

Curso de Engenharia de Computação Linguagens Formais, Autômatos e Compiladores

Lógica Proposicional

Slides da disciplina ECM253 – Linguagens Formais, Autômatos e Compiladores
Curso de Engenharia de Computação
Instituto Mauá de Tecnologia – Escola de Engenharia Mauá
Prof. Marco Antonio Furlan de Souza

Conceitos

- Utiliza a lógica formal para descobrir como obter conclusões lógicas a partir de sentenças existentes;
- As sentenças também são denominadas de proposições;
- Lógica proposicional também é conhecida por lógica de sentenças ou cálculo proposicional.

- Argumentos válidos
 - Representação:

$$P_1 \wedge P_2 \wedge P_3 \wedge \ldots \wedge P_n \rightarrow Q$$

- P_1, P_2, \dots, P_n são sentenças denominadas de hipóteses do argumento e Q é a conclusão. Os P_i e Q são fbfs. Lê-se:
 - "Q é uma **conclusão lógica** de P_1 , P_2 , ..., P_n sempre que a verdade de P_1 , P_2 , ..., P_n implica na verdade de Q."
- A fbf $P_1, P_2, \dots, P_n \rightarrow Q$ é um **argumento válido** quando é uma **tautologia**.
- Para determinar uma tautologia:
 - Criar uma tabela verdade;
 - Utilizar um algoritmo de teste de tautologia.

Argumentos válidos

Algoritmo para testar tautologia

```
TestarTautologia (fbf P; fbf Q)
//Dados fbfs P e O, decidir se a fbf P→O é uma tautologia
início
    //Assumir que P→Q NÃO é uma tautologia
    P = true //atribuir V para P
    O = false //atribuir F para O
    repita
        Para cada fbf composta que já tenha um valor verdade
         atribuído, atribua valores verdade a seus componentes
    até que todas as ocorrências de símbolos tenham valores
         verdade atribuídos
    se algum símbolo possui dois valores verdade
    então //Há uma contradição - é falso que não é tautologia
        escreva('P→Q É uma tautologia')
    senão //Provou-se que é verdade que não é uma tautologia
        escreva ('P→Q NÃO É uma tautologia')
    fim se
fim TestarTautologia
```


Argumentos válidos

Exemplo

- "Se George Washington foi o primeiro presidente dos Estados Unidos, então John Adams foi o primeiro vice-presidente. George Washington foi o primeiro presidente dos Estados Unidos. Portanto, John Adams foi o primeiro vice-presidente."
- Este argumento possui duas hipóteses:
 - "Se George Washington foi o primeiro presidente dos Estados Unidos, então John Adams foi o primeiro vice-presidente." $(A \rightarrow B)$
 - "George Washington foi o primeiro presidente dos Estados Unidos."(A)
- E a conclusão:
 - "John Adams foi o primeiro vice-presidente."(B)

- Argumentos válidos
 - Exemplo
 - Representação simbólica do argumento:

$$(A \to B) \land A \to B$$

- Prova com o algoritmo TestarTautologia:
 - Atribuir \vee à $A \rightarrow B \wedge A$;
 - Atribuir F à B;
 - Primeira repetição:
 - $A \rightarrow B$ é \vee e A é \vee (consequência da conjunção)
 - Segunda repetição:
 - Se A→B é ∨ então é o caso que A deva ser ∨ ou F e B não pode ser F, então atribuise ∨ à B;
 - Mas A é ∨ e B é F (início e primeira repetição) então B é valorado com ∨ e F.
 - Como B ficou com dois valores a prova que não é tautologia falha TEMOS UMA TAUTOLOGIA!

- Argumentos válidos
 - Exemplo
 - Representação simbólica do argumento:

$$(A \to B) \land A \to B$$

Prova com tabela verdade:

Α	В	$A \rightarrow B$	(A → B) ∧ A	$(A \rightarrow B) \wedge A \rightarrow B$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V
	Tautalogia			

Sequência de prova

- É uma sequência de fbfs na qual cada fbf ou é uma hipótese ou é o resultado da aplicação de uma das regras de derivação de um sistema formal à fbfs existentes na sequência;
- Esta técnica permite a verificação de tautologias:

```
P_1 (hipótese)
P_2 (hipótese)

:

P_n (hipótese)

fbf<sub>1</sub> (obtida pela aplicação de regra de derivação)

fbf<sub>2</sub> (obtida pela aplicação de regra de derivação)

:

Q (obtida pela aplicação de regra de derivação)
```


Regras de derivação

- Devem ser escolhidas de modo que o sistema formal seja correto (somente argumentos válidos podem ser provados) e completo (todo argumento válido deveria ser provado);
- Duas categorias para regras de derivação:
 - Regras de equivalência: permitem que fbfs individuais sejam reescritas;
 - Regras de inferência: permitem que novas fbfs sejam derivadas a partir de fbfs já existentes na sequência de prova.

- Regras de derivação
 - Regras de equivalência
 - Estabelece que certos pares de fbfs são equivalentes.

Regras de equivalência						
Expressão	Equivalente à	Nome/abreviação				
PvQ PnQ	QvP QnP	Comutativa/com				
(PvQ)vR (PnQ)nR	Pv(QvR) P∧(Q∧R)	Associativa/ass				
¬(PvQ) ¬(P∧Q)	¬P∧¬Q ¬P∨¬Q	Leis de DeMorgan/ DeMorgan				
P→Q	¬PvQ	Implicação/imp				
Р	¬(¬P)	Negação dupla/dn				
P↔Q	$(P \rightarrow Q) \Lambda (Q \rightarrow P)$	Definição de equivalência/equ				

- Regras de derivação
 - Regras de equivalência
 - Exemplo de aplicação

1.
$$(\neg A \lor \neg B) \lor C$$
 (hipótese)
2. $\neg (A \land B) \lor C$ 1, DeMorgan
3. $(A \land B) \to C$ 2, imp

- Regras de derivação
 - Regras de inferência
 - Estabelece que se uma ou mais fbfs existentes correspondem com a primeira parte de um padrão de regra, então pode-se adicionar à sequência uma nova fbf produzida pela segunda parte do padrão que foi correspondido.

Modus Ponens - "Método de AFIRMAR"

Regras de inferência						
De	Pode derivar	Nome/abreviação				
P, P→Q	Q	Modus ponens/mp				
P→Q, ¬Q	¬P	Modus tollens/mt				
P, Q	PΛQ	Conjunção/con				
PΛQ	P, Q	Simplificação/sim				
Р	PvQ	Adição/add				

Modus tollens
- "Método DE
NEGAR"

- Regras de derivação
 - Regras de inferência
 - Exemplo de aplicação

$1. A \to (B \land C)$	(hipótese)

3.
$$B \wedge C$$
 1,2, mp

Teste seus conhecimentos

1) Usando a lógica proposicional, demonstre o teorema:

$$\neg P \to (P \to Q)$$

- 2) Traduzir em símbolos e provar: "Se o programa é eficiente, ele executará rapidamente. Ou o programa é eficiente ou ele tem um erro. No entanto, o programa não executa rapidamente. Portanto o programa tem um erro. (Utilizar os símbolos E (eficiente), Q (rápido), B (erro)).
- 3) Verificar com tabela-verdade que:

$$A \to (B \to C) \Leftrightarrow (A \land B) \to C$$

É uma tautologia.