2 Cost functions $1.5N$ from 1.2 No. 12	5 Likelihood	$\eta = g^{-1}(\mu) \Leftrightarrow \mu = g(\eta)$	2. $\forall k$ compu
MSE = $\frac{1}{N} \sum_{n=1}^{N} [y_n - f(x_n)]^2$ Not good	Probability of observing the data given a		Issues
with outliers. MAE = $\frac{1}{N} \sum_{n=1}^{N} y_n - f(x_n) $	set of parameters and inputs : $p(y X, w) = \frac{1}{2}$	• $\eta_{gaussian} = (\mu/\sigma^2, -1/2\sigma^2)$	Heavy cor
2.1 Convexity	$\prod p(y_n x_n, w) = \prod \mathcal{N}(y_n x_n^T w, \sigma^2)$ Best model maximises log-likelihood	• $n_{-1}, \dots - ln(n)$	2. Spherical
A line joining two points never intersects with the function anywhere else.	LLL = $-\frac{1}{2\sigma^2}\sum (y_n - x_n^T w)^2 + cst$.	• $\eta_{poisson} = ln(\mu)$	3. Hard clus
$f(\lambda u + (1 - \lambda)v) \le \lambda f(u) + (1 - \lambda)f(v)$ with	6 Regularization	• $\eta_{bernoulli} = ln(\mu/1 - \mu)$	Probabilistic
$\lambda \in [0;1]$. A strictly convex function has	6.1 Ridge Regression	• $\eta_{general} = g^{-1}(\frac{1}{N} \sum_{n=1}^{N} \psi(y_n))$	$\prod_{n=1}^{N} \mathcal{N}(x_{n} \mu_{k}, I) =$
a unique global minimum w^* . Sums of convex functions are convex.	$\mathcal{L}(w) = \frac{1}{2}(y - Xw)^{T}(y - Xw) + \frac{\lambda}{2} w _{2}^{2} \to$	$Ngeneral = 8 \qquad (N \succeq_{n=1} \Psi(yn))$	9.2 Gaussian M
A function must always lie above its li-	$w_{ridge}^* = (XX^T + \lambda I_D)^{-1} X^T y = X^T (XX^T + \lambda I_D)$	8.4 Nearest Neighbor Models	$p(X \mu,z) = \prod_{n=1}^{N} p(X \mu,z)$
nearisation $\mathcal{L}(u) \geq \mathcal{L}(w) + \nabla \mathcal{L}(w)^T (u - v)^T$		Performs best in low dimensions.	$\prod_{n=1}^{N}\prod_{k=1}^{K}[\mathcal{N}(x_{n} \mu)]$
$w)\forall u,w.$	$(\lambda I_N)^{-1}y$		re $pi_k = p(z_n = k$
A set is convex iff the line segment between any two points of C lies in C :	Can be considered a MAP estimator : $w_{ridge}^* = argmin_w - log(p(w X,y))$	8.4.1 k-NN	Marginal likelih
$\theta u + (1 - \theta)v \in \mathcal{C}$	6.2 Lasso	4	bles so they can likelihood $p(x_n)$
3 Optimisation	Sparse solution. $\mathcal{L}(w) = \frac{1}{2N}(y - Xw)^T(y -$	$f_{S^{t,k}}(x) = \frac{1}{k} \sum_{n:x_n \in ngbh_{St,k(x)}} y_n$ Pick odd k	(number of part
