Análises dos dados SIVEP-GRIPE, SINASC e SIM para painel Qualidados

Qualidados

29/setembro/2023

Bases, importações e devidos tratamentos.

A seguir, são carregados os pacotes do R (https://www.r-project.org) utilizados para filtragem e tratamento dos dados considerados no dashboard https://observatorioobstetrico.shinyapps.io/oobr_qualidados2/. Os dados do painel foram atualizados no dia 20/setembro/2023.

```
#carregar pacotes
loadlibrary <- function(x) {</pre>
  if (!require(x, character.only = TRUE)) {
    install.packages(x, dependencies = T)
    if (!require(x, character.only = TRUE))
      stop("Package not found")
  }
}
packages <-
  c(
    "readr",
    "readxl",
    "janitor",
    "dplyr",
    "forcats",
    "stringr",
    "lubridate",
    "summarytools",
    "magrittr",
    "questionr",
    "knitr",
    "data.table",
    "writexl",
    "modelsummary",
    'coro',
    'getPass','httr'
lapply(packages, loadlibrary)
```

SIVEP-GRIPE

A base de dados SIVEP-Gripe (Sistema de Informação da Vigilância Epidemiológica da Gripe) contém os registros de casos e óbitos de SRAG (Síndrome Respiratória Aguda Grave). A notificação é compulsória para síndrome gripal, caracterizada por pelo menos dois dos seguintes sinais e sintomas: febre, mesmo que referida, calafrios, dor de garganta, dor de cabeça, tosse, coriza, distúrbios olfatórios ou de paladar, além de dispneia/desconforto respiratório, pressão persistente no peito, Saturação de O2 menor que 95% no ar ambiente ou cor azulada dos lábios ou rosto. Indivíduos assintomáticos com confirmação laboratorial por biologia molecular ou exame imunológico para infecção por COVID-19 também são relatados.

Para notificações no Sivep-Gripe, devem ser considerados os casos hospitalizados em hospitais públicos e privados, bem como todas as mortes decorrentes de infecções respiratórias agudas graves, independentemente da hospitalização.

A vigilância da SRAG no Brasil é realizada pelo Ministério da Saúde (MS), por meio da Secretaria de Vigilância em Saúde (SVS), desde a pandemia de Influenza A (H1N1) em 2009. Para obter mais informações, acesse: https://coronavirus.saude.gov.br/definicao-de-caso-e-notificacao.

Extração

Os dados de 2009 a 2019 são extraídos com auxílio da API da Plataforma de Ciência de Dados Aplicada à Saúde (PCDaS) e, em seguida, são tratados com base no fluxo ETL (Extração, Transformação e Carga), os dados para 2020 a 2023 são extraido do próprio Open Datasus. Durante a extração da API, os dados são filtrados utilizando consultas SQL, conforme demonstrado, em que a variável CS_GESTANT assume os seguintes valores: 1-1º Trimestre; 2-2º Trimestre; 3-3º Trimestre; 4-Idade Gestacional Ignorada; 5-Não; 6-Não se aplica; 9-Ignorado.

```
# Dados 2009 - 2019 -----
# Função para converter os resultados das consultas para data.frame
convertRequestToDF <- function(request, column_names = c()){</pre>
  if("RequestError" %in% names(content(request)))
    stop(content(request)$RequestError)
  variables = unlist(content(request)$columns)
  variables = variables[names(variables) == "name"]
  if (!length(column names)){
    column names <- unname(variables)</pre>
  }
  values = content(request,)$rows
  df <- as.data.frame(do.call(rbind,lapply(values,function(r) {</pre>
    row <- r
    row[sapply(row, is.null)] <- NA</pre>
    rbind(unlist(row))
  } )))
  names(df) <- column_names</pre>
  return(df)
query_with_cursor <- generator(function(sql_query, token, nrows){</pre>
  tryCatch({
    json_api <- paste0('{"token": {"token": "',token,'"}, "sql": {"sql":</pre>
                        {"query":"',sql query,'", "fetch size":"',nrows,'" }}}')
    response <- POST(url = "https://bigdata-api.fiocruz.br/sql_query/",</pre>
```

```
body = json_api, encode = "json")
    df <- convertRequestToDF(response)</pre>
    col_names <- colnames(df)</pre>
    vield(df)
    while(TRUE){
      json_api <- paste0('{"token": {"token": "',token,'"}, "sql": {"sql":</pre>
                          {"cursor":"',content(response)$cursor,'" }}}')
      response <- POST(url = "https://bigdata-api.fiocruz.br/sql query/",
                        body = json_api, encode = "json")
      if(length(content(response)$rows)>0){
        yield(convertRequestToDF(response,col_names))
      else return(NULL)
 }, error=function(cond) message(paste0(cond, "\n", content(response))) )
convertColTypeToNum <- function(df, colname){</pre>
  df[,colname] <- as.numeric(as.character(df[,colname]))</pre>
  return(df)
}
anos <- c(2009:2019)
df_total_max3 <- data.frame()</pre>
for(i in anos){
  query <- paste0('SELECT (*)',
                   ' FROM \\"datasus-srags\\" WHERE (',
                   '(CAST(RIGHT(DT_SIN_PRI, 4) AS int) = ',i,') AND ',
                   '(CS_GESTANT = 1 OR CS_GESTANT = 1.0 OR ',
                   'CS_GESTANT = 2 OR CS_GESTANT = 2.0 OR ',
                   'CS_GESTANT = 3 OR CS_GESTANT = 3.0 OR ',
                   'CS_GESTANT = 4 OR CS_GESTANT = 4.0 OR ',
                   'PUERPERA = 1 OR PUERPERA = 1.0))')
  df_total <- data.frame()</pre>
  loop(for (df in query_with_cursor(query, token, nrows=10000)) {
    print(paste0('Número de registros recuperados a cada iteração: ', nrow(df)))
    df_total <- rbind(df_total,df)</pre>
  })
  df_total_max3 <- rbind(df_total,df_total_max3)</pre>
}
write_rds(df_total_max3,file = 'data1/Sivep_2009-2019.rds')
# Dados 2020-2023----
#carregar pacotes
loadlibrary <- function(x) {</pre>
  if (!require(x, character.only = TRUE)) {
    install.packages(x, dependencies = T)
```

```
if (!require(x, character.only = TRUE))
      stop("Package not found")
  }
}
packages <-
  c(
    "readr",
    "readxl",
    "janitor",
    "dplyr",
    "forcats",
    "stringr",
    "lubridate",
    "summarytools",
    "magrittr",
    "questionr",
    "knitr",
    "data.table",
    "writexl",
    "modelsummary",
    'coro',
    'getPass','httr'
  )
lapply(packages, loadlibrary)
ckanr::ckanr_setup("https://opendatasus.saude.gov.br")
arqs <- ckanr::package_search("srag 2020")$results %>%
  purrr::map("resources") %>%
  purrr::map(purrr::keep, ~ .x$mimetype == "text/csv") %>%
  purrr::map_chr(purrr::pluck, 1, "url")
arqs2 <- ckanr::package_search("srag 2021")$results %>%
  purrr::map("resources") %>%
  purrr::map(purrr::keep, ~.x$mimetype == "text/csv") %>%
  purrr::map_chr(purrr::pluck, 2, "url")
arqs3 <- ckanr::package_search("srag 2021")$results %>%
  purrr::map("resources") %>%
  purrr::map(purrr::keep, ~.x$mimetype == "text/csv") %>%
  purrr::map_chr(purrr::pluck, 3, "url")
dados_a <- fread(arqs[1], sep = ";")</pre>
dados_b <- fread(arqs[2], sep = ";")</pre>
dados_c <- fread(arqs2[1], sep = ";")</pre>
dados_d <- fread(arqs3[1], sep= ";")</pre>
dados_a$FATOR_RISC <- dados_a$FATOR_RISC %>% as.character()
dados_b$FATOR_RISC <- dados_b$FATOR_RISC %>% as.character()
dados_c$FATOR_RISC <- dados_c$FATOR_RISC %>% as.character()
dados_d$FATOR_RISC <- dados_d$FATOR_RISC %>% as.character()
```

```
dados_total <- full_join(dados_a, dados_b) %>%
  full_join(dados_c) %>%
  full_join(dados_d)
dados total <- dados total %>%
  filter(
      (CS_GESTANT == 1 | CS_GESTANT == 1.0 | CS_GESTANT == '1' |
         CS_GESTANT == '1.0'
         CS GESTANT == 2 | CS GESTANT == 2.0 | CS GESTANT == '2' |
         CS GESTANT == '2.0'
         CS_GESTANT == 3 | CS_GESTANT == 3.0 | CS_GESTANT == '3' |
         CS_GESTANT == '3.0'
                                                 CS_GESTANT == '4' |
         CS_GESTANT == 4 | CS_GESTANT == 4.0 |
         CS_GESTANT == '4.0' |
         PUERPERA == 1 | PUERPERA == 1.0 | PUERPERA == '1' |
         PUERPERA == '1.0')
  )
write_rds(dados_total,file = 'data1/Sivep_2020-2023.rds')
```

Há atualmente 62612 observações na base de dados e são as variáveis:

names(df)

```
##
     [1] "DT NOTIFIC"
                          "SEM NOT"
                                           "DT SIN PRI"
                                                             "SEM PRI"
     [5] "SG_UF_NOT"
                           "ID REGIONA"
                                           "CO REGIONA"
                                                             "ID MUNICIP"
##
     [9] "CO_MUN_NOT"
                           "ID_UNIDADE"
                                            "CO_UNI_NOT"
                                                             "CS_SEXO"
##
    [13] "DT_NASC"
                           "NU_IDADE_N"
                                           "TP_IDADE"
                                                             "COD_IDADE"
##
    [17] "CS_GESTANT"
                          "CS_RACA"
                                           "CS_ESCOL_N"
                                                             "ID_PAIS"
##
    [21] "CO_PAIS"
                           "SG_UF"
                                           "ID_RG_RESI"
                                                             "CO_RG_RESI"
##
    [25] "ID_MN_RESI"
                           "CO_MUN_RES"
                                            "CS_ZONA"
                                                             "SURTO_SG"
##
    [29] "NOSOCOMIAL"
                          "AVE_SUINO"
                                           "FEBRE"
                                                             "TOSSE"
##
    [33] "GARGANTA"
                          "DISPNEIA"
                                           "DESC_RESP"
                                                             "SATURACAO"
    [37] "DIARREIA"
                           "OTIMOV"
##
                                            "OUTRO_SIN"
                                                             "OUTRO_DES"
    [41] "PUERPERA"
                           "FATOR RISC"
                                            "CARDIOPATI"
                                                             "HEMATOLOGI"
##
   [45] "SIND_DOWN"
                          "HEPATICA"
                                           "ASMA"
                                                             "DIABETES"
   [49] "NEUROLOGIC"
                          "PNEUMOPATI"
                                           "IMUNODEPRE"
                                                             "RENAL"
   [53] "OBESIDADE"
                          "OBES_IMC"
                                           "OUT_MORBI"
                                                             "MORB_DESC"
##
    [57] "VACINA"
                           "DT_UT_DOSE"
                                                             "DT_VAC_MAE"
##
                                           "MAE_VAC"
##
    [61] "M_AMAMENTA"
                          "DT_DOSEUNI"
                                           "DT_1_DOSE"
                                                             "DT_2_DOSE"
    [65] "ANTIVIRAL"
                           "TP ANTIVIR"
                                           "OUT ANTIV"
                                                             "DT ANTIVIR"
   [69] "HOSPITAL"
                           "DT INTERNA"
                                           "SG_UF_INTE"
                                                             "ID_RG_INTE"
##
##
    [73] "CO RG INTE"
                          "ID_MN_INTE"
                                           "CO_MU_INTE"
                                                             "UTI"
##
   [77] "DT_ENTUTI"
                          "DT_SAIDUTI"
                                           "SUPORT_VEN"
                                                             "RAIOX_RES"
##
   [81] "RAIOX_OUT"
                           "DT_RAIOX"
                                           "AMOSTRA"
                                                             "DT_COLETA"
    [85] "TP_AMOSTRA"
                           "OUT_AMOST"
                                           "PCR_RESUL"
                                                             "DT_PCR"
##
##
    [89] "POS_PCRFLU"
                           "TP_FLU_PCR"
                                           "PCR_FLUASU"
                                                             "FLUASU_OUT"
   [93] "PCR_FLUBLI"
                          "FLUBLI_OUT"
                                           "POS_PCROUT"
                                                             "PCR_VSR"
   [97] "PCR_PARA1"
                           "PCR_PARA2"
                                           "PCR_PARA3"
                                                             "PCR_PARA4"
## [101] "PCR_ADENO"
                           "PCR_METAP"
                                           "PCR_BOCA"
                                                             "PCR_RINO"
## [105] "PCR_OUTRO"
                          "DS_PCR_OUT"
                                           "CLASSI_FIN"
                                                             "CLASSI_OUT"
## [109] "CRITERIO"
                          "EVOLUCAO"
                                           "DT_EVOLUCA"
                                                             "DT ENCERRA"
                                           "PAIS_VGM"
## [113] "DT DIGITA"
                          "HISTO_VGM"
                                                             "CO_PS_VGM"
## [117] "LO PS VGM"
                           "DT_VGM"
                                            "DT_RT_VGM"
                                                             "PCR_SARS2"
```

```
## [121] "PAC COCBO"
                           "PAC DSCBO"
                                            "OUT ANIM"
                                                             "DOR ABD"
  [125] "FADIGA"
                          "PERD OLFT"
                                           "PERD PALA"
                                                             "TOMO RES"
##
  [129] "TOMO OUT"
                          "DT TOMO"
                                           "TP TES AN"
                                                             "DT RES AN"
  [133] "RES_AN"
                           "POS_AN_FLU"
                                            "TP_FLU_AN"
                                                             "POS_AN_OUT"
##
  [137] "AN_SARS2"
                           "AN VSR"
                                            "AN PARA1"
                                                             "AN PARA2"
  [141] "AN PARA3"
                          "AN ADENO"
                                           "AN OUTRO"
                                                             "DS AN OUT"
##
  [145] "TP AM SOR"
                          "SOR OUT"
                                            "DT CO SOR"
                                                             "TP SOR"
         "OUT SOR"
                           "DT RES"
                                           "RES IGG"
                                                             "RES IGM"
## [149]
##
   [153]
         "RES_IGA"
                           "ESTRANG"
                                            "VACINA_COV"
                                                             "DOSE_1_COV"
                                                             "FAB_COV_2"
   [157]
         "DOSE_2_COV"
                          "DOSE_REF"
                                           "FAB_COV_1"
  [161] "FAB_COVREF"
                          "LOTE_REF"
                                           "LAB_PR_COV"
                                                             "LOTE_1_COV"
                                           "DOSE_2REF"
   [165] "LOTE_2_COV"
                           "FNT_IN_COV"
                                                             "FAB_COVRF2"
   [169] "LOTE_REF2"
                          "TRAT_COV"
                                           "TIPO_TRAT"
                                                             "OUT_TRAT"
##
                                                             "CALAFRIO"
  [173] "DT_TRT_COV"
                          "ARTRALGIA"
                                           "AVE_10_DIA"
## [177] "CONJUNTIV"
                          "CORIZA"
                                            "CO_LAB_IF"
                                                             "CO_LAB_PCR"
   [181]
         "CO_UF_INTE"
                           "CULT_AMOST"
                                            "CULT_OUT"
                                                             "CULT_RES"
                          "DS_IF_OUT"
                                                             "DS_OUTMET"
##
   [185]
         "DOENCA_TRA"
                                           "DS_OAGEETI"
   [189]
         "DS OUTSUB"
                          "DT CULTURA"
                                           "DT HEMAGLU"
                                                             "DT IF"
                                                             "DT_PCR_1"
   [193] "DT_IFI"
                           "DT_OBITO"
                                            "DT_OUTMET"
##
  [197]
         "HEMA ETIOL"
                           "HEMA RES"
                                            "HEMOGLOBI"
                                                             "HEM TIPO H"
## [201] "HEM_TIPO_N"
                          "ID_OCUPA_N"
                                           "IFI"
                                                             "IF_ADENO"
## [205] "IF OUTRO"
                          "IF PARA1"
                                           "IF PARA2"
                                                             "IF PARA3"
                           "IF_VSR"
                                                             "LAB_PCR"
## [209] "IF_RESUL"
                                            "LAB_IF"
                                                             "NU ANO"
## [213]
         "METABOLICA"
                           "MIALGIA"
                                            "MONITORA"
                                                             "PCR ETIOL"
## [217]
         "OUT METODO"
                          "PCR"
                                           "PCR AMOSTR"
  [221] "PCR OUT"
                           "PCR RES"
                                           "PCR TIPO H"
                                                             "PCR TIPO N"
   [225]
         "POS_IF_FLU"
                           "POS_IF_OUT"
                                            "REQUI_GAL"
                                                             "RES_ADNO"
                                                             "RES_OUTRO"
## [229] "RES_FLUA"
                           "RES_FLUASU"
                                            "RES_FLUB"
  [233]
         "RES_PARA1"
                          "RES_PARA2"
                                            "RES_PARA3"
                                                             "RES_VSR"
  [237]
         "SRAG2009FINAL"
                          "SRAG2010FINAL"
                                            "SRAG2011FINAL"
                                                             "SRAG2012FINAL"
## [241]
         "SRAG2013FINAL"
                           "SRAG2014FINAL"
                                            "SRAG2015FINAL"
                                                             "SRAG2017FINAL"
   [245]
         "SRAG2018FINAL"
                          "ST_TIPOFI"
                                            "TABAGISMO"
                                                             "TIPO_PCR"
## [249] "TPAUTOCTO"
                           "TP_FLU_IF"
                                            "watermark"
```

