Задание 9

Преобразование Контекстно-Свободных языков

Ключевые слова ¹:язык, контекстно-свободный язык, магазинный автомат, грамматика, морфизм, метод математической индукции.

1 Теорема Хомского-Шютценберже

Обозначим D_n язык правильных скобочных выражений (язык Дика) с n типами скобок. Язык D_n определён над размеченым алфавитом $\Sigma = \Sigma_n \cup \bar{\Sigma}_n$ – в Σ_n входят открывающие скобки, в $\bar{\Sigma}_n$ закрывающие.

Будем говорить, что КС-язык $L \subseteq \Delta^*$ задан в представлении Хомского-Шютценберже, если определены язык Дика D_n , регулярный язык $R \subseteq \Sigma^*$ и морфизм $h: \Sigma^* \to \Delta^*$ и $L = h(R \cap D_n)$.

Теорема (Хомский, Шютценберже, 1963). Язык $L \subseteq \Delta^*$ является контекстносвободным тогда и только тогда, когда существуют такое n, регулярный язык R и морфизм $h: \Sigma^* \to \Delta^*$, что $h(D_n \cap R) = L$.

Доказательство. Пусть КС-язык задан грамматикой $G=(N,\Sigma,P,S)$, где N — множество нетереминалов, Σ — алфавит, P — правила вывода, а S — аксиома. Без ограничения общности будем считать, что G не содержит ε -правил, кроме быть может $S \to \varepsilon$, причём тогда нетерминал S больше не входит в правые части правил.

Зафиксируем язык D_n , где $n=|N|+|\Sigma|$. Поставим в соответствие каждому элементу X из $N\cup\Sigma$ пару скобок $[_X$ и $_X]$. Неформально опишем язык R, описав все регулярные события 2 , которые допустимы в R. Сначала опишем вспомогательную конструкцию. Для каждого нетерминала A, определим множество R_A , в которое, для каждого правило $A\to X_1X_2\ldots X_n$ грамматики G, входит соответствующее слово $w=[_{X_n}[_{X_{n-1}}\ldots[_{X_{n-i}}\ldots[_{X_1}]$.

$$R_A = \{ w = [X_n | X_{n-1} \dots [X_{n-i} \dots [X_n] | A \to X_1 X_2 \dots X_n \in P \}$$

 $^{^{1}}$ минимальный необходимый объем понятий и навыков по этому разделу)

²Свойства слов, проверяемые ДКА.

Теперь опишем регулярные события, задающие R.

- Любое слово из R начинается со скобки [s];
- После закрывающей скобки]_A идёт слово из R_A , где $A \in N$;
- После открывающей скобки [$_{\sigma}$ может идти закрывающая скобка $_{\sigma}$];
- После закрывающей скобки $]_X$ может идти закрывающая скобка $_Y],$ где $X,Y\in N\cup T.$

Таким образом, если слово w лежит в языке $D_n \cap R$, то оно является кодированием левого вывода некоторого слова u в грамматике G: по подслову $]_A[X_n[X_{n-1}\dots[X_{n-i}\dots[X_1\ X_1]]$ однозначно восстанавливается правило $A\to X_1X_2\dots X_n$. Осталось определить морфизм h, который и даёт переход от слова $w\in R\cap D_n$ к слову $u\in L$. Он устроен следующим образом: $h(\sigma])=\sigma\ \forall \sigma\in \Sigma$, иначе $h(x])=\varepsilon\ \forall X\in N$ и $h([x])=\varepsilon\ \forall X\in N\cup\Sigma$. Таким образом мы показали, что любой КС-язык представим в форме XIII и привели эффективный алгоритм построения по языку формы XIII.

Пусть теперь язык задан в представлении XIII (D_n, R, h) . Построим по нему МП-автомат, который будет недетерминировано угадывать прообраз $h^{-1}(w)$ слова w и проверять удовлетворяет ли он регулярному ограничению R и является ли он правильным скобочным выражением. Поскольку такой автомат можно построить, то язык, заданный в форме XIII является КС-языком.

Упражнение 1. В доказательстве есть тонкое место про кодирование левого вывода. Для достаточной строгости это утверждение надо доказать по индукции. Проведите это доказательство.

Аккуратно и понятно это сделать не очень просто. См. доказательства в следующем разделе, которые я постарался сделать законченными – идея в доказательстве упражнения такая же, как и в обосновании корректности алгоритма построения грамматики по МП-автомату.

