Machine Learning

Linear Regression

Matteo Papini

Credits to Alberto Maria Metelli and Francesco Trovò

Politecnico di Milano

Outline

Administrivia

Regression Problem

Practical Example

Outline

- Administrivia
- 2 Regression Problem
- 3 Practical Example

Administrivia

Matteo Papini

Assistant Professor

- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)
 - bulding 21
 - first floor
 - office 19
- Email: matteo.papini@polimi.it

- Course materials of lectures and exercise sessions uploaded to WeBeep https://webeep.polimi.it/course/view.php?id=12810
- Material of exercise sessions
 - Recorded exercise sessions
 - Slides for lectures and exercise sessions (some topics are only covered in exercise sessions)
 - Pdf of exercises: solutions uploaded after the exercise session
 - Colab notebooks (we require you to understand the code at the exam, e.g., find and rectify
 mistakes).
- **Review** (on your own):
 - Linear Algebra and Statistics Recap (pdf)
 - Introduction to Python (Colab notebook)

- Course materials of lectures and exercise sessions uploaded to WeBeep https://webeep.polimi.it/course/view.php?id=12810
- Material of exercise sessions
 - Recorded exercise sessions
 - Slides for lectures and exercise sessions (some topics are only covered in exercise sessions)
 - Pdf of exercises: solutions uploaded after the exercise session
 - Colab notebooks (we require you to understand the code at the exam, e.g., find and rectify mistakes).
- **Review** (on your own):
 - Linear Algebra and Statistics Recap (pdf)
 - Introduction to Python (Colab notebook)

- Course materials of lectures and exercise sessions uploaded to WeBeep https://webeep.polimi.it/course/view.php?id=12810
- Material of exercise sessions
 - Recorded exercise sessions
 - Slides for lectures and exercise sessions (some topics are only covered in exercise sessions)
 - Pdf of exercises: solutions uploaded after the exercise session
 - Colab notebooks (we require you to understand the code at the exam, e.g., find and rectify
 mistakes).
- **Review** (on your own):
 - Linear Algebra and Statistics Recap (pdf)
 - Introduction to Python (Colab notebook)

- Course materials of lectures and exercise sessions uploaded to WeBeep https://webeep.polimi.it/course/view.php?id=12810
- Material of exercise sessions
 - Recorded exercise sessions
 - Slides for lectures and exercise sessions (some topics are only covered in exercise sessions)
 - **Pdf of exercises**: solutions uploaded after the exercise session
 - Colab notebooks (we require you to understand the code at the exam, e.g., find and rectify mistakes).
- **Review** (on your own):
 - Linear Algebra and Statistics Recap (pdf)
 - Introduction to Python (Colab notebook)

- Course materials of lectures and exercise sessions uploaded to WeBeep https://webeep.polimi.it/course/view.php?id=12810
- Material of exercise sessions
 - Recorded exercise sessions
 - Slides for lectures and exercise sessions (some topics are only covered in exercise sessions)
 - Pdf of exercises: solutions uploaded after the exercise session
 - Colab notebooks (we require you to understand the code at the exam, e.g., find and rectify mistakes).
- **Review** (on your own):
 - Linear Algebra and Statistics Recap (pdf)
 - Introduction to Python (Colab notebook)

5/26

- Course materials of lectures and exercise sessions uploaded to WeBeep https://webeep.polimi.it/course/view.php?id=12810
- Material of exercise sessions
 - Recorded exercise sessions
 - Slides for lectures and exercise sessions (some topics are only covered in exercise sessions)
 - Pdf of exercises: solutions uploaded after the exercise session
 - Colab notebooks (we require you to understand the code at the exam, e.g., find and rectify mistakes).
- **Review** (on your own):
 - Linear Algebra and Statistics Recap (pdf)
 - Introduction to Python (Colab notebook)

- Course materials of lectures and exercise sessions uploaded to WeBeep https://webeep.polimi.it/course/view.php?id=12810
- Material of exercise sessions
 - Recorded exercise sessions
 - Slides for lectures and exercise sessions (some topics are only covered in exercise sessions)
 - Pdf of exercises: solutions uploaded after the exercise session
 - Colab notebooks (we require you to understand the code at the exam, e.g., find and rectify mistakes).
- **Review** (on your own):
 - Linear Algebra and Statistics Recap (pdf)
 - Introduction to Python (Colab notebook)

