Kavi Dey Physics 50 Section 7 Lab Partner: Avery Smith Module 1 Lab Report October 3, 2023

1 Filter Specifications

		Simulated w/	Simulated w/	
Parameter	Analytical	ideal components	real components	Measured
Filter type	Filter type Chebyshev I		NA	NA
Filter order 3		NA	NA	NA
Pass Band	100 MHz	100 MHz		
Edge				
(defined as				
exceeding 1dB				
ripple)				
Stop Band	170 MHz	173.78 MHz		
Start				
(defined @20dB				
of rejection)				
Insertion Loss 0 dB		0.0206 dB		
In-Band Ripple 0.5		0.5210 dB	_	

2 Pictures and Schematics

(a) Ideal Components

(b) Real Components

(c) Assembled Design

3 Hand Calculations

We want to design an LC lowpass filter with an f_c of 100 MHz and minimum attenuation of 20 dB at 200 MHz. The allowable passband ripple is 1 dB and the maximum insertion loss is 3 dB. The source and load resistance are equal at 50 ohms.

We can then normalize the attenuation requirements to use attenuation curves:

$$\frac{f}{f_c} = \frac{200 \text{ MHz}}{100 \text{ MHz}} = 2$$

Now we want to select a normalized lowpass filter that offers at least 20 dB of attenuation at a ratio of $f/f_c = 2$.

Figure 2: Attenuation characteristics for a Chebyshev filter with 0.5-dB ripple.

From the attenuation plot, we can see that a 3rd order chebyshev filter has greater than the required attenuation at $f/f_c=2$ Extracting the point at which there is 20 dB of rejection from the transfer function numerically, we get $f_{\rm stop\ band}=170$ MHz.

We have chosen to use the 0.5 dB attenuation table, so the expected in band ripple is 0.5 dB. At the desired stop band, $f = 200 \text{ MHz} \rightarrow f/f_c = 2$, we can see that there is 24 dB of attenuation.

We can predict the attenuation as a function of frequency using

$$A_{\rm dB} = 10 \log \left[1 + \epsilon^2 C_n^2 \left(\frac{\omega}{\omega_c} \right)' \right]$$

Where:

1. $\epsilon = \sqrt{10^{R_{\rm dB}/10} - 1} = 0.3493$ ($R_{dB} = 1$ dB is the allowable passband ripple)

2.
$$\left(\frac{\omega}{\omega_c}\right)' = \left(\frac{\omega}{\omega_c}\right) \cosh B$$

3.
$$B = \frac{1}{n} \cosh^{-1} \left(\frac{1}{\epsilon} \right)$$

4.
$$C_3(x) = 4x^3 - 3x$$

The following table can be used to calculate component values for n=3 and $R_S/R_L=1$ as follows:

_						
	(R _S C ₁ =	C ³			
n	R_s/R_L	C ₁	L_2	C ₃	L,	-
2	1.984	0.983	1.950			_
1	2.000	0.909	2.103			
Į.	2.500	0.564	3.165			
	3.333	0.375	4.411			
1	5.000	0.228	6.700			
1	10.000	0.105	13.322			
1	00	1.307	0.975			
1 3	1.000	1.864	1.280			Į
1	0.900	1.918	1.280	1.834		- 1
1	0.800	1.997	1.120	2.026		- [
1	0.700	2.114	1.015	2.237		
1	0.500	2.557		2.517		- 1
1	0.400	2.985	0.759 0.615	3.436		1
1	0.300	3.729		4.242		1
]	0.200	5.254	0.463	5.576		1
	0.100	9.890	0.309	8.225		ł
İ	00	1.572	0.153	16.118		1
4	1.984		1.518	0.932		1
1 *		0.920	2.586	1.304	1.826	1
l	2.000	0.845	2.720	1.238	1.985	1
ł	2.500	0.516	3.766	0.869	3.121	ſ
	3.333	0.344	5.120	0.621	4.480	1
	5.000	0.210	7.708	0.400	6.987	ı
	10.000	0.098	15.352	0.194	14.262	1
		1.436	1.889	1.521	0.913	ı
n	R_L/R_S	L_1	C_2	L_2	C ₄	1
	₽. Rs	~~***			-1	
		°. Ţ	Ţ	R _L ≸		

Figure 3: Chebyshev Low-Pass Prototype Element Values for 0.5-dB Ripple.

Plugging in we get:

$$C_1 = \frac{1.864}{2\pi(100 \times 10^6)50} = 59.33 \text{ pF}$$

$$L_2 = \frac{(1.280)(50)}{2\pi(100 \times 10^6)} = 101.86 \text{ nH}$$

$$C_3 = \frac{1.834}{2\pi(100 \times 10^6)50} = 58.37 \text{ pF}$$

Because we are making a lowpass filter, we can use the provided schematic as is. We have chosen to use the **top** schematic in 3.

Calculation showing power delivered to a 50 Ohm if your filter were driven by a 1 Vpp, 0 VDC offset, 50 MHz sine wave from a voltage source w/ 50 Ohm output impedance.

The input wave has a power of

$$P = \left(\frac{1 V}{2\sqrt{2}}\right)^2 \frac{1}{50\Omega} = 2.5 \text{ mW} \approx 4 \text{ dBm}$$

50 MHz is a low enough frequency that we can assume the only loss is due to insertion loss (see page 8 for insertion loss measurement). Then the total power delivered into the load is:

4 dBm – Insertion Loss = 4 dBm – 0.84 dBm = 3.16 dBm $\approx 2~\text{mW}$

4 Magnitude of S21 in Pass band

(a) Analytical Design

(b) Simulated design with ideal components

(c) Simulated Design with real components

(d) Assembled Design

5 Phase of S21 in Pass band

Figure 5: Phase of S21 in Pass band for ideal simulation, real simulation, and assembled design

6 Magnitude of S21 from DC to Stop band

(a) Analytical Design

(b) Simulated design with ideal components

(c) Simulated Design with real components

(d) Assembled Design

7 Magnitude of S11 from DC to Stop band

(a) Analytical Design

(b) Simulated design with ideal components

(c) Simulated Design with real components

(d) Assembled Design

8 Smith Charts for S11 and S21 from DC to Stop band

9 Discussions

10 Takeaways