Question	Scheme	Marks
10(a)	$\alpha + \beta = -\frac{k}{2} \qquad \alpha \beta = 2$	B1
	$(\alpha - \beta)^{2} = (\alpha + \beta)^{2} - 4\alpha\beta, \alpha^{2} - \beta^{2} = (\alpha + \beta)(\alpha - \beta)$	B1B1
	$\Rightarrow \alpha^2 - \beta^2 = (\alpha + \beta)\sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$	
	$\Rightarrow \alpha^2 - \beta^2 = \left(-\frac{k}{2}\right)\sqrt{\left(-\frac{k}{2}\right)^2 - 4 \times 2} = \frac{7\sqrt{17}}{4}$	M1
	$\Rightarrow \frac{k^4}{4} - 8k^2 - \frac{833}{4} = 0 \Rightarrow k^4 - 32k^2 - 833 = 0 \text{ or any equivalent}$	M1A1
	$\Rightarrow (k^2 - 49)(k^2 + 17) = 0 \Rightarrow k = -7 *$	M1A1
		[8]
(b)	Product: $\left[(\alpha - \beta)(\alpha + \beta) = \alpha^2 - \beta^2 = \frac{7\sqrt{17}}{4} \right]$ from (a)	B1
	Sum: $(\alpha - \beta) + (\alpha + \beta) = \frac{\sqrt{17}}{2} + \frac{7}{2} = \left(\frac{\sqrt{17} + 7}{2}\right)$	M1
	$x^{2} - \left(\frac{\sqrt{17} + 7}{2}\right)x + \frac{7\sqrt{17}}{4} = 0 \Rightarrow 4x^{2} - 2\left(\sqrt{17} + 7\right)x + 7\sqrt{17} = 0$	M1A1
	Total	[4] 12 marks
	1 Otal .	14 maiks

There is an alternative solution using the roots of the equation.

Roots are
$$\frac{-k \pm \sqrt{k^2 - 4 \times 2 \times 4}}{2 \times 2}$$

$$\Rightarrow \left(\frac{-k + \sqrt{k^2 - 32}}{4}\right)^2 - \left(\frac{-k - \sqrt{k^2 - 32}}{4}\right)^2 = \frac{7\sqrt{17}}{4}$$

$$\Rightarrow \left(-k + \sqrt{k^2 - 32}\right)^2 - \left(-k - \sqrt{k^2 - 32}\right)^2 = 28\sqrt{17}$$

$$\Rightarrow k^2 - 2k\sqrt{k^2 - 32} + k^2 - 32 - k^2 - 2k\sqrt{k^2 - 32} - k^2 + 32 = 28\sqrt{17}$$

$$\Rightarrow -4k\sqrt{k^2 - 32} = 28\sqrt{17} \Rightarrow k\sqrt{k^2 - 32} = 7\sqrt{17}$$

$$\Rightarrow k^2 \left(k^2 - 32\right) = 833 \Rightarrow k^4 - 32k^2 - 833 = 0$$

$$\Rightarrow \left(k^2 - 49\right)\left(k^2 + 17\right) = 0 \Rightarrow k = -7*$$

Part	Mark	Notes
(a)	B1	For the correct sum in terms of k and the correct product.
		Look out for these embedded in their work.
	B1	For the correct algebra on $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$
		Substitution not required for this mark, although it can be implied from
		correct substitution without the actual algebra seen.
	B1	For the correct algebra on $\alpha^2 - \beta^2$
		Award also for $(\alpha + \beta)(\alpha - \beta) = \frac{7\sqrt{17}}{4}$
		Substitution not required for this mark, although it can be implied from
		correct substitution without the actual algebra seen.
	M1	For substituting in the values of their sum and product into their
		$\alpha^2 - \beta^2$
		This can be implied from sight of $\left(-\frac{k}{2}\right)\sqrt{\left(-\frac{k}{2}\right)^2 - 4 \times 2} = \frac{7\sqrt{17}}{4}$
	M1	For forming a 3TQ in terms of k^2 in any form
	A1	For the correct 3TQ
		Accept it in any form as long as it is 3 terms.
		For example, accept $\frac{k^4}{16} - 2k^2 - \frac{833}{16} = 0$ etc
	M1	For any acceptable attempt seen to solve their 3TQ [see General
		Guidance]
		If there is no working, just $k = -7$ following a 3TQ then award M0
		However, accept evidence of $k^2 = 49$ [with $k^2 = -17$]
	A1	For the correct value of k *
	cso	Note: This is a given value
(b)	B1	For a value for the product using their results from (a) or just writes it down.
	M1	For a correct method to find the value of the sum using their values for
		$(\alpha - \beta)$ and $(\alpha + \beta)$
	M1	For forming a 3TQ with their sum and product.
		= 0 is not required for the award of this mark
	A1	For a correct equation simplified or unsimplified.
		For example, accept, $x^2 - \left(\frac{\sqrt{17} + 7}{2}\right)x + \frac{7\sqrt{17}}{4} = 0$ as well as
		$4x^2 - 2(\sqrt{17} + 7)x + 7\sqrt{17} = 0 \text{ o.e.}$

