I	Имя, ф 	амилия	и номе	р групг	іы:							
1.	а	b	С	d	e	f	18a	b	С	d	e	f
2.	a	b	c	d	e		19. a	b	c		e	
3.	a	b	c	d	e	f	20. a	b	c	d	e	
4.	a	b	c	d	e		21. a	b	\Box c	d	e	
5.	a	b	c	d	e	f	22. a	b	\Box c	d	e	
6.	a	b	С	d	e	f	23. a	b	\Box c	d	e	\Box f
7.	a	b	С	d	e	f	24. a	b	\Box c	d	e	f
8.	a	b	С	d	e	∐ f	25. a	b	\Box c	d	e	
9.	∐ a	b	С	d	e	∐ f	26. a	b	\Box c	d	e	\Box f
10.	∐ a	b	С	∐ d	e	∐ f	27. a	b	С	d	e	f
11.	a	b	c	d	e	∐ f	28. a	b	С	d	e	f
12.	a	b	c	d	e	f	29. a	b		d	e	
13.	a	b	c	d	e	f □_f	30. a	b	\Box c	d	e	
14.15.	☐ a	Ъ	c		e e	r	31. a	b	\Box c	d	e	
16.		b	С		е	f	32. a	b	С	d	е	f
17.	a	b	С	d	e	f	33. a	b	С	d	е	

Удачи!

1. Пусть X_1, \ldots, X_n — выборка из распределения Бернулли с параметром θ .

Выберите верное утверждение об эффективности оценки $\hat{\theta}=\bar{X}$, дисперсии и информации Фишеpa.

- а) оценка неэффективна,

- е) нет верного ответа
- $\overline{p(1-p)}$ b) оценка эффективна, $\mathrm{Var}(\hat{\theta}) = \frac{p(1-p)}{n}$ и $I(\theta) =$ d) оценка эффективна, $\mathrm{Var}(\hat{\theta}) = \frac{n}{p(1-p)}$ и $I(\theta) =$
- неэффективна, f) оценка $\operatorname{Var}(\hat{\theta}) = \frac{p(1-p)}{n} \operatorname{id} I(\theta) = np(1-p)$
- 2. Величина X имеет F-распределение с 2 и 12 степенями свободы.

Какое распределение имеет величина $Y = X^{-1}$?

a) $F_{12,2}$

- с) нет верного ответа
- e) χ_{14}^2

b) $F_{1/2,1/12}$

d) $F_{2,12}$

- f) $F_{1/12,1/2}$
- 3. По случайной выборке размером 100 студентов из всех студентов Вышки доля любителей кричать «Халява приди» равна 0.5.

Найдите правую границу 95%-й асимптотического доверительного интервала для вероятности того, что случайно выбираемый студент Вышки любит кричать «Халява приди».

a) 0.698

c) 0.598

e) 0.748

- b) нет верного ответа
- d) 0.648

- f) 0.798
- 4. Выберите верное определение эффективности оценки $\hat{\theta}_n$ параметра θ в некотором классе оценок \mathcal{K} .
 - a) $Var(\hat{\theta}_n) = \frac{\sigma^2}{n}$

полнено $\mathbb{E}((\hat{\theta}_n-\theta)^2)\le$ d) нет верного ответа $\mathbb{E}((T-\theta)^2)$ e) $\hat{\theta}_n\stackrel{\mathrm{P}}{\to}\theta$

- b) Для любой оценки T из класса $\mathcal K$ и любого θ вы-
- c) $Var(\hat{\theta}_n) \to 0$

- f) $\mathbb{E}(\hat{\theta}_n) = \theta$
- 5. По выборке X_1, \dots, X_n из нормального распределения с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0: \sigma^2 = 30$ против $H_a: \sigma^2 \neq 30$.

Какое распределение будет иметь тестовая статистика?

a) χ_{n-1}^{2}

c) t_n

е) нет верного ответа

b) t_{n-1}

d) $\mathcal{N}(0,1)$

- f) χ_n^2
- 6. Отличница Машенька получает только 8, 9 или 10. За все годы обучения Маша получила 40 восьмёрок, 30 девяток и 50 десяток.

