

Modeller och verklighet för datateknik, 7.5 hp (V21)

Arbetsuppgift 3:

Solen som energikälla

Jörgen Ekman, Magnus Ödmo och Sven Stoltz Fakulteten för teknik och samhälle Malmö universitet

Innehåll

1	Problembeskrivning											
	 1.1 Inledning											
2	Kompletterande frågor	4										
3	Läsansvisningar	5										
A	Teoridel för uppdrag	6										

1 Problembeskrivning

Klimatfrågan är i högsta grad aktuell idag. Om vi inte globalt kan reducera CO₂-utsläppen kan jorden bli en alltmer otrevlig plats att leva på. Medeltemperaturen kommer att öka, vilket får till följd att inlandsisarna smälter med en höjning av havsnivån som följd. Vidare spår man att antalet klimatkatastrofer kommer att öka i antal och intensitet. En del av lösningen på detta problem är förnyelsebara energikällor, dit solenergi räknas. Solfångare och solceller är båda exempel på teknologier som vi förmodligen kommer att se alltmer av i framtiden. Solcellen kan både användas till att producera högkvalitativ el, men även för att driva elektroniska prylar som miniräknare m.m. I denna arbetsuppgift kommer vi att undersöka solcellens funktion och beräkna levererad energi/effekt för en solpanel med hänsyn till en rad olika faktorer.

1.1 Inledning

- Redogör för hur en solcell fungerar fysikaliskt genom att utgå från en PN-övergång. Använd gärna en bild/bilder!
- Hur ser solcellens ström-spänning karakteristik ut? Hur kan man uppskatta solcellens maximala effektivitet?
- Ett större kärnkraftverk har en nyttig effekt på 1 GW. Beräkna den yta av solceller som ger samma effekt. Anta solceller av kisel med en verkningsgrad på 15 % samt använd ett realistiskt värde för solinstrålningen vid en viss tidpunkt eller medelsolinstrålningen under ett år.
- Anta att vi täcker Saharaöknen med solceller. Hur stor effekt kommer denna enorma solpanel att ge? Samma antaganden som i uppgiften ovan.

1.2 Uppdrag: Beräkna levererad energi/effekt för en solpanel

Ni har nyss blivit anställda på ett nystartat företag, Ekman Solar Technology[©], som utför noggranna beräkningar på solceller och speciellt den effekt och energi som solpaneler levererar med hänsyn taget till

- var i Sverige solpanelen ska användas
- hur solpanelen är orienterad
- solens position på himlen under dygnet och under året
- absorption av solstrålning i atmosfären
- antalet soltimmar på platsen

Ert uppdrag är att konstruera ett program i Matlab och att utnyttja informationen i Bilaga A för att

• generera plottar som visar effekten i W som funktion av tiden på dygnet för er grupps solpanel (se tabell nedan) för ett dygn i januari och i juni (se Figur 2 i bilaga A)

- beräkna energin i kWh som en solpanel för er grupp (se tabell nedan) med verkningsgraden $\varepsilon=0.15$ och arean A=30 m² levererar under januari månad, juni månad och under hela året
- optimera α_p så att levererad energi i kWh under ett år blir så stor som möjligt för gruppens solpanel. Hur stor blir den maximala energin och vid vilken vinkel α_p ?

Tabell 1: Information om solpanelens plats och orientering för respektive grupp.

Grupp	Ort/stad	$\theta_p \ [^\circ]$	$\alpha_p \ [^{\circ}]$
1	Jönköping	140	20
2	Göteborg	150	25
3	$\ddot{\mathrm{O}}\mathrm{stersund}$	160	30
4	Stockholm	170	35
5	Sundsvall	180	40
6	Visby	190	45
7	Karesuando	200	50

2 Kompletterande frågor

Lösningen till problemet ska i sin redogörelse innehålla svar på nedan frågor. Svaren ska ges med egna ord och bör bakas in i texten i rapporten, snarare än att anges explicit fråga för fråga.

- Vad är elektromagnetisk strålning? Ge exempel på olika former av elektromagnetisk strålning.
- Vad är en halvledare?
- Redogör för hur en PN-övergång fungerar.
- Redogör för hur en solcell fungerar.

