1) du$$

$$\int_{0}^{1} 2x \sqrt{1 - x^{2}} dx = \int_{1}^{0} 2 \cdot \sqrt{1 - u} \cdot u \cdot \frac{1}{2} (-1) \frac{1}{\sqrt{1 - u}} du = \int_{0}^{1} \sqrt{u} du = \frac{u^{\frac{3}{2}}}{\frac{3}{2}} \Big|_{0}^{1} = \frac{2}{3}$$

$$\int_{0}^{1} 2x \sqrt{\frac{1-x^{2}}{u}} dx = \begin{vmatrix} u = 1 - x^{2} \\ x = 0 & \Leftrightarrow u = 1 \\ x = 1 & \Leftrightarrow xu = 0 \\ 1 \cdot du & = -2x dx \end{vmatrix} = -\int_{1}^{0} \sqrt{u} \, du = \int_{0}^{1} \sqrt{u} \, du$$

In general: we set h(u) = g(x), then it holds that h'(u) du = g'(x) dx.

Theorem 5.6. Let $f, \tilde{f} \in \mathcal{R}[a,b]$ and $A \subseteq [a,b]$ countable. Furthermore $f(x) = \tilde{f}(x) \forall x \in [a,b] \setminus A$. Then it holds that

$$\int_{a}^{b} \left| f - \tilde{f} \right| \, dx = 0$$

Then it follows especially that

$$\int_{a}^{b} f \, dx = \int_{a}^{b} \tilde{f} \, dx$$

This lecture took place on 2018/04/24.

Proof. Show: $r \in \mathcal{R}[a,b], r \ge 0$. $\int_a^b r \, dx = 0$ and r(x) = 0 for $x \in [a,b] \setminus A$. Then it holds that $\int_a^b r \, dx = 0$. Let r be as above. First, we show: $r_+(x) = \lim_{\xi \to x_+} r(\xi) = 0 \forall x \in [a,b]$ and also $r_-(x) = 0 \forall x \in [a,b]$.

Proof of that: Let $x \in [a,b)$ and $y = r_+(x)$ (exists because $r \in \mathcal{R}[a,b]$). Choose $\delta_n = \frac{1}{n}$. $(x, x + \frac{1}{n}) \cap [a,b)$ is an open interval with uncountable many points, so

there is certainly one point in A. So there exists $\xi_n \in ((x, x + \frac{1}{n}) \cap [a, b)) \setminus A$ and $|\xi_n - x| < \delta_n = \frac{1}{n}$. Hence, $\lim_{n \to \infty} \xi_n = x$ and $r(\xi_n) = 0$. Therefore, $\lim_{n \to \infty} r(\xi_n) = 0$ where $r(\xi_n) = y = r_+(x)$.

Analogously, $r_{-}(x) = 0$ on (a, b].

Let $\varepsilon > 0$ be arbitrary. We let $A_{\varepsilon} = \{ w \in [a,b] | r(w) > \varepsilon \}$. We show: A_{ε} is finite.

Assume A_{ε} would have infinitely many points. Choose a sequence $(w_n)_{n\in\mathbb{N}}$ with $w_n \in A_{\varepsilon}$ and $w_n \neq w_m$ for $n \neq m$ (works because A_{ε} is infinite). $(w_n)_{n\in\mathbb{N}}$ is bounded, hence there exists a convergent subsequence $(w_{n_k})_{k\in\mathbb{N}}$ with $x = \lim_{k\to\infty} w_{n_k} \in [a,b]$ and $w_{n_k} \in [a,b]$.

Either (w_{n_k}) contains infinitely many sequence element $w_{n_k} < x$ (variant (a)) or infinitely many $w_{n_k} > x$ (variant (b)). Let variant b hold without loss of generality.

Combine all $w_{n_k} > x$ to one subsequence $(w_{n_{k_l}})_{l \in \mathbb{N}}$. This gives $\lim_{l \to \infty} w_{n_{k_l}} = x$ and $w_{n_{k_l}} > x$, thus $\lim_{l \to \infty} \underbrace{r(w_{n_{k_l}})}_{} = r_+(x) = 0$. This gives a contradiction.

$$\geq \varepsilon$$
 because $w_{n_{k_l}} \in A_{\varepsilon}$

 A_{ε} must be finite.

