::

::

TD 3: Séries numériques

1 Études de suites, relations de comparaison

Exercice 1 (Deux suites adjacentes)

On définit deux suites (u_n) , (v_n) par : $u_1 = 1$ et $\forall n \ge 1$, $u_{n+1} = u_n + \frac{1}{(n+1)^2}$

$$\forall n \ge 1, \quad v_{n+1} = u_n + \frac{1}{n}$$

- 1. Déterminer le sens de variations des suites (u_n) et (v_n) .
- **2.** En déduire que les suites (u_n) et (v_n) sont adjacentes.
- **3.** Pour $n \in \mathbb{N}^*$, écrire u_n une somme et en déduire que la série $\sum_{k \ge 1} \frac{1}{k^2}$ converge.

Exercice 2 (Application des croissances comparées)

1. Trouver la limite des expressions suivantes quand $n \to \infty$.

$$a_n = \frac{\ln(n)}{n},$$
 $b_n = \frac{2^n}{n},$ $c_n = \frac{n^3 \cdot \ln(n)}{e^n},$ $d_n = \frac{n \cdot 2^n}{4^n},$ $e_n = e^{n+1} - e^n.$

2. Trouver le terme prépondérant dans les expressions suivantes et en déduire un équivalent.

$$a_n = n + n^2 + \ln(n),$$
 $b_n = n + \frac{n}{2^n} + n\ln(n),$ $c_n = n \cdot 3^n + n^3 \cdot 2^{2n},$ $d_n = 3^n + 2^{n^2}.$

3. Déterminer la nature (conv./div.) des séries suivantes : (on ne demande pas de calculer les séries)

$$A = \sum \frac{n^2}{2^n} \qquad B = \sum \frac{\ln(n)}{n^3} \qquad C = \sum \frac{1}{\sqrt{n} \cdot \ln(n)} \qquad D = \sum \frac{1}{n!} \qquad E = \sum \frac{\ln(n)}{n^2}$$

2 Exemples de sommations télescopiques

Exercice 3 (Sommations télescopiques)

:entrainementSommTel:

1. Calculer les fractions suivantes :

$$\frac{1}{2n-1} - \frac{1}{2n+1}$$
, $\frac{1}{n} - \frac{1}{n+2}$, $\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2}$, $\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)}$.

2. Par sommation télescopique, calculer les sommes partielles et totales des séries :

$$\sum_{n \geq 1} \frac{1}{4n^2 - 1} \qquad \qquad \sum_{n \geq 1} \frac{1}{n^2 + 2n} \qquad \qquad \sum_{n \geq 1} \frac{1}{n(n+1)(n+2)}$$

Exercice 4 (Convergence de la série de Bâle $\sum \frac{1}{k^2}$)

:serieBale

- **1.** Montrer que $\forall n \ge 2$, l'on a $\sum_{k=2}^{n} \frac{1}{k(k-1)} = 1 \frac{1}{n}$. (On pourra sommer télescopiquement : $\frac{1}{k-1} \frac{1}{k}$.)
- **2. Application** à $\sum_{k \ge 1} \frac{1}{k^2}$.
 - a) Montrer que, pour $n \ge 1$, on a : $\sum_{k=1}^{n} \frac{1}{k^2} \le 1 + \sum_{k=2}^{n} \frac{1}{k(k-1)}$.
 - **b)** En déduire que la suite des sommes partielles $\sum\limits_{k\geqslant 1}\frac{1}{k^2}$ est majorée. Conclure sur sa convergence et majorer sa somme.

Exercice 5 (Séries en racines carrées)

:seriesRacCar:

- **1.** Simplifier, pour $n \in \mathbb{N}$, l'expression : $(\sqrt{n+1} \sqrt{n}) \cdot (\sqrt{n+1} + \sqrt{n})$.
- **2.** En déduire, pour $n \in \mathbb{N}$, l'identité : $\frac{1}{\sqrt{n} + \sqrt{n+1}} = \sqrt{n+1} \sqrt{n}$. Que dire de la limite $\lim_{n \to \infty} \sqrt{n+1} \sqrt{n}$?
- **3.** Montrer, pour $N \in \mathbb{N}$, que : $\sum_{n=0}^{N} \frac{1}{\sqrt{n} + \sqrt{n+1}} = \sqrt{N+1}.$ La série associée converge-t-elle?
- **4.** Donner un équivalent du terme général de la série ci-dessus. En déduire la divergence de la série $\sum_{n\geq 1} \frac{1}{\sqrt{n}}$.

Exercice 6 (Deux sommations télescopiques, d'après Edhec 2012 et 2013)

:somTelEdhec:

On étudie la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n^2 + 1}{2}. \end{cases}$

- **1. a)** Montrer que, pour $n \in \mathbb{N}$, on a : $0 \le u_n \le 1$.
 - **b)** Étudier les variations de la suite $(u_n)_{n \in \mathbb{N}}$.
 - c) Déduire des questions précédentes que la suite $(u_n)_{n\in\mathbb{N}}$ converge.

