

DyTox: Transformers for Continual Learning with Dynamic Token expansion (CVPR 2022)

- Young Jo Choi
- Department of Digital Analytics

Abstract

- A recent trend indicates that **dynamic architectures** based on an expansion of the parameters can reduce catastrophic forgetting efficiently in continual learning. (ex) DER)
- However, they require complex tuning to balance the growing number of parameters and suffer from overhead as they share little information between each task's architecture.
- In this paper, the authors propose a **transformer architecture** based on a dedicated encoder/decoder framework. (the encoder and decoder are shared among all tasks)

Continual Learning

- With new classes of data constantly appearing, simple fine-tuning suffers from catastrophic forgetting data which is already learned.
- Continual learning models aim at balancing a rigidity/plasticity tradeoff where old data are not forgotten (rigidity to changes) while learning new incoming data (plasticity to adapt).

Continual Dynamic Networks

- Can cope with growing training distributions by expanding subnetworks for each task.
- However, in this extending method, as the tasks are added, the model size continues to increase linearly. (memory-overhead)
- More recently, **DER** has achieved state-of-the-art performance by concatenating the representation of an image by extending a feature extractor per task and using unified classifier to eliminate the need to use task identifiers in testing.

Continual Dynamic Networks

- DER uses a channel-level mask to prune to reduce the growing model size, but it is sensitive to hyperparameters, so the hyperparameters are tuned differently for each experiment.
- Ex) Different hyperparameters are used depending on whether the same dataset is learned by 10 steps or 50 steps.
- Therefore, it can be said to be **unrealistic** in true continuous learning <u>where</u> the number of classes is unknown in advance.

Transformers

- 1) Get the Q, K, and V vectors from the product of the embedding vector and the weight matrix for each input word.
- 2) Attention score $Attention(Q, K, V) = Softmax \left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$
- 3) Repeat the process with multiple self-attention (head) : concat and linear transform
- 4) → add & norm → MLP → add & norm

Transformers (ViT)

- Use only the encoder of the transformer
- Split the image into multiple patches (considered as one token)
- Flatten → Linear transformation → results in embedding vectors
- Slightly different order of application in the encoding blocks

DyTox Transformer Model

Setting

- At a given step $t \in \{1 \dots T\}$,
- Training data : $\{(x_i^t, y_i^t)\}_i$
- All task label sets are exclusive : $C^0 \cap C^1 \dots C^T = \emptyset$
- Only a few samples from previous tasks $\{1 \dots t-1\}$ are available for training step t as **rehearsal** data.
- Goal of task t: classify test data coming from all seen classes $C^{1:t}$

Symbol	Meaning
(x_i^t, y_i^t)	Input sample & its label from the t^{th} task
C^t	Label set of the t^{th} task
$C^{1:t}$	All labels from all seen tasks
$oldsymbol{ heta}_t$	Task token of the t^{th} task
Clf_t	Independent classifier of the t^{th} task
SAB_l	lth Self-Attention Block
TAB	Task-Attention Block

DyTox Transformer Model

Figure 2: **DyTox transformer model**. An image is first split into multiple patches, embedded with a linear projection. The resulting patch tokens are processed by 5 successive Self-Attention Blocks (SAB) (Sec. 3.1). For each task $(t = 1 \dots T)$, the processed patch tokens are then given to the Task-Attention Block (TAB) (Sec. 3.2): each forward through the TAB is modified by a different task-specialized token θ_t for $t \in \{1 \dots T\}$ (Sec. 3.3). The T final embeddings are finally given separately to independent classifiers Clf_t each predicting their task's classes C^t . All $|C^{1:T}|$ logits are activated with a sigmoid. For example, at task t = 3, one forward is done through the SABs and three task-specific forwards through the unique TAB.

