SBVLIFA: Linguagens Formais e Autômatos

Aula 07: Gramáticas e Linguagens Livres de Contexto

2/44 Linguagens Livres de Contexto

Linguagens Livres de Contexto

Tipo	Classe de Linguagens	Modelo de Gramática	Modelo de Reconhecedor	
0	Recursivamente enumeráveis	Irrestrita	Máquina de Turing	
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita limitada	
2	Livres de contexto	Livre de contexto	Autômato de pilha	
3	Regulares	Linear (direita ou esquerda)	Autômato finito	

Linguagens Livres de Contexto

- A classe das linguagens livres de contexto é uma classe de linguagens maior que a das linguagens regulares;
- A notação natural e recursiva para a representação de linguagens livres de contexto é a Gramática Livre de Contexto (CFG);
- As CFGs desempenham papel central na tecnologia de compiladores e interpretadores, sendo aplicadas na construção dos analisadores sintáticos (parsers), na definição de linguagens específicas de domínio e em diversos outros cenários;
- Os autômatos de pilha (com pilha/à pilha) possuem uma notação semelhante à dos autômatos finitos e são equivalentes às gramáticas livres de contexto, pois são também capazes de representar, como um dispositivo reconhecedor, as linguagens livres de contexto.

Um Exemplo Informal:

A linguagem dos palíndromos: um palíndromo é uma string lida da mesma forma da esquerda para a direita e vice-versa. A string w é um palíndromo se e somente se $w = w^R$. Focaremos na linguagem dos palíndromos sobre o alfabeto {0,1}, tendo como exemplos 0110, 11011, arepsilon, mas não 011 ou 0101. Aplicando o lema do bombeamento em L_{pal} verifica-se que ela não é uma linguagem regular, pois se o fosse, tomando a constante associada n e considerando $w = 0^n 10^n$, poderíamos desmembrar w = xyz com y sendo um ou mais 0's do primeiro grupo, pois $|xy| \le n$ e $y \ne \varepsilon$. Desse modo, xz, que também teria que estar em L_{pal} se L_{pal} fosse regular, teria menos 0's à esquerda do único 1 do que à direita do 1, fazendo com que xz não seja um palíndromo. Intuitivamente, é possível perceber que para que uma string de L_{pal} seja reconhecida, é necessário se ter uma "memória" do que aconteceu previamente.

Um Exemplo Informal:

- Perceba que que há uma definição natural e recursiva de quando uma string de 0's e 1's está em L_{pal} . Como base, sabemos que algumas strings óbvias estão em L_{pal} e depois exploramos a ideia de que se uma string é um palíndromo ela deve começar e terminar com o mesmo símbolo. Além disso, se removermos o primeiro e o último símbolo, a string ainda é um palíndromo:
- **Base:** ε , 0 e 1 são palíndromos;
- ▶ Indução: Se w é um palíndromo, então 0w0 e 1w1 também são palíndromos. Nenhuma string é um palíndromo de 0's e 1's, a menos que ela decorra dessa base e dessa regra de indução.
- Uma CFG é uma notação formal para expressar tais definições recursivas de linguagens e ela consiste em uma ou mais variaveis que representam classes de strings, ou seja, linguagens.

Um Exemplo Informal:

 As regras que definem os palíndromos, expressas na notação de gramática livre de contexto, podem ser vistas abaixo:

1.
$$P \rightarrow \varepsilon$$

2.
$$P \rightarrow 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

Conjunto de 5 regras

Um Exemplo Informal:

As regras que definem os palíndromos, expressas na notação de gramática livre de contexto, podem ser vistas abaixo:

Variável

1.
$$P \rightarrow \epsilon$$

2.
$$P \rightarrow 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

Um Exemplo Informal:

As regras que definem os palíndromos, expressas na notação de gramática livre de contexto, podem ser vistas abaixo:

1.
$$P \to \varepsilon$$

$$2. \quad P \to 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

Base: inclui as strings ε , $0 \in 1$; Nenhum dos termos da direita contém uma variável.

Um Exemplo Informal:

As regras que definem os palíndromos, expressas na notação de gramática livre de contexto, podem ser vistas abaixo:

1.
$$P \rightarrow \varepsilon$$

2.
$$P \rightarrow 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

Indução: se w é da classe P, então 0w0 e 1w1 também o são; Os termos da direita contém uma variável.

