НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ІНСТИТУТ ПРИКЛАДНОГО СИСТЕМНОГО АНАЛІЗУ

КАФЕДРА СИСТЕМНОГО АНАЛІЗУ

«До захисту допущено»

		3	Вавідува	ч кафедри
		M. B	. Грайв (ініціали, пр	(підпис) оронський пізвище) 2022 р.
Дипло	омна робота	ì		•
освітньо-кваліфіка	аційного рівня "(бакалан	зр"	
за спеціальністю 8.04030101 «Прин на тему «Тема»	кладна математин	xa»		
Виконав студент 4 курсу групи КА Хропачов Іван	-81			
Керівник Rank, Кригін Валерій Ми	хайлович			(ni∂nuc)
Рецензент Rank, Name				(niðnuc) ————————————————————————————————————
	Засвідчую, що немає запозич			_
	рів без відпові	дних п	юсилан	ь.
	Студент			

РЕФЕРАТ

КЛЮЧЕВЫЕ СЛОВА

ABSTRACT

ЛВЫАЫЛВДЦЛВЫАЫЛВОАМДФВЫОСАЛЖФВС

РЕФЕРАТ

СЛОВА

3MICT

Вступ	6
1 Теоретичні відомості	7
1.1 Постановка задачі	7
1.2 Теоретичні передумови	7
1.3 Алгоритм	1(
1.4 Аналіз алгоритму	16
2 Практичні результати	17
Висновки	18
Перелік посилань	19

ВСТУП

Актуальність роботи. ?

Об'єкт дослідження — Алгоритми ректифікації стереопар

Предмет дослідження — Застосування обчислювальної геометрії для вирішення задач комп'ютерного бачення

Мета дослідження. Реалізувати метод Хартлі для знаходження стандартного виду стереопари

Завдання наступні:

- 1) Запропонувати теоретичне підгрунтя для нового методу ректифікації зображень
- 2) Розробити новий алгоритм на практиці

Практичне значення одержаних результатів. Більш простий алгоритм ректифікації стереопар

1 ТЕОРЕТИЧНІ ВІДОМОСТІ

Вивчайте ТЕХ[1]. ?

1.1 Постановка задачі

1.1.1 Задача

Визначення проблеми ректифікації зображень полягає у проєктуванні цих зображень на компланарні площини. Так, щоб епіполярні лінії стали горизонтальними. Паралельними до прямої, що з'єднує центрі камер.

1.1.2 Попередні роботи

В даній роботі ми ректифікуємо зображення за допомогою матриці гомографії. Основні попередні роботи зі схожим алгоритмом: метод Hartley, метод Малона. Перший метод знаходить гомографію вирішуючи оптимізаційні задачі. Другий знаходить трохи іншу матрицю перетворення, але так само — оптимізаційними задачами. Наш запропонованій метод шукає гомографію векторним добутком, а оптимізаційну задачу вирішує лише для одної координати.

1.2 Теоретичні передумови

1.2.1 Епіполярна геометрія

Коли дві камери розглядають 3D-сцену з двох різних позицій, існує ряд геометричних співвідношень між 3D-точками та їх проєкціями на 2D-

зображення, що визначають пошук можливих положень точок зображення. Ці співвідношення виводяться на основі припущення, що камери можуть бути апроксимовані моделлю камери-обскури. Їх і вивчає епіполярна геометрія.

Застосування принципів епіполярної геометрії зазвичай мотивовано пошуком відповідних точок стереопари. Нехай точка X в 3х вимірному просторі проектується на два зображення. В точку x на першому та в точку x' на другому. Який зв'язок між відповідними x та x'? X, x, x' та центри камер компланарні. Назвемо цю площину π . Звісно промені з x та x', які перетинають x також належать x. Саме ця властивість x найважливішою для подальшого пошуку відповідностей.

Нехай ми знаємо тільки x, давайте побудуємо відповідну їй x'. Знайдемо площину π з центрів камер та проміня x. З зазначеного вище x' лежить на l' — прямій перетину π з площиною другого зображення. Ця пряма називається епіполярною прямою x. Тепер, щоб знайти x' нам достатньо перевірити l', а не повністю все друге зображення.

- Епіполярна точка чи епіполь точка перетину другого зображення з лінією, яка перетинає центри камер (проекція центру другої камери на перше зображення)
- Епіполярна площина площина, що вміщує пряму, яка перетинає центри камер та певну точку (параметр), яка проектується на зображення. зображення.
- Епіполярна пряма перетин епіполярної площини з зображенням. Всі епіполярні лінії перетинаються в епіполі. Епіполярна полощина перетинає перше та друге зображення та визначає віповідність між їх епіполярними лініями.

1.2.2 Ректифікація зображення

Ректифікація зображень проектує зображення на одну спільну площину (копланарні площини). Ректифікація використовується в комп'ютерному баченні для пошуку відповідних точок між зображеннями. Нехай ми маємо два або більше зображень з відомим розташуванням центр камер, які показують об'єкт з різних ракурсів. Для кожного пікселя на одному зображенні ми знаходимо відповідний на іншому. Далі за допомогою триангуляції визначаємо їх глибини.

