"Topic: GPU+PyTorch+Triton" Starting Tutorial

0. Hardware Information

Hardware: NVIDIA A100

Driver: cuda_12.3.r12.3/compiler.33281558_0

表: GPU硬件的信息汇总

架构	GPU型号	计算能 力	-arch 参数	备注	CUDA版本要 求
Volta	V100	7.0	- arch=sm_70	数据中心卡	9.0+
Volta	Titan V	7.0	- arch=sm_70	消费级卡	9.0+
Ampere	A100	8.0	- arch=sm_80	数据中心卡	11.0+
Ampere	A30	8.0	- arch=sm_80	数据中心卡	11.0+
Ampere	RTX 30系 列	8.6	- arch=sm_86	消费级卡	11.0+
Hopper	H100	9.0	- arch=sm_90	数据中心卡	11.8+
Blackwell	B200	9.0+	- arch=sm_90	目前使用Hopper参 数	12.0+

1. Building Environment

```
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-
x86_64.sh
bash ~/Miniconda3-latest-Linux-x86_64.sh
```

2. PyTorch + Triton + vLLM

```
pip3 install torch torchvision --index-url
https://download.pytorch.org/whl/cu121

pip install triton==3.4.0

pip install vllm==0.9.2
```

Verify the installations:

```
# 验证脚本 verify_installation.py
import torch
import triton
import vllm
print(f"PyTorch 版本: {torch.__version__}")
print(f"PyTorch CUDA 可用: {torch.cuda.is_available()}")
print(f"PyTorch CUDA 版本: {torch.version.cuda}")
print(f"Triton 版本: {triton.__version__}")
print(f"vLLM 版本: {vllm.__version__}")
# 测试GPU计算
if torch.cuda.is_available():
   device = "cuda"
   x = torch.tensor([1.0, 2.0, 3.0]).to(device)
    print(f"GPU计算测试成功: {y}")
else:
    print("CUDA不可用!")
```

3. CUDA编程基础

CUDA相关的编程编译流程可以总结为如下流程图:

"Hello World"样例代码:

```
// add.cu
#include <iostream>
#include <math.h>

// Kernel function to add the elements of two arrays
__global__
void add(int n, float *x, float *y)
{
  for (int i = 0; i < n; i++)
    y[i] = x[i] + y[i];
}

int main(void)
{
  int N = 1<<20;
  float *x, *y;</pre>
```

```
// Allocate Unified Memory - accessible from CPU or GPU
 cudaMallocManaged(&x, N*sizeof(float));
 cudaMallocManaged(&y, N*sizeof(float));
// initialize x and y arrays on the host
 for (int i = 0; i < N; i++) {
  x[i] = 1.0f;
  y[i] = 2.0f;
// Run kernel on 1M elements on the GPU
 add <<<1, 1>>>(N, x, y);
// Wait for GPU to finish before accessing on host
 cudaDeviceSynchronize();
// Check for errors (all values should be 3.0f)
 float maxError = 0.0f;
 for (int i = 0; i < N; i++) {
  maxError = fmax(maxError, fabs(y[i]-3.0f));
 std::cout << "Max error: " << maxError << std::endl;</pre>
// Free memory
 cudaFree(x);
 cudaFree(y);
 return 0;
}
```

(1) Kernel Function: 设备侧函数主要以 __global__ 关键词修饰

```
__global__ add(int n, float* x, float* y) {
   for (int i = 0; i < n; ++i) {
     y[i] = x[i] + y[i];
   }
}</pre>
```

(2) Unified Memory: host-device统一编址的显存分配,利用 cudaMallocManaged() 分配统一内存,返回可访问的指针, kernel 执行完毕需要手动利用 cudaFree() 释放内存(cudaMallocManaged-cudaFree 和标准 C++ 中的 new-delete 对应)

```
// Allocate Unified Memory -- accessible from CPU or GPU
float *x, *y, *sum;
cudaMallocManaged(&x, N*sizeof(float));
cudaMallocManaged(&y, N*sizeof(float));
...
// Free memory
cudaFree(x);
cudaFree(y);
```

