Machine Learning

what, why and how

me ...

Harshad

- → Senior Data Scientist @ Sokrati
- → Spent last 4 years trying to understand and apply machine learning

Sokrati is a digital advertising startup based out of Pune

what are we going to do?

get a 10000 feet view ...

then go to specifics ...

10000 feet view

what is ML?

- → Too many definitions!
- → Too much debate
- → Analytics vs ML vs data mining vs Big Data vs
 Statistics vs next buzzword in the market

what is ML?

Teaching machines to take decisions with the help of data

practical man's definition of machine learning!

bit of history ...

That's too ancient!

That's not ML...

bit of (relevant) history ...

- → Insurance, Banking industry
 - Credit scoring
 - mathematical models in finance
- Artificial Intelligence and other fancy ideas
 - deep blue, Samuel's checkers machine
 - ◆ IBM watson computer

$$g(y) = f(X)$$

Find 'f' => endeavour to understand the world!

the two cultures in ML

Stats Culture

Vs

AI / ML Culture

the two cultures in ML

Stats Culture

- → Focus on 'why this model'
- → Goodness of fit, hypothesis tests, residuals
- → or MCMC methods, bayesian modeling
- regression models, survival analysis

AI / ML Culture

- → Focus on 'good predictions'
- Cross validations, ensemble of models
- Focus on underfit vs overfit analysis
- neural nets, tree based models (random forests et. al.)

but let's build bridges

Stats

- → Focus on basics, sound theory
- → Exploration, summaries
- → Models

Computations

- → Focus on application
- → Achieving scale and usability
- → Hadoop , Storm and friends...

ML / AI

- → Focus on predictions
- → Model evaluation
- → Feature selection

Business Knowledge

- → Focus on interpretation
- → Visualizations
- → Creating stories out of data

typical ML process

- → Objective
- → Source data
- → Explore
- → Model
- → Evaluate
- → Apply
- → Validate

objective

in brief!

probability of customer churn

predict rainfall

group set of emails by topic

recommend item to a consumer to increase likelihood of click

bottom line: not in terms of algorithm but outcome

sourcing data

to be covered at end!

explore

R you ready?

introduction to R

- → Starting R
- → Data Structures
 - Atomic Vectors, matrix
 - **♦** Lists
 - Data frames
- → Data types
 - usual suspects in numerics (int, double, character)
 - Factors
 - ♦ logical

data frame, the workhorse

- → Load sample data frame
- → Explore data frame (head, tail)
- → Access elements by index
 - access rows
 - access columns
 - single
 - multiple (by name, by index, by -ve index)
- → Find metadata
 - names
 - dimensions
- Explore using plot (pairs)

broadcasting / vectorization

- → Very important concept
- → Subsetting
 - vectors
 - data frames
- → Applying operations
 - operations on entire column

data exploration

- → summarizing using mean
- quantiles, when mean is not enough
 - outlier detection
- → functional roots of R : sapply summary
- → summary function
 - on numerical
 - on factors
- → plots (basic)
- → histograms
- correlations

models

simple & real world

basic types of models

- → Supervised learning
- → Unsupervised learning
- → Semi-supervised learning
- → Reinforcement learning

linear regression

- → load sample dataset (cars)
- → build linear regression model
- understand the output
 - summary
 - plots
- understanding train vs predict cycle
 - most important idea!

demo on real world dataset

data exploration, classification

hierarchical clustering

- → basic idea of clustering
 - distance as a proxy for similarity, group by distance
 - group anything as long as distance can be calculated
- load and explore eurodist data
- → fit hierarchical cluster
- → plot dendrogram

demo on real world data

and the most important idea!

concept of vector space model

- → Words as axis
- → Bag of words defines vector space
- → Document as a point in space
- → We can
 - define distance
 - measure similarity (cosine similarity)
 - group documents
- → what can be a document?

evaluation

evaluation metrics

- → depends on type of model
 - regression : MAPE, MSSE
 - classification: accuracy, precision, recall, F score
 - clustering: within vs between variance
- → ML world (ref: two cultures) has much better story
- → Not enough to perform well on training set

brief intro regularization

- → Bias vs Variance problem
- → We want to be 'just right'
- → Concept of regularization
- → Intro Cross validation

demo of evaluation

and fantastic Scikits API

sourcing and applying

and the great ML divide

the great ML divide

Lab Culture

- → Theory
- → Small Datasets
- → In memory
- → Not live
- → R, Octave, Python..

Source and Apply

- → The practice
- → Huge datasets
- → Live in production
- → Hadoop and friends, Python?, R?

processing data at scale

- → Data is not available in final form
- → Non standard data
 - click streams
 - event logs
 - free form text
- → Process at scale
- Transform, clean, group in final form

5 min intro to Hadoop Ecosystem

- → Write in assembly
- → DSLs
 - Pig
 - hive
 - impala
- → Functional Languages to rescue!

Introduction to Cascalog

processing data at scale

Recap

- → Pragmatic ML
- → Key phases
- Supervised learning
- → Unsupervised learning
- → Evaluation
- → Application issues
- → Processing data @ scale

Let's discuss...