За епіполярною геометрією: відповідний піксель може знаходитися тільки на епіполярній лінії. Ректифікація трансформує вхідні зображення так, наче вони були зроблені тільки з горизонтальним зміщенням. Як наслідок: всі епіполярні лінії — горизонтальні (паралельні прямій, що з'єднує центрі камер). Це набагато спрощує процес пошуку відповідних пікселів.

Ректифіковані зображення мають такі властивості:

- Всі епіполярні лінії паралельні до горизонтальної осі
- Відповідні точки зображень мають однакові вертикальні координати

1.2.3 Фундаментальна матриця

Фундаментальна матриця $F \in \mathbb{R}^{3 \times 3}$ дає алгебраїчну характеристику епіполярній геометрії. Вона визначає співвідношення між точкою x і відповідною епіполярною лінією l'. Якщо у нас є два зображення, центри камер яких не збігаються, тоді існує така унікальна матриця F, що задовольняє $x'^T \cdot F \cdot x = 0$ для всіх співвідносних x та x'.

Фундаментальна матриця F може бути записана як $F = [e']_{\times} H_{\pi}$, де π — епіполярна площина X, e' — епіполь, а H_{π} — перетворення з одного зображення в інше через будь яку площину π . Оскільки $\mathrm{rank}([e']_{\times}) = 2$, а $\mathrm{rank}(H_{\pi}) = 3$,

то rank(F) = 2

1.2.4 Гомографія

1.3 Алгоритм

1.3.1 План

- 1) Знайти фундаментальну матрицю зображень
 - Визначити ключові точки для кожного зображення
 - Співставити ключові точки правого та лівого зображень
 - Знайти фундаментальну матрицю
- 2) Стерео ректифікувати зображення
 - Епіполярна точка
 - Перетворення правого зображення
 - Перетворення лівого зображення

1.3.2 Пошук фундаментальної матриці

1.3.2.1 Ключові точки

Ключові точкі — це характерні точкі зображення, ознаки, які максимально точно описують його. € різні алгоритми вилучення ключових точок: SIFT, SURF, ORB. Ми використовуємо традиційний SIFT алгоритм.

1.3.2.2 Співставлення ключових точок

Ми знайшли ключові точки окремо для кожного зображення. Оскільки вони зроблені з різних перспектив, то знайдені точки будуть різними. Для подальшого знаходження фундаментальної матриці зображень треба співставити ці точки. Це дозволить зрозуміти, які з них присутні на обох зображеннях та різницю в їх росташуванні.

Ми використовуємо алгоритм співставлення Флана. Він сортує найкращі потенційні співставлення за відстанню використовуючи KNN пошук.

1.3.2.3 Фундаментальна матриця

Фундаментальна матриця — описує відношення між відповідними точками зображень (раніше співставленні ключові точки). Співпоставляє точки на лівому? зображенні з прямими на правому? зображенні. Є різні методи, щоб досягти цого: Seven-Point, Eight-Point, least-median Seven-Point, RANSAC алгоритми. Ми використовуємо least-median Seven-Point алгоритм.

1.3.3 Стерео ректифікація

1.3.3.1 Епіполярна точка

Епіполярні точки — точки проекцій кожного оптичного центру на площину зображення іншої камери. Виходить, що епіполі та оптичні центри лежать на одній прямій. Ми шукаємо праву епіполь і саме тому почнемо з перетворення правого зображення.

Оскільки нам потрібна саме права епіполярна точна (праве ядро фундаментальної матриці), транспонуємо фундаментальну матрицю $F \in \mathbb{R}^{3 \times 3}$. Далі

знаходимо ортонормований базис нульвого простору отриманної матриці. За допомогою алгоритма SVD. Залишилося тільки пронормувати отриману епіполярну точку. В даній роботі ми нормуємо по останній координаті так, що епіполь має такий вигляд

$$e' = \begin{bmatrix} \frac{e'_{nx}}{e'_{nz}} & \frac{e'_{ny}}{e'_{nz}} & \frac{e'_{nz}}{e'_{nz}} \end{bmatrix}^T = \begin{bmatrix} e'_x & e'_y & 1 \end{bmatrix}^T.$$
 (1.1)

У вигляді кососиметричної матриці для векторного добутку

$$[e']_{\times} = \begin{bmatrix} 0 & -e'_z & e'_y \\ e'_z & 0 & -e'_x \\ -e'_y & e'_x & 0 \end{bmatrix}.$$
 (1.2)

1.3.3.2 Перетворення правого зображення

Знайдемо таку R_r , що переносить праву епіполярну точку на нескінченність

$$R_r \cdot e' = [f_r \ 0 \ 0]^T. \tag{1.3}$$

Вона має вигляд

$$R_r = T^{-1} \cdot G \cdot R \cdot T,\tag{1.4}$$

де T — переміщення центра зображення, R — занулення Y координати (матриця повороту), G — занулення Z координати.

