Package 'omu'

March 7, 2024

Convenient Metadata Collection
Version 1.1.2
Description Facilitates the creation of intuitive figures to describe metabolomics data by utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) hierarchy data, and gathers functional orthology and gene data from the KEGG-REST API.
Depends R (>= $3.3.0$)
Imports plyr, dplyr, stringr, httr, ggfortify, ggplot2, magrittr, tidyr, broom, FSA, rstatix, randomForest, caret
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Suggests knitr, rmarkdown
VignetteBuilder knitr
<pre>URL https://github.com/connor-reid-tiffany/Omu,</pre>
https://www.kegg.jp/kegg/rest/keggapi.html
BugReports https://github.com/connor-reid-tiffany/Omu/issues
NeedsCompilation no
Author Connor Tiffany [aut, cre]
Maintainer Connor Tiffany <tiffanyc1@chop.edu></tiffanyc1@chop.edu>
Repository CRAN
Date/Publication 2024-03-06 23:40:02 UTC
R topics documented:
assign_hierarchy

2 assign_hierarchy

Index	2	20
	transform_samples	.9
	transform_metabolites	
	read_metabo	
	ra_table	
	random_forest	
	plot_volcano	
	plot_variable_importance	
	plot_rf_PCA	
	plot_heatmap	
	plot_boxplot	
	plot_bar	
	plate_omelette_rxnko	
	plate_omelette	
	pie_chart	
	<u>-</u>	9
	omu_summary	
		7
		7
		6
	81	5
		5
	check_zeros	

assign_hierarchy

Assign hierarchy metadata

Description

Assigns hierarchy metadata to a metabolomics count matrix using identifier values. It can assign KEGG compound hierarchy, orthology hierarchy, or organism hierarchy data.

Usage

```
assign_hierarchy(count_data, keep_unknowns, identifier)
```

Arguments

count_data a metabolomics count data frame with either a KEGG compound, orthology, or

a gene identifier column

keep_unknowns a boolean of either TRUE or FALSE. TRUE keeps unannotated compounds,

FALSE removes them

identifier a string that is either "KEGG" for metabolite, "KO" for orthology, "Prokaryote"

for organism, or "Eukaryote" for organism

Examples

assign_hierarchy(count_data = c57_nos2KO_mouse_countDF, keep_unknowns = TRUE, identifier = "KEGG")

c57_nos2KO_mouse_countDF

c57b6J nos2KO metabolomics count matrix

Description

A dataset containing metabolomics counts for an experiment done using c57b6J wild type and c57b6J nos2 knockout mice

Usage

```
c57_nos2KO_mouse_countDF
```

Format

A data frame with 668 rows and 36 variables:

 ${\tt c57_nos2K0_mouse_metadata}$

c57b6J nos2KO meta data

Description

A a meta data file for the c57b6J metabolomics count matrix

Usage

```
c57_nos2KO_mouse_metadata
```

Format

A data frame with 29 rows and 4 variables:

4 check_zeros

check_zeros	Check data for zeros across samples within factor levels. Will deter-
	mine if there are more zeros than a user specified threshold within any
	given factor level(s). Returns a vector of Metabolites that are 0 above
	the threshold in any given factor level.

Description

Check data for zeros across samples within factor levels. Will determine if there are more zeros than a user specified threshold within any given factor level(s). Returns a vector of Metabolites that are 0 above the threshold in any given factor level.

Usage

```
check_zeros(
  count_data,
  metadata,
  numerator = NULL,
  denominator = NULL,
  threshold = 25,
  response_variable = "Metabolite",
  Factor
)
```

Arguments

Examples

count_data A metabolomics count data frame

metadata Metadata dataframe for the metabolomics count data frame

numerator String of the first independent variable you wish to test. Defualt is NULL

denominator String of the second independent variable you wish to test. Default is NULL.

threshold Integer. A percentage threshold for the number of zeros in a Metabolite. Default is 25.

response_variable

String of the column header for the response variables, usually "Metabolite"

Factor A factor with levels to test for zeros.

```
check_zeros(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
Factor = "Treatment")
```

```
check_zeros(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
Factor = "Treatment",numerator = "Strep", denominator = "Mock", threshold = 10)
```

count_fold_changes 5

count_fold_changes	Get counts for significant fold changes by metabolite class.
--------------------	--

Description

Takes an input data frame from the output of omu_summary and creates a data frame of counts for significantly changed metabolites by class hierarchy data.

