MATH 3333 PRACTICE PROBLEM SET 5

Problem 1. A is an $m \times n$ matrix. Fully explain the figure shown below.

Problem 2. Let S be a subspace of \mathbb{R}^4 .

Problem 2. Let
$$\mathcal{S}$$
 be a subspace of \mathbb{R}^4 .

Suppose $\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ is basis for \mathcal{S} and $\mathcal{B}' = \left\{ \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}$ is a basis for \mathcal{S}^{\perp} .

1

(a) What is the dimension of S?

Solution: 3

- (b) What is the dimension of S^{\perp} ? Solution: 1
- (c) If $A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ write down bases for Row(A) and Null(A) only using the information of the information of the second s

mation given above. (You do not have to do any new computations.)

Solution:
$$Row(A) = span \left\{ \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$$

But $\left\{\begin{bmatrix} 1\\2\\0\\-1\end{bmatrix},\begin{bmatrix} 1\\1\\0\\0\end{bmatrix},\begin{bmatrix} 0\\0\\1\end{bmatrix}\right\}$ is a basis for $\mathcal S$ which means it spans $\mathcal S$. Hence $Row(A)=\mathcal S$

and a basis for
$$Row(A)$$
 is $= \left\{ \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$

We know $Null(A) = (Row(A))^{\perp}$. So, $Null(A) = S^{\perp}$ and hence a basis for Null(A) is

$$\left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$

(d) Using your answer to (c), write down a basis for \mathbb{R}^4 .

Solution: In the class, we saw $\mathbb{R}^n = Row(A) + Null(A)$ and that we can form a basis for \mathbb{R}^n by taking the union of vectors in a basis of Row(A) and a basis of Null(A).

So
$$\left\{ \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}$$
 is a basis for \mathbb{R}^4 .

Problem 3. Let A be an $m \times n$ matrix which has the rank r. Prove the following statements. If needed, you can use theorems 1,2 or 3 from the class.

(1) We showed in the class any vector X in \mathbb{R}^n can be written as $X = u_1 + v_1$ where u_1 is a vector in Row(A) and v_1 is a vector in Nulll(A). Show that this expression of X is unique. That is, if $X = u_2 + v_2$ for some other vector u_2 in in Row(A) and a vector v_2 in Null(A) then $u_1 = u_2$ and $v_1 = v_2$.

Solution: If $X = u_1 + v_1 = u_2 + v_2$ then $u_1 - u_2 = v_2 - v_1$.

Since $u_1, u_2 \in Row(A)$, so is $u_1 - u_2$ as Row(A) is a subspace.

Since $v_1, v_2 \in Null(A)$, so is $v_2 - v_1$ as Null(A) is a subspace. Therefore, $u_1 - u_2 = v_2 - v_1 \in Row(A) \cap Null(A)$. But $Row(A) \cap Null(A) = \{0\}$ as they are orthogonal complements of each other. Hence $u_1 - u_2 = v_2 - v_1 = 0 \Rightarrow u_1 = u_2$ and $v_1 = v_2$.

(2) If X = u + v where u is a vector in Row(A) and v is a vector in Null(A) then $T_A(X) = T_A(u)$.

(This means when X is written as an addition of a vector in Row(A) and a vector in Null(A) then $T_A(X)$ depends only on the part of X that is in Row(A). The other part in Null(A) has no impact on $T_A(X)$.)

Solution: $T_A(X) = AX = A(u+v) = Au + Av$. But Av = 0 as $v \in Null(A)$. Therefore $T_A(X) = Au = T_A(u)$

(3) If $u_1, u_2 \in Row(A)$ and $T_A(u_1) = T_A(u_2)$ then $u_1 = u_2$. (That is no two vectors in Row(A) maps into the same vector under the transformation T_A .)

Solution: $T_A(u_1) = T_A(u_2) \Rightarrow Au_1 = Au_2 \Rightarrow A(u_1 - u_2) = 0 \Rightarrow u_1 - u_2 \in Null(A)$

But if $u_1, u_2 \in Row(A)$ then $u_1 - u_2 \in Row(A)$ as Row(A) is a subspace.

