

University of Applied Sciences

Mehrschichtige Erkennung von IoT-Botnetzen während der Scan-, Ausbreitungs- und Angriffsphase

Exposé zur Dissertation

zur Erlangung des Grades eines Doktors

am Fachbereich 4 - Informatik, Kommunikation und Wirtschaft der Hochschule für Technik und Wirtschaft Berlin

vorgelegt von Jan Schröder

Berlin, 4. Januar 2023

Inhaltsverzeichnis

1	Forschungsfragen	2
2	Stand der Forschung	3
3	Theoretischer Hintergrund	4
4	Stand der Forschung	8
5	Ziel der Dissertation	9
6	Forschungsdesign und Methodik	10
7	Zeit- und Arbeitsplan	11

Begriff	Erklärung
Malware	Lustige Erklärung
Internet of Things	Noch eine lustige Erklärung
Botnetz	(englisch: botnet) Saving it for later
Software-defined	
Networking	
Erkennungsindikatoren	Dieser Sammelbegriff beinhaltet Variablen, Daten,
	Charakteristiken, Attribute etc. die die Ausgabe eines
	ML Modells repräsentieren.

Tabelle 1: Diese Tabelle erläutert Begriffe, welche sowohl im Exposé als auch der späteren Dissertation Verwendung finden.

1 Forschungsfragen

Forschungsfragen

- Q1: Wie lassen sich Botnetze während der Verbreitungsphase erkennen?
- Q2: Wie lassen sich Botnetze während der Scan-Phase erkennen?
- Q3: Welche Erkennungsindikatoren führen zu einer Verbesserung der Erkennung von Botnetzen?
- **Q4:** Welche Kombination von Erkennungsstufen führt zu einer Verbesserung der Erkennung von Botnetzen?

Hypothesen

H1:

2 Stand der Forschung

3 Theoretischer Hintergrund

Internet of Things (IoT) ist ein Gebiet, welches dem Alltag viele Vorteile bringt. Durch die Möglichkeit Geräte aus dem Alltag mit dem Internet zu verbinden, birgt IoT aber auch Sicherheitslücken die besagte Geräte sehr Gefährlich werden lässt. Um dem entgegen zu wirken soll sich die Dissertation im Gebiet der Malwareforschung befinden. Im speziellen soll es dabei um die Erkennung von Botnetzen gehen, welche Angriffe über IoT-Geräte ausführen.

Ein Botnetz ist der Zusammenschluss von Hosts, auch Bots oder Zombies genannt, gesteuert von einem Angreifer, auch Botmaster genannt in einem Overlay-Netzwerk [1]. Die Botnetze nutzen Zero-day Schwachstellen, Peer-2-Peer Netze, Phishing Angriffe, Anonyme Netzwerke, Blockchain Netzwerke und Stromnetze zur Verbreitung und ihrer Verwendungszwecke [2, 3]. Auf Basis der Architektur des Botnetzes findet zu jeder Zeit ein Kommunikations- und Kontrollprozess mit dem Command und Control (C&C)-Server statt. Der C&C-Server gibt den Bots Befehle die diese dann durchführen [4] zum Beispiel, über das Internet Relay Chat (IRC)-Protokoll.

Botnetze durchlaufen drei Phasen wie Wazzan et al. [5] beschreiben, scannen, ausbreiten und angreifen. Während der Scan-Phase sucht ein Bot nach vulnerablen IoT-Geräten und infiziert das Gerät entweder durch brute force Methoden oder durch Ausnutzen einer Schwachstelle. In der Ausbreitungs-Phase ist eine lauffähige Version des Bots installiert und auf Basis der Architektur des infizierten Geräts ausgeführt. Um auf dem Gerät Malware zu verhindern die nicht vom Botnetz selbst ausgeführt wird, stoppt der Bot andere Prozesse um Ports für sich selbst zu blocken. Daraufhin rekrutiert das bösartige Programm weitere Bots um das Botnetz so schnell wie möglich zu erweitern. In der Angriffs-Phase führt das Botnetz Angriffe wie Distributed Denial of Service (DDoS), crypto mining und spam Angriffe aus. Die erläuterten Phasen beschreiben auch Studien wie [6, 7, 8, 9].

