поднимающийся шар

Резиновый шар, наполненный гелием, поднимается в небо. Давление и температура атмосферного воздуха уменьшаются с высотой. В дальнейшем будем предполагать, что сферическая форма шара сохраняется, несмотря на прикреплённый к нему груз, и пренебрежём объёмом самой оболочки и груза. Будем также предполагать, что температура гелия внутри шара совпадает с температурой окружающего воздуха, и считать гелий и воздух идеальными газами. Универсальная газовая постоянная R=8,31 Дж/(моль•К); молярные массы гелия M_H и воздуха M_A равны $M_H=4,00 \times 10^{-3}$ кг/моль и $M_A=28,9 \times 10^{-3}$ кг/моль соответственно. Ускорение свободного падения g=9,8 м/с².

ЧАСТЬ А

- (a) [1.5 балла] Предположим, что окружающий воздух имеет давление P и температуру T. Давление внутри шара выше наружного из-за упругих свойств оболочки. Пусть шар содержит п молей телия и давление внутри него равно P+ΔP. Определите выталкивающую силу F_B, действующую на шар, как функцию от P и ΔP.
- (b) [2 балла] В Корее в один из летних дней было найдено, что температура Т воздуха на высоте z над уровнем моря задаётся соотношением $T(z)=T_0(1-z/z^0)$ в диапазоне 0 < z < 15 км, где $z_0 = 49$ км и $T_0 = 303$ К. Давление P_0 и плотность воздуха ρ_0 на уровне моря равны $P_0 = 1$ атм = 1,01 х 105 Па и $\rho_0 = 1,16$ кг/м3 соответственно. В указанном диапазоне высот давление изменяется с высотой по закону $P(z) = P_0(1-z/z_0)^{\eta} (2.1)$ Выразите постоянную η через величины z_0 , ρ_0 , P_0 , и g; определите её значение с точностью до двух значащих цифр. Считайте ускорение свободного падения g постоянным, не зависящим от высоты.

ЧАСТЬ В

Когда резиновый шар (с радиусом r_0 в нерастянутом состоянии) раздувается до сферы радиуса $r(\geq r_0)$, его оболочка из-за растяжения приобретает упругую энергию. В упрощённой теории упругая энергия U надутой сферической оболочки при постоянной температуре T

описывается выражением $U = 4\pi r_0^2 kRT (2\lambda^2 + \frac{1}{\lambda^4} - 3)(2.2)$

 $_{\rm где} \lambda \equiv {\rm r/r_0} (\ge 1)_-$ коэффициент растяжения (по радиусу), а k – некоторая константа, выраженная в единицах моль/м².

- (c) [2 балла] Выразите ΔP через параметры, входящие в выражение (2.2), и изобразите графически (на листе ответов) зависимость ΔP от λ .
- (d) [1.5 балла] Постоянная величина k может быть определена через количество молей гелия, необходимых для надувания шара. При $T_0 = 303$ К и $P_0 = 1,0$ атм нерастянутый шар (при $r = r^0$) содержит $n_0 = 12.5$ молей гелия. Для раздувания шара до значения $\lambda = 1.5$ при неизменных температуре T_0 и внешнем давлении P_0 в нём должно находиться в общей сложности $n = 3.6n_0 = 45$ молей гелия. Выразите параметр а оболочки, определяемый как отношение n = 3.6

 $k_0 \equiv \frac{r_0 P_0}{4RT_0}$, через n, n₀ и λ . Вычислите его значение с точностью до двух значащих цифр.

ЧАСТЬ С

Пар накачали на уровне моря как в пункте (d) (коэффициент растяжения по радиусу λ =1,5, число молей гелия внутри n=3,6n₀=45 молей, при температуре T_0 =303К и давлении P_0 =1,0 атм=1,01х10⁵ Па). Общая масса шара, включая газ, оболочку и груз, равна M_T =1,12 кг. Такой шар начинает подниматься от уровня моря.

(e) [3 балла] Пусть этот шар поднялся до такой высоты z_f , на которой выталкивающая сила уравновешивается суммарной силой тяжести. Определите z_f и коэффициент растяжения λ_f на этой высоте. Рассчитайте их числовые значения с точностью до двух значащих цифр. Утечкой газа и боковым смещением из-за ветра пренебрегите

Задача 2. Детектирование электрических сигналов.

Некоторые морские животные способны обнаруживать другие существа на расстоянии благодаря электрическим токам, текущим в теле этих существ в процессе дыхания или в других процессах, связанных с сокращением мышц. Некоторые хищники используют этот электрический сигнал для обнаружения своих жертв, даже когда последние прячутся в песок.

Физический механизм, лежащий в основе возникновения тока в жертве и ее обнаружения хищником, можно смоделировать, как показано на рис. 4. Ток, генерируемый жертвой, течет между двумя расположенными в теле жертвы сферами, имеющими положительный и отрицательный потенциалы. Расстояние между центрами этих двух сфер равно I_s , каждая сфера имеет радиус I_s значительно меньший, чем I_s . Удельное сопротивление морской воды равно ρ .

