History Of Discrete Mathematics

Where it began

- The Origins
- Ambiguous at first

Historical Significance

- Four Color Theorem
- World War II

Why do we use it in computer science?

- Boolean Algebra
- Discrete nature of computers

Graph theory

- -Definition
- How it's used in CS

Logic

- Classical Logic
- Logical Formula

Basic statement	Equivalent
$p \lor q$	$q \lor p$
$p \wedge q$	$q \wedge p$
$\neg (p \land q)$	$\neg p \lor \neg q$
$\neg (p \lor q)$	$\neg p \land \neg q$
p o q	$\neg p \lor q$
	$\neg q ightarrow eg p$
$p \leftrightarrow q$	$(p \to q) \land (q \to p)$
201 12 20 0342	$(\neg p \lor q) \land (\neg q \lor p)$
$p \wedge (q \wedge r)$	$(p \wedge q) \wedge r$
$p \lor (q \lor r)$	$(p \lor q) \lor r$
$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$
$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$
p o (q ee r)	$(p \wedge \neg q) o r$