Density Estimation

Chenghua Lin
Computing Science
University of Aberdeen

Outline

- Density estimation:
 - Maximum likelihood (ML)
 - Maximum a posteriori (MAP)
 - Bayesian framework

Parametric density estimation

Basic settings:

- A set of random variables $\mathbf{X} = \{X_1, X_2, \dots, X_d\}$
- A model of the distribution over variables in X with parameters Θ : $p(X|\Theta)$
- Data $D = \{D_1, D_2, ..., D_n\}$

Objective:

- find parameters $\widehat{\Theta}$ that best describe $p(\mathbf{X}|\Theta)$

Parameter estimation

Maximum likelihood (ML)

Maximize $p(\boldsymbol{D}|\Theta,\zeta)$

- yields: **one set** of parameters Θ_{ML}
- the target distribution is approximated as:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X}|\Theta_{ML})$$

Coin example

Parameter estimation: Coin example

```
Coin example: we have a coin that can be biased Outcomes: two possible values — head or tail Data: D a sequence of outcomes x_i such that — head x_i = 1 — tail x_i = 0 Model: probability of a head \theta probability of a tail (1 - \theta)
```

Objective:

We would like to estimate the probability of a **head** $\widehat{\theta}$ from data

Parameter estimation Example

- Assume the unknown and possibly biased coin probability of the head is θ
- Data:

HHTTHHTHTTTHTHHHHTHHHHT

– Heads: 15

- Tails: 10

What would be your estimate of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

$$\tilde{\theta} = \frac{15}{25} = 0.6$$

Probability of an outcome

Data: D a sequence of outcomes x_i such that

```
- head x_i = 1
```

- tail
$$x_i = 0$$

Model: probability of a head θ

probability of a tail
$$(1 - \theta)$$

Assume: we know the probability θ

Probability of an outcome of a coin flip x_i

$$P(x_i|\theta) = \theta^{x_i}(1-\theta)^{(1-x_i)}$$
 \leftarrow Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability

- Gives
$$\theta$$
 for $x_i = 1$

- Gives
$$(1 - \theta)$$
 for $x_i = 0$

Data: D a sequence of outcomes x_i such that

```
- \text{head} x_i = 1
```

$$- tail x_i = 0$$

Model: probability of a head θ

probability of a tail $(1-\theta)$

Assume: a sequence of independent coin flips

D = **H H T H**

What is the probability of observing the data sequence **D**:

$$P(D|\theta) = ?$$

Data: D a sequence of outcomes x_i such that

- $\text{head} x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of independent coin flips

D = **H H T H**

What is the probability of observing the data sequence **D**:

$$P(D|\theta) = \theta\theta(1-\theta)\theta(1-\theta)\theta$$

Data: D a sequence of outcomes x_i such that

```
- head x_i = 1
```

- tail
$$x_i = 0$$

Model: probability of a head θ

probability of a tail
$$(1 - \theta)$$

Assume: a sequence of independent coin flips

What is the probability of observing the data sequence **D**:

$$P(D|\theta) = \theta\theta(1-\theta)\theta(1-\theta)\theta$$

likelihood of the data

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ

probability of a tail $(1 - \theta)$

Assume: a sequence of independent coin flips

D = **H H T H T H T H** (encoded as **D**= **110101**)

What is the probability of observing the data sequence **D**:

$$P(D|\theta) = \theta\theta(1-\theta)\theta(1-\theta)\theta$$

Can be rewritten using the Bernoulli distribution:

$$P(D|\theta) = \prod_{i=1}^{6} \theta^{x_i} (1-\theta)^{(1-x_i)}$$

The goodness of fit to the data

Learning: we do not know the value of the parameter θ Our learning goal:

• Find the parameter θ that fits the data D the best.

