计算方法上机作业

任课教师:张晓丹

学生:赵朝阳

学号: b20170427

班级:国科博17

$\underline{https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework}$

国科博 17-赵朝阳-b20170427-qq:2199474541

1 =	
1 /	×

3-1	3
3-2-1	10
3-3	11
3-4	13
3-5	15
3-6	17
5-1	20
5-2	30
6-1	35
6-2	38
7-2	41
9-1	47

3-1

实验目的:考察不动点迭代法的局部收敛性

试验内容:构造如下方程 2x-e^x+3=0 至少采用 3 种不动点迭代法, 迭代 100 次,考察收敛性,改变初值符号,再做迭代。分析收敛与发散的原因。

迭代方法一:

构造迭代方程:

 $X_{k+1} = \Psi_1(X_k)$

 $\Psi_1(x_k) = (e^x - 3)/2$

程序截图

```
2
      %First iterative method
3 -
      i = 0;
4 -
      x0 = x;
5 - while(i < 100)
          x1 = (\exp(x0)-3)/2;
          %Terminate the process and output the result when the abs between x1 and x0 is less than 1e-4
8 - -
        while( abs( x1 - x0 ) < 1e-4)
9 -
             fprintf('在初始值为%i的条件下,在第%i次迭代后,结果为%i,误差小于0.0001\r\n',[x,i,x1]);
10 -
11 -
         end
12 -
         x0 = x1;
13 -
         i = i + 1;
14 - end
```

运行结果截图

当初始值 x₀=1

```
>> c = a_1(1)
```

在第次6迭代后,结果为-1.373363e+00,误差小于0.0001

在第次7迭代后,结果为-1.373373e+00,误差小于0.0001

在第次8迭代后,结果为-1.373374e+00,误差小于0.0001

在第次9迭代后,结果为-1.373375e+00,误差小于0.0001

. . .

在初始值为1的条件下,在第97次迭代后,结果为-1.373375e+00,误差小于0.0001在初始值为1的条件下,在第98次迭代后,结果为-1.373375e+00,误差小于0.0001在初始值为1的条件下,在第99次迭代后,结果为-1.373375e+00,误差小于0.0001

c =

-1.3734

迭代 9 次后, 结果收敛。

当 x₀=-1

 $>> c = a_1(-1)$

在初始值为-1的条件下,在第5次迭代后,结果为-1.373373e+00,误差小于0.0001 在初始值为-1的条件下,在第6次迭代后,结果为-1.373374e+00,误差小于0.0001 在初始值为-1的条件下,在第7次迭代后,结果为-1.373375e+00,误差小于0.0001

在初始值为-1的条件下,在第97次迭代后,结果为-1.373375e+00,误差小于0.0001 在初始值为-1的条件下,在第98次迭代后,结果为-1.373375e+00,误差小于0.0001 在初始值为-1的条件下,在第99次迭代后,结果为-1.373375e+00,误差小于0.0001

c =

-1.3734

迭代7次后收敛。

迭代方法二:

构造迭代方程:

 $x_{k+1} = \Psi_2(x_k)$

 $\Psi_2(x_k) = \ln(2*x_k+3)$

程序截图:

```
1
    2
      %Second iterative method
3 -
      i = 0;
4 -
      x0 = x;
5 -
    6 -
         x1 = log(2*x0+3);
7 -
         x0 = x1;
8 -
          i = i + 1;
          %Terminate the process and output the result when the abs between x1 and x0 is less than 1e-4
10 -
         while( abs( x1 - x0 ) < 1e-4)
11 -
             fprintf('在初始值为%i的条件下,在第%i次迭代后,结果为%i,误差小于0.000¼\r\n',[x,i,x1]);
12 -
13 -
         end
```

程序运行结果:

当初始值 x₀=1

命令行窗口

>> res = a_2(1) 在初始值为1的条件下,在第1次迭代后,结果为1.609438e+00,误差小于0.0001 在初始值为1的条件下,在第2次迭代后,结果为1.827589e+00,误差小于0.0001 在初始值为1的条件下,在第3次迭代后,结果为1.895395e+00,误差小于0.0001 在初始值为1的条件下,在第4次迭代后,结果为1.915567e+00,误差小于0.0001 在初始值为1的条件下,在第4次迭代后,结果为1.915567e+00,误差小于0.0001 在初始值为1的条件下,在第5次迭代后,结果为1.921491e+00,误差小于0.0001 在初始值为1的条件下,在第6次迭代后,结果为1.923224e+00,误差小于0.0001 在初始值为1的条件下,在第7次迭代后,结果为1.923730e+00,误差小于0.0001 在初始值为1的条件下,在第8次迭代后,结果为1.923730e+00,误差小于0.0001 在初始值为1的条件下,在第9次迭代后,结果为1.923931e+00,误差小于0.0001 在初始值为1的条件下,在第10次迭代后,结果为1.923931e+00,误差小于0.0001 在初始值为1的条件下,在第11次迭代后,结果为1.923937e+00,误差小于0.0001

国科博 17-赵朝阳-b20170427-qq:2199474541

. . .

在初始值为1的条件下,在第98次迭代后,结果为1.923939e+00,误差小于0.0001 在初始值为1的条件下,在第99次迭代后,结果为1.923939e+00,误差小于0.0001 在初始值为1的条件下,在第100次迭代后,结果为1.923939e+00,误差小于0.0001

res =

1.9239

迭代13次后收敛。

当初始值 x₀=-1

命令行窗口

>> res = a_2(-1)

在初始值为-1的条件下,在第1次迭代后,结果为0,误差小于0.0001

在初始值为-1的条件下,在第2次迭代后,结果为1.098612e+00,误差小于0.0001 在初始值为-1的条件下,在第3次迭代后,结果为1.839954e+00,误差小于0.0001 在初始值为-1的条件下,在第4次迭代后,结果为1.839954e+00,误差小于0.0001 在初始值为-1的条件下,在第5次迭代后,结果为1.899104e+00,误差小于0.0001 在初始值为-1的条件下,在第6次迭代后,结果为1.916659e+00,误差小于0.0001 在初始值为-1的条件下,在第7次迭代后,结果为1.921810e+00,误差小于0.0001 在初始值为-1的条件下,在第8次迭代后,结果为1.923317e+00,误差小于0.0001 在初始值为-1的条件下,在第9次迭代后,结果为1.923757e+00,误差小于0.0001 在初始值为-1的条件下,在第10次迭代后,结果为1.923886e+00,误差小于0.0001 在初始值为-1的条件下,在第11次迭代后,结果为1.923923e+00,误差小于0.0001 在初始值为-1的条件下,在第12次迭代后,结果为1.923934e+00,误差小于0.0001 在初始值为-1的条件下,在第13次迭代后,结果为1.923937e+00,误差小于0.0001 在初始值为-1的条件下,在第13次迭代后,结果为1.923937e+00,误差小于0.0001

. . .

在初始值为-1的条件下,在第98次迭代后,结果为1.923939e+00,误差小于0.0001 在初始值为-1的条件下,在第99次迭代后,结果为1.923939e+00,误差小于0.0001 在初始值为-1的条件下,在第100次迭代后,结果为1.923939e+00,误差小于0.0001

res =

1.9239

迭代方法三:

构造迭代方程:

$$X_{k+1} = \Psi_3(X_k)$$

$$\Psi_3(x_k) = e^{x_k} - x_k - 3$$

程序截图:

```
2
      %Third iterative method
3 -
      i = 0:
4 -
      x0 = x;
5 - while(i < 100)
         x1 = \exp(x0) - x0 - 3;
6 -
7 -
         x0 = x1;
8 -
         i = i + 1:
9
         %Terminate the process and output the result when the abs between x1 and x0 is less than 1e-4
10 - - while (abs(x1 - x0) < 1e-4)
            fprintf('在初始值为%i的条件下,在第%i次迭代后,结果为%i,误差小于0.0001\r\n',[x,i,x1]);
11 -
12 -
             break:
13 -
          end
    end
```

程序运行截图:

当初始值 x₀=1

命令行窗口

 \Rightarrow res = a_3(1)

在初始值为1的条件下,在第1次迭代后,结果为-1.281718e+00,误差小于0.0001 在初始值为1的条件下,在第2次迭代后,结果为-1.440722e+00,误差小于0.0001 在初始值为1的条件下,在第3次迭代后,结果为-1.322521e+00,误差小于0.0001

. . .

