

DA1: Масштабные соотношения (75 баллов)

Пожалуйста, прочитайте общие инструкции перед началом работы.

Спиральные галактики — дисковые вращающиеся структуры, динамическое состояние которых описывается кривыми вращения, определяющими среднюю скорость вращения диска в зависимости от расстояния до центра (рис. 1, кривая В). Интересной особенностью является плоский участок кривой, который объясняется наличием тёмной материи. В её отсутствие скорость вращения убывала бы по кривой А.

Рис. 1. Кривые вращения: зависимость круговой скорости от радиуса

Для дисковых галактик замечена сильная корреляция между собственной светимостью галактики и асимптотической скоростью вращения (скоростью вращения на краю — $R_{\rm max}$), которая известна как соотношение Талли–Фишера. Эта связь существует и в случае, когда светимость определена в какой-либо спектральной полосе. На рис. 2 показана зависимость абсолютной звёздной величины галактик некоторого скопления в фильтре K от $\log_{10}(V_{\rm max})$. Сплошная линия на графике — наилучшее линейное приближение указанной зависимости.

Рис. 2. Зависимость абсолютной звёздной величины в фильтре K от $\log_{10}(V_{\max}[km\ s^{-1}])$. Соотношение Талли–Фишера. Каждая точка отвечает некоторой галактике. Данные для 5 выделенных галактик приводятся далее в части 1.2.

Рис. 3. Соотношение между массовой долей галактического газа и массой звёзд

Другому соотношению посвящён рис. 3: диски с большей массой звёзд (M_{st}), как правило, имеют меньшую массовую долю газа (M_{qas}/M_{st}).

Вам предстоит определить физические параметры галактик используя вышеописанные масштабные соотношения. Исходите из следующих предположений и обозначений:

- Для всех галактик V_{\max} измерена на одном и том же радиусе R_{\max} на плоском участке кривой вращения далеко за пределами звёздного диска.
- M_{dm} масса тёмной материи внутри шара радиусом R_{max} , M_{tot} суммарная масса всех компонент (газа, звёзд и тёмной материи).
- Все галактики имеют схожие звёздные населения¹, а межзвёздный газ не взаимодействует с излучением звёзд.
- Рассматриваемое скопление галактик находится достаточно далеко, расстояние до него существенно больше размеров скопления.
- Для сферически-симметричного распределения массы действующую на пробную частицу на радиусе r гравитационную силу можно вычислить как силу её взаимодействия с материальной точкой массы $M(\leq r)$ (заключённой внутри сферы радиуса r), расположенной в центре

шара.

Часть 1 (20 баллов)

1.1 Используя рис. 3, определите параметры зависимости $M_{gas} = a \times M_*^b$ 5.0pt

$$a = ?$$

$$b = ?$$

 $^{^{1}}$ Термин «звёздное население» относится к относительным количествам различных типов звёзд в галактике.

1.2 На графике для соотношения Талли–Фишера были выделены 5 галактик, данные для которых представлены ниже. Используйте эти данные для вычисления параметров соотношения Талли–Фишера методом наименьших квадратов.

15.0pt

Указание: рассматривайте $\log_{10}(V_{\mathsf{max}})$ как переменную x и K — как y.

$V_{\sf max}[{ m km/s}]$	K [mag]
79.4	-16.8
100.1	-19.2
158.5	-21.3
251.2	-21.4
316.2	-24.0

$$K = c \times \log_{10}(V_{\rm max}) + d$$

$$c = ?$$

$$d = ?$$

Часть 2 (16 баллов)

Для двух галактик G1 и G2 в скоплении измерены видимые звёздные величины:

$$k_1 = 19.2$$
 ; $k_2 = 25.2$

Используя эти сведения и определённые в части 1 параметры масштабных соотношений, найдите показатели степеней в следующих отношениях:

2.1
$$\frac{M_{*1}}{M_{*2}} = 10^e \qquad ; \qquad e = ? \label{eq:m_*1}$$

2.2
$$\frac{M_{gas1}}{M_{gas2}} = 10^f \qquad ; \qquad f = ? \label{eq:gas1}$$

2.3
$$\frac{M_{tot1}}{M_{tot2}} = 10^g \qquad ; \qquad g = ? \label{eq:mtot1}$$

Часть 3 (15 баллов)

3.1 15.0pt

Галактика	Видимая звёздная величина $\it k$	$M_{gas}[M_{\odot}]$	$M_* [M_\odot]$	$M_{dm}[M_{\odot}]$	$M_{tot} [M_{\odot}]$
G_1	19.2				4.39×10^{11}

Заполните пропуски в таблице, если известно, что для галактики G_1 отношение массы тёмной материи к массе барионной материи, заключённых внутри шара радиусом $R_{\rm max}$, равно 6.82.

Часть 4 (24 балла)

4.1 Пусть систематическая погрешность измерения видимой звёздной величины составляет $\sigma_{sys}=\pm0.2$ ввиду неточностей калибровки ПЗС-матрицы. Тогда $k_1=19.2\pm0.2$, то есть k_1 , вероятно, лежит в «доверительном» интервале [19.0, 19.4]. Аналогично для k_2 .