(3) Kernal Launch: 从host侧启动Kernel函数,使用cuda的三重角度括号语法 <<<Dg, Db, Ns, S>>>

注释:

- (a) Dg 代表整个grid的尺寸(一个grid有多少个block),数据类型为dim3,例如: Dim3 Dg(Dg.x, Dg.y, 1)代表grid中每行有Dg.x个block,每列有Dg.y个block,第三个 纬度恒定为1,因此整个grid一共有 Dg.x * Dg.y 个block,且 Dg.x, Dg.y <= 65535;
- (b) Db定义一个block的尺寸(一个block有多少thread),数据类型为dim3,例如: Dim3 Db(Db.x, Db.y, Db.z)代表block中每行有Db.x个thread,每列有Db.y个 thread,高度方向有Db.z个thread,因此一个block有Db.x**Db.y**Db.z个 thread.

- (c) Ns为可选参数,用于设置每个block除了静态分配的共享内存外,最多能动态分配的共享内存大小,单位为Byte。如果不需要,则Ns=0或者参数缺省.
- (d) S时cudaStream_t类型的可选参数,默认值为S=0,标识核函数位于哪个stream中(指定核函数在哪个stream中执行)

```
// 代表一个block,一个thread add<<<1, 1>>>(N, sum, x, y);
```

(4) nvcc编译

■ 基础编译命令:直接得到可执行文件

nvcc -o add add.cu

■ 指定平台:从V100, A100, H100到B200不同GPU型号, nvcc可以编译得到特定平台二进制、ptx指令或者通用平台指令(就是各个平台的指令打包)

```
# 查询当前使用GPU平台的卡型号等信息
nvidia-smi
# 查询当前使用的GPU平台的计算能力
nvidia-smi --query-qpu=compute_cap --format=csv
```

编译到特定平台

```
## (1) V100及所有计算能力7.0的GPU
nvcc -arch=sm_70 -o your_program your_program.cu
# 如果需要包含PTX代码以支持未来兼容性
nvcc -arch=sm_70 -gencode arch=compute_70,code=sm_70 -o your_program
your_program.cu
## (2) A100及所有计算能力8.0的GPU
nvcc -arch=sm_80 -o your_program your_program.cu
# 如果需要包含PTX代码以支持未来兼容性
```

```
nvcc -arch=sm_80 -gencode arch=compute_80,code=sm_80 -o your_program your_program.cu
## (3) H100及所有计算能力9.0的GPU
nvcc -arch=sm_90 -o your_program your_program.cu
# 如果需要包含PTX代码以支持未来兼容性
nvcc -arch=sm_90 -gencode arch=compute_90,code=sm_90 -o your_program your_program.cu
## (4) B200及所有计算能力9.0的GPU
nvcc -arch=sm_90 -o your_program your_program.cu
# 如果需要包含PTX代码以支持未来兼容性
nvcc -arch=sm_90 -gencode arch=compute_90,code=sm_90 -o your_program your_program.cu
```

编译到通用平台

支持V100到H100的通用二进制

```
nvcc -gencode arch=compute_70,code=sm_70 -gencode
arch=compute_80,code=sm_80 -gencode arch=compute_90,code=sm_90 -o
universal_program program.cu
```

当前使用的GPU硬件为A100,因此以上 add.cu 代表编译命令为:

```
nvcc -arch=sm 80 -o add add.cu
```

执行后得到结果:

```
(pytorch) lthpc@gnode02:~/chengl/Programming> ./add
Max error: 0
```

