RICHIAMI DI GEOMETRIA ANALITICA

§ 1. EQUAZIONI DI RETTE E PIANI

Riferiremo sempre lo spazio ad un sistema ortogonale e monometrico di coordinate.

Ricordiamo che, dati i due punti $P_1(x_1, y_1, z_1)$ e $P_2(x_2, y_2, z_2)$, si indica con P_1 - P_2 il vettore $(x_1 - x_2, y_1 - y_2, z_1 - z_2)^T$. Se è P_1 - P_2 = \underline{u} , si scrive anche P_1 = P_2 + \underline{u} . Si dice in tal caso che il vettore \underline{u} è *applicato* in P_2 . In particolare, assegnare il punto P(x, y, z) equivale ad assegnare il vettore P_1 - P_2 = P_2 - P_2 = P_2 - P_2 = P_2 + P_2 = P_2 =

$$\langle \underline{u}_1, \underline{u}_2 \rangle := x_1 x_2 + y_1 y_2 + z_1 z_2,$$

mentre è detta *norma* del vettore $\underline{u} := (x, y, z)^T$ il numero reale non negativo

$$||\underline{u}|| := d(\underline{u}, \underline{0}) = \sqrt{x^2 + y^2 + z^2} = \sqrt{\langle \underline{u}, \underline{u} \rangle}.$$

Dati i due vettori non nulli $\underline{u}_1 := (x_1, y_1, z_1)^T$ e $\underline{u}_2 := (x_2, y_2, z_2)^T$, applicati in un punto A, si ponga $B := A + \underline{u}_1$ e $C := A + \underline{u}_2$. Si ha subito $C - B = \underline{u}_2 - \underline{u}_1$. Se \underline{u}_1 e \underline{u}_2 non sono paralleli, resta individuato il triangolo $\Delta(BAC)$. Detto poi α il corrispondente angolo in A, esso sarà detto angolo formato dai due vettori. Se \underline{u}_1 e \underline{u}_2 sono paralleli, si assume come α l'angolo nullo, se i due vettori hanno lo stesso verso, l'angolo piatto se hanno verso opposto.

TEOREMA 1. Siano dati i due vettori $\underline{u}_1 := (x_1, y_1, z_1)^T$, $\underline{u}_2 := (x_2, y_2, z_2)^T$ e sia α l'angolo da essi formato.

- 1) Si ha $\langle \underline{u}_1, \underline{u}_2 \rangle = \|\underline{u}_1\| \cdot \|\underline{u}_2\| \cos \alpha$.
- 2) Si ha $\underline{u}_1 \perp \underline{u}_2 \Leftrightarrow \langle \underline{u}_1, \underline{u}_2 \rangle = 0.$

DIM. Applichiamo i vettori \underline{u}_1 e \underline{u}_2 ad un punto A; poniamo $B := A + \underline{u}_1$, $C := A + \underline{u}_2$ e indichiamo con α l'angolo formato dai due vettori. Se i due vettori sono paralleli, la (1) segue subito dalla Proposizione 23,6' del Capitolo 11. In caso contrario, applicando il Teorema del coseno al triangolo $\Delta(BAC)$, si ottiene

$$\|\underline{u}_2 - \underline{u}_1\|^2 = \|\underline{u}_2\|^2 + \|\underline{u}_1\|^2 - 2\|\underline{u}_2\| \cdot \|\underline{v}_1\| \cos \alpha.$$

D'altra parte, dallo sviluppo di $\|\underline{u}_2 - \underline{u}_1\|^2$ si ha

$$||u_2 - u_1||^2 = ||u_2||^2 + ||u_1||^2 - 2 \langle u_1, u_2 \rangle.$$

Sostituendo e semplificando, si ricava immediatamente la (1).

La (2) segue dalla (1) e dal fatto che si ha $\underline{u}_1 \perp \underline{u}_2$ se e solo se è $\cos \alpha = 0$.

Possiamo ora ricavare facilmente le equazioni di una retta nel piano, di un piano nello spazio e di una retta nello spazio, nonché le condizioni di parallelismo e ortogonalità.

La retta nel piano

Siano r una retta del piano ed A un punto non appartenente a r. Diciamo $P_0(x_0, y_0)$ il piede della perpendicolare ad r passante per A. Sia poi $\underline{a} := A - P_0 = (a, b)^T$. Un punto P(x, y) del piano appartiene ad r se e solo se il vettore $P - P_0$ è ortogonale al vettore \underline{a} . Si ottiene così l'equazione vettoriale della rette r:

$$\langle \underline{a}, P - P_0 \rangle = 0.$$

Esplicitando, si ottiene l'*equazione cartesiana* della retta *r*:

$$a(x - x_0) + b(y - y_0) = 0.$$

Dunque, l'equazione di una retta del piano è del tipo ax + by + c = 0, con $(a, b) \neq (0, 0)$. Viceversa, un'equazione del tipo ax + by + c = 0, con $(a, b) \neq (0, 0)$ [per esempio con $b \neq 0$], è l'equazione di una retta, dato che può essere scritta nella forma a(x - 0) + b(y - (-c/b)) = 0.

Va tenuto ben presente che, data la retta r di equazione ax + by + c = 0, con $(a, b) \neq (0, 0)$, il vettore $(a, b)^T$ è ortogonale a r. Ricordando poi che l'angolo (acuto o retto) formato da due rette è uguale a quello formato dalle due perpendicolari, si ottiene che:

TEOREMA 2. Date le rette r e r' di equazioni rispettive ax + by + c = 0 e a'x + b'y + c' = 0, il coseno dell'angolo (acuto o retto) α da esse formato è dato da

$$\cos\alpha = \frac{aa' + bb'}{\sqrt{a^2 + b^2}\sqrt{a'^2 + b'^2}}$$

Le rette r e r' sono ortogonali se e solo se si ha aa' + bb' = 0.

Le rette r e r' sono parallele se e solo se sono paralleli i vettori $(a, b)^T$, $(a', b')^T$, ossia se e solo se esiste un numero reale non nullo ρ tale che $a' = \rho a$, $b' = \rho b$.

Data una retta r e su di essa due punti $P_1(x_1, y_1)$ e $P_2(x_2, y_2)$, un punto P(x, y) appartiene a r se e solo se sono paralleli i vettori $P_2 - P_1$ e $P_1 - P_2$, ossia se e solo se si ha

$$\begin{cases} x = x_1 + (x_2 - x_1)t \\ y = y_1 + (y_2 - y_1)t \end{cases}$$
, o eventualmente $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$, che è del tipo precedente.

Notiamo che, se è $x_2 = x_1$, ci si riduce all'equazione $x = x_1$; analogamente nel caso $y_2 = y_1$. Si ottengono così le *equazioni parametriche* della retta r passante per $P_0(x_0, y_0)$ e direzione (orientata) $\underline{y} := (a, b)^T$:

$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}$$

ESEMPI. 1) La retta passante per i punti A(1, 2) e B(-3, 5) ha equazione $\frac{x-1}{-4} = \frac{y-2}{3}$.

