Modelo

October 27, 2025

0.1 Propuesta de Negocio

La propuesta consiste en desarrollar una herramienta basada en aprendizaje supervisado que permita a la empresa **evaluar y optimizar la estrategia** de ventas de sus diferentes regiones y modelos de vehículos.

Para ello, se utilizará la base de datos de ventas disponible, la cual contiene información detallada sobre las características de los vehículos, el desempeño comercial y las zonas geográficas de distribución.

El modelo tendrá como objetivo clasificar el desempeño de ventas (por ejemplo, en categorías como bajo, medio o alto) a partir de variables explicativas tales como el tipo de vehículo, la región, el precio promedio, los incentivos aplicados, entre otras.

0.2 Alcance de la Propuesta

Con esta herramienta, la empresa podrá: - Identificar patrones y factores clave que determinan el éxito de ventas en cada región. - Comparar el rendimiento de diferentes modelos bajo condiciones de mercado específicas. - Apoyar la toma de decisiones en la asignación de recursos comerciales y campañas de marketing. En última instancia, el desarrollo del modelo busca fortalecer la estrategia comercial mediante el uso de técnicas de ciencia de datos y aprendizaje automático, ofreciendo un enfoque predictivo y sustentado en evidencia cuantitativa.

0.3 Análisis descriptivo de los datos

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

```
Model Year Region Color Fuel_Type Transmission Engine_Size_L \
0 5 Series 2016 Asia Red Petrol Manual 3.5
```

```
Hybrid
             2013 North America
                                     Red
                                                      Automatic
                                                                            1.6
  5 Series
             2022
                   North America
                                    Blue
                                            Petrol
                                                      Automatic
                                                                            4.5
3
             2024
                     Middle East
                                    Blue
                                            Petrol
                                                                            1.7
         ХЗ
                                                      Automatic
 7 Series
             2020 South America Black
                                            Diesel
                                                         Manual
                                                                            2.1
   Mileage_KM Price_USD
                          Sales_Volume Sales_Classification
       151748
                   98740
0
                                   8300
       121671
                   79219
1
                                   3428
                                                         Low
2
        10991
                  113265
                                   6994
                                                         Low
3
        27255
                   60971
                                   4047
                                                         Low
4
       122131
                   49898
                                   3080
                                                         Low
```

```
[3]: plt.figure(figsize=(6, 4))
df['Sales_Classification'].value_counts().plot(kind='bar')
plt.title('Distribución de ventas')
plt.show()
```



```
[4]: plt.figure(figsize=(6, 4))
sns.boxplot(x='Sales_Classification', y='Price_USD', data=df)
plt.title('Boxplot de ventas por clasificación')
plt.show()
```



```
[5]: plt.figure(figsize=(6, 4))
    sns.countplot(x='Region', hue='Sales_Classification', data=df)
    plt.xticks(rotation=90)
    plt.title('Ventas por Región de Venta')
    plt.show()
```



```
[6]: plt.figure(figsize=(6, 4))
    sns.countplot(x='Model', hue='Sales_Classification', data=df)
    plt.xticks(rotation=90)
    plt.title('Ventas por Región de Venta')
    plt.show()
```



```
[7]: df['age_model'] = 2024 - df['Year']
    df['is_luxury'] = (df['Price_USD'] > df['Price_USD'].quantile(0.75)).astype(int)

[8]: corr = df.corr(numeric_only=True)
    plt.figure(figsize=(6, 4))
    sns.heatmap(corr, annot=True, cmap='coolwarm')
    plt.title('Matriz de correlación')
    plt.show()
```


