MH1820 Introduction to Probability and Statistical Methods

Tutorial 7 (Week 8) Solution

Problem 1 (Joint PMF, Marginal PMF, Conditional PMF)

Let W equal the weight of laundry soap in a 1-kilogram box that is distributed in Southeast Asia. Suppose that $\mathbb{P}(W < 1) = 0.02$ and $\mathbb{P}(W > 1.072) = 0.08$. Call a box of soap light, good, or heavy depending on whether W < 1, $1 \le W \le 1.072$, or W > 1.072, respectively. In n = 50 independent observations of these boxes, let X equal the number of light boxes and Y the number of good boxes.

- (a) What is the joint PMF of X and Y?
- (b) Give the name of the distribution of Y along with the values of the parameters of this distribution.
- (c) Given that X = 3, how is Y distributed conditionally?
- (d) Determine $\mathbb{E}[Y|X=3]$

Solution

(a) Let x, and y be fixed. Then there are $\binom{50}{x}$ ways to choose the boxes to be light, followed by $\binom{50-x}{y}$ ways to select the boxes to be good, and $\binom{50-x-y}{50-x-y} = 1$ way for the rest of the boxes to be heavy. By multiplication principle, the joint PMF p(x,y) is

$$p(x,y) = {50 \choose x} {50 - x \choose y} (0.02)^x (0.9)^y (0.08)^{50 - x - y} = \frac{50!}{x! y! (50 - x - y)!} (0.02)^x (0.9)^y (0.08)^{50 - x - y}.$$

(b) For a fixed y, there are $\binom{50}{y}$ ways to choose the boxes to be good, followed by $\binom{50-y}{50-y} = 1$ way for the rest of the boxes to be light or heavy. By multiplication principle, the (marginal) PMF of Y is

$$p_Y(y) = {50 \choose y} (0.9)^y (0.1)^{50-y}.$$

That is, $Y \sim Binomial(50, 0.9)$.

(c) The marginal PMF of X is

$$p_X(x) = {50 \choose x} (0.02)^x (0.98)^{50-x}.$$

The conditional PMF of Y given X = x is

$$h(y|x) = \frac{p(x,y)}{p_X(x)} = \frac{\binom{50}{x}\binom{50-x}{y}(0.02)^x(0.9)^y(0.08)^{50-x-y}}{\binom{50}{x}(0.02)^x(0.98)^{50-x}}.$$

1

Substituting x = 3, we have

$$h(y|3) = \frac{\binom{47}{y}(0.9)^y(0.08)^{47-y}}{0.98^{47}}$$

$$= \binom{47}{y} \frac{(0.9)^y(0.08)^{47-y}}{(0.98)^y(0.98)^{47-y}}$$

$$= \binom{47}{y} \left(\frac{0.9}{0.98}\right)^y \left(\frac{0.08}{0.98}\right)^{47-y}$$

$$= \binom{47}{y} \left(\frac{0.9}{0.98}\right)^y \left(1 - \frac{0.9}{0.98}\right)^{47-y}.$$

Thus, given that X = 3, the conditional distribution of Y is given by Binomial(47, 0.9/0.98).

(d) By part (c),

$$\mu_{Y|3} = \mathbb{E}[Y|X=3]$$

= $47 \times 0.9/0.98$
 $\approx 43.1633.$

Problem 2 (Joint PMF, Marginal PMF, Conditional PMF)

An insurance company sells both homeowners' insurance and automobile deductible insurance. Let X be the deductible on the homeowners' insurance and Y the deductible on automobile insurance. Among those who take both types of insurance with this company, we find the following probabilities:

	x = 100	x = 500	x = 1000
y = 1000	0.05	0.10	0.15
y = 500	0.10	0.20	0.05
y = 100	0.20	0.10	0.05

- (a) Compute the probabilities $\mathbb{P}(Y = 500|X = 500)$, $\mathbb{P}(Y = 100|X = 500)$.
- (b) Compute the conditional means $\mathbb{E}[X|Y=100]$, $\mathbb{E}[Y|X=500]$.

Solution The marginal PMF p(x, y) of X and Y are given in the last row and last column of the table below:

	x = 100	x = 500	x = 1000	$p_Y(y)$
y = 1000	0.05	0.10	0.15	0.30
y = 500	0.10	0.20	0.05	0.35
y = 100	0.20	0.10	0.05	0.35
$p_X(x)$	0.35	0.40	0.25	

$$\mathbb{P}(Y = 500|X = 500) = \frac{\mathbb{P}(Y = 500 \text{ and } X = 500)}{\mathbb{P}(X = 500)}$$
$$= \frac{p(500, 500)}{p_X(500)} = \frac{0.20}{0.40} = 0.5.$$

$$\mathbb{P}(Y = 100|X = 500) = \frac{\mathbb{P}(Y = 100 \text{ and } X = 500)}{\mathbb{P}(X = 500)}$$
$$= \frac{p(500, 100)}{p_X(500)} = \frac{0.10}{0.40} = 0.25.$$

