A Novel Uncertainty Sampling Algorithm for Cost-Sensitive Multiclass Active Learning

Kuan-Hao Huang¹ and Hsuan-Tien Lin^{1,2}

¹Department of Computer Science & Information Engineering National Taiwan University

²Appier Inc.

Appier

ICDM, December 15, 2016

Active Learning

Active learning for multiclass classification

- ▶ labeled pool $\mathcal{D}_l = \{ \text{feature} : \mathbf{x}^{(n)}, \text{label} : y^{(n)} \}_{n=1}^{N_l}$.
- lacktriangle unlabeled pool $\mathcal{D}_u = \{ \text{feature} : \mathbf{x}^{(n)} \}_{n=1}^{N_u}$
- for round t = 1, 2, ..., T
 - ▶ select instance $\mathbf{x}_s \in \mathcal{D}_u$ by a querying strategy to get label y_s
 - move (\mathbf{x}_s, y_s) from unlabeled pool \mathcal{D}_u to labeled pool \mathcal{D}_l
 - ▶ learn a classifier $f^{(t)}$ from the current labeled pool \mathcal{D}_l
- \blacktriangleright improve the performance of $f^{(t)}$ with respect to #queries

Active Learning

Active learning for multiclass classification

- ▶ labeled pool $\mathcal{D}_l = \{ \text{feature} : \mathbf{x}^{(n)}, \text{label} : y^{(n)} \}_{n=1}^{N_l}$.
- unlabeled pool $\mathcal{D}_u = \{ \text{feature} : \mathbf{x}^{(n)} \}_{n=1}^{N_u}$
- \blacktriangleright for round t = 1, 2, ..., T
 - ▶ select instance $\mathbf{x}_s \in \mathcal{D}_u$ by a querying strategy to get label y_s
 - move (\mathbf{x}_s, y_s) from unlabeled pool \mathcal{D}_u to labeled pool \mathcal{D}_l
 - ▶ learn a classifier $f^{(t)}$ from the current labeled pool \mathcal{D}_l
- \blacktriangleright improve the performance of $f^{(t)}$ with respect to #queries

Querying strategies

- ▶ uncertainty sampling [Lewis et al., 2010; Tong et al. 2001; Jing et al., 2004]
- representative sampling [Settles et al., 2008; Huang et al., 2014; Dasgupta et al., 2008]
- error reduction [Roy et al., 2001]

Evaluation Criteria

Regular (Error rate)

	healthy	cold	Zika
healthy	0	1	1
cold	1	0	1
Zika	1	1	0

- same costs of errors
- ▶ most common criterion

Evaluation Criteria

Regular (Error rate)

	healthy	cold	Zika
healthy	0	1	1
cold	1	0	1
Zika	1	1	0

- same costs of errors
- most common criterion

Cost matrix

	healthy	cold	Zika
healthy	0	10	50
cold	200	0	100
Zika	1000	800	0

- different costs of errors
- ightharpoonup cost matrix $\mathbf{C}_{i,j}$: predict c_i as c_j

Evaluation Criteria

Regular (Error rate)

	healthy	cold	Zika
healthy	0	1	1
cold	1	0	1
Zika	1	1	0

- same costs of errors
- most common criterion

Cost matrix

	healthy	cold	Zika
healthy	0	10	50
cold	200	0	100
Zika	1000	800	0

- different costs of errors
- ightharpoonup cost matrix $C_{i,j}$: predict c_i as c_j

Cost-sensitive active learning algorithms

- ► cost-sensitive multiclass classification takes cost matrix C into account
- ▶ our goal: active learning for cost-sensitive multiclass classification

	querying strategy	classifier f
regular algorithms	by f , \mathcal{D}_l , and \mathcal{D}_u	learned from \mathcal{D}_l
cost-sensitive algorithms	by f , \mathcal{D}_l , \mathcal{D}_u , and \mathbf{C}	learned from \mathcal{D}_l and \mathbf{C}

Cost Embedding (Training)

Training stage

ightharpoonup for classes $c_1, c_2, ..., c_K$, find K hidden points $\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_K$

Cost Embedding (Training)

Training stage

- ightharpoonup for classes $c_1, c_2, ..., c_K$, find K hidden points $\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_K$
- ▶ higher (lower) cost $C_{i,j} \Leftrightarrow$ larger (smaller) distance $d(\mathbf{z}_i, \mathbf{z}_j)$
- preserve the order of the costs in distance
- by non-metric multidimensional scaling

3/9

Cost Embedding (Training)

Training stage

- ▶ for classes $c_1, c_2, ..., c_K$, find K hidden points $\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_K$
- ▶ higher (lower) cost $C_{i,j} \Leftrightarrow$ larger (smaller) distance $d(\mathbf{z}_i, \mathbf{z}_j)$
- preserve the order of the costs in distance
- ▶ by non-metric multidimensional scaling
- ▶ learn a **regressor** g from $\{\mathbf{x}^{(n)}, \mathbf{z}^{(n)}\}_{n=1}^{N_l}$

Cost Embedding (Predicting)

Predicting stage

• for a testing instance x, get the **predicted hidden point** $\tilde{\mathbf{z}} = g(\mathbf{x})$

Cost Embedding (Predicting)

Predicting stage

- for a testing instance x, get the **predicted hidden point** $\tilde{z} = g(x)$
- ▶ find the nearest hidden point of $\tilde{\mathbf{z}}$ from $\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_K$
- ► take the corresponding class as the cost-sensitive prediction

Cost Embedding (Predicting)

Predicting stage

- for a testing instance x, get the **predicted hidden point** $\tilde{\mathbf{z}} = q(\mathbf{x})$
- find the nearest hidden point of $\tilde{\mathbf{z}}$ from $\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_K$
- take the corresponding class as the cost-sensitive prediction

asymmetric cost $(C_{i,j} \neq C_{j,i})$ vs. symmetric distance?

