

RTOS UART 开发指南

版本号: 1.1

发布日期: 2021.4.14

版本历史

版本号	日期	制/修订人	内容描述
1.0	2020.7.7	AWA1636	1. 初版
1.1	2021.4.14	AWA1636	1. 增加 sys_config.fex

目 录

1	前言	1
	1.1 文档简介	1
	1.2 目标读者	1
	1.3 适用范围	1
2	模块介绍	2
	2.1 模块功能介绍	2
	2.2 相关术语介绍	2
	2.2.1 硬件术语	2
	2.2.2 软件术语	2
	2.3 模块配置介绍	2
	2.3.1 platform 配置说明	2
	- 2.3.2 pin 引脚配置	3
	2.3.3 kernel menuconfig 配置说明	3
		4
	2.5 驱动框架介绍	4
3	模块接口说明	5
	3.1 hal_uart_get_version	5
	3.2 hal_uart_init	6
	3.1 hal_uart_get_version	6
	5.4 Hai_uart_selid	6
	3.5 hal_uart_receive	6
	3.6 hal_uart_receive_polling	7
	3.7 hal_uart_set_hardware_flowcontrol	7
	3.8 hal_uart_disable_flowcontrol	7
4	模块使用范例	9
5	FAQ	10

前言

1.1 文档简介

介绍 RTOS 中 UART 驱动的接口及使用方法,为 UART 设备的使用者提供参考。

1.2 目标读者

UART 驱动、及应用层的开发/维护人员。

1.3 适用范围

T 驱动、及应用层的开发/维护人员。					
3 适用范围 表 1-1: 适用产品列表					
产品名称	内核版本	驱动文件			
D1s	Melis	hal_uart.c			
V833	Melis	hal_uart.c			
R328	FreeRTOS	hal_uart.c			
R329-DSP	FreeRTOS	hal_uart.c			

2 模块介绍

2.1 模块功能介绍

BSP UART 驱动主要实现设备驱动的底层细节,并为上层提供一套标准的 API 接口以供使用。

2.2 相关术语介绍

2.2.1 硬件术语

术语	解释说明
UART	Universal Asynchronous Receiver/Transmitter,通用异步收发传输器

2.2.2 软件术语

术语	解释说明	
HAL	Hardware Abstraction Layer,硬件抽象层	
RTOS	S Real Time Operating System,实时操作系统	
GPIO	General Purpose Input/Output,通用输入输出	

2.3 模块配置介绍

2.3.1 platform 配置说明

在不同的 Sunxi 硬件平台中,UART 控制器的数目也不同,每个 UART 控制器支持的线数也不同,但平台配置文件的信息基本类似,如下:


```
#define SUNXI IRQ UARTO
                                       (81) /* 108 uart0 interrupt */
#define SUNXI_IRQ_UART1
                                       (82) /* 109 uart1 interrupt */
                                       (83) /* 110 uart2 interrupt */
#define SUNXI_IRQ_UART2
#define SUNXI_IRQ_UART3
                                       (84) /* 111 uart3 interrupt */
//base register infomation
#define SUNXI_UART0_BASE
                                       (0x05000000)
#define SUNXI UART1 BASE
                                       (0x05000400)
#define SUNXI_UART2_BASE
                                       (0x05000800)
#define SUNXI_UART3_BASE
                                       (0x05000c00)
#define UART FIFO SIZE
                                       (256)
#define UART_GPIO_FUNCTION
                                       (5)
```

₩ 说明

- 1. SUNXI_IRQ_UARTO,表示 UART 中断号;
- 2. SUNXI_UARTO_BASE, 表示 UART 寄存器基地址;
- 3. UART_FIFO_SIZE, UART 的 FIFO 大小;
- 4. UART_GPIO_FUNCTION, UART 的引脚复用功能;

2.3.2 pin 引脚配置

引脚配置在 source/project/方案/configs/sys_config_xxx.fex 中存放 (xx 是存储方案的标识, 例如 sys config nor.cfg、sys config nand.cfg)。

```
[uart0]
uart_tx = port:PB08<6><1><default><
uart_rx = port:PB09<6><1><default>
```

