COURSE STRUCTURE A NUMERICAL SOLUTION OF HYPERBOLIC EQUATIONS ASS 1ch 7 I ADVECTION EQUATION -BASIC CONCEPTS OF HUMERICAL SINUAT. -ACCURACY AND STABILITY -FEW FINITE DIFFERENCE SCHEMES 2 SYSTEMS OF 2 HYPERBOLIC EQUATIONS PRACTICAL EXAMPLES: - FLASTIC WAVES (H SOLIDS
- PRESSURE WAVES (H FLUIDS
- FLECTROMAGNETIC WAVES (H CABLES
HUMERICAL METAGDS
- METHOD OF CHARACTERISTICS
- FEW FIHITE DIFFERENCE SCHEMES B FUHDAMENTAL EQUATIONS GOVERNING -SIMPLE HARMONIC OSCILLATOR -2 COUPLED OSCILLATORS -TRAVELLING WAVES - DERIVE ALL EQUATIONS COLVED IN PARTA ASSESS MOUT! 1 35% ASSIGN MENT 65% IMETABLE: 2h LECTURES (WEEK 24 COMPUTING CLASS

INTRODUCTION	
WAVES: DISTURBANCES OF WHICH PROPAGATE THE SYSTEM FROM TO AHOTHER	THROUGH OHE REGION
EXAMPLES: OCEAH WAVES, SOUND WAVES, X-RAYS, PA	DIO WAVES
TYPES OF WAVES REGAR -MECHANICAL (HE -ELEITROMAGNETIC (DILIG THE MEDION ED A MEDIUM) CAH TRAVEL IN A VACUUM
TYPES OF WAVES BY DIM -1D -2D -3D	EHSIONALITY
PART A HUMERICAL SOLL HYPERBOLIC EQUA	MOHS OF
1. ADVECTION FQUATION	
MODEL HYPERBOLIC EC DESCRIBOS THE MOVEMENT BY A FLUID	QUATION, IT
TRACE P. 2 + 2	$\partial C = O$
C-TRACEI	P COHCENTRATION [EDG/18]
U-FLUID	VELOCITY [w/s]
x,t-s	PACE, TIME IM7 IST

I.I NUMERICAL SOLUTION OF THE ADVATION AE IS A FIRST ORDER (OHLY FIRST DEPMANA)
PARTIAL DIFFERENTIAL EQUATION (PDE) AE CONTRINS: · 2 INDEPENDENT WRIABLES X, KHOWH PARAMETER 12 · 1 UNKHOWH VARIABLE: C IN ORDER TO BE ABLE TO SOLVE IT WE HEED TO KNOW: · SIMULATION DONAIN: OXX &L · SIMULATION TIME: OST ST · INITIAL CONDITION: COEXEL, t=0 · BOUNDARY CONDITION: C(X=0 OCES