REPORT

EXPERIMENT 1: CHEMICAL REACTIONS

Group: 4 **Section:** 1 **Date:** 15/07/2022

Group members:

Seq.	Full name	Student ID	% Contribution (total = 100%)	Signature	Score
1	Ngô Hùng Minh Trí	IELSIU21167	100%		
2	Phạm Huỳnh Minh Triết	IELSIU21168	100%		
3	Trần Kiết Tường	IELSIU21170	100%		
4	Lý Mỹ Uyên	IELSIU21172	100%		
5	Nguyễn Lê Hoàng Vy	IELSIU21181	100%		

Total	score:	/15

I. Introduction:

Experiment 1 is aimed to test and observe the chemical changes of the reactants to form chemical reactions among different solutions. Seven experiments will be conducted in this experiment 1. The first is a process involving copper (Cu²⁺), iron (Fe²⁺ and Fe³⁺), and aluminum (Al³⁺). The reactions of silver halides, H₂O₂, and KMnO₄ are the following. The flame test is the final experiment.

II. Experimental:

1. Reactions of Cu²⁺:

- a. Mix 10 drops of 0.5M CuSO₄ with 10 drops of 2M NaOH → Observe
 - \rightarrow Add 10 drops of 2M NaOH \rightarrow Observe.
- b. Mix 10 drops of 0.5M CuSO₄ with 10 drops of 2M NH₄OH \rightarrow Observe
 - \rightarrow Add 10 drops of 2M NH₄OH \rightarrow Observe.

2. Reactions of silver halides:

 KCI: Mix and wait for 2 minutes: 10 drops of 0.5M KCI with 10 drops of 0.1M AqNO3 → Observe.

> Mix and wait for 2 minutes: 10 drops of 0.5M KCl with 10 drops of 0.1M AgNO₃ and 10 drops of 2M NH₄OH \rightarrow Observe.

b. KBr: Mix and wait for 2 minutes: 10 drops of 0.5M KBr with 10 drops of 0.1M $AqNO_3 \rightarrow Observe.$

> Mix and wait for 2 minutes: 10 drops of 0.5M KBr with 10 drops of 0.1M AgNO₃ and 10 drops of 2M NH₄OH \rightarrow Observe.

3. Reactions of H₂O₂:

- a. Mix and wait for 2 minutes: 1 drop of 0.1M KMnO₄ with 5 drops of 2M H₂SO₄ and 5 drops of 3% $H_2O_2 \rightarrow Observe$.
- b. Mix and wait for 2 minutes: 5 drops of 0.1M KI with 5 drops of 2M H₂SO₄ and 5 drops of 3% $H_2O_2 \rightarrow Observe$.
- c. Mix and wait for 2 minutes: 10 drops of 3% H₂O₂ with a pinch of MnO₂ \rightarrow Observe.

4. Reactions of KMnO₄:

- a. Mix 10 drops of 0.5M Na₂SO₃ with 5 drops of 2M H₂SO₄ and 5 drops of $0.1M \text{ KMnO}_4 \rightarrow \text{Observe}$.
- b. Mix 10 drops of 0.5M Na₂SO₃ with 5 drops of 6M NaOH and 5 drops of 0.1M $KMnO_4 \rightarrow Observe$.
- c. Mix 10 drops of 0.5M Na₂SO₃ with 5 drops of distilled water and 5 drops of $0.1M \text{ KMnO}_4 \rightarrow \text{Observe}$.

5. Reactions of Fe²⁺ and Fe³⁺:

- a. Reactions of Fe³⁺:
 - i. Mix 10 drops of 0.5M FeCl₃ with 5 drops of 2M KOH \rightarrow Observe.
 - Mix 10 drops of 0.5M FeCl₃ with 5 drops of 2M NH₄OH \rightarrow Observe.
- b. Reactions of Fe²⁺:
 - i. Mix 10 drops of 0.5M FeSO₄ with 5 drops of 2M KOH \rightarrow Observe.
 - ii. Mix 10 drops of 0.5M FeSO₄ with 5 drops of 2M NH₄OH \rightarrow Observe.

6. Reactions of Al3+:

- a. Mix 10 drops of 0.5M Al₂(SO₄)₃ with 5 drops of 2M NaOH
 - \rightarrow Observe \rightarrow Add 20 drops of 2M HCl \rightarrow Observe.
- b. Mix 10 drops of 0.5M Al₂(SO₄)₃ with 5 drops of 2M NaOH
 - \rightarrow Observe \rightarrow Add 20 drops of 2M NaOH \rightarrow Observe.

