L'information : B – L'Image

EFREI L1

2011 - 2012

David Aubert

1. La Lumière

a) Nature de la lumière

- ⇒ Lumière : rayonnement électromagnétique visible par l'œil
- **⇒ Dualité Onde Corpuscule**
 - ⇒ Mis en évidence par Einstein (1905)
 - ⇒ Généralisé aux particules matérielles par De Broglie (1924)

⇒ Onde:

⇒ Électromagnétique (champ **E** et champ **B**)

- ⇒ Transverse
- ⇒ Vectorielle
- ⇒ Célérité v (dans le vide : $v = c \approx 3 \cdot 10^8 \text{ m.s}^{-1}$ dans un milieu donné : $v \le c$)
- \Rightarrow Onde monochromatique : 1 seule fréquence f
 - \Rightarrow Double périodicité : temporelle : ω , T, f

spatiale:
$$k$$
, λ , σ

$$\lambda = c T$$
 $c = \omega/k$

$$\Rightarrow a(M,t) = a_0 \cos(\omega t - \mathbf{k} \mathbf{r}) = a_0 e^{i (\omega t - \mathbf{k} \mathbf{r})}$$

 \Rightarrow Onde sphérique : $a(M,t) = a_0/r e^{i(\omega t - k r)}$

⇒ Corpuscule:

- ⇒ Photons : « grain indivisibles » de lumière
- \Rightarrow Masse : m = 0
- \Rightarrow Vitesse : v
- \Rightarrow Énergie : E = h f = h v
 - h : constante de Planck $h = 6,62 \cdot 10^{-34} \text{ J.s}$

b) Domaines Spectraux

- ⇒ **Analyse de Fourier :** toute onde électromagnétique peut être décomposée comme la superposition d'ondes monochromatiques
- \Rightarrow Délimitation des rayonnements EM en fonction de leur fréquence f, longueur d'onde λ , énergie E

$$E = h f = h c / \lambda$$

⇒ Lumière visible :

 $400 \text{ nm} \leq \lambda \leq 800 \text{ nm}$

 0.4×10^{-6}

⇒ 1 fréquence visible → 1 couleur de l'arc en ciel

c) Énergies lumineuses

- \Rightarrow **Puissance** \mathscr{P} : puissance totale émise par une source
 - ⇒ dans toutes les directions
 - \Rightarrow dans toutes les longueurs d'onde λ
 - ⇒ Unité: W
- \Rightarrow **Densité de puissance** $P(\lambda)$: puissance émise pour λ donnée
 - ⇒ Unité : W.m⁻¹

$$\mathcal{S} = \int_0^{+\infty} P(\lambda) d\lambda$$

⇒Tous les rayonnements ne sont pas perceptibles par l'œil

⇒ Sensibilité de l'œil :

S(λ) : courbe de sensibilité de l'œil normalisée

⇒ Flux lumineux : puissance lumineuse émise, rapportée à la sensibilité de l'œil

$$\Rightarrow F = K_M \int_0^{+\infty} P(\lambda) S(\lambda) d\lambda$$

- ⇒ Unité : Lumen (lm)
- $\Rightarrow K_{\rm M} = 683 \text{ lm/W}$
- $\Rightarrow \text{ Efficacit\'e lumineuse}: \quad k = \frac{F}{\mathscr{P}}$
 - $\Rightarrow 0 \le k \le 683 \text{ lm/W}$
 - \Rightarrow Soleil : k = 93 lm/W

- ⇒ Éclairement : flux lumineux par unité de surface
 - \Rightarrow Unité : lux (lx) 1lx = 1 lm.m⁻²

$$\Rightarrow E = \frac{F}{S}$$

- ⇒ Intensité lumineuse : flux lumineux émis dans une direction
 - \Rightarrow Unité : candela (cd) 1 cd = 1 lm.sr⁻¹

2. Propagation de la lumière

(aspect ondulatoire)

a) Principe de Fermat

Pour aller d'un point A à un point B, le trajet effectivement suivi par la lumière est celui pour lequel le temps de parcours est extremum (minimum ou maximum)

- ⇒ Le trajet pour aller de A à B est le même que pour aller de B à A (principe de retour inverse)
- ⇒ Dans un milieu homogène, la lumière va tout droit (propagation rectiligne)

b) Propagation dans un milieu

 $\Rightarrow \text{ Indice optique : } n = \frac{c}{v}$ $(n \ge 1)$

Air	1	Verre	1,52 (1,5 à 2)
Eau	1,33	diamant	2,42

- ⇒ Milieu transparent : pas d'absorption
- \Rightarrow Milieu isotrope : n indépendant de la direction de propagation (milieu anisotrope : cristaux liquides)

