Teoria mnogości

Teoria mnogości to dział matematyki zajmujący się badaniem ogólnych własności zbiorów niezależnie od natury elementów, z których się składają. Twórcą tej teorii był matematyk niemiecki Georg Cantor (1845 - 1918).

Pojęcia pierwotne teorii mnogości to **zbiór** oraz bycie **elementem** zbioru. Stosujemy następujące zapisy:

 $x \in A$ — x jest elementem zbioru A; $x \notin A$ — x nie należy do zbioru A Definiujemy następujące podstawowe pojęcia:

- \emptyset **zbiór pusty** (nie ma żadnego elementu, $\forall x \ x \notin \emptyset$)
- Relacja **inkluzji** (zawierania) $A \subseteq B \Leftrightarrow x \in A \Rightarrow x \in B$ (A jest podzbiorem B)
- Równość zbiorów $A = B \Leftrightarrow \forall x (x \in A \Leftrightarrow x \in B) \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$

Uwaga: Zbiór pusty jest tylko jeden i jest on podzbiorem każdego zbioru.

Podstawowe działania na zbiorach

Niech X będzie zbiorem, a A i B niech będą jego podzbiorami.

- Suma $A \cup B = \{x : x \in A \lor x \in B\};$
- **Iloczyn** (przecięcie) $A \cap B = \{x : x \in A \land x \in B\};$
- Różnica $A \setminus B = \{x : x \in A \land x \notin B\};$
- Dopełnienie $A' = -A = X \setminus A = \{x : x \in X \land x \notin A\}.$

Uwaga: Elementy zbioru też mogą być zbiorami.

Sposoby określania zbiorów

- Wypisanie elementów zbioru, np. $\{a_1, a_2, \dots, a_n\}$;
- Określenie zbioru za pomocą funkcji zdaniowej gromadzenie elementów mających wspólną cechę opisaną pewną funkcją zdaniową. Ogół elementów x, które mają własność W(x) oznaczamy $\{x:W(x)\}$. Uwaga: Może się zdarzyć, że opisana w taki sposób klasa obiektów nie jest zbiorem (przykład antynomia Russela). Aby uniknąć takiej sytuacji wybieramy elementy spełniające określoną własność spośród ustalonego wcześniej zbioru X. Tworzymy nowy zbiór $\{x \in X : W(x)\}$.
- Zbiór jako obraz zbioru wyznaczony przez funkcję $f(A) = \{f(a) : a \in A\}$ (więcej na wykładzie o funkcjach).

Własności działań i relacji na zbiorach

Niech X - ustalony zbiór (przestrzeń, tzn. rozważamy tylko elementy i podzbiory tego zbioru) oraz $A, B, C \subseteq X$.

Własności relacji inkluzji

- 1. $A \subseteq A$ zwrotność
- 2. $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$ przechodniość
- 3. $A \subseteq B \land B \subseteq A \Rightarrow A = B$ antysymetryczność

Własności działań

- 1. $A \cup B = B \cup A$ $A \cap B = B \cap A$ przemienność
- 2. $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$ łączność
- 3. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ rozdzielność
- 4. $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$ stąd $(A \cup B)' = A' \cap B'$ $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$ $(A \cap B)' = A' \cup B'$ prawa de Morgana
- 5. monotoniczność sumy i iloczynu: $A \subseteq A_1 \land B \subseteq B_1 \Rightarrow A \cup B \subseteq A_1 \cup B_1 \atop A \cap B \subseteq A_1 \cap B_1$
- 6. $A \cup A = A$, $A \cap A = A$, $A \setminus A = \emptyset$, $A \cup A' = X$, (A')' = A $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$, $A \setminus \emptyset = A$, $A \cap A' = \emptyset$
- 7. $A \subseteq B \Rightarrow C \setminus B \subseteq C \setminus A \land B' \subseteq A'$
- 8. $A \cap B \subseteq A \subseteq A \cup B$
- 9. Następujące warunki są równoważne: $A \subset B \iff A \cup B = B \iff A \cap B = A \iff A \setminus B = \emptyset$

Uwaga: Powyższe własności można wykazać przy pomocy rachunku zdań.

