Problem §1 (3.3) Prove, from Theorem 3.1, that for all $a, b, c \in \mathbb{F}$,

- (a) (-a)(-b) = ab
- (b) If ac = bc, and $c \neq 0$, then a = b.

Solution:

(a) We have

$$-ab + (-a)(-b) = (-a)b + (-a)(-b)$$
 [Theorem 3.1.iii]
= $(-a)(b+-b)$ [DL]
= $(-a)0$
= 0 [Theorem 3.1.ii].

Hence (-a)(-b) is an inverse of -ab, and so (-a)(-b) = ab.

(b) If $c \neq 0$, then by M4, $c^{-1} \in \mathbb{F}$ exists. Then

$$ac = bc$$

$$acc^{-1} = bcc^{-1}$$

$$a \cdot 1 = b \cdot 1$$

$$a = b,$$

as required.

Problem §2 (3.4) Prove, from Theorem 3.2, that for all a, b in an ordered field \mathbb{F} ,

- (a) 0 < 1.
- (b) If 0 < a < b, then $0 < b^{-1} < a^{-1}$.

Solution:

(a) We start with a lemma.

Lemma 1. $0 \neq 1$.

Proof. Suppose 0=1, and let $a\in\mathbb{F}$ be a non-zero element in an arbitrary field. Then

$$a = a \cdot 1$$
 [M3]
= $a \cdot 0$ [by assumption]
= 0 [Theorem 3.1.ii],

a contradiction of a non-zero. Hence $0 \neq 1$. \square

From Theorem 3.2.iv, we have $0 \le a^2$ for all a. Then $0 \le 1$; and by the lemma, 0 < 1.

(b) By Theorem 3.2.vi, if 0 < a, 0 < b, then $0 < a^{-1}$, $0 < b^{-1}$; and by Theorem 3.2.iii, we have $0 < a^{-1}b^{-1}$. Let $c = a^{-1}b^{-1}$. Then from O5, we have

$$ac < bc$$

 $aa^{-1}b < a^{-1}b^{-1}b$
 $b^{-1} < a^{-1}$.

Since both are greater than zero, we have $0 < b^{-1} < a^{-1}$.

Problem §3 (4.7) Let S, T be bounded subsets of \mathbb{R} .

- (a) Prove that $S \subseteq T$, then $\inf T \leq \inf S \leq \sup S \leq \sup T$.
- (b) Prove that $\sup(S \cup T) = \max\{\sup S, \sup T\}$.

Solution:

(a) We know, by definition, that inf $S \leq \sup S$.

For any $s \in S$, we have $s \in T$; and by definition, we have $\inf T \leq s$. Thus $\inf T$ is a lower bound for S, and so $\inf T \leq \inf S$.

Similarly, by definition we have $s \leq \sup T$. Thus $\sup T$ is an upper bound for S, and so $\sup S \leq \sup T$.

(b) Suppose, without loss of generality, that $\sup S \ge \sup T$. We know that for any $a \in S \cup T$ that $a \in S$ or $a \in T$. $a \in S$ implies that $a \le \sup S$ by definition, so let $a \in T$. Then $a \le \sup T$; but $\sup T \le \sup S$ by our assumption. Thus $\sup S$ is an upper bound for $S \cup T$. Additionally, since $\sup S$ is by definition the least upper bound of S, and any $t \in T$ is bounded above by $\sup T \le \sup S$, any $a \in S \cup T$ has $\sup S$ as its least upper bound; and so $\sup (S \cup T) = \sup S = \max \{\sup S, \sup T\}$. An analogous argument follows if $\sup T \ge \sup S$.

Problem §4 (4.8) Let S, T be non-empty subsets of \mathbb{R} , and for all $s \in S, t \in T$, $s \leq t$.

- (a) Observe that S is bounded above, and T is bounded below.
- (b) Prove that $\sup S \leq \inf T$.
- (c) Give an example of such S, T where $S \cap T$ is non-empty.
- (d) Give an example of such S, T where $S \cap T = \emptyset$.

Solution:

- (a) Any $t \in T$ bounds S from above, and any $s \in S$ bounds T from below.
- (b) For any $s \in S$, $s \le \sup S$, and for any $a \in \mathbb{R}$ that satisfies $s \le a$, $\sup S \le a$. But since any $t \in T$ satisfies $s \le t$, we have $\sup S \le t$.

Let **m** be the set of all $m \in \mathbb{R}$ such that $m \leq t$. By definition, for any $m \in \mathbf{m}$, $m \leq \inf T$; and since $\sup S \in \mathbf{m}$, we have $\sup S \leq \inf T$.

- (c) Let S = (-1, 0], T = [0, 1). Then $\sup S = 0 \le 0 = \inf T$, and $S \cap T = \{0\} \ne \emptyset$.
- (d) Let S = (-1, 0), T = (0, 1). Then $\sup S = 0 = \inf T$, and $S \cap T = \emptyset$.

