Math 69: Logic Winter '23

Homework assigned February 01, 2023

Prof. Marcia Groszek

Student: Amittai Siavava

Problem 3.

(a) Let \mathfrak{A} be a structure and let $s:V\to |\mathfrak{A}|$. Define a truth assignment on the set of prime formulas by

$$v(\alpha) = T$$
 iff $\models_{\mathfrak{A}} \alpha[s]$.

Show that for any formula (prime or not),

$$\overline{v}(\alpha) = T$$
 iff $\models_{\mathfrak{A}} \alpha[s]$.

Remark: This result reflects the fact that \neg and \rightarrow were treated in Chapter 2 the same was as in Chapter 1.

Since the set $\{\neg, \rightarrow\}$ is complete we can construct any formula α from prime formulas $\alpha_1, \dots, \alpha_n$ using some combination of \neg and \rightarrow connectives. Suppose $\overline{v}(\alpha) = T$. We prove by induction on the form of α that $\models_{\mathfrak{A}} \alpha[s]$.

Base Case: α is prime.

Then $\overline{v}(\alpha) = v(\alpha)$, so $\overline{v}(\alpha) = T$ iff $v(\alpha) = T$, and $v(\alpha) = T$ iff $\models_{\mathfrak{A}} \alpha[s]$.

Therefore, $\overline{v}(\alpha) = T \text{ iff } \models_{\mathfrak{A}} \alpha[s]$

Inductive Step 1: Suppose $\alpha = \neg \alpha_1$ for some formula α_1 . Then:

$$\overline{v}(\alpha) = \overline{v}(\neg \alpha_1) = \neg \overline{v}(\alpha_1)$$

$$\overline{v}(\alpha) = T \iff \overline{v}\alpha_1 = F$$

$$\overline{v}(\alpha) = T \iff \not\models_{\mathfrak{A}} \alpha_1[s]$$

$$\overline{v}(\alpha) = T \iff \models_{\mathfrak{A}} \neg \alpha_1[s]$$

$$\overline{v}(\alpha) = T \iff \models_{\mathfrak{A}} \alpha[s]$$

Inductive Step 2: Suppose $\alpha = \alpha_1 \rightarrow \alpha_2$ for some formulas α_1, α_2 . Then:

$$\overline{v}(\alpha) = \overline{v}(\alpha_1 \to \alpha_2) = \overline{v}(\alpha_1) \to \overline{v}(\alpha_2)$$

$$\overline{v}(\alpha) = T \iff \overline{v}(\alpha_1) = F \text{ or } \overline{v}(\alpha_2) = T$$

$$\overline{v}(\alpha) = T \iff \#_{\mathfrak{A}} \alpha_1[s] \text{ or } \models_{\mathfrak{A}} \alpha_2[s]$$

$$\overline{v}(\alpha) = T \iff \models_{\mathfrak{A}} (\alpha_1 \to \alpha_2)[s]$$

$$\overline{v}(\alpha) = T \iff \models_{\mathfrak{A}} \alpha[s]$$

Therefore, for all formulas α , $\overline{v}(\alpha) = T$ iff $\models_{\mathfrak{A}} \alpha[s]$.

Amittai, S Math 69: Logic

(b) Conclude that if Γ tautologically implies φ , then Γ logically implies φ .

Let \mathfrak{A}, s , and v be as defined above. Suppose \mathfrak{A} satisfies all members of Γ with s, then $\overline{v}(\gamma) = T$ for all $\gamma \in \Gamma$.

Since Γ tautologically implies φ , and s satisfies all members of Γ , we have that $\Gamma \vDash_{\mathfrak{A}} \varphi[s]$, so $\overline{v}(\varphi) = T$.

 $\mathfrak A$ and s are arbitrary, so the same condition holds for any other structure $\mathfrak A$ and assignment function s given $\mathfrak A$ satisfies all members of Γ with s. Therefore, Γ logically implies φ .

Amittai, S Math 69: Logic

Problem 4.

Give a deduction (from \varnothing) of $\forall x \varphi \to \exists x \varphi$.

Note: You should not merely prove that such a deduction exists; write out the entire deduction.

