Problem statement

We all want to do accurate Bayesian inference quickly:

- In terms of compute (wall time, model evaluations, parallelism)
- In terms of analyst effort (tuning, algorithmic complexity)

Markov Chain Monte Carlo (MCMC) can be straightforward and accurate but slow.

Black Box Variational Inference (BBVI) can be faster alternative to MCMC. But...

- \bullet BBVI is cast as an optimization problem with an intractable objective \Rightarrow
- Most BBVI methods use stochastic gradient (SG) optimization ⇒
 - SG algorithms can be hard to tune
 - $\bullet\,$ Assessing convergence and stochastic error can be difficult
 - $\bullet~$ SG optimization can perform worse than second-order methods on tractable objectives
- Many BBVI methods employ a mean-field (MF) approximation ⇒
 - · Posterior variances are poorly estimated

Our proposal: replace the intractable BBVI objective with a fixed approximation.

- Better optimization methods can be used (e.g. true second-order methods)
- Convergence and approximation error can be assessed directly
- Can correct posterior covariances with linear response covariances
- This technique is well-studied (but still work to do in the context of BBVI)
- ⇒ Simpler, faster, and better BBVI posterior approximations ... in some cases.