LABORATOR#11

- EX#1 (a) Scrieţi o funcţie în Python care are ca dată de intrare vectorul $\mathbf{x} := \begin{bmatrix} x_1 & x_2 & \dots & x_m \end{bmatrix}^\mathsf{T} \in \mathbb{R}^m \setminus \{\mathbf{0}_m\}$ şi ca date de ieşire vectorul $\mathbf{v} \in \mathbb{R}^m$ care defineşte transformarea Householder $\mathbf{H}_{\mathbf{v}} \in \mathscr{M}_m(\mathbb{R})$ care anulează componentele x_i , $i = \overline{2, m}$, ale vectorului \mathbf{x} şi valoarea nenulă a vectorului $\mathbf{H}_{\mathbf{v}} \mathbf{x}$, i.e. $\alpha := (\mathbf{e}^{(1)})^\mathsf{T} (\mathbf{H}_{\mathbf{v}} \mathbf{x})$, unde $\mathbf{e}^{(1)} := \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^\mathsf{T} \in \mathbb{R}^m$.
 - (b) Scrieţi o funcţie în Python care are ca dată de intrare matricea inversabilă la stânga $\mathbf{A} \in \mathscr{M}_{m,n}(\mathbb{R}), \ m \geq n$, şi ca date de ieşire matricea ortogonală $\mathbf{Q} \in \mathscr{M}_m(\mathbb{R})$ şi matricea superior triunghiulară $\mathbf{R} \in \mathscr{M}_{m,n}(\mathbb{R})$ cu $r_{kk} > 0, \ k = \overline{1,n}$, obţinute prin factorizarea QR a matricei \mathbf{A} folosind metoda reflexiilor (Householder).
 - (c) Testați funcția pentru matricele

$$\mathbf{A} = \begin{bmatrix} 0, 10 & 0, 10 \\ 0, 17 & 0, 11 \\ 2, 02 & 1, 29 \end{bmatrix}; \tag{1a}$$

$$\mathbf{A} = \begin{bmatrix} 9 & 0 & 26 \\ 12 & 0 & -7 \\ 0 & 4 & 4 \\ 0 & -3 & -3 \end{bmatrix}; \tag{1b}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-k} \\ 0 & 0 \end{bmatrix}, \quad k = \overline{1, 8}; \tag{1c}$$

$$\mathbf{A} \equiv \mathbf{H}_n = \left(h_{ij}\right)_{i,j=\overline{1,n}} \in \mathscr{M}_n(\mathbb{R}), \quad h_{ij} = \frac{1}{i+j-1}, \ i,j=\overline{1,n}; \quad n=\overline{2,12}; \ (1d)$$

și verificați identitatea $\mathbf{Q}^{\mathsf{T}}\mathbf{Q} = \mathbf{I}_n$.

(d) Pentru matricele Hilbert de ordin n date de relația (1d), reprezentați grafic mărimea $-\log_{10} \|\mathbf{I}_m - \mathbf{Q}^\mathsf{T} \mathbf{Q}\|_F$, obținută prin factorizarea QR folosind metoda reflexiilor (Householder), ca funcție de $n = \overline{2,12}$.

Indicații: Trebuie verificate următoarele condiții:

- (i) **A** este o matrice $m \times n$, cu $m \ge n$;
- (ii) ${\bf A}$ este o matrice inversabilă la stânga.
- **EX#2** Fie matricea inversabilă la stânga $\mathbf{A} \in \mathcal{M}_{m,n}(\mathbb{R})$, $m \geq n$, vectorul $\mathbf{b} \in \mathbb{R}^m$ și sistemul supraabundent/supradeterminat de ecuații liniare

$$\mathbf{A}\mathbf{x} = \mathbf{b}. \tag{2}$$

Scrieţi o funcţie în Python are ca date de intrare matricea \mathbf{A} şi vectorul \mathbf{b} , iar ca date de ieşire soluţia sistemului (2), $\mathbf{x} \in \mathbb{R}^n$, vectorul eroare reziduală, $\mathbf{r} := \mathbf{b} - \mathbf{A} \mathbf{x} \in \mathbb{R}^m$, şi norma sa euclidiană, $\|\mathbf{r}\|_2$, obţinute prin factorizarea QR a matricei sistemului (2) folosind metoda reflexiilor (Householder).

Testați funcția pentru

$$\mathbf{A} = \begin{bmatrix} 0, 10 & 0, 10 \\ 0, 17 & 0, 11 \\ 2, 02 & 1, 29 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0, 26 \\ 0, 28 \\ 3, 31 \end{bmatrix}; \tag{3a}$$

$$\mathbf{A} = \begin{bmatrix} 0, 10 & 0, 10 \\ 0, 17 & 0, 11 \\ 2, 02 & 1, 29 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0, 27 \\ 0, 25 \\ 3, 33 \end{bmatrix}; \tag{3b}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-7} \\ 0 & 0 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 10^{-7} \\ 1 \end{bmatrix}; \tag{3c}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{bmatrix}, \quad \epsilon = 10^{-k}, \quad k = \overline{1, 10}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \tag{3d}$$

Indicații: Trebuie verificate următoarele condiții:

- (i) A este o matrice $m \times n$, cu $m \ge n$;
- (ii) A este o matrice inversabilă la stânga;
- (iii) A și b sunt compatibili.
- **EX#3** (a) Scrieţi o funcţie în Python care are ca dată de intrare vectorul $\mathbf{x} := \begin{bmatrix} x_1 & x_2 \end{bmatrix}^\mathsf{T} \in \mathbb{R}^2 \setminus \{\mathbf{0}_2\}$ şi ca date de ieşire unghiul $\theta \in [0, 2\pi)$ care defineşte rotaţia (plană) Givens, $\mathbf{G}(\theta) \in \mathscr{M}_2(\mathbb{R})$, care anulează componenta x_2 a vectorului \mathbf{x} , precum şi valoarea nenulă a vectorului $\mathbf{G}(\theta) \mathbf{x} \in \mathbb{R}^2$, i.e. $\alpha := (\mathbf{e}^{(1)})^\mathsf{T} (\mathbf{G}(\theta) \mathbf{x})$, unde $\mathbf{e}^{(1)} := \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T} \in \mathbb{R}^2$.
 - (b) Scrieţi o funcţie în Python care are ca dată de intrare matricea inversabilă la stânga $\mathbf{A} \in \mathscr{M}_{m,n}(\mathbb{R}), \ m \geq n$, şi ca date de ieşire matricea ortogonală $\mathbf{Q} \in \mathscr{M}_m(\mathbb{R})$ şi matricea superior triunghiulară $\mathbf{R} \in \mathscr{M}_{m,n}(\mathbb{R})$ cu $r_{kk} > 0, \ k = \overline{1,n}$, obţinute prin factorizarea QR a matricei \mathbf{A} folosind $metoda\ rotațiilor\ (Givens)$.
 - (c) Testați funcția pentru matricele

$$\mathbf{A} = \begin{bmatrix} 0, 10 & 0, 10 \\ 0, 17 & 0, 11 \\ 2, 02 & 1, 29 \end{bmatrix}; \tag{4a}$$

$$\mathbf{A} = \begin{bmatrix} 9 & 0 & 26 \\ 12 & 0 & -7 \\ 0 & 4 & 4 \\ 0 & -3 & -3 \end{bmatrix}; \tag{4b}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-k} \\ 0 & 0 \end{bmatrix}, \quad k = \overline{1, 8}; \tag{4c}$$

$$\mathbf{A} \equiv \mathbf{H}_n = (h_{ij})_{i,j=\overline{1,n}} \in \mathscr{M}_n(\mathbb{R}), \quad h_{ij} = \frac{1}{i+j-1}, \ i,j=\overline{1,n}; \quad n=\overline{2,12}; \ (4d)$$

și verificați identitatea $\mathbf{Q}^{\mathsf{T}}\mathbf{Q} = \mathbf{I}_m$.

(d) Pentru matricele Hilbert de ordin n date de relația (4d), reprezentați grafic mărimea $-\log_{10} \|\mathbf{I}_m - \mathbf{Q}^\mathsf{T} \mathbf{Q}\|_F$, obținută prin factorizarea QR folosind metoda rotațiilor (Givens), ca funcție de $n = \overline{2,12}$.

Indicaţii: Trebuie verificate următoarele condiţii:

- (i) A este o matrice $m \times n$, cu $m \ge n$;
- (ii) A este o matrice inversabilă la stânga.

EX#4 Fie matricea inversabilă la stânga $\mathbf{A} \in \mathcal{M}_{m,n}(\mathbb{R})$, $m \geq n$, vectorul $\mathbf{b} \in \mathbb{R}^m$ şi sistemul supraabundent/supradeterminat de ecuații liniare

$$\mathbf{A}\mathbf{x} = \mathbf{b}. \tag{5}$$

Scrieţi o funcţie în Python are ca date de intrare matricea \mathbf{A} şi vectorul \mathbf{b} , iar ca date de ieşire soluţia sistemului (5), $\mathbf{x} \in \mathbb{R}^n$, vectorul eroare reziduală, $\mathbf{r} := \mathbf{b} - \mathbf{A} \mathbf{x} \in \mathbb{R}^m$, şi norma sa euclidiană, $\|\mathbf{r}\|_2$, obţinute prin factorizarea QR a matricei sistemului (5) folosind metoda rotațiilor (Givens).

Testați funcția pentru

$$\mathbf{A} = \begin{bmatrix} 0, 10 & 0, 10 \\ 0, 17 & 0, 11 \\ 2, 02 & 1, 29 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0, 26 \\ 0, 28 \\ 3, 31 \end{bmatrix}; \tag{6a}$$

$$\mathbf{A} = \begin{bmatrix} 0, 10 & 0, 10 \\ 0, 17 & 0, 11 \\ 2, 02 & 1, 29 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0, 27 \\ 0, 25 \\ 3, 33 \end{bmatrix}; \tag{6b}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-7} \\ 0 & 0 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 10^{-7} \\ 1 \end{bmatrix}; \tag{6c}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{bmatrix}, \quad \epsilon = 10^{-k}, \quad k = \overline{1, 10}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \tag{6d}$$

<u>Indicaţii:</u> Trebuie verificate următoarele condiţii:

- (i) A este o matrice $m \times n$, cu $m \ge n$;
- (ii) A este o matrice inversabilă la stânga;
- (iii) \mathbf{A} şi \mathbf{b} sunt compatibili.