Computer vision <u>Assignment 3 - Stereo Vision</u>

Names

Mostafa Ahmed Abd El Hameed
18011774
Omar Ashraf
18011111
Mohamed Gomma
18011425

First part : block matching

In this method we find the disparity in the images by matching every pixel in the left image to a certain pixel in the right image.

• First, we define a reference window in the left image, then we slide a similar window across the epipolar line in the right image and compare the contents with the reference window using a certain metric. This process is repeated for every pixel in each scanline.

 We compare the results of window sizes 1 (pixel to pixel comparison), 5, and 9.

```
def block_matching(img1, img2, window_size, metric):
 height, width = img1.shape
 disparity_map = np.zeros((height, width), np.uint8)
 half_window = window_size // 2
 for y in range(half_window, height - half_window):
   for x in range(half_window, width - half_window):
    window = img1[y - half_window: y + half_window + 1, x - half_window: x + half_window + 1]
     # Define the minimum SSD and best disparity
    min_metric = 255 * window_size * window_size
    best_disparity = 0
    # compare with each window from the right image
     for xRight in range(half_window, width - half_window):
      current_window = img2[y - half_window: y + half_window + 1, xRight - half_window: xRight + half_window + 1]
       m = metric(window, current_window)
       # if the SSD / SAD is smaller than the minimum metric update the minimum mertric and the best disparity
       if m < min metric:
        min_metric = m
        best_disparity = np.abs(x-xRight)
     disparity_map[y, x] = best_disparity
 return disparity_map
```

- We use 2 metrics to estimate matching cost:
 - Sum of Absolute Differences (SAD) Computed by calculating the absolute difference of the reference window and matching window's pixels element by element then adding them up.
 - Sum of Squared Differences (SSD) Computed by calculating the squared difference of the reference window and matching window's pixels element by element then adding them up.

Cons of using this method

- This method is taking so long as it goes O(ROWS*COLUMNS) * O(COLUMS)
- 2. We can reduce the complexity by having a limit on the disparity so we can limit the number of comparisons for each window.

<u>Second part : Dynamic Programming</u>

• This method uses a dynamic programming algorithm to calculate the minimum cost for matching a whole row in the images.

For every pixel in the image there are 3 possible conditions:

- The pixel is visible in the left and right images (it is matched).
- The pixel is visible in the left image but occluded in the right image.
- The pixel is visible in the right image but occluded in the left image.

$$d_{ij} = \frac{(I_l(i) - I_r(j))^2}{\sigma^2}$$

where σ is some measure of pixel noise. The cost of skipping a pixel (in either scanline) is given by a constant c_0 . For the experiments here we will use $\sigma=2$ and $c_0=1$. Given these costs, we can compute the optimal (minimal cost) alignment of two scanlines recursively as follows:

- 1. $D(1,1) = d_{11}$
- 2. $D(i,j) = min(D(i-1,j-1) + d_{ij}, D(i-1,j) + c_0, D(i,j-1) + c_0)$
- After D is fully computed, the total cost of matching two scanlines can be found in the element D(N, M).
- We now perform a backwards pass from D(N, M) along the optimal path (minimum cost) to get the optimal alignment for the 2 images and calculate the disparity of each pixel in the corresponding pixel maps.

Starting at (i, j) = (N, N)

we choose the minimum value of D from (i-1, j-1), (i-1, j), (i, j-1).

- Selecting (i-1, j)corresponds to skipping a pixel in Il, so the left disparity map of i is zero.
- Selecting (i, j-1) corresponds to skipping a pixel in Ir, and the right disparity map of j is zero.
- Selecting (i-1, j-1) matches pixels (i, j), and therefore both disparity maps at this position are set to the absolute difference between i and j.

Sample output

