Examenul de bacalaureat național 2019 Proba E. c) Matematică *M_tehnologic*

Clasa a XI-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I

- Pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al II-lea și SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	В	5p
2.	C	5p
3.	C	5p
4.	D	5p
5.	$oldsymbol{A}$	5p
6.	D	5p

SUBIECTUL al II-lea (30 de puncte)

1.a)	1 2 1	
1.a)	$D(0) = \begin{vmatrix} 1 & 2 & -1 \\ 2 & 3 & 5 \\ 1 & 2 & 4 \end{vmatrix} =$	
	$D(0) = \begin{vmatrix} 2 & 3 & 5 \end{vmatrix} =$	2p
	$\begin{vmatrix} 1 & 2 & 4 \end{vmatrix}$	
	=12+(-4)+10-(-3)-10-16=-5	3p
b)	$D(a) = 12(a+1) + 4(a^2-1) + 5(2a+2) - 3(a^2-1) - 10(a+1) - 8(2a+2) =$	3p
	$=a^2-4a-5=(a-5)(a+1)$, pentru orice număr real a	2p
c)	$(a-5)(a+1) < -3(a+1) \Leftrightarrow (a+1)(a-2) < 0$	2p
	Cum a este număr întreg, obținem $a = 0$ sau $a = 1$	3p
2.a)	$M(-1) + M(1) = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} =$	3p
	$=2\begin{pmatrix}1&0\\0&1\end{pmatrix}=2M(0)$	2p
b)	$M(x) \cdot M(y) = \begin{pmatrix} 1-x & x \\ -x & 1+x \end{pmatrix} \begin{pmatrix} 1-y & y \\ -y & 1+y \end{pmatrix} = \begin{pmatrix} 1-x-y & y+x \\ -x-y & 1+x+y \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 - (x + y) & x + y \\ - (x + y) & 1 + (x + y) \end{pmatrix} = M(x + y), \text{ pentru orice numere reale } x \text{ si } y$	2p
c)	$M(2x) = M(a) \Leftrightarrow 2x = a$, unde $x \neq a$ sunt numere reale	3p
	Pentru orice număr real a , există un număr real $x = \frac{a}{2}$, astfel încât $M(x) \cdot M(x) = M(a)$	2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$\lim_{x \to 1} \frac{f(x)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 5x + 4}{x - 1} = \lim_{x \to 1} \frac{(x - 4)(x - 1)}{x - 1} =$	3 p
	$=\lim_{x\to 1}(x-4)=-3$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{f(x+1)} = \lim_{x \to +\infty} \frac{x^2 - 5x + 4}{(x+1)^2 - 5(x+1) + 4} = \lim_{x \to +\infty} \frac{x^2 \left(1 - \frac{5}{x} + \frac{4}{x^2}\right)}{x^2 \left(1 - \frac{3}{x}\right)} =$	3 p
	$= \lim_{x \to +\infty} \frac{1 - \frac{5}{x} + \frac{4}{x^2}}{1 - \frac{3}{x}} = 1$	2p
c)	$g(x) = \frac{x^2 - 5x + 4}{x} \Rightarrow \lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - 5x + 4}{x^2} = 1$	2p
	$\lim_{x \to +\infty} (g(x) - x) = \lim_{x \to +\infty} \frac{-5x + 4}{x} = -5, \text{ deci dreapta de ecuație } y = x - 5 \text{ este asimptota}$	3 p
	oblică spre $+\infty$ la graficul funcției f	
2.a)	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{1 - x} = 0, \ \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \frac{2 - x - x^2}{x} = 0$	2p
	Cum $f(1) = 0$, obtinem $\lim_{x \to 0} f(x) = f(1)$, deci functia f este continuă în $x = 1$	3 p
b)	$\lim_{x \to -3} \frac{f(x) - 2}{x + 3} = \lim_{x \to -3} \frac{\sqrt{1 - x} - 2}{x + 3} = \lim_{x \to -3} \frac{-x - 3}{(x + 3)(\sqrt{1 - x} + 2)} =$	3р
	$= \lim_{x \to -3} \frac{-1}{\sqrt{1-x}+2} = -\frac{1}{4}$	2p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2 - x - x^2}{x} = -\infty, \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{1 - x} = +\infty$	2p
	f continuă pe $(-\infty,1)$, f continuă în $x=1$ și f continuă pe $(1,+\infty)$, deci f este continuă pe \mathbb{R} , deci mulțimea valorilor funcției f este \mathbb{R} , de unde obținem că, pentru orice număr	3p
	real a, ecuația $f(x) = a$ are cel puțin o soluție	