思考题:

下列说法能否作为 a是数列 $\{a_n\}$ 的极限的等价定义? 为什么?

- (1) 对于任意给定的 $\varepsilon > 0$, 存在 $N \in \mathbb{N}_+$, 当 n > N时,恒有不等式 $|a_n A| < k\varepsilon$ 成立,其中k为正常数.
- (2) 对于无穷多个 $\varepsilon > 0$, 存在 $N \in \mathbb{N}_+$, 当 n > N 时, 恒有不等式 $|a_n a| < \varepsilon$ 成立.
- (3) 对于任意给定的 $\varepsilon > 0$, 存在 $N \in \mathbb{N}_+$, 当n > N时,有无穷多项 a_n ,使不等式 $|a_n a| < \varepsilon$ 成立.

第二部分:收敛数列的性质与极限运算法则

1.有界性

定义:对数列 x_n ,若存在正数M,使得一切自然数n,恒有 $|x_n| \le M$ 成立,则称数列 x_n 有界,否则,称为无界.

例如,数列
$$x_n = \frac{n}{n+1}$$
; 有界数列 $x_n = 2^n$. 无界

数轴上对应于有界数列的点 x_n 都落在闭区间 [-M,M]上.

定理1 收敛的数列必定有界. boundedness

证 设 $\lim_{n\to\infty} x_n = a$, 由定义, 取 $\varepsilon = 1$,

则 $\exists N$,使得 $\exists n > N$ 时,恒有 $|x_n - a| < 1$,

即有 $a-1 < x_n < a+1$.

记 $M = \max\{|x_1|, \dots, |x_N|, |a-1|, |a+1|\},$

则对一切自然数n,皆有 $|x_n| \leq M$,故 $\{x_n\}$ 有界.

推论 无界数列必定发散.

注意: 有界性是数列收敛的必要条件.

例5 证明数列 $x_n = (-1)^{n+1}$ 是发散的.

证 设 $\lim_{n\to\infty} x_n = a$, 由定义,对于 $\varepsilon = \frac{1}{2}$,

则 $\exists N$,使得 $\exists n > N$ 时,有 $|x_n - a| < \frac{1}{2}$ 成立,即 $\exists n > N$ 时, $x_n \in (a - \frac{1}{2}, a + \frac{1}{2})$,区间长度为1.

而x"无休止地反复取1,-1两个数,

不可能同时位于长度为1的区间内.

事实上,{x,}是有界的,但却发散.

2.唯一性

定理2 收敛数列的极限只有一个. uniqueness

证 设
$$\lim_{n\to\infty} x_n = a$$
, $\mathbb{Z}\lim_{n\to\infty} x_n = b$, $a \neq b$.

由定义知, $\forall \epsilon > 0,\exists N_1,N_2$.使得

当
$$n > N_1$$
时恒有 $|x_n - a| < \varepsilon$;

当
$$n > N_2$$
时恒有 $|x_n - b| < \varepsilon$;

取
$$N = \max\{N_1, N_2\},$$

则当
$$n > N$$
时有 $|a-b| = |(x_n-b)-(x_n-a)|$
 $\leq |x_n-b| + |x_n-a| < \varepsilon + \varepsilon = 2\varepsilon.$

上式仅当a = b时才能成立. 故收敛数列极限唯一.

定理2 如果数列 $\{x_n\}$ 收敛,则它的极限唯一

证:用反证法 假设同时有 $\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} x_n = b, \text{且} a < b,$

$$\varepsilon = \frac{b-a}{2}$$
,则 $\exists N_1$ 、 N_2 ,使得当

$$n > N_1$$
时,恒有 $|x_n - a| < \frac{b-a}{2}$,

$$n > N_2$$
时,恒有 $|x_n - b| < \frac{b - a}{2}$,取 $N = \max\{N_1, N_2\}$,

则
$$n > N$$
时, $\frac{3a-b}{2} < x_n < \frac{a+b}{2}$, $\frac{a+b}{2} < x_n < \frac{3b-a}{2}$,

則
$$n > N$$
时, $\frac{3a-b}{2} < x_n < \frac{a+b}{2}$, $\frac{a+b}{2} < x_n < \frac{3b-a}{2}$,即 $x_n < \frac{a+b}{2}$, $\frac{a+b}{2} < x_n$,

这是不可能的,故收敛数列极限唯一.

