1 Teoria

1.1 Propiedades de Cuerpo

En el conjunto de los numeros \mathbb{R} existen dos operaciones: Suma y Multipliacion.

- 1. Conmutatividad de la Suma
- 2. Conmutatividad Multiplicacion
- 3. Asociatividad Suma
- 4. Asociatividad multiplicacion
- 5. Elemento Neutro para la suma: 0
- 6. Elemento neutro para la multiplicacion: 1
- 7. Opuesto para la suma: a + (-a) = 0
- 8. Inverso Multiplicativo: $a \cdot a^{-1} = 1$
- 9. Distributividad

Un conjunto con estas nueve propiedades se denomina cuerpo.

• A partir de las 13 propiedades de cuerpo ordenado no se puede demostrar que todo número positivo tiene una raiz cuadrada.

1.2 Propiedades de Orden

- 1. Tricotomia: a = b; a < b; a > b; solo se cumple una de estas tres.
- 2. Transitividad: a < b y $b < c \Rightarrow a < c$
- 3. Si $a < b \ v \ c \in \mathbb{R} \Rightarrow a + c < b + c$
- 4. Si a < b y $c \in \mathbb{R}_{>0} \Rightarrow a \cdot c < b \cdot c$

Un cuerpo, mas estas cuatro propiedades se denomina: Cuerpo ordenado.

1.3 Valor absoluto

$$\bullet \quad |a| = \begin{cases} a & \text{si } a \geqslant 0 \\ -a & \text{si } a < 0 \end{cases}$$

Proposition 1. Designal dad triangular: $|x+y| \le |x| + |y|$

La prueba de la proposicion es util. Algunas cosas a tener en cuenta, se puede demostrar:

$$- |a|^2 = a^2$$
; $a < |a|$; $|a \cdot b| = |a| |b|$

Demostracion:

$$|x+y|^2 = (x+y)^2 = x^2 + 2xy + y^2 \le |x|^2 + 2|xy| + |y|^2 = |x|^2 + 2|x| |y| + |y|^2 = (|x| + |y|)^2$$

1.4 Propiedad del Supremo / Infimo

Esta propiedad permite distinguir a $\mathbb R$ de $\mathbb Q$ (Que satisface las primeras 13 propiedades). Por otro lado permite representar a $\mathbb R$ como una recta llena.

1

Definition 2. Sea un subconjunto A de \mathbb{R} . Un numero M es una **cota superior** de A si $a \leq M$ $\forall a \in A$. Todo numero M' > M tambien es cota superior de A.

Propiedad del supremo: Todo subconjunto A de \mathbb{R} no vacio y acotado superiormente, tiene una cota superior minima, que se llama supremo de A y se denota por supA. Tener en cuenta que esto significa dos cosas:

- Sup A es una cota superior
- Sup A es la menor de todas las cotas superiores.

Definition 3. Maximo / Minimo: Si α es una cota superior de A, y ademas $\alpha \in A$, entonces α se denomina Maximo de A.

Proposition 4. Todo subconjunto No vacio acotado superiormente tiene supremo. De la misma forma, todo subconjunto no vacio acotado inferiormente tiene infimo.

Proposition 5. Propiedad Arquimediana de los numeros reales: El conjunto $\mathbb N$ de los numeros naturales no esta acotado superiormente.

Proposition 6. Para todo numero $\varepsilon > 0$, existe $n \in \mathbb{N} / \frac{1}{n} < \varepsilon$

Definition 7. Conjunto Denso: Un subconjunto A de $\mathbb R$ se dice denso en $\mathbb R$ si $\forall b,c/b < c$ existe un numero $a \in A/b < a < c$

2 Problemas

1.

a)
$$ab = 0 \Rightarrow a = 0 \text{ ob} = 0$$

- -ab=0; Por tricotomia podria tomar a=0, con lo cual ya queda demostrado
- Sin embargo suponga $a \neq 0 \Rightarrow \exists a^{-1}/aa^{-1} = 1$
- $-a^{-1}ab = a^{-1} \cdot 0 \Leftrightarrow 1 \cdot b = 0 \Rightarrow b = 0$

b)

c)
$$a(b-c) = a(b+(-c)) = ab + a(-c)$$

- Aca tendria que usar que: -a = (-1) a
- -0 = a + (-a) =

2.

