Лабораторная работа 2.3.1 Получение и измерение вакуума

Злобина Вера Б02-002 20 мая 2021 г. **Цель работы:** 1) измерение объемов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

В данной работе используются традиционные методы откачки механическим форвакуумным насосом до давления 10^{-2} торр и диффузионным масляным насосом до давления 10^{-4} торр.

Экспериментальная установка. Установка изготовлена из стекла, и состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (М $_1$ и М $_2$), форвакуумного насоса (ФН) и соединительных кранов (К $_1$, К $_2$,..., К $_6$) (Рис. 1). Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Рис. 1: Схема установки

Рис. 2: Схема действия ротационного двухпластинчатого форвакуумного насоса

Кран K_1 используется для заполнения форвакуумного насоса и вакуумной установки атмосферным воздухом. Во время работы установки он должен быть закрыт. Трёхходовой кран K_2 служит для соединения форвакуумного насоса с установкой или атмосферой. Кран K_3 отделяет высоковакуумную часть установки от форвакуумной. Кран K_4 соединяет между собой колена масляного манометра. Он должен быть открыт во все время работы установки и закрывается лишь при измерении давления в форвакуумной части. Краны K_5 и K_6 стоят по концам капилляра и соединяют его с форвакуумной и высоковакуумной частями установки.

Устройство одной ступени масляного диффузионного насоса схематически показано на Рис. З (в лабораторной установке используется несколько откачивающих ступеней). Масло, налитое в сосуд,
подогревается электрической печкой. Пары масла поднимаются по трубе и вырываются из сопла. Струя паров увлекает
молекулы газа, которые поступают из откачиваемого сосуда через трубку. Дальше смесь попадает в вертикальную трубу.
Здесь масло осаждается на стенках трубы и маслосборников и стекает вниз, а
оставшийся газ откачивается форвакуумным насосом.

Рис. 3: Схема работы одной ступени диффузионного насоса

Процесс откачки

Опишем процесс откачки математически: Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Q_i для различных значений i обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне $Q_{\rm u}$, десорбция с поверхностей внутри сосуда $Q_{\rm d}$, обратный ток через насос $Q_{\rm h}$. Тогда, приравнивая убыль газа из сосуда (с точностью до RT/μ) в единицу времени -VdP и сумму перечисленных токов имеем:

$$-VdP = (PW - \sum_{i} Q_{i})dt \tag{1}$$

При достижении предельного вакуума устанавливается давление $P_{\rm np},$ и dP=0. Тогда

$$W = (\sum_{i} Q_i)/P_{\rm np} \tag{2}$$

Поскольку обычно $Q_{\rm u}$ постоянно, а $Q_{\rm h}$ и $Q_{\rm d}$ слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{\rm np} = (P_0 - P_{\rm np}) \exp(-\frac{W}{V}t)$$
 (3)

Полная скорость откачки W, собственная скорость откачки насоса $W_{\rm H}$ и проводимости элементов системы C_1, C_2, \ldots соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{4}$$

Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При высоком вакууме течение существеннее определяется взаимодействием со стенками

Для количества газа, протекающего через трубу длины l и радиуса r в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_2 - P_1}{l}$$
 (5)

Если труба соединяет насос установку, то давлением P_1 у насоса можно пренебречь. Давление в сосуде $P=P_2$. Тогда имеем:

$$C_{\rm Tp} = \left(\frac{dV}{dt}\right)_{\rm Tp} = \frac{4r^3}{3l} \sqrt{\frac{2\pi RT}{\mu}} \tag{6}$$

Ход работы

Определение объёмов форвакуумной и высоковакуумной частей установки.

- **1.** Перед началом работы проверим, что все краны приведены в правильное положение.
- **2.** Запустим воздух в систему (для этого нужно открыть кран K_2 и подождать пару минут пока воздух заполнит установку).
- **3.** Запустим форвакуумный насос, чтобы он откачал воздух из установки.

Пронаблюдаем за тем, как давление в установке уменьшается и продолжим откачку до момента, пока давление не будет порядка 10^{-2} мм рт. ст.. Запишем итоговое значение:

$$P_0 = (2.0 \pm 0.1) \cdot 10^{-2} \text{ MM pt. ct.}$$

- **4.** Отсоединим установку от форвауумного насоса, а затем объём, заключенный в кранах и капиллярах форвакуумной части, откроем на всю форвакуумную часть. Тогда давление изменится
- **5.** Запишем показания маслянного манометра, а именно высоту масла в обоих коленах:

$$h_1=(35.0\pm0.1)$$
 см масл. ст., $h_2=(4.0\pm0.1)$ см масл. ст., $\sigma_{\Delta h}=\sqrt{\sigma_{\Delta h1}^2+\sigma_{\Delta h2}^2}\approx3\%$ $\Delta h_{\rm db}=(31.0\pm0.8)$ см масл. ст.

