Floating-Point Representation

CS3010

Numerical Methods

Dr. Amar Raheja

Section 1.3

Lecture 3

Number System: Bases

- Most Popular Number Systems:
- Decimal: Base 10 (Digits of number system?)
 - 0-9
- Octal: Base 8 (Digits of number system?)
 - 0-7
- Binary: Base 2 (Digits of number system?)
 - 0-1
- Hexadecimal: Base 16 (Digits of number system?)
 - (0-9, A-F)

Number Representation Examples

- Other Bases to Decimal
- Base 10: $4586_{10} = 6x10^0 + 8x10^1 + 6x10^2 + 4x10^3$
- Base 8: $56327_8 = 7x8^0 + 2x8^1 + 3x8^2 + 6x8^3 + 5x8^4 = 23767$
- Base 2: $(10111)_2 = 1x2^0 + 1x2^1 + 1x2^2 + 0x2^3 + 1x2^4 = 23_{10}$
- Base 16: $(4A59F)_{16} = 15x16^0 + 9x16^1 + 5x16^2 + 10x16^3 + 4x16^4 = 304543$
- Decimal to Bases
- Decimal to Binary: Divide by 2, put remainder in a stack (right most bit-least significant), divide quotient by 2 and keep doing this till quotient is 0
- Other conversions are similar and division is done by appropriate base

Convert Base 10 Integer to binary representation

Table 1 Converting a base-10 integer to binary representation.

	Quotient	Remainder
11/2	5	$1 = a_0$
5/2	2	$1 = a_1$
2/2	1	$0=a_2$
1/2	0	$1 = a_3$

Hence
$$(11)_{10} = (a_3 a_2 a_1 a_0)_2$$

= $(1011)_2$

Convert Base 10 Integer to Octal representation

Table 1 Converting a base-10 integer to binary representation.

	Quotient	Remainder
145/8	18	1
18/8	2	2
2/8	0	2

Hence,
$$(145)_{10} = (221)_8$$

Flowchart

Fractional Decimal Number to Binary

Table 2. Converting a base-10 fraction to binary representation.

	Number	Number after decimal	Number before decimal
0.1875×2	0.375	0.375	$0 = a_{-1}$
0.375×2	0.75	0.75	$0 = a_{-2}$
0.75×2	1.5	0.5	$1 = a_{-3}$
0.5×2	1.0	0.0	$1 = a_{-4}$

Hence

$$(0.1875)_{10} = (a_{-1}a_{-2}a_{-3}a_{-4})_2$$
$$= (0.0011)_2$$

Flowchart for converting Fractional Part

Decimal Number to Binary

$$(11.1875)_{10} = (?.?)_2$$

Since
$$(11)_{10} = (1011)_2$$

and $(0.1875)_{10} = (0.0011)_2$
then, one can combine these two to get $(11.1875)_{10} = (1011.0011)_2$

All Fractional Decimal Numbers Cannot be Represented Exactly

• 0.3 or 0.1 cannot be represented in a finite way in binary

Table 3. Converting a base-10 fraction to approximate binary representation.

	Number	Number after decimal	Number before Decimal
0.3×2	0.6	0.6	$0 = a_{-1}$
0.6×2	1.2	0.2	$1 = a_{-2}$
0.2×2	0.4	0.4	$0 = a_{-3}$
0.4×2	0.8	0.8	$0 = a_{-4}$
0.8×2	1.6	0.6	$1 = a_{-5}$

$$(0.3)_{10} \approx (a_{-1}a_{-2}a_{-3}a_{-4}a_{-5})_2 = (0.01001)_2 = 0.28125$$

Another Way to Look at Conversion

• Convert (11.1875)₁₀ to base 2

$$(11)_{10} = 2^{3} + 3$$

$$= 2^{3} + 2^{1} + 1$$

$$= 2^{3} + 2^{1} + 2^{0}$$

$$= 1x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0}$$

$$= (1011)_{2}$$

$$(0.1875)_{10} = 2^{-3} + 0.0625$$

$$= 2^{-3} + 2^{-4}$$

$$= 0x2^{-1} + 0x2^{-2} + 1x2^{-1} + 1x2^{-4}$$

$$= (0.0011)_{2}$$

Scientific Notation

 Scientific Notation: Shifting the decimal point to represent decimal numbers

```
256.78 is written as +2.5678 \times 10^{2}
```

$$0.003678$$
 is written as $+3.678 \times 10^{-3}$

$$-256.78$$
 is written as -2.5678×10^{2}

- Normalized Scientific Notation: The number is represented by a fraction multiplied by 10ⁿ, and the leading digit in the fraction is not zero (except when the number involved is zero).
- One can write 79325 as 0.79325×10^5 , not 0.07932×10^6 or 7.9325×10^4 or any other way.

