# Álgebra Lineal I

Usando Beamer (nunca ppt)

## William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

11 de noviembre de 2020

# Espacios Vectoriales (continuación)

Consideremos ( $V, \langle \cdot, \cdot \rangle$ ) un espacio vectorial (real ó complejo) definamos la función  $\| \ \| : V \longrightarrow \mathbb{F}$  por

$$\|v\| = \sqrt{\langle v, v \rangle}$$

esta función satisface la siguiente

# Proposición

- 1.  $(\forall v \in V)(\|v\| \ge 0)$ ,  $y \|v\| = 0$  si, y solo si  $v = \mathbf{0}$ .
- 2.  $(\forall u, v \in V)(|\langle u, v \rangle| \le ||u|| ||v||)$  (designaldad de Schwarz).
- 3.  $(\forall u, v \in V)(\|u + v\| \le \|u\| + \|v\|)$  (designaldad triangular).

Prueba: Ejercicio.

### Definición

Sea V un espacio vectorial, la función  $\|\ \|:V\longrightarrow \mathbb{F}$  que satisface las siguientes propiedades

- 1.  $(\forall v \in V)(\|v\| \ge 0)$ ,  $y \|v\| = 0$  si, y solo si  $v = \mathbf{0}$ .
- 2.  $(\forall v \in V, \ \forall \lambda \in \mathbb{F})(\|\lambda v\| \le |\lambda| \ \|v\|)$ .
- 3.  $(\forall u, v \in V)(\|u + v\| \le \|u\| + \|v\|)$  (designaldad triangular). es llamada norma.

A la función de la proposición anterior es llamada **norma inducida** por el producto interno definido en V.

## Definición

 $(V, \langle \cdot, \cdot \rangle)$  un espacio vectorial. Diremos que  $u, v \in V$  son **ortogonales** si, y solo si  $\langle u, v \rangle = 0$ , y lo denotamos por  $u \perp v$ 

## Nota

Sea  $A \subset V$  un conjunto no vacío, el siguiente conjunto

$$A^{\perp} = \{u \in V/\langle u, v \rangle = 0, \ \textit{para todo} \ v \in A\}$$

es llamado el ortogonal de A.

De hecho el  $A^{\perp}$  es no vacío, y además es un subespacio de V. (Ejercicio)

 $(V,\langle\cdot,\cdot
angle)$  un espacio vectorial,

## Definición

Una base de V es llamada base ortogonal si sus elementos son mutuamente ortogonales.

# Proposición (Método de Ortogonalización de Gram-Schmidt)

Dada una base  $\{v^1, \dots, v^n\}$  de V, entonces existe una base ortogonal  $\{u^1, \dots, u^n\}$  de V tal que  $(j = 1, \dots, n)(u^j \in \mathcal{L}(\{v^1, \dots, v^n\})$ 

#### Prueba:

La prueba la haremos en forma inductiva:

Sea  $u^1 = v^1$ .

Definamos  $u^2=v^2+\lambda u^1$ , luego  $0=\langle u^1,u^2\rangle=\langle u^1,v^2\rangle+\langle \lambda u^1,u^1\rangle$  entonces

$$\lambda = -\frac{\langle u^1, v^2 \rangle}{\langle u^1, u^1 \rangle},$$

entonces 
$$u^2 = v^2 - \frac{\langle u^1, v^2 \rangle}{\langle u^1, u^1 \rangle} u^1$$
.

Continuamos con el proceso, y observamos que el j—ésimo vector es de la forma

$$u^j = v^j + \sum_{k=1}^{j-1} \lambda_k u^k,$$

dado que  $(\forall k=1,\cdots,j-1)(\langle u^j,u^k\rangle=0)$ , entonces tenemos para cada  $k=1,\cdots,j-1$ 

$$\lambda_k = -\frac{\langle u^j, v^k \rangle}{\langle u^k, u^k \rangle},$$

de esta manera hemos construido vectores ortogonales.

# Ejemplo

Consideremos el espacio vectorial  $\mathbb{R}[x]$  con el producto interno

$$\langle f,g\rangle = \int_{-1}^1 f(t)g(t)dt,$$

y sea  $\{1, x, x^2 \cdots, x^n, \cdots\}$  una base de  $\mathbb{R}[x]$ . entonces aplicamos el método de Gram-Schmidt como sigue:  $f_0(x) = 1$ , entonces

$$f_1(x) = x - \frac{\langle x, 1 \rangle}{\langle 1, 1 \rangle} = x;$$
  
$$f_2(x) = x^2 - \frac{\langle x^2, 1 \rangle}{\langle 1, 1 \rangle} - \frac{\langle x^2, x \rangle}{\langle x, x \rangle} = x^2 - \frac{1}{2},$$

etcétera.