Definição Formal:

Existe um conjunto finito de símbolos que formam as strings da linguagem, chamado de alfabeto de terminais ou símbolos terminais: $\{0, 1\}$

1.
$$P \rightarrow \varepsilon$$

2.
$$P \rightarrow 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

$$5. \quad P \to \boxed{1P1}$$

Definição Formal:

2. Existe um conjunto finito de variáveis, também chamadas de não terminais ou categorias sintáticas. Cada variável representa uma linguagem, ou seja, um conjunto de strings: {P}

1.
$$P \rightarrow \varepsilon$$

2.
$$P \rightarrow 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

Definição Formal:

3. Uma das variáveis representa a linguagem que está sendo definida, sendo chamada de símbolo de início: P

Neste exemplo há somente uma variável, sendo assim, é ela que é o símbolo inicial.

1.
$$P \rightarrow \epsilon$$

2.
$$P \rightarrow 0$$

$$3. \quad P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

Definição Formal:

4. Existe um conjunto finito de produções ou regras que representam a definição recursiva de uma linguagem.

Produção ou regra

1.
$$P \rightarrow \varepsilon$$

2.
$$P \rightarrow 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

Definição Formal:

4. Existe um conjunto finito de produções ou regras que representam a definição recursiva de uma linguagem.

Cabeça (head) da produção:

definição parcial de uma variável

1.
$$P \rightarrow \varepsilon$$

2. $P \rightarrow 0$
3. $P \rightarrow 1$
4. $P \rightarrow 0P0$
5. $P \rightarrow 1P1$

Definição Formal:

4. Existe um conjunto finito de produções ou regras que representam a definição recursiva de uma linguagem.

Símbolo de produção:

lido como "leva à" ou "implica em"

1.
$$P \rightarrow \varepsilon$$

2. $P \rightarrow 0$
3. $P \rightarrow 1$
4. $P \rightarrow 0P0$
5. $P \rightarrow 1P1$

Definição Formal:

4. Existe um conjunto finito de produções ou regras que representam a definição recursiva de uma linguagem.

1.
$$P \rightarrow \epsilon$$

2.
$$P \rightarrow 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

Corpo da produção: uma string de zero ou mais terminais e/ou variáveis que representa um modo de formar strings na linguagem da variável da cabeça

Definição Formal:

$$G = (V, T, P, S)$$

- G: gramática livre de contexto, uma quádrupla, onde:
 - V: conjunto finito de variáveis;
 - ightharpoonup T OU Σ : conjunto finito, disjunto de V, de símbolos terminais;
 - P: conjunto finito de produções;
 - $S: S \in V$ é a variável ou símbolo inicial.

Exemplo: a linguagem de expressões aritméticas com os operadores + e *, e identificadores na forma $(a + b)(a + b + 0 + 1)^*$:

- $\mathscr{G} = (V, T, P, S)$, onde:
 - $V = \{E, I\}$
 - $T = \{+, *, (,), a, b, 0, 1\}$

 - S = E

- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$

19/44 Linguagens Livres de Contexto

Gramáticas Livres de Contexto

Exemplo: a linguagem de expressões aritméticas com os operadores + e *, e identificadores na forma $(a + b)(a + b + 0 + 1)^*$:

- $\mathscr{G} = (V, T, P, S)$, onde:
 - $V = \{E, I\}$
 - $T = \{+, *, (,), a, b, 0, 1\}$

 - S = E

1.
$$E \rightarrow I$$

2.
$$E \rightarrow E + E$$

- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$

5.
$$I \rightarrow a$$

6.
$$I \rightarrow b$$

7.
$$I \rightarrow Ia$$

- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$

10.
$$I \rightarrow I$$

compacta

1.
$$E \to I \mid E + E \mid E * E \mid (E)$$

notação 2.
$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Inferências sobre pertinência de strings em linguagens:

Inferência Recursiva: utilização das regras do corpo para a cabeça.

