# Heterogeneous Treatment Effects and Causal Mechanisms

Jiawei Fu and Tara Slough

**New York University** 

#### State of the field

Credibility revolution  $\rightarrow$  use of research designs that facilitate

identification and estimation of causal effects.

### State of the field

Credibility revolution  $\rightarrow$  use of research designs that facilitate identification and estimation of causal effects.

... but estimated causal effects do not (alone) tell us why or how
Ultimately a question about causal mechanisms

### State of the field

Credibility revolution  $\rightarrow$  use of research designs that facilitate identification and estimation of causal effects.

... but estimated causal effects do not (alone) tell us why or how

o Ultimately a question about causal mechanisms

Various approaches to evaluating mechanisms:

 $\circ$  Heterogeneous treatment effects (HTEs) estimated by treatment  $\times$  covariate interactions is very popular

| H | Es | and | mecl | nanısms: | a | survey |  |
|---|----|-----|------|----------|---|--------|--|
|---|----|-----|------|----------|---|--------|--|

We classify articles in 3 leading political science journals in 2021:

## HTEs and mechanisms: a survey

We classify articles in 3 leading political science journals in 2021:

|            | Number of: |                 | Pr(Report HTE   | Pr(Mechanism test |
|------------|------------|-----------------|-----------------|-------------------|
| Journal    | Articles   | Quant. articles | Quant. article) | Report HTE)       |
| AJPS (65)  | 61         | 41              | 0.56            | 0.87              |
| APSR (115) | 106        | 75              | 0.53            | 0.90              |
| JoP (83)   | 142        | 106             | 0.55            | 0.83              |
| Total      | 309        | 222             | 0.55            | 0.87              |

### HTEs and mechanisms: a survey

We classify articles in 3 leading political science journals in 2021:

|            | Number of: |                 | Pr(Report HTE   | Pr(Mechanism test |
|------------|------------|-----------------|-----------------|-------------------|
| Journal    | Articles   | Quant. articles | Quant. article) | Report HTE)       |
| AJPS (65)  | 61         | 41              | 0.56            | 0.87              |
| APSR (115) | 106        | 75              | 0.53            | 0.90              |
| JoP (83)   | 142        | 106             | 0.55            | 0.83              |
| Total      | 309        | 222             | 0.55            | 0.87              |

#### Takeaways:

- 1. Modal empirical article reports HTEs (treatment  $\times$  covariate).
- 2. 87% of these articles use HTEs to "test mechanisms."

### Known vs. under-explored problems

Usual criticism of HTEs rests on statistical issues:

- o Interactions are generally underpowered.
- Multiple comparisons problems.

### Known vs. under-explored problems

#### Usual criticism of HTEs rests on statistical issues:

- o Interactions are generally underpowered.
- o Multiple comparisons problems.

#### We abstract from these problems by:

- Assuming an infinite sample.
- Looking at one covariate with specific relation to mechanisms.

### Known vs. under-explored problems

#### Usual criticism of HTEs rests on statistical issues:

- o Interactions are generally underpowered.
- Multiple comparisons problems.

#### We abstract from these problems by:

- Assuming an infinite sample.
- Looking at one covariate with specific relation to mechanisms.

#### Under-explored problem:

Under what conditions do HTEs provide evidence of mechanism activation?

### Motivating example: Exogenous shocks and voting behavior

- o Based on model by Ashworth et al. (2018).
- o Shows that HTEs can emerge when associated mechanism is inert.

Motivating example: Exogenous shocks and voting behavior

Framework: We develop a framework to connect causal mechanisms to HTE with respect to covariates.

- o Builds from causal mediation framework (Imai et al., 2010)
- New concepts, assumptions needed for the HTE setting.

Motivating example: Exogenous shocks and voting behavior

Framework: We develop a framework to connect causal mechanisms to HTE with respect to covariates.

Results: What do we learn about a mechanism from the existence or non-existence of HTE?

- For outcomes that are directly affected by mechanism, HTE indicative of mechanism activation under assumptions.
- For outcomes that are indirectly affected by mechanism, HTE are not necessarily indicative of mechanism activation.

Motivating example: Exogenous shocks and voting behavior

Framework: We develop a framework to connect causal mechanisms to HTE with respect to covariates.

Results: What do we learn about a mechanism from the existence or non-existence of HTE?

Discussion: Using these results to inform research design.



