Labix

June 30, 2022

Abstract

Contents

1	Coulumb's Law 1.1 Charge	3
2	Electric Potential 2.1 Laplace's Equation	5
3	Electric Fields around Conductors	7
4	Electric Currents	8
5	Magnetic Force	10
6	Magnetic Field	11

1 Coulumb's Law

1.1 Charge

Definition 1.1.1. The charge of an electron is negative, denoted -e. The charge of a proton is positive, denoted e. Like charges repel each other and opposite charges attract.

Axiom 1.1.2 (Conservation of Charge). The total charge in an isolated system never changes.

Axiom 1.1.3 (Quantization of Charge).

Definition 1.1.4 (Coulomb's Law). The interaction between electric charges at rest is described by Coulomb's Law.

$$\mathbf{F}_{21} = \frac{q_1 q_2}{4\pi\epsilon_0 |\mathbf{r}_2 - \mathbf{r}_1|^2} \mathbf{r}_{21}$$

where q_1 and q_2 are the value of the electric charges.

Definition 1.1.5. The force on charge q_0 exerted by q_1, \ldots, q_n is given by

$$\mathbf{F} = \frac{1}{4\pi\epsilon_0} \sum_{k=1}^{n} \frac{q_0 q_k}{|\mathbf{r}_k - \mathbf{r}_0|} \mathbf{r}_{k0}$$

Theorem 1.1.6. The work required to bring two particles to have the distance of r is

$$W = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$

Theorem 1.1.7. The potential energy of a system of charge is

$$U = \frac{1}{2} \sum_{j=1}^{n} \sum_{k \neq j} \frac{1}{4\pi\epsilon_{0}} \frac{q_{j} q_{k}}{|\mathbf{r}_{j} - \mathbf{r}_{k}|^{2}}$$

Definition 1.1.8. The electric field **E** of a charge distribution is

$$\mathbf{E}(x, y, z) = \frac{1}{4\pi\epsilon_0} \sum_{k=1}^{n} \frac{q_k}{|\mathbf{r}_k - \mathbf{r}_0|} \mathbf{r}_{k0}$$

such that $\mathbf{F} = q\mathbf{E}$

By developing the concept of an electric field, we can predict what force the charge receives at (x, y, z) and where it moves.

Definition 1.1.9. For a continuous charge distribution, the electric field it generates is given by

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \iiint_V \frac{\rho(\mathbf{r}')(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^{3/2}} d^3\mathbf{r}'$$

Let there be an arbitrarily volume in 3 dimensions. Let there be a sphere enclosed by the volume. Let the normal of the sphere be **a**. Then project the patch onto the volume with a cone starting from the origin. The patch projected scales with a factor of $\left(\frac{R}{r}\right)^2$. And owing to its inclination $\frac{1}{\cos(\theta)}$, where θ is the angle made between the normal of the old patch and the normal of the new patch. E_R is also scaled by a factor of E_r due to being further away from the origin. We have that the flux through the outer patch is given by $\mathbf{E}_R \cdot \mathbf{A} = E_R A \cos(\theta)$ and $vbE_r \cdot \mathbf{a} = E_r a$.

The flux of the electric field through any surface enclosing a point charge q is $\frac{q}{\epsilon_0}$

Theorem 1.1.10 (Gauss's Law). The flux of the electric field is equal to $\frac{1}{\epsilon_0}$ times the total charge enclosed by the surface.

$$\int \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} \int \rho \, dV = \frac{1}{\epsilon_0} \sum_{k=1}^n q_k$$

Theorem 1.1.11 (Field of a Sphere).

$$E = \frac{Q}{4\pi\epsilon_0 r^2}$$

where Q is the total charge on the sphere. if it is uniformly distributed, is equal to $4\pi r_0^2 \sigma$.

Theorem 1.1.12 (Field of a Line Charge).

$$E = \frac{\lambda}{2\pi\epsilon_0 r}$$

Theorem 1.1.13 (Field of an Infinite Flat Sheet of Charge).

$$E = \frac{\sigma}{2pi\epsilon_0}$$

where σ is the surface charge distribution

Theorem 1.1.14. The force per unit area on a layer of charfe equals the density times the average of the fields on either side

$$\frac{F}{A} = \frac{1}{2}(E_1 + E_2)\sigma$$

Definition 1.1.15 (Energy Density). The energy density of an electric field is $\frac{\epsilon_0 E^2}{2}$

Theorem 1.1.16. The total energy in a system equals

$$U = \frac{\epsilon_0}{2} \int E^2 \, dV$$

2 Electric Potential

Proposition 2.0.1. The line integral

$$\int_{r_*}^{p_2} \mathbf{E} \cdot ds$$

is path independent.

