

CIENCIA DE LA COMPUTACIÓN "MPI2 Multiplicación de Matriz con Vector" Algoritmos Paralelos CCOMP 7-1

KARELIA ALEXANDRA VILCA SALINAS SEMESTRE VII 2016

"La alumna declara haber realizado el presente trabajo de acuerdo a las normas de la Universidad Católica San Pablo"

FIRMA

Run-times of serial and parallel matrix-vector multiplication (milisegundos)

	Order of Matrix					
comm_sz	1024	2048	4096	8192	16,384	
1	4.1	16.0	64.0	270	1100	
2	2.3	8.5	33.0	140	560	
4	2.0	5.1	18.0	70	280	
8	1.7	3.3	9.8	36	140	
16	1.7	2.6	5.9	19	71	

Implementación propia

comm_sz	Order Matrix					
	1024	2048	4096	8192	16384	
1	5.7770	2.0307	8.1556	32.6451		
2	2.621	1.1411	4.0861	16.5933		
4	2.666	0.9982	3.9857	16.3123		
8	5.168	1.0432	4.9346	20.0895		
16	4.603	1.8101	8.4708			

Speedup

$$S(n, p) = \frac{T_{\text{serial}}(n)}{T_{\text{parallel}}(n, p)}$$

Speedups of Parallel Matrix- Vector Multiplication

	Order of Matrix					
comm_sz	1024	2048	4096	8192	16,384	
1	1.0	1.0	1.0	1.0	1.0	
2	1.8	1.9	1.9	1.9	2.0	
4	2.1	3.1	3.6	3.9	3.9	
8	2.4	4.8	6.5	7.5	7.9	
16	2.4	6.2	10.8	14.2	15.5	

Implementación propia

comm_sz	Order Matrix					
	1024	2048	4096	8192	16384	
1	0.003801	0.001033	0.000295	0.000077		
2	0.006823	0.001839	0.000490	0.000145		
4	0.007512	0.002102	0.000574	0.000171		
8	0.003875	0.049549	0.000387	0.000106		
16	0.003729	0.000948	0.000200			

Efficiency

$$E(n,p) = \frac{S(n,p)}{p} = \frac{T_{\text{serial}}(n)}{p \times T_{\text{parallel}}(n,p)}$$

Efficiencies of Parallel Matrix- Vector Multiplication

	Order of Matrix					
comm_sz	1024	2048	4096	8192	16,384	
1	1.00	1.00	1.00	1.00	1.00	
2	0.89	0.94	0.97	0.96	0.98	
4	0.51	0.78	0.89	0.96	0.98	
8	0.30	0.61	0.82	0.94	0.98	
16	0.15	0.39	0.68	0.89	0.97	

Implementación propia

comm_sz	Order Matrix					
	1024	2048	4096	8192	16384	
1	0.003801	0.001033	0.000295	0.000077		
2	0.003411	0.000919	0.000245	0.000073		
4	0.001878	0.000525	0.000144	0.000043		
8	0.000484	0.006194	0.000048	0.000013		
16	0.000233	0.000059	0.000012			

Escalabilidad:

La implementación que propongo si bien es cierto demora igual o cerca que la propuesta en el libro no es Escalable ya que posee un índice inconstante es de cir oscilante y menor al 0.5 que se establece para ser considerado Escalable

También se debe considerar que la eficiencia no decrezca con el numero de procesos, lo cual no se cumple.

Dado que mantiene una eficiencia constante a la longitud del problema con el mismo numero de procesadores es considerado Débilmente Escalable.

Sin embargo la implementación propuesta en el libro es altamente escalable dado que mantiene un índice mayor a 0.5 no se ve un incremento considerable cuando aumenta el numero de elementos, con el único inconveniente que decrece dado el numero de procesadores, lo cual no lo hace totalmente Débilmente Escalable.