Algebra zbiorów

- 1. Wyznacz elementy zbioru:
 - (a) $A = ((-5, 6] \setminus \{-2, 3\}) \cap \mathbb{Z}$,
 - **(b)** $B = ((-5, 6] \setminus [-2, 3)) \cap \mathbb{N},$
 - (c) $C = (\{-5, 3\} \setminus [-2, 3]) \cap \mathbb{R}_+,$
 - (d) $D = (\{-5, 3\} \cap \mathbb{R}_+) \cup ([-2, 3] \cap \mathbb{Z}_-).$
- 2. Rozważmy algorytm:

$$Alg = \{x := 0; y := 0; while x^2 \le 50 \text{ do } x := x + 1; y := x \text{ div } 2 \text{ od} \}.$$

Wypisz

- (a) wybrane zbiory,
- (b) wybrane ciągi,

jakie można utworzyć korzystając z (nie koniecznie wszystkich) liczb naturalnych y osiągalnych poprzez wykonanie tego algorytmu, z uwzględnieniem krotności ich występowania. Czy liczba otrzymanych zbiorów odpowiada liczbie uzyskanych ciągów?

3. Liczby naturalne można definiować jako zbiory stosując następującą definicję von Neumanna:

$$0 = ^{def} \emptyset, \ 1 = ^{def} \{0\}, \ n+1 = ^{def} \{0,1,\ldots,n\}.$$

Na przykład 2 = $\{0,1\}$ = $\{\emptyset,\{0\}\}$ = $\{\emptyset,\{\emptyset\}\}$. Korzystając z tej definicji

- (a) wyznacz liczby 3, 4, 5,
- (b) zaproponuj algorytm obliczający liczbę naturalna n,
- (c) zaproponuj algorytm wyznaczający n pierwszych liczb naturalnych.
- 4. Rozważmy następujący algorytm:

$$Alg(A,n) = \{ if n > 0 then A := P(Alg(A,n-1)); fi return A \}.$$

Wyznacz końcową wartość zbioru A uzyskaną po wykonaniu algorytmu:

- (a) $Alg(\emptyset, 0)$,
- **(b)** $Alg(\{0,1\},2),$
- (c) $Alg(\emptyset,3)$.

Jaka jest moc $Alq(\emptyset, k)$?

- 5. Ile elementów ma zbiór:
 - (a) $E = \{x : x \in \mathbb{N}, x \text{ jest wielokrotnością liczby 4 i } x < 50\},$
 - **(b)** $F = \{2 + (-1)^n : n \in \mathbb{N}\},\$
 - (c) $G = \{3z + 1 : z \in \mathbb{Z} \ i \ |z| < 4\},\$
 - (d) $H = \emptyset$,
 - (e) $I = \{\emptyset\},\$
 - (f) $J = \{\emptyset, \{\emptyset\}\},\$
 - (g) $K = \{\emptyset, \emptyset, \emptyset\}$?

Ile podzbiorów ma każdy z wymienionych zbiorów?

6. Wyznacz zbiory potegowe zbiorów \emptyset , $\{\emptyset\}$, $\{a\}$, $\{0, 10, 11\}$.

- 7. Rozważmy program $Pr_1(n) = \{x := 0; y := 0; while y < 20 do y := x + 1; x := y \cdot n od\}.$ Niech X(n) oznacza zbiór wszystkich wartości y osiągalnych poprzez wykonanie programu $Pr_1(n)$. Wyznacz zbiór potęgowy zbioru $X(2) \cap X(3)$.
- 8. Rozważmy następujące algorytmy:

$$Alg1(A, n) = \{ if \ n > 0 \ A := Alg1(A, n - 1); \ fi \ A := A \cup \{n\}; \ return \ A\},$$

$$Alg2(B, n) = \{ if \ n > 0 \ B := Alg2(B, n - 1); \ fi \ B := B \oplus \{n\}; \ return \ B\}.$$

Wypisz elementy zbiorów $Alq1(\emptyset,7)$ i $Alq2(\mathbb{N},2)$ oraz wyznacz ich sume, iloczyn, różnice oraz dopełnienie przyjmując za uniwersum zbiór liczb naturalnych $\Omega = \mathbb{N}$.