Therefore, $u_1 - u_2 \in Row(A) \cap Null(A)$. But $Row(A) \cap Null(A) = \{0\}$ as they are orthogonal complements of each other. Hence $u_1 - u_2 = 0 \Rightarrow u_1 = u_2$.

(4) If $\{u_1, u_2, \dots u_r\}$ is a basis of Row(A) then $\{T_A(u_1), T_A(u_2), \dots, T_A(u_r)\}$ is basis of Col(A). **Solution:** $\{T_A(u_1), T_A(u_2), \dots, T_A(u_r)\}$ is a set of vectors in the range of T_A which is same as Col(A). We will first show this set is linearly independent.

Suppose $c_1T_A(u_1) + c_2T_A(u_2) + \dots + c_rT_A(u_r) = 0$. We need to show, only way this can happen is if $c + 1 = c_2 = \dots + c_r = 0$.

$$\begin{aligned} c_1 T_A(u_1) + c_2 T_A(u_2) + \dots c_r T_A(u_r) &= 0 \\ \Rightarrow c_1 A u_1 + c_2 A u_2 + \dots c_r A u_r &= 0 \\ \Rightarrow A(c_1 u_1 + c_2 u_2 + \dots c_r u_r) &= 0 \\ \Rightarrow c_1 u_1 + c_2 u_2 + \dots c_r u_r &\in Null(A) \end{aligned}$$

But $c_1u_1 + c_2u_2 + ... c_ru_r \in Row(A)$ as $\{u_1, u_2, ... u_r\}$ is a basis of Row(A).

Hence $c_1u_1 + c_2u_2 + \dots c_ru_r \in Row(A) \cap Null(A) = \{0\}$ $\Rightarrow c_1u_1 + c_2u_2 + \dots c_ru_r = 0$ $\Rightarrow c_1 = c_2 = \dots c_r = 0$ because the set $\{u_1, u_2, \dots u_r\}$ is linearly independent because it is a basis of Row(A). We just showed if $c_1T_A(u_1) + c_2T_A(u_2) + \dots + c_rT_A(u_r) = 0$ then $c + 1 = c_2 = \dots + c_r = 0$ This means $\{T_A(u_1), T_A(u_2), \dots, T_A(u_r)\}$ is a set of linearly independent vectors in Col(A).

Recall that the dimension of Col(A) = dimension of Row(A) which is given as r in this problem. (because Row(A) has a basis consists of r vectors.)

 $\{T_A(u_1), T_A(u_2), \ldots, T_A(u_r)\}$ is a set of r linearly independent vectors in Col(A) and dim(Col(A)) = r. Then by theorem 3 from the class, this is a basis for Col(A).

Problem 4. Let $\mathcal{V} = \mathbb{R}^2$.

Suppose a vector addition on \mathcal{V} is defined as

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 + 1 \end{bmatrix}$$

and a scalar multiplication is defined by

$$s. \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} sx_1 \\ sx_2 + s - 1 \end{bmatrix}$$

Determine if V with these operations a vector space or not.

Solution: Let
$$u = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $v = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ and $w = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$

- (A.1) $u+v=\begin{bmatrix} x_1+y_1\\ x_2+y_2+1 \end{bmatrix}$ is still a 2×1 column vector. Hence u+v is in $\mathcal{V}=\mathbb{R}^2$.
- (A.2) $u + v = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 + 1 \end{bmatrix}$ and $v + u = \begin{bmatrix} y_1 + x_1 \\ y_2 + x_2 + 1 \end{bmatrix}$ Hence u + v = v + u

