

Contents

Ι	Vektorrum	1
1	Vektorrum]
2	Delrum	2
3	Linjärt beroende och oberoende	
4	Bas och dimension	7
II	Linjära avbildningar och Matriser	g

Vektorrum

Kapitel

Ι

1 Vektorrum

Definition 1.1 (Vektorrum). Ett vektorrum V över en kropp F består av två operationer (addition och skalär multiplikation), definerade så att $\forall x,y \in V$ så är $x+y \in V$, samt för alla element $a \in F$ och element $x \in V$ existerar ett unikt element $ax \in V$ så att följande vilkor gäller.

- 1. (VS1) $\forall x, y \in V, x + y = y + x$ (kommutativitet av addition).
- 2. (VS2) $\forall x, y, z \in V, (x + y) + z = x + (y + z)$ (associativitet av addition).
- 3. (VS3) $\exists 0 \in V \text{ så att } x + 0 = 0 + x = x, \forall x \in V$.
- 4. (VS4) $\forall x \in V, \exists y \in V \text{ så att } x + y = 0$.
- 5. (VS5) $\forall x \in V, 1x = x$.
- 6. (VS6) $\forall a, b \in F$ och $\forall x \in V$ så gäller (ab)x = a(bx).
- 7. (VS7) $\forall a \in F \text{ och } \forall x, y \in V \text{ så gäller } a(x+y) = ax + ay$.
- 8. (VS8) $\forall a, b \in F$ och $\forall x \in V$ så gäller (a + b)x = ax + bx.

Sats 1.1 (Boksats 1.1). Om x, y och z är vektorer i vektorrummet V så att x+z=y+z då innebär det att x=y.

Bevis. Enligt (VS 4) existerar det ett $m \in V$ så att z + m = 0. Då kan vi resonera som följande.

$$x + z = y + z$$

$$\implies (x + z) + m = (y + z) + m$$

$$\implies x + (z + m) = y + (z + m)$$

$$\implies x + 0 = y + 0$$

$$\implies x = y$$
(VS 2)

Följdsats 1.2 (Unik nollvektor). Vektorn 0 som beskrivs av (VS 3) är unik.

Bevis. Antag att det existerar två nollvektorer e_1, e_2 så att $e_1 \neq e_2$. Då innebär det att för alla $x \in V$ så är $e_1 + x = e_2 + x = x$, men från den den tidigare satsen så innebär det att $e_1 = e_2$ som är en motsägelse, vilket innebär att det kan endast existera en unik nollvektor.

Följdsats 1.3 (Unik invers). Vektorn y beskriven i (VS 4) är unik.

Bevis. Låt $x \in V$. Antag att det existerar två inverser y och z till x som ej är lika. Alltså x+y=x+z=0. Men från (1.1) så innebär det att y=z. Men detta är en motsägelse och därmed måste den motsatta premissen vara sann, d.v.s. att den endast existerar en unik invers för varje vektor $x \in V$.

Sats 1.4 (Boksats 1.2). För alla vektorrum V så gäller följande påståenden:

- 1. $0x = 0, \forall x \in V$
- 2. $(-a)x = -(ax) = a(-x), \forall a \in F \text{ och } \forall x \in V$.
- 3. $a0 = 0, \forall a \in F$.

Bevis. Låt $a \in V$ och låt b vara den vektor i V så att a+b=0 .

Låt $e \in F$ vara den additiva identiteten. Och låt $f \in F$ vara dess additiva invers. Det innebär att för varje vektor $v \in V$ så gäller det att 0v = (e+f)v = ev+fv = v+(-e)v. Men dessutom så gäller det att 0v = (0+0)v = 0v + 0v...

Bevis. Vi vet att 0x+0=0x enligt vektorrumsaxiomen. Vi vet också från vektorrumsaxiomen att 0x=(0+0)x=0x+0x. Därmed har vi att 0x+0=0x+0x, och från (1.1) så får vi att 0=0x. Därmed har vi bevisat påstående 1. Låt $a\in F$ och låt $v\in V$. Från påstående 1 har vi att 0=0x=(a-a)x=ax+(-a)x. Från (1.3) så har vi att det existerar en unik invers -ax till ax som uppfyller ax+(-ax)=0. Då har vi att ax+(-ax)=ax+(-a)x och från (1.1) så innebär det att -ax=(-a)x. Vi vet att x-x=0 och eftersom 0=a0 så måste a(x-x)=0. Som innebär att ax+a(-x)=0. Ännu igen från (1.3) så kan vi härleda totalt att

2 Delrum

-ax = (-a)x = a(-x) .

