3116 - Lab Distributed Data Analytics - Group 2

Exercise Sheet 8

Yuvaraj Prem Kumar

303384, premyu@uni-hildsheim.de

Distributed Computing with Apache Spark

We are using the latest version of Spark (PySpark) so there are support for programming with RDDs and DataFrames.

RDDs and DataFrames:

- Immutable (cannot be changed/updated/altered) once created.
- Track lineage information to efficiently recompute lost data.
- Enable operations on collection of elements in parallel.

There are two types of operations here, transformations and actions. Apache Spark uses lazy evaluation as a performance optimization technique. In Lazy evaluation, a transformation is not applied immediately to an RDD. Spark records the transformations that have to be applied to an RDD. Spark maintains the record of which operation is being called, through Directed Acyclic Graphs (DAG). Once an Action is called, Spark executes all the transformations. In MapReduce, much time is wasted in minimizing the number of MapReduce passes. It happens by clubbing the operations together. While in Spark we do not create the single execution graph, rather we club many simple operations. By design Spark transformations are lazy, for performance. So, we must use an action (collect, etc.) in order to prevent the 'laziness' of a transformation.

For PySpark implementation, we initialize the Spark session with:

For latest version of Spark, SparkSession already contains SparkContext, so we can call it explicitly. I use 'getOrCreate' because I code in PyCharm IDE instead of notebooks so I run multiple .py files at the same time. We can only have one session; hence we 'get' the current one if so.

RDDs is for low-level transformations and actions, and if we want low-level control over our datasets. Optimization and performance are less of a concern as compared to DataFrames. There is no computation cost with sc.parallelize(). The code is lazy-evaluated as described above.

Part 1: Apache Spark Basics

A. Basic Operations on RDDs

We have these two lists, which are converted to RDDs

```
01. a = ["spark", "rdd", "python", "context", "create", "class"]
02. b = ["operation", "apache", "scala", "lambda", "parallel", "partition"]
03. rddA = sc.parallelize(a)
04. rddB = sc.parallelize(b)
```

Then we define a lambda function to make it a key-value pair for each word tuple

```
01. distA = rddA.map(lambda word: (word, 'Rdd_A'))
02. distB = rddB.map(lambda word: (word, 'Rdd_B'))
```

1. Right outer join and full outer join

We use the PySpark built-in functions as show to return the join operations value

```
01.    ro_join = distA.rightOuterJoin(distB).collect()
02.    print("RIGHT OUTER JOIN: \n", ro_join, "\n")
03.
04.    fo_join = distA.fullOuterJoin(distB).collect()
05.    print("FULL OUTER JOIN: \n", fo_join)

RIGHT OUTER JOIN:
    [('parallel', (None, 'Rdd_B')), ('lambda', (None, 'Rdd_B')), ('scala', (None, 'Rdd_B')),
    ('operation', (None, 'Rdd_B')), ('apache', (None, 'Rdd_B')), ('partition', (None, 'Rdd_B'))]

FULL OUTER JOIN:
    [('python', ('Rdd_A', None)), ('spark', ('Rdd_A', None)), ('context', ('Rdd_A', None)),
    ('create', ('Rdd_A', None)), ('parallel', (None, 'Rdd_B')), ('lambda', (None, 'Rdd_B')),
    ('class', ('Rdd_A', None)), ('rdd', ('Rdd_A', None)), ('scala', (None, 'Rdd_B')),
    ('operation', (None, 'Rdd_B')), ('apache', (None, 'Rdd_B')), ('partition', (None, 'Rdd_B'))]
```

2. Count of 's' character - MapReduce

As this is for both RDD A & B, first we UNION both RDDs. The first lambda function is to make into a list, then we can apply the lambda map then lambda reduce function [1]. The last lambda function combines the results from all partitions.

```
01. S_count= rddc.flatMap(lambda i:list(i)).map(lambda i:i.count('s')).reduce(lambda i,j:i+j)
print("Number of times 's' appears: ", S_count)
Number of times 's' appears: 4
```

