

Confuse, Obfuscate, Disrupt

Using Adversarial Techniques for Better AI and True Anonymity

David vonThenen

in C and avidvonthenen

David vonThenen

- Are you Human or an Al?
- I want 5 Kubernetes
- Virtual Machines are Real
- Cloudy, cloudy...
- There is storage for that!

Agenda

- How Data Inconsistencies Happen
 - Demos, Demos, Demos
- Adversarial Attacks for Good... & Bad
 - Demos, Demos, Demos
- Adversarial Attack Defense
 - Demos, Demos, Demos
- Q&A

How Data Inconsistencies Happen

Flawed Data

- AI/ML Only As Good As the Data
 - Biased, Noise, Inaccuracies
- Real-World Examples:
 - Recruiter AI + Male Skewed
 - Not Representative Data
 - Offensive Al Chatbot
 - Using Racist Language
 - Court Case Hallucinations
 - ChatGPT fake cases
- Common Ways Of Flawed Data Getting Into Our Datasets...

WeAreDevelopers 2. https://storage.courtlistener.com/recap/gov.uscourts.nysd.575368/gov.uscourts.nysd.575368.31.0.pdf

Data Inconsistencies Matter

- Al "Decision Making" Directly Shaped By Data
 - Annotation Errors
 - Data Bias
 - Distribution Drift
 - Adversarial Data
 - Overfitting
 - Underfitting
 - Poor Feature Engineering
 - Noisy Data, etc...

Annotation Errors

Data Imbalance

Unbalanced Dataset

CATS DOGS

Adversarial Samples

 $+.007 \times$

 $\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_{x}J(\theta, x, y))$ "gibbon"
99.3 % confidence

 \boldsymbol{x}

"panda" 57.7% confidence

What Tools Can I Use?

- Captum https://github.com/pytorch/captum
- SHAP https://github.com/shap/shap
- LIME
- ELI5
- AIX360
- Many...
- Many...
- More

Demo: Captum + NLP Classifier

https://youtu.be/geZNwLzoaT4 https://youtu.be/m0VxUAGhKcY

Demo: Captum + Vision Classifier

https://youtu.be/5J2sGIU0RV4

Adversarial Attacks: For Good... and Bad

Building Better Models via Intentional Disruption

Adversarial Attacks

- TODO
- Intentional Adversarial Attacks
 - Besides Finding Holes...
 - Disrupting Classification
 - Vision
 - NLP
- Why?
 - Unauthorized Surveillance
 - Protect Privacy
 - Obfuscation

Adversarial Strategies

Here Are Ideas/Concepts in NLP to Disrupt - Be Creative!!

- Encoding/Formatting
- Homophones and Phonetics
- Code Switching
- Low-Resource Languages
 - Navajo "Code Talkers"
- Adversarial Spelling
- Polysemy/Multiple Meanings
- Speaking in Metaphors

Source: Star Trek: The Next Generator, Episode 102 - Darmok

Creative Communication

Demo: Read That Sentiment Wrong

https://youtu.be/CoLnvqHHN_M

Demo: One Pixel Attack

https://youtu.be/s8SHeXXAWjQ

Demo: Spoofing Real-Time Vision

https://youtu.be/b_T448UXaHw

Creative Communication

Adversarial Attack Defense

Protection Yourself From Bad Actors

Defending NLP Attacks

- Format Normalization
- Spell-Checker or Word Recognition
 - Morphology (or Subwords Tokens)
- Syntax/Grammar Checkers
- Semantic Similarity Checks
 - Synonym Encoding
- Phonetic Normalization
 - Text-to-Speech -> Speech-to-Text
- Adversarial Training:
 - Datasets w/ Noising and Typos, Synonyms, Phrase Diversity

Defending Vision Attacks

- Adversarial Training
 - Fast Gradient Sign Method (FGSM)
 - Projected Gradient Descent (PGD)
- Spatial Smoothing (Blurring)
 - Median Filtering (3x3 -> 1x1)
 - Gaussian Blur
 - Non-local Means, Bilateral Filters
- Feature Squeezing, Randomization
 - Bit-Depth Reduction
 - Random Resize/Pad, Add Noise

Non-Specific Defenses

- Adversarial Detection: Multiple Models
 - Use 2+ Different Models
- Voting Ensembles
 - Multi-Classifiers -> Majority Wins
- Reject On Low Confidence
 - Multi-Pass w/ Slight Variation
 - Drop Character
 - Swap Synonym
- EXPENSIVE and SLOW! -> More GPUs + Passes

Demo: Defending Adversarial NLP Attacks

https://youtu.be/HB1RaL2OIQA

Demo: Defending Adversarial Vision Attacks

https://youtu.be/dLU5mBAt9qk

Why?

Just In Case...

Resources

Resources

All Materials/Code: github.com/davidvonthenen/2025-we-are-developers

Let's Chat on Discord: discord.gg/NetApp

- Captum:
 - GitHub https://github.com/pytorch/captum
 - Tutorials https://captum.ai/tutorials/
- PyTorch:
 - GitHub https://github.com/pytorch/pytorch
 - Tutorials https://pytorch.org/tutorials/index.html

ThankYou

David vonThenen Senior AI/ML Engineer

in C You M M @davidvonthenen