On admet que la limite de la suite (u_n) est 1.

(théorème du point fixe)

- **2.** Calculer, pour $n \ge 1$, la somme télescopique $\sum_{k=0}^{n-1} (u_{k+1} u_k).$
- **3.** Pour $n \in \mathbb{N}$, on pose : $v_n = 1 u_n$.
 - **a)** Pour $k \in \mathbb{N}$, exprimer $(u_{k+1} u_k)$ en fonction de v_k .
 - **b)** Donner la nature, et la valeur de la somme de la série $\sum_{k\geq 0} v_k^2$.

On admet que, si une suite $(a_n)_{n\in\mathbb{N}}$ converge vers le réel ℓ , alors on a : $\lim_{n\to\infty}\frac{1}{n}\cdot\sum_{j=0}^{n-1}a_j=\ell$.

- **4. a)** Montrer que $\lim_{n \to +\infty} \left(\frac{1}{v_{n+1}} \frac{1}{v_n} \right) = \frac{1}{2}$.
 - **b)** Utiliser le résultat admis pour trouver un équivalent de v_n lorsque n tend vers $+\infty$.
 - c) En déduire l'écriture $u_n = 1 \frac{2}{n} + \frac{\epsilon(n)}{n}$ avec $\lim_{n \to +\infty} \epsilon(n) = 0$.

3 Manipulations de séries

Exercice 7 (Une intégration terme-à-terme (développement Taylorien de ln(2)))

serieLeibniz:

- **1.** Montrer que $\forall n \in \mathbb{N}$, $\frac{(-1)^n}{n+1} = \int_{-1}^0 t^n \, dt$. En déduire que $\forall N \in \mathbb{N}$, $\sum_{n=0}^N \frac{(-1)^n}{n+1} = \int_{-1}^0 \frac{1-t^{N+1}}{1-t} \, dt$.
- **2.** Montrer $\forall N \in \mathbb{N}$, $\left| \int_{-1}^{0} \frac{t^{N+1}}{1-t} dt \right| \le \int_{-1}^{0} |t|^{N+1} dt$, et en déduire la limite quand $N \to +\infty$.
- **3.** En déduire que la série $\sum_{n\geqslant 0} \frac{(-1)^n}{n+1}$ converge et que sa somme vaut $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \int_{-1}^{0} \frac{\mathrm{d}t}{1-t}$.

Exercice 8 (Relations entre les séries géométriques dérivées)

:relationsGeomDer:

On considère les suites et séries géométriques dérivées de raison $q \in]-1;1[$.

On pose: $\forall n \in \mathbb{N}$, $s_n = q^n$, $t_n = n \cdot q^{n-1}$, $u_n = \frac{n(n-1)}{2} \cdot q^{n-2}$ (On admet que les séries cvg.)

$$S = \sum_{n=0}^{+\infty} s_n \quad T = \sum_{n=0}^{+\infty} t_n \qquad U = \sum_{n=0}^{+\infty} u_n$$

- **1. a)** Montrer que : $\sum_{n=0}^{+\infty} q^n = 1 + q \cdot \sum_{n=1}^{+\infty} q^{n-1}$.
 - **b)** Par un changement d'indice, en déduire la relation : $S = 1 + q \cdot S$.
 - c) Résoudre, pour trouver la valeur connue : $S = 1 + q \cdot S$.
- **2. a)** Montrer, pour $n \in \mathbb{N}$, la relation : $t_{n+1} = s_n + q \cdot t_n$.
 - **b)** Par un changement d'indice, en déduire la relation : $T = S + q \cdot T$.
 - c) Résoudre pour trouver la valeur connue : $T = \frac{1}{(1-q)^2}$.
- **3. a)** Montrer, pour $n \in \mathbb{N}$, la relation : $u_{n+1} = t_n + q \cdot u_n$.
 - **b)** En déduire la relation : $U = T + q \cdot U$.
 - c) Résoudre pour trouver la valeur : $U = \frac{1}{(1-q)^3}$. Retrouver ainsi la somme, connue, de la série géométrique dérivée seconde.

Exercice 9 (Divergence de la série harmonique)

:divergenceSHarmonique:

1. Montrer que $\forall n \in \mathbb{N}^*$, on a $\ln(n+1) - \ln(n) \le \frac{1}{n}$.

Pour cela on pourra:

(au choix!)

a) Utiliser l'inégalité $\forall x > -1$, $\ln(1+x) \le x$.

(ou bien: $\forall x > 0$, $\ln(x) \le x - 1$)

- **b)** Appliquer l'inégalité des accroissements finis à la fonction \ln sur le segment [n; n+1].
- c) Écrire l'équation de la tangente au graphe $y = \ln(x)$ en $x_0 = n$. Conclure par concavité de ln.
- **d)** Faire le tableau de variations sur $]0; +\infty[$ de la fonction $u: x \mapsto \ln(x+1) \ln(x) \frac{1}{x}$.
- e) Encadrer l'intégrale $\int_{n}^{n+1} \frac{\mathrm{d}t}{t}$, pour $n \in \mathbb{N}$.

