CONSELHO REGIONAL DE CONTABILIDADE – CRC/CE

CURSO DE MATEMÁTICA FINANCEIRA

Instrutor: CRISTIANO REINALDO

ABRIL/2005

RODUÇÃO

Ao longo dos tempos constatou-se que o problema econômico dos governos; das instituições; das organizações e dos indivíduos, decorria da escassez de produtos e/ou serviços, pelo fato de que as necessidades das pessoas eram satisfeitas por bens e serviços

cuja oferta era limitada. Ao longo do processo de desenvolvimento das sociedades, o problema de satisfazer as necessidades foi solucionado através da especialização e do processo de troca de um bem pelo outro, conhecido como escambo. Mais tarde surgiu um bem intermediário, para este processo de trocas que foi a moeda. Assim, o valor monetário ou preço propriamente dito, passou a ser o denominador comum de medida para o valorizar os bens e os serviços e a moeda um meio de acúmulo deste valor constituindo assim a riqueza ou capital.

Constatou-se assim, que os bens e os serviços poderiam ser consumidos ou guardados para o consumo futuro. Caso o bem fosse consumido ele desapareceria e, caso houvesse o acúmulo, surgiria decorrente deste processo o estoque que poderia servir para gerar novos bens e/ou riqueza através do processo produtivo. E começou a perceber que os estoques eram feitos não somente de produtos, mas de valores monetários também, que se bem administrado poderiam aumentar gradativamente conforme a utilidade temporal. Surge-se daí a preocupação e a importância do acúmulo das riquezas em valores monetários como forma de investimento futuro e aumento do mesmo conforme o surgimento das necessidades.

Com o passar dos tempos essa técnica foi sendo melhorada e aperfeiçoada conforme as necessidades de produção e tão quanto à necessidade mercantis que aflorava cada vez mais tornando os produtores mais competitivos quanto ao aumento de oferta de suas produções.

Atualmente a técnica utilizada para compreensão de como o capital se comporta em uma aplicação ao longo do tempo é realizado pela Matemática Financeira. De uma forma simplificada, podemos dizer que a Matemática Financeira é o ramo da Matemática Aplicada e/ou Elementar, que estuda o comportamento do dinheiro no tempo. A Matemática Financeira busca quantificar as transações que ocorrem no universo financeiro levando em conta, a variável tempo, quer dizer, o valor monetário no tempo (*time value money*).

As principais variáveis envolvidas no processo de quantificação financeira são: o capital, a taxa de juros e o tempo.

2 - CAPITAL

Capital é todo o acúmulo de valores monetários em um determinado período de tempo constituindo assim a riqueza como expresso anteriormente. Normalmente o valor do capital é conhecido como principal (**P**). A taxa de juro (**i**), é a relação entre os Juros e o Principal, expressa em relação a uma unidade de tempo.(**n**)

3 - JUROS

Deve ser entendido como Juros, a remuneração de um capital (**P**), aplicado a uma certa taxa (**i**), durante um determinado período (**n**), ou seja, é o dinheiro pago pelo uso de dinheiro emprestado. Portanto, Juros (J) = preco do crédito.

A existência de Juros decorre de vários fatores, entre os quais destacam-se:

a) **inflação:** a diminuição do poder aquisitivo da moeda num determinado período de tempo;

- b) **risco:** os juros produzidos de uma certa forma compensam os possíveis riscos do investimento.
- c) **aspectos intrínsecos da natureza humana:** quando ocorre de aquisição ou oferta de empréstimos a terceiros.

Costuma-se especificar taxas de juros anuais, trimestrais, semestrais, mensais, entre outros, motivo pelo qual deve-se especificar sempre o período de tempo considerado.

Quando a taxa de juros incide no decorrer do tempo, sempre sobre o capital inicial, dizemos que temos um sistema de capitalização simples (Juros simples). Quando a taxa de juros incide sobre o capital atualizado com os juros do período (montante), dizemos que temos um sistema de capitalização composta (Juros compostos).

Na prática, o mercado financeiro utiliza apenas os juros compostos, de crescimento mais rápido (veremos adiante, que enquanto os juros simples crescem segundo uma função do 1º grau – crescimento linear, os juros compostos crescem muito mais rapidamente – segundo uma função exponencial).

3.1 – Juros Simples

O regime de juros simples é aquele no qual os juros incidem sempre sobre o capital inicial. Este sistema não é utilizado na prática nas operações comerciais, mas, a análise desse tema, como introdução à Matemática Financeira, é de uma certa forma, importante.

Considere o capital inicial ${\bf P}$ aplicado a juros simples de taxa ${\bf i}$ por período, durante ${\bf n}$ períodos.

Lembrando que os juros simples incidem sempre sobre o capital inicial, podemos escrever a seguinte fórmula, facilmente demonstrável:

$$J = P.i.n = Pin$$

J = juros produzidos depois de n períodos, do capital P aplicado a uma taxa de juros por período igual a i.

No final de n períodos, é claro que o capital será igual ao capital inicial adicionado aos juros produzidos no período. O capital inicial adicionado aos juros do período é denominado **MONTANTE** (M). Logo, teríamos:

Exemplo:

A quantia de R\$ 3.000,00 é aplicada a juros simples de 5% ao mês, durante cinco anos. Calcule o montante ao final dos cinco anos.

Solução:

Temos: P = 3000,

i = 5% = 5/100 = 0.05 e

n = 5 anos = $5 \times 12 = 60$ meses.

Portanto, M = 3.000,00 x (1 + 0.05 x 60) = 3.000,00 x (1+3) = R\$ 12.000,00.

A fórmula $\mathbf{J} = \mathbf{Pin}$, onde \mathbf{P} e \mathbf{i} são conhecidos, nos leva a concluir pela linearidade da função juros simples, senão vejamos:

Façamos P.i = k.

Teremos, J = k.n, onde k é uma constante positiva. (Observe que P . i > 0)

Ora, J=k.n é uma função linear, cujo gráfico é uma semi-reta passando pela origem. (Porque usei o termo semi-reta ao invés de reta?). Portanto, J/n=k, o que significa que os juros simples J e o número de períodos n são grandezas diretamente proporcionais. Daí infere-se que o crescimento dos juros simples obedece a uma função linear, cujo crescimento depende do produto P.i=k, que é o coeficiente angular da semi-reta J=kn.

É comum nas operações de curto prazo onde predominam as aplicações com taxas referenciadas em juros simples, ter-se o prazo definido em número de dias. Nestes casos o número de dias pode ser calculado de duas maneiras:

- Pelo tempo exato, pois o juro apurado desta maneira denomina-se **juro exato**, que é aquele que é obtido quando o período (n) está expresso em dias e quando o período é adotada a conversão de ano civil (365 dias)
- Pelo ano comercial, pois o juro apurado desta maneira denomina-se **juro comercial** que é aquele calculado quando se adota como base o ano comercial (360 dias)

Exercício Proposto 01:

Calcule o montante ao final de dez anos de um capital R\$ 10.000,00 aplicado à taxa de juros simples de 18% ao semestre (18% a.s).

Resposta: R\$ (?)

Vimos anteriormente, que se o capital (**P**) for aplicado por (**n**) períodos, a uma taxa de juros simples (**i**), ao final dos n períodos, teremos que os juros produzidos serão iguais a J = Pin e que o montante (capital inicial adicionado aos juros do período) será igual a M = P(1 + in).

O segredo para o bom uso destas fórmulas é lembrar sempre que a taxa de juros i e o período n têm de ser referidos à mesma unidade de tempo.

Assim, por exemplo, se num problema, a taxa de juros for i = 12% ao ano = 12/100 = 0,12 e o período n = 36 meses, antes de usar as fórmulas deveremos colocá-las referidas à mesma unidade de tempo, ou seja:

- a) 12% ao ano, aplicado durante 36/12 = 3 anos, ou
- b) 1% ao mês = 12%/12, aplicado durante 36 meses, etc.

