Optimization for Machine Learning Problems

Yan Yan

In last class

- Machine learning task details: classification, clustering and regression
 - Terminology
- Their connection to real world applications
 - Why we need these tools
- A showcase: how to construct a learning model
 - What can be used as features
 - Determine model structure
 - Determine model parameters

Today's class includes

- Why is optimization important in machine learning (for determining model parameters)?
 - Efficiency of optimization algorithms
 - A showcase: the analytical solution VS gradient descent (GD)
- Common optimization algorithms
 - First-order algorithms
 - Second-order algorithms

House price model structure: linear model

An optimization problem (on training set)

• 1-dimensional 1-data showcase with square loss

$$min_w \frac{1}{2}(wx - y)^2$$

Analytical solution?

$$w^* = y/x$$

(first order optimality)

An optimization problem (on training set)

• 1-dimensional multi-data square loss

$$min_w \frac{1}{2n} \sum_{i=1}^{n} (wx - y)^2$$

$$w = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

An optimization problem (on training set)

multi-dimensional multi-data square loss

$$min_{w} \frac{1}{2n} \sum_{i=1}^{n} (x_{i}'w - y_{i})^{2}$$

An optimization problem (on training set)

multi-dimensional multi-data square loss

$$min_w \frac{1}{2n} \sum_{i=1}^{n} (x_i'w - y_i)^2$$

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_i' w x_i - y_i x_i \rightarrow 0$$

An optimization problem (on training set)

• multi-dimensional multi-data square loss

$$min_w \frac{1}{2n} \sum_{i=1}^{n} (x_i'w - y_i)^2$$

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0$$

$$X = [x_1, x_2, ..., x_n] \in \mathbb{R}^{d \times n}$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ ... \end{bmatrix} \in \mathbb{R}^n$$

An optimization problem (on training set)

• multi-dimensional multi-data square loss

$$X = [x_1, x_2, \dots, x_n] \in \mathbb{R}^{d \times n}$$

$$min_w \frac{1}{2n} \sum_{i=1}^{n} (x_i'w - y_i)^2$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} \in \mathbb{R}^n$$

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

An optimization problem (on training set)

multi-dimensional multi-data square loss

$$X = [x_1, x_2, \dots, x_n] \in \mathbb{R}^{d \times n}$$

• Analytical solution?
$$\min_{w} \frac{1}{2n} \sum_{i=1}^{min_{w}} \frac{1}{2n} \sum_{i=1}^$$

$$\min_{w} \frac{1}{2n} \sum_{i=1}^{n} (x_i'w - y_i)^2 \qquad Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} \in \mathbb{R}^n$$

 $\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^{n} x_i' w x_i - y_i x_i \rightarrow 0 \quad \Longrightarrow \quad XX' w^* - XY = 0$

$$XX'w^* - XY = 0$$

$$w^* = (XX')^{-1}XY$$

Q: is this closed form solution a good way in practice? Why?

Computational complexity for the analytical solution?

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to 0 \quad \Longrightarrow \quad XX' w^* - XY = 0 \quad \Longrightarrow \quad w^* = (XX')^{-1} XY$$

Computational complexity for the analytical solution?

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to 0 \quad \Longrightarrow \quad XX' w^* - XY = 0 \quad \Longrightarrow \quad w^* = (XX')^{-1} XY$$

Inverse of a scalar?

$$x x^{-1} = 1 \rightarrow x^{-1} = 1/x$$

Computational complexity for the analytical solution?

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to 0 \quad \Longrightarrow \quad XX' w^* - XY = 0 \quad \Longrightarrow \quad w^* = (XX')^{-1} XY$$

Inverse of a scalar?

Inverse of a matrix?

$$XX^{-1} = 1 \to x^{-1} = 1/x$$

$$XX^{-1} = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Computational complexity for the analytical solution?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

Matrix multiplication

One n imes m matrix & one m imes p matrix

One n imes p matrix

Schoolbook matrix multiplication

O(nmp)

Computational complexity for the analytical solution?

