Construction of binary matrices for near-optimal compressed sensing

Ivan Lau

Jonathan Jedwab

Department of Mathematics, Simon Fraser University

IEEE International Symposium on Information Theory 2021

Motivation for compressed sensing

Conventional paradigm for data acquisition:

- 1. Measure full data (take picture with many pixels)
- 2. Compress (discard the small coefficients)

Wasteful: can we measure only the significant part?

Motivation for compressed sensing

Compressed sensing paradigm for data acquisition:

1. & 2. Directly acquire compressed data

Wasteful: can we measure only the significant part?

Compressed sensing: formal setup

- Wish to recover $\mathbf{x} \in \mathbb{R}^N$ fully from $m \ll N$ non-adaptive linear measurements, i.e. $\mathcal{M}\mathbf{x} = \mathbf{y} \in \mathbb{R}^m$
- Impossible in general: underdetermined system
- \mathbf{x} has $k \ll N$ nonzero entries: exact recovery is possible
- Otherwise, give an approximation $\widehat{\mathbf{x}}$ to \mathbf{x} containing the $k \ll N$ significant entries

Questions:

- 1. Good measurement matrix \mathcal{M} ?
- 2. Recovery algorithm (how to approximate \mathbf{x} using \mathbf{y})?

Efficient compressed sensing schemes

1. Measurement matrix \mathcal{M} ? 2. Recovery algorithm?

Properties of a good scheme:

- (P1) few measurements, ideally m = O(k polylog N)
- (P2) fast recovery algorithm, ideally O(k polylog N)
- (P3) few random bits to construct \mathcal{M} , ideally o(N)
- (P4) $\hat{\mathbf{x}}$ approximates \mathbf{x} accurately via an " ℓ_p/ℓ_q " error guarantee:

$$\|\mathbf{x} - \widehat{\mathbf{x}}\|_p \le C k^{1/p - 1/q} \min_{k \text{-sparse } \mathbf{x}_k} \|\mathbf{x} - \mathbf{x}_k\|_q$$

for some real constants C and $1 \le q \le p \le 2$

Lower bounds for nontrivial schemes by Ba et al. (2010) : (P4) \implies measurements, runtime $\Omega(k \log(N/k))$

(Non)uniform recovery

Nonuniform recovery: For each $\mathbf{x} \in \mathbb{R}^N$, generate a matrix \mathcal{M} randomly and independently. With high probability, the error guarantee (P4) is satisfied.

Uniform recovery: Generate a matrix \mathcal{M} randomly. With high probability, the error guarantee (P4) is satisfied for all $\mathbf{x} \in \mathbb{R}^N$.

Principal previous schemes

(P1): number of measurements (P2): recovery algorithm runtime

(P3): number of random bits (P4): error guarantee of $\hat{\mathbf{x}}$

Schemes good across (P1)–(P4) simultaneously?

	Lower bounds	$k \log(N/k)$	$k \log(N/k)$?	ℓ_2/ℓ_2
--	--------------	---------------	---------------	---	-----------------

Paper	(P1)	(P2)	(P3)	(P4)
Cormode & Muthukrishnan (2006)	k log ³ N	k log ³ N	$\Omega(N)$	ℓ_2/ℓ_2
Gilbert et al. (2012)	$k \log(N/k)$	k log ^{≥2} N	$\Omega(N)$	ℓ_2/ℓ_2
Nakos & Song (2019)	$k \log(N/k)$	$k \log^2(N/k)$	$\Omega(N)$	ℓ_2/ℓ_2
Scheme 1, Iwen (2014)	$k \log k \cdot \log N$	$k \log k \cdot \log N$	$\Omega(N)$	ℓ_2/ℓ_1
Scheme 2, Iwen (2014)	$k \log^2 N$	k log ² N	$\log k \cdot \log (k \log N)$	ℓ_2/ℓ_1

The complexities are subject to $\emph{O}\text{-factor}$, unless stated with $\Omega.$

Principal previous schemes

(P1): number of measurements (P2): recovery algorithm runtime

(P3): number of random bits (P4): error guarantee of $\hat{\mathbf{x}}$

Schemes good across (P1)–(P4) simultaneously?