Знайдемо матрицю переміщення T та її обернену T^{-1}

$$T = \begin{bmatrix} 1 & 0 & -c_x \\ 0 & 1 & -c_y \\ 0 & 0 & 1 \end{bmatrix} \qquad T^{-1} = \begin{bmatrix} 1 & 0 & c_x \\ 0 & 1 & c_y \\ 0 & 0 & 1 \end{bmatrix}, \tag{1.5}$$

де $c_x = \frac{w}{2}$; $c_y = \frac{h}{2}$, а w і h — розміри правого зображення.

При переміщенні центру зображення ми перемістили і епіполярну точку зображення. Тому перед початком подальших розрахунків, повернемо її на місце

$$e'_t = T \cdot e'. \tag{1.6}$$

Також введемо $k = [0, 0, 1]^T$, де знаходится центр нашого правого зображення.

Знайдемо матрицю повороту R, яка занулить Y координату епіполярної точки. Останню координату не будемо чіпати, другу зануляємо і нормуємо (матриця повороту R — ортонормована). Перша — їх нормований векторний добуток (матриця повороту — правий базис). Отримали

$$R = \begin{bmatrix} \frac{(k \times (e'_t \times k))^T}{\|(k \times (e'_t \times k))\|} \\ \frac{(k \times e'_t)^T}{\|(k \times e'_t)\|} \\ k^T \end{bmatrix}. \tag{1.7}$$

Знайдемо матрицю G. Вона повинна занулити Z координату епіполярної точки

і перемістити її на нескінченність

$$G = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{-1}{(R \cdot e'_t)_x} & 0 & 1 \end{bmatrix}. \tag{1.8}$$

Підставимо всі отримані результати

$$R_r = T^{-1} \cdot G \cdot R \cdot T =$$

$$= \begin{bmatrix} 1 & 0 & cx \\ 0 & 1 & cy \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{-1}{(R \cdot e'_t)} & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{(k \times (e'_t \times k))^T}{\|(k \times (e'_t \times k))\|} \\ \frac{(k \times e'_t)^T}{\|(k \times e'_t)\|} \\ k^T \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -cx \\ 0 & 1 & -cy \\ 0 & 0 & 1 \end{bmatrix} = (1.9)$$

$$= \begin{bmatrix} 1 & 0 & cx \\ 0 & 1 & cy \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{(k \times (e'_t \times k))^T}{\|(k \times (e'_t \times k))\|} \\ \frac{(k \times e'_t)^T}{\|(k \times e'_t)\|} \\ k^T - \frac{(k \times (e'_t \times k))^T}{\|(k \times (e'_t \times k))\| \cdot (R \cdot e'_t)_x} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -cx \\ 0 & 1 & -cy \\ 0 & 0 & 1 \end{bmatrix}.$$

Таким чином ми знайшли R_r , що задовольняє 1.3.

1.3.3.3 Перетворення лівого зображення

Знайдемо таку R_l , що переносить ліву епіполярну точку на нескінченність. Нехай $R_l = A \cdot M'$, де A — матриця з параметрами, а M' — має ранг 3.

Візьмемо фундаментальну матрицю F і з її допомогою зіставимо епіполярні лінії лівого зображення до епіполярних ліній правого $[e'_t]_{\times} \cdot F$. Далі застосуємо на них знайомий алгоритм для перетворення правого зображення. Результат назвемо матрицею $M = R_r \cdot [e'_t]_{\times} \cdot F$. Отримаємо

$$M = R_r \cdot [e'_t]_{\times} \cdot F = \begin{bmatrix} \frac{(e'_t \times k)^T}{\|(e'_t \times k)\|} \\ \frac{(k \times (e'_t \times k))^T}{\|(k \times (e'_t \times k))\|} - \|(k \times (e'_t \times k))\| \cdot k^T \\ (1 + \frac{1}{\|(k \times (e'_t \times k))\|^2}) \cdot (k \times e'_t)^T \end{bmatrix} \cdot F. \quad (1.10)$$

Бачимо, що $\operatorname{rank}(M)=2$. M_x та M_z колінеарні, коли M_x та M_z отрогональні.

Створимо нову матрицю M' на основі матриці M, щоб ${\rm rank}(M)=3$. Другу та третю координати залишимо без змін, першу? ж координату змінемо на векторний добуток двох інших. Отримаємо

$$M' = \begin{bmatrix} M_y \times M_z \\ M_y \\ M_z \end{bmatrix}. \tag{1.11}$$

Ми збільшили ранг, але втратили властивість ректифікації (переносу лівої епіполі на нескінченність).???

Введемо матрицю

$$A = \begin{bmatrix} a & b & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \tag{1.12}$$

щоб знайти R_l . Залишилося вирішити оптимізаційну задачу та знайти параметри a,b,c методом найменших квадратів.

1.4 Аналіз алгоритму

?

2 ПРАКТИЧНІ РЕЗУЛЬТАТИ

висновки

В результаті виконання роботи вдалося.

ПЕРЕЛІК ПОСИЛАНЬ

1 Knuth, D.E. The TEXbook / D.E. Knuth // Computers & typesetting. — Addison-Wesley Publishing Company, 1984.