Relasi dan Fungsi

Pertemuan 6

Pengantar Matriks

 Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom.

• Matriks A yang berukuran dari m baris dan n kolom $(m \times n)$ adalah:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

• Matriks bujursangkar adalah matriks yang berukuran $n \times n$.

- Dalam notasi ringkas, kita lazim menuliskan matriks dengan notasi $A = [a_{ij}]$.
- Contoh 1. Di bawah ini adalah matriks yang berukuran 3×4 :

$$A = \begin{bmatrix} 2 & 5 & 0 \\ 8 & 7 & 0 \end{bmatrix}$$

- Matriks simetri adalah matriks yang $a_{ij} = a_{ji}$ untuk setiap i dan j.
- Contoh 2. Di bawah ini adalah contoh matriks simetri.

$$\begin{bmatrix} 2 & 6 & 6 & -4 \\ 6 & 3 & 7 & 3 \\ 6 & 7 & 0 & 2 \\ -4 & 3 & 2 & 8 \end{bmatrix}$$

• Matriks zero-one (0/1) atau matriks biner adalah matriks yang setiap elemennya hanya bernilai 0 atau 1.

• Contoh 3. Di bawah ini adalah contoh matriks 0/1:

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Relasi

• Jika terdapat dua himpunan A dan B, bagaimana menyatakan hubungan antara anggota kedua himpunan tersebut?

• Kita bisa menggunakan pasangan terurut (*ordered pairs*) (a, b) untuk menghubungkan a dan b, yang dalam hal ini $a \in A$ dan $b \in B$.

• Kita katakan a dihubungkan dengan b oleh sebuah relasi.

Contoh: Misalkan

A = {Hasan, Tanti, Rommi, Yusuf, Aditya}

adalah himpunan mahasiswa,

B = {Toyota, Daihatsu, Mercedes, VW}

adalah himpunan kendaraan.

Misalkan R adalah relasi yang menyatakan mahasiswa dan mobil yang dikendarainya.

```
R = {(Hasan, Daihatsu), (Rommi, Toyota), (Yusuf, Mercedes), (Aditya, Toyota)}
```

Ini berarti Hasan mengendarai Daihatsu, Rommi mengendarai Toyota, Yusuf mengendarai Mercedes, dan Aditya mengendarai Toyota. Tanti tidak mengendarai mobil apapun. Mobil VW tidak dikendarai siapapun di dalam relasi itu.

Contoh: Misalkan

A = {Daffa, Yosef, Harkunti, Mahendra, Wayan}

adalah himpunan mahasiswa,

$$B = \{A, AB, B, BC, C, D, E\}$$

adalah himpunan nilai.

Misalkan R adalah relasi yang menyatakan mahasiswa dan nilai mata kuliah Matdis yang diperolehnya pada semester ganjil.

R = {(Daffa, BC), (Yosef, A), (Harkunti, A), (Mahendra, B)}

Ini berarti Daffa mendapat BC, Yosef mendapat A, Harkunti mendapat A, Mahendra mendapat B. Wayan tidak mengambil mata kuliah Matdis. Tidak ada mahasiswa yang mendapat C, D, dan E.

Definisi Relasi

- Relasi biner R antara himpunan A dan B adalah himpunan bagian dari $A \times B$.
- Notasi: $R \subseteq (A \times B)$.
- a R b adalah notasi untuk $(a, b) \in R$, yang artinya a dihubungankan dengan b oleh R
- $a \not\in b$ adalah notasi untuk $(a, b) \not\in R$, yang artinya a tidak dihubungkan oleh b oleh relasi R.
- Himpunan A disebut daerah asal (domain) dari R, dan himpunan B disebut daerah tujuan (kodomain) dari R.

