## 关系的运算

School of Computer Wuhan University

- 1/145 -

- 1 关系的合成
  - 关系的合成
  - 关系的幂
  - 关系的闭包
  - 传递闭包的求解算法

## 关系上的运算

#### Remark

由于关系就是集合,因此集合上的运算也是关系的运算.

- "\le " "\la \" = " \le ":
- ℝ上有: "≤" ∩ "≥" = "=";
- "≤"∪"≥"= ℝ上的全域关系;
- "⊆"∪"⊇"≠ 全域关系.

由于关系的对象是n重组,因此还有些一般集合不具有的运算.

# 关系合成的图示



## 合成的定义

## Definition (合成关系, Composite Relation)

设 $\mathcal{R}_1 \subseteq A \times B$ ,  $\mathcal{R}_2 \subseteq B \times C$ ,  $\mathcal{R}_1$ 和 $\mathcal{R}_2$ 的合成记为 $\mathcal{R}_1 \circ \mathcal{R}_2$ ( $\mathcal{R}_1 \mathcal{R}_2$ )定义为:

 $\mathcal{R}_1 \mathcal{R}_2 \triangleq \{ \langle a, c \rangle \mid a \in A, c \in C \land \exists b \in B \land a \mathcal{R}_1 b \land b \mathcal{R}_2 c \}$  是A到C上的关系.

#### Remark

合成的条件:第一个关系的陪域(codomain)和第二个关系的域(domain)是相同的集合.

- 15/145 -

### Example

- 。 $R_1$ 是兄弟关系; $R_2$ 父子关系; $R_1$  $R_2$ 是叔侄关系;
- $\mathcal{R} = \{\langle a, b \rangle \mid \text{anb间有直航航线} \}$ ,  $\mathcal{R}$   $\mathcal{R}$  是城市之间经过一个城市转机的间接航线(记为 $\mathcal{R}^2$ );
- $(=_4)^2 = =_4;$
- $\mathcal{R} \subseteq A \times B$ ; M,  $\mathbb{1}_A \mathcal{R} = \mathcal{R} \mathbb{1}_B = \mathcal{R}$ ;
- 合成对应的SQL语句: SELECT  $\mathcal{R}_1$  .first,  $\mathcal{R}_2$  .second FROM  $\mathcal{R}_1$  JOIN  $\mathcal{R}_2$  ON  $\mathcal{R}_1$  .second =  $\mathcal{R}_2$  .first.



# 合成的运算性质(1/2)

#### Theorem

设 $\mathcal{R}_1 \subseteq A \times B$ ,  $\mathcal{R}_2, \mathcal{R}_3 \subseteq B \times C$ ,  $\mathcal{R}_4 \subseteq C \times D$ :

- $\mathcal{R}_1(\mathcal{R}_2 \cup \mathcal{R}_3) = \mathcal{R}_1 \mathcal{R}_2 \cup \mathcal{R}_1 \mathcal{R}_3 \ (\circ \mathsf{M} \cup \ \mathsf{hohm});$
- ③  $(R_2 \cup R_3) R_4 = R_2 R_4 \cup R_3 R_4$  (○对∪的分配律);



# 合成的运算性质(2/2)

#### Proof.

## (2)的证明:





# ②的反例



### Example

。 求所有可以间接通航的城市:



a和b可间接通航, iff:

$$\exists a_1, a_2, \ldots, a_{n-1} \ (a \mathcal{R} a_1 \wedge a_1 \mathcal{R} a_2 \wedge \ldots \wedge a_{n-1} \mathcal{R} b)$$

则: 
$$\langle a, a_1 \rangle \in \mathcal{R}$$
;

$$\langle a, a_2 \rangle \in \mathcal{R}^2$$
;

$$\langle a, a_{n-1} \rangle \in (\mathcal{R}^{n-2}) \mathcal{R} \triangleq \mathcal{R}^{n-1};$$

$$\langle a,b\rangle\in(\mathcal{R}^{n-1})\,\mathcal{R}\triangleq\mathcal{R}^n$$
;

∴ a n b可间接通航, iff,  $\exists n \langle a, b \rangle \in \mathbb{R}^n$ .

## Example 2: Six Degrees of Separation (六度分隔)



见http://en.wikipedia.org/wiki/Six\_degrees\_of\_separation.

