Devoir surveillé n°05

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

- 1 $P \in \mathbb{R}[X]$ est un polynôme annulateur de f si P(f) = 0.
- **2** J_f est un idéal de $\mathbb{R}[X]$.
- 3 Les idéaux de $\mathbb{R}[X]$ sont principaux. On note π_f l'unique polynôme unitaire engendrant π_f .
- $\boxed{\mathbf{4}}$ D'après le théorème de Cayley-Hamilton, $\chi_f \in J_f$. Ainsi J_f n'est pas nul, ce qui garantit l'existence de π_f .
- **5 5.a** On a donc $M = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$. Un calcul montre que $M^2 = M$. Une récurrence évidente montre que $M^k = M$

pour tout $k \in \mathbb{N}^*$.

5.b D'après la question précédente, $X^2 - X = X(X-1)$ annule M donc π_M divise X(X-1). Or $M \neq 0$ donc $\pi_M \neq X$ et $M \neq I_4$ donc $\pi_M \neq X-1$. On en déduit que $\pi_M = \pi_f = X(X-1)$.

6.a L'ensemble des solutions à valeurs réelles de l'équation différentielle linéaire homogène y'' + y = 0 est vect(cos, sin). De plus, il est clair que $\frac{1}{2}$ ch et $\frac{1}{2}$ sh sont des solutions particulières respectives des équations différentielles y'' + y = ch et y'' + y = sh. On en déduit que l'ensemble des solutions de y'' + y = ch est le sous-espace affine $\frac{1}{2}$ ch + vect(cos, sin) tandis que l'ensemble des solutions de y'' + y = sh est le sous-espace affine $\frac{1}{2}$ sh + vect(cos, sin).

6.b f est solution de (H_1) si et seulement si g = f'' + f est solution de (H_2) : z'' - z = 0.

6.c L'ensemble des solutions de (H₂) est vect(ch, sh).

6.d Si f est soution de (H_1) , alors g est solution de (H_2) . Il existe donc $(\alpha, \beta) \in \mathbb{R}^2$ tel que $g = f'' + f = \alpha \operatorname{ch} + \beta \operatorname{sh}$. La question **6.a** et le principe de superposition montre que $f \in \operatorname{vect}(\cos, \sin, \operatorname{ch}, \operatorname{sh})$. Réciproquement, il est clair que cos, sin, ch, sh sont solutions de (H_1) . Or (H_1) est une équation différentielle linéaire homogène est donc l'ensemble de ses solutions est un espace vectoriel : il contient donc vect $(\cos, \sin, \operatorname{ch}, \operatorname{sh})$. Par double inclusion, l'ensemble des solutions de (H_1) est vect $(\cos, \sin, \operatorname{ch}, \operatorname{sh})$.

Remarque. On aurait aussi pu invoquer le lemme des noyaux. Une récurrence évidente montre que toute solution de (H_1) est de classe \mathcal{C}^{∞} . On considère alors l'endomorphisme $D: f \in F \mapsto f'$ où $F = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. L'ensemble des solutions de (H_1) est $Ker(D^4 - Id_F)$. Comme $X^4 - 1 = (X^2 - 1)(X^2 + 1)$ et $(X^2 - 1) \land (X^2 + 1) = 1$,

$$Ker(D^4 - Id_F) = Ker(D^2 - Id_F) \oplus Ker(D^2 - Id_F)$$

Or $Ker(D^2 - Id_F)$ est l'ensemble des solutions de l'équation différentielle y'' - y = 0, à savoir vect(ch, sh) de même que $Ker(D^2 + Id_F) = vect(cos, sin)$.

6.e 6.e.i Soit $(\lambda, \beta, \gamma, \delta) \in \mathbb{R}^4$ tel que $\alpha \cos + \beta \sin + \gamma \cosh + \delta \sin + \alpha \cosh = 0$. En évaluant en 0, on obtient $\alpha + \gamma = 0$. En dérivant et en évaluant en 0, on obtient $\beta + \delta = 0$. En répétant deux fois cette opération, on obtient $-\alpha + \gamma = 0$ et $-\beta + \delta = 0$. On en déduit sans peine que $\alpha = \beta = \gamma = \delta = 0$. Ainsi la famille (cos, sin, ch, sh) est libre et dim E = 4.

1

6.e.ii La dérivation est linéaire et

$$\delta(\cos) = -\sin \in E$$

$$\delta(\sin) = \cos \in E$$

$$\delta(ch) = sh \in E$$

$$\delta(sh) = ch \in E$$

donc E est stable par δ . Ainsi δ induit un endomorphisme de E.

