## Mecánica

PROBLEMA PUNTUABLE DE PRÁCTICAS, GRUPO A (30 de octubre de 2002)

Una partícula material pesada de masa m está obligada a moverse sobre una esfera fija de radio a con ligadura bilateral lisa.

Además del peso actúa una fuerza atractiva hacia un plano fijo  $\Pi$ , que es tangente a la esfera en su punto más elevado. Esta fuerza es proporcional a la distancia, siendo k=2mg/a la constante de proporcionalidad. En el instante inicial el punto m se sitúa sobre el ecuador de la esfera con una velocidad inicial  $v_0=\sqrt{2ga}$  horizontal.



Se pide:

- 1. Expresión de las ecuaciones diferenciales del movimiento de la partícula.
- 2. Reducir las ecuaciones del apartado anterior a cuadraturas.
- 3. Expresión de la reacción de la esfera sobre la partícula en un instante genérico.
- 4. Expresión que permitiría calcular los paralelos entre los que se desarrolla el movimiento.
- 1. La posición de la partícula sobre la esfera que da totalmente determinada mediante las dos coordenadas esféricas  $(\varphi,\theta)$  que muestra la figura adjunta.

El efecto de la fuerza atractiva es totalmente equivalente a la acción de un muelle vertical situado entre la partícula y el plano  $\Pi$ , con una fuerza de módulo  $F = ka(1 - \operatorname{sen} \theta)$ 



Puesto que la superficie es lisa y tanto el peso como la fuerza atractiva son conservativas, la energía total se conserva:

$$E = T + V = \frac{1}{2}mv^2 + mga \sin \theta + \frac{1}{2}ka^2(1 - \sin \theta)^2$$
$$= E_0 = \frac{1}{2}mv_0^2 + \frac{1}{2}ka^2$$

donde se ha tomado como origen de potencial gravitatorio el plano ecuatorial. Teniendo en cuenta que la velocidad de la partícula se expresa en coordenadas esféricas como  $\mathbf{v} = a\dot{\theta}\mathbf{u}_{\theta} + a\dot{\varphi}\cos\theta\mathbf{u}_{\varphi}$ , y sustituyendo los valores de k y  $v_0$  que proporciona el enunciado, se obtiene:

$$\frac{1}{2}ma^2\left(\dot{\theta}^2 + \dot{\varphi}^2\cos^2\theta\right) + mga\sin\theta + \frac{1}{2}\frac{2mg}{a}a^2(1-\sin\theta)^2 = \frac{1}{2}m2ga + \frac{1}{2}\frac{2mg}{a}a^2;$$

y simplificando,

$$\dot{\theta}^2 + \dot{\varphi}^2 \cos^2 \theta + \frac{2g}{a} (1 + \sin^2 \theta - \sin \theta) = \frac{4g}{a}.$$
 (1)

Por otro lado, la componente vertical del momento respecto del centro O de la esfera de todas las fuerzas que actúan sobre la partícula es nulo (el peso y la fuerza atractiva son verticales, y la reacción corta a la vertical que pasa por O). En consecuencia, la componente vertical del momento cinético en O de la partícula es constante:

$$\boldsymbol{H}_O \cdot \boldsymbol{K} = (\boldsymbol{r} \wedge m\boldsymbol{v}) \cdot \boldsymbol{K} = cte.$$

Teniendo en cuenta que  $\mathbf{r} = a\mathbf{u}_r$ ,  $\mathbf{v} = a\dot{\theta}\mathbf{u}_{\theta} + a\dot{\varphi}\cos\theta\mathbf{u}_{\varphi}$ ,  $\mathbf{K} = \cos\theta\mathbf{u}_{\theta} + \sin\theta\mathbf{u}_r$ , y que inicialmente el momento cinético de la partícula vale  $(mav_0\mathbf{K})$ , se obtiene:

$$\mathbf{H}_O \cdot \mathbf{K} = ma^2 \dot{\varphi} \cos^2 \theta = mav_0 \qquad \Longrightarrow \qquad \dot{\varphi} = \frac{v_0}{a \cos^2 \theta} = \sqrt{\frac{2g}{a}} \frac{1}{\cos^2 \theta}$$
 (2)

Las expresiones (1) y (2) son las dos ecuaciones diferenciales del movimiento de la partícula.

2. Sustituyendo el valor de  $\dot{\varphi}$  dado por la expresión (2) en (1) se obtiene:

$$\dot{\theta}^2 = \frac{2g}{a} \left( \cos^2 \theta - \frac{1}{\cos^2 \theta} + \sin \theta \right) \tag{3}$$

Las expresiones (2) y (3) permiten calcular las ecuaciones horarias del movimiento mediante sendas cuadraturas:

$$t(\theta) = \sqrt{\frac{a}{2g}} \int_0^\theta \frac{\mathrm{d}\theta}{\sqrt{\cos^2 \theta - \frac{1}{\cos^2 \theta} + \sin \theta}} \quad \Rightarrow \quad \theta(t);$$

$$\varphi(t) = \sqrt{\frac{2g}{a}} \int_0^t \frac{\mathrm{d}\xi}{\cos^2 \theta(\xi)}.$$

$$(4)$$

**3.** Para calcular la reacción N planteamos el principio de la cantidad de movimiento en dirección radial:

$$ka(1 - \sin \theta) \sin \theta + N - mg \sin \theta = ma_r = -ma(\dot{\varphi}^2 \cos^2 \theta + \dot{\theta}^2)$$
 (5)

Introduciendo en (5) las expresiones (2) y (3) se obtiene la expresión de la reacción en función exclusivamente de  $\theta$ :

$$N = mg(-2 + 4\sin^2\theta - 3\sin\theta)$$

donde  $\theta = \theta(t)$  podría obtenerse de la cuadratura (4).

**4.** Los paralelos entre los que se desarrolla el movimiento son aquellos en que  $\theta(t)$  es extremo  $(\dot{\theta}=0)$ , por lo que con la ayuda de la expresión (3) el cálculo se reduce a la obtención de las soluciones de la ecuación:

$$\cos^2 \theta - \frac{1}{\cos^2 \theta} + \sin \theta = 0 \tag{6}$$

Aunque queda fuera de las pretensiones del enunciado, es interesante obtener una idea cualitativa de la región definida por la ecuación (6). Realizando en ella el cambio  $u = \operatorname{sen} \theta$  se obtiene:

$$u^4 - u^3 - 2u^2 + u = 0$$

que tiene una primera solución  $(u=0\Rightarrow\theta=0)$ . Existen además otras tres soluciones dadas por la ecuación  $f(u)=u^3-u^2-2u+1=0$ . Puede comprobarse que sólo una de ellas se encuentra en el intervalo [-1,1] (que es la que tiene sentido físico), ya que f(1)<0, f(-1)>0, y además  $f(u\to\infty)\to\infty$  y  $f(u\to-\infty)\to-\infty$ , como se muestra en la Figura 1. Esta solución  $u\in[-1,1]$  puede obtenerse de forma numérica, resultando  $u=0,445\Rightarrow\theta=26,42^\circ$ . Por tanto, el movimiento se desarrolla entre el ecuador  $(\theta=0)$  y este paralelo  $(\theta=26,42^\circ)$ .



Figura 1: Gráfico de  $f(u) = u^3 - u^2 - 2u + 1$