Statistical Machine Learning

Stochastic Convergence

Lecture Notes 12: Stochastic Convergence

Professor: Zhihua Zhang Scribe:

12 Stochastic Convergence

Definition 12.1. A sequence X_1, X_2, \ldots of random variables is said to converge in distribution, or converge weakly, or converge in law to a random variable X if

$$\lim_{n \to \infty} F_n(x) = F(x),$$

for every number $x \in \mathbf{R}$ at which F is continuous. Here F_n and F are the cumulative distribution functions of random variables X_n and X, respectively.

We denote convergence in distribution as $X_n \leadsto X$.

Definition 12.2. A sequence X_n of random variables converges in probability towards the random variable X if for all $\varepsilon > 0$

$$\lim_{n \to \infty} \Pr\left(|X_n - X| \ge \varepsilon\right) = 0.$$

Formally, pick any $\varepsilon > 0$ and any $\delta > 0$. Let P_n be the probability that X_n is outside the ball of radius ε centered at X. Then for X_n to converge in probability to X there should exist a number N (which will depend on ε and δ) such that for all $n \geq N$ the probability P_n is less than δ .

Convergence in probability is denoted by adding the letter p over an arrow indicating convergence, or using the "plim" probability limit operator:

$$X_n \xrightarrow{p} X$$
, $X_n \xrightarrow{P} X$, $\lim_{n \to \infty} X_n = X$.

For random elements X_n on a separable metric space (S, d), convergence in probability is defined similarly by

$$\forall \varepsilon > 0, \Pr\left(d(X_n, X) \ge \varepsilon\right) \to 0.$$

Definition 12.3. To say that the sequence X_n converges almost surely or almost everywhere or with probability 1 or strongly towards X means that

$$\Pr\Bigl(\lim_{n\to\infty} X_n = X\Bigr) = 1.$$

Almost sure convergence is often denoted by adding the letters a.s. over an arrow indicating convergence:

$$X_n \xrightarrow{\text{a.s.}} X.$$

Using the probability space $(\Omega, \mathcal{F}, P_r)$ and the concept of the random variable as a function from Ω to R, for generic random elements X_n on a metric space (S, d), convergence almost surely is defined similarly:

$$\Pr\left(\omega \in \Omega : d(X_n(\omega), X(\omega)) \underset{n \to \infty}{\longrightarrow} 0\right) = 1$$

Definition 12.4. Given a real number $r \ge 1$, we say that the sequence X_n converges in the r-th mean (or in the Lr-norm) towards the random variable X, if the r-th absolute moments $E(|X_n|^r)$ and $E(|X|^r)$ of X_n and X exist, and

$$\lim_{n \to \infty} \mathbf{E}\left(|X_n - X|^r\right) = 0,$$

where the operator E denotes the expected value. Convergence in r-th mean tells us that the expectation of the r-th power of the difference between X_n and X converges to zero.

This type of convergence is often denoted by adding the letter L_r over an arrow indicating convergence:

$$X_n \xrightarrow{L_r} X$$
.

The most important cases of convergence in r-th mean are:

- 1. When X_n converges in r-th mean to X for r = 1, we say that X_n converges in mean to X.
- 2. When X_n converges in r-th mean to X for r=2, we say that X_n converges in mean square to X.

Example 12.1. Let $X_n \sim N(0, \frac{1}{n})$ and let F be distribution function for a point mass at 0, namely, P(X = 0) = 1. Let $Z \sim N(0, 1)$,

$$F_n(x) = Pr(X_n < x)$$

$$= Pr(\sqrt{n}X_n < \sqrt{n}x)$$

$$= Pr(Z < \sqrt{n}x)$$

Thus,

1. For
$$x < 0$$
, $\sqrt{n}x \longrightarrow -\infty$, $\lim_{n \to \infty} F_n(x) = 0$

2. For
$$x > 0$$
, $\sqrt{n}x \longrightarrow \infty$, $\lim_{n \to \infty} F_n(x) = 1$

So, for $x \neq 0$, $\lim_{n \to \infty} F_n(x) = F(x)$, $X_n \leadsto 0$. And since E(X) = 0, by Chebyshev's inequality,

$$Pr(|X_n| \ge \varepsilon) \le \frac{E(X_n^2)}{\varepsilon} = \frac{1}{n\varepsilon} \longrightarrow 0$$

So, $X_n \xrightarrow{p} 0$. Note here we use notation $X_n \leadsto c$ or $X_n \xrightarrow{p} c$ means X_n convergence to a point mass distribution P(X = c) = 1.

