Customer Churn Prediction using Quotation Data

Master Thesis

Submitted on: March 19, 2022

at the University of Cologne

Name: Abdurahman Maarouf

Adress: Schulstrasse 31 Postcode, Area: 53332, Bornheim

Country: Germany

Matriculation number: 736481

Supervisor: Prof. Dr. Dominik Wied

Contents

1	Inti	roduction	1
2	\mathbf{Pro}	blem	2
	2.1	Understanding the Problem	2
	2.2	Data	4
	2.3	Literature Review	6
3	Me	thods	6
	3.1	Preprocessing	6
	3.2	Dimension Reduction	12
	3.3	Handling Class Imbalance	14
	3.4	Machine Learning Models	17
	3.5	Model Evaluation Metrics	23
	3.6	Interpreting the Models	25

1 Introduction

Predicting churners in order to retain customers has become one of the most important issues for companies in the field of CRM. In the ideal case, companies want to detect potential churners before they leave by estimating probabilities for a churn in the next period of time. To tackle this issue, more and more advanced Machine-Learning-Algorithms are used guaranteeing solid accuracy in their out-of-sample predictions.

Fortunately for most of the companies, churn rates from one period to another are very small. However in classification models predicting a rare event can become challenging. In this so called "Imballanced Classes" issue certain arrangements to the underlying training data or the selected objective function need be made. Without these arrangements and with highly imballanced classes, a poor algorithm will simply never predict the outcome of the minority class. In a dataset with 1000 customers containing 5 churners for example, this loss-minimizing algorithm would have an in-sample accuracy of 99.5%.

In order to avoid the high amount of "False-Negative"-classifications there are many methods ranging from upsampling the minority class or downsampling the majority class to more advanced techniques like custom loss functions. In this work we present and compare the different methods while applying them to the underlying problem.

We also want to emphasize the importance of using quotation data for predicting customer churn. A company can track (potential) customer behavior on their distribution channels. Nowadays, in most cases the products or services are offered online on websites, which makes it easy to track website visitor data. In the context of dealing with customer churn this data can be matched to the customers already having a product or contract of this company. We show that first the number of visits of a current customer in the last period and second the average of the seen price during the visits have a high importance when predicting the probability of that customer leaving in the next period. In order to evaluate the importance and relationship of not only the quotation features but also the other explanatory variables with the to-be-explained variable there is typically a trade-off during model selection. The trade-off lies between the model complexity and the model interpretability. Deep neural networks or boosted trees belong to the complex models which are famous for their comparatively high accuracy in almost all domains, espacially in computer vision and natural language processing. Understanding and interpreting the model is less important in these areas.

However in the course of this work and in many other areas understanding understanding how explanatory features interact with the outcome of the model becomes desirable. The most transparent models in terms of interpretability are linear or logistic models. There the magnitude and sign of the corresponding coefficients (after being testet for significance) illustrate the changes of the outcome for a change in the specific explanatory variable. These models however lack in terms of accuracy when being compared to the complex ones, because they do not allow for non-linearities and interactions in the explanatory features. Extensions, like general additive models (GAMs) [8] or GAMs allowing for pairwise interactions (GA²Ms) [13] incorporate non-linearities. In this work we focus on comparing the predictive accuracy and interpretability of black-box and white-box models. For the black-box model we fit gradientboosted trees [5] as they outperform other models in most applications with tabular data. Partial dependency plots [4], Shapley values [14] and LIME [16] are novel approaches designed to make these black-box models interpretable. Additionally we present the accuracy and interpretability of "Explainable Boosting Machines" (EBM) developed by Microsoft researchers Lou et al. [15] which are based on a GA²Ms model and are therefore interpretable in the form of their shape functions. EBMs aim to combine the high accuracy of complex models on the one hand and the interpretability of general additive models on the other hand.

2 Problem

2.1 Understanding the Problem

For this work we use customer data from a big insurance company in Germany. Due to data pretection the data is anonymized which does not affect the model accuracy and interpretability in any form. We focus on the product of automobile liability insurance, which is by law a mandatory service every car owner must hold in Germany.

Typically car owners close a deal with an insurance company which can be terminated by the end of each year. In rare cases both sides agree on a contract with a due date during the year. If the contract does not get terminated it is automatically extended for another year. Besides the option to terminate the

contract at the due date there is also an option to terminate it earlier in a few special cases. These cases mainly involve the exceptional right of termination given to a customer after a car accident or a vehicle change. To sum up, here are the two cases in which a churn can (but not must) occur before the contract due date:

Event A: Contractor is involved in an Accident.

Event N: Contractor buys a new Car.

The problem of modelling customer churn needs to be seperated into the probability of a costumer leaving before his contract due date and churns happening at the due date. The reason is that the optimal modelling approach and explanatory variables have differences. One example is the premium adjustment send to the customers before their due date, which has a high contribution to the decision of the customers at the due date. Meanwhile, churns before the due date are dependent on the occurrence of the events A and N. In this work we focus on predicting churns occurring before the due date.

This tree diagram illustrates how the probability of a churn before the due date can be decomposed using the Events A (Accident), N (New Car) and C (Churn).

By assumption we set $P(C \mid None) = 0$ as the amount of terminated contracts during the year which are not being caused by a new car, an accident

or a due date is very small and can be omitted. Therefore we leave these cases out of our data. What we are interested in predicting is the overall probability of a churn, which can be rewritten as:

$$P(C) = P(A \cap C) + P(N \cap C) + P(D \cap C) = P(A)P(C \mid A) + P(N)P(C \mid N) + P(D)P(C \mid D)$$

One idea would be to model the three branches of A and N separately. The logic behind this is that different models and sets of explanatory variables have the best fit for the probabilities of the tree branches. Not only the the branches but also the unconditional and conditional probabilities of a single branch may vary in their best modelling approach. For prediciting an accident a model of type (XY) is more suitable, whereas (YZ) would go better with modelling the probability of churn given an accident occured. In the course of this work we begin with a general modelling approach trying to predict the probability P(C). At a later stage we compare the accuracy outcomes of seperately predicting the branch probabilities with the baseline approach. The purpose is to build a model which can be used at any time t of the year to predict the probability of a costumer leaving the company in the next period of time (t, t + s] and not at his due date. It can be argued that in order to provide a model with maximized utility for production one would want to keep s small. For example a company would highly benifit from a model, which can predict the churn-probability of the next week. However we see that having a small s decreases the accuracy of our models, creating a trade-off situation between model accuracy and the benifits of a small s. With a smaller period the classes of the data become more imballanced, creating a higher challange of feeding the model enough information about churners. Furthermore, a small s decreases the scope of action for a company to retain potential customers leaving.

2.2 Data

Most customer churn predicition models have been using only one timestamp to train a model. We want to emphasize the usage of multiple timestamps and show that it significantly improves prediction accuracy. The improvement is a result of an increased training set size and the ability of the model to especially learn more about the rare class. Furthermore, the model becomes more generalizable in time which is crucial if this model is applied in production (see: [7]). Explain more using graphics.

