Segundo Examen Parcial

Álgebra Superior 1, 2025-4

Instrucciones. Resuelve los siguientes ejercicios, se pueden utilizar libremente resultados vistos en clase, siempre y cuando, se indique claramente dónde y cuáles se utilizan.

- **Ej. 1 (2.5 pts)** Demuestra que la relación $R \subseteq A \times A$ es transitiva si y sólo si $R^{-1} \circ R = R$.
- **Ej. 2 (2.5 pts)** Sea $f: A \to B$ una función. Demuestra que $A = \bigcup_{b \in B} f^{-1}[\{b\}]$.
- **Ej. 3 (2.5 pts)** Sean $f: A \to B$ una función y $S \subseteq A$. Demuestra que si f es inyectiva, entonces $f^{-1}[f[S]] = S$.
- **Ej. 4 (2.5 pts)** Sean $f: A \to B y g, h: B \to A$ funciones. Demuestra que si g es inversa izquierda de f y h es inversa derecha de f, entonces g = h.
- **Ej. 5 (+1 pt)** Este ejercicio es opcional y sólo se tomará en cuenta si no hay errores en la solución. Sean X un conjunto y $g: \emptyset \to X$. Pruebe que las siguientes condiciones son equivalentes:
 - I) g es biyectiva.
- II) g es sobreyectiva.
- III) $X = \emptyset$.

Segundo Examen Parcial

Álgebra Superior 1, 2025-4

Instrucciones. Resuelve los siguientes ejercicios, se pueden utilizar libremente resultados vistos en clase, siempre y cuando, se indique claramente dónde y cuáles se utilizan.

- **Ej. 1 (2.5 pts)** Demuestra que la relación $R \subseteq A \times A$ es transitiva si y sólo si $R^{-1} \circ R = R$.
- **Ej. 2 (2.5 pts)** Sea $f: A \to B$ una función. Demuestra que $A = \bigcup_{b \in B} f^{-1}[\{b\}]$.
- **Ej. 3 (2.5 pts)** Sean $f: A \to B$ una función y $S \subseteq A$. Demuestra que si f es inyectiva, entonces $f^{-1}[f[S]] = S$.
- **Ej. 4 (2.5 pts)** Sean $f: A \to B$ y $g, h: B \to A$ funciones. Demuestra que si g es inversa izquierda de f y h es inversa derecha de f, entonces g = h.
- **Ej. 5 (+1 pt)** Este ejercicio es opcional y sólo se tomará en cuenta si no hay errores en la solución. Sean X un conjunto y $g: \emptyset \to X$. Pruebe que las siguientes condiciones son equivalentes:
 - 1) g es biyectiva.
- II) g es sobrevectiva.
- III) $X = \emptyset$.