### Definition (关系的幂, Power of relation)

设R是A上的关系,  $n \in \mathbb{N}$ , R的乘幂递归定义如下:

- $\mathbf{0} \ \mathcal{R}^0 = \mathbb{1}_A;$

### Example



$$\therefore \mathcal{R}^n = \begin{cases} \mathcal{R} & \text{if } n \neq 3 \\ \mathbb{1}_A & \text{if } n \neq 3 \end{cases}$$

## 相关性质

#### Theorem

 $(\mathcal{R}^m)^n = \mathcal{R}^{mn};$ 

#### ①的证明.

#### 对n用归纳法:

- **①** n = 0时, $\mathcal{R}^m \mathcal{R}^0 = \mathcal{R}^m \mathbb{1}_A = \mathcal{R}^m = \mathcal{R}^{m+0}$ ;
- ② 设n = k时, $\mathcal{R}^m \mathcal{R}^k = \mathcal{R}^{m+k}$ ;
- ③ n = k + 1时:

$$\mathcal{R}^{m}\mathcal{R}^{k+1}$$
 $=\mathcal{R}^{m}(\mathcal{R}^{k}\mathcal{R})$  (def)
 $=(\mathcal{R}^{m}\mathcal{R}^{k})\mathcal{R}$  (结合律)
 $=\mathcal{R}^{m+k}\mathcal{R}$  (归纳假设)
 $=\mathcal{R}^{m+k+1}$  (def)

## 相关性质

#### **Theorem**

① 设|A| = n, 则存在 $i, j \in \{0\}$ 0  $\{i < j \le 2^{n^2}\}$ , 使得:  $\mathcal{R}^i = \mathcal{R}^j$ .

#### Proof.

- $2 : |\mathscr{P}(A \times A)| = 2^{n^2};$
- **③** 而 $\mathcal{R}^0$ ,  $\mathcal{R}^1$ , ...,  $\mathcal{R}^{2^{n^2}}$  共有 $2^{n^2}$  + 1项;
- ④ 根据抽屉原则,  $\exists i, j \ 0 \leq i < j \leq 2^{n^2}$ , 使得:  $\mathcal{R}^i = \mathcal{R}^j$ .

Corollary

 $\forall m \in \mathbb{N} \ \mathcal{R}^m \in \{\mathcal{R}^0, \mathcal{R}^1, \dots, \mathcal{R}^{2^{n^2}-1}\}.$ 

闭包

### Description (闭包, Closure)

数学上把包含某个给定的集合,并且具有某个性质的最**小**集合称 为闭包.

### Example

● 所有的可以间接通航的城市之间的关系, 是直接通航城市的传递闭包;

- 62/145 -

### Definition (关系的逆)

设 $\mathcal{R} \subseteq A \times B$ , 关系 $\mathcal{R}$ 的逆关系, 记为 $\widetilde{\mathcal{R}}$ (读作tilde), 定义如下:  $\widetilde{\mathcal{R}} = \{\langle y, x \rangle \mid \langle x, y \rangle \in \mathcal{R}\} \subseteq B \times A$ 

### Example

- $\stackrel{\sim}{\leqslant} = \geqslant; \widetilde{\mathbb{1}_A} = \mathbb{1}_A; \stackrel{\sim}{\subseteq} = \supseteq;$
- 关系的逆是关系的对偶概念;如果R具有五性,则 $\widetilde{R}$ 也相应的具有;
- 关系的逆与关系的补是不同的概念:  $\overline{\mathcal{R}} = \{\langle x, y \rangle | \langle x, y \rangle \notin \mathcal{R} \} \subseteq A \times B$

#### **Theorem**

 $\mathcal{R}$ 是对称关系, iff,  $\mathcal{R} = \tilde{\mathcal{R}}$ .

#### Proof.

 $\iff \forall \langle x, y \rangle \in \mathcal{R} : \langle x, y \rangle \in \widetilde{\mathcal{R}}; So \langle y, x \rangle \in \mathcal{R}$  所以况是对称关系.

j

## 特性关系的闭包

#### **Definition**

设 $\mathcal{R} \subseteq A^2$ ,  $\mathcal{R}$ 的自反(对称、传递)闭包 $\mathcal{R}'$ 是满足下述三条件的关系:

- ② R'是自反的(对称的、传递的);
- ③ 设 $\mathbb{R}''$ 是满足上述两条件的关系,则 $\mathbb{R}' \subseteq \mathbb{R}''$ .

