

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 18 pages. *Hierdie nasienriglyne bestaan uit* 18 *bladsye*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.

1 1 1		
1.1.1	$\begin{cases} x^2 - 4x + 3 = 0\\ (x - 3)(x - 1) = 0 \end{cases}$	✓ factors/correct subt in
	$\begin{cases} (x-3)(x-1) = 0 \\ x = 3 \text{ or } x = 1 \end{cases}$	formula
		$\checkmark x = 3$ $\checkmark x = 1$
		(3)
1.1.2	$5x^2 - 5x + 1 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$\frac{2a}{\sqrt{25-4\sqrt{5}}}$	
	$=\frac{5\pm\sqrt{25-4(5)(1)}}{2(5)}$	✓ substitution into the correct formula
	$\frac{2(3)}{5+\sqrt{5}}$	
	$=\frac{5\pm\sqrt{5}}{10}$	
	x = 0.72 or $x = 0.28$	$\checkmark x = 0.72$
		$\checkmark x = 0.28 \tag{3}$
1.1.3	$x^2 - 3x - 10 > 0$	
	(x-5)(x+2) > 0	✓ factors/ critical values
	OR/OF	
	OR/OF -2 5 x -2 5 -2 -2 5 -2 -2 -2 -2 -2	
	x < -2 or x > 5	$\checkmark \checkmark x < -2 \text{ or } x > 5$ (3)
1.1.4	$x < -2 \text{ or } x > 5$ $3\sqrt{x} = x - 4$	(3)
1.1.4	$x < -2 \text{ or } x > 5$ $3\sqrt{x} = x - 4$ $9x = x^2 - 8x + 16$	✓ squaring both sides
1.1.4	$x < -2 \text{ or } x > 5$ $3\sqrt{x} = x - 4$	(3)
1.1.4	$x < -2 \text{ or } x > 5$ $3\sqrt{x} = x - 4$ $9x = x^{2} - 8x + 16$ $x^{2} - 17x + 16 = 0$ $(x - 16)(x - 1) = 0$ $x = 16 \text{ or } x = 1$	(3) \checkmark squaring both sides $\checkmark x^2 - 17x + 16 = 0$ \checkmark factors \checkmark answer with
1.1.4	$x < -2 \text{ or } x > 5$ $3\sqrt{x} = x - 4$ $9x = x^{2} - 8x + 16$ $x^{2} - 17x + 16 = 0$ $(x - 16)(x - 1) = 0$	(3) ✓ squaring both sides ✓ $x^2 - 17x + 16 = 0$ ✓ factors

	OR/OF	OR/OF
	$3x^{\frac{1}{2}} = x - 4$	
	$\frac{1}{x-3x^2-4}=0$	() 1 16
		✓ standard form
	$\left(x^{\frac{1}{2}} - 4\right)\left(x^{\frac{1}{2}} + 1\right) = 0$	\checkmark recognize $x = \left(x^{\frac{1}{2}}\right)^2$
	$x^{\frac{1}{2}} = 4$ or $x^{\frac{1}{2}} = -1$	✓ factors
	$x^2 = 4 \text{or} x^2 = -1$ $x = 16 \text{NA}$	✓ answer with selection (4)
1.2	$2y + 9x^2 = -1(1)$	
	$3x - y = 2 \dots (2)$	
	$y = 3x - 2 \qquad \dots (3)$	$\checkmark y = 3x - 2$
	$2(3x-2) + 9x^2 = -1$	✓substitution
	$6x - 4 + 9x^2 = -1$	
	$9x^2 + 6x - 3 = 0$	✓ standard form
	$3x^{2} + 2x - 1 = 0$ $(3x - 1)(x + 1) = 0$	
		✓ factors
	$x = \frac{1}{3} \text{or} x = -1$	✓ both x values
	y = -1 or $y = -5$	✓both y values
		(6)
	OR/OF	OR/OF
	$2y + 9x^2 = -1(1)$	
	$3x - y = 2 \dots (2)$	
	$x = \frac{y+2}{3}$	$\checkmark x = \frac{y+2}{3}$
	$2y + 9\left(\frac{y+2}{3}\right)^2 = -1$	✓substitution
	$2y + 9\left(\frac{y^2 + 4y + 4}{9}\right) = -1$	
	$2y + y^2 + 4y + 4 + 1 = 0$	
	$y^2 + 6y + 5 = 0$	✓ standard form
	(y+5)(y+1) = 0	✓ factors
	y = -1 or $y = -5$	✓both y values
	$x = \frac{1}{3}$ or $x = -1$	✓ both x values
	3	(6)