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to 0 \quad \Longrightarrow \quad XX' w^* - XY = 0 \quad \Longrightarrow \quad w^* = (XX')^{-1} XY$$

Matrix multiplication	One $n imes m$ matrix & one $m imes p$ matrix	One $n imes p$ matrix	Schoolbook matrix multiplication	O(nmp)
Matrix inversion*	One $n imes n$ matrix	One $n imes n$ matrix	Gauss-Jordan elimination	$O(n^3)$
			Strassen algorithm	$O(n^{2.807})$
			Coppersmith-Winograd algorithm	$O(n^{2.376})$
			Optimized CW-like algorithms	$O(n^{2.373})$

One $n \times m$ matrix &

Computational complexity for the analytical solution?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

Matrix multiplication	one $m imes p$ matrix	One $n imes p$ matrix	Schoolbook matrix multiplication	O(nmp)
Not every matrix has inversion	has inversion	One $n imes n$ matrix	Gauss-Jordan elimination	$O(n^3)$
Matrix inversion*			Strassen algorithm	$O(n^{2.807})$
Matrix inversion			Coppersmith–Winograd algorithm	$O(n^{2.376})$
			Optimized CW-like algorithms	$O(n^{2.373})$

Computational complexity for the analytical solution?

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to 0 \quad \Longrightarrow \quad XX' w^* - XY = 0 \quad \Longrightarrow \quad w^* = (XX')^{-1} XY$$

• Matrix multiplication:

Computational complexity for the analytical solution?

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to 0 \quad \Longrightarrow \quad XX' w^* - XY = 0 \quad \Longrightarrow \quad w^* = (XX')^{-1} XY$$

• Matrix multiplication:

$$XX': d \times n \times d$$
 $XY: d \times n$ $(XX')^{-1}XY: d \times d \times n$ $\to O(d^2n)$

Computational complexity for the analytical solution?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

Matrix multiplication:

$$XX': d \times n \times d$$
 $XY: d \times n$ $(XX')^{-1}XY: d \times d \times n$ $\to O(d^2n)$

Inverse of a matrix:

$$(XX')^{-1}$$
: $O(d^{2.373})$

Computational complexity for the analytical solution?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

• Matrix multiplication:

$$XX': d \times n \times d$$
 $XY: d \times n$ $(XX')^{-1}XY: d \times d \times n$ $\to O(d^2n)$

Inverse of a matrix:

$$(XX')^{-1}$$
: $O(d^{2.373})$

Total complexity

$$O(d^2n + d^{2.373})$$

Can Gradient Descent (GD) do better?

Can Gradient Descent (GD) do better?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_i' w x_i - y_i x_i \rightarrow O(dn)$$

$$w_{t+1} = w_t - \alpha_t \nabla_w f(w_t) \rightarrow O(d)$$
 An iterative algorithm

Can Gradient Descent (GD) do better?

Can Gradient Descent (GD) do better?

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to O(dn)$$

$$w_{t+1} = w_t - \alpha_t \nabla_w f(w_t) \to O(d) \longrightarrow \text{An iterative algorithm}$$

Suppose run GD for T iterations

Can Gradient Descent (GD) do better?

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to O(dn)$$

$$w_{t+1} = w_t - \alpha_t \nabla_w f(w_t) \to O(d) \longrightarrow \text{An iterative algorithm}$$

- Suppose run GD for T iterations
- Total complexity

O(dnT)

Can Gradient Descent (GD) do better?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_i' w x_i - y_i x_i \rightarrow O(dn)$$

- $w_{t+1} = w_t \alpha_t \nabla_w f(w_t) \rightarrow O(d)$ An iterative algorithm
- Suppose run GD for T iterations
- Total complexity

O(dnT) VS. $O(d^2n + d^{2.373})$ for the closed form solution

Can Gradient Descent (GD) do better?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_i' w x_i - y_i x_i \rightarrow O(dn)$$

$$w_{t+1} = w_t - \alpha_t \nabla_w f(w_t) \rightarrow O(d)$$
 An iterative algorithm

- Suppose run GD for T iterations
- Total complexity

$$O(dnT)$$
 VS. $O(d^2n + d^{2.373})$ for the closed form solution

T < d: then GD has less computational complexity

- When to terminate GD (determining T)?
 - An approximated solution

When to terminate GD (determining T)?

An approximated solution: difficult to set up step size exactly to minimal solution(s)

- When to terminate GD (determining T)?
 - How to measure the approximation error?

$$f(w_T) - f(w_*) \le \epsilon$$

- When to terminate GD (determining T)?
 - How to measure the approximation error?

- When to terminate GD (determining T)?
 - How to measure the approximation error?

• When to terminate GD (determining T)?
• How to measure the approximation error? $f(w_T) - f(w_*) \le \epsilon$ $w_*: \text{ optimal solution } f(w_*) = \min_w f(w)$ No need to know this solution Only for convergence analysis

- When to terminate GD (determining T)?
 - How to measure the approximation error?

Level of accuracy: ϵ -accurate solution

No need to know this solution Only for convergence analysis

- Convergence of GD?
 - When $T \to \infty$, then $\epsilon \to 0$
 - But: when to terminate GD?

