Power Amplifier 功率放大电路

第9章 功率放大电路

第1-4节 功率放大电路

Analog Electronic Technology

内容

功放 的一般 问题

甲类放 大的实 例 乙类双 电源互 补对称 功放

甲乙类 互补对 称功放

01

02

03

Analog Electronic Technology

一、功放的一般问题

失真低

效率高

三高一低

带负载能力强

输出功率高

信号提取

电压放大

功率放大

一、功放的一般问题

1、功率放大电路特点

功率放大电路是一种以输出较大功率为目的的放大电路。

因此,要求同时输出较大的 电压和电流。管子工作在接近极 限状态。

功率放大电路与之前学习的电压放大电路有本质上的区别吗?

一、功放的一般问题

2、功率放大电路提高效率的主要途径

一、功放的一般问题

2、功率放大电路提高效率的主要途径

> 降低静态功耗,即减小静态电流

Analog Electronic Technology

内容

功放 的一般 问题 甲类放 大的实 例

乙类双 电源互 补对称 功放

甲乙类 互补对 称功放

01

02

04

Analog Electronic Technology

二、甲类放大的实例

#用哪种组态的BJT放大电路构成功放?

射极输出器: 电压增益近似为1, 电流增益很大, 可获得较大的功率增益, 输出电阻小, 带负载能力强。

例9.2.1 最大输出功率

$$P_{\rm om} = \left(\frac{V_{\rm om}}{\sqrt{2}}\right)^2 / R_{\rm L} = 13.69 \text{W}$$

电源提供的功率

$$P_{\rm VC} = V_{\rm CC} I_{\rm BIAS} = 27.75 \ {\rm W}$$

$$P_{\text{VE}} = V_{\text{EE}} I_{\text{BIAS}} = 27.75 \text{ W}$$

#如何构建乙类功放?

放大器的效率

$$\eta = \frac{P_{\text{om}}}{(P_{\text{NG}} + P_{\text{NE}})} \times 100\% \approx 24.7\%$$

效率低

Analog Electronic Technology

内容

功放 的一般 问题

甲类放 大的实 例 乙类双 电源互 补对称 功放

甲乙类 互补对 称功放

01

02

03

1. 电路组成

由一对NPN、PNP特性相同的互补三极管组成,采用正、负双电源供电。这种电路也称为OCL(Output Capacitorless)互补功率放大电路。

2. 工作原理

两个三极管在信号正、负半周轮流导通,使负载得到一个完整的波形。

 $+V_{\rm CC}$

 T_1

 $T_2 R_L$

 $i_{\rm C1}$

3. 效率分析

(1) 最大输出电压 $V_{\rm om}$

·三极管在饱和区工作时集电极与发射极之间的<mark>饱和压降</mark>

理想情况下忽略三极管压降,此时有最大输出电压 $V_{\rm om}=V_{\rm CC}-V_{\rm CES}\approx V_{\rm CC}$

1)最大不失真输出功率 P_{omax}

$$P_{\text{omax}} = \frac{\left(\frac{V_{\text{CC}} - V_{\text{CES}}}{\sqrt{2}}\right)^2}{R_{\text{L}}}$$
$$= \frac{\left(V_{\text{CC}} - V_{\text{CES}}\right)^2}{2R_{\text{L}}}$$

忽略 V_{CES} 时 $P_{\text{omax}} \approx \frac{V_{\text{CC}}^2}{2R_{\text{L}}}$

实际输出功率

$$P_{o} = V_{o}I_{o} = \frac{V_{om}}{\sqrt{2}} \cdot \frac{V_{om}}{\sqrt{2} \cdot R_{L}} = \frac{V_{om}^{2}}{2R_{L}}$$

思考

某乙类双电源互补对称功率放大电路如图所示:

管子的饱和压降忽略不计。 $V_{CC}=20V$, $R_L=8\Omega$,试计算 (1) 在输入 $V_i=10V$ (有效值) 时,电路的输出功率; (2) 电路的最大输出功率,对应的输入 V_i (有效值) 的大小。