Definition 2.1 (Delrum). En delmängd $W \subseteq V$ över ett fält F är ett **delrum** av V om W är ett vektorrum över F med addtion och skalärmultiplikation definerat från V.

Sats 2.1 (Boksats 1.3). Låt V vara ett vektorrum och $W \subseteq V$. Då är W ett delrum om och endast om följande tre påståendena gäller för operationerna definerade i V.

- $1. \ 0 \in W$.
- 2. $x + y \in W$ om $x \in W$ och $y \in W$.
- 3. $cx \in W$ när $c \in F$ och $x \in W$.

Exempel (1). Låt $n \in \mathbb{N}$ och låt $P_n(F)$ vara alla polynom i P(F) så att graden är mindre eller lika med n. Nollpolynomet är med eftersom det är definerat att ha graden -1. Summan av två polynom med grad mindre eller likamed n är polynom av grad mindre eller likamed n. Multiplikation med en skalär av ett polynom behåller graden (eller mindre om det är nollpolynomet). Därmed är $P_n(F)$ ett delrum av P(F)

här gör jag en referens till (2)

Exempel (1). stuff

här gör jag också en referens till (2)

Exempel (Bokexempel 1.3 2). Låt $C(\mathbb{R})$ beteckna alla kontinuerliga funktioner på \mathbb{R} . Det är uppenbarligen en delmängd av $\mathcal{F}(R,R)$. Från analysen vet vi att nollfunktionen är kontinuerlig, summan av två kontinuerliga funktioner är kontinuerlig samt så är multiplikation av en kontinuerlig funktion med en skalär kontinuerlig. Därmed är $C(\mathbb{R})$ ett delrum.

Exempel (Bokexempel 1.3 3). En $n \times n$ matris M kallas diagonal om $M_{ij} = 0$ när $i \neq j$. Nollmatrisen är uppenbarligen diagonal. Låt A och B vara $n \times n$ matrisen samt låt $i \neq j$. Det innebär att

$$(A+B)_{ij} = A_{ij} + B_{ij} = 0 + 0 = 0.$$

Samt så gäller det att om $c \in F$ så är

$$(cA)_{ij} = cA_{ij} = c \cdot 0 = 0.$$

Därmed utgör alla diagonala matriser ett delrum av $n \times n$ matriser.

Exempel (Bokexempel 1.3 4). Spåret av en $n \times n$ matris (på engelska **trace**) definerad så

$$tr(M) = M_{11} + M_{22} + \ldots + M_{nn}$$
.

Delmängden av matriser som har spår likamed noll formar ett vektorrum

Uppgift 2.1 (1.3 6). Bevisa det förra exemplet.

Bevis. Uppenbarligen så har ju nollmatrisen spår noll. Låt M och N vara $n \times n$ matriser med spår noll. Då innebär det att

$$tr(M+N) = (M+N)_{11} + (M+N)_{22} + \dots + (M+N)_{nn}$$

$$= M_{11} + N_{11} + M_{22} + N_{22} + \dots + M_{nn} + N_{nn}$$

$$= M_{11} + M_{22} + M_{33} + \dots + M_{nn} + N_{11} + N_{22} + N_{33} + \dots + N_{nn}$$

$$= tr(M) + tr(N) = 0 + 0$$

$$= 0.$$

Därmed är matriserna slutna under add
tition. Vidare låt $c \in F$ då innebär det att

$$tr(cM) = (cM)_{11} + (cM)_{22} + \dots + (cM)_{nn}$$
$$= c(M_{11} + M_{22} + \dots + M_{nn})$$
$$= c \cdot tr(M) = c \cdot 0$$
$$= 0.$$

De tre kraven beskriven i sats (2.1) är uppfyllda och $n \times n$ matriser med spår noll bildar ett vektorrum.

Sats 2.2 (Boksats 1.4). Låt W och U vara delrum av V. Då är $W \cap U$ ett delrum av V.

Bevis. Nollvektorn är i både W och U eftersom de är vekttorum och därmed är nollvektorn i $W \cap U$. Låt $a,b \in W \cap U$. Då är $a,b \in W$ och eftersom det är ett vektorrum så är $a+b \in W$ samma argument fast med U kan utföras för att få att $a+b \in U$ därmed så är $a+b \in W$.