3 Läsansvisningar

De kunskaper som behövs för att kunna lösa arbetsuppgiften kan inhämtas från nedan avsnitt i respektive referensbok. Dessa avsnitt bör läsas grundligt. Utnyttja gruppen och schemalagda frågetimmar till att fråga på sådant du inte förstår.

Physics av Walker

Ämne/område	Avsnitt	Sidor 3rd ed.	Sidor 4th. ed.
Det elektromagnetiska spektrumet	25.3	845-848	881-884
Fotoner	30.2	1007-1008	1050-1051

$L\ddot{a}nkar$

Namn/innehåll	Länk
The sun as a surce of energy	http://www.itacanet.org/the-sun-as-a-source-of-energy/
Wikipedia: Position of the sun	https://en.wikipedia.org/wiki/Position_of_the_Sun
Wikipedia: p-n junction	https://en.wikipedia.org/wiki/P-n_junction
Hyperphysics: P-N Junction	http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/
	pnjun.html
Wikipedia: Solar cell	https://en.wikipedia.org/wiki/Solar_cell
How stuff works: Solar cell	http://science.howstuffworks.com/environmental/energy/
	solar-cell.htm

Teoridel för uppdrag A

I denna bilaga beskrivs nödvändig teori för att kunna utföra noggranna beräkningar på solceller.

Solens position

Som bekant varierar solens position under ett dygn och under ett år. Mitt på dagen står exempelvis solen högre upp än på morgonen och solen står i genomsnitt högre på himlen under sommaren än på vintern. För att bestämma solens position på himlen används två koordinater (vinklar): solens höjd över horisonten, även kallas solens elevationsvinkel, α_s samt den så kallade Azimut-vinkeln för solen θ_s som beskriver i vilket väderstreck (uttryckt som en vinkel) som solen befinner sig.

Solens elevatonsvinkel α_s

Solens elevationsvinkel (solens höjd över horisonten) uttryckt i grader (°) ges av

$$\alpha_s = \arcsin\left(\sin\phi \cdot \sin\delta_s + \cos\phi \cdot \cos\delta_s \cdot \cos\Omega\right),\tag{1}$$

där $0^{\circ} \leq \alpha_s \leq 90^{\circ}$, ϕ är latituden för platsen, δ_s är solens deklinationsvinkel och Ω är den så kallade timvinkeln. Enkelt uttryck styr δ_s solens höjd över horisonten sett över hela året. Om nanger dagen på året där 1 januari motsvarar n=1 och 31 december n=365 (inget skottår) kan solens deklinationsvinkel något förenklat skrivas

$$\delta_s = -23.44^\circ \cos\left(\frac{360^\circ}{365} \cdot n\right),\tag{2}$$

där 23.44° motsvarar jordaxelns lutning (mot jordbanans plan). I uttrycket ovan antar vi att vintersolståndet äger rum 31 december (vilket är ca 10 dagar för sent). Timvinkeln, å andra sidan, styr solens höjd över horisonten sett över dygnet och kan (något förenklat) skrivas

$$\Omega = 15^{\circ} \cdot t - 180^{\circ}. \tag{3}$$

I uttrycket ovan är t tiden på dygnet i timmar och t=0 motsvarar kl. 0:00 och t=24 motsvarar kl. 24:00 och med denna approximation står alltid solen som högst kl. 12:00 (t=12).

Azimut-vinkeln för solen θ_s

Vi behöver också ha ett uttryck för solens Azimut-vinkel, betecknad θ_s , vilket är vinkeln mot solen i horisontalplanet räknad från norr mot öster. Azimut-vinkeln ges av:

$$\theta_{s} = 180^{\circ} - \arccos\left[\frac{(\sin\phi \cdot \sin\alpha_{s} - \sin\delta_{s})}{\cos\phi \cdot \cos\alpha_{s}}\right] \quad \Omega < 0, \tag{4}$$

$$\theta_{s} = 180^{\circ} + \arccos\left[\frac{(\sin\phi \cdot \sin\alpha_{s} - \sin\delta_{s})}{\cos\phi \cdot \cos\alpha_{s}}\right] \quad \Omega > 0, \tag{5}$$

