Вероятностное решение некоторых нелинейных уравнений относительно мер

Суровикина Тамара Олеговна

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент В. В. Некруткин Рецензент: д.ф.-м.н., профессор А. С. Сипин

> Санкт-Петербург 2019г.

Общая постановка задачи. Известные результаты

Некоторые физические процессы описываются нелинейными уравнениями в мерах.

Например: ϕ_t — распределение столкновительного процесса в момент времени t удовлетворяет (см. Ermakov, Nekrutkin, Sipin, 1989, §4.1)

$$\phi_t(dy) = e^{-\lambda t} \int_D \phi_0(dx) \delta_{S_t(x)}(dy) +$$

$$+ \int_0^t \lambda e^{-\lambda(t-s)} ds \Big(\int_D \delta_{S_{t-s}(x)}(dy) T(dx; y_1, y_2) \int_{D^2} \phi_s(dy_1) \phi_s(dy_2) \Big).$$

Соответствует нелинейному уравнению Больцмана для псевдомаксвелловского газа.

Общая постановка задачи. Столкновительный процесс

Algorithm 1 Столкновительный процесс

1:
$$n \leftarrow 0, s_0 \leftarrow t$$

2:
$$y_n \leftarrow \phi_0(\cdot)$$
, $s_n \leftarrow 0$

3:
$$\eta \leftarrow \text{EXP}(\lambda)$$

4: if
$$\eta + s_n \leq s_{n-1}$$
 then

5:
$$y_n \leftarrow S_{\eta}(y_n), s_n \leftarrow s_n + \eta$$

6:
$$n \leftarrow n + 1$$
, goto 2

7:
$$r \leftarrow s_{n-1} - s_n, y_n \leftarrow S_r(y_n)$$

8: **if** n > 1 **then**

9:
$$y_{n-1} \leftarrow T(\cdot; y_{n-1}, y_n),$$

10:
$$n \leftarrow n-1$$
, goto 3

11: else

12:
$$\xi \leftarrow y_1$$
, STOP.

Рис.: Пример работы алгоритма

Цель работы

Структура: уравнение в мерах и имитационный процесс, его решающий. Процесс имеет некоторую физическую интерпретацию.

Было: уравнение, описывающее динамику движения сталкивающихся частиц. Решение зависит от времени.

Цель

Хотим построить "стационарный" процесс (решение соответствующего уравнения не зависит от времени).

Столкновительный процесс обрывался по времени t. Как обрывать "стационарный" процесс?

Идея: частицы могут вылетать из области. Тогда интересует положение частицы после её последнего столкновения.

Описание некоторых параметров процесса

- (G, ρ, \mathcal{B}) фазовое пространство движущихся частиц. $G = D \cup \Gamma_1 \cup \Gamma_2$, где D, Γ_1, Γ_2 дизъюнктые непустые подмножества G.
- $oldsymbol{2}$ Свободное движение. Отображение $S_t:G\mapsto G,\ t\geq 0.$
- ullet Момент вылета из области. $t(x) = \inf\{t > 0 : S_t(x) \in \Gamma_2\}.$
- lacktriangle Начальное положение частиц. Вероятностное распределение ψ на Γ_1 .
- ullet Ударная трансформанта. Распределение $T(\cdot\;;y_1,y_2)$ в D.
- ullet p вероятность гибели частицы, 0 (см. Ermakov, Nekrutkin, Sipin, 1989, §3.4).

Движение с искусственными ограничениями

Algorithm 2 Моделирование процесса

- 1. $n \leftarrow 1$.
- 2: $z_n \leftarrow \psi(\cdot), t \leftarrow t(z_n).$
- 3: $\tau \leftarrow \text{EXP}(\lambda)$.
- 4: if $\tau < t$ then $z_n \leftarrow S_{\tau}(z_n)$ else $\Phi \leftarrow \Delta$, STOP.
- 5: $\alpha \leftarrow U_{0,1}(\cdot)$.
- 6: if $\alpha > p$ then $n \leftarrow n+1$, goto 2.
- 7: else
- 8: if n>1 then
- 9: $z_{n-1} \leftarrow T(\cdot; z_{n-1}, z_n),$
- 10: $t \leftarrow t(z_{n-1}),$
- 11: $n \leftarrow n-1$, goto 3.
- 12: **else** $\Phi \leftarrow z_1$, STOP.

Интересует: $\mathcal{L}(\Phi, \Phi \neq \Delta)$.

Рис.: Пример работы алгоритма

Результат. Движение с искусственными ограничениями. Уравнение в мерах

Предложение

Пусть вероятность гибели частиц p>1/2, тогда мера $\mathcal{L}(\Phi,\Phi\in D)$ удовлетворяет уравнению

$$\begin{split} \phi(\cdot) &= \int_{D^2} \Psi(\cdot;x_1,x_2) \phi(dx_1) \phi(dx_2) + \theta(\cdot), \text{где} \\ \theta(A) &= p \int_{\Gamma_1} \psi(dx) \int_0^{t(x)} \lambda e^{-\lambda z} \, \delta_{S_z(x)}(A) dz, \\ \Psi(A;x_1,x_2) &= (1-p) \int_D T \big(dy;x_1,x_2 \big) \int_0^{t(y)} \lambda e^{-\lambda z} \, \delta_{S_z(y)}(A) dz. \end{split}$$

Переход к "линейному" процессу

Мотивация. Описанный процесс имеет два недостатка:

- ullet есть искусственное ограничение вероятность "гибели" p_i
- столкновения не синхронизованы по времени.

Введём два типа частиц и рассмотрим процесс, описывающий столкновения пробной частицы с частицами среды.

