Non-triviality condition (shortened version)

Suzie Brown

June 8, 2020

The following theorem will be used in each section. It is a version of the second Borel–Cantelli lemma, which can be found for instance in [Durrett, Theorem 4.3.4 - make citation].

Theorem 1. Let $(\mathcal{F}_n)_{n\geq 0}$ be a filtration with $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Let $(B_n)_{n\geq 0}$ be a sequence of events such that $B_n \in \mathcal{F}_n$ for all n. Then the events $\{B_n \ i.o.\}$ and $\{\sum_{n=1}^{\infty} \mathbb{P}[B_n \mid \mathcal{F}_{n-1}] = \infty\}$ are almost surely equal.

Multinomial resampling

Lemma 1. For all $N \geq 2$, for all t,

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = \left(\frac{1}{N}, \dots, \frac{1}{N}\right) \right] = 1 - \frac{N!}{N^N}.$$

Proof. Fix arbitrary t and $N \ge 2$. Since $2/(N)_2 > 2/(N^2)$ is the smallest possible non-zero value for $c_N(t)$,

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \mid \mathbf{w} = (1/N, \dots, 1/N)\right] = 1 - \mathbb{P}[c_N(t) = 0 \mid \mathbf{w} = (1/N, \dots, 1/N)]$$
$$= 1 - \mathbb{P}[\nu_t^{(1:N)} = (1, \dots, 1) \mid \mathbf{w} = (1/N, \dots, 1/N)].$$

Conditional on the weights, $\nu_t^{(1:N)} \sim \text{Multinomial}(N, (1/N, \dots, 1/N))$, so the probability of interest is

$$\mathbb{P}[\nu_t^{(1:N)} = (1,\dots,1) \mid \mathbf{w} = (1/N,\dots,1/N)] = N! \prod_{i=1}^N \frac{1}{N} = \frac{N!}{N^N}.$$

Lemma 2. In the neutral case (i.e. when all weights are equal at every time step) with multinomial resampling, there exists N_0 such that for all $N > N_0$, for all finite t, $\mathbb{P}[\tau_N(t) = \infty] = 0$.

Proof. Let us rewrite the event of interest in a different way.

$$\mathbb{P}[\tau_N(t) = \infty] = 0 \Leftrightarrow \mathbb{P}[\tau_N(t) < \infty] = 1$$

$$\Leftrightarrow \mathbb{P}\left[\min\left\{s > 1 : \sum_{r=1}^s c_N(r) > t\right\} < \infty\right] = 1$$

$$\Leftrightarrow \mathbb{P}\left[\exists s < \infty : \sum_{r=1}^s c_N(r) > t\right] = 1$$

It is sufficient to show that, for all $N > N_0$, $c_N(r)$ is bounded away from zero infinitely often in r. We consider the sequence of events $E_r := \{c_N(r) > 2/N^2\}$ for $r \in \mathbb{N}$. In the neutral case, the resampled family sizes at each generation are independent, hence the events E_r are independent. By the second Borel-Cantelli lemma, E_r occurs infinitely often if $\sum_{r=1}^{\infty} \mathbb{P}(E_r) = \infty$. An expression for $\mathbb{P}(E_r)$ is given in Lemma 1. For any fixed $N \geq 2$, the probability is strictly positive and constant in r, so the Borel-Cantelli condition is satisfied, thus we conclude that E_r occurs infinitely often. Hence, taking $N_0 = 1$, we have that $\mathbb{P}[\tau_N(t) = \infty] = 0$ for all $N > N_0$ and all finite t, as required.

Lemma 3. For all $N \geq 2$, for all t, for any weight vector $(w_1, \ldots, w_N) \in \mathcal{S}_{N-1}$,

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = (w_1, \dots, w_N)\right] \ge \mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = \left(\frac{1}{N}, \dots, \frac{1}{N}\right)\right].$$

That is, the probability of having at least one merger is minimised by the vector of equal weights.

Proof. Fix arbitrary t and $N \geq 2$. Recall that

$$1 - \mathbb{P}\left[c_N(t) > \frac{2}{N^2} \mid \mathbf{w} = (w_1, \dots, w_N)\right] = N! \prod_{i=1}^N w_i.$$
 (1)

We will show that the global maximum of this function on the simplex S_{N-1} is attained at $\mathbf{w} = (1/N, \dots, 1/N)$. This weight vector will therefore minimise the probability of the complementary event, implying the desired result.