- Course materials of lectures and exercise sessions uploaded to WeBeep https://webeep.polimi.it/course/view.php?id=12810
- Material of exercise sessions
 - Recorded exercise sessions
 - Slides for lectures and exercise sessions (some topics are only covered in exercise sessions)
 - Pdf of exercises: solutions uploaded after the exercise session
 - Colab notebooks (we require you to understand the code at the exam, e.g., find and rectify mistakes).
- **Review** (on your own):
 - Linear Algebra and Statistics Recap (pdf)
 - Introduction to Python (Colab notebook)

- Course materials of lectures and exercise sessions uploaded to WeBeep https://webeep.polimi.it/course/view.php?id=12810
- Material of exercise sessions
 - Recorded exercise sessions
 - Slides for lectures and exercise sessions (some topics are only covered in exercise sessions)
 - Pdf of exercises: solutions uploaded after the exercise session
 - Colab notebooks (we require you to understand the code at the exam, e.g., find and rectify mistakes).
- **Review** (on your own):
 - Linear Algebra and Statistics Recap (pdf)
 - Introduction to Python (Colab notebook)

Suggested Literature

- Bishop, C.M., "Pattern recognition and machine learning", 2006, Springer https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
- James, G., Witten, D., Hastie, T., Tibshirani, R., "An introduction to statistical learning", 2013, Springer

https://www.statlearning.com/

Outline

- Administrivia
- Regression Problem
- 3 Practical Example

Where Everything Starts

Consider the Iris Dataset

(https://en.wikipedia.org/wiki/Iris_flower_data_set):

- Šepal length
- Sepal width
- Petal length
- Petal width
- Species (Iris setosa, Iris virginica e Iris versicolor)

N = 150 total samples (50 per species)

Example of Dataset

Sepal length	Sepal width	Petal length	Petal width	Class
5.1000	3.5000	1.4000	0.2000	Iris-setosa
4.9000	3.0000	1.4000	0.2000	Iris-setosa
4.7000	3.2000	1.3000	0.2000	Iris-setosa
4.6000	3.1000	1.5000	0.2000	Iris-setosa
5.0000	3.6000	1.4000	0.2000	Iris-setosa
5.4000	3.9000	1.7000	0.4000	Iris-setosa
4.6000	3.4000	1.4000	0.3000	Iris-setosa
5.0000	3.4000	1.5000	0.2000	Iris-setosa
4.4000	2.9000	1.4000	0.2000	Iris-setosa
4.9000	3.1000	1.5000	0.1000	Iris-setosa
5.4000	3.7000	1.5000	0.2000	Iris-setosa

- Can we extract some information from the data?
- What can we infer from them?
- Can we provide predictions on some of the quantities on newly seen data
- Can we predict the petal width of a specific kind of *Iris setosa* by using the petal length

- Can we extract some information from the data?
- What can we infer from them?
- Can we provide predictions on some of the quantities on newly seen data
- Can we predict the **petal width** of a specific kind of *Iris setosa* by using the **petal length**

- Can we extract some information from the data?
- What can we infer from them?
- Can we provide predictions on some of the quantities on newly seen data
- Can we predict the **petal width** of a specific kind of *Iris setosa* by using the **petal length**

- Can we extract some information from the data?
- What can we infer from them?
- Can we provide predictions on some of the quantities on newly seen data?
- Can we predict the **petal width** of a specific kind of *Iris setosa* by using the **petal length**?

- Can we extract some information from the data?
- What can we infer from them?
- Can we provide predictions on some of the quantities on newly seen data?
- Can we predict the **petal width** of a specific kind of *Iris setosa* by using the **petal length**?

Solution: Linear Regression

We need to specify:

• Hypothesis space: linear models

$$\hat{t} = y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j x_j = \mathbf{w}^\top \mathbf{x}$$

where
$$\mathbf{w} = (w_0, w_1, \dots, w_{M-1})^{\top}$$
 and $\mathbf{x} = (1, x_1, \dots, x_{M-1})^{\top}$

• Loss function: **residual sum of squares** over the N samples $\{(\mathbf{x}_n, t_n)\}_{n=1}^N$:

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n, \mathbf{w}) - t_n)^2$$

• Optimization method: closed form, gradient descent, ...

