

Evidence 2 - Review 1

Sergio Santiago Sánchez Salazar A01645255

Juan Pablo Gil A01741619

Luis Fernando Rojo Valdés A01640584

Emiliano Nuñez Félix A01645413

Javier Solorzano A01645642

21 Agosto, 2025

Modelación de sistemas multiagentes con gráficas computacionales

Gpo 102

Descripción del reto a desarrollar.

Durante este curso trabajaremos a lo largo de cinco semanas en el desarrollo de una solución a la problemática planteada por el socio formador, que consiste en elaborar distintos multiagentes, los cuales sean capaces de realizar la búsqueda de personas completamente visibles y en el área de vuelo de manera autónoma, esto mediante una serie de instrucciones que se le brindaran, descripciones, posición GPS y protocolos. Para llevarlo a cabo, implementaremos algoritmos para la navegación y planeación de rutas, diagrama de clases para cada uno de los agentes, y realizaremos la simulación en un entorno virtual.

Nuestra estrategia consiste en 3 diferentes drones, configurados para hacer la navegación en el menor tiempo posible, donde primero se acercaran a la ubicación del objetivo a 150 m, para la segunda parte realizará la navegación en el radio de 20 m, para ello dividiremos este radio de 20 metros en diferentes casillas o secciones, esto para implementar un algoritmo de búsqueda que nos ayude a planear diferentes rutas para cada uno de los drones, esto nos permitirá que la búsqueda sea más eficiente y se logre obtener la ubicación del objetivo en el menor tiempo posible, como último pasar a la identificación de la persona descrita para posteriormente realizar el aterrizaje. Los drones se intercomunican compartiendo sus conocimientos, como ubicación de secciones ya visitadas, posición de personas descartadas, distancia del objetivo y posición.

Para llevar a cabo el reconocimiento del objetivo cada MAV utilizará su habilidad de percepción para calcular un nivel de seguridad de que encontró al objetivo, basado en la confianza de los tres drones se hará un promedio de quién se piensa es el objetivo y se puede pasar ya sea a otra iteración de este proceso más cerca del objetivo o a elegir al dron más cercano para que aterrice en el radio requerido.

Proceso completo:

- 1. Se deciden las coordenadas generales del objetivo
- 2. Los drones se colocan en una formación predefinida alrededor de las coordenadas
- 3. Los drones utilizan su percepción para encontrar la zona donde es más probable que este el objetivo

- 4. Los drones deciden las coordenadas más probables y pasan a repetir el proceso haciendo el área de la formación más pequeña cada vez.
- 5. Cuando haya un porcentaje de certeza encima del 80% se elige al dron más cercano para que aterrice en el perímetro del objetivo.
- 6. El drone aterriza y el proceso es exitoso

Durante todo este proceso, los drones comparten información como coordenadas y posibles zonas donde se encuentra el objetivo junto con su certeza, siguiendo estas iteraciones, se acercan cada vez más al objetivo hasta estar seguros de que lo encontraron y aterrizar.

Características del agente DRONE

- Percepción (Reconocimiento del entorno)

El agente tiene como función obtener las descripciones de los objetos que se puedan reconocer, como por ejemplo (chaleco naranja y casco amarillo), con esta información puede buscar similitudes en su entorno utilizando sus sensores y cámaras.

- Decisión (Comunicación entre los drones)

Los tres drones utilizarán la información que comparten y, a través de un algoritmo o promedio, tomarán una decisión como si se tratara de una votación entre los tres.

- Acción (Navegación y reconocimiento)

El agente puede realizar la búsqueda y el aterrizaje cercano a la persona descrita, mediante la navegación GPS, el reconocimiento visual y la búsqueda.

Diagrama de protocolo de agentes

Diagramas de agentes

Drone					
Descripcion					
Coordenadas objetivo					
Altura Crucero					
Altura Escaneo					
Altura y coordenadas actuales					
Malla de obstaculos					
Accion					
Volar a posicion					
Ascender					
Descender					
Aterrizar					
Tomar imagen/Escanear Terreno					
Calcular ruta con obstaculos					
Metodos					
GoToMissionArea()					
HandleAscendingState()					
HandleCruisingState()					
HandlePositioningState()					
HandleScaningState()					
HandleLandingState()					
ScanCoordinates()					
Land()					
Capacidades					
Volar evitando obstaculos					
Ascender y Aterrizar					
Tomar imagenes de coordenadas					
Comunicarse con Torre de control (SimulationManager)					

SimulationManager

Descripcion

Coordenadas objetivo

Altura y coordenadas drones

Terreno y area de mision

Descripción de obejtivo

Accion

Comandar a los drones

Seleccionar coordenadas de escaneo

Analizar imagenes escaneadas

Rankear resultados

Elegin drone para aterrizaje

Cambiar estado de los drones

Activar protocolo de vuelo de drones

Metodos

Start()

AssignInitialTrianglePositions()

AnalizeImage()

RankResults()

GetSubjectCoordinates()

SelectLandingDrone()

Capacidades

Cambiar estado de drones y dirigirlos

Analizar imagenes en busca de descripcion

Seleccionar posiciones iniciales

Seleccionar objetivo y aterrizar un drone

Comunicarse con drones

Obtener posicion de modelos

Diagrama de clases Código

Diagrama de clases Simulación

Plan de actividades

Actividad	Integrante Responsable	Plazo Estimado	Estado	Comentarios
Diagramas UML finales (clases, protocolos, simulación)	Emiliano (Luis Fernando)	2 días (Semana 4)	Pendiente	Se incorporaran las correciones del entregable 2
Código agentes (50% mínimo)	Sergio, Javier (Programadores)	2 días (Semana 4)	En proceso	Se probaran los modulos de la navegación y percepción
Código interfaz gráfica (50% mínimo)	Emiliano, Juan Pablo (Programadores)	2 días (Semana 4)	En proceso	Integrar inicial con el entorno Unity
Integración entregables PDF Revisión 3	Todos	2 días (Semana 4)	Pendiente	Se realizaran diagramas, codigos y el plan de trabajo
Entrega Revisión 3 en GitHub (Etiqueta REVIEW 3)	Todos	2 días (Semana 4)	Pendiente	La fecha límite será el cierre de la Semana 4
Preparación de presentación final	Todos	2 días (Semana 5)	Pendiente	Coordianción con el socio formador
Documentación individual (análisis/reflexión)	Cada integrante	2 días (Semana 5)	Pendiente	Entrega individual antes del final
Grabación de video demo	Equipo (Completo)	2 días (Semana 5)	Pendiente	Mostrar la ejecución del sistema de manera completa
Entrega final ZIP en Canvas	Equipo (Completo)	2 días (Semana 5)	Pendiente	Entregar concluido el PDF, video y el código

Aprendizaje adquirido

El aprendizaje adquirido como equipo fue fundamental para llevar a cabo la realización de las actividades, ya que usar el repositorio de github para organizar nuestras forma de trabajar en conjunto permitió la comunicación ordenada. Asimismo, utilizar el plan de actividades permitió al equipo de trabajo, realizar cada actividad en su tiempo establecido, para ello cada integrante logró la implementación de su tarea asignada en el tiempo y forma que se le pidió. De la misma manera, aprendimos también la importancia de dividir nuestros problemas en secciones para la parte de la de los agentes, como por ejemplo la navegación, percepción y decisiones, mientras que los encargados de modelado, aprendieron a simular de mejor manera un entorno realista. Finalmente, para esta última entrega, entendemos la importancia de dejar tiempo para pruebas e integración, no sólo para producir las actividades asignadas.