Exemplos:

01 – Quais os juros produzidos pelo capital R\$ 12.000,00 aplicados a uma taxa de juros simples de 10% ao bimestre durante 5 anos?

Solução 01:

Temos que expressar <u>i</u> e <u>n</u> em relação à mesma unidade de tempo. Vamos inicialmente trabalhar com BIMESTRE (dois meses):

$$\mathbf{i} = 10\% \text{ a.b.} = 10/100 = 0,10$$

 $\mathbf{n} = 5$ anos = 5 x 6 = 30 bimestres (pois um ano possui 6 bimestres)

Então: J = R\$ 12.000,00 x 0,10 x 30 = **R**\$ 36.000,00

Solução 02:

Para confirmar, vamos refazer as contas, expressando o tempo em meses.

Teríamos:

$$i = 10\%$$
 a x b = $10/2 = 5\%$ ao mês = $5/100 = 0.05$

$$n = 5 \text{ anos} = 5 \times 12 = 60 \text{ meses}$$

Então: J = R\$ 12.000,00 x 0,05 x 60 = **R**\$ 36.000,00

02 – Um certo capital é aplicado em regime de juros simples, a uma taxa mensal de 5%. Depois de quanto tempo este capital estará duplicado?

Solução 01:

Temos: M = P(1 + in). Logo, o capital estará duplicado quando M = 2P. Logo, vem:

$$2P = P(1 + 0.05n)$$
; (observe que i = 5% a.m. = $5/100 = 0.05$).

Simplificando, fica:

2 = 1 + 0.05n 1 = 0.05n, de onde conclui-se n = 20 meses ou 1 ano e oito meses.

Exercício Proposto 02:

Um certo capital é aplicado em regime de juros simples, a uma taxa anual de 10%. Depois de quanto tempo este capital estará triplicado?

Resposta: (?) anos.

3.2 – Juros Compostos

O capital inicial (principal) pode crescer, como já sabemos, devido aos juros, segundo duas modalidades, a saber:

- a) Juros simples ao longo do tempo, somente o principal rende juros;
- **b**) **Juros compostos** após cada período, os juros são incorporados ao principal e passam, por sua vez, a render juros. Também conhecido como <u>"juros sobre juros".</u>

O regime de juros compostos considera que os juros formados em cada período são acrescidos ao capital formando um montante, capital mais juros, do período. Este montante, por sua vez, passará a render juros no período seguinte formando um novo montante e assim sucessivamente. Pode-se dizer então, que cada montante formado é constituído do capital inicial, juros acumulados e dos juros sobre juros formados em períodos anteriores.

Este processo de formação de juros compostos é diferente daquele descrito para os juros simples, onde somente o capital rende juros, não ocorrendo remuneração sobre os juros formados em períodos anteriores.

Vamos ilustrar a diferença entre os crescimentos de um capital através juros simples e juros compostos, com um exemplo:

Suponha que R\$ 1.000,00 são empregados a uma taxa de 20% a.a.,por um período de 4 anos a juros simples e compostos Teremos:

P = R\$ 1.000,00 i = 20% a.a n = 4 anos

n	Juros Simples		Juros Compo	stos
	Juros por periodo	Montante	Juros por periodo	Montante
1	$1.000,00 \times 0,2 = 200$	1.200,00	$1.000,00 \times 0,2 = 200$	1.200,00
2	$1.000,00 \times 0,2 = 200$	1.400,00	$1.200,00 \times 0,2 = 240$	1.440,00
3	$1.000,00 \times 0,2 = 200$	1.600,00	$1.440,00 \times 0,2 = 288$	1.728,00
4	$1.000,00 \times 0,2 = 200$	1.800,00	$1.728,00 \times 0,2 = 346$	2.074,00

O gráfico a seguir permite uma comparação visual entre os montantes no regime de juros simples e de juros compostos. Verificamos que a formação do montante em juros simples é linear e em juros compostos é exponencial:

Fonte: Elaborado pelo autor

Observe que o crescimento do principal segundo juros simples é **LINEAR** enquanto que o crescimento segundo juros compostos é **EXPONENCIAL**, portanto tem um crescimento muito mais "rápido".

Exemplo 2:

Um empresário faz uma aplicação de R\$ 1.000,00 a taxa composta de 10% ao mês por um prazo de dois meses.

1º Mês:

O capital de R\$ 1.000,00 produz um juros de R\$ 100,00 (10% de R\$ 1.000,00), pela fórmula dos juros simples já estudada anteriormente, ficaria assim:

$$M = C \times (1 + i)$$
 $M = 1.000,00 \times (1 + 0,10)$ $M = 1.100,00$

2º Mês:

O montante do mês anterior (R\$ 1.100,00) é o capital deste 2° mês servindo de base para o cálculo dos juros deste período. Assim:

$$M = 1.100,00 \text{ x} (1 + 0,10)$$
 \longrightarrow = 1.210,00

Tomando-se como base a fórmula dos juros simples o montante do 2º mês pode ser assim decomposto:

$$M = C \times (1 + i) \times (1 + i)$$

$$M = 1.000,00 \times (1 + 0,10)^{2}$$

$$M = 1.000,00 \times (1 + 0,10)^{2}$$

$$M = 1.000,00 \times (1 + 0,10)^{2}$$

Exemplo 3:

A loja São João financia a venda de uma mercadoria no valor de R\$ 16.00,00, sem entrada, pelo prazo de 8 meses a uma taxa de 1,422. Qual o valor do montante pago pelo cliente.

$$M = C x (1 + i)^n$$
 $M = 16.000,00 x (1 + 1,422)^8$ $M = 22.753,61$

Na prática, as empresas, órgãos governamentais e investidores particulares costumam reinvestir as quantias geradas pelas aplicações financeiras, o que justifica o emprego mais comum de juros compostos na Economia. Na verdade, o uso de juros simples não se justifica em estudos econômicos.

Fórmula para o cálculo de Juros compostos

Considere o capital inicial (P) R\$ 1.000,00 aplicado a uma taxa mensal de juros compostos (i) de 10% (i = 10% a.m.). Vamos calcular os montantes (principal + juros), mês a mês:

- Após o 1° mês, teremos: $M_1 = 1000 \text{ x } 1,1 = 1100 = 1000(1 + 0,1)$
- Após o 2º mês, teremos: $M_2 = 1100 \times 1.1 = 1210 = 1000(1 + 0.1)^2$
- Após o 3º mês, teremos: $M_3 = 1210 \times 1, 1 = 1331 = 1000(1 + 0, 1)^3$

Dando continuidade ao raciocínio dos juros compostos, a evolução dos juros que incide a um capital para cada um dos meses subseqüentes Após o nº (enésimo) mês o montante acumulado ao final do período atingiria :

$$S = 1000 (1 + 0,1)^n$$

De uma forma genérica, teremos para um principal P, aplicado a uma taxa de juros compostos i durante o período n :

$$S = P (1 + i)^{n}$$
ou
$$M = C (1 + i)^{n}$$

Onde:

S / M = montante;

P/C = principal ou capital inicial;

i = taxa de juros e

n = número de períodos que o principal P (capital inicial) foi aplicado.

NOTA: Na fórmula acima, as unidades de tempo referentes à taxa de juros (i) e do período (n), tem de ser necessariamente iguais. Este é um detalhe importantíssimo, que não pode ser esquecido! Assim, por exemplo, se a taxa for 2% ao mês e o período 3 anos, deveremos considerar 2% ao mês durante 3 x 12=36 meses.