		String inferida	Para linguagem de	Produção usada	String(s) usada(s)
	<i>(i)</i>	а	I	5	_
	(ii)	b	I	6	-
	(iii)	<i>b</i> 0	I	9	(ii)
	(iv)	<i>b</i> 00	I	9	(iii)
	(v)	а	E	1	(i)
	(vi)	<i>b</i> 00	E	1	(iv)
	(vii)	a + b00	E	2	(v), (vi)
((viii)	(a + b00)	E	4	(vii)
	(ix)	a*(a+b00)	E	3	(v), (viii)

1.
$$E \rightarrow I$$

2.
$$E \rightarrow E + E$$

3.
$$E \rightarrow E * E$$

4.
$$E \rightarrow (E)$$

5.
$$I \rightarrow a$$

6.
$$I \rightarrow b$$

7.
$$I \rightarrow Ia$$

8.
$$I \rightarrow Ib$$

9.
$$I \rightarrow I0$$

10.
$$I \rightarrow I1$$

Inferências sobre pertinência de strings em linguagens:

- Derivação: utilização das regras da cabeça para o corpo.
 - **Base:** para qualquer string α de terminais e variáveis, dizemos que $\alpha \Rightarrow \alpha$, isto é, qualquer string deriva de si própria.
 - **Indução:** se $\alpha \stackrel{*}{\underset{c}{\Rightarrow}} \beta$ e $\beta \stackrel{*}{\underset{c}{\Rightarrow}} \gamma$, então $\alpha \stackrel{*}{\underset{c}{\Rightarrow}} \gamma$. Isto é, se α pode se tornar β por meio de zero ou mais etapas e, se mais uma etapa nos leva de β para γ , então α pode se tornar γ . Em outras palavras, $\alpha \stackrel{\circ}{\Rightarrow} \beta$ significa que existe uma sequência de strings $\gamma_1, \gamma_2, ..., \gamma_n$, para algum $n \ge 1$, tal que:
 - 1. $\alpha = \gamma_1$
 - 2. $\beta = \gamma_n$, e
 - 3. Para i = 1, 2, ..., n 1, temos $\gamma_i \Rightarrow \gamma_{i+1}$
- **Exemplo:** inferir que a * (a + b00) está em E:

$$E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * (E) \Rightarrow a * (E + E) \Rightarrow a * (I + E) \Rightarrow$$
$$a * (a + E) \Rightarrow a * (a + I) \Rightarrow a * (a + I0) \Rightarrow a * (a + I00) \Rightarrow a * (a + b00)$$

- 1. $E \rightarrow I$
- 2. $E \rightarrow E + E$
- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$

Se G é subentendida,

então usamos

⇒ no lugar de ⇒

- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

Derivações mais à esquerda e mais à direita:

- **Derivação mais à esquerda (lm/leftmost):** exigir que em cada etapa, a variável mais à esquerda seja substituída por um de seus corpos. Indicada usando as relações $\Rightarrow_{lm} e \Rightarrow_{lm} para uma ou mais etapas,$ respectivamente;
- **Exemplo:** $E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * (E) \Rightarrow a * (E + E) \Rightarrow a * (I + E) \Rightarrow lm$ $a*(a+E) \underset{lm}{\Rightarrow} a*(a+I) \underset{lm}{\Rightarrow} a*(a+I0) \underset{lm}{\Rightarrow} a*(a+I00) \underset{lm}{\Rightarrow} a*(a+b00)$
- ightharpoonup Derivação mais à direita (rm/rightmost): exigir que em cada etapa, a variável mais à direita seja substituída por um de seus corpos. Indicada usando as relações ⇒ e ⇒ para uma ou mais etapas, respectivamente;
- **Exemplo:** $E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow E * (E + E) \Rightarrow E * (E + I) \Rightarrow E * (E + I0) \Rightarrow To (E + I00) \Rightarrow To$ $E * (E + I00) \underset{rm}{\Rightarrow} E * (E + b00) \underset{rm}{\Rightarrow} E * (I + b00) \underset{rm}{\Rightarrow} E * (a + b00) \underset{rm}{\Rightarrow}$ $I*(a+b00) \Rightarrow_{rm} a*(a+b00)$

1.
$$E \rightarrow I$$

2.
$$E \rightarrow E + E$$

3.
$$E \rightarrow E * E$$

4.
$$E \rightarrow (E)$$

5.
$$I \rightarrow a$$

6.
$$I \rightarrow b$$

7.
$$I \rightarrow Ia$$

8.
$$I \rightarrow Ib$$

9.
$$I \rightarrow I0$$

10.
$$I \rightarrow I1$$

Derivações mais à esque

Derivação mais à esquerda (la

el mais à esquerda sej Pode-se concluir que:

 $E \underset{lm}{\Rightarrow} a * (a + b00)$

usando as relações =

/amente:

Se w é uma string de terminais e A é uma variável, então $A \Rightarrow w$ se e somente se $A \Rightarrow w$, e $A \Rightarrow w$ se e somente se $A \Rightarrow w$. Ou seja, qualquer derivação tem uma derivação equivalente mais à esquerda e uma derivação equivalente mais à direita.

