King Saud University College of Sciences Department of Mathematics

M-106 INTEGRAL CALCULUS

CLASS NOTES DRAFT - 2013

 $\begin{array}{c} Dr. \ Tariq \ A. \ AlFadhel^{12} \\ Associate \ Professor \\ Mathematics \ Department \end{array}$

 $^{^1\}mathrm{E\text{-}mail}$: alfadhel@ksu.edu.sa

 $^{^2 \}mathrm{URL}: \mathrm{http://faculty.ksu.edu.sa/alfadhel}$

Contents

Subject	Page
Antiderivatives	3
Change of variable	5
Sums and sigma notation	7
Riemann sum	8
The definite integral	10
Fundamental theorem of calculus	12
Average value of a function	14
Integral mean value theorem	15
Numerical integration	16
The natural logarithmic function	18
The natural exponential function	21
The general exponential and logarithmic functions	24
The inverse trigonometric functions	27
The hyperbolic functions	31
The inverse hyperbolic functions	36
Indeterminate forms	39
Integration y parts	44
Integrals involving trigonometric functions	49
Trigonometric substitutions	54
Integration of rational functions (Metod of partial fractions)	59
Half-angle substitution	65
Miscellaneous substitutions	68
Improper integrals	70
Area between curves	74
Volume of a solid of revolution (Disk or washer method)	81
Volume of a solid of revolution (Cylindrical shells method)	88
Arc length	93
Surface area (surface of revolution)	95
Parametric equations	98
The slope of the tangent line to a parametric curve	101
Arc length of a parametric curve	105
Surface area generated by revolving a parametric curve	107
Polar coordinates	109
Polar curves	112
Slope of the tangent line to a polar curve	123
Area inside-between polar curves	126
Arc length of a polar curve	135
Surface area generated by revolving a polar curve	137

ANTIDERIVATIVES

Definition (Antiderivative): A function G is called an antiderivative of the function f on the interval I if G'(x) = f(x) for all $x \in I$.

Example: What is the antiderivative of the function f(x) = 2x? Answer: The antiderivative is $G(x) = x^2 + c$, where c is a constant.

Note: If $G_1(x)$ and $G_2(x)$ are both antiderivatives of the function f(x) then $G_1(x) - G_2(x) = constant$.

Definition (indefinite integral): If G(x) is the antiderivative of f(x) then $\int f(x) dx = G(x) + c$, $\int f(x) dx$ is called the indefinite integral of the function f(x).

Basic Rules of integration:

$$1. \int 1 \, dx = x + c$$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ , where } n \neq -1 \text{ , } n \in \mathbb{Q}$$

3.
$$\int \cos x \, dx = \sin x + c$$

$$4. \int \sin x \, dx = -\cos x + c$$

$$5. \int \sec^2 x \, dx = \tan x + c$$

$$6. \int \csc^2 x \, dx = -\cot x + c$$

7.
$$\int \sec x \, \tan x \, dx = \sec x + c$$

8.
$$\int \csc x \cot x \, dx = -\csc x + c$$

Properties of indefinite integral:

1.
$$\int a f(x) dx = a \int f(x) dx$$
, where $a \in \mathbb{R}$

2.
$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$$

Notes: If G(x) is the antiderivative of the function f(x) then

1.
$$\int f(x) dx = G(x) + c$$

$$\int \frac{d}{dx} G(x) dx = G(x) + c$$
2.
$$\frac{d}{dx} \int f(x) dx = f(x)$$

Example (1): Solve
$$\int \left(\frac{3}{x^4} - 5x\right) dx$$

Answer: $\int \left(\frac{3}{x^4} - 5x\right) dx = \int (3x^{-4} - 5x) dx = \int 3x^{-4} dx - \int 5x dx$
= $3 \int x^{-4} dx - 5 \int x dx = 3 \frac{x^{-3}}{-3} - 5 \frac{x^2}{2} + c$

Example (2): Solve
$$\int \frac{2x^2 + 3}{\sqrt{x}} dx$$

Answer: $\int \frac{2x^2 + 3}{\sqrt{x}} dx = \int \frac{2x^2 + 3}{x^{\frac{1}{2}}} dx$
 $= \int x^{\frac{-1}{2}} (2x^2 + 3) dx = \int \left(2x^{\frac{1}{2}} + 3x^{\frac{-1}{2}}\right) dx$
 $= 2 \int x^{\frac{3}{2}} dx + 3 \int x^{\frac{-1}{2}} dx = 2 \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + 3 \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c$

CHANGE OF VARIABLE

Example: Solve
$$\int (4x+1)^2 dx$$

Put $u=4x+1$ then $du=4 dx$, hence $\frac{1}{4} du=dx$

$$\int (4x+1)^2 dx = \int u^2 \frac{1}{4} du = \frac{1}{4} \int u^2 du = \frac{1}{4} \frac{u^3}{3} + c = \frac{1}{4} \frac{(4x+1)^3}{3} + c$$

Or we can use the form $\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c$, $(n \in \mathbb{Q}, n \neq -1)$

$$\int (4x+1)^2 dx = \frac{1}{4} \int (4x+1)^2 4 dx = \frac{1}{4} \frac{(4x+1)^3}{3} + c$$
Where $f(x) = 4x + 1$, $n = 2$ and $f'(x) = 4$.

Basic Rules:

1.
$$\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c$$
, $(n \in \mathbb{Q}, n \neq -1)$

2.
$$\int \sin(f(x)) f'(x) dx = -\cos(f(x)) + c$$

3.
$$\int \cos(f(x)) f'(x) dx = \sin(f(x)) + c$$

4.
$$\int \sec^2(f(x)) f'(x) dx = \tan(f(x)) + c$$

5.
$$\int \csc^2(f(x)) f'(x) dx = -\cot(f(x)) + c$$

6.
$$\int \sec(f(x)) \tan(f(x)) f'(x) dx = \sec(f(x)) + c$$

7.
$$\int \csc(f(x)) \cot(f(x)) f'(x) dx = -\csc(f(x)) + c$$

Examples:

1.
$$\int \cos(3x+4) \ dx = \frac{1}{3} \int \cos(3x+4) \ 3 \ dx = \frac{1}{3} \sin(3x+4) + c$$

2.
$$\int \left(1 + \frac{5}{x}\right)^3 \frac{1}{x^2} dx = \frac{-1}{5} \int \left(1 + \frac{5}{x}\right)^3 \frac{-5}{x^2} dx = \frac{-1}{5} \frac{\left(1 + \frac{5}{x}\right)^4}{4} + c$$

3.
$$\int \sqrt{9-x^2} x \, dx = \frac{-1}{2} \int (9-x^2)^{\frac{1}{2}} (-2x) \, dx = \frac{-1}{2} \frac{(9-x^2)^{\frac{3}{2}}}{\frac{3}{2}} + c$$

4.
$$\int \frac{1}{\sqrt{x} (1+\sqrt{x})^3} dx = 2 \int (1+\sqrt{x})^{-3} \frac{1}{2\sqrt{x}} dx = 2 \frac{(1+\sqrt{x})^{-2}}{-2} + c$$

5.
$$\int \tan^2 x \sec^2 x \, dx = \int (\tan x)^2 \sec^2 x \, dx = \frac{(\tan x)^3}{3} + c$$

6.
$$\int \frac{1}{\cos^3 x \csc x} dx = \int (\cos x)^{-3} \sin x \, dx = -\int (\cos x)^{-3} (-\sin x) \, dx$$
$$= -\frac{(\cos x)^{-2}}{-2} + c$$

7.
$$\int \frac{\sin(1+\sqrt{x})}{\sqrt{x}} dx = 2 \int \sin(1+\sqrt{x}) \frac{1}{2\sqrt{x}} dx = -2 \cos(1+\sqrt{x}) + c$$

8.
$$\int \frac{\cos(\sqrt[3]{x})}{\sqrt[3]{x^2}} dx = 3 \int \cos\left(x^{\frac{1}{3}}\right) \frac{1}{3} x^{\frac{-2}{3}} dx = 3 \sin\left(x^{\frac{1}{3}}\right) + c$$

9.
$$\int \frac{\cos\sqrt{x}}{\sqrt{x}\sin^2\sqrt{x}} dx = 2\int \left(\sin\sqrt{x}\right)^{-2} \cos\left(\sqrt{x}\right) \frac{1}{2\sqrt{x}} dx$$
$$= 2\frac{\left(\sin\sqrt{x}\right)^{-1}}{-1} + c$$

Another Solution :
$$\int \frac{\cos\sqrt{x}}{\sqrt{x} \sin^2\sqrt{x}} dx = \int \frac{1}{\sin\sqrt{x}} \frac{\cos\sqrt{x}}{\sin\sqrt{x}} \frac{1}{\sqrt{x}} dx$$
$$= 2 \int \csc\sqrt{x} \cot\sqrt{x} \frac{1}{2\sqrt{x}} dx = -2 \csc\sqrt{x} + c$$

10. Find the value of
$$k$$
 that satisfies
$$\int \sqrt{2x+3} \, dx = k \left(2x+3\right)^{\frac{3}{2}} + c$$

$$\frac{d}{dx} \left[k \left(2x+3\right)^{\frac{3}{2}} + c \right] = \sqrt{2x+3}$$

$$\frac{3}{2} k \left(2x+3\right)^{\frac{1}{2}} \ 2 = \left(2x+3\right)^{\frac{1}{2}}$$

$$3k = 1 \ , \text{ and hence } k = \frac{1}{3}$$

SUMS AND SIGMA NOTATION

If
$$a_1, a_2, \dots, a_n \in \mathbb{R}$$
 then $\sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$.

Theorem : If $c, a_1, \dots, a_n, b_1, \dots, b_n \in \mathbb{R}$ then

$$1. \sum_{i=1}^{n} c = cn.$$

2.
$$\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$$
.

3.
$$\sum_{i=1}^{n} (a_i \pm b_i) = \sum_{i=1}^{n} a_i \pm \sum_{i=1}^{n} b_i.$$

4.
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

5.
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

6.
$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

Examples:

1.
$$\sum_{k=1}^{4} (k^3 - k + 2) = \sum_{k=1}^{4} k^3 - \sum_{k=1}^{4} k + \sum_{k=1}^{4} 2$$
$$= \left(\frac{4(4+1)}{2}\right)^2 - \frac{4(4+1)}{2} + 2(4) = 100 - 10 + 8 = 98.$$

2.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{5k}{n^2} = \lim_{n \to \infty} \frac{5}{n^2} \sum_{k=1}^{n} k = \lim_{n \to \infty} \frac{5}{n^2} \frac{n(n+1)}{2} = \frac{5}{2}$$
.

3.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n^3} (i-1)^2 = \lim_{n \to \infty} \frac{1}{n^3} \sum_{i=1}^{n} (i^2 - 2i + 1)$$

$$= \lim_{n \to \infty} \frac{1}{n^3} \left[\sum_{i=1}^{n} i^2 - 2 \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1 \right] = \lim_{n \to \infty} \frac{1}{n^3} \left[\frac{n(n+1)(2n+1)}{6} - 2 \frac{n(n+1)}{2} + n \right]$$

$$\lim_{n \to \infty} \left[\frac{n(n+1)(2n+1)}{6n^3} - \frac{n(n+1)}{n^3} + \frac{n}{n^3} \right] = \frac{2}{6} - 0 + 0 = \frac{1}{3}$$

RIEMANN SUM

In this section we assume that the function $f(x) \ge 0$ on the interval [a, b].

Definition (Regular Partition): The set $\{x_0 = a, x_1, \dots, x_n = b\}$ is called a regular partition of the interval [a, b] if $x_i = x_0 + i \Delta x$ for every $i = 1, 2, \dots, n$, and $\Delta x = \frac{b-a}{n}$. This regular partition divides the interval [a,b] into n subintervals of the form

 $[x_{i-1}, x_i]$ where $i = 1, 2, \dots, n$

Area under the graph of a function:

If $f(x) \ge 0$ on the interval [a, b] and $\{x_0 = a, x_1, \dots, x_n = b\}$ is a regular partition of [a,b], then the area under the graph of f(x) can be approximated by n

rectangles using the formula $A_n = \sum_{i=1}^n f(x_i) \Delta x$

Example: Approximate the area under the graph of $f(x) = 2x - 2x^2$ on the Example: Approximate the area under the graph of f(x) = 2x - 2x = 2x - 2x = 1 interval [0,1] using 10 rectangles. Answer: $\Delta x = \frac{1-0}{10} = 0.1$. $x_0 = 0$, $x_1 = 0.1$, $x_2 = 0.2$, ..., $x_9 = 0.9$, $x_{10} = 1$ $A_{10} = \sum_{i=1}^{10} f(x_i) \Delta x = \sum_{i=1}^{10} (2x_i - 2x_i^2) = 0.1$ $A_{10} = 0.1 [0.18 + 0.32 + 0.42 + 0.48 + 0.5 + 0.48 + 0.42 + 0.32 + 0.18 + 0]$ $A_{10} = 0.1(3,3) = 0.33$

 $A_{10} = 0.1(3.3) = 0.33$

Definition (Riemann Sum):

Let $\{x_0 = a, x_1, \dots, x_n = b\}$ be a regular partition of the interval [a, b] with $\Delta x = \frac{b-a}{n}$. Pick points c_1, c_2, \dots, c_n where c_i is any point in the subintrval $[x_{i-1}, x_i]$, $i = 1, 2, \dots, n$.

The Riemann sum is $R_n = \sum_{i=1}^{n} f(c_i) \Delta x$.

The area under the curve of f(x) is the limit of the Riemann sum .

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{i=1}^n f(c_i) \Delta x.$$

Example 1: Find the area under the curve of the function f(x) = 3x + 1 on the interval [1, 3] using Riemann sum and c_i is the middle point of the subinterval. Answer: $\Delta x = \frac{3-1}{n} = \frac{2}{n}$

Answer:
$$\Delta x = \frac{3-1}{n} = \frac{2}{n}$$

$$x_0 = 1, x_i = x_0 + i\Delta x = 1 + \frac{2i}{n}$$
 for every $i = 1, 2, \dots, n$.

For every
$$i = 1, 2, \dots, n$$
, $c_i \in [x_{i-1}, x_i]$, $c_i = \frac{x_i + x_{i-1}}{2} = \frac{\left(1 + \frac{2i}{n}\right) + \left(1 + \frac{2(i-1)}{n}\right)}{2}$

$$c_i = \frac{2 + (2i - 1)\frac{2}{n}}{2} = 1 + \frac{2i - 1}{n}$$

$$R_n = \sum_{i=1}^{n} f(c_i) \Delta x = \sum_{i=1}^{n} \left[3 \left(1 + \frac{2i - 1}{n} \right) + 1 \right] \frac{2}{n}$$

$$= \frac{2}{n} \sum_{i=1}^{n} \left[3 + \frac{6i - 3}{n} + 1 \right] = \frac{2}{n} \sum_{i=1}^{n} \left[4 + \frac{6i}{n} - \frac{3}{n} \right]$$

$$= \frac{2}{n} \left[\sum_{i=1}^{n} 4 + \frac{6}{n} \sum_{i=1}^{n} i - \frac{1}{n} \sum_{i=1}^{n} 3 \right] = \frac{2}{n} \left[4n + \frac{6}{n} \frac{n(n+1)}{2} - \frac{1}{n} 3n \right]$$

$$=8+6\frac{n(n+1)}{n^2}-\frac{6}{n} \ .$$

The desired area =
$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} \left[8 + 6 \frac{n(n+1)}{n^2} - \frac{6}{n} \right] = 8 + 6 - 0 = 14$$

Example 2: Do the last example where c_i is the end point of the subinterval. Answer: For every $i = 1, 2, \dots, n$, $c_i \in [x_{i-1}, x_i]$, $c_i = x_i = 1 + \frac{2i}{n}$

$$R_n = \sum_{i=1}^n f(c_i) \Delta x = \sum_{i=1}^n \left[3\left(1 + \frac{2i}{n}\right) + 1 \right] \frac{2}{n}$$

$$= \frac{2}{n} \sum_{i=1}^{n} \left[3 + \frac{6i}{n} + 1 \right] = \frac{2}{n} \sum_{i=1}^{n} \left[4 + \frac{6i}{n} \right]$$

$$= \frac{2}{n} \left[\sum_{i=1}^{n} 4 + \frac{6}{n} \sum_{i=1}^{n} i \right] = \frac{2}{n} \left[4n + \frac{6}{n} \frac{n(n+1)}{2} \right] = 8 + 6 \frac{n(n+1)}{n^2}$$

The desired area =
$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} \left[8 + 6 \frac{n(n+1)}{n^2} \right] = 8 + 6 = 14$$

THE DEFINITE INTEGRAL

Definition (The definite Integral) : For any continuous function f defined on the interval [a, b] the definite integral of f from a to b is

$$\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x \text{, whenever the limit exists.}$$
 (where c_i is any point in the subintrval $[x_{i-1}, x_i]$, $i = 1, 2, \dots, n$).

Notes:

- 1. Rieman Sum is the same for any choice of the points c_1, c_2, \dots, c_n .
- 2. When the limit exists we say that the function f is integrable.

Notes : If the function f is continuous on [a,b] and $f(x) \ge 0$ for every $x \in [a,b]$, then

1.
$$\int_{a}^{b} f(x) dx \ge 0$$
.

2.
$$\int_a^b f(x) dx$$
 = The area under the curve of f

Example 1:

$$\int_1^3 (3x+1) \ dx = \text{Area under the curve of } f = \lim_{n \to \infty} R_n = 14 \ .$$
 (See the example on Riemann sum) .

Example 2: The definite integral representing $\lim_{n\to\infty}\sum_{k=1}^n \sqrt{x_k+1}\ \Delta x$ using regular partition of the interval [1,2] is $\int_1^2 \sqrt{x+1}\ dx$.

Theorem: If the function f is continuous on the interval [a,b] then f is integrable on [a,b] .

Properties of the definite integral : If the functions f and g are integrable on [a,b] then :

1.
$$\int_a^b k f(x) dx = k \int_a^b f(x) dx$$
, for every $k \in \mathbb{R}$.

2.
$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$
.

3. For every
$$c \in [a,b]$$

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$
.

4. If $f(x) \leq g(x)$ for every $x \in [a, b]$ then $\int_a^b f(x) \ dx \leq \int_a^b g(x) \ dx$

Example 3:

1.
$$\int_{2}^{7} (x^2 - 3) dx - \int_{2}^{4} (x^2 - 3) dx = \int_{4}^{7} (x^2 - 3) dx$$
.

- 2. Since $\cos x \ge \sin x$ for every $x \in \left[0, \frac{\pi}{4}\right]$ then $\int_0^{\frac{\pi}{4}} \cos x \ dx \ge \int_0^{\frac{\pi}{4}} \sin x \ dx$.
- 3. To show that $\int_{-1}^{1} \frac{x^2}{x^2 + 4} dx \le \int_{-1}^{1} x^2 dx$ For every $x \in [-1, 1]$, $x^2 + 4 > 1 \Rightarrow \frac{1}{x^2 + 4} < 1 \Rightarrow \frac{x^2}{x^2 + 4} \le x^2$ Hence $\int_{-1}^{1} \frac{x^2}{x^2 + 4} dx \le \int_{-1}^{1} x^2 dx$.

FUNDAMENTAL THEOREM OF CALCULUS

Fundamental Theorem of Calculus (Part I):

If f is a continuous function on the interval [a,b] and G(x) is the antiderivative of f(x) on [a,b] then $\int_a^b f(x) \ dx = [G(x)]_a^b = G(b) - G(a)$.

Note: $\int_a^b \frac{d}{dx} G(x) \ dx = G(b) - G(a) \ .$

Examples:

1.
$$\int_0^2 (x^2 - 2x) dx = \left[\frac{x^3}{3} - x^2 \right]_0^2 = \left(\frac{8}{3} - 4 \right) - \left(\frac{0}{3} - 0 \right) = -\frac{4}{3}$$
.

2. Find the area under the graph of $f(x)=\sin x$ on $[0,\pi]$ Answer: The area $=\int_0^\pi \sin x \ dx = [-\cos x]_0^\pi = (-\cos \pi) - (-\cos 0) = 2$

Fundamental Theorem of Calculus (Part II):

If f is a continuous function on the interval [a,b] and $G(x) = \int_a^x f(t) dt$ for every $x \in [a,b]$ then G'(x) = f(x) for every $x \in [a,b]$

Note : G(x) is the antiderivative of f(x) on [a,b] .

Examples:

1.
$$\frac{d}{dx} \int_0^x \sqrt{t^2 + 1} \ dt = \sqrt{x^2 + 1}$$
.

2.
$$\frac{d}{dx} \int_{1}^{x} \frac{1}{t^2 + 1} dt = \frac{1}{x^2 + 1}$$
.

3.
$$\frac{d}{dx} \int_3^x \left(2 + \frac{d}{dt} \cos t\right) dt = \frac{d}{dx} \int_3^x \left(2 - \sin t\right) dt = 2 - \sin x$$

4.
$$\frac{d}{dt} \int_{2}^{t} \frac{1}{x^3 + 5} dx = \frac{1}{t^3 + 5}$$

Theorem:

If f is a continuous function , g and h are deifferentiable functions then $\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) \ dt = f\left(h(x)\right) h'(x) - f\left(g(x)\right) g'(x).$

Notes:

1. If
$$g(x) = a$$
 and $h(x) = b$ then $\frac{d}{dx} \int_{a}^{b} f(t) dt = f(b)(0) - f(a)(0) = 0$

2. If
$$g(x) = a$$
 and $h(x) = x$ then $\frac{d}{dx} \int_a^x f(t) dt = f(x)(1) - f(a)(0) = f(x)$

Examples:

1. Find
$$G'(x)$$
, if $G(x) = \int_{1-x}^{x^2} \frac{1}{4+3t^2} dt$.
Answer: $G'(x) = \frac{d}{dx} \int_{1-x}^{x^2} \frac{1}{4+3t^2} dt = \frac{1}{4+3(x^2)^2} (2x) - \frac{1}{4+3(1-x)^2} (-1)$

$$G'(x) = \frac{2x}{4+3x^4} + \frac{1}{4+3(1-x)^2}$$

2.
$$\frac{d}{dt} \left[\int_2^t \sqrt{x^2 + 1} \, dx + \int_t^{-1} \sqrt{x^2 + 1} \, dx \right] = \frac{d}{dt} \int_2^{-1} \sqrt{x^2 + 1} \, dx = 0$$

3. Find
$$F'(2)$$
, if $F(x) = \int_1^{x^2} \frac{1}{t} dt$.
Answer: $F'(x) = \frac{d}{dx} \int_1^{x^2} \frac{1}{t} dt = \frac{1}{x^2} (2x) - 0 = \frac{2x}{x^2} = \frac{2}{x}$.
Hence $F'(2) = \frac{2}{2} = 1$.

4. Find
$$f(4)$$
, if $\int_0^x f(t) dt = x \cos \pi x$
Answer: Differentiate both sides with respect to x

$$\frac{d}{dx} \int_0^x f(t) dt = \frac{d}{dx} [x \cos \pi x]$$

$$f(x) = (1) \cos \pi x + x (-\sin \pi x) \pi = \cos \pi x - \pi x \sin \pi x$$
Hence $f(4) = \cos 4\pi - 4\pi \sin 4\pi = 1 - 4\pi(0) = 1$.

5.
$$\int_{-x}^{x} \frac{d}{dt} f(t) dt = f(x) - f(-x)$$

Here, we used
$$\int_{a}^{b} \frac{d}{dx} G(x) dx = G(b) - G(a)$$

Exercises: Solve the following:

1.
$$\frac{d}{dx} \int_0^5 \sqrt{t^2 + 3} \ dt$$
.

$$2. \frac{d}{dx} \int_{x}^{1} u^{2} \cos u \ du \ .$$

3. Find
$$F'(0)$$
, if $F(x) = \int_{x}^{x^2} \frac{1}{t-1} dt$.

AVERAGE VALUE OF A FUNCTION

Definition (Average value of a function): Let f be a continuous function

on [a,b] then the average value of f on [a,b] is $f_{av}=\frac{\displaystyle\int_a^b f(x)\ dx}{b-a}$.

Example: Find f_{av} of the following functions:

1.
$$f(x) = x^2 - 2x$$
 on the interval $[1, 4]$

$$\int_{1}^{4} (x^2 - 2x) dx = \left[\frac{x^3}{3} - x^2\right]_{1}^{4}$$

$$= \left(\frac{64}{3} - 16\right) - \left(\frac{1}{3} - 1\right) = \frac{63}{3} - 15 = \frac{63 - 45}{3} = \frac{18}{3} = 6$$
Hence $f_{av} = \frac{\int_{1}^{4} (x^2 - 2x) dx}{4 - 1} = \frac{6}{3} = 2$.

2.
$$f(x) = \sin^2 x \cos x$$
 on the interval $\left[0, \frac{\pi}{2}\right]$

$$\int_0^{\frac{\pi}{2}} \sin^2 x \cos x \, dx = \int_0^{\frac{\pi}{2}} (\sin x)^2 \cos x \, dx = \left[\frac{(\sin x)^3}{3}\right]_0^{\frac{\pi}{2}}$$

$$= \frac{\left(\sin \frac{\pi}{2}\right)^3}{3} - \frac{(\sin 0)^3}{3} = \frac{1}{3} - 0 = \frac{1}{3}$$
Hence $f_{av} = \frac{\int_0^{\frac{\pi}{2}} \sin^2 x \cos x \, dx}{\frac{\pi}{2} - 0} = \frac{\frac{1}{3}}{\frac{\pi}{2}} = \frac{2}{3\pi}$.

Exercise: Find f_{av} of the function $f(x) = (2x+1)^2$ on the interval [0,1]

INTEGRAL MEAN VALUE THEOREM

Theorem (Integral Mean Value Theorem):

If f is a continuous function on the interval [a, b] then there exists a number

$$c \in (a, b)$$
 for which $f(c) = \frac{\int_a^b f(x) \ dx}{b - a}$.

Example: Find the value that satisfies the integral Mean value theorem for the function $f(x) = 4x^3 - 1$ on the interval [1, 2]

the function
$$f(x) = 4x^3 - 1$$
 on the Answer: $f(c) = \frac{\displaystyle\int_{1}^{2} \left(4x^3 - 1\right) \ dx}{2-1}$ $4c^3 - 1 = \begin{bmatrix} x^4 - x \end{bmatrix}_{1}^{2}$ $4c^3 - 1 = (16-2) - (1-1)$ $4c^3 - 1 = 14$ $c^3 = \frac{15}{4}$ $c = \sqrt[3]{\frac{15}{4}}$ Note that $c = \sqrt[3]{\frac{15}{4}} \in (1,2)$.

$$4c^3 - 1 = \left[x^4 - x\right]_1^2$$

$$4c^3 - 1 = (16 - 2) - (1 - 1)$$

$$4c^3 - 1 = (16 - 2) - (1 - 1)$$

 $4c^3 - 1 = 14$

$$c^3 = \frac{15}{4}$$

$$c = \sqrt[3]{\frac{15}{4}}$$

NUMERICAL INTEGRATION

1. The Trapezoidal Rule:

It is used to approximate $\int_a^b f(x) \, dx$ with a regular partition of the interval [a,b], where $\Delta x = \frac{b-a}{n}$, by using the formula $\int_a^b f(x) \, dx \approx \frac{b-a}{2n} \left[f\left(x_0\right) + 2f\left(x_1\right) + \dots + 2f\left(x_{n-1}\right) + f\left(x_n\right) \right]$

Example : Approximate the integral $\int_0^1 \sqrt{x+x^2} \ dx$ using Trapezoidal rule with n=4.

Answer : [a,b]=[0,1] , $f(x)=\sqrt{x+x^2}$ and $\Delta x=\frac{1-0}{4}=0.25$

n	x_n	$f(x_n)$	m	$mf(x_n)$
0	0	0	1	0
1	0.25	0.559017	2	1.11803
2	0.5	0.86625	2	1.73205
3	0.75	1.14564	2	2.29129
4	1	1.41421	1	1.41421
				6.55559

$$\int_0^1 \sqrt{x+x^2} \ dx \approx \frac{1-0}{2(4)} \left[f(0) + 2f(0.25) + 2f(0.5) + 2f(0.75) + f(1) \right]$$
$$\int_0^1 \sqrt{x+x^2} \ dx \approx \frac{1}{8} \left[6.55559 \right] \approx 0.819448 \ .$$

Exercise : Approximate the integral $\int_2^4 \frac{1}{x-1} \ dx$ using Trapezoidal rule with n=4.

2. Simpson's Rule:

It is used to approximate $\int_a^b f(x) \, dx$ with a regular partition of the interval [a,b], where $\Delta x = \frac{b-a}{n}$, and n is \underline{even} , by using the formula $\int_a^b f(x) \, dx \quad \approx \quad \frac{b-a}{3n} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right]$

Example : Approximate the integral $\int_0^{10} \sqrt{10x - x^2} \ dx$ using Simpson's rule with n = 4.

with n=4. Answer : [a,b]=[0,10] , $f(x)=\sqrt{10x-x^2}$ and $\Delta x=\frac{10-0}{4}=2.5$

n	x_n	$f(x_n)$	m	$mf(x_n)$
0	0	0	1	0
1	2.5	4.33013	4	17.3204
2	5	5	2	10
3	7.5	4.33013	4	17.3204
4	10	0	1	0
				44.6408

$$\int_0^{10} \sqrt{10x - x^2} \, dx \approx \frac{10 - 0}{3(4)} \left[f(0) + 4f(2.5) + 2f(5) + 4f(7.5) + f(10) \right]$$
$$\int_0^1 \sqrt{10x - x^2} \, dx \approx \frac{10}{12} \left[44.6408 \right] \approx 37.2007 \, .$$

Exercise: Approximate the integral $\int_0^2 \frac{x}{x+1} dx$ using Simpson's rule with n=4.

