العلامة		والمراق الأول المراق		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)		
	0.75	التمرين الأول: (04 نقاط)		
		1) أ) البرهان بالتراجع		
		<u>ا اثبات أن : (u متناقصة تماما على N</u>		
1.5	0.5	$-(u + 2)^{2}$		
	0.25	$u_{n+1} - u_n = \frac{-(u_n + 2)^2}{u_n + 5} : n$ من أجل كل عدد طبيعي n		
	0.25	_ (u_) مثقارية		
	0.5	$v_{n+1} - v_n = \frac{1}{2} : n$ اثبات أن (v_n) متتالية حسابية : من أجل كل عدد طبيعي (2		
0.75	200	3		
	0.25	$v_0 = \frac{1}{3}$		
	0.5	$v_n = \frac{1}{3} + \frac{1}{3}n$: n $v_n = \frac{1}{3} + \frac{1}{3}n$ $v_n = \frac{1}{3} + \frac{1}{3}n$		
1.25	0.5	$u_n = \frac{-2n+1}{n+1}$ ومنه $u_n = \frac{1}{v_n} - 2$: n ومنه عدد طبيعي .		
	0.25	ــ حساب النهاية		
0.5		$S_n = u_0 v_0 + u_1 v_1 + + u_n v_n : n$ يثبات أن :من أجل كل عدد طبيعي $u_n v_n = 1 - 2 v_n$ معناه $v_n = \frac{1}{u_n + 2} : n$ من أجل كل عدد طبيعي		
	0.5	$S_n = (1 - 2v_0) + (1 - 2v_1) + \dots + (1 - 2v_n)$		
		$S_n = \frac{1}{3} \left(1 - n^2 \right)$		
	ALC:	التمرين الثاني : (04 نقاط)		
	01	$P(B) = \frac{7}{60}$ $P(A) = \frac{3}{10}$ (1)		
2.5	01.5	$P(A \cup B) = \frac{11}{30}$ $P_A(B) = \frac{1}{6}$ $P(A \cap B) = \frac{1}{20}$ (\Rightarrow		
2.5		1070		

