链路层

Link Service and Framing

Link layer

Link 种类:

- Wired
 - o point-to-point
 - o multiple access (LAN)
- Wireless (WIFI)

链路层硬件 (终端): 网络适配器 (Adapter), 网卡 (NIC, Network Interface Card)

Link layer service

- Framing
- Link Access
 - 多路访问
 - o MAC 地址
 - 0 双工
- Reliable Delivery (可选)
 - Flow control
- Error Detection and Correction (可选)

Framing

发送方将 datagram 封装为 frame,添加纠错位、控制位等接收方检查错误,解封 datagram 并传到上层

帧结构由链路层协议决定

Link Access

媒体访问控制(Medium Access Control, MAC)协议规定了 frame 在链路上传递的规则。点对点的 MAC 较简单(或是不存在),而当多个节点共享单个广播链路时(LAN),即多路访问问题,MAC 协议用于协调多个节点的 frame 传输

Reliable Delivery

通过**确认与重传**保证可靠交付,通常用于差错率较高的链路,如无线网络,在低差错的链路(光纤,同轴电缆,双绞铜线)中一般不提供可靠交付服务

使用 Flow control 确保接收方不会过载

Stop and Wait

• 发送方: 发送 frame

接收方:接受 frame,回复 ACK

• 发送方: 等待 ACK , 进行下一次发送

对干较大的 frame 效果较好

Sliding Window

接收方有大小为 Win 的缓冲区

发送方无需 ACK 可发送最多 Win 的frame

每个 frame 有编号

ACK 包括了期望接收到的下一 frame 的序号和当前窗口大小

对于错误有 Go Back N 和 Selective Reject 两种处理方式

更多参见 Sliding Window Protocol

Error Detection and Correction

在 frame 中插入差错检测位,由接收方检测及纠正(如果可以的话)frame 中的错误。通常由硬件实现

Error Detection and Reliable Transmission

链路层的差错校验是比特级的

奇偶校验 (单 Bit, 二维)

循环冗余校验 CRC

设数据为 D , CRC 位 R 为 r 位 , 选择 r+1 位的生成多项式 G

$$egin{aligned} D imes 2^r &= a imes G \oplus R, \quad D imes 2^r \oplus R = a imes G \ R &= remainder(rac{D imes 2^r}{G}) \end{aligned}$$

CRC 算法伪代码:

- 将 CRC 寄存器赋 0
- 将数据左移 r 位 (末尾补 r 个 0)
- 当数据未处理完时
 - 寄存器左移一位,空位读入 1 位数据
 - 如果上一步左移移出位为 1
 - CRC 寄存器异或牛成多项式

参见 Cyclic Redundancy Check

HDLC, PPP, and SONET

直接相连技术

HDLC: High-Level Data Link Control

使用 01111110 作为帧开始与结束的分隔符

如何不与数据内同样的序列冲突: Bit Stuffing

- 发送方: 在每五个连续的 1 后面插入一个 0
- 接收方:在每五个连续的1后,如果第六个是0,删去0,如果第六个是10,则是分隔符

参见 High-Level Data Link Control

PPP: Point-to-Point Protocol

flag 同样是 01111110

Byte Stuffing:

- 发送方: 在 01111110 之前加入 01111101
- 接收方:
 - 收到 <01111101, 01111110> 丟弃第一个 Byte, 继续接收
 - 。 收到 <01111101, 01111101> 丟弃第一个 Byte, 继续接收
 - 收到单独的 01111110 , 分隔符

参见 Point-to-Point Protocol

SONET: Synchronous Optical Network

Token Ring

LAN 的网络拓扑

- Bus
- Ring
- Tree
- Star

Token Ring

一种局域网协议, IEEE 802.5

repeater (接入点) 两两间由单向网络连接

数据以 bit 为单位在 repeater 之间传输 (数据的插入、接受、删除)

frame 在绕环一周后由发送方删除

Repeater States

Listen State

- Scan passing bit stream
 - 。 相连 station 地址与目标地址
 - Token 状态 (发送许可)
- 复制一份副本并转发
 - 。 若地址匹配传给对应 station
- 修改 bit 流
 - 。 接收到时尾部附加 ACK
 - 。 或是反转

