Université Laval	Examen partiel informatique
Faculté des Sciences et de Génie	Hiver 2016
École d'actuariat	Date: 12 mars 2016

Act-2001 Introduction à l'actuariat 2 Professeur: Etienne Marceau

Nom de famille de l'étudiant	Prénom de l'étudiant	Matricule

Instructions:

- L'examen contient 4 questions à développement.
- Le total des points est de **100 points**.
- La durée est de 120 minutes.
- Veuillez écrire votre nom sur le questionnaire.
- Veuillez écrire vos réponses dans le présent cahier seulement.
- Veuillez faire vos brouillons sur les documents prévus à cet effet.
- Veuillez retourner le présent cahier, les annexes et le papier brouillon à la fin de l'examen.

Questions	Points obtenus	Points
1		30
2		30
3		20
4		20
Total		100

© Etienne Marceau, 2016.

1. (30 points). Pour la prochaine année, le montant total des sinistres pour l'ensemble du portefeuille d'assurance maladie est représenté par la v.a.

$$S_n = X_1 + ... + X_n$$

où les v.a. $X_1, ..., X_n$ sont i.i.d. Les coûts pour le contrat i sont définis par la v.a.

$$X_i \sim Gamma (\alpha = 0.5, \beta = 0.5)$$
.

Questions:

- (a) (2 points). Indiquer la loi de S_n .
- (b) (3 points). Calculer $F_{S_n}(n)$, pour n = 10, 100, 1000. (Pour vérification : $F_{S_{200}}(200) = 0.5132988$)
- (c) (1 points). Calculer E[X].
- (d) (24 points). On définit la prime $\pi = (1 + \eta) E[X]$ et la probabilité de ruine $\psi_n(u) = \Pr(S_n > u + n\pi)$, avec un surplus initial u > 0.
 - i. (8 points). Calculer ψ_n (20), pour $\pi_A = 1.1$ pour n = 10, 400, 1000 et 2000. Commenter et expliquer le comportment. Indiquer η_A .
 - ii. (8 points). Calculer ψ_n (20), pour $\pi_B = 0.9$ pour n = 10, 400, 1000 et 2000. Commenter et expliquer le comportment. Indiquer η_B .
 - iii. (8 points). Calculer π_C et η_C de telle sorte que $\psi_{1000}(20) = 1\%$.

2. (30 points). Pour la prochaine année, on suppose que n=1000 contrats d'assurance IARD seront vendus par une compagnie d'assurance IARD.

Les coûts pour un contrat (v.a. X) sont modélisés selon l'approche fréquence sévérité.

Le nombre de sinistres obéit à une loi de Poisson avec $\lambda = 0.006$.

Le montant d'un sinistre obéit à une loi gamma avec des paramètres $\alpha = 1.5$ et $\beta = \frac{1}{1500}$.

Le montant total des sinistres pour l'ensemble du portefeuille est représenté par la v.a.

$$S_n = X_1 + ... + X_n$$

où les v.a. $X_1, ..., X_n$ sont i.i.d. (convention: $X_i \sim X$ pour i = 1, 2, ..., n). On définit $W_n = \frac{S_n}{n}$.

Questions:

- (a) (13 points). Pour un contrat, ...
 - ... écrire l'expression de $F_{X_1}(x)$;
 - ... calculer $F_{X_1}(0)$ et $F_{X_1}(40)$ (**vérification**: $F_{X_1}(10) = 0.9940204$);
 - ... expliquer comment obtenir la $VaR_{0.99}(X_1)$;
 - ... calculer $VaR_{0.99}(X_1)$;
 - ... donner l'expression de la $TVaR_{0.99}(X_1)$; et
 - ... calculer $TVaR_{0.99}(X_1)$.
- (b) (12 points). Pour un portefeuille de n = 1000 contrats, ...
 - ... indiquer la loi de S_n ;
 - ... écrire l'expression de $F_{W_n}(x)$;
 - ... calculer $F_{W_n}(0)$ et $F_{W_n}(40)$ (vérification: $F_{W_n}(10) = 0.3480221$);
 - ... expliquer comment obtenir la $VaR_{0.99}(W_n)$;
 - ... calculer $VaR_{0.99}(W_n)$;
 - ... donner l'expression de la $TVaR_{0.99}(W_n)$; et
 - ... calculer $TVaR_{0.99}(W_n)$.
- (c) (5 points). On définit les bénéfices de mutualisation par contrat selon la mesure VaR et la mesure TVaR par

$$\begin{array}{lcl} B_{0.99,n}^{VaR} & = & VaR_{0.99}\left(X\right) - VaR_{0.99}\left(W_{n}\right) \\ B_{0.99,n}^{TVaR} & = & TVaR_{0.99}\left(X\right) - TVaR_{0.99}\left(W_{n}\right). \end{array}$$

Pour n = 1000, ...