Nach der Erläuterung wie Botnetze funktionieren wäre nun zu fragen, wie der Prozess eines Botnetzes erkennbar ist um IoT-Geräte entsprechend zu schützen. Nach Xing et al. [1] kann die Botnetz Erkennung in Honeypot Analyse, Signaturen aus der Kommunikation und abnormales Verhalten klassifiziert werden. Wie Abbildung 1 zeigt, unterteilen diese Klassifikationen Methoden zur Erkennung.

Die Honeypot Analyse erkennt Code Beispiele durch das Honeypot trapping was eine hohe Genauigkeit von bereits bekannten Botnetzen ermöglicht. Die Honeypot Methoden können verschlüsselten Netzwerkverkehr nur schlecht erkennen sowie unbekannte Botnetze. Bots die eigene Funktion zur Umgehung von Honeypots besitzen, können durch fehlende Benutzereingriffe auch nicht von der Honeypot Analyse erfasst werden. Weit verbreitet sind die Methoden Erkennung von Kommunikationssignaturen anhand von Signaturen und Muster. Dabei werden in Intrusion Detection Systems (IDS) Regeln für den Merkmalsabgleich hinterlegt um Botnetz aktivitäten zu identifizieren. Dadurch können IDS Botnetze mit bestimmten Merkmalen erkennen, aber unbekannte Funktionen werden dabei nicht erkannt sowie auch Botnetze die Techniken zur Verschleierung von Code nutzen. Bei den Methoden die durch abnormales Verhalten ist die Idee, Hostverhalten oder Netzwerkverkehr Auffälligkeiten zwischen gutartigem und bösartigem

Abbildung 1: Klassifizierte Erkennungsmethoden von Botnetzen (übernommen von [1]).

Verhalten zu erkennen. Neben den erwähnten Methoden erläutern Singh et al. [10] Techniken, zur Erkennung von Botnetzen. Singh et al. klassifizieren die Techniken in Flow-, Anomalie-, Flussmittel-, Domain Generation Algorithm (DGA)-basierten [11] und Bot infizierungs Erkennung. Bei der Flow-basierten Technik findet eine Klassifizierung des Netzwerkverkehrs auf Basis von verschiedenen Parametern statt, wobei eine Aufteilung des Verkehrs in bösartig und gutartig stattfindet. Anhand von Parametern oder Mustern versucht die Anomalie-basierte Technik anomalien im Netzwerkverkehr zu finden, die sich vom regulären Verkehr unterscheiden. Über die Flussmittel-basierte Technik werden im Netzwerkverkehr IP-Flüsse gefunden. Dabei wird darauf geachtet, wie sich die IP-Larte verändert, welche in Relation zur einer Domäne steht und einen niedrigen Time To Live (TTL)-Wert hat. Die Konzentrationen auf abgefragte Domänen führt die DGA-basierte Technik durch. Mit dieser Technik soll zwischen algorithmischen bösartig erzeugten und gutartigen Domänen differentiert werden. Nach dem Stand von [10] versuchen die aktuelleren Technikansätze, anstatt C&C-Server zu identifizieren, infizierte Geräte zu erkennen.