Предположим, что удельное сопротивление тела жертвы такое же как и окружающей морской воды, так что границы между телом жертвы и окружающей средой нет.

Рисунок 4. Модель, описывающая прием электрического сигнала, приходящего от жертвы к хищнику.

Рисунок 5. Замкнутый контур, включающий внутреннее сопротивление R_d хищника и сопротивление окружающей среды R_d.

Для описания того, как хищник принимает электрический сигнал, исходящий от жертвы, детектор моделируется двумя сферами в теле хищника, находящимися в контакте с окружающей морской водой и расположенными параллельно аналогичной паре сфер в теле жертвы. Сферы в теле хищника расположены на расстоянии I_d друг от друга и имеют радиус r_d значительно меньший I_d . Центр детектора находится на расстоянии у выше жертвы и линия, соединяющая две сферы детектора (рис. 4), ориентирована вдоль линий электрического поля, создаваемого жертвой. Расстояния I_s и I_d много меньше, чем у. Напряженность электрического поля между сферами хищника можно считать постоянной по модулю.

Таким образом, образуется замкнутый контур, включающий заданное внутреннее сопротивление R_d хищника и сопротивление окружающей среды R_m (см. рис. 5)..На этом рисунке V – это напряжение между сферами детектора, обусловленное электрическим полем жертвы (в отсутствие R_d). V_d – это напряжение между сферами с учетом внутреннего сопротивления хищника. Задания:

- определите вектор плотности тока ј (ток на единицу площади), обусловленный точечным источником тока I_s на расстоянии г от него в неограниченной однородной среде (1.5 б.);
- для заданной силы тока I_s, текущего между сферами жертвы в неограничэнной среде, определите, опираясь на закон E = рj, напряженность электрического поля в середине между сферами детектора (точка P) (2.0 б.);
- 3. определите для той же силы тока l_s напряжение между сферами в жертве V_s (1.5 б.), определите сопротивление R_s между этими сферами (0.5 б.), определите также мощность P_s , выделяющуюся при этом в окружающей среде (0.5 б.):
- 4. определите сопротивление среды R_m между сферами хищника (0.5 б.), определите напряжение V_d между этими сферами (см. рис. 5) (1.0 б.), получите выражение для мощности P_d , передаваемой от жертвы к хищнику (0.5 б.):
- 5. определите оптимальное значение R_d , при котором детектируемая мощность P_d максимальна (1.5 б.), определите также эту максимальную мощность (0.5 б.).

1. ЧЕРЕНКОВСКОЕ ИЗЛУЧЕНИЕ И КОЛЬЦЕВОЙ ЧЕРЕНКОВСКИЙ ДЕТЕКТОР

Свет распространяется в вакууме со скоростью c. Не существует частиц, движущихся со скоростью больше, чем c. Однако в прозрачной среде частица может двигаться со скоростью v, превышающей скорость света в этой среде c/n, где n — показатель преломления среды. Эксперимент (Черенков, 1934) и теория (Тамм и Франк, 1937) показали, что заряженная частица, движущаяся со скоростью v в прозрачной среде с показателем преломления n, удовлетворяющим условию v > c/n, излучает свет, названный черенковским излучением, в направлениях, образующих с ее тра-

екторией угол
$$\theta = \arccos(1/\beta n)$$
, (1)

где $\beta = v/c$.

1. Чтобы объяснить этот эффект, рассмотрим частицу, движущуюся с постоянной скоростью v > c/n по прямой линии. Она проходит точку А в момент времени 0 и точку В в момент t_I . Так как задача симметрична относительно вращения вокруг оси АВ, достаточно рассмотреть световые лучи в любой плоскости, содержащей АВ.

В любой точке С между A и B частица излучает сферическую световую волну, распространяющуюся со скоростью c/n. Назовем волновым фронтом в заданный момент времени t огибающую всех таких сфер в этот момент.

- 1.1. Определите волновой фронт в момент времени t₁ и начертите линию его сечения плоскостью, содержащей траекторию частицы.
 - 1.2. Выразите угол φ между указанной линией и траекторией частицы ч ϵ рез n и β .
- 2. Рассмотрим пучок частиц, движущихся вдоль прямой линии IS, пересекающей в точке S выпуклое сферическое зеркало с фокусным расстоянием f и центром C. Скорость пучка v>c/n такова, что угол θ мал. Отрезок SC образует с линией SI малый угол α . Излучение пучка частиц создает кольцевое изображение в фокальной плоскости зеркала. Поясните это явление с помощью рисунка. Определите положение центра кольца O и его радиус r.

Установка, описанная выше, используется в кольцевых черенковских детекторах (КЧД), а среда, через которую частицы проходят, называется излучателем.

