

1 Definition

Definition 1. Let R be a Banach ring. The *spectrum* $\mathcal{M}(R)$ of R is defined as the set of all multiplicative semi-norms on R that are bounded with respect to the given norm on R. For every point $x \in \mathcal{M}(R)$, we denote the corresponding multiplicative semi-norm by $|\cdot|_x$. We equip $\mathcal{M}(R)$ with the weakest topology such that for each $f \in R$, the evaluation map $\mathcal{M}(R) \to \mathbb{R}_{\geq 0}$, defined by $x \mapsto |f|_x = f(x)$, is continuous.

Definition 2. Let $\varphi : R \to S$ be a bounded ring homomorphism of Banach rings. The *pullback* map $\mathcal{M}(\varphi) : \mathcal{M}(S) \to \mathcal{M}(R)$ is defined by $\mathcal{M}(\varphi)(x) = x \circ \varphi : f \mapsto |\varphi(f)|_x$ for each $x \in \mathcal{M}(S)$.

Definition 3. Let R be a Banach ring. A *character* of R is a bounded ring homomorphism χ : $R \to K$, where K is a completed field. Two characters $\chi_1 : R \to K_1$ and $\chi_2 : R \to K_2$ are said to be *equivalent* if there exists a commutative diagram of bounded ring homomorphisms

$$\begin{array}{cccc}
\chi_1 & & & & \\
& & & & & \\
K_1 & & & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
& & & & & & \\
& & & & & & \\
K_2 & & & & & & \\
\end{array}$$

for some completed field K.

Proposition 4. Let R be a Banach ring. The spectrum $\mathcal{M}(R)$ is in bijection with the equivalence classes of characters of R.

Proof. Yang: To be completed

Proposition 5. Let R be a Banach ring. For each $x \in \mathcal{M}(R)$, let \mathcal{D}_x be the kernel of the multiplicative semi-norm $|\cdot|_x$. Then \mathcal{D}_x is a closed prime ideal of R, and $x \mapsto \mathcal{D}_x$ defines a continuous map from $\mathcal{M}(R)$ to Spec(R) equipped with the Zariski topology.

Proof. Yang: To be completed

Definition 6. Let R be a Banach ring. For each $x \in \mathcal{M}(R)$, the *completed residue field* at the point x is defined as the completion of the residue field $\kappa(x) = \operatorname{Frac}(R/\wp_x)$ with respect to the multiplicative norm induced by the semi-norm $|\cdot|_x$, denoted by $\mathcal{H}(x)$.

Definition 7. Let R be a Banach ring. The *Gel'fand transform* of R is the bounded ring homomorphism

$$\Gamma: R \to \prod_{x \in \mathcal{M}(R)} \mathcal{H}(x), \quad f \mapsto (f(x))_{x \in \mathcal{M}(R)},$$

where the norm on the product $\prod_{x \in \mathcal{M}(R)} \mathcal{H}(x)$ is given by the supremum norm.

Date: October 23, 2025, Author: Tianle Yang, My Homepage

Proposition 8. The Gel'fand transform $\Gamma: R \to \prod_{x \in \mathcal{M}(R)} \mathcal{H}(x)$ of a Banach ring R factors through the uniformization R^u of R, and the induced map $R^u \to \prod_{x \in \mathcal{M}(R)} \mathcal{H}(x)$ is an isometric embedding. Yang: To be checked.

Theorem 9. Let R be a Banach ring. The spectrum $\mathcal{M}(R)$ is a nonempty compact Hausdorff space.

Proof. Yang: To be continued.

Lemma 10. Let $\{K_i\}_{i\in I}$ be a family of completed fields. Consider the Banach ring $R = \prod_{i\in I} K_i$ equipped with the product norm. The spectrum $\mathcal{M}(R)$ is homeomorphic to the Stone-Čech compactification of the discrete space I.

Remark 11. The Stone-Čech compactification of a discrete space is the largest compact Hausdorff space in which the original space can be densely embedded. Yang: To be checked.

2 Examples

Example 12. Let $(\mathbf{k}, |\cdot|)$ be a complete valuation field. The spectrum $\mathcal{M}(\mathbf{k})$ consists of a single point corresponding to the given absolute value $|\cdot|$ on \mathbf{k} . Yang: To be checked.

Example 13. Consider the Banach ring $(\mathbb{Z}, \|\cdot\|)$ with $\|\cdot\| = |\cdot|_{\infty}$ is the usual absolute value norm on \mathbb{Z} . Let $|\cdot|_p$ denote the p-adic norm for each prime number p, i.e., $|n|_p = p^{-\nu_p(n)}$ for each $n \in \mathbb{Z}$, where $\nu_p(n)$ is the p-adic valuation of n. The spectrum

$$\mathcal{M}(\mathbb{Z}) = \{|\cdot|_{\infty}^{\varepsilon} : \varepsilon \in (0,1]\} \cup \{|\cdot|_{p}^{\alpha} : p \text{ is prime}, \alpha \in (0,\infty]\} \cup \{|\cdot|_{0}\},$$

where $|a|_p^{\infty} := \lim_{\alpha \to \infty} |a|_p^{\alpha}$ for each $a \in \mathbb{Z}$ and $|\cdot|_0$ is the trivial norm on \mathbb{Z} . Yang: To be checked.

Spectrum of Tate algebra in one variable Let **k** be a complete non-archimedean field, and let $A = \mathbf{k}\{T/r\}$. We list some types of points in the spectrum $\mathcal{M}(A)$.

For each $a \in \mathbf{k}$ with $|a| \le r$, we have the *type I* point x_a corresponding to the evaluation at a, i.e., $|f|_{x_a} := |f(a)|$ for each $f \in A$. For each closed disk $D(a, s) = \{b \in \mathbf{k} : |b - a| \le s\}$ with center $a \in \mathbf{k}$ and radius $s \le r$, we have the point $x_{a,s}$ corresponding to the multiplicative semi-norm defined by

$$|f|_{x_{a,s}} := \sup_{b \in D(a,s)} |f(b)|$$

for each $f \in A$.

Yang: To be completed.

Proposition 14. Let **k** be a complete non-archimedean field, and let r > 0 be a positive real number. Consider the Tate algebra $\mathbf{k}\{r^{-1}T\}$ equipped with the Gauss norm. The points in the spectrum $\mathcal{M}(\mathbf{k}\{r^{-1}T\})$ can be classified into four types:

- Type I: Points corresponding to evaluation at ${\bf k}$ -rational points in the closed disk of radius r.
- Type II: Points corresponding to multiplicative semi-norms associated with closed disks of radius in $|\mathbf{k}^{\times}|$ centered at points in the closed disk of radius r.
- Type III: Points corresponding to multiplicative semi-norms associated with closed disks of

radius not in $|\mathbf{k}^{\times}|$ centered at points in the closed disk of radius r.

• Type IV: Points corresponding to multiplicative semi-norms that are not associated with any disk, often arising as limits of Type II or Type III points.

Yang: To be checked

| Proof. Yang: To be completed.