- 2) Le equazioni parametriche della retta passante per il punto A(1, 2) e parallela al vettore $\underline{a} = (-1, 3)^{\mathrm{T}}$ sono $\begin{cases} x = 1 t \\ y = 2 + 3t \end{cases}$.
- 3) Le due rette di equazione 4x 3y + 1 = 0 e x + y + 2 = 0 formano un angolo acuto α per cui è $\cos \alpha = \frac{4 3}{\sqrt{16 + 9}\sqrt{1 + 1}} = \frac{1}{5\sqrt{2}}$.

Il piano nello spazio

Siano π un piano ed A un punto non appartenente a π . Diciamo $P_0(x_0, y_0, z_0)$ il piede della perpendicolare a π passante per A. Sia poi $\underline{v} := A - P_0 = (a, b, c)^T$. Un punto P(x, y, z) dello spazio appartiene a π se e solo se il vettore $P - P_0$ è *ortogonale* al vettore \underline{v} . Si ottiene così l'equazione vettoriale del piano π :

$$\langle \underline{a}, P - P_0 \rangle = 0.$$

Esplicitando, si ottiene l'equazione cartesiana del piano π :

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0.$$

Dunque, l'equazione di un piano è del tipo ax + by + cz + d = 0, con $(a, b, c) \neq (0, 0, 0)$. Viceversa, un'equazione del tipo ax + by + cz + d = 0, con $(a, b, c) \neq (0, 0, 0)$ [per esempio con $c \neq 0$], è l'equazione di un piano, dato che può essere scritta nella forma a(x - 0) + b(y - 0) + c(z - (-d/c)) = 0.

Va tenuto ben presente che, dato il piano π di equazione ax + by + cz + d = 0, con $(a, b, c) \neq (0, 0, 0)$, il vettore $(a, b, c)^T$ è ortogonale a π . Ricordando poi che l'angolo (acuto o retto) formato da due piani è uguale a quello formato da due rette ad essi rispettivamente ortogonali e fra loro incidenti, si ottiene:

TEOREMA 3. Dati i piani π e π' di equazioni rispettive ax + by + cz + d = 0 e a'x + b'y + c'z + d' = 0, il coseno dell'angolo (acuto o retto) α da essi formato è dato da

$$\cos \alpha = \frac{aa' + bb' + cc'}{\sqrt{a^2 + b^2 + c^2} \sqrt{a'^2 + b'^2 + c'^2}}$$

I piani π e π' sono ortogonali se e solo se si ha aa' + bb' + cc' = 0. I piani π e π' sono paralleli se e solo se sono paralleli i vettori $(a, b, c)^T$ e $(a', b', c')^T$, ossia se e solo se esiste un numero reale non nullo ρ tale che $a' = \rho a$, $b' = \rho b$, $c' = \rho c$.

Dato un piano π e su di esso tre punti $P_1(x_1, y_1, z_1)$, $P_2(x_2, y_2, z_2)$, e $P_3(x_3, y_3, z_3)$ non allineati, un punto P(x, y, z) appartiene a π se e solo se il vettore $P - P_1$ è combinazione lineare dei vettori $P_2 - P_1$ e $P_3 - P_1$. Si ottengono così le *equazioni parametriche del piano*:

$$\begin{cases} x = x_1 + (x_2 - x_1)u + (x_3 - x_1)v \\ y = y_1 + (y_2 - y_1)u + (y_3 - y_1)v. \\ z = z_1 + (z_2 - z_1)u + (z_3 - z_1)v \end{cases}$$

Ciò equivale a:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0,$$

ossia:

$$\begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x - x_1 & y - y_1 & z - z_1 & 0 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 & 0 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 & 0 \end{vmatrix} = 0 ; \begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{vmatrix} = 0.$$

ESEMPIO. 4) Il piano per i punti A(1, 2, 1), B(2, 1, 0) e C(0, 1, 2) è rappresentato da:

$$\begin{cases} x = 1 + u - v \\ y = 2 - u - v \\ z = 1 - u + v \end{cases} \iff \begin{bmatrix} x & y & z & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} = 0 \Leftrightarrow x + z = 2.$$

La retta nello spazio

Siano r una retta dello spazio e $P_0(x_0, y_0, z_0)$, $P_1(x_1, y_1, z_1)$ due suoi punti. Un punto P(x, y, z) dello spazio appartiene a r se e solo se sono paralleli i vettori $P - P_0$ e $P_1 - P_0$. Si ottengono così le *equazioni parametriche* della retta r passante per P_0 e direzione (orientata) $\underline{v} = (a, b, c)^T := P_1 - P_0$:

$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$

Si ricavano anche, con prudenza, le equazioni cartesiane di una retta per due punti:

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}.$$

Naturalmente, un altro modo per rappresentare una retta dello spazio è quello di esprimerla come intersezione di due piani non paralleli:

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}, \text{ con } (a, b, c)^{\mathrm{T}} \neq \rho(a', b', c')^{\mathrm{T}}.$$

Siano dati il piano π ed un suo punto $P_0(x_0, y_0, z_0)$. L'equazione di π è dunque del tipo $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$. Sappiamo che il vettore $\underline{v}:=(a, b, c)^{\mathrm{T}}$ è ortogonale a π , dato che è ortogonale a tutte le rette di π passanti per P_0 .

ESEMPI. 5) La retta ortogonale al piano di equazione x - 2y + 3z + 1 = 0 e passante per il punto $P_0(2, 0, -1)$ è rappresentata dalle equazioni: x = 2 + t; y = -2t; z = -1 + 3t.

6) La retta per
$$P_1(2, 0, -1)$$
 e $P_2(2, 1, 3)$ ha equazioni: $(x = 2) \land (4y = z + 1)$.

Siano dati un piano π e una retta r ad esso incidente in un punto A. L'angolo β complementare dell'angolo α (acuto o retto) che r forma con la normale s a π passante per A si chiama angolo fra r e π . Si dimostra che β è il più piccolo angolo che r forma con le rette di π uscenti dal punto A.

TEOREMA 4. Date due rette incidenti r e r' di direzioni rispettive $\underline{v} := (a, b, c)^T$ e $\underline{v}' := (a', b', c')^T$, il coseno dell'angolo (acuto o retto) α da esse formato e il seno dell'angolo β che r forma con un piano π ortogonale a r' sono dati da

$$\cos \alpha = \sin \beta = \frac{aa' + bb' + cc'}{\sqrt{a^2 + b^2 + c^2}\sqrt{a'^2 + b'^2 + c'^2}}$$

Le rette r e r' sono ortogonali se e solo se si ha aa' + bb' + cc' = 0.

