Содержание

1.	Неприводимые подмодули в $S(2 1)$	2
2.	Композиционные ряды костандартных модулей в $S(2 1)$	6

Введение

1. Неприводимые подмодули в S(2 | 1)

Пусть $\lambda = (\lambda_1, \lambda_2 \mid \lambda_3)$ – полиномиальный вес и L_{λ} - неприводимый подмодуль (цоколь) костандартного модуля $V = \nabla(\lambda)$ со старшим весом λ . Запишем разность $\lambda_1 - \lambda_2 = pk + t$, где $0 \le t < p$.

Определение 1. *Назовем вес* $\lambda = (\lambda_1, \lambda_2 \mid \lambda_3)$

- регулярным, если $(\lambda_1 + \lambda_3 + 1)(\lambda_2 + \lambda_3) \not\equiv 0 \pmod{p}$;
- критическим, если $\lambda_1 + \lambda_3 + 1 \equiv 0$, но $\lambda_2 + \lambda_3 \not\equiv 0 \pmod{p}$;
- сильно критическим, если $\lambda_2 + \lambda_3 \equiv 0 \pmod{p}$.

Обозначим $d = c_{11}c_{22} - c_{12}c_{21}, y_1 = \frac{c_{22}c_{13} - c_{12}c_{23}}{d}, y_2 = \frac{-c_{21}c_{13} + c_{11}c_{23}}{d}$

Определим следующие элементы:

$$v_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} - \lambda_3 c_{33}^{\lambda_3 - 1} (c_{31} y_1 + c_{32} y_2) + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3 - 2} c_{31} y_1 c_{32} y_2)$$

веса $(\lambda_1 - i, \lambda_2 + i \mid \lambda_3),$

$$w_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} - \lambda_3 c_{33}^{\lambda_3 - 1} c_{32} y_2) y_1$$

веса $(\lambda_1 - i - 1, \lambda_2 + i \mid \lambda_3 + 1)$,

$$u_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} - \lambda_3 c_{33}^{\lambda_3 - 1} c_{31} y_1) y_2$$

веса $(\lambda_1 - i, \lambda_2 + i - 1 \mid \lambda_3 + 1),$

$$r_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i c_{33}^{\lambda_3} y_1 y_2$$

веса $(\lambda_1 - i - 1, \lambda_2 + i - 1 \mid \lambda_3 + 2)$. Они порождают $H^0(\lambda)$ как суперпространство для любого (не обязательно полиномиального) старшего веса λ .

Суперпроизводные $_{ij}D$ определяются следующим действием на элементах $A(2 \mid 1)$: $(c_{kl})_{ij}D = \delta_{li}c_{kl}$, где δ_{li} – символ Кронекера.

Обозначим через $\chi(\lambda)$ формальный характер простого модуля L_{λ} и через $p_j(x_1,x_2)=\sum\limits_{0\leq i\leq j}x_1^ix_2^{j-i}$ полную симметрическую функцию от x_1,x_2 степени j.

Утверждение 1. Пусть $k = \sum_{i=0}^{s} k_i p^i$.

(a) Eсли λ - регулярный вес, то

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} p_t(x_1, x_2) [x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3^2] \prod_{i=0}^{s} p_{k_i} (x_1^{p^i}, x_2^{p^i})$$

 $u \dim (L_{\lambda}) = 4....$

(b) $E c \lambda - \kappa p u m u u e c \kappa u \ddot{u} e e c$, то

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} [p_t(x_1, x_2) x_1 x_2 + p_{t+1}(x_1, x_2) x_3] \prod_{i=0}^{s} p_{k_i} (x_1^{p^i}, x_2^{p^i})$$

 $u \dim (L_{\lambda}) = 4....$

(c) Eсли λ - $\kappa pumuческий вес, то$

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2} x_3^{\lambda_3} [p_t(x_1, x_2) + p_{t-1}(x_1, x_2) x_3] \prod_{i=0}^{s} p_{k_i} (x_1^{p^i}, x_2^{p^i})$$

 $u \dim (L_{\lambda}) = 4....$

Доказательство. ТОДО: привести теорему Стейнберга и пояснить, что произойдёт в нашем случае.