(i)
$$(\forall x \neg \varphi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \neg \forall x \neg \varphi)$$
 (Tautology)

(ii)
$$(\forall x \neg \varphi \rightarrow \neg \varphi)$$
 (Axiom 2)

(iii)
$$(\varphi \rightarrow \neg \forall x \neg \varphi)$$
 (Modus Ponens on (i), (ii))

(iv)
$$(\varphi \to \neg \forall x \neg \varphi) \to ((\neg \forall x \neg \varphi \to \exists x \varphi) \to (\varphi \to \exists x \varphi))$$
 (Tautology)

(v)
$$(\neg \forall x \neg \varphi \rightarrow \exists x \varphi) \rightarrow (\varphi \rightarrow \exists x \varphi)$$
 (Modus Ponens on (iii), (iv))

(vi)
$$(\neg \forall x \neg \varphi \leftrightarrow \exists x \varphi)$$
 (Axiom 5)

(vii)
$$(\varphi \to \exists x \varphi)$$
 (Modus Ponens on (v), (vi))

(viii)
$$(\forall x\varphi \to \varphi) \to ((\varphi \to \exists x\varphi) \to (\forall x\varphi \to \exists x\varphi))$$
 (Tautology)

(ix)
$$\forall x \varphi \rightarrow \varphi$$
 (Axiom 2)

(x)
$$(\varphi \to \exists x \varphi) \to (\forall x \varphi \to \exists x \varphi)$$
 (Modus Ponens on (viii), (ix))

(xi)
$$\forall x \varphi \rightarrow \exists x \varphi$$
 (Modus Ponens on (vii), (x))

Amittai, S Math 69: Logic

Problem 9.

(Re-replacement lemma)

(a) Show by example that $(\varphi_y^x)_x^y$ is not in general equal to φ . And that it is possible for both for x to occur in $(\varphi_y^x)_x^y$ at a place it did not occur in φ , and for x to occur in φ at a place it does not occur in $(\varphi_y^x)_x^y$.

Let P be a one-place predicate symbol and Q be a two-place predicate symbol.

Let
$$\varphi = \forall y Px \rightarrow Qxy$$
, then $\varphi_y^x = \forall y Py \rightarrow Pyy$ and $(\varphi_y^x)_x^y = \forall y Py \rightarrow Qxx$

In the example above, we see one instance where x occurs in $(\varphi_y^x)_x^y$ at a position where it does not occur at in φ (at Qxx vs. Qxy) and one instance where x occurs in φ at a position where it does not occur in $(\varphi_y^x)_x^y$ (at $\forall y Px$ vs. $\forall y Py$).

(b) Show that if y does not occur at all in φ then x is substitutable for y in φ_y^x and that $(\varphi_y^x)_x^y$ is equal to φ .

Suggestion: Use induction on φ .

Base Case 1: $\varphi = \alpha$ for some variable or constant α .

Then $\varphi_y^x = \alpha_y^x = y$ if $\alpha = x$, or else $\alpha_y^x = \alpha$. Therefore, $(\varphi_y^x)_x^y = x$ iff $\alpha = x$ else α , meaning $(\varphi_y^x)_x^y = \varphi$ irrespective of whether $\alpha = x$.

Base Case 2: $\varphi = Px_1x_2 \dots x_n$ for some n-place predicate symbol p.

Then
$$\varphi_y^x = (Px_1x_2...x_n)_y^x = P(x_1)_y^x(x_2)_y^x...(x_n)_y^x$$
.

Therefore,
$$(\varphi_y^x)_x^y = P((x_1)_y^x)_x^y ((x_2)_y^x)_x^y \dots ((x_n)_y^x)_x^y$$
.

Since
$$((x_k)_y^x)_x^y = x_k$$
 for all $k \in \{1, \dots, n\}$ $(\varphi_y^x)_x^y = Px_1x_2 \dots x_n = \varphi$, so $(\varphi_y^x)_x^y = \varphi$.

Inductive Step: Let $\varphi = (\beta * \gamma)$ for some β , γ , and a connective *, and that y does not occur in φ . Then y must not occur in β or γ .

By definition, $\varphi_y^x = (\beta_y^x * \gamma_y^x)$ and $(\varphi_y^x)_x^y = (\beta_y^x * \gamma_y^x)_x^y = (\beta_y^x)_x^y * (\gamma_y^x)_x^y$.

By the inductive hypothesis, assume $(\beta_y^x)_x^y = \beta$ and $(\gamma_y^x)_x^y = \gamma$, then $(\varphi_y^x)_x^y = (\beta_y^x)_x^y * (\gamma_y^x)_x^y = \beta * \gamma = \varphi$.