

planetmath.org

Math for the people, by the people.

example of injective module

Canonical name ExampleOfInjectiveModule

Date of creation 2013-03-22 17:43:40 Last modified on 2013-03-22 17:43:40 Owner Glotzfrosch (19314) Last modified by Glotzfrosch (19314)

Numerical id 5

Author Glotzfrosch (19314)

Entry type Example Classification msc 16D50 In the category of unitary \mathbb{Z} -modules (which is the category of Abelian groups), every divisible Group is injective, i.e. every Group G such that for any $g \in G$ and $n \in \mathbb{N}$, there is a $h \in G$ such that nh = g. For example, \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are divisible, and therefore injective.

Proof. We have to show that, if G is a divisible Group, $\varphi: U \to G$ is any homomorphism, and U is a subgroup of a Group H, there is a homomorphism $\psi: H \to G$ such that the restriction $\psi|_U = \varphi$. In other words, we want to extend φ to a homomorphism $H \to G$.

Let \mathcal{D} be the set of pairs (K, ψ) such that K is a subgroup of G containing U and $\psi : K \to G$ is a homomorphism with $\psi|_U = \varphi$. Then \mathcal{D} ist non-empty since it contains (U, φ) , and it is partially ordered by

$$(K, \psi) \le (K', \psi') : \iff K \subseteq K' \text{ and } \psi'|_K = \psi.$$

For any ascending chain

$$(K_1, \psi_1) \leq (K_2, \psi_2) \leq \dots,$$

in \mathcal{D} , the pair $(\bigcup_{i\in\mathbb{N}} K_i, \bigcup_{i\in\mathbb{N}} \psi_i)$ is in \mathcal{D} , and it is an upper bound for this chain. Therefore, by Zorn's Lemma, \mathcal{D} contains a maximal element (M, χ) .

It remains to show that M = H. Suppose the opposite, and let $h \in H \setminus M$. Let $\langle h \rangle$ denote the subgroup of H generated by h. If $\langle h \rangle \cap M = \{0\}$, the sum $M + \langle h \rangle$ is in fact a direct sum, and we can extend χ to $M + \langle h \rangle$ by choosing an arbitrary image of h in G and extending linearly. This contradicts the maximality of (M, χ) .

Let us therefore suppose $\langle h \rangle \cap M$ contains an element nh, with $n \in \mathbb{N}$ minimal. Since $nh \in M$, and χ is defined on M, $\chi(nh)$ exists, and furthermore, since G is divisible, there is a $g \in G$ such that $ng = \chi(nh)$. It is now easy to see that we can extend χ to $M + \langle h \rangle$ by defining $\chi(h) := g$, in contradiction to the maximality of (M, χ) .

Therefore, M = H. This proves the statement.