Сложные случаи: \mathcal{PAL} - \mathcal{C} , \mathcal{EL} - \mathcal{RC} , \mathcal{PAL} - \mathcal{RC}

Мини-курс «Эпистемическая логика: исчисления и модели»

Виталий Долгоруков, Елена Попова

Международная лаборатория логики, лингвистики и формальной философии НИУ ВШЭ

Летняя школа «Логика и формальная философия» Факультет свободных искусств и наук сентябрь 2022

Сложные случаи

- Как аксиоматизировать \mathcal{PAL} - \mathcal{C} ?
- ullet Как связаны [!arphi] и $\mathcal{C}_{\mathcal{G}}\psi$
- Есть ли аксиома редукции для $[!\varphi]\psi$?

PALC

Утверждение 1: Формула $[!\varphi]C_G\psi\leftrightarrow (\varphi\to C_G[!\varphi]\psi)$ не является общезначимой.

Доказательство.

Рассмотрим модель M, x

- 1. $M, x \models [!p]C_{ab}q$
- 2. $M, x \models p$
- 3. $M, x \not\models C_{ab}[!p]q$, поскольку $M, x \models \hat{K}_a \hat{K}_b \langle !p \rangle \neg q$

Пути

Определение 1. Пусть $M = (W, (R_i)_{i \in Ag}, V)$ – модель Крипке, $x, y \in W$, $G \subseteq Ag$, $x, y \in W$, $G \subseteq Ag$, будем говорить, что существует G-путь из x в y (обозначение: xR_Gy), если найдутся такие $y_1, \ldots, y_n \in W$ и $i_1, \ldots, i_n \in G$, что $xR_{i_1}y_1R_{i_2} \ldots R_{i_n}y_n = y$.

Упражнение 1. Докажите, что $\big(\bigcup_{i\in G}R_i^{!arphi}\big)^+=\ R_{G,arphi}$

Утверждение 1: $M, x \models [!\varphi]C_G\psi$ е.т.е. $\forall y(xR_{G,\varphi}y \Rightarrow M, y \models [!\varphi]\psi)$

1. $M, x \models [!\varphi]C_G\psi \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} R_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$

- - 1. $M, x \models [!\varphi]C_G\psi \iff$
 - 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
 - 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} R_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 4. $M, x \models \varphi \Rightarrow \forall y (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi) \iff$

- - 1. $M, x \models [!\varphi]C_G\psi \iff$
 - 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
 - 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} R_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 4. $M, x \models \varphi \Rightarrow \forall y (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 5. $\forall y (M, x \models \varphi \Rightarrow (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$

- - 1. $M, x \models [!\varphi]C_G\psi \iff$
 - 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
 - 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} R_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 4. $M, x \models \varphi \Rightarrow \forall y (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 5. $\forall y (M, x \models \varphi \Rightarrow (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
 - 6. $\forall y((M, x \models \varphi \land xR_{G,\varphi}y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$

- - 1. $M, x \models [!\varphi]C_G\psi \iff$
 - 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
 - 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} R_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 4. $M, x \models \varphi \Rightarrow \forall y (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 5. $\forall y (M, x \models \varphi \Rightarrow (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
 - 6. $\forall y((M, x \models \varphi \land xR_{G,\varphi}y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
 - 7. $\forall y (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} R_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M, x \models \varphi \land xR_{G,\varphi}y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 7. $\forall y (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 8. $\forall y((xR_{G,\varphi}y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$

- - 1. $M, x \models [!\varphi]C_G\psi \iff$
 - 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
 - 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} R_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 4. $M, x \models \varphi \Rightarrow \forall y (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 5. $\forall y (M, x \models \varphi \Rightarrow (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
 - 6. $\forall y((M, x \models \varphi \land xR_{G,\varphi}y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
 - 7. $\forall y (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 8. $\forall y((xR_{G,\varphi}y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 9. $\forall y (xR_{G,\varphi}y \Rightarrow (M, y \models \varphi \Rightarrow M^{!\varphi}, y \models \psi)) \iff$

