Задачи за първа контролна работа

- Докажете, че ако $\{x_i\}_0^n$ са различни точки в интервала [a,b] и $f \in C^{n+1}[a,b]$, тогава за всяко $x \in [a,b]$ съществува точка $\xi \in [a,b]$, такава че $f(x) L_n(f;x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega(x)$, където $\omega(x) = (x-x_0)(x-x_1)\cdots(x-x_n)$.
- Ако $\{\ell_k(x)\}_0^n$ са базисните полиноми на Лагранж за интерполиране в различните точки $\{x_i\}_0^n$, и $\omega(x) = (x-x_0)(x-x_1)\cdots(x-x_n)$, докажете тъждеството

$$\sum_{k=0}^{n} (x - x_k)^m \ell_k(x) = 0 \quad \text{3a} \quad m = 0, 1, \dots, n.$$

• Ако $\{\ell_k(x)\}_0^n$ са базисните полиноми на Лагранж за интерполиране в различните точки $\{x_i\}_0^n$, и $\omega(x)=(x-x_0)(x-x_1)\cdots(x-x_n)$, докажете тъждеството

$$\sum_{k=0}^{n} (x - x_k)^{n+1} \ell_k(x) = (-1)^n \omega(x).$$

• Ако $\{\ell_k(x)\}_0^n$ са базисните полиноми на Лагранж за интерполиране в различните точки $\{x_i\}_0^n$, и $\omega(x)=(x-x_0)(x-x_1)\cdots(x-x_n)$, докажете тъждеството

$$\sum_{k=0}^{n} (x - x_k)^{n+2} \ell_k(x) = (-1)^n \omega(x) \sum_{k=0}^{n} (x - x_k).$$

• Докажете, че ако $\{x_i\}_0^n$ са различни точки, и $\omega(x)=(x-x_0)(x-x_1)\cdots(x-x_n)$, тогава за всеки полином $p(x)\in\pi_n$ е изпълнено

$$\frac{p(x)}{\omega(x)} = \sum_{k=0}^{n} \frac{A_k}{x - x_k}$$
, където $A_k = \frac{p(x_k)}{\omega'(x_k)}$.

• Като използвате интерполационната формула на Лагранж, докажете тъждеството:

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{m}{n} \binom{n}{k} \frac{1}{m-k} = \frac{1}{m-n} \quad \text{при} \quad m > n \ge 0.$$

• Като използвате интерполационната формула на Лагранж, докажете тъждеството:

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{m}{n} \binom{n}{k} \frac{k}{m-k} = \frac{m}{m-n} \quad \text{при} \quad m > n \ge 1.$$

- Изведете интерполационната формула на Нютон (с разделени разлики).
- Нека $\{x_i\}_0^n$ са различни точки, и $\omega(x) = (x x_0)(x x_1) \cdots (x x_n)$. Като използвате свойствата на разделените разлики, докажете тъждеството:

$$\sum_{k=0}^{n} \frac{x_k^m}{\omega'(x_k)} = 0, \qquad m = 0, 1, \dots, n-1.$$

• Нека $\{x_i\}_0^n$ са различни точки, и $\omega(x) = (x-x_0)(x-x_1)\cdots(x-x_n)$. Като използвате свойствата на разделените разлики, докажете тъждеството:

$$\sum_{k=0}^{n} \frac{x_k^n}{\omega'(x_k)} = 1.$$

• Нека $\{x_i\}_0^n$ са различни точки, и $\omega(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$. Като използвате свойствата на разделените разлики, докажете тъждеството:

$$\sum_{k=0}^{n} \frac{\omega''(x_k)}{\omega'(x_k)} = 0.$$

• Нека $\{x_i\}_0^n$ са различни точки, и $\omega(x) = (x-x_0)(x-x_1)\cdots(x-x_n)$. Като използвате свойствата на разделените разлики, докажете тъждеството:

$$\sum_{k=0}^{n} x_k \frac{\omega''(x_k)}{\omega'(x_k)} = (n+1)n.$$

• Нека $\{x_i\}_0^n$ са различни точки, и $\omega(x) = (x-x_0)(x-x_1)\cdots(x-x_n)$. Като използвате свойствата на разделените разлики, докажете тъждеството:

$$\sum_{k=0}^{n} \frac{x_k^{n+1}}{\omega'(x_k)} = \sum_{k=0}^{n} x_k.$$

• Нека функцията f(x) има производни от всякакъв ред в интервала [a,b], и съществуват положителни константи C и M, такива че за всяко естествено число n е изпълнено

$$|f^{(n)}(x)| \le C.M^m$$
 за всяко $x \in [a,b].$

Докажете, че при всеки избор на интерполационни възли $a \leq x_0 < x_1 < \dots < x_n \leq b$ е изпълнено

$$\max_{x \in [a,b]} |f(x) - L_n(f;x)| \to 0 \quad \text{при} \quad n \to \infty.$$

Задачи за втора контролна работа (20.11.2023)