4 D > 4 D > 4 E > 4 E > E 990

## Definición

Una base ortogonal  $\{v^1, v^2, \dots, v^n\}$  de V es llamada **ortonormal** si  $(para\ cada\ j=1,2,\cdots,n)(\langle v^j,v^j\rangle=1)$ .

Es decir, la base es ortonormal si cada de sus elementos tienen norma uno.

Sea  $S \subset V$  es un subespacio de dimensión finita, entonces

$$V = S \oplus S^{\perp}$$

#### Prueba:

Consideremos  $v^1, \dots, v^r$  una base ortonormal de S. Luego para cada  $v \in V$ , definamos el vector

$$w = \sum_{k=1}^{r} \langle v, v^k \rangle v^k,$$

luego  $\langle v-w, v^j \rangle = \langle v-\sum_{k=1}^r \langle v, v^k \rangle v^k, v^j \rangle = \langle v, v^j \rangle - \langle \langle v, v^j \rangle v^j, v^j \rangle = 0$ , entonces  $u=v-w \in S^\perp$ , de donde

$$v = w + u \in S + S^{\perp}$$
.

Además, si  $v \in S \cap S^{\perp}$ , entonces  $\langle v, v \rangle = 0$ , luego  $v = \mathbf{0}$ , es decir,  $S \cap S^{\perp} = \{\mathbf{0}\}$ . Por tanto,  $V = S \oplus S^{\perp}$ .

Si  $B = \{v^1, v^2, \dots, v^n\}$  es un conjunto ortonormal de V, entonces

1. 
$$(\forall v \in V) \left( \sum_{k=1}^{n} |\langle v, v^k \rangle|^2 \le ||v||^2 \right)$$
. (Designaldad de Bessel).

2. 
$$u = v - \sum_{k=0}^{n} \langle v, v^k \rangle v^k$$
 es ortogonal a B.

#### Prueba:

1. Para cada  $k = 1, 2, \dots, n$ , sea  $b_k = \langle v, v^k \rangle$ , entonces

$$0 \le \left\| v - \sum_{k=1}^{n} b_{k} v^{k} \right\|^{2} = \left\langle v - \sum_{k=1}^{n} b_{k} v^{k}, v - \sum_{k=1}^{n} b_{k} v^{k} \right\rangle$$

$$= \|v\|^{2} - \sum_{k=1}^{n} \overline{b}_{k} \langle v, v^{k} \rangle - \sum_{k=1}^{n} b_{k} \langle v^{k}, v \rangle + \sum_{k=1}^{n} \sum_{j=1}^{n} b_{k} \overline{b}_{j} \langle v^{k}, v^{j} \rangle$$

$$= \|v\|^{2} - \sum_{k=1}^{n} |b_{k}|^{2} - \sum_{k=1}^{n} |\overline{b}_{k}|^{2} + \sum_{k=1}^{n} |b_{k}|^{2}$$

$$= \|v\|^{2} - \sum_{k=1}^{n} |b_{k}|^{2} = \|v\|^{2} - \sum_{k=1}^{n} |\langle v, v^{k} \rangle|^{2},$$

de donde  $\sum_{k=1}^{n} |\langle v, v^k \rangle|^2 \le ||v||^2$ .

2. Ejercicio.



Dado  $B = \{v^1, v^2, \dots, v^n\}$  un conjunto ortonormal de V, entonces los siguientes enunciados son equivalentes

- 1. B es una base de V.
- 2. Si  $(\forall k = 1, 2, \dots, n)(\langle v, v^k \rangle = 0)$  entonces  $v = \mathbf{0}$ .
- 3. Cada  $v \in V$  es expresado de la forma  $v = \sum_{k=1}^{n} \langle v, v^k \rangle v^k$ .
- 4. Para cada  $v, w \in V$  se tiene  $\langle v, w \rangle = \sum_{k=1}^{n} \langle v, v^k \rangle \langle v^k, w \rangle$ , (Igualdad de Parseval)
- 5. Para todo  $v \in V$ , se tiene  $||v||^2 = \sum_{k=1}^{n} |\langle v, v^k \rangle|^2$

Prueba: Ejercicio.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 久 ②

Antes de definir espacios cocientes en espacio vectorial V, daremos la siguiente

# Definición (Relación de Equivalencia)

Dado un conjunto A no vacío, una **relación de equivalencia** sobre A, denotada por  $\simeq_{A}$ , ( si no existe confusión usaremos  $\simeq$  ) si

- 1.  $\simeq$  es reflexiva, es decir,  $(\forall x \in A)(x \simeq x)$ .
- 2.  $\simeq$  es simétrica, es decir, si  $x \simeq y$ , entonces  $y \simeq x$ .
- 3.  $\simeq$  es transitiva, es decir,  $(\forall x, y, z \in A)(x \simeq y \ e \ y \simeq z)(x \simeq z)$ .