3. Count of 's' character – Aggregate

This is more straight-forward, we just call 'aggregate' function to count it. There is an accumulating function within each partition - in this case count the letter 's' on each row (x) and add to the accumulated count "i".

```
01. S_count2=rddC.aggregate(0, lambda i, x: i + x.count('s'), lambda i, j: i+j)
02. print("Number of times 's' appears: ", S_count2)

Number of times 's' appears: 4
```

B. Basic Operations on DataFrames

This whole part B is solved using a wide variety of in-built pyspark.sql functions. We load the .json file using "spark.read.json"

Original json dataset:

+	·	+			++	+
•	I		first_name	_		_
+						
Humanities and Art	October 14,	1983	Alan	Joe	10	1
Computer Science	September 26,	1980	Martin	Genberg	17	2
Graphic Design	June 12,	1982	Athur	Watson	16	3
Graphic Design	April 5,	1987	Anabelle	Sanberg	12	4
Psychology	November 1,	1978	Kira	Schommer	11	5
Business	17 February	1981	Christian	Kiriam	10	6
Machine Learning	1 January	1984	Barbara	Ballard	14	7
Deep Learning	January 13,	1978	John	null	10	8
Machine Learning	26 December	1989	Marcus	Carson	15	9
Physics	30 December	1987	Marta	Brooks	11	10
Data Analytics	June 12,	1975	Holly	Schwartz	12	11
Computer Science	July 2,	1985	April	Black	null	12
Computer Science	July 22,	1980	Irene	Bradley	13	13
Psychology	7 February	1986	Mark	Weber	12	14
Informatics	May 18,	1987	Rosie	Norman	9	15
Business	August 10,	1984	Martin	Steele	7	16
Machine Learning	16 December	1990	Colin	Martinez	9	17
Data Analytics	I	null	Bridget	Twain	6	18
Business	7 March	1980	Darlene	Mills	19	19
Data Analytics	•					
+		+			+	+

- One liner, using df.na.fill(df.agg(mean())
- 2. One liner, using df.na.fill separately for the two columns.
- 3. We need several steps as there are several different formats in the original DOB column. Based on PySpark tutorial, the way is to convert from unix timestamp format to DD-MM-YYYY format. Hence, we should convert all the existing dates to unix timestamp format first, by creating a temp column.
 - 'MMMMM dd, yyyy' (October 14, 1983) to unix timestamp
 - 'dd MMMMM yyyy' (30 December 1987) to unix timestamp
 - Change DOB column to the new temp column
 - Unix timestamp change to 'dd-MM-yyyy' with "to_date" function
 - Drop temp column
- 4. We can append a new column by "select *" then add the new column. It is the datediff of today's datetime (system time) minus the DOB (converted). We need to use 'round' function otherwise the dataframe will give an error for the overflow. Then just name the new column with SQL 'alias'.
- 5. We use the same df.agg function to calculate the mean of points, and add the df.agg(stddev). All using built-in functions. Then a simple if-else in pyspark (when points>calculated adjustment then 20, otherwise points).

6. Select points using pyspark select, with lambda function to select points for each row. We plot the points histograms using matplotlib.

