ECS615U Digital Systems Design Lab 2

Marco Datola 140803729 Vojislav Djurovic 140263956 Jack Cockinis 160980703

November 2, 2016

Contents

1	Intr	oducti	on	1
2	Met	hod		2
3	The	oretica	al and experimental results	2
	3.1	4-Bit A	ALU	2
		3.1.1	Top level	3
		3.1.2	4-Bit Arithmetic Unit	3
		3.1.3	n-Bit 2-input MUX	4
		3.1.4	4-Bit Adder/Subtractor	5
		3.1.5	n-Bit XOR Control	6
		3.1.6	4-Bit LAC Adder	6
		3.1.7	4-Bit LAC Adder Unit	7
		3.1.8	n-Bit Adder	8
		3.1.9	n-Bit Logic Unit	9
		3.1.10	1-Bit Slicer	9
	3.2	4-Bit S	Shifter	10
		3.2.1	Top Level	11
		3.2.2	n-Bit Shifter/Rotator Unit	12
		3.2.3	Shift Control Logic	13
		3.2.4	4-Input Multiplexer	14
4	Disc	cussion		14
5	Con	clusio	1	14

1 Introduction

The aim of this lab was to develop, test and implement both a Algorithmic Logic Unit (ALU) and a Shifter/Rotator. The development tools involved in the task were VHDL language, ISim and a FPGA board on which to load our design.

$\overline{\mathbf{2} - \mathbf{Method}}$

- 1. VHDL source code written for each gate
- 2. Test bench file written for each gate
- 3. Simulation of the test benches using iSIm
- 4. Screenshot result
- 5. Recording and verifying that the simulation matches the expected results
- 6. Constraint files created with PlanAhead for each VHDL source code
- 7. Constraint files and source code files programmed to the FPGA board with IMPACT to physically run the code.

3 Theoretical and experimental results

3.1 4-Bit ALU

The below figure displays the RTL schematic for the 4-Bit ALU.

Figure 1: RTL schematic of a 4-Bit ALU

In the following sections Truth tables and timing diagrams for all the devices involved in the design are presented below. We follow a top-down approach and will exclude from the report those lower-level devices analysed in Lab 1.

3.1.1 Top level

Truth Table

Function	F	InA	InB	Output	C_out
NOT A	000	0101	XXXX	1010	X
A AND B	001	0011	0101	0001	X
A XOR B	010	0011	0101	0110	X
A OR B	011	0011	0101	0111	X
Inc A	100	0000	XXXX	0001	0
A+B	101	0001	1111	0000	1
Dec A	110	0000	XXXX	1111	0
A-B	111	1111	0001	1110	1

Timing Diagram analysis The timing diagram visible below confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 2: 4-Bit ALU timing diagram tested on iSim

3.1.2 4-Bit Arithmetic Unit

Truth Table

Function	Control	InA	InB	Sum	C_out
A+1	00	0000	0000	0001	0
A+B	01	0001	0001	0010	0
A-1	10	0010	0010	0001	0
A-B	11	0011	0011	0000	0
A+1	00	0100	0100	0101	0
A+B	01	0101	0101	1010	0
A-1	10	0110	0110	0101	0
A-B	11	0111	0111	0000	0
A+1	00	1000	1000	1001	0
A+B	01	1001	1001	0010	1
A-1	10	1010	1010	1001	0
A-B	11	1011	1011	0000	0
A+1	00	1100	1100	1101	0
A+B	01	1101	1101	1010	1
A-1	10	1110	1110	1101	0
A-B	11	1111	1111	0000	0

Timing Diagram analysis The timing diagram visible below includes all the possibilities the device can be tested with.

Figure 3: 4-Bit Algorithmic Unit timing diagram tested on iSim

Below, instead, a portion of the above timing diagram which confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 4: Portion of the 4-Bit ALU timing diagram tested on iSim

3.1.3 n-Bit 2-input MUX

Truth Table

Control (N_i=2, N_d = 4)	InA (N_i=2, N_d = 4)	InB (N_i=2, N_d = 4)	Output (N_i=2, N_d = 4)
0	0000	1111	0000
1	0001	1110	1110
0	0010	1101	0010
1	0011	1100	1100
0	0100	1011	0100
1	0101	1010	1010
0	0110	1001	0110
1	0111	1000	1000
0	1000	0111	1000
1	1001	0110	0110
0	1010	0101	1010
1	1011	0100	0100
0	1100	0011	1100
1	1101	0010	0010
0	1110	0001	1110
1	1111	0000	0000

Timing Diagram analysis The timing diagram visible below includes all the possibilities the device can be tested with.

