Lecture 4

How did we get from Mendel's traits and alleles to DNA?

Like the one ring of power in Tolkien's "Lord of the Rings," **deoxyribonucleic acid** (**DNA**) is the master molecule of every <u>cell</u>.

https://science.howstuffworks.com/life/cellular-microscopic/dna.htm

(In 1928) while developing a vaccine for pneumonia...

Frederick Griffith (1879-1941)
British medical officer and bacteriologist

- Streptococcus pneumoniae is a bacterium
- It causes pneumonia in mammals
- Griffith was trying to develop a vaccine
- By this time, some "biomolecules" were known: DNA, RNA, proteins
- But which of them is the genetic material?

Shown above is a digitally colorized image of Streptococci. https://bioweb.uwlax.edu/bio203/f2013/schaefer rya2/classification.htm

Different strains of S. pneumoniae

What are strains? Same organism having different stable phenotypes

Strain S – appears smooth

- Has an outer capsule that protects from the defense system of mice
- Pathogenic strain
- Causes pneumonia in mice

Strain R – appears rough

- Lacks the outer capsule
- Non-pathogenic strain
- Does NOT cause pneumonia in mice

http://www.planetsrk.com/community/threads/5-movies-before-fan-in-which-shah-rukh-khan-played-double-roles.32656/

Strain S CANNOT become Strain R and vice versa

Unlike Mendel, who showed inheritance between generations, Griffith showed transfer of a trait between bacteria

Nature of the transforming factor?

Images: Wikipedia

Oswald Avery

Colin MacLeod

Maclyn McCarty

Heat killed pathogenic bacteria

DNA RNA

inactivate inactivate

Test for its ability to transform

Protein

inactivate

Test for its ability to transform

Question: based on a previous lecture, how would you separate DNA, RNA and proteins from each other?

Test for its

ability to

transform

Passing on genetic information by a virus

Phages – viruses that infect bacteria

Phage T2

- Is attached to its host cell
- Is injecting the genetic material
- Head and tail parts remain outside the host

Colorized transmission electron micrograph

In 1952, Alfred Hershey & Martha Chase asked "What is the genetic material of T2 phage?"

Taking advantage of S in proteins, P in DNA Expectation: genetic material will be found in the host cells

Batch 1: Radioactive sulfur (35S) in phage protein

- 1 Labeled phages infect bacterial cells.
- 2 Agitation frees outside phage parts from bacterial cells.
 - 3 Centrifuged bacterial cells form a pellet.

Radioactive sulfur was not found in the bacterial pellet

Hershey-Chase experiment

DNA is the genetic material

Batch 2: Radioactive phosphorus (32P) in phage DNA

- Labeled phages infect bacterial cells.
- Agitation frees outside phage parts from bacterial cells.
- 3 Centrifuged bacterial cells form a pellet.

Radioactive phosphorus was found in the bacterial pellet

Hershey-Chase experiment

The chemical composition of DNA was known: it is like Coca Cola (but carries genetic information)

Coke	DNA	Solubility
Water	Present in water	-
Sugar (sucrose)	Sugar (deoxyribose)	VERY High
Phosphate (PO ₄ ⁻ acid)	Phosphate	moderate
Caffeine	Nitrogenous bases (A,T, C, G) You will see their structures in the upcoming slides.	extremely low

Next big question: what is the structure of DNA?

The base composition of DNA was known (Chargaff)

Source	Base percentage				
of DNA	Adenine	Guanine	Cytosine	Thymine	
Sea urchin	32.8	17.7	17.3	32.1	
Salmon	29.7	20.8	20.4	29.1	
Wheat	28.1	21.8	22.7	27.4	
E. coli	24.7	26.0	25.7	23.6	
Human	30.4	19.6	19.9	30.1	
Ox	29.0	21.2	21.2	28.7	

Erwin Chargaff's observations

What was already known: DNA is a polymer consisting of A, C, G and T (referred to as nucleotide bases)

• **Observation #1**: Base composition of one organism differs from that of another

Example: Adenine base constitutes 30.4% of human DNA but only 24.7% of *E. coli* (*Escherichia coli*)

Implication: DNA captures the molecular diversity among species

Observation #2: No. of A ~ No. of T; No. of G ~ No. of C
 Example: human DNA: A = 30.4%, C = 19.9%, G = 19.6%, T = 30.1%
 Implication?

Hunt to elucidate the structure of DNA

Linus Pauling's hypothesis

 Three chains, twisted around each other in ropelike stands (turned out to be wrong)

Maurice Wilkins'/Rosalind Franklin's X ray crystallographic data

- Nucleotides are 3.4 A^o apart in the chain
- Structure repeats at 34 A^o interval

Erwin Chargaff's rule: %A = %T and %G = %C

A great discovery: Elucidation of the DNA double helix

Watson-Crick Model of Double-Helical DNA

1962 Nobel Prize

Watson and Crick played with chemical models to come up with a structure that matched the data

Features of the structure of DNA

DNA and heredity: DNA is passed to offspring and it carries information to give phenotypes

Genes on DNA: You will learn a lot more about this in the next lecture.

The structure of DNA gave clues as to how it might be replicated

Dark blue: parental strand

Light blue: daughter (new) strand

Replication model envisaged by Watson and Crick Semi-conservative replication model Other proposals: conservative model, dispersive model

Meselson and Stahl: experimental evidence for the model of DNA replication

Matt Meselson and Frank Stahl

www.netxplica.com/loja/slides/biologia.11/PPT BIO11 01/index.html

Designed an innovative experiment

Question: does DNA replication follow a semi-conservative mechanism?

Novelty: exploiting the availability of a heavy isotope of nitrogen

Meselson and Stahl experiment: Design

Experiment

Meselson and Stahl experiment: Expectations and Results

The DNA polymer is long and needs to be compacted

BB101 Lecture 3 IIT Bombay

(2 copies of each chromosome)

Eukaryotic genomes are organized into chromosomes

Humans have 23 pairs of chromosomes: 22 pairs of autosomes and one pair of sex chromosomes (X and Y) [similar to Mendel's pea plants]

The image below shows a spread of human chromosomes, each 'painted' with a different color; on the right these are organized into a karyotype

Karyotypes can tell us about diseases such as cancer (chromosome aberrations/translocations), disorders such as Down's syndrome (Trisomy 21) and sex determination (XX vs XY)

Do humans have the largest genome?

Does genome size correlate with "complexity"?

Human 3 billion bp (base pairs)

Onion ~16 billion bp

An alga ~98 billion bp

Marbled lungfish ∼130 billion bp

Onion: genome size is for *Allium cepa*; may be different for other onion varieties Can. J. Genet. Cytol. (1983) 25:554 (PMID 6671147)

Can you make an organism with a synthetic instruction manual (genome)?