Pour $n \in \mathbb{N}^*$, on pose $h_n = \sum_{k=1}^n \frac{1}{k}$.

- **2.** En déduire, pour $n \in \mathbb{N}^*$, que $h_n \ge \ln(n+1)$.
- **3.** En déduire que la série harmonique $\sum_{k \ge 1} \frac{1}{k}$ diverge.
- **4.** On admet que pour $n \ge 1$, on a $\ln(n+1) \ln(n) \ge \frac{1}{n+1}$.
 - a) Montrer l'adjacence des suites définies par : $a_n = h_n \ln(n+1)$
 - $b_n = h_n \ln(n)$
 - **b)** Proposer un équivalent de la suite h_n .

Exercice 10 (Une propriété de la série harmonique)

Pour $n \in \mathbb{N}$, on pose $h_n = \sum_{k=1}^n \frac{1}{k}$. (on a donc $h_0 = 0$) On rappelle l'équivalent : $h_n \sim \ln(n)$.

- **1.** Montrer, pour $k \in \mathbb{N}$, la relation : $h_k^2 h_{k-1}^2 = 2 \cdot \frac{h_k}{k} \frac{1}{k^2}$.
- **2.** Par une sommation télescopique, en déduire : $\sum_{k=1}^{n} \frac{h_k}{k} = \frac{1}{2} \cdot \left(h_n^2 + \sum_{k=1}^{n} \frac{1}{k^2}\right).$
- **3.** Montrer que la série $\sum_{k\geqslant 1}\frac{h_k}{k}$ est divergente.

Donner un équivalent des sommes partielles de cette série.

- **4.** Pour $x \ge 1$, on pose : $I_x = \int_{-\infty}^{x} \frac{\ln(t)}{t} dt$.
 - a) Par une intégration par parties, montrer que : $I_x = \ln(x)^2 I_x$.
 - **b)** En déduire l'expression de I_x . Faire le rapprochement avec l'équivalent trouvé de la série ci-dessus.

Exemples de séries en probabilités

Exercice 11 (Moments du temps de deuxième atteinte)

On répète des issues indépendantes d'une expérience de Bernoulli $\mathcal{B}(p)$ soit $\epsilon_1, \epsilon_2, \epsilon_3, \dots$ On note T_2 le rang d'apparition du **deuxième** succès, avec $p \in (0,1)$, et q = 1 - p.

1. Quelles valeurs la variable aléatoire T_2 peut-elle prendre?

La loi de T_2 est donnée pour $k \ge 2$, par : (formule admise) $\mathbb{P}(T_2 = k) = (k-1)pq^{k-2}p$.

- exact^t l succès avant le temps *k* 2. Vérifier que l'on définit ainsi une loi discrète de probabilités.
- **3.** Démontrer que l'on a : $\mathbb{E}[T_2] = \frac{2}{n}$.
- **4.** On admet la formule : $\sum_{k=0}^{+\infty} k(k-1)(k-2)q^{k-3} = \frac{6}{(1-q)^4}.$
 - a) En déduire la valeur de l'espérance : $\mathbb{E}[T_2(T_2-2)]$
 - **b)** Montrer que : $Var(T_2) = \frac{2q}{p^2}$.

Exercice 12 (Exemples de calculs pour une loi finie)

On note M le plus grand des résultats obtenus au jet de 2 dés à n faces ($num. de 1 à n \ge 1$).

1. Quelles valeurs la variable aléatoire *M* peut-elle prendre?

On admet que la loi de M est donnée, pour $k \in [1, n]$, par : $\mathbb{P}(M = k) = \frac{2k-1}{n^2}$

- 2. Vérifier que cette expression définit bien une loi discrète de probabilités.
- **3.** Calculer la fonction de répartition de M.
- **4.** Montrer que l'on a : $\mathbb{E}[M] = \frac{(n+1)(4n-1)}{6n}$ **5.** (Pour ceux qui aiment les calculs) On donne $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$.

Montrer que $\mathbb{E}\left[M^2\right] = \frac{3n^3 + 4n^2 - 1}{6n}$ et en déduire Var(M).

::

::

::

5 Corrections

Corrigé Ex (Deux suites adjacentes)

::

On définit deux suites (u_n) , (v_n) par : $u_1 = 1$ et $\forall n \ge 1$, $u_{n+1} = u_n + \frac{1}{(n+1)^2}$ $\forall n \ge 1, \quad v_{n+1} = u_n + \frac{1}{n}$

- **1.** Déterminer le sens de variations des suites (u_n) et (v_n) .
 - ▶ Variations de (u_n)

On a $\forall n \ge 1$: $u_{n+1} - u_n = \frac{1}{(n+1)^2} \ge 0$.

La suite (u_n) est donc croissante.