Normalized Scientific Notation

$$37.21829 = 0.37218 \ 29 \times 10^{2}$$
 $0.00227 \ 1828 = 0.22718 \ 28 \times 10^{-2}$
 $-30 \ 00527.11059 = -0.30005 \ 27110 \ 59 \times 10^{7}$

- So, change number to become a fractional number which is between 0 and 1 and is called the mantissa and the exponent is the power of 10
- The form of $x = \pm 0.d_1d_2d_3 ... \times 10^n = \pm r \times 10^n$

where $d_1 \neq 0$ and n is an integer (positive, negative, or zero). The numbers d_1, d_2, \ldots are the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

$$x = \text{sign} \times \text{mantissa} \times 10^n$$

• a sign that is either + or –, a number r in the interval $\left\lfloor \frac{1}{10}, 1 \right\rfloor$ and an integer power of 10. The number r is called the normalized mantissa and n the exponent.

Normalized Floating-Point Representation for Binary

• The floating-point representation in the binary system is similar to that in the decimal system in several ways. If $x \neq 0$, it can be written as

$$x = \pm q \times 2^m \left(\frac{1}{2} \le q < 1\right)$$

- The mantissa q would be expressed as a sequence of zeros or ones in the form $q=\pm 0.b_1b_2b_3$... \times 2^m where $b_1\neq 0$. Hence, where $b_1=1$
- Every computer has only a finite word length and a finite total capacity, so only numbers with a finite number of digits can be represented.
- A number is allotted only one word of storage in the single-precision mode (two or more words in double or extended precision).
- Clearly, irrational numbers cannot be represented, nor can those rational numbers that do not fit the finite format imposed by the computer.

Machine Numbers

- The real numbers that are representable in a computer are called its machine numbers.
- Since any number used in calculations with a computer system must conform to the format of numbers in that system, it must have a finite expansion. Numbers that have a nonterminating expansion cannot be accommodated precisely.
- Moreover, a number that has a terminating expansion in one base may have a nonterminating expansion in another.
 - Another good example of this is the following simple fraction as given in the introductory example
 - $(0.1)_{10} = (0.06314631463146314...)_8$ = $(0.00011001100110011001100110011...)_2$

5 bit Example

- A floating-point numbers must be of the form $q=\pm (0.b_1b_2b_3)_2\times 2^{\pm k}$, where b_1 , b_2 , b_3 , and m are allowed to have only the value 0 or 1.
- There are two choices for the \pm , two choices for b_1 , two choices for b_2 , two choices for b_3 , and three choices for the exponent.
- Thus, at first, one would expect 2 x 2 x 2 x 2 x 3 = 48 different numbers.

Possible positive numbers represented

- However, there is some duplication. For example, the nonnegative numbers in this system are as follows:
- Altogether there are 31 distinct numbers in the system. The positive numbers obtained are shown on a line

$$0.000 \times 2^{0} = 0 \qquad 0.000 \times 2^{1} = 0 \qquad 0.000 \times 2^{-1} = 0$$

$$0.001 \times 2^{0} = \frac{1}{8} \qquad 0.001 \times 2^{1} = \frac{1}{4} \qquad 0.001 \times 2^{-1} = \frac{1}{16}$$

$$0.010 \times 2^{0} = \frac{2}{8} \qquad 0.010 \times 2^{1} = \frac{2}{4} \qquad 0.010 \times 2^{-1} = \frac{2}{16}$$

$$0.011 \times 2^{0} = \frac{3}{8} \qquad 0.011 \times 2^{1} = \frac{3}{4} \qquad 0.011 \times 2^{-1} = \frac{3}{16}$$

$$0.100 \times 2^{0} = \frac{4}{8} \qquad 0.100 \times 2^{1} = \frac{4}{4} \qquad 0.100 \times 2^{-1} = \frac{4}{16}$$

$$0.101 \times 2^{0} = \frac{5}{8} \qquad 0.101 \times 2^{1} = \frac{5}{4} \qquad 0.101 \times 2^{-1} = \frac{5}{16}$$

$$0.110 \times 2^{0} = \frac{6}{8} \qquad 0.110 \times 2^{1} = \frac{6}{4} \qquad 0.110 \times 2^{-1} = \frac{6}{16}$$

$$0.111 \times 2^{0} = \frac{7}{8} \qquad 0.111 \times 2^{1} = \frac{7}{4} \qquad 0.111 \times 2^{-1} = \frac{7}{16}$$

