PJE – Analyse de comportement avec Twitter

octobre 2015

Classification bayésienne (3)

Le but de cette séance est d'analyser expérimentalement la performance des différentes variantes de l'algorithme de *classification bayésienne* permettant de classifier un *nouveau tweet* comme positif, négatif ou neutre.

Analyse expérimentale

Une méthode sophistiquée pour mesurer la qualité d'un classifieur est la "validation croisée". Considérons un ensemble d'apprentissage A. Il faut découper cet ensemble d'instances en k>3 sous-ensembles mutuellement disjoints de même taille. Cette découpe peut se faire aléatoirement en prenant garde à ce que toutes les classes soient représentées avec la même fréquence dans chacun des sous-ensembles. Pour k=3, nous obtenons donc 3 sous-ensembles A1, A2 et A3.

Dans un premier temps, nous produisons un classificateur en prenant $A2 \cup A3$ comme ensemble d'apprentissage. Et nous lui demandons de classifier les instances de A1. Ensuite, nous mesurons le taux d'erreur, c'est-à-dire le nombre (ou la proportion) d'instances de A1 dont la classe est mal prédite à l'aide de l'ensemble d'apprentissage $A2 \cup A3$. Notons ce taux d'erreur E_{A1} .

Cette procédure est répétée pour A2 en prenant $A1 \cup A3$ comme ensemble d'apprentissage, et pour A3 en prenant $A1 \cup A2$ comme ensemble d'apprentissage. Ceci nous donne les taux d'erreur E_{A2} et E_{A3} , respectivement.

Le taux d'erreur de l'algorithme de classification est alors estimé par la moyenne des trois :

$$E = \frac{E_{A1} + E_{A2} + E_{A3}}{3} \tag{1}$$

En général on prend k = 10. Cette technique est appelée validation croisée en k-plis (k-fold cross-validation).

Question 1 : Choisissez un de vos ensembles d'apprentissage et effectuez une validation croisée pour estimer le taux d'erreur des algorithmes de classification bayésienne suivants :

- 1. Présence, uni-gramme
- 2. Présence, bi-gramme
- 3. Présence, uni-gramme + bi-gramme
- 4. Fréquence, uni-gramme

- 2
- 5. Fréquence, bi-gramme
- 6. Fréquence, uni-gramme + bi-gramme

Lequel est le plus performant ?

Question 2 : En utilisant la même technique, comparez les performances du classifieur bayésien avec celles du classifieur par mot-clé et du classifieur k-NN.

Question 3 : Si vous avez terminé, vous pouvez considérer un autre ensemble d'apprentissage. Observez-vous des différences ?