COMP547A Homework set #4 <u>Due Tuesday December 3rd</u>, 2020, 23:59:59

Exercises (from Katz and Lindell's book)

- 4.7 Let F be a pseudorandom function. Show that each of the following MACs is insecure, even if used to authenticate fixed-length messages. (In each case Gen outputs a uniform $k \in \{0,1\}^n$. Let $\langle i \rangle$ denote an n/2-bit encoding of the integer i.)
 - (b) To authenticate a message $m = m_1, \ldots, m_\ell$, where $m_i \in \{0, 1\}^{n/2}$, compute $t := F_k(\langle 1 \rangle || m_1) \oplus \cdots \oplus F_k(\langle \ell \rangle || m_\ell)$.
 - (c) To authenticate a message $m = m_1, \ldots, m_\ell$, where $m_i \in \{0, 1\}^{n/2}$, choose uniform $r \leftarrow \{0, 1\}^n$, compute

$$t := F_k(r) \oplus F_k(\langle 1 \rangle || m_1) \oplus \cdots \oplus F_k(\langle \ell \rangle || m_\ell),$$

and let the tag be $\langle r, t \rangle$.

- 4.13 We explore what happens when the basic CBC-MAC construction is used with messages of different lengths.
 - (a) Say the sender and receiver do not agree on the message length in advance (and so $\mathsf{Vrfy}_k(m,t) = 1$ iff $t \stackrel{?}{=} \mathsf{Mac}_k(m)$, regardless of the length of m), but the sender is careful to only authenticate messages of length 2n. Show that an adversary can forge a valid tag on a message of length 4n.
 - (b) Say the receiver only accepts 3-block messages (so $\mathsf{Vrfy}_k(m,t) = 1$ only if m has length 3n and $t \stackrel{?}{=} \mathsf{Mac}_k(m)$), but the sender authenticates messages of any length a multiple of n. Show that an adversary can forge a valid tag on a new message.
- 4.14 Prove that the following modifications of basic CBC-MAC do not yield a secure MAC (even for fixed-length messages):
- (b) A random initial block is used each time a message is authenticated. That is, change Construction 4.11 by choosing uniform $t_0 \in \{0,1\}^n$, computing t_ℓ as before, and then outputting the tag $\langle t_0, t_\ell \rangle$; verification is done in the natural way.
 - 10.3 Describe a man-in-the-middle attack on the Diffie-Hellman protocol where the adversary shares a key k_A with Alice and a (different) key k_B with Bob, and Alice and Bob cannot detect that anything is wrong.

[5%]

- 10.4 Consider the following key-exchange protocol:
 - (a) Alice chooses uniform $k, r \in \{0, 1\}^n$, and sends $s := k \oplus r$ to Bob.
 - (b) Bob chooses uniform $t \in \{0,1\}^n$, and sends $u := s \oplus t$ to Alice.
 - (c) Alice computes $w := u \oplus r$ and sends w to Bob.
 - (d) Alice outputs k and Bob outputs $w \oplus t$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).

- 11.6 Consider the following public-key encryption scheme. The public key is (\mathbb{G}, q, g, h) and the private key is x, generated exactly as in the El Gamal encryption scheme. In order to encrypt a bit b, the sender does the following:
 - (a) If b = 0 then choose a uniform $y \in \mathbb{Z}_q$ and compute $c_1 := g^y$ and $c_2 := h^y$. The ciphertext is $\langle c_1, c_2 \rangle$.
 - (b) If b = 1 then choose independent uniform $y, z \in \mathbb{Z}_q$, compute $c_1 := g^y$ and $c_2 := g^z$, and set the ciphertext equal to $\langle c_1, c_2 \rangle$.

Show that it is possible to decrypt efficiently given knowledge of x. Prove that this encryption scheme is CPA-secure if the decisional Diffie-Hellman problem is hard relative to \mathcal{G} .

Hint: Prove that if "not CPA-secure" then "DDH problem is efficiently solved ».