ESEMPIO. 7) Cerchiamo la retta s per l'origine, incidente e ortogonale alla retta r di equazioni $\frac{x-1}{2} = \frac{y-2}{-3} = z+1$. Il piano π per l'origina e ortogonale a r ha equazione 2x - 3y + z = 0. Il piede di r su π è il punto A di coordinate $\frac{12}{7}$, $\frac{13}{14}$, $-\frac{9}{14}$. La retta s è dunque espressa alle equazioni

$$\frac{7}{12}x = \frac{14}{13}y = -\frac{14}{9}z.$$

§ 2. TRASFORMAZIONI DI COORDINATE

Indichiamo con \underline{e}_1 , \underline{e}_2 , \underline{e}_3 i tre versori fondamentali del nostro sistema di riferimento cartesiano (ortogonale e monometrico) di origine O. Siano ora \underline{e}'_1 , \underline{e}'_2 , \underline{e}'_3 tre versori a due a due ortogonali applicati in un punto O' e assumiamoli come nuovo sistema di riferimento. Vogliamo stabilire le formule di trasformazione che esprimono il passaggio dall'uno all'altro dei sistemi di riferimento.

Per passare dal sistema di partenza a quello che si ottiene applicando in O' i versori \underline{e}_i , basta effettuare un'opportuna traslazione. Sia dunque O'(a, b, c). Se il punto P aveva coordinate (x, y, z) nel vecchio sistema di riferimento, le coordinate (x', y', z') nel nuovo sistema sono espresse da

$$\begin{cases} x' = x - a \\ y' = y - b. \\ z' = z - c \end{cases}$$

Infatti, posto $\underline{y} := O' - O = (a, b, c)^T$, si ha

$$\underline{x}' = P - O' = (P - O) + (O - O') = \underline{x} - \underline{y}.$$

Passiamo al caso in cui i vettori \underline{e}_i e \underline{e}'_j sono applicati ad un medesimo punto O. Sia dunque $\underline{e}'_i := (a_{11}, a_{12}, a_{13})^T$, $\underline{e}'_2 := (a_{21}, a_{22}, a_{23})^T$, $\underline{e}'_3 := (a_{31}, a_{32}, a_{33})^T$. Nel nuovo sistema di riferimento, questi vettori devono costituire la base canonica. Per esprimere le vecchie coordinate in funzione delle nuove, cerchiamo l'applicazione lineare che porta $\underline{e}_1 := (1, 0, 0)^T$ in \underline{e}'_1 , $\underline{e}_2 := (0, 1, 0)^T$ in \underline{e}'_2 , $\underline{e}_3 := (0, 0, 1)^T$ in \underline{e}'_3 . Sappiamo che questa trasformazione è data da

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \qquad [\underline{x} = A\underline{x}'].$$

In conclusione, la trasformazione di coordinate è espressa dalla formula

$$(*) \underline{x = A\underline{x}' + \underline{v}}.$$

ESEMPIO. 1) Si consideri come nuovo sistema di riferimento quello formato dai tre versori (a 2 a 2 ortogonali) $\underline{e}'_1 := (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})^T$, $\underline{e}'_2 := (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)^T$, $\underline{e}'_3 := (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}})^T$ applicati nel punto O'(1, 2, 3). La legge che esprime le vecchie coordinate in funzione delle nuove è data da:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Le colonne della matrice A che compare nella (*) sono formate dalle coordinate dei versori $\underline{e}'i$ che, per ipotesi, sono a 2 a 2 ortogonali. È dunque $\langle \underline{e}'i, \underline{e}'j \rangle = \delta_{ij}$, dove δ_{ij} è la funzione (di Dirac) che vale 1 se è i = j e vale 0 se è $i \neq j$.

DEFINIZIONE. Una matrice quadrata $(a_{ij})_{i,j=1,2,...n}$ è detta *ortogonale* se è $AA^{T} = I$ (= matrice identica).

TEOREMA 5. Sia $A = (a_{ij})_{i,j=1,2,...n}$ una matrice quadrata di ordine n. Le quattro seguenti affermazioni sono fra loro equivalenti:

- 1) $AA^{\mathrm{T}} = I$.
- 2) $A^{T}A = I$.
- 2) Il prodotto scalare $\langle \underline{r_i}, \underline{r_j} \rangle$ dei vettori riga è uguale a δ_{ij} .
- 3) Il prodotto scalare $\langle \underline{c}_i, \underline{c}_i \rangle$ dei vettori colonna è uguale a δ_{ij} .

DIM. Avendosi $A^{T}A = (AA^{T})^{T}$, si ha $A^{T}A = I$ se e solo se è $AA^{T} = I$. Ciò prova l'equivalenza fra le prime due affermazioni.

L'equivalenza delle prime due affermazioni con ciascuna delle altre due si ottiene immediatamente osservando che il prodotto righe per colonne delle matrici $A \in A^{T}$ [delle matrici A^{T} e A] è uguale al prodotto righe per righe [colonne per colonne] della matrice A.

Da questo fatto, si ottiene che *L'inversa di una matrice ortogonale è data dalla sua traspo*sta. Ne viene che: *Il determinante di una matrice ortogonale è uguale a* 1 o a -1.

L'inversa della (*) (espressa da $\underline{x}' = A^{-1}(\underline{x} - \underline{y})$ assume la più comoda espressione

$$\underline{x}' = A^{\mathrm{T}}(\underline{x} - \underline{v})$$
.

ESEMPIO. 2) La legge di trasformazione inversa di quella dell'Esempio 1 è data da

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} \end{pmatrix} \begin{pmatrix} x-1 \\ y-2 \\ z-3 \end{pmatrix}.$$

§ 3. LE CONICHE COME LUOGHI GEOMETRICI

Penseremo sempre il piano riferito ad un sistema di coordinate cartesiane ortogonali monometriche *Oxy*.

Circonferenza

DEFINIZIONE. Dati un punto A e un numero reale positivo r, si chiama *circonferenza* di *centro* A e *raggio* r il luogo geometrico dei punti P del piano per i quali è costantemente uguale a r la distanza d(A, P).

Se è $A(\alpha, \beta)$ e se P(x, y) è un punto della circonferenza di centro A e raggio r, deve essere d(A, P) = r; ossia, elevando al quadrato $(d(A, P))^2 = r^2$. Sviluppando, si ottiene che l'equazione della circonferenza di centro A e raggio r è data da

$$(x - \alpha)^2 + (y - \beta)^2 = r^2$$
,

o anche

$$x^2 + y^2 - 2\alpha x - 2\beta y + \gamma = 0$$
, $\gamma = \alpha^2 + \beta^2 - r^2$.

Viceversa, data l'equazione

$$x^2 + y^2 - 2\alpha x - 2\beta y + \gamma = 0$$

questa rappresenta una circonferenza se e solo se è

$$\alpha^2 + \beta^2 - \gamma > 0$$
.