### Exogenous shocks and voting

Natural experiment on effect of an exogenous shock,  $\omega$ , on voter behavior:

- O A natural disaster (e.g., Healy and Malhotra, 2010; Huber et al., 2012)
- O An economic crisis (e.g., Wolfers, 2002)
- O A pandemic (e.g., Achen and Bartels, 2004; Baccini et al., 2021)

### Exogenous shocks and voting

Natural experiment on effect of an exogenous shock,  $\omega$ , on voter behavior:

- O A natural disaster (e.g., Healy and Malhotra, 2010; Huber et al., 2012)
- O An economic crisis (e.g., Wolfers, 2002)
- O A pandemic (e.g., Achen and Bartels, 2004; Baccini et al., 2021)

Example: Ashworth, Bueno de Mesquita, Friedenberg (2018):

- Assume our adaption of model is true.
- Suppose we could measure (some) model parameters directly.
- Ask: Can HTEs provide evidence of voter learning mechanism?

Model set-up

Incumbent at time of shock is of type  $\theta \in \{\underline{\theta}, \overline{\theta}\}$ , where  $\overline{\theta} > \underline{\theta}$ .

### Model set-up

Incumbent at time of shock is of type  $\theta \in \{\underline{\theta}, \overline{\theta}\}$ , where  $\overline{\theta} > \underline{\theta}$ .

Voters do not observe  $\theta$  but use governance outcome, g, to update:

$$g = f(\theta, \omega) + \varepsilon$$
.

- $\circ$  Higher values of  $\omega$  correspond to a more adverse shock
- $\circ$   $\epsilon$  is idiosyncratic shock drawn from symmetric, differentiable density,  $\phi$ , that satisfies monotone likelihood ratio property relative to g.

### Voter utility

 $\mathbf{u}_{i}^{p} = \mathbf{\theta}^{p} + \nu_{i} \mathbb{I}(p = I)$ 

Each voter's utility from a vote for politician, 
$$p \in \{I, C\}$$
 is given by:

### Voter utility

Each voter's utility from a vote for politician,  $p \in \{I, C\}$  is given by:

$$u_i^p = \theta^p + \nu_i \mathbb{I}(p = I)$$

Variation in the population of voters:

- $\circ v_i \sim U(-1, 1)$  is a valence shock for the incumbent.
- Heterogeneous priors about the incumbent:  $\pi_i^I \sim f_\pi$  with support on (0,1).
- $\circ \ \ \text{Common prior about the challenger:} \ \pi^{\mathbb{C}} \in (\text{o, 1}).$

### Sequence, voter behavior

#### Sequence:

- 1. Nature reveals shock,  $\omega$ , and voters observe both  $\omega$  and g.
- 2. Voters update their beliefs about the incumbent's type.
- 3. Voters vote for either the incumbent or the challenger.

### Sequence, voter behavior

#### Sequence:

- 1. Nature reveals shock,  $\omega$ , and voters observe both  $\omega$  and g.
- 2. Voters update their beliefs about the incumbent's type.
- 3. Voters vote for either the incumbent or the challenger.

Voters' posteriors:

$$\beta(\overline{\theta}|\pi_i^I, \mathbf{\omega}) = \frac{1}{1 + \frac{1 - \pi_i^I}{\pi_i^I} \frac{\Phi(g - f(\underline{\theta}, \mathbf{\omega}))}{\Phi(g - f(\overline{\theta}, \mathbf{\omega}))}}$$

### Sequence, voter behavior

#### Sequence:

- 1. Nature reveals shock,  $\omega$ , and voters observe both  $\omega$  and g.
- 2. Voters update their beliefs about the incumbent's type.
- 3. Voters vote for either the incumbent or the challenger.

Voters' posteriors:

$$\beta(\overline{\theta}|\pi_i^I, \mathbf{\omega}) = \frac{1}{1 + \frac{1 - \pi_i^I}{\pi_i^I} \frac{\Phi(g - f(\underline{\theta}, \mathbf{\omega}))}{\Phi(g - f(\overline{\theta}, \mathbf{\omega}))}}$$

A voter will vote for the incumbent if:

$$\underbrace{\beta(\overline{\theta}|\pi_i^I, \mathbf{w}) + \nu_i}_{E[u_i^I]} \geqslant \underbrace{\pi^C}_{E[u_i^C]}$$

### From theory to empirics

**Treatment**: Binary exposure to the shock  $\omega \in \{\omega', \omega''\}$ 

### From theory to empirics

Treatment: Binary exposure to the shock  $\omega \in \{\omega', \omega''\}$ 

### Outcomes: For the sake of exposition, consider two outcomes:

• Voter utility from the incumbent:

$$y_{1i} \equiv \beta(\overline{\theta}|\pi_i^I, \mathbf{\omega}) + v_i$$

Ovoter votes for the incumbent:

$$y_{2i} \equiv \mathbb{I}[\beta(\overline{\theta}|\pi_i^I, \mathbf{\omega}) + v_i \geqslant \pi^C]$$

### From theory to empirics

Treatment: Binary exposure to the shock  $\omega \in \{\omega', \omega''\}$ 

### Outcomes: For the sake of exposition, consider two outcomes:

• Voter utility from the incumbent:

$$y_{1i} \equiv \beta(\overline{\theta}|\pi_i^I, \boldsymbol{\omega}) + v_i$$

Ovoter votes for the incumbent:

$$y_{2i} \equiv \mathbb{I}[\beta(\overline{\theta}|\pi_i^I, \mathbf{w}) + v_i \geqslant \pi^C]$$

Mechanism: Voter learning, not valence, since  $\omega$  enters through voter's posterior.

