Control automático

LQR y LQG

Agenda

- Control óptimo
- Realimentación de estados óptima LQ
- Selección de Q y R
- Ejemplo de diseño LQR: Heli2DoF
- Ejemplo de diseño: Rechazo de perturbaciones con LQR
- Estimación de estado óptima LQE
- Control lineal cuadrático gaussiano LQG

Optimización de parámetros del regulador (1)

- Si las exigencias al lazo regulado son especificadas a través de una función de calidad; entonces, puede formularse el problema de regulación como un problema de optimización.
- Así, es deseable, por ejemplo, que el error promedio en el tiempo sea muy pequeño; por lo que las desviaciones grandes serán penalizadas más fuertemente que las desviaciones pequeñas.

$$I = \int_0^\infty \left| e^2(t) \right| dt$$

- Al valor de I se le conoce como Área cuadrática de regulación
- Depende, dada una planta y elegida la estructura del regulador, de los parámetros utilizados para el regulador.
- El objetivo del procedimiento de diseño es hacer lo más pequeño posible el valor del criterio de calidad.

El método de diseño por realimentación de estados y observador, es una herramienta fundamental en el control de sistemas en el espacio de estados. No obstante, no siempre es útil debido a que:

- El traslado de las especificaciones de diseño no siempre es directo, particularmente para sistemas complejos. Podemos traducir esto en la pregunta: ¿Cuál es la mejor configuración de los polos para las especificaciones dadas?
- En sistemas MIMO las ganancias de realimentación de estados que logran una configuración de polos dada no es única. Entonces, ¿Cuál es la mejor K para una configuración de polos dada?
- Los valores propios del observador deberían escogerse de 3 a 5 veces más rápidos que los del sistema de lazo cerrado. ¿Hay algún otro criterio disponible para ayudar a decidirse por una configuración o por otra?

¿Qué significa óptimo?

- Realizar un trabajo o tarea en la mejor forma posible
- Antes de iniciar con una búsqueda de la solución óptima:
 - Debe definirse el trabajo o tarea.
 - Debe establecerse una escala matemática para cuantificar lo que catalogamos como mejor.
 - Descartar las otras alternativas posibles.

Es importante que los cuantificadores sean claros y consistentes, de otra manera, aplicar el concepto de control óptimo a un sistema no tiene sentido real.

 El sistema dinámico a ser controlado se describe en la forma de variables de estado, en tiempo continuo por,

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \qquad \mathbf{x}(0) = \mathbf{x}_0$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

O en tiempo discreto por,

$$\mathbf{x}(k+1) = \mathbf{A}_{\mathbf{d}}\mathbf{x}(k) + \mathbf{B}_{\mathbf{d}}u(k) \quad \mathbf{x}(0) = \mathbf{x}_{0}$$
$$\mathbf{y}(k) = \mathbf{C}_{\mathbf{d}}\mathbf{x}(k)$$

Supondremos que todos los estados están disponibles para medidas, o que el sistema es observable.

- El criterio de desempeño, denominado J, es una medida de calidad del desempeño del sistema. Depende de la aplicación, intentaremos minimizar o maximizar el criterio de desempeño seleccionando la entrada de control.
- Para cada u(t) posible (capaz de realizar la tarea deseada satisfaciendo las restricciones del sistema) se le asocia una posible trayectoria del sistema x(t).

Control óptimo: Criterio 1

Un criterio de diseño común es el tiempo mínimo, con el cual buscamos que el sistema de control u(t) produzca la trayectoria más rápida para obtener el estado final deseado.

■ En este caso el criterio de desempeño corresponde a J = T

Control óptimo: Criterio 2

 Otro criterio de desempeño podría ser el error final al obtener el estado final deseado en un tiempo T,

$$J = ||x(T)||^2$$

Realimentación de estados óptima LQ (LQR)

Considere el sistema de espacio de estados

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t); \quad \mathbf{x}(t) \in \mathbb{R}^n; \quad \mathbf{u}(t) \in \mathbb{R}^p$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$

Y el criterio de desempeño

$$J = \int_0^\infty [\mathbf{x}^T(t)\mathbf{Q}\mathbf{x}(t) + \mathbf{u}^T(t)\mathbf{R}\mathbf{u}(t)]dt$$

Donde Q es no definida negativa y R es definida positiva. Entonces el control óptimo que minimiza (J) está dado por la ley lineal de realimentación de estado

$$\mathbf{u}(t) = -\mathbf{K}\mathbf{x}(t); \quad \mathbf{K} = \mathbf{R}^{-1}\mathbf{B}^T\mathbf{P}$$

Y donde P es la única solución positiva de la matriz definida por las ecuaciones de Riccati (EAR),

$$\mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A} - \mathbf{P} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P} + \mathbf{Q} = 0$$

Selección de las matrices Q y R

1) La forma más simple: Matrices identidad

$$\mathbf{Q} = \mathbf{I}; \mathbf{R} = \rho \mathbf{I}$$

Varíe ρ para obtener una buena respuesta. Al aumentar un elemento diagonal de ${\bf R}$ se penaliza el actuador correspondiente.

