Today: Outline

 Neural networks: artificial neuron, MLP, sigmoid units; neuroscience inspiration, output vs hidden layers; linear vs nonlinear networks;

Feed-forward networks

Reminders: PS1 grades are due Feb 19 (today)
 Pre-lecture Material for Feb 21
 PS2 is due Feb 24

Introduction to Neural Networks

Motivation

Recall: Logistic Regression

$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Output is probability of label 1 given input

$$p(y = 1|x) = \frac{1}{1 + e^{-\theta^T x}}$$

sigmoid/logistic function $\begin{array}{c} \uparrow & g(z) \\ 1 + \\ 0.5 + \\ \hline \end{array}$

predict "
$$y = 1$$
" if $h_{\theta}(x) \ge 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

Recall: Logistic Regression Cost

Logistic Regression Hypothesis:

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

 θ : parameters

 $D = \{x^i, y^i\}$: data

Logistic Regression Cost Function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Goal: minimize cost $\min_{\theta} J(\theta)$

Decision boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Non-linear decision boundaries

Replace features with non-linear functions e.g. log, cosine, or polynomial

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

Limitations of linear models

- Logistic regression and other linear models cannot handle nonlinear decision boundaries
 - Must use non-linear feature transformations
 - Up to designer to specify which one
- Can we instead learn the transformation?
 - Yes, this is what neural networks do!
- A Neural network chains together many layers of "neurons" such as logistic units (logistic regression functions)

Neural Networks learn features

Neurons in the Brain

Inspired "Artificial Neural Networks"

Neurons are cells that process chemical and electrical signals and transmit these signals to neurons and other types of cells

Neuron in the brain

Neural network in the brain

- Micro networks: several connected neurons perform sophisticated tasks: mediate reflexes, process sensory information, generate locomotion and mediate learning and memory.
- Macro networks: perform higher brain functions such as object recognition and cognition.

Logistic Unit as Artificial Neuron

Logistic Unit as Artificial Neuron

Logistic Unit as Artificial Neuron

Artificial Neuron Learns Patterns

- Classify input into class 0 or 1
- Teach neuron to predict correct class label
- Detect presence of a simple "feature"

Example

Neural Networks: Learning

Intuition

Forward propagation of information through a neuron

Neural Networks: Learning

Multi-layer network

Artificial Neuron: simplify

Artificial Neuron: simplify

A single neuron is also called a perceptron

Artificial Neural Network

Deep Network: many hidden layers

Multi-layer perceptron (MLP)

- Just another name for a feed-forward neural network
- Logistic regression is a special case of the MLP with no hidden layer and sigmoid output.

Other Non-linearities

Also called activation functions

tanh

ReLU

 $\max(0,x)$

$$tanh(x) = \frac{2}{1+e^{-2x}} - 1$$

$$RELU(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > = 0 \end{cases}$$

Importance of Non-linearities

The purpose of activation functions is to **introduce non-linearities** into the network

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

Loss Optimization

• Neural network parameters $m{ heta}$ are often referred to as weights $m{W}$.

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- Compute gradient, $\frac{\partial J(W)}{\partial W}$ Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- Compute gradient, $\frac{\partial J(W)}{\partial W}$ Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:

Not feasible to compute over all

- Compute gradient, $\frac{\partial J(W)}{\partial W}$ dataset

 Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:

Compute over a mini-batch

- Compute gradient, $\frac{\partial J(W)}{\partial W}$ a mini-Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:

Compute over

- Compute gradient, $\frac{\partial J(W)}{\partial W}$ a mini-batch Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Parallelization: Batches can be split onto multiple GPUs

Loss/Cost Function

Landscape Visualization

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Large learning rates overshoot, become unstable and diverge

Setting the Learning Rate

- How to select the learning Rate?
 - Try several, and see which works best
 - Start with a learning rate, and change it adaptively as the model trains
 - Many are implemented in Neural Network Tools

Neural Networks Learn Features

logistic regression unit == artificial neuron
chain several units together == neural network
"earlier" units learn non-linear feature transformation

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

simple neural network

$$h(x) = g(\theta + \theta_1 h^{(1)}(x) + \theta_2 h^{(2)}(x) + \theta_3 h^{(3)}(x))$$

Example

Training a neural net: Demo

Tensorflow playground

Artificial Neural Network:

general notation

input
$$x = \begin{bmatrix} x_1 \\ \dots \\ x_5 \end{bmatrix}$$

hidden layer activations

$$h^i = g(\Theta^{(i)}x)$$

$$g(z) = \frac{1}{1 + \exp(-z)}$$

output

$$h_{\Theta}(\mathbf{x}) = g(\Theta^{(2)}a)$$

$$h_{\Theta}(\mathbf{x}) = g(\Theta^{(2)}a) \qquad \text{weights} \quad \Theta^{(1)} = \begin{pmatrix} \theta_{11} & \cdots & \theta_{15} \\ \vdots & \ddots & \vdots \\ \theta_{31} & \cdots & \theta_{35} \end{pmatrix} \quad \Theta^{(2)} = \begin{pmatrix} \theta_{11} & \cdots & \theta_{13} \\ \vdots & \ddots & \vdots \\ \theta_{31} & \cdots & \theta_{33} \end{pmatrix}$$

Input Layer

$$x_1$$
 x_2
 x_3
 h_1
 h_2
 h_3
 h_3

Hidden Layer

Output Layer

Cost function

Neural network: $h_{\Theta}(x) \in \mathbb{R}^K \ (h_{\Theta}(x))_i = i^{th} \ \text{output}$

training error

$$J(\Theta) = \frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2 \right]$$

regularization

Gradient computation

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log h_{\theta}(x^{(i)})_k + (1 - y_k^{(i)}) \log(1 - h_{\theta}(x^{(i)})_k) \right]$$
$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_j^{(l)})^2$$

$$\min_{\Theta} J(\Theta)$$

Need code to compute:

$$- J(\Theta)$$

$$- \frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$$

Gradient computation

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log h_{\theta}(x^{(i)})_k + (1 - y_k^{(i)}) \log(1 - h_{\theta}(x^{(i)})_k) \right]$$
$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_j^{(l)})^2$$

$$\min_{\Theta} J(\Theta)$$

Need code to compute:

-
$$J(\Theta)$$
- $\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$

Deep Learning

Architectures

What is Deep Learning?

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

313472 174235

Why Deep Learning?

Hand engineered features are time consuming, brittle, and not scalable in practice

Can we learn the **underlying features** directly from data?

Lines & Edges

Mid Level Features

Eyes & Nose & Ears

High Level Features

Facial Structure

Why Deep Learning? The Unreasonable Effectiveness of Deep Features

Maximal activations of pool₅ units

[R-CNN]

Rich visual structure of features deep in hierarchy.

conv₅ DeConv visualization
[Zeiler-Fergus]

Why Now?

Stochastic Gradient
Descent

Perceptron
• Learnable Weights

Backpropagation
• Multi-Layer Perceptron

Deep Convolutional NN
• Digit Recognition

Neural Networks date back decades, so why the resurgence?

I. Big Data

- Larger Datasets
- Easier Collection
 & Storage

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

Network architectures

Feed-forward

Fully connected

Layer 1 Layer 2 Layer 3 Layer 4

Convolutional

Recurrent

Fully Connected

Not ideal for representing images

Convolutional Neural Network

A better architecture for 2d signals

LeNet

Summary so far

 Neural network chains together many layers of "neurons" such as logistic units

Hidden neurons learn more and more abstract non-linear features