- 9. Rozważny program $Pr_2(n) = \{x := 0; y := 0; while y \ge 0 \text{ do } y := y + 1; x := y \cdot n; od\}.$ Niech $\mathbb{N}(n)$ oznacza zbiór wszystkich wartości x osiągalnych poprzez wykonanie programu $Pr_2(n)$. Które z poniższych zależności są prawdziwe?
 - (a) $\mathbb{N}(2) \cap \mathbb{N}(3) = \mathbb{N}(6)$,
 - **(b)** $\mathbb{N}(3) \subset \mathbb{N}(6)$,
 - (c) $\mathbb{N}(6) \cup \mathbb{N}(3) = \mathbb{N}(3)$,
 - (d) $\mathbb{N}(2)\backslash\mathbb{N}(4) = \emptyset$.
- 10. Niech $n \in \mathbb{N} \setminus \{0\}$ i niech $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$.
 - (a) Czy zbiór \mathbb{Z}_5 jest podzbiorem zbioru \mathbb{Z}_6 ?
 - (b) Wymień wszystkie elementy zbioru $P(\mathbb{Z}_2)$.
 - (c) Czy zbiory $A = (\mathbb{Z}_6 \backslash \mathbb{Z}_4) \cup \mathbb{Z}_3$ i $B = \mathbb{Z}_5$ są równe?
 - (d) Wyznaczyć \mathbb{Z}'_3 przy założeniu, że zbiorem uniwersalnym jest \mathbb{Z}_{10} .
- 11. Niech $\Sigma = \{a, b\}$, $A = \{a, b, aa, bb, aaa, bbb\}$, $B = \{w \in \Sigma^* : \text{długość}(w) \leq 2\}$ i $C = \{w \in \Sigma^* : \text{długość}(w) \leq 2\}$ i $C = \{w \in \Sigma^* : \text{długość}(w) \leq 2\}$ i $C = \{w \in \Sigma^* : \text{długość}(w) \leq 2\}$ i $C = \{w \in \Sigma^* : \text{długość}(w) \leq 2\}$ i $C = \{w \in \Sigma^* : \text{długość}(w) \leq 2\}$ i $C = \{w \in \Sigma^* : \text{długość}(w) \leq 2\}$ i $C = \{w \in \Sigma^* : \text{długość}(w) \leq 2\}$ i $C = \{w \in \Sigma^* : \text{długość}(w) \leq 2\}$ i $C = \{w \in \Sigma^* : \text{długość}(w) \leq 2\}$ i $C = \{w \in \Sigma^* : \text{dlugość}(w) \leq 2\}$ długość(w) $\geqslant 2\}$ oraz niech Σ^* będzie zbiorem uniwersalnym. Wyznacz:
 - (a) $B', B' \cap C'$,
 - **(b)** $A \cap C$, $A \setminus C$, $\Sigma \setminus B$,
 - (c) $P(\Sigma)$.
- 12. Rozważmy programy

$$Pr_3 = \{x := -2; while |x| < 3 do x := x + 1; od\},\$$

$$Pr_4 = \{x := 0; y := 1; while y < 28 do x := x + 1; y := 3^x od\}.$$

Niech A oznacza zbiór wszystkich wartości x osiągalnych poprzez wykonanie programu Pr_3 oraz niech B oznacza zbiór wszystkich wartości x osiągalnych poprzez wykonanie programu Pr_4 . Wypisz lub narysuj elementy zbioru:

- (a) $\{(m,n) \in A \times B : m < n\},\$
- **(b)** $\{(m,n) \in B \times A : m < n\},\$
- (c) $\{(m,n) \in A \times B : \min\{m,n\} < 0\},\$
- (d) $\{(m,n) \in B \times A : m+n \text{ jest liczba pierwsza}\}.$
- 13. Wyznaczyć $\bigcap_{t \in T} A_t$ oraz $\bigcup_{t \in T} A_t$ gdy:
 - (a) $T = \{2, 3, 4\}, A_t = \mathbb{Z}_t, \text{ gdzie } \mathbb{Z}_t = \{0, 1, 2, ..., t 1\}$
 - **(b)** $T = \{1, 2, 3\}, A_t = [t 3, t + 1].$
- 14. Wyznaczyć $\bigcap_{n=1}^{\infty} A_n$ oraz $\bigcup_{n=1}^{\infty} A_n$ gdy:
 - (a) $A_n = \mathbb{Z}_n$, gdzie $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$,
 - (b) $A_n = \mathbb{Z}(n)$, gdzie $\mathbb{Z}(n)$ oznacza zbiór wszystkich liczb całkowitych podzielnych przez n,

- (c) $A_n = [0, \frac{1}{n}].$
- 15. Udowodnić, że dla dowolnych rodzin $\{A_t\}_{t\in T}$ oraz $\{B_t\}_{t\in T}$:
 - (a) $\bigcap_t (A_t \cap B_t) = \bigcap_t A_t \cap \bigcap_t B_t$,
 - **(b)** $\bigcup_t (A_t \cap B_t) \subseteq \bigcup_t A_t \cap \bigcup_t B_t$.
- 16. A i B oznaczają zbiory niepuste. Jaki jest związek między tymi zbiorami, jeśli:
 - (a) $(A \cup B) \subseteq B$,
 - **(b)** $A \subseteq (A \cap B)$,
 - (c) $A \subseteq (A \backslash B)$,
 - (d) $A \cup B = B$.
- 17. Czy istnieją zbiory A, B i C takie, że $A \cap B \neq \emptyset$, $A \cap C = \emptyset$, $(A \cap B) \setminus C = \emptyset$?
- 18. Wskaż, które ze zdań są prawdziwe, a które fałszywe. Dla każdego fałszywego zdania podaj kontrprzykład.
 - (a) Jeśli $A \cap B = A \cap C$, to B = C.
 - **(b)** $(A \cap \emptyset) \cup B = B$ dla wszystkich zbiorów A, B.
 - (c) $A \cap (B \cup C) = (A \cap B) \cup C$ dla wszystkich zbiorów A, B, C.
- 19. Udowodnić, że dla dowolnych zbiorów A, B, C:
 - (a) $(A \cup B)' = A' \cap B'$,
 - **(b)** $A \backslash B = A \backslash (A \cap B)$,
 - (c) $A \setminus (A \setminus B) = A \cap B$,
 - (d) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$,
 - (e) $A \cap B \subseteq C \Rightarrow A \subseteq B' \cup C$,
 - (f) $(A \backslash B) \cup B = A \Rightarrow B \subseteq A$.
- 20. Sprawdzić, czy dla dowolnych zbiorów $A,\,B,\,C$ prawdziwe są następujące równości:
 - (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$,
 - **(b)** $A \cap (B \times C) = (A \cap B) \times (A \cap C)$.
- 21. Różnicą symetryczną dwu zbiorów A i B nazywamy zbiór $A \oplus B = (A \setminus B) \cup (B \setminus A)$. Dowieść, że:
 - (a) $A \oplus B = B \oplus A$,
 - **(b)** $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$.