定理3. (有理运算法则) Rules of rational operations

该法则要求:参与运算的每个数列的极限均存在.

推论: $(1)\lim_{n\to\infty}(ka_n)=ka,k$ 为常数. $(2)\lim_{n\to\infty}(a_n)^m=a^m,m\in \mathbb{Z}^+$

定理4.保号性 Preservation of sign

设 $\lim_{n\to\infty} a_n = a, a \neq 0$,则 $\exists N \in \mathbb{N}_+$,使得 $\forall n > N, a_n$ 与 a 同号.

并且,若a>0,则 $\exists N\in\mathbb{N}_+$,使得 $\forall n>N$,恒有 $a_n\geq q>0$.

反之,若 a < 0,则 $\exists N \in \mathbb{N}_+$,使得 $\forall n > N$,恒有 $a_n \le q < 0$.

证: **若**
$$a>0$$
, 取 $\varepsilon = \frac{a}{2} > 0, \exists N_1, \exists n > N_1$ 时恒有 $|a_n - a| < \frac{a}{2}$, 即 $\frac{1}{2}a < a_n < \frac{3}{2}a$, 取 $q = \frac{1}{2}a$ 即可.

若
$$a<0$$
,取 $\varepsilon=-\frac{a}{2}>0$, $\exists n>N_2$ 时恒有 $|a_n-a|<-\frac{a}{2}$,即 $\frac{3}{2}a< a_n<\frac{1}{2}a$,取 $q=\frac{1}{2}a$ 即可.

保号性推论

设
$$\lim_{n\to\infty} a_n = a, a \neq 0$$
,则 $\exists N \in \mathbb{N}_+$,

使 $\forall n > N, |a_n| > \lambda |a| \quad (0 < \lambda < 1).$

证:若a>0,取 $\varepsilon=(1-\lambda)a>0$, $\exists N_1$, $\exists n>N_1$ 时恒有 $|a_n-a|<(1-\lambda)a$,

$$\mathbb{E}[\lambda a < a_n < (2 - \lambda)a \quad \therefore |a_n| > \lambda |a|]$$

若a<0, 取 $\varepsilon=(\lambda-1)a>0$, $\exists N_2$, $\exists n>N_2$ 时恒有 $|a_n-a|<(\lambda-1)a$,

即
$$(2-\lambda)a < a_n < \lambda a$$
, $|a_n| > \lambda |a|$

定理5.保序性 isotone

(反证法) 设a>b, 由保号性可证

定理6. 夹逼定理 (Squeeze Theorem)

恒有
$$a_n \le c_n \le b_n$$
, 则 $\lim_{n\to\infty} c_n = a$.

例6
$$\lim_{n\to\infty}\sqrt{n}\left(\sqrt{n+1}-\sqrt{n}\right)$$

例7
$$\lim_{n\to\infty} \frac{(n+1)(n+2)(n+3)}{2n^3+1}$$

例8 证明:

(1)
$$\lim_{n \to \infty} \sqrt[n]{a} = 1(a > 0).$$
 (2) $\lim_{n \to \infty} \sqrt[n]{n} = 1.$

例8 证明:
$$(1)\lim_{n\to\infty} \sqrt[n]{a} = 1(a>0).$$
 $(2)\lim_{n\to\infty} \sqrt[n]{n} = 1.$

证 (1)当
$$a > 1$$
 时, $\sqrt[n]{a} = 1 + h_n(h_n > 0)$,

由牛顿二项公式,得

$$a = (1 + h_n)^n = 1 + nh_n + C_n^2 h_n^2 + \dots + h_n^n \ge nh_n,$$

$$\Rightarrow 0 < h_n \leq \frac{a}{n},$$

由夹逼准则得 $\lim_{n\to+\infty} h_n = 0$,所以

$$\lim_{n\to\infty} \sqrt[n]{a} = \lim_{n\to\infty} (1+h_n) = 1.$$

例8 证明:
$$(1)\lim_{n\to\infty} \sqrt[n]{a} = 1(a>0).$$
 $(2)\lim_{n\to\infty} \sqrt[n]{n} = 1.$

当
$$a=1$$
 时,显然成立。
当 $0 < a < 1$ 时,令 $b = \frac{1}{a} > 1$,从而有 $\lim_{n \to \infty} \sqrt[n]{b} = 1$,

因 $\lim_{n\to\infty} \sqrt[n]{a} = \lim_{n\to\infty} \frac{1}{\sqrt[n]{b}} = 1$, 故 $\lim_{n\to\infty} \sqrt[n]{a} = 1$.

