Kinematics and dynamics in Newtonian relativity and in general relativity

P.G.L. Porta Mana ©
Western Norway University of Applied Sciences <pgl@portamana.org>
16 October 2016; updated 6 December 2020

This note is an exploration of some notions around kinematics, dynamics, matter, inertia, and force in Newtonian- and general-relativistic continuum mechanics. The conceptual pivot of this exploration is this: Neither in Newtonian relativity or in general relativity should there be any distinction between forced and unforced motion.

Note: Unfortunately I find less and less time for developing the ideas presented in this investigation, or even only for combining them organically. So I decided to make this draft publicly available. Maybe some of its points of view, or even just its references, will be useful for other researchers.

0 An exploration

The present notes are an exploration of the roles and construction of kinematics and dynamics in Newtonian mechanics and general relativity.

The purpose is to try to understand and simplify kinematics and dynamics in these two theories, find as many common points as possible. This effort is also pedagogically important. In most university courses in Newtonian mechanics today, students get the impression that Newtonian mechanics lacks some kind of logical properties that a physical theory should have, and which general relativity instead does have. Moreover, students that eventually approach Lorentzian and general relativity often find that they must throw away many notions used in Newtonian mechanics, starting building anew from new notions. But both these difficulties could actually be avoided.

We know today that Newtonian mechanics is a perfectly self-consistent theory that satisfies all sensible and logical requirements that general relativity also satisfies. For example, it can be formulated in a fully covariant, coordinate-independent way, and satisfies precise relativity principles. The difference between Newtonian mechanics and general relativity is not in the levels of their logical quality, but simply in

the fact that Newtonian mechanics makes predictions that are incorrect within particular experimental ranges, whereas general relativity yields correct predictions.

Yet, in my opinion the logical structure of Newtonian mechanics is more clearly defined and refined than that of general relativity – no surprise, since the former theory is a couple centuries older than the latter. It is sad that in university courses Newtonian mechancis often presented as little more than a bunch or recipes; its deep logical beauty is lost.

I believe it should be possible to reformulate the kinematics and dynamics of Newtonian mechanics and general relativity in such a way that they become extremely similar. This would bring even more to light the beautiful logical structure of Newtonian mechanics, it would bring order in the logical structure of general relative, and offer students a smoother transition from one theory to the other.

3+1 balances of energy and force in general relativity, full form:

$$(\partial_t - \mathbf{L}_v - N \operatorname{tr} \mathbf{K}) \varepsilon + \nabla \cdot (N\mathbf{q}) - N \operatorname{tr} (\mathbf{K} \tau) + p \mathbf{g}^{-1} \nabla N = 0$$
 (1)

$$(\partial_t - \mathbf{L}_v - N \operatorname{tr} \mathbf{K} + N \mathbf{K}) \mathbf{p} + \nabla \cdot (N \boldsymbol{\tau}^{\mathsf{T}}) - N \mathbf{q} \mathbf{K} + \epsilon \nabla N = 0.$$
 (2)

To be stressed: these equations describe the evolution, along an arbitrary vector field, of the components *seen by an Eulerian observer* – not seen by the observer of the evolution vector field.

Something opposite happens with the evolution equations in Newtonian mechanics: they describe the evolution, along the vector field of an Eulerian observer, of the components *seen by an observer comoving with the continuum*. This is clear from the fact that the energy flux or the stress tensor, for example, don't contain convective components. This is also the reason why these quantities are frame-indifferent: all observers relate them to the motion of the continuum.

1 Decomposition of the stress-energy-momentum tensor

Introduce a slicing dt and a frame U as in § 3.1. For a k-form α , the horizontal component is the (k-1)-form $U \cdot \alpha$; the vertical component is the k-form $\Pi \cdot \alpha := \alpha - dt \wedge (U \cdot \alpha)$.

Consider the stress-energy-momentum tensor *T* represented as a covector-valued 3-covector. We have the decomposition

$$\epsilon := \mathbf{U} \cdot \mathbf{T} \cdot \Pi$$
 3-covector

 $q := \mathbf{U} \cdot \mathbf{T} \cdot \mathbf{U}$ 2-covector

 $p := \Pi \cdot \mathbf{T} \cdot \Pi$ covector-valued 3-covector

 $\tau := \Pi \cdot \mathbf{T} \cdot \mathbf{U}$ covector-valued 2-covector.

The covector properties of the resulting quantities correspond to those in Newtonian mechanics: energy density is supposed to be integrated in a volume, energy flux on a surface; and momentum density in a volume, and stress on a surface, both yielding a covector.

Note that the summer of the second se

Kinematics and dynamics Kinematics is the science of the description of motion. Dynamics is the science of the determination of which motion actually occurs. This division is fundamental in our way of doing physics. No matter how we express the laws of dynamics, whether as balance equations or the extremization of some Lagrangian, these laws select one motion out of a space of possible ones. The latter space is provided by kinematics, which has thus an exquisite counterfactual character. There is no clear division line between these two sciences, of course. One might imagine depleting the space of possible motions more and more, until there is no motion left but that which actually occurs, making dynamics superfluous. To be honest I cannot depict this extreme case or understand what it would mean.

Both sciences use primitive notions, objects, operations. In Newtonian mechanics, kinematics usually includes the notions of spacetime, position, time derivative, velocity, mass, charge, and so on. It also includes *metric* notions and objects. The primary notions in dynamics are force and

stress. In general relativity there is a similar division, but the metric becomes a dynamical object; we can in fact conceive several possible metric tensor fields, and the Einstein equations (with suitable initial and boundary conditions) then determine which of these metric fields actually occurs.

I think it would be appealing to build a kinematics common to Newtonian mechanics and general relativity, so that their difference lie solely in the dynamics. Such a construction would also be pedagogically useful. Several authors (cf. 4-2.3) seem to find this point of view appealing.

This construction requires that we reformulate Newtonian kinematics without metric notions, and that we redefine its quantities and operations in a metric-free way. Some questions ensue in this process. Should momentum be considered as a kinematic or as a dynamic quantity? and mass? Even if stress and metric are both dynamic quantities, is it possible to keep them separate?

There are old and recent studies that show that this construction is possible, even if some seem apparently unrelated with it. In both Newtonian and general relativity, for example, the notion of matter density & flux and charge density & flux do not require metric structures of any kind. Two studies will be especially important for our exploration. The first is a reinterpretation of the familiar " $\sum F = ma$ "; the second is a metric-free reformulation of electromagnetism. These studies may be unfamiliar to some readers and are summarized in \clubsuit ***.

Forced and unforced motion Both Newtonian and general relativity traditionally draw a distinction between unforced or inertial or geodesic motion versus forced motion. Loosely speaking, force is conceived as something that alters a preferred motion. I find this distinction artificial and unappealing. Its lack of appeal is, I believe, generally felt in general relativity, especially by students. You probably remember how fascinating the idea was that a point-like body, even if subject to gravitational forces, is actually following a "straight" line in a more complicated geometry. Unfortunately other forces intrude to ruin this "straight" motion. The natural question that came to mind was whether all these annoying forces could not be included in the geometric structure, so as to make geodesic motion a universal rule (compare with Kaluza-Klein theories¹).

¹ Kaluza 1921; Goenner 2004; 2012; Verbin & Nielsen 2005.

Another reason why I find this distinction unappealing is that geodesic motion becomes almost completely unimportant in the mechanics of continua. And general relativity is clearly a continuum theory.

The distinction between forced and unforced motion can possibly be eliminated by taking a point of view opposite to geometrization: instead of trying to reduce force to geometry, we try to reduce geometry to force. This point of view is suggested by Newtonian mechanics; it is the reinterpretation of " $\sum F = ma$ " mentioned above. It is possible to reformulate Newtonian dynamics as the requirement that the sum of all forces on a body be always zero, just like in the science of statics: $\sum F = 0$. Among these forces, however, we must include the *inertial* force:

$$\sum F = F_{\text{inertia}} + F_{\text{gravity}} + F_{\dots} + \dots = 0$$
.

The inertial force, in an inertial frame, is given by $F_{\rm inertia} \coloneqq -ma$; note the minus sign. The familiar Newton equations are thus recovered. The inertial force, moreover, can be defined in a way independent of any choice of frame (see eq. (40)). So the distinctions between inertial and non-inertial frames and between unforced and forced motions disappear. This reinterpretation is discussed in \clubsuit^{***} .

Can we carry this point of view over to general relativity? One possibility would be to reformulate its dynamics as the requirement that the sum of some tensors, representing forces of various kinds, be zero. Among these tensors there would be one related to "metric forces", that is, inertia and gravitation. On a second look, the Einstein equations $G = 8\pi\kappa T$ – imagine them rewritten as $\frac{1}{8\pi\kappa}G - T = 0$ – could seem to represent exactly such a requirement. This reading would be reinforced by the fact that the derived equation $\nabla \cdot \tau = 0$ is the four-dimensional analogue of the equilibrium equation in statics. But there are difficulties with this interpretation. The main difficulty is that the definition of the stress-energy-momentum tensor τ (more precisely its constitutive equations) often requires metric notions; the effects of the metric are therefore not confined to the tensor G.

▶ Something about the question: can forces exist where there is no mass? Force and momentum in Newtonian mechanics were traditionally associated with bodies. In general relativity momentum is unhinged from mass, and so probably should force. This goes together with the

idea that an electromagnetic field can also sustain a force: Page (1958 § 158, pp. 534–535) and Ericksen (2007).

The explorations to follow will revolve around the two themes above. I believe that to understand them it is also useful to compare the particular and precise aims of Newtonian relativity with those, somewhat vaguer, of general relativity. This is done in #-4.2.

I apologize for not having yet been able to arrange the ideas of this exploration in a logical or sequential order. I must ask you to take them as pieces of a puzzle. I hope that you will at least find the bibliographic references useful.

♣ 2 Prerequisites

I will freely use the differential-geometric notions of inner- and outer-oriented forms (also called "straight" and "twisted"), explained by Burke (1995; 1987 ch. IV; 1983), Bossavit (1991 chs 2, 3; 1998), Hehl & Obukhov (2003 ch. A), and going back to Schouten & van Dantzig² at the latest.

Later on I will assume some familiarity with the "3+1" decomposition of Einstein's equations³ and with the basic principles of Newtonian continuum thermomechanics⁴.

†- 2.1 Comparison of the notion of frame in Newtonian and general relativity

In Newtonian relativity a frame of reference is determined by the specification of four non-coplanar points having mutual distances constant in time. The notion of frame here rests on a special slicing of spacetime – the universal time – and on a Euclidean metric on each slice. The slicing and 3-metric belong to the kinematics.

A frame is equivalent to the specification of a vector field transversal to the slices. This vector field associates points between different slices; it expresses our choice that "this place today is the same as that place yesterday". In choosing such a vector field we require that its Lie transport of the 3-metric of the slices vanishes. This means that the statements

² Schouten & van Dantzig 1940. ³ Smarr & York 1978; York 1979; Smarr et al. 1980.

⁴ Truesdell 1991; Samohýl & Pekař 2014; Truesdell & Toupin 1960.

"these two bodies are mutually at rest" and "the distance between these two bodies is changing" are contradictory.

Observers using different, arbitrary frames always agrees on the 3-forces and on any objective scalars, such as energy density, defined on a slice.

Dynamics (putting aside thermodynamics for the moment) is given by the law that the total 3-force on any matter element is zero. The total force comes from the sum of several kinds of forces, and these are frame-independent.

Gravitation and inertia appear as forces like any other kind of force. The inertial force has an interesting expression, because it depends on the worldlines of all matter in the universe (via their axes of inertia, which can be calculated in a frame-independent way) as well as the worldline of the matter element it acts upon.

The constitutive equations for most forces and stresses depend on the 3-metric of the slices; and since the 3-metric is a kinematic object, these constitutive equations depend only on kinematic objects.

In general relativity the situation becomes more complex in several respects.

First, there's no canonical choice of slicing. We are thus free to choose an arbitrary slicing, giving a "coordinated time" in a spacetime region.

Second, the metric is changing and is generally curved, and there may be no unique distance (in a geodesic sense) between two spacelike-separated events. So there's no point in imposing rigidity requirements when we associate points between slices. The notion of "relative rest" becomes completely arbitrary. We can say "these two bodies are mutually at rest" and "the distance between these two bodies is changing" without contradiction, because rest is decided by decree, and the second statement simply means that the 3-metric field is changing from slice to slice.

So the slicing belongs to the kinematic, having a sort of scaffolding role. But the 4-metric or 3-metric belongs to the dynamics.

Third, observers with different motions don't agree on 3-forces and several other quantities such as energy density.

Fourth, the constitutive equations of the 3-forces depend on the metric, which is itself a dynamical object whose evolution is determined by the 3-forces.

♣ 2.2 The frame-invariant formulation of Newton's equations

✓ Summary of Noll 1963; Truesdell 1991 § I.13

★ 2.3 The metric-free representation of matter and charge

✓ Summary of the studies by Burke (1995; 1987 ch. IV; 1983), Bossavit (1991 chs 2, 3; 1998), Hehl & Obukhov (2003 ch. A), van Dantzig (1934a,b,c,d,e; 1936; 1937; 1954), going back to Schouten & van Dantzig (1940).

★ 3 A kinematics common to Newtonian and general relativity

A kinematics common to Newtonian and general relativity must of course be metric-free. More precisely it must be free of three-dimensional metric notions and of chronometric notions. What is left is thus a "rubbery" topological structure. (Here and elsewhere I (mis)use 'topological' in the sense of 'differential-geometrical' with some degree of smoothness.) We thus report the placement of a specific event in space-time not by means of distances and time lapses, but by introducing another set of reference events filling space-time and then reporting with which reference event our specific event overlaps. In a way this procedure is not so different from the way we report positions in a rigid frame: there we must first specify a reference body (or four point-like bodies) which is rigid by definition.

Most of the ideas that follow in this section come from the literature here cited.

♣ 3.1 Slicings and frames

We consider the four-dimensional manifold formed by all physical events – spacetime – as a primitive concept. Speaking of these events we usually adopt notions of *simultaneity* and of *identity of location*. These notions are usually determined by physical phenomena; e.g.we perceive as simultaneous such events as send light rays that reach our eyes at the same time. But we could also decree by convention that a set of events is simultaneous or occurs at the same place, as long as such convention has some differentiability.

