Lycée Chateaubriand MPSI 3 • 2024 – 2025

William GREGORY

Colle 17 • INDICATIONS Matrices, Espaces vectoriels

Exercice 17.1

Soit $n \in \mathbb{N}$. Soient $A, B \in M_n(\mathbb{R})$ telles que

$$\forall X \in M_n(\mathbb{R}), \quad Tr(AX) = Tr(BX).$$

Que dire de A et B?

— indication -

On pourra commencer par montrer que

$$\forall M \in \mathsf{M}_n(\mathbb{R}), \quad \mathsf{Tr}(M^\top M) = 0 \implies M = 0_n.$$

– résultat -

Les matrices A et B commutent.

Exercice 17.2

Résoudre l'équation matricielle

$$X^2 = A$$

$$où A := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 16 \end{pmatrix}.$$

indication -

On commencera par remarquer que toute solution commute avec A, puis l'on étudiera l'équation AX = XA coefficients par coefficients.

— résultat

$$\begin{pmatrix} 1 & 0 & \frac{1}{5} \\ 0 & 2 & \frac{1}{3} \\ 0 & 0 & 4 \end{pmatrix}, \begin{pmatrix} -1 & 0 & \frac{1}{3} \\ 0 & 2 & \frac{1}{3} \\ 0 & 0 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 0 & \frac{1}{5} \\ 0 & -2 & 1 \\ 0 & 0 & 4 \end{pmatrix}, \begin{pmatrix} -1 & 0 & \frac{1}{3} \\ 0 & -2 & 1 \\ 0 & 0 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 2 & -1 \\ 0 & 0 & -4 \end{pmatrix}, \text{etc.}$$

1

Exercice 17.3

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$.

On pose
$$\omega := \exp\left(\frac{2i\pi}{n}\right)$$
 et

$$A := \left(\omega^{(k-1)(\ell-1)}\right)_{1 \leqslant k, \ell \leqslant n} \in \mathsf{M}_n(\mathbb{C}).$$

Montrer que A et est inversible et donner A^{-1} .

Indication. On pourra utiliser la matrice \overline{A} contenant les conjugués des coefficients de A.

- indication -

Calculer $A\overline{A}$.

- résultat —

$$A\overline{A} = nI_n$$
 donc $A^{-1} = \frac{1}{n}\overline{A}$.

Exercice 17.4

Soit $n \in \mathbb{N}$.

- **1.** Montrer que $M_n(\mathbb{R}) = A_n(\mathbb{R}) \oplus S_n(\mathbb{R})$.
- **2.** Soient $S \in S_n(\mathbb{R})$ et $A \in A_n(\mathbb{R})$. Calculer $Tr(S^T A)$.

indication

- 1. Raisonner par analyse-synthèse.
- **2.** Utiliser que $Tr(M^{\top}) = Tr(M)$.

Exercice 17.5

On considère les fonctions de $\mathscr{C}^0([0,2\pi],\mathbb{R})$:

$$f_1: x \longmapsto \cos(x), \quad f_2: x \longmapsto x \cos(x),$$

 $f_3: x \longmapsto \sin(x), \quad f_4: x \longmapsto x \sin(x).$

Montrer que la famille (f_1, f_2, f_3, f_4) est libre dans $\mathscr{C}^0([0, 2\pi], \mathbb{R})$.

indication

On pourra évaluer en des valeurs stratégiques de x.

Exercice 17.6

Soit *E* un espace vectoriel.

Soit (e_1, \dots, e_p) une famille libre de E.

Montrer que pour tout $a \in E \setminus \text{Vect}(e_1, \dots, e_p)$, la famille $(e_1 + a, \dots, e_p + a)$ est libre.

indication

Obtenir la relation

$$\lambda_1 e_1 + \cdots + \lambda_p e_p = -(\lambda_1 + \cdots + \lambda_p)a,$$

et discuter suivant le coefficient devant a.

Exercice 17.7

Pour $\lambda \in \mathbb{R}$, on pose $f_{\lambda} : x \longmapsto |x - \lambda|$.

Montrer que la famille $(f_{\lambda})_{\lambda \in \mathbb{R}}$ est libre dans $\mathscr{F}(\mathbb{R}, \mathbb{R})$.

indication

On peut raisonner par l'absurde et étudier la dérivabilité.

Exercice 17.8

Soit E un espace vectoriel. Soit $f \in L(E)$.

1. Soient $\lambda, \mu \in \mathbb{K}$ avec $\lambda \neq \mu$.

Soient $x, y \in E \setminus \{0_E\}$ tels que

$$f(x) = \lambda x$$
 et $f(y) = \mu y$.

Montrer que (x, y) est libre.

2. Généraliser.

indication

- 1. On écrira deux relations pour montrer que l'un des scalaires est nul, puis l'autre.
- **2.** Raisonner par récurrence.

Exercice 17.9

On note $E \coloneqq \mathscr{C}^0ig([0,1],\mathbb{R}ig)$ et

$$F := \left\{ f \in E \mid \int_0^1 f(t) dt = 0 \right\}.$$

- **1.** Montrer que F est un espace vectoriel.
- **2.** Déterminer un supplémentaire de F dans E.

indication -

- 1. Montrer que c'est un sous-espace vectoriel de E à la main ou (si on connaît la définition) en vérifiant qu'il s'agit d'un hyperplan de E.
- **2.** Écrire que $f = f \int_0^1 f(t) dt + \int_0^1 f(t) dt$ et montrer que $E = F \oplus G$ où G désigne le sous-espace des fonctions de E constantes.

3

Exercice 17.10

Soit ${\it E}$ un espace vectoriel.

Soient V := a + F et W := b + G deux sous-espaces affines de E.

Montrer que

$$V \cap W \neq \emptyset \iff b-a \in F+G.$$

4