Die Umsetzung mit mehreren Erkennungsstufen erklären Stevanovic und Pedersen [12]. Dabei führen Stevanovic und Pedersen eine Analyse des Netzwerkverkehrs durch, um die Kommunikation mit dem C&C-Server sowie den Angriffsverkehr anhand von TCP, UDP und DNS zu erkennen. Die Erkennung basiert auf supervised Machine Learning um bestimmte Muster zu identifizieren. Das komplette System besteht aus insgesamt drei Komponenten: die Verarbeitung, Klassifizierung und Client Analyse. In der ersten Komponente werden der Netzwerkverkehr verarbeitet durch Analyse und Extraktion anhand von statistischen Funktionen. Um z.B. TCP und UDP Verkehr zu analysieren, verwenden Stevanovic und Pedersen Geolokalisierungsinformationen. Abbildung 2 zeigt eine Liste mit den extrahierten Informationen aus TCP und UDP.

Die Botnetz Erkennung nach den unterschiedlichen Methoden und Techniken soll mehr Geräte vor der illegalen Verwendung von Botnetzen schützen.

Feature	Type	Number ¹			
Basic conversation fe	Basic conversation features				
Port number	Numerical	2			
Layer 7 protocol	Categorical	1			
Duration (last pkt - first pkt)	Numerical	1			
Total number of packets	Numerical	2			
Total number of Bytes	Numerical	2			
Mean of the number of Bytes per packet	Numerical	2			
Std of the number of Bytes per packet	Numerical	2			
Geographical featu	ıres				
Remote IP country	Categorical	1			
Remote IP continent	Categorical	1			
Time-based featu	res				
Number of packets per second	Numerical	2			
Number of Bytes per second	Numerical	2			
Mean of packets inter-arrival time	Numerical	2			
Std of packets inter-arrival time	Numerical	2			
Bidirectional features					
Ratio of number of packets OUT/IN	Numerical	1			
Ratio of number of Bytes OUT/IN	Numerical	1			
Ratio of inter-arrival times OUT/IN	Numerical	1			
TCP specific featu	res				
Number of three way handshakes	Numerical	1			
Number of connection tear downs	Numerical	1			
Number of complete conversation	Numerical	1			
Average conversation duration	Numerical	1			
TCP Flags	Categorical	2			
Percentage of TCP SYN packets	Numerical	2			
Percentage of TCP SYN ACK packets	Numerical	2			
Percentage of TCP ACK packets	Numerical	2			
Percentage of TCP ACK PUSH packets	Numerical	2			
Percentage of TCP FIN packets	Numerical	2			
Percentage of TCP RST packets	Numerical	2			

Abbildung 2: TCP und UDP Informationen statistisch zusammengefasst (übernommen von [12]).

Angriffsmöglichkeiten zum Testen

Um den Prozess der Botnetz Erkennung durch Fallstudien zu testen, sollen in der Dissertation verschiedene Botnetze Verwendung finden und alle drei Phasen durchführen. Dabei sollen bereits bekannte Botnetze implementiert und ausgeführt werden. Zusätzlich soll ein Botnetz implementiert werden um Herauszufinden, ob das System auch neue, unbekannte Botnetze erkennt. Der Fokus bei den Botnetzen soll auch weiterhin im IoT Bereich liegen. Kolias et al. [13] weisen in ihrer Arbeit neben Mirai auf das Botnetz Hajime hin, welches in der Dissertation für die Botnetzerkennung ausgeführt werden soll. Nach Kolias et al. besteht Mirai aus vier Komponenten, dem Bot, dem C&C-Server, der loader und der report Server. Der Bot und C&C-Server weichen nicht von der allgemeinen Funktionsweise ab, wie in 3 erklärt. Der loader übernimmt die Kommunikation mit neuen infizierten Geräten und verteilt direkt an sie ausführbare Dateien. Der report Server verwaltet Informationen über alle Geräte im Botnetz über eine Datenbank und kommuniziert mit den neu infizierten Geräten. Im folgenden Ablauf operiert und kommuniziert Mirai. Zu Beginn scannt Mirai zufällige IP Adressen über TCP ob die Ports 23 oder 2323 zuhören. Über brute-force Angriffe sucht der bot IoT Geräte, die schlecht konfiguriert sind (z.B. Standard Login Daten die nicht geändert wurden). Mit einer geöffneten Shell gibt der Bot Informationen über das Gerät an den report Server über einen anderen

