

Modul 4: Regression Dr. Nurvita Trianasari, S.Si, M.Stat.

Module Overview

Topics

- Regression Analysis
- Type of Regression
- Simple Linear Regression
- Multiple Linear Regression

Activities

- Group Discussion
- Coding Practice

Module Objectives

- Understand what is Regression Analysis
- Create Regression Model using Python
- Use regression analysis to predict future values

What is Regression?

 Regression analysis is a tool for building statistical models that characterize relationships among a dependent variable and one or more independent variables.

Purpose of Regression

- The purpose of regression analysis is to analyze relationships among variables.
- The analysis is carried out through the estimation of a relationship and the results serve the following two purposes:
 - Answer the question of how much y changes with changes in each of the x's (x1, x2,...,xk), Y is the dependent variable
 - Forecast or predict the value of y based on the values of the X's.
 X is the independent variable

Step of Regression Analysis

A regression analysis can be broken down into 5 steps.

- Step 1 : state the hypothesis.
- Step 2 : test the hypothesis (estimate the relationship).
- Step 3 : interpret the test results. This step would enable us to answer the following questions,
- Step 4 : check for and correct common problems of regression analysis.
- Step 5 : evaluate the test results.

Type of Regression

Simple Linear Regression

- Only one independent variable, X
- Relationship between X and Y is described by a linear function
- Changes in Y are assumed to be related to changes in X

Types of Relationship

CÁE

Simple Linear Regression Model

Random Error component

Simple Linear Regression Model

The Least Squares Method Incubator 2020 The Least Squares Method

• b0 and b1 are obtained by finding the values of that minimize the sum of the squared differences between Y and \hat{Y} :

$$\min \sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - (b_0 + b_1 X_i))^2$$

Finding the Least Squares Equation

• The coefficients b0 and b1, and other regression results in this chapter, will be found using python

Interpretation of Slope and Intercept

- b0 is the estimated average value of Y when the value of X is zero.
- b1 is the estimated change in the average value of Y as a result of a one-unit change in X.

Example: Simple Linear Regression

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (Y) = house price in \$1000s
 - Independent variable (X) = square feet

Example: Data

255

1700

Organized by:

CÁE

Example: Scatter Plot

Example: Regression Equation

- Regression equation from Python
- Slope = 0.10976774
- **Intercept** = 98.24832962138078

```
print('Intercept: \n', regr.intercept_)
print('Coefficients: \n', regr.coef_)
```

Intercept: 98.24832962138078 Coefficients: [0.10976774]

Example: Interpretation of b0

- b0 is the estimated average value of Y when the value of X is zero (if
 X = 0 is in the range of observed X values)
- Because a house cannot have a square footage of 0, b0 has no practical application

Example: Interpretation of b1

- b1 estimates the change in the average value of Y as a result of a one-unit increase in X
- Here, b1 = 0.10977 tells us that the mean value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Example: Making Predictions

- Predict the price for a house with 2000 square feet:
- House price = 98.25 + 0.1098(square feet)
 = 98.25 + 0.1098 (2000)
 = 317.85
- The predicted price for a house with 2000 square feet is 317.85(\$1,000s) = \$317,850

Measures of Variation

Total variation is made up of two parts:

$$SST = SSR + SSE$$

Total Sum of Squares

Regression Sum of Squares

Error Sum of Squares

$$SST = \sum (Y_i - \overline{Y})^2$$

$$SSR = \sum (\hat{Y}_i - \overline{Y})^2$$

$$\left| SSR = \sum (\hat{Y}_i - \overline{Y})^2 \right| \left| SSE = \sum (Y_i - \hat{Y}_i)^2 \right|$$

Measures of Variation

- SST = total sum of squares (Total Variation)
 - \circ Measures the variation of the Yi values around their mean \overline{Y}
- SSR = regression sum of squares (Explained Variation)
 - Variation attributable to the relationship between X and Y
- SSE = error sum of squares (Unexplained Variation)
 - Variation in Y attributable to factors other than X

