La présentation et la rédaction interviennent pour une part importante dans la notation.

Exercice I

Quelques questions indépendantes et élémentaires d'applications directes du cours.

1) Déterminer un équivalent au voisinage de 0 de :

•
$$\ln(1+x) - \sin x$$

•
$$\ln(1+x) - \sin x$$

• $x - \frac{1}{2}\sin x - \frac{1}{2}\tan x$

2) On considère l'équation différentielle : y'' + y' + y = 0.

• La résoudre dans
$$\mathcal{D}^2(\mathbb{R}, \mathbb{C})$$
. • La résoudre dans $\mathcal{D}^2(\mathbb{R}, \mathbb{R})$.

3)
$$\lim_{x \to 0} \frac{x - \arcsin x}{\ln(1 + x^3)}$$
; $\lim_{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{1 - \cos x}}$

4) Soit
$$f: x \mapsto \frac{1}{\cos x + \sin x}$$
; déterminer le $DL_3(0)$ de $f(x)$.

4) Soit
$$f: x \mapsto \frac{1}{\cos x + \sin x}$$
; déterminer le $\mathrm{DL}_3(0)$ de $f(x)$.
5) (déjà donné en préparation) $\mathrm{DA}_{\frac{1}{x}}(+\infty)$ de $f: x \mapsto \sqrt{x^2 + 2x + 3} - 4x + 7$.

En déduire l'étude de la branche infinie de f au voisinage de $+\infty$ (c'est à dire, ici, prouver l'existence d'une asymptote \mathcal{D} et préciser la position locale de \mathcal{C}_f par rapport à celle-ci).

Exercice II

Etude d'une fonction au voisinage d'un point.

1) Soit
$$g: x \mapsto \frac{1}{\sin x} - \frac{1}{x}$$
.
a) Donner \mathcal{D}_f .

a) Donner
$$\mathcal{D}_f$$

b) Prouver que
$$g$$
 admet le $DL_1(0): g(x) = \frac{x}{6} + o(x)$.

Qu'en déduit-on sur la possibilité de prolonger g par continuité en 0 par \tilde{g} ; que dire de plus de \tilde{g} ?

2) Déterminer la dérivée
$$g'$$
 de g sur \mathcal{D}_f .

a) Prouver que:
$$\sin^2 x - x^2 \cos x \sim \frac{x^4}{6}$$
.

b) En déduire :
$$g'(x) \sim \frac{1}{6}$$
.

En déduire que \widetilde{g} est de classe \mathcal{C}^1 sur $\mathcal{D}_f \cup \{0\}$.

c) Pourquoi est-il ici évident que O est un point d'inflexion de $\mathcal{C}_{\widetilde{f}}$?

Exercice III

Résoudre:
$$(x^2 + 2x + 5)y' + (x + 1)y = \frac{e^x}{e^{2x} + 1}\sqrt{x^2 + 2x + 5}$$
.

Exercice IV

1) Soit
$$f_m: \begin{pmatrix} [0,2\pi] & \longrightarrow & \mathbb{R} \\ x & \mapsto & \cos(mx) \end{pmatrix} \quad (m \in \mathbb{N}^*)$$

$$\begin{aligned} \text{1) Soit } \mathbf{f}_{\mathbf{m}} : \begin{pmatrix} [0,2\pi] & \longrightarrow & \mathbb{R} \\ x & \mapsto & \cos(mx) \end{pmatrix} & (m \in \mathbb{N}^*). \\ \text{Prouver} : (\forall (p,q) \in (\mathbb{N}^*)^2) & \int_0^{2\pi} f_p(x) f_q(x) \ dx = \left\{ \begin{array}{ll} 0 & \text{si } p \neq q \\ \pi & \text{si } p = q \end{array} \right. \\ \text{2) For all its other laws } \end{aligned}$$

2) En utilisant le 1), prouver que la famille (f_1, \ldots, f_n) est libre pour tout $n \in \mathbb{N}^*$.

1