In tal caso, il centro A e il raggio r della circonferenza sono dati da

$$A(\alpha, \beta), \qquad r = \sqrt{\alpha^2 + \beta^2 - \gamma}.$$

Ellisse

DEFINIZIONE. Dati due punti F_1 , F_2 e un numero reale positivo a, con $2a > d(F_1, F_2)$, si chiama *ellisse* di *fuochi* F_1 , F_2 e *semiasse maggiore* a il luogo geometrico dei punti P del piano per i quali è costantemente uguale a 2a la somma delle distanze di P da F_1 e da F_2 .

La retta che unisce i punti F_1 e F_2 è detta asse focale; il punto medio del segmento che unisce i due fuochi è detto il centro; la normale all'asse focale passante per il centro è detta asse trasverso.

Come caso limite, si può accettare che una circonferenza è un'ellisse in cui i fuochi coincidono con il centro.

Mettiamoci in una situazione di comodo, supponendo che sia $F_1(-c, 0)$ e $F_2(c, 0)$. Se P(x, y) è un punto dell'ellisse, deve essere $d(F_1, P) + d(F_2, P) = 2a$, ossia

$$d(F_1, P) = 2a - d(F_2, P).$$

Dovendo chiaramente aversi $2a \ge d(F_2, P)$, possiamo elevare al quadrato senza introdurre nuove soluzioni. Si ricava così che l'equazione dell'ellisse studiata è data da

$$(x+c)^2 + y^2 = 4a^2 + (x-c)^2 + y^2 - 4a\sqrt{(x-c)^2 + y^2},$$

da cui, sviluppando e semplificando, ai ottiene

$$a\sqrt{(x-c)^2 + y^2} = a^2 - cx.$$

Dovendo essere $x \le a$ e c < a, è anche $cx < a^2$; possiamo elevare ancora al quadrato, ottenendo l'equazione

$$(a^2 - c^2)x^2 + a^2y^2 = a^2(a^2 - c^2).$$

Essendo a^2 - c^2 > 0, esiste un b > 0 per cui è b^2 = a^2 - c^2 . L'ultima equazione può dunque essere scritta nella forma *canonica*:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Il numero positivo b prende il nome di semiasse minore dell'ellisse.

Se i fuochi stanno sull'asse delle ordinate, si trova un'analoga equazione, ma con a < b.

Se invece, pur mantenendo l'asse focale parallelo all'asse delle ascisse, spostiamo il centro dell'ellisse nel punto $O'(\alpha, \beta)$, l'equazione diventa

$$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1.$$

ESEMPIO. 1) In figura è rappresentata l'ellisse di equazione $\frac{(x-2)^2}{9} + \frac{(y-1)^2}{4} = 1$.

Iperbole

DEFINIZIONE. Dati due punti F_1 , F_2 e un numero reale positivo a, con $2a < d(F_1, F_2)$, si chiama *iperbole* di *fuochi* F_1 , F_2 e *costante* 2a il luogo geometrico dei punti P del piano per i quali è costantemente uguale a 2a il valore assoluto della differenza delle distanze di P da F_1 e da F_2 .

La retta che unisce i punti F_1 e F_2 è detta asse focale,; il punto medio del segmento che unisce i due fuochi è detto il centro; la normale all'asse focale passante per il centro è detta asse trasverso.

Mettiamoci ancora in una situazione di comodo, supponendo che sia $F_1(-c, 0)$ e $F_2(c, 0)$. Se P(x, y) è un punto dell'iperbole, deve essere $|d(F_1, P) - d(F_2, P)| = 2a$. Dato un punto P(x,y), esso appartiene all'iperbole se e solo se vi appartiene il punto P'(-x, y); si ha inoltre $d(F_1, P) \ge d(F_2, P)$ se e solo se è $d(F_1, P') \le d(F_2, P')$. Supposto, intanto, che sia $d(F_1, P) \ge d(F_2, P)$, si ottiene

$$d(F_1, P) = 2a + d(F_2, P).$$

Trattandosi di quantità positive, possiamo elevare al quadrato. Si ottiene:

$$(x+c)^2 + y^2 = 4a^2 + (x-c)^2 + y^2 + 4a\sqrt{(x-c)^2 + y^2},$$

da cui, sviluppando e semplificando, ai ricava

$$a\sqrt{(x-c)^2+y^2}=cx-a^2.$$

Supposto $|x| \ge a$ ed essendo a < c, possiamo elevare ancora al quadrato; si ottiene l'equazione $(c^2 - a^2)x^2 - a^2y^2 = x^2(c^2 - a^2)$, ossia

$$\frac{x^2}{a^2} - \frac{y^2}{c^2 - a^2} = 1.$$

Partendo dall'ipotesi $d(F_1, P) < d(F_2, P)$ e supponendo sempre $|x| \ge a$, si ottiene ancora la (*). Osservato che la (*) non può essere soddisfatta da alcun punto di ascissa x con |x| < a, si conclude che, in entrambi i casi, il secondo elevamento al quadrato non ha introdotto nuove soluzioni.

Essendo c^2 - a^2 > 0, esiste un b > 0 per cui è b^2 = c^2 - a^2 . L'ultima equazione può dunque essere scritta nella forma *canonica*:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Le rette di equazione $y = \frac{b}{a}x$ e $y = -\frac{b}{a}x$ sono dette gli *asintoti* dell'iperbole.

Se è a = b, l'iperbole è detta *equilatera*.

Se i fuochi stanno sull'asse delle ordinate, si trova un'analoga equazione del tipo

$$. \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1.$$

Se invece, pur mantenendo l'asse focale parallelo all'asse delle ascisse, spostiamo il centro dell'iperbole nel punto $O'(\alpha, \beta)$, l'equazione diventa

$$\frac{(x-\alpha)^2}{a^2} - \frac{(y-\beta)^2}{b^2} = 1.$$

ESEMPIO. 2) In figura è rappresentata l'iperbole di equazione $x^2 - 2y^2 = 1$. Gli asintoti hanno equazioni

$$y = \frac{1}{2}x$$
 e $y = -\frac{1}{2}x$.

L'equazione di un'iperbole equilatera può essere espressa nella forma

$$x^2 - y^2 = a^2.$$

Siccome in questo caso gli asintoti sono fra loro ortogonali, possono essere assunti come nuovo sistema di riferimento OXY. Effettuiamo una rotazione di assi di 45° utilizzando la legge

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}.$$

Si ottiene l'equazione $XY = \frac{a^2}{2}$. Se avessimo ruotato nel verso opposto, avremmo trovato l'equazione $XY = -\frac{a^2}{2}$. In conclusione, si ha che l'equazione *di un'iperbole equilatera riferita agli asintoti ha la forma*

$$xy = k$$
.

