Modelo turbina

1 Condiciones iniciales

Num Ec	Ecuaciones	Incognitas Num acumulado de inco	
1	$h_{i,des} = \text{stprops}(h, T, T_{i,des}, P, P_{i,des}, R744)$	$h_{i,des}, T_{i,des}, P_{i,des}$	3
2	$h_{\text{o,des}} = \text{stprops}(h, T, T_{\text{o,des}}, P, P_{\text{o,des}}, R744)$	$h_{ m o,des}, T_{ m o,des}, P_{ m o,des}$	6
3	$h_{ m o,des} = h_{ m i,des} - \dot{W}_{ m t,des} / \dot{m}_{ m des}$	$\dot{W}_{ m t,des}, \dot{m}_{ m des}$	8
4	$\dot{W}_{ m t,des} = \dot{m}_{ m des} \left(h_{ m i,des} - h_{ m s,des} ight) imes \eta_{ m t,des}$	$h_{ m s,des}, \eta_{ m t,des}$	10
5	$\eta_{\mathrm{t,des}} = 0.9$		10
6	$P_{\mathrm{i,des}} = P_{\mathrm{o,des}} \times P_r$	P_r	11
7	$P_r = 3$		11
8	$C_{\rm des}^2 = 2\left(h_{\rm i,des} - h_{\rm s,des}\right)$	C_{des}	12
9	$\dot{m}_{\rm des} = C_{\rm des} \times A_n \times \rho_{\rm o, des}$	$A_n, \rho_{ m o,des}$	14
10	$\rho_{\text{o,des}} = \text{stprops} (\rho, T, T_{\text{o,des}}, P, P_{\text{o,des}}, R744)$		14
11	$V_t = 0.5 \times n \times D_t$	V_t, n, D_t	17
12	n = 3358		17
13	$V_t = 0.707 \times C_{\mathrm{des}}$		17
14	$h_{s,des} = \text{stprops}(h, P, P_{o,des}, s, s_{i,des}, R744)$	$s_{ m i,des}$	18
15	$s_{i,des} = \text{stprops}(s, T, T_{i,des}, P, P_{i,des}, R744)$		18
16	$P_{\text{o,des}} = 8 \text{ MPa}$		18
17	$C_{\rm des} = 500$		18
18	$T_{\rm i,des} = 715^{\circ}{ m C}$		18

Table 1: Ecuaciones condiciones iniciales.

2 Condiciones dinámicas

Num Ec	Ecuaciones	Incognitas	Num acumulado de incognitas
1	$h_{ m i} = { t inStream({ t port_a.h_outflow})}$	$h_{ m i}$	1
2	$\dot{W}_t = \dot{m} \left(h_i - h_o ight)$	h_o, \dot{W}_t, \dot{m}	4
3	$\dot{m}= exttt{port_a.m_flow}$		4
4	$\dot{m} = C \times A_n \times \rho_o$	A_n, ρ_o, C	7
5	$\rho_o = \text{stprops} (\rho, P, P_o, h, h_o, R744)$	P_o	8
6	$\texttt{port_a.p} = P_o \times P_r$		8
7	$C^2 = 2\left(h_i - h_s\right)$	h_s	9
8	$\eta_t = 2 \times \eta_{t, des} \times \left(\frac{V_t}{C}\right) \sqrt{1 - \left(\frac{V_t}{C}\right)^2}$	η_t	10
9	$h_s = \operatorname{stprops}(h, P, P_o, s, s_i, R744)$	s_i	11
10	$s_i = \operatorname{stprops}(s, P, P_i, h, h_i, R744)$	P_i	12
11	$h_o = h_i - (h_i - h_s) \times \eta_t$		12
12	$P_i = \mathtt{port_a.p}$		12

Table 2: Condiciones dinámicas.