在初始值为1的条件下,在第47次迭代后,结果为-1.373374e+00,误差小于0.0001 在初始值为1的条件下,在第48次迭代后,结果为-1.373375e+00,误差小于0.0001 在初始值为1的条件下,在第49次迭代后,结果为-1.373374e+00,误差小于0.0001 在初始值为1的条件下,在第50次迭代后,结果为-1.373375e+00,误差小于0.0001

https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

. .

在初始值为1的条件下,在第99次迭代后,结果为-1.373375e+00,误差小于0.0001 在初始值为1的条件下,在第100次迭代后,结果为-1.373375e+00,误差小于0.0001

res =

-1.3734

迭代 50 次后收敛

当初始值 x₀=-1

命令行窗口

>> res = a_3(-1)

在初始值为-1的条件下,在第1次迭代后,结果为-1.632121e+00,误差小于0.0001 在初始值为-1的条件下,在第2次迭代后,结果为-1.172365e+00,误差小于0.0001 在初始值为-1的条件下,在第3次迭代后,结果为-1.518001e+00,误差小于0.0001

. . .

在初始值为-1的条件下,在第51次迭代后,结果为-1.373375e+00,误差小于0.0001 在初始值为-1的条件下,在第52次迭代后,结果为-1.373374e+00,误差小于0.0001 在初始值为-1的条件下,在第53次迭代后,结果为-1.373375e+00,误差小于0.0001 在初始值为-1的条件下,在第54次迭代后,结果为-1.373374e+00,误差小于0.0001 在初始值为-1的条件下,在第55次迭代后,结果为-1.373375e+00,误差小于0.0001

在初始值为-1的条件下,在第99次迭代后,结果为-1.373375e+00,误差小于0.0001 在初始值为-1的条件下,在第100次迭代后,结果为-1.373375e+00,误差小于0.0001

res =

-1.3734

迭代 55 次后收敛

分析收敛与发散的原因:三种方法收敛依次加快,主要是其误差余项 依次减小。

3-2-1

(1) 实验目的:考察 Newton 法求单根的收敛速度

实验内容:应用 Newton 法求解实验 3-1 中的方程,并与实验 3-1 中收敛的迭代法进行比较,考察收敛速度。精确到 10^{-4} 。

按照 Newton 法得如下推导:

$$f(x)=e^{x}-2x-3$$

$$f'(x) = e^{x} - 2$$

$$u(x)=f(x)/f'(x)$$

$$\Phi(x)=x-u(x)=x-\frac{e^x-2x-3}{e^x-2}$$

迭代公式为:

$$X_{k+1} = \Phi(x_k)$$

程序截图:

程序运行截图:

当初始值为 x₀=1

>> res = b(1)

在初始值为1的条件下,在第8次迭代后,结果为1.923939e+00,误差小于0.0001

res =

1.9239

迭代 8 次后收敛

当初始值为 x₀=-1

命令行窗口

 \Rightarrow res = b(-1)

在初始值为-1的条件下,在第3次迭代后,结果为-1.373375e+00,误差小于0.0001

res =

-1.3734

迭代3次后收敛。

收敛速度明显快于 3-1 中的不动点迭代法

3-3

实验目的:掌握求重根的方法

实验内容:分别用 Newton 法与不动点迭代法求解方程 x-sinx=0 考

察收敛速度,再用求重根的两种方法求方程的根,精确到 10⁻⁴。

不动点迭代法求解方程:

构造迭代方程:

 $x_{k+1} = \Psi(x_k)$

 $\Psi(x_k) = \sin x_k$

程序截图:

```
1 \neg function x1 = c_n(x)
    5%This slice of codes responds to the 3-3 problem.
3
     -%Newton method
4 -
      x0 = x;
      a = 1;
      i = 0;
    7 -
        x1 = sin(x0);
9 -
         a = abs(x1 - x0);
.0 -
         x0 = x1;
         i = i + 1;
1 -
2 -
     - end
    fprintf('在初始值为%i的条件下,在第%i次迭代后,结果为%f,误差小于0.0001\r\n',[x,i,x1]);
3 -
```

程序运行截图:

当初始值为 x₀=1

命令行窗口

迭代 417 次后达到误差精度

Newton 法求解方程

构造迭代方程:

$$f(x)=x-\sin x$$

$$f'(x)=1-\cos(x)$$

$$u(x)=f(x)/f'(x)$$

$$\Phi(x)=x-u(x)=x-\frac{x-\sin x}{1-\cos x}$$

迭代公式为:

$$X_{k+1} = \Phi(X_k)$$

程序截图:

```
1 \neg function x1 = c_s(x)
    5%This slice of codes responds to the 3-3 problem.
     -%Newton method
     x0 = x;
4 -
5 -
     i = 0;
     a = 1;
7 - while (a > 1e-4)
        x1 = x0 - (x0-\sin(x0))/(1-\cos(x0));
9 -
        a = abs(x1 - x0);
10 -
       x0 = x1;
11 -
        i = i + 1;
12 -
     - end
    13 -
```

程序运行截图:

当初始值为 x₀=1

```
      命令行窗口

      >> res = c_s(1)

      在初始值为1的条件下,在第21次迭代后,结果为0.000194,误差小于0.0001

      res =

      1.9449e-04
```

迭代 21 次后达到误差精度

经比较, Newton 法收敛更快。

3-4

实验目的:体验 Steffensen's method 加速技巧

实验内容: 先用 Newton 法求解方程 x-tanx=0

再用 Steffensen's method 求解,比较迭代步数。精确到 10⁻⁴。

Newton 法:

$$f(x)=x-tanx$$

$$f'(x)=1-1/\cos^2 x$$

$$u(x)=f(x)/f'(x)$$

$$\Phi(x) = x - u(x) = x - \frac{x \cos^2(x) - \sin(x) \cos(x)}{\sin^2(x)}$$

迭代公式:

$$\chi_{k+1} = \Phi(\chi_k)$$

程序截图:

```
5%This slice of codes responds to the 3-4 problem.
2
3
      -%Newton method
4 -
      x0 = x;
5 -
      i = 0;
      a = 1;
7 - while (a > 1e-4)
8 -
         x1 = x0 + (x0*cos(x0)^2-sin(x0)*cos(x0))/((sin(x0))^2);
9 -
          a = abs(x1 - x0);
10 -
         i = i + 1:
11 -
         x0 = x1;
12 -
13 -
     fprintf('根据Newton迭代法,在初始值为%i的条件下: \r\n\t在第%i次迭代后,结果为%f,误差小于0.0001\r\n',[x,i,x1]);
```

程序运行截图:

命令行窗口

```
>> res = d_n(1)
```

根据Newton迭代法,在初始值为1的条件下:

在第22次迭代后,结果为0.000182,误差小于0.0001

res =

1.8168e-04

Steffensen's method:

构造不动点迭代方程

$$\Psi(x)=tan(x)$$

$$\chi_{k+1} = \Psi(\chi_k)$$

https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

```
2
    =\%This slice of codes responds to the 3-4 problem.
3
      -%Steffensen method
      n = 0;
4 -
5 -
      p(1) = x;
6 - while(n <= 1000)
         get p(1), p(2), p(3)
9 -
            p(k+1) = tan(p(k));
10 -
11
        %The acceleration of Atiken
        p1 = p(1) - (p(2) - p(1))^2/(p(3) - 2*p(2) + p(1));
13 -
         f0 = p1 - tan(p1);
         if( abs(f0) < 1e-4 )
14 -
15 -
            break;
16 -
         end
17 -
         n = n + 1;
18 -
         p(1) = p1;
19 -
    fprintf('根据Atiken加速,在初始值为%i的条件下: \r\n\t在第%i次迭代后,结果为%f,误差小于0.0001\r\n',[x,n,p1]);
```

程序运行截图:

```
      命令行窗口

      >> res = d_s(1)

      根据Atiken加速,在初始值为1的条件下:

      在第13次迭代后,结果为0.047783,误差小于0.0001

      res =

      0.0478
```

3-5

分别用不动点迭代与 Newton 法求解方程 3x-5*+4=0 的正根与负根。

不动点迭代法:

构造不动点方程:

$$\Psi(x)=(5^{x}-4)/3$$

$$x_{k+1} = \Psi(x_k)$$

```
function res = e_s(a)
2 -
        x(1) = a;
3 -
        i = 0;
 4 -
        err = 1;
 5 - while(err > 1e-4)
           x(2) = (5^{(x(1))-4)/3}
            % for test: fprintf('x(2)=%f\r\n',x(2));
 7
            f = 3 * x(2) - 5(x(2)) + 4;
 8 -
9
            % for test: fprintf('f=%f\r\n',f);
10 -
            err = abs(f);
11 -
           i = i + 1;
           x(1) = x(2);
      - end
13 -

      14 -
      res = x(2);

      15 -
      fprintf('根据不动点迭代法,在初始值为%i的条件下: \r\n\t在第%i次迭代后,结果为%f,误差小于0.0001\r\n',[a,i,res]);
```

程序运行截图:

命令行窗口

>> res = e_s(1)

根据不动点迭代法,在初始值为1的条件下:

在第6次迭代后,结果为-1.291623,误差小于0.0001

res =

-1.2916

程序计算负根时,求得根为-1.2916

程序计算正根时,程序发散

Newton:

$$f(x)=3x-5^{x}+4$$

$$f'(x)=3-\ln(5)*5^{x}$$

$$u(x)=f(x)/f'(x)$$

$$\Phi(x) = x - u(x) = \frac{5^{x}(1 - xIn5) - 4}{3 - In5 * 5^{x}}$$

$$\chi_{k+1} \! = \! \Phi \big(\chi_k \big)$$

https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

```
function res = e_n(c)
     5%This slice of codes responds to the 3-5 problem.
3
       -%Newton method
 4 -
       x(1) = c;
       i = 0;
5 -
       a = 1;
 7 - while(a > 1e-4)
          x(2) = ((1-x(1)*log(5))*5^(x(1)) - 4)/(3-log(5)*5^(x(1)));
8 -
9 -
           f = 3*x(2) - 5^(x(2)) + 4;
10 -
           a = abs(f);
          i = i + 1;
11 -
12 -
          x(1) = x(2);
13 -
      - end
14 -
      res = x(2);
15 - fprintf('根据不动点迭代法,在初始值为%i的条件下: \r\n\t在第%i次迭代后,结果为%f,误差小于0.0001\r\n',[c,i,res]);
```

程序运行截图:

程序计算负根时,求得根为-1.2917

程序计算正根时,求得根为1.2793

3-6

用 Newton 法与重根计算法求解方程 x-sinx = 0 的根。再用

Steffensen's method 加速 Newton 法收敛,比较结果。

Newton:

$$f(x)=x-\sin(x)$$

$$f'(x)=1-\cos(x)$$

$$u(x)=f(x)/f'(x)$$

$$\Phi(x)=x-u(x)=x-\frac{x-\sin(x)}{1-\cos(x)}$$

$$x_{k+1}=\Phi(x_k)$$

程序截图:

```
\neg function res = f_n(q)
      %This slice of codes responds to the 3-6 problem.
        -%Newton method
        x(1) = q;
 4 -
 5 -
        a = 1;
 6 -
        i = 0;
 7 - while (a > 1e-4)
 8 -
           x(2) = x(1) - (x(1) - \sin(x(1)))/(1 - \cos(x(1)));
9 -
            f = x(2) - \sin(x(2));
            a = abs(f);
10 -
11 -
            i = i + 1;
12 -
            x(1) = x(2);
13 - - end

      14 -
      res = x(2);

      15 -
      fprintf('根据不动点迭代法,在初始值为%i的条件下: \r\n\t在第%i次迭代后,结果为%f,误差小于0.0001\r\n',[q,i,res]);
```

程序运行截图:

```
命令行窗□

>> res = f_n(2)
根据不动点迭代法,在初始值为2的条件下:

在第8次迭代后,结果为0.068734,误差小于0.0001

res =

0.0687
```

重根计算法:

$$f''(x)=\sin(x)$$

$$f'''(x) = \cos(x)$$

$$f(0)=f'(0)=f''(0)=0$$
 $f'''(0)=1$

x=0 是方程的三重根。故 m=3

构造迭代方程:

$$\Phi(x)=x-m*u(x)=x-3*\frac{x-\sin(x)}{1-\cos(x)}$$

程序截图:

```
= function res = f_r(q)
2
     %This slice of codes responds to the 3-6 problem.
3
      -%Double root iterative method
4 -
       x(1) = q;
5 -
       a = 1;
6 -
      i = 0;
7 - while (a > 1e-4)
8 -
        x(2) = x(1) - 3*(x(1) - \sin(x(1)))/(1 - \cos(x(1)));
         f = x(2) - \sin(x(2));
9 -
10 -
          a = abs(f);
11 -
         i = i + 1;
12 -
          x(1) = x(2);
13 -
14 - res = x(2);
15 - fprintf('根据不动点迭代法,在初始值为%i的条件下: \r\n\t在第%i次迭代后,结果为%f,误差小于0.0001\r\n',[q,i,res]);
```

程序运行截图:

```
\Rightarrow res = f_r(2)
```

根据不动点迭代法,在初始值为2的条件下:

在第2次迭代后,结果为0.001002,误差小于0.0001

res =

0.0010

Steffensen's method 加速 Newton 法:

https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

```
\neg function res = f_s(q)
      5%This slice of codes responds to the 3-6 problem.
3
        -%Steffensen method
4 -
        x(1) = q;
5 -
        i = 0;
        a = 1;
7 -
     __while(a > 1e-4)
8 - \begin{array}{c} \downarrow \\ \downarrow \\ \uparrow \\ \end{array} for k = 1 : 2
9 –
               x(k+1) = x(k) - (x(k) - \sin(x(k)))/(1 - \cos(x(k)));
10 -
11
           %The acceleration of Atiken
12 –
           p = x(1) - (x(2) - x(1))^2/(x(3) - 2*x(2) + x(1));
13 -
           f = p - \sin(p);
14 -
           a = abs(f);
15
16 -
           i = i + 1;
17 -
           x(1) = p;
18 –
       - end
19 —
20 — fprintf('根据Steffensen加速Newton,在初始值为%i的条件下: \r\n\t在第%i次迭代后,结果为%f,误差小于0.0001\r\n',[q,i,p]);
```

程序运行截图:

```
\Rightarrow res = f_s(2)
```

根据Steffensen加速Newton,在初始值为2的条件下:

在第2次迭代后,结果为0.000558,误差小于0.0001

res =

5.5753e-04

结果比较:

	迭代次数	迭代结果
Newton	8	0.0687
不动点迭代	2	0.001002
Newton+Steffensen	2	0.000558

三种方法的迭代次数逐渐减小,精度逐渐提高。

5-1

实验目的:熟悉 Jacobi、Seidel、Sor 迭代法,了解松弛因子对收敛

速度的影响。

实验内容:分别用 Jacobi、Seidel、Sor(w=0.8,1.1,1.2,1.3,1.4,1.5)迭 代法求解下面的方程组,并做结果分析。

初值
$$\mathbf{x}^{(0)} = (\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0})^{\mathsf{T}}$$
,精度要求: $\frac{\left\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\right\|_{\infty}}{\left\|\mathbf{x}^{(k+1)}\right\|_{\infty}} < 10^{-5}$ 。

$$(1) \begin{cases} 12.3x_1 - 2x_2 - x_3 + 3.4x_4 - 3.7x_5 = 4.8 \\ 1.4x_1 + 9x_2 - 3x_3 + 2.4x_4 + 2.7x_5 = 2.3 \\ 2.1x_1 + x_2 + 8x_3 + 2.6x_4 + 5.8x_5 = 2.5 \\ 3.5x_1 - 2.1x_2 + x_3 + 13x_4 + 4.6x_5 = 3.6 \\ 2.5x_1 - x_2 - 2x_3 + 5.3x_4 + 14.8x_5 = 2.2 \end{cases}$$

(2)
$$\begin{cases} 13.3x_1 - 4x_2 - x_3 + 3.5x_4 - 3.8x_5 = 5.8\\ 3.4x_1 + 9x_2 - 3x_3 + 4.4x_4 + 2.3x_5 = 4.3\\ 4.1x_1 + x_2 + 7x_3 + 2.7x_4 + 5.9x_5 = 2.6\\ 2.5x_1 - 2.4x_2 + x_3 + 13x_4 + 5.6x_5 = 3.8\\ 1.5x_1 - x_2 - 3x_3 + 4.3x_4 + 14.9x_5 = 4.2 \end{cases}$$

(1)

1、根据 Jacobi:

 $\underline{\text{https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework}}$