Usage

```
count_fold_changes(count_data, column, sig_threshold, keep_unknowns)
```

Arguments

count_data Output dataframe from the omu_summary function or omu_anova.

column Metabolite metadata you want to group by, i.e. "Class", "Subclass_1".

sig_threshold Significance threshold for compounds that go towars the count, sig_threshold = 0.05

keep_unknowns TRUE or FALSE for whether to drop compounds that weren't assigned hierarchy metadata

Examples

```
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
metadata = c57_nos2KO_mouse_metadata,
numerator = "Strep", denominator = "Mock", response_variable = "Metabolite",
Factor = "Treatment", log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df,
column = "Class", sig_threshold = 0.05, keep_unknowns = "FALSE")
```

get_seqs

Get nucleotide and amino acid sequences for genes

Description

Function that gets nt and aa seqs for gene data from KEGG_gather

```
get_seqs(gene_data)
```

6 KEGG_gather

Arguments

gene_data A dataframe with genes from KEGG_gather, with class seqs

Examples

```
## Not run:
gene_data <- c57_nos2KO_mouse_countDF[(1:2),]
gene_data <- KEGG_gather(gene_data)
gene_data <- KEGG_gather(gene_data)
gene_data <- gene_data[1:2,]
gene_data <- get_seqs(gene_data)
## End(Not run)</pre>
```

KEGG_gather

Gather metadata from KEGG for metabolites

Description

Method for gathering metadata from the KEGG API.

Usage

```
KEGG_gather(count_data)
## S3 method for class 'cpd'
KEGG_gather(count_data)
## S3 method for class 'rxn'
KEGG_gather(count_data)
## S3 method for class 'KO'
KEGG_gather(count_data)
```

Arguments

count_data A metabolomics count dataframe with a KEGG identifier columns

```
## Not run:
count_data <- assign_hierarchy(count_data = c57_nos2KO_mouse_countDF,
keep_unknowns = TRUE, identifier = "KEGG")
count_data <- subset(count_data, Subclass_2=="Aldoses")</pre>
```

make_omelette 7

```
count_data <- KEGG_gather(count_data = count_data)
## End(Not run)</pre>
```

make_omelette

Get metadata from KEGG API

Description

Internal function for KEGG_Gather

Usage

```
make_omelette(count_data, column, first_char)
```

Arguments

count_data The metabolomics count data

column The name of the KEGG identifier being sent to the KEGG API

first_char firct character in number being fed to KEGG database

omu_anova Perform anova

Description

Performs an anova across all response variables, followed by a Tukeys test on every possible contrast in your model and calculates group means and fold changes for each contrast. Returns a list of data frames for each contrast, and includes a dataframe of model residuals

```
omu_anova(
  count_data,
  metadata,
  response_variable = "Metabolite",
  model,
  log_transform = FALSE,
  method = "anova"
)
```

8 omu_summary

Arguments

count_data A metabolomics count data frame

metadata Metadata dataframe for the metabolomics count data frame

response_variable

String of the column header for the response variables, usually "Metabolite"

model A formual class object, see ?formula for more info on formulas in R. an interac-

tion between independent variables. Optional parameter

log_transform Boolean of TRUE or FALSE for whether or not you wish to log transform your

metabolite counts

method A string of 'anova', 'kruskal', or 'welch'. anova performs an anova with a post

hoc tukeys test, kruskal performs a kruskal wallis with a post hoc dunn test,

welch performs a welch's anova with a post hoc games howell test

Examples

```
anova_df <- omu_anova(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
response_variable = "Metabolite", model = ~ Treatment, log_transform = TRUE)
anova_df <- omu_anova(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
response_variable = "Metabolite", model = ~ Treatment + Background, log_transform = TRUE)
anova_df <- omu_anova(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
response_variable = "Metabolite", model = ~ Treatment + Background + Treatment*Background,
log_transform = TRUE)</pre>
```

omu_summary

omu_summary Performs comparison of means between two independent variables, standard deviation, standard error, FDR correction, fold change, log2FoldChange. The order effects the fold change values

Description

omu_summary Performs comparison of means between two independent variables, standard deviation, standard error, FDR correction, fold change, log2FoldChange. The order effects the fold change values

```
omu_summary(
  count_data,
  metadata,
  numerator,
  denominator,
```