- ... calculer les valeurs de $B_{0.99,n}^{VaR}$ et $B_{0.99,n}^{TVaR}$; ... commenter les valeurs obtenues de $B_{0.99,n}^{VaR}$ et $B_{0.99,n}^{TVaR}$

3. (20 points). La proposition suivante est fournie.

Proposition. Soient n v.a. indépendantes $X_i \sim Ga(\alpha_i, \beta_i)$, i = 1, ..., n. On définit $S = \sum_{i=1}^{n} X_i$. Alors, on a

$$f_S(x) = \sum_{k=0}^{\infty} p_k h(x; \alpha + k, \beta), \qquad (1)$$

οù

$$\begin{split} &\alpha = \sum_{i=1}^{n} \alpha_i \\ &\beta = \max \left(\beta_1; \dots; \beta_n\right) \\ &\sigma = \prod_{i=1}^{n} \left(\frac{\beta_i}{\beta}\right)^{\alpha_i} \\ &p_k = \sigma \xi_k, \ (k \in \mathbb{N}) \\ &\zeta_k = \sum_{i=1}^{n} \frac{\alpha_i}{k} \left(1 - \frac{\beta_i}{\beta}\right)^k, \ \ (k \in \mathbb{N}^+) \\ &\xi_0 = 1, \\ &\xi_k = \frac{1}{k} \sum_{i=1}^{k} i \zeta_i \xi_{k-i}, \ \ (k \in \mathbb{N}^+) \,. \end{split}$$

On considère les risques d'assurance et opérationnel d'un portefeuille.

Les coûts totaux en risque assurance IARD sont définis par la v.a. $W_1 \sim Gamma\left(4, \frac{1}{100}\right)$. Les coûts totaux en risque opérationnel sont définis par la v.a. $W_2 = I \times B$ avec $I \sim Bern\left(q = 0.25\right)$ et $B \sim Gamma\left(2, \frac{1}{200}\right)$.

On définit les coûts totaux pour le portefeuille par la v.a. $T = W_1 + W_2$.

Questions

- (a) (3 points). Calculer E[T].
- (b) (5 points). Utiliser la proposition pour développer l'expression de $F_T(x)$ dans les termes de fonction de répartition de loi gamma.
- (c) (12 points). Dans (1), on somme les termes pour k = 0, 1, ..., 100 pour calculer $F_S(x)$, pour x = 0, 500 et 1000. (Vérification: $F_T(800) = 0.8588622$).

4. (20 points). On considère un portefeuille homogène de risques échangeables $X_1, ..., X_n$ où

$$X_i = I_i \times b_i$$

avec $b_i = 1000$ pour i = 1, 2, ..., n.

Soit la v.a. mélange $\Theta \sim Beta (\alpha = 1, \beta = 3)$.

On a

$$(I_i|\Theta=\theta) \sim Bern(\theta)$$

pour i = 1, 2, ..., n.

De plus, $(I_1|\Theta=\theta)$, ..., $(I_n|\Theta=\theta)$ sont conditionnellement indépendantes. On définit $S_n = \sum_{i=1}^n X_i$. On définit $N_n = \sum_{i=1}^n I_i$.

Notation pour la fonction beta :

$$I(\alpha, \beta) = \int_0^1 u^{\alpha - 1} (1 - u)^{\beta - 1} du = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Questions (expliquer la démarche et indiquer clairement les valeurs demandées):

(a) (5 points). Démontrer que

$$\Pr\left(I_i = 1\right) = E\left[\Theta\right] = \tau_1$$

et que

$$\Pr(I_i = 1, I_i = 1) = E[\Theta^2] = \tau_2.$$

(b) **(5 points).** Démontrer que

$$\Pr(N_n = k) = \binom{n}{k} \frac{I(a+k, b+n-k)}{I(a, b)}, (k = 0, 1, ..., n).$$

- (c) (4 points). Calculer $Pr(S_3 = 1000k)$, for k = 0, 1, 2, 3. (Pour vérifier: $Pr(S_3 = 0) =$
- (d) (2 points). Calculer $E[\max(S_3 2000; 0)]$.
- (e) (4 points). Refaire (c) et (d) en supposant $S_3' = 1000N_3'$ où $N_3' \sim Binom(3, \tau_1)$. Comparer et commenter brièvement.

