Московский физико-технический институт (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчет о выполнении лабораторной работы №2.1.6

Эффект Джоуля-Томсона

Выполнил студент группы Б03-405 Тимохин Даниил

1. Аннотация

В данной работе исследуется эффект Джоуля-Томсона и приближенная модель идеального газа Ван-дер-Ваальса.

2. Теоретическая справка

Эффект Джоуля-Томсона заключается в том, что из-за зависимости внутренней энергии газа от его объёма при его обратном расширении температура падает или растёт в зависимости от соотношения между коэффициентами Ван-дер-Ваальса.

Из закона сохранения энергии получим

$$A_2 - A_1 = P_2 V_2 - P_1 V_1 = \left(U_1 + \frac{\mu v_1^2}{2} \right) - \left(U_2 + \frac{\mu v_2^2}{2} \right) \tag{1}$$

$$(P_2V_2 + U_2) - (P_1V_1 + U_1) = \frac{\mu v_1^2}{2} - \frac{\mu v_2^2}{2}$$
(2)

Но так как в нашем процессе скорость газа на входе мала из-за большого трения в пористой перегородке, то получим

$$H_2 - H_1 \approx 0 \tag{3}$$

Записав энтальпию газа и упростив её

$$H = U + PV = C_v T + RT \frac{V}{V - b} - \frac{2a}{V} = C_p T + P(b - \frac{2a}{RT})$$
 (4)

Отсюда и получаем коэффициент Джоуля-Томсона из дифференциала получим.

$$\mu_{\mathcal{A}-T} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_p} \tag{5}$$

Отсюда получаем температуру инверсии $T=\frac{2a}{Rb}$

Рис. 1. Экспериментальная установка

С помощью Дифференциальной медно-константановой термопары измерим падение температуры, а с помощью барометра падение давления.

3.Оборудование

Экспериментальный стенд

4. Результаты измерений и обработка данных

Проведем измерения и получим такие графики из наших данных.

Рис. 2. Зависимость падения температуры от падения давления

Таблица 1. Нахождение коэффициентов Джоуля-Томсона

Температура, ^о С	Коэффициент Джоуля-Томсона, 10^{-4}	$\varepsilon_{\mu_{\mathcal{A}-T}}$
15	9.6	0.02
30	8.2	0.02
50	6.4	0.01

Построим по этим данным теперь график зависимости $\mu_{\mathcal{A}-T}(T^{-1}).$

Рис. 3. график зависимости $\mu_{\mathcal{A}-T}(T^{-1})$

Используя формулу 5, получим коэффициенты a и b. $a=1.35\frac{H_M^4}{MOJD^2}$ $\varepsilon_a=0.02,\ b=7.6\cdot 10^{-4} M^3$ $\varepsilon_b=0.001$ Получаем $T_{ung}=425.8K$.

5. Обсуждение результатов и выводы

Полученные значения отличаются от табличных $a=0.36\frac{H_M^4}{MOЛЬ^2}$ и $b=0.42\cdot 10^{-4} M^3$, так как коэффициенты Ван-дер-Ваальса в реальности зависят от температуры, а значит мы лишь можем получить их именно для нашего опыта. С этим также связано отличие от таблиного значения критической температуры $T_{maбл}=2073 K$.

Был получен эффект Джоуля-Томсона и экспериментально подтверждена его приближенная формула.

Модель газа Вандер-Вальса хорошо описывает газ только в некоторой окрестности его параметров. Поэтому данную модель нужно применять только подтвердив, что коэффициенты правильно задают поведение газа в определённых условиях. И не использовать табличные значения при критической температуре для всех расчётов.