Number Systems & Data Representation • Von Neumann: Data(operands) stored in memory Sizes of data/types

• byte: 8 bits

• nibble: 4 bits (half-byte)

• word: multiple bytes (1, 2, 4) (for MIPS it's 4)

• int: 4 bytes (1 bit for sign, 31 for magnitude)

• float: 4 bytes

• double: 8 bytes • char: 1 byte

Representation & Complements

- Convert decimal whole numbers to base R: divide To maximize, reserve 1 instruction for lesser-bit inby R, first remainder is LSB, last is MSB
- first carry is MSB, last is LSB
- groups of 4 for base 2 to base 16
- Convert to R-1s complement : Flip the digits; digit = R - digit
- Convert to Rs complement: Flip the digits, then add 1 to the number
- 1s complement has +ive and -ive 0
- 2s complement has only 1 representation of 0
- 2s complement can represent an additional negative number e.g for binary, 1000 represents -8 (+8 cannot be represented in a signed 4 bit number)
- Convert to excess X: Take number minus X (0 refers to -x)
- IEEÉ 754Floating-Point Representation: sign|exponent|mantissa
- Single-precision float has 1 bit sign, 8 bit excess-127 exponent, 23 bit mantissa (normalized with a leading bit 1 i.e the mantissa is the X in 1.X)
- Double has 1 bit sign, 11 bit excess-1023 exponent, 52 bit mantissa

Operations with binary numbers

- 2s complement addition: Simply add & ignore carry out of MSB • 2s complement subtraction: take 2s complement of
- number to be subtracted, then do 2s addition. • 1s complement addition: Add: If there is a carry out,
- add 1 to the result • 1s complement subtraction: take 1s complement of
- number to be subtracted, then do 1s addition.
- check for overflow: If result is opposite sign of both operands (that have the same sign)

MIPS

R, I, J format

- R: Opcode, rs, rt, rd, shamt, funct
- I: Opcode, rs, rt, Imm
- rd is not used, check datasheet for instruction syntax
- For branch, Imm is the relative number of swords to go to (with respect to PC + 4), in 2s complement representation
- J: Opcode, Address
- First 4 bits are assumed to be 4 MSBs of PC+4. Last Mx = mx' because of De Morgan's 2 bits assumed to be 0 (because of word addressing)

Instruction Set Architecture Architectures & Endianness

- Stack: operands are on top of stack
- Accumulator: One operator is in the accumulator (a special register)
- Memory-memory (all operands in memory)
- Register-Register (all operands in registers) (MIPS)
- Big-endian: Most significant byte stored in lowest address
- Little-endian: Least significant byte stored in lowest address (easier to read)

Opcode encoding

- struction types.
- Convert decimal fractions to base R: multiply by R. To minimize, reserve all but 1 instruction for lesserbit instruction types
- base R to base R^N : partition in groups of N e.g. Forumla for maximizing: $2^{no.ofbits}*(1-F)$ where F is the fraction of bits lost by reserving bits

Boolean Algebra Laws

- Identity: A + 0 = A and $A \cdot 1 = A$
- Complement: A + A' = 1 and $A \cdot A' = 0$
- Commutative: A + B = B + A and $A \cdot B = B \cdot A$ • Associative: A + (B + C) = (A + B) + C and
- $A \cdot (B \cdot C) = (A \cdot B) \cdot C$
- Distributive: $A + (B \cdot C) = (A + B) \cdot (A + C)$ and $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$
- Duality (not a real law): If we flip AND/OR operators and flip the operands (0 and 1), the boolean equation still holds

