ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

НОВГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ЯРОСЛАВА МУДРОГО

МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН

Методические указания

великий новгород 2004

Рецензент доктор технических наук, профессор **Б. Ф. Кирьянов**

М74 Моделирование случайных величин: Метод. указания / Сост. Н. Ю. Кропачева, А. С. Тихомиров; НовГУ им. Ярослава Мудрого. — Великий Новгород, 2004. — 47 с.

Издано на основе лекций, прочитанных В.В. Некруткиным на математико-механическом факультете Санкт-Петербургского государственного университета.

Излагаются общие методы моделирования случайных величин, методы моделирования некоторых часто встречающихся вероятностных распределений и методы проверки правильности моделирования.

Методические указания предназначены для студентов, обучающихся по специальности «Прикладная математика и информатика».

УДК 519.2

- © Новгородский государственный университет, 2004
- © Н. Ю. Кропачева, А. С. Тихомиров, составление, 2004

1. МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН

При решении разных задач приходится использовать различные случайные величины, и, значит, нужно уметь находить значения этих случайных величин. При этом, как правило, поступают следующим образом: значения произвольной случайной величины получают путем преобразования значений одной какой-либо ("стандартной") случайной величины. Обычно роль такой величины играет случайная величина α , равномерно распределенная на промежутке [0,1]. В дальнейшем через α всегда будет обозначаться равномерно распределенная на промежутке [0,1] (кратко будем писать: р. р. на [0,1]) случайная величина. Для получения значения стандартной случайной величины пользуются стандартными (уже готовыми) средствами. В языке программирования Турбо Паскаль таким средством является функция Random (стандартная математическая функция этого языка). Например, получить (и напечатать) значения десяти независимых р. р. на [0,1] случайных величин $\alpha_1,\alpha_2,\ldots,\alpha_{10}$ можно при помощи следующего цикла:

for
$$i := 1$$
 to 10 do WriteLn(Random);

Здесь каждое последующее обращение к функциям Random возвращает значение следующей независимой р. р. на [0,1] случайной величины. Таким образом, у нас есть готовое средство (функция Random) для получения значений произвольного количества независимых р. р. на [0,1] случайных величин.

Если быть точным, то возвращаемые функцией Random числа лишь имитируют значения независимых р. р. на [0, 1] случайных величин (такие числа называют псевдослучайными). Под словом *имитируют* подразумевается, что эти числа удовлетворяют ряду специальных тестов так, как если бы они были настоящими значениями нужных нам случайных величин [1–9]. При последующем изложении мы на эти тонкости обращать внимания не будем, и будем использовать псевдослучайные числа так, как если бы они были значениями последовательности независимых р. р. на [0, 1] случайных величин.

Рассмотрим теперь способы получения значений произвольных случайных величин. Пусть задано P_ξ — распределение вероятностей случайной величины ξ . Наша цель состоит в получении значения случайной величины ξ с заданным распределением P_{ξ} . Получать нужные случайные величины будем с помощью преобразования последовательности $\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots$ независимых р. р. на [0,1] случайных величин. Условимся процесс нахождения значений какой-либо случайной величины ξ путем преобразования одного или нескольких значений р. р. на [0,1] случайных величин называть моделированием слу- $\forall a \ddot{u} h o \ddot{u}$ $\beta \in \mathcal{A}$ величины ξ . Таким образом, будем получать ξ в виде $\xi = \varphi(\alpha_1, \dots, \alpha_n)$, или, в более сложном случае, в виде $\xi = \varphi(\alpha_1, \alpha_2, \dots, \alpha_n, \dots)$. Функцию $\varphi \colon [0, 1]^n \to \mathbb{R}$ (или $\varphi \colon [0,1]^{\infty} \to \mathbb{R}$) назовем моделирующей функцией, а формулу $\xi = \varphi(\alpha_1, \ldots, \alpha_n)$, (или $\xi = \varphi(\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots))$ — моделирующей формулой.

Через $F_{\xi}(x) = \mathsf{P}(\xi < x)$ обозначим функцию распределения случайной величины ξ . Через $p_{\xi}(x)$ обозначим плотность распределения абсолютно непрерывной случайной величины ξ . Математическое ожидание случайной величины ξ обозначим $\mathsf{E}\,\xi$, а дисперсию обозначим $\mathsf{D}\,\xi$.

В разделе 2 представлены общие методы моделирования случайных величин. В разделе 3 приведены моделирующие формулы для некоторых часто встречающихся вероятностных распределений. В разделах 4 и 5 описаны два метода проверки правильности моделирования.

2. ОБЩИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

2.1. Метод обратной функции

Пусть $F(x) = P(\xi < x)$ — функция распределения некоторой случайной величины ξ . Отметим вначале некоторые свойства функции распределения.

Теорема 1. Функция распределения F обладает следующими свойствами:

- 1. Ecau $x \leq y$, mo $F(x) \leq F(y)$.
- 2. $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$.
- 3. $\lim_{x\to y-0}F(x)=F(y)$ (непрерывность слева).

Доказательство можно найти, например, в [20].

Перейдем теперь к получению моделирующих формул.

Теорема 2. Пусть функция распределения F имеет обратную F^{-1} . Тогда функцией распределения случайной величины

$$\eta = F^{-1}(\alpha)$$

является F.

 \mathcal{A} оказательство. Найдем функцию распределения η :

$$F_{\eta}(x) = P(\eta < x) = P(F^{-1}(\alpha) < x) = P(\alpha < F(x)) = F(x).$$

Теорема доказана.

Замечание 1. 1. Метод обратной функции эффективен, если удается получить простую формулу для F^{-1} . А это не всегда возможно.

2. Условие обратимости функции F очень ограничительно. Далеко не каждая функция распределения имеет обратную. Но от этого требования можно отказаться.

Пусть F — функция распределения npouseonьной случайной величины ξ . При 0 < y < 1 зададим функцию G следующим образом:

$$G(y) = \inf\{t : F(t) > y\}.$$

Теорема 3. Функцией распределения случайной величины

$$\eta = G(\alpha)$$

является F.

Доказательство. Учитывая равенство $P(\alpha < F(x)) = F(x)$, докажем, что $P(G(\alpha) < x) = P(\alpha < F(x))$. Для этого достаточно показать, что условия G(y) < x и y < F(x) равносильны.

- 1. Пусть G(y) < x. Тогда $\inf\{t: F(t) > y\} < x$, и, значит, F(x) > y.
- 2. Пусть теперь y < F(x). Обозначим $z = G(y) = \inf\{t: F(t) > y\}$. Тогда $F(z \varepsilon) \leqslant y$ для всех $\varepsilon > 0$. Значит, по непрерывности слева функции $F, F(z) \leqslant y$. Таким образом, $F(z) \leqslant y < F(x)$, и, в силу монотонности F, G(y) = z < x. Теорема доказана.

Замечание 2. В отличие от Теоремы 2, Теорема 3 применима к nno60й функции распределения F. Трудности могут возникнуть при вычислении G.

Укажем один из способов получения G.

Теорема 4. Пусть F(x) — функция распределения, u F_0 — сужение функции F на отрезок [a,b]. Пусть функция F_0 имеет обратную F_0^{-1} , u, кроме того, F(a) = 0 u F(b) = 1. Тогда $G = F_0^{-1}$.

Доказательство. Пусть 0 < y < 1. Тогда

$$G(y) = \inf\{t \in \mathbb{R} : F(t) > y\} =$$

$$= \inf\{t \in [a, b] : F(t) > y\} = \inf\{t \in [a, b] : F_0(t) > y\} =$$

$$= \inf\{t \in [a, b] : t > F_0^{-1}(y)\} = F_0^{-1}(y).$$

Теорема доказана.

Замечание 3. 1. Аналогичные утверждения справедливы и в тех случаях, когда $a=-\infty$ или $b=+\infty$.

2. Если функция распределения F имеет обратную F^{-1} , то

 $G = F^{-1}$. Поэтому Теорема 3 является обобщением Теоремы 2. 3. Большинство моделирующих формул раздела 3 получено при помощи метода обратных функций.

Пример 1. Пусть функция распределения случайной величины ξ задается следующей формулой:

$$F(x) = \begin{cases} 0, & \text{при } x \leq 0, \\ x^n, & \text{при } 0 < x \leq 1, \\ 1, & \text{при } x > 1, \end{cases}$$
 (1)

где n — натуральное число. Применяя Теоремы 3 и 4, получим моделирующую формулу для ξ . Пусть F_0 — сужение функции F на отрезок $[0,1],\,F_0(x)=x^n$. Найдем F_0^{-1} , решая уравнение $F_0(x)=y$ относительно x. Имеем: $x^n=y$ и $x=\sqrt[n]{y}$. Поэтому $F_0^{-1}(y)=\sqrt[n]{y}$, и моделирующей формулой для ξ служит формула

$$\xi = \sqrt[n]{\alpha}.\tag{2}$$

Приведем еще один способ моделирования случайной величины ξ с функцией распределения (1).

