

Omtentamen i IE1204/5 Digital Design med lösningar Torsdag 13/3 2014 9.00-13.00

Allmän information

Examinator: Ingo Sander.

Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista IE1204),

Fredrik Jonsson, tel 08-790 4169 (Kista IE1205),

Tentamensuppgifterna behöver inte återlämnas när du lämnar in din skrivning.

Hjälpmedel: Inga hjälpmedel är tillåtna!

Tentamen består av tre delar med sammanlagt 12 uppgifter, och totalt 30 poäng:

Del A1 (Analys) innehåller åtta korta uppgifter. Rätt besvarad uppgift ger för sex av uppgifterna en poäng och för två av uppgifterna två poäng. Felaktig besvarad ger 0 poäng. Det totala antalet poäng i del A1 är **10 poäng**. För **godkänt på del A1 krävs minst 6p**, *är det färre poäng rättar vi inte vidare*.

Del A2 (**Konstruktionsmetodik**) innehåller två metodikuppgifter om totalt **10 poäng**. För att bli **godkänd på tentamen** krävs **minst 11 poäng** från A1+A2, *är det färre poäng rättar vi inte vidare*.

Del B (Designproblem) innehåller två friare designuppgifter om totalt **10 poäng**. Del B rättas bara om det finns minst 11p från tentamens A-del.

OBS! I slutet av tentamenshäftet finns ett inlämningsblad för del A1, som kan avskiljas för att lämnas in tillsammans med lösningarna för del A2 och del B.

För ett godkänt betyg (**E**) krävs **minst 11 poäng på hela tentamen**.

Betyg ges enligt följande:

0 –	11 –	16 –	19 –	22 –	25	
F	Е	D	C	В	A	

Resultatet beräknas meddelas före måndagen den 14/4 2014.

Del A1: Analysuppgifter

Endast svar krävs på uppgifterna i del A1. Lämna svaren på inlämningsbladet för del A1 som du hittar på sista sidan av tentahäftet.

1. 1p/0p

En funktion f(x, y, z) beskrivs med hjälp av ekvationen:

$$f(x, y, z) = x y z + x \overline{y} z + x(y \overline{z} + \overline{y} \overline{z})$$

Ange funktionen som minimal summa av produkter.

$$f(x, y, z) = \{SoP\}_{min} = ?$$

1. Lösningsförslag

$$f = xyz + xyz + x(yz + yz) = xz(y + y) + xz(y + y) = xz + xz = x(z + z) = x$$

2. 2p/1p/0p

Två 4-bitstal adderas med en 4-bits heladderare av typen 74283.

- a) Vid vilket värde på a blir signalen alarm = 1? Ange svaret som decimaltal, med basen 10.
- b) Vilket är det största värde \mathbf{a} kan anta *innan* c_{out} blir = 1? Ange svaret som decimaltal, med basen 10.

2. Lösningsförslag

a)
$$S = 0101_2 = 5_{10}$$
 $5 = 3 + a \implies a = 2$

b)
$$S = a + b + C_{in}$$
 $C_{in} = 0$ $b = 3$ $C_{out} = 1$ \Rightarrow $a + b \ge 16$ \Rightarrow $C_{out} = 0$ $a < 13$

3. 1p/0p

Givet är ett Karnaughdiagram för en funktion av fyra variabler $y = f(x_3, x_2, x_1, x_0)$. Ange funktionen som **minimerad** produkt av summor, PoS form. "-" i diagramet står för "don't care".

	x ₁ x ₀										
		00	01	11	10						
X ₃	0	0	1	ı	•						
^2	0	1	1	1	ı						
	1	ı	1	0	1						
	1	0	1	1	0						

3. Lösningsförslag

$$y = (x_2 + x_0)(\bar{x}_3 + \bar{x}_2 + \bar{x}_1 + \bar{x}_0)$$

2

4. 2p/1p/0p

Figuren visar ett grindnät bestående av två eller-grindar och en inverterare.