THE NATURAL LOGARITHMIC FUNCTION

Definition (The natural logarithmic function):

For x > 0, the natural logarithmic function is defined by $\ln x = \int_1^x \frac{1}{t} dt$.

Note: The domain of the function $\ln x$ is the open interval $(0, \infty)$

Example: What is the domain of the function ln(x-2)?

Answer: $x-2>0 \Rightarrow x>2 \Rightarrow$ the domain is $(2,\infty)$.

Notes:

- 1. If x > 1 then $\ln x > 0$.
- 2. ln1 = 0.
- 3. If 0 < x < 1 then $\ln x < 0$.

The graph of $\ln x$:

1. First derivative test :
$$\frac{d}{dx}\ln x = \frac{d}{dx}\int_1^x \frac{1}{t}\ dt = \frac{1}{x} > 0 \text{ for every } x \in (o,\infty).$$
 Hence $\ln x$ is an increasing function on $(0,\infty)$.

2. Second derivative test :
$$\frac{d^2}{dx^2}\ln x = \frac{d}{dx}\frac{1}{x} = -\frac{1}{x^2} < 0 \text{ for every } x \in (0,\infty) \text{ .}$$
 Hence $\ln x$ is a convex function on $(0,\infty)$.

Notes:

1. The range of the function $\ln x$ is \mathbb{R} .

$$2. \lim_{x \to \infty} \ln x = \infty .$$

$$3. \lim_{x \to 0^+} \ln x = -\infty.$$

The derivative of $\ln |x|$:

$$1. \ \frac{d}{dx} \ln|x| = \frac{1}{x} \ .$$

2.
$$\frac{d}{dx} \ln |f(x)| = \frac{f'(x)}{f(x)}.$$

Note: $\ln |x|$ is the antiderivative of $\frac{1}{x}$.

Integration:

1.
$$\int \frac{1}{x} dx = \ln|x| + c$$
.

2.
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$
.

Some properties of $\ln |x|$: If x, y > 0 and $r \in \mathbb{R}$ then

1.
$$\ln(xy) = \ln x + \ln y$$
.

$$2. \ln\left(\frac{x}{y}\right) = \ln x - \ln y \ .$$

3.
$$\ln x^r = r \ln x$$
.

Examples:

1. Simplify
$$\frac{1}{5} \left[2 \ln|x+1| + \ln|x| - \ln|x^2 - 2| \right]$$

 $\frac{1}{5} \left[2 \ln|x+1| + \ln|x| - \ln|x^2 - 2| \right] = \frac{1}{5} \left[\ln(x+1)^2 + \ln|x| - \ln|x^2 - 2| \right]$
 $= \frac{1}{5} \left[\ln|x(x+1)^2| - \ln|x^2 - 2| \right] = \frac{1}{5} \ln\left| \frac{x(x+1)^2}{x^2 - 2} \right| = \ln\left| \left(\frac{x(x+1)^2}{x^2 - 2} \right)^{\frac{1}{5}} \right|$

2. If
$$y = \sqrt{\frac{(x+1)^4(x+2)^3}{(x-1)^2}}$$
 then find y' .
$$\ln y = \ln \left| \sqrt{\frac{(x+1)^4(x+2)^3}{(x-1)^2}} \right| = \frac{1}{2} \left[4 \ln |x+1| + 3 \ln |x+2| - 2 \ln |x-1| \right]$$

Differentiate both sides
$$\frac{y'}{y} = \frac{1}{2} \left[4 \frac{1}{x+1} + 3 \frac{1}{x+2} - 2 \frac{1}{x-1} \right]$$
 Hence
$$y' = \frac{1}{2} \sqrt{\frac{(x+1)^4 (x+2)^3}{(x-1)^2}} \left[\frac{4}{x+1} + \frac{3}{x+2} - \frac{2}{x-1} \right]$$

Exercise: If $f(x) = \frac{x^2(2x-1)^3}{(x+5)^2}$ then find f'(x)?

More Basic Rules of Integration:

1.
$$\int \tan x \, dx = \ln|\sec x| + c.$$

$$2. \int \cot x \, dx = \ln|\sin x| + c \; .$$

3.
$$\int \sec x \, dx = \ln|\sec x + \tan x| + c.$$

4.
$$\int \csc x \, dx = \ln|\csc x - \cot x| + c$$

Examples

1.
$$\int \frac{x^2 + 2x + 3}{x^3 + 3x^2 + 9x} dx = \frac{1}{3} \int \frac{3x^2 + 6x + 9}{x^3 + 3x^2 + 9x} dx = \frac{1}{3} \ln |x^3 + 3x^2 + 9x| + c.$$

2.
$$\int \frac{x^2 + 2x + 3}{\left(x^3 + 3x^2 + 9x\right)^5} dx = \frac{1}{3} \int \left(x^3 + 3x^2 + 9x\right)^{-5} \left(3x^2 + 6x + 9\right) dx$$
$$= \frac{1}{3} \frac{\left(x^3 + 3x^2 + 9x\right)^{-4}}{-4} + c.$$

3.
$$\int \frac{1}{x\sqrt{\ln x}} dx = \int (\ln x)^{-\frac{1}{2}} \frac{1}{x} dx = \frac{(\ln x)^{\frac{1}{2}}}{\frac{1}{2}} + c.$$

4.
$$\int \frac{1}{x \ln \sqrt{x}} dx = \int \frac{1}{x \frac{1}{2} \ln x} dx = 2 \int \frac{\frac{1}{x}}{\ln x} dx = \ln |\ln x| + c.$$

5.
$$\int \frac{x-1}{x+1} dx = \int \frac{(x+1)-2}{x+1} dx = \int \left(\frac{x+1}{x+1} - \frac{2}{x+1}\right) dx$$
$$\int \left(1 - \frac{2}{x+1}\right) dx = \int 1 dx - 2 \int \frac{1}{x+1} dx = x - 2\ln|x+1| + c.$$

6. Find
$$g(x)$$
 if $\int [\ln |x|]^2 g(x) dx = \frac{2}{3} [\ln |x|]^3 + c$

$$[\ln |x|]^2 g(x) = \frac{d}{dx} \left(\frac{2}{3} [\ln |x|]^3 + c\right)$$

$$[\ln |x|]^2 g(x) = 2 [\ln |x|]^2 \frac{1}{x}.$$
Hence $g(x) = \frac{2}{x}$.

THE NATURAL EXPONENTIAL FUNCTION

Definition (The natural exponential function):

The natural exponential function is the inverse of the natural logarithmic function , and it is denoted by e^x .

Notes:

1. The domain of the function e^x is \mathbb{R} .

2. The range of the function e^x is the open interval $(0,\infty)$.

3. $e^x > 0$ for every $x \in \mathbb{R}$.

4. $e^0 = 1$.

5. $e \approx 2.71828$ and $\ln(e) = 1$.

6. $\lim_{x \to \infty} e^x = \infty$.

7. $\lim_{x \to -\infty} e^x = 0$.

8. $\ln(e^x) = x$ and $e^{\ln x} = x$.

Some properties of the natural exponential function : If $x,y\in\mathbb{R}$ then

 $1. e^x e^y = e^{x+y}.$

 $2. \ \frac{e^x}{e^y} = e^{x-y}.$

3. $(e^x)^y = e^{xy}$.

Examples:

1. Find the value of x that satisfies the equation $\ln \frac{1}{x} = 2$?

Answer: $\ln \frac{1}{x} = 2 \Rightarrow \ln x^{-1} = 2 \Rightarrow -\ln x = 2 \Rightarrow \ln x = -2$ $\Rightarrow e^{\ln x} = e^{-2} \Rightarrow x = e^{-2} = \frac{1}{e^2}$.

2. Find the value of x that satisfies the equation $e^{5x+3}=4$?.

Answer: $e^{5x+3} = 4 \Rightarrow \ln e^{5x+3} = \ln 4 \Rightarrow 5x + 3 = \ln 4 \Rightarrow x = \frac{-3 + \ln 4}{5}$.

3. Simplify $\ln (e^x)^2$?

Answer: $\ln(e^x)^2 = \ln(e^{2x}) = 2x$.

Derivative of the natural exponential function:

1.
$$\frac{d}{dx}e^x = e^x$$
.

2.
$$\frac{d}{dx}e^{f(x)} = e^{f(x)}f'(x)$$
.

Integration:

$$1. \int e^x dx = e^x + c .$$

2.
$$\int e^{f(x)} f'(x) dx = e^{f(x)} + c$$
.

Example:

1. Find
$$f'(x)$$
 if $f(x) = e^{5x} + \frac{1}{e^x}$

$$f(x) = e^{5x} + \frac{1}{e^x} = e^{5x} + e^{-x}$$

$$f'(x) = e^{5x}(5) + e^{-x}(-1) = 5e^{5x} - e^{-x}$$
.

2.
$$\int \frac{e^{-x}}{(1 - e^{-x})^2} dx = \int (1 - e^{-x})^{-2} e^{-x} dx = \frac{(1 - e^{-x})^{-1}}{-1} + c.$$

3.
$$\int \frac{e^{\frac{3}{x}}}{x^2} dx = -\frac{1}{3} \int e^{\frac{3}{x}} \frac{-3}{x^2} dx = -\frac{1}{3} e^{\frac{3}{x}} + c.$$

4.
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = 2 \int e^{\sqrt{x}} \frac{1}{2\sqrt{x}} dx = 2e^{\sqrt{x}} + c$$
.

5.
$$\int \frac{e^{\sin x}}{\sec x} dx = \int e^{\sin x} \cos x dx = e^{\sin x} + c.$$

6.
$$\int_{1}^{e} \frac{\sqrt[3]{\ln x}}{x} dx = \int_{1}^{e} (\ln x)^{\frac{1}{3}} \frac{1}{x} dx = \left[\frac{(\ln x)^{\frac{4}{3}}}{\frac{4}{3}} \right]_{1}^{e} = \frac{3}{4} (\ln e)^{\frac{4}{3}} - \frac{3}{4} (\ln 1)^{\frac{4}{3}} = \frac{3}{4} (\ln e)^{\frac{4}{3}} - \frac{3}{4} (\ln 1)^{\frac{4}{3}} = \frac{$$

- 7. Find g(x) if $\int e^{3x^2} g(x) dx = -e^{3x^2} + c$ $\frac{d}{dx} \left[-e^{3x^2} + c \right] = e^{3x^2} g(x)$ $-e^{3x^2} (6x) = e^{3x^2} g(x)$ $-6xe^{3x^2} = e^{3x^2} g(x)$ Hence g(x) = -6x
- 8. $\int e^{(x^2 + \ln x)} dx = \int e^{x^2} e^{\ln x} dx = \int e^{x^2} x dx = \frac{1}{2} \int e^{x^2} 2x dx = \frac{1}{2} e^{x^2} + c$

THE GENERAL EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Definition (The general exponential function):

It has the form a^x where a > 0 and $a \neq 1$.

Note: $a^x = e^{x \ln a}$.

Derivative of the general exponential function :

$$1. \ \frac{d}{dx}a^x = a^x \ln a.$$

2.
$$\frac{d}{dx}a^{f(x)} = a^{f(x)}f'(x)\ln a$$
.

Integration:

$$1. \int a^x \, dx = \frac{a^x}{\ln a} + c.$$

2.
$$\int a^{f(x)} f'(x) dx = \frac{a^{f(x)}}{\ln a} + c.$$

Definition (The general logarithmic function):

The general logarithmic function of base a where a>0 and $a\neq 1$ is denoted by $\log_a x$ and it is the inverse function of the general exponential function a^x .

Notes:

1.
$$\log_a x = y \Leftrightarrow a^y = x$$
.

$$2. \log_a x = \frac{\ln x}{\ln a} .$$

Notations:

$$1. \log x = \log_{10} x.$$

2.
$$\ln x = \log_e x$$
.

Derivative of the general logarithmic function:

1.
$$\frac{d}{dx}\log_a|x| = \frac{1}{x}\frac{1}{\ln a}.$$

2.
$$\frac{d}{dx} \log_a |f(x)| = \frac{f'(x)}{f(x)} \frac{1}{\ln a}$$
.

Examples:

- 1. Find the value of x if $\log_2 x = 3$?. $\log_2 x = 3 \Leftrightarrow x = 2^3 = 8$.
- 2. Find the value of a if $\log_a 125 = 3$? $\log_a 125 = 3 \Leftrightarrow 125 = a^3 \Leftrightarrow a = \sqrt[3]{125} = 5$.
- 3. Find the value of x if $2\log|x| = \log 2 + \log|3x 4|$?. $2\log|x| = \log 2 + \log|3x - 4| \Rightarrow \log x^2 = \log|2(3x - 4)|$ \Rightarrow x^2 = 2(3x - 4) \Rightarrow x^2 = 6x - 8 \Rightarrow x^2 - 6x + 8 = 0 $(x-4)(x-2) = 0 \Rightarrow x = 4orx = 2$.
- 4. Find y' if $2x = 4^y$?

Differentiate both sides : $2=4^yy'\ln 4 \Rightarrow y'=\frac{2}{4^y\ln 4}=\frac{2}{2x\ln 4}=\frac{1}{x\ln 4}$. Another way : $2x=4^y\Rightarrow \ln |2x|=\ln 4^y=y\ln 4 \Rightarrow y=\frac{\ln |2x|}{\ln 4}$

Hence $y' = \frac{1}{\ln 4} \frac{2}{2x} = \frac{1}{x \ln 4}$

- 5. Find f'(x) if $f(x) = 7^{\sqrt[3]{x}}$? $f'(x) = 7^{\sqrt[3]{x}} \frac{1}{2} x^{-\frac{2}{3}} \ln 7.$
- 6. Find f'(x) if $f(x) = \pi^{3x}$? $f'(x) = \pi^{3x}(3) \ln \pi = 3\pi^{3x} \ln \pi$.
- 7. Find y' if $y = (\sin x)^x$? $y = (\sin x)^x \Rightarrow \ln y = \ln (\sin x)^x = x \ln |\sin x|$

Differentiate both sides: $\frac{y'}{y} = \ln|\sin x| + x \frac{\cos x}{\sin x} = \ln|\sin x| + x \cot x$

 $y' = y [\ln |\sin x| + x \cot x] = (\sin x)^{x} [\ln |\sin x| + x \cot x]$

8. Find y' if $y = (1 + x^2)^{2x+1}$? $y = (1+x^2)^{2x+1} \Rightarrow \ln y = \ln (1+x^2)^{2x+1} = (2x+1)\ln(1+x^2)$

Differentiate both sides:
$$\frac{y'}{y} = 2\ln(1+x^2) + (2x+1)\frac{2x}{1+x^2}$$

 $y' = y\left[2\ln(1+x^2) + \frac{2x(2x+1)}{1+x^2}\right] = (1+x^2)^{2x+1}\left[2\ln(1+x^2) + \frac{2x(2x+1)}{1+x^2}\right]$

- 9. $\int x^2 6^{x^3} dx = \frac{1}{3 \ln 6} \int 6^{x^3} (3x^2) \ln 6 dx = \frac{6^{x^3}}{3 \ln 6} + c.$
- 10. $\int \frac{2^x}{2^x + 1} dx = \frac{1}{\ln 2} \int \frac{2^x \ln 2}{2^x + 1} dx = \frac{\ln(2^x + 1)}{\ln 2} + c.$
- 11. $\int \frac{3^{-\cot x}}{\sin^2 x} dx = \frac{1}{\ln 3} \int 3^{-\cot x} \csc^2 x \ln 3 dx = \frac{3^{-\cot x}}{\ln 3} + c$
- 12. $\int 2^{x \ln x} (1 + \ln|x|) \, dx = \frac{1}{\ln 2} \int 2^{x \ln x} (1 + \ln|x|) \ln 2 \, dx = \frac{2^{x \ln x}}{\ln 2} + c$
- 13. $\int 4^x 5^{4^x} dx = \frac{1}{\ln 4 \ln 5} \int 5^{4^x} 4^x \ln 4 \ln 5 dx = \frac{5^{4^x}}{\ln 4 \ln 5} + c$

14.
$$\int 3^{x} (1 + \sin 3^{x}) dx = \int (3^{x} + 3^{x} \sin 3^{x}) dx = \int 3^{x} dx + \int 3^{x} \sin 3^{x} dx$$
$$= \frac{1}{\ln 3} \int 3^{x} \ln 3 dx + \frac{1}{\ln 3} \int \sin(3^{x}) 3^{x} \ln 3 dx = \frac{3^{x}}{\ln 3} - \frac{\cos 3^{x}}{\ln 3} + c$$

Exercises:

- 1. Find f'(x) if $f(x) = (x^2 + 1)^x$?
- 2. Evaluate $\int \frac{3^{\sqrt{x}}}{\sqrt{x}} dx$?

THE INVERSE TRIGONOMETRIC FUNCTIONS

Definitions:

1. The inverse sine function is denoted by \sin^{-1} and it is defined as $y = \sin^{-1} x \Leftrightarrow x = \sin y$, where $x \in [-1,1]$ and $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

The domain of the inverse sine function is [-1, 1]

The range of the inverse sine function is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

2. The inverse cosine function is denoted by \cos^{-1} and it is defined as $y=\cos^{-1}x\Leftrightarrow x=\cos y$, where $x\in[-1,1]$ and $y\in[0,\pi]$.

The domain of the inverse cosine function is [-1, 1]

The range of the inverse cosine function is $[0, \pi]$.

3. The inverse tangent function is denoted by \tan^{-1} and it is defined as $y=\tan^{-1}x\Leftrightarrow x=\tan y$, where $x\in\mathbb{R}$ and $y\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

The domain of the inverse tangent function is \mathbb{R}

The range of the inverse tangent function is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

4. The inverse cotangent function is denoted by \cot^{-1} and it is defined as $\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x$, where $x \in \mathbb{R}$.

The domain of the inverse cotangent function is \mathbb{R}

The range of the inverse cotangent function is $(0, \pi)$.

5. The inverse secant function is denoted by \sec^{-1} and it is defined as $y = \sec^{-1} x \Leftrightarrow x = \sec y$, where $y \in \left[0, \frac{\pi}{2}\right)$ if $x \geq 1$, and $y \in \left[\pi, \frac{3\pi}{2}\right)$ if $x \leq -1$.

The domain of the inverse secant function is $(-\infty, -1] \cup [1, \infty)$

The range of the inverse secant function is $\left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$.

6. The inverse cosecant function is denoted by \csc^{-1} and it is defined as $\csc^{-1} x = \frac{\pi}{2} - \sec^{-1} x$ where $|x| \ge 1$

The domain of the inverse cosecant function is $(-\infty,-1]\cup[1,\infty)$

The range of the inverse cosecant function is $\left(-\pi, -\frac{\pi}{2}\right] \cup \left(0, \frac{\pi}{2}\right]$.

Derivatives of the inverse trigonometric functions :

1.
$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$
, where $|x| < 1$.

2.
$$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$$
, where $|x| < 1$.

3.
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$$
.

4.
$$\frac{d}{dx} \cot^{-1} x = \frac{-1}{1+x^2}$$
.

5.
$$\frac{d}{dx} \sec^{-1} x = \frac{1}{x\sqrt{x^2 - 1}}$$
, where $|x| > 1$.

6.
$$\frac{d}{dx}\csc^{-1}x = \frac{-1}{x\sqrt{x^2 - 1}}$$
, where $|x| > 1$.

Integration:

1.
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c \quad , \quad (|x| < a)$$

$$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1}\left(\frac{f(x)}{a}\right) + c \quad , \quad (|f(x)| < a))$$
2.
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + c$$

$$\int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan^{-1}\left(\frac{f(x)}{a}\right) + c$$
3.
$$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1}\left(\frac{x}{a}\right) + c \quad , \quad (|x| > a)$$

$$\int \frac{f'(x)}{f(x)\sqrt{|f(x)|^2 - a^2}} dx = \frac{1}{a} \sec^{-1}\left(\frac{f(x)}{a}\right) + c \quad , \quad (|f(x)| > a))$$

Examples:

1.
$$\int \frac{x^2}{5+x^6} dx = \frac{1}{3} \int \frac{3x^2}{\left(\sqrt{5}\right)^2 + \left(x^3\right)^2} dx = \frac{1}{3} \frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{x^3}{\sqrt{5}}\right) + c.$$

Here $a = \sqrt{5}$, $f(x) = x^3$ and $f'(x) = 3x^2$.

2.
$$\int \frac{3x}{\sqrt{9-x^4}} dx = \frac{3}{2} \int \frac{2x}{\sqrt{(3)^2 - (x^2)^2}} dx = \frac{3}{2} \sin^{-1} \left(\frac{x^2}{3}\right) + c.$$

Here a = 3, $f(x) = x^2$ and f'(x) = 2x.

3.
$$\int \frac{3x}{\sqrt{9-x^2}} dx = \frac{3}{-2} \int (9-x^2)^{-\frac{1}{2}} (-2x) dx = -\frac{3}{2} \frac{(9-x^2)^{\frac{1}{2}}}{\frac{1}{2}} + c.$$

4.
$$\int \frac{1}{x\sqrt{1-(\ln x)^2}} dx = \int \frac{\left(\frac{1}{x}\right)}{\sqrt{(1)^2-(\ln x)^2}} dx = \sin^{-1}(\ln x) + c.$$

Here a=1 , $f(x)=\ln x$ and $f'(x)=\frac{1}{x}$.

5.
$$\int \frac{1}{1+3x^2} dx = \frac{1}{\sqrt{3}} \int \frac{\sqrt{3}}{(1)^2 + (\sqrt{3}x)^2} dx = \frac{1}{\sqrt{3}} \tan^{-1} (\sqrt{3}x) + c .$$

Here a = 1, $f(x) = \sqrt{3}x$ and $f'(x) = \sqrt{3}$.

6.
$$\int \frac{e^{2x}}{e^{4x} + 16} dx = \frac{1}{2} \int \frac{2e^{2x}}{(4)^2 + (e^{2x})^2} dx = \frac{1}{2} \frac{1}{4} \tan^{-1} \left(\frac{e^{2x}}{4}\right) + c.$$

Here
$$a = 4$$
, $f(x) = e^{2x}$ and $f'(x) = 2e^{2x}$.

7.
$$\int \frac{1}{\sqrt{e^{2x} - 36}} dx = \int \frac{e^x}{e^x \sqrt{(e^x)^2 - (6)^2}} dx = \frac{1}{6} \sec^{-1} \left(\frac{e^x}{6}\right) + c.$$

Here a = 6, $f(x) = e^2$ and $f'(x) = e^x$.

8.
$$\int \frac{\sin x}{\sqrt{25 - \cos^2 x}} dx = -\int \frac{-\sin x}{\sqrt{(5)^2 - (\cos x)^2}} dx = -\sin^{-1}\left(\frac{\cos x}{5}\right) + c.$$

Here a = 5, $f(x) = \cos x$ and $f'(x) = -\sin x$.

9.
$$\int \frac{2^x}{\sqrt{4-4^x}} dx = \frac{1}{\ln 2} \int \frac{2^x \ln 2}{\sqrt{(2)^2 - (2^x)^2}} dx = \frac{1}{\ln 2} \sin^{-1} \left(\frac{2^x}{2}\right) + c.$$

Here a=2, $f(x)=2^x$ and $f'(x)=2^x \ln 2$.

10.
$$\int \frac{1}{x^2 + 6x + 25} dx = \int \frac{1}{(x^2 + 6x + 9) + 16} dx = \int \frac{1}{(x+3)^2 + (4)^2} dx$$
$$= \frac{1}{4} \tan^{-1} \left(\frac{x+3}{4}\right) + c.$$

Here a = 4, f(x) = x + 3 and f'(x) = 1.

11.
$$\int \frac{x+2}{\sqrt{4-x^2}} dx = \int \left(\frac{x}{\sqrt{4-x^2}} + \frac{2}{\sqrt{4-x^2}}\right) dx$$
$$= \frac{1}{-2} \int \left(4-x^2\right)^{-\frac{1}{2}} (-2x) dx + 2 \int \frac{1}{\sqrt{(2)^2 - (x)^2}} dx$$
$$= -\frac{1}{2} \frac{\left(4-x^2\right)^{\frac{1}{2}}}{\frac{1}{2}} + 2\sin^{-1}\left(\frac{x}{2}\right) + c.$$

12.
$$\int \frac{x + \tan^{-1} x}{1 + x^2} dx = \int \left(\frac{x}{1 + x^2} + \frac{\tan^{-1} x}{1 + x^2} \right) dx$$

$$= \frac{1}{2} \int \frac{2x}{1 + x^2} dx + \int \left(\tan^{-1} x \right) \frac{1}{1 + x^2} dx$$

$$= \frac{1}{2} \ln(1 + x^2) + \frac{\left(\tan^{-1} x \right)^2}{2} + c .$$

Exercises: Solve the following integrals:

1.
$$\int \frac{x + \sin^{-1} x}{\sqrt{1 - x^2}} dx$$
.

$$2. \int \frac{x+1}{x^2+1} \, dx$$

HYPERBOLIC FUNCTIONS

Definition (The hyperbolic sine function):

It is denoted by $\sinh x$ and it is defined as $\sinh x = \frac{e^x - e^{-x}}{2}$.

Notes:

1. The domain of $\sinh x$ is $\mathbb R$.

2. The range of $\sinh x$ is $\mathbb R$.

3. It is an odd function and sinh(0) = 0.

4. The graph of $\sinh x$

Definition (The hyperbolic cosine function): It is denoted by $\cosh x$ and it is defined as $\cosh x = \frac{e^x + e^{-x}}{2}$.

31

Notes:

1. The domain of $\cosh x$ is $\mathbb R$.

2. The range of $\cosh x$ is $[1, \infty]$.

3. It is an even function and cosh(0) = 1.

4. The graph of $\cosh x$

Definitions:

- 1. The hyperbolic tangent function is denoted by $\tanh x$ and it is defined as $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x e^{-x}}{e^x + e^{-x}}$ for every $x \in \mathbb{R}$.
- 2. The hyperbolic cotangent function is denoted by $\coth x$ and it is defined as $\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x e^{-x}}$ for every $x \in \mathbb{R} \{0\}$.
- 3. The hyperbolic secant function is denoted by $\operatorname{sech} x$ and it is defined as $\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$ for every $x \in \mathbb{R}$.
- 4. The hyperbolic cosecant function is denoted by $\operatorname{csch} x$ and it is defined as $\operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x e^{-x}}$ for every $x \in \mathbb{R} \{0\}$.

Notes:

1.
$$\cosh^2 x - \sinh^2 x = 1$$
 for every $x \in \mathbb{R}$.

2.
$$1 - \tanh^2 x = \operatorname{sech}^2 x$$
 for every $x \in \mathbb{R}$.

3.
$$\coth^2 x - 1 = \operatorname{csch}^2 x$$
 for every $x \in \mathbb{R} - \{0\}$.

Derivatives of the hyperbolic functions :

1.
$$\frac{d}{dx}\sinh x = \cosh x$$

$$\frac{d}{dx}\sinh(f(x)) = \cosh(f(x)) \ f'(x)$$

$$2. \ \frac{d}{dx}\cosh x = \sinh x$$

$$\frac{d}{dx}\cosh(f(x)) = \sinh(f(x)) f'(x)$$

3.
$$\frac{d}{dx} \tanh x = \operatorname{sech}^2 x$$

$$\frac{d}{dx}\tanh(f(x)) = \operatorname{sech}^2(f(x)) \ f'(x)$$

4.
$$\frac{d}{dx} \coth x = -csch^2 x$$

$$\frac{d}{dx} \coth(f(x)) = -\operatorname{csch}^{2}(f(x)) f'(x)$$

5.
$$\frac{d}{dx}sechx = -sechx \tanh x$$

$$\frac{d}{dx}sech(f(x)) = -sech(f(x))\tanh(f(x)) f'(x)$$

6.
$$\frac{d}{dx} cschx = -cschx \coth x$$

$$\frac{d}{dx}csch(f(x)) = -csch(f(x))\coth(f(x)) f'(x)$$

Examples:

1. Find the value of f(0) if $f(x) = \ln \left[\cosh(3x)\right]$?

$$f(0) = \ln[\cosh(0)] = \ln(1) = 0$$
.

2. Find the value of f'(0) if $f(x) = \ln |1 + \sinh x|$?

$$f'(x) = \frac{\cosh x}{1 + \sinh x} \Rightarrow f'(0) = \frac{\cosh(0)}{1 + \sinh(0)} = \frac{1}{1 + 0} = 1$$
.

3. Find
$$f'(x)$$
 if $f(x) = e^{\sinh x}$?

$$f'(x) = e^{\sinh x} \cosh x$$
.

4. Find
$$f'(x)$$
 if $f(x) = sech (1 + \sqrt{x})$?

$$f'(x) = -sech (1 + \sqrt{x}) \tanh (1 + \sqrt{x}) \frac{1}{2\sqrt{x}}$$
.

