1.Interpretação numérica do método de Newton:

O objetivo do método de Newton é construir uma função cuja derivada é menor do que 1 e estimar a raiz.

Ele é aplicado usando a seguinte fórmula:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Exemplo 1:

$$x^{2} + x = 2$$

$$f(x) = x^{2} + x - 2$$

$$f'(x) = 2x + 1$$

A raiz de f(x) é 1.

$$f(0) = -2$$

$$f(2) = 4$$

$$f(0) \cdot f(2) < 0$$

$$\underline{x_c} \in [0, 2]$$

Pois a função muda de sinal no intervalo [0,2].

Se <u>fizermos</u> a iteração iniciando com $x_0 = 2$ até o erro $|x_{i+1} - x_i| < 0.5$:

i	x_i	$f(x_i)$	$f'(x_i)$	$\frac{x_i - \frac{f(x_i)}{f'(x_i)}}$	$ x_{i+1}-x_i $
0	2	4	5	$2 - \frac{4}{5} = 1,2$	1,2-2 =0.8
1	1,2	0,64	2,4	$1.2 - \frac{0.64}{2.4} \approx 1.2 - 0.26 \approx 0.94$	0,94 - 1,2 = 0,26

Depois de 2 iterações, percebemos que o valor inicial se aproxima da raiz. Então a função converge para a raiz sem chegar nela.

2. <u>Interpretação</u> geométrica:

O método de Newton também é conhecido como método das tangentes.

Vemos isso facilmente pelo triângulo retângulo dado pelos pontos $(x_i, 0)$ e $(x_{i+1}, 0)$ e $(x_i, f(x_i))$. A tangente calcula o cateto oposto dividido pelo cateto adjacente.

$$\underline{t}g(\alpha) = f(x_{i+1}) \div (x_i - x_{i+1})$$

substituindo x_{i+1} pela fórmula do método de Newton:

$$tg(\alpha) = \frac{f(x_i)}{x_i - \left(x_i - \frac{f(x_i)}{f'(x_i)}\right)}$$
$$\underline{tg(\alpha)} = f'(x_i)$$

Logo, $f'(x_i)$ é a inclinação da reta tangente no ponto $(x_i, f(x_i))$ ou a taxa de variação instantânea da função no ponto atual em relação a xatual.

https://www.ufrgs.br/reamat/CalculoNumerico/livro-sci/main9x.png

Exemplo:

$$\frac{x^2}{2} = 0$$

$$f(x) = \frac{x^2}{2}$$

$$f'(x) = x$$

i	хi	$f(x_i)$	$f'(x_i)$	$x_i - \frac{f(x_i)}{f'(x_i)}$	$ x_{i+1} - x_i $
0	4	8	4	2	2
1	2	2	2	1	1

3. Aplicações em equações algébricas E transcendentes:

A convergência do <u>método</u> de Newton para a raiz é mais rápida que nos outros métodos. Se a função f e suas duas <u>primeiras</u> derivadas f'(x) e f''(x) são contínuas em um intervalo cujo centro x_c é solução de f(x) = 0 e se $f'(x) \neq 0$ em relação a

 x_c , então existe um d<0 tal que o método de Newton gera uma sequência convergente para p para qualquer aproximação inicial entre [(p-d),(p+d)]. Ou seja, se o método de Newton converge, sua convergência é quadrática.

Comparação com o método do ponto fixo:

O método do ponto fixo usa o seguinte passo-a-passo:

- 1.Encontrar o intervalo da raiz
- 2. Escolher uma função de iteração
- 3.Usar a função de iteração a partir de um valor inicial

Equação para a comparação:

$$\ln(x) = x^2 - 1$$
$$f(x) = \ln(x) - x^2 - 1$$

Tabela com o método de Newton:

$$f'(x) = \frac{1}{x} - 2x$$
$$x_0 = 8$$

I	Xi	f(xi)	f'(xi)	Xi+1
0	8	≈ 2,0794 – 64 + 1	0,125 – 16 =	≈ 8 – (-60,9205 ÷ -15,8750)
		≈ -60,9205	-15,875	≈8 – 3,8375
				≈4,162 4
1	≈ 4,1624	≈ 1,4260 –	≈ 0,2402 –	≈ 4,1624 – (-14,8995 ÷ -8,0846)
		17,3255 + 1 ≈	8,3248	≈
		-14,8995	≈ -8 , 0846	4,1624 – 1,8429
				≈ 2,3194
2	≈ 2,3194	≈ 0,8413 – 5,3796	≈0,4311 –	≈2,3194 – (5,5383÷4,2077)
		+ 1	4,6388 ≈-	≈2,3194 – 1,3162 ≈1,003
		≈-5,5383	4,2077	
3	≈1,003	≈0,0029 – 1,0060	≈0,9970 –	≈1,003 - (0,0031÷1,009)
		+1≈	2,006 ≈-	≈1,003 – 0,0030≈1
		-0,0031	1,009	

Tabela com método do ponto fixo:

$$g(x) = -x^{2}$$

$$h(x) = \ln(x) + 1$$

$$f(x) = 0$$

$$\frac{x^{2} = \ln(x) + 1}{x}$$

$$x = \pm ((\ln(x) + 1)^{\frac{1}{2}})$$

$$sigma(x) = ((ln(x) + 1) ^ 1/2)$$

 $x_0 = 8$

i	х	sigma(x)
0	8	≈1,7548
1	≈1,7548	≈1,2499
2	≈1,2499	≈1,1059
3	≈1,1059	≈1,0491
4	≈1,0491	≈1,0236
5	≈1,0236	≈1,0115

Observando as tabelas, é possível ver que o método de Newton se aproxima da raiz 1 mais rápido que o método do <u>ponto</u> fixo.