Найдите «доверительный» интервал для показателя степени e в отношении $\frac{M_{*1}}{M_{*2}}=10^e$ (ранее оцененном в вопросе 2.1), рассмотрев наибольшие возможные отклонения k_1 и k_2 от средних значений.

$$e \in [?,?]$$

4.2 Однако и сами соотношения выполняются не с абсолютной точностью. Для заданного значения K соотношение Талли-Фишера даёт единственное значение $\log_{10}(V_{\max})$, в то время как разумнее говорить о некотором диапазоне возможных значений, окружающем среднее — предсказанное значение. Будем называть это статистической погрешностью σ_{stat} . Оцените статистическую погрешность для предсказания $\log_{10}(V_{\max})$ по значениям K при помощи соотношения Талли-Фишера, параметры которого определялись в вопросе 1.2. Для этого вычислите для каждой галактики отклонение между предсказанным и измеренным значениями $\log_{10}(V_{\max})$, и положите σ_{stat} равным удвоенному RMS † (среднему квадратическому) этих отклонений.

$$\sigma_{stat} = ?$$

†RMS набора значений — это квадратный корень из среднего арифметического квадратов этих значений.

4.3 Найдите «доверительный» интервал для показателя степени g в отношении $\frac{M_{tot1}}{M_{tot2}}=10^g$, рассмотрев наибольшие возможные отклонения параметров в силу систематических и статистических погрешностей:

10.0pt

4.0pt

10.0pt

Russian (Russian Federation)

DA2: Звёзды и экзопланеты (75 баллов)

Пожалуйста, прочитайте общие инструкции перед началом работы.

В этой задаче предстоит изучить зависимость между физическими характеристиками экзопланет и их материнских звёзд, используя данные наблюдений. Межзвёздным поглощением предстоит пренебречь.

Часть 1 (20 баллов)

Название планеты	Название звезды	$T_{eff}\left(\mathbf{K}\right)$	$g (\mathrm{m/s^2})$	m_v (mag)	Параллакс (mas)
Gorgona	HD 209458	5980	347	7.63	20.67

Таблица 1. Наблюдательные данные для экзопланеты Gorgona и её материнской звезды HD 209458

Эффективную температуру (T_{eff}) и гравитационное ускорение на поверхности звезды (g) можно определить по форме спектра и линиям поглощения в нём. Видимую визуальную звёздную величину (m_v) и параллакс измеряют методами фотометрии и астрометрии.

Для этой системы в ходе наблюдений установлено, что каждые 3.52 суток блеск звезды падает из-за прохождения планеты по её диску. Вот кривая блеска:

Рис. 1. Зависимость нормализованного потока от времени для материнской звезды HD 209458

Используйте эти сведения для вычисления следующих величин системы HD 209458:

Светимость звезды	Радиус звезды	Масса звезды	Средний радиус орбиты планеты	Радиус планеты (в радиусах Юпитера)
$\begin{bmatrix} L_{\star} \\ [L_{\odot}] \end{bmatrix}$	$R_{\star} \ [R_{\odot}]$	$M_{\star} \ [M_{\odot}]$	$egin{array}{c} a \ [au] \end{array}$	$\begin{bmatrix} R_p \\ [R_J] \end{bmatrix}$

Указание: считайте, что болометрическая поправка для всех звёзд классов F и G одинаковая.

Часть 2 (25 баллов)

Зона жизни определяется как область, при нахождении в которой планета может иметь жидкую воду на поверхности. Границы зоны определяются в основном количеством энергии, которую планета получает от материнской звезды и которая должна находиться в некотором диапазоне для обеспечения приемлемых температур на поверхности планеты.

Определим эффективный поток энергии, которую планета получает от звезды, как $S_{eff}=\frac{L}{a^2}$, где L — светимость звезды в светимостях Солнца, a — средний радиус орбиты планеты в au. Минимальный поток в зоне жизни определяется по формуле $S_{min}=S_{eff_\odot}+n\cdot T_\star+b\cdot T_\star^2+c\cdot T_\star^3+d\cdot T_\star^4$, где $T_\star=(T_{eff}-T_{eff_\odot})$ и S_{eff_\odot} — эффективный поток в случае если материнскую звезду заменить Солнцем. Коэффициенты n,b,c,d приведены в таблице ниже. Максимальный поток в зоне жизни S_{max} определяется по той же формуле, но с другими коэффициентами:

Коэффициент	S_{max}	S_{min}
$S_{eff_{\odot}}$	1.0512	0.3438
n	1.3242×10^{-4}	5.8942×10^{-5}
b	1.5418×10^{-8}	1.6558×10^{-9}
c	-7.9895×10^{-12}	-3.0045×10^{-12}
d	-1.8328×10^{-15}	-5.2983×10^{-16}

