¿Cómo y con qué?

Diseño de experimentos y selección de modelos

Pablo Giuliani giulianp@frib.msu.edu

Pequeño paréntesis

$$L(N) = \sum_{k=0}^{N} \frac{(N!)^2 [2(N-k)]!}{2^{(N-k)} [(N-k)!]^2} \frac{(-1)^k}{k!}$$

$$P(N) \longrightarrow \frac{1}{\sqrt{e}} \sim 0.6$$

$$N \longrightarrow \infty$$

Estructura

- 0) Algunas preguntas
- 1) Estadística Bayesiana
- 2) Lo más importante que aprendí en el doctorado: jugar con "pseudo-data"

(no hay empanadas en es

3) Una herramienta chévere: funciones de transferencia

4) Comentarios finales

Pregunten!

Mate

Estructura

- 0) Algunas preguntas
- 1) Estadística Bayesiana

2) Lo más importante que aprendí en el doctorado: jugar con "pseudo-data"

3) Una pregunta =

(no hay empanadas en es

15

Algunas preguntas: 1) ¿Dónde medir?

Algunas preguntas: 1) ¿Dónde medir?

Algunas preguntas: 2) ¿Cómo extrapolar?

"Proton Puzzle"

Espectroscopía

Algunas preguntas: 2) ¿Cómo extrapolar?

Súper sensible a qué modelo usas

Dos características principales:

1) **TODO** debe ser una distribución/probabilidad

Dos características principales:

1) TODO debe ser una distribución/probabilidad

Dos características principales:

1) TODO debe ser una distribución/probabilidad

Dos características principales:

1) **TODO** debe ser una distribución/probabilidad

¿Te casarías conmigo?

Dos características principales:

1) **TODO** debe ser una distribución/probabilidad

La leche sabe raro, ¿Está veno

"The medical test paradox, and redesigning Bayes' rule"

Dos características principales:

1) **TODO** debe ser una distribución/probabilidad

iPriors!

1) <u>TODO</u> debe ser una distribución/probabilidad Lenguaje ideal para hablar

2) Priors

Yo puedo predecir todas las cartas

¿Cómo salvas a tu amiga de no hacer

Solución (inventada)

cat dog

Perro o gato

Aplicación concreta ¿Dónde Medir?

(Ejemplo)

Aplicación concreta

¿Dónde Medir?

Aplicación concreta

¿Dónde Medir?

Aplicación concreta

Aplicación concreta ¿Dónde Medir?

PHYSICAL REVIEW C 94, 034316 (2016)

Power of two: Assessing the impact of a second measurement of the weak-charge form factor of ²⁰⁸Pb

J. Piekarewicz, ^{1,*} A. R. Linero, ^{2,†} P. Giuliani, ^{1,‡} and E. Chicken ^{2,§}
¹Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
²Department of Statistics, Florida State University, Tallahassee, Florida 32306, USA
(Received 26 April 2016; revised manuscript received 1 July 2016; published 15 September 2016)

La persona mas chévere del planeta

To provide the connection between our own theoretical biases (encoded in the prior) and the experimental measurement (encoded in the likelihood) we invoke Bayes' theorem. That is,

$$p(\omega|F) = \frac{p(F|\omega)p(\omega)}{p(F)},$$
(19)

Aplicación concreta

¿Cuál modelo usar?

Aplicación concreta

¿Cuál modelo usar?

Aplicación concreta

¿Cuál modelo usar?

Error Cuadrático Medio

Aplicación concreta

¿Cuál modelo usar?

Aplicación concreta

¿Cuál modelo usar?

Robust extraction of the proton charge radius from electron-proton scattering data

Xuefei Yan,^{1,2,*} Douglas W. Higinbotham,³ Dipangkar Dutta,⁴ Haiyan Gao,^{1,2,5} Ashot Gasparian,⁶ Mahbub A. Khandaker,⁷ Nilanga Liyanage,⁸ Eugene Pasyuk,³ Chao Peng,^{1,2} and Weizhi Xiong^{1,2}

 $\delta R (fm)$

La segunda persona mas chévere del planera

δR (fm)

 $\delta R (fm)$

Funciones de Transferencia

Funciones de Transferencia

Funciones de Transferencia

Funciones de Transferencia₂

$$\delta \vec{\omega} = \sum_{j=1}^{n} \left[\mathcal{T} \mathcal{F}_{j}^{(\omega_{k})} \right] \delta y_{j}$$

$$\delta R = \sum_{j=1}^{2} \left[\mathcal{T} \mathcal{F}_{j}^{(R)} \right] \delta y_{j}$$

$$\Delta R^2 = \sum_{j=1}^{2} \left[\mathcal{T} \mathcal{F}_{j}^{(R)} \right]^2 \sigma_{j}^2$$

$$\Delta R^2 = \left[\mathcal{T} \mathcal{F}_{1}^{(R)} \right]^2 \sigma_{1}^2$$

$$+ \left[\mathcal{T} \mathcal{F}_{2}^{(R)} \right]^2 \sigma_{2}^2$$

$$0.2$$

$$0.2$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.8$$

$$0.8$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.3$$

$$0.4$$

$$0.6$$

$$0.8$$

$$0.8$$

Editors' Suggestion

From noise to information: The transfer function formalism for uncertainty quantification in reconstructing the nuclear density

$$\mathcal{TF}_{j}^{\boldsymbol{\omega}} = \mathcal{H}^{-1} \nabla F(q_{j}, \boldsymbol{\omega}) \sigma_{j}^{-2},$$

$$\begin{aligned} \mathbf{MSE}^2 &= \\ \left((m_c - m_t) + \sum_{j=1}^J \left[\mathcal{TF}_j^{(m)} \right] \eta_j \right)^2 + \sum_{j=1}^J \left[\mathcal{TF}_j^{(m)} \right]^2 \sigma_j^2. \end{aligned}$$

Comentarios finales

Comentarios finales

Preguntas como:

¿Dónde medir?

¿Cuál modelo usar?

¿Cómo maximizar la información?

Y terminamos!