- 11.7 Consider the following variant of El Gamal encryption. Let p = 2q + 1, let \mathbb{G} be the group of squares modulo p (so \mathbb{G} is a subgroup of \mathbb{Z}_p^* of order q), and let g be a generator of \mathbb{G} . The private key is (\mathbb{G}, g, q, x) and the public key is (\mathbb{G}, g, q, h) , where $h = g^x$ and $x \in \mathbb{Z}_q$ is chosen uniformly. To encrypt a message $m \in \mathbb{Z}_q$, choose a uniform $r \in \mathbb{Z}_q$, compute $c_1 := g^r \mod p$ and $c_2 := h^r + m \mod p$, and let the ciphertext be $\langle c_1, c_2 \rangle$. Is this scheme CPA-secure? Prove your answer.
- 11.15 Say three users have RSA public keys $\langle N_1, 3 \rangle$, $\langle N_2, 3 \rangle$, and $\langle N_3, 3 \rangle$ (i.e., they all use e=3), with $N_1 < N_2 < N_3$. Consider the following method for sending the same message $m \in \{0,1\}^{\ell}$ to each of these parties: choose uniform $r \leftarrow \mathbb{Z}_{N_1}^*$, and send to everyone the same ciphertext

$$\langle [r^3 \bmod N_1], [r^3 \bmod N_2], [r^3 \bmod N_3], H(r) \oplus m \rangle,$$

where $H: \mathbb{Z}_{N_1}^* \to \{0,1\}^{\ell}$. Assume $\ell \gg n$.

- (a) Show that this is not CPA-secure, and an adversary can recover m from the ciphertext even when H is modeled as a random oracle.

 Hint: See Section 11.5.1.
- (b) Show a simple way to fix this and get a CPA-secure method that transmits a ciphertext of length $3\ell + \mathcal{O}(n)$.
- (c) Show a better approach that is still CPA-secure but with a ciphertext of length $\ell + \mathcal{O}(n)$.

[5%]

[5%]

[5%]

[5%]

- 12.1 Show that Construction 4.7 for constructing a variable-length MAC from any fixed-length MAC can also be used (with appropriate modifications) to construct a signature scheme for arbitrary-length messages from any signature scheme for messages of fixed length $\ell(n) \geq n$.
- 12.5 Another approach (besides hashing) that has been tried to construct secure RSA-based signatures is to *encode* the message before applying the RSA permutation. Here the signer fixes a public encoding function enc : $\{0,1\}^{\ell} \to \mathbb{Z}_N^*$ as part of its public key, and the signature on a message m is $\sigma := [\operatorname{enc}(m)^d \mod N]$.

[5%]

(a) How is verification performed in encoded RSA?

[5%]

(b) Discuss why appropriate choice of encoding function for $\ell \ll ||N||$ prevents the "no-message attack" described in Section 12.4.1.

[5%]

(c) Show that encoded RSA is insecure if $enc(m) = 0x00 ||m|| 0^{\kappa/10}$ (where $\kappa \stackrel{\text{def}}{=} ||N||$, $\ell = |m| \stackrel{\text{def}}{=} 4\kappa/5$, and m is not the all-0 message).

(d) Show that encoded RSA is insecure for enc(m) = 0||m||0||m (where $\ell = |m| \stackrel{\text{def}}{=} (||N|| - 1)/2$ and m is not the all-0 message). Assume e = 3.

[5%]

HOMEMADE Question: Defeating Rivest

Alice and Bob are a bit confused. They are going to use a Digital Signature scheme as a **Mac**. Let $\Pi = (\operatorname{Gen}, \operatorname{Sign}, \operatorname{Vrfy})$ be a <u>deterministic</u> digital signature scheme (such as hashed RSA for instance). They run $\operatorname{Gen}(1^n)$ to obtain (p_k, s_k) but only share and use s_k as the private-key of a **Mac**.

[5%]

(A) Let $\Pi' = (\operatorname{Gen}', \operatorname{Mac}', \operatorname{Vrfy}')$ be the **Mac** resulting from this idea. Used as a **Mac** they simply set $t := \operatorname{Mac}'_{sk}(m) := \operatorname{Sign}_{sk}(m)$. However, since they only use s_k , how will the receiver verify the message-tag pair (m,t)? In other words, what is $\operatorname{Vrfy}'_{sk}(m,t)$? Why did I underlined the word *deterministic* above?

[5%]

(B) Show that if Π is a digital signature scheme existentially unforgeable under an adaptive chosen-message attack then Π' is a Mac existentially unforgeable under an adaptive chosen-message attack (whether p_k is made public or not).

[5%]

(C) Image that Alice and Bob use Π' as above, and that p_k is disclosed publicly. Explain how this defeats Rivest's argument seen in class that private-key authentication implies private-key encryption.