3.

4.

5.

a) Si
$$a^2 = 1 \Rightarrow a = 1$$
 o $a = -1$
 $-a^2 = 1 \Leftrightarrow a^2 - 1 = 0 \Leftrightarrow (a+1)(a-1) = 0$ use 1a

b)
$$a^2 = b^2 \Rightarrow a^3 = b^3$$

$$- a^2 - b^2 = 0 \Leftrightarrow (a+b)(a-b) \Rightarrow a = b \circ a = -b$$

- Si a = b la igualdad se da de forma inmediata

- Si
$$a = -b \Rightarrow a^2 a = b^2 a \Leftrightarrow a^3 = -b^3$$
 (FALSO)

c)
$$a < b \text{ y } c < d \Rightarrow a - c < b - d$$

$$-c < d \Rightarrow d - c \in P$$

– De la misma forma: $b - a \in P$

— Entonces: $b-a+d-c\in P$ no parece que funcione, asi que buscamos un contraejemplo

$$-5 < -1 \text{ y } 1 < 5 \text{ luego: } -5 - 1 < -1 - 5$$

d) d falso

e)

6.

7.

8.

a) Probar que si $0 \le x \le y \Rightarrow x^2 \le y^2$

$$- x \leqslant y \Rightarrow x^2 \leqslant xy$$

$$- x \leqslant y \Rightarrow xy \leqslant y^2$$

— Transitividad: $x^2 \leqslant xy \leqslant y^2 \Rightarrow x^2 \leqslant y^2$

b) Sea $a,b\in\mathbb{R},\;a>0,b>0\Rightarrow\sqrt{ab}\leqslant\frac{a+b}{2}$. Cuando vale la igualdad?

- Tenga en cuenta que $(a-b)^2 \ge 0$

- Entonces: $(a-b)^2 + 4ab \ge 4ab$

- Pero esto da: $(a+b)^2 \ge 4ab \Leftrightarrow \sqrt{(a+b)^2} \ge 2\sqrt{ab} \Leftrightarrow |a+b| \ge 2\sqrt{ab}$

- Como $a, b > 0 \Rightarrow a + b > 0 \Rightarrow |a + b| = a + b$

— Consecuencia final: $\frac{a+b}{2} \leqslant \sqrt{ab}$

– La igualdad se da cuando: a = b, examinar esto aqui: $(a + b)^2 \ge 4ab$

9.

a) Probar que si $a^3 = 1 \Rightarrow a = 1$

— Por tricotomia: a > 1, a = 1 o a < 1

- Si a > 1 entonces:
- Entonces: $a > 1 \Leftrightarrow a^2 > a > 1 \Rightarrow a^2 > 1 \Leftrightarrow a^3 > a > 1 \Rightarrow a^3 > 1$
- Si $a = 1 \Rightarrow a^3 = 1$ (Caso trivial)
- Si $a < 0 \Rightarrow -a > 0$
- Sabemos que: $(-a) > 0 \Rightarrow (-a)^2 > 0$ productos positivos. De la misma forma: $(-a)^3 > 0$
- $\quad (-a)^3 = ([-1]a)^3 = ([-1]a)([-1]a)([-1]a) = [-1] \cdot [-1] \cdot [-1] \cdot a \cdot a \cdot a$
- $[-1]a^3 = -a^3 > 0$
- Si $-a^3 > 0 \Rightarrow a^3 < 0 \Rightarrow a^3 \neq 1$
- Falta un ultimo caso: 0 < a < 1
- Como $a < 1 \Leftrightarrow a^2 < a < 1 \Rightarrow a^2 < 1 \Leftrightarrow a^3 < a < 1 \Rightarrow a^3 < 1$
- b) Demostrar que $a^3 = b^3 \Rightarrow a = b$ usando el inciso anterior:
 - $-a^3 = b^3$, considere 3 casos (tricotomia)
 - $-a=0 \Rightarrow b=0$ (Caso trivial)
 - $-a \neq 0 \Rightarrow \exists a^{-1} \Rightarrow b^3(a^{-1})^3 = (ba^{-1})^3 = 1$
 - Con esto recaemos en el caso anterior, entonces: $ba^{-1} = 1$, por unicidad del inverso, a = b.