$$(A.3) \ \ u + (v + w) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 + z_1 \\ y_2 + z_2 + 1 \end{bmatrix} = \begin{bmatrix} x_1 + (y_1 + z_1) \\ x_2 + (y_2 + z_2 + 1) + 1 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 + z_1 \\ x_2 + y_2 + z_2 + 2 \end{bmatrix}$$
 On the other hand
$$(u + v) + w = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 + 1 \end{bmatrix} + \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} (x_1 + y_1) + z_1 \\ (x_2 + y_2 + 1)z_2 + 1 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 + z_1 \\ x_2 + y_2 + z_2 + 2 \end{bmatrix}$$
 Hence
$$u + (v + w) = (u + v) + w$$

$$\begin{aligned} (\mathrm{A.4}) \ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} &= \begin{bmatrix} x_1 + 0 \\ x_2 - 1 + 1 \end{bmatrix} &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ \text{Hence } O &= \begin{bmatrix} 0 \\ -1 \end{bmatrix} \text{ is the 'zero vector'}. \end{aligned}$$

$$\begin{aligned} \text{(A.5)} \ & \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -x_1 \\ -x_2 - 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \\ \text{Hence} \ & -u = \begin{bmatrix} -x_1 \\ -x_2 - 2 \end{bmatrix} \end{aligned}$$

Let s and r be scalars.

(S.1)
$$s.u = \begin{bmatrix} sx_1 \\ sx_2 + s - 1 \end{bmatrix}$$
 is still a 2 × 1 column vector. Hence $s.u$ is in $\mathcal{V} = \mathbb{R}^2$.

$$(1) \ \ s.(u+v) = s. \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 + 1 \end{bmatrix} = \begin{bmatrix} s(x_1 + y_1) \\ s(x_2 + y_2 + 1) + s - 1 \end{bmatrix} = \begin{bmatrix} sx_1 + sy_1 \\ sx_2 + sy_2 + 2s - 1 \end{bmatrix}$$
On the other hand
$$s.u + s.v = \begin{bmatrix} sx_1 \\ sx_2 + s - 1 \end{bmatrix} + \begin{bmatrix} sy_1 \\ sy_2 + s - 1 \end{bmatrix} = \begin{bmatrix} sx_1 + sy_1 \\ (sx_2 + s - 1) + (sy_2 + s - 1) + 1 \end{bmatrix} = \begin{bmatrix} sx_1 + sy_1 \\ sx_2 + sy_2 + 2s - 1 \end{bmatrix}$$
Hence $s.(u+v) = s.u + s.v$

$$(S.3) \ (s+r).u = s. \begin{bmatrix} (s+r)x_1 \\ (s+r)x_2 + (s+r) - 1 \end{bmatrix} = \begin{bmatrix} sx_1 + rx_1 \\ sx_2 + rx_2 + s + r - 1 \end{bmatrix}$$
 On the other hand
$$s.u + r.u = \begin{bmatrix} sx_1 \\ sx_2 + s - 1 \end{bmatrix} + \begin{bmatrix} rx_1 \\ rx_2 + r - 1 \end{bmatrix} = \begin{bmatrix} sx_1 + rx_1 \\ (sx_2 + s - 1) + (rx_2 + r - 1) + 1 \end{bmatrix} = \begin{bmatrix} sx_1 + rx_1 \\ sx_2 + rx_2 + s + r - 1 \end{bmatrix}$$
 Hence $(s+r).u = s.u + r.u$

$$(S.4) \ s.(r.u) = s. \begin{bmatrix} rx_1 \\ rx_2 + r - 1 \end{bmatrix} = \begin{bmatrix} s(rx_1) \\ s(rx_2 + r - 1) + s - 1 \end{bmatrix} = \begin{bmatrix} srx_1 \\ srx_2 + sr - 1 \end{bmatrix}$$
 On the other hand,
$$(sr).u = \begin{bmatrix} srx_1 \\ srx_2 + sr - 1 \end{bmatrix}$$
 Hence
$$s.(r.u) = (sr).u$$

(S.5)
$$1.u = \begin{bmatrix} 1x_1 \\ 1x_2 + 1 - 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = u$$

Hence V with given operations is a vector space.

