Examen 1 la algebră, an I, sem. I, informatică (pentru studenții din anii II și III) 04.06.2020

Numele şi prenumele	
Grupa	
Problema 1. Definim pe mulțimea numerelor complexe $\mathbb C$ următoarea relație l	oinară:
$x\rho y \Longleftrightarrow x - y \in \mathbb{R}.$	
(1) Să se arate că ρ este o relație de echivalență.	(5 pct.)
(2) Aflați clasa de echivalență a lui 1 în raport cu ρ .	(5 pct.)
(3) Aflați clasa de echivalență a lui $2-i$ în raport cu ρ .	(5 pct.)
(4) Aflați clasa de echivalență a lui $a+bi$, cu $a,b\in\mathbb{R}$, în raport cu ρ .	(5 pct.)
(5) Determinați un sistem complet și independent de reprezentanți pentru ρ .	(5 pct.)
(6) Folosind teorema de izomorfism pentru grupuri să se arate că grupul facto	
este izomorf cu grupul $(\mathbb{R}, +)$.	(10 pct.)
Problema 2. Fie permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 3 & 4 & 5 & 7 & 9 & 2 & 8 & 6 & 1 & 11 & 10 \end{pmatrix} \in$	S_{11} .
(1) Descompuneți σ în produs de cicli disjuncți.	(5 p.)
(2) Descompuneți σ în produs de transpoziții.	(5 p.)
(3) Calculați $\operatorname{sgn}(\sigma)$ și $\operatorname{ord}(\sigma)$.	(5 p.)
(4) Există permutări de ordin 35 în S_{11} ?	(5 p.)
(5) Rezolvați ecuația $x^{2011} = \sigma$ în S_{11} .	(10 p.)
Problema 3. Se consideră grupul (aditiv) $G = \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/18\mathbb{Z}$.	
(1) Aflaţi ordinele elementelor $(\widehat{4}, \overline{3})$, respectiv $(\widehat{3}, \overline{5})$.	(10 pct.)
(2) Formează $\{(\widehat{4}, \overline{3}), (\widehat{3}, \overline{5})\}$ un sistem de generatori pentru G ? Justificați.	(10 pct.)
(3) Este G grup ciclic? Justificaţi.	(10 pct.)

¹Toate subiectele sunt obligatorii. Se acordă 5 puncte din oficiu. Timp de lucru 3 ore. Succes!