Bang-Bang principle for controls in a simplex

Alexander Gudev

1 Motivation

Definition. Let $I \subset \mathbb{R}$ be an interval, $A \in L_1(I, M_{n \times n})$. Fundamental matrix of the linear system

$$\dot{x}(t) = A(t)x(t) \tag{1}$$

is any matrix function $\Phi:I\to M_n,$ whose columns are linearly independent solutions to the system.

Remark 1. All solutions are expressible in terms of Φ ,

$$x(t) = \sum_{i} \alpha_i \Phi_i(t) = \Phi(t)\alpha, \quad \alpha \in \mathbb{R}^n.$$

Provided det $\Phi(t) \neq 0$ for all $t \in I$, each column of $\Phi(t)$ separately is a solution to (1) iff $\dot{\Phi}(t) = A(t)\Phi(t)$. That is, the fundamental matrices of (1) are determined by

$$\dot{\Phi}(t) = A(t)\Phi(t).$$

Everywhere below we assume $\Phi(t_0) = E$; then the vector α above is actually the initial condition $\alpha = x(t_0)$.

In this sense the matrix $\Phi(t)$,,walks" the solution forward as time passes from t_0 to t.

Remark 2. It is natural to expect $\Phi^{-1}(t)$ to walk the solution backward, i.e. to solve the system with (-A) (oppositive velocity \dot{x}). Indeed, differentiating $\Phi^{-1}\Phi=E$ we get $\frac{d\Phi^{-1}}{dt}\Phi+\Phi^{-1}\dot{\Phi}=0$, from where $\frac{d\Phi^{-1}}{dt}\Phi=-\Phi^{-1}A\Phi$ and

$$\frac{d\Phi^{-1}}{dt} = -\Phi^{-1}A. (2)$$

Remark 3. Below at each point in time $t \in I$ the state of the system is a vector $x(t) \in \mathbb{R}^n$, and the control is a vector $u(t) \in \mathbb{R}^m$.

Problem. Let $A \in L_1(I, M_{n \times n})$ and $B \in L_1(I, M_{n \times m})$. Solve the system

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

in terms of the fundamental matrix $\Phi(t)$ of $\dot{x}(t) = A(t)x(t)$.

Solution (wiki books: Control Systems/Linear System Solutions). Rewrite $\dot{x} - Ax = Bu$, multiply by $\Phi^{-1}(t)$, and integrate:

$$\Phi^{-1}\dot{x} + \Phi^{-1}(-A) x = \Phi^{-1}Bu$$

$$\frac{d}{dt} (\Phi^{-1}x) = \Phi^{-1}Bu \quad \text{(by (2))}$$

$$\Phi^{-1}x = x(t_0) + \int_{t_0}^t \Phi^{-1}(s)B(s)u(s) \,\mathrm{d}s,$$

from where

$$x(t) = \Phi(t)x(t_0) + \Phi(t) \int_{t_0}^t \Phi^{-1}(s)B(s)u(s) ds.$$

Below for convenience we will assume $x(t_0) = 0$ and won't be interested in the parts of the product $Y = \Phi^{-1}B$, in in which case

$$x(t) = \int_{t_0}^t \Phi^{-1}(s)B(s)u(s) ds = \int_{t_0}^t Y \cdot u.$$

Theorem (The Bang-Bang principle). Let $C \subset \mathbb{R}^m$ be a convex compact (of allowed control values). For the system

$$\dot{x} = A(t)x(t) + B(t)u(t)$$
$$x(0) = \vec{0}$$

every point accessible with <u>some</u> control $u: I \to C$ in time t is accessible with an extremal control $u^0: I \to \overline{\operatorname{Ext}} C$ as well.

We won't prove it in full generality, but only in the special case when the allowed control values form the unit ball (Holmes) or a *simplex* (Hermes).

Figure 1: An extremal control u^0 leading to the same ξ as the u control.

