

Figure 1

AUG 0 6 2002

Minimum signal peptide score	false positive rate	false negative rate	proba(0.1)	proba(0.2)
3,5	0,121	0,036	0,467	0,664
4	.0,096	0,06	0,519	0,708
4,5	0,078	0,079	0,565	0,745
5	0,062	0, 0 98	0,615	0,782
5,5	0,05	0,127	0,659	0,813
6	0,04	0,163	0,694	0,836
6,5	0,033	0,202	0,725	0,855
7	0,025	0,248	0,763	0,878
7,5	0,021	0,304	0,78	0,889
8	0,015	0,368	0,816	0,909
8,5	0,012	0,418	0,836	0,92
9	0,009	0,512	0,856	0,93
9,5	0,007	0,581	0,863	0,934
10	0,006	0,679	0,835	0,919

Figure 3

AUG 0 6 2002

Figure 4

AUG 0 6 2002

TECH CENTER 1600/2900

Promoter sequence P13H2 (546 bp):

		Orient			
Matrix	Position	ation	Score	Length	Sequ nc
CMYB_01	-502	+	0.983	9	TGTCAGTTG
MYOD_Q6	-501	_	0.961	10	CCCAACTGAC
S8_01	-444	-	0.960	11	AATAGAATTAG
S8_01	-425	+	0.966	11	
DELTAEF1_01	-390	•	0.960	11	AACTAAATTAG
GATA_C	-364	-	0.964	11	GCACACCTCAG
CMYB_01	-349	+	0.958	9	AGATAAATCCA
GATA1_02	-343	+	0.959	_	CTTCACTTG
GATA_C	-339	+	0.953	14	TTGTAGATAGGACA
TAL1ALPHAE47_01	-235	+		11	AGATAGGACAT
TAL1BETAE47_01	-235	+	0.973	16	CATAACAGATGGTAAG
TAL1BETAITF2_01	-235		0.983	16	CATAACAGATGGTAAG
MYOD_Q6		+	0.978	16	/CATAACAGATGGTAAG
GATA1_04	-232	•	0.954	10/	ACCATCTGTT
IK1_01	-217	-	0.953	1,3	TCAAGATAAAGTA
	-126	+	0.963	/13	AGTTGGGAATTCC
IK2_01	-126	+	0.985	/ 12	AGTTGGGAATTC
CREL_01	-123	+	0.962	/ 10	TGGGAATTCC
GATA1_02	-96	+	0.950/	14	TCAGTGATATGGCA
SRY_02	-41		0.951	12	TAAAACAAAACA
E2F_02	-3 3	+	0.957	8	TITAGCGC
MZF1_01	-5	-	0.975	8	TGAGGGGA
Denmark			/	-	

Promoter sequence P15B4 (861bp) :

		Oriept			
	sition	ation	Score	Length	Sequence
NFY_Q6	-748	/-	0.956	11	GGACCAATCAT
MZF1_01	-738	/ +	0.962	8	CCTGGGGA
CMYB_01	-684	+	0.994	9	TGACCGTTG
VMYB_02	-682	-	0.985	9	TCCAACGGT
STAT_01	-/ 873	+	0.868	8	TTCCTGGAA
STAT_01	/-673	-	0.951	9	TTCCAGGAA
MZF1_01	-556	•	0.956	8	TTGGGGGA
IK2_01	-4 51	+	0.965	12	GAATGGGATTTC
MZF1_01	-424	+	0.986	8	AGAGGGGA
SRY_02	-398	-	0.955	12	GAAAACAAAAAA
MZF1_01	-216	+	0.960	8	GAAGGGGA
MYOD_Q6	-190	+	0.981	10	AGCATCTGCC
DELTAEF1_01	-176	+	0.958	11	TCCCACCTTCC
S8_01	5	-	0.992	11	GAGGCAATTAT
MZF1_01	16	-	0.986	8	AGAGGGGA

Promoter sequence P29B6 (555 bp):

		Orient	•		
Matrix	Position		Score	Length	Sequence
ARNT_01	-311	+	0.964	16	GGACTCACGTGCTGCT
NMYC_01	-309	+	0.965	12	ACTCACGTGCTG
USF_01	-309	+	0.985	12	ACTCACGTGCTG
USF_01	-309	-	0.985	12	CAGCACGTGAGT
/ NMYC_01	-309	-	0.956	12	CAGCACGTGAGT
MYCMAX_02	-309	-	0.972	12	CAGCACGTGAGT
USF_C	-307	+	0.997	8	TCACGTGC
USF_C	-307	-	0.991	8	GCACGTGA
MZF1_01	-292	-	0.968	8	CATGGGGA
ELK1_02	-105	+	0.963	14	CTCTCCGGAAGCCT
CETS1P54_01	-102	+	Ó.974	10	TCCGGAAGCC
AP1_Q4	-42	-	0.963	11	AGTGACTGAAC
AP1FJ_Q2	-42	-	0.961	11	AGTGACTGAAC
PADS_C	45	+	1.000	9	TGTGGTCTC

