Introdução à Inteligência Artificial

Parte 3

Evandro J.R. Silva

ejrs.profissional@gmail.com
Faculdade Estácio Teresina

30 e 31 de Janeiro

Sumário

- Resolução de Problemas por meio de Busca
 - Estratégias de Busca

- 2 Busca com Informação
 - Busca Gulosa
 - Busca A*
- 3 FIM

- Este é o caso de um agente baseado em objetivo.
- Vamos começar com o tipo mais simples de ambiente de tarefa, para o qual a solução para um problema é sempre uma sequência fixa de ações.

■ Problema: ir de Teresina para Luís Correia.

- Problema: ir de Teresina para Luís Correia.
- A partir de Teresina existem 3 possibilidades. Se o ambiente for desconhecido, ou seja, se o agente não tem qualquer informação adicional, terá de escolher entre uma das três aleatoriamente.

- Problema: ir de Teresina para Luís Correia.
- A partir de Teresina existem 3 possibilidades. Se o ambiente for desconhecido, ou seja, se o agente não tem qualquer informação adicional, terá de escolher entre uma das três aleatoriamente.
- Mas vamos levar em consideração que o agente possui o mesmo mapa que vimos.
 - Portanto o ambiente é observável (pois o agente sempre conhecerá o estado atual), discreto (pois para cada estado existe um número finito de ações a escolher), conhecido (agora o agente sabe quais estados serão alcançados após uma ação) e determinístico (pois cada ação tem exatamente um resultado).

Temos

- **Estado Inicial**: Está em Teresina.
- Objetivo: Estar em Luís Correia.
- Ações: Ir para alguma cidade.
- Espaço de estados: todos os estados acessíveis a partir do estado inicial.
- Teste de objetivo: Estamos em Luís Correia?

Temos

- Estado Inicial: Está em Teresina.
- Objetivo: Estar em Luís Correia.
- Ações: Ir para alguma cidade.
- Espaço de estados: todos os estados acessíveis a partir do estado inicial.
- Teste de objetivo: Estamos em Luís Correia?
- Custo de caminho: quanto "custa" acrescentar um determinado estado? E como calcular esse custo?

Breve exemplificação com outro problema:

7	2	4
5		6
8	3	1

Estado inicial

Estado objetivo

 Estados: Uma descrição de estado especifica a posição de cada uma das oito peças e do quadrado vazio em um dos nove quadrados.

 1
 2

 3
 4
 5

 6
 7
 8

Estado inicial

Estado objetivo

- Estados: Uma descrição de estado especifica a posição de cada uma das oito peças e do quadrado vazio em um dos nove quadrados.
- Estado inicial: O que está na figura, porém qualquer estado pode ser designado como o estado inicial.

000000

Resolução de Problemas por meio de Busca

Estado inicial

Estado objetivo

- Estados: Uma descrição de estado especifica a posição de cada uma das oito peças e do quadrado vazio em um dos nove quadrados.
- Estado inicial: O que está na figura, porém qualquer estado pode ser designado como o estado inicial
- Acões: A formulação mais simples define as acões como movimentos do quadrado vazio, Esquerda, Direita, Para Cima ou Para Baixo.

Estado inicial

Estado objetivo

- Estado inicial: O que está na figura, porém qualquer estado pode ser designado como o estado inicial.
- Ações: A formulação mais simples define as ações como movimentos do quadrado vazio, Esquerda, Direita, Para Cima ou Para Baixo.
- Modelo de Transição: (não pode ser esquecido enquanto você estiver produzindo o programa de agente) Dado um estado e ação, ele devolve o estado resultante; por exemplo, se aplicarmos Esquerda para o estado inicial na figura, o estado resultante terá comutado o 5 e o branco.

Estado inicial

Estado objetivo

- Ações: A formulação mais simples define as ações como movimentos do quadrado vazio, Esquerda, Direita, Para Cima ou Para Baixo.
- Modelo de Transição: (não pode ser esquecido enquanto você estiver produzindo o programa de agente) Dado um estado e ação, ele devolve o estado resultante; por exemplo, se aplicarmos Esquerda para o estado inicial na figura, o estado resultante terá comutado o 5 e o branco.
- **Teste de objetivo:** Verifica se o estado corresponde à configuração de estado objetivo mostrada na figura.

Estado inicial

Estado objetivo

- Modelo de Transição: (não pode ser esquecido enquanto você estiver produzindo o programa de agente) Dado um estado e ação, ele devolve o estado resultante; por exemplo, se aplicarmos Esquerda para o estado inicial na figura, o estado resultante terá comutado o 5 e o branco.
 - Teste de objetivo: Verifica se o estado corresponde à configuração de estado objetivo mostrada na figura.
- Custo de caminho: Cada passo custa 1 e,assim, o custo do caminho é o número de passos
 do caminho.

