$8_{18} (K8a_{12})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle b+u, -u^3+u^2+a-2, u^4-2u^3+u^2+2u-1 \rangle$$

$$I_2^u = \langle -u^3+2u^2+b-3u+1, 4u^3-9u^2+3a+15u-9, u^4-3u^3+6u^2-6u+3 \rangle$$

$$I_3^u = \langle b+a+u+1, a^2+au+1, u^2+u+1 \rangle$$

$$I_4^u = \langle b+u, 2u^3+4u^2+a+3u-2, u^4+u^3-2u+1 \rangle$$

$$I_5^u = \langle -u^3-2u^2+b-2u+1, 2u^3+3u^2+a+2u-3, u^4+u^3-2u+1 \rangle$$

$$I_6^u = \langle b+u, a-u, u^2+u+1 \rangle$$

$$I_7^u = \langle b, a-1, u-1 \rangle$$

$$I_8^u = \langle b-1, a, u+1 \rangle$$

$$I_9^u = \langle b-1, a-1, u+1 \rangle$$

* 10 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 26 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b+u, -u^3+u^2+a-2, u^4-2u^3+u^2+2u-1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - u^{2} + 2 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{3} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} - u^{2} - u + 2 \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} + 2u^{2} - 2 \\ u^{3} - u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^3 4u^2 + 4u + 4$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_7	$u^4 - 2u^3 + u^2 + 2u - 1$
c_2, c_4, c_6 c_8	$u^4 + 2u^3 + u^2 - 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8	$y^4 - 2y^3 + 7y^2 - 6y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.883204		
a = 0.531010	-1.71901	-5.40880
b = 0.883204		
u = 0.468990		
a = 1.88320	1.71901	5.40880
b = -0.468990		
u = 1.20711 + 0.97832I		
a = -0.207107 + 0.978318I	-12.3509I	0. + 7.82655I
b = -1.20711 - 0.97832I		
u = 1.20711 - 0.97832I		
a = -0.207107 - 0.978318I	12.3509I	0 7.82655I
b = -1.20711 + 0.97832I		

$$II. \\ I_2^u = \langle -u^3 + 2u^2 + b - 3u + 1, \ 4u^3 - 9u^2 + 3a + 15u - 9, \ u^4 - 3u^3 + 6u^2 - 6u + 3 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{4}{3}u^{3} + 3u^{2} - 5u + 3 \\ u^{3} - 2u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{3}u^{3} - 1 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{3}u^{3} + u^{2} - 2u + 2 \\ u^{3} - 2u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{4}{3}u^{3} - 2u^{2} + 4u - 1 \\ -u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{2}{3}u^{3} + u^{2} - 2u + 1 \\ -u^{3} + 2u^{2} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $8u^3 16u^2 + 24u 6$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^4 - 3u^3 + 6u^2 - 6u + 3$
c_2, c_4, c_6 c_8	$u^4 - u^3 + 2u + 1$
c_{3}, c_{7}	$(u^2+u+1)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^4 + 3y^3 + 6y^2 + 9$
c_2, c_4, c_6 c_8	$y^4 - y^3 + 6y^2 - 4y + 1$
c_3, c_7	$(y^2 + y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.851597 + 0.632502I		
a = 0.25679 - 1.42811I	1.64493 - 4.05977I	6.00000 + 6.92820I
b = 0.500000 + 0.866025I		
u = 0.851597 - 0.632502I		
a = 0.25679 + 1.42811I	1.64493 + 4.05977I	6.00000 - 6.92820I
b = 0.500000 - 0.866025I		
u = 0.64840 + 1.49853I		
a = -0.256789 + 0.303939I	1.64493 + 4.05977I	6.00000 - 6.92820I
b = 0.500000 - 0.866025I		
u = 0.64840 - 1.49853I		
a = -0.256789 - 0.303939I	1.64493 - 4.05977I	6.00000 + 6.92820I
b = 0.500000 + 0.866025I		