国科博 17-赵朝阳-b20170427-qq:2199474541

```
1
      \neg function res = a_j()
      #\This slice of codes responds to the 5-1 problem.
2
       -%Jacobi method
3
 4 -
       A = [12.3, -2, -1, 3.4, -3.7; 1.4, 9, -3, 2.4, 2.7; 2.1, 1, 8, 2.6, 5.8; 3.5, -2.1, 1, 13, 4.6; 2.5, -1, -2, 5.3, 14.8];
5 -
      b = [4.8, 2.3, 2.5, 3.6, 2.2];
       len = length(b);
 6 -
 7 -
      D1 = zeros(len, len);
8 - for i = 1 : len
           %At this moment, D is transfered into the inverse of D1
9
10 -
          D1(i, i) = 1/A(i, i);
11 -
      - end
12 -
      B = eye(len) - D1*A;
13 -
        g = D1*b;
14
        %The iteration part;
15 -
        x1 = [0, 0, 0, 0, 0];
        x2 = [0, 0, 0, 0, 0];
16 -
17 -
        dx = 1;
       k = 0;
18 -
19 - while (dx > 1e-5)
20 -
          x2 = B*x1 + g;
21 -
            dx = norm(x2-x1, inf)/norm(x2, inf);
22
           %fprintf('dx = %f', dx);
23 -
            k = k + 1;
24 -
           x1 = x2;
25 -
       - end
        res = x2;
        fprintf('根据Jacobi迭代: \r\n\t在第%i次迭代后的迭代结果: \r\n', [k]);
27 - fprintf( # disp(res);
```

程序运行截图:

>> res = a_j() 根据Jacobi迭代:

在第17次迭代后的迭代结果:

- 0.3906
- 0.1678
- 0.0996
- 0.1754
- 0.0447

2、根据 Seidel:

https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

```
function a_gs()
      ≒%This slice of codes responds to the 5-1 problem.
2
       -%Gauss-Seidel method for test
3
      A = [12.3, -2, -1, 3.4, -3.7; 1.4, 9, -3, 2.4, 2.7; 2.1, 1, 8, 2.6, 5.8; 3.5, -2.1, 1, 13, 4.6; 2.5, -1, -2, 5.3, 14.8];
 4 -
      b = [4.8, 2.3, 2.5, 3.6, 2.2]';
5 -
      len = length(b);
 6 -
      D = eye(len);
 7 -
8 -
      D1 = eye(len);
9 -
      x0 = [0, 0, 0, 0, 0];
10 -
      x1 = [0, 0, 0, 0, 0];
11 - for i = 1 : len
         D(i,i) = A(i,i);
13 -
          D1(i, i) = 1/A(i, i);
14 -
      - end
15
      %The core part of Gauss Seidel
16 -
      err = 1;
      k = 0;
17 -
18 - while(err > 1e-5)
19 -
         x1 = -1*D1*(A-D)*x0 + D1*b;
20 -
          err = norm((x1 - x0), inf)/norm(x1, inf);
          k = k + 1;
21 -
22 -
          x0 = x1;
23 -
      - end
24 -
        fprintf('根据Gauss Seidel迭代: \r\n\t在第%i次迭代后的迭代结果: \r\n',[k]);
      fprintr( disp(x1);
```

程序运行截图:

命令行窗口 >> a_gs() 根据Gauss Seidel迭代: 在第17次迭代后的迭代结果: 0.3906 0.1678 0.0996 0.1754 0.0447

3、根据 Sor

https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

```
1 _function a_sor(w)
2 □ %w: 松弛因子
     %This slice of codes responds to the 5-1 (1)problem.
3
4
     -%Sor method
    5 -
6 -
     b = [4.8, 2.3, 2.5, 3.6, 2.2];
7 -
     len = length(b);
8 -
     D = eye(len);
9 - for i = 1 : len
10 -
        D(i, i) = A(i, i);
11 -
    - end
12 - L = tril(A - D);
13 - U = triu(A - D);
14
     %The main part of Sor
15 -
    err = 1;
16 -
    B = inv(D + w*L)*((1-w)*D - w*U);
17 -
    d = w*inv(D + w*L)*b;
     x0 = [0, 0, 0, 0, 0];
18 -
19 -
     x1 = [0, 0, 0, 0, 0];
20 -
     k = 0:
21 - while(err > 1e-5)
22 -
       x1 = B*x0 + d;
23 -
        err = norm(x1-x0, inf)/norm(x1, inf);
24 -
         x0 = x1;
        k = k + 1;
25 -
     - end
26 -
     fprintf('根据Sor迭代: \r\n\t在第%i次迭代后的迭代结果: \r\n',[k]);
27 -
28 - disp(x1);
```

程序运行截图:

w	对应运行结果
0.8	>> a_sor(0.8) 根据Sor迭代: 在第11次迭代后的迭代结果: 0.3906 0.1678 0.0996 0.1754 0.0447

 $\underline{https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework}$

国科博 17-赵朝阳-b20170427-qq:2199474541

1 11110	170427 44.2133474341
1.1	>> a_sor(1.1)
1.1	根据Sor迭代:
	在第12次迭代后的迭代结果:
	0.3906
	0.1678
	0.0996
	0.1754
	0.0447
1.0	>> a_sor(1.2)
1.2	根据Sor迭代:
	W Magazine 14.
	在第14次迭代后的迭代结果:
	0.3906
	0.1678
	0.0996
	0.1754
	0.0447
	\\(1.2\)
1.3	>> a_sor(1.3)
	根据Sor迭代:
	在第25次迭代后的迭代结果:
	任第20人及[[//////]]及[[/////////////////////////
	0.3906
	0.1678
	0.0996
	0.1754
	0.0447
1.4	>> a_sor(1.4)
	根据Sor迭代:
	在第65次迭代后的迭代结果:
	11年00人区14月17区14年末:
	0.3906
	0.1678
	0.0996
	0.1754
	0.0447
	0.0441

```
      1.5

      >> a_sor(1.5)

      根据Sor迭代:

      在第8355次迭代后的迭代结果:

      1.0e+307 *

      4.5090

      8.5953

      -Inf

      -1.2454

      -6.4767
```

(2)

1、根据 Jacobi:

程序截图:

```
function res = a_j_2()
     5%This slice of codes responds to the 5-1 (2)problem.
3
       -%Jacobi method
4 -
        A = [13.3, -4, -1, 3.5, -3.8; 3.4, 9, -3, 4.4, 2.3; 4.1, 1, 7, 2.7, 5.9; 2.5, -2.4, 1, 13, 5.6; 1.5, -1, -3, 4.3, 14.9];
5 -
       b = [5.8, 4.3, 2.6, 3.8, 4.2]';
6 -
        len = length(b);
7 -
       D1 = zeros(len, len);
8 - for i = 1 : len
9
            %At this moment, D is transfered into the inverse of D1
10 -
            D1(i, i) = 1/A(i, i);
11 -
       - end
       B = eye(len) - D1*A;
12 -
       g = D1*b;
13 -
        %The iteration part;
15 -
        x1 = [0, 0, 0, 0, 0];
16 -
        x2 = [0, 0, 0, 0, 0];
17 -
        dx = 1;
18 -
        k = 0;
19 - while(dx > 1e-5)
20 -
           x2 = B*x1 + g;
21 -
            dx = norm(x2-x1, inf)/norm(x2, inf);
22 -
           k = k + 1;
23 -
           x1 = x2;
       - end
24 -
25 -
        res = x2;
      fprintf('根据Jacobi迭代: \r\n\t在第%i次迭代后的迭代结果: \r\n', [k]);
```

程序运行截图:

```
      命令行窗口

      >> res = a_j_2()

      根据Jacobi迭代:

      在第26次迭代后的迭代结果:

      res =

      0.4720

      0.1330

      -0.1302

      0.1628

      0.1701
```

2、根据 Gauss Seidel:

程序截图:

```
1 function a_gs_2()
     5%This slice of codes responds to the 5-1 (2)problem.
       -%Gauss-Seidel method for test
 4 -
      A = [13.3, -4, -1, 3.5, -3.8; 3.4, 9, -3, 4.4, 2.3; 4.1, 1, 7, 2.7, 5.9; 2.5, -2.4, 1, 13, 5.6; 1.5, -1, -3, 4.3, 14.9];
 5 -
      b = [5.8, 4.3, 2.6, 3.8, 4.2]';
 6 -
      len = length(b);
 7 -
      D = eye(len);
8 -
      D1 = eye(len);
9 -
      x0 = [0, 0, 0, 0, 0];
10 -
      x1 = [0, 0, 0, 0, 0];
11 - for i = 1 : len
12 -
          D(i, i) = A(i, i);
13 -
          D1(i, i) = 1/A(i, i);
14 -
      - end
      %The core part of Gauss Seidel
15
      err = 1;
16 -
      k = 0:
17 -
18 - while(err > 1e-5)
19 -
          x1 = -1*D1*(A-D)*x0 + D1*b;
20 -
           err = norm((x1 - x0), inf)/norm(x1, inf);
21 -
           k = k + 1;
22 -
           x0 = x1;
23 -
        fprintf('根据Gauss Seidel迭代: \r\n\t在第%i次迭代后的迭代结果: \r\n', [k]);
24 -
     disp(x1);
```