- When to terminate GD (determining T)?
 - Provable convergence: rate of convergence
 - If ϵ is a function of T: $\epsilon(T)$
 - Larger $T \to \text{smaller } \epsilon(T)$

- When to terminate GD (determining T)?
 - Provable convergence: rate of convergence
 - If ϵ is a function of T: $\epsilon(T)$
 - Larger $T \to \text{smaller } \epsilon(T)$
 - If determining $\epsilon(T)$ theoretically: we know roughly when to terminate optimization algorithm

- When to terminate GD (determining T)?
 - Provable convergence: rate of convergence
 - If ϵ is a function of T: $\epsilon(T)$
 - Larger $T \to \text{smaller } \epsilon(T)$
 - If determining $\epsilon(T)$ theoretically: we know roughly when to terminate optimization algorithm

- When to terminate GD (determining T)?
 - Provable convergence: rate of convergence
 - If ϵ is a function of T: $\epsilon(T)$
 - Larger $T \to \text{smaller } \epsilon(T)$
 - If determining $\epsilon(T)$ theoretically: we know roughly when to terminate optimization algorithm

- When to terminate GD (determining T)?
 - Main factors influencing convergence rate?
 - Step size (learning rate)

- When to terminate GD (determining T)?
 - Main factors influencing convergence rate?
 - Step size (learning rate)

- When to terminate GD (determining T)?
 - Main factors influencing convergence rate?
 - Step size (learning rate)

- When to terminate GD (determining T)?
 - Main factors influencing convergence rate?
 - Step size (learning rate)

- When to terminate GD (determining T)?
 - Main factors influencing convergence rate?
 - Step size (learning rate)
 - Conditions of the objective function

- When to terminate GD (determining T)?
 - Main factors influencing convergence rate?
 - Step size (learning rate)

- When to terminate GD (determining T)?
 - Main factors influencing convergence rate?
 - Step size (learning rate)
 - Conditions of the objective function

Image from IFT 6085 - Lecture 3 Gradients for smooth and for strongly convex functions http://mitliagkas.github.io/ift6085-2019/ift-6085-lecture-3-notes.pdf

When to terminate GD (determining T)?

Image from IFT 6085 - Lecture 3 Gradients for smooth and for strongly convex functions http://mitliagkas.github.io/ift6085-2019/ift-6085-lecture-3-notes.pdf

- When to terminate GD (determining T)?
 - Come back to our problem setting:
 Convergence rate for GD?

- When to terminate GD (determining T)?
 - Come back to our problem setting:

Convergence rate for GD?

Theorem 2.1.14 If $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$ and $0 < h \leq \frac{2}{\mu+L}$ then the gradient method generates a sequence $\{x_k\}$ such that

$$||x_k - x^*||^2 \le \left(1 - \frac{2h\mu L}{\mu + L}\right)^k ||x_0 - x^*||^2.$$

If
$$h = \frac{2}{\mu + L}$$
 then

$$||x_k - x^*|| \le \left(\frac{Q_f - 1}{Q_f + 1}\right)^k ||x_0 - x^*||,$$

$$f(x_k) - f^* \le \frac{L}{2} \left(\frac{Q_f - 1}{Q_f + 1} \right)^{2k} \| x_0 - x^* \|^2,$$

where $Q_f = L/\mu$.

- When to terminate GD (determining T)?
 - Come back to our problem setting:

Convergence rate for GD?

Theorem 2.1.14 If $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$ and $0 < h \leq \frac{2}{\mu+L}$ then the gradient method generates a sequence $\{x_k\}$ such that

$$||x_k - x^*||^2 \le \left(1 - \frac{2h\mu L}{\mu + L}\right)^k ||x_0 - x^*||^2.$$

If
$$h = \frac{2}{\mu + L}$$
 then

$$||x_k - x^*|| \le \left(\frac{Q_f - 1}{Q_f + 1}\right)^k ||x_0 - x^*||,$$

$$f(x_k) - f^* \le \frac{L}{2} \left(\frac{Q_f - 1}{Q_f + 1} \right)^{2k} \|x_0 - x^*\|^2, \qquad = \epsilon(\mathbf{k}) = O(a^k)$$

where $Q_f = L/\mu$.

- When to terminate GD (determining T)?
 - Come back to our problem setting:

Convergence rate for GD?