Zbiór potęgowy

Def. 1. Niech A będzie dowolnym zbiorem. **Zbiorem potęgowym zbioru** A nazywamy zbiór wszystkich jego podzbiorów. Stosujemy oznaczenia $2^A = \mathcal{P}(A) = \{B : B \subseteq A\}$.

Uwaga: Zawsze \emptyset , $A \in \mathcal{P}(A)$.

Fakt: $A \subseteq B \Rightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Produkt – iloczyn kartezjański zbiorów

Def. 2. Parę uporządkowaną elementów a i b oznaczamy (a,b) lub $\langle a,b\rangle$, a – pierwsza współrzędna, b – druga współrzędna. Para uporządkowana ma własność: $(a,b)=(c,d)\Leftrightarrow a=c \wedge b=d$.

Uwaga: Istotne jest rozróżnienie kolejności elementów. Można wprowadzić inną definicję (Kuratowskiego): $(a, b) = \{\{a\}, \{a, b\}\}.$

Podobnie można zdefiniować n-tki uporządkowane (a_1, a_2, \ldots, a_n) jako obiekty rozróżniające swoje kolejne współrzedne.

Def. 3. Iloczynem kartezjańskim (produktem) zbiorów A i B nazywamy zbiór

$$A \times B = \begin{cases} \{(a,b) : a \in A \land b \in B\}, & gdy \ A \neq \emptyset \land B \neq \emptyset \\ \emptyset, & gdy \ A = \emptyset \lor B = \emptyset \end{cases}$$

Fakt: Jeżeli A i B są zbiorami skończonymi, A ma m elementów, a B ma n elementów, to $A \times B$ ma $m \cdot n$ elementów.

Własności produktu

- $X \times Y \neq Y \times X$ brak przemienności
- $(X \times Y) \times Z \neq X \times (Y \times Z)$ brak łączności

Działania nieskończone – uogólnione sumy i iloczyny zbiorów

Niech $X \neq \emptyset$ – dowolna przestrzeń, $T \neq \emptyset$ – dowolny zbiór (zbiór indeksów).

Def. 4. Indeksowaną rodziną podzbiorów zbioru X nazywamy każdą funkcję $f: T \to 2^X$, $f: t \mapsto A_t$, gdzie $t \in T$, $A_t \subseteq X$.

Oznaczenie rodziny indeksowanej: $\{A_t\}_{t\in T} = (A_t)_{t\in T} := f(T) = \{A_t : t\in T\}.$

Def. 5. Uogólnioną sumą rodziny zbiorów $(A_t)_{t\in T}$ nazywamy zbiór

$$\bigcup_{t \in T} A_t := \{ x \in X : \exists t \in T \ x \in A_t \}.$$

 $Uog\'olnionym\ iloczynem\ rodziny\ zbior\'ow\ (A_t)_{t\in T}\ nazywamy\ zbi\'or$

$$\bigcap_{t \in T} A_t := \{ x \in X : \ \forall t \in T \ x \in A_t \}.$$

Uwaga: Własności uogólnionej sumy i iloczynu można zapisać następująco:

$$x \in \bigcup_{t \in T} A_t \Leftrightarrow \exists t \in T \ x \in A_t, \quad x \in \bigcap_{t \in T} A_t \Leftrightarrow \forall t \in T \ x \in A_t$$

Uogólniona suma rodziny zbiorów jest najmniejszym zbiorem zawierającym wszystkie zbiory tej rodziny.

Uogólniony iloczyn rodziny zbiorów jest największym zbiorem zawartym w każdym zbiorze tej rodziny.

