Student Information

Full Name : Atakan Onol Id Number : 2102648

Answer 1

a)

$\varphi = ((p \to \neg q) \iff (p \to q))$							
p	q	$\neg q$	$p \to \neg q$	$p \iff q$	φ		
T	Т	F	F	Τ	F		
T	F	Γ	T	\mathbf{F}	F		
F	Γ	F	Т	\mathbf{F}	F		
F	F	Γ	T	T	Τ		

b)

$\varphi = (((p \lor q) \land (p \to r) \land (q \to r)) \to r)$								
p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$(p \lor q) \land (p \to r) \land (q \to r)$	φ	
Т	Т	Τ	Т	Т	Т	Т	T	
Γ	Γ	F	T	F	\mathbf{F}	F	T	
Γ	F	Т	Т	Т	${ m T}$	${ m T}$	T	
Γ	F	F	Т	F	${ m T}$	\mathbf{F}	T	
F	Γ	Т	Т	Т	${ m T}$	${ m T}$	T	
F	Γ	F	Т	Т	\mathbf{F}	\mathbf{F}	T	
F	F	Τ	F	Т	${ m T}$	${ m F}$	T	
F	F	F	F	Т	${ m T}$	${ m F}$	Т	

Answer 2

$$\begin{array}{llll} \neg p \rightarrow (q \rightarrow r) & \equiv & \neg \neg p \vee (q \rightarrow r) & table \ 7 \text{-} \textit{first row} \\ \neg \neg p \vee (q \rightarrow r) & \equiv & p \vee (q \rightarrow r) & double \ \textit{negation} \\ p \vee (q \rightarrow r) & \equiv & p \vee (\neg q \vee r) & table \ 7 \text{-} \textit{first row} \\ p \vee (\neg q \vee r) & \equiv & (\neg q \vee r) \vee p & commutative \ law \\ (\neg q \vee r) \vee p & \equiv & \neg q \vee (p \vee r) & associative \ law \\ \neg q \vee (p \vee r) & \equiv & q \rightarrow (p \vee r) & table \ 7 \text{-} \textit{first row} \end{array}$$

Answer 3

 $a)\forall xL(x,Burak)$

- $b) \forall y L(Hazal, y)$
- $c) \forall x \exists y L(x, y)$
- $d) \neg \exists x \forall y L(x, y)$
- $e)\exists x \forall y L(x,y)$
- $f) \neg \exists x (L(x, Burak) \land L(x, Mustafa))$
- $g)\exists x\exists y\exists z(L(Ceren,x)\wedge L(Ceren,y)\wedge (x\neq y)\wedge (L(Ceren,z)\rightarrow (z=x\vee z=y)))$
- $h) \forall x \exists y \exists z (L(x,y) \land (L(x,z) \rightarrow (z=y))$
- $i)\forall x\neg L(x,x))$
- $(z,y) \exists x \exists y \exists z (L(x,y) \land L(x,x) \land (x \neq y) \land (L(x,z) \rightarrow ((z=x) \lor (z=y))))$

Answer 4

Answer 5

1		$\forall x (p(x) \to q(x))$	premise
2		$\exists y p(y) \lor r(a)$	premise
3		$\neg \exists z(z)$	premise
4	x_0	$r(x_0)$	assumption
5		$\exists z r(x_0)$	$\exists_i, 4$
6		\perp	contradiction, 3, 5
7		$\neg r(x_0)$	$\neg_i, 4, 6$
8		$\forall z \neg r(z)$	$\forall_i, 7$
9		r(a)	assumption
10	a	$\neg r(a)$	$\forall_e, 8$
11		\perp	contradiction, 9, 10
12		$\exists y p(y)$	$\vee_e, 9 - 11$
13	x_1	$p(x_1)$	assumption
14		$p(x_1) \to q(x_1)$	$\forall_e, 1$
15		$q(x_1)$	$\rightarrow_e, 9, 10$
16		$\exists z q(z)$	$\exists_i, 9-11$