Теорема 5. Пусть $\alpha_1, \alpha_2, \dots, \alpha_n$ — независимые равномерно распределенные на промежутке [0,1] случайные величины. Тогда функция распределения случайной величины

$$\xi = \max\{\alpha_1, \alpha_2, \dots, \alpha_n\}$$

задается формулой (1).

Доказательство. Используя независимость $\alpha_1, \alpha_2, \dots, \alpha_n$ и формулу (6), при $0 \leqslant x \leqslant 1$ получим

$$P(\xi < x) = P(\max\{\alpha_1, \alpha_2, \dots, \alpha_n\} < x) =$$

$$= P(\alpha_1 < x, \alpha_2 < x, \dots, \alpha_n < x) = \prod_{i=1}^n P(\alpha_i < x) = x^n.$$

Теорема доказана.

2.2. Метод отбора

Построим алгоритм моделирования случайной величины ξ с заданной плотностью p. Для этого нам потребуются вспомогательная случайная величина η с плотностью q. Полагаем, что случайную величину η мы умеем моделировать. Кроме того, распределения вероятностей случайных величин ξ и η должны быть определенным образом "согласованы". Нам нужно, чтобы функция r(x) = p(x)/q(x) была определена при всех $x \in \mathbb{R}$ (в том смысле, что если при некотором $x \in \mathbb{R}$ q(x) = 0, то и p(x) = 0; r(x) в этом случае полагаем равным нулю) и ограничена константой M (т. е. $r(x) \leq M \ \forall x \in \mathbb{R}$). Через $\alpha_1, \alpha_2, \ldots$ обозначим равномерно распределенные на промежутке [0,1] случайные величины (их плотности обозначим p_{α}). Пусть случайные величины $\alpha_1, \alpha_2, \ldots$ и η_1, η_2, \ldots независимы. Обозначим

$$\nu = \min \{ n \in \mathbb{N} : r(\eta_n) > M\alpha_n \}.$$

Алгоритм моделирования случайной величины ξ и оценка его трудоемкости основаны на следующей теореме.

Теорема 6. Справедливы следующие два утверждения:

- 1. Случайные величины η_{ν} и ξ одинаково распределены.
- 2. $E \nu = M$.

Доказательство. Докажем вначале две вспомогательные формулы:

$$P(r(\eta) \leqslant M\alpha) = 1 - \frac{1}{M},\tag{3}$$

$$P(\eta < t, r(\eta) > M\alpha) = \frac{P(\xi < t)}{M}.$$
 (4)

Имеем:

$$P(r(\eta) \leqslant M\alpha) = \iint_{r(x)\leqslant My} q(x)p_{\alpha}(y) \, \mathrm{d}y \, \mathrm{d}x =$$

$$= \int_{-\infty}^{+\infty} q(x) \left(\int_{r(x)/M}^{1} \mathrm{d}y \right) \, \mathrm{d}x = \int_{-\infty}^{+\infty} q(x) \left(1 - \frac{r(x)}{M} \right) \, \mathrm{d}x =$$

$$= \int_{-\infty}^{+\infty} q(x) \, \mathrm{d}x - \frac{1}{M} \int_{-\infty}^{+\infty} q(x) \frac{p(x)}{q(x)} \, \mathrm{d}x =$$

$$= 1 - \frac{1}{M} \int_{-\infty}^{+\infty} p(x) \, \mathrm{d}x = 1 - \frac{1}{M}.$$

$$P(\eta < t, r(\eta) > M\alpha) = \iint_{x < t, r(x) > My} q(x)p_{\alpha}(y) \, \mathrm{d}y \, \mathrm{d}x =$$

$$= \int_{-\infty}^{t} q(x) \left(\int_{0}^{r(x)/M} \mathrm{d}y \right) \, \mathrm{d}x = \int_{-\infty}^{t} q(x) \frac{r(x)}{M} \, \mathrm{d}x =$$

$$= \frac{1}{M} \int_{-\infty}^{t} q(x) \frac{p(x)}{q(x)} dx = \frac{1}{M} \int_{-\infty}^{t} p(x) dx = \frac{\mathsf{P}(\xi < t)}{M}.$$

Используя независимость случайных величин и равенство (3), получим:

$$P(\nu = n) =$$

$$= P(r(\eta_1) \leqslant M\alpha_1, \dots, r(\eta_{n-1}) \leqslant M\alpha_{n-1}, r(\eta_n) > M\alpha_n) =$$

$$= P(r(\eta_1) \leqslant M\alpha_1) \times \dots \times P(r(\eta_{n-1}) \leqslant M\alpha_{n-1}) \times$$

$$\times P(r(\eta_n) > M\alpha_n) =$$

$$= \left(1 - \frac{1}{M}\right)^{n-1} \left(1 - \left(1 - \frac{1}{M}\right)\right) = \frac{1}{M} \left(1 - \frac{1}{M}\right)^{n-1}$$

при $n=1,\,2,\ldots$ Поэтому случайная величина $(\nu-1)$ имеет геометрическое распределение вероятностей с параметром 1/M (см. параграф 12 на стр. 35) и (по Теореме 18)

$$\mathsf{E}(\nu - 1) = \left(1 - \frac{1}{M}\right) / \frac{1}{M} = M - 1.$$

Значит, $\mathsf{E}\,\nu = M$ и $\mathsf{P}\big(\nu < +\infty\big) = 1$. Далее, используя равенства (3) и (4), получим:

$$P(\eta_{\nu} < t) = P(\eta_{\nu} < t, \ \nu < +\infty) =$$

$$= \sum_{n=1}^{+\infty} P(\eta_{\nu} < t, \ \nu = n) = \sum_{n=1}^{+\infty} P(\eta_{n} < t, \ \nu = n) =$$

$$= \sum_{n=1}^{+\infty} P(\eta_{n} < t, \ r(\eta_{1}) \leqslant M\alpha_{1}, \dots, r(\eta_{n-1}) \leqslant M\alpha_{n-1},$$

$$r(\eta_{n}) > M\alpha_{n}) =$$

$$= \sum_{n=1}^{+\infty} P(r(\eta_{1}) \leqslant M\alpha_{1}) \times \dots \times P(r(\eta_{n-1}) \leqslant M\alpha_{n-1}) \times$$

$$\times \mathsf{P} \Big(\eta_n < t, \, r(\eta_n) > M \alpha_n \Big) =$$

$$= \sum_{n=1}^{+\infty} \mathsf{P} \Big(r(\eta_1) \leqslant M \alpha_1 \Big)^{n-1} \, \mathsf{P} \Big(\eta_n < t, \, r(\eta_n) > M \alpha_n \Big) =$$

$$= \sum_{n=1}^{+\infty} \left(1 - \frac{1}{M} \right)^{n-1} \frac{\mathsf{P}(\xi < t)}{M} =$$

$$= \frac{\mathsf{P}(\xi < t)}{M} \sum_{n=1}^{+\infty} \left(1 - \frac{1}{M} \right)^{n-1} = \mathsf{P}(\xi < t).$$

Таким образом, $P(\eta_{\nu} < t) \equiv P(\xi < t)$. Теорема доказана. \square

Представим алгоритм моделирования случайной величины ξ .

Алгоритм

Шаг 1. n := 1.

Шаг 2. Получить α_n и η_n .

Шаг 3. Если $r(\eta_n) > M\alpha_n$, то $\xi := \eta_n$ и закончить выполнение алгоритма, иначе n := n+1 и перейти к шагу 2.

Замечание 4. Для построения алгоритма нужно знать величину M. Подчеркнем, что в качестве M можно использовать оценку сверху (а не только точное значение) $\sup\{r(x): x \in \mathbb{R}\}$.

Обсудим трудоемкость этого алгоритма. Цикл алгоритма работает ν раз и $\mathsf{E}\,\nu = M$. Ясно, что $M\geqslant 1$ и $M=1\Longleftrightarrow q\equiv p$. Для эффективности представленного алгоритма моделирования нужно выполнение следующих условий:

- 1. Случайную величину η легко моделировать.
- $2. \ M$ небольшое, q похоже на p.
- 3. Неравенство $r(\eta_n) > M\alpha_n$ легко проверять.