2 Bang-Bang in the unit ball

Theorem 1 (Holmes). Let $Y \in L_1^{loc}(I, M_{n \times m})$ have columns Y_i . For each control $u \in \Psi$ where

$$\begin{split} \Psi &\coloneqq L^{\infty}\left(I, \left\{\left\|x\right\|_{\infty} \leq 1\right\}\right) = \Psi_1^m \\ \Psi_1 &\coloneqq L^{\infty}\left(I, \left[-1, 1\right]\right), \end{split}$$

there exists $v \in \Psi$ with $\operatorname{Im} v \subseteq \{-1,1\}^m$ s.t. $\int_I Y \cdot u = \int_I Y \cdot v$ (here $Y \cdot u$ denotes matrix-vector multiplication).

Proof. We want $\int_I Y \cdot u = \int_I Y \cdot v$, but with $|v_j(t)| \stackrel{\text{a.e.}}{=} 1$. For $j=1,\ldots,m$ we are looking for a partition $I=B_j \cup \overline{B}_j$ with $\begin{vmatrix} v_j|_{B_j} \equiv +1 \\ v_j|_{\overline{B}_j} \equiv -1 \end{vmatrix}$. The desired equality

then is

$$\begin{split} \int_I u_j Y_j &= \int_I v_j Y_j = \int_{B_j} Y_j - \int_{\overline{B}_j} Y_j \\ &= \int_{B_j} Y_j - \left(\int_I Y_j - \int_{B_j} Y_j \right) \\ &= 2 \int_{B_j} Y_j - \int_I Y_j, \end{split}$$

or

$$\int_{B_j} Y_j = \frac{1}{2} \int_I (u_j + 1) Y_j.$$
 (3)

We want to prove that to each $u_j \in \Psi_1$ there corresponds a measurable $B_j \subseteq I$, satisfying the last equality. To express more clearly the relationship between the given u_j and the B_j looked for, we introduce the mappings defining their role in the respective sides in the equality.

• B_j participates via the vector measure

$$\vec{\mu}_j(E) := \int_E Y_j, \quad E \in \mathcal{L}_I,$$

where $\mathcal{L}_I = \{E \subset I : E \text{ is measurable}\}.$

• For u_j the dependency is through the affine operator $T_j: \Psi' \to \mathbb{R}^n$,

$$T_j(y) \coloneqq \frac{1}{2} \int_I (y(t) + 1) d\vec{\mu}_j, \quad y \in \Psi'.$$

 T_i is w^* -continuous, since for its linear part

$$L_{\infty} \ni y \mapsto \int_{I} y Y_{j} \le ||y||_{\infty} \vec{\mu}_{j}(I) \xrightarrow{||y|| \to 0} 0.$$

Thus the equality (3) can be expressed with the formula $\vec{\mu}_j(B_j) = Tu_j$, and the statement we want to prove becomes the commutativity of the diagram

$$u_j \in \Psi$$
 ?... $\mathcal{L}_I \ni B_j$
$$\mathbb{R}^n$$

or the inclusion

$$T_i\Psi_1\subset \vec{\mu}_i(\mathcal{L}_I).$$

By Lyapunov's theorem the RHS $\vec{\mu}_j(\mathcal{L}_I)$ is a convex compact, and since Ψ_1 is obviously convex and T_j is linear, $T_j\Psi_1$ is convex as well. Then it suffices to show T_j (Ext Ψ_1) $\subset \vec{\mu}_j(\mathcal{L}_I)$. Let $u \in \operatorname{Ext} \Psi'$, then $u = \chi_E$ for some $E \subset I$ and

$$\begin{split} T_j u &= \frac{1}{2} \int_I \left(\chi_E + 1 \right) Y_j \\ &= \int_E Y_j + \frac{1}{2} \int_{\overline{E}} Y_j \\ &= \vec{\mu}_j(E) + \frac{1}{2} \vec{\mu}_j(\overline{E}). \end{split}$$

Let
$$\overline{E}'\subset \overline{E}$$
 have $\vec{\mu}_j(\overline{E}')=\frac{1}{2}\vec{\mu}_j(\overline{E})$. Then
$$T_ju=\vec{\mu}_j(E\cup\overline{E}').$$

3 Bang-Bang in a simplex

Definition 1. From here on we fix a closed bounded interval I, the convex compact

$$\mathcal{C} \coloneqq \left\{ x \in \mathbb{R}^m_{\geq 0} : \sum_i x_i = 1 \right\},\,$$

as well as a matrix-valued function $Y \in L_1(I, M_{n \times m})$ (in the system above, $Y(s) := \Phi^{-1}(s)B(s)$).

