Machine learning techniques for predicting molecular properties

Viviana Petrescu

Overview

- Problem context
- Background Work
 - Learning Invariant Representations of Molecules for Atomization Energy Prediction
 - Self-taught Learning: Transfer Learning from Unlabeled Data
 - Information Theoretic Regret Bounds for Gaussian Process
 Optimization in the Bandit Setting
- Conclusions

Overview

Problem context

- Background Work
 - Learning Invariant Representations of Molecules for Atomization Energy Prediction
 - Self-taught Learning: Transfer Learning from Unlabeled Data
 - Information Theoretic Regret Bounds for Gaussian Process
 Optimization in the Bandit Setting

Conclusions

Problem context

- Compute/predict properties of molecules for materials design
 - Examples: drug discovery, water purification, energy transmission and storage
- Quantum Chemistry calculations are expensive
- Machine Learning could predict properties of molecules at a fraction of the cost

Problem context

Overview

- Problem context
- Background Work
 - Learning Invariant Representations of Molecules for Atomization Energy Prediction
 - Self-taught Learning: Transfer Learning from Unlabeled Data
 - Information Theoretic Regret Bounds for Gaussian Process
 Optimization in the Bandit Setting
- Future work

Learning Invariant Representations of Molecules

- Desired properties of Molecular Descriptor
 - invariance to atom indexing
 - invariance to rotation and translation
- Coloumb Matrix [Rupp 2012] O(N^2)

$$C_{ij} = \begin{cases} 0.5Z_i^{2.4} & \forall i = j \\ \frac{Z_iZ_j}{|\mathbf{R}_i - \mathbf{R}_j|} & \forall i \neq j. \end{cases}$$
 Z_i - nuclear charges \mathbf{R}_i - 3D position

Coloumb Matrix

Coloumb Matrix descriptor

invariant to rotation and translation

(use
$$|\mathbf{R}_i - \mathbf{R}_j|$$
)

- invariance to atom indexing
 - Sorted Coloumb Matrix indexes given by sorting the row norms
 - Random Coloumb Matrix generate multiple Sorted Coloumb Matrices perturbed by noise)

Random Coloumb Matrix

Atomization energy prediction for a dataset of ~7k samples (5.5 k training 1.5k testing) with {H,O,C,N,S}

- Multilayer Feed Forward NN with Random Coloumb
- ~3.1 kcal/mol MAE -> chemical accuracy level ~1kcal/mol

Proposed extension

Obtain invariance to atom indexing through binning

Proposed extension

Scales with with

$$NA + \sum_{i} \frac{N_A * (N_A + 1)}{2} * \frac{D_{max}}{q}$$

 $egin{array}{ll} NA & ext{number of atom types} \ q & ext{quantization level} \ D_{max} & ext{max distance in the dataset} \end{array}$

Overview

- Problem context
- Background Work
 - Learning Invariant Representations of Molecules for Atomization Energy Prediction
 - Self-taught Learning: Transfer Learning from Unlabeled Data
 - Information Theoretic Regret Bounds for Gaussian Process
 Optimization in the Bandit Setting
- Conclusions

Self - Taught Learning: Transfer Learning from Unlabeled Data

- Supervised learning requires labeled data labelling effort
- Large amounts of training data leads to better generalization performance
- ...but we can obtain more easily large amounts of unlabeled images, text documents...(molecular data?)

Self - Taught Learning

Supervised Classification

Semi-supervised Learning

Transfer Learning

Self-taught Learning

- Orange boxes contain labeled data
- Right side training data
- Left side testing data

Self - Taught Learning

Self - Taught learning algorithm

 Learning Higher-level Representations using sparse coding (find bases and sparse activations)

 $x = 0.6 \times 10^{-10} + 0.8 \times 10^{-10} + 0.4 \times 10^{-10}$

 The input feature is transformed in a feature vector containing the activations

Self - Taught Learning

Two optimization problems

From unlabeled data, find bases b, activations a

minimize_{b,a}
$$\sum_{i} \| x_{u}^{(i)} - \sum_{j} a_{j}^{(i)} b_{j} \|_{2}^{2} + \beta \| a^{(i)} \|_{1}$$

s.t. $\| b_{j} \|_{2} \leq 1, \quad \forall j \in 1, ..., s$

 For labeled data, using above bases, find sparse activations a

$$\hat{a}(x_l^{(i)}) = \arg\min_{a^{(i)}} \|x_l^{(i)} - \sum_j a_j^{(i)} b_j\|_2^2 + \beta \|a^{(i)}\|_1$$

Experimental results

Extensive testing across a range of domains

- computer vision (raw pixels)
- natural language processing (bag of words)
- speech recognition (frequency histogram)

... molecular data?

