

ICON Database Reference Manual

D. Reinert, F. Prill, H. Frank and G. Zängl

Deutscher Wetterdienst Research and development (FE13)

Preliminary Version: 0.1

Last changes: March 22, 2013

Offenbach am Main, Germany

Contents

1	\mathbf{Ava}	Available output fields in GRIB2-format				
	1.1	Deprecated output fields	1			
	1.2	New output fields	1			
	1.3	Available output fields listed in tabular form	2			

iv

Chapter 1

Available output fields in GRIB2-format

In GRIB2, a variable is uniquely defined by the following set of metadata:

- Discipline (see GRIB2 code table 4.2)
- ParameterCategory (see GRIB2 code table 4.2)
- ParameterNumber (see GRIB2 code table 4.2)
- \bullet typeOfFirstfixedSurface and typeOfSecondFixedSurface (see GRIB2 code table 4.5)
- stepType (instant, accum, avg, max, min, diff, rms, sd, cov, ...)

In the following, typeOfFirstFixedSurface and typeOfSecondFixedSurface will be abbreviated by Lev-Typ 1/2.

1.1 Deprecated output fields

With the launch of ICON, the following output fields will no longer be available:

- OMEGA [Pa/s]: Vertical velocity in pressure coordinates $\omega = \frac{\mathrm{d}p}{\mathrm{d}t}$
- BAS_CON [-]: Level index of convective cloud base
- TOP_CON [-]: Level index of convective cloud top
- T_S [K]: Temperature at the soil-atmosphere-, or soil-snow-interface. Note that T_S = T_SO(0), thus T_S is redundant.
- W_G1, W_G2 [mm H2O]: Soil water content in upper layer (0 to 10 cm) and middle layer (10 to 100 cm), respectively. If needed, these fields can be derived from W_SO.

1.2 New output fields

New output fields that will become available with the launch of ICON are:

- W [m/s]: vertical velocity in height coordinates $w = \frac{dz}{dt}$
- **DEN** $[kg/m^3]$: density of moist air

1.3 Available output fields listed in tabular form

Table 1.1: Hybrid multi-layer forecast (VV > 0) and initialised analysis (VV = 0) products

${\bf ShortName}$	Description	Discipline	Category	Number	$\rm Lev-Typ~1/2$	$\operatorname{stepType}$	Unit
U	Zonal wind	0	2	2	105/105	inst	${ m ms^{-1}}$
V	Meridional wind	0	2	3	105/105	inst	$\rm ms^{-1}$
W	Vertical wind	0	2	9	105/-	inst	$\rm ms^{-1}$
T	Temperature	0	0	0	105/105	inst	K
DEN	Density of moist air	0	3	10	105/105	inst	${\rm kgm^{-3}}$
QV	Specific humidity	0	1	0	105/105	inst	$\rm kgkg^{-1}$
QC	Cloud mixing ratio ¹	0	1	22	105/105	inst	$\rm kgkg^{-1}$
QI	Cloud ice mixing ratio ¹	0	1	82	105/105	inst	$\rm kgkg^{-1}$
QR	Rain mixing ratio ¹	0	1	24	105/105	inst	$\rm kgkg^{-1}$
QS	Snow mixing ratio ¹	0	1	25	105/105	inst	$\rm kgkg^{-1}$
CLC	Cloud cover	0	6	22	105/105	inst	%
O3	Ozone mixing ratio ²	0	14	1	105/105	inst	$\rm kgkg^{-1}$

Table 1.2: Single-layer forecast (VV>0) and initialised analysis (VV=0) products

${\bf ShortName}$	Description	Discipline	Category	Number	${ m Lev-Typ} \ 1/2$	${\rm stepType}$	Unit
PS	Surface pressure (not reduced)	0	3	1	1/-	inst	Pa
$T_{-}SNOW$	Temperature of the snow surface	0	0	18	1/-	inst	K
$T_{-}G$	Ground temperature (temperature at sfc-atm interface)	0	0	0	1/-	inst	K
QV_S	Surface specific humidity	0	1	0	1/-	inst	$\rm kgkg^{-1}$
W_SNOW	Snow depth water equivalent	0	1	60	1/-	inst	${\rm kgm^{-2}}$
$W_{-}I$	Plant canopy surface water	2	0	13	1/-	inst	${\rm kgm^{-2}}$

 $Continued\ on\ next\ page$

 $^{^{1}\}mathrm{for}$ the time being, erroneously encoded as mixing ratios instead of specific quantities $^{2}\mathrm{not}$ clear yet, whether ozone will be provided as output field

