Seminár 32: Geometria VIII – výpočtové úlohy

Úlohy a riešenia

Úloha 32.1. [B-59-II-1] Riešenie*. Trojuholník UST je pravouhlý. Jeho prepona UT má dĺžku s+t, dĺžky odvesien sú |US|=t+2, |ST|=s (obr. 1). Podľa Pytagorovej vety platí

$$(s+t)^2 = (t+2)^2 + s^2.$$

Úpravami postupne dostávame

$$s^{2} + 2st + t^{2} = t^{2} + 4t + 4 + s^{2},$$

 $st = 2t + 2,$
 $t(s - 2) = 2.$

Čísla t a s-2 sú celé, preto t musí byť deliteľom čísla 2. Keďže t je kladné, sú len dve možnosti; ak $t=1\,\mathrm{cm}$, tak $s=4\,\mathrm{cm}$, a ak $t=2\,\mathrm{cm}$, tak $s=3\,\mathrm{cm}$.

Obr. 1:

Úloha 32.2. [B-66-S-2] **Riešenie*.** V súlade s obr. 2 označme x = |CL|, y = |CK|, potom |BL| = a - x, a |AK| = b - y, pričom a, b sú postupne dĺžky odvesien BC, AC. Použitím Pytagorovej

Obr. 2:

vety v pravouhlom trojuholníku KLC dostaneme $|KL|^2=x^2+y^2$, takže skúmaný súčet môžeme upraviť nasledujúcim spôsobom:

$$|AK|^{2} + |KL|^{2} + |LB|^{2} = (b-y)^{2} + x^{2} + y^{2} + (a-x)^{2} =$$

$$= 2x^{2} + 2y^{2} - 2ax - 2by + a^{2} + b^{2} =$$

$$= 2\left(x - \frac{a}{2}\right)^{2} + 2\left(y - \frac{b}{2}\right)^{2} + \frac{a^{2} + b^{2}}{2} =$$

$$= 2\left(x - \frac{a}{2}\right)^{2} + 2\left(y - \frac{b}{2}\right)^{2} + \frac{c^{2}}{2}.$$

Vďaka nezápornosti druhých mocnín z toho vidíme, že skúmaný výraz nadobúda svoju najmenšiu hodnotu, konkrétne $\frac{1}{2}c$, práve vtedy, keď $x=\frac{1}{2}a$ a súčasne $y=\frac{1}{2}b$, teda práve vtedy, keď body K,L sú postupne stredmi odvesien AC,BC daného pravouhlého trojuholníka ABC.

Záver. Najmenšia možná hodnota skúmaného súčtu je rovná $\frac{1}{1}c^2$. Túto hodnotu dostaneme práve vtedy, keď body K, L budú postupne stredmi odvesien AC, BC daného pravouhlého trojuholníka.

Úloha 32.3. [B-63-S-3] **Riešenie.** V danom trojuholníku ABC označme X, Y, Z body dotyku vpísanej kružnice s jeho stranami a x = |AY| = |AZ|, y = |BX| = |BZ|, z = |CX| = |CY| zhodné úseky dotyčníc k vpísanej kružnici z jednotlivých vrcholov (obr. 3). Ak označíme zvyčajným spôsobom a, b, c dĺžky jednotlivých strán, platí

Obr. 3:

$$a = y + z$$
, $b = z + x$, $c = x + y$.