(5) cuda原生性能Profiling采集工具: nsys

■ 直接采集完整性能统计数据

```
nsys profile -t cuda --stats=true ./add
```

结果会生成如下详细性能信息:包括内存分配(cudaMallocManaged) ,同步,内存释放, Kernel启动时间,Kernel执行时间等

```
(pytorch) lthpc@gnode02:~/chengl/Programming> nsys profile -t cuda --
stats=true ./add
Max error: 0
Generating '/tmp/nsys-report-94b0.qdstrm'
[2/6] [============100%] report2.sqlite
[3/6] Executing 'cuda_api_sum' stats report
Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns)
Min (ns) Max (ns) StdDev (ns)
                                Name
   64.2 308,780,682 2 154,390,341.0 154,390,341.0
  19,020 308,761,662 218,314,015.8 cudaMallocManaged
         171,461,980 1 171,461,980.0 171,461,980.0
   35.7
                      0.0 cudaDeviceSynchronize
171,461,980 171,461,980
           468,500 2 234,250.0 234,250.0
    0.1
  183,820 284,680 71,318.8 cudaFree
          197,110 1 197,110.0 197,110.0
    0.0
          197,110
  197,110
                          0.0 cudaLaunchKernel
    0.0
             840
                               840.0
                                              840.0
         840
                      0.0 cuModuleGetLoadingMode
     840
[4/6] Executing 'cuda_gpu_kern_sum' stats report
Time (%) Total Time (ns) Instances Avg (ns) Med (ns)
Min (ns) Max (ns) StdDev (ns)
                                Name
   100.0 171,458,500 1 171,458,500.0 171,458,500.0
171,458,500 171,458,500 0.0 add(int, float *, float *)
[5/6] Executing 'cuda_gpu_mem_time_sum' stats report
```

```
Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max
(ns) StdDev (ns)
                         Operation
    61.3
          978,906 48 20,393.9 6,575.5 3,679
29,701.5 [CUDA memcpy Unified Host-to-Device]
    38.7
               617,794 24 25,741.4 5,167.5 2,655
151,107 43,848.0 [CUDA memcpy Unified Device-to-Host]
[6/6] Executing 'cuda_gpu_mem_size_sum' stats report
Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev
(MB)
                Operation
     8.389 48 0.175 0.033 0.004 1.044
0.304 [CUDA memcpy Unified Host-to-Device]
     4.194 24
                 0.175 0.033 0.004 1.044
0.307 [CUDA memcpy Unified Device-to-Host]
Generated:
   /home/lthpc/chengl/Programming/report2.nsys-rep
   /home/lthpc/chengl/Programming/report2.sqlite
```

■ 简化性能统计信息: <u>Mark Harris</u> 写了一个简单的nsys_easy脚本(<u>https://github.com/ha</u> <u>rrism/nsys_easy</u>),用来简化输出信息

```
# 修改执行权限

chmod 755 ~/nsys_easy/nsys_easy

# 添加nsys_easy环境变量

export PATH=~/nsys_easy:$PATH

# 采集性能信息

nsys_easy ./add
```

结果会生成如下简化信息:

```
(pytorch) lthpc@gnode02:~/chengl/Programming> nsys_easy ./add
Max error: 0
Generating '/tmp/nsys-report-66ad.qdstrm'
Generated:
   /home/lthpc/chengl/Programming/nsys_easy.nsys-rep
Generating SQLite file nsys_easy.sqlite from nsys_easy.nsys-rep
Processing 939 events:
Processing [nsys_easy.sqlite] with [/home/software/cuda-12.3/nsight-
systems-2023.3.3/host-linux-x64/reports/cuda_gpu_sum.py]...
** CUDA GPU Summary (Kernels/MemOps) (cuda_gpu_sum):
Time (%) Total Time (ns) Instances Avg (ns) Med (ns)
         Max (ns) StdDev (ns) Category
Min (ns)
Operation
   99.1 172,191,985 1 172,191,985.0 172,191,985.0
172,191,985 172,191,985
                           0.0 CUDA_KERNEL add(int, float *,
float *)
    0.6 979,518 48
                                   20,406.6
                                                6,527.5
   3,647 105,666 29,680.1 MEMORY_OPER [CUDA memcpy
Unified Host-to-Device
    0.4
            618,691
                           24
                                   25,778.8
                                                5.199.5
    2,495
            151,235 43,882.6 MEMORY_OPER [CUDA memcpy
Unified Device-to-Host]
```

