

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EICO013 | *ALGORITMOS E ESTRUTURAS DE DADOS* | 2014-2015 - 1º SEMESTRE

Cl4 - Parte teórica Duração: 30m

	·
No	me:Código:
Not	tas: - Responda às questões seguintes, indicando a opção correta (em maiúsculas) - Cada resposta errada vale -15% da cotação da pergunta
1.	Para ordenar <i>n</i> elementos, considere o seguinte algoritmo: inserem-se, um a um, os <i>n</i> elementos numa árvore binária de pesquisa inicialmente vazia; depois, efetua-se uma visita em ordem à árvore. Qual a complexidade temporal deste algoritmo de ordenação? A. O(log _n) B. O(n) C. O(n*log _n) D. O(n ²) E. Nenhuma das possibilidades anteriores Resposta:
2.	Considere a operação de encontrar o menor elemento, que se encontra a uma distância fixa delta de um dado valor x (se este existir), numa árvore binária de pesquisa equilibrada. Qual a complexidade deste algoritmo, no pior caso? A. O(log _n) B. O(n) C. O(n*log _n) D. O(n ²) E. Nenhuma das possibilidades anteriores
	Resposta:
3.	Quais das seguintes sequências pode representar a visita em ordem de uma árvore AVL? (I) 1 3 6 8 12 15 17 19 (II) 50 120 160 172 183 205 200 230 (III) 12 14 20 22 24 27 40 45 A. I e II B. II e III C. I, II e III D. I e III E. Nenhuma das possibilidades anteriores Resposta:
4.	Na árvore AVL representada na figura, foi inserido o valor 42. Qual a operação a realizar para reequilibrar a árvore? A. Rotação simples centrada em 9, o nó 9 provoca desequilíbrio. B. Rotação dupla centrada em 9, o nó 9 provoca desequilíbrio C. Rotação simples centrada em 56, o nó 56 provoca desequilíbrio D. Rotação dupla centrada em 56, o nó 56 provoca desequilíbrio E. Nenhuma das possibilidades anteriores Resposta:

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EICO013 | *ALGORITMOS E ESTRUTURAS DE DADOS* | 2014-2015 - 1º SEMESTRE

CI4 - Parte teórica Duração: 30m

- **5.** Das estruturas de dados a seguir enumeradas, qual apresenta menor tempo de execução na operação de inserção de um elemento?
 - A. Árvore binária de pesquisa
 - B. Vetor ordenado
 - C. Fila de prioridade
 - D. Lista ligada não ordenada
 - E. Lista ligada ordenada

Res	posta:	
1100	posta.	

- **6.** Qual das seguintes opções pode representar a estrutura da figura?
 - A. Arvore binária de pesquisa
 - B. Árvore AVL
 - C. Fila de prioridade
 - D. Árvore SPLAY
 - E. Nenhuma das possibilidades anteriores

7. Qual o resultado da seguinte função?

```
template <class T> void funcaoMisterio(const vector<T> &v, int k) {
   priority_queue<T> pq;
   for (unsigned int i = 0; i < v.size(); i++) {
      pq.push(v[i]);
      if (pq.size() > k) pq.pop();
   }
   for (unsigned int i = 0; i < k; i++) {
      cout << pq.top() << endl;
      pq.pop();
   }
}</pre>
```

- A. Escreve no monitor os k primeiros elementos do vetor v
- B. Escreve no monitor os k últimos elementos do vetor v
- C. Escreve no monitor os k maiores elementos do vetor v
- D. Escreve no monitor os k menores elementos do vetor v
- E. Nenhuma das possibilidades anteriores

Resposta:	

- 8. Ao implementar uma tabela de dispersão, o melhor tamanho a escolher para a tabela dependerá:
 - A. Apenas do número esperado de elementos a guardar na tabela
 - B. Apenas da função de dispersão
 - C. Apenas da técnica de resolução de colisões
 - D. Apenas da função de dispersão e da técnica de resolução de colisões
 - E. Nenhuma das possibilidades anteriores

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EICO013 | *ALGORITMOS E ESTRUTURAS DE DADOS* | 2014-2015 - 1º SEMESTRE

CI4 - Parte teórica Duração: 30m

Nome:	Código:

- 9. Dada uma tabela de tamanho fixo e uma função de dispersão que distribui as chaves uniformemente no intervalo 0 a TAMANHO_TABELA 1, pode-se afirmar que:
 - A. Operações de inserção, remoção e pesquisa acontecem em O(TAMANHO_TABELA)
 - B. Operações de inserção e remoção acontecem em O(1), enquanto pesquisa acontece em O(TAMANHO_TABELA)
 - C. Operações de inserção, remoção e pesquisa acontecem em O(1)
 - D. Operações de inserção e remoção acontecem em O(TAMANHO_TABELA), enquanto pesquisa acontece em O(1)
 - E. Nenhuma das possibilidades anteriores

Resposta:	

10. Os elementos A..F são inseridos (por esta ordem) numa tabela de dispersão de tamanho 13, usando os seguintes valores de função de dispersão:

Х	Α	В	С	D	Ε	F
h(x)	3	1	6	1	11	2

Sabendo que a resolução de colisões é efetuada por sondagem quadrática, qual o resultado da tabela, após a inserção dos elementos?

- A. [_, B, F, A, _, _, C, _, _, _, D, E, _]
- B. [_, B, D, A, _, F, C, _, _, _, _, E, _]
- C. [_, B, D, A, _, _, C, _, _, _, F, E, _]
- D. [_, B, F, A, _, D, C, _, _, _, _, E, _]
- E. Nenhuma das possibilidades anteriores

R	ocn	osta	٠.		
\mathbf{r}	-	11717	7 .		