AIMS African Masters in Machine Intelligence 2024 Exercises: Gradients and Jacobians

In all these exercises, $\langle \cdot, \cdot \rangle$ is the standard euclidean inner product $\langle x, y \rangle = x^T y$

1. Gradients

Let $x \in \mathbb{R}^n$ with $n \in \mathbb{N}$.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function.

The gradient $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ can be defined either by its components

$$[\nabla f(x)]_i = \frac{\partial f}{\partial x_i}(x),$$

or as the unique vector $in\mathbb{R}^n$ such that for small $h \in \mathbb{R}^n$,

$$f(x+h) \underset{\|h\|\to 0}{=} f(x) + \langle \nabla f(x), h \rangle + o(h).$$

In each of the questions, find ∇f , using either one (or both) of the above definitions.

- 1. $f(x) = \langle c, x \rangle, \quad c \in \mathbb{R}^n$
- 2. $f(x) = x^T A x + c^T x + b$ $A \in \mathbb{R}^{n \times n} c \in \mathbb{R}^n, b \in \mathbb{R}$
- 3. $f(x)=\langle a(x),b(x)\rangle,\quad a,b:\mathbb{R}^n\to\mathbb{R}^m$ differentiable functions with Jacobians J_a and J_b
- 4. (a) $f(x) = \sigma(w^T x + b)$, $\sigma : \mathbb{R} \to \mathbb{R}$ a differentiable function $c \in \mathbb{R}^n$
 - (b) Simplify (a) when σ is one of these well-known activation functions: $\sigma(x)=x^+,$ $\sigma(x)=\frac{1}{1+e^{-x}}$
- 5. (a) Chain rule: $f = a \circ b$ $f(x) = a(b(x)), \quad a : \mathbb{R} \to \mathbb{R}$, derivative $a', \quad b : \mathbb{R}^n \to \mathbb{R}$, gradient ∇b
 - (b) what is expression (a) when $a(x) = \log(1 + e^{-x})$

2. Jacobians

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable function.

The Jacobian $J_f: \mathbb{R}^n \to \mathbb{R}^{m \times n}$ can be defined in two equivalent ways:

- The matrix of partial derivatives: $[J_f(x)]_{ij} = \frac{\partial f_i}{\partial x_j}(x)$
- The matrix such that, for $x, h \in \mathbb{R}^n$, $f(x+h) = f(x) + J_f(x)h + o(h)$
- 1. What is the relationship between ∇f_i the gradient of the *i*-th component of f and the Jacobian J_f ?

In each of the following questions, find J_f , using either one (or both) of the above definitions.

- 2. Polar-Cartesian change of coordinates: $f(r,\theta) = [r\cos\theta, r\sin\theta]^T$
- 3. Spherical-Cartesian change of coordinates. $f(r, \theta, \varphi) = [r \cos \theta \sin \varphi, r \sin \theta \sin \varphi, r \cos \varphi]^T$
- 4. $f(x) = [g(x_1), \dots, g(x_n)]^T$, $g: \mathbb{R} \to \mathbb{R}$ differentiable function.
- 5. Chain rule: $f = a \circ b$, $a, b : \mathbb{R}^n \to \mathbb{R}^m$ differentiable functions with Jacobians J_a and J_b

Hint: Use the Taylor expansion of b, then the Taylor expansion of a with $h' := J_b h$

- 6. (a) $f(x) = \sigma(Wx + b)$, $W \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, \sigma : \mathbb{R} \to \mathbb{R}$ an elementwise function with derivative σ'
 - (b) higher dimensions: What is the dimension of $\nabla_W f$?