Part of this work is the evaluation if the churn probability of customers is time invariant. Therefore we statistically test the equality of monthly mean churn rates. We see that there is a seasonality in the churn rate which underlines the importance of including different timestamps in the training data for the model to learn the monthly differences. These different timestamps are simply appended to the data as additional rows creating a panel dataset. The month of these timestamps are therefore added as an explanatory feature.

To build the models we use historical data of the insurance company. More specifically we pick T timestamps with t = 1, ..., T in the past and collect all the active contracts to these timestamps. One row corresponds to one active contract at t. So if one hypothetical contract is active in all T periods it appears as T seperate rows in our data. To each row we merge the status of that contract in t + s, which represents the target variable.

Quotation Data

This work stands out in its novel approach of using quotation data for churn predictions. We are not aware of similar research in the literature utilizing that data. In that sense we want to highlight its predictive power. We recommend companies and research institutions to set up systems and/or databases to collect such data. In the following we clarify what our understanding of quotation data is. Furthermore we illustrate which types of features can be generated and are used in our modelling approach.

Through every distribution channel a company offers its product, (potential) customers leave behind a lot of useful data. These distribution channels can either be online websites or also offline agencies. In our insurance case (potential) customers must give specific information about themselves and their car they want to insure such that a price can be calculated. Everytime a price is calculated all the information corresponding to that calculation is saved as a new row on a database. From now on we will define a price calculation as a request.

Main applications of quotation data involve price and new-business optimization, demand forecasting and conversion modelling. Another application however is to use this data in order to analyze the behavior of customers which already have an active contract. The main advantage of the (potential) customers having to give their and the cars information is that this information can be used to match an active customer with his/her requests. One can therefore assume that an active customer with high request activity is most likely looking for a new insurance contract. This would directly influence the churn probability.

The features we generate with the quotation data can be summarized into five groups:

- (1) $n_requests_{t-m,t}$: To each active contract we join the number of requests generated by the corresponding customer in the m months before the selected timestamp t. We allow for multiple values for m, more specifically $m \in \{1, 2, 3, 6, 12\}$, resulting in 5 different generated features.
- (2) $diff_n_{requests_{t-m,t}}$: We also calculate the average monthly number of requests in the last m months subtracted by the average monthly number of requests in the last 12 months. The idea behind this group of features is that it reflects if there is a difference in request behavior of the last m months to the normal behavior. So $diff_n_{requests_{t-m,t}}$ can be seen as a normalized version (using customer specific averages) of $n_{requests_{t-m,t}}$.
- (3) $avg_calc_price_{t-m,t}$: Another group of features is the average shown price of the requests. Again, we produce 5 features in this group, as $m \in \{1, 2, 3, 6, 12\}$.
- (4) $diff_calc_price_{t-m,t}$: Here we use $avg_calc_price_{t-m,t}$ and subtract it with the price the customer is paying according to his/her active contract.
- (5) diff_hsntsn_requests_{t-m,t}: As customers have to state vehicle specific information during their price request, this information can be compared to the vehicle which is insured in the active contract. Thereby we concentrate on the "HSN" (manufracturer key number) and "TSN" (type key number). The combination of both the "HSN" and "TSN" is a unique identifier for the type of the car. Thus, for this group of features we create a similarity score between 0 and 1. 0 reflects the case where none of the entered vehicles in the requests equals the "HSN"-"TSN"-combination in the contract and 1 is assigned to full similarity between requested car(s) and insured car. The resulting features can be an indicator for the occurrence of event N, i.e. the customer thinking about changing his/her car.

Note that for each group we generate multiple features with different values for m. Our purpose is to find the optimal request window m^* for each group using a special dimension reduction technique called MRMR. This technique will be presented later and is designed to optimally filter the features when expecting correlation among them. This is highly reasonable for our quotation features.

- (Graphical Illustration)
- (Description of the ETL Process)
- (Description of the most important features)

2.3 Literature Review

Introduction in to the next subsections. Say sth like "there is a wide range of literature on classification techniques and specifically on customer churn prediction. Baseline: Logistic Regression. They propose following advanced techniques. In chapter 3.x we are going to focus on X, Y and Z" Also include introductory words for the next subsections.

3 Methods

In this section we present our methods of modelling churn probabilities. To fully capture the concepts we use in this work, we start with the preprocessing procedure. Then we explain used and compared methods to handle imbalanced classes. The next subsection introduces the theoretical background on the fitted machine learning models. The questions on how to evaluate these models with the appropriate metrics and how to make them interpretable are answered in the last two subsections. The modelling flow is visualized by (Figure X).

Put the graphical overview (from Feuerriegels slides) of the modelling pipeline (use MS Visio) here.

3.1 Preprocessing

As in most machine learning applications preprocessing the data is the most time consuming part in this work. To have a clean and suited training dataset for modelling and a dataset for production is essential to guarantee accurate, robust predictions and interpretations. Therefore we will present the main issues in the raw data that are solved during preprocessing.

The raw data comes from three main sources. The first source is a valid-time-

state-table (VTST) containing all historic and present customer contracts information of the product automobile liability insurance. It contains valid-from and valid-to columns which makes it easy to extract information on the status, the car and the insurance holder at any point in time t. The second source table is also a VTST but contains historized accident data reported by an insurance holder. Finally, the quotation table is the third source, where simply the amount of rows equals the total number of requests generated across all distribution channels.

All preprocessing is done with the database language SQL for performance reasons. SQL has many advantages which makes it popular and highly demanded. It is a reliable and efficient language used for communicating with the database. Thereby it is able to process queries for data manipulation, insertions, deletions and joins fastly.

In order to automate the preprocessing, scripts and functions are written with python which order the sql queries in tasks and which execute them on the database. More specifically, the package "prefect" (cite) is used to create the python pipeline. It is a workflow management system primarely used for such data engineering tasks. We select prefect as it enables the option to execute the pipeline through a simple command in the console or in predefined time intervals. It is easy to monitor the process of the pipeline and it also creates an efficient overview of if there are bugs/errors in either the SQL-queries or the python scripts.

The preprocessing can be split up into 4 main steps and are summarized in the following:

(i) Creating the historized view of the Contracts

As already mentioned, the source table containing all contract information is a VTST. So any desired point in time t in the past can be selected to collect all active contracts to that time. We use T=12 points in time in the past, following [7] findings, to ensure a larger dataset and higher generalizability and robustness over time. So in the first step we generate 12 different tables, which are essantially views on the source table for the given points in time. For each generated view-table (for each point in time t) and for each active contract we look for the status of that contract in t + s. This is done by joining the same table filtered for timestamp t + s on the unique identifier

column "contract_number". To ensure we only collect during-contract-churns, we check if the termination date of that contract is unequal to the agreed upon termination date. The case where both dates are equal is excluded in our modelling question and therefore not seen as a churn.

The 12 points in time are selected carefully, in a sense that there is no overlapping between any time window (t, t + s]. So following property must hold for any pair of time sets: $(p, p + s] \cap (q, q + s] = \emptyset$ for all $p \neq q$ and p, q = 1, ..., 12. The final step for generating a historized view of the contracts is to create a union on all 12 subview, creating a panel-dataset. The number of resulting rows after this operation equals the number of rows after all next steps. So we have already generated the framework of the preprocessed table. The only thing which is left is to generate more variables, espacially accident and quotation variables.