- - 1. $M, x \models [!\varphi]C_G\psi \iff$
 - 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
 - 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} R_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 4. $M, x \models \varphi \Rightarrow \forall y (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 5. $\forall y (M, x \models \varphi \Rightarrow (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
 - 6. $\forall y((M,x \models \varphi \land xR_{G,\varphi}y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
 - 7. $\forall y (xR_{G,\varphi}y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 8. $\forall y((xR_{G,\varphi}y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 9. $\forall y (xR_{G,\varphi}y \Rightarrow (M, y \models \varphi \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 10. $\forall y (xR_{G,\varphi}y \Rightarrow M, y \models [!\varphi]\psi)$

Публичные объявления и общее знание

Лемма

$$\frac{\models \chi \to [!\varphi]\psi \quad \models (\chi \land \varphi) \to E_G \chi}{\models \chi \to [!\varphi]C_G \psi}$$

1 (a)
$$\models \chi \rightarrow [!\varphi]\psi$$
, (b) $\models (\chi \land \varphi) \rightarrow E_G \chi$
2 $M, \chi \models \chi$ $p \in M, \chi \models [!\varphi]C_G \psi \Leftrightarrow p \forall y(\chi R_{G,\varphi}y \Rightarrow M, y \models [!\varphi]\psi)$
3 $M, \chi \models \chi$ $p \in M, \chi \models [!\varphi]\psi$
4 $XR_1y_1R_2\dots R_{in}y_n = y \text{ T.4.}$
5 $i_1,\dots,i_n\in G \text{ is }M,\chi,y_1,\dots,y_n\models \varphi$ is 4 no onp. $\chi R_{G,\varphi}y$
6 $M, \chi \models \chi \land \varphi$ 2, 3
7 $M, \chi \models E_G \chi$ 1b, 6 no MP
8 $M, \chi \models K_{i_1} \chi$ is 5, 8
10 $M, \chi \models \chi$ is 5, 8
10 $M, \chi \models \chi$ is 5, 8
10 $M, \chi \models \chi$ is 10
11 $M, \chi \models \chi$ is 10
12 $M, \chi \models [!\varphi]\psi$ 1, 11
13 $\forall y(\chi R_{G,\varphi}y \Rightarrow M, \chi \models [!\varphi]\psi)$ BV $\Rightarrow 4-12$
14 $M, \chi \models [!\varphi]C_G \psi$ def
15 $\models \chi \rightarrow [!\varphi]C_G \psi$ BV $\Rightarrow 2-14$

Упражнение

Переписать предыдущее доказательство в более строгом виде: индукцией по n в пункте $xR_{i_1}y_1R_{i_2}\dots R_{i_n}y_n=y$ и далее.

Исчисление PALC

- Аксиомные схемы $S5_m$ -C
- $[!\varphi]p \leftrightarrow (\varphi \rightarrow p)$
- $[!\varphi]\neg\psi\leftrightarrow(\varphi\rightarrow\neg[!\varphi]\psi)$
- $[!\varphi](\psi \wedge \chi) \leftrightarrow ([!\varphi]\psi \wedge [!\varphi]\chi)$
- $[!\varphi]K_i\psi \leftrightarrow (\varphi \rightarrow K_i[!\varphi]\psi)$
- $[!\varphi][!\psi]\chi \leftrightarrow [!(\varphi \land [!\varphi]\psi)]\chi$
- ullet Правила вывода: MP, NEC для K_i
- Правило вывода:

$$\frac{\chi \to [!\varphi]\psi \quad (\chi \land \varphi) \to E_G \chi}{\chi \to [!\varphi]C_G \psi}$$

Полнота и корректность

Теорема о полноте: схема доказательства

- Замыкание $cl(\varphi)$
- $c(\varphi)$ переопределить
- ullet Лемма об истинности: случай $[!arphi] {\cal C}_{\cal G} \psi$
- Лемма об истинности собирается индукцией по c

Определение. Замыкание $cl(\varphi')$. Для $\varphi' \in \mathcal{PAL}$ - \mathcal{C} определим четыре множества: $cl_1(\varphi') \subset cl_2(\varphi') \subset cl_3(\varphi') \subset cl(\varphi')$.