- a) Ange den logiska funktion q = f(x,y,z) som realiseras av kretsen. Du behöver inte minimera svaret.
- b) denna figur visar ett **annat** grindnät med en inverterare och en eller-grind. Rita om detta grindnät så att samma logiska funktion realiseras med *enbart* 2 ingångars NAND grindar.

4. Lösningsförslag

$$q = \overline{(x+y)} + z = \overline{x} \cdot \overline{y} + z$$

Bubbelekvivalenter

5. 1p/0p

Ange den logiska funktion som realiseras av CMOS kretsen i figuren.

5. Lösningsförslag

$$q = a\overline{b} = \overline{a} + b$$

6. 1p/0p

Sekvensnätet startar i tillståndet $q_0=q_1=0$. Analysera kretsen och fyll i utsignalen Q i tidsdiagrammet.

6. Lösningsförslag

7. 1p/0p

Figuren visar tre olika tillståndsmaskiner. Ange vilken tillståndsmaskin (A, B eller C) som kan operera vid högst klockfrekvens. Markera den kritiska vägen (den väg som begränsar klockfrekvensen) i denna figur samt beräkna periodtiden *T* för klocksignalen Clk.

 $t_{AND} = 0.4 \text{ ns}, t_{OR} = 0.4 \text{ ns}, t_{NOT} = 0.1 \text{ ns}, t_{setup} = 0.3 \text{ ns}, t_{dq} = 0.4 \text{ns}$

7. Lösningsförslag

$$T = T_{OR} + T_{setup} + T_{dq} = 0.4 + 0.3 + 0.4 = 1.1 \text{ ns}$$

8. 1p/0p

Vilken logisk grind motsvarar följande VHDL kod? (a, b och q är 1-bitars standard logik signaler).

```
if(a = b) then
  q <= '1';
else
  q <= '0';
end if;</pre>
```

```
8. Lösningsförslag
```

```
q = \overline{a \oplus b} XNOR
```

Del A2: Konstruktionsmetodik

Observera! Del A2 rättas endast om Du är godkänd på del A1

9. (5p) VU meter. En "Volume Unit" (VU) mätare representerar grafiskt signalnivån i en audioutrustning. I detta projekt skall en display som representerar ljudnivån med hjälp at 13 indikatorer användas. Ljudnivån **x** kommer från en signalprocessor som ett 4 bitars binärt positivt heltal.

Din uppgift är att konstruera en avkodare som tänder rätt antal indikatorer beroende på signalnivån. När $\mathbf{x} = 0_{10}$ skall ingen indikator vara tänd, när nivån är $\mathbf{x} = 3_{10}$ skall de tre första indikatorerna tändas (utgång y_1 , y_2 och $y_3 = 1$, övriga 0), när nivån är 13 skall alla indikatorer vara tända osv. Insignaler större än 13 är inte definierade.

- a) (1p) Ställ upp sanningstabellen y_{13} y_{12} y_{11} y_{10} y_9 y_8 y_7 y_6 y_5 y_4 y_3 y_2 $y_1 = f(x_3, x_2, x_1, x_0)$. Använd don't care.
- b) (2p) Minimiera funktionerna y₄, y₇ och y₁₁ och uttryck som summa av produkter (SoP) Använd don't care.
- c) (1p) Rita kretsens schema för utgång y₄, implementerad med hjälp av en två ingångars MUX.
- d) (1p) Man kan minska antalet grindar genom att använda fler nivå logik och kombinera delresultat från olika utgångar. Ge ett förslag på och rita grindnät för utgång y₇ och y₁₁ realiserat med färre antal grindar än om utgångarna implementerats som SoP.

