A machine learning approach to improve UHF RFID gate operation

J. Vales Alonso, P. López-Matencio, J. J. Alcaraz

5th International Conference on Smart and Sustainable Technologies, September 2020, Bol, Croatia

Machine learning in RFID

- Smart processing of raw data: discriminate tags by position or direction, characterize physical signature privacy.
- Enhanced services: position estimation enhancement or data stream enhancement.
- RFID network planning.
- Smart gate control.

Machine learning for smart gate control

- Self-configuration of channel, power, etc.
- If conditions change dynamically, the parameters have to be adaptively tuned.
- Machine learning approaches to adapt to previously unseen situations.

Scenario setup

Portal has two bistatic dislocated antenna pairs, which can be configured with 3 different policies: α , β , γ .

Scenario setup (II)

Random variations (box placement, size, tag distribution, number of tags, materials) occur for **each box**.

Scenario setup (III)

Goal is **select the best interrogation policy** for each box, i.e., the one maximizing the batch identification chances.

Predictive system

- The input features act as a signature for the batch reading process.
- The policy is also an input data.
- The output indicates whether the batch will be totally identified.

Predictive system (II). Input features

Fixed policies are applied on the first R frames

Selected policy is applied from frame R+1 onwards

- Provide a good and homogeneous representation for each batch's interrogation characteristics.
- ► The first R frames have always the same configuration and the following statistics are obtained:
 - The number of tags read in the frame.
 - The average received signal strength (RSS) in slots with successful tag identification.
 - The average RSS in slots with collision.

Predictive system (III). Output usage

- For each policy the predictive system outputs the probability of batch identification (BIP).
- The smart gate uses the predictive system for each possible policy and selects the one with the highest predicted BIP, or triggers and alarm reporting a batch-reading problem if BIP is too low.

Predictive system (IV). Training dataset

Dataset has been obtained using a simulator whose main characteristics are:

- DFSA anti-collision protocol
- Detailed link budget considering distance, antenna aiming, multi-path propagation, and shadowing effects.
- Detailed physical level operation: outage, capture-effect, etc.

Predictive system (V). Training dataset

Dataset contains **120000 records** where the policy as well as the box characteristics are randomly selected.

Predictive structure

- Predictions are created with a 2-layer artificial-neural-network.
- Inputs are normalized and passed to a 20-nodes hidden layer with tanh activation.
- Policy is provided as input with one hot encoding.
- Output layer activation is sigmoid and the ann loss function is the binary cross-entropy.

Predictive structure (II). Training

- Network has been implemented in Keras/TF
- ➤ 20% of the training records are left out as validation
- Training used back-propagation with Adam optimizer, using 32 as batch size.
- Network training ends using early stopping mechanism using 100 epochs patience. About 600 training-eopchs are used.

Predictive structure (III). Results

Configuration	Accuracy	Precision	Recall	Fall-out
R = 1	89.74%	89.98%	89.27%	9.80%
R = 2	94.55%	94.30%	94.61%	5.50%
R = 3	94.86%	94.75%	94.81%	5.10%

- ► R=3 achieves the best results (very close with R=2)
- Accuracy is high (95%) with low fall-out (5

Predictive structure (IV). Results

Policy	Accuracy	Precision	Recall	Fall-out
α	94.59%	92.92%	94.03%	5.02%
β	94.73%	92.44%	94.92%	5.40%
γ	95.26%	97.51%	95.24%	4.70%

- ightharpoonup Slightly better reliability of the γ policy predictions
- Very close to the operation reliability of the other policies.

Smart versus normal gate comparison

- The operation of the smart gate has been compared against a normal one.
- Normal gate uses always a predefined policy.
- ► The simulator measures the cumulative time requiered for boxes interrogation.
- Batch interrogation time has been determined using an auxiliary ANN.
- Unreadable batches are relocated, a process performed by a human operator which takes a random time between 10 and 30 s.
- After relocation it is assumed that the batch can always be read.

Smart versus normal gate comparison (II)

The performance of the best policy, which is adaptive, outperforms the best static one by 30%.

Smart versus normal gate comparison (III)

The ratio of batches which don't require relocation to complete the interrogation is 80.2% with the adaptive policy, but it drops to 64% with the best static policy.

Conclusions

- New predictive capability for RFID gates proposed.
- Based on the signature from initial reading frames, the batch identification probability is predicted.
- Results indicate a good predictive performance, suitable for online gate operations.
- This method is able to save operation time.
- Dataset and code available at https://github.com/javiervales/smartgate