Homework Problem Set 1

Ari Bruck Eric Addison

Social Computing Fall 2018

1

Consider a bipartite graph with a set of boys and girls. Suppose that every girl likes at least $d \ge 1$ boys and every boy likes at most d girls. Show that there exists a perfect matching between boys and girls.

Let S be a subset of girls $S \subseteq G$, with $|S| = n_g$. Let the N(S) be the neighbor set of S with $|N(S)| = n_b$. From the problem statement, we know that the set S must contain at least dn_g outgoing edges (connections to boys), and the set N(S) must contain at most dn_b incoming edges. Additionally, all of the outgoing edges from S must also be incoming edges to N(S). Let n_S be the number of edges between S and N(S). From this, we can conclude:

$$dn_g \le n_S \le dn_b$$

$$\Rightarrow n_g \le n_b$$

$$\Rightarrow |S| \le |N(S)|$$

$$\Rightarrow S \text{ is not a constricted set}$$

Since this applies to any set $S \subseteq G$, there are **no constricted subsets in** G, and so a perfect matching must exist by Hall's marriage theorem.

$\mathbf{2}$

Show that König-Egerváry Theorem implies Hall's Theorem.

König-Egerváry Theorem states that in any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover.

Then for bipartite graph G with bipartite sets X and Y such that G:=(X,Y,E) \exists a minimum cover C that maximizes matching. Suppose there is no matching that matches X. Then by König-Egerváry Theorem |C|<|X| vertices. Consider $C\cap X$ and $C\cap Y$. There is no edge between $X\setminus C$ and $Y\setminus C$, so $N(X\setminus C)\subset C\cap Y$. But then

$$|N(X \setminus C)| \le |C \cap Y| = |C| - |C \cap X| < |X| - |C \cap X| = |X \setminus C|,$$

which violates Hall's condition and therefore means a perfect match does not exist.

Using König-Egerváry Theorem, if a perfect matching exists then

$$\forall X \text{ is matched to a } Y \implies \forall X, N(X) \geq X.$$

So a constricted set does not exist, thus Hall's Theorem:

$$\exists$$
 perfect matching $\iff N(X) \geq X$

is proven.

3

An $r \times n$ Sudoku is an $r \times n$ matrix with entries $\{1, ..., n\}$ such that each number appears at most once in each row and column. Show that any $r \times n$ Sudoku can be extended to an $(r+1) \times n$ Sudoku whenever r < n.

Let S be an $(r+1) \times n$ matrix where the submatrix $\hat{S} \equiv \{S_{ij}\}_{i=1}^r$ is a valid $r \times n$ Sudoku, with r < n. Let $B \equiv \{1, ..., n\}$. In order for S to also be a valid Sudoku, each entry in the last row must take a value such that:

$$S_{r+1,j} \in P_j \equiv B - \hat{S}_j$$

Where P_j is the set of potential values for cell $S_{r+1,j}$, with $|P_j| = n - r$, and \hat{S}_j is the set of values in the jth column of \hat{S} .

We can cast this as a matching problem where the matrix entries $G \equiv \{S_{r+1,j}\}_{j=1}^n$ form the left-hand side of a bipartite graph (the "girls"), and the set B forms the right-hand side (the "boys").

Given the size of the potential value set P_j , we know that each new cell in G connects to exactly n-r elements in B.

Also, since each value $b \in B$ must be present in each row, and every column in \hat{S} contains r of the values in B, every value in B is matched to exactly n-r of the cells in G. That is, every value b has n-r potential cells in G that it could fit as a valid entry.

Now, by application of the result of problem 1, since every cell $g \in G$ is connected to at least (in this case, exactly) $n-r \ge 1$ values $b \in B$, and every value b is connected to at most (exactly) n-r cells in G, we know that there exists a perfect matching between cells in G and values in G. Therefore, the Sudoku \hat{S} can be extended.

Note that for $r \geq n$, we fail to meet the condition that $n - r \geq 1$, and cannot guarantee a perfect matching.