FIN

Solutions à l'examen partiel informatique

- 1. Solution à la question #1: (30 points)
 - (a) **2pts** Indiquer la loi de S_n . On sait que $X_i \sim Gamma$ ($\alpha = 0.5, \beta = 0.5$) donc $S_n = \sum_{i=1}^n X_i \sim Gamma$ ($\alpha \times n, \beta$) car les X_i sont iid.
 - (b) **3pts** Calculer $F_{S_n}(n)$, pour n = 10, 100, 1000. On obtient

$$F_{S_n}(n) = P(S_n \le n) = H(n, n \times \alpha, \beta)$$

$$= \begin{cases} 0.5595067 & , n = 10 \\ 0.5188083 & , n = 100 \\ 0.5059472 & , n = 1000 \end{cases}$$

- (c) **1pts** Calculer E[X]. On a $E[X] = \frac{\alpha}{\beta} = \frac{0.5}{0.5} = 1$
- (d) **24pts** On définit la prime $\pi = (1 + \eta) E[X]$ et la probabilité de ruine $\psi_n(u) = \Pr(S_n > u + n\pi)$, avec un surplus initial u > 0.
 - i. **8pts** Calculer ψ_n (20), pour $\pi_A = 1.1$ pour n = 10, 400, 1000 et 2000. Commenter et expliquer le comportment. Indiquer η_A .

Pour $\psi_n(20) = \Pr(S_n > n\pi + u) = 1 - F_{S_n}(n\pi + u)$, on obtient

$$\psi_n (20) = P(S_n > 20 + n * \pi_A)$$

$$= 1 - F_{S_n} (20 + n * \pi_A)$$

$$= \begin{cases} 0.0005867255 &, n = 10 \\ 0.0203311433 &, n = 400 \\ 0.0046931660 &, n = 1000 \\ 0.0003771876 &, n = 2000 \end{cases}$$

Valeur de $\eta_A = 0.1$

Commentaires:

- On observe $\pi_A > E[X]$
- Comme prévu, la probablité de ruine tend vers 0
- $\bullet\,$ Elle ne tend pas de façon monotone
- ii. **8pts** Calculer ψ_n (20), pour $\pi_B = 0.9$ pour n = 10, 400, 1000 et 2000. Commenter et expliquer le comportment. Indiquer η_B .

On obtient

$$\psi_{n}(20) = P(S_{n} > 20 + n \times \pi_{A}) =$$

$$= 1 - F_{S_{n}}(20 + n \times \pi_{A})$$

$$= \begin{cases} 0.001246045 & , n = 10 \\ 0.756652573 & , n = 400 \\ 0.965616812 & , n = 1000 \\ 0.998280995 & , n = 2000 \end{cases}$$

Valeur de $\eta_A=-0.1$

Commentaires:

- On observe $\pi_A < E[X]$
- Comme prévu, la probablité de ruine tend vers 1
- Elle tend de façon monotone
- iii. **8pts** Calculer π_C et η_C de telle sorte que ψ_{1000} (20) = 1%. On a la relation suivante :

$$VaR_{\kappa}\left(S_{n}\right) = 1000\pi_{C} + 20$$

On déduit

$$\pi_C = \frac{VaR_{\kappa}(S_n) - 20}{1000}$$

$$= \frac{1106.969 - 20}{1000}$$

$$= 1.086969$$

ce qui conduit à

$$\eta_C=8.6969\%$$

2. Solution à la question #2 : (30 points)

- (a) **13pts** Pour un contrat, ...
 - 3 pts... écrire l'expression de $F_{X_1}(x)$; On a

$$F_{X_{1}}(x) = f_{M}(0) + \sum_{k=1}^{\infty} f_{M}(k) \Pr(B_{1} + \dots + B_{k} \leq x)$$
$$= f_{M}(0) + \sum_{k=1}^{\infty} f_{M}(k) H(x; \alpha k, \beta)$$