1.3	$3^{9x} = 64$		
	$\left(3^{3x}\right)^3 = (4)^3$	$\checkmark 3^{3x} = 4$	
	$3^{3x} = 4$	3 -1	
	$5^{\sqrt{p}} = 64$		
	$\sqrt{5}^{\sqrt{p}} = \sqrt{64}$		
	$\sqrt{5}^{\sqrt{p}} - 8$	$\checkmark \sqrt{5}^{\sqrt{p}} = 8$	
	F 79		
	$\frac{\left[3^{x-1}\right]^{3}}{\sqrt{5}^{\sqrt{p}}} = \frac{3^{3x-3}}{\sqrt{5}^{\sqrt{p}}}$ OR/OF $= \frac{3^{3x} \cdot 3^{-3}}{\frac{\sqrt{p}}{5^{2}}}$	$\checkmark 3^{3x-3} \text{ or } 3^{3x}.3^{-3}$	
]		
	$= \frac{3^{3x}}{27 \times \sqrt{5}^{\sqrt{p}}} \qquad \qquad = \frac{\sqrt[3]{64 \cdot 3^{-3}}}{\sqrt{64}}$		
	27 / 13		
	$=\frac{4}{27\times8}$		
	$=\frac{1}{54}$	✓answer	
	54	ans wer	(4)
	OR/OF	OR/OF	
	$\frac{\left(3^{x-1}\right)^3}{\sqrt{5}^{\sqrt{p}}} = \frac{3^{3x} \cdot 3^{-3}}{\left(5^{0.5}\right)^{\sqrt{p}}}$ $= \frac{3^{3x} \cdot 3^{-3}}{\left(5^{\sqrt{p}}\right)^{0.5}}$		
	$\sqrt{5}^{\sqrt{p}} = (5^{0.5})^{\sqrt{p}}$		
	$3^{3x}.3^{-3}$	$\checkmark 3^{3x-3} \text{ or } 3^{3x}.3^{-3}$	
	$=\frac{1}{\left(5\sqrt{p}\right)^{0.5}}$		
	$=\frac{4.3^{-3}}{\sqrt{64}}$	$\checkmark 3^{3x} = 4$	
	√04 . 1	$\checkmark \sqrt{5}^{\sqrt{p}} = 8$	
	$= \frac{\frac{1}{\sqrt{64}}}{\sqrt{64}}$ $= \frac{4 \cdot \frac{1}{27}}{8} = \frac{1}{54}$	$\checkmark \sqrt{5}^{\sqrt{p}} = 8$ \checkmark answer	
	8 54	unswer	(4)
			[23]

2.1.1	110N/VRAAG 2 42	✓answer	
2.1.1	42	aliswei	(1)
2.1.2	2a = 6 $3a + b = 1$ $a + b + c = 2$	✓ <i>a</i> = 3	(1)
	a = 3 $3(3) + b = 1$ $(3) + (-8) + c = 2$		
		$\checkmark c = 7$	
	$T_n = 3n^2 - 8n + 7$	$\checkmark T_n = an^2 + bn + c$	
	$I_n = Sn$ on I	$\mathbf{V} I_n = an + bn + c$	(4)
	OR/OF	OR/OF	(4)
	$ \begin{array}{c} 2a = 6 \\ a = 3 \end{array} $		
		$\checkmark a = 3$	
	$T_n = 3n^2 + bn + c$		
	$T_1: 3+b+c=2$ $b+c=-1$ (1)		
	$T_2: 12+2b+c=3$ $2b+c=-9$ (2)		
	$T_2 - T_1$: $b = -8$	$\checkmark b = -8$	
	Subst. in (1): $-8 + c = -1$		
	c = 7	$\checkmark c = 7$	
	$T_n = 3n^2 - 8n + 7$	$\checkmark T_n = an^2 + bn + c$	(4)
2.1.3	$T_{20} = 3(20)^2 - 8(20) + 7$	✓substitution	
	= 1047	✓answer	(2)
			(2)
2.2	$T_n = -7n + 42$	$\checkmark T_n = -7n + 42$	
	-7n + 42 = -140	$\checkmark -7n + 42 = -140$	
	-7n = -182		
	n=26	$\checkmark n = 26$	(2)
2.2			(3)
2.3	$S_n = \frac{n}{2}(a+l)$ OR/OF $S_n = \frac{n}{2}[2a+(n-1)d]$		
	$S_n = \frac{n}{2}(35 - 7n + 42)$ $S_n = \frac{n}{2}(70 - 7n + 7)$	$\checkmark S_n = \frac{n}{2} (35 - 7n + 42)$ or	
	$S_n = \frac{n}{2} \left(-7n + 77 \right)$	$S_n = \frac{n}{2} \big(70 - 7n + 7 \big)$	
	$S_n = -\frac{7}{2}n^2 + \frac{77}{2}n$	✓ simplification of S_n	
	$-\frac{7}{2}n^2 + \frac{77}{2}n = 3n^2 - 8n + 7$	✓ equating	
	$\begin{vmatrix} 2 & 2 \\ 13n^2 - 93n + 14 = 0 \end{vmatrix}$	✓ standard form	
	(n-7)(13n-2) = 0	✓ factors	
	$n = 7$ or $n = \frac{2}{13}$		
	13	✓ answer with	
	NA	selection	(6)
	$\therefore n = 7$		[16]
			[TO]

