Randomness in Logic

Jan Reimann

Outline of the Course

- Lecture 1: Martin-Löf tests and martingales.
- Lecture 2: Kolmogorov complexity.
- Lecture 3: The computational power of randomness.
- Lecture 4: Randomness for non-uniform distributions.
- Lecture 5: The Metamathematics of randomness.

Outline of Lecture 2

Kolmogorov Complexity

- Plain complexity and the invariance theorem.
- Basic properties of C.
- Incompressibility and randomness oscillations.
- Prefix-free complexity K.
- Schnorr's Theorem.
- The Ample Excess Lemma.
- Chaitin's Ω .

Machine complexity

Let M be a Turing machine. M computes a partial recursive function $2^{<\mathbb{N}} \to 2^{<\mathbb{N}}$.

We define the M-complexity of a string x as

$$C_{M}(x) = \min\{|\sigma| \colon M(\sigma) = x\}$$

where $\min \emptyset = \infty$.

The complexity of x depends on the choice of M. Can we choose M so that it reflects the "true" complexity of x?

A machine R is optimal if for every machine M there exists a constant e_{M} such that

$$(\forall x) [C_R(x) \leq C_M(x) + e_M].$$

The Invariance Theorem

Theorem [Kolmogorov]

There exists an optimal machine R.

Proof.

- Let (M_e) be an effective enumeration of all Turing machines.
- On input σ , R parses σ and finds unique e and τ such that $\sigma=0^e1\tau$. Then R outputs

$$R(0^e 1\tau) = M_e(\tau),$$

- i.e. R is essentially a universal Turing machine.
- It is now easy to see that for all e,

$$(\forall x) \ [C_R(x) \le C_M(x) + e_M + 1].$$

Kolmogorov Complexity

We define the Kolmogorov complexity of a string x as

$$C(x) = C_R(x)$$

By the invariance theorem, any other machine complexity will "undercut" C by at most a constant.

If σ is an M_e -program for x, then $0^e 1 \sigma$ is an R-program for x.

Basic Properties of C

There exists an e such that for all x, $C(x) \le |x| + e$.

 e is the index of a copying machine that just outputs the input. Obviously, x is an M_e-program for x.

For each length n, there exist incompressible strings of length n, i.e. strings x with $C(x) \ge |x|$.

• There are $\sum_{k=0}^{n-1} 2^k = 2^n - 1$ programs of length < n.

C cannot be increased by computable transformations.

• If $f: 2^{<\mathbb{N}} \to 2^{<\mathbb{N}}$ is (partial) computable, then there exists a c such that for all x such that $f(x) \downarrow$, $C(f(x)) \leq C(x) + c$.

Algorithmic Properties of C

C is not computable.

- The set D = {x: C(x) < |x|} is simple r.e. and the complement is infinite but does not contain an infinite r.e. subset.
- Assume the complement of D contains an infinite r.e. set.
 Then it also contains an infinite computable set
 Z = {z₁ < z₂ < ...}.
- A program for z_i is given by the index of the machine computing Z together with the index i, which can be coded by log i bits. Hence C(z_i) ≤ log i + c.
- For large enough i this contradicts that z_i is incompressible.
- Simple sets cannot be computable since this would mean the set and its complement are r.e.
- If C were computable, so would be D.

Algorithmic Properties of C

The noncomputability of C limits its use for practical purposes.

Possible remedies:

Allow only a fixed number of steps for "decompression".
 Formally, let g be a total recursive function with g(n) ≥ n.
 Define the time-bounded complexity

```
C^g(x) = \min\{|\sigma|: R(\sigma) = x \text{ in at most } g(|x|) \text{ steps}\}.
```

 Replace R by a computable compression/decompression mechanism (like any general compression algorithm – gzip etc.).

Algorithmic Properties of C

However, C is right-enumerable or enumerable from above:

• There exists a computable function $g: 2^{<\mathbb{N}} \times \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ such that for all $x, s, g(s+1,x) \leq g(s,x)$ and

$$\lim_{s} g(s,x) = C(x).$$

For instance, we can take

$$C_s(x) = \min\{|\sigma|: R(\sigma) = x \text{ in at most } s \text{ steps}\}\$$

• Equivalently, the set

$$\{(x, m): C(x) < m\}$$

is recursively enumerable.

Machine-independent Characterization of C

A function $D:2^{<\mathbb{N}}\to\mathbb{N}$ satisfies the counting condition if $\{x\colon D(x)< k\}<2^k$ for each k.

• The counting argument above shows that every machine complexity C_M satisfies the counting condition.