分别记R的自反、对称和传递闭包为: r(R), s(R)和t(R).

### Propostion

R是自反的(对称的、传递的), iff, R = r(R) (s(R)), t(R)).

# 闭包的构造(1/2)

#### **Theorem**

① 
$$r(\mathcal{R}) = \mathcal{R} \cup \mathbb{1}_A$$
; ②  $s(\mathcal{R}) = \mathcal{R} \cup \widetilde{\mathcal{R}}$ ; ③  $t(\mathcal{R}) = \bigcup_{i=1}^{\infty} \mathcal{R}^i$ .

#### ③的证明.

- $\mathbf{0} \ \mathcal{R} \subseteq \bigcup_{i=1}^{\infty} \mathcal{R}^{i};$

$$\exists m, n \ \langle x, y \rangle \in \mathcal{R}^m, \ \langle y, z \rangle \in \mathcal{R}^n; \ \therefore \langle x, z \rangle \in \mathcal{R}^m \mathcal{R}^n = \mathcal{R}^{m+n} \subseteq \bigcup_{i=1}^{\infty} \mathcal{R}^i;$$

所以 $\bigcup_{i=1}^{\infty} \mathcal{R}^i$ 是传递的.

# 闭包的构造(2/2)

### (3)的证明.

③ 设传递关系 $\mathcal{R}'\supseteq\mathcal{R}$ ,则要证明:  $\bigcup_{i=1}^{\infty}\mathcal{R}^i\subseteq\mathcal{R}'$ ;

用归纳法证明:  $\forall n \ \mathcal{R}^n \subseteq \mathcal{R}'$ .

- n = 1 时,  $\mathcal{R} \subseteq \mathcal{R}'$ ;
- ② 设n = k时结论成立, n = k + 1时: 设 $\langle x, z \rangle \in \mathcal{R}^{k+1} = \mathcal{R}^k \mathcal{R}$ ; ∴  $\exists y \langle x, y \rangle \in \mathcal{R}^k \land \langle y, z \rangle \in \mathcal{R}$ ;
  - So  $\langle x, y \rangle \in \mathcal{R}' \land \langle y, z \rangle \in \mathcal{R}';$
  - $\therefore \langle x, z \rangle \in \mathcal{R}'(\mathcal{R}'$ 是传递的).

 $r(<) = \leq; s(<) = "\neq";$ 

- 。 $s(\leq) =$ 全域关系;  $r(\neq) =$ 全域关系;
- 。设 $\mathcal{R}$ 是城市之间有直接航线的关系,则城市之间有间接航线的关系等于 $\bigcup_{i} \mathcal{R}^{i}$ .

# 有限集合的传递闭包

#### **Theorem**

$$\mathcal{L}[A] = \mathbf{n}, \ \mathcal{R} \subseteq A^2, \ \mathbf{M}: \ \mathbf{t}(\mathcal{R}) = \bigcup_{i=1}^n \mathcal{R}^i;$$

## 有限集合的传递闭包

#### **Theorem**

$$\mathcal{E}|A|=n,\ \mathcal{R}\subseteq A^2,\ M\colon\ t(\mathcal{R})=\bigcup_{i=1}^n\mathcal{R}^i;$$

#### Proof.

- ① 设 $\langle x_0, x_{n+1} \rangle \in \mathbb{R}^{n+1}$ ;
- 2  $\exists x_1, x_2, \ldots, x_n x_0 \mathcal{R} x_1 \land x_1 \mathcal{R} x_2 \land \ldots x_n \mathcal{R} x_{n+1};$
- ③ 即 $\mathbb{R}$ 关系图中有从 $x_0$ 到 $x_{n+1}$ 长度为n+1的有向路径;
- ④ 而 $x_1, x_2, ..., x_{n+1}$  n+1个元素只能在 |A| = n个元素中选取;
- ⑤ 所以根据抽屉原则, ∃1 ≤i <j ≤n+1  $x_i = x_i$ ;
- $\underbrace{x_0 \, \mathcal{R} \, x_1 \, \wedge x_1 \, \mathcal{R} \, x_2 \, \wedge \cdots \, \wedge x_i \, \mathcal{R} \, x_{j+1} \, \wedge \cdots \, \wedge x_n \, \mathcal{R} \, x_{n+1}}_{n+1-(j-i) \, \uparrow};$

$$\bigcirc \ \, \therefore \langle x_0, x_{n+1} \rangle \in \mathcal{R}^{n+1-(j-i)} \subseteq \bigcup_{i=1}^n \mathcal{R}^i.$$



$$\mathcal{R} = \{\langle a,b \rangle, \langle b.c \rangle, \langle c,a \rangle \}$$
的传递闭包 
$$t(R) = R \cup R^2 \cup R^3$$