	ĺ	X_i	0	1	2	3	(2
01		$P(X_t)$	1/12	5 12	<u>5</u> 12	1/12	
0.5	$E(X) = \frac{3}{2}$						
						(05 نقاط)	تمرين الثالث:
01							
0.25x 2							
0.75				٥	Nien $\left(\frac{Z_A}{Z_B}\right)$	$= \left(e^{i\frac{\pi}{6}}\right) =$ $n = 12k +$	
0.25					<u>2</u> 2	$\frac{e^{\frac{\pi}{6}}}{e^{\frac{\left(\frac{-\pi}{6}\right)}{6}}} = \frac{e^{\frac{\pi}{6}}}{e^{\frac{\left(\frac{-\pi}{6}\right)}{6}}} = \frac{e^{\frac{\pi}{6}}}{e^{\frac{\pi}{6}}}$	= e ^{i با} لاينا (أ (
0.5			'ضلاع	o متقایس الا	» المثلث BC)	$\frac{z_B - z_0}{z_C - z_0}$	$=e^{i\frac{\pi}{3}}$
01	$\frac{\pi}{3}$	o وزاويته	الذي مركز ه	بالدوران -	هي صورة 🕜	B olien, Z_B	$=e^{i\frac{\pi}{3}}z_{C} \ (\Rightarrow$
0.75	72.2	OM	= CM اهانه	ع Z = Z	أي Z - Z _C ثقيمة[OC]	ا - Z = Z - دور القطعة المس	تكافئ Z _C و (٧) هي م
	0.5 01 0.25x 2 0.75 0.25 0.5 01	0.5 0.1 0.25x 2 0.75 0.25 0.5 0.75 0.25	0.5 0.25x 2 0.75 0.25 0.5 0.	$P(X_i)$ $\frac{1}{12}$ 0.5 $P(X_i)$ $\frac{1}{12}$ 0.5 0.25 0.5 $P(X_i)$ $P(X_i)$ 0.75 $P(X_i)$ $P(X_i)$ 0.25 $P(X_i)$ $P(X_i)$ 0.26 $P(X_i)$ $P(X_i)$ 0.27 $P(X_i)$ $P(X_i)$ 0.28 $P(X_i)$ $P(X_i)$ 0.29 $P(X_i)$ $P(X_i)$ 0.20 $P(X_i)$ $P(X_i)$	01 $P(X_i)$ $\frac{1}{12}$ $\frac{5}{12}$ 0.5 $Z^2 - \sqrt{3}$ 0.1 $Z_2 = \frac{\sqrt{3} + 2}{2}$ 0.25x $Z_B = 2$ 0.75 $Z_B = 2$ 0.25 $Z_B = 2$ 0.1 $Z_B = 2$ 0.25 $Z_B = 2$ 0.26 $Z_B = 2$ 0.27 $Z_B = 2$ 0.28 $Z_B = 2$ 0.29 $Z_B = 2$ 0.20 $Z_B = 2$ 0.21 $Z_B = 2$ 0.22	01 $P(X_i)$ $\frac{1}{12}$ $\frac{5}{12}$ $\frac{5}{12}$ $\frac{5}{12}$ 0.5 $E(X) = \frac{3}{2}$ 0.5 $E(X) = \frac{3}{2}$ 0.75 $Z_B = e^{\frac{i\pi}{6}}$ $Z_C = \frac{\sqrt{3} + i}{2}$ $Z_C = $	01 $P(X_{i}) \frac{1}{12} \frac{5}{12} \frac{5}{12} \frac{1}{12}$ 0.5 $E(X) = \frac{3}{2}$ $(1 \text{ bisi } 05)$ $Z^{2} - \sqrt{3} Z + 1 = 0 \text{ is bisi } 05$ $Z_{2} = \frac{\sqrt{3} + i}{2} \text{ s} Z_{1} = \frac{\sqrt{3} - i}{2} \text{ s} \Delta = 0$ 0.25x $Z_{3} = e^{i\frac{\pi}{6}} \text{ g} Z_{4} = e^{i\frac{\pi}{6}}$ $Z_{5} = e^{i\frac{\pi}{6}} \text{ s} Z_{4} = e^{i\frac{\pi}{6}}$ 0.75 $\frac{Z_{6}}{Z_{7}} = \frac{e^{i\frac{\pi}{6}}}{e^{i\frac{\pi}{6}}} = 0$ 0.5 $\frac{Z_{8}}{Z_{7}} = \frac{e^{i\frac{\pi}{6}}}{e^{i\frac{\pi}{6}}} = 0$ 0.5 $\frac{Z_{8}}{Z_{7}} = \frac{e^{i\frac{\pi}{6}}}{e^{i\frac{\pi}{6}}} = 0$ 0.75 $\frac{Z_{8}}{Z_{7}} = \frac{e^{i\frac{\pi}{6}}}{e^{i\frac{\pi}{6}}} = 0$ 0.75 $\frac{Z_{8}}{Z_{7}} = \frac{e^{i\frac{\pi}{6}}}{e^{i\frac{\pi}{6}}} = 0$ 0.75 $ Z = Z - Z_{8} \text{ since } Z = Z - Z_{7} \text{ solidal } Z = Z - Z_{7} $ 0.75 $ Z = Z - Z_{8} \text{ solidal } Z = Z - Z_{7} \text{ solidal } Z = Z - Z_{7} $ 0.75 $ Z = Z - Z_{8} \text{ solidal } Z = Z - Z_{7} \text{ solidal } Z = Z - Z_{7} $ 0.75

رابع: (07 نقاط)	التمرين الر
0.25x 2 $\lim_{x \to \infty} g(x) = 2 + (x-1)e^{x}$	(i
دراسة اتجاه تغير الدالة g. 0.25 $g'(x) = (2-x)e^{-x}$, \mathbb{R} على $g'(x) = (2-x)e^{-x}$	
g متزايدة تماما على [2;-∞[ومتناقصة تماما على]2;+∞ ومتزايدة تماما على [2;+∞]	الدالة
ول تغیرات ₈	- <i>خر</i>
دالة مستمرة ومتزايدة تماما على $[-\infty;2]$ مغيرة إشارتها فحسب مبرهنة القيم المعادلة $g(x)=0$ عقبل في $g(x)=0$ حدد المعادلة وحيدا $g(x)=0$	
$g(-0.38) \times g(-0.37) < 0$ $g(-0.37) = 0.016$ $g(-0.38) = -0.01$ الأذن $g(-0.38) = -0.01$	- T
0.5 عنداج اشارة (g(x) عنداج الشارة (g(x) عنداج (g(x) عit (g(x) a)	
0.25x $\lim_{x \to \infty} f(x) = +\infty$ ، $\lim_{x \to \infty} f(x) = +\infty$	
2 0.25الوضع النسبي :	جوار ∞+ جـ) درا
$f'(x) = g(x) \mathbb{R}$ جل کل x من x	2) من ا
0.25] $-\infty;\alpha$] المجال $\alpha;+\infty$] و $\alpha;+\infty$ و $\alpha;+\infty$	متزار
M+mv	ـ جدول الن
الممان (T): $y = 2x + 1 - e^{-x}$	3) معادلة ا-

