

دانشکده مهندسی برق

گزارش کار آزمایشگاه الکترونیک ۲ آزمایش شماره ۲: تقویت کننده بیس مشترک

اعضای گروه

رضا آدینه پور

رضا احمدنژاد

استاد مربوطه:

جناب آقای مهندس مهدی مقیمی

تاریخ تهیه و ارائه:

مهر ماه ۱۴۰۱

مداری مطابق با شکل زیر در نرم افزار می بندیم:

مدار را از لحاظ تئوری برسی می کنیم:

یک سیگنال سینوسی با دامنه پیک تو پیک ۵۰ میلی ولت با فرکانس ۱۰ کیلو هر تز به مدار اعمال کنید.

گین ولتاژ را بدست آورید:

سیگنال خروجی مدار (سیگنال سبز) و سیگنال ورودی مدار (قرمز) به صورت زیر هستند:

ماكزيمم دامنه سيگنال خروجي از سمت بالا ۴۶۳ ميلي ولت است.

ماکزیمم دامنه سیگنال ورودی ۲۵ میلی ولت است.

گین ولتاژ مدار به صورت زیر تعریف می شود:

$$Av = \frac{Vout}{Vin} = \frac{463}{25} = 18.52$$

برای به دست آوردن گین جریان ابتدا مقاومت های ورودی و خروجی مدار را به دست می اوریم و از فرمول زیر استفاده می کنیم:

$$Ai = Av \times \frac{Rin}{Rout}$$

برای بدست اوردن مقاومت خروجی ابتدا منبع ورودی را زمین می کنیم و یک منبع dc با مقدار ۱۰ ولت در خروجی می گذاریم و نسبت Vdc به Vdc را که همان مقاومت خروجی است را به دست می آوریم.

$$Rout = \frac{Vdc}{Idc} = \frac{10}{2.128m} = 4.7 Kohm$$

برای بدست اوردن مقاومت ورودی، منبع dc را در ورودی مدار می گذاریم و نسبت ولتاژ به جریان آن را حساب می کنیم:

$$Rin = \frac{Vdc}{Idc} = \frac{10}{10m} = 1 \ Kohm$$

گین جریان به صورت زیر به دست می آید:

$$Ai = Av \times \frac{Rin}{Rout} = 18.52 \times \frac{1}{4.7} = 3.9$$

اختلاف فاز بین ورودی و خروجی: ورودی و خروجی با هم همفاز هستند

با تغییر فرکانس منبع ورودی و ثابت نگه داشتن دامنه (۵۰۰ میلی ولت) جدول زیر را تکمیل کنید.

f	1K	2K	3K	5K	10K	20K	100K	300K	500K	700K	1M	1.5M	1.7M
Vi	25m	25m	25m	25m	25m	25m	25m	25m	25m	25m	25m	25m	25m
Vo	128.8u	258.4u	373u	736.2u	1.45m	2.90m	13m	39.03m	67.7m	90.82m	127.6m	181.7m	197
Av	0.005	0.010	0.014	0.029	0.058	0.116	0.52	1.56	2.70	3.63	5.104	7.268	7.88

برای به دست آوردن فرکانس های قطع پایین و بالا، ابتدا پاسخ فرکانسی مدار را رسم می کنیم. بدین منظور ابتدا یک منبع AC در ورودی مدار قرار داده و تحلیل AC Sweep را انتخاب می کنیم. پاسخ فرکانسی مدار به صورت زیر است:

فرکانس قطع بالای مدار به صورت زیر به دست می آید.

$$f_{cutof-High} = \frac{1}{\sqrt{2}} \times 122m = 85.4 \text{ mHz}$$

فرکانس قطع پایین نیز، -۸۵.۴ میلی هرتز به دست می آید