Complex Functions

Lecture 7, Wednesday June 7, 2023 Ari Feiglin

Proposition 7.1:

The image of a non-constant analytic function is dense in \mathbb{C} .

Proof:

Suppose that $f(\mathbb{C})$ is not dense in \mathbb{C} , meaning that there is a $w \in \mathbb{C}$ and r > 0 such that $D_r(w) \cap f(\mathbb{C}) = \emptyset$. Let

$$g(z) = \frac{1}{f(z) - w}$$

this is defined on all of \mathbb{C} as $f(z) \neq w$ so g is entire. Since $|f(z) - w| \geq r$ we have that

$$|g| \le \frac{1}{r}$$

so by Liouville, this means g is constant and therefore f is constant.

Theorem 7.2:

If f is an entire function such that $\lim_{z\to\infty} f(z) = \infty$ then f is a polynomial.

 $\lim_{z\to\infty} f(z) = \infty$ means that for any M>0 there exists an r>0 such that when |z|>r, |f(z)|>M.

Proof:

If there is a $z_0 \in \mathbb{C}$ where $f(z_0) = 0$ then take n such that $f^{(k)}(z_0) = 0$ for $k \leq n$ but $f^{(n+1)}(z_0) \neq 0$. This exists since otherwise, by the Taylor polynomial, f would be 0 (and so its limit would not be infinity). Thus

$$\frac{f(z)}{(z-z_0)^n} = \frac{1}{(z-z_0)^n} \left(c_n (z-z_0)^n + c_{n+1} (z-z_0)^{n+1} + \cdots \right)$$

where c_k are the Taylor coefficients, so $c_n \neq 0$. This does not equal to 0 at z_0 (it is equal to c_n). Since the limit of fis infinity, there exists an R>0 such that for every $|z|\geq R$, |f(z)|>1, so the zeros are contained within $D_R(0)$.

f is non-constant, so it has a finite number of roots. This is because if it had an infinite number of roots, then the roots form a sequence in $D_R(0)$ and since $D_R(0)$ is compact, there is a convergent subsequence of roots. So we have a sequence of α_n where α_n are all distinct and the sequence is convergent and $f(\alpha_n) = 0$, which we showed means $f \equiv 0$ which is a contradiction.

So let $\alpha_1, \ldots, \alpha_n$ be f's roots. Let the order of α_k be n_k (meaning $n_k + 1$ is the first where $f^{(n_k+1)}(\alpha_k) = 0$). Then we showed previously that we can define an entire function g such that for $z \neq \alpha_1, \ldots, \alpha_n$

$$g(z) = \frac{f(z)}{(z - \alpha_1)^{n_1} \cdots (z - \alpha_n)^{n_n}}$$

And g has no roots. Let $h(z) = \frac{1}{g(z)}$. We will show that there exist $A, B \ge 0$ such that

$$|h(z)| \le A + B|z|^{n_1 + \dots + n_n}$$

so h is a polynomial, but h does not have any roots, so h must be a constant polynomial, h(z) = c. Thus

$$f(z) = \frac{1}{c}(z - \alpha_1)^{n_1} \cdots (z - \alpha_n)^{n_n}$$

To show the existence of A and B notice that

$$|h(z)| = \left| \frac{(z - \alpha_1)^{n_1} \cdots (z - \alpha_n)^{n_n}}{f(z)} \right|$$

For $|z| \ge R$ (and we can assume $R \ge 1$), this is less than

For
$$|z| \ge R$$
 (and we can assume $R \ge 1$), this is less than
$$< |(z - \alpha_1)^{n_1} \cdots (z - \alpha_n)^{n_n}| = \left|z^d + \sum_{k=0}^{d-1} a_k z^k\right| \le |z|^d + (d-1)C|z|^{d-1}$$
 for $d = n_1 + \cdots + n_n$ and $C = \max\{|a_0|, \ldots, |a_{d-1}|\}$, so
$$|h(z)| \le ((d-1)C+1)|z|^d$$
 So let $B = (d-1)C+1$, and for $|z| < R$, $h(z)$ is bound by some A , so all in all we have
$$|h(z)| \le A + B|z|^d$$

$$|h(z)| \le ((d-1)C+1)|z|^d$$

$$|h(z)| \le A + B|z|^d$$

Theorem 7.3 (Mean Value Theorem):

If f is analytic in D and $a \in D$, then

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta$$

for every r > 0 where $D_r(a) \subseteq D$.

Proof:

By Cauchy we know

$$f(a) = \frac{1}{2\pi i} \int_{C_r(a)} \frac{f(z)}{z - a} dz$$

we parameterize $C_r(a)$ by $\theta \in [0, 2\pi) \mapsto a + re^{i\theta}$ and so this becomes

$$=\frac{1}{2\pi i}\int_0^{2\pi}\frac{f(a+re^{i\theta})}{re^{i\theta}}rie^{i\theta}\,d\theta=\frac{1}{2\pi}\int_0^{2\pi}f(a+re^{i\theta})\,d\theta$$

as required.

Definition 7.4:

Let f be a complex function and $z_0 \in \mathbb{C}$. If there exists a neighborhood \mathcal{U} of z_0 such that $|f(z_0)| \geq |f(z)|$ for every $z \in \mathcal{U}$, then z is a local maximum. Similarly we define local minimums.

Theorem 7.5 (Maximal Modulus Principle):

If f is an analytic function in a domain D, then f has no local maxima in D.