Замечание 5. Метод отбора также называется методом исключения.

Пример 2. Пусть плотность распределения случайной величины ξ задается следующей формулой:

$$p(x) = \begin{cases} 2(x^2 + x^5), & \text{при } x \in [0, 1], \\ 0, & \text{при } x \notin [0, 1]. \end{cases}$$

Получим алгоритм моделирования ξ .

В качестве вспомогательной случайной величины η возьмем случайную величину α , равномерно распределенную на промежутке [0,1]. Тогда

$$q(x) = \begin{cases} 1, & \text{при } x \in [0,1], \\ 0, & \text{при } x \not\in [0,1], \end{cases}$$

$$r(x) = p(x)/q(x) = p(x),$$

$$M = \sup \big\{ r(x) : x \in \mathbb{R} \big\} = \max \big\{ p(x) : x \in [0,1] \big\} = p(1) = 4.$$

Применяя Теорему 6, получим следующий алгоритм моделирования ξ .

Алгоритм

Шаг 1. n := 1.

Шаг 2. Получить α_{2n-1} и α_{2n} .

Шаг 3. Если $\alpha_{2n}^2 + \alpha_{2n}^5 > 2\alpha_{2n-1}$, то $\xi := \alpha_{2n}$ и закончить выполнение алгоритма, иначе n := n+1 и перейти к шагу 2.

Замечание 6. Рассмотренный метод далек от оптимального (значение M=4 достаточно велико, q мало похоже на p). Мы выбрали $\eta=\alpha$ по соображениям простоты, а не эффективности.

2.3. Метод суперпозиции

Пусть случайные величины ξ и $\xi_1, \xi_2, \dots, \xi_n$ имеют функции распределения F и F_1, F_2, \dots, F_n соответственно, и при всех $x \in \mathbb{R}$

$$F(x) = \sum_{i=1}^{n} p_i F_i(x), \tag{5}$$

где все $p_i > 0$ и $p_1 + p_2 + \cdots + p_n = 1$. Пусть дискретная случайная величина ν не зависит от $\xi_1, \xi_2, \ldots, \xi_n$, и пусть ее закон распределения вероятностей задается следующей таблицей:

i	1	2	 n
$P(\nu=i)$	p_1	p_2	 p_n

Теорема 7. Случайная величина $\eta = \xi_{\nu}$ имеет функцию распределения F.

 \mathcal{A} оказательство. Найдем функцию распределения η :

$$F_{\eta}(x) = P(\eta < x) = P(\xi_{\nu} < x) = \sum_{i=1}^{n} P(\xi_{\nu} < x, \nu = i) =$$

$$= \sum_{i=1}^{n} P(\xi_{i} < x, \nu = i) = \sum_{i=1}^{n} P(\xi_{i} < x) P(\nu = i) =$$

$$= \sum_{i=1}^{n} p_{i}F_{i}(x) = F(x).$$

Теорема доказана.

Представим алгоритм моделирования случайной величины ξ .

Алгоритм

Шаг 1. Получить ν и $i := \nu$.

Шаг 2. Получить ξ_i , $\xi := \xi_i$ и закончить выполнение алгоритма.

Замечание 7. 1. О методах моделирования дискретной случайной величины ν рассказано в параграфе 7 "Дискретное распределение" (стр. 28).

- 2. Метод суперпозиции называют рандомизацией моделирования распределений.
- 3. Метод суперпозиции иногда называют методом смеси.
- 4. Метод суперпозиции удобно применять тогда, когда исходную функцию распределения F можно представить в виде смеси (5) функций распределения таких случайных величин $\xi_1, \xi_2, \ldots, \xi_n$, которые легко моделировать.
- 5. Обобщение Теоремы 7 можно найти, например, в [6].

Пример 3. Пусть функция распределения случайной величины ξ задается следующей формулой:

$$F(x) = \begin{cases} 0, & \text{при } x \leq 0, \\ \left(x^2 + x^4\right)/2, & \text{при } 0 < x \leq 1, \\ 1, & \text{при } x > 1. \end{cases}$$

Применяя Теорему 7, формулу (2) и алгоритм моделирования дискретного распределения (стр. 29), получим следующий алгоритм моделирования ξ .

Алгоритм

Шаг 1. Получить α_1 и α_2 .

Шаг 2. Если $\alpha_1 < 1/2$, то $\xi := \sqrt{\alpha_2}$, иначе $\xi := \sqrt[4]{\alpha_2}$. Закончить выполнение алгоритма.

3. МОДЕЛИРУЮЩИЕ ФОРМУЛЫ

1. Равномерное распределение на промежутке [a,b]. Функцией распределения является

$$F_{\xi}(x) = \begin{cases} 0, & \text{при } x \leq a, \\ \frac{x - a}{b - a}, & \text{при } a < x \leq b, \\ 1, & \text{при } x > b, \end{cases}$$
 (6)

а плотностью

$$p_{\xi}(x) = \begin{cases} \frac{1}{b-a}, & \text{при } a \leqslant x \leqslant b, \\ 0, & \text{при } x \notin [a,b]. \end{cases}$$

Теорема 8. Моделирующей формулой для равномерного распределения на промежутке [a, b] является $\xi = a + (b - a)\alpha$.

Доказательство сразу следует из Теоремы 3 и Теоремы 4. Кроме того, доказательство легко выполнить непосредственно. При $a\leqslant x\leqslant b$ найдем функцию распределения ξ :

$$F_{\xi}(x) = P\left(\xi < x\right) = P\left(a + (b - a)\alpha < x\right) =$$

$$= P\left(\alpha < \frac{x - a}{b - a}\right) = \frac{x - a}{b - a}.$$

Теорема доказана.

Например, получить и напечатать значения десяти независимых равномерно распределенных на промежутке [2,5] случайных величин $\xi_1, \xi_2, \ldots, \xi_{10}$ можно следующим образом:

for
$$i := 1$$
 to 10 do WriteLn(2 + (5 - 2) * Random);

2. Показательное (экспоненциальное) распределение опараметром $\lambda > 0$. Функцией распределения является

$$F_{\xi}(x) = \begin{cases} 1 - \exp(-\lambda x), & \text{при } x > 0, \\ 0, & \text{при } x \leq 0, \end{cases}$$
 (7)

а плотностью

$$p_{\xi}(x) = \begin{cases} \lambda \exp(-\lambda x), & \text{при } x > 0, \\ 0, & \text{при } x \leq 0. \end{cases}$$
(8)

Теорема 9. Моделирующей формулой показательного распределения с параметром λ является

$$\xi = -\frac{1}{\lambda} \ln \alpha. \tag{9}$$

 \mathcal{A} оказательство несложно выполнить с помощью Теоремы 3 и Теоремы 4. Но мы сделаем это непосредственно. При x>0 найдем функцию распределения ξ :

$$\begin{split} \mathsf{P}\left(\xi < x\right) &= \mathsf{P}\left(-\frac{1}{\lambda}\ln\alpha < x\right) = \mathsf{P}\left(\ln\alpha > -x\lambda\right) = \\ &= \mathsf{P}\left(\alpha > e^{-x\lambda}\right) = 1 - e^{-x\lambda}. \end{split}$$

Теорема доказана.

3. Гамма-распределение. Мы рассмотрим частный случай гамма-распределения с параметрами (n, λ) , где n — натуральное число, $\lambda > 0$ (в этом случае распределение легко моделировать, и именно это распределение нам потребуется в параграфе 6 и Теореме 17). Функцией распределения является

$$F_{\xi}(x) = \begin{cases} 1 - \sum_{i=0}^{n-1} \frac{(\lambda x)^i}{i!} \exp(-\lambda x), & \text{при } x > 0, \\ 0, & \text{при } x \leqslant 0. \end{cases}$$
 (10)

а плотностью

$$p_{\xi}(x) = \begin{cases} \frac{\lambda^n x^{n-1}}{(n-1)!} \exp(-\lambda x), & \text{при } x > 0, \\ 0, & \text{при } x \leq 0. \end{cases}$$
 (11)

Моделирующая формула:

$$\xi = -\frac{1}{\lambda} \ln \left(\prod_{i=1}^{n} \alpha_i \right). \tag{12}$$

Для доказательства формулы (12) нам потребуются следующие утверждения.

Теорема 10. Если случайные величины ξ и η абсолютно непрерывны и независимы, то случайная величина $\xi + \eta$ тоже абсолютно непрерывна, и ее плотность распределения определяется по формуле

$$p_{\xi+\eta}(x) = \int_{-\infty}^{+\infty} p_{\xi}(x-y)p_{\eta}(y)\mathrm{d}y, \qquad (13)$$

где p_{ξ} и p_{η} — плотности распределения случайных величин ξ и η .

