

Relazione

di

Metodi Numerici per la Grafica

Di Federico Schipani

A.A. 2017-2018

${\bf Indice}$

1	La Base delle B-Spline 1.1 Esempi di basi	
2	Curve B-Spline 2.1 Proprietà delle curve B-Spline	
3	Superfici Tensor-Product di Bézier 3.1 Proprietà delle superfici di Bézier	

1 La Base delle B-Spline

Dato un vettore esteso dei nodi

$$\mathbf{t} = \left\{ \underbrace{t_0, \dots, t_{k-2}}_{k-1}, \underbrace{t_{k-1}, \dots, t_{n+1}}_{\tau_0, \tau_1, \dots, \tau_L}, \underbrace{t_{n+2}, \dots, t_{n+k}}_{k-1} \right\}$$

con

$$\mathbf{t_0} \le t_1 \le \dots t_{k+1} < t_k \dots < t_{n+1} \le t_{n+2} \le \dots \le t_{n+k}$$

possiamo definire la base delle B-Spline su nodi semplici tramite la relazione ricorrente di Cox - Boor.

Definizione 1. Le B-Spline di ordine 1, oppure grado 0 sono definite come:

$$N_{i,1}(t) = \begin{cases} 1, & se \ t \in [t_i, t_{i+1}]i = 0, \dots, n+k-1 \\ 0, & altrimenti \end{cases}$$

Altrimenti le B-Spline di ordine $r \leq k$ sono definite ricorsivamente, per r > 1, come:

$$N_{i,r}(t) = \omega_{i,r}(t)N_{i,r-1}(t) + [1 - \omega_{i+1,r}(t)]N_{i+1,r-1}$$

dove

$$\omega_{i,r}(t) = \begin{cases} \frac{t-t_i}{t_{i+r-1}-t_i}, & se \ t < t_{i+r-1} \\ 0, & altrimenti \end{cases}$$

Le B-Spline possono anche essere definite su una partizione nodale la cui molteplicità m_i di un generico nodo τ_i è più alta di 1, quindi su nodi multipli. In questo caso il vettore esteso dei nodi diventa:

$$\mathbf{t} = \left\{ \underbrace{t_0, \dots, t_{k-2}}_{k-1}, \underbrace{t_{k-1}, \dots, t_{n+1}}_{\tau_0, \tau_1, \dots, \tau_{1}, \dots, \tau_{L}}, \underbrace{t_{n+2}, \dots, t_{n+k}}_{k-1} \right\}$$

con τ_i ripetuto a seconda della sua molteplicità m_i con $i=1,\ldots,L-1$ in \mathbf{t} , e

$$\mathbf{t_0} \le t_1 \le \dots t_{k+1} \le t_k \dots \le t_{n+1} \le t_{n+2} \le \dots \le t_{n+k}$$

La definizione della base delle B-Spline di Cox - De Boor non cambia, ma bisogna stare attenti in quanto $\omega_{i,r}(t)$ può diventare nullo per qualche valore r a causa dei nodi multipli. In Codice 1 sono mostrate le due funzioni che calcolano le basi di Cox - De Boor, realizzate senza l'utilizzo delle funzioni del Curve Fitting Toolbox.

Codice 1: Calcolo delle basi di Cox De Booi

```
1 function [omega] = calc_omega (i, r, t_star, t)
2     if t(i) == t(i+r-1)
3         omega = 0;
4         return;
5     elseif t_star <= t(i+r-1)
6         omega = (t_star-t(i)) / (t(i+r-1)-t(i));
7         return;
8     else
9         omega = 0;
10         return;
11     end</pre>
```

```
12 end
13
14 function [y] = de_boor_basis (i, r, t, t_star, k)
       if r == 1
15
           if (t_star >= t(i) && t_star < t(i+1)) || ...</pre>
16
               ((t_star >= t(i) && t_star <= t(i+1) && ...
17
           t_star == t(end) && i == length(t)-k))
18
19
               y = 1;
20
               return;
21
22
           else
23
               y = 0;
               return;
24
25
           end
26
           omega1 = calc_omega(i, r, t_star, t);
27
           omega2 = (1 - calc_omega(i+1, r, t_star, t));
           db1 = de_boor_basis(i, r-1, t, t_star, k);
29
           db2 = de_boor_basis(i+1, r-1, t, t_star, k);
30
           y = omega1 * db1 + omega2 * db2;
32
           return;
33
       end
34 end
```