(ii) Join accident data

In many modelling problems in the insurance context it turns out that the driving behavior of the customer plays a big role in predicting the desired outcome. Espacially in risk modelling, knowing how many times a customer was involved in an accident or how costly these accidents were, ensures accurate predictions.

Being involved in an accident is one of the events which give a customer the exceptional right of terminating the contract. Therefore we will also include historized accident data in the modelling approach. The VTST containing the historized accidents are recorded for each "contract_number", which makes it easy to join the data to the table generated in (i).

We engineer two new features based on the accident data. One is a simple count of accident the contract holder was involved in since the start of the contract ("sum_accidents"). The second one is the sum over the incurred costs corresponding to the accidents ("sum_accidents_costs"). This quantifies the accidents and makes them comparable.

(iii) Bot Detection in Quotation Data

One big issue arises with the usage of quotation data. Not all requests in online distribution channels are generated by humans. The pricing information of a company is valuable for competitors pricing strategy or other third party institutions. As a result many bots or crawlers are designed to automatically extract data from websites. The proportion of not-human requests can be very high and reaches up to 70% in one of the distribution channels.

As we do not want to consider bots and crawlers and falsely join them as requests from our active customers we need to find a way to detect them. The first best strategy would be to label a proportion of requests as BOT = True or BOT = False and then train a model to estimate $P(BOT = TRUE \mid X)$ for the remaining requests. This however is infeasible as there is no information on the true labeling for any request.

The second best approach flags requests with unreasonably high number of same occurences and is used in this work. Thus, it counts the number of requests with the same combination of certain quotation features (1) over a day and (2) over the entire timeframe. These features for flagging bots/crawlers should be as unique as possible in a sense that requests coming from the same source are only counted. For both (1) and (2) individually, a certain cutoff percentile of the combinations is specified. A request is then specified as a bot if the rank of its specific combination is larger than the cutoff.

The cutoff percentile is defined for every distribution channel individually (as some are more prone for bots than others). How to choose the "correct" cutoff is done through eyeballing the smoothness of distributions for suitable quotation features. An example is the feature "time_of_day", where we have an expected distribution and can detect anomalies with our eye.

Figure X represents the result of the bot detection algorithm and the distribution of "time_of_day" over the entire time since 2018 for one specific online distribution channel. It is a screenshot of the dashboard which is used to monitor the performance of the algorithm. It was also used to finetune the cutoffs for every distribution channel and to choose the right combination of features. The spikes between 2:30 am and 4:30 am clearly represent such an anomaly and are fully captured by our bot detection algorithm.

The advantage of this algorithm is that it also captures newly arriving bots by calculating percentiles per day. Also it is able to treat the distribution channels individually. It is easily adjustable and monitorable. It however still fails to capture certain types of bots which are programmed to enter a different combination of features in each request. There however, it is nearly infeasible to detect them with any advanced method. In this work we estimate that these bots only make up a very small fraction of the requests and therefore we neglect them.

(iv) Matching quotation with contract data

Another issue with the quotation data is that there is no unique identifier column which can be used to correctly join it to the table generated in (i) and (ii). Additionally, columns like NAME or BIRTHDATE are not always correctly specified during their price request which makes the matching even more difficult. If specified correctly in the quotation data, a combination of these variables could be used as key columns.

In order to adress this $M \times N$ -Matching problem we need to come up with a fuzzy matching algorithm. On one side we have a table which contains contracts at different timestamps, their status 2 months later and historic accident information. At the other side we have an ungrouped and unstructured table which simply lists all requests and their corresponding request information. The end result should be of the same structure as the base table created in

(i) and (ii) but simply appended with the variables mentioned in (3.1???). We can already expect, that not all contracts have quotation activity m months before t. Also, not every request is associated with a contract holder. These two facts increase the uncertainty of matching but are necessary to check the scope and quality of matching.

The main idea behind our fuzzy-matching algorithm is to try to match both tables with a different set of signals iteratively. Each signal is a collection of variables which together serve as almost unique identifiers. One example for a signal is the combination of the variables: HSN (manufracturer key number), TSN (type key number), PLZ (postal code) and BIRTHDATE.

As we join the quotation table on the contract table multiple times with different sets of signals we expect and first allow for duplicates of same contract×timestamp combinations and/or requests. Therefore the next important step in this section is the deduplication. We know that first the combination of contract_id×timestamp and second request_id should be unique in the end table.

The first step of deduplication is to only include requests for each contract, which occured in the corresponding request window [t-m,t). As we allow for different values for m we first set the filter to the maximum length of m=12. The different variables are generated in a later step.

The matching algorithm is designed in a way that it implicitly allows to formulate preferences about the matching signals. So to each signal a preference rank is associated. This is used for the second step of deduplication. To further eliminate duplicates, we only keep the most preferred match per contract_id×timestamp combination on the one hand and per request_id on the other.

After the second deduplication step there might still be unwanted duplicates if for example the same requests are joined to different contracts with the same signal preference. To address this last issue we pick the request-contract pair with the smallest time difference. This of course is not always the correct pair, but ensures wrong duplicates. Additionally there is no other information to be exploited for correct matches. Unwanted duplicates occurring after deduplication steps 1 and 2 are however very rare (0.002%) and therefore can be neglected.

After these steps we are left with generating the quotation features mentioned in (3.1???). The result is a table with same length as after step (i) and (ii) and with appended quotation features.

As for the bot detection we generate a dashboard to monitor the quality of the matching algorithm. We have developed three checks which automatically are executed everytime the preprocessing is performed. We will present them shortly in the following.

For all the checks we exploit the fact that every new-business contract, so a newly closed deal between customer and insurance, needs a corresponding request in the quotation data. Therefore we use the same matching algorithm, but instead of joining the quotation data on our base contract table from (i) and (ii) we join it on a new-business table, which is also given in our database. With a perfect matching algorithm we would expect a match rate of 100%. While monitoring our algorithm a match rate of 100% should however be regarded critically as it might be a result of too weak signals.

The first check is done by eyeballing the aggregated match-rate of the new-business-contracts over time. In the below graph the x-axis represents the starting date of the new-business contracts and the y-axis the match rate to these contracts. The graph shows that the performance of the algorithm is stable and accurate as in the entire time window for over 90% of the contracts the corresponding request is found. The drop after November 2021 should not be misinterpreted as the plot was generated in November.

To also ensure the correctness of the matches we monitor the quality by comparing the price determined in the new-business contract with the price of the matched request. Prices are not used in any matching signal for two reasons. One is the fact that after a converted request there may occur specific rebates or other changes to the price which lead to differences between contract price and request price. The second reason is to have an unbiased check of the matching-quality.

The resulting second check is a visual where the percentage deviation between contract price and request price are binned into buckets for all new-business contracts. We expect some deviation around plus and minus 20% for given reasons. Abnormal differences over the 20% mark indicate a bad match.

