Rank-43 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_3^3 + X_0^2 X_1 = 0$$

General information

Number of lines	2
Number of points	73
Number of singular points	1
Number of Eckardt points	0
Number of double points	1
Number of single points	16
Number of points off lines	56
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{2}
Type of lines on points	$2, 1^{16}, 0^{56}$

Singular Points

The surface has 1 singular points:

$$0:\,P_1=\mathbf{P}(0,1,0,0)=\mathbf{P}(0,1,0,0)$$

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{65} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{65} = \mathbf{Pl}(0, 0, 1, 0, 1, 0)_{96}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \mathbf{Pl}(0, 0, 0, 1, 0, 1)_{769}$$

Rank of lines: (65, 4673)

Rank of points on Klein quadric: (96, 769)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points: The double points on the surface are:

$$P_{138} = (0, 0, 1, 1) = \ell_0 \cap \ell_1$$

Single Points

The surface has 16 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_0 = (1,0,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_1 = (0,1,0,0) \ \text{lies on line} \ \ell_1 \\ 2: \ P_{139} = (1,0,1,1) \ \text{lies on line} \ \ell_0 \\ 3: \ P_{140} = (2,0,1,1) \ \text{lies on line} \ \ell_0 \\ 4: \ P_{141} = (3,0,1,1) \ \text{lies on line} \ \ell_0 \\ 5: \ P_{142} = (4,0,1,1) \ \text{lies on line} \ \ell_0 \\ 6: \ P_{143} = (5,0,1,1) \ \text{lies on line} \ \ell_0 \\ 7: \ P_{144} = (6,0,1,1) \ \text{lies on line} \ \ell_0 \\ 8: \ P_{145} = (7,0,1,1) \ \text{lies on line} \ \ell_0 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 56 points not on any line: The points on the surface but not on lines are:

 $0: P_{20} = (1, 1, 1, 0)$ $1: P_{32} = (5, 2, 1, 0)$ $2: P_{37} = (2, 3, 1, 0)$ $3: P_{49} = (6, 4, 1, 0)$ $4: P_{55} = (4, 5, 1, 0)$ $5: P_{66} = (7, 6, 1, 0)$ $6: P_{70} = (3, 7, 1, 0)$ $7: P_{83} = (1, 1, 0, 1)$ $8: P_{95} = (5, 2, 0, 1)$ $9: P_{100} = (2, 3, 0, 1)$ $10: P_{112} = (6, 4, 0, 1)$ $11: P_{118} = (4, 5, 0, 1)$ $12: P_{129} = (7, 6, 0, 1)$

11: $P_{161} = (0, 3, 1, 1)$ lies on line ℓ_1 12: $P_{169} = (0, 4, 1, 1)$ lies on line ℓ_1 13: $P_{177} = (0, 5, 1, 1)$ lies on line ℓ_1 14: $P_{185} = (0, 6, 1, 1)$ lies on line ℓ_1 15: $P_{193} = (0, 7, 1, 1)$ lies on line ℓ_1

9: $P_{146} = (0, 1, 1, 1)$ lies on line ℓ_1

10: $P_{153} = (0, 2, 1, 1)$ lies on line ℓ_1

13: $P_{133} = (3,7,0,1)$

 $14: P_{211} = (2, 1, 2, 1)$

 $\begin{array}{l} 15:\, P_{224} = (7,2,2,1) \\ 16:\, P_{229} = (4,3,2,1) \end{array}$

17: $P_{234} = (1, 4, 2, 1)$

18: $P_{246} = (5, 5, 2, 1)$

19: $P_{252} = (3, 6, 2, 1)$

 $20: P_{263} = (6,7,2,1)$

 $21: P_{279} = (6, 1, 3, 1)$

 $22: P_{285} = (4, 2, 3, 1)$

 $23: P_{290} = (1, 3, 3, 1)$

 $24: P_{300} = (3,4,3,1)$

```
26: P_{318} = (5, 6, 3, 1)
                                                                  42: P_{470} = (5, 1, 6, 1)
27: P_{328} = (7,7,3,1)
                                                                  43: P_{479} = (6, 2, 6, 1)
28: P_{341} = (4, 1, 4, 1)
                                                                  44: P_{488} = (7, 3, 6, 1)
29: P_{348} = (3, 2, 4, 1)
                                                                  45: P_{493} = (4, 4, 6, 1)
30: P_{358} = (5, 3, 4, 1)
                                                                  46 : P_{500} = (3, 5, 6, 1)
31: P_{363} = (2,4,4,1)
                                                                  47: P_{506} = (1, 6, 6, 1)
32: P_{376} = (7, 5, 4, 1)
                                                                  48: P_{515} = (2,7,6,1)
33: P_{383} = (6, 6, 4, 1)
                                                                  49: P_{536} = (7, 1, 7, 1)
34: P_{386} = (1,7,4,1)
                                                                  50: P_{538} = (1, 2, 7, 1)
35: P_{404} = (3, 1, 5, 1)
                                                                  51: P_{548} = (3, 3, 7, 1)
36: P_{411} = (2, 2, 5, 1)
                                                                  52: P_{558} = (5, 4, 7, 1)
37: P_{423} = (6, 3, 5, 1)
                                                                  53: P_{567} = (6, 5, 7, 1)
38: P_{432} = (7,4,5,1)
                                                                  54: P_{571} = (2, 6, 7, 1)
39: P_{434} = (1, 5, 5, 1)
                                                                  55: P_{581} = (4, 7, 7, 1)
40: P_{445} = (4, 6, 5, 1)
41: P_{454} = (5, 7, 5, 1)
```

