

GoodLuck Page No. CLT even tells us the meand soft of the sampling distributh. I Sample doquin Sampling Parameter Populati Distribut Mean u Ux & [4x)=4 Ox To Because we are faking samples calculating their means a plotting the mean of Tranget populate & Sampling di Far Populate & Sampling distribute will be some So El Ux - u CLT holds only if no of observations In a sample is sample size greather then so. There is a transformation Z: X- 4 which produces Zn N(o,1). 2 score tells us how the for datapoint of The datapoint of 2 score tells us how many standard deviations is the datapt or from mean (4). 2 table or standard Normal table is a table which gives what percentage of proposes below a 25 core. Suppose a 2 score = 1.09 & to 12 our input & 2table gives 0.862 je 86.1. of values fall below those value

Name :			
Std:	Div: Roll No:		
School / College :			
Sr. Date	Title	Remark	Pg. No.
asking for	setting the propablity the	1	
very high use bus The best There is As I, 1 bus	confidence level. But these	of no meaning confiden width	re level. of CI. ncreoses

	Large Sample S120 Date:
	Now we want to make inference abt papilatin mean (4). We take a sample. Sample Mean = X Sample std = \$\mathref{R}\$. we choose confidence level= 0.95, so To 95 = 1.96 Elarge Sample Size n=200
→	To with above given we know that Central Limit Theorem is true & the Sampling distribute is a Normal & our sample mean comes from the sampling distribute. No we create a band around our sample mean so the true populate mean falls in this band 95%.
	$\overline{X} - 1.96 \times S$, $\overline{X} + 1.96 \times S$
	we just say that populate std is known infact we never known any parameter of populate but booz the sample size is large enough the Central Limil Theorem is true & we can use sample std dece as a point estimate for populate std.