Molecular Cancer Therapeutics

Analysis of Food and Drug Administration–Approved Anticancer Agents in the NCI60 Panel of Human Tumor Cell Lines

Susan L. Holbeck, Jerry M. Collins, and James H. Doroshow

Abstract

Since the early 1990s the Developmental Therapeutics Program of the National Cancer Institute (NCI) has utilized a panel of 60 human tumor cell lines (NCI60) representing 9 tissue types to screen for potential new anticancer agents. To date, about 100,000 compounds and 50,000 natural product extracts have been screened. Early in this program it was discovered that the pattern of growth inhibition in these cell lines was similar for compounds of similar mechanism. The development of the COMPARE algorithm provided a means by which investigators, starting with a compound of interest, could identify other compounds whose pattern of growth inhibition was similar. With extensive molecular characterization of these cell lines, COMPARE and other user-defined algorithms have been used to link patterns of molecular expression and drug sensitivity. We describe here the results of screening current Food and Drug Administration (FDA)-approved anticancer agents in the NCI60 screen, with an emphasis on those agents that target signal transduction. We analyzed results from agents with mechanisms of action presumed to be similar; we also carried out a hierarchical clustering of all of these agents. The addition of data from recently approved anticancer agents will increase the utility of the NCI60 databases to the cancer research community. These data are freely accessible to the public on the DTP website (http://dtp.cancer.gov/). The FDA-approved anticancer agents are themselves available from the NCI as a plated set of compounds for research use. Mol Cancer Ther; 9(5); 1451-60. ©2010 AACR.

Introduction

The Developmental Therapeutics Program (DTP) of the National Cancer Institute (NCI) has as its mission the discovery and development of novel anticancer agents. The program started more than 50 years ago as the Cancer Chemotherapy National Service Center and has had a significant role in the development of many agents that are now part of standard cancer care. Notable examples include paclitaxel (Taxol; ref. 1) and bortezomib (Velcade; ref. 2). One of the tools that the DTP employs in the early stage of drug discovery and development is the NCI60 cell line screen, which utilizes a panel of 60 human tumor cell lines, chosen for their ability both to perform consistently under the conditions of the assay and to rep-

Authors' Affiliation: Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, National Cancer Institute, Bethesda. Maryland

Note: Supplementary materials for this article are available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/).

Corresponding Author: Susan L. Holbeck, National Cancer Institute, Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, Information Technology Branch, 6130 Executive Boulevard, Room 8014, Bethesda, MD 20892. Phone: 301-435-9178; Fax: 301-480-4808. E-mail: holbecks@mail.nih.gov

doi: 10.1158/1535-7163.MCT-10-0106

©2010 American Association for Cancer Research.

resent a variety of tumor types (3). With the NCI60 in use since the early 1990s, nearly 100,000 compounds and 50,000 natural product extracts have been examined for therapeutic activity in this assay. About half of the compounds are covered by confidentiality agreements. Data for the remaining compounds are freely available through the DTP website (4) for independent analysis by any investigator.

In addition to the large body of compound sensitivity data, this panel of cell lines has been extensively characterized at the molecular level by numerous groups throughout the world (5). The resulting data are publicly available through the DTP website (6). RNA expression analysis, derived from six microarray measurements on four different platforms, provides data on >100,000 features for each cell line (7). Karyotype analysis of the cells has revealed numerous alterations in chromosome number and organization (8). Single nucleotide polymorphisms were determined on highdensity arrays, which also provide estimates of DNA copy number for 120,000 sites (9). Additional molecular characterization includes microRNA expression (10, 11), DNA mutation (12), protein analysis (13), DNA methylation (14), functional target analysis (15), and metabolomic analysis.

Both the compound sensitivity database and the molecular characterization data provide a rich context for the interpretation of novel compounds and targets in the NCI60. The COMPARE algorithm (16) is provided on the website to enable investigators to search for compounds or molecular targets with similar patterns of sensitivity or expression in the cell line screen. Because the data can be readily downloaded from the website, researchers may apply their own algorithms for data analysis. The addition of these Food and Drug Administration (FDA)-approved anticancer agents to the dataset increases the utility of these databases to the cancer research community.