10.

- a) |x| = |-x|
 - Si $x = 0 \Rightarrow -x = -0 = (-1) \cdot 0 = 0 \Rightarrow |0| = 0 = |-0| = 0$
 - Si $x > 0 \Rightarrow |x| = x$ por otro lado: $-x < 0 \Rightarrow |-x| = -(-x) = (-1)(-x) = 1 \cdot x = x$
 - Si x < 0 la prueba es similar.
- b) |xy| = |x| |y|
 - Si x = 0 o y = 0 el caso es trivial
 - Considere $x \neq 0$ y $y \neq 0$
 - Si x > 0, $y > 0 \Rightarrow xy > 0 \Rightarrow |xy| = xy = |x||y| = xy$
 - Si x < 0 y $y > 0 \Rightarrow xy < 0 \Rightarrow |xy| = -xy = (-x)y = |x||y|$
 - La prueba para ambos menores a cero es similar.
- c) $|x^{-1}| = |x|^{-1}$

$$- |x^{-1}x| = 1$$
$$|x^{-1}x| = |x^{-1}| |x| = 1 = |x|^{-1}|x|$$

- Esto signfica que $|x|^{-1} = |x^{-1}|$

11.

a)
$$|(|x|-1)| = \begin{cases} -(|x|-1)\sin|x| - 1 < 0 \begin{cases} -(-x-1)\sin|x| < 1yx < 0 & 1 \\ -(x-1)\sin|x| < 1yx > 0 & 2 \end{cases} \\ (|x|-1)\sin|x| - 1 > 0 \begin{cases} (-x-1)\sin|x| > 1yx < 0 & 3 \\ (x-1)\sin|x| > 1yx > 0 & 4 \end{cases}$$

1.
$$-1 < x < 1$$
 $yx < 0 \Rightarrow (-1, 0)$

2.
$$-1 < x < 1 yx > 0 \Rightarrow (0, 1)$$

3.
$$x < -1$$
 or $x > 1$ y $x < 0 \Rightarrow x < -1 \Rightarrow (-\infty, -1)$

4.
$$x < -1$$
 or $x > 1$ y $x > 0 \Rightarrow x > 1 \Rightarrow (1, \infty)$

12.

a)
$$|x-3| < 8$$

b)
$$|x-3| \ge 8$$

$$- \begin{cases} x-3 \geqslant 8 \operatorname{si} x - 3 \geqslant 0 \\ -(x-3) \geqslant 8 \operatorname{si} x - 3 < 0 \Leftrightarrow (x-3) \leqslant -8 \operatorname{si} x - 3 < 0 \end{cases}$$

13.

a)
$$|x-3| = c$$

- Si c < 0 luego |x 3| = c da a lugar al conjunto vacio.
- c=0 nos da como resultado: x=3 solamente.

