

A Top-down Approach to Combining Logics

Christoph Benzmüller

Freie Universität Berlin

ICAART-2013, Barcelona/Spain, Feb. 2013

A Top-down Approach to Combining Logics

Outline/topics addressed

- A Motivation: combining logics, context, expressive ontologies
- B Example:
 first-order monomodal logic is a fragment of HOL
 constant/varying/cumulative domain
 first-order multimodal logic is a fragment of HOL
 propositional quantification
 bridge rules
- C Many non-classical logics are natural fragments of HOL
- **D** Proof automation

Combining logics

- prominent challenge in AI (CS, Philosophy)
- epistemic, deontic, temporal, intuitionistic, relevant, linear, conditional, security . . .
- wide literature—few implementations
- some propositional systems exists: Logic Workbench, LoTREC, Tableaux Workbench, FaCT, ileanCoP, MSPASS
- no implemented systems for combinations of first-order logics
- combination is typically approached bottom-up

My approach is complementary: works top-down starting from classical higher-order logic (HOL)

Combining logics

- prominent challenge in AI (CS, Philosophy)
- epistemic, deontic, temporal, intuitionistic, relevant, linear, conditional, security . . .
- wide literature—few implementations
- some propositional systems exists: Logic Workbench, LoTREC, Tableaux Workbench, FaCT, ileanCoP, MSPASS
- no implemented systems for combinations of first-order logics
- combination is typically approached bottom-up

My approach is complementary:

works **top-down** starting from classical higher-order logic (HOL)

Context

- ► prominent challenge in AI (CS, Philosophy)
- ► McCarthy: modeling of contexts as first-class objects

```
ist(context_of("Ben's Knowledge),likes(Sue,Bill))
    ist(context_of("Ben's Knowledge),
        ist(context_of(...),...))
```

- McCarthy's approach has been followed by many others
- ► Giunchiglia emphasizes locality aspect; structured knowledge
- McCarthy and Giunchiglia avoid modal logics
- ▶ they also avoid a HOL perspective

My approach is complementary: takes a HOL perspective and integrates modal logics

Context

- prominent challenge in AI (CS, Philosophy)
- ► McCarthy: modeling of contexts as first-class objects

```
ist(context_of("Ben's Knowledge),likes(Sue,Bill))
    ist(context_of("Ben's Knowledge),
        ist(context_of(...),...))
```

- ► McCarthy's approach has been followed by many others
- ► Giunchiglia emphasizes locality aspect; structured knowledge
- McCarthy and Giunchiglia avoid modal logics
- ▶ they also avoid a HOL perspective

My approach is complementary: takes a HOL perspective and integrates modal logics

Expressive ontologies

- ► SUMO and Cyc
- modeling of contexts:

- relation to McCarthy's approach is obvious
- often a questionable semantics assumed for embedded formulas and modal predicates (also in Common Logic)

My approach:

HOL-based semantics, but holdsDuring, believes, knows and alike are associated with **modal logic connectives**

Expressive ontologies

- ► SUMO and Cyc
- modeling of contexts:

- relation to McCarthy's approach is obvious
- often a questionable semantics assumed for embedded formulas and modal predicates (also in Common Logic)

My approach:

HOL-based semantics, but holdsDuring, believes, knows and alike are associated with **modal logic connectives**

A: The Proposed Solution

A top-down approach to combining logics

- many non-classical logics are just natural fragments of HOL (via an elegant semantic embedding)
- they can be easily combined in HOL
- object-level reasoning enabled with off-the-shelf HOL provers and model finders
- even meta-level reasoning is feasible

Key idea of the approach:

Bridge between the Tarski view of logics (for meta-logic HOL) and the Kripke view of logics (for the embedded logics)

A: The Proposed Solution

A top-down approach to combining logics

- many non-classical logics are just natural fragments of HOL (via an elegant semantic embedding)
- they can be easily combined in HOL
- object-level reasoning enabled with off-the-shelf HOL provers and model finders
- even meta-level reasoning is feasible

