MATH 105: Homework 1

William Guss 26793499 wguss@berkeley.edu

January 19, 2016

5 Multivariable Calculus

3. Prove the following.

Theorem 1. Let $T: V \to W$ be a linear transformation between normed spaces. Then,

$$\begin{split} \|T\| &= \sup\{|Tv| : |v| < 1\} \\ &= \sup\{|Tv| : |v| \le 1\} \\ &= \sup\{|Tv| : |v| = 1\} \\ &= \inf\{M : v \in V \implies |Tv| \le M|v|\} \end{split} \tag{1}$$

Proof. Let the following defenitions stand,

$$A = \sup\{|Tv| : |v| < 1\}$$

$$B = \sup\{|Tv| : |v| \le 1\}$$

$$C = \sup\{|Tv| : |v| = 1\}$$

$$D = \inf\{M : v \in V \implies |Tv| \le M|v|\}$$
(2)

Observe that $A \leq B$ and $C \leq B$ since the family considing of the underlying sets is respectively ordered by size. By definition we have that,

$$||T|| = \sup\{|Tv|/|v|\},$$

and nameley |Tv|/|v| = |T(v/|v|)|. Therefore $||T|| \le C$. If $|v| \le 1$ then $|Tv| \le |Tv|/|v|$ and so $B \le ||T||$. We yield that ||T|| = B = C.

By the same logic $A \leq ||T||$ and therefore is equivalent. Lastly $|Tv| \leq ||T|| |v|$ and so by the epsilon property D = A.

4.

6. x

12. Prove the following.

Theorem 2. If V is a normed finite dimensional vector space, then the unit ball, $B = \{v : |v| = 1\}$ is compact.

Proof. dim
$$V = n \in \mathbb{N} \implies V \cong \mathbb{R}^n \implies B \cong S^{n-1} \implies B$$
 compact.

13. Prove the following.

Theorem 3. The set of invertible $n \times n$ matrices is not dense in \mathcal{M} .

Proof. Consider the set of matrix all of whose entries are the same. They create a linear subspace which is a disjoint open subset of \mathcal{M} . Therefore the set of invertible matrices could not possibly be dense in \mathcal{M} .