This means that the local maxima must occur on the boundary of D.

Proof:

Let $z \in D$ and r > 0 such that $D_r(z) \subseteq D$. By the **Mean Value Theorem**

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(z + re^{i\theta}) d\theta$$

$$|f(z)| \le \frac{1}{2\pi} \max |f(z + re^{i\theta})| d\theta = \max |f(z + re^{i\theta})|$$

The maximum exists since $C_r(z)$ is compact. Suppose the maximum is induced by w. If we assume that z is a local maxima, then for r > 0 small enough |f(z)| = |f(w)|.

Thus if u is on $C_r(z)$ then $|f(u)| \leq |f(z)|$ but the integral from 0 to 2π of both of these is equal which means that |f(u)| = |f(z)| for every u on $C_r(z)$. So |f| is constant on every $C_r(z)$ and therefore on $D_r(z)$, which means that f is constant on $D_r(z)$, which means f is constant on D (since the derivatives of f at z are all zero, so the taylor expansion is constant). This is a contradiction.

Theorem 7.6 (Minimal Modulus Principle):

Suppose f is a non-constant analytic function in a domain D. Then z is a local minimum if and only if f(z) = 0.

Proof:

If f(z) = 0 then it is obvious that z is a local minimum. If $f(z) \neq 0$ then there exists an r > 0 such that for $w \in D_r(z) \subseteq D$, $f(w) \neq 0$ by continuity. So $\frac{1}{f}$ is defined in $D_r(z)$, is analytic, and is non-constant, so it therefore has no local maxima. This means that z is not a local minimum of f, since if it were, it would be a local maximum of $\frac{1}{f}$.

Theorem 7.7 (Open Mapping Theorem):

A non-constant analytic function in a domain is an open mapping (maps open sets to open sets).

Proof:

Let $\alpha \in D$, we can assume $f(\alpha) = 0$, by simply defining a new function $\tilde{f}(z) = f(z) - f(\alpha)$ which is a shift of f and therefore open if and only if f is open. There must be a neighborhood of α not containing any other roots of f, as otherwise we could take a sequence of roots $z_n \to \alpha$ which means that $f \equiv 0$ which is a contradiction. So suppose for r > 0, $\bar{D}_r(\alpha)$ has no other roots of f.

Let $\varepsilon = \frac{1}{2} \min_{z \in C_r(\alpha)} |f(z)|$. $\varepsilon > 0$ since $C_r(\alpha)$ is compact so its minimum exists, and is in $\bar{D}_r(\alpha)$. We will show that $D_{\varepsilon}(0) \subseteq f(D_r(\alpha))$.

Let $w \in D_{\varepsilon}(0)$ and $z \in C_r(\alpha)$ then

$$|f(z) - w| \ge |f(z)| - |w| \ge 2\varepsilon - \varepsilon = \varepsilon$$

Let us define h(z) = f(z) - w, which is analytic. Notice that $|f(\alpha) - w| = |w| < \varepsilon$. We know that |h| must have a minimum in $\bar{D}_r(\alpha)$, and since $|h(\alpha)| < |h(z)|$ for $z \in C_r(\alpha)$, this minimum must be in $D_r(\alpha)$. This means that h has a local minimum in $D_r(\alpha)$, so there is a point where h(z) = 0 so f(z) = w for $z \in D_r(\alpha)$, meaning $w \in f(D_r(\alpha))$ as required.

Lemma 7.8 (Schwarz Lemma):

Suppose f is analytic on $D_1(0)$ such that f(0) = 0 and $|f(z)| \le 1$. Then $|f(z)| \le |z|$ and $|f'(0)| \le 1$. If there exists a non-zero z_0 where $|f(z_0)| = |z_0|$ or |f'(0)| = 1 then $f(z) = re^{i\theta}z$ (f is a rotation).

Proof:

Let us define

$$g(z) = \begin{cases} \frac{f(z)}{z} & z \neq 0\\ f'(0) & z = 0 \end{cases}$$

which is analytic. Take 0 < r < 1 and $z \in C_r(0)$, so

$$|g(z)| = \left| \frac{f(z)}{z} \right| \le \frac{1}{r}$$

By the maximal modulus principle, the local maxima of g on $\bar{D}_r(0)$ are on $C_r(0)$, and the value of the modulus of the maximum is $\leq \frac{1}{r}$. So if we take $w \in D_r(0)$ where $|w| = \rho < r < 1$, then since maxima are found on the boundary

$$|g(w)| \le \max_{|z|=r} |g(z)| \le \frac{1}{r}$$

since r is arbitrarily between ρ and 1, this means that

$$|g(w)| \leq 1 \implies \left|\frac{f(z)}{z}\right| \leq 1 \implies |f(z)| \leq |z|$$

And taking the limit of |g(w)| as $w \to 0$ gives |f'(0)| so we also get $|f'(0)| \le 1$ as required. If $|f(z_0)| = |z_0|$ for $z_0 \ne 0$ then $|g(z_0)| = 1$ which is maximal. Or if $z_0 = 0$ and |f'(0)| = 1 then $|g(z_0)| = 1$ is maximal as well. Since z_0 is an interior point, this means that g must be constant (non-constant analytic functions have maxima only on their boundaries). So f(z) = az where g(z) = a, since |g(z)| = 1 this means |a| = 1 so $f(z) = e^{i\theta}z$.