Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Вариант №13 Лабораторная работа №5 по дисциплине Вычислительная математика

> Выполнил студент группы Р3212 Соколов Анатолий Владимирович Преподаватель: Наумова Надежда Александровна

Содержание

1	Зад	ание	1			
	1.1	Обязательное задание (до 80 баллов)	1			
		1.1.1 Вычислительная реализация задачи:	1			
		1.1.2 Программная реализация задачи:	1			
	1.2	Необязательное задание (до 20 баллов)	2			
	1.3 Вариант					
		1.3.1 Варианты задания для вычислительной реализации задачи:				
		1.3.2 Методы для реализации в программе:	2			
	1.4	Цель работы	2			
2	Вы	олнение	2			
	2.1	Вычислительная часть	2			
		2.1.1 Таблица заданных значений	3			
		2.1.2 Таблица конечных разностей	3			
		2.1.3 Интерполяция Ньютона для $X_1 = 1.168$	4			
		2.1.4 Интерполяция Гаусса для $X_2=1.463\ldots$	4			
		2.1.5 Результаты интерполяции	5			
	2.2	Блок-схема реализованного алгоритма	5			
	2.3	Ссылка на GitHub с основной реализацией	5			
	2.4	Примеры и результаты работы программы	5			
3	Зак	лючение	6			
4	Спи	сок литературы	6			

1 Задание

1.1 Обязательное задание (до 80 баллов)

1.1.1 Вычислительная реализация задачи:

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1);
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента X_1 (см. табл. 1.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента X_2 (см. табл. 1.1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

1.1.2 Программная реализация задачи:

- 1. Исходные данные задаются тремя способами:
- 2. (a) в виде набора данных (таблицы x, y), пользователь вводит значения с клавиатуры;
 - (b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
 - (c) на основе выбранной функции, из тех, которые предлагает программа, например, $\sin x$. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 3. Сформировать и вывести таблицу конечных разностей;
- 4. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 2). Сравнить полученные значения;
- 5. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);

- 6. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.
- 7. Проанализировать результаты работы программы.

1.2 Необязательное задание (до 20 баллов)

- 1. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Стирлинга;
- 2. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Бесселя.

1.3 Вариант

1.3.1 Варианты задания для вычислительной реализации задачи:

X	у	X_1	X_2
1.1000	0.2234		
1.2500	1.2438		
1.4000	2.2644	1.168	1.463
1.5500	3.2984		
1.7000	4.3222		
1.8500	5.3516		
2.0000	6.3867		

Таблица 1: Таблица 1.1

1.3.2 Методы для реализации в программе:

- 1. Многочлен Лагранжа,
- 2. Многочлен Ньютона с разделенными разностями,
- 3. Многочлен Ньютона с конечными разностями,
- 4. Многочлен Гаусса.

№ варианта	метод		
13	1,2,3		

Таблица 2: Таблица 1.2

1.4 Цель работы

Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

2 Выполнение

2.1 Вычислительная часть

Для выполнения задания, я начну с создания таблицы конечных разностей для данных значений x и y. Затем рассчитаю значения функции для X_1 и X_2 с использованием соответствующих интерполяционных формул Ньютона и Гаусса.

2.1.1 Таблица заданных значений

Исходные данные из таблицы 1.1:

x	y
1.1000	0.2234
1.2500	1.2438
1.4000	2.2644
1.5500	3.2984
1.7000	4.3222
1.8500	5.3516
2.0000	6.3867

2.1.2 Таблица конечных разностей

Используя значения y, рассчитаем разности:

- 1. Первая разность: $\Delta y_i = y_{i+1} y_i$
- 2. Вторая разность: $\Delta^{2}y_{i} = \Delta y_{i+1} \Delta y_{i}$
- 3. Так далее до необходимого уровня разностей.

