Work package number	er 3	Lead beneficia	ary UNIGRAZ
Work package title	Discovery in federated networks		
Participant number	8	9	
Short name of participant	SRC	UNIGRAZ	
Person month per participant	Σ	X	
Start month	13		
End month	36		

Objectives

- Develop a evolutionary-biology inspired framework for discovery in federated networks
- Derive functionality rules required for computation discovery in federated networks
- Adaptive learning rules to discover novel paths for sustainability of the Seas

Description of work

Task T3.1: Develop eco-evolutionary biology-inspired modeling for discovery in federated networks (M13-M36) Leader: SRC. Contributors: 10

This task extends eco-evolutionary biology-inspired modeling for general principles of discovery in federated networks... Jon:Keep elaborating

Task T3.2: Develop evolutionary neurobiology-inspired algorithms... (M13-M36) Leader: UNIGRAZ. Contributors: 9

... T3.2 provides computation algorithms with evolving neurons with (many) traits and interactions to allow WP3 to implement this feature in discovery in federated networks.... Wolfgang: Keep elaborating

Task T3.3: Based on the framework developed in T3.1 and T3.2, ICREA will derive automation rules for discovery in federated networks (M25-M36) Leader: ICREA. Contributors: 3

Automation rules for eco-evolutionary and neurobiology-inspired modeling for discovery in federated networks Roger: Keep elaborating

Task T3.4: Reproduce (M21-M27)

Leader: SDSC. Contributors: 4 In this task the SDSC will merge the work done in T3.1 and T3.2 into reproducible and replicable discovery in federated networksChristine:Keep elaborating

Task T3.5: Visualize (M21-M27)

Leader: SME. Contributors: 5 In this task the partner SME will apply visualization algorithms to the work done in T3.1 and T3.2Charles:Keep elaborating

Task T3.6: Sustainability of the Seas federated network (M21-M30)

Leader:

UNIGRAZ. Contributors: 6,7,8,9,10

All participants apply results from eco-evolutionary and neurobiology-inspired algorithms into a fully automated, reproducible and animated sustainability of the Seas federated network case study

Deliverables

- D3.1 Demonstrator on eco-evolutionary biology-inspired rules for discovery in federated networks (M30)
- D3.2Demonstrator on evolutionary neurobiology-inspired rules for discovery in federated networks (M36)
- D3.3Automated demonstrator of for evolutionary biology-inspired rules in federated networks (M36)
- D3.4Reproducible demonstrator of evolutionary rules in federated networks (M36)
- D3.5Visualization demonstrator of evolutionary rules for discovery in federated networks (M36)
- D3.6Demonstrator all parts for the sustainability of the Seas federated network case study (M36)

Work package number 4 Lead beneficiary IEO				
Work package title	Dissemination			
Participant number	10 11			
Short name of participant	IEO SEM			
Person month per participant	X X			
Start month	1			
End month	36			