

PARTIAL TRANSLATION OF JAPANESE UNEXAMINED PATENT
PUBLICATION (Kokai) NO. 60-186466 (Reference 1)

Title of the Invention:

Conductive Ceramic Material

Publication Date: September 21, 1985

Patent Application No.: 59-38998

Filing Date: March 1, 1984

Applicant: TDK corp.

Priority Claimed: none

[SCOPE OF CLAIM FOR PATENT]

1. A conductive ceramic material characterized in that the ceramic material is a sintered body composed of:

(a) zirconia comprising 3 to 10 wt% of yttria; and
(b) lanthanum chromate, or lanthanum chromate wherein at least part of the lanthanum ion is substituted with calcium ion, having the following formula:

wherein x is 0 to 0.4, and

wherein a weight ratio of (a) : (b) is 3 : 7 to 7 : 3.

[DETAILED DESCRIPTION OF THE INVENTION]

A conductive ceramic material has a wear resistivity which is characteristic feature of ceramics, as well as an anti-electrostatic property. A conductive ceramic material is required to have a specific resistivity of less than 10^6 $\Omega \cdot \text{cm}$ in order to provide an effective anti-electrostatic property, and to have a sufficient mechanical strength as a component.

The conductive ceramic material of the present

Best Available Copy

invention can be produced by mixing zirconia powder comprising yttria and lanthanum chromate powder comprising calcium at a predetermined ratio with use of mixer such as ball mill; drying the mixture; shaping the mixture with binder by pressing them; and then sintering the shaped mixture at a temperature of 1500 to 1700 °C.

The conductive ceramic material of the present invention have a good mechanical strength and conductivity, as well as good toughness.

Further, the conductive ceramic material of the present invention is non-magnetic, and has a large heat expansion coefficient of about $9 \times 10^{-6}/^{\circ}\text{C}$ which is effective to use with metal material, e.g. to use for an electronic circuit substrate.

⑨ 日本国特許庁 (JP) ⑩ 特許出願公開

⑪ 公開特許公報 (A) 昭60-186466

⑫ Int.Cl.
C 04 B 35/50
35/10

識別記号

厅内整理番号

7412-4G
7412-4G

⑬ 公開 昭和60年(1985)9月21日

審査請求 未請求 発明の数 1 (全4頁)

⑭ 見開の名称 導電性セラミックス材料

⑮ 特願 昭59-38998

⑯ 出願 昭59(1984)3月1日

⑰ 発明者 小山 昭雄 東京都中央区日本橋1丁目13番1号 テイーディーケイ株式会社内

⑰ 発明者 大岩 温美 東京都中央区日本橋1丁目13番1号 テイーディーケイ株式会社内

⑰ 出願人 テイーディーケイ株式会社 東京都中央区日本橋1丁目13番1号

⑰ 代理人 弁理士 阿形 明

明細書

1. 発明の名称 導電性セラミックス材料

2. 特許請求の範囲

1 (A) イットリア 3~10重巣を含むジルコニアと同組成式

(式中の x は 0~0.4 である)

で示されるクロム酸ランタン又は、タンタニオノンの一部がカルシウムイオンで置換されたクロム酸ランタンとから成る焼結体であつて、両成分との割合が重量に基づき、3:7ないし7:3であることを特徴とする導電性セラミックス材料。

3. 発明の詳細な説明

本発明は新規な導電性セラミックス材料、さらに詳しくいえば、所定量のイットリアを含むジルコニアに特定組成のクロム酸ランタン

$\text{La}_{1-x}\text{Ca}_x\text{CrO}_3$ ($x = 0 \sim 0.4$) を所定の割合で含有させた焼結体から成る、導電性を有し、かつ機械的強度に優れたセラミックス材料に関するものである。

近年、メカトロニクスやエレクトロニクスなどの分野における急速な技術進歩に伴い、新しい素材としてのセラミックス材料に対する要求は、ますます多様化かつ高度化の方向に向いつつある。特に導電性セラミックス材料は、セラミックス材料の特徴である耐摩耗性を有するとともに、駆動時に発生する帯電の防止に有効であるため注目されており、最近では VTR 用のガイドローラなどの家電製品部品に利用されている。このような導電性セラミックス材料は、帯電防止性を有効に發揮するためにはその固有抵抗が 10^6 Ω 以下であることが必要とされ、またアルミナ磁器のように機構部品として十分な機械的強度を有することが望ましい。