## 闭包之间的关系(1/3)

### Propostion

设R是自反关系,则,t(R)和s(R)也是自反关系;

 $t(\mathcal{R})$ 是自反关系的证明.

# 闭包之间的关系(1/3)

### Propostion

设 $\mathcal{R}$ 是自反关系,则, $t(\mathcal{R})$ 和 $s(\mathcal{R})$ 也是自反关系;

### $t(\mathcal{R})$ 是自反关系的证明.

- ①  $\mathcal{R}$ 是自反的, iff,  $\mathbb{1}_A \subseteq \mathcal{R}$
- **②**  $\operatorname{Hom}(\mathcal{R}) = \bigcup_{i=1}^{\infty} \mathcal{R}^i \supseteq \mathbb{1}_A;$
- ⑤ 所以, R是自反的.





# 闭包之间的关系(2/3)

#### Propostion

$$rt(\mathcal{R}) = tr(\mathcal{R});$$

Proof.

$$rt(\mathcal{R}) = \bigcup_{i=0}^{\infty} \mathcal{R}^i; \quad tr(\mathcal{R}) = \bigcup_{i=1}^{\infty} (\mathbb{1}_A \cup \mathcal{R})^i$$

用归纳法证明下述等式即可:

$$\forall n \in \mathbb{N} \quad (\mathbb{1}_A \cup \mathcal{R})^n = \bigcup_{i=0}^n \mathcal{R}^i;$$

由此:

$$\forall n \ (\mathbb{1}_A \cup \mathcal{R})^n \subseteq \bigcup_{i=0}^n \mathcal{R}^i \subseteq \bigcup_{i=0}^\infty \mathcal{R}^i;$$

所以:

$$\bigcup_{i=1}^{\infty} \mathcal{R}^{i} \subseteq \bigcup_{i=1}^{\infty} (\mathbb{1}_{A} \cup \mathcal{R})^{i} \subseteq \bigcup_{i=1}^{\infty} \mathcal{R}^{i};$$

即:

$$rt(\mathcal{R}) = tr(\mathcal{R}).$$

# 闭包之间的关系(3/3)

#### Proof(continued).

$$\forall n \in \mathbb{N} \quad (\mathbb{1}_A \cup \mathcal{R})^n = \bigcup_{i=0}^n \mathcal{R}^i;$$

- ① n = 0时上述等式成立;
- ② 设n = k时上述等式成立,则n = k + 1时:

$$\begin{split} &(\mathbb{1}_A \cup \mathcal{R})^{k+1} \\ &= (\mathbb{1}_A \cup \mathcal{R})^k (\mathbb{1}_A \cup \mathcal{R}) \\ &= \left(\bigcup_{i=0}^k \mathcal{R}^i\right) (\mathbb{1}_A \cup \mathcal{R}) \\ &= \left(\left(\bigcup_{i=0}^k \mathcal{R}^i\right) \mathcal{R}\right) \bigcup \left(\left(\bigcup_{i=0}^k \mathcal{R}^i\right) \mathbb{1}_A\right) \\ &= \left(\bigcup_{i=1}^{k+1} \mathcal{R}^i\right) \bigcup \left(\bigcup_{i=0}^k \mathcal{R}^i\right) \\ &= \left(\bigcup_{i=1}^{k+1} \mathcal{R}^i\right) \bigcup \left(\bigcup_{i=0}^k \mathcal{R}^i\right) \end{split} \tag{by 合成对并的分配率)}$$

