Biology, Computers & Python

Michael Schatz

Sept 3, 2013 QB Bootcamp Lecture 1

Outline

Part I: Overview & Fundamentals

- Overview of Computer Systems
- Python Primer

Part 2: Sequence Analysis Theory

Part 3: Genomics Resources

Part 4: Unix Primer

Part 5: Example Analysis

Modern Biology Challenges

The foundations of biology will continue to be observation, experimentation, and interpretation

- Technology will continue to push the frontier
- Measurements will be made digitally over large populations, at extremely high resolution, and for diverse applications

Rise in Quantitative and Computational Demands

- 1. Experimental design: selection, collection & metadata
- 2. Observation: measurement, storage, transfer, computation
- 3. Integration: multiple samples, assays, analyses
- 4. Discovery: visualizing, interpreting, modeling

Ultimately limited by the human capacity to execute extremely complex experiments and interpret results

How do we draw conclusions?

Comparison & Correlations: How does X compare to Y?

X	Y
Exomes of kids with autism	Exomes of kids that do not
Genomes of Europeans	Genomes of non-Europeans, mammals,
Gene expression in mutants	Gene expression in wild type
Firing patterns of mutant fly neurons	Firing patterns of wild type

Modeling & Predictions: How will X respond to Y?

X	Y
Mutant tomatoes	Increased temperatures
Human Microbiome	Probiotic treatments
Gene expression in mice	Knockout of transcription factor
Firing rate in flies	Decreased sodium levels

How do we DRAW conclusions?

What is a computer?

[hardware]

Hard Drive
Permanent Storage – 1TB
(big, slow, cheap)

Processor
Arithmetic, logic
cores, clock speed

RAM
Working Storage – 8 GB
(small, fast, expensive)

Display
Human Interface

Network
Computer Interface
Home: 10Mb/s, CSHL: 1Gb/s

What is a computer?

[software]

Office Applications
Presentations, Documents
Simple statistics and plots

Operating System

Mission Control

Windows, Mac, Unix, iOS

Files / Data
Papers, sequences,
measurements

Scientific Applications
Specialized Analysis
Commercial

Code / Scripts
Research Applications
Academic

Programming 101

A software program is like sheet music for the orchestra inside your computer Static, written representations of an active process

Programming with Python

https://www.enthought.com/products/canopy/academic/ http://www.codecademy.com/tracks/python

Questions?

http://schatzlab.cshl.edu