Towards the Compression of First-Order Resolution Proofs by Lowering Unit Clauses

J. Gorzny¹ B. Woltzenlogel Paleo²

¹University of Victoria

²Vienna University of Technology

6 August 2015

Proof Compression Motivation

 The best, most efficient provers, do not generate the best, least redundant proofs.

 Many compression algorithms for propositional proofs; few for first-order proofs.

(Propositional) Proofs

Definition (Proof)

A directed acyclic graph $\langle V, E, \Gamma \rangle$, where

- V is a set of nodes
- E is a set of edges labeled by literals
- Γ (the proof clause) is inductively constructible using axiom and resolution nodes

Definition (Axiom)

A proof with a single node (so $E = \emptyset$)

(Propositional) Resolution

Definition (Resolution)

Given two proofs ψ_L and ψ_R with conclusions Γ_L and Γ_R with some literal I such that $\overline{I} \in \Gamma_L$ and $I \in \Gamma_R$, the resolution proof ψ of ψ_L and ψ_R on I, denoted $\psi = \psi_L \psi_R$ is such that:

- ψ 's nodes are the union of the nodes of ψ_L and ψ_R , and a new root node
- there is an edge from $\rho(\psi)$ to $\rho(\psi_L)$ labeled with \bar{I}
- there is an edge from $\rho(\psi)$ to $\rho(\psi_R)$ labeled with I
- ψ 's conclusion is $(\Gamma_L \setminus \{\bar{I}\}) \cup (\Gamma_R \setminus \{I\})$

A Propositional Proof

Deletion

Deletion of an edge

- The resolvent is replaced by the other premise
- Some subsequent resolutions may have to be deleted too

Deletion of a subproof ψ

- Deletion of every edge coming to $\rho(\psi)$
- The operation is commutative and associative

First-Order Proofs

Definition (First-Order Proof)

A directed acyclic graph $\langle V, E, \Gamma \rangle$, where

- V is a set of nodes
- E is a set of edges labeled by literals and substitutions
- Γ (the proof clause) is inductively constructible using axiom, (first-order) resolution, and contraction nodes

Axioms are unchanged

Substitutions and Unifiers

Definition (Substitution)

A mapping $\{X_1 \setminus t_1, X_2 \setminus t_2, \ldots\}$ from variables X_1, X_2, \ldots to terms t_1, t_2, \ldots

Definition (Unifier)

A substitution that makes two terms equal when applied to them.

First-Order (Unifying) Resolution

Definition (First-Order Resolution)

Given two proofs ψ_L and ψ_R with conclusions Γ_L and Γ_R with some literal I such that $I_L \in \Gamma_L$ and $I_R \in \Gamma_R$, and σ_L and σ_R are substitutions usch that $I_L \sigma_L = \overline{I_R} \sigma_R$, and the variables in $(\Gamma_L \setminus I_L) \sigma_L$ and $(\Gamma_R \setminus I_R) \sigma_R$ are disjoint, then the resolution proof ψ of ψ_L and ψ_R on I, denoted $\psi = \psi_L \psi_R$ is such that:

- ψ 's nodes are the union of the nodes of ψ_L and ψ_R , and a new root node
- there is an edge from $\rho(\psi)$ to $\rho(\psi_L)$ labeled with I_L and σ_L
- there is an edge from $\rho(\psi)$ to $\rho(\psi_R)$ labeled with I_R and σ_R
- ψ 's conclusion is $(\Gamma_L \setminus I_L)\sigma_L \cup (\Gamma_R \setminus I_R)\sigma_R$

Contraction

Definition (Contraction)

If ψ' is a proof and σ is a unifier of $\{I_1,\ldots,I_n\}\subset\Gamma'$, then a contraction ψ is a proof where

- ψ 's nodes are the union of the nodes of ψ' and a new node v
- There is an edge from $\rho(\psi')$ to ν labeled with $\{I_1, \dots, I_n\}$ and σ
- The conclusion is $(\Gamma' \setminus \{I_1, \dots, I_n\})\sigma \cup \{I\}$, where $I = I_k\sigma$ for $k \in \{1, \dots, n\}$

LowerUnits

Definition (Unit)

A unit is a subproof with a conclusion having exactly 1 literal

Theorem

A unit can always be lowered

Compression is achieved by delaying resolution with unit subproofs.

Two Traversals

- ↑ Collect units with more than one resolvent
- Delete units and reintroduce them at the bottom of the proof

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b}

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c

$$a, \bar{b}$$

$$a, \bar{b}$$

$$a, \bar{b}$$

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{c} $a, \bar{$

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c

$$a, \bar{b}$$
 a, b

$$a \quad \bar{a}$$

$$a \quad \bar{a}$$

$$\eta_5$$
: $q(Y) \vdash p(a)$ η_4 : $p(X) \vdash \eta_3$: $\vdash p(b), q(Y)$

$$\eta_1$$
: $q(Y) \vdash \eta_2$: $\vdash q(Y)$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad$$

Definition (Pre-Deletion Property)

 η unit, $I \in \eta$, such that I is resolved with literals I_1, \ldots, I_n in a proof ψ . η satisfies the *pre-deletion unifiability* property in ψ if I_1, \ldots, I_n and \bar{I} are unifiable.