### Aside: DAG representation of interactions

Representation of "interaction" effects in DAGs is not standard (Nilsson et al., 2020)

• We need to be a bit more precise in this talk

### Aside: DAG representation of interactions

Representation of "interaction" effects in DAGs is not standard (Nilsson et al., 2020)

• We need to be a bit more precise in this talk



The empiricist's question

#### Is the mechanism:

- Voter learning about I's type? ← the mechanism
- o Amplication of I's valence? ← NOT the mechanism

### The empiricist's question

#### Is the mechanism:

- Voter learning about I's type? ← the mechanism
- Amplication of I's valence? ← NOT the mechanism



### **Defining HTEs**

To evaluate mechanisms, the empiricist will estimate CATEs at different for different levels of the (candidate) moderators:  $x \in \{\pi_i^I, v_i\}$ :

$$CATE(x') = E[y(\omega'') - y(\omega')|x = x']$$

### Defining HTEs

To evaluate mechanisms, the empiricist will estimate CATEs at different for different levels of the (candidate) moderators:  $x \in \{\pi_i^I, v_i\}$ :

$$CATE(x') = E[y(\omega'') - y(\omega')|x = x']$$

There exist HTEs in x if, for any  $x' \neq x'' \in x$ :

$$CATE(x'') - CATE(x') \neq 0.$$

### **Defining HTEs**

To evaluate mechanisms, the empiricist will estimate CATEs at different for different levels of the (candidate) moderators:  $x \in \{\pi_i^I, v_i\}$ :

$$CATE(x') = E[y(\omega'') - y(\omega')|x = x']$$

There exist HTEs in x if, for any  $x' \neq x'' \in x$ :

$$CATE(x'') - CATE(x') \neq 0.$$

We will evaluate the presence of HTE for:

- Outcomes:  $y \in \{\text{Voter utility for } I, \text{ Vote for } I\}$
- Potential moderators:  $x \in \{Prior belief about I, Valence\}$

# HTEs and mechanisms (results)

|                           | $y_1$ : Voter utility       | y <sub>2</sub> : Vote choice |
|---------------------------|-----------------------------|------------------------------|
|                           | Mechanism                   |                              |
| $x_1$ : Prior $(\pi_i)$   | HTE                         |                              |
|                           | $CATE(\pi) \neq CATE(\pi')$ | $CATE(\pi) \neq CATE(\pi')$  |
|                           |                             |                              |
| $x_2$ : Valence ( $v_i$ ) |                             |                              |
|                           | CATE(v) = CATE(v)           | $CATE(\pi) \neq CATE(\pi')$  |

# HTEs and mechanisms (results)

|                           | $y_1$ : Voter utility                           | $y_2$ : Vote choice                             |
|---------------------------|-------------------------------------------------|-------------------------------------------------|
|                           | Mechanism                                       |                                                 |
| $x_1$ : Prior $(\pi_i)$   | HTE                                             |                                                 |
|                           | $\mathit{CATE}(\pi') \neq \mathit{CATE}(\pi'')$ | $\mathit{CATE}(\pi') \neq \mathit{CATE}(\pi'')$ |
|                           | Not a mechanism                                 |                                                 |
| $x_2$ : Valence ( $v_i$ ) | No HTE                                          |                                                 |
|                           | CATE(v) = CATE(v')                              | $CATE(\pi') \neq CATE(\pi'')$                   |

## HTEs and mechanisms (results)

|                           | $y_1$ : Voter utility       | y <sub>2</sub> : Vote choice  |  |
|---------------------------|-----------------------------|-------------------------------|--|
|                           | Mechanism                   | Mechanism                     |  |
| $x_1$ : Prior $(\pi_i^I)$ | HTE                         | HTE                           |  |
| $x_2$ : Valence ( $v_i$ ) | $CATE(\pi) \neq CATE(\pi')$ | $CATE(\pi) \neq CATE(\pi')$   |  |
|                           | Not a mechanism             |                               |  |
|                           | No HTE                      |                               |  |
|                           | CATE(v) = CATE(v')          | $CATE(\pi') \neq CATE(\pi'')$ |  |