01	01	(C) (Δ) (Δ)
COLD		$f(x) = 2x + m (5$ المعادلة لا تقبل حلول $m \in \left] -x; 1 - \frac{1}{e} \right[$ الما $m = 1 - \frac{1}{e}$ المعادلة تقبل حل مضاعف
0.5	0.5	لما $m \in \left]1 - \frac{1}{e};1\right[$ لما $m \in \left]1 - \frac{1}{e};1\right[$ لما $m \in \left]1 - \frac{1}{e};1$ لما $m = 1$ المعادلة تقبل حل واحد معدوم لما $m \in \left]1;+\infty\right[$ لما $m \in \left]1;+\infty\right[$
	0.5	6) (i) F (li (dصلية للدالة على R والتي تنعدم من أجل القيمة 1 للمتغير
0.75	0.25	$F(x) = \int_{1}^{x} te^{-t} dt = (-1 - x)e^{-x} + 2e^{-t}$ $A = \int_{1}^{x} ((2x - 1) - f(x)) dx = 2e^{-t} - 4e^{-3} u a (\because$

نمة	العلا	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		<u>لتمرين الأول:</u> (04 نقاط)
0.75	0.75	$u_3 = \ln 7$ $u_2 = \ln 5$ $u_1 = \ln 3$ u_2 u_2 u_1 u_2 (1)
0.75	0.25	$\frac{2n+3}{2n+1} > 1$ فإن $2n+3 > 2n+1$ نبين أن $2n+3 > 1$ نبين أن $2n+3 > 1$ نبين أن ا
0.73	0.5	ا فإن $\ln\left(\frac{2n+3}{2n+1}\right) > 0$ بما أن $u_{n+1} - u_n = \ln\left(\frac{2n+3}{2n+1}\right)$: (u_n) فإن المنتالية
		(س) متزایدهٔ تماما
		$e^{u_n}=v_n$ نبین أن (3) (3)
		$n=0$ لدينا $v_0=1$ و منه الخاصية محققة من أجل $v_0=1$
	0.75	$e^{u_{n+1}} = v_{n+1}$ نفرض $e^{u_n} = v_n$ نفرض و نبين أن
		$e^{u_{n+1}} = e^{u_n + \ln\left(\frac{2n+3}{2n+1}\right)} = 2n+3 = v_{n+1}$: ادینا:
01.5		
	0.25	$u_n = \ln v_n = \ln \left(2n+1\right) : u_n$ عبارة عبارة ب
	0.5	$\lim_{n\to+\infty}u_n=+\infty$
	0.5	4) حساب المجموعين:
01	-	$S_n = \ln\left(\frac{v_1}{v_0}\right) + \ln\left(\frac{v_2}{v_1}\right) + \dots + \ln\left(\frac{v_n}{v_{n-1}}\right) = \ln v_n - \ln v_0 = \ln\left(\frac{v_n}{v_0}\right) = \ln v_n = u_n$
	0.5	$T = e^{u_{1439}} + e^{u_{1440}} + + e^{u_{2018}} = v_{1439} + v_{1440} + + v_{2018}$
		$= \frac{2018 - 1439 + 1}{2} \left[2(1439 + 2018) + 2 \right] = 2005640$
		لتمرين الثاني: (04 نقاط)
01	01	(Δ) : $\begin{cases} x = t+1 \\ y = 5t-2 \end{cases}$ $(t \in \mathbb{R})$: (Δ) مثيل وسيطي للمستقيم (1)
01	0.5	 التحقق أن المستوبين (P₁) ، (P₂) ، يتقاطعان .
	0.5	- النقاطع وفق المستقيم (A)
	0.5	(Q): x+5y-2z-19=0 (Q): (Q) معادلة ديكارتية للمستوي
01	0.5	$E(2;3;-1)$ بالتعويض نجد نقطة التقاطع (P_1) \cap (P_2) \cap (Q) = (Δ) \cap (Q)

صفحة 1 من 3

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعبة: علوم تجريبية/ بكالوريا: 2018

