CICM 2018

Biform Theories: Project Description

Jacques Carette, William M. Farmer, and Yasmine Sharoda

Department of Computing and Software McMaster University

16 August 2018

Outline

- Motivation.
- Notion of a biform theory.
- Project objectives.
- Project status.

• Consider the mathematical expression

$$(x+2)*(2*x+1)+3*x$$

• Consider the mathematical expression

$$(x+2)*(2*x+1)+3*x$$

where x denotes a natural number.

• This expression *e* has two values:

• Consider the mathematical expression

$$(x+2)*(2*x+1)+3*x$$

- This expression *e* has two values:
 - 1. A semantic value that is the natural number denoted by e.

Consider the mathematical expression

$$(x+2)*(2*x+1)+3*x$$

- This expression *e* has two values:
 - 1. A semantic value that is the natural number denoted by e.
 - 2. A syntactic value that is the expression e itself having the form of a polynomial (which we denote by the quotation $\lceil e \rceil$).

Consider the mathematical expression

$$(x+2)*(2*x+1)+3*x$$

- This expression *e* has two values:
 - 1. A semantic value that is the natural number denoted by e.
 - 2. A syntactic value that is the expression e itself having the form of a polynomial (which we denote by the quotation $\lceil e \rceil$).
- Some operations apply to semantic values.
 - Examples: + and *.
- Other operations apply to syntactic values.
 - ► Examples: normalize and factor.

Transformers

- ullet Let ${\mathcal E}$ be a set of expressions.
- A transformer is an algorithm that implements a function $\mathcal{E}^n \to \mathcal{E}$.
 - ► Examples: normalize and factor.

Transformers

- ullet Let ${\mathcal E}$ be a set of expressions.
- A transformer is an algorithm that implements a function $\mathcal{E}^n \to \mathcal{E}$.
 - Examples: normalize and factor.
- Operations on semantic values can often be computed by transformers.

Note: The two operators are related by the law of disquotation:

$$\llbracket \ulcorner e \urcorner \rrbracket = e.$$

Syntax-Based Mathematical Algorithms

- A syntax-based mathematical algorithm (SBMA) [Far13] is an transformer that manipulates the syntax of mathematical expressions in a mathematically meaningful way.
 - Examples: normalize, factor, add.

Syntax-Based Mathematical Algorithms

- A syntax-based mathematical algorithm (SBMA) [Far13] is an transformer that manipulates the syntax of mathematical expressions in a mathematically meaningful way.
 - Examples: normalize, factor, add.
- SBMAs are commonplace in mathematics!

Syntax-Based Mathematical Algorithms

- A syntax-based mathematical algorithm (SBMA) [Far13] is an transformer that manipulates the syntax of mathematical expressions in a mathematically meaningful way.
 - Examples: normalize, factor, add.
- SBMAs are commonplace in mathematics!
- A SBMA A has two fundamental properties:
 - 1. The computational behavior of A is the relationship between the input and output expressions of A.
 - 2. The mathematical meaning of A is the relationship between what the input and output expressions of A mean mathematically.
- A meaning formula for A is a statement that expresses the mathematical meaning of A.

• The meaning formula for add is:

 $\forall x, y : \mathsf{Numeral} \cdot \mathsf{add}(x, y) = x + y.$

• The meaning formula for add is:

 $\forall x, y : \mathsf{Numeral} \cdot [\![\mathsf{add}(x, y)]\!] = [\![x]\!] + [\![y]\!].$

• The meaning formula for add is:

$$\forall x, y : \mathsf{Numeral} \cdot [\![\mathsf{add}(x, y)]\!] = [\![x]\!] + [\![y]\!].$$

An instance of the meaning formula is:

$$\llbracket \mathsf{add}(\lceil 6\rceil, \lceil 11\rceil) \rrbracket = \llbracket \lceil 6\rceil \rrbracket + \llbracket \lceil 11\rceil \rrbracket$$

The meaning formula for add is:

```
\forall x, y : \mathsf{Numeral} \cdot [\![\mathsf{add}(x, y)]\!] = [\![x]\!] + [\![y]\!].
```

An instance of the meaning formula is:

$$\llbracket \mathsf{add}(\lceil 6\rceil, \lceil 11\rceil) \rrbracket = \llbracket \lceil 6\rceil \rrbracket + \llbracket \lceil 11\rceil \rrbracket$$

• The meaning formula for normalize is:

```
\forall p, q : Poly .
(\forall x : \mathbb{N} . \llbracket p \rrbracket = \llbracket normalize(p) \rrbracket) \land (\forall x : \mathbb{N} . \llbracket p \rrbracket = \llbracket q \rrbracket) \equiv normalize(p) = normalize(q)
```

- Let L be a language in some underlying logic.
- An axiomatic theory is a pair $T = (L, \Gamma)$ where Γ is a set of formulas of L that serve as the axioms of T.
 - ▶ Axiomatic theories are implemented in proof assistants.