First, since we are working on the simplex, we encode the constraint $\sum w_j = 1$ by rewriting the function to optimise as

$$f(\mathbf{w}) := \prod_{i=1}^{N} w_i = \left(1 - \sum_{j=1}^{N-1} w_j\right) \prod_{i=1}^{N-1} w_i$$

where we have also dropped the constant positive factor N!. Note that this objective function is non-negative and obtains its minimal value zero whenever one or more of the weights is equal to zero; since we are looking for a maximum we can assume that $w_i > 0$ for all i. Now, for every $k \in \{1, ..., N-1\}$, we solve

$$\frac{\partial f(\mathbf{w})}{\partial w_k} = \left(1 - w_k - \sum_{j=1}^{N-1} w_j\right) \prod_{i \neq k}^{N-1} w_i = 0.$$

The product over $i \neq k$ is constant and positive for each k, so this amounts to solving

$$w_k = 1 - \sum_{j=1}^{N-1} w_j = w_N$$

for all k. The unique solution is $w_1 = w_2 = \cdots = w_N = 1/N$.

To verify that the critical point is a maximum, we evaluate the Hessian H:

$$H_{kl}(\mathbf{w}) = \begin{cases} -2 \prod_{i \neq k}^{N-1} w_i & k = l \\ \left(1 - w_k - w_l - \sum_{j=1}^{N-1} w_j\right) \prod_{i \neq k, l}^{N-1} w_i & k \neq l \end{cases}$$

$$H_{kl}(1/N, \dots, 1/N) = \begin{cases} -2 \left(\frac{1}{N}\right)^{N-2} & k = l \\ -\left(\frac{1}{N}\right)^{N-2} & k \neq l \end{cases}$$

and show that H is negative definite at (1/N, ..., 1/N): for any $\mathbf{x} \in \mathbb{R}^{N-1} \setminus \{\mathbf{0}\}$,

$$\mathbf{x}^{T} H \left(\frac{1}{N}, \dots, \frac{1}{N} \right) \mathbf{x} = \sum_{k=1}^{N-1} \left[-2 \left(\frac{1}{N} \right)^{N-2} x_{k}^{2} - \sum_{l \neq k}^{N-1} \left(\frac{1}{N} \right)^{N-2} x_{k} x_{l} \right] = \left(\frac{1}{N} \right)^{N-2} \left[-\sum_{k=1}^{N-1} 2x_{k}^{2} - \sum_{k=1}^{N-1} \sum_{l \neq k}^{N-1} x_{k} x_{l} \right]$$

$$= \left(\frac{1}{N} \right)^{N-2} \left[-\sum_{k=1}^{N-1} x_{k}^{2} - \sum_{k=1}^{N-1} \sum_{l=1}^{N-1} x_{k} x_{l} \right] = \left(\frac{1}{N} \right)^{N-2} \left[-\sum_{k=1}^{N-1} x_{k}^{2} - \left(\sum_{k=1}^{N-1} x_{k} \right)^{2} \right] < 0.$$

Theorem 2. With multinomial resampling, conditional on any sequence of weight vectors $\mathbf{w}_r^{(1:N)} \in \mathcal{S}_{N-1}; r \in \mathbb{N}$, there exists N_0 such that for all $N > N_0$, for all finite t, $\mathbb{P}[\tau_N(t) = \infty] = 0$.

Proof. As in Lemma 2, denote the sequence of events $E_r := \{c_N(r) > 2/N^2\}$ for $r \in \mathbb{N}$. We know from Lemma 2 that, in the neutral case, E_r occurs infinitely often. Lemma 3 tells us that $\mathbb{P}[E_r \mid \mathbf{w} = (w_1, \dots, w_N)] \ge \mathbb{P}[E_r \mid \mathbf{w} = (1/N, \dots, 1/N)]$ for all r. Therefore, by a coupling argument, we conclude that E_r occurs infinitely often in the non-neutral case as well.

Suzie Brown 2

Conditional SMC with multinomial resampling

Define $\mathbf{w}^* := \frac{1}{N-1} [(1, \dots, 1) - \mathbf{e}_{i^*}]$, where i^* is the immortal index at generation t, and \mathbf{e}_i denotes the i^{th} canonical basis vector.

