Reminder

- Feb 24, Deadline for Homework 1
- Feb 28, Quiz 1
 - Coverage: matrix algebra and ML basics
 - Questions in Quiz 1 are similar to those in HM1 and HM2.
 - Bring printed materials to Quiz 1.
 - No laptop, phone, or tablet.
- Mar 7, Deadline for project proposal
 - Submit the proposal to Canvas.

Shusen Wang

Question: how to project **z** onto the hyperplane?

Question: how to project **z** onto the hyperplane?

distance = $||\mathbf{z} - \mathbf{x}||_2$

Solution: find **x** on the hyperplane such that $\left| \left| \mathbf{z} - \mathbf{x} \right| \right|_{2}^{2}$ is minimized.

•
$$\min_{\mathbf{x}} ||\mathbf{z} - \mathbf{x}||_2^2$$
; s.t. $\mathbf{w}^T \mathbf{x} + b = 0$

Hyperplane
$$\mathbf{w}^T \mathbf{x} + b = 0$$

Question: how to project **z** onto the hyperplane?

Solution: find **x** on the hyperplane such that $\left| \left| \mathbf{z} - \mathbf{x} \right| \right|_{2}^{2}$ is minimized.

Hyperplane
$$\mathbf{w}^T \mathbf{x} + b = 0$$

•
$$\min_{\mathbf{x}} ||\mathbf{z} - \mathbf{x}||_2^2$$
; s.t. $\mathbf{w}^T \mathbf{x} + b = 0$

• Solve the problem using the KKT conditions:

$$\begin{cases} \frac{\partial \left|\left|\mathbf{z} - \mathbf{x}\right|\right|_{2}^{2}}{\partial \mathbf{x}} + \lambda \frac{\partial \left(\mathbf{w}^{T} \mathbf{x} + b\right)}{\partial \mathbf{x}} = 0; \\ \mathbf{w}^{T} \mathbf{x} + b = 0. \end{cases}$$

• Solution:
$$\mathbf{x} = \mathbf{z} - \frac{\mathbf{w}^T \mathbf{z} + b}{||\mathbf{w}||_2^2} \mathbf{w}$$

Question: how to project **z** onto the hyperplane?

Solution: find x on the hyperplane such that $||\mathbf{z} - \mathbf{x}||_2^2$ is minimized.

• Solution:
$$\mathbf{x} = \mathbf{z} - \frac{\mathbf{w}^T \mathbf{z} + b}{||\mathbf{w}||_2^2} \mathbf{w}$$

• The ℓ_2 distance between ${\bf z}$ and the hyperplane is

$$\left|\left|\mathbf{z}-\mathbf{x}\right|\right|_2 = \frac{\left|\mathbf{w}^T\mathbf{z}+b\right|}{\left|\left|\mathbf{w}\right|\right|_2}.$$

Hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$

Support Vector Machine

Separate data by a hyperplane (assume the data are separable)

An arbitrary hyperplane.

The hyperplane that maximizes the margin.

Separate data by a hyperplane (assume the data are separable)

Hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$

Separate data by a hyperplane (assume the data are separable)

 The distance between any x and the hyperplane is

$$\frac{\left|\mathbf{w}^T\mathbf{x} + b\right|}{\left|\left|\mathbf{w}\right|\right|_2}$$

The margin is

$$\min_{j} \frac{\left| \mathbf{w}^{T} \mathbf{x}_{j} + b \right|}{\left| \left| \mathbf{w} \right| \right|_{2}}$$

Hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$

Separate data by a hyperplane (assume the data are separable)

Hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$

 The distance between any x and the hyperplane is

$$\frac{\left|\mathbf{w}^T\mathbf{x} + b\right|}{\left|\left|\mathbf{w}\right|\right|_2}$$

The margin is

$$\min_{j} \frac{|\mathbf{w}^T \mathbf{x}_j + b|}{||\mathbf{w}||_2} = \min_{j} \frac{y_j(\mathbf{w}^T \mathbf{x}_j + b)}{||\mathbf{w}||_2}.$$

The figure is from the book "Foundations of Machine Learning"

Margin =
$$\min_{j} \frac{y_j(\mathbf{w}^T \mathbf{x}_j + b)}{||\mathbf{w}||_2}$$
; we want to maximize the margin.

Margin =
$$\min_{j} \frac{y_{j}(\mathbf{w}^{T}\mathbf{x}_{j}+b)}{||\mathbf{w}||_{2}}$$
; we want to maximize the margin.

Define
$$\bar{\mathbf{x}}_j = [\mathbf{x}_j; 1] \in \mathbb{R}^{d+1}$$

Define $\bar{\mathbf{w}} = [\mathbf{w}, b] \in \mathbb{R}^{d+1}$
 $\rightarrow \mathbf{x}_j^T \mathbf{w} + b = \bar{\mathbf{x}}_j^T \bar{\mathbf{w}}$

Margin =
$$\min_{j} \frac{y_{j} \mathbf{w}^{T} \mathbf{x}_{j}}{||\mathbf{w}||_{2}}$$
; we want to maximize the margin.