Lemma 12.1 (portmanteau lemma). The following statement are equivalent:

- 1. $\lim Pr(X_n \in A) = Pr(X \in A)$ for all continuity sets A of random variable X.
- 2. $Eg(X_n) \longrightarrow Eg(X)$ for all bounded, continuous functions g.
- 3. $Eg(X_n) \longrightarrow Eg(X)$ for all bounded, Lipschitz functions g. $(\|g(x) g(y)\| \le L\|x y\|)$

The portmanteau lemma provides several equivalent definitions of convergence in distribution. Although these definitions are less intuitive, they are used to prove a number of statistical theorems.

Theorem 12.1 (Continuous mapping). Let X_n , X be random elements defined on a metric space S. Suppose a function $g: S \longrightarrow S$ (where S is another metric space) has the set of discontinuity points D_g such that $Pr[X \in D_g] = 0$. Then

$$X_n \rightsquigarrow X \Rightarrow g(X_n) \rightsquigarrow g(X);$$

 $X_n \stackrel{p}{\to} X \Rightarrow g(X_n) \stackrel{p}{\to} g(X);$
 $X_n \stackrel{as}{\to} X \Rightarrow g(X_n) \stackrel{as}{\to} g(X).$

Theorem 12.2. Let X_n and Y_n be random variables, then

1.
$$X_n \stackrel{as}{\to} X \implies X_n \stackrel{p}{\to} X$$

$$2. X_n \xrightarrow{L_r} X \Rightarrow X_n \xrightarrow{p} X$$

$$3. X_n \xrightarrow{p} X \Rightarrow X_n \rightsquigarrow X$$

4.
$$X_n \xrightarrow{p} c \Leftrightarrow X \leadsto c$$

5.
$$X_n \leadsto X$$
, $d(X_n, Y_n) \xrightarrow{p} 0 \implies Y_n \leadsto X$

6.
$$X_n \leadsto X, Y_n \xrightarrow{p} c \Rightarrow (X_n, Y_n) \leadsto (X, c)$$

7.
$$X_n \xrightarrow{p} X$$
, $Y_n \xrightarrow{p} Y \Rightarrow (X_n, Y_n) \xrightarrow{p} (X, Y)$, $X_n + Y_n \xrightarrow{p} X + Y$

Here we give some counter examples to illustrate theorem 12.2.

Example 12.2. Consider the probability space ([0,1], $B_{[0,1]}$, p). $B_{[0,1]}$ is σ -field of Borel set and p is Lebesgue measure. Let X=0, for any positive integer n, there exist integers m and k such that $n=2^m-2+k$ and $0 \le k \le 2^{m+1}$. Define

$$X_n(w) = \begin{cases} 1 & \frac{k}{2^m} \le w \le \frac{k+1}{2^m} \\ 0 & otherwise \end{cases}$$

So, we have

$$P(|X_n - X| \ge \varepsilon) \le P(\{w : \frac{k}{2^m} \le w \le \frac{k+1}{2^m}\})$$

$$= \frac{1}{2^m}$$

$$\to 0$$

That is, $X_n \xrightarrow{p} X$.

On the other hand, for any fixed $w \in [0,1]$ and m, there exist $k, 1 \le k \le 2^m$ such that $\frac{k-1}{2^m} \le w \le \frac{k}{2^m}$. So we have a sequence of $X_{n_m}(w) = 1$. So $X_n(w) \stackrel{as}{\to} X$ does **not** hold.

Example 12.3. Let X = 0, define

$$X_n(w) = \begin{cases} 0 & \frac{1}{n} < w \le 1\\ e^n & 0 \le w \le \frac{1}{n} \end{cases}$$

Then for any $\varepsilon \in (0,1)$,

$$P(|X_n - X| \ge \varepsilon) = P(|X_n| \ne 0) = \frac{1}{n} \to 0$$

That is, $X_n \xrightarrow{p} X$.

But for p > 0, $E|X_n - X|^p = E|X|^p = \frac{e^{np}}{n} \to \infty$. So $X_n \xrightarrow{p} X$ does **not** imply $X_n \xrightarrow{L_p} X$.

Example 12.4. Define

$$X(w) = \begin{cases} 1 & 0 \le w \le \frac{1}{2} \\ 0 & \frac{1}{2} < w \le 1 \end{cases}$$

and

$$X_n(w) = \begin{cases} 0 & 0 \le w \le \frac{1}{2} \\ 1 & \frac{1}{2} < w \le 1 \end{cases}$$

So for any t,

$$P(X < t) = P(X_n \le t) = \begin{cases} 0 & t \ge 1\\ \frac{1}{2} & 0 \le t < 1\\ 0 & t \le 0 \end{cases}$$

That is $X_n \rightsquigarrow X$. But $|X_n - X| = 1$, $d(|X_n - X| > \varepsilon) = 1$. So $X_n \rightsquigarrow X$ does **not** imply $X_n \xrightarrow{p} X$.