Consider

$$A_{\frac{1}{n}} = \left\{ w_1^n, \dots, w_{m_n}^n \right\}$$

finite. Let $\varphi_n = \sum_{k=1}^{m_n} r(w_k^n) \cdot \chi_{\{w_k^n\}} \in \tau[a, b]$.

For $x = w_k^n \in A_{\frac{1}{n}}$ it holds that

$$\varphi_n(w_k^n) = \sum_{k=1}^{m_n} r(w_k^n) \cdot \underbrace{\chi_{\{w_k^n\}}(w_j^n)}_{\delta_{jk}} = r(w_j^n)$$

so $|\varphi_n(x) - r(x)| = 0 \forall x \in A_{\frac{1}{n}}$. Let $x \in [a,b] \setminus A_{\frac{1}{n}}$. Then it holds $0 \le r(x) < \frac{1}{n}$ and for $x \notin A_{\frac{1}{n}}$ it holds that $\varphi(x) = 0$. Therefore,

$$\left| r(x) - \varphi(x) \right| = r(x) < \frac{1}{n}$$

hence $||r - \varphi_n||_{\infty} < \frac{1}{n}$. This means that $\varphi_n \to r$ uniformly on [a, b]. Therefore

$$\lim_{n \to \infty} \underbrace{\int_{a}^{b} \varphi_n \, dx}_{=0} = \int_{a}^{b} r \, dx = 0$$

Now we want to finish the proof of our theorem: Let $r(x) = |f(x) - \tilde{f}(x)| \ge 0$ and r(x) = 0 for $x \notin A$. So, $\int_a^b |f - \tilde{f}| dx = 0$ (first part proven).

$$\left| \int_{a}^{b} f \, dx - \int_{a}^{b} \tilde{f} \, dx \right| = \left| \int_{a}^{b} (f - \tilde{f}) \, dx \right| \le \int_{a}^{b} \left| f - \tilde{f} \right| \, dx = 0$$

Figure 11: x and z

$$\implies \int_a^b f \, dx = \int_a^b \tilde{f} \, dx$$

Second part proven.

Lemma 5.5. Let $f \in \mathcal{R}[a,b]$. Then it holds that $f_+ \in \mathcal{R}[a,b]$ and also $f_- \in \mathcal{R}[a,b]$.

Proof. Only for f_+ : First, we show: Let $x \in [a, b)$.

$$f_{+}(x) = \lim_{\xi \to x_{+}} f(\xi) = \lim_{\xi \to x_{+}} f_{+}(x)$$

(the plus is important on the right-hand side!).

Proof of this: Let $\varepsilon > 0$ be arbitrary. Then there exists $\delta > 0$ such that $\forall \xi \in (x, x + \delta)$: $\left| f(\xi) - f_+(x) \right| < \frac{\varepsilon}{2}$. Now let $z \in (x, x + \delta)$ be arbitrary chosen. For z there exists $\xi \in (z, x + \delta)$.

 ξ sufficiently close enough to z such that $|f(\xi) - f_+(z)| \le \frac{\varepsilon}{2}$ because $f_+(z)$ exists.

$$\left| f_{+}(z) - f_{+}(x) \right| \le \left| f_{+}(z) - f(\xi) \right| + \left| f(\xi) - f_{+}(x) \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

TODO some content missing here

It remains to show: f_+ has left-sided limits. Let $x \in (a, b]$ be arbitrary and $f_-(x) = \lim_{\xi \to x_-} f(\xi)$. We show: $f_-(x) = \lim_{\xi \to x_-} f_+(x)$ (again: the plus is important).

Let $\varepsilon > 0$ be arbitrary. Choose $\delta > 0$ such that $\forall z \in (x - \delta, x)$ it holds that $|f(z) - f_{-}(x)| < \frac{\varepsilon}{2}$.