Определим:

- ullet Свободное движение частиц среды. Отображение $U_t:D\mapsto D$, заданное для $\forall t\geq 0$.
- ② Распределение μ на D начальное положение частиц среды.

"Линейный" процесс. Алгоритм

Algorithm 3 Линейный процесс

1:
$$y_1 \leftarrow \psi(\cdot)$$
, $\eta \leftarrow \text{EXP}_{t(y_1)}(\lambda)$, $r \leftarrow 0$.

2:
$$y_1 \leftarrow S_{\eta}(y_1), r \leftarrow r + \eta$$
.

3.
$$y_2 \leftarrow \mu(\cdot), y_2 \leftarrow U_r(y_2)$$
.

4:
$$y_1 \leftarrow T(\cdot; y_1, y_2)$$
.

5
$$\eta \leftarrow \text{EXP}(\lambda)$$
.

6: if $\eta < t(y_1)$ then goto 2

7: else $\Phi \leftarrow y_1, \Theta \leftarrow r$, STOP.

Особенности:

- нет взаимодействий между частицами среды;
- результат координата и время.

Интересует: $\mathcal{L}(\Phi,\Theta)$.

Рис.: Пример работы алгоритма

Результат. "Линейный" процесс. Уравнение в мерах

Предложение

Пусть
$$\sup_{x \in D} e^{-t(x)} > 0$$
, тогда $\phi := \mathcal{L}(\Phi, \Theta)$ удовлетворяет
$$\phi(dydr) = \int_{D^2} \int_0^\infty \Psi(dydr; y_1, y_2, t_1) \phi(dy_1dt_1) \mu(dy_2) + \theta(dydr),$$

$$\Psi(dydr; y_1, y_2, t_1) = e^{\lambda \left(t(y_1) - t(y)\right)} \int_0^{t(y_1)} \lambda e^{-\lambda t_2} \times \\ \times T \left(dy; S_{t_2}(y_1), U_{t_1 + t_2}(y_2)\right) \delta_{t_1 + t_2}(dr) dt_2,$$

$$\theta(dydr) = e^{-\lambda t(y)} \int_D \int_{\Gamma_1} \psi(dx) \frac{\lambda e^{-\lambda r}}{1 - \exp(-\lambda t(x))} \delta_{S_r(x)}(dy_1) \times \\ \times \int_D \mu(dy_2) T \left(dy; y_1, U_r(y_2)\right) dr.$$

"Нелинейный" процесс. Алгоритм

Algorithm 4 Нелинейный процесс

- 1: $n \leftarrow 1$.
- 2: $y_n \leftarrow \psi(\cdot), \eta_n \leftarrow 0$.
- 3: $\tau \leftarrow \text{EXP}(\lambda)$.
- 4: if n=1 and $\tau>t(y_n)$ then
- 5: $\Phi \leftarrow y_n, \ \Theta \leftarrow \eta_n \ \mathsf{STOP}.$
- 6: if n>1 and $\eta_n+\tau>\eta_{n-1}$ then
- 7: $t \leftarrow \eta_{n-1} \eta_n, \ y_n \leftarrow S_t(y_n),$
- 8: $y_{n-1} \leftarrow T(\cdot; y_{n-1}, y_n)$
- 9: $n \leftarrow n-1$, goto 3.
- 10: else
- 11: $\eta_n \leftarrow \eta_n + \tau, \ y_n \leftarrow S_\tau(y_n),$
- 12: $n \leftarrow n + 1$, goto 2.

Ocoбенность: ударная трансформанта действует на (G,\mathcal{B})

Интересует: $\mathcal{L}(\Phi,\Theta)$.

Рис.: Пример работы алгоритма

Результат. "Нелинейный" процесс. Уравнение в мерах

Предложение

Пусть
$$\sup_{x \in D} e^{-t(x)} > 0$$
.

Тогда мера $\phi:=\mathcal{L}(\Phi,\Theta)$ удовлетворяет уравнению

$$\begin{split} \phi(dydr) = & \int_{G} \int_{0}^{\infty} \phi(dy_{1}dr_{1}) \int_{G} \int_{0}^{r} \phi(dy_{2}dr_{2}) M(dydr, y_{1}, y_{2}, r_{1}, r_{2}) + B^{\gamma_{0}}(dydr), \\ & M(dydr, y_{1}, y_{2}, r_{1}, r_{2}) = e^{-\lambda \left(t(y) - t(y_{1}) - t(y_{2})\right)} \times \\ & \times \int_{0}^{t(y_{1})} dt_{1} \lambda e^{-\lambda t_{1}} \, \delta_{r_{1} + t_{1}}(dr) e^{-\lambda (r - r_{2})} T(dy; S_{r - r_{1}}(y_{1}), S_{r - r_{2}}(y_{2})), \\ & B^{\gamma_{0}}(dydr) = \psi(dy) \delta_{0}(dr) e^{-\lambda t(y)}. \end{split}$$

Основные результаты

- Построены три процесса:
 - ullet нелинейный процесс с параметром p и несинхронизированными по времени столкновениями;
 - линейный процесс, описывающий столкновения пробной частицы с частицами среды;
 - нелинейный процесс движения частицы в сосуде с взаимодействующими частицами такого же типа.
- Описаны уравнения в мерах, соответствующие этим процессам, и — для первых двух — способы уменьшения дисперсий соответствующих оценок.
- Для нелинейного процесса с искусственными ограничениями промоделированы два примера:
 - для сравнения результатов, получающихся при помощи двух способов оценивания функционалов;
 - для сравнения аналитического решения с "монтекарловским".