代数 2 H 课程讲义

Instructor: 余成龙 Notes Taker: 刘博文

Qiuzhen College, Tsinghua University $2022 \ {\rm Fall}$

课程信息:

◊ 授课人: 余成龙;

◇ 办公室: 近春园西楼 260;

♦ 邮箱: yuchenglong@mail.tsinghua.edu.cn;

◇ 成绩分布: 作业 (20%) + 期中 (30%) + 期末 (50%);

◇ 参考书: M.Atiyah Communicative algebra, S.Lang Algebra. 内容大纲:

◊ 伽罗瓦理论;

◊ 同调代数;

◊ 交换代数.

目录

第一部	分 伽罗瓦理论	3
第一章	域论	4
1.1	域扩张	4
1.2	代数扩张	5
1.3	分裂域	6

第一部分

伽罗瓦理论

第一章 域论

1.1 域扩张

在本课程中, 如不加特殊说明, 环 R 总是指含有单位元的交换环, 并且环同态是保持单位元的.

定义 1.1.1. 对于环 R, 总有环同态 $\rho: \mathbb{Z} \to R$, 如果记 $\ker \rho = (n)$, 那么 R 的特征 (characteristic)定义为 n.

定义 1.1.2. 如果环 R 中任何非零元素都可逆, 那么环 R 被称为一个域 (field), 并且显然对于域来说, 其特征为素数.

我们在学习环论时, 环的理想是一个非常重要的概念, 但是对域来说, 其只有平凡理想, 即只有零理想及自身. 这很大程度上限制了域之间的同态, 假设有域同态 τ : $E \to F$, 那么如果 τ 不是零映射, 那么 τ 一定是单射, 从而我们不妨将 E 视作包含在 F 中, 这引出了下面的概念.

定义 1.1.3. 给定域 E, F, 如果存在 (单) 同态 $\tau: F \to E$, 那么称 E 是域 F 的扩张 (extension), 记做 E/F.

注记. 当我们用 (单) 同态 τ 表示域扩张 E/F 时, 我们不仅强调我们可以将 F 视作 E 的子域, 也强调映射 τ 是如何映射的, 因为可能存在多种方式将 F 视作 E 的子域, 例如:

$$\tau \colon \mathbb{Q}[x]/(x^2+1) \to \mathbb{C}$$
 $\tau' \colon \mathbb{Q}[x]/(x^2+1) \to \mathbb{C}$ $x \mapsto i$ $x \mapsto -i$

都给出了这样的映射.

定义 1.1.4. 给定域扩张 E/F, 扩张的次数 (degree)定义为 $[E:F] = \dim_F E$.

定义 1.1.5. 一个域扩张被称为**有限的** (finite extension), 如果其扩张次数有限, 否则被称为**无限的** (infinite extension).

命题 1.1.6. 对于域扩张 $F \subseteq E \subseteq K$, 则 [K:F] = [K:E][E:F].

证明: 先假设 E/F, K/E 都是有限扩张, 取 E 的一组 F-基 $\{\alpha_1, \ldots, \alpha_n\}$ 以及 K 的一组 E-基 $\{\beta_1, \ldots, \beta_m\}$, 那么简单的线性代数告诉我们 $\{\alpha_i\beta_i\}$ 是 K 的一组 F-基.

例子. \mathbb{C}/\mathbb{R} 是二次扩张, \mathbb{R}/\mathbb{O} 是无穷扩张.

例子. $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}/\mathbb{Q}$ 是二次扩张.

例子. 给定域 F. 考虑

$$F(x) = \{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in F[x] \}$$

则 F(x) 是 F 的域扩张.

注记. 即任何域都可以找到一个更大的域作为其域扩张, 并且上述操作可以多次操作, 得到 F(x,y), F(x,y,z) 等等.

定义 1.1.7. E/F 是域扩张, $S \subseteq K$ 是一个子集, 则记 F[S] 是 E 中包含 F,S 的最小的子环; F(S) 是 E 中包含 F,S 最小的子域. 特别地, 如果 $S = \{u\}$, 称 F(u) 叫做域 F 的一个**单扩张** (simple extension).

命题 1.1.8. 假设域 \mathbb{F} 的特征不为 2, 如果 E/F 是二次扩张, 那么 $E=F(\alpha)$, 其中 $\alpha^2 \in F$.

证明: 假设 $\{1,\beta\}$ 是 E 的一组 F-基, 那么 $\beta^2 = a + b\beta$, 其中 $a,b \in F$, 注意到

$$(\beta - \frac{1}{2}b)^2 = a + \frac{1}{4}b^2 \in F$$

那么 $\alpha = \beta - \frac{1}{2}$ 即可.

注记. 域的特征不为 2 用在了配方上, 这是一个不可缺少的条件.

问题 1.1.9. 特征 2 域上的二次扩张是什么样的?

研究域扩张的一个重要的好处就是可以帮助我们求解方程, 例如 $x^2 + 1 = 0$ 在 \mathbb{R} 上没有根, 但是我们可以在 \mathbb{R} 的域扩张 \mathbb{C} 中找到它的一个根, 实际上, 我们总可以通过域扩张的办法去寻找根.

命题 1.1.10. 给定域 F 以及多项式 $f(x) \in F[x]$, 存在域扩张 E/F 使得 f(x) 在 E 中有根.

证明: 将 f(x) 在 F[x] 中写作不可约因子 $p_1(x) \dots p_k(x)$ 的乘积, 如果有一次因子, 那么 f(x) 在 F 中就有根, 否则取某个不可约多项式 $p_1(x)$, 考虑

$$E = F[x]/(p_1(x))$$

那么 E/F 是一个域扩张, 并且 f(x) 在 E 中有根 $x + (p_1(x))$.