A choice of simultaneity is determined by a *slicing* of spacetime, represented by a function t, or equivalently by an exact 1-form $\mathrm{d}t^5$. We call each 3-surface with constant t a *slice*, and its points *places* at time t^6 . The choice of a slicing is, for the moment, completely arbitrary.

The "time" t above is a convention: it does not represent the physical time beaten by a periodic phenomenon, a clock. For a small spacetime displacement V of such a clock, the corresponding small lapse in physical time is given in Newtonian relativity by contraction $V \cdot \mathrm{d}t_a$ with a specific 1-form $\mathrm{d}t_a$, or equivalently by the square root of the contraction with the degenerate quadratic form $\mathrm{d}t_a \otimes \mathrm{d}t_a$; in general relativity the quadratic form given by the metric γ is used instead.

The notion of motion also implies a convention about the correspondence of places on slices at different times, so that we can say "this place today is the same as that place yesterday". Such a correspondence can be made with a vector field \boldsymbol{U} such that

$$\mathbf{U} \cdot \mathrm{d}t = 1. \tag{4}$$

The flow of this vector field puts points on different slices into mutual correspondence. It's sometimes called an observer, or a field of observers, or a *frame*, the term we use here.

A slicing t and a frame \boldsymbol{U} on an n-dimensional manifold induce a natural pair of projection operators: $\mathrm{d}t \otimes \boldsymbol{U}$ projects along the frame, and $\mathbf{I} - \mathrm{d}t \otimes \boldsymbol{U}$ onto the slices. With these projections every m-vector v can be represented on each (n-1)-slice as the pair (\hat{v}, \bar{v}) of an (m-1)-vector and an m-vector

$$\hat{v} := v \cdot dt, \qquad \bar{v} := v - \hat{v} \wedge U.$$
 (5)

Every *m*-form α as the pair $(\hat{\alpha}, \overline{\alpha})$ of an (m-1)-form and an *m*-form

$$\hat{\alpha} := \mathbf{U} \cdot \alpha, \qquad \overline{\alpha} := \alpha - \mathrm{d}t \wedge \hat{\alpha}.$$
 (6)

All of the projected components have a well-defined meaning on each slice. The wedge-product, exterior differentiation, and contraction of

 $^{^5}$ York 1979. 6 Smarr & York 1978; York 1979; Smarr et al. 1980; Marsden & Hughes 1994 § 2.4. 7 See the discussion in Porta Mana 2019 § 5.

these objects in the n-manifold can be rewritten⁸ as pairs of operations on their slice representatives:

$$(\hat{\alpha}, \overline{\alpha}) \wedge (\hat{\beta}, \overline{\beta}) = (\hat{\alpha} \wedge \overline{\beta} + (-1)^m \overline{\alpha} \wedge \hat{\beta}, \overline{\alpha} \wedge \overline{\beta}) \tag{7}$$

$$d(\hat{\alpha}, \overline{\alpha}) = (L_{U}\overline{\alpha} - d\hat{\alpha}, d\overline{\alpha}), \tag{8}$$

$$(\hat{v}, \overline{v}) \cdot (\hat{\alpha}, \overline{\alpha}) = (-\overline{v} \cdot \hat{\alpha} - \hat{v} \cdot \overline{\alpha}, \overline{v} \cdot \overline{\alpha} + \hat{v} \cdot \hat{\alpha}). \tag{9}$$

In the last expression only one term in $-\bar{v}\cdot\hat{\alpha}-\hat{v}\cdot\bar{\alpha}$ is different from zero, depending on the relative orders of the form α and of the vector v. If they have the same order, the full term vanishes.

In Newtonian mechanics we can choose frames that preserve the Euclidean metric of the slices: $L_{U}g = 0$, called rigid frames. In general relativity it is generally impossible to choose a vector field this way, but we can choose one normal to the slices with respect to a spacetime 4-metric; this is called a *Eulerian* frame⁹. A Eulerian frame can also be chosen in such a way that $L_{U}\sqrt{g} = 0$, a condition called "maximal slicing" ¹⁰ Fref also to Lichnerowicz (1944).

ṁ 3.2 Matter

Newtonian continuum mechanics is based on the notions of *body* and *mass*, traditionally introduced as separate mathematical objects.

Bodies are represented as abstract three-dimensional manifolds, of which we can consider submanifolds, i.e. sub-bodies. These bodies are immersed and move in space with time. This representation is typical in both Newtonian¹¹ and Lorentzian or general¹² relativity. This mathematical representation reflects our experience with "bodies" we deal with in everyday life, for example a tree lulled by the wind and its individual branches, or a leaf dragged by a water stream, or pieces of differently coloured silly putty getting mixed together.

In Newtonian continuum mechanics, mass is a property of a body, represented as a measure on the respective manifold, satisfying a conservation principle. It is a kinematical notion.

But mass is tightly connected to gravito-inertial forces, in both Newtonian and general-relativistic mechanics. In general-relativistic continuum

⁸ Hehl & Obukhov 2003 § B.1.4. ⁹ Smarr & York 1978; Smarr et al. 1980. ¹⁰ Smarr & York 1978 § III.B. ¹¹ Truesdell 1991 §§ I.2–3; Noll 1959; 1973. ¹² Grot & Eringen 1966a; Carter & Ouintana 1972.

mechanics, moreover, we have to speak of conservation of amount of matter, not of mass, because mass is no longer a constant property of it; not even rest mass, when particles of different types transform into one another.

If we aim to establish a kinematics common to Newtonian and general relativity, we must then relinquish mass and adopt a more general measure of 'amount of matter', or more precisely of 'amount of substance ' (one of the base quantities of the International System of Units¹³). Conservation of mass is sometimes indeed replaced by conservation of amount of matter in the Newtonian continuum mechanics of reacting mixtures¹⁴ owing to stoichiometry. We are considering this replacement independently of particle theories, where conservation of amount of matter is a manifestation of the conservation of baryon number¹⁵. In the following I shall often simply say 'matter' rather than 'amount of matter'.

In both Newtonian¹⁶ and relativistic¹⁷ continuum mechanics mass or matter and their conservation are typically intertwined with the metric¹⁸.

It turns out, however, that the notions of body and amount of matter can be introduced at one stroke¹⁹, as two aspects of the same entity, and without a metric. The idea is analogous to that of charge²⁰.

This beautiful representation is by a closed, outer-oriented 3-form *M*, the *matter 3-form*, satisfying

$$dM = 0. (10)$$

This object has a simple and beautiful geometrical meaning: it can be visualized in spacetime as a set of uninterrupted tubes possessing a

definite orientation along them. The tubes are chosen by us: if we select a closed two-dimensional surface on a spacetime slice, where $M \neq 0$, the matter 3form selects a unique tube with

¹³ ISO 2009a,b; JCGM 2012. ¹⁴ e.g. Eckart 1940a (see especially eq. (7), where mcan be dropped); Truesdell 1984 Lect. 6 (in eq. (6.1) ρ can be dropped); Samohýl & Pekař 2014 §§ 4.1-4.2 and refs therein. ¹⁵ cf. Misner et al. 1973 § 22.2. ¹⁶ Truesdell 1991 §§ I.4; Noll 1959; 1973. 17 Grot & Eringen 1966a; Rezzolla & Zanotti 2013 ch. 3. 18 Carter & Quintana 1972 being an exception. 19 cf. Carter & Quintana 11 1972. 20 Burke 1983; Bossavit 1998; Hehl 6- Obulchary 2000, 2002 C D 1

Two-dimensional representation of tubes of a closed outer-oriented 3-form M

3-dimensional section containing that 2-surface. This represents our ability to mark a small body of matter – say, by drawing a "O" sign on an body, or throwing some

leaves in flowing water – and then to follow it as it moves and deforms in space as time passes, with respect to some slicing and frame. A closed outer-oriented 3-form is the perfect mathematical representation of this.

Note that in speaking of "matter" I am here excluding the electromagnetic field, which is often considered as matter in general relativity.

If we were to include a theory of mixtures²¹, we would represent different substances by different matter 3-forms, which could coexist in the same spacetime region.

The matter 3-form M provides a frame V wherever it doesn't vanish. It is called a Lagrangean or *material* frame²² and defined by

$$V \cdot M = 0, \qquad V \cdot dt = 1. \tag{11}$$

It represents the correspondence of places at different times defined by simply saying that each part of that body is at rest.

Note that V is not the 4-velocity of matter; the latter is given by the condition $V \cdot dt_a = 1$ in Newtonian relativity and $|V \cdot \gamma \cdot V| = 1$ in general relativity, where γ is the 4-metric. Equivalently in general relativity it can be defined as

$$V = \frac{|\gamma|^{-\frac{1}{2}} : M}{M : |\gamma|^{-\frac{1}{2}} \cdot \gamma \cdot |\gamma|^{-\frac{1}{2}} : M}$$
(12)

where $|\gamma|^{-\frac{1}{2}}$ is the inverse volume element associated with the 4-metric, and \dot{z} : represent full contraction (remember that M is a 3-form).

A matter 3-form cannot be used to define time lapse or distance, owing to its purely differential-geometric nature. But it can be used to define a "volume" element on each slice, by decreeing that each unit amount of matter of that body occupies a unit volume.

²¹ e.g. Truesdell 1984 app. 5B. 22 Smarr & York 1978; Smarr et al. 1980.

Once we have a slicing t and a frame U, we can project the matter 3-form:

$$J := -\hat{M} \equiv -\mathbf{U} \cdot \mathbf{M}, \qquad N := \overline{\mathbf{M}} \equiv \mathbf{M} - \mathrm{d}t \wedge (\mathbf{U} \cdot \mathbf{M}). \tag{13}$$

We can speak of the amount of matter contained at time t within a 3-dimensional region on a slice: it's the integral of N (or M) over that region. We can speak of the rate at which matter is flowing through a stationary outer-oriented 2-dimensional surface on a slice: it's the integral of the outer-oriented 2-form J over that surface. We can also speak of the spacelike velocity of matter with respect to the frame U at time t: it's the vector v, tangent to the slice, satisfying

$$v \cdot dt = 0$$
, $v \cdot M = -U \cdot M$ or $v \cdot N = I$, (14a)

or equivalently, in terms of the material frame (11),

$$v \coloneqq V - U; \tag{14b}$$

i.e. it's the difference between the frame U and the material frame V. This is a velocity in the sense of our convention of slicing & frame, not in a metric sense. For the latter, we would have to replace the left eq. (11) with a normalization condition.

The outer-oriented 3-form N is a density when it's restricted to a slice. It corresponds to " $c\mathrm{d}\tau$ ", where "c" is density of amount of matter (concentration, amount/volume) and d τ a volume element. Thus it could be measured in "moles" 23. The outer-oriented 2-form J is related – but doesn't correspond – to "cv", where v is the traditional velocity (length/time). This product is the traditional momentum divided by mass, which is identical with flux of amount of matter in continuum mechanics. But, as we'll see, we have to keep these two notions distinct. The 2-form J is matter-flux, but not momentum.

With the projections (13) and the expression for the differential (8), the matter balance (10) can be expressed as

$$L_{\boldsymbol{U}}N + d\boldsymbol{J} = 0, \tag{15}$$

since $dN \equiv 0$ on a slice by construction. This simple, metric-free formula should be compared with the one involving the covariant derivative

²³ ISO 2009а,b; JCGM 2012.

or several metric volume elements when matter flow is expressed by a 1-vector or a 1-form instead²⁴.

By specifying a slicing, a frame, and a matter 3-form, we have specified a differential-geometric kinematics common to Newtonian and general relativity.

★ 4 Some remarks on Newtonian and general relativity

♣ 4.1 Newtonian relativity

The main aim of continuum mechanics is to describe how bodies move and deform in spacetime in response to forces.

In the history of science there seems to be two main kinds of scientific theory.

One kind of theory is based on the "stuff" that is believed to be ultimate and fundamental at the time of conception, although usually proven not to be ultimate some decades later. Examples are vortex theories from the Baroque and contemporary high-energy particle theories²⁵.

The other kind of theory, humbler and more grandiose at the same time, tries to make allowance for any new phenomena that may be discovered.

Newtonian thermomechanics belongs to the second kind. Its aim is not to describe this or that particular particle or field, or this or that fundamental interaction. Its purpose is the description, within particular ranges and resolutions of space and time, of any kind of material and substance that humans use now or will discover in the future. For this purpose it uses some concepts devised, with their generality, to be able to accommodate as many new phenomena as possible. The main one is the concept of force.

Our exploration cannot only be based on mathematical manipulation of the Einstein equations, but also requires a clear view of the way continuum thermomechanics is used.

Newtonian continuum thermomechanics, which I'm here calling "Newtonian relativity", has been refined under more than 300 years and has today a crystal-clear, yet far from finished, method and structure:

²⁴ e.g. Rezzolla & Zanotti 2013 eq. (7.205), § 7.3, p. 361; Gourgoulhon 2012 eq. (6.47), § 6.3.2, p. 110. ²⁵ I say this with half a tongue in cheek. Only half though

- Its purpose is the description, within particular ranges and resolutions of space, time, energy, of any kind of material or substance that Man uses now or will discover in the future. This must be contrasted with contemporary particle high-energy physics, whose goal is the description of *only* those forces and kind of matter believed to be "ultimate". The scope of Newtonian continuum thermomechanics is from this point of view wider than that of particle physics.
- For this description it uses five fundamental balance laws and a set of nine physical quantities:
 - balances: amount of matter, force, torque, energy, entropy;
 - quantities: amount of matter, displacement, temperature, stress, internal energy, heating flux, entropy, body force, body heating.

The quantities and balances above are postulated to apply to any kind of matter or substance. Amount of matter, displacement, temperature are independent quantities. Body force and body heating must be given in any particular problem and express the effect of the surroundings The remaining are dependent quantities.

• Each particular kind of matter, with its different behaviours and responses, is characterized by a set of *constitutive equations*. These equations express the particular dependence of the dependent quantities on the independent ones, and together with the balances and initial and boundary conditions yield a well-posed system of integro-differential equations. Specifically, the constitutive equations give stress, internal energy, heating flux, and entropy as functionals of amount of matter, displacement, temperature. The difference between al kinds of liquids, gases, solid, plasmas resides in the constitutive equations.

