Distribución Wishart y Distribución Hotelling

Graciela Boente

Definición 1

- Sea $\Sigma \in \mathbb{R}^{p \times p}$ simétrica y definida positiva y n > p.
- Sea $\mathbf{W} = (w_{ij}) \in \mathbb{R}^{p \times p}$ una matriz aleatoria, simétrica y definida positiva con probabilidad 1.
- Se dice que $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, n) = \mathcal{W}_p(n, \mathbf{\Sigma})$ si la densidad conjunta de los p(p+1)/2 elementos distintos de **W** es

$$f(\mathbf{v}) = c^{-1} |\mathbf{V}|^{\frac{n-p-1}{2}} \exp\left\{-\frac{1}{2} \operatorname{tr}\left(\mathbf{\Sigma}^{-1} \mathbf{V}\right)\right\}$$

$$\star \mathbf{V} = (v_{ij}) \in \mathbb{R}^{p \times p}
\star \mathbf{v} = (v_{11}, v_{12}, \dots, v_{pp})^{\mathrm{T}} = (v_{ij})_{1 \leq i \leq j \leq p}^{\mathrm{T}} \in \mathbb{R}^{p(p+1)/2}
c = 2^{\frac{np}{2}} |\mathbf{\Sigma}|^{\frac{n}{2}} \pi^{\frac{p(p-1)}{4}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n+1-j)\right)$$

Es fácil ver que si p=1 $\mathcal{W}(\sigma^2,1,n)=\sigma^2\chi^2_{n^{-1}}$

• Sean $\mathbf{x}_1, \dots, \mathbf{x}_n$ i.i.d., $\mathbf{x}_i \in \mathbb{R}^p$, $\mathbf{x}_i \sim \mathcal{N}_p(\mathbf{0}, \mathbf{\Sigma})$

$$\mathbf{X} = \left(egin{array}{c} \mathbf{x}_i^{\mathrm{T}} \ dots \ \mathbf{x}_n^{\mathrm{T}} \end{array}
ight)$$
, o sea, $\mathbf{X}^{\mathrm{T}} = (\mathbf{x}_1, \ldots, \mathbf{x}_n)$

Diremos que $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, n) = \mathcal{W}_p(n, \mathbf{\Sigma})$ si

$$\mathbf{W} \sim \mathbf{X}^{\mathrm{T}}\mathbf{X} = \sum_{i=1}^{n} \mathbf{x}_{i}\mathbf{x}_{i}^{\mathrm{T}}$$

• Sean x_1, \ldots, x_n independientes, $x_i \in \mathbb{R}^p$, $x_i \sim N_n(\mu_i, \Sigma)$

Diremos que W tiene Wishart no central con parámetro de no centralidad $\Delta = \sum_{i=1}^{n} \mu_i \mu_i^{\mathrm{T}}$,

$$\mathcal{W}(\mathbf{\Sigma}, p, n)(\mathbf{\Delta}) = \mathcal{W}_p(n, \mathbf{\Sigma})(\Delta), si$$

$$\mathbf{W} \sim \mathbf{X}^{\mathrm{T}}\mathbf{X} = \sum_{i=1}^{n} \mathbf{x}_{i}\mathbf{x}_{i}^{\mathrm{T}}$$

Función característica, Muirhead, pag. 87

Sea $\mathbf{W} \sim \mathcal{W}_p(n, \mathbf{\Sigma}) = \mathcal{W}(\mathbf{\Sigma}, p, n)$, entonces su función caraterística está dada por

$$\varphi_{\mathbf{W}}(\mathbf{\Theta}) = \mathbb{E}\left(\exp\left\{i\sum_{1\leq j\leq k\leq p}\Theta_{jk}W_{jk}\right\}\right) = \det\left(\mathbf{I}_p - i\mathbf{\Gamma}\mathbf{\Sigma}\right)^{-\frac{n}{2}}$$

donde $\mathbf{\Theta} \in \mathbb{R}^{p imes p}$ es simétrica $(\Theta_{jk} = \Theta_{kj})$ y

$$\mathbf{\Gamma} = (\gamma_{jk})_{1 \le j, k \le p} \qquad \gamma_{jk} = \begin{cases} \Theta_{jk} & \text{si } j \ne k \\ 2\Theta_{jk} & \text{si } j = k \end{cases}$$