- Let L be a language in some underlying logic.
- An axiomatic theory is a pair $T = (L, \Gamma)$ where Γ is a set of formulas of L that serve as the axioms of T.
 - Axiomatic theories are implemented in proof assistants.
- An algorithmic theory is a pair (L,Π) where Π is is a set of transformers that implement functions on the expressions of L.
 - Algorithmic theories are implemented in computer algebra systems.

- Let L be a language in some underlying logic.
- An axiomatic theory is a pair $T = (L, \Gamma)$ where Γ is a set of formulas of L that serve as the axioms of T.
 - Axiomatic theories are implemented in proof assistants.
- An algorithmic theory is a pair (L,Π) where Π is is a set of transformers that implement functions on the expressions of L.
 - ► Algorithmic theories are implemented in computer algebra systems.
- Problem. Can an axiomatic theory and algorithmic theory be combined so that we can define and reason about SBMAs in the same context?

- Let L be a language in some underlying logic.
- An axiomatic theory is a pair $T = (L, \Gamma)$ where Γ is a set of formulas of L that serve as the axioms of T.
 - Axiomatic theories are implemented in proof assistants.
- An algorithmic theory is a pair (L,Π) where Π is is a set of transformers that implement functions on the expressions of L.
 - Algorithmic theories are implemented in computer algebra systems.
- Problem. Can an axiomatic theory and algorithmic theory be combined so that we can define and reason about SBMAs in the same context?
- Our solution is the notion of a biform theory.

Biform Theories

- A biform theory is a triple $T = (L, \Pi, \Gamma)$ where:
 - 1. *L* is a language of some underlying logic.
 - 2. Π is a set of transformers that implement functions on the expressions of L.
 - 3. Γ is a set of formulas of L that serve as the axioms of T.
- For each $\pi \in \Pi$, L includes a name for the function implemented by π that serves as a name for π .
- The axioms of T specify the meaning of the nonlogical symbols of L including the names of the transformers of T.
- The transformers may be written in L or in a programming language external to L.
- T is an axiomatic theory if Π is empty and is an algorithmic theory if Γ is empty.

Formalizing Biform Theories

 To formalize a biform theory in a logic Log we need to be able to formalize SBMAs in Log.

Formalizing Biform Theories

- To formalize a biform theory in a logic Log we need to be able to formalize SBMAs in Log.
- To formalize an SBMA A in **Log** we must:
 - 1. Define or specify in **Log** a function *B* on syntactic values representing *A*.
 - 2. State and prove in **Log** the meaning formula for *B* from the definition or specification of *B*.
 - 3. Apply B to mathematical expressions in **Log** by instantiating the meaning formula for B and then applying the result.

Standard Approach: Local Reflection

- Let A be an SBMA on expressions in a language $L_{\rm obj}$ of some logic ${f Log}$.
- We build a metareasoning infrastructure in **Log** consisting of:
 - 1. An inductive type $L_{\rm syn}$ of syntactic values representing the expressions in $L_{\rm obj}$.
 - 2. A quotation operator $\lceil \cdot \rceil$ mapping expressions in $L_{\rm obj}$ to syntactic values of $L_{\rm syn}$.
 - 3. An evaluation operator $[\cdot]$ mapping syntactic values of $L_{\rm syn}$ to values of $L_{\rm obj}$.
- We define a function B in Log from syntactic values representing inputs of A to syntactic values representing outputs of A.
- The infrastructure is local in the sense that $L_{\rm obj}$ is not the whole language L of Log.

Local Reflection

An Alternate Approach: Global Reflection

- Local reflection does not scale up well:
 - ► Each collection of SBMAs requires a separate infrastructure.
 - Extending an SBMA to a new domain requires a new infrastructure.
- Global reflection employs a single infrastructure for all SBMAs:
 - 1. An inductive type representing the entire set of expressions.
 - 2. A global quotation operator 「⋅¬.
 - 3. A global evaluation operator [·].
- Global reflection requires a logic with global quotation and evaluation operators.
- It is an open problem whether global reflection is viable!