Låt $c \in F$. Som sagt så är $a \in W$ och $a \in U$, därmed är ca i W och U. Därmed är $ca \in W \cap U$. Från (2.1) så kan vi härleda att $W \cap U$ är ett vektorrum i V.

Definition 2.2 (Summa av vektorrum). Låt S_1 och S_2 vara delrum av ett vektorrum V skiljda från \emptyset . Då är **summan** av S_1 och S_2 betecknad med $S_1 + S_2$ mängden $\{x + y : x \in S_1 \text{ och } y \in S_2\}$.

Definition 2.3 (Direktsumman av vektorrum). Ett vektorrum V kallas en **direkt summa** av W_1 och W_2 om W_1 och W_2 är delrum av V så att $W_1 \cap W_2 = \{0\}$ och $W_1 + W_2 = V$. Vi betecknar att V är en direkt summa av W_1 och W_2 genom att skriva $V = W_1 \bigoplus W_2$.

Definition 2.4 (Linjär kombination). Låt V vara ett vektorrum och S en delmängd skiljd från \emptyset av V. En vektor $v \in V$ kallas en linjärkombination av av vektorerna i S om det existerar en ändligt nummer av vektorer $u_1, u_2, \ldots, u_n \in S$ och skalärer $a_1, a_2, \ldots, a_n \in F$ så att $v = a_1u_1 + a_2u_2 + \ldots + a_nu_n$. Vi kan kalla v mer precist som en linjär kombination av u_1, u_2, \ldots, u_n och kalla a_1, a_2, \ldots, a_n koefficienterna av linjär kombinationen.

Definition 2.5 (Linjärt hölje). Låt S vara en icketom delmängd av ett vekotorrum V. Det **linjära hölje** av S betecknat med span(S), är mängden av alla linjärkombinationer av vektorer i S. För att notationens skull definerar vi $span(S) = \{o\}$.

Sats 2.3 (Boksats 1.5). Det linjära höljet av vilket som helst delmängd S av ett vektorrum V är ett delrum av V. Dessutom så måste alla delrum av V som innehåller S innehålla det linjära höljet av S.

Bevis. Låt $x \in S$, 0x = 0 är en linjär kombination av S och därmed är nollvektorn i det linjära höljet.

Låt $v, u \in \text{span}(S)$. Det innebär att vi kan uttrycka v och u som $v = a_1x_1 + a_2x_2 + \dots + a_nx_n$ respektive $u = b_1x_1 + b_2x_2 + \dots + b_nx_n$ där $a_1, a_2, \dots, a_n, b_1, b_2 \dots b_n \in F$ och $x_1, x_2, \dots, x_n \in S$. Om vi tar summan så får vi att

$$v + u = a_1x_1 + a_2x_2 + \dots + a_nx_n + b_1x_1 + b_2x_2 + \dots + b_nx_n$$

= $(a_1 + b_1)x_1 + (a_2 + b_2)x_2 + \dots + (a_n + b_n)x_n$.

Vi ser nu att v+u är en linjär kombination av vektorerna i S, och därmed är S sluten under addition.

Låt $c \in F$. Det innebär att

$$cv = c(a_1x_1 + a_2x_2 + \dots + a_nx_n)$$

= $(ca_1)x_1 + (ca_2)x_2 + \dots + (c_na_n)x_n$.

Alltså är det slutet under skalär multiplikation. Från sats (2.1) så innebär det span(S) är ett delrum av V.

Definition 2.6 (Spänner upp ett vektorrum). En delmängd S av ett vektorrum V spänner upp V om span(S) = V. I detta fall kan man också säga att vektorerna av S genererar V.

3 Linjärt beroende och oberoende

Definition 3.1 (Linjärt beroende). En delmängd S av ett vektorrum V kallas **linjärt** beroende om det existerar ett ändligt nummer av distinkta vektorer u_1, u_2, \ldots, u_n i S och skalärer a_1, a_2, \ldots, a_n , åtminstone en nollskiljd, så att

$$a_1u_1 + a_2u_2 + \ldots + a_nu_n = 0.$$

I detta fall säger vi att vektorerna av S är linjärt beroende.

