# WeightBoost: A Boosting Algorithm Using Input-Dependent Regularizer

**COMP 7404 Project Presentation** 

#### Introduction

- Implementation of the WeightBoost algorithm from the paper "A New Boosting Algorithm Using Input-Dependent Regularizer" (Jin et al., 2003)
- Addresses two major limitations of AdaBoost:
  - Overfitting Problem: Overemphasis on hard-to-classify samples
  - Fixed Weight Combination Problem: Inability to adapt to input patterns

#### **Motivation**

- AdaBoost has been highly successful but suffers from two key limitations:
  - i. **Noise Sensitivity**: Exponentially increasing weights for misclassified samples can lead to overfitting on noisy data
  - ii. **Uniform Combination**: Each base classifier contributes equally across all regions of the input space
- WeightBoost introduces an **input-dependent regularizer** that:
  - Adapts the contribution of each classifier based on the input pattern
  - Reduces the influence of base classifiers in regions where the model is already confident
  - Provides better resistance to noisy data

# **Algorithm Overview**

- **Key Innovation**: Input-dependent regularizer
- Mathematical Formulation:
  - $\circ$  AdaBoost:  $H(x) = \sum_{t=1}^T lpha_t \cdot h_t(x)$
  - $\circ$  WeightBoost:  $H_T(x) = \sum_{t=1}^T lpha_t \cdot e^{-eta |H_{t-1}(x)|} \cdot h_t(x)$
- Benefits:
  - Each base classifier contributes only in regions where it performs well
  - Regularization mitigates the impact of noisy data
  - Adaptive to different input patterns

# WeightBoost Algorithm

- 1. Initialize weights:  $w_i = \frac{1}{n}$  for all samples
- 2. Initialize cumulative output:  $H_0(x_i)=0$  for all samples
- 3. For each iteration  $t = 1, 2, \dots, T$ :
  - $\circ$  Train base classifier  $h_t$  with weights w
  - $\circ$  Calculate weighted error:  $\epsilon_t = rac{\sum_{i=1}^n w_i \cdot \mathbb{1} \left(h_t(x_i) 
    eq y_i
    ight)}{\sum_{i=1}^n w_i}$
  - $\circ$  Compute classifier weight:  $lpha_t = rac{1}{2} \mathrm{ln} \left( rac{1 \epsilon_t}{\epsilon_t} 
    ight)$
  - $\circ$  Update cumulative output:  $H_t(x_i) = H_{t-1}(x_i) + lpha_t \cdot h_t(x_i)$
  - $\circ$  Calculate regularization:  $r_i = e^{-eta \cdot |H_t(x_i)|}$
  - $\circ$  Update weights:  $w_i = e^{-y_i \cdot H_t(x_i)} \cdot r_i$
  - $\circ$  Normalize weights:  $w_i = rac{w_i}{\sum_{j=1}^n w_j}$

# Implemented Algorithms

- 1. AdaBoost: Original boosting algorithm (Freund & Schapire, 1996)
- 2. Weight Decay: AdaBoost with weight decay regularization
- 3. ε-Boost: Variant using small fixed weights
- 4. WeightBoost: Novel algorithm with input-dependent regularization
- 5. C4.5 Decision Tree: Base classifier implementation

#### **Datasets**

### **UCI Datasets (Binary Classification)**

- Ionosphere, German Credit, Pima Indians Diabetes
- Breast Cancer (Diagnostic), wpbc, wdbc
- Contraceptive, Spambase

### **Reuters-21578 (Text Classification)**

- 10,788 news articles (7,769 training, 3,019 testing)
- 90 topic categories (multi-label)
- Used 10 most frequent categories for evaluation

### **UCI Dataset Preprocessing**

- Categorical feature encoding using OrdinalEncoder
- Missing value imputation using SimpleImputer
- Train/test split (80%/20%)
- Label noise injection (0%, 5%, 10%, 15%, 20%)

```
def encode_categorical(df):
    # Handle missing values and encode categorical features
    num_cols = df.select_dtypes(include=['int64', 'float64']).columns
    cat_cols = df.select_dtypes(include=['object', 'category']).columns

# Impute and encode
    if len(cat_cols) > 0:
        encoder = OrdinalEncoder()
        df[cat_cols] = encoder.fit_transform(df[cat_cols])

return df
```

### **Reuters Dataset Preprocessing**

- Text cleaning (lowercase, punctuation removal, stopwords)
- TF-IDF vectorization (2000 features)
- Multi-label binarization
- Conversion to binary classification problems

```
# Feature extraction
vectorizer = TfidfVectorizer(max_features=2000)
X = vectorizer.fit_transform(df['cleaned_text'])

# Multi-label encoding
mlb = MultiLabelBinarizer()
y = mlb.fit_transform(df['categories'])
```