Proposition

If D is right-computable and satisfies the counting condition, then there exists a machine M such that for all x, $C_M(x)=D(x)+c.$

• It follows that C is given as a minimal (with respect to pointwise domination within a constant) right-computable function satisfying the counting condition.

Randomness as Incompressibility (I)

Conjecture: A sequence X is ML-random iff all of its initial segments are incompressible, i.e. iff for some constant c,

$$(\forall n) [C(X \upharpoonright_n) \ge n - c]$$

Unfortunately, this is not true of any infinite sequence.

Theorem [Martin-Löf]

Let $k \in \mathbb{N}$. For any sufficiently long string x there exists an initial segment $y \subseteq x$ such that C(y) < |y| - k.

Randomness as Incompressibility (I)

Proof

- Let z be an initial segment of x.
- Let n = n(z) be the index of z in a standard length-lexicographical ordering/enumeration of $2^{<\mathbb{N}}$.
- Let σ be the length n extension of z along x, i.e. $y = z\sigma \subseteq x$ and $|\sigma| = n$.
- There is a machine that, given σ as input, outputs $z\sigma$.
- Hence $C(y) \le |\sigma| + c$, where c is independent of y.
- On the other hand, $|y| = |z| + |\sigma|$, so if we choose z such that |z| > k + c, it follows that C(y) < |y| k.

Failure of Subadditivity

The complexity of a concatenation can be higher than the complexities of its parts.

Given strings x, y, we should be able to combine programs for them to obtain a program for z = xy.

Hence it should be true that $C(xy) \le C(x) + C(y) + c$.

The problem is that, given a concatenation of descriptions for x and y, respectively, we cannot tell where the description of x ends and that of y begins.

Failure of Subadditivity

Corollary

Let $k \in \mathbb{N}$. There exists an x such that for some splitting x = yz we have C(x) > C(y) + C(z) + k.

Proof

- Let c be such that $C(x) \le |x| + c$ (c is the index of the copying machine).
- Pick an incompressible, sufficiently long x, $C(x) \ge |x|$.
- Let l = k + c and use the preceding theorem to find an initial segment y ⊆ x such that C(y) < y - l.
- Then for z such that x = yz, we have

$$C(y) + C(z) + k < |y| - k - c + |z| + c + k = |x| \le C(x).$$

Randomness Oscillations

One can analyze these phenomena further to get an assessment on how incompressibility for C can fail along an infinite sequence.

Theorem [Martin-Löf]

Let $f: \mathbb{N} \to \mathbb{N}$ be a total computable function such that $\sum_{n} 2^{-f(n)} = \infty$. Then, for any sequence X, there exist infinitely many n such that

$$C(X \upharpoonright_n) \le n - f(n)$$
.

For example, we can choose $f(n) = \log n$.

A "Better" Version of C?

One of the intended meanings of Kolmogorov complexity is information theoretic:

If σ is a "minimal" program for x, σ contains precisely the information necessary to produce x.

But a string σ does not only contain its bits as information, it contains also its length.

This was used in the previous results.

We should therefore somehow "incorporate" the length of a program into the definition of complexity.

A "Better" Version of C?

From a different perspective:

The failure of subadditivity is due to the fact that we cannot, if we concatenate two descriptions, effectively tell where one ends and the other begins.

Instead of using $\sigma \tau$, we could use $0^{|\sigma|} 1 \sigma \tau$.

 $0^{|\sigma|}1\sigma$ is called a self-delimiting description of σ .

We will define a version of complexity that allows only self-delimiting descriptions.

Prefix-free Sets

Definition

A set $W \subseteq 2^{<\mathbb{N}}$ is prefix-free if for any $x, y \in W$,

$$x \subseteq y$$
 implies $x = y$.

In other words, no two elements of W are prefixes of one another.

Order theoretic:

W is an antichain with respect to the partial order \subseteq of strings.

Example: Phone numbers.

Prefix-free Kolmogorov complexity

A machine M is prefix-free if its domain is a prefix-free set.

Proposition

There exists a universal prefix-free machine.

Proof:

- Enumerate all Turing machines.
- Whenever we see that some machine M_e is not prefix-free, we stop enumerating its domain. This way we convert it to a prefix-free machine M

 _e. If M_e is already prefix free, it remains unaltered.
- If (\tilde{M}_e) is an enumeration of all (and only) prefix-free machines, we define $S(0^e 1\sigma) = \tilde{M}_e(\sigma)$.
- This is a partial recursive function with prefix-free domain.
- Show that every such function is computed by a prefix-free machine. (Exercise!)

