Engenharia de Reatores Químicos — IQD0048 Semestre 2023/2 — Turma T01 — Prof. Alexandre Umpierre

Exercícios Propostos

- 1) Um CSTR inicialmente vazio deve ser posto em operação. A partida do reator é realizada com uma corrente de 1 L/h com 2 mol/L do reatante. Até que o meio reacional atinja 1,2 L, não há saída de produto. A constante cinética da taxa de consumo é 1,5 h⁻¹. A partir do preenchimento do volume de operação, a saída do reator é aberta à mesma vazão de alimentação. Determine a evolução da conversão do reatante até que meio reacional atinja 99 % da conversão do regime estacionário.
- 2) Um reator de tanque agitado de 1 L foi alimentado com 0,1 L/min com 2,01 mg/L de um traçador. A Tabela 1 apresenta a concentração do traçador à saída do reator. Com base nesse ensaio, avalie a adequação do modelo de by-pass e volume de morto. Determine a conversão esperada para a reação $A \rightarrow 2B$ para uma alimentação de 0,1 L/min com 1,9 mol/L de A. A taxa de geração de B é dada por $r_B = 0.46 \, (\text{mol/L})^{-0.5} \text{min}^{-1} c_A^{1.5}$.

Tabela 1.

t (min)	c (mg/L)
4	1,00
8	1,33
10	1,50
14	1,67
16	1,75
18	1,80

3) Um tanque agitado de 7 L, inicialmente cheio e sem reagentes, foi alimentado com 0,12 L/min com 2405 mg/L de um traçador. A Tabela 3 apresenta a concentração do traçador à saída do reator. Com base nesse ensaio, avalie a adequação do modelo by-pass e volume morto. Determine a conversão esperada para a reação $A \rightarrow 2B$ para uma alimentação de 0,12 L/min com 1,7 mol/L de A. A taxa de geração de B é dada por $r_B = 0,29 \; (\text{mol/L})^{-0,3} \text{min}^{-1} c_A^{1,3}$.

Tabela 3.

t (min)	c (mg/L)
4	1199
8	1614
10	1806
14	1990
16	2099
18	2166

4) A Tabela 4 apresenta a concentração de um traçador alimentado com um pulso em um tanque agitado de 1000 L. Com base nesse ensaio, avalie a adequação do modelo de volume de troca. Determine a conversão esperada para a reação $A \rightarrow 2B$ para uma alimentação de 25 L/min com 1,9 mol/L de A. A taxa de geração de B é dada por $r_B = 0,46 \; (\text{mol/L})^{-0.5} \text{min}^{-1} c_A^{1.5}$.

Tabela 4.

1 40014 4.	
t (min)	c (mg/L)
0	2000
20	1050
40	520
60	280
80	160
120	61
160	29
200	16,4
240	10
280	6,4
320	4