Gradient $\nabla \mathcal{L} := \begin{bmatrix} \frac{\partial \mathcal{L}(w)}{\partial w_1} & \dots & \frac{\partial \mathcal{L}(w)}{\partial w_D} \end{bmatrix}$	$(Xw) + \lambda w _1$	so there is a clear winner. Large $k \rightarrow \text{large}$	$O(N)$ to $O(D^2K)$
2	7 Model Selection	bias small variance (inv.)	9.3 EM
3.1 Gradient descent	7.1 Bias-Variance decomposition		9.3.1 GMM
$w^{(t+1)} = w^{(t)} - \gamma \nabla \mathcal{L}(w^{(t)})$. Very sensitive	Small dimensions : large bias, small variance. Large dimensions : small bias, lar-	8.4.2 Error bound	Intialize $\mu^{(1)}, \Sigma^{(1)}$
to ill-conditioning. GD - Linear Reg	ge variance.	$\mathbb{E}[\mathcal{L}_{St}] \le 2\mathcal{L}_{f^*} + 4c\sqrt{d}N^{-1/d+1}$	1. E-step: Co
$\mathcal{L}(w) = \frac{1}{2N} (y - Xw)^T (y - Xw) \rightarrow$	8 Classification	8.5 Support Vector Machines (SVM)	_
$\nabla \mathcal{L}(w) = -\frac{1}{N} X^{T} (y - Xw).$	8.1 Optimal $\hat{y}(x) = aramax \exp(x x)$	Logistic regression with hinge loss :	$q_{kn}^{(t)} := \frac{\pi}{\sum_{k}^{K}}$
Cost: $O_{error}(N * D) = 2N * D + N$ and	$\hat{y}(x) = argmax_{y \in \mathcal{Y}} p(y x)$ 8.2 Logistic regression	$min_w \sum_{n=1}^{N} [1 - y_n x_n^T w]_+ + \frac{\lambda}{2} w ^2$ where	— K
$O_{weights} = 2N * D + D.$	<u> </u>	$y \in [-1;1]$ is the label and $hinge(x) =$	2. Compute
3.2 SGD	$\sigma(z) = \frac{e^z}{1+e^z}$ to limit the predicted values	$max\{0,x\}$. Convex but not differentiable	3. M-step: U
$\mathcal{L} = \frac{1}{N} \sum \mathcal{L}_n(w)$ with update $w^{(t+1)} =$	$y \in [0;1] (p(1 x) = \sigma(x^T w) \text{ and } p(0 x) =$	so need subgradient.	$\mu^{(t+1)} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{ij}}{\sum_{j=1}^{n} \mu_{ij}}$
$w^{(t)} - \gamma \nabla \mathcal{L}_n(w^{(t)}).$	$1 - \sigma(x^T w)$). Likelihood	We can also use duality : $\mathcal{L}(w) = max_{\alpha}G(w,\alpha)$. For SVM	<i>F</i> –
3.3 Mini-batch SGD	$p(y X, w) = \prod p(y_n x_n) = \prod_{n:y_n=0} p(y_n = x_n)$	$\min_{w} \max_{\alpha \in [0,1]^N} \sum_{\alpha} \alpha_n (1 - y_n x_n^T w) +$	$\Sigma^{(t+1)} = \frac{\Sigma}{2}$
$\mathbf{g} = \frac{1}{ B } \sum_{n \in B} \nabla \mathcal{L}_n(w^{(t)})$ with update	$0 x_n \prod_{n:y_n=K}p(y_n = K x_n) =$	and the second s	$\sum_{i} (i+1) = 1$
$w^{(t+1)} = w^{(t)} - \gamma \mathbf{g}.$	$\prod_{k=1}^{K} \prod_{n=1}^{N} [p(y_n = k x_n, w)]^{\tilde{y}_{nk}} \text{where}$	$\frac{\lambda}{2} w ^2$ differentiable and convex.	(t+1) 1