Now let $\xi \in (x - \delta, x)$ (compare with Figure 12) and choose $x > z > \xi$ with the property that $|f(z) - f_+(\xi)| < \frac{\varepsilon}{2}$ (possible because f in ξ has a right-sided limit):

$$\left| f_{+}(\xi) - f_{-}(x) \right| \leq \underbrace{\left| f_{+}(\xi) - f(z) \right|}_{< \frac{\varepsilon}{2}} + \underbrace{\left| f(z) - f_{-}(x) \right|}_{< \frac{\varepsilon}{2}}$$

because of the choice of δ and $z \in (\xi, x) \subseteq (x - \delta, x)$.

Hence, $\lim_{\xi \to x_{-}} f_{+}(\xi) = f_{-}(x)$. Analogously for f_{-}

Figure 12: ξ and z

Remark 5.13.

$$\lim_{\xi \to x_+} f_+(\xi) = f_+(x)$$

$$\lim_{\xi \to x_{-}} f_{-}(\xi) = f_{-}(x)$$

from the proof. So f_+ is right-sided continuous and f_- is left-sided continuous.

Lemma 5.6. Let $f \in \mathcal{R}[a, b]$. Then it holds that

$$\int_{a}^{b} f \, dx = \int_{a}^{b} f_{+} \, dx = \int_{a}^{b} f_{-} \, dx$$

Proof. For f_+ :

$$f, f_+ \in \mathcal{R}[a, b]$$

 $\forall x \in [a, b]$ with f is continuous in x it holds that

$$f(x) = \lim_{\xi \to x} f(\xi) = \lim_{\xi \to x_+} f(\xi) = f_+(x)$$

f has at most countable many discontinuity points. By Satz 5.6,

$$\int_{a}^{b} |f - f_{+}| dx = 0 \quad \text{or equivalently} \quad \int_{a}^{b} f dx = \int_{a}^{b} f_{+} dx$$

Improper integrals

Let *I* be an interval in $\mathbb R$ with marginal points *a* and *b* with $-\infty \le a < b \le +\infty$. Let *f* be a regulated function on *I*. We define

1. If
$$I = [a, b)$$
, $\int_{a}^{b} f \, dx = \lim_{\beta \to b_{-}} \int_{a}^{\beta} f \, dx$

2. If
$$I = (a, b]$$
, $\int_{a}^{b} f \, dx = \lim_{\alpha \to a_{+}} \int_{\alpha}^{b} f \, dx$

3. If
$$I = (a, b)$$
, $\int_a^b f \, dx = \lim_{\alpha \to a_+} \int_\alpha^c f \, dx + \lim_{\beta \to b_-} \int_c^\beta f \, dx$

for an arbitrarily chosen $c \in (a, b)$ under the constraint that the corresponding limits in \mathbb{R} exist.

Standard examples will follow:

Example 5.4. *Let* s > 1.

$$\int_{1}^{\infty} x^{-s} dx = \lim_{\beta \to \infty} \int_{1}^{\beta} x^{-s} dx = \lim_{\beta \to \infty} \left(\frac{1}{-s+1} x^{-s+1} \right) \Big|_{1}^{\beta}$$

$$= \frac{1}{1-s} \cdot \lim_{\beta \to \infty} \frac{1}{\frac{s-1}{s-1}} - \frac{1}{1-s} \cdot 1 = \frac{1}{s-1}$$

TODO drawing

Example 5.5. *Let* s < 1.

$$\int_{0}^{1} x^{-s} dx = \lim_{\alpha \to 0_{+}} \int_{\alpha}^{1} x^{-s} ds = \lim_{\alpha \to 0_{+}} \frac{1}{-s+1} x^{-s+1} \Big|_{\alpha}^{1}$$

$$= \frac{1}{1-s} - \frac{1}{1-s} \cdot \lim_{\alpha \to 0} \alpha \underbrace{1-s}_{=0}^{>0} = \frac{1}{1-s}$$

TODO drawing

For s = 1, neither $\int_0^1 \frac{1}{x} dx$ nor $\int_1^\infty \frac{1}{x} dx$ exists.

