1323

EPITA

Mathématiques

Partiel S1

durée: 3 heures

Janvier 2023

Nom:

Prénom:

Classe : E

NOTE:

(11)

Beaucoup de très bonnes choses n'yourreuses: c'est bron. Mais eurore des points à renjorcer.

Le barème est sur 40 points. La note sera divisée par 2 pour obtenir une note sur 20.

Consignes:

- Lire le sujet en entier avant de commencer. Il y a en tout 8 exercices.
- La rigueur de votre rédaction sera prise en compte dans la note.
- Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.
- Documents et calculatrices interdits.
- Aucune réponse au crayon de papier ne sera corrigée.

Exercice 1 : encore des intégrales (3 points)

Exercice 2 : cours sur les polynômes (4 points)

Soient A et B deux polynômes à coefficients réels.

1. Que savez-vous du degré de A + B et de $A \times B$?

deg(A+B) est inferieur au degrés maximum de A et E

2. Un étudiant doit énoncer le théorème de la division euclidienne de A par B. Il écrit sur sa copie :

 $\forall \exists (Q,R) \in (\mathbb{R}[X])^2$ tel que A = BQ + R et $0 \le R < B$

Son professeur lui compte faux. Rectifier correctement l'énoncé ci-dessus pour qu'il corresponde effectivement au théorême demandé (et avoir tous les points). $\forall (a,b) \in \mathbb{Z} \times \mathbb{Z}^*, \exists (q,a) \in \mathbb{N}^2 \text{ tel que } a = bq + n \text{ et } 0 \leq n \leq |b|)$

3. Effectuer la division euclidienne de $A = 2X^4 + X - 3$ par $B = X^2 - X + 1$.

4. Soit $\alpha \in \mathbb{R}$. Que signifie que α est une racine de A ? Donner un exemple d'un polynôme A de degré 3 qui admet 42
Six est une paevre de A, quant X=a, A=0
Exemple: A = X3-42X2 Ici of admet 42 comme raune
TA
Exercice 3: nombres complexes (3 points)
Considérons l'équation (E) $(z+\sqrt{3}-i)(z^2-2z+2)=0$ d'inconnue $z\in\mathbb{C}$.
1. Résoudre (E) dans \mathbb{C} .
$(z+\sqrt{3}-i)(z^2-2z+2)=0$ (z+ $\sqrt{3}-i$)=0 ou $(z^2-2z+2)=0$
Soit (z²-2z+2)=0 un polynôme de 2 rd degnés de la forme ose²+6se+c=0 avec a=1, b=-2 et c=2
$\Delta = b^2 - 4ae$
$= 1 - 1/2 \times 1 \times 2$
) = 4 ALO done le polynome adoret 2 parelles dans C
$\frac{1}{2} = \frac{2 - 2c}{2}$ Et $(z+\sqrt{3}-c)=0 = 2 = -\sqrt{3}+c$
= $l-i$ Done $(z+\sqrt{3}-i)(z^2-2z+2)=0$ (=) $z=-\sqrt{3}+i$ ou
z= 1+i ou z=1-i
2. Donner la forme exponentielle de chacune des solutions de (E) . Soct $z = \sqrt{3} + c$, $z_2 = \sqrt{4} + c$, $z_3 = \sqrt{-c}$
/
$ z_1 = 2$ $ z_2 = \sqrt{2}$ $ z_3 = \sqrt{2}$
$\int \cos \theta = -\frac{\sqrt{3}}{2} \qquad \cos \theta = \frac{\sqrt{2}}{2} \qquad \cos \theta = \frac{\sqrt{2}}{2}$
$sh Q = \frac{1}{2}$ $sh Q_2 = \frac{\sqrt{2}}{2}$ $sh Q_3 = -\frac{\sqrt{2}}{2}$
Done $z_1 = 2e^{\frac{2\pi}{6}}$ $z_2 = \sqrt{2}e^{\frac{2\pi}{4}}$ $z_3 = \sqrt{2}e^{\frac{2\pi}{4}}$
Exercice 4 : arithmétique (11 points)
Les parties sont indépendantes. Les résultats de la question 1. peuvent être admis et utilisés par la suite.
1. Soient p un nombre premier et $a \in \mathbb{Z}$.
(a) Montrer que $p \wedge a = 1$ ou $p \mid a$.
Si pla alors $a = pK$ ('or a pu'il faut endire on si pta, comme p est premier alors p et a sont premiers en done p $Na = 1$.
a si pta, conne p est prenien alons p et a sont preniens en
done pha=1.
Done pla ou pla =1

