

CLAIMS

1. An LKLF/KLF2 gene expression promoter comprising, as an active ingredient, a substance capable of inhibiting the mevalonic acid metabolic pathway.

5 2. The promoter of claim 1, wherein said substance
capable of inhibiting the mevalonic acid metabolic pathway
is a compound represented by the following formula (1):

wherein R¹ represents an organic group, X represents -CH₂CH₂- or -CH=CH-, and R² represents a hydrogen atom or an alkyl group, or a lactone derivative thereof, or a salt thereof.

3. The promoter of claim 2, wherein R¹ is a substituted
15 or unsubstituted indolyl, indenyl, pyridyl, pyrrolopyridyl,
pyrazolopyridyl, thienopyridyl, pyrimidyl, pyrazolyl,
pyrrolyl, imidazolyl, indolidyl, quinolyl, naphthyl,
hexahydronaphthyl, cyclohexyl, phenylsilylphenyl,
phenylthienyl or phenylfuryl group.

20 4. The promoter of claim 2, wherein said active
ingredient is lovastatin, pravastatin, simvastatin,
fluvastatin, cerivastatin, atorvastatin, rosuvastatin,
mevastatin or pitavastatin, or a salt thereof.

5. The promoter of claim 2, wherein said active
25 ingredient is pitavastatin or a salt thereof.

6. The promoter of claim 1, wherein said substance

capable of inhibiting the mevalonic acid metabolic pathway
is a farnesyltransferase inhibitor.

7. The promoter of claim 1, wherein said substance
capable of inhibiting the mevalonic acid metabolic pathway
5 is a geranylgeranyltransferase I inhibitor.

8. The promoter of claim 1, wherein said substance
capable of inhibiting the mevalonic acid metabolic pathway
is a glucosyltransferase.

9. Use of a substance capable of inhibiting the
10 mevalonic acid metabolic pathway as an active ingredient for
the production of an LKLF/KLF2 gene expression promoter.

10. Use of a compound, which is represented by the
following formula (1):

wherein R¹ represents an organic group, X represents -CH₂CH₂-
or -CH=CH-, and R² represents a hydrogen atom or an alkyl group,
or a lactone derivative thereof, or a salt thereof, as an active
20 ingredient for the production of an LKLF/KLF2 gene expression
promoter.

11. The use of claim 10, wherein R¹ is a substituted or
unsubstituted indolyl, indenyl, pyridyl, pyrrolopyridyl,
pyrazolopyridyl, thienopyridyl, pyrimidyl, pyrazolyl,
25 pyrrolyl, imidazolyl, indolidyl, quinolyl, naphthyl,
hexahydronaphthyl, cyclohexyl, phenylsilylphenyl,

phenylthienyl or phenylfuryl group.

12. The use of claim 10, wherein said active ingredient is lovastatin, pravastatin, simvastatin, fluvastatin, cerivastatin, atorvastatin, rosuvastatin, mevastatin or 5 pitavastatin, or a salt thereof.

13. The use of claim 10, wherein said active ingredient is pitavastatin or salt thereof.

14. Use of a farnesyltransferase inhibitor as an active ingredient for the production of an LKLF/KLF2 gene expression 10 promoter.

15. Use of a geranylgeranyltransferase I inhibitor as an active ingredient for the production of an LKLF/KLF2 gene expression promoter.

16. Use of a glucosyltransferase as an active ingredient 15 for the production of an LKLF/KLF2 gene expression promoter.

17. A method for promoting expression of LKLF/KLF2 gene, which comprises administering, as an active ingredient, an effective amount of a substance capable of inhibiting the mevalonic acid metabolic pathway.

20 18. The method of claim 17, wherein said substance capable of inhibiting the mevalonic acid metabolic pathway is a compound represented by the following formula (1):

wherein R¹ represents an organic group, X represents -CH₂CH₂-

or $-\text{CH}=\text{CH}-$, and R^2 represents a hydrogen atom or an alkyl group, or a lactone derivative thereof, or a salt thereof, as an active ingredient.

19. The method of claim 18, wherein R^1 is a substituted
5 or unsubstituted indolyl, indenyl, pyridyl, pyrrolopyridyl,
pyrazolopyridyl, thienopyridyl, pyrimidyl, pyrazolyl,
pyrrolyl, imidazolyl, indolidyl, quinolyl, naphthyl,
hexahydronaphthyl, cyclohexyl, phenylsilylphenyl,
phenylthienyl or phenylfuryl group.

10 20. The method of claim 18, wherein said active
ingredient is lovastatin, pravastatin, simvastatin,
fluvastatin, cerivastatin, atorvastatin, rosuvastatin,
mevastatin or pitavastatin, or a salt thereof.

15 21. The method of claim 18, wherein said active
ingredient is pitavastatin or salt thereof.

22. The method of claim 17, wherein said substance
capable of inhibiting the mevalonic acid metabolic pathway
is a farnesyltransferase inhibitor.

20 23. The method of claim 17, wherein said substance
capable of inhibiting the mevalonic acid metabolic pathway
is a geranylgeranyltransferase I inhibitor.

24. The method of claim 17, wherein said substance
capable of inhibiting the mevalonic acid metabolic pathway
is a glucosyltransferase.

ABSTRACT

Expression of LKLF/KLF2 gene can be promoted by administering, as an active ingredient, an effective amount of a substance capable of inhibiting the mevalonic acid
5 metabolic pathway.

10

15

20

25