As we can see, after optimizing the matching signals and preferences bad matches occur in only a very small proportion. Additionally we can safely say that a minimum of 70% of the contracts are correctly matched with its request as prices are exactly equal in these cases. Adding the expected deviation of contract and request price we are left with a good quality of matching.

The third check also uses the new-business contracts as a test table for the performance of the algorithm. The idea behind this check is however to ensure that the current implementation is the best possible with the underlying data. We therefore model the match status (boolean) of the new-business contract as target variable and all underlying quotation and contract variables as explanatory variables. The model itself is a decision tree. The defining rule to decide wether the algorithm is using the most out of the given information is the resulting feature importance score. More specifically we use the score which assigns its overall contribution to loss reduction to each feature. So for each feature we calculate the decrease in node impurity weighted by the probability of reaching that node.

Under full exploitation of the information at hand the decision tree should not be able to find a structure to model the match boolean. In result we should expect complete randomness in the structure of the tree and almost equal feature importance scores for all the features. If there is any feature with abnormal high feature importance it is a sign for incomplete information usage for matching.

3.2 Dimension Reduction

A full collection of the explanatory features in our data can be found in the appendix. As we have many features and some of them are highly correlated, preprocessing this dataset is essential. The goal is to retain only the minimal optimal subset of features. In many cases, due to multicollinearity in models with many features, dimension reduction techniques can even improve the accuracy of models.

In the current literature of machine learning there are many approaches for feature selection, ranging from manual selection to fully automated selection procedures. We use the "Maximum Relevance Minimum Redundancy" (MRMR) - approach designed by Ubers machine-learning researchers Zhao et al. [21]. The authors focus on designing an algorithm which detects the best subset of features instead of the subset of best features. The latter is often used in applications of machine learning, where a model is trained and features are selected a posteriori based on certain feature importance scores for that model. This however does not eliminate redundant features, which in reality do not improve the model performance due to being already represented in correlated other input features.

Using the best subset of features also helps us to identify the optimal length of the request window m. As we want to examine the impact of quotation data for predicting customer churn, we include multiple number-of-request features with different values for m in our unfiltered selection of features F. These are obviously expected to be highly correlated, which additionally delivers a possibility to monitor the effectiveness of the MRMR.

MRMR works iteratively, so at each iteration a new best feature is identified and added to the list of selected features. Once a feature is selected it cannot ever be unselected in the next iterations. One drawback of this approach is that the number of iterations and therefore the number of selected features has to be predefined. We extend it however in a way that we iterate through the entire feature set F and cache the resulting sets and scores of each iteration. So the resulting iterative process starts with an empty selected S and full unselected S and ends with a full S and an empty S. This lets us define the optimal number of iterations retroactively.

The algorithm MRMR got his name from the fact, that at each iteration j a new feature is selected into S that has the maximum relevance with respect to the target variable scaled by the redundancy with respect to the features that

are already in S. Therefore at each iteration and for each of the remaining features of U the following score is computed:

$$score_i(feature_{i \in U}) = \frac{relevance(feature_{i \in U}, C)}{redundancy(feature_{i \in U}, features \in S)}$$
 (1)

The sets U and S get updated each iteration by transfering the feature with the highest score from U to S. In their paper, Zhao et al. present multiple metrics for both relevance and redundancy. We focus on one approach which yielded the best result in their paper and slightly adapt it to our problem, as we have categorical features in our data.

At each iteration the relevance of the remaining features in U has to be computed with a new model with only these remaining features. We use gradient boosted trees and its package "lightgbm" (LGBM) in python in each iteration to score the new relevance of each remaining feature. LGBM can handle categorical features on the one hand and has a build in method for calculating feature importance on the other hand. There, feature importance is computed as the number of times that specific feature is selected for a split. So this feature importance is assigned to the corresponding features as the relevance score. How gradient boosted trees work is explained in chapter 3.4.

For redundancy an average over certain standardized metrics for the relationship between the to be evaluated feature and the features already in S needs to be computed. These metrics depend on the scales of measurement for the features. Zhao et al. only cover the case of continuous features and their relationship. We extend the redundancy score to categorical and dichotomous features. Thereby we need to pay attention to the fact, that the scores need to stay comparable for the different scales. Therefore the chosen metrics are all standardized to values between 0 and 1, where 0 indicates no and 1 the strongest possible relationship. The different scale-pairs and their relationship metrics can be summarized by table 1 (see [10]):

Redundancy is then calculated by the mean of the relationship scores as follows:

Table 1: Relationship Metric based on Scale

		nominal	dichotomous	continuous
	nominal	Cramers-V-Correlation		
	dichotomous	Cramers-V-Correlation	Cramers-V-Correlation	
	continuous	Eta-Correlation	Point-Biserial-Correlation	Bravais-Pearson-Co

$$Redundancy(feature_{i \in U}, features \in S) = \frac{1}{n(S)} \sum_{s=1}^{n(S)} relationship(i, s)$$
 (2)

The slightly modified MRMR-approach we use can therefore be illustrated by this simplified pseudo-code:

- The results of MRMR for our dataset are as follows: Show using graphics

Algorithm 1 MRMR-Algorithm

```
 corrmatrix \leftarrow corr(X) \\ S \leftarrow [] \\ U \leftarrow [X.columns] \\ cachedict \leftarrow \{\} \\ \textbf{for j in range len(X.columns) do} \\ relvector \leftarrow LGBMscorer(U) \\ redvector \leftarrow mean(corrmatrix [U] [S]) \\ scorevector \leftarrow relvector/redvector \\ best feat \leftarrow max(scorevector).name \\ bestscore \leftarrow max(scorevector) \\ S.append(best feat) \\ U.drop(best feat) \\ cachedict.append(j, best feat, bestscore) \\ \textbf{end for}
```

of average score of each iteration. Argue with an elbow criterium?

3.3 Handling Class Imbalance

Studying the rarity of an event in the context of machine learning has become an important challange in the recent two decades. Rare events, such as a customer churning in the next period, are much harder to identify and learn for most of the models. HaiYing Wang et al. [19] study the convergence

rate and distributaional properties of a Maximum-Likelihood estimator for the parameters of a logistic regression while prediciting rare events. Their finding is that the convergence rate of the MLE is equal to the inverse of the number of examples in the minority class rather then the overall size of the training data set. So the accuracy of the estimates for the parameters is limited to the available information on the minority class, even if the size of the dataset is massive.

Therefore some methods have been developed to decrease the problematic of imballanced classes. In this chapter we present different methods which can be applied to the training set, before feeding it to the model. Also, we present different objective loss functions which also aim in solving the problematic. To handle and evaluate the outcomes of prediciting rare events also the appropriate models and model evaluation metrics must be chosen. This is discussed in the next two subsections however.

(i) Downsampling

The first basic sampling method is named downsampling. It randomly eliminates examples from the majority class in order to artifficially decrease the imballance between the two classes. The downside of this approach is that it possibly eliminates useful examples for the model to maintain a high accuracy in predicting the majority class [20]. HaiYing Wang et al. also study the convergence rate and distributaional properties when applying downsampling. According to their findings the asymptotic distribution of the resulting parameters may be identical to the MLE's using the full data set. Under this condition there is no loss in terms of efficiency (minimum possible variance of an unbiased estimator devided by its actual variance).