0.4 Clasificación de autos

```
[9]: def clasificar_segmento(ref):
         ref = ref.upper()
         if "I3" in ref or "ELECTRIC" in ref or "HYBRID" in ref:
             return "Eléctrico / Híbrido"
         elif "I8" in ref or "M" in ref or "Z" in ref:
             return "Deportivo"
         elif "X" in ref:
             return "Camioneta / SUV"
         elif "7" in ref or "5" in ref:
             return "Ejecutivo"
         elif "3" in ref:
             return "Sedán"
         else:
             return "Otro"
     df['Segmento'] = df['Model'].apply(clasificar_segmento)
     df
```

```
[9]:
                 Model Year
                                      Region
                                                Color Fuel_Type Transmission
             5 Series
                        2016
      0
                                        Asia
                                                  Red
                                                          Petrol
                                                                       Manual
      1
                    i8
                        2013 North America
                                                  Red
                                                         Hybrid
                                                                    Automatic
      2
              5 Series
                        2022 North America
                                                 Blue
                                                         Petrol
                                                                    Automatic
      3
                    ХЗ
                        2024
                                 Middle East
                                                 Blue
                                                         Petrol
                                                                    Automatic
      4
             7 Series
                        2020
                              South America
                                                Black
                                                         Diesel
                                                                       Manual
                                         •••
                                                  •••
      49995
                    i3
                        2014
                                        Asia
                                                  Red
                                                         Hybrid
                                                                       Manual
      49996
                        2023
                                 Middle East
                    i3
                                               Silver
                                                       Electric
                                                                       Manual
      49997
              5 Series
                        2010
                                 Middle East
                                                  Red
                                                          Petrol
                                                                    Automatic
      49998
                        2020
                                                                    Automatic
                    i3
                                        Asia
                                                White
                                                       Electric
      49999
                    X1
                        2020
                             North America
                                                 Blue
                                                          Diesel
                                                                       Manual
             Engine_Size_L
                             Mileage_KM
                                          Price_USD
                                                      Sales_Volume
      0
                        3.5
                                  151748
                                               98740
                                                               8300
      1
                        1.6
                                  121671
                                               79219
                                                               3428
      2
                        4.5
                                   10991
                                              113265
                                                               6994
      3
                        1.7
                                   27255
                                               60971
                                                               4047
      4
                        2.1
                                  122131
                                               49898
                                                               3080
      49995
                        4.6
                                  151030
                                               42932
                                                               8182
                        4.2
                                               48714
                                                               9816
      49996
                                  147396
      49997
                        4.5
                                  174939
                                               46126
                                                               8280
      49998
                        3.8
                                                               9486
                                    3379
                                               58566
      49999
                        3.3
                                  171003
                                               77492
                                                               1764
            Sales_Classification
                                    age_model
                                                is_luxury
                                                                       Segmento
      0
                                             8
                                                                      Ejecutivo
                              High
                                                         1
      1
                               Low
                                            11
                                                         0
                                                                      Deportivo
      2
                               Low
                                             2
                                                         1
                                                                      Ejecutivo
      3
                               Low
                                             0
                                                         0
                                                                Camioneta / SUV
      4
                               Low
                                             4
                                                         0
                                                                      Ejecutivo
      49995
                             High
                                            10
                                                            Eléctrico / Híbrido
                                                         0
      49996
                             High
                                                            Eléctrico / Híbrido
                                             1
                                                         0
      49997
                             High
                                            14
                                                         0
                                                                      Ejecutivo
      49998
                                             4
                                                            Eléctrico / Híbrido
                             High
      49999
                               Low
                                                                Camioneta / SUV
      [50000 rows x 14 columns]
[10]: | y = df['Sales_Classification'] # variable objetivo
      X = df.drop(['Sales_Classification'], axis=1) # variables predictoras
[11]: X= pd.get_dummies(
          Х,
```

```
drop_first=True
      )
      X
[11]:
                    Engine_Size_L Mileage_KM Price_USD
                                                            Sales_Volume
                                                                            age_model
             Year
      0
              2016
                               3.5
                                         151748
                                                     98740
                                                                      8300
                                                                                     8
             2013
                               1.6
                                                                      3428
      1
                                         121671
                                                     79219
                                                                                    11
      2
              2022
                               4.5
                                         10991
                                                    113265
                                                                      6994
                                                                                     2
      3
                               1.7
                                                                                     0
              2024
                                         27255
                                                     60971
                                                                      4047
      4
              2020
                               2.1
                                                     49898
                                                                      3080
                                         122131
      49995
             2014
                               4.6
                                         151030
                                                     42932
                                                                      8182
                                                                                    10
      49996
             2023
                               4.2
                                         147396
                                                     48714
                                                                      9816
                                                                                     1
      49997
                               4.5
             2010
                                         174939
                                                     46126
                                                                      8280
                                                                                    14
      49998
             2020
                               3.8
                                                                                     4
                                           3379
                                                     58566
                                                                      9486
      49999
             2020
                               3.3
                                         171003
                                                     77492
                                                                      1764
                                                                                     4
                         Model_5 Series
                                          Model_7 Series
                                                            Model_M3
                                                                      ... Color_Silver
              is_luxury
      0
                                                               False ...
                                    True
                                                    False
                                                                                 False
                      0
      1
                                   False
                                                    False
                                                               False
                                                                                 False
      2
                      1
                                    True
                                                    False
                                                               False
                                                                                 False
      3
                      0
                                   False
                                                               False ...
                                                                                 False
                                                    False
      4
                      0
                                   False
                                                     True
                                                               False
                                                                                 False
      49995
                      0
                                   False
                                                    False
                                                               False
                                                                                 False
      49996
                      0
                                   False
                                                    False
                                                               False ...
                                                                                  True
                                                               False
      49997
                      0
                                    True
                                                    False
                                                                                 False
      49998
                      0
                                   False
                                                    False
                                                               False ...
                                                                                 False
      49999
                      0
                                   False
                                                    False
                                                               False
                                                                                 False
             Color White
                           Fuel_Type_Electric Fuel_Type_Hybrid Fuel_Type_Petrol
      0
                    False
                                         False
                                                             False
                                                                                  True
      1
                    False
                                         False
                                                              True
                                                                                False
      2
                    False
                                         False
                                                             False
                                                                                 True
      3
                                         False
                                                             False
                    False
                                                                                 True
      4
                    False
                                         False
                                                             False
                                                                                False
      49995
                    False
                                         False
                                                              True
                                                                                False
                                           True
      49996
                    False
                                                             False
                                                                                False
      49997
                    False
                                         False
                                                             False
                                                                                 True
      49998
                     True
                                           True
                                                             False
                                                                                False
      49999
                    False
                                         False
                                                             False
                                                                                False
             Transmission_Manual Segmento_Deportivo
                                                         Segmento_Ejecutivo
      0
                              True
                                                  False
                                                                         True
```