Problem 5. Let $\mathcal{V} = \mathbb{R}^+ =$ The set of all positive real numbers. Suppose a vector addition on \mathcal{V} is defined as

$$u+v=uv$$

for any u and v in \mathcal{V} and a scalar multiplication is defined by

$$s.u = u^s$$

for any u in \mathcal{V} and a scalar s.

(a) Determine if \mathcal{V} with these operations is a vector space or not.

Solution: Let $u, v = \text{and } w \in \mathbb{R}^+$

- (A.1) u + v = uvSince u and v are positive numbers, so is uv. Hence $u + v = uv \in \mathbb{R}^+$
- (A.2) u + v = uv and v + u = vuHence u + v = v + u
- (A.3) u + (v + w) = u + (vw) = u(vw) = uvw

On the other hand (u+v)+w=(uv)+w=(uv)w=uvw

Hence u + (v + w) = (u + v) + w

- (A.4) $u + 1 = u \cdot 1 = u$ Hence O = 1 is the 'zero vector'.
- (A.5) $u + \frac{1}{u} = u \frac{1}{u} = 1$ Hence $-u = \frac{1}{u}$

Let s and r be scalars.

- (S.1) Since u is a positive number, u^s is also a positive number for any scalar s. Hence $s.u=u^s$ is in \mathbb{R}^+ .
 - (a) $s.(u+v) = s.(uv) = (uv)^s = u^s v^s$

On the other hand

$$s.u + s.v = u^s + v^s = u^s v^s$$

Hence s.(u+v) = s.u + s.v

(S.3)
$$(s+r).u = u^{r+s}$$

On the other hand $s.u + r.u = u^s + u^r = u^s u^r = u^{s+r}$

Hence (s+r).u = s.u + r.u

(S.4)
$$s.(r.u) = s.(u^r) = (u^r)^s = u^{rs}$$

On the other hand, $(sr).u = u^{rs}$

Hence s.(r.u) = (sr).u

(S.5)
$$1.u = u^1 = u$$

Hence \mathbb{R}^+ with given operations is a vector space.

(b) If we keep operations the same, but change \mathcal{V} to $\mathcal{V} = \mathbb{R} - \{0\}$ = The set of all the real numbers except 0, will \mathcal{V} be a vector space? Solution: No. Then \mathcal{V} will not satisfy S.1 as $s.u = u^s$ is not defined in some cases. For an

example, take u = -1 and $s = \frac{1}{2}$. Then $s.u = u^s = (-1)^{\frac{1}{2}} = \sqrt{-1}$ is not defined.

(c) If we keep operations the same, but change \mathcal{V} such that $\mathcal{V} = \mathbb{R}^+ \cup \{0\}$ = The set of all the non negative numbers, will \mathcal{V} be a vector space? **Solution:** No. The same issue as in part b arises. In addition, it is not possible to find a 'negative vector' of 0 as $0 + u = 0 \times u = 0$ can never be equal to the 'zero vector' 1 for any $u \in \mathbb{R}$.

Problem 6. Let $\mathcal V$ be a vector space with the vector addition + and the scalar multiplication .

(a) Using only the vector space axioms, show that $0 \cdot u = \mathbf{0}$ for any vector $u \in \mathcal{V}$. (Here $\mathbf{0}$ is the zero vector from the axiom A.4)

Solution: This was discussed in the class. Please refer to your class notes.

(b) Using only the vector space axioms, show that -1.u = -u for any vector $u \in \mathcal{V}$. (Here -u is the negative of u from the axiom A.5)

Solution: Start with -1 + 1 = 0. Then we have (-1 + 1).u = 0.u

By S.3 we have (-1+1).u = -1.u + 1.u. In part (a) we proved 0.u = 0.

Hence we have -1.u + 1.u = 0

By S.5 we have 1.u = u So the equation becomes -1.u + u = 0.

Since $u \in \mathcal{V}$, it has a negative vector -u by A.5. Add this negative vector to both sides.

$$(-1.u + u) + -u = \mathbf{0} + -u$$

$$(-1.u + u) + -u = -1.u + (u + -u)$$
 by A.3 and $\mathbf{0} + -u = -u$ by A.4

Hence we have -1.u + (u + -u) = -u.

