Введение в базы данных

Владислав Хорев Ведущий программист в компании Andersen

Проверка связи

Если у вас нет звука:

- убедитесь, что на вашем устройстве и на колонках включён звук
- обновите страницу вебинара (или закройте страницу и заново присоединитесь к вебинару)
- откройте вебинар в другом браузере
- перезагрузите компьютер (ноутбук) и заново попытайтесь зайти

Поставьте в чат:

- 🕂 если меня видно и слышно
- если нет

Владислав Хорев

О спикере:

- Ведущий программист в компании Andersen
- Работает в IT с 2011 года
- Опыт разработки на С++ более 11 лет

Вебинары и видео

Записи, статьи и презентации экспертов — вся необходимая информация, чтобы ваше обучение было максимально эффективным

Аргументы командной строки и console

Дмитрий Бронски:

ullstack developer a 000 «Tenekom-Heikea»

Лекции будут в формате видеолекций и вебинаров. Это поможет вам влиться в обучение в своём темпе.

В конце модуля мы разбираем вопросы по изученным темам

Практика

После каждого занятия у вас будет практическое задание — решить 1–2 задачи

Поддержка

При обучении вас поддержат преподаватели и аспиранты, координатор, сокурсники.

Задавайте вопросы, делитесь обратной связью.

Эта атмосфера поможет вам влиться в IT-сообщество

Цели занятия

- Познакомимся с понятием базы данных
- Узнаем о типах БД и СУБД
- Спроектируем базу данных интернет-магазина

План занятия

- (1) БД и СУБД
- (а) Типы БД
- Таблицы, атрибуты, кортежи
- (4) Первичный ключ и связи между таблицами
- (5) Нормальные формы
- (6) Домашнее задание

БД и СУБД

База данных — набор взаимосвязанных данных и правила хранения этих данных

Система управления базами данных (СУБД)

Система управления базами данных — комплекс программных средств для управления данными

Аналогия

1

Архив с данными

это **информация**, которую хотим хранить

2

Архивариус

СУБД, через него идут все манипуляции с данными, будь то удаление, добавление или получение

3

Посетитель

программа, которой необходимо производить операции с данными

Аналогия

1

Архив с данными

это информация, которую хотим хранить

2

Архивариус

СУБД, через него идут все манипуляции с данными, будь то удаление, добавление или получение

3

Посетитель

программа, которой необходимо производить операции с данными

Аналогия

1

Архив с данными

это информация, которую хотим хранить

2

Архивариус

СУБД, через него идут все манипуляции с данными, будь то удаление, добавление или получение

์ 3

Посетитель

программа, которой необходимо производить операции с данными

Типы СУБД

Типы СУБД

Файл-серверные

Клиент-серверные

Встраиваемые

Клиент:

- 1 Программа, которая хочет получить информацию
- 2 Физическое устройство, на котором работает программа-клиент

- (1) Специальная программа, которая даёт информацию
- (2) Физическое устройство, на котором запущена программа-сервер

Клиент:

- 1 Программа, которая хочет получить информацию
- (2) Физическое устройство, на котором работает программа-клиент

- (1) Специальная программа, которая даёт информацию
- (2) Физическое устройство, на котором запущена программа-сервер

Клиент:

- 1 Программа, которая хочет получить информацию
- (2) Физическое устройство, на котором работает программа-клиент

- 1 Специальная программа, которая даёт информацию
- (2) Физическое устройство, на котором запущена программа-сервер

Клиент:

- 1 Программа, которая хочет получить информацию
- 2 Физическое устройство, на котором работает программа-клиент

- 1 Специальная программа, которая даёт информацию
- (2) Физическое устройство, на котором запущена программа-сервер

Файл-серверные СУБД

Файлы с информацией хранятся на сервере, а СУБД на клиенте

Клиент-серверные СУБД

Файлы с информацией и СУБД находятся на сервере, а клиент обращается за информацией через легковесную вспомогательную программу

Встраиваемые СУБД

Файлы и СУБД хранятся на клиенте

Сравнение типов СУБД

Тип СУБД	Плюсы	Минусы
Файл-серверные	Сервер может быть обычным файловым хранилищем	 Плохо параллелятся действия от разных клиентов Требуется установка СУБД на каждом клиенте
Клиент-серверные	 На клиенте не надо устанавливать СУБД Хорошо параллелятся действия от разных клиентов 	Сервер должен быть достаточно производительным => дорого
Встраиваемые	Не нужен сервер	Подходит только для локального хранения

Типы баз данных

Реляционные — это БД, в которых информация строго структурирована и связана с другой информацией жёсткими правилами

Пример:

Microsoft Access PostgreSQL Microsoft SQL

SQLite MySQL

Базы данных SQL

Популярные СУБД SQL, которые чаще всего используются:

Типы баз данных

Нереляционные (NoSQL) — это БД, в которых жёсткие ограничения не требуются ни по структуре, ни по связи между информацией

Пример:

Redis

MongoDB

Cassandra

Базы данных NoSQL

Популярные NoSQL СУБД, которые чаще всего используются:

Типы нереляционных баз данных

«Ключ-значение»