(ii) Upsampling

The second basic sampling method is the upsampling approach. This method simply duplicates examples from the minority class until the classes are more balanced. While duplicating examples though, the chances of overfitting to these duplicates becomes a more probable threat. Also, no new data is being generated in order to let the model learn more valuable features about the minority class [20]. Additionally, the computational performance of this

approach can get rather poor, espacially with large datasets and highly imballanced classes. While evaluating the asymptotics of the MLE's with upsampling, HaiYing Wang et al find out that it also decreases the efficiency. A probable higher asymptotic variance of the estimators is the reason for that.

(iii) SMOTE

The more advanced SMOTE-approach (Synthetic Minority Oversampling Technique) [3] also creates more artifficial examples of the minority class. Instead of simply duplicating some rows SMOTE creates new nearest neighbors in terms of feature values for the minority class examples. While constructing the feature values of the new example (N+1) (where N is the size of the unsampled dataset) as a new nearest neighbor for example i of the minority class one has to differentiate between continuous and nominal features. The k-nearest neighbors for the minority class are typically constructed with the Euclidean Distance for continuous features and the Value Distance Metric for nominal features (TODO: maybe include other distance measures here? Mahalanobis Distance to calculate out correlation?).

A. Continuous features:

- 1) Construct difference between corresponding feature value of example i and one of its k nearest neighbors.
- 2) Multiply this difference with a random value drawn from a uniform distribution between 0 and 1.
- 3) Construct the feature value of the new example by adding the multiplied difference to the feature value of example i.

B. Nominal features:

- 1) Choose the feature value which is the majority vote between the feature value i and its k nearest neighbors.
- 2) Assign this value to the corresponding feature of the new example.

With this approach it is ensured that the model learns more about the neighborhood regions of the minority class. It decreases the probability, that the model overfits to the duplicates created in upsampling.

(iv) Cost-Sensitive Classifiers

One drawback of the presented sampling methods is that the sample distribution is being changed. A different starting point is to change the objective loss function which is minimized during the model fitting. Thereby the sample size and the distribution stay the same. In the modified cost function we want to penalize false-negative classifications with a higher weight. Reason behind this is to ensure that the event of interest, represented by the minority class, is predicted correctly [18].

The challange of this approach is to find the appropriate penalty parameters. It is hard to measure the cost of misclassifying an insurance-customer regarding churn-probabilities. The fact that these costs can come from multiple sources which are not easily definable is one part of the reasoning. Therefore we focus on two types of modified loss functions.

One conventional method is to assign simple parameter weights w0 and w1 to the loss function. By default one might use the inverse of the class frequency as the associated weights. These parameters however can also be optimized during grid search. We call this method the "Simple Weighted Loss Function". The derivation is part of the next subchapter.

The second approach is called "Focal Loss Function" and was originally designed by FAIR (Facebook Artifficial Intelligence Research) for an object detection purpose [11]. As it also aims to penalize false-negative classifications it is widely used for predicting rare events. Again, the exact structure is shown in the next subchapter and the parameters can be tuned with grid search.

3.4 Machine Learning Models

(i) Logisitic Regression

The logistic regression is used as a benchmark model for all classification problems. It has high advantages in terms of computational complexity and interpretability, but fails in capturing complex relationships and interactions. As in most cases it has the lowest accuracy of all classifiers we use it as a baseline model in order to evaluate the advantages of additional complexity in the models, as in GBT and EBM. Thereby we focus on model performance on unseen data and model interpretability.

Logisitic regression applies a sigmoid function to the a linear model in order to

get output values (probabilities) between 0 and 1 as in a Bernoulli distribution. We use the following conventional notation throughout this work:

$$\widehat{C_{t+s}} = P(C_{t+s} = 1 \mid X_t) = f(g(X_t)) = \frac{e^{g(X_t)}}{1 + e^{g(X_t)}}$$
 (3)

Note that from now on we use a vectorized notation. So \hat{C} represents a vector of probabilities, where the i'th element (i = 1, ..., N) corresponds to the probability of a churn in time t + s of the same at t active contract. This probability vector is constructed by a model conditional on a feature matrix X at time t. Again, each row of X represents a different contract and column j is the feature j (j = 1, ..., M) of that contract.

Therefore $f(\cdot)$ is the sigmoid function used on function $g(\cdot)$, where in logistic regression $g(\cdot)$ is a linear model. For GBM and EBM this function is allowed to be more complex.

$$g(X_t) = \beta X_t + \epsilon_t \tag{4}$$

Maximum Likelihood is then used to estimate the vector of parameters β of the model. It maximizes the joint probability that the status of the training data contracts are drawn from the Bernoulli distribution stated in (3). For the final model in production, when estimating probabilities for a churn in the next period, t is of course equal across all contracts in X. But as already stated, for training the model we use multiple timestamps of the historized data. Therefore the index t is left out for the input matrix X and output vector C while estimating model parameters, avoiding a misleading notation. Still, the status of contract t is determined after t units of time for all contracts. The likelihood function to be maximized is described as follows:

$$\mathcal{L}(C; X, \beta) = \prod_{i=1}^{N} P(C^{(i)} = 1 \mid X^{(i)})^{I(C^{(i)} = 1)} \left(1 - P(C^{(i)} = 1 \mid X^{(i)})^{1 - I(C^{(i)} = 1)}\right)$$
(5)

To describe this term as a loss function it is characterized by the negative logarithm of (5), which can be minimized with respect to β using Gradient Descent, Newton Raphson (Zitieren!) or other optimization methods.

$$\begin{split} l(C;X,\beta) &= -\sum_{i=1}^{N} C^{(i)} log \Big(P(C^{(i)} = 1 \mid X^{(i)}) \Big) + (1 - C^{(i)}) log \Big(1 - P(C^{(i)} = 1 \mid X^{(i)}) \Big) \\ &= -\sum_{i=1}^{N} C^{(i)} log(\widehat{C^{(i)}}) + (1 - C^{(i)}) log(1 - \widehat{C^{(i)}}) \end{split} \tag{6}$$

In our case we have a lot of features in the raw matrix X. Consequently it makes sense to add a penalty term to the loss function to avoid overfitting to the training data. While minimizing this loss function during training, this additional penalty term either shrinks some parameters of β towards zero (L2 regularization), or sets some to exact 0 (L1 regularization). However, we can also reduce the dimension of features prior to fitting the model, as already explained with the MRMR-approach.

Additionally, as already mentioned in (3.3), one technique to handle imbalanced classes is to use cost-sensitive classifiers. We can implement this by setting additional penalty weights to our loss function. The resulting objective "Simple Weighted Loss Function" is described as:

1: Simple Weighted Loss Function

$$L(C,\widehat{C}) = -\sum_{i=1}^{N} w_1 C^{(i)} log(\widehat{C^{(i)}}) + w_0 (1 - C^{(i)}) log(1 - \widehat{C^{(i)}}) + \lambda h(\beta)$$
 (7)

Here, the penalty term $h(\cdot)$ can either be an L1 or L2 regularization on β . The additional parameters of λ , w_0 and w_1 are hyperparameters which can be tuned during grid search. Following (whose?) approach, w_1 and w_0 can also be set by default to the inverse of their corresponding class frequencies in the training data.