Lemma 4. For all $N \geq 2$, for all t,

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = \mathbf{w}^*\right] = 1 - \frac{(N-1)!}{(N-1)^{N-1}}$$

Proof. Under \mathbf{w}^* , the immortal parent has zero weight and is therefore assigned exactly one offspring (the immortal particle). The remaining N-1 offspring are assigned to the remaining N-1 parents according to a Multinomial distribution with equal weights. We therefore have

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \mid \mathbf{w} = \mathbf{w}^*\right] = 1 - \mathbb{P}[\nu_t^{(1:N)} = (1, \dots, 1) \mid \mathbf{w} = \mathbf{w}^*] = 1 - (N-1)! \prod_{i \neq i^*}^N \frac{1}{N-1} = 1 - \frac{(N-1)!}{(N-1)^{N-1}}.$$

Lemma 5. In conditional SMC with multinomial resampling, in the optimal case where the weight vector is equal to \mathbf{w}^* at every time step, there exists N_0 such that for all $N > N_0$, for all finite t, $\mathbb{P}[\tau_N(t) = \infty] = 0$.

Proof. The proof is exactly the same as for Lemma 2; Lemma 4 provides the expression for $P(E_r)$ which is strictly positive and constant in r.

Lemma 6. For all $N \geq 2$, for all t, for any weight vector $(w_1, \ldots, w_N) \in \mathcal{S}_{N-1}$,

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = (w_1, \dots, w_N)\right] \ge \mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = \mathbf{w}^*\right].$$

Proof. Recall that

$$1 - \mathbb{P}\left[c_N(t) > \frac{2}{N^2} \mid \mathbf{w} = (w_1, \dots, w_N)\right] = (N - 1)! \prod_{i = t/*}^{N} w_i.$$

Ignoring the immortal particles, this is equivalent to multinomial resampling in the standard case (1), only with N-1 particles rather than N. As we saw in Lemma 3, this function is maximised at the vector of equal weights, in this case $\mathbf{w}_{-i^*} = \frac{1}{N-1}(1,\ldots,1)$. This leaves zero weight for the immortal particle, so overall the maximum is attained at $\mathbf{w}^* = \frac{1}{N-1}[(1,\ldots,1) - \mathbf{e}_{i^*}]$ as required.

Theorem 3. In conditional SMC with multinomial resampling, conditional on any sequence of weight vectors $\mathbf{w}_r^{(1:N)} \in \mathcal{S}_{N-1}; r \in \mathbb{N}$, there exists N_0 such that for all $N > N_0$, for all finite t, $\mathbb{P}[\tau_N(t) = \infty] = 0$.

Proof. As before, consider the sequence of events $E_r := \{c_N(r) > 2/N^2\}$ for $r \in \mathbb{N}$. We know from the argument behind Lemma 5 (which is completely analogous to Lemma 2) that, in the case $\mathbf{w} = \mathbf{w}^*$, E_r occurs infinitely often. Lemma 6 tells us that $\mathbb{P}[E_r \mid \mathbf{w} = (w_1, \dots, w_N)] \ge \mathbb{P}[E_r \mid \mathbf{w} = \mathbf{w}^*]$ for all r. Therefore, by a coupling argument, we conclude that E_r occurs infinitely often in the general case as well.

There's an easier way...

Theorem 4. In conditional SMC with multinomial resampling, there exists N_0 such that for all $N > N_0$, for all finite t, $\mathbb{P}[\tau_N(t) = \infty] = 0$.

Proof. We have, from the proof of Corollary 2 in the draft paper,

$$\mathbb{E}[c_N(t) \mid \mathcal{F}_{t-1}] \ge \frac{1}{(N)_2} \left\{ \frac{2\varepsilon^2}{a^2} + \frac{(N)_3 \varepsilon^4}{(N-1)^2 a^4} \right\}.$$

Since $c_N(t) \in [0,1]$ almost surely, for any fixed N the "worst-case" distribution of $c_N(t)$ (i.e. maximising $\mathbb{P}[c_N(t) = 0 \mid \mathcal{F}_{t-1}]$) is two atoms, at 0 and 1. To ensure the correct expectation, the atom at 1 must have weight $\mathbb{E}[c_N(t) \mid \mathcal{F}_{t-1}]$, which is bounded below by the above inequality. Hence for any finite N,

$$\sum_{t=0}^{\infty} \mathbb{P}[c_N(t) > 2/N^2 \mid \mathcal{F}_{t-1}] \ge \sum_{t=0}^{\infty} \frac{1}{(N)_2} \left\{ \frac{2\varepsilon^2}{a^2} + \frac{(N)_3 \varepsilon^4}{(N-1)^2 a^4} \right\} = \infty.$$

By Borel-Cantelli, we therefore have almost surely for all N > 2 that $c_N(t) > 2/N^2$ for infinitely many t, which as argued earlier implies $\mathbb{P}[\tau_N(t) = \infty] = 0$ for all finite t.