Definition 3.2 (Linjärt oberoende). En delmängd S av ett vektorrum V kallas **linjärt** oberoende om det inte är linjärt beroende. Man säger då att vektorerna är linjärt oberoende.

Följande faktum om linjärt oberoende mängder är sanna för alla vektorrum.

- Den tomma mängden är linjärt oberoende eftersom en linjärt beroende mängd måste vara icketom.
- 2. En mängd bestående av en enda nollskiljd vektor är linjärt oberoende. Eftersom om $\{u\}$ var linjärt beroende så existerar det en nollskiljd skalär a så att au=0. Därför skulle

$$u = a^{-1}(au) = a^{-1}0 = 0.$$

Och därmed motsägelse.

1. En mängd är linjärt beroende om och endast om de enda representationerna av 0 som linjärt kombinationer av dess vektorer är triviala representationer.

Fråga. Är {0} linjärt oberoende?

Exempel (Anvädning av påstående 3). För att bevisa att mängden

$$S = \{(1,0,0,-1), (0,1,0,-1), (0,0,1,-1), (0,0,0,1)\}$$

är linjärt oberoende måste vi visa att den enda linjärkombinationen av vektorerna iS som är lika med nollvektorn är den där alla koefficienter är likamed noll.

Lösning 3.0.1 (Egen lösning försök 1). Låt $a,b,c,d\in F$ så att linjär kombinationen a(1,0,0,-1)+b(0,1,0,-1)+c(0,0,1,-1)+d(0,0,0,1)=0. Detta motsvara följande ekvationssystem:

$$\begin{cases} a = 0 \\ b = 0 \\ c = 0 \\ -a - b - c + d = 0. \end{cases}$$

Som vi ser så innebär det att alla koefficienter måste vara likamed noll och därmed så vektorerna linjärt oberoende.

Sats 3.1 (Boksats 1.6). Låt V vara ett vektorrum, och låt $S_1 \subseteq S_2 \subseteq V$. Om S_1 är linjärt beroende då är S_2 linjärt beroende.

Bevis. Om S_1 är linjärt beroende så existerar det $a_1, a_2, \ldots, a_n \in F$ och $v_1, v_2, \ldots, v_n \in S_1$ så att $a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0$, där åtminstone ett a är nollskiljt. Eftersom $S_1 \subseteq S_2$ så gäller det också att $v_1, v_2, \ldots, v_n \in S_2$ och därmed är S_2 också linjärt beroende.

Följdsats 3.2 (Linjärt oberoende delmängd). Låt V vara ett vektorrum, och låt $S_1 \subseteq S_2 \subseteq V$. Om S_2 är linjärt oberoende, då är S_1 linjärt oberoende.

Bevis. Låt $S_1 \subseteq S_2 \subseteq V$ då vet vi från (3.1) att:

 S_1 är linjärt beroende $\implies S_2$ är linjärt beroende .

Om vi tar kontrapositiven så får vi att

 S_2 är linjärt oberoende $\implies S_1$ är linjärt oberoende.

Sats 3.3 (Boksats 1.7). Låt S vara en linjärt oberoende delmängd av ett vektorrum V, och låt v vara en vektor i V så att det är ej i S. Då är $S \cup \{v\}$ linjärt beroende om och endast om $v \in \operatorname{span}(S)$.

Bevis. Låt S vara en linjärt oberoende delmängd av ett vektorrum V, och låt v vara en vektor i V så att det är ej i S. Vi ska då alltså bevisa att

$$S \cup \{v\}$$
 är linjärt beroende $\iff v \in \text{span}(S)$.

Vi kommer bevisa det genom att visa implikation från båda leden.

Antag att $S \cup \{v\}$ är linjärt beroende. Då exister det $a_1, a_2, \ldots, a_n \in F$ och $u_1, u_2, \ldots u_n \in S \cup \{v\}$ så att $a_1u_1 + a_2u_2 + \ldots + a_nu_n = 0$ där åtminstone ett a_n är nollskiljt. Av dessa u_k så måste ett av de vara likamed v och a_k måste vara nollskiljt. Detta vet vi eftersom om vi antog att det inte var fallet så skulle $u_1, u_2, \ldots, u_n \in S$ vilket innebär att S är lijärt beroende vilket strider mot vårt antagande. Nu när vi vet att ett $u_k = v$ så så inför vi en ny indexering så att $a_1u_1 + a_2u_2 + \ldots + a_{n-1}u_{n-1} + a_nv = 0$. Eftersom vi vet a_n är nollskiljt så kan vi

