Group Practical 2

Shiyu Yi,2016141231175

Chuang Du,2016141462277 Jiali Shang,2016141462137

July 19, 2018

1 Objectives:

- To understand the application of basic clustering techniques to expression data.
- To illustrate how clusters can be analysed on the basis of their statistical validity.
- To illustrate how obtained clusters and validity indicators can be used to support biological interpretation.

2 Activities:

2.1 Problem 1

Which information is represented by columns (and rows) in the table displayed? How many samples are included? How many natural classes describe this problem?

Answer:

Each column represents the numerical level of a gene in a different sample

Each row represents the numerical level of different genes in each sample.

38 samples are included.

2 natural classes: AML and ALL

2.2 Problem 2

Examine the obtained partitions. Are samples belonging to the same classes (ALL and AML) generally clustered together? Can outliers or exceptions to this rule be identified?

No, they are not.When K=2, it's basically all together. When K=3, ALL is basically together, AML is basically not together, when K is equal to 4, ALL is basically together, and the absence of AML is strengthened.

We don't think it can be sure the outliers or exception.

2.3 Problem 3

According to this validity index, which is the best partition or correct number of clusters?

Table 1: Calculate Dunn's Index

-			
	k	Dunn's Index	_
	2	1.368677784020677	_
	3	0.9617664356001026	
	4	0.7123988365558371	_

So k=2 is the best.It match our actual situation

2.4 Problem 4

Repeat the same cluster validity procedure using another validity index. Compare results.

choose Goodman-Kruskai Index

Table 2: Calculate Goodman-Kruskai Index

k	Goodman-Kruskai Index
2	0.9320598006644518
3	0.8861171748468418
4	0.7596945732206163

Still,k=2 is the best.

2.5 Problem 5

Repeat these cluster validity procedures using other intra- and inter-cluster distances. Compare results.

So we changed the Metrics from Euclidean to Manhattan

Table 3: Calculate Dunn's Index(Manhattan)

k	Dunn's Index
2	1.9393051013997842
3	1.0539531093492691
4	0.7804016773339219

Still, k=2 is the best.It match our actual situation

2.6 Problem 6

Using a table aggregate these results for each number of clusters, estimate the correct number of cluster.

Table 4: Estimate the correct number

K	AML'S Error	AML'S Correct number	ALL's Error	ALL'S Correct number
2	1	37	0	38
3	3	35	2	36
_4	3	35	4	34

2.7 Problem 7

Apply the same clustering and validity procedures on a normalised version of the dataset. Discuss the effect on the results.

By normalising the dataset,

- 1. ALL will be scattered in multiple clusters and AML will be basically in one cluster
- 2. After normalization, the Dunn index decreases slightly when K=2, and increases when K=3 and K=4, but still, the dunn index is the largest when K=2.

- 3. After normalization, the Goodman kruskal index is up when K=2, K=3 and K=4,but still, the dunn index is the largest when K=2.
- 4. After normalization and changed the Metrics from Euclidean to Manhattan, the dunn index decreases slightly when K=2, and increases when K=3 and K=4, but still, the dunn index is the largest when K=2.
- 5. After normalization, there was no significant change in AML errors, When k=2 and k=3, the number of errors decreased, while ALL errors increased significantly.

Table 5: Normalization

K	Dunn's Index(Euclidean)	Goodman-Kruskai(Euclidean)	Dunn's Index(Manhattan)
2	1.1641825885668076		
3	1.039628430402765		
4	0.9448749245715864		
2		0.9467162998129766	
3		0.8085021016431028	
4		0.8458190788708139	
2			1.4500530473749371
3			1.1790336698476866
4			0.8819500348184528

Table 6: Before Normalization

K	AML'S Error	AML'S Correct number	ALL's Error	ALL'S Correct number
2	1	37	0	38
3	3	35	2	36
4	3	35	4	34

Table 7: After Normalization

K	AML'S Error	AML'S Correct number	ALL's Error	ALL'S Correct number
$\overline{2}$	0	38	3	35
3	1	37	7	31
4	3	35	12	26