Uwaga: Pusta rodzina zbiorów gdy $T = \emptyset$, $\{A_t : t \in \emptyset\}$, wtedy $\bigcup_{t \in T} A_t = \emptyset$, a $\bigcap_{t \in T} A_t = X$.

Własności działań uogólnionych

Tw. 1. Jeżeli $(A_t)_{t\in T}$, $(B_t)_{t\in T}$ są indeksowanymi rodzinami podzbiorów zbioru X i $A\subseteq X$, to prawdziwe są następujące zależności:

1.
$$\forall t \in T \ A_t \subseteq A \Rightarrow \bigcup_{t \in T} A_t \subseteq A$$
,

2.
$$\forall t \in T \ A \subseteq A_t \Rightarrow A \subseteq \bigcap_{t \in T} A_t$$
,

3.
$$\bigcup_{t \in T} (A_t \cup B_t) = \bigcup_{t \in T} A_t \cup \bigcup_{t \in T} B_t,$$

$$4. \bigcap_{t \in T} (A_t \cap B_t) = \bigcap_{t \in T} A_t \cap \bigcap_{t \in T} B_t,$$

5.
$$A \cap \bigcup_{t \in T} A_t = \bigcup_{t \in T} (A \cap A_t),$$

6.
$$A \cup \bigcap_{t \in T} A_t = \bigcap_{t \in T} (A \cup A_t),$$

7.
$$A \setminus \bigcup_{t \in T} A_t = \bigcap_{t \in T} (A \setminus A_t)$$
 oraz $A \setminus \bigcap_{t \in T} A_t = \bigcup_{t \in T} (A \setminus A_t)$, $stad$

$$(\bigcup_{t \in T} A_t)' = \bigcap_{t \in T} (A_t)' \quad oraz \quad (\bigcap_{t \in T} A_t)' = \bigcup_{t \in T} (A_t)',$$

8.
$$S \subseteq T \Rightarrow \bigcup_{t \in S} A_t \subseteq \bigcup_{t \in T} A_t \land \bigcap_{t \in S} A_t \supseteq \bigcap_{t \in T} A_t$$

9.
$$\forall t \in T \ A_t \subseteq B_t \Rightarrow \bigcup_{t \in T} A_t \subseteq \bigcup_{t \in T} B_t \land \bigcap_{t \in T} A_t \subseteq \bigcap_{t \in T} B_t$$
.

Rodziny podwójnie indeksowane

Jeśli $T = I \times J$ jest zbiorem par uporządkowanych, to rodzinę $f(T) = A_{(i,j)}$ oznaczamy A_{ij} . Możemy zdefiniować działania uogólnione po dwóch indeksach.

Na przykład na początku wyznaczamy dla każdego $i \in I$ zbiory

$$B_i := \bigcap_{j \in J} A_{ij} = \{x : \ \forall j \in Jx \in A_{ij}\}.$$

Następnie możemy wyznaczyć zbiór $\bigcup_{i \in I} \bigcap_{j \in J} A_{ij} = \bigcup_{i \in I} (\bigcap_{j \in J} A_{ij}) = \bigcup_{i \in I} B_i$.

Mamy wiec
$$x \in \bigcup_{i \in I} \bigcap_{j \in J} A_{ij} \Leftrightarrow (\exists i \in I) (\forall j \in J) \ x \in A_{ij}.$$

Analogicznie definiujemy inne podwójne działania uogólnione: $\bigcap_{i\in I}\bigcap_{j\in J}A_{ij},\ \bigcap_{i\in I}\bigcup_{j\in J}A_{ij},$ $\bigcup_{i\in I}\bigcup_{j\in J}A_{ij},\ \bigcap_{j\in J}\bigcap_{i\in I}A_{ij},\ \bigcup_{j\in J}\bigcap_{i\in I}A_{ij},\ \bigcap_{j\in J}\bigcup_{i\in I}A_{ij}.$