Theorem 2.1.14 If $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$ and $0 < h \leq \frac{2}{\mu+L}$ then the gradient method generates a sequence $\{x_k\}$ such that

$$||x_k - x^*||^2 \le \left(1 - \frac{2h\mu L}{\mu + L}\right)^k ||x_0 - x^*||^2.$$

If
$$h = \frac{2}{\mu + L}$$
 then

$$||x_k - x^*|| \le \left(\frac{Q_f - 1}{Q_f + 1}\right)^k ||x_0 - x^*||,$$

$$f(x_k) - f^* \le \frac{L}{2} \left(\frac{Q_f - 1}{Q_f + 1} \right)^{2k} \| x_0 - x^* \|^2,$$
 $= \epsilon(\mathbf{k}) = O(a^k)$

0 < a < 1

where $Q_f = L/\mu$.

 $k = O(\log_{1/a}(1/\epsilon))$

53

Now we can answer the question:

Can Gradient Descent (GD) do better?

 $\operatorname{\mathsf{GD}}
olimits_{O(dnT)}
olimits$

VS

Analytical solution $O(d^2n + d^{2.373})$

Now we can answer the question:
 Can Gradient Descent (GD) do better?

• Is d large?

name	source	type	class	training size	testing size	feature
<u>a1a</u>	<u>UCI</u>	classification	2	1,605	30,956	123
<u>a2a</u>	<u>UCI</u>	classification	2	2,265	30,296	123
<u>a3a</u>	<u>UCI</u>	classification	2	3,185	29,376	123
<u>a4a</u>	<u>UCI</u>	classification	2	4,781	27,780	123
<u>a5a</u>	<u>UCI</u>	classification	2	6,414	26,147	123
<u>a6a</u>	<u>UCI</u>	classification	2	11,220	21,341	123
<u>a7a</u>	<u>UCI</u>	classification	2	16,100	16,461	123
<u>a8a</u>	<u>UCI</u>	classification	2	22,696	9,865	123
<u>a9a</u>	<u>UCI</u>	classification	2	32,561	16,281	123
<u>australian</u>	Statlog	classification	2	690		14
<u>avazu</u>	Avazu's Click-through Prediction	classification	2	40,428,967	4,577,464	1,000,000
<u>breast-cancer</u>	<u>UCI</u>	classification	2	683		10
<u>cod-rna</u>	[<u>AVU06a</u>]	classification	2	59,535		8
<u>colon-cancer</u>	[<u>AU99a</u>]	classification	2	62		2,000
covtype.binary	<u>UCI</u>	classification	2	581,012		54
<u>criteo</u>	Criteo's Display Advertising Challenge	classification	2	45,840,617	6,042,135	1,000,000
criteo tb	Criteo's Terabyte Click Logs	classification	2	4,195,197,692	178,274,637	1,000,000
<u>diabetes</u>	<u>UCI</u>	classification	2	768		8
duke breast-cancer	[<u>MW01a</u>]	classification	2	44		7,129
<u>epsilon</u>	PASCAL Challenge 2008	classification	2	400,000	100,000	2,000
<u>fourclass</u>	[<u>TKH96a</u>]	classification	2	862		2
german.numer	Statlog	classification	2	1,000		24
<u>gisette</u>	NIPS 2003 Feature Selection Challenge [IG05a]	classification	2	6,000	1,000	5,000
<u>heart</u>	Statlog	classification	2	270		13
<u>HIGGS</u>	<u>UCI</u>	classification	2	11,000,000		28
<u>ijenn1</u>	[<u>DP01a</u>]	classification	2	49,990	91,701	22
<u>ionosphere</u>	<u>UCI</u>	classification	2	351		34
kdd2010 (algebra)	KDD CUP 2010	classification	2	8,407,752	510,302	20,216,830
kdd2010 (bridge to algebra)	KDD CUP 2010	classification	2	19,264,097	748,401	29,890,095
kdd2010 raw version (bridge to algebra)	KDD CUP 2010	classification	2	19,264,097	748,401	1,163,024
kdd2012	KDD CUP 2012	classification	2	149,639,105		54,686,452

