인구특성·지역특성·산업특성을 활용한

중소기업 휴 · 폐업 예측

팀 장: newdoin (신도인)

팀 원: ollon (공한석)

팀원: 김바바나 (강남훈)

INTRO

전처리

재무데이터

- 'NaN' 과 같은 <mark>결측치는 0</mark>으로 보간
- '8.88890e+11, 1.00000e+12'와 같은 <mark>이상치는 0</mark>으로 보정
- 자본금 음수(-) & 자산총계 0인 데이터 제거
- 상위 1%이상, 하위 99% 이하 값은 1%, 99% 경계값으로 윈저라이징(winsorizing)

비재무데이터

- 휴폐업이력의 종료일자가 '99991231'인 데이터만 사용
- 동일한 사업자등록번호가 여러 개인 경우, 가장 <mark>결산이 많은</mark> 사업자등록번호 하나만 사용
- 고유값이 많은 변수 중 홈페이지URL, 사업내용, 대표자명 등 변수 제거

INTRD

모델링

타겟값 정의

- 휴업은 장래 영업활동 재개의사를 가지고 있지만,
 신용평가기관입장에서는 주의가 필요한 상태라고 판단함
- 따라서 <mark>휴업과 폐업</mark>을 하나로 묶어 <mark>타겟값</mark>으로 정의함

데이터셋

- 전처리한 재무/비재무 데이터를 합친 데이터프레임
- 크기: (101962, 56)

알고리즘 (LightGBM)

- 최초 LogisticRegression을 사용했으나 성능이 떨어짐
- GBM 모델 중 빠르고 과적합을 방지할 수 있는 LightGBM 알고리즘 선정

결과

모델의 평가지표 (F1-Score)

- <mark>재현율을 중시</mark>하되, <mark>정밀도도 고려</mark>하는 평가지표로써 모델의 성능을 가장 잘 나타낼 수 있다고 판단함
- 휴폐업 기업을 영업중이라고 판단하는 것이 큰 문제가 되는
 예측 특성상 재현율이 중요함

INTRO

Challenge Flow

CONTENTS

- 1
 비재무변수

 1
 인구특성 / 지역특성 / 산업특성
- **3 재무변수 |** 재무비율 / 파생재무비율 / 재무등급 / 재무점수
- **모델링** | 최종변수선정 / 변수조합 / 성능비교
- 결론

 요약 및 결론 / 한계점 및 보완

고려사항

- 1. 데이터는 누구에게나 <mark>공개</mark> 되어있고 <mark>수집이 용이</mark> 해야한다.
- 2. 외부인으로서 개별기업의 내부정보를 얻기 힘들기 때문에 <mark>범주를 확장</mark>하여 분석한다.
- 3. 따라서 기업이 속한 지역 또는 인구 특성 분석을 위해 <mark>주소</mark>, 산업특성을 분석하기 위해 <mark>업종분류</mark>가 필요하다.

주소

수집 과정·전처리

- 병렬크롤러로나이스비즈인포에서주소데이터수집
- 수집된주소를 '시·도'와 '시·군·구'로 분리

시・도	시·군·구
서울특별시	구로구
인천광역시	연수구
전라북도	김제시
	서울특별시 인천광역시 전라북도

업종 분류 수집 과정·전처리 나이스비즈인포에서산업코드1의결측치를크롤링하여보간 KSIC10차를기준으로업종중분류·업종대분류생성 데이터별 업종 개수 기존업종 업종대분류 21 한국표준산업분류(10차) 업종중분류 177 20 40 60 80

선정이유

가설

- 지역별<mark>인구구조</mark>에따라기업경영환경이 달라져휴폐업에영향을미칠것이라판단함
- 이를 반영할 수 있는 지표로 고령인구비율,
 외국인비율등을선정함

관련자료

"고령화로인건비부담이증가하고생산성이 하락하여상당수의 중소기업이 경영악화에 직면 할것으로예상"

-인구고령화가기업에미치는영향(KDB미래전략연구소)

수집 & 분석

수집

- <mark>통계청</mark>의 e·지방지표에서 시도별 인구특성에 해당하는데이터
- 수집데이터목록:5개

(인구수,1인가구비율,고령인구비율,외국인비율,가구별소득)

분석

• 지역별로각변수에대해영업중인기업과 휴폐업기업의분포차이를확인함

결 과

분석결과

영업중인 기업과 휴폐업 기업의 고령인구비율 분포 차이

• 영업중인기업과휴폐업기업의고령인구비율 분포차이가확인됨

선정이유

가설

- 지역내경기나지역의발달정도에따라 휴폐업률이상이할것이라고판단함
- 이를반영할수있는지표로광공업생산지수,
 재정자립도,경제활동참가율등선정

관련자료

"이들변수들이클수록경기가좋은것을 의미하는데,자영업체의폐업률을 낮추는작용을 하는것으로분석되었다"

-국내자영업의폐업률결정요인분석(한국은행)

수집 & 분석

수집

- <mark>통계청</mark>의 e지방지표에서 시도별 지역특성에 해당하는데이터
- 수집데이터목록: 9개 (광공업생산지수,재정지립도,경제활동참가율, 실업률, 고용률, 취업자증감률,특허출원개수,도시면적,전기사용량)

분석

• 지역별로각변수에대해영업중인기업과 휴폐업기업의분포차이를확인함

결과

분석결과

• 영업중인 기업과 휴폐업 기업의 실업률 분포 차이가확인됨

산업특성 - 산업재해 발생여부

선정이유

가설

- 산업재해발생시사업주는1년이상의 징역및10억원이하의벌금에처해짐
- 위와같은처벌로인해경영상어려움을 겪을것이라고판단함

관련자료

"기업에서 발생한 산업재해는 생산차질, 기업 이미지 하락, 노사관계 악화, 노동력 상실 등을 발생시켜경영성과에 영향을미칠수있다"

-안전보건공단산업안전보건연구원

수집 & 분석

수집

• 고용노동부에서공표한연도별산업재해발생 현황자료

분석

- PDF파일을XLSX으로변환한뒤산업재해 발생기업명단을클렌징함
- 각연도별로기업명과사업장주소를 기준으로산업재해발생여부를판단함

결 과 분석결과 연도별 산업재해 발생기업 및 휴폐업 현황 250 212 200 150 100 50 0 2019 2020 2021 ■산업재해 ■휴폐업 산업재해가 발생한 230개 기업 중 휴폐업 기업은21개로<mark>9.1%</mark>에해당함 (산업재해 미발생기업의 휴폐업률 5.1%)

산업특성 - 지역특화산업 해당여부

선정이유

가설

- 지역특화산업에해당하는기업의경우 기술개발과사업화를위한혜택과연구 개발비를지원받음
- 따라서해당하는기업은 경제적이점을
 가지고기업활성화에유리함

관련자료

"비수도권의 시도별 육성중인 지역특화산업과 관련있는 기업에 기술개발 및 사업화 자금 1조 4000억원투자"

-제21차비경제중앙대책본부회의中

수집 & 분석

수집

• <mark>한국기술진흥원(KIAT)</mark>에서공표한연도별 지역특화산업보고서

분석

- 수도권의경우,특화산업이지정되어있지
 않기때문에많이분포한산업군을
 특화산업으로간주함
- 특화산업에관련된산업코드를가진 기업은 1, 나머지는 0으로 지정하여 파생변수생성

결 과

분석결과

연도별 지역특화산업 해당 기업 및 휴폐업 현황

 지역특화산업에 해당하는 15,982개 기업 중휴폐업기업은689개로4.4%에해당함 (지역특화산업 미해당기업의 휴폐업율은 5.4%)

산업특성 - 전기요금

선정이유

가설

- <mark>산업별전기사용비중과전기요금혜택</mark>이 다름
- 전기사용량이 많고 전기요금이 비싼 산업 일수록경영성과가좋지않을것이라판단함

관련자료

"산업용 전기요금 내달 오른다··기업들, 경쟁력 훼손불보듯···한숨"

"전기요금 인상에 부담 커진 산업계···1조4천억 원요금증가예상"

-서울경제/한국경제

수집 & 분석

수집

- 공공데이터포털의 <mark>한국전력공사</mark> 산업분류별 전력사용량및전기요금데이터셋
- 주요전력통계항목에서기간을선택하여수집

분석

- 각연도별로지역,산업을 그룹화하여분석
- 전기요금은 매년 상승하기 때문에 연도별로 min-max 정규화를 진행하여 산업별 전기요 금차이를 반영함

