Please also note the general rules for this HW:

- 1) Your HW report must be self-contained. Ensure all steps and values are included in the report, not just in your code. We won't run your code to verify your results; everything needed should be in the report itself.
- 2) Similar to HW 1: You will need to include your code with all the MATLAB formatting.

I. LOADING IN SENSOR DATA AND SOME ANALYSIS

You are provided with a CSV file that contains 4 pieces of information: the angular velocity components in the body frame and the corresponding timestamps for the measurements.

Use the following pseudo-code to extract the data in MATLAB.

```
clc
clear

T = readtable(Filename);

wx = T.wx;
wy = T.wy;
wz = T.wz;

% Step 1: Convert the time strings into datetime format
timeData = datetime(T.time, 'InputFormat', 'yyyyy-MM-dd''T''HH:mm:ss.SSS''Z''',...
'TimeZone', 'UTC');

% Step 2: Calculate time differences from the first time in the list
timeDifferences = timeData - timeData(1);

% Step 3: Convert the differences to seconds
t = seconds(timeDifferences);
```

The initial Yaw-Pitch-Roll angles are given as:

$$Yaw = 30^0$$
 Pitch = 70^0 Roll = 20^0

- 1) Which Euler-angle rotation sequence is this?
- 2) Convert the initial Yaw-Pitch-Roll values into a DCM.
- 3) Convert the initial Yaw-Pitch-Roll values into a quaternion.
- 4) Plot the angular velocities as a function of time.
- 5) Comment on the nature of the data: (a) what is the frequency of the sensor output. (b) Are the sensor outputs at equal time intervals?

II. PROPAGATION OF ATTITUDE MOTION USING DCM

1) Numerically Propagate the DCM from time t_k to t_{k+1} $(k=0,\cdots)$ using the equations of motion derived in class.

$$\dot{C}_{BN} = -[\tilde{\omega}]C_{BN}$$

You are to assume a zero-order-hold (ZOH) for the angular velocities. The zero-order hold (ZOH) is a method used in digital signal processing to reconstruct a continuous-time signal from a discrete-time signal. It assumes that each sample in a discrete-time signal remains constant (or "held") until the next sample arrives. It is illustrated in the figure below:

2) Analytically Propagate the DCM from time t_k to t_{k+1} $(k = 0, \cdots)$ using the equations of motion derived in class.

$$C_{BN}(t_{k+1}) = \operatorname{expm}\left(-[\tilde{\omega}]\Delta t_k\right) \ C_{BN}(t_k)$$

where $\Delta t_k = t_{k+1} - t_k$

3) **Plot the time history of the error DCM.** The error is obtained by multiplying DCM obtained from numerical propagation with the inverse of DCM obtained from analytic propagation.

$$error(t_k) = C_{BN_{(numerical)}}(t_k)C_{BN_{(analytic)}}^T(t_k) - I_{3\times3}$$

The quantity above must be zero if the error is zero.

4) Plot the evolution of the Yaw-Pitch-Roll angles as a function of time.

III. PROPAGATION OF ATTITUDE MOTION USING QUATERNION

1) Analytically Propagate the Quaternions from time t_k to t_{k+1} using the equations of motion derived in class.

$$\bar{\beta}(t_{k+1}) = \Phi(t_k, t_{k+1})\bar{\beta}(t_k), \quad \Phi(t_k, t_{k+1}) = e^{\frac{1}{2}B(\bar{\omega}_{\mathcal{B}/\mathcal{N}})\Delta t}, \quad B(\bar{\omega}_{\mathcal{B}/\mathcal{N}}) = \begin{bmatrix} 0 & -\omega_1 & -\omega_2 & -\omega_3 \\ \omega_1 & 0 & \omega_3 & -\omega_2 \\ \omega_2 & -\omega_3 & 0 & \omega_1 \\ \omega_3 & \omega_2 & -\omega_1 & 0 \end{bmatrix}$$

- 2) Plot the Quaternions and show that for all time the quaternion constraint is satisfied.
- 3) From the previous part, convert the roll-pitch-yaw angles obtained from analytical propagation and convert them to Quaternions.
- 4) Just like in the previous part, plot the time history of the error in the quaternion propagation. The error is computed as:

$$error = \delta\beta - [1, 0, 0, 0]^T$$

where

$$\delta\beta = \beta_1 \otimes \beta_2^{-1}$$

where, β_1 is the analytically propagated quaternion, and β_2 is the (pitch-roll-yaw) from previous part converted to quaternions.