① On n'oubliera pas et on commencera donc ce second TD, en chargeant l'environnement virtuel défini lors de la première séance à l'aide de la commande source.

2.1 Calculs simples avec des nombres complexes

- 1. Initialiser deux nombres complexes z1 et z2 et réaliser un certain nombre d'opérations mathématiques telles qu'addition, multiplication... entre ces deux nombres. Tester également l'élévation à une puissance de ces nombres complexes.
- 2. Calculer le module et l'argument de chacun de ces nombres complexes. On s'aidera pour cela de la librairie mathématique math de Python déjà présente dans le système.
- 3. Déterminer à présent le module et l'argument en utilisant la librairie mathématique cmath dédiée au calcul sur les nombres complexes et également présente par défaut dans Python.

2.2 Structure conditionnelle, boucles et autres réjouissances

- 1. En fonction d'une valeur entière saisie par l'utilisateur (on utilisera à cette fin la fonction input de Python et on prendra bien garde à convertir le résultat en entier), afficher l'un des messages suivants :
 - "Ce nombre est pair"
 - "Ce nombre est impair, mais est multiple de 3"
 - "Ce nombre n'est ni pair ni multiple de 3"
- 2. Dénombrer le nombre de voyelles dans une phrase que l'utilisateur saisira.
- 3. Projet Euler n°1^a: Calculer la somme des entiers divisibles par 3 ou par 5 dans l'intervalle [0, N[où N sera fourni par l'utilisateur.
- 4. Projet Euler n°16: Donner la somme des chiffres de la représentation décimale de 2^N où N est un entier naturel fourni par l'utilisateur. Faire de même avec N! (Projet Euler n°20).
- 5. La suite de Fibonacci est définie de la façon suivante

$$\begin{aligned} \mathcal{F}_1 &= 1 \\ \mathcal{F}_2 &= 1 \\ \dots \\ \mathcal{F}_n &= \mathcal{F}_{n-2} + \mathcal{F}_{n-1} \end{aligned}$$

- (a) Calculer le résultat de cette suite pour un ordre *n* donné par l'utilisateur. On essaiera en particulier de tirer profit de l'affectation parallèle des variables dans Python.
- (b) Projet Euler $n^{\circ}2$: Calculer la somme des termes de Fibonacci pairs jusqu'à une valeur N donnée par l'utilisateur.
- (c) Projet Euler n°25: Déterminer l'indice n du premier terme \mathcal{F}_n dont la valeur contient plus de 1000 chiffres.

^aLe *Project Euler* est situé à l'adresse suivante: http://projecteuler.net. Ce site propose un grand nombre de problèmes (587 en date du 22/01/2017) aux apprentis programmeurs comme aux programmeurs chevronnés.

6. La formule de Wallis permet de calculer la valeur de π \emph{via} l'expression

$$\pi = 2 \prod_{n=1}^{\infty} \frac{4n^2}{4n^2 - 1}$$

Déterminer le nombre d'itérations n nécessaires pour que la valeur de π soit correcte jusqu'à la $7^{\text{ème}}$ décimale.