(Session 19 Group Quiz)

The body temperature in degrees Fahrenheit of n=40 randomly chosen healthy adults is measured. The standard deviation σ is known to be 0.68 degrees Fahrenheit. The sample mean for the measurements is $\bar{x}=98.37$.

(Do Not Repeat Solutions) You already found a 99% confidence interval for the mean body temperature and explained its meaning.

(Do Not Repeat Solutions) Consider the simple hypothesis for the mean body temperature in degrees Fahrenheit, $H_0: \mu = 98.6$ versus $H_1: \mu = 98.4$. You already gave the critical value for \bar{x} , the sample mean body temperature when the significance level $\alpha = 0.05, 0.02$, and 0.01.

q-worksheet

a. Do these critical values increase, decrease, or stay the same in the number of healthy adults chosen increases to n = 50? Explain your answer.

(a) If the value of n increases from 40 to 50, we see that the SD decreases. Therefore, to compensate for the Area X, the value of k is taken further towards 40. Therefore if a increase, CRITICAL VALUE also INCREASES u. Here, we see that the value of k increases b. The data have sample mean $\bar{x}=98.37$. For n=40 and each value of α , report whether or not we reject the null hypothesis? Explain your answer.

Figure 1: Part(b)

c. Find the power of the test in part (b) for each significance level.

```
significance 0.05 0.02 0.01
```

```
z1<-(98.42315 - 98.4)/(0.68/sqrt(40))
z2<-(98.37919 - 98.4)/(0.68/sqrt(40))
z3<-(98.34988 - 98.4)/(0.68/sqrt(40))
cat("Value of power for alpha = 0.05: ", pnorm(z1), "\n")

## Value of power for alpha = 0.05: 0.5852387

cat("Value of power for alpha = 0.02: ", pnorm(z2), "\n")

## Value of power for alpha = 0.02: 0.4232641

cat("Value of power for alpha = 0.01: ", pnorm(z3), "\n")</pre>
```

Value of power for alpha = 0.01: 0.3205516

d. For $\alpha=0.01$, indicate the power using the critical value for the test and drawing the density of the sample mean \bar{X} for the null and alternative hypothesis.

```
curve(dnorm(x, mean = 98.4, sd = 0.68/sqrt(40)), from = 97.9, to = 99.1, col = "red")
par(new = TRUE)
curve(dnorm(x, mean = 98.6, sd = 0.68/sqrt(40)), from = 97.9, to = 99.1)
abline(v = 98.35)
```


The shaded area indicated on the next page is the power, that is, the area to the left of the critical value under the curve for the alternative hypothesis.

Figure 2: Part(d)