La funzione calc_omega di Codice 1 è di facile comprensione. Dati in input l'indice i, l'ordine r, il punto in cui si vuole calcolare la spline t_star ed il vettore esteso dei nodi $\mathbf t$ si occupa di calcolare i valori $\omega_{i,r}(t)$. Il controllo iniziale $\mathbf t = \mathbf t + r - 1$ serve a gestire il caso di nodi multipli. In questa particolare condizione possiamo trovarci a gestire casi in cui il denominatore di $\frac{t-t_i}{t_{i+1}-r-t_i}$ è uguale a 0; quindi $\omega_{i,r}(t)$ dev'essere posto a 0. La seconda funzione in Codice 1 è de_boor_basis che effettua il calcolo delle basi delle B-Spline. La condizione booleana a riga 16, 17 e 18 serve a verificare che, nel caso in cui l'ordine della spline sia 1, ci si trovi all'interno dell'intervallo $[t_i, t_{i+1})$. Bisogna però fare attenzione al caso in cui il punto $t = t_star$ di $N_{i,k}(t)$ si trovi nell'ultimo intervallo. Questo ha reso necessario introdurre un ulteriore controllo per fare in modo che venga preso in considerazione anche l'ultimo valore dell'ultimo intervallo.

1.1 Esempi di basi

L'esempio più immediato di base è quello dove il vettore esteso dei nodi è uniforme, in questo caso abbiamo preso $\mathbf{t} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]$ e k = 5, otterremo quindi 5 funzioni di base visualizzate in Figura 1.

Cambiando il vettore esteso dei nodi ${\bf t}$ otteniamo basi per le B-Spline con regolarità diversa. In Figura 2 viene mostrato cosa succede tenendo fissato il numero di nodi e l'ordine e aumentato la molteplicità del nodo 4.

Un caso particolare della base delle B-Spline sono i polinomi di Bernstein. Questi ultimi si ottengono quando, dato $[a,b]=[\tau_0,\tau_L]$, la partizione nodale estesa è formata solamente da a ripetuto k volte e b ripetuto altrettante k volte. In Figura 3 è mostrato un esempio di base ottenuta con i polinomi di Bernstein di grado 5.

1.2 Proprietà della base delle B-Spline

La base delle B-Spline gode di diverse proprietà:

- 1. Supporto locale: $N_{i,r}(t) = 0$ se $t \notin [t_i, t_{i+r}]$
- 2. Non negatività: $N_{i,r}(t) \geq 0 \ \forall \ t \in \mathbb{R}$

Figura 1: Base con $\mathbf{t} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]$ e k = 5

Figura 2: Base con nodi multipli di ordine 6

Figura 3: Base di Bernstein di ordine 5

3. Partizione dell'unità: $\sum_{i=0}^{n+k-r}=1 \ \forall \ t \in [t_{r-1},t_{n+1+k-r}] \ \text{con} \ r=1\dots k$

Supporto locale Questa proprietà ci dice che la spline $N_{i,r}(t)$ è diversa da zero solamente nell'intervallo di nodi che va da t_i a t_{i+r} . Prendiamo ad esempio le B-Spline di ordine k=4 e con $\mathbf{t}=[0,0,0,1,1,2,3,3,3]$. Le splines saranno le seguenti:

- $N_{1,4}(t) \neq 0 \ t \in [t_1 = 0, t_5 = 1]$
- $N_{2,4}(t) \neq 0 \ t \in [t_2 = 0, t_6 = 2]$
- $N_{3,4}(t) \neq 0 \ t \in [t_3 = 0, t_7 = 3]$
- $N_{4,4}(t) \neq 0 \ t \in [t_4 = 1, t_8 = 3]$
- $N_{5,4}(t) \neq 0 \ t \in [t_5 = 1, t_9 = 3]$

Facendo un plot di questa base possiamo vedere come la proprietà di supporto locale sia verificata, in particolare in Figura 4 sono mostrate tutte le splines della base, mentre in Figura 5 è mostrato un dettaglio della $N_{1,4}(t)$ per t = [0.85, 1.15].