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_5: p(U, q(W, b)) \vdash$

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_5: p(U, q(W, b)) \vdash$

$$\eta_{1}: r(Y), p(X, q(Y, b)), p(X, Y) \vdash \eta_{2}: \vdash p(U, V)$$
 $\eta_{4}: \vdash r(W) \qquad \eta_{3}: r(V), p(U, q(V, b)) \vdash$
 $\eta_{5}: p(U, q(W, b)) \vdash$
 $\eta_{5}: p(X, q(Y, b)), p(X, Y) \vdash \eta_{4}': \vdash r(W)$
 $\eta_{5}: p(X, q(W, b)), p(X, W) \vdash$

$$\eta_{1}: r(Y), p(X, q(Y, b)), p(X, Y) \vdash \eta_{2}: \vdash p(U, V)$$
 $\eta_{4}: \vdash r(W) \quad \eta_{3}: r(V), p(U, q(V, b)) \vdash$

$$\eta_{5}: p(U, q(W, b)) \vdash$$

$$\eta'_{1}: r(Y), p(X, q(Y, b)), p(X, Y) \vdash \eta'_{4}: \vdash r(W)$$

$$\eta'_{5}: p(X, q(W, b)), p(X, W) \vdash$$

$$\downarrow \eta'_{5}$$

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_5: p(U, q(W, b)) \vdash$
 \downarrow

Definition (Post-Deletion Property)

 η unit, $I \in \eta$, such that I is resolved with literals I_1, \ldots, I_n in a proof ψ . η satisfies the *post-deletion unifiability* property in ψ if $I_1^{\dagger\downarrow}, \ldots, I_n^{\dagger\downarrow}$ and $\overline{I^{\dagger}}$ are unifiable, where I^{\dagger} is the literal in $\psi' = \psi \setminus \{\eta\}$ corresponding to I in ψ , and $I^{\dagger\downarrow}$ is the descendant of I^{\dagger} in the roof of ψ' .

First-Order Lower Units Challenges

- Deletion changes literals
- Unit collection depends on if contraction is possible after propagation down the proof

Deletion of units require knowledge of proof after deletion, and deletion depends on what will be lowered.

- $O(n^2)$ solution to have full knowledge
- Difficult bookkeeping required for implementation

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Faster run-time (linear; one traversal)
Easier to implement

Doesn't always compress (returns original proof sometimes)

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Faster run-time (linear; one traversal) Easier to implement

Doesn't always compress (returns original proof sometimes)

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Faster run-time (linear; one traversal) Easier to implement

Doesn't always compress (returns original proof sometimes)

$$\eta_1$$
: $\vdash p(a)$

$$\eta_4$$
: $r(X)$, $p(V) \vdash q(Y)$, $t(Z)$ η_3 : $p(a) \vdash q(X)$, $r(Y)$, $t(Z)$
 \uparrow
 η'_6 : $p(a)$, $p(a) \vdash q(X)$, $t(Z)$
 \uparrow
 η_7 : $q(X)$, $p(a) \vdash t(Z)$ $\downarrow \eta'_6 \rfloor$: $p(a) \vdash q(X)$, $t(Z)$
 \uparrow
 η_9 : $t(Z) \vdash \eta_8$: $p(a) \vdash t(Z)$

Experiment Setup

- Simple First-Order Lower units implemented as part of Skeptik (in Scala)
- 308 real first-order proofs generated by SPASS from problems from TPTP Problem Library
- proofs generated on cluster at the University of Victoria
- proofs compressed on this laptop

Experiment Setup

- Simple First-Order Lower units implemented as part of Skeptik (in Scala)
- 308 real first-order proofs generated by SPASS from problems from TPTP Problem Library
- proofs generated on cluster at the University of Victoria
- proofs compressed on this laptop

Time to generate proofs: \approx 40 minutes Time to compress proofs: ≈ 5 seconds

Results

Original Proof Length Compressed Proof Length Cumulative Proof Length 1000 -

Results

Higher compression in longer proofs: 13/18 proofs with length \geq 30 nodes successfully compressed.

Total compression ratio 11.3%: 4429 vs. 3929 nodes. 18.4% for 100 longest proofs.

Only 14/308 proofs were returned uncompressed

Conclusion

- Simple First-Order Lower Units is a quick algorithm for first-order proof compression
- Future work:
 - Explore other proof compression algorithms, e.g. Recycle Pivots with Intersection
 - Explore ways of dealing with the post-deletion property quickly

Thank you for your attention.

Any questions?

- Source code: https://github.com/jgorzny/Skeptik
- Data: http://www.math.uvic.ca/~jgorzny/data/