■ Voltemos ao nosso problema original!

 Como se trata de um grafo, podemos utilizar uma busca em árvore (atenção que eu vou desenhar no quadro).

- Como se trata de um grafo, podemos utilizar uma busca em árvore (atenção que eu vou desenhar no quadro).
- Como fazer para não repetir um estado?

- Como se trata de um grafo, podemos utilizar uma busca em árvore (atenção que eu vou desenhar no quadro).
- Como fazer para não repetir um estado?
- Como construir o caminho?

- Como se trata de um grafo, podemos utilizar uma busca em árvore (atenção que eu vou desenhar no quadro).
- Como fazer para não repetir um estado?
- Como construir o caminho?
 - Busca em Largura

- Busca de custo uniforme: em vez de expandir o nó mais raso, é expandido o nó com o menor custo de caminho.
- Busca em Profundidade, a qual pode ser modificada para busca com profundidade limitada e aprofundamente iterativo.

Busca com Informação

Busca com Informação (Heurística)

 Com a adição de informação, podemos melhorar nossa estratégia de busca, através da adição de uma função de avaliação — ou seja, uma forma de medir o quão boa é uma determinada solução.

Busca com Informação (Heurística)

- Com a adição de informação, podemos melhorar nossa estratégia de busca, através da adição de uma função de avaliação — ou seja, uma forma de medir o quão boa é uma determinada solução.
- Utilizando o nosso exemplo, vamos levar em consideração que agora sabemos a distância em linha reta entre cada cidade e o destino que queremos alcançar. Então teremos a seguinte tabela:

Teresina		277	Esperantina	129
Altos		255	Batalha	134
União		231	Piripiri	155
José de Freitas		231	Piracuruca	117
Barras		167	Buriti dos Lopes	40
Cabeceiras do Piauí		191	Parnaíba	10
Campo Maior		223	Luís Correia	0

Tabela: Distância em linha reta para Luís Correia

O algoritmo Busca Gulosa procura pelo "vizinho mais próximo".

- A continuação seria:
 - Barras → Batalha → Piracuruca → Buriti dos Lopes → Parnaíba → Luís Correia.
- A distância total (a partir de Teresina): 58 + 121 + 36 + 47 + 92 + 35 + 11 = 400km.

- A continuação seria:
 - Barras → Batalha → Piracuruca → Buriti dos Lopes → Parnaíba → Luís Correia.
- A distância total (a partir de Teresina): 58 + 121 + 36 + 47 + 92 + 35 + 11 = 400km.
- É o caminho mais curto?

- A continuação seria:
 - Barras → Batalha → Piracuruca → Buriti dos Lopes → Parnaíba → Luís Correia.
- A distância total (a partir de Teresina): 58 + 121 + 36 + 47 + 92 + 35 + 11 = 400km.
- É o caminho mais curto?
- É possível que não! Vamos testar outro algoritmo.

Este algoritmo (a estrela) utiliza, além do conhecimento que adquirimos, o custo para se alcançar cada estado.

É possível que o A* demore mais para encontrar uma solução em relação ao Algoritmo Guloso, porém é garantido que a solução será a melhor.

- É possível que o A* demore mais para encontrar uma solução em relação ao Algoritmo Guloso, porém é garantido que a solução será a melhor.
- Numa situação de "mundo real", pode acontecer do A* demorar muito, muito mesmo, devido à quantidade de estados possíveis.

- É possível que o A* demore mais para encontrar uma solução em relação ao Algoritmo Guloso, porém é garantido que a solução será a melhor.
- Numa situação de "mundo real", pode acontecer do A* demorar muito, muito mesmo, devido à quantidade de estados possíveis.
- Por causa disso existem outros algoritmos de busca, os quais são modificações ou inspirados no A*: IDA* (*Iterative Deepening A** — Aprofundamento Iterativo A*) e RBFS (*Recursive Best First Search* — Busca Recursiva de Melhor Escolha).

- É possível que o A* demore mais para encontrar uma solução em relação ao Algoritmo Guloso, porém é garantido que a solução será a melhor.
- Numa situação de "mundo real", pode acontecer do A* demorar muito, muito mesmo, devido à quantidade de estados possíveis.
- Por causa disso existem outros algoritmos de busca, os quais são modificações ou inspirados no A*: IDA* (*Iterative Deepening A** — Aprofundamento Iterativo A*) e RBFS (*Recursive Best First Search* — Busca Recursiva de Melhor Escolha).
- Tarefa de casa: pesquisar sobre esses e outros algoritmos!

Terminamos a Terceira Parte! Obrigado pela atenção!