Найдите значение статистики Пирсона для проверки гипотезы о том, все отличные оценки имеют равную вероятность.

a) 5

c) 15

е) нет верного ответа

b) 55

d) 25

f) 35

7. Имеются две случайных выборки $X_1,...,X_{31}$ и $Y_1,...,Y_{41}$ из нормальных распределений. Известно, что $\sum_{i=1}^{31}(X_i-\bar{X})^2=120$ и $\sum_{i=1}^{41}(Y_i-\bar{Y})^2=400$.

Найдите возможное значение статистики, проверяющей гипотезу о равенстве дисперсий данных распределений.

а) нет верного ответа

c) 2.52

e) 0.3

b) 3.33

d) 2.5

f) 2

8. По выборке X_1, \dots, X_n из нормального распределения с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии H_0 : $\sigma^2=30$ против H_a : $\sigma^2\neq30$. Известно, что $\sum_{i=1}^{n} (\bar{X}_i - \bar{X})^2 = 270.$

Чему может быть равна тестовая статистика?

a) 3

c) 27

e) 15

b) 6

d) нет верного ответа

f) 9

9. По выборке из одного наблюдения x=1 с помощью критерия Колмогорова Айк тестирует гипотезу о том, что выборка была получена из стандартного нормального распределения.

Укажите, чему равняется значение тестовой статистики с точностью до двух знаков после запятой.

а) нет верного ответа

c) 0.15

e) 0.76

b) 0.16

d) 0.84

f) 0.36

10. Пусть X_1, \ldots, X_n — случайная выборка из распределения с плотностью распределения

$$f(x;\,\theta) = \begin{cases} \frac{2x}{\theta^2} & \text{при } x \in [0;\,\theta], \\ 0 & \text{при } x \not\in [0;\,\theta], \end{cases}$$

где $\theta > 0$.

Используя начальный момент 2-го порядка, при помощи метода моментов найдите оценку неизвестного параметра θ .

a) $\sqrt{\sum_{i=1}^n X_i^2}$

е) нет верного ответа

b) $\frac{2}{3}\bar{X}$

c) $\frac{3}{2}\bar{X}$ d) $\sqrt{\frac{n}{2}\sum_{i=1}^{n}X_{i}^{2}}$

f) $\sqrt{\frac{2}{n} \sum_{i=1}^{n} X_i^2}$

11. Дана реализация выборки: -1, 1, 0, 2.

Найдите выборочный начальный момент второго порядка.

a) 0	c) 1.2	е) нет верного ответа						
b) 0.5	d) 1.5	f) 1						
	Пусть X_1, X_2 — случайная выборка из нормального распределения с неизвестным математическим ожиданием μ и неизвестной дисперсией σ^2 .							
Найдите значени тивной.	Найдите значение константы c , при котором оценка $\hat{\mu} = cX_1 + (1-c)X_2$ является наиболее эффек-							
а) нет верного	ответа с) 2/5	e) 1/2						
b) 1/4	d) 1/5	f) 1/3						
13. Ковариационная	матрица вектора $X = (X_1, X_2)$ имеет	вид						
	$\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix}.$							
Найдите дисперо	сию разности элементов вектора, Var(2	$(X_1 - X_2)$.						
a) 6	c) 2	е) нет верного ответа						
b) 15	d) 12	f) 18						
	,, Z_n независимы и нормальны $\mathcal{N}(0$							
Какое распредел	Какое распределение имеет случайная величина $\frac{Z_1\sqrt{n-3}}{\sqrt{\sum_{i=4}^n Z_i^2}}$?							
a) t_{n-3}	c) χ^{2}_{n-4}	e) t_{n-1}						
b) нет верного		e) t_{n-1} f) $\mathcal{N}(0,1)$						
15. Пусть $X \sim \chi_2^2$ и Y	$ ilde{\chi} \sim \chi_3^2$ — независимые случайные вел	ичины.						
	Какое распределение имееет случайная величина $X+Y$?							
а) нет верного	ответа c) χ_1^2	e) $N(0; 2)$						
b) χ_6^2	d) χ_5^2	f) χ_5						
16. Величины Z_1, Z_2	,, Z_n независимы и нормальны $\mathcal{N}(0$,1).						
Какое распредел	Какое распределение имеет случайная величина $\frac{2Z_1^2}{Z_2^2 + Z_7^2}$?							
a) $F_{7,2}$	с) нет верного отве	та e) $F_{1,2}$						
b) $F_{1,7}$	d) $F_{2,7}$	f) t_2						
17. При каком услов	ии последовательность оценок \hat{a}_n пара	аметра a является состоятельной?						