4 – TAXA NOMINAL E TAXA REAL

4.1 - Taxa nominal

A <u>taxa nominal</u> de juros relativa a uma operação financeira, pode ser calculada pela expressão:

Taxa nominal = Juros pagos / Valor nominal do empréstimo

Assim, por exemplo, se um empréstimo de \$100.000,00, deve ser quitado ao final de um ano, pelo valor monetário de \$150.000,00, a taxa de juros nominal será dada por:

Juros pagos =
$$J_p$$
 = \$150.000 - \$100.000 = \$50.000,00

Taxa nominal = i_n = \$50.000 / \$100.000 = 0,50 = 50%

4.2 - Taxa real

A taxa real expurga o efeito da inflação.

Um aspecto interessante sobre as taxas reais de juros é que, elas podem ser inclusive, negativas!

Vamos encontrar uma relação entre as taxas de juros nominal e real. Para isto, vamos supor que um determinado capital P é aplicado por um período de tempo unitário, a uma certa taxa nominal i_n .

O montante S_1 ao final do período será dado por $S_1 = P(1 + i_n)$. Consideremos agora que durante o mesmo período, a taxa de inflação (desvalorização da moeda) foi igual a j. O capital corrigido por esta taxa acarretaria um montante $S_2 = P(1 + j)$.

A taxa real de juros, indicada por r, será aquela que aplicada ao montante S_2 , produzirá o montante S_1 . Poderemos então escrever:

$$S_1 = S_2 (1 + r)$$

Substituindo S_1 e S_2 , vem:

$$P(1 + i_n) = (1+r). P(1 + j)$$

Daí então, vem que:

$$(1 + i_n) = (1+r). (1 + i)$$
, onde:

 $i_n = taxa de juros nominal$

j = taxa de inflação no período

r = taxa real de juros

Observe que se a taxa de inflação for nula no período, isto é, j=0, teremos que as taxas nominal e real são coincidentes.

Veja o exemplo a seguir:

Numa operação financeira com taxas pré-fixadas, um banco empresta \$120.000,00 para ser pago em um ano com \$150.000,00. Sendo a inflação durante o período do empréstimo igual a 10%, pede-se calcular as taxas nominal e real deste empréstimo.

Teremos que a taxa nominal será igual a:

$$i_n = (150.000 - 120.000)/120.000 = 30.000/120.000 = 0,25 = 25\%$$
 Portanto $i_n = 25\%$

Como a taxa de inflação no período é igual a j=10%=0,10, substituindo na fórmula anterior, vem:

$$(1 + i_n) = (1+r). (1 + j)$$

$$(1+0.25) = (1+r).(1+0.10)$$

$$1,25 = (1+r).1,10$$

$$1 + r = 1,25/1,10 = 1,1364$$

Portanto,
$$r = 1,1364 - 1 = 0,1364 = 13,64\%$$

Se a taxa de inflação no período fosse igual a 30%, teríamos para a taxa real de juros:

$$(1+0.25) = (1+r).(1+0.30)$$

$$1,25 = (1 + r).1,30$$

$$1 + r = 1,25/1,30 = 0,9615$$

Portanto, r = 0.9615 - 1 = -0.0385 = -3.85% e, portanto teríamos uma <u>taxa real</u> de juros negativa!

5 - VALOR PRESENTE E VALOR FUTURO

Deve ser acrescentado ao estudo dos juros compostos que o capital é também chamado de valor presente (PV) e que este não se refere necessariamente ao momento zero. Em verdade, o valor presente pode ser apurado em qualquer data anterior ao montante também chamado de valor futuro (FV).

As fórmulas do valor presente (PV) e do valor futuro (FV) são iguais já vistas anteriormente, basta trocarmos seus correspondentes nas referidas fórmulas, assim temos:

$$M = C \times (1+i)^{n} \quad \text{ou}$$

$$FV = PV (1+i)^{n}$$

$$C = M \quad (1+i)^{n}$$

$$u$$

$$Ou$$

$$IV = FV \quad (1+i)^{n}$$

Onde $(1 + i)^n$ é chamado de fator de capitalização do capital, FCC (i,n) a juros compostos, e $1/(1+i)^n$ é chamado de fator de atualização do capital, FAC (i,n) a juros compostos.

A movimentação de um capital ao longo de uma escala de tempo em juros compostos se processa mediante a aplicação destes fatores, conforme pode ser visualizado na ilustração abaixo:

Fonte: Elaborado pelo autor

Observe que FV no período n é equivalente a PV no período zero, se levarmos em conta a taxa de juros i. Esta interpretação é muito importante, como veremos no decorrer do curso. É conveniente registrar que existe a seguinte convenção: seta para cima, sinal positivo (dinheiro recebido) e seta para baixo, sinal negativo (dinheiro pago). Esta convenção é muito importante, inclusive quando se usa a calculadora HP 12C. Normalmente, ao entrar com o valor presente VP numa calculadora financeira, o fazemos seguindo esta convenção, mudando o sinal da quantia considerada como PV para negativo, usando a tecla CHS, que significa uma abreviação de "change signal", ou seja, "mudar o sinal". É conveniente ressaltar que se entrarmos com o PV positivo, a calculadora expressará o FV como um valor negativo e vice versa, já que as calculadoras financeiras, e aí se inclui a HP 12C, foram projetadas,

considerando esta convenção de sinais. Usaremos sempre a convenção de sinal negativo para VP e em conseqüência, sinal positivo para FV. Veremos com detalhes este aspecto, no desenvolvimento do curso.

Exemplos Práticos:

Qual o valor de resgate de uma aplicação de R\$ 12.000,00 em um título pelo prazo de 8 meses à taxa de juros composta de 3,5% a .m.?

Solução:

Se uma pessoa deseja obter R\$ 27.500,00 dentro de um ano, quanto deverá ela depositar hoje numa poupança que rende 1.7% de juros compostos ao mês?

Solução:

$$FV = R\$ 27.500,00$$
n = 1 ano (12 meses)
i = 1.7% a . m.
$$PV = ?$$

$$PV = \frac{FV}{(1+i)^n} \cdot \frac{PV}{(1+0,017)^{12}} \cdot \frac{PV = 27.500,00}{1,224}$$

Exercícios Propostos 03:

Aplicando-se R\$ 1.000,00 por um prazo de dois anos a uma taxa de 5% ao semestre, qual será o montante no fim do período?

Resposta: R\$ (?)

PV = 22.463.70

Exercícios Propostos 04:

Um capital de R\$ 2.000.000,00 é aplicado durante um ano e três meses à taxa de 2% a.m. Quais os juros gerados no período?

Resposta: R\$ (?)

Exercícios Propostos 05:

Determinado capital aplicado a juros compostos durante 12 meses, rende uma quantia de juros igual ao valor aplicado. Qual a taxa mensal dessa aplicação?

Resposta: R\$ (?)

Exercícios Propostos 06:

Calcule o montante de R\$1.000,00 aplicados a 10% a.a. durante 50 dias.

Resposta: R\$ (?)

6 - Equivalência Financeira

Diz-se que dois capitais são equivalentes a uma determinada taxa de juros, se os seus valores em um determinado período n, calculados com essa mesma taxa, forem iguais.

Exemplo 01:

1º Conjunt	0	2º Conjunto		
Capital (R\$)	Vencimento	Capital (R\$)	Vencimento	
1.100,00	1 º a.a	2.200,00	1 º a.a	
2.420,00	2 º a.a	1.210,00	2 º a.a	
1.996,50	3 º a.a	665,5	3 º a.a	
732,05	4 º a.a	2.196,15	4 º a.a	

Verificar se os conjuntos de valores nominais, referidos à data zero, são equivalentes à taxa de juros de 10% a.a.