• Нека $\{x_i\}_{i=0}^n$ са различни точки. Намерете в явен вид алгебричен полином $\Phi_{k,0}(x) \in \pi_{2n+1}$, удовлетворяващ интерполационните условия

$$\Phi_{k,0}(x_i)=0$$
 за $i\in\{0,1,\ldots,n\}\setminus\{k\},\ \Phi_{k,0}(x_k)=1$ $\Phi_{k,0}(x_i)=0$ за $i=0,1,\ldots,n.$

• Нека $\{x_i\}_{i=0}^n$ са различни точки. Намерете в явен вид алгебричен полином $\Phi_{k,1}(x) \in \pi_{2n+1}$, удовлетворяващ интерполационните условия

$$\Phi_{k,1}(x_i) = 0$$
 sa $i = 0, 1, \dots, n$, $\Phi'_{k,1}(x_i) = 0$ sa $i \in \{0, 1, \dots, n\} \setminus \{k\}, \; \Phi'_{k,1}(x_k) = 1$.

• Нека $\{t_i\}_0^m$ и ξ са различни точки, докажете, че

$$((x-\xi)f(x))[\xi,t_1,t_2,\ldots,t_m] = f[t_1,t_2,\ldots,t_m].$$

- Нека $\{x_i\}_0^n$ са различни точки, различни от нула. Ако $f(x)=\frac{1}{x}$, намерете с помощта на формулата на Стефенсон-Поповичу $f[x_0,x_1,\ldots,x_n]$.
- Нека $\{x_i\}_0^n$ са различни точки, различни от нула. Ако $f(x)=\frac{1}{x^2}$, намерете с помощта на формулата на Стефенсон-Поповичу $f[x_0,x_1,\ldots,x_n]$.
- Нека $\{x_i\}_0^n$ са различни точки. Ако $f(x)=x^{n+1}$, намерете с помощта на формулата на Стефенсон-Поповичу $f[x_0,x_1,\ldots,x_n]$.
- Нека $\{x_i\}_0^n$ са различни точки. Ако $f(x)=x^{n+2}$, намерете с помощта на формулата на Стефенсон-Поповичу $f[x_0,x_1,\ldots,x_n]$.
- Нека $x_0 < x_1 < \dots < x_n$. Ако $k \in \{1, 2, \dots, n\}$, докажете, че

$$\sum_{i=h}^{n} \frac{1}{\omega'(x_i)} \neq 0.$$

• Като използвате връзката между разделени и крайни разлики и формулата на Стефенсон-Поповичу, докажете тъждеството

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{2k+1} = \frac{2^{2n} (n!)^2}{(2n+1)!}.$$

• Като използвате представянето на крайните разлики и връзката им с разделените разлики, докажете тъждеството

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^k = \begin{cases} 0, & \text{sa } k = 0, 1, \dots, n-1 \\ n!, & \text{sa } k = n. \end{cases}$$

• Като използвате представянето на крайните разлики и връзката им с разделените разлики, докажете тъждеството

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \binom{m+j}{k} = 0 \ \ \text{за всяко} \ \ m \in \mathbb{N} \ \ \mathbf{u} \ \ k = 0, 1, \dots, n-1.$$

- Изведете явна формула за тригонометричния полином от ред n, интерполиращ дадена функция f в точките $x_k = \frac{2k\pi}{2n+1}, \ k=0,1,\dots,2n.$
- Ако $\alpha_0 < \alpha_1 < \dots < \alpha_n$, докажете, че функциите

$$\{e^{\alpha_0 x}, e^{\alpha_1 x}, \dots, e^{\alpha_n x}\}$$

образуват Чебишова система в интервала $(-\infty, \infty)$.

• Като използвате интерполационен полином с интерполационни възли в точките $0,1,\ldots,n,$ намерете формула за

$$S(n) = \sum_{k=1}^{n} (2k - 1)^{2}.$$

• Като използвате интерполационен полином с интерполационни възли в точките $0,1,\ldots,n,$ намерете формула за

$$S(n) = \sum_{k=1}^{n} (2k - 1)^{3}.$$

• Ако $0 \le \alpha_0 < \alpha_1 < \dots < \alpha_n$, докажете, че функциите

$$\{x^{\alpha_0}, x^{\alpha_1}, \dots, x^{\alpha_n}\}$$

образуват Чебишова система в интервала $(0, \infty)$.

• Ако f(x) притежава непрекъсната n-та производна в интервала [a,b], и $f^{(n)}(x) \neq 0$ в (a,b), докажете, че функциите

$$\{1, x, \dots, x^{n-1}, f(x)\}$$

образуват Чебишова система в интервала [a,b].

- Докажете, че функциите $\{1, x, x \cos x\}$ образуват Чебишова система в интервала $(0, \frac{\pi}{2}]$.
- Докажете, че функциите $\{1,\ x,\ x\sin x\}$ образуват Чебишова система в интервала $[\frac{\pi}{2},\pi].$
- Докажете, че функциите $\{\sin x, \sin 2x\}$ не образуват Чебишова система в интервала $[0, \frac{\pi}{2}]$.
- Докажете, че функциите $\{1, \, \cos x\}$ образуват Чебишова система в интервала $[0,\pi].$
- Докажете, че функциите $\{1,\ \cos x\}$ не образуват Чебишова система в интервала $[0,2\pi).$