Доказательство можно найти, например, в [18, 20]. \Box

Теорема 11. Пусть $\xi_1, \xi_2, \dots, \xi_n$ — независимые, показательно распределенные случайные величины с параметром λ . Тогда случайная величина $\eta_n = \xi_1 + \xi_2 + \dots + \xi_n$ имеет гаммараспределение с параметрами n и λ .

Доказательство выполним индукцией по n. При n=1 утверждение очевидно. Докажем индукционный переход от n-1 к n. Представив η_n в виде $\eta_n=\eta_{n-1}+\xi_n$, и применяя формулы (13), (8) и (11), при x>0 получим:

$$p_{\eta_n}(x) = \int_{-\infty}^{+\infty} p_{\eta_{n-1}}(x-y)p_{\xi_n}(y)dy = \int_{0}^{+\infty} p_{\eta_{n-1}}(x-y)\lambda e^{-\lambda y}dy =$$

$$= \int_{0}^{x} \frac{\lambda^{n-1}(x-y)^{n-2}}{(n-2)!} e^{-\lambda(x-y)}\lambda e^{-\lambda y}dy =$$

$$= \frac{\lambda^n e^{-\lambda x}}{(n-2)!} \int_{0}^{x} (x-y)^{n-2}dy = \frac{\lambda^n e^{-\lambda x} x^{n-1}}{(n-2)!(n-1)} = \frac{\lambda^n e^{-\lambda x} x^{n-1}}{(n-1)!}.$$

Теорема доказана.

Теорема 12. Формула (12) является моделирующей формулой гамма-распределения с параметрами (n, λ) , где n — натуральное число, $\lambda > 0$.

Доказательство. Пусть $\alpha_1, \alpha_2, \dots, \alpha_n$ — независимые, равномерно распределенные на промежутке [0,1] случайные величины. Случайные величины

$$\xi_1 = -\frac{1}{\lambda} \ln \alpha_1, \ \xi_2 = -\frac{1}{\lambda} \ln \alpha_2, \ \dots, \ \xi_n = -\frac{1}{\lambda} \ln \alpha_n$$

независимы, и, по Теореме 9, имеют показательное распределение с параметром λ . По Теореме 11 случайная величина

$$\eta_n = \xi_1 + \xi_2 + \dots + \xi_n = -\frac{1}{\lambda} \sum_{i=1}^n \ln \alpha_i = -\frac{1}{\lambda} \ln \left(\prod_{i=1}^n \alpha_i \right)$$

имеет гамма-распределение с параметрами n и λ . Теорема доказана.

Замечание 8. Методы моделирования произвольного гаммараспределения можно найти, например, в [6,7].

4. Стандартное нормальное распределение. Случайная величина ξ имеет стандартное нормальное распределение вероятностей (нормальное распределение вероятностей с параметрами 0 и 1, где 0 — математическое ожидание ξ , а 1 — дисперсия ξ), если ее плотность распределения задается формулой

$$p_{\xi}(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), \quad -\infty < x < +\infty.$$

Краткое обозначение: $\xi \sim N(0, 1)$.

Нам потребуется следующее утверждение.

Теорема 13. Пусть случайный вектор $\xi = (\xi_1, \dots, \xi_n)$ распределен с плотностью $p_{\xi}(x_1, \dots, x_n)$, и соотношения

$$\eta_1 = \psi_1(\xi_1, \dots, \xi_n)
\dots
\eta_n = \psi_n(\xi_1, \dots, \xi_n)$$
(14)

представляют собой взаимно однозначное и дифференцируемое преобразование $\eta = \Psi(\xi)$ с невырожденным якобианом. Тогда плотность распределения вектора $\eta = (\eta_1, \dots, \eta_n)$ определяется выражением:

$$p_{\eta}(\mathbf{y}) = p_{\xi} \left(\Psi^{-1}(\mathbf{y}) \right) \left| \frac{D\Psi^{-1}}{D\mathbf{y}} \right|, \tag{15}$$

где $\mathbf{y} = (y_1, \dots, y_n), \ \Psi^{-1} - n$ реобразование, обратное κ (14), а под знаком модуля стоит якобиан этого преобразования.

Доказательство. Согласно определению плотности распределения вектора имеем:

$$\int_{B} p_{\eta}(\mathbf{y}) d\mathbf{y} = \mathsf{P}(\eta \in B) = \mathsf{P}(\Psi(\xi) \in B) =$$

$$= \mathsf{P}(\xi \in \Psi^{-1}(B)) = \int_{\Psi^{-1}(B)} p_{\xi}(\mathbf{x}) d\mathbf{x}.$$

Сделав в последнем интеграле замену переменных: $\mathbf{x} = \Psi^{-1}(\mathbf{y}),$ приходим к соотношению

$$\int_{B} p_{\eta}(\mathbf{y}) d\mathbf{y} = \int_{B} p_{\xi} (\Psi^{-1}(\mathbf{y})) \left| \frac{D\Psi^{-1}}{D\mathbf{y}} \right| d\mathbf{y},$$

которое и доказывает Теорему 13.

Замечание 9. Ограничения на преобразование Ψ в Теореме 13 достаточно накладывать на множестве $D = \{(x_1, \dots, x_n) \in \mathbb{R}^n : p_{\xi}(x_1, \dots, x_n) > 0\}.$

При моделировании удобно получать значения сразу двух независимых нормальных случайных величин.

Теорема 14. Моделирующими формулами двух независимых стандартных нормальных случайных величин ξ_1 и ξ_2 являются

$$\begin{cases} \xi_1 = \sqrt{-2\ln\alpha_1}\cos(2\pi\alpha_2), \\ \xi_2 = \sqrt{-2\ln\alpha_1}\sin(2\pi\alpha_2). \end{cases}$$

Доказательство. Пусть ξ_1 и ξ_2 — независимые случайные величины, имеющие стандартное нормальное распределение. Тогда двумерная случайная величина $\zeta = (\xi_1, \xi_2)$ имеет стандартное двумерное нормальное распределение. Ее плотность $p_{\zeta}(x,y)$ равна:

$$p_{\zeta}(x,y) = p_{\xi_1}(x)p_{\xi_2}(y) = \frac{1}{2\pi} \exp\left(-\frac{x^2 + y^2}{2}\right).$$

Перейдем к полярным координатам (с помощью замены $x=r\cos\varphi,\,y=r\sin\varphi$). Через $\eta=(R,\Phi)$ обозначим новую двумерную случайную величину, где R — радиус $(0\leqslant R<+\infty)$ и Φ — угол $(\Phi\in[0,2\pi))$. По формуле (15) ее плотность $p_{\eta}(r,\varphi)$

равна:

$$p_{\eta}(r,\varphi) = \left| \det \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix} \right| p_{\zeta}(r \cos \varphi, r \sin \varphi) =$$

$$= \frac{1}{2\pi} \left| r \cos^{2} \varphi + r \sin^{2} \varphi \right| \exp \left(-\frac{r^{2} \cos^{2} \varphi + r^{2} \sin^{2} \varphi}{2} \right) =$$

$$= \frac{1}{2\pi} r \exp \left(-\frac{r^{2}}{2} \right). \tag{16}$$

Из формулы (16) следует, что случайные величины R и Φ независимы. При этом

$$p_R(r) = egin{cases} r \exp\left(-r^2/2
ight), & ext{при } r \geqslant 0, \ 0, & ext{при } r < 0, \end{cases}$$

а случайная величина Φ равномерно распределена на промежутке $[0,2\pi)$.

Моделирующей формулой для Φ (Теорема 8) является $2\pi\alpha$. Найдем моделирующую формулу для R. Легко сосчитать, что

$$F_R(r) = egin{cases} 1 - \exp\left(-r^2/2
ight), & \text{при } r \geqslant 0, \ 0, & \text{при } r < 0. \end{cases}$$

Используя метод обратных функций, и находя $F_R^{-1}(y)$, получим моделирующую формулу для R:

$$y = 1 - \exp(-r^2/2)$$
, $-r^2/2 = \ln(1-y)$, $r = \sqrt{-2\ln(1-y)}$.