Sometimes internal energy is taken and independent, and temperature as dependent with an appropriate constitutive equation.

The separation of balance laws and constitutive equations is fundamental and reflects the aim of continuum mechanics to describe *any* kind of force and matter that can be discovered, not just those that our century believes to be the only existing ones. We can make a parallel with Hamiltonian mechanics: Hamilton's general equations correspons to the balance laws; particular Hamiltonians correspond to particular constitutive equations.

♣ 4.2 General relativity

General relativity gives us the equation $G = 8\pi \kappa T$; for some time after its proposal it was not clear which were independent, dependent, and boundary-condition quantities; a distinction that is necessary to set up a well-posed boundary-value problem. Misner et al.²⁶ discuss this question at length.

The Einstein equations are clearly suited for a continuum description of matter, not a particulate one: because they involve the notion of stress, which is an exquisitely continuum notion. And since stress is the staple of constitutive equations in Newtonian mechanics, and does not commit to specific forms of matter or forces, then the Einstein equations do not commit to specific forms of matter or forces either, unlike particle-physics theories. From this point of view the Einstein equations appear as a harmonization of a part of the Newtonian balance laws and of geometry. They – especially the stress appearing in them – still need constitutive equations.

The Einstein equations don't include the balances of amount of matter (see • 3.2) and entropy²⁷. This fact is very clear in numerical relativity²⁸.

★ 5 Searching for common dynamical notions and objects

♣ 5.1 Force and momentum

Force is the queen notion in Newtonian dynamics. Momentum seems the protagonist of general-relativistic dynamics instead, at least looking at relativity texts that focus on the motion of point-like bodies. If we are to build a dynamics that has as many common notions and objects as possible in common to Newtonian- and general-relativistic dynamics, which of these two notions should we choose?

In Newtonian dynamics force is more natural than momentum for several reasons. The main one is that force is frame-indifferent, whereas momentum is not. For example, the force exerted on a pointlike object attached to a Hookean spring with constant k and elongation l has intensity kl and direction along the elongation. This is a complete description of the force, and the notion of frame is completely irrelevant

²⁶ Misner et al. 1973 ch. 21.
²⁷ Eckart 1940b; Misner et al. 1973 ch. 22.
²⁸ Disconzi 2014 p. 1918; Wilson & Mathews 2007 § 2.2; Gourgoulhon 2012 § 6.3.2; Baumgarte & Shapiro 2010 ch. 5; Rezzolla & Zanotti 2013 § 2.3.

to it. Similarly for the gravitational force: it is given by $\rho \otimes \gamma$, where γ is a frame-indifferent covector field. This field is in turn determined by the amount of matter and mass distribution via $\mathrm{d}\gamma = -4\pi G\rho$, again a frame-indifferent definition. The momentum of a body, on the other hand, can be zero in one frame and non-zero in another. Another reason is psychological: we have an immediate intuition of force from our physical experience.

In general-relativistic dynamic, on the other hand, force does appear, in the form of stress, as soon as we consider extended bodies.

The notion in common to the dynamics of the two theories seems to lie in between. In fact, properly speaking it is not momentum, but momentum/volume that enters the Einstein equations; and it is mainly force/area that enters the Newtonian equations for continua.

Newtonian dynamics is contained in three fundamental balances: of force (momentum), of energy, and of torque (rotational momentum). The first two can be written in an inertial frame as

$$\partial_t \epsilon = \nabla \cdot \mathbf{q} + h,\tag{16}$$

$$\partial_t \boldsymbol{p} = \nabla \cdot \boldsymbol{\tau} + \boldsymbol{b},\tag{17}$$

where the time derivative can be interpreted as $\partial_t = L_U$, see \clubsuit 3.1, for a specially chosen U. In the first balance ϵ is the energy density, q is the energy flux and the h the bulk energy source, both of which include heat and work contributions. In the second balance p is the momentum density, τ the (3-)stress, and b the bulk force density. These equations can be combined as

$$\begin{pmatrix} \partial_t & \nabla \end{pmatrix} \cdot \begin{pmatrix} \epsilon & q \\ p & \tau \end{pmatrix} + \begin{pmatrix} h \\ b \end{pmatrix} .$$
(18)

Let us drop the bulk terms, assuming that we consider only "contact effects". Then we obtain

$$\nabla \cdot \mathbf{7} = 0 \tag{19a}$$

with

$$\mathbf{T} \coloneqq \begin{pmatrix} \epsilon & q \\ p & \tau \end{pmatrix} \qquad \mathbf{\nabla} \coloneqq \begin{pmatrix} \mathbf{\partial}_t & \nabla \end{pmatrix}$$
 (19b)

which are also part of the dynamical equations of general relativity. Here ∇ is the exterior covariant derivative²⁹.

The heat flux q and the momentum q are separate entities in Newtonian mechanics. In general relativity, the symmetry of the stress tensor, which represents the balance of torque in specific situations, is extended to the whole 4-stress T. An additional law is thus present: energy flux carries momentum density, and momentum density carries energy flux. This is the famous "inertia of energy", which appears in general relativity as an extension of the balance of rotational momentum. See the brilliant discussion by Eckart (1940b pp. 920–921, 923).

Such equality could also be imposed in Newtonian mechanics, with important consequences discussed in **1.** 5.2.

The stress-energy-momentum tensor or '4-stress' T thus seems to be the object in common to Newtonian- and general-relativistic dynamics. The dynamical equation (19a) appears as a four-dimensional analogue of the fundamental equation of statics. But there still remain several unclear points.

One point is that the Newtonian stress is a vectorial object eminently meant to be *integrated*: its integral over a surface enclosing a body yields the total surface force acting on that body. The integration of a vectorial object, however, is possible in Newtonian mechanics thanks to the affine structure of its three-dimensional space. This kind of integration is impossible or at best ambiguous with the path-dependent parallel transport of general relativity. Some authors relate this impossibility to the supposed absence of a "conservation law" for 4-momentum³⁰. Misner et al.³¹ instead consider integration over very small three-dimensional regions of spacetime.

The point above is connected with the mystery regarding the most appropriate geometric nature of the 4-stress. In most texts it is represented by a tensor of order 2. There are indications that it could be more properly represented by a covector-valued 3-form, or by a 3-vector-valued 3-form (equivalent to a tensor antisymmetric in the first three and last three slots), for reasons connected with integration. See for example the discussion

Choquet-Bruhat et al. 1996 § Vbis.A.4; Misner et al. 1973 § 14.5; Frankel 2012 § 9.3; see also Segev 2000a,b; Segev & Rodnay 2000; Segev 2002; Segev & Rodnay 2012; Kanso et al. 2007.
 Pauli 1958 § 21; Eddington 1930 § 59; Landau & Lifshitz 1996 § 96; also Alderman & Bergmann 1970.
 Misner et al. 1973 see their ch. 15, especially § 15.3.

about "***T**" by Misner et al.³², the works by Segev³³, the discussion by Burke³⁴.

I separately consider other unclear points about the 4-stress in the sections below.

♣ 5.2 Constitutive equations

In Newtonian mechanics the balances of matter, force, energy give a system of 1+3+1 real-valued equations; see **b** 4.1. They involve at least 4+3+6+4+1 real-valued quantities: matter density and flux (four), body force (three), stress (six), energy density and flux (four), and body supply of energy (one). The independent variables in these equations are usually assumed to be the four components of the matter 3-form – that is, density and flux of matter (velocity) – and the temperature or another thermodynamic quantity, such as the energy density. More quantities and equations are needed for more complex kinds of continua such as continua with spin.

The balance laws alone are therefore not sufficient to determine the evolution of all fields. Moreover, although the balances are assumed to hold for all forms of matter, different kinds of matter behave in different ways.

Constitutive equations are equations that give the dependent fields as functions or functionals of the independent ones. They express the different behaviour of different kinds of matter, and together with the balance laws yield a closed system of differential or integro-differential equations.

The most important constitutive equations in our discussion are those that enter the 4-stress. All components of the 3-stress τ are in the simplest cases *functionals* of the matter 3-form M – that is, matter density and matter flux – and of the internal energy ϵ or temperature θ . But the 3-metric \mathbf{g} also enters these equations, even if in a passive role, in the guise of gradients, divergences, and other metric-dependent operators:

$$T = T[M(\cdot), \theta(\cdot), g(\cdot)], \tag{20a}$$

 $^{^{32}}$ Misner et al. 1973 ch. 15. 33 Segev 2002; 1986; Segev & Rodnay 1999; Segev 2000a,b. 34 Burke 1987 \S 41.

or, in a given slicing and frame,

$$\mathbf{T} = \begin{pmatrix} \varepsilon[N(\cdot), J(\cdot), \theta(\cdot), \mathbf{g}(\cdot)] & q[N(\cdot), J(\cdot), \theta(\cdot), \mathbf{g}(\cdot)] \\ p[N(\cdot), J(\cdot), \theta(\cdot), \mathbf{g}(\cdot)] & \tau[N(\cdot), J(\cdot), \theta(\cdot), \mathbf{g}(\cdot)] \end{pmatrix}$$
(20b)

these functionals indirectly also include a possible dependence on the extrinsic curvature *K*, which is the "time derivative" of the 3-metric; see **h**. 6.

The dependence on the metric can be quite complicated: for example, the stress at a point can depend on the difference between the 3-metric there and the metric from previous 3-surfaces, transported by the velocity \boldsymbol{u} associated with the matter flux³⁵. The difference can be non-vanishing even if the 3-metric is Euclidean on all 3-surfaces. The only difference between Newtonian and general relativistic mechanics is that all 3-metrics are flat in the former but not in the latter.

The constitutive equation for the momentum density p is extremely interesting.

In Newtonian mechanics we do not speak of a "constitutive equation" relating momentum and matter (there are some exceptions when electromagnetism is involved). Momentum coincides with mass flow, and mass is taken almost as synonymous with matter. In \clubsuit 3.2 we separated mass and matter to build a common kinematics. Flow of matter J and momentum p are thus not synonymous. In an inertial frame there is a linear, constant relation between the two flows: in such a frame we can write p = mJ, where m is molar mass. This is a kind of constitutive relation.

In Lorentzian and general relativity the relation between matter flux and momentum is not linear or so simple. Energy flux, such as heat, contributes momentum to a body of matter, even in the latter's rest frame³⁶. In Newtonian mechanics such a contribution is negligible, but we must formally take it into account if we want to impose the equivalence of momentum density and energy flux, as mentioned in \clubsuit 5.1 after eq. (19b). This is why I wrote an explicit dependence on temperature in the constitutive equation for the momentum p of eq. (20b).

There are many studies of specific constitutive equations in general relativity, from perfect fluids to materials with elasticity dependent on electromagnetism, temperature, and heat conduction. There are

³⁵ Grot & Eringen 1966a; Carter & Quintana 1972. ³⁶ Eckart 1940b p. 923.

also studies on general symmetry principles for the formulation of constitutive equations. Unfortunately many of these works don't know of one another's existence. See especially the extensive studies and results by Maugin et al.³⁷, Carter et al.³⁸, the early and very insightful study by Eckart³⁹, and others articles and books⁴⁰.

Some words needed on work and force

$\mathbf{6}$ 3 + 1 formulation and constitutive equations in general relativity

Suppose we have introduced a slicing and a frame in spacetime as described in **b** 3.1.

The Einstein equations can be decomposed by projection along the slices t and the frame V, giving rise to a part parallel to the surfaces with 3×3 real components, a part parallel to the vector field with 1 component, and a mixed part with 3 components. Our freedom in choosing the slicing t and the frame V appears in the decomposed equations as the presence of and undetermined 'lapse' function and an undetermined 'shift' vector field. When a metric is present we can choose the frame V to be the unit normal to the 3-surfaces. This choice corresponds to a constant unit lapse function and a vanishing shift vector 41 , and represents a free-falling reference system. Other choices of lapse and shift are more convenient for initial-value problems, for example because they can correspond to a slicing that covers most of spacetime while avoiding singularities 42 . But our present discussion is mainly conceptual; we therefore use the simplest lapse and shift.

The decomposed Einstein equations can be found compactly written in a number of texts⁴³. The decomposition of the Einstein tensor \mathbf{G} yields the 3-metric $\mathbf{g} = (g_{ab})$ of the 3-surfaces, having inverse $\mathbf{g}^{-1} = (g^{ab})$, with its compatible connection ∇ having Ricci curvature $\mathbf{R} = (R_a{}^b)$, and the

³⁷ Maugin 1971a,b; Maugin & Eringen 1972a,b; Maugin 1973; 1974a,b; 1978a,b,c,d,e. 38 Carter & Quintana 1972; Carter 1973; Carter et al. 2006. 39 Eckart 1940b. 40 Bressan 1964; Lianis 1973; Bertotti et al. 1984; Hiscock & Lindblom 1985; Anile & Choquet-Bruhat 1989; Geroch & Lindblom 1991; Herrmann et al. 2000; Bossavit 2001; Geroch 2001; Gourgoulhon 2012; Alcubierre 2008; Choquet-Bruhat 2009; Baumgarte & Shapiro 2010; Rezzolla & Zanotti 2013; Disconzi 2014; Pimentel et al. 2016; Disconzi et al. 2017. 41 Smarr & York 1978; Smarr et al. 1980. 42 Smarr & York 1978. 43 Wilson & Mathews 2007 § 1.3; Gourgoulhon 2012 § 4.3.2; Alcubierre 2008 ch. 2; Rezzolla & Zanotti 2013 § 7.2.2.

extrinsic curvature $\mathbf{K} = (K_a{}^b)$ of the 3-surfaces. The decomposition of the energy-momentum-stress tensor \mathbf{T} yields the internal energy ϵ , energy flux \mathbf{p} , and spatial stress $\mathbf{\tau} = (\tau_a{}^b)$:

$$T = \epsilon dt \otimes V + p \otimes V + dt \otimes (p \cdot g^{-1}) + \tau.$$
 (21)

The Einstein equations $G = 8\pi T$ are decomposed into the evolution equations \sim some π factors may be missing

$$\partial_t \mathbf{g} = -2\mathbf{K} \cdot \mathbf{g},\tag{22a}$$

$$\partial_t \mathbf{K} = \mathbf{K} \operatorname{tr} \mathbf{K} - 2\mathbf{K} \cdot \mathbf{K} + \mathbf{R} + 4\pi (\operatorname{tr} \boldsymbol{\tau} - \boldsymbol{\epsilon}) - 8\pi \boldsymbol{\tau}$$
 (22b)

or

$$\partial_t \mathbf{g} = -2\mathbf{K} \cdot \mathbf{g} \tag{23a}$$

$$\partial_t \mathbf{K} = \mathbf{K} \operatorname{tr} \mathbf{K} - \frac{1}{4} (\operatorname{tr} \mathbf{K})^2 - 2\mathbf{K} \cdot \mathbf{K} + \frac{1}{4} \mathbf{K} : \mathbf{K} + \mathbf{R} - \frac{1}{4} \operatorname{tr} \mathbf{R} - \boldsymbol{\tau} + \frac{1}{2} \operatorname{tr} \boldsymbol{\tau}$$
 (23b)

and the constraint equations

$$16\pi\epsilon = (\operatorname{tr} \mathbf{K})^2 - \mathbf{K} : \mathbf{K} + \operatorname{tr} \mathbf{R}, \tag{24a}$$

$$8\pi \boldsymbol{p} = \nabla \cdot (\boldsymbol{K}^{\mathsf{T}} - \mathbf{I} \operatorname{tr} \boldsymbol{K}). \tag{24b}$$

where ' ∇ ' is the 3D covariant derivative compatible with the 3-metric **g** tangent to each slice. Note that

$$\mathbf{K} \cdot \mathbf{g} = -\frac{1}{2} \partial_t \mathbf{g} \equiv -\frac{1}{2} L_V \mathbf{g} \equiv -\frac{1}{\sqrt{\mathbf{g}}} L_V \sqrt{\mathbf{g}} \equiv -\nabla \cdot [\dots]$$
 (25)

(It is interesting that the "3-momentum" in relativity appears as the divergence of a 3-tensor – just like a force from a stress.)