Variations de (v_n)

On a $\forall n \ge 1$: $v_{n+1} - v_n = \left(u_{n+1} + \frac{1}{n+1}\right) - \left(u_n + \frac{1}{n}\right) = u_{n+1} - u_n - \left(\frac{1}{n} - \frac{1}{n+1}\right)$ $= \frac{1}{(n+1)^2} - \frac{1}{n(n+1)} = -\frac{1}{n(n+1)^2} \le 0.$

La suite (v_n) est donc décroissante

2. En déduire que les suites (u_n) et (v_n) sont adjacentes.

On a bien les hypothèses : • (u_n) croissante, (v_n) décroissante

$$\lim (v_n - u_n) = \lim_{n \to \infty} \frac{1}{n} = 0.$$

Les deux suites (u_n) et (v_n) sont donc bien adjacentes.

3. Pour $n \in \mathbb{N}^*$, écrire u_n une somme et en déduire que la série $\sum_{k>1} \frac{1}{k^2}$ converge.

On a: $u_n = u_1 + \sum_{k=1}^{n-1} (u_{k+1} - u_k) = 1 + \sum_{k=1}^{n-1} \frac{1}{(k+1)^2} = \sum_{k=1}^{n} \frac{1}{i^2}.$

La suite (u_n) est convergente d'après le théorème des suites adjacentes.

Ainsi, la série $\sum_{k>1} \frac{1}{k^2}$ est convergente.

Corrigé Ex 3 (Sommations télescopiques)

:entrainementSommTel:

1. Calculer les fractions suivantes :

$$\frac{1}{2n-1} - \frac{1}{2n+1}$$
, $\frac{1}{n} - \frac{1}{n+2}$, $\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2}$, $\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)}$

On réduit au même dénominateur :

$$\begin{array}{ll} \blacktriangleright & \frac{1}{2n-1} - \frac{1}{2n+1} = \frac{(2n+1) - (2n-1)}{(2n-1)(2n+1)} = \frac{2}{4n^2 - 1}. \\ \\ \blacktriangleright & \frac{1}{n} - \frac{1}{n+2} = \frac{(n+2) - n}{n(n+2)} = \frac{2}{n(n+2)}. \end{array}$$

$$\begin{array}{l} \blacktriangleright \quad \frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2} = \frac{(n+1)(n+2) - 2n(n+2) + n(n+1)}{n(n+1)(n+2)} = 2 \cdot \frac{(n+1)^2 - n(n+2)}{n(n+1)(n+2)} = \frac{2}{n(n+1)(n+2)}. \\ \blacktriangleright \quad \frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} = \frac{(n+2) - n}{n(n+1)(n+2)} = \frac{2}{n(n+1)(n+2)}. \end{array}$$

$$\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} = \frac{(n+2)-n}{n(n+1)(n+2)} = \frac{2}{n(n+1)(n+2)}$$

2. Par sommation télescopique, calculer les sommes partielles et totales des séries :

$$\sum_{n \ge 1} \frac{1}{4n^2 - 1} \qquad \sum_{n \ge 1} \frac{1}{n^2 + 2n} \qquad \sum_{n \ge 1} \frac{1}{n(n+1)(n+2)}$$

Corrigé Ex 5 (Séries en racines carrées)

:seriesRacCar:

1. Simplifier, pour $n \in \mathbb{N}$, l'expression : $(\sqrt{n+1} - \sqrt{n}) \cdot (\sqrt{n+1} + \sqrt{n})$.

On développe par l'identité remarquable $(a-b) \cdot (a+b) = a^2 - b^2$.

Il vient: $(\sqrt{n+1} - \sqrt{n}) \cdot (\sqrt{n+1} + \sqrt{n}) = \sqrt{n+1}^2 - \sqrt{n^2} = 1$.

2. En déduire, pour $n \in \mathbb{N}$, l'identité : $\frac{1}{\sqrt{n} + \sqrt{n+1}} = \sqrt{n+1} - \sqrt{n}$.

Que dire de la limite $\lim_{n\to\infty} \sqrt{n+1} - \sqrt{n}$?

▶ Obtention de la formule

On simplifie par $(\sqrt{n+1} + \sqrt{n})$ dans la formule : $(\sqrt{n+1} - \sqrt{n}) \cdot (\sqrt{n+1} + \sqrt{n}) = 1$.

On obtient bien : $\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n} + \sqrt{n+1}}$.

- ► Calcul de la limite On a donc : $\lim_{n\to\infty} \sqrt{n+1} \sqrt{n} = \lim_{n\to\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}} = 0.$
- **3.** Montrer, pour $N \in \mathbb{N}$, que: $\sum_{n=0}^{N} \frac{1}{\sqrt{n} + \sqrt{n+1}} = \sqrt{N+1}$.

La série associée converge-t-elle?

▶ Calcul de la somme

On applique la formule trouvée pour la fraction, et une sommation télescopique.

Il vient: $\sum_{n=0}^{N} \frac{1}{\sqrt{n} + \sqrt{n+1}} = \sum_{n=0}^{N} (\sqrt{n+1} - \sqrt{n}) = \sqrt{N+1} - \sqrt{0} = \sqrt{N+1}.$

► Convergence de la série?

La suite des sommes partielles est donnée par $\sqrt{N+1}$. Elle est donc divergente.

