Credit Fraud Detection

INTRODUCTION:

In this project, we'll apply 3 different predictive approaches to compare:

- How accurate we can be;
- How much we can minimize false positives (this becomes a problem when clients have their credit card blocked erroneously).

Since we can't see the real labels of each feature (for security reasons), we cannot infer additional business insights. Nevertheless, we can still deliver a good solution to this issue.

APPROACHES:

- · Pycaret anomaly detection;
- Pycaret classifier (100% of our data);
- Classifier with under-over sample (using SMOTE technique).

GOALS:

- Implement models using pycaret modules to see how fast and accurate we can be with few code lines;
- Compare un-supervised models (anomaly detection) with supervised models (Logistic Regression);
- Implement a solution with under & over sample dataframe (using SMOTE technique).

In [1]:

```
# Standard Libraries
import os
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Pycaret Libraries
from pycaret.anomaly import *
# from pycaret.classification import * <- Will be imported when necessary
from pycaret.utils import enable_colab
enable_colab()
# Sklearn Libraries
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import accuracy_score, roc_auc_score, recall_score, precision_scor
e, f1 score
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.model_selection import StratifiedShuffleSplit, KFold, StratifiedKFold
from sklearn.model_selection import train_test_split, RandomizedSearchCV, GridSearchCV
from sklearn.linear_model import LogisticRegression
# Other Libraries
from imblearn.over_sampling import SMOTE
import seaborn as sns
from functools import reduce
# Change pandas columns limit
pd.set_option('display.max_columns', 100)
Colab mode enabled.
In [2]:
# Path
```

```
# Path
os.chdir('C:/Users/ttandozia/Desktop/KAGGLE_FRAUD')
```

In [3]:

```
# Dataset
df = pd.read_csv('creditcard.csv', sep=',')
```

In [4]:

```
# Scale features "Time" and "Amount"
rob_scaler = RobustScaler()

df['scaled_amount'] = rob_scaler.fit_transform(df['Amount'].values.reshape(-1,1))
df['scaled_time'] = rob_scaler.fit_transform(df['Time'].values.reshape(-1,1))

# Drop original columns
df.drop(['Time','Amount'], axis=1, inplace=True)

# Reorder columns
scaled_amount = df['scaled_amount']
scaled_time = df['scaled_time']
df.drop(['scaled_amount', 'scaled_time'], axis=1, inplace=True)
df.insert(0, 'scaled_amount', scaled_amount)
df.insert(1, 'scaled_time', scaled_time)
```

We'll create the "original" train and test so we can compare the 3 approches with the same test set.

For each approach, we will split the data using random_state (or setion_id in pycaret) = 1313

In [5]:

```
# Spliting data
X = df.drop('Class', axis=1)
y = df['Class']

skf = StratifiedKFold(n_splits=5, random_state=1313, shuffle=False)

for train_index, test_index in skf.split(X, y):
    original_Xtrain, original_Xtest = X.iloc[train_index], X.iloc[test_index]
    original_ytrain, original_ytest = y.iloc[train_index], y.iloc[test_index]

original_df_train = pd.merge(original_Xtrain, original_ytrain, left_index=True, right_index=True)
original_df_test = pd.merge(original_Xtest, original_ytest, left_index=True, right_index=True)
```

1° APPROACH - ANOMALY DETECTION WITH PYCARET

In [6]:

	Description	Value
0	session_id	1313
1	Original Data	(227846, 31)
2	Missing Values	False
3	Numeric Features	30
4	Categorical Features	0
5	Ordinal Features	False
6	High Cardinality Features	False
7	High Cardinality Method	None
8	Transformed Data	(227846, 30)
9	CPU Jobs	-1
10	Use GPU	False
11	Log Experiment	False
12	Experiment Name	anomaly-default-name
13	USI	e13c
14	Imputation Type	iterative
15	Iterative Imputation Iteration	30
16	Numeric Imputer	median
17	Iterative Imputation Numeric Model	Light Gradient Boosting Machine
18	Categorical Imputer	mode
19	Iterative Imputation Categorical Model	Light Gradient Boosting Machine
20	Unknown Categoricals Handling	least_frequent
21	Normalize	False
22	Normalize Method	None
23	Transformation	False
24	Transformation Method	None
25	PCA	False
26	PCA Method	None
27	PCA Components	None
28	Ignore Low Variance	False
29	Combine Rare Levels	True
30	Rare Level Threshold	0.010000
31	Numeric Binning	False
32	Remove Outliers	False
33	Outliers Threshold	None
34	Remove Multicollinearity	False
35	Multicollinearity Threshold	None
36	Clustering	False
37	Clustering Iteration	None

	Description	Value
38	Polynomial Features	False
39	Polynomial Degree	None
40	Trignometry Features	False
41	Polynomial Threshold	None
42	Group Features	False
43	Feature Selection	False
44	Features Selection Threshold	None
45	Feature Interaction	False
46	Feature Ratio	False
47	Interaction Threshold	None

ANOMALY MODELS:

KNN

In [7]:

```
# Creating model
t0 = time.time()
anom_model_knn = create_model('knn')
t1 = time.time()
print("Fitting knn took :{} sec".format(t1 - t0))
```

Fitting knn took :402.725647687912 sec

In [8]:

```
# Assign Label with data
anom_df_knn = assign_model(anom_model_knn)
```

In [9]:

```
# Check volumes
anom_df_knn['Anomaly'].value_counts()
```

Out[9]:

0 2164541 11392

Name: Anomaly, dtype: int64

In [10]:

```
# Crosstab wit target
pd.crosstab(anom_df_knn['Class'], anom_df_knn['Anomaly']).stack().reset_index(name='Fre
q')
```

Out[10]:

	Class	Anomaly	Freq
0	0	0	216376
1	0	1	11076
2	1	0	78
3	1	1	316

```
In [11]:
```

```
# Saving model
save_model(anom_df_knn, 'ANOM_KNN', verbose=False)
Out[11]:
(Pipeline(memory=None,
         steps=[('dtypes',
                 DataTypes_Auto_infer(categorical_features=[],
                                     display_types=True,
                                     features_todrop=['Class'], id_colum
ns=[],
                                     ml_usecase='regression',
                                     numerical_features=[],
                                     target='UNSUPERVISED_DUMMY_TARGET',
                                     time_features=[])),
                ('imputer',
                 Iterative_Imputer(add_indicator=False,
                                  classifier=LGBMClassifier(boosting_typ
e='gbdt',
                                                            class_weigh
t...
 227865   0.488747   -0.063826   -0.610194   0.007487   -0.013918
                                                             0
                                                                      0
 227866 0.468036 0.571794 -0.403076 0.259078 0.077267
                                                             0
                                                                      0
 0
                                                                      0
 227868 0.609969 -0.695184 0.463574 0.119990 0.134411
                                                             0
                                                                      0
        Anomaly_Score
 0
             1.881069
 1
             0.416298
 2
             3.652251
 3
             1.880649
 4
             1.969569
             3.258724
 227864
 227865
             0.583978
 227866
             3.166095
 227867
             2.393118
 227868
             1.101679
 [227846 rows x 33 columns]]],
         verbose=False),
 'ANOM_KNN.pkl')
```

Isolation Forest

In [12]:

```
# Creating model
t0 = time.time()
anom_model_ift = create_model('iforest')
t1 = time.time()
print("Fitting ift took :{} sec".format(t1 - t0))
```

Fitting ift took :23.881831884384155 sec

In [13]:

```
# Assign Label with data
anom_df_ift = assign_model(anom_model_ift)
```

In [14]:

```
# Check volumes
anom_df_ift['Anomaly'].value_counts()
```

Out[14]:

0 2164531 11393

Name: Anomaly, dtype: int64

In [15]:

```
# Crosstab wit target
pd.crosstab(anom_df_ift['Class'], anom_df_ift['Anomaly']).stack().reset_index(name='Fre
q')
```

Out[15]:

	Class	Anomaly	Freq
0	0	0	216400
1	0	1	11052
2	1	0	53
3	1	1	341

```
In [16]:
```

```
# Saving model
save_model(anom_df_ift, 'ANOM_IFT', verbose=False)
Out[16]:
(Pipeline(memory=None,
         steps=[('dtypes',
                 DataTypes_Auto_infer(categorical_features=[],
                                     display_types=True,
                                     features_todrop=['Class'], id_colum
ns=[],
                                     ml_usecase='regression',
                                     numerical_features=[],
                                     target='UNSUPERVISED_DUMMY_TARGET',
                                     time_features=[])),
                ('imputer',
                 Iterative_Imputer(add_indicator=False,
                                  classifier=LGBMClassifier(boosting_typ
e='gbdt',
                                                            class_weigh
t...
 227865   0.488747   -0.063826   -0.610194   0.007487   -0.013918
                                                             0
                                                                     0
 227866 0.468036 0.571794 -0.403076 0.259078 0.077267
                                                             0
                                                                     0
 0
                                                                     0
 227868 0.609969 -0.695184 0.463574 0.119990 0.134411
                                                             0
                                                                     0
        Anomaly_Score
 0
            -0.096091
 1
            -0.108611
 2
            -0.033654
 3
            -0.063376
 4
            -0.093594
            -0.006987
 227864
 227865
            -0.099860
 227866
            -0.058475
 227867
            -0.022128
 227868
            -0.064628
 [227846 rows x 33 columns]]],
         verbose=False),
 'ANOM_IFT.pkl')
```

