Solving the weighted bipartite matching problem (with contextualizations)

Vidmantas Zemleris

October 14, 2013

Min-cost bipartite matching: given N jobs and M people and a NxM matrix of costs of performing these jobs. Each job has to be assigned to *one* of M people, while one person can perform maximum one job. Assume $M \leq N$ (or matrix can be rotated). Another interpretation can be assigning each of N keywords a tag from M tags available (and we have a likelihood matrix). This can be efficiently solved by a well-known Munkres¹ algorithm in $\Theta(N^2M)$.

Contextualization adds additional interdependencies between solution costs, e.g. the person A would agree to perform the job X cheaper, if person be is assigned job Y (e.g. as he wants to be nearby). In the context of keyword search: the tag_j of a keyword kw_i is more likely if it's nearby a related tag_y .

Comparison of known approaches

Notation: N keywords; M is total number of possible tags; \widetilde{M} is the average # of possible tags; k - # of top-k results to return.

Method	Advantages	Disadvantages
Exhaustive search	⊳easy pruning and contextualization	slow, $O(\widetilde{M}^N)$
	⊳optimal answers	
Munkres[3] gives one best solution in $\Theta(N^2M)$.	⊳ quite fast	⊳ no contextualization
		⊳only one best result
Keymantic[2] - Munkres modified for contextualizations	⊳ quite fast	⊳approximate - not global top-k
recursively evaluate ² all mappings pruning on the cost. do	⊳ some contextualization	⊳ correctness unproven
contextualization inside Munkres	⊳some of top-k answers	⊳no guarantee of all contextualizations
Murty[6] + Munkres - top-k matchings	<i>⊳top-k optimal</i> solutions	⊳no early pruning (partial matching may
to get each additional result, call Munkres to solve $n-1$	⊳ quite fast	change a lot)
smaller assignments of sizes $2n - 1$. Heuristics can greatly		⊳no contextualization ³
improve expected run time[4]		
$HMM[1] + List \ Viterbi[7] $ (slightly different model)	<i>⊳top-k optimal</i> solutions	⊳no pruning
can start with estimated HMM params: transition probs	\triangleright contextualization of $limited\ length$	⊳a tag may get selected many times
from contextualizations, output probs from cost matrix	⊳ quite fast	
Murty + Dynamic Munkres (good if few dependencies)	⊳top-k optimal results	▷ exponential for complex
1) enumerate over all contextualization possibilities ⁴	▶ fast if # contextualizations is small	contextualizations
2) use Murty's to get top-k results over contextualized		
cost-matrix reusing older sub-solutions[5] costing only		
$\Theta(NM)$ per modified "line".		

Table 1: comparison of different methods

 $^{^1}$ Munkres splits the assignment problem into easier ones: 1) maintaining a set of constraints that restrict the currently allowed matches (edges) to be cheap enough, and 2) solving N unweighted bipartite assignments: starting with an empty matching, find an augmenting path to increase the size of matching - new edges are selected or existing deselected; if no augmenting path exist, loosen the constraints on weights.

²by solving multiple weighted matchings with Munkres (and modifying the matrices to (not) to choose specific matches)

³could do same unproven contextualization within Munkres as in Keymantic; would at least guarantee top-k with limited contextualization ⁴exploring contextualizations in depth-first order cost-matrix modifications can be reused

References

- [1] S. Bergamaschi, F. Guerra, S. Rota, and Y. Velegrakis. A hidden markov model approach to keyword-based search over relational databases. Conceptual Modeling-ER 2011, pages 411–420, 2011.
- [2] Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Raquel Trillo Lado, and Yannis Velegrakis. Keyword search over relational databases: a metadata approach. In *Proceedings of the 2011 international conference on Management of data*, pages 565–576. ACM, 2011.
- [3] Francois Bourgeois and Jean-Claude Lassalle. An extension of the munkres algorithm for the assignment problem to rectangular matrices. Communications of the ACM, 14(12):802–804, 1971.
- [4] Matt L Miller, Harold S Stone, and Ingemar J Cox. Optimizing murty's ranked assignment method. Aerospace and Electronic Systems, IEEE Transactions on, 33(3):851–862, 1997.
- [5] G Ayorkor Mills-Tettey, Anthony Stentz, and M Bernardine Dias. The dynamic hungarian algorithm for the assignment problem with changing costs. 2007.
- [6] Katta G Murty. Letter to the editor—an algorithm for ranking all the assignments in order of increasing cost. *Operations Research*, 16(3):682–687, 1968.
- [7] N. Seshadri and C.E.W. Sundberg. List viterbi decoding algorithms with applications. Communications, IEEE Transactions on, 42(234):313–323, 1994.