LECTURE 8

Author

Tom Jeong

February 3, 2025

Contents

1	L-spliting field	2
2		3
3	Finite fields with prime subfield	4

1 L-spliting field

L-splitting field of $x^4 - 2x^2 - 10$ over $\mathbb{Q}[L:\mathbb{Q}] = ?$ $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ - roots of f(x)

$$L=\mathbb{Q}(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=\mathbb{Q}[\alpha_1][\alpha_2][\alpha_3][\alpha_4]$$

$$L=\mathbb{Q}(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$$

$$\downarrow$$

$$\mathbb{Q}(\alpha_1,\alpha_2,\alpha_3)$$

$$\downarrow$$

$$\mathbb{Q}(\alpha_1,\alpha_2)$$

$$\downarrow$$

$$\mathbb{Q}(\alpha_1,\alpha_2)$$

$$\downarrow$$

$$\mathbb{Q}(\alpha_1)\cong\mathbb{Q}[x]/\langle f(x)\rangle$$

 $[L:\mathbb{Q}] \leq n!$ where $n = \partial f$ in this case. Thus $[L:\mathbb{Q}] \mid n!$

$$4 < [L : \mathbb{Q}] \le 4! = 24$$

$$4 | [L : \mathbb{Q}] | 24$$

$$u = x^{2}$$

$$u^{2} - 2u - 10 = 0$$

$$u = \frac{2 \pm \sqrt{4 + 40}}{2} = 1 \pm \sqrt{11}$$

$$\alpha_{1} = \sqrt{1 + \sqrt{11}}$$

$$\alpha_{2} = -\sqrt{1 + \sqrt{11}}$$

$$\alpha_{3} = \sqrt{1 - \sqrt{11}}$$

$$\alpha_{4} = -\sqrt{1 - \sqrt{11}}$$

$$L = \mathbb{Q}(\alpha_1, \alpha_2)$$

$$\alpha_1^2 = 1 + \sqrt{11}$$

$$\alpha_2^2 = 1 + \sqrt{11}$$

$$-\alpha_1^2 = -1 - \sqrt{11}$$

$$2 - \alpha_1^2 = 1 - \sqrt{11}$$

$$\alpha_2^2 = 2 - \alpha_1^2$$

$$\alpha_2 \text{ is a root of g}$$

$$x^2 - (2 - \alpha_1^2) \in \mathbb{Q}(\alpha_1)$$

2

$$K\cong K'$$
 $\phi:K\to K'$ is isomorphism $f(x)\in K[x]$ the isomorphism extends to isomorphism: $\bar{\phi}:K[x]\to K'[x]$ map the coefficients by ϕ $f'(x)\in K'[x]$ L-splitting field of $f(x)$ and L' splitting field of $f'(x)$

 $\mathbb{Q}(\alpha_1) \subseteq \mathbb{R}$

 $\alpha_2 \notin \mathbb{R} \quad \alpha_2 \notin \mathbb{Q}(\alpha_1)$

Theorem 2.1. $L \cong L'$

Proof. induction onf $m = \partial f$

base case m=1 and $\partial f=1$

$$L=K \quad L'=K' \quad L\cong L'$$

Inductive step:

$$m \to m+1$$
 (1)

$$\partial f = m + 1 \tag{2}$$

$$f(x) = q_1, \dots, q_s \tag{3}$$

$$q_i$$
 – irreducible (4)

$$f' = q_1, \dots, q_s' \tag{5}$$

$$K_1 = K(x)/\langle q_1(x)\rangle \cong K_1' = K'(x)/\langle q_1'(x)\rangle \tag{6}$$

(7)

$$\begin{array}{cccc} L & & & L' \\ \downarrow & & & \downarrow \\ K_1 & \cong & K_1' \\ \downarrow & & & \downarrow \\ K & \cong & K' \end{array}$$

L is the splitting field of f(x) over $K_1(x)$ and L' is the splitting field of f'(x) over $K'_1(x)$

L is a splitting field of $\frac{f(x)}{x-\alpha_1}$ over K_1 where α_1 is a root of q_1

By inductive hypothesis, since $\partial(\frac{f(x)}{x-\alpha_1})=m$, the splitting fields L and L' are isomorphic.

Thus, $L \cong L'$ for polynomials of degree m+1, completing the inductive step. \square

3 Finite fields with prime subfield

 $\mathbb F$ is a finite field. Char F=p p is prime.

 $\mathbb{Z}_p \subseteq \mathbb{F}$ \mathbb{Z}_p is prime subfield.

1. $|\mathbb{F}| = p^n$ for some n

 \mathbb{F}/\mathbb{Z}_p is a field extension

 $[\mathbb{F}:\mathbb{Z}_P]=n$ (finite) then F ahs a basis over \mathbb{Z}_p

Then any $w \in \mathbb{F}$ has a unique expression

$$w = \sum_{i=1}^{n} \alpha_i v_i \quad \alpha_i \in \mathbb{Z}_p$$

p choices, n times. so number of choises = $p^n = |\mathbb{F}|$

- 2. \mathbb{F} is the splitting field of $x^{p^n} x$ over \mathbb{Z}_p $|\mathbb{F}^*| = p^n 1 \to x \in \mathbb{F}, x \neq 0 \quad x^{p^n 1} 1 = 0$ \to every element of \mathbb{F} is n root of $x^{p^n} x$ $\partial(x^{p^n} x) = p^n$ $x^{p^n} x \text{ has at most } p^n \text{ distinct roots in } \mathbb{F}$ $\to x^{p^n} x \text{ splits into distinct linear factor over } \mathbb{F}$ and doesn't split over any subfield $\to \mathbb{F} \text{ is the splitting field of } x^{p^n} x \text{ over } \mathbb{Z}_p$
- 3. The splitting field of $x^{p^n} x$ over \mathbb{Z}_p has size p^n

Ffinite field then $\mathbb{F} = p^n$ and there is at most 1 field of size p^n that has to be splitting filed of $x^{p^n} - x$ over \mathbb{Z}_p

now we would like to show that there is exactly one field of size p^n that is the splitting field of $x^{p^n} - x$ over \mathbb{Z}_p (property 3)

lemma for property 3.

Lemma 3.1. $f \in K(x)$ has a multiple root r iff r is a root of f(x) and f'(x)