程序运行截图:

```
>> a_gs_2()
根据Gauss Seidel迭代:
```

在第26次迭代后的迭代结果:

- 0.4720
- 0.1330
- -0.1302
- 0.1628
- 0.1701

3、根据 Sor

程序截图:

```
2
     直‰∵ 松弛因子
3
       %This slice of codes responds to the 5-1 (2)problem.
 4
      A = [13.3, -4, -1, 3.5, -3.8; 3.4, 9, -3, 4.4, 2.3; 4.1, 1, 7, 2.7, 5.9; 2.5, -2.4, 1, 13, 5.6; 1.5, -1, -3, 4.3, 14.9];
5 -
      b = [5.8, 4.3, 2.6, 3.8, 4.2]';
 6 -
7 -
      len = length(b);
8 -
      D = eye(len);
9 - for i = 1 : len
10 -
          D(i, i) = A(i, i);
11 -
      - end
12 -
      L = tril(A - D);
13 -
     U = triu(A - D);
14
      %The main part of Sor
      err = 1;
      B = inv(D + w*L)*((1-w)*D - w*U);
17 -
      d = w*inv(D + w*L)*b;
     x0 = [0, 0, 0, 0, 0];
18 -
      x1 = [0, 0, 0, 0, 0];
19 -
      k = 0;
20 -
21 - while (err > 1e-5)
         x1 = B*x0 + d;
22 -
23 -
          err = norm(x1-x0, inf)/norm(x1, inf);
          x0 = x1;
24 -
25 -
           k = k + 1;
26 -
      - end
       fprintf('根据Sor迭代: \r\n\t在第%i次迭代后的迭代结果: \r\n', [k]);
27 -
     _disp(x1);
```

程序运行截图:

w 对应程序运行结果

 $\underline{https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework}$

国科博 17-赵朝阳-b20170427-qq:2199474541

	T
0.8	>> a_sor_2(0.8)
	根据Sor迭代:
	在第10次迭代后的迭代结果:
	0.4720
	0.1330
	-0.1302
	0.1628
	0.1701
1.1	>> a_sor_2(1.1)
	根据Sor迭代:
	在第18次迭代后的迭代结果:
	0.4720
	0.1330
	-0.1302
	0.1628
	0.1701
1.2	>> a_sor_2(1.2)
	40.40 a 14.70
	根据Sor迭代:
	根据Sor达代: 在第28次迭代后的迭代结果:
	在第28次迭代后的迭代结果:
	在第28次迭代后的迭代结果: 0.4720
	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302
	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628
	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628 0.1701
1.3	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628 0.1701 >> a_sor_2(1.3)
1.3	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628 0.1701
1.3	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628 0.1701 >> a_sor_2(1.3) 根据Sor迭代:
1.3	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628 0.1701 >> a_sor_2(1.3)
1.3	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628 0.1701 >> a_sor_2(1.3) 根据Sor迭代:
1.3	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628 0.1701 >> a_sor_2(1.3) 根据Sor迭代:
1.3	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628 0.1701 >> a_sor_2(1.3) 根据Sor迭代: 在第64次迭代后的迭代结果:
1.3	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628 0.1701 >> a_sor_2(1.3) 根据Sor迭代: 在第64次迭代后的迭代结果: 0.4720 0.1330
1.3	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628 0.1701 >> a_sor_2(1.3) 根据Sor迭代: 在第64次迭代后的迭代结果: 0.4720 0.1330 -0.1302
1.3	在第28次迭代后的迭代结果: 0.4720 0.1330 -0.1302 0.1628 0.1701 >> a_sor_2(1.3) 根据Sor迭代: 在第64次迭代后的迭代结果: 0.4720 0.1330

https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

1.4	>> a_sor_2(1.4) 根据Sor迭代:
	在第8056次迭代后的迭代结果:
	1.0e+307 *
	3.1114 4.5017 -Inf -2.4248 -7.1981
1.5	>> a_sor_2(1.5) 根据Sor迭代:
	在第2258次迭代后的迭代结果:
	1.0e+307 *
	4.3453 1.3372
	-Inf -3.6806
	-8. 1765

5-2

实验目的:掌握 Newton 法与最速下降法求解非线性方程组,观察各自的优势。

实验内容:(1) 分别用 Newton 法与最速下降法求解下面非线性方程组

$$\begin{cases} 3x_1 - \cos(x_2x_3) - 0.5 = 0\\ x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0\\ e^{-x_1x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0 \end{cases}$$

初值
$$\mathbf{x}^{(0)} = (0.1, 0.1, -0.1)^{\mathsf{T}}$$
,精度要求: $\frac{\left\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\right\|_{\infty}}{\left\|\mathbf{x}^{(k+1)}\right\|_{\infty}} < 10^{-5}$ 。

- (2) 改变初值 $x^{(0)}$ =(20, 20, 20)^T,再用如上两种方法求解,得到什么结果。
- (3) 采用初值 $x^{(0)}$ =(20, 20, 20) T ,先用最速下降法求解 3 步,再用 Newton 迭代法,得到什么结果?对以上运算结果做分析。

(1)

Newton:

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - 0.5$$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3}$$

$$F(x_1, x_2, x_3) = \begin{pmatrix} f_1(x_1, x_2, x_3) \\ f_2(x_1, x_2, x_3) \\ f_3(x_1, x_2, x_3) \end{pmatrix}$$

$$F'(x_1, x_2, x_3) = \begin{bmatrix} 3 & x_3 \sin(x_2 x_3) & x_2 \sin(x_2 x_3) \\ 2x_1 & -162(x_2 + 0.1) & \cos(x_3) \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{bmatrix}$$

```
±%This slice of codes responds to the 5-2 problem
3
        %Newton method
        err = 1;
        k = 0;
        b = [0, 0, 0]:
      mulle (err > 1e−5)
            f1 = 3*a(1) - cos(a(2)*a(3)) - 0.5;
            f2 = a(1)^2 - 81*((a(2) + 0.1)^2) + sin(a(3)) + 1.06
           f3 = \exp(-a(1)*a(2)) + 20*a(3) + (10*pi - 3)/3;
10 -
            F = [f1, f2, f3]
11 -
            dF = [3, a(3)*\sin(a(2)*a(3)), a(2)*\sin(a(2)*a(3)); 2*a(1), -162*(a(2) + 0.1), \cos(a(3)); -a(2)*\exp(-a(1)*a(2)), -a(1)*\exp(-a(1)*a(2)), 20];
12 -
13 -
           b = a - inv(dF)*F:
            err = norm(b - a, inf)/norm(b, inf);
14 -
15 -
           k = k + 1:
16 -
17 -
18 -
        fprintf('根据Newton method迭代: \r\n\t在第%i次迭代后的迭代结果: \r\n', [k]);
       disp(b):
```

程序运行截图:

```
a =

0.1000
0.1000
-0.1000

>> b_n(a)
根据Newton method迭代:

在第5次迭代后的迭代结果:

0.5000
-0.0000
-0.5236
```

最速下降法:

程序截图:

```
1  function b_e(x)
2
     %This slice of codes responds to the 5-2 problem.
3
        -%Steepest descent method
       syms x1 x2 x3 r;
       y = (3*x1 - \cos(x2*x3) - 0.5)^2 + (x1^2 - 81*(x2 + 0.1)^2 + \sin(x3) + 1.06)^2 + (\exp(-x1*x2) + 20*x3 + (10*pi - 3)/3)^2;
5 -
6 -
       ydx1 = diff(y,x1);
7 -
       ydx2 = diff(y,x2);
       ydx3 = diff(y, x3);
8 -
       %Iteration part
9
10 -
       err = 1;
11 -
       G = [0, 0, 0]
12 -
13 -
       Ymin = 1000;
14 -
        <u>R</u> = 0;
15 -
       B = [0, 0, 0];
       k = 0;
16 -
17 - while(err > 1e-5)
         G(1) = -subs(ydx1, \{x1, x2, x3\}, \{a(1), a(2), a(3)\});
          G(2) = -subs(ydx2, \{x1, x2, x3\}, \{a(1), a(2), a(3)\});
19 -
         G(3) = -subs(ydx3, \{x1, x2, x3\}, \{a(1), a(2), a(3)\});
20 -
21
           %for r = 0 : 0.0001 : 1
22 - for r = 0 : 0.00002 : 0.0001
23 -
             b = a + r*G;
24 -
             y1 = subs(y, \{x1, x2, x3\}, \{b(1), b(2), b(3)\});
25 -
               if (Ymin > y1)
26 -
                  Ymin = y1;
27 -
                   R = r;
28 -
                   B = b;
29 -
               end
30 -
           end
         k = k + 1;
31 -
32 -
           err = norm(B-a, inf)/norm(B, inf);
33 -
           a = B;
34 -
       - end
        fprintf('根据Steepest descent method迭代: \r\n\t在第%i次迭代后的迭代结果: \r\n', [k]);
35 -
```

程序运行截图:

▲ 命令行窗口

>> b_e(a)

根据Steepest descent method迭代:

在第2738次迭代后的迭代结果:

- 0.4971
- -0.0002
- -0.5236
- (2) 将 x⁽⁰⁾=(20, 20, 20)^T带入程序,

Newton 法程序运行截图:

>> b_n(a)

警告: 矩阵为奇异值、接近奇异值或缩放错误。结果可能不准确。RCOND = NaN。

> In **b_n** (line 13)

根据Newton method迭代:

在第2次迭代后的迭代结果:

NaN

NaN

NaN

最速下降法程序运行截图:

>> b_e(a)

根据Steepest descent method迭代:

在第2866次迭代后的迭代结果:

- 0.4971
- -0.0002
- -0.5236
- (3) 对之前的最速下降法的程序进行下幅度的修改后,程序截图:

```
1 function res = b_e_1(x)
2 -
        syms x1 x2 x3 r;
3 -
        y = (3*x1 - \cos(x2*x3) - 0.5)^2 + (x1^2 - 81*(x2 + 0.1)^2 + \sin(x3) + 1.06)^2 + (\exp(-x1*x2) + 20*x3 + (10*pi - 3)/3)^2;
       ydx1 = diff(y,x1);
4 -
        ydx2 = diff(y,x2);
5 -
       ydx3 = diff(y,x3);
6 -
7
        %Iteration part
8
        %err = 1:
9 -
        a = x;
10 -
        G = [0, 0, 0];
11 -
       Ymin = 1000;
12 -
       R = 0;
13 -
        B = [0, 0, 0]';
14 -
       k = 0;
15 - while(k < 3)
         G(1) = -subs(ydx1, \{x1, x2, x3\}, \{a(1), a(2), a(3)\});
G(2) = -subs(ydx2, \{x1, x2, x3\}, \{a(1), a(2), a(3)\});
16 -
17 -
          G(3) = -subs(ydx3, \{x1, x2, x3\}, \{a(1), a(2), a(3)\});
18 -
           %for r = 0 : 0.0001 : 1
19
20 - for r = 0 : 0.00002 : 0.0001
21 -
               b = a + r*G;
22 -
              y1 = subs(y, {x1, x2, x3}, {b(1), b(2), b(3)});
if(Ymin > y1)
23 -
24 -
                    Ymin = y1;
25 -
                    R = r:
26 -
                   B = b:
27 -
               end
         end
k = k + 1;
28 -
29 -
30 -
           err = norm(B-a, inf)/norm(B, inf);
31 -
            a = B;
       - end
32 -
33 -
        fprintf('根据Steepest descent method迭代: \r\n\t在第%i次迭代后的迭代结果: \r\n',[k]);
```

程序运行截图:

```
>>> b_n(b_e_1(x))
根据Steepest descent method迭代:

在第3次迭代后的迭代结果:

0.0018
0.0014
-0.0805

根据Newton method迭代: |

在第5次迭代后的迭代结果:

0.5000
-0.0000
-0.5236
```

6-1

用规范的幂法与反幂法求矩阵 A 的按模最大、最小特征值与对应的特征向量。

$$\mathsf{A} = \begin{bmatrix} 4 & 1 & 1 & 1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{bmatrix}, \ e = 10^{-5}.$$

幂法:

```
□%This slice of codes responds to the 6-1 (1)problem.
2
3
       %Use Power law method for eigenvalue
       %A = [133, 6, 135; 44, 5, 46; -88, -6, -90];
      -\%V0 = [1, 1, 1]';
5
6
 7 -
       A = [4, 1, 1, 1; 1, 3, -1, 1; 1, -1, 2, 0; 1, 1, 0, 2];
       V0 = [1, 1, 1, 1]';
8 -
       err = 1;
9 -
       %当前后两次迭代的结果误差在1e-5以内,则认为结果符合误差精度
       m = 0:
11 -
12 -
       k = 0:
13 -
      x = 0;
14 - while(err > 1e-5)
15 - for i = 1 : length(V0)-1
16 -
             if (abs(V0(i)) > abs(V0(i+1)))
17 -
                  m = VO(i);
18 -
              else
19 -
                  m = V0(i+1);
20 -
               end
21 -
          end
22 -
         U = V0/m;
23 -
          V1 = A*U;
24 -
           err = abs(x-m);
25 -
          k = k + 1;
26 -
           x = m;
27 -
           V0 = V1:
28 -
       fprintf('根据幂法迭代: \r\n\t在第%i次迭代后的迭代结果: \r\n\t', [k]);
29 -
       fprintf('矩阵A的最大特征值是: \r\n\t\t%f\r\n\t',[m]);
30 -
31 -
      | fprintf('对应的特征向量是: \r\n');
32 -
     disp(U);
```

https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

程序运行截图:

>> a1()

根据幂法迭代:

在第25次迭代后的迭代结果:

矩阵A的最大特征值是:

5.236086

对应的特征向量是:

- 2.0000
- 1.2360
- 0.2361
- 1.0000

>> a1()

根据幂法迭代:

在第2次迭代后的迭代结果:

矩阵A的特征值是:

5.428571

对应的特征向量是:

- 1.0000
- 0.5714
- 0.2857
- 0.5714

反幂法:

电子版可在我的 Github 上直接下载

https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

```
function a2()
      5%This slice of codes responds to the 6-1 (2) problem.
2
       -%Use Iverse Power law method for eigenvalue
 3
       A = [4, 1, 1, 1; 1, 3, -1, 1; 1, -1, 2, 0; 1, 1, 0, 2];
 4 -
       V0 = [1, 1, 1, 1]';
5 -
6
       %A = [-1, 2, 1; 2, -4, 1; 1, 1, -6];
 7
       %A = [1.5, 0, 0; 0, 2, 0; 0, 0, 3];
 8
       %V0 = [1, 1, 1]';
9
10 -
       A1 = inv(A);
11 -
       err = 1;
       %当前后两次迭代的结果误差在1e-5以内,则认为结果符合误差精度
12
13 -
14 -
      k = 0;
       x = 0;
15 -
16 - while(err > 1e-10)
17 - for i = 1 : (length(V0) - 1)
18 -
              if (abs(V0(i)) > abs(V0(i+1)))
                   m = VO(i);
19 -
20 -
               else
21 -
                   m = V0(i+1);
22 -
               end
23 -
          end
           %fprintf('m=%f\r\n',[m]);
24
25 -
           U = V0/m;
          V1 = A1*U;
26 -
27
           %disp(V1);
28 -
           err = abs(x - m);
29 -
           x = m;
           k = k + 1;
30 -
           V0 = V1:
31 -
32 -
       | fprintf('根据反幂法,经过%i次的迭代计算,矩阵A的最小特征值为: %f\r\n\t',[k,1/m]);
33 -
     └fprintf('对应的特征向量为: %f, %f, %f', [1/U(1), 1/U(2), 1/U(3)]);
```

```
    ◆ 命令行窗口
    >> a2()
    根据反幂法,经过37次的迭代计算,矩阵A的最小特征值为: 0.763932
    fx
    对应的特征向量为: -2.118034,1.309017,1.000000>>
```

