

German Conference on Bioinformatics

WS8: Spatial domain identification: computational methods for discovering tissue architecture

Robin Khatri Institute of Medical Systems Bioinformatics University Medical Center Hamburg-Eppendorf 21.09.2025

Background to spatial transcriptomics

Part 0

Spatial transcriptomics

nature methods

```
Explore content 
About the journal 
Publish with us 

nature 
nature methods 
review articles 
article

Review Article | Published: 10 March 2022

Museum of spatial transcriptomics

Lambda Moses & Lior Pachter 

Nature Methods 19, 534-546 (2022) | Cite this article

135k Accesses | 895 Citations | 575 Altmetric | Metrics
```

Database - https://www.nature.com/articles/s41592-022-01409-2#Sec20

Online supplement: https://pachterlab.github.io/LP_2021/

Spatial transcriptomics

Database - https://www.nature.com/articles/s41592-022-01409-2#Sec20

Online supplement: https://pachterlab.github.io/LP_2021/

Spatial transcriptomics

Database - https://www.nature.com/articles/s41592-022-01409-2#Sec20

Online supplement: https://pachterlab.github.io/LP_2021/

Each spot is a mixture of ~1-10 cells, depending on tissue thickness (<u>source</u>)

Spot diameter: 55 μm Center to center inter-spot distance: 100 μm

10x Visium https://www.10xgenomics.com/platforms/visium

Visium v1		Visium v2		Visium HD	
1.	55 µm spots	1.	55 µm spots	1.	2 µm bins
2.	100 µm	2.	100 µm	2.	2 μm x 2 μm squares
	center-to-center		center-to-center	3.	~11 million 2 µm bins
	distance		distance	4.	6.5 × 6.5 mm capture
3.	~5,000 spots per	3.	~5,000 spots per		area .
	capture area		capture area	5.	Probe-based with
4.	6.5 × 6.5 mm capture	4.	6.5 × 6.5 mm capture		gene-specific probes
	area .		area	6.	Cytassist placement
5.	Poly(dT)-based	5.	Probe-based with		of FF and FFPE ~10
	(reverse transcription)		gene-specific probes		µm tissue sections
6.	Direct placement of	6.	Cytassist placement of	7.	Single-cell resolution
	fresh frozen (FF) ~10		FF and FFPE ∼10 μm	8.	Lowest depth
	µm tissue sections		tissue sections		ı
7.	Supra-cell resolution	7.	Supra-cell resolution		
8.	Easiest to analyze	8.	Can be noisy		

Visum HD: cell level analysis

Combined Visium HD + DAPI staining of H&E

Source: 10x Genomics

Workflow:

https://www.10xgenomics.com/analysis-guides/segm

entation-visium-hd

Bin2Cell Polański et al., 2024. *Bioinformatics*.

Slide area: 12mm x 24 mm Capture area: 10.45 x 22.45

Xenium v1		Xenium prime		
1.	Panel size: 480 genes, ~3 probes per gene	1. 2.	Panel size: Upto 5,000 genes Lower per gene sensitivity	
2.	Predesigned panels available: https://www.10xgenomics.com/products/xenium-v1-panel	3.	Predesigned panels available: https://www.10xgenomics.com/products/xenium-5k-panel	
3. 4.	Custom panels can be made Human, mouse & other species with	4.	No custom panels - 100 genes can be added to 5000 genes	
	custom probe design	5.	Only for humans and mice	

Salas et al., 2025. Nature Methods.

Sultana, Khatri & Yousefi et al., 2025. Nature Immunology. In press.

Baysor: Petukhov et al., 2021. Nature Biotechnology.

Cellpose: Stringer et al., 2020. Nature Methods.

Ly & Schaub et al., 2025. biorxiv.