Example 5.6. *For* c > 0,

$$\int_0^\infty e^{-cx} dx = \lim_{\beta \to \infty} \int_0^\beta e^{-cx} dx = \lim_{\beta \to \infty} \left(-\frac{1}{c} \right) \cdot e^{-cx} \Big|_0^\beta - \frac{1}{c} \cdot \underbrace{\lim_{\beta \to \infty} e^{-c\beta}}_{=0} + \frac{1}{c} = \frac{1}{c}$$

Theorem 5.7 (Direct comparison test for improper integrals). *In German, "Majorantenkriterium für uneigentliche Intergale"*.

Let f, g be regulated functions on I and it holds that

$$|f(x)| \le g(x) \forall x \in I$$

Assume $\int_a^b g \, dx$ exists as improper integral. Then also the following improper integrals exist:

$$\int_a^b |f| \ dx \ and \ \int_a^b f \ dx$$

In German, g is called Majorante of f (there is no equivalent terminology in English).

Proof. Without loss of generality, let I = [a,b). Let $G(\beta) = \int_a^\beta g \, dx$. We know that $\lim_{\beta \to b_-} G(\beta)$ exists. By Lemma 4.6 (Cauchy criterion for existence of limits): Let $\varepsilon > 0$ be arbitrary, then there exists a right-sided neighborhood U of b ($U = (b - \delta, b)$ if $b < \infty$ and $U = (M, \infty)$ if $b = \infty$) with $u, v \in U$, then it holds that $|G(v) - G(u)| < \varepsilon$.

$$|G(v) - G(u)| = \left| \int_{a}^{v} g \, dx - \int_{a}^{u} g \, dx \right| = \left| \int_{u}^{a} g \, dx + \int_{a}^{v} g \, dx \right| = \left| \int_{u}^{v} g \, dx \right|$$

Let $F(\beta) = \int_a^\beta |f| dx$. Analogously as for G, it holds that $F(v) - F(u) = \int_u^v |f| dx$. Let $u, v \in U$. Then it holds that

$$|F(v) - F(u)| = \left| \int_{u}^{v} |f| \, dx \right| \le \left| \int_{u}^{v} g \, dx \right| = |G(v) - G(u)| < \varepsilon$$

hence by the Cauchy criterion for F: $\lim_{\beta \to b_-} F(\beta)$ exists, so there exists $\int_a^b |f| dx$ as improper integral. The same applies for the existence of $\int_a^b f dx$.

Example 5.7. *The cardinal sine function is defined as*

$$\operatorname{sinc}(x) = \frac{\sin x}{x}$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \operatorname{sinc}(0) = 1$$

So sinc(x) is continuous on \mathbb{R} .

$$\int_{0}^{\infty} \frac{\sin x}{x} \, dx = \int_{0}^{1} \underbrace{\frac{\sin x}{x}}_{continuous} \, dx + \int_{1}^{\infty} \frac{\sin x}{x} \, dx$$

How about $\int_1^\infty \frac{\sin(x)}{x} dx$?

$$\lim_{\beta \to \infty} \int_{1}^{\beta} \frac{\sin x}{x} \, dx = \begin{vmatrix} u = \frac{1}{x} & u' = -\frac{1}{x^{2}} \\ v' = \sin x & v = -\cos x \end{vmatrix} = \lim_{\beta \to \infty} \left[-\frac{1}{x} \cos x \right]_{1}^{\beta} - \int_{1}^{\beta} \frac{\cos x}{x^{2}} \, dx$$

$$= \cos(1) - \lim_{\beta \to \infty} \int_{1}^{\beta} \frac{\cos(x)}{x^{2}} \, dx$$

$$\left| \frac{\cos(x)}{x^2} \right| \le \frac{1}{x^2} \ on \ [1, \beta]$$

and $\int_1^\infty \frac{1}{x^2} dx$ exists. So $g(x) = \frac{1}{x^2}$ is a majorant of $\frac{\cos(x)}{x^2}$ and by Theorem 5.7, $\lim_{\beta \to \infty} \int_1^\beta \frac{\cos(x)}{x^2} dx$ eixsts.

