

Métodos de Ensamble

Dr. Francisco Arduh 2023

¿Cuál es la idea de los métodos de ensamble?

Votación por mayoría

Por ej: Se cuenta con varios clasificadores entrenados con un accuracy del 80%

Votación por mayoría

A partir de estos clasificadores, se construye uno nuevo que toma la clase más votada como predicción (hard voting classifier)

Votación por mayoría

A partir de estos clasificadores, se construye uno nuevo qué toma la clase más votada como predicción (hard voting classifier)

¿Por qué funciona esto?

Supongamos qué tenemos un moneda con bias: P(cara)=51%, P(cruz)=49%

- 1000 lanzamientos ⇒ P(#cara>#cruz) = 75%
- 10000 lanzamientos ⇒ P(#cara>#cruz) = 97%

¿Por qué funciona esto?

Supongamos qué tenemos un moneda con bias: P(cara)=51%, P(cruz)=49%

- 1000 lanzamientos \Rightarrow P(#cara>#cruz) = 75%
- 1/000 [anzamientos \Rightarrow P(#cara>#cruz) = 97%

¿Por qué funciona esto?

La misma lógica funciona con los clasificadores.

- Si construimos 1000 clasificadores con un accuracy del 51%, tomando el voto de la mayoría llegaríamos al 75%.
- Lo anterior es verdad solo si los clasificadores son independientes.
- Una forma de tratar que sean lo más independientes posibles es utilizar distintos tipos de clasificadores, los cuales van a cometer distintos tipos de errores.

Votación por mayoría: en Scikit-Learn

```
from sklearn.ensemble import RandomForestClassifier
   from sklearn.ensemble import VotingClassifier
   from sklearn.linear_model import LogisticRegression
   from sklearn.svm import SVC
   log_clf = LogisticRegression()
   rnd_clf = RandomForestClassifier()
   svm clf = SVC()
   voting clf = VotingClassifier(
       estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],
       voting='hard')
   voting clf.fit(X train, v train)
 Utilizando el test set:
>>> from sklearn.metrics import accuracy score
>>> for clf in (log_clf, rnd_clf, svm_clf, voting_clf):
        clf.fit(X train, y train)
        y pred = clf.predict(X test)
        print(clf.__class__.__name__, accuracy_score(y_test, y_pred))
LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.888
VotingClassifier 0.904
```

Votación por mayoría: en Scikit-Learn


```
Es posible utilizar soft voting, cambiando esta variable por 'soft'
```

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC

log_clf = LogisticRegression()
rnd_clf = RandomForestClassifier()
svm_clf = SVC()

voting_clf = VotingClassifier(
    estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],
    voting='hard')
voting_clf.fit(X_train, y_train)
```

Utilizando el test set:

VotingClassifier 0.904

```
>>> from sklearn.metrics import accuracy_score
>>> for clf in (log_clf, rnd_clf, svm_clf, voting_clf):
...    clf.fit(X_train, y_train)
...    y_pred = clf.predict(X_test)
...    print(clf.__class_..__name__, accuracy_score(y_test, y_pred))
...
LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.888
```

Soft voting: elige la clase con probabilidad más alta entre todos los clasificadores individuales

Bagging y Pasting

Bagging y Pasting

Nota: cada predictor tiene un mayor bias que si se hubiese entrenado con el dataset original, pero la combinación de todos los predictores tiene menor bias y varianza.

Bagging y Pasting: en Scikit-learn

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

```
bag_clf = BaggingClassifier(
    DecisionTreeClassifier(), n_estimators=500,
    max_samples=100, bootstrap=True, n_jobs=-1)
bag_clf.fit(X_train, y_train)
y_pred = bag_clf.predict(X_test)
```

- Pasting: bootstrap='False'
- Realiza soft voting siempre que los predictores contenga el método predict_proba()

Evaluación Out-of-Bag

- En promedio cada predictor utiliza un ~63.2% de la muestra.
- El ~36.8%
 restante qué no
 se utiliza se
 denomina
 out-of-bag.

Evaluación Out-of-Bag: en Scikit-learn

Con oob_score, obtengo la accuracy en out-of-bag set:

Comparo con lo que obtengo en el test set:

```
>>> from sklearn.metrics import accuracy_score
>>> y_pred = bag_clf.predict(X_test)
>>> accuracy_score(y_test, y_pred)
0.91200000000000003
```

También puedo obtener el valor de la función de decisión:

Random Patches y Random Subspaces

- Con max_features y bootstrap_feature puedo controlar la utilización de las características. Esto es útil cuando se trabaja con muchas características.
- Variando la utilización de las características y las instancias se denomina Random Patches.
- Variando la utilización sólo de las características se denomina Random Subpaces.
- Variando la utilización de las características se cambia un poco de bias por disminución de la varianza

Random Forest

Random Forest no es otra cosa que utilizar el método de bagging en Decision Trees.

Utilizar:

```
from sklearn.ensemble import RandomForestClassifier

rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, n_jobs=-1)
rnd_clf.fit(X_train, y_train)

y_pred_rf = rnd_clf.predict(X_test)
```

Es equivalente a:

```
bag_clf = BaggingClassifier(
    DecisionTreeClassifier(splitter="random", max_leaf_nodes=16),
    n_estimators=500, max_samples=1.0, bootstrap=True, n_jobs=-1)
```


Extra-Trees

Extra-Trees (Extremete Randomized Trees)

- Utilizan selecciones aleatorias en las características (No optimiza).
- Son más rápidos de entrenar que RandomForest

```
>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_features=4, random_state=0)
>>> clf = ExtraTreesClassifier(n_estimators=100, random_state=0)
>>> clf.fit(X, y)
ExtraTreesClassifier(random_state=0)
>>> clf.predict([[0, 0, 0, 0]])
array([1])
```


Random Forest: importancia de características

Random Forest computa la importancia de la característica en función de cuanto se reduce la impureza Gini (en promedio en todo los DT).

Importancia de pixel en MNIST:

Stacking

- En vez de utilizar hard voting (o soft) para juntar las predicciones, se entrena un modelo para realizar esta tarea.
- Al predictor que mezcla las observaciones se lo denomina blender o meta learner

Stacking: ¿cómo se entrenan?

Paso 1: Dividir la muestra en dos con la primer parte entrenar los primeros predictores

Paso 2: Con la segunda muestra, se realiza la predicción y se entrena el blender

Stacking: ¿cómo se entrenan?

- Es posible utilizar varios blenders.
- En este caso deberíamos dividir la muestra en 3.

Boosting

 Se entrenan predictores secuencialmente donde cada modelo intenta arreglar los errores de los modelos anteriores.

Los algoritmos secuenciales no se pueden paralelizar.

AdaBoost (Adaptative Boost)

- Una forma de corregir al predictor predecesor es darle más peso a los casos subajustados.
- Como weak learner se utilizan Decision Stump (DT con max_depth=1).

AdaBoost: ¿Cómo funciona?

- 1. Inicialmente se pesa cada instancia 1/m, siendo m el número de instancias.
- 2. Se entrena un weak learner teniendo en cuenta el peso de las muestras.
- 3. Se calcula el error cometido por el predictor. Se toma en el caso de clasificación la tasa de instancias mal identificadas.
- 4. Se calcula el peso qué se le va a asignar al predictor, dado por:

$$lpha_j = \eta \log rac{1-r_j}{r_j}$$

Siendo r_i el error cometido por el predictor j y η un learning rate.

$$egin{aligned} & ext{for } i=1,2,\cdots,m \ & & & ext{if } \widehat{y_j}^{(i)}=y^{(i)} \ & & & & ext{if } \widehat{y_j}^{(i)}=y^{(i)} \end{aligned}$$

- 6. Se normalizan los pesos (dividiendo por la suma de los nuevos pesos)
- 7. Se repite del punto 2 al 6 hasta alcanzar el número de estimadores deseados.
- 8. Finalmente para realizar predicciones se utilizan todos los estimadores pesado por α_i

AdaBoost: En Scikit-learn

- Scikit-learn utiliza una versión multiclase del algoritmo AdaBoost llamada ...
 SAMME.
- SAMME.R es un variante de SAMME qué utiliza probabilidades

```
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.ensemble import AdaBoostClassifier
>>> from sklearn.datasets import make classification
>>> X, y = make classification(n samples=1000, n features=4,
                               n informative=2, n redundant=0,
. . .
                               random state=0, shuffle=False)
>>> clf = AdaBoostClassifier(
        DecisionTreeClassifier(max depth=1), n estimators=200,
        algorithm="SAMME.R", learning rate=0.5)
>>> clf.fit(X, y)
AdaBoostClassifier(n estimators=100, random state=0)
>>> clf.predict([[0, 0, 0, 0]])
array([1])
>>> clf.score(X, y)
0.977...
```


Gradient Boosting

- Al igual que AdaBoost funciona de forma secuencial.
- En vez de cambiar los pesos de las instancias, crea un nuevo predictor para tratar de ajustar los

errores residuales.