Analog Electronic Technology

2) 管耗P_T

单个管子在半个周期内的管耗

$$\begin{split} P_{\text{T1}} &= \frac{1}{2\pi} \int_{0}^{\pi} (V_{\text{CC}} - v_{\text{o}}) \frac{v_{\text{o}}}{R_{\text{L}}} \, \text{d}(\omega t) \\ &= \frac{1}{2\pi} \int_{0}^{\pi} (V_{\text{CC}} - V_{\text{om}} \sin \omega t) \frac{V_{\text{om}} \sin \omega t}{R_{\text{L}}} \, \text{d}(\omega t) \\ &= \frac{1}{2\pi} \int_{0}^{\pi} (\frac{V_{\text{CC}} V_{\text{om}}}{R_{\text{L}}} \sin \omega t - \frac{V_{\text{om}}^{2}}{R_{\text{L}}} \sin^{2} \omega t) \, \text{d}(\omega t) \\ &= \frac{1}{R_{\text{L}}} (\frac{V_{\text{CC}} V_{\text{om}}}{\pi} - \frac{V_{\text{om}}^{2}}{4}) \end{split}$$

两管管耗
$$P_{\rm T} = P_{\rm T1} + P_{\rm T2} = \frac{2}{R_{\rm L}} \left(\frac{V_{\rm CC}V_{\rm om}}{\pi} - \frac{V_{\rm om}^2}{4} \right)$$

3) 电源供给的功率 $P_{\rm V}$

$$P_{o} = \frac{V_{om}^{2}}{2R_{L}}$$
 $P_{T} = \frac{2}{R_{L}} \left(\frac{V_{CC}V_{om}}{\pi} - \frac{V_{om}^{2}}{4} \right)$

$$P_{\rm V} = P_{\rm o} + P_{\rm T} = \frac{2V_{\rm CC}V_{\rm om}}{\pi R_{\rm L}}$$

当
$$V_{\text{om}} \approx V_{\text{CC}}$$
 时, $P_{\text{Vm}} = \frac{2}{\pi} \cdot \frac{V_{\text{CC}}^2}{R_{\text{L}}}$

效率η

$$\eta = \frac{P_{\text{o}}}{P_{\text{V}}} = \frac{\pi}{4} \cdot \frac{V_{\text{om}}}{V_{\text{CC}}}$$

当
$$V_{\text{om}} \approx V_{\text{CC}}$$
 时, $\eta = \frac{\pi}{4} \approx 78.5\%$

$$P_{v} = \frac{2V_{\rm CC}V_{\rm om}}{\pi R_{\rm L}}$$

$$P_o = \frac{V_{om}^2}{2R_L}$$

$$P_{\rm T} = \frac{2}{R_L} \left(\frac{V_{CC} V_{om}}{\pi} - \frac{{V_{om}}^2}{4} \right)$$

4. 功率BJT的选择

1) 最大管耗和最大输出功率的关系

因为
$$P_{\text{T1}} = \frac{1}{R_{\text{L}}} \left(\frac{V_{\text{CC}}V_{\text{om}}}{\pi} - \frac{V_{\text{om}}^2}{4} \right)$$

当
$$V_{\text{om}} = \frac{2}{\pi} V_{\text{CC}} \approx 0.6 V_{\text{CC}}$$
 时具有最大管耗

$$P_{\text{T1m}} = \frac{1}{\pi^2} \cdot \frac{V_{\text{CC}}^2}{R_{\text{L}}} \approx 0.2 P_{\text{om}}$$

选管依据之一

如果要求输出功率为10W,则选取管子的额定功耗高于2W即可

Analog Electronic Technology

4. 功率BJT的选择

三、乙类双电源互补对称功放

 $|V_{(BR)CEO}| > 2V_{CC}$

(基极开路时集电极-发射极间反向击穿电压)

 T_2 管导通时,极限状态下 v_{CE2} 约为0,此时 T_1 管承受两个外加工作电压之和; T_1 管工作时同理

 $I_{\rm CM} \geq \frac{V_{\rm CC}}{R_{\rm L}}$

(集电极最大通过电流)

信号波形

输出电压波形

出现失真!

乙类互补对称电路存在的问题

Analog Electronic Technology

内容

功放 的一般 问题

甲类放 大的实 例

乙类双 电源互 补对称 功放 甲乙类 互补对 称功放

01

02

03

04

2、二极管偏置的甲乙类输出级

克服交越失真思路:给以微导通的偏置,克服死区电压

3、带输入缓冲晶体管的甲乙类输出级

故称之为U_{BE}倍增电路

4、利用 V_{BE} 倍增器偏置的甲乙类输出级

5、准互补输出级

为保持输出管的良好对称性,输出管应为同类型晶体管。

小结

模拟电子技术 Analog Electronic Technology

