Topics: column space (etc.), QR decomposition, SVD decomposition

1. Vector spaces associated to a matrix A

Given an $m \times n$ matrix A, we have the following four vector spaces:

- Column space (col(A)): all vectors in \mathbb{R}^m of form Ax for some $x \in \mathbb{R}^n$.
- Nullspace (null(A)): all vectors $x \in \mathbb{R}^n$ such that Ax = 0.
- Row space (row(A)): column space of A^{\top} .
- Left nullspace (leftnull(A)): nullspace of A^{\top} .

We define rank(A) to be the dimension of col(A). Facts which can be proved by SVD:

- $\operatorname{rank}(A) = \operatorname{rank}(A^{\top}) \le \min(m, n)$
- rank(A) + (dimension of null(A)) = n
- Let A be square, so n = m. Then (A is invertible) \Leftrightarrow (rank(A) = n) \Leftrightarrow (det(A) \neq 0).

(Idea: SVD allows one to reduce to the case where A is an $m \times n$ diagonal matrix.)

Problem 1. Let A be a matrix. Explain why the following are true:

- (1) (For any $b \in \mathbb{R}^m$, there exists $x \in \mathbb{R}^n$ such that Ax = b) if and only if $col(A) = \mathbb{R}^m$.
- (2) (The only solution to Ax = 0 is x = 0) if and only if $null(A) = \{0\}$.
- (3) If A is square (so m = n) and invertible, then $col(A) = row(A) = \mathbb{R}^n$ and $null(A) = leftnull(A) = \{0\}$.
- (4) Let B be an $n \times n$ invertible matrix. Then col(A) = col(AB) and rank(A) = rank(AB).
- (5) Let B be an $m \times m$ invertible matrix. Then row(A) = row(BA) and rank(A) = rank(BA).
- (6) If A is orthogonal (so $m \ge n$), then $\text{null}(A) = \{0\}$ and rank(A) = n.

Problem 2. Let Q be a square orthogonal matrix. Show that $\det(Q) = \pm 1$. (Hint: for any square matrix A, we have $\det(A) = \det(A^{\top})$, and if A is invertible then $\det(A^{-1}) = \det(A)^{-1}$.)

2. QR Decomposition

Given an $m \times n$ matrix A with $m \ge n$, a QR-decomposition of A is an equation

$$A = QR$$

where Q is an $m \times n$ orthogonal matrix and R is an *invertible* $n \times n$ upper-triangular matrix. The existence of such a decomposition implies the following:

- $\operatorname{rank}(A) = m$, and $\operatorname{null}(A) = \{0\}$.
- The columns of Q are an orthonormal basis in the space $\operatorname{col}(A)$.
- Let $b \in \mathbb{R}^m$ be a vector. Then there is a unique vector $x \in \mathbb{R}^n$ which minimizes ||Ax b||, and that x is given by $x = R^{-1}Q^{\top}b$. The minimum possible value of ||Ax b|| is given by $||QQ^{\top}b b||$.

Problem 3. Let v be the third column of A. What is ||v|| in terms of the entries of R?

Problem 4. Assume that A is a square matrix, and let A = QR be a QR decomposition. Show that $det(A) = \pm det(R)$.

Problem 5. Assume m > n. Let $A = \left(\frac{R}{Z}\right)$ be a block matrix, where R is an $n \times n$ invertible upper-triangular matrix and Z is the all-zero $(m-n) \times n$ matrix. Write down a QR decomposition for A.

Problem 6. Does the matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ have a QR decomposition?

3. SINGULAR VALUE DECOMPOSITION (SVD)

Given an $m \times n$ matrix A, the (large-format) SVD of A is an equation

$$A = U\Sigma V^{\top}$$

where U is an $m \times m$ orthogonal matrix, Σ is an $m \times n$ diagonal matrix with entries in (weakly) decreasing order, and V is an $n \times n$ orthogonal matrix. The entries of Σ are the singular values of A, the columns of U are the left-singular vectors, and the columns of V are the right-singular vectors. Every matrix admits at least one SVD.

Since U and V are invertible, we apply Problem 1, parts (4) and (5), to find

$$rank(A) = rank(\Sigma) = (number of nonzero entries of \Sigma).$$

Let r = rank(A). We define some smaller matrices in order to get rid of the zeros in Σ .

- U' is obtained by truncating U to size $m \times r$ (starting from top-left entry).
- Σ' is obtained by truncating Σ to size $r \times r$.
- V' is obtained by truncating V' to size $n \times r$.

Problem 7. Explain why the following are true:

- (1) U' and V' are orthogonal.
- (2) Σ' is invertible.
- (3) $A = U'\Sigma'(V')^{\top}$.

The expression $A = U'\Sigma'(V')^{\top}$ is the small-format SVD of A.

Problem 8. Assume that A is a square matrix, and let $A = U\Sigma V^{\top}$ be an SVD. Show that $\det(A) =$ $\pm \det(\Sigma)$.

Problem 9. Given $A = U\Sigma V^{\top}$ as above, find the SVDs of the matrices A^{\top} , $A^{\top}A$, and AA^{\top} . Using your answers, determine the ranks of these matrices. Assuming that A is square and invertible, find the SVDs of A^{-1} and $(A^{-1})^{\top}$.