a) $\mathbb{E}((\hat{a}_n-a)^2) \stackrel{\mathbb{P}}{\to} 0$

с) нет верного ответа

e) $\mathbb{E}((\hat{a}_n - a)^2) \stackrel{\mathbb{P}}{\to} a$

b) $\mathbb{E}((\hat{a}_n-a)^2) \stackrel{\mathbb{P}}{\to} \hat{a}_n$

 $\mathbf{d}) \ \hat{a}_n \stackrel{\mathbb{P}}{\to} a$

f) $\mathbb{E}((\mathbb{E}(\hat{a}_n) - a)^2) \stackrel{\mathbb{P}}{\to} \hat{a}_n$

18. По 100 наблюдениям за нормально распределенной случайной величиной с известной дисперсией, Вася проверял гипотезу $H_0: \mu = 10$ при альтернативной гипотезе $H_1: \mu > 10$.

Оказалось, что выборочное среднее $\bar{X}=12$. Вася рассчитал тестовую статистику и P-значение. После этого Вася решил попробовать изменить альтернативную гипотезу на $H_1: \mu \neq 10.$

Как при этом изменилось Р-значение?

а) Выросло, насколько - неиз-

b) Упало, насколько - неиз-

вестно

е) нет верного ответа

вестно

с) Упало вдвое d) Не изменилось

f) Выросло вдвое

19. Величина X имеет t-распределение с 9 степенями свободы.

Какое распределение имеет величина $Y = X^2$?

а) нет верного ответа

c) $F_{9.1}$

e) t_{81}

b) $F_{1.9}$

d) $F_{q,q}$

f) χ_0^2

20. Случайные величины $X_1, ..., X_n$ независимы и имеют функцию плостности

$$f(x;\,\theta) = \begin{cases} \frac{1}{\theta} x e^{-x/\sqrt{\theta}} & \text{при } x > 0, \\ 0 & \text{при } x \leq 0, \end{cases}$$

где $\theta > 0$.

Найдите оценку неизвестного параметра θ методом максимального правдоподобия.

a) $\sqrt{\sum_{i=1}^{n} X_i/n}$

e) $(\sum_{i=1}^{n} X_i/2n)^2$

b) $\sum_{i=1}^{n} \sqrt{X_i}/n$

c) $\sum_{i=1}^{n} X_i/n$ d) $\sqrt{\sum_{i=1}^{n} X_i/2n}$

21. Случайные величины X и Y распределены нормально с неизвестным математическим ожиданием и неизвестной дисперсией. Для тестирования гипотезы о равенстве дисперсий выбирается 20 наблюдений случайной величины X и 30 наблюдений случайной величины Y.

Какое распределение может иметь статистика, используемая в данном случае?

a) $F_{20.30}$

c) t_{48}

e) χ_{48}^2

b) нет верного ответа

d) $F_{29,19}$

f) χ_{40}^2

22. Пусть X, Y, Z — независимые стандартные нормальные случайные величины.

Какое распределение имеет случайная величина $X^2 + Y^2 + Z^2$?

a) [1.54, 5.46]

b) [3.08, 5.92]

