Quantum Computing Electronic Structure

Eesh Gupta

Why Electronic Structure?

$$N_2 + 3H_2 \rightarrow 2NH_3$$

- 400 °C
- 200 atm

- 25 °C
- 1 atm

Why Electronic Structure?

- Catalytic mechanism i.e.
 "how it accelerates the
 reaction" is not well
 understood.
- Crux: Composed of transition metal compounds that are strongly correlated.
- Classically: Intractable
- Quantum Computing: 150-200 logical qubits

FeMo-co: Iron, Molybdenum, Carbon, Hydrogen, Oxygen

Why is it so hard?

- Exponential Problem
- Correlated motion
- Quantum properties
 like interference

What are Chemists doing? Hartree Fock

- Treat effects of other electrons "on average"
- Uses Variational procedure to assign orbitals to electrons.
- Recovers 99% of total energy

What are Chemists doing? Configuration Interaction

- Recognizes contribution of excited states to correlation energy
- If given a complete basis set, provides exactsolution

$$\Psi_{\text{CI}} = a_0 \Phi_{\text{HF}} + \sum_{\text{S}} a_s \Phi_s + \sum_{\text{D}} a_d \Phi_d + \dots = \sum_{i=1} a_i \Phi_i$$

What are Chemists Doing? Truncated CI and CC

Configuration Interaction Singles and Doubles

$$\Psi_{CISD} = (1 + T_1 + T_2)\Phi_0 = \Phi_0 + T_1\Phi_0 + T_2\Phi_0$$

$$\Psi_{CCSD} = e^{T_1 + T_2} \Phi_0 = \Phi_0 + T_1 \Phi_0 + (T_1^2 + T_2) \Phi_0 + (T_1 T_2 + T_1^3) \Phi_0 + \dots$$

What are Chemists doing? Coupled Cluster

- Approximating excited states using smaller excitation operators
- Need to calculate the cluster amplitudes i.e. "weights of the excitations"
- Truncated CC methods break down if system is strongly correlated.

$$T_1 = \sum_{\substack{i \in \text{occ} \\ a \in \text{virt}}} t_a^i a_a^{\dagger} a_i$$

What we desire?

- Most classical methods either require too many resources or account for too little correlation.
- Goal: a **feasible** way of getting the to **exact** energy.
- Quantum Computers can help!

What is Quantum Computing?

Bit Qubit

Fuchs, Franz Georg, and Franz Georg FuchsEpost. "Diving Deep into Quantum Computing." #SINTEFblog, 1 Apr. 2019, blog.sintef.com/digital-en/diving-deep-into-quantum-computing/.

Intel's 49 qubit superconducting "quantum chip"

Dilution refrigerator that houses IBM's quantum computer

Why Quantum Computing?

Myth: Quantum computer is a faster version of classical computer

Fact: Only efficient for **certain types** of problems and gate speed is almost 100 times slower than that of classical logic gates

Myth: Quantum Computing is **powerful** because it tries all the possible solutions in parallel.

Fact: Amplitudes leading to wrong answer "interfere destructively" with each other and the amplitudes leading to the right answer "interfere constructively"

Why Quantum Computing?

- A **n-qubit** quantum computer stores 2^n complex coefficients
- A 300 qubit quantum computer stores as many coefficients as there are protons in the universe.
- However, we can only access n bits of information at the end.

$$|\psi_1\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$|\psi_2\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

$$\vdots$$

$$|\psi_n\rangle = \sum_{i=1}^{2^n} \alpha_i |a_i^1 a_i^2 \cdots a_i^n\rangle$$

Second Quantization First Quantization Mess

Name- Tagging Electrons:

Exchange Symmetry Trap

What if I swap the 2 electrons?

Electron 1 occupies Spin Orbital i.

Electron 2 occupies Spin Orbital j.

$$\frac{1}{\sqrt{2}} \det \begin{pmatrix} \chi_i(\mathbf{x_1}) & \chi_j(\mathbf{x_1}) \\ \chi_i(\mathbf{x_2}) & \chi_j(\mathbf{x_2}) \end{pmatrix} = \frac{1}{\sqrt{2}} \left(\chi_i(\mathbf{x_1}) \chi_j(\mathbf{x_2}) - \chi_j(\mathbf{x_1}) \chi_i(\mathbf{x_2}) \right)$$

Second Quantization Better Bookkeeping

Avoid Name Tagging

"Spin Orbital i and Spin Orbital j both have 1 electron."

Exchange Symmetry Trap

What if I swap the 2 electrons?

 $|11\rangle$

Second Quantization Fermionic Operators

- With elegant notation, come elegant operators.