Support Vector Machine (SVM): $\max_{\mathbf{w}} \min_{j} \frac{y_{j}\mathbf{w}^{T}\mathbf{x}_{j}}{||\mathbf{w}||_{2}}$

Support Vector Machine (SVM): $\max_{\mathbf{w},b} \min_{j} \frac{y_j \mathbf{w}^T \mathbf{x}_j}{||\mathbf{w}||_2}$

Support Vector Machine (SVM): $\max_{\mathbf{w}} \min_{j} \frac{y_{j}\mathbf{w}^{T}\mathbf{x}_{j}}{||\mathbf{w}||_{2}}$

$$\max_{\mathbf{w}} \min_{j} \frac{y_{j} \mathbf{w}^{T} \mathbf{x}_{j}}{||\mathbf{w}||_{2}} = \max_{\mathbf{w}} \frac{\min_{j} y_{j} \mathbf{w}^{T} \mathbf{x}_{j}}{||\mathbf{w}||_{2}}$$

$$= \max_{\mathbf{w}} \frac{1}{||\mathbf{w}||_{2}}, \quad \text{s.t.} \quad \min_{j} y_{j} \mathbf{w}^{T} \mathbf{x}_{j} = 1$$

$$= \min_{\mathbf{w}} ||\mathbf{w}||_{2}^{2}, \quad \text{s.t.} \quad \min_{j} y_{j} \mathbf{w}^{T} \mathbf{x}_{j} = 1$$

$$= \min_{\mathbf{w}} ||\mathbf{w}||_{2}^{2}, \quad \text{s.t.} \quad y_{j} \mathbf{w}^{T} \mathbf{x}_{j} \geq 1 \text{ for all } j$$

$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j \le 0 \text{ for all } j \in \{1, \dots, n\}.$$

Equivalent form of SVM

$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j \le 0 \text{ for all } j \in \{1, \dots, n\}.$$

$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j \le 0 \text{ for all } j \in \{1, \dots, n\}.$$

$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j \le 0 \text{ for all } j \in \{1, \dots, n\}.$$

$$\min_{\mathbf{w}, \boldsymbol{\xi_j}} ||\mathbf{w}||_2^2 + \lambda \sum_j [\boldsymbol{\xi_j}]_+, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j = \boldsymbol{\xi_j} \text{ for all } j \in \{1, \dots, n\}.$$

• $\left[\xi_{j}\right]_{+} = \max\left\{\xi_{j}, 0\right\}$

$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j \leq \mathbf{0} \text{ for all } j \in \{1, \dots, n\}.$$

$$\min_{\mathbf{w}, \boldsymbol{\xi_j}} ||\mathbf{w}||_2^2 + \lambda \sum_j [\boldsymbol{\xi_j}]_+, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j = \boldsymbol{\xi_j} \text{ for all } j \in \{1, \dots, n\}.$$

- $\left[\xi_{j}\right]_{+} = \max\left\{\xi_{j}, 0\right\}$
- $\xi_i \leq 0$ means the constraint $1 y_i \mathbf{w}^T \mathbf{x}_i \leq 0$ is satisfied
 - → no penalty!
- $\xi_i > 0$ means the constraint is violated (because the data is inseparable)
 - \rightarrow penalize the violation ξ_i .

$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j \le \mathbf{0} \text{ for all } j \in \{1, \dots, n\}.$$

$$\min_{\mathbf{w}, \boldsymbol{\xi_j}} ||\mathbf{w}||_2^2 + \lambda \sum_j [\boldsymbol{\xi_j}]_+, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j = \boldsymbol{\xi_j} \text{ for all } j \in \{1, \dots, n\}.$$

$$\min_{\mathbf{w},b} ||\mathbf{w}||_2^2 + \lambda \sum_j [1 - y_j \mathbf{w}^T \mathbf{x}_j]_+.$$

SVM:
$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2 + \lambda \sum_j g(y_j \mathbf{w}^T \mathbf{x}_j)$$
.

Hinge loss: $g(z) = [1 - z]_{+}$.

SVM:
$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2 + \lambda \sum_j g(y_j \mathbf{w}^T \mathbf{x}_j)$$
.

Hinge loss:
$$g(z) = [1 - z]_+$$
.

Hard thresholding:
$$h(z) = \begin{cases} 1, & \text{if } z < 0; \\ 0, & \text{if } z \ge 0. \end{cases}$$

SVM:
$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2 + \lambda \sum_j g(y_j \mathbf{w}^T \mathbf{x}_j)$$
.

Hinge loss:
$$g(z) = [1 - z]_+$$
.

Hard thresholding:
$$h(z) = \begin{cases} 1, & \text{if } z < 0; \\ 0, & \text{if } z \ge 0. \end{cases}$$

Logistic loss:
$$l(z) = log(1 + e^{-z})$$
.

- Convexity
 - Hinge loss and logistic loss are convex.
 - Global optima can be efficiently found.
- Smoothness
 - Hinge loss is non-smooth.
 - Logistic loss is smooth.
- Logistic regression is easier to solve than SVM.
 - GD for logistic regression has linear convergence.
 - Algorithms for SVM have sub-linear convergence.