Rozwiązywanie równań nieliniowych Laboratorium 8

Jakub Ciszewski, Wiktor Smaga

3 czerwca 2024

1 Zadanie 1.

Celem ćwiczenia jest przeanalizowanie wyników zwracanych przez funkcje scipy.optimise.newton, porównanie ich z wynikiem innych metod obliczania pierwiastków równań liniowych oraz wskazanie jaki jest powód błędnych wyników

1.1
$$f(x) = x^3 - 5x$$
, $x_0 = 1$

Wynik pochodnej: -2

Pierwiastki z funkcji np.roots: $\left[-2.23606798\ 2.23606798,\ 0\right]$

Pierwiastek z funkcji scipy.optimize.newton: 4.74e-24

1.2
$$f(x) = x^3 - 3x + 1$$
, $x_0 = 1$

Wynik pochodnej: 0

Pierwiastki z funkcji np.roots: $[-1.87938524\ 1.53208889\ 0.34729636]$ Pierwiastek z funkcji scipy.optimize.newton: 1.0000007188230098

Interpretacja wyniku:

Wynik pochodnej wyszedł 0 co jest problemem przez mianownik w tym wzorze na następny iteracyjny element: $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$

1.3
$$f(x) = 2 - x^5, \quad x_0 = 0.01$$

Wynik pochodnej: -5e-08

Pierwiastki z funkcji np.roots: 1.14869835

Pierwiastek z funkcji scipy.optimize.newton: 0.01

Interpretacja wyniku:

Punkt $x_0 = 0.01$ jest blisko ekstremum, co powoduje błąd w obliczeniach

1.4
$$f(x) = x^4 - 4.29x^2 - 5.29, \quad x_0 = 0.8$$

Wynik pochodnej: -4.816

Pierwiastki z funkcji np.roots: -2.3, 2.3

Pierwiastek z funkcji scipy.optimize.newton: -0.787

Interpretacja wyniku:

Obrany punkt x_0 jest za daleko od naszego szukanego pierwiastka. Gdy obierzemy punkt bliższy pierwiastkowi to metoda Newtona znajdzie pierwiastek.

x_0	Wartość
1.0	-0.788
1.1	0.788
1.2	-2.299
1.3	-0.788
1.5	2.3
1.6	2.3
2.0	2.3

2 Zadanie 2.

Dla równania

$$f(x) = x^2 - 3x + 2 = 0$$

przeanalizowano poniższe funkcje definiujące schematy iteracyjne:

•
$$g_1(x) = (x^2 + 2)/3$$

•
$$q_2(x) = \sqrt{3x-2}$$

•
$$g_3(x) = 3 - 2/x$$

•
$$g_4(x) = (x^2 - 2)/(2x - 3)$$

2.1 Analiza zbieżności

2.1.1 Funkcja g_1

$$g_1`(x) = \frac{2x}{3}$$

$$g_1`(2) = 4/3 > 1 \implies \text{rozbieżne}$$

2.1.2 Funkcja g_2

$$g_2`(x) = \frac{3}{2\sqrt{3x-2}}$$

$$g_2`(2) = 3/4 < 1 \implies \text{zbieżne, liniowo}$$

2.1.3 Funkcja g_3

$$g_3`(x) = \frac{2}{x^2}$$

$$g_3`(2) = 1/2 < 1 \implies \text{zbieżne, liniowo}$$

2.1.4 Funkcja g_4

$$g_4'(x) = \frac{2x^2 - 3x + 2}{(2x - 3)^2}$$

 $g_4\lq(2)=0 \implies$ zbieżne, conajmniej kwadratowo

2.2 Schematy iteracyjne

Obliczono wartości iteracji dla funkcji g_i dla punktu początkowego $x_0=3.\,$

	g_1	g_2	g_3	g_4
1	3.7	2.6	2.3	2.3
2	5.1	2.4	2.1	2.1
3	9.5	2.3	2.1	2.0
4	30.8	2.2	2.0	2.0
5	316.0	2.2	2.0	2.0
6	33286.5	2.1	2.0	2.0
7	369331457.9	2.1	2.0	2.0
8	4.5e + 16	2.1	2.0	2.0
9	6.9e + 32	2.0	2.0	2.0
10	1.6e + 65	2.0	2.0	2.0

Tabela 1: Wyniki kolejnych kroków iteracji dla funkcji g_i

W tabeli możemy zauważyć, że każda funkcja za wyjątkiem g_1 zbiega do 2 co potwierdza obliczenia analityczne.

	g_1	g_2	g_3	g_4
2	1.37	0.92	0.9	1.76
3	1.55	0.94	0.95	1.96
4	1.78	0.96	0.98	2.0
5	1.95	0.97	0.99	inf
6	2.0	0.98	0.99	NaN
7	2.0	0.98	1.0	NaN
8	2.0	0.99	1.0	NaN
9	2.0	0.99	1.0	NaN

Tabela 2: Rząd zbieżności w zależności od numeru iteracji

Tabela wyraźnie pokazuję rozbieżność rzędu zbieżności funkcji g_4 , liniowość funkcji g_2 i g_3 oraz kwadratowy rząd zbieżności funkcji g_1 .

