Capítulo 1

Automorfismo Hiperbólico no Toro

Definição 1.1. Um sistema dinâmico $f: M \to M$ é chamado **minimal** se $\overline{\mathcal{O}(x)} = M$, para todo $x \in M$, ou seja, a orbita de todo ponto $x \in M$ é densa em M.

1.1 Rotação Irracional no Circulo

Seja $S^1=\{z\in\mathbb{C};|z|=1\}=\{e^{2\pi it};t\in\mathbb{R}\}$ a esfera unitária em \mathbb{C} e o conjunto $\mathbb{R}/\mathbb{Z}=\{[x]\in[0,1);x\sim x'\Leftrightarrow x-x'\in\mathbb{Z}\}$, onde [x] é a classe de equivalência pela relação \sim . Para facilitar a notação, ao invés de escrevermos $[x]\in\mathbb{R}/\mathbb{Z}$, escreveremos apenas $x\in\mathbb{R}/\mathbb{Z}$ onde o x estará representando sua classe de equivalência $x\pmod{1}$.

Proposição 1.2. O grupo multiplicativo S^1 é isomorfo ao grupo aditivo \mathbb{R}/\mathbb{Z} .

Demonstração. Definamos a seguinte função:

$$h: \mathbb{R}/\mathbb{Z} \to S^1$$

$$t \mapsto e^{2\pi i t}$$

i) h é um homomorfismo: De fato, seja $x, y \in \mathbb{R}/\mathbb{Z}$, então

$$h(x+y) = e^{2\pi i(x+y)}$$

$$= e^{2\pi ix + 2\pi iy}$$

$$= e^{2\pi ix}e^{2\pi iy}$$

$$= h(x)h(y)$$

 $ii)\ h$ é injetora: De fato, seja $x,y\in\mathbb{R}/\mathbb{Z}$ tal que h(x)=h(y), então $e^{2\pi ix}=e^{2\pi iy}$ $\Rightarrow e^{2\pi i(x-y)}=1 \Rightarrow 2\pi i(x-y)=\ln(1) \Rightarrow 2\pi i(x-y)=0 \Rightarrow x-y=0 \Rightarrow x=y.$

 $iii)\ h$ é sobrejetora: De fato, seja $y\in S^1$, então $y=e^{2\pi ix}$ para algum $x\in\mathbb{R}$, logo existe $x\in\mathbb{R}/\mathbb{Z}$ tal que $h(x)=e^{2\pi ix}=y$.

Portanto, h é um isomorfismo de grupos, ou seja, \mathbb{R}/\mathbb{Z} é isomorfo a S^1 .

Seja $\alpha \in \mathbb{R}$ e $R_{\alpha}: S^1 \to S^1$ uma dinâmica em S^1 , tal que $R_{\alpha}(z) = e^{2\pi i\alpha}z$, como todo elemento $z \in S^1$ é da forma $z = e^{2\pi it}$ para algum $t \in \mathbb{R}$, então $R_{\alpha}(z) = e^{2\pi i\alpha}z = e^{2\pi i\alpha}e^{2\pi it} = e^{2\pi i(t+\alpha)}$ rotação pelo angulo $2\pi\alpha$. Chamaremos essa função de **rotação pelo angulo** α . Agora seja $T_{\alpha}: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ uma dinâmica em \mathbb{R}/\mathbb{Z} , tal que $T_{\alpha}(x) = x + \alpha$ (mod 1).

Proposição 1.3. A função $h: \mathbb{R}/\mathbb{Z} \to S^1$ tal que $h(t) = e^{2\pi i t}$ é uma conjugação de T_{α} e R_{α} Demonstração. Vamos mostrar que $h \circ T_{\alpha} = R_{\alpha} \circ h$.

$$(h \circ T_{\alpha})(x) = h(T_{\alpha}(x))$$

$$= h(x + \alpha)$$

$$= e^{2\pi i(x+\alpha)}$$

$$= e^{2\pi ix}e^{2\pi i\alpha}$$

$$= R_{\alpha}(e^{2\pi ix})$$

$$= R_{\alpha}(h(x))$$

$$= (R_{\alpha} \circ h)(x)$$

Proposição 1.4. Se α for um número racional, então R_{α} é periódica para todo

Demonstração. Vamos mostrar que $h \circ T_{\alpha} = R_{\alpha} \circ h$.

$$(h \circ T_{\alpha})(x) = h(T_{\alpha}(x))$$

$$= h(x + \alpha)$$

$$= e^{2\pi i(x+\alpha)}$$

$$= e^{2\pi ix}e^{2\pi i\alpha}$$

$$= R_{\alpha}(e^{2\pi ix})$$

$$= R_{\alpha}(h(x))$$

$$= (R_{\alpha} \circ h)(x)$$