The objective "Focal Loss Function" is set up like this:

2: Focal Loss Function

$$L(C,\widehat{C}) = -\sum_{i=1}^{N} \alpha (1 - \widehat{C^{(i)}})^{\gamma} C^{(i)} log(\widehat{C^{(i)}}) + (1 - \alpha) \widehat{C^{(i)}}^{\gamma} (1 - C^{(i)}) log(1 - \widehat{C^{(i)}}) + \lambda h(\beta)$$

$$\tag{8}$$

Again, λ , α and γ are hyperparameters, which can be optimized during grid search. We use and compare both 7 and 8 for our classifiers to get the best out-of-sample performance.

After having found the optimal set of parameters it is time to define the classification cutoff τ for predicting a churn. The logistic regression model outputs a probability which is between 0 and 1. The rule of thumb is to set $\tau = 0.5$, such that probabilities larger than 0.5 are predicted as churns and the rest as non-churns.

- Interpretability of Logistic Regression runterschreiben

(ii) Tree-based Classifier

Single Classification Tree

Classification trees have a different approach on builing a prediction model for $\widehat{C_{t+s}} = P(C_{t+s} = 1 \mid X_t)$. Unlike logistic regression, they allow for non-linearities and interactions. Classification trees search for the optimal sequential binary sample splits in order to minimize an objective loss function. So at each node of the tree the optimal feature j and its optimal split point r need to be found. The search at each node can be summarized as follows:

$$S_{1}(j,r) = \{X \mid X^{j} \ge r\}, S_{2}(j,r) = \{X \mid X^{j} < r\}$$

$$\{j,r\} \in \underset{j,r}{\operatorname{arg\,min}} \sum_{i:X^{(i)} \in S_{1}(j,r)} l(C^{(i)}; X^{(i)}, \widehat{p^{k}}) + \sum_{i:X^{(i)} \in S_{2}(j,r)} l(C^{(i)}; X^{(i)}, \widehat{p^{k}})$$
(9)

The loss function for region S_k is calculated using the resulting region prediction $\widehat{p^k}$ (applied to all obeservations which are assigned to this region after the splits $i: X^{(i)} \in S_k$), which are simply the shares of churns in S_k . The typical loss functions are based on evaluating the purity of the resulting regions. In the ideal case, one would like to find the splits in X which always correctly assign contracts of the two classes into two different regions. In this case, $\widehat{p^k}$ would always be either 1 or 0. In order to approach this case one either uses the Gini-index or the Cross-entropy for region S_k :

Gini-index:
$$2\widehat{p^k}(1-\widehat{p^k})$$
 Cross-entropy:
$$-\widehat{p^k}log(\widehat{p^k})-(1-\widehat{p^k})log(1-\widehat{p^k})$$

The splits at each node are performed until certain criteria for the loss functions or other hyperparameters are met. Hyperparameters of a single tree are summarized in table 2. To get the prediction $\widehat{C^{(i)}}$, one assigns $\widehat{p^k}$ as the region prediction of the corresponding end node of observation i to that value.

Boosted Trees for Classification

In most applications the predictions of a single classification tree have high variance due to overfitting to the training data. The accuracy in the prediction on unseen data will therefore be rather poor compared to the accuracy during training. Random forests [2] are designed to reduce the variance of the predictions, by averaging over predictions of multiple independent trees. This phenomenon is called "Wisdom of the Crowds" and is underlined by the fact that the average of multiple estimators for the same parameter will have the same bias but a smaller variance (how much depends on N and the correlation (which is 0 if we assume that the base learners are independent) of the estimators) than a single estimator.

The current literature (cite!!!) however agrees on the fact that Boosted Tree Algorithms outperform Random Forests, and therefore also a single tree. Therefore we focus on the core methodology and hyperparameters of boosted trees in the following.

The idea of boosted trees for classification is to have a sequence of dependent base learners (trees), which improve in terms of accuracy where it is most needed. Thereby, the base learners $\hat{g}_b(X)$ (b=1,..,B) are constructed in a shallow shape, avoiding an overfitted single learner. Additionally the $\hat{g}_b(X)$ are now regression trees, which output values in $(-\infty, \infty)$. So for the optimal split at the nodes of each tree the squared error reduction of the log-odds? (besser erklären, bzw statt classification trees einfach regression trees einführen?) are now being compared. To get an interpretable result we again have to apply the sigmoid function $f(\cdot)$ to get a probability in [0,1]. The resulting loss of each tree is then fitted by the preceeding trees. So the procedure can be summarized by this pseudo code:

- Gradient boosted bagged trees noch?

The hyperparameter λ is called learning rate and set to a small number to learn slowly and to avoid overfitting. It should not be confused with the λ of regularization (change notation in regularization?). Also notice, that the loss

Algorithm 2 Boosted-Trees-Algorithm

```
\begin{split} \hat{G}(X) &\leftarrow 0 \\ L \leftarrow \sum_{i=1}^{N} l(C^{(i)}, f(\hat{G}(X^{(i)}))) \\ \text{for b in range}(1, B) \text{ do} \\ &\text{Fit tree } \hat{g}_b(X) \text{ which minimizes } L = \sum_{i=1}^{N} l\Big(C^{(i)}, f\Big(\hat{G}(X^{(i)}) + \hat{g}_b(X^{(i)})\Big)\Big) \\ &\hat{G}(X) \leftarrow \hat{G}(X) + \lambda \hat{g}_b(X) \\ \text{end for} \\ &\hat{C} = \hat{f}(X) = f(\sum_{b=1}^{B} \lambda \hat{g}_b(X)) \end{split}
```

function defined here is the objective loss function used for gradient boosting and is defined differently than the loss function, when constructing a single tree. We use the same two objective loss functions for Gradient Boosting derived in (7) and (8) and perform hyperparameter optimization to get the best set of hyperparameters belonging to these loss functions. As already stated, this allows us to handle the class imbalance. We leave out the regularization term $h(\cdot)$ in GBT.

To apply the log-loss function in (7) or (8) we need to derive the gradient as well as the hessian of this function. Herewith the lightgbm-package [5] aims to improve time-cost as is it takes the second order Taylor Expansion to compute the optimal loss minimizing $\hat{f}_b(X)$ in each iteration b = 1, ..., B. These are calculated in the appendix.

The main cost with boosted trees is learning the single trees, and the most time-consuming part in that is to find the best split-points. Therefore we make use of the histogram-based approach of the lightgbm-package in our prediction model which aims to tackle this issue. The so called histogram-based approach is designed to bin the features which creates high efficiency gains during searching for the optimal splits, especially for continuous variables.