III.
$$I_3^u = \langle b+a+u+1, \ a^2+au+1, \ u^2+u+1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ -a - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} au + a - u - 1 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u - 1 \\ -a - u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -au - a + u \\ au \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2au - a \\ -a + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -8u + 2

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^2+u+1)^2$
c_2, c_4, c_6 c_8	$u^4 - u^3 + 2u + 1$
c_3, c_7	$u^4 - 3u^3 + 6u^2 - 6u + 3$

Crossings	Riley Polynomials at each crossing
c_1,c_5	$(y^2+y+1)^2$
c_2, c_4, c_6 c_8	$y^4 - y^3 + 6y^2 - 4y + 1$
c_3, c_7	$y^4 + 3y^3 + 6y^2 + 9$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.148403 + 0.632502I	1.64493 + 4.05977I	6.00000 - 6.92820I
b = -0.64840 - 1.49853I		
u = -0.500000 + 0.866025I		
a = 0.35160 - 1.49853I	1.64493 + 4.05977I	6.00000 - 6.92820I
b = -0.851597 + 0.632502I		
u = -0.500000 - 0.866025I		
a = 0.148403 - 0.632502I	1.64493 - 4.05977I	6.00000 + 6.92820I
b = -0.64840 + 1.49853I		
u = -0.500000 - 0.866025I		
a = 0.35160 + 1.49853I	1.64493 - 4.05977I	6.00000 + 6.92820I
b = -0.851597 - 0.632502I		

IV.
$$I_4^u = \langle b + u, 2u^3 + 4u^2 + a + 3u - 2, u^4 + u^3 - 2u + 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{3} - 4u^{2} - 3u + 2 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 2u^{2} - 2u \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u^{3} - 4u^{2} - 4u + 2 \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -5u^{3} - 8u^{2} - 4u + 8 \\ -u^{3} - 2u^{2} - u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -4u^{3} - 7u^{2} - 5u + 5 \\ -u^{3} - 2u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $8u^3 + 16u^2 + 8u 18$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_7	$u^4 + u^3 - 2u + 1$
c_{2}, c_{6}	$u^4 + 3u^3 + 6u^2 + 6u + 3$
c_4, c_8	$(u^2 - u + 1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_5 \ c_7$	$y^4 - y^3 + 6y^2 - 4y + 1$
c_{2}, c_{6}	$y^4 + 3y^3 + 6y^2 + 9$
c_4, c_8	$(y^2+y+1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.621964 + 0.187730I		
a = -1.62196 - 1.91978I	-1.64493 - 4.05977I	-6.00000 + 6.92820I
b = -0.621964 - 0.187730I		
u = 0.621964 - 0.187730I		
a = -1.62196 + 1.91978I	-1.64493 + 4.05977I	-6.00000 - 6.92820I
b = -0.621964 + 0.187730I		
u = -1.12196 + 1.05376I		
a = 0.121964 + 0.678295I	-1.64493 + 4.05977I	-6.00000 - 6.92820I
b = 1.12196 - 1.05376I		
u = -1.12196 - 1.05376I		
a = 0.121964 - 0.678295I	-1.64493 - 4.05977I	-6.00000 + 6.92820I
b = 1.12196 + 1.05376I		

 $\text{V. } I^u_5 = \langle -u^3 - 2u^2 + b - 2u + 1, \ 2u^3 + 3u^2 + a + 2u - 3, \ u^4 + u^3 - 2u + 1 \rangle$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{3} - 3u^{2} - 2u + 3 \\ u^{3} + 2u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 2u^{3} + 4u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} - u^{2} + 2 \\ u^{3} + 2u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} + 2u^{2} + 2u - 1 \\ u^{3} + u^{2} + u - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -2u^{3} - 2u^{2} - u + 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $8u^3 + 16u^2 + 8u 18$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_7	$u^4 + u^3 - 2u + 1$
c_2, c_6	$(u^2 - u + 1)^2$
c_4, c_8	$u^4 + 3u^3 + 6u^2 + 6u + 3$