Encoder

- Patch tokenizer
- Self-Attention (SA) based encoder

Decoder

- Task-Attention Block (TAB)
 - With task tokens

- Patch tokenizer
 - fixed-size input RGB image
 - → cropped into N patches
 - → projected with a linear layer to a dimension D (these operations are done with a single 2D convolution)
 - \rightarrow Result tensor : $x_0 \in \mathbb{R}^{N \times D}$
 - + element-wise sum of positional embedding $p \in \mathbb{R}^{N \times D}$

(In original ViT, classification token is concatenated to the result tensor $\rightarrow [x_{cls}, x_0] \in \mathbb{R}^{(N+1) \times D}$)

- Self-Attention (SA) based encoder
 - $x'_l = x_l + SA_l(Norm_{l,1}(x_l))$
 - $x_{l+1} = x'_l + \text{MLP}_l(\text{Norm}_{l,2}(x'_l))$

Repeat from l=1 to l=L \rightarrow result tensor : $x_L \in \mathbb{R}^{N \times D}$

- Task-Attention Block
 - In original ViT, "class token" is appended to the patch tokens after tokenizer and is given to a linear classifier with a softmax activation to predict final probabilities.
 - In this paper, "task token" (i^{th} task is denoted θ_i) is concatenated to the result of last SA block

$$z_i = [\theta_i, x_L] \in \mathbb{R}^{(N+1) \times D}$$

to exploit this task token, "Task-Attention" layer is newly defined.

- Task-Attention Block
 - Contrary to the classical Self-Attention, the Task-Attention defines its query (Q_i) only from the task-token θ_i without using the patch tokens x_L

Task-Attention

$$Q_{i} = W_{q}\theta_{i}$$

$$K_{i} = W_{k}z_{i}$$

$$V_{i} = W_{v}z_{i}$$

$$A_{i} = Softmax(Q_{i} \cdot K_{i}^{T} / \sqrt{d/h})$$

$$\mathbf{O}_{i} = W_{o}A_{i}V_{i} + b_{o} \in \mathbb{R}^{1 \times D} \text{ (output)}$$

d is the embedding dimension, h is the number of attention heads.

$$c' = c + TA(Norm_1(z))$$

$$c'' = c' + MLP(Norm_2(c'))$$

Summarization of all structure

$$e_i = \text{TAB} \circ ([\theta_i, \text{SAB}_{l=L} \circ \dots \text{SAB}_{l=1}(x_0)]) \in \mathbb{R}^D$$

$$\tilde{y}_i = \text{Clf}(e_i) = W_c \text{Norm}_c(e_i) + b_c$$

- Dynamic task token expansion
 - For given image x, through tokenizing and the multiple SABs, x_L is the output of Encoder.
 - In Decoder, each TAB forward passes is executed with a different task token $\theta_i \rightarrow$ different task-specific forward \rightarrow produce task-specific embedding : e_i

$$e_1 = \text{TAB}([\boldsymbol{\theta_1}, x_L])$$

 $e_2 = \text{TAB}([\boldsymbol{\theta_2}, x_L])$
...
 $e_t = \text{TAB}([\boldsymbol{\theta_t}, x_L])$

• Rather than concatenating all embeddings $\{e_1, e_2, ..., e_t\}$, and make one classifier, "task-specific classifiers" are suggested.

- task-specific classifiers : $\hat{y}_i = \text{Clf}_i(e_i) = \sigma(W_i \text{Norm}_i e_i + b_i)$
- The predictions for the classes $\hat{y}_i \in C^i$, where σ is the <u>sigmoid</u> and loss is <u>binary cross-entropy</u>.
- In comparison with the softmax activation, the element-wise sigmoid activation reduces the overconfidence in recent classes → the model is better calibrated.

The overall structure of the DyTox strategy

Algorithm 1 DyTox's forward pass at step t

Input: x_0 (initial patch tokens), y (ground-truth labels) **Output:** $\hat{y}_{1:t}$ (predictions for all classes of $\mathcal{C}^{1:t}$)

- 1: $x_L \leftarrow SAB_{l=L} \circ ... SAB_{l=1}(x_0)$
- 2: for $i \leftarrow 1$; $i \leq t$; i++ do
- 3: $e_i \leftarrow \text{TAB}([\boldsymbol{\theta}_i, x_L])$
- 4: $\hat{y}_i \leftarrow \text{Clf}_i(e_i)$
- 5: end for
- 6: $\hat{y}_{1:t} \leftarrow [\hat{y}_1, \ldots, \hat{y}_t]$

More efficient than a naïve parameter expansion network

Memory overhead is almost null.
 The model's expansion is limited to a new task token per new task (in this case, only d=384 new parameters)
 ← very small compared to the total model size
 (≈11M parameters)

- Context
 - The Encoder is shared (both in memory and execution) for all outputs.
 - The Decoder parameters are also shared.
 - But its execution is task specific with each task token.
 (this is similar to a task-specific expert chosen from a mixture of experts)
 - Multi-task NLP-based transformers have natural language tokens as a task indicator (ex) summarization, translation,...), in the context of TAB, defined task tokens are used as indicators.

