Exercise Sheet 7 Stochastics (AAI)

Exercise 7.1

Compute the following probabilities approximately using the central limit theorem:

- a) $P(\{\sum_{i=1}^{400} X_i > 210\})$ for X_1, \dots, X_{400} i.i.d. with $X_1 \sim \text{Exp}(2)$,
- b) $P(\{X > 600\})$ and $P(\{X \in [100, 450[\}) \text{ for } X \sim B(1000, 0.6),$
- c) $P(\{|\sum_{i=1}^{50} X_i 150| > 100\})$ for X_1, \dots, X_{50} i.i.d. with $X_1 \sim \text{Poi}(3)$.

Exercise 7.2

Let X_1, \ldots, X_5 be i.i.d. with $X_1 \sim \mathrm{N}(\mu, 4)$ and unknown $\mu \in \mathbb{R}$. For the estimation of the expected value μ we consider the estimators $g_5^{(i)} \colon \mathbb{R}^5 \to \mathbb{R}$ for $i = 1, \ldots, 4$ given by

$$g_5^{(1)}(x_1, \dots, x_5) = \frac{1}{3}(x_1 + x_3 + x_5),$$

$$g_5^{(2)}(x_1, \dots, x_5) = \frac{1}{5} \sum_{i=1}^5 x_i,$$

$$g_5^{(3)}(x_1, \dots, x_5) = x_1 + x_4,$$

$$g_5^{(4)}(x_1, \dots, x_5) = x_3.$$

- a) Determine the bias of $g_5^{(i)}$ for i = 1, ..., 4.
- b) Determine the mean squared error of $g_5^{(i)}$ for i = 1, ..., 4.

Exercise 7.3

Let $n \in \mathbb{N}$ and X_1, \ldots, X_n be i.i.d. with $Var(X_1) > 0$. Let $g_n : \mathbb{R}^n \to \mathbb{R}$ be given by

$$g_n(x_1,\ldots,x_n) = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_n)^2.$$

Prove or disprove:

- a) g_n is an unbiased estimator for $Var(X_1)$, i.e., $E(g_n(X_1,\ldots,X_n)) = Var(X_1)$.
- b) $g_n(X_1, \ldots, X_n)$ converges almost surely to $Var(X_1)$, i.e.,

$$P\left(\left\{\lim_{n\to\infty}g_n(X_1,\ldots,X_n)=\operatorname{Var}(X_1)\right\}\right)=1.$$

Exercise 7.4

Let $n \in \mathbb{N}$ and X_1, \ldots, X_n be i.i.d. with $X_1 \sim \mathrm{U}(0, b)$ and $b \in]0, \infty[$. For the estimation of b we consider the estimators $g_n^{(1)}, g_n^{(2)} : \mathbb{R}^n \to \mathbb{R}$ given by

$$g_n^{(1)}(x_1,\ldots,x_n) = \frac{2}{n} \cdot \sum_{i=1}^n x_i, \qquad g_n^{(2)}(x_1,\ldots,x_n) = \frac{n+1}{n} \cdot \max(x_1,\ldots,x_n).$$

a) Show that $\max(X_1, \dots, X_n)$ is absolutely continuous with density $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} n \cdot x^{n-1}/b^n, & \text{if } x \in [0, b], \\ 0, & \text{else.} \end{cases}$$

Hint: Determine $P(\{\max(X_1,\ldots,X_n)\leq x\})$ for $x\in\mathbb{R}$. Cf. Exercise 6.1 a).

- b) Show that $g_n^{(1)}$ and $g_n^{(2)}$ are unbiased estimators.
- c) Compute the mean squared error of $g_n^{(1)}$ and $g_n^{(2)}$. Hint: For $n \in \mathbb{N}$ we have

$$\left(\frac{n+1}{n}\right)^2 \cdot \left(\frac{n}{n+2} - \left(\frac{n}{n+1}\right)^2\right) = \frac{1}{n(n+2)}.$$

Exercise 7.5

Let $P_X^{\vartheta} \sim \operatorname{Exp}(\lambda)$ with $\lambda = \vartheta \in \Theta =]0, \infty[$. Determine the maximum likelihood estimator of λ .

Exercise 7.6* (P)

Let X_1, X_2, \ldots be i.i.d. with $\mu = \mathrm{E}(X_1) \in \mathbb{R}$ and $\sigma = \sqrt{\mathrm{Var}(X_1)} > 0$, and define

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $\overline{X}_n^* = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{\sigma}$

for $n \in \mathbb{N}$. In the sequel consider the two cases

- i) $X_1 \sim \text{Exp}(1)$ with $\mu = \sigma = 1$,
- ii) P_{X_1} discrete uniform distribution on $\{1,\ldots,6\}$ with $\mu=7/2$ and $\sigma=\sqrt{35/12}$,

separately. Proceed as follows to illustrate the strong law of large numbers (SLLN) and the central limit theorem (CLT).

a) Generate realizations $X_1(\omega_j), \ldots, X_n(\omega_j)$ for $j = 1, \ldots, m$ (i.e., generate m samples of size n).

Hint: exprnd, randi (Matlab/Octave)

- b) Illustration of SLLN: Put m=10 and $n=10^3$. For each sample $j=1,\ldots,m$ plot $k\mapsto \overline{X}_k(\omega_j)$ for $k=1,\ldots,n$.
- c) Illustration of CLT: Put $m=10^3$ and n=10. For each $k=1,\ldots,n$ plot a histogram of \overline{X}_k^* based on the data $\overline{X}_k^*(\omega_1),\ldots,\overline{X}_k^*(\omega_m)$.