(6) PyTorch + CUDA原生集成开发 + pyTorch统一性能Profiling采集工具:
torch.profiler

参考PyTorch官网说明: https://docs.pytorch.org/docs/stable/profiler.html

目前LLM基本都是在PyTorch的pythonic环境下开发使用,为了实现CUDA函数在PyTorch的自然集成,需要用到 torch.utils.cpp_extension 和 torch/extension.h ,并利用 pybind11 完成pytorch下对CUDA-C/C++函数的调用。https://github.com/gau-nernst/learn-cuda中了给了10个示例教程,这里给出 01-vector addition 的代码示例。

Name	Description
01. <u>Vector addition</u>	Simple example to get everything working.
02a. Matrix multiplication SIMT	Block tiling, thread tiling, warp tiling.
02b. <u>Matrix multiplication</u> <u>TensorOp</u>	Inline PTX, cvta , ldmatrix , mma .
03. <u>Sum</u>	Reduction in general. Prepare for softmax (max and sum).
04. <u>Softmax</u>	Naive (safe) softmax, online softmax. atomicCAS(). Single-block and multi-block per row.
05. <u>FP6</u>	FP6 primitives (FP32/FP16/BF16<->FP6).
06. <u>Box blur</u>	2D CUDA blocks/threads. TODO: optimize with separable filters, moving average.
07. Attention	Flash attention
08. Row-scaled matmul	Simple epilogue
09. <u>Block-scaled matmul</u>	MXFP8

```
// add.cu
#include <torch/extension.h>

#define CHECK_CUDA(x) TORCH_CHECK(x.device().is_cuda(), #x " must be a
CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must
be contiguous")
#define CHECK_INPUT(x)

CHECK_CUDA(x);

CHECK_CONTIGUOUS(x)

__global__ void add_kernel(const float *input1, const float *input2,
float *output, int size) {
```

```
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < size)
    output[idx] = input1[idx] + input2[idx];
torch::Tensor add(torch::Tensor input1, torch::Tensor input2) {
  CHECK_INPUT(input1);
 CHECK_INPUT(input2);
 int size = input1.numel();
 TORCH_CHECK(size == input2.numel(), "input1 and input2 must have the
same size");
 torch::Tensor output = torch::empty(size, input1.options());
 int n_threads = 256;
  int n_blocks = (size + n_threads - 1) / n_threads;
  add_kernel<<<n_blocks, n_threads>>>(input1.data_ptr<float>(),
input2.data_ptr<float>(), output.data_ptr<float>(), size);
 return output;
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("add", &add, "Add two
vectors"); }
```

实际上就是添加了一个tensor的wrapper,因为tensor是pytorch的基础数据类型,因此核心步骤就是将原始cuda的入参和返回参数等转成tensor(指针),传给torch实现包装。下面是pytorch中的调用代码(可以看到就是重新声明了cuda函数,将其归类为一类module,从而下面可以直接从module中调用原始封装后的cuda函数,如果需要将函数注册进torch,即torch.add,后续会涉及):

```
# main.py
import torch
import torch.utils.cpp_extension
from torch.profiler import profile, record_function, ProfilerActivity
import matplotlib.pyplot as plt
```

```
module = torch.utils.cpp_extension.load(
    "module",
    sources=["add.cu"],
    extra_cuda_cflags=["-03"],
    verbose=True,
)

# Example usage
input1 = torch.randn(1024000, device="cuda")
input2 = torch.randn(1024000, device="cuda")
output = module.add(input1, input2)
```

下面给出torch.profiler采集以上封装后的cuda函数方法。

■ (a) 最基础的 torch.profiler 裸测试调用采集性能数据

```
# 核心结构

from torch.profiler import profile, record_function, ProfilerActivity
with torch.profiler.profile(
    activities=[
        torch.profiler.ProfilerActivity.CPU,
        torch.profiler.ProfilerActivity.CUDA,
    ]
) as p:
    code_to_profile() # 替换成需要采集的torch代码(函数)
print(p.key_averages().table(sort_by="self_cuda_time_total",
    row_limit=-1))
```