Materials and Methods

Compounds. All compounds were obtained from the NCI DTP Repository (Rockville, MD). Plated sets of approved oncology drugs are also available to researchers on request via the DTP website (17). All proprietary agents were purchased commercially. When necessary, the active ingredient was extracted from formulated material, and purified. All compounds were assayed to confirm potency and purity, and these data are available at the website above.

NCI60 anticancer drug screen. The screening methodology has been described in detail elsewhere (18). Briefly, cells are seeded in 96-well plates at an appropriate density and are incubated for 1 day, after which some of the plates are processed to determine a time zero density. To the remaining plates, compounds are added over a 5-log mol/L concentration range. Plates are incubated a further 2 days, then fixed and stained with sulphorhodamine B. Growth inhibition is calculated relative to cells without drug treatment and the time zero control. The use of a time zero control allows the determination of cell kill as well as net growth inhibition.

If a particular end point falls outside of the testing range for a given cell line, the database assigns a value equal to either the highest or the lowest concentration tested. For a potent compound, such that growth inhibition in a given cell line is >50% at all concentrations, the GI_{50} , which is the concentration of a compound that causes 50% growth inhibition relative to the no-drug control, would be imputed as the lowest concentration tested. For a relatively inactive compound, such that a given cell line is inhibited <50% at all concentrations, the GI_{50} is assigned as the highest concentration tested.

The cell lines used in the screen have been extensively molecularly characterized, including high-density single nucleotide polymorphism genotyping. More recently genotyping has been done with the AmpFISTR Identifiler PCR Amplification kit (Applied Biosystems), with results consistent with published results from others (19).

Statistical analyses. Analyses were done using JMP7 statistical software (SAS Institute Inc.). Pairwise Pearson correlation coefficients (PCC) were calculated using the multivariate platform. Hierarchical clustering was done using the Ward method.

Figure 1. Dose-response graphs for dasatinib assayed in the melanoma panel, showing end point calculations. Dasatinib (NSC 732517) was tested at five concentrations (1 log dilutions from 10⁻⁴ mol/L to 10⁻⁸ mol/L). Growth percent of 100 corresponds to growth seen in untreated cells. Growth percent of 0 indicates no net growth over the course of the assay (i.e., equal to the number of cells at time zero). Growth percent of -100 results when all cells are killed. Three end points are routinely calculated: (a) GI₅₀, the log mol/L concentration yielding a growth percent of 50 (i.e., 50% growth inhibition); (b) TGI, or total growth inhibition, the log mol/L concentration yielding a growth percent of 0; and (c) LC_{50} , the log mol/L concentration yielding a growth percent of -50, or lethality in 50% of the starting cells. These end points are illustrated for cell line LOX-IMVI (red open circle). Other cell lines displayed are Malme-3M (red open diamond), M14 (red open triangle), MDA-MB-435 (red open square), SK-MEL-2 (solid blue circle), SK-MEL-28 (solid blue diamond), SK-MEL-5 (solid blue triangle), UACC-257 (solid blue square), and UACC-62 (open green circle).

Results

The majority of the FDA-approved anticancer drugs were tested in the NCI60 screen at least twice. If the initial assay was done over a nonoptimal concentration range, additional assays were done in concentration ranges that better captured the performance of the compound. From the dose-response curves, three end points were calculated, as illustrated in Fig. 1, using dose-response data for dasatinib in the melanoma cell line panel: the GI_{50} ; the TGI (total growth inhibition), which is the concentration that yields no net growth over the course of the assay; and the LC_{50} , which is the concentration that kills 50% of the cells that were present at the time of drug addition.

Table 1 presents the mean sensitivity for each compound across all cell lines. When multiple concentration ranges were examined, the data were manually inspected to determine the optimal range to use. This process was done separately for each of the three end points, because the optimal concentration range for determining GI_{50} may differ from that for determining LC_{50} . If many cell lines were outside the testing range for a given end point, the value in Table 1 was estimated as > or < than the extremes of the concentration range.