 $cl_1(\varphi)$ – наименьшее множество, замкнутое по следующим правилам:

- 1. $\varphi \in cl_1(\varphi)$
- 2. если $\psi \in \mathit{cl}_1(\varphi)$, то $\mathit{Sub}(\psi) \subset \mathit{cl}_1(\varphi)$
- 3. если $C_G\psi\in cl_1(\varphi)$, то $\{K_iC_G\psi\mid i\in G\}\subseteq cl_1(\varphi)$
- 4. если $[!\varphi]p\in \mathit{cl}_1(\varphi')$, то $\varphi o p\in \mathit{cl}_1(\varphi')$
- 5. если $[!\varphi] \neg \psi \in \mathit{cl}_1(\varphi')$, то $\varphi \to \neg [!\psi] \varphi \in \mathit{cl}_1(\varphi')$
- 6. если $[!\varphi](\psi \wedge \chi) \in \mathit{cl}_1(\varphi')$, то $[!\varphi]\psi \wedge [!\varphi]\chi \in \mathit{cl}_1(\varphi')$
- 7. если $[!\varphi]K_i\psi\in \mathit{cl}_1(\varphi')$, то $\varphi o K_i[!\psi]\varphi\in \mathit{cl}_1(\varphi')$
- 8. если $[!\varphi][!\psi]\chi\in \mathit{cl}_1(\varphi')$, то $[!(\varphi\wedge[!\varphi]\psi)]\chi\in \mathit{cl}_1(\varphi')$
- 9. если $[!\varphi]C_G\psi\in cl_1(\varphi')$, то $[!\varphi]\psi\in cl_1(\varphi')$ и $\{K_i[!\varphi]C_G\psi\mid i\in G\}\subset cl_1(\varphi')$

$$\mathit{cl}_2(\varphi) := \mathit{cl}_1(\varphi) \cup \{ \neg \psi \mid \psi \in \mathit{cl}_1(\varphi) \text{ in } \psi \neq \neg \dots \}$$

$$\mathit{cl}_3(\varphi) := \mathit{cl}_2(\varphi) \cup \{\mathit{K}_i \mathit{K}_i \psi \mid \mathit{K}_i \psi \in \mathit{cl}_2(\varphi)\} \cup \{\mathit{K}_i \neg \mathit{K}_i \psi \mid \neg \mathit{K}_i \psi \in \mathit{cl}_2(\varphi)\}$$

$$cl(\varphi) := cl_3(\varphi) \cup \{ \neg \psi \mid \psi \in cl_3(\varphi) \text{ in } \psi \neq \neg \dots \}$$

Сложность $c(\varphi)$

Определение. Определим функцию сложности $c: \mathcal{PAL}\text{-}\mathcal{C} \mapsto \mathbb{N}$:

- 1. c(p) := 1
- 2. $c(\neg \varphi) := c(\varphi) + 1$
- 3. $c(\varphi \wedge \psi) = max\{c(\varphi), c(\psi)\} + 1$
- 4. $c(K_i\varphi) := c(\varphi) + 1$
- 5. $c(C_G\varphi) := c(\varphi) + 1$
- 6. $c([!\varphi]\psi) := (c(\varphi) + 4) \cdot c(\psi)$

Лемма

- $c(\varphi) \geq c(\psi)$ для $\psi \in \mathit{sub}(\varphi)$
- $c([!\varphi]p) > c(\varphi \to p)$
- $c([!\varphi]\neg\psi) > c(\varphi \rightarrow \neg [!\varphi]\psi)$
- $c([!\varphi](\psi \wedge \chi)) > c([!\varphi]\psi \wedge [!\varphi]\chi)$
- $c([!\varphi]K_i\psi) > c(\varphi \to K_i[!\varphi]\psi)$
- $c([!\varphi][!\psi]\chi) > c([!(\varphi \wedge [!\varphi]\psi)]\chi)$
- $c([!\varphi]C_G\psi) > c([!\varphi]\psi)$

Утверждение: $\vdash [!\varphi]C_G\psi \to (\varphi \to \mathcal{K}_i[!\varphi]C_G\psi)$ для $i \in G$

- 1. $C_G \psi \rightarrow K_i C_G \psi$
- 2. $[!\varphi]C_G\psi \rightarrow [!\varphi]K_iC_G\psi$
- 3. $[!\varphi]K_iC_G\psi \rightarrow (\varphi \rightarrow K_i[!\varphi]C_G\psi)$
- 4. $[!\varphi]C_G\psi \rightarrow (\varphi \rightarrow K_i[!\varphi]C_G\psi)$

Лемма об истинности

Лемма

Пусть Φ – замыкание некоторой формулы, $M^{\Phi}=(W^{\Phi},(R_i^{\Phi})_{i\in Ag},V^{\Phi})$ – конечная каноническая модель, $X\in W^{\Phi}$ тогда

$$\forall \varphi' \in \Phi : \varphi' \in X \iff M^{\Phi}, X \models \varphi'$$

Доказательство

Будем доказывать (возвратной) индукцией по $c(\varphi')$.