9. Lösningsförslag a b c d

						Utg	gång	y				_			$y_4 = x_0 x_0$
x	$x_3 x_2 x_1 x_0$	1	2	3	4	5	6	7	8	9	10	11	12	13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	00 0 0 0
1	0001	1	0	0	0	0	0	0	0	0	0	0	0	0	01 1 1 1
2	0010	1	1	0	0	0	0	0	0	0	0	0	0	0	$y_4 = x_3 + x_2$
3	0011	1	1	1	0	0	0	0	0	0	0	0	0	0	10 1 1 1
4	0100	1	1	1	1	0	0	0	0	0	0	0	0	0	$y_7 = x_0 x_0$
5	0101	1	1	1	1	1	0	0	0	0	0	0	0	0	~~~~
6	0110	1	1	1	1	1	1	0	0	0	0	0	0	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7	0111	1	1	1	1	1	1	1	0	0	0	0	0	0	01 0 0 1 0
8	1000	1	1	1	1	1	1	1	1	0	0	0	0	0	$y_7 = x_2 x_1 x_0 + x_3$
9	1001	1	1	1	1	1	1	1	1	1	0	0	0	0	10 1 1 1
10	1010	1	1	1	1	1	1	1	1	1	1	0	0	0	12
11	1011	1	1	1	1	1	1	1	1	1	1	1	0	0	y_{11} x_1x_0 x_2x_1 00 01 11 10
12	1100	1	1	1	1	1	1	1	1	1	1	1	1	0	x_3x_2 00 01 11 10 00 00 0 0
13	1101	1	1	1	1	1	1	1	1	1	1	1	1	1	01 0 0 0 0
14	1110	_	_	_	_	-	_	-	_	_	_	-	-	_	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
15	1111	-	_	_	-	-	_	-	-	_	_	-	-	_	10 0 0 1 0
					_			_	•			_			
1	_1]]	v ₄ =	= x ₂	₃ +	x_2									x_1x_0
x_2	 − 0		_						V_7	= 1	$x_2 x_1$	x_0	+ <i>x</i>	3	^2
4															$= x_3(x_1x_0 + x_2)$ x_3
								-	11		1- د	U		2 د	U R V
x_3															≥1 → 🐧 🥕

10. (5p) 3/4 räknande sekvensnät. Ett synkront sekvensnät, som kan räkna antingen 3 eller 4 pulser, är implementerat som en synkron tillståndsmaskin med tillståndsdiagram enligt figur. En insignal \mathbf{w} styr om räknaren skall räkna med 3 (\mathbf{w} = '0') eller 4 (\mathbf{w} = '1'). En utgång \mathbf{z} indikerar när önskat antal pulser har detekterats.

Diagram och kodning uppgift 10 a, b och c

Diagram uppgift 10 d

- a) (1p) Ställ upp den kodade tillståndstabellen $q_1^+q_0^+ = f(q_1, q_0, w)$
- b) (2p) Tag fram minimerade funktioner för nästa tillstånd och för utsignalen: $q_1^+=f(q_1,\,q_0,\,w)$ $q_0^+=f(q_1,\,q_0,\,w)$ $z=f(q_1,\,q_0)$
- c) (1p) Realisera räknaren med D-vippor och valfria grindar. Rita ett fullständigt schema över kretsen.
- d) (1p) Ett **annat** synkront sekvensnät har tillståndsdiagram enligt figuren till höger. Minimera antalet tillstånd och rita tillståndsdiagrammet över det tillståndsminimerade sekvensnätet.

10. Lösningsförslag

Del B. Designproblem

Observera! Del B rättas endast om Du har mer än 11p på del A1+A2.

A

11. (4p) Kalibreringskrets.

En kalibreringskrets för en oscillator är implementerad som en synkron Moore automat. Kretsen har två insignaler faster och slower och en tvåbitars binärkodad utsignal tune (tune₁,tune₀) som styr frekvensen hos en oscillator. Tillståndsmaskinen klockas av en klocksignal clk.

