Использование глубины для сшивки изображений с параллаксом на мобильном телефоне

Власова Анна, 344 группа

Научный руководитель: ст.преп. Смирнов М.Н. Консультант: Сысоенко С.С.

Параллакс

Параллакс - изменение видимого положения объекта относительно удалённого фона в зависимости от положения

наблюдателя

As-Projective-As-Possible

- глобальная гомография
- ullet введение весов: $w_*^i = \exp(-\|\mathbf{x}_* \mathbf{x}_i\|^2/\sigma^2)$

• разбиение сеткой

Карта глубины и ее возможные способы получения

- По изображениям со стерео-пары
- ТоF-камера
- Построение по одной картинке

Цели

- провести обзор существующих решений для сшивки изображений (в особенности APAP)
- реализовать алгоритм сегментации для карты глубины
- встроить его в АРАР
- собрать тестовые данные
- сравнить результаты (по качеству и производительности)

Сегментация на прямоугольники

- Разделение
- Склеивание

Архитектура

Сравнение результатов

АРАР с глубиной

Сравнение результатов

АРАР с глубиной

Сравнение производительности

Алгоритм	Время работы, секунды	
	Среднее	Дисперсия
APAP 30 * 30	80	26
APAP 50 * 50	290	45
АРАР с глубиной	31	8

Итоги

- произведен обзор алгоритмов сшивки изображений
- выбран и реализован алгоритм сегментации карты глубин
- сегментация встроена в АРАР
- подобраны тестовые данные (TUM dataset)
- произведена оценка результатов