REGISTERS AND REGISTER FILES

Outline

- Registers
 - User Visible Register
 - Control and Status register
- Register Files

Introduction

- CPU must have some working space (temporary storage) called registers
- Number and function vary between processor designs
- Top level of memory hierarchy

- User visible register
 - Used by the Programmer
 - To minimize the memory reference by optimizing the use of registers.

- Control and Status register
 - Used by:
 - The control unit to control the operations of the processor
 - -The OS to control execution of programs.

User Visible Registers

- General Purpose
- Data
- Address
- Condition Codes

General Purpose Registers (1)

- May be true general purpose
- May be restricted-(dedicated registers-floating point or stack)
- Data
 - Accumulator
- Addressing
 - Segment pointer, Index, stack pointer

General Purpose Registers (2)

- Make them general purpose
 - Increase flexibility and programmer options
- Make them specialized
 - Smaller (faster) instructions
 - Less flexibility

How Many GP Registers?

- Between 8 32
- Fewer = more memory references
- More-does not reduce memory references

How big to be the GP register?

- Large enough to hold full address
- Large enough to hold full word
- Often possible to combine two data registers

Condition Code Registers

- Bits set by hardware processor as a result of some operations.
- Sets of individual bits
 - e.g. result of last operation was zero
- Can be read (implicitly) by programs
 - e.g. Jump if zero -simplifies branch taking.

Control & Status Registers

- Not visible to the user
- May be visible in a control or operating system mode (supervisor mode)
- Registers essential to instruction execution:
 - Program Counter (PC)
 - Instruction Register (IR)-Contains the inst most recently fetched
 - Memory Address Register (MAR) contains the addr of loc in mem
 - Memory Buffer Register (MBR) contains a word of data to be written to mem or the word most recently read

Program Status Word(PSW)

- Registers or set of register is known as PSW
- Contains status information
- Includes Condition Codes
- Sign of last result
- Zero
- Carry
- Equal
- Overflow
- Interrupt enable/disable
- Supervisor

Example Register Organizations

Understatement: There is no universally accepted philosophy for organizing the processor registers

Register Files (RF)

- Set of general purpose registers.
- It functions as small RAM and implemented using fast RAM technology.
- RF needs several access ports for simultaneously reading from or writing to several different registers. Hence RF is realized as multiport RAM.
- A standard RAM has just one access port with an associated address bus and data bus.

A register file with three access ports - symbol

A Register File with three access ports – logic diagram

A Register File with three access ports – logic diagram

Exercise 1:

If 8 registers are used

- How many bits are needed for read/write address?
- What is the size of the de-multiplexer and multiplexer required?
- If 4 multiplexers are used, how many parallel reads can be performed?
- Give an example with 4 parallel reads and 1 write.
- List all types of registers for the processor MC6800 and explain them briefly.
- Ref: Vincent .P. Heuring, Harry F. Jordan "Computer System design and Architecture" Pearson, 2nd Edition, 2003.

Exercise 2: Draw your design of a register file:

- Three registers, each is 2-bits wide
- Two source buses, one destination bus
- How many & what size:
 - Muxes did you use?
 - Demuxes did you use?

References

- W. Stallings, Computer organization and architecture, Prentice-Hall,2000
- J. P. Hayes, Computer system architecture, McGraw Hill