Physics 1004 Practice Questions

Section A: Multiple Choice

Answer all questions. Each question is worth 1 mark. Please circle your answer in the box.

A1

A 12.0 N force with a fixed orientation does work on a particle, as the particle moved through a displacement $\mathbf{d} = (2.00 \text{ m})\mathbf{i} - (4.00 \text{ m})\mathbf{j} + (3.00 \text{ m})\mathbf{k}$. The change in the particle's kinetic energy is +30.0 J. What is the angle between the force vector and the displacement vector?

(A) 12.1° (B) 16.8° (C) 21.9° (D) 46.1° (E) 62.3°	(A) 12.1°	(B) 16.8°	(C) 21.9°	(D) 46.1°	(E) 62.3°
---	-----------	-----------	-----------	-----------	-----------

A2

If a metal conductor has a charge -1.45×10^{-7} C, how many excess electrons are there on it?

(4) 4 4440-3	(D) 2.40×10 ⁸	(C) 0.05×10 ¹¹	(D) 9 21×10 ¹³	(E) 1 05×10 ¹⁸
(A) 1.44×10 ⁻³	(B) 2.40×10	(C) 9.05×10	(D) 8.31×10	(E) 1.05×10

A3

The figure shows two parallel non-conducting rings with their central axes along a common line. Ring 1 has a uniform charge q_1 and ring 2 has a uniform charge q_2 . Both disks have a radius R, and the separation between the disks is 4R. The net electric field is zero at point P, which is R away from disk 1 and 3R from disk 2. What is the charge ratio q_1/q_2 ?

(A) 0.268	(B) 0.333	(C) 0.500	(D) 0.750	(E) 1.00

What is the time constant of this RC circuit?

(A) 26 μs	(B) 19 ms	(C) 1.2 s	(D) 11 s	(E) 230 s

A5

The switch S in the circuit pictured on the right is closed at t = 0 and the uncharged capacitor (C = 15.0 μ F) starts to charge. At what point does the potential across the resistor (R = 10.0 k Ω) equal that of the capacitor?

(A) 525 μs	(B) 950 μs	(C) 0.100 ms	(D) 0.208 ms	(E) 0.350 ms

A6

A solenoid of length 15 cm, and with 45 turns, has a current of 1.25 amps flowing in it. What is the magnitude of the magnetic field inside the solenoid?

(A) 1.0×10^{-5} T (B) 1.2×10^{-4} T	(C) 3.8×10 ⁻³ T	(D) 7.0×10 ⁻³ T	(E) 9.5×10 ⁻² T
---	----------------------------	----------------------------	----------------------------

A7

A coil is connected in series with a 10.0 k Ω resistor. An ideal 50.0V battery is connected across the two devices, and the current reaches 2.00 mA after 5.00 milliseconds. Find the inductance of the coil.

(A) 97.9 H	(B) 108 H	(C) 979 H	(D) 2.61×10 ³ H	(E) 2.61×10 ⁶ H

A8

In an oscillating LC circuit with L = 65 mH and C = 4.0μ F. The current is initially a maximum. How long will it take before the capacitor is fully charged for the first time?

(4) = 4 40-7	(D) 0 0 10-6	(0) 10 10-5	(5) 6 4 40-4	(=) 0 0 10-4
(A) 7.1×10 ⁻⁷ s	(B) 2.6×10 ⁻⁶ s	(C) 4.0×10 ⁻⁵ s	(D) 6.4×10 ⁻⁴ s	(E) 8.0×10 ⁻⁴ s
(//) /.±±0 3	(D) 2.0±0 3	(0) 1.010	(0) 0.110 3	(=) 0.0

Section B: Longer Questions

B1

23.31 Two long, charged, thin-walled, concentric, cylindrical shells have radii of 3.0 cm and 6.0 cm. The charge per unit length is 5.0×10^{-6} C/m² on the inner cylinder, and -7.0×10^{-6} C/m² on the outer cylinder.

- (a) Calculate the magnitude and direction of the electric field at radial distance r = 4.0 cm (5 marks)
- (b) Calculate the magnitude and direction of the electric field at radial distance r = 8.0 cm (5 marks)

B2

The electric potential in a region of space is given by the equation:

$$V = (2.0 \text{ V/m}^2)x^2 + (1.5 \text{ V/m})x - (3.0 \text{ V/m})y + (4.0 \text{ V/m}^2)z^2$$

- (a) Find the equation for the electric field in this region of space (7 marks)
- (b) Find the electric field at the point (3.0 m, 2.0 m, 1.5 m). (3marks)

B3

A 2.0 μ F capacitor and a 4.0 μ F capacitor are connected in parallel across a 240 V potential difference. The 4.0 μ F capacitor has a parallel plate configuration, with a surface area of 110 cm², and a dielectric material (paper) between the plates with κ = 3.5

- (a) Calculate the total charge stored on the capacitors (3 marks)
- (b) Calculate the total energy stored in the capacitors (3 marks)
- (c) Calculate the spacing between the plates in the 4.0 µF capacitor. (4 marks)

B4

An electrical cable consists of 125 identical strands of copper wire, each with a resistance of 265 m Ω . The same potential difference is applied between the ends of all the strands and results in a total current of 65.0 mA

- (a) What is the current in each strand of wire?
- (b) What is the applied potential difference?
- (c) What is the resistance of the cable?
- (d) How much power is dissipated in the cable?

B5

A proton (mass 1.67×10^{-27} kg) is travelling through uniform magnetic and electric fields. The electric field is $(4.00 \text{ V/m})\mathbf{k}$ and the magnetic field is $\mathbf{B} = (-2.50 \text{ mT})\mathbf{i}$. If the velocity of the proton is $(3450 \text{ m/s})\mathbf{k}$, then using unit vector notation, calculate

- (a) The electric force on the proton (3marks)
- (b) The magnetic force on the proton (4 marks)
- (c) The net acceleration on the proton (3 marks)