完整测试代码如下:

```
import torch
import torch.utils.cpp_extension
from torch.profiler import profile, record_function, ProfilerActivity
import matplotlib.pyplot as plt
```

```
module = torch.utils.cpp_extension.load(
   sources=["add.cu"],
    extra_cuda_cflags=["-03"],
   verbose=True.
# Example usage
input1 = torch.randn(1024000, device="cuda")
input2 = torch.randn(1024000, device="cuda")
with torch.profiler.profile(
   activities=Γ
        torch.profiler.ProfilerActivity.CPU,
        torch.profiler.ProfilerActivity.CUDA,
    ٦
) as p:
    output = module.add(input1, input2)
print(p.key_averages().table(sort_by="self_cuda_time_total",
row_limit=-1))
p.export_chrome_trace("trace.json") # 可以生成程序运行的timeline
```

运行后的结果如下:

```
(pytorch) lthpc@gnode02:~/chengl/Programming/learn-
cuda/1_vector_addition> CUDA_VISIBLE_DEVICES=0 python main.py
Using /home/lthpc/.cache/torch_extensions/py310_cu126 as PyTorch
extensions root...
Detected CUDA files, patching ldflags
Emitting ninja build file
/home/lthpc/.cache/torch_extensions/py310_cu126/module/build.ninja...
Building extension module module...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
```

The state of the s	ion module mod			
Self CUDA %		CUDA time avg	CPU time avg # of Calls	Self CPU % Self CUDA
add_kernel	(float const*,	float const*,	float*, int)	0.00%
0.000us	0.00%	0.000us	0.000us	9.824us
100.00%	9.824us	9.824us	1	
			aten::empty	5.96%
52.520us	75.63%	666.350us	666.350us	0.000us
0.00%	0.000us	0.000us	1	
			Unrecognized	69.67%
			613.830us	0.000us
0.00%	0.000us			
74 520	22.040		aLaunchKernel	
74.530us	23.81%		209.810us	0.000us
0.00%	0.000us		1	1F 2F%
135.280us	15.35%	me Triggered Mo 135.280us	67.640us	15.35% 0.000us
0.00%	0.000us		07.040us	0.000us
0.00/0	0.00003		ceSynchronize	0.56%
4.910us	0.56%		4.910us	0.000us
0.00%	0.000us		1	31333.2
Calc CDII Ida	1-1-1, 001 070			

Self CPU time total: 881.070us Self CUDA time total: 9.824us 从上面列表中找到 Name = add_kernel 对应的 Self CUDA= 9.824us 即为GPU上 add_kernel执行的完整时间,下面还可以发现 cudaLaunchKernel 代表从host侧启动GPU侧 核函数花费时间为 209.810us ,可以看到远远长于Kernel本身在GPU上执行时间。

■ (b) 考虑预热等因素后的 torch.profiler 调用性能采集方法

```
# 核心结构
with torch.profiler.profile(
    activities=Γ
        torch.profiler.ProfilerActivity.CPU,
        torch.profiler.ProfilerActivity.CUDA,
) as p:
    code_to_profile_0()
    // turn off collection of all CUDA activity
    p.toggle_collection_dynamic(False,
[torch.profiler.ProfilerActivity.CUDA])
    code_to_profile_1()
    // turn on collection of all CUDA activity
    p.toggle_collection_dynamic(True,
[torch.profiler.ProfilerActivity.CUDA])
    code_to_profile_2()
print(p.key_averages().table(sort_by="self_cuda_time_total",
row_limit=-1))
```

