微分積分学A中間試験(1·2限)

2023年6月15日第2時限施行 担当水野将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず.

問題 1.

次の問いに答えなさい. 答えのみを書くこと.

(1) Archimedes の公理を述べなさい.

(4) 集合 $S \subset \mathbb{R}$ が上に有界であることの定義を述べなさい.

(2) Cantor の公理を述べなさい.

(5) 空でない集合 $S \subset \mathbb{R}$ に対して Weierstrass の定理を述べなさい. なお, 必要に応じて, $S_U := \{M \in \mathbb{R} : M \ \text{は} \ S \ \text{の上界} \}$ を用いてよい.

(3) 数列 $\{a_n\}_{n=1}^{\infty}$ が $a \in \mathbb{R}$ に収束する,すなわち $a_n \to a \quad (n \to \infty)$ であることの定義を述べなさい.

(6) α が集合 $S \subset \mathbb{R}$ の下限 $\alpha = \inf S$ であること の、 ε 論法を用いた定義を述べなさい.

(7)	数列 $\{a_n\}_{n=1}^\infty$ が (広義) 単調減少であること σ)
	定義を述べなさい.	

(10) 有界な数列に対する Bolzano-Weierstrass の定理を述べなさい.

(8) 単調増加な数列の収束性に関する定理を述べなさい.

(11) 数列 $\{a_n\}_{n=1}^{\infty}$ が Cauchy 列であることの定義を述べなさい.

(9) 自然対数の底 e の定義を述べなさい.

(12) 実数の完備性に関する定理を述べなさい.

(13) $a_n = \frac{1}{n^3} (1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1))$ で定められた数列 $\{a_n\}_{n=1}^{\infty}$ の極限値を求めな

この下は計算用紙として利用してよい.

(14) $a_n = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)}$ で定められた数列 $\{a_n\}_{n=1}^{\infty}$ の極限値を求めなさい.

(15) 漸化式 $a_n = \sqrt{2 + a_{n-1}}$ (n = 1, 2, 3, ...), 初項 $a_0 = 5$ で定められた数列 $\{a_n\}_{n=0}^{\infty}$ は収束する. その極限値を求めなさい.

以下は計算用紙として利用してよい. 採点には一切利用しない.

$$\frac{2n+6}{4n+7} o \frac{1}{2} \quad (n \to \infty)$$
 となることを ε -N 論法で示したい

問題 2.
$$\frac{2n+6}{4n+7} \to \frac{1}{2} \quad (n \to \infty) \ \text{となることを} \ \varepsilon\text{-N} \ \text{論法で示したい}.$$

$$(1) \ \frac{2n+6}{4n+7} \to \frac{1}{2} \quad (n \to \infty) \ \text{O} \ \varepsilon\text{-N} \ \text{論法を用いた定義を述べなさい}.$$

$$(2) \ \frac{2n+6}{4n+7} \to \frac{1}{2} \quad (n \to \infty) \ \text{E} \ \varepsilon\text{-N} \ \text{論法を用いて示しなさい}.$$

(2)
$$\frac{2n+6}{4n+7} \rightarrow \frac{1}{2}$$
 $(n \rightarrow \infty)$ を ε - N 論法を用いて示しなさい.

問題 3.

収束する数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ に対して, $a:=\lim_{n\to\infty}a_n$, $b:=\lim_{n\to\infty}b_n$ とおく.

(1) $\lim_{n\to\infty}(a_n-b_n)=a-b$ となることの ε -N 論法による定義を述べなさい.

- (2) $\lim_{n\to\infty} (a_n b_n) = a b$ となることを ε -N 論法を用いて示しなさい.

問題 4.

A := (6,15) とおく. $\sup A = 15$ を示したい.

- (1) $\sup A = 15$ の定義を述べなさい.
- (2) $\sup A = 15$ を証明しなさい.

以下は計算用紙として利用してよい. 採点には一切利用しない.