Предположение индукции Обозначим $c(\varphi') = n$.

$$\forall \psi \in \Phi : c(\psi) < n \Rightarrow (\psi \in X \iff M^{\Phi}, X \models \psi)$$

Шаг индукции Рассмотрим следующие случаи.

Сл.1
$$\varphi' = p$$

Сл.2 $\varphi' = \neg \varphi$
Сл.3 $\varphi' = \varphi \wedge \psi$
Сл.4 $\varphi' = K_i \varphi$
Сл.5 $\varphi' = C_G \varphi$
Сл.6 $\varphi' = [\varphi] \psi$
Сл.6а $\varphi' = [\varphi] \neg \psi$
Сл.6c $\varphi' = [\varphi] (\psi \wedge \chi)$
Сл.6d $\varphi' = [\varphi] K_i \psi$
Сл.6e $\varphi' = [\varphi] [\psi] \chi$
Сл.6f $\varphi' = [\varphi] C_G \psi p$

Сл. 6а-6е

```
Сл.6а c(\varphi \to p) < c([!\varphi]p) [!\varphi]p \in X \Leftrightarrow (\varphi \to p) \in X \Leftrightarrow M^{\Phi}, X \models \varphi \to p \Leftrightarrow M^{\Phi}, X \models [!\varphi]p Сл.6b-d. Упражнение. Сл.6e [!\varphi][!\psi]\chi \in X \Leftrightarrow_{\mathsf{Akc}} [!(\varphi \land [!\varphi]\psi)]\chi \in X \Leftrightarrow_{(*)}^{\mathsf{IH}} M^{\Phi}, X \models [!(\varphi \land [!\varphi]\psi)]\chi \Leftrightarrow M^{\Phi}, X \models [!\varphi][!\psi]\chi (*) c([!(\varphi \land [!\varphi]\psi)]\chi) < c([!\varphi][!\psi]\chi)
```

Случай 6f⇒

```
\triangleright M^{\Phi}, X \models [!\varphi]C_G\psi \Leftrightarrow \triangleright \forall Y(XR_{G,\varphi}Y \Rightarrow M^{\Phi}, Y \models [!\varphi]\psi)
              [!\varphi]C_G\psi\in X
              Y XR_{G}^{\Phi} Y
                                                                                                  \triangleright M^{\Phi}, Y \models [!\varphi]\psi
 3
              XR_{i_1}^{\Phi}Y_1R_{i_2}^{\Phi}\dots R_{i_r}^{\Phi}Y_n=Y т.ч. i_1,\dots,i_n\in G из 2 по опр.
                 и M^{\Phi}, X \models \varphi, M^{\Phi}, Y_1 \models \varphi, \dots, M^{\Phi}, Y_n \models \varphi
 4
              \varphi \in X, \varphi \in Y_1, \ldots, \varphi \in Y_n
                                                                                                   ПИ
 5
               \varphi \to K_i[!\varphi]C_G\psi \in X
                                                                                                   по vтв. на сл. 10 и \varphi \to K_i[!\varphi]C_G\psi \in X \in \Phi
                  K_i, [!\varphi]C_G\psi \in X
 6
                                                                                                   из 4.5 по МР
                  XR_{i}^{\Phi}Y_{1}
                                                                                                   из 3
                  [!\varphi]C_G\psi\in Y_1
                                                                                                   из 6,7 по опр.
 9
                                                                                                   повторяем шаги 5–8 для Y_2 и т.д. до Y_n = Y
10
                  [!\varphi]C_G\psi\in Y
                                                                                                   из 9
11
                  [!\varphi]\psi \in Y
                                                                                                   из 10, \vdash C_G \psi \rightarrow [!\varphi]\psi и [!\varphi]\psi \in \Phi
12
                M^{\Phi}, Y \models [!\varphi]\psi
                                                                                                   ПИ
13
              \forall Y(XR_{G,\varphi}^{\Phi}Y\Rightarrow [!\varphi]\psi\in Y)
                                                                                                   2-11 B∀ ⇒
```

Случай $6f(\Leftarrow)$: сборка доказательства

Упражнение

Утверждение. $\vdash \chi \rightarrow [!\varphi]\psi$

Достаточно доказать, что $\underline{X} \to [!\varphi]\psi$ для $X \in \mathcal{S}$.