Possible positive numbers

- If, in the course of a computation, a number x is produced of the form $= \pm q \times 2^m$, where m is outside the computer's permissible range, then we say that an overflow or an underflow has occurred or that x is outside the range of the computer.
- Generally, an overflow results in a fatal error (or exception), and the normal execution of the program stops.
- An underflow, however, is usually treated automatically by setting \boldsymbol{x} to zero without any interruption of the program but with a warning message in most computers.
- In this specific example, any number closer to zero than 1/16 would underflow to zero, and any number outside the range −1.75 to +1.75 would overflow to machine infinity.

Hole at Zero

• If, in this Example, we allow only normalized floating-point numbers, then all our numbers (with the exception of zero) have the form

$$x = \pm (0.1b_2b_3)_2 \times 2^{\pm k}$$

 This creates a phenomenon known as the hole at zero. The nonnegative machine numbers are now distributed as in Figure below.

• There is a relatively wide gap between zero and the smallest positive machine number, which is $(0.100)_2 \times 2^1 = \frac{1}{4}$

5-bits to represent this F-P example

• These normalized floating-point numbers can be stored in a 5-bit computer with 1 bit for sign of the number, two bits for exponent (in which 1 bit is for exponent sign) and two bits for mantissa

• All possible combinations of positive normalized F-P numbers are

$$(0.1b_2b_3)_2 \times 2^m = \begin{cases} (0.100)_2 = \frac{1}{2} \\ (0.101)_2 = \frac{5}{8} \\ (0.110)_2 = \frac{3}{4} \\ (0.111)_2 = \frac{7}{8} \end{cases} \times 2^{-1.0.1} = \begin{cases} \frac{\frac{1}{4}}{1}, \frac{1}{2}, 1 \\ \frac{\frac{5}{16}}{16}, \frac{5}{8}, \frac{5}{4} \\ \frac{\frac{3}{8}}{16}, \frac{\frac{3}{4}}{2}, \frac{\frac{3}{2}}{2} \\ \frac{\frac{7}{16}}{16}, \frac{7}{8}, \frac{7}{4} \end{cases}$$

• So, a machine number in floating-point single-precision is of the form $(-1)^s q \times 2^m = (-1)^s \times 2^{c-1} \times (1.b_2b_3)_2$

IEEE-754 Floating Point Standard

- Standardizes representation of floating point numbers on different computers in single and double precision.
- Standardizes representation of floating point operations on different computers.

Precision	Bits	Sign	Exponent	Mantissa
Single	32	1	8	23
Double	64	1	11	52
Long Double	80	1	15	64

IEEE-754 Format Single Precision

$$x = \pm q \times 2^m$$

- sign of q: 1 bit
- integer |m|: 8 bits
- number q: 23 bits

$$(-1)^s \times 2^{c-127} \times (1.f)_2$$

32 bits for single precision

Sign Biased (s) Exponent (m)

Mantissa (f)

Single-Precision Floating-Point Form

- In the normalized representation of a nonzero floating-point number, the first bit in the mantissa is always 1 so that this bit does not have to be stored.
- This can be accomplished by shifting the binary point to a "1-plus" form $(1.f)_2$.
- The mantissa is the rightmost 23 bits and contains f with an understood binary point as in this Figure.
- So the mantissa (significand) actually corresponds to 24 binary digits since there is a hidden bit. (An important exception is the number ±0.)

Single-Precision Floating-Point Form

 The value of c in the representation of a floating-point number in single precision is restricted by the inequality

$$0 < c < (11\ 111\ 111)_2 = 255$$

- The values 0 and 255 are reserved for special cases, including ±0 and ±∞, respectively.
- Hence, the actual exponent of the number is restricted by the inequality

$$-126 \le c-127 \le 127$$

- Likewise, we find that the mantissa of each nonzero number is restricted by the inequality
- $1 \le (1.f)_2 \le (1.11111111111111111111111111111)_2 = 2-2^{-23}$

Single-Precision Floating-Point Form

- The largest number representable is therefore $(2-2^{-23})2^{127} \approx 2^{128} \approx 3.4 \times 10^{38}$.
- The smallest positive number is $2^{-126} \approx 1.2 \times 10^{-38}$
- The binary machine floating-point number $\varepsilon = 2^{-23}$ is called the machine epsilon when using single precision. It is the smallest positive machine number ε such that $1 + \varepsilon \neq 1$.
- Because $2^{-23} \approx 1.2 \times 10^{-7}$, we infer that in a simple computation, approximately six significant decimal digits of accuracy may be obtained in single precision. Recall that 23 bits are allocated for the mantissa.