Сначала предположим, что $\lambda_2 > 0$. Тогда векторы v_i, w_i, u_i и r_i полиномиальны для $i = 0, \dots, \lambda_1 - \lambda_2$ и образуют базис модуля $\nabla(\lambda)$.

TODO: объяснить, зачем нужны производные.

Вычислим v_i^{13D} . Запишем вспомогательные равенства, которые понадобятся далее: $dy_1y_2 = \frac{(c_{22}c_{13}-c_{12}c_{23})(c_{11}c_{23}-c_{21}c_{13})}{d} = \frac{c_{22}c_{13}c_{11}c_{23}+c_{12}c_{23}c_{21}c_{13}}{d} = c_{13}c_{23},$

 $dc_{31}y_1c_{32}y_2 = -c_{31}c_{32}dy_1y_2 = -c_{31}c_{32}c_{13}c_{23} = c_{31}c_{13}c_{32}c_{23},$

$$c_{13}(c_{31}y_1 + c_{32}y_2) = \frac{c_{13}c_{31}(c_{22}c_{13} - c_{12}c_{23}) + c_{13}c_{32}(c_{11}c_{23} - c_{21}c_{13})}{d} = \frac{-c_{13}c_{23}(c_{32}c_{11} - c_{31}c_{12})}{d} = c_{11}c_{32}y_2y_1 + c_{12}c_{31}y_1y_2,$$

$$c_{11}y_1 + c_{12}y_2 = \frac{c_{11}(c_{22}c_{13} - c_{12}c_{23}) + c_{12}(c_{11}c_{23} - c_{21}c_{13})}{d} = \frac{c_{11}c_{22}c_{13} - c_{12}c_{21}c_{13}}{d} = c_{13}.$$

Учитывая их, перепишем вектор v_i в виде

$$v_i = d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} d - \lambda_3 c_{33}^{\lambda_3 - 1} (c_{31} dy_1 + c_{32} dy_2) + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3 - 2} c_{31} c_{13} c_{32} c_{23}).$$

$$\begin{aligned} v_i^{\scriptscriptstyle 13D} &= d^{\lambda_2-1} c_{11}^{\lambda_1-\lambda_2-i} c_{12}^i (c_{33}^{\lambda_3} y_1 d - \lambda_3 c_{33}^{\lambda_3-1} (-c_{33} dy_1 - 2c_{32} c_{13} c_{23}) - \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3-2} c_{33} c_{13} c_{32} c_{23}) + (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{13} c_{12}^i (c_{33}^{\lambda_3} d - \lambda_3 c_{33}^{\lambda_3 - 1} (c_{31} dy_1 + c_{32} dy_2) + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3 - 2} c_{31} c_{13} c_{32} c_{23}) + (\lambda_2 - 1) d^{\lambda_2 - 1} y_1 c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} d - \lambda_3 c_{33}^{\lambda_3 - 1} (c_{31} dy_1 + c_{32} dy_2) + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3 - 2} c_{31} c_{13} c_{32} c_{23}) = t_1 + t_2 + t_3 = (*) \end{aligned}$$

$$t_1 = d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} y_1 d + \lambda_3 c_{33}^{\lambda_3} dy_1 + 2\lambda_3 c_{33}^{\lambda_3 - 1} c_{32} c_{13} c_{23} + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3 - 1} c_{32} c_{13} c_{23}) = d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i ((\lambda_3 + 1) c_{33}^{\lambda_3} y_1 d - (\lambda_3 + 1) \lambda_3 c_{33}^{\lambda_3 - 1} c_{32} c_{23} c_{13}) = (\lambda_3 + 1) w_i$$

$$t_3 = (\lambda_2 - 1)d^{\lambda_2 - 1}y_1c_{11}^{\lambda_1 - \lambda_2 - i}c_{12}^i(c_{33}^{\lambda_3}d - \lambda_3c_{33}^{\lambda_3 - 1}c_{32}dy_2) = (\lambda_2 - 1)w_i$$

