- **53.** Donats $A = \{3,4,9\}$, $B = \{2,4,6\}$, $C = \{1,2,\{3\},4\}$ i $D = \{3,4,\emptyset\}$, comprova si es compleixen les següents igualtats.
 - (a) $(C \setminus D) \times (A \setminus B) = (C \times A) \setminus (D \times B)$.
 - **(b)** $(C \cup D) \times A = (C \times A) \cup (D \times A)$.
 - (c) $C \times (D \setminus A) = (C \setminus A) \times (D \setminus A)$.
- **54.** Considera els conjunts $X = \{1\}$, $Y = \mathcal{P}(X)$, $Z = X \times Y$. Digues si són certes o no les següents afirmacions.
 - (a) $(1, X) \in Z$.
- (c) $\{(\emptyset,\emptyset)\}\in\mathcal{P}(Z)$. (e) $X\setminus Z\in Y$.

- **(b)** $(1,\emptyset) \in Z$. **(d)** $\{(1,1)\} \subseteq Z$. **(f)** $\{\{1\}\} \subseteq Z$.
- **55.** Considera *A*, *B*, *C*, *D* conjunts arbitraris. Demostra les següents igualtats.
 - (a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
 - **(b)** $(A \setminus B) \times (A \setminus B) = (A \times A) \setminus (B \times B)$
- **56.** Siguin *A* i *B* dos conjunts diferents. Demostra:
 - (a) Si *E* és un conjunt tal que $A \times E = B \times E$, aleshores $E = \emptyset$.
 - **(b)** En general no és cert que si C és un conjunt tal que $A \times B = A \times C$, aleshores B = C.
- 57. Considera A, B, C conjunts arbitraris. Demostra la igualtat

$$(A \times B) \cup ((B \setminus A) \times B) = (A \cup B) \times B$$
.

- **58.** Demostra (per inducció sobre *k*) que si el conjunt *S* té *k* elements, i el conjunt *T* en té *m*, aleshores el conjunt $S \times T$ té $k \cdot m$ elements.
- **59.** Siguin $S = \{a, b, c, d\}$ i $T = \{1, 2, 3, 4, 5, 6, 7\}$. Calcula el domini i la imatge de cadascuna de les relacions següents, i digues justificadament quines són una funció de S en T, i quines són una aplicació.
 - (a) $\{(a,4),(d,3),(c,3),(b,2)\}$
- (e) $\{(d,1),(c,2),(b,3),(a,4)\}$

(b) $\{(a,5),(c,4),(d,3)\}$

- (f) $\{(d,7),(c,6),(c,5),(a,4),(b,2)\}$
- (c) $\{(a,1),(b,1),(c,1),(d,1)\}$
- (g) $\{(a,6),(c,9)\}$
- (d) $\{(a,2),(b,2),(c,3),(d,3)\}$

60. Examina les següents relacions entre $\mathbb{N} \times \mathbb{N}$ i $\mathbb{Q}^+ \cup \{0\}$.

(a)
$$S_1 = \left\{ \left((1,2), \frac{1}{2} \right), \left((0,5), 0 \right), \left((10^9, 10^{10}), 0.1 \right), \left((2,4), \frac{2}{4} \right), \left((1,0), 1 \right), \left((2,20), \frac{1}{10} \right), \left((3,7), 3 \right), \left((7,3), 7 \right) \right\}.$$

(b)
$$S_2 = \{((n,m), \frac{n}{m}) : n, m \in \mathbb{N}, m \neq 0\}.$$

(c)
$$S_3 = \{((n,m), n+m) : n, m \in \mathbb{N}\}.$$

Calcula el seu domini i la seva imatge. Digues quines són funcions. De les que ho siguin, digues si són injectives i si són exhaustives.

- **61.** Consider les relacions $T = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x^3 = y^2\}$ i $S = \{(t^3,t^4) : t \in \mathbb{R}\}.$
 - (a) Demostra que $T = \{(u^2, u^3) : u \in \mathbb{R}\}$
 - **(b)** Troba el domini i recorregut (imatge) de *T* i de *S*. Digues si *T* i *S* són o no funcions.
 - **(c)** De les que siguin funció, digues raonadament si són injectives, exhaustives o bijectives.
- **62.** Siguin A, B conjunts no buits i $f: A \to B$ una aplicació que pren el mateix valor $c \in B$ per a tots els elements del seu domini. Determina quan f és injectiva i quan f és exhaustiva.
- **63.** Considera la funció $f: \mathbb{Z} \to \mathbb{N}$ on $f(z) = z^2 + 1$ per tot $z \in \mathbb{Z}$. Calcula:
 - (a) $f(\{-1,0,1,24\})$

