5. Consider the cross section of a long rectangular bar as shown in Fig. 1 below. Internal energy is generated in the bar at a constant rate \dot{q} per unit volume. q_1'' and q_2'' are given constant heat fluxes out of and into the bar at x = a and x = b, respectively. The surfaces at x = 0 and y = 0 are perfectly insulated. The thermal conductivity of the material of the bar is constant. Find the relationship between q_1'', q_2'' and \dot{q} so that the temperature distribution T(x, y) can attain steady state. [5]

(Please Turn Over)

- 6. Consider a long solid cylinder of circular cross section with a radius r_0 . The surface of the cylinder at $r=r_0$ is held at an arbitrary temperature $f(\phi)$. There are no internal energy sources or sinks, and the thermo-physical properties of the material of the cylinder can be assumed to be constant. Determine the steady state temperature distribution $T(r,\phi)$ in the cylinder using separation of variables. [7]
- 7. Consider a plane wall of thickness L as shown in Fig. 2 below. This is initially kept at a temperature $T_i(x)$. The internal energy is generated in this wall at a rate of $\dot{q}(x,t)$ per unit volume for times $t \geq 0$. Also, heat is dissipated by convection from the surfaces at x = 0 and x = L into a surrounding medium whose temperature T_{∞} varies with time. The thermo-physical properties may be assumed to be constant and the heat transfer coefficients h_1 and h_2 are very large. Determine the unsteady-state temperature distribution T(x,t) in the wall using **method of integral transforms**. [7]
- 8. Consider steady state heat conduction in a long square slab $(2L \times 2L)$ as shown in Fig. 3 below. The internal energy is generated in the slab at a constant rate of \dot{q} per unit volume. All four sides are maintained at temperature T_{∞} . The thermal conductivity of the material of the slab is constant.
 - (a) Write down the governing energy equation and the boundary conditions for the system in non-dimensional forms. [2]
 - (b) Using **central difference approximation**, write down the finite-difference forms of the governing equation and the boundary conditions. [1+2]
 - (c) How will you handle the corner points?

[1]

5. Consider a rectangular fin with thickness (b) and length (L) as shown in Fig. 1. The width (W) of the fin is very large compared to its length (W >> L). The fin has to dissipate heat to the surroundings with heat transfer coefficient (h) and temperature (T_{∞}). The temperature at the fin base is (T_b) and the fin has an adiabatic tip. The profile area of the rectangular fin (A_P) is defined as $A_P = bL$ and thus there may be several shapes (various combinations of b and L) of the fin for the same profile area (A_P). For a given profile area, find the optimum thickness and length of the fin which removes maximum amount of heat per unit mass of the fin. [7]

Given: The following function f(x) has a maximum at x = 1.4192, where $\pi = 3.14$.

$$f(x) = \pi \frac{\tanh(x)}{x^{1/3}}$$

- 6. Consider a long solid cylinder of circular cross section with radius r_0 as shown in Fig. 2. The surface of the cylinder is held at an arbitrary temperature $f(\phi)$. There is no internal heat generation in the cylinder and thermo-physical properties of the cylinder may be assumed to be constant. Determine the steady-state temperature distribution $(T(r,\phi))_{in}$ the cylinder using Separation of Variables.
- 7. Consider a semi-infinite rectangular strip as shown in Fig. 3. The surface at x = 0 is perfectly insulated. The initial (t = 0) temperature distribution in the strip is given as $T_i(x,y)$. For times $t \ge 0$, the surface at x = L is kept at a temperature $T_1(y,t)$ and the surface at y = 0 is kept at a temperature $T_2(x,t)$. Both $T_i(x,y)$ and $T_1(y,t)$ vanish as $y \to \infty$. There is no internal heat generation in the strip and thermo-physical properties may be assumed to be constant. Determine the unsteady-state temperature distribution T(x,y,t) in the above semi-infinite rectangular strip for $t \ge 0$ using Fourier Transforms.

- 5. Consider the heat conduction in a rectangular bar as shown in cross-section in Fig. 1. Internal energy is generated in this bar at a constant rate \dot{q} per unit volume (W/m³). The boundary conditions are shown on the figure itself. There is no temperature gradient in z-direction and the thermo-physical properties of the material of the bar may be considered as constant. Determine the steady-state temperature distribution T(x,y) in the bar by
 - (a) Method of separation of variables [6]
 - (b) Method of finite Fourier transforms [6]
- 6. Consider a solid sphere of radius Γ_0 . The surface of the sphere is maintained at some arbitrary temperature distribution $f(\theta)$. There are no internal energy sources or sinks in the sphere and the thermo-physical properties of the material of the sphere may be considered as constant. Find the steady-state two dimensional temperature distribution $T(r,\theta)$ in the sphere using Fourier-Legendre series. [7]
- 7. Consider a long solid cylinder of semi-circular cross-section as shown in Fig. 2. The cylindrical surface at $r = r_0$ is maintained at some arbitrary temperature distribution $f(\phi)$. The planar surfaces at $\phi = 0$ and $\phi = \pi$ are both maintained at constant temperature T_0 . There are no internal energy sources or sinks in the cylinder and the thermo-physical properties of the material of the cylinder may be considered as constant. Find the steady-state two dimensional temperature distribution $T(r, \phi)$ in the cylinder using Hankel transforms. [6]

- 5. Consider the cross-section of a long rectangular bar (0 < x < a, 0 < y < b) made from a material with constant thermo-physical properties. Internal energy is generated at a constant rate Q per unit volume. The surfaces at (x = 0, y) and (x, y = 0) are insulated. A constant heat flux Q_1 leaves the surface at (x = a, y) and the surface at (x, y = b) receives a constant heat flux Q_2 .
 - (a) Determine the relationship among Q, Q_1 , and Q_2 at steady-state.
 - (b) Does the steady-state problem have a unique solution for T(x, y)? Justify. [2+2 = 4]
- 6. Consider a long solid cylinder of circular cross-section (Figure B1). The surface of the cylinder is held at an arbitrary temperature $f(\phi)$. There is no internal energy sources or sinks. Assuming constant thermo-physical properties, obtain an expression for the steady-state temperature distribution $T(r, \phi)$ in cylinder using **Separation of Variables Method**. [6] Given: In cylindrical coordinate system, the Laplacian of temperature T is

$$\nabla^2 T = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2}$$

Figure - B1

7. A one-dimensional slab of thickness 2L (extending from x = -L to x = L) is initially at a uniform temperature T_0 . For times $t \ge 0$, internal energy is generated in the slab at a rate $Q = Q_0\{1 + \beta(T - T_0)\}$

where Q_0 and β are given constants, while the surfaces at x = L and x = -L are maintained at the initial temperature T_0 . Assuming constant thermo-physical properties, obtain an expression for the unsteady-state temperature distribution T(x, t) in the slab for t > 0 using Finite Fourier Transform Method.