# CIS604: Techniques in Artificial Intelligence Final Exam, Fall, 2013

Duration: 120 minutes

#### Instructions:

- This is a closed-book exam.
- Answer *all* questions.
- You may use a calculator.
- Start with the easy questions, and don't spend too much time on one question until you covered the others.
- $\bullet$  If you are caught cheating, you will be asked to leave and will receive 0 for this exam.

| Student Name: $$ |  |
|------------------|--|
|                  |  |
|                  |  |
| Student ID:      |  |

| Problem | Points Obtained | Points Possible |
|---------|-----------------|-----------------|
| 1       |                 | 5               |
| 2       |                 | 6               |
| 3       |                 | 14              |
| 4       |                 | 10              |
| 5       |                 | 8               |
| 6       |                 | 7               |
| Total   |                 | 50              |

# 1 Bayesian Networks: D-Separation (5 points)

Consider the following Bayesian network.



 $A \perp B$  means A is independent of B.  $A \perp B \mid C$  means A is independent of B given C. For each of the following, indicate whether the statement is true or false.

- 1.  $C \perp D$
- 2.  $C \perp D|F$
- 3.  $C \perp D|I$
- 4.  $C \perp D|E$
- 5.  $B \perp C \mid I$

#### **ANSWER:**

- 1. True. They are d-separated by common unobserved effect.
- 2. False. The triple A E B is activated (explaining away effect).
- 3. False. Observing G gives information about E, which in turn breaks the d-separation between A and B.
- 4. True. F is not on any path not already covered.
- 5. True. Again, G is not on any path.

2 Constraint Satisfaction Problems (6 points)

|   | 1 | 2 | 3 | 4        | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|----------|---|---|---|---|---|
| Α |   |   | 3 |          | 2 |   | 6 |   |   |
| В | 9 |   |   | ന        |   | 5 |   |   | 1 |
| С |   |   | 1 | $\infty$ |   | 6 | 4 |   |   |
| D |   |   | 8 | 1        |   | 2 | 9 |   |   |
| Е | 7 |   |   |          |   |   |   |   | 8 |
| F |   |   | 6 | 7        |   | 8 | 2 |   |   |
| G |   |   | 2 | 6        |   | 9 | 5 |   |   |
| Н | 8 |   |   | 2        |   | 3 |   |   | 9 |
| П |   |   | 5 |          | 1 |   | 3 |   |   |

Consider the sudoku board above. When filling in the gaps with digits (1-9), no digit can appear twice in a row, column or 3x3 block.

## 2.1 Remaining values

Write down remaining values for the open positions of the central block (D5, E4, E5, E6, F5).

## 2.2 Arc consistency and MRV

Based on the Minimal Remaining Value strategy and arc consistency, solve column 6.

## **ANSWER:**

## Remaining Values

D5 3,4,5,6

E4 4.5.9

E5 3,4,5,6,9

E6 4

F5 3,4,5,9

## Arc consistency and MRV

A6 E6 I6 Remaining 1,4,7 **4** 4, 7

Remaining 1,7 7

Remaining 1

# 3 Hidden Markov Models (14 points)

Given three states A, B and C. From A it is possible to go to B with probability 0.8 or stay in A with probability 0.2. In B and C it is only possible to go to C and A, respectively. Observations can be Red, Green or Blue. The probabilities in A are 3/4, 1/4 and 0 for Red, Green, Blue, respectively. The probabilities in B are 1/4, 1/4 and 1/2 for Red, Green, Blue, respectively. The probabilities in C are 1/6, 2/3 and 1/6 for Red, Green, Blue, respectively.

#### 3.1

Provide a formal representation  $M(\Sigma, Q, A, E)$  of the resulting Hidden Markov Model. Provide A and E in matrix form.

#### 3.2

Provide a graphical representation of the resulting Hidden Markov Model (not including emission probabilities).