Attention! $\int_0^\infty \left| \frac{\sin(x)}{x} \right| dx$ does not exist. Is not Lebesgue integrable.

Definition 5.6. *Let* x > 0. *We call* Γ Euler's Gamma function.

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} \, dx$$

Remark 5.14. The improper integral in the definition of the Γ -function exists for all x > 0.

This lecture took place on 2018/04/26.

TODO I missed the first 15 minutes

Proof of this:

Proof.

$$\lim_{t \to \infty} \underbrace{t^{x-1}}_{\text{polynomially in } t} \cdot \underbrace{e^{-t}}_{\text{exponentially } \to 0} = 0$$

Also there exists L > 1, such that $\forall x > L$ it holds that $t^{x-1}e^{-t/2} < 1$ on [1,L] (which is a compact interval) continuous. So there exists M > 0 such that $t^{x-1}e^{-\frac{t}{2}} \le M \forall t \in [1,L]$. Let $c = \max\{M,1\}$. Therefore it holds on [1,L] and also on (L,∞) .

$$t^{x-1}e^{-\frac{t}{2}} < c$$

Multiply with $e^{-\frac{t}{2}} > 0$, then it holds that $t^{x-1} \cdot e^{-t} \le ce^{-\frac{t}{2}} \forall t \in [1, \infty)$.

$$c \int_{1}^{\infty} e^{-\frac{t}{2}} dt$$

exists. By the direct comparison test, we get $\int_1^\infty t^{x-1}e^{-t} dt$ exists.

Lemma 5.7. *For all* x > 0 *it holds that*

$$\Gamma(x+1) = x \cdot \Gamma(x)$$
 (functional equation of the Γ -function)

Especially with $\Gamma(1) = 1$ it holds that $\Gamma(n+1) = n!$ for all $n \in \mathbb{N}_0$.

Proof.

$$\Gamma(x+1) = \int_0^\infty t^{x+1-1} e^{-t} \, dt = \int_0^\infty t^x e^{-t} \, dt$$

Figure 13: Γ on \mathbb{C}

$$= \begin{vmatrix} u = t^{x} & u' = x \cdot t^{x-1} \\ v' = e^{-t} & v = -e^{-t} \end{vmatrix}$$

$$= \underbrace{-t^{x} \cdot e^{-t} \Big|_{0}^{\infty}}_{0} + \int_{0}^{\infty} x \cdot t^{x-1} \cdot e^{-t} dt = x \int_{0}^{\infty} t^{x-1} e^{-t} dt = x \Gamma(x)$$

$$= 0 \text{ on the upper bound}$$

$$= 0 \text{ on the lower bound}$$

$$\Gamma(1) = \int_{0}^{\infty} \underbrace{t^{1-1} \cdot e^{-t} dt}_{=1} \cdot e^{-t} dt = -e^{-t} \Big|_{0}^{\infty} = 1$$

$$\Gamma(n+1) = n \cdot \Gamma(n) = n \cdot (n-1)\Gamma(n-1) = n \cdot (n-1) \cdot \dots \cdot 1 \cdot \underbrace{\Gamma(1)}_{=1} = n!$$

Remark 5.15. There exists a power series $\Gamma(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$. $\Gamma(z)$ is also defined for $z \in \mathbb{C}$ with $\Re z > 0$. Compare with Figure 13.

Young's inequality

Some important inequalities in integration theory follow.

Figure 14: Young's inequality visualized. The blue area denotes $\int_0^\alpha f \, dx$ and $\int_0^b f^{-1}(y) \, dy$ is the green area.