Contoh. Misalkan $A = \{Amir, Budi, Cecep\} dan <math>B = \{IF221, IF251, IF342, IF323\}$ maka

```
A × B = {(Amir, IF221), (Amir, IF251), (Amir, IF342), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Budi, IF342), (Budi, IF323), (Cecep, IF221), (Cecep, IF251), (Cecep, IF342), (Cecep, IF323) }
```

Misalkan R adalah relasi yang menyatakan mata kuliah yang diambil oleh mahasiswa pada Semester Ganjil, yaitu

```
R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }
```

Dapat dilihat bahwa $R \subseteq (A \times B)$,

- A adalah daerah asal R, dan B adalah daerah tujuan dari R.
- (Amir, IF251) $\in R$ atau Amir R IF251
- (Amir, IF342) $\notin R$ atau Amir $\notin R$ IF342.

Contoh. Misalkan $P = \{2, 3, 4\}$ dan $Q = \{2, 4, 8, 9, 15\}$. Jika kita definisikan relasi R dari P ke Q dengan

 $(p, q) \in R$ jika p habis membagi q

maka kita peroleh

$$R = \{(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 15)\}$$

Relasi pada Sebuah Himpunan

- Relasi pada sebuah himpunan adalah relasi yang khusus
- Relasi pada himpunan A adalah himpunan bagian dari $A \times A$.
- Notasi: $R \subset A \times A$

Contoh. Misalkan R adalah relasi pada $A = \{2, 3, 4, 8, 9\}$ yang didefinisikan oleh $(x, y) \in R$ jika x adalah faktor prima dari y. Maka

$$R = \{(2, 2), (2, 4), (2, 8), (3, 3), (3, 9)\}$$

Representasi Relasi

1. Representasi Relasi dengan Diagram Panah

Lingkaran kiri: daerah asal (domain)

Lingkaran kanan: daerah tujuan (kodomain)

2. Representasi Relasi dengan Tabel

• Kolom pertama tabel menyatakan daerah asal (domain), sedangkan kolom kedua menyatakan daerah tujuan (kodomain).

Tabel 1

A	B
Amir	IF251
Amir	IF323
Budi	IF221
Budi	IF251
Cecep	IF323

Tabel 2

P	Q	
2	2	
2	4	
4	4	
2	8	
4	8	
3	9	
3	15	

Tabel 3

A	A
2	2
2	4
2	8
3	3
3	3

3. Representasi Relasi dengan Matriks

- Misalkan R adalah relasi dari $A = \{a_1, a_2, ..., a_m\}$ dan $B = \{b_1, b_2, ..., b_n\}$.
- Relasi *R* dapat disajikan dengan matriks $M = [m_{ij}]$,

yang dalam hal ini

$$m_{ij} = \begin{cases} 1, & (a_i, b_j) \in R \\ 0, & (a_i, b_j) \notin R \end{cases}$$

4. Representasi Relasi dengan Graf Berarah

- Relasi pada sebuah himpunan dapat direpresentasikan secara grafis dengan **graf berarah** (*directed graph* atau *digraph*)
- Graf berarah tidak didefinisikan untuk merepresentasikan relasi biner dari suatu himpunan ke himpunan lain.
- Tiap elemen himpunan dinyatakan dengan sebuah titik (disebut juga simpul atau *vertex*), dan tiap pasangan terurut dinyatakan dengan busur (*arc*)
- Jika $(a, b) \in R$, maka sebuah busur dibuat dari simpul a ke simpul b. Simpul a disebut **simpul asal** (*initial vertex*) dan simpul b disebut **simpul tujuan** (*terminal vertex*).
- Pasangan terurut (a, a) dinyatakan dengan busur dari simpul a ke simpul a sendiri. Busur semacam itu disebut **gelang** atau **kalang** (loop).

Contoh. Misalkan $R = \{(a, a), (a, b), (b, a), (b, c), (b, d), (c, a), (c, d), (d, b)\}$ adalah relasi pada himpunan $\{a, b, c, d\}$.

