Curso de Tecnologia em Sistemas de Computação Disciplina : Álgebra Linear Gabarito da AP1 - Primeiro Semestre de 2006 Professores: Márcia Fampa & Mauro Rincon

Cada questão valem (2.0) dois pontos.

- 1. Seja P_2 o espaço vetorial dos polinômios de grau 2. Considere os polinômios $v_1=-x^2-6x,\ v_2=x^2-3x-1$ e $v_3=-3x^2+2$.
 - i) Mostre que v_1 pode ser escrito como uma combinação linear dos vetores $\{v_2, v_3\}$.

Solução: Sejam os escalares α e β . Então

$$-x^{2}-6x = \alpha(x^{2}-3x-1) + \beta(-3x^{2}+2) = (\alpha - 3\beta)x^{2} - 3\alpha x + (-\alpha + 2\beta)$$

Logo temos o sistema linear

$$\begin{cases} \alpha - 3\beta = -1 \\ -3\alpha = -6 \\ -\alpha + 2\beta = 0 \end{cases}$$

Resolvendo o sistema obtemos $\alpha = 2$ e $\beta = 1$. Assim $v_1 = 2v_2 + v_3$.

ii) Podemos afirmar, a partir do item anterior, que o conjunto de vetores $\{v_1,\ v_2,\ v_3\}$ são linearmente dependentes? Porquê?

Solução: O conjunto é LD, pois um dos vetores é combinação linear do restante, ou seja, depende linearmente (LD).

2. Seja S o conjunto das soluções do sistema linear homogêneo, $S = \{x \in \mathbb{R}^n; Ax = 0\}$, onde A é uma matriz de ordem $m \times n$. Mostre que S é um subespaço vetorial do \mathbb{R}^n .

Solução:

- a) O vetor nulo X=0 é solução trivial do sistema homogêneo, logo $0\in S.$
- b) Sejam X_1 e X_2 soluções do sistema linear homogêneo. Então $AX_1=0$ e $AX_2=0$. Logo a soma $AX_1+AX_2=A(X_1+X_2)=0$. Portanto $X_1+X_2\in S$, pois é uma solução do sistema homogêneo.
- c) Seja $\alpha \in \mathbb{R}$ e $X_1 \in S$. Logo $\alpha A X_1 = A(\alpha X_1) = 0$, pois X_1 é solução do sistema homogêneo. Assim $\alpha X_1 \in S$.
- De a), b) e c) conclui-se que S é subespaço vetorial.
- 3. Seja $B = \{v_1, v_2\}$ uma base do subespaço vetorial $S \subset \mathbb{R}^3$, onde $v_1 = (1, 0, 1)$ e $v_2 = (-1, 1, 0)$. O processo de Gram-Schmidt definido por: $w_1 = v_1$; $w_2 = v_2 \left(\frac{v_2.w_1}{w_1.w_1}\right)w_1$, transforma a base B numa base ortogonal $\widehat{B} = \{w_1, w_2\}$.
 - i) Determine a base ortogonal \hat{B} .

Solução: $w_1 = v_1 = (1, 0, 1)$. Para w_2 temos que $(v_2, w_1) = -1$ e $(w_1, w_1) = 2$. Assim temos que $w_2 = v_2 - \left(\frac{v_2.w_1}{w_1.w_1}\right)w_1 = (-1, 1, 0) + 1/2(1, 0, 1) = (-1/2, 1, 1/2)$.

- ii) Seja $v \in \mathbb{R}^3$ e a projeção ortogonal de v sobre S definido por: $u = Proj_s v = \left(\frac{v.w_1}{w_1.w_1}\right) w_1 + \left(\frac{v.w_2}{w_2.w_2}\right) w_2$, onde w_1 e $w_2 \in \widehat{B}$. Para v = (1, 4, 2) determine:
- i) A projeção ortogonal $u = Proj_s v$

Solução:

$$u = \left(\frac{v.w_1}{w_1.w_1}\right)w_1 + \left(\frac{v.w_2}{w_2.w_2}\right)w_2 = 3/2(1,0,1) + 3(-1/2,1,1/2) = (0,3,3),$$
 pois $(v,w_1) = 3$, $(v,w_2) = 9/2$, $(w_1,w_1) = 2$, $(w_2,w_2) = 3/2$.

ii) Define-se por complemento ortogonal de S em \mathbb{R}^3 ao conjunto $S^{\perp} = \{v \in \mathbb{R}^3; (v, u) = 0, \forall u \in S\}.$

Para v = (1, 4, 2), determine o(s) vetor(es) de S^{\perp} .

Solução: Sabemos que $\mathbb{R}^3 = S \oplus S^{\perp}$, ou seja, para todo vetor $v \in \mathbb{R}^3$ tem-se que v = u + w, onde $u \in S$ e $w \in S^{\perp}$. Logo $w = v - u = (1, 4, 2) - (0, 3, 3) = (1, 1, -1) \in S^{\perp}$.