Transmit State

- 接受 frame , 传给发送的 station 检查 ACK
- 可能会缓存其他 frame

Bypass State

• 仅仅作为中转点

802.5 MAC Protocol

协议

空闲时: Token 在环路中循环

发送时:修改 Token 中一位使之成为 SOF(Start Of Frame),在 Token 之后添加数

据 frame

发送完成后由发送结点丢弃 frame 并在环路中插入新的 Token

参见 Token ring

平均等待时间

- 设环中有 N 个结点
- Token 绕环一圈的时间为 T
- 每个 node 传输数据平均时间为 T'

则平均等待时间为

$$\frac{1}{N} \times 0 + \frac{1}{N} \times (T' + \frac{T}{N}) + \frac{2}{N} \times (T' + \frac{T}{N}) + \dots + \frac{N-1}{N} \times (T' + \frac{T}{N})$$

$$= \frac{N-1}{2} \times (T' + \frac{T}{N})$$

释放 Token 的时机

• 常规释放:发送方收到 ACK 后释放

• 早期释放: 发送方发送完最后 1 bit 之后直接释放

FDDI Token Ring

使用双环结构,传输方向相反。内环空闲,出错时切换到内环

Ethernet

Multiple Access Protocol

Multiple Access

数据链路可分为点对点与广播两类

Multiple Access Links 的特点:

- 一条公用的广播信道
- 两个及以上的结点传输会发生干扰
- 碰撞: 结点同时收到两个及以上的信号

理想的 Multiple Access Protocol 的特点 (假设广播信道的带宽为 R) :

- 1. 只有一个结点传输时, 速率为 R
- 2. M 个结点传输时,每个结点的平均传输速率为 $\frac{R}{M}$
- 3. 完全分布式
 - 。 没有一个特殊结点协调传输
 - 。 没有同步时钟或时隙
- 4. 简单

Multiple Access Control 可分为三类

- Channel Partitioning
- Taking Turns
- Random Access

Channel Partitioning

基本思想:将信道分成小的片段(时分,频分,码分),为每个结点专门分配片段

TDMA

按照时间将信道分为一个个 slot, 每轮每个结点独占一个 slot

FDMA

按频率将信道分为不同频段,每个结点分得固定频段

CDMA (Code Division Multiple Access)

一般用于无线广域网

每个结点共享频率,但结点有独特的 chipping sequence 用于编码数据

编码信号 = (原始数据) \times (chipping sequence)

解码:编码信号与 chipping sequence 的内积

参见 Code-division multiple access

Taking Turns

基本思想: 结点轮流传输, 传输量较多的结点需要更多的回合

Polling

Master 结点轮询 Slave 结点,适用于 dumb slave 的情况

- 轮询开销
- 延时
- Single point failure

e.g. 蓝牙

Token passing

控制 Token 在结点间传递

e.g. Token Ring, FDDI

Random Access

结点发送时占用全部带宽,不划分信道

两个以上结点同时发送时即发生碰撞

- 如何检测/避免碰撞
- 如何从碰撞中恢复

不同的 Random Access MAC Protocol:

- ALOHA, Slotted ALOHA
- CSMA, CSMA/CD, CSMA/CA

ALOHA (Additive Link On-line HAwaii system)

发送方:

- 结点有 frame 时,发送
- 若接收到 ACK,则成功发送
 - \circ 否则有 p 的概率重传,有 (1-p) 的概率等待
- 如果重传后还是没有 ACK, 则放弃

接收方:

- 检测帧
- 若完好且地址符和,则发送 ACK

ALOHA 的帧损坏可能由帧重叠导致

Slotted ALOHA

与 ALOHA 的不同:

- 所有的 frame 大小相同
- 时间划分为相等的时隙(帧传输时间)
- 结点同步(中央时钟或其他同步机制实现)
- 传输开始于时隙的边界
- frames 或者成功传输或者完全重叠

发送操作: 当有 frame 时在下一个 slot 发送

- 若无碰撞则在下一个 slot 发送
- 若发生碰撞,则在接下来的 slot 以概率 p 重传,直至成功

参见 ALOHAnet

CSMA

CSMA (Carrier Sence Multiple Access) 载波侦听多路访问

基本思想:

- 在传输前监听
- 若信道空闲, 传输
- 若信道繁忙则等待一段时间(往返时间)
- 如果没有收到 ACK 则重传

对于较大的帧和较短的传播时延效果较好

参见 Carrier-sense multiple access

CSMA mode

Nonpersistent CSMA

想要传输 frame 的结点监听信道

- 1. 若信道空闲, 传输, 否则 2
- 2. 若信道繁忙,等待一段随机的时间,重复 1

随机长度的时延降低了碰撞的几率,但也降低了信道的利用率(传输后仍会空闲一段时间)

1-persistent CSMA

想要传输 frame 的结点监听信道

- 1. 若信道空闲, 传输, 否则 2
- 2. 若信道繁忙, 等待至空闲, 立即传输

selfish, 多个节点等待传输时会发生碰撞

p-persistent CSMA

在碰撞与空闲之间做出妥协

time unit: 最大传播时延

- 1. 若信道空闲,以 p 的概率传输,以 (1-p) 的概率延迟 1 个 time unit
- 2. 若信道繁忙, 监听直至空闲, 重复1
- 3. 若传输延迟了 1 个 time unit, 重复 1

概率 p 的选择至关重要,对于 N 个结点最佳的 p 是 $\frac{1}{N}$

CSMA/CD

处理流程

想要传输的结点监听信道

- 1. 若信道空闲,传输,否则 2
- 2. 若信道繁忙,等待至空闲,立即传输
- 3. 若检测到碰撞,发送 Jam signal,然后终止传输
 - Jam signal 是全 1 的信号,一般为 32~48 bit,旨在加强碰撞,使其余设备 易干检测
- 4. 在发送 Jam 后, 等待随机时间, 从 1 开始

对于 IEEE 802.3, 使用 1-persistent

参见 Carrier-sense multiple access with collision detection

Binary exponential backoff

尝试在碰撞后重复传输。结点的实际等待时间为 $K \times 512$ bit 时间(发送 512 bit 进入以太网的时间,以太网中两台机器之间最大的 rtt)

- 在 n 次碰撞后,随机从 $\{0,1,2,\ldots,2^n-1\}$ 中等概率地选择 K 值
- 10 次或更多次碰撞后,从 $\{0,1,2,\ldots,1023\}$ 中等概率地选择 K 值
- 16 次碰撞后放弃传输并报告错误

有 LIFO 效应:后到的碰撞退避时间短

IEEE 802.3

Ethernet Frame Format

- Preamble (8 octets): 7 octets with pattern 10101010 followed by 1 octet with pattern 10101011, 用于同步发送方接收方的时钟频率
- SFD: Start of Frame Delimiter
- Address (12 octets): 6 octets MAC address, Source and Destination
- Type/Length (2 octets) : 标明上层协议
 - 。 若小于 1536,则为长度字段,为 IEEE802.3 frame
 - 。 若大于等于 1536, 为类型字段, 为 DIXv2 frame
- Data (46~1500 octets)
- FCS (4 octets): Frame Check Sequence (CRC)

以太网帧最短为 64 Bytes, 即 14(Header) + 46(Data) + 4(FCS)

Logical Link Control

以太网

• 不可靠:不发送 ACK/NAK

• 无连接: 没有握手(连接建立)

LLC:

- 处理结点间的逻辑链路
- 流控制及错误检测

LLC 很少用于以太网,但常用于 WiFi(IEEE 802.11)和 Token Ring(IEEE 802.5)

LLC 基于 HDLC 的服务:

- Unacknowledged connectionless service
 - Nothing added
- Acknowledged connectionless service
 - Add ACK and NAK, stop-and-wait
- Connection mode service
 - HDLC in Asynchronous balanced mode

802.3 Physical Layer

不同的以太网标准

- 相同 MAC 协议, 帧格式
- 不同速度: 2Mbps, 10Mbps, 100Mbps, 1Gbps
- 不同物理媒介:光纤,铜缆

High-Speed Ethernet

仍然使用 IEEE 802.3 的 MAC 协议和帧格式

星型拓扑

Network Performance

Delay

Source of delay

- Transmission
 - 带宽为 R
 - \circ 分组长度为 L
 - Transmission Delay = $\frac{L}{R}$
- Propagation
 - 。 物理链路长度为 d
 - \circ 传播速度为 s
 - Propagation Delay = $\frac{d}{s}$
- Nodal Processing
 - 。 检查比特错
 - 。 决定出链路
- Queuing
 - 。 在出链路等待传输的时间
 - 。 取决于路由器的拥塞程度

Queuing Delay

- 带宽为 R
- 分组长度为 L
- 分组平均到达速率为 α
- Traffic intensity $ho = \frac{L imes lpha}{R}$

ho
ightarrow 1 时 Queuing Delay $ightarrow \infty$

Packet loss and Throughput

Packet loss

当路由链路的 buffer 满时便会导致新到的分组丢包

Throughput

发送方与接收方之间的数据传输速率

常常被链路中的瓶颈链路所限制

Network Performance

Media Utilization

$$U = \frac{\text{Time for frame transmission}}{\text{total time for a frame}}$$

Relative Propagation Time

$$\alpha = \frac{\text{propagation time}}{\text{transmission time}}$$

Point-to-Point Link with no ACK

• frame transmission time: 1

• end to end propagation time: α

• number of stations: N

Max Utilization

$$U = \frac{1}{1+lpha}$$

Ring LAN

• Average time to transmit a frame: T_1

• Average time to pass the token after transmission: T_2

• number of stations: N

Max Utilization

$$U=rac{T_1}{T_1+T_2}=\left\{egin{array}{l} rac{1}{1+rac{lpha}{N}}, & (lpha<1, {
m frame \ is \ longer \ than \ ring}) \ \ rac{1}{lpha+rac{lpha}{N}}, & (lpha>1, {
m frame \ is \ shorter \ than \ ring}) \end{array}
ight.$$

Slotted ALOHA

假设有 N 个结点,每个传输的概率为 p

• 一个结点成功传输的概率: $p(1-p)^{N-1}$

• 任意一结点成功传输的概率: $A = Np(1-p)^{N-1}$

$$p=rac{1}{N}$$
 时 A 取得最大值 $\left(1-rac{1}{N}
ight)^{N-1}$

对于一个成功发送的 slot, Utilization 为

$$U_S = rac{1}{1+2lpha}pprox 1 \quad (lpha\ll 1)$$

发送前使用 α 的时间检测碰撞,发送后以 α 的时间确认 ACK

Max Utilization

$$U=U_S imes Approx \left(1-rac{1}{N}
ight)^{N-1}
onumber \ ext{Let } N o\infty
onumber \ Upprox e^{-1}=0.367879$$

Pure ALOHA

成功概率

$$A = N \times P\{$$
 one transmit in the slot $\}$
 $\times P\{$ no other node transmit in $[t_{0-1}, t_0]\}$
 $\times P\{$ no other node transmit in $[t_0, t_{0+1}]\}$