Stochastic rounding

Lemma 7. Let $\mathbf{w} = (w_1, \dots, w_N) \in \mathcal{S}_{N-1}$ and resample by stochastic rounding.

- (i) If $w_i \geq 2/N$ for some i, then $\mathbb{P}[c_N(t) = 0|\mathbf{w}] = 0$.
- (ii) If $w_i = 0$ for some i, then $\mathbb{P}[c_N(t) = 0 | \mathbf{w}] = 0$.

Proof. In case (i) particle i is assigned at least two offspring, so $c_N(t)$ cannot be equal to zero. In case (ii) particle i is assigned zero offspring, so at least one other particle must be assigned more than one offspring, thus $c_N(t)$ cannot be equal to zero.

The upshot of Lemma 7 is that in these cases of "extreme weights" we have $c_N(t) > 2/N^2$ almost surely, so we can exclude these cases while we go about bounding $\mathbb{P}[c_N(t) > 2/N^2 | \mathbf{w}]$ away from zero.

Lemma 8. Define $\mathbf{w}^{\delta} := \frac{1}{N}\{(1,\ldots,1) + \delta\mathbf{e}_i - \delta\mathbf{e}_j\}$ for any $i \neq j$ and $0 < \delta < 1$. Then $\mathbb{P}[c_N(t) > 2/N^2 | \mathcal{H}_t, \mathbf{w}_t = \mathbf{w}_{\delta}] \geq \delta\varepsilon^3$.

Proof. We use a bound on $\mathbb{P}[\nu_t^{(i)} = |Nw_t^{(i)}|]$ from the proof of Corollary 1 in the draft paper:

$$\mathbb{P}[\nu_t^{(i)} = \lfloor Nw_t^{(i)} \rfloor \mid \mathcal{H}_t] =: p_0 = 1 - p_1 \le 1 - (Nw_t^{(i)} - \lfloor Nw_t^{(i)} \rfloor) \varepsilon^{(2\lfloor Nw_t^{(i)} \rfloor + 1)}.$$

Then

$$\mathbb{P}[c_{N}(t) \leq 2/N^{2} | \mathcal{H}_{t}, \mathbf{w}_{t} = \mathbf{w}_{\delta}] = \mathbb{P}[\nu_{t}^{(1:N)} = (1, \dots, 1) | \mathcal{H}_{t}, \mathbf{w}_{t} = \mathbf{w}_{\delta}]$$

$$= \mathbb{P}[\nu_{t}^{(i)} = 1, \nu_{t}^{(j)} = 1 | \mathcal{H}_{t}, \mathbf{w}_{t} = \mathbf{w}_{\delta}]$$

$$= \mathbb{P}[\nu_{t}^{(i)} = 1 | \mathcal{H}_{t}, \mathbf{w}_{t} = \mathbf{w}_{\delta}]$$

$$\leq 1 - (Nw_{\delta}^{(i)} - \lfloor Nw_{\delta}^{(i)} \rfloor)\varepsilon^{(2\lfloor Nw_{\delta}^{(i)} \rfloor + 1)}$$

$$= 1 - \{N(1 + \delta)/N - 1\}\varepsilon^{3}$$

$$= 1 - \delta\varepsilon^{3},$$

since the offspring counts are deterministically equal to one apart from particles i and j, and it remains that $\nu_t^{(i)} = 1$ if and only if $\nu_t^{(j)} = 1$.

