Random variables

- Generally, when f(x) is the
 - pmf for (discrete) r.v. X: $E(X^j) = \sum_{x} x^j f(x)$
 - pdf for (continuous) r.v. X: $E(X^j) = \int_{-\infty}^{\infty} x^j f(x) dx$
- The variance is $Var(X) = E(X^2) [E(X)]^2$

Distributions

	-	
family	mean	variance
$X \sim Binom(n,p)$	пр	np(1-p)
$X \sim Geom(p)$	(1-p)/p	$(1-p)/p^2$
$X \sim Pois(\lambda)$	λ	λ
$X \sim Unif(a, b)$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$
$X \sim Norm(\mu, \sigma)$	μ	σ^2
$X \sim Exp(\lambda)$	$1/\lambda$	$1/\lambda^2$

Sample statistics

For iid sample $X_1, ..., X_n$ from population with mean μ , sd σ , $Y = \sum_i X_i$: $E(Y) = n\mu$, $SD(Y) = \sigma \sqrt{n}$ (multiply) $\overline{X} = Y/n$: $E(\overline{X}) = \mu$, $SD(\overline{X}) = \sigma / \sqrt{n}$ (divide)

• When the population is normal, or *n* large, then

$$Y \sim \text{Norm}(n\mu, \sigma \sqrt{n})$$
 and $\overline{X} \sim \text{Norm}(\mu, \sigma / \sqrt{n})$.

• When the X_i are Bernoulli (i.e., $\mathsf{Binom}(1,p)$), then $Y \sim \mathsf{Binom}(n,p)$. Moreover, when $np \geq 10$ and $n(1-p) \geq 10$, then Y is approx. normal:

$$Y \sim \text{Norm}(np, \sqrt{np(1-p)})$$
 and $\hat{p} = \frac{Y}{n} \sim \text{Norm}(p, \sqrt{p(1-p)/n})$

Inference Procedures

- Level C Confidence Intervals (general):
 (estimate) ± (critical value)(approx. std. error)
- 1-sample proportion:
 - CIs for p, SE = $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
 - z-test (when \hat{p} approx. normal)

test stat. (**H**₀:
$$p = p_0$$
): $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$

• 1-sample t: test statistic when \mathbf{H}_0 : $\mu = \mu_0$

$$t = \frac{\overline{x} - \mu_0}{\text{SE}}$$
, $\text{SE} = \frac{s}{\sqrt{n}}$, $df = n - 1$

• 2-sample *t*: test statistic when \mathbf{H}_0 : $\mu_1 - \mu_2 = 0$

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\text{SE}}$$
, $\text{SE} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Use *t*-distribution with Welch $df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$.

• Chi-square test statistic:

$$\chi^2 = \sum \frac{\left[\text{(observed count)} - \text{(expected count)} \right]^2}{\text{expected count}}$$
contingency table: $df = (\text{\#rows} - 1)(\text{\#columns} - 1)$
goodness-of-fit: $df = (\text{\#groups}) - 1 - (\text{\#est. params})$

• Model utility test:

$$t = r\sqrt{\frac{n-2}{1-r^2}} = \frac{b_1}{SE_{b_1}}, \text{ with } df = n-2$$

• *F*-test in ANOVA: $F = \frac{MSG}{MSE}$, where

$$df_{\text{numer}} = (\text{# of groups}) - 1$$
, and $df_{\text{denom}} = (\text{sample size}) - (\text{# of groups})$

Miscellaneous

- Sample standard deviation $s = \sqrt{\frac{1}{n-1} \sum_{i} (x_i \bar{x})^2}$
- Conditional probability: $P(B \mid A) = \frac{P(A \text{ and } B)}{P(A)}$
- Bayes' rule: $P(B \mid A) = \frac{P(A \mid B) P(B)}{P(A)}$
- Total probability: $P(A) = P(A \mid B) P(B) + P(A \mid \overline{B}) P(\overline{B})$

Combinations of Random Variables

If *X*, *Y* are random variables, *a*,*b* are numbers, then

- E(aX) = a E(X)
- $E(X \pm Y) = E(X) \pm E(Y)$
- $Var(aX) = a^2 \cdot Var(X)$, or $SD(aX) = |a| \cdot SD(X)$
- Moreover, if *X*, *Y* are independent,

$$\sigma_{X\pm Y}^2 = \sigma_X^2 + \sigma_Y^2$$
, or $\sigma_{X\pm Y} = \sqrt{\sigma_X^2 + \sigma_Y^2}$.

Least Squares Regression

The coefficients (from data) are given by

$$b_1 = r \frac{s_y}{s_x}, \qquad b_0 = \bar{y} - b\bar{x}$$