Max Utilization

$$egin{align} U &pprox A = Np(1-p)^{2N-1} \ &pprox rac{1}{2}igg(1-rac{1}{2N}igg)^{2N-1} \quad (p=rac{1}{2N}) \ &pprox rac{1}{2e} = 0.183940 \quad (N o\infty) \ \end{pmatrix}$$

CSMA\CD

• banwidth: B

• length of link: L

ullet Propagation speed: V

• frame size: Size

• Propagation time: $T_a = rac{L}{V}$

• Transmission time: $T_b = \frac{Size}{B}$

最差情况下需要 $2T_a$ 的时间才能检测到碰撞,(Minimum contention interval)

Minimum frame size

$$T_b \geqslant 2T_a \ Size \geqslant rac{2 imes L imes B}{V}$$

对于 p-persistent CSMA/CD (传输概率为 p)

成功传输概率

$$A=Np(1-p)^{N-1} \ p=rac{1}{N}, A=\left(1-rac{1}{N}
ight)^{N-1}$$

则间隔 j 个 slot 的概率为

 $P\{j \text{ unsuccessful attempts}\} imes P\{1 \text{ successful attempt}\} = A(1-A)^j$ 延迟 slot 的期望为

$$\sum_{j=1}^{\infty} jA(1-A)^j = \frac{1-A}{A}$$

Max Utilization

$$\begin{split} U &= \frac{\text{frame time}}{\text{frame time} + \text{propagation time} + \text{average contention interval}} \\ &= \frac{1}{1 + \alpha + 2\alpha \times \frac{1 - A}{A}} \\ &= \frac{1}{1 + \frac{2 - A}{A}\alpha} \end{split}$$

Let
$$N o \infty, A = rac{1}{e}$$

$$U=rac{1}{1+(2e-1)lpha}pproxrac{1}{1+4.44lpha}$$

Bridge and Layer-2 switch

Bridge

目标:扩展单个局域网,提供 LANs/WANs 之间的互联

Bridge 的需求:

• Store & Forward:读取 LAN 上传输的 frame,抽取 MAC 地址,选择性地缓存地址为其他 LAN 的 frame,然后使用第二个 LAN 的 MAC 协议,重传各个

frame

- Transparent:对于结点来说 Bridge 是透明的
- Plug-and-play, self-learning:即插即用,自学习,减少配置复杂度

Bridge Protocol (IEEE 802.1D)

- 处于链路层, 使用 MAC 地址寻址
- 不需要 LLC layer
- 能通过外部的 WAN 传输 frame

Routing for Bridges

Bridge 需要决定是否转发以及向何 LAN 转发,因此需要一个转发表而 Fix routing(即事先分配每个结点之间的路由)是没有实践性的 Bridge Protocol 的目标:

- 自动生成转发表
- 在发生变动时自动更新转发表

Transparent Bridge

Frame Forwarding

转发表由三元组 <MAC address, Port, Timestamp> 组成

对于来自 Port X 的 frame,在转发表中搜索目的 MAC 地址对应的 Port

- 如果没有找到,则向 Port X 以外的所有 Port 转发该 frame
- 若转发表中的 Port 是 X,则丢弃该 frame (LAN 内)
- 若转发表中的 Port 是 Y,检查 Y 是 Block 状态还是 Forwarding 状态,如果是 Forwarding 状态则转发

问题:转发会产生循环,解决方法:使用生成树

Address Learning

原理: 当 Port X 有 frame 时,这个 frame 是从与 Port X 相连的 LAN 来的。

故 使用源地址更新转发表

转发表中每个表项有对应的计时器,到时间则删去对应表项。每次有帧来时更新转发表,以此实现自学习和动态更新

Spanning Tree

为每个 Bridge 分配唯一的标识,Bridge 之间交换信息建立生成树

• 在 bridge 中选择一个 root bridge

- 为其余 bridge 选择一个 root port (到 root 最短路径的 port)
- 为每个 LAN 选择一个 designated bridge (到 root 最短路径的 bridge)
- LAN 和 designated bridge 之间连接的 port 为 designated port
- 所有 root port 和 designated port 置为 forwarding state
- 其余 port 置为 block state

