UNIT-2 Two Dimensional Random Variable

Two-dimensional random variable:

Let S be the sample space associated with a random experiment E. Let X = X(S) and Y = Y(S) be two functions each assigning a real number to each outcomes $S \in S$. Then, the pair (X, Y) is called a *two-dimensional random variable* (r.v) or a *bivariate* r.v.

$$R_{XY} = \{(x, y) \mid s \in S \& X(s) = x, Y(s) = y\}$$

Discrete and continuous two-dimensional r.v:

- If the possible values of (X, Y) are finite or countably infinite. (X, Y) is called a *two-dimensional discrete r.v.* When (X, Y) is a two-dimensional discrete r.v. the possible values of (X, Y) may be represented as (x_i, y_i) , i = 1, 2, ..., n; j = 1, 2, ..., m.
- If (X, Y) can assume all values in a specified region R in the xy-plane, (X, Y) is called a *two-dimensional continuous r.v.*

CLASSIFICATION

Discrete bivariate random variable

If both the random variables *X* and *Y* are discrete then (*X*, *Y*) is called a *discrete bivariate* random variable.

Continuous bivariate random variable

If both the random variables X and Y are continuous then (X,Y) is called a *continuous bivariate random variable*.

Mixed bivariate random variable

If one of X and Y is discrete while the other one is continuous, then (X,Y) is a mixed bivariate random variable.

EXAMPLE

• EXAMPLE: I

Consider the experiment of tossing a coin twice. The sample space is $S = \{HH, HT, TH, TT\}.$

Let *X* denotes the number of heads obtained in the first toss and *Y* denotes the number of heads in the second toss. Then

S	HH	HT	TH	TT
X(s)	1	1	0	0
Y(s)	1	0	1	0

EXAMPLE (contd...)

The range space of (X, Y) is $\{(1,1), (1,0), (0,1), (0,0)\}$ which is finite.

(X, Y) is a two-dimensional discrete random variable.

EXAMPLE: II

Consider the random experiment in which two fair dice are thrown

simultaneously. Define a random variable X as the number on the first die and Y as the number on the second die. Then (X,Y) is a *bivariate random variable*.

Joint probability mass function of (X, Y)

If (X,Y) is a two-dimensional discrete r.v such that $P(X=x_i,Y=y_j)=P(X=x_i\cap Y=y_j)=p(x_i,y_j)=p_{ij}$, then p_{ij} is called joint probability mass function or simply joint probability function of (X,Y) provided the following conditions are satisfied

$$\mathfrak{O} p_{ij} \geq 0 \text{ for all } i,j.$$

$$\mathfrak{G}\sum_{j}\sum_{i}p_{ij}=1$$

The set of triples $\{x_iy_j, p_{ij}\}$, i = 1, 2, ..., n; j = 1, 2, ..., m is called the joint probability distribution of (X, Y) and it can be given in the form of table as given below

y x	y_1	y_2		\mathcal{Y}_m	$p(x_i)$	
x_1	p_{11}	p_{12}		p_{1m}	p_1 .	$P(X=x_1)$
x_2	p_{21}	p_{22}		p_{2m}	p_2 .	$P(X=x_2)$
:	÷	:	.	:	÷	:
x_n	p_{n1}	p_{n2}		p_{nm}	p_{n} .	$P(X=x_n)$
$p(y_j)$	p. ₁	p. ₂	•••	$p_{ullet m}$	1	
	$P(Y=y_1)$	$P(Y=y_2)$		$P(Y = y_m)$		

MARGINAL PROBABILITY MASS FUNCTION

Let $P_{XY}(x_i, y_j)$ is the joint probability mass function of (X, Y). Suppose for a fixed value $X = x_i$ the random variable Y can take the possible values $y_j, j = 1, 2, 3, ... m$. Then, the probability distribution of X is

$$P_X(x_i) = P(X = x_i) = \sum_{y_j} P_{XY}(x_i, y_j)$$

and is called the marginal probability mass function of X. Similarly

$$P_Y(y_j) = P(Y = y_j) = \sum_{x_i} P_{XY}(x_i, y_j)$$

is called the marginal probability mass function of Y

Conditional probabilities

The conditional probability function of X given $Y = y_j$ is given by

$$P(X = x_i | Y = y_j) = P(X = x_i \cap Y = y_j) / P(Y = y_j)$$

$$= \frac{p_{ij}}{p_{ij}}$$

Similarly the conditional probability function of Y given $X = x_i$ is given by

$$P(Y = y_j | X = x_i) = P(Y = y_j \cap X = x_i) / P(X = x_i)$$

$$= \frac{p_{ij}}{p_{i\bullet}}$$

Joint probability density function:

If X and Y are continuous random variables then f(x, y) is said to be joint probability function or joint pdf of two random variables X and Y, if

$$\P[a_1 \le X \le b_1, a_2 \le Y \le b_2] = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) dy dx$$

provided (i) $f(x, y) \ge 0$

(ii)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dy dx = 1$$

Marginal density function of X

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

Marginal density function of Y

$$f(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Joint probability distribution for continuous r.vs X and Y:

The joint probability distribution function of two-dimensional r.vs (X, Y) is defined by $F(x, y) = P(X \le x, Y \le y)$

$$= \int_{-\infty}^{y} \int_{-\infty}^{x} f(x,y) dx dy$$

Properties:

$$\mathfrak{G}F(-\infty, y) = 0$$

$$\mathfrak{G}(ii) F(x, \infty) = 0$$

$$\mathfrak{G}(iii) F(\infty, \infty) = 1$$

Conditional probability distribution

- The conditional probability function of Y given X, where X and Y are continuously distributed is given by $f\left(\frac{y}{x}\right) = \frac{f(x,y)}{f(x)}$, provided f(x) > 0.
- The conditional probability function of X given Y, where X and Y are continuously distributed is given by $f\left(\frac{x}{y}\right) = \frac{f(x,y)}{f(y)}$, provided f(y) > 0.

NOTE:

Two r.vs X and Y are independent if f(x, y) = f(x). f(y).

$$P(a < X < b/Y = y) = \int_{a}^{b} [f(x/y)]_{Y=y} dx$$

$$\mathfrak{O}P[(a < X < b) \cap (c < Y < d)] = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

$$P[(a < X < b) | (c < Y < d)] = \int_{c}^{c} \int_{a}^{a} f(x, y) dx dy$$

$$P[(a < X < b)/(c < Y < d)] = \frac{P[(a < X < b) \cap (c < Y < d)]}{P(c < Y < d)}$$

Covariance:

$$COV(X,Y) = E(XY) - E(X).E(Y)$$

NOTE: If X and Y are independent then COV(X,Y) = 0, but not vice-versa.

X & Y are raw data

$$E(X) = \frac{\sum x_i}{n}$$

$$E(Y) = \frac{\sum y_j}{n}$$

$$E(XY) = \frac{\sum x_i y_j}{n}$$

X & Y are continuous

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$E(Y) = \int_{-\infty}^{\infty} y f(y) dy$$

$$E(XY) = \int_{-\infty}^{\infty} x y f(x, y) dx dy$$

X & Y are discrete

Then
$$E(X) = \sum xp(x)$$
 $E(Y) = \sum yp(y)$ $E(XY) = \sum \sum x_i y_i p(x_i y_i)$

Coefficient of correlation:

$$r(X,Y) = \frac{COV(X,Y)}{\sigma_X \sigma_Y}$$

Where
$$\sigma_X^2 = var(X) = E(X^2) - (E(X))^2$$

$$\sigma_y^2 = var(Y) = E(Y^2) - (E(Y))^2$$

Also, If X is discrete, $E(X^2) = \sum x^2 p(x)$ if probability is given, otherwise

$$E(X) = \frac{\sum x_i^2}{n}$$

If X is continuous, $E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$. Similarly, we can define $E(Y^2)$.

NOTE:

$$-1 \le r(X, Y) \le 1$$

If r(X, Y) = 0, then X and Y are said to be uncorrelated.

Regression:

There are 2 lines of regression

Line of regression of Y on X

$$y - \bar{y} = b_{yx}(x - \bar{x})$$

Line of regression of *X* on *Y*

$$x - \bar{x} = b_{xy}(y - \bar{y})$$

 b_{yx} and b_{xy} are said to be **regression coefficient** of Y on X and X on Y respectively and are given by

$$b_{yx} = r rac{\sigma_y}{\sigma_x}$$
 and $b_{xy} = r rac{\sigma_x}{\sigma_y}$.

$$\bar{x} = E(X)$$
 and $\bar{y} = E(Y)$

NOTE:

$$r = \sqrt{b_{xy}b_{yx}}$$

The point of intersection of 2 regression lines is (\bar{x}, \bar{y}) , that is solving 2 regression lines, we get mean of X and mean of Y.

If θ is the angle between 2 regression lines of 2 variables X and Y, then $\tan \theta = \left(\frac{1-r^2}{r}\right) \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$

Dr.N.Padmapriya 15