PCA_plot 9

```
response_variable = "Metabolite",
Factor,
log_transform = FALSE,
p_adjust = "BH",
test_type = "welch",
paired = FALSE
)
```

Arguments

count_data should be a metabolomics count data frame

metadata is meta data

numerator is the variable you wish to compare against the denominator, in quotes

denominator see above, in quotes

response_variable

the name of the column with your response variables

Factor the column name for your independent variables

log_transform TRUE or FALSE value for whether or not log transformation of data is per-

formed before the t test

p_adjust Method for adjusting the p value, i.e. "BH"

test_type One of "mwu", "students", or "welch" to determine which model to use

paired A boolean of TRUE or FALSE. If TRUE, performs a paired sample test. To per-

form a paired sample test, metadata must have a column named 'ID' containing

the subject IDs.

Examples

```
omu_summary(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
numerator = "Strep", denominator = "Mock", response_variable = "Metabolite", Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")
```

PCA_plot

Create a PCA plot

Description

Performs an ordination and outputs a PCA plot using a metabolomics count data frame and metabolomics metadata

pie_chart

Usage

```
PCA_plot(
  count_data,
  metadata,
  variable,
  color,
  response_variable = "Metabolite",
  label = FALSE,
  size = 2,
  ellipse = FALSE
)
```

Arguments

count_data Metabolomics count data metadata Metabolomics metadata

variable The independent variable you wish to compare and contrast

color String of what you want to color by. Usually should be the same as variable.

response_variable

String of the response_variable, usually should be "Metabolite"

label TRUE or FALSE, whether to add point labels or not

size An integer for point size.

ellipse TRUE or FALSE, whether to add confidence interval ellipses or not.

Examples

```
PCA_plot(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
variable = "Treatment", color = "Treatment", response_variable = "Metabolite")
```

pie_chart

Create a pie chart

Description

Creates a pie chart as ggplot2 object using the output from ra_table.

Usage

```
pie_chart(ratio_data, variable, column, color)
```

Arguments

ratio_data a dataframe object of percents. output from ra_table function

variable The metadata variable you are measuring, i.e. "Class" column either "Increase", "Decrease", or "Significant_Changes" color string denoting color for outline. use NA for no outline

plate_omelette 11

Examples

```
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
metadata = c57_nos2KO_mouse_metadata,
numerator = "Strep", denominator = "Mock", response_variable = "Metabolite",
Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df,
column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)

ra_table <- ra_table(fc_data = fold_change_counts, variable = "Class")

pie_chart(ratio_data = ra_table, variable = "Class", column = "Decrease", color = "black")
```

plate_omelette

plate_omelette Internal method for KEGG_Gather which parses flat text files

Description

plate_omelette Internal method for KEGG_Gather which parses flat text files

Usage

```
plate_omelette(output)

## S3 method for class 'rxn'
plate_omelette(output)

## S3 method for class 'genes'
plate_omelette(output)

## S3 method for class 'KO'
plate_omelette(output)
```

Arguments

output

The metabolomics count dataframe

12 plot_bar

Description

Internal function for KEGG_Gather.rxn method KEGG_Gather.rxn requires dispatch on multiple elements, so There was no way to incorporate as a method

Usage

```
plate_omelette_rxnko(output)
```

Arguments

output from plate_omelette output

plot_bar Create a bar plot

Description

Creates a ggplot2 object using the output file from the count_fold_changes function

Usage

```
plot_bar(fc_data, fill, size = c(1, 1), outline_color = c("black", "black"))
```

Arguments

fc_data	The output file from Count_Fold_Changes
fill	A character vector of length 2 containing colors for filling the bars, the first color is for the "Decrease" bar while the second is for "Increase" $$
size	A numeric vector of 2 numbers for the size of the bar outlines.
outline_color	A character vector of length 2 containing colors for the bar outlines

```
c57_nos2K0_mouse_countDF <- assign_hierarchy(c57_nos2K0_mouse_countDF, TRUE, "KEGG")
t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,</pre>
metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock",
response_variable = "Metabolite", Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")
fold_change_counts <- count_fold_changes(count_data = t_test_df,</pre>
column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)
```

plot_boxplot 13

```
plot_bar(fc_data = fold_change_counts, fill = c("firebrick2", "dodgerblue2"),
outline_color = c("black", "black"), size = c(1,1))
```

plot_boxplot

Create a box plot

Description

Takes a metabolomics count data frame and creates boxplots. It is recommended to either subset, truncate, or agglomerate by hierarchical metadata.

