Отчёт о выполнении лабораторной работы 1.1.6

Изучение электронного осциллографа

1 Аннотация

Цель работы: ознакомиться с устройством и работой осциллографа. научиться измерять амплитуды и частоты произвольных сигналов; изучить основные характеристики осциллографа и их влияние на искажение сигналов.

В работе используются: осциллограф *GWINSTEK GOS-620*, генераторы электрических сигналов, соединительные кабели.

2 Теоретические сведения

Осциллограф - регистрирующий прибор, в котором исследуемое напряжение (сигнал) преобразуется в видимый на экране график изменения напряжения во времени. Осциллограф широко используется в физическом эксперименте. С его помощью можно исследовать изменение во времени любых физических величин, которые могут быть преобразованы в электрические сигналы.

На рис. 1 показано устройство основной части электронного осциллографа — электронно-лучевой трубки. Трубка представляет собой откачанную до высокого вакуума колбу, в которой расположены: подогреватель катода 1, катод 2, модулятор 3 (электрод, управляющий яркостью изображения), первый (фокусирующий) анод 4, второй (ускоряющий) анод 5, горизонтально и вертикально отклоняющие пластины 6 и 7, третий (ускоряющий) анод 8, экран 9.

При наблюдении периодических и особенно быстропротекающих процессов важно получить на экране осциллогра-

Рис. 1: Электронно-лучевая трубка

фа неподвижное изображение сигнала. Для этого нужно, чтобы период развертки был кратен периоду изучаемого сигнала. Однако, как правило, точное соотношение периодов соблюсти трудно из-за нестабильности генератора развертки или самого изучаемого процесса. Поэтому используют принудительное согласование периодов, при котором изучаемое напряжение «навязывает» свой период генератору развертки. При этом начало прямого хода развёртки должно совпадать строго с одной и той же характерной точкой исследуемого периодического сигнала. Процесс привязки начала развертки к характерным точкам сигнала называется синхронизацией развертки с сигналом.

В процессе работы с осциллографом всегда следует учитывать частотные характеристики каналов вертикального и горизонтального отклонения: амплитудно-частотную характеристику (АЧХ) и фазо-частотную характеристику (ФЧХ). Если на вход «Y» осциллографа подаётся синусоидальное напряжение $U_y = U_0 \sin{(2\pi ft)}$ амплитудой U_0 и частотой f, то для перемещения луча на экране ЭЛТ можно записать: $y = y_0(f) \sin{(2\pi ft + \Delta \Phi_y(f))}$. Здесь U_0 – амплитуда

перемещения луча на частоте f, $\Delta \Phi_y(f)$ - разность между фазой колебаний перемещения луча y и фазой колебаний входного сигнала U_y на частоте f (сдвиг фаз).

Тогда АЧХ канала вертикального отклонения есть зависимость:

$$K_y(f) = \frac{y_0(f)}{U_0},\tag{1}$$

а ФЧХ - зависимость $\Delta\Phi_{y}\left(f\right)$.

При сложении двух взаимно перпендикулярных колебаний с равными или кратными частотами, поданных на входы осциллографа, луч описывает на экране неподвижные замкнутые кривые, которые называются фигурами Лиссажу. При небольшом нарушении кратности частот форма фигур медленно меняется, а при большом - картина размывается.

Фигура, которую описывает луч при сложении колебаний, имеющих одинаковую частоту, представляет собой эллипс. Ориентация этого эллипса зависит от разности фаз колебаний $(\varphi_2 - \varphi_1)$.

В общем случае вид фигуры Лиссажу зависит от соотношений между периодами (частотами), фазами и амплитудами складываемых колебаний. Некоторые частные случаи фигур Лиссажу для разных периодов и фаз показаны на рис. 2. Зная параметры одного колебания, например f_x , можно по фигуре Лиссажу определить параметры другого колебания – f_y . На полученное изображение накладывают мысленно две линии - горизонтальную и вертикальную, не проходящие через узлы фигуры. Фиксируют число пересечений с горизонтальной линией n_x и вертикальной линией n_y . Отношение частот f_y/f_x равно отношению n_x/n_y .