(b)

$$\mathbb{E}[X|Y=100] = 100 \cdot \frac{p(100,100)}{p_Y(100)} + 500 \cdot \frac{p(500,100)}{p_Y(100)} + 1000 \cdot \frac{p(1000,100)}{p_Y(100)}$$

$$= 100 \cdot \frac{0.20}{0.35} + 500 \cdot \frac{0.10}{0.35} + 1000 \cdot \frac{0.05}{0.35}$$

$$= \frac{2400}{7}.$$

$$\mathbb{E}[Y|X = 500] = 100 \cdot \frac{p(500, 100)}{p_X(500)} + 500 \cdot \frac{p(500, 500)}{p_X(500)} + 1000 \cdot \frac{p(500, 1000)}{p_X(500)}$$

$$= 100 \cdot \frac{0.10}{0.40} + 500 \cdot \frac{0.20}{0.40} + 1000 \cdot \frac{0.10}{0.40}$$

$$= 525.$$

Problem 3 (Joint PMF, Marginal PMF, Conditional PMF)

Let X and Y have a uniform distribution on the set of points with **integer** coordinates in $S = \{(x,y) : 0 \le x \le 7, x \le y \le x+2\}$. That is, p(x,y) = 1/24, $(x,y) \in S$, and both x and y are integers. Find

- (a) the marginal PMF $p_X(x)$ and $p_Y(y)$.
- (b) the conditional PMF h(y|x) of Y given X = x.
- (c) $\mathbb{E}[Y|X=x]$.
- (d) $\sigma_{Y|x}^2$.

Solution

(a)
$$p_X(x) = \sum_{y} p(x,y) = \sum_{y=x,x+1,x+2} p(x,y) = \sum_{y=x,x+1,x+2} 1/24 = \frac{3}{24} = \frac{1}{8},$$

for x = 0, 1, 2, 3, 4, 5, 6, 7.

Let y be fixed. We have the following possible values of x:

- If $2 \le y \le 7$, then x can be y, y 1 or y 2;
- If y = 1, then x can be y or y 1;
- If y = 8, then x can be y 1 or y 2;
- If y = 0, then x = 0;
- If y = 9, then x = y 2.

Hence,

$$p_Y(y) = \begin{cases} \frac{3}{24} = \frac{1}{8} & \text{if } y = 2, 3, 4, 5, 6, 7\\ \frac{2}{24} = \frac{1}{12} & \text{if } y = 1, 8\\ \frac{1}{24} & \text{if } y = 0, 9. \end{cases}$$

(b)
$$h(y|x) = \frac{p(x,y)}{p_X(x)} = \frac{1/24}{1/8} = \frac{1}{3},$$

for x = 0, 1, 2, 3, 4, 5, 6, 7, y = x, x + 1, x + 2.

(c)

$$\mu_{Y|x} = \mathbb{E}[Y|X = x] = \sum_{y} yh(y|x)$$

$$= xh(x|x) + (x+1)h(x+1|x) + (x+2)h(x+2|x)$$

$$= \frac{x}{3} + \frac{x+1}{3} + \frac{x+2}{3}$$

$$= \frac{3x+3}{3}$$

$$= 1+x.$$

for x = 0, 1, 2, 3, 4, 5, 6, 7,

(d)

$$\begin{split} \sigma_{Y|x}^2 &= \mathbb{E}[Y^2|X=x] - \mu_{Y|x}^2 \\ &= x^2 h(x|x) + (x+1)^2 h(x+1|x) + (x+2)^2 h(x+2|x) - (1+x)^2 \\ &= \frac{x^2}{3} + \frac{(x+1)^2}{3} + \frac{(x+2)^2}{3} - (1+x)^2 \\ &= \frac{2}{3}, \end{split}$$

for x = 0, 1, 2, 3, 4, 5, 6, 7.

Problem 4 (Joint PMF, Marginal PMF, Conditional PMF)

Let $p_X(x) = 1/10$, x = 0, 1, 2, ..., 9, and let the conditional PMF of Y given X = x be h(y|x) = 1/(10-x), y = x, x+1, ..., 9. Find

- (a) p(x, y).
- (b) $p_Y(3)$.
- (c) $\mathbb{E}[Y|X=7]$.

Solution

(a) Since $h(y|x) = \frac{p(x,y)}{p_X(x)}$, we have

$$p(x,y) = h(y|x) \cdot p_X(x) = \frac{1}{10(10-x)},$$

for $x = 0, 1, \dots, 9, y = x, x + 1, \dots, 9.$

(b)

	y = 0	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6	y = 7	y = 8	y = 9
x = 0	1/100	1/100	1/100	1/100	1/100	1/100	1/100	1/100	1/100	1/100
x = 1		1/90	1/90	1/90	1/90	1/90	1/90	1/90	1/90	1/90
x = 2			1/80	1/80	1/80	1/80	1/80	1/80	1/80	1/80
x = 3				1/70	1/70	1/70	1/70	1/70	1/70	1/70
x = 4					1/60	1/60	1/60	1/60	1/60	1/60
x = 5						1/50	1/50	1/50	1/50	1/50
x = 6							1/40	1/40	1/40	1/40
x = 7								1/30	1/30	1/30
x = 8									1/20	1/20
x = 9										1/10

$$p_Y(3) = \sum_{x=0}^{3} p(x,3)$$

$$= p(0,3) + p(1,3) + p(2,3) + p(3,3)$$

$$= \frac{1}{100} + \frac{1}{90} + \frac{1}{80} + \frac{1}{70} \approx 0.0479.$$

(c)

$$\mathbb{E}[Y|X=7] = \sum_{y=7}^{9} yh(y|7)$$

$$= 7h(7|7) + 8h(8|7) + 9h(9|7)$$

$$= 7(1/3) + 8(1/3) + 9(1/3)$$

$$= 8.$$

Problem 5 (Joint PMF, Marginal PMF, Conditional PMF)

