Low Dimensional Topology

Ikhan Choi

September 13, 2024

Contents

Ι	Topology of 3-manifolds	2
1		3
2		4
3		5
II	Geometry of 3-manifolds	6
4	Hyperbolization4.1 Geometric structures4.2 Poincaré polyhedron theorem4.3 Hyperbolic Dehn surgery4.4 Mostow rigidity4.5 Orbifolds	7 7 8 8 8
5	Teichmüller theory 5.1	10 10
6	Geometric group theory 6.1	11 11
II	Topology of 4-manifolds	12
7	Surgery theory	13
8	Intersection forms	14
9	Kirby calculus	15
IV	Geometry of 4-manifolds	16
10		17
11	Seiberg-Witten theory	18
12	1	19

Part I Topology of 3-manifolds

Part II Geometry of 3-manifolds

Hyperbolization

4.1 Geometric structures

- **4.1** (Space forms). Let X be a simply connected homogeneous Riemannian manifold. A *space form* of X is an orbit space X/Γ of a subgroup $\Gamma \leq \operatorname{Isom}(X)$ such that $X \to X/\Gamma$ is a covering. If M is a space form of X, we say M is *modelled on* X.
 - (a) A complete finite-volume Riemannian manifold is locally isometric to *X* is a space form of *X*.
 - (b) X/Γ is a space form of X if and only if Γ acts properly discontinuously and freely on X. (if X is locally compact?)
 - (c) X/Γ is a space form of X if and only if Γ is a discrete torsion-free subgroup of Isom(X). (if every periodic isometry of X has a fixed point)
 - (d) There is a following one-to-one correspondence:

Proof.

- **4.2** (Model geometry). A *model geometry* is a simply connected homogeneous Riemannian manifold *X* that has a space form of finite-volume.
 - (a) There are three model geometries of dimension two, up to isometry.
 - (b) There are eight model geometries of dimension three, up to isometry.

 \square

- **4.3** ((G,X)-manifolds). Let X be a topological space. A *pseudogroup* Γ on X is a wide subgroupoid of Homeo(X) such that $U \mapsto \{g \in \Gamma : \text{dom } g = U\}$ is a sheaf on the topology of X. Let Γ be a pseudogroup on X, and M be a topological space. A Γ -atlas on M is an atlas whose charts have X as the codomain and transition maps belong to Γ . A Γ -structure on M is defined as an equivalence class of Γ -atlases on M
 - (a) $(G,X) := \{g|_U : g \in G, U \in T\}$ is a pseudogroup on X for $G \leq \text{Homeo}(X)$.
 - (b) ... Note that G does not act on (G,X)-manifold M.
- **4.4** (Developing and holonomy). Complete (G,X)-manifolds

- **4.5** ((Isom(X),X)-manifolds). Let X be a simply connected homogeneous Riemannian manifold. We will show that a complete (G,X)-structure on a connected manifold corresponds to a geometric structure modelled on X. In this regard, we will call a (G,X)-structure that is not complete as *incomplete geometric structure*.
 - (a) M is a connected complete (Isom(X), X)-manifold if and only if M is a space form of X.

4.2 Poincaré polyhedron theorem

- 4.6 (Fundamental polyhedron).
- **4.7** (Side pairing). We want to develop a method for obtaining geometric 3-manifolds by gluing tetrahedra. Let X be a model geometry and X/Γ be a space form of X with finite volume.
- **4.8** (Elliptic cycle condition). Tesselation of \mathbb{S}^2 about verteices and edges, but edges are redundant.
- **4.9** (Parabolic cycle condition). Tesselation of \mathbb{E}^2 about ideal vertices.

4.3 Hyperbolic Dehn surgery

- 4.10 (Cusp and horoball).
- **4.11** (Thick-thin decomposition). Margulis constant.
- 4.12 (Thurston's hyperbolic Dehn surgery).

4.4 Mostow rigidity

Kleinian groups Several topological invariants: volume, trace fields, etc.

4.5 Orbifolds

Exercises

4.13 (Action of compact stabilizer). Let M be a connected smooth manifold. Recovering metric from action of compact stabilizers...? We want to establish the following one-to-one correspondence.

$$\left\{ \begin{array}{c} \text{Homogeneous} \\ \text{Riemannian metrics} \end{array} \right\} \quad \stackrel{\sim}{\longrightarrow} \quad \left\{ \begin{array}{c} \text{Maximal} \\ \text{homogeneous smooth group actions} \\ \text{of compact stabilizers} \end{array} \right\}.$$

- (a) If g is a homogeneous Riemannian metric on M, the group action on M by Isom(M, g) is maximal among smooth group actions with compact stabilizers.
- (b) If a smooth group action on M by G is maximal among smooth group actions with compact stabilizers, then there is a homogeneous Riemannian metric on M such that $G \cong \text{Isom}(M, g)$.

Proof. \Box

- **4.14** (Hyperbolization of punctured surfaces). Euler characteristic χ .
- **4.15** (Figure-eight knot complement). Find an ideal triangulation. Find the angle condition for the two ideal tetrahedra. Find the generators of Γ .

- **4.16** (Geometrically finiteness).
- **4.17** (Siegel theorem).

Teichmüller theory

5.1

Geometric group theory

6.1

Part III Topology of 4-manifolds

Surgery theory

Why 4-manifolds are difficult?

Intersection forms

Kirby calculus

Part IV Geometry of 4-manifolds

Seiberg-Witten theory

11.1. Let *V* be a real inner product space. In Spin(4) \subset Cl^{ev}(4) \cong Cl(3) \cong $\mathbb{H} \oplus \mathbb{H}$, the spin group Spin(4) is isomorphic to $S^3 \times S^3$.

If V is even-dimensional, then Cl(V) has a unique finite-dimensional irreducible complex graded representation $Cl(V) \to End_{\mathbb{C}}(S(V))$ such that the complexification induces an isomorphism $Cl(V) \otimes_{\mathbb{R}} \mathbb{C} \cong End(S(V)) = S(V) \otimes S(V)^*$.

If V is odd-dimensional, then Cl(V) has two non-isomorphic finite-dimensional irreducible complex representations $Cl(V) \to End_{\mathbb{C}}(S_+(V \oplus \mathbb{R}))$ and $Cl(V) \to End_{\mathbb{C}}(S_-(V \oplus \mathbb{R}))$ obtained from the direct sum decomposition of $Cl(V) = Cl^0(V \oplus \mathbb{R}) \subset Cl^0(V \oplus \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \cong End_{\mathbb{C}}(S(V \oplus \mathbb{R}))$.