La clase de equivalencia para cada  $x \in A$  es definida por

$$[x] = \{ y \in A/y \simeq x \}.$$

Los siguientes enunciados son válidos para todas las clases de equivalencia de conjunto A no-vacío:

- 1. Si  $y \in [x]$ , entonces [y] = [x].
- 2.  $si[y] \neq [x]$ , entonces  $[y] \cap [x] = \emptyset$ .
- $3. \ A = \bigcup_{x \in A} [x].$

#### Prueba:

- 1. Si  $w \in [y]$ , entonces  $w \simeq y$ , como  $y \in [x]$ , se tiene  $y \simeq x$ , entonces  $\simeq$  por ser transitiva tenemos  $w \simeq x$ , luego  $w \in [x]$ , es decir,  $[y] \subset [x]$ .

  De manera similar tenemos  $[x] \subset [y]$ . Por tanto [x] = [y].
- 2. Apliquemos la propiedad:  $p \longrightarrow q$  es equivalente  $\sim q \longrightarrow \sim p$ , es decir, si  $w \in [y] \cap [x] \neq \emptyset$ , entonces [y] = [x] = [w] por el item anterior, entonces [y] = [x].
- 3. Para cada  $x \in A$ , se tiene  $x \in [x] \subset \bigcup_{x \in A} [x]$ , entonces  $A \subset \bigcup_{x \in A} [x]$ , además si  $z \in \bigcup_{x \in A} [x]$ , el resto queda de ejercicio.

Nota  $A = \bigcup_{x \in A} [x]$  ¿será unión disjunta? Justifique su respuesta.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ ○ へ ○

Con la proposión anterior podemos definir el **conjunto cociente** como el conjunto

$$\frac{A}{\simeq}=\{[x](x\in A\},\,$$

## Definición

Sean V un espacio vectorial,  $S \subset V$  un subespacio y u,  $v \in V$ , diremos que u es **equivalente** a v **módulo** S si  $u - v \in S$ , lo cual lo denotamos por

$$u \simeq v$$
 si, y solo si  $u - v \in S$ .

Sea V un espacio vectorial y usando la definición anterior. Se tiene que la relación  $\simeq$  es de equivalencia en V

#### Prueba:

- 1. (Para cada  $v \in V$ ) $(v \simeq v)$ , esto es debido a que,  $v v = \mathbf{0} \in S$ .
- 2. Si  $u \simeq v$ , entonces  $u v \in S$ , luego  $v u = -(u v) \in S$ , entonces  $v \simeq u$ .
- 3. Si  $u \simeq v$  y  $v \simeq w$ , entonces  $u v, v w \in S$ , entonces  $u w = (u v) + (v w) \in S$ , es decir  $u \simeq w$ .

## Nota

La clase de equivalencia de  $v \in V$  la podemos expresar

$$[v] = \{u \in V/u \simeq v\} = \{u \in V/w = u - v \in S\}$$
  
=\{v + w/w \in S\}  
=\{v\} + S = v + S.

Entonces, podemos denotar esta clase de equivalencia  $\frac{V}{\simeq}$  en V como  $\frac{V}{c}$ , es decir,

$$\frac{V}{S} = \{ [v]/v \in V \} = \{ v + S/v \in V \}$$

# Ejemplo

1. Si  $S = \{0\}$ , entonces

$$\frac{V}{\{\mathbf{0}\}} = \{v + \{\mathbf{0}\}/v \in V\} = V$$

2. Si S = V, entonces

$$\frac{V}{V} = \{[v]/v \in V\} = \{\mathbf{0}\}$$

# Proposición

El conjunto  $\frac{V}{S}$  es un espacio vectorial con las operaciones definidas anteriormente.

Prueba: Ejericio.

Si  $S, W \subset V$  son subespacios, entonces

$$\frac{W+S}{W\cap S} = \frac{W}{W\cap S} \oplus \frac{S}{W\cap S}$$

Prueba: Ejercicio.

Si V es un espacio de dimensión finita y  $S \subset V$  un subespacio, entonces

$$dim\left(\frac{V}{S}\right) = dim(V) - dim(S).$$

#### Prueba:

Consideremos  $\{v^1, \cdots, v^r\}$ , con r < n una base de S, (dado que S tiene dimensión finita). Entonces por el teorema de completación de bases, existen vectores  $u^1, \cdots, u^t \in V$  tales que  $\{v^1, \cdots, v^r, u^1, \cdots, u^t\}$  es una base de V. Aplicamos la definición de  $\frac{V}{S}$  obtenemos que los vectores  $\{w^1, \cdots, w^t\}$  es una base de  $\frac{V}{S}$ , por tanto  $\dim\left(\frac{V}{S}\right) = t = (r+t) - r = \dim(V) - \dim(S)$ .