Signalen **slower** = '1' indikerar när frekvensen hos oscillatorn är för låg. Värdet på **tune** skall i detta fall räknas upp ett steg vid nästa klockpuls.

Signalen **faster** = '1' indikerar att frekvensen hos oscillatorn är för hög. Värdet på **tune** skall i detta fall räknas ned ett steg vid nästa klockpuls.

Om **faster** och **slower** = '0' eller om **tune** nått sitt max- eller min-värde skall utsignalen behålla sitt värde. Signalerna **faster** och **slower** kan *inte* bli '1' samtidigt.

Rita automatens tillståndsdiagram, tillståndstabell och välj lämplig tillståndskodning. Teckna minimerade uttryck för nästa tillstånd. Du behöver *inte* rita grindnäten för tillståndsmaskinen.

11. Lösningsförslag

$$\begin{array}{c|ccccc} q_1^+q_0^+ & s\,f & \\ \hline & 00 & 01 & 11 & 10 \\ 00 & 00 & 00 & - & 01 \\ 01 & 01 & 00 & - & 10 \\ 11 & 11 & 10 & - & 11 \\ 10 & 01 & - & 11 \\ \end{array}$$

9	/ ₁	Sj	f			
	00	01	11	10		
00	0	0	_	0		
01	0	0	<u> </u>	1		
11	1	1	_			
10	1	0	_	1		

$$q_{1}^{+} = q_{1}\overline{f} + q_{1}q_{0} + q_{0}s$$
 $q_{0}^{+} = q_{0}\overline{s}\overline{f} + q_{1}q_{0}f + q_{0}s + q_{1}s$
 $tune_{1} = q_{1}$ $tune_{0} = q_{0}$

12. (6p) Flanktriggad SR-latch.

Konstruera en flanktriggad SR-latch med hjälp av ett asynkront sekvensnät. Kretsen skall sätta utgången $\mathbf Q$ till '1' vid positiv flank på $\mathbf S$ ingången, sätta $\mathbf Q =$ '0' på positiv flank på $\mathbf R$ ingången, och hålla utsignalen $\mathbf Q$ oförändrad vid övriga insignaler. Exempel på en möjlig in- och ut-sekvens är illustrerade i tidsdiagrammet nedan.

Tidsdiagram önskad funktion

Svaret ska innehålla ett tillståndsdiagram, vid behov minimerad, flödestabell, och en lämplig tillståndstilldelning med en exitations-tabell som ger kapplöpningsfria nät. Du skall även ta fram de hasardfria uttrycken för nästa tillstånd samt ett uttryck för utgångsvärdet, men Du behöver *inte* rita grindnäten.

Ledning: Man kan intuitivt komma fram till en lösning med fyra tillstånd.

12. Lösningsförslag

Problem: För att hantera övergångarna mellan mellan A&C och behålla Hamming distance = 1 i tillståndskodningen måste övergångstillstånd introduceras.

Idé: Vi kan använda tillstånd E&H som *icke stabila övergångstillstånd* för SR=10 respektive SR=01.

Inlämningsblad för del A Blad 1

(tas loss och lämnas in tillsammans med lösningarna för del A2 och del B)

Efternamn:	 Förnamn:
Personnummer:	

Skriv	in dina svar för uppgifterna från del A1 (1 till 8)
Fråga	Svar
1	$f(x, y, z) = \{SoP\}_{min} = ?$
2	a) a = b) a =
3	$f(x_3, x_2, x_1, x_0) = \{PoS\}_{min} =$
4	a) q(x, y, z) =b) annan krets med 2-ingångars NAND-grindar
5	q(a, b) =
6	CIK JUJUJUJUJUJUJUJU
7	Högst klockfrekvens A,B,C? T [ns] =
8	q(a, b) =

Nedanstående del fylls i av examinatorn!

Del A1	Del A2		Del B	Totalt		
Poäng	9	10	11	12	Summa	Betyg