Computação Gráfica Unidade 2

prof. Dalton S. dos Reis dalton.reis@gmail.com

FURB - Universidade Regional de Blumenau DSC - Departamento de Sistemas e Computação Grupo de Pesquisa em Computação Gráfica, Processamento de Imagens e Entretenimento Digital http://www.inf.furb.br/gcg/

Unidade 02

Conceitos básicos de computação gráfica

- Estruturas de dados para geometria
- Sistemas de coordenadas no JOGL
- Primitivas básicas (vértices, linhas, polígonos)

- Objetivos Específicos
 - Aplicar os conceitos básicos de sistemas de referências e modelagem geométrica em computação gráfica 2D
- Procedimentos Metodológicos
 - Aula expositiva dialogadaMaterial programado
 - Atividades em grupo (laboratório)
- Instrumentos e Critérios de Avaliação
 - Trabalhos práticos (avaliação 2)

Software de interface para o hardware gráfico

OpenGL - Open Graphics Library

- Interface: aplicações de "renderização" gráfica
 - imagens coloridas de alta qualidade
 - primitivas geométricas (2D e 3D) e
 - por imagens
 - independência de sistemas de janelas
 - independência de sistemas operacionais
 - compatível com quase todas as arquiteturas
 - interface gráfica dominante

OpenGL - Open Graphics Library

http://www.opengl.org/about/overview/

renderização

- primitivas geométricas (2D e 3D) e
- por imagens

OpenGL – "Renderizador"

- Primitivas geométricas
 - pontos, linhas e polígonos
- Primitivas de imagens
 - imagens e bitmaps
 - canais independentes: geometria e imagem
 - ligação via mapeamento de textura
- "Renderização" dependente do estado
 - cores, materiais, fontes de luz, etc.

OpenGL - Sistema de Janelas

- Trata apenas de "renderização"
 - independente do sistema de janelas
 - X, Win32, Mac O/S
 - não possui funções de entrada
- Necessita interagir com o sistema operacional e o sistema de janelas
 - interface dependente do sistema é mínima
 - realizada através de bibliotecas adicionais : GLX, AGL, WGL

OpenGL - GLU, OpenGL Utility Library

- Funções para auxiliar a tarefa de produzir imagens complexas
 - manipulação de imagens
 - polígonos não-convexos
 - curvas
 - superfícies
 - esferas
 - etc.

OpenGL - GLUT, OpenGL Utility Toolkit

- API de janelas para o OpenGL
 - independente do sistema de janelas
 - indicado para programas:
 - pequeno e médio porte
 - processamento orientado à chamada de eventos (callbacks)
 - dispositivos de entrada
 - não pertence oficialmente ao OpenGL

API: Interface para Programação de Aplicações

OpenGL - Prefixos

- OpenGL
 - gl, GL, GL_
 - para comandos, tipos e constantes, respectivamente
- GLU
 - glu, GLU, GLU_
- GLUT
 - glut, GLUT, GLUT_

OpenGL -, Passos Básicos

- Configurar e abrir janela (canvas)
- Inicializar o estado do OpenGL
- Registrar funções de entrada de callback
 - desenho ("renderização")
 - redimensionamento do canvas
 - entrada: mouse, teclado, etc.

Programação Convencional

Programação por Eventos

Aplicação

Gerenciador de Callbacks

OpenGL - Especificação de Primitivas Geométricas

primitivas são especificadas usando

```
glBegin( tipo_primitiva );
glEnd( );
```

tipo_primitiva: especifica como os vértices serão agrupados

```
gl.glColor3f( 0.0f, 0.0f, 0.0f );
gl.glBegin( GL.GL_LINES );
gl.glVertex2f( 0.0f, 0.0f );
gl.glVertex2f( 20.0f, 20.0f );
glEnd();
```


OpenGL - Primitivas Geométricas

Especificadas por vértices GL LINES GL POLYGON GL LINE LOOP GL_LINE_STRIP GL POINTS GL TRIANGLES GL_QUADS GL_QUAD_STRIP GL TRIANGLE FAN GL TRIANGLE STRIP

OpenGL - Formato, Especificação do Vértice

glVertex3fv(v)

número de componentes

2 - (x,y) 3 - (x,y,z)4 - (x,y,z,w)

tipo do dado

b - byte

ub - unsigned byte

s - short

us - unsigned short

i - int

ui - unsigned int

f - float

d - double

vetor

omitir "v" para forma escalar

glVertex2f(x, y)

- Splines (ou curva polinomial)
 - origem:

- desenvolvida: De Casteljau em 1957 (P. De Casteljau, Citroen)
- formalizado: Bézier 1960 (Pierre Bézier)
- aplicações CAD/CAM
- pontos de controle
- bastante utilizada em modelagem tridimensional

178379
005.1, Z91em, MO (Anote para localizar o material)
Zoz, Jeverson
Estudo de metodos e algoritmos de Splines Bezier, Casteljau e B-Spline /Jeverson Zoz 1999. xii, 64p. :il.
Orientador: Dalton Solano dos Reis.

195268

006.6, S586pt, MO (Anote para localizar o material)

Silva, Fernanda Andrade Bordallo da

Prototipo de um ambiente para geracao de superficies 3D com uso de Spline Bezier /Fernanda Andrade Bordallo da Silva. - 2000. ix, 51p. :il.
Orientador: Dalton Solano dos Reis.