R direpresentasikan dengan graf berarah sbb:

5. Representasi relasi dengan diagram kartesian

- Sumbu x menyatakan daerah asal (domain),
- Sumbu y menyatalkan daerah tujuan (kodomain)
- Elemen relasi dinyatakan sebagai noktah (titik) di dalam diagram kartesian
 Dari contoh 3, A = {Amir, Budi, Cecep} dan B = {IF221, IF251, IF342, IF323}
 dan R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }

Sifat-sifat Relasi

• Relasi yang didefinisikan pada sebuah himpunan dapat memiliki sifat seperti refleksif, menghantar, setangkup, tolak setangkup.

1.Refleksif (reflexive)

- Relasi R pada himpunan A disebut **refleksif** jika $(a, a) \in R$ untuk setiap $a \in A$.
- Relasi R pada himpunan A tidak refleksif jika ada $a \in A$ sedemikian sehingga $(a, a) \notin R$.

Contoh. Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka

- (a) Relasi $R = \{(1, 1), (1, 3), (2, 1), (2, 2), (3, 3), (4, 2), (4, 3), (4, 4) \}$ bersifat refleksif karena terdapat elemen relasi yang berbentuk (a, a), yaitu (1, 1), (2, 2), (3, 3), dan (4, 4).
- (b) Relasi $R = \{(1, 1), (2, 2), (2, 3), (4, 2), (4, 3), (4, 4)\}$ tidak bersifat refleksif karena tidak terdapat $(3,3) \notin R$.

Contoh. Relasi "habis membagi" pada himpunan bilangan bulat positif bersifat refleksif karena setiap bilangan bulat positif habis dibagi dengan dirinya sendiri, sehingga $(a, a) \in R$ untuk setiap $a \in A$.

• Relasi yang bersifat refleksif mempunyai matriks yang elemen diagonal utamanya semua bernilai 1, atau $m_{ii} = 1$, untuk i = 1, 2, ..., n,

• Graf berarah dari relasi yang bersifat refleksif dicirikan adanya gelang pada setiap simpulnya.

2. Menghantar (transitive)

• Relasi R pada himpunan A disebut **menghantar** jika $(a, b) \in R$ dan $(b, c) \in R$, maka $(a, c) \in R$, untuk $a, b, c \in A$.

Contoh. Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka

(a) $R = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$ bersifat menghantar. Lihat tabel berikut:

Pasangan berbentuk				
(b, c)	(a, c)			
(2-1)	(3, 1)			
	(4, 1)			
(3, 1)	(4, 1)			
(3, 2)	(4, 2)			
	(b, c) (2, 1) (2, 1) (3, 1)			

- (b) $R = \{(1, 1), (2, 3), (2, 4), (4, 2)\}$ tidak manghantar karena (2, 4) dan $(4, 2) \in R$, tetapi $(2, 2) \notin R$, begitu juga (4, 2) dan $(2, 3) \in R$, tetapi $(4, 3) \notin R$.
- (c) Relasi $R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$ jelas menghantar
- (d) Relasi $R = \{(1, 2), (3, 4)\}$ menghantar karena tidak ada $(a, b) \in R$ dan $(b, c) \in R$ sedemikian sehingga $(a, c) \in R$.
- (e) Relasi yang hanya berisi satu elemen seperti $R = \{(4, 5)\}$ selalu menghantar.

Contoh. Relasi "habis membagi" pada himpunan bilangan bulat positif bersifat menghantar. Misalkan bahwa a habis membagi b dan b habis membagi b. Maka terdapat bilangan positif b dan b sehingga b = ma dan b dan b bilangan positif b dan b sehingga b dan b habis membagi b dan b bersifat menghantar.

- Relasi yang bersifat menghantar tidak mempunyai ciri khusus pada matriks representasinya
- Tetapi, sifat menghantar pada graf berarah ditunjukkan oleh: jika ada busur dari *a* ke *b* dan dari *b* ke *c*, maka juga terdapat busur berarah dari *a* ke *c*.

