A. Sea u : R×]0,+∞[→ R la solución del problema de Cauchy definido

$$\begin{split} \frac{\partial u}{\partial t} &= (1+\ln(1+t))\frac{\partial^2 u}{\partial x^2} + u \quad \text{en } (x,t) \in \mathbb{R} \times]0, +\infty[, \\ & u(x,0) = \exp(-x^2) \quad x \in \mathbb{R}, \\ & u(x,t) \text{ acotada en } \mathbb{R} \text{ para cada } t \in]0, +\infty[. \end{split}$$

Sea $\hat{u} : \mathbb{R} \times]0, +\infty[\to \mathbb{C}$ la transformada de Fourier de la función u con respecto a la variable x, es decir, $\hat{u}(\omega, t) = \int_{-\infty}^{+\infty} u(x, t) \exp(-i\omega x) dx$. La función u verifica que:

(1)
$$u(1, e^2 - 1) = \frac{1}{\sqrt{1 + 2e^2}}$$

 $\exp(-\frac{1}{1 + 2e^2} - 1 + e^2).$

(1)
$$u(1, e^2 - 1) = \frac{1}{\sqrt{1 + 2e^2}}$$
 (2) $u(2, e^3 - 1) = \frac{1}{\sqrt{1 + 12e^3}}$ $\exp(-\frac{1}{1 + 2e^2} - 1 + e^2)$. $\exp(-\frac{4}{1 + 12e^3} - 1 + e^3)$.

(3)
$$u(3, e^4 - 1) = \frac{1}{\sqrt{1 + 4e^4}}$$
 (4) No es cierta ninguna de $\exp(-\frac{9}{1 + 4e^4} - 1 + e^4)$.

Nota. $\mathcal{F}[\exp(-bx^2)](\omega) = \sqrt{\frac{\pi}{b}} \exp(-\frac{\omega^2}{4b})$, donde $b \in \mathbb{R}$ y b > 0.

B. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d} t^2}(t) + 2 \frac{\mathrm{d} w}{\mathrm{d} t}(t) + 8 w(t) = g(t) \ \text{en }]0, + \infty[, \ w(0) = 0, \ \frac{\mathrm{d} w}{\mathrm{d} t}(0) = 1,$$

donde $g : [0, +\infty[\rightarrow \mathbb{R} \text{ es la función definida por } g(t) = \pi - t \text{ si } t \in [0, \pi[$ y $g(t) = \sin(t)$ si $t \in [\pi, +\infty[$. La transformada de Laplace de la función $w: [0, +\infty[\rightarrow \mathbb{R} \text{ es tal que: }$

(5)
$$\mathcal{L}[w(t)](4) = \frac{1}{2^9} (15 + 4\pi + \frac{\exp(-4\pi)}{17})$$
.

(5)
$$\mathcal{L}[w(t)](4) = \frac{1}{2^9} (15 + \frac{1}{2^9} (15 + 4\pi + \frac{\exp(-4\pi)}{17}).$$
 (6) $\mathcal{L}[w(t)](4) = \frac{1}{2^9} (15 + 4\pi - \frac{33 \exp(-4\pi)}{17}).$

(7)
$$\mathcal{L}[w(t)](4) = \frac{1}{2^9} (19 + \frac{33 \exp(-4\pi)}{17})$$
.

(8) No es cierta ninguna de las otras tres respuestas. D. Sea \sqrt{z} : $\mathbb{C} \to \mathbb{C}$ la función definida como $\sqrt{z} = \sqrt{|z|} \left(\cos(\frac{\operatorname{Arg}(z)}{2}) + i \sin(\frac{\operatorname{Arg}(z)}{2}) \right)$, donde $\operatorname{Arg}(z)$ es el argumento principal de z. Considérese la ecuación diferencial

$$z(\cosh(\sqrt{z}) - 1)\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + \frac{\sin(2z)}{8}\frac{\mathrm{d}w}{\mathrm{d}z} - \sin(z)w = 0.$$

Las soluciones de la ecuación anterior, en $D \subset \mathbb{C}$, verifican que:

- (13) El punto z = 0+i0 no es un punto singular regular para la ecuación del enunciado.
- (14) Existe una solución de la ecuación del enunciado, $w_{s2}(z)$, distinta de la función nula, tal que $w_{s2}(z) = o(z^{\frac{1}{4}})$.
- (15) Existe una solución de la ecuación del enunciado, $w_{s3}(z)$, distinta de la función nula, tal que $w_{s3}(z) = o(z^{\frac{1}{2}})$.
- (16) No es cierta ninguna de las otras tres respuestas.