Since u + -u = 0 by A.5 we have

$$-1.u + 0 = -u$$

Since $-1.u + \mathbf{0} = -1.u$ by A.4 we finally have

$$-1.u = -u$$

(c) Using only the vector space axioms, show that if u+u=2.v then u=v

Solution:
$$u + u = 1.u + 1.u$$
 (by S.5) $1.u + 1.u = (1 + 1).u = 2.u$ by(S.3)

Hence we have 2.u = 2.v

Scalar multiply the both sides by 1/2.

$$(1/2).(2.u) = (1/2).(2.v) \Rightarrow (\frac{1}{2}2).u = (\frac{1}{2}2).v$$
 (by S.4)

So we have 1.u = 1.v.

But 1.u = u and 1.v = v by S.5. Hence u = v.

Problem 7. Let $\mathcal{V} = \mathcal{M}_{2,2}$ be the set of all the 2×2 matrices with usual operations. Determine whether the subsets given below are subspaces of $\mathcal{M}_{2,2}$.

(a) $\mathcal{U} = \text{The set of symmetric matrices in } \mathcal{M}_{2,2} = \{A \in \mathcal{M}_{2,2} \mid A^T = A\}$ Solution:

(A.1) Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$$
 and $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{12} & b_{22} \end{bmatrix} \in \mathcal{U}$.
Then $A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{12} + b_{12} & a_{22} + b_{22} \end{bmatrix}$ is a symmetric matrix and hence belongs to \mathcal{U} .

(S.1) $r.A = \begin{bmatrix} ra_{11} & ra_{12} \\ ra_{12} & ra_{22} \end{bmatrix}$ is a symmetric matrix and hence belongs to \mathcal{U} .

(A.4) The zero vector $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is symmetric matrix and hence belongs to \mathcal{U} .

So, \mathcal{U} is a subspace of $\mathcal{M}_{2,2}$

(b)
$$\mathcal{U} = \{A \in \mathcal{M}_{2,2} \mid A^2 = A\}$$

Solution: No. $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in \mathcal{U} \text{ as } I^2 = I.$
But $2I = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \notin \mathcal{U} \text{ as } (2I)^2 = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \neq \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2I.$

Hence \mathcal{U} does not satisfy S.1. So it is not a subspace of $\mathcal{M}_{2,2}$

(c) $\mathcal{U} = \text{The set of non invertible matrices in } \mathcal{M}_{2,2}$ Solution: No. $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in \mathcal{U}$ as they are non invertible.

But $A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \notin \mathcal{U}$ as it is invertible. So \mathcal{U} does not satisfy A.1. Hence it is not a subspace of $\mathcal{M}_{2,2}$

Problem 8. Let $\mathcal{V} = \mathcal{P}_3$ be the set of all the polynomials with a degree at most 3. If p and q are in \mathcal{P}_3 their addition p + q is defined as

$$(p+q)(x) = p(x) + q(x)$$

If s is a scalar, the scalar multiplication between s and a function p in \mathcal{P}_3 ; s.p is defined as

$$(s.p)(x) = sp(x)$$

 \mathcal{P}_3 with operations given as above is a vector space. Determine whether the subsets given below are subspaces of \mathcal{P}_3 or not.

(a)
$$\mathcal{U} = \{ p \in \mathcal{P}_3 \mid p(2) = 0 \}$$

Solution: Let $p, q \in \mathcal{U}$. Then $p(2) = q(2) = 0$
Then $(p+q)(2) = p(2) + q(2) = 0 + 0 \Rightarrow p+q \in \mathcal{U}$
If r is a scalar, $(r,p)(2) = rp(2) = r \times 0 = 0 \Rightarrow r,p \in \mathcal{U}$

Finally, if $O(x) = 0 + 0x + 0x^2$ then $O(2) = 0 \Rightarrow O \in \mathcal{U}$

Hence \mathcal{U} is a subspace of \mathcal{P}_2

(b) $\mathcal{U} = \{ p \in \mathcal{P}_3 \mid p(x) = (1 - x)g(x) \text{ for some } g \in \mathcal{P}_2 \}$

Solution: First let's try to understand how should a polynomial look like, in order to be in \mathcal{U} . A polynomial is in \mathcal{U} if it is the product between (1-x) and another polynomial in \mathcal{P}_2 .