Tratamento

A base de dados do SIVEP-GRIPE utilizada no Painel Qualidados passa por um processo de reorganização, no qual os valores das observações que se enquadram em alguma das regras de indicadores de má qualidade dos dados (Incompletude, Implausibilidade ou Inconsistência) são substituídos. Os indicadores podem ser visualizados na aba de dicionário, na tabela de regras, para cada uma das respectivas bases de dados dentro do Painel. Por exemplo, os dados "NA" (Not Available) são substituídos por "Em Branco". Tanto os dicionários de variáveis quanto o conjunto de regras estão disponíveis no GitHub do Painel, no seguinte endereço: https://github.com/observatorioobstetrico/Qualidados.

```
#BANCO AUXILIAR PARA CORRECAO DOS MUNICIPIOS
aux_muni2 <- abjData::muni %>%
  dplyr::select(uf id,
                muni id,
                muni_nm_clean,
                uf_sigla) %>%
  mutate_at("muni_id", as.character) %>%
  mutate(cod_mun = stringr::str_sub(muni_id, 1, 6))
#CRIANDO CLASSIFICACAO DE GESTANTE E PUERP E CORRIGINDO OS MUNICIPIOS
df_gest <- df %>%
  #CORRECAO MUNICIPIOS
 left_join(aux_muni2, by = c("ID_MUNICIP" = "cod_mun")) %>%
  mutate(SG_UF_NOT = ifelse(is.na(muni_nm_clean),
                             SG_UF_NOT, uf_sigla),
         ID_MUNICIP = ifelse(is.na(muni_nm_clean),
                              ID_MUNICIP, muni_nm_clean)) %>%
  mutate(
    #DATA DO PRIMEIRO SINTOMA
    dt_sint = as.Date(DT_SIN_PRI, format = "%d/%m/%Y"),
    #DATA DO NASCIMENTO
    dt nasc = as.Date(DT NASC, format = "%d/%m/%Y"),
    #ANO, BASEADO NA DATA DO PRIMEIRO SINTOMA
    ANO = lubridate::year(dt_sint),
    #MUNICIPIO
    MUNICIPIO = paste(ID_MUNICIP, "-", SG_UF_NOT)
  ) %>% select(-muni_nm_clean, -uf_sigla)
# CORRECAO DO ERRO QUE A FALTA DE PADRONIZACAO DOS DADOS OCASIONOU
df_gest <- df_gest %>% mutate_if(~ !is.character(.), as.character)
df_gest <- data.frame(lapply(df_gest,</pre>
        function(x) ifelse(x == "1.0", '1',
           ifelse(x == '2.0','2',
                      ifelse(x == '3.0', '3',
                             ifelse(x == '4.0','4',
                                    ifelse(x == '5.0', '5',
                                           ifelse(x == '6.0','6',
                                                   ifelse(x == '7.0', '7',
                                                          ifelse(x == '8.0', '8',
                                           ifelse(x == '9.0', '9', x))))))))))))))))))))))))))))))))))
df gest %>% nrow()#CONFERINDO SE VOLTOU TUDO
sivep2 <- df_gest
# INCOMPLETUDE -----
regras_incom <- fromJSON('data1/incompletude_sivep.json')</pre>
#VARIAVEIS DO DICIONARIO + VARIAVEIS PARA FILTRAGEM
df_gest2 <-</pre>
 df_gest[,c(variaveis_dic,'ANO','MUNICIPIO','SG_UF_NOT','CLASSI_FIN')]
#VARIAVEIS EM QUE O VALOR 9 E O VALOR IGNORADO:
variaveis_ign <- c('CS_SEXO','CS_RACA','CS_ESCOL_N','CS_ZONA','NOSOCOMIAL',</pre>
```

```
'AVE_SUINO', 'FEBRE', 'TOSSE', 'GARGANTA', 'DISPNEIA',
                    'DESC_RESP', 'SATURACAO', 'DIARREIA', 'VOMITO', 'OUTRO_SIN',
                    'FATOR_RISC', 'CARDIOPATI', 'HEMATOLOGI', 'SIND_DOWN',
                    'HEPATICA', 'ASMA', 'DIABETES', 'NEUROLOGIC', 'PNEUMOPATI',
                    'IMUNODEPRE', 'RENAL', 'OBESIDADE', 'OUT_MORBI',
                    'MAE_VAC', 'M_AMAMENTA', 'ANTIVIRAL', 'HOSPITAL', 'UTI',
                    'SUPORT_VEN', 'AMOSTRA', 'POS_PCRFLU', 'POS_PCROUT',
                    'EVOLUCAO', 'DOR_ABD', 'FADIGA', 'PERD_OLFT', 'PERD_PALA',
                    'POS AN FLU', 'POS AN OUT', 'CS GESTANT',
                    'TOMO RES', 'VACINA COV', 'VACINA', 'PUERPERA',
                    'CLASSI_FIN', "RAIOX_RES" )
setdiff(variaveis dic,variaveis ign)
#SUBSTITUIR VALORES NA POR EM BRANCO
sivep <- replace(df_gest2,is.na(df_gest2) ,"Em Branco")</pre>
#SUBSTITUIR VALORES 9 POR IGNORADO
sivep[, variaveis_ign] <- lapply(sivep[, variaveis_ign],</pre>
                                  function(x) ifelse((x == 9 | x == 9.0),
                                                      "Ignorado", x))
# Calcular as porcentagens de valores 'Ignorados' e
#'Em branco' por coluna so para ver se funcionou
colMeans(sivep == "Ignorado", na.rm = TRUE) * 100
colMeans(sivep == "Em Branco", na.rm = TRUE) * 100
# IMPLAUSIBILIDADE ---
regras_implau <- fromJSON('data1/implausibilidade_gestantes.json')</pre>
regras implau2 <- from JSON('data1/implausibilidade puerperas.json')</pre>
# Criando vetores de variáveis improváveis e impossíveis
improvavel <- grep("_IMPROVAVEL", names(regras_implau), value = TRUE)</pre>
impossivel <- grep("_IMPOSSIVEL", names(regras_implau), value = TRUE)</pre>
impossivel2 <- grep("_IMPOSSIVEL", names(regras_implau2), value = TRUE)</pre>
impossivel <- c(impossivel2,impossivel) %>% unique()
# Criando um data. frame com as variáveis improváveis
df_improvavel <- data.frame(</pre>
 variavel = gsub(improvavel,pattern = '_IMPROVAVEL',replacement = ''))
# Criando um data.frame com as variáveis impossíveis
df_impossivel <- data.frame(</pre>
 variavel = gsub(impossivel,pattern = '_IMPOSSIVEL',replacement = ''))
# Trocando regras em string por booleANOs
df impossivel <- df impossivel %>%
  mutate(condicao = case_when(
    grepl("CS_SEXO", variavel) ~
      "CS_SEXO != 'F'",
    grepl("NU_IDADE_N", variavel) ~
      "as.integer(NU_IDADE_N) < 0 | as.integer(NU_IDADE_N) > 90",
    grepl("CS_GESTANT", variavel) ~
      "CS_GESTANT %in% c('1','2','3','4') & PUERPERA == '1' ",
```

```
grepl("DT_INTERNA", variavel) ~
  "lubridate::year(as.Date(DT_INTERNA,format = '%d/%m/%Y')) < 2019
&!(is.na(lubridate::year(as.Date(DT_INTERNA,format = '\d/\%m/\%Y'))))",
grepl("DT_COLETA", variavel) ~
  "lubridate::year(as.Date(DT_COLETA,format = '%d/%m/%Y')) < 2019 &
!(is.na(lubridate::year(as.Date(DT COLETA,format = '%d/\%m/\%Y'))))",
grepl("TP_IDADE", variavel) ~
  "TP IDADE != '1' & TP IDADE != '2' & TP IDADE != '3'",
grepl("TP_ANTIVIR", variavel) ~
  "TP_ANTIVIR != '1' & TP_ANTIVIR != '2' & TP_ANTIVIR != '3'",
grepl("SURTO_SG", variavel) ~
  "SURTO_SG != '1' & SURTO_SG != '2' & SURTO_SG != 'Ignorado'",
grepl("NOSOCOMIAL", variavel) ~
  "NOSOCOMIAL != '1' & NOSOCOMIAL != '2' & NOSOCOMIAL != 'Ignorado'",
grepl("AVE_SUINO", variavel) ~
  "AVE_SUINO != '1' & AVE_SUINO != '2' & AVE_SUINO != 'Ignorado'",
grepl("FEBRE", variavel) ~
  "FEBRE != '1' & FEBRE != '2' & FEBRE != 'Ignorado'",
grepl("TOSSE", variavel) ~
  "TOSSE != '1' & TOSSE != '2' & TOSSE != 'Ignorado'",
grepl("GARGANTA", variavel) ~
  "GARGANTA != '1' & GARGANTA != '2' & GARGANTA != 'Ignorado'",
grepl("DISPNEIA", variavel) ~
  "DISPNEIA != '1' & DISPNEIA != '2' & DISPNEIA != 'Ignorado'",
grepl("DESC_RESP", variavel) ~
  "DESC RESP != '1' & DESC RESP != '2' & DESC RESP != 'Ignorado'",
grepl("SATURACAO", variavel) ~
  "SATURACAO != '1' & SATURACAO != '2' & SATURACAO != 'Ignorado'",
grepl("DIARREIA", variavel) ~
  "DIARREIA != '1' & DIARREIA != '2' & DIARREIA != 'Ignorado'",
grepl("VOMITO", variavel) ~
  "VOMITO != '1' & VOMITO != '2' & VOMITO != 'Ignorado'",
grepl("OUTRO_SIN", variavel) ~
  "OUTRO_SIN != '1' & OUTRO_SIN != '2' & OUTRO_SIN != 'Ignorado'",
grepl("FATOR_RISC", variavel) ~
  "FATOR_RISC != '1' & FATOR_RISC != '2' & FATOR_RISC != 'Ignorado'",
grepl("CARDIOPATI", variavel) ~
  "CARDIOPATI != '1' & CARDIOPATI != '2' & CARDIOPATI != 'Ignorado'",
grepl("HEMATOLOGI", variavel) ~
  "HEMATOLOGI != '1' & HEMATOLOGI != '2' & HEMATOLOGI != 'Ignorado'",
grepl("SIND_DOWN", variavel) ~
  "SIND_DOWN != '1' & SIND_DOWN != '2' & SIND_DOWN != 'Ignorado'",
grepl("HEPATICA", variavel) ~
  "HEPATICA != '1' & HEPATICA != '2' & HEPATICA != 'Ignorado'",
grepl("ASMA", variavel) ~
  "ASMA != '1' & ASMA != '2' & ASMA != 'Ignorado'",
grepl("DIABETES", variavel) ~
  "DIABETES != '1' & DIABETES != '2' & DIABETES != 'Ignorado'",
grepl("NEUROLOGIC", variavel) ~
  "NEUROLOGIC != '1' & NEUROLOGIC != '2' & NEUROLOGIC != 'Ignorado'",
grepl("PNEUMOPATI", variavel) ~
  "PNEUMOPATI != '1' & PNEUMOPATI != '2' & PNEUMOPATI != 'Ignorado'",
grepl("IMUNODEPRE", variavel) ~
```

```
"IMUNODEPRE != '1 ' & IMUNODEPRE != '2' & IMUNODEPRE != 'Ignorado'",
    grepl("RENAL", variavel) ~
      "RENAL != '1' & RENAL != '2' & RENAL != 'Ignorado'",
    grepl("OBESIDADE", variavel) ~
      "OBESIDADE != '1' & OBESIDADE != '2' & OBESIDADE != 'Ignorado'",
    grepl("OUT_MORBI", variavel) ~
      "OUT_MORBI != '1' & OUT_MORBI != '2' & OUT_MORBI != 'Ignorado'",
    grepl("VACINA", variavel) ~
      "VACINA != '1' & VACINA != '2' & VACINA != 'Ignorado'",
    grepl("MAE_VAC", variavel) ~
      "MAE_VAC != '1' & MAE_VAC != '2' & MAE_VAC != 'Ignorado'",
    grepl("M AMAMENTA", variavel) ~
      "M_AMAMENTA != '1' & M_AMAMENTA != '2' & M_AMAMENTA != 'Ignorado'",
    grepl("ANTIVIRAL", variavel) ~
      "ANTIVIRAL != '1' & ANTIVIRAL != '2' & ANTIVIRAL != 'Ignorado'",
    grepl("HOSPITAL", variavel) ~
      "HOSPITAL != '1' & HOSPITAL != '2' & HOSPITAL != 'Ignorado'",
    grepl("UTI", variavel) ~
      "UTI != '1' & UTI != '2' & UTI != 'Ignorado'",
    grepl("AMOSTRA", variavel) ~
      "AMOSTRA != '1' & AMOSTRA != '2' & AMOSTRA != 'Ignorado'",
    grepl("POS_PCRFLU", variavel) ~
      "POS PCRFLU != '1' & POS PCRFLU != '2' & POS PCRFLU != 'Ignorado'",
    grepl("POS_PCROUT", variavel) ~
      "POS_PCROUT != '1' & POS_PCROUT != '2' & POS_PCROUT != 'Ignorado'",
    grepl("HISTO_VGM", variavel) ~
      "HISTO VGM != '1' & HISTO VGM != '2' & HISTO VGM != 'Ignorado'",
    grepl("DOR_ABD", variavel) ~
      "DOR_ABD != '1' & DOR_ABD != '2' & DOR_ABD != 'Ignorado'",
    grepl("FADIGA", variavel) ~
      "FADIGA != '1' & FADIGA != '2' & FADIGA != 'Ignorado'",
    grepl("PERD_OLFT", variavel) ~
      "PERD_OLFT != '1' & PERD_OLFT != '2' & PERD_OLFT != 'Ignorado'",
    grepl("PERD_PALA", variavel) ~
      "PERD_PALA != '1' & PERD_PALA != '2' & PERD_PALA != 'Ignorado'",
    grepl("POS_AN_FLU", variavel) ~
      "POS_AN_FLU != '1' & POS_AN_FLU != '2' & POS_AN_FLU != 'Ignorado'",
    grepl("POS_AN_OUT", variavel) ~
      "POS AN OUT != '1' & POS AN OUT != '2' & POS AN OUT != 'Ignorado'",
    grepl("TP_AM_SOR", variavel) ~
      "TP_AM_SOR != '1' & TP_AM_SOR != '2' & TP_AM_SOR != 'Ignorado'",
    grepl("PUERPERA", variavel) ~
      "(PUERPERA %in% c('1')) & (CS_GESTANT %in% c('1','2','3','4'))"
    ))
   df_improvavel <- df_improvavel %>%
  mutate(condicao = case when(
    grepl("NU_IDADE_N", variavel) ~
      "(as.integer(NU_IDADE_N) < 10 & as.integer(NU_IDADE_N) >= 0) |
    (as.integer(NU_IDADE_N) > 55 & as.integer(NU_IDADE_N) <= 90)"))
#Substituindo os valores do banco sivep por improvavel e impossível
attach(sivep)
for(i in 1:nrow(df_impossivel)){
```

```
var <- df_impossivel$variavel[i]</pre>
  cond <- df_impossivel$condicao[i]</pre>
  sivep[eval(parse
             (text = paste0(cond, " & (",
                             var," != 'Em Branco')"))),var]<- 'Impossivel'</pre>
for(i in 1:nrow(df_improvavel)){
  var <- df improvavel$variavel[i]</pre>
  cond <- df_improvavel$condicao[i]</pre>
  sivep[eval(parse(text = paste0("(",cond,") & (",
                                  var," != 'Em branco' &",
                                  var," != 'Ignorado') "))),var] <- 'Improvavel'</pre>
}
detach(sivep)
sivep_ic_ip <- sivep</pre>
# INCONSISTENCIA --
regras_incon <- fromJSON('data1/SIVEP_Inconsistencias_Regras.json')</pre>
# Criando um data.frame com as variáveis improváveis
df_inconsistencia <- data.frame(</pre>
 variavel = names(regras_incon) %>% gsub(pattern = '_e_', replacement = ' e '))
# Trocando regras em string por booleANOs
df inconsistencia <- df inconsistencia %>%
  mutate(condicao = case when(
    grepl("CS_SEXO e CS_GESTANT", variavel) ~
      "(df_gest_aux$CS_SEXO %in% c('M', 'I')) &
    (df_gest_aux$CS_GESTANT %in% c('1','2','3','4'))",
    grepl('FATOR_RISC e COMORBIDADES', variavel) ~
      "((df_gest_aux$FATOR_RISC == '2' | df_gest_aux$FATOR_RISC == '9')
    & (df_gest_aux$CARDIOPATI == '1' | df_gest_aux$HEMATOLOGI == '1' |
    df_gest_aux$SIND_DOWN == '1' | df_gest_aux$HEPATICA == '1' |
    df_gest_aux$ASMA == '1' | df_gest_aux$DIABETES == '1' |
    df_gest_aux$NEUROLOGIC == '1' | df_gest_aux$PNEUMOPATI == '1' |
    df_gest_aux$IMUNODEPRE == '1' | df_gest_aux$RENAL == '1' |
    df_gest_aux$OBESIDADE == '1' | df_gest_aux$OBES_IMC == '1' |
    df_gest_aux$OUT_MORBI == '1')) | ((df_gest_aux$FATOR_RISC == '1') &
    (df_gest_aux$CARDIOPATI != '1' & df_gest_aux$HEMATOLOGI != '1' &
    df_gest_aux$SIND_DOWN != '1' & df_gest_aux$HEPATICA != '1' &
    df_gest_aux$ASMA != '1' & df_gest_aux$DIABETES != '1' &
    df_gest_aux$NEUROLOGIC != '1' & df_gest_aux$PNEUMOPATI != '1' &
    df_gest_aux$IMUNODEPRE != '1' & df_gest_aux$RENAL != '1' &
    df_gest_aux$OBESIDADE != '1' & df_gest_aux$OBES_IMC != '1' &
    df_gest_aux$OUT_MORBI != '1'))",
    grepl("VACINA e DT_UT_DOSE", variavel) ~
      "df_gest_aux$VACINA %in% c('2', '9') &
    (df_gest_aux$DT_UT_DOSE != 'Em Branco')",
    grepl("MAE_VAC e DT_VAC_MAE", variavel) ~
      "df_gest_aux$MAE_VAC %in% c('2', '9') &
    (df_gest_aux$DT_VAC_MAE != 'Em Branco')",
    grepl("DT_DOSEUNI e NU_IDADE_N", variavel) ~
```

```
"(df_gest_aux$DT_DOSEUNI != 'Em Branco') &
    (as.integer(df_gest_aux$NU_IDADE_N) <= '6' |</pre>
    as.integer(df_gest_aux$NU_IDADE_N) >= '8')",
    grepl("ANTIVIRAL e TP_ANTIVIR", variavel) ~ "df_gest_aux$ANTIVIRAL %in%
    c('2', '9') & df_gest_aux$TP_ANTIVIR %in% c('1', '2', '3')",
    grepl("HOSPITAL e DT_INTERNA", variavel) ~ "df_gest_aux$HOSPITAL %in%
    c('2', '9') & (df_gest_aux$DT_INTERNA != 'Em Branco')",
    grep1("UTI e DT_ENTUTI", variavel) ~ "(df_gest_aux$UTI == '2' |
    df_gest_aux$UTI == '9') & (df_gest_aux$DT_ENTUTI != 'Em Branco') |
    (df_gest_aux$HOSPITAL == '2' | df_gest_aux$HOSPITAL == '9') &
   df_gest_aux$UTI == '1'",
    grepl("RAIOX_RES e DT_RAIOX", variavel) ~ "(df_gest_aux$RAIOX_RES == '6' |
   df_gest_aux$RAIOX_RES == '9') & (df_gest_aux$DT_RAIOX!= 'Em Branco')",
    grep1("AMOSTRA e DT_COLETA", variavel) ~ "(df_gest_aux$AMOSTRA == '6' |
   df_gest_aux$AMOSTRA == '9') & (df_gest_aux$DT_COLETA != 'Em Branco')",
    grepl("HISTO_VGM e Campos_VGMs", variavel) ~
      "(df_gest_aux$HISTO_VGM == '2' | df_gest_aux$HISTO_VGM == '9') &
    (df_gest_aux$LO_PS_VGM != 'Em Branco') &
    (df_gest_aux$DT_VGM != 'Em Branco') &
    (df_gest_aux$DT_RT_VGM != 'Em Branco')",
    grepl("TOMO_RES e DT_TOMO", variavel) ~
      "(df_gest_aux$TOMO_RES == '6' | df_gest_aux$TOMO_RES == '9') &
    (df_gest_aux$DT_TOMO != 'Em Branco')",
    grepl("TP_TES_AN e DT_RES_AN", variavel) ~ "((df_gest_aux$RES_AN == '4') &
    (df_gest_aux$TP_TES_AN %in% c('1', '2'))) | ((df_gest_aux$RES_AN == '4') &
    (df gest aux$DT RES AN != 'Em Branco'))",
    grepl("VACINA_COV e DOSES", variavel) ~
      "(df_gest_aux$VACINA_COV %in% c('2', '9')) &
    ((df_gest_aux$DOSE_1_COV != 'Em Branco') |
    (df_gest_aux$DOSE_2_COV!= 'Em Branco'))",
    grepl("CLASSI_FIN_SRAG_INFLUENZA", variavel) ~
      "df_gest_aux$CLASSI_FIN == '1' & df_gest_aux$POS_PCRFLU %in%
    c('2', '9') & df_gest_aux$POS_AN_FLU %in% c('2', '9')",
    grepl("CLASSI_FIN_SRAG_OUTROS_VIRUS", variavel) ~
      "df_gest_aux$CLASSI_FIN == '1' &
   df_gest_aux$PCR_OUTRO %in% c('2', '9') &
   df_gest_aux$AN_OUTRO %in% c('2 ', '9')"
  ))
df_inconsistencia <- head(df_inconsistencia, -2)</pre>
# Criando colunas de inconsistencia no df_gest
df_gest_aux <- df_gest</pre>
#SUBSTITUIR VALORES NA POR EM BRANCO
df_gest_aux <- data.frame(lapply(df_gest_aux,</pre>
                                 function(x) ifelse(is.na(x), "Em Branco", x)))
for(i in 1:nrow(df_inconsistencia)){
  df_gest_aux[[df_inconsistencia$variavel[i]]] <- 'Nao'</pre>
df_gest_aux %>% colnames() #VENDO SE DEU CERTO
# Verificando a condição de inconsistência para cada variável
```

```
for(i in 1:(nrow(df inconsistencia))){
  var <- df_inconsistencia$variavel[i]</pre>
  cond <- df inconsistencia$condicao[i]</pre>
  df gest aux[eval(parse(text = paste0(cond))) ,var] <- 'Inconsistencia'</pre>
}
n <- nrow(df inconsistencia)</pre>
maxi <- ncol(df_gest_aux)</pre>
# CONCATENANDO E MUDANDO NOME DAS COLUNAS -----
sivep <- cbind(sivep_ic_ip,df_gest_aux[,(maxi - n + 1):maxi])</pre>
#RENOMEANDO AS COLUNAS COM BASE NO DICIONARIO
nomes_colunas <- colnames(sivep)</pre>
# Substituindo os nomes originais pelos novos
for(i in seq_along(SIVEP_dic$`Codigo SIVEP`)) {
  nomes_colunas <- gsub(SIVEP_dic$`Codigo SIVEP`[i],</pre>
                         SIVEP dic$ Codigo Qualidados [i],
                         nomes colunas)
}
# Atribuindo os novos nomes de colunas ao dataframe
colnames(sivep) <- nomes_colunas</pre>
# CRIAR REGRAS DO SIVEP -----
#inconsistencia
regras_incon <- regras_incon |> as.data.frame() |> t() |> as.data.frame()
regras_incon <- cbind(regras_incon |> row.names(),regras_incon)
regras_incon |> row.names() <- NULL</pre>
regras_incon |> colnames() <- c('Variavel', 'Regra')</pre>
regras_incon$Variavel <- regras_incon$Variavel |> gsub(pattern = '_e_',
                                                          replacement = ' e ')
regras_incon$Indicador <- 'Inconsistência'
regras_incon <- regras_incon[-c(17,18),]</pre>
#implausibilidade
regras_implau <- regras_implau |> as.data.frame() |> t() |> as.data.frame()
regras_implau <- cbind(regras_implau |> row.names(),regras_implau)
regras_implau |> row.names() <- NULL</pre>
regras_implau |> colnames() <- c('Variavel','Regra')</pre>
regras_implau$Variavel <- regras_implau$Variavel |>
  gsub(pattern = '_IMPOSSIVEL', replacement = '')
regras_implau$Regra <- regras_implau$Regra |>
  gsub(pattern = 'de gestantes ', replacement = '')
regras_implau$Regra <- regras_implau$Regra |>
  gsub(pattern = 'Gestantes ', replacement = 'Gestantes e puérperas ')
regras_implau$Regra[4] <- 'Gestantes e puérperas ao mesmo tempo'
regras_implau$Indicador <- 'Implausiblidade'</pre>
#incompletude
regras_incom <- regras_incom |> as.data.frame() |> t() |> as.data.frame()
```

```
regras_incom <- cbind(regras_incom |> row.names(),regras_incom)
regras_incom |> row.names() <- NULL</pre>
regras_incom |> colnames() <- c('Variavel', 'Regra')</pre>
regras_incom$Indicador <- 'Incompletude'</pre>
#CORRECAO PARA CODIGO DO QUALIDADOS
regras_sivep <- rbind(regras_incon,regras_implau,regras_incom)</pre>
for(i in seq along(SIVEP dic$`Codigo SIVEP`)) {
  for(j in 1:ncol(regras_sivep)){
 regras_sivep[,j] <- gsub(SIVEP_dic$`Codigo SIVEP`[i],</pre>
                           SIVEP_dic$`Codigo Qualidados`[i],
                       regras_sivep[,j])
regras_sivep$Variavel <- regras_sivep$Variavel %>%
  gsub(pattern = '_IMPROVAVEL', replacement = '')
#DESCRICAO DOS INDICADORES
desc_incom <- 'análise das informações que estão faltando na base de dados,
seja porque não foram preenchidas ("dados em branco") ou porque a
resposta era desconhecida ("dados ignorados").'
desc_implau <- "análise das informações que são improváveis e/ou dificilmente
possam ser consideradas aceitáveis dadas as características de sua natureza."
desc incon <- "informações que parecem ilógicas e/ou incompatíveis a
partir da análise da combinação dos dados informados em dois
ou mais campos do formulário."
var sivep incon <-
  regras_sivep[regras_sivep$Indicador=='Inconsistência','Variavel']
#VARIAVEIS AUXILIARES PARA INCONSISTENCIA
Var_incon_relacao <- list(</pre>
  c('SEXO','IDADE_GEST'),
  c('FATOR_RISCO', 'CARDIOPATI', 'HEMATOLOGI', 'SIND_DOWN', 'HEPÁTICA',
    'ASMA', 'DIABETES',
    'NEUROLÓGICA', 'PNEUMOPATIA', 'IMUNODEPRESSAO', 'RENAL_CRON', 'OBESIDADE',
    'OBES_IMC', 'OUT_FATOR_RISCO'),
  c('VACINA','DT VACINA GRIPE'),
  c('MAE_VACINA','DT_VACINA_MAE'),
  c('DT_DOSE_UNICA','IDADE'),
  c('ANTIVIRAL','TIPO_ANTIVIRAL'),
  c('INTERNACAO', 'DT_INTERNACAO'),
  c('UTI', 'DT_UTI', 'INTERNACAO'),
  c('RESULT_RAIOX' ,'DT_RAIOX' ),
  c('AMOSTRA_DIAG' ,'DT_COLETA_AMO' ),
  c('HIST_VIAGEM','LO_PS_VGM', 'DT_VGM', 'DT_RT_VGM'),
  c('RESULT_TOMOGR' ,'DT_TOMOGRAFIA' ),
  c('RES_AN' ,'TIPO_ANTIGENICO' ,'DT_RES_ANTIGENICO'),
  c('VACINA_COVID','DOSE_1_COV','DOSE_2_COV'),
  c('CLASSI_FIN' ,'PCR_INFLU' ,'ANTIGENICO_INFLU' ),
  c('CLASSI_FIN' ,'PCR_OUTRO' ,'AN_OUTRO')
names(Var_incon_relacao) <-</pre>
```

```
regras_sivep[regras_sivep$Indicador == 'Inconsistência','Variavel']
Var_incon_relacao <-</pre>
  Var_incon_relacao[var_sivep_incon] %>% unlist() %>% unname()
Var_incon_relacao <-</pre>
  Var_incon_relacao [Var_incon_relacao %in% colnames(sivep)]
#VARIAVEIS PARA FILTRO
var_sivep_implau <-</pre>
  regras_sivep$Variavel[regras_sivep$Indicador == 'Implausiblidade'] %>%
  unique()
var sivep incom <-
  regras_sivep$Variavel[regras_sivep$Indicador == 'Incompletude'] %>%
  unique()
dados_oobr_qualidados_SIVEP_2009_2023 <- sivep</pre>
#DADOS
usethis::use_data(dados_oobr_qualidados_SIVEP_2009_2023,overwrite = T)
#VARIVEIS PARA FILTRO
usethis::use_data(Var_incon_relacao,overwrite = T)
usethis::use_data(var_sivep_incom,overwrite = T)
usethis::use_data(var_sivep_implau,overwrite = T)
usethis::use_data(var_sivep_incon,overwrite = T)
#DESCRICAO
usethis::use_data(desc_incom, overwrite = T)
usethis::use_data(desc_implau, overwrite = T)
usethis::use data(desc incon, overwrite = T)
#DICIONARIO
usethis::use_data(SIVEP_dic,overwrite = T)
usethis::use_data(regras_sivep,overwrite = T)
```