The GI₅₀ values for each approved drug were used to calculate Pearson correlation coefficients between all of the other drugs. When multiple experiments were available for a drug in a given concentration range, the

Table 1. US Food and	d Drug Administration	-approved anticancer	agents: activity	in the NCI60 i	panel
I abic II oo I ood and	a Diag / (airiii iisti atiori		agonio. aotivit	,	Dailoi

Name	NSC no.	Potency in µmol/L		
		Mean GI ₅₀	Mean TGI	Mean LC ₅₀
Signaling agents				
Bortezomib	681239	0.00051	0.0063	3.6
Dasatinib	732517	0.33	8.9	51
Erlotinib	718781	5.5	59	>90
Everolimus	733504	0.095	14	56
Gefitinib	715055	3.2	19	49
Imatinib	743414	15	43	81
Lapatinib	745750	2.9	20	61
Nilotinib	747599	2.9	13	49
Sorafenib	747971	1.9	6	30
Sunitinib	750690	2.2	9.6	31
Temsirolimus	683864	0.038	9.6 51	>100
	003004	0.036	31	>100
DNA damaging agents	0050	0.0014	0.050	0.50
Actinomycin D	3053	0.0014	0.058	0.52
BCNU (Carmustine)	409962	65	170	330
Bendamustine	138783	60	>100	>100
Bleomycin	125066	1.3	12	23
Busulfan	750	210	970	>1,000
Carboplatin	241240	100	>220	>240
CCNU (Lomustine)	79037	36	120	310
Chlorambucil	3088	52	260	580
Cisplatin	119875	1.4	32	>420
Cyclophosphamide	26271	210	>250	>250
Dacarbazine	45388	55	>800	>1,000
Hexamethylmelamine	13875	140	>150	>150
Ifosfamide	109724	320	>440	>475
Melphalan	8806	27	110	210
Methoxsalen	45923	96	>100	>100
Mitomycin C	26980	0.71	6.6	18
Mithramycin	24559	0.013	0.65	200
Nitrogen mustard	762	2.8	19	100
Oxaliplatin	266046	2.8	52	>90
Pipobroman	25154	64	210	370
Procarbazine	77213	440	>470	>500
Quinacrine	14229	1.7	5.2	19
Streptozotocin	85998	570	>650	>700
		97		
Temozolomide ThioTEPA	362856		>100	>100
	6396	70	400	770
Triethylenemelamine	9706	8.7	33	75
Uracil mustard	34462	24	160	>410
Tubulin-directed agents				
Docetaxel	628503	0.014	12	>85
Ixabepilone	747973	<0.00001	<0.00001	<0.0000
Paclitaxel	125973	0.025	3.9	75
Vinblastine	49842	0.00001	0.28	32
Vincristine	67574	0.0045	13	250
Vinorelbine	608210	0.018	4.2	52
Anthracyclines/Topoisomerase po	oisons			
Daunorubicin	82151	0.068	1.1	10
Doxorubicin	123127	0.097	2.1	13

Mol Cancer Ther; 9(5) May 2010

Table 1. US Food and Drug Administration—approved anticancer agents: activity in the NCI60 panel (Cont'd)