With that in mind, take two polynomials p and q in \mathcal{U} .

Then p(x) = (1-x)g(x) for some $g \in \mathcal{P}_2$ and q(x) = (1-x)h(x) for some $h \in \mathcal{P}_2$.

Then p(x) + q(x) = (1 - x)(g(x) + h(x)). We know \mathcal{P}_2 is a vector space. So, g and $h \in \mathcal{P}_2$ means $g + h \in \mathcal{P}_2$

So we have p(x) + q(x) = (1 - x)(g(x) + h(x)) with $g + h \in \mathcal{P}_2$; This shows p + q is the product between (1 - x) and a polynomial in \mathcal{P}_2 . Hence $p + q \in \mathcal{U}$

If r is a scalar, (r.p)(x) = r(1-x)g(x) = (1-x)(r.g(x)). We know \mathcal{P}_2 is a vector space. So, if $g \in \mathcal{P}_2$ and r is a scalar, $rg \in \mathcal{P}_2$

So we have (rp)(x) = (1-x)(r.g(x)) with $r.g \in \mathcal{P}_2$; This shows r.p is the product between (1-x) and a polynomial in \mathcal{P}_2 . Hence $r.p \in \mathcal{U}$

The zero vector in \mathcal{P}_3 is the constant polynomial which is zero everywhere; O(x) = 0 for all x. We can write O(x) as $O(x) = (1-x)(0+0x+0x^2)$. Hence $O \in \mathcal{U}$.

So, \mathcal{U} is a subspace of \mathcal{P}_2 .

(c) $\mathcal{U} = \{ p \in \mathcal{P}_3 \mid p \text{ has degree } 3 \}$

Solution: This is not subspace. If $p(x) = x^3 + x^2$ and $q(x) = -x^3$ then p and q are in \mathcal{U} . But $p(x) + q(x) = x^2$. Hence $p + q \notin \mathcal{U}$. So, \mathcal{U} does not satisfy A.1.

Problem 9. Compute a basis for each of the following subspaces \mathcal{U} of the given vector spaces \mathcal{V} . In each case, write down the dimension of \mathcal{U} .

• $\mathcal{V} = \mathcal{P}_2$

 $\mathcal{U} = \{ p \mid p \text{ has no constant term} \}$

Solution: Any $p \in \mathcal{U}$ can be written as $p(x) = a_1x + a_2x^2$ because p cannot have a constant term. It is clear now $\mathcal{U} = span\{x, x^2\}$.

You can check that the set $\{x, x^2\}$ is a linearly independent set.

Hence $\{x, x^2\}$ is a basis of \mathcal{U} and the dimension of \mathcal{U} is 2.

• $\mathcal{V} = \mathcal{P}_4$

 $\mathcal{U} = \{p \mid p \text{ has no odd power terms}\}\$

Solution: Any $p \in \mathcal{U}$ can be written as $p(x) = a_0 + a_2 x^2 + a_4 x^4$ because p has no odd

power terms. It is clear now $\mathcal{U} = span\{1, x^2, x^4\}$.

You can check that the set $\{1, x^2, x^4\}$ is a linearly independent set.

Hence $\{1, x^2, x^4\}$ is a basis of \mathcal{U} and the dimension of \mathcal{U} is 3.

• $\mathcal{V} = \mathcal{P}_2$

$$\mathcal{U} = \{ p \mid p(x) = p(-x) \text{ for all } x \}$$

Solution: Take any $p \in \mathcal{U}$. Then $p(x) = a_0 + a_1 x + a_2 x^2 = p(-x) = a_0 - a_1 x + a_2 x^2$.