Tudo pode ser modelado por fórmulas, o problema é o custo envolvido $\left(\frac{x}{7}\right)^{2} \sqrt{\frac{||x|-3|}{|x|-3|}} + \left(\frac{y}{3}\right)^{2} \sqrt{\frac{|y+\frac{3\sqrt{33}}{7}|}{y+\frac{3\sqrt{33}}{7}}} - 1 \right) \cdot \left(\left|\frac{x}{2}\right| - \left(\frac{3\sqrt{33}-7}{112}\right)x^{2} - 3 + \sqrt{1 - \left(\left||x|-2\right|-1\right)^{2}} - y\right)$ $\left(9\sqrt{\frac{|(|x|-1)(|x|-.75)|}{(1-|x|)(|x|-.75)}}-8|x|-y\right)\cdot\left(3|x|+.75\sqrt{\frac{|(|x|-.75)(|x|-.5)|}{(.75-|x|)(|x|-.5)}}-y\right)$ $-\left(2.25 \int_{(.5-x)(.5+x)}^{|(x-.5)(x+.5)|} -y\right) - \left(\frac{6\sqrt{10}}{7} + (1.5-.5|x|) \int_{|x|-1}^{||x|-1|} \frac{6\sqrt{10}}{14} \sqrt{4 - (|x|-1)^2} - y\right) = 0$ 2.8 5.6 -2.8 -4.2

http://blog.wolframalpha.com/data/uploads/2013/07/Batman_lamina_- Wolfram_Alpha.png

Unidade 02 - Conceitos Básicos

Batman Equation

Prof. Dalton Reis

http://www.ibiblio.org/e-notes/Splines/Intro.htm

http://en.wikipedia.org/wiki/B%C3%A9zier_curve


```
function SPLINE_Inter(A,B,t,desenha)
     R = vec2(0,0)
     R.x = A.x + (B.x - A.x) * t/qtdPontos
     R.y = A.y + (B.y - A.y) * t/qtdPontos
     if desenha == 1 then
         stroke(0, 0, 255)
         rect(R.x-2,R.y-2,4,4)
     end
     return R
end
function SPLINE_Desenha()
     if CurrentTouch.state == MOVING then
         ListaPtos[Ponto].x = CurrentTouch.x
         ListaPtos[Ponto].y = CurrentTouch.y
     end
     Pant = ListaPtos[1]
     for t = 0, qtdPontos do
         P1P2 = SPLINE_Inter(ListaPtos[1],ListaPtos[2],t,1)
         P2P3 = SPLINE_Inter(ListaPtos[2],ListaPtos[3],t,1)
         P3P4 = SPLINE_Inter(ListaPtos[3],ListaPtos[4],t,1)
         P1P2P3 = SPLINE_Inter(P1P2, P2P3, t, 1)
         P2P3P4 = SPLINE_Inter(P2P3, P3P4, t, 1)
         stroke(0,255,255)
         P1P2P3P4 = SPLINE_Inter(P1P2P3, P2P3P4, t, 0)
         line(Pant.x,Pant.y,P1P2P3P4.x,P1P2P3P4.y)
         Pant = P1P2P3P4
     end
```

a end

Splines (Bezier)

$$\mathbf{B}(t) = (1-t)^3 \mathbf{P}_0 + 3t(1-t)^2 \mathbf{P}_1 + 3t^2(1-t)\mathbf{P}_2 + t^3 \mathbf{P}_3, \ t \in [0,1].$$

$$B_x(0,5) = 0.125 * 30 + 0.375 * 30 + 0.375 * 130 + 0.125 * 130 = 80$$

 $B_y(0,5) = 0.125 * 20 + 0.375 * 100 + 0.375 * 130 + 0.125 * 20 = 100$

Pesos	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900	1,000
P0	1,000	0,729	0,512	0,343	0,216	0,125	0,064	0,027	0,008	0,001	0,000
P1	0,000	0,243	0,384	0,441	0,432	0,375	0,288	0,189	0,096	0,027	0,000
P2	0,000	0,027	0,096	0,189	0,288	0,375	0,432	0,441	0,384	0,243	0,000
P3	0,000	0,001	800,0	0,027	0,064	0,125	0,216	0,343	0,512	0,729	1,000
Soma	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Pesos	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900	1,000
P0	1,000	0,729	0,512	0,343	0,216	0,125	0,064	0,027	800,0	0,001	0,000
P1	0,000	0,243	0,384	0,441	0,432	0,375	0,288	0,189	0,096	0,027	0,000
P2	0,000	0,027	0,096	0,189	0,288	0,375	0,432	0,441	0,384	0,243	0,000
P3	0,000	0,001	800,0	0,027	0,064	0,125	0,216	0,343	0,512	0,729	1,000
Soma	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Ver exemplo: http://www.ibiblio.org/e-notes/Splines/http://www.ibiblio.org/e-notes/Splines/animation.html

WireFrame bordas ocultas

WireFrame uv isolinhas

Face WireFrame

Face Shaded

Shaded

Linhas de reflexão

Imagem refletida

Box

Box

Box

Tabela senos/cosenos e Teorema de Pitágoras

<i>SEN</i>	COS	grau
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	30°
$\frac{\sqrt{2}}{2}$	$\sqrt{2}/2$	45°
$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	60°
SEN	COS	grau
1	0	90°
0	1	0°


```
public double RetornaX(double a){
        return (5 * Math.cos(Math.PI * a / 180.0));
public double RetornaY(double a){
        return (5 * Math.sin(Math.PI * a / 180.0));
```