C. Considérese el problema de Cauchy definido por

$$(1+t^2)\frac{\mathrm{d}^2 w}{\mathrm{d}t^2} + \frac{t^2}{1+t^2}w = 0$$
 en $]0, +\infty[, w(0) = 0, \frac{\mathrm{d}w}{\mathrm{d}t}(0) = 1.$

Sean $w: [0, +\infty[\to \mathbb{R} \text{ la solución del problema anterior y } v: \mathbb{R} \to \mathbb{R}$ la función definida por v(t) = w(t) si $t \in [0, +\infty[\text{ y } v(t) = -w(-t) \text{ si } t \in] -\infty, 0[$. El desarrollo en serie de Taylor de la función v en 0 es $\sum_{k=0}^{\infty} c_k t^k$. Las función w y los coeficientes c_k son tales que:

- $\sum_{k=0}^{\infty} c_k t^k$. Las función w y los coeficientes c_k son tales que: $(9) \quad \text{Los coeficientes } c_k \quad \text{verifican la relación } c_{k+2} = \frac{2k(k-1)c_k + (1+(k-2)(k-3))c_{k-2}}{(k+2)(k+1)} \quad \text{para todo } k \geqslant 4 \text{ y}$
- (10) Los coeficientes c_k verifican la relación $c_{k+2} = \frac{2(k(k-1)+1)c_k + (k-2)(k-3)c_{k-2}}{(k+2)(k+1)}$ para todo $k \ge 4$ y $c_5 = -\frac{1}{20}$.
- (11) Los coeficientes c_k verifican la relación $c_{k+2} = \frac{(2k(k-1)-1)c_k + (k-2)(k-3)c_{k-2}}{(k+2)(k+1)}$ para todo $k \ge 4$ y $c_5 = -\frac{1}{20}$.
- (12) No es cierta ninguna de las otras tres respuestas.

A. Se
a $u:\mathbb{R}\times]0,+\infty [\to \mathbb{R}$ la solución del problema de Cauchy definido por

$$\begin{split} \frac{\partial u}{\partial t} &= \left(1 + \frac{t}{\sqrt{2 + 2t + t^2}}\right) \frac{\partial^2 u}{\partial x^2} \quad \text{en } (x, t) \in \mathbb{R} \times]0, + \infty[, \\ & u(x, 0) = \exp(-x^2) \quad x \in \mathbb{R}, \\ u \text{ acotada en } \mathbb{R} \times]0, + \infty[, \int^{+\infty} |u(x, t)| \mathrm{d}x \text{ acotada en }]0, + \infty[. \end{split}$$

Sea $\hat{u}: \mathbb{R} \times]0, +\infty[\to \mathbb{C}$ la transformada de Fourier de la función u con respecto a la variable x, es decir, $\hat{u}(\omega,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-\mathrm{i}\omega x) \mathrm{d}x$. La función u verifica que:

$$(1) \quad u(x,t) = \frac{\exp\left(-\frac{x^2}{1+4\left(t+\sqrt{1+(t+1)^2} - \operatorname{ArgCh}(t+1) - \sqrt{2} + \operatorname{ArgCh}(1)\right)}\right)}{\sqrt{1+4\left(t+\sqrt{1+(t+1)^2} - \operatorname{ArgCh}(t+1) - \sqrt{2} + \operatorname{ArgCh}(1)\right)}}$$

$$(2) \quad u(x,t) = \frac{\exp\left(-\frac{x^2}{1+4\left(t+\sqrt{1+(t+1)^2} - \operatorname{ArgSh}(t+1) - \sqrt{2} + \operatorname{ArgSh}(1)\right)}\right)}{\sqrt{1+4\left(t+\sqrt{1+(t+1)^2} - \operatorname{ArgSh}(t+1) - \sqrt{2} + \operatorname{ArgSh}(1)\right)}}$$

$$(3) \quad u(x,t) = \frac{\exp\left(-\frac{x^2}{1+4\left(t+\sqrt{1+(t+1)^2} - \sqrt{2}\right)}\right)}{\sqrt{1+4\left(t+\sqrt{1+(t+1)^2} - \sqrt{2}\right)}}$$

(4) No es cierta ninguna de las otras tres respuestas.

