Week 9 Lecture 1

Jared Brannan

October 27, 2021

1 Administrative drivel

- exams will be graded by monday at the latest
- Revised paper due Nov, 8th at 11:59pm
 - Turn on tracking for the paper revision!
 - the grade will be no lower than the first grade.

2 Anatomy and Physiology

2.1 Respiratory system

- Breathing control
- rate control
 - There are monitors on the blood composition (main in the carated artery in the neck)
 - Chemoreceptors in aorta and carotid arteries increase rate when O_2 drops too low, or CO_2 gets too height
 - several other bain areas are also involved
- normal breating 500 ml in and out (about 1 pint) == "tidal volume"
 - Forced inhalation can bring in additional air: around 3300mL in males, or 1900 mL in females
 - Forced exhalaltion can foce out additional air: around 1000mL in males, or around 700mL in females
 - even after forced exhalation, some residual air remains, stuck in incompressible spaces (e.g. trachea) or in alveoli, holding them open for a total of about 1100-1200mL of space
 - this give the total lung air volume of 3200-6000mL or .75-1.5 gallons
 - $-O_2$ in the blood drops only by about a quarter when it passes through the tissues

• Respiration

- Beathing == pulling air in and out of the lungs
- Respiration == exchanging gases between air and tissues
- Respiration == exchange of gases between air in the alveoli and capillary blood surrounding the alveoli Diffusion driven by difference in concentration between gases in air and gases in blood
- gases will independently diffuse down their gradients
- Recall from membranes O_2 and CO_2 are small and non-poolar so they move through membranes.
- Gas exchange in an alveolus:

- blood comes from the heart into a capilary surrounding the alveoli, gas exchange ocurs, then blood is sent down a vein to the heart all oxygenated and with less CO_2 .
- There are chemicals inside the alveolus that keeps it from getting stuck in a collapsed position
- Gas transport oxygen
 - O_2 has low solubility in liquids, and doesn't convert to other molecules (covalent bonds), but loves to bind to hemoglobin once it reaches
 - * ie, O_2 is not very reactive with anything in the blood till it gets to the hemoglobin's iron molecule
- clicker q: what is the diaphragm? The muscle below the ribs that is involved in breathing
- Red blood cells AKA erythrocytes
 - concentration of oxygen in the plasma is low, since much of it binds to hemoglobin, allowing more oxygen to diffuse the plasma from the lungs
 - Each cell carries about 200 million hemoblobin molecules
 - oxygen bind to the **heme** group it contains Fe^{2+} (iron ions)
 - * hence the red color
 - Each hemoglobin can bind $4O_2$.
- as transport carbon dioxide
 - Higher (but still low) solubility in liquids than oxygen
 - Redily forms carbonic acid in water, breaks into H^+ and bicarbonate (This is the form that CO_2 is caried in the blood (in the plasma))
 - $-CO_2 + H_2O \to H_2CO_3 \to H^+ + HCO_3^-$
 - CO_2 is combined with H_2O by an enzyme
 - at the lungs, this proocess reverses
 - The H^+ ion tends to interact with hemoglobin to knock off the O_2 from the hemoglobin (from increased Ph)
 - $-CO_2$ can also bind to hemoglobin
- recall, in mitochondra: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 36ATP$
 - O_2 is required to get the most ATP possible, CO_2 is wast product from this process.
- so, aside from breathing, resperation is passive!
- Carbon monoxide poisoning:
 - CO is produced by gasoline engines, power tools,, poorly functioning furnaces / stoves
 - * Colorless, odorless hard to detect
 - * preferentially binds to hemoglobin, so not as much O_2 can bind, thus, tissues are deprived of oxygen.

• Diseases

- Infection and inflamation
 - * The lungs are 100% humidity, and warm, which is a perfect place for infectious organisms to thrive
 - * Fumes from cars can make O_3 , an iritant for tissues, iritating the tissues, stimulating an imune response causing inflamation

- Problems with air transport (in or out)
 - * Constrictions or restrictions
 - * choking
- Problems with gas diffusion
- **Asthma** inflamation of the bronchioles
 - iritation of the lining of the bronchi, causing the muscles in the walls to constrict, reducing the diameter of the passageway
 - mucus is released