columns=['Model', 'Region', 'Color', 'Fuel_Type', 'Transmission', |

```
1
                            False
                                                 True
                                                                     False
      2
                            False
                                                False
                                                                      True
      3
                            False
                                                False
                                                                     False
      4
                             True
                                                False
                                                                      True
      49995
                             True
                                                False
                                                                     False
      49996
                            True
                                                False
                                                                     False
      49997
                           False
                                                False
                                                                      True
      49998
                            False
                                                False
                                                                     False
      49999
                                                False
                                                                     False
                             True
             Segmento_Eléctrico / Híbrido
                                           Segmento_Sedán
      0
                                     False
                                                      False
      1
                                     False
                                                      False
      2
                                     False
                                                      False
      3
                                     False
                                                      False
      4
                                     False
                                                      False
      49995
                                      True
                                                      False
      49996
                                      True
                                                      False
                                     False
      49997
                                                      False
      49998
                                      True
                                                     False
      49999
                                     False
                                                     False
      [50000 rows x 35 columns]
[12]: from sklearn.preprocessing import StandardScaler
      scaler = StandardScaler()
      X = X.copy()
      X[['Year', 'Engine_Size_L', 'Mileage_KM', 'Price_USD', 'Sales_Volume']] = 
       ⇔scaler.fit_transform(
          X[['Year', 'Engine Size L', 'Mileage KM', 'Price USD', 'Sales Volume']]
      )
      Х
[12]:
                 Year
                       Engine Size L Mileage KM Price USD
                                                               Sales Volume \
            -0.234876
                             0.250548
                                         0.887814
                                                     0.911817
                                                                   1.131530
      1
            -0.928611
                            -1.632377
                                         0.368717
                                                    0.160951
                                                                  -0.573911
      2
             1.152595
                             1.241561
                                        -1.541504
                                                     1.470514
                                                                   0.674365
      3
             1.615085
                            -1.533276
                                        -1.260805
                                                   -0.540950
                                                                  -0.357231
      4
             0.690105
                            -1.136871
                                         0.376656
                                                   -0.966867
                                                                  -0.695729
      49995 -0.697366
                                         0.875423 -1.234811
                                                                   1.090224
                             1.340662
```