2) Peso a la salida: Suponga que z = Cx es la salida que se desea mantener pequeña, suponga que el par (A, C) es observable, entonces utilice:

$$\mathbf{Q} = \mathbf{C}^T \mathbf{C}; \quad \mathbf{R} = \rho \mathbf{I}$$

3) **Prueba y error** (con los pesos): Al aumentar un elemento diagonal de **Q** se penaliza ese estado. Al aumentar un elemento diagonal de **R** se penaliza el actuador correspondiente.

Selección de las matrices Q y R

4) Pesos diagonales

$$\mathbf{Q} = \begin{bmatrix} q_1 & & & \\ & \ddots & & \\ & & q_n \end{bmatrix}; \quad \mathbf{R} = \rho \begin{bmatrix} r_1 & & & \\ & \ddots & & \\ & & r_p \end{bmatrix}$$

Se escoge \mathbf{q}_i para dar el mismo esfuerzo por la misma "maldad". Por ejemplo si \mathbf{x}_1 es la distancia en metros y \mathbf{x}_3 es un ángulo en radianes:

- Si 1 cm de error es aceptable $\rightarrow q_1 = \left(\frac{1}{0.01}\right)^2$; esto es $q_1 x_1^2 = 1$ cuando $x_1 = 0.01 \, m$
- Si $\frac{1}{60}$ rad de error es aceptable $\rightarrow q_3 = (60)^2$; esto es $q_3 x_3^2 = 1$ cuando $x_3 = \frac{1}{60}$ rad

Proceda de forma similar para $\mathbf{r_i}$. Use ρ para ajustar el balance entre entrada/salida.

Ejemplo de diseño RE LQR: Heli2DoF

Calcule la matriz **K** de realimentación de estado por el método LQR, para un helicóptero 2DoF cuyas matrices para el modelo MIMO en variables de estado se muestran:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -9.2751 & 0 \\ 0 & 0 & 0 & -3.4955 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 2.3667 & 0.0790 \\ 0.2410 & 0.7913 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}; \quad \mathbf{D} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

El orden de las variables de estado para realimentación de estado es:

$$\mathbf{x} = \begin{bmatrix} \text{Posición angular de elevación } (\textit{pitch}) \\ \text{Posición angular de giro } (\textit{yaw}) \\ \text{Velocidad angular de elevación } (\omega_\textit{pitch}) \\ \text{Velocidad de giro } (\omega_\textit{yaw}) \end{bmatrix}$$

Ejemplo de diseño RE LQR: Heli2DoF (2)

Calcule la matriz K de realimentación de estado por el método LQR, para un helicóptero

Ejemplo de diseño RE LQR: Heli2DoF (3)

Calcule la matriz **K** de realimentación de estado por el método LQR, utilizando las matrices **Q** y **R** dadas a continuación:

$$\mathbf{Q} = \begin{bmatrix} 200 & 0 & 0 & 0 \\ 0 & 200 & 0 & 0 \\ 0 & 0 & 100 & 0 \\ 0 & 0 & 0 & 100 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} K_{11} & K_{12} & K_{13} & K_{14} \\ K_{21} & K_{22} & K_{23} & K_{24} \end{bmatrix}$$

Ejemplo de diseño RE LQR: Heli2DoF (4)

Se calcula la matriz **K** de realimentación de estado por el método LQR, utilizando la función *lqr* de Matlab

$$\mathbf{K} = lqr(\mathbf{A}, \mathbf{B}, \mathbf{Q}, \mathbf{R})$$

El resultado para la matriz K con las matrices Q y R dadas es:

$$\mathbf{K} = \begin{bmatrix} 14.0795 & 1.3293 & 7.3254 & 0.9235 \\ -1.3293 & 14.0795 & -0.2609 & 7.9942 \end{bmatrix}$$

Ejemplo de diseño RE LQR: Heli2DoF (5)

Ejemplo de diseño: Rechazo de perturbaciones con LQR (REI_LQR)

Calcule las matrices K y Ki para realimentación de estado integral por el método LQR,