5. Find
$$f'(x)$$
 if $f(x) = \tan^{-1}(\sinh x)$?

$$f'(x) = \frac{\cosh x}{1 + (\sinh x)^2} = \frac{\cosh x}{\cosh^2 x} = \frac{1}{\cosh x} = \operatorname{sech} x.$$

6. Find
$$f'(x)$$
 if $f(x) = \ln|\sinh(1-x^2)|$?

$$f'(x) = \frac{\cosh(1-x^2) (-2x)}{\sinh(1-x^2)} = -2x \coth(1-x^2) .$$

7. Find
$$f'(x)$$
 if $f(x) = x^{\cosh x}$?

$$f(x) = x^{\cosh x} \Rightarrow \ln|f(x)| = \ln|x^{\cosh x}| = \cosh x \ln|x|$$

Differentiate both sides

$$\frac{f'(x)}{f(x)} = \sinh x \ln |x| + \cosh x \quad \left(\frac{1}{x}\right)$$
$$f'(x) = f(x) \left[\sinh x \ln |x| + \frac{\cosh x}{x}\right]$$
$$f'(x) = x^{\cosh x} \left[\sinh x \ln |x| + \frac{\cosh x}{x}\right].$$

Integration:

1.
$$\int \sinh x \, dx = \cosh x + c$$
$$\int \sinh (f(x)) f'(x) \, dx = \cosh (f(x)) + c$$

2.
$$\int \cosh x \, dx = \sinh x + c$$
$$\int \cosh (f(x)) f'(x) \, dx = \sinh (f(x)) + c$$

3.
$$\int \operatorname{sech}^{2} x \, dx = \tanh x + c$$
$$\int \operatorname{sech}^{2} (f(x)) f'(x) \, dx = \tanh (f(x)) + c$$

4.
$$\int \operatorname{csch}^{2} x \, dx = -\coth x + c$$

$$\int \operatorname{csch}^{2} (f(x)) f'(x) \, dx = -\coth (f(x)) + c$$

5.
$$\int \operatorname{sech} x \tanh x \, dx = -\operatorname{sech} x + c$$
$$\int \operatorname{sech} (f(x)) \tanh (f(x)) f'(x) \, dx = -\operatorname{sech} (f(x)) + c$$

6.
$$\int \operatorname{csch} x \operatorname{coth} x \, dx = -\operatorname{csch} x + c$$

$$\int \operatorname{csch} (f(x)) \operatorname{coth} (f(x)) f'(x) \, dx = -\operatorname{csch} (f(x)) + c$$

7.
$$\int \tanh x \, dx = \ln|\cosh x| + c$$

$$\int \tanh(f(x)) f'(x) \, dx = \ln|\cosh(f(x))| + c$$

8.
$$\int \coth x \, dx = \ln|\sinh x| + c$$

$$\int \coth(f(x)) f'(x) dx = \ln|\sinh(f(x))| + c$$

Examples:

1.
$$\int x^2 \cosh x^3 dx = \frac{1}{3} \int \cosh x^3 (3x^2) dx = \frac{1}{3} \sinh x^3 + c.$$

2.
$$\int \frac{\operatorname{csch}\left(\frac{1}{x}\right)\operatorname{coth}\left(\frac{1}{x}\right)}{x^2} dx = \int -\operatorname{csch}\left(\frac{1}{x}\right)\operatorname{coth}\left(\frac{1}{x}\right)\left(\frac{-1}{x^2}\right) dx$$
$$= \operatorname{csch}\left(\frac{1}{x}\right) + c.$$

3.
$$\int (e^x - e^{-x}) \operatorname{sech}^2(e^x + e^{-x}) dx = \tanh(e^x + e^{-x}) + c$$
.

4.
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx = \ln|e^x + e^{-x}| + c.$$

5.
$$\int \frac{\sinh x}{1 + \sinh^2 x} dx = \int \frac{\sinh x}{\cosh^2 x} dx = \int \frac{1}{\cosh x} \frac{\sinh x}{\cosh x} dx$$
$$= \int \operatorname{sech} x \tanh x dx = -\operatorname{sech} x + c.$$

6.
$$\int \frac{\sinh x}{1 + \cosh x} dx = \ln(1 + \cosh x) + c.$$

7.
$$\int \frac{\sinh x}{1 + \cosh^2 x} \, dx = \int \frac{\sinh x}{(1)^2 + (\cosh x)^2} \, dx = \tan^{-1}(\cosh x) + c \; .$$

8.
$$\int \frac{1}{\operatorname{sech} x \sqrt{4 - \sinh^2 x}} \, dx = \int \frac{\cosh x}{\sqrt{(2)^2 - (\sinh x)^2}} \, dx = \sin^{-1} \left(\frac{\sinh x}{2} \right) + c$$

Exercises: Solve the following:

1.
$$\int \cosh 4x \, dx$$

$$2. \int \frac{\sinh\sqrt{x}}{\sqrt{x}} \, dx$$

THE INVERSE HYPERBOLIC FUNCTIONS

Definitions:

- 1. The inverse hyperbolic sine function is denoted by \sinh^{-1} and it is defined as $y = \sinh^{-1} x \Leftrightarrow x = \sinh y$, where $x \in \mathbb{R}$ and $y \in \mathbb{R}$.
- 2. The inverse hyperbolic cosine function is denoted by \cosh^{-1} and it is defined as $y = \cosh^{-1} x \Leftrightarrow x = \cosh y$, where $x \in [1, \infty)$ and $y \in [0, \infty)$.
- 3. The inverse hyperbolic tangent function is denoted by \tanh^{-1} and it is defined as $y = \tanh^{-1} x \Leftrightarrow x = \tanh y$, where $x \in [-1,1]$ and $y \in \mathbb{R}$.
- 4. The inverse hyperbolic cotangent function is denoted by \coth^{-1} and it is defined as $y = \coth^{-1} x \Leftrightarrow x = \coth y$, where |x| > 1 and $y \in \mathbb{R}$.
- 5. The inverse hyperbolic secant function is denoted by $sech^{-1}$ and it is defined as $y = sech^{-1}x \Leftrightarrow x = sechy$, where $x \in [0,1]$ and $y \in [0,\infty)$.
- 6. The inverse hyperbolic cosecant function is denoted by $csch^{-1}$ and it is defined as $y = csch^{-1}x \Leftrightarrow x = cschy$, where $x \in \mathbb{R} \{0\}$ and $y \in \mathbb{R} \{0\}$

Derivatives of the inverse hyperbolic functions:

1.
$$\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{1+x^2}}$$
.

$$\frac{d}{dx}\sinh^{-1}(f(x)) = \frac{f'(x)}{\sqrt{1 + (f(x))^2}}.$$

2.
$$\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}}$$
, where $x > 1$.

$$\frac{d}{dx}\cosh^{-1}(f(x)) = \frac{f'(x)}{\sqrt{(f(x))^2 - 1}} \text{ , where } f(x) > 1.$$

3.
$$\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2}$$
, where $|x| < 1$.

$$\frac{d}{dx} \tanh^{-1}(f(x)) = \frac{f'(x)}{1 - (f(x))^2}$$
, where $|f(x)| < 1$.

4.
$$\frac{d}{dx} \coth^{-1} x = \frac{1}{1 - x^2}$$
, where $|x| > 1$.

$$\frac{d}{dx} \coth^{-1}(f(x)) = \frac{f'(x)}{1 - (f(x))^2}$$
, where $|f(x)| > 1$.

5.
$$\frac{d}{dx} \operatorname{sech}^{-1} x = \frac{-1}{x\sqrt{1-x^2}}$$
, where $0 < x < 1$.

$$\frac{d}{dx} sech^{-1}(f(x)) = \frac{-f'(x)}{f(x)\sqrt{1 - (f(x))^2}} \text{ , where } 0 < f(x) < 1.$$

6.
$$\frac{d}{dx} csch^{-1}x = \frac{-1}{|x|\sqrt{1+x^2}}$$
, where $x \neq 0$.

$$\frac{d}{dx} csch^{-1}(f(x)) = \frac{-f'(x)}{|f(x)|\sqrt{1+(f(x))^2}}$$
, where $f(x) \neq 0$.

Examples:

1. Find f'(x) if $f(x) = \tanh^{-1} 3x$?

$$f'(x) = \frac{3}{1 - (3x)^2} = \frac{3}{1 - 9x^2} .$$

2. Find f'(x) if $f(x) = \sinh^{-1} \sqrt{x}$?

$$f'(x) = \frac{\frac{1}{2\sqrt{x}}}{\sqrt{1 + (\sqrt{x})^2}} = \frac{1}{2\sqrt{x}\sqrt{1 + x}}$$
.

3. Find f'(x) if $f(x) = sech^{-1}(\cos 2x)$?

$$f'(x) = \frac{-(-2\sin 2x)}{\cos 2x\sqrt{1 - (\cos 2x)^2}} = \frac{2\sin 2x}{\cos 2x\sqrt{1 - \cos^2 2x}}.$$

Integration:

1.
$$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \sinh^{-1} \left(\frac{x}{a}\right) + c$$

$$\int \frac{f'(x)}{\sqrt{a^2 + [f(x)]^2}} dx = \sinh^{-1} \left(\frac{f(x)}{a}\right) + c$$

2.
$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \cosh^{-1} \left(\frac{x}{a}\right) + c$$
, $(x > a)$

$$\int \frac{f'(x)}{\sqrt{|f(x)|^2 - a^2}} dx = \cosh^{-1} \left(\frac{f(x)}{a} \right) + c , \quad (f(x) > a)$$

3.
$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{a} \tanh^{-1} \left(\frac{x}{a}\right) + c$$
, $(|x| < a)$

$$\int \frac{f'(x)}{a^2 - [f(x)]^2} dx = \frac{1}{a} \tanh^{-1} \left(\frac{f(x)}{a} \right) + c , (|f(x)| < a))$$

4.
$$\int \frac{1}{x\sqrt{a^2 - x^2}} dx = -\frac{1}{a} \operatorname{sech}^{-1} \left(\frac{x}{a}\right) + c$$
, $(0 < x < a)$

$$\int \frac{f'(x)}{f(x)\sqrt{a^2 - [f(x)]^2}} dx = -\frac{1}{a} \operatorname{sech}^{-1} \left(\frac{f(x)}{a} \right) + c , \quad (0 < f(x) < a))$$

5.
$$\int \frac{1}{x\sqrt{x^2+a^2}} dx = -\frac{1}{a} \operatorname{csch}^{-1}\left(\frac{x}{a}\right) + c$$
, $(x \neq 0)$

$$\int \frac{f'(x)}{f(x)\sqrt{[f(x)]^2 + a^2}} dx = -\frac{1}{a} \operatorname{csch}^{-1} \left(\frac{f(x)}{a} \right) + c , \ (f(x) \neq 0)$$

Examples:

1.
$$\int \frac{e^x}{1 - e^{2x}} dx = \int \frac{e^x}{(1)^2 - (e^x)^2} dx = \tanh^{-1}(e^x) + c.$$

2.
$$\int \frac{e^x}{\sqrt{4e^{2x} + 9}} dx = \frac{1}{2} \int \frac{2e^x}{\sqrt{(2e^x)^2 + (3)^2}} dx = \frac{1}{2} \sinh^{-1} \left(\frac{2e^x}{3}\right) + c.$$

3.
$$\int \frac{1}{\sqrt{x}\sqrt{4+x}} dx = 2 \int \frac{\frac{1}{2\sqrt{x}}}{\sqrt{(2)^2 + (\sqrt{x})^2}} dx = 2 \sinh^{-1} \left(\frac{\sqrt{x}}{2}\right) + c.$$

4.
$$\int \frac{1}{\sqrt{16 - e^{2x}}} dx = \int \frac{e^x}{e^x \sqrt{(4)^2 - (e^x)^2}} dx = -\frac{1}{4} sech^{-1} \left(\frac{e^x}{4}\right) + c.$$

5.
$$\int \frac{1}{\sqrt{1+e^{2x}}} dx = \int \frac{e^x}{e^x \sqrt{(1)^2 + (e^x)^2}} dx = -csch^{-1}(e^x) + c.$$

6.
$$\int \frac{1}{\sqrt{x^2 + 2x - 8}} dx = \int \frac{1}{\sqrt{(x^2 + 2x + 1) - 9}} dx = \int \frac{1}{\sqrt{(x + 1)^2 - (3)^2}} dx$$
$$= \cosh^{-1} \left(\frac{x + 1}{3}\right) + c.$$

7.
$$\int \frac{1}{(x-1)\sqrt{-x^2+2x+3}} dx = \int \frac{1}{(x-1)\sqrt{-(x^2-2x+1)+4}} dx$$
$$= \int \frac{1}{(x-1)\sqrt{(2)^2-(x-1)^2}} dx = -\frac{1}{2} \operatorname{sech}^{-1} \left(\frac{x-1}{2}\right) + c.$$

INDETERMINATE FORMS

Theorem (L'Hôpital's Rule):

Suppose that f and g are differentiable on the interval (a,b), except possibly at a point $c \in (a,b)$ and that $g'(x) \neq 0$ on (a,b), except possibly at c.

Suppose further that $\lim_{x\to c} \frac{f(x)}{g(x)}$ has the indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ and that

$$\lim_{x \to c} \frac{f'(x)}{g'(x)} = L \text{ (or } \pm \infty \text{). Then }, \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Remark:

The conclusion of the theorem also holds if $\lim_{x\to c} \frac{f(x)}{g(x)}$ is replaced with $\lim_{x\to c^+} \frac{f(x)}{g(x)}$,

 $\lim_{x\to c^-} \frac{f(x)}{g(x)}$, $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ or $\lim_{x\to -\infty} \frac{f(x)}{g(x)}$. (In each case, we must make appropriate adjustment of the hypothesis.)

Types of indeterminate forms:

1.
$$\frac{0}{0}$$
 or $\frac{\infty}{\infty}$.

2.
$$\infty - \infty$$
 or $-\infty + \infty$.

3.
$$0 \infty$$
 or $0 (-\infty)$.

4.
$$0^0 \cdot 1^{\infty} \cdot 1^{-\infty} \text{ or } \infty^0$$
.

Examples:

1.
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\ln x}$$
 $\left(\frac{0}{0}\right)$

Apply L'Hôpital's rule

$$\lim_{x\to 1} \frac{\sqrt{x}-1}{\ln x} = \lim_{x\to 1} \frac{\left(\frac{1}{2\sqrt{x}}\right)}{\left(\frac{1}{x}\right)} = \lim_{x\to 1} \frac{x}{2\sqrt{x}} = \frac{1}{2} \ .$$

$$2. \lim_{x \to 0} \frac{\sin x \sqrt{1 - \sin x}}{x} \qquad \left(\frac{0}{0}\right)$$

$$\lim_{x \to 0} \frac{\sin x \sqrt{1 - \sin x}}{x} = \lim_{x \to 0} \frac{\sin x}{x} \sqrt{1 - \sin x} = 1\sqrt{1 - 0} = 1 \ .$$

3.
$$\lim_{x \to 0} \frac{\int_0^x \sqrt{1 + \sin t} \, dt}{x} \qquad \left(\frac{0}{0}\right)$$

$$\lim_{x \to 0} \frac{\int_0^x \sqrt{1 + \sin t} \ dt}{x} = \lim_{x \to 0} \frac{\sqrt{1 + \sin x}}{1} = \frac{1 + 0}{1} = 1 \ .$$

4.
$$\lim_{x \to 1} \frac{\tan^{-1} x - \frac{\pi}{4}}{x - 1}$$
 $\left(\frac{0}{0}\right)$

Apply L'Hôpital's rule

$$\lim_{x \to 1} \frac{\tan^{-1} x - \frac{\pi}{4}}{x - 1} = \lim_{x \to 1} \frac{\left(\frac{1}{1 + x^2}\right)}{1} = \lim_{x \to 1} \frac{1}{1 + x^2} = \frac{1}{1 + 1} = \frac{1}{2}.$$

5.
$$\lim_{x \to 0} \frac{\tan x - x}{x^3} \qquad \left(\frac{0}{0}\right)$$

Apply L'Hôpital's rule

$$\lim_{x \to 0} \frac{\tan x - x}{x^3} = \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0} \frac{\tan^2 x}{3x^2}$$
$$= \frac{1}{3} \lim_{x \to 0} \left(\frac{\tan x}{x}\right)^2 = \frac{1}{3} (1)^2 = \frac{1}{3}.$$

6.
$$\lim_{x \to \infty} \frac{\ln x}{x}$$
 $\left(\frac{\infty}{\infty}\right)$

Apply L'Hôpital's rule

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\left(\frac{1}{x}\right)}{1} = \lim_{x \to \infty} \frac{1}{x} = 0.$$

7.
$$\lim_{x \to \infty} \frac{x + e^x}{1 + e^{3x}}$$
 $\left(\frac{\infty}{\infty}\right)$

Apply L'Hôpital's rule

$$\lim_{x \to \infty} \frac{x + e^x}{1 + e^{3x}} = \lim_{x \to \infty} \frac{1 + e^x}{3e^{3x}} \qquad \left(\frac{\infty}{\infty}\right)$$

Apply L'Hôpital's rule

$$\lim_{x \to \infty} \frac{1 + e^x}{3e^{3x}} = \lim_{x \to \infty} \frac{e^x}{9e^{3x}} = \lim_{x \to \infty} \frac{1}{9e^{2x}} = 0 \ .$$

8.
$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{2 - \sec x}{3 \tan x} \qquad \left(\frac{-\infty}{\infty}\right)$$

$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{2 - \sec x}{3 \tan x} = \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{- \sec x \tan x}{3 \sec^{2} x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{- \tan x}{3 \sec x} = \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{- \sin x}{3} = -\frac{1}{3}.$$

9.
$$\lim_{x \to 1^+} \left(\frac{3}{\ln x} - \frac{2}{x - 1} \right) \qquad (\infty - \infty)$$

$$\lim_{x \to 1^+} \left(\frac{3}{\ln x} - \frac{2}{x - 1} \right) = \lim_{x \to 1^+} \frac{3(x - 1) - 2\ln x}{(x - 1)\ln x} \qquad \left(\frac{0}{0} \right)$$

Apply L'Hôpital's rule

$$\lim_{x\to 1^+}\frac{3(x-1)-2\ln x}{(x-1)\ln x}=\lim_{x\to 1^+}\frac{3-\frac{2}{x}}{\ln x+(x-1)\frac{1}{x}}=\lim_{x\to 1^+}\frac{3-\frac{2}{x}}{\ln x+1-\frac{1}{x}}=\infty$$

Note that $3 - \frac{2}{x} \to 1$ and $\ln x + 1 - \frac{1}{x} \to 0^+$ as $x \to 1^+$

10.
$$\lim_{x \to \infty} (x^2 - 1)e^{-x^2}$$
 (0∞)

$$\lim_{x \to \infty} (x^2 - 1)e^{-x^2} = \lim_{x \to \infty} \frac{x^2 - 1}{e^{x^2}} \qquad \left(\frac{\infty}{\infty}\right)$$

Apply L'Hôpital's rule

$$\lim_{x \to \infty} \frac{x^2 - 1}{e^{x^2}} = \lim_{x \to \infty} \frac{2x}{2x \ e^{x^2}} = \lim_{x \to \infty} \frac{1}{e^{x^2}} = 0$$

11.
$$\lim_{x \to 0^+} x^x$$
 $\left(0^0\right)$

Put $y = x^x \Leftrightarrow \ln y = \ln x^x = x \ln x$

$$\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} x \ln x \qquad (0 \ (-\infty))$$

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{x^{-1}} \qquad \left(\frac{-\infty}{\infty}\right)$$

Apply L'Hôpital's rule

$$\lim_{x \to 0^+} \frac{\ln x}{x^{-1}} = \lim_{x \to 0^+} \frac{\left(\frac{1}{x}\right)}{-x^{-2}} = \lim_{x \to 0^+} (-x) = 0$$

Therefore, $\lim_{x\to 0^+} x^x = \lim_{x\to 0^+} y = e^0 = 1$.

12.
$$\lim_{x \to \infty} (1 + e^{2x})^{\frac{1}{x}}$$
 (∞^0)

Put
$$y = (1 + e^{2x})^{\frac{1}{x}} \Leftrightarrow \ln y = \frac{1}{x} \ln (1 + e^{2x}) = \frac{\ln (1 + e^{2x})}{x}$$

$$\lim_{x\to\infty} \ln y = \lim_{x\to\infty} \frac{\ln\left(1+e^{2x}\right)}{x} \qquad \left(\frac{\infty}{\infty}\right)$$

$$\lim_{x \to \infty} \frac{\ln\left(1 + e^{2x}\right)}{x} = \lim_{x \to \infty} \frac{\left(\frac{2e^{2x}}{1 + e^{2x}}\right)}{1} = \lim_{x \to \infty} \frac{2e^{2x}}{1 + e^{2x}} \qquad \left(\frac{\infty}{\infty}\right)$$

Apply L'Hôpital's rule

$$\lim_{x \to \infty} \frac{4e^{2x}}{2e^{2x}} = 2$$

Therefore, $\lim_{x\to\infty} \left(1+e^{2x}\right)^{\frac{1}{x}} = \lim_{x\to\infty} y = e^2$.

13.
$$\lim_{x \to \infty} \left(1 + \frac{\ln 3}{x} \right)^x \qquad (1^{\infty})$$

Put
$$y = \left(1 + \frac{\ln 3}{x}\right)^x \Leftrightarrow \ln y = x \ln \left(1 + \frac{\ln 3}{x}\right)$$

$$\lim_{x\to\infty} \ln y = \lim_{x\to\infty} x \ln \left(1 + \frac{\ln 3}{x}\right) \qquad (0\,\,\infty)$$

$$\lim_{x \to \infty} x \ln \left(1 + \frac{\ln 3}{x} \right) = \lim_{x \to \infty} \frac{\ln \left(1 + \frac{\ln 3}{x} \right)}{x^{-1}} \qquad \left(\frac{0}{0} \right)$$

Apply L'Hôpital's rule

$$\lim_{x \to \infty} \frac{\ln\left(1 + \frac{\ln 3}{x}\right)}{x^{-1}} = \lim_{x \to \infty} \frac{\left(\frac{-\ln 3x^{-2}}{1 + \frac{\ln 3}{x}}\right)}{-x^{-2}}$$
$$= \lim_{x \to \infty} \frac{\ln 3}{\left(1 + \frac{\ln 3}{x}\right)} = \frac{\ln 3}{1 + 0} = \ln 3$$

Therefore ,
$$\lim_{x\to\infty} \left(1+\frac{\ln 3}{x}\right)^x = \lim_{x\to\infty} y = e^{\ln 3} = 3$$

NOTE:
$$\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^x = e^a$$
 where $a\neq 0$

14.
$$\lim_{x \to 0^+} (2x+1)^{\cot x}$$
 (1^{∞})

Put
$$y = (2x+1)^{\cot x} \Leftrightarrow \ln y = \cot x \ln(2x+1) = \frac{\ln(2x+1)}{\tan x}$$

$$\lim_{x\to 0^+} \ln y = \lim_{x\to 0^+} \frac{\ln(2x+1)}{\tan x} \qquad \left(\frac{0}{0}\right)$$

$$\lim_{x \to 0^+} \frac{\ln(2x+1)}{\tan x} = \lim_{x \to 0^+} \frac{\left(\frac{2}{2x+1}\right)}{\sec^2 x} = \lim_{x \to 0^+} \frac{2}{(2x+1)\sec^2 x} = \frac{2}{2(1)^2} = 2$$

Therefore,
$$\lim_{x\to 0^+} \left(2x+1\right)^{\cot x} = \lim_{x\to 0^+} y = e^2$$
 .

 $\mathbf{Exercises}$: Evaluate the following limits

1.
$$\lim_{x \to \infty} \frac{4e^x}{x^2}$$
.

$$2. \lim_{x \to \infty} \frac{e^{2x} - 1}{x} .$$

3.
$$\lim_{x \to \infty} e^{-x} \sqrt{x}$$
.

4.
$$\lim_{x \to \infty} (1+4x)^{\frac{1}{x^2}}$$
.

$$5. \lim_{x \to 0} \frac{x - \tan x}{1 - \cos x} .$$

6.
$$\lim_{x \to 0^+} (\sec x + \tan x)^{\csc x} .$$

INTEGRATION BY PARTS

It is used to solve integration of a product of two functions using the formula

$$\int u \ dv = u \ v - \int v \ du \ .$$

Examples:

1.
$$\int xe^x dx$$

$$u = x \qquad dv = e^x dx$$

$$du = dx \qquad v = e^x$$

$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + c = (x - 1)e^x + c.$$

2.
$$\int x \sec^2 x \, dx$$

$$u = x \qquad dv = \sec^2 x \, dx$$

$$du = dx \qquad v = \tan x$$

$$\int x \sec^2 x \, dx = x \tan x - \int \tan x \, dx = x \tan x - \ln|\sec x| + c .$$

3.
$$\int_{0}^{\pi} x \sin x \, dx$$

$$u = x \qquad dv = \sin x \, dx$$

$$du = dx \qquad v = -\cos x$$

$$\int_{0}^{\pi} x \sin x \, dx = [-x \cos x]_{0}^{\pi} + \int_{0}^{\pi} \cos x \, dx = [-x \cos x]_{0}^{\pi} + [\sin x]_{0}^{\pi}.$$

$$= [(-\pi \cos \pi) - (-(0) \cos 0)] + [\sin \pi - \sin 0] = [-\pi(-1) - 0] + [0 - 0] = \pi$$

4.
$$\int x^{2} \sin x \, dx$$

$$u = x^{2} \qquad dv = \sin x \, dx$$

$$du = 2x \, dx \qquad v = -\cos x$$

$$\int x^{2} \sin x \, dx = -x^{2} \cos x + \int 2x \cos x \, dx$$

Now to solve
$$\int 2x \cos x \, dx$$
$$u = 2x \qquad dv = \cos x \, dx$$
$$du = 2 \, dx \qquad v = \sin x$$

Therefore,
$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x - 2 \int \sin x \, dx$$
$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x + c$$

5.
$$\int e^x \cos x \, dx$$

$$u = \cos x \qquad dv = e^x \, dx$$

$$du = -\sin x \, dx \qquad v = e^x$$

$$\int e^x \cos x \, dx = e^x \cos x + \int e^x \sin x \, dx$$
Now to solve
$$\int e^x \sin x \, dx$$

$$u = \sin x \qquad dv = e^x \, dx$$

$$du = \cos x \, dx \qquad v = e^x$$
Therefore
$$\int e^x \cos x \, dx = e^x \cos x + e^x \sin x - \int e^x \cos x \, dx$$

$$2 \int e^x \cos x \, dx = e^x \cos x + e^x \sin x$$

$$\int e^x \cos x \, dx = \frac{1}{2} \left[e^x \cos x + e^x \sin x \right] + c .$$
Another solution of
$$\int e^x \cos x \, dx$$

$$u = e^x \qquad dv = \cos x \, dx$$

$$du = e^x \, dx \qquad v = \sin x$$

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx$$
Now to solve
$$\int e^x \sin x \, dx$$

$$u = e^x \qquad dv = \sin x \, dx$$

$$du = e^x \quad dv = \sin x \, dx$$

$$du = e^x \quad dv = \sin x \, dx$$

$$du = e^x \quad dv = \sin x \, dx$$

$$du = e^x \quad dv = \sin x \, dx$$

$$du = e^x \quad dv = \sin x + e^x \cos x - \int e^x \cos x \, dx$$

$$2 \int e^x \cos x \, dx = e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$$

$$2 \int e^x \cos x \, dx = e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$$

$$2 \int e^x \cos x \, dx = e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$$

$$= \frac{1}{2} \left[e^x \sin x + e^x \cos x \right] + c .$$
6.
$$\int \ln |x| \, dx$$

$$u = \ln |x| \quad dv = dx$$

$$du = \frac{1}{x} \, dx \quad v = x$$

$$\int \ln |x| \, dx = x \ln |x| - \int x \, \frac{1}{x} \, dx = x \ln |x| - \int dx = x \ln |x| - x + c$$

7.
$$\int \tan^{-1} x \, dx$$

$$u = \tan^{-1} x \qquad dv = dx$$

$$du = \frac{1}{1+x^2} \, dx \qquad v = x$$

$$\int \tan^{-1} x \, dx = x \tan^{-1} x - \int x \, \frac{1}{1+x^2} \, dx$$

$$\int \tan^{-1} x \, dx = x \tan^{-1} x - \frac{1}{2} \int \frac{2x}{1+x^2} \, dx = x \tan^{-1} x - \frac{1}{2} \ln(1+x^2) + c$$
8.
$$\int \sec^3 x \, dx = \int \sec x \sec^2 x \, dx$$

$$u = \sec x \qquad dv = \sec^2 x \, dx$$

$$du = \sec x \tan x \, dx \qquad v = \tan x$$

$$\int \sec^3 x \, dx = \sec x \tan x - \int \sec x \tan^2 x \, dx$$

$$\int \sec^3 x \, dx = \sec x \tan x - \int \sec x \left(\sec^2 x - 1\right) \, dx$$

$$\int \sec^3 x \, dx = \sec x \tan x - \int \sec^3 x \, dx + \int \sec x \, dx$$

$$2 \int \sec^3 x \, dx = \sec x \tan x + \ln|\sec x + \tan x|$$

$$\int \sec^3 x \, dx = \frac{1}{2} \left[\sec x \tan x + \ln|\sec x + \tan x|\right] + c$$
9.
$$\int \ln(1+x^2) \, dx$$

$$u = \ln(1+x^2) \, dx$$

$$u = \ln(1+x^2) \, dx = x \ln(1+x^2) - \int \frac{2x^2}{1+x^2} \, dx$$

$$\int \ln(1+x^2) \, dx = x \ln(1+x^2) - \int \frac{(2x^2+2)-2}{1+x^2} \, dx$$

$$\int \ln(1+x^2) \, dx = x \ln(1+x^2) - \int \frac{2(x^2+1)}{1+x^2} \, dx + 2 \int \frac{1}{1+x^2} \, dx$$

$$\int \ln(1+x^2) \, dx = x \ln(1+x^2) - 2x + 2 \tan^{-1} x + c$$
10.
$$\int \frac{x^3}{\sqrt{x^2+1}} \, dx = \int x^2 \, \frac{x}{\sqrt{x^2+1}} \, dx$$

$$u = x^2 \qquad dv = \frac{x}{\sqrt{x^2+1}} \, dx$$

$$du = 2x \, dx \qquad v = \sqrt{x^2+1} \, dx$$

$$du = 2x \, dx \qquad v = \sqrt{x^2+1} \, dx$$

$$\int \frac{x^3}{\sqrt{x^2 + 1}} dx = x^2 \sqrt{x^2 + 1} - \int 2x \sqrt{x^2 + 1} dx$$

$$\int \frac{x^3}{\sqrt{x^2 + 1}} dx = x^2 \sqrt{x^2 + 1} - \int (x^2 + 1)^{\frac{1}{2}} 2x dx$$

$$\int \frac{x^3}{\sqrt{x^2 + 1}} dx = x^2 \sqrt{x^2 + 1} - \frac{(x^2 + 1)^{\frac{3}{2}}}{\frac{3}{2}} + c$$
11.
$$\int x^3 e^{x^2} dx = \int x^2 (x e^{x^2}) dx$$

$$u = x^2 \qquad dv = x e^{x^2} dx$$

$$du = 2x dx \qquad v = \frac{1}{2} e^{x^2}$$

$$\int x^3 e^{x^2} dx = \frac{1}{2} x^2 e^{x^2} - \frac{1}{2} \int 2x e^{x^2} dx$$

$$\int x^3 e^{x^2} dx = \frac{1}{2} x^2 e^{x^2} - \frac{1}{2} e^{x^2} + c$$

Exercises: Solve the following integrals

- 1. $\int x \cos 2x \, dx$.
- 2. $\int x \cosh x \, dx .$
- $3. \int \frac{x}{e^x} dx .$
- 4. $\int e^x \sin x \, dx .$
- 5. $\int \frac{1}{x^2} \ln |x| dx$.
- $6. \int \sin^{-1} x \, dx \ .$

Notes:

1.
$$\int xe^x dx = (x-1)e^x + c.$$

$$\int x^2 e^x dx = (x^2 - 2x + 2)e^x + c.$$

$$\int x^3 e^x dx = (x^3 - 3x^2 + 6x - 6)e^x + c.$$
2.
$$\int x \cos x dx = x \sin x + \cos x + c$$

$$\int x^2 \cos x dx = (x^2 - 2) \sin x + 2x \cos x + c$$

$$\int x^3 \cos x dx = (x^3 - 6x) \sin x + (3x^2 - 6) \cos x + c$$

$$\int x^4 \cos x dx = (x^4 - 12x^2 + 24) \sin x + (4x^3 - 24x) \cos x + c$$
3.
$$\int x \sin x dx = -x \cos x + \sin x + c$$

$$\int x^2 \sin x dx = (-x^2 + 2) \cos x + 2x \sin x + c$$

$$\int x^3 \sin x dx = (-x^3 + 6x) \cos x + (3x^2 - 6) \sin x + c$$

$$\int x^4 \sin x dx = (-x^4 + 12x^2 - 24) \cos x + (4x^3 - 24x) \sin x + c$$

INTEGRALS INVOLVING TRIGONOMETRIC FUNCTIONS

FIRST: Integrals of the forms

 $\int \sin ax \; \cos bx \, dx \;\;, \;\; \int \sin ax \; \sin bx \, dx \quad, \;\; \int \cos ax \; \cos bx \, dx$ Where $a,b \in \mathbb{Z}$.

