FLEA

bits and pieces

Alexander Maringele

June 15th, 2016

Previously

Resolution and InstGen

Examples

Subsumption

References

- Clark Barrett, Pascal Fontaine, and Cesare Tinelli, *The Satisfiability Modulo Theories Library (SMT-LIB)*, www.SMT-LIB.org, 2016.
- Bruno Dutertre, *Yices 2.2*, Computer-Aided Verification (CAV'2014) (Armin Biere and Roderick Bloem, eds.), Lecture Notes in Computer Science, vol. 8559, Springer, July 2014, pp. 737–744.

Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law.

— Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid

4 / 8

Goal

5 / 8

$$\frac{L \vee C \quad \neg L' \vee D}{(C \vee D)\sigma}$$

where

 $L\sigma$ strictly maximal in $C\sigma$, $\neg L'\sigma$ maximal in $D\sigma$, $\sigma = \text{mgu}(L, L')$.

Definition (Inst-Gen)

$$\frac{L \vee C \quad \neg L' \vee D}{(L \vee C)\sigma \quad (\neg L' \vee D)\sigma}$$

where

$$\operatorname{sel}(L \vee C) = L$$
 $\operatorname{sel}(\neg L' \vee D) = \neg L'$ $\sigma = \operatorname{mgu}(L, L')$

Alexander Maringele **FLEA** 6 / 8

Example (Resolution)

$$\frac{\mathsf{P}(x) \vee \neg \mathsf{P}(y) \quad \neg \mathsf{P}(\mathsf{a})}{\frac{\neg \mathsf{P}(y) \quad \mathsf{P}(\mathsf{b})}{\Box} \ y \mapsto \mathsf{b}} \ x \mapsto \mathsf{a}$$

Example (Inst-Gen)

$$\frac{\mathsf{P}(x) \vee \neg \mathsf{P}(y)) \quad \neg \mathsf{P}(\mathsf{a})}{\mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(y)} \ x \mapsto \mathsf{a}$$

$$S_1 \bot \supsetneq \{\neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}), \frac{\mathsf{P}(\mathsf{a})}{\mathsf{P}(\mathsf{a})} \vee \neg \mathsf{P}(\bot)\}$$

$$\frac{\mathsf{P}(\mathsf{b}) \quad \mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(y)}{\mathsf{P}(\mathsf{a}) \vee \mathsf{P}(\mathsf{b})} \ y \mapsto \mathsf{b}$$

$$S_2 \bot \supsetneq \{\neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}), \mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(\mathsf{b})\}$$

 $S_0 \perp = \{ \mathsf{P}(\perp) \vee \neg \mathsf{P}(\perp), \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}) \}$

satisfiable

satisfiable

unsatisfiable

Subsumption

$$S = \{C, D, \ldots\} \qquad \exists \theta \ C\theta \subseteq D \qquad \qquad \mathsf{C} \ \mathsf{subsumes} \ \mathsf{D}$$

$$S \ \mathsf{satisfiable} \iff (S \setminus D) \ \mathsf{satisfiable}$$

$$\theta \ \mathsf{is} \ \mathsf{proper}, \ S \bot \ \mathsf{satisfiable} \iff (S \setminus D) \bot \ \mathsf{satisfiable}$$

$$\theta \ \mathsf{is} \ \mathsf{renaming}, \ S \bot \ \mathsf{satisfiable} \iff (S \setminus D) \bot \ \mathsf{satisfiable}$$

Example

$$\begin{aligned} \{\mathsf{P}(x,y),\neg\mathsf{P}(\mathsf{a},z)\} & \quad \{\mathsf{P}(x,y),\neg\mathsf{P}(\mathsf{a},z),\mathsf{P}(\mathsf{a},z)\} \\ \{\mathsf{P}(\bot,\bot),\neg\mathsf{P}(\mathsf{a},\bot)\} & \quad \{\mathsf{P}(\bot,\bot),\neg\mathsf{P}(\mathsf{a},\bot), \textcolor{red}{\mathsf{P}(\mathsf{a},\bot)}\} \end{aligned}$$

Alexander Maringele