Key idea of the approach:

Bridge between the Tarski view of logics (for meta-logic HOL) and the Kripke view of logics (for the embedded logics)

First-order Modal Logics (FMLs)

$$p,q ::= P(t_1,\ldots,t_n) \mid (\neg p) \mid (p \lor q) \mid \Box p \mid (\forall x p)$$

are relevant for many applications, including

- planning
- natural language processing
- program verification
- modeling communication
- querying knowledge bases

Until recently, however, there has been

- a comparably large body of theory papers on FMLs
- ▶ but only one implemented prover! (GQML prover)

For recent progress see:

[BenzmüllerOttenRaths, ECAI, 2012

First-order Modal Logics (FMLs)

$$p,q ::= P(t_1,\ldots,t_n) \mid (\neg p) \mid (p \vee q) \mid \Box p \mid (\forall x p)$$

are relevant for many applications, including

- planning
- natural language processing
- ▶ program verification
- ► modeling communication
- querying knowledge bases

Until recently, however, there has been

- ▶ a comparably large body of theory papers on FMLs
- but only one implemented prover! (GQML prover)

For recent progress see:

[BenzmüllerOttenRaths, ECAI, 2012]

First-order Modal Logics (FMLs)

$$p,q ::= P(t_1,\ldots,t_n) \mid (\neg p) \mid (p \vee q) \mid \Box p \mid (\forall x p)$$

are relevant for many applications, including

- planning
- natural language processing
- ▶ program verification
- ► modeling communication
- querying knowledge bases

Until recently, however, there has been

- ▶ a comparably large body of theory papers on FMLs
- but only one implemented prover! (GQML prover)

For recent progress see:

[BenzmüllerOttenRaths, ECAI, 2012]

Simple Types

$$\alpha ::= \iota \mid o \mid \alpha_1 \rightarrow \alpha_2$$

HOL
$$s,t$$
 ::= $C_{\alpha} \mid x_{\alpha} \mid (\lambda x_{\alpha} s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta} \mid (\neg_{o \to o} s_{o})_{o} \mid (s) \lor_{o \to o \to o} t_{o}) \mid (\forall x_{\alpha} t_{o})_{o}$
Constant Symbols Variable Symbols Abstraction Application

$$s, t ::= C_{\alpha} | x_{\alpha} | (\lambda x_{\alpha} s_{\beta})_{\alpha \to \beta} | (s_{\alpha \to \beta} t_{\alpha})_{\beta} | (\neg_{o \to o} s_{o})_{o} | (s_{o} \lor_{o \to o \to o} t_{o})_{o} | (\forall x_{\alpha} t_{o})_{o}$$

HOL
$$s, t ::= C |x| (\lambda x s) |(s t)| (\neg s) |(s \lor t)| (\forall x t)$$

HOL
$$s, t ::= C |x| (\lambda x s) |(s t)| (\neg s) |(s \lor t)| (\forall x t)$$

HOL (with Henkin semantics) is meanwhile very well understood

HOL
$$s, t ::= C |x| (\lambda x s) |(s t)| (\neg s) |(s \lor t)| (\forall x t)$$

HOL (with Henkin semantics) is meanwhile very well understood

HOL TPTP Infrastructure

$$\mathsf{HOL} \qquad s,t \ ::= \ C \mid x \mid (\lambda x \, s) \mid (s \, t) \mid (\neg s) \mid (s \, \lor \, t) \mid (\forall x \, t)$$

HOL (with Henkin semantics) is meanwhile very well understood

HOL TPTP Infrastructure

HOL Provers: LEO-II, Satallax, TPS, Isabelle, Nitpick, agsyHOL

HOL
$$s,t ::= C \mid x \mid (\lambda x s) \mid (s t) \mid (\neg s) \mid (s \lor t) \mid (\forall x t)$$

