ED Tipo 2

1. El determinante de la matriz con coeficientes en \mathbb{Z}_7

$$\left(\begin{array}{ccccc}
4 & 1 & 1 & 1 \\
1 & 4 & 1 & 1 \\
1 & 1 & 4 & 1 \\
1 & 1 & 1 & 4
\end{array}\right)$$

- a) es congruente con 4⁴ módulo 7.
- b) es congruente con 3³ módulo 7.
- c) es 0.
- d) es 4!.
- 2. El sistema con coeficientes en \mathbb{R}

$$\left. \begin{array}{l} ax + y + z = 0 \\ x + ay + 2z = 3 \end{array} \right\}$$

- a) siempre es compatible indeterminado.
- b) es incompatible para algunos valores de a.
- c) es siempre compatible determinado.
- d) es compatible, pero es determinado o indeterminado dependiendo de a.
- 3. El rango de la matriz sobre \mathbb{Z}_7 :

$$\left(\begin{array}{ccccc}
4 & 3 & 2 & 3 \\
3 & 4 & 4 & 1 \\
2 & 5 & 3 & 2 \\
1 & 6 & 0 & 5
\end{array}\right)$$

- a) es 4.
- b) es 3.
- c) es 2.
- d) no puede calcularse.
- 4. Dados U y W subespacios de \mathbb{Z}_5^5 con dimU = 2 y dimW = 3 ¿cuál de las siguientes situaciones no puede ocurrir?

a)
$$\dim(U + W) = 4 \text{ y } \dim(U \cap W) = 1$$

b)
$$\dim(U + W) = 4 \text{ y } \dim(U \cap W) = 2$$

c)
$$\dim(U+W)=3$$
 y $\dim(U\cap W)=2$

d)
$$\dim(U+W) = 5 \text{ y } \dim(U \cap W) = 0$$

- 5. Si B es la base canónica de \mathbb{R}^2 y B' = $\{(1,2), (1,-3)\}$ es otra base, el vector cuyas coordenadas respecto de B' son (4,-2) es
 - a) es (2, 14).
 - b) es (2,2).
 - c) es (4, -2).
 - d) es (2, -1).
- 6. En \mathbb{Q}^4 se considera el subespacio generado por

$$\{(1,0,0,-1),(1,-1,1,-1)\}$$

¿cuál de estos sistemas de ecuaciones corresponde a unas ecuaciones cartesianas de este subespacio?

29 de Enero de 2008 (1)

a)
$$\begin{cases} x+y+z+t=0\\ x+y+z=1 \end{cases}$$

b)
$$\begin{cases} y+z=0\\ x+t=0 \end{cases}$$

b)
$$\begin{cases} y+z=0\\ x+t=0 \end{cases}$$
c)
$$\begin{cases} x+y=0\\ z+t=0 \end{cases}$$

$$d) \{ x+y+z+t=0$$

- 7. Sea $U = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0\}$ y W = <(1, 1, 1), (1, 2, 1) >. Una base de $U \cap W$ es
 - a) $\{(1, -2, 1)\}$
 - b) $\{(1,-2,1),(1,0,-1)\}$
 - c) $\{(1,0,-1)\}$
 - d) $\{(1,1,1),(1,-2,1)\}$
- 8. Para una aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^4$ ¿cuál de las siguientes situaciones **no** puede ocurrir?
 - a) $\dim(N(f)) = 1$ y $\dim(\operatorname{Im}(f)) = 2$.
 - b) $\dim(N(f)) = 2y \dim(\operatorname{Im}(f)) = 1$.
 - c) f es inyectiva.
 - d) f es sobreyectiva.
- 9. Sea $f: \mathbb{R}^3 \to \mathbb{R}^4$ dada por

$$f(x, y, z) = (x + y, x + z, 2x + y + z, 0)$$

una base del núcleo de f es

- a) $\{(1,-1,-1)\}$
- b) $\{(1,-1,-1),(0,0,1)\}$
- c) $\{(1,1,0),(1,0,1)\}$
- d) $\{(2,1,1)\}$
- 10. Sea $f: \mathbb{R}^3 \to \mathbb{R}^4$ dada por

$$f(x, y, z) = (x + y, x + z, 2x + y + z, 0)$$

una base de la imagen de f es

- a) $\{(1,1,2,0),(1,0,1,0),(0,1,1,0)\}$
- b) $\{(1,0,1,0),(0,1,1,0)\}$
- c) $\{(1,1,0),(1,0,1)\}$
- d) $\{(1,0,0,0),(0,1,0,0)\}$
- 11. Sean A y B dos conjuntos de cardinales 2 y 3 respectivamente. El cardinal del conjunto

$$\{f: \mathcal{P}(A) \to A \times B / f \text{ es aplicación } \}$$

es

- a) es 6^4 .
- b) es 2^8 .