Measures of Variation

Organized by:

Coefficient of Determination, r2

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called r-squared and is denoted as r2
- Note $0 \le r^2 \le 1$

$$r^2 = \frac{SSR}{SST} = \frac{\text{regression } sum \text{ of squares}}{total \text{ sum of squares}}$$

Examples of Approximate r2 Values

- r2 = 1
- Perfect linear relationship between X and Y:
- 100% of the variation in Y is explained by variation in X

Examples of Approximate r2 Values

- 0 < r2 < 1
- Weaker linear relationships between X and Y:
- Some but not all of the variation in Y is explained by variation in X

Examples of Approximate r2 Values

- r2 = 0
- No linear relationship between X and Y:
- The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

r2 in Python

```
model = sm.OLS(Y, X).fit()
predictions = model.predict(X)

print_model = model.summary()
print(print_model)
```

OLS Regression Results

Dep. Variable:	. Variable: house_price		R-squared:			0.581
Model:		OLS		Adj. R-squared:		
Method:		Least Squares	F-statistic:			11.08
Date:	We	Wed, 14 Oct 2020 16:28:58 10		Prob (F-statistic): Log-Likelihood: AIC:		
Time:						
No. Observatio	ns:					
Df Residuals:		8	BIC:			105.2
Df Model:		1				
Covariance Typ	e:	nonrobust				
		std err		70 71	-	-
		58.033				
square_feet	0.1098	0.033	3.329	0.010	0.034	0.186
Omnibus:	bus: 1.066		Durbin-Watson:		3.222	
Prob(Omnibus):	rob(Omnibus): 0.587		Jarque-Bera (JB):		0.779	
Skew:	0.399		Prob(JB):		0.677	
Kurtosis:	urtosis: 1.890		Cond. No.		7.82e+03	

Organized by:

Residual Analysis

- The residual for observation i, ei, is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
 - Examine for linearity assumption
 - Evaluate independence assumption
 - Evaluate normal distribution assumption
 - Examine for constant variance for all levels of X (homoscedasticity)

Residual Analysis for Linearity

Residual Analysis for Independence

Independent

Organized by:

Checking for Normality

- Examine the Stem-and-Leaf Display of the Residuals
- Examine the Boxplot of the Residuals
- Examine the Histogram of the Residuals
- Construct a Normal Probability Plot of the Residuals

Residual Analysis for Normality

• When using a normal probability plot, normal errors will approximately display in a straight line.

Residual Analysis for Equal Variance

Constant variance

Measuring Autocorrelation

- Used when data are collected over time to detect if autocorrelation is present
- Autocorrelation exists if residuals in one time period are related to residuals in another period

Autocorrelation

- Autocorrelation is correlation of the errors (residuals) over time
- Here, residuals show a cyclic pattern, not random. Cyclical patterns are a sign of positive autocorrelation
- Violates the regression
 assumption that residuals are
 random and independent

The Durbin-Watson Statistic

- The Durbin-Watson statistic is used to test for autocorrelation
- H0: residuals are not correlated
- H1: positive autocorrelation is present

- The possible range is 0 ≤ D ≤ 4
- D should be close to 2 if H₀ is true
- D less than 2 may signal positive autocorrelation, D greater than 2 may signal negative autocorrelation

H₀: positive autocorrelation does not exist

H₁: positive autocorrelation is present

- Calculate the Durbin-Watson test statistic = D
 - (The Durbin-Watson Statistic can be found using Excel or Minitab)
- Find the values dL and dU from the Durbin-Watson table
 - (for sample size n and number of independent variables k)

- Suppose we have the following time series data:
- Is there autocorrelation?