Full code for 1-6 (references cited in .py file) and new output:

```
# 1. Replace the null value(s) in column points by the mean of all points.
02.
        df = df.na.fill(df.agg(mean('points')).collect()[0][0])
03.
        # 2. Replace the null value(s) in column dob and column last name by "unknown" and "--" respectively.
04.
        df = df.na.fill('unknown', 'dob')
df = df.na.fill('--', 'last_name')
05.
06.
07.
        # 3. Convert all the dates into DD-MM-YYYY format.
08.
        df2 = df.select('*', to_timestamp(df.dob, 'MMMMM dd, yyyy').alias('date'))
df2 = df2.withColumn('date', when(col('date').isNull(), to_timestamp(df.dob, 'dd MMMMM yyyy')).otherwise(col('date')))
df2 = df2.withColumn('dob', unix_timestamp(col("date"), 'yyyy-MM-dd HH:mm:ss').cast("timestamp"))
df2 = df2.withColumn('dob', to_date('dob', 'dd-MM-yyyy'))
09.
10.
11.
12.
13.
        df2 = df2.drop('date')
14.
        # 4. Insert a new column age and calculate the current age of all students.
df2 = df2.select('*', round(datediff(lit(datetime.date.today()), col('dob')) / 365, 0).alias('age'))
15.
16.
17.
        # 5. If point > 1 standard deviation of all points, then update current point to 20
18.
        grades = df2.agg({'points': 'mean'}).collect()[0][0] + df2.agg({'points': 'stddev'}).collect()[0][0]
df2 = df2.withColumn('points', when(col('points') > grades, 20).otherwise(col('points')))
19.
20.
21.
        print("Final json dataset: ", "\n")
22.
23.
        df2.show()
24.
        # 6. Create a histogram on the new points created in the task 5.
25.
26.
        points_histogram = df2.select('points').rdd.map(lambda i: i.points).collect()
27.
        plt.hist(points histogram)
        plt.title('Points Histogram')
28.
29.
        plt.show()
```

Final json dataset:

Part 2: Manipulating Recommender Dataset with Apache Spark

The movielens dataset is a rating prediction dataset with ratings given on a scale of 1 to 5. We are working with Tags Data File Structure "tags.dat", which contains data in the form {UserID::MovieID::Tag::Timestamp}. I follow the references from for implementation and coding [2].

Step 1: Data Pre-processing

We load the data using 'spark.read.csv' to get the original dataset as below:

Original tags dataset:

+-	+++-	+	+	++
L	_c0 _c1 _c2 _c3	_c4	_c5	_c6
+-	+++-	+		++
I	15 null 4973 null	excellent!	null	1215184630
-	20 null 1747 null	politics	null	1188263867
I	20 null 1747 null	satire	null	1188263867
I	20 null 2424 null 0	chick flick 212	null	1188263835
-	20 null 2424 null	hanks	null	1188263835
I	20 null 2424 null	ryan	null	1188263835
I	20 null 2947 null	action	null	1188263755
I	20 null 2947 null	bond	null	1188263756
I	20 null 3033 null	spoof	null	1188263880
I	20 null 3033 null	star wars	null	1188263880
+-	+++-	+	+	++
01	nly showing top 10 :	rows		

- Drop NULL columns
- Rename columns as per dataset readme
- Select only distinct records (rows)
- Convert string timestamp to proper timestamp

We can obtain the pre-processed output as:

Modified tags dataframe:

+	+	+		+	
Us	erID M	ovieID	Tag	Timestamp	
+	+	+	+	+	
1	39	2105	computer 2007-08-28	03:17:00	
1	109	7387	zombies 2008-05-24	03:33:43	
1	146	7	based on a play 2008-11-15	10:52:44	
1	146	351	jazz 2007-10-07	11:54:37	
1	146	364	talking animals 2007-12-16	07:59:07	
1	146	485	parody 2006-10-12	13:33:20	
1	146	1770	based on a book 2007-09-25	12:24:21	
1	146	2394	Christianity 2008-03-04	06:55:58	
1	146	3257 int	terracial romance 2008-02-25	09:22:17	
1	146	7624	prep school 2007-11-22	12:39:17	
++					
onl	y show	ing top 10) rows		

```
df = spark.read.csv('C:/PythonProjects/tags.dat', sep=':')
01.
      print("Original tags dataset: ", "\n")
02.
03.
      df.show(10)
04.
      df = df.drop('_c1', '_c3', '_c5')
df = df.selectExpr('_c0 as UserID', '_c2 as MovieID', '_c4 as Tag', '_c6 as Timestamp')
05.
06.
07.
      df = df.distinct()
08.
      df = df.withColumn('Timestamp', from_unixtime(df.Timestamp).cast(TimestampType()))
09.
      print("Modified tags dataframe: ", "\n")
10.
11. df.show(10)
```

Step 2: Separate out tagging sessions for each user.

