

Redes de Computadores Módulo 4 - Tecnologias de Rede Local

Universidade do Minho
Grupo de Comunicações por Computador
Departamento de Informática

Universidade do Minho Escola de Engenharia Departamento de Informática

tecnologias LAN

- LAN de Acesso Partilhado (shared LAN)
 - as estações disputam a largura de banda existente
 - a transmissão no meio é difundida por todas as estações
 - por definição, uma LAN é um domínio de entrega directa de tramas entre estações, designado por domínio de colisão.
 - as estações recebem a trama com um atraso mínimo
 - o método de acesso partilhado varia com a topologia:
 - acesso contencioso: barramento e estrela com hub-repetidor
 - acesso ordenado: anel e barramento com testemunho (token)
 - o desempenho de uma LAN varia com o tipo de aplicações e com o número de estações interligadas

Universidade do Minho

Departamento de Informática

tecnologias LAN

- LAN Comutada (switched LAN)
 - é uma geração recente de LAN
 - é introduzido um comutador para criar e isolar sub-domínios de colisão dentro de um domínio de entrega directa
 - o comutador de LAN filtra a difusão em função dos endereços da estação de destino das tramas (<u>função bridging</u>)
 - Vantagens :
 - maior largura de banda agregada por redução das colisões
 - consequentemente, melhor desempenho

Universidade do Minho
Escola de Engenharia
Departamento de Informática

tecnologias LAN

LAN Comutada (switched LAN)

3 domínios de colisão: LAN L1, LAN L2 e LAN L3

1 domínio de entrega directa: a LAN comutada

9 estações na mesma LAN comutada

1 porta do comutador ligada a cada LAN Li

Universidade do Minho
Escola de Engenharia
Departamento de Informática

tecnologias LAN

- LAN Virtual Comutada (switched VLAN)
 - as estações ligam directamente ao comutador
 - certos comutadores tem a capacidade de associar conjuntos de portas em diferentes sub-dominios de colisão constituindo LANs virtuais
 - as LAN virtuais não existem externamente ao comutador mas são construidas internamente por configuração do comutador
 - o princípio de funcionamento é idêntico ao da LAN Comutada
 - as estações ligam-se ao comutador normalmente em ponto-a-ponto full-duplex

22

tecnologias LAN

Universidade do Minho
Escola de Engenharia
Departamento de Informática

LAN Virtual Comutada (switched VLAN)

- 2 domínios de colisão: VLAN L1 e VLAN L2
- 1 domínio de entrega directa: a VLAN comutada
- 4 estações na mesma LAN comutada
- 1 porta do comutador ligada a cada estação portas do comutador associadas por configuração formando LANs virtuais

Departamento de Informática

Exemplo de Rede Local - UMinho

* 〇

protocolos: nível de ligação de dados

Universidade do Minho Escola de Engenharia Departamento de Informática

tecnologias LAN

- Exemplos de tecnologias usadas em LANs:
 - Ethernet (IEEE 802.3), Fast Ethernet (IEEE 802.3u)
 - Token Ring (IEEE 802.5), Token Bus (IEEE 802.4)
 - Distributed Queue Dual Bus (DQDB) (IEEE 802.6)
 - Fiber Distributed Data Interface (norma ANSI)
 - Wireless LAN (IEEE 802.11)
 - Asynchronous Transfer Mode (ATM) (ITU-T)

Universidade do Minho
Escola de Engenharia
Departamento de Informática

protocolos: nível de ligação de dados

- O nível de ligação é dividido em 2 sub-níveis
 - Logical Link Control (LLC) (IEEE 802.2)
 - funções similares ao HDLC
 - endereço de nível lógico (LSAP LLC Service Access Point)
 - pode suportar primitivas orientadas ou não à conexão
 - Medium Access Control (MAC)
 - varia com o tipo de LAN, i.e. cada LAN tem um sub-nível MAC próprio
 - determina a sequência de bits que é posta no meio de transmissão
 - determina quem acede ao meio