- Losses
 - The model is trained with three losses
 - \mathcal{L}_{clf} : classification loss (binary-cross entropy)
 - \mathcal{L}_{kd} : knowledge distillation (which is applied on the probability)
 - Helps to reduce forgetting
 - \mathcal{L}_{div} : divergence loss
 - Inspired from the auxiliary classifier of "DER"
 - Discriminate the current last task's classes C^t and all previous classes
 - Encourages a better diversity among task tokens.
 - Discarded at test-time
 - Total loss : $\mathcal{L} = (1 \alpha)\mathcal{L}_{clf} + \alpha\mathcal{L}_{kd} + \lambda\mathcal{L}_{div}$
 - α correspond to the fraction of the number of old classes over the number of new classes $\frac{|c^{1:t-1}|}{|c^{1:t}|}$

Experiments: CIFAR100, ImageNet100 and ImageNet1000

- Implementation details
 - 5 Self-Attention Blocks (SABs)
 - 1 Task-Attention Blocks (TAB)
 - Each Attention Block has 12 heads and 384 dimension embedding
 - Hyperparameters are fixed for all experiments

 ← Use 10% of CIFAR 100's train set as
 validation and get hyperparameters.
 (apply to all experiments equally)
 - rehearsal memory: 2,000 images for CIFAR100 and ImageNet100, 20,000 images for ImageNet1000

Hyperparameter	CIFAR	ImageNet			
# SAB	5				
# CAB		1			
# Attentions Heads	12				
Embed Dim	3	384			
Input Size	32	224			
Patch Size	4	16			

Table 1: **DyTox's architectures** for CIFAR and ImageNet. The only difference between the two architectures is the patch size, as the image sizes vary between datasets.

Experiments: Result of ImageNet100 and ImageNet1000

	ImageNet100 10 steps						ImageNet1000 10 steps				
	# P	top-1		top-5		# P	top-1		top-5		
Methods	π.	Avg	Last	Avg	Last	π-	Avg	Last	Avg	Last	
ResNet18 joint	11.22	-	-	-	95.10	11.68	-	-	-	89.27	
Transf. joint	11.00	-	79.12	-	93.48	11.35	-	73.58	-	90.60	
E2E [5]	11.22	-	-	89.92	80.29	11.68	-	-	72.09	52.29	
Simple-DER [48]	-	-	-	-	-	28.00	66.63	59.24	85.62	80.76	
iCaRL [59]	11.22	-	-	83.60	63.80	11.68	38.40	22.70	63.70	44.00	
BiC [32]	11.22	-	-	90.60	84.40	11.68	-	-	84.00	73.20	
WA [81]	11.22	-	-	91.00	84.10	11.68	65.67	55.60	86.60	81.10	
RPSNet [56]		-	-	87.90	74.00	-	-	-	-	-	
DER w/o P [76]	112.27	77.18	66.70	93.23	87.52	116.89	68.84	60.16	88.17	82.86	
DER [†] [76]	-	76.12	66.06	92.79	88.38	-	66.73	58.62	87.08	81.89	
DyTox	11.01	77.15	69.10	92.04	87.98	11.36	71.29	63.34	88.59	84.49	