- ⇒Milieu homogène : n uniforme
- ⇒Milieu inhomogène : propagation non rectiligne

∜Mirage

\$\footnote{\text{fibre optique à gradient}}\$

c) Lois de Snell - Descartes

⇒ **dioptre :** surface séparant 2 milieux homogènes isotropes d'indices différents

⇒ Dispersion : réfraction vers un milieu dispersif

$$\Rightarrow n_2(\lambda) \Rightarrow i_2(\lambda)$$

3. Emission de la lumière

(aspect corpusculaire)

a) Luminescence

- ⇒ Emission d'un photon lors d'une transition électronique
 - ⇒ Energie quantifiée au niveau atomique

⇒ Molécule :

- ⇒ Transitions électroniques atomiques
- ⇒ Vibrations / Rotations moléculaires
- ⇒ Spectre d'émission sous formes de raies caractéristique de la molécule

⇒ Principe de la spectroscopie

⇒ Electroluminescence:

- ⇒ Emission d'un photon lors de la recombinaison d'une paire électrontrou dans un semi-conducteur à gap direct
- ⇒ Diodes Électroluminescentes

Zone du spectre électromagnétique	Longueur d'onde k (nm)	Tension directe V _Y (V) ^{TSI}	Semi-conductiours utilisés
PANTON	0.00 THE	WYZA	and the department of ACOAC executive the policies (CAAC) phosphare executive policies surpressed (ACOAC)
Ringe	ma-k-ma	\$2.000	phosphice elementer pellion indiam (Albehi P) ensimbles de gellion attendam (Albehi) ensimbles phosphice de gellion (GeAelf) phosphice de gellion (GeI)
Grange	550×4×610	2 < V, < 2,5	phosphore shortners gallion bullon (Atlanti) ensignes phosphore de gallion (GafaP) phosphore de gallion (GaP)
Jaure	570 < A < 500	1.5 × V, × 3	phosphure sluminium gallium indium (AlGeln P) enémius phosphure de gallium (GafeP) phosphure de gallium (GeP)
West	500 × à = 170	23 (4) - 3	ntrure de gallium Indiam (InGeN) phosphure de gallium (GeP) phosphure stambium gallium Indiam (AlGeleP)
Since	450 × 3 × 300	23.4%,44	ntrure de gallium Indiam (InGeN) sélénture de rênt (ZnDe) priture de séletion (SIC)
Visiet	380 < 3 < 410	2×W+5	ntrure de gallium indium ((eGeN) ntrure gallium (GeN)
Utraviolet	A = 380	3 e Vi e S	ntrure de gallum indium (InGeN) ntrure gallum aluminium (AKSeN) ntrure gallum (GeN) ntrure aluminium gallum indium (AKGelnN) ntrure aluminium (AN)
Diane	9	3 < W < 5	Idem gas le bleu pu l'ultraytolet

⇒ Fluorescence:

- ⇒ Emission de lumière à une certaine longueur d'onde après absorption d'une lumière à une autre longueur d'onde
 - ⇒ Fluorescence : réémission quasi-instantanée
 - ⇒ Phosphorescence : réémission sur une certaine durée
- \Rightarrow $E_{r\acute{e}emise} < E_{absorb\acute{e}e} \implies \lambda_{r\acute{e}emise} > \lambda_{absorb\acute{e}e}$

Tubes fluorescents

Lampes fluocompactes

\$LEDs blanches

- ⇒ **Emission stimulée :** sous l'action d'un photon incident, un atome excité se désexcite en émettant un 2nd photon possédant les mêmes caractéristiques que le 1^{er}
 - ⇒ Lumière <u>unidirectionnelle</u>, <u>intense</u>, <u>monochromatique</u>

b) Incandescence

⇒ Tout corps porté à une certaine température T émet un rayonnement électromagnétique

electromagnetique

⇒ Loi du corps noir : $M(\lambda) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{hc/\lambda k_B T} - 1}$

 $M(\lambda)$: émittance :densité de puissance rayonnée par unité de surface (W.m⁻¹. m⁻²)

distributions des fréquences selon la température

⇒ Loi de Wien : donne la longueur d'onde d'émission principale

$$\lambda_{\text{max}}T = \text{cste} = 2,898.10^{-3} \text{ K.m}$$

⇒ **Loi de Stefan-Boltzman** : donne la puissance émise par unité de surface dans toutes les longueurs d'ondes

$$M_0(T) = \sigma T^4 = \int_0^{+\infty} M(\lambda) d\lambda$$

4. Les Couleurs

a) L'Œil

⇒ Schéma simplifié de l'œil :

⇒ Rétine :

- ⇒ constituée de cellules photoréceptrices
- ⇒ Envoie l'information au cerveau via le nerf optique
- ⇒ Bâtonnets (~120 millions)
 Vision nocturne en noir et blanc
- ⇒ Cônes (~5 millions)Vision diurne en couleurs

⇒ Efficacité lumineuse de l'œil :

⇒ Vision de la couleur :

⇒ Dû aux 3 types de cônes : S, M, L

Sensibilité spectrale des 3 types de cônes et des bâtonnets.

