Problem 1

- **a.)** Same. $n(n+1) = n^2 + n$. $n^2 + n$ and **b.)** Lower. n^2 is a lower order of growth than $2000n^2$ have the same order of growth.
- **c.)** Same. All logarithms have the same order of growth.
- **e.)** Same. $2^{n-1} = \frac{1}{2}(2^n)$ and $\frac{1}{2}(2^n)$ has the same order of magnitude as 2^n
- n^3 regardless of coefficient
- $loq_2^2(n) = (loq_2(n))^2$ and d.)Higher. $loq_2(n^2) = 2(loq_2(n))$
- **f.)** Lower. (n-1)! is one order of growth lower then n!

Problem 2

a.) $C_{worst}(n) \in \theta(n)$.

 $C_{worst}(n) = n$ Since there are n number of elements in the array. If the key is either the last element or not in the array, the order of execution is n.

For $C_{worst}(n) \in O(n)$. $\exists c \text{ such that } cn \leq n$. Let c = 1 $cn \leq n \rightarrow 1$ $n \leq n \rightarrow n$ $\leq n$

 $\therefore C_{worst} \in O(n)$

For $C_{worst}(n) \in \Omega(n)$. $\exists c \text{ such that } cn \geq n$. Let c = 1 $cn \geq n \rightarrow 1$ $n \geq n \rightarrow n$ > n

 $\therefore C_{worst} \in \Omega(n)$

Since $C_{worst} \in O(n)$ and $C_{worst} \in \Omega(n), C_{worse} \in \Theta(n)$

b.) $C_{best}(n) \in \theta(1)$.

 $C_{best}(n) = 1$ Since the best case is the first element of the array.

By definition $C_{best} \in \Omega(1)$ and $C_{best} \in O(1)$

And if $C_{best} \in \Omega(1)$ and $C_{best} \in O(1)$ then $C_{best} \in \theta(1)$

c.) $C_{avq}(n) \in \theta(n)$ $C_{avg}(n) = \frac{p(n+1)}{2} + n(1-p)$

For $C_{avg}(n) \in O(n)$, $c(\frac{p(n+1)}{2} + n(1-p)) \le \frac{p(n+1)}{2} + n(1-p)$

Let 0 < c < 1 so $c(\frac{p(n+1)}{2} + n(1-p)) \le \frac{p(n+1)}{2} + n(1-p)$

$$C_{avg} \in O(n)$$
For $C_{avg}(n) \in \Omega(n)$, $c(\frac{p(n+1)}{2} + n(1-p)) \ge \frac{p(n+1)}{2} + n(1-p)$
Let $c > 1$ so $c(\frac{p(n+1)}{2} + n(1-p)) \ge \frac{p(n+1)}{2} + n(1-p)$

$$C_{avg} \in \Omega(n)$$
And if $C_{avg} \in O(n)$ and $C_{avg} \in \Omega(n)$ then $C_{avg}in\Theta(n)$

Problem 3

$$5lg(n+100)^{100} \rightarrow \ln^2 n \rightarrow \sqrt[3]{n} \rightarrow .001n^4 + 3n^3 + 1 \rightarrow 3^n \rightarrow 2^{2n} \rightarrow (n-2)!$$

Problem 4

- **a.)** If f(n) = n and g(n) = n + sin(n) then g(f(n)) = f(n) + sin(f(n)) which means that $g(n) \le f(n)$: $g(n) \in O(f(n))$
- **b.)** If f(n) = n and g(n) = n|sin(n)| then g(f(n)) = f(n)|sin(f(n))| which means that $g(n) \le f(n)$: $g(n) \in O(f(n))$