In [1]:

import pandas as pd

In [3]:

df = pd.read_csv('exp4.csv')
df.head()

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	_
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
4										>	

In [7]:

```
df.Sex = df.Sex.map({'male':1, 'female':2})
df.head()
```

Out[7]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cal
0	1	0	3	Braund, Mr. Owen Harris	1	22.0	1	0	A/5 21171	7.2500	N
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	2	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	2	26.0	0	0	STON/O2. 3101282	7.9250	N
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	2	35.0	1	0	113803	53.1000	C1
4	5	0	3	Allen, Mr. William Henry	1	35.0	0	0	373450	8.0500	N

In [8]:

df.corr()

Out[8]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	
Passengerld	1.000000	-0.005007	-0.035144	-0.042939	0.036847	-0.057527	-0.001652	0.0
Survived	-0.005007	1.000000	-0.338481	0.543351	-0.077221	-0.035322	0.081629	0.2
Pclass	-0.035144	-0.338481	1.000000	-0.131900	-0.369226	0.083081	0.018443	-0.5
Sex	-0.042939	0.543351	-0.131900	1.000000	-0.093254	0.114631	0.245489	0.1
Age	0.036847	-0.077221	-0.369226	-0.093254	1.000000	-0.308247	-0.189119	0.0
SibSp	-0.057527	-0.035322	0.083081	0.114631	-0.308247	1.000000	0.414838	0.1
Parch	-0.001652	0.081629	0.018443	0.245489	-0.189119	0.414838	1.000000	0.2
Fare	0.012658	0.257307	-0.549500	0.182333	0.096067	0.159651	0.216225	1.0
4								•

In [9]:

```
# Features with highest correlation - Sex, Pclass, Fare

df.drop(['PassengerId', 'Name', 'Age', 'SibSp', 'Parch', 'Ticket', 'Cabin', 'Embarked'], ax
    df.head()
```

Out[9]:

	Survived	Pclass	Sex	Fare
0	0	3	1	7.2500
1	1	1	2	71.2833
2	1	3	2	7.9250
3	1	1	2	53.1000
4	0	3	1	8.0500

In [10]:

```
inputs = df.drop('Survived', axis='columns')
inputs.head()
```

Out[10]:

	Pclass	Sex	Fare
0	3	1	7.2500
1	1	2	71.2833
2	3	2	7.9250
3	1	2	53.1000
4	3	1	8.0500

In [11]:

```
target = df.Survived
target.head()
```

Out[11]:

01121

3 1 4 0

Name: Survived, dtype: int64

In [12]:

```
from sklearn.model_selection import train_test_split
```

In [13]:

```
x_train, x_test, y_train, y_test = train_test_split(inputs, target, test_size=0.3)
print(x_train)
```

```
Pclass Sex
                      Fare
384
          3
               1
                    7.8958
          1
               2
                   78.2667
591
          1
               1
                   51.8625
6
676
          3
               1
                    8.0500
                    7.2250
773
          3
               1
        . . .
. .
236
          2
               1 26.0000
               1
                   7.8542
771
          3
               1 47.1000
83
          1
                   15.2458
709
          3
               1
          1
               2 52.0000
383
```

[623 rows x 3 columns]

In [14]:

```
from sklearn.svm import SVC
```

In [15]:

```
clf = SVC(kernel='linear', random_state=0)
clf.fit(x_train, y_train)
```

Out[15]:

SVC(kernel='linear', random_state=0)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [16]:
```

