Linear Regression Models P8111

Lecture 23

Jeff Goldsmith April 19, 2016

Today's Lecture

- Multilevel models
 - ► Hierarchical / nested models
 - ► Crossed designs
- Bayesian methods

Longitudinal data

- We observe data y_{ij} , x_{ij} for subjects i = 1, ..., I at visits $j = 1, ..., J_i$
- Overall, we pose the model

$$y = X\beta + \epsilon$$

where $Var(\epsilon) = \sigma^2 V$ and

$$V = \left[\begin{array}{cccc} V_1 & 0 & \dots & 0 \\ 0 & V_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & 0 & & V_I \end{array} \right]$$

Longitudinal data

- Extended cross-sectional models to allow repeated subject observations
- Repeated observations had a time element
- One basic approach was random effects

Multilevel models

- Multilevel models are a more general class of models
- Repeated observations don't necessarily have to be taken in time
- Examples of two-level models include students in a class, members in a family, patients in a hospital, etc

Two-level model

The repeated observations structure we developed for longitudinal data helps for two-level models. Specifically for repeated observations j within clusters i, we could write

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + b_i + \epsilon_{ij}$$

with

- $b_i \sim N[0, \tau^2]$
- $\epsilon \sim N \left[0, \nu^2\right]$

Intuition, estimation, induced correlation, interpretation – all of these were established for LDA and transfer here

Example I

Example II

Three level model

- Sometimes, the data have a more complex nested structure
- Each cluster is part of a larger cluster
- Examples include students in classes in universities, members in families in towns, patients in hospitals in regions

Three level model

For a model with three levels (repeated observations k within clusters j, within super-clusters i), we can write

$$y_{ijk} = \beta_0 + \beta_1 x_{ijk} + b_i + b_{ij} + \epsilon_{ijk}$$

with

- $\bullet b_i \sim N\left[0, \tau_{(1)}^2\right]$
- $\bullet b_{ij} \sim N\left[0, \tau_{(2)}^2\right]$
- $\quad \blacksquare \ \epsilon \sim N \left[0, \nu^2 \right]$

ICCs

This model gives two levels of correlation (observations within clusters, clusters within super clusters), and therefore a couple of ICCs:

$$\bullet$$
 $cov(y_{ijk}, y_{ijk'}) =$

$$\bullet$$
 $cov(y_{ijk}, y_{ij'k}) =$

Example

Example

Nested model

Crossed designs

- Alternatively to nested (hierarchical) models, sometimes there is a crossed design
- Each subject is observed under multiple "treatments", so there are both subject and treatment effects
- For example, each student is graded in multiple classes; each patient is assayed for multiple genes

Crossed designs

For a crossed model (with subjects *i* and treatments *j*), we can write

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + b_i + b_j + \epsilon_{ij}$$

with

- $\bullet b_i \sim N\left[0, \tau_{(1)}^2\right]$
- $b_j \sim N \left[0, \tau_{(2)}^2 \right]$
- $\quad \blacksquare \ \epsilon \sim N \left[0, \nu^2 \right]$

Here there is covariance within subjects across treatments, and within treatments across subjects.

ICCs

Here there is covariance within subjects across treatments, and within treatments across subjects.

$$lacksquare$$
 $cov(y_{ij}, y_{ij'}) =$

$$\quad \blacksquare \ cov(y_{i'j},y_{ij}) =$$

LDA and MLM

- Estimation works basically the same for these models as for random intercept models
- Intuition is the same as well you want to borrow strength for one subject from the population of other subjects
- Interpretation of fixed effects is *marginal*; interpretation of random effects is *conditional*
- Using randomness both decreases the number of parameters and induces correlation structures

Bayesian methods

Longitudinal data analysis and multilevel models are a good place to start "thinking Bayesian"

- Even though they're frequentist, they include randomness at subject levels
- The idea of "shrinking toward a population mean" or "borrowing strength" is a pretty Bayesian concept
- Even writing down random effect distributions is reminiscent of defining prior distrubtions

Basic Bayes

LDA and MLM are fairly advanced topics, so we'll start with a simpler example

- Suppose I gather data y_i and want to learn about E(y)
- Suppose even more I think I already know *something* about E(y)
- I might write down something about what I want to learn and what I think I know

Basic Bayes

What do I think I know?

$$\mathbf{v}_i | \mu \sim \mathbf{N} \left[\mu, \sigma_y^2 \right]$$

$$\blacksquare \ \mu \sim N\left[\mu_0, \sigma_0^2\right]$$

What do I want to learn?

$$\blacksquare \mu | y_i \sim ???$$

Basic Bayes

Luckily, this is all related through Bayes' formula:

$$p(\mu|y_i) \propto p(y_i|\mu)p(\mu)$$

■ For the Normal likelihood with a Normal prior for the mean, the posterior is also Normal:

$$\mu | y_i \sim N \left[\frac{\sigma_{\mu}^2}{\frac{\sigma_y^2}{n} + \sigma_{\mu}^2} \bar{y} + \frac{\frac{\sigma_y^2}{n}}{\frac{\sigma_y^2}{n} + \sigma_{\mu}^2} \mu_0, \frac{\frac{\sigma_y^2}{n} \sigma_{\mu}^2}{\frac{\sigma_y^2}{n} + \sigma_{\mu}^2} \right]$$

Effect of Prior

Effect of Prior

Bayesian regression

How can we pose the regression model

$$y = X\beta + \epsilon$$

with $\epsilon \sim N[0, I_n]$ in a Bayesian framework?

- lacksquare By making distributional assumptions about the eta
- Normal priors seemed to work well in the past ...
- Try $\beta \sim N \left[0, \sigma_{\beta}^2 I_p\right]$ where p includes the intercept

Bayesian regression

We want to obtain the posterior $p(\beta|y, X) \propto p(y|\beta, X)p(\beta)$

Bayesian regression

Can show that

$$[\boldsymbol{\beta}|\boldsymbol{y},\boldsymbol{X}] \sim N[\mu_p,\Sigma_p]$$

where

$$\Sigma_p = \left(\frac{1}{\sigma_{\epsilon}^2} X^T X + \frac{1}{\sigma_{\beta}^2} I\right)^{-1}$$

and

$$\mu_p = \Sigma_p \left(\frac{1}{\sigma_\epsilon^2} X^t y \right)$$

So, about the variances

- Throughout all of this we have implicitly conditioned on the variances σ_{ϵ}^2 and σ_{β}^2
- Doesn't affect any of our calculations the terms involving μ don't overlap with terms involving σ_{ϵ}^2 or σ_{β}^2
- σ_{β}^2 is often treated as fixed; σ_{ϵ}^2

The full posterior

- Need $[\beta, \sigma_{\epsilon}^2 | y, X]$
- "Intractible" problem
- Just as good: sample from the posterior

Sampling from the posterior

- aka where Bayes gets really weird
- You can draw a sample from the posterior even if you can't write down exactly what it is
- That sample is your basis for inference
 - ► Posterior sample average is your estimate
 - Quantiles on the posterior sample define your credible interval
- Sample describes the *joint distribution* of all model parameters

Some notes on this business

- Joint distributions are often worth the trouble
- Bayesian methods were really controversial for a long time, but are at least less controversial now
- The introduction of "prior knowledge" happens even in frequentist methods, although it is often not explicitly acknowledged

Today's big ideas

- Nested and crossed random effects models
- Bayesian stuff