Usage

```
plot_boxplot(
   count_data,
   metadata,
   aggregate_by,
   log_transform = FALSE,
   Factor,
   response_variable = "Metabolite",
   fill_list
)
```

Arguments

count_data A metabolomics count data frame, either from read_metabo or omu_summary

metadata The descriptive meta data for the samples

aggregate_by Hierarchical metadata value to sum metabolite values by, i.e. "Class"

log_transform TRUE or FALSE. Recommended for visualization purposes. If true data is transformed by the natural log

Factor The column name for the experimental variable

response_variable

The response variable for the data, i.e. "Metabolite"

fill_list Colors for the plot which is colored by Factor, in the form of c("")

```
c57_nos2KO_mouse_countDF <- c57_nos2KO_mouse_countDF[1:5,]
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")
plot_boxplot(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
log_transform = TRUE, Factor = "Treatment", response_variable = "Metabolite",
aggregate_by = "Subclass_2", fill_list = c("darkgoldenrod1", "dodgerblue2"))</pre>
```

14 plot_heatmap

	a heatmap	Create a heatm	plot_heatmap
--	-----------	----------------	--------------

Description

Takes a metabolomics count data frame and creates a heatmap. It is recommended to either subset, truncate, or agglomerate by metabolite metadata to improve legibility.

Usage

```
plot_heatmap(
   count_data,
   metadata,
   Factor,
   response_variable,
   log_transform = FALSE,
   high_color,
   low_color,
   aggregate_by
)
```

Arguments

count_data A metabolomics count data frame.

metadata The descriptive meta data for the samples.

Factor The column name for the independent variable in your metadata.

response_variable

The response variable for the data, i.e. "Metabolite"

log_transform TRUE or FALSE. Recommended for visualization purposes. If true data is trans-

formed by the natural log.

high_color Color for high abundance values
low_color Color for low abundance values

aggregate_by Hierarchical metadata value to sum metabolite values by, i.e. "Class"

```
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

plot_heatmap(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, log_transform = TRUE, Factor = "Treatment", response_variable = "Metabolite", aggregate_by = "Subclass_2", high_color = "darkgoldenrod1", low_color = "dodgerblue2")
```

plot_rf_PCA 15

plot_rf_PCA	plot_rf_PCA	
-------------	-------------	--

Description

PCA plot of the proximity matrix from a random forest classification model

Usage

```
plot_rf_PCA(rf_list, color, size, ellipse = FALSE, label = FALSE)
```

Arguments

rf_list	The output from the random_forest function. This only works on classification models.
color	A grouping factor. Use the one that was the LHS of your model parameter in the random_forest function
size	The number for point size in the plot
ellipse	TRUE or FALSE. Whether to plot with confidence interval ellipses or not.
label	TRUE or FALSE. Whether to include point labels or not.

Examples

```
 rf\_list <- \ random\_forest(c57\_nos2KO\_mouse\_countDF,c57\_nos2KO\_mouse\_metadata, \\ Treatment ~.,c(60,40),500) \\ plot\_rf\_PCA(rf\_list = rf\_list, color = "Treatment", size = 1.5)
```

```
plot_variable_importance
```

plot_variable_importance

Description

Plot the variable importance from a random forest model. Mean Decrease Gini for Classification and

Usage

```
plot_variable_importance(rf_list, color = "Class", n_metabolites = 10)
```

Arguments

rf_list The output from the random_forest function

color Metabolite metadata to color by

n_metabolites The number of metabolites to include. Metabolites are sorted by decreasing

importance.

plot_volcano

Examples

plot_volcano

Create a volcano plot

Description

Creates a volcano plot as ggplot2 object using the output of omu_summary

Usage

```
plot_volcano(
   count_data,
   column,
   size,
   strpattern,
   fill,
   sig_threshold,
   alpha,
   shape,
   color
)
```

Arguments

count_data	The output file from the omu	_summary function.
------------	------------------------------	--------------------

column The column with metadata you want to highlight points in the plot with, i.e.

"Class"

size Size of the points in the plot

strpattern A character vector of levels of the column you want the plot to focus on, i.e.

strpattern = c("Carbohydrates", "Organicacids")

fill A character vector of colors you want your points to be. Must be of length 1 +

length(strpattern) to account for points not in strpattern. Levels of a factor are organzed alphabetically. All levels not in the strpattern argument will be set to

NA.

sig_threshold An integer. Creates a horizontal dashed line for a significance threshold. i.e.