La série diverge donc. (Remarque: son t.g. tend bien vers 0: la divergence n'est donc pas grossière!)

4. Donner un équivalent du terme général de la série ci-dessus.

En déduire la divergence de la série $\sum_{n\geqslant 1} \frac{1}{\sqrt{n}}$.

▶ Équivalent du terme général

On a l'équivalent $\sqrt{n+1} \sim \sqrt{n}$, d'où : $\frac{1}{\sqrt{n}+\sqrt{n+1}} \sim \frac{2}{\sqrt{n}}$.

Conclusion

La série $\sum_{n \ge 1} \frac{1}{\sqrt{n}}$ est à termes ≥ 0 , et son terme général est équivalent à $\frac{1}{2} \cdot \frac{1}{\sqrt{n} + \sqrt{n+1}}$.

Comme la série $\sum\limits_{n\geqslant 0}\frac{1}{\sqrt{n}+\sqrt{n+1}}$ est divergente, alors la série $\sum\limits_{n\geqslant 0}\frac{1}{\sqrt{n}}$ est aussi divergente. **Série de Riemann**

La série $\sum_{n\geq 0} \frac{1}{\sqrt{n}}$ est une série de Riemann $\sum_{n\geq 0} \frac{1}{n^a}$, pour $a=\frac{1}{2}$.

La série harmonique $\sum_{n\geq 0} \frac{1}{n}$ en est une autre pour a=1.

Corrigé Ex 7 (Une intégration terme-à-terme (développement Taylorien de ln(2)))

:serieLeibniz:

1. Montrer que $\forall n \in \mathbb{N}$, $\frac{(-1)^n}{n+1} = \int_{-1}^0 t^n \, dt$. En déduire que $\forall N \in \mathbb{N}$, $\sum_{n=0}^N \frac{(-1)^n}{n+1} = \int_{-1}^0 \frac{1-t^{N+1}}{1-t} \, dt$.

Calcul des intégrales

On calcule en primitivant :
$$\int_{-1}^{0} t^{n} dt = \left[\frac{1}{n+1} \cdot t^{n+1} \right]_{-1}^{0} = -\frac{(-1)^{n+1}}{n+1} = \frac{(-1)^{n}}{n+1}.$$

> Sommation des intégrales On somme les égalités obtenues par linéarité de l'intégrale.

Il vient bien:
$$\sum_{k=0}^{n} \frac{(-1)^k}{k+1} = \sum_{k=0}^{n} \int_{-1}^{0} t^k dt = \int_{-1}^{0} \sum_{k=0}^{n} t^k dt = \int_{-1}^{0} \frac{1-t^{n+1}}{1-t} dt.$$
somme géom de raison $t \neq 1$

▶ Plan d'étude On étudie la convergence des sommes partielles.

On a obtenu l'écriture :
$$\sum_{k=0}^{n} \frac{(-1)^k}{k+1} = \int_{-1}^{0} \frac{1-t^{n+1}}{1-t} \, \mathrm{d}t = \int_{-1}^{0} \frac{\mathrm{d}t}{1-t} - \int_{-1}^{0} \frac{t^{n+1}}{1-t} \, \mathrm{d}t.$$

La première intégrale est constante, et vaut $\int_{-1}^{0} \frac{dt}{1-t} = \left[-\ln(1-t)\right]_{-1}^{0} = \ln(2).$

Il nous reste donc à étudier la limite de la deuxième.

2. Montrer $\forall N \in \mathbb{N}$, $\left| \int_{1}^{0} \frac{t^{N+1}}{1-t} dt \right| \leq \int_{1}^{0} |t|^{N+1} dt$, et en déduire la limite quand $N \to +\infty$.

Par inégalité triangulaire, on a :
$$\left| \int_{-1}^{0} \frac{t^{N+1}}{1-t} \, dt \right| \le \int_{-1}^{0} \left| \frac{t^{N+1}}{1-t} \right| \, dt$$

Or l'intégrande $\left|\frac{t^{N+1}}{1-t}\right| = \frac{|t|^{N+1}}{1-t}$ est majoré par $|t|^{N+1}$, car pour $t \in [-1;0]$, on a : $1 \le 1 - t \le 2$.

Il vient donc bien :
$$\left| \int_{-1}^0 \frac{t^{N+1}}{1-t} \, \mathrm{d}t \right| \le \int_{-1}^0 |t|^{N+1} \, \mathrm{d}t = \int_0^1 t^{N+1} \, \mathrm{d}t = \frac{1}{N+2}.$$

3. En déduire que la série $\sum_{n\geqslant 0} \frac{(-1)^n}{n+1}$ converge et que sa somme vaut $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \int_{-1}^{0} \frac{\mathrm{d}t}{1-t}$.

Par convergence par encadrement, la partie variable $\left| \int_{-1}^{0} \frac{t^{N+1}}{1-t} dt \right| \longrightarrow 0$.