Figure 5: n-Bit 2-Input MUX timing diagram tested on iSim

Below, instead, a portion of the above timing diagram which confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 6: Portion of the n-Bit 2-Input MUX timing diagram tested on iSim

3.1.4 4-Bit Adder/Subtractor

Truth Table

Control	InA	InB	Sum	C_out
0	0000	1111	1111	0
1	0001	1110	0011	0
0	0010	1101	1111	0
1	0011	1100	0111	0
0	0100	1011	1111	0
1	0101	1010	1011	0
0	0110	1001	1111	0
1	0111	1000	1111	0
0	1000	0111	1111	0
1	1001	0110	0011	0
0	1010	0101	1111	0
1	1011	0100	0111	0
0	1100	0011	1111	0
1	1101	0010	1011	0
0	1110	0001	1111	0
1	1111	0000	1111	0

<u>Timing Diagram analysis</u> The timing diagram visible below includes all the possibilities the device can be tested with.

Figure 7: 4-Bit Adder/Subtractor timing diagram tested on iSim

Below, instead, a portion of the above timing diagram which confirms what expected from

the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 8: Portion of the 4-Bit Adder/Subtractor timing diagram tested on iSim

3.1.5 n-Bit XOR Control

Truth Table

Control (N_i=4)	$InA (N_i = 4)$	Output
0	0101	0101
1	0101	1010

<u>Timing Diagram analysis</u> The timing diagram visible below includes all the possibilities the device can be tested with. It confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 9: n-Bit XOR Control timing diagram tested on iSim

3.1.6 4-Bit LAC Adder

Truth Table

3.1 4-Bit ALU

ECS615U Lab 1 Report

C_In	InA	InB	Sum	C_out
0	0000	1000	1000	0
0	0001	1001	1010	0
0	0010	1010	1100	0
0	0011	1011	1110	0
0	0100	1100	0000	1
0	0101	1101	0010	1
0	0110	1110	0100	1
0	0111	1111	0110	1
0	1000	0000	1000	0
1	1001	0001	1011	0
1	1010	0010	1101	0
1	1011	0011	1111	0
1	1100	0100	0001	1
1	1101	0101	0011	1
1	1110	0110	0101	1
1	1111	0111	0111	1

<u>Timing Diagram analysis</u> The timing diagram visible below includes all the possibilities the device can be tested with.

Figure 10: 4-Bit LAC Adder timing diagram tested on iSim

Below, instead, a portion of the above timing diagram which confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Name	Value	10 ns	100 ns		200 ns		300 ns	1	400 ns		500 ns		600 ns		700 ns		800 ns	1	900 ns
► 😽 ina[3:0]	1111	0000		0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	Х	1111
▶ inb [3:0]	0111	0000	1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	Х	0111
Ve c_in	1																		
▶ 5 s[3:0]	0111	0000	X 10	00 / 1	010 / 1	100 / 1	10 (0000 X 0	10 / 0	100 \ 0	10 ×100	0 /1 / 10	11 / 1	101 / 1	111	0001	0011 / 0	101	0111
₩ c_out	1																		

Figure 11: Portion of the 4-Bit LAC Adder timing diagram tested on iSim

3.1.7 4-Bit LAC Adder Unit

Truth Table

InA	InB	Output
0000	0000	0000
0001	0001	0010
0010	0010	0100
0100	0100	1000
0001	1111	1110

<u>Timing Diagram analysis</u> The timing diagram visible below includes all the possibilities the device can be tested with. This confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 12: 4-Bit LAC Adder Unit timing diagram tested on iSim

3.1.8 n-Bit Adder

Truth Table

InA	InB	Carry In	S	Carry out
0000	0000	0000	0000	0
0001	0001	0000	0000	0
0011	0010	0000	0001	0
1100	1000	0000	0100	1
1001	1101	0100	0000	1
1010	1001	0100	0111	1

<u>Timing Diagram analysis</u> The timing diagram visible below includes all the possibilities the device can be tested with. This confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Name	Value	0 ns	100 ns	200 ns	300 ns		400 ns	500 ns	600 ns	700 ns	800 ns	900 ns
▶ 😽 a_input[3:0]	1010	00	00	0001	Х	0011	1100	1001	X	10	10	
 ▶	1001	00	00	0001	Х	0010	1000	1101	X	10	01	
C_input[3:0]	0100			0000				K		0100		
▶ 🔣 s[3:0]	0111	\circ	0000		$\pm x$	0001	0100	0000	X	(111	
To c_out1	1											