- Si
$$c > 0 \Rightarrow$$

$$\begin{cases}
x - 3 = c & \text{si } x - 3 \ge 0 \Leftrightarrow x \ge 3 \\
-x + 3 = c & \text{si } x - 3 < 0 \Leftrightarrow x < 3
\end{cases}$$

– $x-3=c \Leftrightarrow x=c-3$; como $x\geqslant 3$ esto tiene solucion solamente si, $c-3\geqslant 3$ (Por ejemplo)

b)

c)
$$|x-1|+|x+2|=3$$

$$- \begin{cases} x-1+x+2=3 & \text{si } x-1\geqslant 0 \ yx+2\geqslant 0 & x\geqslant 1 \ yx>-2\Rightarrow [1,\infty) & 1 \\ x-1-(x+2)=3 & \text{si } x-1\geqslant 0 \ yx+2<0 & x\geqslant 1 \ yx<-2\Rightarrow \text{vacio} & 2 \\ -(x-1)+(x+2)=3 & \text{si } x-1<0 \ yx+2\geqslant 0 & x<1 \ yx\geqslant -2\Rightarrow [-2,1) & 3 \\ -(x-1)-(x+2)=3 & \text{si } x-1<0 \ yx+2<0 & x<1 \ yx<-2\Rightarrow (-\infty,-2) & 4 \end{cases}$$

$$(-(x-1)-(x+2)=3 \text{ si } x-1<0 \text{ } yx+2<0 \text{ } x<1$$

$$- \text{ Solucion:} \begin{cases} 2x=2 \Leftrightarrow x=1 \text{ en } [1,\infty) \Rightarrow x=1 \text{ solucion} \\ \text{No hay solucion} \\ 3=3, x \text{ es sol } \forall x \in [-2,1] \\ 2x=-4 \Leftrightarrow x=-2 \Rightarrow \text{no hay solucion} \end{cases}$$

14.

a)
$$|x - y| \le |x| + |y|$$

$$- |x - y| = |x + (-y)| \le |x| + |(-y)| = |x| + |y|$$

- b) $|x| |y| \le |x y|$
 - $|x| = |x + (-y + y)| = |x y + y| \le |x y| + |y| \Leftrightarrow |x| |y| \le |x y|$
- c) $|x y| \ge ||x| |y||$
 - Siguiendo el metodo hecho en b uno puede demostrar que:
 - $|x| |y| \le |x y|$; $|y| |x| \le |y x| = |x y|$ esto dice que: $|x| |y| \ge -|x y|$
 - Es decir: $-|x-y| \le |x| |y| \le |x-y| \Leftrightarrow ||x| |y|| \le |x-y|$

15. Para hacer estos ejercicios utilizar:

- Si A esta acotado superiormente entonces es no vacio $\Rightarrow \exists \alpha = \max A$ que es una cota superior, es decir $a \leqslant \alpha \forall a \in A$ y ademas α cumple ser la menor de las cotas superiores. α es unico
- Si A esta acotado inferiormente entonces $\exists \beta = \min A$, que cumple: $\beta \leq a, \forall a \in A$. Y ademas cumple que: $\beta = \max (\text{cotas Inf } A)$. β es unico
- Lema Util:
- $-\alpha$ es supremo de $A \Leftrightarrow \alpha$ es cota superior de A y $\forall \varepsilon > 0 \exists x \in A / \alpha \varepsilon < x$
- $-\beta$ es el infimo de $A \Leftrightarrow \beta$ es cota inferior de A y $\forall \varepsilon > 0 \exists x \in A / \beta + \varepsilon > x$
- Corolario: Si α es cota superior y $\alpha \in A \Rightarrow \alpha = \max A$

Demostracion: Si α no es el maximo, $\Rightarrow \exists \alpha_2/\alpha_2 < \alpha$, pero como $\alpha \in A$, luego α_2 no puede ser cota superior. Entonces α debe ser el supremo de A. Como ademas $\alpha \in A$, luego α debe ser el MAXIMO.

- Corolario 2: Si β es cota inferior y $\beta \in A \Rightarrow \beta = \min A$
- − Nota 1: Si el conjunto es real, y $\alpha \notin A$, pero se presupone $\alpha = \max A$, entonces siempre puede encontrar un elemento de A con la media aritmetica. Por ejemplo, considere el conjunto: $(k,l) \subset \mathbb{R}$.