Global Reflection

Project Objectives

- Primary objective. Develop a methodology for expressing, manipulating, managing, and generating mathematical knowledge as a graph of biform theories.
- The project is a subproject of MathScheme, a long-term project to produce a framework for integrating formal deduction and symbolic computation.
- Our strategy is to break down the problem into five subprojects.

1. Logic

 Objective. Design a logic Log that is a version of simple type theory with an inductive type of syntactic values, a global quotation operator, and a global evaluation operator.

1. Logic

- Objective. Design a logic Log that is a version of simple type theory with an inductive type of syntactic values, a global quotation operator, and a global evaluation operator.
- \bullet Status. We have developed ${\rm CTT}_{\rm qe}$ [Far18], a version of Church's type theory with global quotation and evaluation operators.
 - ightharpoonup CTT $_{qe}$ is suitable for defining SBMAs and stating, proving, and instantiating their meaning formulas.
 - ▶ We have defined in CTTqe a notion of a theory morphism [Far17].

2. Implementation

 Objective. Produce an implementation Impl of Log and demonstrate that SBMAs can be defined in Impl and their meaning formulas can be stated, proved, and instantiated in Impl.

2. Implementation

- Objective. Produce an implementation Impl of Log and demonstrate that SBMAs can be defined in Impl and their meaning formulas can be stated, proved, and instantiated in Impl.
- ullet Status. We have produced an implementation of ${
 m CTT}_{
 m qe}$, called HOL Light QE [CarFarLas18], by modifying HOL Light.
 - We are working now on testing HOL Light QE by formalizing SBMAs in it.

3. Transformers

 Objective. Enable biform theories to be defined in Impl and introduce a mechanism for applying transformers defined outside of Impl to expressions of Log.

3. Transformers

- Objective. Enable biform theories to be defined in Impl and introduce a mechanism for applying transformers defined outside of Impl to expressions of Log.
- Status. We have not begun this subproject yet.

4. Theory Graphs

• Objective. Enable biform theory graphs to be defined in Impl.

4. Theory Graphs

- Objective. Enable biform theory graphs to be defined in Impl.
- Status. We have developed a case study of a biform theory graph consisting of eight biform theories encoding natural number arithmetic [CarFar17].
 - ► We have produced partial formalizations of the case study in CTT_{qe} and Agda.
 - We intend to formalize the case study in HOL Light QE.

5. Generic, Specializable Transformers

 Objective. Design and develop in Impl a scheme for defining generic transformers in a biform theory T that can be automatically specialized when transported to an instance of T using code generation.

5. Generic, Specializable Transformers

- Objective. Design and develop in Impl a scheme for defining generic transformers in a biform theory T that can be automatically specialized when transported to an instance of T using code generation.
- Status. We have a great deal of experience producing generic programs of this form.

References

- [CarFar17] J. Carette and W. Farmer, "Formalizing Mathematical Knowledge as a Biform Theory Graph: A Case Study", in: *Intelligent Computer Mathematics*, LNCS 10383:9–24, 2017.
- [CarFarLas18] J. Carette, W. M. Farmer, and P. Laskowski, "HOL Light QE", Interactive Theorem Proving, LNCS 10895:215–234, 2018.
- [Far13] W. M. Farmer, "The Formalization of Syntax-Based Mathematical Algorithms using Quotation and Evaluation", in: Intelligent Computer Mathematics, LNCS 7961:35–50, 2013.
- [Far17] W. M. Farmer, "Theory Morphisms in Church's Type Theory with Quotation and Evaluation", *Intelligent Computer Mathematics*, LNCS 10383:147–162, 2017.
- [Far18] W. M. Farmer, "Incorporating Quotation and Evaluation into Church's Type Theory", *Information and Computation*, 260:9–50, 2018.

20/21

Conclusion

The Biform Theories project seeks to show that:

- 1. Global reflection is a viable approach for formalizing SBMAs in biform theories.
- 2. Biform theories provide an effective mechanism for integrating formal deduction and symbolic computation.
- 3. A biform theory graph is a structure well suited for formalizing large bodies of mathematical knowledge.

Conclusion

The Biform Theories project seeks to show that:

- 1. Global reflection is a viable approach for formalizing SBMAs in biform theories.
- 2. Biform theories provide an effective mechanism for integrating formal deduction and symbolic computation.
- 3. A biform theory graph is a structure well suited for formalizing large bodies of mathematical knowledge.

Thank You!