Problem 10. Let $A = U'\Sigma'(V')^{\top}$ be a small-format SVD of A. Explain why the following are true:

- (1) $\operatorname{col}((V')^{\top}) = \mathbb{R}^r$. (Hint: find an SVD of $(V')^{\top}$)
- (2) $\operatorname{col}(\Sigma'(V')^{\top}) = \mathbb{R}^r$.
- (3) $\operatorname{col}(A) = \operatorname{col}(U')$.
- (4) $\operatorname{row}(A) = \operatorname{col}(V')$.

Problem 11. Find an SVD of the matrix $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \end{pmatrix}$.

(Hint: permutation matrices are orthogonal.)

4. Solutions

- 1. (1) The condition in parentheses exactly says that every vector in \mathbb{R}^m is of the form Ax for some $x \in \mathbb{R}^n$.
 - (2) $\operatorname{null}(A)$ is defined to be the space of solutions to Ax = 0, so the condition in parentheses exactly says that $\operatorname{null}(A) = \{0\}$.
 - (3) If A is invertible, then any vector b is of the form Ax because we can take $x = A^{-1}b$. Therefore $col(A) = \mathbb{R}^n$. Since A^{\top} is invertible as well, we also conclude $row(A) = \mathbb{R}^n$. If Ax = 0, then applying A^{-1} yields $x = A^{-1}0 = 0$, so the criterion of the previous part implies that $null(A) = \{0\}$. Applying this reasoning to A^{\top} in place of A yields leftnull $A = \{0\}$.
 - (4) If $b \in col(A)$, then b = Ax for some x. Then $b = AB(B^{-1}x)$, so $b \in col(AB)$. The other direction is similar.
 - (5) Take the transpose of the previous part.
 - (6) An SVD of A is

$$A = A \operatorname{Id}_{n \times n} \operatorname{Id}_{n \times n}$$

The 'key fact' from the SVD section tells us that $rank(A) = rank(Id_{n \times n}) = n$. (One could also use a QR decomposition instead.)

To show that $\text{null}(A) = \{0\}$, suppose that Ax = 0 for some $x \in \mathbb{R}^n$. Write $x = (x_1, \dots, x_n)$, and let v_1, \dots, v_n be the columns of A, which form an orthonormal collection since A is orthogonal. By our hypothesis that Ax = 0, we know that

$$x_1v_1 + \dots + x_nv_n = 0$$

as vectors in \mathbb{R}^n . Take the dot product with v_i to obtain

$$0 = 0 \cdot v_i$$

$$= (x_1 v_1 + \dots + x_n v_n) \cdot v_i$$

$$= x_1 v_1 \cdot v_i + \dots + x_n v_n \cdot v_i$$

$$= x_i$$

where we use that $v_j \cdot v_i = 0$ if $j \neq i$ and $v_i \cdot v_i = 1$, by definition of orthonormality. Hence, $x_i = 0$ for all i, so x = 0, and this shows that $\text{null}(A) = \{0\}$.

2. Since $Q^{-1} = Q^{\top}$, we have

$$det(Q) = det(Q^{\top})$$
$$= det(Q^{-1})$$
$$= det(Q)^{-1}$$

using the hint. Thus $det(Q)^2 = 1$, so $det(Q) = \pm 1$.

- 3. $||v|| = \sqrt{R_{13}^2 + R_{23}^2 + R_{33}^2}$
- 4. We have

$$det(A) = det(Q) det(R)$$
$$= \pm det(R)$$

using the result of Problem 2.

5. A QR decomposition is given by

$$A = \left(\frac{\operatorname{Id}_{n \times n}}{Z}\right) R,$$

where Z is as defined in the problem.

- 6. No, because $\operatorname{rank}(A) = 1$, while any 2×2 matrix with a QR decomposition (in the sense defined in class) has rank 2.
- 7. (1) Start with the identity $U^{\top}U = \mathrm{Id}_{n \times n}$. Break U into an $m \times r$ block (namely U') and an $m \times (m-r)$ block, and look at the result of block multiplication. Similarly for V.
 - (2) Σ' is a diagonal matrix with nonzero diagonal entries. Its inverse is given by the diagonal matrix whose entries are the reciprocals of the diagonal entries of Σ' .
 - (3) Take $A = U\Sigma V^{\top}$ and look at the result of block multiplication as in the first part.
- 8. This follows from $det(U) = \pm 1$ and $det(V) = \pm 1$.
- 9. We have

$$A^{\top} = V \Sigma^{\top} U^{\top}$$

$$A^{\top} A = V (\Sigma^{\top} \Sigma) V^{\top}$$

$$A A^{\top} = U (\Sigma \Sigma^{\top}) U^{\top}.$$

These matrices all have the same rank as A.

If A is square and invertible, so is Σ , and we have

$$A^{-1} = V \Sigma^{-1} U^{\top}$$
$$(A^{-1})^{\top} = U \Sigma^{-1} V^{\top}.$$

10. (1) An SVD of $(V')^{\top}$ is

$$(V')^{\top} = \operatorname{Id}_{r \times r} \operatorname{Id}_{r \times r} (V')^{\top},$$

so $\operatorname{rank}((V')^{\top}) = r$. Hence $\operatorname{col}((V')^{\top}) = \mathbb{R}^r$.

- (2) Since Σ' is invertible, we have $\operatorname{col}(\Sigma'B) = \operatorname{col}(B)$ for any matrix B. (Compare Problem 1(4).)
- (3) See Lecture 7 slides.
- (4) Apply the previous part to A^{\top} in place of A.
- 11. We have

$$A = \operatorname{Id}_{4\times 4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$