2 От МП-автоматов к КС-грамматикам

Опишем алгоритм построения КС-грамматики G по N-автомату³ $M = (\Sigma, \Gamma, Q, q_0, Z_0, \delta, \emptyset)$. G = (N, T, P, S), причём

³допускающему по пустому стеку

- $T = \Sigma$;
- $N = \{ [qZp] \mid q, p \in Q, Z \in \Gamma \}$
- Если $\delta(q, u, Z) \vdash (q_1, Y_1, Y_2, \dots Y_n)$, то P содержит правила $[qZp] \to u[q_1Y_1r_1][r_1Y_2r_2]\dots[r_{n-2}Y_{n-1}r_{n-1}][r_{n-1}Y_np], u \in \Sigma \cup \varepsilon$, для всевозможных наборов состояний $r_1, r_2, \dots, r_{n-1} \in Q$. Если $\delta(q, u, Z) = (p, \varepsilon)$, то P содержит правило $[qZp] \to u$.
- $\forall p \in Q \ S \to [q_0 Z_0 p] \in P$.

Обратите внимание, что слова u и v которые будут фигурировать дальше в правилах либо буквы, либо пустые слова. Идея алгоритма состоит в том, что левый вывод слова w в грамматике G соответствует успешной последовательности конфигураций на входе w автомата M. Состояние q в первом слева нетерминале и есть состояние, в котором находится автомат при обработке слова. Если автомат находясь в состоянии q, видя на верхушке стека Z, переходит в состояние q_1 , и при этом кладёт что-то в стек, то в выводе грамматики нетерминал [qZp] раскрывается как $u[q_1Y_1r_1][r_1Y_2r_2]\dots[r_{n-2}Y_{n-1}r_{n-1}][r_{n-1}Y_np]$, таким образом в выводе грамматики слева опять оказывается текущее состояние автомата q_1 , а также в нетерминалах закодировано содержимое его стека. Если же, автомат выталкивает символ Y_1 из стека читая v и переходит из состояния q_1 в r_1 , то в грамматике есть правило $[q_1Y_1r_1] \to v$, таким образом $[qZp] \Rightarrow_L uv[r_1Y_2r_2] \dots [r_{n-2}Y_{n-1}r_{n-1}][r_{n-1}Y_np]$ и опять таки в промежуточном шаге вывода закодировано текущее состояние автомата и содержание его стека. Вторые состояния в кодировке нетерминалов [qZp] нужны для того, чтобы обеспечить корректность кодировки протокола переходов от одной поверхностной конфигурации к другой.

Перейдём к формальной части доказательства. Покажем что $L(M)\subseteq L(G)$.

Утверждение 1. Если $(q_0, uv, Z_0) \vdash^* (q, v, Y_1Y_2 \dots Y_n)$, тогда для всевозможных состояний $r_1, r_2, \dots r_n, p \in Q$ справедливо

$$S \Rightarrow_L^* u[qY_1r_1][r_1Y_2r_2]\dots[r_{n-2}Y_{n-1}r_{n-1}][r_{n-1}Y_np].$$

Докажем индукцией по числу тактов k работы автомата M.

<u>База:</u> k=1. Тогда, $(q_0, uv, Z_0) \vdash (q, v, Y_1Y_2 \dots Y_n)$, переход происходит за один такт работы. Построим соответствующий вывод. Сначала применим правило $S \to [qZp]$, а далее раскрываем нетерминал [qZp] – соответствующее правило есть в G по алгоритму построения.

Переход: пусть утверждение верно для k = n – покажем, что оно верно для k = n+1. Пусть $(q_0, uv, Z_0) \vdash^* (q, v, Y_1Y_2 \dots Y_n)$ и переход выполнен за n+1 такт работы автомата M. Рассмотрим конфигурацию, соответствующую n-ому такту автомата. Пусть она имеет вид $(q_1, u_l v, Z_1 Z_2 \dots Z_N)$ и при этом $(q_1, u_l v, Z_1 Z_2 \dots Z_N) \vdash (q, v, Y_1 Y_2 \dots Y_n)$. По предложению индукции,

$$S \Rightarrow_L^* u_1 \dots u_{l-1}[q_1 Z_1 r_1'][r_1' Z_2 r_2'] \dots [r_{n-2}' Z_{n-1} r_{n-1}'][r_{n-1}' Z_N p]$$

За такт работы автомат раскрывает ровно один нетерминал, таким образом автомат делает переход $\delta(q_1,u_l,Z_1) \vdash (q,Y_1Y_2\dots Y_m)$, а $Y_{m+1}=Z_2,Y_{m+2}=Z_3,\dots$ Но тогда в грамматике по построению есть правило

$$[q_1Z_1r'_1] \rightarrow u_l[qY_1r_1][r_1Y_2r_2] \dots [r_{m-1}Y_mr_m][r'_1Z_2r'_2]$$

Тогда в результате переобозначения нетерминалов и в силу произвольности всех состояний, кроме q получаем, что

$$S \Rightarrow_L^* u_1 \dots u_{l-1}[q_1 Z_1 r_1'][r_1' Z_2 r_2'] \dots [r_{n-2}' Z_{n-1} r_{n-1}'][r_{n-1}' Z_N p] \Rightarrow_L$$

$$\Rightarrow_L u_1 \dots u_{l-1} u_l[q Y_1 r_1][r_1 Y_2 r_2] \dots [r_{n-2} Y_{n-1} r_{n-1}][r_{n-1} Y_n p].$$

Переход доказан.

