AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1-13. (Canceled)

14. (Previously presented) A process for degreasing or cleaning a hard surface, comprising the step of using an aqueous medium comprising at least one compound employed in a concentration of from 0.01 to 10 g/l, having the following formula (I):

$$Z-X-[CH(R^3)-CH(R^4)-O]_n-[CH_2CH_2-O]_P-R^5$$
 (I)

wherein:

- Z represents a bicyclo[a,b,c]heptenyl or bicyclo[a,b,c]heptyl group, wherein:

$$a + b + c = 5$$
,

$$a = 2$$
, $a=3$, or $a=4$,

$$b = 2$$
 or $b=1$, and

$$c = 0$$
 or $c=1$,

the bicyclo[a,b,c]heptenyl or bicyclo[a,b,c]heptyl group being optionally substituted by at least one C₁-C₆ alkyl group,

Z being selected from the group consisting of the groups of the following formulae a) to g), and the groups of the following formulae a) to g) minus the double bond:

RN99101

Serial number: 10/049,575

AMENDMENT

a) b) c) $\frac{7 \cdot 6}{4}$ $\frac{3}{3}$ $\frac{5}{3}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{6}{3}$ $\frac{7}{3}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{6}{3}$ $\frac{7}{3}$ \frac

- X represents -CH₂-C(R¹)(R²)-O- or -O-CH(R¹)-CH(R²)-O-, wherein:
 - R¹, R², R¹ and R², which are identical or different, represent hydrogen, or a linear, branched or cyclic, saturated or unsaturated C₁-C₂₂ hydrocarbon group,
 - R^3 and R^4 , which are identical or different, represent hydrogen or a linear, branched or cyclic, saturated or unsaturated C_1 - C_{22} hydrocarbon group, provided that at least one of groups R^3 or R^4 is other than hydrogen,
 - R^5 represents hydrogen, a linear, branched or cyclic, saturated or unsaturated, aromatic or non-aromatic C_1 - C_{22} hydrocarbon group, which may be substituted, or a group selected from the group consisting of the following groups:
 - -SO₃M
 - $-OPO_3(M)_2$
 - -(CH₂)_r-COOM, and
 - -(CH₂)_z-SO₃M,

wherein:

- M represents hydrogen, an alkali metal or an ammonium function

N(R)₄⁺, wherein R, which is identical or different, represents hydrogen

or a linear, branched or cyclic, saturated or unsaturated C₁-C₂₂

hydrocarbon group, optionally hydroxylated,

- r is from 1 to 6, and

- z is from 1 to 6;

- n is an integer or a fractional number from 3 to 5 inclusive, and

- p is an integer or a fractional number from 6 to 10, limits excluded.

15. (Previously presented) A process according to claim 14, wherein the hard surface

is a metal surface.

16. (Previously presented) A process according to claim 14, wherein R¹, R², R¹ and

R'2, which are identical or different, represent hydrogen, or a linear, branched or

cyclic, saturated or unsaturated C₁-C₆ hydrocarbon group.

17. (Previously presented) A process according to claim 14, wherein n is equal to 3.

18. (Previously presented) A process according to claim 14, wherein p is from 6.2 to 7,

limits included.

19. (Previously presented) A process according to claim 18, wherein p is from 6.3 to 7,

limits included.

20. (Previously presented) A process according to claim 19, wherein n is from 4 to 5.

21. (Previously presented) A process according to claim 14, wherein p is from 7

inclusive to 10 exclusive.

6

22. (Previously presented) A process according to claim 21, wherein p is from 8 inclusive to 10 exclusive.

23. (Previously presented) A process according to claim 14, wherein group Z is substituted on at least one of carbon atom by two C_1 - C_6 alkyl groups.

24. (Previously presented) A process according to claim 14, wherein X represents – CH₂-C(R¹)(R²)-O- and Z is selected from the group consisting of the groups of formulae c) to g).

25. (Previously presented) A process according to claim 24, wherein Z is selected from the group consisting of the groups of formulae d) and e).

26-28 (Canceled).

29. (Previously presented) A process according to claim 14, wherein the hard surface is a metal plate, and the concentration of compound is from 0.01 to 5 g/l.

30. (Previously presented) A process according to claim 14, the hard surface is a platform, and the concentration of compound is in the range from 0.01 to 10 g/l.

31. (Previously presented) A process according to claim 14, wherein the hard surface is an oil production well, and the concentration of compound is from 0.01 to 5 g/l.