2.2.1 Wizualizacja

Wykres 1: Eksperymentalny przybliżony rząd zbieżności w zależności od numeru iteracji

Wykres 2: Błąd bezwzględny w zależności od numeru iteracji

Wykres 3: Błąd bezwzględny w zależności od numeru iteracji

3 Zadanie 3.

Dla poszczególnych równań nieliniowych:

1. Dla równania $x^3 - 2x - 5 = 0$:

$$f(x) = x^3 - 2x - 5$$
, $f'(x) = 3x^2 - 2$
$$x_{n+1} = x_n - \frac{x_n^3 - 2x_n - 5}{3x_n^2 - 2}$$

2. Dla równania $e^{-x} = x$:

$$f(x) = e^{-x} - x$$
, $f'(x) = -e^{-x} - 1$
$$x_{n+1} = x_n - \frac{e^{-x_n} - x_n}{-e^{-x_n} - 1}$$

3. Dla równania $x \sin(x) = 1$:

$$f(x) = x\sin(x) - 1, \quad f'(x) = \sin(x) + x\cos(x)$$
$$x_{n+1} = x_n - \frac{x_n \sin(x_n) - 1}{\sin(x_n) + x_n \cos(x_n)}$$

3.1 Obliczanie liczby iteracji

Zakładając początkowe przybliżenie o dokładności 4-bitów, liczba iteracji k potrzebna do osiągnięcia b bitów dokładności jest oszacowana jako:

$$k \approx \lceil \log_2(b) \rceil$$

Dla 24-bitowej dokładności (około 7 cyfr dziesiętnych):

$$k \approx \lceil \log_2(7) \rceil \approx 3$$

Dla 53-bitowej dokładności (około 16 cyfr dziesiętnych):

$$k \approx \lceil \log_2(16) \rceil \approx 4$$

4 Zadanie 4.

Znaleźć schemat iteracji dla układu równań:

$$\begin{cases} f_1(x_1, x_2) = x_1^2 + x_2^2 - 1 = 0 \\ f_2(x_1, x_2) = x_1^2 - x_2 = 0 \end{cases}$$

4.1 Schemat

$$x_i = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, i \to \text{iteracja}$$

$$f(x_k) = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{bmatrix}$$

$$x_{k+1} = x_k - J(x_k)^{-1} f(x_k)$$

$$J(x_k) = \begin{bmatrix} 2x_1 & 2x_2 \\ 2x_1 & -1 \end{bmatrix}$$

$$J(x_k) s_k = -f(x)$$

 $s_k \to {\operatorname{rozwiązanie}}$ liniowego układu równań

$$x_{k+1} = x_k + s_k \rightarrow \text{ostateczna wersja}$$

4.2 Zestawienie danych

	x_1	x_2
1	0.8333333333333333	0.666666666666666
2	0.7880952380952381	0.6190476190476191
3	0.7861540663060879	0.6180344478216818
4	0.7861513777620804	0.618033988749989
5	0.7861513777574233	0.6180339887498948
6	0.7861513777574233	0.6180339887498948
7	0.7861513777574233	0.6180339887498948
8	0.7861513777574233	0.6180339887498948
9	0.7861513777574233	0.6180339887498948
10	0.7861513777574233	0.6180339887498948

Tabela 3: Wartość przybliżanych pierwiastków układu równań w zależności od numeru iteracji

	x_1	x_2
0	6.001637459505739	7.868932583326325
1	0.24726285456114758	0.1640088273744376
2	0.0003419886730029062	7.427937545093969e-05
3	5.924003538583929e-10	1.5233290434179098e-11
4	0.0	1.7963785889362144e-14
5	0.0	1.7963785889362144e-14
6	0.0	1.7963785889362144e-14
7	0.0	1.7963785889362144e-14
8	0.0	1.7963785889362144e-14
9	0.0	1.7963785889362144e-14

Tabela 4: Błąd względny przybliżanych pierwiastków układu równań

4.3 Wizualizacja

Wykres 4: Błąd względny w zależności od numeru iteracji

5 Wnioski

- Wybór punktu początkowego jest kluczowy w metodzie Newtona
- Metoda Newtona pozwala na obliczenie pierwiastków układu równań nieliniowych w małej liczbie kroków