Digital Image Processing (CSE/ECE 478)

Lecture 3: Intensity Transforms and Histogram Processing

Ravi Kiran

Rajvi Shah

Announcements

Assignment – I Will be released today

- ▶ Tutorials will start from this Saturday
 - ▶ 3.30PM 4.30PM
 - ► H-203

Add/Drop is done

Previous Lecture

Previous Lecture

Recap ...

Sampling

256 × 256

 32×32

 16×16

Quantization

8 bits per pixel

4 bits per pixel

2 bits per pixel

1 bit per pixel

$$f(x,y) = z$$

 \blacktriangleright Domain: (x, y)

Range = Intensity

Shades of grey

$$f(x,y)=z$$

Spatial Domain

Intensities (Pixel Values)

$$f(x,y) = z$$

Spatial Domain

Intensities (Pixel Values)

$$f(x,y) = z$$

Spatial Domain

Intensities (Pixel Values)

Image Processing

Directly manipulating pixels in spatial domain

Manipulating in transform domain

Spatial vs. Transform Domain Processing

Transform Domain

Spatial vs. Transform Domain Processing

Bandhani / Bandhej

Tie Dye

Spatial vs. Transform Domain Processing

Transform (Tie)

Process (Dye)

Inverse Transform (Untie)

Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

Point to Point

Neighborhood to Point

Global Attribute to Point

Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

Point to Point

Neighborhood to Point

Global Attribute to Point

$$f(x,y) = z$$

•
$$z' = g(z) = g(f(x,y))$$

Function g is a mapping between intensity value z at pixel (x,y) to a new value z'

$$\rightarrow$$
 g = z + K

$$ightharpoonup$$
 g = z - K

$$p = K_1 z + K_2$$

$$ightharpoonup$$
 g = z + K

$$\rightarrow$$
 g = z - K

 $g = K_1 z + K_2$

What is common?

$$ightharpoonup$$
 g = z + K

$$\rightarrow$$
 g = z - K

 $g = K_1 z + K_2$

Linear Transforms

What form can function g take?

It has to be meaningful too!

- What does the intensity transform achive?
 - Application specific

Time for Show & Tell!

Time for Show & Tell!

Brightness & Contrast

Objective

Brightness & Contrast

Brightness vs. Luminance vs. Contrast

Simultaneous Contrast & Perceived Brightness

Simultaneous Contrast & Perceived Brightness

Simultaneous Contrast & Perceived Brightness

Other Perceptual Phenomena

Just Noticeable Difference (Weber Constant)

Match Bands

Chromatic Adaption

And more ...

What form can function g take?

Standard Intensity transformations

Image Negatives

a b

FIGURE 3.4 (a) Original digital mammogram. (b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

Intensity levels: [0, L-1]

 $\underline{\mathsf{Transformation}} : \mathbf{s} = \mathsf{L} - \mathsf{I} - \mathsf{r}$

Log Transformations

a b

c = 1.

FIGURE 3.5

(a) Fourier spectrum.
(b) Result of applying the log transformation given in Eq. (3.2-2) with

$$s = c \log(1+r)$$

Power-Law (Gamma) Transformations

$$s = c r^{\Upsilon}$$

Power-Law Transformations

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c=1 and $\gamma=3.0$, 4.0, and 5.0, respectively. (Original image for this example courtesy of NASA.)

$$h_r(i) = n_i$$

 $i \rightarrow$ intensity value, range [0 L-1] $n_i \rightarrow$ number of pixels with intensity i

Different images can have same histogram

No information about spatial distribution of intensity values

What can we infer from histograms?

Histogram viewing standard in most DSLR cameras

▶ Histograms and brightness

Under exposure

▶ Histograms and brightness

Over exposure

Histogram and contrast

Histogram as color distribution

Time for a (de)tour!

Processing Images for Whom?

VS.

Processing Images for Whom?

LEARNING 100110 **DATA MINING**

VS.