Wielomiany

Definicja

Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję

$$W(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

gdzie $n \in \mathbb{N} \cup \{0\}, a_0, a_1, \dots, a_n \in \mathbb{R} \text{ oraz } a_n \neq 0.$

Definicja

Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję

$$W(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

gdzie $n \in \mathbb{N} \cup \{0\}, a_0, a_1, \dots, a_n \in \mathbb{R} \text{ oraz } a_n \neq 0.$

- $a_n, a_{n-1}, \ldots, a_2, a_1, a_0$ współczynniki wielomianu
- n stopień wielomianu
- a_0 wyraz wolny
- a_n współczynnik wiodący

 $\bullet\,$ wykres wielomianu jest ${\bf ciagly}$

• wykres wielomianu jest ciągły

• wykres wielomianu jest ciągły

• wykres wielomianu ma tylko "gładkie, zaokrąglone zakręty"

• wykres wielomianu jest ciągły

• wykres wielomianu ma tylko "gładkie, zaokrąglone zakręty"

 \bullet Dla dużych x,wykres jest nieograniczony z góry i/lub z dołu

 $a_n < 0$

Wykresy wielomianów

- \bullet Dla dużych x, wykres jest nieograniczony z góry i/lub z dołu
- \bullet Dla nnieparzytego

- \bullet Dla dużych x,wykres jest nieograniczony z góry i/lub z dołu
- \bullet Dla nnieparzytego

ullet Dla n parzystego

 $a_n < 0$

Dzielenie wielomianów

Dzielenie wielomianów

Twierdzenie

Jeżeli W(x) i Q(x) są wielomianami takimi, że $Q(x) \not\equiv 0$ i stopień W(x) jest większy lub równy stopniowi Q(x), to istnieją takie dwa wielomiany P(x) i R(x), że

$$W(x) = Q(x)P(x) + R(x) \quad \text{lub} \quad \frac{W(x)}{Q(x)} = P(x) + \frac{R(x)}{Q(x)}$$

gdzie $R(x) \equiv 0$ lub stopień R(x) jest mniejszy od stopnia Q(x).

 \bullet R(x) nazywamy **resztą z dzielenia**

Schemat Hornera,
$$W(x) = (x - x_0) \cdot P(x) + r$$

Schemat Hornera, $W(x) = (x - x_0) \cdot P(x) + r$

przykład dla wielomianu trzeciego stopnia

Aby podzielić $ax^3 + bx^2 + cx + d$ przez $(x - x_0)$, używamy schematu:

- W pionie: dodawaj
- Po przekątnej: mnóż przez x_0

Schemat Hornera, $W(x) = (x - x_0) \cdot P(x) + r$

przykład dla wielomianu trzeciego stopnia

Aby podzielić $ax^3 + bx^2 + cx + d$ przez $(x - x_0)$, używamy schematu:

- W pionie: dodawaj
- Po przekatnej: mnóż przez x_0

Twierdzenie

Reszta z dzielenia wielomianu W(x) przez dwumian $(x-x_0)$

$$r = W(x_0)$$

4日 > 4周 > 4 至 > 4 至 > 。

Definicja

Liczbę rzeczywistą x_0 nazywamy **pierwiastkiem wielomianu** W(x), jeżeli $W(x_0) = 0$.

Definicja

Liczbę rzeczywistą x_0 nazywamy **pierwiastkiem wielomianu** W(x), jeżeli $W(x_0) = 0$.

Twierdzenie (Bezout)

Liczba x_0 jest pierwiastkiem wielomianu W(x) wtedy i tylko wtedy, gdy wielomian W(x) jest podzielny przez dwumian $(x - x_0)$. Istnieje wówczas wielomian P(x), o jeden stopień niższy od W(x) taki, że

$$W(x) = (x - x_0) \cdot P(x)$$

Definicja

Liczbę rzeczywistą x_0 nazywamy **pierwiastkiem wielomianu** W(x), jeżeli $W(x_0) = 0$.

