# Semestralní projekt IEL

### Syanova Elizaveta (xsyano00)

### 20. prosince 2020

# Obsah

| 1 | Příklad 1     | 2 |
|---|---------------|---|
| 2 | Příklad 2     | 4 |
| 3 | Příklad 3     | 6 |
| 4 | <b>Z</b> ávěr | 8 |

#### 1 Příklad 1

Stanovte napětí  $U_{R6}$  a proud  $I_{R6}$ . Použijte metodu postupného zjednodušování obvodu.

| sk. | $U_1[V]$ | $U_2[V]$ | $R_1 [\Omega]$ | $R_2 [\Omega]$ | $R_3 [\Omega]$ | $R_4 [\Omega]$ | $R_5 [\Omega]$ | $R_6 [\Omega]$ | $R_7 [\Omega]$ | $R_8 [\Omega]$ |
|-----|----------|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Н   | 135      | 80       | 680            | 600            | 260            | 310            | 575            | 870            | 355            | 265            |



Zapojení postupně zjednodušíme:

$$R_{34} = \frac{R_3 * R_4}{R_3 + R_4} = \frac{260 * 310}{260 + 310} = 141,4035\Omega$$
  
 $R_{234} = R_2 + R_{34} = 600 + 141,4035 = 741,4035\Omega$ 

Vzniklý trojúhelník  $[R_4,\,R_{57},\,R_{68}]$  převedeme na hvězdu:

$$R_A = \frac{R_1 * R_{234}}{R_1 + R_{234} + R_5} = \frac{680 * 741,4035}{680 + 741,4035 + 575} = 252,5313\Omega$$

$$R_B = \frac{R_1 * R_5}{R_1 + R_{234} + R_5} = \frac{680 * 575}{680 + 741,4035 + 575} = 195.8522\Omega$$

$$R_C = \frac{R_5 * R_{234}}{R_1 + R_{234} + R_5} = \frac{575 * 741,4035}{680 + 741,4035 + 575} = 213.5375\Omega$$

Dále zjednodušíme:

$$R_{B7} = R_B + R_7 = 195,8522 + 355 = 550.8522\Omega$$

$$R_{C6} = R + R_6 = 213.5375 + 870 = 1083.5375\Omega$$

$$R_{B7C6} = \frac{R_{B7} * R_{C6}}{R_{B7} + R_{C6}} = \frac{550.8522 * 1083.5375}{550.8522 + 1083.5375} = 365.1938\Omega$$

$$R = R_A + R_{B7C6} + R_8 = 252.5313 + 365.1938 + 265 = 882.7251\Omega$$

Vypočteme proud zdroje:

$$U = U_1 + U_2 = 135 + 80 = 215\Omega$$

$$I = \frac{U}{R} = \frac{215}{882.7251} = 0.2435A$$

Ze získaných hodnot vypočteme hledané hodnoty  $I_{R6}$  a  $U_{R6}\colon$ 

$$U_{RC6} = U_{C6B7} = I * R_{C6B7} = 0.2435 * 365.1938 = 88.948V$$

$$I_{R6} = I_{RC6} = \frac{U_{RC6}}{R_{C6}} = \frac{88.948}{1083.5375} = 0.082A$$

$$U_{R6} = I_{R6} * R_6 = 0.082 * 870 = 71.35V$$

Hledané hodnoty  $I_{R6}$  a  $U_{R6}$  jsou:

$$I_{R6} = 0.082A$$
  
 $U_{R6} = 71.35V$ 

#### 2 Příklad 2

Stanovte napětí  $U_{R3}$  a proud  $I_{R3}$ . Použijte metodu Théveninovy věty.

| sk. | U[V] | $R_1 [\Omega]$ | $R_2 [\Omega]$ | $R_3 [\Omega]$ | $R_4 [\Omega]$ | $R_5 [\Omega]$ | $R_6 [\Omega]$ |
|-----|------|----------------|----------------|----------------|----------------|----------------|----------------|
| A   | 50   | 100            | 525            | 620            | 210            | 530            | 100            |



Zapojení postupně zjednodušíme pro výpočet odporu  $R_i$ :

$$R_{45} = R_4 + R_5 = 210 + 530 = 740\Omega$$

$$R_{145} = R_1 || R_{45} = \frac{R_1 * R_{45}}{R_1 + R_{45}} = \frac{100 * 740}{100 + 740} = 88.0952\Omega$$

$$R_{26} = R_2 || R_6 = \frac{R_2 * R_6}{R_2 + R_6} = \frac{525 * 100}{525 + 100} = 84\Omega$$

$$R_i = R_{145} + R_{26} = 88.0952 + 84 = 172.0952\Omega$$

Zapojení postupně zjednodušíme pro výpočet napětí  $U_i$ :

$$R_{145} = R_1 + R_{45} = 100 + 740 = 840\Omega$$

$$R_{26} = R_2 + R_6 = 525 + 100 = 625\Omega$$

$$R_{14526} = R_{145}||R_{26} = \frac{R_{145} * R_{26}}{R_{145} + R_{26}} = \frac{840 * 625}{840 + 625} = 358.3617\Omega$$