Computational Geometry Algorithms Library - CGAL http://www.cgal.org/

	Theoretical	Computer Science Cheat Sheet
	Definitions	Series
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge c_0(n) \ge 0 \ \forall n \ge n_0$.	In general:
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^m = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^m \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}.$
$\lim_{n\to\infty}a_n=a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:
sup S	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{i=0}^{m} c^{i} = \frac{1}{1-c}, \sum_{i=1}^{m} c^{i} = \frac{c}{1-c}, c < 1,$
inf S	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
liminf a _n	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $H_n = \sum_{i=1}^{n} \frac{1}{i}, \qquad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
lim sup a _n	$\lim_{n\to\infty}\sup\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	1=1 1=1
(%)	Combinations: Size k sub- sets of a size n set.	$\sum_{i=1}^{n} H_{i} = (n+1)H_{n} - n, \sum_{i=1}^{n} {i \choose m} H_{i} = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1}\right).$
[2]	Stirling numbers (1st kind): Arrangements of an n ele-	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$, 3. $\binom{n}{k} = \binom{n}{n-k}$,
(-)	ment set into k cycles.	4. $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$, 5. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$,
{2}	Stirling numbers (2nd kind): Partitions of an n element	(4) -(4 -)
(%)	set into k non-empty sets. 1st order Eulerian numbers:	6. $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$, 7. $\sum_{k=0}^{n}\binom{r+k}{k} = \binom{r+n+1}{n}$,
187	Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k assents.	$8. \sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1}, \qquad 9. \sum_{k=0}^{n} {r \choose k} {n \choose n-k} = {r+s \choose n},$
(%)	2nd order Eulerian numbers.	10 . $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11 . $\binom{n}{1} = \binom{n}{n} = 1$,
C _n	Catalan Numbers: Binary trees with $n + 1$ vertices.	12. ${n \choose 2} = 2^{n-1} - 1$, 13. ${n \choose k} = k {n-1 \choose k} + {n-1 \choose k-1}$,
		$-1)!H_{n-1},$ 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1,$ 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$
18. $ \begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$	$\binom{n-1}{k} + \binom{n-1}{k-1}$, 19. $\binom{n}{n}$	$\begin{Bmatrix} 1 \\ -1 \end{Bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}, 20. \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. C_n = \frac{1}{n+1} \binom{2n}{n},$
22. $\binom{n}{0} = \binom{n}{n}$	$\binom{n}{1} = 1$, 29. $\binom{n}{k} = \binom{n}{k}$	$\binom{n}{n-1-k}$, $24.$ $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,
25. $\binom{0}{k} = \begin{Bmatrix} 1 \\ 0 \end{Bmatrix}$	if $k = 0$, otherwise 26. ($\binom{n}{1} = 2^n - n - 1,$ $27.$ $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$
31. $\binom{n}{m} = \sum_{k=0}^{n}$	$\binom{n}{k}\binom{n-k}{m}(-1)^{n-k-m}H$	32. $\binom{n}{0} = 1$, 33. $\binom{n}{n} = 0$ for $n \neq 0$,
34. $\binom{n}{k} = (k + 1)$	$+1$ $\binom{n-1}{k}$ $+(2n-1-k)$ $\binom{n}{k}$	$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$, $36. \sum_{k=0}^{n} \left\langle \binom{n}{k} \right\rangle = \frac{(2n)^k}{2^n}$,
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$	$\sum_{i=0}^{n} \binom{n}{k} \binom{x+n-1-k}{2n},$	97. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=1}^{n} {k \choose m} (m+1)^{n-k}$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Theoretical Computer Science Cheat Sheet						
98.	Identities Cont.	Trees					
		vertices has $n-1$ edges. Kraft inequality: If the depths of the leaves of a binary tree are d_1, \dots, d_n : $\sum_{i=1}^{n} 2^{-d_i} \le 1,$ and equality holds only if every internal node has 2					

Master method:

$$T(n)=aT(n/b)+f(n),\quad a\geq 1, b>1$$

If $\exists s > 0$ such that $f(n) = O(n^{\log_2 n - s})$

$$T(n) = \Theta(n^{\log_2 n}).$$

If
$$f(n) = \Theta(n^{\log_2 n})$$
 then
 $T(n) = \Theta(n^{\log_2 n} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_k n + \epsilon})$. and $\exists c < 1$ such that $af(n/b) \le cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{c+1} = 2^{2^k} \cdot T_c^2$$
, $T_1 = 2$.

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2*+1 we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$a_{i+1} = \frac{1}{2} + a_i, \quad a_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{\tilde{G}^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving T are on the left side

$$T(n) - 2T(n/2) = n$$
.

Now expand the recurrence, and choose a factor which makes the left side "telescope?

$$1(T(n) - 3T(n/2) = n)$$

 $2(T(n/2) - 2T(n/4) = n/2)$
 $\vdots \quad \vdots \quad \vdots$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_1 3 \approx 1.88496$. Summing the right side we get

 $3^{\log_2 n - 1}(T(2) - 2\Gamma(1) = 2)$

$$\sum_{i=0}^{m-1} \frac{n}{2^i} J^i = n \sum_{i=0}^{m-1} \left(\frac{2}{2}\right)^i.$$

Let $c = \frac{9}{8}$. Then we have

$$\begin{split} n \sum_{i=0}^{m-1} e^{i} &= n \left(\frac{e^{m} - 1}{c - 1} \right) \\ &= 2n(e^{\ln g_{2}m} - 1) \\ &= 2n(e^{(k-1) \ln g_{n}m} - 1) \\ &= 2n^{k} - 2n, \end{split}$$

and so $T(n) = 2n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j$$
, $T_0 = 1$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{c} T_{j}$$
.

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i-1} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{t+1} = 2T_t = 2^{t+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^4 .
- 2. Sum both sides over all i for which the equation is walld. 3. Choose a generating function
- G(x). Usually $G(x) = \sum_{i=0}^{m} x^{i}g_{i}$. 3. Rewrite the equation in terms of the generating function G(x).
- Solve for G(x).
- 5. The coefficient of x^* in G(x) is g_{ψ} Example

$$g_{i+1} = 2g_i + 1$$
, $g_0 = 0$.

Multiply and sum:

$$\sum_{i \ge 0} g_{i+1} x^i = \sum_{i \ge 0} 2g_i x^i + \sum_{i \ge 0} x^i.$$

We choose $G(x) = \sum_{Q \in \mathbb{D}} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - y_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify:
$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$
 Since for $G(x)$:

Solve for G(x):

$$G(x) = \frac{x}{(1-x)(1-2x)}$$

Expand this using partial fractions:

$$(x) = x \left(\frac{1}{1-2x} - \frac{1}{1-x}\right)$$

= $x \left(2 \sum_{i \ge 1} 2^i x^i - \sum_{i \ge 0} x^i\right)$
= $\sum_{i \ge 1} (2^{i+1} - 1)x^{i+1}$.