(b)	Montrer que $p \wedge a = 1$ si et seulement si $\exists b \in \mathbb{Z}$ tel que $ab \equiv 1[p]$.
1	
)	······································
	······································
	······································
2 Co	neidérone la nombre premier $m=47$. On charabo à récondre l'équation (E) 22. $m=1/47$. U'
	nsidérons le nombre premier $p=47$. On cherche à résoudre l'équation (E) $23x \equiv 1[47]$ d'inconnue $x \in [1,46]$.
(a)	Trouver dans \mathbb{Z}^2 une solution particulière (x_0, y_0) à l'équation (E_1) $23x + 47y = 1$.
/	47.23×2+1 47.123=1
7 5	7
) [Done 1=47-23×2 (ty) est 62,1)
(b)	Résoudre (E_1) dans \mathbb{Z}^2 .
	On sait que Boc+47y=1 et 23x-2)+47x1=1
	Dorc 230e+47y=23x(-2)+47x1
	=> 23(x+2) = 47(-y+1) / de General leman
	Denc 23/47(-y+1) on 28/47 car 23/47=1 (question a) donc d'après le lenne de Gauss 23/6-y+1)
	dose d'après le lemme de Baiss 231(-y-1)
•	Done JKEZ tel que 23K=(-y+1)
\wedge	et 23(2+2)=47(-4+1)=223(2e+2)=47×23K
9,	et $23(2+2) = 47(-y+1) = 23(2e+2) = 47 \times 23K$ = $247K = (2e+2)$
2	On a done Sty7k= =+2 =>5==47k-2
	723k=(-4+1) => Zu=-23k+1
	Veritions dans l'equation 23(47k-2)+47(-23k+1)
	-03/76-922 11 -22/1/2 - 22 CO 1/2 1
	$=23\times476-2\times23+47\times-23+1647=23\times(-2)+47\times1$
	Done S= & 47k-2, -23-K+13, KEZ
(c)	En déduire toutes les solutions dans \mathbb{Z} de (E) . En déduire les solutions de (E) dans $[1,46]$.
	Soit So los solubors das Z de (F)
	Dore d'après b. S= 347K-2, KEZE El Paul exdiquer
Λ	
	Il bout que 47t-2 € [1,46] et 47x1-2-46
	Les solutions de (E) dans [1,46] sont done & 45° an'
	49.J

3.	Soit $(a,b) \in \mathbb{Z}^2$.
((a) Montrer que $ab \equiv 0[47] \iff a \equiv 0[47]$ ou $b \equiv 0[47]$.
013	ab $\equiv O[47] k= 2$ ab $= 47k (= 2)$ 471 ab (2) $a \equiv O[47]$ on $b \equiv O[47]$ We can a est mai prepare presented by En déduire que $a^2 \equiv 1[47]$ on $a \equiv -1[47]$. (3) $a \equiv A[47] \implies a \equiv 1[47]$ on $a \equiv -1[47]$. (4) $a \equiv A[47] \implies a^2 \equiv A[47]$
(c) Trouver tous les $a \in \llbracket 1,46 \rrbracket$ tels que $a^2 \equiv 1[47]$.
	$Q_{AC} = 1C_{4}73$ et Dapres la question precedente $Q_{AC} = 1C_{4}73$ ou $Q_{AC} = 1C_{4}73$ et Dapres la question precedente $Q_{AC} = 1C_{4}73$ ou $Q_{AC} = 1C_{4}73$ et Q_{AC}
05	Soient $a \in [1, 46]$ et $k \in \mathbb{N}$. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier. Quel est le reste de la division euclide en a^{46k} par 47? Justifier. Quel est le reste de la division euclide en a^{46k} par 47? Justifier. Quel est le reste de la division euclide en a^{46k} par 47? Justifier. Quel est le reste de la division euclide en a^{46k} par 47? Justifier. Quel est le reste de la division euclide en a^{46k} par 47? Justifier. Q
Exer	cice 5: suites 1 (4,5 points)
1. 5	Soient (u_n) et (v_n) deux suites ne s'annulant pas. Rappeler la définition de : $u_n \sim v_n$, $u_n = o(v_n)$ et $u_n = O(v_n)$ en $+\infty$? $u_n \sim v_n$ signifie que u_n est negligoable, sest que $\lim_{n \to +\infty} u_n = 0$ $u_n = O(v_n)$ signifie que u_n est dominée, sest que $\lim_{n \to +\infty} u_n = 0$ $u_n = O(v_n)$ signifie que u_n est dominée, sest que $\lim_{n \to +\infty} u_n = 0$

2.	Comparer en $+\infty$ les suites (u_n) et (v_n) suivantes à l'aide des comparateurs de Landau \sim , $= o(\cdot)$, $= O(\cdot)$ en	citant
	toutes les comparaisons possibles et en justifiant vos réponses.	