Name	NSC no.	Potency in µmol/L		
		Mean GI ₅₀	Mean TGI	Mean LC ₅₀
Epirubicin	256942	0.2	2.7	27
Etoposide	141540	6.6	50	420
Idarubicin	256439	0.038	0.25	3.8
Irinotecan	616348	14	58	>100
Mitoxantrone	301739	0.059	0.88	7.8
Teniposide	122819	0.41	4.6	20
Topotecan	609699	0.031	2.5	43
Valrubicin	246131	0.49	6	41
Antimetabolites/Nucleosides				
5-azacytidine	102816	0.95	8.7	350
5-fluorouracil	19893	18	1,600	>2,400
6-Mercaptopurine	755	7.4	540	>740
Allopurinol	1390	430	4,200	>5,000
Calcium leucovorin	3590	93	>100	>100
Capecitabine	712807	80	>10,000	>10,000
Cladribine	105014	5.1	>10,000 55	>10,000
Clofarabine	606869	0.42	25	>100 86
Cytarabine	63878	8.2	340	>500
Decitabine	127716	6.∠ 37		>500 350
			260	
Floruridine	27640	0.39	755	>2,400
Fludarabine	312887	43	410	>1,100
Gemcitabine	613327	0.24	18	78
Hydroxyurea	32065	560	>2,000	>2,400
Methotrexate	740	0.3	210	>250
Nelarabine	686673	2,700	>5,000	>5,000
Pemetrexed	698037	11	>100	>100
Pentostatin	218321	440	>480	>500
Thioguanine	752	1.3	47	210
Hormonal agents				
Anastrozole	719344	2,500	>9,000	>10,000
Delta-1-testololactone	23759	420	>500	>500
Dimethyltestosterone	88536	27	>80	>100
Dromostanolone propionate	12198	29	86	>100
Estramustine	702294	42	85	>100
Ethinyl estradiol	10973	25	78	>100
Exemestane	713563	25	68	>100
Fulvestrant	719276	62	>100	>100
Letrozole	719345	3,400	>5,000	>5,000
Megestrol acetate	71423	64	>100	>100
Mitotane	38721	14	37	73
Naldrolone	23162	18	45	83
Raloxifene	747974	8.1	28	71
Tamoxifen	180973	4.6	18	23
Toremifene	613680	13	29	59
Other		-		
Amifostine	296961	540	>700	>750
Aminolevulinic acid	18509	>100	>100	>100
, a milotovam no aola	706363	4.5	>100	>13
Arsenic trioxide		7.∪	/ 10	/10
Arsenic trioxide Celecoxib	719627	17	34	63

Table 1. US Food and Drug Administration—approved anticancer agents: activity in the NCI60 panel (Cont'd)

Name	NSC no.	Potency in µmol/L		
		Mean GI ₅₀	Mean TGI	Mean LC ₅₀
Dexrazoxane	169780	160	970	>2,000
Imiquimod	369100	43	>100	>100
Lenalidomide	747972	>100	>100	>100
Levamisole	177023	>100	>100	>100
Mesna	113891	98	>100	>100
Nelfinavir	747167	5.2	20	68
Romidepsin	630176	0.00025	0.0081	0.038
Thalidomide	66847	>100	>100	>100
Tretinoin (ATRA)	122758	51	78	>100
Vorinostat	701852	0.94	17	70
Zoledronic acid	721517	64	>100	>100

NOTE: Mean drug sensitivity across all cell lines. Mean 50% growth inhibition (GI_{50}), total growth inhibition (TGI), and 50% lethality (LC_{50}) values across all cell lines in the NCl60 were calculated as described in the text. Data are presented as the concentration in μ mol/L producing GI_{50} , TGI, and LC_{50} . These values were determined using the optimal concentration range(s) for each end point.

values for that drug were averaged to obtain a mean for each cell line. If multiple concentration ranges were tested, the dose response curves were visually inspected to determine which range provided the most reliable GI_{50} values, and those were used for the correlation analysis. If multiple concentration ranges seemed to be acceptable, all were used separately for the correlations. The resulting "matrix COMPARE" correlations were then hierarchically clustered; the results are shown graphically in Fig. 2. Drugs were color coded according to mechanism of action. Most agents cluster with other drugs of similar presumed mechanism.

Eleven drugs that affect signal transduction were tested in the NCI60 screen. The mean potency of these compounds was quite variable. The most potent were bortezomib (mean GI_{50} of 0.51 nmol/L) and temsirolimus (mean GI_{50} of 38 nmol/L). The mean potency of the kinase inhibitors ranged from 0.3 mmol/L (dasatinib) to 15 mmol/L (imatinib). However, because of their high target specificity, kinase inhibitors may inhibit the growth of only a small number of cell lines. Imatinib is the most extreme example, as shown in Fig. 3. Although the mean GI_{50} is 15 mmol/L, the only cell line in the panel bearing the BCR-ABL translocation (K-562) is roughly 1,000-fold more sensitive (GI_{50} of 0.02 mmol/L).

