Topología: Tarea #7

Jonathan Andrés Niño Cortés

12 de marzo de 2015

Sección 10.2 4. Sea A cualquier \mathbb{Z} -módulo, sea a cualquier elemento de A y sea n un entero positivo. Pruebe que el mapa $\varphi_a : \mathbb{Z}/n\mathbb{Z} \to A$ dado por $\varphi(\overline{k}) = ka$ es un homomorfismo de \mathbb{Z} -módulos si y solo na = 0. Pruebe que $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, A) \cong A_n$, donde $A_n = \{a \in A \mid na = 0\}$ (de tal manera que A_n es el aniquilador de A del ideal (n) de \mathbb{Z}).

Sección 10.2 8. Sea $\varphi: M \to N$ un homomorfismo de R-módulos. Pruebe que $\varphi(\text{Tor}(M)) \subseteq \text{Tor}(N)$.

Sección 10.3 10. Asuma que R es conmutativo. Muestre que un R-módulo es irreducible si y sólo si M es isomórfico (como un R-módulo) a R/I donde I es un ideal máximal de R. [Por el ejercicio previo, si M es irreducible entonces hay un mapa natural $R \to M$ definido por $r \to rm$, ,donde m es cualquier elemento no cero fijo de M].

Sección 10.3 18. Sea R un dominio de ideal principal y sea M un R-módulo que es aniquilado por el ideal propio no cero (a). Sea $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$ la factorización única de a en potencias de primos distintas en R. Sea M_i el aniquilador de $p_i^{\alpha_i}$ en M, i.e., M_i es el conjunto $\{m \in M \mid p_i^{\alpha_i}m = 0\}$ — llamado el componente p_i -primario de M. Pruebe que

$$M = M_1 \oplus M_2 \oplus \cdots \oplus M_k$$
.

Sección 12.1 13. Si M es un módulo finitamente generado sobre el Dominio de Ideales Principales R, describa la estructura de M/Tor(M).

Sección 12.1 13. Sea R un D.I.P. y sea M un R-módulo de torsión. Pruebe que M es irreducible si y sólo si M = Rm para cualquier elemento no cero $m \in M$ donde el aniquilador de m es un ideal principal no cero (p).