- 6 -

lösa ut för v och få att

$$\frac{-a_1}{a_n}u_1 + \frac{-a_2}{a_n}u_2 + \dots \frac{-a_{n-1}}{a_n}u_{n-1} = v.$$

Eftersom $u_1, u_2, \dots, u_{n-1} \in S$ uttryckt v som en linjärkombination av S, som innebär att $v \in \text{span}(S)$. Vi har alltså visat att

$$S \cup \{v\}$$
 är linjärt beroende $\implies v \in \text{span}(S)$.

Låt oss nu bevisa den konversen: Antag att $v \in \text{span}(S)$. Det innbär att det existerar $a_1, a_2, \ldots, a_n \in F$ och $u_1, u_2, \ldots, u_n \in S$ så att $a_1u_1 + a_2u_2 + \ldots + a_nu_n = v$. Subtraherar vi v från båda sidorna får vi att $a_1u_1 + a_2u_2 + \ldots + a_nu_n - v = 0$. Eftersom $v \notin S$ så är det här en icketrivial linjärkombination av $S \cup \{v\}$ som är likamed noll vilket innebär att $S \cup \{v\}$ är linjärt beroende. Vi har alltså visat att

$$v \in \operatorname{span}(S) \implies S \cup \{v\}$$
är linjärt beroende .

Vi har nu visat implikation från båda hållen och kan nu dra slutsatsen att

$$v \in \operatorname{span}(S) \iff S \cup \{v\}$$
 är linjärt beroende .

Fråga (Linjärt (o)beroende mängd oräknebar). Kan en linjärt beroende/oberoende mängd vara oräknebar i dess storlek?

4 Bas och dimension

Definition 4.1 (Bas). En bas β för ett vektorrum V är en linjärt oberoende delmängd av V som genererar V. Om β är en bas för V, så säger vi också att vektorerna av β formar en bas för V.

Exempel. Eftersom span(\emptyset) = $\{0\}$ och \emptyset är linjärt oberoende så är \emptyset en bas för nollrummet.

Exempel (Standardbas Fn). I F^n låt $e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 0, 1)$. Vi kallar $\{e_1, e_2, \dots, e_n\}$ för standardbasen för F^n .

Exempel (Standardbas polynom). I $P_n(F)$, så är mängden $\{1, x, x^2, \dots, x^n\}$ en bas. Vi kallar det för standardbasen för $P_n(F)$.

Exempel (Standardbas godtyckligt polynom). I P(F) är mängden $\{1, x, x^2, \ldots\}$ en bas.

Kommentar (Oändlig bas). Som vi ser i det förra exemplet så behöver en bas ej vara ändlig i kardinalitet.

Sats 4.1 (Boksats 1.8). Låt V vara ett vektorrum och $\beta = \{u_1, u_2, \ldots, u_n\}$ vara en delmängd av V. β är då en bas för V om och endast om varje $v \in V$ kan unikt bli uttryckt som en linjärkombination av vektorerna i β , alltså att det kan uttryckas på formen

$$v = a_1 u_1 + a_2 u_2 + \ldots + a_n u_n$$

för unika skalärer $a_1, a_2, \ldots, a_n \in F$.

Bevis. Vi låter V vara ett vektorrum och $\beta = \{u_1, u_2, \dots, u_n\}$ vara en delmängd av V.

Antag att β är en bas för V. Det innebär att β är linjärt oberoende och span $(\beta) = V$. Om $v \in V$ så måste också $v \in \text{span}(\beta)$. Det innebär att det existerar $a_1, a_2, \ldots, a_n \in F$ och $u_1, u_2, \ldots u_n \in \beta$ så att $v = a_1u_1 + a_2u_2 + \ldots + a_nu_n$. Dessutom så måste denna linjär kombination vara unik för låt oss antaga motsatsen. Då innebär det att det existerar en sekvens $b_1, b_2, \ldots, b_n \in F$ skiljd från a_k så att $v = b_1u_1 + b_2u_2 + \ldots + b_nu_n$. Om vi tar differensen så kan vi se att

$$0 = v - v$$

$$= a_1 u_1 + a_2 u_2 + \ldots + a_n u_n - b_1 u_1 - b_2 u_2 - \ldots - b_n u_n$$