Twierdzenie (Bezout)

Liczba x_0 jest pierwiastkiem wielomianu W(x) wtedy i tylko wtedy, gdy wielomian W(x) jest podzielny przez dwumian $(x - x_0)$. Istnieje wówczas wielomian P(x), o jeden stopień niższy od W(x) taki, że

$$W(x) = (x - x_0) \cdot P(x)$$

ullet Wniosek: Wielomian stopnia n ma co najwyżej n pierwiastków

Pierwiastek k-krotny

Liczbę x_0 nazywamy **pierwiastkiem** k-**krotnym wielomianu** W(x) wtedy i tylko wtedy gdy W(x) jest podzielny przez $(x-x_0)^k$, ale nie jest podzielny przez $(x-x_0)^{k+1}$, tzn. gdy istnieje wielomian P(x) taki, że

$$W(x) = (x - x_0)^k \cdot P(x)$$
 i $P(x_0) \neq 0$

Pierwiastek k-krotny

Liczbę x_0 nazywamy **pierwiastkiem** k-**krotnym wielomianu** W(x) wtedy i tylko wtedy gdy W(x) jest podzielny przez $(x-x_0)^k$, ale nie jest podzielny przez $(x-x_0)^{k+1}$, tzn. gdy istnieje wielomian P(x) taki, że

$$W(x) = (x - x_0)^k \cdot P(x)$$
 i $P(x_0) \neq 0$

• Jeżeli x_0 jest nieparzystokrotny, wykres W(x) przecina oś OX w punkcie $x=x_0$

Pierwiastek k-krotny

Liczbę x_0 nazywamy **pierwiastkiem** k-**krotnym wielomianu** W(x) wtedy i tylko wtedy gdy W(x) jest podzielny przez $(x-x_0)^k$, ale nie jest podzielny przez $(x-x_0)^{k+1}$, tzn. gdy istnieje wielomian P(x) taki, że

$$W(x) = (x - x_0)^k \cdot P(x)$$
 i $P(x_0) \neq 0$

- Jeżeli x_0 jest nieparzystokrotny, wykres W(x) przecina oś OX w punkcie $x=x_0$
- \bullet Jeżeli x_0 jest parzystokrotny, wykres W(x)jest styczny do osiOXw punkcie $x=x_0$

Prawda czy Fałsz

Prawda czy Fałsz

• Istnieje wielomian stopnia 6, który ma tylko jeden pierwiastek rzeczywisty.

Prawda czy Fałsz

- Istnieje wielomian stopnia 6, który ma tylko jeden pierwiastek rzeczywisty.
- 2 Istnieje wielomian stopnia 5, który nie ma pierwiastków rzeczywistych.

Pierwiastki wymierne wielomianu

Jeżeli ułamek nieskracalny $\frac{p}{q},\ p,q\in\mathbb{Z}-\{0\},$ jest pierwiastkiem wielomianu

$$W(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

o współczynnikach całkowitych, przy czym $a_0 \cdot a_n \neq 0$, to p jest dzielnikiem wyrazu wolnego a_0 , a q jest dzielnikiem wpółczynnika wiodącego a_n .

Funkcje wymierne

Funkcja wymierna

$$f(x) = \frac{P(x)}{Q(x)}, \qquad P(x), Q(x) - \text{wielomiany}, \ Q(x) \not\equiv 0$$

Funkcja wymierna

$$f(x) = \frac{P(x)}{Q(x)}, \qquad P(x), Q(x) - \text{wielomiany}, \ Q(x) \not\equiv 0$$

Dziedzina

$$D_f = \{ x \in \mathbb{R} : Q(x) \neq 0 \}$$

Funkcja wymierna

$$f(x) = \frac{P(x)}{Q(x)}, \qquad P(x), Q(x) - \text{wielomiany}, \ Q(x) \not\equiv 0$$

Dziedzina

$$D_f = \{x \in \mathbb{R} : Q(x) \neq 0\}$$

• Typowy przykład:

Przykłady funkcji wymiernych

Równania z wyrażeniami wymiernymi

Równania z wyrażeniami wymiernymi

Sposób rozwiązania

- Określ dziedzinę
- 2 Pomnóż obie strony równania przez wspólny mianownik

Nierówności z wyrażeniami wymiernymi

Nierówności z wyrażeniami wymiernymi

Sposób rozwiązania

Oprowadź nierówność do postaci

$$\frac{W(x)}{Q(x)} > 0 \quad (\ge 0, < 0, \le 0)$$

Skorzystaj z równoważności

$$\frac{W(x)}{Q(x)} \ge 0 \quad \Leftrightarrow \quad W(x) \cdot Q(x) \ge 0 \land Q(x) \ne 0$$