- 1. The integral $\int \sin ax \cos bx \, dx$ can be solved using the formula $\sin ax \cos bx = \frac{1}{2} \left[\sin(ax + bx) + \sin(ax bx) \right]$
- 2. The integral $\int \sin ax \sin bx \, dx$ can be solved using the formula $\sin ax \sin bx = \frac{1}{2} \left[\cos(ax bx) \cos(ax + bx) \right]$
- 3. The integral $\int \cos ax \cos bx \, dx$ can be solved using the formula $\cos ax \cos bx = \frac{1}{2} \left[\cos(ax + bx) + \cos(ax bx) \right]$

Examples:

1.
$$\int \sin 3x \, \cos 2x \, dx = \int \frac{1}{2} \left[\sin(3x + 2x) + \sin(3x - 2x) \right] \, dx$$
$$= \int \frac{1}{2} \left[\sin 5x + \sin x \right] \, dx = \frac{1}{2} \int \sin 5x \, dx + \frac{1}{2} \int \sin x \, dx$$
$$= \frac{1}{2} \frac{1}{5} (-\cos 5x) + \frac{1}{2} (-\cos x) + c = -\frac{1}{10} \cos 5x - \frac{1}{2} \cos x + c$$

2.
$$\int \sin x \, \sin 3x \, dx = \int \frac{1}{2} \left[\cos(3x - x) - \cos(3x + x) \right] \, dx$$
$$= \int \frac{1}{2} \left[\cos 2x - \cos 4x \right] \, dx = \frac{1}{2} \int \cos 2x \, dx - \frac{1}{2} \int \cos 4x \, dx$$
$$= \frac{1}{2} \frac{1}{2} \sin 2x - \frac{1}{2} \frac{1}{4} \sin 4x + c = \frac{1}{4} \sin 2x - \frac{1}{8} \sin 4x + c$$

3.
$$\int \cos 5x \, \cos 2x \, dx = \int \frac{1}{2} \left[\cos(5x + 2x) + \cos(5x - 2x) \right] \, dx$$
$$= \int \frac{1}{2} \left[\cos 7x + \cos 3x \right] \, dx = \frac{1}{2} \int \cos 7x \, dx + \frac{1}{2} \int \cos 3x \, dx$$
$$= \frac{1}{2} \frac{1}{7} \sin 7x + \frac{1}{2} \frac{1}{3} \sin 3x + c = \frac{1}{14} \sin 7x + \frac{1}{6} \sin 3x + c$$

SECOND : Integrals of the forms

$$\int \sin^n x \, \cos^m x \, dx \, , \quad \int \sinh^n x \, \cosh^m x \, dx \, , \quad \text{where } n, m \in \mathbb{N}$$

The above two integrals can be solved by substitution if n or m is odd.

1. If n is odd :

The substitution $u = \cos x$ can be used to solve $\int \sin^n x \cos^m x \, dx$.

The substitution $u = \cosh x$ can be used to solve $\int \sinh^n x \cosh^m x \, dx$.

2. If m is odd:

The substitution $u = \sin x$ can be used to solve $\int \sin^n x \cos^m x \, dx$.

The substitution $u = \sinh x$ can be used to solve $\int \sinh^n x \cosh^m x \, dx$.

Examples:

1.
$$\int \sin^5 x \, \cos^4 x \, dx = \int \sin^4 x \, \cos^4 x \, \sin x \, dx$$

$$= \int (\sin^2 x)^2 \cos^4 x \sin x \, dx = \int (1 - \cos^2 x)^2 \cos^4 x \sin x \, dx$$

Put $u = \cos x \Rightarrow -du = \sin x \, dx$

$$\int \sin^5 x \, \cos^4 x \, dx = -\int (1 - u^2)^2 u^4 \, du = -\int (1 - 2u^2 + u^4) u^4 \, du$$

$$= -\int \left(u^4 - 2u^6 + u^8\right) du = -\left[\frac{u^5}{5} - \frac{2u^7}{7} + \frac{u^9}{9}\right] + c$$

$$= -\frac{\cos^5 x}{5} + \frac{2\cos^7 x}{7} - \frac{\cos^9 x}{9} + c$$

2.
$$\int \sqrt{\sin x} \cos^3 x \, dx = \int \sqrt{\sin x} \cos^2 x \cos x \, dx$$

$$= \int (\sin x)^{\frac{1}{2}} \left(1 - \sin^2 x\right) \cos x \, dx$$

Put $u = \sin x \Rightarrow du = \cos x \ dx$

$$\int \sqrt{\sin x} \cos^3 x \, dx = \int u^{\frac{1}{2}} (1 - u^2) \, du = \int \left(u^{\frac{1}{2}} - u^{\frac{5}{2}} \right) \, du$$

$$=\frac{2u^{\frac{3}{2}}}{3}-\frac{2u^{\frac{7}{2}}}{7}+c=\frac{2\left(\sin x\right)^{\frac{3}{2}}}{3}-\frac{2\left(\sin x\right)^{\frac{7}{2}}}{7}+c$$

3.
$$\int \frac{\sin^3 x}{\cos^2 x} dx = \int \sin^2 x \cos^{-2} x \sin x dx = \int (1 - \cos^2 x) \cos^{-2} x \sin x dx$$

Put $u = \cos x \Rightarrow -du = \sin x \, dx$

$$\int \frac{\sin^3 x}{\cos^2 x} dx = -\int (1 - u^2) u^{-2} du = -\int (u^{-2} - 1) du$$
$$= -\frac{u^{-1}}{-1} + u + c = \frac{1}{u} + u + c = \sec x + \cos x + c$$

4.
$$\int \sinh^3 x \cosh^2 x \, dx = \int \sinh^2 x \cosh^2 x \sinh x \, dx$$
$$= \int (\cosh^2 x - 1) \cosh^2 x \sinh x \, dx$$

Put $u = \cosh x \Rightarrow du = \sinh x \ dx$

$$\int \sinh^3 x \cosh^2 x \, dx = \int (u^2 - 1) u^2 \, du = \int (u^4 - u^2) \, du$$
$$= \frac{u^5}{5} - \frac{u^3}{3} + c = \frac{\cosh^5 x}{5} - \frac{\cosh^3 x}{3} + c$$

5.
$$\int \sin^7 x \cos^3 x \, dx = \int \sin^7 x \cos^2 x \cos x \, dx$$
$$= \int \sin^7 x \, (1 - \sin^2 x) \, \cos x \, dx$$

Put $u = \sin x \Rightarrow du = \cos x \, dx$

$$\int \sin^7 x \cos^3 x \, dx = \int u^7 (1 - u^2) \, du = \int (u^7 - u^9) \, du$$
$$= \frac{u^8}{8} - \frac{u^{10}}{10} + c = \frac{\sin^8 x}{8} - \frac{\sin^{10} x}{10} + c$$

Special cases:

1.
$$\int \sin^2 x \, dx = \int \frac{1}{2} \left[1 - \cos 2x \right] \, dx = \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right] + c$$

2.
$$\int \cos^2 x \, dx = \int \frac{1}{2} \left[1 + \cos 2x \right] \, dx = \frac{1}{2} \left[x + \frac{\sin 2x}{2} \right] + c$$

Exercises: Solve the following integrals

1.
$$\int \sin^3 x \, dx$$

$$2. \int \sin^2 x \cos^5 x \, dx$$

THIRD: Integrals of the forms

$$\int \sec^n x \tan^m x \, dx , \int \csc^n x \cot^m x \, dx ,$$

$$\int \operatorname{sech}^n x \tanh^m x \, dx , \int \operatorname{csch}^n x \coth^m x \, dx$$

The above four integrals can be solved by substitution if n is even or m is odd .

1. If n is even:

The substitution $u = \tan x$ can be used to solve $\int \sec^n x \tan^m x \, dx$.

The substitutions $u=\cot x$, $u=\tanh x$ and $u=\coth x$ can be used to solve the other three integrals respectively.

2. If m is odd:

The substitution $u = \sec x$ can be used to solve $\int \sec^n x \tan^m x \, dx$.

The substitutions $u=\csc x$, $u=\operatorname{sech} x$ and $u=\operatorname{csch} x$ can be used to solve the other theree integrals respictively.

Examples:

$$1. \int \csc^4 x \, \cot^4 x \, dx$$

$$= \int \csc^2 x \, \cot^4 x \, \csc^2 x \, dx = \int (1 + \cot^2 x) \cot^4 x \, \csc^2 x \, dx$$

Put
$$u = \cot x \Rightarrow -du = \csc^2 x \ dx$$

$$\int \csc^4 x \, \cot^4 x \, dx = -\int (1+u^2)u^4 \, du = -\int (u^4 + u^6) \, du$$
$$= -\frac{u^5}{5} - \frac{u^7}{7} + c = -\frac{\cot^5 x}{5} - \frac{\cot^7 x}{7} + c$$

$$2. \int \tan^3 x \sec^3 x \, dx$$

$$= \int \tan^2 x \sec^2 x \sec x \tan x \, dx = \int (\sec^2 x - 1) \sec^2 x \sec x \tan x \, dx$$

Put $u = \sec x \Rightarrow du = \sec x \tan x \ dx$

$$\int \tan^3 x \sec^3 x \, dx = \int (u^2 - 1)u^2 \, du = \int (u^4 - u^2) \, du$$

$$= \frac{u^5}{5} - \frac{u^3}{3} + c = \frac{\sec^5 x}{5} - \frac{\sec^3 x}{3} + c$$

3.
$$\int \tanh^3 x \, \operatorname{sech} x \, dx$$
$$= \int \tanh^2 x \, \operatorname{sech} x \tanh x \, dx = \int (1 - \operatorname{sech}^2 x) \, \operatorname{sech} x \tanh x \, dx$$

Put $u = sechx \Rightarrow -du = sechx \tanh x \, dx$

$$\int \tanh^3 x \operatorname{sech} x \, dx = -\int (1 - u^2) \, du$$
$$= -u + \frac{u^3}{3} + c = -\operatorname{sech} x + \frac{\operatorname{sech}^3 x}{3} + c$$

$$4. \int \frac{\sec^4 x}{\sqrt{\tan x}} \, dx$$

$$\int \sec^2 x \ (\tan x)^{-\frac{1}{2}} \ \sec^2 x \, dx = \int (1 + \tan^2 x) \ (\tan x)^{-\frac{1}{2}} \ \sec^2 x \, dx$$

Put $u = \tan x \Rightarrow du = \sec^2 x \ dx$

$$\int \frac{\sec^4 x}{\sqrt{\tan x}} \, dx = \int (1+u^2)u^{-\frac{1}{2}} \, du = \int \left(u^{-\frac{1}{2}} + u^{\frac{3}{2}}\right) \, du$$
$$= 2u^{\frac{1}{2}} + \frac{2u^{\frac{5}{2}}}{5} + c = 2(\tan x)^{\frac{1}{2}} + \frac{2(\tan x)^{\frac{5}{2}}}{5} + c$$

5.
$$\int \tan^4 x \sec^2 x \, dx = \int (\tan x)^4 \sec^2 x \, dx = \frac{\tan^5 x}{5} + c$$

TRIGONOMETRIC SUBSTITUTIONS

If the integrand contains a term of the form $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$ or $\sqrt{x^2 - a^2}$ where a > 0, then trigonometric substitutions can be used to solve the integral.

- 1. An integral involving $\sqrt{a^2-x^2}$: use the substitution $x=a\sin\theta$ where $-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}$ to solve the integral .
- 2. An integral involving $\sqrt{a^2+x^2}$: use the substitution $x=a\tan\theta$ where $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ to solve the integral .
- 3. An integral involving $\sqrt{x^2-a^2}$: use the substitution $x=a\sec\theta$ where $\theta\in\left[0,\frac{\pi}{2}\right)$ to solve the integral .

Examples:

1. To solve the integral $\int \frac{\sqrt{x^2 - 9}}{x} dx$ we use the substitution: (a) $x = 3 \tan \theta$ (b) $x = 3 \sin \theta$ (c) $x = 3 \sec \theta$ (d) None of these

Answer : We use the substitution $x = 3 \sec \theta$.

2. To solve the integral $\int \sqrt{1+4x^2} dx$ we use the substitution :

(a)
$$2x = \cos \theta$$
 (b) $x = \frac{\tan \theta}{2}$ (c) $2x = \sin \theta$ (d) None of these

Answer:
$$\sqrt{1+4x^2} = \sqrt{(1)^2+(2x)^2}$$

So we use the substitution $2x = \tan \theta \Rightarrow x = \frac{\tan \theta}{2}$

3.
$$\int \frac{1}{x^2 \sqrt{16 - x^2}} \, dx = \int \frac{1}{x^2 \sqrt{(4)^2 - x^2}} \, dx$$

Put
$$x = 4\sin\theta \Rightarrow \sin\theta = \frac{x}{4}$$

$$dx = 4\cos\theta \ d\theta$$

$$\int \frac{1}{x^2 \sqrt{16 - x^2}} dx = \int \frac{4\cos\theta}{(4\sin\theta)^2 \sqrt{16 - (4\sin\theta)^2}} d\theta$$

$$= \int \frac{4\cos\theta}{16\sin^2\theta \sqrt{16 - 16\sin^2\theta}} d\theta = \int \frac{4\cos\theta}{16\sin^2\theta \sqrt{16(1 - \sin^2\theta)}} d\theta$$

$$= \int \frac{4\cos\theta}{16\sin^2\theta} \, 4\cos\theta \, d\theta = \frac{1}{16} \int \frac{1}{\sin^2\theta} \, d\theta = \frac{1}{16} \int \csc^2\theta \, d\theta$$

$$= -\frac{1}{16}\cot\theta + c$$

$$\int \frac{1}{x^2 \sqrt{16 - x^2}} \, dx = -\frac{1}{16} \, \frac{\sqrt{16 - x^2}}{x} + c$$

$$4. \int \frac{\sqrt{x^2 - 4}}{x^2} \, dx$$

Put
$$x = 2 \sec \theta \Rightarrow \sec \theta = \frac{x}{2}$$

 $dx = 2\sec\theta \tan\theta d\theta$

$$\int \frac{\sqrt{x^2 - 4}}{x^2} dx = \int \frac{\sqrt{4 \sec^2 \theta - 4} \ 2 \sec \theta \tan \theta}{4 \sec^2 \theta} d\theta$$

$$= \int \frac{(2 \tan \theta)(2 \sec \theta \tan \theta)}{4 \sec^2 \theta} d\theta = \int \frac{\tan^2 \theta}{\sec \theta} d\theta$$

$$= \int \frac{(\sec^2 \theta - 1)}{\sec \theta} d\theta = \int \frac{\sec^2 \theta}{\sec \theta} d\theta - \int \frac{1}{\sec \theta} d\theta$$

$$= \int \sec \theta d\theta - \int \cos \theta d\theta = \ln|\sec \theta + \tan \theta| - \sin \theta + c$$

$$\int \frac{\sqrt{x^2 - 4}}{x^2} dx = \ln \left| \frac{x}{2} + \frac{\sqrt{x^2 - 4}}{2} \right| - \frac{\sqrt{x^2 - 4}}{x} + c$$

5.
$$\int \frac{1}{(x^2 + 8x + 25)^{\frac{3}{2}}} dx$$
$$= \int \frac{1}{[(x^2 + 8x + 16) + 9]^{\frac{3}{2}}} dx = \int \frac{1}{[(x + 4)^2 + 3^2]^{\frac{3}{2}}} dx$$

Put
$$x + 4 = 3 \tan \theta \Rightarrow \tan \theta = \frac{x + 4}{3}$$

$$dx = 3\sec^{2}\theta \ d\theta$$

$$\int \frac{1}{(x^{2} + 8x + 25)^{\frac{3}{2}}} dx = \int \frac{3\sec^{2}\theta}{(9\tan^{2}\theta + 9)^{\frac{3}{2}}} \ d\theta$$

$$= \int \frac{3\sec^{2}\theta}{(9\sec^{2}\theta)^{\frac{3}{2}}} \ d\theta = \int \frac{3\sec^{2}\theta}{27\sec^{3}\theta} \ d\theta$$

$$= \frac{1}{9} \int \frac{1}{\sec\theta} \ d\theta = \frac{1}{9} \int \cos\theta \ d\theta = \frac{1}{9}\sin\theta + c$$

$$\int \frac{1}{(x^2 + 8x + 25)^{\frac{3}{2}}} dx = \frac{1}{9} \frac{x+4}{\sqrt{(x+4)^2 + 9}} + c = \frac{1}{9} \frac{x+4}{\sqrt{x^2 + 8x + 25}} + c$$
6.
$$\int \frac{1}{(25 - x^2)^{\frac{3}{2}}} dx$$

Put
$$x = 5\sin\theta \Rightarrow \sin\theta = \frac{x}{5}$$

$$dx = 5\cos\theta \ d\theta$$

$$\int \frac{1}{(25 - x^2)^{\frac{3}{2}}} dx = \int \frac{5 \cos \theta}{(25 - 25 \sin^2 \theta)^{\frac{3}{2}}} d\theta$$

$$= \int \frac{5 \cos \theta}{(25 \cos^2 \theta)^{\frac{3}{2}}} d\theta = \int \frac{5 \cos \theta}{125 \cos^3 \theta} d\theta$$

$$= \frac{1}{25} \int \frac{1}{\cos^2 \theta} d\theta = \frac{1}{25} \int \sec^2 \theta d\theta = \frac{1}{25} \tan \theta + c$$

$$\int \frac{1}{(25-x^2)^{\frac{3}{2}}} dx = \frac{1}{25} \frac{x}{\sqrt{25-x^2}} + c$$

7.
$$\int \frac{x}{\sqrt{x^2 - 16}} dx = \frac{1}{2} \int (x^2 - 16)^{-\frac{1}{2}} 2x dx = \sqrt{x^2 - 16} + c$$

Notes:

1.
$$\int \frac{1}{\sqrt{9-x^2}} dx$$
Put $x = 3\sin\theta \Rightarrow \sin\theta = \frac{x}{3}$

$$dx = 3\cos\theta \ d\theta$$

$$\int \frac{1}{\sqrt{9-x^2}} dx = \int \frac{3\cos\theta}{\sqrt{9-9\sin^2\theta}} \ d\theta$$

$$= \int \frac{3\cos\theta}{3\cos\theta} \ d\theta = \int d\theta = \theta + c = \sin^{-1}\left(\frac{x}{3}\right) + c$$
2.
$$\int \frac{1}{\sqrt{9+x^2}} dx$$
Put $x = 3\tan\theta \Rightarrow \tan\theta = \frac{x}{3}$

$$dx = 3\sec^2\theta \ d\theta$$

$$\int \frac{1}{\sqrt{9+x^2}} dx = \int \frac{3\sec^2\theta}{\sqrt{9+9\tan^2\theta}} \ d\theta$$

$$= \int \frac{3\sec^2\theta}{3\sec\theta} \ d\theta = \int \sec\theta \ d\theta = \ln|\sec\theta + \tan\theta| + c$$

$$\int \frac{1}{\sqrt{9+x^2}} \, dx = \ln \left| \frac{\sqrt{x^2+9}}{3} + \frac{x}{3} \right| + c$$

 ${\bf Exercises}$: Solve the following integrals

$$1. \int \frac{x^2}{\sqrt{4-x^2}} \, dx$$

 $Hint: use x = 2\sin\theta$

$$2. \int x^3 \sqrt{x^2 - 4} \, dx$$

 $Hint: use x = 2 \sec \theta$

3.
$$\int \sqrt{x^2 + 2x + 2} \, dx$$

 $Hint: use x + 1 = \tan \theta$

$$4. \int \frac{1}{\sqrt{x^2 + 2x + 5}} \, dx$$

 $Hint: use x + 1 = 2 \tan \theta$

5.
$$\int \frac{x^3}{\sqrt{9x^2+49}} \, dx$$

Hint : use $3x = 7 \tan \theta$

INTEGRATION OF RATIONAL FUNCTIONS (Method of Partial fractions)

Method of partial fractions is used to solve integrals of the form $\int \frac{P(x)}{O(x)} dx$ where P(x), Q(x) are polynomials and degree P(x) < degree Q(x). If degree $P(x) \ge degree Q(x)$ use long division of polynomials.

Definition (linear factor):

A linear factor is a polynomial of degree 1. It has the form ax + b where $a, b \in \mathbb{R}$ and $a \neq 0$.

Examples:

x, 3x, 2x-7 are examples of linear factors.

Definition (irreducible quadratic):

An irreducible quadratic is a polynomial of degree 2. It has the form $ax^2 + bx + c$ where $a,b,c \in \mathbb{R}$, $a \neq 0$ and $b^2 - 4ac < 0$.

Examples:

- 1. $x^2 + 9$ and $x^2 + x + 1$ are examples of irreducible quadratics.
- 2. $x^2 = x x$ and $x^2 1 = (x 1)(x + 1)$ are reducible quadratics.

How to write $\frac{P(x)}{O(x)}$ as partial fractions decomposition ?

Write Q(x) as a product of linear factors and irreducible quadratics (if possible).

Where
$$A_1, A_2, \dots, A_m, B_1, B_2, \dots, B_n, C_1, C_2, \dots, C_n \in \mathbb{R}$$
. If $Q(x) = (a_1x + a_2)^m \ (b_1x^2 + b_2x + b_3)^n \ \text{where } m, n \in \mathbb{N} \text{ then}$

$$\frac{P(x)}{Q(x)} = \frac{A_1}{a_1x + a_2} + \frac{A_2}{(a_1x + a_2)^2} + \dots + \frac{A_m}{(a_1x + a_2)^m} + \frac{B_1x + C_1}{(b_1x^2 + b_2x + b_3)^2} + \dots + \frac{B_nx + C_n}{(b_1x^2 + b_2x + b_3)^n}$$
Where $A_1, A_2, \dots, A_m, B_1, B_2, \dots, B_n, C_1, C_2, \dots, C_n \in \mathbb{R}$.