(c) $f^{-1}(\{5\})$

(b) $f^{-1}(\{0,1,2,3,5\})$

- (d) $f^{-1}(\{3\})$
- **64.** Siguin f i g les següents funcions reals f(x) = 3x 2 i $g(x) = \sqrt{x}$. Dóna el domini i imatge de $f \circ g$ i de $g \circ f$. Calcula $(g \circ f)(-3)$, $(f \circ g)(-3)$, $(g \circ f)(6)$ i $(f \circ g)(6)$.
- **65.** Sigui $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ la funció definida per $g(x,y) = \frac{x}{y}$. Troba, i dibuixa en el pla $\mathbb{R} \times \mathbb{R}$, el seu domini i els següents conjunts: $g^{-1}(\{3\})$, $g^{-1}(\{0\})$, $g^{-1}([-1,1])$.
- **66.** D'entre els següents grups de relacions, digues quines són reflexives, quines simètriques, quines transitives, i quines antisimètriques.
 - (i) En el conjunt {1,2,3}:
 - (a) $\{(1,2),(1,3),(2,3),(1,1)\}.$
 - **(b)** $\{(1,2),(2,1),(2,3)\}.$
 - (c) $\{(1,1),(2,2),(3,3),(1,3)\}.$
- (ii) En el conjunt dels nombres naturals:
 - (d) $\{(n,m) \in \mathbb{N} \times \mathbb{N} : n \neq m\}$.
 - (e) $\{(n, m) \in \mathbb{N} \times \mathbb{N} : n < m\}.$
 - (f) $\{(n,m) \in \mathbb{N} \times \mathbb{N} : n|m\}$.
 - (g) $\{(n,m) \in \mathbb{N} \times \mathbb{N} : n = m^2\}.$

- **67.** De cadascuna de les relacions que apareixen a continuació, digues si és reflexiva, simètrica, transitiva, antisimètrica, relació d'equivalència, d'ordre, i d'ordre total
 - (a) La relació S en \mathbb{R} definida per aSb si i només si a=|b|, essent $a,b\in\mathbb{R}$.
 - **(b)** La relació D en \mathbb{N} definida per nDm si i només si n|m, essent $n, m \in \mathbb{N}$.
 - (c) La relació T en $\mathbb{Z} \times \mathbb{Z}$ definida per $(n_1, n_2) T(m_1, m_2)$ si i només si $(n_1, n_2) = (m_1, m_2)$ o la recta del pla \mathbb{R}^2 determinada pels dos punts passa per (0,0).
 - (d) La relació \otimes en $\mathcal{P}(A)$, essent A un conjunt qualsevol, definida per a $X,Y\in\mathcal{P}(A)$ així: $X\otimes Y$ si i només si $X\cap Y\neq\emptyset$.
 - (e) La relació T en $\mathbb{R}[x]$ definida per p(x)Tq(x) sii $p(x)-q(x)=s(x)x^2$ per algun $s(x)\in\mathbb{R}[x]$.
 - **(f)** La relació T definida en \mathbb{Q}^+ per aTb si i només si q < s o $(q = s \text{ i } p \leqslant r)$, on $\frac{p}{q}$ és l'expressió irreduïble d'a i $\frac{r}{s}$ és l'expressió irreduïble de b.
- **68.** En $\mathbb{R} \times \mathbb{R}$ considerem la següent relació:

$$(r,s) \leq (r',s')$$
 si i només si $r \leqslant r'$ i $s \leqslant s'$.

Demostra que \leq és una relació d'ordre que no és total sobre $\mathbb{R} \times \mathbb{R}$.

- **69.** Sigui \leq una relació d'ordre en un conjunt A tal que tot $B \subseteq A$, $B \neq \emptyset$, té un element mínim (és a dir, existeix $b \in B$ tal que per tot $a \in B$, $b \leq a$). Demostra que la relació \leq és total.
- **70.** En $\mathbb{N} \times \mathbb{N}$ considerem la següent relació:

$$(n,m) \preceq (n',m')$$
 si i només si $n < n'$ o $(n = n'$ i $m \le m')$.

