

MOOC Econometrics

Training Exercise P.1

Questions

- 1. Let e be a random variable with mean μ_e and variance σ_e^2 . The random variable y is defined by y=a+b'x+e, with a a constant scalar, x a non-random $(k\times 1)$ vector, and b a $(k\times 1)$ non-random coefficient vector. What are the mean and variance of y?
- 2. Let x_1 and x_2 be random variables, with means and variances μ_i and σ_i^2 , i=1,2 and covariance σ_{12} . What are the mean and variance of $y=a_1x_1-a_2x_2$, with a_1 and a_2 constant.
- 3. Let x_1 and x_2 be random variables, with means and variances $\mu_i = \mu$ and $\sigma_i^2 = \sigma^2$, i = 1, 2, and correlation ρ . What are the mean and variance of $y = a_1x_1 + (1 a_1)x_2$ with a_1 constant?
- 4. Let x_i , $i=1,2,\ldots,n$ be n random variables with mean $\mu_i=\mu$ and variances $\sigma_i^2=\sigma^2$. The covariances are all zero. Consider the random variable y that is constructed as the average of the variables x_i , $y=\frac{1}{n}\sum_{i=1}^n x_i$.
 - (a) Find the mean and variance of y.
 - (b) Find the correlation of y with x_i .
- 5. Let x be an $(n \times 1)$ vector of random variables with mean vector $\mu \iota_n$ and variance matrix $\sigma^2 I_n$, with μ and σ^2 constant scalars, ι_n the $(n \times 1)$ unit vector and I_n the $(n \times n)$ identity matrix. Define the $(n \times 1)$ vector $h = \frac{1}{n} \iota$ and the $((n + 1) \times n)$ matrix H whose first n rows are formed by the identity matrix, and whose last row contains the vector h',

$$H = \begin{pmatrix} I \\ h' \end{pmatrix}$$
.

- (a) Derive the mean and variance of y = h'x.
- (b) Derive the mean and variance of z = Hx.
- (c) Compare your answers to the previous question.

Ezafus,