Homework 4

Name: Yiqiao Jin UID: 305107551

1

The string aaab can be accepted by the following ways:

$$q_{start} \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{\varepsilon} q_1 \xrightarrow{ab} q_{accept}$$
 $q_{start} \xrightarrow{a} q_1 \xrightarrow{aa} q_2 \xrightarrow{b} q_{accept}$

2

The language represented by G_2 is any string formed by any number of 0's, as well as exactly two #'s at any positions of the string.

3

Let the Finite State Language A be accepted by the **DFA** $D=(Q,\Sigma,\delta,q_0,F)$.

Here, Q is the set of States; Σ is the Alphabet; δ is the Transition Function; $q_0 \in Q$ is the start state; and $F \subseteq Q$ is the set of accept states.

We can design a new Finite Automaton $M=(Q,\Sigma,\delta',p_0,F')$ such that

- $F'=\{q_0\}$. This means the original start state q_0 in D is the new accept state in M
- δ' is the new transition function. For any symbol w, if $\delta(S_1, w) = S_2$ in D, then $\delta'(S_2, w) = S_1$ in M. On the state diagram, M is derived by reversing all the transition arrows of D.
- p_0 is the new start state of M with ϵ transition into all the accept state in D

For any string $w\in A$, there exists a path in $D:q_0\to S_1\to S_2\to ...\to S_n\to S_a$, which accepts $w=w^1w^2...w^n$

By our definition, for any $w^R\in A^R$ there must exist a path $p_0\to S_a\to S_n\to ...\to S_2\to S_1\to q_0$ which accepts $w^R=w^n...w^2w^1$.

If a language can be accepted by a finite automaton, then the language is regular. Thus, w^R is accepted by M and is also regular.

A Context-Free Grammar G_4 that generates this language L_4 is:

$$\mathbf{S} o \mathbf{A} | \mathbf{C} \mathbf{D}$$

 $\mathbf{A} \rightarrow a\mathbf{A}a|b\mathbf{A}b|\#\mathbf{B}\#$

 $\mathbf{B} o \mathbf{B}\mathbf{E}|arepsilon$

 $\mathbf{C} \to \mathbf{ECEE}|\#$

 $\mathbf{D} o \mathbf{D} a |\mathbf{D} b| \#$

 ${f E}
ightarrow a | b$

There are two kind of input strings we can have: $z = x^R$, or |y| = 2|x|

The first case $z=x^R$ is satisfied by \mathbf{A} , which generates z and x^R by creating two identical symbols at the beginning and the end of the new variable \mathbf{A} each time. After generating x and z, \mathbf{A} can also generate the string $y \in \{a,b\}^*$ enclosed in a pair of #, which has a length in $[0,\infty)$. This is done by \mathbf{B}

The second case |y| = 2|x| is satisfied by letting ${\bf C}$ generates one variable ${\bf E}$ at its beginning and two variables ${\bf E}$ at its ending. ${\bf C}$ can also generate the terminal #, which is done when both x and y are fully generated. Then, ${\bf D}$ generates the rest of z.

Note that the 4th rule is the same as $\mathbf{D} \to \mathbf{D}\mathbf{E} | \#$

5

We prove that there exists some string $s \in L_5$ that cannot satisfy the pumping lemma

Let s be a string in the form $s=xy=0^n1^{2n}0^n$, where $x=0^n1^n$ and $y=1^n0^n$. s satisfies that |x|=|y| and #(0,x)=#(0,y)=n. So $s\in L_5$

Suppose L_5 were an FSL. We can apply the pumping lemma. Let p be the pumping length in the pumping lemma.

Since $s \in L_5$, and $|s| \ge p$, there exist some substrings a, b, c such that s can be written as s = abc, where:

- $|ab| \leq p$
- $|b| \ge 1$
- for all $i \geq 0$, $ab^ic \in L_5$.

1) b only contain 1's

The assumption implies $p \le 2n$. Without loss of generality, we assume b is at the center of s, since either way, the pumped string $s' = ab^ic = 0^n1^{2n+p(i-1)}0^n$. The 1's in the center of the newly pumped string will always remain continuous.

Note that p must be even (p/2 is an integer) because if p is odd, the length |s'| will be odd for some $s' = ab^ic$, which makes $|x| \neq |y|$ and invalidates s' as a member of L_5

Then
$$s=0^n1^{2n}0^n=\underbrace{0^n1^{n-p/2}}_a\underbrace{1^p}_b\underbrace{1^{n-p/2}0^n}_c$$

However, if we pump up, $s'=ab^2c=\underbrace{0^n1^{n-p/2}}_a\underbrace{1^{2p}}_b\underbrace{1^{n-p/2}0^n}_c=0^n1^{2n+p}0^n$. Now $s'\notin L_5$, which invalidates the 3rd condition of the pumping lemma

2) b only contain 0's

The assumption implies $p \le n$. Assume b is in the starting 0^n . Similarly, $s = 0^n 1^{2n} 0^n = \underbrace{0^k \quad 0^p \quad 0^{n-k-p} 1^{2n} 0^n}_{b}$ for some $k \ge 0$. Pumping down will generate the string s' such that

$$s' = ac = \underbrace{0^k}_{a} \underbrace{0^{n-k-p} 1^{2n} 0^n}_{c} = 0^{n-p} 1^{2n} 0^n \notin L_5$$

The same result can be proved when b is in the trailing 0^n .

3) p contains both 0's and 1's

As long as p contains both 0's and 1's, pumping up the string s will insert 0's in-between the consecutive sequence of 1^{2n} within s, which invalidate s' as a member of L_5 .

In all, there exists string $s \in L_5$ that cannot satisfy the pumping lemma. Therefore, we prove that L_5 is NOT an FSL.