Port. Der botmaster prüft über den C&C-Server neu ausgewählte Geräte und anhand des report Servers den aktuellen Status des Botnetzes. Anhand der Informationen über die Geräte kann der Botmaster entsprechende Geräte zum infizieren auswählen und über ein Infect-Befehl über den loader ausführen. Der loader führt auf den ausgewählten Gerät Instruktionen aus zum herunterladen der Malware Binärdatei. Dabei stellt die Malware sicher, dass keine anderen Malware Programme auf dem Gerät ausgeführt werden und schließt sowohl Secure Shell (SSH), als auch Telnet Programme. Der neue Bot bekommt über eine Domäne vom C&C-Server nun mögliche Angriffsbefehle. Den initialen Prozess der Suche nach offenen Ports führt auch Hajime durch. Hajime ist ein Peer-to-Peer Netzwerk, welches auf BitTorrent's Distributed Hash Table (DHT) aufbaut [14, 15]. BitTorrent nutzt das Kademlia Protokoll [16] und zusätzlich zur direkten Peer-to-Peer Kommunikation nutzt Hajime zusätzlich das uTorrent Transport Protocol. Für weitere technische Erläuterungen zu Hajime, analysieren [14] die Phasen des Botnetzes.

4 Stand der Forschung

5 Ziel der Dissertation

Mit der Dissertation soll die Botnetzerkennung erweitert und optimiert werden. Ziel ist es, zu jeder Phase eine Erkennung zu implementieren mit mehreren Erkennungsstufen. Zudem sollen bestimmte Methoden kombiniert werden um dadurch eine höhere Erkennungsrate zu erzielen.

6 Forschungsdesign und Methodik

Die Dissertation geht mit einem Laborexperiment einher. Um die Erkennung eines Botnetzes zu testen sollen verschieden typische IoT-Geräte aufgebaut werden, die von Botnetzen wie Mirai angegriffen werden. Dazu ist es nötig, dass Geräte mit einem ARC-Prozessor aufgebaut sind.

In einer Fallstudie ist dann vorgesehen, das Botnetz auszuführen, Daten den Erkennungsindikatoren zuzuweisen und dann durch ein ML Modell das Botnetz erkennen.

7 Zeit- und Arbeitsplan

Die voraussichtliche Dauer der Dissertation beträgt 4 Jahre und 6 Monate.

Zeit	Vorgehen
März 2023	Grundlagen, vorhandene wissenschaftliche Arbeiten erläutern
August 2023	Laborexperiment starten, Konzept in der Dissertation beschreiben
Januar 2025	Implementierung der IoT Geräte beschreiben
März 2025	Fallstudien beschreiben
Juli 2025	Ergebnisse erläutern, Fazit schreiben
Februar 2026	Einleitung schreiben, Kontrolle der Dissertation
Juli 2026	Abgabe

Zum Ende der Arbeitszeit soll die Dissertation über eine externe Stelle auf Plagiate, Rechtschreibung etc. geprüft werden.

Kapitelstruktur der Dissertation

- I Einführung in die Dissertation
- II Grundlagen
- III Vorhandene wissenschaftliche Arbeiten/Stand der Forschung (?)
- IV Konzept der Mehrstufigen Botnet Erkennung
- V Implementierung des Experiments und der Fallstudien
- VI Evaluierung und Ergebnisse

