

HABIB UNIVERSITY

Data Structures & Algorithms

CS/CE 102/171 Spring 2023 Instructor: Maria Samad

Time Complexity of Recursive Functions – Master's Theorem

Student Name:	
Q1) Use the relevant Master's T	heorem to deduce the time complexity of the following recurrence relation:
$\mathbf{T}(\mathbf{n}) = \begin{bmatrix} \mathbf{T}(\mathbf{n}-2) + 1 \\ 1 \end{bmatrix}$, n > 0 , n = 0

Q2) Use the relevant Master's Theorem to deduce the time complexity of the following recurrence relation:

$$T(n) = \begin{bmatrix} T(n-1) + log n , n > 0 \\ 1 , n = 0 \end{bmatrix}$$

Q3) Use the relevant Master's Theorem to deduce the time complexity of the following recurrence relation:

$$T(n) =$$
 $\begin{bmatrix} 9T(n-1) + 5 & , n > 0 \\ 1 & , n = 0 \end{bmatrix}$

Q4) Use the relevant Master's Theorem to deduce the time complexity of the following recurrence relation:

$$T(n) = \begin{cases} 5T(n-4) + 10 & , n > 0 \\ 1 & , n = 0 \end{cases}$$

Q5) Use the relevant Master's Theorem to deduce the time complexity of the following recurrence relation:

$$T(n) = \begin{bmatrix} 3T(n-5) + n! & , n > 0 \\ 1 & , n = 0 \end{bmatrix}$$

Q6) Use the relevant Master's Theorem to deduce the time complexity of the following recurrence relation:

$$T(n) = \begin{bmatrix} T(n/3) + 5 & , n > 1 \\ 1 & , n = 1 \end{bmatrix}$$

Q7) Use the relevant Master's Theorem to deduce the time complexity of the following recurrence relation:

$$T(n) = \begin{bmatrix} T(n/3) + n^2 & , n > 1 \\ 1 & , n = 1 \end{bmatrix}$$

Q8) Use the relevant Master's Theorem to deduce the time complexity of the following recurrence relation:

$$T(n) = \begin{bmatrix} 4T(n/2) + 1 & , n > 1 \\ 1 & , n = 1 \end{bmatrix}$$

Q9) Use the relevant Master's Theorem to deduce the time complexity of the following recurrence relation:

$$T(n) = \begin{bmatrix} 2T(n/2) + n^2 & , n > 1 \\ 1 & , n = 1 \end{bmatrix}$$