FML $p,q ::= P(t_1, ..., t_n) \mid (\neg p) \mid (p \lor q) \mid \Box p \mid (\forall x p)$
 $M,g,s \models \neg p \quad \text{iff} \quad \text{not} \ M,g,s \models p$
 $M,g,s \models p \lor q \quad \text{iff} \quad M,g,s \models p \text{ or} \ M,g,s \models q$
 $M,g,s \models \Box p \quad \text{iff} \quad M,g,u \models p \text{ for all} \ u \text{ with} \ R(s,u)$
 $M,g,s \models \forall x p \quad \text{iff} \quad M,[d/x]g,s \models p \text{ for all} \ d \in D$

HOL
$$s,t ::= C \mid x \mid (\lambda x s) \mid (s t) \mid (\neg s) \mid (s \lor t) \mid (\forall x t)$$

FML $p,q ::= P(t_1,\ldots,t_n) \mid (\neg p) \mid (p \lor q) \mid \Box p \mid (\forall x p)$
 $M,g,s \models \neg p \quad \text{iff} \quad \text{not} \ M,g,s \models p \quad M,g,s \models p \quad M,g,s \models p \quad \text{or} \ M,g,s \models \neg p \quad \text{iff} \quad M,g,s \models p \quad \text{or} \ M,g,s \models \neg p \quad \text{iff} \quad M,g,u \models p \quad \text{for all} \ u \quad \text{with} \quad R(s,u)$
 $M,g,s \models \forall x p \quad \text{iff} \quad M,[d/x]g,s \models p \quad \text{for all} \quad d \in D$

FML in HOL: $\neg \quad = \lambda p_{t \to o} \lambda w_t \neg pw$
 $\lor \quad = \lambda p_{t \to o} \lambda w_t \forall v_t \quad (\neg Rwv \lor pv)$
 $\Box \quad = \lambda p_{t \to o} \lambda w_t \forall v_t \quad (\neg Rwv \lor pv)$
 $\Box \quad = \lambda h_{\mu \to (t \to o)} \lambda w_t \forall x_\mu \quad hxw$
 $\neg \quad = \lambda h_{\mu \to (t \to o)} \lambda w_t \forall x_\mu \quad hxw$
 $\neg \quad = \lambda h_{\mu \to (t \to o)} \lambda w_t \forall x_\mu \quad hxw$
 $\neg \quad = \lambda h_{\mu \to (t \to o)} \lambda w_t \forall x_\mu \quad hxw$
 $\neg \quad = \lambda h_{\mu \to (t \to o)} \lambda w_t \forall x_\mu \quad hxw$

HOL
$$s,t ::= C \mid x \mid (\lambda x \, s) \mid (s \, t) \mid (\neg s) \mid (s \lor t) \mid (\forall x \, t)$$

FML $p,q ::= P(t_1,\ldots,t_n) \mid (\neg p) \mid (p \lor q) \mid \Box p \mid (\forall x \, p)$
 $M,g,s \models \neg p \quad \text{iff} \quad \text{not} \ M,g,s \models p \quad \text{or} \quad \text{oll} \quad d \in D$

FML in HOL: $\neg = \lambda p_{t \to o} \lambda w_t \neg pw \quad \forall s \in p \quad \text{or} \quad \lambda w_t \mid pw \quad \forall s \in p \quad \text{or} \quad \lambda w_t \mid pw \quad \forall s \in p \quad \text{or} \quad \lambda w_t \mid pw \quad \text{or} \quad x \mid pw \quad x \mid$

HOL
$$s,t ::= C \mid x \mid (\lambda x s) \mid (s t) \mid (\neg s) \mid (s \lor t) \mid (\forall x t)$$

FML $p,q ::= P(t_1, \ldots, t_n) \mid (\neg p) \mid (p \lor q) \mid \Box p \mid (\forall x p)$
 $M,g,s \models \neg p \quad \text{iff} \quad \text{not} \ M,g,s \models p \quad M,g,s \models p \quad \text{or} \ M,g,s \models \neg p \quad \text{iff} \quad M,g,s \models p \quad \text{or} \ M,g,s \models q \quad M,g,s \models \Box p \quad \text{iff} \quad M,g,u \models p \text{ for all} \ u \text{ with} \ R(s,u)$
 $M,g,s \models \forall x p \quad \text{iff} \quad M,[d/x]g,s \models p \text{ for all} \ d \in D$