- 1. $M^{\Phi}, X \models [!\varphi]C_G\psi$
- 2. $M^{\Phi}, X \models [!\varphi]\psi$
- 3. $c([!\varphi]\psi) < c([!\varphi]C_G\psi)$
- 4. $[!\varphi]\psi \in X$ по П.И.
- 5. $X \vdash [!\varphi]\psi$
- 6. $\vdash \underline{X} \rightarrow [!\varphi]\psi$

Случай 6f←

Лемма $(\chi \wedge \varphi) \to E_G \neg \underline{Y}$

Достаточно доказать, для любых $X \in S, Y \in \overline{S}, i \in G \vdash (\underline{X} \land \varphi) \to K_i \neg \underline{Y}$

1	$X \in S$	9	$XR_i^{\Phi}Y$	
2	$Y \in \overline{S}$	10	$M^{\Phi},X\modelsarphi$	из 6 по ПИ
3		11	$\models [!\varphi] C_G \psi \to (\varphi \to K_i [!\varphi] C_G \psi)$	
4	$\underline{X}, \varphi, \neg K_i \neg \underline{Y} \not\vdash \bot$	12	$M^{\Phi}, X \models \varphi \to K_i[!\varphi]C_G\psi$	
5	$X, \varphi, \hat{\mathcal{K}}_i \underline{Y} \not\vdash \bot$	13	$M^{\Phi}, X \models K_i[!\varphi]C_G\psi$	
6	$X, \varphi ot \vdash \bot$	14	$M^{\Phi}, Y \models [!\varphi]C_G\psi$	
7	$\varphi \in X$	15	$Y \in S$	
8	$X,\hat{\mathcal{K}}_i\underline{Y} ot\vdash\perp$	16	«⊥»	1, 14

Аксиомы редукции

- $\mathcal{EL} \equiv \mathcal{PAL}$
- \mathcal{EL} - $\mathcal{D} \equiv \mathcal{PAL}$ - \mathcal{D}
- \mathcal{EL} - $\mathcal{C} \prec \mathcal{PAL}$ - \mathcal{C}
- \mathcal{EL} - \mathcal{C} +? $\equiv \mathcal{PAL}$ - \mathcal{C} +?
- \mathcal{EL} - $\mathcal{RC} \equiv \mathcal{PAL}$ - \mathcal{RC}

Условное общее знание

Определение 3.
$$M, x \models C_G^{\psi} \varphi$$
 е.т.е. $\forall y (x (\bigcup_{i \in G} R_i \cap (W \times [\psi]_M))^+ y \Rightarrow M, y \models \varphi)$

Утверждение: Общее знание выразимо через условное общее знание:

$$C_{\mathbf{G}}\varphi \equiv C_{\mathbf{G}}^{\top}\varphi$$

Доказательство: упражнение

Определение 2. Пусть $M=(W,(R_i)_{i\in Ag},V)$ – модель Крипке, $x,y\in W$, $G\subseteq Ag$, будем говорить, что существует G- φ -путь из x в y (обозначение: $xR_{G,\varphi}y$), если найдутся такие $y_1,\ldots,y_n\in W$ и $i_1,\ldots,i_n\in G$, что $xR_{i_1}y_1R_{i_2}\ldots R_{i_n}y_n=y$ и $M,x\models \varphi,M,y_1\models \varphi,\ldots,M,y_n\models \varphi$.

Определение 3. Пусть $M = (W, (R_i)_{i \in Ag}, V)$ – модель Крипке, $x, y \in W$, $G \subseteq Ag$, будем говорить, что существует $G \cdot \varphi$ -путь из x в y (обозначение: $R_{G, \cdot \varphi}$), если найдутся такие $y_1, \ldots, y_n \in W$ и $i_1, \ldots, i_n \in G$, что $xR_{i_1}y_1R_{i_2} \ldots R_{i_n}y_n = y$ и $M, y_1 \models \varphi, \ldots, M, y_n \models \varphi$.

$$M,x \models C_G^{\psi} \varphi$$
 е.т.е. $\forall y (xR_{G,\cdot \psi} y \Rightarrow M, y \models \varphi)$