Theorem 5.8 (Young's inequality). Let $f:[0,\infty) \to [0,\infty)$ be continuous differentiable, strictly monotonically increasing with f(0) = 0 and f is unbounded. Then $f:[0,\infty) \to [0,\infty)$ bijective and $f^{-1}:[0,\infty) \to [0,\infty)$ is strictly monotonically increasing and continuous. Let $a,b \ge 0$ be given. Then it holds that

$$ab \le \int_0^{\alpha} f(x) \, dx + \int_0^b f^{-1}(y) \, dy$$

Equality is given if and only if, b = f(a) or $a = f^{-1}(b)$. Compare with Figure 14.

Proof. Let $f:[0,\infty) \to [0,\infty)$ be as above. Let $x_1 \neq x_2$. Without loss of generality $x_1 < x_2$. Then it holds that $f(x_1) < f(x_2) \implies f$ is injective. Surjectivity: f(0) = 0, hence $0 \in f([0,\infty])$. Let $\eta > 0$ be arbitrary. Because f is unbounded, there exists $z \in (0,\infty)$ with $f(z) > \eta$. $f(0) = 0 < \eta < f(z)$.

By the Intermediate Value Theorem (f is continuous), there exists $\xi \in (0, z)$ with $f(\xi) = \eta$. So f is surjective.

$$f^{-1}:[0,\infty)\to[0,\infty)$$

Figure 15: δ , y, y_1 and y_2

Monotonicity: Let $y_1 < y_2$. Then it holds that $x_1 = f^{-1}(y_1) < x_2 = f^{-1}(y_2)$. If this would not be true (hence, $x_2 \le x_1$) then $y_2 = f(x_2) \le y_1 = f(x_1)$ gives a contradiction.

Continuity of f^{-1} : Let $\varepsilon > 0$ be arbitrary. Let $y \in (0, \infty)$ be chosen arbitrarily. We show f^{-1} is continuous in y. Let $x = f^{-1}(y) > 0$ and choose $\hat{\varepsilon} = \min\{\frac{x}{2}, \frac{\varepsilon}{2}\}$.

$$x_1 = x - \hat{\varepsilon} > 0 \qquad x_2 = x + \hat{\varepsilon} > 0$$

Let $y_1 = f(x_1)$, $y_2 = f(x_2)$, $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. By monotonicity of f: $x_1 < x < x_2 \implies y_1 < y < y_2$.

Choose $\delta = \min\{y - y_1, y_2 - y\} > 0$ (compare with Figure 15). Hence $(y - \delta, y + \delta) \subseteq (y_1, y_2) \forall \eta \in (y - \delta, y + \delta)$ it holds that

$$f^{-1}(\eta) < f^{-1}(y+\delta) < f^{-1}(y_2) = x_2 = x + \hat{\varepsilon}$$

$$f^{-1}(\eta) < f^{-1}(y - \delta) < f^{-1}(y_1) = x_1 = x - \hat{\varepsilon}$$

So $f^{-1}(\eta) \in (x - \hat{\varepsilon}, x + \hat{\varepsilon})$, or equivalently

$$\left|\eta - y\right| < \delta \implies \left|f^{-1}(\eta) - \underbrace{f^{-1}(y)}_{-x}\right| < c \le \frac{\varepsilon}{2} < \varepsilon$$

So f^{-1} is continuous in y and f^{-1} is continuous in y_0 analogously.

Consider

$$\int_{0}^{b} f^{-1}(y) \, dy = \begin{vmatrix} y & = f(x) \\ dy & = f'(x) \, dx \\ y = 0 & \Longrightarrow x = f^{-1}(0) = 0 \\ y = b & \Longrightarrow x = f^{-1}(b) \end{vmatrix} = \int_{0}^{f^{-1}(b)} \underbrace{f^{-1}(f(x)) \cdot f'(x)}_{=x} \, dx = \int_{0}^{f^{-1}(b)} x \cdot f'(x) \, dx$$

$$= \underbrace{x \cdot f(x) \Big|_{0}^{f^{-1}(b)} - 0 \int_{0}^{f^{-1}(b)} 1 \cdot f(x) \, dx}_{\text{integration by parts}}$$

$$= f^{-1}(b) \cdot b - \int_0^{f^{-1}(b)} f(x) \, dx$$

So

$$I = \int_0^a f(x) dx + \int_0^b f^{-1}(y) dy = \int_{f^{-1}(b)}^0 f(x) dx + b \cdot f^{-1}(b)$$
$$= \int_{f^{-1}(b)}^a f(x) dx + b \cdot f^{-1}(b)$$