Remark. C is actually a **simplex**, since for $f_j \in (\mathbb{R}^m)^*$, $j = 0, \dots, m$,

$$f_0(x_1, \dots, x_m) = \sum_i x_i$$

$$f_i(x_1, \dots, x_m) = x_i, \quad i = 1, \dots, m$$

we can express $\mathcal{C} = \bigcap_{i=1}^m f^{-1}[0,\infty) \cap f_0^{-1}(1)$, that is, \mathcal{C} is an intersection of closed half-spaces.

Since \mathcal{C} is a simplex, $\operatorname{Ext} \mathcal{C}$ consists of m corners we denote by r_1, \ldots, r_m .

Definition. Just to clarify, I will use the term **non-null set** in the sense of a set of strictly positive measure.

In the proof of the Bang-bang principle later we'll refer to the following separability proposition:

Lemma 1. Let $E \subset \mathbb{R}$ be a non-null set and $u(t) \in \mathbb{R}^m \setminus \mathcal{C}$ a.e. in E. Then there exists a vector $\eta \in \mathbb{R}^m$, separating <u>strictly</u> \mathcal{C} from u(t) a.e. in a non-null $E' \subset E$, that is,

$$\exists \varepsilon, B > 0, \eta \in \mathbb{R}^m : \begin{array}{l} \forall x \in \mathcal{C} : & \langle \eta, x \rangle \geq B \\ \forall t \in E' : & \langle \eta, u(t) \rangle \leq B - \varepsilon \end{array}$$

 ${\it Proof.}$ According to the previous remark, we can represent with a ${\it countable}$ union

$$\mathbb{R}^m \setminus \mathcal{C} = \bigcup_{i=1}^{m+2} g_i^{-1} (-\infty, a_i)$$
$$= \bigcup_{i=1}^{m+2} \bigcup_{k \in \mathbb{N}} g_i^{-1} (-\infty, a_i - 1/k],$$

where $g_i \in (\mathbb{R}^m)^*$, $a_i \in \mathbb{R}$, $i = 1, \ldots, m + 2$. Then the image under u of some non-null E' must lie in $g_i^{-1}\left(-\infty, a_i - \frac{1}{k}\right]$ for some $k \in \mathbb{N}$. Let $\eta \in \mathbb{R}^m$ be the respective (by Riesz' theorem) vector to the functional g_i (for which $\langle \eta, \cdot \rangle = g_i(\cdot)$). Then

$$\forall x \in \mathcal{C}: \qquad \langle \eta, x \rangle = g_i(x) \ge a_i$$

$$\forall t \in E': \quad \langle \eta, u(t) \rangle = g_i(u(t)) \le a_i - \frac{1}{k}.$$

Definition. We denote the sets of the *allowed* and the *extremal* controls, respectively:

$$\Psi := L_{\infty}(I, \mathcal{C}) \subset L_{\infty}(I, \mathbb{R}^m)$$

$$\Psi_e := L_{\infty}(I, \operatorname{Ext} \mathcal{C}) \subseteq \Psi.$$

Remark. From here on we'll talk about the space $L_{\infty}(I, \mathbb{R}^m)$, which, taken as the dual of $L_1(I, \mathbb{R}^m)$ by the action

$$f(\varphi) := \int \langle \varphi(t), f(t) \rangle dt$$
, for all $\varphi \in L_1(I, \mathbb{R}^m)$, $f \in L_\infty(I, \mathbb{R}^m)$,

is equipped with the w^* topology.

Lemma 2. $\Psi := L_{\infty}(I, \mathcal{C})$ is a convex w^* -compact. It is essential that here \mathcal{C} is the simplex defined earlier.