3. Setangkup (symmetric) dan tolak setangkup (antisymmetric)

- Relasi R pada himpunan A disebut **setangkup** jika $(a, b) \in R$, maka $(b, a) \in R$ untuk $a, b \in A$.
- Relasi R pada himpunan A tidak setangkup jika $(a, b) \in R$ tetapi $(b, a) \notin R$.
- Relasi R pada himpunan A sedemikian sehingga $(a, b) \in R$ dan $(b, a) \in R$ hanya jika a = b untuk $a, b \in A$ disebut **tolak-setangkup**.
- Relasi R pada himpunan A tidak tolak-setangkup jika ada elemen berbeda a dan b sedemikian sehingga $(a, b) \in R$ dan $(b, a) \in R$.

• Relasi yang bersifat setangkup mempunyai matriks yang elemen-elemen di bawah diagonal utama merupakan pencerminan dari elemen-elemen di atas diagonal utama, atau $m_{ij} = m_{ji} = 1$, untuk i = 1, 2, ..., n:

• Sedangkan graf berarah dari relasi yang bersifat setangkup dicirikan oleh: jika ada busur dari *a* ke *b*, maka juga ada busur dari *b* ke *a*.

• Matriks dari relasi tolak-setangkup mempunyai sifat yaitu jika $m_{ij} = 1$ dengan $i \neq j$, maka $m_{ji} = 0$. Dengan kata lain, matriks dari relasi tolak-setangkup adalah jika salah satu dari $m_{ij} = 0$ atau $m_{ji} = 0$ bila $i \neq j$:

• Sedangkan graf berarah dari relasi yang bersifat tolaksetangkup dicirikan oleh: jika dan hanya jika tidak pernah ada dua busur dalam arah berlawanan antara dua simpul berbeda. **Contoh.** Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka

- a) Relasi $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 4), (4, 2), (4, 4)\}$ bersifat setangkup karena jika $(a, b) \in R$ maka (b, a) juga $\in R$. Di sini (1, 2) dan $(2, 1) \in R$, begitu juga (2, 4) dan $(4, 2) \in R$.
- Relasi R = {(1, 1), (2, 3), (2, 4), (4, 2) } tidak setangkup karena (2, 3) ∈ R, tetapi (3, 2) ∉ R.
- c) Relasi $R = \{(1, 1), (2, 2), (3, 3)\}$ tolak-setangkup karena 1 = 1 dan $(1, 1) \in R$, 2 = 2 dan $(2, 2) \in R$, dan 3 = 3 dan $(3, 3) \in R$. Perhatikan bahwa R juga setangkup.
- d) Relasi $R = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$ tolak-setangkup karena $(1, 1) \in R$ dan 1 = 1, begitu juga $(2, 2) \in R$ dan 2 = 2 dan. Perhatikan bahwa R tidak setangkup karena $(1, 2) \in R$, tetapi $(2, 1) \notin R$, begitu juga $(2, 3) \in R$, tetapi $(3, 2) \notin R$,

- e) Relasi $R = \{(1, 1), (2, 4), (3, 3), (4, 2)\}$ tidak tolak-setangkup karena $2 \neq 4$ tetapi (2, 4) dan (4, 2) anggota R. Relasi R pada (a) dan (b) di atas juga tidak tolak-setangkup.
- f) Relasi $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$ tidak setangkup dan tidak tolak-setangkup. R tidak setangkup karena $(4, 2) \in R$ tetapi $(2, 4) \notin R$. R tidak tolak-setangkup karena $(2, 3) \in R$ dan $(3, 2) \in R$ tetapi $2 \neq 3$.
- g) Relasi $R = \{(1, 2), (2, 3), (1, 3)\}$ tidak setangkup (mengapa?) tetapi R tolaksetangkup (mengapa?).

Contoh. Relasi "habis membagi" pada himpunan bilangan bulat positif tidak setangkup karena jika a habis membagi b, b tidak habis membagi a, kecuali jika a = b.

Sebagai contoh, 2 habis membagi 4, tetapi 4 tidak habis membagi 2. Karena itu, $(2, 4) \in R$ tetapi $(4, 2) \notin R$ sehingga R tidak setangkup.

Relasi "habis membagi" pasti tolak-setangkup karena jika a habis membagi b dan b habis membagi a maka itu hanya jika a = b. Sebagai contoh, 4 habis membagi 4. Karena itu, $(4, 4) \in R$ dan 4 = 4.