```
from sklearn.tree import DecisionTreeRegressor
tree_reg1 = DecisionTreeRegressor(max_depth=2)
tree_reg1.fit(X, y)
y2 = y - tree_reg1.predict(X)
tree_reg2 = DecisionTreeRegressor(max_depth=2)
tree reg2.fit(X, v2)
y3 = y2 - tree_reg2.predict(X)
tree_reg3 = DecisionTreeRegressor(max_depth=2)
tree_reg3.fit(X, y3)
y pred = sum(tree.predict(X new) for tree in (tree reg1, tree reg2, tree reg3))
```


Gradient Boosting en Scikit-Learn

- Cuenta con los mismos hiperparámetros de Decision Trees.
- Cuenta con otro parámetro de learning rate, que escala las contribuciones de cada árbol. Un learning rate bajo por lo general generaliza mejor. Esto se denomina *shrinkage*.

```
from sklearn.ensemble import GradientBoostingRegressor
```

```
gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3, learning_rate=1.0)
gbrt.fit(X, y)
```


Gradient Boosting: número de árboles óptimo

Gradient Boosting: early stopped


```
gbrt = GradientBoostingRegressor(max depth=2, warm start=True)
min_val_error = float("inf")
error going up = 0
for n_estimators in range(1, 120):
    gbrt.n estimators = n estimators
    gbrt.fit(X train, y train)
    y pred = gbrt.predict(X val)
    val_error = mean_squared_error(y_val, y_pred)
    if val_error < min_val_error:</pre>
        min val error = val error
        error going up = 0
    else:
        error_going_up += 1
        if error going up == 5:
            break # early stopping
```

Utilizando el hiperparámetro **subsample** es posible utilizar solo un porcentaje de training set al momento de estrenar cada árbol. A esta técnica se la denomina *Stochastic Gradient Boosting*

Stochastic Gradient Boosting

- Utilizando el hiperparámetro subsample es posible utilizar solo un porcentaje de training set al momento de estrenar cada árbol.
- Se cambia bias por varianza.
- Se incrementa la velocidad de entrenamiento.
- A esta técnica se la denomina Stochastic Gradient Boosting

Otras implementaciones de Gradient Boosting

XGBoost

- Documentation: https://xqboost.readthedocs.io/
- Paper: https://arxiv.org/pdf/1603.02754.pdf

LightGBM

- Documentation: https://lightgbm.readthedocs.io/
- Paper:

https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

CatBoost

- Documentation: https://catboost.ai/en/docs/
- Paper: http://learningsys.org/nips17/assets/papers/paper_11.pd

Comparación entre algoritmos:

https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40662924

XGBoost

Instalación de librería:

\$ sudo pip install xgboost

Algoritmo de clasificación:

```
model = XGBClassifier()
model.fit(X, y)
y_pred = model.predict(X)
```

Algoritmo de regresión:

```
model = XGBRegressor(objective='reg:squarederror')
model.fit(X, y)
y_pred = model.predict(X)
```

LightGBM

Instalación de librería:

\$ sudo pip install lightgbm

Algoritmo de clasificación:

```
model = LGBMClassifier()
model.fit(X, y)
y_pred = model.predict(X)
```

Algoritmo de regresión:

```
model = LGBMRegressor()
model.fit(X, y)
y_pred = model.predict(X)
```

CatBoost

Instalación de librería:

\$ sudo pip install catboost

Algoritmo de clasificación:

```
model = CatBoostClassifier(verbose=0, n_estimators=100)
model.fit(X, y)
y_pred = model.predict(X)
```



```
model = CatBoostRegressor(verbose=0, n_estimators=100)
model.fit(X, y)
y_pred = model.predict(X)
```

Papers para seguir profundizando

Tabular Data: Deep Learning is Not All You Need:

https://arxiv.org/abs/2106.03253

Why do tree-based models still outperform deep learning on tabular data?:

https://arxiv.org/abs/2207.08815