 $sig_{threshold} = 0.05$. Defaut value is 0.05

alpha A character vector for setting transparency of factor levels. Must be of length 1

+ length(strpattern) to account for points not in strpattern.

shape A character vector for setting the shapes for your column levels. Must be of

length 1 + length(strpattern) to account for points not in strpattern. See ggplot2

for an index of shape values.

random_forest 17

color

A character vector of colors for the column levels. Must be of length 1 + length(strpattern) to account for points not in strpattern. If you choose to use shapes with outlines, this list will set the outline colors.

Examples

```
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock",
response_variable = "Metabolite", Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")

plot_volcano(count_data = t_test_df, column = "Class", strpattern = c("Carbohydrates"),
fill = c("firebrick2", "white"), sig_threshold = 0.05, alpha = c(1,1),
shape = c(1,24), color = c("black", "black"), size = 2)

plot_volcano(count_data = t_test_df, sig_threshold = 0.05, size = 2)
```

random_forest

random_forest Perform a classification or regression random forest model

Description

a wrapper built around the randomForest function from package randomForest. Returns a list with a randomForest object list, training data set, testing data set, metabolite metadata, and confusion matrices for training and testing data (if type was classification).

Usage

```
random_forest(
  count_data,
  metadata,
  model,
  training_proportion = c(80, 20),
  n_tree = 500
)
```

Arguments

count_data Metabolomics data metadata sample data

model a model of format variable ~.

training_proportion

a numeric vector of length 2, first element is the percent of samples to use for training the model, second element is the percent of samples used to test the

models accuracy

n_tree number of decision trees to create

18 read_metabo

Examples

```
rf_list <- random_forest(count_data = c57_nos2KO_mouse_countDF,metadata = c57_nos2KO_mouse_metadata, model = Treatment \sim.,training_proportion = c(60,40),n_tree = 500)
```

ra_table

Creates a ratio table from the count_fold_changes function output.

Description

Create a ratio table

Usage

```
ra_table(fc_data, variable)
```

Arguments

fc_data data frame output from the count_fold_changes function

variable metadata from count_fold_changes, i.e. "Class"

Examples

```
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock",
response_variable = "Metabolite", Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df,
column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)

ra_table(fc_data = fold_change_counts, variable = "Class")
```

read_metabo

Import a metabolomics count data frame

Description

Wrapper for read.csv that appends the "cpd" class and sets blank cells to NA. Used to import metabolomics count data into R.

```
read_metabo(filepath)
```

transform_metabolites 19

Arguments

filepath a file path to your metabolomics count data

Examples

```
filepath_to_yourdata = paste0(system.file(package = "omu"), "/extdata/read_metabo_test.csv")
count_data <- read_metabo(filepath_to_yourdata)</pre>
```

transform_metabolites transform_metabolites

Description

A functional to transform metabolomics data across metabolites.

Usage

```
transform_metabolites(count_data, func)
```

Arguments

count_data Metabolomics data

func a function to transform metabolites by. can be an anonymous function

Examples

```
data_pareto_scaled <- transform_samples(count_data = c57_nos2KO_mouse_countDF,
function(x) x/sqrt(sd(x)))
```

transform_samples transform_samples

Description

A functional to transform metabolomics data across samples.

Usage

```
transform_samples(count_data, func)
```

Arguments

count_data Metabolomics data

func a function to transform samples by. can be an anonymous function

```
data_ln <- transform_samples(count_data = c57_nos2KO_mouse_countDF, log)</pre>
```

Index

```
* datasets
    c57_nos2KO_mouse_countDF, 3
    \verb|c57_nos2K0_mouse_metadata|, 3
assign\_hierarchy, \\ 2
c57_nos2K0_mouse_countDF, 3
c57_nos2K0_mouse_metadata, 3
check_zeros, 4
count_fold_changes, 5
get_seqs, 5
KEGG_gather, 6
make_omelette, 7
omu_anova, 7
omu\_summary, 8
PCA_plot, 9
pie_chart, 10
plate_omelette, 11
plate\_omelette\_rxnko, 12
plot_bar, 12
plot_boxplot, 13
plot_heatmap, 14
plot_rf_PCA, 15
plot_variable_importance, 15
plot_volcano, 16
ra_table, 18
random_forest, 17
\verb"read_metabo", 18
transform_metabolites, 19
transform_samples, 19
```