Trabalhando com Grande Volume de Dados 2016/2

Pamela Tabak - DRE: 113034881 (Engenharia de Computação e Informação)

Relatório Trabalho Estatística

Exercício 1: Nova Feature para um Site

- Um site criou uma nova funcionalidade (play automático de vídeos) em suas páginas e deseja saber se essa nova funcionalidade deve ser mantida ou não, isto é, se ela gera lucro, prejuízo ou se é indiferente. Para definir se a funcionalidade deve ser mantida, foram fornecidos os dados históricos de utilização do site (antes da implementação da funcionalidade, isto é, a população) e os dados depois da implementação (isto é, a amostra). Esses dados estão relacionados à tempo de navegação no site. Sabendo que a nova funcionalidade custa um preço para ser executada (gasto do site) e, que cada minuto extra de navegação também gera um preço (lucro ao site), o objetivo é descobrir se ela deve ser mantida ou não.
- Formulação da Hipótese: Supor que a média da amostra é igual a média da população, de modo a existir um problema bicaudal, sendo possível calcular se a hipótese H0 será rejeitada ou não e, caso seja rejeitada, o motivo (abaixo do limite inferior ou acima do limite superior). Ou seja, descrevendo em relação ao problema, é possível verificar se a média da amostra é igual a média da população (H0 não é rejeitada, mas a funcionalidade gerou prejuízo ao site, dado que ela gasta para ser executada e não aumentou o tempo médio de navegação, isto é, não aumentou o lucro); se a média da amostra é maior do que a média da população (H0 é rejeitada e a nova funcionalidade gera lucro); se a média da amostra é menor do que a média da população, também trazendo prejuízo implementar a nova funcionalidade (H0 é rejeitada e a nova funcionalidade gera prejuízo).

> Procedimento

- Para realizar esse trabalho, foi utilizada a linguagem de programação Python 2.6 e as bibliotecas matplotlib, numpy e scipy.
- Passos realizados:
 - Ler os dois arquivos csv e carregar os valores de tempo para duas listas (uma para cada arquivo, ou seja, uma para a amostra e uma para população).
 - Calcular a média e o desvio padrão da população, para poder aplicar esses valores no cálculo da estatística z, mais a frente
 - Calcular a média e o tamanho da amostra.
 - Definir o nível de confiabilidade desejado.

- Calcular a estatística z.
 - z = (media_amostra media_populacao) / (desvio_padrao_populacao / sqrt(tamanho_amostra))
- Calcular o pvalor, lembrando que o cálculo varia dependendo se a estatística z (pvalor = 1 - P[Z > z]) é maior ou menor do que zero (pvalor = P[Z > z])
- Comparar o valor encontrado para pvalor com alfa (1 nível de confiabilidade) / 2 (problema bicaudal) e descobrir em que região essa amostra se encontra, rejeitando ou não H0.
- O código utilizado para o desenvolvimento dessa questão pode ser encontrado em anexo com este relatório.

> Respostas

■ O valor da estatística Z encontrado foi 23.3587947799. Para esse valor, a probabilidade (P[Z > z]) calculada pela função cdf (utilizando a biblioteca scipy) foi 1.0, resultando em um pvalor igual a 0. Dessa forma, não importa o valor escolhido para alfa (1 - nível de significância), a hipótese H0 será sempre rejeitada, aceitando a nova feature (pois foi rejeitada por esta acima do limite crítico máximo). Isto é, os dados comprovam que o nível de confiança encontrado é de 100%.

Exercício 2: Clicks do Site

- Este exercício visa descobrir se os dados de duas amostras diferentes seguem ou não uma mesma distribuição. Isto é, existem duas amostras: número de clicks em um site sem pop-up e número de clicks em um site com pop-up e o objetivo é descobrir se a existência do pop-up influencia no número de clicks.
- ➤ Para isso, foi realizado o teste do qui-quadrado para duas amostras, que tem como hipótese nula que as duas amostras vieram da mesma distribuição. Portanto, se a hipótese H0 for rejeitada, significa que faz diferença utilizar o pop-up.
- > Procedimento
 - Classe A = Tela sem pop-up
 - Classe B = Tela com pop-up
 - Grupo I = Usuário clicou
 - Grupo II = Usuário não clicou
 - Criar tabela com a contingência dos dados (tabela observada)

	Classe A	Classe B	Total
Grupo I	Х	Y	X + Y
Grupo II	W	Z	W + Z
Total	X + W	Y + Z	T = X + Y + W + Z

Construir uma tabela com os valores esperados

	Classe A	Classe B
Grupo I	[(X + Y) * (W + X)]/T	[(X + Y) * (Y + Z)] / T
Grupo II	[(W + Z) * (W + X)] /T	[(Z + Y) * (W + Z)] / T

- Número de graus de liberdade: 4
- Calcular a estatística Xn²
- Calcular o pvalor, a partir da estatística Xn²
- Comparar o pvalor com o alfa definido (1 nível de significância)
- Rejeitar ou não a hipótese nula, que diz que as amostras vieram da mesma distribuição

> Respostas

- Valor encontrado para pvalor: 0,0103975446956. Ou seja, para qualquer valor de alfa maior do que esse H0 é rejeitada, isto é, conclui-se que usar pop-ups faz diferença (considerando alfa = 5%). Caso o valor escolhido para o nível de significância ocasione um alfa (1 nível de significância) menor do que o pvalor descrito acima, a hipótese H0 não seria rejeitada, sendo o resultado final que o pop-up não faz diferença para o número de cliques.
- Podemos analisar os valores especificados (e procedimentos explicados) acima no gráfico abaixo.

Exercício 3: Produtor de Cinema

- O objetivo deste exercício é verificar a existência (ou falta dela) da correlação entre duas variáveis específicas (imdb_score e facenumber_in_poster) em um conjunto de dados. Além disso, descobrir outras possíveis correlações entre variáveis do problema, de modo a fazer uma das variáveis (imdb score) ter o valor mais alto possível.
- > Procedimento:
 - Observação: Só iremos trabalhar com as linhas do arquivo que tiverem todos os campos (numéricos) preenchidos, pois cada atributo terá uma lista com os valores registrados e, para podermos comparar, é necessário que as listas tenham o mesmo tamanho e que cada índice da lista representa uma mesma linha do arquivo. Como só compararemos as listas que englobam valores numéricos, só analisaremos estas.
 - Ler arquivo csv
 - Escrever em uma lista o cabeçalho.
 - Escrever uma lista para cada atributo numérico, verificando se todos os atributos numéricos de cada linha estão preenchidos.
 - Calcular a correlação de Pearson utilizando a biblioteca scipy entre a lista que contém o imdb score e as demais listas numéricas.
 - Respostas
 - A correlação de pearson encontrada entre os dados das variáveis imdb_score e facenumber_in_poster foi de -0.0.064292469634816829. Como o valor encontrado está

- extremamente próximo de 0, podemos afirmar que não existe correlação entre essas duas variáveis específicas.
- A maior correlação encontrada comparando imdb_score com outra variável numérica é de 0.477917319522, sendo essa variável num_voted_users
- Visualização

Correlação entre imdb_score e todas as variáveis numéricas