Non negatività In questo caso la proprietà è facilmente verificabile sfruttando uno qualunque dei plot mostrati in precedenza, ad esempio possiamo vedere che in Figura 4 nessuna delle $N_{i,r}(t)$ è negativa.

Partizione dell'unità BONA

Figura 4: Supporto locale

Figura 5: Dettaglio della prima splines $N_{1,4}(t)$ per $t=\left[0.85,1.15\right]$

Figura 6: Partizione dell'unità con nodi uniformi

Figura 7: Partizione dell'unità nella base di Bernstein

Figura 8: Partizione dell'unità con partizione nodale clamped

2 Curve B-Spline

A partire dalla base delle B-Spline è possibile realizzare delle curve. Dati n+1 punti di controllo la curva è definita come

$$\mathbf{X}(t) := \sum_{i=0}^{n} \mathbf{d_i} N_{i,k}(t)$$

2.1 Proprietà delle curve B-Spline

Le curve B-Spline godono di diverse proprietà:

- 1. Invarianza per trasformazioni affini: la proprietà della base delle B-Spline di essere una partizione dell'unità garantisce che le curve B-Spline siano invarianti per trasformazioni affini, questo vuol dire che applicare la trasformazione affine sulla curva, o sui punti di controllo è indifferente in quanto il risultato non cambia.
- 2. Località: un segmento di curva è influenzato solamente da k punti di controllo.
- 3. Strong Convex Hull: ogni punto sulla curva appartiene all'inviluppo convesso di k punti di controllo consecutivi, con k ordine delle funzioni spline.
- 4. Variation Diminishing: il numero di intersezioni tra una retta e la curva è minore o uguale al numero di intersezioni tra la stessa retta ed il poligono di controllo.

Invarianza per trasformazioni affini In Codice 2 è presente il codice con cui è stata applicata una trasformazione prima ai punti di controllo e poi alla curva. Come si può vedere dal Codice 2 la trasformazione applicata è stata una rotazione di 180 gradi ed uno spostamento di

Figura 9: Trasformazione affine su spline

1 su entrambi gli assi. Per generare la base con cui poi è stata disegnata la curva è stata usata la funzione spcol del Curve Fitting Toolbox. Un modo Naïve con cui ci si può accertare della veridicità di questa proprietà è guardando il Codice 2 e la Figura 9; nel codice sono presenti tre chiamate a funzione plot: la prima per la curva originale, la seconda per la curva sulla quale è stata applicata la trasformazione e la terza per la curva disegnata a partire dai punti di controllo sui quali è stata applicata la trasformazione. Si può però osservare che nella Figura 9 sono presenti due curve, ciò vuol dire che due curve si sono sovrapposte.

Codice 2: Applicazone trasformazione affine

```
_{1} k = 4;
2 knots = [0 0 0 0 1 1 2 3 4 5 5 5 5];
3 tau = knots(k):0.001:knots(end-k+1);
4 c = spcol(knots, k, tau);
5 [x_p, y_p] = ginput(length(knots)-k);
6 curve_x = zeros(size(c,1),1);
7 curve_y = zeros(size(c,1),1);
  plot(x_p, y_p, 'o-', 'linewidth', 2); hold on;
9 for i = 1:length(x_p) %o y_p
      curve_x = curve_x + (x_p(i) * c(:, i));
10
      curve_y = curve_y + (y_p(i) * c(:, i));
11
12 end
13 plot(curve_x, curve_y, 'linewidth', 4); hold on;
14 %trasformazione affine sulla curva
15 theta = pi;
16 A = [cos(theta) -sin(theta); sin(theta) cos(theta)];
17 new_curve = A*[curve_x curve_y]'+1;
18 plot(new_curve(1,:), new_curve(2,:), 'linewidth', 4);
19 %trasformazione affine
20 %sposto i PDC
_{21} new_points = A*[x_p y_p]'+1;
```