A tagging session for a user can be defined as the duration in which he/she generated tagging activities. Typically, an inactive duration of 30 mins is considered as a termination of the tagging session. We can use Rank function to identify the order of tagging per user. Once we ordered the dataset based on rank, we can calculate the time difference. This time difference is mapped to a new column 'identifier' which Boolean identifies which tags belong to which session (either 1 or 0). The way here is using PySpark "lag" or "window" functionality.

```
w = Window.partitionBy(df['UserID']).orderBy(df['TimeStamp'].asc(), df['MovieID'].asc(), df['tag'].asc())
       df = df.withColumn("Rank", dense_rank().over(w))
02.
03.
       df.createOrReplaceTempView("tags")
04.
05.
       df = spark.sql("SELECT a.*, b.Timestamp as Next_tag
06.
                                FROM tags a
07.
                                left join tags b
08.
                                 on a.UserID = b.UserID
09.
                                  and a.Rank = b.Rank - 1")
10.
11.
       df = df.withColumn('Time_diff', unix_timestamp('Next_tag') - unix_timestamp('Timestamp'))
df = df.withColumn("Identifier", when(col('Time_diff') < 1800, 1).otherwise(0))
print("Tags dataframe with session identifier: ", "\n")</pre>
12.
13.
14.
15.
       df.show(10)
```

Tags dataframe with session identifier:

+-	+-	+	+-		+	+-		+	+	+
Įτ	JserID M	ovieID	Tag	7	 Timestamp	Rank		Next_tag	Time_diff	Identifier
+-	+-	+	+-		+	+-		+	+	+
-1	11563	37830	final fantasy 2	007-10-15	14:58:42	1		null	null	0
-1	1436	838	cottage 2	007-09-02	18:44:43	1 2	2007-09-02	18:45:02	19	1
-1	1436	1953	action classic 2	007-09-02	18:45:02	2 2	2007-09-02	18:46:17	75	1
-1	1436	1231	awesome 2	007-09-02	18:46:17	3 2	2007-09-02	18:46:20	3	1
-1	1436	247	coming of age 2	007-09-02	18:46:20	4 2	2007-09-02	18:46:34	14	1
-1	1436	1994	80s 2	007-09-02	18:46:34	5 2	2007-09-02	18:47:04	30	1
-1	1436	1179	new nior 2	007-09-02	18:47:04	6 2	2007-09-02	18:47:26	22	1
1	1436	32587	comic book 2	007-09-02	18:47:26	7 2	2007-09-02	18:47:48	22	1
-1	1436	6378	action 2	007-09-02	18:47:48	8 2	2007-09-02	18:47:57	9	1
1	1436	4447	comedy 2	007-09-02	18:47:57	9 2	2007-09-02	18:48:28	31	1
+-	+-	+	+-		+	+-		+	+	+

only showing top 10 rows

Now we need to identify unique tagging session for each user. We cross join the dataframe (join the table to itself, using alias a,b). This is to duplicate the identifier column. It is used to identify the previous identifier tag. Now we can use a user-defined-function (UDF):