	$r = \frac{1}{2}$ and $S_{\infty} = 6$	
	$S_{\infty} = \frac{a}{1-r}$	
	$S_{\infty} = \frac{a}{1 - r}$ $6 = \frac{a}{1 - \frac{1}{2}}$ $a = 3$	✓substitution
	$1 - \frac{1}{2}$	
		✓answer (2)
3.2	$T_n = ar^{n-1}$	
	$T_8 = 3\left(\frac{1}{2}\right)^7$	$\checkmark \checkmark T_8 = 3\left(\frac{1}{2}\right)^7$
	$T_8 = \frac{3}{128}$	(2)
3.3	$\sum_{k=1}^{n} 3(2)^{1-k} = 5,8125$, ,
	$3 + \frac{3}{2} + \frac{3}{4} + \dots = 5,8125$	
	$S_n = \frac{a(1-r^n)}{1-r} = 5,8125$	
	$\frac{3\left[1 - \left(\frac{1}{2}\right)^n\right]}{1 - \frac{1}{2}} = 5,8125$	$ ✓ r = \frac{1}{2} $ ✓ substitution
	$6\left[1 - \left(\frac{1}{2}\right)^n\right] = 5,8125$	
	$\left(\frac{1}{2}\right)^n = \frac{1}{32} = 0.03125$	✓simplification
	$2^{-n} = 2^{-5}$ or $n \log \frac{1}{2} = \log \frac{1}{32}$	
	n = 5 n = 5	✓answer
		(4)

3.4	$\sum_{k=1}^{20} 3(2)^{1-k} = p$	
	$3 + \frac{3}{2} + \frac{3}{4} + \dots + 3 \cdot 2^{-19} = p$	✓expansion
	$\sum_{k=1}^{20} 24(2)^{-k}$	
	$=12+6+3++24.2^{-20}$	✓ expansion
	$=4\left(3+\frac{3}{2}+\frac{3}{4}+\ldots+3.2^{-19}\right)$	
	=4p	✓ answer (3)
	OR/OF	OR/OF
	$\sum_{k=1}^{20} 3(2)^{1-k} = p$	$\checkmark \sum_{k=1}^{20} 6(2)^{-k} = p$
	$\sum_{k=1}^{20} 6(2)^{-k} = p$	$(\sum_{k=1}^{20} A_{k}, 6(2)^{-k})$
	$\therefore \sum_{k=1}^{20} 24(2)^{-k} = 4p$	$\checkmark \sum_{k=1}^{20} 4 \times 6(2)^{-k}$ $\checkmark 4p$
	k=1	(3)
	OR/OF	OR/OF
	$\sum_{k=1}^{20} 24(2)^{-k} = \sum_{k=1}^{20} 4 \times 3 \times 2(2)^{-k}$	$\checkmark \sum_{k=1}^{20} 4 \times 3 \times 2(2)^{-k}$
	$=4\sum_{k=1}^{20}3\times2(2)^{-k}$	$\checkmark 4 \sum_{k=1}^{20} 3 \times 2(2)^{-k}$
	$=4\sum_{k=1}^{20}3\times(2)^{1-k}=4p$	√4p
		(3)
	$ \begin{array}{c} \mathbf{OR/OF} \\ \begin{pmatrix} \begin{pmatrix} 1 \end{pmatrix}^{20} \end{pmatrix} \end{array} $	OR/OF
	$3\left(\frac{1}{2}\right)$ -1	✓ substitution and answer
	$S_{20} = \frac{3\left(\frac{1}{2}\right)^{20} - 1}{\frac{1}{2} - 1} = 6 = p$	
	$12\left(\left(\frac{1}{2}\right)^{20}-1\right)$	
	$S_{20} = \frac{12(2)}{1} = 24$	✓ substitution and answer
	$S_{20} = \frac{12\left(\left(\frac{1}{2}\right)^{20} - 1\right)}{\frac{1}{2} - 1} = 24$ $24 = 4 \times 6 = 4p$	
	$24 = 4 \times 6 = 4p$	√ 4p
		(3)
		[11]

4.1	Yes	✓answer	
	For every <i>x</i> -value there is only one corresponding <i>y</i> value	✓reason	
	OR/OF		
	One to one mapping (vertical line test)		(2)
4.2	R(-12;-6)	✓answer	(1)
4.3	$f(x) = ax^2$ substitute (-6; -12)		
	$-12 = a(-6)^2$	✓substitution	
	$a = \frac{-1}{3}$	✓answer	
	$a-{3}$		(2)
4.4	$f: y = -\left(\frac{1}{3}\right)x^2$		
	$f^{-1}: x = -\left(\frac{1}{3}\right)y^2$ $y^2 = -3x$	\checkmark swapping x and y	
	$(3)^{3}$		
	$y^2 = -3x$	$\checkmark y^2 = -3x$	
	$y = \pm \sqrt{-3x}$	$\checkmark y = -\sqrt{-3x}$	
	Only $y = -\sqrt{-3x}$ and $x \le 0$	$\checkmark y = -\sqrt{-3x}$	
			(3)
			[8]

5.1	Domain: $x \in R$; $x \neq 1$	✓answer	
	OR/OF		(1)
	$x \in (-\infty;1) \cup (1;\infty)$		
5.2	x = 1	$\checkmark x = 1$	
	y = 0	$\checkmark y = 0$	(2)
5.3		✓ y intercept ✓ vertical asymptote ✓ shape	
			(3)
5.4	$x \ge 0$; $x \ne 1$	$\checkmark x \ge 0$	
	an (an	$\sqrt{x} \neq 1$	(2)
	$ \mathbf{OR/OF} \\ 0 \le x < 1 \text{or} x > 1 $	OR/OF	
	$0 \le x < 1$ or $x > 1$ OR/OF	$\begin{array}{c} \checkmark \ 0 \le x < 1 \\ \checkmark \ x > 1 \end{array}$	
	$x \in [0;1) \cup (1;\infty)$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	[- ; - ; - ; - ; - ; - ; - ; - ; - ;		[8]

6.1	y = mx + c		
0.1	$m = \frac{5-1}{4-0}$ $m = 1$ $c = 1$ $g(x) = x+1$ OR/OF $y = mx + c$ $5 = m(4) + 1$	✓ substitution into gradient formula ✓ y-intercept (0; 1) OR/OF ✓ substitute (4; 5) ✓ c = 1	(2)
	m = 1 $g(x) = x + 1$	v C - 1	(2)
6.2	$x^{2}-2x-3=0$ $(x+1)(x-3)=0$ $x = -1 \text{ or } x = 3$	$\checkmark y = 0$ \checkmark factors $\checkmark x$ -values	(3)
6.3	A(-1; 0) B(3; 0) $x = \frac{-1+3}{2} \text{or} x = \frac{-b}{2a} = \frac{-(-2)}{2(1)} \text{or} f'(x) = 2x - 2 = 0$ $x = 1$ $f(x) = x^2 - 2x - 3$	$\checkmark x$ -value	
	$y = (1)^2 - 2(1) - 3$ or $y = (x^2 - 2x + (-1)^2) - 3 - 1$ $y = -4$ or $y = (x^2 - 2x + (-1)^2) - 3 - 1$	✓ substitution/ completing the squ	ıare
	$y \ge -4$ or $[-4; \infty)$	✓ answer	(3)
6.4.1	MN: $y = (x^2 - 2x - 3) - (x + 1)$ $= x^2 - 3x - 4$ $6 = x^2 - 3x - 4$ $0 = x^2 - 3x - 10$ 0 = (x - 5)(x + 2)	$✓ x^2 - 3x - 4$ ✓ substituting $y = 6$	
	x = 5 or $x = -2$	\checkmark values of x	
	OT = 2 or OT = 5 NA	✓ OT = 2	(4)
6.4.2	y = x + 1 substitute x = -2 $= (-2) + 1$	✓ substituting $x = -2$	
	= -1 N(-2; -1)	✓answer	(2)