Proposition 2.0.2. The line integral

$$\int \mathbf{E} \cdot ds$$

around any closed path in an electric field is 0.

Definition 2.0.3 (Electric Potential Difference). Define

$$\phi_{21} = -\int_{p_1}^{p_2} \mathbf{E} \cdot ds$$

the work per unit charge done by external agency in moving a positive charge from p_1 to p_2 in the field \mathbf{E} . We call work per unit charge done the electric potential difference.

Note the differences. The potential energy of a system of charges is the total work required to assemble it. The Electric potential is the work per unit charge required to move a unit positive test charge from some reference point to the point (x, y, z) in the field.

Theorem 2.0.4. The electric field can be derived from the electric potential function

$$\mathbf{E} = -\nabla \phi$$

Theorem 2.0.5 (Superposition). The potential function given from multiple sources is given by

$$\phi = \int_{\text{all sources}} \frac{\rho(x', y', z')}{4\pi\epsilon_0 r} dx' dy' dz' = \sum_{\text{all sources}} \frac{q_i}{4\pi\epsilon_0 r}$$

where r is the distance from the volume element or charge to the point.

Note that the above sources must be confined to some finite region of space.

Theorem 2.0.6.

$$U = \frac{1}{2} \int \rho \phi \, dV$$

Theorem 2.0.7.

$$abla \cdot \mathbf{E} = rac{
ho}{\epsilon_0}$$

Theorem 2.0.8 (Poisson's Equation).

$$\nabla \cdot \mathbf{E} = -\nabla^2 \phi = \frac{\rho}{\epsilon_0}$$

2.1 Laplace's Equation

Definition 2.1.1 (Laplace's Equation).

$$\nabla^2 \phi = 0$$

Theorem 2.1.2. If ϕ satisfies Laplace's Equation, then the average value of ϕ over the surface of any sphere is equal to the value of ϕ at the center of the sphere

Theorem 2.1.3 (Earnshaw's Theorem). It is impossible to construct an electrostatic field that will hold a charged particle in stable equilibrium in empty space.

Theorem 2.1.4. Electrostatic fields must have $\nabla \times \mathbf{E} = 0$

3 Electric Fields around Conductors

Definition 3.0.1. Given a system of conductors, the following holds.

- $\mathbf{E} = 0$ inside the material of a conductor
- $\rho = 0$ inside the material of a conductor
- $\phi = \phi_k$ for all points inside the material and on the surface of the kth conductor
- At any point just outside the conductor, **E** is perpendicular to the surface and $E = \frac{\sigma}{\epsilon_0}$ where σ is the local density of surface charge
- $Q_k = \int_{S_k} \sigma \, da = \epsilon_0 \int_{S_k} \mathbf{E} \cdot d\mathbf{a}$ where Q_k is the charge on conductor S_k

Definition 3.0.2. An isolated conductor carrying a charge Q has a certain potential ϕ_0 . Q would be proportional to ϕ_0 , depending linearly on the size and shape of the conductor.

$$Q = C\phi_0$$

where C is the capacitance of the conductor.

Definition 3.0.3.

$$Q = C(\phi_1 - \phi_2)$$

where C is called the capacitance of the capacitor.

Theorem 3.0.4.

$$W = \frac{Q_f^2}{2C}$$

Theorem 3.0.5.

$$U = \frac{1}{2}C\phi^2$$

Theorem 3.0.6.

$$F = \frac{Q^2}{2} \frac{d}{dx} \frac{1}{C}$$

4 Electric Currents

Definition 4.0.1.

$$A = \frac{C}{t}$$

Definition 4.0.2. Current through a frame of n particles of equal charge and direction is

$$I = nq\mathbf{a} \cdot \mathbf{u}$$

where a is the normal of the frame, u is the velocity vector of the charge. The sum of different classes of particles is

$$I = \mathbf{a} \cdot \sum_{k} n_k q_k \mathbf{u}_k$$

Definition 4.0.3 (Current Density).

$$\mathbf{J} = \sum_{k} n_k q_k \mathbf{u}_k$$

Proposition 4.0.4.

$$\mathbf{J} = -eN_e\overline{\mathbf{u}_e}$$

where N_e is the total electron in a volume, \mathbf{u}_e the average velocity vector.

Theorem 4.0.5.

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{a}$$

where S is a surface.

Theorem 4.0.6.

$$\nabla \cdot \mathbf{J} = 0$$

if J is time independent

Theorem 4.0.7. $\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$ if \mathbf{J} is time dependent.

Theorem 4.0.8.

$$J = \sigma E$$

where σ is called the conductivity of the material.

