R. Hettel rev. 4/10/00

SPEAR 3: Orbit Stability and Corrector Noise Specs

1. Orbit stability specs:

$$\Delta y < 0.1~\sigma_y$$
 (= 3 $\mu m~rms$ at IDs) [1] $\Delta y' < 0.1~\sigma_{y'}$ (= 1.5 $\mu rad~rms$ for 100-per undulator)

- < 5% (or less) preferable (= 1.5 μ m rms at IDs)
- over period T:

data integration time (
$$\mu$$
secs) < T < hours (\sim 24 h) [2]

2. Orbit noise power spectral density:

$$\langle \Delta y^2 \rangle = \int PSD \, df$$
[3]
$$\Delta y \, (peak) = 3-5 \, x \, \Delta y_{rms}$$

3. Sources of orbit instability:

• thermally induced mechanical motion (dominant)

few μ m vert. for 1°C girder temp change ($\Rightarrow \sim 30 \mu$ m orbit) beam-related chamber motion (small)

- mechanical vibration (sub-micron)
- stray fields
- power supplies

```
drift (gain + offset) (\pm \sim 3^{\circ}\text{C diurnal ambient temp}) noise spectrum:
```

regulation level and bandwidth ripple DAC quantization noise

Want contribution from each of these sources to be << than total noise budget, if possible.

4. Orbit stabilization:

• Minimize sources of instability:

tunnel temp stability (~1°C)

water-cooled chamber

decouple/damp vibration sources

shield stray fields

use low-noise, low drift power supplies

limit contribution to ~10% of noise budget

(<1% beam dimensions)

estimate ~ 10 - 50 µm vertical orbit stability without feedback (dominated by diurnal temp)

• Orbit Feedback:

use 54 correctors per plane to stabilize beam at 90+ BPMs BPMs stable to \sim 3 μm vertically over 24 h 100 Hz BW (3 dB); 2-4 kHz cycle freq Orbit resolution (averaged over fdbk cycle) \sim 1 μm

goal: stabilize beam at BPMs to $\sim 3~\mu m$ vert. over 24 h, dominated by BPM motion

NOTE: Feedback adds noise in bandwidth > cycle freq

5. Corrector-orbit response:

Orbit disturbance caused by DC kick θ_i from corrector i:

$$\Delta y(s) = \theta_i \frac{\sqrt{\beta_i \beta_s}}{2 \sin \pi \upsilon} \cos(|\phi_i - \phi_s| - \pi \upsilon)$$
 [4]

Assume $\beta_i = 8 \text{ m}, \ \beta_s = 5 \text{ m}, \ \upsilon = 5.23$:

$$\Delta y_i(s, max) = 4.8 \,\theta_i$$
 (peak around ring) [5] $\Delta y_i(s, rms) = 3.4 \,\theta_i$ (rms around ring)

6. Noise from many correctors:

For **uncorrelated** ensemble of N correctors (N = 54):

$$\Delta y_{tot}(s, rms) = 3.4 \sqrt{N \theta_i (rms)} = 25 \theta_i (rms)$$
 [6]

Limit noise contribution from correctors to ~10% of total noise budget ---->limit $\Delta y_{tot}(s, rms)$ from correctors to <1% of vert beam size (0.3 µm rms) with **feedback on**:

$$\Rightarrow$$
 θ_i (rms noise) < 0.3 μ m / 25 = 0.012 μ rad rms [7]

$$\theta_{i} \text{ (noise)} / \theta_{Vcorr} \text{ (FS)} = .012/1500 = 8 \text{ x } 10^{-6} = 2^{-16.9}$$
 [8]

⇒ want 17 bit rms beam noise from corrector kick with feedback on Includes: - high freq filtering from vac chamber + magnets - low freq noise attenuation by feedback

Feedback off: low-freq noise from 54 correctors $\sim 10\%$ -50% of vertical beam size \Rightarrow **14-11 bit** low freq stability

7. Orbit measurement resolution:

IF ADC ENOB: 12.2 bits

IF samples/turn: 50 ($\sqrt{50} = 2.8$ bits)

IF ADC ENOB/turn 15 bits/turn ADC FS: ±14 mm

Digital res/turn: 0.85 μm/turn

RF-IF analog res/turn: $\sim 1 \mu m/turn @ 500 mA$ Total res/turn: $1.3 \mu m/turn @ 500 mA$

Averages/feedback cycle: 160 @ 2 kHz cycle

80 @ 4 kHz cycle

⇒ orbit resolution = 1.3 μ m / \sqrt{a} vgs

=
$$0.1 \,\mu\text{m/cycle} \stackrel{\text{\tiny }}{@} 2 \,\text{kHz}$$
 [9] $0.15 \,\mu\text{m/cycle} \stackrel{\text{\tiny }}{@} 4 \,\text{kHz}$

(realistic - 0.5-1 μm/cycle?)