従来、この種の導電性セラミックスとしては、半導性を有する酸化チタン又はチタン複合酸化物

特開昭60-186466(2)

が利用されている。しかしながら、これらは機械的強度が高々 1500 kg/cm^2 程度であり、また韧性が乏しいためにかけやすくて、機械部品材料としては十分に満足しうるものではなかつた。

本発明者は、このような事情に鑑み、機械的強度に優れ、かつ良好な韧性を有する導電性セラミックス材料を提供すべく試験研究を重ねた結果、所定量のイットリアを含むジルコニアに特定組成のクロム酸ランタン $\text{La}_{1-x}\text{Ca}_x\text{CrO}_3$ ($x = 0 \sim 0.4$) を所定の割合で含有させた焼結体がその目的に適合しうることを見出し、この知見に基づいて本発明を完成するに至つた。

すなわち、本発明は、(4)イットリア $3 \sim 10$ 重量%を含むジルコニアと(5)組成式

(式中のエは $0 \sim 0.4$ である)

で示されるクロム酸ランタンは、ランタンイオンの一一部がカルシウムイオンで置換されたクロム酸ランタンとから成る焼結体であつて、(4)成分と(5)

- 3 -

明で用いるクロム酸ランタン $\text{La}_{1-x}\text{Ca}_x\text{CrO}_3$ ($x = 0 \sim 0.4$) は前記条件に適合するものである。

本発明のセラミックス材料において(4)成分として用いるジルコニアは、イットリアを $3 \sim 10$ 重量%の範囲で含有するものである。このイットリアの量が 3 重量%未満のものでは、得られた焼結体にクラックが発生し、一方 10 重量%を超えたものでは機械的強度が低下する。

また、(5)成分として用いるクロム酸ランタン又はランタンイオンの一一部がカルシウムイオンで置換されたクロム酸ランタンは、次の組成式(1)

(式中のエは $0 \sim 0.4$ である)

で示される導電路形成材である。ランタンイオンを置換するカルシウムイオンの量が置換前のランタンイオン 1 モルに対し 0.4 モルを超えるクロム酸ランタンを用いると、該焼結体の機械的強度が低下する。

本発明のセラミックス材料においては、前記の

成分との割合が重量に基づき、 $3 : 7$ ないし $7 : 3$ であることを特徴とする導電性セラミックス材料を提供するものである。

本発明の導電性セラミックス材料の特徴は、所定量のイットリアを含むジルコニアにクロム酸ランタン又はランタンイオンの一部がカルシウムイオンで置換されたクロム酸ランタンを所定の割合で含有させた複合焼結体からなる点にあり、このような複合焼結体は、ジルコニア粒子が強固なマトリックスを形成し、該マトリックス中に半導性酸化物が導電路を形成しているために、その固有抵抗が $10^6 \Omega \cdot \text{cm}$ 以下の導電性を有し、かつ從来の導電性セラミックス材料における機械的強度の約 2 倍の高強度を有している。

このようなジルコニア粒子が強固なマトリックスを形成している焼結体を得るためには、 1400°C 近辺の高熱で焼成しなければならないから、焼合せしめる導電路形成材としては、前記温度においてマトリックス成分に著しい悪影響を与えないようなものを用いることが必要であつて、本発

- 4 -

(4)成分ジルコニアと(5)成分クロム酸ランタンとの割合は、重量に基づき $3 : 7$ ないし $7 : 3$ の範囲内にあることが必要であつて、ジルコニアの量が両成分の和の量に対して 30 重量%未満では機械的強度が低下し、一方 70 重量%を超えると固有抵抗が大きくなつて導電性が不良となる。

本発明のセラミックス材料を製造する方法について 1 例を示すと、まず所定量の酸化ランタン、酸化クロム及び酸化カルシウム、あるいは焼成によりこれらの酸化物に変換しうる化合物をボールミルなどの混合機を用いて十分に混合したのち、この混合物を $1000 \sim 1400^\circ\text{C}$ の温度で仮焼し、あらかじめ所要のカルシウムを含むクロム酸ランタン粉末を得る。

一方、所定量の酸化ジルコニウム及び酸化イットリウム、あるいは焼成によりこれらの酸化物に変化しうる化合物をボールミルのような混合機を用いて十分に混合したのち、この混合物を $1000 \sim 1400^\circ\text{C}$ の温度で仮焼し、所要のイットリアを含有するジルコニア粉末を得る。次に、この粉末

特開昭60-186466(3)

