Electromagnétisme Question 48

Modèle de Drude

Un métal est un conducteur qui contient un grand nombre d'électrons libres. Soit n_e la densité d'électrons libres du métal considéré. On utilise le modèle de Drude qui permet d'analyser le mouvement de ces électrons libres. Selon ce modèle, un électron libre est soumis à une force de viscosité $\vec{f} = -m\frac{\vec{v}}{\tau}$ où τ est la durée moyenne entre deux chocs de l'électron avec le réseau cristallin supposé immobile. Typiquement, $\tau \simeq 10^{-14}$ s.

PDF sur un électron libre :
$$m\frac{\partial \overrightarrow{v}_e}{\partial t} = -e\overrightarrow{E} - \frac{m}{\tau}\overrightarrow{v}_e$$

En notation opticienne,
$$-mi\omega \underline{\overrightarrow{v}_e} = -e\underline{\overrightarrow{E}} - \frac{m}{\tau} \underline{\overrightarrow{v}_e} \text{ donc } \underline{\overrightarrow{v}_e} = \frac{-e\overline{E}}{m\left(\frac{1}{\tau} - i\omega\right)} = \frac{-\tau e\overline{E}}{m(1 - i\omega\tau)}$$

Donc
$$\underline{\vec{j}} = -n_e e \underline{\vec{v}}_e = \frac{n_e e^2 \tau}{m} \frac{1}{1 - i\omega \tau} \underline{\vec{E}}$$
 donc

$$\gamma = \frac{n_e e^2 \tau}{m} \frac{1}{1 - i\omega \tau}$$

 $1^{\rm er}$ cas : domaine radio, $f<10^{11}~{\rm Hz}~(\omega<10^{12}~{\rm rad/s})$

Alors $\omega \tau < 10^{-2}$ et le métal a une conductivité réelle : $\gamma \simeq \frac{n_e e^2 \tau}{m}$

Amortissement de l'onde : le métal absorbe complètement l'onde au bout de quelques longueurs d'ondes.

 $\underline{2^{\rm ème}~{\rm cas}:}$ domaine optique et au-delà, $f\simeq 10^{14}~{\rm Hz}~(\omega\simeq 10^{15}~{\rm rad/s})$

Alors $\omega > 10^{15}$ rad/s donc le terme prépondérant de $1 - i\omega\tau$ est $i\omega\tau$. Donc $\vec{j} \simeq i\frac{n_e e^2}{m\omega}\vec{E}$

Conductivité imaginaire pure du métal : $\gamma=i\frac{n_ee^2}{m\omega}$, comme s'il s'agissait d'un plasma.

Le métal possède donc alors une pulsation de plasma $\omega_p = \sqrt{\frac{n_e e^2}{m \varepsilon_0}}$

Les métaux ont une pulsation de plasma voisine de 10^{16} (UV proche). Ainsi, dans le domaine optique $\omega < \omega_p$, le métal devient totalement réfléchissant et dans le domaine UV $\omega > \omega_p$, le métal devient transparent.