Literatur

- [1] Y. Xing, H. Shu, H. Zhao, D. Li, and L. Guo, "Survey on botnet detection techniques: Classification, methods, and evaluation," *Mathematical Problems in Engineering*, vol. 2021, pp. 1–24, 2021.
- [2] M. Casenove and A. Miraglia, "Botnet over tor: The illusion of hiding," in 6th International Conference on Cyber Conflict, CyCon 2014, Tallinn, Estonia, June 3-6, 2014 (P. Brangetto, M. Maybaum, and J. Stinissen, eds.), pp. 273–282, IEEE, 2014.
- [3] A. Kurt, E. Erdin, M. Cebe, K. Akkaya, and A. S. Uluagac, "Lnbot: A covert hybrid botnet on bitcoin lightning network for fun and profit," in *Computer Security ESORICS 2020 25th European Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK, September 14-18, 2020, Proceedings, Part II* (L. Chen, N. Li, K. Liang, and S. A. Schneider, eds.), vol. 12309 of *Lecture Notes in Computer Science*, pp. 734–755, Springer, 2020.
- [4] C. A. Schiller, J. Binkley, D. Harley, G. Evron, T. Bradley, C. Willems, and M. Cross, "Chapter 2 - botnets overview," in *Botnets* (C. A. Schiller, J. Binkley, D. Harley, G. Evron, T. Bradley, C. Willems, and M. Cross, eds.), pp. 29–75, Burlington: Syngress, 2007.
- [5] M. Wazzan, D. Algazzawi, O. Bamasaq, A. A. Albeshri, and L. Cheng, "Internet of things botnet detection approaches: Analysis and recommendations for future research," *Applied Sciences*, 2021. https://pdfs.semanticscholar.org/8dc2/d3f4e1120ebd9170dc68d72b17a96189729d.pdf, last accessed 2022-11-29.
- [6] P. Beltrán-García, E. Aguirre-Anaya, P. J. Escamilla-Ambrosio, and R. Acosta-Bermejo, "Iot botnets," in *Telematics and Computing* (M. F. Mata-Rivera, R. Zagal-Flores, and C. Barría-Huidobro, eds.), (Cham), pp. 247–257, Springer International Publishing, 2019.
- [7] H. Alzahrani, M. Abulkhair, and E. Alkayal, "A multi-class neural network model for rapid detection of iot botnet attacks," *International Journal of Advanced Computer Science and Applications*, vol. 11, no. 7, 2020.
- [8] N. Vlajic and D. Zhou, "Iot as a land of opportunity for ddos hackers," *Computer*, vol. 51, no. 7, pp. 26–34, 2018.
- [9] H.-T. Nguyen, Q.-D. Ngo, D.-H. Nguyen, and V.-H. Le, "Psi-rooted subgraph: A novel feature for iot botnet detection using classifier algorithms," *ICT Express*, vol. 6, no. 2, pp. 128–138, 2020.
- [10] M. Singh, M. Singh, and S. Kaur, "Issues and challenges in DNS based botnet detection: A survey," *Comput. Secur.*, vol. 86, pp. 28–52, 2019.

- [11] A. M. Manasrah, T. Khdour, and R. Freehat, "Dga-based botnets detection using DNS traffic mining," J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 5, pp. 2045–2061, 2022.
- [12] M. Stevanovic and J. M. Pedersen, "Detecting bots using multi-level traffic analysis," *Int. J. Cyber Situational Aware.*, vol. 1, no. 1, pp. 182–209, 2016.
- [13] C. Kolias, G. Kambourakis, A. Stavrou, and J. M. Voas, "Ddos in the iot: Mirai and other botnets," *Computer*, vol. 50, no. 7, pp. 80–84, 2017.
- [14] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, "Measurement and analysis of hajime, a peer-to-peer iot botnet," in 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019, The Internet Society, 2019.
- [15] A. Author(s), "Analyzing the propagation of iot botnets from dns leakage," 2017.
- [16] P. Maymounkov and D. Mazières, "Kademlia: A peer-to-peer information system based on the XOR metric," in Peer-to-Peer Systems, First International Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002, Revised Papers (P. Druschel, M. F. Kaashoek, and A. I. T. Rowstron, eds.), vol. 2429 of Lecture Notes in Computer Science, pp. 53-65, Springer, 2002.