Nom:	Prénom :	TD:	Note:	
Les questions suivantes sont indépendantes.				
Montrer que si une suite de fonctions continues converge uniformément, alors sa limite est continue.				
Montrer que si une série $\sum_n u_n(x)$ de fonctions continues converge uniformément sur $[a,b]$ alors $\int_a^b \sum_{n=0}^\infty u_n(t) dt =$				
$\sum_{n=0}^{\infty} \int_{a}^{b} u_{n}(t) dt \text{ (On pourra utiliser sans preuve un et un seul théorème sur les suites de fonctions)}.$				
Pour tout entier $n > 0$ et tout	$x \text{ r\'eel } x \in [0,1], \text{ on pose}$			
	$u_n(x) = \frac{2^n x}{1 + 2^n n x^2}.$			
	· · · · · · · · · · · · · · · · · · ·			
Etudier la convergence simple	sur $[0,1]$ de cette suite de fonctions.			
Calculer $I_n = \int_0^1 u_n(t) dt$.				
concare $f_n = f_0 = f_0$				
Montrer que la convergence n'est pas uniforme sur $[0,1]$.				
Dannar un argumant indénance	dant du précédent qui montre que la conve	organia n'agt pag	uniformo	
Donner un argument independ	dant du precedent qui montre que la conv	ergence ii est pas	unnorme.	
Soit α un réel. Pour tout entie	er $n > 0$ et tout réel x , on pose $u_n(x) = -\frac{1}{n}$	$\frac{\overline{x}}{\alpha(1+nx^2)}$.		
Lorsqu'elle existe, on note S_{α}	la somme de la série, c'est à dire $S_{\alpha} \colon x \mapsto$	$\sum_{n=1}^{\infty} u_n(x).$		
Pour quelles valeurs de α la se	érie $\sum_{n=0}^{\infty} u_n$ converge t-elle simplement su	ır ℝ?		
On supposera dans toute la suite de l'exercice que cette condition est remplie.				

Montrer que S_{α} est impaire.	
Pour quelles valeurs de α la série $\sum_{n=1}^{\infty} u_n$ converge t-elle normalement sur \mathbb{R} ?	
Calculer $S_1(1)$.	
Quelle est la limite de S_{lpha} en $+\infty$?	
Montrer que S_{α} est de classe \mathcal{C}^1 sur \mathbb{R}^* et préciser sa dérivée S_{α}' (sous forme d'une série de fonctions).	
Montrer que S_{α} est décroissante pour $x \geq 1$.	
Montrer que S_{α} est de classe \mathcal{C}^1 sur \mathbb{R} pour $\alpha > 1$.	
La convergence de S'_{α} est-elle uniforme sur \mathbb{R}^* lorsque $\alpha \in]0,1]$?	
Montrer que S_{α} n'est pas dérivable en 0 pour $\alpha \in]0,1].$	_