6. Зная объём "запертой" части установки $V_{\rm кап}=50~{\rm cm}^3$ (он указан на установке) и используя соотношение $P_1/P_2=V_2/V_1$ вычислим объём форвауумной части установки. При этом давление $P_1=P_{\rm atm}=(101.4\pm0.05)~{\rm k}\Pi a~P_2=\Delta h_{\rm фв}~\rho_{\rm масл}g,$ а относительная погрешность полученного значения равна относительной погрешности величины $\Delta h_{\rm фв}$ $\varepsilon_V=\varepsilon_{P_1}\approx3\%$ (пренебрегаем погрешностью измерения атмосферного давления $\varepsilon_{P_{\rm atm}}\approx0.05\%$) и в результате имеем:

$$V_{\rm dbb} = (1.88 \pm 0.06)$$
 л

7. Проведём те же самые измерения с диффузионным насосом и получим объём установки, из которой вычитанием объёма форвакуумной части получается объём высоковакуумной части.

$$h_1=(29\pm 0.1)$$
 см масл. ст., $h_2=(9\pm 0.1)$ см масл. ст., $\Delta h_{\text{вв}}=(20\pm 0.7)$ см масл. ст.,

Погрешности высот определяются аналогично предыдущему пункту.

 $\varepsilon_V = \varepsilon_{P_2}$ (пренебрегаем погрешностью измерения атмосферного давления $\varepsilon_{P_{2770}} \approx 0.05\%$)

ления
$$\varepsilon_{P_{\text{атм}}} \approx 0.05\%$$
) $V = V_0 \frac{P_1}{P_2} \approx (2.91 \pm 0.09) \text{ л},$ $\sigma_{V_{\text{вв}}} = \sqrt{\sigma_{V_{\Phi \text{B}}}^2 + \sigma_V^2} \approx 0.11 \text{ л},$

В результате искомая величина равна:

$$V_{\text{\tiny BB}} = (1.03 \pm 0.11)$$
л.

Получение высокого вакуума и измерение скорости откачки.

- **8.** Не выключая форвакуумного насоса убедимся в том, что в установке не осталось запертых объёмов.
- **9.** Откачав установку до давления порядка 10^{-2} мм рт. ст., приступим к откачке ВБ с помощью диффузионного насоса.
- 10. С помощью термопарного манометра пронаблюдаем за тем, как идёт откачка ВБ. Мы должны продолжать процесс откачки до тех пор, пока там не установится давление порядка $3 \cdot 10^{-4}$ мм рт. ст. При приближении давления к этой величине масло в диффузионном насосе закипит, поэтому подсчитаем количество капель, стекающих из сопла второй ступенидиффузионного насоса:

N = 16 капель.

11. С помощью ионизационного манометра измерим значение предельного давления в системе со стороны высоковакуумной части:

$$P_{\rm np} = (6.0 \pm 0.1) \cdot 10^{-5} \text{ MM pt. ct.}$$

12. Найдём скорость откачки по ухудшению и улучшению вакуума, для этого открывая и закрывая кран K_3 будем то подключать насос к объёму, то отключать его, при этом на видео зафиксируем показания манометра от времени и занесём полученные результаты в Таблицу 1 и

построим графики необоходимых зависимостей (каких именно подробнее описано в соответствующх пунктах ниже), для которых определим коэффициенты наклона прямых и их погрешности (с помощью МНК), полученные результаты также зафиксируем в Таблице 1. Так же запишем итоговое значение для коэффициента наклона прямых, которое является средним из двух полученных, а его погрешность вычисляется по формуле $\sigma_k = \sqrt{\sigma_{k_1}^2 + \sigma_{k_2}^2}$ или же полуразность k_1 и k_2 , если вдруг эти значения не будут совпадать в пределах погрешности k_1 и k_2 .

Таблица 1: Результаты измерений

Улучшение				Ухудшение			
$P, \cdot 10^{-5} \text{ Topp}$	t, c	$P, \cdot 10^{-5} \text{ Topp}$	t, c	$P, \cdot 10^{-5} \text{ ropp}$	t, c	$P, \cdot 10^{-5} \text{ ropp}$	t, c
53	0	64	0	6.2	0	6.7	0
48	1	60	1	9.4	7	13	7
35	2	50	2	15	14	20	14
28	3	36	3	20	21	25	21
25	4	29	4	26	28	31	28
21	5	24	5	31	35	36	35
16	6	20	6	35	42	42	42
14	7	17	7	40	49	49	49
12	8	15	8	45	56	54	56
12	9	13	9	50	63	59	63
10	10	12	10	55	70	64	70
9.3	11	10	11	59	77	69	77
8.7	12	9.1	12	64	84		
8.5	13	8.8	13	69	91		
8.1	14	8.1	14				
$k_1 = -(0.233 \pm 0.002) \text{ c}^{-1}$				$k_1 = (0.699 \pm 0.005) \cdot 10^{-5} \text{ Topp} \cdot \text{c}^{-1}$			
$k_2 = -(0.245 \pm 0.003) \text{ c}^{-1}$				$k_2 = (0.810 \pm 0.005) \cdot 10^{-5} \text{ Topp} \cdot \text{c}^{-1}$			
$k_{\rm cp} = -(0.239 \pm 0.006) {\rm c}^{-1}$				$k_{\rm cp} = (0.76 \pm 0.07) \cdot 10^{-5} \text{ ropp} \cdot \text{c}^{-1}$			

