Codeway Case Study

Guided Super-Resolution as Pixel-to-Pixel Transformation ICCV 2019

Riccardo de Lutio | Stefano D'Aronco | Jan Dirk Wegner | Konrad Schindler EcoVision Lab, Photogrammetry and Remote Sensing, ETH Zürich

Halil Çağrı Bilgi

Outline

- Problem Definition
- Paper Overview
- Implementation Details
- Results of Test Data provided by the Authors
- Comparison
- Results of Codeway Data
- Discussion

Guided Super Resolution

Aim

Given a low-resolution depth map and a high-resolution RGB guide image, the method should predict a high-resolution depth map.

How to solve?

• Think this problem as an Inverse Problem

How to solve?

• Formulize as a pixel-wise mapping from one image domain to another

Proposed Solution

How to train?

Objective
$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{m} \left| s_m - \left\langle f_{\boldsymbol{\theta}}(\mathbf{g}_n, \mathbf{x}_n) \right\rangle_{\mathsf{b}(m)} \right| + \lambda \left\| \boldsymbol{\theta} \right\|^2$$
. (4)

1	L	2
2	2	3

Source

1	2	1	2	2	3	4	1
2	2	3	4	2	2	თ	4
1	2	3	3	თ	3	4	1
2	3	4	3	2	2	3	4
1	3	3	4	3	4	4	2
4	4	3	3	1	3	4	2
4	3	4	3	2	3	4	2
3	1	4	3	4	1	2	3

Target Prediction

- For a given S, T and G a perfect solution can always be found by choosing a sufficiently complex function f_{θ}
- To ensure the problem is solvable
 - Restrict f_{θ} to a function with reasonably low complexity.
 - Use I-2 penalty on the function weights

Inference

• Fit an individual set of weights using all pixels in Guide image as "training data" and the low-resolution source as "supervision, then make prediction (forward pass)

Experiment Settings

• Since we think every pixel as an independent training data, they train the model in batches of size 32 low-resolution pixels/blocks.

Adam with lr=0.001

• 32.000 iteration steps

Quantitative Error Metrics

Mean Absolute Error

$$\mathsf{MAE} = \frac{1}{N^2} \sum_{n} |t'_n - t_n|$$

Mean Square Error

MSE =
$$\frac{1}{N^2} \sum_{n} (t'_n - t_n)^2$$

Percentage of Bad Pixels

$$\mathsf{PBP} = \frac{1}{N^2} \sum_{n} \left[|t_n' - t_n| > \delta \right] \quad \text{where } \text{[.]=} \begin{cases} 1 & \textit{if condition is True} \\ 0 & \textit{if condition is False} \end{cases}$$

Results on Test Data Provided by Authors

_	My Implementation			Original Implementation			
_	MAE	MSE	PBP	MAE	MSE	PBP	
Example 1	2.200	65.145	0.228	1.949	64.710	0.159	
Example 2	0.420	2.286	0.038	0.434	3.015	0.043	
Example 3	0.786	3.494	0.176	0.876	3.654	0.213	

Qualitative Results

Results on Codeway Data

	Example 1			Example 2			Example 3		
	MAE	MSE	PBP	MAE	MSE	PBP	MAE	MSE	PBP
x4	0.896	33.477	0.089	1.066	29.313	0.096	0.956	14.592	0.120
x8	1.029	35.755	0.093	1.396	33.108	0.143	1.076	15.962	0.169
x16	1.264	38.396	0.159	2.342	50.252	0.354	3.859	55.624	0.349
x32	1.833	32.674	0.261	4.125	72.462	0.699	4.062	96.991	0.539

Limitation of the method

• Inference on one image requires to find optimal paramaters for that image, takes approximately 2 mins with x8 scaling. However, it can be applied to other datasets, who contains RGB and LR Depth images and requires to find the High-Res Depth map.

Method is local, no global optimization is considered

 RGB image and depth map are captured by separate depth and RGB sensors with different resolutions and views, thus needing accurate calibration and rectification between them to obtain the registered pairs.

How to Improve?

Thanks.

