

What is claimed is:

1. A method for controlling an automotive vehicle having a plurality of wheels comprising:

determining a yaw rate;

determining a lateral acceleration;

5 determining a roll rate;

determining longitudinal acceleration;

determining a calculated angle relative to the vehicle;

generating a wheel lift signal or a wheel 10 grounded signal as a function of yaw rate, lateral acceleration, roll rate and longitudinal acceleration;

adjusting the calculated angle in response to the wheel lift or wheel grounded signal; and

controlling a safety system in response to 15 the calculated vehicle angle.

2. A method as recited in claim 1 wherein determining a calculated angle comprising determining the calculated vehicle angle in response to the roll rate signal.

20 3. A method as recited in claim 1 wherein the calculated angle comprises a wheel departure angle.

4. A method as recited in claim 1 wherein the calculated angle comprises a reference bank angle.

5. A method as recited in claim 1 wherein
the calculated angle comprises a relative roll angle.

6. A method as recited in claim 1 further
comprising determining a pitch acceleration and,
5 wherein generating wheel lift or wheel grounded signal
comprises determining wheel lift or wheel grounded
signal as a function of yaw rate, lateral
acceleration, roll rate, longitudinal acceleration and
pitch acceleration.

10 7. A method as recited in claim 1 further
comprising controlling the safety system to counteract
wheel lift.

8. A method as recited in claim 1 wherein
generating a wheel lift signal is performed in
15 response to a two wheel averaging method.

9. A method of operating a control system
for an automotive vehicle comprising:

detecting a wheel grounded condition; and
adjusting the reference bank angle toward
20 the linear bank angle in response to the wheel
grounded condition.

10. A method as recited in claim 9 wherein
adjusting comprises adjusting the reference bank angle
to the linear bank angle.

25 11. A method as recited in claim 9 wherein
adjusting comprises incrementally adjusting the
reference bank angle to the linear bank angle.

12. A method as recited in claim 9 wherein
detecting a wheel grounded condition comprises
detecting an absolutely grounded condition.

13. A method as recited in claim 9 further
5 comprising determining a yaw rate;
determining a lateral acceleration;
determining a roll rate;
determining longitudinal acceleration;
wherein determining a wheel grounded
10 condition comprises determining a wheel grounded
condition in response to the lateral acceleration, the
roll rate, the yaw rate and the longitudinal
acceleration.

14. A method of operating a control system
15 for an automotive vehicle comprising:
detecting a wheel grounded condition; and
setting a wheel departure angle to about
zero in response to the absolutely grounded condition.

15. A method as recited in claim 14 wherein
20 detecting a wheel grounded condition comprises
detecting a front inside wheel, and a rear inside
wheel are absolutely grounded.

16. A method as recited in claim 14 wherein
detecting a wheel grounded condition comprises
25 detecting a front outside wheel, and a rear outside
wheel are absolutely grounded or possibly grounded.

17. A method as recited in claim 14 wherein
detecting a wheel grounded condition comprises
detecting a front inside wheel and a front outside
wheel is absolutely grounded or possibly grounded, or
5 a rear inside wheel is absolutely grounded and a rear
outside wheel is absolutely grounded or possibly
grounded.

18. A method as recited in claim 14 further
comprising determining a calculated steering angle,
10 wherein setting a wheel departure angle to about zero
comprises setting a wheel departure angle to about
zero in response to the calculated steering angle.

19. A method as recited in claim 14 further
comprising adjusting the roll signal for control in
15 response to the wheel departure angle after setting
the wheel departure to about zero.

20. A method as recited in claim 14 further
comprising setting the wheel departure angle to about
zero in response to a transition maneuver.

21. A method as recited in claim 14 further
comprising determining a yaw rate;
determining a lateral acceleration;
determining a roll rate;
determining longitudinal acceleration;
25 wherein determining a wheel grounded
condition comprises determining a wheel grounded
condition in response to the lateral acceleration, the
roll rate, yaw rate and longitudinal acceleration.

22. A method of operating a control system for a vehicle comprising:

determining a wheel lift condition; and

adjusting the roll signal for control in
5 response to the absolutely lifted condition.

23. A method as recited in claim 22 wherein the roll signal for control is a function of a reference bank angle, adjusting the roll signal for control comprises adjusting a reference bank angle.

10 24. A method as recited in claim 22 wherein adjusting a reference bank angle comprises subtracting a wheel departure angle from the reference bank angle.

15 25. A method as recited in claim 24 wherein the step of subtracting is performed when a front inside wheel is absolutely lifted or a rear inside wheel is absolutely lifted.

20 26. A method as recited in claim 22 wherein adjusting a reference bank angle comprises subtracting a wheel departure angle and a relative roll angle from the reference bank angle.

27. A method as recited in claim 22 wherein adjusting a reference bank angle comprises subtracting a wheel departure angle and a relative roll angle increased by a factor from the reference bank angle.

28. A method as recited in claim 22 wherein
the step of subtracting is performed when a front
inside wheel is absolutely lifted and a rear inside
wheel is absolutely lifted.

5 29. A method as recited in claim 22 further
comprising determining a yaw rate;

 determining a lateral acceleration;

 determining a roll rate;

 determining longitudinal acceleration;

10 wherein determining a wheel lift condition
comprises determining a wheel lift condition in
response to the lateral acceleration, the roll rate,
yaw rate and longitudinal acceleration.

15 30. A method of operating a control system
for a vehicle comprising:

 determining a front inside wheel lift state;

 determining a rear inside wheel lift state;

20 when the front inside wheel lift state is
lifted and the rear inside wheel is not grounded or
the rear wheel is lifted and the front inside wheel is
not grounded, calculating a wheel departure angle.

31. A method as recited in claim 30 wherein
lifted is absolutely lifted.

25 32. A method as recited in claim 30 wherein
grounded is absolutely grounded.

33. A method of operating a control system
for a vehicle;

providing a first wheel lift detection
method;

5 providing a second wheel lift detection
method;

determining a vehicle configuration or
setting; and

10 switching between the first wheel lift
detection method and second wheel lift detection
method in response to the vehicle configuration or
setting.