

Tunisian Republic Ministry of Higher Education and Scientific Research

Carthage University
Higher Institute of Information Technologies and Communication

M E M O R Y Presented for the purpose of obtaining National Master's degree

Mention : Robotics, Computer Science and Communication Systems

Specialty: Data Science and Smart Services (D3S)

Artificial Intelligence for PV Output Power Forecasting

- Presented by Mr: Walid MCHARA
- Under the direction of: Mr. Med-Abdellatif KHALFA

Co-supervised By Mr: Lotfi KHEMISSI

Academic year: 2023/2024

Plan

- 1 Introduction & problematic
- 2 Forecasting Platform AKNIME
- 3 Data Preprocessing
- 4 P_{PV} Forecasting with Regression Models
- 5 Forecast Evaluation
- 6 P_{PV} Prediction using LSTM
- 7 Conclusion & Perspectives

Introduction & problematic

Photovoltaic (PV) Power Generation Systems

Hybrid PV

System

Distributed PV system (DPVS)

Centralized PV system (CPVS)

Without battery

With battery

Types of PV Forecasting for DPVS & CPVS

Real-time dispatch(Rapid variation of the load)

- Load trading
- Reserves purchasing
- Unit commitment
- Power curtailment
- Power management

- **Economic dispatch**
- Unit commitment
- Maintenance

Introduction & problematic

Classification of solar photovoltaic forecasting based on historical data.

Forecasting Platform

Platform Overview: Explore an open-source platform for data analytics.

Rich Toolkit: Offers a diverse range of tools and functionalities for data processing, analysis, and visualization.

User-Friendly GUI: Features a Graphical User Interface (GUI) that empowers users to build and execute data workflows effortlessly.

Versatile Tasks: Facilitates tasks such as data cleaning, feature engineering, machine learning modeling, and result visualization.

Language Compatibility: Provides seamless integration with popular programming languages such as R and Python.

Data Preprocessing

Data Source:

The dataset is collected from the Research Center of Energy (CRTEn) located at Borj Cedria Science and Technology Park (Latitude: 36.717°, Longitude: 10.427°) from january 1, 2005 to December 31, 2020.

<i>X</i> ₁	X_2	X_3	X_4	Y
Global Irradiance(t)	Ambient temperature (t)	Wind Speed (t)	Sun Heigh(t)	PV (t)
Global Irradiance(t+1)	Ambient temperature (t+1)	Wind Speed (t+1)	Sun Heigh(t+1)	PV (t+1)
•••	•••	•••	•••	•••

Data Preprocessing

Feature: Global Irradiance (GI)

 A value, denoted in watts per square meter (W/m2), signifies the complete solar radiation received by a flat horizontal surface.

Feature: Sun Heigh (SH)

 An angle, expressed in degrees, signifies the sun's elevation above the horizon.

Data Preprocessing

Feature: Ambient temperature (Ta):

Denotes the air temperature, measured in degrees
 Celsius (°C), at a height of 2 meters above the ground.

Feature: Wind Speed (Ws)

• Indicates the wind speed, measured in meters per second (m/s), at an elevation of 10 meters above the surface.

3 Prep

Data Preprocessing

Correlation Matrix

Data Normalization: Min-Max normalization

$$x_{scaled} = \frac{x - Min(x)}{Max(x) - Min(x)}$$

Data Preprocessing

Contribution: Restructuring Input Data

Notation	Input variables
X ₁₋₂₄	Hourly output PV power for the last 24 hours in (W).
X ₂₅	Average GI of the last 24 hours in (W/m²).
X ₂₆	Average temperature of the last 24 hours in (°C).
X ₂₇	Average wind speed of the last 24 hours in (m/s).
Notation	Output variables
У	PV output power for the next hour in Watts.

X ₁		<i>X</i> 24	X ₂₅ =AverageGI	X ₂₆ =AverageT	X ₂₇ =AverageWS	Υ
	•••					
PV (t)		<i>PV</i> (<i>t</i> −23)	GI(last24hours)	T (last24hours)	WS(last24hours)	PV (t+1)
	•••					
PV (t+1)		PV (t-22)	GI(last24hours)	T (last24hours)	WS(last24hours)	PV (t+2)
	•••	(- ,	,	(111	,	(,
•••	•••	• • •	•••	•••	•••	•••

Neural Network architecture:

- Simple Regression Tree
- Polynomial Regression
- Linear Regression
- Gradient Boosted Trees
- Random Forest
- Multilayer Perceptron(MLP)

 (ANN)

Supervised Learning

Ensemble Learning

Deep Learning Neural Network

DL4J

RPROP

Advantages

Simplicity: Easy to understand and interpret.

Non-linearity: Can capture non-linear relationships in the data.

Versatility: Suitable for various types of data and problems.

Challenges

Overfitting: Prone to overfitting when the tree becomes too complex.

Instability: Small changes in the data can result in significantly different trees.

May struggle with capturing complex relationships compared to more advanced models.

Polynomial Regression

Degree of the Polynomial

Advantages

Challenges

Determines the degree of the polynomial equation, n.

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta \mathbb{P} x^n$$

Higher-degree polynomials can fit more complex patterns but may be prone to overfitting.

Flexibility

Interpretability

Versatility

Overfitting

Interpretation

Requires a sufficient amount of data for reliable results.

Linear Regression

Types

Simple Linear Regression (y = $\beta_0 + \beta_1 x_1$).