В следующей таблице представлены данные для 7 реальных экзопланетных систем, однако названия планет заменены на названия заповедных районов Колумбии:

Vanautau	01467141/14 2002 01 1	Vanautanus	SIAIVIA ELEGILIOTI I
ларакте	оистики звезды	ларактерист	гики планеты
$T_{eff}\left[\mathrm{K} ight]$	$M_V [{ m mag}]$	Название	a [au]
6180	3.68	Tayrona	0.04
5730	3.87	Iguaque	0.04
5980	4.21	Gorgona	0.04
5480	6.04	Amacayacu	0.08
5770	3.48	Malpelo	0.05
6130	3.07	Pisba 0.03	
6140	3.85	Tatamá	0.06

2.1 На графике вертикальная ось соответствует эффективной температуре материнских звёзд, горизонтальная — эффективному потоку, который от них получают экзопланеты. Точкой отмечено положение Земли, а штриховые линии ограничивают зону жизни.

15.0pt

Оцифруйте оси графика у каждой отметки. Отметьте на этом графике положения Gorgona и Amacayacu, если бы они находились на расстоянии $1\,\mathrm{au}$ от их материнских звёзд.

2.2 Теперь используя реальный радиус орбиты для каждой из планет, определите (представив убедительные вычисления на бланках решений), находится ли каждая из них в зоне жизни, и заполните таблицу:

Название планеты	В зоне жизни? YES / NO
Плапеты	TL37 NO
Tayrona	
Iguaque	
Gorgona	
Amacayacu	
Malpelo	
Pisba	
Tatamá	

10.0pt

Часть 3 (30 баллов)

На последней странице приведена таблица с данными о 38 экзопланетах. Ваша задача — определить, различаются ли характеристики звёзд, вокруг которых обращаются маломассивные экзопланеты (LME) и экзопланеты большой массы (HME).

3.1 Чтобы получить надежную подвыборку LME, применим метод итеративной сигма-отсечки. Идея метода состоит в том, что после вычисления среднего (μ) и стандартного отклонения (σ) на выборке масс экзопланет из этой выборки исключаются точки со значениями больше $\mu+\sigma$. Эту процедуру необходимо провести три раза. Оставшиеся экзопланеты отнесём к LME (маломассивным), исключённые в процессе — к HME. Заполните таблицу:

Выборка	Размер выборки	μ	σ	$\mu + \sigma$	Количество исключённых планет
Полная (исходная)	38				
После 1-й итерации					
После 2-й итерации					
После финальной итерации		_	_	_	_

- **3.2** Постройте график, отложив по оси x номер планеты в списке, а по оси y 5.0pt её массу. Проведите на графике 3 горизонтальные линии, соответствующие ранее определённым отсечкам $\mu + \sigma$.
- **3.3** Исследуем различие в эффективной температуре материнских звёзд для 10.0pt обеих групп экзопланет. Проведите статистические вычисления:

T_{eff}	Минимум	1-й квартиль	Медиана – 2-й квартиль	3-й квартиль	Максимум
LME					
HME					

3.4 Нарисуйте боксплоты по результатам проведённых вычислений. Наблюдается ли заметное различие температур звёзд для LME и HME? Напишите YES или NO.

Связь температуры материнской звезды $({\rm K})$ с типом планеты

Nº	Название	Масса пл.	T_{eff}
IND	планеты	$[M_J]$	звезды

1	KEPLER-37 b	0.01	5520
2	KEPLER-21 b	0.02	6256
3	HD 97658 b	0.02	5468
4	HD 46375 b	0.23	5345
5	HD 219134 h	0.28	5209
6	HD 88133 b	0.30	5582
7	HD33283 b	0.33	5877
8	HD 149026 b	0.36	6096
9	BD-10 3166 b	0.46	5578
10	HD 75289 b	0.47	6196
11	HD 217014 b	0.47	5755
12	HD 2638 b	0.48	5564
13	WASP-13 b	0.49	6025
14	WASP-34 b	0.59	5771
15	HD 209458 b	0.69	5988
16	HAT-P-30 b	0.71	6177
17	WASP-76 b	0.92	6133
18	WASP-74 b	0.97	5727
19	HAT-P-6 b	1.06	6442
20	HD189733 b	1.14	5374
21	WASP-82 b	1.24	6257
22	KELT-7 b	1.29	6460
23	HD 149143 b	1.33	6067
24	KELT-3 b	1.42	6404
25	KELT-2A b	1.49	6164
26	HD86081 b	1.50	6015
27	HAT-P-7 b	1.74	6270
28	HD 118203 b	2.14	5847
29	HAT-P-14 b	2.20	6490
30	WASP-38 b	2.71	6178
31	HD17156 b	3.20	5985
32	KELT-6 c	3.71	6176
33	HD 75732 d	3.86	5548
34	HD 115383 b	4.00	5891
35	HD 120136 b	5.84	6210
36	WASP-14 b	7.34	6195
37	HAT-P-2 b	8.74	6439
38	XO-3 b	11.79	6281