练习二(电势、电势能、做功)

一、填空题:

	1. 论证得知,静电场力与万有引力、弹性力一样,做功与路径无关,这样的力称为
力,	能反映该性质的环路定理数学表述为,从场论出发,该电场的
环路	客定理说明静电场是一个
	场。(有源、无源、有旋、无旋)。
	2. 静电场力对电荷所作的功等于电荷电势能的,数学描述为
W_{A}	$E_{B} = -(E_{pB} - E_{pA})$; 而一个电荷 Q_{0} 在电场某处(A 点)的电势能在数值上等
于_	
E _{pA} =	•
于_	3. 电势是描述静电场性质的一个重要物理量。电场中某一点 A 的电势 V _A , 在数值上等
	。如果知道了电场中 A. B 两点的电势差 UAB, 就可以方便求得
	且荷 q 从点 A 移到点 B 时,静电场力做的功 U _{AB} =。
路径	4、静电场中有一质子 (带电荷 $e=1.6\times10^{-19}$) 沿图示路径从 a 点点移动到 b 点时,电场力作功 8×10^{-15} J. 则当质子从 b 点沿另径回到 a 点过程中,电场力作功 $A=$

5、如图所示, U_1 、 U_2 , U_3 为相邻的 3 个等势面,它们的关系为 $U_1>U_2>U_3$,则图中 P 点的电场强度的方向为_____。

二、计算题

1、如图所示,CDEF为一矩形,边长分别为 1 和 21. 在 DC延长线上 CA=1 处的 A 点有点电荷+q,在 CF的中点 B 点有点电荷-q,若使单位正电荷从 C 点沿 CDEF 路径运动到 F 点,则求电场力所作的功。

2、如图所示,在半径分别为 R_1 和 R_2 的两个同心球面上,分别均匀地分布着电荷+Q 和 - Q,求:电场的分布,电势的分布。

- 3、一无限长均匀带电圆柱,电荷体密度为 $^{\rho}$,截面半径为a。
 - (1) 用高斯定律求出柱内外电场强度分布;
 - (2) 求出柱内外的电势分布,以轴线为势能零点。
- 4、一次闪电的放电电压大约是 1.0×10^9V ,而被中和的电量约是30C。求1)一次放电 说释放的能量是多大? 2)一所希望小学每天消耗电能20KW.h。上述一次放电所释放的电能够该小学用多长时间?