Meta-level notions: valid = $\lambda p_{t \to 0} \forall w_t pw$

Main idea: Lifting of modal formulas to predicates on worlds

$$(\diamondsuit \exists x Pfx \land \Box \forall y (\diamondsuit Py \Rightarrow Qy)) \Rightarrow \diamondsuit \exists z Qz$$

$$valid (\diamondsuit \exists x Pfx \land \Box \forall y (\diamondsuit Py \Rightarrow Qy)) \Rightarrow \diamondsuit \exists z Qz$$

$$(\Diamond \exists x Pfx \land \Box \forall y (\Diamond Py \Rightarrow Qy)) \Rightarrow \Diamond \exists z Qz$$
$$valid (\Diamond \exists x Pfx \land \Box \forall y (\Diamond Py \Rightarrow Qy)) \Rightarrow \Diamond \exists z Qz$$

$$(\diamondsuit \exists x P f x \land \Box \forall y (\diamondsuit P y \Rightarrow Q y)) \Rightarrow \diamondsuit \exists z Q z$$

$$valid (\diamondsuit \exists x P f x \land \Box \forall y (\diamondsuit P y \Rightarrow Q y)) \Rightarrow \diamondsuit \exists z Q z$$

$$\Box = \lambda p \lambda w \forall v (\neg (Rwv) \lor (pv))$$


```
 (\diamondsuit \exists x P f x \land \Box \forall y (\diamondsuit P y \Rightarrow Q y)) \Rightarrow \diamondsuit \exists z Q z 
 valid (\diamondsuit \exists x P f x \land \Box \forall y (\diamondsuit P y \Rightarrow Q y)) \Rightarrow \diamondsuit \exists z Q z 
 valid (\diamondsuit \exists x P f x \land (\lambda w \forall v (\neg (Rwv) \lor (\forall y (\diamondsuit P y \Rightarrow Q y) v)))) \Rightarrow \diamondsuit \exists z Q z 
 \cdots
```

$$\forall w(\neg\neg(\neg\neg\forall v(\neg Rwv \lor \neg\neg\forall x\neg P(fx)v) \lor \neg\forall v(\neg Rwv \lor \forall y(\neg\neg\forall u(\neg Rvu \lor \neg Pyu) \lor Qyv))) \lor \neg\forall v(\neg Rwv \lor \neg\neg\forall z\neg Qzv))$$


```
(\diamondsuit \exists x Pf x \land \Box \forall y (\diamondsuit Py \Rightarrow Qy)) \Rightarrow \diamondsuit \exists z Qz
valid (\diamondsuit \exists x Pf x \land \Box \forall y (\diamondsuit Py \Rightarrow Qy)) \Rightarrow \diamondsuit \exists z Qz
valid (\diamondsuit \exists x Pf x \land (\lambda w \forall v (\neg (Rwv) \lor (\forall y (\diamondsuit Py \Rightarrow Qy) v)))) \Rightarrow \diamondsuit \exists z Qz
...
```

$$\forall w(\neg\neg(\neg\neg\forall v(\neg Rwv \lor \neg\neg\forall x\neg P(fx)v) \lor \neg\forall v(\neg Rwv \lor \forall y(\neg\neg\forall u(\neg Rvu \lor \neg Pyu) \lor Qyv))) \lor \neg\forall v(\neg Rwv \lor \neg\neg\forall z\neg Qzv))$$


```
(\diamondsuit \exists x Pfx \land \Box \forall y (\diamondsuit Py \Rightarrow Qy)) \Rightarrow \diamondsuit \exists z Qz
valid (\diamondsuit \exists x Pfx \land \Box \forall y (\diamondsuit Py \Rightarrow Qy)) \Rightarrow \diamondsuit \exists z Qz
valid (\diamondsuit \exists x Pfx \land (\lambda w \forall v (\neg (Rwv) \lor (\forall y (\diamondsuit Py \Rightarrow Qy) v)))) \Rightarrow \diamondsuit \exists z Qz
...
```

```
\forall w(\neg\neg(\neg\neg\forall v(\neg Rwv \lor \neg\neg\forall x\neg P(fx)v) \lor \neg\forall v(\neg Rwv \lor \forall y(\neg\neg\forall u(\neg Rvu \lor \neg Pyu) \lor Qyv))) \lor \neg\forall v(\neg Rwv \lor \neg\neg\forall z\neg Qzv))
```