6-2

用 Householder 变换求矩阵 A 的 QR 方法做三次迭代。

$$\mathsf{A} = \begin{bmatrix} 4 & 1 & 1 & 1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{bmatrix}.$$

https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

```
function b1()
 1
 2 -
        A = [4, 1, 1, 1; 1, 3, -1, 1; 1, -1, 2, 0; 1, 1, 0, 2];
        e = eye(4);
 3 -
 4
 5 -
        x1 = A(1:4,1);
        q1 = -sign(x1(1))*norm(x1, 2);
 6 -
 7 -
        p1 = q1*(q1 - x1(1));
        u1 = x1 - q1*e(1:4,1);
 8 -
        h1 = e - (1/p1)*u1*(u1');
 9 -
10 -
        fprintf('h1=\r\n');
        disp(h1);
11 -
12 -
        A1 = h1*A;
        fprintf('A1=\r\n');
13 -
        disp(A1);
14 -
15
16 -
        x2 = A1(1:4,2);
17 -
        q2 = -sign(x2(2))*norm(x2(2:4), 2);
18 -
        p2 = q2*(q2 - x2(2));
19 -
        u2 = [0, x2(2) - q2, x2(3), x2(4)]';
        h2 = e - (1/p2)*u2*u2';
20 -
21 -
        fprintf('h2=\r\n');
22 -
        disp(h2);
23 -
        A2 = h2*A1;
        fprintf('A2=\r\n');
24 -
25 -
        disp(A2);
26
        x3 = A2(1:4,3);
27 -
28 -
        q3 = -sign(x3(3))*norm(x3(3:4), 2);
        p3 = q3*(q3 - x3(3));
29 -
        u3 = [0, 0, x3(3)-q3, x3(4)]';
30 -
        h3 = e - (1/p3)*u3*u3';
31 -
32 -
       fprintf('h3=\r\n');
33 -
       disp(h3);
       A3 = h3*A2;
34 -
35 -
        fprintf('A3=\r\n');
      disp(A3);
36 -
```

📣 命令行窗口

н			
177 0	0004 0	0004	0.0004
			0.0274
294 -0.	0274 -0.	0274	0.9726
589 -1.	6059 -1.	1471 -	1.6059
000 2.	6882 -1.	2569	0.6882
			0.3118
0 0.	0002 0.	2009	1.0002
000	0	0	0
0 -0.	8758 0.	4274 -	0.2242
0 0.	4274 0.	9026	0.0511
0 -0.	2242 0.	0511	0.9732
589 -1.	6059 -1.	1471 -	1.6059
000 -3.	0694 1.	9034 -	1.1146
	0000 1.	0231	0.0990
			1. 4727
	0000 0.	1203	1.4121
		_	
	•	0	0
0 1.	0000	0	0
0	0 -0.	9931 -	0.1173
0	0 -0.	1173	0.9931
589 -1 .	6059 -1.	. 1471 -	1.6059
000 -3.	0694 1.	9034 -	1.1146
000 -3. 000 -0.	0694 1. 0000 -1.	. 9034 – . 0303 –	
	294 0. 294 -0. 294 -0. 294 -0. 589 -1. 000 2. 000 -1. 0 0. 589 -1. 000 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0.	177 -0.2294 -0. 294 0.9726 -0. 294 -0.0274 0. 294 -0.0274 -0. 294 -0.0274 -0. 294 -0.0274 -0. 294 -0.0274 -0. 200 2.6882 -1. 200 -1.3118 1. 0 0.6882 -0. 200 0 0 0 0 0 0.8758 0. 0 0.4274 0. 0 -0.2242 0. 2589 -1.6059 -1. 2589 -1.6059 -1. 2589 -1.6059 -1. 2589 -1.6059 -1. 2590 0.0000 0.0000 1. 2590 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000	177 -0.2294 -0.2294 -0.294 -0.294 -0.0274 -0.0

7-2

实验目的:观察 lagrange 插值的 Runge 现象,了解若能采用合适的 节点分布,则可以避免 Runge 现象。熟悉三次样条插值。

实验内容:对于函数 $f(x)=\frac{1}{1+25x^2}(-1\leq x\leq 1)$ 进行 lagrange 插值。取不同的等分数 n=5,10,将区间[-1,1]n 等分,取等距节点。把 f(x)和 5次,10次插值多项式的曲线画在同一张图上进行比较。再取Chebyshev 节点 $x_k=-\cos\frac{k\pi}{n}$,k=0,1,…,10进行 lagrange 插值,把 f(x)和 Chebyshev 节点的 10次插值多项式的曲线画在同一张图上。

(1) 把 f(x)和 5 次, 10 次插值多项式的曲线画在同一张图上进行比较:

```
1
      function al()
2 -
       syms x;
       f = 1/(1 + 25*x^2);
3 -
       a = -1 : 2/5 : 1:
 4 -
       %将区间五等分
5
     \bigcirc for i = 1 : 6
           y5(i) = subs(f, x, a(i));
7 -
8 -
      - end
       fprintf('y5=\r\n');
9 -
       disp(y5);
10 -
       │%计算多项式插值公式
11
       fa = 0;
12 -
13 - \bigcirc for i = 1 : 6
14 -
          fa1 = 1;
         for k = 1 : 6
15 - -
               if (i ~= k)
16 -
17 -
                   fal = fal*(x-a(k))/(a(i) - a(k));
18 -
               end
19 -
           end
20 -
           fa = fa + y5(i)*fa1;
21 -
       fprintf('将区间五等分后,根据Lagrange插值得到的多项式公式为: fa=\r\n\t')
22 -
23 -
       disp(fa);
24 -
       disp(subs(fa, x, -1));
25
       %将区间十等分
26 -
       b = -1 : 2/10 : 1;
27 - \bigcirc \text{for } i = 1 : 11
28 -
           v10(i) = subs(f, x, b(i));
29 -
      - end
30 -
       fprintf('y10=\r\n');
31 -
       disp(y10);
       %计算多项式插值公式
32
33 -
       fb = 0;
34 - \bigcirc for i = 1 : 11
           fb1 = 1;
36 - for k = 1 : 11
               if (i ~= k)
37 -
38 -
                   fb1 = fb1*(x-b(k))/(b(i) - b(k));
39 -
               end
40 -
          end
```

电子放明性找的 Github 工直接下载 https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

```
fb = fb + y10(i)*fb1;
41 -
42 -
       fprintf('将区间十等分后,根据Lagrange插值得到的多项式公式为:fb=\r\n\t');
43 -
       disp(fb);
44 -
45
46
       %Draw graphic
       u = -1 : 2/100 : 1:

\Box
 for i = 1 : length(u)
48 -
           \underline{v}(i) = subs(f, x, u(i));
49 -
           \sqrt{5}(i) = subs(fa, x, u(i));
50 -
           v10(i) = subs(fb, x, u(i)):
51 -
52 -
       - end
      lplot (u, v, '-. b', u, v5, '--r*', u, v10, '-. gh');
53 -
程序运行截图:
>> al()
y5=
[ 1/26, 1/10, 1/2, 1/2, 1/10, 1/26]
将区间五等分后,根据Lagrange插值得到的多项式公式为: fa=
    (625*(x/2 + 1/2)*(x - 1/5)*(x + 1/5)*(x - 3/5)*(x + 3/5))/9!
1/26
v10=
[ 1/26, 1/17, 1/10, 1/5, 1/2, 1, 1/2, 1/5, 1/10, 1/17, 1/26]
将区间十等分后,根据Lagrange插值得到的多项式公式为: fb=
    (78125*x*(5*x + 4)*(x - 1)*(x - 1/5)*(x + 1/5)*(x - 2/5)*(x
拟合公式太长:单独黏贴出来为:
五次插值多项式拟合公式:
f_5(x) = (625*(x/2 + 1/2)*(x - 1/5)*(x + 1/5)*(x - 3/5)*(x + 3/5))/9984 -
(125*((5*x)/2 + 3/2)*(x - 1)*(x - 1/5)*(x + 1/5)*(x - 3/5))/9984 +
```