Figura 10: Proprietà di località

Località La proprietà di località ci dice che il punto di controllo $\mathbf{d_j}$ influenza la curva solamente per $t \in [t_j, t_{j+k}]$. Ad esempio, come mostrato in Figura 10 ed in Codice 3, spostando $\mathbf{d_7}$ la curva varia da $t \in [t_7, t_{11}]$.

Codice 3: Proprietà di località

```
_{1} k = 4;
2 knots = augknt([0 1 2 3 4 5], k, 2);
3 tau = knots(k):0.001:knots(end-k+1);
4 c = spcol(knots, k, tau);
x_p = [0.06; 0.09; 0.12; 0.20; 0.32; 0.56; 0.67; 0.83; 0.98; 0.91; 0.92; 0.89];
 6 y_p = [0.10; 0.46; 0.60; 0.64; 0.66; 0.79; 0.80; 0.81; 0.56; 0.29; 0.13; 0.045]; 
7 curve_x = zeros(size(c,1),1);
8 curve_y = zeros(size(c,1),1);
9 plot(x_p, y_p, 'o-', 'linewidth', 2, 'markersize', 10); hold on;
10 for i = 1:length(x_p) %o y_p
       curve_x = curve_x + (x_p(i) * c(:, i));
1.1
       curve_y = curve_y + (y_p(i) * c(:, i));
12
13 end
14 plot(curve_x, curve_y, 'linewidth', 4); hold on;
15 x_p2 = x_p; y_p2 = y_p; move = 7;
16 x_p2(move) = x_p2(move)+0.2;
y_p2(move) = y_p2(move) + 0.2;
18 curve_x2 = zeros(size(c,1),1);
19 curve_y2 = zeros(size(c,1),1);
20 plot(x_p2(move-1:move+1), y_p2(move-1:move+1), 'o-', 'linewidth', 2, '
      markersize', 10); hold on;
21 for i = 1:length(x_p) %o y_p
      curve_x2 = curve_x2 + (x_p2(i) * c(:, i));
       curve_y2 = curve_y2 + (y_p2(i) * c(:, i));
23
24 end
25 plot(curve_x2, curve_y2, 'linewidth', 4); hold on;
26 figure(2);
27 plot(tau, curve_x, tau, curve_x2, 'linewidth', 2); hold on;
```


La proprietà di località ci dice anche che una curva B-Spline $\mathbf{X}(t^*)$ con $t^* \in [t_r, t_{r+1})$ è determinata da k punti di controllo d_{r-k+1}, \ldots, d_r . Utilizzando Codice 4 viene mostrata questa proprietà. Per questo esempio è stato scelto r=8, ed una partizione nodale mostrata a Riga 2 del Codice 3. I punti di controllo spostati sono 8, ovvero i $\mathbf{d}_j \notin [\mathbf{d}_5, \mathbf{d}_8]$. Come mostrato in Figura 10 la curva $\mathbf{X}(t^*)$ rimane quindi invariata per $t^* \in [t_8, t_9)$.

```
1 r = 8;

2 x_p3 = x_p; y_p3 = y_p;

3 x_p3(1:r-k) = x_p3(1:r-k)+0.1; y_p3(1:r-k) = y_p3(1:r-k)
```

```
x_p3(1:r-k) = x_p3(1:r-k)+0.1; y_p3(1:r-k) = y_p3(1:r-k)-0.1;
 4 x_p3(r+1:end) = x_p3(r+1:end)+0.1; y_p3(r+1:end) = y_p3(r+1:end)-0.1;
 5 curve_x2 = zeros(size(c,1),1);
 6 curve_y2 = zeros(size(c,1),1);
 7 for i = 1:length(x_p)
        curve_x2 = curve_x2 + (x_p3(i) * c(:, i));
        curve_y2 = curve_y2 + (y_p3(i) * c(:, i));
10 end
11 figure (4);
plot(x_p, y_p, 'o-', 'linewidth', 2, 'markersize', 10); hold on;
13 plot(x_p3, y_p3, 'o-', 'linewidth', 2, 'markersize', 10)
14 plot(curve_x, curve_y, 'linewidth', 4);
15 plot(curve_x2, curve_y2, 'linewidth', 4);
16 figure(5);
17 plot(tau, curve_y, tau, curve_y2, 'linewidth', 2); hold on;
18 line([knots(r) knots(r)], [-1 1], 'linewidth', 2);
19 line([knots(r+2) knots(r+2)], [-1 1], 'linewidth' ,
20 figure (6);
21 plot(tau, curve_x, tau, curve_x2, 'linewidth', 2); hold on;
22 line([knots(r) knots(r)], [-0.2 1.2], 'linewidth', 2);
_{23} line([knots(r+2) knots(r+2)], [-0.2 1.2], 'linewidth', 2);
```

