16. Bayesov klasifikator II

Strojno učenje 1, UNIZG FER, ak. god. 2023./2024.

Jan Šnajder, vježbe, v3.2

1 Zadatci za učenje

- 1. [Svrha: Razumjeti vezu između Bayesovog klasifikatora i logističke regresije, odnosno probabilističku interpretaciju logističke regresije. Razumjeti razliku u broju parametara između diskriminativnog i generativnog modela te utjecaj broja klasa i broja primjera na taj odnos.]
 - (a) Izvedite model logističke regresije krenuvši od generativne definicije za $P(y=1|\mathbf{x})$. Izvod napravite korak po korak te se uvjerite da možete obrazložiti svaki korak u izvodu. Napišite sve pretpostavke koje ste ugradili u izvod.
 - (b) Model logističke regresije koristimo za binarnu klasifikaciju primjera sn=100 značajki. Odredite broj parametara modela logističke regresije te njemu odgovarajućeg generativnog modela.
 - (c) Izračunajte broj parametara za isti slučaj, ali sa K=5 klasa.
 - (d) Pretpostavite da klasificiramo u K=10 klasa. Izračunajte koliko velika mora biti dimenzija prostora značajki n, a da bi se logistička regresija isplatila jer ima manje parametara od odgovarajućega generativnog modela.
- 2. [Svrha: Isprobati na konkretnom primjeru procjenu parametara naivnog Bayesovog klasifikatora.] Naivan Bayesov klasifikator želimo upotrijebiti za binarnu klasifikaciju "Skupo ljetovanje na Jadranu". Skup primjera za učenje je sljedeći:

i	Mjesto	Otok	Smještaj	Prijevoz	$y^{(i)}$
1 2 3 4 5 6	Istra Kvarner Dalmacija Dalmacija Istra Kvarner Dalmacija	da ne da ne ne ne	privatni kamp hotel privatni privatni kamp hotel	auto bus avion avion auto bus auto	da ne da ne da ne

- (a) Izračunajte MLE procjene svih parametara modela te klasificirajte primjere (Istra, ne, kamp, bus) i (Dalmacija, da, hotel, bus).
- (b) Izračunajte Laplaceove (zaglađene) procjene za sve parametre modela te klasificajte nanovo iste primjere.
- 3. [Svrha: Razviti intuiciju o uvjetnoj nezavisnosti i odnosu između nezavisnosti i uvjetne nezavisnosti.]
 - (a) Definirajte uvjetnu nezavisnost slučajnih varijabli. Pokažite da je definicija pomoću zajedničke vjerojatnosti istovjetna definiciji pomoću uvjetne vjerojatnosti.
 - (b) Za sljedeće primjere razmotrite sve parove varijabli i odredite za koje parove možemo pretpostaviti nezavisnost odnosno uvjetnu nezavisnost:
 - i. $P \equiv$ danas je ponedjeljak, S = danas je subota, $L \equiv$ danas je listopad.
 - ii. $S \equiv \text{sunčano je}$; V = vruće je; K = ljudi se kupaju.

- iii. $L\equiv$ dokument sadrži riječ "lopta"; $N\equiv$ dokument sadrži riječ "nogomet"; $S\equiv$ dokument je o sportu.
- iv. $K \equiv \text{pada kiša}$; C = pukla je cijev; $M \equiv \text{ulica je mokra}$.
- (c) Temeljem prethodnih primjera, odgovorite implicira li nezavisnost dviju varijabli njihovu uvjetnu nezavisnost, $A \perp B \Rightarrow A \perp B \mid C$? Vrijedi li obrnut slučaj, $A \perp B \Rightarrow A \perp B \mid C$?
- 4. [Svrha: Razumjeti definiciju uzajamne informacije i način njezina izračuna. Razumjeti razliku između zavisnosti i lienarne zavisnosti.]
 - (a) Krenuvši od definicija za entropiju i relativnu entropiju, izvedite mjeru uzajamne informacije I(X,Y) kao Kullback-Leiblerovu divergenciju između zajedničke razdiobe, P(X,Y), i zajedničke razdiobe uz pretpostavku nezavisnosti, P(X)P(Y).
 - (b) Neka je zajednička vjerojatnost P(X,Y) varijabli X i Y sljedeća: P(1,1) = 0.2, P(1,2) = 0.05, P(1,3) = 0.3, P(2,1) = 0.05, P(2,2) = 0.3, P(2,3) = 0.1. Izračunajte mjeru uzajamne informacije I(X,Y) za varijable X i Y. Biste li, temeljem vrijednosti uzajamne informacije, rekli da su varijable X i Y nezavisne? Jesu li varijable linearno zavisne?
 - (c*) Uzajamna informacija nije odozgo ograničena, ali je ograničena odozdo. Primjenom Jensenove nejednakosti, dokažite da vrijedi $I(X,Y) \ge 0$.
- 5. [Svrha: Shvatiti kako uvjetna nezavisnost varijabli određuje optimalnu strukturu polunaivnog Bayesovog modela te kako to onda određuje broj parametara.] Želimo naučiti model za klasifikaciju pacijenata s obzirom na rizik oboljenja od kardiovaskularnih bolesti. Ciljne klase su $C_1 = VisokRizik$, $C_2 = UmjerenRizik$, $C_3 = NizakRizik$. Koristimo sedam diskretiziranih ulaznih varijabli: spol, dob, težina, visina, indeks tjelesne mase (BMI), indikacija je li osoba pušač (binarna varijabla) i indikacija bavi li se osoba sportom (binarna varijabla).
 - (a) Bi li naivan Bayesov model u ovom slučaju bio dobar odabir? Zašto? Predložite polunaivni model.
 - (b) Izračunajte broj parametara predloženog polunaivnog modela i usporedite ga s brojem parametara naivnog modela.
 - (c) Razmatramo familiju modela poluna
ivnog Bayesovog klasifikatora \mathcal{H}_{α} kod kojeg se združivanje varijabli provodi za sve parove varijabli (x_i, x_j) za koje $I(x_i, x_j) \geqslant \alpha$. Skicirajte pogreške učenja i ispitivanja modela \mathcal{H}_{α} kao funkcije praga α (dvije krivulje na istoj skici).