综上可知,当 a > 0时有 $\lim \sqrt[n]{a} = 1$.

(2).
$$n > 1$$
. $\diamondsuit \sqrt[n]{n} = 1 + x_n$, $\mathbb{N} \sqrt[n]{n} - 1 = x_n$, $\mathbb{E} x_n > 0$.

$$n = (1 + x_n)^n = 1 + nx_n + \frac{n(n-1)}{2!}x_n^2 + \dots + x_n^n$$

$$n > \frac{n(n-1)}{2!} x_n^2, \quad 0 < x_n \le \sqrt{\frac{2}{n-1}}.$$
 由夹逼定理得证

例9 求极限
$$\lim_{n\to\infty} \sqrt[n]{3+\cos n}$$
;

求极限
$$\lim_{n\to\infty} \left(1-\frac{1}{\sqrt[n]{n}}\right) \left(1+\sqrt[n]{2}\right);$$

$$\sqrt[n]{2} \le \sqrt[n]{3 + \cos n} \le \sqrt[n]{4};$$

$$\lim_{n \to \infty} (1 - \frac{1}{\sqrt[n]{n}})(1 + \sqrt[n]{2}) = \lim_{n \to \infty} (1 - \frac{1}{\sqrt[n]{n}}) \cdot \lim_{n \to \infty} (1 + \sqrt[n]{2}) = 0.$$

例10 求
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n}\right)$$
.

分析: 考虑利用夹逼性. 构造夹逼数列

$$\therefore \frac{1+2+\dots+n}{n^2+n} < \frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n} < \frac{1+2+\dots+n}{n^2+1}$$

$$\frac{1}{n^2+n} < \frac{1}{n^2+1} + \frac{1}{n^2+2} + \dots + \frac{n}{n^2+n} < \frac{1+2+\dots+n}{n^2+1} < \frac{1+2+\dots+n}{n^2+1} < \frac{1}{n^2+1} + \dots + \frac{n}{n^2+1} < \frac{1+2+\dots+n}{n^2+1} < \frac{1+$$

$$\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n^2 + 1} = \lim_{n \to \infty} \frac{\frac{1}{2}n(n+1)}{n^2 + 1} = \frac{1}{2}$$

$$\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n^2 + n} = \lim_{n \to \infty} \frac{\frac{1}{2}n(n+1)}{n^2 + n} = \frac{1}{2}$$

所以, 所求极限为 $\frac{1}{2}$.

思考题:

1. 下面的求极限过程是否正确?

$$\lim_{n \to \infty} \frac{1+2+\dots+n}{n^2} = \lim_{n \to \infty} \frac{1}{n^2} + \lim_{n \to \infty} \frac{2}{n^2} + \dots + \lim_{n \to \infty} \frac{n}{n^2}$$
$$= 0 + 0 + \dots + 0$$
$$= 0$$

$$\lim_{n\to\infty}\frac{a_0n^k+a_1n^{k-1}+\cdots+a_k}{b_0n^l+b_1n^{l-1}+\cdots+b_l}$$
的取值有哪些情况?

提示

思考题

1. 错误. 数列极限的有理运算法则仅适用于有限个极限的情况. 正确的求极限过程如下:

$$\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n^2} = \lim_{n \to \infty} \frac{(1 + n)n}{2n^2} = \lim_{n \to \infty} \frac{(1 + n)}{2n}$$

$$= \lim_{n \to \infty} \left(\frac{1}{2n} + \frac{1}{2}\right) = \lim_{n \to \infty} \frac{1}{2n} + \lim_{n \to \infty} \frac{1}{2}$$

$$= 0 + \frac{1}{2}$$

$$= \frac{1}{2}$$

提示

思考题

2.

$$\lim_{n \to \infty} \frac{a_0 n^k + a_1 n^{k-1} + \dots + a_k}{b_0 n^l + b_1 n^{l-1} + \dots + b_l} = \begin{cases} a_0 / b_0, \stackrel{\triangle}{=} l = k; \\ 0, \stackrel{\triangle}{=} l > k; \\ \infty, \stackrel{\triangle}{=} l < k. \end{cases}$$