	Lower bounds	$k \log(N/k)$	$k \log(N/k)$?	ℓ_2/ℓ_2
--	--------------	---------------	---------------	---	-----------------

Paper	(P1)	(P2)	(P3)	(P4)
Cormode & Muthukrishnan (2006)	k log ³ N	$k \log^3 N$	$\Omega(N)$	ℓ_2/ℓ_2
Gilbert et al. (2012)	$k \log(N/k)$	k log ^{≥2} N	$\Omega(N)$	ℓ_2/ℓ_2
Nakos & Song (2019)	$k \log(N/k)$	$k \log^2(N/k)$	$\Omega(N)$	ℓ_2/ℓ_2
Scheme 1, Iwen (2014)	$k \log k \cdot \log N$	$k \log k \cdot \log N$	$\Omega(N)$	ℓ_2/ℓ_1
Scheme 2, Iwen (2014)	$k \log^2 N$	$k \log^2 N$	$\log k \cdot \log (k \log N)$	ℓ_2/ℓ_1

The complexities are subject to $\emph{O}\text{-factor},$ unless stated with Ω

Our scheme: combining advantages of Iwen's schemes

(P1): number of measurements (P2): recovery algorithm runtime

(P3): number of random bits (P4): error guarantee of $\hat{\mathbf{x}}$

Schemes good across (P1)–(P4) simultaneously?

	Lower bounds	$k \log(N/k)$	$k \log(N/k)$?	
--	--------------	---------------	---------------	---	--

Paper	(P1)	(P2)	(P3)	(P4)
Cormode & Muthukrishnan (2006)	k log ³ N	k log ³ N	$\Omega(N)$	ℓ_2/ℓ_2
Gilbert et al. (2012)	$k \log(N/k)$	$k \log^{\geq 2} N$	$\Omega(N)$	ℓ_2/ℓ_2
Nakos & Song (2019)	$k \log(N/k)$	$k \log^2(N/k)$	$\Omega(N)$	ℓ_2/ℓ_2
Scheme 1, Iwen (2014)	$k \log k \cdot \log N$	$k \log k \cdot \log N$	$\Omega(N)$	ℓ_2/ℓ_1
Scheme 2, Iwen (2014)	k log ² N	$k \log^2 N$	$\log k \cdot \log (k \log N)$	ℓ_2/ℓ_1
Our scheme	$k \log k \cdot \log N$	$k \log k \cdot \log N$	$\log k \cdot \log (k \log N)$	ℓ_2/ℓ_1

The complexities are subject to $\emph{O}\text{-factor}$, unless stated with $\Omega.$

How to combine advantages of Iwen's schemes?

Measurement matrix:

$$\mathcal{M} = \begin{bmatrix} \mathcal{M}_{id} \\ \overline{\mathcal{M}_{est}} \end{bmatrix} \leftarrow \text{identify indices of significant entries} \\ \leftarrow \text{estimate values of entries}$$

Algorithm 1 Recovery Algorithm

Input:
$$\mathcal{M} = \begin{bmatrix} \mathcal{M}_{id} \\ \overline{\mathcal{M}_{est}} \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} \mathbf{y}_{id} \\ \overline{\mathbf{y}_{est}} \end{bmatrix} = \mathcal{M}\mathbf{x}$, and $k \in [N]$

Output: an approximation $\hat{\mathbf{x}}$ to \mathbf{x}

1:
$$S = Identify(\mathbf{y}_{id})$$
 \triangleright indices of significant entries

2:
$$\hat{\mathbf{x}} = \mathsf{Estimate}(\mathcal{M}_{\mathsf{est}}, \mathbf{y}_{\mathsf{est}}, S, k)$$
 \triangleright estimate entries indexed by S

Our scheme: same algorithm, same \mathcal{M}_{est} , improved \mathcal{M}_{id}

Our identification matrix: subsample from a better binary matrix

Our scheme: same algorithm, same \mathcal{M}_{est} , improved \mathcal{M}_{id}

Iwen's and our $\mathcal{M}_{\mathrm{id}}$ is generated by

- (i) randomly subsampling rows of "incoherent" binary matrix,
- (ii) then taking "columnwise Kronecker product" with the "bit-tester"

Our $\mathcal{M}_{\mathrm{id}}$: subsample rows from a **better** incoherent binary matrix

Incoherent binary matrix

- $\{0,1\}^{t\times N}$ is (w,α) -coherent matrix
 - 1. each column contains at least w 1s.
 - 2. each pair of distinct columns has dot product at most α .

Questions:

- 1. Lower bound on t?
- 2. Upper bound on *t*?
- 3. Construction?

at least two 1s

(2,1)-coherent matrix with N=6

Our lower bound on the row count

- $\{0,1\}^{t\times N}$ is (w,α) -coherent matrix
 - 1. each column contains at least w 1s,
 - 2. each pair of distinct columns has dot product at most α .
 - 1. **Lower bound on** *t*? 2. Upper bound on *t*? 3. Construction?

