Machine Learning

Chap2

- The gradient of a function ::= a vector of partial derivatives

$$f([x^{(1)},x^{(2)}]) = ax^{(1)} + bx^{(2)} + c, \qquad \nabla f \text{ is given by the vector } \left[\frac{\partial f}{\partial x^{(1)}},\frac{\partial f}{\partial x^{(2)}}\right]$$

- Random variables
 - Usually expressed by italic capital letter
 - Expectation value

$$\mathbb{E}[X] \stackrel{\text{def}}{=} \sum_{i=1}^{k} [x_i \cdot \Pr(X = x_i)]$$
$$= x_1 \cdot \Pr(X = x_1) + x_2 \cdot \Pr(X = x_2) + \dots + x_k \cdot \Pr(X = x_k),$$

- Hyperparameters -> set by data analysts
- Parameters -> directly modified by learning algorithms
- Classification ::= assign labels to unlabeled examples
- Regression ::= predicting real valued labels (target)
- Model based & Instrumental Based Learning
 - Model-based:
 - Creates models
 - Develops parameter
 - Like w* & b* of SVM
 - Instrumental Based Learning
 - K-Nearest Neighbors (KNN)
 - Look at the close neighborhood of the input, output the most often ones.

- "Instead of estimating a model, store all training examples in memory and make predictions using a similarity measure".
- See demo https://github.com/zotroneneis/machine_learning_basics/blob/master/k_nearest_neighbour.ipynb