Topic 6 recap

- Operational Amplifiers (Op Amps) are active elements.
 - They can be modelled as a voltage-controlled voltage source.
 - Op Amp circuits are designed to perform mathematical operations on input signals.
 They are manufactured in the form of Integrated circuits (ICs).
- From the 8 pins of the Op Amp IC, we are only interested in 5 of them.
 - Inverting input v_1 (pin 2).
 - Non-inverting input v_2 (pin 3).
 - Output v_o (pin 6).
 - Positive power supply V^+ (pin 7).
 - Negative power supply V^- (pin 4).
- The output of the Op Amp in open-loop is proportional to the differential input voltage.

$$v_o = Av_d = (v_2 - v_1)$$
, where A is the open-loop gain (in the range of 10^5 to 10^8).

• Op Amp circuits should be operated in the **linear region** to avoid **saturation** of the output (output should not exceed the voltage of power supply $|V_{cc}|$).

$$-V_{cc} \le v_o \le V_{cc}$$

Topic 6 recap

- An Ideal Op Amp has the following properties:
 - Open-loop gain close to infinity, $A \simeq \infty$.
 - **Input** resistance close to, **infinity** $R_i \simeq \infty \Omega$ (open circuit).
 - **Output** resistance close to **zero**, $R_o \simeq 0 \Omega$ (short circuit).
 - The currents into both terminals are zero.

$$i_1 = i_2 = 0$$

The voltage across the input terminals is zero (if there is negative feedback).

$$v_d = v_2 - v_1 = 0$$
 or $v_1 = v_2$

- Use Nodal analysis to solve and analyse Op Amp circuits.
 - KCL at input nodes to calculate v_0 .
 - Once output voltage v_0 is found, use KCL at output node to find output current i_0 (if needed).
 - Gain of the circuit = ratio of output to the input (v_0 / v_i) .
- Op Amp circuits are mostly used in negative feedback configuration.
 - The output is fed back to the inverting input via feedback resistor R_f .
 - The inverting input and non-inverting input are connected to either ground or a source via input resistor R_1 .

Topic 6 recap

Inverting amplifier

$$v_o = -\frac{R_2}{R_1} v_i$$

Noninverting amplifier

$$v_0 = \left(1 + \frac{R_2}{R_1}\right) v_i$$

Voltage follower

$$v_o = v_i$$

Summer

$$v_o = -\left(\frac{R_f}{R_1} v_1 + \frac{R_f}{R_2} v_2 + \frac{R_f}{R_3} v_3\right)$$

Difference amplifier

$$v_o = \frac{R_2}{R_1} (v_2 - v_1)$$

Integrator

$$v_o(t) = -\frac{1}{RC} \int_0^t v_i(\tau) d\tau$$

Differentiator

$$v_o(t) = -RC\frac{dv_i}{dt}$$