1.2 代数扩张

定义 1.2.1. $u \in E$ 称为在 F 上代数 (algebraic), 如果存在非零多项式 $p(x) \in F[x]$, 使得 p(u) = 0, 否则则称 u 在 F 上超越 (transcendental).

例子. $\sqrt{2}$ 在 \mathbb{Q} 上是代数元, e,π 在 \mathbb{R} 上是超越元.

定义 1.2.2. 给定域扩张 E/F, $\alpha \in E$ 在 F 上代数,则满足 $f(\alpha) = 0$ 的次数最低的首一多项式 f(x) 称为 α 的极小多项式 (minimal polynomial).

注记. 我们还可以如下刻画 α 是否在 F 上代数: 考虑赋值映射 $\theta_u: F[x] \to F[\alpha]$, 则 α 在 F 上代数当且仅当 $\ker \theta_\alpha \neq 0$; α 在 α 上超越当且仅当 $\ker \theta_\alpha = 0$, 即 α 是一个同构.

命题 1.2.3. 给定域扩张 E/F, $\alpha \in E$ 在 F 上代数, p(x) 是其极小多项式, 那么 $[F(\alpha):F] = \deg p(x)$.

证明:注意到 $F(\alpha) \cong F[x]/(p(x))$,并且 $[F[x]/(p(x)):F] = \deg p(x)$.

引理 1.2.4. $F(\alpha)/F$ 是单扩张, α 在 F 上代数, p(x) 是其极小多项式, 如果 E/F 是域扩张, $\beta \in E$ 使得 $p(\beta) = 0$, 则存在 F 嵌入 $\tau \colon F(\alpha) \hookrightarrow E$ 使得 $\tau(\alpha) = \beta, \tau|_F = \mathrm{id}$.

证明:注意到 $F(\alpha) \cong F[x]/(p(x))$,考虑如下交换图即可:

定义 1.2.5. 域扩张 E/F 称为代数扩张 (algebraic extension), 如果 E 中任何一个元素都在 F 上代数, 否则称为超越扩张 (transcendental extension).

例子. \mathbb{C}/\mathbb{R} 是代数扩张.

命题 1.2.6. 有限扩张是代数扩张.

证明: 假设 E/F 是有限扩张, 任取 $\alpha \in E$, 考虑 $1, \alpha, \alpha^2, \ldots$, 由于 E/F 是有限扩张, 则存在足够大的 n 使得

$$\alpha^{n+1} = a_n \alpha^n + \dots + a_1 \alpha + a_0$$

从而 $\alpha \in E$ 在 F 上代数, 即 E/F 是代数扩张.

注记. 反之并不成立, 即代数扩张不一定是有限扩张.

推论 1.2.7. 给定域扩张 E/F, 如果 $\alpha, \beta \in E$ 都在 F 上代数, 则 $\alpha \pm \beta, \alpha\beta, \alpha/\beta(\beta \neq 0)$ 都在 F 上代数.

证明:由于 $\alpha, \beta \in E$ 都是代数的,那么 $F(\alpha), F(\beta)$ 都是有限扩张,从而 $F(\alpha, \beta)$ 也是有限扩张,从而是代数扩张,即 $\alpha \pm \beta, \alpha\beta, \alpha/\beta(\beta \neq 0)$ 都是代数的.

注记. 这也就是说 E 中所有在 F 上代数的元素组成了 E 的一个子域.

1.3 分裂域

定义 1.3.1. 给定域扩张 E/F, 多项式 $p(x) \in F[x]$ 在 E 中分裂 (split), 如果 p(x) 在 E 中可以写成:

$$p(x) = c \prod_{i=1}^{n} (x - \alpha_i)$$

其中 $\alpha_i \in E$.

定义 1.3.2. 给定域扩张 E/F, E 被称作是 $p(x) \in F[x]$ 的分裂域 (splitting field), 如果 E 是包含 F 使得 p(x) 分裂的最小的域.

定理 1.3.3. 多项式 $p(x) \in F[x]$ 的分裂域 E 存在,并在在同构意义下唯一. 并且 $[E:F] \le n!$,其中 $n = \deg p(x)$.

证明: 我们通过对 p(x) 次数的归纳来证明存在唯一性, 当 n=1 的时候是显然的.

1. 存在性: 根据命题1.1.10, 总可以找到域扩张 F'/F 使得 p(x) 在 F' 中有根, 因此 p(x) 在 F'[x] 中可以写成:

$$p(x) = (x - u)p_1(x), \quad \deg p_1(x) = n - 1$$

因此利用归纳假设, 存在 $p_1(x)$ 在 F' 上的唯一的分裂域 E, 并且 $[E:F'] \leq (n-1)!$, 根据分裂域的定义自然有 E 也是 p(x) 在 F 上的分裂域, 并且 $[E:F] = [E:F'][F':F] \leq (n-1)! \cdot n = n!$.

2. 唯一性: 如果 E' 是 p(x) 在 F 上的另一个分裂域, 根据引理1.2.4, 存在嵌入 $F' \hookrightarrow E'$, 那 么 E' 也应是 $p_1(x)$ 在 F' 上的分裂域, 因此 $E' \cong E$.

索引

代数, algebraic, 5 代数扩张, algebraic extension, 6 分裂, split, 6 分裂域, splitting field, 6 单扩张, simple extension, 5 域, field, 4 域扩张, field extension, 4 域扩张的次数, degree of field extension, 4

无限扩张, infinite extension, 4 有限扩张, finite extension, 4 极小多项式, minimal polynomial, 5

特征, characteristic, 4

超越, transcendental, 5 超越扩张, transcendental extension, 6