Strong Convex Hull TODO: CODICE, FIGURE, SCRIVERE

Variation Diminishing La proprietà di Variation Diminishing dice semplicemente che presa una qualunque retta che interseca un numero b di volte il poligono di controllo, questa intersecherà

Figura 12: Proprietà di Variation Diminishing

un numero di volte $a \leq b$ la curva *B-Spline* disegnata a partire dal poligono di controllo. Un esempio realizzato con il Codice 5 è mostrato in Figura 12.

Codice 5: Proprietà di Variation Diminishing

2.2 Curve Chiuse

Grazie ai nodi ausiliari ciclici è possibile usare la base delle B-Spline per generare curve chiuse. In Codice 6 è possibile vedere un esempio di implementazione di una curva chiusa di ordine k=4. Per ottenere una curva con questa proprietà è necessario generare una partizione nodale estesa in questo modo:

$$\Delta^* = \left[\underbrace{\frac{-k}{m-1}}_{Inizio} : \underbrace{\frac{1}{m-1}}_{Passo} : \underbrace{\frac{k+m-1}{m-1}}_{Fine}\right]$$

Figura 13: Curva chiusa (in rosso i vertici ripetuti)

con k ordine della spline e m numero di vertici di controllo della curva. Successivamente è anche necessario estendere il poligono di controllo ripetendo i primi k-1 vertici.

```
_{1} k = 4;
2 knots = [-0.3 -0.2 -0.1 0 0.1 0.2 0.3 ...
3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3]; %-0.4 -0.3 1.3 1.4
 4 tau = knots(k):0.001:knots(end-k+1);
5 c = spcol(knots, k, tau);
6 x_p = [35 19 15 10 5 2 3 12 19 30 ...
       35 19 15]; % 10 5];
8 y_p = [6 8 8 9 9 8 5 5 5 5 ...
                6 8 8];% 9 9];
10 curve_x = zeros(size(c,1),1);
11 curve_y = zeros(size(c,1),1);
                    'o-', 'linewidth', 2); hold on;
12 plot(x_p, y_p,
13 for i = 1:k-1
       plot(x_p(i), y_p(i), 'ro-', 'markersize', 8, 'MarkerFaceColor','r');
14
15 end
16 for i = 1:length(x_p) % or y_p
       curve_x = curve_x + (x_p(i) * c(:, i));
17
       curve_y = curve_y + (y_p(i) * c(:, i));
18
19 end
20 plot(curve_x, curve_y, 'linewidth', 3); hold on;
```

In Figura 13 è possibile vedere il risultato del Codice 6, i vertici di controllo rossi sono quelli ripetuti. TODO: FARE QUALCOSA CON LA CONTINUITÀ

3 Superfici Tensor-Product di Bézier

Una superficie Tensor-Product di Bézier si definisce a partire dalla base di Bézier e da $(n + 1) \cdot (m + 1)$ vertici di controllo, i quali a loro volta formano un poligono di controllo.