01	0.5	 4) أ) التحقق أن النقطة H هي المسقط العمودي
	0.25	H المثلث EBH : المثلث قائم في H
	0.25	$V_{ABEH}=rac{1}{3}S_{EBH} imes d\left[A,(Q) ight]=5~uv~:ABEH$ حجم رياعي الوجوه $S_{EBH}=rac{1}{2}EH imes HB=rac{\sqrt{30}}{2}:EBH$ مساحة المثلث
		التمرين الثالث: (05 نقاط)
01	01	$S = \{4+i; 2-i; 2+i\}$ (z^2-4+i) $(z^2-4z+5) = 0$ (1) Appendix $z = 4+i; 2-i; 2+i$
01	0.5	$rac{Z_B - Z_A}{Z_C - Z_A} = i$ التحقق ان: (1) (11)
	0.5	$n=2k+1; k\in\mathbb{N}$: قيم العدد الطبيعي
01	0.5	$ \left(\frac{z_D - z_A}{z_B - z_A}\right) = e^{i\frac{\pi}{3}} \underbrace{\mathbf{z}_B^{\dagger}}^{\dagger} \begin{cases} z_D - z_A = z_B - z_A \\ \arg\left(\frac{z_D - z_A}{z_B - z_A}\right) = \frac{\pi}{3} + 2k\pi (k \in \mathbb{Z}) \end{cases} \tag{2} $
	0.5	ومنه ABD مثلث متقایس الاضلاع. $z_D = e^{i\frac{\pi}{3}} \left(z_B - z_A \right) + z_A = 3 + \left(1 + \sqrt{3} \right) i$
01.25	0.5	$z_G = 3 + i \left(1 + \frac{\sqrt{3}}{3}\right) : z_G \text{(3)}$
	0.75	$\frac{\pi}{6}$ عناصر التشابه المباشر نسبته $\sqrt{3}$ و زاویته =
0.75	0.75	$]CG[$ هي القطعة ($\Gamma)$) طبيعة مجموعة النقط (Γ)

		<u>لتمرين الرابع :</u> (07 نقاط)
0.75	0.25 0.5	ا- حساب (g(1) - استنتاج إشارة (g(x):
01	0.25×2 0.5	$\lim_{x\to\infty} f(x) = 0$: و تبیان أنّ : $0 = -\infty$ التفسیر البیانی : $0 = x$ و $0 = x$ معادلتی المستقیمین المقاربین لـ $x = 0$
1.50	0.50 0.50 0.50	$f'(x) = \frac{g(x)}{(1+x \ln x)^2}$ (2 $f'(x) = \frac{g(x)}{(1+x \ln x)^2}$ (3 $f'(x) = \frac{g(x)}{(1+x \ln x)^2}$ (3 $f'(x) = \frac{g(x)}{(1+x \ln x)^2}$ (4 $f'(x) = \frac{g(x)}{(1+x \ln x)^2}$ (4 $f'(x) = \frac{g(x)}{(1+x \ln x)^2}$ (5 $f'(x) = \frac{g(x)}{(1+x \ln x)^2}$ (5 $f'(x) = \frac{g(x)}{(1+x \ln x)^2}$ (7 $f'(x) = \frac{g(x)}{(1+x \ln x)^2}$ (8 $f'(x) = \frac{g(x)}{(1+x \ln x)^2}$ (9 $f'(x) = \frac{g(x)}{(1+x \ln x)^2}$ (1 $f'(x) = \frac{g(x)}{(1+x \ln x)^2$
1.75	0.25 0.50 01	e^{-1} يقطع محور الفواصل في نقطة فاصلتها C_r (3) معادلة المماس $x = \frac{e^2}{e-1}$ (7) معادلة المماس و المنحنى $x = \frac{e^2}{e-1}$
0.75	0.75	$f(x) = \frac{e^2}{e-1}x - \frac{e}{e-1}m$ تكافئ $(e-1)f(x) = e^2x - me$ المعادلة تقبل حلين متمايزين من أجل $m > 1$
0.75	0.75	$I_n = \int_{1}^{n} f(x) dx = \left[\ln (1 + x \ln x) \right]_{1}^{n} = \ln (1 + n \ln n) (1 -111)$
0.50	0.50	$\left(I_{n}\right)$ اتجاه تغیر المتتالیة $\left(I_{n}\right)$ اتجاه تغیر المتتالیة $I_{n+1} - I_{n} = \ln\left(\frac{1 + (n+1)\ln(n+1)}{1 + n\ln n}\right)$ $\left(\ln(1 + (n+1)\ln(n+1)) > \ln(1 + n\ln n)\right)$ $\left(\ln(1 + (n+1)\ln(n+1)) > \ln(1 + n\ln n)\right)$ $I_{n+1} - I_{n} = \int_{1}^{n+1} f(x) dx > 0$