Special Representations

- Special cases:
- 0 represented as sign bit s = 0 or 1, c = 0 and f = 0 (all zeros)
- $\pm \infty$ represented as sign bit s = 0 or 1, c = 255 and f = 0 (all zeros)
- NaN (division by 0) represented as c = 255 and $f \neq 0$

S	С	f	Represents
0	all zeros	all zeros	0
1	all zeros	all zeros	-0
0	all ones	all zeros	+∞
1	all ones	all zeros	-∞
0 or 1	all ones	non-zero	NaN

Example 1

- Determine the single-precision machine representation of the decimal number-52.23437 5
- The whole part is $(52.)_{10} = (64.)_8 = (110 \ 100.)_2$
- The fractional part, we have $(.234375)_{10} = (.17)_8 = (.001111)_2$
- $(52.23437 5)_{10} = (110 100.001 111)_2 = (1.101 000 011 110)_2 \times 2^5$
- (.101 000 011 110)₂ is the stored mantissa.
- The exponent is $(5)_{10}$, and since c-127 = 5
- Hence $c = (132)_{10} = (204)_8 = (10\ 000\ 100)_2$ is the stored exponent.
- So, the single-precision machine representation $[1\ 10\ 000\ 100\ 101\ 000\ 011\ 110\ 000\ 000\ 000]_2 = [1100\ 0010\ 0101\ 0000\ 1111\ 0000\ 0000\ 0000]_2 = [C250F000]_{16}$

Example 2

 What is the single-precision representation of (24.625)₁₀ $(24.)_{10} = (11000.)_2$ and $(0.625)_{10} = (0.101)_2$ Hence, $(24.625)_{10} = (11000.101)_2 = (1.1000101)^2 = (1.1000101) \times 2^4$ c - 127 = 4, so $c = 131 = (10000011)_2$ So, the single-precision representation is $[0100\ 0001\ 1100\ 1010\ 0000\ 0000\ 0000\ 0000]_2 = [41CA0000]_{16}$

Single Precision to Decimal

 What decimal number is represented by 01000001011111000000000000000000

Double Precision Floating Point Representation

- In double precision, there are 52 bits allocated for the mantissa. The double precision machine epsilon is $2^{-52} \approx 2.2 \times 10^{-16}$, so approximately 15 significant decimal digits of precision are available.
- There are 11 bits allowed for the exponent, which is biased by 1023.
- Finally, 64 bits represent the double precision number.
- The exponent represents numbers from -1022 through 1023.
- A machine number in standard double precision floating-point form corresponds to

$$(-1)^s \times 2^{c-1023} \times (1.f)_2$$

Double Precision Floating Point Representation

 The value of c in the representation of a floating-point number in double precision is restricted by the inequality

$$0 < c < (1\ 111\ 111\ 111)_2 = 2047$$

- As in single precision, the values at the ends of this interval are reserved for special cases.
- Hence, the actual exponent of the number is restricted by the inequality

$$-1022 \le c - 1023 \le 1023$$

- We find that the mantissa of each nonzero number is restricted by the inequality
- $1 \le (1.f)_2 \le (1.111 \ 111 \ 111 \ 111 \ 111 \ 111 \ 1)_2 = 2-2^{-52}$

Double Precision Floating Point Representation

- Recall that 52 bits are allocated for the mantissa.
- The largest double-precision machine number is $(2-2^{-52})2^{1023} \approx 2^{1024} \approx 1.8 \times 10^{308}$.
- The smallest double-precision positive machine number is $2^{-1022} \approx 2.2 \times 10^{-308}$.
- Consequently, the range for integers is from $-(2^{31}-1)$ to $(2^{31}-1) = 21474 83647$.
- In double precision, 63 bits are used for integers giving integers in the range $-(2^{63}-1)$ to $(2^{63}-1)$.

Double-Precision Representation

- -52.234375 in double precision
- for the exponent $(5)_{10}$, we let c-1023=5, and we have $(1028)_{10} = (2004)_8 = (10\ 000\ 000\ 100)_2$, which is the stored exponent.
- Thus, the double-precision machine representation of −52.234375 is
- $[11000000100101000011110000 \cdots 00]_2 = [110000001001010000111100000 \cdots 0000]_2 = [C04A1E0000000000]_{16}$

- Class Exercise: Find Double-Precision representation of
- -285.75

 $[C071DC0000000000]_{16}$