Examples: Write the partial fractions decomposition of the following

1.
$$\frac{2x+6}{x^2-2x-3} = \frac{2x+6}{(x-3)(x+1)} = \frac{A_1}{x-3} + \frac{A_2}{x+1}$$

2.
$$\frac{x+5}{x^2+4x+4} = \frac{x+5}{(x+2)^2} = \frac{A_1}{x+2} + \frac{A_2}{(x+2)^2}$$

3.
$$\frac{x^2+1}{x^4+4x^2} = \frac{x^2+1}{x^2(x^2+4)} = \frac{A_1}{x} + \frac{A_2}{x^2} + \frac{B_1x+C_1}{x^2+4}$$

4.
$$\frac{2x+7}{(x+1)(x^2+9)^2} = \frac{A_1}{x+1} + \frac{B_1x+C_1}{x^2+9} + \frac{B_2x+C_2}{(x^2+9)^2}$$

5.
$$\frac{x}{(x-1)(x^2-1)} = \frac{x}{(x+1)(x-1)^2} = \frac{A_1}{x+1} + \frac{A_2}{x-1} + \frac{A_3}{(x-1)^2}$$

6.
$$\frac{x^4 + 2x^3 + 1}{x^4 + x^3 + x^2} = \frac{(x^4 + x^3 + x^2) + (x^3 - x^2 + 1)}{x^4 + x^3 + x^2} = 1 + \frac{x^3 - x^2 + 1}{x^4 + x^3 + x^2}$$
$$= 1 + \frac{x^3 - x^2 + 1}{x^2(x^2 + x + 1)} = 1 + \frac{A_1}{x} + \frac{A_2}{x^2} + \frac{B_1 x + C_1}{x^2 + x + 1}$$

Examples:

$$4 = A_1 x^2(x-1) + A_2 x(x-1) + A_3(x-1) + A_4 x^3$$

$$4 = A_1 x^3 - A_1 x^2 + A_2 x^2 - A_2 x + A_3 x - A_3 + A_4 x^3$$

$$4 = (A_1 + A_4)x^3 + (A_2 - A_1)x^2 + (A_3 - A_2)x - A_3$$

By comparing the coefficients of both sides:

$$A_1 + A_4 = 0 \longrightarrow (1)$$

$$A_2 - A_1 = 0 \longrightarrow (2)$$

$$A_1 + A_4 = 0 \longrightarrow (1)$$

$$A_2 - A_1 = 0 \longrightarrow (2)$$

$$A_3 - A_2 = 0 \longrightarrow (3)$$

$$-A_3 = 4 \longrightarrow (4)$$

$$-A_2 = 4 \longrightarrow (4)$$

From equation (4): $A_3 = -4$

From equation (3): $A_2 = A_3 = -4$

From equation (2): $A_1 = A_2 = -4$

From equation (1): $A_4 = -A_1 = 4$

$$\frac{4}{x^4 - x^3} = \frac{-4}{x} + \frac{-4}{x^2} + \frac{-4}{x^3} + \frac{4}{x - 1}$$

$$\int \frac{4}{x^4 - x^3} \, dx = -4 \int \frac{1}{x} \, dx - 4 \int x^{-2} \, dx - 4 \int x^{-3} \, dx + 4 \int \frac{1}{x - 1} \, dx$$

$$\int \frac{4}{x^4 - x^3} \, dx = -4 \ln|x| - 4 \frac{x^{-1}}{-1} - 4 \frac{x^{-2}}{-2} + 4 \ln|x - 1| + c$$

$$\int \frac{4}{x^4 - x^3} \, dx = -4 \ln|x| + \frac{4}{x} + \frac{2}{x^2} + 4 \ln|x - 1| + c$$

3.
$$\int \frac{8}{(x^2+1)(x^2+9)} dx$$

$$\frac{8}{(x^2+1)(x^2+9)} = \frac{B_1x + C_1}{x^2+1} + \frac{B_2x + C_2}{x^2+9}$$

$$\frac{8}{(x^2+1)(x^2+9)} = \frac{(B_1x+C_1)(x^2+9)}{(x^2+1)(x^2+9)} + \frac{(B_2x+C_2)(x^2+1)}{(x^2+1)(x^2+9)}$$

$$8 = (B_1x + C_1)(x^2 + 9) + (B_2x + C_2)(x^2 + 1)$$

$$8 = B_1 x^3 + 9B_1 x + C_1 x^2 + 9C_1 + B_2 x^3 + B_2 x + C_2 x^2 + C_2$$

$$8 = (B_1 + B_2)x^3 + (C_1 + C_2)x^2 + (9B_1 + B_2)x + (9C_1 + C_2)$$

By comparing the coefficients of both sides:

$$B_1 + B_2 = 0 \longrightarrow (1)$$

$$C_1 + C_2 = 0 \longrightarrow (2)$$

$$C_1 + C_2 = 0 \longrightarrow (2)$$

$$9B_1 + B_2 = 0 \longrightarrow (3)$$

$$9C_1 + C_2 = 8 \longrightarrow (4)$$

$$9C_1 + C_2 = 8 \longrightarrow (4)$$

Equation (3) - Equation (1): $8B_1 = 0 \Rightarrow B_1 = 0$

From equation (1): $B_2 = -B_1 = 0$

Equation (4) - Equation (2) :
$$8C_1 = 8 \Rightarrow C_1 = 1$$

From equation (2):
$$C_2 = -C_1 = -1$$

$$\frac{8}{(x^2+1)(x^2+9)} = \frac{1}{x^2+1} + \frac{-1}{x^2+9}$$

$$\int \frac{8}{(x^2+1)(x^2+9)} dx = \int \frac{1}{x^2+1} dx - \int \frac{1}{x^2+9} dx$$

$$\int \frac{8}{(x^2+1)(x^2+9)} dx = \tan^{-1} x - \frac{1}{3} \tan^{-1} \left(\frac{x}{3}\right) + c$$

4.
$$\int \frac{8x^3 + 13x}{(x^2 + 2)^2} dx$$

$$\frac{8x^3 + 13x}{(x^2 + 2)^2} = \frac{B_1x + C_1}{x^2 + 2} + \frac{B_2x + 2}{(x^2 + 2)^2}$$

$$\frac{8x^3 + 13x}{(x^2 + 2)^2} = \frac{(B_1x + C_1)(x^2 + 2)}{(x^2 + 2)^2} + \frac{B_2x + 2}{(x^2 + 2)^2}$$

$$8x^3 + 13x = (B_1x + C_1)(x^2 + 2) + B_2x + C_2$$

$$8x^3 + 13x = B_1x^3 + 2B_1x + C_1x^2 + 2C_1 + B_2x + C_2$$

$$8x^3 + 13x = B_1x^3 + C_1x^2 + (2B_1 + B_2)x + (2C_1 + C_2)$$

By comparing the coefficients of both sides:

$$B_1 = 8$$

$$C_1 = 0$$

$$2B_1 + B_2 = 13 \Rightarrow B_2 = 13 - 2(8) = 13 - 16 = -3$$

$$2C_1 + C_2 = 0 \Rightarrow C_2 = 0 - 2(0) = 0$$

$$\frac{8x^3 + 13x}{(x^2 + 2)^2} = \frac{8x}{x^2 + 2} + \frac{-3x}{(x^2 + 2)^2}$$

$$\int \frac{8x^3 + 13x}{(x^2 + 2)^2} dx = 4 \int \frac{2x}{x^2 + 2} dx - \frac{3}{2} \int \frac{2x}{(x^2 + 2)^2} dx$$

$$\int \frac{8x^3 + 13x}{(x^2 + 2)^2} dx = 4\ln(x^2 + 2) - \frac{3}{2} \frac{(x^2 + 2)^{-1}}{-1} + c$$

$$\int \frac{8x^3 + 13x}{(x^2 + 2)^2} dx = 4\ln(x^2 + 2) + \frac{3}{2} \frac{1}{x^2 + 2} + c$$

5.
$$\int \frac{x^3+1}{x^3+4x} dx$$

$$\frac{x^3 + 1}{x^3 + 4x} = \frac{(x^3 + 4x) + (1 - 4x)}{x^3 + 4x} = 1 + \frac{1 - 4x}{x^3 + 4x} = 1 + \frac{1 - 4x}{x(x^2 + 4)}$$

$$\frac{1-4x}{x(x^2+4)} = \frac{A}{x} + \frac{Bx+c}{x^2+4}$$

$$\frac{1-4x}{x(x^2+4)} = \frac{A(x^2+4)}{x(x^2+4)} + \frac{(Bx+c)x}{x(x^2+4)}$$

$$1-4x = A(x^2+4) + (Bx+C)x = Ax^2 + 4A + Bx^2 + Cx$$

$$1-4x = (A+B)x^2 + Cx + 4A$$

By comparing the coefficients of both sides:

$$\begin{split} 4A &= 1 \Rightarrow A = \frac{1}{4} \\ C &= -4 \\ A + B &= 0 \Rightarrow B = -A = -\frac{1}{4} \\ \frac{x^3 + 1}{x^3 + 4x} &= 1 + \frac{\frac{1}{4}}{x} + \frac{-\frac{1}{4}x - 4}{x^2 + 4} \\ \frac{x^3 + 1}{x^3 + 4x} &= 1 + \frac{1}{4} \frac{1}{x} - \frac{1}{4} \frac{x}{x^2 + 4} - 4 \frac{1}{x^2 + 4} \\ \int \frac{x^3 + 1}{x^3 + 4x} \, dx &= \int 1 \, dx + \frac{1}{4} \int \frac{1}{x} \, dx - \frac{1}{8} \int \frac{2x}{x^2 + 4} \, dx - 4 \int \frac{1}{x^2 + 4} \, dx \\ \int \frac{x^3 + 1}{x^3 + 4x} \, dx &= x + \frac{1}{4} \ln|x| - \frac{1}{8} \ln(x^2 + 4) - 4 \frac{1}{2} \tan^{-1} \left(\frac{x}{2}\right) + c \end{split}$$

$$6. \int \frac{3\cos x}{\sin^2 x + \sin x - 2} \, dx$$

Put $u \sin x \Rightarrow du = \cos x \ dx$

$$\int \frac{3\cos x}{\sin^2 x + \sin x - 2} \, dx = \int \frac{3}{u^2 + u - 2} \, du$$

$$\frac{3}{u^2 + u - 2} = \frac{3}{(u - 1)(u + 2)} = \frac{1}{u - 1} + \frac{-1}{u + 2}$$

$$\int \frac{3}{u^2 + u - 2} \, du = \int \frac{1}{u - 1} \, du - \int \frac{1}{u + 2} \, du$$

$$\int \frac{3}{u^2 + u - 2} \, du = \ln|u - 1| - \ln|u + 2| + c$$

$$\int \frac{3\cos x}{\sin^2 x + \sin x - 2} \, dx = \ln|\sin x - 1| - \ln|\sin x + 2| + c$$

Exercises: Solve the following integrals

1.
$$\int \frac{1}{x^2 - 3x + 2} \, dx$$

$$2. \int \frac{3}{(x^2+1)(x^2+4)} \, dx$$

3.
$$\int \frac{e^x}{(e^x - 1)(e^x + 4)} \, dx$$

HALF-ANGLE SUBSTITUTION

It is used to solve integrals of rational functions involving $\sin x$ or $\cos x$, by putting $u=\tan\left(\frac{x}{2}\right)$, in this case $dx=\frac{2}{1+u^2}\ du$, $\sin x=\frac{2u}{1+u^2}$ and $\cos x=\frac{1-u^2}{1+u^2}$.

Examples:

1.
$$\int \frac{1}{2 + \cos x} dx$$
Put $u = \tan\left(\frac{x}{2}\right)$

$$dx = \frac{2}{1 + u^2} du \text{ and } \cos x = \frac{1 - u^2}{1 + u^2}$$

$$\int \frac{1}{2 + \cos x} dx = \int \frac{1}{2 + \left(\frac{1 - u^2}{1 + u^2}\right)} \frac{2}{1 + u^2} du$$

$$= \int \frac{1}{\left(\frac{2(1 + u^2) + (1 - u^2)}{1 + u^2}\right)} \frac{2}{1 + u^2} du = \int \frac{2}{3 + u^2} du$$

$$= \int \frac{1 + u^2}{2 + 2u^2 + 1 - u^2} \frac{2}{1 + u^2} du = \int \frac{2}{3 + u^2} du$$

$$= 2 \int \frac{1}{(\sqrt{3})^2 + (u)^2} du = 2 \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{u}{\sqrt{3}}\right) + c$$

$$\int \frac{1}{2 + \cos x} dx = \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{\tan\left(\frac{x}{2}\right)}{\sqrt{3}}\right) + c$$
2.
$$\int \frac{1}{3 \sin x + 4 \cos x} dx$$
Put $u = \tan\left(\frac{x}{2}\right)$

$$dx = \frac{2}{1 + u^2} du \quad , \cos x = \frac{1 - u^2}{1 + u^2} \quad \text{and} \quad \sin x = \frac{2u}{1 + u^2}$$

$$\int \frac{1}{3 \sin x + 4 \cos x} dx = \int \frac{1}{3\left(\frac{2u}{1 + u^2}\right) + 4\left(\frac{1 - u^2}{1 + u^2}\right)} \frac{2}{1 + u^2} du$$

$$= \int \frac{1}{\frac{3(2u) + 4(1 - u^2)}{1 + u^2}} \frac{2}{1 + u^2} du = \int \frac{1 + u^2}{6u + 4 - 4u^2} \frac{2}{1 + u^2} du$$

$$\int \frac{2}{-2(2u^2 - 3u - 2)} du = -\int \frac{1}{(2u + 1)(u - 2)} du$$

$$\frac{1}{(2u+1)(u-2)} = \frac{A_1}{u-2} + \frac{A_2}{2u+1}$$

$$1 = A_1(2u+1) + A_2(u-2)$$
Put $u = 2$ then $1 = 5A_1 \Rightarrow A_1 = \frac{1}{5}$
Put $u = -\frac{1}{2}$ then $1 = -\frac{5}{2}A_2 \Rightarrow A_2 = -\frac{2}{5}$

$$\frac{1}{(2u+1)(u-2)} = \frac{\frac{1}{5}}{u-2} + \frac{-\frac{2}{5}}{2u+1} = \frac{1}{5} \frac{1}{u-2} - \frac{1}{5} \frac{2}{2u+1}$$

$$-\int \frac{1}{(2u+1)(u-2)} du = -\frac{1}{5} \int \frac{1}{u-2} du + \frac{1}{5} \int \frac{2}{2u+1} du$$

$$= -\frac{1}{5} \ln|u-2| + \frac{1}{5} \ln|2u+1| + c$$

$$\int \frac{1}{3\sin x + 4\cos x} dx = -\frac{1}{5} \ln|\tan\left(\frac{x}{2}\right) - 2| + \frac{1}{5} \ln|2\tan\left(\frac{x}{2}\right) + 1| + c$$
3.
$$\int \frac{1}{1-\sin x} dx$$

$$= \int \frac{1}{1-\sin x} \frac{1+\sin x}{1+\sin x} dx = \int \frac{1+\sin x}{1-\sin^2 x} dx$$

$$= \int \frac{1+\sin x}{\cos^2 x} dx = \int \left(\frac{1}{\cos^2 x} + \frac{\sin x}{\cos^2 x}\right) dx$$

$$= \int \sec^2 x dx + \int \sec x \tan x dx = \tan x + \sec x + c$$
4.
$$\int \frac{\sin x}{\sqrt{5-2\cos x + \cos^2 x}} dx$$
Put $u = \cos x \Rightarrow -du = \sin x$

$$\int \frac{\sin x}{\sqrt{5-2\cos x + \cos^2 x}} dx = \int \frac{-1}{\sqrt{5-2u+u^2}} du$$

$$= -\int \frac{1}{\sqrt{(u^2-2u+1)+4}} du = -\int \frac{1}{\sqrt{(u-1)^2+(2)^2}} du$$

$$= -\sinh^{-1}\left(\frac{u-1}{2}\right) + c$$

$$\int \frac{\sin x}{\sqrt{5-2\cos x + \cos^2 x}} dx = -\sinh^{-1}\left(\frac{\cos x - 1}{2}\right) + c$$

Exercises: Solve the following integrals

$$1. \int \frac{1}{5 + 3\cos x} \, dx$$

$$2. \int \frac{1}{\cos x + \sin x} \, dx$$

$$3. \int \frac{1}{\sin x - \cos x - 1} \, dx$$

MISCELLANEOUS SUBSTITUTIONS

1. Integrals involving fraction powers of x

Examples:

1.
$$\int \frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}} dx$$

Put
$$u = x^{\frac{1}{6}} \Rightarrow x = u^6 \Rightarrow dx = 6u^5 du$$

Note that 6 is the least common multiple of 2 and 3

$$\int \frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}} dx = \int \frac{6u^5}{(u^6)^{\frac{1}{2}} + (u^6)^{\frac{1}{3}}} du = \int \frac{6u^5}{u^3 + u^2} du$$
$$= \int \frac{6u^5}{u^2(u+1)} du = \int \frac{6u^3}{u+1} du$$

Use long division of polynomials

$$\int \frac{6u^3}{u+1} du = \int \left(6u^2 - 6u + 6 - \frac{6}{u+1}\right) du$$

$$= 2u^3 - 3u^2 + 6u - 6\ln|u+1| + c$$

$$\int \frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}} dx = 2x^{\frac{1}{2}} - 3x^{\frac{1}{3}} + 6x^{\frac{1}{6}} - 6\ln|x^{\frac{1}{6}} + 1| + c$$

$$2. \int \frac{x^{\frac{1}{6}}}{x^{\frac{1}{3}} + 1} \, dx$$

Put
$$u = x^{\frac{1}{6}} \Rightarrow x = u^6 \Rightarrow dx = 6u^5 du$$

Note that 6 is the least common multiple of 3 and 6

$$\int \frac{x^{\frac{1}{6}}}{x^{\frac{1}{3}} + 1} dx = \int \frac{u \ 6u^5}{u^2 + 1} \ du = \int \frac{6u^6}{u^2 + 1} \ du$$

Use long division of polynomials

$$\int \frac{6u^6}{u^2 + 1} du = \int \left(6u^4 - 6u^2 + 6 - \frac{6}{u^2 + 1}\right) du$$

$$= \frac{6u^5}{5} - 2u^3 + 6u - 6\tan^{-1}u + c$$

$$\int \frac{x^{\frac{1}{6}}}{x^{\frac{1}{2}} + 1} dx = \frac{6u^{\frac{5}{6}}}{5} - 2x^{\frac{1}{2}} + 6x^{\frac{1}{6}} - 6\tan^{-1}\left(x^{\frac{1}{6}}\right) + c$$

2. Integrals involving a square root of a linear factor

Examples:

1.
$$\int \frac{1}{(x+1)\sqrt{x-2}} dx$$
Put $u = \sqrt{x-2} \Rightarrow x = u^2 + 2 \Rightarrow dx = 2u \ du$

$$\int \frac{1}{(x+1)\sqrt{x-2}} dx = \int \frac{2u}{(u^2+3)} u \ du = \int \frac{2}{u^2+3} \ du$$

$$= 2\int \frac{1}{(u)^2+(\sqrt{3})^2} du = 2 \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{u}{\sqrt{3}}\right) + c$$

$$\int \frac{1}{(x+1)\sqrt{x-2}} dx = \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{\sqrt{x-2}}{\sqrt{3}}\right) + c$$
2.
$$\int \frac{1}{\sqrt{1+\sqrt{x}}} dx$$
Put $u = \sqrt{1+\sqrt{x}} \Rightarrow \sqrt{x} = u^2 - 1 \Rightarrow x = (u^2-1)^2 \Rightarrow dx = 4u(u^2-1) \ du$

$$\int \frac{1}{\sqrt{1+\sqrt{x}}} dx = \int \frac{4u(u^2-1)}{u} \ du = 4\int (u^2-1) \ du = 4\left[\frac{u^3}{3} - u\right] + c$$
3.
$$\int \frac{1-\sqrt{x}}{1+\sqrt{x}} dx$$
Put $u = \sqrt{x} \Rightarrow x = u^2 \Rightarrow dx = 2u \ du$

$$\int \frac{1-\sqrt{x}}{1+\sqrt{x}} dx = \int \frac{(1-u)2u}{1+u} \ du = \int \frac{-2u^2+2u}{u+1} \ du$$
Use long division of polynomials
$$\int \frac{-2u^2+2u}{u+1} \ du = \int \left(-2u+4-\frac{4}{u+1}\right) \ du = -u^2+4u-4\ln|u+1|+c$$

$$\int \frac{1-\sqrt{x}}{1+\sqrt{x}} dx = -x+4\sqrt{x}-4\ln|1+\sqrt{x}|+c$$
4.
$$\int \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} dx = 2\int \left(1+\sqrt{x}\right)^{\frac{1}{2}} \frac{1}{2\sqrt{x}} dx = \frac{4}{3}\left(1+\sqrt{x}\right)^{\frac{3}{2}} + c$$

IMPROPER INTEGRALS

Definition (Improper Integrals with a discontinuous integrand):

1. If f is continuous on [a,b) and $|f(x)| \to \infty$ as $x \to b^-$ then

$$\int_{a}^{b} f(x) \ dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) \ dx$$

2. If f is continuous on (a,b] and $|f(x)| \to \infty$ as $x \to a^+$ then

$$\int_{a}^{b} f(x) \ dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) \ dx$$

In either case, if the limit exists (and equals a value L) then the improper integral converges (to L). If the limit does not exist then the improper integral diverges.

Remark:

If f is continuous on [a,b] except at a point $c \in (a,b)$ and $|f(x)| \to \infty$ as $x \to c$ then $\int_a^b f(x) \ dx = \lim_{t \to c^-} \int_a^t f(x) \ dx + \lim_{t \to c^+} \int_t^b f(x) \ dx$ If both limits exist (and equals L_1 and L_2 respectively) then the improper

integral **converges** (to $L_1 + L_2$). If at least one of the limits does not exist then the improper integral diverges.

Definition (Improper Integrals with an infinite limit of integration):

1. If f is continuous on $[a, \infty)$ then $\int_{-\infty}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{-\infty}^{t} f(x) dx$

2. If f is continuous on
$$(-\infty, a]$$
 then $\int_{-\infty}^{a} f(x) dx = \lim_{t \to -\infty} \int_{t}^{a} f(x) dx$

In either case, if the limit exists (and equals a value L) then the improper integral converges (to L). If the limit does not exist then the improper integral diverges.

Remark:

If
$$f$$
 is continuous on $(-\infty, \infty)$ then for any constant a

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{t \to -\infty} \int_{t}^{a} f(x) dx + \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$
If both limits exist (and equals L_1 and L_2 respectively) then the improper

integral converges (to $L_1 + L_2$). If at least one of the limits does not exist then the improper integral diverges.

70

Examples:

1.
$$\int_0^\infty xe^{-x} dx$$

The function xe^{-x} is continuous on $[0, \infty)$

$$\int_0^\infty xe^{-x} dx = \lim_{t \to \infty} \int_0^t xe^{-x} dx$$

Using integration by parts

$$u = x$$
 $dv = e^{-x} dx$
 $du = dx$ $v = -e^{-x}$

$$\int_0^\infty x e^{-x} \ dx = \lim_{t \to \infty} \left([-x e^{-x}]_0^t - \int_0^t -e^{-x} \ dx \right)$$

$$= \lim_{t \to \infty} \left([-xe^{-x}]_0^t - [e^{-x}]_0^t \right)$$

$$= \lim_{t \to \infty} \left([(-te^{-t}) - ((0)e^0)] - [(e^{-t} - e^0] \right) = \lim_{t \to \infty} \left(\frac{-t}{e^t} - e^{-t} + 1 \right)$$

Note that
$$\lim_{t \to \infty} \frac{-t}{e^t}$$
 $\left(\frac{-\infty}{\infty}\right)$

Apply L'Hôpital's rule

$$\lim_{t \to \infty} \frac{-t}{e^t} = \lim_{t \to \infty} \frac{-1}{e^t} = 0$$

Therefore,
$$\lim_{t \to \infty} \left(\frac{-t}{e^t} - e^{-t} + 1 \right) = 0 - 0 + 1 = 1$$

Hence,
$$\int_0^\infty xe^{-x} dx$$
 converges to 1.

$$2. \int_{1}^{\infty} \frac{\ln x}{x} \ dx$$

The function $\frac{\ln x}{x}$ is continuous on $[1, \infty)$

$$\int_{1}^{\infty} \frac{\ln x}{x} \ dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\ln x}{x} \ dx = \lim_{t \to \infty} \int_{1}^{t} \ln x \ \frac{1}{x} \ dx$$

$$=\lim_{t\to\infty}\left[\frac{(\ln x)^2}{2}\right]_1^t=\lim_{t\to\infty}\left[\frac{(\ln t)^2}{2}-\frac{\ln(1)}{2}\right]=\lim_{t\to\infty}\frac{(\ln t)^2}{2}=\infty$$

Therefore, $\int_{1}^{\infty} \frac{\ln x}{x} dx$ diverges.

3.
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

The function $\frac{1}{1+x^2}$ is continuous on $(-\infty, \infty)$

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \lim_{t \to -\infty} \int_{t}^{0} \frac{1}{1+x^2} dx + \lim_{t \to \infty} \int_{0}^{t} \frac{1}{1+x^2} dx$$

$$= \lim_{t \to -\infty} \left[\tan^{-1} x \right]_{t}^{0} + \lim_{t \to \infty} \left[\tan^{-1} x \right]_{0}^{t}$$

$$= \lim_{t \to -\infty} \left[\tan^{-1}(0) - \tan^{-1} t \right] + \lim_{t \to \infty} \left[\tan^{-1} t - \tan^{-1}(0) \right]$$

$$= \tan^{-1}(0) - \left(-\frac{\pi}{2} \right) + \frac{\pi}{2} - \tan^{-1}(0) = \frac{\pi}{2} + \frac{\pi}{2} = \pi .$$
Therefore,
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx \text{ converges to } \pi .$$

4.
$$\int_0^1 \frac{x}{(x^2-1)^3} dx$$

The function $\frac{x}{(x^2-1)^3}$ is not continuous x=1 .

$$\int_0^1 \frac{x}{(x^2 - 1)^3} dx = \lim_{t \to 1^-} \int_0^t \frac{x}{(x^2 - 1)^3} dx = \lim_{t \to 1^-} \frac{1}{2} \int_0^t \frac{2x}{(x^2 - 1)^3} dx$$

$$= \lim_{t \to 1^-} \frac{1}{2} \left[\frac{(x^2 - 1)^{-2}}{-2} \right]_0^t = \lim_{t \to 1^-} -\frac{1}{4} \left[\frac{1}{(t^2 - 1)^2} - \frac{1}{(0 - 1)^2} \right]$$

$$= \lim_{t \to 1^-} -\frac{1}{4} \left[\frac{1}{(t^2 - 1)^2} - 1 \right] = -\infty$$

Therefore, $\int_0^1 \frac{x}{(x^2-1)^3} dx$ diverges.

$$5. \int_{1}^{e} \frac{1}{x\sqrt{\ln x}} dx$$

The function $\frac{1}{x\sqrt{\ln x}}$ is not continuous at x=1

$$\begin{split} & \int_{1}^{e} \frac{1}{x\sqrt{\ln x}} \; dx = \lim_{t \to 1^{+}} \int_{t}^{e} \frac{1}{x\sqrt{\ln x}} \; dx = \lim_{t \to 1^{+}} \int_{t}^{e} (\ln x)^{-\frac{1}{2}} \frac{1}{x} \; dx \\ & = \lim_{t \to 1^{+}} \left[2(\ln x)^{\frac{1}{2}} \right]_{t}^{e} = \lim_{t \to 1^{+}} 2 \left[\sqrt{\ln(e)} - \sqrt{\ln t} \right] \\ & = \lim_{t \to 1^{+}} 2 \left[1 - \sqrt{\ln t} \right] = 2[1 - 0] = 2 \end{split}$$

Therefore, $\int_1^e \frac{1}{x\sqrt{\ln x}} dx$ converges to 2.

6.
$$\int_{1}^{\infty} \frac{1}{x\sqrt{x^2-1}} dx$$

The function $\frac{1}{x\sqrt{x^2-1}}$ is not continuous at x=1.

$$\int_{1}^{\infty} \frac{1}{x\sqrt{x^{2}-1}} dx = \int_{1}^{2} \frac{1}{x\sqrt{x^{2}-1}} dx + \int_{2}^{\infty} \frac{1}{x\sqrt{x^{2}-1}} dx$$

$$= \lim_{t \to 1^{+}} \int_{t}^{2} \frac{1}{x\sqrt{x^{2}-1}} dx + \lim_{t \to \infty} \int_{2}^{t} \frac{1}{x\sqrt{x^{2}-1}} dx$$

$$= \lim_{t \to 1^{+}} \left[\sec^{-1} x \right]_{t}^{2} + \lim_{t \to \infty} \left[\sec^{-1} x \right]_{2}^{t}$$

$$= \lim_{t \to 1^{+}} \left[\sec^{-1} (2) - \sec^{-1} t \right] + \lim_{t \to \infty} \left[\sec^{-1} t - \sec^{-1} (2) \right]$$

$$= \sec^{-1} (2) - 0 + \frac{\pi}{2} - \sec^{-1} (2) = \frac{\pi}{2} .$$
Therefore,
$$\int_{1}^{\infty} \frac{1}{x\sqrt{x^{2}-1}} dx \text{ converges to } \frac{\pi}{2} .$$

Exercises:

Determine whether the following improper integrals convverge or diverge

$$1. \int_{-\infty}^{0} e^x dx$$

2.
$$\int_0^8 \frac{1}{\sqrt[3]{x}} dx$$

Hint : $\frac{1}{\sqrt[3]{x} dx}$ is not continuous at x = 0

$$3. \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{\sin x}} \ dx$$

Hint: $\frac{\cos x}{\sqrt{\sin x}}$ is not continuous at x = 0

4. Show that the improper integral $\int_0^1 x \ln x \ dx$ converges.

5.
$$\int_0^1 \frac{1}{\sqrt{2x-x^2}} dx$$

Hint : $\frac{1}{\sqrt{2x-x^2}}$ is not continuous at x=0 , complete the square

6.
$$\int_0^\infty \frac{1}{x^2} \ dx$$

Hint : $\frac{1}{x^2}$ is not continuous at x = 0

AREA BETWEEN CURVES

In the above figure the graphs of f(x) and g(x) intersect at the points x=a and x=b .

The area bounded by the graphs of the curves of f(x) and g(x) equals

$$\int_{a}^{b} f(x) \ dx - \int_{a}^{b} g(x) \ dx = \int_{a}^{b} [f(x) - g(x)] \ dx$$

Examples:

1. Find the area bounded by the graphs of the curves of $y=x^2+1$, y=2x and x=0 .

Note that $y=x^2+1$ is a parabola opens upward with vertex (0,1), y=2x is a straight line passing through the origin and x=0 is the y-axis .

Points of intersetion between $y = x^2 + 1$ and y = 2x is:

$$x^{2} + 1 = 2x \Rightarrow x^{2} - 2x + 1 = 0 \Rightarrow (x - 1)^{2} = 0 \Rightarrow x = 1$$

The desired area =
$$\int_0^1 [(x^2 - 1) - 2x] dx = \int_0^1 (x - 1)^2 dx$$

$$= \left[\frac{(x-1)^3}{3} \right]_0^1 = \frac{(1-1)^3}{3} - \frac{(0-1)^3}{3} = \frac{1}{3} .$$

2. Find the area bounded by the graphs of the curves of $y = x^2 - 4x$ and y = 0

Note that $x^2-4x=(x^2-4x+4)-4=(x-2)^2+4$ is a parabola opens upward with vertex (2,-4) and y=0 is the x-axis .

Points of intersection between $y = x^2 - 4x$ and y = 0

$$x^{2} - 4x = 0 \Rightarrow x(x - 4) = 0 \Rightarrow x = 0$$
, $x = 4$.

The desired area =
$$\int_0^4 \left[0 - (x^2 - 4x)\right] dx = \int_0^4 (4x - x^2) dx = \left[2x^2 - \frac{x^3}{3}\right]_0^4$$

$$= \left[\left(2(4)^2 - \frac{(4)^3}{3} \right) - 0 \right] = 32 - \frac{64}{3} = \frac{96 - 64}{3} = \frac{32}{3} \ .$$

3. Find the area bounded by the graphs of the curves of $y=x^2+2x+1$, y=1-x and y=0 .

Note that $y = x^2 + 2x + 1 = (x+1)^2$ is a parabola opens upward with vertex (-1,0), y = 1 - x is a straight line and y = 0 is the x-axis.

Points of intersection between $y = x^2 + 2x + 1$ and y = 1 - x

$$x^{2} + 2x + 1 = 1 - x \Rightarrow x^{2} + 3x = 0 \Rightarrow x(x+3) = 0 \Rightarrow x = 0$$
, $x = -3$.

Points of intersection between $y = x^2 + 2x + 1$ and y = 0 is x = -1.

Points of intersection between y = 1 - x and y = 0 is x = 1.

The desired area =
$$\int_{-1}^{0} (x^2 + 2x + 1) dx + \int_{0}^{1} (1 - x) dx$$

$$= \left[\frac{(x+1)^3}{3} \right]_{-1}^0 + \left[x - \frac{x^2}{2} \right]_0^1 = \left[\frac{(0+1)^3}{3} - \frac{(-1+1)^3}{3} \right] + \left[\left(1 - \frac{(1)^2}{2} \right) - 0 \right]$$

$$= \frac{1}{3} + \frac{1}{2} = \frac{5}{6}.$$

4. Find the area bounded by the graphs of the curves of $y=x^2$, $y=x^2+1$, x=0 and x=1.

Note that x^2+1 is a parabola opens upward with vertex (0,1), $y=x^2$ is another parabola opens upward with vertex (0,0), x=0 is the y-axis and x=1 is a straight line parallel to the y-axis and passing through the point (1,0).