Полученную формулу $R = \sqrt{-2\ln(1-\alpha)}$ можно немного упростить, если воспользоваться тем, что случайные величины $1-\alpha$ и α одинаково распределены. Таким образом, пришли

к следующей паре моделирующих формул (в полярных координатах):

$$\begin{cases} R = \sqrt{-2\ln\alpha_1}, \\ \Phi = 2\pi\alpha_2, \end{cases}$$

где (с учетом независимости R и Φ) используются независимые случайные величины α_1 и α_2 . Возвращаясь к прямоугольной системе координат, получим:

$$\begin{cases} \xi_1 = R \cos \Phi = \sqrt{-2 \ln \alpha_1} \cos(2\pi \alpha_2), \\ \xi_2 = R \sin \Phi = \sqrt{-2 \ln \alpha_1} \sin(2\pi \alpha_2). \end{cases}$$

Теорема доказана.

Приведем еще один способ моделирования пары независимых стандартных нормальных случайных величин (в [1] он назван методом полярных координат для нормального распределения). Идейно этот метод похож на предыдущий, но использует более сложный способ моделирования равномерного распределения на окружности (что позволяет избежать вычисления функций синус и косинус). Этот метод моделирования удобнее описать с помощью алгоритма.

Алгоритм

Шаг 1. Получить α_1 и α_2 ,

$$z_1 := 2 * \alpha_1 - 1, \ z_2 := 2 * \alpha_2 - 1,$$

 $d := z_1 * z_1 + z_2 * z_2.$

Шаг 2. Если $d \geqslant 1$, то перейти к шагу 1.

Шаг 3.
$$t:=\sqrt{-2*\ln d/d}\,,$$
 $\xi_1:=t*z_1,\ \xi_2:=t*z_2,$ закончить выполнение алгоритма.

Доказательство правильности представленного метода достаточно длинное, и потому опущено. Его можно найти, например, в [1].

В заключение укажем приближенный метод моделирования стандартных нормальных случайных величин. На основе центральной предельной теоремы случайная величина

$$\eta^{(n)} = \sqrt{\frac{12}{n}} \sum_{i=1}^{n} \left(\alpha_i - \frac{1}{2} \right)$$

асимптотически нормальна с параметрами 0 и 1. Легко сосчитать, что $\mathsf{E}\,\alpha=1/2$ и $\mathsf{D}\,\alpha=1/12$. Поэтому

$$\mathsf{E}\,\eta^{(n)} = \sqrt{\frac{12}{n}} \sum_{i=1}^n \mathsf{E}\left(\alpha_i - \frac{1}{2}\right) = 0,$$

$$\mathsf{D}\,\eta^{(n)} = \frac{12}{n} \sum_{i=1}^n \mathsf{D}\left(\alpha_i - \frac{1}{2}\right) = \frac{12}{n} \sum_{i=1}^n \mathsf{D}\,\alpha_i = 1.$$

Особенно удобным является значение n=12, так как

$$\eta^{(12)} = \sum_{i=1}^{12} \alpha_i - 6.$$

Обычно считают, что $\eta^{(12)}$ практически нормальна (если, конечно, большие значения $|\eta^{(12)}|$ не играют существенную роль).

Представленные методы просты и их легко реализовать на компьютере. Рассказ о других методах моделирования нормальных случайных величин можно найти, например, в [1] и [2].

5. Нормальное распределение с параметрами a и σ^2 (краткое обозначение: $N(a,\sigma^2)$). Случайная величина ξ имеет нормальное распределение вероятностей с параметрами a и σ^2 (a — математическое ожидание ξ , σ^2 — дисперсия ξ), если ее плотность распределения задается формулой

$$p_{\xi}(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right), \quad -\infty < x < +\infty.$$

Случайную величину $\xi \sim N(a, \sigma^2)$ легко получить с помощью линейного преобразования стандартной нормальной случайной величины η ($\eta \sim N(0,1)$) по формуле $\xi = a + \sigma \eta$.

6. Распределение хи-квадрат. Пусть случайные величины $\xi_1, \xi_2, \dots, \xi_n$ — независимы, и каждая из них имеет стандартное нормальное распределение N(0,1). Говорят, что случайная величина χ_n^2 , определенная как

$$\chi_n^2 = \xi_1^2 + \xi_2^2 + \dots + \xi_n^2, \tag{17}$$

имеет хи-квадрат распределение с n степенями свободы. Ясно, что χ_n^2 принимает положительные значения. Ее плотность $p_n(x)$ задается такой формулой:

$$p_n(x) = \begin{cases} \frac{1}{2^{n/2} \Gamma(n/2)} x^{n/2-1} \exp(-x/2), & \text{при } x > 0, \\ 0, & \text{при } x \leqslant 0. \end{cases}$$
(18)

Здесь $\Gamma(\cdot)$ есть гамма-функция, и при ее вычислении можно воспользоваться следующими свойствами: $\Gamma(1/2) = \sqrt{\pi}$, $\Gamma(1) = 1$, $\Gamma(x+1) = x\Gamma(x) \; \forall x>0$ (в частности, $\Gamma(n+1) = n$! для $n=0,1,2,\ldots$).

При *четном* n функция распределения χ^2_n определяется такой формулой:

$$F_n(x) = \begin{cases} 1 - \sum_{i=0}^{n/2-1} \frac{1}{i!} \left(\frac{x}{2}\right)^i \exp(-x/2), & \text{при } x > 0, \\ 0, & \text{при } x \leqslant 0. \end{cases}$$
 (19)

Из сопоставления формул (11) и (18) ясно, что для моделирования хи-квадрат распределения с четным числом степеней свободы n можно воспользоваться формулой (12):

$$\chi_n^2 = -2\ln\left(\prod_{i=1}^{n/2} \alpha_i\right). \tag{20}$$

Если же число степеней свободы n нечетно, то можно представить случайную величину χ_n^2 в виде $\chi_n^2 = \chi_{n-1}^2 + \xi_n^2$. Случайную величину χ_{n-1}^2 можно получить по формуле (20). Стандартную нормальную случайную величину ξ_n можно моделировать одним из описанных в параграфе 4 (стр. 20) способов.

Замечание 10. Случайная величина ξ_n^2 имеет плотность p_1 (формула (18)). Ее можно моделировать методом отбора, и при этом, по совету [6], использовать неравенство:

$$\sqrt{\frac{2}{x}} \exp\left(-\frac{x}{2}\right) \leqslant q_0(x) = \begin{cases} \sqrt{2/x}, & \text{при } 0 < x < 2, \\ \exp\left(-x/2\right), & \text{при } x \geqslant 2. \end{cases}$$

Случайная величина с плотностью, пропорциональной q_0 , легко моделируется стандартным методом обратных функций (сама q_0 плотностью не является).

Замечание 11. Можно моделировать хи-квадрат распределение непосредственно по формуле (17).

7. Дискретное распределение. Пусть распределение вероятностей дискретной случайной величины ξ задается следующей таблицей:

x_1	x_2	 x_n
p_1	p_2	 p_n

Здесь x_1, x_2, \ldots, x_n — множество всех значений случайной величины ξ , а p_1, p_2, \ldots, p_n — вероятности этих значений, т. е.

$$p_1 = P(\xi = x_1), \ p_2 = P(\xi = x_2), \ \dots, \ p_n = P(\xi = x_n).$$

При этом должно выполняться соотношение $p_1 + p_2 + \cdots + p_n = 1$.

Опишем процесс моделирования случайной величины ξ . Разобьем интервал [0,1] на n интервалов, длины которых равны p_1,p_2,\ldots,p_n . Координатами концов этих интервалов будут $S_0=0,\ S_1=p_1,\ S_2=p_1+p_2,\ldots,\ S_k=p_1+p_2+\cdots+p_k,\ldots,$ $S_n=p_1+p_2+\cdots+p_n=1$. Полученные интервалы занумеруем числами $1,2,\ldots,n$. Для моделирования ξ мы получим значение α и найдем тот интервал (среди n интервалов разбивающих промежуток [0,1]), в который попадает точка c координатой α . Если эта точка попадает в интервал c номером c0, то будем c1 что c2 и c3, что c4 х65, c5, c6 и c7, c8, c8, при c9.

Легко убедиться в правильности описанного метода. Действительно,

$$P(\xi = x_k) = P(S_{k-1} < \alpha \leqslant S_k) = S_k - S_{k-1} = p_k.$$

Замечание 12. Описанный метод моделирования дискретных случайных величин является следствием Теоремы 3, и потому называется методом обратных функций моделирования дискретных распределений.

Процесс моделирования опишем с помощью алгоритма, в котором нужный интервал ищется путем перебора всех интервалов слева направо.

Алгоритм 1

Шаг 1. Получить $\alpha, k := 1$.

Шаг 2. Если $\alpha \leqslant S_k$, то $\xi := x_k$ и закончить выполнение алгоритма.