Multiple Linear Regression(y = $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...$).

Advantages

Simplicity

Transparency

Versatility

Challenges

Assumptions: Relies on the assumption of a linear relationship, which may not always hold.

Complex Relationships: Limited in capturing complex, non-linear patterns in data.

Outliers: Sensitive to outliers that can influence the model's accuracy.

Boosting: Combing weak learners into strong learners by creating sequential models such that the final model has the highest accuracy.

Gradient Boosted

Bagging: Creating a different training subset from sample training data with replacement. The final output is based on majority voting, averaging,....

Multi Layer Perceptrons (MLP)

Neural Network Structure

Advantages

Challenges

Input Layer receives the input data.

Hidden Layers: Intermediate layers

Output Layer: The final layer provides the model's prediction.

Complex Patterns:

MLPs can model highly non-linear and complex relationships in data.

Feature Learning

Versatility

Overfitting

Hyperparameter Tuning

Training Data: Requires a substantial amount of data for optimal performance.

 The five Machine Learning Workflows

Regression Tree

Hyperparameter tuning: Grid-Search cross-validation

Performances indexes for regression models

$$R^{2} = 1 - \frac{\sum \left(y_{i} - \overline{y}\right)^{2}}{\sum \left(y_{i} - \overline{y}\right)^{2}}$$

$$R^{2} = 1 - \frac{\sum (y_{i} - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}} MSE = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} MAE = \frac{1}{n} \sum_{i=1}^{n} |y_{i} - \overline{y}|$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \overline{y} \right|$$

Forecast Evaluation

Comparison between train and test scores for forecasting models of PV energy

Model	Execution time		R ₂	MAE	MSE
Simple	16s	Train	0.960	0.009	0.003
Regression Tree		Test	0.845	0.045	0.013
Random Forest	1m24s	Train	0.970	0.017	0.002
		Test	0.922	0.034	0.007
Polynomial	4 s	Train	0.900	0.045	0.008
Regression		Test	0.904	0.046	0.008
Linear	2s	Train	0.900	0.050	0.008
Regression		Test	0.898	0.051	0.008
Gradient	24s	Train	0.920	0.030	0.007
Boosted Tree		Test	0.912	0.032	0.007

Forecast Evaluation

Comparison between train and test scores for forecasting models of PV energy

Forecast Evaluation

Comparison between train and test scores for forecasting MLP models of PV

energy:

	R_2	MAE	MSE	Execution time
DL4J	0.915	0.036	0.007	19m 52s
RPROP	0.917	0.035	0.006	3m 47s

Forecast Evaluation

MLP TP1 and TP2 Topologies:

TP1

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	Υ
GI(t)	T(t)	WS(t)	PV (t+1)
GI(t+1)	T(t+1)	WS(t+1)	PV (t+2)
•••	•••	•••	•••

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	•••	<i>X</i> 27	Y
PV (t)	PV (t−1)	PV (t-2)	•••	PV (t-23)	PV (t+1)
PV (t+1)	PV (t)	PV (t-1)	•••	PV (t-22)	PV (t+2)
•••	•••	•••	•••	•••	•••

TP2

Forecast Evaluation

❖ MLP TP1 and TP2 Topologies:

TP1

Model	Execution time		R ₂	MAE	MSE
DL4J TP1	24m 35s	Train	0.816	0.084	0.016
		Test	0.814	0.037	0.007
DL4J TP2	24m 35s	Train	0.915	0.037	0.007
		Test	0.914	0.037	0.007

Model	Execution time		R ₂	MAE	MSE
RPROP TP1	10m 23s	Train	0.828	0.071	0.014
		Test	0.828	0.070	0.014
RPROP TP2	10m 55s	Train	0.922	0.033	0.006
		Test	0.921	0.034	0.006

Forecast Evaluation

Comparison between train and test scores for forecasting models of PV energy

Forecast Evaluation

Global Workflow System:

RNN vs LSTM

Vanishing gradient problem.

When dealing with a time series, it tends to forget old information. When there is a distant relationship of unknown length, we wish to have a "memory" to it.

RNN vs LSTM

LSTM Network Architecture

LSTM Performance

Algorithm	Valor
MSE	0.00653384468361185
RMSE	0.08083220078416677
MAE	0.036050230863963
R ²	0.9208829381609711

LSTM Performance

Conclusion & Perspectives

- The generation of photovoltaic energy is closely dependent on prevailing weather conditions.
- The construction of forecasters involves the utilization of 27 inputs, among which the inclusion of **PV output power** for the previous 24 hours and **mean daily climatic conditions** has been confirmed as the **optimal choice** for achieving accurate forecasts.
- Results from simulations using the KNIME platform indicate that **Neural Networks** (MLP) and **Ensemble Learning** outperform other methods, achieving an accuracy of over 0.91 R-squared and an MSE of less than 0.007 for one-hour ahead PV output power forecasting.
- Long-term forecasting (24 hours ahead) of PV energy is explored using an RNN algorithm called LSTM, offering both short and long-term predictions with an MSE of less than 0.0065 and an R2 of more than 0.92.

Conclusion & Perspectives

- There are **plans** to create commercial software based on the Python script code, featuring a graphical user interface within a Visual Studio environment.
- **Future work** may involve implementing and evaluating additional RNN models, such as the GRU) model, and incorporating additional data, such as meteorological information or images, to enhance forecast quality.

Thank you for your attention