Axiomatization of properties of accessibility relation R

```
Logic K: no axioms

Logic T: (reflexive\ R) — which expands into \forall x\ Rxx

Logic S4: (reflexive\ R) \land (symmetric\ R) \land (transitive\ R)

Logic . . .
```



```
(\diamondsuit\exists x Pfx \land \Box \forall y (\diamondsuit Py \Rightarrow Qy)) \Rightarrow \diamondsuit\exists z Qz
valid (\diamondsuit\exists x Pfx \land \Box \forall y (\diamondsuit Py \Rightarrow Qy)) \Rightarrow \diamondsuit\exists z Qz
valid (\diamondsuit\exists x Pfx \land (\lambda w \forall v (\neg (Rwv) \lor (\forall y (\diamondsuit Py \Rightarrow Qy) v)))) \Rightarrow \diamondsuit\exists z Qz
...
```

```
\forall w(\neg\neg(\neg\neg\forall v(\neg Rwv \lor \neg\neg\forall x\neg P(fx)v) \lor \neg\forall v(\neg Rwv \lor \forall y(\neg\neg\forall u(\neg Rvu \lor \neg Pyu) \lor Qyv))) \lor \neg\forall v(\neg Rwv \lor \neg\neg\forall z\neg Qzv))
```

Axiomatization of properties of accessibility relation R

```
Logic K: no axioms

Logic T: (reflexive R) — which expands into \forall x Rxx

Logic S4: (reflexive R) \land (symmetric R) \land (transitive R)
```

Logic ...

This automates FML with constant domain semantics in HOL

To obtain varying domain semantics:

▶ modify quantifier: $\Pi = \lambda q \lambda w \forall x \text{ ExistsInW} xw \Rightarrow qxw$

► add non-emptiness axiom: $\forall w \exists x \text{ExistsInW} x w$

▶ add designation axioms for constants c: ∀w ExistsInWcw (similar for function symbols)

To obtain varying domain semantics:

- ▶ modify quantifier: $\Pi = \lambda q \lambda w \forall x \, \mathsf{ExistsInW} xw \Rightarrow qxw$
- ► add non-emptiness axiom: $\forall w \exists x \text{ExistsInW} x w$
- ▶ add designation axioms for constants c: ∀w ExistsInWcw (similar for function symbols)

To obtain <u>cumulative domain semantics</u>:

▶ add axiom: $\forall x \forall v \forall w \text{ ExistsInW} xv \land Rvw \Rightarrow \text{ ExistsInW} xw$

B: Example — First-order Multimodal Logics in HOL

What extras are needed?

- ► instead of $\Box = \lambda p \lambda w \, \forall v (\neg (Rwv) \lor (pv))$ consider $\Box = \lambda r \, \lambda p \, \lambda w \, \forall v (\neg (rwv) \lor (pv))$
- ▶ now we may have: $\Box_{knowledgeBen}$, $\Box_{commonKnowledge}$, ...
- we can add quantification over propositional variables

$$\Pi^{p} = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \, \forall p_{\iota \to o} (qpw) \quad (\forall pq \text{ stands for } \Pi^{p} \lambda pq)$$

and use this to explicitly encode bridge rules

$$\forall p (\Box_{commonKnowledge} p \supset \Box_{knowledgeBen} p)$$

What can we do with that?