Рис. 2: Фигуры Лиссажу для колебаний одинаковой амплитуды

3 Методика измерений

- 1. Блок горизонтальной развертки (HORIZONTAL): ручка POSITION в среднем положении; кнопка х10 MAG отжата; ручка SWP.VAR в крайнем правом положении;
- 2. Блок вертикального отклонения (VERTICAL): ручки POSITION в среднем положении; внешние ручки VOLTS/DIV обоих каналов в положении 5 V/дел, а внутренние утоплены; тумблеры AC-GND-DC обоих каналов в положении GND (отключены); кнопки ALT/CHOP и INV CH 2 отжаты.
- 3. Блок синхронизации (TRIGGER): TRIG.ALT отжата, LEVEL в среднем положении; переключатель MODE в положении AUTO; SLOPE отжата.
- 4. Включаем осциллограф в сеть. Ставим ручку развертки TIME/DIV в положение X–Y. На экране появится точка. Ручками POSITION располагаем точку в центре экрана осциллографа. Регулируем яркость и четкость изображения точки ручками INTEN и FOCUS размер и яркость точки должны быть минимально возможными, при условии, что точка хорошо видна на экране. После регулировки включите внутреннюю развертку осциллографа, установив ручку TIME/DIV в положение 2 ms.

4 Используемое оборудование

Погрешность осциллографа для прямого измерения периода сигнала δT равна половине цены малого деления осциллографа, т.е. $\frac{1}{10}$ части от TIME/DIV.

5 Результаты измерений и обработка данных

5.1 Наблюдение периодического сигнала от генератора и измерение его частоты

Получим на экране осциллографа устойчивую картину периодического (синусоидального) сигнала, подаваемого с генератора, и с помощью горизонтальной шкалы экрана осциллографа проведём измерение периода и частоты сигнала. Полученные результаты занесём в таблицу 1.

№	$f_{3\Gamma}$, Гц	T', дел	TIME/DIV, MC	T, MC	δT , MC	ε_T , %	$f_{\text{изм}}, \Gamma$ ц	δf , Гц	$ f_{ m 3\Gamma}-f_{ m {\scriptscriptstyle H3M}} ,\ \Gamma$ ц
1									
2									
3									
4									
5									
6									

Таблица 1: Определение частоты сигнала при помощи осциллографа

Частоту сигнала можно вычислить по следующей формуле:

$$f_{\scriptscriptstyle \mathrm{H3M}} = rac{1}{T}.$$

Тогда погрешность вычисления $f_{\text{изм}}$ равна:

$$\delta f_{\text{M3M}} = f_{\text{M3M}} \varepsilon_T.$$

Полученные данные заносим в таблицу 1.

5.2 Измерение амплитуды сигнала

С помощью вертикальной шкалы осциллографа проведём измерение амплитуды сигнала. Для этого установим значение частоты входного сигнала осциллографа 1 к Γ ц, затем измерим отношение $\frac{U_{max}}{U_{-20db}}$, $\frac{U_{-20db}}{U_{-40db}}$, которые способен выдавать генератор. Результаты измерений занесем таблицу $\frac{2}{U_{-20db}}$

U_{max} , B	δU_{max} , B $\varepsilon_{U_{max}}$, %		U_{min} , B	δU_{min} , B	$\varepsilon_{U_{min}},\%$
	CTT	· ·		CTT	64
U_{-20db}, B	$\delta U_{-20db}, B$	$\varepsilon_{U_{-20db}}, \%$	U_{-40db}, B	$\delta U_{-40db}, B$	$\varepsilon_{U_{-40db}}, \%$

Таблица 2: Измерение амплитуды сигнала

5.3 Наблюдение фигур Лиссажу

Для наблюдения фигур Лиссажу необходимо подать на 2 входа осциллографа 2 сигнала различной частоты, причём их частоты должны соотноситься, как целые числа. После получения устойчивой картины фигуры Лиссажу, с помощью изображения можно определить соотношение частот входных сигналов. Для определения соотношения необходимо провести 2 произвольные линии, параллельные осям и не пересекающие фигуру в узловых точках, затем посчитать колличество точек пересечения данных прямых с фигурой. Отношение этих чисел — есть искомое соотношение между частотами.