So
$$g_i = 2^{\epsilon} - 1$$
.

Unidade 02 – Conceitos Básicos

Theoretical Computer Science Chest Sheet						
$\pi \approx 3.14159,$ $\epsilon \approx 2.71828,$ $\gamma \approx 0.87721,$ $\phi = \frac{1+\sqrt{8}}{2} \approx 1.61803,$ $\dot{\phi} = \frac{1-\sqrt{8}}{2} \approx61803$						
i	2*	Pr	General	Probability		
1	2	2	Bernoulli Numbers $\{B_i = 0, \text{ odd } i \neq 1\}$:	Continuous distributions: If		
2	4	3	$B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{4}$, $B_4 = -\frac{1}{20}$,	$Pr[a < X < b] = \int_{a}^{b} p(x) dx,$		
3	8	5	$B_6 = \frac{1}{22}$, $B_8 = -\frac{1}{20}$, $B_{10} = \frac{1}{66}$.	/*		
4	16	7	Change of base, quadratic formula:	then p is the probability density function of X. If		
ð	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	Pr[X < a] = P(a),		
6	64	13		then P is the distribution function of X . If		
7	128	17	Euler's number e:	P and p both exist then		
8	256	19	$c = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	$P(a) = \int_{-a}^{a} p(x) dx.$		
9	812	23	$\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = \epsilon^x.$	Expectation: If X is discrete		
10	1,024	29	$(1+\frac{1}{n})^n < \epsilon < (1+\frac{1}{n})^{n+1}$.	-		
11	2,048	31		$E[g(X)] = \sum_{x} g(x) Pr[X = x].$		
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = \epsilon - \frac{\epsilon}{2n} + \frac{11\epsilon}{24n^2} - O\left(\frac{1}{n^2}\right).$	If X continuous then		
13	8,192	41	Harmonic numbers:	$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x)$		
14	16,384	43	1, 2, 11, 21, 127, 48, 261, 261, 2123,	7-m 7-m		
18	32,768	47		Variance, standard deviation:		
16	65,536	83	$\ln n < H_n < \ln n + 1$,	$VAR[X] = E[X^2] - E[X]^2,$		
17 18	131,072 262,144	69 61	$H_n = \ln n + \gamma + O\left(\frac{1}{r}\right)$.	$\sigma = \sqrt{VAR[X]}$.		
19	524,288	67	Factorial, Stirling's approximation:	For events A and B: $Pr[A \vee B] = Pr[A] + Pr[B] - Pr[A \wedge B]$		
20	1,048,576	71	1, 2, 4, 24, 120, 720, 1840, 48328, 342888,	$Pr[A \wedge B] = Pr[A] + Pr[B] - Pr[A \wedge B]$ $Pr[A \wedge B] = Pr[A] \cdot Pr[B],$		
21	2,097,182	73		iff A and B are independent.		
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{\epsilon}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	-		
23	8,288,608	83	(*/ \ \"//	$Pr[A B] = \frac{Pr[A \land B]}{Pr[B]}$		
24	16,777,216	89	Adarmann's function and inverse:	For random variables X and Y :		
28	33,884,432	97	$a(i, j) = \begin{cases} a(i - 1, 2) & j = 1 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$		
26	67,108,864	101	$a(i,j) = \begin{cases} 2^j & i = 1 \\ a(i-1,2) & j = 1 \\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	#X and Y are independent.		
27	134,217,728	103	$a(i) = \min\{j \mid a(j, j) \ge i\}.$	E[X + Y] = E[X] + E[Y],		
28	268,438,486	107	Binomial distributions	$\mathbf{E}[cX] = c \mathbf{E}[X].$		
29	536,870,912	109	$Pr[X = k] = {n \choose k} p^k q^{n-k}, q = 1 - p,$	Bayes' theorems		
30	1,073,741,524	113	11pt - k] - (k)P 4 , 4-1-p,	$Pr[A_i B] = \frac{Pr[B A_i]Pr[A_i]}{\sum_{i=1}^{n} Pr[A_i]Pr[B A_i]}.$		
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^{k} q^{n-k} = np.$	$\sum_{j=1} rr[n_j]rr[D[n_j]$ Inclusion-exclusion:		
32	4,294,987,298	131	141 Z (k)F1 -4			
	Pascal's Triangl		Poisson distribution:	$\Pr\left[\bigvee_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \Pr[X_{i}] +$		
	1		$\Pr[X = k] = \frac{e^{-\lambda}\lambda^k}{k!}, \mathbb{E}[X] = \lambda.$			
	11		Normal (Gaussian) distribution:	$\sum_{i=1}^{n} (-1)^{k+1} \sum_{i=1}^{n} \Pr\left[\bigwedge_{i=1}^{n} X_{ij}\right].$		
	121		$p(x) = \frac{1}{\sqrt{2\pi}x}e^{-(x-\mu)^2/2x^2}, E[X] = \mu.$	h=2 = 1<- <sh f="1</td"></sh>		
	1331		$p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-x^2}$, $E[X] = \mu$.	Moment inequalities:		
	14641		The "coupon collector": We are given a	$\Pr[X \ge \lambda E[X]] \le \frac{1}{\lambda}$		
	1 5 10 10 5 1		random coupon each day, and there are n different types of coupons. The distribu-	$\Pr \left[X - \mathbf{E}[X] \ge \lambda \cdot \sigma \right] \le \frac{1}{32}$.		
1 6 15 20 15 6 1			tion of coupons is uniform. The experted	Geometric distribution:		
1 7 21 35 35 21 7 1			number of days to pass before we to col-	$Pr[X = k] = pq^{k-1}$, $q = 1 - p$,		
1 8 25 56 70 56 28 8 1			lect all n types is nH_n .			
1 1	$E[X] = \sum_{i} k_{pq}^{k-1} = \frac{1}{p}$.					
1 10 40	5 120 210 282 210 1	20 45 10 1		h=i		