Análise dos dados de caracterização

Classificação caso de SRAG

A variável que indica a classificação é a CLASSI_FIN, que possui as seguintes categorias: 1 - SRAG por influenza 2 - SRAG por outro vírus respiratório 3 - SRAG por outro agente etiológico 4 - SRAG não especificado 5 - SRAG por COVID-19

É perceptível que a maior concentração de dados está nas categorias de COVID-19 e SRAG não especificado. Todos os totais de dados considerados 'Em Branco', 'Implausíveis' e outras categorias similares serão apresentados posteriormente no documento.

Table 1: Tabela de frequências para classificação do caso

	n	%
1	6635	10.6
2	1301	2.1
3	3821	6.1
4	22776	36.4
5	25639	40.9
Em Branco	2397	3.8
Ignorado	43	0.1
Total	62612	100.0

Table 2: Tabela de frequências para classificação do trimestre gestacional

	n	%
1tri	6680	10.7
2tri	14706	23.5
3tri	25346	40.5
IG_ig	2184	3.5
não	3775	6.0
puerp	9921	15.8
Total	62612	100.0

Indicativo de Gestante ou Puérpera

Neste ponto, é realizada uma alteração nos dados para visualizar o trimestre gestacional e se a pessoa é puérpera ou não.

```
#tabela de frequência para a classificação
questionr::freq( dados_oobr_qualidados_SIVEP_2009_2023 |> mutate(
                classi_gesta_puerp = case_when(
                IDADE_GEST == '1'~ "1tri",
                IDADE_GEST == '2'~ "2tri",
                IDADE_GEST == '3' ~ "3tri",
                IDADE GEST == '4' ~ "IG ig",
                ( IDADE_GEST == '5' & PUERPERA == '1' )~ "puerp",
                (IDADE_GEST == '9' & PUERPERA == '1')~ "puerp",
                TRUE ~ "não"
                )) |> select(classi_gesta_puerp),
                    cum = FALSE,
                    total = TRUE,
                    na.last = FALSE,
                    valid = FALSE
                    ) %>%
          kable(caption =
          "Tabela de frequências para classificação do trimestre gestacional ",
                  digits = 2)
```

É importante observar que as implausibilidades e incompletudes são classificadas como "NÃO" no contexto mencionado.

Table 3: Tabela de frequências para variável sobre gestação

	n	%
0	1	0.0
1	6680	10.7
2	14706	23.5
3	25346	40.5
4	2184	3.5
5	9921	15.8
6	1101	1.8
Ignorado	672	1.1
Impossivel	2001	3.2
Total	62612	100.0

Período Gestacional

A variável IDADE_GEST representa o período gestacional e assume os seguintes valores: $1 - 1^{\circ}$ Trimestre; $2 - 2^{\circ}$ Trimestre; $3 - 3^{\circ}$ Trimestre; 4 - Idade Gestacional Ignorada; 5 - Não; 6 - Não se aplica; Ignorado.

```
#tabela de frequência para gestação
questionr::freq(
dados_oobr_qualidados_SIVEP_2009_2023$IDADE_GEST,
cum = FALSE,
total = TRUE,
na.last = FALSE,
valid = FALSE
) %>%
kable(caption = "Tabela de frequências para variável
sobre gestação", digits = 2)
```

Neste caso, os dados em que a variável IDADE_GEST assume os valores 1, 2, 3 ou 4, e a variável PUERPERA assume o valor 1 - É puérpera, são classificados como "Impossíveis".

Sexo

O Painel se limita aos dados em que o indivíduo observado foi classificado como gestante ou puérpera. Portanto, qualquer dado que indique "M" - Homem é considerado impossível. No total, existem 11 observações com essa classificação.

Table 4: Tabela de frequências para sexo

	n	%
F	62181	99.3
Impossivel	431	0.7
Total	62612	100.0

Idade

A variável IDADE representa a idade do indivíduo como um valor numérico. Nesse contexto, os dados cujos valores sejam maiores que 55 ou menores que 10 são classificados como implausíveis, sendo considerados como impossíveis ou improváveis.

Raça

A variável RACA representa a raça do indivíduo e possui as seguintes categorias:1 - Branca; 2 - Preta; 3 - Amarela; 4 - Parda; 5 - Indígena; Ignorado

```
#tabela de frequência para gestação
questionr::freq(
    dados_oobr_qualidados_SIVEP_2009_2023$RACA,
    cum = FALSE,
    total = TRUE,
    na.last = FALSE,
    valid = FALSE
) %>%
     kable(caption = "Tabela de frequências para variável
     Raça/Cor", digits = 2)
```

Os dados da população apresentam uma predominância majoritária nas categorias de raça "Branca" e "Parda".

UF de Notificação

A variável SG_UF_NOT representa a Unidade Federativa (UF) do estado de notificação do caso de SRAG. Ela assume diferentes valores correspondentes aos estados do Brasil.

Table 5: Tabela de frequências para variável idade

n % 10 16 0.0 11 16 0.0 12 30 0.0 13 74 0.1 14 239 0.4 15 492 0.8 16 756 1.2 17 1010 1.6 18 1206 1.9 19 1528 2.4 20 1665 2.7 21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34			
11 16 0.0 12 30 0.0 13 74 0.1 14 239 0.4 15 492 0.8 16 756 1.2 17 1010 1.6 18 1206 1.9 19 1528 2.4 20 1665 2.7 21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9		n	%
12 30 0.0 13 74 0.1 14 239 0.4 15 492 0.8 16 756 1.2 17 1010 1.6 18 1206 1.9 19 1528 2.4 20 1665 2.7 21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6	10	16	0.0
13 74 0.1 14 239 0.4 15 492 0.8 16 756 1.2 17 1010 1.6 18 1206 1.9 19 1528 2.4 20 1665 2.7 21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3			0.0
14 239 0.4 15 492 0.8 16 756 1.2 17 1010 1.6 18 1206 1.9 19 1528 2.4 20 1665 2.7 21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 <td>12</td> <td>30</td> <td></td>	12	30	
15 492 0.8 16 756 1.2 17 1010 1.6 18 1206 1.9 19 1528 2.4 20 1665 2.7 21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 </td <td>13</td> <td>74</td> <td>0.1</td>	13	74	0.1
16 756 1.2 17 1010 1.6 18 1206 1.9 19 1528 2.4 20 1665 2.7 21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 </td <td>14</td> <td>239</td> <td>0.4</td>	14	239	0.4
17 1010 1.6 18 1206 1.9 19 1528 2.4 20 1665 2.7 21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 </td <td>15</td> <td>492</td> <td>0.8</td>	15	492	0.8
17 1010 1.6 18 1206 1.9 19 1528 2.4 20 1665 2.7 21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 </td <td>16</td> <td>756</td> <td>1.2</td>	16	756	1.2
19 1528 2.4 20 1665 2.7 21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 <td>17</td> <td>1010</td> <td></td>	17	1010	
19 1528 2.4 20 1665 2.7 21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 <td>18</td> <td>1206</td> <td>1.9</td>	18	1206	1.9
21 1885 3.0 22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2	19	1528	
22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1	20	1665	2.7
22 1986 3.2 23 2143 3.4 24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1	21	1885	3.0
24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 <t< td=""><td>22</td><td>1986</td><td></td></t<>	22	1986	
24 2135 3.4 25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 <t< td=""><td>23</td><td>2143</td><td>3.4</td></t<>	23	2143	3.4
25 2223 3.6 26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1	24	2135	
26 2184 3.5 27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1			
27 2206 3.5 28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1			
28 2191 3.5 29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1			
29 2093 3.3 30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1			
30 2106 3.4 31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 <			
31 2123 3.4 32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 <td< td=""><td></td><td></td><td></td></td<>			
32 1950 3.1 33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3			
33 1877 3.0 34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Improvavel 14583 23.3 Improvavel 1560 2.5 </td <td></td> <td></td> <td></td>			
34 1820 2.9 35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
35 1812 2.9 36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
36 1600 2.6 37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
37 1458 2.3 38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
38 1295 2.1 39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
39 1158 1.8 40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
40 884 1.4 41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
41 593 0.9 42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
42 459 0.7 43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
43 304 0.5 44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
44 238 0.4 45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
45 146 0.2 46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
46 82 0.1 47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
47 73 0.1 48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
48 61 0.1 49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
49 51 0.1 50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			0.1
50 42 0.1 51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			0.1
51 42 0.1 52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			0.1
52 44 0.1 53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
53 53 0.1 54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
54 64 0.1 55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
55 56 0.1 Impossivel 14583 23.3 Improvavel 1560 2.5			
Impossivel 14583 23.3 Improvavel 1560 2.5			
Improvavel 1560 2.5			
-			
10.01 02012 100.0			
	100a1	02012	100.0

Table 6: Tabela de frequências para variável Raça/Cor

	n	%
1	24948	39.8
2	3779	6.0
3	476	0.8
4	25448	40.6
5	325	0.5
Em Branco	955	1.5
Ignorado	6681	10.7
Total	62612	100.0

Escolaridade

A variável ESCOLARIDADE representa o nível de escolaridade do paciente e possui as seguintes categorias: 0 - Sem escolaridade/Analfabeto; 1 - Fundamental 1° ciclo, 1^{a} a 5^{a} série; 2 - Fundamental 2° ciclo, 6^{a} a 9^{a} série; 3 - Médio, 1° ao 3° ano; 4 - Superior; 5 - Não se aplica; Ignorado. Para os níveis de escolaridade fundamental e médio, deve-se considerar a última série ou ano concluído.

```
#tabela de frequência para gestação
questionr::freq(
dados_oobr_qualidados_SIVEP_2009_2023$ESCOLARIDADE,
cum = FALSE,
total = TRUE,
na.last = FALSE,
valid = FALSE
) %%
kable(caption = "Tabela de frequências para variável
Escolaridade", digits = 2)
```

Entre as observações, o índice de ensino médio concluído é o de maior frequência. Isso significa que a categoria correspondente ao nível de escolaridade "Médio, 1° ao 3° ano" é a mais comum.