$$\begin{split} t_2 &= (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i (c_{33}^{\lambda_3} c_{13} - \lambda_3 c_{33}^{\lambda_3 - 1} c_{13} (c_{31} y_1 + c_{32} y_2)) = \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} c_{13} + (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (-\lambda_3 c_{33}^{\lambda_3 - 1} c_{32} y_2 y_1) + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^{i + 1} (-\lambda_3 c_{33}^{\lambda_3 - 1} c_{32} y_1 y_2) = (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} c_{13} + \\ &(\lambda_1 - \lambda_2 - i) w_i - (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i c_{33}^{\lambda_3} y_1 + (\lambda_1 - \lambda_2 - i) u_{i+1} - \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^{i + 1} c_{33}^{\lambda_3} y_2 = (\lambda_1 - \lambda_2 - i) w_i + (\lambda_1 - \lambda_2 - i) u_{i+1} + \\ \end{split}$$

$$(\lambda_1 - \lambda_2 - i)d^{\lambda_2 - 1}c_{11}^{\lambda_1 - \lambda_2 - i - 1}c_{12}^i c_{33}^{\lambda_3}(c_{13} - c_{11}y_1 - c_{12}y_2) = (\lambda_1 - \lambda_2 - i)w_i + (\lambda_1 - \lambda_2 - i)u_{i+1}$$

$$(*) = (\lambda_3 + 1)w_i + (\lambda_2 - 1)w_i + (\lambda_1 - \lambda_2 - i)w_i + (\lambda_1 - \lambda_2 - i)u_{i+1} = (\lambda_1 + \lambda_3 - i)w_i + (\lambda_1 - \lambda_2 - i)u_{i+1}.$$

Аналогично вычисляются остальные производные.

$$\begin{split} v_i^{12D} &= (\lambda_1 - \lambda_2 - i)v_{i+1}, \\ v_i^{13D} &= (\lambda_1 + \lambda_3 - i)w_i + (\lambda_1 - \lambda_2 - i)u_{i+1}, \\ v_i^{23D} &= iw_{i-1} + (\lambda_2 + \lambda_3 + i)u_i, \\ v_i^{21D} &= iv_{i-1}, v_i^{31D} = v_i^{32D} = 0 \end{split}$$

$$w_i^{12D} = (\lambda_1 - \lambda_2 - i)w_{i+1},$$

$$w_i^{13D} = (\lambda_1 - \lambda_2 - i)r_{i+1},$$

$$w_i^{23D} = (\lambda_2 + \lambda_3 + i + 1)r_i,$$

$$w_i^{21D} = -u_i - iw_{i-1}, w_i^{31D} = v_i, w_i^{32D} = 0,$$

$$\begin{aligned} u_i^{12D} &= -w_i + (\lambda_1 - \lambda_2 - i)u_{i+1}, \\ u_i^{13D} &= (i - \lambda_1 - \lambda_3 - 1)r_i, \\ u_i^{23D} &= -ir_{i-1}, \\ u_i^{21D} &= iu_{i-1}, u_i^{31D} &= 0, u_i^{32D} = v_i, \end{aligned}$$

$$\begin{split} r_i^{12D} &= (\lambda_1 - \lambda_2 - i) r_{i+1}, \\ r_i^{13D} &= r_i^{23D} = 0, \\ r_i^{21D} &= i r_{i-1}, r_i^{31D} = -u_i, r_i^{32D} = w_i. \end{split}$$

Отсюда следует, что $v_0, \ldots, v_t \in L_\lambda$, а поэтому v_i^{13D} и v_{i+1}^{23D} тоже принадлежат L_λ при $0 \le i < t$. Для $0 \le i < t$ представим v_i^{13D} и v_{i+1}^{23D} как линейную комбинацию векторов w_i, u_{i+1} подпространства с весом $(\lambda_1 - i - 1, \lambda_2 + i \mid \lambda_3)$. Зависимость выражается матрицей

$$\begin{pmatrix} \lambda_1 + \lambda_3 - i & \lambda_1 - \lambda_2 - i \\ i + 1 & \lambda_2 + \lambda_3 + i + 1 \end{pmatrix}.$$

Её определитель det $\lambda = (\lambda_1 + \lambda_3 + 1)(\lambda_2 + \lambda_3)$.

(a) λ регулярный.