To these equations we must add the balance of amount of matter (15):

$$\partial_t N = -d\mathbf{I}$$
 or $\partial_t N - \operatorname{tr} \mathbf{K} N = -\nabla \cdot \mathbf{I}$, (26)

where in the second equation N and J are interpreted as a scalar and a vector. In these expressions $\partial_t \equiv L_V$. (Conservation of matter is not enforced by the Einstein equations⁴⁴. Curiously there was at first some misunderstanding about the independence of this equation: see for example von Laue's⁴⁵ statement.)

⁴⁴ e.g. Eckart 1940b; Gourgoulhon 2012 § 6.3.2; Baumgarte & Shapiro 2010 § 5.2; Rezzolla & Zanotti 2013 § 7.3; Misner et al. 1973 § 22.2. ⁴⁵ Von Laue 1949 p. 503.

This gives us a total of 6+6+1+3+1 (real-valued) equations for a total of 6+6+6+1+3+1+3+1 components of the fields \mathbf{g} , \mathbf{K} , $\boldsymbol{\tau}$, $\boldsymbol{\varepsilon}$, \mathbf{p} , N, \mathbf{J} , and temperature θ . Then we need 6+1+3 equations, which turn out to be, as in the Newtonian case, the constitutive functional equations (20b) for the energy-momentum-stress:

$$\epsilon = \epsilon[N(\cdot), \mathbf{J}(\cdot), \theta(\cdot), \mathbf{g}(\cdot), \mathbf{K}(\cdot)]$$
 (27a)

$$p = p[N(\cdot), J(\cdot), \theta(\cdot), \mathbf{g}(\cdot), \mathbf{K}(\cdot)]$$
 (27b)

$$\tau = \tau[N(\cdot), \mathbf{J}(\cdot), \theta(\cdot), \mathbf{g}(\cdot), \mathbf{K}(\cdot)]$$
 (27c)

The dependence on $K(\cdot)$ is redundant, since it is a functional of $g(\cdot)$, and these equations are already functionals of $g(\cdot)$; but I leave the explicit dependence for clarity.

♣ 6.1 A remark on the role of $\nabla \cdot \mathbf{T} = 0$ in general relativity

A subtle point appears in most general-relativity texts I have read, especially for numerical relativity. They remark that the balance equations $\nabla \cdot \mathbf{T} = 0$ are a consequence of the Einstein equations $\mathbf{G} = 8\pi\kappa\mathbf{T}$, and therefore solving the latter automatically yields the former. But to find the numerical solutions they actually use the former!

The balance $\nabla \cdot T = 0$ is indeed contained in eqs (22)–(24). Its spatial part, for example, – the balance of momentum – can be obtained combining the time derivative of the constraint equation (24b) and the 3-divergence of the evolution equation (22b). A quick check of the combination of (24b) and (22b) shows in fact the appearance of the time-derivative of p and the divergence of the 3-stress. A similar combination yields the balance of energy. These balances are

$$\partial_t \epsilon - \epsilon \operatorname{tr} \mathbf{K} + \nabla \cdot \mathbf{p} - \mathbf{K} : \mathbf{\tau} = 0$$
 (28a)

$$\partial_t \boldsymbol{p} - \boldsymbol{p} \operatorname{tr} \boldsymbol{K} + \nabla \cdot \boldsymbol{\tau}^{\mathsf{T}} = 0. \tag{28b}$$

In these equations the matter-convection terms, usually kept separate in the Newtonian case, are included in p and τ^T . The terms proportional to tr K are absent in the Newtonian case.

The reason for using the divergence equation $\nabla \cdot \mathbf{T} = 0$ is clearly explained by Frittelli⁴⁶. The constraint equations (24) should be enforced on *every* 3-surface, i.e. for all times t, while the metric and extrinsic

⁴⁶ Frittelli 1997.

curvature are evolved by eqs (22). If we did so there would be no need to use $\nabla \cdot \mathbf{7} = 0$ in the solution.

But it would be more convenient if the constraints (24) could be enforced on one 3-surface only, for example the initial one, and be automatically satisfied on all other 3-surfaces, i.e. at all subsequent times. It turns out that the divergence equation $\nabla \cdot \mathbf{T} = 0$ does exactly this: it makes the constraints automatically satisfied at all times if they are satisfied at the initial time.

Loosely speaking, the system

$$\begin{cases} \text{evolution equations (22)} \\ \text{constraint equations (24) for all } t \end{cases}$$

is equivalent to the system

$$\begin{cases} \text{evolution equations (22)} \\ \text{divergence equation } \boldsymbol{\nabla} \cdot \boldsymbol{T} = 0 \\ \text{constraint equations (24) for initial } t \text{ only} \end{cases}$$

and the latter is more convenient to solve.

♣ 6.2 How to solve the decomposed equations

Let us consider how equations (22)–(27) could be solved.

Imagining a rough numerical timestepping scheme, in which for example eq. (22a) becomes

$$\mathbf{g}(t + \Delta t) \approx \mathbf{g}(t) - 2\mathbf{K}(t) \cdot \mathbf{g}(t) \,\Delta t,$$
 (29)

it seems that the equations (22)–(27) can be solved this way:

- 1. Choose all fields such as to satisfy the constraints (24) and constitutive equations (27) on an initial 3-surface at time t.
- 2. Calculate metric g, extrinsic curvature K, density of amount of matter N at time $t + \Delta t$ from the evolution eqs (22) and balance (26):

$$\partial_t \mathbf{g} = -2\mathbf{K} \cdot \mathbf{g},$$

 $\partial_t \mathbf{K} = \mathbf{K} \operatorname{tr} \mathbf{K} + \mathbf{R} \cdot \mathbf{g}^{-1} + 4\pi (\operatorname{tr} \boldsymbol{\tau} - \boldsymbol{\epsilon}) - 8\pi \boldsymbol{\tau},$
 $\partial_t N = -d\mathbf{I}.$

Note that these evolution equations require, in particular, the flux of amount of matter J, energy ϵ , stress τ at time t.

3. Calculate the flux of amount of matter J, temperature θ , energy ϵ , energy flux p, stress τ at time $t+\Delta t$ from the system of constraints (24) and constitutive eqs (27), given the newly found g, K, N:

$$\begin{aligned} 16\pi\epsilon &= (\operatorname{tr} \mathbf{K})^2 - \mathbf{K} : \mathbf{K} + \mathbf{R} : \mathbf{g}^{-1}, \qquad 8\pi p = \nabla \cdot (\mathbf{K}^{\mathsf{T}} - \mathbf{I} \operatorname{tr} \mathbf{K}), \\ \epsilon &= \epsilon[N(\cdot), J(\cdot), \theta(\cdot), \mathbf{g}(\cdot), \mathbf{K}(\cdot)], \\ p &= p[N(\cdot), J(\cdot), \theta(\cdot), \mathbf{g}(\cdot), \mathbf{K}(\cdot)], \\ \tau &= \tau[N(\cdot), J(\cdot), \theta(\cdot), \mathbf{g}(\cdot), \mathbf{K}(\cdot)]. \end{aligned}$$

Note that this system *implicitly* yields, in particular, the flux of amount of matter J, energy ϵ , stress τ needed in the next timestep; see step above.

Now we have all fields at time $t + \Delta t$.

4. Set $t + \triangle t \rightarrow t$, go to step 2..

It is important to remark that the motion of matter, expressed by the matter flux J in this particular reference frame and slicing, is determined in an implicit way in the scheme above. It would be worth investigating how geodesic equations⁴⁷ peep out from the present scheme.

Such a scheme may not work for more complex temporal dependences in the constitutive equations, such as dependence on derivatives, memory, etc..

★ 6.3 A possible reduction and reinterpretation: "hot metric"

An interesting aspect of the equations above is that energy density and energy flux seem to have an intermediate role. We could think of solving the constraint and constitutive equations of step 3. for matter density N and matter flux J in terms of the 4-metric (g, K) and the temperature θ ; this dependence could involve integro-differential operators. The balance of amount of matter $\partial_t N = -\mathrm{d}J$ would then become an evolution equation for the temperature. The constitutive equation for the stress would also be reduced.

⁴⁷ Geroch & Jang 1975; Weatherall 2011.

We would be left with the system

$$\mathbf{K} \coloneqq -\frac{1}{2} \, \partial_t \mathbf{g} \cdot \mathbf{g}^{-1}, \tag{30a}$$

$$\partial_t \mathbf{K} = \mathbf{K} \operatorname{tr} \mathbf{K} - \frac{1}{4} (\operatorname{tr} \mathbf{K})^2 + \frac{1}{4} \mathbf{K} : \mathbf{K} + \frac{3}{4} \mathbf{R} \cdot \mathbf{g}^{-1} + 4\pi \operatorname{tr} \boldsymbol{\tau} - 8\pi \boldsymbol{\tau},$$
 (30b)

$$\partial_t N[\mathbf{g}(\cdot), \mathbf{K}(\cdot), \theta(\cdot)] = -\mathrm{d}J[\mathbf{g}(\cdot), \mathbf{K}(\cdot), \theta(\cdot)],$$
 (30c)

$$\tau = \tau[\mathbf{g}(\cdot), \mathbf{K}(\cdot), \theta(\cdot)], \tag{30d}$$

a set of integro-differential equations for the 3-metric \mathbf{g} , extrinsic curvature \mathbf{K} , and the temperature θ ; or integro-differential for the 3-metric \mathbf{g} and the temperature θ . This system seems to say that

- density of amount of matter N, flux of amount of matter J, energy density ϵ , and energy flux p are *temperature-dependent* manifestations of the 4-metric;
- the 4-metric can interact with itself in different ways, expressed by particular *temperature-dependent* constitutive functional equations for N, J, τ .

Would this satisfy Einstein? How to interpret the "temperature of the metric"?

♣ 7 What kind of geometric object is 'force'?

In most presentations of the Newtonian mechanics of point masses, force is represented as a vector bound to a point mass. If we take the line integral of this vector along the trajectory of the point mass, we obtain the work made by the force on the mass. In continuum mechanics this picture becomes more complex. We deal with extended bodies, and the total force on a body or on part thereof is obtained by integrating two kinds of forces: *bulk forces*, also called body forces, which act on a volume element and must be integrated over a three-dimensional region, and *surface forces*, also called contact forces, which act on an area element of the body's surface and must be integrated over a two-dimensional region.

Let's see what kind of geometric representation these operations suggest.

The fact that a force is to be integrated over a line to obtain work suggests that it's better viewed as a *covector-valued* object, ready to be integrated over a line without the need of a scalar product⁴⁸.

If a bulk force is to be integrated over a volume, then it should be a covector-valued, outer-oriented 3-form. If we think of it as operating on a matter element (outer-oriented 3-form) instead, then it should be a covector-valued, outer-oriented 3-vector. Here we see the core of one of the questions of • 0: are we to interpret forces as "acting" on matter? or as entities that can exist where there's no matter? General relativity suggests the latter interpretation. But we'll see that we can bypass the question of this representation in general relativity, because the notion of bulk force disappears there, leaving only that of surface force.

Surface forces, being integrated over a surface, should be covector-valued, outer-oriented 2-forms.

The integration of bulk or surface forces, which are covector-valued object, is possible in Newtonian mechanics thanks to the affine structure of its three-dimensional space. This kind of integration is impossible or at best ambiguous with the path-dependent parallel transport of general relativity; this impossibility is related to the absence of a "conservation law" for 4-momentum⁴⁹.

FRemark that 1-form is also suggested by principle of virtual work.

♣ 8 Force in Newtonian relativity

The second piece of thread we're going to pull is *force*. This is actually a smaller bundle in itself, and we'll examine it from several angles.

***why no need to speak of conservation

***dynamics comes from stating that the total force and total torque vanish

***affine structure needed, related to Newton's 3rd law. But if we assume only contact forces, it can be expressed locally without parallel transport. Exception: add spacelike surfaces from a 4D point of view

***that would suffice. But 1st law of thermodynamics, needed for thermomechanics, mixes force in energy equation as work.

⁴⁸ Burke 1995 § 12; Schouten 1951 § VII.2; van Dantzig 1954 § 2; Burke 1987 chs VI–VII; Bamberg & Sternberg 1990 ch. 7.
⁴⁹ Pauli 1958 § 21; Eddington 1930 § 59; Landau & Lifshitz 1996 § 96; also Alderman & Bergmann 1970.