Luego, usando el lema util, $\forall \varepsilon > 0$ deberia poder encontrar: $l - \varepsilon < a$ con $a \in A$. Si utilizo la media aritmetica: $k < l - \varepsilon < \frac{l - \varepsilon + l}{2} < l$, de manera que $\frac{2l - \varepsilon}{2}$ pertenece al conjunto por la definicion del mismo: $x \in \mathbb{R} / k < x < l$.

- a) [3, 8)
 - Para el caso del 3 como es una cota inferior y esta en el conjunto, entonces directamente ya es el minimo.
 - Para el caso del 8, suponga que el 8 no es el supremo, entonces $\exists \alpha/\alpha$ es la cota superior minima. Si α es el supremo: $\forall \varepsilon > 0, \exists a \in A/\alpha \varepsilon < a < \alpha$. Ademas como α es el supremo, luego $3 < \alpha < 8$.
 - Considere: $3 < \alpha < \frac{\alpha+8}{2} < 8 \Rightarrow \frac{\alpha+8}{2} \in A$, luego α no es cota superior.
- b) $(-\infty, \pi)$
 - − No esta acotado inferiormente. Demostracion: \mathbb{N} no esta acotado superiormente, luego − \mathbb{N} no esta acotado inferiormente. Como − \mathbb{N} ⊂ (−∞, π) luego el mismo no puede estar acotado inferiormente.

- La cota superior es π , pues si no lo fuera entonces $\exists \alpha < \pi$ cota superior. Luego: $\alpha < \frac{\alpha + \pi}{2} < \pi$ luego $\frac{\alpha + \pi}{2} \in (-\infty, \pi)$ incurriendo en un absurdo.
- c) $\{6k/k \in \mathbb{Z}\}$
 - − No esta acotado ni inferior ni superiormente. Examine el caso de la cota superior. Si $\alpha \in A$ luego $\alpha = 6K$, sin embargo como $K \in \mathbb{Z}$, luego $K + 1 \in \mathbb{Z}$, de manera que $6(K+1) \in A$, lo cual es un absurdo. Si $\alpha \notin A$, luego $\exists K / 6K < \alpha$ y $\alpha 6K < 6 \Leftrightarrow \alpha < 6(K+1) \in A$ lo cual es un absurdo.
- d) $\left\{\frac{1}{n}/n \in \mathbb{Z}, n \neq 0\right\}$
 - La propuesta es que: $-1 \leqslant \frac{1}{n} \leqslant 1$
 - Como $1 \in A$ a la vez que 1 es cota superior entonces 1 es el maximo.
 - Por otro lado sabemos que -1 seria el minimo (mismo argumento)
 - Otro tipo de demostracion se puede hacer de la siguiente forma, y es utilizando el lema util:
 - Si $\alpha = \sup A \Rightarrow \forall \varepsilon > 0, \exists a \in A / \alpha \varepsilon < a \leq \alpha$
 - Observemos que por arquimenidad: $\frac{1}{n} < \varepsilon \Leftrightarrow -\varepsilon < -\frac{1}{n}$ luego: $1-\varepsilon < 1-\frac{1}{n}$, la pregunta que resta responder es si $1-\frac{1}{n} \in A$, esto significa poder expresar a este numero como $\frac{1}{m}$ con $m \in \mathbb{Z}$.
 - $-1-\frac{1}{n}=\frac{n-1}{n}$, bueno en este caso, en mi opinion no puede asegurarse que $\frac{n-1}{n}$ no es de la forma $\frac{1}{n}$, pues esto implicaria: $\frac{n-1}{n}=\frac{1}{\frac{n}{n-1}}$ lo cual implica asumir que $m=\frac{n}{n-1}\in\mathbb{Z}$. Es decir: $n=m(n-1)\Leftrightarrow n(1-m)-m=0$
- e) $A = \{3 \frac{1}{n}, n \in N\}$
 - Para este conjunto tenemos que si $a \in A$: $2 < a \le 3$
 - 3 es el maximo.
 - Pero es 2 el infimo?
- 16. Probar que si A,B son dos subconjuntos acotados superiormente, entonces, AUB esta acotado superiormente.

_