Análise dos Indicadores

Segue abaixo a frequência para cada variável e cada indicador apresentado no painel. As regras de decisão podem ser observadas na aba de tratamento ou no próprio dicionário do painel.

Table 7: Tabela de frequências para variável UF de notificação

	n	%
AC	255	0.4
AL	750	1.2
AM	1547	2.5
AP	297	0.5
BA	1754	2.8
CE	3164	5.1
DF	1784	2.8
ES	473	0.8
GO	1735	2.8
MA	766	1.2
MG	5357	8.6
MS	1465	2.3
MT	1286	2.1
PA	2107	3.4
PB	1897	3.0
PE	1651	2.6
PI	881	1.4
PR	6920	11.1
RJ	4530	7.2
RN	630	1.0
RO	603	1.0
RR	108	0.2
RS	2819	4.5
\overline{SC}	2742	4.4
SE	403	0.6
SP	16263	26.0
ТО	425	0.7
Total	62612	100.0

Table 8: Tabela de frequências para variável Escolaridade

	n	%
0	290	0.5
0.0	52	0.1
1	3712	5.9
10.0	161	0.3
2	6947	11.1
3	12667	20.2
4	3685	5.9
5	842	1.3
6	1316	2.1
7	192	0.3
8	315	0.5
Em Branco	15903	25.4
Ignorado	16530	26.4
Total	62612	100.0

Incompletude

As regras aqui utilizadas são apresentadas no dicionário do painel, mostramos abaixo a frequência relativa a cada variável do painel apresentando alguma das incompletudes. Lembrando que o sivep possui um total de 35792 observações. Essas frequências representam a porcentagem de ocorrência de cada valor em relação ao total de observações para cada variável.

```
tabela_resultados <- data.frame(Variavel = character(),</pre>
                                   Ignorado = numeric(),
                                   `Em Branco` = numeric(),
                                   `Porcentagem Incompletude` = character(),
                                   row.names = NULL, stringsAsFactors = FALSE)
# Iteração sobre as colunas do dataframe original
for (col in colnames(dados_oobr_qualidados_SIVEP_2009_2023)) {
  # Contagem dos casos "Ignorado" e "Em Branco"
  contagem_ignorado <- sum(dados_oobr_qualidados_SIVEP_2009_2023[[col]] == "Ignorado", na.rm = TRUE)</pre>
  contagem_em_branco <- sum(dados_oobr_qualidados_SIVEP_2009_2023[[col]] == "Em Branco", na.rm = TRUE)
  porc <- (contagem_ignorado + contagem_em_branco)/length(dados_oobr_qualidados_SIVEP_2009_2023[[col]])
  # Adição dos resultados à tabela
  tabela_resultados <- rbind(tabela_resultados,</pre>
                        data.frame(Variavel = col,
                                     Ignorado = contagem_ignorado,
                                     `Em Branco` = contagem_em_branco,
                                     `Porcentagem Incompletude` = paste0(
                                     round(porc*100,2),'%')))
tabela_resultados |> kable()
```

Variavel	Ignorado	Em.Branco	Porcentagem.Incompletude
SEXO	0	0	0%
IDADE	0	0	0%
TIPO IDADE	0	14472	23.11%
RACA	6681	955	12.2%
ESCOLARIDADE	16530	15903	51.8%
ZONA	407	18368	29.99%
SURTO SG	0	49391	78.88%
SRAG POS	3050	20608	37.79%
AVES SUINOS	6448	20757	43.45%
FEBRE	472	7156	12.18%
TOSSE	378	5112	8.77%
GARGANTA	1065	10731	18.84%
DISPENEIA	452	7507	12.71%
DESC RESPIRATORIO	610	16904	27.97%
SATURAÇÃO	1001	17667	29.82%
DIARREIA	868	19014	31.75%
VOMITO	702	26279	43.09%
OUTRO SINT		12256	21.67%
	1312		25.29%
FATOR_RISCO	0	15837	
CARDIOPATI	889	29801	49.02%
HEMATOLOGI	349	44248	71.23%
SIND_DOWN	560	37920	61.46%
HEPÁTICA	626	37968	61.64%
ASMA	313	43782	70.43%
DIABETES	304	43450	69.88%
NEUROLÓGICA	602	37888	61.47%
PNEUMOPATIA	909	30560	50.26%
IMUNODEPRESSAO	927	30608	50.37%
RENAL_CRON	908	30765	50.59%
OBESIDADE	666	37508	60.97%
OUT FATOR RISCO	760	27409	44.99%
MAE VACINA	16	62568	99.96%
MAE AMAMENTA	12	62576	99.96%
ANTIVIRAL	4838	13826	29.81%
TIPO_ANTIVIRAL	0	57606	92%
INTERNACAO	333	1006	2.14%
DT INTERNACAO	0	2039	3.26%
UTI	602	13655	22.77%
SUPORT VENT	1304	13527	23.69%
AMOSTRA DIAG	140	9393	15.23%
DT COLETA AMO	0	8550	13.66%
RT-PCR INFLU	1335	51557	84.48%
RT-PCR OUTRO	34	47132	75.33%
EVOLUCAO	1830	5152	11.15%
HIST VIAGEM	0	14472	23.11%
DOR ABD	693	33083	53.94%
FADIGA	675	32372	52.78%
PERDA OLFT	858	32710	53.61%
PERDA_PALADAR ANTIGENICO INFLU	874	32783	53.75%
-	509	57739	93.03%
ANTIGENICO_OUTRO	59	56492	90.32%
IDADE_GEST	672	0	1.07%
DT_VACINA_GRIPE	0	15157	24.21%
DT_VACINA_MAE 23		15845	25.31%
DT_DOSE_UNICA	0	15845	25.31%
DT_UTI	0	13050	20.84%
RESULT_RAIOX	3811	21860	41%

Implausibilidade

```
tabela_resultados <- data.frame(Variavel = character(),</pre>
                                Implausivel = numeric(),
                                `Impossivel` = numeric(),
                                `Porcentagem Implausibilidade` = character(),
                                row.names = NULL, stringsAsFactors = FALSE)
# Iteração sobre as colunas do dataframe original
for (col in colnames(dados_oobr_qualidados_SIVEP_2009_2023)) {
  # Contagem dos casos "Ignorado" e "Em Branco"
  contagem_Implausivel <- sum(dados_oobr_qualidados_SIVEP_2009_2023[[col]] == "Improvavel", na.rm = TRU
  contagem_Impossivel <- sum(dados_oobr_qualidados_SIVEP_2009_2023[[col]] == "Impossivel", na.rm = TRUE
  porc <- (contagem_Implausivel + contagem_Impossivel)/length(dados_oobr_qualidados_SIVEP_2009_2023[[co
  # Adição dos resultados à tabela
 tabela_resultados <- rbind(tabela_resultados,</pre>
                            data.frame(Variavel = col,
                                         Implausivel = contagem_Implausivel,
                                        Impossivel = contagem_Impossivel,
                                       `Porcentagem Implausibilidade` = paste0(
                                        round(porc*100,2),'%')))}
tabela_resultados |> kable()
```

Variavel	Implausivel	Impossivel	Porcentagem.Implausibilidade
SEXO	0	431	0.69%
IDADE	1560	14583	25.78%
TIPO_IDADE	0	0	0%
RACA	0	0	0%
ESCOLARIDADE	0	0	0%
ZONA	0	0	0%
SURTO_SG	0	1458	2.33%
SRAG POS	0	0	0%
AVES SUINOS	0	45	0.07%
FEBRE	0	0	0%
TOSSE	0	0	0%
GARGANTA	0	0	0%
DISPENEIA	0	0	0%
DESC RESPIRATORIO	0	0	0%
SATURAÇÃO	0	0	0%
DIARREIA	0	0	0%
VOMITO	-	-	0%
	0	0	
OUTRO_SINT	0	0	0%
FATOR_RISCO	0	14895	23.79%
CARDIOPATI	0	0	0%
HEMATOLOGI	0	0	0%
SIND_DOWN	0	0	0%
HEPÁTICA	0	0	0%
ASMA	0	0	0%
DIABETES	0	0	0%
NEUROLÓGICA	0	0	0%
PNEUMOPATIA	0	0	0%
IMUNODEPRESSAO	0	1002	1.6%
RENAL_CRON	0	0	0%
OBESIDADE	0	0	0%
OUT FATOR RISCO	0	0	0%
MAE VACINA	0	0	0%
MAE AMAMENTA		0	0%
	0	_	
ANTIVIRAL	0	33	0.05%
TIPO_ANTIVIRAL	0	0	
INTERNACAO	0	0	0%
DT_INTERNACAO	0	12453	19.89%
UTI	0	0	0%
SUPORT_VENT	0	0	0%
AMOSTRA_DIAG	0	187	0.3%
DT_COLETA_AMO	0	6002	9.59%
RT-PCR_INFLU	0	0	0%
RT-PCR_OUTRO	0	0	0%
EVOLUCAO	0	0	0%
HIST_VIAGEM	0	37597	60.05%
DOR ABD	0	0	0%
FADIGA	0	0	0%
PERDA OLFT	0	0	0%
PERDA PALADAR	0	0	0%
ANTIGENICO INFLU	0	0	0%
ANTIGENICO OUTRO	0	0	0%
IDADE GEST	0	2001	3.2%
	0	2001	0%
DT_VACINA_GRIPE			
DT_VACINA_MAE 25		0	0%
DT_DOSE_UNICA	0	0	0%
DT_UTI	0	0	0%
RESULT_RAIOX	0	0	0%

Inconsistência

As regras utilizadas para identificar as inconsistências no banco de dados podem ser visualizadas na aba de dicionário do painel. Nessa seção, é possível encontrar as informações detalhadas sobre as regras adotadas para determinar as inconsistências nos dados. Recomenda-se consultar essa aba para obter mais detalhes.

```
tabela_resultados <- data.frame(Variavel = character(),</pre>
                              Inconsistência = numeric(),
                               `Porcentagem Inconsistência` = character(),
                              row.names = NULL, stringsAsFactors = FALSE)
# Iteração sobre as colunas do dataframe original
for (col in colnames(dados oobr qualidados SIVEP 2009 2023)) {
  # Contagem dos casos "Ignorado" e "Em Branco"
  contagem <- sum(dados oobr qualidados SIVEP 2009 2023[[col]] == "Inconsistencia", na.rm = TRUE)
  porc <- (contagem)/length(dados_oobr_qualidados_SIVEP_2009_2023[[col]])</pre>
  # Adição dos resultados à tabela
  if (contagem > 0) {
        tabela resultados <- rbind(tabela resultados,
                                  data.frame(Variavel = col,
                                   `Inconsistência` = contagem,
                                  `Porcentagem Implausibilidade` = paste0(
                                  round(porc*100,2),'%')))}
tabela_resultados |> kable()
```

Variavel	Inconsistência	Porcentagem.Implausibilidade
SEXO e IDADE_GEST	14	0.02%
FATOR_RISCO e COMORBIDADES	5324	8.5%
VACINA e DT_VACINA_GRIPE	28442	45.43%
MAE_VACINA e DT_VACINA_MAE	21	0.03%
DT_DOSE_UNICA e IDADE	45996	73.46%
INTERNACAO e DT_INTERNACAO	1621	2.59%
UTI e DT_UTI	31736	50.69%
RESULT_RAIOX e DT_RAIOX	22812	36.43%
AMOSTRA_DIAG e DT_COLETA_AMO	133	0.21%
HIST_VIAGEM e Campos_VGMs	11942	19.07%
RESULT_TOMOGR e DT_TOMOGRAFIA	18072	28.86%
TIPO_ANTIGENICO e DT_RES_ANTIGENICO	11845	18.92%
VACINA_COVID e DOSES	15078	24.08%

SINASC

O Sistema de Informações sobre Nascidos Vivos (SINASC) foi oficialmente implantado a partir de 1990, com o propósito de coletar dados sobre os nascimentos ocorridos em todo o território nacional, fornecendo informações relevantes sobre a natalidade para todos os níveis do Sistema de Saúde.

O SINASC é gerenciado pelo Ministério da Saúde em parceria com as Secretarias Estaduais e Municipais de Saúde. Seu objetivo principal é subsidiar a formulação, implementação e avaliação de políticas públicas relacionadas à saúde materno-infantil.

Extração

Para a base de dados do SINASC, assim como para a base de dados do SIVEP-GRIPE e do SIM (Sistema de Informações sobre Mortalidade), a extração dos dados foi realizada por meio da API disponibilizada pela PCDas (Plataforma de Ciência de Dados Aplicada à Saúde) abrangendo os anos de 1996 a 2021, e pelo Open datasus para os dados preliminares referentes a 2022.

Durante a extração dos dados por meio da API, os mesmos são devidamente filtrados, tratados e subdivididos em três bases distintas. Essa subdivisão ocorre devido ao tamanho excessivo do arquivo completo, buscando otimizar o processamento e análise dos dados. Cada uma das três bases corresponde a um dos indicadores trabalhados no painel.

