Project 2. STUDYING THE PENDULUM OSCILLATIONS

Main goal: Measuring the period of oscillation of a pendulum.

The basic experimental setup is presented in Figure:

Simple Pendulum

Figure 1. Principle scheme of the experimental setup.

Consider the string to be massless, such that all mass of the pendulum is represented with the bob mass m.

Remark: An *oscillation* is a motion that characterized by repeatability over time of physical values quantities (the angle θ of deviation from the vertical line in our case) that determine movement or state. Oscillations are called *periodic* if the value θ versus time t changes such that the oscillation process is repeated through an equal period T of time: $\theta(t+T) = \theta(t)$.

Mathematical model: Let's consider the simplified model where the force returning the pendulum to the equilibrium position is linear with respect to the deviation angle θ :

$$F_{\text{return}} = -k\theta$$
 , (1)

with some positive constant k. Then the equation of motion for the pendulum is given in the form of a second derivative term and the function θ itself:

$$\frac{d^2\theta(t)}{dt^2} + \omega^2\theta(t) = 0 .$$
(2)

Here the frequency $\omega = 1/T$.

MATH153 Task:

1. Check that the function:

$$\theta(t) = B\cos(\omega t) \quad , \tag{3}$$

with a constant B is a solution to Eq. [=equation] (2).

2. Suppose that the maximum deviation angle is θ_{max} , and the pendulum length is L. Find the function of the path s(t) (along the arc) and the sector area function A(t) (based on the path arc) for a single period range [0,T].

Figure 2. Geometrical definition of an arc and a sector.

PHYS105 Theoretical Task:

- 1. Derive the equation for the kinetic energy K(t), potential gravity energy U(t) and the mechanical energy E(t) = K(t) + U(t).
- 2. What can you say about the mechanical energy E conservation for the model (2)?
- 3. Analyzing units, find how the pendulum frequency ω depends on the following parameters: m, L, $\theta_{\rm max}$ and g (the gravity acceleration).
- 4. What is the physical meaning of *B* in Eq.(3)?
- 5. How the period T of the pendulum oscillation depends on m and L?

PHYS105 Experimental Task:

Install the experimental setup and track the oscillations of the bob as function $\theta(t)$.

- 1. Make a conclusion if the real $\theta(t)$ follows Eq.(3) or not.
- 2. Evaluate the mechanical energy conservation for your experimental setup. If the mechanical energy is not conserved then evaluate the average % of its losing per a single period.

For the tasks 1-2, one period could be too short for practical measurement, you are recommended to observe the system a longer time (like 10T) and repeat your evaluation few times.

3. Explain the difference in the behavior of a real pendulum and the theoretical solution (3). What could be the reason for that?

MATH103 Task:

1. Construct a matrix whose form is given below. (You are free to choose various t variables.)

$$\begin{bmatrix} \theta(t_1) & K(t_1) & U(t_1) \\ \theta(t_2) & K(t_2) & U(t_2) \\ \theta(t_3) & K(t_3) & U(t_3) \end{bmatrix}$$

- a. Find the inverse of this matrix.
- b. Transform this matrix to LDU form.
- 2. Find the complete solution for the system given below. (You are free to choose various t variables. The variables must be different than the ones of 1st question.)

$$\begin{bmatrix} \theta(t_1) & K(t_1) & U(t_1) & s(t_1) & A(t_1) \\ \theta(t_2) & K(t_2) & U(t_2) & s(t_2) & A(t_2) \\ \theta(t_3) & K(t_3) & U(t_3) & s(t_3) & A(t_3) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$

EE 101 Task:

- Your task is to read the file_list.csv file. Then, you need to create a CSV file containing a list of students, their respective groups, and the questions answered by each student.
 For example:
 - a 1 2122011022.cpp
 - a_2_2111011011.txt.cpp
 - B_2_2111011243.cpp.txt
 - A 3 2111011011.txt

The output file should be structured as follows:

Student list	GroupName	QuestionsAnswered
2122011022	а	1
2111011011	а	2, 3
2111011243	b	2

Link to file list.csv:

https://drive.google.com/file/d/1Jee2ez13q9 nX205IHj2IqnF5bAeKmT0/view?usp=sharing