Observaciones

Recordemos que $\mathbf{x}_1,\ldots,\mathbf{x}_n$ independientes, $\mathbf{x}_i\in\mathbb{R}^p$ con $\mathbb{E}(\mathbf{x}_i)=\mu_i$

y
$$\mathrm{VAR}(\mathbf{x}_i) = \mathbf{\Sigma}$$
. Sea $\mathbf{X} = \begin{pmatrix} \mathbf{x}_i^\mathrm{T} \\ \vdots \\ \mathbf{x}_n^\mathrm{T} \end{pmatrix}$, o sea, $\mathbf{X}^\mathrm{T} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$

$$\mathbb{E}\left(\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X}\right)=\mathsf{tr}(\mathbf{A})\mathbf{\Sigma}+\mathbb{E}\left(\mathbf{X}^{\mathrm{T}}\right)\mathbf{A}\mathbb{E}\left(\mathbf{X}\right)$$

• Sean $\mathbf{x}_1, \dots, \mathbf{x}_n$ independientes, $\mathbf{x}_i \in \mathbb{R}^p$, $\mathbf{x}_i \sim N_p(\mu_i, \mathbf{\Sigma})$ y $\mathbf{W} = \mathbf{X}^{\mathrm{T}}\mathbf{X} = \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^{\mathrm{T}}$. O sea, $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, n)(\mathbf{\Delta})$ entonces

$$\mathbb{E}(\mathsf{W}) = n\mathbf{\Sigma} + \mathsf{M}^{\mathrm{T}}\mathsf{M}$$

con $\mathbf{M} = \mathbb{E}(\mathbf{X})$.

• En particular, $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, n)$

$$\mathbb{E}(\mathsf{W}) = n \mathbf{\Sigma}_{\text{ADAGES ABS}} + \mathbf{E}_{\text{ADAGES}} + \mathbf{E}_{\text{ADA$$

- Si n < p entonces, $rg(\mathbf{W}) = rg(\mathbf{X}) \le min(n, p) = n \Longrightarrow \mathbf{W}$ es singular
- Qué pasa si $n \ge p$?
- Sea $\mathbf{Z} = (z_{ij})_{1 \le i,j \le m}$ con $z_{ij} \sim N(0,1)$ independientes, entonces $\mathbb{P}(\det(\mathbf{Z}) = 0) = 0$.
- Por lo tanto,
 - Si $n \ge p$, z_1, \ldots, z_n i.i.d., $z_i \sim N_p(\mathbf{0}, \mathbf{I}_p)$ y $\mathbf{W} = \sum_{i=1}^n \mathbf{z}_i \mathbf{z}_i^{\mathrm{T}}$ entonces $\mathbb{P}(\mathbf{W} \text{ es no singular})=1$.
 - Si $n \ge p$ y $\Sigma > 0$, $\mathbf{x}_1, \dots, \mathbf{x}_n$ i.i.d., $\mathbf{x}_i \sim N_p(\mathbf{0}, \Sigma)$ y $\mathbf{W} = \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^{\mathrm{T}}$ entonces $\mathbb{P}(\mathbf{W} \text{ es no singular}) = 1$.

- Si $n \ge p$ y $\Sigma > 0$ y W $\sim \mathcal{W}(\Sigma, p, n)$ entonces $\mathbb{P}(\mathbf{W} \text{ es no singular}) = 1$.
- Sean $\mathbf{x}_1, \dots, \mathbf{x}_n$ i.i.d., $\mathbf{x}_i \in \mathbb{R}^p$, $\mathbf{x}_i \sim N_p(\mathbf{0}, \mathbf{\Sigma})$.

Si $n \ge p$ y $\Sigma > 0$, se puede ver que $\mathbf{W} = \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\mathrm{T}}$ tiene densidad y la densidad de \mathbf{W} es la dada en la definición 1 (Kshirsagar, A.M. (1972) Multivariate Analysis, pág. 51-58, 77-78).

• O sea, ambas definiciones son equivalentes si $n \ge p$ y $\Sigma > 0$.