As bases finais resultantes contêm informações sobre o número de casos dos indicadores e o total de observações, agrupados por município-UF, ano e variável em questão. Essa organização permite uma visualização e análise mais eficiente dos dados, facilitando a compreensão dos padrões e tendências relacionados aos indicadores monitorados no painel.

```
import glob
import pandas as pd
from collections import Counter
import datetime as dt
import warnings
warnings.filterwarnings("ignore")
regras_ignorados = {}
regras_ignorados['LOCNASC'] = [9]
regras_ignorados['ESTCIVMAE'] = [9]
regras_ignorados['ESCMAE'] = [9]
regras_ignorados['GESTACAO'] = [9]
regras_ignorados['GRAVIDEZ'] = [9]
regras_ignorados['PARTO'] = [9]
regras_ignorados['CONSULTAS'] = [9]
regras_ignorados['CONSULTAS'] = [9]
regras ignorados['SEXO'] = [0, 9, 'I']
regras ignorados['RACACOR'] = [9]
regras ignorados['IDANOMAL'] = [8,9]
regras_ignorados['ESCMAE2010'] = [9]
regras_ignorados['TPMETESTIM'] = [8,9]
regras_ignorados['TPMETESTIM'] = [99]
regras ignorados['TPAPRESENT'] = [9]
regras_ignorados['STTRABPART'] = [9]
regras_ignorados['STCESPARTO'] = [9]
regras_ignorados['TPNASCASSI'] = [9]
regras_ignorados['TPFUNCRESP'] = [0]
regras_ignorados['ESCMAEAGR1'] = [9]
regras_ignorados['TPROBSON'] = [11,12]
regras ignorados['IDADEMAE'] = [99]
regras_ignorados['PESO'] = [9999]
for f in glob.glob('SINASC dataset/*.csv'):
```

```
df = pd.read_csv(f)
print(len(df))
ano = f.split('/')[1].split('_')[3].split('.')[0]
codmun = df['CODMUNNASC']
estado = f.split('/')[1].split('_')[2]
df_ignorados = df.copy()
df totais = df.isna()
df_nulos = df_totais.copy()
df_totais['ANO'] = ano
df_totais['CODMUNNASC'] = codmun
df_totais = df_totais.groupby(['ANO','CODMUNNASC']) \
                  .count() \
                  .reset_index() \
                  .melt(id_vars=['ANO','CODMUNNASC'])
df_totais.columns = ['ANO', 'CODMUNNASC', 'VARIAVEL', 'TOTAIS']
df nulos['CODMUNNASC'] = codmun
df_nulos['ANO'] = ano
df_nulos = df_nulos.groupby(['ANO','CODMUNNASC']).sum() \
                  .reset_index() \
                  .melt(id_vars=['ANO','CODMUNNASC'])
df_nulos.columns = ['ANO', 'CODMUNNASC', 'VARIAVEL', 'NULOS']
for c in df_ignorados.columns:
    if c in regras_ignorados:
        df_ignorados[c] = df_ignorados[c].isin(regras_ignorados[c])
    else:
        if c not in ['ANO','CODMUNNASC']:
            df_ignorados.drop(columns=[c], inplace=True)
df_ignorados['CODMUNNASC'] = codmun
df ignorados['ANO'] = ano
df_ignorados = df_ignorados.groupby(['ANO', 'CODMUNNASC']) \
                    .sum() \
                    .reset_index().melt(id_vars=['ANO','CODMUNNASC'])
df_ignorados.columns = ['ANO', 'CODMUNNASC', 'VARIAVEL', 'IGNORADOS']
df_ignorados = df_ignorados.fillna(0)
x = df_totais.merge(df_nulos,how='left',on=['ANO','CODMUNNASC','VARIAVEL'])
x = x.merge(df_ignorados, how='left', on=['ANO','CODMUNNASC','VARIAVEL'])
x = x.reset_index()
x = x[['ANO', 'CODMUNNASC', 'VARIAVEL', 'NULOS', 'IGNORADOS', 'TOTAIS']]
x = x.fillna(0)
```

```
x.to_csv('SINASC_dataset/resultados/Incompletude_{}_{}.csv' \
               .format(estado, ano),
             index=None, compression='gzip')
incompletude = pd.DataFrame()
for f in glob.glob('SINASC_dataset/resultados/Incompletude_*.csv'):
    df = pd.read csv(f, compression='gzip')
    incompletude = pd.concat([incompletude, df], axis=0)
incompletude.fillna(0, inplace=True)
incompletude = incompletude[~incompletude.VARIAVEL.isin(['contador','NOVO'])]
incompletude.to_csv('SINASC_Incompletude_v2.csv',index=None,compression='gzip')
# qera regras
import json
regras = {}
for r in regras_ignorados:
    regras["IGNORADOS_" + r] = "Se o campo " + r + \
    " estiver preenchido com " + str(regras_ignorados[r])
with open('SINASC_Incompletude_Regras.json', 'w') as fp:
    json.dump(regras, fp, indent=4)
#IMPLAUSIBLIDADE
colunas_implausibilidade = ['ANO', 'ESTADO', 'CODMUNNASC', 'LOCNASC',
                             'IDADEMAE', 'ESTCIVMAE', 'ESCMAE', 'QTDFILVIVO',
                             'QTDFILMORT', 'GESTACAO', 'GRAVIDEZ', 'PARTO',
                             'CONSULTAS', 'DTNASC', 'HORANASC', 'SEXO',
                             'APGAR1', 'APGAR5', 'RACACOR', 'PESO', 'IDANOMAL',
                             'DTCADASTRO', 'CODANOMAL', 'ESCMAE2010', 'DTNASCMAE',
                             'QTDGESTANT', 'QTDPARTNOR', 'QTDPARTCES', 'IDADEPAI',
                             'DTULTMENST', 'SEMAGESTAC', 'TPMETESTIM', 'TPAPRESENT',
                             'STTRABPART', 'STCESPARTO', 'TPNASCASSI', 'TPFUNCRESP',
                             'TPDOCRESP', 'TPROBSON', 'SERIESCMAE', 'CONSPRENAT',
                             'MESPRENAT', 'ESCMAEAGR1', 'PARIDADE']
# aplica as regras para variaveis com opcoes
regras_gerais = { 'LOCNASC': [1,2,3,4,5,9],
                   'ESTCIVMAE': [1,2,3,4,5,9],
                   'ESCMAE': [1,2,3,4,5,9],
                   'GESTACAO': [1,2,3,4,5,6,9],
                   'GRAVIDEZ': [1,2,3,9],
                   'PARTO': [1,2,9],
                   'CONSULTAS': [1,2,3,4,9],
                   'SEXO': [1,2,9,0,'M','F','I'],
                   'RACACOR': [1,2,3,4,5],
                   'IDANOMAL': [1,2,9],
                   'ESCMAE2010':[1,2,3,4,5,9],
                   'TPMETESTIM': [1,2,9],
```

```
'TPAPRESENT': [1,2,3,9],
                 'STTRABPART': [1,2,3,9],
                 'STCESPARTO': [1,2,3,9],
                 'TPNASCASSI': [1,2,3,4,9],
                 'TPFUNCRESP': [1,2,3,4,5,9],
                 'TPDOCRESP': [1,2,3,4,5],
                 'TPROBSON': list(range(1,13)), # 1 a 12
                 'SERIESCMAE': list(range(1,9)), # 1 a 8
                 'MESPRENAT': list(range(1,11)) + [99], # 1 a 10 e 99
                 'ESCMAEAGR1': list(range(1,13)), # 1 a 12,
               }
for f in glob.glob('SINASC_dataset/*.csv'):
   df = pd.read_csv(f)
   ano = f.split('/')[1].split('_')[3].split('.')[0]
   estado = f.split('/')[1].split('_')[2]
   codmun = df['CODMUNNASC']
   aux_cols = []
   for c in colunas_implausibilidade:
       if c in df.columns:
           aux_cols.append(c)
   aux = df[aux_cols]
   aux['ANO'] = ano
   aux['CODMUNNASC'] = codmun
   print(ano, estado)
   for col in regras_gerais.keys():
       if col in aux_cols:
           aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & \
                                          (~aux[col].isin(regras_gerais[col]))
    # REGRAS ESPECÍFICAS
   col = 'IDADEMAE'
   if col in aux_cols:
       aux[col] = pd.to_numeric(aux[col], errors='coerce')
       aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & \
                                     ((aux[col] < 10) | (aux[col] > 55))
   for col in ['QTDFILVIVO','QTDFILMORT']:
       if col not in aux_cols:
           continue
       aux[col] = pd.to_numeric(aux[col], errors='coerce')
       aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & \
                                     ((aux[col] < 0) \mid (aux[col] > 70))
```

```
col = 'PESO'
if col in aux_cols:
    aux[col] = pd.to_numeric(aux[col], errors='coerce')
    aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & ((aux[col] < 0) | \</pre>
                                          (aux[col] > 11000))
for col in ['QTDGESTANT','QTDPARTNOR','QTDPARTCES']:
    if col not in aux_cols:
        continue
    aux[col] = pd.to numeric(aux[col], errors='coerce')
    aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & ((aux[col] < 0) | \</pre>
                                                      (aux[col] > 27))
col = 'IDADEPAI'
if col in aux_cols:
    aux[col] = pd.to_numeric(aux[col], errors='coerce')
    aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & ((aux[col] < 10) | \</pre>
                                         (aux[col] > 99))
col = 'SEMAGESTAC'
if col in aux_cols:
    aux[col] = pd.to_numeric(aux[col], errors='coerce')
    aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & (aux[col] < 20)</pre>
col = 'CONSPRENAT'
if col in aux cols:
    aux[col + " IMPLAUSIVEL"] = (~aux[col].isna()) & (aux[col] < 0)</pre>
for col in ['DTNASC','DTCADASTRO']:
    if col in aux_cols:
        aux[col] = pd.to_numeric(df[col].astype(str).str[-4:],
                                           errors='coerce')
        aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & \
                                       (aux[col] > dt.date.today().year)
col = 'DTNASCMAE'
if col in aux_cols:
    aux[col] = pd.to_numeric(df[col].astype(str).str[-4:],
                                                 errors='coerce')
    aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & ((aux[col] > 2012) | \
                                       (aux[col] < 1967))
col = 'HORANASC'
if col in aux cols:
    if df[col].dtype == "object":
        df[col] = df[col].str.replace(";","")
        df[col] = pd.to_numeric(df[col], errors='coerce')
    hora = pd.to_numeric(df[col], errors='coerce') // 100
    minuto = pd.to_numeric(df[col], errors='coerce') % 100
    aux[col + " IMPLAUSIVEL"] = (~aux[col].isna()) & (df[col] > 59) & \
                             (hora > 23) & (minuto > 59) # 00:59 vira 59 só
for col in ['APGAR1','APGAR5']:
```

```
if col in aux_cols:
            aux[col] = pd.to_numeric(aux[col], errors='coerce')
            aux[col + " IMPLAUSIVEL"] = (~aux[col].isna()) & \
                                           ((aux[col] < 0) \mid (aux[col] > 10))
   col = 'PARIDADE'
    if col in aux cols:
        aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & \
                                         ((aux[col] < 0) \mid (aux[col] > 27))
   aux_cols = []
   for c in aux.columns:
       if 'IMPLAUSIVEL' in c:
            aux_cols.append(c)
    aux_cols = ['ANO','ESTADO','CODMUNNASC'] + aux_cols
   df_implausiveis = aux[aux_cols]
   df implausiveis.fillna(0, inplace=True)
   df_implausiveis = df_implausiveis.groupby(['ANO','CODMUNNASC']) \
                                       .sum() \
                                       .reset_index() \
                                       .melt(id_vars=['ANO','CODMUNNASC'])
   df_implausiveis.columns = ['ANO', 'CODMUNNASC', 'VARIAVEL', 'IMPLAUSIVEIS']
   df['ANO'] = ano
    df['CODMUNNASC'] = codmun
   df_totais = df[['ANO','CODMUNNASC']]
   df_totais['TOTAIS'] = 1
   df_totais = df_totais.groupby(['ANO','CODMUNNASC'])['TOTAIS'] \
                          .sum().reset_index()
   df_totais.columns = ['ANO','CODMUNNASC','TOTAIS']
   df_totais.set_index(['ANO','CODMUNNASC'], inplace=True)
   df_implausiveis.set_index(['ANO','CODMUNNASC'], inplace=True)
   x = df_totais.join([df_implausiveis], how='left')
   x = x.reset_index()
   x = x[['ANO', 'CODMUNNASC', 'VARIAVEL', 'IMPLAUSIVEIS', 'TOTAIS']]
   x = x.fillna(0)
   x.to_csv('SINASC_dataset/resultados/Implausiiblidade_{}_{}.csv' \
                        .format(estado, ano),
             index=None, compression='gzip')
implausibilidade = pd.DataFrame()
```

```
for f in glob.glob('SINASC_dataset/resultados/Implausiiblidade_*.csv'):
   df = pd.read_csv(f, compression='gzip')
    implausibilidade = pd.concat([implausibilidade, df], axis=0)
implausibilidade.fillna(0, inplace=True)
implausibilidade.to_csv('SINASC_Implausibilidade_v2.csv', index=None,
                                              compression='gzip')
# gera regras
import json
regras = {}
regras["IDADEMAE"] = "Se campo IDADEMAE for menor que 10 ou maior que 55"
regras["QTDFILVIVO"] = "Se campo QTDFILVIVO for menor que 0 ou maior que 70"
regras["QTDFILMORT"] = "Se campo QTDFILMORT for menor que 0 ou maior que 70"
regras["PESO"] = "Se campo PESO for menor que 0 ou maior que 11000"
regras["QTDGESTANT"] = "Se campo QTDGESTANT for menor que 0 ou maior que 27"
regras["QTDPARTNOR"] = "Se campo QTDPARTNOR for menor que 0 ou maior que 27"
regras["QTDPARTCES"] = "Se campo QTDPARTCES for menor que 0 ou maior que 27"
regras["IDADEPAI"] = "Se campo IDADEPAI for menor que 10 ou maior que 99"
regras["SEMAGESTAC"] = "Se campo SEMAGESTAC for menor que 20"
regras["CONSPRENAT"] = "Se campo SEMAGESTAC for menor que 0"
regras["DTNASC"] = "Se campo DTNASC for maior que a data da última atualização \
                                                              dos dados"
regras["DTCADASTRO"] = "Se campo DTCADASTRO for menor que a data \
                                          da última atualização dos dados"
regras["DTNASCMAE"] = "Se campo DTNASCMAE for menor que 1967 ou maior que 2012"
regras["HORANASC"] = "Se campo HORANASC não for uma hora válida"
regras["APGAR1"] = "Se campo APGAR1 for menor que 0 ou maior que 10"
regras["APGAR5"] = "Se campo APGAR5 for menor que 0 ou maior que 10"
regras["PARIDADE"] = "Se campo APGAR5 for menor que 0 ou maior que 27"
for k in regras_gerais.keys():
    if k not in regras.keys():
        regras[k] = "Se o campo " + k + "não for preenchido com " + \
       str(regras gerais[k])
with open('SINASC_Implausibilidade_Regras.json', 'w') as fp:
    json.dump(regras, fp, indent=4)
#INCONSISTENCIA #############################
regras = {}
regras['LOCNASC_e_PARTO'] = "Se campo LOCNASC for 2,3,4,5 e o \
                              campo PARTO estiver preenchido com 2"
regras['PARTO_e_STCESPARTO'] = "Se o campo STCESPARTO estiver preenchido \
                               como 1 e o campo PARTO estiver como 2 ou 9"
regras['TPROBSON_e_composicao'] = "Se o campo TPROBSON estiver preenchido \
                                          entre 1 e 10 e qualquer um dos \
                                          campos QTDGESTANT,QTDPARTNOR, \
```

```
QTDPARTCES, SEMAGESTAC, TPAPRESENT, \
                                           STTRABPART estiverem em branco"
# inconsistencia
for f in glob.glob('SINASC_dataset/*.csv'):
   df = pd.read_csv(f)
   ano = f.split('/')[1].split('_')[3].split('.')[0]
    estado = f.split('/')[1].split('_')[2]
    codmun = df['CODMUNNASC']
   df['PESO'] = df['PESO'].apply(pd.to_numeric, errors='coerce')
   df['parto_prematuro'] = df['GESTACAO'] <= 4</pre>
   aux_cols = []
   base = df
    # LOCNASC e PARTO
   base['LOCNASC_e_PARTO_INCONSISTENTES'] = (base['LOCNASC'] \
                                               .isin([2,3,4,5]))
                                               & (base['PARTO'] == 2)
    # PARTO e STCESPARTO
    if 'STCESPARTO' in base.columns:
        base['PARTO_e_STCESPARTO_INCONSISTENTES']=(base['STCESPARTO'] == 1) & \
                                                   (base['PARTO'].isin([2,9]))
    # TPROBSON e composicao
   if 'TPROBSON' in base.columns:
        base['TPROBSON_e_composicao_INCONSISTENTES'] = (base['TPROBSON']\ .
                                             isin([1,2,3,4,5,6,7,8,9,10])) & \
                                             ((~base[['QTDGESTANT','QTDPARTNOR',\
                                             'QTDPARTCES', 'SEMAGESTAC', \
                                             'TPAPRESENT', 'STTRABPART']]\
                                             .isna()).sum(axis = 1) > 0)
    # PARTO PREMATURO e PESO
   base['PARTO_PREMATURO_e_PESO_INCONSISTENTES']=(base['parto_prematuro'] == 1) \
                                                   & (base['PESO'] > 2500)
   aux cols = []
   for c in base.columns:
        if 'INCONSISTENTES' in c:
            aux_cols.append(c)
   aux = base[aux_cols]
   aux['ANO'] = ano
    aux['CODMUNNASC'] = codmun
```

```
df_inconsistentes = aux
   df inconsistentes.fillna(0, inplace=True)
   df_inconsistentes = df_inconsistentes.groupby(['ANO', 'CODMUNNASC']) \
                                            .sum() \
                                            .reset index() \
                                            .melt(id_vars=['ANO','CODMUNNASC'])
   df_inconsistentes.columns=['ANO','CODMUNNASC','VARIAVEL','INCONSISTENTES']
   df['ANO'] = ano
    df['CODMUNNASC'] = codmun
    df_totais = df[['ANO','CODMUNNASC']]
   df_totais['TOTAIS'] = 1
   df_totais = df_totais.groupby(['ANO','CODMUNNASC'])['TOTAIS'] \
                            .sum().reset_index()
   df_totais.columns = ['ANO', 'CODMUNNASC', 'TOTAIS']
   df_totais.set_index(['ANO','CODMUNNASC'], inplace=True)
   df_inconsistentes.set_index(['ANO','CODMUNNASC'], inplace=True)
   x = df_totais.join([df_inconsistentes], how='left')
   x = x.reset_index()
   x = x[['ANO', 'CODMUNNASC', 'VARIAVEL', 'INCONSISTENTES', 'TOTAIS']]
   x = x.fillna(0)
   x.to_csv('SINASC_dataset/resultados/Inconsistencia_{}_{}.csv' \
                      .format(estado, ano),
             index=None, compression='gzip')
inconsistencias = pd.DataFrame()
for f in glob.glob('SINASC_dataset/resultados/Inconsistencia_*.csv'):
    df = pd.read csv(f, compression='gzip')
    inconsistencias = pd.concat([inconsistencias, df], axis=0)
inconsistencias.fillna(0, inplace=True)
inconsistencias.to_csv('SINASC_Inconsistencia_v2.csv',
                        index=None, compression='gzip')
# qera regras
import json
with open('SINASC_Inconsistencias_Regras.json', 'w') as fp:
    json.dump(regras, fp, indent=4)
```

Tratamento

Após a extração dos dados via API, é realizado o tratamento dos dados no software R para adequá-los ao modelo de dados utilizado no painel. Esse tratamento envolve várias etapas, incluindo a substituição dos códigos dos municípios pelos seus respectivos nomes e a associação das variáveis aos códigos correspondentes utilizado no Qualidados.