Шаг 3. k := k + 1, перейти к шагу 2.

Замечание 13. Алгоритм будет работать в среднем быстрее, если вероятности p_1, p_2, \ldots, p_n упорядочить по убыванию (т. е. перестроить таблицу так, чтобы выполнялись неравенства $p_1 \geqslant p_2 \geqslant \cdots \geqslant p_n$). Упорядочить элементы массива можно с помощью алгоритмов сортировки, о которых рассказано в [21–23].

Поиск интервала можно ускорить, если применить метод деления пополам:

Алгоритм 2

Шаг 1. Получить α , $\ell := 1$, r := n.

 ${f LLar}$ 2. Если $\ell=r,$ то $\xi:=x_\ell$ и закончить выполнение алгоритма.

Шаг 3. $m := [(\ell + r)/2].$

Шаг 4. Если $\alpha \leqslant S_m$, то r:=m иначе $\ell:=m+1$.

Шаг 5. Перейти к шагу 2.

Здесь [x] — целая часть числа x.

В случае, когда вероятности всех значений одинаковы (т. е. $p_1 = \cdots = p_n = 1/n$), процедура моделирования сильно упрощается и сводится к следующей моделирующей формуле:

$$\xi = x_k$$
, где $k = [n\alpha] + 1$.

Действительно,

$$P(\xi = x_k) = P([n\alpha] + 1 = k) = P([n\alpha] = k - 1) =$$
 $= P(k - 1 \le n\alpha < k) = P((k - 1)/n \le \alpha < k/n) =$
 $= k/n - (k - 1)/n = 1/n.$

Замечание 14. Запрограммировать получение k можно при помощи стандартной математической функции Random(n) языка Турбо Паскаль, т. е. написать k := Random(n) + 1.

Аналогичный метод можно применить и в том случае, когда вероятности всех значений являются рациональными числами, и, значит, могут быть представлены в виде $p_1 = m_1/m$,

 $p_2 = m_2/m, \ldots, p_n = m_n/m,$ где m_1, m_2, \ldots, m_n и m — натуральные числа. Поясним этот метод на примере моделирования распределения, задаваемого следующей таблицей:

x_1	x_2	x_3
2/6	3/6	1/6

Преобразуем эту таблицу таким образом:

x_1	x_1	x_2	x_2	x_2	x_3
1/6	1/6	1/6	1/6	1/6	1/6

и обозначим $y_1=y_2=x_1,\,y_3=y_4=y_5=x_2,\,y_6=x_3.$ Моделирующей формулой в этом случае будет $\xi=y_k$ при $k=[6\alpha]+1.$

8. Дискретное равномерное распределение на множестве $\{0,1,\ldots,n-1\}$. Это распределение вероятностей задается следующей таблицей:

0	1	 n-1
1/n	1/n	 1/n

Теорема 15. Моделирующей формулой дискретного равномерного распределения на множестве $\{0,1,\ldots,\ n-1\}$ является $\xi=[n\alpha].$

Доказательство. Действительно, при $0\leqslant k\leqslant n-1$

$$P(\xi = k) = P([n\alpha] = k) = P(k \le n\alpha < k+1) =$$

= $P(k/n \le \alpha < (k+1)/n) = (k+1)/n - k/n = 1/n.$

Теорема доказана.

Замечание 15. В языке программирования Турбо Паскаль есть стандартная математическая функция Random(n) для моделирования этого распределения.

9. Распределение Бернулли. Случайная величина ξ имеет распределение Бернулли с параметром $p\ (0 , если <math>P(\xi = 1) = p,\ P(\xi = 0) = 1 - p.$

Теорема 16. Моделирующей формулой распределения Бернулли является

$$\xi = \begin{cases} 1, & npu \ \alpha < p, \\ 0, & npu \ \alpha \geqslant p. \end{cases}$$
 (21)

Доказательство. Действительно, $P(\xi = 1) = P(\alpha < p) = p$ и $P(\xi = 0) = 1 - P(\xi = 1) = 1 - p$. Теорема доказана.

10. Биномиальное распределение. Случайная величина ξ имеет биномиальное распределение с параметрами (n,p) (где 0 — натуральное число), если

$$P(\xi = k) = C_n^k p^k (1 - p)^{n - k}, \quad k = 0, 1, \dots, n.$$

Приведем два способа моделирования.

Первым методом будет "прямое" моделирование, основанное на том, что это распределение описывает число "успехов" (значений 1) в серии из n испытаний Бернулли. Моделирующей формулой здесь будет

$$\xi = \eta_1 + \eta_2 + \dots + \eta_n,$$

где $\eta_1, \eta_2, \dots, \eta_n$ — независимые случайные величины, имеющие распределение Бернулли с параметром p.

Второй способ аналогичен методу моделирования дискретных распределений, реализованному в алгоритме 1. При этом для вычисления вероятностей используется соотношение

$$\frac{\mathsf{P}(\xi = k)}{\mathsf{P}(\xi = k - 1)} = \frac{p(n - k + 1)}{(1 - p)k}.$$

Алгоритм

Шаг 1. Получить α ,

$$k := 0, \ c := p/(1-p), \ r := (1-p)^n, S := r.$$

Шаг 2. Если $\alpha \leqslant S$, то $\xi := k$ и закончить выполнение алгоритма.

Шаг 3.
$$k := k+1$$
, $r := r * c * (n-k+1)/k$, $S := S+r$, перейти к шагу 2.

Замечание 16. Этот алгоритм работает в среднем быстрее при $p \leqslant 1/2$. Поэтому при p > 1/2 лучше получить значение случайной величины η , имеющей биномиальное распределение с параметрами (n,1-p), и затем положить $\xi=n-\eta$.

11. Распределение Пуассона. Случайная величина ξ имеет распределение Пуассона с параметром λ ($\lambda > 0$), если

$$P(\xi = k) = \frac{\lambda^k}{k!} \exp(-\lambda), \quad k = 0, 1, 2, \dots$$

Приведем два способа моделирования. Первый способ аналогичен методу моделирования дискретных распределений, реализованному в алгоритме 1, а также алгоритму моделирования биномиального распределения. При этом для вычисления вероятностей используется соотношение

$$\frac{\mathsf{P}(\xi=k)}{\mathsf{P}(\xi=k-1)} = \frac{\lambda}{k}.$$

Второй способ задает следующая теорема.

Теорема 17. Пусть $\eta_1, \eta_2, \ldots, \eta_n, \ldots$ — независимые случайные величины, имеющие показательное распределение с параметром λ , и пусть

$$\xi = \max\{n : \eta_1 + \eta_2 + \dots + \eta_n < 1\}$$

(полагаем, что $\xi = 0$ в том случае, когда $\eta_1 \geqslant 1$). Тогда случайная величина ξ имеет распределение Пуассона с параметром λ .

Доказательство. В силу Теоремы 11 случайная величина $\eta_1 + \eta_2 + \cdots + \eta_n$ имеет гамма-распределение с параметрами n и λ . Используя формулу (10), получим

$$P(\xi = n) =$$

$$= P(\eta_1 + \eta_2 + \dots + \eta_n < 1, \eta_1 + \eta_2 + \dots + \eta_n + \eta_{n+1} \ge 1) =$$

$$= P(\eta_1 + \eta_2 + \dots + \eta_n < 1) -$$

$$- P(\eta_1 + \eta_2 + \dots + \eta_n + \eta_{n+1} < 1) =$$

$$= 1 - \sum_{i=0}^{n-1} \frac{\lambda^i}{i!} \exp(-\lambda) - 1 + \sum_{i=0}^n \frac{\lambda^i}{i!} \exp(-\lambda) = \frac{\lambda^n}{n!} \exp(-\lambda).$$

Теорема доказана.

Замечание 17. С учетом формулы (12) при моделировании следует воспользоваться равносильностью следующих двух неравенств:

$$-\frac{1}{\lambda}(\ln \alpha_1 + \ln \alpha_2 + \dots + \ln \alpha_n) < 1$$

И

$$\alpha_1 \times \alpha_2 \times \cdots \times \alpha_n > \exp(-\lambda).$$

12. Геометрическое распределение. Случайная величина ξ имеет геометрическое распределение с параметром p (где 0), если

$$P(\xi = k) = p(1-p)^k, \quad k = 0, 1, 2, \dots$$

Теорема 18. Пусть случайная величина ξ имеет геометрическое распределение с параметром p. Тогда $\mathsf{E}\,\xi = (1-p)/p$.

Доказательство легко выполнить с использованием производящих функций (см., например, [20]). \Box

Укажем три способа моделирования.

