

CLAIMS

What is claimed is:

1 1. A method of testing a semiconductor chip having a plurality of common I/Os
2 associated therewith whose characteristics or properties may be tested by applying a test
3 signal through a control I/O, the method comprising the steps of:

4 performing a chip-to-package connectivity test upon at least one of the common
5 I/O through the control I/O; and
6 determining whether the common I/O is faulty from a result of the chip-to-
7 package connectivity test.

1 2. The method of claim 1, wherein performing a pin-to-package connectivity test
2 comprises:

3 launching a transition through the common I/O to an associated I/O package
4 connection and pad; and
5 observing a response of the transition.

1 3. The method of claim 2, further comprising: triggering a first latch at an
2 initialization of the transition response and triggering a second latch when the transition
3 response has reached a transition threshold value.

1 4. The method of claim 3, wherein determining whether the chip-to-package
2 connection is faulty comprises: comparing a difference between values stored in
3 association with the first and second latches.

1 5. The method of claim 1, wherein determining whether the chip-to-package
2 connection is faulty comprises: comparing a first RC constant associated with a first
3 signal relating to a connectivity test of a first I/O with a second RC constant associated
4 with a second signal relating to a connectivity test of a second I/O.

1 6. The method of claim 5, further comprising identifying the first I/O as having a
2 faulty connection if the first RC constant is greater than the second RC constant.

1 7. The method of claim 1, wherein performing the chip-to-package connectivity test
2 comprises generating a transition signal from a driver of the common I/O, wherein the
3 driver is configured as a weak driver.

1 8. The method of claim 7, wherein generating the transition from the weak driver
2 comprises placing an additional impedance into connection with the driver prior to
3 launching the transition.

1 9. The method of claim 8, wherein placing an additional impedance into connection
2 with the driver comprises placing a resistor into series connection with the driver.

1 10. The method of claim 8, further comprising electrically shorting the additional
2 impedance from connection with the driver after launching the transition.

1 11. The method of claim 10, wherein electrically shorting the additional impedance
2 includes completing a circuit around the additional impedance to bypass the additional
3 impedance.

1 12. A method of reduced pin count testing the chip-to-package connectivity of a
2 semiconductor device, the method comprising:
3 launching a transition from a common I/O driver on the packaged semiconductor device;
4 observing a response of the transition at a point within the semiconductor device;
5 determining whether a chip-to-package connection associated with the I/O is faulty from
6 the response of the transition.

1 13. The method of claim 12, further comprising driving the transition with a weak
2 driver.

1 14. An apparatus configured to launch a test signal to a common I/O of a
2 semiconductor device from a driver on the semiconductor device which is associated with
3 the common I/O using reduced pin count testing, the apparatus comprising:
4 a test fixture configured to couple to a common I/O of the semiconductor device;
5 a weak driver impedance coupled between the driver and the test fixture;
6 wherein the apparatus is configured to launch the test signal through the weak
7 driver impedance and the common I/O to the test fixture and evaluate a characteristic of a
8 response to the test signal to determine whether a chip-to-package connection associated
9 with the common I/O is faulty.

1 15. The apparatus of claim 14, wherein the weak driver impedance includes at least
2 one of a switchable impedance and a variable impedance.

1 16. The apparatus of claim 14, wherein the weak driver impedance is an impedance
2 having a resistive value of 1 K Ω or more.

1 17. The apparatus of claim 16, wherein the weak driver impedance is approximately
2 10 K Ω or more.

1 18. The apparatus of claim 14, further comprising a fixture impedance coupled
2 between the test fixture and at least one of the semiconductor device and a potential
3 relative to the semiconductor device.

1 19. The apparatus of claim 18, wherein the fixture impedance comprises a capacitor
2 coupled between the common I/O and a fixed potential relative to the semiconductor
device.

* * * *