Relatório Aula Prática 1

Planeamento e Gestão de Redes MIEEC

João Nuno Barbosa Neves — up201405198@fe.up.pt Francisco Fernandes Xavier de Barros — up201506338@fe.up.pt

1. Computadores ligados ao Switch

Após ligar o tux1, 2 e 4 ao switch e tendo efetuado a configuração default deste, configurámos os tux's como o guião pede:

tux1: ifconfig eth0 down

ifconfig eth0 172.16.2.41/24

ifconfig eth0 up

tux2: ifconfig eth0 down

ifconfig eth0 172.16.2.42/24

ifconfig eth0 up

tux4: ifconfig eth0 down

ifconfig eth0 172.16.2.44/24

ifconfig eth0 up

Verificou-se que a conexão está corretamente establecida com o ping do tux1 para 2 e 4 a funcionar:

2. Criação de vlan x0 no Switch

Nesta experiência era pedido que criássemos uma vlan para o tux 1 e 2 e que provássemo a conectividade entre estes e a não conetividade entre estes e tux 3 e 4 que continuariam na vlan 1, criada por defeito no switch.

Configuração do switch:

configure terminal vlan 40 end configure terminal interface fastEthernet 0/1 switchport mode access switchport access vlan 40 configure terminal interface fastEthernet 0/2 switchport mode access switchport access vlan 41

Configuração do tux1:

ifconfig eth0 down ifconfig eth0 172.16.40.41/24 ifconfig eth0 up

Configuração do tux2:

ifconfig eth0 down ifconfig eth0 172.16.40.42/24 ifconfig eth0 up

Seria obviamente necessário fazer as ligações físicas corretamente, neste caso ligar a porta eth0 do tux 1 e 2 às interfaces 1 e 2 do switch, respetivamente.

A conectividade entre estes prova-se na seguinte imagem:

A conetividade entre tux1ou2 e tux3ou4 não é possível pois no tux1ou2 não há rotas configuradas para redes fora de 172.16.40.0.

3. Criação de VLAN em 2 switches

Na experiência 3 era pedido que criássemos uma ligação entre tux's de diferentes bancadas através da mesma vlan configurada com trunking em 2 switches diferentes.

Começámos por congirurar o switch da bancada 4 da seguinte forma:

```
configure terminal
vlan 46
end
configure terminal
interface fastEthernet 0/4
switchport mode access
switchport access vlan 46
end
configure terminal
interface gigabitEthernet 0/1
switchport trunk encapsulation dot1q (especificação do protocolo 801.q)
switchport mode trunk
switchport trunk allowed vlan all (permissão as vlan's para monitorizar o tráfego – SPAN)
end
```

O switch da bancada 6 terá a mesma configuração.

```
O tux4 da bancada 4:
```

ifconfig eth0 down ifconfig eth0 172.16.46.44/24 ifconfig eth0 up

E o tux 4 da bancada 6:

ifconfig eth0 down ifconfig eth0 172.16.46.64/24 ifconfig eth0 up

Após fazer as ligações físicas do tux4 para a interface 4 do switch e da interface gigabitEthernet 0/1 do switch para a porta 6.17/4.17 presente na bancada e fazer o paralelo na bancada 6, configuramos uma sessao SPAN no switch para monitorizar o trafego entre as bancadas:

```
monitor session 1 interface gigabitEthernet 0/1 both monitor session 1 interface fastEthernet 0/2 encapsulation dot1q
```

Em seguida abrimos o Wireshark no tux2 ligado à interface fastEthernet 0/2 e obtivemos os seguintes logs:

Source	Destination	Protocol	Length Info						
172.16.46.64	172.16.46.44	ICMP		1-1					
	PVST+	STP	90 EC110	(ping	reply	1d=0x44c	c, seq=24/61	44, ttl=	64 (request in 22)
172.16.46.44	172.16.46.64	ICMP	100 C-L	Root					
172.16.46.64	172.16.46.44	ICMP	TOZ ECITO	(S) TILIG	request	1d=0x44c	; seq=25/64	00. ttl=	64 (reply in 26)
		CTD	30 ECITO	(bruid)	rebta	1d=0x44c0	. sea=25/640	00 ttl=	64 (request in 25)
172.16.46.44	172.16.46.64	ICMP	100 Cont.	10 +	ROOF = 3	2768740730:	37: a6: d4: 1c:		
172.16.46.64	172.16.46.44	ICMP	102 Echo	(ping)	request	1d=0x44cc	, seq=26/665	6, ttl=6	4 (reply in 32)
	PVST+	STP	98 ECHO	(ping)	reply	1d=0x44cc	seq=26/665	6, ttl=6	4 (request in 31)
172.16.46.44	172.16.46.64	ICMP	102 Febr	(name)	= 32/68/	46/30:37:a6	d4:1c:00 C	ost = 0	Port = 0x8001
172.16.46.64	172.16.46.44	ICMP	00 Echo	(ping)	request	1d=0x44cc	seq=27/691	2, tt1=6	4 (reply in 35)
	Spanning-tree-(for		SO Conf	(brug)	герту	10=0X44CC	seq=27/6912	2, [[1=6	4 (request in 34)
172.16.46.44	172.16.46.64	ICMP	102 Echo	(ping)	request	id=0x44cc	sen=28/7168	tt1=64	(reply in 40)
7 172.16.46.64	172.16.46.44	ICMP	98 Echo	(ping)	reply	id=0x44cc.	seg=28/7168	. ttl=64	(request in 39)
9 172.16.46.44	172.16.46.64	ICMP	102 Echo	(ping)	request	id=0x44cc,	seq=29/7424	ttl=64	(reply in 43)
38 172.16.46.64	172.16.46.44	ICMP	98 Echo	(ping)	reply	id=0x44cc,	seq=29/7424	ttl=64	(request in 42)
		STP					14:10:00 Cos		
07 172.16.46.44	172.16.46.64	ICMP	102 Echo 98 Echo						(reply in 48) (request in 47)
886 172.16.46.64	172.16.46.44	ICMP					seq=3077680,		(request in 47)
	PVST+	ICMP							(reply in 51)
615 172.16.46.44	172.16.46.64	ICMP	98 Echo	(pina)	reply	id=0x44cc.	seq=31/7936,	tt1=64	(request in 50)
590 172.16.46.64	172.16.46.44 Spannang-tree-(for-	STP		Regis	3275871				
								= 0 PC	The UNBOUL
6637 172.16.46.44	172.16.46.64	ICMP	102 Echo	(ping)	request	id=0x44cc,	seq=32/8192,	tt1=64 (reply in 50)
0773 172.16.46.64	172.16.46.44	ICMP	98 Echo	(ping)	reply	1d=0x44cc,	seq=32/8192,	tt1=04 (request in 55)