Первый способ основан на том, что это распределение описывает число "неудачных" испытаний в схеме Бернулли, произошедших до первого "успеха" (до того, как было получено значение 1) и задается следующей моделирующей формулой:

$$\xi = \max\{n : \eta_n = 0\},\$$

(полагаем, что $\xi = 0$ в том случае, когда $\eta_1 = 1$). Здесь $\eta_1, \eta_2, \ldots, \eta_n, \ldots$ — независимые случайные величины, имеющие распределение Бернулли с параметром p.

Второй способ аналогичен методу моделирования дискретных распределений, реализованному в алгоритме 1, а также алгоритму моделирования биномиального распределения. При этом для вычисления вероятностей используется соотношение

$$\frac{\mathsf{P}(\xi = k)}{\mathsf{P}(\xi = k - 1)} = 1 - p.$$

Третий способ основан на следующих теоремах.

Теорема 19. Пусть η — показательно распределенная случайная величина с параметром λ . Тогда случайная величина $\xi = [\eta]$ имеет геометрическое распределение с параметром $p = 1 - \exp(-\lambda)$.

Доказательство. Используя формулу (7), получим:

$$\begin{split} \mathsf{P}\big(\xi = k\big) &= \mathsf{P}\big([\eta] = k\big) = \mathsf{P}\big(k \leqslant \eta < k+1\big) = \\ &= 1 - e^{-\lambda(k+1)} - 1 + e^{-\lambda k} = e^{-\lambda k} - e^{-\lambda(k+1)} = e^{-\lambda k} \big(1 - e^{-\lambda}\big). \end{split}$$

Теорема доказана.

Теорема 20. Случайная величина

$$\xi = \left[\ln \alpha / \ln(1 - p) \right]$$

имеет геометрическое распределение с параметром р.

Доказательство. По Теореме 9 случайная величина

$$\eta = \frac{\ln \alpha}{\ln(1-p)} = \frac{-1}{-\ln(1-p)} \ln \alpha$$

имеет показательное распределение вероятностей с параметром $\lambda = -\ln(1-p)$. По Теореме 19 случайная величина

$$\xi = [\eta] = \left[\ln \alpha / \ln(1 - p) \right]$$

имеет геометрическое распределение с параметром

$$1 - \exp(-\lambda) = 1 - \exp(\ln(1-p)) = 1 - (1-p) = p.$$

Теорема доказана.

Методы моделирования других случайных величин, а также рассказ об общих методах моделирования можно найти в [1–11].

4. КРИТЕРИЙ СОГЛАСИЯ ХИ-КВАДРАТ

Проверить правильность работы моделирующих процедур можно с помощью критерия согласия хи-квадрат К. Пирсона. Критерий согласия К. Пирсона опирается на теорему, также носящую имя К. Пирсона. Пусть $\xi_1, \xi_2, \ldots, \xi_n, \ldots$ — последовательность независимых одинаково распределенных случайных величин со значениями в множестве Y. Разобьем область значений Y на r непересекающихся множеств Y_1, Y_2, \ldots, Y_r . Пусть $p_i = \mathsf{P}(\xi_k \in Y_i)$ — вероятность для ξ_k попасть в Y_i (очевидно, что $p_1 + p_2 + \cdots + p_r = 1$). Множества Y_1, Y_2, \ldots, Y_r нужно выбрать так, чтобы все p_i были положительны. Получим значения n случайных величин $\xi_1, \xi_2, \ldots, \xi_n$. Обозначим через m_i количество значений $\xi_1, \xi_2, \ldots, \xi_n$, попавших в Y_i . (Ясно, что $m_1 + m_2 + \cdots + m_r = n$.) Числа m_1, m_2, \ldots, m_r будем называть наблюдаемыми частотами. Введем случайную величину

$$\chi^2 = \sum_{i=1}^r \frac{(m_i - np_i)^2}{np_i}.$$

Тогда справедливо следующее утверждение:

Теорема К. Пирсона. Распределение χ^2 при $n \to +\infty$ слабо сходится к хи-квадрат распределению $c\ (r-1)$ степенями свободы, т. е. при $\forall x \in \mathbb{R} \ \mathsf{P}(\chi^2 < x) \to \mathsf{P}(\chi^2_{r-1} < x)$ при $n \to +\infty$.

Теорему К. Пирсона можно использовать для проверки гипотезы о том, что вероятности p_1, p_2, \ldots, p_r приняли определенные значения q_1, q_2, \ldots, q_r . Далее будем называть эту гипотезу гипотезой H и записывать следующим образом:

$$H: p_1 = q_1, p_2 = q_2, \dots, p_r = q_r.$$

Допустим, мы пытались моделировать распределение P_ξ (т. е. мы хотели, чтобы полученные нами случайные величины $\xi_1, \xi_2, \ldots, \xi_n, \ldots$ имели распределение P_ξ). Тогда для проверки правильности моделирования нужно взять $q_1 = \mathsf{P}_\xi(Y_1),$ $q_2 = \mathsf{P}_\xi(Y_2), \ldots, q_r = \mathsf{P}_\xi(Y_r)$ (где $\mathsf{P}_\xi(Y_i) = \mathsf{P}(\xi \in Y_i)$ — вероятность для ξ_k попасть в Y_i при правильном моделировании).

Величины nq_i (где $q_i = P(\xi \in Y_i)$) называются ожидаемыми частотами (при выполнении гипотезы H в среднем именно такое количество значений $\xi_1, \xi_2, \ldots, \xi_n$ должно попасть в Y_i). Рассмотрим статистику

$$X^{2} = \sum_{i=1}^{r} \frac{(m_{i} - nq_{i})^{2}}{nq_{i}} = n \sum_{i=1}^{r} \left(\frac{m_{i}}{n} - q_{i}\right)^{2} / q_{i}.$$

Статистика X^2 называется статистикой хи-квадрат Пирсона для простой гипотезы.

Известно (см. [12] или [13]), что по закону больших чисел $\frac{m_i}{n} \to p_i = \mathsf{P}(\xi_k \in Y_i)$ при $n \to +\infty$. Ясно, что $\frac{X^2}{n}$ представля-

ет собой квадрат некоего расстояния между двумя r-мерными векторами: вектором относительных частот $\left(\frac{m_1}{n}, \frac{m_2}{n}, \dots, \frac{m_r}{n}\right)$ и вектором вероятностей (q_1, q_2, \dots, q_r) . От евклидового расстояния это расстояние отличается лишь тем, что разные координаты входят в него с разными весами.

Обсудим поведение статистики X^2 в случае, когда гипотеза H верна, и в случае, когда H неверна. Если H верна, то асимптотическое поведение X^2 при $n \to +\infty$ указывает теорема К. Пирсона. Если H неверна, то $X^2 \to +\infty$ при $n \to +\infty$.

Метод проверки гипотезы:

- 1. Сосчитать полученное при моделировании значение статистики X^2 .
- 2. Приближенно (используя теорему К. Пирсона) найти вероятность $P(\chi^2 \geqslant X^2)$ (т. е. сосчитать $P(\chi^2_{r-1} \geqslant X^2)$).

Гипотеза H должна быть отвергнута, если полученное в опыте значение X^2 слишком велико. Слова "слишком велико" означают, что вероятность $\mathsf{P}(\chi^2 \geqslant X^2)$ — малая величина и, следовательно, маловероятно случайно получить такое же, как в опыте, или еще большее расхождение между вектором частот и вектором вероятностей.

"Традиционная" интерпретация вероятностей (см. [15]) приводится в следующей таблице:

Вероятность	Интерпретация
> 0.10	Данные согласуются с гипотезой
≈ 0.05	Есть некоторые сомнения в истинности гипо-
	тезы
≈ 0.02	Довольно сильный довод против гипотезы
≈ 0.01	Гипотеза почти наверняка не подтверждается

Замечание 18. 1. Использовать теорему К. Пирсона для приближенного вычисления вероятности $P\left(\chi^2 \geqslant X^2\right)$ можно только при больших n. Считается достаточным, если все ожидаемые частоты $nq_i \geqslant 10$.

2. Если r — нечетное число, то вероятность $P\left(\chi_{r-1}^2 \geqslant X^2\right)$ легко сосчитать, используя формулу (19):

$$P(\chi_{r-1}^2 \geqslant X^2) = 1 - F_{r-1}(X^2).$$

Если же r — четное число, то для вычисления вероятности $P\left(\chi_{r-1}^2 \geqslant X^2\right)$ можно применить методы численного интегрирования плотности (18):

$$P\left(\chi_{r-1}^2 \geqslant X^2\right) = 1 - \int_0^{X^2} p_{r-1}(x) dx.$$

Рассказ о методах численного интегрирования можно найти, например, в [24–26].