- Perhatikan bahwa relasi yang "tidak setangkup" tidak selalu berarti sama dengan "tolak setangkup".
- Contoh: Relasi $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$ tidak setangkup dan juga tidak tolak-setangkup. R tidak setangkup karena $(4, 2) \in R$ tetapi $(2, 4) \notin R$. R tidak tolak-setangkup karena $(2, 3) \in R$ dan $(3, 2) \in R$ tetapi $2 \neq 3$.

Contoh: Tentukanlah apakah relasi $R = \{(x,y) \mid x^3 = y, x \in \mathbb{Z}, y \in \mathbb{Z}\}$ bersifat refleksif/tidak, menghantar/tidak, setangkup/tidak, atau tolak setangkup/tidak?

Jawaban:

R tidak refleksif, karena tidak terdapat $(2,2) \in R$, $(3,3) \in R$, dan seterusnya R tidak menghantar, karena jika $x^3 = y$, lalu selanjutnya terdapat $y^3 = z$, maka tidak mungkin ada $x^3 = z$

R tidak setangkup, karena misalnya (2,8) \in R namun (8,2) \notin R tolak setangkup, karena jika $x^3 = y$, tidak ada $y^3 = x$ kecuali untuk x = y

Contoh: Berikut adalah graf yang merepresentasikan sebuah relasi R pada sebuah himpunan. Tentukan apakah relasi tersebut bersifat refleksif/tidak, menghantar/tidak, setangkup/tidak, dan tolak setangkup/tidak?

Jawaban:

$$A = \{1,2,3,4,5\}$$

$$R = \{(1,1), (1,2), (2,1), (2,3), (3,3), (4,3), (5,4), (5,5)\}$$

- a. Refleksif? Tidak, karena (2,2) ∉ R dan (4,4) ∉ R
- b. Menghantar? Tidak, karena (1,4) ∈ R dan (4,3) ∈ R, tetapi (1,3) ∉ R
- c. Setangkup? Tidak, karena terdapat (2,3) ∈ R, tetapi (3,2) ∉ R
- d. Tolak-setangkup? Tidak, karena $1 \neq 2$ tetapi $(1, 2) \in R$ dan $(2, 1) \in R$

Contoh. Tentukan sifat-sifat dari relasi R pada himpunan $A = \{1, 2, 3, 4\}$ yang direpresentasikan dengan matriks $M = [m_{ij}]$ seperti di bawah ini. Apakah R merupakan relasi refleksif, relasi menghantar, relasi setangkup, dan/atau relasi tolak setangkup? Jelaskan alasan untuk setiap sifat tersebut!

$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	0	1	1
	1	0	0
0	0	1	1
L 1	1	0	1.

Jawaban:

- R refleksif, karena setiap elemen diagonal utama matriks relasi R bernilai 1 atau m_{ii} = 1 untuk setiap i ∈ A.
- R tidak menghantar, karena terdapat $m_{14} = 1$ dan $m_{42} = 1$, namun $m_{12} = 0$ atau dengan kata lain elemen (1,2) tidak terdapat dalam relasi R sehingga tidak memenuhi sifat menghantar pada (1,4) dan (4,2).
- R tidak setangkup, karena terdapat elemen yang $m_{ij} \neq m_{ji}$ yaitu pada $m_{12} = 0$ tetapi $m_{21} = 1$
- R tidak tolak setangkup, karena terdapat elemen berbeda a dan b sedemikian sehingga (a, b) \in R dan (b, a) \in R, yaitu elemen m₁₄ = m₄₁ = 1 padahal $1 \neq 4$

Latihan

1. Misalkan A = {1, 2, 3, 4} dan R relasi pada himpunan A, yaitu R = {(1,1), (1,3), (1,4), (2,4), (3,1) (3,2), (4,1), (4,2), (4,4)}. Tentukan apakah R refleksif/tidak, setangkup/tidak, tolak-setangkup/tidak, menghantar/tidak.