🛄 说明

引脚说明: port: 端口 < 复用功能 >< 上下拉 >< 驱动能力 >< 输出值 >

2.3.3 kernel menuconfig 配置说明

路径如下:

```
Kernel Setup --->
Drivers Setup --->
SoC HAL Drivers --->
UART Devices --->
```

```
[*] enable uart driver
[*] enable uart hal APIs test command
```

图 2-1: UART menuconfig

2.4 源码结构介绍

```
hal/source/uart/ ---- 驱动源码
  — hal_uart.c
  - Kconfig
  Makefile
  platform
    uart-sun8iw18.h
      — uart-sun8iw19.h
     — uart-sun8iw20.h
  — platform-uart.h
 — uart.h
include/hal/ ---- 驱动APIs声明头文件
└─ hal_uart.h
hal/test/uart/ ---- 驱动APIs测试代码
  Makefile
   test_uart.c
```

2.5 驱动框架介绍

图 2-2: UART 驱动框架

版权所有 © 珠海全志科技股份有限公司。保留一切权利

3 模块接口说明

需包含头文件:

#include <hal_uart.h>

API	解释说明
hal_uart_get_version	获取 uart 驱动版本号
hal_uart_get_capabilities	获取 uart 驱动包含的 features(预留)
hal_uart_init	初始化 uart 驱动
hal_uart_deinit	卸载 uart 驱动
hal_uart_power_control	(预留)
hal_uart_send	发送处理
hal_uart_receive	接收处理
hal_uart_get_tx_count	(预留)
hal_uart_get_rx_count	(预留)
hal_uart_get_status	(预留)
hal_uart_set_modem_control	(预留)
hal_uart_get_modem_status	(预留)
hal_uart_receive_polling	轮训接收
hal_uart_set_hardware_flowcontrol	设置硬件流控
hal_uart_disable_flowcontrol	禁止硬件流控

3.1 hal_uart_get_version

- 原型: sunxi_hal_version_t hal_uart_get_version(int32_t dev)
- 作用: 获取 UART 驱动的版本号
- 参数:
 - dev:UART 端口号
- 返回:
 - 非空:UART 驱动版本号

3.2 hal_uart_init

• 原型: int32 t hal uart init(int32 t uart port)

• 作用:初始化 UART 驱动

• 参数:

• uart port:UART 端口号

• 返回:

• SUNXI_HAL_OK: 成功

• HAL UART STATUS ERROR: 失败

3.3 hal uart deinit

• 原型: int32_t hal_uart_deinit(int32_t uart_port)

• 作用: 卸载 UART 驱动

• 参数:

● uart_port:UART 端口号

• 返回:

• SUNXI HAL OK: 成功

3.4 hal_uart_send

• 原型: int32_t hal_uart_send(int32_t dev, const uint8_t *data, uint32_t num)

• 作用: 发送处理

• 参数:

• dev:UART 端口号

• data: 发送数据缓冲区

• num: 发送数据长度

• 返回:

• size: 成功发送的字节数

3.5 hal_uart_receive

• 原型: int32 t hal uart receive(int32 t dev, uint8 t*data, uint32 t num)

作用:接收处理

参数:

● dev:UART 端口号 • data: 接收数据缓冲区 • num: 接收数据长度

• 返回:

• size: 成功接收的字节数

3.6 hal uart receive polling

• 原型: int32 t hal uart receive polling(int32 t dev, uint8 t*data, uint32 t num)

• 作用:轮询接收

• 参数:

dev:UART 端口号 • data: 接收数据缓冲区 • num: 接收数据长度

• 返回:

• size: 成功接收的字节数

ra¹ 3.7 hal uart set hardware flowcontrol

- 原型: void hal uart set hardware flowcontrol(uart port t uart port)
- 作用:设置硬件流控
- 参数:
 - uart port:UART 端口号
- 返回:
 - void

3.8 hal uart disable flowcontrol

- 原型: void hal uart disable flowcontrol(uart port t uart port)
- 作用:禁止硬件流控
- 参数:
 - uart port:UART 端口号

- 返回:
 - void

模块使用范例

可参考驱动 APIs 测试代码(hal/test/uart/)。

5 FAQ

无。

著作权声明

版权所有 © 2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。