Case 1 $a = f^{-1}(b)$

$$\implies I = \underbrace{\int_{a}^{a} f(x) \, dx + b \cdot a}_{=0}$$

Case 2 b < f(a), or equivalently $f^{-1}(b) < a$

$$\implies \int_{f^{-1}(b)}^{a} \underbrace{f(x)}_{f(f^{-1}(b)) \text{ for } x > f^{-1}(b)} dx > \underbrace{b} \cdot \underbrace{(a - f^{-1}(b))}_{\text{length of integration interva}}$$

Therefore $I > b(a - f^{-1}(b)) + b \cdot f^{-1}(b) = ab$.

Case 3 b > f(a), or equivalently $f^{-1}(b) > a$

$$\int_{f^{-1}(b)}^{a} f(x) dx = \int_{a}^{f^{-1}(b)} \underbrace{(-f(x))}_{\text{monotonically decreasing}} dx > -f(f^{-1}(b)) \cdot (f^{-1}(b) - a)$$

$$= -b(f^{-1}(b) - a)$$

$$I > -b(f^{-1}(b) - a) + b \cdot f^{-1}(b) = ab$$

Remark 5.16. Young's inequality also holds without requiring differentiability of f (but the proof is more complex).

Lemma 5.8 (Special case of Young's inequality). Let $A, B \ge 0$ and p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1 \iff p + q = p \cdot q$. Then p and q are called conjugate exponents. Then it holds that $AB \le \frac{A^p}{p} + \frac{B^q}{q}$.

Proof.

$$f(x) = x^{p-1}$$
 in Young's inequality
$$y = x^{p-1} \iff x = y^{\frac{1}{p-1}}$$

$$\frac{1}{p-1} = q-1 \text{ is immediate, because}$$

$$\frac{1}{p-1} = q-1 \iff 1 = pq-p-q+1 \iff p+q=pq$$

So $f^{-1}(y) = y^{\frac{1}{p-1}} = y^{q-1}$. By Young's inequality:

$$AB \le \int_0^A x^{p-1} \, dx + \int_0^B y^{q-1} \, dy$$
$$= \frac{x^p}{p} \Big|_0^A + \frac{y^q}{q} \Big|_0^B = \frac{A^p}{p} + \frac{B^q}{q}$$

Remark 5.17.

$$AB = \frac{A^p}{p} + \frac{B^q}{q}$$

Equality holds if and only if $B = A^{p-1} \iff B^q = A^{pq-q} = A^p$.

Hölder's ineqaulity

Theorem 5.9 (Hölder's inequality). Let I be an interval with boundary values a and $b. -\infty \le a < b \le +\infty$. Let p and q be conjugate exponents. Let f_1 and f_2 be regulated function on I such that

$$\int_{a}^{b} |f_{1}(x)|^{p} dx < \infty$$

$$\int_{a}^{b} |f_{2}(x)|^{q} dx < \infty$$

both exist.

We let $||f_1||_p := \left(\int_a^b |f_1(x)|^p dx\right)^{\frac{1}{p}}$ and $||f_2||_q := \left(\int_a^b |f_2(x)|^q dx\right)^{\frac{1}{q}}$. They are called L^p -norm of f_1 and L^q -norm of f_2 .

