Comprehensive Documentation

Setup Requirements

- Python Version: Python 3.8 or above due to dependencies on recent library features.
- **Dependencies Installation:** Required Python libraries can be installed via pip:

pip install pandas numpy matplotlib seaborn plotly scikit-learn requests python-dotenv

Environment Setup

Create a .env file in the root directory of the project to store API keys securely:

```
ALPHAVANTAGE_API_KEY='your_alphavantage_api_key_here'
NEWS_API_KEY='your_news_api_key_here'
```

Usage Instructions

Run the script from the command line:

```
python main.py
```

2. Code Explanations

Data Fetching and Caching

- fetch_stock_data: Fetches stock data using the Alpha Vantage API. It first attempts to load
 cached data; if unavailable or stale, it fetches new data, respects API rate limits, and caches the
 new data.
- cache_data and load_cached_data: Manage the caching mechanism to reduce API calls, using
 pickle to serialize data with a freshness timestamp.

Predictive Modeling

- preprocess_data: Prepares data by scaling feature columns necessary for modeling.
- train_model: Trains a gradient boosting regressor model using the prepared data.
- predict_future_prices_hermite: Uses Hermite spline interpolation for future stock price
 predictions based on the trained model.

Visualization

- plot_combined : Generates both static and interactive plots for stock prices and volumes.
- plot_sentiment_trends : Plots sentiment trends derived from news headline analysis.

Sentiment Analysis

fetch_news_headlines, analyze_sentiment, integrate_sentiment_data: These functions
collectively fetch news headlines, analyze their sentiment using a pre-trained BERT model, and
integrate sentiment scores into the stock data.

3. Concise Report on Methodologies

Predictive Modeling

- Utilizes machine learning models to forecast future stock prices based on historical data. This
 project implements a Gradient Boosting Regressor for robust predictions against non-linear data
 trends and employs Cubic Hermite Spline for interpolation to predict future stock price movements
 based on the last observed trends.
- The data is preprocessed using a standard scaler to normalize feature scales, ensuring better performance and stability of the machine learning model.

API Management

- Rate Limiting: Ensures that the script adheres to API rate limits using a custom-built rate limiter that delays requests based on the last call time.
- **Data Caching**: Implements data caching to optimize API usage. Data is cached with a freshness timestamp, allowing the script to decide whether to use cached data or fetch new if it's stale.
- Error Handling: Robust error handling is built into the data fetching functions to gracefully manage and log issues like network errors or data access problems.

Deliverables

- Integrated Python Script: All functionalities (data fetching, processing, predictive modeling, visualization, and sentiment analysis) are encapsulated in a single Python script (main.py).
- 2. **Documentation**: Detailed documentation is provided, outlining setup, installation, and usage.
- 3. **Methodological Report**: A concise report explaining the methodologies employed, focusing on predictive modeling and API management.