# Tugas 3 kNN

# ditujukan untuk memenuhi salah satu tugas mata kuliah Pengantar Kecerdasan Buatan

# Dosen Pengampu Isman Kurniawan, Ph.D.

### Disusun oleh:

# **Luqman Haries - 1301180072**



# FAKULTAS TEKNIK INFORMATIKA

**UNIVERSITAS TELKOM** 

**BANDUNG** 

2020

#### Perhitungan Jarak

Formula untuk menghitung jarak titik a dan b menggunakan Manhattan Distance. Perhitunga tersebut Di mana x1 adalah baris data pertama, x2 adalah data baris kedua dan i adalah indeks untuk kolom tertentu saat kita menjumlahkan di semua kolom. Dengan formula ini untuk mencari jarak hanya dengan menjumlahkan semua selisih dari jarak xi dan yi.

$$d(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

Figure 1 Manhatta Distance

#### **Prapemprosesan**

Setelah jarak didapat, kemudia jarak tersebut disimpan kedalam list distance dan disorting dengan urutan terkecil ke terbesar. Kemudian memilih k teratas untuk dikembalikan sebagai tetangga yang dekat, dilakukan dengan melacak jarak untuk setiap record dari list distance dengan dataset.

```
#praproses menghitung distance dan menyimpan dalam list
def praProcess(k, train, x):
    distance = list()
    for i in train:
        if i+ 1 == train[-1]:
            break
        distance.append(manDistance(listData[x],listData[i])
        )
    distance.sort()
```

Figure 2 praposes

#### Klasifikasi kNN

Melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut. Titik yang terdekat akan dikumpulkan dari set data kedalam list, dan titik terjauh dimasukkan kedalam list, kemudia list tersebut dibandingkan, dan akan dibandingkan dengan outcome dari titik, dan hasilnya akan mengbalikan nilai True atau False.

#### K terbaik

Percobaan nilai K dimulai dari 1-5, dari percobaan tersebut akurasi knn dengan nilai k=2 merupakan nilai k yang paling optimal dengan tingkat akurasi sebesar 0.79, berikut hasil dalam bentuk tabel:

| Nilai K | Data set 1      | Data set 2      | Data set 3     | Data set 4      | Data set 5       |
|---------|-----------------|-----------------|----------------|-----------------|------------------|
| 1       | 0.6233766233766 | 0.7             | 0.720779220779 | 0.6339869281045 | 0.63870967741935 |
|         | 234             |                 | 2207           | 751             | 48               |
| 2       | 0.6493506493506 | 0.7944444444444 | 0.707792207792 | 0.6274509803921 | 0.64516129032258 |
|         | 493             | 444             | 2078           | 569             | 06               |
| 3       | 0.6753246753246 | 0.7444444444444 | 0.727272727272 | 0.6274509803921 | 0.67096774193548 |
|         | 753             | 445             | 7273           | 569             | 39               |
| 4       | 0.7012987012987 | 0.788888888888  | 0.727272727272 | 0.6535947712418 | 0.70967741935483 |
|         | 013             | 889             | 7273           | 301             | 87               |
| 5       | 0.6688311688311 | 0.7833333333333 | 0.733766233766 | 0.6405228758169 | 0.73548387096774 |
|         | 688             | 333             | 2337           | 934             | 19               |

# Rata-rata Akurasi menggunakan *fold cross-validation* dengan nilai rata rata tertinggi pada k= 4 dengan dataset-5, dapat dilihat dalam tabel sebagai berikut:

| Nilai K | Data set 1      | Data set 2      | Data set 3     | Data set 4      | Data set 5       |
|---------|-----------------|-----------------|----------------|-----------------|------------------|
| 1       | 0.0040479001517 | 0.0073520923520 | 0.013273739247 | 0.0175042011258 | 0.02139904806245 |
|         | 96255           | 92352           | 76522          | 8509            | 0153             |
| 2       | 0.0042165626581 | 0.0080210838544 | 0.013971346114 | 0.0181636489018 | 0.02209161014388 |
|         | 21099           | 17186           | 203257         | 26524           | 412              |
| 3       | 0.0043852251644 | 0.0078876062209 | 0.013941830175 | 0.0181339400485 | 0.02222877786689 |
|         | 45943           | 39555           | 59641          | 8826            | 992              |
| 4       | 0.0045538876707 | 0.0082788199454 | 0.014399092970 | 0.0187650659392 | 0.02310150005198 |
|         | 70787           | 8661            | 521542         | 29723           | 0556             |
| 5       | 0.0043430595378 | 0.0080675805675 | 0.014194355428 | 0.0184735530179 | 0.02298024182397 |
|         | 64733           | 80567           | 121662         | 59013           | 0782             |

## Output

