## **Outline**

- □ 인공지능 관련 동향
- □ 딥러닝의 기초
  - 용어 및 분류(Classification)/회기(Regression) 모델
  - 퍼셉트론 (Perceptron) 및 MNIST Example
- □ 학습 및 추론 알고리즘의 이해
  - Backpropagation
  - Challenge of Learning
  - Optimizer of Learning
- □ 딥러닝 가속기
  - CNN 및 인공 신경망 가속기 연구 동향

## AI & Neural Network



## Various Neural Networks

### □ Convolutional Neural Network (CNN)

One of the most popular neural network





# **CNN Applications**











## □ MLP(Multi-Layer Perceptron)의 문제점

- Whole Feature에 대해서 인식



- 부분적 Feature에 대해 인식하게 할 순 없을까?



1단계 : 가로, 동그라미, 세모, 부드러움



2**단계 :눈, 코, 귀, 발** 



3**단계 :고양이!** 

CNN!





**AlexNet Case** 





#### Location of Pooling Layers



- Reduce resolution of each channel independently
- Increase translation-invariance and noiseresilience





Simple matrix multiplication

## And Others ...



#### Normalization



 Pre-processing to balance between the training and inference (accuracy highly relies on these procedure)

#### Softmax



 Not essential when the difference between each class is not seriously importance

# Advantage of CNN



- □ MLP 의 한계점 극복
  - MLP는 1차원 입력 데이터만 받음
    - 이미지는 (RGB) 3 차원 데이터
- □ 파라미터 (Weight & Bias)를 줄이고 오버피팅 방지
- □ 풀링 레이어 등으로 노이즈에 내성
- □ 기존 Training 알고리즘 유지

# Various CNN Configurations





| Layer | Filter Size           | # Filters | # Channels | Stride |
|-------|-----------------------|-----------|------------|--------|
| 1     | 11X11                 | 96        | 3          | 4      |
| 2     | 5X5                   | 256       | 96         | 1      |
| 3     | 3X3                   | 384       | 256        | 1      |
| 4     | 3X3                   | 384       | 384        | 1      |
| 5     | 3X3                   | 256       | 384        | 1      |
| 6     | Fully-Connected Layer |           |            |        |
| 7     | Fully-Connected Layer |           |            |        |
| 8     | Fully-Connected Layer |           |            |        |



VGG-16[2]

| Layer | Filter Size           | # Filters | # Channels | Stride |
|-------|-----------------------|-----------|------------|--------|
| 1     | 3X3                   | 64        | 3          | 1      |
| 2     | 3X3                   | 64        | 64         | 1      |
| 3     | 3X3                   | 128       | 64         | 1      |
| 4     | 3X3                   | 128       | 128        | 1      |
| 5     | 3X3                   | 256       | 128        | 1      |
| 6     | 3X3                   | 256       | 256        | 1      |
| 7     | 3X3                   | 256       | 256        | 1      |
| 8     | 3X3                   | 512       | 256        | 1      |
| 9     | 3X3                   | 512       | 512        | 1      |
| 10    | 3X3                   | 512       | 512        | 1      |
| 11    | 3X3 512               |           | 512        | 1      |
| 12    | 3X3                   | 512       | 512        | 1      |
| 13    | 3X3                   | 512       | 512        | 1      |
| 14    | Fully-Connected Layer |           |            |        |
| 15    | Fully-Connected Layer |           |            |        |
| 16    | Fully-Connected Layer |           |            |        |



ResNet-50 [3]

