3.4 t-Kesitleme matrisinin gerşekleştirimi

elde edilir.

Burada \odot , Tanım 3.4.2 de açıklandığı gibi özel bir matris çıkışma işlemini göstermektedir. Tanım 3.4.2 den, $M(i)_1$ ve $M(i)_2$ nin sırasıyla, \overline{Q}_1 ve \overline{Q}_2 çizgelerinin t-kesitleme matrisleri olduğu hemen görülecektir. Ayrıca, M(i) matrisindeki i kesitlemesi bir çakışım kümesi dir de.

 $M(i)_1$ matrisi, C ye ilişkin bir altçizgenin t-kesitleme matrisi olduğuna göre, bu kez H(j) ($j \neq i$) matrisi ve bu matrise ilişkin $M(ij)_1$ ve $M(ij)_2$ matrislerini elde edebiliriz. Bu matrislerin temel özelliği, her birinde i ve j kesitlemelerinin birer çakışım kümesi olan temel M-matrislerini buluruz. Her bir temel M-matrisi çakışım matrisi olduğu için, ilişkin altçizgelerin bulunması bir sorun değildir. Bu altçizgelere Şekil 3.4.4b de açıklanan işlemin tersinin uygulanması, Q_t matrisine ilişkin aranan çizgeyi verecektir. Eğer elde edilen temel M-matrislerinden herhangi biri çakışım matrisinin özelliklerini sağlamıyorsa, ilişkin t-kesitleme matrisi de gerçeklemez demektir. Ancak, burada bir saptama yapmamız uygun olur. H(i) matrisinin parçalanması doğru yapılmamışsa yanlış M-matrislerinin elde edilmesi doğaldır. Demek ki, H(i) matrisinin bütün değişik