- ► actually a lot
- see e.g. the elegant modeling and effective solution of the Wise Men Puzzle as reported in the paper

C: Many Non-classical Logics are Fragments of HOL

Soundness and completeness

$$\models \varphi$$
 iff \models^{HOL} valid $\varphi_{\iota \to o}$

results do already exist for

- propositional multimodal logics
- quantified multimodal logics
- propositional conditional logics
- ► intuitionistic logics:
- access control logics:
- combinations of logics:
- ▶ ... more is on the way ...

[BenzmüllerPaulson, Log.J.IGPL, 2010]

[BenzmüllerPaulson, Logica Universalis, 2012]

[BenzmüllerEtAl., AMAI, 2012]

[BenzmüllerPaulson, Log.J.IGPL, 2010]

[Benzmüller, IFIP SEC, 2009]

[Benzmüller, AMAI, 2011]

C: Why Not Throwing Things Together?

Terms:
$$m ::= C \mid x \mid (F m^1 \dots m^n)$$

$$s, t ::= (k m^1 \dots m^n) \mid \neg s \mid s \lor t \mid \Box_r s \mid s \Rightarrow_f t \mid \dots$$
 Formulas:
$$\forall x s \mid \forall_{vary} x s \mid \forall_{cumul} x s \mid \forall^p p s \mid \dots$$
 Embedding in HOL:
$$C = C \qquad x = x, \qquad F = F_{var} \dots$$

$$C = C_{\mu} \quad x = x_{\mu} \quad F = F_{\mu^{n} \to \mu}$$

$$k = k_{\mu^{n} \to \iota \to o} \quad (+axioms \ for \ r) \quad f = f_{\iota \to \iota \to o} \quad (+axioms \ for \ f)$$

$$\neg = \lambda s_{\iota \to o} \lambda w_{\iota} \neg sw)$$

$$\lor = \lambda s_{\iota \to o} \lambda t_{\iota \to o} \lambda w_{\iota} (sw \lor tw)$$

$$\Box = \lambda r_{\iota \to \iota \to o} \lambda s_{\iota \to o} \lambda w_{\iota} \forall v_{\iota} \neg rwv \lor sv$$

$$\Rightarrow = \lambda f_{\iota \to (\iota \to o) \iota \to o} \lambda s_{\iota \to o} \lambda t_{\iota \to o} \lambda w_{\iota} \forall v_{\iota} (\neg fwsv \lor tv)$$

$$\Box = \lambda q_{\mu \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \ qxw$$

$$\Box var/cumul = \lambda q_{\mu \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \neg exln \forall xw \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \forall x_{\mu} \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \lor qxw$$

$$\Box var/cumul = \lambda q_{(\iota \to o) \to (\iota \to o)} \lambda w_{\iota} \lor qxw$$

$$\Box var/cumul = \lambda q$$

predicate abstraction, definite description . . .

FML Experiment: $\underbrace{580 \text{ problems} \times 5 \text{ logics} \times 3 \text{ domain cond.}}_{\times} \times 6 \text{ provers} \times 600 \text{s tmo}$

8700 problems

Logic/	ATP system						
Domain	f2p-MSPASS				MleanTAP	MleanCoP	
	v3.0	v1.2		v2.2	v1.3	v1.2	
K/varying			72				
K/cumul.		121					
K/constant	67	124	120				
D/varying					100		
D/cumul.	79	130			120		
D/constant		134			135		
T/varying					138		
T/cumul.	105	163			160		
T/constant		166			175		
S4/varying			140		169		
S4/cumul.	121	197			205		
S4/constant	111	197			220		
S5/varying			169		219		
	140		215		272		
S5/constant	131		237		272		

FML Experiment: 580 problems \times 5 logics \times 3 domain cond. \times 6 provers \times 600s tmo