5.4 Измерение амплитудно-частотной характеристики осциллографа

Амплитудо-частотной характеристикой (AЧX) измерительного прибора называют зависимость амплитуды измеряемого сигнала от частоты сигнала, подаваемого на вход. Проведём измерение AЧX используемого в работе осциллографа во всём диапазоне рабочих частот генератора по формуле (1).

Результаты измерений занесём в таблицу 3.

$\mathcal{N}_{\overline{0}}$	1	2	3	4	5	6
f, Гц						
$\lg f$						
$2U_{AC}$, дел						
$K_{AC} = \frac{U_{AC}}{U_0}$ $2U_{DC}$, дел						
$2U_{DC}$, дел						
$K_{DC} = \frac{U_{DC}}{U_0}$						
No॒	7	0		1.0	11	10
31-	1	8	9	10	11	12
f, Гц	1	8	9	10	11	12
	1	8	9	10	11	12
f , Гц $\lg f$ $2U_{AC}$, дел	1	8	9	10	11	12
f , Гц $\lg f$ $2U_{AC}$, дел	1	8	9	10	11	12
f, Гц lg f	1	8	9	10	11	12

Таблица 3: Измерение АХЧ осциллографа

Причиной различия АХЧ осциллографа в разных режимах работы является ёмкость, включающаяся в схему осциллографа в режиме АС. При больших частотах её влияние становится мало, и оно почти не влияет на показания прибора, но на маленьких частотах оно становится значительным и способным изменить показания прибора.

5.5 Измерение разности ФЧХ каналов осциллографа

Фазо-частотной характеристикой (ФЧХ) называют зависимость разности фаз входного и выходного сигналов от частоты. Выключим внутреннюю развертку осциллографа, переведя переключатель TIME/DIV в положение X–Y. В этом режиме отклонение луча на экране пропорционально подаваемым на каналы напряжениям $Y(t) = k_y U_y(t), \ X(t) = k_x U_x(t)$, где коэффициенты масштаба k_x, k_y определяются положениями ручек VOLTS/DIV. Изменяя частоту генератора f во всем доступном диапазоне, найдём участки, на которых изображение на экране переходит из отрезка в невырожденный эллипс. На этих участках проведём подробное измерение разности фаз $\Delta \varphi(f)$ между каналами X и Y в зависимости от частоты. Внесём измерения в таблицу 4.

$\mathcal{N}_{ar{0}}$	1	2	3	4	5	6	7
f , к Γ ц $\lg f$							
$\lg f$							
$ 2y_0 $, дел							
$ 2A_y $, дел							
$\left \arcsin \left \frac{y_0}{A_y} \right , $ рад							
$ \Delta \varphi $, рад							
No	8	9	10	11	12	13	14
f , к Γ							
$\lg f$							
$ 2y_0 $, дел							
$ 2A_y $, дел							
$\arcsin \left \frac{y_0}{A_y} \right $, рад							
$ \Delta \varphi $, рад							

Таблица 4: Зависимость разности фаз от частоты сигнала

При подаче на взаимно перпендикулярные отклоняющие пластины двух синусоидальных сигналов траектория луча на экране осциллографа представляет собой эллипс и может быть в общем виде описана уравнениями

$$x(t) = A_x \sin(\omega t + \varphi_x), y(t) = A_y \sin(\omega t + \varphi_y).$$

Разность фаз $\Delta \varphi = \varphi_y - \varphi_x$ можно выразить, получив:

$$\sin|\Delta\varphi| = \left|\frac{y_0}{A_y}\right|,\,$$

где y_0 — отклонение луча по вертикали в момент, когда его абсцисса равна нулю; A_y — амплитуда колебаний по оси y.

Тогда возможные значения модуля разности фаз:

$$|\Delta\varphi| = \arcsin\left|\frac{y_0}{A_y}\right|,\tag{2}$$

ИЛИ

$$|\Delta\varphi| = \pi - \arcsin\left|\frac{y_0}{A_y}\right|. \tag{3}$$

При этом, если эллипс наклонён вправо , то угол $\Delta \varphi$ лежит в интервале $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ – имеет место формула (2); если эллипс наклонён влево, то $\Delta \varphi \in \left[-\pi; -\frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}; \pi\right]$ – необходимо использовать формулу (3).