Prefix-free Kolmogorov complexity

Definition

The prefix-free complexity of a string x is defined as

$$K(x) = C_S(x).$$

K is minimal in the sense that for any other prefix-free machine M, $K(x) \leq C_M(x) + c$.

Properties of K

Algorithmic properties

- K is not computable.
- K is enumerable from above.

Upper bounds are harder than for C

- The copying machine is not prefix-free.
- We can replace it by the machine $M(0^{|x|}1x) = x$.
- This yields $K(x) \leq^+ 2|x|$. (\leq^+ means " $\leq \cdots + c$ ")
- General idea: Code x by x + self-delimiting code for |x|.
- The shortest self-del. code for |x| is given by a program of length K(|x|).
- Hence $K(x) \le |x| + K(|x|) \le |x| + 2\log|x|$.

Relating K and C

Proposition

$$K(x) \le^+ K(C(x)) + C(x).$$

Proof

- Define machine M: On input τ search for decomposition $\tau = \sigma \eta$ such that $S(\sigma) \downarrow = k$, $k = |\eta|$. (S is the universal prefix-free machine.)
- If such decomposition is found, M simulates $R(\eta)$. (R is the universal machine for C.)
- M is prefix free.
- If η is a shortest R-description of x and σ is a shortest S-description of $|\eta|$, then M outputs x.
- Hence $K(x) \le^+ |\sigma| + |\eta| = K(C(x)) + C(x)$.

Relating K and C

Corollary

$$C(x) \le K(x) \le C(x) + 2\log C(x) \le C(x) + 2\log(|x|)$$
.

We can also get a first "approximation" to subadditivity.

$$C(xy) \le^+ K(x) + C(y).$$

 Search for decomposition of input into S-program for x and R-program for y.

Randomness as Incompressibility (II)

Proposition

The sequence $W_n = \{\sigma \colon K(\sigma) \le |\sigma| - n\}$ is a ML-test.

Proof

- The W_n are uniformly r.e. since K is enumerable from above.
- Observation: If $V\subseteq 2^{<\mathbb{N}}$ is prefix-free, then $\sum_{\sigma\in W}2^{-|\sigma|}\leq 1$.
- Each of the σ in W_n has a program τ of length $\leq |\sigma| n$.
- These τ form a prefix-free set V_n .
- Hence $\sum_{\sigma \in W_n} 2^{-|\sigma|} \le \sum_{\tau \in V_n} 2^{-(|\tau|+n)} \le 2^{-n}$.

Randomness as Incompressibility (II)

It follows that if X is ML-random, it will pass the test (W_n) .

This means that from some level c on (the W_n are nested), X is not covered by W_n for n > c.

This in turn means that

$$(\forall n) [K(X \upharpoonright_n) \ge n - c].$$

In other words, if X is ML-random, its initial segments are incompressible with respect to K.

Randomness as Incompressibility (II)

Can we prove a converse of this? If the initial segments of X are incompressible, does it follow that X is random?

We want to show that if we have a ML-test, we can use it to compress initial segments that are covered by it.

For this, we will study a new way of devising prefix-free machines.

• This will at the same time give a new characterization of K.

Discrete Semimeasures

Definition

A discrete semimeasure is a function $m:2^{<\mathbb{N}}\to[0,1]$ such that

$$\sum_{\mathbf{x} \in 2^{<\mathbb{N}}} \mathsf{m}(\mathbf{x}) \le 1$$

Think of a semimeasure as an incomplete probability distribution over $2^{<\mathbb{N}}$ (or equivalently, \mathbb{N}).

A semimeasure m is called optimal for a family $\mathcal F$ of semimeasures if $m\in \mathcal F$ and it multiplicatively dominates all semimeasures in $\mathcal F$, i.e. if

$$(\forall f \in \mathfrak{F}) (\exists c_f) (\forall x) [f(x) \leq c_f m(x)].$$

Discrete Semimeasures

Theorem [Levin]

There exists a semimeasure $\widetilde{\mathfrak{m}}$ that is optimal for the family of left-computable discrete semimeasures.

One can construct such a semimeasure along the lines of the previous universality constructions.

But we will actually see that the function

$$\widetilde{\mathfrak{m}}(x) = \sum_{x \in 2^{<\mathbb{N}}} 2^{-K(x)}$$

is an optimal semimeasure. This is known as the Coding Theorem.

The Coding Theorem

Theorem [Levin]

If $\widetilde{\mathfrak{m}}$ is an optimal left-computable semimeasure, then $-\log\widetilde{\mathfrak{m}}=^+K$.

