Simulation Software

Discrete-Event System Simulation

5th Edition

Chapter 4

World Views of Simulation Model

- Event-Scheduling View
 - As with our project 1
 - Focus on processing each event
- Process-interaction View
 - View model as a set of processes through which an entity "flows"
 - Life-cycle approach time-sequenced list of events, activities, & delays
 - Common in simulation environments

World Views of Simulation Model

- Activity Scanning Approach
 - Focus on activities & conditions that allow it to begin
 - At each clock advance, scan conditions to start any activity that can begin
 - Approach is simple, but scan is slow
 - New 3-phase approach includes some event scheduling – somewhat more complex but more efficient

Categories of Simulation Software

- General Purpose Languages
 - □ C, C++, Java
- Simulation Languages
 - □ GPSS, SIMAN, SLAM, SSF
- Simulation Environments
 - Enterprise Dynamics, Arena, SIMUL8

Features of Simulation

Languages

- Some focus on a single type of application
- Built in features include
 - Statistics collection
 - Time management
 - Queue management
 - Event generation

Features of Simulation Environments

- Some focus on one type of application
- Icon based
- Analysis of I/O
- Advanced Statistics

- Optimization
- Support for Experimentation

History of Simulation Software

(Nance 1995)

1955-60	Period of Search	1

Regeneration

1987- 2008 Period of Integrated

Environments

2009 + The Future

Simulation Languages

- 1981 137 Simulation languages reported
- More have be developed since
- Now Simulation Environments

The Search:: 1955 - 60

- FORTRAN one of a few languages
- Focus on unifying concepts & reusable functions
- General Simulation Program first effort at "language" which as a set of functions

The Advent:: 1961-65

- GPSS 1961 @ IBM
 - Based on block diagrams
 - Well-suited for queuing models
 - Expensive at first
- SIMSCRIPT 1963 Rand Corp.
 - US Air Force government is biggest user
 - FORTRAN influence
 - Owned by CACI in CA.

The Advent:: 1961-65

(continued)

- GASP 1961
 - Based on Algol, then Fortran
 - Collection of Fortran functions
- SIMULA extension of Algol
 - Widely used in Europe
- CSL (Control & Simulation Language)

Formative Period:: 1966-70

- Concepts caused major revisions of languages
- Languages gained wider usage
- GPSS (several variations)
- Simscript II English-like
- ECSL Europe
- SIMULA added classes & inheritance

The Expansion Period:: 1971-78

- GPSS/H 1977
- GASP IV 1974 Purdue
- SIMULA
 - Attempt to simplify the modeling process
 - Program generators severe limitations

Consolidation & Regeneration:: 1979-1986

- Movement to mini and PC computers
- SLAM II (descendant of GASP)
 - 3 world views
 - Event, Network, Continuous
- SIMAN (descendant of GASP)
 - General Modeling + Block Diagrams
 - 1st first major language PC & MS-DOS
 - Fortran functions w/ Fortran programming

Integrated Environments:: 1987 - 2008

- Growth on PC's
- Simulation Environments
 - GUI
 - Animation
 - Data analyzers

The Future :: 2009 - 2011

What can we expect in the future? (2008)

- Virtual Reality
- Improved Interfaces
- Better Animation
- Agent-based Modeling

Agent-Based Software

- AnyLogic
- Ascape
- MASON
- NetLogo
- StarLogo
- Swarm
- RePast

Evaluating Software

- Consider multiple issues
 - Ease of use, support, applicability
- Speed of execution
 - Experimental runs Debugging
- Beware of demos & advertising
 - Will focus on strengths only
 - Ask for demo of YOUR problem

Evaluating Software

- Carefully consider comparison checklists with yes/no answers
- Can software link to external languages
- Carefully consider trade-off between graphical model building & simulation programming language
- Costs one-time vs. licensing

Simulation Software Features

See the following tables in text:

- Model-building features
 - P. 123 Table 4.1
- Runtime Environment
 - □ P. 124 Table 4.2
- Animation & Layout features
 - □ P. 124 Table 4.3

Simulation Software Features

- Output features
 - □ P. 125 Table 4.4
- Vendor Support Documentation
 - P. 125 Table 4.5

Example Simulation

Checkout Counter – Single Server Queue

Consider at standard checkout counter environment with on clerk and one queue. Interarrival times are exponentially distributed with mean 4.5 minutes; service times normally distributed with mean 3.2 and standard deviation 0.6 minutes.

Simulate for 1000 customers.