From a standard poker deck of 52 cards, 3 cards are drawn. Let X be number of clubs among the 3 cards and let Y be the number of hearts among the 3.

- (a) Find the joint PMF of X and Y.
- (b) Find the marginal PMFs of X and Y.
- (c) Compute P(X = 1|Y = 1).
- (d) Let F be the joint CDF of X and Y. Compute F(1,1).

Solution

(a) Note that X = x and Y = y mean that exactly x of the 3 cards are clubs and exactly y of the 3 cards are hearts, and $0 \le x \le 3$, $0 \le y \le 3$, $0 \le x + y \le 3$. There are $\binom{13}{x}$ ways to choose x cards from the 13 clubs and $\binom{13}{y}$ ways to choose y cards of hearts. There are 3 - x - y remaining that have to be chosen from the 26 cards that are not clubs and not hearts. Hence there are $\binom{13}{x}\binom{13}{y}\binom{26}{3-x-y}$ ways to choose the 3 cards so that x of them are clubs and y of them are hearts. We conclude that the joint PMF of X and Y is given by

$$p(x,y) = P(X = x, Y = y) = \frac{\binom{13}{x} \binom{13}{y} \binom{26}{3-x-y}}{\binom{52}{3}} \text{ for } 0 \le x \le 3, 0 \le y \le 3, 0 \le x+y \le 3.$$

and p(x,y) = 0 otherwise. The following table shows the values of the joint PMF.

$x \setminus y$	0	1	2	3
0	$\frac{200}{1700}$	$\frac{325}{1700}$	$\frac{156}{1700}$	$\frac{22}{1700}$
1	$\frac{325}{1700}$	$\frac{338}{1700}$	$\frac{78}{1700}$	0
2	$\frac{156}{1700}$	$\frac{78}{1700}$	0	0
3	$\frac{22}{1700}$	0	0	0

(b) We could compute the marginal PMFs of X and Y by summing over the rows and columns of the above table, respectively. However, we alternatively can find the marginal PMFs directly as follows.

$$p_X(x) = P(X = x) = \frac{\binom{13}{x} \binom{39}{3-x}}{\binom{52}{3}},$$
$$p_Y(y) = P(Y = y) = \frac{\binom{13}{y} \binom{39}{3-y}}{\binom{52}{3}}$$

for $0 \le x \le 3$ and $0 \le y \le 3$ and $p_X(x) = 0$ and $p_Y(y) = 0$ otherwise. For example,

$$p_X(0) = \frac{\binom{13}{0}\binom{39}{3}}{\binom{52}{3}} = \frac{703}{1700},$$

which coincides with the sum of the PMF values in row of the table corresponding to x = 0.

(c) We compute

$$P(X = 1|Y = 1) = \frac{P(X = 1, Y = 1)}{P(Y = 1)}$$
$$= \frac{p(1, 1)}{p_Y(1)} = \frac{\frac{338}{1700}}{\frac{741}{1700}} = \frac{338}{741}.$$

(d) We have

$$F(1,1) = P(X \le 1, Y \le 1)$$

$$= p(0,0) + p(0,1) + p(1,0) + p(1,1)$$

$$= \frac{200}{1700} + \frac{325}{1700} + \frac{325}{1700} + \frac{338}{1700} = \frac{1188}{1700}.$$

Answer Keys. 1(a).
$$\frac{50!}{x!y!(50-x-y)!}(0.02)^x(0.9)^y(0.08)^{50-x-y}$$
 1(b). $Binomial(50,0.9)$ 1(c). $Binomial(47,0.9/0.98)$ 1(d). 43.1633 2(a). $0.5, 0.25$ 2(b). $\frac{2400}{7}, 525$ 3(a). $p_X(x) = \frac{1}{8}$ 3(b). $h(y|x) = \frac{1}{3}$ 3(c). $1+x$ 3(d). $\frac{2}{3}$ 4(a). $\frac{1}{10(10-x)}$ 4(b). 0.0479 4(c). 8 5(a). $\frac{\binom{13}{3}\binom{13}{3}\binom{39}{3-x-y}}{\binom{52}{3}}$ 5(b). $p_X(x) = \frac{\binom{13}{3}\binom{39}{3-x}}{\binom{52}{3}}, p_Y(y) = \frac{\binom{13}{y}\binom{39}{3-y}}{\binom{52}{3}}$ 5(c). $\frac{338}{741}$ 5(d). $\frac{1188}{1700}$