6.e.iii La matrice de δ dans la base (cos, sin, ch, sh) est $M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$. On calcule $M^2 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, $M^3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

 $\begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \text{ et } M^4 = I_4. \text{ On en déduit que } X^4 - 1 \text{ annule M donc } \pi_M \text{ divise } X^4 - 1. \text{ De plus, on vérifie aisément que } M^4 = I_4. \text{ On en déduit que$

 (I_4, M, M^2, M^3) est libre donc deg $\pi_M \ge 4$. Ainsi $\pi_f = \pi_M = X^4 - 1$.

7 Une base de E_n est $(X^k)_{0 \le k \le n}$. On en déduit que dim $E_n = n + 1$.

8 u et v sont clairement des endomorphismes de E. De plus, pour tout $k \in [0, n]$, $u(X^k) = kX^{k-1} \in E_n$ et $v(X^k) = (X+1)^k \in E_n$. Comme $(X^k)_{0 \le k \le n}$ engendre E_n , E_n est stable par u et v.

9 D'après la question précédente,

$$\mathbf{U}_{n} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & & 0 & n \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

D'après la formule du binôme,

$$V_{n} = \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \cdots & \begin{pmatrix} n-1 \\ 0 \end{pmatrix} & \begin{pmatrix} n \\ 0 \end{pmatrix} \\ 0 & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \ddots & \begin{pmatrix} n \\ 1 \end{pmatrix} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & & \begin{pmatrix} n-1 \\ n-1 \end{pmatrix} & \begin{pmatrix} n \\ n-1 \end{pmatrix} \\ 0 & 0 & \cdots & 0 & \begin{pmatrix} n \\ n \end{pmatrix} \end{pmatrix}$$

Remarquons notamment que tous les coefficients diagonaux de V_n valent 1.

 $|\mathbf{10}|$ Il est clair que Im $u_n = \mathrm{E}_{n-1}$. D'après le théorème du rang, dim $\mathrm{Ker}\,u_n = 1$. Comme $u_n(1) = 0$, $\mathrm{Ker}\,u_n = \mathrm{vect}(1) = \mathrm{E}_0$.

En posant $f_n: P \in E_n \mapsto P(X-1)$, $f_n \circ v_n = v_n \circ f_n = E_n$ donc $v_n \in GL(E_n)$. Notamment, $Im v_n = E_n$ et $Im V_n = V_n \circ Im V_n =$

11 Pour tout $P \in E$, P(X + 1)' = P'(X + 1) donc u et v commutent. A fortiori, u_n et v_n commutent.

Comme U_n est triangulaire, $\chi_{u_n}=\chi_{U_n}=X^{n+1}$. Si u_n était diagonalisable, π_{u_n} serait simplement scindé. Comme π_{u_n} divise $\chi_{u_n}=X^n$, on aurait $\pi_{u_n}=X$ puis $u_n=0$ ce qui n'est pas $(u_n(X)=1\neq 0)$. Ainsi u_n n'est pas diagonalisable. A nouveau, V_n est triangulaire donc $\chi_{v_n}=\chi_{V_n}=(X-1)^{n+1}$. En raisonnant comme précédemment, si v_n était diagonalisable, on aurait $\pi_{v_n}=X-1$ puis $v_n=\mathrm{Id}_{E_n}$, ce qui n'est pas $(v_n(X)=X+1\neq X)$.

13.a Pour tout $k \in [0, n]$, deg $Q_k = k$. Ainsi \mathcal{B} est une famille de polynômes non nuls de degrés étagés : c'est donc une famille libre. De plus, elle comporte n + 1 éléments et dim $E_n = n + 1$ donc \mathcal{B} est une base de E_n .

13.b $w_n(Q_0) = v_n(1) - 1 = 0$. Soit $k \in [1, n]$. Alors

$$w_n(Q_k) = \frac{1}{k!} \left[\prod_{j=0}^{k-1} (X+1-j) - \prod_{j=0}^{k-1} (X-j) \right]$$

$$= \frac{1}{k!} \left[\prod_{j=-1}^{k-2} (X-j) - \prod_{j=0}^{k-1} (X-j) \right]$$

$$= \frac{1}{k!} \left[(X+1) - (X-(k-1)) \right] \prod_{j=0}^{k-2} (X-j)$$

$$= \frac{k}{k!} \prod_{j=0}^{k-2} (X-j)$$

$$= \frac{1}{(k-1)!} \prod_{j=0}^{k-2} (X-j) = Q_{k-1}$$

13.c La question précédente montre que

$$W_n = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & & & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

13.d Comme $(Q_k)_{0 \le k \le n}$ est une base de E_n , la famille $(w_n(Q_0), \dots, w_n(Q_n))$ engendre $Im(w_n)$. On en déduit que $(Q_k)_{0 \le k \le n-1}$ est une base de $Im(w_n)$.

Le théorème du rang montre que dim $Ker(w_n) = 1$. Comme $Q_0 \in Ker(w_n)$, (Q_0) est une base de $Ker(w_n)$.

13.e Pour tout $j \in \mathbb{N}$ et tout $k \in [0, n]$,

$$w_n^j(Q_k) = \begin{cases} Q_{k-j} & \text{si } j \le k \\ 0 & \text{si } j > k \end{cases}$$

14 14.a L'existence et l'unicité proviennent du fait que \mathcal{B} est une base de E_n .

14.b Remarquons que $Q_k(0) = 0$ pour $k \in \mathbb{N}^*$ et $Q_0(0) = 1$. On en déduit avec la question **13.e** que $w_n^J(Q_k)(0) = \delta_{j,k}$ pour tout $j \in \mathbb{N}$ et tout $k \in [0, n]$. Ainsi

$$w_n^j(\mathbf{P})(0) = \sum_{k=0}^n \beta_k w_n^j(\mathbf{Q}_k)(0) = \begin{cases} \beta_j & \text{si } j \le n \\ 0 & \text{si } j > n \end{cases}$$

14.c D'après la question précédente, la famille des coordonnées de P dans la base \mathcal{B} est $(w_n^k(P)(0))_{0 \le k \le n}$. On peut préciser la réponse. En effet, d'après la formule du binôme $(v_n$ et $_{E_n}$ commutent),

$$w_n^k = (v_n - \mathrm{Id}_{\mathbf{E}_n})^k = \sum_{j=0}^n \binom{k}{j} (-1)^{k-j} v_n^j$$

puis

$$w_n^k(P) = \sum_{j=0}^n \binom{k}{j} (-1)^{k-j} v_n^j(P) = \sum_{j=0}^n \binom{k}{j} (-1)^{k-j} P(X+j)$$

et enfin

$$w_n^k(\mathbf{P})(0) = \sum_{j=0}^n \binom{k}{j} (-1)^{k-j} v_n^j(\mathbf{P}) = \sum_{j=0}^n \binom{k}{j} (-1)^{k-j} \mathbf{P}(j)$$

14.d La base duale de \mathcal{B} est donc la famille $(\varphi_k)_{0 \le k \le n}$ où

$$\varphi_k: \left\{ \begin{array}{ccc} \mathbf{E}_n & \longrightarrow & \mathbb{R} \\ \mathbf{P} & \longmapsto & \sum_{j=0}^n \binom{k}{j} (-1)^{k-j} \mathbf{P}(j) \end{array} \right.$$

14.e D'après la question **13.e**, $w_n^{n+1}(Q_k) = 0$ pour tout $k \in [0, n]$. Comme $(Q_k)_{0 \le k \le n}$ est une base de E_n , $w_n^{n+1} = 0$. D'après la même question, $w_n^n(Q_n) = Q_0 = 1$.

15 D'après le théorème de Cayley-Hamilton, χ_f annule f. Ainsi π_f divise χ_f .

16. 16.a Pour tout $P \in E_n$, $P^{(n+1)} = 0$ donc $u_n^{n+1} = 0$.

16.b On trouve $u_n^n(X^n) = n! \neq 0$.

16.c On sait que X^{n+1} annule u_n donc π_{u_n} divise X^{n+1} . Il existe donc $k \in [1, n+1]$ tel que $\pi_{u_n} = X^k$. Mais comme $u_n^n \neq 0, \pi_{u_n} = X^{n+1}$.

16.d La question **14.e** montre que $w_n^{n+1} = 0$ et $w_n^n \neq 0$. On en déduit comme précédemment que $\pi_{w_n} = X^{n+1}$.

17. 17.a On a vu précédemment que $\chi_{v_n} = (X-1)^{n+1}$. Comme π_{v_n} divise χ_{u_n} , il existe $m \in [[1, n+1]]$ tel que $\pi_{v_n} = (X-1)^m$.

17.b Comme π_{v_n} annule v_n , $(v_n - \mathrm{Id}_{\mathrm{E}_n})^m = 0$ i.e. $w_n^m = 0$. On en déduit que $\pi_{w_n} = \mathrm{X}^{n+1}$ divise X^m . Ainsi $n+1 \leq m$ puis finalement n+1=m.

18 18.a Puisque deg P = m, $a_m \neq 0$.

18.b On montre classiquement que pour $j \in [0, m]$, $u^j(X^m) = \frac{m!}{(m-i)!}X^{m-j}$. Ainsi

$$r(X^m/m!) = \sum_{j=0}^{m} a_j \frac{X^{m-j}}{(m-j)!}$$

18.c D'après les deux questions précédentes, $r = P(u) \neq 0$. Ainsi aucun polynôme non nul n'annule u. Finalement, $J_u = \{0\}$.