Vypočteme proudy  $I_1$  pro rezistor  $R_{145}$  a  $I_2$  pro  $R_{26}$ :

$$I_1 = \frac{U}{R_{145}} = \frac{50}{840} = 0.0595A$$
 $I_2 = \frac{U}{R_{26}} = \frac{50}{625} = 0.08A$ 

Dle II. Kirchhoffova zákona vypočteme napětí  $U_i$  ze smyčky tvořené větvemi s rezistory  $R_1,\ R_2$  a  $R_3$ :

$$U_i = -I_1 * R_1 + I_2 * R_2$$

$$U_i = -0.0595 * 100 + 0.08 * 525$$

$$U_i = 36.05V$$

4

Ze získaných hodnot vypočteme hledané hodnoty  $I_{R3}$  a  $U_{R3}\colon$ 

$$I_{R3} = \frac{U_i}{R_i + R_3} = \frac{36.05}{172.0952 + 620} = 0.0455A$$
 $U_{R3} = I_{R3} * R_3 = 0.0455 * 620 = 28.2175V$ 

Hledané hodnoty  $I_{R3}$  a  $U_{R3}$  jsou:

$$I_{R3} = 0.0455A$$
  
 $U_{R3} = 28.2175V$ 

#### 3 Příklad 3

Stanovte napětí  $U_{R2}$  a proud  $I_{R2}$ . Použijte metodu uzlových napětí  $(U_A, U_B, U_C)$ .

|   |     |      |      |    |    | $R_3 [\Omega]$ |    |    |
|---|-----|------|------|----|----|----------------|----|----|
| С | 110 | 0.85 | 0.75 | 44 | 31 | 56             | 20 | 30 |



Dle I. Kirchhoffova zákona sestavíme rovnice pro uzly A, B, C:

$$A : I_{R1} - I_{R3} - I_{R2} = 0$$
  
 $B : I_1 + I_{R3} - I_{R5} = 0$   
 $C : I_2 - I_1 + I_{R5} - I_{R4} = 0$ 

Dosadíme jednotlivé proudy do připravených rovnic:

$$0 = G_1(U - U_A) - G_3(U_A - U_B) - G_2U_A$$
  

$$0 = I_1 + G_3(U_A - U_B) - G_5(U_B - U_c)$$
  

$$0 = I_2 - I_1 + G_5(U_B - U_C) - G_4U_C$$

Upravíme rovnice:

$$-U_A(G_1 + G_2 + G_3) + U_BG_3 + 0U_C = -G_1U$$

$$U_AG_3 - U_B(G_3 + G_5) + G_5U_C = -I_1$$

$$0U_A + G_5U_B - U_C(G_4 + G_5) = I_1 - I_2$$

Dosadíme číselné hodnoty:

$$-U_A(\frac{1}{44} + \frac{1}{31} + \frac{1}{56}) + U_B \frac{1}{56} + 0U_C = -\frac{110}{44}$$

$$U_A \frac{1}{56} - U_B(\frac{1}{56} + \frac{1}{30}) + U_C \frac{1}{30} = -0.85$$

$$0U_A + U_B \frac{1}{30} - U_C(\frac{1}{20} + \frac{1}{30}) = 0.85 - 0.75$$

Zapíšeme v podobě rozšířené matice, cramerovým pravidlem vypočteme uzlová napětí  $U_A$ :

$$A = \begin{pmatrix} -0.0727 & 0.0278 & 0 & | & -2.5 \\ 0.0178 & -0.0511 & 0.0333 & | & -0.85 \\ 0 & 0.0333 & -0.0833 & | & 0.1 \end{pmatrix}$$

$$detA = \begin{vmatrix} -0.0727 & 0.0278 & 0 \\ 0.0178 & -0.0511 & 0.0333 \\ 0 & 0.0333 & -0.0833 \end{vmatrix} = -2.0199 * 10^{-4}$$

$$U_A = \frac{\begin{vmatrix} -2.5 & 0.0278 & 0 \\ -0.85 & -0.0511 & 0.0333 \\ 0.1 & 0.0333 & -0.0833 \end{vmatrix}}{detA} = \frac{-9.0704 * 10^{-3}}{-2.0199 * 10^{-4}} = 44.9052V$$

Ze získaných hodnot vypočteme hledané hodnoty  $U_{R3}$  a  $I_{R3}$ :

$$U_{R2} = U_A = 44.9052V$$
  
 $I_{R2} = \frac{U_{R2}}{R_2} = \frac{44.9052}{31} = 1.4458A$ 

Hledané hodnoty  $U_{R3}$  a  $I_{R3}$  jsou:

$$U_{R2} = 44.9052V$$
  
 $I_{R2} = 1.4458A$ 

# 4 Závěr

| Příklad | Zadání | Výsledek                              |
|---------|--------|---------------------------------------|
| 1       | Н      | $U_{R6} = 71.35V, I_{R6} = 0.082A$    |
| 2       | A      | $U_{R3} = 28.2175V, I_{R3} = 0.0455A$ |
| 3       | С      | $U_{R2} = 44.9052V, I_{R2} = 1.4458A$ |
| 4       | Н      |                                       |
| 5       | В      |                                       |

Tabulka 1: Výsledky řešení