Proposed extension

 Avoid running expensive quantum chemistry calculations to get labeled data

 Labelling molecular data requires domain specific knowledge

Proposed extension

Semi - supervised Learning
Transfer Learning
Self-Taught Learning

Example:

- Unlabeled dataset contains {H,C,O,N,S}
- Labeled test set contains {H,C,O,N,F}

Overview

- Problem context
- Background Work
 - Learning Invariant Representations of Molecules for Atomization Energy Prediction
 - Self-taught Learning: Transfer Learning from Unlabeled Data
 - Information Theoretic Regret Bounds for Gaussian Process
 Optimization in the Bandit Setting
- Conclusions

Gaussian Processes Introduction

Gaussian Processes

- define probabilities over functions f ~ GP(u, sigma)
- defined by the mean a 2

GP for function optimization

For T sampled points $A_T = \{x_1, \dots, x_T\}$ in the presence of noise

$$y_t = f(x_t) + \epsilon_t$$

$$\mathbf{y}_T = [y_1 \cdots y_T]^T$$

$$x^* = \operatorname{argmax}_{x \in D} f(x)$$

$$r_t = f(x^*) - f(x_t)$$
 $R_T = \sum_{t=1}^{T} r_t$

no-regret:
$$\lim_{T\to\infty} R_T/T = 0$$

GP for function optimization (introduce regret)

Posterior is also Gaussian
$$y_t = f(x_t) + \epsilon_t$$
 $y_T = [y_1 \cdots y_T]^T$ $A_T = \{x_1, \dots, x_T\}$ $\mu_T(\boldsymbol{x}) = k_T(\boldsymbol{x})^T (\boldsymbol{K}_T + \sigma^2 \boldsymbol{I})^{-1} y_T$ $k_T(\boldsymbol{x}, \boldsymbol{x}') = k(\boldsymbol{x}, \boldsymbol{x}') - k_T(\boldsymbol{x})^T (\boldsymbol{K}_T + \sigma^2 \boldsymbol{I})^{-1} k_T(\boldsymbol{x}')$ $\sigma_T^2(\boldsymbol{x}) = k_T(\boldsymbol{x}, \boldsymbol{x})$

Function optimization
$$x^* = \operatorname{argmax}_{x \in D} f(x)$$

$$r_t = f(x^*) - f(x_t) \qquad R_T = \sum_{t=1}^T r_t$$

$$\vec{no}\text{-regret: } \lim_{T \to \infty} R_T/T = 0$$

GP-UCB algorithm

Algorithm 1 The GP-UCB algorithm.

Input: Input space D; GP Prior $\mu_0 = 0, \sigma_0, k$

for
$$t = 1, 2, ...$$
 do

Choose
$$x_t = \underset{\boldsymbol{x} \in D}{\operatorname{argmax}} \mu_{t-1}(\boldsymbol{x}) + \sqrt{\beta_t} \sigma_{t-1}(\boldsymbol{x})$$

Sample
$$y_t = f(x_t) + \epsilon_t$$

Perform Bayesian update to obtain μ_t and σ_t

end for

Best lowe bound

Information Gain

Information Gain (Learn f as fast as possible) $y_A = f_A + \epsilon_A$ $A \subset D$, $|A| \leq T$

$$I(\mathbf{y}_A; f) = H(\mathbf{y}_A) - H(\mathbf{y}_A|f)$$

Near optimal solution approximation for $F(A) = I(y_A; f)$

$$\boldsymbol{x}_t = \operatorname{argmax}_{\boldsymbol{x} \in D} F(A_{t-1} \cup \{\boldsymbol{x}\})$$
 in round t

$$x_t = \operatorname*{argmax}_{x \in D} \sigma_{t-1}(x) \quad A_{t-1} = \{x_1, \dots, x_{t-1}\}$$

Regret bounds

Bound regret using

$$\gamma_T := \max_{A \subset D: |A| = T} \mathrm{I}(\boldsymbol{y}_A; \boldsymbol{f}_A)$$

Bound max IG using eigenspectrum of KD

Derive anayltical bounds on eigenspectrum of KD for most popular kernel types

Regret bound

Kernel	Linear	RBF	Matérn
Regret R_T	$d\sqrt{T}$	$\sqrt{T(\log T)^{d+1}}$	$T^{\frac{\nu+d(d+1)}{2\nu+d(d+1)}}$

Fig. 1. Our regret bounds (up to polylog factors) for linear, radial basis, and Matérn kernels—d is the dimension, T is the time horizon, and ν is the Matérn parameter.

Proposed extension

Either use them to propose new sampling [1] rather not scalable

Mostly used in hyper parameter optimization - x represents the model parameters and f the cross validation value.

TODO introdue GP runs in the report

Thank you!