P1 de Lógica Matemática

Professora Maysa Macedo 1º período – 2013.1

1. **(2,4)** Construa as tabelas-verdade para as fbfs a seguir:

(a)
$$[(A \lor B) \land \neg C] \rightarrow \neg A \lor C$$

(b)
$$[\neg B \land (A \rightarrow B)] \rightarrow \neg A$$

(c)
$$\neg (p \lor \neg q)$$

(d)
$$[A \rightarrow \neg (B \rightarrow A)] \land \neg B$$

2. **(1,5)** Classifique cada fbf a seguir como tautologia ou contradição. Justifique sua resposta.

(a)
$$A \wedge [\neg (A \vee B)]$$

(b)
$$(A \rightarrow B) \leftrightarrow [(\neg A) \lor B]$$

(c)
$$(A \rightarrow B) \leftrightarrow \neg [A \land (\neg B)]$$

3. **(0,8)** Sabendo que os valores lógicos de *p*, *q* e *r* são respectivamente **V**, **F** e **F**, determine o valor lógico (V ou F) de cada fbf a seguir:

(a)
$$(\underline{\hspace{1cm}})(p \land q \rightarrow r) \rightarrow [p \rightarrow (q \rightarrow r)]$$

(b)
$$(p \rightarrow \neg q) \leftrightarrow [(p \lor r) \land q]$$

4. **(2,4)** Use lógica proposicional (método de dedução) para provar a validade dos argumentos abaixo. Use apenas as tabelas em anexo.

(a)
$$(P \lor Q) \land \neg P \rightarrow Q$$

(b)
$$A \rightarrow [\neg B \rightarrow \neg (A \rightarrow B)]$$

(c)
$$A \lor B \rightarrow \neg(\neg A \land \neg B)$$

5. **(1,4)** Para a seguinte fbf, encontre uma interpretação (conjunto universo e predicado(s)) em relação à qual ela é verdadeira e outra em relação à qual ela é falsa: $(\forall x)[P(x) \rightarrow (\exists y)Q(x,y)]$

6. **(0,7)** Explique por que a fbf a seguir é válida.

$$A(a) \rightarrow (\exists x) A(x)$$

7. **(0,8)** Dê um contraexemplo que prove que a seguinte fbf não é válida: $(\forall x)(\exists y)P(x,y) \rightarrow (\exists x)(\forall y)P(x,y)$

1

Tabela 1: Tabela de Equivalências

Regra	Nome	Abreviação
$A \lor B \longleftrightarrow B \lor A$	Comutatividade	comut
$A \wedge B \longleftrightarrow B \wedge A$	Comutatividade	comut
$(A \lor B) \lor C \longleftrightarrow A \lor (B \lor C)$	Associatividade	assoc
$(A \land B) \land C \longleftrightarrow A \land (B \land C)$	Associatividade	assoc
$A \lor (B \land C) \longleftrightarrow (A \lor B) \land (A \lor C)$	Distributividade	dist
$A \land (B \lor C) \longleftrightarrow (A \land B) \lor (A \land C)$	Distributividade	dist
$A \lor 0 \longleftrightarrow A$	Elementos neutros	neut
$A \wedge 1 \longleftrightarrow A$	Elementos neutros	neut
$A \lor \neg A \longleftrightarrow 1$	Complementares	compl
$A \land \neg A \longleftrightarrow 0$	Complementares	compl
$A \to B \longleftrightarrow \neg A \lor B$	Condicional	cond
$A \leftrightarrow \neg \neg A$	Dupla negação	dneg
$\neg (A \lor B) \longleftrightarrow \neg A \land \neg B$	De Morgan	morgan
$\neg (A \land B) \leftrightarrow \neg A \lor \neg B$	De Morgan	morgan

Tabela 2: Tabela de Regras de Inferências

De	Podemos deduzir	Nome	Abreviação
$A, A \rightarrow B$	В	Modus ponens	mp
$A \rightarrow B$, $\neg B$	$\neg A$	Modus tollens	mt
A, B	$A \wedge B$	Conjunção	conj
$A \wedge B$	A, B	Simplificação	simpl
\boldsymbol{A}	$A \vee B$	Adição	ad
$A \rightarrow B, B \rightarrow C$	$A \rightarrow C$	Silogismo hipotético	sh