### **Experimental Setup**

- Base Classifier: C4.5 Decision Tree
- Number of Estimators: 50
- Parameters:
  - $\circ$  WeightBoost:  $\beta = 0.5$
  - Weight Decay: C = 0.1
  - $\circ$  ε-Boost: ε = 0.1
- Metrics: Accuracy (UCI), F1-score (Reuters)
- Noise Levels: 0%, 5%, 10%, 15%, 20% (UCI only)

# UCI Results: German Credit Dataset

- WeightBoost outperforms
   AdaBoost at all noise levels
- The performance gap widens as noise increases
- Input-dependent regularization effectively mitigates noise impact



# UCI Results: Pima Indians Diabetes

- WeightBoost maintains better performance as noise increases
- AdaBoost performance degrades more rapidly with noise
- WeightBoost shows more stable performance across noise levels



# UCI Results: Contraceptive Dataset

- WeightBoost significantly outperforms all other algorithms
- Shows the advantage of inputdependent regularization on complex datasets
- Maintains performance advantage even with 20% noise



# UCI Results: Spambase Dataset

- All algorithms perform well on clean data
- WeightBoost maintains higher accuracy as noise increases
- Shows the practical benefit for real-world applications like spam filtering



### Reuters Results: F1 Scores

| Category     | C4.5   | AdaBoost | AdaBoost<br>Impro | WeightBoost | WeightBoost<br>Impro |
|--------------|--------|----------|-------------------|-------------|----------------------|
| trade        | 0.5932 | 0.6578   | 10.89%            | 0.6855      | 15.56%               |
| grain        | 0.9110 | 0.8639   | -5.20%            | 0.9024      | -0.90%               |
| crude        | 0.7933 | 0.7867   | -0.80%            | 0.8315      | 4.80%                |
| corn         | 0.7748 | 0.8496   | 3.70%             | 0.8036      | 9.70%                |
| money-<br>fx | 0.6779 | 0.6854   | 1.11%             | 0.7514      | 9.60%                |

# Reuters Results: Key Findings

- WeightBoost achieves highest F1-scores on 7 out of 10 categories
- Significant improvements on:
  - trade (15.56%)
  - o corn (9.70%)
  - o money-fx (9.60%)
- More consistent performance compared to AdaBoost

### WeightBoost Implementation

```
def fit(self, X, y):
    n samples = X.shape[0]
   w = np.ones(n_samples) / n_samples # Initialize weights
    H = np.zeros(n samples) # Cumulative classifier output
    for t in range(self.n estimators):
       # Train base classifier
        model = clone(self.base classifier)
        model.fit(X, y, sample_weight=w)
       # Calculate weighted error and model weight
        pred = model.predict(X)
        err = np.sum(w * (pred != y)) / np.sum(w)
        alpha = 0.5 * np.log((1 - err) / max(err, 1e-10))
       # Update cumulative output
        H += alpha * pred
       # Calculate regularization factor and update weights
        reg = np.exp(-np.abs(self.beta * H))
        w = np.exp(-y * H) * reg # Apply regularization
        w = w / np.sum(w) # Normalize
```

# **Theoretical Analysis**

- ullet Regularization Effect: The term  $e^{-eta|H_{t-1}(x)|}$  decreases as  $|H_{t-1}(x)|$  increases
  - $\circ$  When  $|H_{t-1}(x)|$  is large (high confidence), the regularizer reduces the contribution
  - $\circ$  When  $|H_{t-1}(x)|$  is small (low confidence), the regularizer allows more contribution
- Adaptive Learning: The algorithm focuses more on uncertain regions and less on regions where it's already confident
- Noise Resistance: By reducing the influence in high-confidence regions, the algorithm is less likely to overfit to noisy samples

### Conclusion

- Improved Robustness: Better resistance to noise
- Better Generalization: Prevents overfitting
- Consistent Performance: Across datasets and noise levels

The input-dependent regularizer effectively adapts the contribution of each base classifier based on the input pattern, addressing the limitations of traditional boosting algorithms.

#### References

- 1. Jin, R., Liu, Y., Si, L., Carbonell, J., & Hauptmann, A. G. (2003). A New Boosting Algorithm Using Input-Dependent Regularizer. *Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003)*.
- 2. Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. *Machine Learning: Proceedings of the Thirteenth International Conference*.
- 3. Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: a statistical view of boosting. *Annals of statistics*, 28(2), 337-407.