Definizione 2. Una superficie Tensor-Product di Bézier è data da:

$$\mathbf{X}(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{b}_{i,j} B_{i}^{n}(u) B_{j}^{m}(v)$$

dove:

- B_i^n e B_i^m sono i polinomi di Bernstein rispettivamente di grado n e m e indice i e j.
- $\mathbf{b}_{i,j}$ sono gli $(n+1) \cdot (m+1)$ vertici di controllo.

Di seguito, in Codice 7 un'implementazione della base per le superfici di Bézier realizzata con l'uso della funzione spcol.

Codice 7: Base delle superfici di Bézier

Codice 8: Disegno di una superficie di Bézier

```
1 k_u = 3; k_v = 3;
_{2} b_x = [1 2 3; 1 2 4; 1 2 4];
3 b_y = [4 6 4; 3 5 2; 3 2 1];
a b_z = [2 2 2; 2 4 2; 2 5 3];
5 plot_control_pol(b_x, b_y, b_z); grid on; axis tight; axis equal;
 6 knots_u = [zeros(1, k_u), ones(1, k_u)];
7 knots_v = [zeros(1, k_v), ones(1, k_v)];
8 \text{ tab} = 0:0.05:1;
9 B_u = spcol(knots_u, k_u, tab);
10 B_v = spcol(knots_v, k_v, tab);
11 X_x = B_u*b_x*B_v.;
12 X_y = B_u*b_y*B_v.;
13 X_z = B_u*b_z*B_v.;
14 surf(X_x, X_y, X_z, 'FaceAlpha', 0.8); shading flat; s.EdgeColor = 'none';
15 hold on;
16 plot3(X_x(1, 1), X_y(1,1), X_z(1,1), 'k.', 'MarkerSize', 20);
17 plot3(X_x(end, end), X_y(end, end), X_z(end, end), 'k.', 'MarkerSize', 20);
18 plot3(X_x(end, 1), X_y(end, 1), X_z(end, 1), 'k.', 'MarkerSize', 20);
```


Figura 14: Base di Bézier

Figura 15: Superficie di Bézier generata da Codice $8\,$

3.1 Proprietà delle superfici di Bézier

Come per le curve, le superfici di Bèzier godono di alcune proprietà:

- Invarianza per trasformazioni affini: applicare una trasformazione affine sui punti di controllo o sulla superfice è indifferente, il risultato sarà uguale.
- Convex Hull: DA FARE
- Curve di bordo: le quattro curve di bordo della superficie di Bézier sono date da

$$\mathbf{X}(0,v) = \sum_{j=0}^{m} \mathbf{b}_{0,j} B_{j}^{m}(v) \quad \mathbf{X}(1,v) = \sum_{j=0}^{m} \mathbf{b}_{m,j} B_{j}^{m}(v)$$

$$\mathbf{X}(u,0) = \sum_{i=0}^{n} \mathbf{b}_{i,0} B_{i}^{n}(u) \quad \mathbf{X}(u,1) = \sum_{i=0}^{n} \mathbf{b}_{i,m} B_{i}^{n}(u)$$

Invarianza per trasformazioni affini Come detto in precedenza questa proprietà dice che se applicata una trasformazione affine sui punti di controllo o sulla superfice è indifferente. Questo proprietà risulta molto utile nella situazione in cui si deve applicare una determinata trasformazione ad una superficie. Il modo più efficiente per realizzare ciò è applicare la trasformazione ai punti di controllo e successivamente ridisegnare la superfice. In Codice 9 è possibile vedere l'esempio di un disegno di una superficie e successiva trasformazione, sia sui punti di controllo che sulla superficie stessa.