## HTEs and mechanisms (results)

|                           | $y_1$ : Voter utility       | $y_2$ : Vote choice         |  |
|---------------------------|-----------------------------|-----------------------------|--|
|                           | Mechanism                   | Mechanism                   |  |
| $x_1$ : Prior $(\pi_i^I)$ | HTE HTE                     |                             |  |
|                           | $CATE(\pi) \neq CATE(\pi')$ | $CATE(\pi) \neq CATE(\pi')$ |  |
| $x_2$ : Valence $(v_i)$   | Not a mechanism             | Not a mechanism             |  |
|                           | No HTE                      | HTE                         |  |
|                           | CATE(v) = CATE(v')          | $CATE(v) \neq CATE(v')$     |  |
|                           |                             |                             |  |

## HTEs and mechanisms (results)

|                           | $y_1$ : Voter utility         | $y_2$ : Vote choice           |  |
|---------------------------|-------------------------------|-------------------------------|--|
|                           | Mechanism                     | Mechanism                     |  |
| $x_1$ : Prior $(\pi_i^I)$ | HTE                           | HTE                           |  |
|                           | $CATE(\pi') \neq CATE(\pi'')$ | $CATE(\pi') \neq CATE(\pi'')$ |  |
|                           | Not a mechanism               | Not a mechanism               |  |
| $x_2$ : Valence $(v_i)$   | No HTE                        | HTE                           |  |
|                           | CATE(v) = CATE(v')            | $CATE(v') \neq CATE(v')$      |  |

HTE are not necessarily indicative of mechanism activation.

o To what extent is this general?



## Three main components

A treatment, Z.

## Three main components

A treatment, Z.

#### An outcome, Y.

- Starting assumption: we measure an outcome that is directly affected by a mechanism. Examples:
  - → Utility (not choice)
  - → Latent attitudes (not Likert responses)

## Three main components

A treatment, Z.

#### An outcome, Y.

- Starting assumption: we measure an outcome that is directly affected by a mechanism. Examples:
  - → Utility (not choice)
  - → Latent attitudes (not Likert responses)

A set of pre-treatment covariates, *X*.

# Mediators as mechanism representations.

**Causal Effects** 

## **Causal Effects**

Mediators as mechanism representations.

Several causal effects typically described wrt causal mediation.

- $\circ$  Total effect (*TE*) of *Z* on *Y*.
- Indirect effect ( $IE_i$ ) of Z on Y through mechanism  $j \in \{1, ..., J\}$ .
- o Direct (unmediated) effect (*DE*) of *Z* on *Y*.

#### Causal Effects

Mediators as mechanism representations.

Several causal effects typically described wrt causal mediation.

- $\circ$  Total effect (*TE*) of *Z* on *Y*.
- Indirect effect ( $IE_j$ ) of Z on Y through mechanism  $j \in \{1, ..., J\}$ .
- o Direct (unmediated) effect (DE) of Z on Y.

At the individual/unit level:

$$TE = DE + \sum_{i=1}^{J} IE_{i}$$

#### Causal Effects

Mediators as mechanism representations.

Several causal effects typically described wrt causal mediation.

- $\circ$  Total effect (*TE*) of *Z* on *Y*.
- Indirect effect ( $IE_i$ ) of Z on Y through mechanism  $j \in \{1, ..., J\}$ .
- o Direct (unmediated) effect (DE) of Z on Y.

At the individual/unit level:

$$TE = DE + \sum_{i=1}^{J} IE_{i}$$

If a mechanism j is activated or present (for any unit), then there exists some unit for which  $IE_i \neq 0$ .

## Estimands

Average treatment effect (ATE):

$$ATE = E_X[Y(z) - Y(z')]$$

$$= ADE(z, z'; X) + \sum_{j=1}^{J} AIE(z, z'; X)$$

#### **Estimands**

Average treatment effect (ATE):

$$ATE = E_X[Y(z) - Y(z')]$$

$$= ADE(z, z'; X) + \sum_{i=1}^{J} AIE(z, z'; X)$$

Conditional average treatment effects (CATE): Consider pre-treatment covariate  $X_k \in X$ . The CATE with respect to  $X_k = x$  is:

$$CATE(X_k = x) = E_{X_{-k}}[Y(z) - Y(z')|X_k = x]$$

#### **Estimands**

Average treatment effect (ATE):

$$ATE = E_X[Y(z) - Y(z')]$$

$$= ADE(z, z'; X) + \sum_{i=1}^{J} AIE(z, z'; X)$$

Conditional average treatment effects (CATE): Consider pre-treatment covariate  $X_k \in X$ . The CATE with respect to  $X_k = x$  is:

$$CATE(X_k = x) = E_{X_{-k}}[Y(z) - Y(z')|X_k = x]$$

Heterogeneous Treatment Effects (HTEs): HTEs exist with respect to pre-treatment covariate  $X_k \in X$  iff:

$$CATE(X_k = x) \neq CATE(X_k = x')$$

for some  $x \neq x' \in X_k$ .