Os conjuntos de dados são trabalhados separadamente para cada indicador, garantindo que as informações sejam devidamente organizadas e associadas as abas correspondentes do painel. Dessa forma, cada indicador terá seu próprio conjunto de dados tratados, contendo as informações necessárias para a análise e exibição.

```
#pacotes
library(rjson)
library(readr)
library(dplyr)
library(readxl)
SINASC_dic <- read_excel("data1/dicionarios.xlsx", sheet = "SINASC")
usethis::use data(SINASC dic,overwrite = T)
regras_sinasc_incom <-
 c(fromJSON(file = 'data1/SINASC_Incompletude_Regras.json'))
Sinasc incom <-
 read csv("data1/SINASC Incompletude v2.csv", show col types = FALSE )
#FILTRAR APENAS PARA VARIAVEIS PRESENTES NO DICIONARIO
vars <- SINASC_dic$`Codigo SINASC` %>% unique()
Sinasc_incom$VARIAVEL %>% unique() %>% setdiff(vars)
Sinasc_incom <- Sinasc_incom[Sinasc_incom$VARIAVEL %in% vars,]</pre>
#ACRESCENTAR A COLUNA DE MUNICIPIOS E MUNICIPIOS
aux_muni2 <- abjData::muni %>%
 dplyr::select(uf_id,
               muni id,
               muni_nm_clean,
               uf sigla) %>%
 mutate_at("muni_id", as.character) %>%
 mutate(cod_mun = stringr::str_sub(muni_id, 1, 7))
aux muni2 <- rbind(aux muni2,aux muni2|>
                    mutate(cod_mun = stringr::str_sub(muni_id, 1, 6)))
Sinasc_incom$CODMUNNASC <- as.character(format(Sinasc_incom$CODMUNNASC ,
                                             scientific = FALSE))
Sinasc_incom$CODMUNNASC <- gsub(' ','',Sinasc_incom$CODMUNNASC)</pre>
Sinasc_incom <- Sinasc_incom %>%
 rename(cod_mun = CODMUNNASC ) %>%
 left_join(aux_muni2 ,by='cod_mun') %>%
 select(-muni id,-uf id) %>%
 mutate(uf_id = stringr::str_sub(cod_mun,1,2))
```

```
Sinasc_incom[is.na(Sinasc_incom$uf_sigla)==T,'uf_sigla']<-
  Sinasc_incom[is.na(Sinasc_incom$uf_sigla)==T,]|>
  left_join(unique(aux_muni2[,c('uf_id','uf_sigla')]),by = 'uf_id') |>
  dplyr::select(uf_sigla.y)
Sinasc incom[is.na(Sinasc incom muni nm clean) == T, 'muni nm clean'] <-
  'Não informado'
Sinasc_incom$CODMUNNASC <- Sinasc_incom$muni_nm_clean
Sinasc_incom$ESTADO <- Sinasc_incom$uf_sigla</pre>
Sinasc_incom[,c('cod_mun','uf_id','uf_sigla','muni_nm_clean')] <- NULL</pre>
Sinasc_incom[is.na(Sinasc_incom$ESTADO), "ESTADO"] <- 'Não Informado'
regras_sinasc_incom <-regras_sinasc_incom |> as.data.frame() |> t() |>
  as.data.frame()
regras_sinasc_incom <- cbind(regras_sinasc_incom|> row.names(),
                            regras_sinasc_incom)
regras_sinasc_incom |> row.names() <- NULL</pre>
regras_sinasc_incom |> colnames() <- c('Variável', 'Regra')</pre>
regras_sinasc_incom$Variável <- regras_sinasc_incom$Variável |>
  gsub(pattern = 'IGNORADOS_', replacement = '')
regras_sinasc_incom$Regra <- regras_sinasc_incom$Regra |>
  gsub(pattern = 'estiver', replacement = ' estiver')
var aux <- Sinasc incom$VARIAVEL |> unique()
Sinasc_incom <- merge(Sinasc_incom,</pre>
                     SINASC dic[,c("Codigo Qualidados", "Codigo SINASC")],
                     by.x="VARIAVEL", by.y="Codigo SINASC", all=TRUE)
Sinasc_incom <- Sinasc_incom[Sinasc_incom$VARIAVEL %in% var_aux,]</pre>
Sinasc_incom$VARIAVEL <- Sinasc_incom$`Codigo Qualidados`
Sinasc_incom$`Codigo Qualidados` <- NULL</pre>
vars_incom_sinasc <- unique(Sinasc_incom$VARIAVEL)</pre>
regras_sinasc_implau <-
  c(fromJSON(file = 'data1/SINASC_Implausibilidade_Regras.json'))
Sinasc_implau <- read_csv('data1/SINASC_Implausibilidade_v2.csv',
                          show_col_types = FALSE)
Sinasc_implau$VARIAVEL <- Sinasc_implau$VARIAVEL |>
  gsub(pattern = "_IMPLAUSIVEL", replacement = '')
Sinasc_implau$VARIAVEL %>% unique()
#FILTRAR APENAS PARA VARIAVEIS PRESENTES NO DICIONARIO
Sinasc_implau$VARIAVEL %>% unique() %>% setdiff(vars)
Sinasc_implau <- Sinasc_implau[Sinasc_implau$VARIAVEL %in% vars,]
#ACRESCENTAR A COLUNA DE MUNICIPIOS E MUNICIPIOS
Sinasc_implau$CODMUNNASC <- as.character(format(Sinasc_implau$CODMUNNASC ,
                                                scientific = FALSE))
Sinasc_implau$CODMUNNASC <- gsub(' ','',Sinasc_implau$CODMUNNASC)
```

```
Sinasc_implau <- Sinasc_implau %>%
 rename(cod mun = CODMUNNASC) %>%
 left_join(aux_muni2 ,by='cod_mun') %>% select(-muni_id,-uf_id)
Sinasc_implau <- Sinasc_implau |>
 mutate(uf id = stringr::str sub(cod mun,1,2))
Sinasc implau[is.na(Sinasc implau$uf sigla)==T,'uf sigla']<-
 Sinasc_implau[is.na(Sinasc_implau$uf_sigla)==T,]|>
 left_join(unique(aux_muni2[,c('uf_id','uf_sigla')]),by = 'uf_id') |>
 dplyr::select(uf_sigla.y)
Sinasc_implau[is.na(Sinasc_implau$muni_nm_clean)==T, 'muni_nm_clean'] <-
  'Não informado'
Sinasc_implau$CODMUNNASC <- Sinasc_implau$muni_nm_clean
Sinasc_implau$ESTADO <- Sinasc_implau$uf_sigla
Sinasc_implau[is.na(Sinasc_implau$ESTADO), 'ESTADO'] <- 'Não informado'
Sinasc implau[,c('cod mun','uf id','uf sigla','muni nm clean')] <- NULL
regras_sinasc_implau <-regras_sinasc_implau |> as.data.frame() |>
 t() |> as.data.frame()
regras_sinasc_implau <- cbind(regras_sinasc_implau|> row.names(),
                             regras_sinasc_implau)
regras_sinasc_implau |> row.names() <- NULL</pre>
regras_sinasc_implau |> colnames() <- c('Variável','Regra')</pre>
regras_sinasc_implau$Regra <- regras_sinasc_implau$Regra |>
 gsub(pattern = 'não', replacement = ' não')
var_aux <- Sinasc_implau$VARIAVEL |> unique()
Sinasc_implau <- merge(Sinasc_implau,</pre>
                      SINASC_dic[,c("Codigo Qualidados", "Codigo SINASC")]
                       , by.x="VARIAVEL", by.y="Codigo SINASC", all=TRUE)
Sinasc_implau <- Sinasc_implau[Sinasc_implau$VARIAVEL %in% var_aux,]
Sinasc implau$VARIAVEL <- Sinasc implau$`Codigo Qualidados`
Sinasc implau$ Codigo Qualidados <- NULL
vars_implau_sinasc <- unique(Sinasc_implau$VARIAVEL)</pre>
Sinasc_incon<- read_csv("data1/SINASC_Inconsistencia_v2.csv")</pre>
regras sinasc incon <-
 c(fromJSON(file = 'data1/SINASC_Inconsistencias_Regras.json'))
var_incon_sinasc <-Sinasc_incon$VARIAVEL |>
 stringr::str_sub(1,nchar(Sinasc_incon$VARIAVEL)-15) |>
 unique() |>
 gsub(pattern = '_', replacement = ' ')
nomes_incon <- Sinasc_incon$VARIAVEL |> unique()
var_incon_sinasc |> names() <- nomes_incon</pre>
# ACRESCENTAR MUNICIPIO
Sinasc_incon$CODMUNNASC <- as.character(format(Sinasc_incon$CODMUNNASC ,
```

```
scientific = FALSE))
Sinasc_incon$CODMUNNASC <- gsub(' ','',Sinasc_incon$CODMUNNASC)</pre>
Sinasc_incon <- Sinasc_incon %>%
 rename(cod mun = CODMUNNASC) %>%
 left_join(aux_muni2 ,by='cod_mun')
Sinasc_incon[,c('muni_id','uf_id')] <- NULL</pre>
Sinasc_incon <- Sinasc_incon |>
 mutate(uf_id = stringr::str_sub(cod_mun,1,2))
Sinasc_incon[is.na(Sinasc_incon$uf_sigla)==T,'uf_sigla']<-
 Sinasc_incon[is.na(Sinasc_incon$uf_sigla)==T,]|>
 left_join(unique(aux_muni2[,c('uf_id','uf_sigla')]),by = 'uf_id') |>
 dplyr::select(uf_sigla.y)
Sinasc_incon[is.na(Sinasc_incon$muni_nm_clean)==T, 'muni_nm_clean'] <-
  'Não informado'
Sinasc_incon$CODMUNNASC <- Sinasc_incon$muni_nm_clean
Sinasc_incon$ESTADO <- Sinasc_incon$uf_sigla</pre>
Sinasc_incon[,c('cod_mun','uf_id','uf_sigla','muni_nm_clean')] <- NULL
Sinasc_incon[is.na(Sinasc_incon$ESTADO) == T, 'ESTADO'] <- 'Não informado'
regras_sinasc_incon <-regras_sinasc_incon |> as.data.frame() |> t() |>
 as.data.frame()
regras_sinasc_incon <- cbind(regras_sinasc_incon|> row.names(),
                            regras_sinasc_incon)
regras_sinasc_incon |> row.names() <- NULL</pre>
regras_sinasc_incon |> colnames() <- c('Variável', 'Regra')</pre>
regras_sinasc_incon$Variável <- regras_sinasc_incon$Variável |>
 gsub(pattern = '_',replacement = ' ')
dados_oobr_qualidados_SINASC_Implausibilidade <- Sinasc_implau
dados_oobr_qualidados_SINASC_Incompletude <- Sinasc_incom
dados_oobr_qualidados_SINASC_Inconsistencia <- Sinasc_incon</pre>
usethis::use_data(dados_oobr_qualidados_SINASC_Implausibilidade, overwrite = TRUE)
usethis::use_data(vars_implau_sinasc, overwrite = TRUE)
usethis::use_data(dados_oobr_qualidados_SINASC_Incompletude, overwrite = TRUE)
usethis::use_data(vars_incom_sinasc, overwrite = TRUE)
usethis::use data(dados oobr qualidados SINASC Inconsistencia, overwrite = TRUE)
usethis::use data(var incon sinasc, overwrite = TRUE)
regras_sinasc_implau$Indicador <- 'Implausibilidade'</pre>
regras_sinasc_incon$Indicador <- 'Inconsistência'
regras_sinasc_incom$Indicador <- 'Incompletude'</pre>
```

```
for(i in seq_along(SINASC_dic$`Codigo SINASC`)) {
  for(j in 1:ncol(regras_sinasc_implau)){
    regras_sinasc_implau[,j] <- gsub(SINASC_dic$`Codigo SINASC`[i],</pre>
                                      SINASC_dic$`Codigo Qualidados`[i],
                                   regras_sinasc_implau[,j])
  }
regras sinasc implau <-
  regras_sinasc_implau[regras_sinasc_implau$Variável %in% vars_implau_sinasc,]
for(i in seq along(SINASC dic$`Codigo SINASC`)) {
  for(j in 1:ncol(regras_sinasc_incom)){
    regras_sinasc_incom[,j] <- gsub(SINASC_dic$`Codigo SINASC`[i],</pre>
                                     SINASC_dic$`Codigo Qualidados`[i],
                                  regras_sinasc_incom[,j])
 }
}
regras_sinasc_incom <-
  regras_sinasc_incom[regras_sinasc_incom$Variável %in% vars_incom_sinasc,]
regras_sinasc <-
  rbind(regras_sinasc_implau,regras_sinasc_incom,regras_sinasc_incon)
usethis::use_data(regras_sinasc, overwrite = TRUE)
```

Análise

Devido à disponibilidade de variáveis no banco de dados, é possível apresentar apenas o número máximo de observações por níveis de Incompletude, Implausibilidade e Inconsistência, assim como para cada uma das variáveis.

Agora serão exibidas as tabelas de frequência relativa para cada um dos indicadores. É importante notar que, em alguns casos, os dados totais para determinadas variáveis podem diferir. Isso ocorre devido à ausência de certas variáveis em determinados anos, os quais são mencionados no dicionário do painel.

Incompletude

VARIAVEL	Nulos	Ignorados	Porcentagem Incompletude	Total
ANOMALIA COG	2555747	1211676	5.8%	64996700
APGAR1	5365248	0	6.74%	79635500
APGAR5	5631050	0	7.07%	79635500
CESAREA ANTES PART	6862088	977530	21.12%	37124750
CODMUNNATU	4886280	0	13.16%	37124750
COD ANOMALIA COG	79144283	0	99.38%	79635500
CONSULTAS PRE NAT	4738213	0	13.85%	34220723
CONSUL PRE NATAL	1412318	1765166	3.99%	79635500
DIF OBITO RECEB	10423	0	0.03%	37124750
DOC RESP	179138	0	0.7%	25539906
DO_EPIDEMIOLOGICA	7255	0	0.02%	37124750
DO NOVA	1699	0	0.0270	37124750
DT ATUALIZACAO REG	336299	0	0.69%	48777415
DT CADASTRO DN	196761	0	0.4%	48777415
DT DECLARAÇÃO	440397		1.72%	
DT MENSTRUAÇÃO	18846298	0	50.76%	25539906
DT NASCIMENTO		0	0%	37124750 79635500
DT NASCIMENTO MAE	0	ŭ	11.92%	
	4425644	0	1	37124750
DT_RECEBIMENTOLOT	20122952	0	78.79%	25539906
ESCOLARIDADE	1867810	1982711	4.84%	79635500
ESCOLARIDADE_2010	569011	182614	2.4%	31349722
ESCOL_2010_AGR	419820	163731	2.05%	28443933
ESTABELECIMENTO	2528651	0	3.93%	64291716
ESTADO_CIVIL	11223938	1047613	15.41%	79635500
FUNCAO_RESP	1119360	70	4.38%	25539906
GEST_PRE_NATAL	5233269	0	14.1%	37124750
GRUPO_ROBSON	3819770	1590380	15.81%	34220723
HORA_NASCIMENTO	349141	0	0.71%	49085780
IDADE_DA_MAE	179560	134581	0.39%	79635500
IDADE_PAI	23019222	0	62.01%	37124750
LOCAL_NASCIMENTO	16968	651109	0.84%	79635500
METODO_UTILIZADO	8698749	0	23.43%	37124750
NASCI_ASSISTIDO	241744	24577	0.94%	28443933
NATURALMAE	4958724	0	13.36%	37124750
NUM_LOTE	31446	0	0.08%	37124750
NUM_PARTOS	0	0	0%	25539906
OCUPACAO_CBO	21596151	0	28.45%	75898659
PAIS_RESID	8925876	0	24.04%	37124750
PARTO_INDUZIDO	4880344	888277	15.54%	37124750
PESO NASC	292533	87836	0.48%	79635500
QTD_FILHOS_M	13656090	0	17.15%	79635500
QTD FILHOS V	7546004	0	9.48%	79635500
QTD GESTACOES	5590324	0	15.06%	37124750
QTD PARTO CESAREA	6389406	0	17.21%	37124750
QTD PARTO NORMAL	6089269	0	16.4%	37124750
RACA	11421132	142418	14.52%	79635500
RACA MAE	5434064	0	14.64%	37124750
RESIDENCIA MUNI	0	0	0%	79635500
SEMANAS GEST	4951937	0	13.34%	37124750
SEMA GESTACAO	1614216	522100	2.68%	79635500
SERIE ESC MAE	16999260	0	45.79%	37124750
SEXO	0	65155	0.08%	79635500
TIPO GRAVIDEZ	762208	80607	1.06%	79635500
TIPO PARTO	123500	128642	0.32%	79635500
TIPO RN	4528799	377359	13.22%	37124750
UF NATURA MAE	491151	0	1.73%	28443933
VERSAO SISTEMA	34805	0	0.09%	37124750
V EIMAO_SISTEMA	34800		0.09/0	31124130

Implausibilidade

VARIAVEL	Implausiveis	Porcentagem Implausibilidade	Total
ANOMALIA_COG	658	0%	64996700
APGAR1	85148	0.11%	79635500
APGAR5	78581	0.1%	79635500
CESAREA_ANTES_PART	0	0%	37124750
CONSULTAS_PRE_NAT	0	0%	34220723
CONSUL_PRE_NATAL	3683656	4.63%	79635500
DOC_RESP	2514215	9.84%	25539906
DT_CADASTRO_DN	123	0%	48777415
DT_NASCIMENTO	0	0%	79635500
DT_NASCIMENTO_MAE	2539995	6.84%	37124750
ESCOLARIDADE	7484753	9.4%	79635500
ESCOLARIDADE_2010	157203	0.5%	31349722
ESCOL_2010_AGR	133458	0.47%	28443933
ESTADO_CIVIL	0	0%	79635500
FUNCAO_RESP	70	0%	25539906
GEST_PRE_NATAL	0	0%	37124750
GRUPO_ROBSON	0	0%	34220723
HORA_NASCIMENTO	28	0%	49085780
IDADE_DA_MAE	136330	0.17%	79635500
IDADE_PAI	86	0%	37124750
LOCAL_NASCIMENTO	0	0%	79635500
METODO_UTILIZADO	15113984	40.71%	37124750
NASCI_ASSISTIDO	0	0%	28443933
NUM_PARTOS	0	0%	25539906
PARTO_INDUZIDO	0	0%	37124750
PESO_NASC	0	0%	79635500
QTD_FILHOS_M	866377	1.09%	79635500
QTD_FILHOS_V	467297	0.59%	79635500
QTD_GESTACOES	2540	0.01%	37124750
QTD_PARTO_CESAREA	3677	0.01%	37124750
QTD_PARTO_NORMAL	3835	0.01%	37124750
RACA	142419	0.18%	79635500
SEMANAS_GEST	3945	0.01%	37124750
SEMA_GESTACAO	456183	0.57%	79635500
SERIE_ESC_MAE	552	0%	37124750
SEXO	0	0%	79635500
TIPO_GRAVIDEZ	119	0%	79635500
TIPO_PARTO	0	0%	79635500
TIPO_RN	0	0%	37124750

Inconsistência

VARIAVEL	Inconsistências	Porcentagem Inconsistências	Total
LOCNASC e PARTO	289073	0.36%	79635500
PARTO_PREMATURO e PESO	3008972	3.78%	79635500
PARTO e STCESPARTO	9010106	24.27%	37124750
TPROBSON e composicao	28800664	84.16%	34220723

SIM

O Sistema de Informação Sobre Mortalidade (SIM), desenvolvido pelo Ministério da Saúde em 1975, é resultado da integração de mais de quarenta modelos de instrumentos utilizados ao longo dos anos para coletar dados sobre mortalidade no país. O SIM possui uma variedade de variáveis que, a partir das causas de morte atestadas pelos médicos, permitem a construção de indicadores e a realização de análises epidemiológicas que contribuem para a eficiência da gestão em saúde.

O processo de informatização do SIM teve início em 1979. Doze anos depois, com a implementação do Sistema Único de Saúde (SUS) e a descentralização das responsabilidades, a coleta de dados foi transferida para os estados e municípios, por meio de suas respectivas Secretarias de Saúde. O objetivo do SIM é reunir dados quantitativos e qualitativos sobre óbitos ocorridos no Brasil, sendo considerado uma ferramenta essencial para a gestão da saúde, fornecendo subsídios para a tomada de decisões em diversas áreas da assistência à saúde. No âmbito federal, o SIM está sob a responsabilidade da Secretaria de Vigilância em Saúde.

