CENG 216 – Numerical Computation Midterm Exam

2018–19 Spring Semester April 10, 2019

- This exam contains 5 questions on 6 pages.
- The exam duration is 100 minutes.
- Read the questions carefully before starting to solve the problems.
- $\bullet\,$ No electronic devices are allowed during the exam except a single calculator.
- Good Luck!

Question	Q1	Q2	Q3	Q4	Q_5	Total
Points	20	25	20	20	15	100
Grade						

CENG 216 Midterm 2018–19 Spring

Q1 (20 points) Floating-Point Representation

IEEE single-precision floating numbers are 32 bits each, 1 bit for the sign bit, 8 bits for the exponent, and 23 bits for the mantissa.

- i. Convert the number 4.2 to binary.
- ii. What is the value of 4.2 fl(4.2) in IEEE single-precision format assuming Round to Nearest rule is active?
- iii. For $a,b,c\in\mathbb{R}, s=\frac{a+b+c}{2.0},$ list the conditions on a,b,c so that the formula

$$\sqrt{s(s-a)(s-b)(s-c)}$$

will involve loss of significance (catastrophic cancellation).

Hint: Because the mantissa is 23 bits long, there are five groups of 4 bits and the last group is 3 bits long. Be careful when you are writing down the contents of the mantissa and the leftover bits to round.

Q2 (25 points) Solving Equations

Calculate the x-coordinate of the intersection of the parabola $y = -x^2 + 4.0$ with the line y = 4x - 1.0 starting from an estimate of $x_0 = 1.5$ using

- i. Ten iterations of the Fixed Point Iterations method.
- ii. Three iterations of the Newton's method.

Hint: When writing down the iteration results, it is OK to write down only four decimal digits after the dot.

CENG 216 Midterm 2018–19 Spring

Q3 (20 points) Linear Systems of Equations

We are given the following linear system of equations

$$\begin{bmatrix} 4 & 2 & -1 \\ 2 & 6 & -3 \\ -8 & -9 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -8 \\ 14 \end{bmatrix}$$

- i. Find the solution to this system using LU decomposition.
- ii. For the approximate solution $\mathbf{x}_a = [-1.0, 1.0, 1.0]^{\mathsf{T}}$, calculate the relative forward, backward errors, and the error magnification factor.

Q4 (20 points) Interpolation

- i. Find the coefficients a, b, c of the polynomial $P_2(x) = ax^2 + bx + c$ of degree two or less passing through the data points (0, 1), (1, 3), and (2, -1) using a method of your choice.
- ii. Find the coefficients a, b, c, d of the polynomial $P_3(x) = ax^3 + bx^2 + cx + d$ of degree three or less passing through the data points (0, 1), (1, 3), (2, -1), and (3, -3) using a method of your choice.

CENG 216 Midterm 2018–19 Spring

Q5 (15 points) Ball Throwing Robot Arm

We want to design a ball throwing robot arm that will throw a ball with initial velocity V_0 at an angle θ to the ground plane. Assuming that the robot arm is at coordinates x=0 the ball will hit the ground at

$$x_f = \frac{V_0^2 \sin 2\theta}{g}$$

where $g = 9.8 \frac{\text{m}}{\text{s}^2}$ is the gravitational constant.

We want to ensure that the ball hits the ground at $x_f = 0.1730861$ meters. Unfortunately, we are not free to choose the necessary V_0 and θ since the robot design constrains the speed to be a function of the angle as

$$V_0 = k(1 + \cos \theta)$$

where k = 0.75 is a design parameter.

- i. Write down a single constraint in terms of θ that ensures that the ball hits the ground at the given value of x_f .
- ii. Convert the solution of θ into a root finding problem, then solve this problem by searching for θ in the interval $[0^{\circ}, 40^{\circ}]$.
- iii. Calculate the necessary V_0 for the θ you have found.

Hint: Although the θ range is given in degrees, perform the calculations in radians. Note that $360^{\circ} = 2\pi$ radians.