Cannabis Brownie Kinetics

CBDA
$$\stackrel{k_1}{\rightarrow}$$
 CBD $\stackrel{k_2}{\rightarrow}$ THC
THCA $\stackrel{k_3}{\rightarrow}$ THC $\stackrel{k_4}{\rightarrow}$ CBN
or
A $\stackrel{k_1}{\rightarrow}$ B $\stackrel{k_2}{\rightarrow}$ D
C $\stackrel{k_3}{\rightarrow}$ D $\stackrel{k_4}{\rightarrow}$ E

Estimated initial 9.1 mM CBDA + 1.1 mM THCA averaged from various strains
Assumed decarboxylation (k1 & k3) and degradation (k2 & k4) reactions are elementary and follow the Arrhenius equation with constants below

Out[5335]=

Rate Constant	A [S ⁻¹]	E _a [kJ/mol]
k1	$\textbf{1.9}\times\textbf{10}^{12}$	112
k2	950.	52
k3	1. × 10 ⁹	86
k4	$\textbf{1.2}\times\textbf{10}^{6}$	77

Setting PFR time and temp to recipe-specific 22 min and 212 oF, CSTR time and temp can be optimized

for final THC concentration

Optimization

CSTR time [min] and temp [oF] could not be optimized for CBD because concentration diverged with infinite temp for 0 time.

THC concentration is maximized at 0.264232 mM (post-16x dilution in the PFR) for time [min] and temp [oF] below

Final Concentrations (Diluted 16x)

Compound	CBDA	CBD	THCA	THC	CBN
Label	CA	СВ	CC	CD	CE
Initial Conc [mM]	9.1	0	1.1	0	0
Final Conc [mM]	0.0618125	0.163688	0.00099375	0.264188	0.146813

Reactor Calculations

Reactor calculations hidden above

Batch SA/V ratio = 2.376 Match PFR → 3" diam 1" thick brownie per second (1.75 g ea) → 424 L/hr 22 min \rightarrow 155 L PFR (110' long)

16x dilution → 27 L/hr 2.2 days \rightarrow 1400 L CSTR THC = 4.2 mM at 163.72 oF

Wholesale \$1400 / lb 14 lb / hrCosts \$20,000 / hrSold for $$20 ea \rightarrow $72,000 / hr$ revenue

Expenditure

Cannabis Curve