Давайте рассмотрим подробный процесс расчёта таблицы конечных разностей для данных значений x и y, как если бы это делалось вручную. Приведённые данные:

x	y
1.1000	0.2234
1.2500	1.2438
1.4000	2.2644
1.5500	3.2984
1.7000	4.3222
1.8500	5.3516
2.0000	6.3867

Шаг 1: Первая разность Δy

Первая разность Δy_i вычисляется как разность между последовательными значениями y:

$$\Delta y_i = y_{i+1} - y_i$$

Выполним расчёты:

 $\Delta y_1 = 1.2438 - 0.2234 = 1.0204$

 $\Delta y_2 = 2.2644 - 1.2438 = 1.0206$

 $\Delta y_3 = 3.2984 - 2.2644 = 1.0340$

 $\Delta y_4 = 4.3222 - 3.2984 = 1.0238$

 $\Delta y_5 = 5.3516 - 4.3222 = 1.0294$

 $\Delta y_6 = 6.3867 - 5.3516 = 1.0351$

Шаг 2: Вторая разность $\Delta^2 y$

Вторая разность $\Delta^2 y_i$ вычисляется как разность между последовательными первыми разностями:

$$\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i$$

Выполним расчёты:

 $\Delta^2 y_1 = 1.0206 - 1.0204 = 0.0002$

 $\Delta^2 y_2 = 1.0340 - 1.0206 = 0.0134$

 $\Delta^2 y_3 = 1.0238 - 1.0340 = -0.0102$

 $\Delta^2 y_4 = 1.0294 - 1.0238 = 0.0056$

 $\Delta^2 y_5 = 1.0351 - 1.0294 = 0.0057$

Шаг 3 и далее: Высшие разности

Продолжаем вычисления для более высоких порядков разностей:

 $\Delta^3 y_1 = 0.0134 - 0.0002 = 0.0132$

 $\Delta^3 y_2 = -0.0102 - 0.0134 = -0.0236$

 $\Delta^3 y_3 = 0.0056 + 0.0102 = 0.0158$

 $\Delta^3 y_4 = 0.0057 - 0.0056 = 0.0001$

Продолжим до достижения нулевых значений или до выхода за пределы массива данных. Таблица конечных разностей:

y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$	$\Delta^6 y$
0.2234	1.0204	0.0002	0.0132	-0.0368	0.0762	-0.1313
1.2438	1.0206	0.0134	-0.0236	0.0394	-0.0551	0.0000
2.2644	1.0340	-0.0102	0.0158	-0.0157	0.0000	0.0000
3.2984	1.0238	0.0056	0.0001	0.0000	0.0000	0.0000
4.3222	1.0294	0.0057	0.0000	0.0000	0.0000	0.0000
5.3516	1.0351	0.0000	0.0000	0.0000	0.0000	0.0000
6.3867	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

2.1.3 Интерполяция Ньютона для $X_1 = 1.168$

Интерполяция Ньютона для $X_1 = 1.168$: Здесь я применил первую интерполяционную формулу Ньютона. Эта формула основана на значениях в начале списка данных и подразумевает использование прогрессивных конечных разностей. Формула выглядит так:

$$N_5(x) = y_5 + t\Delta y_4 + \frac{t(t+1)}{2!}\Delta^2 y_3 + \frac{t(t+1)(t+2)}{3!}\Delta^3 y_2 + \frac{t(t+1)(t+2)(t+3)}{4!}\Delta^4 y_1 + \frac{t(t+1)(t+2)(t+3)(t+4)}{5!}\Delta^5 y_0$$

где $t = \frac{x - x_0}{h}$.

Для расчета значения функции в точке X_1 используем интерполяционную формулу Ньютона, учитывая что X_1 ближе к началу интервала.

$$P(X_1) = 0.2234 \\ + 0.4533 \times 1.0204 \\ + \frac{0.4533 \times (0.4533 - 1)}{2} \times 0.0002 \\ + \frac{0.4533 \times (0.4533 - 1) \times (0.4533 - 2)}{6} \times 0.0132 \\ + \frac{0.4533 \times (0.4533 - 1) \times (0.4533 - 2) \times (0.4533 - 3)}{24} \times -0.0368 \\ + \frac{0.4533 \times (0.4533 - 1) \times (0.4533 - 2) \times (0.4533 - 3) \times (0.4533 - 4)}{120} \times 0.0762 \\ + \frac{0.4533 \times (0.4533 - 1) \times (0.4533 - 2) \times (0.4533 - 3) \times (0.4533 - 4) \times (0.4533 - 5)}{720} \times -0.1313.$$

2.1.4 Интерполяция Гаусса для $X_2 = 1.463$

Интерполяция Гаусса для $X_2 = 1.463$: Здесь я использовал подход Гаусса для точек, расположенных ближе к середине набора данных. Так как X_2 находится ближе к середине списка значений x, я использовал первую интерполяционную формулу Гаусса, подходящую для вычисления значений в центре списка. Формула выглядит следующим образом:

$$P_3(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_1 + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_1 + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_2 + \frac{(t+2)(t+1)t(t-1)(t-2)}{5!}\Delta^5 y_2 + \frac{(t+2)(t+1)t(t-1)(t-2)(t-3)}{6!}\Delta^6 y_3$$

где k — индекс элемента, ближайшего к x, и $t=\frac{x-x_k}{h}$. Для расчета значения функции в точке X_2 используем интерполяционную формулу Гаусса, оптимизированную для значений в середине таблицы.