Lemma 9. For any $\delta \in (0,1)$, denote $\mathcal{S}_{N-1}^{\delta} := \{ \mathbf{w} \in \mathcal{S}_{N-1} : \forall i, 0 < w_i < \frac{2}{N}; \max_i w_i \geq \frac{1+\delta}{N} \}$. Then for all $\mathbf{w} \in \mathcal{S}_{N-1}^{\delta}$, $\mathbb{P}[c_N(t) > 2/N^2 | \mathbf{w}] \geq \mathbb{P}[c_N(t) > 2/N^2 | \mathbf{w}_{\delta}]$.

Proof. Fix arbitrary $\mathbf{w} \in \mathcal{S}_{N-1}^{\delta}$. Let i^* be then index of the particle with the largest weight. Denote $\mathcal{I} := \{i \in \{1, \dots, N\} : w_i > 1/N\}$. Notice that

$$\mathbb{P}[c_N(t) \le 2/N^2 | \mathbf{w}] = \mathbb{P}[\nu_t^{(i)} = 1 \,\forall i \in \{1, \dots, N\} | \mathbf{w}] = \mathbb{P}[\nu_t^{(i)} = 1 \,\forall i \in \mathcal{I} | \mathbf{w}].$$

This is true because all weights are in (0,2/N), so for $i \in \mathcal{I}, \nu_t^{(i)} \in \{1,2\}$, and for $i \notin \mathcal{I}, \nu_t^{(i)} \in \{0,1\}$; and the offspring counts must sum to N (a generalisation of the argument used in Lemma 8).

We can then decompose this probability into a product of conditional probabilities:

$$\begin{split} \mathbb{P}[\nu_t^{(i)} &= 1 \, \forall i \in \mathcal{I} | \mathbf{w}] = \prod_{i \in \mathcal{I}} \mathbb{P}[\nu_t^{(i)} = 1 | \nu_t^{(j)} = 1 \, \forall j < i \in \mathcal{I}; \mathbf{w}] \\ &= \mathbb{P}[\nu_t^{(i^*)} = 1 | \mathbf{w}] \prod_{i \neq i^* \in \mathcal{I}} \mathbb{P}[\nu_t^{(i)} = 1 | \nu_t^{(i^*)} = 1; \nu_t^{(j)} = 1 \, \forall j < i \in \mathcal{I}; \mathbf{w}] \\ &\leq \mathbb{P}[\nu_t^{(i^*)} = 1 | \mathbf{w}]. \end{split}$$

The last line is equal to the probability $\mathbb{P}[c_N(t) \leq 2/N^2|\mathbf{w}]$ in the case where $|\mathcal{I}| = 1$, i.e. the only weight larger than 1/N is w_{i^*} .

In other words, $\mathbb{P}[c_N(t) > 2/N^2 | \mathbf{w}]$ is minimised on $\mathcal{S}_{N-1}^{\delta}$ by having only one weight larger than 1/N, in which case the values of the other weights do not affect this probability.

We therefore find that a minimum of $\mathbb{P}[c_N(t) > 2/N^2|\mathbf{w}]$ on $\mathcal{S}_{N-1}^{\delta}$ is given by $\mathbf{w}_{\delta'}$, for some $\delta' \geq \delta$. It only remains to show that taking $\delta' > \delta$ does not decrease the probability. This is a consequence of Lemma 8, where we see that $\mathbb{P}[c_N(t) > 2/N^2|\mathbf{w}_{\delta'}]$ is monotonically increasing in δ' . Thus the minimum of $\mathbb{P}[c_N(t) > 2/N^2|\mathbf{w}]$ is attained at $\mathbf{w} = \mathbf{w}_{\delta}$, as required. (Although this minimum is not unique, we have shown explicitly that it is a global minimum on $\mathcal{S}_{N-1}^{\delta}$.)

[Combining the above three Lemmata we see that, for any $\mathbf{w} \in \mathcal{S}_{N-1}$ such that $\max_i w_i \geq \frac{1+\delta}{N}$, we have the bound $\mathbb{P}[c_N(t) > 2/N^2 | \mathbf{w}] \geq \delta$. This will probably turn out to be useful, provided we can say something about whether we can expect the constraint $\max_i w_i \geq \frac{1+\delta}{N}$ to hold.]

Theorem 5. Consider a sequential Monte Carlo algorithm using any stochastic rounding as its resampling scheme. If $\mathbb{P}\{\max_i w_t^{(i)} \geq (1+\delta)/N\} > 0$ for infinitely many t then $\mathbb{P}\{\tau_N(t) = \infty\} = 0$ for all finite t.