

DeLEG: Deep Learning for EpiGenomics data to predict phenotype.

Phenotype, genotype and environment

Interaction between genetics and environmental factors P = f(G,E)

Challenges

- 1.Finding "important" regions in ChIP-seq data
- 2.Using the "important" regions for prediction, classification and better understanding of Human Epigenome

HEADLINE:

- Ground truth: "Healthy" and "Disease"
- Training set: 14 subjects in each phenotype
- Validating set: 4 subjects in each phenotype
- Testing set: Any new subject not in the set of 36 subjects

doi:10.1038/nature06008

Workflow

Otsu thresholding for segmentation

Enrichment score of window around TSS

Train a Conv Neural Network for classification

Input: ChIP-seq data

Output: "Important" regions of the ChIP-seq data corresponding to peaks

Detailed Method: Otsu thresholding of the ChIP-seq data to remove background and filter out peaks. A post-processing for noise removal is done following thresholding.

Input: ChIP-seq data and peak regions

Output: Enrichment score from ChIP-seq data of each bp around TSS for each gene corresponding to peaks

<u>Detailed Method:</u> Gene identification from database and window extraction (data manipulation process)

<u>Input:</u> Enrichment score of fixed length sequences

Output: Classification probabilities for the window to lie in each phenotype.

Detailed Method: Training a CNN with windows from 14 subjects in each class, totalling to about 20k windows in each class.

Looking back at the learned features -> further insight

Learning attention from classification data

"Those who pay attention *learn*, Those who don't cram"

- Use Global Average Pooling concept to learn regions in input which caused the network to classify it to a particular class
- Final layer filters know where to look
- Get defining regions define further research!!

Supplementary Material Results

Testing accuracy

```
percentage correct 81.831664812755 %
```

FER 70.564186426819 %

INF 91.180461329715 %

Supplementary material - Results

Class	Accuracy
0	99.59%
1	99.47%
2	99.90%
3	98.51%
4	99.08%
5	98.32%
6	98.23%
7	98.64%
8	97.43%
9	97.92%
Overall	98.73%