결 과

분석결과

정규화 범위	휴폐업 비율	
0.0 ~ 0.2	0%	
0.2 ~ 0.4	4.5%	
0.4 ~ 0.6	4.7%	
0.6 ~ 0.8	5.0%	
0.8 ~ 1.0	5.7%	

- 정규화 값이 높을수록 전기요금이 비싸다 는의미임
- <mark>전기요금이 비쌀 수록</mark> 휴폐업비율이 높아 지는분포를보였음

비재무점수

선정이유

가설

- 전문신용평가기관에서는 신용평가등급을 의사결정의참고지표로활용하고있음
- 따라서 <mark>비재무 데이터를 하나로 점수화</mark> 했을 때휴폐업예측에도움이될수있다고판단

관련자료

"신용평가등급이란 특정기업에 대한 제반 환경을 평가함으로써 일정한 기호를 이용 하여 신용도를 등급화하는 제도입니다"

- 나이스신용평가 신용평가의의

수집 & 분석

수집

• 앞서 생성한인구특성,지역특성,산업특성 데이터활용

분석

- 각변수들을구간화한뒤구간별가중치산출
- 산출한가중치를로지스틱회귀모형에 학습시켜서나온회귀계수를통해구간별 점수를생성하여<mark>스코어카드</mark>구성
- 비재무 데이터들을 대입, <mark>총점을 계산</mark>하여 파 생변수를생성

결 과

분석결과

사업자등록번호	기업명	점수
1018100340	대일건설	556.663
4028118651	신원건설	530.225
1018101126	우성개발	462.994
•••	•••	•••

- 스코어카드기준기업별비재무점수생성
- 비재무점수의 <mark>구간별 휴폐업률에 차이</mark>가 있음을확인

(1) 비율

기업의 규모차이를 고려한 재무비
 율을 분석에 사용하고자함

• 기업부실화예측관련논문을참고 하여부실화와관련된재무비율50 개를선정함

(2) 파생비율

경영성과나 재무상태의 변화를 반 영하기 위해 '재무상태변동성' 을 생성

재무상태변동성(차이) = 당기 재무비율 - 전기 재무비율 재무상태변동성(비율) = 당기 재무비율 / 전기 재무비율

 산업내 우량기업 또는 산업평균의
 재무상태와 비교하기 위해 '산업수 준상태변동성'을 생성

산업수준상태변동성(top10 차이) = 기본재무비율 - 대분류별 상위 10개 기업 총자산수익률 평균 산업수준상태변동성(top10 비율) = 기본재무비율 / 대분류별 상위 10개 기업 총자산수익률 평균 산업수준상태변동성(all 차이) = 기본재무비율 - 대분류별 산업 전체 총자산수익률 평균 산업수준상태변동성(all 비율) = 기본재무비율 / 대분류별 산업 전체 총자산수익률 평균

(3) 등급

- 다양한 관점으로 재무데이터를 분석함과 동시에 사용하는 재무변수 를줄이고자'재무등급'을생성
- 재무비율데이터를바탕으로 상위 n % 에 해당하는 개수로 등급을 나눔

선정 기준	등급
상위 n% 이상인 컬럼 24개 이상	SSS
상위 n% 이상인 컬럼 22개 이상	SS
상위 n% 이상인 컬럼 20개 이상	S

(4) 점수

- 개인신용점수 산출에 사용되는 기 법을 활용하여 재무데이터를 점수 화하고자함
- 비재무점수를 산출한 방법과 동일 한방법으로'재무점수'를 생성

사업자등록번호	기업명	점수
1018100340	대일건설	475.348
4028118651	신원건설	497.049
1018101126	우성개발	468.530

