Lucerne University of Applied Sciences and Arts

Technik & Architektur

Einführung Messtechnik

Energielabor, Bereich Strömungsmesstechnik

T direkt

Horw 22. September 2015

Beispiel: Strömungsmesstechnik

Prüfstand Peltonstrahl

Peltonstrahl

Arten der Strömungsmesstechnik

- Druckmessung
- Strömungsvisualisierung
- Durchflussmessung
- Geschwindigkeitsmessung
- Temperaturmessung
- Niveaumessung
- Wandreibungsmessung
- Drehzahlmessung

Übersicht: Geschwindigkeitsmessung

Schalenkreuzanemometer

Prandtl-Staurohr

ADV-Sonde

Laser Doppler Anemometrie

Hitzdraht-Anemometer

Geschwindigkeitsmessung mit hydrometrischen Flügeln

Geschwindigkeitsmessung mit Schalenkreuz-anemometer

Geschwindigkeitsmessung mit Prandtl-Staurohr

$$w = \sqrt{\frac{2(p_{Staudruck} - p_{statisch})}{\rho}}$$

Geschwindigkeitsmessung mit einer ADV-Sonde (Acoustic Doppler Velocimetry)

Geschwindigkeitsmessung mit LDA (Laser Doppler Anemometrie)

Übersicht: Durchflussmessung

ADM (akustisch)

Überfallwehr

Drosselgeräte

Durchflussmessung mit einem Überfall

$$\dot{Q} = \frac{2}{3} \mu \cdot b \sqrt{2 \cdot g} \cdot h^{\frac{3}{2}}$$

Durchflussmessung mit Turbinen- oder Flügelradzähler

Q ~ n

Durchflussmessung mit Schwebekörpergeräten

Durchflussmessung mit Drosselgeräten

p₁ und p₂ sind Wirkdruckentnahmestellen
$$\dot{m} = \frac{C}{\sqrt{1 - \beta^4}} \cdot A \cdot \sqrt{2 \cdot \Delta p \cdot \rho}$$

Durchflussmessung mit der magnetisch induktiven Messmethode (MID)

Bild 3.1: Aufbau eines magnetisch-induktiven Durchflussmessers. \vec{B} : magnetische Flussdichte, \vec{v} : Strömungsgeschwindigkeit, U: Messspannung, D: Rohrdurchmesser.

Durchflussmessung mit der Ultraschall-Methode (ADM)

$$\overline{v} = \frac{L}{2 \cdot \cos \varphi} \cdot \left(\frac{1}{t_1} - \frac{1}{t_2}\right)$$

$$\dot{V} = k \cdot v \cdot A$$

Durchflussmessung (Massendurchflussmessung) mit Waage und Zeitmessenrichtung

$$\dot{m} = \frac{m_2 - m_1}{t}$$

$$\dot{Q} = \frac{\dot{m}}{\rho}$$

Weitere Durchflussmessverfahren

- Vortex- Durchflussmesser (Wirbelfrequenz-Messgeräte)
- Massendurchflussmesser nach dem Coriolisprinzip
- Ovalrad-, Zahnrad oder Kolbenradzähler (Prinzip wie Turbinenradzähler)

Übersicht: Drehzahlmessung

Handtachometer

Magnetisch induktive Drehzahlmessung

Stroboskop

Drehzahlmessung Handtachometer

berührungslos

mechanisch

Drehzahlmessung Inkrementelle Drehgeber mit Lichtschranke

Drehzahlmessung: Stroboskop

Ohne Belichtung

Mit Belichtung

Einstellung und Anzeige der Lichtfrequenz

stehender Flügel

Beispiel: Datenerfassung

Physikalisches Gesetz (Bernoulli mit Korrekturterm) (Druck -> Massenstrom)

$$\dot{m} = \frac{C}{\sqrt{1 - \beta^4}} \cdot A \cdot \sqrt{2 \cdot \Delta p \cdot \rho}$$

Hochschule Luzern Technik & Architektur

Fragen?