Сравнение старой и новой формализаций подхода Деденко к Великой теореме Ферма

Введение

В работах Г. Л. Деденко предложен условный путь к доказательству Великой теоремы Ферма (ВТФ), основанный на гипотезе **Глобальной нормализации**. Существуют две версии этой формализации:

- FLT-old.v.pdf использует свободный параметр нормализации o>1 и принцип «максимального покрытия»;
- FLT-new.v.pdf напрямую постулирует гипотезу $\Gamma H(2)$: любой контрпример при n>2 влечёт равенство $2^n=2\cdot n$.

Ниже показано, почему FLT-new.v.pdf лучше отражает возможную логику рассуждений, которую мог использовать сам Ферма.

Сравнение логических структур

Старая версия (FLT-old.v)	Новая версия (FLT-new.v)
Вводится параметр $o > 1$, и постулирует-	Прямо постулируется гипотеза ГН(2): лю-
ся, что для любого контрпримера $x^n + y^n =$	бой контрпример при $n>2$ влечёт $2^n=\left \right $
z^n выполняется $o^n = 2n$. Затем через ана-	$2 \cdot n$. Никакого параметра o нет.
лиз функции $f(n) = (2n)^{1/n}$ доказывается,	
что максимальное покрытие достигается	
только при $o=2$.	
Требует анализа непрерывной функции,	Опирается исключительно на элементар-
производной, максимума — инструментов,	ную арифметику и проверку равенства
недоступных в XVII веке.	$2^{n} = 2n$, что доступно даже школьнику.
Логически избыточна: сначала вводится	Минималистична: одна гипотеза ⇒ одно
обобщённая гипотеза, затем она фиксиру-	противоречие.
ется как $o=2$.	

Историческая правдоподобность

Пьер Ферма (1607–1665):

- владел методом бесконечного спуска и биномиальными разложениями;
- не имел понятий предела, непрерывной функции, производной;
- писал в эпоху, когда даже символы степеней были новыми.

Следовательно, он **не мог** обосновать выбор o=2 через максимум функции $(2n)^{1/n}$. Однако он **мог** заметить, что:

$$2^1 = 2 \cdot 1$$
, $2^2 = 2 \cdot 2$, но $2^n > 2n$ при $n \ge 3$,

и предположить (интуитивно), что любой контрпример должен удовлетворять $2^n = 2n$ ведь только при n = 1, 2 уравнение Ферма имеет решения.

Это — именно та логика, которая реализована в FLT-new.v.

Методологическое улучшение

Автор сам отмечает в FLT-new.v:

«Legacy "o>1, maximum coverage" formulation is retired.»

Это означает, что старая конструкция признана избыточной. Новая версия:

- устраняет ненужный слой абстракции;
- делает гипотезу явной и проверяемой;
- соответствует духу «заметки на полях»: коротко, ясно, без промежуточных переменных.

Заключение

Файл FLT-new.v.pdf лучше описывает возможную логику доказательства, которую мог иметь в виду Ферма, потому что:

- 1. Он минималистичен и основан только на элементарной арифметике.
- 2. Он не использует анализ, недоступный в XVII веке.
- 3. Он соответствует стилю «удивительного доказательства», упомянутого Ферма.
- 4. Он сознательно отказывается от более сложной конструкции с параметром o как устаревшей.

Таким образом, FLT-new.v — это реконструкция в духе Ферма, очищенная от современных аналитических наслоений и приближенная к возможному оригинальному замыслу.