Theor
Number Theory
The Chinese remainder theorem: There ex- ists a number C such that:
$C \equiv r_1 \mod m_4$
: : :
$C \equiv r_n \mod m_n$
if m_i and m_j are relatively prime for $i \neq j$.
Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x . If $\prod_{i=1}^{n} p_i^{*i}$ is the prime fac- torization of x then
$\phi(x) = \prod_{i=1} p_i^{a_i-1}(p_i - 1).$
Euler's theorem: If a and b are relatively prime then $1 = a^{\phi(b)} \mod b.$
Fermat's theorem: $1 \equiv a^{p-1} \mod p$.
The Euclidean algorithm: if $a > b$ are integers then $gcd(a, b) = gcd(a \mod b, b)$.
If $\prod_{i=1}^{n} p_i^{n_i}$ is the prime factorization of x then
$S(x) = \sum_{i \mid i} d = \prod_{i=1}^{n} \frac{p_{i}^{n_{i}+1} - 1}{p_{i} - 1}.$
Perfect Numbers: x is an even perfect num- ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff $(n-1)! = -1 \mod n$.
Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1, \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$
If $G(a) = \sum_{d a} F(d)$,
then $F(a) = \sum_{d a} \mu(d)G\left(\frac{a}{d}\right).$
Prime numbers:
$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$
$+O\left(\frac{n}{\ln n}\right)$,
$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2\ln}{(\ln n)^3}$
$+O\left(\frac{n}{(\ln n)^d}\right).$

ek ar comp	ster Science Cheat Sheet	
D. C. W.	Graph Ti	MOE
Definitions:		١.
Leep	An edge connecting a ver- tex to itself.	:
Directed	Each edge has a direction.	
_	Graph with no loops or	
Simple	nulti-edges.	
Walk	A sequence upequi, equ.	
Thui	A walk with distinct edges.	'
Path	A trail with distinct vertices.	
Connected	A graph where there exists	
	a path between any two	Ι.
	vertices.	-
Component	A maximal connected subgraph.	H
Tree	A connected acyclic graph.	\vdash
Free tree	A tree with no root.	1
DAG	Directed acyclic graph.	ı
Eulerian	Graph with a trail visiting	ı
Luktun	each edge exactly once.	
Hamiltonian	Graph with a cycle visiting	Ι.
	each writex exactly once.	ı
Cut	A set of edges whose re-	ı
	moval increases the num-	
	ber of components.	Ι.
C-11		ı
Cut-set	A minimal cut.	ı
Out edge	A size 1 cut.	ı
k-Connected	A graph connected with the removal of any $k-1$ vertices.	
k-Tough	$\forall S \subseteq V, S \neq \emptyset$ we have	
k-Regular	$k \cdot c(G - S) \le S $. A graph where all vertices	
k-Factor	have degree k. A k-regular spanning	
	subgraph.	
Matching	A set of edges, no two of which are adjacent.	
Clique	A set of vertices, all of	
	which are adjacent.	ı
Ind. set	A set of vertices, none of which are adjacent.	
Vertez cover	A set of vertices which	١.
	cover all edges.	Ι.
Planar grape	A graph which can be em- beded in the plane.	
Plane graph	An embedding of a planar	
	graph	
Σ,	deg(v) = 2m.	
If G is plane	r then $n - m + f = 2$, so	١,
	$n-4$, $m \le 2n-6$.	l i
Any planar s	graph has a vertex with de-	
	-	

 $gree \le 5$.

Notation: E(G)Edge set V(G)Vertex set c(G)Number of components Induced subgraph deg(v)Degree of u Maximum despue Miramum dogree Chromatic number $\chi_{E}(G)$ Edge chromatic number Complement graph Complete graph Complete bipartite graph $r(k, \ell)$ Remsey number Geometry Projective coordinates: triples (x, y, z), not all x, y and z zero. $\{x,y,z\} = \{cx,cy,cx\} \quad \forall c \neq 0.$ Cartesian Projective (x, y)(x, y, 1) $y = mx + b \quad (m, -1, b)$ $\{1,0,-c\}$ x = cDistance formula, L_p and L_m metric: $\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$ $[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p}$ $\lim_{p \to \infty} [|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p}.$ Area of triangle (x_0, y_0) , (x_1, y_1) and (x_2, y_2) : Angle formed by three points: $\ell_{1}\ell_{2}$ Line through two points $\{x_0, y_0\}$ and (x_1, y_1) : $x_1 \quad y_2 \quad 1 = 0.$ $x_1 y_1 = 1$ Area of circle, volume of sphere: $A = \pi r^2$, $V = \frac{4}{3}\pi r^2$. IFI have seen further than others. it is because I have stood on the shoulders of giants. Issac Newton.