6.5	f'(x) = 2x - 2	f'(x) = 2x - 2	
	2x-2=1	$\checkmark 2x-2=1$	
	$x = \frac{3}{2}$	$\checkmark x = \frac{3}{2}$	
	$f\left(\frac{3}{2}\right) = \frac{-15}{4}$	$\checkmark f\left(\frac{3}{2}\right) = \frac{-15}{4}$	
	$y + \frac{15}{4} = 1\left(x - \frac{3}{2}\right)$ or $-\frac{15}{4} = \frac{1}{2} + c$		
	$y = x - \frac{21}{4}$	✓answer	(5)
	OR/OF	OD/OF	
	$x^2 - 2x - 3 = x + p$	OR/OF ✓ equating	
		oquating	
	$x^2 - 2x - 3 - x - p = 0$ This equation will have equal roots therefore.		
	This equation will have equal roots, therefore:	✓ equal roots	
	$b^2 - 4ac = 0$		
	$(-3)^2 - 4(1)(-3 - p) = 0$	✓ substitution	
	9 + 12 + 4p = 0	✓simplification	
	$p = \frac{-21}{4}$		
	$y = x - \frac{21}{4}$ $k < \frac{-21}{4}$	✓answer	(5)
6.6	, –21	✓answer	
	$k < \frac{1}{4}$		(1)
			[20]

7.1.1	$F = \frac{x[(1+i)^n - 1]}{i}$	0.088
	$F = \frac{15\ 000 \left[\left(1 + \frac{0,088}{4} \right)^{16} - 1 \right]}{\frac{0,088}{4}}$	$\sqrt{\frac{0,088}{4}} \text{ and } n = 16$ ✓ substitution into
	0,088	correct formula
	F = R283 972,28	✓ answer (3)
7.1.2	$A = R283 \ 972,28 - 100 \ 000 \left(1 + \frac{0,088}{4}\right)^4$	✓ future value – amount including interest
	= R 174 877,60	$\checkmark 100000 \left(1 + \frac{0.088}{4}\right)^4$
		✓answer
	OR/OF Amount at end of 3 years:	OR/OF
	$F = \frac{15\ 000 \left[\left(1 + \frac{0,088}{4} \right)^{12} - 1 \right]}{\frac{0,088}{4}} - 100000$ $= R103\ 459,12$	✓ R15 000 including interest - R100 000
	Amount at end of 4 years:	
	$P(1+i)^{n} + \frac{x[(1+i)^{n}-1]}{i}$	
	$= 103459,12\left(1 + \frac{0,088}{4}\right)^4 + \frac{15000\left[\left(1 + \frac{0,088}{4}\right)^4 - 1\right]}{\frac{0,088}{4}}$	$\checkmark \left(1 + \frac{0,088}{4}\right)^4 \text{ on } P \text{ and } x \text{ in } F_v$ $\checkmark \text{ method}$
	= R 174 877,60	(3)
7.2.1	$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$	
	$1500\ 000 = \frac{x \left[1 - \left(1 + \frac{0,105}{12}\right)^{-12 \times 20}\right]}{\frac{0,105}{12}}$	$ √ i = \frac{0,105}{12} $ $ √ n = 240 $ ✓ substitution into correct formula
	x = R14 975,70	✓ answer (4)