Proof. Obviously Ψ is convex, since for $u_1, u_2 \in \Psi$, $\lambda u_1 + (1 - \lambda)u_2$ is again a L_{∞} function, and by that again \mathcal{C} -valued due to convexity of \mathcal{C} . Moreover, Ψ is bounded (in norm) with

$$\|u\|_{\infty} = \sup_{t \in I} u(t) \le \max_{y \in \mathcal{C}} \|y\|$$
 for all $u \in \Psi$.

For Ψ to be a w^* -compact it remains only to check it is w^* -closed, that is¹, any $u^0 \in L_\infty(I, \mathbb{R}^m) \setminus \Psi$ is w^* -separable from Ψ . In order to w^* -separate u^0 from Ψ , we need a suitable functional $\varphi \in L_1 \hookrightarrow (L_\infty)^*$, with which

$$\varphi(u^0) \le B - \varepsilon$$
 and $\forall u \in \Psi : \varphi(u) \ge B$.

Since $u^0 \notin \Psi$, then in a non-null $E \subseteq I$, $u^0(t) \notin \mathcal{C}$. Then by lemma 1 there exist $\varepsilon > 0, B > 0, \eta \in \mathbb{R}^m$ and a non-null $E' \subset E$ with the property

$$\langle \eta, x \rangle \ge B$$
 for all $x \in \mathcal{C}$
 $\langle \eta, u^0(t) \rangle \le B - \varepsilon$ for all $t \in E'$

We set $\varphi(t) = \begin{cases} \frac{1}{\mu(E')} \eta, & t \in E' \\ 0, & \text{else} \end{cases}$, and then $\varphi \in L_1$ and fulfills the required conditions:

$$\varphi(u^{0}) = \int_{I} \langle \varphi(t), u^{0}(t) \rangle dt = \frac{1}{\mu(E')} \int_{E'} \langle \eta, u^{0}(t) \rangle dt$$
$$\leq \frac{1}{\mu(E')} \int_{E'} (B - \varepsilon) = B - \varepsilon$$

and analogously $\varphi(u) = \int_I \langle \varphi, u \rangle = \frac{1}{\mu(E')} \int_{E'} \langle \eta, u \rangle \ge B$ for all $u \in \Psi$.

Since Ψ is w^* -separated by any $u^0 \notin \Psi$, then Ψ is w^* -closed, and since it is $\|\cdot\|_{\infty}$ -bounded – it is a w^* -compact.

 $^{^1}$ In Hermes's book the existence of a $u^0 \in \partial \Psi \setminus \Psi$ is assumed, and a contradiction is derived later with the same argument. I find this style unnecessarily complicated, so I just prove opennes of the complement.

Remark. For $u \in L_{\infty}(I, \mathbb{R}^m)$, the product $Y \cdot u$ is a function from $L_1(I, \mathbb{R}^m)$, because $Y_{ij} \in L_1$ and

$$(Y \cdot u)_i = \sum_{j=1}^m Y_{ij}(s)u_j(s) \le \sum_{j=1}^m Y_{ij}(s) \|u\|_{\infty}.$$

Then it makes sense to talk about the integral $\int_I Y \cdot u$ that we will look at from here on.

Definition. We say that the control $u \in \Psi$ leads to the point $\xi = Tu$, where $T: L_{\infty}(I, \mathbb{R}^m) \to \mathbb{R}^n$ is the linear operator

$$Tu := \int_I Y(s) \cdot u(s) \, \mathrm{d}s \quad \text{ for all } u \in L_\infty(I, \mathbb{R}^m).$$

Remark. T is continuous (in norm), since for $\varepsilon > 0$, with $\delta := \frac{\varepsilon}{\mu(I) \int_I Y}$ and $||h||_{\infty} < \delta$ we have

$$|T(u+h) - Tu| = \left| \int_I Y(s) \cdot h(s) \, \mathrm{d}s \right| \le \mu(I) \, ||h||_{\infty} \, \left| \int_I Y \right| < \varepsilon.$$

Moreover, it is w^* -continuous, since its coordinate functionals

$$T_i: L_{\infty}(I, \mathbb{R}^m) \to \mathbb{R}, i = 1, \dots n$$

are defined by $T_i(u) = \sum_i \int_I Y_{ij} u_j$ where Y_{ij} are L_1 -functions.