7. Flame test:

- a. Light the Bunsen burner.
- b. Clean the loop with distilled water.
- c. Dip the loop into the tested solution.
- d. Hold it in flame.
- e. Record the dominant flame color.
- f. Clean the loop for the next solution.
- g. Repeat the same process for other tested solutions.
- Tested solution: LiCl, NaCl, KCl CaCl₂, BaCl₂.

III. Results and discussion:

1. Reactions of Cu²⁺:

Table 1: Reactions of Cu²⁺

Reaction	Observation	Chemical Equation
0.5M CuSO ₄	Before adding NaOH to the	CuSO ₄ (aq) + 2NaOH (aq)
+ 2M NaOH	test tube, the solution has a	\rightarrow Cu(OH) ₂ (s) + Na ₂ SO ₄ (aq)
	blue color (CuSO ₄). After	
	adding NaOH, a pale blue	
	precipitate starts forming.	
0.5M CuSO ₄	At first, the pale blue	CuSO ₄ (aq) + 2NH ₄ OH (aq)
+ 2M NH ₄ OH	precipitate of Cu(OH) ₂ .	\rightarrow Cu(OH) ₂ (s) + (NH ₄) ₂ SO ₄ (aq)
	Then, on passing the	$Cu(OH)_2(s) + (NH_4)_2SO_4(aq) + 2NH_4OH(aq)$
	excess NH ₄ OH, the pale	\rightarrow [Cu(NH ₃) ₄]SO ₄ (aq) + 4H ₂ O (aq)
	blue color precipitate will	
	turn into a deep blue	
	solution. This is due to the	
	formation of a soluble	
	complex tetra amine copper	
	[II] sulfate ([Cu(NH ₃) ₄]SO ₄)	

Comments: In the first reaction, the precipitate is Cu(OH)2, it is a double displacement reaction, and requires a precipitate in order to form a chemical reaction. In the second reaction, first, it forms a dark blue precipitate Cu(OH)2, then the precipitate dissolves and forms a dark blue solution is a complex salt [Cu(NH₃)₄]SO₄.

Figure 1.1: Reaction 1.1 Figure 1.2: Reaction 1.1 Figure 1.3: Reaction 1.2

Figure 1.4: Reaction 1.2

2. Reactions of silver halides:

Table 2: Reactions of silver halides

Reaction	Observation	Chemical Equation
		Onemiour Equation
0.5M KCI	Forming a white	
+ 0.1M AgNO ₃	precipitate (AgCI) from	$KCI (aq) + AgNO3 (aq) \rightarrow KNO3 (aq) + AgCI (s)$
	two colorless solutions	
	(KCl and AgNO ₃)	
0.5M KCI	First, the reaction of	(C) (an) : AnNO (an) AnO (a) : (A)
+ 0.1M AgNO ₃	KCl and AgNO₃ form	KCI (aq) + AgNO ₃ (aq) \rightarrow AgCI (s)+ KNO ₃ (aq)
+ 2M NH ₄ OH	white precipitate. Then	AgCl (s) + 2NH4OH (aq) \rightarrow [Ag(NH ₃) ₄]Cl (aq) +
	the precipitate will turn	2H ₂ O (aq)
	into a colorless solution	
	due to the soluble	
	complex [Ag(NH ₃) ₄]Cl	
0.5M KBr	Light yellow precipitate	KBr (aq) + AgNO3 (aq) → AgBr (s) + KNO3 (aq)
+ 0.1M AgNO ₃	appears.	
0.5M KBr	First, the reaction of	
+ 0.1M AgNO ₃	KBr and AgNO₃ forms	KBr (aq) + AgNO3 (aq) → AgBr (s) + KNO3 (aq)
+ 2M NH ₄ OH	light yellow precipitate.	
	Then the precipitate will	

remain stable since	
AgBr does not form a	
soluble complex.	

Comments: Ion Ag⁺ can combine with halogens to form a precipitate with different colors. Moreover, these precipitates are dissolved in NH₄OH and form complex salts. In the last picture on the right, we did not put enough NH₄OH into the solution, so it is still a little yellow in the solution.

