Elliptic Quantum Groups

14 March 2022 14:56

(joint work in progress w/ Y. Yong and G

\$1: Mohuahon

Let E be an elliptic come / C

G reductive group

Bung = Bung (E) = { principal G-bundles}

Then [PTVV]:

[nondegenerate] \longrightarrow [1-shifted symplectic?] $(,) \in \text{Sym}(g^*)^G$ \longrightarrow [forms ω on Bur_{-}]

Formality [CPTVV]: For each w

J monoidal alformation (QCoh, (Bung), ⊗,) of (QCoh) over C[ti]. - as C[ti]-liveer costepary.

Ultimate good: Construct (Olohy (Burg), &) explicitly to E.

How to quantise? Choose \$ + PC [E] closed points

 $K = \Gamma(E-P, 0)$

B = TT BE, x

 $A = \pi' \operatorname{Frac}(\widehat{\mathcal{O}}_{E,x})$

For G semisimple, then

 $Bu_{\mathcal{C}} = G(K)/G(A)/G(D) = BG(K) \times BG(A)$

So $(G_{K}) = Rep G(K) \otimes Rep G(O)$ Rep G(A)

Intermediate good: Construct quentisations of

as Quartise Hopf algebras U(TK), U(TO), U(TA).

Outline: 2: History

3: Plan results/constructions

4: Positue port

J: Double construction

6: Dynamical representations

§ 2: Incomplete history of elliptic quantum group

Traditionally,

elliptiz quantum

Hopf algebras (or similer associated w, elliptic s to Yong-Baxter equation of

1980's: [Belavin-Donfeld]: classified sol's to the clo valued in f.d. Lie alg

· Rational ~ ag. Yorgions

. Trigonometric mus eg. quentum affine algeb

· Elliphic — selliphiz quantum groups

Exist only in type A

[Skyanin, Cherednik, Fergin-Odesskii]:

Algebras assoc. WI type A elliptic solution

[Felder]: Use dynamical YBE instead ~ selliptiz solns in all types

1990's - 2010's! Many approaches to elliptic quantity groups based on Felder's solns.

(many authors)

Relevant ones der this talk:

[Gautan-Toledono Lenedo '17]: Constructed + studied category of reps for any of. L'Corten

- Vector space V + dragonalisable y-action

- Curents $\overline{\Phi}_i(u,\lambda)$, $\chi_i^{\pm}(u,\lambda):V \longrightarrow V$ nueromenpluic in u,λ , satisfying tongian—li

Sechai dynamical

Key feature: dynamical parameters shift.

 $\Xi_{i}(u, \lambda + \frac{\pi}{2}\alpha_{i}) \, \Xi_{i}(v, \lambda - \frac{\pi}{2}\alpha_{i}) =$ Φ : $(v, \lambda + \frac{1}{2}\alpha;)\Phi$; $(u, \lambda - \frac{1}{2}\alpha;)$

· [Yong-Zhao '17]:

Elliptic CoHA preprojective algebras => positive part of an elliptiz quantum group Ell_(m_t) ∈ (Gh(H+), &) quentum monoid

Hilbert scheme of E

§ 3: Man results/constructions

Fix of ADE Lie algebra, I = { bertices of } ty ∈ E generic, \$≠PC[E] invariant under train by to/2 => P is infinite

1. There exist algebra objects EIL (OB) = (SW(H+ × H-), @) and subqueheats and subqueheats

Elly (JO), Elly (JK). space of dy

2. There is an action (Shu(H+×H-), @) 2 Shu(Bun+)

and notions of integrable reps of Elly (off) in

3. For V∈ Rep"t Ell (90) and national iso V ≥ I corres grading + currents $\overline{\Phi}(u, \lambda)$, $\chi_i^{\pm}(u, \lambda)$ satisfy GTL relations.

§ 4: Positive port:

Construction: shuffle argeloras

Let X be on (affine) curve, I snite set.

Let $H = Hilb(X \times I) = Sym(X \times I) = \coprod_{v \in \mathbb{Z}_{\geqslant 0}} X^{(v)} X^{(v)} = \lim_{v \in \mathbb{Z}$

= moduli space of effective coloured durisors

 $D = \sum_{i} M_{i} x_{i}^{i}$, $M_{i} \in \mathbb{Z}_{7}^{\geq 0}$.

Have S: HxH -> H sum of duriours (fini!

Let $\Delta = \{(D, D') \mid D \cap D' \neq \emptyset \} \subset H \times H$ = rem(S)

= rem(S)

Suppose SU(z/W) & M(HXH, OHXH(D)) solvities

S(z,z')(W) = S(z|W) S(z'/W) $\mathcal{N}(z|S(w,w')) = \mathcal{N}(z(w))\mathcal{N}(z(w'))$

The shuffle algebra with kernel of is

 $SH = SH_{R} = \Gamma(H, U_{H})$ with product

 $f \star g = T_{\mathcal{C}}(\mathcal{N}(\mathsf{EW})f(\mathsf{z})g(\mathsf{W}))$

trace = sur our premages

= symmetrises

Sheaf version: Dehue a monoidal smudure

 $\mathcal{C}_{*}(\mathcal{C}_{*}) = \mathcal{C}_{*}(\mathcal{C}_{*})$

Then have sheatified shuffle algebra

Iff = OH with product

 $\mathcal{O}_{H} * \mathcal{O}_{H} = \mathcal{S}_{\star}(\mathcal{O}_{H \times H}) \longrightarrow \mathcal{S}_{\star}(\mathcal{O}_{H \times H}(\Delta)) \xrightarrow{\mathcal{T}_{S}} \mathcal{O}_{H}$

p: (Gh(H), *) → (Vect, ⊗) is monoidal. (

SH = r(SH)