• Example with n = 25:

Durbin-Watson Calculations	
Sum of Squared Difference of Residuals	3296.18
Sum of Squared Residuals	3279.98
Durbin-Watson Statistic	1.00494

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2} = \frac{3296.18}{3279.98} = 1.00494$$

- Here, n = 25 and there is k = 1 one independent variable
- Using the Durbin-Watson table, dL = 1.29 and dU = 1.45
- D = 1.00494 < dL = 1.29, so reject H0 and conclude that significant positive autocorrelation exists

Inferences About the Slope

$$S_{b_1} = \frac{S_{YX}}{\sqrt{SSX}} = \frac{S_{YX}}{\sqrt{\sum (X_i - \overline{X})^2}}$$

where:

S_{b1} = Estimate of the standard error of the slope

$$S_{YX} = \sqrt{\frac{SSE}{n-2}}$$

= Standard error of the estimate

Inferences About the Slope: t Test

- t test for a population slope
 - Is there a linear relationship between X and Y?
- Null and alternative hypotheses
 - \circ H0: β1 = 0 (no linear relationship)
 - ∘ H1: β 1 ≠ 0 (linear relationship does exist)
- Test statistic

$$S_{\text{STAT}} = \frac{b_1 - \beta_1}{S_{b_1}}$$

$$d.f. = n - 2$$

where:

 b_1 = regression slope coefficient

 β_1 = hypothesized slope

 S_{b1} = standard error of the slope

Inferences About the Slope: t Test Example

0 2	245	1400	
1	312	1600	

2	279	1700
_		1,00

3	308	1875

4	199	1100

5	219	1550

6	405	2350

7	324	2450
	UL-T	2400

8	319	1425

Estimated Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

The slope of this model is 0.1098

Is there a relationship between the square footage of the house and its sales price?

DIGITAL TALENT INCUBATOR 2020 t Test Example

• H0: $\beta 1 = 0$

• H1: β 1 \neq 0

t Test Example

Test Statistic: $t_{STAT} = 3.329$

 H_0 : $\beta_1 = 0$

 H_1 : $\beta_1 \neq 0$

Decision: Reject H₀

There is sufficient evidence that square footage affects house price

Decision: Reject H_0 , since p-value $< \alpha$

There is sufficient evidence that square footage affects house price.

- Idea: Examine the linear relationship between
- 1 dependent (Y) & 2 or more independent variables (Xi)

F Test for Significance

house price R-squared

Dep. variable.	House price	it squareu.	0.301
Model:	OLS	Adj. R-squared:	0.528
Method:	Least Squares	F-statistic:	11.08
Date:	Wed, 14 Oct 2020	Prob (F-statistic):	0.0104
Time:	16:28:58	Log-Likelihood:	-50.290
No. Observations:	10	AIC:	104.6
Df Residuals:	8	BIC:	105.2
Df Model:	1		

Dt Model:	1
Covariance Type:	nonrobust

Den Variable:

	coef	std err	t	P> t	[0.025	0.975]
const	98.2483	58.033	1.693	0.129	-35.577	232.074
square_feet	0.1098	0.033	3.329	0.010	0.034	0.186
Omnibus:		1.066	Durbin-Watson			3.222
Prob(Omnibus):		0.587	Jarque-Bera (JB):		0.779	
Skew:		0.399	Prob(JB):		0.677	
Kurtosis:		1.890	Cond. N	lo.		7.82e+03

With 1 and 8 degrees of freedom

p-value for the F-Test

0 581

F Test for Significance

$$H_1$$
: $\beta_1 \neq 0$

$$\alpha = .05$$

$$df_1 = 1$$
 $df_2 = 8$

Test Statistic:

$$F_{STAT} = \frac{MSR}{MSE} = 11.08$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion:

There is sufficient evidence that house size affects selling price

Confidence Interval Estimate for the Slope

• Confidence Interval Estimate of the Slope:

$$b_1 \pm t_{\alpha/2} S_{b_1}$$
 d.f. = n-2

	coef	std err	t	P> t	[0.025	0.975]
const square_feet	98.2483 0.1098	58.033 0.033	1.693 3.329	0.129 0.010	-35.577 0.034	232.074 0.186
=======================================						