- Redis
- Berkley DB
- MemcacheDB

Колоночные

- Cassandra
- HBase

Графовые

- Neo4j
- OrientDB

Документоориентированные

- MongoDB
- CouchDB

Cравнение SQL и NoSQL

Таблицы, атрибуты, кортежи

Сущность — описываемый объект

Например, мы хотим рассмотреть успеваемость студентов на курсе

Отношение — таблица

id	name	gpa
1	Егор	4.82
2	Егор	4.11
3	Егор	3.88

Пример отношения «Успеваемость студентов»

→ Атрибут (или поле) — столбец

(o) Запись (или кортеж) — строка

Атрибут ф gpa

id	name	gpa
1	Егор	4.82
2	Егор	4.11
3	Егор	3.88

Пример отношения «Успеваемость студентов»

- → Атрибут (или поле) столбец
- (→) Запись (или кортеж) строка

Пример отношения «Успеваемость студентов»

Первичный ключ и связи между таблицами

Primary key

Primary key (первичный ключ) — столбец или набор столбцов, которые уникальным образом идентифицируют строку в рамках всей таблицы:

ID	Категория
1	Строительные материалы
2	Отделочные материалы

(!) Наличие первичного ключа— необязательное требование для таблицы, но в большинстве случаев он будет

Foreign key

- Внешние ключи позволяют установить связи между таблицами
- Внешний ключ устанавливается для столбцов из зависимой (подчинённой) таблицы и указывает на один из столбцов из главной таблицы
- Как правило, внешний ключ указывает на первичный ключ из связанной главной таблицы

ID	Категория	
1 🔾	Строительные материалы	
2 🔿	Отделочные материалы	

ID	Категория		Товары
1	1	0	Кирпич
2	1	0	Цемент
3	2	0	Гипсокартон
4	2	0	Обои

Нормальные формы

Нормальные формы

Нормальная форма — требование, предъявляемое к структуре таблиц в теории реляционных баз данных для устранения из базы избыточных функциональных зависимостей между атрибутами

! **Цель нормализации** — исключить избыточное дублирование данных, которое является причиной аномалий, возникающих при добавлении, редактировании и удалении кортежей

Первая нормальная форма (1НФ)

Переменная отношения находится **в первой нормальной форме (1НФ)**, когда в любом допустимом значении отношения каждый его кортеж (строка) содержит только одно значение для каждого из атрибутов

Первая нормальная форма (1НФ)

Категория	Товары	
Строительные материалы	Кирпич, цемент, гвозди	
Отделочные материалы	Гипсокартон, обои, краска	

Первая нормальная форма (1НФ)

Категория	Товары
Строительные материалы	Кирпич, цемент, гвозди
Отделочные материалы	Гипсокартон, обои, краска

Категория	Товары
Строительные материалы	Кирпич
Строительные материалы	Цемент
Строительные материалы	Гвозди
Отделочные материалы	Гипсокартон
Отделочные материалы	Обои
Отделочные материалы	Краска

Вторая нормальная форма (2НФ)

Переменная отношения находится во второй нормальной форме, когда соблюдаются все условия первой нормальной формы и каждый неключевой атрибут неприводимо (функционально полно) зависит от её потенциального ключа

Вторая нормальная форма (2НФ)

Категория	Дата акции	Скидка	Товары
Строительные материалы	21.11.2020	10%	Кирпич
Строительные материалы	21.11.2020	10%	Цемент
Отделочные материалы	25.12.2020	20%	Гипсокартон
Отделочные материалы	25.12.2020	20%	Обои

Вторая нормальная форма (2НФ)

Категория	Товары
Строительные материалы	Кирпич
Строительные материалы	Цемент
Отделочные материалы	Гипсокартон
Отделочные материалы	Обои

Категория	Дата акции	Скидка
Строительные материалы	21.11.2020	10%
Отделочные материалы	25.12.2020	20%

Третья нормальная форма (ЗНФ)

Переменная отношения находится **в третьей нормальной форме** тогда и только тогда, когда соблюдаются все условия второй нормальной формы и отсутствуют функциональные зависимости неключевых атрибутов от ключевых

Третья нормальная форма (ЗНФ)

Привести к 3НФ — значит выделить из таблицы первичный ключ, который будет уникально идентифицировать запись в таблице

ID	Категория	
1	Строительные материалы	
2	Отделочные материалы	

ID	Категория	Дата акции	Скидка
1	1	21.11.2020	10%
2	2	25.12.2020	20%

ID	Категория	Товары
1	1	Кирпич
2	1	Цемент
3	2	Гипсокартон
4	2	Обои

Остальные нормальные формы

- (→) Нормальная форма Бойса Кодда (НФБК)
- (→) Четвёртая нормальная форма (4НФ)
- (→) Пятая нормальная форма (5НФ)
- (→) Шестая нормальная форма (6НФ)

Плюсы и минусы нормализации

Плюсы

- + Декомпозиция информации
- (+) Строгое хранение данных без возможности хранить дублированную и противоречивую информацию

Минусы

- Время на приведение к нормальным формам
- Накладные расходы при извлечении информации на объединение таблиц

Итоги

Итоги

- (1) Познакомились с понятием базы данных
- (2) Узнали о типах БД и СУБД
- (з) Спроектировали базу данных интернет-магазина

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- (1) Вопросы о домашней работе задавайте в чате группы
- (2) Задачи можно сдавать по частям
- 3 Зачёт по домашней работе проставляется после того, как приняты все задачи

Выполните тест по пройденному материалу

Задавайте вопросы и пишите отзыв о лекции

Владислав Хорев Ведущий программист в компании Andersen