- If current identifier belongs to previous session, we assign back same session id.
- If not, we increment the session id by 1

```
01. def tagSession(identifier, prev identifier):
02.
          global cnt
           if prev_identifier is None:
03.
04.
           cnt = 1
05.
               return cnt
                            # Initial record
06.
           elif prev identifier == 1:
               return cnt # Return same session ID if same session
07.
          elif prev_identifier == 0:
08.
09.
               cnt = cnt + 1
10.
               return cnt # Return increment session ID if new session
11.
             return 0 # Unknown session
12.
13.
14.
15.
      sessUDF = udf(tagSession) # Initialize UDF
      df = df.sort("UserID", "Rank") # Sort (asc) on UserID, followed by Rank
      df = df.withColumn('SessionID', sessUDF("identifier", "prev_identifier")) # Append new column SessionID from UDF
df = df.drop('Next_tag', 'Identifier', 'prev_identifier', 'Time_diff') # Drop the temp working columns
18.
19.
      print("Modified Tags dataframe with each user session: ", "\n")
20.
21. df.show(10)
```

Modified Tags dataframe with each user session:

```
Tag| Timestamp|Rank|SessionID|
|UserTD|MovieTD|
| 1000| 277|children's story|2007-08-31 06:05:11| 1|
  1000| 1994| sci-fi. dark|2007-08-31 06:05:36| 2|
                                                         11
  1000| 5377| romance|2007-08-31 06:05:50| 3|
1000| 7147| family bonds|2007-08-31 06:06:01| 4|
                                                          11
                                                          11
  1000| 362|animated classic|2007-08-31 06:06:11| 5|
                                                          11
         276| family|2007-08-31 06:07:15|
  1000|
| 10003| 42013|
                    Passable|2006-06-16 06:33:55|
                                                 1 |
                                                          1 |
| 10003| 51662| FIOS on demand|2008-04-12 00:35:26|
                                                          2|
| 10003| 54997| FIOS on demand|2008-04-12 00:35:35|
                                                          2 |
| 10003| 55765| FIOS on demand|2008-04-12 00:35:42| 4|
                                                          21
+----+
only showing top 10 rows
```

Step 3: Frequency of tagging for each user session.

We select the required columns, and group by userID and new column SessionID. Sort output to visualise better.

Frequency tagging dataframe of UserID:

[Stage 55:==========					
UserID Sessi	onID Fre	q_tags			
+	+	+			
1000	1	6			
10003	1	1			
10003	2	18			
10003	3	38			
10020	1	2			
10025	1	1			
10032	1	39			
10032	10	1			
10032	11	1			
10032	12	1			
++					
only showing top 10 rows					

Step 4: Mean and standard deviation of the tagging frequency of each user

Using back the dataframe in Step 3, we call aggregate function to calculate the mean and standard deviation, then group by the UserID.

only showing top 10 rows

Mean and Standard deviation dataframe of UserID:

++		+	+
UserID	Mean_tagging_freq	Sessions_count	Std_Dev
++		++	+
1000	6.0	1	NaN
10003	19.0	3	18.520259177452136
10020	2.0	1	NaN
10025	1.0	1	NaN
10032	4.66666666666667	12	10.873933246182093
10051	1.0	1	NaN
10058	25.333333333333333	3	15.044378795195676
10059	2.5	2	0.7071067811865476
10064	1.0	1	NaN
10084	3.75	4	2.0615528128088303
++		·	+

Step 5: Mean and standard deviation of the tagging frequency for across users.

Same as Step 4, but now we don't group by UserlD, as we want to return the mean and standard deviation for all records in the dataframe.

Step 6: List of users with a mean tagging frequency within the two standard deviation from the mean frequency of all users.

First we get the mean and standard deviation from the dataframe in Step 5. Then we calculate the tags within 2 standard deviation from the mean. We filter only those records fulfiling this criteria (SQL where clause).

```
01. mean = df4.collect()[0]['Mean_tagging_freq']
02. std_dev = df4.collect()[0]['Std_Dev']
03.
   06.
    print("List of users within 2 std dev from mean: ", "\n")
09. df5.show(10)
List of users within 2 std dev from mean:
        |UserID|
        +----+-
        1 10001
        | 10003|
        | 10020|
        | 10025|
        | 10032|
        | 10051|
        | 10058|:
        | 10059|
        | 10064|
        | 10084|
        +----+
```

Bonus

For this exercise we will use movielens10m dataset. The movielens10m dataset consists of 10 million rating entries by users. However since this is too large, I will use the 1m dataset. There are two main files required to solve this exercise 1) rating.dat and 2) movie.dat The rating.dat file contains userId, movieId, and ratings (on scale of 1 to 5). The movie.dat file contains information about movies i.e. movieId, Title and Genres. There are many examples for analysing this dataset, here I refer to [3] and [4].