Исчисление для условного общего знания

Исчисление $S5_m$ -RC

Аксиомные схемы:

$$(S5_K)$$
 Аксиомные схемы $S5$ для K_i (K_{RC}) $C_G^\chi(\varphi \to \psi) \to (C_G^\chi \varphi \to C_G^\chi \psi)$ (mix_{RC}) $C_G^\psi \varphi \leftrightarrow E_G(\psi \to (\varphi \land C_G^\psi \varphi))$ (ind_{RC}) $C_G^\psi(\varphi \to E_G(\psi \to \varphi)) \to (E_G(\psi \to \varphi) \to C_G^\psi \varphi)$

Правила вывода:

$$\frac{\varphi \qquad \varphi \rightarrow \psi}{\psi} \quad MP \qquad \qquad \frac{\varphi}{K_i \varphi} \quad G_K \qquad \qquad \frac{\varphi}{C_G^{\psi} \varphi} \quad G_C F_C \qquad \qquad \frac{\varphi}{C_G^{\psi} \varphi} \quad G_C \qquad \frac{\varphi}{C_G^{\psi} \varphi} \quad \frac{\varphi}{C_G^{\psi$$

Некоторые полезные теоремы

Упражнение. Найдите доказательства для следующих теорем исчисления $S5_m$ –RC:

- 1. $C_G^{\psi}\varphi \to E_G(\psi \to \varphi)$
- 2. $C_G^{\psi}\varphi \to E_G(\psi \to E_G(\psi \to \varphi))$
- 3. $C_G^{\varphi}\varphi$
- 4. $C_G^{\psi}\varphi \rightarrow C_G^{\psi}C_G^{\psi}\varphi$
- 5. $C_G^{\psi}\varphi \leftrightarrow C_G^{\psi}(\psi \wedge \varphi)$
- 6. $C_G^{\psi}\varphi \leftrightarrow C_G^{\psi}(\psi \rightarrow \varphi)$

Полнота $S5_m$ -RC

Сборка доказательства.

- $\Phi = cl(\varphi)$
- ullet Лемма об истинности: случай $C_{\mathcal{G}}^{\psi} arphi$

Замыкание

```
Определение. Замыкание cl(\varphi'). Для \varphi' \in \mathcal{PAL}-\mathcal{RC} определим четыре множества:
cl_1(\varphi') \subset cl_2(\varphi') \subset cl_2(\varphi') \subset cl(\varphi').
          cl_1(\varphi) — наименьшее множество, замкнутое по следующим правилам:
                          1. \varphi \in cl_1(\varphi')
                          2. если \psi \in cl_1(\varphi'), то Sub(\psi) \subset cl_1(\varphi')
                          3. если C_G\psi\in cl_1(\varphi'), то \{K_iC_G\psi\mid i\in G\}\subseteq cl_1(\varphi')
                          4. если C_C^{\psi}\varphi \in cl_1(\varphi'), то \{K_i(\psi \to (\varphi \land C_C^{\psi}\varphi) \mid i \in G\} \subset cl_1(\varphi')\}
          cl_2(\varphi) := cl_1(\varphi) \cup \{\neg \psi \mid \psi \in cl_1(\varphi) \text{ if } \psi \neq \neg \dots \}
          cl_3(\varphi) := cl_2(\varphi) \cup \{K_i K_i \psi \mid K_i \psi \in cl_2(\varphi)\} \cup \{K_i \neg K_i \psi \mid \neg K_i \psi \in cl_2(\varphi)\}
            cl(\varphi) := cl_3(\varphi) \cup \{ \neg \psi \mid \psi \in cl_3(\varphi) \text{ in } \psi \neq \neg \dots \}
```

Лемма об истинности: Сл. $\psi' = C_G^{\psi} \varphi \ (\Rightarrow)$

Лемма об истинности: Сл. $\psi' = C_G^{\psi} \varphi$. (\Leftarrow)

- $\underline{X} \to E_G(\psi \to \chi)$
- $\chi \to E_G(\psi \to \chi)$
- $\chi \to (\psi \to \varphi)$