1 couleur

réponse combinée des cônes S, M et L

b) Modélisations de la couleur

- ⇒ Système RVB (RGB):
 - ⇒ 3 couleurs primaires correspondant aux 3 cônes S, M, L
 - ♥ Rouge
- ♥ Vert
- ♥ Bleu
- ⇒ Couleur définie par sa décomposition RGB

- **⇒** Système TSL:
 - ⇒ Couleur définie par :
 - ♥ Teinte
- ♦ Saturation
- ♥ Luminance

Quelques teintes

Cercle chromatique

Saturation d'une teinte jaune

Luminance décroissante

Arbre des couleurs de Munsell

b) Synthèse de la couleur

Toute couleur peut être obtenue par la combinaison de 3 couleurs de base

- **⇒** Synthèse additive :
 - ⇒ 3 couleurs primaires : Rouge Vert Bleu
 - ⇒ Nouvelle couleur obtenue par superposition des couleurs
 - ⇒ Adapté aux sources lumineuses ⇒ Ecrans, vidéoprojecteurs, ...

- ⇒ 3 couleurs secondaires :
 - \Rightarrow Magenta (R + B)
 - \Leftrightarrow Cyan (B + V)
 - $\$ Jaune (V + R)

⇒ Synthèse soustractive :

- ⇒ 3 couleurs secondaires : Cyan Magenta Jaune (CMJ ou CMY)
- ⇒ Nouvelle couleur obtenue par absorption des couleurs
- ⇒ Œil : perçoit la couleur complémentaire
- ⇒ Adapté aux récepteurs lumineux ⇒ Imprimerie, Peinture, Filtres, ...
- ⇒ Trichromie (CMY) ou quadrichromie (CMYK)

- ⇒ 3 couleurs primaires :
 - \Rightarrow Rouge (M + J)
 - \forall Vert(C + J)
 - \Rightarrow Bleu (M + C)

⇒ Diagramme CIE:

⇒ Représentation des couleurs en 2D :

Le spectre visible dans le diagramme de chromaticité de la CIE (1931)

$$\begin{cases} x = \frac{R}{R + V + B} \\ y = \frac{V}{R + V + B} \\ z = 1 - x - y \end{cases}$$

5. Image Numérique

a) Codage de l'image

- ⇒ **numérisation:** image décomposée en petites surfaces uniformes
- ⇒ **Pixels** (Picture Element) : brique de base de l'image numérique
 - ⇒ Carré ou rectangulaire
- ⇒ **Définition** : nombre de pixels composant l'image
 - \Rightarrow (souvent : nbh x nbv)
- ⇒ **Résolution** : nombre de pixels par unité de longueur
 - ♦ Ppp ou ppi : point par pouce
 ♦ dpi : dot per inch

⇒ Définitions normalisées :

b) Codage de la couleur

- ⇒ Pixel caractérisé par 1 couleur :
 - ⇒ Image noir et blanc
 - ⇒ 256 niveaux de gris
 - ⇒ Palette de couleur (en général 256)
 - ⇒ Couleurs vraies :
 - ⇒ Rouge: 8 bits (256 niveaux)
 - ⇒ Vert : 8 bits (256 niveaux)
 - ⇒ Bleu: 8 bits (256 niveaux)
 - \Rightarrow 2²⁴ \approx 16,7 millions de couleurs
 - ⇒ Codage RGB ou TSL
 - ⇒ En général 32 bits / px
 - ⇒ Format de l'image :
 - ⇒ codage +Compression
 - ⇒ BMP, JPEG, GIF, PNG,

1 bit / px

8 bits / px

8 bits / px

24 bits / px

C) Vidéo Numérique

- \Rightarrow Image + Temps
 - ⇒ Œil : distingue 20 images par secondes
 - ⇒ Succession rapide d'images ⇒ image animée
 - ⇒ Flux vidéo : nombre d'images par secondes
 - ⇒ Fps (Frame per second) ou tps (trames par seconde)
 - ⇒ 25 Hz ou 50 Hz