$$\theta_s = 180^{\circ} + \arccos\left[\frac{(\sin\phi \cdot \sin\alpha_s - \sin\delta_s)}{\cos\phi \cdot \cos\alpha_s}\right] \quad \Omega > 0,$$
 (5)

där $0^{\circ} \leq \theta_s \leq 360^{\circ}$. Uttrycket ovan är inte alltid definierat för $\Omega = 0$ men väldigt små negativa eller postiva värden på Ω fungerar bra. Azimut-vinkeln är 0° rakt norrut, 90° rakt österut, 180° rakt söderut och 270° rakt västerut.

Solinstrålningen på jordytan

Strax ovanför jordens atmosfär är solinstrålningen lika med den så kallade solarkonstanten $I_0 = 1360 \text{ Wm}^{-2}$. Solinstrålningen mäts alltid i ett plan vinkelrätt mot solen. Om vi befinner oss strax ovanför jordens atmosfär och håller en skiva med arean 1 m² vinkelrätt mot solen så kommer alltså strålning motsvarande en effekt av 1360 W = 1360 J/s att träffa skivan. Detta kan förstås om vi tänker oss att solljuset består av en mängd energiknippen som kallas fotoner som var och en innehåller en viss energi. Om den totala energin från samtliga fotoner som träffar skivan ovan registeras under en sekund så erhålls effekten 1360 W.

På jordytan kommer solinstrålningen aldrig att uppgå till 1360 Wm⁻². Detta beror på att en del av solens strålning absorberas av atmosfären. Ju lägre solen står på himlen (ju lägre vinkeln α_s är) desto mer atmosfär måste solljuset passera och desto större blir absorbtionen i atmosfären och desto lägre blir solinstrålningen. Ett approximavt uttryck för solinstrålningen på jordytan I ges av

$$I = 1.1 \cdot I_0 \cdot 0.7^{\left(\frac{1}{\sin \alpha_s}\right)^{0.678}}.$$
 (6)

Viss försiktighet måste vidtas eftersom uttrycket för solinstrålningen ovan inte är definierat för $\alpha_s = 0^{\circ}$. För detta fall gäller dock att I = 0. I figur 1 visas solinstrålningen vid jordytan som funktion av solens höjd över horisonten.

Figur 1: Solinstrålning vid jordytan som funktion av solens höjd över horisonten.

Solpanelens orientering

För att optimera effektuttaget från en solpanel så bör denna följa solens rörelser på himlen så att solpanelen alltid är riktad vinkelrätt mot solen. Annorlunda uttryckt, normalen till solpanelen bör alltid vara riktad mot solen. I praktiken är detta av kostnadskäl inte möjligt och detta gäller i synnerhet när man vill montera solpaneler på bostadshus. I stället använder man sig då av fast monterade solpaneler vars orientering kan beskrivas av två vinklar. Den ena vinkeln anger åt vilket väderstreck panelen är riktad och betecknas här med θ_p (jämför med θ_s) och den andra vinkeln anger riktningen hos solpanelens normal och betecknas α_p (jämför med α_s).

För en solpanel som är riktad vinkelrätt mot solen gäller således $\theta_p = \theta_s$ och $\alpha_p = \alpha_s$ och effekten per kvadratmeter panelen mottar I_p blir lika med I. I det generella fallet gäller dock

$$I_p = I \cdot (\cos(\theta_p - \theta_s) \cdot \cos(\alpha_p - \alpha_s) + \sin \alpha_s \cdot \sin \alpha_p \cdot (1 - \cos(\theta_p - \theta_s)))$$
 (7)

Notera att vi aldrig kan få negativa värden på I_p . Då gäller att $I_p = 0$.

Solpanelens effektivitet och area

En solcell kan aldrig omvandla all den inkommande solenergin till nyttig energi. En kristallin solcell som är gjord av kisel har en verkningsgrad ε på ca 15 %, vilket innebär att om panelen mottar I_p = 1000 Wm⁻² så är den nyttiga effekten per kvadratmeter 150 Wm⁻².