Кроме того, для вычисления вероятности $P\left(\chi_{r-1}^2 \geqslant X^2\right)$ можно воспользоваться таблицами [19] или какой-нибудь математической программой (например, Maple).

5. КРИТЕРИЙ СОГЛАСИЯ КОЛМОГОРОВА

Если моделируемая случайная величина имеет *непрерывную* функцию распределения, то проверить правильность моделирования можно с помощью критерия Колмогорова. Пусть мы имеем выборку $\xi_1, \xi_2, \ldots, \xi_n$ объема n. Обозначим истинную функцию распределения, которой подчиняются случайные величины $\xi_1, \xi_2, \ldots, \xi_n$, через G(x), эмпирическую (выборочную) функцию распределения — $F_n(x)$, а гипотетическую функцию распределения (которую должны получить при правильном моделировании) — F(x). Эмпирической функцией распределения, построенной по выборке $\xi_1, \xi_2, \ldots, \xi_n$, называется функция $F_n(x)$, равная доле таких значений ξ_i , что $\xi_i < x, i = 1, \ldots, n$,

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(-\infty,x)}(\xi_i),$$

где

$$\mathbf{1}_{(-\infty,x)}(\xi_i) = \begin{cases} 1, & \text{при } \xi_i < x, \\ 0, & \text{при } \xi_i \geqslant x. \end{cases}$$

Гипотеза H о том, что истинная функция распределения есть F(x), записывается в виде:

$$H:G=F.$$

Если гипотеза H верна, то F_n и F должны проявлять определенное сходство, и различие между ними должно убывать с увеличением n. Для количественного выражения сходства функ-

ций F_n и F воспользуемся cmamucmukoŭ Koлмогорова:

$$D_n = \sup_{-\infty < x < +\infty} |F_n(x) - F(x)|.$$

Очевидно, что D_n — случайная величина, поскольку ее значение зависит от случайного объекта F_n . Если гипотеза H справедлива и $n \to +\infty$, то $F_n \to F$ и $D_n \to 0$. Если же гипотеза H неверна, то $F_n \to G$ и $G \neq F$, а поэтому

$$\sup_{-\infty < x < +\infty} |F_n(x) - F(x)| \to \sup_{-\infty < x < +\infty} |G(x) - F(x)|.$$

Эта последняя величина положительна, так как G не совпадает с F. Такое различие в поведении D_n в зависимости от того, верна H или нет, позволяет использовать D_n как статистику для проверки H. Ясно, что гипотеза H должна быть отвергнута, если полученное в эксперименте значение статистики D_n окажется слишком большим. Но для этого нужно знать, как распределена статистика D_n при гипотезе H: F = G при данных n и G.

Замечательное свойство D_n состоит в том, что если F = G, т. е. если гипотетическое распределение указано правильно, то закон распределения статистики D_n оказывается одним и тем эксе для всех непрерывных функций G. Он зависит только от объема выборки n.

При малых n для статистики D_n при гипотезе H составлены таблицы процентных точек. Например, в [19] они доведены до n=100. При больших n ($n\geqslant 100$) распределение D_n (при гипотезе H) указывает предельная теорема А.Н. Колмогорова. Она говорит о статистике $\sqrt{n}D_n$ (поскольку сама величина $D_n\to 0$

при H, и ее приходится умножать на неограниченно растущую величину, чтобы распределение стабилизировалось).

Асимптотическое приближение. Теорема Колмогорова утверждает, что при справедливости H и непрерывности G для любого z>0

$$\lim_{n \to +\infty} \mathsf{P}\big(\sqrt{n}D_n < z\big) = K(z),$$

где функция K(z) задается следующей формулой:

$$K(z) = \sum_{k=-\infty}^{+\infty} (-1)^k e^{-2k^2 z^2}.$$

Алгоритм проверки гипотезы. По исходной выборке надо вычислить значение статистики D_n по формуле

$$D_{n} = \max_{1 \leq k \leq n} \left[\frac{k}{n} - F\left(\xi_{(k)}\right), F\left(\xi_{(k)}\right) - \frac{k-1}{n} \right].$$

Здесь через $\xi_{(1)}, \xi_{(2)}, \dots, \xi_{(n)}$ обозначены элементы вариационного ряда, построенного по исходной выборке. Вариационным рядом называют выборку, перенумерованную в порядке возрастания $\xi_{(1)} \leqslant \xi_{(2)} \leqslant \dots \leqslant \xi_{(n)}$. Упорядочить элементы выборки можно с помощью алгоритмов сортировки, о которых рассказано в [21–23].

Затем (при больших n) нужно вычислить вероятность $1-K(\sqrt{n}D_n)$. Гипотеза H должна быть отвергнута, если полученное в опыте значение D_n слишком велико. Слова "слишком велико" означают, что вероятность $1-K(\sqrt{n}D_n)$ — малая величина и, следовательно, маловероятно случайно получить такое

же, как в опыте, или еще большее расхождение между F_n и F. "Традиционная" интерпретация вероятностей (см. [15]) приведена в таблице на странице 40.

Другие методы проверки правильности моделирования можно найти в [1–3,8–19]. В частности, для проверки правильности моделирования можно использовать различные *критерии согласия*, описанные в указанной литературе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кнут Д. Искусство программирования для ЭВМ. М.: Мир, 1977. Т. 2.
- 2. Полляк Ю.Г. Вероятностное моделирование на электронных вычислительных машинах. М.: Советское радио, 1971.
- 3. Соболь И.М. Численные методы Монте-Карло. М.: Наука, 1973.
- 4. Соболь И.М. Метод Монте-Карло. М.: Наука, 1968.
- 5. Ермаков С.М. Метод Монте-Карло и смежные вопросы. М.: Наука, 1975.
- 6. Ермаков С.М., Михайлов Г.А. Курс статистического моделирования. М.: Наука, 1976.
- 7. Ермаков С.М., Михайлов Г.А. Статистическое моделирование. М.: Наука, 1982.

- 8. Кирьянов Б.Ф., Одинцов О.А., Кознов А.В. Лабораторный практикум по математическому моделированию; НПИ. Новгород, 1992.
- 9. Шалыгин А.С., Палагин Ю.И. Прикладные методы статистического моделирования. Л.: Машиностроение, 1986.
- 10. Харин Ю.С., Степанова М.Д. Практикум на ЭВМ по математической статистике. Мн.: Университетское, 1987.
- 11. Вероятность и математическая статистика: Энциклопедия / Гл. ред. Ю.В. Прохоров. М.: Большая Российская энциклопедия, 1999.
- 12. Тюрин Ю.Н., Макаров А.А. Анализ данных на компьютере. М.: ИНФРА-М, Финансы и статистика, 1995.
- 13. Тюрин Ю.Н., Макаров А.А. Статистический анализ данных на компьютере. М.: ИНФРА-М, 1998.
- 14. Медик В.А., Токмачев М.С., Фишман Б.Б. Статистика в медицине и биологии: Руководство: В 2 т. Т. 1. Теоретическая статистика. / Под ред. Ю.М. Комарова. М.: Медицина, 2000.
- 15. Справочник по прикладной статистике. В 2 т. Т. 1. / Под ред. Э. Ллойда, У. Ледермана, Ю.Н. Тюрина. М.: Финансы и статистика, 1989.
- 16. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1997.

- 17. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. М.: ЮНИТИ, 1998.
- 18. Смирнов Н.В., Дунин-Барковский И.В. Курс теории вероятностей и математической статистики для технических приложений. М.: Наука, 1965.
- 19. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983.
- 20. Чистяков В.П. Курс теории вероятностей. М.: Наука, 1982.
- 21. Ахо А., Хопкрофт Дж., Ульман Дж. Структуры данных и алгоритмы. М.: Издательский дом "Вильямс", 2000.
- 22. Вирт Н. Алгоритмы + структуры данных = программы. М.: Мир, 1985.
- 23. Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. М.: МЦНМО, 1999.
- 24. Панов Е.Ю. Основные алгоритмы численных методов: Учеб.-метод. указания; НГПИ. Новгород, 1991.
- 25. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Лаборатория Базовых Знаний, 2000.
- 26. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Наука, 1960.

ОГЛАВЛЕНИЕ

1.	Моделирование случайных величин	. 3
2.	Общие методы моделирования	. 5
3.	Моделирующие формулы	16
4.	Критерий согласия хи-квадрат	37
5.	Критерий согласия Колмогорова	41
\mathbf{C}	писок литературы	44