5.13.30

EE25BTECH11004 - Aditya Appana

September 30, 2025

Question

Let **A** be a square matrix all of whose entries are integers. Then which of the following is true?

- A) If $det(\mathbf{A}) \neq \pm 1$, then \mathbf{A}^{-1} exists but all its entries are not necessarily integers
- B) If $det(\mathbf{A}) \neq \pm 1$, then \mathbf{A}^{-1} exists and all its entries are non-integers
- C) If $det(\mathbf{A}) = \pm 1$, then \mathbf{A}^{-1} exists but all its entries are integers
- D) If $det(\mathbf{A}) = \pm 1$, then \mathbf{A}^{-1} need not exist

Solution

We will proceed by checking each option.

A) If $det(\mathbf{A}) \neq \pm 1$, then \mathbf{A}^{-1} exists but all its entries are not necessarily integers

Let us take a square matrix \mathbf{A} having all integer entries. Let rows R_1 and R_2 be equal. By performing row operation $R_1 \to R_1 - R_2$, all elements in R_1 become 0. Therefore, $|\mathbf{A}| = 0$. We know that if $|\mathbf{A}| = 0$, \mathbf{A}^{-1} does not exist. Therefore, this option is wrong.

For example, consider a matrix $\mathbf{A} = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 1 & 4 & 2 \end{pmatrix}$. A has only integer entries.

$$\begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 1 & 4 & 2 \end{pmatrix} \xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 3 \\ 1 & 4 & 2 \end{pmatrix}$$

Since R_1 consists of only 0's, $|\mathbf{A}| = 0$. Hence \mathbf{A} is not invertible.

B) If $det(\mathbf{A}) \neq \pm 1$, then \mathbf{A}^{-1} exists and all its entries are non-integers

For example, consider a matrix $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$. $|\mathbf{A}| = 2$

$$\mathbf{A}^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1/2 \\ 1 & 1 \end{pmatrix}.$$

This is a counterexample to the statement; hence, option \mathbf{B} is wrong.

D) If $det(\mathbf{A}) = \pm 1$, then \mathbf{A}^{-1} need not exist

We know that if $|\mathbf{A}| \neq 0$, \mathbf{A}^{-1} exists. By this logic, this option is wrong.

For example, consider a matrix $\mathbf{A} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$. $|\mathbf{A}| = 1$, and since this is an orthogonal matrix,

$$\mathbf{A}^{-1} = \mathbf{A}^{\mathbf{T}} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

 A^{-1} exists, which is a contradiction to the statement in option **D**. Therefore, the correct answer is C).