

Conditional Probabilities

MATH/STAT 394: Probability I Summer 2021 A Term

Introduction to Probability D. Anderson, T.Seppäläinen, B. Valkó

§ 2.1

Aaron Osgood-Zimmerman

Department of Statistics

Quiz solution

Practice

Flip a fair coin 5 times. For each heads you pay me 1\$ and for each tails I pay you 1\$. Denote by X my net wining.

- What are the possible values for X?
- What is $\mathbb{P}(X=3)$?

Solution

- Denote by H the number of heads in the 5 flips.
- The possible values of H are 0, 1, 2, 3, 4, 5
- The random variable of interest is X = H − T = H − (5 − H) = 2H − 5 so the possible values of X are -5, -3, -1, 1, 3, 5.
- Then we have that

$$\mathbb{P}(X=3) = \mathbb{P}(H=4) = {5 \choose 4} 2^{-4} 2^{-1} = 5 \cdot 2^{-5} \approx 0.16$$

where $\binom{5}{4}$ is the number of to select 4 positions among the 5 possible for the heads and $2^{-4}2^{-1}$ is the probability of a tuple composed of 4 heads and 1 tail.

Quiz solution

Practice

Flip a fair coin 5 times. For each heads you pay me 1\$ and for each tails I pay you 1\$. Denote by X my net wining.

- What are the possible values for X?
- What is $\mathbb{P}(X=3)$?

Solution

- Denote by H the number of heads in the 5 flips.
- The possible values of *H* are 0, 1, 2, 3, 4, 5
- The random variable of interest is X = H T = H (5 H) = 2H 5 so the possible values of X are -5, -3, -1, 1, 3, 5.
- Alternative computation: since the outcomes are equally likely, and the number of
 ways to get 4 heads in 5 flips is (⁵/₄) we have

$$\mathbb{P}(H=4) = {5 \choose 4} / \#\Omega = 5/32$$

Recap

Prob. definition

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Three axioms of probability \mathbb{P}

- 1. $0 \leq \mathbb{P}(A) \leq 1$, $A \in \mathcal{F}$
- 2. $\mathbb{P}(\Omega) = 1$
- 3. $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$, if $A_i \cap A_j = \emptyset$ for $i \neq j$

Prob. calculus tools

• Finite additivity:

•
$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i)$$
, if $A_i \cap A_j = \emptyset$ for $i \neq j$

- · Prob. of complement
 - $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$
 - $\mathbb{P}(B) = \mathbb{P}(B \cap A^c) + \mathbb{P}(B \cap A)$
- Inclusion-exclusion formulas
 - $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
 - $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$ $- \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C)$ $+ \mathbb{P}(A \cap B \cap C)$
 - See lecture 7 for general formula with A_1, \ldots, A_n

Outline

Conditional Probabilities

Motivation

Motivation

- The probability of getting a one when rolling a fair 6-sided die is 1/6
- Suppose you were given the extra information that the die roll was an odd number (hence 1, 3 or 5)
- Conditioned on this new information, intuitively, the probability of a one is now 1/3.
- Let's formalize this intuition

Conditional probability

Definition

Given two events A and B with $\mathbb{P}(B) > 0$, the **conditional probability** of A given B is defined as

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

- Make sure that $\mathbb{P}(B) > 0$ (o.w. you condition on something impossible)
- For equally likely outcomes,

$$P(A \mid B) = \frac{\#(A \cap B)}{\#B}$$

Note: Event $A \cap B$ is sometimes written AB.

Conditional probability intuition

Given two events A and B with $\mathbb{P}(A) > 0$, the **conditional probability** of B given A is defined as

$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

Conditional probability

Example

Roll a die.
$$B = \{1 \text{ or } 3 \text{ or } 5\}, A = \{1\}.$$

Prob. of A conditioned on B?

Solution

$$\mathbb{P}(\mathsf{get}\ 1\,|\,\mathsf{roll}\ \mathsf{is}\ \mathsf{odd}) = \mathbb{P}(A\mid B) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(\mathsf{get}\ 1)}{\mathbb{P}(\mathsf{get}\ 1\ \mathsf{or}\ 3\ \mathsf{or}\ 5)} = \frac{1/6}{3/6} = \frac{1}{3}.$$

Conditional Probability

Exercise

Roll two fair 6-sided dice. Find the probability of the sum of two rolls is 7, conditioned on the first roll being 4.

Solution

• Denote two events $A = \{\text{Sum is 7}\}\$ and $B = \{\text{First roll is 4}\}.$

$$\Omega = \{(i,j) : i = 1, \dots, 6, \quad j = 1, \dots, 6\}, \quad \#\Omega = 36.$$

$$AB=A\cap B=\{(4,3)\},\quad B=\{(4,1),\dots,(4,6)\}.$$

Hence,

$$\mathbb{P}(A \cap B) = \#(AB)/\#\Omega = 1/36, \quad \mathbb{P}(B) = \#(B)/\#\Omega = 1/6,$$
$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{1/36}{1/6} = \frac{1}{6}.$$

Alternatively, since outcomes are equally likely,

$$\mathbb{P}(A \mid B) = \frac{\#(A \cap B)}{\#B} = \frac{1}{6} = \frac{1}{6}.$$

Some simple properties

Be careful

$$\mathbb{P}(A \mid B) \neq \mathbb{P}(B \mid A)$$

 $\to \mathbb{P}(\mathsf{raining} \mid \mathsf{cloudy}) \neq \mathbb{P}(\mathsf{cloudy} \mid \mathsf{raining})$

Properties

- 1. $\mathbb{P}(A \mid A) = 1$.
- 2. $\mathbb{P}(A \mid \Omega) = \mathbb{P}(A)$.
- 3. $\mathbb{P}(A^c \mid A) = 0$.
- 4. $\mathbb{P}(A^c \mid B) = 1 \mathbb{P}(A \mid B)$.

