Homework 3 Physics 133-B

Problem 3. Consider a sinusoidal electromagnetic wave propagating in the +x direction, whose electric field is parallel to the y axis. The wave has wavelength 475 nm, and the electric field has amplitude 3.20×10^{-3} V m⁻¹. What is the frequency of the wave? What is the amplitude of the magnetic field? What are the vector equations for $\mathbf{E}(x,t)$ and $\mathbf{B}(x,t)$?

Solution. Frequency is related to wavelength by $v = \lambda f$, where the wave speed v = c for an electromagnetic wave in vacuum. So

$$f = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \,\mathrm{m\,s^{-1}}}{475 \times 10^{-9} \,\mathrm{m}} = \frac{3.00 \times 10^8}{4.75 \times 10^{-7}} \,\mathrm{Hz} = 6.32 \times 10^{14} \,\mathrm{Hz}.$$

The amplitudes of the fields are related by $E_0 = cB_0$, so

$$B_0 = \frac{E_0}{c} = \frac{3.20 \times 10^{-3} \,\mathrm{V \, m^{-1}}}{3.00 \times 10^8 \,\mathrm{m \, s^{-1}}} = \frac{3.20}{3.00} \times 10^{-11} \,\mathrm{T} = 1.07 \times 10^{-11} \,\mathrm{T}.$$

where we have used $1 \text{ T} = 1 \text{ V s m}^{-2}$.

The direction of propagation of the wave is $\mathbf{E} \times \mathbf{B}$. We know from the problem statement that the wave is propagating in the $\hat{\mathbf{x}}$ direction, and that the electric field points in the $\hat{\mathbf{y}}$ direction. Since $\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$, the magnetic field must point in the $\hat{\mathbf{z}}$ direction. Then the vector equations are

$$\mathbf{E}(x,t) = E_0 \cos(kx - \omega t) \,\hat{\mathbf{y}}, \qquad \qquad \mathbf{B}(x,t) = B_0 \cos(kx - \omega t) \,\hat{\mathbf{z}}.$$

We can find the wave number k and angular frequency ω as follows:

$$k = \frac{2\pi}{\lambda} = \frac{2\pi \,\text{rad}}{4.75 \times 10^{-7} \,\text{m}} = 1.32 \times 10^7 \,\text{rad} \,\text{m}^{-1},$$

 $\omega = 2\pi f = (2\pi \,\text{rad})(6.32 \times 10^{14} \,\text{Hz}) = 3.97 \times 10^{15} \,\text{rad} \,\text{s}^{-1}.$

Then we have

$$\mathbf{E}(x,t) = (3.20 \times 10^{-3} \,\mathrm{V \, m^{-1}}) \cos[(1.32 \times 10^7 \,\mathrm{rad \, m^{-1}})x - (3.97 \times 10^{15} \,\mathrm{rad \, s^{-1}})t] \,\hat{\mathbf{y}},$$

$$\mathbf{B}(x,t) = (1.07 \times 10^{-11} \,\mathrm{T}) \cos[(1.32 \times 10^7 \,\mathrm{rad \, m^{-1}})x - (3.97 \times 10^{15} \,\mathrm{rad \, s^{-1}})t] \,\hat{\mathbf{z}}.$$