Математическая модель изменения температуры топлива

Уравнение теплового баланса для средней температуры топлива имеет вид:

$$C_T V_T \rho_T \frac{\alpha T_T}{dt} = W(t) - \alpha F_T (T_T - \bar{T})$$

Где C_T – теплоемкость топлива, $\frac{Дж}{кг град}$

 V_T – объём топлива, м³

 ho_T — плотность топлива, $rac{\kappa \Gamma}{{_{
m M}}^3}$

 α — коэффициент теплопередачи от топлива к теплоносителю, $\frac{M^2}{\Gamma paq}$

 T_T — температура топлива, °С

 F_T – поверхность теплопередачи от твэлов к теплоносителю, м²

W (t) – тепловая мощность реактора в момент времени t, Вт

 \bar{T} – средняя температура, определяемая по формуле

$$\bar{T} = \frac{(T_1 + T_2)}{2}$$

где T_1 – температура на вход в активную зону, °С

 T_2 – температура на выход из активной зоны, °С

Уравнение баланса отображает тот факт, что разность между количеством тепла, выделяемом в топливе W и переданном теплоносителю первого контура $\alpha F_T(T_T - \bar{T})$ обуславливает изменение температуры топлива.

Математическая модель изменения средней температуры теплоносителя первого контура

Уравнение теплового баланса для средней температуры теплоносителя 1-го контура имеет вил:

$$C_{\mathsf{xx}}\rho_{\mathsf{xx}}V_{\mathsf{xx}}\frac{\alpha \bar{T}}{dt} = \alpha F(T_T - \bar{T}) - \frac{C_{\mathsf{xx}}\rho_{\mathsf{xx}}V_{\mathsf{xx}}}{\tau_0}(T_2 - T_1)$$

Где $C_{\mathbb{m}}$ – теплоемкость воды при рабочих параметрах, $\frac{\mathcal{L}_{\mathbb{m}}}{\mathsf{kr} \, \mathsf{град}}$

 $ho_{\mathbbm{k}}$ – плотность воды при рабочих параметрах, $\frac{\kappa\Gamma}{m^3}$

 $V_{\rm x}$ – объём теплоносителя в активной зоне реактора, м³

 α – коэффициент теплопередачи от топлива к теплоносителю, $\frac{M^2}{\Gamma paq}$

 au_0 – среднее время прохождения теплоносителя через реактор, с

 T_T — температура топлива, °С

 \overline{T} – средняя температура, определяемая по формуле

$$\bar{T} = \frac{(T_1 + T_2)}{2}$$

где T_1 – температура на вход в активную зону, °С

 T_2 – температура на выход из активной зоны, °С