Mecánica Clásica - 2do. cuatrimestre de 2020

Guía 6: Ecuaciones de Hamilton, transformaciones canónicas. Hamilton–Jacobi.

- 1. Escriba el hamiltoniano, las ecuaciones de Hamilton y construya los diagramas de fases para:
 - (a) Un oscilador armónico tridimensional (no necesariamente isótropo). Utilizar coordenadas cartesianas. Resuelva las ecuaciones.
 - (b) Una partícula en un potencial central U(r). Halle constantes de movimiento. Suponga en particular que U(r) = -k/r y discuta las órbitas posibles.
 - (c) Un trompo simétrico con un punto fijo en un campo gravitatorio uniforme. Halle constantes de movimiento.
 - (d) Un trompo simétrico que se mueve libremente (sin gravedad).
 - (e) Una máquina de Atwood, considerando los casos en que la polea, de radio R, tiene masa cero o masa M.
- 2. Escriba y resuelva las ecuaciones de Hamilton para un oscilador armónico tridimensional isótropo en coordenadas cilíndricas y esféricas. Construya los correspondientes diagramas de fases.
- 3. Una partícula en un campo gravitatorio uniforme se mueve sobre la superficie de una esfera centrada en el origen. El radio de la esfera varía en el tiempo: r=r(t), donde r(t) es una función conocida. Obtenga el hamiltoniano y las ecuaciones canónicas. Discuta la conservación de la energía. ¿Es el hamiltoniano igual a la energía total?
- 4. Considere una partícula moviéndose en un plano bajo la influencia del potencial generalizado $V=\frac{1}{r}(1+\dot{r}^2)$, donde r es la distancia al origen. Encuentre los momentos generalizados p_r y p_θ , y el hamiltoniano. Obtenga las ecuaciones canónicas y muestre que el impulso angular se conserva. ¿Se conserva H? ¿Es H=E? Reduzca el problema para r a una ecuación diferencial de primer orden.
- 5. Escriba y resuelva las ecuaciones de Hamilton para una partícula cargada en un campo magnético uniforme y constante \mathbf{B} , en la dirección \hat{z} . Tome $\mathbf{A} = Bx\hat{y}$ y recuerde que el potencial generalizado es $U = -(q/c)\mathbf{v} \cdot \mathbf{A}$.
 - (a) Resuelva de nuevo el problema eligiendo ahora $\mathbf{A} = \frac{1}{2}\mathbf{B} \times \mathbf{r}$.
- 6. Un sistema consiste en dos masas puntuales m_1 y m_2 que interactúan con un potencial $V(|\mathbf{r}_1 \mathbf{r}_2|)$. Muestre que su hamiltoniano puede escribirse como $H = H_{\rm cm} + H_{\rm rel}$, con

$$H_{\rm cm} = \frac{P_{\rm cm}^2}{2M}$$
 $H_{\rm rel} = \frac{p_{\rm rel}^2}{2\mu} + V(r) + \frac{L^2}{2\mu r^2}$

donde: $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$, $\mu = m_1 m_2/(m_1 + m_2)$ es la masa reducida del sistema, $M = m_1 + m_2$, \mathbf{L} es el momento angular total y $p_{\rm rel}$ es el momento canónicamente conjugado de r.

1

7. Demuestre que la transformación

$$x = \frac{1}{\sqrt{m\omega}} (\sqrt{2p_1} \sin q_1 + p_2)$$

$$p_x = \frac{\sqrt{m\omega}}{2} (\sqrt{2p_1} \cos q_1 - q_2)$$

$$y = \frac{1}{\sqrt{m\omega}} (\sqrt{2p_1} \cos q_1 + q_2)$$

$$p_y = \frac{\sqrt{m\omega}}{2} (-\sqrt{2p_1} \sin q_1 + p_2),$$

donde $\omega=qB/mc$, es canónica y úsela para encontrar una solución alternativa del Problema 5.

