Geometria Analítica e Vetores

Geometria Analítica - Um tratamento vetorial

Estudo do Plano no espaço

Docente: Prof^a. Dr^a. Thuy Nguyen
IBILCE/ UNESP
São Paulo - Brasil

Referência: BOULOS, P. e CAMARGO, I. Geometria Analítica: Um Tratamento Vetorial, 3ª edição, São Paulo: Editora Pearson.

Recordação

No espaço Oxyz, considere um ponto $A(x_A, y_A, z_A)$ e um vetor não nulo $\vec{v} = (a, b, c)$. Seja r a reta passando pelo ponto A e tem direção do vetor \vec{v} . A reta r tem:

• Equação vetorial:

$$(r): (x, y, z) = (x_A, y_A, z_A) + t(a, b, c), \qquad t \in \mathbb{R}.$$

- **2 Equações paramétricas:** (r): $\begin{cases} x = x_A + ta \\ y = y_A + tb \\ z = z_A + tc \end{cases} (t \in \mathbb{R}).$
- **§** Equações simétricas: (r): $\frac{x-x_A}{a} = \frac{y-y_A}{b} = \frac{z-z_A}{c}$.
- Equações reduzidas: Das equações simétricas, desenvolver duas igualdades dessas e simplicá-las, obtemos um sistema de duas equações lineares que são equações reduzidas da uma reta.

Estudo do Plano

Definição

No espaço Oxyz, considere o plano (π) . Um vetor \vec{n} ortogonal ao plano (π) é chamado de vector normal ao plano (π) .

Problema: Dados o ponto $A(x_A, y_A, z_A)$ e o vetor $\vec{n} = (a, b, c)$ Escrever a equação do plano (π) pasando pelo ponto A e tem um vetor normal \vec{n} .

Problema: Dados o ponto $A(x_A, y_A, z_A)$ e o vetor $\vec{n} = (a, b, c)$ Escrever a equação do plano (π) pasando pelo ponto A e tem um vetor normal \vec{n} .

Solução: Tome um um ponto P(x, y, z) que pertence ao plano π .

Então o vetor \overrightarrow{AB} é ortogonal ao vetor \overrightarrow{n} . Daí:

$$\overrightarrow{AP}.\overrightarrow{n}=0.$$

Como

$$\overrightarrow{AP} = (x - x_A, y - y_A, z - z_A), \qquad \overrightarrow{n} = (a, b, c),$$

temos

$$a(x - x_A) + b(y - y_A) + c(z - z_A) = 0$$
 (1)

A equação (1) é chamado de equação geral do plano (π)

Dados o ponto $A(x_A,y_A,z_A)$ e o vetor $\vec{n}=(a,b,c)$. A equação geral do plano (π) pasando pelo ponto A e tem um vetor normal \vec{n} é

$$(\pi): a(x-x_A) + b(y-y_A) + c(z-z_A) = 0.$$

Exemplo 1: Obter uma equação geral do plano (π) que passa pelo ponto A(2,-1,3) e tem $\vec{n}=(3,2,-4)$ como um vetor normal.

Observação 1

Se ax + by + cz + d = 0 é uma equação geral do plano π , então o vetor $\vec{n} = (a, b, c)$ é um vetor normal do plano (π) .

Justificativa: De fato, tome dois pontos quaisquer $A, B \in (\pi)$, vamos mostrar que \overrightarrow{AB} é ortogonal ao vetor \overrightarrow{n} . Suponha que $A(x_A, y_A, z_A)$ e $B(x_B, y_B, z_B)$, vamos mostrar que $\overrightarrow{AB}.\overrightarrow{n} = 0$. Temos

$$\vec{AB} \cdot \vec{n} = a(x_B - x_A) + b(y_B - y_A) + c(z_B - z_A)$$
 (*)

Mas:

$$A \in (\pi) \Rightarrow ax_A + by_A + cz_A + d = 0 \qquad (**)$$

$$B \in (\pi) \Rightarrow ax_B + by_B + cz_B + d = 0 \qquad (***)$$

Subtrair, membro ao membro, da igualdade (**) por (***), temos que o segundo membro da igualdade (*) é igual a 0, como queríamos.

Observação 2

Se o vetor \vec{n} é um vetor normal do plano (π) , então qualquer vetor $k\vec{n}$ com $k \in \mathbb{R}$, $k \neq 0$, também é um vetor normal do plano (π) .

Exemplo 2: Escrever uma equação geral do plano (α) que passa pelo ponto A(2,1,3) e é paralelo ao plano (β) : x-4y-2z+5=0.

Considere:

- **1** $A(x_A, y_A, z_A)$ um ponto pertencente ao plano (π) ;
- ② $\vec{u} = (a_1, b_1, c_1)$ e $\vec{v} = (a_2, b_2, c_2)$ dois vetores paralelos a (π) ;
- **3** dois vetores \vec{u} e \vec{v} não são paralelos.

Considere:

- **1** $A(x_A, y_A, z_A)$ um ponto pertencente ao plano (π) ;
- ② $\vec{u} = (a_1, b_1, c_1)$ e $\vec{v} = (a_2, b_2, c_2)$ dois vetores paralelos a (π) ;
- \odot dois vetores \vec{u} e \vec{v} não são paralelos.