***when the constitutive equation for a force "visibly" depends on space or time variables, as is the case for elastic or inertial forces, the amount of work done by the force can be "read" in a change of that variable. This change is usually called "energy". Typical examples are elastic force -kx and elastic energy, the integral of $-kx\dot{x}$ being equal to $-\frac{1}{2}kx^2$ no matter how x depends on time; and inertial force $-m\ddot{x}$ and kinetic energy, the integral of $-m\ddot{x}\dot{x}$ being equal to $-\frac{1}{2}m\dot{x}^2$ no matter how x depends on time. For viscous forces like $-\eta\dot{x}$ we usually don't speak of "viscous energy" probably because the integral of $-\eta\dot{x}^2$ does not have a closed form. This fact is obviously related to the difference between conservative and non-conservative forces and to the existence of potentials.

♣ 8.1 Dynamics without absolute time

The formulation of dynamics of \clubsuit A.1 has the advantage of being frame-indifferent: inertial frames don't have a special status, and inertia is just one force among many others. But that formulation still has several interrelated unpleasant features:

- a special absolute-time slicing is used,
- forces, energy, energy fluxes are only defined on the slices of that slicing,
- forces are meant to act on velocities, which are frame-dependent,
- a flat parallel transport is needed to integrate the forces.

A first step in lifting forces from their plain existence on slices to a fourfilling existence in spacetime, and in unchaining them from frame-dependent velocities, is to assume that they act directly on the four-dimensional mass flux expressed by the matter 3-form. This requires that they have *outer-oriented 3-vector* values. It also means that their physical dimension acquires a [mass⁻¹] factor.

A 3-vector has four components. The additional component of a force is interpreted, both in Newtonian⁵⁰ and Lorentzian⁵¹ relativity, as the combination of power and heating. Thus we arrive at the notion of *heating-force* tensor, which corresponds to the "four-force" of Lorentzian relativity.

 $^{^{50}}$ Truesdell & Toupin 1960 §§ 152–154, 288–289; Grot & Eringen 1966a § 2.3. 51 Eckart 1940b; Grot & Eringen 1966a § 2.3; Maugin 1978b.

In this new point of view a surface force – 4-stress – is a outer-oriented-3-vector-valued outer-oriented 3-form. Contracted with a matter 3-form it yields another outer-oriented 3-form, which could be interpreted as the spacetime flux of some quantity. From general relativity we foresee that this quantity is the energy flux.

 ★ To be added: formulation with 2-point energy-momentum-stress
tensor⁵²

♣ 8.2 Decoupling force from body

In Newtonian relativity, force is something experienced by a body, rather than something in spacetime. But there are signs that forces need to be decoupled also in Newtonian relativity.

♣ 8.3 An interesting development?

F The idea in this section is probably seriously wrong

This leads to some interesting developments. Interpret a 4-stress T as an object which contracted with a matter 3-form M yields its corresponding energy-flux outer-oriented 3-form E:

$$\mathbf{E} = \mathbf{T} \cdot \mathbf{M}. \tag{31}$$

This is similar to the "*T" of Misner et al.⁵³, with the difference that T is 3-covector valued.

Now postulate that energy flux must always be conserved,

$$d\mathbf{E} = 0. \tag{32}$$

We obtain a set of two balances and a relation between them:

$$d\mathbf{M} = 0, \qquad d\mathbf{E} = 0, \qquad \mathbf{E} = \mathbf{T} \cdot \mathbf{M}. \tag{33}$$

Question: does this system *imply* Einstein's equations? The point is that we can now introduce a four-dimensional exterior covariant derivative ∇ and combine the equations above as follows:

$$d\mathbf{E} = d(\mathbf{T} \cdot \mathbf{M}) = \nabla \mathbf{T} \cdot \mathbf{M} - \mathbf{T} \cdot d\mathbf{M} = \nabla \mathbf{T} \cdot \mathbf{M} = 0$$
 (34)

⁵² Truesdell & Toupin 1960 § 288. ⁵³ Misner et al. 1973 ch. 15.

and asking this to hold for every M, we have

$$\nabla T = 0, \tag{35}$$

which corresponds to Misner et al.'s " $d^*T = 0^{"54}$.

This point of view seems to say that *any exterior covariant derivative* ∇ *will do* – possibly with additional restrictions coming from restrictions on positivity of mass and energy fluxes. Such a possibility is not so strange when we consider that Einstein's equations can be rewritten, in a completely equivalent way, in terms of a flat connection with non-vanishing torsion, or a mixture of the two⁵⁵. It seems that what's fundamental here is the use of a derivation operator with the properties of an *exterior* covariant derivative, rather than the use of a covariant derivative or parallel transport per se.

Finally, Einstein's equations G = T could simply be interpreted as the most general integral of the equation $\nabla T = 0$. This possibility is related to an interesting remark by Truesdell:

When the field theories were discovered in the eighteenth century, solutions in arbitrary functions such as those presented in this subchapter were sought earnestly, but, for the most part, sought in vain. In the nineteenth century, researches on partial differential equations turned away from such general solutions so as to concentrate upon boundary-value problems. When, in the twentieth century, the general solutions were at last obtained, scarce attention was paid to them, and to this day they remain virtually unknown. Though so far they have been used but rarely, they might turn out to be illuminating in studies of underdetermined systems, where the conventional viewpoint of partial differential equations has gained little. ⁵⁶

▶ To be added: refs to Finzi, Beltrami

 ★ To be added: discussion about pp. 18–19 of⁵⁷: use differential forms for Gauss-Green theorem, instead of covariant derivative

Appendices

Misner et al. 1973 ch. 15.
 De Andrade et al. 2000; Arcos & Pereirau 2004; Aldrovandi
 Pereira 2013; Pereira 2014; Cai et al. 2016.
 Truesdell & Toupin 1960 p. 594.

⁵⁷ Weatherall 2017.

A Alternative points of view in Newtonian mechanics

A.1 What kind of geometric object represents Newtonian force?

Traditional presentations of Newtonian-relativistic dynamics and of Newton-Cartan theory starts with the notion of *absolute time t*_a, which is a unique slicing of spacetime. We'll presently see that this notion, together with a geometry and a connection on the slices, is mathematically necessary when the notion of force is represented by objects living on 3-surfaces. But later we'll consider the possibility of avoiding absolute time. In fact, the notion of simultaneity in Newtonian-relativistic mechanics is inspired by what we simultaneously *see*, together with the assumption that the velocity of light is practically infinite. But we could also define simultaneity in terms of what we simultaneously *hear*, for example. How could Newtonian mechanics be formulated in that case? We'll give a possible answer later.

A force on a body at time t_a in Newtonian mechanics has two important characteristics: (1) it is meant to be integrated along the trajectory of every small region of the body, to yield the work done on that region; (2) it is meant to be obtained from the sum of infinitesimal body forces acting over each part of the region, or surface forces over its boundary.

Owing to the first characteristic, many geometers⁵⁸ have advocated the representation of force as a covector. Their arguments are geometrically beautiful. Further consideration of geometry, however, leads to a still different representation. The reason is that velocity is a frame-dependent object. If we represent forces as covectors, we're then supposing that a frame-independent object should be applied to a frame-dependent one, which feels geometrically unsatisfying. There is a way out. Instead of the velocity of matter we can consider its flow, represented by the matter 3-form *M*. On a 3-surface its current is represented by the flux 2-form *J*. We can let a force operate on this flux, rather than on the velocity. Then a force has to be represented by a 2-vector rather than a 1-covector. The 2-form flux still depends on a choice of frame, but this point of view can be generalized to four dimensions in a frame-independent way.

⁵⁸ Van Dantzig 1954; Burke 1980; 1987; 1995; Bossavit 1991; 1998; Hehl et al. 1999; Hehl & Obukhov 2003.

The second characteristic says that a body force must be a 2-vector-valued outer-oriented 3-form, while a surface force a 2-vector-valued outer-oriented 2-form.

The total force on a body is the integral of the body forces over its volume and of the surface forces over its boundary. Since forces are vector-valued objects, this integration is only possible if the slices have an *affine* structure, that is, a parallel transport with vanishing curvature. From this point of view, the affine structure is demanded by the dynamics, rather than by the kinematics.

Some forces between bodies, like the gravitational force or a purely elastic stress, are moreover defined to depend on a metric, which must therefore be introduced besides the affine structure. It would be interesting to explore whether metric and affine structure could be introduced in terms of these forces instead.

So in the present section let's assume that we have a unique slicing $t \equiv t_a$, representing absolute time, and whose slices have a Euclidean structure: metric \mathbf{g}_t and flat parallel transport ∇_t ; the index t will be omitted, but it is important to note that there is no specific relation between metrics and parallel transport on different slices. We are not assuming the existence of a Newton-Cartan connection. A frame \mathbf{U} that satisfies $\mathbf{L}_{\mathbf{U}}\mathbf{g} = 0$ is called a *rigid frame*.

Indicating the sum of all body forces acting on a body by f, and that of the surface forces by τ , the *balance of forces* states that

$$\int_{V} f + \oint_{\partial V} \tau = 0 \qquad \forall V \tag{36}$$

for each outer-oriented closed 3-volume V within a slice. Note that the result of the integration is a 2-vector, not a scalar. The local version of the balance is

$$f + \nabla \tau = 0, \tag{37}$$

A.2 From forces to motion (is there a balance of momentum?)

How does the balance of forces relate to motion?

The vast majority of literature and textbook do not speak of balance of forces; they follow a different path that sounds more or less as follows:

There is a law of "conservation of momentum", which states that the rate of change of momentum of a body region is proportional to the forces exerted on it:

$$\text{"d}_t \int_V \rho v = \int_V f + \oint_{\partial V} \tau \text{"}, \tag{38a}$$

or

"
$$\partial_t(\rho v) + \operatorname{div}(\rho v \otimes v) = \operatorname{div} \tau + f$$
". (38b)

This equation directly connects forces and motion, and looks like a conservation equation with fluxes and sources. This conservation law is only valid in an inertial frame. We can make it valid in every rigid frame provided we add some "fictitious forces" looking like

"
$$\rho \left[-\partial_t^2 x^* + 2\Omega^* \cdot \partial_t (x - x^*) + (\partial_t \Omega^* - \Omega^{*2}) \cdot (x - x^*) \right]$$
", (39)

in that non-inertial rigid frame.

The presentation above is geometrically unsatisfying, however.

The right-hand side of eq. (38) is frame-indifferent; that is, the definition and measurement of τ and f do not depend on a choice of frame, inertial or otherwise. For example, the force exerted on a pointlike object attached to a Hookean spring with constant k and elongation l has intensity kl and direction along the elongation. This is a complete description of the force, and the notion of frame is completely irrelevant to it. Similarly for the gravitational force: it is given by $\rho \otimes \gamma$, where γ is a frame-indifferent covector field. This field is in turn determined by the amount of matter and mass distribution via $d\gamma = -4\pi G \rho$, again a frame-indifferent definition.

The momentum density ρv on left-hand side of eq. (38) and the "fictitious forces" (39) require the specification of a frame instead.

Therefore eq. (38), with or without fictitious forces, mixes up frame-indifferent and frame-dependent quantities. This doesn't make sense geometrically.

We find a geometrically more satisfying formulation by using some ideas that can possibly be found in a work by Jacob Bernoulli⁵⁹. Consider a small enough body region, so that deformation and torques can be neglected. In a problem of *statics* in an inertial frame, the balance of forces (36) holds. Now consider a fact and two assumptions:

 $^{^{59}}$ Bernoulli 1703; see Truesdell 1968 p. 104; Noll 1963; Truesdell 1991 § I.13.

- a small body region can always be considered at rest in a suitably chosen frame;
- the laws of statics should hold in any frame in which the body region is at rest;
- an inertial frame is a rigid frame at rest on average with respect to the total distribution of matter in the universe, which is mostly associated with the fixed stars.

The consequence of these statements is that the balance of forces (36) is valid in any frame; among these forces we must account for one related to the relative motion of the body region with respect to the total distribution of matter in the universe, approximately identified with the "fixed stars".

This force is the inertial force. Let's see how it is expressed in an arbitrary rigid frame U; remember that what we call "time derivative" is the Lie derivative L_U =: ∂_t . In this frame let the position of the body region be x(t), and let the total distribution of matter in the universe have centre of mass at $x^*(t)$ and average instantaneous rotation given by the 2-form $\Omega^*(t)$; in Δ A.3 I explain how they are determined by the mass distribution through a sort of Mach's principle. Then the inertial force is the covector-valued 3-form

$$f^{\star} := -\rho \otimes \left(\Omega^{\star} \cdot \mathbf{g}^{-1} \cdot \Omega^{\star} - \partial_{t} \Omega^{\star} - 2\Omega^{\star} \partial_{t} + \mathbf{g} \partial_{t}^{2} \right) \cdot (\mathbf{x} - \mathbf{x}^{\star}). \tag{40}$$

The definition of this force requires a metric on each slice. The definition of its source, see \mathbf{h} A.3, also requires a parallel transport on each slice. But it does not require a 4-dimensional connection on the whole spacetime. If we choose a rigid frame in which the total matter of the universe does not rotate on average, $\Omega^* = 0$, and moves with uniform velocity, $\partial_t x^* = \text{const}$, then we recover the familiar expression $f^* = -\rho \mathbf{g} \cdot \partial_t^2 x$ – the \mathbf{g} is necessary to transform a vector into a covector. This kind of rigid frame is called inertial. The use of a *rigid* frame is not necessary; a frame-independent expression of the inertial force is given below.

Including the inertial force in the sum of all other body forces f, the balance of forces (36) includes the familiar Newtonian equations of motion. It is the inertial force that in most physical situations links kinematics and dynamics, specifically by linking forces upon a body to its motion with respect to the rest of matter in the universe. But there are also situations in which inertia is inessential. For example, consider a small body of negligible mass attached to a Hookean spring inside a

fluid, the other end of the spring being at rest with respect to the fluid. The forces acting on the body are the Hookean and the viscous ones. In a suitable frame of reference the balance of forces is $-kx - \eta \partial_t x = 0$, leading to a specific motion $x(t) = e^{-kt/\eta}x(o)$ with respect to the fluid. In this example the inertial force plays no role and it is not important whether the frame is inertial or not.