Two roles of class

lacktriangle two roles of class c_i : ground truth role $\mathbf{z}_i^{(t)}$ and prediction role $\mathbf{z}_i^{(p)}$

- ▶ two roles of class c_i : ground truth role $\mathbf{z}_i^{(t)}$ and prediction role $\mathbf{z}_i^{(p)}$
- ▶ $C_{i,j} \Rightarrow c_i$ is ground truth and c_j is prediction \Rightarrow for $\mathbf{z}_i^{(t)}$ and $\mathbf{z}_j^{(p)}$

- ▶ two roles of class c_i : ground truth role $\mathbf{z}_i^{(t)}$ and prediction role $\mathbf{z}_i^{(p)}$
- ▶ $C_{i,j} \Rightarrow c_i$ is ground truth and c_j is prediction \Rightarrow for $\mathbf{z}_i^{(t)}$ and $\mathbf{z}_j^{(p)}$
- ▶ $\mathbf{C}_{j,i} \Rightarrow c_i$ is prediction and c_j is ground truth \Rightarrow for $\mathbf{z}_i^{(p)}$ and $\mathbf{z}_j^{(t)}$

- ▶ two roles of class c_i : ground truth role $\mathbf{z}_i^{(t)}$ and prediction role $\mathbf{z}_i^{(p)}$
- ▶ $C_{i,j} \Rightarrow c_i$ is ground truth and c_j is prediction \Rightarrow for $\mathbf{z}_i^{(t)}$ and $\mathbf{z}_j^{(p)}$
- ▶ $\mathbf{C}_{j,i} \Rightarrow c_i$ is prediction and c_j is ground truth \Rightarrow for $\mathbf{z}_i^{(p)}$ and $\mathbf{z}_j^{(t)}$
- ▶ learn a **regressor** g from $\mathbf{z}_1^{(p)}, \mathbf{z}_2^{(p)}, ..., \mathbf{z}_K^{(p)}$

- ▶ two roles of class c_i : ground truth role $\mathbf{z}_i^{(t)}$ and prediction role $\mathbf{z}_i^{(p)}$
- ▶ $C_{i,j} \Rightarrow c_i$ is ground truth and c_j is prediction \Rightarrow for $\mathbf{z}_i^{(t)}$ and $\mathbf{z}_j^{(p)}$
- ▶ $C_{j,i} \Rightarrow c_i$ is prediction and c_j is ground truth \Rightarrow for $\mathbf{z}_i^{(p)}$ and $\mathbf{z}_j^{(t)}$
- ▶ learn a **regressor** g from $\mathbf{z}_1^{(p)}, \mathbf{z}_2^{(p)}, ..., \mathbf{z}_K^{(p)}$
- find the nearest hidden point of $\tilde{\mathbf{z}}$ from $\mathbf{z}_1^{(t)}, \mathbf{z}_2^{(t)}, ..., \mathbf{z}_K^{(t)}$

Active Learning with Cost Embedding

Cost-sensitive Uncertainty

- ► nearest hidden point with large distance ⇒ uncertain prediction
- cost-sensitive uncertainty: distance between nearest hidden point and predicted hidden point \(\tilde{z}\)

6/9

Active Learning with Cost Embedding

Cost-sensitive Uncertainty

- ► nearest hidden point with large distance ⇒ uncertain prediction
- \blacktriangleright cost-sensitive uncertainty: distance between nearest hidden point and predicted hidden point $\tilde{\mathbf{z}}$

Active learning with cost embedding (ALCE)

- ightharpoonup for round t = 1, 2, ..., T
 - ▶ select $\mathbf{x}_s \in \mathcal{D}_u$ with highest cost-sensitive uncertainty to query the label y_s
 - update \mathcal{D}_l and \mathcal{D}_u , and learn a classifier $f^{(t)}$ by cost embedding

Comparison with Cost-Insensitive Algorithms

- ► ID, HC, UC-D, UC-E: their querying strategies + RBF kernel SVM
- ► ALCE-N (blue line): proposed querying strategy + RBF kernel SVM
- ► ALCE (red line): proposed querying strategy + cost embedding

- ► ALCE-N outperforms ID, HC, UC-D, UC-E ⇒ querying strategy is useful
- ► ALCE outperforms ALCE-N ⇒ cost embedding is useful

Comparison with Cost-Sensitive Algorithms

- MEC, CWMM, DGS: probabilistic uncertainty + RBF kernel SVM
- ► ALCE (red line): non-probabilistic uncertainty + cost embedding

► ALCE outperforms MEC, CWMM, DGS

Conclusion

- propose active learning with cost embedding (ALCE)
 - embedding view for cost-sensitive multiclass classification
 - embed cost information in distance by non-metric multidimensional scaling
 - mirroring trick for asymmetric cost matrix
 - define cost-sensitive uncertainty by distance
- promising performance of ALCE compared with state-of-the-art cost-sensitive active learning algorithms

Thank you! Any question?