Theorem (Bang-bang principle for controls in a simplex, Hermes).

$$T(\Psi) = T(\Psi_e).$$

Moreover, the two sets are convex compacts.

Proof. $T\Psi_e \subseteq T\Psi$ is obvious, we need to prove the reverse inclusion. The proof goes in the following steps:

- 1. According to the last remark, T is w^* -continuous, hence the image $T\Psi \subset \mathbb{R}^n$ of the w^* -compact Ψ is again a convex compact (the second statement in this theorem).
- 2. T is a continuous map between compacts, then the possible controls $T^{-1}(\xi) \cap \Psi$ leading to any point $\xi \in \mathbb{R}^n$ form a convex w^* -compact, necessarily having an extreme point $u \in T^{-1}(\xi) \subset \Psi$ (Krein-Milman).
- 3. It turns out that this extremum u is a bang-bang control. If we assume the opposite, then in some non-null set $E \subset I$ the controls are far from $\operatorname{Ext} \mathcal{C}$ and from the lema (3) below it follows that u is a midpoint of a proper line segment of controls $[u-h,u+h] \subset \Psi$, leading to the same ξ , contradicting extremality of u.

Lemma 3. Let $n \in \mathbb{N}$, $Y \in L_1(I, M_{n \times m})$, $E \subset I$ is non-null, and the control $u \in \Psi$ leads to $\xi \coloneqq Tu$ and satisfies $\operatorname{dist}(u(E), \operatorname{Ext} \mathcal{C}) > \varepsilon$ for some $\varepsilon > 0$.

Then there exists a displacement $h \in L_{\infty}(I, \mathbb{R}^m)$ with the following properties:

- 1. $u(t) \pm h(t) \in \mathcal{C}$ for all $t \in I$, where $h(t) \neq 0$ for all $t \in E$ (u lies in a proper line segment);
- 2. $\int_I Y \cdot h = 0$ (that is, $u \pm h$ leads again to ξ).

In other words, $u \in [u - h, u + h] \subset T^{-1}(\xi) \cap \Psi$.

Proof. The proof goes in the following steps:

- 1. For each $t \in E$, according to the next lemma (4), we can embed u(t) in a segment with endpoints $u(t) \pm \tilde{h}(t) \in \mathcal{C}$ so that $\|\tilde{h}(t)\|_{\infty} > \varepsilon^2$. Then $\|\tilde{h}\|_{\infty} > \varepsilon^2$ too. Unfortunately, however, $\int_I Y \cdot \tilde{h} \neq 0$ in the general case.
- 2. From the non-atomicity of the Lebesgue measure we can partition for any $k \in \mathbb{N}^+$ (the suitable k will be determined later) $E = \bigcup_{j=1}^k E_k$, so that $E_i \cap E_j = \emptyset$ for all $i \neq j$ and $\mu(E_j) \geq 0$ for all j.
- 3. Now in each $E_j, j = 1, ..., k$ we will weight the restriction of \tilde{h} with a suitable $\alpha_j \in \mathbb{R}$ so that $\int_I Y \cdot h = 0$:

$$h(t) := \begin{cases} \alpha_j \tilde{h}(t), & t \in E_j \\ 0, & \text{otherwise} \end{cases}.$$

The condition $\int_I Y \cdot h = 0$ is a homogenous linear system with n equations and k unknowns

$$\int_{I} Y \cdot h = \sum_{j=1}^{k} \alpha_{j} \int_{E_{j}} Y \cdot \tilde{h} = 0.$$

A non-trivial solution for the coefficients α_j always exists whenever $k \ge n+1$ – fix one with $|\alpha_j| < 1$ for all j.

4. Let us convince ourselves that h satisfies property 1 (from the lemma statement). Obviously $h(t) \neq 0$ for all $t \in E$, and $u(t) \pm h(t)$ lies in C, since it lies (for all $t \in E$) in the line segment with endpoints $u(t) \pm \tilde{h}(t) \in C$ (due to $|\alpha_i| < 1$), and C is convex.

