MATHEMATICS 271 L01 FALL 2015

QUIZ 4 Friday, November 27, 2015

Duration: 45 minutes.

[8] 1. Let $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ be functions defined by f(x) = 2x + 1 and $g(x) = \left\lfloor \frac{x}{3} \right\rfloor$.

(a) Is $g \circ f$ one-to-one? Prove your answer.

Solution: $g \circ f$ is not one—to—one.

This is because $g \circ f(1) = g \circ f(2)$ but $1 \neq 2$. Note that $g \circ f(1) = g(f(1)) = g(3) = \left\lfloor \frac{3}{3} \right\rfloor = 1$ and $g \circ f(2) = g(f(2)) = g(5) = \left\lfloor \frac{5}{3} \right\rfloor = 1$.

(b) Is $f \circ g$ onto \mathbb{Z} ? Prove your answer.

Solution: $f \circ g$ is not onto \mathbb{Z} .

This is because for any $x \in \mathbb{Z}$, $f \circ g(x) = 2 \left\lfloor \frac{x}{3} \right\rfloor + 1$ where $\left\lfloor \frac{x}{3} \right\rfloor$ is an integer, so $f \circ g(x)$ is always odd, and therefore, $f \circ g(x) \neq 0$.

for all $x \in \mathbb{Z}$. Thus, $f \circ g$ is not onto.

T A	\mathbf{T}	NΤ	A TA	ATTE:
LA	-1	TNA	ΔM	

[7]

FIRST NAME

- 2. Let $A = \{1, 2, 3, 4\}$. For each of the following, describe your relations as a set of ordered pairs and also draw the directed graph of your relation. No explanation is needed
- (a) Find a relation \mathcal{R} on A so that \mathcal{R} is reflexive and symmetric but not transitive.

$$\Re = \{(1,1), (2,2), (3,3) \\ (4,4), (1,2), (2,1) \\ (1,3), (3,1) \}$$

(b) Find a relation S on A so that S is symmetric and transitive but not reflexive.

(c) Find a relation S on A so that S is transitive and reflexive, but not symmetric.

$$S = \{(1,1), (2,2), (3,3), (4,4), (1,2)\}$$

