Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

	- Les questions peuvent présenter une ou plusieurs réponses valides.
	- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
	– En cas d'erreur, utilisez du « blanco ».
_	- Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.
	– N'oubliez pas vos nom, prénom et login (p62xxx). Par exemple, p62375 s'encode ainsi :
	Identifiant: 0 1 2 3 4 5 6 7 8 9 Chiffre 1:
	Nom: PEDALETTI Prénom: PAOLO
	Bon courage!
	* * * * * * * * * * * * * * * * * * * *
1.	Deux nombres a et b sont premiers entre eux si
	$\begin{array}{ll} (1) \square & a \wedge b = 1 \\ (2) \square & a \text{ est premier} \\ (3) \square & \text{ils n'ont aucun multiple commun} \\ (4) \square & a \vee b = 1 \\ (5) \square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$
2.	Aujourd'hui c'est vendredi. Quel jour de la semaine serons-nous dans 4^{300} jours?
	$_{(1)}\square$ Lundi $_{(2)}\square$ Mardi $_{(3)}\square$ Samedi $_{(4)}\square$ Dimanche $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
3.	Quel est l'ensemble S des solutions de l'équation diophantienne $3x+7y=4$?
	$\begin{array}{ll} (1)^{\square} & S = \varnothing \\ (2)^{\square} & S = \{(-2 - 7k; 1 + 3k), k \in \mathbb{Z}\} \\ (3)^{\square} & S = \{(-8 - 7k; 4 + 3k), k \in \mathbb{Z}\} \\ (4)^{\square} & S = \{(-8 + 7k; 4 - 3k), k \in \mathbb{Z}\} \\ (5)^{\square} & \text{aucune des réponses précédentes n'est correcte.} \end{array}$

- 4. Cocher les affirmations correctes pour $\mathbb{Z}/n\mathbb{Z}.$
 - $\mathbb{Z}/n\mathbb{Z}$ est l'ensemble de toutes les classes d'équivalence modulo n
 - (2) \Box $\overline{x} \cdot \overline{y} \equiv \overline{0}$
 - (3) \square $\overline{x} \cdot \overline{y} \equiv \overline{1}$
 - (4) $\{y \in \mathbb{Z} : y \equiv x\}$
 - (5)□ aucune des réponses précédentes n'est correcte.
- 5. Parmi les congruences suivantes, lesquelles sont vraies?

6. On s'intéresse à 122 et 455. Cocher les congruences correctes, s'il y en a.

7. Pour tout entier $n \ge 2$ et pour tout $a \in \mathbb{N}$ tel que $a \land n = 1$, le théorème d'Euler affirme que

$$a^n \equiv 1$$
 $(2)\Box$ $a^n \equiv \varphi(n)$ $(3)\Box$ $a^{\varphi(n)} \equiv 1$ $(4)\Box$ $a^{\varphi(n)} \equiv n$

$$(5)\Box$$
 aucune des réponses précédentes n'est correcte.

8. Soient $A = 3(X^2 - 1)(X + 2)$ et $B = (X - 1)^2(X^2 + 3)$ deux polynômes dans $\mathbb{R}[X]$. Cocher la(les) affirmation(s) correcte(s).

$$(1) \Box \quad A \vee B = 3(X-1)^2(X+1)(X+2)(X^2+3) \qquad (2) \Box \quad ppcm(A,B) = 3 \qquad (3) \Box \quad ppcm(A,B) = 1$$

$$(4) \Box \quad A \vee B = (X-1)^2(X+1)(X+2)(X^2+3) \qquad (5) \Box \quad \text{aucune des réponses précédentes n'est correcte.}$$

9. Pour les polynômes A, B de la question précédente, cocher la(les) affirmation(s) correcte(s).

$$\begin{array}{ccc} (1)\square & pgcd(A,B)=3 & (2)\square & pgcd(A,B)=1 \\ \\ (3)\square & A\wedge B=X-1 & (4)\square & A\wedge B=(X-1)^2(X+1)(X+2)(X^2+3) \\ \\ (5)\square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$$

- 10. Soit $P=3X^4+5X+1$ et $Q=-2X^4+2X^3-X\in\mathbb{R}[X]$. Cocher ce qui est vrai concernant le polynôme somme P+Q?
 - $_{(1)}\square$ Le coefficient dominant est 3.
 - $_{(2)}\square$ Le coefficient du monôme X^2 est 1.
 - \square Le coefficient du monôme X est 4.
 - $_{(4)}\square$ Le degré de la somme est 8.
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