第三部分:数列收敛的判别准则

单调性: 设有数列 $\{a_n\}$, 若 $\forall n \in \mathbb{N}_+$, 都有 $a_n \leq a_{n+1}$ $\{a_n \geq a_{n+1}\}$, 则数列 $\{a_n\}$ 是单调增(减)的

若以上不等式是严格成立的,则称该数列是严格单调增(减)的。

定理2.6 (单调有界准则) monotone boundedness criterion 单调增(减)有上(下)界的数列必定收敛。

证明: 设数列 $\{x_n\}$ 单增,有上界.则必有上确界,记为a 可证明: $\lim_{n\to\infty}x_n=a$

a为上确界 $\Rightarrow x_n \le a$ 且 $\forall \varepsilon > 0, \exists N, \notin x_N > a - \varepsilon$.

又数列 $\{x_n\}$ 单调增,故 $\forall n > N, x_n \geq x_N$,

 $∴ ∀n > N, 恒有a - \varepsilon < x_N \le x_n \le a < a + \varepsilon.$

a为上确界 $\Rightarrow x_n \leq a$ 且 $\forall \varepsilon > 0, \exists N, \notin x_N > a - \varepsilon$. 又数列 $\{x_n\}$ 单增,故 $\forall n > N, x_n \geq x_N$,

$$\therefore \forall n > N, 恒有 a - \varepsilon < x_N \le x_n \le a < a + \varepsilon.$$

$$\lim_{n \to \infty} x_n = a$$

$$\lim_{n\to\infty}x_n=a\Leftrightarrow\forall\varepsilon>0,\exists N>0,\notin n>N$$
时,恒有 $|x_n-a|<\varepsilon$.

定理2.6 (单调有界准则) monotone boundedness criterion

单调增(减)有上(下)界的数列必定收敛。

重要极限
$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e.$$

- (1) 可以证明它是单调增的;
- (2) 可以证明它有上界3。

例 证明: $a_n = \left(1 + \frac{1}{n}\right)^n$ 收敛.

证 (1) 先证 $\{a_n\}$ 是单调增加的。

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} =$$

$$= 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^{2}} + \dots + \frac{n(n-1) \cdot \dots \cdot (n-k+1)}{k!} \cdot \frac{1}{n^{k}}$$

$$+\cdots+\frac{n(n-1)\cdots(n-n+1)}{n!}\cdot\frac{1}{n^n}$$

下一步,各项分子分母同时约去n的相同的幂次

$$=1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\cdots+\frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{k-1}{n}\right)\\ +\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{n-1}{n}\right)\\ =1+n\cdot\frac{1}{n}+\frac{n(n-1)}{2!}\cdot\frac{1}{n^2}+\cdots+\frac{n(n-1)\cdots(n-k+1)}{k!}\cdot\frac{1}{n^k}\\ +\cdots+\frac{n(n-1)\cdots(n-n+1)}{n!}\cdot\frac{1}{n^n}\\ =a_{n+1}$$
 这就证明了 $\{a_n\}$ 是单调增加的。

(2) 再证 $\{a_n\}$ 是上有界的。

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{k!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{k-1}{n} \right)$$

$$+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{n-1}{n}\right)$$

$$<1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{k!}+\cdots+\frac{1}{n!}$$

$$<1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{k!}+\cdots+\frac{1}{n!}$$

$$<1+1+\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\cdots+\frac{1}{(k-1)k}+\cdots+\frac{1}{(n-1)n}$$

$$=2+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdots+\frac{1}{k-1}-\frac{1}{k}+\cdots+\frac{1}{n-1}-\frac{1}{n}$$

$$=3-\frac{1}{n}<3,\quad 因此{a_n}又是上有界的。$$

所以
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n \frac{\overline{pa}}{\overline{u}}$$
 e

 $e = 2.71828128459 \cdots$

® (1) 这是有理数列的极限是无理数的 重要例子,它说明了有理数集对于极 限运算是不封闭的,极限理论必须在 实数范围内研究。(实数完备性)

(2) 可以解决一大批类似极限问题。

例10 求极限
$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$$

例 证明数列 $x_n = \sqrt{3 + \sqrt{3 + \sqrt{\cdots + \sqrt{3}}}}$ (n重根式)的极限存在.

例 设 $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n})$ $(n=1,2,\dots)$,且 $x_1 > 0$, a > 0,求 $\lim_{n \to \infty} x_n$.

例 求极限 $\lim_{n\to\infty} \frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \cdots \times \frac{2n-1}{2n}$