Più in generale, se il sistema di assi e parallelo agli asintoti con centro in $O'(\alpha,\beta)$, l'equazione diventa

$$xy - \beta x - \alpha y = h.$$

ESEMPIO. 3) Riferendo l'iperbole equilatera di equazione $x^2 - y^2 = 6$ agli asintoti, si ot-

tiene, per es., l'equazione xy = 3. Riferendola invece al sistema di assi paralleli agli asintoti e con centro in O'(2, 1), come in figura, si ottiene l'equazione

$$xy - x - 2y = 1$$
.

Parabola

DEFINIZIONE. Siano dati una

retta d e un punto $F \notin d$. Si chiama parabola di fuoco F e direttrice d il luogo geometrico dei punti P del piano che hanno uguale distanza da F e da d.

La retta per F e ortogonale a d è detta asse della parabola; sia A il punto d'incontro dell'asse con la direttrice; il punto medio V del segmento AF è detto il vertice della parabola.

Mettiamoci nel caso particolare che sia F(0, u), con $u \ne 0$, e la retta d abbia equazione y = -u, (da cui V = O). Dato un punto P(x,y), esso appartiene alla parabola se e solo se si ha

$$\sqrt{x^2 + (y - u)^2} = |y + u|.$$

Trattandosi di quantità positive, possiamo elevare al quadrato. Si ottiene

$$x^2 + y^2 - 2uy + u^2 = y^2 + 2uy + u^2$$
,

da cui, semplificando, si ricava $x^2 = 4uy$. Posto $a = \frac{1}{4u}$, si ottiene, in fine, l'equazione

$$y = ax^2$$
.

Traslando la parabola in modo che il vertice si trovi nel punto $O'(\alpha, \beta)$ (mentre direttrice e asse della parabola restano paralleli, rispettivamente, all'asse delle ascisse e a quello delle ordinate), si ottiene l'equazione $y - \beta = a(x - \alpha)^2$. Si ricava cioè un'equazione del tipo

$$y = ax^2 + bx + c,$$

con

$$b := -2a\alpha e c := a\alpha^2 + \beta$$
.

Viceversa, un'equazione del tipo $y = ax^2 + bx + c$ (con $a \ne 0$) rappresenta sempre una parabola con asse parallelo all'asse delle ordinate e vertice

$$V(\frac{-b}{2a}, -\frac{b^2 - 4ac}{4a}),$$

come si ricava immediatamente dalle posizioni precedenti.

Analogamente per le parabole con asse parallelo a quello delle ascisse.

ESEMPIO. 4) In figura è rappresentata la parabola di equazione

$$y = (1/4)x^2 + 2x - 1$$
.

§ 4. FORME QUADRATICHE, MATRICI SIMMETRICHE E AUTOVALORI

Sia *A* una matrice quadrata di ordine *n*:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

DEFINIZIONE. Data una matrice quadrata A di ordine n, si dice forma quadratica associata ad A la funzione $Q: \mathbb{R}^n \to \mathbb{R}$ definita da

$$Q(\underline{u}) = \langle A\underline{u}, \underline{u} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}u_{i}u_{j}.$$

Dunque, se $Q(\underline{u})$ non è il polinomio nullo, è un polinomio omogeneo di secondo grado.

Il coefficiente del monomio u_iu_j è $a_{ij}+a_{ji}$. Il valore $Q(\underline{u})$ non cambia se al posto di a_{ij} e di a_{ji} is sostituisce la loro media aritmetica. È dunque lecito supporre che nella matrice A sia $a_{ij}=a_{ji}$.

DEFINIZIONE. Una matrice quadrata $A = (a_{ij})_{i,j=1,2,...,n}$ è detta *simmetrica* se è $a_{ij} = a_{ji}$, con i, j = 1, 2, ..., n.

Assegnare una forma quadratica equivale ad assegnare la matrice dei suoi coefficienti. Per quanto appena detto, è lecito supporre che questa matrice sia simmetrica.

ESEMPIO. 1) Una forma quadratica di \mathbb{R}^n , con n = 1, 2, 3, è dunque così espressa:

$$n = 1$$
; $Q(u) = au^2$;

$$n = 2$$
; $Q(u_1, u_2) = a_{11}u_1^2 + 2a_{12}u_1u_2 + a_{22}u_2^2$;

$$n = 3; Q(u_1, u_2, u_3) = a_{11}u_1^2 + a_{22}u_2^2 + a_{33}u_3^2 + 2a_{12}u_1u_2 + 2a_{13}u_1u_3 + 2a_{23}u_2u_3.$$

Ricordiamo che:

DEFINIZIONE. Data la matrice quadrata $A = (a_{ij})_{i,j=1,2,...,n}$, si chiama suo *autovettore* ogni vettore $\underline{u} \neq \underline{0}$ per cui è $A\underline{u} = \lambda \underline{u}$ per un opportuno numero complesso λ . Il numero λ prende il nome di *autovalore corrispondente* all'autovettore \underline{u} .

Se λ è un autovalore della matrice A, l'equazione $A\underline{u} - \lambda\underline{u} = \underline{0}$, ossia $(A - \lambda I)\underline{u} = \underline{0}$, ammette soluzioni non nulle. Ciò accade se e solo se la matrice quadrata $A - \lambda I$ ha caratteristica minore di n, ossia se e solo se il suo determinante è nullo.

ESEMPIO. 2) Sia
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
 Per determinare i suoi autovalori, bisogna risolvere l'equazione $\begin{vmatrix} 1 - \lambda & 1 & -1 \\ 1 & 2 - \lambda & -1 \\ -1 & -1 & 1 - \lambda \end{vmatrix} = 0$. Sviluppando, si trova l'equazione $\lambda^3 - 4\lambda^2 + 2\lambda = 0$

che ha come radici i valori $\lambda_1 = 2 - \sqrt{2}, \lambda_2 = 2 + \sqrt{2}, \lambda_3 = 0.$

L'algebra lineare insegna che:

TEOREMA 6. Una matrice simmetrica A di ordine n ammette n autovalori reali, λ_1 , λ_2 , ..., λ_n (non necessariamente distinti) ed esiste una base ortonormale di \mathbb{R}^n formata da autovettori.

Sia data una forma quadratica $Q(\underline{u}) = \langle A\underline{u} , \underline{u} \rangle$ individuata dalla matrice simmetrica A di autovalori $\lambda_1, \lambda_2, \ldots, \lambda_n$ e riferiamo lo spazio \mathbb{R}^n ad un sistema ortonormale formato da autovettori. La Q assume la forma $Q(\underline{x}) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \ldots + \lambda_n x_n^2$, la cui corrispondente matrice è la matrice diagonale

$$D := \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

ESEMPIO. 3) Siano A la matrice dell'Esempio 2 e $Q(\underline{u}) = \langle A\underline{u}, \underline{u} \rangle$ la corrispondente forma quadratica. Riferito lo spazio ad un sistema ortonormale di autovettori, la Q assume, a meno di permutazioni degli assi, la forma

$$Q(\underline{x}) = \langle D\underline{x}, \underline{x} \rangle = (2 - \sqrt{2})x^2 + (2 + \sqrt{2})y^2.$$

§ 5. CLASSIFICAZIONE DELLE CONICHE

Esponiamo qui in modo schematico la classificazione delle coniche.

