

d'Enseignement

Démystifier les langages de haut niveau

Outils Numériques / Semestre 5 / Institut d'Optique / B1_1

Distributions / Environnements

Distribution : ensemble de logiciels et de librairies incluant des environnements et des interpréteurs

Environnement (IDE): ensemble d'outils pour l'édition et l'interprétation des commandes / programmes incluant des interpréteurs et des éditeurs de texte

Bibliothèques : ensemble de modules supplémentaires incluant des classes, des fonctions...

Distributions / Environnements

• Installation de bibliothèques / packages

Dans un shell/prompt

> pip install numpy

Dans un shell/prompt (Anaconda)

> conda install numpy

Package: **pip install SupOpNumTools**

Dépôt : https://github.com/IOGS-Digital-Methods/SupOpNumTools

Doc: https://iogs-digital-methods.github.io/SupOpNumTools/

Jupyter ou Spyder ?

Lancer Spyder

Outils

Editeur de texte


```
Spyder (Python 3.9)
                                                                                                                                       \times
                                                                                                                                File Edit Search Source Run Debug Consoles Projects Tools View Help
                                                                                                            C:\Users\julie
 ..ter-5\s5_outils_numeriques\b1_outils_numeriques\seance1_demistifier_python\examples\B1_10_calculs.py
B1_10_calculs.py X
         #!/usr/bin/env python3
         Module Outils Numériques / Semestre 5 / Institut d'Opt
         Calculs scientifiques
         Created on 08/Apr/2023
                                                                                                Help Variable Explorer Plots Files
         Qauthor: LEnsE / IOGS / Palaiseau
         Qauthor: Julien Villemejane
                                                                               Console 1/A X
                                                                              v.1916 64 bit (AMD64)]
         import numpy as np
                                                                              Type "copyright", "credits" or "license" for
                                                                              more information.
         ''' Calculs simples '''
                                                                              IPython 8.10.0 -- An enhanced Interactive
                                                                              Python.
         k = 3 - 2 - 1
         print(f' k = \{k\}')
                                                                              In [1]: b = [1, 2, 3]
         m = 0.3 - 0.2 - 0.1
                                                                              In [2]: b[1]
         print(f' m = \{m\} \setminus n')
                                                                                                    IPython Console History
                                         conda: base (Python 3.9.16) 🜣 Completions: conda 🗸 LSP: Python 🦞 main [19] Line 1, Col 1 UTF-8 CRLF RW Mem 32%
```

Variables

Console

Lancer Jupyter

Outils

Editeur de textes pré-formatés (Markdown)

Serveur Web local

Variables

a = 5

```
a = 2 + 3

print( a )

print( 'a =', a ) ou print( f'a = {a}')
```

Listes

2

Doit-on faire confiance aux ordinateurs?

 Testez les deux calculs suivants sous Python

Représentation binaire

Deux niveaux de tension possible uniquement en machine

Meilleure robustesse pour la transmission de données sur de longues distances

Chaque donnée binaire est appelée BIT (BInary digiT)

Un **mot binaire** est composé de plusieurs chiffres binaires Pour un mot binaire de n bits, il est possible d'obtenir 2^n combinaisons

• Différentes sortes de données à coder

Des données numériques

Entiers naturels

Entiers relatifs

Réels

Des données non-numériques

Caractères alphanumériques

	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	٤	p
0001	SOH	DC1	!	1	Α	Q	a	q
0010	STX	DC2	66	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	W
1000	BS	CAN	(8	H	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	٨	n	~
1111	SI	US	/	?	O	_	O	DEL

ASCII (7 bits)

UNICODE UTF-8/16/32

0000 0000 0100 0001

0000 0000 0101 0011

• Différentes sortes de données à coder

Des données numériques

Entiers naturels

Entiers relatifs

Réels

LEnsE

1 ≠ ′1′

Des données non-numériques

Caractères alphanumériques

	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	6	p
0001	SOH	DC1	!	1	Α	Q	a	q
0010	STX	DC2	66	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	\mathbf{w}
1000	BS	CAN	(8	H	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	٨	n	~
1111	SI	US	/	?	O	_	O	DEL

ASCII (7 bits)