At 95% level of confidence, the confidence interval for the slope is (0.0337, 0.1858)

Confidence Interval Estimate for the Slope

	coef	std err	t	P> t	[0.025	0.975]
const	98.2483	58.033	1.693	0.129	-35.577	232,074
square feet	0.1098	0.033	3.329	0.010	0.034	0.186

Since the units of the house price variable is \$1000s, we are 95% confident that the average impact on sales price is between \$33.74 and \$185.80 per square foot of house size

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

t Test for a Correlation Coefficient

Hypotheses

 \circ H0: ρ = 0 (no correlation between X and Y)

∘ H1: $\rho \neq 0$ (correlation exists)

Test statistic

○ (with n – 2 degrees of freedom)

$$t_{STAT} = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

where
$$r = +\sqrt{r^2} \quad \text{if } b_1 > 0$$

$$r = -\sqrt{r^2} \quad \text{if } b_1 < 0$$

t Test for a Correlation Coefficient

Is there evidence of a linear relationship between square feet and house price at the .05 level of significance?

$$H_0$$
: $\rho = 0$ (No correlation)

$$H_1$$
: $\rho \neq 0$ (correlation exists)

$$\alpha = .05$$
, df = 10 - 2 = 8

$$t_{\text{STAT}} = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{.762 - 0}{\sqrt{\frac{1 - .762^2}{10 - 2}}} = 3.329$$

t Test for a Correlation Coefficient

Decision:

Reject H₀

Conclusion:

There is
evidence of a
linear association
at the 5% level of
significance

Estimating Mean Values and Predicting Individual Values

Goal: Form intervals around Y to express uncertainty about the value of Y for a given

Organized by:

Confidence Interval for the Average Y, Given X

Confidence interval for $\mu_{Y\mid X=X_i}$:

$$\hat{Y} \pm t_{\alpha/2} S_{YX} \sqrt{h_i}$$

Size of interval varies according to distance away from mean, X

$$n_i = \frac{1}{n} + \frac{(X_i - \overline{X})^2}{SSX} = \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}$$

Prediction Interval for an Individual Y, Given X

Confidence interval estimate for an Individual value of Y given a particular X_i

Confidence interval for $Y_{X=X_i}$:

$$\hat{Y} \pm t_{\alpha/2} S_{YX} \sqrt{1 + h_i}$$

This extra term adds to the interval width to reflect the added uncertainty for an individual case

Estimation of Mean Values: Example

Confidence Interval Estimate for $\mu_{Y|X=X}$

Find the 95% confidence interval for the mean price of 2,000 square-foot houses

Predicted Price $Y_i = 317.85 (\$1,000s)$

$$\hat{Y} \pm t_{0.025} S_{YX} \sqrt{\frac{1}{n}} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2} = 317.85 \pm 37.12$$

The confidence interval endpoints are 280.66 and 354.90, or from \$280,660 to \$354,900

Estimation of Individual Values: Example

Prediction Interval Estimate for $Y_{X=X}$

Find the 95% prediction interval for an individual house with 2,000 square feet

Predicted Price $Y_i = 317.85 \ (\$1,000s)$

$$\hat{Y} \pm t_{0.025} S_{YX} \sqrt{1 + \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}} = 317.85 \pm 102.28$$

The prediction interval endpoints are 215.50 and 420.07, or from \$215,500 to \$420,070

- Idea: Examine the linear relationship between
- 1 dependent (Y) & 2 or more independent variables (Xi)

Idea: Examine the linear relationship between 1 dependent (y) & 2 or more independent variables (x_i)

Population model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \epsilon$$

Estimated multiple regression model:

Estimated (Medicted) value of y
$$\hat{\boldsymbol{y}} = \boldsymbol{b}_0 + \boldsymbol{b}_1 \boldsymbol{x}_1 + \boldsymbol{b}_2 \boldsymbol{x}_2 + \ldots + \boldsymbol{b}_k \boldsymbol{x}_k$$