One solution to the "best": Maximize the likelihood

$$P(D|\theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$

Intuition:

 more likely are the data given the model, the better is the fit

Example: Bernoulli distribution

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that

```
- head x_i = 1
```

$$-$$
 tail $x_i = 0$

Model: probability of a head θ

probability of a tail $(1-\theta)$

Objective:

We would like to estimate the probability of a **head** $\widehat{\theta}$

Probability of an outcome x_i

$$P(x_i|\theta) = \theta^{x_i}(1-\theta)^{(1-x_i)}$$
 Bernoulli distribution

Maximum likelihood estimate

Likelihood of data

$$P(D|\theta,\zeta) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)}$$

Maximum likelihood estimate

$$\theta_{ML} = \arg\max_{\theta} P(D|\theta, \zeta)$$

Optimize log-likelihood (the same as maximizing likelihood)

$$l(D,\theta) = \log P(D|\theta,\zeta) = \log \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)}$$

$$= \sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log(1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log(1-\theta) \sum_{i=1}^{n} (1-x_i)$$

 N_1 - number of heads seen N_2 - number of tails seen

Maximum likelihood (ML) estimate

Optimize log-likelihood

$$l(D, \theta) = N_1 log\theta + N_2 log(1 - \theta)$$

Set derivative to zero

$$\frac{\partial l(D,\theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1-\theta)} = 0$$

Solving

$$\theta = \frac{N_1}{N_1 + N_2}$$

ML Solution:

$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$

Maximum likelihood estimate Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTTTHTHHHHTHHHHT

– Heads: 15

– Tails: 10

 What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTTTHTHHHHHHHHH

- **Heads:** 15
- Tails: 10
- What is the ML estimate of the probability of a head and a tail?
 - Heads: $\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6$
 - Tails: $(1 \theta_{ML}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4$

Parameter estimation

Other possible criteria:

Maximum a posteriori probability (MAP)

- Maximize $p(\mathbf{\Theta}|D,\zeta)$ (mode of the posterior)
- yields: one set of parameters Θ_{MAP}
- Approximation:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X}|\Theta_{MAP})$$

Maximum a posteriori estimate

Maximum a posteriori estimate

Selects the mode of the **posterior distribution**

$$\theta_{MAL} = \arg\max_{\theta} P(D|\theta, \zeta)$$

Likelihood of data
$$prior$$

$$p(\theta|D,\zeta) = \frac{P(D|\theta,\zeta)p(\theta|\zeta)}{P(D|\zeta)} \text{ (via Bayes rule)}$$
 Normalizing factor

$$P(D|\theta,\zeta) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)} = \theta^{N_1} (1-\theta)^{N_2}$$

 $P(\theta|\zeta)$ is the prior probability on θ

How to choose the prior probability?

Maximum a posteriori estimate

How to choose the prior probability?

- Our prior belief in possible values for θ must reflect the fact that probability is zero for any θ outside the range [0, 1]
- Within [0, 1], we are free to specify our beliefs in any way we wish
- In most cases, we would want to choose a distribution for the prior beliefs that peaks somewhere in [0,1]
- Convenience of mathematical calculation, e.g., conjugate prior

Prior distribution

Choice of prior: Beta distribution

$$p(\theta|\zeta) = Beta(\theta|\alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_2 - 1}$$

 $\Gamma(x)$ - A Gamma function, i.e., a generalization of factorial to real numbers

For integer values of x $\Gamma(x) = x!$

Why to use Beta distribution?

Beta distribution "fits" Bernoulli trials - conjugate choices

$$P(D|\theta,\zeta) = \theta^{N_1}(1-\theta)^{N_2}$$

Posterior distribution is again a Beta distribution

$$p(\theta|D,\zeta) = \frac{P(D|\theta,\zeta)Bata(\theta|\alpha_1,\alpha_2)}{P(D|\zeta)} = Bata(\theta|\alpha_1 + N_1,\alpha_2 + N_2)$$

Beta distribution

Maximum a posterior probability

Maximum a posteriori estimate

Selects the mode of the posterior distribution

- Selects the mode of the **posterior distribution**
$$p(\theta|D,\zeta) = \frac{P(D|\theta,\zeta)Bata(\theta|\alpha_1,\alpha_2)}{P(D|\zeta)} = Bata(\theta|\alpha_1+N_1,\alpha_2+N_2)$$

$$= \frac{\Gamma(\alpha_1+N_1+\alpha_2+N_2)}{\Gamma(\alpha_1+N_1)\Gamma(\alpha_2+N_2)}\theta^{N_1+\alpha_1-1}(1-\theta)^{N_2+\alpha_2-1}$$
 Notice that parameters of the prior

act likes smoothing counts of heads and tails (sometimes they are also referred to as prior counts)