avec $\alpha = 1.5$ et $\beta = \frac{1}{1500}$

- 3 pts... calculer $F_{X_1}(0)$ et $F_{X_1}(40)$ (vérification: $F_{X_1}(10) = 0.9940204$); On obtient $F_{X_1}(0) = 0.994018$ On obtient $F_{X_1}(40) = 0.9940372$
- 1 pt... expliquer comment obtenir la $VaR_{0.99}(X_1)$; On utilise optimize ou uniroot pour trouver la $VaR_{0.99}(X_1)$ numériquement. Mais avant, il est important de s'assurer que $\kappa > F_X(0)$
- **2 pts...** calculer $VaR_{0.99}(X_1)$; On obtient: 0
- 2 pts... donner l'expression de la $TVaR_{0.99}(X_1)$; et On a

$$TVaR_{\kappa}(X_{1}) = \frac{1}{1-\kappa}E\left[X_{1} \times 1_{\{X_{1} > VaR_{\kappa}(X_{1})\}}\right]$$

$$= \frac{1}{1-\kappa}\sum_{k=1}^{\infty}f_{M}(k)E\left[(B_{1} + ... + B_{k}) \times 1_{\{B_{1} + ... + B_{k} > VaR_{\kappa}(X_{1})\}}\right]$$

$$= \frac{1}{1-\kappa}\sum_{k=1}^{\infty}f_{M}(k)\frac{k}{\beta}\overline{H}\left(VaR_{\kappa}(X_{1}); \alpha k + 1, \beta\right)$$

Comme $VaR_{\kappa}(X_1) = 0$, on a

$$TVaR_{\kappa}(X_1) = \frac{1}{1-\kappa}E[X_1]$$

= $\frac{1}{1-0.99}0.006 \times 1.5 \times 1500$
= 1350

• **2 pts**... calculer $TVaR_{0.99}(X_1)$.

On obtient

$$TVaR_{\kappa}(X_1) = \frac{1}{1 - 0.99}0.006 \times 1.5 \times 1500$$

= 1350

- (b) **12pts**Pour un portefeuille de n = 1000 contrats,
 - 2 pt. indiquer la loi de W_n ; On a $W_n = \frac{1}{n}S_n$ où $S_n \sim PoisComp(n\lambda, F_C)$ avec $C \sim B \sim Gamma(\alpha, \beta)$ avec $\alpha = 1.5, \beta = \frac{1}{1500}$ et $\lambda = 0.006$
 - 2 pts. écrire l'expression de $F_{W_n}(x)$;On a

$$F_{W_n}(x) = F_{S_n}(nx)$$

οù

$$F_{S_n}(x) = f_{N_n}(0) + \sum_{k=1}^{\infty} f_{N_n}(k) \Pr(C_1 + \dots + C_k \le x)$$
$$= f_{N_n}(0) + \sum_{k=1}^{\infty} f_{N_n}(k) H(x; k, \beta)$$

avec $N_n \sim Poisson(\lambda n)$

- **2pts**. calculer $F_{W_n}(0)$ et $F_{W_n}(40)$ (**vérification**: $F_{W_n}(10) = 0.3480221$); On obtient $F_{W_n}(0) = 0.002478752$ On obtient $F_{W_n}(10) = 0.9979932$
- 1pt. expliquer comment obtenir la $VaR_{0.99}(W_n)$; On sait que $VaR_{0.99}(W_n) = \frac{1}{n}VaR_{\kappa}(S_n)$ On utilise optimize ou uniroot pour trouver la $VaR_{0.99}(S_n)$ numériquement avec $F_{S_n}(x)$

Mais avant, il est important de s'assurer que $\kappa > F_{S_n}(0)$

- 1pt... calculer $VaR_{0.99}(W_n)$; On obtient $VaR_{0.99}(W_n) = 33.66647$
- **2pts**... donner l'expression de la $TVaR_{0.99}(W_n)$; et On a

$$TVaR_{\kappa}(S_{n}) = \frac{1}{1-\kappa} E\left[S_{n} \times 1_{\{S_{n} > VaR_{\kappa}(S_{n})\}}\right]$$

$$= \frac{1}{1-\kappa} \sum_{k=1}^{\infty} f_{N_{n}}(k) E\left[(C_{1} + ... + C_{k}) \times 1_{\{C_{1} + ... + C_{k} > VaR_{\kappa}(S_{n})\}}\right]$$

$$= \frac{1}{1-\kappa} \sum_{k=1}^{\infty} f_{N_{n}}(k) \frac{k}{\beta} \overline{H}(VaR_{\kappa}(S_{n}); \alpha k + 1, \beta)$$

- **2pts** calculer $TVaR_{0.99}(W_n)$. On obtient $TVaR_{0.99}(W_n) = 37.58425$
- (c) **5pts** On définit les bénéfices de mutualisation par contrat selon la mesure VaR et la mesure TVaR par

$$\begin{array}{lcl} B_{0.99,n}^{VaR} & = & VaR_{0.99}\left(X\right) - VaR_{0.99}\left(W_{n}\right) \\ B_{0.99,n}^{TVaR} & = & TVaR_{0.99}\left(X\right) - TVaR_{0.99}\left(W_{n}\right). \end{array}$$

Pour n = 1000, ...

