Supplementary Materials - *DynaMO*: Protecting Mobile DL Models through Coupling Obfuscated DL Operators

1 PROOF

Lemma 1.1. (Coupled Weight Transformation on Linear Model): A sub-network f consists of multiple linear layers $\{L_1, L_2, \dots, L_n\}$ and the i-th layer is $L_i : X_i = W_{i-1}^\top X_{i-1} + b_{i-1}$ where $i \in [1, n]$. The output of the sub-network f w.r.t. to the input X_0 would be $f(X_0)$. If W_1 is transformed to aW_1 , W_n is transformed to $\frac{1}{a}W_n$, and b_i is transformed to ab_i for $i \in [1, n-1]$, then the transformed network f^s w.r.t. to the input X_0 would be $f^s(X_0)$ and we have $f^s(X_0) = f(X_0)$.

PROOF. Let us denote the scaled layer as L^s . For L_k^s where $k \in [1, n-1]$, we have

$$X_1^s = aW_1^{\top} X_0 + ab_0 = aX_1$$

$$X_2^s = W_2^{\top} X_1^s + ab_1 = aW_2^{\top} X_1 + ab_1 = aX_2$$

$$\dots$$

$$X_{n-1}^s = W_{n-1}^{\top} X_{n-2}^s + ab_{n-1} = aW_{n-1}^{\top} X_{n-2} + +ab_{n-1} = aX_{n-1}.$$
(1)

Then for L_n^s , we have $X_n^s = \frac{1}{a}W_n^\top X_{n-1}^s + ab_n = \frac{1}{a}W_n^\top (aX_{n-1}) + b_n = X_n$. Therefore, this gives us $f^s(X_0) = f(X_0)$. \square

Theorem 1.2. (Coupled Weights Obfuscation): We consider a general non-linear layer $ReLU_{\beta}(\beta \geq 0)$, i.e.,

$$ReLU_{\beta}(x) = \begin{cases} \beta, & \text{if} \quad x \ge \beta; \\ x, & \text{else if} \quad 0 < x < \beta; \\ 0, & \text{otherwise.} \end{cases}$$

If W_i and b_i in the sub-network f are scaled to aW_i and ab_i for $i \in [1,n]$ with 0 < a < 1, respectively, then, $ReLU_{\beta}(\frac{1}{a}I_{n+1}^{\top}ReLU_{\beta}(f^s(X_0))) = I_{n+1}^{\top}ReLU_{\beta}(f(X_0))$.

PROOF. From Equation (1), we can conclude that $f^s(X_0) = aX_n$. Then, for the original sub-network f we have

$$\operatorname{ReLU}_{\beta}(f(x_0)) = \operatorname{ReLU}_{\beta}(x_n) = \begin{cases} \beta, & \text{if } x_n \ge \beta; \\ x_n, & \text{else if } 0 < x_n < \beta; \\ 0, & \text{otherwise,} \end{cases}$$
 (2)

where x_0 and x_n are elements in X_0 and X_n , respectively. Thus,

$$\operatorname{ReLU}_{\beta}(f(x_0)) = \begin{cases} \beta, & \text{if } x_n \ge \beta; \\ x_n, & \text{else if } 0 < x_n < \beta; \\ 0, & \text{otherwise.} \end{cases}$$
 (3)

Then, for the scaled sub-network f^s we have

$$\operatorname{ReLU}_{\beta}(f^{s}(x_{0})) = \operatorname{ReLU}_{\beta}(ax_{n}) = \begin{cases} \beta, & \text{if} \quad x_{n} \geq \frac{\beta}{a}; \\ ax_{n}, & \text{else if} \quad 0 < x_{n} < \frac{\beta}{a}; \\ 0, & \text{otherwise.} \end{cases}$$

$$(4)$$

$$\frac{1}{a} \operatorname{ReLU}_{\beta}(ax_n) = \begin{cases} \frac{\beta}{a}, & \text{if} \quad x_n \ge \frac{\beta}{a}; \\ x_n, & \text{else if} \quad 0 < x_n < \frac{\beta}{a}; \\ 0, & \text{otherwise.} \end{cases}$$
(5)

Note that $\frac{\beta}{a} > \beta$, thus,

$$\operatorname{ReLU}_{\beta}(\frac{1}{a}\operatorname{ReLU}_{\beta}(f^{s}(x_{0}))) = \begin{cases} \beta, & \text{if} \quad x_{n} \geq \beta; \\ x_{n}, & \text{if} \quad 0 < x_{n} < \beta; \\ 0, & \text{otherwise.} \end{cases}$$

$$\tag{6}$$

Therefore, we can conclude that $\forall x_0 \sim X_0$, the following holds: $\operatorname{ReLU}_{\beta}(\frac{1}{a}\operatorname{ReLU}_{\beta}(f^s(x_0))) = \operatorname{ReLU}_{\beta}(f(x_0))$. Thus, it follows that: $\operatorname{ReLU}_{\beta}(\frac{1}{a}\operatorname{ReLU}_{\beta}(f^s(X_0))) = \operatorname{ReLU}_{\beta}(f(X_0))$. Note that since the weights I_{n+1} forms an Identity matrix, the equation $\operatorname{ReLU}_{\beta}(\frac{1}{a}I_{n+1}^{\mathsf{T}}\operatorname{ReLU}_{\beta}(f^s(X_0))) = I_{n+1}^{\mathsf{T}}\operatorname{ReLU}_{\beta}(f(X_0))$ still holds.