Bortezomib was tested in the NCI60 screen during its early development, along with other related antiproteasomal drug candidates. These agents had a unique signature in the NCI60 screen – they were what may be referred to as "COMPARE negative," that is, their pattern of growth inhibition did not resemble other previously tested classes of compounds. In addition, the potency of the series of proteasome inhibitory compounds in the NCI60 panel

was proportional to activity against purifiedproteasomes (20). One of the more sensitive cell lines in the panel was the multiple myeloma line RPMI-8226; bortezomib is now a standard of care for the treatment of myeloma. Figure 4 shows the NCI60 data for bortezomib in two different formats: as a waterfall plot of all TGI data (Fig. 4A), and as a dose-response plot of all cell lines (Fig. 4B). These graphs show that bortezomib has a particular growth inhibition signature, with some cell lines being exquisitely sensitive, others being relatively resistant.

Dasatinib also showed a fairly unique pattern of NCI60 activity (Fig. 1). Interestingly, this pattern did not have a significant correlation (PCC = 0.15) with that of imatinib, which targets BCR-ABL, c-KIT, and platelet-derived growth factor receptor (PDGFR). Dasatinib inhibits these as well as Src family kinases. Imatinib is highly specific for the BCR-ABL cell line K-562, as shown in Fig. 3; none of the NCI60 cell lines harbors a KIT mutation. Although dasatinib is also highly active against K-562, it is also active against many other cell lines in the panel, as shown in Fig. 1. Among the most sensitive cell lines were those expressing higher levels of both PDGFRA and PDGFRB (data not shown). The central nervous system line U251, which expresses PDGFRA, but not PDGFRB, was relatively insensitive to dasatinib.

A matrix COMPARE analysis was done for the signaling agents, as described above, and the resulting Pearson correlation coefficients were clustered. The results are shown in Fig. 5. All three drugs that target epidermal growth factor receptor (EGFR) cluster together, including lapatinib, an agent that also targets ERBB2.

Mean graphs are shown in Fig. 6 for gefitinib and lapatinib. The graphs are visually similar, and COMPARE

Figure 2. Clustering of correlations of NCI60 Gl_{50} patterns for all drugs. Pearson correlation coefficients comparing the Gl_{50} patterns of each drug with all other drugs were hierarchically clustered. The agents are color-coded according to mechanistic category: Purple, signaling agents; blue, alkylating and other DNA damaging agents; turquoise, tubulin binders; orange, topoisomerase poisons; green, antimetabolites and nucleosides; red, hormonal agents; gray, all others. The correlation underlying this clustering can be found in Supplementary Table S1, presented in the same sort order as this figure.

Figure 3. Dose response graphs for all cell lines in the NCl60 panel exposed to imatinib (NSC 743414). Imatinib was tested at five concentrations (1 log dilutions from 10^{-4} mol/L to 10^{-8} mol/L). Note that only one of the cell lines, K-562, which harbors a BCR-Abl gene fusion, has significant sensitivity to this BCR-Abl/KIT/PDGFR inhibitor. The Gl₅₀ and TGl concentrations for K-562 are indicated. Imatinib did not cause sufficient lethality in this cell line to calculate LC₅₀. The graph is color-coded by tissue of origin: red, leukemia cell line; blue, lung cancer; green, colon cancer; gray, central nervous system cancer; coral, melanoma; purple, ovarian cancer; gold, renal cancer; turquoise, prostate cancer; pink, breast cancer.

analysis confirms this, with a high correlation (PCC of 0.88) between these agents. Several cell lines are particularly sensitive to these two agents (lung EKVX, lung NCI-H322M, ovarian IGROV1, ovarian SK-OV-3, renal ACHN, renal TK-10, breast MDA-MB-468); all of these lines are KRAS wild-type (21), in agreement with clinical findings that KRAS mutant tumors are unresponsive to these drugs (22).

Imatinib and nilotinib, which inhibit the BCR-ABL kinase, as well as KIT and PDGFR, cluster with one another, whereas dasatinib, which targets Src family kinases as well, does not cluster with these two BCR-ABL inhibitors. The mTOR inhibitors temsirolimus and everolimus cluster with one another, and are distinct from the other signaling agents.