Il reste donc:
$$\sum_{k=0}^{n} \frac{(-1)^k}{k+1} = \int_{-1}^{0} \frac{1-t^{n+1}}{1-t} dt = \ln(2) - \int_{-1}^{0} \frac{t^{n+1}}{1-t} d \longrightarrow \ln(2).$$

La série $\sum_{k\geqslant 0} \frac{(-1)^k}{k+1}$ est donc convergente, et sa somme est ln(2). **Remarque: pas de convergence absolue**

On vient de voir que la série $\sum_{k\geqslant 0} \frac{(-1)^k}{k+1}$ est convergente.

Cependant, la série des valeurs absolues $\sum_{k\geqslant 0} \frac{1}{k+1}$ est la série harmonique.

La série harmonique est divergente, car c'est une série de Riemann d'exposant 1. La série $\sum_{k\geqslant 0} \frac{(-1)^k}{k+1}$ (série de Leibniz) est donc un exemple de série convergente, mais qui n'est pas absolument convergente.

Corrigé Ex 8 (Relations entre les séries géométriques dérivées)

:relationsGeomDer:

On considère les suites et séries géométriques dérivées de raison $q \in]-1;1[$.

On pose:
$$\forall n \in \mathbb{N}$$
, $s_n = q^n$, $t_n = n \cdot q^{n-1}$, $u_n = \frac{n(n-1)}{2} \cdot q^{n-2}$ (On admet que les séries cvg.)
$$S = \sum_{n=0}^{+\infty} s_n \quad T = \sum_{n=0}^{+\infty} t_n \qquad U = \sum_{n=0}^{+\infty} u_n$$

1. a) Montrer que: $\sum_{n=0}^{+\infty} q^n = 1 + q \cdot \sum_{n=1}^{+\infty} q^{n-1}$.

On a bien:
$$\sum_{n=0}^{+\infty} q^n = 1 + \sum_{n=1}^{+\infty} q^n = 1 + q \cdot \sum_{n=1}^{+\infty} q^{n-1}$$
.

b) Par un changement d'indice, en déduire la relation : $S = 1 + q \cdot S$.

Par le changement d'indice
$$k = n - 1$$
, on trouve :
$$\sum_{n=1}^{+\infty} q^{n-1} = \sum_{k=0}^{+\infty} q^k = S.$$

Il reste donc bien la relation : $S = 1 + q \cdot S$

c) Résoudre, pour trouver la valeur connue : $S = 1 + q \cdot S$.

On résout l'équation $S = 1 + q \cdot S$ pour trouver S.

Il vient:
$$(1-q) \cdot S = 1$$
, d'où $S = \frac{1}{1-q}$.

(la valeur bien connue!)

2. a) Montrer, pour $n \in \mathbb{N}$, la relation : $t_{n+1} = s_n + q \cdot t_n$.

On a bien :
$$t_{n+1} = (n+1) \cdot q^n = q^n + q \cdot nq^{n-1} = s_n + q \cdot t_n$$
.

b) Par un changement d'indice, en déduire la relation : $T = S + q \cdot T$.

On écrit :
$$T = \sum_{n=1}^{\infty} t_n = \sum_{k=0}^{\infty} t_{k+1} = \sum_{k=0}^{\infty} (s_k + q \cdot t_k) = \sum_{k=0}^{\infty} s_k + q \cdot \sum_{k=0}^{\infty} t_k = S + q \cdot T.$$

c) Résoudre pour trouver la valeur connue : $T = \frac{1}{(1-a)^2}$.

On résout l'équation $T = S + q \cdot T$ pour trouver T.

Il vient :
$$(1-q) \cdot T = S$$
, d'où $T = \frac{S}{1-q} = \frac{1}{(1-q)^2}$.

(la valeur bien connue!)

3. a) Montrer, pour $n \in \mathbb{N}$, la relation : $u_{n+1} = t_n + q \cdot u_n$.

On a bien :
$$u_{n+1} = \frac{n(n+1)}{2} \cdot q^{n-1} = n \cdot q^{n-1} + q \cdot \frac{n(n-1)}{2} q^{n-2} = t_n + q \cdot u_n$$
.

b) En déduire la relation : $U = T + q \cdot U$.

On écrit :
$$U = \sum_{n=2}^{\infty} u_n = \sum_{k=0}^{\infty} u_{k+1} = \sum_{k=1}^{\infty} (t_k + q \cdot u_k) = \sum_{k=1}^{\infty} t_k + q \cdot \sum_{k=0}^{\infty} u_k = S + q \cdot U.$$

c) Résoudre pour trouver la valeur : $U = \frac{1}{(1-a)^3}$.

Retrouver ainsi la somme, connue, de la série géométrique dérivée seconde.

On résout l'équation $U = T + q \cdot U$ pour trouver U.

Il vient :
$$(1-q) \cdot U = T$$
, d'où $U = \frac{T}{1-q} = \frac{1}{(1-q)^3}$.

On a bien trouvé :
$$\sum_{n=2}^{\infty} n(n-1) \cdot q^{n-2} = \frac{2}{(1-q)^3}.$$
 (la valeur bien connue!)