Teorema (Okamoto, 1973). Sean $\mathbf{X}^{\mathrm{T}} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^{p \times n}$ y $\mathbf{A} \in \mathbb{R}^{n \times n}$ simétrica de rango r.

Si los elementos de X tienen densidad conjunta, entonces

$$\mathbb{P}\left(\operatorname{\mathsf{rg}}\left(\mathbf{X}^{ ext{T}}\mathbf{A}\mathbf{X}
ight) = \min(p,r)
ight) = 1$$

 $\mathbb{P}\left(\mathsf{los} \; \mathsf{autovalores} \; \mathsf{no} \; \mathsf{nulos} \; \mathsf{de} \; \mathbf{X}^{\mathrm{T}} \mathbf{AX} \; \mathsf{sean} \; \mathsf{distintos}
ight) = 1 \, .$

Corolario. Sea $n \ge p$, $\Sigma > 0$ y $\mathbf{W} \sim \mathcal{W}(\Sigma, p, n)$, entonces

$$\mathbb{P}\left(\mathsf{rg}\left(\mathbf{W}\right)=p\right)=1$$

o sea, $\mathbb{P}(\mathbf{W} > 0) = 1$ y los autovalores de \mathbf{W} son distintos con probabilidad 1.

Sea $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, n)$

a) Sea $C \in \mathbb{R}^{q \times p}$, $rg(C) = q \leq p \Longrightarrow CWC^{T} \sim \mathcal{W}(C\Sigma C^{T}, q, n)$.

En particular, si $\Sigma = CC^T$ con C triangular inferior \Longrightarrow $\mathsf{C}^{-1}\mathsf{W}(\mathsf{C}^{-1})^{\mathrm{T}} \sim \mathcal{W}(\mathsf{I}_{n},p,n)$

- b) Si $\mathbf{u} \neq 0$, $\mathbf{u} \in \mathbb{R}^p \Longrightarrow \mathbf{u}^{\mathrm{T}} \mathbf{W} \mathbf{u} / (\mathbf{u}^{\mathrm{T}} \mathbf{\Sigma} \mathbf{u}) \sim \chi_{\mathbf{n}}^2$.
- c) En particular,

$$\frac{w_{jj}}{\sigma_{ii}} \sim \chi_n^2 \ .$$

d) Si $\mathbf{y} \neq 0$, $\mathbf{y} \in \mathbb{R}^p$, es un vector aleatorio independiente de **W** tal que $\mathbb{P}(\mathbf{y} \neq \mathbf{0}) = 1 \Longrightarrow$

$$\frac{\mathbf{y}^{\mathrm{T}}\mathbf{W}\mathbf{y}}{\mathbf{y}^{\mathrm{T}}\mathbf{\Sigma}\mathbf{y}} \sim \chi_{n}^{2}$$

e) Sea
$$\mathbf{W} = \begin{pmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} \\ \mathbf{W}_{21} & \mathbf{W}_{22} \end{pmatrix} \sim \mathcal{W}(\mathbf{\Sigma}, p, n)$$
, con
$$\mathbf{\Sigma} = \begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{pmatrix}, \ \mathbf{W}_{11} \in \mathbb{R}^{k \times k} \ \text{y} \ \mathbf{\Sigma}_{11} \in \mathbb{R}^{k \times k}, \ \text{entonces}$$

$$\star \ \mathbf{W}_{11} \sim \mathcal{W}(\mathbf{\Sigma}_{11}, k, n)$$

$$\star \ \mathbf{W}_{22} \sim \mathcal{W}(\mathbf{\Sigma}_{22}, p - k, n)$$

*
$$\mathbf{VV}_{22} \sim VV(\mathbf{Z}_{22}, p - \mathbf{K}, H)$$

$$\star$$
 Si $\Sigma_{12} = 0 \Longrightarrow W_{11}$ y W_{22} son independientes

g) Si $\mathbf{W}_1, \dots, \mathbf{W}_k$ son independientes $\mathbf{W}_i \sim \mathcal{W}(\mathbf{\Sigma}, p, n_i)$ entonces

$$\sum_{j=1}^k \mathbf{W}_j \sim \mathcal{W}(\mathbf{\Sigma}, p, \sum_{j=1}^k n_j)$$

