Temporal Time Series Analysis

Joaquín Rapela

Gatsby Computational Neuroscience Unit University College London

January 2, 2025

Contents

Course notes

- Time series analysis
 - Introduction to time series analysis
 - Measures of dependence

Contents

- Course notes

Background

- Last Spring 2023 I helped in the discussion sessions of this course.
- Suggested to Klara Olofsdotter (SWC PhD program coordinator) and Sonja Hofer (SWC PhD program faculty coordinator) to ask SWC PhD students to take this course. They liked the idea.
- I volunteered to lead discussions and do grading with Gatsby Unit PhD students and postdoctoral scholars.

A few motivations to run this course

- Gain more teaching experience.
- Provide SWC PhD students with essential neural data-analysis tools.
- Ontribute to better interactions between the SWC and the Gatsby Unit.

Course structure

Week 01	Jan 11	The t-test and randomisation tests	Joaquin Rapela	tutorial
Week 02	Jan 18	Power spectra	Joaquin Rapela	tutorial
			Yousef Mohammadi	
			Joe Zimminski	
Week 03	Jan 25	Spectrograms	Joaquin Rapela	tutorial
		and coherence	Yousef Mohammadi	
			Joe Zimminski	
Week 04	Feb 01	Circular statistics	Joaquin Rapela	tutorial
Week 05	Feb 08	Singular value decomposition	Will Dorrell	tutorial
Week 06	Feb 15	Linear regression	Lior Fox	lecture
	Feb 16			tutorial
Week 07	Feb 22	Linear dynamical systems	Aniruddh Galgali	lecture
			Joaquin Rapela	
	Feb 23			tutorial
Week 08	Feb 29	no class (CoSyNe)		
Week 09	Mar 07	Artificial neural networks	Erin Grant	lecture
	Mar 08			tutorial
Week 10	Mar 14	Experimental control with Bonsai	Goncalo Lopes	lecture
			Joaquin Rapela	
	Mar 15			tutorial
Week 11	Mar 21	Reinforcement learning		lecture
	Mar 22			tutorial
Week 12	Mar 28	Project development		
Week 15	Apr 25			
Week 16	May 02	Project presentations		

Teaching assistants: Kira Dusterwald, Sihao (Daniel) Liu

Graded worksheets

Every Thursday we will assign you a worksheet that is due on the second Monday after the assignment.

Contents

- 2 Time series analysis

What is time series analysis?

- Time series analysis characterizes data that is correlated in time.
- These correlations serverly restrict the applicability of conventional technniques assuming data samples that are independent and identically distributed.
- These correlations allow to **forecast** future values of a time series based on present and past values.

Relevance of time series analysis

economics daily stock market quotations, monthly unemployment figures.

social scientists birthrates, school enrollment.

epidemology number of influenza cases observed over some time period.

medicine blood pressure measurements traced over time.

Temporal vs spectral time series analysis

termporal time series analysis focuses on the analysis of lagged relationship (e.g., how does what happened today affect what will happen tomorrow?).

spectral time series analysis centers on the analysis of rhythms (e.g., can we observe rhythmic activity in local field potentials recorded from human brains?)

An example time series

In the examples below we will use spontaneous EEG (i.e., no task) recorded from a human subject (Liu et al., 2024).

Generation of time series

generate white noise the first step to generate time series is to generate white noise (i.e., independent Gaussian random variables with zero mean and fixed variance). Example

moving average models

$$\nu_t = \frac{1}{3}(w_{t-1} + w_t + w_{t+1})$$

autoregressive models

$$x_t = x_{t-1} - 0.9x_{t-2} + w_t$$

Summary

Liu, Q., Jia, S., Tu, N., Zhao, T., Lyu, Q., Liu, Y., Song, X., Wang, S., Zhang, W., Xiong, F., et al. (2024). Open access eeg dataset of repeated measurements from a single subject for microstate analysis. *Scientific Data*, 11(1):379.