As regards "conservation of momentum", we see that the timederivative of momentum in Newtonian mechanics is not a quantity with a general geometric meaning: it is the simplified form assumed by a particular force in a particular frame. From this point of view conservation of momentum is not a general geometric notion in Newtonian-relativistic mechanics.

The inertial force on the mass M can be written in a frame-free way as $-\mathbf{g}^{-1} \cdot \mathbf{L}_{U^{\star}}(U^{\star} \cdot M)$, where U^{\star} is a vector field transverse to the slices, defined in \mathbf{h} A.3. Some forces, like inertial, viscous, and electromagnetic ones, require objects transverse to the slicing for their definition, whereas others, like elastic or gravitational ones, don't. This suggests that the presentation in terms of an absolute-time slicing can be geometrically improved upon.

A.3 Inertial force from the matter density of the universe

Inertial force can be conceived and presented as the force exerted by the total matter in the universe ⁶⁰. It is proportional to the change, per unit time, in the momentum seen from a frame representing a sort of average position of the total matter: the frame of a rigid body with the same mass centre and second moment, expressed by the Euler tensor.

Suppose that the 3-form N^* representing the total matter density in the universe is well-defined. Now consider the slice E_t at time t with its affine structure. The mass centre of the matter distribution at each time t is

$$P^{\star}(t) := \int_{E_t} P \frac{N^{\star}(P)}{\int_{E_t} N^{\star}}; \tag{41}$$

this integration is a convex combination and makes sense with the affine structure.

⁶⁰ cf. Sciama 1953.

A vector field can be defined at each place P by $P \mapsto P - P^*(t)$ thanks to the affine structure. The Euler tensor⁶¹ of the mass distribution with respect to its mass centre is

$$e(t) := \int_{E_t} (P - P^{\star}(t)) \otimes (P - P^{\star}(t)) \otimes N^{\star}(P). \tag{42}$$

This tensor-valued integration is possible thanks to the affine structure of the space slice.

The Euler tensor is symmetric and, if the total mass distribution is enough well-behaved, it is also positive. It has three principal axes along vectors $a_i(t)$ with respect to the metric g, defined by the generalized eigenvalue equation

$$[e(t) - \lambda_i(t)\mathbf{g}] \cdot a_i(t) = 0. \tag{43}$$

We define the "frame of the fixed stars" U^* as that frame that maps the principal axes on all slices into themselves, and in which the mass centre is stationary. These conditions are expressed by

$$L_{\boldsymbol{U}^{\star}}[\boldsymbol{e}(t) - \lambda_{i}(t)\boldsymbol{g}] = 0, \qquad \boldsymbol{U}^{\star}|_{P^{\star}(t)} = \dot{P^{\star}}. \tag{44}$$

The inertial force field upon a mass density M is then defined as the opposite of the change in momentum as seen from the fixed-star frame:

$$-\mathbf{g}^{-1} \cdot \mathbf{L}_{\mathbf{U}^{\star}}(\mathbf{M} \cdot \mathbf{U}^{\star}) \equiv -\mathbf{g}^{-1} \cdot \left(\mathbf{L}_{\mathbf{U}^{\star}}\mathbf{M}\right) \cdot \mathbf{U}^{\star}. \tag{45}$$

Some words on Weatherall (2017).

♣ A.4 Balance of energy

To each matter element on each slice is also associated an internal energy density ϵ , represented by an outer-oriented 3-form proportional to the mass 3-form N. The balance of energy states that the change in the total energy in a 3-volume V on a slice must come from the energy transported thither or thence, from the work done by the forces, and from body and surface heating, represented by outer-oriented 3-form and 2-form:

$$\partial_t \epsilon + d(v \cdot \epsilon) = v \cdot f + d(v \cdot \tau) + h + dq,$$
 (46)

with $\partial_t \epsilon \equiv L_U \epsilon$. The rate of change of kinetic energy is simply the work done by the inertial force, and is therefore included in the term $v \cdot f$. The

⁶¹ Truesdell 1991 § I.10.

traditional expression with " $\partial_t + v \cdot \nabla$ " appears if we write the 3-form ϵN as a multiple of the volume element \sqrt{g} – one more example of a unnecessary use of metric.

If we assume that body forces and body heating vanish, then we can rewrite this equation as

$$\partial_t \epsilon + d(v \cdot \epsilon - v \cdot \tau - q) = 0,$$
 (47)

which suggests that energy can also be considered like an outer-oriented closed 3-form, with a flux 2-form

$$p \equiv -v \cdot \epsilon + v \cdot \tau + q. \tag{48}$$

♣ B Bits and pieces

We have seen that a velocity v can be assigned to a mass 3-form M by eq. (11), if a slicing t and a frame U are provided. Can we relate power to force and to the mass-flux 2-form J directly? thus avoiding the use of a slicing? In this case force has to be contracted with an outer-oriented 3-covector, so it must be an object with *outer-oriented 3-vector* values. If a volume element is given, there is a unique correspondence between covectors and outer-oriented 3-vectors. In mechanics there's always the metric volume element \sqrt{g} sneaking around, so it's quite possible that the covector-valued conception of force is tacitly using a metric volume element.

**must be 3-vector-valued to act directly on mass 3-form rather than a vector-velocity derived from it. Stress must be integrated over 3-regions.

**Once the 4-stress acts on the mass 3-form, it yields an energy 3-form.

**If we say that the total energy flux must vanish, independently on the mass 3-form? then we can say that the total stress must vanish? and interpret Einstein's equations as $\mathbf{G} - \mathbf{T} = 0$? Then \mathbf{G} would be the stress associated with the gravito-inertial force? Compare⁶², with the difference that we need to consider \mathbf{T} (their "* \mathbf{T} ") as 3-vector-valued, rather than simply 1-vector-valued. Then

$$0 = d(\mathbf{M} \cdot \mathbf{T})$$

$$= (d\mathbf{M}) \cdot \mathbf{T} + \mathbf{M} \cdot \mathbf{\nabla} \mathbf{T}$$

$$= 0 + \mathbf{M} \cdot \mathbf{\nabla} \mathbf{T}$$
(49)

and asking this to hold for every M, we have $\nabla T = 0$ (their " $d^*T = 0$ ").

⁶² Misner et al. 1973 ch. 15.

In Newtonian mechanics we can choose frames that preserve the Euclidean metric of the slices: $L_{U}g = 0$, called rigid frames. In general relativity it is generally impossible to choose a vector field this way, but we can choose one normal to the slices with respect to a spacetime 4-metric; this is called a *Eulerian* frame⁶³. An Eulerian frame can also be chosen in such a way that $L_{U}\sqrt{g} = 0$, a condition called "maximal slicing"⁶⁴[also Lichnerowicz (1944)].

The integral over a 3-surface is related to the number of tubes that intersect it.

We can take the tubes associated with M as small as we please: in the limit they represent the trajectories in spacetime of "particles" of the continuum.

† C Einstein: matter as geometry

One of Einstein's goals was to represent matter as a manifestation of the gravitational field⁶⁵. He tried to achieve this by representing matter particles as singularities of the field⁶⁶, but this programme wasn't very successful.

The present note explores the idea of realizing Einstein's wish in a slightly different fashion: by interpreting mass, energy, and their fluxes as manifestations of the gravitational field. These manifestations depend on the temperature. Moreover, the gravitational field can interact with itself in a variety of ways, also dependent on the temperature; these ways are expressed in the stress. This idea appears when we try to combine Newtonian continuum thermomechanics and general relativity.

To explore this idea I first give in **h** D a summary of the aim of Newtonian continuum thermomechanics and of its basic equations, stressing the importance of constitutive equations. It is necessary to discuss the "aim" because, independently of the different invariance groups and geometrical structures of Newtonian mechanics and general relativity, the two theories seem to have different perspectives regarding the modelling of matter and fields. Newtonian continuum thermomechanics is a theory of crystal conceptual and methodological clarity, thanks to its 300 years of history. Some of its concepts and methods may be brought into general relativity and offer new interpretations of the latter.

 $^{^{63}}$ Smarr & York 1978; Smarr et al. 1980. 64 Smarr & York 1978 § III.B. 65 see Havas & Goldberg 1962; Havas 1967. 66 Einstein et al. 1938.

I apologize for • D, which is actually very confusing, because I tried to keep it short and to give the broadest possible view at the same time. To correct this I give a summary of its key points at the end of it.

Then in 4.6 I give a summary of the "3+1" (or "Arnowitt-Deser-Misner", or "initial-value") formulation of the Einstein equations, showing in particular how the energy-momentum-stress balance equations arise from them. I then merge the 3+1 formulation with some of the continuum-mechanical concepts previously summarized, also discussing some points that aren't clear to me.

I conclude with a 3+1 spacetime presentation of Newtonian continuum mechanics, slightly different from Newton-Cartan theory. This presentation shows that the Newtonian geometrical structure is not so different from the general-relativistic one, and also reveals that the interpretation of some core concepts becomes actually foggier in general relativity.

This note excludes quantum theory and particle physics; concepts like particle, point-mass, baryon number never enter the discussion – I'm not familiar with baryon conservation. Our point of view and primitives are based on mass, force, energy, equations of balance and motion, and similar. Lagrangeans, Hamiltonians, actions, extremum principles, and similar notions are also avoided because I don't like them.

† D Continuum thermomechanics

♣ D.1 Spacetime formulation

The kinematic structures of Newtonian and general-relativistic mechanics are very similar if not identical. We start from a four-dimensional differential manifold representing spacetime. No metric or connection are given yet. On this manifold we choose a slicing determined by a function t, or equivalently by an exact 1-form $\mathrm{d}t$.

We assume that each 3-surface, or slice, of this slicing is equipped with a 3-metric \mathbf{g}_t and a metric-compatible connection ∇ .

In Newtonian mechanics we postulate the existence of an "absolute time", represented by a particular slicing. Its 3-metrics are postulated to be Euclidean, and therefore their connections are flat. These postulates, however, are of a dynamic, not kinematic, nature; they are related to

inertial and gravitational forces. Nothing forbids us to use a different slicing to describe the flow of matter.

Although each slice has a connection, no connection is defined on the whole spacetime. This means that there is no canonical correspondence between points on two different slices: we cannot say "this place, now, is the *same* as that place, yesterday". Such a correspondence is made via a vector field **U** such that

$$\mathbf{U} \cdot \mathrm{d}t = 1. \tag{50}$$

The flow of this vector field puts points on different slices into mutual correspondence. It's variously called an "observer", or a field of observers, or a frame. In Newtonian mechanics we can choose frames that preserve the Euclidean metric of the slices: $L_{U}g = 0$, called rigid frames. In general relativity it is generally impossible to choose a vector field this way, but we can choose one normal to the slices with respect to a spacetime 4-metric; this is called a *Eulerian* frame ⁶⁷. An Eulerian frame can also be chosen in such a way that $L_{U}\sqrt{g} = 0$, a condition called "maximal slicing" ⁶⁸[also Lichnerowicz (1944)].

The tensors $\mathrm{d} t \otimes \boldsymbol{U}$ and $\mathbf{I} - \mathrm{d} t \otimes \boldsymbol{U}$ induce a projective decomposition of any geometric object into parts parallel to the vector field \boldsymbol{U} , called timelike, and to parts parallel the slices of the slicing⁶⁹, called spacelike. These projections do not depend on the metric or the connection.

The geometric structure just sketched is common to Newtonian mechanics and general relativity. In particular, also Newtonian mechanics has a "lapse" and "shift" in its equations, but they are chosen so as to make the gravito-inertial force assume the simplest possible form.

♣ D.2 Energy-force

Mystery still surrounds the concepts of force and energy in Newtonian and general-relativistic mechanics and their differences in the two theories. In both theories the energy-force seems to be a covector-valued object, because it is meant to be integrated along a segment of line of matter flow \boldsymbol{u} to yield the work done by force on matter along that segment.

In Newtonian mechanics, force is traditionally an object that also has to be integrated on a closed 2-surface or a 3-volume to give the total force acting on matter within that volume. Forces τ to be integrated over

 $^{^{67}}$ Smarr & York 1978; Smarr et al. 1980. 68 Smarr & York 1978 § III.B. 69 Hehl & Obukhov 2003 § B.1.4.

2-surfaces are called stresses; forces f to be integrated over 3-volumes are called body forces. Such integration of a covector-valued object would require a flat connection: integrating means parallel-transporting the force covectors to a common point to sum them; but the result would depend on the path along which they are transported if the connection weren't flat⁷⁰. The balance of force, however, stating that the total force on every 3-volume vanishes, can be expressed locally using a divergence, and this can be generalized to non-flat connections.

Very important is the *gravito-inertial body force* exerted on matter at some spacetime point, defined by

$$f^* := N\gamma - U^* \cdot L_{U^*} M \cdot g^{-1}$$
 (51)

and discussed in the previous section. Its definition in Newtonian mechanics requires a specific slicing, whose slices have Euclidean metrics ${\bf g}$ and a flat connection, and inertial and gravitational fields ${\bf U}^{\star}$, γ . But besides this fact it can be treated similarly in both Newtonian and general-relativistic mechanics.

Most texts say that the "time derivative of momentum", ma, is an effect of force. They also call "inertial forces" some expressions appearing in non-inertial frames, and often say that these are "fictitious". But the spacetime covariant perspective shows that the quantity -ma, where a is the acceleration with respect to the fixed stars has to be considered as a force. This force is the internal pressure we feel whenever we accelerate with respect to the fixed stars. It's rightly called *inertial force*. The gravitational force is given by the familiar expression $-m\gamma$, where γ is the gravitational field.

In Newtonian mechanics the combined gravito-inertial force f^* depends locally on three quantities:

- (1) the mass form M,
- (2) a particular frame U^* , called the fixed-stars frame,
- (3) the 3-metric g.

Its exact expression $f^*(M, U^*, \mathbf{g})$ in terms of these quantities is not important right now. It is something like -N ($\mathbf{L}_{U^*}v + \gamma$), where v is a velocity covector obtained with the help of the metric \mathbf{g} from the mass flux $U^* \cdot M$. The gravitational force γ is in turn determined locally by the mass 3-form M via $\mathrm{d}\gamma = -4\pi GN$ – no metric or connection required.