AED Tipo 2

- c) es 4^6 .
- d) es 3^{12} .

12. Dado el conjunto $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ y los subconjuntos $A = \{1, 3, 5\}$, $B = \{0, 1, 2, 8, 9\}$ y $C = \{0, 2, 4, 6, 8\}$, entonces el conjunto $((A \cap (B \cup A)) \cup C) \cap (A \cup \overline{B})$ es igual a

- a) $\{1,3,4,5,6\}$
- b) {0,1,2,3,4,5,6,7,8,9}
- c) Ø
- d) $\{3,5\}$

13. Sea X un conjunto con 7 elementos y $\emptyset \neq A \neq X$ un subconjunto de X. Entonces el cardinal de $\mathcal{P}(A \times \overline{A})$ no puede ser

- a) 2^{6}
- b) 2^{7}
- c) 2^{10}
- d) 2^{12}

14. Señalar la respuesta correcta. La expresión $f(x) = x^2 - 4x + 4$

- a) define una aplicación $f: \mathbb{Z} \to \mathbb{N}$ que no es inyectiva ni sobreyectiva.
- b) define una aplicación inyectiva $f: \mathbb{Z} \to \mathbb{N}$.
- c) define una aplicación sobreyectiva $f: \mathbb{Z} \to \mathbb{N}$.
- d) no define una aplicación $f: \mathbb{Z} \to \mathbb{N}$.

15. En el conjunto $A = \{a, b, c\}$, consideramos la operación binaria dada por la tabla siguiente:

Entonces

- a) (A,*) no puede ser un grupo puesto que no existe ninguno con 3 elementos.
- b) (A, *) no es un grupo ya que no existe el neutro para la operación.
- c) (A, *) es un grupo no conmutativo.
- d) (A, *) es un grupo isomorfo a $(\mathbb{Z}_3, +)$.

16. Sea $H = \{ \sigma \in S_9 / \sigma(1) = 1 \text{ y } \sigma(9) = 9 \}$. Entonces

- a) H no es un subgrupo de S₉ pero la composición de dos elementos de H está en H.
- b) H es un subgrupo de S₂ con 7! elementos.
- c) H es un subgrupo de S₉ con 2⁷ elementos.
- d) H no es subgrupo de S₉ pero el inverso de todo elemento de H está en H.

17. Sea $\sigma = (12345)(347)(489)$. Entonces

a) $\sigma^{126} = \sigma$

Tipo 2 AED

b)
$$\sigma^{126} = \sigma^{-1}$$

c)
$$\sigma^{126} = \sigma^2$$

d)
$$\sigma^{126} = \sigma^{36}$$

18. Los valores propios de la matriz en \mathbb{R}

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)$$

a) son
$$\{0, 2 + \sqrt{2}, 2 - \sqrt{2}\}$$
.

b) son
$$\{0, \sqrt{2}, -\sqrt{2}\}$$
.

- c) son $\{1, 2\}$.
- d) no son números reales.

19. De una matriz cuadrada A de orden 4 sobre \mathbb{Z}_5 sabemos que tiene dos subespacios propios dados por

$$V_1 \equiv \left\{ \begin{array}{l} x + y + z = 0 \\ t = 0 \end{array} \right.$$

$$V_2 \equiv \left\{ egin{array}{l} x = z \\ y = 0 \end{array}
ight.$$

señalar la respuesta correcta:

- a) No es diagonalizable puesto que sólo tiene dos subespacios propios y A es de orden 4.
- b) No podemos asegurar que sea diagonalizable puesto que no conocemos los valores propios.
- c) Es diagonalizable y una matriz de paso es $\begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
- d) Es diagonalizable y una matriz de paso es $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$
- 20. Consideremos la aplicación f definida del grupo $(\mathbb{Z}, +)$ en sí mismo por

$$f(x) = 2008 \cdot x$$

entonces

- a) f es un homomorfismo de grupos.
- b) f no es homomorfismo de grupos puesto que $f(1) \neq 1$.
- c) f es homomorfismo de grupos y su núcleo es el conjunto formado por todos los enteros múltiplos de 2008.
- d) f no es un homomorfismo de grupos ya que su imagen no es todo \mathbb{Z} .

(4) 29 de Enero de 2008