Spherical subalgebras: $SH^{SPh} = \Gamma(SH^{SPh})$ subalgebras: SH^{SPh

 $\mathcal{N}(z|w) = \prod \mathcal{N}(z_j|w_k) \text{ for}$ $\mathcal{N}(z_j|w_k) = \begin{cases} \frac{z_j - w_k + t_k}{z_j - w_k} & \text{if } \omega(z_j) = \omega(u_k) \\ \pm (z_j - w_k + t_k) & \text{if } \omega(z_j) \text{ adjac} \end{cases}$ $\pm (z_j - w_k + t_k) & \text{otherwise.}$

then SH 3h \cong $Y_{t}(n_{t}) \subset Y_{t}(g)$ 2r $\longrightarrow t \times_{i,r}^{+}$ (Donnfeld new generator)

Colour i

Elliptic case: Now let X = E elliptic care (not S = E)

Set $S(z_j|w_k) = \frac{2(z_j-w_k-t_s)}{2(z_j-w_k)}$ $= \frac{1}{2(z_j-w_k)}$

where 20(2) is the unique section of $10(0_E)$

.. $\mathcal{N}(z|w) = TT \mathcal{N}(z_i|w_k)$ is a restional section of bundle \mathcal{L}^{-1} on $H \times H$.

So S: L → O(a).

Detⁿ: For \forall , $G \in Gh(H)$, set $\exists \otimes G = S_*(J \otimes (\exists \boxtimes G))$

quantum 8huct $SH = U_{H} \quad \text{with product}$ $U_{H} \otimes U_{H} = S_{*}(L) \xrightarrow{S} S_{*}U(L) \xrightarrow{Tr_{S}} U_{H}.$ $Def^{n}: [Yang-2hao] \quad \text{Ell}_{k}(n_{+}) = SH^{sph} \subset U_{H}.$ $algebra \quad object \quad in \quad (Coh(H), of)$

\$5: Double construction

Dignession: Topologies

Recall: $K = \Gamma(E-P, 9)$ C[z] $D = TT \hat{O}_{E, x}$ C[z] $A = TT' Frac(\hat{O}_{E, x})$ C(z)

These are ind-pro-finite dimensional vector spaces.

Tensor products: f.d.

(not symmetre):

colin lim $V_{m,n} \otimes colin lim \otimes \mathcal{O}_{p,q}$ $= colin lim colin lim (<math>V_{m,n} \otimes W_{p,q}$) $= \mathcal{O}(x) \otimes \mathcal{O}(y) = \mathcal{O}(x,y) [x^{-1},y^{-1}] = \sum_{x = y} \mathcal{O}(x) \otimes \mathcal{O}(y) = \mathcal{O}(x) \mathcal{O}(y) = \sum_{x = y} \mathcal{O}(x) \mathcal{O}(y) = \mathcal{O}(x) \mathcal{$

For X scheme, define $Shv(X) = \int teaues of ind-pro-f.d.v.s.$ $Shv(X) = \int + O_X - achien$

Pehue on
$$E^{(v)} \subset H$$
 $K_{H} = S_{x}(K \boxtimes \cdots \boxtimes K)$
 $A_{H} = S_{x}(A \boxtimes \cdots \boxtimes A)^{v}$
 $O_{H} = S_{x}(A \boxtimes \cdots \boxtimes A)^{v}$

and $V_{x}(A \boxtimes \cdots \boxtimes A)^{v}$

Consider $V_{x}(A \boxtimes \cdots \boxtimes A)^{v}$
 $V_{x}(A \boxtimes \cdots \boxtimes A)^{v$

Sub categores:

$$H^{+} = H^{+} \times \{oV_{1} \longrightarrow H^{+} \times H^{-} \}$$

$$H^{-} = \{o\} \times H^{-} \longrightarrow H^{+} \times H^{-} \}$$

$$H \longrightarrow Sh_{1}(H^{\pm}), Sh_{2}(H) \longrightarrow Sh_{2}(H^{+} \times H^{-}), \text{ wa push}$$

$$Sl_{1}(M_{\pm}, \Pi) = Ell_{1}(M_{\pm}) \otimes \Pi_{1}^{\pm}$$

$$|O_{1}^{\pm}| = H^{\pm}$$

The doubles are

(ii)
$$\text{Ell}_{k}(g_{A}) = A_{H}^{*} \otimes (\text{Ell}_{k}(n_{+,A}) \otimes \text{Ell}_{k}(n_{-,A})) \otimes A_{H}^{*}$$

(ii) $\text{Ell}_{k}(g_{K}) = (\text{Ell}_{k}(n_{+,K}) \otimes \text{Ell}_{k}(n_{-,K})) \otimes O_{H}^{*}$

(iii) $\text{Ell}_{k}(g_{O}) = K_{H}^{*} \otimes (\text{Ell}_{k}(n_{+,O}) \otimes \text{Ell}_{k}(n_{-,O}))$

us Donfeld double products

Example (Xingian): Can do this for
$$X=P'$$
, the $P=V$, $K=C[2]$, $D=C[7]$, $A=C(7)$.

 $\Gamma: SW(H^{+} \times H^{-}) \longrightarrow TrdPro Vecl^{6}d \quad (3 \text{ monoi})$ $\Gamma(2II_{+}(G|_{K})) = Y_{+}(m_{+}) \otimes Y_{+}(m_{-}) \otimes Sym(\bigoplus_{i} z^{-1}C(z^{-1}))$ $z'|C[z] \cong D^{*} \text{ pourry } (3 \text{ Res}())(3)$ $\Gamma(2II_{+}(G|_{K})) \otimes C_{2} = Y_{+}(G)$ $Sym(\bigoplus_{i} C_{2} = Y_{+}(G))$