+E

*E

5. $I \rightarrow a$

6. $I \rightarrow b$

7. $I \rightarrow Ia$

 $I \rightarrow Ib$

Exemplo:
$$E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * (E) \Rightarrow a * (E + E) \Rightarrow a * (I + E) \Rightarrow a * (a + E) \Rightarrow a * (a + I) \Rightarrow a * (a$$

Derivação mais à direita (rm/rightmost): exigir que em cada etapa,

el mais à direita seja substituída por um de seus corpos.

Pode-se concluir que: usando as relações ⇒ e ⇒ para uma ou mais etapas,

 $E \underset{rm}{\Rightarrow} a * (a + b00)$ $I \rightarrow I0$ vamente;

Exemplo:
$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow E * (E + E) \Rightarrow E * (E + I) \Rightarrow E * (E + I0) \Rightarrow Tm$$

$$E * (E + I00) \Rightarrow E * (E + b00) \Rightarrow E * (I + b00) \Rightarrow E * (a + b00) \Rightarrow Tm$$

$$I * (a + b00) \Rightarrow a * (a + b00)$$

$$I * (a + b00) \Rightarrow A * (a + b00)$$

$$I * (a + b00) \Rightarrow A * (a + b00)$$

A linguagem de uma gramática:

ightharpoonup Se G = (V, T, P, S) é uma CFG, a linguagem de G, denotada por L(G), é o conjunto de strings terminais que têm derivações desde o símbolo de início, ou seja:

$$L(G) = \{ w \text{ em } T^* \mid S \stackrel{*}{\underset{G}{\Rightarrow}} w \}$$

Se uma linguagem L é uma linguagem de alguma CFG, então L é dita uma Linguagem Livre de Contexto (CFL).

Formas sentenciais:

- As formas sentenciais são as derivações que produzem strings a partir do símbolo de início;
- ▶ Se G = (V, T, P, S) é uma CFG, então qualquer string α em $(V \cup T)^*$ tal que $S \stackrel{*}{\Rightarrow} \alpha$ é uma forma sentencial;
- Se $S \stackrel{*}{\Rightarrow} \alpha$, então α é uma forma sentencial à esquerda;
- Se $S \stackrel{\hat{}}{\Rightarrow} \alpha$, então α é uma forma sentencial à direita;
- lacktriangle A linguagem L(G) é constituída pelas formas sentenciais que estão em T^* , ou seja, as formas sentenciais constituídas de apenas terminais.

Árvores de análise sintática:

- Para G = (V, T, P, S), as árvores de análise sintática para G são árvores com as seguintes condições:
 - 1. Cada nó interior, ou seja, um nó que tem pelo menos um filho, é rotulado por uma variável em V;
 - Cada nó folha é rotulado por uma variável, um terminal ou ε . Se o nó folha for rotulado por ε , ele deve ser o único filho de seu pai;
 - 3. Se um nó interior é rotulado por A e seus filhos são rotulados por $X_1, X_2, ..., X_k$, respectivamente, a partir da esquerda, então $A \to X_1, X_2, ..., X_k$ é uma produção em P.

- Arvores de análise sintática:
 - **Exemplo 1:** a árvore de análise sintática para a derivação de I + E a partir de E:

1.
$$E \rightarrow I$$

2.
$$E \rightarrow E + E$$

3.
$$E \rightarrow E * E$$

4.
$$E \rightarrow (E)$$

5.
$$I \rightarrow a$$

6.
$$I \rightarrow b$$

7.
$$I \rightarrow Ia$$

8.
$$I \rightarrow Ib$$

9.
$$I \rightarrow I0$$

10.
$$I \rightarrow I1$$

- Árvores de análise sintática:
 - **Exemplo 2:** a árvore de análise sintática para a derivação de 0110 a partir de P:

- 1. $P \rightarrow \varepsilon$
- 2. $P \rightarrow 0$
- 3. $P \rightarrow 1$
- 4. $P \rightarrow 0P0$
- 5. $P \rightarrow 1P1$

- Arvores de análise sintática:
 - **Exemplo 2:** a árvore de análise sintática para a derivação de 0110 a partir de P:

Raiz rotulada pelo símbolo de início

- 1. $P \rightarrow \varepsilon$
- 2. $P \rightarrow 0$
- 3. $P \rightarrow 1$
- 4. $P \rightarrow 0P0$
- 5. $P \rightarrow 1P1$

String de terminais em que todas as folhas são rotuladas por um terminal ou ε

Árvores de análise sintática:

Exemplo 3: a árvore de análise sintática para a derivação de a*(a+b00) a partir de

E:

1.
$$E \rightarrow I$$

2.
$$E \rightarrow E + E$$

3.
$$E \rightarrow E * E$$

4.
$$E \rightarrow (E)$$

5.
$$I \rightarrow a$$

6.
$$I \rightarrow b$$

7.
$$I \rightarrow Ia$$

8.
$$I \rightarrow Ib$$

9.
$$I \rightarrow I0$$

10.
$$I \rightarrow I1$$

Árvores de análise sintática:

Exemplo 3: a árvore de análise sintática para a derivação de a*(a+b00) a partir de

E:

- 1. $E \rightarrow I$
- 2. $E \rightarrow E + E$
- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

- Inferência, derivações e árvores de análise sintática:
 - Dada uma gramática G = (V, T, P, S), os seguintes itens são equivalentes:
 - 1. O procedimento de inferência recursiva determina que a string de terminais w está na linguagem da variável A;
 - 2. $A \Rightarrow w$;
 - 3. $A \Rightarrow_{lm} w$;
 - 4. $A \Rightarrow w$;
 - 5. Existe uma árvore de análise sintática com raiz A e resultado w.
 - As provas formais para as equivalências entre os itens apresentados acima podem ser verificadas na obra Hopcroft et al. (2003).

- Uma gramática é ambígua quando, para uma mesma string da linguagem da gramática, existe mais de uma árvore de análise sintática. Há como reprojetar a gramática de modo a remover tal ambiguidade, entretanto, em alguns casos, quando a CFL é inerentemente ambígua, isso não é possível;
- Múltiplas derivações para uma mesma string não implicam, obrigatoriamente, em ambiguidade, entretanto para gramáticas não-ambíguas as derivações mais à esquerda e mais à direita são únicas;
- Gramáticas ambíguas: a gramática da linguagem de expressões aritméticas com os operadores + e * e identificadores, nos permite gerar expressões com qualquer sequência de operadores + e *, e as produções $E \rightarrow E + E \mid E * E$ não estabelece nenhuma ordem particular. Lembre-se que na aritmética a operação de multiplicação deve ser realizada antes da operação de adição caso ambas estejam em um mesmo nível da expressão, ou seja, não estão agrupadas com parênteses.

- **Exemplo:** dada a forma sentencial E + E * E, existem duas derivações a partir de E:
 - $E \Rightarrow E + E \Rightarrow E + E * E$
 - 2. $E \Rightarrow E * E \Rightarrow E + E * E$

- **Formalmente:** uma CFG G = (V, T, P, S) é ambígua se existe pelo menos uma string w em T^* para a qual podemos encontrar duas árvores de análise sintática diferentes, cada qual com uma raiz identificada por S, e um resultado w. Se cada string tiver no máximo uma árvore de análise sintática, a gramática é não-ambígua.
- De modo a mostrar que o exemplo anterior realmente identifica a gramática em questão como ambígua, iremos completar as árvores de análise sintática considerando a string a + a * a:

- Remoção de ambiguidade: Surpreendentemente, não existe absolutamente nenhum algoritmo que possa nos informar se uma CFG é ambígua e também existem, como já mencionado, CFLs que só possuem CFGs ambíguas, tornando impossível a remoção de ambiguidade para essas linguagens;
- Na prática, a situação não é tão problemática, pois existem técnicas conhecidas para a remoção de alguns tipos de ambiguidade;
- Voltando novamente ao nosso exemplo da linguagem de expressões, existem duas causas para a ambiguidade da gramática da linguagem:
 - 1. A precedência dos operadores não é respeitada, sendo assim precisamos impor que a gramática gere apenas uma estrutura, respeitando a precedência;
 - 2. Uma sequência de operadores idênticos pode ser agrupada a partir da esquerda ou a partir da direita, por exemplo, a expressão a + a + a possui mais de uma árvore de análise sintática. Mesmo que na aritmética possamos calcular qualquer uma das duas adições em primeiro lugar e depois a restante (associatividade), precisamos remover a ambiguidade, Convencionalmente insiste-se no agrupamento à esquerda.

