

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA

EM608 – Elementos de Máquinas ES690 – Sistemas Mecânicos

TEORIA DE FALHA DINÂMICA (FADIGA)

Prof. Gregory Bregion Daniel gbdaniel@fem.unicamp.br

Prof.a Katia Lucchesi Cavalca katia@fem.unicamp.br

Campinas, 2º semestre 2020

Entalhes e Concentração de Tensão

Entalhe é um termo genérico que se refere a um contorno geométrico, que interrompe o fluxo de forças através do elemento. Pode ser um furo, uma ranhura ou mesmo uma mudança na área de seção.

Fator de sensibilidade ao entalhe (q):

$$q = \frac{\left(K_f - 1\right)}{\left(K_t - 1\right)}$$

No qual:

 K_f = fator de concentração de tensão dinâmico (ou em fadiga)

 K_t = fator de concentração de tensão geométrico (ou estático)

Assim, conhecido o fator de concentração geométrico e obtido o fator de sensibilidade ao entalhe *q*, correspondente ao material utilizado, pode-se então estimar o fator dinâmico *Kf* como:

$$K_f = 1 + q(K_t - 1),$$

onde $0 \le q \le 1$

Após determinar o fator de concentração de tensão dinâmico é possível determinar as tensões reais como:

 $\sigma = K_f \sigma_{nom}$ $\tau = K_{fs} \tau_{nom}$

O fator de concentração geométrico K_t é determinado de acordo com a geometria funcional introduzida no elemento.

A sensibilidade ao entalhe q pode ser definido pela expressão de Kunn-Hardrath (1952):

$$q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}}$$

 $q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}}$ Onde \sqrt{a} é a constante de Neuber e **r** é o raio de entalhe.

A tabela a seguir mostra os valores da constante \sqrt{a} , também conhecida como constantes de Neuber, para aços em função de seu limite de ruptura.

Tabela - Constante de Neuber

Sut (ksi)	50	55	60	70	80	90	100
\sqrt{a} (in ^{0,5})	0,130	0,118	0,108	0,093	0,080	0,070	0,062

_ [$S_{ut}(\mathrm{ksi})$	110	120	130	140	160	180	200
~ [$\sqrt{a} \left(in^{0,5} \right)$	0,055	0,049	0,044	0,039	0,031	0,024	0,018

S_{ut} (ksi)	220	240
$\sqrt{a} \left(in^{0,5} \right)$	0,013	0,009

Projeto para Tensões Alternadas Simétricas ou Completamente Reversas

Recomenda-se o seguinte roteiro para o dimensionamento à fadiga:

- 1) Determinar o número de ciclos *N* do carregamento cíclico para o qual o elemento deverá ser projetado.
- 2) Determinar a faixa da carga alternada aplicada, pico a pico.
- 3) Determinar os fatores de concentração de tensões geométricos (*Kt* ou *Kts*), tomando como base a geometria do peça e entalhe.
- 4) Selecionar o material da peça e definir as propriedades do material S_{ut} , S_{v} , $S_{e'}$ ou $S_{f'}$ e q.
- 5) Determinar os fatores de concentração em fadiga **K**_f a partir do fator de concentração geométrico **K**_f e da sensibilidade ao entalhe **q**.

Projeto para Tensões Alternadas Simétricas ou Completamente Reversas

- 6) A partir da análise de tensões deve-se determinar a componente alternada nominal σ_{a_nom} e, através do fator de concentração de tensões em fadiga K_f, obter a componente real σ_a.
- 7) Determinar as tensões principais alternadas nas localizações críticas, já considerando o efeito de fatores de concentração de tensões.
- 8) Estimar a Tensão Efetiva de Von Mises nas regiões críticas.
- 9) Determinar os fatores de correção para a resistência à fadiga ($S_{e'}$ ou $S_{f'}$), a saber: $C_{car'}$, $C_{tam'}$, $C_{sup'}$, C_{tem} e C_{con} .
- 10) Calcular a resistência à fadiga corrigida para o ciclo de vida *N* esperado. Se a curva *S-N* apresenta o cotovelo que caracteriza o limite de resistência a fadiga para vida infinita, então, *S_f* = *S_e*.

$$S_f = aN^b$$

$$\log S_f = \log a + b \log N$$

Para materiais sem o limite de resistência para vida infinita, escreve-se a equação da reta da curva *S-N*, em escala log-log.

Projeto para Tensões Alternadas Simétricas ou Completamente Reversas

Para $N=N_1=10^3$ ciclos, tem-se $S_f=S_m$, que intercepta o eixo das ordenadas.

Para $N=N_2=10^6$ ciclos, tem-se $S_f=S_e$, para materiais com cotovelo em S-N.

Figura – Curva S-N para materiais sem o limite de resistência para vida infinita

Projeto para Tensões Alternadas Simétricas ou Completamente Reversas

$$S = aN^{-b} \qquad \log(S) = \log(a) - b.\log(N)$$

$$\log a = \log S_e - b \log N_2$$

$$\log a = \log S_m - b \log N_1 = \log S_m - 3b$$

$$b = \frac{\Delta \log S_f}{\Delta \log N} = \frac{\log S_m - \log S_e}{\log N_1 - \log N_2} = \frac{1}{\log N_1 - \log N_2} \log(S_m / S_e)$$

 $S_m=0,90S_{ut}$ para flexão alternada $S_m=0,75S_{ut}$ para carga axial alternada

- 11) Comparar a tensão alternada efetiva de Von Mises com a Resistência à Fadiga corrigida, obtida da curva *S-N*, para o ciclo de vida desejado.
- 12) Calcular o Fator de Segurança $N_f = S_f/\sigma_\alpha$.