3.4 Subgradient at w	$tildey_{nk} = 1 \text{ if } y_n = k.$	Can switch <i>max</i> and <i>min</i> when convex in w and concave in α . This can make the	$\pi^{(t+1)} = \frac{1}{N}$
$\mathbf{g} \in \mathbb{R}^D$ such that $\mathcal{L}(u) \ge \mathcal{L}(w) + \mathbf{g}^T(u - w)$.	For binary classification	formulation simpler:	
Example subgradient for MAE : $h(e) =$	$p(y X,w) = \prod p(y_n x_n) = \prod_{n:y_n=0} p(y_n = x_n)$	$w(\alpha) = \frac{1}{\lambda} \sum \alpha_n y_n x_n = \frac{1}{\lambda} X^T diag(y) \alpha$	9.3.2 Genera
$ e \rightarrow g(e) = sgn(e)$ if $e \neq 0$, λ otherwise.	$0 x_n)\prod_{n:y_n=1}p(y_n = 1 x_n) =$	which yields the optimisation problem:	$\theta^{(t+1)} := argmax$
We get the gradient : $\nabla \mathcal{L}_{MAE} =$	$\prod_{n=1}^{N} \sigma(x_n^T w)^{y_n} [1 - \sigma(x_n^T w)]^{1-y_n}$	$\max_{\alpha \in [0,1]^N} \alpha^T 1 - \frac{1}{2\lambda} \alpha^T Y X X^T Y \alpha$ The	10 Quick maff
$-\frac{1}{N}\sum_{n}sgn(f(x_{n})-y)\nabla f(x_{n}).$	Loss $\mathcal{L}(w) = \sum_{n=1}^{N} ln(1 + exp(x_n^T w)) - y_n x_n^T w$	solution is sparse (α_n is the slope of the	Chain rule h
3.5 Projected SGD	$\mathcal{L}(w) = \sum_{n=1}^{\infty} in(1 + exp(x_n w)) - y_n x_n w$ which is convex in w.	lines that are lower bounds to the hingle	$\partial f(g(w))\nabla g(w)$
$w^{(t+1)} = \mathcal{P}_{\mathcal{C}}[w^{(t)} - \gamma \nabla \mathcal{L}(w^{(t)})]$	Gradient	loss).	Gaussian $\mathcal{N}(y \mu)$
3.6 Newton's method Second order (more expensive $O(ND^2 +$	$\nabla \mathcal{L}(w) = \sum_{n=1}^{N} x_n (\sigma(x_n^T w) - y_n) =$	8.6 Kernel Ridge Regression	Multivariate
D^3) but faster convergence).	$X^{T}[\sigma(Xw) - y]$ (no closed form solu-	From duality $w^* := X^T \alpha^*$ where $\alpha^* := (K + 1)^{-1} \alpha^* \alpha^* M$	$\mathcal{N}(y \mu,\sigma^2) \frac{1}{\sqrt{(2\pi)}}$
$w^{(t+1)} = w^{(t)} - \gamma^{(t)} (H^{(t)})^{-1} \nabla \mathcal{L}(w^{(t)})$	tion). Hessian	$\lambda I_N)^{-1}y$ and $K = XX^T = \phi^T(x)\phi(x) = x(x, x')$ (needs to be PSD and symmetric)	μ) ^T $\Sigma^{-1}(y-\mu)$)
$w \leftarrow \gamma = w \leftarrow \gamma - \gamma \leftarrow (\Pi \leftarrow \gamma) - \nabla \mathcal{L}(w \leftarrow \gamma)$	116581411	$\kappa(x, x')$ (needs to be PSD and symmetric).	μ) $\Sigma = (y - \mu)$)

