Subject Title:Computer Organization							
Common to CSE Branch							
Course Code:	L	T	P	C			
Prerequisites: Digital Logic Design				0	3		

Course Objectives:

- To understand basic structures of computers and to understand various machine instructions.
- To understand basic structures of computers and to understand various machine instructions.
- To analyse ALU & I/O organization of a computer.
- To understand various memory systems.
- To analyse functionalities done by processing unit and also learn micro programmed control.

Course Outcomes:

By the end the of the course, the student will be able to

- **CO-1:** Able to **understand** basic structures of computers and to **understand** various machine instructions.
- **CO-2:** Ableto **learn and use** the addressing modes and types of instructions.
- **CO-3:** Able to analyze I/O organization of a computer.
- **CO-4:** Able to **understand** various memory systems.
- **CO-5:** Able to **analyze** functionalities done by processing unit and also learn micro programmed control.

Syllabus

Unit – I:Basic Structure of a Computer and Machine Instructions.

Introduction, History of Computer Generations, Functional unit, Basic Operational concepts, Bus structures, System Software, Performance. Number representation: Fixed Point and Floating Point representation. Instruction and Instruction Sequencing: Register Transfer Notation, Assembly Language Notation, Basic Instruction Types

Unit – II: Addressing modes and types of Instructions

Addressing Modes, Basic Input/output Operations, and role of Stacks and Queues in computer programming equation.

Component of Instructions: Logical Instructions, shift and Rotate Instructions. Type of Instructions: Arithmetic and Logic Instructions, Branch Instructions, Addressing Modes, Input/output Operations

Unit – III: Basic building blocks for the ALU:

Adder, Subtracter, Shifter, Multiplication and division circuits. Accessing I/O Devices, Interrupts: Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Direct Memory Access, Buses: Synchronous Bus, Asynchronous Bus, Interface Circuits, Standard I/O Interface: Peripheral Component Interconnect (PCI) Bus, Universal Serial Bus (USB)

Unit – IV: The Memory Systems

Basic memory circuits, Memory System Consideration, Read- Only Memory: ROM, PROM, EPROM, EEPROM, Flash Memory, Associative Memory, Cache Memories: Mapping Functions, INTERLEAVING, Secondary Storage: Magnetic Hard Disks, Optical Disks.

Unit – V: Processing unit

Fundamental Concepts: Register Transfers, Performing an Arithmetic or Logic Operation, Fetching a Word from Memory, Execution of Complete Instruction, Hardwired Control, MICRO PROGRAMMED CONTROL: Microinstructions, Micro program Sequencing, Wide Branch Addressing Microinstructions with next –Address Field.

Learning Resources

Text Books:

- 1. Computer Organization, Carl Hamacher, ZvonksVranesic, SafeaZaky, 5th Edition, McGraw Hill.
- 2. Computer Architecture and Organization by William Stallings, PHI Pvt. Ltd., Eastern Economy Edition, Sixth Edition, 2003

Reference Books

- 1. Computer Architecture and Organization, John P. Hayes, 3rd Edition, McGraw Hill.
- 2. Computer System Architecture by M Morris Mano, Prentice Hall of India, 2001
- e- Resources & other digital material

Course Outcomes						
Upon successful completion of the course, the student will be able to						
CO1	Able to understand basic structures of computers and to understand various machine instructions. {Understand level, KL2}					
CO2	Ableto learn and use the addressing modes and types of instructions. {Apply level, KL3}					
CO3	Able to analyze I/O organization of a computer. {Apply level, KL3}					
CO4	Able to understand various memory systems. { Apply level, KL3}					
CO5	Able to analyze functionalities done by processing unit and also learn micro programmed control. {Apply level, KL3}					

CO-PO-PSO Mapping:

co's	STATEMENT	PO's	PSO's
CO1	Able to understand basic structures of computers and to understand various machine instructions	PO1	PSO2
CO2	Ableto learn and use the addressing modes and types of instructions	PO1, PO3	PSO2
CO3	Able to analyze I/O organization of a computer	PO2, PO3	PSO1
CO4	Able to understand various memory systems	PO2, PO3	PSO1
CO5	Able to analyze functionalities done by processing unit and also learn micro programmed control	PO1, PO2, PO3, PO4,PO11,PO12	PSO1, PSO2

CO-PO Mapping Matrix:

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	2	-	-	-	-	-	-	-	-	1	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	2	2	-	-	1	1	1	1	1	ı	-
CO4	-	2	2	-	-	-	-	-	-	ı	-	-
CO5	2	2	2	1	-	-	-	-	-	-	2	2

CO-PSO Mapping Matrix:

	PSO-1	PSO-2
CO1	ı	2
CO2	-	2
CO3	2	-
CO4	2	-
CO5	2	2

MICRO SYLLABUS

Unit – I: Basic Structure of a Computer and Machine Instructions.

Introduction, History of Computer Generations, Functional unit, Basic Operational concepts, Bus structures, System Software, Performance. Number representation: Integer - unsigned, signed (sign magnitude, 1's complement, 2's complement); Characters - ASCII coding, other coding schemes; Real numbers - fixed and floating point, IEEE754 representation. Instruction and Instruction Sequencing: Register Transfer Notation, Assembly Language Notation, Basic Instruction Types

Unit – II: Addressing modes and types of Instructions

Addressing Modes, Basic Input/output Operations, and role of Stacks and Queues in computer programming equation.

Component of Instructions: Logical Instructions, shift and Rotate Instructions. Type of Instructions: Arithmetic and Logic Instructions, Branch Instructions, Addressing Modes, Input/output Operations

Unit – III: Basic building blocks for the ALU

Adder, Subtracter, Shifter, Multiplication and division circuits. Accessing I/O Devices, Interrupts: Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Direct Memory Access, Buses: Synchronous Bus, Asynchronous Bus, Interface Circuits, Standard I/O Interface: Peripheral Component Interconnect (PCI) Bus, Universal Serial Bus (USB)

Unit – IV: The Memory Systems

Main Memory: Basic memory circuits, Memory System Consideration, Read- Only Memory: ROM, PROM, EPROM, EPROM, Flash Memory, and Associative Memory.

Cache Memories: Mapping Functions, INTERLEAVING, Secondary Storage: Magnetic Hard Disks, Optical Disks.

Unit – V: Processing unit

Fundamental Concepts: Register Transfers, Performing an Arithmetic or Logic Operation, Fetching a Word from Memory, Execution of Complete Instruction, Hardwired Control, MICRO PROGRAMMED CONTROL: Microinstructions, Micro program Sequencing, Wide Branch Addressing Microinstructions with next –Address Field.

Learning Resources

Text Books:

- 1. Computer Organization, Carl Hamacher, ZvonksVranesic, SafeaZaky, 5th Edition, McGraw Hill.
- 2. Computer Architecture and Organization by William Stallings, PHI Pvt. Ltd., Eastern Economy Edition, Sixth Edition, 2003

Reference Books

- 3. Computer Architecture and Organization, John P. Hayes, 3rd Edition, McGraw Hill.
- 4. Computer System Architecture by M Morris Mano, Prentice Hall of India, 2001

e- Resources & other digital material

https://nptel.ac.in/courses/106/105/106105163/