Therefore $u \pm h \in \Psi = L_{\infty}(I, \mathcal{C})$ and $u \in [u - h, u + h]$ from convexity of Ψ .

Lemma 4. Let $\xi \in \mathcal{C}$ satisfy dist $(\xi, \operatorname{Ext} \mathcal{C}) > \varepsilon$ for some $\varepsilon > 0$. Then ξ can be put in a line segment $[\xi - h, \xi + h] \subset \mathcal{C}$ with $||h||_{\infty} \geq \varepsilon^2$.

Moreover, the mapping $\xi \mapsto h$ is measurable.

(interestingly, we cannot state $\|h\|_{\infty} \geq \varepsilon$, the largest lower bound is $\frac{\varepsilon^2}{1-\varepsilon}$)

Proof. Geometrically it is natural to choose h parallel to $r_j - \xi$, where $r_j \in \operatorname{Ext} \mathcal{C}$ is the closest to ξ corner with smallest index j. We put $h := \beta \, (r_j - \xi)$. Clearly $\xi \pm h \in \operatorname{affine} \operatorname{span} \mathcal{C}$. We will show that for sufficiently small $\beta > 0$ even $\xi \pm h \in \mathcal{C}$.

$$\xi \pm h = \xi \pm \beta (r_j - \xi) = (1 \mp \beta) \xi \pm \beta r_j.$$

Since $\xi \in \mathcal{C}$, then $\xi = \sum_i \beta_i r_i$ with some $\beta_i \geq 0$ and $\sum_i \beta_i = 1$. Then

$$\xi \pm h = (1 \mp \beta) \sum_{i} \beta_{i} r_{i} \pm \beta r_{j}$$
$$= \underbrace{(\pm \beta + (1 \mp \beta) \beta_{j})}_{\beta'_{i}} r_{j} + \sum_{i \neq j} \underbrace{(1 \mp \beta) \beta_{i}}_{\beta'_{i}} r_{i}$$

and we have to check that the RHS is a convex combination of $\{r_i\}_{i=1}^m$. $\sum_i \beta_i' = 1$ is equiavelent to $\xi \pm h \in$ affine span \mathcal{C} , so it remains to check $0 < \beta_i'$ for all i. If $|\beta| \le 1$ then obviously $\beta_i' \ge 0$ for all $i \ne j$, and

$$\beta_j' = \pm (1 - \beta_j) \beta + \beta_j$$

and hence $\beta'_j \geq 0$ holds always if $\beta \leq \frac{\beta_j}{1-\beta_j}$. We choose namely the maximal $\beta = \beta_j/(1-\beta_j)$.

Since dist $(\xi, \operatorname{Ext} \mathcal{C}) > \varepsilon$ and r_j is a closest corner to ξ , then $\beta_j > \varepsilon$, $\beta > \frac{\varepsilon}{1-\varepsilon}$ and

$$\|h\|_{\infty} = \beta \|r_j - \xi\|_{\infty} > \beta \varepsilon = \frac{\varepsilon^2}{1 - \varepsilon} > \varepsilon^2.$$

For measurability of the mapping $\xi\mapsto h$ it suffices to observe that $\xi\mapsto j$ is constant on sets

$$F_{j} = \left\{ \xi \in \mathcal{C} : \begin{array}{c} \operatorname{d}(\xi, r_{j}) = \operatorname{dist}(\xi, \operatorname{Ext} C) \\ \operatorname{and} \operatorname{d}(\xi, r_{j}) > \operatorname{d}(\xi, r_{i}) \text{ for all } i < j \end{array} \right\}, \quad j = 1, \dots, m,$$

which partition \mathcal{C} and are measurable due to continuity of the metric $d(\cdot,\cdot)$. \square

Sources:

- Functional analysis and time optimal control, Volume 56 (Mathematics in Science and Engineering) by Hermes (Editor)
- Geometric Functional Analysis and its Applications Richard B. Holmes