Teorema de descomposición de Bartlett

Sea $\mathbf{D} \sim \mathcal{W}(\mathbf{I}_p, p, n)$ con $n \geq p$ y $\mathbf{D} = \mathbf{B}\mathbf{B}^{\mathrm{T}}$ con \mathbf{B} triangular inferior entonces

- Los elementos b_{ij} $(1 \le j \le i \le p)$ son todos independientes,
- $b_{ii}^2 \sim \chi_{n-i+1}^2$ y
- $b_{ij} \sim N(0,1), \ 1 \leq j < i \leq p$
- o sea, la densidad de los elementos no nulos de B es

$$\prod_{i=1}^{p} \prod_{i=1}^{i-1} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}b_{ij}^{2}} \prod_{k=1}^{p} f_{\chi_{n-k+1}^{2}}(b_{kk}^{2})$$

Corolario

Sea $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, n)$ entonces

$$\frac{\det(\mathbf{W})}{\det(\mathbf{\Sigma})} \sim \prod_{i=1}^p v_i$$

donde las p variables aleatorias, v_i , $1 \le i \le p$, son independientes con distribución

$$v_i \sim \chi^2_{n-i+1}$$

Sean

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ simétrica.
- $\Sigma > 0$, $\mathbf{x}_1, \dots \mathbf{x}_n$ independientes $\mathbf{x}_i \sim N_p(\mathbf{0}, \Sigma)$, $\mathbf{X}^{\mathrm{T}} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$, es decir, $\mathbf{X} \sim N(\mathbf{0}, \mathbf{I}_n \otimes \Sigma)$.

a) Si $\mathbf{A} \in \mathbb{R}^{n \times n}$ es idempotente, con $\operatorname{rg}(\mathbf{A}) = r$ entonces $\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X} \sim \mathcal{W}(\mathbf{\Sigma}, p, r)$.

b) Sea Y = AX y $Z = X^{T}C$, si $AC^{T} = 0$ entonces

Y y Z son independientes.

a) Sea $\mathbf{y} \sim N_p(\mathbf{0}, \sigma^2 \mathbf{I}_p)$ y $\mathbf{P} \in \mathbb{R}^{p \times p}$ es simétrica, entonces

$$\frac{\mathbf{y}^{\mathrm{T}}\mathbf{P}\mathbf{y}}{\sigma^{2}}\sim\chi_{r}^{2}\Longleftrightarrow\mathbf{P}^{2}=\mathbf{P}$$
 \mathbf{y} $\mathrm{rg}(\mathbf{P})=r$

b) Sea $\mathbf{y} \sim N_{\rho}(\mathbf{0}, \sigma^2 \mathbf{I}_{\rho})$ y $\mathbf{P}_{\ell} \in \mathbb{R}^{\rho \times \rho}$ simétricas, $\ell = 1, 2$

Definamos

$$U_\ell = rac{\mathbf{y}^{ ext{T}}\mathbf{P}_\ell\mathbf{y}}{\sigma^2}\,, \quad \ell = 1, 2\,.$$

Supongamos que $U_{\ell} \sim \chi_{r_{\ell}}^2$ entonces

 U_1 y U_2 son independientes $\iff \mathbf{P}_1\mathbf{P}_2 = \mathbf{0}$

Teorema

Sea
$$\Sigma > 0$$
, $\mathbf{x}_1, \dots \mathbf{x}_n$ independientes $\mathbf{x}_i \sim N_p(\mathbf{0}, \Sigma)$, $\mathbf{X}^{\mathrm{T}} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$.

