Selected Subgraph in Comparing Different Genotypes

Select the most different 5% vertices based on degree distribution, using Wasserstein distance.

Comparing genotype 1 vs 2 on the subgraph.

The average connectivity is shown:

Here are one with legend.

Genotype=1

Comparing genotype 1 vs 2, stratified by sex. Assuming Female:sex=1, Male:sex=2

The count of the each category:

SEX= 1 SEX= 2 ## GENOTYPE= 1 6 3 ## GENOTYPE= 2 5 7

Reference: The subgraphs of two sex, averaged over population.

The vertices are the same ones that were used to differentiate genotypes.

Regression of the median degree of the top 5% using the predictors (age, sex,genotypes):

In here, we first compute the degrees of the selected vertices for each subject, and choose the median as the point estimate of the connectivity for each subject. Then we apply simple linear regression on this outcome. Here are the summary:

```
##
## Call:
## lm(formula = medianDegree ~ as.factor(covariates_geno12$GENDER) +
##
       as.factor(covariates_geno12$GENOTYPE) + (covariates_geno12$AGE_WEEKS))
##
##
  Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
                              9.120
   -28.368 -17.610
                    -2.553
                                     49.512
##
##
##
  Coefficients:
##
                                                     Estimate Std. Error
## (Intercept)
                                                       98.6118
                                                                  28.4863
## as.factor(covariates_geno12$GENDER)SEX= 2
                                                        0.4800
                                                                  10.1907
## as.factor(covariates_geno12$GENOTYPE)GENOTYPE= 2 -29.1868
                                                                  10.3080
  covariates_geno12$AGE_WEEKS
                                                       -0.3465
                                                                   0.3782
##
                                                     t value Pr(>|t|)
## (Intercept)
                                                        3.462
                                                               0.00298 **
## as.factor(covariates_geno12$GENDER)SEX= 2
                                                        0.047
                                                               0.96298
## as.factor(covariates_geno12$GENOTYPE)GENOTYPE= 2 -2.831 0.01152 *
```

```
## covariates_geno12$AGE_WEEKS
                                                    -0.916 0.37246
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 22.46 on 17 degrees of freedom
## Multiple R-squared: 0.3436, Adjusted R-squared: 0.2277
## F-statistic: 2.966 on 3 and 17 DF, p-value: 0.06142
```

genotype = 2 has a significant negative effect, which means it causes degree drop compared to genotype = 1.