Solution: Linear Regression

We need to specify:

• Hypothesis space: linear models

$$\hat{t} = y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j x_j = \mathbf{w}^\top \mathbf{x}$$

where
$$\mathbf{w} = (w_0, w_1, \dots, w_{M-1})^{\top}$$
 and $\mathbf{x} = (1, x_1, \dots, x_{M-1})^{\top}$

• Loss function: **residual sum of squares** over the N samples $\{(\mathbf{x}_n, t_n)\}_{n=1}^N$:

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n, \mathbf{w}) - t_n)^2$$

• Optimization method: closed form, gradient descent, ...

4□ > 4□ > 4□ > 4□ > 4□ > 9

Solution: Linear Regression

We need to specify:

• Hypothesis space: linear models

$$\hat{t} = y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j x_j = \mathbf{w}^\top \mathbf{x}$$

where
$$\mathbf{w} = (w_0, w_1, \dots, w_{M-1})^{\top}$$
 and $\mathbf{x} = (1, x_1, \dots, x_{M-1})^{\top}$

• Loss function: **residual sum of squares** over the N samples $\{(\mathbf{x}_n, t_n)\}_{n=1}^N$:

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n, \mathbf{w}) - t_n)^2$$

• Optimization method: closed form, gradient descent, ...

11/26

Example of Dataset

In our Iris dataset example: $\mathbf{x} = (1, \text{Petal length})^{\top} (M = 2)$ and t = Petal width

	variables, features, input, x		target, response, output, t
	Constant	Petal length	Petal width
	1.0000	3.5000	0.2000
	1.0000	1.4000	0.2000
	1.0000	1.3000	0.2000
	1.0000	1.5000	0.2000
	1.0000	1.4000	0.2000
rows, instances (N)	1.0000	1.7000	0.4000
	1.0000	1.4000	0.3000
	1.0000	1.5000	0.2000
	1.0000	1.4000	0.2000
	1.0000	1.5000	0.1000
	1.0000	1.5000	0.2000

Example of Dataset

Outline

Administrivia

- 2 Regression Problem
- 3 Practical Example

- Load data
- Inspect data
- Select the interesting data
- Preprocessing
 - shuffling (shuffle())
 - remove inconsistent data
 - remove outliers
 - normalize or standardize data (zscore())
 - fill missing data (is_nan())

- Load data
- Inspect data
- Select the interesting data
- Preprocessing
 - shuffling (shuffle())
 - remove inconsistent data
 - remove outliers
 - normalize or standardize data (zscore())
 - fill missing data (is_nan())

- Load data
- Inspect data
- Select the interesting data
- Preprocessing
 - shuffling (shuffle())
 - remove inconsistent data
 - remove outliers
 - normalize or standardize data (zscore ())
 - fill missing data (is_nan())

- Load data
- Inspect data
- Select the interesting data
- Preprocessing
 - shuffling (shuffle())
 - remove inconsistent data
 - remove outliers
 - normalize or standardize data (zscore())
 - fill missing data (is_nan())

- Load data
- Inspect data
- Select the interesting data
- Preprocessing
 - shuffling (shuffle())
 - remove inconsistent data
 - remove outliers
 - normalize or standardize data (zscore())
 - fill missing data (is_nan())

- Load data
- Inspect data
- Select the interesting data
- Preprocessing
 - shuffling (shuffle())
 - remove inconsistent data
 - remove outliers
 - normalize or standardize data (zscore())
 - fill missing data (is_nan())

- Load data
- Inspect data
- Select the interesting data
- Preprocessing
 - shuffling (shuffle())
 - remove inconsistent data
 - remove outliers
 - normalize or standardize data (zscore())
 - fill missing data (is_nan())

- Load data
- Inspect data
- Select the interesting data
- Preprocessing
 - shuffling (shuffle())
 - remove inconsistent data
 - remove outliers
 - normalize or standardize data (zscore())
 - fill missing data (is_nan())

Preliminary Operations

- Load data
- Inspect data
- Select the interesting data
- Preprocessing
 - shuffling (shuffle())
 - remove inconsistent data
 - remove outliers
 - normalize or standardize data (zscore())
 - fill missing data (is_nan())