name	source	type	class	training size	testing size	feature		
<u>a1a</u>	<u>UCI</u>	classification	2	1,605	30,956	123		
<u>a2a</u>	<u>UCI</u>	classification	2	2,265	30,296	123		
<u>a3a</u>	<u>UCI</u>	classification	2	3,185	29,376	123		
<u>a4a</u>	<u>UCI</u>	classification	2	4,781	27,780	123		
<u>a5a</u>	<u>UCI</u>	classification	2	6,414	26,147	123		
<u>a6a</u>	<u>UCI</u>	classification	2	11,220	21,341	123		
<u>a7a</u>	<u>UCI</u>	classification	2	16,100	16,461	123		
<u>a8a</u>	<u>UCI</u>	classification	2	22,696	9,865	123		
<u>a9a</u>	<u>UCI</u>	classification	2	32,561	16,281	123		
<u>australian</u>	Statlog	classification	2	690	-	14		
avazu	Avazu's Click-through Prediction	classification	2	40,428,967	4,577,464	1,000,000		1,000,000
<u>breast-cancer</u>	<u>UCI</u>	classification	2	683	_	10		
<u>cod-rna</u>	[<u>AVU06a</u>]	classification	2	59,535		8		
<u>colon-cancer</u>	[<u>AU99a</u>]	classification	2	62		2,000		
<u>covtype.binary</u>	<u>UCI</u>	classification	2	581,012	-	54		1 000 000
<u>criteo</u>	Criteo's Display Advertising Challenge	classification	2	45,840,617	6,042,135	1,000,000		1,000,000
criteo tb	Criteo's Terabyte Click Logs	classification	2	4,195,197,692	178,274,637	1,000,000	Ц	1,000,000 1,000,000
<u>diabetes</u>	<u>UCI</u>	classification	2	768	_	8		=,000,000
duke breast-cancer	[<u>MW01a</u>]	classification	2	44		7,129		
<u>epsilon</u>	PASCAL Challenge 2008	classification	2	400,000	100,000	2,000		
<u>fourclass</u>	[<u>TKH96a</u>]	classification	2	862		2		
german.numer	Statlog	classification	2	1,000		24		
<u>gisette</u>	NIPS 2003 Feature Selection Challenge [IG05a]	classification	2	6,000	1,000	5,000		
<u>heart</u>	Statlog	classification	2	270		13		
<u>HIGGS</u>	<u>UCI</u>	classification	2	11,000,000		28		
<u>ijenn1</u>	[<u>DP01a</u>]	classification	2	49,990	91,701	22		
<u>ionosphere</u>	<u>UCI</u>	classification	2	351	_	34		20,216,830
kdd2010 (algebra)	KDD CUP 2010	classification	2	8,407,752	510,302	20,216,830		29,890,095
kdd2010 (bridge to algebra)	KDD CUP 2010	classification	2	19,264,097	748,401	29,890,095		
kdd2010 raw version (bridge to algebra)	KDD CUP 2010	classification	2	19,264,097	748,401	1,163,024		1,164,024
<u>kdd2012</u>	KDD CUP 2012	classification	2	149,639,105		54,686,452	Ц	54,686,452
					_			54,080,452

• Is *d* large? Yes!

• Is d large? Yes! GD O(dnT) VS Analytical solution $O(d^2n + d^{2.373})$

• Is d large? Yes! GD VS Analytical solution $O(d^2n + d^{2.373})$ $O(dn \times log_{1/a}(1/\epsilon))$

• Is d large? Yes! GD VS Analytical solution O(dnT) $O(dn \times log_{1/a}(1/\epsilon))$

If: $n = 10^8$ $d = 10^6$

• Is d large? Yes! Analytical solution GD VS O(dnT) $(dn) \log_{1/a}(1/\epsilon)$ $(10^6)^2 \times 10^8 - (10^6 \times 10^8) = 10^{20} - 10^{14}$ $n = 10^{8}$

• Is *d* large? Yes! Analytical solution GD VS O(dnT) $(dn) \log_{1/a}(1/\epsilon))$ $(10^6)^2 \times 10^8 - (10^6 \times 10^8) = 10^{20} - 10^{14} \approx 10^{20}$ $n = 10^{8}$

• Is d large? Yes! Analytical solution GD VS O(dnT) $(dn) \log_{1/a}(1/\epsilon)$ $(10^6)^2 \times 10^8 - 10^6 \times 10^8 = 10^{20} - 10^{14} \approx 10^{20}$ $n = 10^{8}$ $O\left(dn \times log_a\left(\frac{1}{\epsilon}\right)\right) \ll O(d^2n + n^{2.373})$

Other optimization algorithms

- First-order algorithms
 - Gradient descent
 - Momentum methods
 - Stochastic variants
 - Hessian vector products
- Second-order algorithms
 - Newton method
 - Quasi-newton method

Other optimization algorithms

- First-order algorithms (commonly used and researched in machine learning)
 - Gradient descent
 - Momentum methods
 - Stochastic variants
 - Hessian vector products
- Second-order algorithms
 - Newton method
 - Quasi-newton method

References

- Jung, Alexander. (2018). Machine Learning: Basic Principles.
- Nesterov, Yurii. *Introductory lectures on convex optimization: A basic course*. Vol. 87. Springer Science & Business Media, 2003.