DEFINIZIONE. Sono dette *coniche* le curve piane individuate in forma implicita da un'equazione del tipo

$$f(x,y) = a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + 2a_{13}x + 2a_{23}y + a_{33} = 0,$$

dove i coefficienti a_{ij} (con $a_{ij} = a_{ji}$ i,j = 1, 2, 3) sono numeri reali fissati.

Consideriamo la forma quadratica

$$Q(x,y) = a_{11}x^2 + a_{22}y^2 + 2a_{12}xy.$$

Cercando gli autovalori della corrispondente matrice simmetrica A, si ottiene l'equazione

$$\left| \begin{array}{cc} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{array} \right| = 0,$$

da cui

(1)
$$\lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}^2 = 0.$$

Risolvendo, si ha

$$\lambda_{1,2} = \frac{a_{11} + a_{22} \pm \sqrt{(a_{11} + a_{22})^2 - 4a_{11}a_{22} + 4a_{12}^2}}{2} = \frac{a_{11} + a_{22} \pm \sqrt{(a_{11} - a_{22})^2 + 4a_{12}^2}}{2}.$$

Si è così verificato, nel caso n = 2, che una matrice simmetrica ha autovalori reali λ_1 e λ_2 (non necessariamente distinti). Sappiamo inoltre (Teorema 6) che esiste una base ortonormale di \mathbb{R}^2 formata da autovettori. Rispetto a questo nuovo sistema di riferimento, l'equazione della conica assume la più semplice forma

(2)
$$\lambda_1 x^2 + \lambda_2 y^2 + 2\mu_1 x + 2\mu_2 y + a_{33} = 0.$$

Dalla (1) si vede anche che è $\lambda_1 + \lambda_2 = a_{11} + a_{22}$ e $\lambda_1 \lambda_2 = a_{11} a_{22} - \frac{2}{q_2}$. Ne segue, in particolare, che le matrici A e D hanno lo stesso determinante.

N.B. La trasformazione di coordinate usata per passare dal vecchio al nuovo sistema di riferimento è un'*isometria* e, pertanto, conserva distanze e angoli. Ne consegue che la "forma,, della conica non viene modificata.

det A =
$$a_{11}a_{22}$$
 - $a_{12}^2 = \lambda_1\lambda_2 > \mathbf{0}$

I coefficienti a_{11} e a_{22} devono avere lo stesso segno. Non è restrittivo supporre $a_{11} > 0$, in quanto basta, eventualmente, cambiare tutti i segni dell'equazione della conica. Si ottiene che fra i coefficienti della (1) ci sono due variazioni. Gli autovalori sono dunque entrambi positivi.

Completiamo i quadrati nella (2) aggiungendo e togliendo il numero

$$H = \frac{\mu_1^2}{\lambda_1} + \frac{\mu_2^2}{\lambda_2} .$$

Si ottiene l'equazione

$$\lambda_1(x + \mu_1)^2 + \lambda_2(y + \mu_2)^2 - H + a_{33} = 0.$$

Con una traslazione di assi ci si riduce quindi all'equazione:

$$\lambda_1 x^2 + \lambda_2 y^2 = K (:= H - a_{33}).$$

A questo punto, se è $K \neq 0$, dividiamo ambo i membri per |K|.

$$det A > 0$$
, da cui $\lambda_1 > 0$, $\lambda_2 > 0$

1) Se è K > 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

che individua una curva detta ellisse.

È lecito supporre a, b, positivi. Se è a = b (= r), si ottiene una circonferenza.

2) Se è K = 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0,$$

che individua l'insieme formato alla sola origine ($\{\underline{0}\}$).

3) Se è K < 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1,$$

che individua l'insieme vuoto.

$$\det A = a_{11}a_{22} - a_{12}^2 = \lambda_1\lambda_2 < \mathbf{0}$$

Se è det A < 0, fra i coefficienti della (1) ci sono una permanenza e una variazione (non necessariamente in quest'ordine). Gli autovalori sono dunque uno positivo e uno negativo. Non è restrittivo supporre $\lambda_1 > 0$. Si procede poi come nel caso precedente.

$$\det A < 0$$
, da cui $\lambda_1 > 0$, $\lambda_2 < 0$

1) Se è K > 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$$

che individua una curva detta iperbole.

2) Se è K = 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0,$$

che individua una curva formata da due rette incidenti (iperbole riducibile).

3) Se è K < 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1,$$

che individua ancora un'iperbole.

det
$$A = a_{11}a_{22} - a_{12}^2 = \lambda_1\lambda_2 = \mathbf{0}$$

Se è det A = 0, almeno uno dei due coefficienti a_{11} o a_{22} deve essere diverso da zero (altrimenti, dovendo essere nullo anche a_{12} , Q sarebbe la forma quadratica nulla, caso che non ci interessa). Dalla (1) si ha

$$\lambda_1 = a_{11} + a_{22} e \lambda_2 = 0.$$

Non è restrittivo supporre $\lambda_1 > 0$. Procediamo come nei casi precedenti:

$$H := \frac{\mu_1^2}{\lambda_1}$$
 e $K := H - a_{33}$;

ci si riduce (eventualmente con una traslazione) ad una delle seguenti equazioni:

 $\lambda_1 x^2 + \mu_2^* y = 0$, se è $\mu_2 \neq 0$,

oppure

$$\lambda_1 x^2 = K$$
, se è $\mu_2 = 0$.

det
$$A = 0$$
, $\mu_2 \neq 0$, $\lambda_1 > 0$, $\lambda_2 = 0$

Si ottiene l'equazione canonica

$$\frac{x^2}{a^2} - 2cy = 0,$$

che individua una curva detta parabola.

det
$$A = 0$$
, $\mu_2 = 0$, $\lambda_1 > 0$, $\lambda_2 = 0$.

1) Se è $K \ge 0$, si ottiene l'equazione canonica

$$\frac{x^2}{a^2}=1,$$

che individua una curva formata da due rette parallele (**parabola riducibile**). Le rette sono distinte se è K > 0, mentre sono coincidenti se è K = 0.

2) Se è K < 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} = -1,$$

che individua l'insieme vuoto.

§ 6. CLASSIFICAZIONE DELLE QUADRICHE

Passiamo ora ad un'esposizione quanto mai schematica delle superfici dette quadriche.

DEFINIZIONE. Sono dette *quadriche* le superfici individuate in forma implicita da un'equazione del tipo

$$f(x,y,z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{14}x + 2a_{24}y + 2a_{34}z + a_{44} = 0,$$

dove i coefficienti a_{ij} (con $a_{ij} = a_{ji}$ i,j = 1, 2, 3, 4) sono numeri reali fissati.

