Mora Jove Groussman, Ph.D.

mora@jovian.bio * (425) 444-7806 * Seattle, WA https://www.jovian.bio * https://www.linkedin.com/in/mora-jove-groussman/

Bioinformatics Scientist experienced in building workflows for large sequencing datasets

PROFESSIONAL EXPERIENCE

University of Washington, School of Oceanography

January 2023 – January 2024

Seattle, WA

Postdoctoral Scholar

- Designed and implemented MarFERReT, a reproducible pipeline for processing large volumes of reference sequence data and enhancing bioinformatics data use for environmental sequence annotation.
- Developed reproducible bioinformatics pipelines using R and python for cross-validation of genetic reference data, establishing a github repository with code and technical documentation.
- Built, maintained and executed bioinformatics workflows for processing, annotation and distribution of large environmental sequencing datasets from hundreds of heterogeneous samples.
- Created and maintained public data repositories for nearly 200 million environmental gene sequences, increasing accessibility and re-use of data sets.
- Implemented advanced data visualization techniques to elucidate complex multi-dimensional transcriptomic datasets, identifying novel microbial interactions and metabolic pathways.

University of Washington, School of Oceanography

June 2016 - December 2022

Seattle, WA

Graduate Research Assistant

- Published 10 papers in peer-reviewed journals and presented research at 5 international conferences, demonstrating expertise in scientific writing and communication.
- Developed key bioinformatics data pipelines for a novel machine learning study of marine microbial eukaryote metabolism, showcasing skills in ML applications for genomics.
- Applied multivariate statistical methods to analyze high-dimensional transcriptomic datasets encompassing hundreds of organisms and millions of gene sequences.
- Leveraged cloud computing (AWS) and High-Performance Computing (SLURM) for large-scale dataset processing and analysis.
- Utilized containerization (Docker, Singularity) to ensure reproducibility and portability of computational workflows.
- Mentored team members in bioinformatics algorithms, statistical techniques, and best practices for NGS data analysis.

EDUCATION

University of Washington

December 2022

Ph.D. in Oceanography

Seattle, WA

Dissertation: "Resolving the molecular ecology of marine microbial eukaryotes with metatranscriptomes."

University of Washington

March 2016

B.S. in Molecular, Cellular, and Developmental Biology (magna cum laude)

Seattle, WA

SKILLS

Bioinformatics and Data Science: Genomics, Transcriptomics, Machine Learning, Algorithm Development Pipeline Design and Implementation: Docker, GitHub. Programming: Python, R, Unix/Linux, SQL Data Visualization and Statistical Analysis. High-Performance and Cloud Computing: AWS, SLURM Scientific Writing and Presentation: 10 peer-reviewed publications, 5 conference presentations Project Management and Team Leadership: Mentoring, Interdisciplinary Collaboration NGS Technologies: Illumina sequencing

- 1. Groussman, R. D., Coesel, S. N., Schatz, M., Durham, B. D., & Armbrust, E. V. (2024). The North Pacific Eukaryotic Gene Catalog of metatranscriptome assemblies and annotations. *Scientific Data*, in revision. https://doi.org/10.5281/zenodo.10472589
- 2. Groussman, R. D., Blaskowski, S., Coesel, S. N., & Armbrust, E. V. (2023). MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. *Scientific Data*, 10(1), 926. https://doi.org/10.1038/s41597-023-02842-4
- 3. Graff van Creveld, S., Coesel, S. N., Blaskowski, S., Groussman, R. D., Schatz, M. J., & Armbrust, E. V. (2023). Divergent functions of two clades of flavodoxin in diatoms mitigate oxidative stress and iron limitation. *Elife*, 12, e84392. https://doi.org/10.7554/elife.84392
- Lambert, B. S., Groussman, R.D., Schatz, M. J., Coesel, S. N., Durham, B. P., Alverson, A. J., ... & Armbrust, E. V. (2022). The dynamic trophic architecture of open-ocean protist communities revealed through machine-guided metatranscriptomics. *Proceedings of the National Academy of Sciences*, 119(7). https://doi.org/10.1073/pnas.2100916119
- 5. Boysen, A. K., Durham, B. P., Kumler, W., Key, R. S., Heal, K. R., Carlson, L., Groussman, R.D., ... & Ingalls, A. E. (2022). Glycine betaine uptake and metabolism in marine microbial communities. *Environmental Microbiology*. https://doi.org/10.1111/1462-2920.16020
- Park, J., Durham, B. P., Key, R. S., Groussman, R.D., Pinedo-Gonzalez, P., Hawco, N. J., ... & Bundy, R. M. (2022).
 Siderophore production and utilization by microbes in the North Pacific
 Ocean. bioRxiv. https://doi.org/10.1101/2022.02.26.482025
- Groussman, R.D., Coesel, S., Durham, B.P., and Armbrust, E.V. (2021). "Diel-regulated transcriptional cascades of microbial eukaryotes in the North Pacific Subtropical Gyre". *Frontiers in Microbiology*, 2542. https://doi.org/10.3389/fmicb.2021.682651
- 8. Boysen, A. K., Carlson, L. T., Durham, B. P., Groussman, R.D., Aylward, F. O., Ribalet, F., ... & Ingalls, A. E. (2021). Particulate Metabolites and Transcripts Reflect Diel Oscillations of Microbial Activity in the Surface Ocean. *Msystems*, 6(3). https://doi.org/10.1128/msystems.00896-20
- Coesel, S. N., Durham, B. P., Groussman, R.D., Hu, S. K., Caron, D. A., Morales, R. L., ... & Armbrust, E. V. (2021). Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. *Proceedings of the National Academy of Sciences*, 118(6). https://doi.org/10.1073/pnas.2011038118
- 10. Durham, B. P., Boysen, A. K., Carlson, L. T., Groussman, R.D., Heal, K. R., Cain, K. R., ... & Armbrust, E. V. (2019). Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. *Nature microbiology*, 4(10), 1706-1715. https://doi.org/10.1038/s41564-019-0507-5
- 11. Becker, K. W., Collins, J. R., Durham, B. P., Groussman, R.D., White, A. E., Fredricks, H. F., ... & Van Mooy, B. A. (2018). Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. *Nature communications*, 9(1), 1-9. https://doi.org/10.1038/s41467-018-07346-z
- 12. Groussman, R.D., Parker, M. S., & Armbrust, E. V. (2015). Diversity and evolutionary history of iron metabolism genes in diatoms. *PLoS One*, 10(6), e0129081. https://doi.org/10.1371/journal.pone.0129081
- 13. Hennon, G. M., Ashworth, J., Groussman, R.D., Berthiaume, C., Morales, R. L., Baliga, N. S., ... & Armbrust, E. V. (2015). Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression. *Nature Climate Change*, 5(8), 761-765. https://doi.org/10.1038/nclimate2683