CSE508 Information Retrieval

Winter 2024

Assignment-3

Konam Akhil Vamshi

2020513

Considerations:

- I used "Charging cable" as a product for the assignment.
- Merged two datasets, 'reviews' and 'metadata' on the asin column.
- Used TfidfVectorizer to model review text.
- Generated acronym dictionary from Chatgpt

Preprocessing:

- Dropped null values.
- Dropped duplicate rows.

Total number of rows for the product:

```
Total number of rows for 'Charging cables': 19456
```

Descriptive Statistics of the Product:

```
Number of Reviews: 19456
Average Rating Score: 4.20
Number of Unique Products: 439
Number of Good Ratings: 16541
Number of Bad Ratings: 2915
Number of Reviews corresponding to each Rating:
overall
1
      1923
2
      992
3
      1220
4
      2410
     12911
dtype: int64
```

Preprocessing:

```
import unicodedata
    from nltk.stem import WordNetLemmatizer
   from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
charging_cable_acronyms = {
    "USB': 'Universal Serial Bus', 'USB-C': 'Universal Serial Bus Type C', 'USB-A': 'Universal Serial Bus Type A',
    "USB Power Delivery', 'PD': 'Power Delivery', 'mAh': 'Milliamp Hour', 'A': 'Ampere',
    "USB Power Delivery', 'PD': 'Power Delivery', 'mAh': 'Milliamp Hour', 'A': 'Ampere',
    "USB Power Delivery', 'PD': 'Power Delivery', 'mAh': 'Milliamp Hour', 'A': 'Ampere',
    "USB Power Delivery', 'PD': 'Power Delivery', 'mAh': 'Milliamp Hour', 'A': 'Ampere',
    "USB Power Delivery', 'PD': 'Power Delivery', 'mAh': 'Milliamp Hour', 'A': 'Ampere',
    "USB Power Delivery', 'PD': 'Power Delivery', 'mAh': 'Milliamp Hour', 'A': 'Ampere',
    "USB Power Delivery', 'PD': 'Disect Current', 'NET': 'Nade For IPNone/iPad',
    'AWC': 'Alternating Current', 'PDC': 'Direct Current', 'NET': 'Made For IPNone/iPad',
    'AWC': 'American Mire Gauge', 'HOMI': 'High Definition Multimedia Interface', 'DP': 'DisplayPort',
    'TB': 'Thunderbolt', 'PVC': 'Polyvinyl Chloride', 'TPE': 'Thermoplastic Elastomer',
    'TB': 'Internet of Things', 'SSC': 'Single Board Computer', 'CE': 'Conformité Européenne',
    'FCC': 'Federal Communications Commission', 'U!: 'Underwriters Laboratories', 'ROHS': 'Restriction of Hazardous Substances',
    'PSE: 'Product Safety Electrical Appliance & Material', 'BSM': 'Bureau of Standards, Metrology and Inspection',
    'KCC: 'Korea Certification Commission', 'SAM': 'Standards Association of Australian Certification Mark for Electromagnetic Compatibility',
    'GFCI': 'Ground Fault Circuit Interrupter', 'MOSFET': 'Metal Oxide Semiconductor Field Effect Transistor',
    'PCB: 'Printed Circuit Board', 'SMD': 'Sunface Mount Device', 'DIP': 'Dual In-line Package',
    'ST': 'Bluetooth', 'RF': 'Nadio Frequency', 'IC': 'Integrated Circuit', 'ESD': 'Electrostatic Discharge',
    'FOM: 'Figure of Merit', 'PDTC': 'Polymeric Positive Temperature Protection',
    'OCP: 'Sont Circuit Protection', 'OTPM: 'Dual Rolapower Data Management', 'DNP: 'Dual Role Power',
    'Du': 'Data 
   lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
    def expand acronyms(text, acronym dict):
                 words = word_tokenize(text)
                 expanded_words = [scronym_dict.get(word, word) for word in words]
return ' '.join(expanded_words)
                 text = BeautifulSoup(text, "html.parser").get_text()
                 text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('utf-8', 'ignore')
                text = ' '.join([lemmatizer.lemmatize(word) for word in text.split() if word not in stop_words])
                return text.lower()
    df_reviews_headphones['processed_reviewText'] = df_reviews_headphones['reviewText'].apply(preprocess_text)
```

EDA:

Top 20 most reviewed	brands:	Top 20 least reviewed brands:	
brand	Di dilasi	brand	
iTEKIRO	220	Everus	1
UPBRIGHT	59	Shenzhen TOZ Technology co., LTD	1
HQRP	29	Acasis	1
Live2Pedal	28	Equinux	1
NiceTQ	27	LANSUNS	1
ReadyPlug	27	Voroar	1
Life-Tech	25	CJRSLRB	1
Conwork	23	enKo Products	1
Generic	22	Fully	1
ANiceS	21	LEPOWER	1
Super Power Supply	20	Motorola FRS	1
Forton Binot	17	KssFire	1
Factory Direct	17	CTYRZCH	1
CoverON	16	Bodelin	1
Cabepow	14 14	amovee	1
MyNetDeals WILLTOP	14 14	KaLaiXing	1
ALPHA TECH	13	Comkia	1
TUSITA	13	MISSJIRA	1
iTKEIRO	13	Aplusphone	1
Name: count, dtype:		SZ	1
namer courte, acype.	111004	Name: count, dtype: int64	

```
Count of ratings for the product over 5 consecutive years:
    year
2014    2496
2015    5059
2016    6373
2017    3279
2018    1105
dtype: int64
```

```
Most positively reviewed Charging Cable ASIN and average rating:
overall
asin
B0173MPK80 5.0
```

