ปฏิบัติการที่ 3: ปริภูมิความถื่

หน้า

1/2

รหัสวิชา: 010113337 ชื่อวิชา: ปฏิบัติการระบบโทรคมนาคม		
ชื่อ:	รหัสนักศึกษา:	
ภาคการศึกษาที่:	ปีการศึกษา:	
วันที่และเวลาที่ทำการทดลอง:		
อาจารย์ผู้สอน: ผู้ช่วยศาสตราจารย์ ดร. ไกรสร ไชยซาววงค์		

วัตถุประสงค์

- 1. ทำความรู้จักกับคำสั่งพื้นฐานในโปรแกรม Python ที่เกี่ยวข้องกับการประมวลผลรูปภาพดิจิทัล
- 2. เพื่อทำความรู้จักและเรียนรู้ปริภูมิพื้นฐานและปริภูมิความถี่ของรูปภาพดิจิทัล

ขั้นตอนการทดลอง

การทดลองที่ 3.1

1. ให้นักศึกษาทำการอ่านรูปภาพ figure1.jpg ดัง Python code ต่อไปนี้ แล้วพิจารณาผลที่ได้ โดย แสดงผลภาพเดิมและผลที่ได้จากการคำนวณ ทั้งแบบปกติและข้อมูลภาพเชิงพื้นผิว

```
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('figure1.jpg',0)
fft = np.fft.fft2(img)
fft_vis = np.abs(fft)
```

2. ทำคำสั่งขั้นต้นอีกครั้งโดยเพิ่มคำสั่ง fftshift() แล้วแสดงผลภาพที่ได้จากการคำนวณ ทั้งแบบปกติ และข้อมูลภาพเชิงพื้นผิวเช่นกัน

```
fftshift_vis = np.fft.fftshift(fft_vis)
```

- 3. ให้นักศึกษาอธิบายคำสั่ง abs() และ fftshift()
- 4. พิจารณารูป figure2.jpg ถึง figure5.jpg และดำเนินการดังข้อ 1. และ 2. และอภิปราย

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

ปฏิบัติการที่ 3: ปริภูมิความถี่

หน้า 2 / 2

การทดลองที่ 3.2

1. ให้นักศึกษาพิมพ์คำสั่งดังต่อไปนี้ เพื่อวิเคราะห์ Fourier spectrum ของรูปภาพดิจิทัล และอธิบายการ ทำงานของ Python code พอสังเขป

Python code	Images (2D view and Surface view)
<pre>img = np.zeros((30,30)) img[5:24,13:17] = 1</pre>	
<pre>plt.title('OriginalImage') plt.title('SurfaceView')</pre>	
<pre>fft = np.fft.fft2(img) fft_abs = np.abs(fft)</pre>	
<pre>plt.title('PleaseFindACorrectTitle') plt.title('SurfaceView')</pre>	
<pre>fftshift = np.fft.fftshift(fft)</pre>	
<pre>fftshift_abs = np.abs(fftshift)</pre>	
<pre>plt.title('PleaseFindACorrectTitle') plt.title('SurfaceView')</pre>	
<pre>fftshift_log = np.log(1 + fftshift_abs)</pre>	
<pre>plt.title('PleaseFindACorrectTitle') plt.title('SurfaceView')</pre>	
pre-crete(Surraceview)	

2. ให้นักศึกษาวิเคราะห์ Fourier spectrum ของรูปที่ตั้งฉากกับภาพ img ในข้อ 1. โดยดำเนินการทุก ขั้นตอนเช่นเดียวกัน แล้วอภิปราย

<u>การทดลองที่ 3.3</u>

1. ให้นักศึกษาวิเคราะห์ Fourier spectrum ของรูปใบหน้าตัวเอง โดยดำเนินการดังการทดลองที่ 3.2 และอภิปราย

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