Extração

A extração dos dados foi realizada por meio da API da PCDas para o período de 1996 a 2021, utilizando a linguagem Python como suporte, e os dados de 2022 preliminares pelo open datasus. Durante o processo de extração, os dados são tratados para garantir a qualidade e consistência das informações. Assim como foi feito para a base de dados do SINASC, os dados são subdivididos para cada um dos indicadores trabalhados, visando reduzir o tamanho das bases.

As bases finais resultantes apresentam apenas o número de casos dos indicadores e o total de observações, agrupados por Município-UF, Ano e variável.

```
## INCOMPLETUDE
regras_ignorados = {}
regras_ignorados['TIPOBITO'] = ['NA']
regras_ignorados['SEXO'] = ['I','0']
```

```
regras_ignorados['RACACOR'] = ['NA']
regras_ignorados['ESTCIV'] = [9]
regras_ignorados['ESC'] = [9]
regras_ignorados['ESCMAE'] = [9]
regras_ignorados['QTDFILVIVO'] = [99]
regras_ignorados['QTDFILMORT'] = [99]
regras_ignorados['GRAVIDEZ'] = [9]
regras ignorados['GESTACAO'] = [9]
regras_ignorados['PARTO'] = [8,9]
regras_ignorados['OBITOPARTO'] = [9]
regras_ignorados['OBITOGRAV'] = [8,9]
regras_ignorados['OBITOPUERP'] = [99]
regras_ignorados['ASSISTMED'] = [9]
regras_ignorados['EXAME'] = [9]
regras_ignorados['CIRURGIA'] = [9]
regras_ignorados['NECROPSIA'] = [9]
regras_ignorados['CIRCOBITO'] = [0]
regras_ignorados['ACIDTRAB'] = [9]
regras_ignorados['FONTE'] = [9]
regras_ignorados['TPMORTEOCO'] = [9]
regras_ignorados['FONTEINV'] = [9]
regras_ignorados['ESCMAEAGR1'] = [9]
regras_ignorados['ESCFALAGR1'] = [9]
# incompletude
cont = 0
for f in glob.glob('SIM_dataset/*.csv'):
   df = pd.read_csv(f)
    ano = df['DTOBITO'] % 10000
    codmun = df['CODMUNOCOR']
   df_ignorados = df.copy()
    df_totais = df.isna()
    df_totais = df.isna()
   df_nulos = df_totais.copy()
   df_totais[df_totais == True] = 1
    df_totais[df_totais == False] = 1
   df_totais['ANO'] = ano
   df totais['CODMUNOCOR'] = codmun
    df_totais = df_totais.groupby(['ANO', 'CODMUNOCOR']) \
                          .count() \
                          .reset_index().melt(id_vars=['ANO','CODMUNOCOR'])
   df_totais.columns = ['ANO', 'CODMUNOCOR', 'VARIAVEL', 'TOTAIS']
   df_nulos['CODMUNNASC'] = codmun
   df_nulos['ANO'] = ano
    df_nulos = df_nulos.groupby(['ANO','CODMUNOCOR']) \
```

```
.sum() \
                        .reset_index().melt(id_vars=['ANO','CODMUNOCOR'])
    df_nulos.columns = ['ANO', 'CODMUNOCOR', 'VARIAVEL', 'NULOS']
    for c in df_ignorados.columns:
        if c in regras_ignorados:
            df_ignorados[c] = df_ignorados[c].isin(regras_ignorados[c])
            if c not in ['ANO','CODMUNOCOR']:
                df_ignorados.drop(columns=[c], inplace=True)
   df_ignorados['CODMUNOCOR'] = codmun
   df_ignorados['ANO'] = ano
    df_ignorados = df_ignorados.groupby(['ANO', 'CODMUNOCOR']) \
                                 .sum() \
                                 .reset_index() \
                                 .melt(id_vars=['ANO','CODMUNOCOR'])
    df_ignorados.columns = ['ANO', 'CODMUNOCOR', 'VARIAVEL', 'IGNORADOS']
   df_ignorados = df_ignorados.fillna(0)
   df totais.set index(['ANO','CODMUNOCOR','VARIAVEL'], inplace=True)
   df_nulos.set_index(['ANO','CODMUNOCOR','VARIAVEL'], inplace=True)
   df_ignorados.set_index(['ANO','CODMUNOCOR','VARIAVEL'], inplace=True)
   x = df_totais.join([df_nulos, df_ignorados], how='left')
   x = x.reset_index()
   x = x[['ANO', 'CODMUNOCOR', 'VARIAVEL', 'NULOS', 'IGNORADOS', 'TOTAIS']]
   x = x.fillna(0)
   x.to_csv('SIM_dataset/resultados/Incompletude_p{}.csv'.format(cont),
             index=None, compression='gzip')
    cont += 1
incompletude = pd.DataFrame()
for f in glob.glob('SIM_dataset/resultados/Incompletude_p*.csv'):
    df = pd.read_csv(f, compression='gzip')
    incompletude = pd.concat([incompletude, df], axis=0)
incompletude.fillna(0, inplace=True)
incompletude = incompletude[~incompletude.VARIAVEL.isin(['contador','NOVO'])]
incompletude.to_csv('SIM_Incompletude_v2.csv', index=None, compression='gzip')
# gera regras
regras = {}
for r in regras_ignorados:
   regras["IGNORADOS_" + r] = "Se o campo " + r + \
```

```
"estiver preenchido com " + str(regras_ignorados[r])
with open('SIM_Incompletude_Regras.json', 'w') as fp:
    json.dump(regras, fp, indent=4)
# aplica as regras para variaveis com opcoes
regras gerais = {'TIPOBITO':[1,2],
                'SEXO':[1,2,9,0,'M','F','I'],
                'RACACOR': [1,2,3,4,5],
                'ESTCIV': [1,2,3,4,5,9],
                'ESC': [1,2,3,4,5,9],
                'LOCOCOR': [1,2,3,4,5,9],
                'ESCMAE': [1,2,3,4,5,9],
                'GRAVIDEZ': [1,2,3,9],
                'GESTACAO': [1,2,3,4,5,6,9],
                'PARTO': [1,2,9],
                'OBITOPARTO': [1,2,3,9],
                'OBITOGRAV': [1,2,9],
                'OBITOPUERP': [1,2,3,9],
                'ASSISTMED': [1,2,3,9],
                'EXAME': [1,2,3,9],
                'CIRURGIA': [1,2,3,9],
                'NECROPSIA': [1,2,3,9],
                'CIRCOBITO': [1,2,3,4,9],
                'ACIDTRAB': [1,2,9],
                'FONTE': [1,2,3,4,9],
                'SERIESCMAE': list(range(1,9)),
                'TPMORTEOCO': [1,2,3,4,5,8,9],
                'TPPOS': [1,2],
                'ATESTANTE': list(range(1,6)),
                'FONTEINV': [1,2,3,4,6,7,8,9],
                'ESCMAEAGR1': list(range(1,13)),
                'ESCFALAGR1': list(range(1,13)),
               }
colunas_implausibilidade = regras_gerais.keys()
cont = 0
# implausibilidade
for f in glob.glob('SIM_dataset/*.csv'):
   df = pd.read csv(f)
   ano = df['DTOBITO'] % 10000
   codmun = df['CODMUNOCOR']
   aux_cols = []
   for c in colunas_implausibilidade:
       if c in df.columns:
           aux_cols.append(c)
   aux = df[aux_cols]
```

```
aux['ANO'] = ano
aux['CODMUNOCOR'] = codmun
for col in regras_gerais.keys():
    if col in aux_cols:
        aux[col + " IMPLAUSIVEL"] = (~aux[col].isna()) & \
                                   (~aux[col].isin(regras_gerais[col]))
# REGRAS ESPECÍFICAS
for col in ['IDADE','IDADEMAE']:
    if col not in aux_cols:
        continue
    aux[col] = pd.to_numeric(aux[col], errors='coerce')
    aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & ((aux[col] < 0) \</pre>
                                   | (aux[col] > 120))
for col in ['QTDFILVIVO','QTDFILMORT']:
    if col not in aux_cols:
        continue
    aux[col] = pd.to_numeric(aux[col], errors='coerce')
    aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & (aux[col] != 99) & \
                              ((aux[col] < 0) \mid (aux[col] > 70))
col = 'PESO'
if col in aux cols:
   aux[col] = pd.to_numeric(aux[col], errors='coerce')
    aux[col + "_IMPLAUSIVEL"] = (~aux[col].isna()) & ((aux[col] < 0) | \</pre>
                                 (aux[col] > 11000))
aux_cols = []
for c in aux.columns:
    if 'IMPLAUSIVEL' in c:
        aux_cols.append(c)
aux_cols = ['ANO','CODMUNOCOR'] + aux_cols
df_implausiveis = aux[aux_cols]
df_implausiveis.fillna(0, inplace=True)
df_implausiveis = df_implausiveis.groupby(['ANO','CODMUNOCOR']) \
                                   .sum().reset index() \
                                  .melt(id_vars=['ANO','CODMUNOCOR'])
df_implausiveis.columns = ['ANO','CODMUNOCOR','VARIAVEL','IMPLAUSIVEIS']
df['ANO'] = ano
df['CODMUNOCOR'] = codmun
df_totais = df[['ANO','CODMUNOCOR']]
df_totais['TOTAIS'] = 1
```

```
df_totais = df_totais.groupby(['ANO','CODMUNOCOR'])['TOTAIS'] \
                         .sum().reset_index()
   df_totais.columns = ['ANO', 'CODMUNOCOR', 'TOTAIS']
   df_totais.set_index(['ANO','CODMUNOCOR'], inplace=True)
   df_implausiveis.set_index(['ANO','CODMUNOCOR'], inplace=True)
   x = df totais.join([df implausiveis], how='left')
   x = x.reset index()
   x = x[['ANO', 'CODMUNOCOR', 'VARIAVEL', 'IMPLAUSIVEIS', 'TOTAIS']]
   x = x.fillna(0)
   x.to_csv('SIM_dataset/resultados/Implausibilidade_p{}.csv'.format(cont),
            index=None, compression='gzip')
    cont += 1
implausibilidade = pd.DataFrame()
for f in glob.glob('SIM_dataset/resultados/Implausibilidade_p*.csv'):
   df = pd.read csv(f, compression='gzip')
    implausibilidade = pd.concat([implausibilidade, df], axis=0)
implausibilidade.fillna(0, inplace=True)
implausibilidade = implausibilidade[~implausibilidade.VARIAVEL \
                                                  .isin(['contador','NOVO'])]
implausibilidade.to_csv('SIM_Implausibilidade_v2.csv',
                                    index=None, compression='gzip')
# gera regras
regras = {}
regras["IDADE"] = "Se campo IDADE for menor que 0 ou maior que 120"
regras["IDADEMAE"] = "Se campo IDADEMAE for menor que 0 ou maior que 120"
regras["QTDFILVIVO"] = "Se campo QTDFILVIVO for menor que 0 ou maior que 70"
regras["QTDFILMORT"] = "Se campo QTDFILMORT for menor que 0 ou maior que 70"
regras["PESO"] = "Se campo PESO for menor que 0 ou maior que 11000"
for k in regras_gerais.keys():
    if k not in regras.keys():
       regras[k] = "Se o campo " + k + "não for preenchido com " + \
                   str(regras_gerais[k])
with open('SIM_Implausibilidade_Regras.json', 'w') as fp:
    json.dump(regras, fp, indent=4)
regras = {}
cont = 0
```

```
def convert_date(col):
   col = col.fillna(0)
   data_string = col.apply(int).apply(str)
   y = data_string.str[-4:]
   m = data_string.str[-6:-4]
   d = data_string.str[:-6]
   return y.str.cat(m.str.cat(d.str.zfill(2)))
# inconsistencias
for f in glob.glob('SIM_dataset/*.csv'):
   df = pd.read csv(f)
    ano = df['DTOBITO'] % 10000
    codmun = df['CODMUNOCOR']
    aux_cols = [
        'DTOBITO',
        'DTNASC',
        'SEXO',
        'OBITOPARTO'.
        'OBITOGRAV',
        'OBITOPUERP',
        'LOCOCOR',
        'FONTE'
   1
   aux = df[aux_cols]
    # DTOBITO menor que DTNASC
   regras['DTOBITO_e_DTNASC'] = "Se a data de óbito for menor \
                                          que a data de nascimento"
    aux['DTOBITO'] = convert_date(aux['DTOBITO'])
    aux['DTNASC'] = convert_date(aux['DTNASC'])
    aux['DTOBITO_e_DTNASC_INCONSISTENTES'] = (aux['DTOBITO'] < aux['DTNASC'])</pre>
    # se SEXO estiver como M ou I e os campos OBITOPARTO,
    # OBITOGRAV, OBITOPUERP estiverem preenchidos
   regras['SEXO_e_OBITO'] = "Se SEXO for differente de 'M','I' e os campos \
                         relativos a óbitos em mulheres estiverem preenchidos"
   obito preenchido = (~aux['OBITOPARTO'].isna()) | (~aux['OBITOGRAV'] \
                          .isna()) | (~aux['OBITOPUERP'].isna())
    aux['SEXO_e_OBITO_INCONSISTENTES'] = (aux['SEXO'].isin(['M','I'])) & \
                                            (obito_preenchido)
    # Se OBITOPARTO preenchido como 3 e OBITOPUERP
    ## estiver como 3 ou OBITOGRAV estiver como 1;
    # Se OBITOPARTO preenchido como 1 ou 2 e OBITOGRAV estiver como 2 ou
    ## OBITOPUERP estiver como 1 ou 2;
    # Se OBITOPARTO preenchido como 9, OBITOGRAV estiver como 1 ou 2 ou
    ## OBITOPUERP estiver como 1,2 ou 3
```

```
regras['OBITO_PUERPERIO_GRAVIDEZ'] = "Se OBITOPARTO e OBITOPUERP estiver \
                              como 3 ou OBITOGRAV estiver como 1;"
regras['OBITO_PUERPERIO_GRAVIDEZ'] += "Se OBITOPARTO estiver como 1 ou 2 e \
              OBITOGRAV estiver como 2, ou OBITOPUERP estiver como 1 ou 2;"
regras['OBITO_PUERPERIO_GRAVIDEZ'] += "Se OBITOPARTO estiver como 9 \
    e OBITOGRAV estiver como 1 ou 2, ou OBITOPUERP estiver como 1, 2 ou 3"
parte 1 = (aux['OBITOPARTO'] == 3) & ((aux['OBITOPARTO'] == 3) | \
                                  (aux['OBITOGRAV'] == 1))
parte 2 = (aux['OBITOPARTO'].isin([1,2])) & ((aux['OBITOGRAV'] == 2) | \
                                  (aux['OBITOPUERP'].isin([1,2])))
parte_3 = (aux['OBITOPARTO'] == 9) & ((aux['OBITOGRAV'].isin([1,2])) | \
                                  (aux['OBITOPUERP'].isin([1,2,3])))
aux['OBITO_PUERPERIO_GRAVIDEZ_INCONSISTENTES'] = (parte_1) | (parte_2) | \
                                                            parte_3
# Preechido como 1 e o item Morte durante o puerperio também for
# preenchido como 1,2 ou 9
regras['OBITOGRAV_e_OBITOPUERP'] = "Se OBITOGRAV estiver como 1 e \
                                          OBITOPUERP estiver como 1, 2 ou 9"
aux['OBITOGRAV_e_OBITOPUERP_INCONSISTENTES'] = (aux['OBITOGRAV'] == 1) & \
                                          (aux['OBITOPUERP'].isin([1,2,3]))
# Preenchido como 1 ou 2 e o item morte durante a gravidez
# estiver preenchido como 1 ou 9
regras['OBITOPUERP e OBITOGRAV'] = "Se OBITOGRAV estiver como 1 ou 2 e\
                                              OBITOGRAV estiver como 1 ou 9"
aux['OBITOPUERP_e_OBITOGRAV_INCONSISTENTES'] = (aux['OBITOGRAV'] \
                            .isin([1,2])) & (aux['OBITOGRAV'].isin([1,9]))
# Se FONTE diferente de 2 e LOCOCOR for igual a 1
regras['FONTE_E_LOCOCOR'] = "Se FONTE estiver differente de 2 e\
                                          LOCOCOR estiver como 1"
aux['FONTE_E_LOCOCOR_INCONSISTENTES'] = (aux['FONTE'] != 2) & \
                                            (aux['LOCOCOR'] == 1)
aux cols = []
for c in aux.columns:
    if 'INCONSISTENTES' in c:
        aux cols.append(c)
aux = aux[aux_cols]
aux['ANO'] = ano
aux['CODMUNOCOR'] = codmun
df_inconsistentes = aux
df_inconsistentes.fillna(0, inplace=True)
```

```
df_inconsistentes = df_inconsistentes.groupby(['ANO','CODMUNOCOR']) \
                        .sum().reset_index().melt(id_vars=['ANO','CODMUNOCOR'])
   df_inconsistentes.columns = ['ANO','CODMUNOCOR','VARIAVEL', \
                                                 'INCONSISTENTES'
   df['ANO'] = ano
   df['CODMUNOCOR'] = codmun
   df_totais = df[['ANO', 'CODMUNOCOR']]
   df_totais['TOTAIS'] = 1
   df_totais = df_totais.groupby(['ANO','CODMUNOCOR'])['TOTAIS'] \
                          .sum().reset_index()
   df_totais.columns = ['ANO', 'CODMUNOCOR', 'TOTAIS']
   df_totais.set_index(['ANO','CODMUNOCOR'], inplace=True)
   df_inconsistentes.set_index(['ANO','CODMUNOCOR'], inplace=True)
   x = df_totais.join([df_inconsistentes], how='left')
   x = x.reset index()
   x = x[['ANO', 'CODMUNOCOR', 'VARIAVEL', 'INCONSISTENTES', 'TOTAIS']]
   x = x.fillna(0)
   x.to_csv('SIM_dataset/resultados/Inconsistencia_p{}.csv'.format(cont),
             index=None, compression='gzip')
    cont += 1
inconsistencias = pd.DataFrame()
for f in glob.glob('SIM_dataset/resultados/Inconsistencia_p*.csv'):
    df = pd.read_csv(f, compression='gzip')
    inconsistencias = pd.concat([inconsistencias, df], axis=0)
inconsistencias.fillna(0, inplace=True)
inconsistencias = inconsistencias[~inconsistencias.VARIAVEL \
                                        .isin(['contador','NOVO'])]
inconsistencias.to_csv('SIM_Inconsistencia_v2.csv', index=None,
                                                 compression='gzip')
# gera regras
with open('SIM_Inconsistencia_Regras.json', 'w') as fp:
    json.dump(regras, fp, indent=4)
```