7.2.2 $P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$ $P = \frac{14 \ 975,70 \left[1 - \left(1 + \frac{0,105}{12}\right)^{-12 \times 8}\right]}{\frac{0,105}{12}}$ $P = R969 927,74$	✓R14 975,70 in P _v -formula ✓✓ n = 96 ✓ substitution into correct formula ✓ answer (5)
OR/OF	OR/OF
Balance outstanding = $A - F$	
$= 1500\ 000 \left(1 + \frac{0,105}{12}\right)^{144} - \frac{14\ 975,70 \left[\left(1 + \frac{0,105}{12}\right)^{144} - 1\right]}{\frac{0,105}{12}}$	✓ $n = 144$ in A-formula ✓ $n = 144$ in F _v -formula ✓ R14 975,70 ✓ A – F
= R5 259 229,61– R4 289 302,47	
= R969 927,14	✓ answer (5)
	[15]

8.1	f(x+h) - f(x)		
0.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	· · ·	$\sqrt{x^2 + 2xh + h^2 - 5}$	
	$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 5 - x^2 + 5}{h}$	✓simplification	
		1	
	$=\lim_{h\to 0}\frac{h(2x+h)}{h}$	✓ factorisation	
	1		
	$=\lim_{h\to 0} (2x+h)$	$\bigvee_{h\to 0} (2x+h)$	
	=2x	$\checkmark 2x$	
			(5)
		OR/OF	()
	OR/OF		
	$f(x+h) = (x+h)^2 - 5$		
	$=x^2+2xh+h^2-5$	$\checkmark x^2 + 2xh + h^2 - 5$	
	$f(x+h) - f(x) = x^2 + 2xh + h^2 - 5 - (x^2 - 5)$		
		✓ simplification	
	$=2xh+h^2$	▼ simplification	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$\int_{h\to 0}^{h\to 0} \frac{h}{h}$		
	$2xh+h^2$		
	$=\lim_{h\to 0}\frac{2xh+h^2}{h}$	✓ factorisation	
	$=\lim_{h\to 0}\frac{h(2x+h)}{h}$		
	$=\lim_{h\to 0}(2x+h)$	$\checkmark \lim_{h\to 0} (2x+h)$	
		, ,	
	=2x	$\checkmark 2x$	
			(5)
8.2.1	$y = 3x^3 + 6x^2 + x - 4$		
		$\checkmark 9x^2$	
	$dy = 0.0^2 + 12.0 + 1$	$\checkmark 12x$	
	$\frac{dy}{dx} = 9x^2 + 12x + 1$	√ 1	(2)
0.2.2			(3)
8.2.2	y(x-1) = 2x(x-1)	$\checkmark y(x-1)$	
	$y = \frac{2x(x-1)}{x-1} \text{ if } x \neq 1$	$\checkmark 2x(x-1)$	
		$\checkmark y = 2x$	
	y = 2x	$\mathbf{v} y = 2x$	
	$\frac{dy}{dx} = 2$	✓answer	
	dx	allswei	(4)
			[12]
<u> </u>			[*#]

9.1.1	$g(x) = (x+5)(x-x_1)^2$	$\checkmark (x+5)$
	$20 = 5(x_1)^2$	
	$x_1^2 = 4$	
	$x_1 = 2$	✓repeated root
	$g(x) = (x+5)(x-2)^2$	$\checkmark x_1 = 2$
	$g(x) = (x+5)(x^2 - 4x + 4)$	$\checkmark g(x) = (x+5)(x^2-4x+4)$
	$g(x) = x^3 + x^2 - 16x + 20$	
9.1.2	$g(x) = x^3 + x^2 - 16x + 20$	(1)
	$g'(x) = 3x^2 + 2x - 16$	✓ derivative
	$3x^2 + 2x - 16 = 0$	✓ equating to zero
	(3x+8)(x-2) = 0	✓factors
	$x = \frac{-8}{3}$ or $x = 2$	
	$R\left(\frac{-8}{3}; \frac{1372}{27}\right)$ or $R(-2,67;50,81)$	✓ co-ordinates of R
		✓ co-ordinates of P
	P(2;0)	(5)
9.1.3	g''(x) = 6x + 2 $g''(0) = 2$	$\checkmark g''(x) = 6x + 2$
	g(0) = 2 \therefore concave up	$\checkmark g''(0) = 2$ $\checkmark \text{conclusion} \tag{3}$
	-	(5)
	OR/OF	OR/OF
	g''(x) = 6x + 2	$\checkmark g''(x) = 6x + 2$
	6x + 2 = 0	$\checkmark x = -\frac{1}{3}$
	$x = -\frac{1}{2}$ is the point of inflection	$\frac{\sqrt{3}-\frac{1}{3}}{3}$
	3	✓ conclusion
	∴ concave up	(3)