```
clf.support_vectors_
Out[16]:
array([[
          1.
                     1.
                              51.8625],
                     1.
          1.
                              27.7208],
                     2.
                               7.8958],
          3.
          2.
                     1.
                               0.
                                      ],
                     1.
                              27.75
          2.
                                      ],
                                     ],
          3.
                     2.
                              31.275
                     2.
          3.
                              69.55
                                      ],
                     1.
                              82.1708],
       1.
                     2.
       I
          3.
                               7.55
                                      ],
                     1.
          1.
                              27.7208],
          3.
                     2.
                               7.75
                                      ],
          2.
                     2.
                              13.
                                      ],
                     2.
                              27.9
       ſ
          3.
                                      ],
          1.
                     1.
                             153.4625],
                              30.6958],
       1.
                     1.
                     2.
       7.6292],
          3.
          1.
                     1.
                              71.
                                      ],
       Γ
                              35.
                     1.
                                      1.
          1
In [17]:
clf.n_support_
Out[17]:
array([143, 140])
In [18]:
clf.support_
Out[18]:
array([ 2,
                  17,
                        19,
                             29,
                                  30,
                                        35, 42, 44,
                                                        51,
                                                             57,
                                                                  58,
              6,
                                  99, 100, 105, 106, 108, 111, 114, 115,
        73,
             79,
                             96,
                  80,
                        84,
       116, 118, 128, 132, 134, 136, 137, 141, 144, 145, 154, 156, 159,
       167, 168, 170, 175, 181, 182, 184, 185, 190, 197, 200, 203, 206,
       224, 225, 227, 229, 234, 236, 242, 243, 244, 249, 252, 260, 275,
       282, 286, 293, 301, 305, 314, 318, 320, 323, 326, 327, 331, 333,
       335, 340, 342, 347, 348, 350, 352, 358, 366, 367, 371, 380, 381,
       389, 391, 393, 394, 397, 398, 399, 400, 412, 415, 418, 419, 424,
       427, 437, 453, 459, 472, 476, 482, 485, 491, 492, 497, 500, 501,
       502, 504, 508, 510, 513, 519, 525, 530, 534, 538, 540, 544, 551,
       557, 571, 577, 580, 583, 585, 590, 597, 600, 603, 609, 612, 614,
                   13,
             11,
                        15,
                             20,
                                   22,
                                        24,
                                             27,
                                                  28,
                                                        36,
                                                             39,
                                                                  41,
                        75,
        59,
             61,
                  63,
                             76,
                                  82,
                                        83,
                                             85,
                                                  87,
                                                        89,
                                                             92,
                                                                  95, 107,
       110, 112, 122, 126, 127, 138, 142, 148, 151, 152, 160, 163, 164,
       165, 176, 177, 178, 186, 189, 192, 195, 204, 205, 228, 230, 231,
       232, 239, 240, 248, 262, 263, 267, 271, 273, 274, 276, 283, 285,
       300, 308, 310, 317, 319, 330, 332, 338, 341, 343, 344, 349, 363,
       364, 369, 376, 378, 384, 386, 387, 401, 402, 405, 407, 411, 416,
       417, 422, 428, 432, 440, 444, 451, 462, 464, 465, 467, 469, 474,
       475, 479, 481, 484, 489, 493, 496, 505, 507, 511, 512, 521, 524,
       531, 542, 543, 545, 549, 552, 553, 564, 565, 567, 572, 575, 578,
       581, 582, 586, 587, 594, 604, 606, 607, 621, 622])
```

```
In [19]:
```

```
y_pred = clf.predict(x_test)
print(y_pred)
1001000001
In [20]:
from sklearn.metrics import confusion_matrix
In [21]:
cm = confusion_matrix(y_test, y_pred)
cm
Out[21]:
array([[147, 27],
    [ 28, 66]], dtype=int64)
In [22]:
from sklearn.metrics import accuracy_score, precision_score, recall_score
In [23]:
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy = ', accuracy)
positive_precision = precision_score(y_test, y_pred, pos_label=1)
negative_precision = precision_score(y_test, y_pred, pos_label=0)
print('Positive Precision = ', positive_precision)
print('Negative Precision = ', negative_precision)
recall_sensitivity = recall_score(y_test, y_pred, pos_label=1)
recall_specificity = recall_score(y_test, y_pred, pos_label=0)
print('Recall sensitivity = ', recall_sensitivity)
print('Recall specificity = ', recall_specificity)
Accuracy = 0.7947761194029851
Positive Precision = 0.7096774193548387
Negative Precision = 0.84
Recall sensitivity = 0.7021276595744681
```

Recall specificity = 0.8448275862068966