Figure 13: n-Bit Adder timing diagram tested on iSim

3.1.9 n-Bit Logic Unit

<u>Truth Table</u>

Function	Cntrl	InA	InB	Output
	00	0000	1000	1111
	00	0001	1001	1110
Complement A	00	0010	1010	1101
	00	0011	1011	1100
	00	0100	1100	1011
	01	0101	1101	0101
A d D	01	0110	1110	0110
A and B	01	0111	1111	0111
	01	1000	0000	0000
	10	1001	0001	1000
Δ D	10	1010	0010	1000
A xor B	10	1011	0011	1000
	10	1100	0100	1000
	11	1101	0101	1101
A or B	11	1110	0110	1110
	11	1111	0111	1111

<u>Timing Diagram analysis</u> The timing diagram visible below includes all the possibilities the device can be tested with.

Figure 14: n-Bit Logic Unit timing diagram tested on iSim

Below, instead, a portion of the above timing diagram which confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 15: Portion of the n-Bit Logic Unit timing diagram tested on iSim

3.1.10 1-Bit Slicer

Truth Table

3.2 4-Bit Shifter

ECS615U Lab 1 Report

Function	С	a	b	Output
Complement A	00	1	1	0
A and B	01	1	1	1
A xor B	10	1	1	0
A or B	11	1	1	1

<u>Timing Diagram analysis</u> The timing diagram visible below includes all the possibilities the device can be tested with. This confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 16: 1-Bit Slicer timing diagram tested on iSim

3.2 4-Bit Shifter

The below figure displays the RTL schematic for the 4-Bit Shifter.

Figure 17: RTL schematic of a 4-Bit Shifter

In the following sections Truth tables and timing diagrams for all the devices involved in the design are presented below. We follow a top-down approach and will exclude from the report those lower-level devices analysed in Lab 1.

3.2.1 Top Level

 $\underline{\text{Truth Table}}$

3.2 4-Bit Shifter

ECS615U Lab 1 Report

Function	G	Data_in	Output
Pass	000	0101	0101
Rotate Left	001	0101	1010
Shift Left (0)	010	1111	1110
Shift Left (1)	011	0000	0001
Pass	100	1010	1010
Rotate right	101	1010	0101
Shift right (0)	110	1111	0111
Shift right (1)	111	0000	1000

<u>Timing Diagram analysis</u> The timing diagram visible below includes all the possibilities the device can be tested with. This confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 18: 4-Bit Shifter timing diagram tested on iSim

3.2.2 n-Bit Shifter/Rotator Unit

Truth Table

10	l1	R_in	R_s	L_in	L_s	Cntrl	Output
0000	0000	0	0	0	0	00	0000
0010	0100	0	1	0	1	01	0100
0100	0010	1	1	0	1	10	0010
0001	0001	0	1	0	1	00	0001
1000	1000	0	1	0	1	00	1000

rotator.PNG

Timing Diagram analysis The timing diagram visible below includes all the possibilities the device can be tested with.

Figure 19: n-Bit Logic Unit timing diagram tested on iSim

Below, instead, a portion of the above timing diagram which confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 20: Portion of the n-Bit Logic Unit timing diagram tested on iSim

3.2.3 Shift Control Logic

Truth Table

Input	Output
000	00
111	10
110	10
101	10
100	00
011	01
010	01
001	01
000	00

<u>Timing Diagram analysis</u> The timing diagram visible below includes all the possibilities the device can be tested with. This confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 21: Shift Control Logic timing diagram tested on iSim

3.2.4 4-Input Multiplexer

Truth Table

S	13	12	l1	10	Output
00	1	0	1	0	0
01	1	0	1	0	1
10	1	0	1	0	0
11	1	0	1	0	1

<u>Timing Diagram analysis</u> The timing diagram visible below includes all the possibilities the device can be tested with. This confirms what expected from the truth table. A time delay, equivalent to the delay generated by the gate is visible at the beginning of the diagram. This delay then propagates throughout the duration of the Test Bench.

Figure 22: 4-Input Multiplexer timing diagram tested on iSim

4 Discussion

As tested in the lab, the results observed on the FPGA are in agreement both with the Timing Diagram and with the Truth table of the tested device. We assume there's going to be a different time delay in the FPGA due to non-idealised conditions. As mentioned in the Timing Diagram analysis for every component, this non-idealised conditions are modelled by generating a small delay at the beginning of the output signal.

5 Conclusion

In this lab we were able to successfully write, simulate and test all fourteen required devices. All the simulation results matched the theoretical expectations which confirms we are able to use these devices in higher level designs in the coming weeks.