と前記のカルシウムを含むクロム酸ランタン粉末とを、所定の割合でポールミルのような混合機を用いて混合したのち、この混合粉末を乾燥後プレスパインダーを湿せて成形し、次いで1500～1700℃の温度範囲で焼成する。

この場合、イソトリウムを含有したジルコニア粉末を用いる代りに、独立粉末としてそれぞれを前加してもよいし、あるいは共沈法やコロイド添加法などの公知の手段によつて調製した複合酸化物粉末として用いてもよい。

本発明の導電性セラミックス材料は、強固なジルコニアマトリックス中に、導電路形成材として、クロム酸ランタン又はランタンイオンの一部がカルシウムイオンで置換固溶されたクロム酸ランタンを含有させた複合焼結体であるため、優れた機械的強度と導電性とを有し、かつ耐熱性も良好であり、特にかぶせ条件下においても耐えうる新規材料として多くの分野で有効に利用しうる。

また副次的な効果として本発明のセラミックス材料は、非磁性であり、かつ熱膨脹率が約 $9 \times$

10^{-6} /°Cと大きいために、金属系材料との組合せで使用される場合、例えばエレクトロニクス用基板などにも有効である。

次に実施例によつて本発明をさらに詳細に説明する。

なお、強度は公知の3点曲げ試験法により求め、固有抵抗は、サンプルの両端にインジウム-ガリウム電極を塗布し、絶縁抵抗計を用いて室温で測定した。

実施例1

酸化ランタン51.7重量部、酸化クロム16.7重量部及び炭酸カルシウム21.5重量部の各粉末をポールミルに入れ、湿式混合して乾燥したのち、大気雰囲気下1000℃で1時間焼成して仮焼クロム酸ランタン($\text{La}_{0.8}\text{Ca}_{0.2}\text{CrO}_3$)粉末を得た。

次いで、この仮焼クロム酸ランタン粉末と酸化イソトリウム5重量%を含有した市販の酸化ジルコニア粉末とを各種比率でポールミルに入れて混合し、得られた混合粉末にプレスパインダーとしてPVAを適量混合し、1t/cm²/minの圧力で5

- 7 -

$\times 5 \times 50$ mmの角柱に成形したのち、大気雰囲気下1600℃で2時間焼成してサンプル1～11を得た。これらのサンプルについて強度と固有抵抗を求め、その結果を第1表に示す。

この表から、ランタンイオンの一部がカルシウムイオンで置換されたクロム酸ランタンの量が、焼結体全量に対する割合未満では導電性が悪く、また70重量%を超えると機械的強度が若しく低下することが分る。

- 9 -

-419-

- 8 -

第1表

サンプルNo.	イソトリウムを有するジルコニア	混合比率(重量%)		固有抵抗(Ω・cm)	強度(kg/cm ²)
		La _{0.8} Ca _{0.2} CrO ₃	La _{0.7} Ca _{0.3} CrO ₃		
1	100	0	10	>10 ¹⁰	8000
2	90	10	20	>10 ¹⁰	6600
3	80	20	30	3×10 ⁸	5000
4	70	30	40	2×10 ⁸	4500
5	60	40	50	6×10 ⁷	3100
6	50	50	60	2×10 ⁷	3200
7	40	60	70	1×10 ⁷	2900
8	30	70	80	1×10 ⁶	2800
9	20	80	90	5×10 ⁵	900
10	10	90	-	8×10 ⁴	500
11	0	-	100	2×10 ³	200

- 10 -

特開昭60-186466(4)

実施例2

実施例1で得た仮焼クロム酸ランタン ($\text{La}_{0.8}\text{CrO}_3$) 粉末50質量部に、酸化イットリウム含有量の異なる酸化ジルコニウム粉末50質量部を加え、ボールミルで湿式混合して得られた粉末を乾燥し、これにプレスバインダーとしてPVAを適量混合し、 $1 \text{ton}/\text{cm}^2$ の圧力で成形したのち、大気雰囲気下 1600°C で2時間焼成してサンプル12~19を得た。これらのサンプルについて強度を求め、その結果を第2表に示す。

この表から、酸化ジルコニウムに含まれる酸化イットリウムの量は3~10重量%の範囲であることが必要であり、この範囲を逸脱すると機械的強度が著しく低下することが明らかである。

第2表

サンプル No.	ジルコニア中のイットリウム含有量 ($\text{Y}_2\text{O}_3/\text{ZrO}_2 + \text{ZrO}_2$ 質量%)	強度 (kg/cm²)
12	0	300
13	1	800
14	3	2700
15	4	5200
16	8	2800
17	10	2900
18	12	1900
19	14	2000