Question	Scheme	Marks
11(a)	$f(\theta) = (2\cos\theta - \sin\theta)(2\sin\theta + \cos\theta)$	
	$= 4\sin\theta\cos\theta + 2\cos^2\theta - 2\sin^2\theta - \sin\theta\cos\theta$	
	$= 3\sin\theta\cos\theta + 2(\cos^2\theta - \sin^2\theta) \Rightarrow \frac{3}{2}\sin 2\theta, +2\cos 2\theta$	M1
	$= \frac{3}{2}\sin 2\theta + 2\cos 2\theta *$	M1A1 cso
		[3]
(b)	$\frac{3}{2}\sin 2\theta + 2\cos 2\theta + 2 = 0 \Rightarrow 3\sin 2\theta + 4\cos 2\theta + 4 = 0$	
	$\Rightarrow 3\sin 2\theta + 4(\cos^2\theta - \sin^2\theta) + 4(\sin^2\theta + \cos^2\theta) = 0$	M1M1
	$\Rightarrow 6\sin\theta\cos\theta + 8\cos^2\theta = 0$	M1
	$\Rightarrow \cos\theta(6\sin\theta + 8\cos\theta) = 0$	N/ 1
	_	M1
	$\Rightarrow \cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2} *$	A1
	$\Rightarrow \tan \theta = -\frac{4}{3}$	cso [5]
	3	[2]
(c)	Area = $\int_0^{\frac{\pi}{2}} \left(\frac{3}{2} \sin 2\theta + 2 \cos 2\theta + 2 \right) d\theta = \left[-\frac{3}{4} \cos 2\theta + \frac{2 \sin 2\theta}{2} + 2\theta \right]_0^{\frac{\pi}{2}}$	M1
	$= \left(-\frac{3}{4}\cos 2\left(\frac{\pi}{2}\right) + \frac{2\sin 2\left(\frac{\pi}{2}\right)}{2} + 2\left(\frac{\pi}{2}\right)\right) - \left(-\frac{3}{4}\cos 0 + \frac{2\sin 0}{2} + 2\times 0\right)$	M1
	$= \left(\frac{3}{4} + \pi\right) - \left(-\frac{3}{4}\right) = \frac{3}{2} + \pi$	A1
		[3]
	Total	11 marks

Part	Mark	Notes	
(a)		For multiplying out the brackets correctly and simplifying to	
	M1	$k \sin \theta \cos \theta$, $l(\cos^2 \theta - \sin^2 \theta)$ where k and l are integers.	
		Condone invisible brackets if the working is clear.	
		For using the identity for $\cos 2\theta$ on their $2(\cos^2 \theta - \sin^2 \theta)$	
	M1	OR	
		For using the identity for $\sin 2\theta$ on their $3\sin\theta\cos\theta$	
	A1	For the correct identity as shown with no errors.	
		You must check every line of working carefully – this is a given	
	cso	answer.	
	Solutions based on RHS = LHS are acceptable. Apply the above marks $-$ if you		
	are not sure, please send to REVIEW		

(b)	M1	For correctly using the identity $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
	M1	For correctly using the identity $\sin^2 \theta + \cos^2 \theta = 1$
	M1	For correctly using the identity $\sin 2\theta = 2\sin \theta \cos \theta$
	M1	For factorising the resulting expression. You must see this step
	A1	
	cso	For $\cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}$
	ALT	
		For correctly using $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
	M1	$\frac{3}{2}\sin 2\theta + 2\cos 2\theta + 2 = \frac{3}{2}\sin 2\theta + 2\left(\cos^2\theta - \sin^2\theta\right) = 0$
		For correctly using the identity $\sin^2 \theta + \cos^2 \theta = 1$
	M1	$\frac{3}{2}\sin 2\theta + 2\cos 2\theta + 2 = \frac{3}{2}\sin 2\theta + 2(\cos^2 \theta - 1 + \cos^2 \theta) + 2 = 0$
		$\Rightarrow \left[\frac{3}{2} \sin 2\theta + 4 \cos^2 \theta = 0 \right]$
		For correctly using the identity $\sin 2\theta = 2\sin \theta \cos \theta$
	M1	$\frac{3}{2}\sin 2\theta + 4\cos^2 \theta = 3\sin \theta \cos \theta + 4\cos^2 \theta = 0$
	M1	For factorising the resulting expression. You must see this step $3\sin\theta\cos\theta + 4\cos^2\theta = \cos\theta(3\sin\theta + 4\cos\theta) = 0$
	A1	$\cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2} *$
(c)	M1	For integrating the given expression. Minimally acceptable integration as shown below:
		$\frac{3}{2}\sin 2\theta \Rightarrow \pm \frac{3}{4}\cos 2\theta$
		$2\theta\cos 2\theta \Rightarrow \pm \left(\frac{2}{2}\right)\sin 2\theta$
		$2 \Rightarrow 2\theta$
	M1	For substituting BOTH of the given limits the correct way around into
		their changed expression and subtracting There must be a minimum
		of two terms to substitute
		limits into.
		This must be explicitly seen
	A1	For the correct exact area as shown.
	A1	[Approximate area = 4.641]
	l	I to the second