Theoretical Computer Science Chest Sheet Wallis' identity: 2 · 2 · 4 · 4 · 6 · 6 · · · Derivatives: $\pi = 2 \cdot \frac{2 \cdot 2}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot \cdots}$ Brounder's continued fraction expansion: Gregory's series: = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3 Newton's series: 11. $\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$ Sharp's series: $\label{eq:discrete_def} \mathbf{17.} \ \frac{d(\mathbf{sectanu})}{dx} = \frac{1}{1+\mathbf{u}^2} \frac{d\mathbf{u}}{dx},$ 18. $\frac{d(\operatorname{arccot} u)}{du} = \frac{-1}{u} \frac{du}{du}$ Euler's series: 19. $\frac{d(\operatorname{arcsecu})}{d} = \frac{1}{1 - \frac{du}{2}}$ 20. $\frac{d(\operatorname{arccsc} u)}{du} = \frac{-1}{u} \frac{du}{du}$ $dx = \sqrt{1-u^2} dx$ $\frac{d(\sinh u)}{dr} = \cosh u \frac{du}{dr},$ $22. \ \frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx},$ Partial Fractions $24. \ \frac{d(\coth u)}{dr} = - \cosh^2 u \frac{du}{dr},$ $29. \ \frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx},$ Let N(x) and D(x) be polynomial functions of z. We can break down $26. \ \frac{d(\cosh u)}{dr} = -\cosh u \ \coth u \frac{du}{dr},$ N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater $28. \ \frac{d[\operatorname{arccosh} u]}{dx} = \frac{1}{\sqrt{u^2-1}}\frac{du}{dx},$ 27, $\frac{d(\operatorname{sresinh} u)}{d} = \frac{1}{du}$. than or equal to the degree of D, divide N by D, obtaining $\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$ $N^{T}(x)$ $29. \ \frac{d(arctanh\,u)}{dz} = \frac{1}{1-u^2}\frac{da}{dz},$ $90. \ \frac{d(\operatorname{arccorth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx},$ $32. \ \frac{d(\operatorname{arcesch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}.$ $\label{eq:definition} \text{S1.} \ \frac{d(arcsechu)}{dz} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dz},$ where the degree of N' is less than that of D. Second, factor D(x). Use the following rules. For a non-repeated factor: $\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$ 2. $\int (u + v) dx = \int u dx + \int v dx,$ ∫ cudz = c ∫ udz, 3. $\int x^n dx = \frac{1}{n+1}x^{n+1}$, $n \neq -1$, 4. $\int \frac{1}{x}dx = \ln x$, 5. $\int e^x dx = e^x$, 6. $\int \frac{dx}{1+x^2} = \arctan x$, 7. $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$, For a repeated factor: 8. $\int \sin z \, dz = -\cos z$, 9. $\int \cos x \, dx = \sin x,$ 10. $\int \tan x \, dx = -\ln|\cos x|$, 11. $\int \cot x \, dx = \ln|\cos x|$, 13. $\int \csc z \, dz = \ln |\csc z + \cot z|,$ 12. $\int \sec x \, dx = \ln|\sec x + \tan x|$, The reasonable man adapts himself to the world; the unreasonable persists in trying 14. $\int \arcsin \frac{\pi}{a} dx = \arcsin \frac{\pi}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$ to adapt the world to himself. Therefore all progress depends on the unreasonable. George Bernard Shaw

The section Communities S	inner Charat Shari						
Theoretical Computer Science Chest Sheet							
Calculus Cont.							
16. $\int \arccos \frac{\pi}{a} dx = \arccos \frac{\pi}{a} - \sqrt{a^2 - x^2}, a > 0,$	16. $\int \arctan \frac{\pi}{\alpha} dx = x \arctan \frac{\pi}{\alpha} - \frac{\alpha}{2} \ln(\alpha^2 + x^2), \alpha > 0,$						
17. $\int \sin^2(ax)dx = \frac{1}{1a}(ax - \sin(ax)\cos(ax)),$	18. $\int \cos^2(ax) dx = \frac{1}{2\pi} (ax + \sin(ax) \cos(ax)),$						
19. $\int \sec^2 x dx = \tan x,$	$20. \int \csc^2 x dx = -\cot x,$						
21. $\int \sin^n x dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x dx$	22. $\int \cos^n x dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-1} x dx$						
23. $\int \tan^n x dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x dx, n \neq 1,$	24. $\int \cot^n x dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x dx, n \neq 1,$						
25. $\int \sec^n x dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x dx, n \neq 1,$							
28. $\int \csc^n x dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x dx, n \neq 1,$	27. $\int \sinh x dx = \cosh x$, 28. $\int \cosh x dx = \sinh x$,						
29. $\int \tanh x dx = \ln \cosh x $, 30. $\int \coth x dx = \ln \sinh x $, 31.	$\int \operatorname{sech} x dx = \operatorname{arctan sinh} x, 92. \int \operatorname{cech} x dx = \ln \left \operatorname{tanh} \frac{\pi}{2} \right ,$						
93. $\int \sinh^2 x dx = \frac{4}{2} \sinh(2x) - \frac{4}{2}x$, 34. $\int \cosh^2 x dx$	$=\frac{1}{2}\sinh(2x)+\frac{1}{2}x$, S5. $\int \operatorname{sech}^2 x dx = \tanh x$,						
98. $\int \operatorname{arcsinh} \frac{a}{a} dx = x \operatorname{arcsinh} \frac{a}{a} - \sqrt{x^2 + a^2}, a > 0,$							
98. $\int \operatorname{arccosh} \frac{\pi}{a} d\mathbf{r} = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{\pi}{a} > 0 \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{\pi}{a} < 0 \end{cases}$	and $a > 0$, and $a > 0$,						
29. $\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln \left(x + \sqrt{a^2 + x^2}\right), a > 0,$							
40. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{a}{a}, a > 0,$	41. $\int \sqrt{a^2 - x^2} dx = \frac{a}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{a}{a}, a > 0,$						
42. $\int (a^2 - x^2)^{3/2} dx = \frac{\pi}{8} (3a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{\pi}{4}, \alpha$	> 0,						
43. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, a > 0,$ 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2}$	$\frac{1}{ a } \ln \left \frac{a+x}{a-x} \right $, 48. $\int \frac{dx}{(a^2-x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2-x^2}}$,						
48. $\int \sqrt{a^2 \pm x^2} dx = \frac{\pi}{2} \sqrt{a^2 \pm x^2} \pm \frac{s^2}{2} \ln x + \sqrt{a^2 \pm x^2} ,$	47. $\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln x + \sqrt{x^2 - a^2} , a > 0,$						
48. $\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left \frac{x}{a + bx} \right ,$	49. $\int x\sqrt{a+bx} dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2}$,						
80. $\int \frac{\sqrt{a + bx}}{x} dx = 2\sqrt{a + bx} + a \int \frac{1}{x\sqrt{a + bx}} dx,$	51. $\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right , a > 0,$						
52. $\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right ,$	83. $\int x\sqrt{a^2-x^2}dx = -\frac{1}{3}(a^2-x^2)^{3/2},$						
54. $\int x^2 \sqrt{a^2 - x^2} dx = \frac{\pi}{6} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{\pi^4}{6} \arcsin \frac{\pi}{a}, a > 0$. ,,						
88. $\int \frac{x dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$	57. $\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{\pi}{2} \sqrt{a^2 - x^2} + \frac{\pi^2}{2} \arcsin \frac{\pi}{a}, a > 0,$						
88. $\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left \frac{a + \sqrt{a^2 + x^2}}{x} \right ,$	89. $\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{ x }, a > 0,$						
60. $\int x \sqrt{x^2 \pm a^2} dx = \frac{1}{2} (x^2 \pm a^2)^{5/2},$	61. $\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left \frac{x}{a + \sqrt{a^2 + x^2}} \right ,$						