Sean

$$\star \ \mathbf{u} \neq \mathbf{0}, \ \mathbf{u} \in \mathbb{R}^p, \ \mathbf{y} = \mathbf{X}\mathbf{u} = \left(\begin{array}{c} \mathbf{x}_1^{\mathrm{T}}\mathbf{u} \\ \vdots \\ \mathbf{x}_n^{\mathrm{T}}\mathbf{u} \end{array}\right)$$

$$\star \ \sigma_{\mathbf{u}}^2 = \mathbf{u}^{\mathrm{T}} \mathbf{\Sigma} \mathbf{u}$$

$$\star$$
 $\mathbf{A}_1, \mathbf{A}_2 \in \mathbb{R}^{n imes n}$ matrices simétricas $\operatorname{rg}(\mathbf{A}_1) = r$, $\operatorname{rg}(\mathbf{A}_2) = s$

$$\star U_{\ell} = \frac{\mathbf{y}^{\mathrm{T}} \mathbf{A}_{\ell} \mathbf{y}}{\sigma_{\mathbf{u}}^{2}}, \ \ell = 1, 2,$$

$$\star$$
 b \neq **0**, **b** $\in \mathbb{R}^n$

Entonces,

 \iff

 \iff

b) $\mathbf{X}^{\mathrm{T}}\mathbf{A}_{1}\mathbf{X} \sim \mathcal{W}(\mathbf{\Sigma}, p, r)$ y $\mathbf{X}^{\mathrm{T}}\mathbf{A}_{2}\mathbf{X} \sim \mathcal{W}(\mathbf{\Sigma}, p, s)$ independientes entre sí

 U_1 y U_2 son independientes tales que $U_1 \sim \chi_r^2$, $U_2 \sim \chi_s^2$, para cualquier $\mathbf{u} \neq \mathbf{0}$.

c) $\boldsymbol{X}^{\mathrm{T}}\boldsymbol{b}$ y $\boldsymbol{X}^{\mathrm{T}}\boldsymbol{A}_{1}\boldsymbol{X}$ son independientes

para cualquier $\mathbf{u} \neq \mathbf{0}$, U_1 e $\mathbf{y}^{\mathrm{T}}\mathbf{b}$ son independientes y tales que $\mathbf{y}^{\mathrm{T}}\mathbf{b} \sim \mathcal{N}(0, \|\mathbf{b}\|^2 \sigma_{\mathbf{u}}^2)$, $U_1 \sim \chi_r^2$.

Corolarios

Sea $\Sigma > 0$, $\mathbf{x}_1, \dots \mathbf{x}_n$ independientes $\mathbf{x}_i \sim N_p(\mathbf{0}, \Sigma)$, $\mathbf{X}^{\mathrm{T}} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$.

Corolario 1 Sea $\mathbf{A} \in \mathbb{R}^{n \times n}$ matriz simétrica

$$\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X} \sim \mathcal{W}(\mathbf{\Sigma}, p, r) \Longleftrightarrow \mathbf{A}^{2} = \mathbf{A}$$
 y $rg(\mathbf{A}) = r$

Corolario 2 Sea $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ matrices simétricas, $\mathbf{b} \neq \mathbf{0}$, $\mathbf{b} \in \mathbb{R}^n$

- a) $\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X} \sim \mathcal{W}(\mathbf{\Sigma}, p, r)$ y $\mathbf{X}^{\mathrm{T}}\mathbf{B}\mathbf{X} \sim \mathcal{W}(\mathbf{\Sigma}, p, s)$ son independientes entre sí $\iff \mathbf{A}\mathbf{B} = 0$
- b) $\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X} \sim \mathcal{W}(\mathbf{\Sigma}, p, r)$ y $\mathbf{X}^{\mathrm{T}}\mathbf{b} \sim \mathcal{N}_{p}(\mathbf{0}, \|\mathbf{b}\|^{2}\mathbf{\Sigma})$ independientes entre sí $\iff \mathbf{A}\mathbf{b} = 0$, $\mathbf{A}^{2} = \mathbf{A}$ y rg(\mathbf{A}) = r

Definición

Hotelling central

Sean $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $\mathbf{W} \sim \mathcal{W}(\boldsymbol{\Sigma}, p, m)$ independientes entre sí, al estadístico

$$T_{p,m}^2 = m \left(\mathbf{x} - \boldsymbol{\mu} \right)^{\mathrm{T}} \mathbf{W}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \sim \mathcal{H}(p, m),$$

se lo llama estadístico de Hotelling central.