(125*((5*x)/2 + 5/2)*(x - 1)*(x - 1/5)*(x + 1/5)*(x - 3/5))/768 -

$$f_{10}(x) = (78125*x*(5*x + 4)*(x - 1)*(x - 1/5)*(x + 1/5)*(x - 2/5)*(x + 2/5)*(x - 3/5)*(x + 4)*(x - 4/5))/3773952 - (390625*x*(5*x + 5)*(x - 1)*(x - 1/5)*(x + 1/5)*(x - 2/5)*(x + 2/5)*(x - 3/5)*(x + 3/5)*(x - 4/5))/1233792 + (390625*x*(x/2 + 1/2)*(x - 1/5)*(x + 1/5)*(x - 2/5)*(x + 2/5)*(x - 3/5)*(x - 3/5)*(x + 3/5)*(x - 4/5)*(x + 4/5))/1886976 + (78125*x*((5*x)/2 + 5/2)*(x - 1)*(x - 1/5)*(x + 1/5)*(x - 2/5)*(x + 2/5)*(x - 3/5)*(x - 4/5)*(x + 4/5))/16128 - (78125*x*((5*x)/3 + 5/3)*(x - 1)*(x - 1/5)*(x + 1/5)*(x - 2/5)*(x - 3/5)*(x + 4/5))/2016 + (390625*x*((5*x)/4 + 5/4)*(x - 1)*(x - 1/5)*(x - 2/5)*(x + 2/5)*(x - 3/5)*(x + 3/5)*(x - 4/5)*(x + 4/5))/1728 + (390625*x*((5*x)/6 + 5/6)*(x - 1)*(x + 1/5)*(x - 2/5)*(x + 2/5)*(x - 3/5)*(x + 3/5)*(x - 4/5)*(x + 4/5))/1728 - (78125*x*((5*x)/6 + 5/6)*(x - 1)*(x + 1/5)*(x - 2/5)*(x + 4/5))/1728 + (390625*x*((5*x)/6 + 5/6)*(x + 4/5))/1152 - (78125*x*((5*x)/7 + 5/7)*(x - 1)*(x - 1/5)*(x + 1/5)*(x + 4/5))/(x + 4/5))/1022 - (78125*x*((5*x)/7 + 5/7)*(x - 1)*(x - 1/5)*(x + 1/5)*(x + 4/5))/(x + 4/5))/4032 - (390625*x*((5*x)/9 + 5/9)*(x - 1)*(x - 1/5)*(x + 1/5)*(x - 4/5)*(x + 4/5))/137088 - (390625*(x - 1)*(x + 1/5)*(x - 3/5)*(x + 3/5)*(x + 3/5)*(x - 3/5$$

(2) 再取 Chebyshev 节点 $x_k=-\cos\frac{k\pi}{n}$, k=0, 1, ···, 10 进行 lagrange 插值,把 f(x)和 Chebyshev 节点的 10 次插值多项式的曲线画在同一张图上

```
function ac()
2 -
        syms x;
       f = 1/(1 + 25*x^2);
3 -
5 - \bigcirc for i = 1 : 11
           b(i) = -cos((i-1)*pi/10);
7 -
            yb(i) = subs(f, x, b(i));
8 -
       - end
9
       fb = 0;
10 -
11 - \bigcirc \text{for } i = 1 : 11
12 -
           fb1 = 1;
13 - for k = 1 : 11
                if(i ~= k)
14 -
                     fb1 = fb1*(x - b(k))/(b(i) - b(k));
15 -
16 -
                end
17 -
            end
            fb = fb + yb(i)*fb1;
18 -
19 -
       - end
20
21 -
       u = -1 : 1/200 : 1;
22 - for i = 1 : length(u)
23 -
           y(i) = subs(f, x, u(i));
            v10(i) = subs(fb, x, u(i));
24 -
25 -
       - end
26 -
       └plot(u, v, '-. b', u, v10, '-. gh');
```


9-1

实验目的:熟悉数值积分公式,掌握数值计算定积分的方法

实验内容:采用不同方法数值计算积分

$$\int_0^1 \frac{In(1+x)}{x} dx$$

- (1) 编写复化梯形公式和复化 Simpson 公式通用子程序,分别采用 4,8,16,32,64 等分区间计算。
 - (2) 使用 Romberg 求积公式。

- (3) 使用高斯-勒让德求积公式(n=2, 4, 8)。
- (1) 复化梯形公式:

$$\int_a^b f(x) = \frac{(b-a)}{2} (f(a) + f(b))$$

程序截图:

复化 Simpson 公式:

$$\int_{a}^{b} f(x) = \frac{(b-a)}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

程序截图:

命令行窗口

>> as(4)

当积分区间被4等分时,积分结果为:

0.82218776176367958200552855963772

>> as(8)

当积分区间被8等分时,积分结果为:

0.82217288050941972402665744676071

>> as(16)

当积分区间被16等分时,积分结果为:

0.82216646432158827613539862748363

>> as(32)

当积分区间被32等分时,积分结果为:

0.82216337325819790809965156803444

>> as(64)

当积分区间被64等分时,积分结果为:

0.82216184778951134618278616221965

(2) Romberg 求积:

$$T_{1,k} = T_{2^k} = \frac{1}{2} \left[T_{1,k-1} + h_{k-1} \sum_{i=1}^{2^{k-1}} f(a + h_k(2i - 1)) \right], h_k = \frac{b - a}{2^k}$$

$$T_{m+1,k} = T_{m,k+1} + \frac{T_{m,k+1} - T_{m,k}}{4^m - 1}$$

```
function r()
        syms x:
       f = \log(x + 1)/x;
       a = 0.001 : 1/8 : 1;
       a(9) = 1:

    for i = 1 : 9

7 -
            y(i) = subs(f, x, a(i));
      - end
       T1(1) = (1/2)*(y(1) + y(9));
      T1(2) = (1/2)*(T1(1) + y(5));
      T1(3) = (1/2)*(T1(2) + 0.5*(y(3) + y(7)));
      T1(4) = (1/2)*(T1(3) + 0.25*(y(2) + y(4) + y(6) + y(8)));
13 - ☐ for i = 1 : length(T1) - 1
            T2(i) = T1(i+1) + (T1(i+1)-T1(i))/3
15 -
      - end
16 - for i = 1 : length(T2) - 1
            T3(i) = T2(i+1) + (T2(i+1) - T2(i))/15:
18 -
      - end
       T4 = T3(2) + (T3(2) - T3(1))/63;
     └fprintf('根据Romberg求积公式计算得: T4 = %f', [T4]);
```

程序运行截图:

>> r()

fx 根据Romberg求积公式计算得: T4 = 0.822168>>

(3) 高斯-勒让德求积公式(n=2, 4, 8)

$$\int_{0}^{1} \frac{\ln(1+x)}{x} dx = \int_{-1}^{1} \frac{\ln\left(\frac{t+3}{2}\right)}{t+1} dt, \left(x = \frac{t+1}{2}\right)$$
$$f(t) = \frac{\ln\left(\frac{t+3}{2}\right)}{t+1}$$

电子版可在我的 Github 上直接下载

https://github.com/DreamBoatOve/gitTest/tree/master/Lessons/Calculation/Women/Homework

国科博 17-赵朝阳-b20170427-qq:2199474541

```
1
     function gauss()
       x2 = [-0.5773502692, 0.5773502692];
2 -
3 -
       A2 = [1, 1];
 4 -
       x4 = [-0.8611363116, -0.3399810436, 0.3399810436, 0.8611363116];
5 -
       A4 = [0.3478548451, 0.6521451549, 0.6521451549, 0.3478548451];
       x8 = [-0.9602898565, -0.7966664774, -0.5255324099, -0.1834346425, 0.1834346425, 0.5255324099, 0.7966664774, 0.9602898565];
      88 = [0.1012285363, 0.2223810345, 0.3137066459, 0.3626837834, 0.3626837834, 0.3137066459, 0.2223810345, 0.1012285363];
7 -
 8
9 -
10 -
       I4 = 0:
11 -
      I8 = 0;
12
13 -
       syms t;
14 -
      f = log((t + 3)/2)/(t + 1);
15
16 - for i = 1 : 2
17 -
        I2 = I2 + A2(i)*subs(f, t, x2(i));
       - end
18 -
       fprintf('当n=2时,根据高斯-勒让德求积公式得I2 = %f\r\n', [I2]);
19 -
20
21 - for i = 1 : 4
22 -
        I4 = I4 + A4(i)*subs(f,t,x4(i));
23 -
      fprintf('当n=4时,根据高斯-勒让德求积公式得I2 = %f\r\n', [I4]);
24 -
25
26 - for i = 1 : 8
27 -
         I8 = I8 + A8(i)*subs(f, t, x8(i));
28 -
      fprintf('当n=8时,根据高斯-勒让德求积公式得I2 = %f\r\n', [I8]);
```

```
>>> gauss()
当n=2时,根据高斯-勒让德求积公式得I2 = 0.822242
当n=4时,根据高斯-勒让德求积公式得I2 = 0.822467
当n=8时,根据高斯-勒让德求积公式得I2 = 0.822467
```