Generally:

Given B s.t. $\mathbb{P}(B) > 0$, then $\mathbb{P}(\cdot \mid B) : A \to \mathbb{P}(A \mid B)$ is a probability measure

Multiplication rule / Factorization

Proposition (Multiplication rule / Factorization¹)

• By definition of conditional probability, the probability of $A \cap B$ is

$$\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B)\mathbb{P}(B) = \mathbb{P}(B \mid A)\mathbb{P}(A)$$

• For three events A, B and C,

$$P(A \cap B \cap C) = \mathbb{P}(C \mid A, B)\mathbb{P}(A \cap B) = \mathbb{P}(C \mid A, B)\mathbb{P}(B \mid A)\mathbb{P}(A),$$

where $\mathbb{P}(C \mid A, B)$ means $\mathbb{P}(C \mid A \cap B)$.

• For n events A_1, A_2, \ldots, A_n :

$$\left| \mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right) = \mathbb{P}(A_{1})\mathbb{P}(A_{2} \mid A_{1})\mathbb{P}(A_{3} \mid A_{1}, A_{2})\cdots\mathbb{P}(A_{n} \mid A_{1}, \ldots, A_{n-1}) \right|$$

¹All definitions assume that the conditional probabilities are well-defined, i.e., that the conditioning event has a non-zero prob.

Multiplication rule / Factorization

Exercise

A box contains 8 red balls and 4 blue balls. Randomly draw 3 balls (X_1, X_2, X_3) without replacement. What is the probability of getting (R, B, B)?

Solution

1. Direct calculation.

$$\Omega = \{ \text{3-tuples of } 1, \dots, 12 \}, \ A = \{ X_1 = R, X_2 = B, X_3 = B \}.$$

By equally likely outcomes,

$$P(A) = \frac{\#A}{\#\Omega} = \frac{8 \cdot 4 \cdot 3}{(12)_3} = \frac{8 \cdot 4 \cdot 3}{12 \cdot 11 \cdot 10}.$$

2. Multiplication rule.

$$\begin{split} &P(X_1=R,X_2=B,X_3=B)\\ &=P(X_1=R)P(X_2=B\mid X_1=R)P(X_3=B\mid X_1=R,X_2=B)\\ &=\frac{8}{12}\cdot\frac{4}{11}\cdot\frac{3}{10}. \end{split}$$

Law of total Probability

Exercise

Two urns. Urn I has 2 green balls and 1 red ball. Urn II has 2 red balls and 3 yellow balls.

Consider

- 1. Picking one of the two urns with equal prob.
- 2. Then sample one ball uniformly at random from the selected urn

What is the prob. of getting a red ball?

Solution

- Let {urn I} denotes the event that we choose the urn I, denote {urn II} same for urn II and denote {red} the event that we select a red ball
- Decompose {red} as

$$\begin{split} \mathbb{P}(\{\mathsf{red}\}) &= \mathbb{P}(\{\mathsf{red}\} \cap \{\mathsf{urn}\ \mathsf{I}\}) + \mathbb{P}(\{\mathsf{red}\} \cap \{\mathsf{urn}\ \mathsf{II}\}) \\ &= \mathbb{P}(\mathsf{red}\mid \mathsf{urn}\ \mathsf{I})\mathbb{P}(\mathsf{urn}\ \mathsf{I}) + \mathbb{P}(\mathsf{red}\mid \mathsf{urn}\ \mathsf{II})\mathbb{P}(\mathsf{urn}\ \mathsf{II}) \\ &= \frac{1}{3} \cdot \frac{1}{2} + \frac{2}{5} \cdot \frac{1}{2} = \frac{11}{30} \end{split}$$

Law of total probability

Law of total probability (simple version)

General version of the reasoning used in the last example:²

$$\boxed{\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap B^c) = \mathbb{P}(A \mid B)\mathbb{P}(B) + \mathbb{P}(A \mid B^c)\mathbb{P}(B^c)}$$

Notes:

- This is a recurring approach throughout probability.
- Just decompose a complex event into simpler disjoint pieces
- Here we used (B, B^c) to split A
- This can be generalized to partitions.

²Assuming that the cond. prob are well defined, i.e. $\mathbb{P}(B) > 0$ and $\mathbb{P}(B^c) > 0$.

Law of total probability

Definition

Subsets/events B_1, \ldots, B_n of Ω form a **partition** of Ω if

- 1. they are pairwise disjoint, i.e., $B_i \cap B_j = \emptyset$ for any $i \neq j$
- 2. they cover the sample space, i.e., $\bigcup_{i=1}^{n} B_i = \Omega$

Proposition (Law of total probability)

Let B_1, \ldots, B_n be a partition of Ω with $\mathbb{P}(B_i) > 0$ for all i.

For any event A,

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A \cap B_i)$$
 (Finite additivity)
$$= \sum_{i=1}^{n} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i)$$
 (Multiplication rule)

Venn Diagrams Representations

The partitioning of A by B can be represented as follows

Figure from Introduction to probability, D. Anderson, T. Seppäläinen, B. Valkò

Quiz next lecture

Practice (Example from a Wall Street job interview)

Let us play a Russian roulette. You are tied to your chair. Here's a gun, a revolver.

Here's the barrel of the gun, six chambers, all empty. Now watch me as I put two bullets into the barrel, into two adjacent chambers. I close the barrel and spin it. I put a gun to your head and pull the trigger.

Click. Lucky you!

Now I'm going to pull the trigger *one more time*. Which would you prefer: that I spin the barrel first or that I just pull the trigger?