Clustering-Based Local Outlier

In [17]:

```
# Creating model
t0 = time.time()
anom_model_clt = create_model('cluster')
t1 = time.time()
print("Fitting clt took :{} sec".format(t1 - t0))
```

Fitting clt took :20.332393646240234 sec

In [18]:

```
# Assign Label with data
anom_df_clt = assign_model(anom_model_clt)
```

In [19]:

```
# Check volumes
anom_df_clt['Anomaly'].value_counts()
```

Out[19]:

0 2164531 11393

Name: Anomaly, dtype: int64

In [20]:

```
# Crosstab wit target
pd.crosstab(anom_df_clt['Class'], anom_df_clt['Anomaly']).stack().reset_index(name='Fre
q')
```

Out[20]:

	Class	Anomaly	Freq
0	0	0	216407
1	0	1	11045
2	1	0	46
3	1	1	348

```
In [21]:
```

```
# Saving model
save_model(anom_df_clt, 'ANOM_CLT', verbose=False)
Out[21]:
(Pipeline(memory=None,
         steps=[('dtypes',
                 DataTypes_Auto_infer(categorical_features=[],
                                     display_types=True,
                                     features_todrop=['Class'], id_colum
ns=[],
                                     ml_usecase='regression',
                                     numerical_features=[],
                                     target='UNSUPERVISED_DUMMY_TARGET',
                                     time_features=[])),
                ('imputer',
                 Iterative_Imputer(add_indicator=False,
                                  classifier=LGBMClassifier(boosting_typ
e='gbdt',
                                                            class_weigh
t...
 227865   0.488747   -0.063826   -0.610194   0.007487   -0.013918
                                                             0
                                                                      0
 227866 0.468036 0.571794 -0.403076 0.259078 0.077267
                                                             0
                                                                      0
 0
                                                                      0
 227868 0.609969 -0.695184 0.463574 0.119990 0.134411
                                                             0
                                                                      0
        Anomaly_Score
 0
             3.802538
 1
             2.585942
 2
             5.757281
 3
             4.202669
 4
             3.252548
             6.945799
 227864
 227865
             3.370518
 227866
             4.965433
 227867
             4.245115
 227868
             6.144709
 [227846 rows x 33 columns]]],
         verbose=False),
 'ANOM_CLT.pkl')
```

Histogram-based Outlier Detection

In [22]:

```
# Creating model
t0 = time.time()
anom_model_his = create_model('histogram')
t1 = time.time()
print("Fitting his took :{} sec".format(t1 - t0))
```

Fitting his took :2.0970592498779297 sec

In [23]:

```
# Assign Label with data
anom_df_his = assign_model(anom_model_his)
```

In [24]:

```
# Check volumes
anom_df_his['Anomaly'].value_counts()
```

Out[24]:

0 2164531 11393

Name: Anomaly, dtype: int64

In [25]:

```
# Crosstab wit target
pd.crosstab(anom_df_his['Class'], anom_df_his['Anomaly']).stack().reset_index(name='Fre
q')
```

Out[25]:

	Class	Anomaly	Freq
0	0	0	216398
1	0	1	11054
2	1	0	55
3	1	1	339

```
In [26]:
```

```
# Saving model
save_model(anom_df_his, 'ANOM_HIS', verbose=False)
Out[26]:
(Pipeline(memory=None,
         steps=[('dtypes',
                 DataTypes_Auto_infer(categorical_features=[],
                                     display_types=True,
                                     features_todrop=['Class'], id_colum
ns=[],
                                     ml_usecase='regression',
                                     numerical_features=[],
                                     target='UNSUPERVISED_DUMMY_TARGET',
                                     time_features=[])),
                ('imputer',
                 Iterative_Imputer(add_indicator=False,
                                  classifier=LGBMClassifier(boosting_typ
e='gbdt',
                                                            class_weigh
t...
 227865   0.488747   -0.063826   -0.610194   0.007487   -0.013918
                                                             0
                                                                      0
 227866 0.468036 0.571794 -0.403076 0.259078 0.077267
                                                             0
                                                                      0
 0
                                                                      0
 227868 0.609969 -0.695184 0.463574 0.119990 0.134411
                                                             0
                                                                      0
        Anomaly_Score
 0
            49.820639
 1
            48.483055
 2
            54.262055
 3
            55.701699
 4
            49.609469
            53.114194
 227864
 227865
            46.658967
 227866
            55.866608
 227867
            53.992354
 227868
            54.743467
 [227846 rows x 33 columns]]],
         verbose=False),
 'ANOM_HIS.pkl')
```

Principal Component Analysis

In [27]:

```
# Creating model
t0 = time.time()
anom_model_pca = create_model('pca')
t1 = time.time()
print("Fitting pca took :{} sec".format(t1 - t0))
```

Fitting pca took :3.8145229816436768 sec

In [28]:

```
# Assign Label with data
anom_df_pca = assign_model(anom_model_pca)
```

In [29]:

```
# Check volumes
anom_df_pca['Anomaly'].value_counts()
```

Out[29]:

0 2164531 11393

Name: Anomaly, dtype: int64

In [30]:

```
# Crosstab wit target
pd.crosstab(anom_df_pca['Class'], anom_df_pca['Anomaly']).stack().reset_index(name='Fre
q')
```

Out[30]:

		Class	Anomaly	Freq
(0	0	0	216407
•	1	0	1	11045
2	2	1	0	46
;	3	1	1	348

```
In [31]:
```

```
# Saving model
save_model(anom_df_pca, 'ANOM_PCA', verbose=False)
Out[31]:
(Pipeline(memory=None,
          steps=[('dtypes',
                  DataTypes_Auto_infer(categorical_features=[],
                                        display_types=True,
                                        features_todrop=['Class'], id_colum
ns=[],
                                        ml_usecase='regression',
                                        numerical_features=[],
                                        target='UNSUPERVISED_DUMMY_TARGET',
                                        time_features=[])),
                 ('imputer',
                  Iterative_Imputer(add_indicator=False,
                                     classifier=LGBMClassifier(boosting_typ
e='gbdt',
                                                                class_weigh
t...
 227866   0.468036   0.571794   -0.403076   0.259078   0.077267
                                                                 0
                                                                          0
 227867
        0.700880 -0.769575 -0.193723 0.143983 0.134559
                                                                 0
                                                                          0
                                                                          0
 227868 0.609969 -0.695184 0.463574 0.119990 0.134411
                                                                 0
         Anomaly_Score
 0
           6191.736288
 1
           5487.197142
 2
          10978.804240
 3
           8259.160986
 4
           6668.237090
 227864
         11803.761272
 227865
          6443.536981
 227866
          9706.444952
         10653.463355
 227867
          9367.867973
 227868
 [227846 rows x 33 columns]]],
          verbose=False),
 'ANOM PCA.pkl')
```

Minimum Covariance Determinant

In [32]:

```
# Creating model
t0 = time.time()
anom_model_mcd = create_model('mcd')
t1 = time.time()
print("Fitting mcd took :{} sec".format(t1 - t0))
```

Fitting mcd took :142.09781455993652 sec

In [33]:

```
# Assign Label with data
anom_df_mcd = assign_model(anom_model_mcd)
```

In [34]:

```
# Check volumes
anom_df_mcd['Anomaly'].value_counts()
```

Out[34]:

0 2164531 11393

Name: Anomaly, dtype: int64

In [35]:

```
# Crosstab wit target
pd.crosstab(anom_df_mcd['Class'], anom_df_mcd['Anomaly']).stack().reset_index(name='Fre
q')
```

Out[35]:

	Class	Anomaly	Freq
0	0	0	216218
1	0	1	11234
2	1	0	235
3	1	1	159

```
In [36]:
```

```
# Saving model
save_model(anom_df_mcd, 'ANOM_MCD', verbose=False)
Out[36]:
(Pipeline(memory=None,
         steps=[('dtypes',
                 DataTypes_Auto_infer(categorical_features=[],
                                      display_types=True,
                                      features_todrop=['Class'], id_colum
ns=[],
                                      ml_usecase='regression',
                                      numerical_features=[],
                                      target='UNSUPERVISED_DUMMY_TARGET',
                                      time_features=[])),
                 ('imputer',
                 Iterative_Imputer(add_indicator=False,
                                   classifier=LGBMClassifier(boosting_typ
e='gbdt',
                                                             class_weigh
t...
 227865   0.488747   -0.063826   -0.610194   0.007487   -0.013918
                                                              0
                                                                       0
 227866 0.468036 0.571794 -0.403076 0.259078 0.077267
                                                              0
                                                                       0
                                                                       0
 0
 227868    0.609969    -0.695184    0.463574    0.119990    0.134411
                                                              0
                                                                       0
        Anomaly_Score
 0
          5657.766140
 1
            16.152076
 2
         71542.468683
          7348.447465
 3
          2264.473518
 227864
          1195.730918
 227865
            12.976124
          2978.723918
 227866
           645.241759
 227867
 227868
           798.000279
 [227846 rows x 33 columns]]],
         verbose=False),
 'ANOM_MCD.pkl')
```

In [37]:

```
# Sintetic information
KNN = pd.crosstab(anom_df_knn['Class'], anom_df_knn['Anomaly']).stack().reset_index(nam
e='Freq')
KNN = KNN.rename(columns={'Freq': 'KNN'})
IFT = pd.crosstab(anom_df_ift['Class'], anom_df_ift['Anomaly']).stack().reset_index(nam
e='Freq')
IFT = IFT.rename(columns={'Freq': 'IFT'})
CLT = pd.crosstab(anom df clt['Class'], anom df clt['Anomaly']).stack().reset index(nam
e='Freq')
CLT = CLT.rename(columns={'Freq': 'CLT'})
HIS = pd.crosstab(anom_df_his['Class'], anom_df_his['Anomaly']).stack().reset_index(nam
e='Freq')
HIS = HIS.rename(columns={'Freg': 'HIS'})
PCA = pd.crosstab(anom_df_pca['Class'], anom_df_pca['Anomaly']).stack().reset_index(nam
e='Freq')
PCA = PCA.rename(columns={'Freq': 'PCA'})
MCD = pd.crosstab(anom_df_mcd['Class'], anom_df_mcd['Anomaly']).stack().reset_index(nam
e='Freq')
MCD = MCD.rename(columns={'Freq': 'MCD'})
```

In [38]:

```
# Merge train results
models_list = [KNN, IFT, CLT, HIS, PCA, MCD]
results = reduce(lambda left,right: pd.merge(left,right, how='left'), models_list)
results.head()
```

Out[38]:

	Class	Anomaly	KNN	IFT	CLT	HIS	PCA	MCD
0	0	0	216376	216400	216407	216398	216407	216218
1	0	1	11076	11052	11045	11054	11045	11234
2	1	0	78	53	46	55	46	235
3	1	1	316	341	348	339	348	159

Now we'll predict our anomalies in the test set

In [39]:

```
# Test dataframes
KNN_TEST = predict_model(model=anom_model_knn, data=original_df_test)
IFT_TEST = predict_model(model=anom_model_ift, data=original_df_test)
CLT_TEST = predict_model(model=anom_model_clt, data=original_df_test)
HIS_TEST = predict_model(model=anom_model_his, data=original_df_test)
PCA_TEST = predict_model(model=anom_model_pca, data=original_df_test)
MCD_TEST = predict_model(model=anom_model_mcd, data=original_df_test)
```

In [40]:

```
# Sintetic information of test dataframe
KNN = pd.crosstab(KNN_TEST['Class'], KNN_TEST['Anomaly']).stack().reset_index(name='Fre
q')
KNN = KNN.rename(columns={'Freq': 'KNN'})
IFT = pd.crosstab(IFT_TEST['Class'], IFT_TEST['Anomaly']).stack().reset_index(name='Fre
q')
IFT = IFT.rename(columns={'Freq': 'IFT'})
CLT = pd.crosstab(CLT TEST['Class'], CLT TEST['Anomaly']).stack().reset index(name='Fre
q')
CLT = CLT.rename(columns={'Freq': 'CLT'})
HIS = pd.crosstab(HIS_TEST['Class'], HIS_TEST['Anomaly']).stack().reset_index(name='Fre
q')
HIS = HIS.rename(columns={'Freg': 'HIS'})
PCA = pd.crosstab(PCA_TEST['Class'], PCA_TEST['Anomaly']).stack().reset_index(name='Fre
q')
PCA = PCA.rename(columns={'Freq': 'PCA'})
MCD = pd.crosstab(MCD_TEST['Class'], MCD_TEST['Anomaly']).stack().reset_index(name='Fre
q')
MCD = MCD.rename(columns={'Freq': 'MCD'})
```

In [41]:

```
# Merge test results
models_list = [KNN, IFT, CLT, HIS, PCA, MCD]
results = reduce(lambda left,right: pd.merge(left,right, how='left'), models_list)
results.head()
```

Out[41]:

	Class	Anomaly	KNN	IFT	CLT	HIS	PCA	MCD
0	0	0	53755	53998	54206	53974	54041	54436
1	0	1	3108	2865	2657	2889	2822	2427
2	1	0	17	16	14	17	15	72
3	1	1	81	82	84	81	83	26

We can see that Clustering-Based Local Outlier "CLT" model had the best performance when alocating 5% of our training data as anomaly, and predicting in test set.

Note: Its development time was 95% less than knn, for example. (It took 20 sec. Knn took 402 sec.)

Let's see the best anomaly model metrics

In [42]:

```
# Fix formats
CLT_TEST['Anomaly'] = CLT_TEST['Anomaly'].astype(float)
CLT_TEST['Class'] = CLT_TEST['Class'].astype(float)
```

In [43]:

```
# Metrics
acc = accuracy_score(CLT_TEST['Class'], CLT_TEST['Anomaly'])
auc = roc_auc_score(CLT_TEST['Class'], CLT_TEST['Anomaly_Score'])
recall = recall_score(CLT_TEST['Class'], CLT_TEST['Anomaly'])
precision = precision_score(CLT_TEST['Class'], CLT_TEST['Anomaly'])
f1 = f1_score(CLT_TEST['Class'], CLT_TEST['Anomaly'])
```

In [44]:

```
# Visualize metrics
cols = ['Model','Accurary','AUC','Recall','Prec.','F1']
values = ['CLT',acc,auc,recall,precision,f1]
metrics_df = pd.DataFrame({tup[0]: [tup[1]] for tup in zip(cols, values)})
metrics_df
```

Out[44]:

Model Accurary		AUC	Recall	Prec.	F1	
0	CLT	0.953108	0.960965	0.857143	0.030646	0.059176

In [45]:

```
# See real target and predicted label
pd.crosstab(CLT_TEST['Class'], CLT_TEST['Anomaly']).stack().reset_index(name='Freq')
```

Out[45]:

	Class	Anomaly	Freq
0	0.0	0.0	54206
1	0.0	1.0	2657
2	1.0	0.0	14
3	1.0	1.0	84

In [46]:

```
# Plot confusion matrix
conf_matx_anom = confusion_matrix(original_ytest, CLT_TEST['Anomaly'])
ax = plt.axes()
sns.heatmap(conf_matx_anom, annot=True, cmap='Greens', fmt='.0f')
ax.set_title('Clustering-Based Local Outlier "CLT" Pycaret \n Confusion Matrix - Origin
al Test set')
plt.show()
```


2° APPROACH - CLASSIFIER WITH PYCARET

In [47]:

	Description	Value
0	session_id	1313
1	Target	Class
2	Target Type	Binary
3	Label Encoded	0: 0, 1: 1
4	Original Data	(284807, 31)
5	Missing Values	False
6	Numeric Features	30
7	Categorical Features	0
8	Ordinal Features	False
9	High Cardinality Features	False
10	High Cardinality Method	None
11	Transformed Train Set	(216453, 23)
12	Transformed Test Set	(56962, 23)
13	Shuffle Train-Test	True
14	Stratify Train-Test	False
15	Fold Generator	StratifiedKFold
16	Fold Number	10
17	CPU Jobs	-1
18	Use GPU	False
19	Log Experiment	False
20	Experiment Name	clf-default-name
21	USI	0f5c
22	Imputation Type	simple
23	Iterative Imputation Iteration	None
24	Numeric Imputer	mean
25	Iterative Imputation Numeric Model	None
26	Categorical Imputer	constant
27	Iterative Imputation Categorical Model	None
28	Unknown Categoricals Handling	least_frequent
29	Normalize	True
30	Normalize Method	robust
31	Transformation	False
32	Transformation Method	None
33	PCA	False
34	PCA Method	None
35	PCA Components	None
36	Ignore Low Variance	True
37	Combine Rare Levels	False