Step 1: Data Pre-processing

The pre-processing steps here follow exactly as in Part 2. We obtain the processed dataset as follows:

Step 2: Find the movie title which has the maximum average ratings?

We can inner join the two dataframes on movieID column, as we want the 'Title' from movie, and 'Rating' from rating. Then we get the mean, and group by movieID and append to column. Then apply filter on the column to get the aggregated maximum rating.

```
01. df_max = df_ratings.groupby('MovieID')
                            .agg(_mean_('Rating').alias('Max_avg_rating'))
           .join(df_movie, df_ratings.MovieID == df_movie.MovieID)
.select(df_movie.MovieID,'Title', 'Max_avg_rating')
03.
      print("Movies with maximum avg rating: ", "\n")
df_max.filter(col('Max_avg_rating') == df_max.agg(_max_('Max_avg_rating')).collect()[0][0]).show(10)
                                          Movies with maximum avg rating:
                                                                      Title|Max avg rating|
                                                             Lured (1947) |
                                                        Baby, The (1973)|
                                               32801
                                                                                           5.01
                                                989|Schlafes Bruder (...|
                                                                                           5.01
                                                787|Gate of Heavenly ...|
                                                                                           5.01
                                               3607|One Little Indian...|
                                                                                           5.01
                                               3172|Ulysses (Ulisse) ...|
                                               3233|Smashing Time (1967)|
                                               3881|Bittersweet Motel...
                                                                                           5.0|
                                              1830|Follow the Bitch ...|
3382|Song of Freedom (...|
                                                                                           5.01
```

Step 3: User who has assign the lowest average ratings among all the users the number of ratings greater than 40.

With the same syntax as step 2, except here we use filter function for the total ratings >= 40. The total ratings are calculated from the mean and count. We use lit function to wrap to have acess to pyspark.sql.columns functions.

Step 4: Find the movie genre with the highest average ratings?

The readme provides the list of genre, we store as python list here. Then create a new dataframe by inner join ratings and movie on movieID column and only select genre. However this column will have contcatenated different genres. Hence we use explode outer to flatten it, and split out into individual genres. Then apply the same steps as previous, with mean and group by.

```
01.
02.
03.
    df_genre = df_ratings.join(df_movie, df_ratings.MovieID == df_movie.MovieID).select(df_movie.Genre, 'Rating')
04.
05.
    print("Movie genre with highest avg rating: ",
                                          "\n")
    df_genre.withColumn("Genre", explode_outer(split('Genre', "[|]")))
             .filter(col('Genre').isin(genre))
07.
             .groupBy('Genre')
08.
             .agg(_mean_('Rating').alias('Max_rating'))
09.
             .orderBy(col('Max_rating').desc())
10.
             .show(1)
11.
```

Movie genre with highest avg rating:

```
| Genres| Max_rating|
+-----+
|Film-Noir|4.075187558184108|
+-----+
only showing top 1 row
```

References:

- [1] https://stackoverflow.com/questions/36559071/how-to-count-number-of-occurrences-by-using-pyspark
- [2] https://medium.com/data-science-school/practical-apache-spark-in-10-minutes-part-3-dataframes-and-sql-ac36b26d28e5
- [3] https://datascience-enthusiast.com/Python/cs110 lab2 als prediction.html
- [4] https://github.com/jesusgarcia2/MovieLens-Pyspark