The † marks the DER with setting specific pruning

Experiments: Result of CIFAR100

	10 steps				20 steps		50 steps		
Methods	#P	Avg	Last	#P	Avg	Last	#P	Avg	Last
ResNet18 Joint	11.22	-	80.41	11.22	-	81.49	11.22	-	81.74
Transf. Joint	10.72	-	76.12	10.72	-	76.12	10.72	-	76.12
iCaRL [59]	11.22	65.27 ± 1.02	50.74	11.22	61.20 ± 0.83	43.75	11.22	56.08 ± 0.83	36.62
UCIR [32]	11.22	58.66 ± 0.71	43.39	11.22	58.17 ± 0.30	40.63	11.22	56.86 ± 0.83	37.09
BiC [75]	11.22	68.80 ± 1.20	53.54	11.22	66.48 ± 0.32	47.02	11.22	62.09 ± 0.85	41.04
WA [81]	11.22	69.46 ± 0.29	53.78	11.22	67.33 ± 0.15	47.31	11.22	64.32 ± 0.28	42.14
PODNet [19]	11.22	58.03 ± 1.27	41.05	11.22	53.97 ± 0.85	35.02	11.22	51.19 ± 1.02	32.99
RPSNet [56]	56.5	68.60	57.05	-	-	-	-	-	-
DER w/o P [76]	112.27	75.36 ± 0.36	65.22	224.55	74.09 ± 0.33	62.48	561.39	72.41 ± 0.36	59.08
DER [†] [76]	-	74.64 ± 0.28	64.35	-	73.98 ± 0.36	62.55	-	72.05 ± 0.55	59.76
DyTox	10.73	73.66 ± 0.02	60.67 ± 0.34	10.74	72.27 ± 0.18	56.32 ± 0.61	10.77	70.20 ± 0.16	52.34 ± 0.26
DyTox+	10.73	75.54 ± 0.10	62.06 ± 0.25	10.74	75.04 ± 0.11	60.03 ± 0.45	10.77	74.35 ± 0.05	57.09 ± 0.13

DyTox constantly surpasses previous state-of-the-art model, despite having a comparable performance at the first step and fewer parameters.

Experiments

- DyTox is able to scale correctly while handling seamlessly the parameter growth by sharing most of the weights across tasks.
- In contrast, DER had to propose a complex pruning method, and this pruning required different hyperparameter values for different settings.
- Despite this, the pruning in DER† is less efficient when classes diversity increase: DER† doubles in size between ImageNet100 and ImageNet1000 while handling the same amount of tasks (10).

Improved training procedure

 To bridge the gap between DyTox and DER w/o P on CIFAR100, a method called "MixUp" is used to create new samples from existing samples

(DyTox+: DyTox with MixUp)

• $\lambda \sim \text{Beta}(\alpha, \alpha)$ ($\alpha = 0.8$) • new images : $x = \lambda x_1 + (1 - \lambda)x_2$ as their labels : $y = \lambda y_1 + (1 - \lambda)y_2$

	1 step	50 steps			
Training	Last (†)	Last (†)	Forgetting (\downarrow)		
DyTox	76.12	52.34	33.15		
DyTox+	77.51 +1.39	57.09 +4.75	31.50-1.65		

Table 4: "Last" accuracy and forgetting [8] on CIFAR100 for the joint (1 step, no continual) and 50 steps settings.

- Main Effect
- 1) It diversifies the training images and thus enlarges the training distribution in vicinity of each training sample
- 2) It improves the network calibration, reducing overconfidence in recent classes. (shared motivation with the sigmoid activation)

Model Introspection : on CIFAR100

- Memory overhead
 - Only add a vector of size d=384 per task \rightarrow +0.004% per step (setting of CIFAR100 with 50 tasks, memory overhead was almost null (+0.2%)
- Model ablations
 - Knowledge distillation
 - Fine-tuning :
 - applied after each task on a balanced set of new data and rehearsal data
 - Token Expansion
 - Divergence Classifier
 - Independent Classifier

		, ook	ledge Dis	dillation Toker	I.E.K.Patesis	gence Cla	gepen Chasifi Dependent Avg	Ş [©]
		4m	\$N.	10x	Qr.	THE	Avg	Last
	mer						60.69	38.87
	sfor	1					61.62	39.35
DyTox	Transformer	✓	✓				63.42	42.21
Ž	ic	1	1	/			67.30	47.57
	Dynamic	1	✓	✓	✓		68.28	49.45
	D.	✓	✓	✓	✓	✓	70.20	52.34

Conclusion

- Self-attention layers are shared across all tasks, and we add task-specific tokens to achieve task-specialized embeddings through a new task-attention layer.
- It has very little memory overhead and does not require complex hyperparameter tuning.
- The experiments show that the DyTox framework scales to large datasets like ImageNet1k with state-of-the-art performances and number of parameters of the model increases reasonably contrary to previous dynamic strategies.