Java Model

■ Section 4.4 – p.126

 Note similarity to our process in project one

GPSS

General Purpose Simulation System

- Highly Structured
- Process Approach
- Queuing Systems
- Block Diagrams
 - 40 standard blocks
 - Block corresponds to a statement
- Transactions FLOW through the system

GPSS Block Diagram for Example

- Figure 4.10 p. 138
- Each entity has a name
 - Name each queue, server, etc.
- In rectangle, parameters (as necessary)
- Right attachment, name of entity
- Far right column GPSS Command

GPSS Syntax

Assembly-like

Label OpCode Subfields; comment

- Label: col. 1, <= 9 alphanumeric, alpha start
- OpCode: 4+ characters of command
- Subfields: as necessary, separated by commas
- Comment: after; or with * in column 1

GPSS Program

- Figure 4.11 p. 139
- Declaration Section
- Customized vs. Standard Output
- Code Section

Generate rvexpo (1,&IAT)

Queue Systime

Queue Line

Seize Checkout

Depart Line

Advance rvnorm(1,&mean,&stdev)

Release Checkout

Depart Systime

Test_GE M1, 4, Term

Blet &Count = &Count +1

Ter Terminate 1

Start &Limit

GPSS Output

- Customized
 - □ Figure 4.12 P. 141
- Standard
 - □ Figure 4.13 P. 142

Other Simulation Software

- SSF Scalable Simulation Framework
 - Application Program Interface (API)
 - Object-oriented, process view
 - 5 Base Classes
 - Process, Entity, Event, InChannel, OutChannel
 - Designed for high-performance computers
 - Bridges pure Java & simulation languages
 - □ Figures 4.14 & 4.15

Simulation Environments ~~ Common Features

- GUI
- Animation
- Automatic statistics
- Output (tables, graphs, custom)
- Analysis
- Process world view

Common Features (# 2)

- Some allow
 - Event Scheduling
 - Mixed continuous-discrete models
- Animations 2D & 3D
- Business Graphics

Simulation Environments

- AnyLogic
- Arena
- AutoMod
- EnterpriseDynamics

- ExtendSim
- Flexsim
- ProModel
- SIMUL8

AnyLogic

- Supports: discrete event, agent-based, system dynamics (& combination)
- Hybrid: discrete & continuous
- Object library
- Java models, publish as applets
- Animation, Statistics, optimization, debugger

Arena

- Discrete & Continuous systems
- Object-based; GUI
- 2D, 3D Animation
- Business & Manufacturing processes
- Supports Analysis
- OptQuest for optimization
- Based on SIMAN; embedded Visual Basic

AutoMod

- Manufacturing & Materials handling
- Detailed large models for planning, decision support, control systems
- AutoStat Experimentation & analysis
- AutoView Make movies of 3D animations
- Full simulation language included

- Object oriented
- Discrete Events
- Open GL 3D visualization engine
- 4D Script programming language
- Interfaces with databases
- OptQuest optimization

ExtendSim

- Block-diagram approach
- Versions for mixed and for continuous only
- Includes C-like programming language
- Supports linking to external languages

Flexsim

- Dynamic-flow systems manufacturing
- Discrete-event, Object-oriented simulator; developed in C++ using Open GL
- Animation: 2D, 3D, Virtual reality
- Drag & Drop

ProModel

- Manufacturing Systems
- Simulation & Animation (2D & 3D)
- Output viewer graphs, tables
- SimRunner optimizer based on evolutionary algorithm technique
- OptQuest is also available
- MedModel, ServiceModel

SIMUL8

- Service industries, transaction processing
- Drop & Drag model development
- Saves in XML format
- Pre-built templates for common applications
- 3D virtual reality graphics
- Links to database

Experimentation & Statistical Analysis Tools

- Included in most all simulation systems
- Add-ons also available
- Features
 - Optimization define fitness or cost function

Arena

Output & Process Analyzer

- Confidence intervals
- Comparison of systems
- Warm-up determinations
- Graphs (all types) 2D & 3D
- Scenario definition

AutoStat (from AutoMod)

- Warm-up determination
- Steady state determination
- Confidence intervals
- Sensitivity analysis
- Optimization via evolutionary strategy

OptQuest

- Based on scatter search, tabu search, linear-integer programming, data mining, neural nets (evolutionary)
- Uncertainty problems
- Global optimums
- Handles non-linear and discontinuous relationships

SimRunner (from ProModel)

- Based evolutionary models & genetic algorithms
- Optimizations
- 3D graphics
- Warm-up (steady state) determination

Conclusion

- Many simulation software environments available
- Many do have trial versions to download for trying
- Before deciding, consider the features and the add-ons available that will suit your particular environment