完整测试代码:

```
import torch
import torch.utils.cpp_extension
from torch.profiler import profile, record_function, ProfilerActivity
import matplotlib.pyplot as plt

module = torch.utils.cpp_extension.load(
    "module",
    sources=["add.cu"],
```

```
extra_cuda_cflags=["-03"],
    verbose=True,
)
# Example usage
input1 = torch.randn(1024000, device="cuda")
input2 = torch.randn(1024000, device="cuda")
# Non-default profiler schedule allows user to turn profiler on and
off
# on different iterations of the training loop;
# trace_handler is called every time a new trace becomes available
def trace_handler(prof):
   print(
        prof.key_averages().table(sort_by="self_cuda_time_total",
row_limit=-1)
    )
    prof.export_chrome_trace("/tmp/test_trace_" + str(prof.step_num) +
".json")
with torch.profiler.profile(
    activities=Γ
        torch.profiler.ProfilerActivity.CPU,
        torch.profiler.ProfilerActivity.CUDA,
   ],
   # In this example with wait=1, warmup=1, active=2, repeat=1,
   # profiler will skip the first step/iteration,
   # start warming up on the second, record
   # the third and the forth iterations.
   # after which the trace will become available
   # and on_trace_ready (when set) is called;
    # the cycle repeats starting with the next step
    schedule=torch.profiler.schedule(wait=1, warmup=1, active=7,
repeat=1),
    on_trace_ready=trace_handler,
    record_shapes=True,
```

采集结果如下:

```
(pytorch) lthpc@gnode02:~/chengl/Programming/learn-
cuda/1_vector_addition> CUDA_VISIBLE_DEVICES=0 python main.py
Using /home/lthpc/.cache/torch_extensions/py310_cu126 as PyTorch
extensions root...
Detected CUDA files, patching ldflags
Emitting ninja build file
/home/lthpc/.cache/torch_extensions/py310_cu126/module/build.ninja...
Building extension module module...
Allowing ninja to set a default number of workers... (overridable by
setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module module...
                                                Name Self CPU %
    Self CPU CPU total % CPU total CPU time avg Self CUDA
 Self CUDA % CUDA total CUDA time avg # of Calls
   add_kernel(float const*, float const*, float*, int)
                                                             0.00%
     0.000us
                                0.000us 0.000us 45.956us
                     0.00%
     100.00% 45.956us 6.565us
```

0.00%	ProfilerStep*			
45.956us	0.000us	0.000us	0.00%	0.000us
	7	6.565us	45.956us	100.00%
71.61%	ProfilerStep*			
0.000us	73.530us	514.710us	96.98%	380.1 00 us
	7	0.000us	0.000us	0.00%
12.90%	aten::empty			
0.000us	9.779us	68.450us	12.90%	68.450us
	7	0.000us	0.000us	0.00%
12.47%	daLaunchKernel	cua		
0.000us	9.451us	66.160us	12.47%	66.160us
	7	0.000us	0.000us	0.00%
3.02%	ceSynchronize	cudaDevi		
0.000us	16.050us	16.050us	3.02%	16.050us
	1	0.000us	0.000us	0.00%
		us	total: 530.760	Self CPU time
		us	total: 45.956	Self CUDA time

可以看到考虑预热和多次平均后的 add_kernel 时间为 6.565us ,并且多次运行时间差别也不大。

(c) 考虑预热等因素 + 仅采集部分代码的 torch.profiler 调用性能采集方法:toggle_collection_dynamic

```
with torch.profiler.profile(
    activities=[
        torch.profiler.ProfilerActivity.CPU,
        torch.profiler.ProfilerActivity.CUDA,
    ]
) as p:
    code_to_profile_0()
    // turn off collection of all CUDA activity
```

```
p.toggle_collection_dynamic(False,

[torch.profiler.ProfilerActivity.CUDA])
    code_to_profile_1()
    // turn on collection of all CUDA activity
    p.toggle_collection_dynamic(True,

[torch.profiler.ProfilerActivity.CUDA])
    code_to_profile_2()

print(p.key_averages().table(sort_by="self_cuda_time_total",
    row_limit=-1))
```

