1. (5 points) Consider the regression model with usual assumptions of the errors

$$y = X\beta + \epsilon$$
.

- (a) Suppose that the observation y_i falls directly on the fitted regression line (i.e., $y_i = \hat{y}_i$). If this case is deleted, would the least squares estimators with the remaining n-1 cases be changed?
- (b) Suppose that we have fit the straight-line regression model $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$, but the true regression function is

$$\mathbb{E}\left[y\right] = \beta_0 + \beta_1 x_1 + \beta_2 x_2.$$

Is the estimator $\hat{\beta}_1$ biased?

(c) Show that $\hat{\beta}$ and e are statistically independent, where $\hat{\beta}$ is the least squares estimator of β and e is the corresponding residuals.

Solution:

Solution:

Solution: The least squares estimator of β can be written as follows:

$$\hat{oldsymbol{eta}} = \left(oldsymbol{X}' oldsymbol{X}
ight)^{-1} oldsymbol{X}' oldsymbol{y}.$$

And for notational conveniece, let $\mathbf{H} = \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'$, called the *hat matrix* in linear regression terminology, or *projection matrix* in linear algebra literature. Then

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}'\boldsymbol{y}$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' (\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= \boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{\epsilon}$$

$$\boldsymbol{e} = \boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}$$

$$= (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{y}$$

$$= (\boldsymbol{I} - \boldsymbol{H}) (\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{X}\boldsymbol{\beta} - (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{\epsilon}.$$

Since both $\hat{\beta}$ and e are linear combinations of normal variates, they also follow normal distributions. For normal distributions, having no correlation is the same as being independent.

$$\operatorname{Cov}\left[\hat{\boldsymbol{\beta}}, \boldsymbol{e}\right] = \operatorname{Cov}\left[\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \boldsymbol{X}' \boldsymbol{\epsilon}, \left(\boldsymbol{H} - \boldsymbol{I}\right) \boldsymbol{\epsilon}\right]$$
$$= \sigma^{2} \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \boldsymbol{X}' \boldsymbol{X} \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \boldsymbol{X}' - \sigma^{2} \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \boldsymbol{X}'$$

- 2. (5 points) Consider the regression model with k regressor variables, $y = X\beta + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2 V)$, $V \neq I$.
 - (a) Obtain the generalized least squares estimator of β .
 - (b) Find the expected value and variance of $\hat{\beta}_{GLS}$ in the part (a).

Solution:

Solution:

3. (5 points) Consider the model

$$y = X\beta + \epsilon$$
,

where ϵ are i.i.d. normally distributed with mean **0** and variance $\sigma^2 I$. Assume that we have a multicollinearity problem.

- (a) Define the ridge estimator of β .
- (b) Show that the ridge estimator is the solution to the problem

Minimize
$$(\beta - \hat{\beta})' X' X (\beta - \hat{\beta})$$
 subject to $\beta' \beta \leq c$

Solution:

Solution:

4. (4 points) Let S denote the sample space. Suppose that $C \subset S$ and $\mathbb{P}(C) > 0$ and define $Q(A) = \mathbb{P}(A|C)$. Show that Q satisfies the axiom of probability.

Solution:

5. (3 points) Construct an example where $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$ but $X_n + Y_n$ does not converge in distribution to X + Y.

Solution:

6. (6 points) Suppose that we observe X_1, \ldots, X_n from $\mathcal{N}(\mu, \sigma^2)$. Find the uniformly minimum variance unbiased estimator (UMVUE) of $\eta = \mu/\sigma^2$.

Solution:

7. (4 points) Let $X \sim \text{Exp}(1)$, and define Y to be the integer part of X + 1, that is

$$Y = i + 1$$
 if and only if $i \le X < i + 1$, $i = 0, 1, 2, ...$

Find the conditional distirbution of X-4 given $Y \leq 5$.

Solution:

- 8. (6 points) Let $Y \sim \text{Poisson}(\lambda)$ and $X|Y = y \sim \text{Bin}(y, p)$.
 - (a) Determine the distribution of X.
 - (b) Find the conditional pdf of Y given X = x.

Solution:

Solution:

9. (6 points) Suppose that we observe X having a distribution $P \in \{P_0, P_1\}$, and that we wish to test the hypothesis $H_0: P = P_0$ versus $H_1: P = P_1$, based on an observation of X. Let P_0 and P_1 be given by

x	0	1	2	3
P_0	0.03	0.05	0.12	0.80
P_1	0.15	0.10	0.30	0.45

- (a) Find <u>non-randomized</u> most powerful test(s) at level $\alpha = 0.05$.
- (b) Find randomized most powerful test(s) at level $\alpha = 0.05$.

Solution:

Solution:

10. (6 points) Let X_n be a random variable with $\mathbb{P}(X_n=i/n)=1/n, 1\leq i\leq n$. Find the limit distribution of X_n as $n\to\infty$.

Solution: