CSE-573 Artificial Intelligence

Partially-Observable MDPS (POMDPs)

Markov Decision Process (MDP)

- **S**: set of states
- A: set of actions (a also sometimes denoted u
- Pr(s'|s,a): transition model
- **R**(s,a,s'): reward model
- γ: discount factor
- s₀: start state

Partially-Observable MDP

- S: set of states
- A: set of actions (a or u)
- Pr(s'|s,a): transition model
- **R**(s,a,s'): reward model
- γ: discount factor
- s_0 : start state
- z set of possible observations
- Pr(z|s)

Partially-Observable MDP

- **S**: set of states
- A: set of actions
- Pr(s'|s,a): transition model
- **R**(s,a,s'): reward model
- γ: discount factor
- s₀: start state
- z set of possible observations (aka evidence,

measurements)

Pr(z|s)

Objective of a Fully Observable MDP

Find a policy

 $\pi: S \rightarrow A$

- which maximizes expected discounted reward
 - given an infinite horizon
 - · assuming full observability

Objective of a POMDP

Find a policy

 π : BeliefStates(**S**) \rightarrow **A**

A belief state is a *probability distribution* over states

- which maximizes expected discounted reward
 - given an infinite horizon
 - assuming partial & noisy observability

Planning in last HW

- Maximum a posteriori (MAP) Estimate
- Now "know" state
- Solve MDP

_ 4

Best plan to eat final food?

Best plan to eat final food?

Problem with Planning from MAP Estimate

 Best action for belief state over k worlds may not be the best action in any one of those worlds

POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the *belief state* which is a posterior distribution over states.

 π : beliefs \rightarrow actions, denoted u

- Let b be the belief of the agent about the state under consideration.
- POMDPs compute a value function over belief space: $V_T(b) = \gamma \max_u \left[r(b, u) + \int V_{T-1}(b^*) p(b^* \mid u, b) \ db^* \right]$

2.

Problems

- A belief is a probability distribution over world states, thus, each value in a POMDP is a function of an entire probability distribution.
- This is challenging, since probabilities are real-valued.
 - Given 2 world states, $s_1 \& s_2$, how many belief states are there?
- For finite worlds with finite state, action, and evidence spaces and finite horizons, we can effectively represent the value functions by piecewise linear functions.

24

Example Parameters

- The actions u_1 and u_2 are terminal actions. $\frac{-100}{100}$
- u_3 is a sensing action, potentially leading to a state transition.
- The horizon is finite and γ =1.

$$r(x_1, u_1) = -100$$
 $r(x_2, u_1) = +100$ $r(x_1, u_2) = +100$ $r(x_1, u_3) = -1$ $r(x_2, u_3) = -1$

$$p(x'_1|x_1, u_3) = 0.2$$
 $p(x'_2|x_1, u_3) = 0.8$ $p(x'_1|x_2, u_3) = 0.8$ $p(z'_2|x_2, u_3) = 0.2$

$$p(z_1|x_1) = 0.7$$
 $p(z_2|x_1) = 0.3$ $p(z_1|x_2) = 0.3$ $p(z_2|x_2) = 0.7$

Expected Reward in POMDPs

- In MDPs, the reward depends on the state of the system.
- In POMDPs, we don't know what state we are in?
- Therefore, we compute the expected reward by integrating over all states:

$$r(b, u) = E_x[r(x, u)]$$

= $\int r(x, u)p(x) dx$
= $p_1 r(x_1, u) + p_2 r(x_2, u)$

26

Example

- If we are totally certain that we are in $\frac{-100}{100}$ 100 state x_1 and execute action u_1 , we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_2 and execute u_1 , the reward is +100.
- In between: probability weighted linear combination

$$r(b, u_1) = -100 p_1 + 100 p_2$$

= -100 p_1 + 100 (1 - p_1)
= 100 - 200 p_1

Example

- If we are totally certain that we are in $\frac{-100}{100} \frac{100}{100}$ state x_1 and execute action u_1 , we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_2 and execute u_1 , the reward is +100.
- In between: probability weighted linear combination

$$r(b, u_1) = -100 p_1 + 100 p_2$$

$$= -100 p_1 + 100 (1 - p_1)$$

$$= 100 - 200 p_1$$

$$r(b, u_2) = 100p_1 - 50(1-p_1)$$

$$= 150 p_1 - 50$$

$$r(b, u_3) = -1$$

28

One Step Reward in Our Example

The Resulting Policy for T=1

- Given a finite POMDP with time horizon = 1
- Use $V_1(b)$ to determine the optimal policy.

$$\pi_1(b) = \begin{cases} u_1 & \text{if } p_1 \le \frac{3}{7} = 0.429 \\ u_2 & \text{if } p_1 > \frac{3}{7} \end{cases}$$

Corresponding value:

30

Piecewise Linearity, Convexity

The resulting value function $V_1(b)$ is the maximum of the three functions at each point

$$V_1(b) = \max_{u} r(b, u)$$

$$= \max \left\{ \begin{array}{ccc} -100 \ p_1 & +100 \ (1 - p_1) \\ 100 \ p_1 & -50 \ (1 - p_1) \\ 0 \end{array} \right\}$$

I.e., it's piecewise linear and convex.

Pruning

- With $V_1(b)$, note that only the first two components contribute.
- The third component can be safely pruned

$$V_1(b) = \max \left\{ \begin{array}{rr} -100 \ p_1 & +100 \ (1-p_1) \\ 100 \ p_1 & -50 \ (1-p_1) \end{array} \right\}$$

32

Incorporating Observation

Suppose that the robot can magically receive an observation before deciding on an action.

Incorporating Observation

- Suppose agent perceives z₁
- We know $p(z_1 \mid x_1)=0.7$ and $p(z_1 \mid x_2)=0.3$.
- Given the obs z_1 we update the belief using ...? Bayes rule!!

$$p'_1 = \frac{0.7 p_1}{p(z_1)}$$
 where $p(z_1) = 0.7 p_1 + 0.3(1 - p_1) = 0.4 p_1 + 0.3$

- So...
 - If $p_1 = 0.5$
 - If $p_1 = 0.5$ then $p_1' = .35 / .50 = 0.7$
 - If $p_1 = 0.1$
 - If $p_1 = 0.1$ then $p_1' = .07 / .34 = 0.206$

Incorporating Observation

- Suppose agent perceives z₁
- We know $p(z_1 \mid x_1)=0.7$ and $p(z_1 \mid x_2)=0.3$.
- Given the obs z_1 we update the belief using ...? Bayes rule!!

$$p'_1 = \frac{0.7 p_1}{p(z_1)}$$
 where $p(z_1) = 0.7 p_1 + 0.3(1 - p_1) = 0.4 p_1 + 0.3$

Now, $V_1(b \mid z_1)$ is given by

$$V_{1}(b \mid z_{1}) = \max \begin{cases} -100 \cdot \frac{0.7 p_{1}}{p(z_{1})} + 100 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \\ 100 \cdot \frac{0.7 p_{1}}{p(z_{1})} - 50 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \end{cases}$$

$$= \frac{1}{p(z_{1})} \max \begin{cases} -70 p_{1} + 30 (1-p_{1}) \\ 70 p_{1} - 15 (1-p_{1}) \end{cases}$$

Expected Value after Measuring

- But, we do not know *in advance* what the next measurement will be,
- So we must compute the expected belief

$$\overline{V_1}(b) = E_z[V_1(b \mid z)] = \sum_{i=1}^2 p(z_i)V_1(b \mid z_i)$$

$$= \sum_{i=1}^2 p(z_i)V_1\left(\frac{p(z_i \mid x_1)p_1}{p(z_i)}\right)$$

$$= \sum_{i=1}^2 V_1(p(z_i \mid x_1)p_1)$$

Expected Value after Measuring

- But, we do not know *in advance* what the next measurement will be,
- So we must compute the expected belief

$$\begin{split} \bar{V}_1(b) &= E_z[V_1(b \mid z)] \\ &= \sum_{i=1}^2 p(z_i) \, V_1(b \mid z_i) \\ &= \max \left\{ \begin{array}{ccc} -70 \, p_1 & +30 \, (1-p_1) \\ 70 \, p_1 & -15 \, (1-p_1) \end{array} \right\} \\ &+ \max \left\{ \begin{array}{ccc} -30 \, p_1 & +70 \, (1-p_1) \\ 30 \, p_1 & -35 \, (1-p_1) \end{array} \right\} \end{split}$$

38

Resulting Value Function

■ The four possible combinations yield the following function which then can be simplified and pruned.

$$\begin{split} \bar{V}_1(b) \;\; &= \;\; \max \left\{ \begin{array}{cccc} -70\;p_1\;\; +30\;(1-p_1)\;\; -30\;p_1\;\; +70\;(1-p_1)\\ -70\;p_1\;\; +30\;(1-p_1)\;\; +30\;p_1\;\; -35\;(1-p_1)\\ +70\;p_1\;\; -15\;(1-p_1)\;\; -30\;p_1\;\; +70\;(1-p_1)\\ +70\;p_1\;\; -15\;(1-p_1)\;\; +30\;p_1\;\; -35\;(1-p_1) \end{array} \right\} \\ &= \;\; \max \left\{ \begin{array}{cccc} -100\;p_1\;\; +100\;(1-p_1)\\ +40\;p_1\;\; +55\;(1-p_1)\\ +100\;p_1\;\; -50\;(1-p_1) \end{array} \right\} \end{split}$$

But....

- That was assuming that we were going to get an observation for free...
- What if the only way to get an observation is to execute the sensing action?

Increasing the Time Horizon

When the agent selects u_3 its state may change.

When computing the value function, we have to take these potential state changes into account. $P(x=x_1 \text{ after executing } u_3)$

$$p_1' = E_x[p(x_1 \mid x, u_3)]$$

$$= \sum_{i=1}^{2} p(x_1 \mid x_i, u_3) p_i$$

$$= 0.2p_1 + 0.8(1 - p_1)_{0.2}$$

$$= 0.8 - 0.6p_1$$

Resulting Value Function after executing u_3

Taking the state transitions into account, we finally obtain.

$$\begin{split} \bar{V}_1(b) &= \max \left\{ \begin{array}{l} -70 \; p_1 \; +30 \; (1-p_1) \; -30 \; p_1 \; +70 \; (1-p_1) \\ -70 \; p_1 \; +30 \; (1-p_1) \; +30 \; p_1 \; -35 \; (1-p_1) \\ +70 \; p_1 \; -15 \; (1-p_1) \; -30 \; p_1 \; +70 \; (1-p_1) \\ +70 \; p_1 \; -15 \; (1-p_1) \; +30 \; p_1 \; -35 \; (1-p_1) \end{array} \right\} \\ &= \max \left\{ \begin{array}{l} -100 \; p_1 \; +100 \; (1-p_1) \\ +40 \; p_1 \; +55 \; (1-p_1) \\ +100 \; p_1 \; -50 \; (1-p_1) \end{array} \right\} \\ \bar{V}_1(b \mid u_3) \; = \; \max \left\{ \begin{array}{l} 60 \; p_1 \; -60 \; (1-p_1) \\ 52 \; p_1 \; +43 \; (1-p_1) \\ -20 \; p_1 \; +70 \; (1-p_1) \end{array} \right\} \\ \end{array}$$

Value Function for T=2

■ Taking into account that the agent can either directly perform u_1 or u_2 or first u_3 and then u_1 or u_2 , we obtain (after pruning)

$$ar{V}_2(b) = \max \left\{ egin{array}{ll} -100 \ p_1 & +100 \ (1-p_1) \ 100 \ p_1 & -50 \ (1-p_1) \ 51 \ p_1 & +42 \ (1-p_1) \end{array}
ight\}$$

Deep Horizons

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for T=10 and T=20 are

Why Pruning is Essential

- Each update introduces additional linear components to V.
- Each measurement squares the number of linear components.
- Thus, an unpruned value function for T=20 includes more than 10^{547,864} linear functions.
- The pruned value functions at T=20, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function are the major reason why the exact solution of POMDPs is usually impractical

POMDP Approximations

- Point-based value iteration
- QMDPs
- AEMS

5

Point-based Value Iteration

- Kind of like particle filtering...
- Maintains a set of example beliefs
- Only considers constraints that maximize value function for at least one of the examples

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- Until recently, POMDPs only applied to very small state spaces with small numbers of possible observations and actions.
 - But with PBVI, |S| = millions