15/26

Data Normalization

Samples $\{s_1, \ldots, s_N\} \to \text{normalization of sample } s$:

z-score

$$\frac{s-\bar{s}}{S}$$

where
$$\overline{s} = \frac{1}{N} \sum_{n=1}^{N} s_n$$
 and $S^2 = \frac{1}{N-1} \sum_{n=1}^{N} (s_n - \overline{s})^2$

Min-max feature scaling

$$\frac{s - s_{\min}}{s_{\max} - s_{\min}}$$

where
$$s_{\text{max}} = \max_{n \in \{1, \dots, N\}} s_n$$
 and $s_{\text{min}} = \min_{n \in \{1, \dots, N\}} s_n$

Data Normalization

Samples $\{s_1, \ldots, s_N\} \to \text{normalization of sample } s$:

z-score

$$\frac{s-\bar{s}}{S}$$

where
$$\overline{s} = \frac{1}{N} \sum_{n=1}^{N} s_n$$
 and $S^2 = \frac{1}{N-1} \sum_{n=1}^{N} (s_n - \overline{s})^2$

Min-max feature scaling

$$\frac{s - s_{\min}}{s_{\max} - s_{\min}}$$

where
$$s_{\text{max}} = \max_{n \in \{1,\dots,N\}} s_n$$
 and $s_{\text{min}} = \min_{n \in \{1,\dots,N\}} s_n$

Data Normalization

Samples $\{s_1, \ldots, s_N\} \to \text{normalization of sample } s$:

z-score

$$\frac{s-\bar{s}}{S}$$

where
$$\overline{s} = \frac{1}{N} \sum_{n=1}^{N} s_n$$
 and $S^2 = \frac{1}{N-1} \sum_{n=1}^{N} (s_n - \overline{s})^2$

Min-max feature scaling

$$\frac{s - s_{\min}}{s_{\max} - s_{\min}}$$

where
$$s_{\text{max}} = \max_{n \in \{1,\dots,N\}} s_n$$
 and $s_{\text{min}} = \min_{n \in \{1,\dots,N\}} s_n$

We have several solutions from different libraries:

- sklearn with LinearRegression ()
- statsmodels with OLS
- by hand implementation $\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{t}$

First the sklearn option:

- Create a linear model (LinearRegression())
- Fit the model to the data (fit ())
- Analyze the results

We have several solutions from different libraries:

- sklearn with LinearRegression()
- statsmodels with OLS
- \bullet by hand implementation $\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{t}$

First the sklearn option:

- Create a linear model (LinearRegression())
- Fit the model to the data (fit ())
- Analyze the results

17/26

We have several solutions from different libraries:

- sklearn with LinearRegression()
- statsmodels with OLS
- by hand implementation $\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{t}$

First the sklearn option:

- Create a linear model (LinearRegression())
- Fit the model to the data (fit ())
- Analyze the results

We have several solutions from different libraries:

- sklearn with LinearRegression()
- statsmodels with OLS
- by hand implementation $\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{t}$

First the sklearn option:

- Create a linear model (LinearRegression())
- Fit the model to the data (fit ())
- Analyze the results

We have several solutions from different libraries:

- sklearn with LinearRegression()
- statsmodels with OLS
- by hand implementation $\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{t}$

First the sklearn option:

- Create a linear model (LinearRegression())
- Fit the model to the data (fit ())
- Analyze the results

Matteo Papini 17/26

We have several solutions from different libraries:

- sklearn with LinearRegression()
- statsmodels with OLS
- by hand implementation $\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{t}$

First the sklearn option:

- Create a linear model (LinearRegression())
- Fit the model to the data (fit ())
- Analyze the results

17/26

Example

• Residual Sum of Squares (RSS), Sum Of Squared Errors (SSE):

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} (\hat{t}_n - t_n)^2 \quad \text{where} \quad \hat{t}_n = y(\mathbf{x}_n, \mathbf{w})$$

- Mean Square Error: $MSE = \frac{RSS(w)}{N}$
- Root Mean Square Error: RMSE = $\sqrt{\frac{\text{RSS}(\mathbf{w})}{N}}$

Matteo Papini 19/26

• Residual Sum of Squares (RSS), Sum Of Squared Errors (SSE):