Corrigé Ex 9 (Divergence de la série harmonique)

:divergenceSHarmonique:

1. Montrer que $\forall n \in \mathbb{N}^*$, on a $\ln(n+1) - \ln(n) \le \frac{1}{n}$.

(au choix!)

a) Utiliser l'inégalité $\forall x > -1$, $\ln(1+x) \le x$.

(ou bien :
$$\forall x > 0$$
, $\ln(x) \le x - 1$)

Par concavité de la fonction ln, la courbe de ln est en dessous de ses tangentes.

La tangente au point d'abscisse 1 a pour équation : y = x - 1.

Ainsi, pour x > 0, on trouve $ln(x) \le x - 1$.

On prend
$$x = 1 + \frac{1}{n}$$
, il vient : $\ln(1 + \frac{1}{n}) \le \frac{1}{n}$.

Or
$$\ln\left(1+\frac{1}{n}\right) = \ln\left(\frac{n+1}{n}\right) = \ln(n+1) - \ln(n)$$
. On a donc obtenu le résultat demandé.

b) Appliquer l'inégalité des accroissements finis à la fonction $\ln sur$ le segment [n; n+1].

On applique l'inégalité des accroissements finis

Il vient alors bien :
$$\ln(n+1) - \ln(n) \le \left(\sup_{x \in [n;n+1]} \ln'(x)\right) \cdot \left[(n+1) - n\right].$$

$$= \left(\sup_{x \in [n;n+1]} \frac{1}{x}\right) \times 1 = \frac{1}{n}$$

c) Écrire l'équation de la tangente au graphe $y = \ln(x)$ en $x_0 = n$

Conclure par concavité de ln.

La tangente en x_0 d'une fonction f a pour équation : $y - f(x_0) = f'(x_0) \cdot (x - x_0)$. Ici, il vient : $y = \ln(n) + \frac{1}{n} \cdot (x - n)$

Par concavité, on trouve donc : $\ln(n+1) \le \ln(n) + \frac{1}{n} \cdot [(n+1) - n]$

d) Faire le tableau de variations sur $]0; +\infty[$ de la fonction $u: x \mapsto \ln(x+1) - \ln(x) - \frac{1}{x}$.

On dérive, pour x > 0: $u(x) = \ln(x+1) - \ln(x) - \frac{1}{x}$

$$u'(x) = \frac{1}{x+1} - \frac{1}{x} + \frac{1}{x^2}$$

$$= \frac{1}{x^2 \cdot (x+1)} \cdot [x^2 - x(x+1) + (x+1)] = \frac{1}{x^2 \cdot (x+1)} \ge 0$$

La fonction u est donc croissante.

De plus: $\lim_{x \to +\infty} u = \lim_{x \to +\infty} \ln(x+1) - \ln(x) - \frac{1}{x} = \lim_{x \to +\infty} \ln(1\frac{1}{x}) - \frac{1}{x} = 0.$

Ainsi, $\forall x > 0$, on a: $u(x) \le \lim_{x \to \infty} u = 0$.

On a donc trouvé $\forall x > 0$, que : $\ln(x+1) - \ln(x) \le \frac{1}{x}$.

e) Encadrer l'intégrale $\int_{n}^{n+1} \frac{dt}{t}$, pour $n \in \mathbb{N}$.

On a bien: $\ln(n+1) - \ln(n) = \int_{n}^{n+1} \frac{dt}{t} \le \int_{n}^{n+1} \frac{dt}{n} = \frac{1}{n}$.

Pour $n \in \mathbb{N}^*$, on pose $h_n = \sum_{k=1}^n \frac{1}{k}$.

2. En déduire, pour $n \in \mathbb{N}^*$, que $h_n \ge \ln(n+1)$.

On applique l'inégalité précédente, et une sommation télescopique.

On trouve bien : $h_n = \sum_{k=1}^n \frac{1}{k} \ge \sum_{k=1}^n [\ln(k+1) - \ln(k)] = \ln(n+1) - \ln(1)$

Ainsi, pour $n \ge 1$, on a : $h_n \ge \ln(n+1)$.

3. En déduire que la série harmonique $\sum_{k\geq 1} \frac{1}{k}$ diverge.

Pour $n \ge 1$, on a: $h_n \ge \underbrace{\ln(n+1)}_{\to +\infty}$.

Ainsi, la suite (h_n) tend vers $+\infty$. La série harmonique est donc bien divergente.

- **4.** On admet que pour $n \ge 1$, on a $\ln(n+1) \ln(n) \ge \frac{1}{n+1}$.
 - **a)** Montrer l'adjacence des suites définies par : $> a_n = h_n \ln(n+1)$

$$b_n = h_n - \ln(n)$$

On vérifie : $(a_n) \nearrow$. $\forall n \ge 1$: $a_{n+1} - a_n = h_{n+1} - \ln(n+2) - [h_n - \ln(n+1)]$ = $h_{n+1} - h_n - [\ln(n+2) - \ln(n+1)]$ = $\frac{1}{n+1} - [\ln(n+2) - \ln(n+1)] \ge 0$

▶
$$(b_n) \setminus$$
. $\forall n \ge 1$: $b_{n+1} - b_n = \frac{1}{n+1} - [\ln(n+1) - \ln(n)] \le 0$.