Примечание: поскольку углы α и θ малы, во всех пунктах данной задачи соответствуюшими членами второго и высших порядков малости можно пренебречь.

3. Рассмотрим пучок частиц с известным импульсом $p=10.0~\Gamma \text{ DB/c}$, состоящий из частиц трех типов: протонов, каонов и пионов с массами покоя $M_p=0.94~\Gamma \text{ DB/c}^2$, $M_k=0.50~\Gamma \text{ DB/c}^2$ и $M_\pi=0.14~\Gamma \text{ DB/c}^2$ соответственно. Напомним, что величины pc и Mc^2 имеют размерность энергии, 1 эВ – энергия, приобретаемая электроном, ускоренным разностью потенциалов 1 В, 1 ГэВ = 10^9 эВ, 1 МэВ = 10^6 эВ.

Пучок частиц движется в воздухе, находящемся под давлением P, который играет роль излучателя. Показатель преломления воздуха выражается через его давление P, измеренное в атмосферах, с помощью формулы n=1+aP, где $a=2.7\cdot10^{-4}$ атм⁻¹.

3.1. Рассчитайте для каждого из трех типов частиц минимальное значение P_{min} атмосферного

давления, при котором они начинают давать черенковское излучение.

- 3.2. Рассчитайте давление $P_{1/2}$, при котором радиус кольцевого изображения, порожденного излучением каонов, равен половине радиуса кольцевого изображения, порожденного излучением пионов, а также значения θ_{κ} и θ_{π} для этого случая. Можно ли при таком давлении наблюдать кольцевое изображение, порожденное излучением протонов?
- 4. Предположим теперь, что пучок не является полностью монохроматическим: импульс частиц распределен в интервале с центром в точке $10 \, \Gamma_2 B/c$, имеющем полуширину Δp (на половине высоты). Это приводит к уширению кольцевого изображения. Соответствующее уширение распределения по θ характеризуется полушириной $\Delta \theta$ (на половине высоты).
 - 4.1. Вычислить $\Delta \theta_{\kappa}/\Delta p$ и $\Delta \theta_{\pi}/\Delta p$, то есть значение $\Delta \theta/\Delta p$ для пионов и каонов.
- 4.2. Два кольцевых изображения, созданных излучением пионов и каонов, можно хорошо различить, если угловое расстояние θ_{π} – θ_{κ} превышает сумму полуширин $\Delta\theta = \Delta\theta_{\kappa} + \Delta\theta_{\pi}$ более чем в 10 раз, то есть θ_{π} – θ_{κ} >10 $\Delta\theta$. Рассчитайте максимальное значение Δp , при котором два изображения еще можно хорошо различить.
- Черенков впервые открыл эффект, ныне носящий его имя, наблюдая за сосудом с водой, расположенным вблизи радиоактивного источника. Он увидел, что вода в сосуде светилась.
- 5.1. Найдите минимальное значение кинетической энергии T_{min} частицы с массой покоя M, движущейся в воде, при котором появляется черенковское излучение. Показатель преломления воды n=1.33.
- 5.2. Радиоактивный источник, использованный Черенковым, излучал α частицы (ядра гелия), имеющие массу покоя M_{α} =3.8 Γ 9B/ c^2 , и β -частицы (электроны), имеющие массу покоя M_{e} =0.51 M9B/ c^2 . Рассчитайте численные значения T_{min} для α и β -частиц.

Зная, что кинетическая энергия частиц, излучаемых радиоактивными источниками, не превышает нескольких МэВ, определите, какие частицы порождали излучение, наблюдавшееся Черенковым.

- 6. В предыдущих пунктах задачи не учитывалась зависимость черенковского излучения от длины волны λ . Учтем теперь тот факт, что черенковское излучение частицы имеет широкий непрерывный спектр, включающий видимую область (длины волн от 0.4 мкм до 0.8 мкм). Известно также, что при возрастании λ в пределах этой области показатель преломления излучателя линейно уменьшается на 2% от величины (n-1).
- 6.1. Рассмотрим пучок пионов с заданным импульсом 10.0 ГэВ/c, движущийся в воздухе, находящемся под давлением 6 атм. Определите разность углов $\delta\theta$, соответствующих краям видимой области.
- 6.2. Качественно исследуйте влияние дисперсии (т.е. зависимости n от λ) на изображение кольца, созданное излучением пучка пионов. Импульсы пионов распределены в интервале с центром в точке p=10 ГэВ/c, имеющем полуширину $\Delta p=0.3$ ГэВ/c (на половине высоты).
- 6.2.1. Рассчитайте уширение, обусловленное дисперсией (изменением показателя преломления), а также уширение, вызываемое немонохроматичностью пучка (разбросом импульсов частиц).
- 6.2.2. Опишите, как изменяется цвет кольца при переходе от его внутреннего края к внешнему.