11.	Soit $P = 2(X^{n-1} + 1) \in \mathbb{R}[X]$ avec $n \in \mathbb{N}^*$. Cocher la(les) affirmation(s) correcte(s).
	Le degré de P est $n-1$. P est unitaire.
	$_{(3)}\square$ Le coefficient dominant de P est 2 . $_{(4)}\square$ Le terme dominant de P est X^n .
	$_{(5)}\square$ aucune des réponses précédentes n'est correcte.
12.	Soient $P,Q \in \mathbb{R}[X]$. On peut avoir
	$ {}_{(1)}\square pgcd(P,Q) = 3 \qquad {}_{(2)}\square ppcm(P,Q) = PQ \qquad {}_{(3)}\square PU + QV = 1 \text{ pour } U,V \in \mathbb{R}[X] $
	$_{(4)}\Box pgcd(P,Q)=2X^2 \qquad {}_{(5)}\Box {\rm aucune\ des\ r\'eponses\ pr\'ec\'edentes\ n\'est\ correcte}.$
13.	Soit $\alpha \in \mathbb{K}$ et $P \in \mathbb{K}[X]$. α est racine :
	$ \begin{array}{ccc} (1) \Box & \text{si } P(\alpha) = 0 \\ \Box & \vdots & P(\alpha) & \text{otherwise} \end{array} $
	$ \begin{array}{ll} \text{(2)} \square & \text{si } P = (X - \alpha)Q, \text{ avec } Q \in \mathbb{K}[X] \\ \text{(3)} \square & \text{si } \alpha + X \text{ divise } P \end{array} $
	au moins double si $(X - \alpha)^2$ divise P . (5) aucune des réponses précédentes n'est correcte.
	-
14.	Soit $P \in \mathbb{R}[X]$ défini par $P = X^5 - 1$. Parmi les affirmations suivantes lesquelles sont vraies?
	(1) \square P est factorisé sur \mathbb{R}
	$_{(2)}\square$ P est irréductible sur $\mathbb R$ $_{(3)}\square$ 1 est une racine d'ordre de multiplicité 4
	(4) 1 est une racine d'ordre de multiplicité 1 (5) aucune des réponses précédentes n'est correcte.
15.	Soit $P(X) = (X+5)^2(X-1)^3$ un polynôme à coefficient réels.
	□ 1 set upe regine double □ 1 set upe regine triple □ □ 5 set upe regine double
	$_{(1)}\square$ 1 est une racine double $_{(2)}\square$ -1 est une racine triple $_{(3)}\square$ -5 est une racine double
	$_{(4)}\square$ -5 est une racine triple $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
16.	On considère le polynôme $P = 2X^2 + 3X - 2$.
	$_{(1)}\square$ $(2X-1)$ divise P $_{(2)}\square$ $(2X+1)$ divise P $_{(3)}\square$ $(X-2)$ divise P
	$_{(4)}\square$ $(X+2)$ divise P $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
17.	P et Q sont deux polynômes à coefficients dans $\mathbb R.$ Cocher les affirmations correctes.
	$ (1)\square P,Q\in\mathbb{R} \qquad (2)\square P,Q\in\mathbb{R}[X] \qquad (3)\square (P,Q)\in\mathbb{R}^2[X] \qquad (4)\square (P,Q)\in\mathbb{R}[X]\times\mathbb{R}[X] $
	$_{(5)}\square$ aucune des réponses précédentes n'est correcte.
	(5)— addano dos reponsos procedensos n oss correcto.
18.	On considère $A = 5(X - 1)(2X + 1)^2(X + 3)^5$. Cocher la(les) affirmation(s) correcte(s).
	$_{(1)}\Box$ 5 est le coefficient dominant. $_{(2)}\Box$ 5 est le degré de A . $_{(3)}\Box$ A est scindé.
	$_{(4)}\square$ A a 8 racines. $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
	(3)

- 19. On considère le polynôme $P = 4(5X+1)(3X-1)^2(X+3)^3$.
 - $(X+3)^4$ divise P. $_{(1)}\square$
 - -3 est racine de P d'ordre de multiplicité 3. (2)
 - (3)
 - $(3X-1)^3$ ne divise pas P. $\frac{1}{9}$ est racine de P d'ordre de multiplicité 2. (4)
 - (5)aucune des réponses précédentes n'est correcte.
- 20. Soit $P(X) = X^3 X^2 5X 3$. Cocher la(les) affirmation(s) correcte(s).
 - $_{(1)}\square$ -1 est racine double de P.
 - (2) 1 est racine double de P.
 - 3 est racine simple de P.
 - $\begin{array}{c}
 (2) \\
 (3) \square \\
 (4) \square \\
 (5) \square
 \end{array}$ $(X^3 - X^2 - 5X - 3) = (X + 1)Q \text{ avec } Q \in \mathbb{R}[X]$
 - aucune des réponses précédentes n'est correcte.