	Description	Value
38	Rare Level Threshold	None
39	Numeric Binning	False
40	Remove Outliers	True
41	Outliers Threshold	0.050000
42	Remove Multicollinearity	True
43	Multicollinearity Threshold	0.400000
44	Clustering	False
45	Clustering Iteration	None
46	Polynomial Features	False
47	Polynomial Degree	None
48	Trignometry Features	False
49	Polynomial Threshold	None
50	Group Features	False
51	Feature Selection	True
52	Features Selection Threshold	0.700000
53	Feature Interaction	False
54	Feature Ratio	False
55	Interaction Threshold	None
56	Fix Imbalance	True
57	Fix Imbalance Method	SMOTE

In [48]:

Compare models
compare_models(fold=5)

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
rf	Random Forest Classifier	0.9998	0.6647	0.0200	0.1000	0.0333	0.0333	0.0446	149.3700
et	Extra Trees Classifier	0.9998	0.7653	0.0644	0.4000	0.1097	0.1096	0.1585	37.6760
xgboost	Extreme Gradient Boosting	0.9994	0.7042	0.1089	0.0580	0.0749	0.0747	0.0787	110.2380
catboost	CatBoost Classifier	0.9990	0.6903	0.0867	0.0278	0.0415	0.0412	0.0482	89.9040
lightgbm	Light Gradient Boosting Machine	0.9987	0.7534	0.1533	0.0303	0.0505	0.0502	0.0676	5.8600
dt	Decision Tree Classifier	0.9986	0.5094	0.0200	0.0033	0.0056	0.0053	0.0076	20.4940
knn	K Neighbors Classifier	0.9981	0.5966	0.1511	0.0174	0.0312	0.0308	0.0506	148.5900
gbc	Gradient Boosting Classifier	0.9725	0.7448	0.3489	0.0025	0.0050	0.0046	0.0276	246.3660
qda	Quadratic Discriminant Analysis	0.9550	0.6392	0.1956	0.0010	0.0019	0.0015	0.0108	1.6720
ada	Ada Boost Classifier	0.9463	0.7168	0.4378	0.0017	0.0034	0.0030	0.0244	49.2880
nb	Naive Bayes	0.8928	0.7909	0.5933	0.0012	0.0023	0.0019	0.0226	0.6180
Ir	Logistic Regression	0.8706	0.8064	0.6800	0.0011	0.0022	0.0018	0.0237	5.4500
svm	SVM - Linear Kernel	0.8638	0.0000	0.6778	0.0010	0.0021	0.0017	0.0229	1.0960
ridge	Ridge Classifier	0.8580	0.0000	0.6778	0.0010	0.0020	0.0016	0.0222	0.5440
lda	Linear Discriminant Analysis	0.8580	0.8107	0.6778	0.0010	0.0020	0.0016	0.0222	2.7160

Out[48]:

We'll create a Logistic Regression since it has the best Recall and its Accuracy and AUC was acceptable

In [49]:

```
# Creating model
ml_model = create_model(estimator='lr',fold=5)
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.8435	0.9437	0.8889	0.0012	0.0024	0.0019	0.0290
1	0.8715	0.7158	0.5556	0.0009	0.0018	0.0014	0.0184
2	0.8817	0.7319	0.4000	0.0008	0.0016	0.0011	0.0133
3	0.8886	0.7514	0.6667	0.0012	0.0025	0.0021	0.0254
4	0.8675	0.8893	0.8889	0.0014	0.0028	0.0024	0.0322
Mean	0.8706	0.8064	0.6800	0.0011	0.0022	0.0018	0.0237
SD	0.0154	0.0922	0.1904	0.0002	0.0005	0.0005	0.0069

In [50]:

```
# Predict
predict_model(ml_model)
```

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	Logistic Regression	0.8518	0.9754	0.9500	0.0111	0.0220	0.0186	0.0940

Out[50]:

	V3	V8	V18	V27	V13	V7	V10	V5	
0	0.556695	0.170458	0.372034	1.618953	0.356857	0.507318	-0.061292	0.363580	
1	0.377311	-0.081743	0.128819	0.520264	1.711790	-1.321332	1.302402	-1.190163	
2	-0.287048	-0.381197	0.167499	0.741556	-0.381046	0.864501	0.085946	0.877828	
3	0.419974	0.006018	0.492145	0.060495	1.141342	0.338917	-0.410922	0.829842	
4	-0.660386	-0.044080	0.121514	2.358651	0.634921	1.493415	-0.532053	-0.206764	
56957	0.048762	1.510391	0.572402	-2.422383	-1.261917	-0.011089	-0.599377	-0.443520	
56958	0.960143	1.793332	-0.354809	-0.455405	-0.148154	-0.351384	-0.863984	-0.158361	
56959	-0.525572	0.335239	1.287645	0.163196	-0.142998	-0.493511	0.366743	-0.073525	
56960	0.944113	1.549350	0.477104	1.429708	-0.489745	-0.217013	-0.223748	-0.347772	
56961	0.347771	-0.543829	-0.285312	0.090078	-0.218384	1.071489	-0.500105	0.537405	
	56962 rows × 26 columns								
4									

In [51]:

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.8435	0.9437	0.8889	0.0012	0.0024	0.0019	0.0290
1	0.8715	0.7168	0.5556	0.0009	0.0018	0.0014	0.0184
2	0.8816	0.7298	0.4000	0.0008	0.0016	0.0011	0.0133
3	0.8886	0.7520	0.6667	0.0012	0.0025	0.0021	0.0254
4	0.8675	0.8891	0.8889	0.0014	0.0028	0.0024	0.0321
Mean	0.8705	0.8063	0.6800	0.0011	0.0022	0.0018	0.0237
SD	0.0154	0.0923	0.1904	0.0002	0.0005	0.0005	0.0069

In [52]:

```
# Tune Predict
predictions = predict_model(ml_model_tuned)
```

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	Logistic Regression	0.8519	0.9754	0.9500	0.0111	0.0220	0.0186	0.0941

Even though the training had 68% Recall, when applied to the test set, not only the model was able to maintain the accuracy and AUC, but it improved the Recall significantly.

Test set metrics:

In [53]:

```
# Evaluating
evaluate_model(ml_model_tuned)
```

	Parameters
С	3.872
class_weight	balanced
dual	False
fit_intercept	True
intercept_scaling	1
I1_ratio	None
max_iter	1000
multi_class	auto
n_jobs	None
penalty	12
random_state	1313
solver	lbfgs
tol	0.0001
verbose	0
warm_start	False

In [54]:

```
# AUC
plot_model(ml_model_tuned)
```


In [55]:

```
# Confusion matrix
plot_model(ml_model_tuned, plot='confusion_matrix')
```


In [56]:

```
# Class report
plot_model(ml_model_tuned, plot='class_report')
```


In [57]:

```
# Feature importance
plot_model(ml_model_tuned, plot='feature_all')
```


In [58]:

```
# Finalize model
final_ml_tuned = finalize_model(ml_model_tuned)
```

```
In [59]:
# Saving model
save_model(final_ml_tuned, 'LR_PYCARET')
Transformation Pipeline and Model Succesfully Saved
Out[59]:
(Pipeline(memory=None,
          steps=[('dtypes',
                  DataTypes_Auto_infer(categorical_features=[],
                                        display types=True, features todrop
=[],
                                        id_columns=[],
                                        ml_usecase='classification',
                                        numerical_features=[], target='Clas
s',
                                        time_features=[])),
                 ('imputer',
                  Simple_Imputer(categorical_strategy='not_available',
                                  fill_value_categorical=None,
                                  fill_value_numerical=None,
                                  numeric_strate...
                                         target_variable='Class',
                                         threshold=0.4)),
                 ('dfs', 'passthrough'), ('pca', 'passthrough'),
                 ['trained_model',
                  LogisticRegression(C=3.872, class_weight='balanced',
                                      dual=False, fit_intercept=True,
                                      intercept_scaling=1, l1_ratio=None,
                                      max_iter=1000, multi_class='auto',
                                      n_jobs=None, penalty='12',
                                      random_state=1313, solver='lbfgs',
                                      tol=0.0001, verbose=0, warm_start=Fal
se)]],
          verbose=False),
 'LR_PYCARET.pkl')
In [60]:
# Fix formats
predictions['Label'] = predictions['Label'].astype(float)
predictions['Class'] = predictions['Class'].astype(float)
In [61]:
# Metrics
acc = accuracy_score(predictions['Class'], predictions['Label'])
auc = roc_auc_score(predictions['Class'], predictions['Score'])
```

recall = recall_score(predictions['Class'], predictions['Label'])

f1 = f1_score(predictions['Class'], predictions['Label'])

precision = precision_score(predictions['Class'], predictions['Label'])

In [62]:

```
# Visualize metrics
cols = ['Model','Accurary','AUC','Recall','Prec.','F1']
values = ['Random Forest',acc,auc,recall,precision,f1]
metrics_df = pd.DataFrame({tup[0]: [tup[1]] for tup in zip(cols, values)})
metrics_df
```

Out[62]:

	Model	Accurary	AUC	Recall	Prec.	F1
0	Random Forest	0.851901	0.879819	0.95	0.011142	0.022026

In [63]:

```
# See real target and predicted label
pd.crosstab(predictions['Class'], predictions['Label']).stack().reset_index(name='Freq')
```

Out[63]:

	Class	Label	Freq
0	0.0	0.0	48431
1	0.0	1.0	8431
2	1.0	0.0	5
3	1.0	1.0	95

In [64]:

```
# Plot confusion matrix
conf_matx_clf = confusion_matrix(predictions['Class'], predictions['Label'])
ax = plt.axes()
sns.heatmap(conf_matx_clf, annot=True, cmap='Greens', fmt='.0f')
ax.set_title('Log. Reg. Pycaret \n Confusion Matrix - Original Test set')
plt.show()
```


3° APPROACH - CLASSIFIER WITH UNDER & OVER SAMPLES

We'll apply some techniques to help our model identify the outliers.

- First, we'll create a dataframe with 492 non-fraud observations and 492 fraud observations (all fraud available);
- Second, we'll use smote (over-sample) in this dataframe with 984 observations and create our model with these new data (smote after under-sampling);
- After that, we'll predict the under-sampled test set (984 observations);
- Finally, we'll predict the original test set with 56,961 observations.

In [65]:

```
# Shuffle the data before creating the subsamples

df = df.sample(frac=1)

# Fraud classes = 492 rows.
fraud_df = df.loc[df['Class'] == 1]
non_fraud_df = df.loc[df['Class'] == 0][:492]

normal_distributed_df = pd.concat([fraud_df, non_fraud_df])

# Shuffle dataframe rows
new_df = normal_distributed_df.sample(frac=1, random_state=1313)
new_df.head()
```

Out[65]:

	scaled_amount	scaled_time	V1	V2	V3	V4	V5
151006	-0.293440	0.113606	-26.457745	16.497472	-30.177317	8.904157	-17.892600
248419	2.019842	0.813520	1.939494	-1.228433	-1.822550	-1.123825	-0.153692
154670	1.145812	0.209084	-2.296987	4.064043	-5.957706	4.680008	-2.080938
15566	1.089779	-0.678239	-23.237920	13.487386	-25.188773	6.261733	-17.345188
33295	-0.293440	-0.558230	-0.615139	1.424862	0.825301	0.259156	0.738616

5 rows × 31 columns

In [66]:

```
# Plot the original and the undersampled datasets to see the differences
f, (ax1, ax2) = plt.subplots(2, 1, figsize=(24,20))

# Entire DataFrame
corr = df.corr()
sns.heatmap(corr, cmap='coolwarm_r', annot_kws={'size':20}, ax=ax1)
ax1.set_title("Imbalanced Correlation Matrix \n (don't use for reference)", fontsize=14
)

# Subsample dataframe
sub_sample_corr = new_df.corr()
sns.heatmap(sub_sample_corr, cmap='coolwarm_r', annot_kws={'size':20}, ax=ax2)
ax2.set_title('SubSample Correlation Matrix \n (use for reference)', fontsize=14)
plt.show()
```


We'll remove extreme outliers from features with high correlation with the class.

We'll use the interquartile range method, calculating the interquartile range (IQR) between the 75th percentile and the 25th percentile. This technique aims to define a threshold so if some instance passes it, it will be deleted.

In [67]:

```
# We will analyze only the 3 higher and the 3 lower correlations to remove extreme outl
ies
correlations = sub_sample_corr.drop(sub_sample_corr.columns.difference(['Class']), 1)
correlations = correlations.drop('Class', 0)
correlations = correlations.sort_values(by=['Class'])
```

In [68]:

```
# Lower
lower_3 = correlations[:3]
# Higher
higher_3 = correlations[-3:]
```

We could join the lower and higher correlations to apply only once. But, we'll keep separated so we can see the differences.

In [69]:

```
# Function to remove the extreme correlations
def extremeOutliers(df, correlations, cut):
   global new df
    for row in correlations.index:
        var = row
        fraud_temp = df[var].loc[df['Class']==1].values
        q25, q75 = np.percentile(fraud_temp, 25), np.percentile(fraud_temp, 75)
        print('Feature: {}'.format(var))
        print('Quartile 25: {} | Quartile 75: {}'.format(round(q25,3), round(q75,3)))
        iqr_temp = q75 - q25
        print('iqr: {}'.format(round(iqr_temp,3)))
        cut off temp = iqr temp * cut
        lower_temp, upper_temp = q25 - cut_off_temp, q75 + cut_off_temp
        print('Cut Off: {}'.format(round(cut_off_temp,3)))
        print('Lower: {}'.format(round(lower temp,3)))
        print('Upper: {}'.format(round(upper_temp,3)))
        outliers = [x for x in fraud_temp if x < lower_temp or x > upper_temp]
        print('Feature Outliers for Fraud Cases: {}'.format(len(outliers)))
        print('outliers:{}'.format(outliers))
        print('---' * 30)
        df = df.drop(df[(df[var] > upper_temp) | (df[var] < lower_temp)].index)</pre>
    new df = df
    return new df
```

In [70]:

Removing the lower correlations
extremeOutliers(new_df, lower_3, 1.5)

Feature: V14

Quartile 25: -9.693 | Quartile 75: -4.283

iqr: 5.41
Cut Off: 8.115
Lower: -17.808
Upper: 3.832

Feature Outliers for Fraud Cases: 4

outliers:[-18.8220867423816, -19.2143254902614, -18.4937733551053, -18.049

997689859396]

Feature: V12

Quartile 25: -8.673 | Quartile 75: -2.893

iqr: 5.78
Cut Off: 8.67
Lower: -17.343
Upper: 5.777

Feature Outliers for Fraud Cases: 4

outliers:[-18.4311310279993, -18.553697009645802, -18.047596570821604, -1

8.683714633344298]

Feature: V10

Quartile 25: -7.467 | Quartile 75: -2.512

iqr: 4.955 Cut Off: 7.432 Lower: -14.899 Upper: 4.92

Feature Outliers for Fraud Cases: 27

outliers:[-22.1870885620007, -15.1237521803455, -15.2399619587112, -16.649 6281595399, -18.9132433348732, -18.2711681738888, -15.2318333653018, -16.2 556117491401, -16.7460441053944, -15.2399619587112, -22.1870885620007, -2 2.1870885620007, -16.3035376590131, -14.9246547735487, -20.94919155436110 4, -16.6011969664137, -22.1870885620007, -19.836148851696, -15.12416281449 4698, -17.141513641289198, -24.403184969972802, -15.346098846877501, -14.9 246547735487, -15.563791338730098, -23.2282548357516, -24.5882624372475, -15.563791338730098]

Out[70]:

	scaled_amount	scaled_time	V1	V2	V3	V4	V5
248419	2.019842	0.813520	1.939494	-1.228433	-1.822550	-1.123825	-0.153692
154670	1.145812	0.209084	-2.296987	4.064043	-5.957706	4.680008	-2.080938
15566	1.089779	-0.678239	-23.237920	13.487386	-25.188773	6.261733	-17.345188
33295	-0.293440	-0.558230	-0.615139	1.424862	0.825301	0.259156	0.738616
239501	3.007895	0.768888	-6.682832	-2.714268	-5.774530	1.449792	-0.661836
117044	-0.269825	-0.119492	-0.641963	1.221503	1.285376	-0.024410	-0.160326
224407	-0.097813	0.694146	2.345023	-1.421737	-1.447076	-1.896845	-0.648271
8312	-0.293440	-0.864672	0.378275	3.914797	-5.726872	6.094141	1.698875
30442	-0.243695	-0.572916	-3.896583	4.518355	-4.454027	5.547453	-4.121459
279080	0.025152	0.986172	-1.138516	-0.762543	-1.142460	0.022805	3.478549

946 rows × 31 columns

4

In [71]:

Removing the higher correlations
extremeOutliers(new_df, higher_3, 1.5)

Feature: V2

Quartile 25: 1.133 | Quartile 75: 4.142

iqr: 3.009 Cut Off: 4.513 Lower: -3.38 Upper: 8.655

Feature Outliers for Fraud Cases: 46

outliers:[13.4873857909274, 9.067613427317669, 15.3658043803315, -3.952320 08590575, 12.785970638297998, 12.785970638297998, 12.785970638297998, 12.9 305051249875, 15.876922987953598, 10.5417508026636, -3.93073139597263, 10. 114815724665402, 11.817921989785301, 12.6521968313004, -3.4204679837707, 1 0.5586001882538, -5.1983601992332895, 8.7759971528627, 10.8196653713117, -3.93591892431521, 16.1557014298057, 13.7659421584186, 16.4345245512223, 1 5.598192662555402, -6.976420007546411, -8.402153677689151, -7.159041717094 45, 16.7133892350242, 14.6019980426299, 12.095893225929899, 9.669900173040 97, 14.323253809723301, -7.4490151587267395, 12.3739891389716, 10.39391714 27504, -4.8144607395562105, 12.785970638297998, 14.044566781510598, -7.196 97963053735, 12.785970638297998, 12.785970638297998, 13.208904284417601, 1 1.586380519818402, 8.71325017095966, 9.22369194937548, -3.488130181185609

Feature: V11

Quartile 25: 1.845 | Quartile 75: 4.775

iqr: 2.93 Cut Off: 4.396 Lower: -2.55 Upper: 9.171

Feature Outliers for Fraud Cases: 11

outliers:[9.36907905765884, 9.939819741725689, 10.5452629545898, 10.853011 6481991, 10.187587324166401, 10.2777688628065, 9.32879925655782, 10.063789

7462894, 10.446846814514, 11.277920727806698, 11.152490598583698]

Feature: V4

Quartile 25: 2.084 | Quartile 75: 5.506

iqr: 3.422 Cut Off: 5.133 Lower: -3.048 Upper: 10.639

Feature Outliers for Fraud Cases: 2

outliers:[10.6485054461688, 10.6485054461688]

Out[71]:

	scaled_amount	scaled_time	V1	V2	V3	V4	V5	
248419	2.019842	0.813520	1.939494	-1.228433	-1.822550	-1.123825	-0.153692	-(
154670	1.145812	0.209084	-2.296987	4.064043	-5.957706	4.680008	-2.080938	-·
33295	-0.293440	-0.558230	-0.615139	1.424862	0.825301	0.259156	0.738616	-·
239501	3.007895	0.768888	-6.682832	-2.714268	-5.774530	1.449792	-0.661836	-·
191690	-0.307413	0.524900	1.183931	3.057250	-6.161997	5.543972	1.617041	-·
117044	-0.269825	-0.119492	-0.641963	1.221503	1.285376	-0.024410	-0.160326	-(
224407	-0.097813	0.694146	2.345023	-1.421737	-1.447076	-1.896845	-0.648271	(
8312	-0.293440	-0.864672	0.378275	3.914797	-5.726872	6.094141	1.698875	-:
30442	-0.243695	-0.572916	-3.896583	4.518355	-4.454027	5.547453	-4.121459	-·
279080	0.025152	0.986172	-1.138516	-0.762543	-1.142460	0.022805	3.478549	-:

872 rows × 31 columns

In [72]:

```
# Separating X and y
X = new_df.drop('Class', axis=1)
y = new_df['Class']

# Spliting train and test with the undersampled dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1
313)
```

In [73]:

```
# SMOTE Technique (OverSampling)
sm = SMOTE(sampling_strategy='minority', random_state=1313)
```

In [74]:

```
# This is the data we will train the model
Xsm_train, ysm_train = sm.fit_sample(original_Xtrain, original_ytrain)
```

In [75]:

```
# Join X and y in the smote dataset
df_smote = pd.merge(Xsm_train, ysm_train, left_index=True, right_index=True)
```

In [76]:

```
# Plot the original and the smote datasets to see the differences
f, (ax1, ax2) = plt.subplots(2, 1, figsize=(24,20))

# Entire DataFrame
corr = df.corr()
sns.heatmap(corr, cmap='coolwarm_r', annot_kws={'size':20}, ax=ax1)
ax1.set_title("Imbalanced Correlation Matrix", fontsize=14)

# Smote dataFrame
sub_sample_corr = df_smote.corr()
sns.heatmap(sub_sample_corr, cmap='coolwarm_r', annot_kws={'size':20}, ax=ax2)
ax2.set_title('Smote Correlation Matrix', fontsize=14)
plt.show()
```


In [77]:

```
# We will analyze only the 3 higher and the 3 lower correlations to remove extreme outlies in the smote dataset

correlations = sub_sample_corr.drop(sub_sample_corr.columns.difference(['Class']), 1)

correlations = correlations.drop('Class', 0)

correlations = correlations.sort_values(by=['Class'])
```

In [78]:

```
# Lower (smote)
lower_3 = correlations[:3]
# Higher (smote)
higher_3 = correlations[-3:]
```

In [79]:

Removing the Lower correlations (smote)
extremeOutliers(df_smote, lower_3, 3)

Feature: V14

Quartile 25: -9.863 | Quartile 75: -4.542

iqr: 5.321 Cut Off: 15.963 Lower: -25.827 Upper: 11.421

Feature Outliers for Fraud Cases: 0

outliers:[]

Feature: V12

Quartile 25: -9.809 | Quartile 75: -3.294

iqr: 6.515
Cut Off: 19.546
Lower: -29.355
Upper: 16.252

Feature Outliers for Fraud Cases: 0

outliers:[]

Feature: V10

Quartile 25: -8.512 | Quartile 75: -2.91

iqr: 5.601
Cut Off: 16.804
Lower: -25.316
Upper: 13.894

Feature Outliers for Fraud Cases: 0

outliers:[]

Out[79]:

	scaled_amount	scaled_time	V1	V2	V3	V4	V5
0	1.783274	-0.994983	-1.359807	-0.072781	2.536347	1.378155	-0.338321
1	-0.269825	-0.994983	1.191857	0.266151	0.166480	0.448154	0.060018
2	4.983721	-0.994972	-1.358354	-1.340163	1.773209	0.379780	-0.503198
3	1.418291	-0.994972	-0.966272	-0.185226	1.792993	-0.863291	-0.010309
4	0.670579	-0.994960	-1.158233	0.877737	1.548718	0.403034	-0.407193
454899	0.671712	0.108302	-12.307217	7.602335	-19.788195	7.189385	-11.061654
454900	-0.292028	-0.415486	0.624241	0.390222	0.974385	-0.045120	-0.225802
454901	-0.293440	-0.847775	-2.679379	7.022383	-13.548242	10.223529	-2.893169
454902	4.458440	-0.075704	-1.550026	-0.996501	0.810719	0.259955	-0.195255
454903	4.097408	0.107626	-5.840251	7.151384	-12.817413	7.034110	-9.645873

454900 rows × 31 columns

In [80]:

Removing the higher correlations (smote)
extremeOutliers(df_smote, higher_3, 3)

Feature: V2

Quartile 25: 1.328 | Quartile 75: 6.186

iqr: 4.858 Cut Off: 14.574 Lower: -13.245 Upper: 20.76

Feature Outliers for Fraud Cases: 522

outliers:[21.4672029942752, 22.0577289904909, 21.58361433063832, 21.988850 878626053, 21.477239748906246, 21.905512688746356, 21.793438500680477, 21. 582099744560637, 21.730665633383843, 21.20372471555416, 21.81629433060585 7, 21.491680761406492, 21.84003188924353, 20.97386125190294, 22.0527198291 16526, 21.347634785251575, 21.618596524417452, 21.546770870493475, 20.9933 8684963587, 21.415749552492965, 21.560575584225305, 21.060962005469456, 2 1.731172015153852, 21.938702340551508, 21.96480314439898, 21.5327973206481 22, 21.357857833850346, 21.58089093915473, 21.185296861703765, 20.99491021 429548, 21.04782975130339, 21.70657221371062, 21.030098493071225, 21.74246 242961703, 21.32169322403962, 21.57014748179804, 21.747112748864108, 21.71 411424457876, 21.625782050534113, 20.764413052178707, 21.383524644229098, 21.582375026145396, 21.070782553898688, 21.941165162874057, 21.94834472882 034, 20.804657300623724, 21.641470856125643, 21.474111027918042, 21.990029 15916604, 22.00137706675789, 21.134661052776657, 21.558793751342844, 20.81 9378647748508, 21.557568789248478, 21.972179856267, 20.922019472333538, 2 1.809272649045834, 22.03160836895243, 21.726662663964174, 20.9762093758136 74, 21.876377063839406, 21.991697016815483, 21.710731645482095, 21.8526797 38274155, 21.259282152509897, 21.35684735048615, 21.730564480547216, 20.93 56824190607, 21.963788485416877, 21.7952179064955, 21.14096540507757, 21.5 59563111279676, 21.682020715908855, 21.564384928564376, 21.13336860007916, 21.866825249707684, 21.67396075022436, 21.645977751303754, 21.051518524451 666, 21.855055995541885, 21.755992725483924, 20.973201571464394, 21.041823 178860458, 21.111791262112884, 21.540824785062366, 20.79414868381397, 21.9 57653548354752, 21.676549008649697, 21.025933172283743, 21.59689622556507, 21.36398702163707, 21.460019824286753, 21.880529657424724, 21.959183708723 245, 21.50034489222224, 21.59604091830481, 21.53191267687703, 21.869103819 76007, 21.620483001138787, 21.79901635305907, 20.777639736932294, 21.83451 2893194347, 21.612536233754735, 21.160603321613635, 21.930429211478287, 2 0.89021770289382, 21.181704837569818, 21.849958429428295, 21.4096145133892 9, 20.780954132172308, 21.795135785813972, 21.68251528704212, 21.444349371 231766, 21.74394680692352, 21.774765089825394, 21.82004927881603, 21.21232 8448091334, 21.50213506641068, 21.669719333387036, 20.97997141979147, 22.0 3219398779399, 21.24127641876442, 21.745055753453187, 21.499103455593637, 21.899602412179238, 21.877804074503842, 21.717837454625812, 21.39602022509 393, 21.480790887637628, 21.025320516519642, 20.893013494052006, 20.840001 54175813, 22.042579563692062, 21.4211639800276, 21.961460568150304, 20.937 11022737927, 21.256442920262458, 21.802983430548437, 21.730811518972907, 2 0.862698778171076, 21.863268294372126, 21.125264319633644, 21.972027880831 604, 21.96846723200345, 21.87165323573523, 21.42266550151578, 20.891541846 858942, 20.991956784078432, 21.94254166741445, 21.55104626728692, 21.33270 367600723, 21.481604568068153, 21.883848274616494, 20.78014117670568, 22.0 0242627090853, 21.178922695812048, 21.685956030155918, 21.407371714614516, 21.89888646341627, 21.526096170876958, 21.72341090202639, 20.9977933648423 73, 20.857174623517647, 20.97418500885202, 21.88331842355969, 21.313689420 448423, 21.717662542321808, 21.954988550983654, 21.50124901693135, 20.9493 1781822974, 20.94422471609679, 21.955439971273915, 21.681767282398066, 21. 01727386737092, 21.95288939254612, 21.573368431873266, 21.60777562770699, 21.6609645699247, 22.051852751515018, 21.228151188729452, 21.5017673187011 8, 22.03139323936807, 21.397525064185377, 21.904016388149557, 21.611851872 78068, 21.99919283204061, 21.98303971723646, 21.99960580186763, 21.4741941 97272144, 20.94426815358466, 21.00824167102818, 20.98653425051201, 21.2108 48127513078, 21.2174034254758, 21.788339664700764, 22.008195492451158, 20. 779992466672358, 21.05237796650242, 21.945561552666653, 21.908724349877, 2 1.498328044056375, 21.110633190749734, 20.907483225071406, 21.871067666375

204, 21.945376348897835, 21.126663010298035, 21.474195658545376, 21.465888 40915013, 21.396926361294817, 21.652026614346365, 21.85967374625822, 21.81 5177180095702, 20.783981413199697, 21.498053161352075, 21.634762603391966, 21.24875882642824, 21.34420487389161, 21.918652332005205, 21.7291442461478 2, 21.481203127928243, 20.929857918462822, 22.051866393044605, 21.88586581 6084827, 21.55823199888035, 21.069513184557543, 21.412937793785563, 21.566 32857456761, 21.837305073071082, 20.9783360918774, 21.033574476295964, 22. 054472604090552, 21.892892657582337, 20.980802633522284, 21.65587324915016 5, 21.409499614188412, 21.9273376287832, 21.358173874996417, 21.5085382224 3187, 21.747209297656426, 21.44681645688882, 21.655468928852667, 21.930530 785818664, 21.883396391794992, 20.858029356411727, 21.9889238156589, 20.85 6838285187397, 21.899531161926944, 21.026217320005998, 20.866651886439698, 21.641946433826572, 21.907913202385043, 22.01787608349703, 21.699049837739 85, 21.82464667989276, 21.382251400301477, 21.797443238657294, 20.86351484 525713, 21.73029021790195, 21.036790743953546, 20.987711363624832, 21.8671 86577274534, 21.693534329901826, 20.940121875811265, 21.97405394006389, 2 1.622782585529684, 21.30977264107701, 21.85636219372181, 21.73160610201802 4, 21.07720891753697, 20.821903642948218, 22.006667725044515, 21.670729609 44248, 20.869609498608288, 22.037899566422517, 20.772323967769506, 21.6565 2778301642, 21.006544336829773, 20.788241702736666, 20.821248005465808, 2 1.985454709899006, 21.125019865937354, 21.88150757460992, 21.2478239216367 34, 21.916562542205934, 21.6749604223129, 21.99442760821961, 21.9853353725 40288, 21.37185875459047, 21.27480848612921, 21.78210199690087, 21.8999046 45131397, 21.362921982557204, 21.618409264998622, 21.845695090060975, 21.4 497757444193, 20.7786851095046, 21.82329375354908, 21.867990729595878, 21. 63350251701724, 21.347324478289487, 21.700786892661707, 21.40124075564080 6, 21.31349911526344, 21.942519109793395, 21.45451166197378, 21.5075170797 60106, 21.420381940880844, 21.218338870340048, 21.975572058416965, 21.8933 20351558472, 21.79779086743855, 21.653234965821767, 21.25468562478617, 21. 104195964323495, 20.82152990277572, 21.929687564132312, 21.81652351467491 3, 20.90735987568377, 21.835927996580917, 21.46502377829335, 20.7790862418 76627, 21.36277648130581, 20.878895649937917, 21.800866548767637, 21.80160 283045922, 21.79717785677284, 21.980571722047966, 21.868474504478506, 21.5 7843304664191, 21.82570749294608, 21.76911407040542, 21.745346535010942, 2 1.983338525571675, 21.042754663767887, 21.574954272574587, 20.947071656749 44, 21.750174195510088, 21.796943170236563, 21.629233902821333, 20.9100602 13579726, 21.83673770653361, 20.801673402382526, 21.67878552054515, 21.927 329485074825, 21.620631136129656, 21.865205960177423, 21.636634086712572, 21.641051550345157, 20.949111466281575, 21.866899907752074, 21.54923041242 7384, 20.849915165836066, 21.96799058417775, 21.09061712537259, 21.3454960 03154633, 21.057712242627403, 21.712051184963467, 21.051452223505215, 20.8 71889289206152, 21.86703900488594, 21.75101899698401, 21.633436176038995, 22.024809832489797, 20.809688862065407, 21.692173417339948, 20.82414092926 3283, 21.77653288968035, 21.891073019290666, 21.90214019066017, 21.1214124 52262085, 22.003918342883164, 22.049113323526942, 21.28621224777671, 21.09 675877262672, 21.47310048911429, 21.702493190302384, 20.85066729308452, 2 2.010108610165275, 21.88355760198862, 21.981059342324908, 21.4738354936271 8, 21.157315290048157, 21.81919980404386, 21.737977882524426, 21.315059921 59324, 21.289946517204346, 20.871853024965304, 21.55551032916131, 20.90456 7943439165, 21.94453566002533, 20.981716349746904, 21.825545240464646, 21. 406032045485546, 22.01415260390231, 21.111409677423165, 21.03538419333652 6, 21.7760912211518, 21.993636773409907, 20.8177964963898, 21.883092221143 603, 21.99194409276532, 21.359073666963106, 21.507899842274718, 21.3190499 19463602, 22.02721873488286, 21.97672714742287, 21.702912841970395, 21.879 589356713687, 21.23473188739938, 21.685356422778383, 22.004335479977005, 2 1.48830063159286, 21.10803511104165, 21.344679802642577, 21.67663286862078 2, 22.003837604766407, 20.846765734826697, 21.72259100038032, 21.997013801 415847, 21.405186673671814, 22.007676784554366, 20.795151202074422, 21.570 479343390296, 21.361868817655346, 21.42106442291969, 22.00534002070864, 2 1.937225024383604, 21.549166777067867, 21.646478199855757, 21.777577045680 91, 21.498086847318145, 21.731425764268806, 21.590552013972502, 21.7731479 311821, 21.29399845886333, 21.446840664448136, 21.810909206778803, 21.5825 299019122, 21.903320204735184, 21.982792709078296, 21.662426045897657, 21. 662671925001906, 21.301741170751388, 21.738842055248302, 21.23994129833010 5, 21.299731381119667, 21.193513610726267, 21.746984986778408, 22.03426198 0112923, 21.04601310513233, 21.80559458296019, 21.42300676025127, 21.83641 4121403045, 21.61505562159961, 21.25206120542931, 21.794839221779892, 21.5 46272848283845, 22.008639125435128, 21.788667085801876, 21.73366657114188 5, 20.801560074677564, 21.250698585941947, 20.800469843540682, 21.49779023 2421693, 21.770856671160544, 21.084461198355473, 21.158843014566845, 21.52 4493667478534, 21.91688208454768, 21.749007011241577, 21.470552261945112, 21.63343300824308, 20.994026576452793, 20.79439803645135, 21.7208464044420 03, 21.31828337893549, 21.85197489648874, 21.87113535148518, 20.9776992061 70783, 21.660371420381907, 21.98572538862507, 21.890018807183836, 21.88245 9328987284, 21.731587860668167, 21.85424346056888, 21.170515972190156, 21. 445235563796476, 21.355827089001124, 21.239422075258254, 21.5845174737033 5, 21.541123276007927, 21.60533055614015, 21.80064456256733, 21.8140294689 58974, 20.887772563698054, 21.186712934576605, 20.922009365261523, 21.6286 58420897857, 21.637674509947956, 21.873625958623727, 21.57665682128328, 2 1.87334497644559, 22.015123385104914, 22.03969265033535, 22.02654993129772 3, 21.688729743699746, 20.82661136114901, 21.348707280269984, 21.766863658 282208, 21.768776511119732, 21.708069012285115, 21.686876559805683, 21.926 204780539983, 21.033689883459612, 21.713192851022832, 21.886318394867043, 20.79932322147618, 21.935859675431818, 20.937723381368176, 21.568093971922 3, 20.825674741373383, 20.806198884220677]

Feature: V11

Quartile 25: 2.365 | Quartile 75: 5.809

iqr: 3.444
Cut Off: 10.332
Lower: -7.967
Upper: 16.141

Feature Outliers for Fraud Cases: 0

outliers:[]

Feature: V4

Quartile 25: 2.395 | Quartile 75: 6.423

iqr: 4.028 Cut Off: 12.084 Lower: -9.688 Upper: 18.507

Feature Outliers for Fraud Cases: 0

outliers:[]

Out[80]:

	scaled_amount	scaled_time	V1	V2	V3	V4	V5
0	1.783274	-0.994983	-1.359807	-0.072781	2.536347	1.378155	-0.338321
1	-0.269825	-0.994983	1.191857	0.266151	0.166480	0.448154	0.060018
2	4.983721	-0.994972	-1.358354	-1.340163	1.773209	0.379780	-0.503198
3	1.418291	-0.994972	-0.966272	-0.185226	1.792993	-0.863291	-0.010309
4	0.670579	-0.994960	-1.158233	0.877737	1.548718	0.403034	-0.407193
454899	0.671712	0.108302	-12.307217	7.602335	-19.788195	7.189385	-11.061654
454900	-0.292028	-0.415486	0.624241	0.390222	0.974385	-0.045120	-0.225802
454901	-0.293440	-0.847775	-2.679379	7.022383	-13.548242	10.223529	-2.893169
454902	4.458440	-0.075704	-1.550026	-0.996501	0.810719	0.259955	-0.195255
454903	4.097408	0.107626	-5.840251	7.151384	-12.817413	7.034110	-9.645873

454068 rows × 31 columns