Figure 5 - Deleted

FIGURE 6 - Deleted

FIGURE 7 - Deleted

AUG 0 6 2002

AUG 0 6 2002

	Search characteristic	ristic			Selection	Selection Characteristics
Step	Program	Strand	Parameters	Identity (%)	Identity (%) Lenoth (hn)	
miscellanaeous	FASTA	poth		06	31	Comments
IRNA	FASTA	<u>بر</u> م		6		
	11007			90	00	
rKNA	BLASTN	both	S=108	08	40	
mtRNA	BLASTN	both	S=108	88	64	
Procaryotic	BLASTN	both	S=144	8	40	
Fungai	BLASTN	potp.	S=144	8	9	
Alu	BLASTN	both	S=72, B=5	26	9	may 5 matrices
L1	BLASTN	both	S=72, B=5	20	\$	man 5 matches, masking
Repeats	BLASTN	200	S=77	35		man J matches, masking
			2/-0	2	40	masking
•			W=6, S=10, E=1000,			
PolyA	BLAST2N	top	N=12	8	0	cobitogram Of the last of
Polyadenylation signal	•	top	AATAAA ali	AATAAA allowing 1 mismatch		in the 50 micleotides hefore the 51 and a 51
Vertebrate	BLASTN then FASTA	both		90 then 70	30	first BI ASTN then FASTA on machine
ESTs	BLAST2N	both	•	g	8	and the sequences
Geneseq	BLASTN	both	W=8, B=10	8	2	
ORF	BLASTP	top	W=8, B=10	1	1	OB Employee
Proteins	BLASTX	top	E = 0.001	92	ş	on Ord. proteins, max 10 matches
					3	

Figure 1

2/5

RECEIVED

AUG 0 6 2002

Minimum signal peptide score	false positive rate	false negative rate	proba(0.1)	proba(0.2)
3.5	0.121	0.036	0.467	0.664
4	0.096	0.06	0.519	0.708
4.5	0.078	0.079	0.565	0.745
5	0.062	0.098	0.615	0.782
5.5	0.05	0.127	0.659	0.813
6	0.04	0.163	0.694	0.836
6.5	0.033	0.202	0.725	0.855
7	0.025	0.248	0.763	0.878
7.5	0.021	0.304	0.78	0.889
8	0.015	0.368	0.816	0.909
8.5	0.012	0.418	0.836	0.92
9	0.009	0.512	0.856	0.93
9.5	0.007	0.581	0.863	0.934
10	0.006	0.679	0.835	0.919

Figure 2

AUG 0 6 2002

4/5

Figure 4

AUG 0 6 2002

TECH CENTER 1600/2900

5/5

JUL 3 1 2002 E

	Search characteristic	teristic		Select	Selection Characteristics	sfics
Step	Program	Strand	Parameters	Identity (%)	Length (bp)	Comments
miscellanaeous	FASTA	both		06	15	
tRNA	FASTA	both		80	09	
rRNA	BLASTN	both	S=108	80	40	
mtRNA	BLASTN	both	S=108	80	40	
Procaryotic	BLASTN	both	S=144	06	40	
Fungal	BLASTN	both	S=144	06	40	
Alu	BLASTN	both	S=72, B=5	70	40	max 5 matches, masking
L1	BLASTN	both	S=72, B=5	70	40	max 5 matches, masking
Repeats	BLASTN	both	S=72	70	40	masking
PolyA	BLAST2N	top	W=6, S=10, E=1000, N=-12	06	10	in the last 100 purcleotides
Polyadenylation					1	in the 60 minoration
signal	•	top	AATAAA al	AATAAA allowing 1 mismatch	atch	the 5' end of the polA
	BLASTN then		,			first BLASTN and then FASTA
Vertebrate	FASIA	poth		90 then 70	30	on maching sequences
ESTs	BLAST2N	poth	•	06	30	
Genesed	BLASTN	both	W=8, B=10	06	30	
ORF	BLASTP	top	W=8, B=10	•	,	on ORF proteins, max 10 matches
Proteins	BLASTX	top	E = 0.001	70	30	

Parameters used for each step of cDNA analysis