1. Solution

The sample size, *n*, is 28. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 28 ceil$	7	60.7
Q2	$\lceil 0.5 \times 28 \rceil$	14	70.77
Q3	$\lceil 0.75 \times 28 \rceil$	21	75.01

We determine the IQR.

$$IQR = Q3 - Q1$$

= 75.01 - 60.7
= 14.31

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $60.7 - 1.5 \times 14.31$
= 39.235
upper boundary = Q3 + $1.5 \times IQR$
= $75.01 + 1.5 \times 14.31$
= 96.475

We determine the outliers.

outliers =
$$\{97.9, 99.51, 101.91, 114.35, 114.75\}$$

We identify the ends of the whiskers: 50.5 and 92.81. We plot the boxplot.

2. Solution

The sample size, *n*, is 42. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 42 ceil$	11	76.78
Q2	$\lceil 0.5 \times 42 \rceil$	21	90.84
Q3	$\lceil 0.75 \times 42 \rceil$	32	99.06

We determine the IQR.

$$IQR = Q3 - Q1$$

= 99.06 - 76.78
= 22.28

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $76.78 - 1.5 \times 22.28$
= 43.36
upper boundary = Q3 + $1.5 \times IQR$
= $99.06 + 1.5 \times 22.28$
= 132.48

We determine the outliers.

outliers =
$$\{24.61\}$$

We identify the ends of the whiskers: 45.46 and 109.76. We plot the boxplot.