Сл. $\psi' = \mathcal{C}_{\mathsf{G}}^{\psi} \varphi$ (\Leftarrow) Сборка доказательства

$$\underbrace{\frac{\chi \to E_G(\psi \to \bigwedge\{\neg \underline{Y} \mid Y \in \overline{S}\}) \quad \chi \leftrightarrow \bigwedge\{\neg \underline{Y} \mid Y \in \overline{S}\}}{C_G^{\psi}(\chi \to E_G(\psi \to \chi))}}_{C_G^{\psi}(\chi \to E_G(\psi \to \chi))} \underbrace{C_G^{\psi}(\chi \to E_G(\psi \to \chi)) \to (E_G(\psi \to \chi) \to C_G^{\psi}\chi)}_{C_G^{\psi}(\chi \to E_G(\psi \to \chi))} \underbrace{\frac{\chi \to E_G(\psi \to \chi) \to C_G^{\psi}\chi}{E_G(\psi \to \chi) \to C_G^{\psi}\chi}}_{C_G^{\psi}(\chi \to \chi)} \underbrace{\frac{\chi \to C_G^{\psi}(\psi \to \chi) \to C_G^{\psi}\chi}{C_G^{\psi}(\psi \to \chi)}}_{C_G^{\psi}(\psi \to \chi) \to C_G^{\psi}\chi} \underbrace{\frac{\chi \to C_G^{\psi}(\psi \to \chi) \to C_G^{\psi}\chi}{C_G^{\psi}(\psi \to \chi) \to C_G^{\psi}\chi}}_{C_G^{\psi}(\psi \to \chi)} \underbrace{\frac{\chi \to C_G^{\psi}(\psi \to \chi) \to C_G^{\psi}\chi}{C_G^{\psi}(\psi \to \chi) \to C_G^{\psi}\chi}}_{C_G^{\psi}(\psi \to \chi)}$$

 $S := \{X \in W^{\Phi} \mid M^{\Phi}, X \models C_G^{\psi} \varphi\} \mid \chi := \bigvee \{\underline{X} \mid X \in S\} \mid \overline{S} := W^{\Phi} \backslash S$

$$\boxed{S := \{X \in W^{\Phi} \mid M^{\Phi}, X \models C_G^{\psi} \varphi\}} \boxed{\chi := \bigvee \{\underline{X} \mid X \in S\}} \boxed{\overline{S} := W^{\Phi} \backslash S}$$

Утверждение.

$$\vdash \chi \to E_G(\psi \to \bigwedge \{ \neg \underline{Y} \mid Y \in \overline{S} \}) \Leftrightarrow \forall i \in G \ \forall X \in S \ \forall Y \in \overline{S} \vdash \underline{X} \to K_i(\psi \to \neg \underline{Y})$$

Доказательство.

- 1. $\vdash \chi \to E_G(\psi \to \bigwedge \{\neg \underline{Y} \mid Y \in \overline{S}\}) \Leftrightarrow$
- 2. $\forall i \in G \vdash \chi \to K_i(\psi \to \bigwedge \{\neg \underline{Y} \mid Y \in \overline{S}\}) \Leftrightarrow$
- 3. $\forall i \in G \ \forall X \in S \vdash \underline{X} \to K_i(\psi \to \bigwedge \{\neg \underline{Y} \mid Y \in \overline{S}\}) \Leftrightarrow$
- 4. $\forall i \in G \ \forall X \in S \vdash \underline{X} \to K_i(\bigwedge \{\psi \to \neg \underline{Y} \mid Y \in \overline{S}\}) \Leftrightarrow$
- 5. $\forall i \in G \ \forall X \in S \vdash \underline{X} \to \bigwedge \{K_i(\psi \to \neg \underline{Y}) \mid Y \in \overline{S}\} \Leftrightarrow$
- 6. $\forall i \in G \ \forall X \in S \ \forall Y \in \overline{S} \vdash \underline{X} \to K_i(\psi \to \neg \underline{Y})$

$$\boxed{S := \{X \in W^{\Phi} \mid M^{\Phi}, X \models C_G^{\psi} \varphi\}} \boxed{\chi := \bigvee \{\underline{X} \mid X \in S\}} \boxed{\overline{S} := W^{\Phi} \backslash S}$$

Утверждение. Пусть $X \in S$, $Y \in \underline{S}$, тогда $\vdash \underline{X} \to K_i(\psi \to \neg \underline{Y})$