MAP Solution:
$$\theta_{MAP} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2}$$

MAP estimate example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTTTHTHHHHTHHHHT

- **Heads:** 15
- Tails: 10
- Assume $p(\theta|\zeta) = Bata(\theta|5,5)$
- What is the MAP estimate?

$$\theta_{MAP} = \frac{\alpha_1 + N_1 - 1}{N - 2} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2} = \frac{19}{33}$$

MAP estimate example

- Note that the prior and data fit (data likelihood) are combined
- The MAP can be biased with large prior counts
- It is hard to overturn it with a smaller sample size
- Data:

HHTTHHTHTTTHTHHHHTHHHHT

- **Heads:** 15
- Tails: 10
- Assume

$$-p(\theta|\zeta) = Bata(\theta|5,5) \qquad \theta_{MAP} = 19/33$$

$$-p(\theta|\zeta) = Bata(\theta|5,20) \qquad \theta_{MAP} = 19/48$$

Bayesian framework

- Both ML or MAP estimates pick one value of the parameter
 - Assume: there are two different parameter settings that are close in terms of their probability values. Using only one of them may introduce a strong bias, if we use them, for example, for predictions.
- Bayesian parameter estimate
 - Remedies the limitation of one choice
 - Uses all possible parameter values
 - Where $p(\theta|\zeta) = Bata(\theta|\alpha_1 + N_1, \alpha_2 + N_2)$
- The posterior can be used to define $\hat{p}(X)$:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X}|\mathbf{D}) = \int_{\mathbf{\Theta}} p(X|\mathbf{\Theta}) p(\mathbf{\Theta}|D,\zeta) d\mathbf{\Theta}$$

Bayesian framework

• Predictive probability of an outcome x = 1 in the next trial

$$P(x = 1|D,\zeta)$$

Posterior density
$$P(x = 1|D,\zeta) = \int_{0}^{1} P(x = 1|\theta,\zeta) p(\theta|D,\zeta) d\theta$$

$$= \int_{0}^{1} \theta p(\theta|D,\zeta) d\theta = E(\theta)$$

- Equivalent to the expected value of the parameter
 - expectation is taken with regard to the posterior distribution

$$p(\theta|D,\zeta) = Bata(\theta|\alpha_1 + N_1, \alpha_2 + N_2)$$

Expected value of the parameter

How to obtain the expected value?

$$E(\theta) = \int_{0}^{1} \theta \operatorname{Beta}(\theta | a_{1}, a_{2}) d\theta = \int_{0}^{1} \theta \frac{\Gamma(a_{1} + a_{2})}{\Gamma(a_{1})\Gamma(a_{2})} \theta^{a_{1}-1} (1 - \theta)^{a_{2}-1} d\theta$$

$$= \frac{\Gamma(a_{1} + a_{2})}{\Gamma(a_{1})\Gamma(a_{2})} \int_{0}^{1} \theta^{a_{1}} (1 - \theta)^{a_{2}-1} d\theta$$

$$= \frac{\Gamma(a_{1} + a_{2})}{\Gamma(a_{1})\Gamma(a_{2})} \frac{\Gamma(a_{1} + 1)\Gamma(a_{2})}{\Gamma(a_{1} + a_{2} + 1)} \int_{0}^{1} \operatorname{Bata}(a_{1} + 1, a_{2}) d\theta = \frac{a_{1}}{a_{1} + a_{2}}$$

Note: $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$ for integer values of α

Expected value of the parameter

Substituting the results for the posterior:

$$p(\theta|D,\zeta) = Bata(\theta|\alpha_1 + N_1, \alpha_2 + N_2)$$

We get

$$E(\theta) = \frac{\alpha_1 + N_1}{\alpha_1 + \alpha_2 + N_1 + N_2}$$

 Note that the mean of the posterior is yet another "reasonable" parameter choice:

$$\widehat{\theta} = E(\theta)$$

Comparison

Bayesian Learning

- Assumes a prior over model parameters.
- Find posterior of parameters.

Maximum a posterior learning

- Assumes a prior over model parameters.
- Chooses the parameters that maximise the posterior $P(\theta \mid D)$

Maximum likelihood learning:

- No prior over model parameters
- Chooses the parameters that maximises the likelihood of the data, $P(D|\theta)$