Sistemas de Control y Servicios

Trabajo Practico N°6
Tema 1:

Funciones básicas Algebraicas, trascendentales
y estudio
con GeoGebra.

Alumna: Maria Lilen Guzmán

- 1.1. Dadas las siguientes funciones, clasifíquelas como algebraicas o trascendentales y grafíquelas utilizando GeoGebra: $f(x) = x^3 2x^2$, $g(x) = \sin(x)$, $h(x) = \log(x)$.
 - $f(x) = x^3 2x^2$
 - No es una función trascendental porque las funciones trascendentales no pueden ser representadas mediante polinomios, y f(x) es una función polinómica.
 - Es una funcione algebraica porque estas pueden ser representadas mediante polinomios y se definen a través de operaciones algebraicas básicas (suma, resta, multiplicación, división y potenciación). Incluyen:
 - a. Funciones polinómicas
 - b. Funciones racionales
 - c. Funciones radicales

- $g(x) = \sin(x)$
 - Es una funcion trascendental ya que estas generalmente, involucran funciones trigonométricas, exponenciales y logarítmicas.
 Incluyen:
 - a. Funciones trigonométricas
 - b. Funciones trigonométricas inversas
 - c. Funciones exponenciales
 - d. Funciones logarítmicas

- h(x) = log(x)
 - Es una funcion trascendental ya que estas generalmente, involucran funciones trigonométricas, exponenciales y logarítmicas.
 Incluyen:
 - a. Funciones trigonométricas

INSTITUTO SUPERIOR POLITÉCNICO CÓRDOBA

- b. Funciones trigonométricas inversas
- c. Funciones exponenciales
- d. Funciones logarítmicas

1.2. Utilizando Geogebra, analice la función $f(x) = x^3 - 3x^2 + x + 1$. Identifique los intervalos de crecimiento y decrecimiento, así como los puntos críticos.

Definición

Si f(x) es derivable en p, entonces:

- Si f'(p) > 0, f(x) es creciente en p.
- Si f'(p) < 0, f(x) es decreciente en p.
- Si f(x) presenta un máximo o un mínimo relativo en p, entonces $f^{\prime}(p)=0$.

- La derivada de $f(x) = x^3 3x^2 + x + f'(x) = 3x^2 6x + 1$
- $f'(x) = 3x^2 6x + 1$ es igual a cero en los puntos:

$$D = (1.82, 0)$$

 $C = (0.18, 0)$

Por lo que en f(1.82) y en f(0.18) hay un máximo o un mínimo relativo.

- Intervalos de crecimiento y decrecimiento:
 - f '(x)>0 en el intervalo ($-\infty$, 0.18) entonces f(x) es creciente en el intervalo ($-\infty$,0.18).
 - f '(x)<0 en el intervalo (0.18,1.82) entonces f(x) es decreciente en el intervalo (0.18,1.82).
 - f '(x)>0 en el intervalo (1.82, $+\infty$) entonces f(x) es creciente en el intervalo (1.82, $+\infty$).

1.3. Encuentre la derivada de la función $f(x) = e^{(2x)} y$ grafique tanto la función original como su derivada en Geogebra.