Note also that $y = x^2 + 1$ and $y = x^2$ do not intersect.

The desired area =
$$\int_0^1 [(x^2 + 1) - x^2] dx = \int_0^1 dx = [x]_0^1 = 1 - 0 = 1$$

5. Find the area inside the graph of the curve $x^2 + y^2 = 4$ and above x + y = 2.

NOTE : The desired area is one fourth of the area of the circle minus the area of the triangle which equals to $\pi-2$

Note that $x^2 + y^2 = 4$ is a circle with center = (0,0) and radius = 2 and y = 2 - x is a straight line.

Points of intersection between $x^2 + y^2 = 4$ and y = 2 - x

$$x^{2} + (2-x)^{2} = 4 \Rightarrow x^{2} + 4 - 4x + x^{2} = 4 \Rightarrow 2x^{2} - 4x = 0$$

$$\Rightarrow x^2 - 2x = 0 \Rightarrow x(x-2) = 0 \Rightarrow x = 0$$
, $x = 2$

Note also that $x^2+y^2=4\Rightarrow y=\pm\sqrt{4-x^2}$, where $\sqrt{4-x^2}$ represents the upper half of the circle and $-\sqrt{4-x^2}$ represents the lower half of the circle.

The desired area =
$$\int_0^2 \sqrt{4-x^2} \ dx - \int_0^2 (2-x) \ dx = I_1 - I_2$$

$$I_1 = \int_0^2 \sqrt{4 - x^2} \ dx$$

Put $x = 2\sin\theta \Rightarrow dx = 2\cos\theta \ d\theta$

If
$$x = 0 \Rightarrow 2\sin\theta = 0 \Rightarrow \sin\theta = 0 \Rightarrow \theta = 0$$

If
$$x = 2 \Rightarrow 2\sin\theta = 2 \Rightarrow \sin\theta = 1 \Rightarrow \theta = \frac{\pi}{2}$$

$$I_1 = \int_0^{\frac{\pi}{2}} \sqrt{4 - 4\sin^2 2\cos\theta} \ d\theta = \int_0^{\frac{\pi}{2}} 4\cos^2\theta \ d\theta$$

$$=4\int_{0}^{\frac{\pi}{2}}\frac{1}{2}[1+\cos 2\theta]\ d\theta=2\left[\theta+\frac{\sin 2\theta}{2}\right]_{0}^{\frac{\pi}{2}}$$

$$= 2\left[\left(\frac{\pi}{2} + \frac{\sin \pi}{2}\right) - \left(0 + \frac{\sin(0)}{2}\right)\right] = 2\left[\left(\frac{\pi}{2} + 0\right) - (0 + 0)\right] = 2\frac{\pi}{2} = \pi$$

$$I_2 = \int_0^2 (2-x) \ dx = \left[2x - \frac{x^2}{2}\right]_0^2 = \left[\left(2(2) - \frac{2^2}{2}\right) - (0-0)\right] = 4-2 = 2$$

Hence, The desired area = $I_1 - I_2 = \pi - 2$.

6. Find the area bounded by the graphs of the curves of $x=y^2+1$, x=0 , y=-1 and y=2 .

Note that $x=y^2+1$ is a parabola opens to the right with vertex (1,0), x=0 is the y-axis, y=2 is a straight line parallel to the x-axis and passing through the point (0,2) also y=-1 is another straight line parallel to the x-axis and passing through the point (0,-1).

The desired area
$$=\int_{-1}^{2} (y^2 + 1) dy = \left[\frac{y^3}{3} + y\right]_{-1}^{2}$$

 $= \left[\left(\frac{(2)^3}{3} + 2\right) - \left(\frac{(-1)^3}{3} + (-1)\right)\right] = \frac{8}{3} + 2 + \frac{1}{3} + 1 = \frac{18}{3} = 6$

Examples : Set up integrals to evaluate the areas bounded by the graphs of the curves of :

1. $y = \ln x$, y = 0 and x = 2.

Note that $y = \ln x$ intersects the x-axis at x = 1

The desired area = $\int_{1}^{2} \ln x \ dx$

2. $y = e^x$, $x = \ln 4$, x = 0 and y = 0.

The desired area = $\int_0^{\ln 4} e^x dx$

3. $y = x^2$ and $y = -x^2 + 2$

Note that $y=x^2$ is a parabola opens upward with vertex (0,0) and $y=-x^2+2$ is another parabola opens downward with vertex (0,2)

Points of intersection between $y = x^2$ and $y = -x^2 + 2$

$$x^{2} = -x^{2} + 2 \Rightarrow 2x^{2} = 2 \Rightarrow x^{2} = 1 \Rightarrow x = \pm 1$$

The desired area =
$$\int_{-1}^{1} [(-x^2 + 2) - x^2] dx$$

4.
$$y = \frac{4}{x}$$
, $x = 0$, $y = 1$ and $y = 2$.

The desired area =
$$\int_1^2 \frac{4}{y} dy$$

VOLUME OF A SOLID OF REVOLUTION Disk or Washer method

1. Disk Method

Recall that the volume of a right circular cylinder equals $\pi r^2 h$ where r is the radius of the base (which is a circle) and h is the hight of the cylinder.

In the above figure R_1 is the region bounded by the graphs of the curves of f(x), x=a, x=b and the x-axis.

Using disk method, the volume of the solid of revolution generated by revolving the region R_1 around the x-axis is $V = \pi \int_a^b [f(x)]^2 dx$

In the above figure R_2 is the region bounded by the graphs of the curves of g(y) , y=d and the y-axis.

Using disk method, the volume of the solid of revolution generated by revolving the region R_2 around the y-axis is $V = \pi \int_c^d [g(y)]^2 dy$

2. Washer Method

Volume of a washer = $\pi \left[(outer\ radius)^2 - (inner\ radius)^2 \right]$ (thickness)

In the above figure R_3 is the region bounded by the graphs of the curves of f(x), g(x), x=a and x=b.

Using washer method, the volume of the solid of revolution generated by revolving the region R_3 around the x-axis is $V = \pi \int_a^b \left[(f(x))^2 - (g(x))^2 \right] dx$

In the above figure R_4 is the region bounded by the graphs of the curves of f(y) and g(y), where f(y) and g(y) intersect at the points y=c and y=d. Using washer method, the volume of the solid of revolution generated by revolving the region R_4 around the y-axis is $V=\pi\int_c^d \left[\left(f(y)\right)^2-\left(g(y)\right)^2\right]\,dy$

Examples: Use disk or washer method to find the volume of the solid of revolution generated by revolving the region bounded by the graphs of the curves of:

1.
$$y = \frac{1}{x}$$
, $x = 1$, $x = 3$ and $y = 0$, around the x-axis.

Using Disk Method

$$V = \pi \int_{1}^{3} \left(\frac{1}{x}\right)^{2} dx = \pi \int_{1}^{3} x^{-2} dx.$$

$$V = \pi \left[-\frac{1}{x} \right]_1^3 = \pi \left[-\frac{1}{3} + 1 \right] = \frac{2}{3}\pi$$

2. $y = x^2$ and $y = 4 - x^2$, around the x-axis.

Note that $y=x^2$ is a parabola opens upward with vertex (0,0) and $y=4-x^2$ is a parabola opens downward with vertex (0,4).

Points of intersection between $y = x^2$ and $y = 4 - x^2$:

$$x^{2} = 4 - x^{2} \Rightarrow 2x^{2} = 4 \Rightarrow x^{2} = 2 \Rightarrow x = \pm \sqrt{2}$$

Using Washer Method

$$V = \pi \int_{-\sqrt{2}}^{\sqrt{2}} \left[(4 - x^2)^2 - (x^2)^2 \right] dx = 2\pi \int_0^{\sqrt{2}} \left[16 - 8x^2 + x^4 - x^4 \right] dx$$

$$=2\pi \int_{0}^{\sqrt{2}} (16-8x^2) dx = 2\pi \left[16x - \frac{8}{3}x^3\right]_{0}^{\sqrt{2}} = \frac{64\sqrt{2}}{3}\pi$$

3. $y = 4x - x^2$ and y = x, around the x-axis.

 $4x-x^2=-(x^2-4x+4)+4=4-(x-2)^2$ is a parabola opens downward with vertex (2,4) and y=x is a straight line passing through the origin.

Points of intersection between $y = 4x - x^2$ and y = x

$$x = 4x - x^2x^2 - 3x = 0 \Rightarrow x(x - 3) = 0 \Rightarrow x = 0$$
, $x = 3$

Using Washer Method

$$V = \pi \int_0^3 \left[(4x - x^2)^2 - (x)^2 \right] dx = \pi \int_0^3 \left[16x^2 - 8x^3 + x^4 - x^2 \right] dx$$

$$=\pi \int_0^3 \left[x^4 - 8x^3 + 15x^2 \right] dx = \pi \left[\frac{x^5}{5} - 2x^4 + 5x^3 \right]_0^3 = \frac{108}{5}\pi$$

4. $x=\sqrt{y}$, x=0 and y=4 , around the y-axis

Using Disk Method

$$V = \pi \int_0^4 (\sqrt{y})^2 dy = \pi \int_0^4 y dy = \pi \left[\frac{y^2}{2} \right]_0^4 = 8\pi$$

5. $y = x^2 + 1$, y = 0, x = 0 and x = 1, around the y-axis.

Note that $y=x^2+1$ is a parabola opens upward with vertex (0,1), x=1 is a straight line parallel to the y-axis and passing through the point (1,0)

Point of intersection between $y = x^2 + 1$ and x = 1 is (1, 2).

 $y=x^2+1\Rightarrow x^2=y-1\Rightarrow x=\pm\sqrt{y-1}$, where $x=\sqrt{y-1}$ is the right half of the parabola and $y=-\sqrt{y-1}$ is the left half of the parabola .

Using Washer Method

$$V = \pi \int_0^2 (1)^2 dy - \pi \int_1^2 \left(\sqrt{y-1}\right)^2 dy$$

$$V = \pi [y]_0^2 - \pi \left[\frac{y^2}{2} - y \right]_1^2 = \frac{3}{2} \pi$$

6. $x = y^2$ and x = 2y, around the y-axis.

Note that $x = y^2$ is a parabola opens to the right with vertex (0,0) and x = 2y is a straight line passing through the origin.

Points of intersection between $x = y^2$ and x = 2y

$$y^2 = 2y \Rightarrow y^2 - 2y = 0 \Rightarrow y(y-2) = 0 \Rightarrow y = 0, y = 2$$

Using Washer Method

$$V = \pi \int_0^2 \left[(2y)^2 - (y^2)^2 \right] dy = \pi \int_0^2 (4y^2 - y^4) dy$$

$$V = \pi \left[\frac{4y^3}{3} - \frac{y^5}{5} \right]_0^2 = \frac{64}{15}\pi$$

7. $y = x^2$ and y = 4, around the line y = 5.

Note that $y=x^2$ is a parabola opens upward with vertex (0,0) and y=4 is a straight line parallel to the x-axis and passing through (0,4).

Points of intersection between $y = x^2$ and y = 4

$$x^2 = 4 \Rightarrow x = \pm 2$$

Using Washer Method

$$V = \pi \int_{-2}^{2} \left[(5 - x^2)^2 - (5 - 4)^2 \right] dx = \pi \int_{-2}^{2} (24 - 10x^2 + x^4) dx$$

$$V = \pi \left[24x - \frac{10x^3}{3} + \frac{x^5}{5} \right]^2 = \frac{832}{15}\pi$$

8. $y + x^2 = 3$ and y + x = 3, around the line x = 3

Note that $y = 3 - x^2$ is a parabola opens downward with vertex (0,3) and x + y = 3 is a straigh line.

Points of intersection between $y + x^2 = 3$ and x + y = 3

$$y + x^2 = x + y \Rightarrow x^2 - x = 0 \Rightarrow x(x - 1) = 0 \Rightarrow x = 0, \ x = 1$$

$$\Rightarrow y = 2$$
, $y = 3$

 $y+x^2=3\Rightarrow x^2=3-y\Rightarrow x=\pm\sqrt{3-y}$, where $x=\sqrt{3-y}$ is the right half of the parabola and $x=-\sqrt{3-y}$ is the left half of the parabola .

Using Washer Method

$$V = \pi \int_{2}^{3} \left[(3 - (3 - y))^{2} - (3 - \sqrt{3 - y})^{2} \right] dy$$

$$= \pi \int_{2}^{3} \left[y^{2} - \left(9 - 6\sqrt{3 - y} + 3 - y \right) \right] dy$$

$$= \pi \int_{2}^{3} (y^{2} + y + 6\sqrt{3 - y} - 12) \ dy$$

$$V = \pi \left[\frac{y^3}{3} + \frac{y^2}{2} - 4(3-y)^{\frac{3}{2}} - 12y \right]_2^3 = \frac{5}{6}\pi$$

VOLUME OF A SOLID OF REVOLUTION Cylindrical shells method

Volume of a shell = 2π (average radius) (altitude) (thickness)

In the above figure R_1 is the region bounded by the graphs of the curves of f(x), x=a, x=b and the x-axis.

Using cylindrical shells method , the volume of the solid of revolution generated by revolving the region R_1 around the y-axis is $V=2\pi\int_a^b x\ f(x)\ dx$

In the above figure R_2 is the region bounded by the graphs of the curves of g(y) , y=d and the y-axis.

Using cylindrical shells method , the volume of the solid of revolution generated by revolving the region R_2 around the x-axis is $V=2\pi\int_c^d y\ g(y)\ dy$

Examples: Use cylindrical shells method to find the volume of the solid of revolution generated by revolving the region bounded by the graphs of the curves of:

1. $y = 2x - x^2$ and y = 0, around the y-axis.

 $y=2x-x^2=-(x^2-2x+1)+1=1-(x-1)^2$ is a parabola opens downward with vertex (1,1)

Points of intersection between $y = 2x - x^2$ and y = 0

$$2x - x^2 = 0 \Rightarrow x(2 - x) = 0 \Rightarrow x = 0, x = 2$$

Using Cylindrical shells method

$$V = 2\pi \int_0^2 x(2x - x^2) dx = 2\pi \int_0^2 (2x^2 - x^3) dx$$

$$V = 2\pi \left[\frac{2x^3}{3} - \frac{x^4}{4} \right]_0^2 = \frac{8}{3}\pi$$

2. $y=\cos x$, y=2x+1 and $x=\frac{\pi}{2}$, around the y-axis .

Recall that $\cos(0) = 1$ and $\cos\left(\frac{\pi}{2}\right) = 0$.

The line y = 2x + 1 passes through the point (0, 1).

The desired region is under the line y = 2x + 1 and above the curve of $y = \cos x$ on the interval $\left[0, \frac{\pi}{2}\right]$

Using Cylindricall shells method

$$V = 2\pi \int_0^{\frac{\pi}{2}} x \left[(2x+1) - \cos x \right] dx$$

$$V = 2\pi \int_0^{\frac{\pi}{2}} (2x^2 + x) dx - 2\pi \int_0^{\frac{\pi}{2}} (x \cos x) dx$$

$$V = 2\pi \left[\frac{2x^3}{3} + \frac{x^2}{2} \right]_0^{\frac{\pi}{2}} - 2\pi \left[x \sin x + \cos x \right]_0^{\frac{\pi}{2}}$$

$$V = 2\pi \left(\frac{\pi^3}{12} + \frac{\pi^2}{8}\right) - 2\pi \left(\frac{\pi}{2} - 1\right)$$

3. $y = \sqrt{x+4}$, y = 0 and x = 0, around the x-axis.

 $y = \sqrt{x+4}$ is the upper half of the parabola $x = y^2 - 4$ which opens to the right with vertex (-4,0).

 $y=\sqrt{x+4}$ intersects the x-axis at the point (-4,0) and intersects the y-axis at (0,2)

Using Cylindricall shells method

$$V = 2\pi \int_0^2 y[-(y^2 - 4)] \ dy = 2 \int_0^2 (4y - y^3) \ dy$$

$$V = 2\pi \left[2y^2 - \frac{y^4}{4} \right]_0^2 = 8\pi$$

4. $y = x^2$ and y = 2x, around the x-axis.

 $y=x^2$ is a parabola open upward with vertex (0,0) and y=2x is a straight line passing through the origin.

Points of intersection between $y = x^2$ and y = 2x

$$x^{2} = 2x \Rightarrow x^{2} - 2x = 0 \Rightarrow x(x - 2) = 0 \Rightarrow x = 0, x = 2$$

$$\Rightarrow y = 0$$
, $y = 4$

 $y=x^2\Rightarrow x=\pm\sqrt{y}$, where $x=\sqrt{y}$ is the right half of the parabola $y=x^2$ and $x=-\sqrt{y}$ is the left half of the parabola.

Using Cylindrical shells method

$$V = 2\pi \int_0^4 y \left(\sqrt{y} - \frac{y}{2}\right) dy = 2\pi \int_0^4 \left(y^{\frac{3}{2}} - \frac{y^2}{2}\right) dy$$

$$V = 2\pi \left[\frac{2y^{\frac{5}{2}}}{5} - \frac{y^3}{6} \right]_0^4 = \frac{64}{15}\pi$$

5. $y = \sqrt{x}$ and $y = x^2$, around the line x = -2.

 $y=x^2$ is a parabola opens upward with vertex (0,0), and $y=\sqrt{x}$ is the upper half of the parabola $x = y^2$.

Points of intersection between $y = x^2$ and $y = \sqrt{x}$

$$x^{2} = \sqrt{x} \Rightarrow x^{4} = x \Rightarrow x^{4} - x = 0 \Rightarrow x(x^{3} - 1) = 0 \Rightarrow x = 0, x = 1$$

Using Cylindrical shells method

$$V = 2\pi \int_0^1 (x+2)(\sqrt{x} - x^2) dx = 2\pi \int_0^1 (-x^3 - 2x^2 + x^{\frac{3}{2}} + 2x^{\frac{1}{2}}) dx$$
$$V = 2\pi \left[-\frac{x^4}{4} - \frac{2x^3}{3} + \frac{2x^{\frac{5}{2}}}{5} + \frac{x^{\frac{3}{2}}}{3} \right]_0^1 = \frac{49}{30}\pi$$

$$V = 2\pi \left[-\frac{4}{4} - \frac{3}{3} + \frac{5}{5} + \frac{3}{3} \right]_0^{\pi} = \frac{30}{30}^{\pi}$$

6. $y = 1 - x^2$ and y = 0, around the line y = 2.

 $y=1-x^2$ is a parabola opens downward with vertex (0,1) and y=0 is the x-axis.

$$y = 1 - x^2$$
 intersects $y = 0$ at $x = \pm 1$.

 $y=1-x^2\Rightarrow x^2=1-y\Rightarrow x=\pm\sqrt{1-y}$, where $y=\sqrt{1-y}$ represents the right half of the parabola and $y=-\sqrt{1-y}$ represents the left half.

Note that the region is symmetric with respect to the y-axis.

Using Cylindrical shells method

$$V = 2\left(2\pi \int_{0}^{1} (2-y)\sqrt{1-y} \ dy\right)$$

Put
$$u^2 = 1 - y$$
 then $2u du = - dy$

If y = 0 then u = 1, and if y = 1 then u = 0

$$V = 4\pi \int_{1}^{0} (2 + u^{2} - 1) \ u \ (-2u) \ du = 4\pi \int_{0}^{1} (u^{2} + 1) 2u^{2} \ du$$

$$V = 4\pi \int_0^1 (2u^4 + 2u^2) \ du = 4\pi \left[\frac{2u^5}{5} + \frac{2u^3}{3} \right]_0^1 = \frac{64}{15}\pi$$

ARC LENGTH

If f(x) is continuous function on the interval [a,b], then the arc length of f(x) from x=a to x=b is $L=\int_a^b \sqrt{1+\left[f'(x)\right]^2}\ dx$

If g(y) is continuous function on the interval [c,d], then the arc length of g(y) from y=c to y=d is $L=\int_c^d \sqrt{1+\left[g'(y)\right]^2}\ dy$

Examples: Find the arc length of the following:

1.
$$y = \frac{x^3}{12} + \frac{1}{x}$$
 from $A = \left(1, \frac{13}{12}\right)$ to $B = \left(2, \frac{7}{6}\right)$.

$$f(x) = \frac{x^3}{12} + \frac{1}{x} \Rightarrow f'(x) = \frac{x^2}{4} - \frac{1}{x^2}$$

$$L = \int_1^2 \sqrt{1 + \left(\frac{x^2}{4} - \frac{1}{x^2}\right)^2} \, dx = \int_1^2 \sqrt{1 + \frac{x^4}{16} - \frac{1}{2} + \frac{1}{x^4}} \, dx$$

$$= \int_1^2 \sqrt{\frac{x^4}{16} + \frac{1}{2} + \frac{1}{x^4}} \, dx = \int_1^2 \sqrt{\left(\frac{x^2}{4} + \frac{1}{x^2}\right)^2} \, dx = \int_1^2 \left|\frac{x^2}{4} + \frac{1}{x^2}\right| \, dx$$

$$L = \int_1^2 \left(\frac{x^2}{4} + \frac{1}{x^2}\right) \, dx = \left[\frac{x^3}{12} - \frac{1}{x}\right]_1^2 = \frac{13}{12}$$
2. $y = \frac{1}{2} \left(e^x + e^{-x}\right), x \in [0, 2]$

$$f(x) = \frac{e^x + e^{-x}}{2} = \cosh x \Rightarrow f'(x) = \sinh x$$

$$L = \int_0^2 \sqrt{1 + \sinh^2 x} \, dx = \int_0^2 \sqrt{\cosh^2 x} \, dx$$

$$= \int_0^2 |\cosh x| \, dx = \int_0^2 \cosh x \, dx$$

$$L = [\sinh x]_0^2 = \sinh(2) - \sinh(0) = \frac{e^2 - e^{-2}}{2} - 0 = \frac{e^2 - e^{-2}}{2}$$

3.
$$x^2 + y^2 = 25$$
, $-5 \le y \le 5$

Note : In this problem the arc length is equal to half of the perimeter of the circle $x^2+y^2=25$, the arc length is equal to 5π .

$$x^2+y^2=25 \Rightarrow x^2=25-y^2 \Rightarrow x=\pm \sqrt{25-y^2}$$
 , in this problem $x=\sqrt{25-y^2}$

$$g(y) = \sqrt{25 - y^2} \Rightarrow g'(y) = \frac{-y}{\sqrt{25 - y^2}}$$

$$L = \int_{-5}^{5} \sqrt{1 + \left(\frac{-y}{\sqrt{25 - y^2}}\right)^2} dy = \int_{-5}^{5} \sqrt{1 + \frac{y^2}{25 - y^2}} dy$$

$$= \int_{-5}^{5} \sqrt{\frac{25 - y^2 + y^2}{25 - y^2}} dy = 5 \int_{-5}^{5} \frac{1}{\sqrt{25 - y^2}} dy$$

$$L = 5 \left[\sin^{-1} \left(\frac{y}{5}\right)\right]_{-5}^{5} = 5 \left[\sin^{-1}(1) - \sin^{-1}(-1)\right]$$

$$= 5 \left[\frac{\pi}{2} - \left(\frac{-\pi}{2}\right)\right] = 5\pi.$$

SURFACE AREA

(SURFACE OF REVOLUTION)

If f(x) is a continuous function on the interval [a,b], then the surface area generated by revolving the graph of the function f(x) around the x-axis is $SA = 2\pi \int_a^b f(x) \sqrt{1 + [f'(x)]^2} \ dx$

$$SA = 2\pi \int_{a}^{b} f(x)\sqrt{1 + [f'(x)]^2} dx$$

If g(y) is a continuous function on the interval [c,d], then the surface area generated by revolving the graph of the function g(y) around the y-axis is $SA = 2\pi \int_c^d g(y) \sqrt{1+[g'(y)]^2} \ dy$

$$SA = 2\pi \int_{c}^{d} g(y) \sqrt{1 + [g'(y)]^2} \, dy$$

Examples: Find the surface area generated by revolving the following functions around the given axis:

1. $4x=y^2$, from A=(0,0) to B=(1,2) , around the x-axis .

$$4x = y^2 \Rightarrow y = \pm 2\sqrt{x}$$

$$f(x) = 2\sqrt{x} \Rightarrow f'(x) = \frac{1}{\sqrt{x}}$$

$$SA = 2\pi \int_{0}^{1} 2\sqrt{x} \sqrt{1 + \left[\frac{1}{\sqrt{x}}\right]^{2}} dx = 4\pi \int_{0}^{1} \sqrt{x} \sqrt{1 + \frac{1}{x}} dx$$

$$SA = 4\pi \int_0^1 \sqrt{x+1} \ dx = 4\pi \left[2\frac{(x+1)^{\frac{3}{2}}}{3} \right]_0^1 = \frac{8\pi}{3} \left(2\sqrt{2} - 1 \right)$$

2. $y=\sqrt{4-x^2}$, $x\in[-2,2]$, around the x-axis .

Note: It is the surface area of the sphere with radius 2 , and it is equal to $4\pi(2)^2=16\pi$

$$f(x) = \sqrt{4 - x^2} \Rightarrow f'(x) = \frac{-x}{\sqrt{4 - x^2}}$$

$$SA = 2\pi \int_{-2}^{2} \sqrt{4 - x^2} \sqrt{1 + \left(\frac{-x}{\sqrt{4 - x^2}}\right)^2} dx$$

$$= 2\pi \int_{-2}^{2} \sqrt{4 - x^2} \sqrt{\frac{(4 - x^2) + x^2}{4 - x^2}} dx = 2\pi \int_{-2}^{2} \sqrt{4 - x^2} \frac{2}{\sqrt{4 - x^2}} dx$$

$$SA = 4\pi \int_{-2}^{2} dx = 4\pi \left[x\right]_{-2}^{2} = 16\pi$$

3. $y=2\sqrt[3]{x}$, from A=(1,2) to B=(8,4) , around the y-axis .

$$y = 2\sqrt[3]{x} \Rightarrow \sqrt[3]{x} = \frac{y}{2} \Rightarrow x = \frac{y^3}{8}$$

$$g(y) = \frac{y^3}{8} \Rightarrow g'(y) = \frac{3}{8}y^2$$

$$SA = 2\pi \int_{2}^{4} \frac{y^{3}}{8} \sqrt{1 + \left(\frac{3}{8}y^{2}\right)^{2}} dy = 2\pi \int_{2}^{4} \frac{y^{3}}{8} \sqrt{1 + \frac{9}{64}y^{4}} dy$$

$$=2\pi \frac{1}{8} \frac{16}{9} \int_{2}^{4} \left(1 + \frac{9}{64} y^{4}\right)^{\frac{1}{2}} \left(\frac{9}{16} y^{3}\right) dy$$

$$SA = \frac{4\pi}{9} \left[2 \frac{\left(1 + \frac{9}{64}y^4\right)^{\frac{3}{2}}}{3} \right]_2^4$$

4. $y = x^2$, $0 \le x \le 2$, around the y-axis.

$$y = x^2 \Rightarrow x = \pm \sqrt{y} \Rightarrow x = \sqrt{y}$$
, since $0 \le x \le 2$

$$0 \le x \le 2 \Rightarrow 0 \le y \le 4$$

$$g(y) = \sqrt{y} \Rightarrow g'(y) = \frac{1}{2\sqrt{y}}$$

$$SA = 2\pi \int_0^4 \sqrt{y} \sqrt{1 + \left(\frac{1}{2\sqrt{y}}\right)^2} \ dy = 2\pi \int_0^4 \sqrt{y} \sqrt{1 + \frac{1}{4y}} \ dy$$

$$SA = 2\pi \int_0^4 \sqrt{y + \frac{1}{4}} \ dy = 2\pi \left[\frac{2\left(y + \frac{1}{4}\right)^{\frac{3}{2}}}{3} \right]_0^4$$

PARAMETRIC EQUATIONS

Parametric equations are used to describe and represent plane curves.

The parameter "t" is used to write x and y as functions of t.

C: x = x(t) , y = y(t) ; $a \leq t \leq b$ is the general form of a parametric curve , where $a,b \in \mathbb{R}.$

Any point on the parametric curve is represented by P(t) = (x(t), y(t)).

Notes:

- 1. If the parametric curve does not intersect itself then it is called a simple curve.
- 2. If P(a) = P(b) then the parametric curve is called a closed curve.
- 3. Parametric equation of a curve indicates its orientation (direction of the path).

Examples: Sketch the graph of the following parametric curves:

1.
$$C: x = t + 1, y = 2t + 3; -1 \le t \le 2$$
.

$$x = t + 1 \Rightarrow t = x - 1$$

$$y = 2t + 3 \Rightarrow y = 2(x - 1) + 1 = 2x + 1$$

t	-1	2
x	0	3
y	1	7

The parametric equation represents a line segment from (0,1) to (3,7)

2.
$$C: x=t-1$$
, $y=t^2$; $-1 \le t \le 3$
$$x=t-1 \Rightarrow t=x+1$$

$$y=t^2 \Rightarrow y=(x+1)^2$$

t	-1	3
x	-2	2
y	1	9

The parametric equation represents a part of a parabola from (-2,1) to (2,9)

3.
$$C: x = 1 + 3\cos t, y = -1 + 3\sin t; 0 \le t \le 2\pi$$

$$x = 1 + 3\cos t \Rightarrow \cos t = \frac{x - 1}{3}$$

$$y = -1 + 3\sin t \Rightarrow \sin t = \frac{y+1}{3}$$

$$\cos^2 t + \sin^2 t = 1 \Rightarrow \frac{(x-1)^2}{9} + \frac{(y+1)^2}{9} = 1 \Rightarrow (x-1)^2 + (y+1)^2 = 9$$

t	0	$\frac{\pi}{2}$	2π
\boldsymbol{x}	4	1	4
y	-1	2	-1

The parametric equation represents a circle with center =(1,-1) and radius =3 .