Так как $\det \lambda \not\equiv 0 \pmod{p}$, то $w_i, u_{i+1} \in L_\lambda$, а следовательно и $r_i \in L_\lambda$ для $0 \leq i < t$. Получаем, что $v_0, \ldots, v_t, w_0, \ldots, w_t, u_0, \ldots, u_t, r_0, \ldots, r_t$ составляют базис L_λ . Следовательно,

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} p_t(x_1, x_2) [x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3^2]$$

и dim $(L_{\lambda}) = 4(t+1)$.

(b) λ критический.

Так как $\lambda_2 + \lambda_3 \not\equiv 0 \pmod{p}$ и $v_0^{23D} = (\lambda_2 + \lambda_3)u_0$, то $u_0 \in L_\lambda$. Кроме того, $\lambda_1 + \lambda_3 - t \equiv \lambda_2 + \lambda_3 \not\equiv 0 \pmod{p}$ и $v_t^{13D} = (\lambda_1 + \lambda_3 - t)w_t$, поэтому $w_t \in L_\lambda$.

 $v_i^{{}_{13}D}$ и $v_{i+1}^{{}_{23}D}$ линейно зависимы, поэтому рассмотрим только $q_i=v_i^{{}_{13}D}=-(i+1)w_i+(t-i)u_{i+1}\in L_\lambda$ при $0\leq i< t-1$.

Выясним, какие векторы порождаются векторами u_0, w_t и q_i : $w_t^{12D} = (\lambda_1 - \lambda_2 - t)w_i = 0, w_t^{13D} = 0, w_t^{23D} = (\lambda_2 + \lambda_3 + t + 1)r_i = (\lambda_1 + \lambda_3 + 1)r_i = 0,$ $u_0^{12D} = -w_0 + (\lambda_1 - \lambda_2)u_1 = q_0, u_0^{13D} = (-\lambda_1 - \lambda_3 - 1)r_i = 0, u_0^{23D} = 0,$ $q_i^{12D} = -(i+1)(t-i)w_{i+1} + (t-i)(-w_{i+1} + (t-(i+1))u_{i+2} = (t-i)q_{i+1},$ $q_i^{13D} = -(i+1)(t-i)r_{i+1} + (t-i)(i+1-\lambda_1 - \lambda_3 - 1)r_{i+1} = (t-i)(-\lambda_1 - \lambda_3 - 1)r_{i+1} = 0,$ $q_i^{23D} = -(i+1)(\lambda_2 + \lambda_3 + i + 1) - (t-i)(i+1)r_i = -(i+1)(t+\lambda_2 + \lambda_3 + 1)r_i = 0.$ Таким обра-

 $q_i^{23} = -(i+1)(\lambda_2 + \lambda_3 + i+1) - (t-i)(i+1)r_i = -(i+1)(t+\lambda_2 + \lambda_3 + 1)r_i = 0$. Таким образом, новые векторы не появляются, следовательно, векторы $v_0, \ldots, v_t, u_0, w_t, q_0, \ldots, q_{t-1}$ составляют базис L_{λ} . Учитывая, что вес q_i ссовпадает с весом w_i , получаем

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} [p_t(x_1, x_2) x_1 x_2 + p_{t+1}(x_1, x_2) x_3]$$

и dim $(L_{\lambda})=2t+3$.

(c) λ сильно критический.

Аналогично предыдущему пункту рассматриваем только $q_i = v_i^{13D} = (\lambda_1 + \lambda_3 - i)w_i + (t-i)u_{i+1} = (t-i)(w_i + u_{i+1}) \in L_\lambda$ при $0 \le i < t$.

 $q_i^{_{12}D}=(t-i)q_{i+1},q_i^{_{13}D}=0,q_i^{_{23}D}=0$ при $0\leq i< t.$ Кроме того, $v_0^{_{23}D}=(\lambda_2+\lambda_3)u_0$ и $v_t^{_{13}D}=(\lambda_1+\lambda_3-t)w_t=0,$ поэтому $u_0,w_t\notin L_\lambda.$ Следовательно,

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2} x_3^{\lambda_3} [p_t(x_1, x_2) + p_{t-1}(x_1, x_2) x_3]$$

и dim $(L_{\lambda}) = 2t + 1$.

2. Композиционные ряды костандартных модулей в $S(2 \mid$	1)