10.1	$\frac{AH}{AH} = \frac{3}{AH}$,	(1)
	$\frac{1}{1}$ HG = $\frac{1}{2}$	✓ answer	(1)
10.2	Area of a parallelogram = base $\times \perp$ height		
	Area = $\frac{3}{5}(5-t).\frac{2}{5}t$	$\sqrt{\frac{2}{5}}t$ $\sqrt{\frac{3}{5}}(5-t)$	
	25 \	$\checkmark \frac{3}{5}(5-t)$	
	$A(t) = -\frac{6}{25}t^2 + \frac{6}{5}t$ $A'(t) = -\frac{12}{25}t + \frac{6}{5}$	$\checkmark A(t) = -\frac{6}{25}t^2 + \frac{6}{5}t$	
	$A'(t) = -\frac{12}{25}t + \frac{6}{5}$ $-\frac{12}{25}t + \frac{6}{5} = 0$ $12t - 30 = 0$	$\checkmark -\frac{12}{25}t + \frac{6}{5}$	
	$t = \frac{30}{12} \text{ or } \frac{5}{2}$	✓answer	(5)
			[6]

11.1.1	$7^5 = 16\ 807$	✓ ✓ answer	(2)
11.1.2	$7 \times 6 \times 5 \times 4 \times 3$ $= \frac{7!}{2!} = 2520$	\checkmark 7×6×5×4×3 or $\frac{7!}{2!}$ \checkmark answer	(2)
11.2	$2 \times 7 \times 1 = 14$	✓✓✓ 2×7×1	(3)
			[7]

12.1	P(A or B) = P(A) + P(B)	\checkmark P(A or B) = P(A) + P(B)
	0.74 = 0.45 + y	✓substitution
	y = 0.29	✓answer (3)
12.2	$ \begin{array}{c c} 3x \\ \hline 4x \end{array} $ S $ \begin{array}{c} G \\ S \\ \hline 4x-1 \end{array} $ G $ \begin{array}{c} G \\ X-1 \\ \hline 4x-1 \end{array} $	
	Let the number of mystery gift bags = x The total number of bags = $4x$	✓ 4 <i>x</i>
	$\begin{pmatrix} \frac{x}{4x} \times \left(\frac{x-1}{4x-1} \right) = \frac{7}{118} \\ 1 x-1 7 \end{pmatrix}$	$\checkmark \left(\frac{x}{4x}\right) \text{ or } \left(\frac{1}{4}\right)$
	$\frac{1}{4} \times \frac{x-1}{4x-1} = \frac{7}{118}$	$\checkmark \left(\frac{x-1}{4x-1}\right)$
	$\frac{x-1}{4x-1} = \frac{28}{118}$	$\sqrt{\frac{1}{4}} \times \frac{x-1}{4x-1}$
	$\begin{vmatrix} 4x - 1 & 118 \\ 118x - 118 = 112x - 28 \end{vmatrix}$	
	x = 15	\checkmark equating to $\frac{7}{118}$
		✓answer (6)

OR/OF	OR/OF
$P(gift \text{ and } gift) = P(gift \text{ at first draw}) \times P(gift \text{ at second draw})$	
$\frac{7}{118} = \frac{1}{4} \times P(\text{gift at second draw})$	$\sqrt{\frac{1}{4}}$
$P(aift at second draw) = 7 \cdot 1$	$\checkmark \frac{1}{4} \times P(gift \text{ at } 2^{nd} \text{ draw})$
P(gift at second draw) = $\frac{7}{118} \div \frac{1}{4}$ = $\frac{14}{59}$	$\checkmark \frac{7}{118} = \frac{1}{4} \times P(\text{gift at } 2^{\text{nd}} \text{ draw})$
Therefore: P(gift at first draw) = $\frac{15}{60}$	$\checkmark \frac{14}{59}$
	✓ <u>15</u>
And: 15 bags had mystery gifts inside	60 ✓answer (6)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	[9]

TOTAL/TOTAAL: 150