

FUNCTIONS OF COMPLEX VARIABLES (3)

DR. Makram Roshdy Eskaros

makram_eskaros@eng.asu.edu.eg

Exponential Function

$$w = e^{x+iy} = e^x (\cos y + i \sin y)$$

$$u(x, y) = e^x \cos y \qquad v(x, y) = e^x \sin y$$

Entire Function

Periodic Function

Exponential Function

$$w = e^{x+iy} = e^x (\cos y + i \sin y)$$

Example 1:

Find all the values of z such that $e^{4z} = 1 + i$.

Solution:

Take In to both sides

$$4z = ln(1+i) = ln(\sqrt{2} e^{i(\frac{\pi}{4}+2\pi k)}) = ln\sqrt{2} + i(\frac{\pi}{4}+2\pi k)$$

$$\Rightarrow z = \frac{1}{4} \left(\ln \sqrt{2} + i \left(\frac{\pi}{4} + 2\pi k \right) \right)$$

Trigonometric and Hyperbolic Function

$$e^{ix} = \cos x + i \sin x,$$

$$e^{-ix} =$$

$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz}),$$

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}).$$

$$\sin iz = i \sinh z$$
, $\cos iz = \cosh z$, $\tan iz = i \tanh z$

$$\tan iz = i \tanh z$$

$$\sinh iz = i \sin z$$
, $\cosh iz = \cos z$, $\tanh iz = i \tan z$

$$\cosh iz = \cos z$$

$$\tanh iz = i \tan z$$

Example 2:

Show that:

$$a-\cos z=\cos x\cosh y-i\sin x\sinh y$$

$$b--|\cos z|^2=\cos^2 x+\sinh^2 y$$

Solution:

a-
$$\cos z = \frac{1}{2}(e^{i(x+iy)} + e^{-i(x+iy)})$$

$$= \frac{1}{2}e^{-y}(\cos x + i\sin x) + \frac{1}{2}e^{y}(\cos x - i\sin x)$$

$$= \frac{1}{2}(e^{y} + e^{-y})\cos x - \frac{1}{2}i(e^{y} - e^{-y})\sin x.$$

$$\cosh y = \frac{1}{2}(e^{y} + e^{-y}), \qquad \sinh y = \frac{1}{2}(e^{y} - e^{-y});$$

b-
$$|\cos z|^2 = (\cos^2 x) (1 + \sinh^2 y) + \sin^2 x \sinh^2 y.$$

Example 3:

Show that $f(z) = \sin z$ is differentiable everywhere and $\frac{d}{dz}(\sin z) = \cos z$. Solution:

$$w = \sin z = \sin(x + iy) = \sin x \cos iy + \cos x \sin iy$$
$$= \sin x \cosh y + i \cos x \sinh y$$

$$u_x = \cos x \cosh y$$
, $v_y = \cos x \cosh y$ $\Rightarrow u_x = v_y \text{ everywhere}$

$$u_y = \sin x \sinh y$$
, $v_x = -\sin x \sinh y$ $\Rightarrow u_y = -v_x \text{ everywhere}$

$$\Rightarrow f(z) = \sin z$$
 is differentiable everywhere.

$$\Rightarrow f'(z) = u_x + iv_x = \cos x \cosh y - i \sin x \sinh y$$

$$= \cos x \cos iy - \sin x \sin iy$$

$$= cos(x + iy)$$

$$\therefore \frac{d}{dz}(\sin z) = \cos z.$$

Example 4:

Find all the values of z such that sin z = cosh 2

If n is even, $cosh y = cosh 2 \implies y = \pm 2$

Solution:

$$sin z = sin(x + iy) = sin x cos iy + cos x sin iy$$

 $\Rightarrow sin x cosh y + i cos x sinh y = cosh 2$
 $cos x sinh y = 0$ and $sin x cosh y = cosh 2$
 $cos x sinh y = 0$ $\Rightarrow y = 0$ or $x = (2n + 1)\frac{\pi}{2}$
 $y = 0$ $\Rightarrow sin x = cosh 2$ (Refused)
 $x = (2n + 1)\frac{\pi}{2} \Rightarrow sin(2n + 1)\frac{\pi}{2} cosh y = cosh 2$
 $(-1)^n cosh y = cosh 2$
If $n is odd$, $cosh y = -cosh 2$ (Refused)

$$\Rightarrow z = (4k+1)\frac{\pi}{2} \pm 2 i$$

Logarithmic Function

$$\ln z = \ln r + i\theta$$

$$\operatorname{Ln} z = \operatorname{ln} |z| + i \operatorname{Arg} z$$

$$\operatorname{In} z = \operatorname{Ln} z \, \pm \, 2n\pi i$$

$$e^{\ln z} = z$$
 $\ln (e^z) = z \pm 2n\pi i$,

Logarithmic Function

Remarks.

- 1. Since arg(z) has infinitely many possible values, so does log(z).
- 2. log(0) is not defined. (Both because arg(0) is not defined and log(|0|) is not defined.)
- 3. Choosing a branch for arg(z) makes log(z) single valued. The usual terminology is to say we have chosen a branch of the log function.
- 4. The principal branch of log comes from the principal branch of arg. That is,

$$\log(z) = \log(|z|) + i \arg(z)$$
, where $-\pi < \arg(z) \le \pi$ (principal branch).

Logarithmic Function

Example 6:

Find log(1)

 $log(1) = 2n\pi i$, where *n* is any integer

Compute all the values of log(i).

$$\log(i) = \log(1) + i\frac{\pi}{2} + i2n\pi = i\frac{\pi}{2} + i2n\pi$$
, where *n* is any integer.

Logarithmic Function

$$z^a = e^{a \log(z)}$$
.

Example 5:

Compute all the values of $\sqrt{2i}$.

$$\sqrt{2i} = (2i)^{1/2} = e^{\frac{\log(2i)}{2}} = e^{\frac{\log(2i)}{2} + \frac{i\pi}{4} + in\pi} = \sqrt{2}e^{\frac{i\pi}{4} + in\pi}.$$

Compute all the cube roots of i.

$$i^{1/3} = e^{\frac{\log(i)}{3}} = e^{i\frac{\pi}{6} + i\frac{2n\pi}{3}}$$