|       | Filtra a Olara | // FIII   | // Observation | Outsta         | ı     |          |
|-------|----------------|-----------|----------------|----------------|-------|----------|
| Layer |                | # Filters | # Channels     | Stride         |       |          |
| 1     | <b>7X7</b>     | 64        | 3              | 2              |       |          |
| 3     | 1X1            | 256       | 64             | 1              |       | 1        |
| 3     | 1X1            | 64        | 64             | 1              | Ш     |          |
| 4     | 3X3            | 64        | 64             | 1              | Ш     | $\oplus$ |
| 5     | 1X1            | 256       | 64             | 1              | اما   |          |
|       |                | Additio   | n Layer        |                | ¥     | ł        |
| 6     | 1X1            | 64        | 64             | 1              | Ш     |          |
| 7     | 3X3            | 64        | 64             | 1              | Ш     | $\oplus$ |
| 8     | 1X1            | 256       | 64             | 1              | اما   |          |
|       |                | Additio   | n Layer        |                | ¥     | <u>'</u> |
| 9     | 1X1            | 64        | 256            | 1              | Ш     |          |
| 10    | 3X3            | 64        | 64             | 1              | Ш     | $\oplus$ |
| 11    | 1X1            | 256       | 64             | 1              | اما   |          |
|       | Addition Layer |           |                | ₹              | •     |          |
| 12    | 1X1            | 512       | 64             | 2              | _     | 1        |
| 13    | 1X1            | 128       | 64             | 2              | Ш     |          |
| 14    | 3X3            | 128       | 128            | 1              | Ш     | ⊕        |
| 15    | 1X1            | 512       | 128            | 1              | ا ؞ ا |          |
|       | Addition Layer |           |                | $\blacksquare$ | 1     |          |
| 16    | 1X1            | 128       | 512            | 1              | Ш     |          |
| 17    | 3X3            | 128       | 128            | 1              | Ш     | Ιф       |
| 18    | 1X1            | 512       | 128            | 1              |       |          |
|       | Addition Laver |           |                | ₩              | J     |          |
| 19    | 1X1            | 128       | 512            | 1              | l     |          |

[1] [Krizhevsky et al. NIPS 2012]

[2] [Simonyan and Zisserman, ICLR 2015]

[3] [He et al., CVPR 2016]

## Al Accelerator

## Emergence of dedicated AI accelerator ASICs

While GPUs and FPGAs perform far better than CPUs for AI related tasks, a factor of up to 10 in efficiency may be gained with a more specific design, via an application-specific integrated circuit (ASIC). These accelerators employ strategies such as optimized memory use and the use of lower precision arithmetic to accelerate calculation and increase throughput of computation. Some adopted low-precision floating-point formats used AI acceleration are half-precision and the bfloat16 floating-point format.



# Hardware Technologies

#### HARDWARE TECHNOLOGIES USED IN MACHINE LEARNING



Performance & Functionality

# Deep CNN on "Cloud Platforms"



## Need Reconf. Accelerator



#### In different Network

- Different number of layers
- Different number of filters / channels



#### In different Quantization

Different bit-width of different layers



#### In different Architecture

· Different algorithmic structures

# Reconfig. Vs Energy Efficiency

# Dynamically Reconfigurable DNN Accelerator



Performance & Energy Efficiency

#### **High-level Reconfiguration**

| VLOAD         | \$3, \$0, #100          | // load input vector from address (100)  |
|---------------|-------------------------|------------------------------------------|
| MLOAD         | \$4, \$2, #300          | // load weight matrix from address (300) |
| MMV           | \$7, \$1, \$4, \$3, \$0 | // Wx                                    |
| VAV           | \$8, \$1, \$7, \$5      | // tmp=Wx+b                              |
| VEXP          | \$9, \$1, \$8           | // exp( <b>tmp</b> )                     |
| VAS           | \$10, \$1, \$9, #1      | // 1+exp( <b>tmp</b> )                   |
| VDV           | \$6, \$1, \$9, \$10     | // y=exp(tmp)/(1+exp(tmp))               |
| <b>VSTORE</b> | \$6, \$1, #200          | // store output vector to address (200)  |

Use Instruction Set Architecture

#### Low-level Reconfiguration



# Main Operation in CNN



| Architecture | Weight Size | Ifmap Size | # Multiply-Adds | Top-1 Accuracy |
|--------------|-------------|------------|-----------------|----------------|
| AlexNet      | 238 MB      | 1.6 MB     | 724 M           | 57.10 %        |
| VGG-16       | 528 MB      | 34.8 MB    | 15.5 B          | 70.50 %        |
| ResNet-50    | 99 MB       | 37.5 MB    | 3.9 MB          | 75.20 %        |