$$= (a_1 - b_1)u_1 + (a_2 - b_2)u_2 + \ldots + (a_n - b_n)u_n.$$

Eftersom sekvensen a_k är skiljd från b_k så måste åtminstone en koefficient vara nollskiljd. Men det innebär att det existerar en icke-trivial linjärt kombination av β som är likamed noll som innebär att β är linjärt beroende, vilket är en motsägelse från vårt antagande. Alltså existerar det en linjär kombination av β för v, och den är unik. Låt oss nu bevisa konversen. Antag att varje $v \in V$ kan uttryckas som en unik linjärkombination av vektorerna i β . D.v.s. det existerar en unik sekvens $sa_1, a_2, \ldots a_n \in F$ samt vektorer $u_1, u_2, \ldots, u_n \in \beta$ så att $v = a_1u_1 + a_2u_2 + \ldots a_nu_n$. Uppenbarligen så måste $V \subseteq \operatorname{span}(\beta)$, och eftersom vi antog att $\beta \subseteq V$ så innebär det att $\operatorname{span}(\beta) = V$. β måste också vara linjärt oberoende, eftersom antag att det inte var. Då skulle det existera en sekvens $b_1, b_2, \ldots, b_n \in F$ för $u_1, u_2, \ldots u_n \in \beta$ så att $0 = b_1u_1 + b_2u_2 + \ldots + b_nu_n$, där åtminstone ett b_k är skiljt från noll. Då kan vi ta differensen mellan v och den här linjär kombinationen och se att

$$v = v - 0$$

$$= a_1 u_1 + a_2 u_2 + \dots + a_n u_n - b_1 u_1 - b_2 u_2 - \dots - b_n u_n$$

$$= (a_1 - b_1)u_1 + (a_2 - b_2)u_2 + \dots + (a_n - b_n)u_n.$$

Eftersom åtminstone ett b_k är skiljt från noll så måste denna sekvens av koefficienter vara skiljt från sekvensen av a_k , och därmed existerar det inte en unik linjärtkombination av β för v, vilket går emot vårat antagande, som innebär att antagandet om att β var linjärt beroende är falsk och därför så måste β vara linjärt oberoende. Vi har nu visat implikation från båda hållen, och kan nu dra slutsatsen att det existerar en unik linjär kombination av β för varje $v \in V$ om och endast om β är en bas för V.

Sats 4.2 (Boksats 1.9). Om ett vektorrum V är genererad av en ändlig mängd S, då är en delmängd av S en bas för V. Därmed har V en ändlig bas.

Bevis. Låt V vara ett vektorrum genererad av en ändlig mängd S. Eftersom S är ändligt så kan vi indexera alla delmängder $S_k \subseteq S$. Antag att motsatsen till (4.2) gäller, d.v.s. att ingen delmängd $S_k \subseteq S$ är en bas till V ...

Bevis. Låt V vara ett vektorrum genererad av en ändlig mängd S. Om S är linjärt oberoende då kan vi välja delmängden $S \subseteq S$ som en bas för V. Om S är linjärt beroende så finns det en sekvens $a_1, a_2, \ldots, a_n \in F$ för vektorer $v_1, v_2, \ldots, v_n \in S$ så att $a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0$, där åtminstone ett a_k är skiljt från noll. Låt oss omindexera så att det nollskiljda skalären gånger vektorn är a_nv_n . Vi kan då lösa ut v_n och få att

$$v_n = \frac{a_1}{a_n}v_1 + \frac{a_2}{a_n}v_2 + \ldots + \frac{a_{n-1}}{a_n}v_{n-1}.$$

Vi ser nu att v_n är en linjärkombination av $v_1, v_2, \ldots, v_{n-1}$. Därmed så är span $(S - \{v_n\}) = \operatorname{span}(S)$. Om $S - \{v_n\}$ är linjärt oberoende så låter vi denna delmängd av S vara basen. Om det inte är, så utför vi samma process på mängden $S - \{v_n\}$ istället för S. Denna process kan maximalt ta |S| steg, då S är ändlig och vi minskar kardinaliteten med -1 varje gång. Det fortsätter inte efter |S| steg eftersom då har vi nått den tomma mängden, och den tomma mängden är linjärt oberoende per definition.

