Componentes Fortemente Conectados 5189-32

Rodrigo Calvo rcalvo@uem.br

Departamento de Informática – DIN Universidade Estadual de Maringá – UEM

1° semestre de 2016

Introdução

- Um Componente Fortemente Conectado (Strongly Connected Component SCC) de um grafo direcionado G = (V, A) é um conjunto máximo de vértices $C \subseteq V$, tal que, para todo par de vértice $u \in V$, existe um caminho de u até v e um caminho de v até u.
- Em outras palavras:
 - v é alcançável a partir do vértice u; e
 - *u* é alcançável a partir do vértice *v*.

O caminho entre um vértice u até outro v é denotado como : u ~> v

Componentes Fortemente Conectados

• Componentes fortemente conectados : {a, b, e}, {c, d}, {f, g} e {h}

Grafo transposto

- O algoritmo para identificar componentes fortemente conectados utiliza o grafo transposto de G
 - $G^T = (V, A^T), A^T = \{(u, v) \mid (v, u) \in A\}$
 - G^T é G com todas as arestas invertidas
 - G^T pode ser calculado em tempo $\Theta(V + A)$ para a representação de lista de adjacências
 - $G \in G^T$ tem os mesmos SCC's
 - Veja o exercício 22.1-3

Grafo de componentes

- Grafo de componentes
 - $G^{SCC} = (V^{SCC}, A^{SCC})$
 - V^{SCC} tem um vértice para cada SCC em G
 - SCC contém uma aresta se existe uma aresta correspondente entre os SCC's de G

O grafo de componentes é acíclico, o que implica o lema 22.13

Grafos de componentes

Grafos de componentes

- Lema 22.13
 - G^{SCC} é um grafo direcionado acíclico (gda)
 - Sejam C e C' SCC distintos em G, seja u, v ∈ C e seja u', v' ∈ C'.
 Suponha que exista um caminho u ~> u' em G. Então não pode existir um caminho v' ~> v em G.

Grafos de componentes

- Lema 22.13
 - G^{SCC} é um grafo direcionado acíclico (gda)
 - Sejam C e C' SCC distintos em G, seja u, v ∈ C e seja u', v' ∈ C'.
 Suponha que exista um caminho u ~> u' em G. Então não pode existir um caminho v' ~> v em G.
 - Prova: Suponha que exista um caminho v' ~> v em G. Então existem caminhos u ~> u' ~> v' e v' ~> v ~> u em G. Portanto, u e v' são acessíveis um a partir do outro, e não podem estar em SCC separados.

Algoritmo

strongly-connected-components (G)

- 1 chamar **dfs (G)** para calcular o tempo de término *v.f* para cada vértice *v*
- 2 calcular G^T
- 3 chamar $dfs(G^T)$, mas no laço principal de dfs, considerar os vértices em ordem decrescente de v.f.
- 4 retornar os vértices de cada árvore na floresta primeiro na profundidade formada na linha 3 como uma componente fortemente conectada separada

Exemplo de aplicação

Exemplo de aplicação

Análise do tempo de execução

- O tempo de execução do **dfs** das linhas 1 e 3 é $\Theta(V + A)$
- Conforme os vértices são terminados na chamada do dfs da linha 1, os vértices são inseridos na frente de uma lista ligada (O(1)), como cada vértice é inserido apenas uma vez, o tempo total de operações de inserções é Θ(V)
- O tempo para calcular o grafo transposto na linha 2 é $\Theta(V + A)$
- Portanto o tempo de execução do algoritmo é Θ(V + A)

- Ideia
 - Considerando os vértices no segundo dfs na ordem decrescente dos tempos de términos obtidos no primeiro dfs, estamos visitando os vértices do grafo de componentes na ordem topológica

- Duas questões de notação são definidas:
- As referências a u.d e u.f referem-se aos valores do primeiro dfs
- Para um conjunto $U \subseteq V$, definimos
 - $d(U) = \min_{u \in U} \{u.d\}$ (tempo de descoberta mais antigo)
 - $f(U) = \max_{u \in U} \{u.f\}$ (tempo de término mais recente)

- Lema 22.14
 - Sejam $C \in C'$ SCC distintos em G = (V, A). Suponha que exista uma aresta $(u, v) \in A$, tal que $u \in C \in V \in C'$. Então f(C) > f(C')

- Lema 22.14
 - Sejam C e C' SCC distintos em G = (V, A). Suponha que exista uma aresta $(u, v) \in A$, tal que $u \in C$ e $v \in C'$. Então f(C) > f(C')
- Corolário 22.15
 - Sejam $C \in C'$ SCC distintos em G = (V, A). Suponha que exista uma aresta $(u, v) \in A^T$, tal que $u \in C \in V \in C'$. Então f(C) < f(C')

- Teorema 22.16: **strongly-connected-components (G)** calcula corretamente os SCC's de um grafo orientado *G*
 - O segundo dfs começa com um SCC C tal que f(C) é máximo
 - Seja x ∈ C o vértice inicial, o segundo dfs visita todos os vértices de C. Pelo corolário, como f(C) > f(C') para todo C ≠ C', não existe aresta de C para C'. Logo, o dfs visita apenas os vértices de C (descobrindo este SCC)
 - A próxima raiz escolhida no segundo dfs está em um SCC C' tal que f(C') é máximo em relação a todos os outros SCC (sem considerar C). O dfs visita todos os vértices de C', e as únicas arestas fora de C' vão para C, cujo os vértices já foram visitados
 - O processo continua até que todos os vértices sejam visitados

- Teorema 22.16: strongly-connected-components (G) calcula corretamente os SCC's de um grafo orientado G
 - Cada vez que uma raiz é escolhida pelo segundo dfs, ele só pode alcançar
 - Os vértices no SCC dele (através de arestas da árvore)
 - Os vértices que já foram visitados no segundo dfs

Bibliografia

- Thomas H. Cormen et al. Introduction to Algorithms. 3rd edition.
 Capítulo 22.4.
- Nivio Ziviani. Projeto de Algoritmos com Implementações em Pascal e
 C. 3a Edição Revista e Ampliada, Cengage Learning, 2010. Capítulo 7.
 Seção 7.6