ANNOUNCEMENTS

- o iteVAL on Pleach
- . THE AM & SOMILONE -> DOUND MALL LO NEED HEL WINNITE

tus leci Mass Pesban SUAC CIAPE MICE 2011

THE CENTRAL LIMIT THEOREM

in the limit of a large # of MEASUREMENTS, the distribution of a measured parameter, is anssi an

Novigice = (stougely gen); measure of significance

SKETCH PROOF recall from LEC 17 (DISPERSION) REC) Convolution theorem

$$f(x) = \int qx' \, t'(x') \, t^{s}(x-x') = \int qx' qx' f(x') \xi(x^{s}) \xi(x-x'-x^{s})$$

ARGUMENTS SYM TO X

- then the FOURIER TRANSFORMS ARE RELATED BY

That for does: Trick is to insent 1=15(-) dy evening f(x)=Jdx, Jak eikx, f, (x) Jak' eik'(x-xi) f2(k1)

= 14K4K, E.IK, & L'(N) (K) (K) (E.(K-K)) x 1 9x" | 8(K-K,) 511 = 1 tk e ikx ((k) f 2(k)

THIS RESULT GENERALIZES ("It is obvious") $f(X) = \int dx, ... dx \mu f_{i}(x_{i}) f_{i}(x_{i}) ... f_{i}(x_{i}) \delta(X - \xi x_{i})$ $\Rightarrow f(x) = \prod_{i=1}^{n} f_{i}(x_{i})$ $\Rightarrow f(x) = \prod_{i=1}^{n} f_{i}(x_{i})$ $= \int_{0}^{n} f_{i}(x_{i}) f_{i}(x_{i}) f_{i}(x_{i}) \delta(X - \xi x_{i})$ $= \int_{0}^{n} f_{i}(x_{i}) f_{i}(x_{i}) f_{i}(x_{i}) f_{i}(x_{i}) \delta(X - \xi x_{i})$ $= \int_{0}^{n} f_{i}(x_{i}) f_{i}(x_{i}) f_{i}(x_{i}) f_{i}(x_{i}) f_{i}(x_{i}) \delta(X - \xi x_{i})$ $= \int_{0}^{n} f_{i}(x_{i}) f_{i}(x_{i}) f_{i}(x_{i}) f_{i}(x_{i}) f_{i}(x_{i}) f_{i}(x_{i}) f_{i}(x_{i}) \delta(X - \xi x_{i})$ $= \int_{0}^{n} f_{i}(x_{i}) f_{$

NOT NEC. CHUSE INT. ASSUME SOME NICE POR POXI dx,

eg 1///// ×

UHOOSE VARIABLES SUCH THAT (x>=0). SHAPE OF PAPE UNCHANCED.

Now DRAW N numbers from Alvis distribution

X, ... XH WITH SUM X = \(\frac{1}{2} \times \)

WANT: SHOW THAT P(X) IS CAUSEIBN

I from which you resay degree that

P(X) = [dx, dxn | HP(x;) 8(x-xx;)

from P

PRODUCT OF INDIVIDUAL
PROBABULTIES OF

GACH MEASUREMENT

this is just an N-21M. convolution

P(xi) = 1 ak e-ikxi F(k)

B(K) = Idx eikx p(x)

REMEMBER MOMENTS OF A POF? (EXPECTATION VAIS) $\langle x^n \rangle = 1 dx \times^n P(x) \qquad \text{of. } P(x) = 1 dx \text{ eight } P(x)$

OBSECUE: B(0) = (1) = 1

that was borry. but we can write only exp. val:

 $\langle x \rangle = \left(-i\frac{d}{dk}\right) \beta(k) \Big|_{k=0} \leftarrow \langle x \rangle = 0$ by assump.

 $\langle x_{\downarrow} \rangle = \left(-i \frac{q_{\uparrow}}{q}\right) b (k)/k = 0$

but these are just not devotues of a function part

without loss of operatify (given F(0)=1)

INSTERD OF B(K) F A + BK + CK? + -.

write Hus as

B(K) = e a 1 ib; K + 2 C; K? 1 ...

ther: \$(0) = 0° > [a=1]

-i & P(E) = | b = (x) = 0 |

- = (x2) etc

then the fourier transform of IP(X) is

P(K) = P(K) = e - 2 C K2 - 1 D K3 + ...

BY CONVOLUTION Q=0=0

C= No

"LARGE N" UNIT: HOW DO THINGS SCALE W/ N?
d, D, E, ove oll sum over N terms
= all OCH)
EJJJ 1 SK3 + 000
exp. suppress.
is at least Q(VII) -> at this point,
CK2 is O(1)
these terms get & DK3 is OCYNT) etc
* Hus is where we use (x^> is finite * also No that every other tesm is
oscillatory, not exponential
As N=300,
FACT: FOURIER TRANSFORM FACT: FOURIER TRANSFORM FACT: FOURIER TRANSFORM ALSO GAUSSIAN
$P(x) = \frac{1}{12\pi c} e^{-\frac{x^2}{2c}}$

()

SO WHAT:

- . CUTE FROOF, REMINDED US OF FURIER-OLDEY
- · Preminder of where cut fails

convergence to a Gaussian is slowest @ the tails of the distribution

STATISTICAL INFERENCE IS CRUGALLY

the trap of misquetines fall into

WE DO EXPERIMENTS, then do a statistical test

- wave hords & central limit theorem

then quote some value for or

BUT 6 only makes sense if the distribution is actually described by a Gaussian

for that value of x

I the finite value of N

I the snape of p(x)

CHEAT: SIMULATE EXPERIMENTS ON A COMPUTER

complet time is cheep, data isn't)

the significant	Soft.	
SIVER DATA	x tz eg so	me vector of measurements
of THEORY)		me set of params.
HOW COMPATIBLE	x lw A 21 3	? BUANTIFY
L(H) = F	e(x/H) prob	nine. His true.
t ukeuilood		H < (H) 1 llame
this is easy	to aloulate.	man auliteld pat
		to say something
WRITE &	AS EXPEDIMENTA	L VALUE COATA)
9000 W 0	ontrast to x, ,	untich is the easured
DEFINE A "TA	IL MEASURE" d	= 12 dx P(x/H)
	%	UPPER CUMULATIVE DIST
		/ Let soon on as & anuse

If It is true: & MEASURES PROBABLUCY - CHAT LYCOME OF AN EXPERIMENT IS AT LEAST AS CRAZEJ AS &.

Mitter

if d=1%, then: H excluded @ 1% on Anderce.

OAN DEPINE CRITEMON FOR EXCULSION;

P(X) p-value (1-p) coolid. Muur

he wha bye.

xx textude # if x > xx

WHEN PLOD IS	CAUSCIAN	
The "suff	trail LMH Thm.	(het av) "qmud lant Uslan
then on relat	re p-values to	standard deviations
	2.3%. 0-14%	16 20 36
Up: 1, the	understmate o	-> too small publics
philosophical What is the	probability of t	1 one 5;

What is the probability of H Quen &?

EREQUENTIST: impossible to answer.

can one p-value, but this is not a measure of truth of H

BAYESIAN:

P(\$1H)(P(H)) What is this?!

P(\$1H\$) = (P(\$)) = 1 since we definitely measured \$1

P(H): PROR PROBABILITY

"probability prior to measurement
that H is correct."

**ROWNERS OF HELL ! Knowledge

P(H | &): POSTERIOR PROBABILITY

Suphemism for butt.

H(a)
H(a)

Theory depends on a parameter

ed lifetime of unstable particle

prior: no idea what a is.
P(H(a)) or p(a) is constant.

posterior: p(a) ~ p(x/d)), makes sonse.

NORMAUZING.

 $P(a|\hat{x}) = \frac{P(\hat{x}|a)}{\int da' p(\hat{x}|a')} = \frac{f(a)}{concels} \cdot \frac{f(a)}{f(a)}$

A PROBLEM: WE ASSUMED A HAS FLAT PRIOR.

PUT 6 - a? is A PERFECTLY FINE ALTERNATIVE PARAMETERS TO Q THAT CONTAINS THE SAME INFO.

BUT IF a HAS A FLAT PRIOR, b DDES MET!

even drace of param is

RELATION TO THE MEASURES PROBLEM

PARTICLE THEORIST: Won't to answer "What is bloor from Mr & [151, 150] Ger 3" TA PARAM 2 WANT TO BE BAYESIAN

so many uncertainties ASTROPHYSICS: indesapple to wake Priocs.

= BAUESIAN (typically)

PAPTICLE EXPERIMENT :

dison oclassion approachers,

will hever agree on a prior

FREQUENTIST

orghe

eg. @ UK, you produce jets from & WOLL SUARK. &

distinguish by: position of super vertex, 0

= if 0 > l, propagu byet!

Û

EFFICIENCY: given a b-jet, how likely are we to tag it?

&b = 10 de p(1/6)

PURITY: given a tagged brief, how likely is it actually a 9?

8 = 10, W p(l/g)

ELEGNERICIZI:	of Night	according	snaled of
Bayesian:	begains trate of	•	ch apre likely den collection (b.
P(I)	PROBABILITIES P(B) P(B) P(B) P(B) P(B) P(B)	MAN WORE	b(0) / b(0) smar / b(0) / b(0) smar /

80 THIS LIME CHOUD BE FURTHER TO MIGHT

from Haw Not to be Wrong,	ellenberg	P.167
MMonty Report + Farebook		

MARGINE P13. CAN DEU AN ALGORIZUM TO SAY!

here's a list of users (subset) as likelium

as any user to be a technicist

as any user to be a technicist

whis list. I your Grends is en

this list. I your do you be!?

LETS RE PARAMOID 3 MAKE UP A # : LOK

on uist mit on uist 9,990 0

tenorist

TEMMIST

199,890,010

(00 k

A; ou met: sx we riked to be demoust

ANG OFFICE OF & ON MA: YOR

even it on 18st, 99.99% ahonce myorent.

Bother g: IF Not terrorist, what is chance of being on list? 99,900

0.05% 1017,890,010 chake of more in!

& THIS OUT

1. CHANCE PERSON PUT ON VIST GIVEN MET TERRALIST (1/2000)

2. CHANGE WET TECCONST GVEN ON UZT