- 8. Considere los siguientes puntos
 - (a) Pruebe que si se hace una transformación canónica de (q, p) a (Q, P) se tiene:

$$\begin{split} \frac{\partial q_i}{\partial Q_j} &= \quad \frac{\partial P_j}{\partial p_i} & \qquad \frac{\partial q_i}{\partial P_j} &= -\frac{\partial Q_j}{\partial p_i} \\ \frac{\partial p_i}{\partial Q_j} &= -\frac{\partial P_j}{\partial q_i} & \qquad \frac{\partial p_i}{\partial P_j} &= \quad \frac{\partial Q_j}{\partial q_i}. \end{split}$$

- (b) Considere un oscilador unidimensional de hamiltoniano $H=p^2/2m+(k/2)q$. Muestre que la transformación $Q=\ln(\frac{\sin p}{q})$, $P=q\cot p$ es canónica, y determine las funciones generatrices $F_1(q,Q)$ y $F_2(q,P)$.
- 9. Considere un oscilador bidimensional con hamiltoniano

$$H(p,q) = \frac{p_x^2 + p_y^2}{2m} + \frac{m\omega^2}{2}(x^2 + y^2).$$

Muestre que la transformación que sigue es canónica y halle el nuevo hamiltoniano H'(P,Q) y las correspondientes ecuaciones de Hamilton:

$$x = X \cos \lambda + \frac{P_y \sin \lambda}{m\omega}$$

$$p_x = -m\omega Y \sin \lambda + P_x \cos \lambda$$

$$y = Y \cos \lambda + \frac{P_x \sin \lambda}{m\omega}$$

$$p_y = -m\omega X \sin \lambda + P_y \cos \lambda.$$

Describa además el movimiento del oscilador bidimensional cuando $y=p_y=0$ en t=0.

10. Demuestre las siguientes propiedades de los corchetes de Poisson, siendo f, g, h funciones arbitrarias de $p_i, q_i; F(f)$ es una función de f y c es una constante.

(a)
$$[f,c]=0$$
; $[f,f]=0$; $[f,g]+[g,f]=0$; $[f+g,h]=[f,h]+[g,h]$; $[fg,h]=f[g,h]+[f,h]g$; $\frac{\partial}{\partial t}[f,g]=[\frac{\partial f}{\partial t},g]+[f,\frac{\partial g}{\partial t}]$; $[f,[g,h]]+[g,[h,f]]+[h,[f,g]]=0$; $[f,F(f)]=0$

(b)
$$[q_i, q_j] = [p_i, p_j] = 0; [q_i, p_j] = \delta_{ij}; [f, q_i] = -\frac{\partial f}{\partial p_i}; [f, p_i] = \frac{\partial f}{\partial q_i}$$

(c)
$$[f,g^n] = ng^{n-1}[f,g]; [g,F(f)] = F'(f)[g,f]$$

- 11. Analizar los siguientes puntos:
 - (a) ¿Bajo qué condiciones pueden ser H y L^2 simultáneamente variables canónicas? Ídem para H y L_z .

2

- (b) ¿Pueden ser L_x y L_y simultáneamente variables canónicas? Ídem para L_x y L^2 .
- (c) ¿Se modifica el elemento de volumen en el espacio de las fases en una transformación canónica?

12. Considere los siguientes puntos:

- (a) Demuestre que $\frac{df}{dt} = [f, H] + \frac{\partial f}{\partial t}$. ¿Qué obtiene para $f = q_i$ y $f = p_i$? Si f no depende explícitamente del tiempo, muestre que la condición necesaria y suficiente para que f sea constante de movimiento es que [f, H] = 0.
- (b) Muestre que si una coordenada q_i es cíclica, la transformación canónica de función generatriz $G=p_i$ es la transformación de simetría asociada al carácter cíclico de q_i . Observe que si f es una constante de movimiento, la transformación canónica infinitesimal de generatriz G=f deja invariante al Hamiltoniano. ¿Qué relación tiene esto con el teorema de Noether?

13. Considere los siguientes puntos:

- (a) Muestre que si f y g son constantes de movimiento, también lo es [f,g].
- (b) Calcule explícitamente, para una partícula, los corchetes de Poisson de las componentes cartesianas de L con las de p y las de r. Además calcule $[L_x, L_y]$, $[L_y, L_z]$, $[L_x, L^2]$, donde $L^2 = |\mathbf{L}|^2$.
- 14. Muestre que, para una partícula sometida a un potencial con simetría cilíndrica alrededor del eje z, L_z es una constante de movimiento y que, si el potencial es central, entonces $\bf L$ es constante.