▶ $\lim(b_n - a_n) = 0$. En effet, $b_n - a_n = \ln(n+1) - \ln(n) \rightarrow 0$.

b) Proposer un équivalent de la suite h_n .

On a montré que les suites (a_n) et (b_n) sont adjacentes.

Elles convergent donc vers une certaine limite $\gamma \in \mathbb{R}$.

On peut donc écrire : $b_n = h_n - \ln(n) = \gamma + o(1)$, soit $h_n = \ln(n) + \gamma + o(1)$.

On obtient donc l'équivalent : $h_n \sim \ln(n)$.

Corrigé Ex (Une propriété de la série harmonique)

::

Pour $n \in \mathbb{N}$, on pose $h_n = \sum_{k=1}^n \frac{1}{k}$. (on a donc $h_0 = 0$) On rappelle l'équivalent : $h_n \sim \ln(n)$.

1. Montrer, pour $k \in \mathbb{N}$, la relation: $h_k^2 - h_{k-1}^2 = 2 \cdot \frac{h_k}{k} - \frac{1}{k^2}$.

On écrit : $h_{k-1} = h_k - \frac{1}{k}$.

Il vient: $h_k^2 - h_{k-1}^2 = (h_k - h_{k-1}) \cdot (h_k + h_{k-1}) = \frac{1}{k} \cdot (2 \cdot h_k - \frac{1}{k}) = 2 \cdot \frac{h_k}{k} - \frac{1}{k^2}$.

2. Par une sommation télescopique, en déduire : $\sum_{k=1}^{n} \frac{h_k}{k} = \frac{1}{2} \cdot \left(h_n^2 + \sum_{k=1}^{n} \frac{1}{k^2} \right).$

On utilise le calcul précédent, puis une sommation télescopique après avoir séparé les termes.

Il vient : $\sum_{k=1}^n \frac{h_k}{k} = \frac{1}{2} \cdot \sum_{k=1}^n \left[h_k^2 - h_{k-1}^2 + \frac{1}{k^2} \right] = \frac{1}{2} \cdot \sum_{k=1}^n \left[h_k^2 - h_{k-1}^2 \right] \frac{1}{2} \cdot \sum_{k=1}^n \frac{1}{k^2} = \frac{1}{2} \cdot \left(h_n^2 + \sum_{k=1}^n \frac{1}{k^2} \right).$

3. Montrer que la série $\sum_{k>1} \frac{h_k}{k}$ est divergente.

Donner un équivalent des sommes partielles de cette série.

On a vu que: $\sum_{k=1}^{n} \frac{h_k}{k} = \frac{1}{2} \cdot (h_n^2 + \sum_{k=1}^{n} \frac{1}{k^2})$.

Or $\lim_{n\to\infty} h_n^2 = \infty$

▶ la série $\sum_{k=1}^{n} \frac{1}{k^2}$) est convergente.

Ainsi la suite des sommes partielles : $\sum_{k=1}^{n} \frac{h_k}{k} \longrightarrow +\infty$.

La série $\sum_{k\geq 1} \frac{h_k}{k}$ est divergente, et on a l'équivalent : $\sum_{k=1}^n \frac{h_k}{k} \sim \frac{1}{2} \cdot h_n^2 \sim \frac{1}{2} \cdot \ln(n)$.

- **4.** Pour $x \ge 1$, on pose: $I_x = \int_1^x \frac{\ln(t)}{t} dt$.
 - **a)** Par une intégration par parties, montrer que : $I_x = \ln(x)^2 I_x$. On intègre par parties : $I_x = \int_1^x \frac{\ln(t)}{t} dt = \left[\ln(t)^2\right]_1^x - \int_1^x \frac{\ln(t)}{t} dt = \ln(x)^2 - I_x$.
 - **b)** En déduire l'expression de I_x .

Faire le rapprochement avec l'équivalent trouvé de la série ci-dessus.

ightharpoonup Calcul de I_x

On a donc: $2 \cdot I_x = \ln(x)^2$, d'où: $I_x = \frac{1}{2} \cdot \ln(x)^2$.

Calcul plus direct

En fait on peut tout simplement utiliser la primitive $\int u' \cdot u = \frac{u^2}{2}$.

Avec $u = \ln(x)$, on trouve immédiatement : $I_x = \frac{1}{2} \cdot \ln(x)^2$.

- ▶ Interprétation On connaît l'équivalent : $\frac{h_k}{k} \sim \frac{\ln(k)}{k}$.

 On remplace ici la sommation par une intégrale (sommation « continue »).

 - On s'attend bien à retrouver le même équivalent $(\frac{\ln(n)^2}{2})$.
 - En effet, on a même égalité pour l'intégrale : $\int_{1}^{x} \frac{\ln(t)}{t} dt = \frac{\ln(x)^{2}}{2}.$