Exercice 6: suites 2 (5,5 points)

Considérons la fonction $f: x \longmapsto \frac{x^2 + 6x - 8}{8}$ définie sur $\mathbb R$ et la suite (u_n) définie par $\begin{cases} u_{n+1} = f(u_n) \\ u_0 \in \mathbb R \end{cases}$ donné

1. Pour quelle(s) valeur(s) de u_0 cette suite est-elle constante?

. Un est constante (=) . Le = f(u_o).

Sect
$$u_0^2 + 6u_0 - 8 = u_0 = 2u_0 - 2u_0 - 8$$
 (polynomes du 2nd degrés)
 $\Delta = 4 + 92$ degrés $u_0 = 2 - 6$ et $u_0 = 2 + 6$

Done (up) est constante si up = -2 ou up = 4

2.	Faire le tableau (complet) des variations de f sur \mathbb{R} .	
	Vac∈R, floc)= x2+6xe-8. Et +xe∈R, floc)=1(2x+6)	
	$\frac{2}{2} - 0 - 3 - 2 + 4 = \frac{1}{4} \times \frac{1}{4} $	
\	f(a) +00 h	
	8	
3.	Pour la suite de l'exercice, nous prendrons $u_0 \in]-2, 4[$. Montrer que $\forall n \in \mathbb{N}, u_n \in]-2, 4[$.	
	D'après le tableau de vaniation, si 40 EJ-2,4[alons	
Ynel Ynel	$N, u_0 \in J-2, 4\Gamma$ $Canf(J-2, 4\Gamma) = J-2, 4\Gamma$	
10	<u> </u>	
4.	Étudier la monotonie de (u_n) .	
	4nEW, up+1-up=up2+6up-8-up	
	= 4,2-24,-8 (nous avons deja colcule le disconnent que 1)	
\bigwedge	un -2 4 +00 CT 3/1	
	untity +0-0+ to EI-2,45 done d'après la 3	
5.	La suite (u_n) est-elle convergente? Si oui, donner sa limite.	}
	D'après la 4, (un) est décroisserte et d'après le tableau	
	de variation, (un) est monorée par -17	
5	Done d'après le théorème des convergences monohones,	
1	(un) converge ver une lemère lER.	
	Et l=f(l) et un decrossate donc d'après le 1)
	0=-9 per repoide.	

Exercice 7 : une démonstration (4 points)

Soit (u	n) une suite.
1.	Soit $l \in \mathbb{R}$. Rappeler la définition avec les quantificateurs de « (u_n) converge vers l ».
1	
2	Rappeler la définition avec les quantificateurs de « (u_n) est bornée ».
۵.	The set of \mathbb{Z}^2 $\forall a \in \mathbb{Z}$ $\forall b \in \mathbb{Z}$ $\forall b \in \mathbb{Z}$ $\forall b \in \mathbb{Z}$
(Em, ne R2, YnEN, m < un < M
15	
1	
_	
3.	Montrer que si (u_n) converge alors (u_n) est bornée.
	······
	- ^ 1
	······································
	······································
))	•••••••••••••••••••••••••••••••••••••••
)	
	······································
1	Expliquer pourquei la réciproque est fausse
4.	Expliquer pourquoi la réciproque est fausse.

Exercice 8: exercice original (5 points)

Soit (u_n) une suite réelle. On suppose que

$$\forall (p,q) \in (\mathbb{N}^*)^2, \ 0 \le u_{p+q} \le \frac{p+q}{pq}$$

En considérant des suites extraites de (u_n) , étudier le comportement de (u_n) en $+\infty$ (convergence ou divergence). Justifier avec soin.

	Soit deux surles extraites de un, (uptq) et (uzcptq)) pre
	On sait que 0 < up+q < p+q on p+q = pq(q+1)
	des d'après le théorèmes des gendernes 9 P
0	en lan 1+1=0 denci d'après le Heorenes des gendames 9 P lim Up+q=0 lim Up+q=0
	lum 42(ptq) =0 suites Si les deux etraites sont convergentes vers la même lamites
	alors (un)est onvergente sonon devergente.
	Ici uptq et uzorqi (oaverge Vens O denc up converge vens O.
	Il aurait falle choisi - des ouites extraites
	(U2n) = (Un+n) pour être fus n'gaureuse. (U2n+1) = (Um+1)+n)