# Assignment 2

Vignesh M Pai (20211132)

# 1. a)

Trapezoidal rule with N = 500.

$$\int_0^1 \frac{4}{1+x^2} dx = 3.1415919869231304$$

# 1. b)



# 1. c)

Trapezoidal rule with N = 500.

$$\int_0^\pi \sin x dx = 1.9999934202594030$$

### 1. d)

Trapezoidal rule with N = 500.

$$\int_0^{\pi} \frac{1}{2\pi} \exp\left(-\frac{x^2}{2}\right) dx = 0.99729988484824805$$

# 2. a)

A sample size of  $10^6$  was used for this question. 100 bins were used to plot the distribution.



# 2. b)



# 2. c)



# 2. d)



# 4. a) A sample size of $10^6$ was used for this question.



#### 4. b)

A sample size of  $10^6$  was used for this question.



### 5. a)

We need to use brute force Monte Carlo in the interval  $S^6$  where S = [-a, a], let us get an estimate of the error of neglecting the region  $\mathbb{R}^6 - S^6$ .

$$g(\vec{x}, \vec{y}) \le \exp(-\vec{x}^2 - \vec{y}^2)$$

$$\implies \int_{\mathbb{R}^6 - S^6} g \le \int_{\mathbb{R}^6 - S^6} \exp(-\vec{x}^2 - \vec{y}^2) dx^3 dy^3$$

$$= \int_{\mathbb{R}^6} \exp(-\vec{x}^2 - \vec{y}^2) dx^3 dy^3 - \int_{S^6} \exp(-\vec{x}^2 - \vec{y}^2) dx^3 dy^3$$

$$= \left(\int_{\mathbb{R}} \exp(-x^2) dx\right)^6 - \left(\int_{S} \exp(-x^2) dx\right)^6$$

Let  $m = \int_S \exp(-x^2) dx$ ,  $n = \int_{\mathbb{R}-S} \exp(-x^2) dx$ , then we can rewrite the above expression as

$$= (m+n)^6 - m^6$$
  
=  $6m^5n + 15m^4n^2 + 20m^3n^3 + 15m^2n^4 + 6mn^5 + n^6$ 

Clearly we are only concerned with the case where  $n \ll m$ , which simplifies things to

$$\leq 6m^5n + 57m^4n^2$$
  
$$\leq 6(2a)^5n + 57(2a)^4n^2$$

we can also write

$$n = \sqrt{\pi} - \int_{-a}^{a} e^{-x^2} dx = \sqrt{\pi} \left( 1 - \int_{-a\sqrt{2}}^{a\sqrt{2}} \mathcal{N}(x) dx \right)$$

where  $\mathcal{N}$  is the normal distribution. For  $a=5, 5\sqrt{2}$  corresponds to at least  $7\sigma$  deviations in the normal distribution which gives us

$$n \le \sqrt{\pi}(1 - 0.999999999997440) \approx 4.537 \cdot 10^{-12}$$

Substituting back, we get

$$\int_{\mathbb{R}^6 - S^6} g \le 2.222 \times 10^{-6}$$

which is a reasonable upper bound on the error.

Performing the integration with  $N=10^6$  (we keep this constant across all Monte Carlo integration methods), we get

$$I \approx 9.8930026$$

Error estimated by Monte Carlo is 1.0814584 while actual error is 1.0693717.

### 5. b)

Now we do importance sampling with the Gaussian distribution in all 6 dimensions because the form of g is similar to a Gaussian. Performing the integration, we get

$$I \approx 10.9569892$$

Error estimated by Monte Carlo is 0.0227644 while actual error is 0.0053850.

We can also integrate using brute force in a finite region if we do the change of variables  $x_i = \tan y_i$  in each dimension, we get upon integration

$$I \approx 10.9221337$$

Error estimated by Monte Carlo is 0.0600769 while actual error is 0.0402405.

#### Helium Atom Ground State

The energy of the Helium atom ground state using variational principle (using the separable solution as trial wave function) was found to be

$$E \approx -74.870595491123623 \pm 0.35615620981281765$$