• 2pts ... calculer les valeurs de $B_{0.99,n}^{VaR}$ et $B_{0.99,n}^{TVaR}$; 1.pt On obtient $B_{0.99,n}^{VaR}$ =-33.66647 1.pt On obtient $B_{0.99,n}^{TVaR}$ =1312.416

• 3pts ... commenter les valeurs obtenues de $B_{0.99,n}^{VaR}$ et $B_{0.99,n}^{TVaR}$.

1.5pt Comme prévu, on met en évidence l'incohérence de la mesure VaR. Selon cette mesure, il n'y aurait pas de bénéfice à mutualiser 1000 risques.

1.5pt On observe la cohérence de la mesure TVaR. Il est possible de quantifier le bénéfice (par contrat) à mutualiser 1000 risques.

- 3. Solution à la question #3 : (20 points):
 - (a) (3 points). Calculer E[T]. On a

$$E[T] = E[W_1] + E[W_2]$$

= $E[W] + E[I] E[B]$
= $400 + 0.25 \times 400$
= 500

(b) (5 points). Utiliser la proposition pour développer l'expression de $F_T(x)$ dans les termes de fonction de répartition de loi gamma. On a

$$F_T(x) = \Pr(I = 0) F_{W_1}(x) + \Pr(I = 1) F_{W_1+B}(x)$$

οù

$$F_{W_1}(x) = H\left(x; 4, \frac{1}{100}\right)$$

et

$$F_{W_1+B}(x) = \sum_{k=0}^{\infty} p_k H(x; \alpha + k, \beta)$$

et les valeurs sont calculées à l'aide des formules récusrives fournies dans la proposition.

(c) (12 points). Dans (1), on somme les termes pour k = 0, 1, ..., 100 pour calculer $F_S(x)$, pour x = 0, 500 et 1000. (Vérification: $F_T(800) = 0.8588622$). On obtient

$$\begin{array}{ccc} x & F_S(x) \\ 100 & 0.0142840 \\ 500 & 0.5993054 \\ 800 & 0.8588622 \\ 1000 & 0.9311296 \end{array}$$

Note pour la correction (si les étudiants ont fourni ces valeurs, on attribue quelques points): Les 5 premières valeurs de p (p_0 , ..., p_4) sont : 0.250000 0.250000 0.187500 0.125000 0.078125.

Pour la proposition, les valeurs $\alpha = 6$, $\beta = 0.01$, et $\sigma = 0.25$

4. Solution à la question #4: (20 points)(20 points). On considère un portefeuille homogène de risques échangeables $X_1, ..., X_n$ où

$$X_i = I_i \times b_i$$

avec $b_i = 1000$ pour i = 1, 2, ..., n.

Soit la v.a. mélange $\Theta \sim Beta (\alpha = 1, \beta = 3)$.

On a

$$(I_i|\Theta=\theta) \sim Bern(\theta)$$

pour i = 1, 2, ..., n.

De plus, $(I_1|\Theta=\theta)$, ..., $(I_n|\Theta=\theta)$ sont conditionnellement indépendantes. On définit $S_n = \sum_{i=1}^n X_i$. On définit $N_n = \sum_{i=1}^n I_i$.

Notation pour la fonction beta:

$$I(\alpha, \beta) = \int_0^1 u^{\alpha - 1} (1 - u)^{\beta - 1} du = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Questions (expliquer la démarche et indiquer clairement les valeurs demandées): (a) (5 points). Démontrer que

$$\Pr\left(I_i = 1\right) = E\left[\Theta\right] = \tau_1$$

et que

$$\Pr(I_i = 1, I_j = 1) = E[\Theta^2] = \tau_2.$$

On sait que

$$\Pr\left(I_i = 1 | \Theta\right) = \Theta$$

 et

$$\Pr(I_i = 1, I_j = 1 | \Theta) = \Theta^2.$$

Alors, on a

$$Pr(I_i = 1) = E_{\Theta}[Pr(I_1 = 1|\Theta)]$$
$$= E[\Theta]$$
$$= \tau_1$$

et

$$Pr(I_i = 1, I_j = 1) = E_{\Theta}[Pr(I_1 = 1, I_j = 1 | \Theta)]$$

$$= E[\Theta^2]$$

$$= \tau_1$$

(b) (5 points). Démontrer que

$$\Pr(N_n = k) = \binom{n}{k} \frac{I(a+k, b+n-k)}{I(a, b)}, \ (k = 0, 1, ..., n).$$