4. Configuração do Spanning Tree Protocol

Nesta experiência era pedido para primeiro voltar à configuração default e em seguida interligar os switches de 3 bancadas diferentes (4, 6 e 2 no nosso caso).

Assim o fizemos e pudemos observar com o comando 'sh spanning-tree active' que a bancada 2 foi automaticamente establecida como root.

Após alguma pesquisa percebemos que isto aconteceu porque a priority da bancada 2 é menor que a das bancadas 4 e 6 e que num caso de empate seria comparado o endereço MAC dos switches das mesmas.

Em seguida vimos que a ligação entre a bancada 4 e 2 tanto de um lado como do outro estava automaticamente desligada, isto foi feito pelo protocolo Spanning-Tree para evitar loops na rede de switches. Quando o desligamos e tentamos pingar qualquer tux de qualquer bancada com qualquer outro verificámos que continuava a funcionar.

Voltamos a ligar o cabo cuja porta estaria bloqueada e desta vez desligamos o cabo que ligava a bancada 2 à 6. O protocolo percebeu esta desconexão e automaticamente atribuiu à ligação de 2 para 4 o que estava antes definido da 2 para a 6.

Em seguida configurámos o switch da bancada 4 para ser o root e vimos que desta vez a ligação entre as bancadas 2 e 6 foi desligada.

Ficou-nos a dúvida de porquê no primeiro caso a ligação entre 4 e 2(root) ter sido a escolhida para ser bloqueada mas no segundo caso foi a ligação entre 6 e 2 (ambos não root) a ser desligada.

5. Configuração de redes IP numa bancada

Nesta experiência começámos por voltar às configurações defeito do switch e em seguida criámos as vlans 40 e 41 e as interfaces a ligar:

```
Switch:
       configure terminal
       vlan 40
       vlan 41
       end
       configure terminal
       interface fastEthernet 0/1
       switchport mode access
       switchport access vlan 40
       end
       configure terminal
       interface fastEthernet 0/2
       switchport mode access
       switchport access vlan 40
       end
       configure terminal
       interface fastEthernet 0/4
       switchport mode access
       switchport access vlan 41
       end
```

Ligamos os tux1 e 2 à vlan 40 e o tux 4 à vlan 41 e definimos a rota defeito a usar mais a frente para a ligação dos tux's ao router.

```
ifconfig eth0 down
ifconfig eth0 172.16.40.41/24
ifconfig eth0 up
route add default gw 172.16.40.254

tux2:
ifconfig eth0 down
ifconfig eth0 172.16.40.42/24
ifconfig eth0 up
route add default gw 172.16.40.254

tux3:
ifconfig eth0 down
ifconfig eth0 down
ifconfig eth0 up
```

route add default gw 172.16.40.254

tux4:

ifconfig eth0 down ifconfig eth0 172.16.41.44/24 ifconfig eth0 up route add default gw 172.16.41.254

O tux 3 estaria automaticamente ligado à vlan 1.

Efetuamos as ligações físicas entre tux's e switch, e a ligação entre a porta gigabitEthernet 0/1 do switch e a gigabitEthernet 0/0 do router.

Depois configuramos o router da seguinte forma:

configure terminal interface gigabitEthernet 0/0 no shutdown interface gigabitEthernet 0/0.1 encapsulation dot1Q 40 ip address 172.16.40.254 255.255.255.0 no shutdown interface gigabitEthernet 0/0.2 encapsulation dot1Q 41 ip address 172.16.41.254 255.255.255.0 no shutdown interface gigabitEthernet 0/0.3 encapsulation dot1Q 1 native ip address 172.16.42.254 255.255.255.0 no shutdown end

E tentámos pingar o tux 4 e 3 a partir do 1 e 2 e tivemos um resultado positivo.

Conclusões

Este trabalho foi ótimo para rever conceitos, reativar as noções das aulas práticas aprendidas na cadeira de Redes de Computadores e aprender novas formas de interligar redes.

Só precisámos de ver melhor a parte do funcionamento do protocolo Spanning-Tree e tentar finalizar a experiência 6 que por falta de organização de tempo não foi possível concluir.