Another important aspect to note about lightgbm's implementation of boosted trees is the fact that the base trees grow leaf-wise instead of depth-wise. As proposed by Friedman et al., the idea is to extend nodes in first-best order. Thereby, the best node is the one which maximally reduces the sum of the tree loss function in the resulting regions. This enables the possibility that a first-best split is found at a node in level r + 1 eventhough in level r only one of two nodes are split. (Show graphically?)

If we let the trees grow without tree structure restrictions to full trees, both the leaf-wise and depth-wise approach result in the same trees. As all gradient boosters rely on shallow trees, the combination of hyperparameters such as

Table 2: Hyperparameters for lgbm

			T. C.
	Hyperparameter	Description	Grid Search Value
	learning rate	Boosting learning rate λ	Shrinking learning
	n_estimators	Number of boosted Trees B	
ng	objective	Objective or objective loss function	Custom loss functi
Boosting	subsample	Subsample ratio of training data used	
B	$subsample_freq$	Frequency of usage of subsample	
	reg_alpha	L1 regularization term on weights	
	reg_lambda	L2 regularization term on weights	
	num_leaves	Maximum number of tree leaves	
Γ ree	$subsample_for_bin$	Number of samples for constructing bin	
Single Tree	min_split_gain	Minimum loss reduction for split	
Sin	min_child_samples	Minimum number of data in new region	
	colsample_bytree	Subsample ratio of columns for tree	

the maximum number of leaves, the minimum loss reduction required for a further split the first-best split approach result in a better (cite!) shallow tree structure.

– Explain regalpha and reglambda in boosted trees

There are a lot of hyperparameters which allow to tune the learning structure. They can be split into the hyperparameters for single tree structure and hyperparameters for the learning process. In Table 2 is an overview of the hyperparameters we focus on and the corresponding values we use for grid search.

(iii) Explainable Boosting Classifiers

Explainable boosting machines (EBM) were developed by researchers at Microsoft [15] and aim to have high accuracy as most complex models, while maintaining an easy interpretable approach. It is maintained by the functional form which is similar to the standard GAM-Model, developed originally in 1987 by Hastie et al. [8]:

$$g(X_t) = \beta_0 + \sum_{j=1}^{M} k_j(X_t^j) + \epsilon_t$$
(10)

Thereby M is the number of features and $k_j(\cdot)$ is the so called shape function for feature j. In standard GAM-models $k_j(\cdot)$ is approximated by scatter-plot smoothers (Wenn noch Zeit und Platz ist, Running mean oder running lines smoother erklären, aber eigentlich für diese Arbeit unwichtig.). In EBM the approximation for $k_j(\cdot)$ is allowed to be calculated by a complex modern learner such as a decision tree or a random forest.

As the name of the method already reveals, gradient boosting is applied to improve the preceding trees in direction of the gradient of the loss function. The main difference to the standard gradient boosting classifier is that no longer one tree fits all features $\hat{g}_b(X) = \hat{g}_b(X^1, ..., X^M)$ in each iteration b = 1, ..., B. Instead in each iteration, the algorithm cycles through all features to improve the single shape function $k_j(\cdot)$, where it is most needed. By cycling through the features one at a time and maintaining a low learning rate the feature order does not matter and the potential problem of multicollinearity is reduced.

Unfortunetaly there is still a huge gap between standard GAM-models and full complexity models in terms of predictive accuracy, even if we allow for non-linearities in $k_j(\cdot)$. Full complexity models, such as gradient boosted trees and deep neural nets, have the advantage of allowing for an arbitrary number of interactions between features. To allow for pairwise interactions, EBM's make use of the idea of GA^2M -models developed by Lou et al. [13]. The resulting shape functions $k_{m,n}(X^m,X^n)$, (where $m \neq n$ and $m,n \in \{1,...,M\}$) are still interpretable with a heatmap on the two dimensional X^m,X^n -plane. Also, results from Lou et al. not only show that GA2M-models have a high improvement in accuracy over GAM-models, but also compete with high complexity-models in most applications.

There are a number of approaches to detect the best set of feature interactions for our model as in [9], [6], [12], [17]. These methods however are either computationally inefficient or almost even infeasible with high-dimensional data. Therefore we use the "FAST" approach presented by Lou et al. [13], which are also available in the EBM-package.

FAST's structure is based on a greedy forward stagewise selection strategy. It can be compared to the MRMR in a way that it starts with an empty set of selected pairs and an unselected set containing all possible feature pairs. In each iteration all possible unselected pairs are used separately to fit the current

objective loss function resulting from the additive model including only the already selected pairs. The pair with the highest loss improvement is selected in that iteration. The iteration stops, when the objective loss function stops improving for any other inclusion of a pair.

If we assume that we have M features in our data the amount of possible pairwise interactions equals $\binom{M}{2} = \frac{M(M-1)}{2}$. As a result, calculating the set of interaction functions and fitting all possible new models in each iteration is very time consuming for large M. FAST therefore builds the interaction functions more efficiently by defining optimized quadrants in the space of the two features and taking the mean values of each quadrant. Please refer to [13] for more insights on this procedure.

- Our modelling approach with EBM will be as follows: 1. FAST to collect the right number of interactions 2. MRMR to select the right features 3. Gradient Boosting the resulting GA2M

Parameter and hyperparameter search for the models

We will split our dataset (stratified split) into a training (99%), validation (1%) and test set (1%). All parameters of the models will be constructed using a 3-fold cross-validation on the training set to ensure generalizable training scores and the selection of the best generalizable model. Additionally, the best hyperparameters of each model captured with a randomized implementation of grid-search. The validation set is used for both GBT and EBM to have an early-stoping-criterion evaluated on an out-of-sample data during training.

- Results of grid-search hier?

3.5 Model Evaluation Metrics

To get an unbiased estimate of the generalized performance of our model, it has to be tested on unseen data, which was not part of the training process. In order to espacially ensure time generalizability of our models, we use unseen data (test set) of an additional different timestamp to generate evaluations. For the evaluation of classification models there is a huge variety of metrics. As already stated, selecting the correct metric is crucial. Let us first define the possible outcomes of our model with the confusion matrix:

Using accuracy (TN + TP/N) will lead to unreliable estimates of the performance with rare events. The accuracy will be high indicating a good fit,

Table 3: Confusion Matrix

	$\hat{C} = 0$	$\hat{C} = 1$
C = 0	# True Negatives (TN)	# False Positives (FP)
C=1	# False Negatives (FN)	# True Positives (TP)

even if the churners are not frequently detected. Therefore it makes sense to either use the precision (TP/TP + FP) or the recall (TP/TP + FN) metrics. A combination of both measures is provided by the F1-score which is the harmonic mean of both metrics and therefore still defined between 0 and 1 [20]:

$$F1 = \frac{2 * precision * recall}{precision + recall} \tag{11}$$

Another widely used metric is the area under the receiver-operating-characteristic-curve (AUROC). The ROC-curve represents the tradeoff between the false-positive-rate (FPR = FP/FP + TN) on the X-axis and recall on the y-axis of a classifier using different cutoff values τ .