## Reformulating the question

Under what conditions do HTEs provide evidence of mechanism activation?

Original statement:

## Reformulating the question

Original statement:

Under what conditions do HTEs provide evidence of mechanism activation?

More precise version:

Under what conditions are HTEs with respect to  $X_k$  sufficient to show that there there exists some unit for which  $IE_j \neq 0$ ?

mechanisms.

Mediation is advocated as a method for quantitative evaluation of

## Relationship to mediation

Mediation is advocated as a method for quantitative evaluation of mechanisms.

#### Mediation:

- o Requires mediators to be measurable and measured.
- Assumes sequential ignorability.
- $\circ$  Seeks to estimate or bound  $IE_i$  and DE directly.

## Relationship to mediation

Mediation is advocated as a method for quantitative evaluation of mechanisms.

#### Mediation:

- Requires mediators to be measurable and measured.
- Assumes sequential ignorability.
- $\circ$  Seeks to estimate or bound  $IE_j$  and DE directly.

#### Use of HTE:

- Does not require mediators to be measurable, But we need specific measured covariates.
- Invokes a set of exclusion assumptions.
- Seeks to demonstrate that  $IE_j \neq o$  for some unit.

# HTEs and Mechanisms: Directly Affected Outcomes

## Concept: Causal Indicator Variable (CIV)

#### Definition (Causal Indicator Variable)

Pre-treatment variable  $X_k$  is a causal indicator variable (CIV) for mechanism 1 if for some  $x, x' \in X^k$ ,  $IE_1(X_k = x) \neq IE_1(X_k = x')$ .

## Concept: Causal Indicator Variable (CIV)

#### Definition (Causal Indicator Variable)

Pre-treatment variable  $X_k$  is a causal indicator variable (CIV) for mechanism 1 if for some  $x, x' \in X^k$ ,  $IE_1(X_k = x) \neq IE_1(X_k = x')$ .

 $X^{CIV}$  is the (possibly empty) set of covariates that satisfy definition.

## Concept: Causal Indicator Variable (CIV)

#### Definition (Causal Indicator Variable)

Pre-treatment variable  $X_k$  is a causal indicator variable (CIV) for mechanism 1 if for some  $x, x' \in X^k$ ,  $IE_1(X_k = x) \neq IE_1(X_k = x')$ .

 $X^{CIV}$  is the (possibly empty) set of covariates that satisfy definition.

#### Two possibilities:

- $X_k \in X^{CIV}$  moderates the effect of treatment (Z) on mediator ( $M_i$ ).
- $\circ X_k \in X^{CIV}$  moderates the effect of the mediator  $(M_i)$  on outcome (Y).



## Exclusion assumption I

#### Assumption (Exclusion I)

Given  $z, z' \in Z$  and  $x, x' \in X_k$ ,  $X_k$  is excluded to the direct effect such that  $ADE(z, z'; X_k = x) = ADE(z, z'; X = x')$ .

• Direct effect of Z on Y cannot depend on  $X_k$ .



## Exclusion assumption II

#### Assumption (Exclusion II)

Given  $z, z' \in Z$  and  $x, x' \in X_k$ ,  $X_k$  is excluded to the indirect effect of any other mechanism,  $j' \neq j$ ,  $IE_{j'}$ , if:  $AIE_{j'}(x) = AIE_{j'}(x')$ .

• In other words,  $X_k$  is not a CIV for  $M_2$ .



## Proposition

mechanism j.

Suppose that Y is directly affected by mechanism j and Assumptions 1 and 2 hold with respect to  $X_k$ . If HTEs exist with respect to  $X_k$ , then  $X_k \in \mathbf{X}^{CIV}$  for

#### Proposition

Suppose that Y is directly affected by mechanism j and Assumptions 1 and 2 hold with respect to  $X_k$ . If HTEs exist with respect to  $X_k$ , then  $X_k \in \mathbf{X}^{CIV}$  for mechanism j.

Implication: By definition of CIV, HTEs imply that  $IE_1(X_k=x') \neq IE_1(X_k=x'')$  for some x',  $x'' \in X_k$ , which indicates that mechanism j is active.

#### Proposition

Suppose that Y is directly affected by mechanism j and Assumptions 1 and 2 hold with respect to  $X_k$ . If HTEs exist with respect to  $X_k$ , then  $X_k \in \mathbf{X}^{CIV}$  for mechanism j.

Implication: By definition of CIV, HTEs imply that  $IE_1(X_k=x') \neq IE_1(X_k=x'')$  for some x',  $x'' \in X_k$ , which indicates that mechanism j is active.

The usual logic for HTE, but note the assumptions.

#### **Proposition**

Suppose that Y is directly affected by mechanism j and Assumptions 1 and 2 hold. If no HTEs exist with respect to  $X_k$ , at least one of the following must be true:

- 1.  $X_b \notin \mathbf{X}^{CIV}$  for mechanism i.
- 2. No CIV exists.

