Hello World long subtitle

Xiangyun Ding

姓名: 丁相允

哈哈哈哈

March 1, 2020

 dxy († 65)
 Hello World
 March 1, 2020

1 section1

2 section2

A sample slide

一个超链接

A displayed formula:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

An itemized list:

- itemized item 1, 你好
- itemized item 2
- The first item
- The second item

 dxy (計65)
 Hello World
 March 1, 2020

Theorem

1.1 In a right triangle, the square of hypotenuse equals the sum of squares of two other sides.

123

hello

First Item Description of first item

Second Item Description of second item

First column text and/or code

Second column text and/or code

dxy (计 65) Hello World March 1, 2020 5,

section1

2 section2

表格

Matrix	randQB_EI(Alg. 2)		svds		Adaptive PCA Framework			
	time (s)	k	time (s)	k*	time (s)	k	Sp1	Sp2
MovieLens-1M	3.83	118	3.0	117	1.75	118	1.8	1.7
hetrec2011	40.3	328	71.8	325	29.1	327	1.4	2.5
BookCrossing	2739	3012	6758	3004	1004	3014	2.8	6.7
MovieLens-20M	1476	883	3722	879	704	883	2.1	5.3

Figure: Caption here

dxy (计 65) Hello World March 1, 2020 8/

```
def create_costco(shape, rank, nc):
    inputs = [keras.Input(shape=(1,), dtype="int32") for i in range(len(shape))]
    embeds = [
        keras.layers.Embedding(output_dim=rank, input_dim=shape[i])(inputs[i])
        for i in range(len(shape))]
    x = keras.layers.Concatenate(axis=1)(embeds)
    x = keras.layers.Reshape(target_shape=(rank, len(shape), 1))(x)
    x = keras.layers.Flatten()(x)
    x = keras.layers.Dense(nc, activation="relu")(x)
    outputs = keras.layers.Dense(1, activation="relu")(x)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model
```

```
Require: \mathbf{A} \in \mathbb{R}^{m \times n} (m \le n), block size b, pass parameter q > 2
Ensure: \mathbf{U} \in \mathbb{R}^{m \times k}, \mathbf{S} \in \mathbb{R}^k, \mathbf{V} \in \mathbb{R}^{k \times n} for certain accuracy criterion
  1: \mathbf{Q} = [\ ], \quad \mathbf{B} = [\ ]
  2: for l = 1, 2, 3, \cdots, do
            if a is an even number
                    \Omega = \text{randn}(n, b), \mathbf{Y} = \mathbf{A}\Omega - \mathbf{Q}(\mathbf{B}\Omega)
  4:
                     [\mathbf{Q}_{l}, \sim] = \mathsf{lu}(\mathbf{Y})
                                                                               # LU factorization replaces QR factorization
  5:
            else
  6:
                                                                              \# when q is an odd number
                    \mathbf{Q}_l = \mathsf{randn}(m, b)
  7:
            for t = 1, 2, \dots, |\frac{q-1}{2}| do
  g.
                  if t = |\frac{q-1}{2}|
  9:
                          \mathbf{R} = \mathbf{A}^{\mathrm{T}}\mathbf{O}_{t}
                                                                               # remove one orthogonalization
 10·
                           \mathbf{Q}_l = \operatorname{orth}(\mathbf{AR} - \mathbf{Q}(\mathbf{BR})) # the last one in power iteration
11:
12:
                  else
                           [\mathbf{Q}_l, \sim] = \mathsf{lu}(\mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{Q}_l))
                                                                          # LU factorization replaces QR factorization
13:
            end for
14:
            \mathbf{Q}_{l} = \operatorname{orth}(\mathbf{Q}_{l} - \mathbf{Q}(\mathbf{Q}^{\mathrm{T}}\mathbf{Q}_{l})), \mathbf{B}_{l} = \mathbf{Q}_{l}^{\mathrm{T}}\mathbf{A}
15:
            \mathbf{Q} = \begin{bmatrix} \mathbf{Q} & \mathbf{Q}_l \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} \mathbf{B} \\ \mathbf{B}_l \end{bmatrix}
16:
            if termination criterion is met
17:
                     k is determined and then break
19: end for
20: [\widehat{\mathbf{U}}, \widehat{\mathbf{S}}, \widehat{\mathbf{V}}] = \operatorname{eigSVD}(\mathbf{B}^{\mathrm{T}})
                                                                           # use eigen-decomposition to compute SVD
21: ind = lb : -1 : lb - k + 1
22: \mathbf{U} = \mathbf{Q}\hat{\mathbf{V}}(:, ind), \ \mathbf{S} = \hat{\mathbf{S}}(ind), \ \mathbf{V} = \hat{\mathbf{U}}(:, ind)
```

10 / 13

section1

2 section2

• First point, shown on all slides.

dxy (計 65) Hello World March 1, 2020 12/13

- First point, shown on all slides.
- Second point, shown on slide 2 and later.

- First point, shown on all slides.
- Second point, shown on slide 2 and later.
- Third point, also shown on slide 2 and later.

- First point, shown on all slides.
- Second point, shown on slide 2 and later.
- Third point, also shown on slide 2 and later.
- Fourth point, shown on slide 3.

Questions?

dxy (计 65) Hello World March 1, 2020 13 / 13