Cluster Big Data

Jesús Morán

Grupo de Investigación en Ingeniería del Software

http://giis.uniovi.es

Universidad de Oviedo

Cluster

- Varios servidores que trabajan como si fuese uno
 - □ Rendimiento: tareas con alta memoria, CPU, etc
 - □ Disponibilidad: tolerancia a fallos
 - ☐ Eficiencia: gestión de recursos y tareas

Administración y gestión

- Servidores y racks
- Red y conexiones
- Sistemas de archivos distribuidos
- Gestión de usuarios
- Permisos y seguridad
- Configuraciones y políticas de acceso
- Monitorización
- Fallos de servidores
- Recursos en caliente
- Interoperabilidad de servicios
- Balanceo de carga

Tipos de clusteres

- Altas prestaciones (HPC)
 - □ Requieren el análisis de muchos nodos
 - □ Paradigmas distribuidos
- Alta disponibilidad
 - □ Replicaciones
 - □ Sin puntos de fallo únicos
 - □ Servicio disponible (si falla se restaura)
- Balanceo de carga
 - □ Varios nodos corren en mismo servicio y se balancea el acceso

Aplicaciones de clusteres

- Análisis y cálculo:
 - □ Bases de datos: SQL, NoSQL, newSQL
 - □ Big Data
- Renderizado
- Desencriptación
- Simulaciones:
 - □ Mecánica
 - □ Química
 - ...

Hadoop

- Framework Big Data
 - □ Sistema de archivos distribuido: HDFS, S3,...
 - □ Motor de procesamiento: Hadoop MapReduce,...

- Bloques de 128MB (por defecto)
- Replicación en 3 servidores (por defecto)

Componentes:

- Namenode
- Datanode

Procesamiento

- Componentes:
 - □ Resource Manager
 - □ NodeManager

Instalaciones de Hadoop

- Operativo: Almalinux
- Asignar IP (ej. DHCP)
- Instalar Java
 - □ Variable de entorno \$JAVA_HOME
 - □ Enlace simbólico:
 alternatives --install /usr/bin/java java /usr/...
- Crear usuario hadmin y grupo hadoop
- Descargar Hadoop en /usr/local (ej. wget)
- Asignar a hadmin y hadoop como propietarios
- Crear carpeta de archivos temporales en /hadoopTemp

M

Instalaciones en cada nodo (red)

- Nombre de hosts y red
- Abrir puertos

[maestro = INHTEST]

- □ NameNode: 9000 y 50070 (sólo maestro)
- Secondary NameNode: 50090 (sólo maestro)
- □ DataNode: 50020, 50010 y 50075
- □ ResourceManager: 8088, 8031, 8032 y 8030 (sólo maestro)
- □ NodeManager: 8042, 8040 y 10200
- ☐ HistoryServer: 19888 y 10020
- □ Shuffle: 13562
- ☐ Hadoop ephemeral ports: 50200:51200
- □ Otros puertos de Spark, Flink, etc. (generalmente sólo maestro)

10

Instalaciones en cada nodo (seguridad)

- Instalamos ssh
- Creamos una clave pública/privada ssh-keygen -t rsa -P "" -f ~/.ssh/id_rsa
- La ponemos como clave autorizada: cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
- Las copiamos a otros nodos: ssh-copy-id -i ~/.ssh/id_rsa.pub hadmin@INHTEST2

м

Instalaciones en cada nodo (env)

- Crear variables de entorno de Hadoop:
 - □ HADOOP_HOME=/usr/local/hadoop/hadoop-x.y.0
 - □ HADOOP_MAPRED_HOME=\$HADOOP_HOME
 - □ HADOOP_COMMON_HOME=\$HADOOP_HOME
 - □ HADOOP HDFS HOME=\$HADOOP HOME
 - □ HADOOP_YARN_HOME=\$HADOOP_HOME
 - □ HADOOP_CONF_DIR=\$HADOOP_HOME/etc/hadoop
 - □ HADOOP_COMMON_LIB_NATIVE_DIR=\$HADOOP_HOME/lib/ native
 - export HADOOP_OPTS="-Djava.library.path=/usr/local/hadoop/hadoop-2.2.0/lib"
- Añadir \$HADOOP_HOME/bin al path

- Configuramos Hadoop
 - □ \$HADOOP_HOME/etc/hadoop/core-site.xml

- Configuramos Hadoop
 - □ \$HADOOP_HOME/etc/hadoop/core-site.xml
 - □ \$HADOOP_HOME /etc/hadoop/yarn-site.xml
 - yarn.resourcemanager.hostname: INHTEST1
 - yarn.resourcemanager.address: INHTEST1:8032
 - yarn.resourcemanager.resource-tracker.address: INHTEST1:8031
 - yarn.resourcemanager.scheduler.address: INHTEST1:8030
 - yarn.log.server.url: http://INHTEST1:19888/jobhistory/logs/
 - yarn.nodemanager.aux-services: mapreduce_shuffle
 - yarn.nodemanager.aux-services.mapreduce_shuffle.class: org.apache.hadoop.mapred.ShuffleHandler
 - yarn.log-aggregation-enable: true

