CSE221

Lecture 12: Ordered Maps and Skip Lists

Hyungon Moon

Outline

- Ordered Maps
- Skip Lists

Search on Ordered Maps

- Entries are sorted (search table)
 - -To make indexing easier, arrays are typically used

Find(K): O(log n)

Comparing Map Implementations

Method	List	Hash Table	Search Table
size, empty	O(1)	O(1)	O(1)
find	O(n)	O(1) exp., $O(n)$ worst-case	$O(\log n)$
insert	O(1)	O(1)	O(n)
erase	O(n)	O(1) exp., $O(n)$ worst-case	O(n)

Skip List

- A skip list for a set **S** of distinct (key, value) items is a series of lists S_0 , S_1 ,, S_h such that
 - Each list S_i contains the special keys +∞ and -∞
 - List S_0 contains all the keys of **S** in nondecreasing order
 - Each list is a subsequence of the previous one

$$S_0 \supseteq S_1 \supseteq \supseteq S_h$$

– List S_h contains only two special keys

Properties

Search

- We search for a key x in a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare x with $y \leftarrow key(next(p))$
 - x = y: we return value(next(p))
 - x > y: we "scan forward"
 - *x* < *y*: we "drop down"
 - If we try to drop down past the bottom list, we return null

Example: search for 78

Insertion: What We Want

- About a half of items are promoted to next level
 - Purely driven by random events (e.g., coin tossing)
 - Height is approximately log n

Insertion

- To insert an entry (x, o) into a skip list:
 - We pick i through "randomized algorithm" such that its probability becomes $1/2^i$
 - E.g., getting i consecutive heads when tossing a coin
 - If $i \ge h$, we add new lists S_{h+1} , ..., S_{i+1} , each cointaining special keys
 - We find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each list $S_0, S_1,, S_i$
 - For $j \leftarrow 0, ..., i$, we insert item (x, o) into list S_j after position p_j

Example: insert key 15, with i = 2

Deletion

- To remove an entry with key x from a skip list:
 - —We find the positions p_0 , p_1 , ..., p_i of the items with key x, where position p_i is in list S_i
 - —We remove positions $p_0, p_1, ..., p_i$ from the lists $S_0, S_1,, S_i$
 - We remove all but one list containing only special keys

Example: remove key 34

Implementation

- Uses quad-node
 - -entry
 - -Links to four nodes
 - (prev, next, below, above)
- Also, we define special keys (+∞ & -∞) and modify the key comparator to handle them

Space Usage

- Two probability facts:
 - 1) Getting i consecutive heads when tossing a coin: $1/2^{i}$
 - 2) If each of *n* entries is present in a set with probability *p*, the expected size of the set is *np*
- Consider a skip list with n entries
 - -By 1) and 2), the expected size of list S_i is $n/2^i$
- The number of nodes used by the skip list is

$$\sum_{i=0}^{h} \frac{n}{2^{i}} = n \sum_{i=0}^{h} \frac{1}{2^{i}} < 2n$$

Expected space usage: O(n)

Search and Update Times

- The search time in a skip list is proportional to
 - 1) The number of drop-down steps, plus
 - Bounded by the height: known as O(log n) with high prob.
 - 2) The number of scan-forward steps
- To analyze 2), we use this probability fact:
 - —The expected number of coin tosses required to get tails is 2

Search and Update Times

- Analyzing the scan-forward steps:
 - A scan-forward step is associated with a former coin toss that gave tails
 - In each list, the expected number of scan-forward steps is 2
 - The expected number of scan-forward steps is O(log n)
- Conclusion on search time:
 - -By 1) plus 2), a search in a skip list takes O(log n)
 - Insertion and deletion give similar results

Comparison

Method	List	Hash Table	Ordered List	Skip List
size, empty	O(1)	O(1)	O(1)	O(1)
find	O(n)	O(1)/O(n)	O(log n)	O(log n)/O(n)
insert	O(1)	O(1)	O(n)	O(log n)/O(n)
erase	O(n)	O(1)/O(n)	O(n)	O(log n)/O(n)

Expected/Worst

Questions?