Source Routing Bridge

用于连接 Token Ring

源结点决定路由,路由信息插入在 frame 中

路由过程:

- 每个结点广播一个 single-route broadcast frame,遍历所有 LAN 最终到达 destination
 - Bridge 必须配置为一个生成树(见上小节)
 - 。 source 发送的 single-route frame 没有 route designator 字段
 - 第一跳的 bridge 添加 <incoming LAN #, bridge #, outgoing LAN #>
 - 之后的 bridge 在之后附加 <bridge #, outgoing LAN #>
- destination 发送 all-routes broadcast frame, 生成到 source 的所有 route 路
 径
 - 第一跳的 bridge 添加 <incoming LAN #, bridge #, outgoing LAN #>
 - 之后的 bridge 在之后附加 <bridge #, outgoing LAN #>
 - 。 转发前检查 outgoing LAN 是否已经在 designator 字段,若在则停止转发 (避免成环)
- source 在其中选择最佳 route

Hubs

每个结点由两条线路连接到 hub (传输&接收)

hub acts as a reapter: 当一个结点传输时, hub 将其信号发到其他所有节点

Hub 物理上是星型拓扑,逻辑上是总线拓扑

- 任何结点传输的 frame 会被其他所有结点收到
- 两个结点同时传输时发生碰撞 (single collision domain)

Layer-2 Switch

具有 Bridge 的功能,兼容 hub 和 bridge (均使用以太网 MAC 协议)

- Store & Forwarding
- Transparent

• Plug-and-play, self-learning

与 Bridge 的不同:

• Bridge: 连接 LANs, 通常只有 2-4 个 port

• Switch: 连接多个主机/子网, 有大量端口, 且能提供**无碰撞传输**

multiple simutaneous transmission

- 每个结点有专用的线路连接到 switch
- switch 缓存并转发 frame
- 全双工,无碰撞(每个链路有独自的碰撞域,而由于 switch 缓存分组,故不会碰撞)
- 总传输速率为各端口传输速率之和

Types of Layer-2 Switch

Store-and-forward switch

- 从输入线路接收 frame
- 缓存并向输出线路转发
- 产生 delay

Cut-through switch

- 适用于目的地址在帧开头的情况
- 识别出目的地址后立即在输出线路转发 frame
- 最高的吞吐量
- 可能会转发损坏的帧: 不检查 CRC

Layer-3 Switch

随着网络规模的增长, Layer-2 Switch 开始出现不足

Broadcast overload:由 Layer-2 Switch 连接起来的的 LANs 物理上成为一个网络,所有节点共享 MAC 广播地址,broadcast frame 会发送到所有连接的主机,广播情况下 switch 效率降低到 hub 级别,而 IP 协议会产生很多广播(ARP, DHCP, IGMP)

Lack of multiple paths: Layer-2 Switch 路由时为了不产生循环,使用生成树,任意两个节点间只有一条路径,限制了网络性能和可靠性

Layer-3 Switch: 硬件上实现了转发 IP 包的逻辑

解决方法:

• 将 LAN 划分为不同的子网,子网间使用 Layer-3 Switch (带路由功能的 switch) 连接

- MAC broadcast frame 范围限制在子网内
- 允许子网间的多路径

Two Categories of Layer-3 Switch

• Packet by packet:工作方式与传统路由器相同,但性能比基于软件的路由器

提升一个量级

• Flow-based: 提升 IP 分组流的性能

Wireless Networks

Wireless Networks

Elements of a Wireless Network

Wireless Hosts: 终端, PC/手机/PDA等

Base Station: 连接至有线网络,在有线网络和 Wireless Hosts 之间传播数据

Wireless Link: 连接 host 和 base station, 需要 MAC 协议

Handoff: base station 之间由有线网络连接, mobile host 移动中会更换 base

station

Wireless Link Characteristics

Decreased signal strength: 信号强度随着传播距离迅速衰减

Multipath propagation: 广播信号会在物体上反射, 在不同时间到达

destination (self-interfering)