10

- Configuramos Hadoop
 - \$\Box\$HADOOP_HOME/etc/hadoop/core-site.xml
 - \$\Boxed\$ \$\text{HADOOP_HOME /etc/hadoop/yarn-site.xml}
 - \$HADOOP_HOME /etc/hadoop/hdfs-site.xml
 - dfs.data.dir: file:///usr/local/hadoop/Data/Datanode
 - dfs.name.dir: file:///usr/local/hadoop/Data/Namenode
 - dfs.namenode.secondary.http-address: INHTEST1:50090
 - dfs.namenode.http-address: INHTEST1:50070
 - dfs.namenode.secondary.http-address: INHTEST1:50090
 - dfs.permissions.superusergroup: hadoop
 - dfs.replication: 3
 - dfs.permissions.enabled: true

- Configuramos Hadoop
 - \$\Boxed\$ \$\text{HADOOP_HOME/etc/hadoop/core-site.xml}\$
 - \$\Boxed\$ \$\text{HADOOP_HOME /etc/hadoop/yarn-site.xml}
 - \$HADOOP_HOME /etc/hadoop/hdfs-site.xml
 - \$\Boxed\$ \$\text{HADOOP_HOME /etc/hadoop/mapred-site.xml}
 - mapreduce.jobtracker.http.address: INHTEST1:50030
 - mapreduce.jobhistory.address: INHTEST1:10020
 - mapreduce.jobhistory.webapp.address: INHTEST1:19888
 - yarn.app.mapreduce.am.job.client.port-range: 50200-51200
 - mapreduce.framework.name: yarn
 - mapreduce.jobtracker.staging.root.dir: /user

Configuración del maestro

- Indicar los esclavos: \$HADOOP_HOME/etc/hadoop/slaves
- Formateamos el sistema de archivos distribuido: hadoop namenode -format
 - □ Formatea los metadatos del namenode ~ formatear sistema de archivos
- Arrancar los servicios: /usr/local/hadoop/hadoop-2.2.0/sbin/start-all.sh
- Crear las carpetas de usuario:

```
hadoop fs -mkdir /user
hadoop fs -mkdir /user/hadmin
```

M

Crear un cliente

- Tiene que ser un Edge node
- Instalar:
 - □ Java
 - □ Hadoop (configuración de Hadoop)
 - □ ssh
- Crear usuario
 - □ Creamos usuario local con grupo hadoop
 - ☐ Crear carpeta en sistema de archivos distribuido hadoop fs -mkdir /user/cristian/
 - □ Ponerlo como propietario hadoop fs -chown -R cristian:hadoop /user/cristian/

Servicios instalados

- Sistema de archivos distribuido: HDFS (maestro y esclavos)
- Gestor de recursos: YARN (maestros y esclavos)
- Motores de procesamiento: Hadoop, Spark,...
- Otros:
 - □ Servidores web del cluster
 - Historial
 - □ Logs distribuidos

M

Otros servicios

- Ganglia: monitorizar el uso de recursos
- Nagios: alertar de problemas en el cluster
- Kerberos: autenticación integrada con Hadoop
- Squid:
 - □ Proxy transparente para actualizar los operativos
 - SSL BUMP man-in-the-middle para otras instalaciones
- Otros frameworks/librerías de cálculo:
 - □ R (para utilizar SparkR)
 - □ Zeppelin: notebook Big Data

Cluster

Summary Metrics for 32 Completed Tasks

Metric	Min	25th percentile	Median	75th percentile	Max
Duration	17 s	36 s	36 s	37 s	40 s
GC Time	0,2 s	0,3 s	0,3 s	0,3 s	0,3 s
Input Size / Records	59.2 MB/228060	128.0 MB / 492773	128.0 MB / 492818	128.0 MB / 494118	128.0 MB/500576
Shuffle Write Size / Records	1189.0 B/1	1215.0 B/1	1227.0 B/1	1238.0 B/1	1262.0 B/1

▼ Aggregated Metrics by Executor

Execut ID 🖺	tor	Address	Task Time	Total Tasks	Failed Tasks	Killed Tasks	Succeeded Tasks	Input Size / Records	Shuffle Write Size / Records
1	stdout stderr	INHTEST2:50595	9,7 min	16	0	0	16	2.0 GB/7902264	19.1 KB/16
2	stdout stderr	INHTEST3:5061	9,5 min	16	0	0	16	1979.2 MB / 7640315	19.2 KB / 16

Tasks (32)

▶ Event Timeline

Jesús Morán

Grupo de Investigación en Ingeniería del Software http://giis.uniovi.es Universidad de Oviedo