Sčítaním týchto troch rovníc dostaneme (pomocou s ako zvyčajne označujeme polovičný obvod trojuholníka)

$$2s = a + b + c = 2x + 2y + 2z$$

takže nám vyjde

$$x + y + z = s$$
, $x = s - a$, $y = s - b$, $z = s - c$. (1)

Pozrime sa teraz na pripísanú kružnicu trojuholníku ABC, ktorá sa dotýka jeho strany BC v bode P a polpriamok AB a AC v bodoch R a Q (obr. 4). Zo zhodnosti úsekov príslušných dotyčníc k tejto kružnici máme

$$|AR| = |AQ|, \quad |BR| = |BP|, \quad |CP| = |CQ|,$$

odkiaľ vychádza

$$2|AR| = |AR| + |AQ| = |AB| + |BR| + |AC| + |CQ| =$$
$$= |AB| + |BP| + |AC| + |CP| = a + b + c = 2s,$$

čiže |AR|=|AQ|=s. Z tejto rovnosti ale vyplýva, že |BP|=|BR|=s-c, čo je podľa 1 zároveň dĺžka z úsečky CX, teda |BP|=|CX|. To znamená, že body P a X sú súmerne združené podľa stredu úsečky BC. Analogicky by sme odvodili rovnosti |BK|=s a |CL|=s pre body dotyku K a L kružníc

Obr. 4:

pripísaných stranám CA a AB (obr. 4) trojuholníka ABC s priamkou a. Z týchto posledných rovností však vidíme, že |BL| = s - a = |CK|, teda aj body K a L sú súmerne združené podľa stredu úsečky BC. Body K a L sú známe (z troch daných bodov na priamke sú to tie dva krajné), poznáme teda aj stred S strany BC (je to stred úsečky S a bod S nájdeme ako obraz tretieho daného bodu S0 stredovej súmernosti podľa stredu úsečky S0.

Úloha 32.4. [B-65-I-3] **Riešenie*.** Majme také dve kružnice, ktoré spĺňajú predpoklady úlohy (obr. 5). Zrejme stred S_1 leží na osi uhla BAC a stred S_2 na osi uhla ABC. Ďalej si uvedomme, že veľkosť polomeru r_1 kružnice k_1 je priamo úmerná dĺžke úsečky AS_1 a podobne veľkosť r_2 priamo

úmerná dĺžke úsečky BS_2 . Keď zväčšíme polomer jednej z kružníc, musí sa nutne polomer druhej kružnice zmenšiť.

Kružnica k_2 nemôže mať polomer väčší ako najväčšia kružnica, ktorú možno do trojuholníka ABC vpísať. Takou kružnicou je zrejme kružnica k do trojuholníka ABC vpísaná. A naopak najmenší polomer bude mať kružnica k_2 , ak zvolíme $k_1 = k$. (Že v oboch opísaných prípadoch pre $k_2 = k$ aj pre $k_1 = k$ existuje príslušná "vpísaná" kružnica k_1 , resp. k_2 , je vcelku zrejmé.)

Stačí teda vypočítať polomer r kružnice k do trojuholníka ABC vpísanej a polomer kružnice k_2 , ktorá sa dotýka kružnice k a strán AB a BC daného trojuholníka.

Polomer r vpísanej kružnice vypočítame napríklad zo vzorca $2S_{ABC} = ro$, pričom S_{ABC} označuje obsah trojuholníka ABC a o jeho obvod. Obsah daného pravouhlého trojuholníka ABC s preponou AB

je pri zvyčajnom označení dĺžok strán rovný $\frac{1}{2}ab$. Prepona v trojuholníku ABC má (v centimetroch) podľa Pytagorovej vety veľkosť $c=\sqrt{a^2+b^2}=\sqrt{3^2+4^2}=5$. Maximálny polomer kružnice k_2 je teda

$$r = \frac{2S_{ABC}}{o} = \frac{ab}{a+b+c} = \frac{3\cdot 4}{3+4+5} = 1.$$

Pre výpočet polomeru r_2 kružnice k_2 , ktorá sa dotýka kružnice k a strán AB a BC, označme D a E body, v ktorých sa kružnice k a k_2 dotýkajú strany AB, a F, G dotykové body kružnice k postupne so stranami BC a AC (obr. 6). Keďže daný trojuholník je pravouhlý, je S_1FCG štvorec so stranou