Then it holds that

$$\int_{a}^{b} \left| f_1(x) \cdot f_2(x) \right| \, dx < \infty$$

exists and

$$\int_{a}^{b} |f_{1}(x) \cdot f_{2}(x)| dx \le ||f_{1}||_{p} \cdot ||f_{2}||_{q}$$

Proof. Assume that $||f_1||_p > 0$ and $||f_2||_q > 0$. Let $A = \frac{|f_1(x)|}{||f_1||_p}$ and $B = \frac{|f_2(x)|}{||f_2||_q}$. By Lemma 5.8,

$$\frac{\left|f_{1}(x)\right|}{\left\|f_{1}\right\|_{p}} \cdot \frac{\left|f_{2}(x)\right|}{\left\|f_{2}\right\|_{q}} \leq \frac{1}{q} \cdot \frac{\left|f_{1}(x)\right|^{p}}{\left\|f_{1}\right\|_{p}^{p}} + \frac{1}{q} \cdot \frac{\left|f_{2}(x)\right|^{q}}{\left\|f_{2}\right\|_{q}^{q}}$$

We integrate the inequality,

$$\frac{1}{\|f_1\|_p \cdot \|f_2\|_q} \cdot \int_a^b |f_1(x) \cdot f_2(x)| dx$$

$$\leq \frac{1}{p} \cdot \frac{1}{\|f_1\|_p^p} \cdot \underbrace{\int_a^b |f_1(x)|^p |dx}_{=\|f_1\|_1^p} + \frac{1}{q} \cdot \frac{1}{\|f_2\|_q^q} \underbrace{\int_a^b |f_2(x)|^q dx}_{=\|f_2\|_q^q} = \frac{1}{p} + \frac{1}{q} = 1$$

$$\frac{1}{\|f_1\|_p \cdot \|f_2\|_q} \cdot \int_a^b |f_1(x) \cdot f_2(x)| \ dx \implies \int_a^b |f_1(x) f_2(x)| \ dx \le \|f_1\|_p \cdot \|f_2\|_q$$

Special case: Let $||f_1||_p = 0$

$$\implies \left(\int_a^b \left| f_1(x) \right|^p dx \right)^{\frac{1}{p}} = 0 \implies \int_a^b \underbrace{\left| f_1(x) \right|^p}_{>0} dx = 0$$

By Theorem 5.6, $f_1(x) = 0 \forall x \in [a, b] \setminus A$ and A is at most countable.

$$\implies f_1(x) \cdot f_2(x) = 0 \forall x \in [a, b] \setminus A$$

$$\implies \int_a^b \left| f_1(x) \cdot f_2(x) \right| \, dx = 0$$

 \implies 0 = 0 in Hölder's inequality

Remark 5.18 (Special case of Hölder's inequality). Let p = q = 2, $\frac{1}{2} + \frac{1}{2} = 1$.

$$\int_{a}^{b} |f_{1}(x) \cdot f_{2}(x)| dx \le ||f_{1}||_{2} ||f_{2}||_{2}$$

is called Cauchy-Schwarz inequality for L^2 functions.

$$\int_{a}^{b} f_{1}(x) f_{2}(x) dx = \langle f_{1}, f_{2} \rangle_{2} = \langle f_{1}, f_{2} \rangle_{L^{2}}$$

is an inner product on a proper space of functions.

Elaboration on differential calculus

We consider a metric space X and functions $f: X \to \mathbb{C}$. We define a concept of uniform convergence of such sequences:

$$f_n: X \to \mathbb{C} \quad (n \in \mathbb{N}) \text{ and } f: X \to \mathbb{C}$$

We say, $(f_n)_{n\in\mathbb{N}}$ converges uniformly towards f if $\forall \varepsilon > 0 \forall N \in \mathbb{N}$ such that $\forall x \in X$ and $\forall n \geq N$ it holds that

$$\underbrace{\left|f_n(x)-f(x)\right|}<\varepsilon$$

absolute value in C

$$\iff \sup\{|f_n(x) - f(x)| : x \in X\} < \varepsilon$$

Remark 6.1. Do not use $||f||_{\infty}$ for the definition of uniform convergence, because f_n and f must not be necessarily bounded. Hence,

$$||f||_{\infty} = \{|f(x)| : x \in X\}$$

must not be finite.

Theorem 6.1. Let X be a metric space, $f_n: X \to \mathbb{C}$ be a sequence of continuous functions and $f: X \to \mathbb{C}$ such that $f_n \to f$ uniform on X. Then f is also continuous on X.