

FSM Design

creatures

Sequencing detectors

design

- ☐ Diseñar una maquina de estados que permita *detectar una secuencia dada*
- ☐ Consideraciones:
 - \diamond Detectar la secuencia X = 111
 - ❖ La secuencia se puede superponer X= 0111101
 - Implementar el circuito usando flipflop JK
 - Diseñar el circuito usando una FSM tipo Moore

Diagrama de estados

* Tabla de estados

X	Q^n ı Q^n 0	Q^{n+1} ı Q^{n+1} 0	Z
IN	EP	PE	OUT
0	S_0	S_0	0
0	\mathbf{S}_1	S_0	0
0	\mathbf{S}_2	S_0	0
0	S_3	S_0	1
1	S_0	S_1	0
1	S_1	S_2	0
1	S_2	S_3	0
1	S_3	S_3	1

* Tabla de verdad: flipflop JK

J	K	CK	Q	\overline{Q}
X	X	0	Q_0	\overline{Q}_0
X	X	1	Q_0	\overline{Q}_0
0	0		Q_0	\overline{Q}_0
0	1		0	1
1	0		1	0
1	1		\overline{Q}_0	Q_0

* Tabla de estados: flipflop JK

J	K	CK	EP	PE	
X	X	0	Q_0	Q_0	
X	X	1	Q_0	Q_0	
0	0	1	0	0	1
0	0		1	1	$\int 4$
0	1		0	0	1
0	1	1	1	0	$\int 3$
1	0		0	1	2
1	0		1	1	$\int 4$
1	1	ſ	0	1	2
1	1	1	1	0	$\int 3$

* Tabla de transición de estados

	EP	PE	J	K
1	0	0	0	X
2	0	1	1	X
3	1	0	X	1
4	1	1	X	0

	Entrada	Е	P	P	Е		Flipflo	ps JK		Salida
	X	Q^n 1	Q^n 0	Q^{n+1} 1	Q^{n+1} 0	J_1	K ₁	J_0	K_0	Z
M 0	0	0	0	0	0	0	X	0	X	0
	0	0	1	0	0	0	X	X	1	0
	0	1	0	0	0	X	1	0	X	0
	0	1	1	0	0	X	1	X	1	1
	1	0	0	0	1	0	X	1	X	0
	1	0	1	1	0	1	X	X	1	0
	1	1	0	1	1	X	0	1	X	0
M7	1	1	1	1	1	X	0	X	0	1
	J_0K_0 J_1K_1									

* Implementación: diagrama lógico general

Tabla de verdad: flipflop D

D	CK	Q	\overline{Q}
X	0	Q_0	\overline{Q}_0
X	1	Q_0	\overline{Q}_0
0		0	1
1		1	0

* Tabla de estados

D	CK	EP	PE
X	0	Q_0	Q_0
X	1	Q_0	Q_0
0		0	0
0		1	0
1		0	1
1		1	1

* Tabla de estados

D	CK	EP	PE	
X	0	Q_0	Q_0	
X	1	Q_0	Q_0	
0		0	0	1
0		1	0	2
1		0	1	3
1		1	1	4

* Tabla de estados

	ED	D)	
	EP	0	1	
1, 3	Q = 0	0	1	
2, 4	Q = 1	0	1	/
'				'PE

Tabla de estados

D	CK	EP	PE	
X	0	Q_0	Q_0	
X	1	Q_0	Q_0	
0		0	0	1
0		1	0	2
1		0	1	3
1		1	1	4

* Tabla de transición de estados

	EP	PE	D
1	0	0	0
3	0	1	1
2	1	0	0
4	1	1	1

* Tabla de estados

ED	D		
EP	0	1	
Q = 0	0	1	
Q = 1	0	1	
			PE

* Ecuación de transición

$$Q^{n+1} = D$$

* Tabla de transición de estados

	EP	PE	J	K
1	0	0	0	X
2	0	1	1	X
3	1	0	X	1
4	1	1	X	0

	EP	J K				
		00	01	11	10	
1, 2	Q = 0	0	0	1	1	
3, 4	Q = 1	1	0	0	1	/
						I

* Tabla de transición de estados * Ecuación de transición

	ED	J K					
	EP	00	01	11	10		
1, 2	Q = 0	0	0				
3, 4	Q = 1	1]	0	0			

$$Q^{n+1} = \overline{Q}J + Q\overline{K}$$

creatures

Sequencing detectors

design

- ☐ Diseñar una maquina de estados que permita *detectar una secuencia dada*
- ☐ Consideraciones:
 - \diamond Detectar la secuencia X = 111
 - ❖ La secuencia se puede superponer X= 0111101
 - Implementar el circuito usando flipflop JK
 - Diseñar el circuito usando una FSM tipo Mealy