#### Proposition

Suppose that Y is directly affected by mechanism j and Assumptions 1 and 2 hold. If no HTEs exist with respect to  $X_k$ , at least one of the following must be true:

- 1.  $X_k \notin \mathbf{X}^{CIV}$  for mechanism j.
- 2. No CIV exists.

Implications: We don't learn about mechanism activation from lack of HTE.

- $\circ$  #1 implies our model is wrong. Mechanism j could be active or inert.
- An active mechanism may not have any CIV. An inert mechanism has no CIV by definition.

#### Proposition

Suppose that Y is directly affected by mechanism j and Assumptions 1 and 2 hold. If no HTEs exist with respect to  $X_k$ , at least one of the following must be true:

- 1.  $X_k \notin \mathbf{X}^{CIV}$  for mechanism j.
- 2. No CIV exists.

Implications: We don't learn about mechanism activation from lack of HTE.

- $\circ$  #1 implies our model is wrong. Mechanism j could be active or inert.
- An active mechanism may not have any CIV. An inert mechanism has no CIV by definition.

#### Proposition

Suppose that Y is directly affected by mechanism j and Assumptions 1 and 2 hold. If no HTEs exist with respect to  $X_k$ , at least one of the following must be true:

- 1.  $X_k \notin \mathbf{X}^{CIV}$  for mechanism j.
- 2. No CIV exists.

Implications: We don't learn about mechanism activation from lack of HTE.

- $\circ$  #1 implies our model is wrong. Mechanism j could be active or inert.
- An active mechanism may not have any CIV. An inert mechanism has no CIV by definition.

Absence of HTE does not "rule out" a mechanism.

## HTE AND MECHANISMS: INDIRECTLY AFFECTED OUTCOMES

### Why should we care?

Many attitudinal, behavioral outcomes are indirectly affected by mechanisms.

- Example: decisions based on utility maximization. • Vote choice vs. utility in our motivating example

## Why should we care?

Many attitudinal, behavioral outcomes are indirectly affected by mechanisms.

- o Example: decisions based on utility maximization.
- Vote choice vs. utility in our motivating example

Matters whenever mechanisms act upon a latent, directly affected outcome.

- Much of the time.
- o In the example, voter learning changes expected utility.

## Why should we care?

Many attitudinal, behavioral outcomes are indirectly affected by mechanisms.

- o Example: decisions based on utility maximization.
- Vote choice vs. utility in our motivating example

Matters whenever mechanisms act upon a latent, directly affected outcome.

- Much of the time.
- o In the example, voter learning changes expected utility.

Poses challenges for the quantitative detection of mechanisms

Through HTEs and likely other approaches.

### Additional structure, concept

Suppose that Y is directly-affected outcome. We observe L(Y).

- $\circ$  Concern emerges when  $L(\cdot)$  is non-linear.
- o e.g., Discrete outcomes (choices, attitudinal scales etc.)

### Additional structure, concept

Suppose that Y is directly-affected outcome. We observe L(Y).

- o Concern emerges when  $L(\cdot)$  is non-linear.
- o e.g., Discrete outcomes (choices, attitudinal scales etc.)

Useful to define  $X^R$  as the subset of measured covariates with a non-zero effect on outcome Y. It is straightforward to see that:

$$\mathbf{X}^{CIV} \subseteq \mathbf{X}^R \subseteq \mathbf{X}$$

## Additional structure, concept

Suppose that Y is directly-affected outcome. We observe L(Y).

- $\circ$  Concern emerges when  $L(\cdot)$  is non-linear.
- o e.g., Discrete outcomes (choices, attitudinal scales etc.)

Useful to define  $X^R$  as the subset of measured covariates with a non-zero effect on outcome Y. It is straightforward to see that:

$$\mathbf{X}^{CIV} \subset \mathbf{X}^R \subset \mathbf{X}$$

In our motivating example, for the learning mechanism:

- $\circ \mathbf{X}^{CIV} = \{\pi_i^I\}$
- $\circ \ \mathbf{X}^R = \{\pi_i^I, v_i\}$

### HTEs as a test of mechanisms (#1 of 2)

#### **Proposition**

Suppose that observed outcome L(Y) is a non-linear mapping of directly-affected outcome Y and Assumptions 1 and 2 hold. If HTEs exist with respect to  $X_b$ , then  $X_b \in \mathbf{X}^R$ .

## HTEs as a test of mechanisms (#1 of 2)

#### Proposition

Suppose that observed outcome L(Y) is a non-linear mapping of directly-affected outcome Y and Assumptions 1 and 2 hold. If HTEs exist with respect to  $X_k$ , then  $X_k \in \mathbf{X}^R$ .