Two variable model

Example: Multiple Linear Regression

- A distributor of frozen dessert pies wants to evaluate factors thought to influence demand
- Dependent variable: Pie sales (units per week)
- Independent variables: Price (in \$), Advertising (\$100's)
- Data are collected for 15 weeks

Example: Data

	week	pie_sales	price	advertising
0	1	350	5.5	3.3
1	2	460	7.5	3.3
2	3	350	8.0	3.0
3	4	430	8.0	4.5
4	5	350	6.8	3.0
5	6	380	7.5	4.0
6	7	430	4.5	3.0
7	8	470	6.4	3.7
8	9	450	7.0	3.5
9	10	490	5.0	4.0
10	11	340	7.2	3.5
11	12	300	7.9	3.2
12	13	440	5.9	4.0
13	14	450	5.0	3.5
14	15	300	7.0	2.7

Sales =
$$b_0 + b_1$$
 (Price)
+ b_2 (Advertising)

Organized by:

Example: Regression Equation

Sales = 306.526 - 24.975(Price) + 74.131(Advertising)

where

Sales is in number of pies per week Price is in \$ Advertising is in \$100's.

b₁ = -24.975: sales will decrease, on average, by 24.975 pies per week for each \$1 increase in selling price, net of the effects of changes due to advertising

b₂ = **74.131**: sales will increase, on average, by 74.131 pies per week for each \$100 increase in advertising, net of the effects of changes due to price

Example: Making Predictions

Predict sales for a week in which the selling price is \$5.50 and advertising is \$350:

$$= 306.526 - 24.975 (5.50) + 74.131 (3.5)$$

= 428.62

Predicted sales is 428.62 pies

Note that Advertising is in \$100's, so \$350 means that $X_2 = 3.5$

Adjusted r2

- r2 never decreases when a new X variable is added to the model
 - This can be a disadvantage when comparing models
- What is the net effect of adding a new variable?
 - We lose a degree of freedom when a new X variable is added
 - Did the new X variable add enough explanatory power to offset the loss of one degree of freedom?

Adjusted r2

 Shows the proportion of variation in Y explained by all X variables adjusted for the number of X variables used

$$r_{adj}^2 = 1 - \left[(1 - r^2) \left(\frac{n - 1}{n - k - 1} \right) \right]$$

(where n = sample size, k = number of independent variables)

- Penalize excessive use of unimportant independent variables
 Smaller than r2
 - Useful in comparing among models

Residuals in Multiple Regression

CAE

Pitfalls of Regression Analysis

- Lacking an awareness of the assumptions underlying least-squares regression
- Not knowing how to evaluate the assumptions
- Not knowing the alternatives to least-squares regression if a particular assumption is violated
- Using a regression model without knowledge of the subject matter
- Extrapolating outside the relevant range

Strategies for Avoiding the Pitfalls of Regression

- Start with a scatter plot of X vs. Y to observe possible relationship
- Perform residual analysis to check the assumptions
- Plot the residuals vs. X to check for violations of assumptions such as homoscedasticity
- Use a histogram, stem-and-leaf display, boxplot, or normal probability plot of the residuals to uncover possible non-normality

Strategies for Avoiding the Pitfalls of Regression

- If there is violation of any assumption, use alternative methods or models
- If there is no evidence of assumption violation, then test for the significance of the regression coefficients and construct confidence intervals and prediction intervals
- Avoid making predictions or forecasts outside the relevant range

Practice with Python

Practice Link: https://github.com/rc-dbe/dti

References/Additional Resources

- Basic Business Statistics 13th Edition by Mark Berenson
- Regression Analysis with Python by Luca Massaron

Assignment Week 4

- Create a multiple linear regression model using pie sales data in https://github.com/rc-dbe/dti
- Use Google Collab (or Jupyter Notebook if you want)
- Put the code in your github
- Make it informative as possible

Assignment Week 4