Nombres entiers

Nombre fini de valeurs sur un intervalle donné

Sur N bits: 2^N combinaisons

 2^N entiers naturels de 0 à N-1

$$0b\ 1011 = 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0$$

 2^N entiers relatifs de -N/2 à N/2-1

0b 1011

signe

Nombres entiers

Nombre fini de valeurs sur un intervalle donné

Sur N bits: 2^N combinaisons

 2^N entiers naturels de 0 à N-1

$$0b\ 1011 = 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0$$

 2^N entiers relatifs de -N/2 à N/2-1

0b 1011

 $-0 \neq 0$

signe

Nombres entiers

Nombre fini de valeurs sur un intervalle donné

Sur N bits : 2^N combinaisons

 2^N entiers naturels de 0 à N-1

$$0b\ 1011 = 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0$$

 2^N entiers relatifs de -N/2 à N/2-1

0b 1011

. -0 ≠ 0

signe

Complément à 2

Nombres réels

Infinité de valeurs sur un intervalle donné

Normalisation des informations

IEEE 754, datant de 1985

Simple précision : 32 bits

Double précision : 64 bits

Norme IEEE754 / Simple

$$valeur = s \times 2^e \times m$$

Cas normalisé

Possibilité de coder l'infini

Plus petite valeur codifiée $1,17549435 \times 10^{-38}$

Nombres réels

Infinité de valeurs sur un intervalle donné

Normalisation des informations

IEEE 754, datant de 1985

Simple précision : 32 bits

Double précision : 64 bits

Wikipedia / IEEE 754

• Exemple en C++

```
int main(void){
    int a = 3, b = 2;
    float k = 2.5;
    int c = a / b;
    cout << "c = " << c << endl;
    float d = a / b;
    cout << "d = " << d << endl;
    return 0;
}</pre>
```

```
c = 1
d = 1
```

Process returned 0 (0x0) execution time: 0.053 s Press any key to continue.

Utilisation de bibliothèques

import numpy
ma = numpy.array([1, 2, 3])

import numpy **as** np ma = **np.array**([1, 2, 3])

from matplotlib import pyplot
pyplot.figure()

from matplotlib import pyplot as plt
plt.figure()

Utilisation des vecteurs / matrices

```
import numpy as np
x = np.array([1,2,3])
y = np.sin(x)
print( y )
```

???

```
mb = np.array([[1,2,3],[4,5,6]])

mc = np.array([[1,2,3],[4,5,6]])

mm = mb + mc

print( mm )
```

```
[[ 2 4 6]
[ 8 10 12]]
```


Puis-je utiliser de la même manière...

des listes (*list*)

```
b = [1, 2, 3]
a = b + b
print(a)
???
```

des matrices (np.array)

Nombres complexes

```
import numpy as np
mk = np.array([1j, 2, 3], dtype=complex)
print( mk )
```

$$[0+1j 2+0j 3+0j]$$

```
nk = 1j + 3

print( nk )

print( type( nk ) )
```


Vecteurs (suite)


```
import numpy as np
v = np.logspace( 1, 10, 1001 )
```

```
v2 = v[ 10 : 100 ]
plt.figure()
plt.plot( v2 )
plt.show()
```


Trucs et Astuces

Affichage des figures

Tools / Preferences

OU

Outils / Préférences

IPython console Graphics

Activate Support

Backend: Automatic

Try / Except (ValueError...)

HANDLING SPECIFIC EXCEPTIONS

have separate except clauses to deal with a particular type of exception

```
try:
    a = int(input("Tell me one number: "))
    b = int(input("Tell me another number: "))
    print("a/b = ", a/b)
    print("a+b = ", a+b)

except ValueError:
    print("Could not convert to a number.")

except ZeroDivisionError:
    print("Can't divide by zero")

except:
    print("Something went very wrong.")
```


Toutes les données sont traitées pareil !?

 Testez les deux calculs suivants sous Python

Trucs et Astuces

Variable explorer

Travailler avec des vecteurs

Sum/Mean on axis=0 or 1

Résoudre des problèmes linéaires

Linalg from numpy

Trucs et Astuces

Sections

```
#%%
```

```
#% Frequency Response / Bode

#% Frequency Response / Bode

w = np.logspace(1, 6, 101)

mag, phase, w = ct.bode_plot(sysRC.getTF(), w, plot=True)

mag_db = 20*np.log(mag)

phase_deg = phase * 180 / np.pi

f = w/(2*np.pi)
```

Exécutables indépendamment (... ou presque)

