No Idea!

Problem Statement

There is an array of n integers. There are also 2 **disjoint sets**, A and B, each containing m integers. You like all the integers in set A and dislike all the integers in set B. Your initial happiness is 0. For each i integer in the array, if $i \in A$, you add 1 to your happiness. If $i \in B$, you add -1 to your happiness. Otherwise, your happiness does not change. Output your final happiness at the end.

Note: Since A and B are sets, they have no repeated elements. However, the array might contain duplicate elements.

Constraints

```
egin{aligned} 1 &\leq n \leq 10^5 \ 1 &\leq m \leq 10^5 \ 1 &\leq Any\ integer\ in\ the\ input \leq 10^9 \end{aligned}
```

Input Format

The first line contains integers n and m separated by a space.

The second line contains n integers, the elements of the array.

The third and fourth lines contain m integers, A and B, respectively.

Output Format

Output a single integer, your total happiness.

Sample Input

```
3 2
1 5 3
3 1
5 7
```

Sample Output

1

Explanation

You gain 1 unit of happiness for elements 3 and 1 in set A. You lose 1 unit for 5 in set B. The element 7 in set B does not exist in the array so it is not included in the calculation.

Hence, the total happiness is 2 - 1 = 1.