GIS and RS for Biodiversity Biodiversity $\sim f$ (environment)

Biodiversity $\sim f$ (environment)

Biodiversity $\sim f$ (environment)

Objectives Biodiversity $\sim f$ (environment)

A whirlwind tour of environmental data:

- Climate (past & future)
- Topography & Hydrography
- Soil
- Land Cover
- Satellite images → vegetation/water index
- Human population density
- Livestock density.

Key take-home messages:

- 1. Data deluge → incredible opportunities
- 2.Data complexity → biogeographers must be vigilant

Remote sensing

Geographic Information System

Combine:

- satellite information,
- ground true
- gps device data,
- station data

Modeling

Climate

WorldClim https://worldclim.org Chelsa https://chelsa-climate.org

- •Global ≈1km resolution monthly T_{max} , T_{min} , and Precipitation.
- Thin-plate splines (latitude, longitude, and elevation).
- No pixel-by-pixel metrics of uncertainty

Topography & Hydrography

Multi-Error-Removed Improved-Terrain DEM

http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/

MERIT DEM

Geophysical Research Letters

RESEARCH LETTER

10.1002/2017GL072874

Key Points:

- A high-accuracy global digital elevation model (DEM) was developed by removing multiple height error components from existing DEMs
- Landscape representation was improved, especially in flat regions where height error magnitude was larger than actual topography variation

A high-accuracy map of global terrain elevations

Dai Yamazaki^{1,2} , Daiki Ikeshima³, Ryunosuke Tawatari³, Tomohiro Yamaguchi⁴, Fiachra O'Loughlin⁵, Jeffery C. Neal⁶, Christopher C. Sampson⁷, Shinjiro Kanae³, and Paul D. Bates⁶

¹Department of Integrated Climate Change Projection Research, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan, ²Institute of Industrial Sciences, University of Tokyo, Tokyo, Japan, ³Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo, Japan, ⁴Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan, ⁵UCD School of Civil Engineering, University College Dublin, Dublin, Ireland, ⁶School of Geographical Sciences, University of Bristol, Bristol, UK, ⁷SSBN, Bristol, UK

MERIT Hydro

Water Resources Research

RESEARCH ARTICLE

10.1029/2019WR024873

Key Points:

- A global hydrography map was generated using the latest topography dataset
- Near-automatic algorithm applicable for global hydrography delineation was developed
- Adjusted elevation and river width layers consistent with flow direction map are provided

MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset

Dai Yamazaki^{1,2}, Daiki Ikeshima², Jeison Sosa³, Paul D. Bates³, George H. Allen⁴, and Tamlin M. Pavelsky⁵

¹Institute of Industrial Science, The University of Tokyo, Tokyo, Japan, ²Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo, Japan, ³School of Geographical Sciences, University of Bristol, Bristol, UK, ⁴Department of Geography, Texas A&M University, College Station, TX, USA, ⁵Department of Geological Sciences, University of North Carolina, Chapel Hill, NC, USA

MARGOSA

- GIS layers predictors able to capture the ecological needs of the blackfly

- Geomorphometric features 24 layers (slope, aspect, curvature, etc,) **Geomorpho90m**: Amatulli et al., 2020

- Hydrographic features 19 layers (streams slope/distance/length, outlet distance, etc.)

Hydrography90m: Amatulli et al., 2022

Topography complexity

(geomorphometry/geomorphology analysis)

Topographic variation underpins a myriad of patterns and processes in hydrology, climatology, geography and ecology, and is key to understanding the variation of life on the planet (Amatulli et al. 2018).

Amatulli *et al.* 2018 DOI: 10.1038/sdata.2018. 40

Figure 2. Graphical representation of landform shapes based on slope and curvature. Slope is the rate of change of elevation in the direction of the steepest descent, whereas the second order partial derivative (N-S slope) is the slope in the North-South direction. The profile and tangential curvatures identify concavity and convexity in the direction of the slope, or perpendicular to the slope. The second order partial derivatives (E-W slope) identify the curvature in the East-West direction.

