

Boston University Electrical & Computer Engineering

EC464 Capstone Senior Design Project

Final Testing Report

Reproducibility, Reusability, Readability (RE3)

Submitted to

Ana Trisovic anatrisovic@g.harvard.edu

by

Team #5 RE3

Team Members

Andreas Francisco De Melo Oliveira andoliv@bu.edu
Ethan Hung ehung@bu.edu

Jyotsna Penumaka jyotsnap@bu.edu

Layan Bahaidarah layanb@bu.edu

Lukas Rosario lukasr@bu.edu

Summary of Equipment and Setup

Hardware:

• Computer/Laptop - *Thats is it!*

Software:

- Front End
 - o React JS web application
 - o Tailwind CSS
 - o Firebase JavaScript SDK
- Backend:
 - o Google Firebase
 - Firestore
 - Storage
 - Authentication
 - o Python Scripts/Notebooks
 - o Flask
 - o Miniconda3
 - o Docker

Set Up:

Since our project is just software based, all of the set up required is to simply access the re3.ai website to access our platform.

Local Set-up:

In order to run the app locally, run npm start to load our web app. Also to run the server backend code for the readability page you can execute the following commands:

- To open the project on a web browser, follow the following steps:
 - o cd 21-05-Re3/re3-client
 - o npm install
 - o npm start
- To run the flask server that calls our machine learning model:
 - o cd Re3-readability/flask_api/app
 - o python3 main.py
- To build and run projects in a docker container:
 - o cd 21-05-Re3/docker-app
 - o source venv/bin/Activate
 - o python3 app.py
 - o celery -A app.celery worker --loglevel=info
 - o redis-cli ping
 - o brew services start redis

Detailed Measurements Taken:

- 1. Rated snippets while using the previous and back buttons and verify ratings are saved correctly in Firestore.
- 2. Uploaded a file into the choose file box and obtained a red, yellow, and green readability score.
- 3. We displayed appropriate suggestions using the suggestion box once the user uploads the code, including:
 - a. Breaking up your lines
 - b. Diminish the periods in your lines
 - c. Diminishing the parentheses in your lines
 - d. Commenting your code if no comments are found
 - e. Diminishing the number of assignments in your lines
 - f. Users should be able to specify the files they would like to upload.
- 4. Files uploaded through our reproducibility service were stored in google storage.
- 5. We were able to decide the order in which files are run in the docker.
- 6. We were able to specify the R version of their choice
- 7. The following information should be collected and saved to firestore:
 - a. Author name
 - b. Title
 - c. Key Words
- 8. On submitting information and clicking "Run Code":
 - a. The specified R version was used to run the docker file.
 - b. The files were downloaded into the container from google firestore

- c. The files successfully finished the build and run process and output the results, which is success or error
- d. The user was able update the R version from the user page.
- 9. Readability scores were generated upon uploading and then saved to firestore.

Conclusions:

Overall, our final testing went well, since we successfully met all our goals. The group demonstrated our readability and reproducibility platform to Professor Pisano, Professor Osama and Professor Hirsh, and all the TAs. Professor Osama tested our readability platform which was built using R code snippets with python scripts, it still produced acceptable scores with sensible suggestions, which further proves the validity of our machine learning model. A conclusion the team came up with was that we need to clean up our repository and add READMEs wherever necessary so that users viewing our open source repository can understand our work. This is especially important because our project aims to improve the readability and reproducibility of research code, and a messy repository would directly contradict our project's purpose. During our testing meeting, there was also talk of potentially turning our project into a research paper, which our group has been working diligently on. We have been working together with our client on this paper and it can be seen in the link below.

We hope to publish our work done for this project. During the course of the semester, we have been writing our research paper while we have been working on finishing the project. Here is what we have so far.

Research Paper for IEEE International Conference on eScience:

https://drive.google.com/file/d/1 xxcsicLHBXTluiNdYnVwg0swU2mXZYP/view?usp=sharing

Future Work:

- Write a final report.
- Write the user manual.
- Add README for the readability and reproducibility.
- Clean up the repository.

Photos of platform:

≡				My Account	Sign out
Code and Dataset Infor	mation				
Author Name	ex: John Doe, Jane Doe	Unordered	Ordered		
Title	ex: A Study in Repreduci	×	Ordered		
R Version Used	Select Version 🔻	snippet1.R * snippet2.R *			
Files to Upload	Add Files	snippet3.R			
Information	Enter Information				
		Run Code			

Figure 1: Collect information about the research project dependencies to reproduce code. The user should be able to upload their files and order the files depending on how the user wants to run the files in the container.

Figure 2: Collect information about the research project, the user plans to upload

Figure 4: Upload file on the readability page and the code readability rating of such file with suggestions

Figure 5: Upload file and get better rating if code is more organized and well commented

Figure 7: Upload the file projects to Firebase Storage and save the links in the firestore

Figure 8: The reproducibility UI

Figure 9: Running the code files in a container

Figure 10: All the uploaded Research projects are displayed in the user's personal page

	Project File(s) Scores snippet5: 6.34 snippet66: 2.68				
Catagories	Current information	Edited information			
Author Name:	Layan				
Title:	Logs Project				
Key Words:	help				
R Version:	2.7				
Data License:	N/A				
Code License:	N/A				
	Edit Update				
Project Logs					
	Run Logs Build Logs				

Figure 11: User is able to update the information about the research project.