Hotelling no central

Sean $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $\mathbf{W} \sim \mathcal{W}(\boldsymbol{\Sigma}, p, m)$ independientes entre sí, al estadístico

$$T_{p,m}^2 = m \mathbf{x}^{\mathrm{T}} \mathbf{W}^{-1} \mathbf{x} \sim \mathcal{H}(p,m)(\lambda^2),$$

se lo llama estadístico de Hotelling no central.

Lema Previo

Consideremos el modelo lineal

$$\mathbf{y} = \mathbf{K} \boldsymbol{\beta} + \mathbf{e} \qquad \mathbf{K} \in \mathbb{R}^{n \times p}, \quad \text{rango}(\mathbf{K}) = p$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\beta} \in \mathbb{R}^p, \qquad \mathbf{e} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$$

Sea
$$Q = \|\mathbf{y} - \mathbf{K}\widehat{\boldsymbol{\beta}}\|^2 = \min_{\mathbf{b}} \|\mathbf{y} - \mathbf{K}\mathbf{b}\|^2$$
. Entonces,

a) $Q = 1/w^{11}$ donde

$$\mathbf{W} = \begin{pmatrix} \mathbf{y}^{\mathrm{T}} \\ \mathbf{K}^{\mathrm{T}} \end{pmatrix} (\mathbf{y} \quad \mathbf{K}) = \begin{pmatrix} \mathbf{y}^{\mathrm{T}} \mathbf{y} & \mathbf{y}^{\mathrm{T}} \mathbf{K} \\ \mathbf{K}^{\mathrm{T}} \mathbf{y} & \mathbf{K}^{\mathrm{T}} \mathbf{K} \end{pmatrix} \qquad \mathbf{W}^{-1} = (w^{ij})$$

b)
$$Q/\sigma^2 \sim \chi^2_{n-p}$$

Sea $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, m)$ con $m \geq p$ y $\mathbf{\Sigma} > 0$.

Definamos $\mathbf{\Sigma}^{-1} = (\sigma^{ij})_{1 \leq i,j \leq p}$ y $\mathbf{W}^{-1} = (w^{ij})_{1 \leq i,j \leq p}$, entonces

a) $\frac{\sigma^{11}}{\dots^{11}} \sim \chi^2_{m-p+1}$

y es independiente de todos los elementos w_{ii} de W con 2 < i, i < p.

b) Dado $\mathbf{b} \neq \mathbf{0} \mathbf{b} \in \mathbb{R}^p$.

$$rac{\mathbf{b}^{ ext{T}}\mathbf{\Sigma}^{-1}\mathbf{b}}{\mathbf{b}^{ ext{T}}\mathbf{W}^{-1}\mathbf{b}} \sim \chi_{m-p+1}^{2}$$

Teorema 1

Sea

- $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, m)$ con $m \geq p$, $\mathbf{\Sigma} > 0$
- $\mathbf{y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $\mathbf{y} \in \mathbb{R}^p$,
- y independiente de W.

Entonces,

$$rac{m-p+1}{p} \ \mathbf{y}^{ ext{T}} \mathbf{W}^{-1} \mathbf{y} \sim \mathcal{F}_{p,m-p+1}(\lambda^2) \,.$$

donde

$$\lambda^2 = \boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}$$
.

Corolario

Sean

- $\mathbf{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$,
- $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, m)$

independientes entre sí

Hotelling

a) El estadístico $T_{p,m}^2 = m (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{W}^{-1} (\mathbf{x} - \boldsymbol{\mu})$, tiene distribución $\mathcal{H}(p,m)$ tal que

$$\frac{m-p+1}{p}\frac{T_{p,m}^2}{m} \sim \mathcal{F}_{p,m-p+1}$$

b) El estadístico $T_{p,m}^2(\lambda^2) = m \mathbf{x}^{\mathrm{T}} \mathbf{W}^{-1} \mathbf{x}$, tiene distribución $\mathcal{H}(p,m)(\lambda^2)$ tal que

$$rac{m-p+1}{p}rac{T_{p,m}^2}{m}\sim \mathcal{F}_{p,m-p+1}(\lambda^2)$$
 con $\lambda^2=oldsymbol{\mu}^{\mathrm{T}}oldsymbol{\Sigma}^{-1}oldsymbol{\mu}$