完整代码如下:

```
import torch
import torch.utils.cpp_extension
from torch.profiler import profile, record_function, ProfilerActivity
import matplotlib.pyplot as plt
module = torch.utils.cpp_extension.load(
    "module",
    sources=["add.cu"],
    extra_cuda_cflags=["-03"],
    verbose=True,
)
# Non-default profiler schedule allows user to turn profiler on and
off
# on different iterations of the training loop;
# trace_handler is called every time a new trace becomes available
def trace_handler(prof):
    print(
        prof.key_averages().table(sort_by="self_cuda_time_total",
row_limit=-1)
    prof.export_chrome_trace("/tmp/test_trace_" + str(prof.step_num) +
".json")
```

```
with torch.profiler.profile(
    activities=[
        torch.profiler.ProfilerActivity.CPU,
        torch.profiler.ProfilerActivity.CUDA,
   ],
   # In this example with wait=1, warmup=1, active=2, repeat=1,
   # profiler will skip the first step/iteration,
   # start warming up on the second, record
   # the third and the forth iterations,
   # after which the trace will become available
   # and on_trace_ready (when set) is called;
   # the cycle repeats starting with the next step
    schedule=torch.profiler.schedule(wait=1, warmup=1, active=7,
repeat=1),
    on_trace_ready=trace_handler,
    record_shapes=True,
   # on_trace_ready=torch.profiler.tensorboard_trace_handler('./log')
   # used when outputting for tensorboard
) as p:
    for iter in range(10):
        p.toggle_collection_dynamic(False,
[torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA]) # 同时关掉CPU和GPU上的性能采集
        input1 = torch.randn(1024000, device="cuda") # 为了测试效果,将
数据生成也考虑如下采集
        input2 = torch.randn(1024000, device="cuda")
        p.toggle_collection_dynamic(True,
[torch.profiler.ProfilerActivity.CUDA]) # 仅仅打开GPU上的性能采集
        output = module.add(input1, input2)
       # send a signal to the p
        p.step()
```

				103010 111 010						
Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	Self CUDA	Self CUDA %	CUDA total	CUDA time avg	# of Calls
add_kernel(float const*, float const*, float*, int)	0.00%	0.000us	0.00%	0.000us	0.000us	54.114us	100.00%	54.114us	6.764us	8
ProfilerStep*	0.00%	0.000us	0.00%	0.000us	0.000us	5.888us	10.88%	5.888us	5.888us	1
ProfilerStep*	45.61%	1.301ms	45.95%	1.311ms	1.311ms	0.000us	0.00%	0.000us	0.000us	1
cudaLaunchKernel	1.77%	50.440us	1.77%	50.440us	7.206us	0.000us	0.00%	0.000us	0.000us	7
cudaDeviceSynchronize	52.62%	1.501ms	52.62%	1.501ms	1.501ms	0.000us	0.00%	0.000us	0.000us	1
Self CPU time total: 2.852ms Self CUDA time total: 54.114us										

作为对比:

(a) 类型一

```
for iter in range(10):
    p.toggle_collection_dynamic(False,
    [torch.profiler.ProfilerActivity.CPU,
    torch.profiler.ProfilerActivity.CUDA]) # 同时关掉CPU和GPU上的性能采集
        input1 = torch.randn(1024000, device="cuda") # 为了测试效果,将
    数据生成也考虑如下采集
        input2 = torch.randn(1024000, device="cuda")
        output = module.add(input1, input2)
        # send a signal to the p
        p.step()
```

Loading extension									
Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls			
ProfilerStep*	100.00%	127.950us	100.00%	127.950us	127.950us	1			
Self CPU time total: 127.950us									

(b) 类型二

```
for iter in range(10):
    p.toggle_collection_dynamic(False,

[torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA]) # 同时关掉CPU和GPU上的性能采集
    input1 = torch.randn(1024000, device="cuda") # 为了测试效果,将
数据生成也考虑如下采集
    input2 = torch.randn(1024000, device="cuda")
    p.toggle_collection_dynamic(True,

[torch.profiler.ProfilerActivity.CPU]) # 仅仅打开CPU上的性能采集
    output = module.add(input1, input2)
    # send a signal to the p
    p.step()
```

Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
ProfilerStep*	96.15%	900.710us	100.00%	936.750us	133.821us	7
aten::empty	3.85%	36.040us	3.85%	36.040us	5.149us	7
Self CPU time tota	1: 936.750us					

(c) 类型三

```
for iter in range(10):
    p.toggle_collection_dynamic(False,

[torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA]) # 同时关掉CPU和GPU上的性能采集
    input1 = torch.randn(1024000, device="cuda") # 为了测试效果,将
数据生成也考虑如下采集
    input2 = torch.randn(1024000, device="cuda")
    p.toggle_collection_dynamic(True,

[torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CDDA]) # 打开CPU+GPU上的性能采集
    output = module.add(input1, input2)
    # send a signal to the p
    p.step()
```

Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	Self CUDA	Self CUDA %	CUDA total	CUDA time avg	# of Calls
add_kernel(float const*, float const*, float*, int)	0.00%	0.000us	0.00%	0.000us	0.000us	41.474us	100.00%	41.474us	5.925us	7
ProfilerStep* ProfilerStep*	0.00% 91.86%	0.000us 17.944ms	0.00% 92.29%	0.000us 18.029ms	0.000us 2.576ms	41.474us 0.000us	100.00%	41.474us 0.000us	5.925us 0.000us	7
aten::empty cudaLaunchKernel	0.19% 0.24%	37.720us 47.080us	0.19% 0.24%	37.720us 47.080us	5.389us 6.726us	0.000us 0.000us	0.00% 0.00%	0.000us 0.000us	0.000us 0.000us	7
cudaDeviceSynchronize	7.71%	1.506ms	7.71%	1.506ms	1.506ms	0.000us	0.00%	0.000us	0.000us	
Self CPU time total: 19.535ms Self CUDA time total: 41.474us										

(d) 类型四

```
for iter in range(10):
    p.toggle_collection_dynamic(True,

[torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA]) # 同时关掉CPU和GPU上的性能采集
    input1 = torch.randn(1024000, device="cuda") # 为了测试效果,将
数据生成也考虑如下采集
    input2 = torch.randn(1024000, device="cuda")
    p.toggle_collection_dynamic(True,

[torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA]) # 打开CPU+GPU上的性能采集
    output = module.add(input1, input2)
    # send a signal to the p
    p.step()
```

Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	Self CUDA	Self CUDA %	CUDA total	CUDA time avg	# of Calls
ProfilerStep*	0.00%	0.000us	0.00%	0.000us	0.000us	374.888us	188.10%	374.888us	53.555us	7
aten::normal_	10.47%	106.230us	23.78%	241.180us	17.227us	159.298us	79.93%	159.298us	11.378us	14
<pre>void at::native::(anonymous namespace)::distribution</pre>	0.00%	0.000us	0.00%	0.000us	0.000us	159.298us	79.93%	159.298us	11.378us	14
add_kernel(float const*, float const*, float*, int)	0.00%	0.000us	0.00%	0.000us	0.000us	40.001us	20.07%	40.001us	5.714us	7
ProfilerStep*	53.96%	547.360us	99.12%	1.005ms	143.636us	0.000us	0.00%	159.298us	22.757us	7
aten::randn	7.24%	73.400us	38.33%	388.780us	27.770us	0.000us	0.00%	159.298us	11.378us	14
aten::empty	10.20%	103.470us	10.20%	103.470us	4.927us	0.000us	0.00%	0.000us	0.000us	21
cudaStreamIsCapturing	1.67%	16.980us	1.67%	16.980us	0.606us	0.000us	0.00%	0.000us	0.000us	28
cudaLaunchKernel	15.58%	158.010us	15.58%	158.010us	7.524us	0.000us	0.00%	0.000us	0.000us	21
cudaDeviceSynchronize	0.88%	8.880us	0.88%	8.880us	8.880us	0.000us	0.00%	0.000us	0.000us	1
Self CPU time total: 1.014ms										
Self CUDA time total: 199.299us										

(7) CUDA Kernel基本优化方法