Theorem 4.0.9. Denote V the electric potential difference $\phi_1 - \phi_2$.

$$V = IR$$

where R is the constant called the resistance of the conductor. R depends on the shape, size and conductivity of the material.

Definition 4.0.10.

$$\rho = \frac{1}{\sigma}$$

resistivity is the inverse of conductivity

Theorem 4.0.11. Resistance of a wire

$$R = \frac{\rho L}{A}$$

where L is the length and A is the cross-sectional area.

Theorem 4.0.12. Average momentum of N positive ions

$$M\overline{\mathbf{u}_{+}} = \frac{1}{N} \sum_{j} (M\mathbf{u}_{j}^{c} + e\mathbf{E}t_{j})$$

 \mathbf{u}_{i}^{c} is the velocity of the jth ion after its last collision.

Proposition 4.0.13. Average velocity of a positive ion in E is

$$\overline{\mathbf{u}_{+}} = \frac{\mathbf{E}e\overline{t_{+}}}{M_{+}}$$

Proposition 4.0.14.

$$\sigma \approx e^2 \left(\frac{N_+ \tau_+}{M_+} + \frac{N_- \tau_-}{M_-} \right)$$

where τ is the mean time between collisions.

Theorem 4.0.15. Resistance in series

$$R = R_1 + R_2$$

Resistance in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$

Theorem 4.0.16. Current is found via Ohm's law and Kirchhoff's rules.

- $\bullet V = IR$
- At a node of the network, a point where three or more connecting wires meet, the algebraic sum of currents into the node must be 0.
- The sum of potential differences taken in order around a loop of the network is 0.

Theorem 4.0.17. Work done

$$P = I^2 R$$

Theorem 4.0.18. A battery utilizes chemical reactions to supply an electromotive foce. Since the line integral of the electric field around a complete circuit is 0, there must be locations where ions move against the electric field. This force is provided by the chemical reaction.

Theorem 4.0.19 (Thevenin's Theorem). Any circuit is equivalent to a single voltage source and a single resistor.

5 Magnetic Force

Theorem 5.0.1 (Lorentz Force). Total force experienced by a particle with charge q is

$$\mathbf{F} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B}$$

where \mathbf{B} is the magnetic field.

Theorem 5.0.2 (Moving charges).

$$Q = \epsilon_0 \int_{S(t)} \mathbf{E} \cdot d\mathbf{a}$$

Gauss's law holds for moving charges.

Theorem 5.0.3. Total charge in a system is not changed by the motion of the charge carriers.

Theorem 5.0.4.

$$\mathbf{E}_{||}' = \mathbf{E}_{||}$$

and

$$\mathbf{E}'_{\perp} = \gamma \mathbf{E}_{\perp}$$

Theorem 5.0.5. The field of a point charge moving with constant velocity $v = \beta c$ is radial and has magnitude

$$E = \frac{Q}{4\pi\epsilon_0 r^2} \frac{1 - \beta^2}{(1 - \beta^2 \sin^2(\theta))^{3/2}}$$

Theorem 5.0.6.

$$\mathbf{F}_{||}'=\mathbf{F}_{||}$$

and

$$\mathbf{F}_{\perp}' = \frac{1}{\gamma}\mathbf{F}_{\perp}$$

Theorem 5.0.7. If a charge is moving with respect to other changes that are also moving in the lab frame, then the charge experiences a magnetic force. This force can also be viewed as an electric force in the particle's frame.

6 Magnetic Field

Theorem 6.0.1.

$$\mathbf{B} = \mathbf{k} \frac{\mu_0 I}{2\pi r}$$

where

$$\mu_0 = \frac{1}{\epsilon_0 c^2}$$

Theorem 6.0.2. Force between two parallel wires

$$F = \frac{\mu_0 I_1 I_2 \mathbf{l}}{2\pi r}$$

and

$$d\mathbf{F} = Id\mathbf{l} \times \mathbf{B}$$

Theorem 6.0.3 (Ampere's Law).

$$\int \mathbf{B} \cdot d\mathbf{s} = \mu_0 I$$

where I is the current enclosed by the path.

Theorem 6.0.4.

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

Theorem 6.0.5.

$$\nabla \cdot \mathbf{B} = 0$$

Definition 6.0.6. Define **A** to be

$$\mathbf{B} = \nabla \times \mathbf{A}$$

the vector potential.

Theorem 6.0.7.

$$\mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}}{r} \, dv$$

Theorem 6.0.8.

$$d\mathbf{B} = \frac{\mu_0 \mathbf{I}}{4\pi} \frac{d\mathbf{l} \times \mathbf{r}}{r^2}$$