Ejemplo de diseño: Rechazo de perturbaciones con LQR (2)

Calcule las matrices **K** y **K**i para realimentación de estado integral por el método LQR, para el sistema aumentado en dos estados, las integrales de los errores de *pitch* y *yaw*; utilizando las matrices **Q** y **R** dadas a continuación:

$$\mathbf{Q}_{s} = \begin{bmatrix} 200 & 0 & 0 & 0 & 0 & 0 \\ 0 & 150 & 0 & 0 & 0 & 0 \\ 0 & 0 & 100 & 0 & 0 & 0 \\ 0 & 0 & 0 & 200 & 0 & 0 \\ 0 & 0 & 0 & 0 & 50 & 0 \\ 0 & 0 & 0 & 0 & 0 & 50 \end{bmatrix}; \quad \mathbf{R} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Posición angular de elevación (*pitch*)

$$\mathbf{K} = \begin{bmatrix} K_{11} & K_{12} & K_{13} & K_{14} \\ K_{21} & K_{22} & K_{23} & K_{24} \end{bmatrix} \mathbf{y} \quad \mathbf{K}_i = \begin{bmatrix} K_{15} & K_{16} \\ K_{25} & K_{26} \end{bmatrix} \quad \text{con} \quad \mathbf{x}_i = \begin{bmatrix} \text{Posición angular de giro } (yaw) \\ \text{Velocidad angular de elevación } (\omega_pitch) \\ \text{Velocidad de giro } (\omega_yaw) \\ \text{Integral de error de } pitch \quad \int (p_r - pitch) dt \\ \text{Integral del error de } yaw \quad \int (y_r - yaw) dt \end{bmatrix}$$

Como el orden de las variables de estado para realimentación de estado integral.

Ejemplo de diseño: Rechazo de perturbaciones con LQR (3)

Se calculan las matrices aumentadas A_s y B_s y luego, con la función *lqr* de Matlab se calcula la matriz K_s que se descompone en las matrices K y K_i :

$$\mathbf{A_s} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -9.2751 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3.4955 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}; \quad \mathbf{B_s} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 2.3667 & 0.0790 \\ 0.2410 & 0.7913 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{K_s} = lqr(\mathbf{A_s}, \mathbf{Bs}, \mathbf{Qs}, \mathbf{R})$$

$$\mathbf{K}_{s} = \begin{bmatrix} 18.9366 & 1.9798 & 7.4920 & 1.5280 & -7.0291 & -0.7696 \\ -2.2223 & 19.4458 & -0.4503 & 11.8933 & 0.7696 & -7.0291 \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} 18.9366 & 1.9798 & 7.4920 & 1.5280 \\ -2.2223 & 19.4458 & -0.4503 & 11.8933 \end{bmatrix} \ \mathbf{y} \ \mathbf{K}_i = \begin{bmatrix} 7.0291 & 0.7696 \\ -0.7696 & 7.0291 \end{bmatrix}$$

Ejemplo de diseño: Rechazo de perturbaciones con LQR (4)

Estimación de estado óptima LQE

El problema del observador óptimo LQ es dual al problema de realimentación de estado LQ. Sin embargo, los observadores óptimos LQ poseen una interpretación estocástica; dicho de otra forma, son óptimos estimando el estado en presencia de ruidos Gaussianos que corrompen las medidas de las salidas y el estado.

Un observador de estado óptimo LQ se conoce como filtro de **Kalman**

Control lineal cuadrático Gaussiano (LQG)

El control LQG es el controlador óptimo obtenido como la combinación de una ganancia de realimentación desde los estados estimados a partir de un estimador de estado óptimo LQE. w(t)

■ El principio de separación permite diseñar una ganancia de realimentación LQR y LQE independientemente.

Referencias

- http://www.ie.tec.ac.cr/einteriano/control/clase/08.ControlPorRealimentaciondeEstado.pdf
- http://www.ie.tec.ac.cr/einteriano/control/clase/10.RealimentaciondeEstadoIntegral.pdf
- http://www.ie.tec.ac.cr/einteriano/control/clase/11.ControlconFiltrodeKalman.pdf
- https://www.cds.caltech.edu/~murray/courses/cds110/wi06/lqr.pdf
- https://www.quanser.com/products/2-dof-helicopter/
- Ogata, Katsuhiko. "Ingeniería de Control Moderna", Pearson, Prentice Hall, 2010, 5^a Ed., Madrid.
- Lewis, F.L. Linear Quadratic Regulator (LQR) State Feedback Design.
- https://youtu.be/E_RDCFOIJx4 The Mathworks LQR