NOTE: can get higher resolution orbit with more averages

Would like to **match corrector kick resolution to orbit measurement resolution**. From Eq 5, single corrector kick to produce 0.1 µm:

$$\theta_{min} = 0.1 \ \mu m / 4.8 \ m = 0.021 \ \mu rad$$

=
$$1500 \,\mu\text{rad} / 2^{16.1} \implies 16 \,\text{bit}$$
 or better kick resolution [10]

8. Corrector digital quantization error:

$$\theta_{\text{quant}} (\text{rms}) = \theta_{\text{min}} / \sqrt{12}$$
 [11]

Effect on orbit from 1 corrector (Eq. 5):

$$\Delta y(s, rms) = 3.4 \theta_{quant} (rms) = 1.0 \theta_{min}$$
 [13]

Effect on orbit from N = 54 correctors:

$$\Delta y(s) \text{ rms} = \sqrt{54} \theta_{\text{min}} = 7.3 \theta_{\text{min}}$$
 [14]

Limit $\Delta y(s)$ rms < 0.3 μm rms from quantization noise:

$$\theta_{\text{min}} < 0.04 \,\,\mu\text{rad rms} \Rightarrow 15.2 \,\,\text{bit}$$
 [15]

If want to limit peak disturbance to $< 0.3 \mu m$, or if want quantization noise to be fraction of total noise: 17-18 bit

NOTE: Quantization noise spread over bandwidth given by DAC update rate

- \Rightarrow higher DAC rate = lower PSD
- \Rightarrow high freq quantization noise filtered by corr + vac chamber
- ⇒ may want fast DAC update + dither, even when no feedback ---this may give higher effective DAC res as well

9. Integrated noise from DAC + power supply (DRAFT!):

$$0.012 \, \mu m = \left(\int PSD \, df\right)^{1/2} = \left(\int_{0}^{0.1} PSD \, df + \int_{0.1}^{1} PSD \, df + \int_{1}^{10} PSD \, df + \int_{10}^{1k} PSD \, df + \int_{1k}^{10} PSD \, df\right)^{1/2}$$

Let θ_{noise} = equivalent deflection noise at output of power supply

 θ_{beam} = actual noise reaching beam after filtering by magnet + vac chamber and attenuation by feedback

Bandwidth	Attenuation	θ_{noise} (µrad rms) θ_{bean}	_n (μrad rms)
DC-0.01 Hz	fdbk ~1000	1.5 (10 bit)	0.002
0.01-0.1 Hz	fdbk ~100	0.4 (12 bit)	0.004
0.1-1 Hz	fdbk ~10	0.05 (15 bit)	0.005
1 - 10Hz	$fdbk \sim 2$	0.01 (17 bit)	0.005
10-1 kHz	none	0.005 (18 bit)	0.005
1 kHz -10 kHz	~10	0.03 (15-16 bit)	0.003
10 kHz - > 100 kHz	~100	0.4 (12 bit)	0.004
100 kHz - ∞	~1000	1.5 (10 bit)	0.002

Total noise: with fdbk: 0.011 µrad rms

without fdbk: 1.6 μrad rms (130% vert beam size)

NOTE: Integrated noise without feedback can be reduced to 10% of vertical beam size (0.3 µm rms) if low freq performance is improved to ~13 bits, dominated by power supply, not DAC

 \Rightarrow 14-bit low freq DAC stability is desirable.

10. DAC considerations:

DAC should provide small fraction of DAC+supply noise budget if possible.

Oversampling low-bit DAC + reconstruction filter (e.g x 8, etc) can reduce quantization noise.

Oversampling + dither can get higher resolution, even for DC setting.

DAC differential non-linearity: < 1 LSB over temp range; monotonicity required for feedback

Absolute accuracy, integral non-linearity, THD not crucial. Stability is more important.

Low-freq DAC drift/offset and INL can be corrected with feedback + good ADC.

DAC convert time/delay/settling: < ~100 µs for 4 kHz feedback.

A "sign magnitude" DAC has better noise properties around 0 than an "offset binary" DAC.

Serial DAC control desirable to minimize interface connections.

11. Conclusions:

• If beam noise from 54 vertical correctors limited to 1% of 30 μm vertical beam size, single corrector noise ~0.012 μrad rms (17 bit; 1500 µrad FS).

Includes: - noise from DAC and power supply

- filtering from supply, magnet, chamber

- feedback attenuation of low frequency

• DAC specs (DRAFT!):

resolution for orbit change: 16 bit

monotonicity: 16 bit or better (?)

DNL: <1 bit INL: <~0.1% drift+offset (24 h): 14 bit

total noise: 17 bit or better

speed: >10 kHz

NOTES: Feedback around DAC with good ADC may permit using DACs with high INL, drift, offset (audio DAC).

> High update rate + filtering may give 18-bit quantization noise with 16-bit DAC

High update rate + filter + dither may give 18 bit resolution with 16-bit DAC

- For more accurate DAC specs, need:
 - Corrector power supply + crate performance measurements
 - Feedback model
 - Better understanding of DAC and ADC issues, specs