Theorems

- Idempotency: X + X = X and $X \cdot X = X$
- One/Zero Element: X + 1 = 1 and $X \cdot 0 = 0$
- Involution: (X')' = X
- Absorption:
- $X + (X \cdot Y) = X$ $X \cdot (X + Y) = X$
- Absorption (variant):
- $X + (X' \cdot Y) = X + Y$ $X \cdot (X' + Y) = X \cdot Y$
- DeMorgans' (can be used on > 2 variables): $(X \cdot Y)' = X' + Y'$ $(X + Y)' = X' \cdot Y'$
- Concensus:

$$(X \cdot Y) + (X' \cdot Z) + (Y \cdot Z) = (X \cdot Y) + (X' \cdot Z)$$

 $(X + Y) \cdot (X' + Z) \cdot (Y + Z) = (X + Y) \cdot (X' + Z)$

Minterms & Maxterms

- Sum-Of-Products (SOP): Product term or a logical sum of product terms
- minterm: Product term that contains n literals from all the variables
- Product-Of-Sum (POS): Sum term or a logical product of sum terms
- Maxterm: Sum term that contains n literals from all the variables
- Sum of 2 distinct Maxterms is 1 e.g M1234 +
- Product of 2 distinct minterms is 0 e.g m1234 m1120 = 0

Combinatorial Circuits Gates

- · AND, OR, NOT is a complete set of logic
- NAND is a complete set of logic
- NOR is a complete set of logic
- Produce SOP with AND >> OR or NAND >> NAND
- Produce POS with OR >> AND or NOR >> NOR
- With negated outputs, use NAND to simulate OR and NOR to simulate AND

K-maps

- Prime Implicant (PI) is a product term formed by combining the maximum possible no. of minterms (largest group)
- Essential Prime Implicant (EPI) is a PI that includes at least one minterm not covered by any other group
- Label the K-map rows/columns in a 1gray code manner e.g 00, 01, 11, 10
- Grouping 2^N cells(only power-sizes are allowed) eliminates n variables
- EPIs are counted only by checking 1s, not Xs
- K-maps help to obtain canonical SOP, but might not provide the simplest expression possible (need to use boolean algebra for that)

Delays: Note that for combinatorial circuits, there is a delay: for every logic gate with n inputs, calculate $delay = max(t_1, t_2, \dots t_n) + t_delay$

MSI Components

Multiplexer

Use minterm as selection line, using 0/1 as inputs. For smaller size multiplexer, use one of the variables for input lines.

Demultiplexer

Encoder

F_0	F_I	F_2	F_3	C_I	C_0	
1	0	0	0	0	0	
0	1	0	0	0	1	$C_1 = F_2 + $
0	0	1	0			
0	0	0	1	1	1	$C_0 = F_1 + $

Decoder

Generate minterms and use OR to form a function Alternatively, use NOR on maxterms.

Priority Encoder

	Inp	uts	Outputs			
D_0	D_1	D ₂	D ₃	f	g	V
0	0	0	0	Х	Х	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	-1	0	1	0	- 1
X	X	X	1	1	1	1

Larger Components

Remove a decoder that gives duplicate outputs (w.r.t another decoder) by using an OR gate with the outputs from the first decoder, and the enable input of the second.

Sequential Logic **Excitation Tables**

(b) LK flin-flon

(a) S-R flin-flon $Q \quad Q^+ \quad D$

0

1

0

(c) D flip-flop.

(d) T flip-flop.

- For m flip-flops, up to 2^m states exist.
- SR has invalid code while JK uses that for the toggle code

- T is the stoggle flip-flop
- D is the setting flip-flop
- Negative input for $Clock \rightarrow flip$ -flop is negative edgetriggered

Static RAM

- Dyanmic RAM does not use flip-flop as cells
- For BC, Write is 0, Read is 1
- $1K*8 RAM \Rightarrow 1024 words*8 bits$
- In 12 bit address to 4K*8 RAM constructed using 1K*8 blocks, the 2 most significant bits are fed into decoder to determine which block to use.
- Expand horizontally to increase word size, vertically to increase memory size

Pipelining Pipeline register contents

- IF/ID: Instruction from memory & PC + 4
- ID/EX: Data read from regsiter files, 32-bit Sign extended Imm, & PC + 4
- EX/MEM: Imm, & (PC + 4) + (Imm * 4), ALU result, isZero signal & RD2 from register file
- MEM/WB: ALU result, Memory read data & write regsiter data (passed through all pipelines)

Performance

- If cycle/clock time is given, just use that
- Single cycle:

$$CT_{seq} = \sum_{k=1}^{N} T_k$$

 $Time_{seg} = I * CT_{seg}$ (choose the maximum CT_{seg})