Consideriamo la forma quadratica

$$Q(x,y,z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$$

e la corrispondente matrice simmetrica

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Sappiamo che: La matrice simmetrica A ammette 3 autovalori reali, λ_1 , λ_2 , λ_3 , (non necessariamente distinti) ed esiste una base ortonormale formata da autovettori rispetto alla quale l'equazione f(x,y,z) = 0 assume la forma

$$\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 + 2\mu_1 x + 2\mu_2 y + 2\mu_3 z + a_{44} = 0.$$

N.B. La trasformazione di coordinate usata per passare dal vecchio al nuovo sistema di riferimento è un'*isometria* e, pertanto, conserva distanze e angoli. Ne consegue che la "forma,, della superficie non viene modificata.

 $det A \neq 0$

Se B è la matrice della trasformazione dalle vecchie alle nuove coordinate, si ha $D = BAB^{T}$. Si ottiene $det A = det D = \lambda_1 \lambda_2 \lambda_3$. Ne viene che, in questo caso, gli autovalori sono tutti diversi da 0. Completiamo i quadrati aggiungendo e togliendo il numero

$$H = \frac{\mu_1^2}{\lambda_1} + \frac{\mu_2^2}{\lambda_2} + \frac{\mu_3^2}{\lambda_3}.$$

Si ottiene l'equazione

$$\lambda_1(x + \mu_1)^2 + \lambda_2(y + \mu_2)^2 + \lambda_3(z + \mu_3)^2 - H + a_{44} = 0.$$

Con una traslazione di assi ci si riduce quindi all'equazione:

$$\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 = K (:= H - a_{44}).$$

È lecito supporre λ_1 e λ_2 positivi. (Basta, eventualmente, cambiare il nome delle variabili o, se è il caso, moltiplicare ambo i membri dell'equazione per -1.)

$$\det A \neq 0, \ \lambda_1 > 0, \ \lambda_2 > 0, \lambda_3 > 0$$

1) Se è K > 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,$$

che individua una superficie detta ellissoide.

È lecito supporre a, b, c, positivi. Se è a = b = c (= r), si ottiene una **sfera**.

Ellissoide

2) Se è K = 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0,$$

che individua l'insieme formato alla sola origine $(\{\underline{0}\})$.

3) Se è K < 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1,$$

che individua l'insieme vuoto.

Nel primo e nel terzo caso, si divide per |K|. La tecnica sarà poi simile in tutti gli altri casi.

det
$$A \neq 0$$
, $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_3 < 0$

1) Se è K > 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1,$$

che individua una superficie detta **iperboloide ad una** falda.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0,$$

che individua una superficie detta cono.

3) Se è K < 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1,$$

che individua una superficie detta **iperboloide a due** falde.

Iperboloide a una falda

Iperboloide a due falde

det A = 0, con un autovalore nullo

Sia $\lambda_1\lambda_2 \neq 0$ e $\lambda_3 = 0$. Posto

$$H := \frac{\mu_1^2}{\lambda_1} + \frac{\mu_2^2}{\lambda_2}$$
 e $K := H - a_{44}$,

ci si riduce (eventualmente con una traslazione) ad una delle seguenti equazioni:

$$\lambda_1 x^2 + \lambda_2 y^2 + \mu_3^* z = 0$$
, se è $\mu_3 \neq 0$,

$$\lambda_1 x^2 + \lambda_2 y^2 = K$$
, se è $\mu_3 = 0$.

È inoltre lecito pensare $\lambda_1 > 0$.

$$det A = 0, \ \mu_3 \neq 0, \ \lambda_1 > 0, \ \lambda_2 \neq 0, \ \lambda_3 = 0$$

1) Se è $\lambda_2 > 0$, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 2cz = 0,$$

che individua una superficie detta paraboloide ellittico.

2) Se è λ_2 < 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 2cz = 0,$$

che individua una superficie detta paraboloide iperbolico.

Paroboloide ellittico

Paraboloide iperbolico

$$det A = 0, \ \mu_3 = 0, \ \lambda_1 > 0, \ \lambda_2 < 0, \ \lambda_3 = 0$$

1) Se è $K \neq 0$, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm 1,$$

che individua una superficie detta cilindro iperbolico.

2) Se è K = 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0,$$

che individua una superficie costituita da una coppia di piani (incidenti).

det
$$A = 0$$
, $\mu_3 = 0$, $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_3 = 0$

1) Se è K > 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

che individua una superficie detta cilindro ellittico.

2) Se è K = 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0,$$

che individua l'asse delle z.

1) Se è K < 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1,$$

che individua l'insieme vuoto.

det A = 0, con due autovalori nulli

Sia $\lambda_1 \neq 0$, $\lambda_2 = \lambda_3 = 0$. Posto

$$H := \frac{\mu_1^2}{\lambda_1}$$
 e $K := H - a_{44}$,

ci si riduce (eventualmente con una rotazione o una traslazione) ad una delle seguenti equazioni:

$$\lambda_1 x^2 + 2\mu_2^* y = 0,$$
 se è $|\mu_2| + |\mu_3| \neq 0,$

$$\lambda_1 x^2 = K,$$

se è
$$|\mu_2| + |\mu_3| = 0$$
.

È inoltre lecito pensare $\lambda_1 > 0$.

det
$$A = 0$$
, $|\mu_2| + |\mu_3| \neq 0$, $\lambda_1 > 0$, $\lambda_2 = 0$, $\lambda_3 = 0$

Si ottiene l'equazione canonica

$$\frac{x^2}{a^2} - 2cy = 0,$$

che individua una superficie detta cilindro parabolico.

det
$$A = 0$$
, $|\mu_2| + |\mu_3| = 0$, $\lambda_1 > 0$, $\lambda_2 = 0$, $\lambda_3 = 0$

1) Se è K > 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} = 1,$$

che individua una superficie costituita da una coppia di piani (paralleli).

2) Se è K = 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} = 0$$
,

che individua un piano (o, se si preferisce, una coppia di piani coincidenti).

3) Se è K < 0, si ottiene l'equazione canonica

$$\frac{x^2}{a^2} = -1,$$

che individua l'insieme vuoto.

§ 7. ESERCIZI

1) Si dimostri che, quali che siano i vettori \underline{u} e \underline{v} , si ha:

$$\underline{u} \perp \underline{v} \Leftrightarrow ||\underline{u} + \underline{v}|| = ||\underline{u} - \underline{v}||.$$

- 2) Sono dati nel piano cartesiano la retta r di equazione 2x 3y 1 = 0 e i punti A(1, 2), B(2, 1)
- a) Scrivere le equazioni delle rette s e t passanti per A e, rispettivamente, parallela ad r e ortogonale a r.