Demostra que \leq és relació d'ordre en $\mathbb{N} \times \mathbb{N}$ i que per tot $X \subseteq \mathbb{N} \times \mathbb{N}$, $X \neq \emptyset$, té mínim. És un ordre total?

71. En el conjunt A de les circumferències de pla \mathbb{R}^2 definim la relació binària R:

$$C_1 R C_2$$
 si i només si C_1 i C_2 tenen el mateix centre.

- (a) Comprova que R és una relació d'equivalència en A.
- (b) Dibuixa una circumferència a l'atzar, i dibuixa la seva classe d'equivalència.
- **(c)** Digues quin és l'element més *senzill* (en la teva opinió) dins de cada classe d'equivalència.

72. Sigui \approx la relació d'equivalència definida en el conjunt $\mathbb C$ dels nombres complexos per:

$$z \approx w$$
 si i només si $||z|| = ||w||$, per tot $z, w \in \mathbb{C}$.

Determina la seva partició associada \mathbb{C}/\approx (conjunt quocient), escull un representant per cada classe i dóna una bona representació de \mathbb{C}/\approx .

- 73. En el conjunt \mathbb{Z} definim la relació \approx de la forma següent: $z_1 \approx z_2 \iff z_1 + z_2$ és parell.
 - (a) Demostra que \approx és una relació d'equivalència en \mathbb{Z} .
 - **(b)** Dóna l'expressió de la classe d'equivalència d'un element $z \in \mathbb{Z}$ arbitrari.
 - (c) Dóna el conjunt quocient \mathbb{Z}/\approx .
- 74. Definim la següent relació \sim en el pla $\mathbb{R} \times \mathbb{R}$:

$$(x,y) \sim (x_1,y_1)$$
 si i només si $\begin{cases} x-x_1=2z, & \text{per algun } z \in \mathbb{Z}, i \\ y-y_1=7t, & \text{per algun } t \in \mathbb{Z}. \end{cases}$

- (a) Demostra que \sim és una relació d'equivalència.
- **(b)** Formula com a conjunt la classe d'equivalència d'un punt $(a, b) \in \mathbb{R} \times \mathbb{R}$ arbitrari.
- (c) Escull un punt $(a,b) \in \mathbb{R} \times \mathbb{R}$ a l'atzar i dibuixa la seva classe d'equivalència en el pla $\mathbb{R} \times \mathbb{R}$.
- (d) Dóna una bona representació de $\mathbb{R} \times \mathbb{R}/\sim$.
- **75.** Sigui *A* un conjunt no buit, i $B \subsetneq A$ no buit. Definim una relació \sim en $\mathcal{P}(A)$ així: Per tots $X, Y \subseteq A$, $X \sim Y \iff (X \setminus Y) \cup (Y \setminus X) \subseteq B$.
 - (a) Demostra que \sim és una relació d'equivalència.
 - **(b)** Demostra que si $A = \{1, 2, 3, 4\}$ i $B = \{1, 2\}$, aleshores la relació \sim no és total.
 - (c) Demostra que si $A = \{1, 2, 3, 4\}$ i $B = \{1, 2\}$, aleshores la relació \sim no és d'ordre.
 - (d) Demostra que $X \sim X \setminus B$ per tot $X \subseteq A$.
 - (e) Descriu el conjunt quocient $\mathcal{P}(A)/\sim$.
- **76.** Sigui \sim la relació en \mathbb{R} definida per:

$$a \sim b \iff a = b \text{ o } (|a| - 2) \cdot (|b| - 2) > 0.$$

- (a) Demostra que ∼ és una relació d'equivalència.
- **(b)** Troba $\overline{-1}$, $\overline{2}$ i $\overline{-3}$.
- (c) Dóna la partició associada a \sim .

- 77. Considera la relació \sim en $\mathbb Z$ definida per: $m \sim n$ si i només si $m^2 n^2$ és múltiple de 4.
 - (a) Demostra que és una relació d'equivalència.
 - **(b)** Demostra que si $p \in \mathbb{Z}$ és parell, aleshores $p \sim 1$.
 - (c) Troba el conjunt quocient \mathbb{Z}/\sim i digues quants elements té.
- **78.** Siguin A un conjunt i \times una relació en A. Demostra que \times és una relació d'equivalència en A si i només si \times compleix les següents propietats:
 - i) Per tot $a \in A$, $a \approx a$.
 - ii) Per tots $a,b,c \in A$, si $a \times b$ i $b \times c$, aleshores $c \times a$.