Para o 1.º conjunto:

$$\begin{split} P_0 &= 1.100 \text{ x FAC } (10\%; \ 1) + 2.420 \text{ x FAC } (10\%; \ 2) + \\ &+ 1.996,50 \text{ x FAC } (10\%; \ 3) + 732,05 \text{ x FAC } (10\%; \ 4) \\ P_0 &= 1.000 + 2.000 + 1.500 + 500 \\ \textbf{P_0} &= \textbf{5.000,00} \end{split}$$

Para o 2.º conjunto:

$$\begin{split} P_0 &= 2.200 \text{ x FAC } (10\%; \ 1) + 1.210 \text{ x FAC } (10\%; \ 2) + \\ &+ 665,50 \text{ x FAC } (10\%; \ 3) + 2.196,15 \text{ x FAC } (10\%; \ 4) \\ P_0 &= 2.000 + 1.000 + 500 + 1.500 \\ \textbf{P_0} &= \textbf{5.000,00} \end{split}$$

Logo os dois conjuntos de capitais são equivalentes, pois P_0 de um é igual ao P_0 de outro.

Exemplo 02:

Seja um capital de R\$ 10.000,00, que pode ser aplicado alternativamente à taxa de 2% a.m ou de 24% a.a. Supondo um prazo de aplicação de 2 anos, verificar se as taxas são equivalentes:

Solução:

Aplicando o principal à taxa de 2% a.m. e pelo prazo de 2 anos teremos:

$$J_1 = R$$
\$ 10.000,00 x 0,02 x 24 = R \$ 4.800,00

Agora se aplicarmos o principal à taxa de 24% a.a. e pelo prazo de 2 anos teremos:

$$J_2 = R$$
\$ 10.000,00 x 24 x 2 = **R**\$ **4.800,00**

OBS: Na utilização das fórmulas o prazo de aplicação (n) e a taxa (i) devem estar expressos na mesma unidade de tempo. Caso não estejam, é necessário ajustar o prazo ou a taxa.

7 – DESCONTOS SIMPLES

Existem dois tipos básicos de descontos simples nas operações financeiras: o desconto comercial e o desconto racional. Considerando-se que no regime de capitalização simples, na prática, usa-se sempre o desconto comercial, este será o tipo de desconto a ser abordado a seguir.

• Desconto Racional: Nesta modalidade de desconto a "recompensa pela liquidação do título antes de seu vencimento é calculada sobre o valor a ser liberado (Valor Atual). Incorpora os conceitos e relações básicas de juros simples. Veja":

$$J = P . i . n => D = VD . d . n$$

• Desconto Comercial: Nesta modalidade de desconto a "recompensa pela liquidação do título antes de seu vencimento é calculada sobre o Valor Nominal do título. Incorpora os conceitos de juros bancários que veremos detalhadamente a seguir":

$$J = P \cdot i \cdot n => D = VN \cdot d \cdot n$$

Vamos considerar a seguinte simbologia:

N = valor nominal de um título. V = valor líquido, após o desconto.

 D_c = desconto comercial.

d = taxa de descontos simples.

n = número de períodos.

Teremos:

$$V = N - D_c$$

No desconto comercial, a taxa de desconto incide sobre o valor nominal N do título. Logo:

$$D_c = Ndn$$

Substituindo, vem:

$$V = N(1 - dn)$$

Exemplo:

Considere um título cujo valor nominal seja R\$10.000,00. Calcule o desconto comercial a ser concedido para um resgate do título 3 meses antes da data de vencimento, a uma taxa de desconto de 5% a.m.

Solução:

 $V = 10000 \cdot (1 - 0.05 \cdot 3) = 8500$

 $D_c = 10000 - 8500 = 1500$

Resp: valor descontado = R\$ 8.500,00; desconto = R\$1.500,00

8 - DESCONTO BANCÁRIO

Nos bancos, as operações de desconto comercial são realizadas de forma a contemplar as despesas administrativas (um percentual cobrado sobre o valor nominal do título) e o IOF - imposto sobre operações financeiras.

É óbvio que o desconto concedido pelo banco, para o resgate de um título antes do vencimento, através desta técnica, faz com que o valor descontado seja maior, resultando num resgate de menor valor para o proprietário do título.

Exemplo:

Um título de R\$ 100.000,00 é descontado em um banco, seis meses antes do vencimento, à taxa de desconto comercial de 5% a.m. O banco cobra uma taxa de 2% sobre o valor nominal do título como despesas administrativas e 1,5% a.a. de IOF. Calcule o valor líquido a ser recebido pelo proprietário do título e a taxa de juros efetiva da operação.

Solução:

Desconto comercial: $D_c = 100000 \cdot 0.05 \cdot 6 = 30000$

Despesas administrativas: $d_a = 100000 \cdot 0,02 = 2000$

 $IOF = 100000 \cdot (0.015/360) \cdot 180 = 750$

Desconto total = 30000 + 2000 + 750 = 32750

Daí, o valor líquido do título será: 100000 - 32750 = 67250

Logo, V = R\$ 67.250,00

A taxa efetiva de juros da operação será: i = [(100000/67250) - 1].100 = 8,12% a. m.

Observe que a taxa de juros efetiva da operação, é muito superior à taxa de desconto, o que é amplamente favorável ao banco.

Duplicatas

Recorrendo a um dicionário encontramos a seguinte definição de <u>duplicata</u>: Título de crédito formal, nominativo, emitido por negociante com a mesma data, valor global e vencimento da fatura, e representativo e comprobatório de crédito preexistente (venda de mercadoria a prazo), destinado a aceite e pagamento por parte do comprador, circulável por meio de endosso, e sujeito à disciplina do direito cambiário.

Observação:

- a) A duplicata deve ser emitida em impressos padronizados aprovados por Resolução do Banco Central.
- b) Uma só duplicata não pode corresponder a mais de uma fatura.

Considere que uma empresa disponha de faturas a receber e que, para gerar capital de giro, ela dirija-se a um banco para trocá-las por dinheiro vivo, antecipando as receitas. Entende-se como duplicatas, essas faturas a receber negociadas a uma determinada taxa de descontos com as instituições bancárias.

Exemplo:

Uma empresa oferece uma duplicata de R\$ 50000,00 com vencimento para 90 dias, a um determinado banco. Supondo que a taxa de desconto acertada seja de 4% a. m. e que o banco, além do IOF de 1,5% a.a. , cobra 2% relativo às despesas administrativas, determine o valor líquido a ser resgatado pela empresa e o valor da taxa efetiva da operação.

SOLUÇÃO:

Desconto comercial = $Dc = 50000 \cdot 0.04 \cdot 3 = 6000$

Despesas administrativas = $Da = 0.02 \cdot 50000 = 1000$

IOF = 50000(0,015/360).[90] = 187,50

Teremos então:

Valor líquido = V = 50000 - (6000 + 1000 + 187,50) = 42812,50

Taxa efetiva de juros = i = [(50000/42812,50) - 1].100 = 16,79 % a.t. = 5,60% a.m.

Resp: V = R\$ 42812,50 e i = 5,60 % a.m.

Exercícios Propostos 07:

Um título de R\$ 5.000,00 vai ser descontado 60 dias antes do vencimento. Sabendo-se que a taxa de juros é de 3% a.m., pede-se calcular o desconto comercial e o valor descontado.

Resposta: R\$ (?)

Exercícios Propostos 08:

Um banco realiza operações de desconto de duplicatas a uma taxa de desconto comercial de 12% a . a., mais IOF de 1,5% a . a. e 2% de taxa relativa a despesas administrativas. Além disto, a título de reciprocidade, o banco exige um saldo médio de 10% do valor da operação. Nestas condições, para uma duplicata de valor nominal R\$ 50000,00 que vai ser descontada 3 meses antes do vencimento, pede-se calcular a taxa efetiva de juros da operação. Resposta: R\$ (?)

9 – FLUXO DE CAIXA

Conjunto de **entradas e saídas de dinheiro** (caixa) ao longo do tempo. Um diagrama de fluxo de caixa, é simplesmente a representação gráfica numa reta, dos períodos e dos valores monetários envolvidos em cada período, considerando-se uma certa taxa de juros i.

Traça-se uma reta horizontal que é denominada eixo dos tempos, na qual são representados os valores monetários, considerando-se a seguinte convenção:

- dinheiro recebido seta para cima
- dinheiro pago seta para baixo.

Exemplo:

Veja o diagrama de fluxo de caixa a seguir:

O diagrama da figura acima, por exemplo, representa um projeto que envolve investimento inicial de 800, pagamento de 200 no terceiro ano, e que produz receitas de 500 no primeiro ano, 200 no segundo, 700 no quarto e 200 no quinto ano.

Convonção	dinheiro recebido flecha para cima valor positivo
Convençao:	dinheiro pago flecha para baixo valor negativo

Vamos agora considerar o seguinte fluxo de caixa, onde C_0 , C_1 , C_2 , C_3 , ..., C_n são capitais referidos às datas, 0, 1, 2, 3, ..., n para o qual desejamos determinar o valor presente (PV).

O problema consiste em trazer todos os capitais futuros para uma mesma data de referencia. Neste caso, vamos trazer todos os capitais para a data zero. Pela fórmula de Valor Presente vista acima, concluímos que o <u>valor presente resultante</u> - NPV - do fluxo de caixa, também conhecido como Valor Presente Líquido (VPL), dado será:

$$NPV = C_0 + \frac{C_1}{(1+i)^1} + \frac{C_2}{(1+i)^2} + \frac{C_3}{(1+i)^3} + \dots + \frac{C_n}{(1+i)^n}$$

Esta fórmula pode ser utilizada como critério de escolha de alternativas, como veremos nos exercícios a seguir.

Exercícios:

1 - Numa loja de veículos usados são apresentados ao cliente dois planos para pagamento de um carro:

Plano A: dois pagamentos, um de \$ 1.500,00 no final do sexto mês e outro de \$ 2.000,00 no final do décimo segundo mês.

Plano B: três pagamentos iguais de \$ 1.106,00 de dois em dois meses, com início no final do segundo mês.

Sabendo-se que a taxa de juros do mercado é de 4% a.m., qual o melhor plano de pagamento?

SOLUÇÃO:

Inicialmente , devemos desenhar os fluxos de caixa correspondentes:

PLANO A:

PLANOB:

Teremos para o plano A:

$$PV = \frac{1500}{1,04^6} + \frac{2000}{1,04^{12}} = 2434,66$$

Para o plano B, teremos:

$$PV = \frac{1106}{1,04^2} + \frac{1106}{1,04^4} + \frac{1106}{1,04^6} = 2842,06$$

Como o plano A nos levou a um menor valor atual (ou valor presente), concluímos que este plano A é mais atraente do ponto de vista do consumidor.

Exercício:

2 - Um certo equipamento é vendido à vista por \$ 50.000,00 ou a prazo, com entrada de \$ 17.000,00 mais três prestações mensais iguais a \$ 12.000,00 cada uma, vencendo a primeira

um mês após a entrada. Qual a melhor alternativa para o comprador, se a taxa mínima de atratividade é de 5% a.m.?

SOLUÇÃO:

Vamos desenhar os fluxos de caixa:

À vista:

A prazo:

Vamos calcular o valor atual para esta alternativa:

$$NPV = 17000 + \frac{12000}{1,05} + \frac{12000}{1,05^2} + \frac{12000}{1,05^3} = 49678,97$$

Como o valor atual da alternativa a prazo é menor, a compra a prazo neste caso é a melhor alternativa, do ponto de vista do consumidor.

Exercício:

3 - Um equipamento pode ser adquirido pelo preço de \$ 50.000,00 à vista ou, a prazo conforme o seguinte plano:

Entrada de 30% do valor à vista, mais duas parcelas, sendo a segunda 50% superior à primeira, vencíveis em quatro e oito meses, respectivamente. Sendo 3% a.m. a taxa de juros do mercado, calcule o valor da última parcela.

SOLUÇÃO

Teremos:

$$50000 = 15000 + \frac{22500}{1,03^4} + \frac{x}{1,03^8}$$

Resolvendo a equação acima, obtemos x = 19013,00

Portanto, o valor da prestação é \$19013,00.

Exercício Proposto 09:

Uma loja vende determinado tipo de televisor nas seguintes condições: R\$ 400,00 de entrada, mais duas parcelas mensais de R\$ 400,00, no final de 30 e 60 dias respectivamente. Qual o valor à vista do televisor se a taxa de juros mensal é de 3% ?

Resposta: R\$ (?)

10 - NOÇÃO ELEMENTAR DE INFLAÇÃO E SALDO MÉDIO BANCÁRIO

Outro conceito importante no estudo da Matemática Financeira é o de inflação.

Entenderemos como **INFLAÇÃO** num determinado período de tempo, como sendo o aumento médio de preços, ocorrido no período considerado, usualmente medido por um <u>índice</u> expresso como uma taxa percentual relativa a este mesmo período.

Para ilustrar de uma forma simples, o conceito elementar de inflação apresentado acima, vamos considerar a tabela abaixo, onde está indicado o consumo médio mensal de uma determinada família em dois meses distintos e os custos decorrentes associados:

Indicadores		Mês 01		Mês 02	
Produto	Quantidade	Preço (\$)	Subtotal	Preço (\$)	Subtotal
Arroz	5 kg	1,20	6,00	1,30	6,50
Carne	15 kg	4,50	67,50	4,80	72,00
Feijão	4 kg	1,69	6,76	1,80	7,20
Óleo	2 latas	2,40	4,80	2,45	4,90

Leite	20 litros	1,00	20,00	1,10	22,00
Café	1 kg	7,60	7,60	8,00	8,00
Açúcar	10 kg	0,50	5,00	0,65	6,50
Passagens	120	0,65	78,00	0,75	90,00
TOTAL		******	195,66	*****	217,10

A variação percentual do preço total desta cesta de produtos, no período considerado é igual a:

$$V = [(217,10 / 195,66) - 1] \times 100 = 0,1096 = 10,96 \%$$

Diremos então que a inflação no período foi igual a 10,96 %.

NOTAS:

- a) Para o cálculo de índices reais de inflação, o número de itens considerado é bastante superior e são obtidos através de levantamento de dados em determinadas amostras da população, para se determinar através de métodos estatísticos, a "cesta de mercado", que subsidiará os cálculos;
- b) A metodologia sugerida no exemplo acima é conhecida como método de Laspeyres;
- c) Podemos entender agora os motivos que determinam as diferenças entre os índices de inflação calculados entre instituições distintas tais como **FIPE**, **FGV**, **DIEESE**, entre outras.

10.1 - Juros e saldo médio em contas correntes

Vamos considerar o caso de uma conta corrente, da qual o cliente saca e deposita recursos ao longo do tempo. Vamos ver nesta seção, a metodologia de cálculo do <u>saldo médio</u> e dos <u>juros mensais</u> decorrentes da movimentação dessa conta.

As contas correntes associadas aos "cheques especiais" são exemplos corriqueiros da aplicação prática da metodologia a ser apresentada.

10.2 - Juros em contas correntes (cheques especiais)

Considere os capitais C_1 , C_2 , C_3 , ..., C_k aplicados pelos prazos n_1 , n_2 , n_3 , ..., n_k , à taxa de juros simples i. A fórmula abaixo, permite o cálculo dos juros totais J produzidos no período considerado:

$$J = i.(C_1.n_1 + C_2.n_2 + C_3.n_3 + ... + C_k.n_k)$$

O cálculo dos juros pelo método acima (conhecido como "Método Hamburguês") é utilizado para a determinação dos juros sobre os saldos devedores dos "cheques especiais".