Example 12.5. Let $g(t) = 1 - \mathbf{1}_{\{0\}}(t)$, X = 0, $X_n = \frac{1}{n}$. Then $X_n \xrightarrow{p} X$. But $g(X_n) = 0$, g(X) = 1. So, $g(X_n) \xrightarrow{p} g(X)$ does **not** hold.

Lemma 12.2 (Slutsky's theorem). Let X_n , Y_n be sequences of random variables. If X_n converges in distribution to a random element X and Y_n converges in probability to a constant c, then

- 1. $X_n + Y_n \rightsquigarrow X + c$;
- 2. $X_nY_n \rightsquigarrow cX$:
- 3. $Y_n^{-1} X_n \leadsto c^{-1} X, c \neq 0$

Proposition 12.1. For all $t, x \ge 0$,

$$\lim_{\lambda \to \infty} e^{-\lambda t} \sum_{k \le \lambda x} \frac{(\lambda t)^k}{k!} = \mathbf{1}_{[0,x]}(t)$$

Proof. Assume $X \sim Possion(\lambda t)$, so the proposition is equal to

$$\lim_{\lambda \to \infty} P(X \le \lambda x) = \mathbf{1}_{[0,x]}(t)$$

We have $E(X) = \lambda t$, $Var(X) = \lambda t$. So for any $t \le x$,

$$P(X \le \lambda x) = P(X - \lambda t \le \lambda(x - t))$$

$$= 1 - P(X - \lambda t > \lambda(x - t))$$

$$\ge 1 - P(|X - \lambda t| > \lambda(x - t))$$

$$\ge 1 - \frac{\lambda t}{\lambda^2 (t - x)^2}$$

$$\to 1$$

for t > x,

$$P(X \le \lambda x) = P(\lambda t - X > \lambda(t - x))$$

$$\le P(|\lambda t - X| > \lambda(t - x))$$

$$\le \frac{\lambda t}{\lambda^2 (t - x)^2}$$

$$\to 0$$

So,

$$\lim_{\lambda \to \infty} P(X \le \lambda x) = \mathbf{1}_{[0,x]}(t)$$

Theorem 12.3. Let X_1, X_2, \cdots be iid samples. Let $\mu = E(X_n)$ and $\sigma^2 = Var(X_n)$. Define the sample average

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i,$$

then $\overline{X}_n \xrightarrow{p} \mu$.

Proof.

$$P(|\overline{X}_n - \mu| > \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2} \to 0$$

Theorem 12.4 (Central limit theorems). Let X_1, X_2, \dots, X_n be iid with mean μ and variance Σ . Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then

$$Z_n = \Sigma^{-\frac{1}{2}}(\overline{X} - \mu) \leadsto N(0, I)$$

Example 12.6 (t-statistic). Let X_1, X_2, \dots, X_n be iid with mean 0 and finite variance. The t-statistic $\frac{\sqrt{nX_n}}{S_n}$, where $S_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ is asymptotically standard normal.

Proof.

$$S_n^2 = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}_n^2 \right) \xrightarrow{p} E(X_i^2) - E(X_i)^2 = Var(X_i)$$

So, $S_n \xrightarrow{p} \sqrt{Var(X_i)}$, hence, $S_n \leadsto \sqrt{Var(X_i)}$. And $\sqrt{nX_n} \leadsto N(0, Var(X_i))$, according to Slutslay's lemma, $\frac{\sqrt{nX_n}}{S_n} \leadsto N(0, 1)$

Theorem 12.5 (The delta method). Suppose that X_n is a sequence of random variables such that $\sqrt{n}(X_n - \mu) \rightsquigarrow N(0, \Sigma)$.. Let $g: R^k \to R$ and let $\nabla g(y)$ denotes the gradient and ∇u denotes $\nabla g(y)$ evaluated at u. Assume that the elements of ∇u are nonzero. Then

$$\sqrt{n}(g(X_n) - g(\mu)) \rightsquigarrow N(0, \nabla u^T \Sigma \nabla u)$$

Theorem 12.6. Let ϕ be a map defined on a subset of R^k and differentiable at θ . Let T_n be random vectors taking their values in the domain of ϕ . If $r_n(T_n - \theta) \rightsquigarrow T$ for numbers $r_n \to \infty$, then $r_n(\phi(T_n) - \phi(\theta)) \rightsquigarrow \phi'_{\theta}(T)$. Moreover, the difference between $r_n(\phi(T_n) - \phi(\theta))$ and $\phi'_{\theta}(r_n(T_n - \theta))$ convergence to 0 with probability 1.