Theoretical Computer Science Chest S	beet
Calculus Cont.	Finite Calculus
32. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{ x }, a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2x},$ 34. $\int \frac{x dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2}, \qquad 68. \int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2x^2},$ 36. $\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right , & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$	Difference, shift operators: $\Delta f(x) = f(x+1) - f(x),$ $\mathbf{E} f(x) = f(x+1).$ Fundamental Theorems $f(x) = \Delta F(x) \Leftrightarrow \sum_{i} f(x) \delta x = F(x) + C$ $\sum_{i} f(x) \delta x = \sum_{i=n}^{k-1} f(i).$
67. $\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right , & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \operatorname{arcsin} \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$ 68. $\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	Differences: $\Delta(ca) = c\Delta a$, $\Delta(u + v) = \Delta u + \Delta v$ $\Delta(uv) = u\Delta v + Ev\Delta u$, $\Delta(x^n) = nx^{n-1}$, $\Delta(H_x) = x^{-1}$, $\Delta(2^x) = 2^x$ $\Delta(c^x) = (c-1)c^x$, $\Delta(x^n) = (x^n)$
69. $\int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	Sums: $\sum cu \delta x = c \sum u \delta x$, $\sum (u + v) \delta x = \sum u \delta x + \sum v \delta x$,
70. $\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left \frac{2\sqrt{c}\sqrt{ax^2 + bx + c + bx + 2c}}{x} \right , & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{ x \sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$	$\sum u\Delta v \delta x = uv - \sum E v \Delta u \delta x,$ $\sum x^{n} \delta x = \frac{n+1}{m+1}, \qquad \sum x^{-1} \delta x = H_{s}$ $\sum c^{n} \delta x = \frac{s^{n}}{m+1}, \qquad \sum {n \choose m} \delta x = {n \choose m+1}$ Falling Factorial Powers:
71. $\int x^3 \sqrt{x^2 + a^2} dx = (\frac{1}{2}x^2 - \frac{1}{18}a^2)(x^2 + a^2)^{3/2}$, 72. $\int x^n \sin(ax) dx = -\frac{1}{4}x^n \cos(ax) + \frac{n}{4} \int x^{n-1} \cos(ax) dx$, 73. $\int x^n \cos(ax) dx = \frac{1}{4}x^n \sin(ax) - \frac{n}{4} \int x^{n-1} \sin(ax) dx$,	$x^{n} = x(x - 1) \cdots (x - n + 1), n > 0$ $x^{0} = 1,$ $x^{n} = \frac{1}{(x + 1) \cdots (x + n)}, n < 0,$ $x^{n+m} = x^{m}(x - m)^{n}.$
74. $\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$ 75. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$ 76. $\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$	Rising Factorial Powers: $x^{N} = x(x+1) \cdots (x+n-1), n > 0$ $x^{0} = 1,$ $x^{N} = \frac{1}{(x-1) \cdots (x- n)}, n < 0,$
$x^{1} = x^{1} = x^{1} = x^{2} = x^{2} - x^{2}$ $x^{2} = x^{2} + x^{1} = x^{2} - x^{2}$ $x^{3} = x^{3} + 3x^{2} + x^{1} = x^{3} - 3x^{2} + x^{3}$ $x^{4} = x^{4} + 6x^{3} + 7x^{2} + x^{4} = x^{3} - 6x^{3} + 7x^{2} - x^{3}$ $x^{5} = x^{5} + 18x^{5} + 28x^{3} + 10x^{5} + x^{5} = x^{5} - 18x^{2} + 28x^{3} - 10x^{2} + x^{3}$ $x^{7} = x^{1} + x^{2} = x^{2} + x^{3} = x^{2} - x^{3}$	$x^{n+m} = x^{m}(x+m)^{n}$. Conversion: $x^{n} = (-1)^{n}(-x)^{n} = (x-n+1)^{n}$ $= 1/(x+1)^{-n}$, $x^{n} = (-1)^{n}(-x)^{n} = (x+n-1)^{n}$ $= 1/(x-1)^{-n}$, $x^{n} = \sum_{k=1}^{n} {n \brace k} x^{k} = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^{k}$
$x^{2} = x^{3} + 3x^{2} + 2x^{4}$ $x^{3} = x^{3} - 3x^{2} + 2x^{4}$ $x^{4} = x^{4} + 6x^{3} + 11x^{2} + 6x^{4}$ $x^{4} = x^{4} - 6x^{3} + 11x^{2} - 6x^{4}$ $x^{5} = x^{5} + 10x^{4} + 25x^{5} + 50x^{2} + 24x^{4}$ $x^{5} = x^{5} - 10x^{4} + 35x^{5} - 50x^{2} + 24x^{4}$	$x^n = \sum_{k=1}^n {n \brack k} (-1)^{n-k} x^k,$ $x^n = \sum_{k=1}^n {n \brack k} x^k.$

Theoretical Computer Science Chest St	west
---------------------------------------	------

Series

Taylor's series:

$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2}f''(a) + \dots = \sum_{i=0}^m \frac{(x-a)^i}{i!}f^{(i)}(a).$$

Expansions:

Ordinary power series:

$$A(x) = \sum_{i=1}^{n} a_i x^i$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x}{i!}$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{m} \frac{\alpha_i}{i^*}$$