Proof

- It suffices to show that 2^{-K} is an optimal left-computable semimeasure.
- 2^{-K} is left-computable, since K is enumerable from above.
- Let m be a left-computable semimeasure. We construct a prefix-free machine M such that $K_M(x) \leq^+ -\log m(x)$.

The Coding Theorem

Proof

- Let $\{(x_t,k_t)\colon t=1,2,\ldots\}$ be an enumeration of the set $\{(x,k)\colon 2^{-k}< m(x)\}$ without repetition.
- Then $\sum_t 2^{-k_t} = \sum_x \sum_t \{2^{-k_t} : x_t = x\} \leq \sum_x 2m(x) < 2.$
- Cut off adjacent intervals I_t of length 2^{-k_t} from the left side of [0,1].
- If [τ] is the largest binary subinterval for some I_t, let
 M(τ) = x_t. Otherwise let M be undefined.
- M is obviously prefix-free and partial recursive.
- It follows from the construction that for all x exists a t such that $x_t = x$ and $m(x)/2 < 2^{-k_t}$.
- Hence for every x there exists a τ such that $M(\tau) = x$ and $|\tau| \le -\log \mathfrak{m}(x) + 4$.

The Kraft-Chaitin Theorem

The Coding Theorem gives us a useful methods to prove complexity bounds.

Corollary

Suppose we have a computable sequence of "requests" of the form (r_i, x_i) , meaning that we want to build a prefix-free machine M such that for all i exists σ_i with $|\sigma_i| = r_i + c$ and $M(\sigma_i) = x_i$. Such a machine exists iff the function $m(x_i) = 2^{-r_i}$ is a semimeasure.

The proof is analogous to the construction in the previous proof.

Randomness as Incompressibility (III)

Now let (W_n) be a ML-test that covers X.

Define
$$m_n(\sigma)=n2^{-|\sigma|}$$
 if $\sigma\in W_n$ (0 otherwise), and $m=\sum_n m_n.$

m is enumerable from below.

$$\sum_{\sigma} m(\sigma) \le \sum n/2^n < \infty.$$

Deleting finitely many strings from W does not change the covering properties of the test and turns m into a semimeasure.

Hence for some c, $m \le c 2^{-K}$.

Randomness as Incompressibility (III)

Given n there exists l_n such that $X \upharpoonright_{l_n} \in W_n$.

Hence $m_n(X \upharpoonright_{l_n}) = n2^{-l_n}$, which implies

$$n = \frac{m_n(X\!\upharpoonright_{l_n})}{2^{-l_n}} \leq \frac{m(X\!\upharpoonright_{l_n})}{2^{-l_n}} \leq \frac{2^{-K(X\!\upharpoonright_{l_n})}}{2^{-l_n}}.$$

This yields

$$\limsup_{n} \frac{2^{-K(X|_{l_n})}}{2^{-l_n}} = \infty,$$

or equivalently

$$(\forall n) (\exists l_n) [K(X \upharpoonright_{l_n}) < l_n - n].$$

Schnorr's Theorem

We have proved the second main theorem of algorithmic randomness, better known as Schnorr's Theorem.

Theorem

A sequence is ML-random iff there exists a c such that for all n,

$$K(X \upharpoonright_n) \ge n - c$$
.

The Ample Excess Lemma

For a random sequence, the distance between $K(X \upharpoonright_n)$ and n must in fact go to infinity.

Theorem [Miller and Yu]

X is ML-random iff $\sum_{n} 2^{n-K(X_{n})} < \infty$.

Chaitin's Ω

While there is an abundance of random sequences, it is hard to come up with a distinguished example.

Chaitin defined the real number

$$\Omega = \sum_{\sigma \in \mathtt{dom}(S)} 2^{-|\sigma|}.$$

Theorem [Chaitin]

The binary expansion of Ω is a ML-random sequence.

Chaitin's Ω

Proof

- We build a (plain) machine M.
- On input x of length n, wait for t such that $0.x \le \Omega_t < 0.x + 2^{-n}$, where

$$\Omega_t = \sum_{S(\sigma) \downarrow \text{ in at most } t \text{ steps, } |\sigma| \le t} 2^{-|\sigma|},$$

the approximation to Ω at stage t.

- If such t is found, output the least string y not in the range of S_{\pm}
- If $x = \Omega \upharpoonright_n$, then such t exists.
- By stage t all S-descriptions of length ≤ n have appeared, otherwise Ω > Ω_t + 2⁻ⁿ.
- Thus M(x) = y and K(y) > n.
- Hence $K(\Omega \upharpoonright_n) \ge + K(M(\Omega \upharpoonright_n)) > n$.