Line Intersection Graph

 $\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 1 \\ 1 \ 1 \ 0 \\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_{138}

Line 1 intersects

Line	ℓ_0
in point	P_{138}

The surface has 73 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$20: P_{142} = (4,0,1,1)$	$40: P_{290} = (1, 3, 3, 1)$
$1: P_1 = (0, 1, 0, 0)$	$21: P_{143} = (5, 0, 1, 1)$	$41: P_{300} = (3,4,3,1)$
$2: P_{20} = (1, 1, 1, 0)$	$22: P_{144} = (6,0,1,1)$	$42: P_{307} = (2, 5, 3, 1)$
$3: P_{32} = (5, 2, 1, 0)$	$23: P_{145} = (7,0,1,1)$	$43: P_{318} = (5, 6, 3, 1)$
$4: P_{37} = (2, 3, 1, 0)$	$24: P_{146} = (0, 1, 1, 1)$	$44: P_{328} = (7,7,3,1)$
$5: P_{49} = (6, 4, 1, 0)$	$25: P_{153} = (0, 2, 1, 1)$	$45: P_{341} = (4, 1, 4, 1)$
$6: P_{55} = (4, 5, 1, 0)$	$26: P_{161} = (0, 3, 1, 1)$	$46: P_{348} = (3, 2, 4, 1)$
$7: P_{66} = (7, 6, 1, 0)$	$27: P_{169} = (0, 4, 1, 1)$	$47: P_{358} = (5, 3, 4, 1)$
$8: P_{70} = (3, 7, 1, 0)$	$28: P_{177} = (0, 5, 1, 1)$	$48: P_{363} = (2, 4, 4, 1)$
$9: P_{83} = (1, 1, 0, 1)$	$29: P_{185} = (0, 6, 1, 1)$	$49: P_{376} = (7, 5, 4, 1)$
$10: P_{95} = (5, 2, 0, 1)$	$30: P_{193} = (0,7,1,1)$	$50: P_{383} = (6, 6, 4, 1)$
$11: P_{100} = (2,3,0,1)$	$31: P_{211} = (2, 1, 2, 1)$	$51: P_{386} = (1,7,4,1)$
$12: P_{112} = (6, 4, 0, 1)$	$32: P_{224} = (7, 2, 2, 1)$	$52: P_{404} = (3, 1, 5, 1)$
13: $P_{118} = (4, 5, 0, 1)$	$33: P_{229} = (4, 3, 2, 1)$	$53: P_{411} = (2, 2, 5, 1)$
$14: P_{129} = (7, 6, 0, 1)$	$34: P_{234} = (1, 4, 2, 1)$	$54: P_{423} = (6, 3, 5, 1)$
15: $P_{133} = (3,7,0,1)$	$35: P_{246} = (5, 5, 2, 1)$	$55: P_{432} = (7, 4, 5, 1)$
16: $P_{138} = (0, 0, 1, 1)$	$36: P_{252} = (3, 6, 2, 1)$	$56: P_{434} = (1, 5, 5, 1)$
17: $P_{139} = (1, 0, 1, 1)$	$37: P_{263} = (6,7,2,1)$	$57: P_{445} = (4, 6, 5, 1)$
18: $P_{140} = (2, 0, 1, 1)$	$38: P_{279} = (6, 1, 3, 1)$	$58: P_{454} = (5, 7, 5, 1)$
$19: P_{141} = (3, 0, 1, 1)$	$39: P_{285} = (4, 2, 3, 1)$	$59: P_{470} = (5, 1, 6, 1)$

$60: P_{479} = (6, 2, 6, 1)$	$65: P_{515} = (2,7,6,1)$	70: $P_{567} = (6, 5, 7, 1)$
$61: P_{488} = (7, 3, 6, 1)$	$66: P_{536} = (7, 1, 7, 1)$	$71: P_{571} = (2, 6, 7, 1)$
$62: P_{493} = (4, 4, 6, 1)$	$67: P_{538} = (1, 2, 7, 1)$	$72: P_{581} = (4,7,7,1)$
$63: P_{500} = (3, 5, 6, 1)$	$68: P_{548} = (3, 3, 7, 1)$	
$64: P_{506} = (1, 6, 6, 1)$	$69: P_{558} = (5, 4, 7, 1)$	