생성된 변수 30개 생성된 변수 180개 생성된 변수 1개 생성된 변수 1개

통계검정을 통한 사용변수 선정

STEP 1. 변수 목록

제공받은 데이터 변수 - 56개

인구특성 변수 - 4개

지역특성 변수 - 10개

산업특성 변수 - 3개

재무데이터 파생변수 - 212개

변수 조합

XGBoost 최적화 성능비교

- 제공받은 재무데이터와 비재무데이터만 사용했을 때 0.726의 성능을 보임
- <mark>인구특성, 지역특성, 산업특성을 결합</mark>했을 때의 F1-Score는 0.760으로 <mark>약 5% 향상됨</mark>
- 특정 데이터가 큰 비중을 차지하지 않고 적절히 조화를 이룰 때 성능이 가장 좋았음

요약 & 결론

요약

- 제공받은 데이터 및 파생변수에 대해 EDA와 통계검정을 실시하여 사용할 변수를 선정함
- 최적 변수조합을 찾아 분석한 결과, 파생변수를 추가했을 때 성능이 향상됨

결론

"통계청, 공공데이터 포털 등에서 <mark>무료로 쉽게 수집</mark>할 수 있는 데이터도 적절히 결합되면 휴폐업 예측모델의 <mark>성능향상에 도움</mark>이 될 수 있었다는 점에서 분석의 의의가 있음 "

한계점 & 보완

한 계 점

- 인구특성, 지역특성을 나타내는 지표가 '서울특별시, 경기도' 와 같이 <mark>큰 범주로 제공</mark>되었음
- 이는 개별기업이 소재하고 있는 곳의 인구, 지역적 특성을 세부적으로 반영하지 못함

보 완

- 통계청에서는 <mark>2021년부터</mark> '서울특별시 OO구, 경기도 OO시'와 같은 <mark>시/군/구별 지방지표를 제공</mark>함
- 따라서, 2021년 이후 데이터에 대해서 예측모델을 구축할 시 세분화된 범주를 활용하여 분석할 필요가 있음

Q & A

감사합니다

부록 | 모델링 – 변수조합별 결과

<표 11> 알고리즘별 성능

α : T-Test 재무데이터 + Chi-Squared-Test 비재무데이터

β: T-Test 재무비율, γ: T-Test 과생재무비율

 δ : 재무등급, ϵ : 지방지표, ζ : 재무점수, η : 비재무점수

머신러닝 알고리즘	7.4	사용 변수 조합	예측	예측 성능	
	구분		Recall	F1 Score	
LightGBM	베이스라인	기본 재무/비재무데이터	0.6331	0.7264	
	1 st	$\alpha + \beta + \delta$	0.6344	0.7280	
	2 nd	$\alpha + \beta + \gamma$	0.6291	0.7263	
	Worst	$\alpha + \beta + \gamma + \zeta$	0.6088	0.6960	
XGBoost	베이스라인	기본 재무/비재무데이터	0.6411	0.7322	
	1 st	$\alpha + \beta + \gamma$	0.6464	0.7394	
	2 nd	$\alpha + \beta$	0.6397	0.7352	
	Worst	$\alpha + \beta + \varepsilon + \eta$	0.6142	0.7042	
Ramdom Forest	베이스라인	기본 재무/비재무데이터	0.5987	0.7152	
	1 st	$\alpha + \beta$	0.6000	0.7156	
	2 nd	α	0.5947	0.7127	
	Worst	$\alpha + \beta + \gamma + \zeta + \eta$	0.5676	0.6864	
Logistic Regression	베이스라인	기본 재무/비재무데이터	0.0040	0.0078	
Naive Bayes	베이스라인	기본 재무/비재무데이터	0.9642	0.1003	

<표 12> 하이퍼파라미터 최적화 및 사용 변수

머신러닝 알고리즘	구분	사용 변수 조합	예측 성능	
시선대의 문고대통	712		Recall	F1 Score
XGBoost	베이스라인	기본 재무/비재무데이터	0.6456	0.7269
	1 st	$\alpha + \beta + \gamma + \delta + \epsilon + \zeta$	0.6777	0.7597
	2 nd	$\alpha + \beta + \delta + \epsilon + \zeta + \eta$	0.6744	0.7589
	3 rd	$\alpha + \beta + \varepsilon$	0.6423	0.7335

부록 | 인구특성 분석 결과

부록 | 지역특성 분석 결과

[경제활동참가율]

[고용률]

[취업자증감률]

[실업률]

[광공업생산지수]

[도시면적]

[특허출원개수]

[전기사용량]

[재정자립도]

