

CÁU TRÚC DỮ LIỆU & GIẢI THUẬT HOMEWORK 6 - Run-Length Encoding, Nén Huffman tĩnh

	oOo	V
1.	Hiệu suất nén phụ thuộc:	

	a. Phương pháp nén		
	b. Đặc trưng của dữ liệu input		
	c. Cả a và b đều đúng		
2.	Kể tên 3 thuật toán nén bảo toàn thông tin		
	a		
	b		
	c		
3.	Kể tên 3 thuật toán nén không bảo toàn thông tin		
	a		
	b		
	c		
4.	Chọn câu sai:		
	a. RLE là thuật toán nén bảo toàn thông tin		
	b. RLE là thuật toán mã hóa bằng mã có độ dài thay đổi		
	c. Thuật toán RLE có thể có hiệu suất âm		
	d. RLE là thuật toán thích hợp cho dữ liệu ảnh		
5.	Thuật toán RLE		
	Thuật toán RLE dùng với file PCX có thể tạo ra hiệu suất âm khi gặp chuỗi chỉ có một ký tụ		
	đơn có mã ASCII:		
	a. $ >= 190 $		
	b. >= 191		
	c. >= 192		
6.	Thuật toán Huffman tĩnh cần duyệt file (input) mấy lần ?		
7.	•		
	a. Static Huffman là thuật toán phải có toàn bộ dữ liệu (input) rồi mới xử lý		
	b. Static Huffman là thuật toán nén bảo toàn thông tin		
	c. Trong một số trường hợp đặc biệt, cây Huffman có thể nhiều hơn 511 node		

8. Thuật toán nén RLE

Cho dữ liệu như sau: AAAAAABCDFEEEEEEGHJJJ[0xFF][0xFF][0xFF][0xFF][0x70] Hãy cho biết dữ liệu ở dạng nén tương ứng với giải thuật nén:

a. RLE PCX (cải biên 1)

b. RLE BMP (cải biên 2)

Ghi chú: dữ liệu trong dấu [] là số hexa tương đương 1 byte.

9. Thuật toán nén Huffman tĩnh

Áp dụng thuật toán nén Huffman tĩnh để nén chuỗi dữ liệu sau: "KHOA CNTT DHKHTN". Vẽ cây (sau cùng), lập bảng mã bit cho từng loại ký tự, xác định chuỗi dữ liệu sau khi nén (thể hiện bằng số hexa).

10. Thuật toán nén Huffman tĩnh

Áp dụng thuật toán nén Huffman tĩnh để nén chuỗi dữ liệu sau: "TTTH DHKHTN". Vẽ cây (sau cùng), lập bảng mã bit cho từng loại ký tự, xác định chuỗi dữ liệu sau khi nén (thể hiện bằng số hexa).

11. Thuật toán nén Huffman động (*)

Nén chuỗi dữ liệu sau: "KHOA CNTT DHKHTN" bằng thuật toán nén Huffman động. Vẽ cây (trình bày quá trình), xác định chuỗi dữ liệu sau khi nén (thể hiện từng bit).

12. Giải nén Huffman động (*)

Hãy áp dụng thuật toán giải nén, vẽ cây Huffman và xác định kết quả giải nén cho chuỗi dữ liêu được mã hoá sau:

'D' 0 'A' 00 'T' 11100 'S' 1111100 'R' 0100 'U' 0000 'C' 10111100111100 'E' Biết rằng, mỗi ký tự 0/1 tương ứng với 1 bit. Các ký tự khác trong dấu nháy đơn tương ứng với 1 byte (mã ASCII 8 bit). Chỉ yêu cầu vẽ cây sau cùng.

13. Thuật toán nén RLE

Viết chương trình cài đặt thuật toán nén và giải nén RLE dạng BMP (chương 6, slide số 23).

- Chương trình sử dung tham số dòng lênh, theo cú pháp sau:

Cú pháp	Ý nghĩa
RLE_BMP.EXE -e file1.txt file2.bin	Nén (encode) file1.txt và lưu kết quả nén vào file2.bin
RLE_BMP.EXE -d file1.bin file2.txt	Giải nén (decode) file1.bin và lưu kết quả giải nén vào file2.txt

- File TXT: là file chứa dữ liệu chưa nén, dạng file text. VD.

- File BIN: là file chứa dữ liệu nén, dạng file nhị phân.

--- Hết ---