Geometría Diferencial – 1° cuatrimestre 2016

Entrega Práctica 1

Sea $n \in \mathbb{N}$. Consideramos en $S^n \subset \mathbb{R}^{n+1}$ la siguiente relación de equivalencia: dados $v, w \in S^n$, decimos que $v \sim w$ si y solo si $v = \pm w$. El espacio proyectivo n-dimensional $\mathcal{P}^n(\mathbb{R})$ es el espacio cociente S^n/\sim . Probar que este espacio es una variedad diferenciable compacta y conexa, y calcular su dimensión.

Demostración Disclamer: Consideraremos $B_r(x) := \{ y \in \mathbb{R}^n \mid ||y - x|| < r \} \subseteq \mathbb{R}^n; -A := \{ -a, a \in A \}$ y $\overline{y} = q(y)$ con $y \in X$ y $q : X \to X / \sim_q$

Vamos de a partes!

■ Compacta

Si llamamos $q: S^n \to \mathcal{P}^n$ a la aplicación cociente, entonces sabemos que es continua. Como S^n es compacta, q es continua y la compacidad es un invariante topológico; entonces $\mathcal{P}^n = q(S^n)$ es compacto.

■ Conexa

Por el mismo argumento tenemos que S^n es conexo, q es continua y la conexión es un invariante topológico; por ende $\mathcal{P}^n = q(S^n)$ es conexo

Variedad Topológica

Aquí debemos probar que P^n es T_2 , tiene una base numerable, y el localmente Euclídeo.

- 1. Sean $\bar{a}, \bar{b} \in \mathcal{P}^n$ tal que $\bar{a} \neq \bar{b}$, si llamamos a $q: S^n \to \mathcal{P}^n$ a la aplicación cociente sea $a \in q^{-1}(\bar{a}) = \{a, -a\}$ y $b \in q^{-1}(\bar{b}) = \{b, -b\}$. Sea $0 < \epsilon < \frac{1}{2}\min\{\|a + b\|, \|a b\|\}$ y consideremos $U := B_{\epsilon}(a) \cap S^n$; $V := B_{\epsilon}(b) \cap S^n$. Notemos que por la condición impuesta a ϵ tenemos que $U, V \neq \emptyset$ y $U \cap V = \emptyset$. Consideremos $\overline{U} = q(U)$, $\overline{V} := q(V)$, entonces tenemos que ambos son abiertos pues $q^{-1}(q(U)) = U \cup -U$ que es abierto y \mathcal{P}^n tiene la topología cociente; y similarmente con $q^{-1}(q(V))$. Afirmo que $\overline{U} \cap \overline{V} = \emptyset$; en efecto, si $\overline{w} \in \overline{U} \cap \overline{V}$ entonces $\{w, -w\} = q^{-1}(w) \in q^{-1}(\overline{U} \cap \overline{V}) = (U \cup -U) \cap (V \cup -V) = (-U \cap V) \cup (U \cap -V)$. Sin pérdida de generalidad supongamos que $w \in U \cap -V$ (si estuviese en el opuesto tomo w como -w y listo), entonces $\|b a\| = \|b w + w a\| \le \|b w\| + \|w a\| < 2\epsilon < \min\{\|a + b\|, \|a b\|\}$. ABS! Entonces $\overline{U} \cap \overline{V} = \emptyset$ y \mathcal{P}^n es T_2
- 2. Sea $\mathcal{B} = \{B_{r_i}(q_i), r_i \in \mathbb{Q}, q_i \in \mathbb{Q}^n\}$ una base numerable de \mathbb{R}^n , entonces es claro que $\mathcal{F} = \mathcal{B} \cap S^n$ es una base numerable pues S^n tiene la topología subespacio de \mathbb{R}^n . Sea $\overline{\mathcal{F}} = \{\{\overline{f}, f \in F\}, F \in \mathcal{F}\}$, es claro que es numerable y veamos que es base de \mathcal{P}^n . Es claro que $\bigcup_{\overline{F} \in \overline{\mathcal{F}}} \overline{F} = \mathcal{P}^n$ pues \mathcal{F} cubría y simplemente estoy aplicando q a ambos lados; finalmente como \mathcal{F} era base, si $\overline{U}, \overline{V} \in \overline{F}$, entonces como $U \cap V \in \mathcal{F}$ entonces $\overline{U} \cap \overline{V} \in \overline{F}$ por definición. Por ende \mathcal{P}^n admite una base numerable.
- 3. Sea $x=(x^1,\ldots,x^{(i)},\ldots,x^n)\in S^n$ y $\overline{U}_i:=\{\overline{x}\in\mathcal{P}^n\mid x^i\neq 0\}$. Consideremos $\psi_i:\overline{U}_i\to\mathbb{R}^n$ dada por $(x^1,\ldots,x^i,\ldots,x^n)\mapsto (\frac{x^1}{x^i},\ldots,1,\ldots,\frac{x^n}{x^i})$ y veamos que ψ_i es un homeo con $\psi_i(\overline{U}_i)!$ Pero esto es claro pues la biyectividad es trivial, la continuidad esta dada por dividir por un elemento no nulo, y $\psi_i^{-1}(x)=(x^1,\ldots,x^n)!$ Por ende ψ_i es un homeo y $\forall \overline{x}\in\mathcal{P}^n$ $\exists i_0/\overline{x}\in\overline{U}_i$. Por ende \mathcal{P}^n es localmente euclídeo.
- Que los cambios de coordenadas sean diferenciables.

Sean i < j < n, entonces $\psi_i \circ \psi_j^{-1}(\overline{x}) = \psi_i((x^1, \dots, 1_j, \dots, x^n)) = (\frac{x^1}{x^i}, \dots 1, \dots \frac{1_j}{x^i}, \frac{x^n}{x^i})$ que es diferenciable en $\psi_j(U_i \cap U_j)$.

Por ende $\mathcal{A} = \{(\overline{U}_i, \psi_i) \mid i \in \{1, \dots, n\}\}$ es un atlas para \mathcal{P}^n y por ende \mathcal{P}^n es una variedad diferenciable compacta y conexa, de dimensión n(visto al ver la localidad ecuclídea).