- Para o problema de impor precedência, a solução é introduzir muitas variáveis diferentes, de modo a estratificar a estrutura da árvore de análise sintática gerada, "jogando" para baixo ou forçando que expressões com maior precedência apareçam em níveis maiores da árvore (níveis mais abaixo). Para o exemplo das expressões, podemos introduzir os conceitos de fator e termo:
- Fator: um fator é uma expressão que não pode ser separada por qualquer operador adjacente, seja um * ou um +. No nosso exemplo, os únicos fatores são:
 - a) identificadores: não é possível separar os símbolos de um identificador associando um operador;
 - b) expressões entre parênteses: não importa o que aparece dentro dos parênteses, pois o propósito deles é impedir o que está entre eles de se tornar o operando de qualquer operador fora deles.
- Termo: um termo é uma expressão que não pode ser quebrada pelo operador +. No nosso exemplo, um termo é um produto de um ou mais fatores.

- Ainda, uma expressão será qualquer expressão possível, inclusive aquelas que podem ser quebradas por um * adjacente ou por um + adjacente. Desse modo, uma expressão para o nosso exemplo é uma soma de um ou mais termos.
- Como resultado, temos a gramática:

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Exercício e7.1: Projete uma gramática livre de contexto para as seguintes linguagens:

```
a) L = \{a^n b^n \mid n \ge 1\}
```

b)
$$L = \{ w \in \{0, 1\}^* \mid w \text{ começa e termina com o mesmo símbolo } \}$$

c)
$$L = \{a^i b^j c^k \mid i \neq j \text{ ou } j \neq k\}$$

d)
$$L \neq \{ w \mid w \text{ é uma expressão balanceada composta por parênteses } \}$$

e)/
$$L = \{ w \mid w \text{ \'e uma expressão balanceada composta por parênteses e colchetes } \}$$

Exercício e7.2: A gramática a seguir gera a linguagem de expressões regulares 0*1(0+1)*:

$$S \rightarrow A1B$$

$$A \rightarrow 0A \mid \varepsilon$$

$$B \rightarrow 0B \mid 1B \mid \varepsilon$$

Forneça as derivações mais à esquerda, mais à direita e a árvore de análise sintática das seguintes strings:

- a) 00101
- b) 1001
- c) 00011

Exercício e7.3: A gramática a seguir gera expressões prefixadas com os operandos $x \in y \in X$ operadores binários +, - e *:

$$E \rightarrow +EE \mid -EE \mid *EE \mid x \mid y$$

Forneça as derivações mais à esquerda, mais à direita e a árvore de análise sintática da string +*-xyxy

Exercício e7.4: A gramática a seguir é ambígua:

$$S \rightarrow aS \mid aSbS \mid \varepsilon$$

Mostre que, em particular, a string aab tem duas:

- a) Áryores de análise sintática;
- b) Derivações mais à esquerda;
- Derivações mais à direita.

Exercício e7.5: Encontre uma gramática não-ambígua para a gramática do exercício anterior.

Exercício e7.6: Dada a gramática não-ambígua:

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Estenda-a, mantendo-a não-ambígua, para gerar expressões que também contenham os operadores de subtração e divisão, representados, respectivamente pelos símbolos – e /. Forneça a árvore de análise sintática para a string a + (b*a)/a0 - b0

44/44 Bibliografia

HOPCROFT, J. E.; ULLMAN, J. D.; MOTWANI, R. Introdução à Teoria de Autômatos, Linguagens e Computação. 2. ed. Rio de Janeiro: Elsevier, 2002. 560 p.

RAMOS, M. V. M.; JOSÉ NETO, J.; VEGA, I. S. Linguagens Førmais: Teoria, Modelagem e Implementação. Porto Alegre: Bookman, 2009. 656 p.

SIPSER, M. Introdução à Teoria da Computação. 2. ed. São Paulo: Cengage Learning, 2017. 459 p.