2 Zadatci s ispita

1. (P) Gaussov Bayesov klasifikator i logistička regresija su generativno-diskriminativni par modela, što znači da, uz prikladan odabir parametara, oba modela mogu ostvariti identičnu granicu u ulaznome prostoru. Međutim, Gaussov Bayesov klasifikator je generativni model, dok je logistička regresija diskriminativan model, pa ta dva modela općenito imaju različit broj parametara. U pravilu, logistička regresija imat će manje parametara od njoj odgovarajućeg modela Gaussovog Bayesovog klasifikatora. Razmotrite slučaj binarne klasifikacije u ulaznome prostoru dimenzije n=100 pomoću modela logističke regresije i njoj odgovarajućeg modela Gaussovog Bayesovog klasifikatora. Koliko će model Gaussovog Bayesovog klasifikatora imati više parametara od modela logističke regresije?

A 200 B 5049 C 5150 D 10200

2. (N) Treniramo naivan Bayesov klasifikator za binarnu klasifikaciju *"Skupo ljetovanje na Jadranu"*. Skup primjera za učenje je sljedeći:

i	Mjesto	Otok	Smještaj	Prijevoz	$y^{(i)}$
1	Kvarner	da	privatni	auto	1
2	Kvarner	ne	kamp	bus	1
3	Dalmacija	da	hotel	avion	1
4	Dalmacija	ne	privatni	avion	0
5	Istra	da	kamp	auto	0
6	Istra	ne	$_{\mathrm{kamp}}$	bus	0
7	Dalmacija	da	hotel	auto	0

Procjene parametara radimo Laplaceovim MAP-procjeniteljem. Zanima nas klasifikacija sljedećeg primjera:

$$\mathbf{x} = (Istra, ne, kamp, bus)$$

Koliko iznosi aposteriorna vjerojatnost $P(y = 1|\mathbf{x})$?

A 0.1747 B 0.0032 C 0.6856 D 0.3144

3. (P) Naivan Bayesov klasifikator pretpostavlja uvjetnu nezavisnost značajki unutar klase, to jest $x_j \perp x_k | y$. Međutim, u stvarnosti ta pretpostavka rijetko kada vrijedi. Kao primjer, razmotrite model za klasifikaciju novinskih članaka, čija je zadaća odrediti je li tema članka pandemija koronavirusa (y=1) ili ne (y=0). Model koristi binarne značajke koje indiciraju pojavljivanje određene riječi u novinskom članku. Na primjer, izglednost P(stožer|y=1) jest vjerojatnost da se u članku koji je na temu pandemije koronavirusa pojavi riječ "stožer". Razmotrite sljedeće četiri riječi koje se općenito mogu pojaviti u novinskim člancima: "stožer", "pandemija", "koronavirus" i "general". Za koju od sljedećih jednakosti općenito očekujemo da ne vrijedi i da se time onda narušava pretpostavka naivnog Bayesovog klasifikatora?

| A | P(stožer|y=1) = P(stožer|pandemija, y=1)

B P(general|y=0) = P(general|stožer,y=0)

| C | P(koronavirus|y=0) = P(koronavirus|general, y=0)

D P(pandemija|y=1) = P(stožer|y=1)

4. (N) Treniramo Bayesov klasifikator za odluku o dobroj destinaciji za Erasmus+ studijski boravak. Skup primjera za učenje, izgrađen na temelju iskustava prijatelja i prijatelja prijatelja, je sljedeći:

i	Država	Stipendija	Semestar	Studij	GovoriJezik	$y^{(i)}$
1	Njemačka	da	ljetni	dipl	da	1
2	Poljska	ne	zimski	preddipl	ne	1
3	Italija	da	$_{ m ljetni}$	dipl	da	1
4	Njemačka	ne	zimski	preddipl	ne	0
5	Austrija	da	$_{ m ljetni}$	dipl	da	1
6	Poljska	ne	zimski	dipl	ne	1
7	Austrija	da	zimski	dipl	ne	1
8	Njemačka	ne	zimski	dipl	ne	0

Očekujemo zavisnost između varijabli Država i Stipendija, pa koristimo polunaivan Bayesov klasifikator u kojemu su te dvije varijable združene. Procjene izglednosti klasa radimo Laplaceovim MAP-procjeniteljem. Zanima nas klasifikacija za $\mathbf{x} = (\text{Italija}, \text{ne}, \text{zimski}, \text{dipl}, \text{ne})$. Koliko iznosi aposteriorna vjerojatnost $P(y=1|\mathbf{x})$?