Problem §5 (4.12) Let \mathbb{I} be the set of irrational numbers. Prove that if a < b, then there exists an $x \in \mathbb{I}$ such that a < x < b.

Solution: We start with two lemmas.

Lemma 2. If $a \in \mathbb{I}$ and $b \in \mathbb{Q}$, then $a + b \in \mathbb{I}$ (in other words, irrational + rational = irrational).

Proof. Let $a \in \mathbb{I}$, $b \in \mathbb{Q}$. Then $b = \frac{p}{q}$ for some $p, q \in \mathbb{Z}$. Let a + b = c, and suppose c is rational. Then $c = \frac{m}{n}$ for some $m, n \in \mathbb{Z}$. We have

$$a+b=c$$

$$a+\frac{p}{q}=\frac{m}{n}$$

$$a=\frac{m}{n}-\frac{p}{q}$$

$$a=\frac{mq-pn}{nq};$$

but a is irrational, a contradiction. Hence c = a + b is irrational.

Lemma 3. $\sqrt{2}$ is irrational.

Proof. Suppose $\sqrt{2} = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and $\gcd(p, q) = 1$. Then

$$2 = \frac{p^2}{q^2}$$
$$2q^2 = p^2.$$

Thus p^2 is even, and so p is even, so let p = 2k. Then

$$2q^2 = 4k^2$$
$$q^2 = 2k^2.$$

Thus q^2 is even, and so q is even as well. Thus $\gcd(p,q) \geq 2$. Bit $\gcd(p,q) = 1$, a contradiction. Hence $\sqrt{2}$ is irrational. \square

From these two lemmas, we get that for any $r \in \mathbb{Q}$, $r + \sqrt{2} \in \mathbb{I}$. Hence $\{r + \sqrt{2} \mid r \in \mathbb{Q}\} \subseteq \mathbb{I}$. Now, suppose $a, b \in \mathbb{R}$, with a < b. Then $a - \sqrt{2} < b - \sqrt{2}$ by O4. Since $a - \sqrt{2}, b - \sqrt{2} \in \mathbb{R}$, by the denseness of \mathbb{Q} , there exists some $r \in \mathbb{Q}$ such that

$$a - \sqrt{2} < r < b - \sqrt{2}$$
.

Adding $\sqrt{2}$ to each side, we get

$$a < r + \sqrt{2} < b$$
,

and since $r + \sqrt{2} \in \{r + \sqrt{2} \mid r \in \mathbb{Q}\} \subseteq \mathbb{I}$, there exists some $x \in \mathbb{I}$ such that a < x < b.

Problem §6 (4.14) Let A, B be nonempty bounded subsets of \mathbb{R} , and let A + B be the set of all sums a + b where $a \in A, b \in B$.

- (a) Prove that $\sup (A + B) = \sup A + \sup B$.
- (b) Prove that $\inf (A + B) = \inf A + \inf B$.

Solution:

(a) We have, by definition, $a+b \le \sup (A+B)$ for any $a \in A$, $b \in B$. Then

$$a+b-b \le \sup (A+B) - b$$
$$a \le \sup (A+B) - b,$$

and so $\sup (A+B) - b$ is an upper bound for A; thus $\sup A \leq \sup (A+B) - b$. From this, we have

$$\sup A \le \sup (A+B) - b$$

$$\sup A - \sup A + b \le \sup (A+B) - b + b - \sup A$$

$$b \le \sup (A+B) - \sup A,$$

and so $\sup(A+B) - \sup A$ is an upper bound for B; thus $\sup B \leq \sup(A+B) - \sup A$.

Then $\sup A + \sup B \leq \sup (A + B)$. But since

$$a+b \le \sup A + \sup B$$
,

we have that $\sup A + \sup B$ is an upper bound for A + B as well; but since $\sup (A + B)$ is the least upper bound, and $\sup A + \sup B \le \sup (A + B)$, we necessarily have equality: $\sup A + \sup B = \sup (A + B)$.

(b) We have, by definition, inf $(A+B) \le a+b$ for any $a \in A, b \in B$. Then

$$\inf (A+B) - b \le a,$$

and so inf (A+B)-b is a lower bound for A; thus inf $(A+B)-b \le \inf A$. From this, we have

$$\inf (A + B) - b \le \inf A$$
$$\inf (A + B) - \inf A \le b,$$

and so inf (A + B) – inf A is a lower bound for B; thus inf (A + B) – inf $A \le \inf B$. Then inf $(A + B) \le \inf A + \inf B$. But since

$$\inf A + \inf B \le a + b,$$

we have that $\inf A + \inf B$ is a lower bound for A + B as well; but since $\inf (A + B)$ is the least lower bound, and $\inf (A + B) \le \inf A + \inf B$, we necessarily have equality: $\inf A + \inf B = \inf (A + B)$.