Obr. 6:

dĺžky r=1, takže |BF|=|BD|=2 a podľa Pytagorovej vety $|BS_1|=\sqrt{5}$. Z podobnosti pravouhlých trojuholníkov BES_2 a BDS_1 potom vyplýva

$$\frac{r_2}{|BS_2|} = \frac{r}{|BS_1|},$$
 čiže $\frac{r_2}{\sqrt{5} - r_2 - 1} = \frac{1}{\sqrt{5}}.$

Po úprave tak pre hľadanú hodnotu neznámej r_2 dostaneme lineárnu rovnicu

$$r_2(\sqrt{5}+1) = \sqrt{5}-1,$$

ktorú ešte zjednodušíme vynásobením $\sqrt{5}-1$. Zistíme tak, že najmenšia možná hodnota polomeru kružnice k_2 je rovná

$$r_2 = \frac{3 - \sqrt{5}}{2}.$$

Úloha 32.5. [B-61-II-3] **Riešenie*.** a) Označme S stred a r polomer kružnice vpísanej trojuholníku ABC a L, M body dotyku tejto kružnice postupne so stranami BC, CA (obr. 7). Ak označíme |AK| = x, |BK| = y, tak |AP| = |AM| = x, $|KP| = x\sqrt{2}$, |BQ| = |BL| = y, $|KQ| = y\sqrt{2}$. Keďže oba uhly AKP, BKQ majú veľkosť 45°, je trojuholník PQK pravouhlý, takže jeho obsah je

$$S_{PQK} = \frac{x\sqrt{2}y\sqrt{2}}{2} = xy.$$

Štvoruholník SLCM je štvorec so stranou dĺžky r a |AM| = x, |BL| = y. Obsah trojuholníka ABC je rovný súčtu obsahov trojuholníkov ABS, BCS a CAS, teda

$$S_{ABC} = \frac{(x+y)r + (y+r)r + (x+r)r}{2} = (x+y+r)r.$$

Obsah trojuholníka ABC je zároveň rovný

$$S_{ABC} = \frac{|AC| \cdot |BC|}{2} = \frac{(x+r)(y+r)}{2} = \frac{xy}{2} + \frac{(x+y+r)r}{2} = \frac{xy}{2} + \frac{S_{ABC}}{2}.$$

Obr. 7:

Odtiaľ dostávame $S_{ABC}=xy$, čiže $S_{ABC}=S_{PQK}$, čo sme mali dokázať.

b) V trojuholníku ABC sú dĺžky strán $a=y+r,\,b=x+r,\,c=x+y.$ Obvod trojuholníka ABC je a+b+|AB|, obvod trojuholníka PQK je $x\sqrt{2}+y\sqrt{2}+|PQ|$.

Zrejme platí $|AB| \leq |PQ|$ (|AB| je vzdialenosťou rovnobežiek $AP,\,BQ,\,$ (obr. 7). Rovnosť nastane jedine v prípade |AP| = |BQ|, čiže x=y. Ešte dokážeme, že $a+b \leq x\sqrt{2}+y\sqrt{2}$, teda že $a+b \leq c\sqrt{2}$. Posledná nerovnosť je ekvivalentná s nerovnosťou, ktorú dostaneme jej umocnením na druhú, pretože obe jej strany sú kladné. Dostaneme tak $a^2+b^2+2ab \leq 2c^2$. Keďže v pravouhlom trojuholníku ABC platí $a^2+b^2=c^2$, máme dokázať nerovnosť $2ab \leq a^2+b^2$, ktorá je však ekvivalentná s nerovnosťou $0 \leq (a-b)^2$. Tá platí pre všetky reálne čísla a,b a rovnosť v nej nastane jedine pre a=b, t. j. x=y.

Celkovo vidíme, že obvod trojuholníka ABC je menší alebo rovný obsahu trojuholníka PQK a rovnosť nastane práve vtedy, keď je pravouhlý trojuholník ABC rovnoramenný.