			ATD			
Logic/			- ATP s			
Domain	f2p-MSPASS	MleanSeP	LEO-II	Satallax	MleanTAP	MleanCoP
	v3.0	v1.2	v1.3.2	v2.2	v1.3	↑ v1.2
K/varying	-	-	72	104	-	-
K/cumul.	70	121	89	122	-	-
K/constant	67	124	120	146	-	-
D/varying	-	-	81	113	100	179
D/cumul.	79	130	100	133	120	/ 200
D/constant	76	134	135	160	135	/ 217
T/varying	-	-	120	170	138,	224
T/cumul.	105	163	139	192	160	249
T/constant	95	166	173	213	1/75	269
S4/varying	-	-	140	207	/169	274
S4/cumul.	121	197	166	238	/ 205	338
S4/constant	111	197	200	261	220	352
S5/varying	-	-	169	248	219	359
S5/cumul.	140	-	215	2 97	272	438
S5/constant	131	-	237	305	272	438

Strongest Prover!
A specialist system.

FML Experiment: 580 problems \times 5 logics \times 3 domain cond. \times 6 provers \times 600s tmo

Logic/			- ATP s	vstem —		
Domain	f2p-MSPASS	MleanSeP		-	${\sf MleanTAP}$	MleanCoP
	v3.0	v1.2	v1.4.2	v2.2	v1.3	v1.2
K/varying	-	-	72	104	-	-
K/cumul.	70	121	89	122	-	-
K/constant	67	124	120	146	-	-
D/varying	-	-	128 81	113	100	179
D/cumul.	79	130	144 100	133	120	200
D/constant	76	134	167 135	160	135	217
T/varying	-	-	170 120	170	138	224
T/cumul.	105	163	190 139	192	160	249
T/constant	95	166	217 173	213	175	269
S4/varying	-	-	140	207	169	274
S4/cumul.	121	197	218 166	238	205	338
S4/constant	111	197	244 200	261	220	352
S5/varying	-	-	169	248	219	359
S5/cumul.	140	_	↑ 215	297	272	438
S5/constant	131	-	/ 237	∱ 305	272	438
L provers, 2	nd best					

HOL provers, 2nd best Strong recent improvements

FML Experiment: 580 problems \times 5 logics \times 3 domain cond. \times 6 provers \times 600s tmo

Logic/			- ATP s	ystem —		
Domain	f2p-MSPASS	MleanSeP			${\sf MleanTAP}$	MleanCoP
	v3.0	v1.2	v1.4.2	v2.2	v1.3	v1.2
K/varying	-	-	72	104	-	_
K/cumul.	70	121	89	122	-	-
K/constant	67	124	120	146	-	-
D/varying	-	-	128 81	113	100	179
D/cumul.	79	130	144 100	133	120	200
D/constant	76	134	167 135	160	135	217
T/varying	-	-	170 120	170	138	224
T/cumul.	105	163	190 139	192	160	249
T/constant	95	166	217 173	213	175	269
S4/varying	-	-	140	207	169	274
S4/cumul.	121	197	218 166	238	205	338
S4/constant	111	197	244 200	261	220	352
S5/varying	-	-	169	248	219	359
S5/cumul.	140	-	215	297	272	438
S5/constant	131	-	237	305	272	438

Results for 20 multimodal logic problems: LEO-II 15, Satallax 14

Summary

I have argued that:

- many non-classical logics are natural fragments of HOL
- they can easily be combined in HOL
- ► they can be automated in HOL (object-level and meta-level)
- ▶ automation of HOL is currently making good progress
- we get reasoners for expressive non-classical logics (and their combinations) for free
- ► for many of those no practical systems are available yet
- ▶ this is relevant for: context and expressive ontologies

Ongoing & future work:

- ▶ automation of expressive ontologies, e.g. SUMO
- proper semantics for SUMO
- ▶ further applications

Summary

I have argued that:

- many non-classical logics are natural fragments of HOL
- they can easily be combined in HOL
- they can be automated in HOL (object-level and meta-level)
- automation of HOL is currently making good progress
- we get reasoners for expressive non-classical logics (and their combinations) for free
- for many of those no practical systems are available yet
- ▶ this is relevant for: context and expressive ontologies

Ongoing & future work:

- automation of expressive ontologies, e.g. SUMO
- proper semantics for SUMO
- further applications