実施例3

酸化ランタン、酸化クロム及び炭酸カルシウムの各粉末所定量をボールミルに入れ湿式混合したのち乾燥し、この乾燥粉末を大気雰囲気下 1000°C で1時間焼成して、 $\text{La}_{1-x}\text{Ca}_x\text{CrO}_3$ ($x=0 \sim 0.6$) で示される各種仮焼クロム酸ランタン粉末を得た。

次いで、これらの仮焼クロム酸ランタン粉末50質量部に対して、酸化イットリウム5質量%を含

-11-

-12-

有した市販の酸化ジルコニウム粉末50質量部を加え、ボールミルで湿式混合したのち乾燥し、この乾燥粉末にプレスバインダーとしてPVAを適量混合し、 $1 \text{ton}/\text{cm}^2$ の圧力で成形後、大気雰囲気下 1600°C で2時間焼成してサンプル20~26を得た。これらのサンプルについて固有抵抗及び強度を測定し、その結果を第3表に示す。

この表から明らかに、ランタンイオンを置換するカルシウムイオンの量が置換前のランタンイオン1モルに対し0.4モルを超えると機械的強度が低下することが分る。

第3表

サンプル No.	$\text{La}_{1-x}\text{Ca}_x\text{CrO}_3$ におけるx値	固有抵抗(室温) (Ω·cm)	強度 (kg/cm²)
20	0	2×10^6	5200
21	0.01	1×10^6	3000
22	0.05	5×10^6	3000
23	0.1	3×10^6	3100
24	0.2	5×10^6	2800
25	0.4	9×10^6	2900
26	0.6	5×10^6	2000

-13-

-420-

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 11-135544 (Reference 2)
(43)Date of publication of application : 21.05.1999

(51)Int.CI.

H01L 21/60
H01L 21/607

(21)Application number : 09-299185

(71)Applicant : KYOCERA CORP

(22)Date of filing : 30.10.1997

(72)Inventor : HINO SHOJI

(54) WIRE BONDING TOOL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a wire bonding tool where build-up is less even if the bonding of wire is repeated, static electricity is set free at appropriate speed and a chip and a crack do not exist in the edge part of a groove at the time of working the groove or the tip face of the wire bonding tool and at the time of bonding the wire.

SOLUTION: At least a tip part 2 of a wire bonding tool 1 is formed of partially stabilized zirconia ceramic which contains more than one type in the oxide of Fe, Cr, Ni and Co in the range of 10-35 weight % as conductivity imparting agent, whose remaining part is substantially formed of zirconia that is partially stabilized by the stabilizer of Y₂O₃, CaO, MgO and CeO₂, whose destruction tenacity value of the sintered body is not less than 5.5 MPa^{1/2}, and whose surface resistance value is 10⁶-10⁹ Ω.cm.

LEGAL STATUS

[Date of request for examination] 27.08.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3450166

[Date of registration] 11.07.2003

Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's decision if rejection]

Date of extinction of right]

PARTIAL TRANSLATION OF JAPANESE UNEXAMINED PATENT
PUBLICATION (Kokai) NO. 11-135544 (Reference 2)

(For bibliographic dates and summary, please refer to English abstract.)

[DETAILED DESCRIPTION OF THE INVENTION]

[0037]

According to the present invention, the conductivity imparting agent can be at least one of Fe₂O₃, Cr₂O₃, NiO and Co₃O₄ in an amount of 10 to 35 wt%.

[0038]

The bonding tool of the present invention can be produced by mixing ZrO₂ powder stabilized, e.g. with Y₂O₃, a conductivity imparting agent, etc.; shaping the obtained mixture by an ordinary method, and then sintering the shaped body. It is possible to sinter the body in an oxidizing atmosphere since the conductivity imparting agent is oxides.

[0039]

More specially, the shaped body can be sintered at a temperature of 1450 to 1550 °C for 1 to few hours in an oxidizing atmosphere. If a agent lowering the sintering temperature is used, the shaped body can be sintered at a temperature of 1350 to 1450 °C for 1 to a few hours in an oxidizing atmosphere.

[0041]

Further, the partially stabilized zirconia ceramics obtained can be HIPed in order to enhance the mechanical properties.

<Attorney's comment: References 2 and 3 do not describe
"HIP" except for the above paragraph 0041.>

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.