Figure 2.1: Reaction 2.1 Figure 2.2: Reaction 2.1 Figure 2.3: Reaction 2.2

Figure 2.4: Reaction 2.2

3. Reactions of H₂O₂:

Table 3: Reactions of H₂O₂

Reaction	Observation	Chemical Equation
0.1M KMnO ₄	The purple of KMnO4	2KMnO ₄ (aq) + 3H ₂ SO ₄ (aq) + 5H ₂ O ₂ (aq)
+ 2M H ₂ SO ₄	faded into a clear liquid and	$\rightarrow K_2SO_4(aq)+2MnSO_4(aq)+8H_2O(aq)+$
+ H ₂ O ₂	released gas.	5O ₂ (g)
0.1M KI + 2M H ₂ SO ₄ + H ₂ O ₂	The orange liquid turned into yellowish-brown liquid and after 2 minutes dark purple precipitate appeared.	2KI (aq) + H ₂ SO ₄ (aq) + H ₂ O ₂ (aq) \rightarrow K ₂ SO ₄ (aq) + I ₂ (s) + 2H ₂ O (aq)

	The solution effervesces	$MnO_2(s) + H_2O_2(aq)$
H ₂ O ₂ + MnO ₂	and has black precipitate.	\rightarrow MnO (s) + H ₂ O (aq) + O ₂ (g)

Comments: All 3 reactions are oxidation-reduction reactions because there is a change in oxidize number in each reaction. O2 is the gas released in the first and last reaction. I2 is the dark purple precipitate. The yellow solution is the color of KI. The black precipitate in the last reaction is MnO. We can conclude that H2O2 can be both the oxidation and reduction chemical substance because it can raise its oxidization number in the first reaction to become O₂ or lower it in the second reaction to become H₂O.

The dark purple of I₂ was so dark that we consider it black.

Figure 3.1: Reaction 3.1

Figure 3.2: Reaction 3.2

Figure 3.3: Reaction 3.3

4. Reactions of KMnO₄:

Table 4: Reactions of KMnO₄

Reaction	Observation	Chemical Equation
0.5M Na ₂ SO ₃ + 2M H ₂ SO ₄ + 0.1M KMnO ₄	The purple color of potassium permanganate was changed into a clear liquid (transparent).	5Na ₂ SO ₃ (aq) + 3H ₂ SO ₄ (aq) + 2KMnO ₄ (aq) → K ₂ SO ₄ (aq) + 2MnSO ₄ (aq)+ 5Na ₂ SO ₄ (aq) + 3H ₂ O (aq)
0.5M Na ₂ SO ₃ + 6M NaOH + 0.1M KMnO ₄	Forming dark green precipitation.	$2KMnO_4 + Na_2SO_3 + 2NaOH \rightarrow K_2MnO_4 +$ $Na_2SO_4 + H_2O + Na_2MnO_4$

	Forming a transparent	$3Na_2SO_3(aq) + H_2O(aq) + 2KMnO_4(aq)$
0.5M Na ₂ SO ₃	liquid and brown	\rightarrow 3Na ₂ SO ₄ (aq) + 2MnO ₂ (s) + 2KOH (aq)
+ H ₂ O	precipitation.	
+ 0.1M KMnO ₄		

Comments: KMnO₄ can react with a salt such as Na₂SO₃ in many different conditions like acid (H₂SO₄), base (NaOH), or even distilled water (H₂O). Mangan (Mn) is an oxidized substance as it reduces oxidation number from +7 to +2 or +4.

In the second reaction, the dark green was so dark that we consider it black. In the last reaction, there should be some dark red precipitation of MnO2 that appeared after the solution turned transparent, but we put so little KMnO4 and too much distilled water, so it was quite difficult to see.

Figure 4.1: Reaction 4.1

Figure 4.2: Reaction 4.2

Figure 4.3: Reaction 4.3

5. A. Reactions of Fe³⁺:

Table 5: Reactions of Fe3+

Reaction	Observation	Chemical Equation
0.5M FeCl₃ + 2M KOH	Forming brown-red precipitation.	FeCl ₃ (aq) + 3KOH (aq) → Fe(OH) ₃ (s) + 3KCl (aq)
0.5M FeCl ₃	Forming yellow-brown	FoCl. (og) + 2NH OH (og)
+ 2M NH ₄ OH	precipitation.	FeCl ₃ (aq) + 3NH ₄ OH (aq) \rightarrow Fe(OH) ₃ (s) + 3NH ₄ Cl (aq)

Comments: FeCl₃ reacts with base compounds in order to create ion Fe³⁺, forming brown precipitation Fe(OH)_{3.}

Figure 5.A.1: Reaction 5.A

Figure 5.A.2: Reaction 5.A

5. B. Reactions of Fe²⁺:

Table 6: Reactions of Fe2+

Reaction	Observation	Chemical Equation
0.5M FeSO ₄	Dark green precipitate	FeSO ₄ (aq) + 2KOH (aq)
+ 2M KOH	appears.	\rightarrow Fe(OH) ₂ (s) + K ₂ SO ₄ (aq)
	A yellow aqueous	
0.5M FeSO ₄	solution of FeSO ₄ turn to	FeSO ₄ (aq) + 2NH ₃ (aq) + 2H ₂ O (aq)
+ 2M NH ₄ OH	dark green and appears	→ Fe(OH) ₂ (s) + (NH4) ₂ SO ₄ (aq)
	dark	

green precipitate.	