11 – SERIE DE PAGAMNTOS

Série de pagamentos - é um conjunto de pagamentos de valores R_1 , R_2 , R_3 , ... R_n , distribuídos ao longo do tempo correspondente a n períodos, podendo esses pagamentos serem de valores constantes ou de valores distintos. O conjunto de pagamentos (ou recebimentos) ao longo dos n períodos, constitui - se num fluxo de caixa. Vamos resolver a seguir, os problemas nos quais $R_1 = R_2 = R_3 = ...$ $R_n = R$, ou seja: pagamentos (ou recebimentos) iguais.

Quando a série de pagamentos (ou recebimentos) se inicia um período após a data zero, o fluxo recebe o nome de POSTECIPADO. Quando o início dos pagamentos ou recebimentos ocorre na data zero, o fluxo recebe o nome de ANTECIPADO.

Exemplos:

1 - Pagamentos no início dos períodos: Fluxo ANTECIPADO

2 - Pagamentos no final dos períodos: Fluxo POSTECIPADO

11.1 - Fator de acumulação de capital – FAC

O problema a resolver é o seguinte:

Determinar a quantia S acumulada a partir de uma série uniforme de pagamentos iguais a R, sendo i a taxa de juros por período.

Vamos considerar dois casos: fluxo postecipado e fluxo antecipado.

NOTA: na calculadora HP12C, R é expressa pela tecla PMT (pagamentos periódicos). Portanto R e PMT possuem o mesmo sentido, ou seja, a mesma interpretação. Da mesma forma, S corresponde a FV na calculadora HP 12C.

A) Fluxo postecipado

Considere o fluxo de caixa postecipado a seguir, ou seja: os pagamentos são feitos nos finais dos períodos.

Vamos transportar cada valor R para o tempo n, supondo que a taxa de juros é igual a i , lembrando que se trata de um fluxo de caixa POSTECIPADO, ou seja, os pagamentos são realizados no final de cada período.

Teremos:

$$S = R(1+i)^{n-1} + R(1+i)^{n-2} + R(1+i)^{n-3} + ... + R(1+i) + R$$

Colocando R em evidencia, teremos:

$$S = R[(1+i)^{n-1} + (1+i)^{n-2} + (1+i)^{n-3} + ... + (1+i) + 1]$$

Observe que a expressão entre colchetes é a soma dos n primeiros termos de uma progressão geométrica de primeiro termo $(1+i)^{n-1}$, último termo 1 e razão 1/(1+i).

Aplicando a fórmula da soma dos n primeiros termos de uma progressão geométrica, teremos:

Nota: em caso de dúvida, consulte sobre Progressão Geométrica

$$(1+i)^{n-1} + (1+i)^{n-2} + (1+i)^{n-3} + ... + (1+i) + 1 =$$

$$= \frac{1 \cdot \frac{1}{1+i} - (1+i)^{n-1}}{\frac{1}{1+i} - 1} = \frac{\frac{1 - (1+i)^n}{1+i}}{\frac{1 - (1+i)}{1+i}} = \frac{1 - (1+i)^n}{1 - (1+i)} = \frac{1 - (1+i)^n}{-i} = \frac{(1+i)^n - 1}{i}$$

Substituindo o valor encontrado acima, vem finalmente que:

$$S = R \left[\frac{(1+i)^n - 1}{i} \right]$$

- o fator entre colchetes é denominado Fator de acumulação de capital FAC(i,n).
- assim, teremos: S = R. FAC(i,n). Os valores de FAC(i,n) são tabelados. Na prática, utilizam-se as calculadoras científicas ou financeiras, ao invés das tabelas.

Usando-se a simbologia adotada na calculadora HP 12C, onde R = PMT e S = FV, teremos a fórmula a seguir:

$$FV = \frac{PMT}{i}[(1+i)^n - 1]$$

11.2 - Fator de valor atual - FVA

Considere o seguinte problema:

Determinar o principal P que deve ser aplicado a uma taxa i para que se possa retirar o valor R em cada um dos n períodos subsequentes.

Este problema também poderia ser enunciado assim: qual o valor P que financiado à taxa i por período, pode ser amortizado em n pagamentos iguais a R?

Fluxo postecipado (pagamentos ao final de cada período, conforme figura a seguir):

Trazendo os valores R para o tempo zero, vem:

$$P = \frac{R}{1+i} + \frac{R}{(1+i)^2} + \frac{R}{(1+i)^3} + \dots + \frac{R}{(1+i)^n} = R \left[\frac{1}{1+i} + \frac{1}{(1+i)^2} + \dots + \frac{1}{(1+i)^n} \right]$$
 inanceiral

O fator entre colchetes representa a soma dos n primeiros termos de uma progressão geométrica de primeiro termo 1/(1+i), razão 1/(1+i) e último termo $1/(1+i)^n$.

Teremos então, usando a fórmula da soma dos n primeiros termos de uma progressão geométrica.

O fato r entre colchetes será então igual a:

$$\frac{\frac{1}{(1+i)^n} \cdot \frac{1}{1+i} - \frac{1}{1+i}}{\frac{1}{1+i} - 1} = \frac{\frac{1 - (1+i)^n}{(1+i)^n \cdot (1+i)}}{\frac{1 - (1+i)}{1+i}} = \frac{1 - (1+i)^n}{(1+i)^n \cdot (1+i)} \times \frac{1+i}{-i} = \frac{(1+i)^n - 1}{i(1+i)^n}$$

Substituindo, vem finalmente:

$$P = R \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$$

- o fator entre colchetes é denominado Fator de valor atual FVA(i,n);
- assim, teremos: P = R. FVA(i,n). Os valores de FVA(i,n) são tabelados;
- observe que P corresponde a PV e R corresponde a PMT na calculadora HP 12C.

Usando a simbologia da calculadora HP 12C, a fórmula acima ficaria:

$$PV = PMT \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$$

12 - SISTEMA DE AMORTIZAÇÃO DE EMPRÉSTIMOS

12.1. - Sistema De Amortização Constante – (SAC)

Nesse sistema as parcelas de amortização são iguais entre si. Os juros são calculados a cada período multiplicando-se a taxa de juros contratada pelo saldo devedor existente no período.

• Amortização numa data genérica t

Os valores são sempre iguais e obtidos por A=P/n onde $A_1=A_2=A_3=\dots$ $A_1=A_2=A_3=\dots$ $A_1=A_2=A_3=\dots$ $A_1=A_2=A_3=\dots$

Isso implica que a soma das n amortizações iguais seja:

Saldo Devedor numa data genérica t

No sistema SAC o saldo devedor decresce linearmente em um valor igual à amortização A=P/n. Assim, o saldo devedor, logo após o pagamento da prestação (AMORTIZAÇÃO + JUROS) correspondente, será:

$$P_t = P - t.A$$
 \rightarrow $P - t.\frac{P}{n}$ \rightarrow $P.(\frac{n-t}{n})$ ($P_t = A(n-t)$

Juros numa data genérica t

```
\begin{array}{lll} t = 1 & & J1 = P.i \\ t = 2 & & J2 = P1.i = (\ P-A\ ).i = Pi-A\ .\ i \\ t = 3 & & J3 = P2.i = (\ P-2A\ ).i = Pi-2\ .\ A\ .\ i \\ t = 4 & & J4 = P3.i = (\ P-3A\ ).i = Pi-3\ .\ A\ .\ i \\ \dots & & \dots & \dots \\ t = n & & Jn = Pn-1\ .\ i = [\ P-(n-1)\ .\ A\ ]\ .\ i = Pi-(n-1)\ .\ A\ .\ i \end{array}
```

Assim, o valor dos juros pagos na referida data será:

$$\mathbf{J_t} = \mathbf{Pi} - (\mathbf{t} - \mathbf{1}).\mathbf{Ai}$$

ou então:

$$\begin{split} &Jt = Pi - (t-1).~(\quad \text{EMBED Equation.3} \qquad)~.i = \quad \text{EMBED Equation.3}\\ &J_t = Pi/n~-[~n - (t-1)] = \frac{Pi}{n} (n-t+1) \end{split}$$

$$\mathbf{J}_t = \mathbf{A}\mathbf{i} \ (\mathbf{n} - \mathbf{t} + \mathbf{1})$$

Onde:
$$n = \text{prazo total}$$

 $t = \text{o momento desejado}$

Somatório dos juros

Como a variação de juros no Sistema SAC se trata de uma progressão aritmética, o somatório dos juros de um determinado período se faz utilizando a fórmula do somatório dos n termos de uma P.A.

