Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital - IMD Núcleo de Pesquisa e Inovação em Tecnologia da Informação - Npiti

Programação de Microcontroladores PIC - Dia 03

Ministrante: Fellipe Augusto

Roteiro

- Modo Compare
 - Conceitos
- Modo PWM
 - Conceitos
 - HandsOn
- Modo Capture
 - Conceitos
 - HandsOn

Módulo CCP (Compare/Capture/PWM)

Medição e Geração de sinais digitais temporizados

Módulo CCP (Compare)

- Gera eventos temporizados
- Base para o PWM
- Base para RTOS

Módulo CCP (Compare)

- Valor do registrador CCPx é constantemente comparado com o valor atual de TMR1. Quando os valores coincidem, dependendo da configuração (CCPxM3–CCPxM0), os eventos escolhidos ocorrem:
 - o 1000: (Set): CCPxIF é setado
 - o 1001: (Clear): CCPxIF é zerado
 - o 1010: (Interrupt): CCPxIF é setado + geração de interrupção
 - 1011: (Special Event): CCPxIF é setado + (CCP1 reseta TMR1 CCP2 reseta TMR1 e inicia conversão A/D

PWM: Pulse Width Modulation

Maneira digital de interagir com um mundo analógico

PWM: Pulse Width Modulation

- Gera um sinal com frequência e ciclo de trabalho configuráveis
- Sinal possui um tempo em nível
 Alto e outro em Nível Baixo
- Em média a intensidade do sinal é controlada

PWM: Pulse Width Modulation

- Utiliza o timer 2
 - 10 Bits de resolução
 - Utiliza o mesmo pino (CCPx) como saída
- Diversas utilidades
 - Acionar Motores
 - Ajustar Intensidade de iluminação

Configuração do CCP (PWM)

Nosso modelo de PIC (PIC18F4550) possui dois módulos CCP: CCP1 e CCP2

- Frequência do PWM definida pelo timer2
 - CCP1 e CCP2 têm a mesma frequência se ambos forem utilizados dessa forma
 - CCP1 e CCP2 podem ter ciclos de trabalho diferentes

- Utilização no módulo de captura e comparação de sinais (Timer1)
 - Resolução de 16 bits para Capture e Compare

Configuração do PWM

- 1. Definir o período do PWM a partir do registrador PR2;
- 2. Determinar o ciclo de trabalho do PWM configurando os registradores CPR1L e CCP1CON<5:4>;
- Definir CCP1 como Saída Configurando TRISC;
- Determinar o valor do prescale do TMR2 e iniciar o timer 2 escrevendo em T2CON;
- 5. Configurar o Modulo CCP para operação com PWM (pag 145)

Hands-On: PWM

- Fazer o download do header file contendo o protótipo das funções de configuração (pwm.h)
- Implementar o source file (pwm.c)
- Implementar o arquivo main.c:
 - Ler o valor de um potenciômetro (RAO) e refletir esse valor como duty cycle para alimentar o cooler.
 - Exibir o valor nos displays de 7 segmentos
 - Testar no kit

Desafio

A partir da biblioteca desenvolvida, implementar um projeto de controle de temperatura

- Ler temperatura (sensor conectado ao pino RAO) gerado pelo resistor de potência da placa;
- A partir dessa leitura elaborar uma estratégia de controle para o duty cycle de aquecimento (PWM2 conectado ao resistor) e de resfriamento (Cooler conectado ao CCP1);
- Exibir a temperatura nos displays de sete segmentos

CCP Modo Capture

Captura e Mede o tempo entre 2 eventos externos

CCP Modo Capture

- Valor do registro TMR1 (Timer 1) é copiado para o registro CCPRx em um dos eventos de borda, configurado por (CCPxM3 – CCPxM0) no CCPxCON:
 - o 0100: Borda de descida $(1 \rightarrow 0)$
 - \circ 0101: Borda de subida (0 \rightarrow 1)
 - 0110: Na 4a borda de subida
 - 0111: Na 16a borda de subida

HandsOn - Capture

- Fazer o download do header file contendo o protótipo das funções de configuração (pwm.h)
- main.c
 - Capture_Setup ()
 - Desenvolver uma aplicação que leia um sinal analógico (a partir de um potenciômetro) e refletir seu valor na velocidade de um motor. Capturar o sinal do encoder do motor para calcular a velocidade de rotação.
 Exibir a frequência de rotação em 2 displays de 7 segmentos
 - Simular no Proteus

