ML_Task1 (/github/GaneshPrabhut/ML_Task1/tree/main)

Task 1_LogisticRegession.ipynb (/github/GaneshPrabhut/ML_Task1/tree/main/Task 1_LogisticRegession.ipynb)

In [3]: import pandas as pd import numpy as np

import matplotlib.pyplot as plt

In [4]: df=pd.read_csv('Basic_task1_dataset.csv')
 df

Out[4]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
	0	6	148	72	35	0	33.6	0.627
	1	1	85	66	29	0	26.6	0.351
	2	8	183	64	0	0	23.3	0.672
	3	1	89	66	23	94	28.1	0.167
	4	0	137	40	35	168	43.1	2.288
	•••							
	763	10	101	76	48	180	32.9	0.171
	764	2	122	70	27	0	36.8	0.340
	765	5	121	72	23	112	26.2	0.245
	766	1	126	60	0	0	30.1	0.349
	767	1	93	70	31	0	30.4	0.315

768 rows × 9 columns

```
In [5]: df.isnull().sum()
                                     0
Out[5]: Pregnancies
        Glucose
        BloodPressure
                                     0
        SkinThickness
                                     0
        Insulin
                                     0
        BMI
                                     0
        DiabetesPedigreeFunction
                                     0
                                     0
        Age
                                     0
        Outcome
        dtype: int64
In [6]: X=df.drop('Outcome',axis='columns')
In [7]: y=df.Outcome
In [8]: from sklearn.model_selection import train_test_split
```

```
In [9]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)
In [10]: from sklearn.linear model import LogisticRegression
         model=LogisticRegression()
In [11]: model.fit(X_train,y_train)
         C:\Users\ganes\Desktop\sample_project_1\env\Lib\site-packages\sklearn\linear_model
         \_logistic.py:469: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n_iter_i = _check_optimize_result(
Out[11]:
             LogisticRegression (i) ?
                                   (https://scikit-
                                   learn.org/1.4/modules/generated/sklearn.linear_model.LogisticRe
         LogisticRegression()
In [12]: model.predict(X_test)
Out[12]: array([1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,
               0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
               0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
               0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1,
               1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1,
               0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]
               dtype=int64)
In [14]: model.score(X,y)
Out[14]: 0.7799479166666666
 In [ ]:
```