①特許出願公開

⑩公開特許公報(A)

昭57-3040

⑤Int. Cl.³G 01 N 29/04

識別記号

庁内整理番号 6558-2G 砂公開 昭和57年(1982)1月8日

発明の数 3 審査請求 未請求

(全 4 頁)

匈超音波探触子

②特 願 昭55-76649

20出 願 昭55(1980)6月9日

加発 明 者 小園裕三

日立市幸町3丁目1番1号株式会社日立製作所日立研究所内

⑫発 明 者 岡村久宣

日立市幸町3丁目1番1号株式会社日立製作所日立研究所内

@発 明 者 鴨志田陸男

日立市幸町3丁目1番1号株式

会社日立製作所日立研究所内

⑩発 明 者 木野裕敏

日立市幸町3丁目1番1号株式会社日立製作所日立研究所内

@発 明 者 中崎隆光

日立市幸町3丁目1番1号株式 会社日立製作所日立工場内

⑪出 願 人 株式会社日立製作所

東京都千代田区丸の内1丁目5

番1号

仍代 理 人 弁理士 高橋明夫

明 組 也

発明の名称 超音波探触子

特許請求の範囲

- 1. 被体媒体を介して被検体に、超音波を入射させ、整超音波の反射を被出する超音波探触子において、整超音波探触子の前配液体媒体との接触部分に前配液体媒体が前配超音波探触子との前配接触部分より外部へ漏洩するのを防止するシール機構が設けられていることを特徴とする超音波探触子。
- 2. 液体媒体を介して被検体に超音波を入射させ、 該超音波の反射を検出する超音波探触子におい て、前配超音波探触子の前配液体媒体との接触 配分に前配液体媒体が前配超音波探触子との前 配接触部分より外部へ漏洩するのを防止するシ ール機構が設けられ、かつ前配液体媒体を前配 被検体に導入する前配液体の硫入口及び排出口 が前配シール機構に設けられていることを特徴 とする超音波探触子。
- 3. 液体媒体を介して被検体に超音波を入射させ、

該超音波の反射を検出する超音波探触子にかいて、前記超音波探触子の前配液体媒体との接触 乳分に前配液体媒体が前配超音波探触子との前 配接触部分より外部に漏洩するのを防止するシール機構が設けられ、前配液体媒体を前記破検 体に導入する前配液体媒体の流入口及び排出口 が前配シール機構に設けられ、かつ前配液体媒 質の温度を微出する盘度検出体が前配液体媒体 の流通する部分に設けられていることを特徴と する超音波探触子。

発明の詳細な説明

本発明は新規な超音波探触子に保り、特に電子 ビーム路接において、波圧された雰囲気下で移動 する高温の 破検体の超音波深傷に使用するに好適 な超音波深触子に関する。

電子ビーム溶接中に容接部を超音波 採傷する場合、被検体である被溶接物の表面温度は 7 0 ℃以上の高温になり、かつ雰囲気は 10⁻² mmHg 以下に波圧されている。このような高真空かつ高温下の電子ビーム溶接において容接部を超音波探傷す

る技術、特に探触子の接触方法が問題である。類 似した従来技術として、髙温部材の超音波探傷の 探触子の接触方法において、探触子のくさび材に 耐熱樹脂(例えばポリイミド樹脂)を使用する高 温斜角採傷方法がある。しかし、この方法では耐 熱樹脂の温度が時間の経過とともに上昇し、熱的 に安定するまでの時間が大で、その間探触感度が 変動すること、また高温の樹脂中での超音波の波 授が大であるという欠点がある。さらに接触媒質 (水。シリコングリース、グリセリン等)で被検 体袋面をめらしながら採触子を接触させているが、 高具空。高温下の電子ビーム密接では流れ出た接触 触媒質が蒸発し、超音波伝達特性を劣化させるば かりでなく、真空度の低下、電子銃の放電といつ た現象が生じ、溶接品質上好ましくない。従つて、 接触媒質の被検体への付着量をできるだけ少なく する必要がある。以上のように、電子ビーム密接 中に密接部を超音波探傷する場合、探触子及び接 触媒質の熱的保護ならびに接触媒質のもれを最小 限に抑えなければならない。

を厳小限に抑え、かつギャップ内の接触媒質を循 壊させることにより、揉触子及び接触媒質の温度 上昇を防止するようにしたものである。

本発明の実施例につき以下図面を用いて説明する。

第1図及び第2図は本発明の実施例を示す装置 構成を示す図である。第1図において、電子銃1 から出た電子ピームは真空チャンパ(10^{-1 max} 引度以下)6内に置かれた被密接物(被検体)5 に照射され、開先線3が密接される。破密接物を は走行台車(図示せず)に載置され、無面に地の を放けます。超過され、無面に中で を放探はよりが進行する。密接進行中に が超接ピード4の密み大況のみ を放けまする。超接ににや を放けまする。超接をよりが超かした をの欠陥を検出する。超接をより表面に対象 まれた探触子ホルダ7は彼体5の表面に対する。 を放ける。第2図は同のベークライト製の探触子 にいる。探触子ホルダ7に組み込まれている。 探触子がしている。 探触子ホルダには0リング16がはめ込まれ、被 本発明の目的は超音波探触子と被検体とを液体 媒体を介して接触させた部分より液体媒体が漏洩 するのを防止し、さらに又熱的に保護した超音波 球触子を提供するにある。

本発明は、液体媒体を介して被検体に超音波を入射させ、該超音波の反射を検出する超音波探触子において、該超音波探触子の前記液体媒体との接触部分に前記液体媒体が前記超音波探触子との前記接触部分より外部へ漏洩するのを妨止するシール機構が設けられていることを特徴とする超音波探触子にある。

又、本発明は前配液体媒体を前配被検体に導入する前配液体媒体の流入口及び排出口が前配シール機構に設けられているものである。

さらに、本発明は液体媒体の温度を検出する温 度検出体が液体媒体の流通部に設けられているも のである。

本発明は探触子と被検体表面との間にギャップを設け、ギャップ内の接触媒質をOリングでシールするととによつて接触媒質の被検体への付着量

検体表面に接触する。第1図において探触子15 は真空チャンパ外の超音波探傷器14と結線され ている。探触子ホルダ7は被検体表面に探触子ホ ルタを押し付けるための加圧装置8に連結されて いる。さらに、探触子ホルダ7には接触媒質を供 紿するための媒質供給ポンプ10が媒質供給用ホ ース11を介して結合されている。媒質供給用ポ ンプ10には媒質(20℃以下)を貯蔵してある 媒質タンク9がつながれている。また探触子ホル ダ7には媒質回収用ホース12及び媒質回収タン ク13がつながれている。

以下、動作について説明する。板厚50~200 mmで開先線3と被溶接物の端面5Aとの距離が100mm前後の被容接物5の開先線3を電子ビーム容接する場合、破溶接物5の表面温度は約150 Cに達する。第2図に示す探触子ホルダはこのような被検体表面にパネを用いた加圧装置8により加圧力1~3Kgで押し付けられている。第2図において、探触子と被検体表面のギャンブは約1 mm 前後である。探触子ホルダにはめ込まれた0ッン

グは探触子ホルダの下面より約0.5㎜突き出てお り、被検体表面と接触している。このOリングに よる接触で被検体が移動した場合でも滑らかな接 触が可能となる。媒質供給ポンプ10より送り出 された接触媒質は媒質供給用ホース11を通りギ ヤップ内に入り、媒質回収用ホースを通り、媒質 **回収タンクに回収される。ギャップ内に入つた接** 触媒質は0リングと被検体表面の接触でシールさ れ、接触媒質がギャンプの外へもれるのを防止し、 被検体の移動によつて、接触媒質が被検体表面に 付着するのを最小限に抑えている。さらにギャッ プ内の接触媒質が循環することにより探触子及び ギャップ内の接触媒質の温度上料を防止している。 探触子ホルダは耐熱樹脂のペークライト製である。 これは熱伝導率が小であるため、被検体との接触 部周辺からの輻射熱により探触子ホルダ及び探触。 子の温度が上昇するのを防ぐ断熱材の役目を果し ている。本実施例で被検体の表面温度が150℃ の時、ギャップ 1.0 mm で接触媒質の流量が 30cm/ 分、接触媒質の探触子ホルダの入口での温度 2 0

を計測する。計測した温度と温度設定器19で設定した接触媒質の温度とを比較し、計測した温度が設定温度に一致するように接触媒質の供給ポンプ10の流量を制御するように、流量制御装置20を設けた点である。この実施例ではさらに、接触媒質の温度を常に一定に保持することができるという効果がある。

図面の簡単な説明

第1図1本発明の超音波探触子を使つた超音波 装成のプロック図、第2図1本発明の超音波探触 子の断面図、第3図1本発明の超音波探触子を使 つた超音波装置の他の実施例を示すプロック図で ある。

1 …電子銑、 2 …電子ビーム、 3 …開先線、 4 … 溶接ビード、 5 …被溶接材(被検体)、 6 … 真空チャンパ、 7 …超音波探触子ホルダ、 8 …加圧装置、 9 …液体媒体タンク、 1 0 …液体媒体供給ポンプ、 11 …液体媒体供給ホース、 12 …液体媒体回収ホース、 13 …液体媒体回収タンク、 1 4 …超音波探傷器、 15 …超音波探触子、 16 … 0

で加圧力 1 Kg、被検体の移動速度 2 0 0 mm/分の 時、探触子先端の中心部の温度が約45℃、接触 **媒質の探触子ホルタの出口での温度が約65℃以** 下に保持できた。また、接触媒質の付着量は150 **罒゜/**分以下に抑えることが可能であることがわ かつた。なお接触媒質としては拡散ポンプ用のシ リコンオイルを用いた。また被検体表面温度が 200℃の場合でも、接触媒質の流量を増すこと によつて、探触子の温度を50℃以下、ギャップ 内の接触媒質の温度を10℃以下にすることが可 能である。以上のように、本発明の一実施例によ れば、探触子及び接触維質の温度をそれぞれ、 50℃、70℃以下に抑えることができ、かつ接 触媒質の被検体表面への付着量を最小限に抑える ことが可能なため、探触感度の低下の防止、接触 媒質の蒸発防止の効果がある。

第3図は他の実施例を示すもので、第2図と異なるのは、媒質回収用ホース12と探触子ホルダ7との結合部に接触媒質の出口の温度を検出する 熱電対17を設け、温度計列装置18により温度

リング、17…温度検出体(熱電対)、18…温度測定装置、19…温度設定器、20…液体媒体流量制御装置、21…液体媒体流入口、22…液体媒体排出口。

代理人 弁理士 高僑明夫

第1回

PAT-NO:

JP357003040A

DOCUMENT-IDENTIFIER: JP 57003040 A

ULTRASONIC PROBE

PUBN-DATE:

January 8, 1982

INVENTOR-INFORMATION:

NAME

COUNTRY

KOZONO, YUZO

OKAMURA, HISANOBU

KAMOSHITA, RIKUO

KINO, HIROTOSHI

NAKASAKI, TAKAMITSU

ASSIGNEE-INFORMATION:

NAME

COUNTRY

HITACHI LTD N/A

APPL-NO:

JP55076649

APPL-DATE: June 9, 1980

INT-CL (IPC): G01N029/04

US-CL-CURRENT: 73/620

ABSTRACT:

PURPOSE: To prevent the leakage and temp. rise of a liquid medium by providing a sealing mechanism in the part where an ultrasonic probe and a specimen contact through a liquid medium.

CONSTITUTION: A probe 15 is incorporated into a probe holder 7 made of bakelite which is a heat resistant resin and an O-ring which is fitted into the probe holder touches the surface of a specimen 5. The gap between the probe 15 and the specimen surface is about 1mm. The contact medium fed out from a medium supply pump 10 enters the gap, and is recovered by passing through a hose 12 for recovering the medium. The temp. of the medium is measured by the thermocouple 17 provided in the coupling part of the hose 12 and the holder 7 and the rate of the supply flow thereof is controlled by a controller 20 in such a manner as to coincide with the set value of a temp. setter 19. The contact medium in the gap is prevented from leaking to the outside by the O-ring.

COPYRIGHT: (C) 1982, JPO& Japio