Binomial theorems

$$(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

$$x^n - y^n = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^k$$
.

$$aA(x) + \beta B(x) = \sum_{i=0}^{\infty} (aa_i + \beta b_i)x^i$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k}x^i$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{m} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{m} (i+1)a_{i+1}x^{i}$$

$$xA^{i}(x) = \sum_{i=1}^{n} ia_{i}x^{i},$$

$$\int A(x) dx = \sum_{i=1}^{m} \frac{a_{i-1}}{i} x^{i}$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{m} a_{2i}x^{2i}$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{m} a_{2i+1}x^{2i+1}.$$

Summation: If $b_k = \sum_{i=0}^{k} a_i$ then

$$B(x) = \frac{1}{1 - x}A(x)$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{m} \left(\sum_{j=0}^{i} a_{j}b_{i-j} \right) x^{i}$$

God made the natural numbers: all the rest is the work of man. Leopold Kronecker

Theoretical Computer Science Cheat Sheet

Expansions:

$$\begin{split} \frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} &= \sum_{i=1}^{m} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \\ x^{\overline{n}} &= \sum_{i=1}^{m} \binom{n}{i} x^i, \\ \left(\ln \frac{1}{1-x}\right)^n &= \sum_{i=1}^{m} \binom{i}{n} \frac{n! x^i}{i!}, \end{split}$$

tan
$$x$$
 = $\sum_{i=1}^{n} (-1)^{i-1} \frac{2^{2i}(2^{2i}-1)B_{2i}x^{2i-1}}{(2i)!}$

$$\frac{1}{\zeta(x)} = \sum_{i=1}^{n-1} \frac{\mu(i)}{i^n},$$

$$\zeta(x) = \prod_{p} \frac{1}{1 - p^{-x}},$$

$$\zeta^{2}(x)$$
 = $\sum_{i=1}^{m} \frac{d(i)}{x^{i}}$ where $d(n) = \sum_{d|n} 1$,

$$\zeta(x)\zeta(x-1)$$
 = $\sum_{i=1}^{\infty} \frac{S(i)}{x^i}$ where $S(n) = \sum_{i|n} d$

$$\zeta(2n) = \frac{2^{2n-1}|B_{2n}|}{(2n)!}\pi^{2n}, n \in \mathbb{N},$$

$$\frac{x}{\sin x} = \sum_{i=0}^{\infty} (-1)^{i-1} \frac{(4^i - 2)D_{2i}x^n}{(2i)!},$$

$$\left(\frac{1 - \sqrt{1 - 4x}}{2x}\right)^n = \sum_{i=0}^{\infty} \frac{n(2i + n - 1)!}{i!(n + i)!}x^i,$$

$$e^{x} \sin x = \sum_{i=1}^{\infty} \frac{2^{i/2} \sin \frac{i\pi}{4}}{i!} x^{i},$$

$$\sqrt{\frac{1-\sqrt{1-x}}{x}} = \sum_{i=0}^{\infty} \frac{(4i)!}{16i\sqrt{2(2i)!(2i+1)!}} x^i,$$

$$\left(\frac{\arcsin x}{x}\right)^2 = \sum_{i=0}^{\infty} \frac{4^i i!^2}{(i+1)(2i+1)!} x^{2i}.$$

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n = b_1$$

 $a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n = b_2$
 \vdots
 \vdots
 $a_{n,1}x_1 + a_{n,2}x_2 + \cdots + a_{n,n}x_n = b_n$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be Awith column i replaced by B. Then $x_i = \frac{\det A_i}{\det A}.$

$$z_i = \frac{\operatorname{det} A}{\operatorname{det} A}$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius. William Blake (The Marriage of Heaven and Hell)

$$(e^{x}-1)^{n}$$
 = $\sum_{i=0}^{n} {i \choose n} \frac{n!x^{i}}{i!}$,
 $\sum_{n=0}^{\infty} (-4)^{n}B_{3n}x^{3n}$

$$z \cot z = \sum_{i=0}^{\infty} \frac{(-i)^i D_i z^{i-1}}{(2i)!},$$

$$\zeta(z) = \sum_{i=0}^{\infty} \frac{1}{2i},$$

$$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^*},$$

Eacher's Knot

Stielties Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_{a}^{x} G(x) dF(x)$$

exists. If $a \le b \le c$ then

$$\int_{a}^{b} G(x) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{b}^{c} G(x) dF(x).$$

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d[F(x) + H(x)] = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d[c \cdot F(x)] = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_{a}^{b} G(x) dF(x) = \int_{a}^{b} G(x)F'(x) dx.$$

Fibonacci Numbers

21 32 49 54 65 00 10 69 05 58 42 m3 64 On 16 20 31 58 19 87

The Fibonacci number system: Every integer n has a unique representation.

 $n = F_{k_0} + F_{k_0} + \cdots + F_{k_m}$, where $k_i \ge k_{i+1} + 2$ for all i, $1 \le i < m$ and $k_m \ge 2$.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . Definitions:

 $F_i = F_{i-1} + F_{i-2}, \quad F_0 = F_1 = 1,$ $F_{-\epsilon} = (-1)^{\epsilon-1}F_{\epsilon},$ $F_i = \frac{1}{\sqrt{2}} \left(\phi^i - \dot{\phi}^i \right),$

Cassini's identity: for i > 0: $F_{i+1}F_{i-1} - F_i^2 = (-1)^i$.

Additive rule:

 $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$ $F_{2n} = F_n F_{n+1} + F_{n-1} F_n$. Calculation by matrices:

 $\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$

Computação Gráfica Unidade 02

prof. Dalton S. dos Reis dalton.reis@gmail.com

FURB - Universidade Regional de Blumenau DSC - Departamento de Sistemas e Computação Grupo de Pesquisa em Computação Gráfica, Processamento de Imagens e Entretenimento Digital http://www.inf.furb.br/gcg/

