Foundations of data science, summer 2020 Jonathan Lennartz, Michael Nüsken, Annika Tarnowski

7. Exercise sheet Hand in solutions until Thursday, 4 June 2020, 12:00

Exercise 7.1 (Toy Example of SVD).

(15 points)

You can use the numpy command numpy.linalg.svd() for this exercise.

(i) Take
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 2 & 3 \end{bmatrix}$$
 (from the course).

- (a) Use python to compute its SVD and its 1-truncated SVD.
- (b) Plot the rows of the data matrix A and the rows of its 1-truncated SVD A_1 as points.
- (c) Compare to the first Lemma about the *k*-truncated SVD.

Lemma. The rows of A_k are the projections of the rows of A to the best-fit k-subspace V_k spanned by the first k singular vectors of A

 $\it Hint:$ You may want to repeat the previous with a few other matrices $\it A.$

(ii) Write python routines:

3

- (a) For a given set of points and a line, the sum of the squared distances from the points to the line.
- (b) For a given set of points, the best-fit 1- and 2-subspace to approximate the points.

Solution. You can best check your own solution by comparing the following exercise with your own.

Please note that for the best-fit *subspace* you must not center the data. This is because a subspace must always contain the origin.

To compute the sum of the squared distances from the points to a given line, you probably want to compute the distance vector between the point and the projection of the point. Therefore you will 4

need that (if input your line as a vector) the projection of a vector \boldsymbol{z} to the line given by \boldsymbol{v} takes the form of

$$\frac{|v\rangle\,\langle v\,|\,z\rangle}{\langle v\,|\,v\rangle}$$

If you input your line as an equation of the form y=mx, you implicitly use the vector $|(1,m)\rangle$ to describe your line. Then your formula for the x-coordinate will look like

$$\frac{z_1 + mz_2}{1 + m^2}$$

and you obtain the y-coordinate by multiplication with m.

- (iii) Apply the two routines to the data sets given in the file 07-sol-2d.csv you find in sciebo.
 - (a) Plot the points with the corresponding best-fit line so we can visually check the correctness of your routine.
 - (b) Compare the sum of the squared distances of the best-fit line to the sum of the squared distances of the line given by $y = \frac{2}{3}x$.

Solution. The picture you obtain should look like the following:

The line should point in the direction of approximately

$$|(0.834, 0.564)\rangle$$

or in the other version of implementation, have steepness of $m=0.68 \, \mathrm{H}$.

 \bigcirc

 $\circ\,$ The value for the sum of the squared distances to the line given by $y=\frac{2}{3}x$ is $4.76\mbox{\em J}.$

Here are some other values that might help for debugging:

- \circ If you centered your data (which you should not) you obtain $4.66 \mbox{\sc H}.$
- o If you computed the sum of the squared projection lengths you obtain: 102.03 h (best-fit) and 102.02T ($y=\frac{2}{3}x$).
- (iv) Plot the data set and best-fit 2-subspace given in 07-sol-3d.csv. 2
- (v) Repeat some of the previous with a random data sets containing 500 points...