#### **Theorem**

设
$$\mathcal{R} \subseteq A \times B$$
,  $\mathcal{S} \subseteq B \times C$ ;  $|A| = m$ ,  $|B| = n$ 和 $|C| = p$ , 则:  $M_{\mathcal{R} \mathcal{S}} = M_{\mathcal{R}} \cdot M_{\mathcal{S}}$ ; 其中:  $M_{\mathcal{R}} = (a_{ij})_{m \times n}$ ;  $M_{\mathcal{S}} = (b_{ij})_{n \times p}$ ,  $M_{\mathcal{R}} \cdot M_{\mathcal{S}} = (c_{ij})_{m \times p}$ ;  $c_{ij} \triangleq \bigvee_{i} a_{ik} \wedge b_{kj}$ ;

#### Proof.

设
$$A = \{x_1, x_2, \dots, x_m\}, B = \{y_1, y_2, \dots, y_n\}, C = \{z_1, z_2, \dots, z_p\}$$

$$c_{ij} = 1$$

设: 
$$M_{\mathcal{R}} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
;  $M_{\mathcal{S}} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ ;

则:

$$\mathbf{M}_{\mathcal{R}\mathcal{S}} = \mathbf{M}_{\mathcal{R}} \cdot \mathbf{M}_{\mathcal{S}} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$



# 传递闭包的求解算法

### Description

$$M_{t(\mathcal{R})} = \sum_{i=1}^{n} M_{\mathcal{R}}^{i}$$

其中: MR 是n阶方阵;

• 计算
$$M \cdot M$$
的每个元素 $c_{ij} = \bigvee_{k=1}^{n} a_{ik} \wedge b_{kj} \dots O(n);$ 

• 计算
$$\sum_{i=1}^{n} M_{\mathcal{R}}^{i}$$
 ...... $O(n^{4})$ .

Warshall算法可降算法的复杂度为: ○(n³).

## Warshall算法

### Definition

设 $A = \{a_1, a_2, \dots, a_n\}, \mathcal{R} \subseteq A^2, M$ 是 $\mathcal{R}$ 的关系矩阵; n阶方阵 $W_k$  递归定义如下:

- **1**  $W_0 = M$ ;
- ②  $W_k = (w_{ij}^k)_{n \times n}$ , 其中:  $w_{ij}^k = 1$ , iff,  $A_i \ni a_j$  有一条仅经过 $a_1, a_2, \ldots, a_k$ 的有向路径.

### Propostion

$$W_n = M_{t(\mathcal{R})}$$



#### Example



$$W_0 = \begin{pmatrix} a & b & c & d \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

k = 1时,经过a点的路径:



$$W_1 = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

#### Example



$$W_0 = \begin{pmatrix} a & b & c & d \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

k=2时,经过a,b点的路径: b没有引入的边,所以没有经过b的路径



$$W_2 = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$



$$W_0 = \begin{pmatrix} a & b & c & d \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

k = 4时, 经过a, b, c, d点的路径:



$$W_4 = \left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{array}\right)$$

## Wk的计算

## Description ( $W_k$ 和 $W_{k+1}$ 的关系)

$$w_{ii}^{k+1} = 1$$
, iff, 下述两条件之一成立:

- $w_{ij}^k = 1$ ,  $p_{ij} M_{ai} = 1$ ,  $p_{ij} M_{$
- ② 有一条仅经过a<sub>1</sub>, a<sub>2</sub>,..., a<sub>k+1</sub>, 并且仅经过a<sub>k+1</sub>一次的路径: 如:

$$a_i, x_1, x_2, \dots, x_p, a_{k+1}, y_1, y_2, \dots, y_q, a_j$$
  
其中:  $x_1, x_2, \dots, x_p$ 和 $y_1, y_2, \dots, y_q$ 都在 $\{a_1, a_2, \dots, a_k\}$ 中;  
 $w_{i(k+1)}^k = 1 \land w_{(k+1)j}^k = 1;$ 

故:

$$w_{ij}^{k+1} = w_{ij}^k \vee (w_{i(k+1)}^k \wedge w_{(k+1)j}^k)$$

# Warshall算法. procedure warshall (Matrix $M_R$ ) $W := M_{\mathcal{R}};$ for k := 1 to n do { for i := 1 to n do { for j := 1 to n do { $w_{ii} := w_{ii} \vee (w_{ik} \wedge w_{ki});$

- 143/145 -

- ① 关系的合成
  - 关系的合成
  - 关系的幂
  - 关系的闭包
  - 传递闭包的求解算法