So we have $a_0 + a_1x + a_2x^2 = a_0 - a_1x + a_2x^2$

By equating coefficients we get $a_0 = a_0, a_1 = -a_1, a_2 = a_2$.

The first and last equations are trivial but the second one tells us $a_2 = 0$.

Then any polynomial in \mathcal{U} must be of the form $a_0 + a_2 x^2$

It is clear now $\mathcal{U} = span\{1, x^2\}$ and you can show that the set $\{1, x^2\}$ is linearly independent.

Hence it is a basis for \mathcal{U} . The dimension of \mathcal{U} is 2.

• $V = M_{3,3}$

 $\mathcal{U} = \{A \mid A \text{ is a symmetric matrix}\}$

$$\begin{cases}
\mathbf{Solution:} & \text{We can show that the set} \\
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\end{cases}$$

is a basis for \mathcal{U} . Hence the dimension of \mathcal{U} is 6.

• $V = M_{3,3}$

 $U = \{A \mid A \text{ is a skew-symmetric matrix}\}\$

$$\left\{ \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \right\}$$

is a basis for \mathcal{U} . Hence the dimension of \mathcal{U} is 3.

• $V = M_{3,3}$

 $\mathcal{U} = \{A \mid A \text{ is an upper triangular matrix}\}$

Solution: Any 3×3 upper triangular matrix can be written as

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{12} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{13} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{22} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{23} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} + a_{24} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{25} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{$$

$$a_{33} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Now it is clear that
$$\mathcal{U} = span \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \right\}$$

You can check that the set

$$\left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \right\}$$

is linearly independent. Hence it is a basis for $\mathcal U$ and the dimension of $\mathcal U$ is 6.

• $\mathcal{V} = \mathcal{M}_{2,2}$

 $\mathcal{U} = \{A \mid \text{ diagonal entries of A are all zero}\}$

Solution: We can show that the set

 $\left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$ is a basis for \mathcal{U} and the dimension of \mathcal{U} is 2.

• $V = M_{3,2}$

$$\mathcal{U} = \{ A \mid a_{32} = a_{21} = 0 \}$$

Solution: We can show that the set

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$$

is a basis for \mathcal{U} and the dimension of \mathcal{U} is 4.

• $\mathcal{V} = \mathcal{M}_{2,2}$ $\mathcal{U} = \left\{ A \mid A \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} A \right\}$

; or in other words, \mathcal{U} is the set of 2×2 matrices commutes with $\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$

Solution: Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in \mathcal{U}$.

$$A\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} a_{11} - a_{12} & a_{11} \\ a_{21} - a_{22} & a_{21} \end{bmatrix} \text{ and }$$

$$\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} A = \begin{bmatrix} a_{11} + a_{21} & a_{12} + a_{22} \\ -a_{11} & -a_{12} \end{bmatrix}$$

Then we have
$$\begin{bmatrix} a_{11}-a_{12} & a_{11} \\ a_{21}-a_{22} & a_{21} \end{bmatrix} = \begin{bmatrix} a_{11}+a_{21} & a_{12}+a_{22} \\ -a_{11} & -a_{12} \end{bmatrix}$$

By equating the corresponding entries, we have the following.

$$\begin{aligned} a_{11} - a_{12} &= a_{11} + a_{21} \Rightarrow -a_{12} = a_{21} \\ a_{11} &= a_{12} + a_{22} \\ a_{21} - a_{22} &= -a_{11} \\ a_{21} &= -a_{12} \end{aligned}$$

Both the first and last equations yield $a_{21} = -a_{12}$ and both the second and third equations yield $a_{11} = a_{12} + a_{22}$.

Hence
$$A = \begin{bmatrix} a_{12} + a_{22} & a_{12} \\ -a_{12} & a_{22} \end{bmatrix} = a_{12} \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} + a_{22} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

At this point, you can argue as in the previous parts to show that the set $\left\{ \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for $\mathcal U$ and the dimension of $\mathcal U$ is 2.