Tratamento

No caso do SIM, assim como foi feito para o SINASC, também é realizado um trabalho de adequação dos dados. Os códigos de identificação dos municípios são substituídos pelos respectivos nomes, a fim de tornar

os dados mais compreensíveis e facilitar a análise. Além disso, os dados são reformulados e estruturados de maneira adequada para serem recebidos e processados pelo painel.

```
## code to prepare `SIM` dataset goes here
library(rjson)
library(readr)
library(dplyr)
library(readxl)
SIM_dic <- read_excel("data1/dicionarios.xlsx", sheet = "SIM")
regras_sim_incom <- c(fromJSON(file = 'data1/SIM_Incompletude_Regras.json'))</pre>
SIM_Incom <- read_csv("data1/SIM_Incompletude_v2.csv", show_col_types = FALSE )
#ACRESCENTAR A COLUNA DE MUNICIPIOS E MUNICIPIOS
aux muni2 <- abjData::muni %>%
 dplyr::select(uf_id,
              muni id,
              muni nm clean,
              uf sigla) %>%
 mutate_at("muni_id", as.character) %>%
 mutate(cod_mun = stringr::str_sub(muni_id, 1, 7))
aux_muni2 <- rbind(aux_muni2,aux_muni2|>
                  mutate(cod_mun = stringr::str_sub(muni_id, 1, 6)))
SIM_Incom$CODMUNOCOR <- as.character(format(SIM_Incom$CODMUNOCOR ,
                                        scientific = FALSE))
SIM_Incom$CODMUNOCOR <- gsub(' ','',SIM_Incom$CODMUNOCOR)
SIM_Incom <- SIM_Incom %>%
 rename(cod mun = CODMUNOCOR ) %>%
 left_join(aux_muni2 ,by='cod_mun')
SIM Incom[,c('muni id','uf id')] <- NULL
SIM_Incom <- SIM_Incom |>
 mutate(uf_id = stringr::str_sub(cod_mun,1,2))
SIM_Incom[is.na(SIM_Incom$uf_sigla)==T, 'uf_sigla']<-
 SIM_Incom[is.na(SIM_Incom$uf_sigla)==T,]|>
 left_join(unique(aux_muni2[,c('uf_id','uf_sigla')]),by = 'uf_id') |>
 dplyr::select(uf_sigla.y)
SIM_Incom[is.na(SIM_Incom$muni_nm_clean)==T, 'muni_nm_clean'] <- 'Não informado'
SIM_Incom$CODMUNNASC <- SIM_Incom$muni_nm_clean
SIM_Incom$ESTADO <- SIM_Incom$uf_sigla</pre>
SIM_Incom[,c('cod_mun','uf_id','uf_sigla','muni_nm_clean')] <- NULL</pre>
var sim tirar <- c('CODBAIOCOR',</pre>
                 'CODCART',
```

```
'CODMUNCART',
                   'CONTADOR',
                   'DTREGCART'
                   'EXPDIFDATA',
                   'NUMREGCART',
                   'UFINFORM',
                   'ALTCAUSA',
                   'DTCADINF',
                   'DTCADINV',
                   'DTCONCASO',
                   'DTCONINV',
                   'ESTABDESCR',
                   'FONTES',
                   'FONTESINF',
                   'MORTEPARTO',
                   'NUDIASINF',
                   'NUDIASOBCO',
                   'NUDIASOBIN',
                   'ORIGEM',
                   'TPNIVELINV',
                   'TPOBITOCOR',
                   'TPRESGINFO')
SIM_Incom <- SIM_Incom[!(SIM_Incom$VARIAVEL %in% var_sim_tirar),]</pre>
var_aux <- SIM_Incom$VARIAVEL |> unique()
SIM_Incom <- merge(SIM_Incom, SIM_dic[,c("Codigo Qualidados", "Codigo SIM")],
                  by.x="VARIAVEL", by.y="Codigo SIM", all=TRUE)
SIM Incom <- SIM Incom[SIM Incom$VARIAVEL %in% var aux,]
SIM_Incom$VARIAVEL <- SIM_Incom$`Codigo Qualidados`
SIM_Incom$`Codigo Qualidados` <- NULL</pre>
vars_incom_sim<- unique(SIM_Incom$VARIAVEL)</pre>
######### REGRAS
df_aux <- regras_sim_incom |> as.data.frame() |> t() |> as.data.frame()
df_aux<- cbind(row.names(df_aux),df_aux)</pre>
df_aux |> row.names() <- NULL</pre>
df_aux$`row.names(df_aux)` <- df_aux$`row.names(df_aux)` |>
  gsub(pattern = 'IGNORADOS_', replacement = '')
colnames(df_aux) <- c('Variável','Regra')</pre>
regras_sim_incom <- df_aux</pre>
usethis::use_data(SIM_Incom, overwrite = TRUE)
usethis::use_data(vars_incom_sim, overwrite = TRUE)
regras_sim_implau <-</pre>
  c(fromJSON(file = 'data1/SIM_Implausibilidade_Regras.json'))
SIM_Implau <-
  read_csv("data1/SIM_Implausibilidade_v2.csv",show_col_types = FALSE )
SIM_Implau$VARIAVEL <- SIM_Implau$VARIAVEL |>
  gsub(pattern = '_IMPLAUSIVEL', replacement = '')
```

```
SIM_Implau$CODMUNOCOR <- as.character(format(SIM_Implau$CODMUNOCOR
                                               scientific = FALSE))
SIM_Implau$CODMUNOCOR <- gsub(' ','',SIM_Implau$CODMUNOCOR)
SIM_Implau <- SIM_Implau %>%
  rename(cod mun = CODMUNOCOR) %>%
  left_join(aux_muni2 ,by='cod_mun')
SIM Implau[,c('muni id','uf id')] <- NULL</pre>
SIM_Implau <- SIM_Implau |>
  mutate(uf_id = stringr::str_sub(cod_mun,1,2))
SIM_Implau[is.na(SIM_Implau$uf_sigla)==T,'uf_sigla']<-
  SIM_Implau[is.na(SIM_Implau$uf_sigla)==T,]|>
  left_join(unique(aux_muni2[,c('uf_id','uf_sigla')]),by = 'uf_id') |>
  dplyr::select(uf_sigla.y)
SIM_Implau[is.na(SIM_Implau$muni_nm_clean)==T, 'muni_nm_clean'] <-
  'Não informado'
SIM Implau$CODMUNNASC <- SIM Implau$muni nm clean
SIM_Implau$ESTADO <- SIM_Implau$uf_sigla</pre>
SIM Implau[,c('cod mun','uf id','uf sigla','muni nm clean')] <- NULL
SIM_Implau <- SIM_Implau[!(SIM_Implau$VARIAVEL %in% var_sim_tirar),]</pre>
var aux <- SIM Implau$VARIAVEL |> unique()
SIM_Implau <- merge(SIM_Implau,</pre>
                    SIM_dic[,c("Codigo Qualidados", "Codigo SIM") ],
                    by.x="VARIAVEL", by.y="Codigo SIM", all=TRUE)
SIM_Implau <- SIM_Implau[SIM_Implau$VARIAVEL %in% var_aux,]
SIM_Implau$VARIAVEL <- SIM_Implau$`Codigo Qualidados`
SIM Implau$`Codigo Qualidados` <- NULL</pre>
vars_implau_sim<- unique(SIM_Implau$VARIAVEL)</pre>
######## REGRAS
df_aux <- regras_sim_implau |> as.data.frame() |> t() |> as.data.frame()
df_aux<- cbind(row.names(df_aux),df_aux)</pre>
df aux |> row.names() <- NULL</pre>
colnames(df_aux) <- c('Variável', 'Regra')</pre>
regras_sim_implau <- df_aux
usethis::use data(SIM Implau, overwrite = TRUE)
usethis::use data(vars implau sim, overwrite = TRUE)
########################## Inconsistencia
regras_sim_incon <-
  c(fromJSON(file = 'data1/SIM_Inconsistencia_Regras.json'))
SIM_Incon <- read_csv("data1/SIM_Inconsistencia_v2.csv",show_col_types = FALSE )</pre>
SIM_Incon$VARIAVEL <- SIM_Incon$VARIAVEL |>
  gsub(pattern = '_INCONSISTENTES',replacement = '')
SIM_Incon$VARIAVEL <- SIM_Incon$VARIAVEL |>
  gsub(pattern = '_',replacement = ' ')
```

```
SIM_Incon$CODMUNOCOR <- as.character(format(SIM_Incon$CODMUNOCOR ,
                                              scientific = FALSE))
SIM Incon$CODMUNOCOR <- gsub(' ','',SIM Incon$CODMUNOCOR)
SIM Incon <- SIM Incon %>%
  rename(cod_mun = CODMUNOCOR ) %>%
  left join(aux muni2 ,by='cod mun')
SIM_Incon[,c('muni_id','uf_id')] <- NULL</pre>
SIM_Incon <- SIM_Incon |>
  mutate(uf_id = stringr::str_sub(cod_mun,1,2))
SIM_Incon[is.na(SIM_Incon$uf_sigla)==T, 'uf_sigla']<-</pre>
  SIM_Incon[is.na(SIM_Incon$uf_sigla)==T,]|>
  left_join(unique(aux_muni2[,c('uf_id','uf_sigla')]),by = 'uf_id') |>
  dplyr::select(uf_sigla.y)
SIM Incon[is.na(SIM Incon$muni nm clean)==T, 'muni nm clean'] <- 'Não informado'
SIM Incon$CODMUNNASC <- SIM Incon$muni nm clean
SIM_Incon$ESTADO <- SIM_Incon$uf_sigla</pre>
SIM_Incon[,c('cod_mun', 'uf_id', 'uf_sigla', 'muni_nm_clean')] <- NULL
SIM_Incon <- SIM_Incon[!(SIM_Incon$VARIAVEL %in% SIM_Incon),]
vars_incon_sim<- unique(SIM_Incon$VARIAVEL)</pre>
######## REGRAS
df_aux <- regras_sim_incon |> as.data.frame() |> t() |> as.data.frame()
df_aux<- cbind(row.names(df_aux),df_aux)</pre>
df_aux |> row.names() <- NULL</pre>
df_aux$`row.names(df_aux)` <- df_aux$`row.names(df_aux)` |>
  gsub(pattern = '_', replacement = ' ')
colnames(df_aux) <- c('Variável', 'Regra')</pre>
regras_sim_incon <- df_aux</pre>
usethis::use data(SIM Incon, overwrite = TRUE)
usethis::use data(vars incon sim, overwrite = TRUE)
regras_sim_implau$Indicador <- 'Implausibilidade'</pre>
regras_sim_incom$Indicador <- 'Incompletude'</pre>
regras_sim_incon$Indicador <- 'Inconsistência'
for(i in seq_along(SIM_dic$`Codigo SIM`)) {
  for(j in 1:ncol(regras_sim_implau)){
    regras_sim_implau[,j] <- gsub(SIM_dic$`Codigo SIM`[i],</pre>
                                  SIM_dic$`Codigo Qualidados`[i],
                             regras_sim_implau[,j])
  }
}
```

```
regras_sim_implau <-
  regras_sim_implau[regras_sim_implau$Variável %in% vars_implau_sim,]
for(i in seq along(SIM dic$`Codigo SIM`)) {
  for(j in 1:ncol(regras_sim_incom)){
    regras_sim_incom[,j] <- gsub(SIM_dic$`Codigo SIM`[i],</pre>
                                   SIM_dic$`Codigo Qualidados`[i],
                                  regras_sim_incom[,j])
 }
}
regras_sim_incom <-
  regras_sim_incom[regras_sim_incom$Variável %in% vars_incom_sim,]
regras_sim <- rbind(regras_sim_implau,regras_sim_incom,regras_sim_incon)</pre>
usethis::use_data(regras_sim, overwrite = TRUE)
SIM_dic<-
  SIM_dic[SIM_dic$`Codigo Qualidados` %in% c(vars_implau_sim,
                                              vars_incom_sim, vars_incon_sim),
usethis::use_data(SIM_dic,overwrite = T)
```

Análise

Devido à disponibilidade das variáveis no banco de dados, é possível apresentar apenas o número máximo de observações para cada nível de Incompletude, Implausibilidade e Inconsistência. Além disso, será fornecida a frequência dos indicadores para cada variável presente no conjunto de dados.

${\bf Incompletude}$

VARIAVEL	Nulos	Ignorados	Porcentagem Incompletude	Total
ACIDENTE TRAB	0	1512802	93.65%	$\frac{16031}{1615424}$
ASSIST MEDICA	0	566334	35.06%	$\frac{1615424}{1615424}$
BAIRRO	0	0	0%	73266
CAUSA BASICA	0	0	0%	1615424
CAUSA CID 10	0	0	0%	1615424
CAUSA EXT MAT	0	0	0%	1615424
CAUSA SCB	0	0	0%	1615424
CID ATESTADO	0	0	0%	1615424
CID LINHA A	0	0	0%	1615424
CID LINHA B	0	0	0%	1615424
CID LINHA C	0	0	0%	1615424
CID LINHA D	0	0	0%	1615424
CID LINHA II	0	0	0%	1615424
CIRURGIA	0	1546264	95.72%	1615424
CODIFICADO	0	0	0%	1615424
CRM	0	0	0%	73266
DIF OBITO RECEB	0	0	0%	1615424
DT ATESTADO	0	0	0%	1615424
DT CADASTRO	0	0	0%	1615424
DT INVESTIG	0	0	0%	1615424
DT NASC	0	0	0%	1615424
DT OBITO	0	0	0%	1615424
DT RECEBI CENTRAL	0	0	0%	1615424
DT_RECEBI_ORIGINAL	0	0	0%	$\frac{1615424}{1615424}$
ESCOLARIDADE	0	264456	16.37%	$\frac{1615424}{1615424}$
ESCOLARIDADE 2010	0	0	0%	$\frac{1615424}{1615424}$
ESCOL 2010 AGR	0	164681	10.19%	$\frac{1615424}{1615424}$
ESCOL_2010_AGIt	0	1519889	94.09%	$\frac{1615424}{1615424}$
ESCOL MAE 2010	0	0	0%	$\frac{1615424}{1615424}$
ESCOL_MAE_2010 AGR	0	2150	0.13%	$\frac{1615424}{1615424}$
ESTABELECIMENTO	0	0	0.1370	$\frac{1615424}{1615424}$
EST CIVIL	0	190365	11.78%	$\frac{1615424}{1615424}$
EXAM COMPLEM	0	1546476	95.73%	$\frac{1615424}{1615424}$
FONTE INF	0	1436109	88.9%	$\frac{1015424}{1615424}$
FONTE_INV	0	286	0.02%	$\frac{1615424}{1615424}$
HORA OBITO	0	0	0.0270	$\frac{1615424}{1615424}$
IDADE	0	0	0%	$\frac{1615424}{1615424}$
IDADE MAE	0	0	0%	$\frac{1615424}{1615424}$
LOCAL OBITO	0	0	0%	$\frac{1615424}{1615424}$
MEDICO ATEST	0	0	0%	$\frac{1615424}{1615424}$
MORTE GRAV	0	1468155	90.88%	$\frac{1615424}{1615424}$
MORTE PARTO	0	1517799	93.96%	$\frac{1615424}{1615424}$
MORTE PUERP	0	0	0%	$\frac{1615424}{1615424}$
MUNICIPIO NATU	0	0	0%	$\frac{1615424}{1615424}$
MUNICIPIO RES	0	0	0%	$\frac{1615424}{1615424}$
MUNICIPIO SVO IML	0	0	0%	$\frac{1615424}{1615424}$
NATURALIDADE	0	0	0%	$\frac{1613424}{1611206}$
NECROPSIA	0	501243	31.03%	$\frac{1611200}{1615424}$
NUMERO LOTE	0	0	0%	$\frac{1615424}{1615424}$
NUM DECL NASC	0	0	0%	$\frac{1013424}{73266}$
NUM FILH MORT	0	772	0.05%	$\frac{75200}{1615424}$
NUM FILH VIVOS	0	323	0.02%	$\frac{1615424}{1615424}$
OBITO INV	0	323	0.02%	$\frac{1615424}{1615424}$
OCUP CBO2002	0	0		$\frac{1615424}{1615424}$
OCUP_CBO2002 OCUP_MAE	0	0	9% 0%	$\frac{1615424}{1615424}$
PESO NASC	0	0	0%	$\frac{1615424}{1615424}$
		_		
RACA	0	0	0%	1615424

Implausibilidades

VARIAVEL	Implausiveis	Porcentagem Implausibilidade	Total
ACIDENTE_TRAB	3	0%	1615424
ASSIST_MEDICA	0	0%	1615424
CIRURGIA	1	0%	1615424
ESCOLARIDADE	48504	3%	1615424
ESCOL_2010_AGR	244626	15.14%	1615424
ESCOL_MAE	187	0.01%	1615424
ESCOL_MAE_2010_AGR	1079	0.07%	1615424
EST_CIVIL	0	0%	1615424
EXAM_COMPLEM	1	0%	1615424
FONTE_INF	1	0%	1615424
FONTE_INV	7061	0.44%	1615424
LOCAL_OBITO	13	0%	1615424
MEDICO_ATEST	1	0%	1615424
MORTE_GRAV	0	0%	1615424
MORTE_PARTO	0	0%	1615424
MORTE_PUERP	1324	0.08%	1615424
NECROPSIA	1	0%	1615424
OBITO_INV	1031770	63.87%	1615424
RACA	30491	1.89%	1615424
SEM_GESTACAO	7	0%	1615424
SERIE_MAE	0	0%	1615424
SEXO	0	0%	1615424
TIPO_GRAVIDEZ	1	0%	1615424
TIPO_MORTE_GRAV	0	0%	1615424
TIPO_OBITO	0	0%	1615424
TIPO_PARTO	1	0%	1615424
TP_ACIDENTE	4	0%	1615424

Inconsistência

```
gsub(pattern = '_INCONSISTENTES', replacement = '')
kable(df)
```

VARIAVEL	Inconsistências	Porcentagem Inconsistências	Total
DTOBITO e DTNASC	1	0%	1615424
FONTE E LOCOCOR	1056140	65.38%	1615424
OBITO PUERPERIO GRAVIDEZ	106901	6.62%	1615424
OBITOGRAV e OBITOPUERP	27026	1.67%	1615424
OBITOPUERP e OBITOGRAV	33736	2.09%	1615424
SEXO e OBITO	0	0%	1615424