Creation Operator
$$a^{\dagger}\ket{0}=\ket{1}$$
 $a\ket{1}=\ket{0}$ Annihilation Operator

$$T_1 = \sum_{\substack{i \in \text{occ} \\ a \in \text{virt}}} t_a^i a_a^{\dagger} a_i$$

Second Quantization Anticommutation Relations

Exchange symmetry is satisfied by the following anticommutation relations:

$$a_i a_j + a_j a_i = 0$$

$$a_i^{\dagger} a_j^{\dagger} + a_j^{\dagger} a_i^{\dagger} = 0$$

$$a_i a_j^{\dagger} + a_j^{\dagger} a_i = \delta_{ij}$$

Second Quantization Quantum Encoding Methods

- Makes mapping from the fermionic Fock Space to Hilbert space of qubits efficient.
- Second Quantized methods include Jordan Wigner,
 Parity basis and Bravyi Kitaev encodings.
- Methods differ on number of qubit operations to realise fermionic operator

Jordan Wigner

$$\begin{bmatrix} o_0 \\ o_1 \\ o_2 \\ o_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

Parity Basis

$$\begin{bmatrix} o_0 \mod 2 \\ o_0 + o_1 \mod 2 \\ o_0 + o_1 + o_2 \mod 2 \\ o_0 + o_1 + 0_2 + o_3 \mod 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Quantum Encoding Mapping Operators

- Under Jordan Wigner encoding, qubits represent spin orbitals.
- To add and remove electrons from them, we act on qubits with combinations of pauli gates.

$$a^{\dagger} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \frac{\sigma^x - i\sigma^y}{2}$$

$$a = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \frac{\sigma^x + i\sigma^y}{2}$$

$$\sigma_x = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \ \sigma_y = egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix} \ \sigma_z = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$$

Pauli Matrices

Variational Quantum Eigensolver Simulation

- Using simulators (ideal quantum computers) to calculate energy of LiH molecule as we pull the lithium and hydrogen atom apart.
- In this simulation, we are working with
 - 4 qubits
 - 12 spin orbitals (1s, 2s, 2p)
 - 4 electrons

https://en.wikipedia.org/wiki/Lithium_hydride

Variation Quantum Eigensolver (1)

Find the eigenvalue E

$$H\psi = E\psi$$

Find Parameters $\vec{t} = \{t_i\}$ such that we minimize

$$\langle \psi(\vec{t}) | H | \psi(\vec{t}) \rangle$$

- Prepare a state with a given a set of parameters
- 2. Act on the state with the Hamiltonian.
- Measure the expectation value.
- 4. Find better parameters for the next iteration.

State Preparation Reference State

- Reference state is generally chosen as the **hartree fock state** because of its high overlap with the ground state.

State Preparation uccsd

 Since quantum gates are reversible and hence unitary operators, we need the coupled cluster operator be unitary.

$$U(\vec{t}) = e^{T - T^{\dagger}} = e^{\sum_{j} t_{j} (\tau_{j} - \tau_{j}^{\dagger})}$$

$$\Psi = e^{T - T^{\dagger}} \Phi_0$$

State Preparation why uccsd?

$$e^{i(\sigma_z \otimes \sigma_z)} \longrightarrow R_z$$

Measurement

Decompose the **H** into local Hamiltonians H_i .

Convert those local Hamiltonians H_i into Qubit Hamiltonians O_i

Measure the expectation value of each O_i and add them up to get the energy

$$E = \sum_{i} h_i \langle O_i \rangle$$

Measurement Example

Figure 2. Circuit illustrating the measurement of the term $\sigma_3^z \sigma_2^y \sigma_1^z \sigma_0^x$ in the Z basis. We must apply H or $R_x(-\frac{\pi}{2})$ gates (or equivalent) to change basis when measuring Pauli-Y and Pauli-X operations.

Example:
Deconstructing
Hamiltonian into
tensor products of
identity and pauli
matrices

$$H = -0.2IIII - 0.1III\sigma_z - 0.0031II\sigma_z\sigma_x + \dots$$

Optimization

- a) "Robustness" against noise
- b) Number of Function Evaluations

Direct Search Algorithms

Gradient Descent Algorithms

Romero, et al. "Strategies for Quantum Computing Molecular Energies Using the Unitary Coupled Cluster Ansatz." *ArXiv.org*, 10 Feb. 2018, arxiv.org/abs/1701.02691.

Quantum Error

- Environment can change the state of qubits, resulting in errors to our computations.
- These errors are usually a combination of phase flip and bit flip.
- Example: Thermal Relaxation error

Bit Flip Phase Flip

Quantum Error Correction

- Fixing quantum errors using additional ancilla qubits
- May need up to 1000 helper qubits to correct for 1 qubit
- Near term quantum computers (NISQ devices) will only contain ~ 50-100 qubits.

Example:

Quantum Error Mitigation

- For low depth (small) circuits, techniques like
 - Extrapolation
 - Probabilistic Error Cancellation
 - Quantum Subspace Expansion

require a multiplicative overhead in number of measurements to mitigate errors.

 Hence, error mitigation does not require as many resources as error correction

https://phys.org/news/2017-11-ion-qubits-early-glimpse-quantum.html

Future for Chemistry Simulations

- Collaboration between chemists, physicists and computer scientists to improve upon
 - **State Preparation** like UCCSD ansatz
 - Error Mitigation techniques to reduce noise burden
 - Systems and observables more resistant to noise than others. (Eg: Dipole moment and charge density)

"It's like the first day we see a plane flying, and we want to go to the moon." - Marco De Vivo, theoretical chemist at Genoa, on quantum computing and drug discoveries

References

<u>arXiv:1001.3855v3</u> [quant-ph]

arXiv:1808.10402v3 [quant-ph]

<u>arXiv:1701.02691v2</u> [quant-ph]

QuTech Academy. "Quantum error correction codes | QuTech Academy" Online video clip. Youtube. Posted Dec 8, 2018. Accessed May 15, 2020

Jarrod McClean. "Quantum Computation for the Discovery of New Materials" Online video clip. Youtube. Posted Jul 5, 2017. Accessed May 15, 2020