Intuition: Using HTE for mechanism detection relies on additive separability of  $X_k$  from DE and  $IE_{\neg j}$  on the latent variable.

- What exclusion assumptions buy us
- o But a non-linear  $L(\cdot)$  does not preserve additive separability on L(Y).

## HTEs as a test of mechanisms (#1 of 2)

#### Proposition

Suppose that observed outcome L(Y) is a non-linear mapping of directly-affected outcome Y and Assumptions 1 and 2 hold. If HTEs exist with respect to  $X_k$ , then  $X_k \in \mathbf{X}^R$ .

Intuition: Using HTE for mechanism detection relies on additive separability of  $X_k$  from DE and  $IE_{\neg j}$  on the latent variable.

- o What exclusion assumptions buy us
- o But a non-linear  $L(\cdot)$  does not preserve additive separability on L(Y).

#### **Implication**: Two possibilities:

- $\circ X_k \in \mathbf{X}^{CIV} \implies \text{mechanism } j \text{ is active.}$
- $\circ X_k \notin \mathbf{X}^{CIV} \implies$  mechanism j may or may not be active.

Suppose that we are interested in how a mobilization treatment,

 $Z_i \in \{0,1\}$ , affects voters' turnout decisions. Two covariates in  $\mathbf{X}^R$ :

$$\circ X_1 \sim \mathcal{N}(0,1)$$

$$\circ X_2 \sim \text{Bernoulli}(0.5)$$

Suppose that we are interested in how a mobilization treatment,

 $Z_i \in \{$ o, 1 $\}$ , affects voters' turnout decisions. Two covariates in  $\mathbf{X}^R$ :

$$0 X_1 \sim \mathcal{N}(0, 1)$$

$$\circ X_2 \sim Bernoulli(0.5)$$

 $X_1$  is a CIV for the only mechanism  $M_1$ , such that:

$$M_1(Z, \mathbf{X}) = (1+Z)X_1$$

Suppose that we are interested in how a mobilization treatment,

 $Z_i \in \{0,1\}$ , affects voters' turnout decisions. Two covariates in  $\mathbf{X}^R$ :  $\circ X_1 \sim \mathcal{N}(0,1)$ 

 $\circ X_2 \sim \text{Bernoulli}(0.5)$ 

 $X_1$  is a CIV for the only mechanism  $M_1$ , such that:

$$M_1(Z, \mathbf{X}) = (1+Z)X_1$$

Potential voters' utility from voting is given by:

$$U(Z,X) = M_1(Z,X_1) + X_2 = (1+Z)X_1 + X_2$$

Suppose that we are interested in how a mobilization treatment,  $Z_i \in \{0,1\}$ , affects voters' turnout decisions. Two covariates in  $\mathbf{X}^R$ :

$$\circ X_1 \sim \mathcal{N}(0,1)$$

$$\circ X_2 \sim Bernoulli(0.5)$$

 $X_1$  is a CIV for the only mechanism  $M_1$ , such that:

$$M_1(Z,\mathbf{X})=(1+Z)X_1$$

Potential voters' utility from voting is given by:

$$U(Z,X) = M_1(Z,X_1) + X_2 = (1+Z)X_1 + X_2$$

Turnout—the observed outcome—is given by:

$$L(U(Z,X)) = \begin{cases} 1 & \text{if } (1+Z)X_1 + X_2 \geqslant 0 \\ 0 & \text{else} \end{cases}$$

## HTEs with respect to $X_2$ ?

Recall that  $X_2$  is **not** a CIV for the unique mechanism,  $M_1$ .

 $CATE(X_2 = 1)$  is given by:

$$CATE(X_2 = 1) = E[L(U(Z = 1, X)) - L(U(Z = 0, X))|X_2 = 1]$$
  
=  $Pr(2X_1 + 1 > 0) - Pr(X_1 + 1 > 0)$   
=  $\Phi(-1) - \Phi(-\frac{1}{2}) \approx -0.15$ 

It is straightforward to see that  $CATE(X_2 = 0) = \Phi(0) - \Phi(0) = 0$ .

HTEs exist with respect to  $X_2$ , but we know that  $X_2 \in \mathbf{X}^R - \mathbf{X}^{CIV}$ .

## HTEs as a test of mechanisms (#2 of 2)

#### Proposition

Suppose that observed outcome L(Y) is a non-linear mapping of directly-affected outcome Y and Assumptions 1 and 2 hold. If HTEs do not exist with respect to  $X_k$ , then  $X_k \in \mathbf{X}$ .

Implication: This is vacuous! Obviously measured covariate  $X_k$  is in the set of measured covariates  $\mathbf{X}_{...}$ 

 $\circ$  Without further assumptions about distribution of Y and functional form of  $L(\cdot)$  we cannot say anything from a lack of heterogeneity for an indirectly affected outcome!