Com isso:

$$\sum_{t=1}^{n} J_{t} = \frac{(J_{1} + J_{t})t}{2}$$

Prestação numa data genérica t

Soma-se a amortização do momento desejado (que é constante em todos os momentos) como os juros referentes a este momento.

$$R_1 \rightarrow A + J_1$$

$$R_2 \rightarrow A + J_2$$

.

$$R_3 \rightarrow A + J_3$$

$$R_t \rightarrow A + J_t$$

Assim , o pagamento de um financiamento pelo sistema SAC, num prazo de n períodos e à uma taxa i por período seria como o diagrama e a tabela abaixo:

Fonte: Elaborado pelo autor

DATA	Saldo Devedor	Juros	Amortização	Prestação
T	$P_t = P_{t-1} - A$	$J_{t} = P_{t-1} \cdot i$	$A_t = A = P/n$	Rt = A + Jt
0	$P_0 = P$	-	-	-
1	$P_1 = P - A$	$J_1 = P . i$	$A_1 = A$	$R_1 = A + J_1$
2	$P_2 = P_1 - A$	$J_2 = P_1 \cdot i$	$A_2 = A$	$R_2 = A + J_2$
3	$P_3 = P_2 - A$	$J_3 = P_2 \cdot i$	$A_3 = A$	$R_3 = A + J_3$
4	$P_t = P_{t-1} - A$	$J_t = P_{t-1} \cdot i$	$A_t = A$	$R_4 = A + J_4$
n	$P_n = P_{n-1} - A$	$J_n = P_{n-1} \cdot i$	$A_n = A$	$R_n = A + J_n$
Ordem de Obtenção das Parcelas	2.°	3.°	1.°	4.°

Vejamos agora um exemplo numérico:

P =\$ 1.000,00

n = 4 prestações

i = 2% a.p.

t	Saldo Devedor	Amortização	Juros	Prestação
0	1.000,00	-	-	-
1	750,00	250,00	20,00	270,00
2	500,00	250,00	15,00	265,00
3	250,00	250,00	10.00	260,00
4	0,00	250,00	5,00	255,00

9.2 - Sistema De Prestações Constantes - (PRICE)

Prestação numa data genérica t

No sistema PRICE a prestação é constante e em qualquer data t o seu valor é dado por:

$$Rt = R1 = R2 = ... = Rn = cte.$$

 $R_t = R = P \times FPR(i,n) = constante$

Juros numa data genérica t

Os juros de um determinado período são calculados sobre o saldo devedor do período anterior.

Ou
$$J_t = R_t - A_t \quad \Rightarrow \quad R_t = R = cte.$$

$$J_t = R - A_t$$

$$\begin{aligned} Ou & J_t = R - A_t = R - A_1 (1+i)^{t-1} \\ A_1 = R - J_1 = R - P.i \end{aligned}$$

Assim:
$$\rightarrow$$
 $J_t = R - (R - P.i) (1 + i)^{t-1}$

Amortização numa data genérica t

No sistema PRICE o crescimento das amortizações é exponencial ao longo do tempo.

Dado que $A_t=R-J_t$ e J=P.i, então:

DATA 1 – final do 1.º período

$$Juros = J_1 = P.i$$

Amortização =
$$A_1 = R - J_1 = (R - P.i)$$

DATA 2 – final do 2.º período

Juros =
$$J_2 = P_1.i = [P(1+i) - R].i = [P(1+i).i - R.i]$$

Amortização =
$$A_2 = R - J_2 = R - P.(1 + i).i + R = R.(1 + i) - P.(1 + i).i$$

= $(R - P.i) \cdot (1 + i) = A_2 = A_1 \cdot (1 + i)$

DATA 3 – final do 3.º período

Juros =
$$J_3 = P_2 \cdot i = P \cdot i - A_1 \cdot i - A_1 \cdot (1 + i) \cdot i$$

$$\begin{split} \text{Amortização} &= A_3 = R - J_3 = R - [P.i - A_1.i - A_1 (1+i).i] \\ &\quad A_3 = (R - P.i) + A_1.i + A_1 (1+i).i \\ &= A_1 + A_1.i + A_1 (1+i).i \\ &= A_1 (1+i) + A_1 (1+i).i \\ &= A_1 (1+i).(1+i) \\ &\quad A_3 = A_1 (1+i)^2 \end{split}$$

Então teríamos:

$$\begin{aligned} &A_2 = A_1 \; (\; 1+i\;) \\ &A_3 = A_1 \; (\; 1+i\;)^2 \\ &A_4 = A_1 \; (\; 1+i\;)^3 \\ &\dots \qquad \dots \\ &A_n = A_1 \; (\; 1+i\;)^{n-1} \end{aligned}$$

O que comprovaria a expressão:

 $A_t = A_1.(1+i)^{t-1}$; para uma data genérica t ou $A_t = A_1.$ FPS(i%, (t - 1))

Para testar a consistência da fórmula acima:

$$A_1 = 22.192$$
 $t = 3$ $i = 8\%$ a.a. $A_3 = ?$

$$\begin{aligned} A_t &= A_1.(1+i)^{t\text{-}1} \quad A_3 = 22.192.(1+0.08)^2 \\ A_3 &= 22.192 \ x \ 1.1664 = 25.884.75 \end{aligned}$$

Ou

 $A_t = A_1 \times FPS [i, (t-1)]$ pois $(1 + i)^{t-1} = FPS [i, (t-1)]$ desse modo, no exemplo anterior teríamos:

$$A_3 = 22.192 \text{ x FPS}(8\%,2) = 22.192 \text{ x } 1,1664 = 25.884,75$$

Saldo Devedor numa data genérica t

O Saldo devedor de um determinado período é dado pela diferença entre o saldo devedor do período anterior e a amortização do período.

$$P_{t} = P_{t-1} - A_{t}$$
 $P_{t} = R \times FRP [i\%, (n-t)]$

Assim, para um empréstimo P, à taxa de juros i por período, com um prazo de n períodos, poderíamos elaborar a seguinte:

Fonte: Elaborado pelo autor

Datas	Saldo Devedor	Juros	Prestações Constantes	Amortização
(t)	$P_t = P_{t-1} - A_t$	$J_t = P_{t-1} . i$	$R_t = R$	$At = R - J_t$
0	Po = P	-	-	-
1	$P_1 = P - A_1$	$J_1 = P.i$	R	$A_1 = R - J_1$
2	$P_2 = P_1 - A_2$	$J_2 = P_1.i$	R	$A_2 = R - J_2$
3	$P_3 = P_2 - A_3$	$J_3 = P_2.i$	R	$A_3 = R - J_3$
Т	$P_t = P_{t-1} - A_t$	$\boldsymbol{J}_t = \boldsymbol{P}_{t\text{-}1}.\boldsymbol{i}$	R	$\mathbf{A}_{t} = \mathbf{R} - \mathbf{J}_{t}$
•				
N	$P_n = P_{n-1} - A_n$	$J_n = P_{n-1}.i$	R	$\mathbf{A}_{\mathbf{n}} = \mathbf{R} - \mathbf{J}_{\mathbf{n}}$
TOTAIS		$\sum_{1}^{n} J_{t} = nR - P$	$\sum R = n.R$	$\sum_{t=1}^{t=n} A_t = P$
Ordem de obtenção de parcelas	4.°	2.°	1.°	3.°

Vejamos agora um exemplo numérico:

P = 1.000,00

i = 2% a.p.

n = 4 prestações

t	Saldo Devedor	Amortização	Juros	Prestação
0	1.000,00	-	-	-
1	757,38	242,62	20,00	262,62
2	509,91	247,47	15,15	262,62
3	257,49	252,42	10,20	262,62
4	-	257,49	5,15	262,62

Um financiamento pelo Sistema Price pode ser calculado utilizando-se máquinas financeiras, pois suas prestações são constantes.