## **Data-Centric CNN**





#### **Accelerator Design**

- Maximize Data Reuse
- Reduction: Computation Size
- Reduction: Computation Number
- Processing-in-memory

## Maximize Data Reuse: Data Flow



[nn-X (NeuFlow), CVPRW 2014] [Park, ISSCC 2015] [ISAAC, ISCA 2016] [PRIME, ISCA 2016]



[Peemen, ICCD 2013] [ShiDianNao, ISCA 2015] [Gupta, ICML 2015] [Moons, VLS/2016]



[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] [Zhang, FPGA 2015] [TPU, ISCA 2017]

#### Weight Stationary

- Maximize weight reuse
- Broadcast activation
- Accumulate pSUMs spatially

#### **Output Stationary**

- Maximize pSUM reuse
- Broadcast weight
- Reuse activation spatially

#### No Local Reuse

- Use a large global buffer
- Reduce DRAM access
- Multicast activation & weight
- Accumulate pSUMs spatially

# Reduction: Computation Size

#### **Non-linear Quantization**

# linear log<sub>2</sub> weight value weight value



#### **Dynamic Fixed Point**





#### **Binary Neural Network**







- Directly reduced the memory & PEs

**Processing-in-Memory** 

# Reduction: Computation Number

#### **Activation Sparsity**

#### **Network Pruning**

#### **Compact Architecture**













- Reduced Activation → Gating or skipping cycle & memory access
- Accuracy loss depending on the techniques



 PIM: A technique that performs simple logic within a memory device to reduce the amount of data being passed to the processor.

## □ Comparison of PIM

|         | Traditional<br>Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analog<br>In-Memory<br>Computing                                     | Digital<br>In-Memory<br>Computing                                                    |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Pro     | <ul><li>General</li><li>Accurate</li><li>Robust</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul><li>High Energy Efficiency</li><li>High Performance</li></ul>    | <ul><li>Moderate Energy Efficiency</li><li>High Performance</li><li>Robust</li></ul> |
| Con     | <ul><li>Poor Energy Efficiency</li><li>Bandwidth Problem</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul><li>Poor Precision</li><li>Weak to Noise/PVT Variation</li></ul> | <ul><li>Limited Functionality</li><li>Poor Precision</li></ul>                       |
| Example | CPU GPU  CORUMS Integrated Graphics Processor  Core 1  Core 2  Multimedia Engine  Vegal NGOUS  Core 3  Core 3  Core 4  Core 4  Core 5  Core 6  Core 6  Core 6  Core 7  Core 7  Core 7  Core 8  Core 8  Core 9  Core 9 | SRAM  Array  DAC  DAC  OQ                                            | NXN<br>SRAM<br>ARRAY                                                                 |

## □ Basic DRAM Operation : Read → Write-Back





DRAM read operation: sensing "1"



DRAM read operation: sensing "0"

- DRAM consists of Cell(1T1C) array
- WL on → charge sharing btw. cell cap. and Bit-line(BL) cap. → sensing

## DRAM-based PIM: AND, OR Operation



Figure 4: Triple-row activation

DRAM PIM: OR/AND Operation Table

- AND/OR operation: 3 WLs on → charge sharing → sensing
- Majority function for A,B, and C input
- A & B when C = 1, A || B when C = 0

#### □ Our Works











컨볼루션 인공신경망을 위한 양방향 선입선출 메모리 개발:

IEEE Access (2018)

딥러닝 추론연산에 적합한 CAM-based PIM 개발:

IEEE/ACM Design Automation Conference (2018) 복잡한 연산 지원 가능한 저지연 SRAM-based PIM 개발:

IEEE/ACM Design Automation Conference (2020)

## **Data-Centric DNN**





[M Horowitz et al., ISSCC 2014]

#### **Accelerator Design**

- Maximize Data Reuse
- Reduction: Computation Size
- Reduction: Computation Number
- Processing-in-memory

## Al Hardware vs Human

## □ Energy Discrepancy



 Where does this inefficiency come from? Algorithm, Architecture, Circuits, Device, and Materials