En panel med arean A ger därmed en elektrisk effekt i W given av

$$P = \varepsilon \cdot I_p \cdot A \tag{8}$$

Antal soltimmar

Slutligen beror effekten som en solpanel levererar på vädret. Den levererade effekten är självfallet som störst när himlen är helt klar och molnighet reducerar effekten kraftigt. Även lätta slöjmoln på sommaren, så kallade Cirrusmoln, kan sänka effekten med upp till 50 %. Antalet soltimmar är därför ett användbart mått och från tabellen nedan ser vi att Karlstad under hela året hade 1801 soltimmar. Eftersom antalet ljusa timmar på året är $12 \times 365 = 4380$, så minskar en solpanels effekt i Karlstad med en faktor $1801/4380 \approx 0.41$ sett över hela året.

Tabell 2: Antal soltimmar per månad i några svenska orter/städer (från www.delaval.se).

$\overline{\mathrm{Ort/Stad}}$	Jan	Feb	Mars	April	Maj	Juni	Juli	Aug	Sep	Okt	Nov	Dec	Totalt
Jönköping	32	61	106	157	220	228	214	197	132	80	42	29	1498
Göteborg	40	71	126	182	241	266	243	220	143	94	58	38	1722
Karlstad	47	77	133	180	246	284	264	225	152	94	56	43	1801
$\ddot{\mathrm{O}}\mathrm{stersund}$	26	74	131	169	233	246	228	187	115	72	38	17	1536
Stockholm	40	72	135	185	276	292	260	221	154	99	54	33	1821
Sundsvall	43	81	135	185	259	287	267	215	142	98	57	34	1803
Visby	34	60	134	194	287	308	283	241	161	105	48	29	1884
Karesuando	5	62	139	183	232	266	243	159	110	67	18	0	1484
Haparanda	19	69	136	194	269	315	304	213	131	82	34	5	1771

Ett räkneexempel

Vi börjar med att beräkna elevationsvinkeln α_s , Azimut-vinkeln θ_s och instrålningen I i Malmö $(\phi = 55.6^{\circ})$ en molnfri dag den 1 maj (n = 121) kl. 14:30 (t = 14.5). Beräkning av α_s :

$$\delta_s = -23.44^{\circ} \cos\left(\frac{360^{\circ}}{365} \cdot 121\right) = 11.4863^{\circ} \tag{9}$$

$$\Omega = 15^{\circ} \cdot 14.5 - 180^{\circ} = 37.5^{\circ} \tag{10}$$

$$\alpha_s = \arcsin\left[\sin(55.6^\circ) \cdot \sin(11.4863^\circ) + \cos(55.6^\circ) \cdot \cos(11.4863^\circ) \cdot \cos(37.5^\circ)\right] = 37.1245^\circ. \tag{11}$$

Beräkning av θ_s :

$$\theta_s = 180^{\circ} + \arccos\left[\frac{\left[\sin(55.6^{\circ}) \cdot \sin(37.1245^{\circ}) - \sin(11.4863^{\circ})\right]}{\cos(55.6^{\circ}) \cdot \cos(37.1245^{\circ})}\right] = 228.44^{\circ}$$
(12)

Beräkning av I:

$$I = 1.1 \cdot 1360 \text{ Wm}^{-2} \cdot 0.7^{\left(\frac{1}{\sin(37.1245)}\right)^{0.678}} = 905 \text{ Wm}^{-2}$$
 (13)

Vidare antar vi att för en solpanel gäller $\theta_p = 180^{\circ}$, $\alpha_p = 20^{\circ}$, $\varepsilon = 0.15$ och $A = 30 \text{ m}^2$.

Beräkning av I_p :

$$I_p = 905 \text{ Wm}^{-2} \cdot \cos(|180^\circ - 228.44^\circ|) \cdot \cos(|20^\circ - 37.12^\circ|) = 574 \text{ Wm}^{-2}$$
 (14)

Beräkning av P:

$$P = 0.15 \cdot 574 \text{ Wm}^{-2} \cdot 30 \text{ m}^2 = 2582 \text{ W}$$
 (15)

Figur 2: Solpanelens effekt som funktion av tid på dygnet 1 maj.