Table 1.2: continued

TCM	Turbulent transfer coefficient for momentum (surface)	0	2	29	1/-	inst	
тсн	Turbulent transfer coefficient for heat and moisture (surface)	0	0	19	1/-	inst	
ASOB_S	Net short-wave radiation flux at surface (average since model start)	0	4	9	1/-	avg	${ m Wm^{-2}}$
ATHB_S	Net long-wave radiation flux at surface (average since model start)	0	5	5	1/-	avg	${ m Wm^{-2}}$
$\mathrm{ASOB}_{-}\mathrm{T}$	Net short-wave radiation flux at TOA (average since model start)	0	4	9	8/-	avg	${ m Wm^{-2}}$
$\mathrm{ATHB}_{-}\mathrm{T}$	Net long-wave radiation flux at TOA (average since model start)	0	5	5	8/-	avg	${ m W}{ m m}^{-2}$
ALB_RAD	Surface albedo for visible range, diffuse	0	19	1	1/-	inst	%
RAIN_GSP	Large scale rain (accumulated since model start)	0	1	77	1/-	accu	${\rm kg}{\rm m}^{-2}$
$SNOW_GSP$	Large snowfall water equivalent (accumulated since model start)	0	1	56	1/-	accu	${\rm kg}{\rm m}^{-2}$
RAIN_CON	Convective rain (accumulated since model start)	0	1	76	1/-	accu	${\rm kgm^{-2}}$
SNOW_CON	Convective snowfall water equivalent (accumulated since model start)	0	1	55	1/-	accu	${\rm kg}{\rm m}^{-2}$
TOT_PREC	Total precipitation (accumulated since model start)	0	1	52	1/-	accu	${\rm kg}{\rm m}^{-2}$
RUNOFF_S	Surface water runoff (accumulated since model start) ³	2	0	5	106/-	accu	${\rm kg}{\rm m}^{-2}$
RUNOFF_G	Soil water runoff (accumulated since model start) 3	2	0	5	106/-	accu	${\rm kg}{\rm m}^{-2}$
$U_{-}10M$	Zonal wind at 10m above ground	0	2	2	103/-	inst	$\rm ms^{-1}$
$V_{-}10M$	Meridional wind at 10m above ground	0	2	3	103/-	inst	$\rm ms^{-1}$
T_2M	Temperature at 2m above ground	0	0	0	103/-	inst	K
$\mathrm{TD}_{-}\mathrm{2M}$	Dew point temperature at 2m above ground	0	0	6	103/-	inst	K
VMAX_10M	Maximum wind at 10 m above ground	0	2	22	103/-	max	${ m ms^{-1}}$

 $Continued\ on\ next\ page$

Table 1.2: continued

Z0	Surface roughness (above land and water)	2	0	1	1/-	inst	m
CLCT	Total cloud cover		6	1	1/-	inst	%
CLCH	$\mathrm{High\ level\ clouds}^3$	0	6	1	100/100	inst	%
CLCM	$\mathrm{Mid}\ \mathrm{level}\ \mathrm{clouds}^3$	0	6	1	100/100	inst	%
CLCL	Low level clouds ³	0	6	1	100/100	inst	%
TQV	Total column integrated water vapour	0	1	64	1/-	inst	${\rm kgm^{-2}}$
TQC	Total column integrated cloud water	0	1	69	1/-	inst	${\rm kgm^{-2}}$
TQI	Total column integrated cloud ice	0	1	70	1/-	inst	${\rm kgm^{-2}}$
TQR	Total column integrated $rain^3$	0	1	45	1/-	inst	${\rm kgm^{-2}}$
TQS	Total column integrated snow ³	0	1	46	1/-	inst	${\rm kgm^{-2}}$
HBAS_CON	Height of convective cloud base above msl	0	6	26	2/101	inst	m
HTOP_CON	Height of convective cloud top above msl	0	6	27	3/101	inst	m
HZEROCL	Height of 0 degree Celsius isotherm above msl	0	3	6	4/101	inst	m
$ASHFL_S$	Sensible heat net flux at surface (average since model start)		0	11	1/-	avg	${ m Wm^{-2}}$
$ALHFL_S$	Latent heat net flux at surface (average since model start)	0	0	10	1/-	avg	${ m Wm^{-2}}$
FR_ICE	Sea ice cover (possible range: $[0,1]$)	10	2	0	1/-	inst	_
T_ICE	Sea ice temperature (at ice-atm interface)	10	2	8	1/-	inst	K
H_ICE	Sea ice thickness (Max: 3 m)	10	2	1	1/-	inst	m
FRESHSNW	Fresh snow factor (weighting function for albedo indicating freshness of snow)		1	203	1/-	inst	-
RHO_SNOW	Snow density	0	1	61	1/-	inst	${\rm kgm^{-3}}$
H_SNOW	Snow depth	0	1	11	1/-	inst	m

³Output fields not yet available, but planned.

level no.	depth [cm]	layer no.	upper/lower bounds [cm]
0	0.0		
1	0.5	1	0.0 - 1.0
2	2.0	2	1.0 - 3.0
3	6.0	3	3.0 - 9.0
4	18.0	4	9.0 - 27.0
5	54.0	5	27.0 - 81.0
6	162.0	6	81.0 - 243.0
7	486.0	7	243.0 - 729.0
8	1458.0	8	729.0 - 2187.0

Table 1.4: Soil model: vertical distribution of levels and layers

Table 1.3: Multi-layer forecast (VV>0) and initialised analysis (VV=0) products of the soil model

ShortName	Description	Discipline	Category	Number	m Lev-Typ~1/2	$\operatorname{stepType}$	Unit
$T_{-}SO$	Soil temperature	2	3	18	106/-	inst	K
W_SO	Soil moisture integrated over individual soil layers (ice + liquid)	2	3	20	106/106	inst	${\rm kg}{\rm m}^{-2}$
W_SO_ICE	Soil ice content integrated over individual soil layers	2	3	22	106/106	inst	${\rm kg}{\rm m}^{-2}$

Soil temperature is defined at the soil depths given in Table 1.4 (column 2). Levels 1 to 8 define the full levels of the soil model. A zero gradient condition is assumed between levels 0 and 1, meaning that temperatures at the surface-atmosphere interface are set equal to the temperature at the first full level depth. $(0.5\,\mathrm{cm})$. Temperatures are prognosed for levels 1 to 7. At the lowermost level $(1458\,\mathrm{cm})$ the temperature is fixed to the climatological average $2\,\mathrm{m}$ -temperature.

Soil moisture W_SO is prognosed for layers 1 to 6. In the two lowermost layers W_SO is time constant.