#### 3.3

Draw the simplified edit graph (used for the Viterbi algorithm) up to level 3, in which only edges are drawn that represent non-zero transition probabilities.

#### 3.4

Assume that each state is equally likely to start from. Assume we observe the sequence with the single observation  $\{Red\}$ . Calculate the most likely Hidden state.

#### 3.5

Assume we observe the sequence  $\{Red, Green\}$ . Calculate the most likely path of Hidden states.

#### 3.6

Assume we observe the sequence  $\{Red, Green, Blue\}$ . Calculate the most likely path of Hidden states.

**Remember**, the Viterbi algorithm uses the Dynamic Programming matrix s:

$$s_{l,i+1} = e_l(x_{i+1}) \max_{k \in Q'} (s_{k,i} a_{kl})$$

where Q' is the set of states that link into l **ANSWER:** 

Graphical representation



Formal representation:  $M(\Sigma,Q,A,E)$  with  $\Sigma = \{Red,Green,Blue\},\ Q = \{A,B,C\},$ 

$$A = \begin{bmatrix} & A & B & C \\ A & 1/5 & 4/5 & 0 \\ B & 0 & 0 & 1 \\ C & 1 & 0 & 0 \end{bmatrix} E = \begin{bmatrix} & Red & Green & Blue \\ A & 3/4 & 1/4 & 0 \\ B & 1/4 & 1/4 & 1/2 \\ C & 1/6 & 2/3 & 1/6 \end{bmatrix}$$



# 4 PageRank algorithm (10 points)

#### 4.1

Consider the attempt to calculate page ranks of a fully connected link farm: 1000 pages, each linking to each other (a clique).

**Remember** the recursive function for the PageRank PR:

$$PR(p) = \frac{1 - d}{N} + \sum_{i} \frac{PR(in_i)}{C(in_i)}$$

where N are total number of pages in the corpus, d is a damping factor and C are the outlinks for a respective page. Assume N to be  $10^{10}$  and d=0.8. The PageRank algorithm initializes each page rank to 1. Calculate the first three iterations for each node. You can provide estimates.

## 4.2

Assume the above process converges to a PR(p) = 0 for all pages in the link farm. Afterwards, assume it was possible to get a high quality page  $p_0$  with  $PR(p_0) = 500$  and  $C(p_0) = 10$  to link to one of the link farm pages  $p_1$ . Calculate what happens to the page rank of  $p_1$  as well as the other pages of the link farm. Provide the first two iterations.

#### **ANSWER:**

# 5 Q-Learning (8 points)

Consider the actions state space given below:



M and P are terminal states. States A and B contain the initial Q-values for actions "East", "North", "West", "South". Sample transitions are defined by tuples of the form (s,a,r,s'). The following sample observations are given: (A, "West", (0,P), (B, "West", (0,A), (A, "West", (0,P), (A, "West", (0,A)). Express the relevant Q-value updates (using model-free Q-learning) for each sample in terms of  $\gamma$  and  $\alpha$  (discount factor and learning rate, respectively). Remember the formula for Q-value updates:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha[r + \max_{a} \gamma Q(s', a')]$$

## ANSWER:

# 6 Planning (7 points)

Consider the following planning problem:

- Start state:  $\neg open, \neg painted, \neg haveKeys$
- Goal: open, painted
- Actions:
  - GetKeys: (Pre:  $\neg haveKeys$ ), (Eff: haveKeys)
  - OpenDoor: (Pre:  $\neg open, haveKeys),$  (Eff: open)
  - PaintDoor: (Pre: ¬open, ¬Painted), (Eff: painted)

Answer the following questions about the graphplan graph of the above problem.

- 1. List the nodes in level  $S_0$
- 2. List the nodes in level  $A_0$
- 3. List the nodes in level  $S_1$
- 4. List the nodes in level  $A_1$
- 5. List the nodes in level  $S_2$
- 6. What is the first level in which the goal appears?
- 7. List a plan for achieving the goal.