⁷⁰ Truesdell & Toupin 1960 § 238.

The fixed-stars frame U^* can also be thought as determined, non-locally, by the mass form M and the 3-metric g, or possibly just the 3-connection. I discuss this in H^* ; it is a form of Mach's principle.

The difference between Newtonian and general-relativistic mechanics is only in the dependence just explained, which is replaced by a local dependence in general relativity.

The fourth component of the gravito-inertial force is the change in kinetic and gravitational potential energies. The fact that kinetic energy is just the work per unit time done by the inertial force is clear from the relation $\partial_t \left(\frac{1}{2}mv^2\right) = (m\partial_t v) \cdot v$.

The discussion just given about the inertial force is very imprecise, but this lack of precision does not affect the discussion about the Einstein equations to be made later.

The second and third fundamental balances of continuum mechanics are those of force and energy, which says that the total energy-force on matter vanishes:

$$f + \nabla \cdot T = 0. \tag{52}$$

The gravito-inertial force is counted within the total body force f, and in a rigid frame with adapted coordinates it gives the familiar "time derivative of momentum" term. In a rigid frame with adapted coordinates the above balances become

$$\partial_t \epsilon = \nabla \cdot q + h, \tag{53}$$

$$\partial_t \boldsymbol{p} = \nabla \cdot \boldsymbol{\tau} + \boldsymbol{b},\tag{54}$$

with $\partial_t = L_U$. The heat flux q and the momentum q are separate entities in Newtonian mechanics, but in general relativity their distinction is not clear-cut: "heat carries momentum" and "momentum carries energy"⁷¹.

♣ D.3 Torque

The concept of torque and its balance would require a rather long discussion. For the present note it is sufficient to remember that its balance traditionally leads to a symmetric stress tensor τ .

⁷¹ Eckart 1940b.

♣ D.4 Remaining conceptual problems

We've seen that mass has a beautiful, conceptually intuitive, and metricfree geometric representation independent of the Newtonian or generalrelativistic setting. The appropriate geometric representation of force, energy, and their balance is still unclear and discussed today.

We could conjecture that metric and connection are only related to the definition of the gravito-inertial force, and the other kinds of forces do not need such structure. In that case the equation of energy-force balance (52) is unsatisfactory because it involves a covariant derivative and therefore a connection.

Relativity theory seems to suggest that we can speak about "surface forces" in a generalized sense, where spacelike surfaces can also be considered, and the gravito-inertial force would be such a "spacelike surface force". The integration of such forces is still problematic, however, because spacetime is not flat. A way out of this could be to consider force – a covector – to be something that must first be contracted with a vector field – yielding a scalar-valued form – and then integrated. This vector field could be a field of "virtual displacements", its contraction with the force yielding "virtual work"; this is indeed another way to conceive force in Newtonian mechanics⁷². Some studies⁷³ suggest that stress could be considered as a map transforming a 3-form like matter or charge into an energy 3-form – thus with 4 ×4 real components, as required. This transformation would be metric-free.

Finally, an opposite conjecture is that force and energy could just be manifestations of the metric.

♣ D.5 Summary

I imagine that this section on Newtonian mechanics was poorly written and very confusing. Unfortunately I haven't managed to find a good balance between shortness and broadness. I summarize here its "takehome messages" necessary for the next section:

 Mass and its balance rely only on the differential-geometric structure. They are the same in Newtonian and general-relativistic mechanics.

 ⁷² Truesdell & Toupin 1960 § 238.
 ⁷³ Segev 2002; Hehl & Obukhov 2003; Segev 1986;
 Segev & Rodnay 1999; Segev 2000a,b.

- The kinematic of mass relies on the concepts of slicing and frame, chosen arbitrarily, without metrics or connections. It is the same in Newtonian and general-relativistic mechanics.
- Force and energy, and therefore the dynamic of mass, rely on the introduction of metrics and connections. They do so in similarl ways in Newtonian and general-relativistic mechanics.
- An important difference between Newtonian and generalrelativistic mechanics is in the form of the gravito-inertial force and its dependence on mass, metric, and a special slicing.
- The independent fields in Newtonian mechanics are mass 3-density, mass flux, temperature, 3-geometry. The energy-force tensor is given as a functional of them in a constitutive equation, which depends on the kind of matter considered. Mass balance, energy-force balance, and the constitutive equation yield a well-posed system of equations for the evolution of the independent fields.

b D.6 Doubts and remarks

I believe that some points in the most common treatments of Newtonian and general-relativistic mechanics are an obstacle to a clearer understanding of the relationships between geometry, matter, and gravitation:

• The metric tensor is nonchalantly spread everywhere in the mathematical formulae: to raise or lower indices, introduce volume elements, and similar operations. But many physical quantities *and their balance equations* can actually be fully expressed in differential-geometrical, non-metric terms. This was shown, for example, by Kottler⁷⁴ and van Dantzig⁷⁵.

Mass density, mass flux, and the balance of mass are one example, as we saw in \clubsuit 3.2. Most literature instead⁷⁶ writes the balance of mass introducing a metric volume element $\sqrt{|g|}^{77}$, but the metric should play no role here.

• The metric-compatible connection is also nonchalantly introduced everywhere from the start. Since metric and connection represent the gravito-inertial force, their introduction represents the appearance of dynamics before the kinematic is completed.

 ⁷⁴ Kottler 1922a,b.
 ⁷⁵ Van Dantzig 1934a,b,c,d,e; 1937; Schouten & van Dantzig 1940; van Dantzig 1954.
 ⁷⁶ e.g., Smarr et al. 1980 p. 171.
 ⁷⁷ cf. Choquet-Bruhat et al. 1996 § V.B.4, pp. 317–318.

Studies by Segev⁷⁸ indicate that the energy-momentum-stress tensor might also be defined in metric-free terms; compare the balance of momentum rewritten with the metric volume element in Smarr et al.⁷⁹.

Bibliography

- ("de X" is listed under D, "van X" under V, and so on, regardless of national conventions.)
- Alcubierre, M. (2008): *Introduction to 3 + 1 Numerical Relativity*. (Oxford University Press, Oxford).
- Alderman, J. L., Bergmann, O. (1970): Geometrical derivation of the conservation laws. J. Math. Phys. 11⁵, 1639–1644.
- Aldrovandi, R., Pereira, J. G. (2013): *Teleparallel Gravity: An Introduction*. (Springer, Dordrecht). Previously preprinted as http://www.ift.unesp.br/users/jpereira/tele.pdf.
- Anile, A. M., Choquet-Bruhat, Y., eds. (1989): Relativistic Fluid Dynamics. (Springer, Berlin).
 Arcos, H. I., Pereirau, J. G. (2004): Torsion gravity: a reappraisal. Int. J. Mod. Phys. D 13¹⁰, 2193–2240.
- Ashtekar, A., Petkov, V., eds. (2014): Springer Handbook of Spacetime. (Springer, Berlin).
- Bamberg, P., Sternberg, S. (1990): A course in mathematics for students of physics: 1. (Cambridge University Press, Cambridge). First publ. 1988.
- Baumgarte, T. W., Shapiro, S. L. (2010): Numerical Relativity: Solving Einstein's Equations on the Computer. (Cambridge University Press, Cambridge).
- Bernoulli, J. (1703): Démonstration générale du centre de balancement & d'oscillation, tirée de la nature du levier. Mémoires de mathématique et de physique tirés des registres de l'Académie Royale des Sciences 1703, 78–84.
- Bertotti, B., de Felice, F., Pascolini, A., eds. (1984): General Relativity and Gravitation: Invited Papers and Discussion Reports of the 10th International Conference on General Relativity and Gravitation, Padua, July 3–8, 1983. (Reidel, Dordrecht).
- Bossavit, A. (1991): Differential Geometry: for the student of numerical methods in electromagnetism. https://www.researchgate.net/publication/200018385_Differential_Geometry_for_the_student_of_numerical_methods_in_Electromagnetism.
- (1998): On the geometry of electromagnetism. J. Japan Soc. Appl. Electromagn. & Mech. 6, 17–28, 114–123, 233–240, 318–326. Corrected, combined version at https://www.researchgate.net/publication/254470625_0n_the_geometry_of_electromagnetism.
- (2001): On the notion of anisotropy of constitutive laws: some implications of the "Hodge implies metric" result. COMPEL 20¹, 233–239.
- Bressan, A. (1964): Una teoria di relatività generale includente, oltre all'elettromagnetismo e alla termodinamica, le equazioni costitutive dei materiali ereditari. Sistemazione assiomatica. Rend. Sem. Mat. Univ. Padova **34**, 74–109.
- Bunge, M., ed. (1967): Delaware Seminar in the Foundations of Physics. (Springer, Berlin).Burke, W. L. (1980): Spacetime, Geometry, Cosmology. (University Science Books, Mill Valley, USA).

⁷⁸ Segev 2002. ⁷⁹ Smarr et al. 1980 p. 171.

- Burke, W. L. (1983): Manifestly parity invariant electromagnetic theory and twisted tensors. J. Math. Phys. 24¹, 65–69. DOI:10.1063/1.525603.
- (1987): Applied Differential Geometry, repr. (Cambridge University Press, Cambridge).
 First publ. 1985. DOI:10.1017/CB09781139171786.
- (1995): Div, Grad, Curl Are Dead. http://people.ucsc.edu/~rmont/papers/Burke_DivGradCurl.pdf. See also http://www.ucolick.org/~burke/.
- Cai, Y.-F., Capozziello, S., De Laurentis, M., Saridakis, E. N. (2016): f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 79^4 , 106901.
- Carter, B., Chachoua, E., Chamel, N. (2006): Covariant Newtonian and relativistic dynamics of (magneto)-elastic solid model for neutron star crust. Gen. Relat. Gravit. 38¹, 83–119.
- Carter, B. (1973): Elastic perturbation theory in general relativity and a variation principle for a rotating solid star. Commun. Math. Phys. 30⁴, 261–286.
- Carter, B., Quintana, H. (1972): Foundations of general relativistic high-pressure elasticity theory. Proc. R. Soc. Lond. A 331¹⁵⁸⁴, 57–83.
- Choquet-Bruhat, Y., ed. (1974): *Ondes et radiations gravitationnelles*. (Centre National de la Recherche Scientifique, Paris).
- (2009): General Relativity and Einstein's Equations. (Oxford University Press, Oxford).
- Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M. (1996): *Analysis, Manifolds and Physics. Part I: Basics*, rev. ed. (Elsevier, Amsterdam). First publ. 1977.
- de Andrade, V. C., Guillen, L. C. T., Pereira, J. G. (2000): *Teleparallel gravity: an overview*. arXiv:gr-qc/0011087.
- Disconzi, M. M. (2014): On the well-posedness of relativistic viscous fluids. Nonlinearity 27⁸, 1915–1935.
- Disconzi, M. M., Kephart, T. W., Scherrer, R. J. (2017): On a viable first-order formulation of relativistic viscous fluids and its applications to cosmology. Int. J. Mod. Phys. D 26¹³, 1750146.
- Eckart, C. (1940a): The thermodynamics of irreversible processes. II. Fluid mixtures. Phys. Rev. $58^{3,10}$, 269–275, 924.
- (1940b): The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid. Phys. Rev. **58**¹⁰, 919–924. DOI:10.1103/PhysRev.58.919.
- Eddington, A. S. (1930): *The Mathematical Theory of Relativity*, 2nd ed. (Cambridge University Press, Cambridge). First publ. 1923.
- Einstein, A., Infeld, L., Hoffmann, B. (1938): *The gravitational equations and the problem of motion*. Ann. Math. **39**¹, 65–100.
- Ericksen, J. L. (2007): On formulating and assessing continuum theories of electromagnetic fields in elastic materials. J. Elasticity 87^{2–3}, 95–108.
- Flügge, S., ed. (1960): Handbuch der Physik: Band III/1: Prinzipien der klassischen Mechanik und Feldtheorie [Encyclopedia of Physics: Vol. III/1: Principles of Classical Mechanics and Field Theoryl. (Springer, Berlin). DOI:10.1007/978-3-642-45943-6.
- Frankel, T. (2012): *The Geometry of Physics: An Introduction*, 3rd ed. (Cambridge University Press, Cambridge). First publ. 1997.
- Frittelli, S. (1997): Note on the propagation of the constraints in standard 3 + 1 general relativity. Phys. Rev. D 55¹⁰, 5992–5996. http://www.andrew.cmu.edu/user/rgomez/preprints/prd55.5992.1997.pdf.
- Geroch, R. (2001): On hyperbolic "theories" of relativistic dissipative fluids. arXiv:gr-qc/0103112.
- Geroch, R., Jang, P. S. (1975): *Motion of a body in general relativity*. J. Math. Phys. **16**¹, 65–67. DOI:10.1063/1.522416.