Interference form other sources: 2.4Ghz 的频率会被手机/微波炉等干扰

Robustness and security:容易被窃听

SNR & BER

SNR: signal-to-noise ratio, 信噪比, 越大越容易提取出信号

BER: bit error ratio, 误码率, 越低越好

对于给定的功率,提升功率 \rightarrow 提升 SNR \rightarrow 降低 BER \rightarrow 电池与温度限制

Ad-hoc Networking

peer-to-peer,没有 base station,节点间自己组织成网络

	single hop	multiple hop
infrastructure	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net
no infrastructure	no base station, no connection to larger Internet (Bluetooth)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET

WiFi - IEEE 802.11 Wireless LANs

IEEE 802.11 Architecture

Station: device with IEEE 802.11 conformant MAC and physical layer

Access Point (**AP**): Provides access to the distribution system via the wireless medium

Basic Service Set (BSS): A single cell coordinated by one access point (base station)

Extended Service Set (ESS):

- Multiple BSSs interconnected by **Distribution System**(DS)
- DS can be a switch, wired network, or wireless network
- An ESS appearsas a single logical LAN
- Portals (routers) provide access to Internet

Distribution System (DS): A system used to interconnect a set of BSSs and integrated LANs to create an (ESS)

参见 IEEE 802.11

IEEE 802.11: Channels, association

802.11b: 2.4Ghz-2.485Ghz 的频率被分为 11 个不同的 channel,每个 AP 选择一个 channel,相邻 AP 若 channel 相同则会发生干扰(一般选择首尾和中间的 channel,最大程度避免干扰)

结点与 AP 的关联过程:

- 监听 channel 上的 AP 发出的 beacon frame (包含 AP 的 SSID 和 MAC 地址)
- 选择 AP 与之关联

- 认证 (可选)
- 使用 DHCP 获得 AP 的子网中的 IP 地址

Passive Scanning:

- AP 发送 beacon frame
- 结点发送 Association Request
- AP 发送 Association Response

Active Scanning:

- 结点广播 Probe Request frame
- AP 回复 Probe Response frame
- 结点发送 Association Request
- AP 发送 Association Response

IEEE 802.11 Service

Distribution service: 通过 DS 在不同 BSS 间交换 frame

Integration service: 在 802.11 LAN 和 802.x LAN 之间传输数据

Authentication/Deauthentication: 连接中的认证

Privacy: 编码数据, 防止窃取

Handoff 相关:

Association:

- 结点与 AP 间建立关联
- 确认身份和地址
- AP 与 其余 AP 通过 ESS 交流信息

Reassociation:

- 将建立的关联发送给其他 AP
- 允许结点在 BSS 间转移

Disassociation:

- 终止关联
- ESS 之间的 handoff 不支持

Hidden terminal

产生的问题:

• Hidden terminal & Signal fading:假设三个终端 A, B, C, BC, BA 间可互相听到, 但 AC 间不能互相听到, A, C 同时向 B 传输时便会在 B 处产生干扰

• Exposed terminal:可以同时传输的情况下误以为会产生干扰,降低网络效率

解决方法: 4 Frame Exchange (RTS/CTS)

- 源节点发送 Request to send (RTS)
- 目的节点回复 Clear to send (CTS)
- 收到 CTS 后源结点发送数据
- 目的节点回复 ACK

IEEE 802.11 MAC

Media Access Control

Distributed coordination function(DCF): 分布式协调功能,分布式控制,传输异步数据,优先级最低

Point coordination function(PDF): 点协调功能,集中式控制,发送实时数据,优先级仅次于控制帧

3-level Priority

帧间隔决定了帧的优先级

- SIFS (Short Inter Frame Space)
 - 。 优先级最高
 - 。 所有即时的回复
- PIFS (point coordination function IFS)
 - 。 中等长度 IFS, 中等优先级
 - 。 用于 PCF 中的轮询
- DIFS (distributed coordination function IFS)
 - 。 最长的 IFS, 优先级最低
 - 。 用于其他异步传输的数据