For Bad Ratings:

- The word "charge" is quite prominent, suggesting issues with charging capabilities.
- "Phone" and "cable" also stand out, which may indicate problems with phone cables.
- Words like "stopped," "broke," "cheap," and "return" suggest dissatisfaction with product durability, quality, and perhaps a desire to return the product.
- "Work" and "worked" alongside negative terms suggest that the products often failed to work as expected.

For Good Ratings:

- Positive words like "great," "good," "works," "nice," and "perfect" indicate satisfaction with the products.
- "Charge" and "charging" appear here as well but in a positive light, suggesting successful charging experiences.
- "Phone" and "device" are visible, which could mean that the items in question are related to phone or device accessories or usage.
- The presence of "fit" and "well made" implies that customers found the products to be of a good fit and well-crafted.

Word Cloud for Bad Ratings

Distribution of Ratings vs. the Number of Reviews

Year with maximum reviews: 2016

Year with the highest number of customers: 2016

Performance of models:

Model: Logistic Regression						
		precision	recall	f1-score	support	
	Average	0.47	0.24	0.31	313	
	Bad	0.74	0.71	0.73	640	
	Good	0.92	0.97	0.94	3911	
	accuracy			0.89	4864	
	macro avg	0.71	0.64	0.66	4864	
	weighted avg	0.87	0.89	0.88	4864	

Model: K-Near	rest Neighbor precision	recall	f1-score	support
Average Bad Good	0.35 0.62 0.86	0.06 0.35 0.97	0.10 0.45 0.91	313 640 3911
accuracy macro avg weighted avg	0.61 0.79	0.46 0.83	0.83 0.49 0.80	4864 4864 4864

Model: Linear	SVM precision	recall	f1-score	support
Average Bad Good	0.44 0.73 0.93	0.27 0.74 0.95	0.33 0.74 0.94	313 640 3911
accuracy macro avg weighted avg	0.70 0.87	0.66 0.88	0.88 0.67 0.88	4864 4864 4864

Model: Naive Bayes						
	precision	recall	f1-score	support		
Average	0.21	0.03	0.05	313		
Bad	0.72	0.65	0.68	640		
Good	0.89	0.97	0.93	3911		
accuracy			0.87	4864		
macro avg	0.61	0.55	0.55	4864		
weighted avg	0.83	0.87	0.84	4864		

Model: Decision Tree						
	precision	recall	f1-score	support		
Average	0.44	0.02	0.04	313		
Bad	0.63	0.41	0.50	640		
Good	0.86	0.97	0.91	3911		
accuracy			0.84	4864		
macro avg	0.64	0.47	0.48	4864		
weighted avg	0.80	0.84	0.80	4864		

- All models perform best at identifying 'Good' ratings, likely due to a larger number of examples to learn from.
- 'Average' ratings are consistently the hardest to predict for all models, indicating a challenge in distinguishing moderate sentiments.
- 'Bad' ratings are easier for models to identify than 'Average', hinting at more distinct linguistic features in negative reviews.
- Class imbalance impacts performance, with models favoring the majority 'Good' class and performing poorly on the minority classes.
- The macro average scores are lower than weighted averages, revealing that models are not as effective when classes are evenly considered.

Collaborative filtering:

User-User:

MAE for 10 neighbors: 0.24447957718442326 MAE for 20 neighbors: 0.24344435465172745 MAE for 30 neighbors: 0.2430754553426476 MAE for 40 neighbors: 0.2436431699374561 MAE for 50 neighbors: 0.24408568254043855

Item-Item:

MAE for 10 neighbors (Item-Item CF): 0.017511671335200745 MAE for 20 neighbors (Item-Item CF): 0.01737878096975224 MAE for 30 neighbors (Item-Item CF): 0.01737878096975224 MAE for 40 neighbors (Item-Item CF): 0.01737878096975224 MAE for 50 neighbors (Item-Item CF): 0.01737878096975224

Top 10	Product	s by	User	Sum	Ratings:
asin					
B00R1EP	PGRA	1239	6.5		
B00TIT3	KYC	11978	8.0		
B0177MQ	MC8	2099	9.0		
B00MY05	GNA	192	1.0		
B00SVNG	КЈ8	1860	0.0		
B01DNTW	IGYM	1192	2.0		
B01ANLA	\60U	104	1.0		
B0177L6	A40	982	2.0		
вознстз	IGCU	93!	5.0		
B01FVUH	W1I	838	8.5		