Projeto para Tensões Alternadas Flutuantes

Recomenda-se o seguinte roteiro para o dimensionamento à fadiga:

- 1) Determinar o número de ciclos *N* do carregamento cíclico para o qual o elemento deverá ser projetado.
- 2) Determinar a faixa da carga alternada aplicada, pico a pico.
- 3) Determinar os fatores de concentração de tensões geométricos (*Kt* **ou** *Kts*), tomando como base a geometria do peça e entalhe.
- 4) Selecionar o material da peça e definir as propriedades do material S_{ut} , S_{v} , $S_{e'}$ ou $S_{f'}$ e q.
- 5) Determinar os fatores de concentração em fadiga *K_f* a partir do fator de concentração geométrico *K_f* e da sensibilidade ao entalhe *q*.

Projeto para Tensões Alternadas Flutuantes

- 6) A partir da análise de tensões deve-se determinar a componente alternada nominal σ_{a_nom} e a componente media nominal σ_{m_nom} .
- 7) Aplicando o fator de concentração de tensões em fadiga K_f , obter as componentes alternada σ_a e média σ_m .
- 8) Para proceder com o passo (7) é necessário definir K_{fm} , ou seja, o fator de concentração de tensão associado à componente média de tensões σ_m .

a) Se
$$K_f |\sigma_{\text{max}}| \le S_y$$
, então $K_{fm} = K_f$

b) Se
$$K_f |\sigma_{\text{max}}| \ge S_y$$
, então $K_{fm} = \frac{S_y - K_f \sigma_a}{|\sigma_m|}$

c) Se
$$K_f |\sigma_{\text{max}} - \sigma_{\text{min}}| \ge 2S_y$$
, então $K_{fm} = 0$

Projeto para Tensões Alternadas Flutuantes

Projeto para Tensões Alternadas Flutuantes

9) Estimar a Tensão Efetiva de Von Mises, a partir do estado real de tensões, para as componentes média e alternada

$$\sigma'_{m} = \sqrt{\sigma_{xm}^2 + \sigma_{ym}^2 - \sigma_{xm}\sigma_{ym}^2 + 3\tau_{xym}^2}$$

$$\sigma_a' = \sqrt{\sigma_{xa}^2 + \sigma_{ya}^2 - \sigma_{xa}\sigma_{ya} + 3\tau_{xya}^2}$$

- 10) Determinar os fatores de correção para a resistência à fadiga ($S_{e'}$ ou $S_{f'}$), a saber: C_{car} , C_{tam} , C_{sup} , C_{tem} e C_{con}
- 11) Criar o Diagrama de Goodman Modificado para a resistência a fadiga corrigida (S_e ou S_f), utilizando como limite do material, a resistência máxima à tração S_{ut} , e a correção pela curva de escoamento (S_V).

Projeto para Tensões Alternadas Flutuantes

Figura – Diagrama de Goodman Modificado

Note que, para materiais dúcteis em vida infinita, $S_f = S_e$

Projeto para Tensões Alternadas Flutuantes

12) Determinar os Fatores de Segurança.

Figura – Diagrama de Goodman Modificado indicando o Estado de Tensão e os possíveis Fatores de Segurança

Projeto para Tensões Alternadas Flutuantes

Nf1: Para componente alternada constante e componente média variável.

$$N_{f1} = \frac{S_y}{\sigma_m'} \left(1 - \frac{\sigma_a'}{S_y} \right)$$

Projeto para Tensões Alternadas Flutuantes

N_{f2}: Para componente média constante e componente alternada variável.

$$N_{f2} = \frac{S_f}{\sigma_a'} \left(1 - \frac{\sigma_m'}{S_{ut}} \right)$$

Projeto para Tensões Alternadas Flutuantes

 N_{f3} : Para componente média e alternada variáveis, mantendo uma relação fixa entre se $(\sigma_{a'} / \sigma_{m'} = cte)$.

$$N_{f3} = \frac{S_{ut}S_f}{\sigma'_a S_{ut} + \sigma'_m S_f}$$

Projeto para Tensões Alternadas Flutuantes

Nf4: Para componentes média e alternada variáveis quaisquer.

$$N_{f4} = \frac{\sqrt{\sigma_a'^2 + \sigma_m'^2} + \sqrt{(\sigma_m' - \sigma_m')^2 + (\sigma_a' - \sigma_a')^2}}{\sqrt{\sigma_a'^2 + \sigma_m'^2}}$$

Sendo:
$$\sigma'_{ms} = \frac{S_{ut} \left(S_f^2 - S_f \sigma'_a + S_{ut} \sigma'_m\right)}{S_f^2 + S_{ut}^2}$$

$$\sigma'_{as} = -\frac{S_f(\sigma'_{ms})}{S_{ut}} + S_f$$