Universidade do Minho
Escola de Engenharia
Departamento de Informática

protocolos: nível de ligação de dados

- Encapsulamento
 - Um LLC protocol data unit (L-PDU) contém informação de controlo e dados que a entidade LLC transmissora envia à entidade LLC receptora
 - Na transmissão,
 - o sub-nível MAC encapsula cada L-PDU, adicionando o seu próprio *header* (*cabeçalho*) e *trailer* (*terminação*)
 - Na recepção,
 - o sub-nível MAC remove o header e trailer de cada MAC-PDU e entrega o LPDU ao sub-nível superior.

protocolos: nível de ligação de dados, bridging

Universidade do Minho Escola de Engenharia Departamento de Informática

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ethernet: trama LLC-PDU e IEEE 802.3

- encapsula a sub-camada de ligação LLC (Logical Link Control)
- o LLC tem estrutura e funcionalidade semelhante ao LAPB
- os endereços designam-se:

D-LSAP (Destination-Logical Service Access Point)

S-LSAP (Source-Logical Service Access Point)

Universidade do Minho Escola de Engenharia

Departamento de Informática

Ethernet

Desenho original da Rede Ethernet - Bob Metcalfe 1976

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ethernet: Definição da trama (MAC)

- características genéricas:
 - Preamblo: 7 octetos [1010..10] para sincronismo de bit
 - Start of Frame Delimiter: 1 oct [10101011] padrão sincronismo de trama
 - Endereços de Destino e de Origem: 6 octetos (endereço ethernet)
 - Tipo/Compr: 2 octetos, definem o protocolo nos Dados
 - Dados: 46 a 1500 octetos, contém o PDU do protocolo encapsulado
 - FCS: 4 octetos, Frame Check Sequence para control de erros
- Endereços: endereço da estação emissora e receptora / broadcast

Universidade do Minho Escola de Engenharia

Departamento de Informática

Ethernet: Definição da trama (MAC)

- Campo Tipo/Comprimento
 - se valor ≤ 0 x05DC (1500)
 - é interpretado como **comprimento** do campo de dados e
 - o campo de dados contém a camada de ligação LLC
 - a trama é designada IEEE 802.3 Ethernet
 - se valor > 0x0600 (1536)
 - é interpretado como **ethertype** (tipo de protocolo)
 - valor identifica o protocolo contido no campo de dados
 - trama é designada **Ethernet II** (RFC 894)

33

Universidade do Minho Escola de Engenharia

Departamento de Informática

Ethernet: trama Ethernet II

encapsula o protocolo definido pelo valor do campo Ethertype

valores geridos pela XEROX (detém direitos da ethernet).

Exemplos:

Ethernet

- características genéricas:
 - trama máxima: 1518 octetos; trama mínima: 64 octetos
 - MTU: Maximum Transfer Unit é 1500 octetos
 - entrega segundo o paradigma *melhor-esforço*
 - método de acesso ao meio: CSMA/CD Carrier Sense Multiple Access/Collision Detection) (nos débitos mais baixos e meios partilhados)

Departamento de Informática

Ethernet: acesso ao meio e colisões

Ethernet: o acesso múltiplo é contencioso e há detecção de colisões

A inicia transmissão

A continua transmissão

C inicia transmissão

t_n: C detecta colisão

2.t_p : A e C detectam colisão

 $t_p = d/v =$ tempo de propagação fim a fim no meio de Tx d = comprimento do meio de Txv = velocidade de propagação no meio

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ethernet: Controlo de acesso ao meio

- Detecção de colisão
 - baseada no tempo de ida-e-volta (round trip) de uma trama
 - é necessário garantir um tamanho mínimo de trama que assegure a detecção de colisão no pior caso possível (corresponde a enviar, no mínimo, duas vezes o tamanho do meio de transmissão em bits!)

$$L > 2 * d * r / V$$

- Jamming: Para garantir que outras estações se apercebam da ocorrência de colisão, a que detecta deve forçar uma transmissão de alguns bits antes de parar de transmitir
- No ethernet a trama de jam é designada de jam signal