1
$$X \in S, Y \in \underline{S}$$
 9 $XR_i^{\Phi}Y$ 8 по утв. (*)
2 $M^{\Phi}, X \models C_G^{\psi}\varphi$ 10 $\psi \in Y$ 8 по утв. (*)
3 $M^{\Phi}, Y \not\models C_G^{\psi}\varphi$ 11 $X \models K_i(\psi \to C_G^{\psi}\varphi)$ 4 $\psi \not\vdash X \to K_i(\psi \to \neg Y)$ $\psi \in Y$ 8 по утв. (*)
5 $\chi \not\vdash X \to K_i(\psi \to \neg Y)$ $\psi \in Y$ 12 $\chi \not\models \psi \to C_G^{\psi}\varphi$ 13 $\chi \not\models \psi \to C_G^{\psi}\varphi$ 14 $\chi \not\vdash \varphi \to (\psi \to \neg Y) \to \varphi$ 15 $\chi \not\vdash \varphi \to (\psi \to \neg Y)$ 16 $\chi \not\vdash \varphi \to (\psi \to \neg Y) \to \varphi$ 17 $\chi \to (\psi \to \neg Y) \not\vdash \varphi$ 18 $\chi \to (\psi \to \neg Y) \not\vdash \varphi$ 16 $\chi \to (\psi \to \neg Y)$

Утверждение (*). Пусть $X, Y \in W^{\Phi}$, тогда

$$\underline{X}, \hat{K}_i(\varphi \wedge \underline{Y}) \not\vdash \bot \Rightarrow (XR_i^{\Phi}Y \bowtie \varphi \in Y)$$

Утверждение \vdash ($\psi \land \chi$) $\rightarrow \varphi$

Достаточно доказать, что $\vdash \underline{X} \to (\psi \to \varphi)$ для $X \in \mathcal{S}$.

1	$M^{\Phi},X\models C_G^{\psi}arphi$				
2	$M^{\Phi}, X \models K_i(\psi \rightarrow \varphi)$	для $i \in G$	10	$\neg \varphi \in Y$	
	, , , , , , , , , , , , , , , , , , , ,		11	«⊥»	
3	$y_0 = \#_i X \cup \{\psi\} \cup \{\neg\varphi\} \not\vdash \bot$	⊳ «⊥»	12	$\#_i X \cup \{\psi\} \cup \{\neg\varphi\} \vdash \bot$	3_11
4	$y_0 \subset Y \in W^{\Phi}$	по л.Линденбаума			5 11
5	$XR_i^{\Phi}Y$	по опр <i>R</i> ^Ф из 3, 4	13	$\#_i X \cup \{\psi\} \vdash \varphi$	
-	'	по опр 77 из 3, 4	14	$\#_i X \vdash \psi \to \varphi$	
6	$M^{\Phi}, Y \models \psi \rightarrow \varphi$		15	$X \vdash \#_i X$	по <i>S</i> 5
7	$M^{\Phi}, Y \models \psi \Rightarrow M^{\Phi}, Y \models \varphi$., .	110 55
8	$\psi \in Y \Rightarrow \varphi \in Y$	по ПИ	16	$X \vdash \psi \to \varphi$	
	,	110 1111	17	$\vdash \underline{X} \rightarrow (\psi \rightarrow \varphi)$	
9	$\varphi \in \mathbf{Y}$				

Аксиома редукции для условного общего знания

Исчисление
$$S5_m[]$$
- RC (PAL - RC) ($S5_mRC$) Аксиомные схемы и правила вывода исчисления $S5_mRC$ (R_{RC}) $[!\varphi]C_G^{\chi}\psi\leftrightarrow (\varphi\to C_G^{\varphi\wedge[!\varphi]\chi}[!\varphi]\psi)$

Упражнение

Сформулируйте аксиому редукции для общего знания: $[!\varphi]C_G\psi\leftrightarrow ?$

Упражнение

Для формулы $[!p]C_Gq$ найдите эквивалентную, но из языка \mathcal{EL} - \mathcal{RC} .

Сравнение языков по выразительной силе

•
$$\mathcal{EL}$$
- $\mathcal{C} \prec \mathcal{PAL}$ - \mathcal{C}

$$[!(\neg p o K_a \neg p)]C_{ab} \neg p$$

- \mathcal{EL} - $\mathcal{RC} \equiv \mathcal{PAL}$ - \mathcal{RC}
- $PAL-C \prec EL-RC$

$$C_{ab}^p \neg K_a p$$

Подробнее: [vanDitmarsch2008]