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} (\hat{t}_n - t_n)^2 \quad \text{where} \quad \hat{t}_n = y(\mathbf{x}_n, \mathbf{w})$$

- Mean Square Error: $MSE = \frac{RSS(\mathbf{w})}{N}$
- Root Mean Square Error: RMSE = $\sqrt{\frac{RSS(\mathbf{w})}{N}}$

Matteo Papini 19/26

• Residual Sum of Squares (RSS), Sum Of Squared Errors (SSE):

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} (\hat{t}_n - t_n)^2 \quad \text{where} \quad \hat{t}_n = y(\mathbf{x}_n, \mathbf{w})$$

- Mean Square Error: $MSE = \frac{RSS(w)}{N}$
- $\bullet \ \, \text{Root Mean Square Error: RMSE} = \sqrt{\frac{\text{RSS}(\mathbf{w})}{N}}$

19/26

• Coefficient of determination (R squared):

$$R^2 = 1 - \frac{RSS(\mathbf{w})}{TSS}$$

where TSS
$$=\sum_{n=1}^N (\bar{t}-t_n)^2$$
 is the Total Sum of Squares and $\bar{t}=\frac{1}{N}\sum_{n=1}^N t_n$

- Degrees of Freedom: dfe = N M
- Adjusted coefficient of determination $R_{\text{adj}}^2 = 1 (1 R^2) \frac{N 1}{\text{dfe}}$

Matteo Papini 20/26

• Coefficient of determination (R squared):

$$R^2 = 1 - \frac{RSS(\mathbf{w})}{TSS}$$

where TSS
$$=\sum_{n=1}^N (\bar{t}-t_n)^2$$
 is the Total Sum of Squares and $\bar{t}=\frac{1}{N}\sum_{n=1}^N t_n$

- Degrees of Freedom: dfe = N M
- Adjusted coefficient of determination $R_{\text{adj}}^2 = 1 (1 R^2) \frac{N 1}{\text{dfe}}$

Matteo Papini 20/26

• Coefficient of determination (R squared):

$$R^2 = 1 - \frac{RSS(\mathbf{w})}{TSS}$$

where TSS
$$=\sum_{n=1}^{N} (\bar{t}-t_n)^2$$
 is the Total Sum of Squares and $\bar{t}=\frac{1}{N}\sum_{n=1}^{N} t_n$

- Degrees of Freedom: dfe = N M
- Adjusted coefficient of determination $R_{\text{adj}}^2 = 1 (1 R^2) \frac{N 1}{\text{dfe}}$

Matteo Papini 20/26

- Assumption: t_n satisfy $t_n = \mathbf{w}^T \mathbf{x}_n + \epsilon_n$, where ϵ_n is i.i.d. Gaussian white zero-mean noise and variance σ^2
- Exact distribution of the statistic:

$$\frac{\hat{w}_j - w_j}{\hat{\sigma}\sqrt{v_j}} \sim t_{N-M}$$

where w_j is the true parameter, \hat{w}_j the estimated parameter with N samples, v_j is the j-th diagonal element of the matrix $(\mathbf{X}^{\top}\mathbf{X})^{-1}$, t_{N-M} is the T-student distribution with dfe = N - M degrees of freedom, and $\hat{\sigma}^2$ is is the unbiased estimated for the target variance

$$\hat{\sigma}^2 = \frac{\text{RSS}(\hat{\mathbf{w}})}{N - M}$$

Matteo Papini 21/26

- Assumption: t_n satisfy $t_n = \mathbf{w}^T \mathbf{x}_n + \epsilon_n$, where ϵ_n is i.i.d. Gaussian white zero-mean noise and variance σ^2
- Exact distribution of the statistic:

$$\frac{\hat{w}_j - w_j}{\hat{\sigma}\sqrt{v_j}} \sim t_{N-M},$$

where w_j is the true parameter, \hat{w}_j the estimated parameter with N samples, v_j is the j-th diagonal element of the matrix $(\mathbf{X}^{\top}\mathbf{X})^{-1}$, t_{N-M} is the T-student distribution with dfe = N - M degrees of freedom, and $\hat{\sigma}^2$ is is the unbiased estimated for the target variance:

$$\hat{\sigma}^2 = \frac{\text{RSS}(\hat{\mathbf{w}})}{N - M}.$$

Matteo Papini 21/26

• Test on single coefficients $j \in \{0, \dots, M-1\}$:

$$H_0: w_j = 0$$
 vs. $H_1: w_j
eq 0$ $t_{ ext{stat}} = rac{\hat{w}_j - w_j}{\hat{\sigma}\sqrt{v_j}} \sim t_{N-M}$

where t_{N-M} is the T-Student distribution with N-M degrees of freedom

Matteo Papini 22/26

• Test on the overall significance of the model:

$$H_0: w_1 = \dots = w_{M-1} = 0$$
 vs. $H_1: \exists j \in \{1, \dots, M-1\} \text{ s.t. } w_j \neq 0$
$$F_{\text{stat}} = \frac{N-M}{M-1} \cdot \frac{\text{TSS} - \text{RSS}(\hat{\mathbf{w}})}{\text{RSS}(\hat{\mathbf{w}})} \sim F_{M-1,N-M}$$

where $F_{M-1,N-M}$ is the Fisher-Snedecor distribution with parameters M-1 and N-M

• We are comparing the full linear model $y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j x_j$ (with N-M d.o.f.) against the constant model $y(\mathbf{x}, w_0) = w_0$ (with N-1 d.o.f.).

Matteo Papini 23/26

• Test on the overall significance of the model:

$$H_0: w_1 = \dots = w_{M-1} = 0$$
 vs. $H_1: \exists j \in \{1, \dots, M-1\} \text{ s.t. } w_j \neq 0$
$$F_{\text{stat}} = \frac{N-M}{M-1} \cdot \frac{\text{TSS} - \text{RSS}(\hat{\mathbf{w}})}{\text{RSS}(\hat{\mathbf{w}})} \sim F_{M-1,N-M}$$

where $F_{M-1,N-M}$ is the Fisher-Snedecor distribution with parameters M-1 and N-M

• We are comparing the full linear model $y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j x_j$ (with N-M d.o.f.) against the constant model $y(\mathbf{x}, w_0) = w_0$ (with N-1 d.o.f.).

Matteo Papini 23/26

Example of OLS(x, t).fit() Output

```
Dep. Variable:
                       y
                           R-squared (uncentered):
                                                       0.927
Model:
                     OLS
                           Adj. R-squared (uncentered):
                                                       0.926
Method: Least Squares
                           F-statistic:
                                                       1889.
Date: Wed. 10 Mar 2021 Prob (F-statistic):
                                                    1.56e - 86
Time:
                 12:28:24 Log-Likelihood:
                                                     -16.645
No. Observations:
                                                       35.29
                     150
                         AIC:
                                                       38.30
Df Residuals:
                     149
                           BIC:
Df Model:
Covariance Type: nonrobust
                                                0.975]
    coef std err t P>|t| [0.025]
    0.9628 0.022 43.467 0.000
                                         0.919
                                                      1.007
x 1
Omnibus:
                   2.326
                           Durbin-Watson:
                                                       1.437
                   0.313 Jarque-Bera (JB):
Prob (Omnibus):
                                                       1.852
Skew:
                   0.210
                           Prob(JB):
                                                       0.396
Kurtosis:
                   3.347
                           Cond No.
                                                       4 1.00 = + = + = + = + 9 Q C
```

Different Implementations

fit()

- Slow in the execution
- Many checks for consistency
- Recap

By-hand solution

- Very fast
- No checks for consistency
- No tests on the coefficients

Code Exercise

```
x = zscore(dataset['petal-length'].values).reshape(-1, 1)
y = zscore(dataset['petal-width'].values)
Phi = np.ones((len(x), 2))
Phi[:, 1] = x.flatten()
model = inv(Phi.T @ Phi) @ (Phi.T.dot(y))
r_model = linear_model.Ridge(alpha=10)
r_model.fit(x, y)
l_model = linear_model.Lasso(alpha=10)
l_model.fit(x, y)
```

- Which problem is the snippet above solving?
- Which algorithms are implemented by the snippet above?
- Which model would you choose to provide an interpretable solution, e.g., a model whose parameters influence are easy to explain?
- Which are the pros and the cons of using the algorithm in lines 3-5?

Matteo Papini 26/26