19 19.a Soit $n \in \mathbb{N}^*$. Comme P annule v, il annule également v_n . On en déduit que $\pi_{v_n} = (X-1)^{n+1}$ divise P.

19.b Pour tout $n \in \mathbb{N}^*$, il existe donc $Q_n \in E$ tel que $P = (X - 1)^{n+1}Q_n$. Si $P \neq 0$, alors $Q_n \neq 0$ puis

$$\forall n \in \mathbb{N}^*, \deg P = \deg(X - 1)^{n+1} + \deg(Q_n) \ge n + 1$$

ce qui est absurde. On en déduit que P = 0. Ainsi $J_v = \{0\}$.

20 20.a Pour tout $P \in E$,

$$s^{2}(P) = P(1 - (1 - X)) = P$$

donc s est une symétrie.

20.b La question précédente montre que X^2-1 annule s donc π_s divise $X^2-1=(X-1)(X+1)$. Mais $s\neq \mathrm{Id}_E$ et $s\neq -\mathrm{Id}_E$ ($s(X)=1-X\neq X$ et $s(X)=1-X\neq -X$). On en déduit que $\pi_s=X^2-1$. Par définition de π_s , $J_s=(X^2-1)E$.

21 Pour tout $k \in [0, n]$,

$$\exp(u_n)(\mathbf{X}^k) = \sum_{m=0}^{+\infty} \frac{u_n^m(\mathbf{X}^k)}{m!} = \sum_{m=0}^k \frac{k!}{(k-m)!m!} \mathbf{X}^{k-m} = \sum_{m=0}^k \binom{k}{m} \mathbf{X}^{k-m} = (\mathbf{X}+1)^k = v_n(\mathbf{X}^k)$$

Comme $(X^k)_{0 \le k \le n}$ est une base de E_n , $\exp(u_n) = v_n$.

22 22.a Soit $k \in [0, n]$. On a vu à la question 14.c que

$$u_n(Q_k) = \sum_{m=0}^{n} w_n^m(u_n(Q_k))(0)Q_m$$

Mais u_n et v_n commutent donc w_n et u_n également de sorte que

$$u_n(Q_k) = \sum_{m=0}^n u_n(w_n^m(Q_k))(0)Q_m$$

On utilise maintenant la question 13.e pour obtenir

$$u_n(Q_k) = \sum_{m=0}^k u_n(Q_{k-m})(0)Q_m$$

En effectuant le changement d'indice $m \mapsto k - m$, on obtient finalement

$$u_n(Q_k) = \sum_{m=0}^k u_n(Q_m)(0)Q_{k-m}$$

22.b Soit $m \in [0, n]$. Si m = 0, $u_n(Q_m)(0) = 0$. Sinon,

$$Q'_n(0) = \lim_{h \to 0} \frac{Q_m(h) - Q_m(0)}{h - 0} = \lim_{h \to 0} \frac{1}{m!} \prod_{j=1}^{m-1} (h - j) = \frac{(-1)^{m-1}}{m}$$

22.c Finalement, $u_n(Q_0) = 0$ et pour $k \in [1, n]$,

$$u_n(Q_k) = \sum_{m=1}^k \frac{(-1)^{m-1}}{m} Q_{k-m} = \sum_{m=1}^k \frac{(-1)^{m+1}}{m} w_n^m(Q_k)$$

Mais la question **13.e** montre que $w_n^m(Q_k) = 0$ pour $m \ge k + 1$ donc

$$u_n(Q_k) = \sum_{m=1}^n \frac{(-1)^{m+1}}{m} w_n^m(Q_k)$$

Comme $(Q_k)_{0 \le k \le n}$ est une base de E_n ,

$$u_n = \sum_{m=1}^{n} \frac{(-1)^{m+1}}{m} w_n^m$$

Mais la question **14.e** montre que $w_n^m = 0$ pour $m \ge n + 1$ donc

$$u_n = \sum_{m=1}^{+\infty} \frac{(-1)^{m+1}}{m} w_n^m$$

Remarque. On retrouve le développement en série entière de $x \mapsto \ln(1+x)$. Formellement, ceci a du sens puisque $v_n = \exp(u_n)$ de sorte que

$$u_n = \ln(v_n) = \ln\left(\mathrm{Id}_{\mathbf{E}_n} + (v_n - \mathrm{Id}_{\mathbf{E}_n})\right) = \sum_{m=1}^{+\infty} \frac{(-1)^{m+1}}{m} (v_n - \mathrm{Id}_{\mathbf{E}_n})^m$$

Bien entendu, ces dernières égalités sont à prendre avec beaucoup de pincettes...