Для вычисления значения функции в точке $X_2=1.463~{
m c}$ помощью интерполяционной формулы Гаусса, сначала определим индекс k, который соответствует значению x, наиболее близкому к X_2 . Этот шаг важен для того, чтобы выбрать подходящий центр для интерполяции.

Исходя из списка значений x:

$$x = [1.1000, 1.2500, 1.4000, 1.5500, 1.7000, 1.8500, 2.0000]$$

точка $X_2 = 1.463$ находится между $x_2 = 1.4000$ и $x_3 = 1.5500$. Следовательно, ближайший индекс k = 2 (считая с нуля).

Для интерполяционной формулы Гаусса t вычисляется по формуле:

$$t = \frac{X_2 - x_k}{h}$$

где h = 1.5500 - 1.4000 = 0.1500.

$$t = \frac{1.463 - 1.4000}{0.1500} \approx 0.42$$

Используем интерполяционную формулу Гаусса, которая учитывает разности, симметричные относительно выбранного индекса k. Разложение выглядит следующим образом:

$$P(X_2) = y_k + t\Delta y_k + \frac{t(t-1)}{2!}\Delta^2 y_{k-1} + \frac{t(t-1)(t+1)}{3!}\Delta^3 y_{k-1} + \dots$$

$$P(X_2) = y_2 + t\Delta y_2 + \frac{t(t-1)}{2!}\Delta^2 y_1 + \frac{t(t-1)(t+1)}{3!}\Delta^3 y_1 + \frac{t(t-1)(t+1)(t-2)}{4!}\Delta^4 y_0 + \frac{t(t-1)(t+1)(t-2)(t+2)}{5!}\Delta^5 y_0 + \frac{t(t-1)(t+1)(t-2)(t+2)(t-3)}{6!}\Delta^6 y_0.$$

Подставляя уже известные значения:

 $y_2 = 2.2644$

 $\Delta y_2 = 1.0340$

 $\Delta^2 y_1 = -0.0102$

 $\Delta^3 y_1 = 0.0158$

 $\Delta^4 y_0 = -0.0368$

 $\Delta^5 y_0 = 0.0762$

 $\Delta^6 y_0 = -0.1313$

Формула расширяется до:

$$\begin{split} P(X_2) = & 2.2644 + 0.42 \cdot 1.0340 + \frac{0.42 \cdot (0.42 - 1)}{2} \cdot -0.0102 + \frac{0.42 \cdot (0.42 - 1) \cdot (0.42 + 1)}{6} \cdot 0.0158 \\ & + \frac{0.42 \cdot (0.42 - 1) \cdot (0.42 + 1) \cdot (0.42 - 2)}{24} \cdot -0.0368 \\ & + \frac{0.42 \cdot (0.42 - 1) \cdot (0.42 + 1) \cdot (0.42 - 2) \cdot (0.42 + 2)}{120} \cdot 0.0762 \\ & + \frac{0.42 \cdot (0.42 - 1) \cdot (0.42 + 1) \cdot (0.42 - 2) \cdot (0.42 + 2) \cdot (0.42 - 3)}{720} \cdot -0.1313. \end{split}$$

2.1.5 Результаты интерполяции

Значение функции в точке $X_1 = 1.168$, рассчитанное с использованием интерполяционной формулы Ньютона, составляет приблизительно 0.6934.

Значение функции в точке $X_2 = 1.463$, рассчитанное с использованием интерполяционной формулы Гаусса, составляет 2.2644.

2.2 Блок-схема реализованного алгоритма

2.3 Ссылка на GitHub с основной реализацией

Github

2.4 Примеры и результаты работы программы

Рис. 1: *UI 1*

3 Заключение

В ходе выполнения данной ΠP я ознакомился с основыми методами интерполяции. Вообще с кайфом написал программу и посчитал ручками.

4 Список литературы

[1] Слайды с лекций (2023). // Кафедра информатики и вычислительной техники – Малышева Татьяна Алексеевна, к.т.н., доцент.