- b) Scrivere le equazioni delle rette passanti per B e formanti con r un angolo di $\pi/4$. Lo stesso per un angolo di $\pi/3$.
 - $[\Re.\ b)$ Primo caso. Si cercano rette di equazione a(x-2)+b(y-1)=0 per cui è

$$\frac{|2a-3b|}{\sqrt{13}\sqrt{a^2+b^2}} = \frac{1}{\sqrt{2}}.$$

Dato che i coefficienti a e b sono definiti a meno di un fattore di proporzionalità e dato che l'ipotesi b=0 condurrebbe a un assurdo, è lecito porre b=1. Si ottiene l'equazione $\sqrt{2} |2a-3| = \sqrt{13} \sqrt{a^2+1}$. Elevando al quadrato e risolvendo, si trovano per a i valori -5 e 1/5, in accordo col fatto che le due rette cercate sono fra loro ortogonali.]

- 3) Sono dati nello spazio cartesiano il piano π di equazione 2x 3y + z 1 = 0 e i punti A(1, 2, 1), B(2, 1, 0) C(0, 1, 2).
 - a) Scrivere l'equazione del piano passante per A e B e ortogonale a π .
 - b) Scrivere le equazioni della retta r per A e ortogonale a π .
 - c) Scrivere le equazioni della retta s passante per A e per il punto medio del segmento BC.
 - \vec{d}) Trovare il coseno dell'angolo acuto formato dalle rette \vec{r} ed \vec{s} .
- **4)** a) Siano dati in un piano cartesiano la retta r di equazione ax + by + c = 0 ed il punto $P_0(x_0, y_0)$. Si chiama distanza di P_0 da r la minima distanza hdi P_0 dai punti di r. Si dimostri che questa distanza è data da

$$h = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

b) Analogamente, dati dello spazio il piano π di equazione ax + by + cz + d = 0 e il punto $P_0(x_0, y_0, z_0)$, si chiama distanza di P_0 da π la minima distanza h di P_0 dai punti di π . Si dimostri che questa distanza è data da

$$h = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

 $[\mathfrak{R}.\ a)$ Se è $P_0 \in r$, la formula dà correttamente h=0. Sia ora $P_0 \notin r$ e supponiamo $a \neq 0$. Siano s la retta perpendicolare a r condotta da P_0 e H il punto d'intersezione tra r e s. Sappiamo che s è parallela al vettore $\underline{v}=(a,b)^{\mathrm{T}}$. Posto $A(-c/a,0)\in r$, il numero h è il valore assoluto della componente lungo s del vettore $A-P_0$. Si ha dunque

$$h = |\langle A - P_0, \frac{\underline{v}}{\|\underline{v}\|} \rangle| = |\langle (-\frac{c}{a} - x_0, -y_0)^{\mathrm{T}}, \frac{(a, b)^{\mathrm{T}}}{\sqrt{a^2 + b^2}} \rangle| = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.]$$

- 5) Scrivere le equazioni della generica retta passante per il punto A(1, 1, 1) e appartenente al piano π di equazione x y + 2z 2 = 0.
- [\Re . Una retta per A ha equazioni $\frac{x-1}{l} = \frac{y-1}{m} = \frac{z-1}{n}$. Inoltre, le rette cercate devono essere parallele a π ; deve dunque essere l-m+2n=0. Essendo l,m,n definiti a meno di un fattore di proporzionalità, si può assumere n=1 e, quindi, l=m-2, oppure n=0 e m=l.]
- 6) Siano date nel piano le rette r e s di equazioni rispettive x + 2y = 0 e 2x + y = 0. Scrivere le equazioni delle rette bisettrici digli angoli da esse formati.
 - $[\Re.$ Un punto P(x, y) appartiene ad una delle due bisettrici se e solo se ha ugual distanza da

r e da s. Si ottiene |x + 2y| = |2x + y|. Le equazioni cercate sono 3x + 3y = 0 e x - y = 0.]

- 7) Stesso problema per le rette r e s dello spazio di equazioni $\begin{cases} x = 2t \\ y = 2t. \end{cases}$ e $\begin{cases} x = t \\ y = 0. \end{cases}$ z = 0
- [\Re . Le rette cercate passano per l'origine che è il punto comune a r e s. La retta r passa per il punto A(2, 2, 1) e la s passa per B(1, 0, 0). Le due rette sono dunque rispettivamente parallele ai versori $\underline{u} = (\frac{2}{3}, \frac{2}{3}, \frac{1}{3})^{\mathrm{T}}$ e $\underline{v} = (1, 0, 0)^{\mathrm{T}}$. Due vettori paralleli alle rette cercate sono $\underline{u} + \underline{v}$ e $\underline{u} \underline{v}$ (perché?). Essendo $\underline{u} + \underline{v} = (\frac{5}{3}, \frac{2}{3}, \frac{1}{3})^{\mathrm{T}}$ e $\underline{u} \underline{v} = (\frac{-1}{3}, \frac{2}{3}, \frac{1}{3})^{\mathrm{T}}$, le rette cercate hanno dunque equazioni $\frac{x}{5} = \frac{y}{2} = z$ e, rispettivamente, $-x = \frac{y}{2} = z$.]
- 8) a) Scrivere l'equazione della circonferenza di centro C(1,1) e tangente alla retta r di equazione 3x + 4y 1 = 0
- b) Scrivere l'equazione della sfera di centro nel punto D(1, 1, 1) e tangente al piano π di equazione 2x + 2y + z 1 = 0.
 - $[\Re. Il raggio è dato dalla distanza del centro dalla retta <math>r$ (dal piano π).
 - 9) Riconoscere e rappresentare nel piano cartesiano le seguenti coniche:

$$x^{2} + y^{2} = 5;$$
 $x^{2} + 2y^{2} = 4;$ $2x^{2} - y^{2} = 1;$ $-2x^{2} + y^{2} = 1;$ $x^{2} + y^{2} - x - y = 8;$ $xy - x - y = 1;$ $3x^{2} + 2y^{2} - 6x + 4y = 1;$ $2xy - x = 3;$ $x^{2} - y^{2} = 0;$ $x^{2} - 3x + 2 = 0;$ $x^{2} - 2xy + y^{2} + x - y = 0.$

10) Riconoscere e rappresentare le seguenti quadriche:

$$x^{2} + y^{2} + z^{2} = 1$$
; $x^{2} + 2y^{2} + 3z^{2} = 1$; $2x^{2} + y^{2} - z^{2} = 1$; $x^{2} - y^{2} + z^{2} = 1$; $x^{2} - z^{2}$

11) Riconoscere che le seguenti superfici sono di rotazione e rappresentarle:

$$x^2 + y^2 + z^2 = 1$$
; $x^2 + y^2 - z^2 = 1$; $x^2 - y^2 - z^2 = 2$; $x^2 + y^2 - z = 1$; $4x^2 - y^2 - z^2 = 0$.