Сначала проведём вычисления для коэффициента k, полученного при улучшении вакуума (для этого мы строили графики зависимости $\ln((P-P_0)/(P_0-P_{\rm np}))$ от t). Поскольку $W=-kV_{\rm bb}$, то $\varepsilon_W=\sqrt{\varepsilon_k^2+\varepsilon_{V_{\rm bb}}^2}\approx 4\%$, в результате имеем:

$$W = (0.25 \pm 0.01) \text{ n/c}.$$

13. Оценим величину потока газа $Q_{\rm H}$. Для этого воспользуемся данными, полученными при ухудшении вакуума. А именно построим графики зависимости P(t) и определим для них коэффициенты угла наклона прямой. Поскольку $V_{\rm BB}dP=(Q_{\rm A}+Q_{\rm H})dt$ получим $)(Q_{\rm A}+Q_{\rm H})=kV_{\rm BB}=(0.78\pm0.08)\cdot10^{-5}$ торр \cdot л/c (Погрешность рассчитывается по формуле $\varepsilon=\sqrt{\varepsilon_k^2+\varepsilon_{\rm V_{BB}}^2}\approx 10\%$).

Используя формулу $Q_{\rm H}=P_{\rm np}W-(Q_{\rm Д}+Q_{\rm H}),$ а значит $\varepsilon_{Q_{\rm H}}=\sqrt{\varepsilon_{P_{\rm np}W}^2+\varepsilon^2}\approx 11\%$ получим, что:

$$Q_{\rm H} = (0.72 \pm 0.08) \cdot 10^{-5} \text{ Topp} \cdot \pi/c.$$

14. Оценим пропускную способность трубки по формуле (6):

$$L = (10 \pm 1)$$
 cm; $d = (0.8 \pm 0.1)$ mm.

$$C_{\text{\tiny TP}} = (1.0 \pm 0.2) \cdot 10^{-8} \text{ Topp} \cdot \pi/c.$$

Погрешность $C_{\text{тр}}$ оценена как корень из суммы квадратов погрешностей длинны и диаметра (которые явням образом не указаны на установке, поэтому скорее всего оценка довольно грубая).

15. Введём в систему исскуственную течь и запишем значение установившегося при этом давления и давления P_{obs} :

$$P_{\text{уст}} = (1.1 \pm 0.1) \cdot 10^{-4} \text{ Topp.}$$

 $P_{\text{db}} = (2.5 \pm 0.1) \cdot 10^{-3} \text{ Topp.}$

16. Поскольку

$$P_{\text{np}}W = Q_1, \quad P_{\text{ycr}}W = Q_1 + \frac{d(PV)_{\text{кап}}}{dt},$$

TO

$$W = \frac{d(PV)_{\text{\tiny KAII}}}{dt} \frac{P_{\Phi^{\text{\tiny B}}}}{P_{\text{\tiny yct}} - P_{\text{\tiny HP}}} = (0.22 \pm 0.05) \text{ cm}^3 \cdot c;$$

(Поскольку давления померены с точностью не менее 10%, то можно учитывать погрешность, вносимую величиной $\frac{d(PV)_{\text{кап}}}{dt}$ относительная

погрешность которой равна относительной погрешности $C_{\mathrm{Tp}},$ то есть составляет 20%)

17. Следуя указаниям в методичке выключаем установку.

Рис. 4: Улучшение вакуума 1

Рис. 5: Улучшение вакуума 2

Вывод

В ходе данной работы было проверено несколько методик по измерению производительности высоковакуумного насоса. Правда полученные нами значения не совпадают даже в пределах погрешности и отличаются в несколько раз. Возможно этот эффект возникает из-за того, что пропускная способность капилляра настолько сильно занижает скорость откачки. Удалось проверить законы, в соответстви с которыми вакуум в установке ухудшается и улучшается, в хорошем результате помогают убедиться графики, на которых прослеживается достаточно чёткая линейная зависимость (для улучшения вакуума — линейная зависимость $\ln((P-P_0)/(P_0-P_{\rm np}))$ от t, а для ухудшения — P(t)).