0.812704

1.288067

-1.672880

-1.012409

-1.111955

-0.633457

1.662205

1.124529

1.546689

0.944257

1.241561

0.547852

49996 1.383840

49997 -1.622346

49998 0.690105

49999	0.690105 0.0	052345 1.220136	0.094523 -	1.156394
	age_model is_luxu	ıry Model_5 Series	Model_7 Series	Model_M3 \
0	8	1 True	False	False
1	11	0 False	False	False
2	2	1 True	e False	False
3	0	0 False	False	False
4	4	0 False	e True	False
•••		•••		••
49995	10	0 False	e False	False
49996	1	0 False	e False	False
49997	14	0 True	e False	False
49998	4	0 False	e False	False
49999	4	0 False	False	False
	Color_Silver Colo	or_White Fuel_Type	e_Electric Fuel_:	Γype_Hybrid \
0	False	False	False	False
1	False	False	False	True
2	False	False	False	False
3	False	False	False	False
4	False	False	False	False
	•••	•••		••
49995	False	False	False	True
49996	True	False	True	False
49997	False	False	False	False
49998	False	True	True	False
49999	False	False	False	False
	Fuel_Type_Petrol	Transmission_Manua	al Segmento_Depoi	ctivo \
0	True	Tru	_	False
1	False	Fals		True
2	True	Fals		False
3	True	Fals		False
4	False	Tru		alse
•••	•••	•••	•••	
49995	False	Tru	ie I	False
49996	False	Tru	ie I	False
49997	True	Fals		False
49998	False	Fals		False
49999	False	Tru		False
	Segmento_Ejecutivo	•		gmento_Sedán
0	True		False	False
1	False		False	False
2	True		False	False
3	False		False	False
4	True	9	False	False

```
49995
                          False
                                                          True
                                                                          False
                                                                         False
      49996
                          False
                                                          True
                           True
                                                         False
                                                                          False
      49997
      49998
                          False
                                                          True
                                                                         False
                                                         False
      49999
                          False
                                                                         False
      [50000 rows x 35 columns]
[13]: from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,__
       →random_state=42, stratify=y)
```

```
frandom_state=42, stratify=y)

[14]: from sklearn.linear_model import LogisticRegression
# --- MODELO DE REGRESIÓN LOGÍSTICA ---
logreg = LogisticRegression(
    max_iter=1000,
    solver='lbfgs',
    class_weight='balanced'
)
logreg.fit(X_train, y_train)
```

```
# --- PREDICCIÓN ---
y_pred = logreg.predict(X_test)
```

Accuracy: 0.9939

Classification report:

precision	recall	f1-score	support
0.98	1.00	0.99	3049
1.00	0.99	1.00	6951
		0.99	10000
0.99 0.99	1.00 0.99	0.99 0.99	10000 10000
	0.98 1.00	0.98 1.00 1.00 0.99 0.99 1.00	0.98 1.00 0.99 1.00 0.99 1.00 0.99 0.99 1.00 0.99

```
[16]: # --- MATRIZ DE CONFUSIÓN ---
from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred, labels=logreg.classes_)
print(" Matriz de confusión (filas = reales, columnas = predichas):")
```

```
print(pd.DataFrame(cm, index=[f"Real_{c}" for c in logreg.classes_],
                            columns=[f"Pred_{c}" for c in logreg.classes_]))
       Matriz de confusión (filas = reales, columnas = predichas):
                Pred_High Pred_Low
     Real_High
                     3049
     Real_Low
                                6890
                        61
[17]: coef_df = pd.DataFrame({
          'Variable': X.columns,
          'Coeficiente': logreg.coef_[0]
      }).sort_values(by='Coeficiente', ascending=False)
      coef_df.head(10) # Las 10 variables que más aumentan la probabilidad de "High"
[17]:
                              Variable Coeficiente
      0
                                  Year
                                            7.130376
      5
                             age_model
                                            1.647322
                        Segmento_Sedán
      34
                                            0.795118
                              Model_X3
      12
                                            0.789978
                              Model X1
      11
                                            0.608213
      14
                              Model_X6
                                            0.596089
      13
                              Model_X5
                                            0.582423
      31
                    Segmento_Deportivo
                                            0.478289
      32
                    Segmento_Ejecutivo
                                            0.474004
      33
          Segmento_Eléctrico / Híbrido
                                            0.326608
[18]: import numpy as np
      coef_df['Odds_Ratio'] = np.exp(coef_df['Coeficiente'])
      coef_df['Interpretación'] = coef_df['Coeficiente'].apply(
          lambda x: '↑ Aumenta prob. ventas altas' if x > 0 else '↓ Disminuye prob. u
       ⇔ventas altas'
      coef_df.head(10)
[18]:
                              Variable Coeficiente
                                                       Odds_Ratio \
                                                      1249.347114
      0
                                  Year
                                            7.130376
      5
                             age_model
                                                         5.193055
                                            1.647322
                        Segmento_Sedán
      34
                                            0.795118
                                                         2.214703
      12
                              Model_X3
                                            0.789978
                                                         2.203347
      11
                              Model_X1
                                            0.608213
                                                         1.837146
      14
                              Model_X6
                                            0.596089
                                                         1.815006
      13
                              Model_X5
                                            0.582423
                                                         1.790372
      31
                    Segmento Deportivo
                                            0.478289
                                                         1.613311
      32
                    Segmento_Ejecutivo
                                            0.474004
                                                         1.606413
          Segmento_Eléctrico / Híbrido
                                                         1.386258
                                            0.326608
```

```
Interpretación

O ↑ Aumenta prob. ventas altas

5 ↑ Aumenta prob. ventas altas

34 ↑ Aumenta prob. ventas altas

12 ↑ Aumenta prob. ventas altas

11 ↑ Aumenta prob. ventas altas

14 ↑ Aumenta prob. ventas altas

13 ↑ Aumenta prob. ventas altas

31 ↑ Aumenta prob. ventas altas

31 ↑ Aumenta prob. ventas altas

32 ↑ Aumenta prob. ventas altas

33 ↑ Aumenta prob. ventas altas
```

0.5 Clustering

```
[19]: X_cluster = df[['Engine_Size_L', 'Mileage_KM', 'Price_USD', 'Sales_Volume']]
X_cluster = (X_cluster - X_cluster.mean()) / X_cluster.std() # escalado
```

```
[20]: from sklearn.cluster import KMeans
  import matplotlib.pyplot as plt

inertia = []
for k in range(2, 10):
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(X_cluster)
    inertia.append(kmeans.inertia_)

plt.plot(range(2, 10), inertia, marker='o')
plt.title('Método del codo (Elbow Method)')
plt.xlabel('Número de clusters')
plt.ylabel('Inercia')
plt.show()
```



```
[21]: kmeans = KMeans(n_clusters=4, random_state=42)
      df['Cluster'] = kmeans.fit_predict(X_cluster)
[22]: cluster_summary = df.groupby('Cluster')[['Price_USD', 'Engine_Size_L',__

¬'Sales_Volume']].mean()
      cluster_summary
                  Price_USD Engine_Size_L Sales_Volume
[22]:
      Cluster
               99297.829222
                                  3.259359
                                             4432.425593
               50786.748808
                                  3.248008
      1
                                             5686.481296
      2
               80912.864108
                                  3.216491
                                             7719.188615
      3
               68692.701543
                                  3.265164
                                             2405.510206
 []:
```