

Diversidad en AG

Manuel Lozano

Email: lozano@decsai.ugr.es

Técnicas de Soft Computing para Aprendizaje y Optimización

Departamento de Ciencias de la Computación e Inteligencia Artificial

Diversity versus convergence

Diversity versus convergence

Exploration and Exploitation in Evolutionary Algorithms: A Survey

MATEJ ČREPINŠEK, University of Maribor SHIH-HSI LIU, California State University, Fresno MARJAN MERNIK, University of Maribor

"Exploration and exploitation are the two cornerstones of problem solving by search." For more than a decade, Eiben and Schippers' advocacy for balancing between these two antagonistic cornerstones still greatly influences the research directions of evolutionary algorithms (EAs) [1998]. This article revisits nearly 100 existing works and surveys how such works have answered the advocacy. The article introduces a fresh treatment that classifies and discusses existing work within three rational aspects: (1) what and how EA components contribute to exploration and exploitation; (2) when and how exploration and exploitation are controlled; and (3) how balance between exploration and exploitation is achieved. With a more comprehensive and systematic understanding of exploration and exploitation, more research in this direction may be motivated and refined.

ACM Computing Surveys, Vol. 45, No. 3, Article 35, Publication date: June 2013.

Diversity and convergence

- Mechanisms for Convergence
 - > Competition
 - √ Tournament Parent Selection
 - ✓ Replace-Worst Replacement Mechanism
- Mechanisms for Diversity
 - Producing Diversity
 - ✓ Incest Prohibition
 - ✓ HUX Crossover
 - ✓ Restart Operator
 - Maintaining Diversity
 - ✓ Crowding Methods
 - ✓ Distributed GAs
 - ✓ Multiploid Representations

Incest prohibition

MAIN IDEA: The application of the crossover to similar parents generates offspring that do not offer diversity

- Incest prohibition (Eshelman et al., 1991)
 - P_1 and P_2 are mated only if $D_H(P_1, P_2)$ is above a threshold
 - > The threshold *decreases* as evolution proceeds

HUX crossover

MAIN IDEA: Diversity may be introduced by generating offspring very different from their parents

- HUX (Eshelman, 1991)
 - HUX flips exactly half of the different bits between two parents
 - Children have always the maximum Hamming distance from their two parents

Restart operator

- MAIN IDEA: To renew the population of GAs that have converged prematurely
- Restart operator (Goldberg, 1989)
 - It restarts the search with a new population
 - New individuals generated randomly
 - ✓ Best individuals from the previous population

Diversity and convergence

- Mechanisms for Convergence
 - > Competition
 - √ Tournament Parent Selection
 - ✓ Replace-Worst Replacement Mechanism
- Mechanisms for Diversity
 - Producing Diversity
 - √ Incest Prohibition
 - √ HUX Crossover
 - ✓ Restart Operator
 - Maintaining Diversity
 - ✓ Crowding Methods
 - ✓ Distributed GAs
 - ✓ Multiploid Representations

Crowding methods

- MAIN IDEA: Diversity may be <u>sustained</u> by producing little changes with the introduction of new individuals
- Crowding (De Jong, 1975)
 - New individuals replace individuals that are similar to themselves
 - Restricted tournament selection: To replace the closest individual R to the one being inserted in the population, I, from a set of n_T randomly selected ones, if I is better than R.

Distributed GAs

- MAIN IDEA: Diversity may be <u>preserved</u> by isolating individuals in different subpopulations (spatial separation)
- Distributed GAs (Tanese, 87)
 - Several subpopulations are processed by independent GAs
 - ✓ A *migration operator* produces a chromosome *exchange* between them

Multiploid chromosomes

- MAIN IDEA: In nature, many organisms have multiploid genotypes
 - Multiple chromosomes (genotype)
 - Mechanism for determining the phenotype
 - ✓ It determines which of the chromosomes has the dominant gene at each locus
- The use of multiploid genotypes enhances diversity
 - Unused genes remain in a multiploid genotype until they may later become useful ("latent diversity")

Multiploid chromosomes

- Multiploid chromosomes (Collingwood et al., 1996)
 - \triangleright A solution is represented by \mathbf{p} chromosomes ($\mathbf{p}>1$)
 - A mask is used for obtaining the corresponding solution

Genotype

Diversity and convergence

- Mechanisms to Combine Diversity and Convergence
 - Two-level Tournament Parent Selection
 - Evolutionary Algorithms
 - ✓ CHC Algorithm
 - ✓ Micro GAs
 - √ Saw-tooth GA
 - ✓ Gradual distributed GAs

Two-level TS

- **MAIN IDEA:** To select as parents the individuals that are both:
 - ✓ Fit, and
 - ✓ <u>Diverse</u> in relation to others (they provide diversity!)
- Two-level TS (Brameier, 2002)

Favouring fit and diverse chroms.

- Fitness sharing (Goldberg et al., 1987)
- Thermodynamical selection (Mori et al., 1995)
- Disruptive selection (Kuo et al., 1996)
- Diversity control oriented GA (Shimodaira, 1996)
- Multi-objective methods (De Jong et al., 2001)
- Lineage selection (Burke et al., 2003)
- Entropy-boltzmann selection (Lee, 2003)

Information Sciences 178 (2008) 4421–4433

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Replacement strategies to preserve useful diversity in steady-state genetic algorithms

Manuel Lozano a,*, Francisco Herrera a, José Ramón Cano b

Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain

b Department of Electronic Engineering, Computer Systems and Automatics, Escuela Superior de La Rábida, University of Huelva, 21819 Huelva, Spain

Diversity and convergence

- Mechanisms to Combine Diversity and Convergence
 - Two-level Tournament Parent Selection
 - Decreasing Mutation Probability
 - > BLX-α Real-Parameter Crossover
 - Evolutionary Algorithms
 - ✓ CHC Algorithm
 - ✓ Saw-tooth GA
 - ✓ Gradual distributed GAs
 - ✓ Memetic algorithms

CHC algorithm

High selection pressure

(Eshelman et al., 1991)

Conservative selection strategy

(It keeps the N best elements appearing so far)

CHC algorithm

References

- L.J. Eshelman (1991). The CHC adaptive search algorithm: how to have safe search when engaging in non-traditional genetic recombination. In: Foundations of Genetic Algorithms 1, Morgan Kaufmann, San Mateo, California, pp. 265-283.
- L.J. Eshelman, K.E. Mathias, J.D. Schaffer (1997). Convergence controlled variation. In: Foundations of Genetic Algorithms 4, Morgan Kaufmann, San Mateo, California, pp 203-224.

Saw-Tooth GA

V.K. Koumousis and C.P. Katsaras. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006

- It uses variable population size with periodic reinitialization
- In each period, the population size decreases linearly
- At the beginning of the next period randomly generated individuals are appended to the population

Gradual distributed GAs

- MAIN IDEA: To provide different levels of <u>diversity</u> and <u>convergence</u> <u>in a parallel way</u>
- Gradual DGAs (Herrera et al., 2000)
 - ✓ DGAs that apply a *different crossover operator* to each subpopulation

Gradual distributed GAs

References

F. Herrera, M. Lozano (2000). Gradual distributed real-coded genetic algorithms. IEEE Transactions on Evolutionary Computation 4(1): 43-63.