Epigenetic regulation of gene expression has been implicated in the regulation of many cancer-related genes. This has inspired the development of multiple agents that inhibit histone deacetylases (HDAC), and two are currently approved oncology drugs. Vorinostat is a broad HDAC inhibitor that blocks the action of class I, II, and IV HDACs, whereas romidepsin has a narrower profile, inhibiting class I HDACs (reviewed in ref. 23). The GI_{50} patterns for vorinostat and romidepsin are not similar.

Previous publications have reviewed the NCI60 results from traditional cytotoxics, such as tubulin-directed agents, alkylating agents, and topoisomerase poisons. These data have been used to identify new compounds with similar patterns of growth inhibition to agents of known mechanism. Starting with the topoisomerase I poison camptothecin, Kohlhagen et al. utilized COMPARE

Figure 4. NCI60 graphs for bortezomib (NSC 681239). The data for bortezomib tested at five concentrations (1 log dilutions from 10^{-6} mol/L to 10^{-10} mol/L) are presented in two different formats. A, "waterfall" plot of Gl_{50} molar values, with the most sensitive cell lines for each end point at the top of the graph. B, dose-response curves for all cell lines overlaid on the same plot. Cell lines are color-coded as for Fig. 3.

to identify a novel structural class, the indenoisoquinolines, as topoisomerase poisons (24). After testing many analogs, two indenoisoquinolines have started clinical trials (25).

Two recently approved anticancer agents can be classified as traditional cytotoxics. Ixabepilone, a tubulin-stabilizing drug, does not show high correlations with other tubulin-interacting agents at GI₅₀ (Supplementary Table S1); however, this may be due to the fact that the compound has much greater potency in the screen. Pemetrexed, an antifolate, has a similar pattern of growth inhibition to other antimetabolites, including floxuridine.

We found a number of agents to be inactive in the NCI60 screen at the concentrations tested. These include thalidomide, lenalidomide, aminolevulinic acid, and levamisole. It is likely that the efficacy of at least some of these drugs depends on their effect on the immune system or components of the extracellular milieu of tumors (26), which would not be detectable in a cell line screen such as the NCI60.

Discussion

As a service to the cancer research community, we undertook to screen the majority of U.S. FDA-approved anticancer drugs in the NCI60, a panel of 60 human tumor cell lines, and to make these data publicly available. The NCI60 has been used for the past two decades to screen chemicals and natural product extracts for the ability to inhibit the growth of, or to kill, cancer cells. Nearly 100,000 pure compounds and 50,000 natural product extracts have been tested, with data publicly available for pure compounds that are not covered by a confidentiality agreement, through the NCI-DTP website (4).

Although an early design hypothesis of the NCI60 screen was to identify compounds with disease specificity (i.e., compounds that might target colon cancer cells), it soon became clear that mechanistic insight into the action of novel compounds could be gained by studying the patterns of which cells responded to an agent and which were more resistant. For example, compounds that bind to tubulin have similar growth inhibition patterns regardless of which site on tubulin they bind, or whether they stabilize or destabilize microtubules. Paull et al. formalized this observation with the COMPARE algorithm (16). Doseresponse curves for each cell line are converted into "end point" patterns, which represent a snapshot of the activity of the agent. Three end points are routinely calculated - GI_{50} , i.e., the concentration at which growth is 50% of the no-drug control; TGI, total growth inhibition, the concentration where the number of cells is equal to those at time zero, when drug is added; and LC50, the concentration at which the number of viable cells is 50% of those present at time zero. These end point patterns thus make up a pattern that the COMPARE algorithm utilizes to calculate the PCC, a measure of how similar the patterns are. A correlation of 1.0 identifies a perfect match, a PCC of -1.0

Figure 5. Clustering of correlations of NCI60 GI₅₀ patterns for the signaling drugs. PCCs for the agents targeting signal transduction were hierarchically clustered in two symmetric dimensions. A heat map of the PCCs is shown, with higher correlations in red and lower PCCs in blue

denotes a perfect mirror image, whereas a PCC of 0 means there is no correlation between the two patterns. Such correlations do indeed allow one to group many of the approved drugs according to mechanism of action, as shown in Figs. 2 and 5.

