Performance Evaluation Project

Christmas shop

Authors: Chiara Caiazza, Gionatan Gallo, Lorenzo Biagini

Which shop structure to use?

United tills (checkout + gift wrap)

Separated tills (two queues for two services)

Objectives

- Do the two policies require the same number of tills?
- How the queuing time vary according to the policies
- What changes varying the workload
- Basic relations between factors
- Differences in using the uniform distribution instead of the exponential one
- Are separated tills fairer?

Different policy, different utilization

United tills policy In *united-tills*

Distribution = exponential N = 7

Separated tills policy

$$\frac{K=4}{AT}=15 \text{ s}$$

same service

utilization

same

How queuing time is affected by

Service time mean

- The higher the service time mean, the higher the OT
- The higher N, the lower \overline{QT}

Distribution = exponential *N* = 1

Number of tills

Service time mean = 105 s *Distribution* = exponential

Lowest N and K to have non saturated system

 Both the arrival time and p affect N and K

Peak hours

Non peak hours

Distribution = exponential/uniform

Queuing time varing N in both policies

The regression curves for the queuing time of separated-tills are always above the united-tills curves

How queuing time is affected by *K* and *p*

• Changing K at different p in order to have the minimum \overline{QT}

Distribution = exponential *Policy* = separated tills

 $\overline{AT} = 15 \text{ s}$

Queuing time varing N in both distribution

Using uniform random variables, rather than exponential ones, makes \overline{QT} be smaller

Policy = united tills

Separated tills policy is fairer

By allocating always 3 tills for checkout in separated-tills, those who only need to checkout do not experience longer queue

 \overline{AT} = 15 s *Distribution* = exponential

Conclusions

United-tills policy is better for:

- tills utilization
- distribution of the workload
- shorter queuing time mean, other factors being equal

With *separated-tills* policy it is possible to privilege a service: who does not need to wrap his/her good undergoes a much shorter queue (by allocating the right number of K tills) and this is good for the shop reputation.