3.7 Optimality conditions

an PSD $\mathbf{H}(w^*) := \frac{\partial^2 \mathcal{L}(w^*)}{\partial w \partial w^T}$

4.1 Normal Equation

4 Least Squares

inverse).

Necessary: $\nabla \mathcal{L}(w^*) = 0$ Sufficient: Hessi-

 $X^T(y - Xw) = 0 \Rightarrow w^*$

 $(XX^T)^{-1}X^Ty$ and $\hat{y}_m = x_m^Tw^*$ Gram

matrix invertible iff rank(X) = D (use

SVD if this is the case to get pseudo-

Cheat sheet

1 Regression

→ regularization.

by Your Name, page 1 of 2

Simple $y_n \approx f(\mathbf{x_n}) := w_0 + w_1 \mathbf{x_{n1}}$

Multiple $y_n \approx f(\mathbf{x_n}) := w_0 + \sum_{j=1}^{D} w_j x_{nj} =$

 $\tilde{\mathbf{x}}_{n}^{T}\mathbf{w}$ If D > N the task is under-

determined (more dimensions than data)

1.1 Linear Regression

8.4.1 k-NN
8.4.1 k-NN
$$f_{S^{l,k}}(x) = \frac{1}{k} \sum_{m: x_n \in ngbh_{S^{l,k}(x)}} y_n \text{ Pick odd } k$$
 so there is a clear winner. Large $k \to l$ arge bias small variance (inv.)
8.4.2 Error bound
$$\mathbb{E}[\mathcal{L}_{St}] \leq 2\mathcal{L}_{f^*} + 4c\sqrt{d}N^{-1/d+1}$$

8.5. Support Vector Machines (SVM) Logistic regression with hinge loss:
$$\min_{m} \sum_{n=1}^{N} [1-y_n x_n^T w]_+ + \frac{1}{2} ||w||^2 \text{ where } y \in [-1;1] \text{ is the label and } hinge(x) = max[0,x]. \text{ Convex but not differentiable so need subgradient.}$$
We can also use duality:
$$\mathbb{E}(w) = \max_{m} a_{m}(x_{m}) - \sum_{n=1}^{N} (1-y_{n} x_n^T w)_+ + \frac{1}{2} ||w||^2 \text{ where } y \in [-1;1] \text{ is the label and } hinge(x) = max[0,x] - \sum_{n=1}^{N} (1-y_{n} x_n^T w)_+ + \frac{1}{2} ||w||^2 \text{ differentiable and convex.}}$$
Can switch $\max_{m} a_{m} a_$

 $H(w) = X^T S X$ with $S_{nn} = \sigma(x_n^T w)[1 -$

 $p(y|\eta) = h(y)exp[\eta^T \psi(y) - A(\eta)]$ where

 $A(\eta) = ln[\int_{\mathcal{D}} h(y) exp[\eta^T \psi(y)] dy]$

 $\nabla^2 A(\eta) = \mathbb{E}[\psi \psi^T] - \mathbb{E}[\psi] \mathbb{E}[\psi^T]$

8.3 Exponential family

General form

 $\nabla A(\eta) = \mathbb{E}[\psi(v)]$

Link function

Cumulant

9 Unsupervised Learning

 $min\mathcal{L}(z,\mu) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||x_n - \mu_k||_2^2$

with $z_{nk} \in \{0,1\}$ (unique assignments:

compute

 $\int 1 \text{ if } k = argmin_i ||x_n - \mu||^2$

2. $\forall k \text{ compute } \mu_k = \frac{\sum_n z_{nk} x_n}{\sum_n z_{nk}}$

Probabilistic model $p(X|\mu,z)$

 $\prod_{n=1}^{N} \mathcal{N}(x_{n}|\mu_{k}, I) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mathcal{N}(x_{n}|\mu_{k}, I)^{z_{nk}}$

 $p(X|\mu,z) = \prod_{n=1}^{N} p(x_n|z_n,\mu_k,\Sigma_k)p(z_n|\pi) =$

 $\prod_{n=1}^{N}\prod_{k=1}^{K}[\mathcal{N}(x_{n}|\mu_{k},\Sigma_{k})]^{z_{nk}}\prod_{k=1}^{K}[\pi_{k}]^{z_{nk}}$ whe-

bles so they can be factored out from the

likelihood $p(x_n|\theta) = \sum \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)$.

(number of parameters reduced from

1. E-step: Compute the assignments.

 $q_{kn}^{(t)} := \frac{\pi_k^{(t)} \mathcal{N}(x_n | \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_k^K \pi_k^{(t)} \mathcal{N}(x_n | \mu_k^{(t)}, \Sigma_k^{(t)})}$

2. Compute Marginal Likelihood

 $\Sigma^{(t+1)} = \frac{\sum_{n} q_{kn}^{(t)} (x_n - \mu^{(t+1)}) (x_n - \mu^{(t+1)})^T}{\sum_{n} q_{kn}^{(t)}}$

Gaussian $\mathcal{N}(y|\mu,\sigma^2)\frac{1}{\sqrt{2\pi\sigma^2}}exp(-\frac{(y-\mu)^2}{\sigma^2})$