Nota. $\mathcal{F}[\exp(-bx^2)](\omega) = \sqrt{\frac{\pi}{b}} \exp(-\frac{\omega^2}{4b})$, donde $b \in \mathbb{R}$ y b > 0.

E. Sea $u : \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ la solución acotada de la ecuación de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{en } (x,y) \in \mathbb{R} \times]0, +\infty[,$$

con la condición de Dirichlet

$$u(x,0)=x(1-x)$$
 si $x\in[0,1],$ $u(x,0)=0$ si $x\notin[0,1],$ $u(x,y)$ acotada en $\mathbb{R}\times[0,+\infty[,$ y $\int_{-\infty}^{+\infty}|u(s,y)|\mathrm{d}s$ acotada en $[0,+\infty[,$

La función u verifica que:

$$(17) \quad u(1,\alpha) = \frac{1}{\pi} \left(-\alpha + \frac{\alpha}{2} \ln(1 + \frac{1}{2\alpha^2}) + \alpha^2 \arctan(\frac{1}{\alpha}) \right).$$

(18)
$$u(1,\alpha) = \frac{1}{\pi} \left(-\alpha + \frac{\alpha}{2} \ln(1 + \frac{1}{\alpha^2}) + \alpha^2 \arctan(\frac{1}{\alpha}) \right).$$

(19)
$$u(1,\alpha) = \frac{1}{\pi} \left(-\alpha + \frac{\alpha}{2} \ln(1 + \frac{1}{2\alpha^2}) + \alpha^2 \left(\arctan(\frac{\hat{3}}{2\alpha}) - \arctan(\frac{1}{2\alpha})\right) \right).$$

(20) No es cierta ninguna de las otras tres respuestas.

Nota:
$$u(x, y) = \frac{y}{\pi} \int_{-\infty}^{+\infty} \frac{f(t)}{(x - t)^2 + y^2} dt$$
.

E. Considérese el problema de Cauchy definido por

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \quad \text{para } (r, \theta, t) \in [0, 1[\times[-\pi, \pi[\times]0, +\infty[, u(1, \theta, t) = 0 \quad \text{para } (\theta, t) \in [-\pi, \pi[\times]0, +\infty[, u(r, \theta, 0) = J_1(\alpha r) \cos(\theta) + J_2(\beta r) \sin(2\theta), \quad \text{para } (r, \theta) \in [0, 1[\times[-\pi, \pi[, u(r, \theta, 0) = 0]])$$

donde α , β son dos números reales mayores que cero tales que $\alpha \neq \beta$ $J_1(\alpha) = J_2(\beta) = 0$. La solución del problema anterior se puede expresar de la forma $u(r,\theta,t) = \cos(\theta) \sum_{k=1}^{+\infty} w_{k1}(t) J_1(\lambda_{k1}r) + \sin(2\theta) \sum_{k=1}^{+\infty} w_{k2}(t) J_2(\lambda_{k2}r)$ donde (λ_{m1}) (respectivamente (λ_{m2})) es la sucesión monótona creciente formada por todos los ceros reales positivos de $J_1(z)$ (respectivamente $J_2(z)$). Sobre la función u se puede afirmar que:

- (17) $u(r,\theta,t) = \cos(\theta)\exp(-\alpha^2 t)J_1(\alpha r) + \sin(2\theta)\exp(-\beta^2 t)J_2(\beta r).$
- (18) $u(r,\theta,t) = \exp(-\alpha^2 t)(\cos(\theta)J_1(\alpha r) + \sin(2\theta)J_2(\beta r)).$
- (19) El desarrollo de la función u definido en el enunciado tiene infinitos términos no nulos.
- (20) No es cierta ninguna de las otras tres respuestas.