4. Considere o sistema linear homogêneo:

$$\begin{cases} x_1 + 2x_2 - 4x_3 + 3x_4 = 0 \\ x_1 + 2x_2 - 2x_3 + 2x_4 = 0 \\ 2x_1 + 4x_2 - 2x_3 + 3x_4 = 0 \end{cases}$$

Determine uma base e a dimensão do espaço de soluções.

Solução A matriz aumentada $[A \mid 0]$ do sistema é dada por

$$[A|0] = \begin{bmatrix} 1 & 2 & -4 & 3 & | & 0 \\ 1 & 2 & -2 & 2 & | & 0 \\ 2 & 4 & -2 & 3 & | & 0 \end{bmatrix}$$

Fazendo $L_2 \leftarrow L_2 - L_1$ e $L_3 \leftarrow L_3 - 2L_1$, obtemos

$$[A^{1}|0] = \begin{bmatrix} 1 & 2 & -4 & 3 & | & 0 \\ 0 & 0 & 2 & -1 & | & 0 \\ 0 & 0 & 6 & -3 & | & 0 \end{bmatrix}$$

Fazendo $L_3 \leftarrow L_3 - 3L_2$, obtemos

$$[A^2|0] = \begin{bmatrix} 1 & 2 & -4 & 3 & | & 0 \\ 0 & 0 & 2 & -1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Dividindo a L_2 por 2 e depois fazendo $L_1 \leftarrow L_1 + 4L_2$, obtemos

$$[A^3|0] = \begin{bmatrix} 1 & 2 & 0 & 1 & | & 0 \\ 0 & 0 & 1 & -1/2 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Resolvendo o sistema obtemos que $x_4 = 2x_3$ e $x_1 = -2x_2 - 2x_3$ Assim o conjunto de solução do sistema é dado por:

$$S = \{(x_1, x_2, x_3, x_4); x_4 = 2x_3 \text{ e } x_1 = -2x_2 - 2x_3\}$$

Como as variáveis x_2 e x_3 são variáveis livres, conclui-se que dimS=2. Logo, qualquer subconjunto de S com dois vetores LI forma uma base de S. Por exemplo $x_2=1$ e $x_3=-1$ então $x_1=0$ e $x_4=-2$. Assim um vetor $v_1=(0,1,-1,-2)\in S$. Um outro vetor da base, pode ser escolhendo $x_2=0$ e $x_3=1$. Então $x_1=-2$ e $x_4=2$. Assim um vetor $v_2=(-2,0,1,2)\in S$. Note que v_1 e v_2 são LI e como são geradores de $S=[v_1,v_2]$ então é uma base de S.

5. Considere o sistema linear:

$$\begin{cases} x_1 - 2x_2 = a \\ 2x_1 + x_2 = b \\ -x_1 = c \\ -3x_1 + x_2 = d \end{cases}$$

Estabeleça uma relação entre os termos independentes $\{a, b, c, d\}$, usando o Método de Gauss-Jordan, de tal forma que o sistema tenha solução única, diferente da solução trivial a = b = c = d = 0.

Solução A matriz aumentada $[A \mid \mathbf{b}]$ do sistema é dada por

$$[A|\mathbf{b}] = \begin{bmatrix} 1 & -1 & | & a \\ 2 & 1 & | & b \\ -1 & 0 & | & c \\ -3 & 1 & | & d \end{bmatrix}$$

Fazendo $L_2 \leftarrow L_2 - 2L_1$, $L_3 \leftarrow L_3 + L_1$ e $L_4 \leftarrow L_3 + 3L_1$ obtemos

$$[A^{1}|\mathbf{b}] = \begin{bmatrix} 1 & -1 & | & a \\ 0 & 3 & | & -2a+b \\ 0 & 0 & | & a+c \\ 0 & 2 & | & 3a+d \end{bmatrix}$$

Dividindo por 3 a L_2 , trocando as linhas L_3 e L_4 e fazendo $L_3 \leftarrow L_3 - 2L_2$, obtemos

$$[A^{2}|\mathbf{b}] = \begin{bmatrix} 1 & -1 & | & a \\ 0 & 1 & | & (-2a+b)/3 \\ 0 & 0 & | & (13a-2b+3d)/3 \\ 0 & 0 & | & a+c \end{bmatrix}$$

Assim para que o sistema tenha solução única é necessário que:

$$\left\{ \begin{array}{l} a+c=0 \Leftrightarrow c=-a \\ (13a-2b+3d)/3=0 \Leftrightarrow d=(-13a+2b)/3 \end{array} \right.$$

Podemos então escrever que o conjuntos do termos independentes tal que a solução do sistema é única é dado por:

$$\mathbf{b} = \{(a, b, c, d) \in \mathbb{R}^4; (a, b, -a, (-13a + 2b)/3)\}.$$