All of the NCI60 datasets described herein are publicly available. The raw data for percent growth, the parametric analyses for GI₅₀, TGI, and LC₅₀ datasets, as well as the microarray and other molecular target characterization data are available to download, should users wish to undertake their own analyses. A variety of visualization tools are currently available on the DTP website. Both compound sensitivity and molecular target data can be searched, and resulting data displayed as a mean graph. The COMPARE algorithm can be accessed to search for NCI60 patterns similar to any starting "seed." One can choose a compound of interest and query the database for compounds with similar patterns of activity, or for molecular targets whose pattern of expression correlates with sensitivity to an agent of interest. For instance, one can begin with a novel compound that has been tested in the screen, and run COMPARE to see if it has a similar sensitivity pattern to any agents of known mechanism, thus generating hypotheses as to the mechanism of action of the novel compound that can be tested in the laboratory.

When reviewing the results of a COMPARE analysis, there are a number of factors to consider in evaluating "hits." How many experiments were done with the compound? Compounds with good activity and/or interesting patterns of cell line growth inhibition are generally tested at least twice. Sometimes compounds are tested in multiple concentration ranges; the values used for COMPARE are averaged for each cell line across all tests at a given concentration range, as indicated by the log of

the highest concentration tested (LHICONC). Different concentration ranges may give different patterns of growth inhibition and different COMPARE results, if one of the ranges is not optimal for the calculated end point (e.g., bortezomib at the high concentrations of 10^{-4} mol/L and 10^{-6} mol/L).

In addition to the NCI60 cell line data described here, the FDA-approved agents used for these studies are available from DTP as a plated set of compounds, for use in cancer research. The agents are provided on 96-well plates as 20 μL of a 10 mmol/L solution in 100% DMSO. As new anticancer agents are approved by the U.S. FDA, DTP will add them to this set. Instructions for obtaining the Approved Oncology Drug Set, as well as ancillary information on these compounds can be found at the DTP website (17).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank the members of the Developmental Therapeutics Program for providing the agents used in these studies and for making them available to cancer researchers via the Approved Oncology Drugs plated set.

Grant Support

Federal funds from the National Cancer Institute, National Institutes of Health.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked *advertisement* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 02/12/2010; accepted 02/26/2010; published Online First 05/04/2010.

Figure 6. Mean graph plots of GI₅₀ values for gefitinib (NSC 715055) and lapatinib (NSC 745750). Gl₅₀ values for each cell line were calculated from dose-response curves. The mean GI_{50} for each compound across all 60 cell lines was calculated. The difference between the GI₅₀ for a particular cell line and the mean GI_{50} is plotted. Cell lines that were more sensitive are displayed as bars that project to the right of the mean. Cell lines that were less sensitive are displayed with bars projected to the left. Cell lines are color-coded as in Fig. 3. Mean graphs for two compounds with similar mechanisms are shown. Both gefitinib and lapatinib inhibit the tyrosine kinase EGFR, and lapatinib also inhibits the related kinase ERBB2. The two compounds give similar mean graph patterns. The degree of similarity was quantitated using the COMPARE algorithm, which gave a PCC of 0.88, confirming that these patterns are very similar. The most responsive cell lines to these agents are all wild type for KRAS, in line with what has been observed in the clinic.

References

- Cragg GM. Paclitaxel (Taxol): a success story with valuable lessons for natural product drug discovery and development. Med Res Rev 1998:18:315–31.
- Holbeck SL, Sausville EA. The proteasome and the COMPARE algorithm. In: Adams J, editor. Proteasome inhibitors in cancer therapy. Humana Press; 2004.
- Scudiero DA, Shoemaker RH, Paull KD, et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 1988; 48:4827–33.
- 4. http://dtp.cancer.gov/.
- Holbeck SL. Update on NCI in vitro drug screen utilities. Eur J Cancer 2004;40:785–93.
- http://dtp.cancer.gov/mtargets/mt_index.html.
- Sausville EA, Holbeck SL. Transcription profiling of gene expression in drug discovery and development: the NCI experience. Eur J Cancer 2004:40:2544–9
- Roschke AV, Tonon G, Gehlhaus KS, et al. Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Res 2003;63:8634–47.
- Garraway LA, Widlund HR, Rubin MA, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005;436:117–22.
- Gaur A, Jewell DA, Liang Y, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 2007;67:2456–68.
- Blower PE, Verducci JS, Lin S, et al. MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 2007;6: 1483–91.
- Ikediobi ON, Davies H, Bignell G, et al. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther 2006;5: 2606–12.
- Nishizuka S, Charboneau L, Young L, et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci U S A 2003;100:14229–34.