SIFS 的帧

- ACK
- Delivery of multiple frame LLC PDU:第一个帧正常 IFS, 之后的序列使用 SIFS
- Poll response
- CTS: RTS 使用正常 IFS, CTF 则是 SIFS

PIFS 的帧 (用于集中化控制)

- 发送轮询
- 优先于异步争抢

• SIFS 的帧优先于 PCF 的轮询

DIFS 的帧:其他一般的异步争用

Point Coordination Function (PCF)

由集中控制中心(点协调器)发布轮询(使用 PIFS),轮询时占据信道,阻塞其他异步通信

参见 Point coordination function

- 点协调器轮流询问结点
- 发布轮询请求时结点可使用 SIFS 回复
- 收到回复时, 点协调器使用 PIFS 发送另一个请求
- 如果在时间内没有回复, 询问下一个结点

Super frame: 点协调器发布轮询时会占据信道封锁异步通信,为避免这种情况,定义 super frame,前半段时间点协调器轮询,后半段时间异步通信争用接入

Distributed Coordination Function (DCF) and CSMA/CA

使用 CSMA/CA, 结点监听信道, 碰撞避免

参见 Carrier-sense multiple access with collision avoidance

为何不是碰撞检测:

- 无线网络不是全双工, 在发送时难以接收信号
- 发送结点不能区别收到的信号是否来自于噪声或自身传输的副作用
- 不能检测到所有碰撞的情况: Hidden terminal
- 使用 ACK 确认传输状态

CSMA/CA 流程

发送方: 要发送 frame 的结点监听信道

- 如果空闲,等待 1 IFS 后监听是否仍空闲,如果空闲,则立即发送(不做碰撞检测)
- 如果繁忙, 监听当前传输结束, 等待 1 IFS
 - 。 如果仍空闲,退避随机时间后再次监听(<u>binary exponential backoff</u>)
 - 如果退避后仍空闲,传输
 - 如果退避时信道繁忙,则暂停退避的计时,待空闲后继续,如果计时结束,则发送
 - 如果发送后没有收到 ACK, 增大退避的时间, 然后尝试重传

接收方:如果帧正常,以 SIFS 发送 ACK

Virtual Carrier Sensing

MPDU: Mac Protocol Data Unit, 无线设备交换数据基本单元

NAV: Network Allocation Vector,MPDU 中的一个字段,标识传输这个 MPDU 需要多久

Virtual Carrier Sensing:

- 在 MPDU 中插入 NAV (标识信道将被占据的时间)
- 其他结点根据 NAV 中的值休眠一段时间, 在此时间内不监听信道

IEEE 802.11 MAC Frames

Management frames

用于结点和 AP 之间交流

- Association & Disassociation
- Authentication & Deauthentication
- Timing & Synchronization

Control frames

- Power-Save Poll (PS-Poll): 结点发给 AP,当结点处于休眠状态时 AP 缓存传输给其的 frame
- RTS
- CTS
- ACK
- Contention-Free-End (CF-end): PCF 的 contention free 阶段结束的告知
- CF-end + CF-ACK

Data Frames - Data Carring

4种,携带上层信息

- Data
- Data + CF-ACK
- Data + CF-Poll
- Data + CF-ACK + CF-Poll

4 种不携带信息

- Null function: 不携带信息,在控制字段携带 power management bit,告知结点进入低电量状态
- CF-ACK
- CF-Poll
- CF-ACK + CF-Poll

Cellular Network

不做要求

Architecture

- base station
- mobile user
- MSC (mobile switching center)

多路技术:

- FDMA与TDMA结合
- CDMA

2g, 3g, 4g