Multivariate Gaussian $\mathcal{N}(y|\mu,\sigma^2)\frac{1}{\sqrt{(2\pi)^D det(\Sigma)}}exp(-\frac{1}{2}(y)$ - **12.3** Non-convex functions $f(x)=x^3, x\in[-1,1]$

Marginal likelihood: z_n are latent varia- $p(w) = \prod_k \mathcal{N}(w_k|0, I_D)$

Algorithm (Coordinate Descent)

0 otherwise

1. Heavy computation

9.2 Gaussian Mixture Models

2. Spherical clusters

3. Hard clusters

re $pi_k = p(z_n = k)$

Intialize $\mu^{(1)}, \Sigma^{(1)}, \pi^{(1)}$.

3. M-step: Update

 $\mu^{(t+1)} = \frac{\sum_{n} q_{kn}^{(t)} x_n}{\sum_{n} q_{kn}^{(t)}}$

 $\pi^{(t+1)} = \frac{1}{N} \sum_{n} q_{lm}^{(t)}$

9.3.2 General

9.1 K-means clustering

 $\sum_k z_{nk} = 1$.

Bayes rule $p(x|y) = \frac{p(y|x)p(x)}{p(y)}$

p(x|y)p(y) = p(y|x)p(x) where

• $p(x|y) \rightarrow \text{likelihood}$

Naming Joint distribution p(x, y) =

• $p(y|x) \rightarrow$ marginal likelihood

11.2 MAP solution $\mathcal{L}(w) = \sum_{k} \sum_{n} \frac{1}{2\sigma_{\nu}^{2}} (y_{nk} - x_{n}^{T} w_{k})^{2} +$

 $\frac{1}{2}\sum_{k}||w_{k}||_{2}^{2}$ \rightarrow Likelihood p(y|X,w) =

 $ln[\sum_{k=0}^{K} e^{t_k}]$ is convex. Linear sum of para-

Regularization term sometimes

renders the min. problem into a

strictly concave/convex problem.

data cannot be linearly separated.

• k-NN can be applied even if the

• $g(x) := min_v f(x, y) \Rightarrow g(x) \le$

• $f(x) = x^{\alpha}, x \in \mathbb{R}^+, \forall \alpha \geq 1 \text{ or } \leq 0$

• $max0, x = max_{\alpha \in [0,1]} \alpha x$

• $min0, x = min_{\alpha \in [0,1]} \alpha x$

• $max_x g(x) \le max_x f(x, y)$

• $max_x min_y f(x, y)$

 $min_v max_x f(x, y)$ 12.2 Convex functions

• $f(x) = -x^3, x \in [-1, 0]$

• $f(x) = e^{ax}, \forall x, a \in \mathbb{R}$

 $f(x) = ln(1/x), x \in \mathbb{R}^+$

and increasing over **R**

• $f(x) = |x|^p, x \in \mathbb{R}, p \ge 1$

• $f(x) = x \log(x), x \in \mathbb{R}^+$

• $f(x) = e^{-x^2}$, $x \in \mathbb{R}$

• $f(x) = ax + b, x \in \mathbb{R}, \forall a, b \in \mathbb{R}$

and

prior

 $Logit \ \sigma(x) = \frac{\partial ln[1 + e^x]}{\partial r}$

• $p(y) \rightarrow \text{prior}$

11 Mock Exam Notes

Unique if convex.

11.1 Normal equation

10.1 Algebra

• $p(x) \rightarrow \text{posterior}$

 $(PQ + I_N)^{-1}P = P(QP + I_M)^{-1}$

 $\frac{1}{\sigma_{L}^{2}}X(X^{T}w_{k}-y_{k})+w_{k}=0 \Leftrightarrow$

 $w_k^* = (\frac{1}{\sigma_k^2} X X^T + I_D)^{-1} \frac{1}{\sigma_k^2} X y_k$

 $\prod_{n}\prod_{k}\mathcal{N}(y_{nk}|w_{k}^{T}x_{n},\sigma_{\iota}^{2})$

12 Multiple Choice Notes

12.1 True statements

f(x,y)

11.3 Convexity

meters is convex.