Exercise 19

陈志杰 524531910034

Lemma. Suppose G is a simple undirected graph, and $u = x_0, x_1, \ldots, x_n = v$ is a path connecting u and v, where $u \neq v$. Then there exists a simple path $u = x_0, x_{i_1}, \ldots, x_{i_{m-1}}, x_n = v$ connecting u and v such that $0 < i_1 < i_2 < \cdots < i_m < n$.

Proof. Because n is finite and during each iteration the length of P decreases, we can execute the following procedure which will eventually halt.

```
1: P \leftarrow (u = x_0, x_1, \dots, x_n = v)^1
```

 \triangleright Here P is a path.

- 2: while there exists duplicate vertices in P do
- 3: Denote P by $u = y_0, \dots, w = y_i, \dots, w = y_j, \dots, y_m = v$ where $0 \le i < j \le m$.
- 4: $P \leftarrow (u, \dots, y_{i-1}, y_i, y_{j+1}, \dots, v)$
- 5: end while
- 6: **return** P

The returned path satisfies the desired properties.

Problem 1.

Proof. Suppose the unique simple path connecting u and v passes through w. Let this very path be $u = x_0, x_1, \ldots, w = x_i, \ldots, x_n = v$, where $0 \le i \le n$. We have d(u, v) = n. $u = x_0, x_1, \ldots, x_i = w$ is a simple path connecting u and w; thus d(u, w) = i. $w = x_i, x_{i+1}, \ldots, x_n = v$ is a simple path connecting w and v; thus d(w, v) = n - i. Now we have d(u, v) = d(u, w) + d(w, v).

Suppose d(u,v) = d(u,w) + d(w,v). Let $u = x_0, x_1, \ldots, x_m = w$ be the unique simple path connecting u and w, and $w = x_m, x_{m+1}, \ldots, x_n = v$ be the unique simple path connecting w and v, where $m \leq n$, d(u,w) = m and d(w,v) = n-m. Then $u = x_0, \ldots, x_m = w, \ldots, x_n = v$ is a path of length d(u,v) connecting u and v. By the lemma, we can remove some vertices from this path and make it a simple path. However, the length of the unique simple path connecting u and v is exactly d(u,v). Hence no vertices are removed from this path before it becomes a simple path, i.e., it is a simple path. Because this simple path passes through w, the proof is completed.

Problem 2.

- Proof. (a) Let r be the root. Suppose uR_1v , i.e., u is v's ancestor in G. Let $r = x_0, x_1, \ldots, x_n = v$ be the unique simple path (of length n) connecting r and v. By definition $u = x_k$ for some $0 \le k < n$. Hence $r = x_0, x_1, \ldots, x_k = u$ is the unique simple path (of length k) connecting r and u. That u's level is less than v's level follows from k < n. Thus uR_2v , proving that $R_1 \subseteq R_2$.
- (b) Let $V = \{r\}$, $E = \emptyset$, and G = (V, E). Trivially G is a rooted tree with root r, and $R_1 = R_2 = \emptyset$, as desired.
- (c) Let $V = \{r, u, v_0, v_1\}$, $E = \{e_0, e_1, e_2\}$ where e_0 has endpoints r, u, e_1 has endpoints r, v_0 , and e_2 has endpoints v_0, v_1 . Let G = (V, E) be a rooted tree with root r. $R_1 = \{(r, u), (r, v_0), (r, v_1), (v_0, v_1)\}$. Because the levels of r, u, v_0, v_1 are respectively $0, 1, 1, 2, R_2 = \{(r, u), (r, v_0), (r, v_1), (v_0, v_1), (r, v_1)\}$. $R_1 \neq R_2$, as desired.

¹The parentheses here are used only to avoid ambiguity about precedence of operations.

Problem 3.

Proof. Let r be the root. Let $r = x_0, x_1, \ldots, x_n = w$ is the unique simple path connecting r and w. By definition $u = x_i, v = x_j$ for some $0 \le i, j < n$. We use proof by cases.

- (a) i = j. Then u = v.
- (b) i < j. Because $r = x_0, \dots, u = x_i, \dots, x_j = v$ is a simple path connecting r and v, u is v's ancestor.
- (c) i > j. Because $r = x_0, \ldots, v = x_j, \ldots, x_i = u$ is a simple path connecting r and u, u is v's descendent.

Now the proof is completed.