Codice 9: Base delle superfici di Bézier

```
1 k_u = 3; k_v = 3;
 _{2} b_x = [1 2 3; 1 2 4; 1 2 4];
3 b_y = [4 6 4; 3 5 2; 3 2 1];
a b_z = [2 2 2; 2 4 2; 2 5 3];
 5 plot_control_pol(b_x, b_y, b_z); grid on; axis tight; axis equal;
6 knots_u = [zeros(1, k_u), ones(1, k_u)];
7 knots_v = [zeros(1, k_v), ones(1, k_v)];
 8 \text{ tab} = 0:0.05:1;
9 B_u = spcol(knots_u, k_u, tab);
10 B_v = spcol(knots_v, k_v, tab);
11 X_x = B_u*b_x*B_v.;
12 X_y = B_u * b_y * B_v.;
13 X_z = B_u*b_z*B_v.;
14 surf(X_x, X_y, X_z, 'FaceAlpha', 0.8); shading flat; s.EdgeColor = 'none';
15 hold on:
16 plot3(X_x(1, 1), X_y(1,1), X_z(1,1), 'k.', 'MarkerSize', 20);
17 plot3(X_x(end, end), X_y(end, end), X_z(end, end), X_x(end, end), X_y(end, end);
18 plot3(X_x(end, 1), X_y(end,1), X_z(end,1), 'k.', 'MarkerSize', 20);
19 plot3(X_x(1, end), X_y(1,end), X_z(1,end), 'k.', 'MarkerSize', 20);
20 %transformazione sui punti
21 theta = pi/2;
22 A = [\cos(\text{theta}) - \sin(\text{theta}) \ 0 \ ; \ \sin(\text{theta}) \ \cos(\text{theta}) \ 0; \ 0 \ 0 \ 1];
23 new_points = [b_x(:)'; b_y(:)'; b_z(:)'];
24 for i = 1:size(new_points,2)
       new_points(:, i) = A*new_points(:,i);
26 end
_{27} X_x2 = B_u*(reshape(new_points(1, :), k_u, k_v))*B_v.';
28 X_y2 = B_u*(reshape(new_points(2, :), k_u, k_v))*B_v.';
29 X_z2 = B_u*(reshape(new_points(3, :), k_u, k_v))*B_v.';
30 surf(X_x2, X_y2, X_z2, 'FaceAlpha', 0.8);
```


Figura 16: Trasformazione affine su una superficie di Bézier

In questo caso per mostrare che le due superfici trasformate sono uguali è stata usata la funzione isequal, che restituisce 1 se e solo se le due matrici in input sono uguali. Il plot in output del Codice 9 è mostrato in Figura 16.

Convex Hull TODO: CODICE, FIGURE, SCRIVERE

Curve di bordo I bordi di una superfice di Bézier possono essere visti a loro volta come quattro curve di Bézier:

$$\mathbf{X}(0,v) = \sum_{j=0}^{m} \mathbf{b}_{0,j} B_{j}^{m}(v) \quad \mathbf{X}(1,v) = \sum_{j=0}^{m} \mathbf{b}_{m,j} B_{j}^{m}(v)$$

Figura 17: Curve di bordo

$$\mathbf{X}(u,0) = \sum_{i=0}^{n} \mathbf{b}_{i,0} B_{i}^{n}(u) \quad \mathbf{X}(u,1) = \sum_{i=0}^{n} \mathbf{b}_{i,m} B_{i}^{n}(u)$$

In Codice 10 è possibile vedere il calcolo, tramite l'algoritmo di *De Casteljau*, di una delle quattro curve di bordo, mentre in Figura 17 è possibile vedere il plot dei bordi di una superficie di Bézier.

Codice 10: Base delle superfici di Bézier

```
1 x_p = b_x(:,1);y_p = b_y(:,1);z_p = b_z(:,1);
2 for i = 1:length(u)
3    [t_x, t_y, t_z] = de_casteljau(k_u, x_p, y_p, z_p, u(i));
4    p_x(i) = t_x(k_u, k_u);
5    p_y(i) = t_y(k_u, k_u);
6    p_z(i) = t_z(k_u, k_u);
7 end
8 plot3(x_p, y_p,z_p,'-0'); hold on;
9 plot3(p_x, p_y,p_z,'linewidth',5); hold on;
```

3.2 Algoritmo di De Casteljau

TODO: FINIRE CODICE, FIGURE, SCRIVERE