Comments: FeSO4 reacts with base compounds in order to create ion Fe2+, forming moss-green precipitation Fe(OH)₂.

Figure 5.B.1: Reaction 5.B

Figure 5.B.2: Reaction 5.B

6. Reactions of Al³⁺:

Table 7: Reactions of Al3+

Reaction	Observation	Chemical Equation	
0.5M Al ₂ (SO ₄) ₃	Form an opaque, white	Al ₂ (SO ₄) ₃ (aq) + 6NaOH (aq)	
+ 2M NaOH	precipitate AI(OH) ₃	\rightarrow 2AI(OH) ₃ (s) + 3Na ₂ SO ₄ (aq)	
0.5M Al ₂ (SO ₄) ₃	The precipitate AI(OH)3 Al ₂ (SO ₄) ₃ (aq) + 6NaOH (aq)		
+ 2M NaOH	slowly disappears and	→ 2Al(OH) ₃ (s) + 3Na ₂ SO ₄ (aq)	
+ 2M HCI	results in a clear liquid	2AI(OH) ₃ (s) + 6HCI (aq)	
	product	→ 2AlCl ₃ (aq) + 6H ₂ O (aq)	

0.5M.A.L.(00.)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$Al_2(SO_4)_3$ (aq) + 6NaOH (aq)	
0.5M Al ₂ (SO ₄) ₃	White precipitate appears,	→ 2Al(OH) ₃ (aq) + 3Na ₂ SO ₄ (aq)	
+ 2M NaOH	and the precipitate	Al(OH)₃ (aq) + NaOH (aq)	
+ 2M NaOH	dissolves.	\rightarrow NaAlO ₂ (aq) + 2H ₂ O (aq)	

Comments: The result of the reaction between aluminum sulfate Al₂(SO₄)₃ and sodium hydroxide is the white-colored precipitate aluminum hydroxide Al(OH)₃ and sodium sulfate Na₂SO₄. If using the products in the previous reaction as reactants and adding hydrochloric acid HCI, the precipitate aluminum hydroxide Al(OH)₃ dissolves and aluminum chloride is the new product. Following the same procedure, but replacing hydrochloric acid HCl with sodium hydroxide NaOH, the precipitate aluminum hydroxide Al(OH)₃ continuously accumulates and ultimately dissolves.

Figure 6.1.1: Reaction 6.1

Figure 6.1.2: Reaction 6.1

Figure 6.2.1: Reaction 6.2

Figure 6.2.2: Reaction 6.2

7. Flame test:

Calutian	Dominant	Wavelength	Frequency	Photon
Solution	flame color	(nm)	(s ⁻¹)	energy
				(J)
LiCl	red-orange	622	4.823x10 ¹⁴	3.196x10 ⁻¹⁹
NaCl	orange	609	4.926x10 ¹⁴	3.264x10 ⁻¹⁹
KCI	violet	423	7.092x10 ¹⁴	4.699x10-19
CaCl2	red-orange	622	4.823x10 ¹⁴	3.196x10-19
BaCl2	orange-yellow	597	5.025x10 ¹⁴	3.330x10-19

Comments: The purpose of this experiment is to show the differences displayed in color of the flame when various salts and metals react with fire. By translating the flame color into frequency, wavelength and energy per photon can be calculated by using the correct formulas.

Figure 7.1: Flame LiCl

Figure 7.3: Flame KCI

Figure 7.2: Flame NaCl

Figure 7.4: Flame CaCl₂

Figure 7.5: Flame BaCl₂

IV. Conclusions:

After this experiment, we had the opportunity to do many types of reactions such as synthesis, decomposition, single displacement, double displacement, combustion, acid-base, complex compound formation, and oxidation-reduction. Following the preceding trials, we can distinguish between several sorts of events such as color change, precipitation formation, and gas formation. In addition, we saw the physical characteristics of various chemicals alter through a flame test.