	a) χ_1^2	c) χ_2^2	e) χ_2					
	b) t ₃	d) нет верного ответа	f) χ_3^2					
23.	Известно истинное значение параметра, $\theta=1$, и информация Фишера о параметре θ , заключенная в одном наблюдении, $I_1(\theta)=8$.							
	Найдите примерное распределение оценки максимального правдоподобия $\hat{ heta}$ параметра $ heta$, найденной по ста наблюдениям случайной выборки.							
	a) $\mathcal{N}(1, 8)$	c) $\mathcal{N}(1, 1/8)$	e) $\mathcal{N}(1, 1/\sqrt{800})$					
	b) $\mathcal{N}(1, 1/800)$	d) $\mathcal{N}(1, 1/\sqrt{8})$	f) нет верного ответа					
24.	Величина $\hat{ heta}$ имеет нормальное распределение $\mathcal{N}(2;0.01^2)$.							
	Какое примерное распределение имеет $\hat{ heta}^2$ согласно дельта-методу?							
	a) $\mathcal{N}(4; 2 \cdot 0.01^2)$	c) $\mathcal{N}(2; 4 \cdot 0.01^2)$	е) нет верного ответа					
	b) $\mathcal{N}(4; 8 \cdot 0.01^2)$	d) $\mathcal{N}(4; 16 \cdot 0.01^2)$	f) $\mathcal{N}(4; 4 \cdot 0.01^2)$					
25.	Величины X и Y одинаково распределены с нулевым математическим ожиданием и дисперсией 4. Вектор (X,Y) имеет многомерное нормальное распределение с корреляцией 0.7 . Найдите $\mathbb{E}(Y\mid X=3)$.							
	а) нет верного ответа	c) 0.51	e) 2.1					
	b) 0.7	d) 2.04	f) 0					
26.	Пусть X_1,\ldots,X_7 — выборка из распределения Бернулли с параметром $\theta.$							
	Найдите информацию Фишера о	параметре θ , содержащуюся в вы	борке.					
	a) $7\theta(1-\theta)$	c) $\frac{1}{\theta - \theta^2}$	e) $\frac{1}{\theta^2-\theta}$					
	b) $\frac{7}{\theta - \theta^2}$	d) 7 <i>θ</i>	f) нет верного ответа					
27.	При проверке гипотезы $H_0: \mu=4$ по 4 наблюдениям $X_1,\dots,X_4 \sim \mathcal{N}(\mu,16)$ против двусторонней альтернативной гипотезы оказалось, что $\bar{X}=7.$							
	При каком наименьшем уровне значимости нулевая гипотеза будет отвергнута?							
	а) нет верного ответа	c) 0.32	e) 0.45					
	b) 0.05	d) 0.24	f) 0.13					
28.	28. Для случайной выборки 1, 2, 3, 4, 5 из нормального распределения найдите границы 95%-го дове рительного интервала для математического ожидания.							

c) [0.86, 5.14]

d) нет верного ответа

e) [-4.02, 1, 02]

f) [1.04, 4.96]

29. Выборочные доли, вычисленные по двум независимым выборкам из распределений Бернулли с неизвестными вероятностями успеха, оказались равны 0.75. Каждая выборка содержит 100 наблюдений.

Найдите длину 95%-го доверительного интервала для разницы вероятностей успеха.

а) нет верного ответа

c) 0.61

e) 0.06

b) 0.94

d) 0.24

f) 0.19

30. Найдите дисперсию выборочного среднего, построенного по случайной выборке размера n из экспоненциального распределения с $\lambda = 4$.

a) $\frac{1}{4n^2}$

c) 4n

b) $\frac{1}{16n}$

d) нет верного ответа

f) $\frac{1}{4\pi}$

31. Есть два неизвестных параметра, θ и γ . Вася проверяет гипотезу H_0 : $\theta=1$ и $\gamma=2$ против альтернативной гипотезы о том, что хотя бы одно из равенств нарушено.

Выберите верное утверждение об асимптотическом распределении статистики отношения правдоподобия, LR.

а) Если верна H_0 , то $LR \sim \chi_1^2$

b) И при H_0 , и при H_a , $LR \sim$

c) И при H_0 , и при H_a , $LR\sim$ e) нет верного ответа χ^2_2 d) Если верна H_a , то $LR\sim\chi^2_2$ f) Если верна H_0 , то $LR\sim\chi^2_2$

32. По выборке из пяти наблюдений 1, 0, -2, 0, 1 рассчитайте отношение неисправленной выборочной оценки дисперсии к несмещенной (исправленной) оценке дисперсии.

a) 0.8

c) 0.75

e) 1.2

b) 1

d) нет верного ответа

f) 1.25

33. Винни-Пух строит доверительный интервал для разности математических ожиданий по двум независимым нормальным выборкам размера m и n при неизвестных равных дисперсиях.

Какое распределение ему можно использовать?

a) t_{m+n}

c) $\mathcal{N}(0; m+n-2)$

е) нет верного ответа

b) $t_{m-1,n-1}$

d) t_{m+n-2}