Ethernet: Controlo de acesso ao meio: CSMA/CD

Carrier Sense Multiple Access/Collision Detection (CSMA/CD)

```
acesso ao meio:
se meio está activo
                                  (detecção de portadora)
    então acesso ao meio (aguarda até meio estar livre)
    senão transmite(trama) e detecta (tx e lança processo de detecção)
se detecta = colisão
                                  (detecção de colisão)
    então transmite(jam);
                                  (aborta transmissão, reforça colisão)
          K=K+1; (conta as colisões)
          espera(K); (espera tempo aleatório, backoff)
          acesso ao meio (tenta novamente o acesso)
    senão K=0
```

Universidade do Minho Escola de Engenharia

Departamento de Informática

Ethernet: Controlo de acesso ao meio

- Após transmissão de uma trama mais do que uma estação pode estar à espera de uma oportunidade de transmissão
- Consequência: Se houver mais do que uma estação a aguardar o fim de uma transmissão, quando tal suceder, a colisão é certa. Para reduzir colisões:

Após uma colisão, as estações envolvidas esperam (retraem) um tempo aleatório $\mathbf{n} \times \mathbf{t_p}$ (que, com alguma probabilidade será diferente para cada uma) antes de acederem novamente ao meio para retransmitir.

Universidade do Minho

Departamento de Informática

Ethernet: Controlo de acesso ao meio

 Algoritmo de retracção exponencial binária truncada (truncated binary exponential backoff algorithm):

espera(K)

- retorna um tempo de atraso n x t_p em que n é um inteiro aleatório uniformemente distribuído no intervalo [0,2^K-1] e K é o número de colisões anteriores
- Valor máximo
 - K_{max} = 16 (16 colisões consecutivas)

Departamento de Informática

Ethernet

- características genéricas:
 - ritmo de transmissão: 10 Mbps, 100 ...
 - meio de transmissão: UTP, cabo coaxial, fibra
 - 10BASE-5; 10BASE-2; 10BASE-T; 10BASE-F,...

Ethernet: características físicas gerais

Parâmetro	10BASE5	10BASE2	10BASE-F	10BASE-T
Seg.Máximo	500m	185m	400-2000m	100m
Topologia	barramento	barramento	estrela	estrela
Meio	coax grosso	coax fino	MMF	UTP
Conector	NICBD15	BNC	ST ou SC	RJ-45
Diâmetro	10mm	5mm	Ordem dos µm	5

Departamento de Informática

Fast Ethernet

Fast Ethernet (IEEE 802.3u)

- Características genéricas:
 - ritmo de transmissão: 100 Mbps
 - meio de transmissão: UTP ou fibra óptica
 - usa mesmo formato de trama MAC, varia o nível físico
 - opção mais usada: 100BASE-TX (cerca 95% das 100BASE-T)

[Opções IEEE 802.3u]

Redes Locais de Computadores Universidade

Universidade do Minho

Departamento de Informática

Fast Ethernet

Sumário de algumas características das normas IEEE802.3u

Parâmetro	100BASE-TX	100BASE-FX	100BASE-T4
Distância	100m	100m	100m
Topologia	estrela	estrela	estrela
Meio	UTP5/STP	MMF/SMF	UTP3/4/5
Nº Pares	2	2 fibras	4
Full Duplex	Sim	Sim	Não

Redes Locais de Computadores Universidade do Minho

Escola de Engenharia Departamento de Informática

Ethernet

Ex: Ethernet 10/100base-T: maior isolamento de falhas, metodologia organizada de expansão

[LMAN, Stallings 00]

Ponto da situação e revisão de conceitos fundamentais

- Módulo 1 Transmissão e Comunicação de Dados
- Módulo 2 Elementos de Protocolo Controlo da Ligação de Dados
- Módulo 3 Protocolos de Ligação HDLC e outros
- Módulo 4 Tecnologias de Rede Local
- Módulo 5 Tecnologias de Rede Local sem Fios
- Módulo 6 Nível de Rede: Protocolos TCP/IP