It is a closed curve and its direction is counter-clockwise.

4.
$$C: x = 3 + 3\cos t, y = 2 + 2\sin t; 0 \le t \le 2\pi$$

$$x = 3 + 3\cos t \Rightarrow \cos t = \frac{x - 3}{3}$$

$$y = 2 + 2\sin t \Rightarrow \sin t = \frac{y - 2}{2}$$

$$\cos^2 t + \sin^2 t = 1 \Rightarrow \frac{(x-3)^2}{9} + \frac{(y-2)^2}{4} = 1$$

t	0	$\frac{\pi}{2}$	2π
\boldsymbol{x}	6	3	6
y	2	4	2

The parametric equation represents an ellipse with center =(3,2), the endpoints of the major axis are (0,2), (6,2) (its length is 6) and the endpoints of the minor axis are (3,0), (3,4) (its length is 4).

it is a closed curve and its direction is counter-clockwise.

The slope of the tangent line to a parametric curve

If C: x=x(t), y=y(t); $a\leq t\leq b$ is a differentiable parametric curve then the slope of the tangent line to C at $t_0\in [a,b]$ is

$$m = \frac{dy}{dx}|_{t=t_0} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}|_{t=t_0}$$

Notes:

- 1. The tangent line to the parametric curve is horizontal if the slope equals zero, which means that $\frac{dy}{dt} = 0$ and $\frac{dx}{dt} \neq 0$.
- 2. The tangent line to the parametric curve is vertical if $\frac{dx}{dt} = 0$ and $\frac{dy}{dt} \neq 0$.

The second derivative is
$$\frac{d^2y}{dx^2} = \frac{dy'}{dx} = \frac{\left(\frac{dy'}{dt}\right)}{\left(\frac{dx}{dt}\right)}$$
, where $y' = \frac{dy}{dx}$

Examples:

1. The slope of the tangent line to $C: x = t^3 + 1$, $y = t^4 - 1$ at t = 1 is

(a)
$$\frac{3}{4}$$
 (b) 0 (c) $\frac{4}{3}$ (d) None of these

Answer:
$$m = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{4t^3}{3t^2}$$

The slope at
$$t = 1$$
 is $m|_{t=1} = \frac{4}{3}$

The right answer is (c)

2. If $C: x = \sqrt{t}$, $y = \frac{1}{4}(t^2 - 1)$, find the first and second derivatives at t = 4.

First derivative :
$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\left(\frac{1}{2}t\right)}{\left(\frac{1}{2\sqrt{t}}\right)} = t^{\frac{3}{2}}$$

$$\frac{dy}{dx}|_{t=4} = (4)^{\frac{3}{2}} = 8.$$

Second derivative :
$$\frac{d^2y}{dx^2} = \frac{dy'}{dx} = \frac{\left(\frac{dy'}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\left(\frac{3}{2}t^{\frac{1}{2}}\right)}{\left(\frac{1}{2\sqrt{t}}\right)} = 3t$$

$$\frac{d^2y}{dx^2}|_{t=4} = 3(4) = 12 .$$

3. If C : $x=2\cos t$, $\,y=2\sin t$, find the first and the second derivatives at $\,t=\frac{\pi}{4}.$

First derivative :
$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{2\cos t}{-2\sin t} = -\cot t$$

$$\frac{dy}{dx}|_{t=\frac{\pi}{4}} = -\cot\left(\frac{\pi}{4}\right) = -1.$$

Second derivative :
$$\frac{d^2y}{dx^2} = \frac{dy'}{dx} = \frac{\left(\frac{dy'}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\csc^2t}{-2\sin t} = \frac{-1}{2\sin^3t}$$

$$\frac{d^2y}{dx^2}\Big|_{t=\frac{\pi}{4}} = \frac{-1}{2\left(\frac{1}{\sqrt{2}}\right)^3} = \frac{-2\sqrt{2}}{2} = -\sqrt{2} \ .$$

4. Find the equation of the tangent line to $C: x=t^3-3t$, $y=t^2-5t-1$ at t=2 .

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{2t - 5}{3t^2 - 3}$$

The slope of the tangent line is $\frac{dy}{dx}|_{t=2} = \frac{2(2)-5}{3(4)-3} = \frac{-1}{9}$

At
$$t = 2$$
: $x = (2)^3 - 3(2) = 8 - 6 = 2$ and $y = (2)^2 - 5(2) - 1 = -7$

The tangent line to C at t=2 passes through the point (2,-7) and its slope is $-\frac{1}{9}$, therefore its equation is $\frac{y+7}{x-2}=-\frac{1}{9}$

5. Find the points on C : $x=e^t$, $\,y=e^{-t}$ at which the slope of the tangent line to C equals $-e^{-2}$

$$m = \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{-e^{-t}}{e^t} = -e^{-2t}$$

$$m = -e^{-2} \Rightarrow -e^{-2t} = -e^{-2} \Rightarrow t = 1$$

At
$$t = 1$$
: $x = e^1 = e$ and $y = e^{-1} = \frac{1}{e}$.

Hence, the point at which the slope of the tangent line to C equals $-e^{-2}$ is $\left(e,\frac{1}{e}\right)$.

6. Find the points on C: $x=4+4\cos t$, $y=-1+\sin t$; $0\leq t\leq 2\pi$ at which the tangent line is: (a) Vertical, (b) Horizontal.

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\cos t}{-4\sin t}$$

(a) The tangent line is vertical if $\frac{dx}{dt} = 0$ and $\frac{dy}{dt} \neq 0$

$$\frac{dx}{dt} = 0 \Rightarrow -4\sin t = 0 \Rightarrow t = 0 , \ t = \pi$$

Note that $0, \pi \in [0, 2\pi]$ and $\frac{dy}{dt} \neq 0$ at t = 0 or $t = \pi$.

At
$$t = 0$$
: $x = 4 + 4(1) = 8$ and $y = -1 + 0 = -1$.

At
$$t = \pi$$
: $x = 4 + 4(-1) = 0$ and $y = -1 + 0 = -1$.

Hence, The tangent line to C is vertical at the points (8, -1) and (0, -1).

(b) The tangent line is horizontal if $\frac{dy}{dt} = 0$ and $\frac{dx}{dt} \neq 0$

$$\frac{dy}{dt} = 0 \Rightarrow \cos t = 0 \Rightarrow t = \frac{\pi}{2}, \ t = \frac{3\pi}{2}$$

Note that $\frac{\pi}{2}, \frac{3\pi}{2} \in [0, 2\pi]$ and $\frac{dx}{dt} \neq 0$ at $t = \frac{\pi}{2}$ or $t = \frac{3\pi}{2}$.

At
$$t = \frac{\pi}{2}$$
: $x = 4 + 4(0) = 4$ and $y = -1 + 1 = 0$.

At
$$t=\frac{3\pi}{2}$$
 : $x=4+4(0)=4$ and $y=-1+(-1)=-2$.

Hence, The tangent line to C is horizontal at the points (4,0) and (4,-2).

Note: $C: x=4+4\cos t$, $y=-1+\sin t$; $0\leq t\leq 2\pi$ represents the ellipse $\frac{(x-4)^2}{16}+\frac{(y+1)^2}{1}=1$, with center =(4-1), the endpoints of the major axis are (0,-1) and (8,-1), the endpoints of the minor axis are (4,0) and (4,-2).

Clearly, there are two vertical tangent lines to C , one passes through (-1,0) and the other passes through (8,-1) .

Also, there are two horizontal tangent lines to C , one passes through (4,0) and the other passes through (4,-2)

Exercises:

- 1. If C: x=t , $y=t^2$, find the slope of the tangent line to C at t=1 .
- 2. The point at which the curve C : $x=3\cos t$, $y=3\sin t$; $0\leq t\leq \pi$ has horizontal tangent line is
 - (a) (0,3)

- (b) (3,3) (c) (3,0) (d) None of these

(Hint: the parametric curve is the upper half of the circle with center = (0,0) and radius =3).

ARC LENGTH OF A PARAMETRIC CURVE

If C: x = x(t), y = y(t); $a \le t \le b$ is a differentiable parametric curve ,then its arc length equals $L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$.

Examples: Find the arc length of the following parametric curves:

1.
$$C: x = \frac{1}{3}t^3 + 1$$
, $y = \frac{1}{2}t^2 + 2$; $0 \le t \le 2$

$$\frac{dx}{dt} = t^2 \text{ and } \frac{dy}{dt} = t$$

$$L = \int_0^2 \sqrt{(t^2)^2 + (t)^2} dt = \int_0^2 \sqrt{t^4 + t^2} dt = \int_0^2 \sqrt{t^2(t^2 + 1)} dt$$

$$L = \int_0^2 |t| \sqrt{t^2 + 1} dt = \frac{1}{2} \int_0^2 (t^2 + 1)^{\frac{1}{2}} (2t) dt$$

$$L = \frac{1}{2} \left[\frac{2}{3} (t^2 + 1)^{\frac{3}{2}} \right]_0^2 = \frac{1}{3} \left(5\sqrt{5} - 1 \right).$$

2.
$$C:\ x=\sin t\ ,\ y=\cos t\ ;\ 0\leq t\leq \frac{\pi}{2}$$

$$\frac{dx}{dt} = \cos t$$
 and $\frac{dy}{dt} = -\sin t$

$$L = \int_0^{\frac{\pi}{2}} \sqrt{(\cos t)^2 + (-\sin t)^2} dt = \int_0^{\frac{\pi}{2}} \sqrt{\cos^2 t + \sin^2 t} dt$$

$$L = \int_0^{\frac{\pi}{2}} dt = [t]_0^{\frac{\pi}{2}} = \frac{\pi}{2} .$$

Note: The parametric curve represents the first quarter of the unit circle, therefore its arc length equals $\frac{2\pi}{4} = \frac{\pi}{2}$.

3.
$$C: x = e^t \cos t, y = e^t \sin t; 0 \le t \le \pi$$

$$\frac{dx}{dt} = e^t \cos t - e^t \sin t = e^t (\cos t - \sin t)$$

$$\frac{dy}{dt} = e^t \sin t + e^t \cos t = e^t (\sin t + \cos t)$$

$$L = \int_0^{\pi} \sqrt{[e^t(\cos t - \sin t)]^2 + [e^t(\cos t + \sin t)]^2} dt$$

$$L = \int_0^{\pi} \sqrt{e^{2t}(\cos t - \sin t)^2 + e^{2t}(\cos t + \sin t)^2} dt$$

$$L = \int_0^{\pi} \sqrt{e^{2t}(\cos^2 t - 2\cos t \sin t + \sin^2 t + \cos^2 t + 2\cos t \sin t + \sin^2 t)} dt$$

$$L = \int_0^{\pi} \sqrt{2e^{2t}} dt = \int_0^{\pi} \sqrt{2}|e^t| dt = \sqrt{2} \int_0^{\pi} e^t dt$$
$$L = \sqrt{2} [e^t]_0^{\pi} = \sqrt{2}(e^{\pi} - 1) .$$

SURFACE AREA GENERATED BY REVOLVING A PARAMETRIC CURVE

If C: x=x(t), y=y(t); $a\leq t\leq b$ is a differentiable parametric curve , then the surface area generated by revolving C around the x-axis is

$$SA = 2\pi \int_{a}^{b} |y(t)| \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt.$$

The surface area generated by revolving C around the y-axis is

$$SA = 2\pi \int_{a}^{b} |x(t)| \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$
.

Examples :Find the surface area generated by revolving the following parametric curves :

1. C: x = t , $y = \frac{1}{3}t^3 + \frac{1}{4}t^{-1}$; $1 \le t \le 2$, around the x-axis .

$$\frac{dx}{dt} = 1$$

$$\frac{dy}{dt} = t^2 - \frac{t^{-2}}{4}$$

$$SA = 2\pi \int_{1}^{2} \left(\frac{t^{3}}{3} + \frac{t^{-1}}{4} \right) \sqrt{(1)^{2} + \left(t^{2} - \frac{t^{-2}}{4} \right)^{2}} dt$$

$$=2\pi \int_{1}^{2} \left(\frac{t^{3}}{3} + \frac{t^{-1}}{4}\right) \sqrt{1 + \left(t^{4} - \frac{1}{2} + \frac{t^{-4}}{16}\right)} dt$$

$$=2\pi \int_{1}^{2} \left(\frac{t^{3}}{3} + \frac{t^{-1}}{4}\right) \sqrt{t^{4} + \frac{1}{2} + \frac{t^{-4}}{16}} dt$$

$$=2\pi \int_{1}^{2} \left(\frac{t^{3}}{3} + \frac{t^{-1}}{4}\right) \sqrt{\left(t^{2} + \frac{t^{-2}}{4}\right)^{2}} dt$$

$$=2\pi \int_{1}^{2} \left(\frac{t^{3}}{3} + \frac{t^{-1}}{4}\right) \left| t^{2} + \frac{t^{-2}}{4} \right| dt$$

$$=2\pi \int_{1}^{2} \left(\frac{t^{3}}{3} + \frac{t^{-1}}{4}\right) \left(t^{2} + \frac{t^{-2}}{4}\right) dt$$

$$=2\pi\int_{1}^{2}\left(\frac{t^{5}}{3}+\frac{t}{2}+\frac{t^{-3}}{16}\right) dt$$

$$SA = 2\pi \left[\frac{t^6}{18} + \frac{t^2}{4} - \frac{t^{-2}}{32} \right]_1^2 = \frac{547\pi}{64}$$

2.
$$C:\ x=4t^{\frac{1}{2}}$$
 , $\ y=\frac{1}{2}t^2+t^{-1}$; $\ 1\leq t\leq 4$, around the y-axis .

$$\frac{dx}{dt} = 2t^{-\frac{1}{2}}$$

$$\begin{split} \frac{dy}{dt} &= t - t^{-2} \\ SA &= 2\pi \int_{1}^{4} \left(4t^{\frac{1}{2}}\right) \sqrt{\left(2t^{-\frac{1}{2}}\right)^{2} + (t - t^{-2})^{2}} \ dt \\ &= 2\pi \int_{1}^{4} \left(4t^{\frac{1}{2}}\right) \sqrt{4t^{-1} + (t^{2} - 2t^{-1} + t^{-4})} \ dt \\ &= 2\pi \int_{1}^{4} \left(4t^{\frac{1}{2}}\right) \sqrt{t^{2} + 2t^{-1} + t^{-4}} \ dt \\ &= 2\pi \int_{1}^{4} \left(4t^{\frac{1}{2}}\right) \sqrt{(t + t^{-2})^{2}} \ dt \\ &= 2\pi \int_{1}^{4} \left(4t^{\frac{1}{2}}\right) \left|t + t^{-2}\right| \ dt \\ &= 2\pi \int_{1}^{4} \left(4t^{\frac{1}{2}}\right) \left(t + t^{-2}\right) \ dt \\ &= 8\pi \int_{1}^{4} \left(t^{\frac{3}{2}} + t^{-\frac{3}{2}}\right) \ dt \\ SA &= 8\pi \left[\frac{2}{5}t^{\frac{5}{2}} - 2t^{-\frac{1}{2}}\right]_{1}^{4} = \frac{536\pi}{5} \end{split}$$

Exercises: Find the surface area generated by revolving the following parametric curves:

- 1. $C:\ x=3t\ ,\ y=4t\ \ ,0\leq t\leq 2$, around the x-axis .
- 2. $C:\ x=t$, $\,y=2t\,$, $0\leq t\leq 4$, around the y-axis .

POLAR COORDINATES

In the recatangular coordinates system the ordered pair (a,b) represents a point , where "a" is the x-coordinat and "b" is the y-coordinate .

The polar coordinates system can be used also to represents points in the plane. The **pole** in the polar coordinates system is the origin in the rectangular coordinates system , and the **polar axis** is the directed half-line (the non-negative part of the x-axis).

If P is any point in the plane different from the origin, then its polar coordinates consists of two components r and θ , where r is the distance between P and the pole O, and θ is the measure of the angle determined by the polar axis and OP.

Note : The polar coordinates of a point is not unique , if $P=(r,\theta)$ then other representations are :

- 1. $P = (r, \theta + 2n\pi)$, where $n \in \mathbb{Z}$.
- 2. $P = (-r, \theta + \pi)$.
- 3. $P = (-r, \theta + \pi + 2n\pi)$, where $n \in \mathbb{Z}$.
- 4. $P = (-r, \theta \pi)$
- 5. $P = (-r, \theta \pi + 2n\pi)$, where $n \in \mathbb{Z}$.

Relationship between the polar and the rectangular coordinates

The polar coordinates (r, θ) and the rectangular coordinates (x, y) of a point P are related as follows:

- 1. $x = r \cos \theta$ and $y = r \sin \theta$.
- 2. $r^2 = x^2 + y^2$ and $\tan \theta = \frac{y}{x}$.

Examples:

1. If $(r, \theta) = \left(2, \frac{\pi}{2}\right)$ then its other polar coordinates is

a)
$$\left(-2, \frac{\pi}{2}\right)$$
 b) $\left(-2, \frac{3\pi}{2}\right)$ c) $\left(2, \frac{3\pi}{2}\right)$ d) $(2, \pi)$

The answer :
$$(r,\theta) = \left(2,\frac{\pi}{2}\right) = \left(-2,\frac{\pi}{2}+\pi\right) = \left(-2,\frac{3\pi}{2}\right)$$

The right answer is (b).

2. If $(r, \theta) = \left(-3, \frac{5\pi}{4}\right)$ then its other polar coordinates is

a)
$$\left(-3, \frac{3\pi}{4}\right)$$
 b) $\left(3, \frac{7\pi}{4}\right)$ c) $\left(3, \frac{\pi}{4}\right)$ d) $\left(-3, \frac{\pi}{4}\right)$

The answer :
$$(r, \theta) = \left(-3, \frac{5\pi}{4}\right) = \left(-(-3), \frac{5\pi}{4} - \pi\right) = \left(3, \frac{\pi}{4}\right)$$

The right answer is (c).

3. If $(r,\theta)=(-5,\pi)$ then find its rectangular coordinates (x,y) .

$$x = -5\cos(\pi) = -5$$
 (-1) = 5 and $y = -5\sin(\pi) = -5$ (0) = 0

$$(x,y) = (5,0)$$
.

4. If $(x,y) = (2\sqrt{3}, -2)$ then find its polar coordinates (r,θ) .

$$r^2 = (2\sqrt{3})^2 + (-2)^2 = 12 + 4 = 16 \Rightarrow r = 4$$

$$\tan \theta = \frac{-2}{2\sqrt{3}} = -\frac{1}{\sqrt{3}} \Rightarrow \theta = -\frac{\pi}{6} \ , \ \theta = \frac{11\pi}{6}$$

$$(r,\theta) = \left(4, -\frac{\pi}{6}\right) = \left(4, \frac{11\pi}{6}\right)$$

Exercises:

1. If $(r,\theta)=\left(2,\frac{\pi}{2}\right)$ then find its rectangular coordinates (x,y) .

Answer: (x, y) = (0, 2).

2. If $(x,y) = \left(\sqrt{2},\sqrt{2}\right)$ then find its polar coordinates (r,θ) .

Answer : $\left(2, \frac{\pi}{4}\right)$.

POLAR CURVES

A polar curve is an equation in r and θ of the form $r = r(\theta)$.

First - Straight Lines:

(1) Lines passing through the pole:

Any straight line passing through the pole has the form $\theta = \theta_0$, where θ_0 is the

$$\theta = \theta_0 \Rightarrow \tan(\theta) = \tan(\theta_0) \Rightarrow \frac{y}{x} = \tan(\theta_0) \Rightarrow y = \tan(\theta_0) x$$

angle between the straight line and the polar axis . $\theta = \theta_0 \Rightarrow \tan(\theta) = \tan(\theta_0) \Rightarrow \frac{y}{x} = \tan(\theta_0) \Rightarrow y = \tan(\theta_0) \ x$ The straight line $\theta = \theta_0$ is passing through the pole with a slope equals to $tan(\theta_0)$.

(2) Lines perpendicular to the polar axis:

Any straight line perpendicular to the polar axis. Any straight line perpendicular to the polar axis has the form $r=a \sec \theta$, where $a \in \mathbb{R}^*$ and $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. $r=a \sec \theta \Rightarrow r=\frac{a}{\cos \theta} \Rightarrow r \cos \theta = a \Rightarrow x=a$. The straight line $r=a \sec \theta$ is perpendicular to the polar axis at the point (x,θ) .

$$r = a \sec \theta \Rightarrow r = \frac{a}{\cos \theta} \Rightarrow r \cos \theta = a \Rightarrow x = a$$
.

 $(r,\theta) = (a,0)$

(3) Lines parallel to the polar axis:

Any straight line parallel to the polar axis has the form $r = a \csc \theta$, where

The straight line r = a sec θ is parallel to the polar axis and passing through the point $(r,\theta) = \left(a,\frac{\pi}{2}\right)$.

Examples:

- 1. $\theta = \frac{\pi}{4}$ is a straight line passing through the pole with a slope equals to $\tan\left(\frac{\pi}{4}\right) = 1$. Therefore its equation in xy form is y = x.
- 2. $r = 3 \sec \theta$ is a straight line perpendicular to the polar axis and passing through the point $(r, \theta) = (3, 0)$. Therefore its equation in xy - form is
- 3. $r = -2\csc\theta$ is a straight line parallel to the polar axis and passing through the point $(r,\theta)=\left(-2,\frac{\pi}{2}\right)$. Therefore its equation in the xy-form is y = -2.

Second - Circles:

(1) Circles of the form r = a, where $a \in \mathbb{R}^*$

 $r = a \Rightarrow r^2 = a^2 \Rightarrow x^2 + y^2 = a^2$

Therefore, r = a represents a circle with center = (0,0) and radius equals |a|.

$\mathbf{Example:}$

1. r=2 represents a circle with center =(0,0) and radius equals to 2 .

2. r = -2 represents a circle with center = (0,0) and radius equals to 2.

(2) Circles of the form $r = a \sin \theta$, where $a \in \mathbb{R}^*$ and $0 \le \theta \le \pi$ $r = a \sin \theta \Rightarrow r^2 = a \ r \sin \theta \Rightarrow x^2 + y^2 = ay \Rightarrow x^2 + y^2 - ay = 0$ $\Rightarrow x^2 + \left(y^2 - ay + \frac{a^2}{4}\right) = \frac{a^2}{4} \Rightarrow x^2 + \left(y - \frac{a}{2}\right)^2 = \frac{a^2}{4}$

$$\Rightarrow x^{2} + \left(y^{2} - ay + \frac{a^{2}}{4}\right) = \frac{a^{2}}{4} \Rightarrow x^{2} + \left(y - \frac{a}{2}\right)^{2} = \frac{a^{2}}{4}$$

Therefore, $r = a \sin \theta$ represents a circle with center $= (0, \frac{a}{2})$ and radius equals to $\frac{|a|}{2}$.

Examples:

1. $r = 2\sin\theta$ represents a circle with center = (0,1) and radius equals to 1

2. $r = -2\sin\theta$ represents a circle with center = (0, -1) and radius equals to

(3) Circles of the form $r = a\cos\theta$, where $a \in \mathbb{R}^*$ and $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ $r = a\cos\theta \Rightarrow r^2 = a \ r\cos\theta \Rightarrow x^2 + y^2 = ax \Rightarrow x^2 - ax + y^2 = 0$ $\Rightarrow \left(x^2 - ax + \frac{a^2}{4}\right) + y^2 = \frac{a^2}{4} \Rightarrow \left(x - \frac{a}{2}\right)^2 + y^2 = \frac{a^2}{4}$

Therefore, $r=a\cos\theta$ represents a circle with center $=\left(\frac{a}{2},0\right)$ and radius equals to $\frac{|a|}{2}$.

Examples:

1. $r = 2\cos\theta$ represents a circle with center = (1,0) and radius equals to 1

2. $r=-2\cos\theta$ represents a circle with center = (-1,0) and radius equals to 1

Third - Limaçon curves :

The general form of a Limaçon curve is $r(\theta)=a+b\sin\theta$ or $r(\theta)=a+b\cos\theta$, where $a,b\in\mathbb{R}^*$ and $0\leq\theta\leq2\pi$

(1) Cardioid (Heart-shaped):

It has the form $r(\theta)=a+a\sin\theta$ or $r(\theta)=a+a\cos\theta$, where $a\in\mathbb{R}^*$ and $0\leq\theta\leq2\pi$

Examples:

1.
$$r(\theta) = 2 + 2\cos\theta$$

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π
r	4	$2+\sqrt{2}$	3	2	1	0

2. $r(\theta) = 2 + 2\sin\theta$ and $r(\theta) = -2 - 2\sin\theta$

(2) Limaçon with inner loop:

It has the form $r(\theta)=a+b\sin\theta$ or $r(\theta)=a+b\cos\theta$, where $a,b\in\mathbb{R}^*$, |a|<|b| and $0\leq\theta\leq2\pi$

Note : Note that |a| < |b| in this case .

Examples:

1. $r(\theta) = 1 + 2\cos\theta$ and $r(\theta) = -1 - 2\cos\theta$

2. $r(\theta) = 1 + 2\sin\theta$ and $r(\theta) = -1 - 2\sin\theta$

(3) Dimpled Limaçon:

It has the form $r(\theta)=a+b\sin\theta$ or $r(\theta)=a+b\cos\theta$, where $a,b\in\mathbb{R}^*$, |a|>|b| and $0\leq\theta\leq2\pi$

Note : Note that |a| > |b| in this case .

Examples:

1. $r(\theta) = 2 + \cos \theta$ and $r(\theta) = -2 - \cos \theta$

2. $r(\theta) = 2 + \sin \theta$ and $r(\theta) = -2 - \sin \theta$

Fourth - Rose curves :

It has the form $r(\theta)=a\cos(n\theta)$ or $r(\theta)=a\sin(n\theta)$, where $a\in\mathbb{R}^*$, $n\in\mathbb{N}$ and $n\geq 2$

1. ${\bf n}$ is even : In this case the number of loops (or leaves) is 2n .

Examples : $r(\theta) = 2\cos(2\theta)$ or $r(\theta) = 2\sin(2\theta)$, $0 \le \theta \le 2\pi$

The number of loops (or leaves) equals 4.

2. ${\bf n}$ is odd : In this case the number of loops (or leaves) is n .

Examples : $r(\theta) = 2\cos(3\theta)$ or $r(\theta) = 2\sin(3\theta)$, $0 \le \theta \le \pi$

The number of loops (or leaves) equals 3.

Examples:

1.
$$r = \frac{2}{\cos \theta}$$
 represents

a) a straight line b) a circle c) a cardioid d) a rose curve

Answer :
$$r = \frac{2}{\cos \theta} \Rightarrow r \cos \theta = 2 \Rightarrow x = 2$$
.

Hence , $r = \frac{2}{\cos \theta}$ represents a straigh line .

The right answer is (a).

2. The polar equation $r = 2\cos\theta - 2$ represents

a) a straight line b) a circle c) a cardioid d) a rose curve

 $r = 2\cos\theta - 2$ is a Limaçon curve with a = b = 2.

Therefore , $r = 2\cos\theta - 2$ represents a cardioid .

The right answer is (c).

3. The number of leaves in the rose curve $r = \sin 2\theta$ is

Since n=2 is an even number then the number of leaves in the rose curve $r=\sin 2\theta$ equals 2n=2(2)=4

The right answer is (b)

4. Write the polar equation $r = 2\cos\theta + 2\sin\theta$ in terms of x and y (or cartesian equation).

$$r = 2\cos\theta + 2\sin\theta \Rightarrow r^2 = 2 r\cos\theta + 2 r\sin\theta \Rightarrow x^2 + y^2 = 2x + 2y$$

$$\Rightarrow (x^2 - 2x + 1) + (y^2 - 2y + 1) = 2 \Rightarrow (x - 1)^2 + (y - 1)^2 = 2$$

It is a circle with center = (1,1) and radius equals $\sqrt{2}$

Test of symmetry

1. The graph of $r=r(\theta)$ is symmetric with repect to the polar axis if $r(\theta)=r(-\theta)$

Examples : The circle $r=4\cos\theta$ and the cardioid $r=2+2\cos\theta$ are both symmetric with respect to the polar axis .

2. The graph of $r = r(\theta)$ is symmetric with repect to the line $\theta = \frac{\pi}{2}$ if

(a)
$$r(\theta) = -r(-\theta)$$

(b)
$$r(\theta) = r(\pi - \theta)$$

Examples : The circle $r=4\sin\theta$ and the cardioid $r=2+2\sin\theta$ are both symmetric with respect to the line $\theta=\frac{\pi}{2}$.

3. The graph of $r = r(\theta)$ is symmetric with repect to the pole if

$$r(\theta) = r(\pi + \theta)$$

Example : The rose curve $r = \sin 2\theta$ is symmetric with respect to the pole .

SLOPE OF THE TANGENT LINE TO A POLAR CURVE

If $r=r(\theta)$ is a smooth polar curve , then the slope of the tangent line to $r=r(\theta)$ is $m=\frac{dy}{dx}$, where $x=r(\theta)\cos\theta$ and $y=r(\theta)\sin\theta$.