- Geroch, R., Lindblom, L. (1991): Causal theories of dissipative relativistic fluids. Ann. of Phys. 207², 394–416. http://www.ccom.ucsd.edu/~lindblom/Publications/45_AnnPhys.207.394.pdf.
- Goenner, H. F. M. (2004): On the history of unified field theories. Living Rev. Relativity 7, 2.
- (2012): Some remarks on the genesis of scalar-tensor theories. Gen. Relat. Gravit. 44⁸, 2077–2097.
- Gourgoulhon, É. (2012): 3+1 Formalism in General Relativity: Bases of Numerical Relativity. (Springer, Heidelberg). First publ. 2007 as arXiv:gr-qc/0703035. DOI:0.1007/978-3-642-24525-1.
- Grot, R. A., Eringen, A. C. (1966a): *Relativistic continuum mechanics: Part I Mechanics and thermodynamics*. Int. J. Engng Sci. 4⁶, 611–638, 664. See also Grot, Eringen (1966b).
- (1966b): Relativistic continuum mechanics: Part II Electromagnetic interactions with matter. Int. J. Engng Sci. 4⁶, 639–670. See also Grot, Eringen (1966a).
- Havas, P. (1967): Foundation problems in general relativity. In: Bunge (1967): ch. 8:124-148.
- Havas, P., Goldberg, J. N. (1962): Lorentz-invariant equations of motion of point masses in the general theory of relativity. Phys. Rev. 128¹, 398–414.
- Hehl, F. W., Obukhov, Y. N. (2000): A gentle introduction to the foundations of classical electrodynamics: the meaning of the excitations $(\mathcal{D},\mathcal{H})$ and the field strengths (E,B). arXiv:physics/0005084.
- (2003): Foundations of Classical Electrodynamics: Charge, Flux, and Metric. (Birkhäuser, Boston). DOI:10.1007/978-1-4612-0051-2.
- Hehl, F. W., Obukhov, Y. N., Rubilar, G. F. (1999): Classical electrodynamics: a tutorial on its foundations. arXiv:physics/9907046.
- Henkin, L., Suppes, P., Tarski, A., eds. (1959): The Axiomatic Method: With Special Reference to Geometry and Physics. (North-Holland, Amsterdam). http://archive.org/details/axiomaticmethod031862mbp.
- Herrmann, H. J., Muschik, W., Rückner, G. (2000): Constitutive theory in general relativity: basic fields, state spaces and the principle of minimal coupling. Rend. Sem. Mat. Univ. Pol. Torino 58², 133–139.
- Hiscock, W. A., Lindblom, L. (1985): Generic instabilities in first-order dissipative relativistic fluid theories. Phys. Rev. D 31⁴, 725–733.
- ISO (International Organization for Standardization) (2009a): ISO 80000-1:2009: Quantities and units 1: General. International Organization for Standardization.
- (2009b): ISO 80000-9:2009: Quantities and units 9: Physical chemistry and molecular physics.
 International Organization for Standardization.
- JCGM (Joint Committee for Guides in Metrology) (2012): JCGM 200:2012: International vocabulary of metrology Basic and general concepts and associated terms (VIM), 3rd ed. Joint Committee for Guides in Metrology (JCGM), BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. https://www.bipm.org/en/publications/guides/vim.html. First publ. 1997.
- Kaluza, T. (1921): *Zum Unitätsproblem in der Physik*. Sitzungsber. Akad. Wiss. Wien, Math.-Naturw. Klasse, Abt. IIa **1921**, 966–972. Transl. as Kaluza (2018).
- (2018): On the unification problem in physics. Int. J. Mod. Phys. D 27¹⁴, 1870001. Transl. by T. Toth of Kaluza (1921).
- Kanso, E., Arroyo, M., Tong, Y., Yavari, A., Marsden, J. G., Desbrun, M. (2007): On the geometric character of stress in continuum mechanics. Z. Angew. Math. Phys. 58⁵, 843–856. http://www.geometry.caltech.edu/pubs.html, DOI:10.1007/s00033-007-6141-8.

- Kottler, F. (1922a): Newton'sches Gesetz und Metrik. Sitzungsber. Akad. Wiss. Wien, Math.-Naturw. Klasse, Abt. IIa 131², 1–14.
- (1922b): Maxwell'sche Gleichungen und Metrik. Sitzungsber. Akad. Wiss. Wien, Math.-Naturw. Klasse, Abt. IIa 131², 119–146.
- Landau, L. D., Lifshitz [Lifsic], E. M. (1996): *The Classical Theory of Fields*, corr. repr. of the 4th English ed. (Butterworth-Heinemann, Oxford). Transl. from the 1987 seventh Russian edition by Morton Hamermesh. First publ. 1939. DOI:10.1016/C2009-0-14608-1.
- Lianis, G. (1973): *The general form of constitutive equations in relativistic physics*. Nuovo Cimento B **14**¹, 57–103.
- Marsden, J. E., Hughes, T. J. R. (1994): *Mathematical Foundations of Elasticity*, unabridged corr. republ. (Dover, New York). http://resolver.caltech.edu/CaltechBOOK:1983.002. First publ. 1983.
- Maugin, G. A. (1971a): Magnetized deformable media in general relativity. Ann. Inst. Henri Poincaré (A) 15⁴, 275–302.
- (1971b): Un modèle viscoélastique en relativité générale. C. R. Acad. Sc. Paris Série A 272, 1482–1484.
- (1973): Harmonic oscillations of elastic continua and detection of gravitational waves. Gen. Relat. Gravit. 4³, 241–272.
- (1974a): The principle of material frame indifference in general relativity and the formulation of constitutive equations for relativistic continuous matter. In: Choquet-Bruhat (1974): 331–338.
- (1974b): Constitutive equations for heat conduction in general relativity. J. Phys. A 7⁴, 465–484. DOI:10.1088/0305-4470/7/4/010.
- (1978a): Elasticity and electro-magneto-elasticity of general-relativistic systems. Gen. Relat. Gravit. 9⁶, 541–549.
- (1978b): On the covariant equations of the relativistic electrodynamics of continua. I. General equations. J. Math. Phys. 19⁵, 1198–1205. DOI:10.1063/1.523785.
- (1978c): On the covariant equations of the relativistic electrodynamics of continua. II. Fluids.
 J. Math. Phys. 19⁵, 1206–1211. DOI:10.1063/1.523786.
- (1978d): On the covariant equations of the relativistic electrodynamics of continua. III. Elastic solids. J. Math. Phys. 19⁵, 1212–1219. DOI:10.1063/1.523787.
- (1978e): On the covariant equations of the relativistic electrodynamics of continua. IV. Media with spin. J. Math. Phys. 19⁵, 1220–1226. DOI:10.1063/1.523788.
- Maugin, G. A., Eringen, A. C. (1972a): Relativistic continua with directors. J. Math. Phys. 13¹¹, 1788–1797.
- (1972b): Polarized elastic materials with electronic spin a relativistic approach. J. Math. Phys. 13¹¹, 1777–1788.
- Misner, C. W., Thorne, K. S., Wheeler, J. A. (1973): Gravitation, repr. (W. H. Freeman and Company, New York). First publ. 1970. https://archive.org/details/Gravitation 201803.
- Noll, W. (1959): The foundations of classical mechanics in the light of recent advances in continuum mechanics. In: Henkin, Suppes, Tarski (1959): 266–281. Repr. in Noll (1974), pp. 32–47.
- (1963): La m'ecanique classique, basée sur un axiome d'objectivité. In: la méthode axiomatique dans les mécaniques classiques et nouvelles (Gauthier-Villars, Paris): 47–56. Repr. in Noll (1974), pp. 135–144.
- (1973): Lectures on the foundations of continuum mechanics and thermodynamics. Arch. Rational Mech. Anal. 52¹, 62–92.

- Noll, W. (1974): *The Foundations of Mechanics and Thermodynamics: Selected Papers*. (Springer). With a preface by C. Truesdell.
- Page, L. (1958): Introduction to Theoretical Physics, 3rd ed., 3rd pr. (Van Nostrand, Princeton, USA). First publ. 1928.
- Pauli, W. (1958): *Theory of Relativity*. (Pergamon, London). Transl. by G. Field; with supplementary notes by W. Pauli. First publ. in German 1921.
- Pereira, J. G. (2014): *Teleparallelism: a new insight into gravity*. In: Ashtekar, Petkov (2014): ch. 11:197–212.
- Pimentel, O. M., Lora-Clavijo, F. D., González, G. A. (2016): The energy-momentum tensor for a dissipative fluid in general relativity. Gen. Relat. Gravit. 48¹⁰, 124.
- Porta Mana, P. G. L. (2019): Affine and convex spaces: blending the analytic and geometric viewpoints. Open Science Framework DOI:10.31219/osf.io/jw9f6, arXiv:1104.0032. First publ. 2011.
- Rezzolla, L., Zanotti, O. (2013): Relativistic Hydrodynamics. (Oxford University Press, Oxford).
- Samohýl, I. (1987): Thermodynamics of Irreversible Processes in Fluid Mixtures (Approached by Rational Thermodynamics). (Teubner, Leipzig). Partially rewritten as Samohýl, Pekař (2014).
- Samohýl, I., Pekař, M. (2014): The Thermodynamics of Linear Fluids and Fluid Mixtures. (Springer, Cham). First published as Samohýl (1987). DOI:10.1007/978-3-319-02514-8.
- Schilpp, P. A., ed. (1970): Albert Einstein: Philosopher-Scientist, 3rd ed. (MJF Books, New York). First publ. 1949.
- Schouten, J. A. (1951): Tensor Analysis for Physicists. (Oxford University Press, Oxford).
- Schouten, J. A., van Dantzig, D. (1940): On ordinary quantities and W-quantities. Classification and geometrical applications. Compos. Math. 7, 447–473.
- Sciama, D. W. (1953): On the origin of inertia. Mon. Not. Roy. Astron. Soc. 113¹, 34–42.
- Segev, R. (1986): Forces and the existence of stresses in invariant continuum mechanics. J. Math. Phys. 27¹, 163–170. http://www.bgu.ac.il/~rsegev/Papers/JMP86S.pdf, DOI:10.1063/1.527406.
- (2000a): The geometry of Cauchy's fluxes. Arch. Rational Mech. Anal. 154³, 183–198. http://www.bgu.ac.il/~rsegev/Papers/TheGeometryofCauchyFluxes.pdf, DOI:10.1007/s0020500000089.
- (2000b): Notes on stresses for manifolds. Rend. Sem. Mat. Univ. Pol. Torino 58², 199–206. https://www.emis.de/journals/RSMT/58-2.html.
- (2001): A correction of an inconsistency in my paper "Cauchy's theorem on manifolds". J. Elasticity 63¹, 55–59. See Segev, Rodnay (1999). DOI:10.1023/A:1013085312562.
- (2002): Metric-independent analysis of the stress-energy tensor. J. Math. Phys. 43⁶, 3220–3231. http://www.bgu.ac.il/~rsegev/Papers/MetricIndependent.pdf, DOI:10.1063/1.1475347.
- Segev, R., Rodnay, G. (1999): *Cauchy's theorem on manifolds*. J. Elasticity **56**², 129–144. See also erratum Segev (2001). DOI:10.1023/A:1007651917362.
- (2000): The divergence of stress and the principle of virtual power on manifolds. Technische Mechanik 20², 129–136. http://www.bgu.ac.il/~rsegev/Papers/DivergenceofStressesPrinciple.pdf.
- (2012): The co-divergence of vector valued currents. Discrete Contin. Dyn. Sys. B 17², 687–698.

- Smarr, L., Taubes, C., Wilson, J. R. (1980): General relativistic hydrodynamics: the comoving, Eulerian, and velocity potential formalisms. In: Tipler (1980): ch. 11:157–183.
- Smarr, L., York Jr., J. W. (1978): Kinematical conditions in the construction of spacetime. Phys. Rev. D 17¹⁰, 2529–2551. DOI:10.1103/PhysRevD.17.2529.
- Smarr, L. L., ed. (1979): Sources of Gravitational Radiation. (Cambridge University Press, Cambridge).
- Tipler, F. J., ed. (1980): Essays in General Relativity: A Festschrift for Abraham Taub. (Academic Press, New York). DOI:10.1016/C2013-0-11601-7.
- Truesdell III, C. A. (1968): Essays in the History of Mechanics. (Springer, Berlin).
- (1984): Rational Thermodynamics, 2nd ed. (Springer, New York). First publ. 1969.
- (1991): A First Course in Rational Continuum Mechanics. Vol. 1: General Concepts, 2nd ed. (Academic Press, New York). First publ. 1977.
- Truesdell III, C. A., Toupin, R. A. (1960): *The Classical Field Theories*. In: Flügge (1960): I–VII, 226–902. With an appendix on invariants by Jerald LaVerne Ericksen. DOI:10.1007/978-3-642-45943-6 2.
- van Dantzig, D. (1934a): The fundamentals equations of electromagnetism, independent of metrical geometry. Proc. Cambridge Philos. Soc. 30⁴, 421–427.
- (1934b): Electromagnetism, independent of metrical geometry. 1. The foundations. Proc. Acad. Sci. Amsterdam (Proc. of the Section of Sciences Koninklijke Nederlandse Akademie van Wetenschappen) 37, 521–525. See also van Dantzig (1934c,d,e; 1936).
- (1934c): Electromagnetism, independent of metrical geometry. 2. Variational principles and further generalisation of the theory. Proc. Acad. Sci. Amsterdam (Proc. of the Section of Sciences Koninklijke Nederlandse Akademie van Wetenschappen) 37, 526–531. See also van Dantzig (1934b,d,e; 1936).
- (1934d): Electromagnetism, independent of metrical geometry. 3. Mass and motion. Proc. Acad. Sci. Amsterdam (Proc. of the Section of Sciences Koninklijke Nederlandse Akademie van Wetenschappen) 37, 643–652. See also van Dantzig (1934b,c,e; 1936).
- (1934e): Electromagnetism, independent of metrical geometry. 4. Momentum and energy; waves. Proc. Acad. Sci. Amsterdam (Proc. of the Section of Sciences Koninklijke Nederlandse Akademie van Wetenschappen) 37, 825–836. See also van Dantzig (1934b,c,d; 1936).
- (1936): Electromagnetism, independent of metrical geometry. 5. Quantum-theoretical commutability-relations for light-waves. Proc. Acad. Sci. Amsterdam (Proc. of the Section of Sciences Koninklijke Nederlandse Akademie van Wetenschappen) 39, 126–131. See also van Dantzig (1934b,c,d,e).
- (1937): Some possibilities of the future development of the notions of space and time. Erkenntnis 7¹, 142–146.
- (1954): On the geometrical representation of elementary physical objects and the relations between geometry and physics. Nieuw Archief voor Wiskunde II, 73–89.
- Verbin, Y., Nielsen, N. K. (2005): On the origin of Kaluza's idea of unification and its relation to earlier work by Thirring. Gen. Relat. Gravit. 37², 427–433.
- von Laue, M. (1949): Inertia and energy. In: Schilpp (1970): ch. II.19:501-533.
- Weatherall, J. O. (2011): *The motion of a body in Newtonian theories*. J. Math. Phys. **52**³, 032502. http://jamesowenweatherall.com/publications/.
- (2017): Conservation, inertia, and spacetime geometry. Stud. Hist. Philos. Mod. Phys. ****, http://jamesowenweatherall.com/publications/.
- Wilson, J. R., Mathews, G. J. (2007): *Relativistic Numerical Hydrodynamics*, repr. (Cambridge University Press, Cambridge). First publ. 2003. DOI:10.1017/CB09780511615917.

York Jr., J. W. (1979): Kinematics and dynamics of general relativity. In: Smarr (1979): 83–126.