Московский физико-технический институт

Лабораторная работа 5.1.2

Исследование эффекта Комптона

Бертол Наталия Б01-005а **Описание работы:** С помощью сцинтилляционного спектрометра исследуется энергетический спектр квантов, рассеянных на графите. Определяется энергия рассеянных квантов в зависимости от угла рассеяния, а так же энергия покоя частиц, на которых происходит комптоновское рассеяние.

Схема экспериментальной установки

Теоретическая часть

Используем законы сохранения:

$$mc^{2} + \hbar \omega_{0} = \gamma mc^{2} + \hbar \omega_{1}$$

$$\frac{\hbar \omega_{0}}{c} = \gamma mv cos \varphi + \frac{\hbar \omega_{1}}{c} cos \theta$$

$$\gamma mv sin \varphi = \frac{\hbar \omega_{1}}{c} sin \theta$$

Изменение длины волны рассеянного излучения равно

$$\Delta \lambda = \lambda_1 - \lambda_2 = \Lambda_k (1 - \cos \theta)$$

где $\Lambda_{_{\! k}}$ - комптоновская длина волны электрона

$$\Lambda_k = \frac{h}{mc} = 2,42.10^{-10} \text{cm}$$

Выражения для энергий у квантов

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta$$
 где $\varepsilon_0 = E_0/mc^2$

Используя номера каналов

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos\theta)$$

Энергия покоя электрона выраженная через энергии рассеянных электронов

$$mc^2 = E(0) \frac{E(90)}{E(0) - E(90)} = E_{\gamma} \frac{N(90)}{N(0) - N(90)}$$

Результаты измерений и обработка данных

Устанавливая сцинтилляционный счетчик под разными углами к первоначальному направлению кванта, снимем амплитудные спектры и определим положения фотопиков

θ°	$1 - cos\theta$	$\delta(1-\cos\theta)$	$N(\theta)$	$\frac{1}{N(\theta)}$	$\delta(\frac{1}{N(\theta)})$
0	0,000	0,000	887	1,127	0,011
10	0,015	0,003	867	1,153	0,011
20	0,060	0,006	804	1,243	0,012
30	0,134	0,009	771	1,297	0,014
40	0,234	0,011	679	1,472	0,015
50	0,357	0,013	563	1,776	0,017
60	0,500	0,015	511	1,956	0,011
70	0,658	0,015	430	2,325	0,015
80	0,826	0,016	385	2,597	0,016
90	1,000	0,017	369	2,710	0,017
100	1,174	0,017	333	3,003	0,017
110	1,342	0,017	312	3,205	0,017

$$\delta\theta = 1^{\circ}$$

$$\varepsilon(N) = 0,01$$

По графику определим искомые значения

$$N(90) = 357 \pm 6$$

 $N(0) = 909 \pm 16$

Искомое значение энергии покоя электрона

$$mc^2 = 428 \pm 129B$$

Вывод

С помощью сцинтилляционного спектрометра мы исследовали эффект Комптона на графитовом образце. Через полученные данные мы определили по порядку величины энергию покоя электрона и выяснили зависимость энергии рассеянного γ -кванта от угла рассеяния.