9.3 - Sistema De Amortização Mista – (SAM)

Aqui o valor da prestação é obtido através da média aritmética das prestações obtido através do sistema PRICE e SAC.

Ex.:

$$P = 1.000,00$$
 $i = 8 \%$ a.a. $n = 4$ anos

$$n = 4$$
 anos

SIST. PRICE

ANO	SALDO DEVEDOR	Juros	Prestação	Amotização	Saldo Final
					1.000,00
1	1.000,00	80,00	301,92	221,92	778,08
2	778.08	62,25	301,92	239,67	538,41
3	538,41	43,07	301,92	258,85	279,56
4	270,56	22,36	301,92	279,56	Ø

SIST. SAC

ANO	SALDO DEVEDOR	Juros	Prestação	Amotização	Saldo Final
					1.000,00
1	100,00	80,00	330,00	250,00	750,00
2	750,00	60,00	310,00	250,00	500,00
3	500,00	40,00	290,00	250,00	250,00
4	250,00	20,00	270,00	250,00	Ø

SIST. SAM

Ano	Prest. PRICE	PREST. SAC	SOMA	PREST. SAM		
1	301,92	330,00	631,92	315,96		
2	301,92	310,00	611,92	305,96		
3	301,92	290,00	591,92	295,96		
4	301,92	270,00	571,92	285,96		

Essa modalidade de pagamento é conhecida como Sistema de Amortização Mista (SAM) e vem sendo utilizada na liquidação de financiamento imobiliário.

NOTAS IMPORTANTES:

- a) a taxa de juros i deve sempre ser expressa em relação ao número de períodos n;
- b) Exemplo: se i for 2% ao mês (2% a. m.), o número de períodos deve ser também expresso em meses; se i for 10% ao trimestre 10% a. t.), o número de períodos deve ser expresso em trimestres e assim sucessivamente.
- c) Nas calculadoras financeiras a HP 12C por exemplo $\underline{\mathbf{P}}$ é indicado pela tecla $\underline{\mathbf{PV}}$, que significa $\underline{\mathbf{PRESENT\ VALUE}}$ (Valor presente), $\underline{\mathbf{S}}$ é indicado pela tecla $\underline{\mathbf{FV}}$, que significa $\underline{\mathbf{FUTURE\ VALUE}}$ (Valor Futuro) e $\underline{\mathbf{R}}$ é indicado pela tecla $\underline{\mathbf{PMT}}$, que significa $\underline{\mathbf{PAYMENT}}$ (Pagamento).

d) Para fazer download de uma calculadora HP12C, na Internet clique em http://www.zaz.com.br/matematica.;

FATORES:

1 - Conhecendo-se P, i e n, calcular S

$$S = P(1+i)^n$$

2 - Conhecendo-se S, i e n, calcular P

Consequência imediata da fórmula anterior:

$$P = \frac{S}{(1+i)^n}$$

3 - Conhecendo-se R, i e n, determinar S

$$S = R \left[\frac{(1+i)^n - 1}{i} \right]$$

4 - Conhecendo-se R, i e n, determinar P

Consequência imediata da fórmula anterior.

$$P = R \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$$

5 - Conhecendo-se S, i e n, determinar R

$$R = S\left[\frac{i}{(1+i)^n - 1}\right]$$

6 - Conhecendo P, i e n, determinar R

$$R = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right]$$

Agora que conhecemos a funcionalidade da matemática financeira vamos resolver estes **Exercícios Aplicados**.

- 1 Calcular os juros simples produzidos por \$40.000,00, aplicados à taxa de 36% a.a., durante 125 dias.
- 2 Um empréstimo de \$8.000,00 rendeu juros de \$2.520,00 ao final de 7 meses. Qual a taxa de juros do empréstimo?
- 3 Qual o capital que aplicado a juros simples de 1,2% a.m. rende \$3.500,00 de juros em 75 dias?
- 4 Por quanto tempo um capital de \$11.500,00 foi aplicado para que rendesse \$1.725,00 de juros, sabendo-se que a taxa de juros de mercado é de 4,5% a.m.?
- 5 Que capital produziu um montante de \$20.000,00, em 8 anos, a uma taxa de juros simples de 12% a.a.?
- 6 Calcule o montante resultante da aplicação de \$70.000,00 à taxa de 10,5% a.a. durante 145 dias.

- 7 A que taxa mensal o capital de \$38.000,00 produzirá o montante de R\$ 70.300,00 em 10 anos?
- 8 Um capital é aplicado a juros simples de 5% ao semestre (5 % a.s.), durante 45 dias. Após este prazo, foi gerado um montante de \$886.265,55. Qual foi o capital aplicado?
- 9 Que capital aplicado a 3% ao bimestre (3% a.b.), por um prazo de 75 dias, proporcionou um montante de \$650.000,00?
- 10 Um capital de \$5.380,00 aplicado por 3 meses e 18 dias, rendeu \$1839,96 de juros ao final do período. Qual a taxa mensal de juros simples?
- 11 Um capital P foi aplicado a juros simples de 15% ao bimestre (15% a.b.), por um prazo de 5 meses e 13 dias e, após este período, o investidor recebeu \$10.280,38. Qual o valor P do capital aplicado?
- 12 Obteve-se um empréstimo de \$10.000,00 , para ser liquidado por \$14.675,00 no final de 8 meses e meio. Qual a taxa de juros anual cobrada nessa operação?
- 13 Em quanto tempo um capital aplicado a 48% a.a. dobra o seu valor?
- 14 Determinar o capital necessário para produzir um montante de \$798.000,00 no final de um ano e meio, aplicado a uma taxa de 15% ao trimestre (15% a.t.).
- 15 Determinar o montante correspondente a uma aplicação de \$450.000,00 por 225 dias, à taxa de 5,6% ao mês (5,6% a.m.).
- 16 Se possuo um título com valor nominal de \$15.000,00 com vencimento daqui a 2 anos e a taxa de juros simples correntes é de 28% a.a. , qual o valor atual deste título nas seguintes datas:
- a) hoje
- b) daqui a um ano
- c) 4 meses antes do vencimento.
- 17 João tomou emprestado \$20.000,00 de Carlos para pagá-lo após 2 anos. A taxa acertada de juros simples foi de 30% a.a. . Quanto Carlos poderia aceitar, se 6 meses antes do vencimento da dívida, João quisesse resgatá-la e se nesta época o dinheiro valesse 25% a.a. ?

- 18 João tomou emprestado certa quantia de Carlos à taxa de juros simples de 28,8% a.a.. Sabendo-se que João pagou \$2.061,42 para Carlos, saldando a dívida 2 meses antes do seu vencimento e que nesta época a taxa corrente de mercado era de 25,2% a.a., quanto João tomou emprestado e qual era o prazo inicial se os juros previstos eram de \$648,00?
- 19 João aplicou \$10.000,00 à taxa de 30% a.a. pelo prazo de 9 meses. Dois meses antes da data de vencimento, João propôs a transferência da aplicação para Paulo. Quanto Paulo deverá pagar pelo título, se a taxa de juros simples do mercado for de 35% a.a. ?
- 20 Quanto tempo deverá permanecer aplicado um capital para que o juro seja igual a duas vezes o capital, se a taxa de juros simples for igual a 10% a.a.?