- **14.** Ehrich M, Turner J, Gibbs P, et al. Cytosine methylation profiling of cancer cell lines. Proc Natl Acad Sci U S A 2008;105:4844–9.
- Lee JS, Paull K, Alvarez M, et al. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol Pharmacol 1994;46:627–38.
- Paull KD, Shoemaker RH, Hodes L, et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 1989:81:1088–92.
- http://dtp.cancer.gov/branches/dscb/oncology_drugset_explanation. html.
- 18. http://dtp.nci.nih.gov/branches/btb/ivclsp.html.
- Lorenzi PL, Reinhold WC, Varma S, et al. DNA fingerprinting of the NCI-60 cell line panel. Mol Cancer Ther 2009;8:713–24.
- Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:2615–22.
- 21. Koo HM, Monks A, Mikheev A, et al. Enhanced sensitivity to 1-β-D-arabinofuranosylcytosine and topoisomerase II inhibitors in tumor cell lines harboring activated ras oncogenes. Cancer Res 1996;56: 5211–6.
- Baynes RD, Gansert J. KRAS mutational status as a predictor of epidermal growth factor receptor inhibitor efficacy in colorectal cancer. Am J Ther 2009;16:554–61.
- **23.** Lane AA, Chabner BA. Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 2009;27:5459–68.
- Kohlhagen G, Paull KD, Cushman M, Nagafuji P, Pommier Y. Proteinlinked DNA strand breaks induced by NSC 314622, a novel noncamptothecin topoisomerase I poison. Mol Pharmacol 1998;54:50–8.
- Pommier Y, Cushman M. The indenoisoquinoline noncamptothecin topoisomerase I inhibitors: update and perspectives. Mol Cancer Ther 2009;8:1008–14.
- Kotla V, Goel S, Nischal S, et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol 2009;2:36.

Correction

Correction: Analysis of Food and Drug Administration—Approved Anticancer Agents in the NCI60 Panel of Human Tumor Cell Lines

In this article (Mol Cancer Ther 2010;9:1451–60), which was published in the May 1, 2010, issue of *Molecular Cancer Therapeutics* (1), the column heading over the last three columns of Table 1 is incorrect. The column heading should be Potency in μ mol/L. The online article has been changed to reflect this correction and no longer matches the print.

Reference

 Holbeck SL, Collins JM, Doroshow JH. Analysis of food and drug administration-approved anticancer agents in the NCl60 panel of human tumor cell lines. Mol Cancer Ther 2010;9:1451–60.

Published OnlineFirst 06/01/2010. ©2010 American Association for Cancer Research. doi: 10.1158/1535-7163.MCT-10-0439

Molecular Cancer Therapeutics

Analysis of Food and Drug Administration—Approved Anticancer Agents in the NCI60 Panel of Human Tumor Cell Lines

Susan L. Holbeck, Jerry M. Collins and James H. Doroshow

Mol Cancer Ther 2010;9:1451-1460. Published OnlineFirst May 4, 2010.

Updated version Access the most recent version of this article at:

doi:10.1158/1535-7163.MCT-10-0106

Supplementary Access the most recent supplemental material at:

http://mct.aacrjournals.org/content/suppl/2010/05/04/1535-7163.MCT-10-0106.DC1

Cited articles This article cites 21 articles, 14 of which you can access for free at:

http://mct.aacrjournals.org/content/9/5/1451.full#ref-list-1

Citing articles This article has been cited by 36 HighWire-hosted articles. Access the articles at:

http://mct.aacrjournals.org/content/9/5/1451.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

Material

To order reprints of this article or to subscribe to the journal, contact the AACR Publications

Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link

http://mct.aacrjournals.org/content/9/5/1451.

Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC)

Rightslink site.