- Multi-cycle [1 stage per cycle, cycle time chosen to be time for longest stage
- $CT_{multi} = max(T_k)$ i.e longest stage time $Time_{multi} = I * AverageCPI * CT_{multi}$
- Pipeline [Several stages per cycle]

 $CT_{pipeline} = max(T_k) + T_d$ where T_d is the pipeline register overhead

 $Time_{pipeline} = (I + N - 1) * CT_{pipeline}$

• If $N_{intstructions} >> N_{stages}$, $-\frac{Time_{seq}}{}$ $Speedup_{pipeline} = \frac{Time_{seq}}{Time_{pipeline}}$

Hazard and resolution

- Without data forwarding: If dependent cycle is
 - · right before: 2 cycle delay
 - · 2 cycles before: 1 cycle delay
- · With data forwarding: If dependent cycle is
- · dependent on lw: 1 cycle delay
- · otherwise: no delay

- Without control measures: 3 cycle delay
- With early branching/resolution: 1 cycle delay after branch instruction
- · with forwarding & dependent on non-lw: 1 cycle bef
- · with forwarding & dependent on lw: 2 cycles bef branch
- · without forwarding: dependent: 2 cycle delay bef branch
- With branch prediction:
 - · 3 cycles occur if no early branching
 - · 1 cycle occur if there is early branching · then, instructions either get flushed/not flushed
- With delayed branch: If ∃ instruction before branch that can be moved into delayed slot, move it. Else, stall/no-op

Cache

Average Access time

 $Rate_{hit} * Time_{hit} + (1 - Rate_{hit} * Penalty_{miss})$ Direct Mapped Cache

Blocks in cache: 2^M

Bytes per block: 2^N

Set Associative Cache

- N-way SAC $\rightarrow N$ cache blocks per set
- Bytes per block: 2^N
- Cache bocks = $\frac{Size_{cache}}{Size_{block}}$ Sets = $\frac{CacheBlocks}{N}$ = 2^N

Fully Associative Cache

Bytes per block: 2^N

For each address

- Set Index = $(val \text{ mod } 2^{N+M})//2^N$
- Word Index = $(val \mod 2^N)//Bytes_{word}$
- Tag = $val//2^{N+M}$

Miss Rates

- · Conflict miss rates decrease with increasing associativity
- DMC of size N has the same miss rate as a 2-way SAC of size $\frac{N}{2}$
- Capacity miss only depends on cache size, same size \rightarrow same capcativ miss
- As cache size increases, capcacity miss decreases

Block Replacement

- Least Recently Used: Note that it is hard to keep track if there are many choices and there is a cost to keeping track of this as well
- First in First out
- Random Replacement
- Least Frequently Used

Writing Policy

- Write through cache: Write to both cache and main memory
- Write back cache: Only write to cache, write to memory when block is replaced
- Write Miss Write allocate: Load complete block and write onto the cache \Rightarrow Write to main memory if using write through policy
- Write Miss Write around: Do not load block to cache, write to memory only

AL	Ucontrol	Function		
0000		AND		
	0001	OR		
	0010	add		
	0110	subtract		
	0111	slt		
	1100	NOR		
	41			

WB Stage	MemTo Reg	Reg Write	0 1	1 1	0 ×	0 X
_	Mei	Ã		Ì		
ge	Branch		0	0	0	-
MEM Stage	Mem	Write	0	0	1	0
2	Mem	Read	0	1	0	0
	do	0do	0	0	0	1
age	ALUop	op1	1	0	0	0
EX Stage	Decree to	ALCOLD .	0	1	1	0
	Dog Det	nedpar.	1	0	×	×
			R-type	W	sw	bed
	opc	ode		per	and	900

	opcode	operand	operand
ype-A	6 bits	5 bits	5 bits

	opcode	operand
Type-B	11 bits	5 bits
3.6 (1		1) 05

Max $(1 \text{ type A}) = 1 + (2^6 - 1) * 2^6$ Min (1 type B) = $(2^6 - 1) + 2^5$

Input	0X DE AD BE EF
Big-Endian	0: DE, 1: AD
Little-Endian	0: EF. 1: BE