The conditional pmf of N_m is

$$\Pr(N_m = k \mid \Theta = \theta) = {m \choose k} \theta^k (1 - \theta)^{(m-k)},$$

which corresponds to the pmf of the binomial distribution. The expression for the unconditional pmf of N_m is given by

$$\Pr(N_{m} = k) = \int_{0}^{1} \Pr(N = k \mid \Theta = \theta) f_{\Theta}(\theta) d\theta$$

$$= {m \choose k} \int_{0}^{1} \theta^{k} (1 - \theta)^{(m-k)} f_{\Theta}(\theta) d\theta$$

$$= {m \choose k} \int_{0}^{1} \theta^{k} (1 - \theta)^{(m-k)} \times \frac{1}{I(\alpha, \beta)} \theta^{\alpha-1} (1 - \theta)^{\beta-1} d\theta$$

which becomes

$$\Pr(N_m = k) = {m \choose k} \frac{I(\alpha + k, \beta + m - k)}{I(\alpha, \beta)},$$

where

$$I(\alpha, \beta) = \int_0^1 \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta$$
$$= \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

(c) **(4 points).** Calculer $Pr(S_3 = 1000k)$, for k = 0, 1, 2, 3. (Pour vérifier: $Pr(S_3 = 0) = 0.5$)

On a

$$\Pr(S_3 = 1000k) = \Pr(N_3 = k)$$

For k=0, on a

$$\Pr(N_3 = 0) = \binom{3}{0} \frac{\left(\frac{\Gamma(1+0)\Gamma(3+3-0)}{\Gamma(1+3+3)}\right)}{\left(\frac{\Gamma(1)\Gamma(3)}{\Gamma(1+3)}\right)} = 0.5$$

For k = 1, on a

$$\Pr(N_3 = 1) = {3 \choose 1} \frac{\left(\frac{\Gamma(1+1)\Gamma(3+3-1)}{\Gamma(1+3+3)}\right)}{\left(\frac{\Gamma(1)\Gamma(3)}{\Gamma(1+3)}\right)} = 0.3$$

For k = 2, on a

$$\Pr(N_3 = 2) = {3 \choose 2} \frac{\left(\frac{\Gamma(1+2)\Gamma(3+3-2)}{\Gamma(1+3+3)}\right)}{\left(\frac{\Gamma(1)\Gamma(3)}{\Gamma(1+3)}\right)} = 0.15$$

For k = 3, on a

$$\Pr(N_3 = 3) = {3 \choose 3} \frac{\left(\frac{\Gamma(1+3)\Gamma(3+3-3)}{\Gamma(1+3+3)}\right)}{\left(\frac{\Gamma(1)\Gamma(3)}{\Gamma(1+3)}\right)} = 0.05$$

(d) (2 points). Calculer $E [\max (S_3 - 2000; 0)]$. On obtient

$$E \left[\max \left(S_3 - 2000; 0 \right) \right] = (3000 - 2000) \times 0.05$$

= 50

(e) (4 points). Refaire (c) et (d) en supposant $S_3' = 1000 N_3'$ où $N_3' \sim Binom(3, \tau_1)$. Comparer et commenter brièvement.

Note: on sait que

$$\tau_1 = \frac{\alpha}{\alpha + \beta} = \frac{1}{1+3} = 0.25$$

Les valeurs de

$$\Pr\left(S_3^{'} = 1000N_3^{'}\right)$$

sont: $0.421875 \ 0.421875 \ 0.140625 \ 0.015625$

On obtient

$$E\left[\max\left(S_3' - 2000; 0\right)\right] = (3000 - 2000) \times 0.015625$$

= 15.625

(1 pt pour le commentaire). La relation de dépendance positive introduite entre les v.a. I_1 , I_2 , I_3 conduit à un risque global pour le portefeuille. On observe que la prime stop-loss est plus élevée pour le portefeuille homogène échangeable.