(takie same rownoważności zachodzą dla nierówności $> 0, < 0, \le 0$)

$$f(x) = x^{\alpha}$$
, gdzie $\alpha \in \mathbb{R}$

$$f(x) = x^{\alpha}$$
, gdzie $\alpha \in \mathbb{R}$

$$n, p \in \mathbb{N} \mid D_f$$

$$f(x) = x^{\alpha}$$
, gdzie $\alpha \in \mathbb{R}$

$$\begin{array}{c|c}
n, p \in \mathbb{N} & D_f \\
y = x^n & \mathbb{R}
\end{array}$$

$$f(x) = x^{\alpha}$$
, gdzie $\alpha \in \mathbb{R}$

$$\begin{array}{c|c}
n, p \in \mathbb{N} & D_f \\
y = x^n & \mathbb{R} \\
y = x^{-n} = \frac{1}{x^n} & \mathbb{R} - \{0\}
\end{array}$$

$$f(x) = x^{\alpha}$$
, gdzie $\alpha \in \mathbb{R}$

$$\begin{array}{c|c}
n, p \in \mathbb{N} & D_f \\
y = x^n & \mathbb{R} \\
y = x^{-n} = \frac{1}{x^n} & \mathbb{R} - \{0\} \\
y = x^{\frac{p}{n}} & \mathbb{R}_+ \cup \{0\} \text{ dla } n\text{-parz.} \\
\mathbb{R} & \text{dla } n\text{-nieparz.}
\end{array}$$

$$f(x) = x^{\alpha}$$
, gdzie $\alpha \in \mathbb{R}$

$$n, p \in \mathbb{N} \mid D_f$$

$$y = x^n \mid \mathbb{R}$$

$$y = x^{-n} = \frac{1}{x^n} \mid \mathbb{R} - \{0\}$$

$$y = x^{\frac{p}{n}} \mid \mathbb{R}_+ \cup \{0\} \text{ dla } n\text{-parz.}$$

$$\mathbb{R} \text{ dla } n\text{-nieparz.}$$

$$y = x^{-\frac{p}{n}} \mid \mathbb{R}_+ \text{ dla } n\text{-parz.}$$

$$\mathbb{R} - \{0\} \text{ dla } n\text{-nieparz.}$$

$$f(x) = x^{\alpha}$$
, gdzie $\alpha \in \mathbb{R}$

$$n, p \in \mathbb{N} \mid D_f$$

$$y = x^n \mid \mathbb{R}$$

$$y = x^{-n} = \frac{1}{x^n} \mid \mathbb{R} - \{0\}$$

$$y = x^{\frac{p}{n}} \mid \mathbb{R}_+ \cup \{0\} \text{ dla } n\text{-parz.}$$

$$\mathbb{R} \text{ dla } n\text{-nieparz.}$$

$$y = x^{-\frac{p}{n}} \mid \mathbb{R}_+ \text{ dla } n\text{-parz.}$$

$$\mathbb{R} - \{0\} \text{ dla } n\text{-nieparz.}$$

$$y = x^0 \mid \mathbb{R} - \{0\}$$

$$f(x) = x^{\alpha}$$
, gdzie $\alpha \in \mathbb{R}$

Dziedzina, zbiór wartości, wykres zależą od wykładnika α :

$$n, p \in \mathbb{N} \mid D_f$$

$$y = x^n \mid \mathbb{R}$$

$$y = x^{-n} = \frac{1}{x^n} \mid \mathbb{R} - \{0\}$$

$$y = x^{\frac{p}{n}} \mid \mathbb{R}_+ \cup \{0\} \text{ dla } n\text{-parz.}$$

$$\mathbb{R} \text{ dla } n\text{-nieparz.}$$

$$y = x^{-\frac{p}{n}} \mid \mathbb{R}_+ \text{ dla } n\text{-parz.}$$

$$\mathbb{R} - \{0\} \text{ dla } n\text{-nieparz.}$$

$$y = x^0 \mid \mathbb{R} - \{0\}$$

$$y = x^{\alpha}, \quad \alpha \in \mathbb{IQ} \mid \mathbb{R}_+ \text{ dla } \alpha < 0$$

$$\mathbb{R}_+ \cup \{0\} \text{ dla } \alpha > 0$$

Jeżeli x>0, to $x^{\frac{p}{n}}=\sqrt[n]{x^p}$

Równania i nierówności pierwiastkowe

Równania i nierówności pierwiastkowe

Ogólna zasada:
 jeżeli pojawia się wyraz v..., podnieś obie strony równania lub
 nierówności do n-tej potęgi.

Równania i nierówności pierwiastkowe

 Ogólna zasada: jeżeli pojawia się wyraz v..., podnieś obie strony równania lub nierówności do n-tej potegi.

Twierdzenie

$$a = b \iff a^n = b^n$$

$$a < b \iff a^n < b^n$$

$$a \le b \iff a^n \le b^n$$

- jeżeli n-parzysta, a, b > 0
- jeżeli n-nieparzysta, $a, b \in \mathbb{R}$