The ROC always starts at the lower left-hand corner (FPR = 0, Recall = 0) for $\tau = 1$, and ends at the upper right-hand corner (FPR = 1, Recall = 1) for $\tau = 0$. The other values of the curve are defined by alternating τ in values between 0 and 1. An area under the curve of 1 is the best score and 0.5 is the worst, representing the classifier-results of a simple coin-flipping algorithm.

This measure also has its downsides with very small positive classes, as the FPR is highly dependend on the number of negatives. The FPR will only improve by a small amount if a there is a substantial decrease in FP's as the number of TN's will be very high for most τ 's.

For a small number of positive examples it makes more sense to look at the area under the precision-recall-curve (AUPRC) [1]. There the curve also plots values for the recall on the X-axis and precision on the y-axis for different τ 's. It now starts at the upper left corner (Recall = 0, Precision = 1) for $\tau = 1$ (als * hinzufügen, dass für TP und FP gegen 0, Precision gegen 1) and ends in the lower right corner (Recall = 1, Precision = 0) for $\tau = 0$ (als * hinzufügen, dass

precision gegen 0 geht, da wir sehr viele FP's haben. Die Kurve wird niemals genau unten rechts enden.).

It is plotted as follows as an example:

Now when it comes to interpreting the metric, it is not as easy as the AU-ROC. The baseline now is not a simple coin-flip, but instead defined by the ratio of churners (#C/N) in the data. Every AUPRC score above that baseline is an improvement from predicting customers as Churners randomly using a Bernoulli-distribution for each $(C^{(i)} \sim B(\frac{\#P}{N}))$.

For calculating the AUROC or the AUPRC there are multiple methods. All of them rely on estimates, as the true function of the curve can only be approximated using a finite number of cutoff values τ . (Mehr darauf eingehen).

3.6 Interpreting the Models

One of the main tasks of this work is to interpret the structure of our models. More precisely, we want to know how each feauture interacts with the probability of a churn. Espacially the usage of quotation data turns out to have high predictive power, but we want to check if the assumed interaction is true and how the shape of the interaction in our models really looks like. This question is also answered for other features which turn out to have high predictive importance in our model.

In prediction models in general, one has to make a decision between two questions the modelling approach needs to answer. The first question is what is predicted and the second is why is it predicted. In application where missclassifications have low consequences or/and the why question does not deliver any benifit the interpretability may be neglected. Therefore e.g. in movie recommender systems (low missclassification costs) or in object detection applications (why is not important) very complex models are used to ensure that the What question is answered correctly.

For many applications however answering the what question correctly is not enough. Espacially econometricians accept a drop in predictive accuracy for a better answer to the why question. That is why in econometric applications the modelling approach relies on simple models such as linear or logistic regression. Thereby, the focus is on testing necessary assumptions and the significance of parameters which make the interpretability of such model reliable. The modelling approach of this work tries to answer both questions as much

as possible. Therefore we do not rely on complex black-box models which only aim to have high predictive accuracy but at the same time are not solely interested on statistical significance of parameters for reliable inference. Therefore we use modern techniques which maximize the utility of jointly answering both questions. As our two models GBT and EBM have different approaches in terms of interpretability we split the interpretation of the models in two parts. Thereby we compare and check if the findings are in line with each other.

Explaining Gradient Boosted Trees

For a complex model such as gradient boosted trees the model structure struggles to explain itself. Therefore the current literature relies on simple explanation models, which are defined as interpretable approximations of the original model and explain individual predictions (local model-agnostic methods). We shortly summarize and apply two mostly used methods SHAP (Shapley Additive explanation cite) and LIME (cite).

SHAP

SHAP's theoritical foundation originally lies in the Shapley Values from Game Theory [shapley]. To link the game theoretical approach to machine learning, a prediction can be explained by assuming that each feature value of the instance is a "player" in a game where the prediction is the payout. The Shapley values then tell us how to fairly distribute the "payout" among the features.

LIME

References

- [1] Kendrick Boyd, Kevin H Eng, and C David Page. "Area under the precision-recall curve: point estimates and confidence intervals". In: *Joint European conference on machine learning and knowledge discovery in databases*. Springer. 2013, pp. 451–466.
- [2] Leo Breiman. "Random forests". In: *Machine learning* 45.1 (2001), pp. 5–32.
- [3] Nitesh V Chawla et al. "SMOTE: synthetic minority over-sampling technique". In: *Journal of artificial intelligence research* 16 (2002), pp. 321–357.
- [4] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. "All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously." In: *J. Mach. Learn. Res.* 20.177 (2019), pp. 1–81.
- [5] Jerome H Friedman. "Greedy function approximation: a gradient boosting machine". In: *Annals of statistics* (2001), pp. 1189–1232.
- [6] Jerome H Friedman and Bogdan E Popescu. "Predictive learning via rule ensembles". In: *The Annals of Applied Statistics* 2.3 (2008), pp. 916–954.
- [7] Theresa Gattermann-Itschert and Ulrich W. Thonemann. "How training on multiple time slices improves performance in churn prediction". In: European Journal of Operational Research 295.2 (2021), pp. 664–674.
- [8] Trevor J Hastie. Generalized additive models. Routledge, 2017.
- [9] Giles Hooker. "Generalized functional anova diagnostics for high-dimensional functions of dependent variables". In: *Journal of Computational and Graphical Statistics* 16.3 (2007), pp. 709–732.
- [10] Harry Khamis. "Measures of Association: How to Choose?" In: *Journal of Diagnostic Medical Sonography* 24.3 (2008), pp. 155–162.
- [11] Tsung-Yi Lin et al. "Focal loss for dense object detection". In: *Proceedings* of the IEEE international conference on computer vision. 2017, pp. 2980–2988.
- [12] Wei-Yin Loh. "Regression tress with unbiased variable selection and interaction detection". In: *Statistica sinica* (2002), pp. 361–386.

- [13] Yin Lou et al. "Accurate intelligible models with pairwise interactions". In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 2013, pp. 623–631.
- [14] Scott M Lundberg and Su-In Lee. "A unified approach to interpreting model predictions". In: *Proceedings of the 31st international conference on neural information processing systems.* 2017, pp. 4768–4777.
- [15] Harsha Nori et al. "InterpretML: A Unified Framework for Machine Learning Interpretability". In: (Sept. 2019).
- [16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier". In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144.
- [17] Daria Sorokina et al. "Detecting statistical interactions with additive groves of trees". In: *Proceedings of the 25th international conference on Machine learning.* 2008, pp. 1000–1007.
- [18] Nguyen Thai-Nghe, Zeno Gantner, and Lars Schmidt-Thieme. "Cost-sensitive learning methods for imbalanced data". In: *The 2010 International joint conference on neural networks (IJCNN)*. IEEE. 2010, pp. 1–8.
- [19] HaiYing Wang. "Logistic Regression for Massive Data with Rare Events". In: International Conference on Machine Learning. PMLR. 2020, pp. 9829–9836.
- [20] Gary M Weiss. "Mining with rarity: a unifying framework". In: *ACM Sigkdd Explorations Newsletter* 6.1 (2004), pp. 7–19.
- [21] Zhenyu Zhao, Radhika Anand, and Mallory Wang. "Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform". In: 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE. 2019, pp. 442–452.