Clustering of Distributions on 1-Dimensional Manifolds

Setup

Suppose we have two manifolds \mathcal{M}_1 and $\mathcal{M}_2 \in \mathbb{R}^d$, each of length 1, defined by $f_1(t)$ and $f_2(t)$ respectively $(f_i : [0,1] \mapsto \mathbb{R}^d)$. Define δ as the minimum distance between the two manifolds, i.e., $\delta = \min_t \|f_1(t) - f_2(t)\|$, and let $\delta > 0$. For now, restrict each f_i such that the distance along the manifold between $f_i(t)$ and $f_i(s)$ is equal to the difference between t and s (this also implies that each manifold is of length 1). We sample $T_1, ..., T_n \stackrel{iid}{\sim} F$ for continuous F with support [0, 1] and use f_1 to map the first n_1 points to \mathcal{M}_1 and f_2 to map the remaining $n_2 = n - n_1$ points to \mathcal{M}_2 . Let $X_i = f_1(T_i)$ and $Y_j = f_2(T_j)$. Without loss of generality, assume $n_1 \leq n_2$.

Theory

Let $D_i = X_{(i)} - X_{(i-1)}$. Then if $\max_i D_i < \delta$, we have sufficient separation of points in \mathcal{M}_1 .

Uniform case

It can be shown that if $X_i \stackrel{iid}{\sim} Uniform(0,1)$, then $D_i \sim Beta(1,n)$. Therefore, $P(\max_i D_i < \delta) \ge (P(D_i < \delta))^n = (1 - (1 - \delta)^n)^n$, which is a decreasing function for sufficiently large n. This gives us the result $\max_i D_i \stackrel{a.s.}{\to} 0$.

Beta case

General case

If F is absolutely continuous, then it can be shown that

$$P(D_i \le \delta) = 1 - \int_0^{1-\delta} (i-1) \binom{n}{i-1} f(x) (F(x))^{i-1} (1 - F(x+\delta))^{n-i} dx$$

Under certain conditions (namely $F(x + \delta) \ge F(x) + \delta$), we can make the substitution u = F(x) and have the result

$$P(D_i \le \delta) \le 1 - \int_0^{1-\delta} (i-1) \binom{n}{i-1} u^{i-1} (1-u-\delta)^{n-i} du$$

which gives the same result as in the uniform case.

Computational Results

TBD