```
Q→ civer ar integer array, find sum of elements
    from irdex L to irdex R.
     A = \begin{bmatrix} -3 & 6 & 2 & 4 & 5 \\ 2 & 4 & 5 & 2 \end{bmatrix} L=1 R=3
                              TC = O(N) SC = O(1)
   for i→L to R of
   sum +=A[i]
   I return sum
 Solve the above for multiple queries → (L, R)

same task for

multiple irputs
      0 1 2 3 4 5
A = [-3 6 2 4 5 2]
 Queries \rightarrow (1,3), (2,2), (1,5) \stackrel{L=[1\ 2\ 1]}{\rightleftharpoons} R=[3\ 2\ 5]
     Ans → 12 2 19
     for i \rightarrow 0 to (Q-1) {
     for j→ [i] to R[i] {
                                 TC = O(Q \times N) SC = O(I)
      print (sun)
```

Scoreboard in cricket

Runs in 7th orex \rightarrow 65 - 49 = 16 Runs from 6th to 10th orex \rightarrow 97 - 31 = 66 Runs in 10th orex \rightarrow 97 - 88 = 9 Runs from 3rd to 6th over \rightarrow 49 - 8 = 41 Runs from 4th to 9th over \rightarrow 88 - 14 = 74

* sum from index 1 to $R \rightarrow (sum from 0 to R)$ prefix sum - (sum from 0 to (1-1))

prefix sum;

prefix sum
i
$$P[i] = \mathcal{E} A[u] \qquad A[0] + A[1] + \dots A[i]$$

$$u=0$$

sum from index L to R = P[R] - P[L-1]

$$P[2] = -3+6+2$$
 $P[3] = -3+6+2+4$ $P[2]$

$$P[3] = P[2] + A[3]$$

$$P[i] = P[i-1] + A[i]$$

$$P[o] = A[o]$$

$$A \rightarrow \begin{bmatrix} 0 & 1 & 2 & 2 & 3 & 4 \\ 10 & 32 & 6 & 12 & 20 & 1 \end{bmatrix}$$

$$P \rightarrow \begin{bmatrix} 0 & 42 & 48 & 60 & 80 & 81 \end{bmatrix}$$

```
P[0] = A[0]
for i \rightarrow 1 \text{ to } (N-1) \text{ f}
P[i] = P[i-1] + A[i]
for i \rightarrow 0 \text{ to } (Q-1) \text{ f}
L = 1[i] \quad x = R[i]
if (L>0)
Sum = P[x] - P[e-1]
else \quad Sum = P[x]
print (Sum)
f(x) = O(N+Q)
SC = O(N)
```

Can it be optimized?

$$A \rightarrow \begin{bmatrix} 10 & 32 & 6 & 12 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 3 & 4 \\ 10 & 32 & 6 & 12 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 3 & 4 \\ 1 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 3 & 4 \\ 1 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 3 & 4 \\ 1 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 3 & 4 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 3 & 4 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 3 & 4 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 3 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 20 & 1 \end{bmatrix} \qquad A \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 &$$

for
$$i \rightarrow 1$$
 to $(N-1)$ {
$$A [i] = A [i-1] + A [i]$$

$$SC = O(1)$$

A→ Ciner ar integer array of size N & D queries.

Find the sum of all ever index elements

from L to R.

```
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 5 \\ 2 & 3 & 1 & 6 & 4 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6 & 4 & 4 \\ 2 & 3 & 1 & 6 & 4 \end{bmatrix}
A = \begin{bmatrix} 2 & 3 & 1 & 6
```

$$P[o] = A[o]$$

if (i. 1. 2 = = 0) $P[i] = P[i-1] + A[i]$

else $P[i] = P[i-1]$

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}$$

$$P \rightarrow 2 \quad 2 \quad 3 \quad 3 \quad 7 \quad 7$$

$$A = \begin{bmatrix} 2 & 4 & 3 & 1 & 5 \end{bmatrix}$$

$$P = 2 \quad 2 \quad 5 \quad 5 \quad 10$$

l=2 s=5 Sum = P/SJ-P[IJ]

$$P[0] = A[0]$$

$$for i \rightarrow 1 \text{ to } (N-1) \text{ d}$$

$$if (i\% 2 = = 0) \quad P[i] = P[i-1] + A[i]$$

$$else \quad P[i] = P[i-1]$$

```
for i \rightarrow 0 to (R-1) d

L = [Li]  x = R[i]  TC = Q(N+Q)

if (L>0)  SC = Q(N)

Sum = P[x] - P[L-1]

else sum = P[x]

print (sum)

A = \begin{bmatrix} 2 & 4 & 3 & 1 & 5 \end{bmatrix}

A = \begin{bmatrix} 2 & 4 & 3 & 1 & 5 \end{bmatrix}

A = \begin{bmatrix} 2 & 4 & 3 & 1 & 5 \end{bmatrix}
```

for
$$i \rightarrow 1$$
 to $(N-1)$ {

if $(i\%, 2 = 0)$ A[i] = A[i-1] + A[i]

else A[i] = A[i-1]

}

 $SC = O(1)$

$$A = \begin{bmatrix} 2 & 4 & 3 & 4 \\ 2 & 4 & 3 & 4 & 5 \end{bmatrix}$$

$$2 = \begin{bmatrix} 2 & 4 & 3 & 4 & 5 \\ 2 & 5 & 5 & 10 & 5 \end{bmatrix}$$

Perefix sum for odd irdex -

$$P[0] = 0$$

if (i.4. 2 = = 1) $P[i] = P[i-1] + A[i]$

else $P[i] = P[i-1]$

a→ Giver ar integer array, court the number of special index i.e. those index after removing which, sum of all ever index elements = sum of all odd index elements

i
$$A = \begin{bmatrix} 4 & 3 & 2 & 3 & 4 & 5 \\ 3 & 2 & 7 & 6 & -2 \end{bmatrix}$$
 Se So $0 \checkmark$ 3 2 7 6 -2 8 = 8

1 X 4 2 7 6 -2 9 \neq 8

2 \checkmark 4 3 7 6 -2 9 = 9

3 X 4 3 2 6 -2 4 \neq 9

4 X 4 3 2 7 6 12 \neq 10

5 X 4 3 2 7 6 12 \neq 10

Ans = 2

 $S_{e} = 2 + 1 + (-1) + (-2) + 8 = 8$

```
So
\frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}}
= \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{
```

```
(oddP[N-1] - oddP[i])
```

11 oddP[] everP[] ~

ert = 0

if ((everP(N-1) - everP(0)) = = (oddP(N-1) - oddP(0)))

ent ++

for $i \rightarrow 1$ to (N-1) & SO = oddP[i-1] + evenP[N-1] - evenP[i] SE = evenP[i-1] + oddP[N-1] - oddP[i]if (SO == SE) crt++

return cot

TC = O(N) SC = O(N)

 $O(N+N) \rightarrow O(N)$

Suffix Lame