//QUESTION6

{Water is pumped from a large tank (1) to a second large tank (2) through a pipe system as shown below. For a steady flow of 100L/s, what size pump is required assuming the pump has an ?=0.85? Assume steady incompressible water flow with ?=1000kg/m3, μ =1225x10-6 Ns/m2. [43.08 kW].}

```
//Given
```

```
//dE/dt=0[W] because its steady flow V_dot=100[L/s]*convert(L/s;m^3/s)
```

n=0,85[dim] g=9,81[m/s^2]

rho=1000[kg/m^3] //Constan because the flow is incompressible mu=1225E-6 [N-s/m^2]

P_1=2[kPa]*convert(kPa;Pa)

z_1=10[m]

L_L=150[m]

L_R=45[m] L V=40[m]

e_steel=0,046[mm]*convert(mm;m)
D steel=150[mm]*convert(mm;m)

A $s=pi*(D steel)^2/4$

z_2=40[m]

P 2=350[kPa]*convert(kPa;Pa)

//Velcocity along horizontal steel pipe

V=V_dot/A_s

V A=V

z_A=0[m] //I am seting my datum to be at point A [Ref point]

z_B=-40[m] //Datum at A makes point B -40m below Ref Point

P A/rho+V_A^2/2-z_1*g=P_1/rho

z_air_to_B=-6[m] //Height from the Air gauge to the Point B , Where Ref point is at the Air gauge P B/rho + z air to B*g=P 2/rho

// Losses

k_tot=0,05[dim]+0,8[dim]+1[dim]

h minor=k tot*(V^2)/2/g

Re=(rho*V*D steel)/mu //Re>40000, The flow is not laminar

 $(1/sqrt(f)) = -2*log10((e_steel/D_steel)/3,7 + 2,51/(Re*sqrt(f)))$

 $L_{tot} = L_L + L_R + L_V$ h_major=f*(L_tot/D_steel)*(V^2/2/g)

{h_major = f * (L_tot/D_steel) * V^2/(2)} //V is const through out the Pipe as the Diameter is the same and volumetric flow rate

//Head Calculations

h_friction=h_minor+h_major //Total losses head

h pressure=(P B-P A)/rho/g //Pressure Head

h elevation=z A+z B

h_pump=h_friction+h_pressure+h_elevation

W_dot_pump_s=rho*g*V_dot*h_pump //Ideal if there were no reversiblilies W_dot_pump_a=W_dot_pump_s/n

$$\dot{V} = 100 \text{ [L/s]} \cdot \left| 0,001 \cdot \frac{\text{m}^3/\text{s}}{\text{L/s}} \right|$$

$$n = 0.85 [dim]$$

$$g = 9.81 [m/s^2]$$

$$\rho = 1000 \text{ [kg/m}^3\text{]}$$

$$\mu = 0.001225 [N-s/m^2]$$

$$P_1 = 2 [kPa] \cdot 1000 \cdot \frac{Pa}{kPa}$$

$$z_1 = 10 [m]$$

$$L_L = 150 [m]$$

$$L_{R} = 45 [m]$$

$$L_V = 40 [m]$$

$$e_{\text{steel}} = 0.046 \text{ [mm]} \cdot \begin{vmatrix} 0.001 & m \\ 0.001 & mm \end{vmatrix}$$

$$D_{\text{steel}} = 150 \text{ [mm]} \cdot \left| 0,001 \cdot \frac{\text{m}}{\text{mm}} \right|$$

$$A_s = \pi \cdot \frac{D_{steel}^2}{4}$$

$$z_2 = 40 [m]$$

$$P_2 = 350 \text{ [kPa]} \cdot \left| 1000 \cdot \frac{\text{Pa}}{\text{kPa}} \right|$$

$$V = \frac{\dot{V}}{A_s}$$

$$V_A = V$$

$$z_A = 0 [m]$$

$$z_B = -40 [m]$$

$$\frac{P_A}{\rho} + \frac{{V_A}^2}{2} - z_1 \cdot g = \frac{P_1}{\rho}$$

$$z_{air;to;B} = -6$$
 [m]

$$\frac{P_B}{Q} + Z_{air;to;B} \cdot g = \frac{P_2}{Q}$$

$$k_{tot} = 0.05 \text{ [dim]} + 0.8 \text{ [dim]} + 1 \text{ [dim]}$$

$$h_{minor} = k_{tot} \cdot \frac{V^2}{2 \cdot a}$$

Re =
$$\frac{\rho \cdot V \cdot D_{\text{steel}}}{\mu}$$

$$\frac{1}{\sqrt{f}} = -2 \cdot log \left[\frac{e_{steel}}{D_{steel} \cdot 3.7} + \frac{2.51}{Re \cdot \sqrt{f}} \right]$$

$$L_{tot} = L_L + L_R + L_V$$

$$h_{\text{major}} = f \cdot \frac{L_{\text{tot}}}{D_{\text{steel}}} \cdot \frac{V^2}{2 \cdot g}$$

$$h_{friction} = h_{minor} + h_{major}$$

$$h_{pressure} = \frac{P_B - P_A}{\rho \cdot g}$$

$$h_{elevation} = z_A + z_B$$

$$h_{pump} = h_{friction} + h_{pressure} + h_{elevation}$$

$$\dot{W}_{pump;s} = \rho \cdot g \cdot \dot{V} \cdot h_{pump}$$

$$\dot{W}_{pump;a} = \frac{\dot{W}_{pump;s}}{n}$$

SOLUTION

Unit Settings: SI C kPa kJ mass deg

$A_s = 0.01767 [m^2]$	D _{steel} = 0,15 [m]	$e_{steel} = 0,000046 [m]$
f = 0,016 [dm]	$g = 9.81 [m/s^2]$	helevation = -40 [m]
$h_{friction} = 43,94 [m]$	h _{major} = 40,92 [m]	$h_{minor} = 3,019 [m]$
hpressure = 33,11 [m]	h _{pump} = 37,04 [m]	$k_{tot} = 1,85 [dim]$
LL = 150 [m]	LR = 45 [m]	$L_{tot} = 235$ [m]
$L_V = 40 [m]$	$\mu = 0.001225 \text{ [N-s/m}^2\text{]}$	n = 0.85 [dim]
P ₁ = 2000 [Pa]	P ₂ = 350000 [Pa]	P _A = 84089 [Pa]
P _B = 408860 [Pa]	Re = 692919 [dim]	$\rho = 1000 \text{ [kg/m}^3\text{]}$
V = 5,659 [m/s]	V _A = 5,659 [m/s]	$\dot{V} = 0.1 \text{ [m}^3/\text{s]}$
$\dot{W}_{pump,a} = 42751 [W]$	$\dot{W}_{pump,s} = 36338 \text{ [W]}$	$z_1 = 10 [m]$
z ₂ = 40 [m]	$z_A = 0 [m]$	$Z_{air,to,B} = -6$ [m]
$z_{\rm B} = -40 [{\rm m}]$		

2 potential unit problems were detected.