```
←
```

In [81]:

```
# Separating X and y (smote)
X = df_smote.drop('Class', axis=1)
y = df_smote['Class']

# Spliting train and test (smote dataframe).
Xsm_train, X1_test, ysm_train, y1_test = train_test_split(X, y, test_size=0.2, random_s tate=1313)
```

In [82]:

```
# Logistic Regression parameters
log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}
grid_log_reg = GridSearchCV(LogisticRegression(), log_reg_params)
```

In [83]:

```
# Logistic Regression fitted in smote dataframe
t0 = time.time()
log_reg_sm = grid_log_reg.estimator
log_reg_sm.fit(Xsm_train, ysm_train)
t1 = time.time()
print("Fitting SMOTE data took :{} sec".format(t1 - t0))
```

Fitting SMOTE data took :6.92450475692749 sec

In [84]:

```
# Logistic Regression predicted in the under-sampled dataframe
y_pred_log_reg = log_reg_sm.predict(X_test)
```

In [85]:

```
# Report (comparing with under-sampled class)
print('Logistic Regression:')
print(classification_report(y_test, y_pred_log_reg))
```

Logistic Regression:

	precision	recall	f1-score	support
6	0.89	0.97	0.93	94
1	0.96	0.86	0.91	81
accuracy	,		0.92	175
macro avg	0.93	0.92	0.92	175
weighted avg	g 0.92	0.92	0.92	175

In [86]:

```
# Plot confusion matrix
conf_matx_smt = confusion_matrix(y_test, y_pred_log_reg)
ax = plt.axes()
sns.heatmap(conf_matx_smt, annot=True, cmap='Greens', fmt='.0f')
ax.set_title('Log. Reg. under-sampled \n Confusion Matrix - Under-sampled test set')
plt.show()
```


In [87]:

```
# Logistic Regression predicted in the original test set
y_pred_sm = log_reg_sm.predict(original_Xtest)
```

In [88]:

```
# Report
labels = ['No Fraud', 'Fraud']
print(classification_report(original_ytest, y_pred_sm, target_names=labels))
```

	precision	recall	f1-score	support
No Fraud	1.00	0.99	0.99	56863
Fraud	0.12	0.87	0.21	98
accuracy			0.99	56961
macro avg	0.56	0.93	0.60	56961
weighted avg	1.00	0.99	0.99	56961

In [89]:

```
# Merge labels with X_test
original_Xtest['Label'] = y_pred_sm
original_Xtest['Class'] = original_ytest
```

In [90]:

```
# Metrics
acc = accuracy_score(original_Xtest['Class'], original_Xtest['Label'])
auc = roc_auc_score(original_Xtest['Class'], original_Xtest['Label'])
recall = recall_score(original_Xtest['Class'], original_Xtest['Label'])
precision = precision_score(original_Xtest['Class'], original_Xtest['Label'])
f1 = f1_score(original_Xtest['Class'], original_Xtest['Label'])
```

In [91]:

```
# Visualize metrics
cols = ['Model','Accurary','AUC','Recall','Prec.','F1']
values = ['Log. Reg. Smote',acc,auc,recall,precision,f1]
metrics_df = pd.DataFrame({tup[0]: [tup[1]] for tup in zip(cols, values)})
metrics_df
```

Out[91]:

	Model	Accurary	AUC	Recall	Prec.	F1
0	Log. Reg. Smote	0.988905	0.928231	0.867347	0.120739	0.21197

In [92]:

```
# See real target and predicted label
pd.crosstab(original_Xtest['Class'], original_Xtest['Label']).stack().reset_index(name=
'Freq')
```

Out[92]:

	Class	Label	Freq
0	0	0	56244
1	0	1	619
2	1	0	13
3	1	1	85

In [93]:

```
# Plot confusion matrix
conf_matx_smt = confusion_matrix(original_ytest, y_pred_sm)
ax = plt.axes()
sns.heatmap(conf_matx_smt, annot=True, cmap='Greens', fmt='.0f')
ax.set_title('Log. Reg. Smote \n Confusion Matrix - Original Test set')
plt.show()
```


CONCLUSION

The implementations made in this project show us that we have a trade-off when it comes to models. On the one hand, a model that can detect 95% of anomaly cases, but which attributes a huge volume of "non-fraud" transactions to fraud (false positive). On the other hand, a little prediction is lost using an under-over sample model (we achieved 87% success in detecting fraud), but we labeled 92% less reputable transactions as fraud, thus reducing our volume of false positives.

Some points about the models:

- The model with under-over sample was the best. There were only 619 false-positive and 13 false-negative observations;
- The pycaret classification model was better at solving frauds, however, there were 8431 cases of false
 positives, which can generate dissatisfaction among customers for having their cards blocked due to
 suspected fraud;
- The pycaret anomaly model managed to detect fraud as well as the under-over sample model, but it also had a high number of false positives (2657).

Important to say: Pycaret is a powerful prediction tool because with few lines of code it is possible to develop a model with great metrics. For models where there are no metrics designed and/or that need a quick solution, albeit a palliative one, pycaret will surely exceed expectations.

Personal note: I have been using pycaret in work projects. A scenario where we have few resources and a lot of demand. We are gaining agility with projects that need a quick response (due to our industry) or new customers, where there are still no defined metrics/goals.

Here is a summary of the 3 confusion matrices applied on the same test set:

In [98]:

```
# Plot confusion matrix for the 3 approaches. Everyone built with the original test set
f, (ax1, ax2, ax3) = plt.subplots(1,3, figsize=(20,5))
# 1º Approach (Anomaly model with Pycaret)
sns.heatmap(conf_matx_anom, ax=ax1, annot=True, cmap='Greens', fmt='.0f')
ax1.set_title('Clustering-Based Local Outlier "CLT" Pycaret \n Confusion Matrix - Original Test set', fontsize=14)
# 2º Approach (Classifier model with Pycaret)
sns.heatmap(conf_matx_clf, ax=ax2, annot=True, cmap='Greens', fmt='.0f')
ax2.set_title('Log. Reg. Pycaret \n Confusion Matrix - Original Test set', fontsize=14)
# 3º Approach (Classifier with under & over sample)
sns.heatmap(conf_matx_smt, ax=ax3, annot=True, cmap='Greens', fmt='.0f')
ax3.set_title('Log. Reg. Smote \n Confusion Matrix - Original Test set', fontsize=14)
```

Out[98]:

Text(0.5, 1.0, 'Log. Reg. Smote \n Confusion Matrix - Original Test set')