More precisely,
$$m = \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

Notes:

- 1. The slope of the tangent line to $r=r(\theta)$ is horizontal if $\frac{dy}{d\theta}=0$ and $\frac{dx}{d\theta}\neq 0$
- 2. The slope of the tangent line to $r=r(\theta)$ is vertical if $\frac{dx}{d\theta}=0$ and $\frac{dy}{d\theta}\neq0$

Example:

1. Find the points on the polar curve $r(\theta)=2\sin\theta$, $0\leq\theta\leq\pi$ at which the tangent line to r is vertical .

The answer:

$$x = r(\theta)\cos\theta \Rightarrow x = 2\sin\theta\cos\theta = \sin 2\theta \Rightarrow \frac{dx}{d\theta} = 2\cos 2\theta$$

$$y = r(\theta)\sin\theta \Rightarrow y = 2\sin^2\theta \Rightarrow \frac{dy}{d\theta} = 4\sin\theta\cos\theta$$

The tangent line to $r=r(\theta)$ is vertical if $\frac{dx}{d\theta}=0$ and $\frac{dy}{d\theta}\neq0$

$$\frac{dx}{d\theta} = 0 \Rightarrow 2\cos 2\theta = 0 \Rightarrow 2\theta = \frac{\pi}{2} \ , \ 2\theta = \frac{3\pi}{2} \Rightarrow \theta = \frac{\pi}{4} \ , \ \theta = \frac{3\pi}{4}$$

Note that $\theta = \frac{\pi}{4}$, $\theta = \frac{3\pi}{4} \in [0,\pi]$ and $\frac{dy}{d\theta} \neq 0$ when $\theta = \frac{\pi}{4}$ or $\theta = \frac{3\pi}{4}$.

At
$$\theta = \frac{\pi}{4} : r(\frac{\pi}{4}) = 2\sin(\frac{\pi}{4}) = 2\frac{1}{\sqrt{2}} = \sqrt{2}$$

At
$$\theta = \frac{3\pi}{4}$$
: $r(\frac{3\pi}{4}) = 2\sin(\frac{3\pi}{4}) = 2\frac{1}{\sqrt{2}} = \sqrt{2}$

The points on $r(\theta)=2\sin\theta$, $0\leq\theta\leq\pi$ at which the tangent line to r is vertical are $\left(\sqrt{2},\frac{\pi}{4}\right)$, $\left(\sqrt{2},\frac{3\pi}{4}\right)$

2. Find the points on the polar curve $r(\theta)=1+\cos\theta$, $0\leq\theta\leq 2\pi$ at which the tangent line to r is horizontal .

The answer:

$$x = r(\theta)\cos\theta \Rightarrow x = \cos\theta(1+\cos\theta) = \cos\theta + \cos^2\theta$$

$$y = r(\theta)\sin\theta \Rightarrow y = \sin\theta(1+\cos\theta) = \sin\theta + \sin\theta\cos\theta = \sin\theta + \frac{1}{2}\sin2\theta$$

$$\frac{dx}{d\theta} = -\sin\theta - 2\cos\theta\sin\theta = -\sin\theta - \sin2\theta$$

$$\frac{dy}{d\theta} = \cos\theta + \cos 2\theta$$

The tangent line to $r=r(\theta)$ is horizontal if $\frac{dy}{d\theta}=0$ and $\frac{dx}{d\theta}\neq 0$

$$\frac{dy}{d\theta} = 0 \Rightarrow \cos 2\theta + \cos \theta = 0 \Rightarrow 2\cos^2 \theta - 1 + \cos \theta = 0$$

$$\Rightarrow (2\cos\theta - 1)(\cos\theta + 1) = 0 \Rightarrow \cos\theta = -1 \text{ or } \cos\theta = \frac{1}{2}$$

$$\Rightarrow \theta = \pi \text{ or } \theta = \frac{\pi}{3} , \ \theta = \frac{5\pi}{3}$$

Note that $\theta = \frac{\pi}{3}$, $\theta = \frac{5\pi}{3} \in [0, 2\pi]$ and $\frac{dx}{d\theta} \neq 0$ when $\theta = \frac{\pi}{3}$ or $\theta = \frac{5\pi}{3}$,

but
$$\frac{dx}{d\theta} = 0$$
 when $\theta = \pi$.

At
$$\theta = \frac{\pi}{3}$$
: $r(\frac{\pi}{3}) = 1 + \cos(\frac{\pi}{3}) = 1 + \frac{1}{2} = \frac{3}{2}$

At
$$\theta = \frac{5\pi}{3}$$
: $r(\frac{5\pi}{3}) = 1 + \cos(\frac{5\pi}{3}) = 1 + \frac{1}{2} = \frac{3}{2}$

The points on $r(\theta)=1+\cos\theta$, $0\leq\theta\leq 2\pi$ at which the tangent line to r is horizontal are $\left(\frac{3}{2},\frac{\pi}{3}\right)$, $\left(\frac{3}{2},\frac{5\pi}{3}\right)$

Exercise: Find the points on the polar curve $r(\theta) = 1 + \cos \theta$, $0 \le \theta \le 2\pi$ at which the tangent line to r is vertical

which the tangent line to r is vertical. The answer: (2,0), $\left(\frac{1}{2},\frac{2\pi}{3}\right)$ and $\left(\frac{1}{2},\frac{4\pi}{3}\right)$.

AREA INSIDE-BETWEEN POLAR CURVES

The area of the region bounded by the graphs of the polar curves $r=r(\theta)$, $\theta=\theta_1$ and $\theta=\theta_2$ is $A=\frac{1}{2}\int_{\theta_1}^{\theta_2}\left[r(\theta)\right]^2d\theta$

Examples:

1. Find the area of the region bounded by the graph of the polar curves $r=\sec\theta$, $\theta=0$ and $\theta=\frac{\pi}{4}$.

Note that $r=\sec\theta$ is a straight line perpendicular to the polar axis at the point $(r,\theta)=(1,0)$, $\theta=0$ is the polar axis and $\theta=\frac{\pi}{4}$ is a straight line passing the pole with a slope equals 1 (in fact it is the line y=x).

$$A = \frac{1}{2} \int_0^{\frac{\pi}{4}} (\sec \theta)^2 d\theta = \frac{1}{2} [\tan \theta]_0^{\frac{\pi}{4}} = \frac{1}{2} [1 - 0] = \frac{1}{2}$$

Note: In fact it is the area of the triangle of base equals 1 and height equals also 1.

2. Find the area inside the polar curve $r=2\cos\theta$, $~-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}$.

Note that $r = 2\cos\theta$ is a circle with center = (1,0) and radius equals 1.

$$A = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2\cos\theta)^2 d\theta = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4\cos^2\theta \ d\theta = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} [1 + \cos 2\theta] \ d\theta$$

$$A = \left[\theta + \frac{\sin 2\theta}{2}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \left[\left(\frac{\pi}{2} + 0\right) - \left(-\frac{\pi}{2} + 0\right)\right] = \pi.$$

Note : In fact it is the area of a circle of radius equals 1 and in this case $A=\pi(1)^2=\pi$.

3. Find the area inside the polar curve $r=4\cos\theta$ and outside the curve $r=2\cos\theta$.

Note that $r=4\cos\theta$ is a circll with center =(2,0) and radius equals to 2, also $r=2\cos\theta$ is another circle with center =(1,0) and radius equals 1.

$$A = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (4\cos\theta)^2 d\theta - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2\cos\theta)^2 d\theta = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 12\cos^2\theta \ d\theta$$

$$A = 6 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} \left[1 + \cos 2\theta \right] d\theta = 3 \left[\theta + \frac{\sin 2\theta}{2} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 3\pi$$

Note: In fact it is the difference between the area of a circle with radius 2 and the area of a circle of radius 1, so the desired area is $A = \pi(2)^2 - \pi(1)^2 = 3\pi$.

4. Find the area inside r = 4 and to the right of $r = 2 \sec \theta$

Note that r=4 is a circle with center = (0,0) and radius equals 4, $r=2\sec\theta$ is a straight line perpendicular to the polar axis (it is the line x=2)

Angles of intersection between r=4 and $r=2\sec\theta$:

$$2 \sec \theta = 4 \Rightarrow \sec \theta = 2 \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3} \ , \ \theta = -\frac{\pi}{3}$$

Since the desired area is symmetric with respect to the polar axis , then

$$A = 2\left(\frac{1}{2}\int_0^{\frac{\pi}{3}} (4)^2 d\theta - \frac{1}{2}\int_0^{\frac{\pi}{3}} (2\sec\theta)^2 d\theta\right)$$

$$A = 16 \int_0^{\frac{\pi}{3}} d\theta - 4 \int_0^{\frac{\pi}{3}} \sec^2 \theta \ d\theta$$

$$A = 16[\theta]_0^{\frac{\pi}{3}} - 4[\tan \theta]_0^{\frac{\pi}{3}} = 16\left(\frac{\pi}{3} - 0\right) - 4(\sqrt{3} - 0) = \frac{16\pi}{3} - 4\sqrt{3}$$

5. Find the area inside r=2 and above $r=-\csc\theta$.

Note that r=2 is a circle with center =(0,0) and radius equals 2, $r=-\csc\theta$ is a straight line parallel to the polar axis (it is the line y=-1)

Angles of intersection between r=2 and $r=-\csc\theta$:

$$-\csc\theta = 2 \Rightarrow \csc\theta = -2 \Rightarrow \sin\theta = -\frac{1}{2} \Rightarrow \theta = -\frac{\pi}{6}, \ \theta = -\frac{5\pi}{6}$$

Since the desired area is symmetric with respect to the line $\theta = \frac{\pi}{2}$, then

$$A = 2\left(\frac{1}{2} \int_{-\frac{\pi}{2}}^{-\frac{\pi}{6}} (-\csc\theta)^2 d\theta + \frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} (2)^2 d\theta\right)$$

$$A = \int_{-\frac{\pi}{2}}^{-\frac{\pi}{6}} \csc^2 \theta \ d\theta + 4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} d\theta$$

$$A = \left[-\cot\theta\right]_{-\frac{\pi}{2}}^{-\frac{\pi}{6}} + 4[\theta]_{-\frac{\pi}{6}}^{\frac{\pi}{2}} = \sqrt{3} + \frac{2\pi}{3}$$

6. Find the area of the common region between $r=\sqrt{3}\cos\theta$ and $r=\sin\theta$

Note that $r=\sqrt{3}\cos\theta$ is a circle with center $=\left(\frac{\sqrt{3}}{2},0\right)$ and radius equals $\frac{\sqrt{3}}{2}$, also $r=\sin\theta$ is a circle with center $=\left(0,\frac{1}{2}\right)$ and radius equals $\frac{1}{2}$.

Angle of intersection between $r = \sqrt{3}\cos\theta$ and $r = \sin\theta$

$$\sqrt{3}\cos\theta = \sin\theta \Rightarrow \tan\theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = \frac{\pi}{3}$$

$$A = \frac{1}{2} \int_0^{\frac{\pi}{3}} (\sin \theta)^2 d\theta + \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (\sqrt{3} \cos \theta)^2 d\theta$$

$$A = \frac{1}{2} \int_0^{\frac{\pi}{3}} \frac{1}{2} [1 - \cos 2\theta] \ d\theta + \frac{3}{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} [1 + \cos 2\theta] \ d\theta$$

$$A = \frac{1}{4} \left[\theta - \frac{\sin 2\theta}{2} \right]_0^{\frac{\pi}{3}} + \frac{3}{4} \left[\theta + \frac{\sin 2\theta}{2} \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$$

$$A = \frac{1}{4} \left(\frac{\pi}{3} - \frac{1}{2} \frac{\sqrt{3}}{2} \right) + \frac{3}{4} \left[\left(\frac{\pi}{2} + 0 \right) - \left(\frac{\pi}{3} + \frac{1}{2} \frac{\sqrt{3}}{2} \right) \right]$$

$$A = \frac{5\pi}{24} - \frac{\sqrt{3}}{4} \ .$$

7. Find the area inside r=3 and outside $r=2+2\cos\theta$.

Note that r=3 is a circle with center = (0,0) and radius equals 3 , $r=2+2\cos\theta$ is a cardioid .

Angles of intersection between r = 3 and $r = 2 + 2\cos\theta$:

$$2+2\cos\theta=3\Rightarrow\cos\theta=\frac{1}{2}\Rightarrow\theta=\frac{\pi}{3}\ ,\ \theta=\frac{5\pi}{3}=-\frac{\pi}{3}$$

Since the desired area is symmetric with respect to the polar axis, then

$$A = 2\left(\frac{1}{2}\int_{\frac{\pi}{3}}^{\pi} (3)^2 d\theta - \frac{1}{2}\int_{\frac{\pi}{3}}^{\pi} (2 + 2\cos\theta)^2 d\theta\right)$$

$$A = \int_{\frac{\pi}{3}}^{\pi} \left[9 - (4 + 8\cos\theta + 4\cos^2\theta) \right] d\theta$$

$$A = \int_{\frac{\pi}{2}}^{\pi} [5 - 8\cos\theta - 2(1 + \cos 2\theta)] \ d\theta$$

$$A = \int_{\frac{\pi}{3}}^{\pi} \left[3 - 8\cos\theta - 2\cos 2\theta \right] d\theta$$

$$A = [3\theta - 8\sin\theta - \sin 2\theta]_{\frac{\pi}{3}}^{\pi}$$

$$A = \left[(3\pi - 0 - 0) - \left(\pi - 8 \, \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \right) \right]$$

$$A = 2\pi + \frac{9\sqrt{3}}{2}$$

8. Find the area inside $r=3+3\cos\theta$, outside $r=3+3\sin\theta$ and at the first quadrant.

Angles of intersection between $r = 3 + 3\cos\theta$ and $r = 3 + 3\sin\theta$:

$$3 + 3\cos\theta = 3 + 3\sin\theta \Rightarrow \tan\theta = 1 \Rightarrow \theta = \frac{\pi}{4} , \ \theta = \frac{5\pi}{4}$$

$$A = \frac{1}{2} \int_0^{\frac{\pi}{4}} (3 + 3\cos\theta)^2 d\theta - \frac{1}{2} \int_0^{\frac{\pi}{4}} (3 + 3\sin\theta)^2 d\theta$$

$$A = \frac{1}{2} \int_0^{\frac{\pi}{4}} \left[(9 + 18\cos\theta + 9\cos^2\theta) - (9 + 18\sin\theta + 9\sin^2\theta) \right] d\theta$$

$$A = \frac{1}{2} \int_0^{\frac{\pi}{4}} \left[18 \cos \theta - 18 \sin \theta + 9 \cos^2 \theta - 9 \sin^2 \theta \right] d\theta$$

$$A = \frac{1}{2} \int_0^{\frac{\pi}{4}} \left[18\cos\theta - 18\sin\theta + \frac{9}{2}(1+\cos 2\theta) - \frac{9}{2}(1-\cos 2\theta) \right] d\theta$$

$$A = \frac{1}{2} \int_0^{\frac{\pi}{4}} [18\cos\theta - 18\sin\theta + 9\cos 2\theta] \, d\theta$$

$$A = \frac{1}{2} \left[18\sin\theta + 18\cos\theta + \frac{9}{2}\sin 2\theta \right]_0^{\frac{\pi}{4}}$$

$$A = \frac{1}{2} \left[\left(\frac{18}{\sqrt{2}} + \frac{18}{\sqrt{2}} + \frac{9}{2} \right) - (0 + 18 + 0) \right] = \frac{18}{\sqrt{2}} - \frac{27}{4}$$

9. Find the area inside $r=2+2\cos\theta$ and outside r=2 .

Note that r=2 is a circle with center =(0,0) and radius equals 2 , $r=2+2\cos\theta$ is a cardioid .

Angles of intersection between r=2 and $r=2+2\cos\theta$:

$$2 + 2\cos\theta = 2 \Rightarrow \cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2} , \ \theta = \frac{3\pi}{2}$$

Since the desired area is symmetric with respect to the polar axis, then

$$A = 2\left(\frac{1}{2}\int_0^{\frac{\pi}{2}} (2 + 2\cos\theta)^2 d\theta - \frac{1}{2}\int_0^{\frac{\pi}{2}} (2)^2 d\theta\right)$$

$$A = \int_0^{\frac{\pi}{2}} (4 + 8\cos\theta + 4\cos^2\theta - 4) \ d\theta$$

$$A = \int_0^{\frac{\pi}{2}} (8\cos\theta + 2(1+\cos 2\theta)) \ d\theta$$

$$A = \int_0^{\frac{\pi}{2}} \left(2 + 8\cos\theta + 2\cos 2\theta\right) d\theta$$

$$A = [2\theta + 8\sin\theta + \sin 2\theta]_0^{\frac{\pi}{2}} = \pi + 8$$

10. Find the area inside one leaf of the rose curve $r=2\cos3\theta$.

The rose curve $r=2\cos3\theta$, $\,0\leq\theta\leq\pi$ starts at $(r,\theta)=(2,0)$ and reaches the pole when r=0

$$r = 0 \Rightarrow 2\cos 3\theta = 0 \Rightarrow 3\theta = \frac{\pi}{2} \Rightarrow \theta = \frac{\pi}{6}$$

Since the desired area is symmetric with respect to the polar axis , then

$$A = 2\left(\frac{1}{2} \int_0^{\frac{\pi}{6}} (2\cos 3\theta)^2 d\theta\right) = 4 \int_0^{\frac{\pi}{6}} \cos^2 3\theta \ d\theta$$

$$A = 4 \int_0^{\frac{\pi}{6}} \frac{1}{2} (1 + \cos 6\theta) \ d\theta = 2 \int_0^{\frac{\pi}{6}} (1 + \cos 6\theta) \ d\theta$$

$$A = 2\left[\theta + \frac{\sin 6\theta}{6}\right]_0^{\frac{\pi}{6}} = \frac{\pi}{3}$$

11. Find the area betwen the loops of the curve $r = 1 + 2\cos\theta$

$$r=0 \Rightarrow 1+2\cos\theta=0 \Rightarrow \cos\theta=-\frac{1}{2} \Rightarrow \theta=\frac{2\pi}{3} \ , \ \theta=\frac{4\pi}{3}$$

The interior loop starts at $\theta = \frac{2\pi}{3}$ and ends at $\theta = \frac{4\pi}{3}$

$$A = \frac{1}{2} \int_0^{\frac{2\pi}{3}} (1 + 2\cos\theta)^2 d\theta + \int_{\frac{4\pi}{3}}^{\frac{2\pi}{3}} (1 + 2\cos\theta)^2 d\theta - \int_{\frac{2\pi}{3}}^{\frac{4\pi}{3}} (1 + 2\cos\theta)^2 d\theta$$

Since the desired area is symmetric with respect to the polar axis, then

$$A = 2\left(\frac{1}{2}\int_{0}^{\frac{2\pi}{3}} (1 + 2\cos\theta)^{2} d\theta - \frac{1}{2}\int_{\frac{2\pi}{3}}^{\pi} (1 + 2\cos\theta)^{2} d\theta\right)$$

$$A = \int_0^{\frac{2\pi}{3}} (1 + 4\cos\theta + 4\cos^2\theta) \ d\theta - \int_{\frac{2\pi}{3}}^{\pi} (1 + 4\cos\theta + 4\cos^2\theta) \ d\theta$$

$$A = \int_0^{\frac{2\pi}{3}} (3 + 4\cos\theta + 2\cos 2\theta) \ d\theta - \int_{\frac{2\pi}{3}}^{\pi} (3 + 4\cos\theta + 2\cos 2\theta) \ d\theta$$

$$A = [3\theta + 4\sin\theta + \sin 2\theta]_0^{\frac{2\pi}{3}} - [3\theta + 4\sin\theta + \sin 2\theta]_{\frac{2\pi}{3}}^{\pi}$$

$$A = \left[\left(2\pi + \frac{3\sqrt{3}}{2} \right) - 0 \right] - \left[3\pi - \left(2\pi + \frac{3\sqrt{3}}{2} \right) \right] = \pi + 3\sqrt{3}$$

Exercises:

- 1. Find the area inside $r = \cos \theta$ and outside the curve $r = 1 \cos \theta$
- 2. Find the area of the common region between the curves $r=2\sin\theta$ and $r=2\cos\theta$
- 3. Find the area inside the curve r = 1 and outside the curve $r = 1 \cos \theta$

ARC LENGTH OF A POLAR CURVE

The arc length of the polar curve $r=r(\theta)$ from θ_1 to θ_2 is

$$L = \int_{\theta_1}^{\theta_2} \sqrt{(r(\theta))^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta$$

Examples: Find the arc length of the following polar curves:

1.
$$r = 1 + \cos \theta$$
, $0 \le \theta \le 2\pi$

$$\frac{dr}{d\theta} = -\sin\theta$$

Since $r = 1 + \cos \theta$ is symmetric with respect to the polar axis then

$$L = 2\int_0^{\pi} \sqrt{(1+\cos\theta)^2 + (-\sin\theta)^2} \ d\theta$$

$$L = 2\int_0^{\pi} \sqrt{(1 + 2\cos\theta + \cos^2\theta) + \sin^2\theta} \ d\theta$$

$$L = 2 \int_0^{\pi} \sqrt{2 + 2\cos\theta} \ d\theta$$

$$L = 2 \int_0^{\pi} \sqrt{2(1+\cos\theta)} \ d\theta$$

Note that
$$\cos^2\left(\frac{\theta}{2}\right) = \frac{1}{2}(1+\cos\theta) \Rightarrow 2(1+\cos\theta) = 4\cos^2\left(\frac{\theta}{2}\right)$$

$$L = 2 \int_0^{\pi} \sqrt{4 \cos^2 \left(\frac{\theta}{2}\right)} d\theta = 2 \int_0^{\pi} 2 \left|\cos \left(\frac{\theta}{2}\right)\right| d\theta$$

$$L = 4 \int_0^{\pi} \cos\left(\frac{\theta}{2}\right) d\theta = 8 \left[\sin\left(\frac{\theta}{2}\right)\right]_0^{\pi} = 8(1-\theta) = 8$$

2.
$$r = 2\cos\theta$$
, $0 \le \theta \le 2\pi$

$$\frac{dr}{d\theta} = -2\sin\theta$$

$$L = \int_0^{2\pi} \sqrt{(2\cos\theta)^2 + (-2\sin\theta)^2} \ d\theta$$

$$L = \int_0^{2\pi} \sqrt{4\cos^2\theta + 4\sin^2\theta} \ d\theta$$

$$L = \int_{0}^{2\pi} \sqrt{4} \ d\theta = \int_{0}^{2\pi} 2 \ d\theta = [2\theta]_{0}^{2\pi} = 4\pi$$

Note that $r=2\cos\theta$, $-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}$ is a circle with center =(1,0) and radius equals 1, therefore its circumference equals 2π , in this example $r=2\cos\theta$, $0\leq\theta\leq2\pi$ which means that the curve is doubled, hence the circumference is also doubled.

3.
$$r = e^{-\theta}$$
, $0 \le \theta \le \pi$

$$\frac{dr}{d\theta} = -e^{-\theta}$$

$$L = \int_0^{\pi} \sqrt{(e^{-\theta})^2 + (-e^{-\theta})^2} d\theta$$

$$L = \int_0^{\pi} \sqrt{e^{-2\theta} + e^{-2\theta}} d\theta = \int_0^{\pi} \sqrt{2e^{-2\theta}} d\theta$$

$$L = \int_0^{\pi} \sqrt{2} |e^{-\theta}| d\theta = \sqrt{2} \int_0^{\pi} e^{-\theta} d\theta$$

$$L = \sqrt{2} [-e^{-\theta}]_0^{\pi} = \sqrt{2} [-e^{-\pi} + e^0] = \sqrt{2} (1 - e^{-\pi})$$

SURFACE AREA GENERATED BY REVOLVING A POLAR CURVE

The surface area generated by revolving the polar curve $r=r(\theta)$, $\theta_1\leq\theta\leq\theta_2$ around the polar axis is

$$SA = 2\pi \int_{\theta_1}^{\theta_2} |r(\theta)\sin\theta| \sqrt{(r(\theta))^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

The surface area generated by revolving the polar curve $r=r(\theta)$, $\theta_1 \leq \theta \leq \theta_2$ around the line $\theta=\frac{\pi}{2}$ is

$$SA = 2\pi \int_{\theta_1}^{\theta_2} |r(\theta)\cos\theta| \sqrt{(r(\theta))^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

Examples :Find the surface area generated by revolving the following polar curves :

1.
$$r=e^{\frac{\theta}{2}}$$
 , $\, 0 \leq \theta \leq \pi$, around the polar axis .

$$\frac{dr}{d\theta} = \frac{1}{2}e^{\frac{\theta}{2}}$$

$$SA = 2\pi \int_0^{\pi} \left| e^{\frac{\theta}{2}} \sin \theta \right| \sqrt{\left(e^{\frac{\theta}{2}} \right)^2 + \left(\frac{1}{2} e^{\frac{\theta}{2}} \right)^2} \ d\theta$$

$$SA = 2\pi \int_0^{\pi} e^{\frac{\theta}{2}} \sin \theta \sqrt{e^{\theta} + \frac{1}{4}e^{\theta}} \ d\theta = \int_0^{\pi} e^{\frac{\theta}{2}} \sin \theta \left| e^{\frac{\theta}{2}} \right| \sqrt{1 + \frac{1}{4}} \ d\theta$$

$$SA = 2\pi \int_0^{\pi} e^{\frac{\theta}{2}} \sin \theta \ e^{\frac{\theta}{2}} \sqrt{\frac{5}{4}} \ d\theta = 2\pi \frac{\sqrt{5}}{2} \int_0^{\pi} e^{\theta} \sin \theta \ d\theta$$

Using integration by parts

$$SA = \sqrt{5}\pi \left[\frac{1}{2} e^{\theta} (\sin \theta - \cos \theta) \right]_0^{\pi} = \frac{\sqrt{5}\pi}{2} \left(e^{\pi} + 1 \right)$$

2.
$$r=2+2\cos\theta$$
 , $\,0\leq\theta\leq\frac{\pi}{2}$, around the polar axis .

$$\frac{dr}{d\theta} = -2\sin\theta$$

$$SA = 2\pi \int_0^{\frac{\pi}{2}} |(2+2\cos\theta)\sin\theta| \sqrt{(2+2\cos\theta)^2 + (-2\sin\theta)^2} d\theta$$

$$SA = 2\pi \int_{0}^{\frac{\pi}{2}} (2 + 2\cos\theta)\sin\theta\sqrt{4 + 8\cos\theta + 4\cos^2\theta + 4\sin^2\theta} \ d\theta$$

$$SA = 2\pi \int_0^{\frac{\pi}{2}} (2 + 2\cos\theta) \sin\theta \sqrt{8 + 8\cos\theta} \ d\theta$$

$$SA = 2\pi \int_0^{\frac{\pi}{2}} (2 + 2\cos\theta)\sin\theta\sqrt{4(2 + 2\cos\theta)} \ d\theta$$

$$SA = 4\pi \int_{0}^{\frac{\pi}{2}} (2 + 2\cos\theta) \sin\theta\sqrt{2 + 2\cos\theta} \ d\theta$$

$$SA = 4\pi \int_{0}^{\frac{\pi}{2}} (2 + 2\cos\theta)^{\frac{3}{2}} \sin\theta \ d\theta$$

$$SA = -2\pi \int_{0}^{\frac{\pi}{2}} (2 + 2\cos\theta)^{\frac{3}{2}} (-2\sin\theta) \ d\theta$$

$$SA = -2\pi \left[\frac{2}{5} (2 + 2\cos\theta)^{\frac{3}{2}} \right]_{0}^{\frac{\pi}{2}} = -2\pi \frac{2}{5} \left[4\sqrt{2} - 32 \right] = \frac{16\pi}{5} (8 - \sqrt{2})$$
3. $r = \cos\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, around the line $\theta = \frac{\pi}{2}$

$$\frac{dr}{d\theta} = -\sin\theta$$

$$SA = 2\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left| \cos\theta \cos\theta \right| \sqrt{(\cos\theta)^{2} + (-\sin\theta)^{2}} \ d\theta$$

$$SA = 2\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left| \cos^{2}\theta \right| \sqrt{\cos^{2}\theta + \sin^{2}\theta} \ d\theta$$

$$SA = 2\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left| \cos^{2}\theta \right| d\theta$$

$$SA = 2\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left| 1 + \cos 2\theta \right| d\theta$$

$$SA = \pi \left[\theta + \frac{\sin 2\theta}{2} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \pi \left[\left(\frac{\pi}{2} + 0 \right) - \left(-\frac{\pi}{2} + 0 \right) \right] = \pi^{2}$$
4. $r = 2\sin\theta$, $0 \le \theta \le \frac{\pi}{2}$, around the line $\theta = \frac{\pi}{2}$

$$\frac{dr}{d\theta} = 2\cos\theta$$

$$SA = 2\pi \int_{0}^{\frac{\pi}{2}} \left| 2\sin\theta \cos\theta \right| \sqrt{(2\sin\theta)^{2} + (2\cos\theta)^{2}} \ d\theta$$

$$SA = 2\pi \int_{0}^{\frac{\pi}{2}} \left| \sin 2\theta \right| \sqrt{4\sin^{2}\theta + 4\cos^{2}\theta} \ d\theta$$

$$SA = 2\pi \int_{0}^{\frac{\pi}{2}} \sin 2\theta \sqrt{4} \ d\theta$$

$$SA = 4\pi \left[-\frac{\cos 2\theta}{2} \right]_{0}^{\frac{\pi}{2}} = 4\pi$$

Note: it is the surface area of a sphere of radius 1.