Grundlagen der Logik

Felix Leitl

13. September 2023

Aussagenlogische Konsequenz und Beweise

Wahrheitstafel

A	В	C	$A \rightarrow B$	
w	w	w	W	
w	w	f	W	
W	f	w	f	
W	f	f	f	
f	w	w	W	
f	w	f	W	
f	f	w	W	
f	f	f	W	

Formel ist eine aussagenlogische Konsequenz, wenn beide Spalten übereinstimmen

Coq

Formalisierung in Prädikatenlogik

Unifikation

Regeln

Regel	Pre	After
decomp	f(x) = f(y)	x = y
delete	f(x) = f(x)	
orient	f(x) = y	y = f(x)
elim	f(x) = y x = z	f(z) = y x = z
conflict	f(x) = g(x)	
occur	f(x) = y y = f(x)	

Algorithm

Die Formel ist syntaktisch identisch, hat also einen most generic unifier (mgu), wenn der Algorithmus endet, ohne \perp .

Bsp.:
$$x = h(h(w))$$
 $z = h(w)$ \Rightarrow $mgu = \left[\frac{h(h(w))}{x}, \frac{h(w)}{z}\right]$

Prädikatenlogische Resolution

 $\mathbf{Kodierung}\ \mathbf{von}\ \rightarrow\ \mathbf{durch}\ \neg\ \mathbf{und}\ \lor$

$$A \to B \equiv \neg A \vee B$$

Negationsnormalform

 \neg an innerste Stelle ziehen: $\forall y. \neg (\neg y \land \exists x. R(x)) \equiv \forall y. y \lor \forall x \neg R(x)$ Aus \land wird \lor , aus \forall wir \exists und umgekehrt.

Pränexe Normalform

Alle Quantoren nach vorne ziehen, bei Variablendopplung neue Variablen einführen

Skolemform

Nicht allquantorifizierte Variablen mittels Substitution durch Funktionen austauschen $\sigma[\frac{f(x)}{x},\frac{h(x)}{y}]$

Konjunktive Normalform (KNF)

 $(A \lor B) \land (C \lor A)$

Klauselform

Klauseln entlang der KNF Konjunktionen brechen $\{A,B\}\{C,A\}$

Unerfüllbarkeit durch Klauselmenge zeigen

Idee: wenn man die leere Menge herleiten kann, dann ist die Formel unerfüllbar. Je zwei widersprüchliche Aussagen auslöschen und den Rest der zwei Klauseln zu einer neuen verschmelzen. Mittels Substitution Widersprüche aufzeigen. Bei Beweis für Erfüllbarkeit, Klauselmenge um flache Aussage erweitern, wenn dann nicht erfüllbar, dann ist die Ursprungsformel erfüllbar

Formale Deduktion

Induktion