

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Отчёт

по лабораторной работе №15

Название	«Формирование эффективных программ на Prolog»
Дисциплина	«Функциональное и логическое программирование»

Студент	ИУ7-65Б		Клименко А.К.
		(подпись, дата)	(Фамилия И.О.)
Преподаватель			Толпинская Н.Б.
		(подпись, дата)	(Фамилия И.О.)

Введение

Цель работы – изучить способы организации эффективных программ на Prolog, особенности использования системных предикатов и порядок выполнения программ с их использованием.

Для достижения поставленной цели необходимо решить следующие задачи:

- приобрести навыки эффективного описания предметной области с использованием фактов и правил;
- изучить возможность использования системных предикатов в программе на Prolog, принципы и особенности порядка работы в этом случае;
- изучить способ формирования и изменения резольвенты в этом случае и порядок формирования ответа.

Теоритические вопросы

1) Какое первое состояние резольвенты?

Ответ: первое состояние резольвенты представляет собой вопрос.

2) В каком случае система запускает алгоритм унификации? (Как эту необходимость на формальном уровне распознает система?)

Ответ: алгоритм унификации запускается системой в случае необходимости проверить, подходит ли текущее правило в базе знаний для доказательства текущей цели.

3) Каковы назначение и результат использования алгоритма унификации?

Ответ: результат алгоритма унификации представляет ответ да или нет. При ответе да результатом также является подстановка, сформированная в процессе работы алгоритма.

4) В каких пределах программы уникальны переменные?

Ответ: именованные переменные уникальны в пределах предложения, а анонимные переменные уникальны всегда.

5) Как применяется подстановка, полученная с помощью алгоритма унификации?

Ответ: все переменные, содержащиеся в постановке и в термах резольвенты, заменяются в резольвенте на соответствующие значения для этих переменных.

6) Как меняется резольвента?

Ответ: при нахождении похдодящего правила для первого терма резольвенты он заменяется на тело правила.

7) В каких случаях запускается механизм отката?

Ответ: механизм отката запускается в случае, когда система попадает в тупиковое состояние – резольвента не пуста, но вся база знаний уже была просмотрена с целью подбора знания для текущей цели доказательства.

Задание

В одной программе написать правила, позволяющие найти:

- 1. максимум из двух чисел (с/без использования отсечения);
- 2. максимум из трех чисел (с/без использования отсечения).

Убедиться в правильности результатов.

Для каждого случая пункта 2 обосновать необходимость всех условий тела. Для одного из вариантов ВОПРОСА и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы.

Текст программы

```
1
    domains
 2
         num = integer
 3
         numList = integer*
 4
 5
    predicates
 6
         max(num, num, num).
 7
         max(num, num, num, num).
 8
          max(num, numList).
 9
10
    clauses
11
         max(A, A, B) :- A >= B.
12
         max(B, _, B).
13
          max(A, A, B, C) :- A >= B, A >= C.
14
          max(B, _, B, C) :- B >= C.
15
          max(C, _, _, C).
16
17
18
          \max(A, [A]) :- !.
          \max(A, [A, B]) :- A >= B, !.
19
          \max(B, [\_, B]) :- !.
20
          \label{eq:max_R} \max(\textbf{R}, \text{ [A|T]}) \text{ :- } \max(\textbf{R1}, \text{ T}), \text{ } \max(\textbf{R}, \text{ A}, \text{ R1}).
21
22
    goal
23
24
          \max(R, [1, 3, 5, 2, 7, 0]).
```

Порядок поиска ответа для вопросов

Порядок поиска ответа для 1 варианта:

№ шаг	Сравниваемые термы; результат; подстановка	Дальнейшие действия	Резольвента
1	T1=max(X, 10, 24) T2=max(A, A, B) унифицированы theta={X=A, A=10, B=24}	Прямой ход, замена терма вопроса в резольвенте на тело правила.	10 >= 24
2	Системный предикат >= 10 >= 24 результат: по	Тупиковая ситуация. Откат к предыдущему состоянию резольвенты.	max(X, 10, 24)
3	T1=max(X, 10, 24) T2=max(B, _, B) унифицированы theta={X=B, B=24}	Подобран факт. Резольвента пуста, вывод результата.	пуста

Порядок поиска ответа для 2 варианта:

№ шага	Сравниваемые термы; результат; подстановка	Дальнейшие действия	Резольвента
1	T1=max(X, 8, 3, 11) T2=max(A, A, B, C) унифицированы theta={X=A, A=8, B=3, C=11}	Прямой ход, замена терма в резольвенте на тело правила.	8 >= 3, 8 >= 11
2	Системный предикат >= 8 >= 3 результат: yes	Прямой ход. Удаление терма резольвенты.	8 >= 11
3	Системный предикат >= 8 >= 11 результат: по	Тупиковая ситуация. Откат к предыдущему состоянию резольвенты.	max(X, 8, 3, 11)
4	T1=max(X, 8, 3, 11) T2=max(B, _, B, C) унифицированы theta={X=B, B=3, C=11}	Прямой ход, замена терма в резольвенте на тело правила.	8 >= 11
5	Системный предикат >= 8 >= 11 результат: по	Тупиковая ситуация. Откат к предыдущему состоянию резольвенты.	max(X, 8, 3, 11)
6	T1=max(X, 8, 3, 11) T2=max(C, _, _, C) унифицированы theta={X=C, C=11}	Подобран факт. Завершение работы алгоритма. Вывод результата.	

Заключение

В ходе работы были приобретены знания о способах организации эффективных программ на Prolog. Были изучены особенности использования системных предикатов и порядок выполнения программ с их использованием.

Эффективность программ написанных на языке Prolog может быть достигнута за счет изменения порядка следования фактов и правил в базе знаний, а также за счёт использования системных предикатов, которые позволяют сократить количество достигаемых в процессе поиска решения тупиковых состояний.