Our lower bound:
$$t = \Omega(w^2/\alpha)$$

Proof idea (using coding theory):

- Bound must apply to the case with exactly w 1s.
- Translate into binary constant-weight code: $(t, 2(w \alpha), w)_2$ -code of size N
- Rearrange classical bound by Johnson (1962): $t = \Omega(w^2/\alpha)$

Iwen's upper bound on row count and constructions

$$t = \Omega(w^2/\alpha)$$

- 1) Scheme 1 (best (P2), fastest recovery algorithm)
 - · Randomly generated itself
 - $t = O(w^2/\alpha)$, order-optimal!
- 2) Scheme 2 (best (P3), fewest random bits)
 - Explicit construction, based on RIP matrix by DeVore (2007)
 - $t = O(w^2)$

	(w, α) -cohe	rent matrix	Perfor	mance	of scheme
Scheme	Row count	Explicit	(P1)	(P2)	(P3)
lwen's scheme 1	$O(w^2/\alpha)$	Х	go	od	poor
lwen's scheme 2	$O(w^2)$	✓	рс	or	good

Combining the advantages?

Our matrix construction: explicit and order-optimal

Advantage in (w, α) -coherent matrix	Corresponding advantage(s) in scheme
Good row count	few measurements (P1), fast runtime (P2)
Explicit (structured)	few random bits (P3)

Combining the advantages?

	(w, α) -cohe	rent matrix	Perfor	mance	of scheme
Scheme	Row count	Explicit	(P1)	(P2)	(P3)
lwen's scheme 1	$O(w^2/\alpha)$	X	go	od	poor
lwen's scheme 2	$O(w^2)$	✓	рс	or	good
Our scheme	$O(w^2/\alpha)$	√	go	od	good

Idea: based on disjunct matrix by Porat & Rothschild (2011)

Conclusion and open question

$$\mathcal{M} = \begin{bmatrix} \mathcal{M}_{\mathrm{id}} \\ \overline{\mathcal{M}_{\mathrm{est}}} \end{bmatrix}$$
 \leftarrow subsample from a better (w, α) -coherent matrix \leftarrow same

(P1): number of measurements (P2): recovery algorithm runtime

(P3): number of random bits (P4): error guarantee of \hat{x}

Lower bounds $k \log(N/k) = k \log(N/k)$? ℓ_2/ℓ_2
--

Paper	(P1)	(P2)	(P3)	(P4)
Cormode & Muthukrishnan (2006)	k log³ N	k log ³ N	$\Omega(N)$	ℓ_2/ℓ_2
Gilbert et al. (2012)	$k \log(N/k)$	k log ^{≥2} N	$\Omega(N)$	ℓ_2/ℓ_2
Nakos & Song (2019)	$k \log(N/k)$	$k \log^2(N/k)$	$\Omega(N)$	ℓ_2/ℓ_2
Scheme 1, Iwen (2014)	$k \log k \cdot \log N$	$k \log k \cdot \log N$	$\Omega(N)$	ℓ_2/ℓ_1
Scheme 2, Iwen (2014)	$k \log^2 N$	k log ² N	$\log k \cdot \log (k \log N)$	ℓ_2/ℓ_1
Our scheme	$k \log k \cdot \log N$	$k \log k \cdot \log N$	$\log k \cdot \log (k \log N)$	ℓ_2/ℓ_1

The complexities are subject to O-factor, unless stated with Ω .

Question: (P1) and (P2) both $O(k \log(N/k))$? Impossible?

References

- Ba, K. D., Indyk, P., Price, E. & Woodruff, D. P. (2010), 'Lower bounds for sparse recovery', <u>Proceedings of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)</u> pp. 1190–1197.
- Cormode, G. & Muthukrishnan, S. (2006), 'Combinatorial Algorithms for Compressed Sensing', <u>International Colloquium on Structural Information and Communication Complexity pp. 280–294.</u>
- DeVore, R. A. (2007), 'Deterministic constructions of compressed sensing matrices', <u>Journal of Complexity</u> **23**(4), 918–925.
- Gilbert, A. C., Li, Y., Porat, E. & Strauss, M. J. (2012), 'Approximate Sparse Recovery: Optimizing Time and Measurements', <u>SIAM Journal on Computing</u> **41**(2), 436–453.

References (cont.)

- Iwen, M. (2014), 'Compressed sensing with sparse binary matrices: Instance optimal error guarantees in near-optimal time', <u>Journal of Complexity</u> 30(1), 1-15.
- Johnson, S. (1962), 'A new upper bound for error-correcting codes', <u>IRE Transactions on Information Theory</u> **8**(3), 203–207.
- Nakos, V. & Song, Z. (2019), 'Stronger L2/L2 compressed sensing; without iterating', <u>Proceedings of the 51st Annual</u> <u>ACM SIGACT Symposium on Theory of Computing</u> pp. 289–297.
- Porat, E. & Rothschild, A. (2011), 'Explicit nonadaptive combinatorial group testing schemes', <u>IEEE Transactions on Information Theory</u> **57**(12), 7982–7989.