Из доказанного утверждения в частности следует, что если $(q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon)$, то $S \Rightarrow_L w$. Таким образом, мы показали, что $L(M) \subseteq L(G)$.

Доказательство обратного включения строится в том же духе, что и доказательства приведённых выше утверждений, поэтому его я оставляю в качестве упражнения.

Упражнение 2. Доказать, что $L(G) \subseteq L(M)$.

3 Приведённые КС-грамматики

Как вы могли уже убедиться, при выполнении операций с КС-грамматиками, не все правила КС-грамматики могут быть использованы в выводе хотя бы одного слова из языка L(G).

Так, если из состояния p автомата M не выталкивается⁴ ни один из символов стека, то из нетерминала $[q_0Z_0p]$ не выводится ни одного слова. Таким образом, грамматика построенная по автомату в общем случае содержит слишком много лишних правил и даже лишних нетерминалов. И на практике от них очень часто требуется избавиться.

Выделяют два типа бесполезных нетерминалов. Нетерминал A называется бесплодным, если язык $L(G_A) = \{w | A \Rightarrow_L w\}$ пуст. Нетерминал A называется nedocmuжимым, если ни одна цепочка вида $\alpha A\beta$ не выводится из S. Грамматика G называется npuве $d\ddot{e}$ нной, если она не содержит недостижимых и бесплодных нетерминалов.

Для того, чтобы удалить все бесплодные символы нужно действовать по следующему алгоритму:

- Множество $V_0 = T$.
- Множество V_{i+1} строим по V_i следующим образом. Если для правила $A \to \alpha$ справедливо $\alpha \in V_i^*$, то $A \in V_{i+1}$.
- Как только $V_{i+1} = V_i$, объявляем $N = V_i \setminus T$, удаляем из P все правила, которые содержат нетерминалы не из V_i и заканчиваем работу.

Упражнение 3. Доказать корректность данного алгоритма.

Чтобы удалить все недостижимые символы нужно действовать по следующему алгоритму:

- Множество $V_0 = S$
- Множество V_{i+1} строим по V_i следующим образом. Если $A \in V_i$ и $A \to \alpha B\beta$, то $B \in V_{i+1}$.
- Как только $V_{i+1} = V_i$, объявляем $N = V_i$, удаляем из P все правила, которые содержат нетерминалы не из V_i и заканчиваем работу.

Упражнение 4. Доказать корректность данного алгоритма.

Для того чтобы по грамматике G построить приведённую грамматику G', необходимо сначала удалить все бесплодные символы, а потом

⁴Т.е. нет правил вида $\delta(p, u, Z) \vdash (q, \varepsilon)$.

удалить все недостижимые символы. Действовать надо именно в таком порядке, потому что иначе после удаления бесплодных символов могут появится новые недостижимые символы, а после удаления недостижимых, новые бесплодные появится не могут

4 Задачи

Задача 1. $L = \{xcy \mid x, y \in \{a, b\}^*; x \neq y^R\}$. Постройте детерминированный МП-автомат, распознающий язык L. Если не получается построить детерминированный, постройте хотя бы недетерминированный.

Задача 2*: Пусть L – КС-язык. Докажите, что язык $\operatorname{Pref}(L) = \{u \mid \exists v \in \Sigma^* : uv \in L\}$, язык префиксов всех слов языка L, является КС-языком.

Задача 3. Приведите грамматику G к нормальной форме Хомского. Все построения должны быть выполнены строго по алгоритму, если Вы не можете заполнить лакуны в алгоритме удаления цепных продукций самостоятельно, посмотрите алгоритм в Хопкрофте. Грамматика G задана правилами:

$$\begin{array}{ll} S \to A|B|C|E|AG & C \to BaAbC|aGD|\varepsilon \\ A \to C|aABC|\varepsilon & F \to aBaaCbA|aGE \\ B \to bABa|aCbDaGb|\varepsilon & E \to A \end{array}$$

Задача 4*. Проверьте по алгоритму Кока-Янгера-Касами порождает ли грамматика G из предыдущей задачи слово abaaab.

Задача 5. Язык L задан в XIII-представлении: (D_2, Σ^*, φ) , где D_2 – язык Дика с двумя типами скобок, регулярное ограничение Σ^* означает, что на слова не накладывается регулярное ограничение, морфизм φ определим следующим образом $\varphi: [1 \to a; 1] \to b; [2 \to b; 2] \to a$. Докажите или опровергните, что $L = \{w \mid |w|_a = |w|_b\}$.

Задача 6. Возьмите любой детерминированный МП-автомат, допускающий по пустому стеку, как минимум с двумя состояниями, распознающий КС-язык, не являющийся регулярным. Можете взять язык из примера в задании 7. Постройте по МП-автомату КС-грамматику, сделайте из неё приведённую грамматику. Будет ли она однозначна?