Para todo ponto P do plano, os vetores \overrightarrow{AP} , \overrightarrow{u} e \overrightarrow{v} são coplanares.

$$\overrightarrow{AP}=t_1\overrightarrow{u}+t_2\overrightarrow{v}.$$

Daí:

$$(x, y, z) = (x_A, y_A, z_A) + t_1 \vec{u} + t_2 \vec{v}, (t_1, t_2 \in \mathbb{R})$$
 (2)

A equação (2) é chamada de equação vetorial do plano (π) .

Equação vetorial de um plano

Resumo: Seja $A(x_A, y_A, z_A)$ um ponto pertencente ao plano (π) e $\vec{u}=(a_1,b_1,c_1)$ e $\vec{v}=(a_2,b_2,c_2)$ dois vetores paralelos a (π) . Considere também que dois vetores \vec{u} e \vec{v} não são paralelos. Então uma equação vetorial do plano (π) é:

$$(x, y, z) = (x_A, y_A, z_A) + t_1 \vec{u} + t_2 \vec{v}, (t_1, t_2 \in \mathbb{R}).$$

Definição: os vetores \vec{u} e \vec{v} são chamados de vetores diretores do plano (π) .

Observação 3. Se \vec{u} e \vec{v} são vetores diretores do plano (π) , então o vetor $\vec{u} \wedge \vec{v}$ é um vetor normal do plano (π) .

Observação 4

Se a equação vetorial do plano (π) é:

$$(x, y, z) = (x_A, y_A, z_A) + t_1 \vec{u} + t_2 \vec{v}, (t_1, t_2 \in \mathbb{R}),$$

então, \vec{u} e \vec{v} são vetores diretores do plano (π) e o vetor

$$\vec{n} := \vec{u} \wedge \vec{v}$$

é um vetor normal do plano (π) . Portanto, quando sabemos uma equação vetorial do plano (π) , podemos sempre escrever uma equação geral do plano. Reciprocamente, quando sabemos uma equação geral do plano (π) , podemos sempre escrever uma equação vetorial do plano. De fato, basta tomar três pontos não colineares A, B, C pertencentes ao plano, então dois vetores \overrightarrow{AB} e \overrightarrow{AC} são dois vetores diretores do plano.

Exemplo 3: Seja o plano (π) passando pelo ponto A(2,2,-1) e é paralelo aos vetores $\vec{u}=(2,-3,1)$ e $\vec{v}=(-1,5,-3)$. Obter uma equação geral e uma equação vetorial do plano (π)

Observação 5

Uma outra maneira para obter uma equação geral do plano (π) sabendo um ponto $A(x_A,y_A,z_A)$ pertencente ao plano (π) e dois vetores diretores $\vec{u}=(a_1,b_1,c_1)$ e $\vec{v}=(a_2,b_2,c_2)$ é: Qualquer ponto P pertencente ao plano, os vetores $\overrightarrow{AP}, \ \vec{u}$ e \vec{v} são coplanares, então

$$\begin{vmatrix} x - x_A & y - y_A & z - z_A \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0.$$

Exemplo 4: Refazer o exemplo 3. Seja o plano (π) passando pelo ponto A(2,2,-1) e é paralelo aos vetores $\vec{u}=(2,-3,1)$ e $\vec{v}=(-1,5,-3)$. Obter uma equação geral e uma equação vetorial do plano (π) .

Equações paramétricas de um plano

Da equação vetorial do plano (π) :

$$(x, y, z) = (x_A, y_A, z_A) + t_1 \vec{u} + t_2 \vec{v}, \ (t_1, t_2 \in \mathbb{R})$$

onde $\vec{u} = (a_1, b_1, c_1)$ e $\vec{v} = (a_2, b_2, c_2)$, temos

$$\begin{cases} x = x_A + t_1 a_1 + t_2 a_2 \\ y = y_A + t_1 b_1 + t_2 b_2 \\ z = z_A + t_1 c_1 + t_2 c_2 \end{cases} (t_1, t_2 \in \mathbb{R})$$
 (3)

As equações (3) são chamadas de *equações paramétricas* do plano (π) .

Exercícios

Exercício 1

Sabendo que a reta

$$(r): \begin{cases} x = 5 + 3t \\ y = -4 + 2t \\ z = 1 + t \end{cases} (t \in \mathbb{R})$$

é ortogonal ao plano (π) e que o plano (π) passa pelo ponto A(2,1,-2). Determine uma equação geral do plano (π) .

Exercício 2

Dado o plano (π) determinado pelos três pontos A(1,-1,2), B(2,1,-3) e C(-1,-2,6). Obter uma equação geral, uma equação vetorial e equações paramétricas do plano (π) .

Exercícios

Exercício 3

Dado o plano (π) de equação 2x-y-z+4=0. Obter uma equação vetorial e equações paramétricas do plano (π) .

Exercício 4

Determine uma equação geral do plano (α) que contém duas retas

$$(r_1):$$
 $\begin{cases} y=x+1 \\ z=-3x-2 \end{cases}$, $(r_2):$ $\begin{cases} x=2t \\ y=2t+3 \\ z=-6t+1 \end{cases}$ $(t \in \mathbb{R}).$

Exercício 5

No espaço Oxyz, mostre que

- ① O plano 3x + 4y + 2z passa por 3 pontos no eixos dos x, y, z, respectivamente.
- O plano

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$$

contém os pontos A(a, 0, 0), B(0, b, 0) e C(0, 0, c).

- **3** O plano x = k, onde k é um constante (real), é paralelo a plano Oyz.
- ① O plano y = k, onde k é um constante (real), é paralelo a plano Oxz.
- **5** O plano z = k, onde k é um constante (real), é paralelo a plano Oxy.

Bom estudo!