Assignment-I

- 1. Show that he modulus of the difference of two complex numbers can never be less than the difference of their moduli.
- 2. Prove that

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2|z_1|^2 + |z_2|^2.$$

Interpret the result geometrically and deduce that

$$|\alpha + \sqrt{\alpha^2 - \beta^2}| + |\alpha - \sqrt{\alpha^2 - \beta^2}| = |\alpha + \beta| + |\alpha - \beta|.$$

3. Show that the triangle whose vertices are the points $z_1,\,z_2$ and z_3 is equilateral if

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1.$$

4. Find the radius of convergence of the power series:

(a)
$$f(z) = \sum \frac{z^n}{n!}$$
.

(b)
$$f(z) = \sum \left(1 + \frac{1}{n}\right)^{n^2} z^n$$
.

- 5. Find the domain of convergence of the following series :
 - (a) $\sum \left(\frac{iz-1}{2+i}\right)^n$.
 - (b) $\sum 2^{-n}z^{2n}$.
- 6. Find all values of z such that $e^z = 1 + i$.
- 7. Find the principal value of i^i .
- 8. Prove that $\operatorname{Re} z > 0$ and |z 1| < |z + 1| are equivalent statements.
- 9. Find the modulus and argument of the complex number

$$(1 + \cos \alpha) + i \sin \alpha, \quad 0 < \alpha < \pi/2.$$

10. Find the complex number z if $\arg(z+1)=\pi/6$ and $\arg(z-1)=2\pi/3$.

Answers:

4. (a)
$$R = \infty$$
, (b) $R = 1/e$.

5. (a)
$$|z+i| < \sqrt{5}$$
, (b) $|z| < \sqrt{2}$.

6.
$$z = \frac{1}{2} \ln 2 + i \left(2n + \frac{1}{4} \right) \pi$$
 where $n \in I$.

7.
$$e^{-\pi/2}$$
.

9.
$$2\cos(\alpha/2)$$
 and $\alpha/2$.

10.
$$z = (1 + \sqrt{3}i)/2$$
.