Tabla de estados

X	EP	PE
0	S_0	$S_0/0$
0	S_1	$S_0/0$
0	S_2	$S_0/0$
1	S_0	$S_1/0$
1	S_1	$S_2/0$
1	S_2	S ₂ / 1

Entrada	EP		PE/Z		Flipflops JK			
X	Q^n 1	Q^n 0	Q^{n+1} 1	Q^{n+1} 0	J_1	K ₁	J_0	\mathbf{K}_{0}
0	0	0	0	0/0	0	X	0	X
0	0	1	0	0/0	0	X	X	1
0	1	0	0	0/0	X	1	0	X
1	0	0	0	1/0	0	X	1	X
1	0	1	1	0/0	1	X	X	1
1	1	0	1	0/1	X	0	0	X
J_0K_0 J_1K_1								

* Implementación: diagrama lógico general

creatures

Sequencing detectors

design

- ☐ Diseñar una maquina de estados que permita *detectar una secuencia dada*
- ☐ Especificaciones del circuito detector de secuencias:
 - ❖ Una *entrada X* y una *salida Z*
 - * Cuando la máquina de estados detecta la secuencia de entrada X = 0110, la salida Z se activa, es decir Z=1, en caso contrario Z=0
 - Existe superposicion
 - No existe superposicion cuando la secuencia se detecta solo cuando se presenta de manera completa

- ☐ Superposicion de secuencias
 - Las secuencias se pueden superponer, es decir, una parte de la secuencia detectada puede ser usada para detectar una nueva

* Diagrama de estados considerando superposición

* Diagrama de estados sin considerar superposición

* Diagrama de estados tipo mealy considerando superposición

Deducir la lógica del PE (lógica de excitación)

X	EP	PE	OUT
-	Q_1Q_0	$Q_1^{+}Q_0^{+}$	/ Z
0	00	01	0
0	01	01	0
0	10	01	0
0	11	01	1
1	00	00	0
1	01	10	0
1	10	11	0
1	11	00	0

D1	D0
_	_
0	1
0	1
0	1
0	1
0	0
1	0
1	1
0	0

Deducir la lógica del PE (lógica de excitación)

$$D_1 = X Q_1 \overline{Q}_0 + X \overline{Q}_1 Q_0$$

$$D_0 = \overline{X} + Q_1 \overline{Q}_0$$

Deducir la lógica de salida Z

$$Z = \overline{X} Q_{1}Q_{0}$$

* Implementación: diagrama lógico general

creatures

Sequencing detectors

design

Diseñar una FSM síncrona, la cual tiene una entrada X y dos salidas Z_1 y Z_0 . Debe cumplir con las siguientes condiciones:

- ❖ Solo si se detecta la secuencia 101, la salida Z_1Z_0 debe ser 01
- Solo si se detecta la secuencia de entrada 010, la salida Z_1Z_0 debe ser 10
- \diamond Para otras secuencias, la salida $\mathbb{Z}_1\mathbb{Z}_0$ debe ser 00
- Existe superposición, diseñar usando "flipflop D", usar codificación Gray, la FSM síncrona debe ser Mealy

Diseñar una FSM síncrona, la cual tiene una entrada X y dos salidas Z_1 y Z_0 . Debe cumplir con las siguientes condiciones:

- ❖ Solo si se detecta la secuencia 1010, la salida Z_1Z_0 debe ser 01
- Solo si se detecta la secuencia de entrada 0101, la salida Z_1Z_0 debe ser 10
- \diamond Para otras secuencias, la salida $\mathbb{Z}_1\mathbb{Z}_0$ debe ser 00
- ❖ Existe superposición, diseñar usando "flipflop D", usar codificación Gray, la FSM síncrona debe ser Moore