## Summary of results

### Outcome variable is:

|                            | Directly affected                   | Indirectly affected            |
|----------------------------|-------------------------------------|--------------------------------|
| $\exists$ HTEs wrt $X_k$ : | $X_k \in \mathbf{X}^{	extit{CIV}}$  | $X_k \in \mathbf{X}^R$         |
|                            | $\implies M_j$ is active.           | $M_j$ active or inactive       |
| $ \exists HTEs wrt X_k: $  | $X_k  otin \mathbf{X}^{CIV}$ and/or | $X_k \in \mathbf{X}$ (vacuous) |
|                            | $ \exists$ CIV for mechanism $j$    |                                |
|                            | $M_j$ active or inactive            | $M_j$ active or inactive       |
|                            |                                     |                                |





1. Enumeration of set of candidate mechanisms.

Three questions needed to support use of HTEs for mechanism detection:

•

## Recommendation #1: Theoretical questions

#### Three questions needed to support use of HTEs for mechanism detection:

- 1. Enumeration of set of candidate mechanisms.
- 2. Relationship between a covariate,  $X_k$  and each candidate mechanism:
  - $\rightarrow$  For which mechanism (j) is  $X_b$  a candidate CIV?
  - → Is exclusion assumption plausible for every other candidate mechanism?

## Recommendation #1: Theoretical questions

#### Three questions needed to support use of HTEs for mechanism detection:

- 1. Enumeration of set of candidate mechanisms.
- 2. Relationship between a covariate,  $X_k$  and each candidate mechanism:
  - $\rightarrow$  For which mechanism (j) is  $X_k$  a candidate CIV?
  - $\rightarrow$  Is exclusion assumption plausible for every other candidate mechanism?
- 3. Classification of mechanisms as directly affected or indirectly affected
  - $\rightarrow$  In some theory traditions, requires more theoretical structure.
  - ightarrow We should likely focus on HTE for some outcomes but not others.

### Recommendation #2: Improving interpretation of HTEs

Absence of HTFs do not "rule out" candidate mechanisms.

- Given a candidate CIV, presence of HTEs is informative only when: exclusion assumptions hold, outcome is directly affected.
- HTEs provide *less information* than is generally asserted by their interpretation.

## Recommendation #2: Improving interpretation of HTEs

Absence of HTEs do not "rule out" candidate mechanisms.

- Given a candidate CIV, presence of HTEs is informative only when: exclusion assumptions hold, outcome is directly affected.
- HTEs provide less information than is generally asserted by their interpretation.

Implications of low power for interactions we are less likely to *detect* HTE that do exist.

Compounds these challenges of interpretation.

## Recommendation #3: Improving research design

To use HTEs for mechanism detection, the the more measured candidate CIVs is better

- o We need multiple candidate CIVs to satisfy exclusion assumptions...
- Benefit: mixed results (HTEs in one candidate but not another) resolve ambiguity about existence of CIVs.
  - → For directly-affected outcomes, permits attribution of lack of HTE in one candidate to mis-specification.

## Recommendation #3: Improving research design

To use HTEs for mechanism detection, the the more measured candidate CIVs is better.

- o We need multiple candidate CIVs to satisfy exclusion assumptions...
- Benefit: mixed results (HTEs in one candidate but not another) resolve ambiguity about existence of CIVs.
  - → For directly-affected outcomes, permits attribution of lack of HTE in one candidate to mis-specification.

#### Clearer specification of relationship between mechanisms and outcomes

- o Prioritize directly-affected outcomes for mechanism detection
  - $\,\rightarrow\,$  Design measurement instruments to elicit these outcomes.
  - → Maybe an argument for latent variable models?

### Recommendation #4: Adding assumptions?

Can assumption of monotonicity make HTE more informative in the context of indirectly-observed outcomes?

for all 
$$x'>x \in X_k$$
,  $CATE(x') > (<)CATE(x)$ 

Recommendation #4: Adding assumptions?

Can assumption of monotonicity make HTE more informative in the context of indirectly-observed outcomes?

for all 
$$x'>x \in X_k$$
,  $CATE(x') > (<)CATE(x)$ 

Answer: No, not in isolation. We need additional assumptions about:

- The DGP in the form of the empirical distribution of Y or the distribution of any error terms.
- The mapping  $L(\cdot)$ .



## Four takeaways

- 1. A problem: the use of HTEs for mechanism detection is very popular but under-theorized.
- 2. HTEs is not a "agnostic" approach to analysis of mechanisms: requires exclusion assumptions.
- 3. This approach provides information about mechanisms when:
  - Exclusion assumptions hold
  - o Outcome is directly affected by a given mechanism.
- 4. We can better learn about mechanisms HTEs by more carefully approaching these analyses.

