第二章: 深度学习反向传播

——优化论五部曲

Jason 博士

网易微专业 x 稀牛学院

人工智能数学基础微专业

回归与分类

神经网络

BP 算法

回归 VS 分类

- 给定训练样本集 $\{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}, \mathbf{x}_i \in \mathbb{R}^d$

- 回归: 预测的是连续值

- 分类: 预测的是离散值

- 二分类: $y_i \in \{0,1\}$

Sigmoid 函数

$$-y = \mathbf{w}^T \mathbf{x} + b$$

- 非线性映射 1

- 非线性映射 2

$$z = \begin{cases} 0 & y < 0 \\ 0.5 & y = 0 \\ 1 & y > 0 \end{cases}$$

$$z = \frac{1}{1 + e^{-y}}$$

S 函数求导 (课堂手推)

$$-\sigma(x) = \frac{1}{1+e^{-x}}$$
$$-\frac{1}{dx}\sigma(x) = \sigma(x) - \sigma(x)^2$$

回归与分类

神经网络

BP 算法

功能 (DL 例子)

神经元

- 激活函数
- 相互嵌套

切分原理

逻辑与

空间切分

切分原理

	ı	
Structure	Types of Decision Regions	Exclusive-OR Problem
Single-Layer	Half Plane Bounded By Hyper plane	A B A
Two-Layer	Convex Open Or Closed Regions	A B A
Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	A B A

回归与分类

神经网络

BP 算法

(Back Propagation, BP) 算法 (手推 1)

(Back Propagation, BP) 算法 (手推 2)

(Back Propagation, BP) 算法 (手推 3)

BP 算法数学描述总结

符号定义

- $-x_i^l$: 层 l 下的节点 j 的输入
- $w_{i,j}^l$: 从层 l-1 中的节点 i 到层 l 中的节点 j 这一段的权重
- $-\sigma(x) = \frac{1}{1+e^{-x}}$
- $-\theta_j^l$: 层 l 下的节点 j 的偏置
- O_j^l : 层 l 下的节点 j 的输出
- t_i: 目标值
- $-E = \frac{1}{2} \sum_{k \in K} (O_k t_k)^2$

BP(输出层)

- 目标是计算: $\frac{\partial E}{\partial w_{j,k}}$

- 具体计算

$$\frac{\partial E}{\partial w_{j,k}} = \frac{\partial}{\partial O_k} \frac{1}{2} \sum_{k \in K} (O_k - t_k)^2 \times \frac{\partial}{\partial x_k} O_k \times \frac{\partial}{\partial w_{j,k}} x_k$$

$$= (O_k - t_k) \times \frac{\partial}{\partial x_k} \sigma(x_k) \times O_j$$

$$= (O_k - t_k) \times \sigma(x_k) (1 - \sigma(x_k)) \times O_j$$

$$= (O_k - t_k) O_k (1 - O_k) O_j$$

$$\delta_k$$

BP(隐层)

- 目标是计算: $\frac{\partial E}{\partial w_{i,j}}$
- 具体计算

$$\frac{\partial E}{\partial w_{i,j}} = O_j (1 - O_j) O_i \sum_{k \in K} (O_k - t_k) O_k (1 - O_k) w_{j,k}$$

$$= O_i O_j (1 - O_j) \sum_{k \in K} \delta_k w_{j,k}$$

$$= O_i \delta_j$$

BP 总结

- 对于输出层节点 $k \in K$

$$\frac{\partial E}{\partial w_{j,k}} = O_j \delta_k$$

其中
$$\delta_k = (O_k - t_k) O_k (1 - O_k)$$

- 对于隐层节点 $j \in J$

$$\frac{\partial E}{\partial w_{i,j}} = O_i \delta_j$$

其中
$$\delta_j = O_j (1 - O_j) \sum_{k \in K} \delta_k w_{j,k}$$

回归与分类

神经网络

BP 算法

$$\frac{\partial e}{\partial a} = \frac{\partial e}{\partial c} \times \frac{\partial c}{\partial a}$$

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial c} \times \frac{\partial c}{\partial b} + \frac{\partial e}{\partial d} \times \frac{\partial d}{\partial b}$$

BP 案例演示

本章参考资料

- Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.
- Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
- Calculus on Computational Graphs: Backpropagation