Crossings	Riley Polynomials at each crossing	
c_1, c_3, c_5 c_7	$y^4 - y^3 + 6y^2 - 4y + 1$	
c_2, c_6	$(y^2+y+1)^2$	
c_4, c_8	$y^4 + 3y^3 + 6y^2 + 9$	

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.621964 + 0.187730I		
a = 0.35160 - 1.49853I	-1.64493 - 4.05977I	-6.00000 + 6.92820I
b = 1.12196 + 1.05376I		
u = 0.621964 - 0.187730I		
a = 0.35160 + 1.49853I	-1.64493 + 4.05977I	-6.00000 - 6.92820I
b = 1.12196 - 1.05376I		
u = -1.12196 + 1.05376I		
a = 0.148403 - 0.632502I	-1.64493 + 4.05977I	-6.00000 - 6.92820I
b = -0.621964 + 0.187730I		
u = -1.12196 - 1.05376I		
a = 0.148403 + 0.632502I	-1.64493 - 4.05977I	-6.00000 + 6.92820I
b = -0.621964 - 0.187730I		

VI.
$$I_6^u = \langle b + u, \ a - u, \ u^2 + u + 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

- $a_{\circ} = \begin{pmatrix} -u \\ u \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8u 4

Crossings	u-Polynomials at each crossing		
c_1, c_3, c_5 c_7	$u^2 + u + 1$		
$c_2, c_4, c_6 \ c_8$	$u^2 - u + 1$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8	$y^2 + y + 1$		

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -0.500000 + 0.866025I	4.05977I	0 6.92820I
$\frac{b = 0.500000 - 0.866025I}{u = -0.500000 - 0.866025I}$		
a = -0.500000 - 0.866025I	-4.05977I	0.+6.92820I
b = 0.500000 + 0.866025I		

VII.
$$I_7^u = \langle b, \ a-1, \ u-1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_4 c_5, c_6, c_8	u-1		
c_3, c_7	u		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_4 c_5, c_6, c_8	y-1		
c_3, c_7	y		

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	1.64493	6.00000
b = 0		

VIII.
$$I_8^u = \langle b-1, \ a, \ u+1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing		
c_1, c_3, c_4 c_5, c_7, c_8	u+1		
c_2, c_6	u		

Crossings	Riley Polynomials at each crossing		
c_1, c_3, c_4 c_5, c_7, c_8	y-1		
c_2, c_6	y		

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0	-1.64493	-6.00000
b = 1.00000		

IX.
$$I_9^u = \langle b-1, a-1, u+1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_5, c_6, c_7	u+1
c_4, c_8	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5, c_6, c_7	y-1
c_4, c_8	y

Solutions to I_9^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000	-1.64493	-6.00000
b = 1.00000		

X.
$$I_1^v = \langle a, \ b+1, \ v-1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_5	u
c_2, c_3, c_4 c_6, c_7, c_8	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_5	y
c_2, c_3, c_4 c_6, c_7, c_8	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	1.64493	6.00000
b = -1.00000		

XI. u-Polynomials

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_5 \ c_7$	$u(u-1)(u+1)^{2}(u^{2}+u+1)^{3}(u^{4}-3u^{3}+6u^{2}-6u+3)$ $\cdot (u^{4}-2u^{3}+u^{2}+2u-1)(u^{4}+u^{3}-2u+1)^{2}$
c_2, c_4, c_6 c_8	$u(u-1)^{2}(u+1)(u^{2}-u+1)^{3}(u^{4}-u^{3}+2u+1)^{2}$ $\cdot (u^{4}+2u^{3}+u^{2}-2u-1)(u^{4}+3u^{3}+6u^{2}+6u+3)$

XII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8	$y(y-1)^{3}(y^{2}+y+1)^{3}(y^{4}-2y^{3}+7y^{2}-6y+1)$ $\cdot (y^{4}-y^{3}+6y^{2}-4y+1)^{2}(y^{4}+3y^{3}+6y^{2}+9)$