Bevisförsök 4.2.1 (Induktion). Låt oss bevisa m.h.a. induktion på kardinaliteten av S.

Bassfall (|S|=0): om S har kardinalitet noll så måste $S=\emptyset$. Eftersom vi antog att S genererade V så måste V vara nollrummet. Då kan vi välja delmängden $\emptyset=S\subseteq S$, som genererar nollrummet per defintion. Basfallet är nu bevisat.

Induktionssteg (Gäller för $|S| = n \implies$ gäller för |S| = n + 1): ...

Linjära avbildningar och Matriser

Definition 4.2 (Linjär avbildning). Låt V och W vara vektorrum (över F). Vi kallar en funktion $T:V\to W$ en **linjär avbildning från** V **till** W om, för alla $x,y\in V$ och $c\in F$, vi har att:

- 1. T(x+y) = T(x) + T(y).
- 2. T(cx) = cT(x).

Man kallar ofta T för linjär.

Lemma 4.3 (Triviala konsekvenser). 1. Om T är linjär, då är T(0) = 0.

- 2. T är linjär om och endast om $T(cx + y) = cT(x) + T(y), \forall x, y \in V$
- 3. Om T är linjärt, då är $T(x-y) = T(x) T(y), \forall x, y \in V$.
- 4. T är linjär om och endast om, för $x_1, x_2, \ldots, x_n \in V$ och $a_1, a_2, \ldots, a_n \in F$,

$$T(\sum_{i=1}^{n} a_i x_i) = \sum_{i=1}^{n} a_i T(x_i).$$

Egenskap 2 kommer ofta användas för att bevisa att en avbildning är linjär.

Kapitel

TT

Bevisförsök 4.3.1 (1). För påstående 1 låt oss antaga att T är linjär. Då är

$$T(0) + 0 = T(0 + 0)$$

= $T(0) + T(0)$ T är linjär
 $\implies 0 = T(0)$. Kancelleringslagen

För påstående två så kommer vi visa implikation från båda leden. Så låt oss först antaga att T är linjär. Det innebär att

$$T(cx + y) = T(cx) + T(y)$$
 Linjäritetsaxiom 1
= $cT(x) + T(y)$. Linjäritetsaxiom 2

Vi har nu visat första implikationen. För andra implikationen antag att T(cx+y)=cT(x)+T(y). Det innebär att T(x+y)=T(1x+y)=1T(x)+T(y). Det betyder dessutom att T(cx)=T(cx+0)=cT(x)+T(0), men $T(0)=T(0\cdot 0+0)=0\cdot T(0)+T(0)=0+T(0)\implies 0=T(0)$, så därför måste T(cx)=cT(x)+0=cT(x). Nu har vi visat att det leder till att de två linjäritetsaxiomen uppfylls, alltså har vi bevisat implikationen från andra ledet och därmed har bevisat ekvivalensen.

För påstående 3 så antar vi att T är linjär. Det betyder att

$$T(x-y) = T(-y+x)$$

$$= T(-1 \cdot y + x)$$

$$= -1 \cdot T(y) + T(x)$$

$$= -T(y) + T(x)$$

$$= T(x) - T(y).$$

$$(1.4)$$

$$= (1.4)$$

För påstående 4 så bevisar vi det genoma att bevisa att implikation från båda leden gäller. Att summa egenskapen innebär att T är linjär, är trivialt. Så låt oss nu bevisa att om T är linjär så gäller summa egenskapen. Vi kan visa det genom induktion. Basfallet n=1 är trivialt, så låt oss bevisa induktionssteget d.v.s. att om det gäller för alla n=m så gäller det för n=m+1. Betrakta följande resonemang:

$$T(\sum_{i=1}^{m+1} a_i x_i)$$

$$= T(a_{m+1} x_{m+1} + \sum_{i=1}^{m} a_i x_i)$$

$$= a_{m+1} T(x_{m+1}) + T(\sum_{i=1}^{m} a_i x_i)$$
Från påstående 2
$$= a_{m+1} T(x_{m+1}) + \sum_{i=1}^{m} a_i T(x_i)$$
Induktionsantagande
$$= \sum_{i=1}^{m+1} a_i T(x_i).$$

Induktionssteget är nu bevisat, och tillsammans med bafallet, bevisar detta implikationen från linjärititet som tillsammans med implikationen från andra hållet bevisar ekvivalensen.