Topography complexity layers

(Surface roughness and terrain forms analysis)

Roughness indices

Roughness - Median / SD
Topographic Position Index - Median / SD
Terrain Ruggedness Index - Median / SD
Vector Ruggedness Measure - Median / SD

Curvature

Profile curvature - Median / SD

Tangential curvature - Median / SD

Topography complexity layers

(surface roughness and geo-morphology analysis)

Curvature

MARGOSA

Hydrography90m

Figure 12. Map (a) shows the stream channels and drainage basins derived from the elevation layer. Maps (b)–(m) show, for the same area, the distance and elevation difference attributes of each land grid cell to the stream channels, outlets, or stream nodes using the *r.stream.distance* GRASS GIS module. The panel letters correspond to those in Table 4.

Satellite spectral images

Landsat Multispectral Satellite Image

https://glad.geog.umd.edu/book/glad-landsat-ard-tools

Spectral Indices with multispectral satellite data

https://www.geo.university/pages/blog?p=spectral-indices-with-multispectral-satellit e-data

Derived MODIS Metrics: LAI, fPAR, NPP

- *Leaf Area Index (m)¹²: Reflectance + Biome Coefficients
- Net Primary Productivity (NPP)¹³: fPAR + LAI + Biome Parameters + Temperature (fPAR = Fraction of Absorbed Photosynthetically Active radiation)

Both LAI and FPAR have been used extensively for calculation of photosynthesis, evaporation and transpiration of water, and Net Primary Productivity (NPP, which estimates how much carbon is taken in by vegetation).

¹² http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.php?MOD NUMBER=15

¹³ http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.php?MOD_NUMBER=17

https://ghsl.jrc.ec.europa.eu/download.php?ds=compositeS2

Product

GHS-SMOD

Epoch

2030	2025	2020
2018	2015	2011
2010	2005	2000
1995	1990	1985
1980	1975	

Resolution

2m 100m 1km 3 arcsec

NOTE: The download server might currently be under maintenance, should you experience issues in downloading a product, please try again later.

Thanks for the patience.

Sentinel-2 global pixel based image composite from L1C data for the period 2017-2018

Read the technical details for this product

Current selection:

Product: compositeS2, epoch: 2018, resolution: 10m, coordinate system: UTM

① To be noted that some variation might be available only for a certain product (e.g. the 30m resolution is only available for the GHS-BUILT multi-temporal classification)

Download by tiles (click on each box to download a single tile):

30 arcsec

GLAD Landsat ARD Tools

Home Software Download User Registration User Manual License and Disclaimer

GLAD Landsat ARD Tools V1.1 https://glad.geog.umd.edu/book/glad-landsat-ard-tools

Soil

ISRICWorldSoil/ SoilGrids250m

- Soil features 16 layers (ph, clay, silt, carbon, etc) SoilGrid250m Hengl et al., 2017

Global spatial predictions of soil properties and classes at 250 m resolution

☆ 10 Sta

01 **¥ 53** ars Forks

- Soil climatic features 48 layers (temperature at n depth etc.) Jonas J. Lembrechts et al., 2022

Global Soil Bioclimatic variables at 30 arc second resolution

Johan van den Hoogen; Jonas Lembrechts; SoilTemp; Ivan Nijs; Jonathan Lenoir

Land Cover

LULC: Products Matter

Comparison of four land cover maps for Africa¹⁵

Forest
Woodland/Shrubland
Cropland
Grassland Bare
Land Water Urban

¹⁵Intl J of Appl Earth Observation & Geoinformation (2011) 13(2): 207–219

Global Forest Cover Change https://glad.umd.edu/projects/quantifying-global-forest-cover-change

How to search for geographic data

Raw data (satellite images, LiDAR) Sensor Products (LandCover, DEM)

NASA Products
MODIS Products
LANDSAT Products
Copernicus Products

https://datasetsearch.research.google.com/

Livestock

https://data.apps.fao.org/catalog/iso/15f8c56c-5499-45d5-bd89-59ef6c026704

Why use Open Source Software? Scientific/Technical aspects: data flow

Codes that are easily published > no license constraints Complex work-flows > integrate different data analysis methods