5. (P) Treniramo binarni klasifikator za analizu predsjedničke izborne kampanje. Svrha klasifikatora jest predvidjeti hoće li kandidat ili kandidatkinja skupiti dovoljno potpisa za kandidaturu. Model koristi pet značajki: x_1 – politička orijentacija (kategorička značajka s tri vrijednosti), x_2, x_3 – dob kandidata i politički staž (dvije numeričke značajke), x_4 – populist (binarna značajka) i x_5 – kandidat/kinja velike političke stranke (binarna značajka). Primijetite da u istom modelu kombiniramo diskretne i kontinuirane značajke, što je sasvim legitimno. Razmatramo tri modela različite složenosti:

 \mathcal{H}_0 : Bayesov klasifikator bez ikakvih pretpostavki o uvjetnoj nezavisnosti

 \mathcal{H}_1 : Polunaivan Bayesov klasifikator

 \mathcal{H}_2 : Naivan Bayesov klasifikator

Polunaivan model \mathcal{H}_1 isti je kao i naivan model \mathcal{H}_2 , s tom razlikom da smo u jedan faktor združili značajke x_1 i x_4 , sluteći ipak da bi pokoji kandidat mogao dobro kapitalizirati populizam u kombinaciji s nekom etabliranom političkom orijentacijom. Kod naivnog Bayesovog klasifikatora naivnu pretpostavku uveli smo za sve varijable (i za diskretne i za kontinuirane). U sva tri modela za

značajke x_2 i x_3 koristimo dijeljenu kovarijacijsku matricu. Izračunajte broj parametara za svaki od ova tri modela. Koliko parametara sveukupno imaju ova tri modela?

A 52 B 61 C 62 D 64

6. (N) Treniramo polunaivan Bayesov klasifikator sa n=3 binarne varijable, x_1, x_2 i x_3 . Zajednička vjerojatnost tih triju varijabli definirana je sljedećom tablicom:

	x_3	= 0	$x_3 = 1$		
	$\overline{x_2 = 0 x_2 = 1}$		$x_2 = 0$	$x_2 = 1$	
$x_1 = 0$	0.2	0.1	0.1	0.0	
$x_1 = 1$	0.3	0.0	0.2	0.1	

Prije treniranja klasifikatora, koristimo uzajamnu informaciju kako bismo procijenili koje su varijable najviše statistički zavisne, jer se te varijable isplati združiti u zajednički faktor. Odlučili smo združiti onaj par varijabli koje imaju uzajamnu informaciju veću od 0.01. Ako to vrijedi za dva para varijabli, onda ćemo sve tri varijable združiti u jedan faktor. Izračunajte uzajamne informacije između svih parova varijabli te odredite koje varijable ćemo združiti u zajedničke faktore prema gornjem pravilu. Kako glasi faktorizacija zajedničke vjerojatnosti tog polunaivnog Bayesovog klasifikatora?

- $\boxed{\mathsf{B}} P(y)P(x_1,x_2,x_3|y)$
- $| C | P(y)P(x_1, x_3|y)P(x_2|y)$
- $\boxed{\mathsf{D}} \ P(y)P(x_1|y)P(x_2|y)P(x_3|y)$
- 7. (N) Treniramo polunaivan Bayesov klasifikator sa tri binarne značajke, x_1 , x_2 i x_3 . Skup primjera za učenje \mathcal{D} sastoji se od sljedećih deset primjera:

x_1				$ x_1 $			
1	1	0	1	1 1 1 1 0 0 0	1	0	0
0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	0
0	1	1	1	0	1	1	1
0	1	0	1	0	0	1	0

Prije treniranja koristimo uzajamnu informaciju kako bismo procijenili koje su varijable najviše statistički zavisne, jer se te varijable isplati združiti u zajednički faktor. Izračun provodimo tako da za svaki par varijabli x_i i x_j procjenjujemo parametre zajedničke distribucije $P(x_i, x_j)$, a zatim iz zajedničke distribucije računamo marginalne vjerojatnosti i uzajamnu informaciju $I(x_i, x_j)$. Budući da je skup $\mathcal D$ malen, za procjenu parametara distribucije $P(x_i, x_j)$ koristimo Laplaceov procjenitelj. Koliko iznosi na taj način izračunata uzajamna informacija između varijabli x_1 i x_2 ?

 A
 0.0078
 B
 0.0112
 C
 0.0334
 D
 0.0423