A Study on \mathcal{L}^p Spaces

B.Sc. Dissertation
by Atrajit Sarkar
Roll No. 317
Under the supervision of Dr. Arnab Jyoti
Dasgupta

March 11, 2025

Acknowledgement:

Respected, sir,

I hereby acknowledge that I did all my works by my own efforts and in all the process my project guide Dr. Arnab Jyoti Dasgupta helped me a lot and provided me all the materials and software to build the project!

Used Symbols:-

- μ : Measure in general spaces.
- m_N : Measure in \mathbb{R}^N
- $C_c(\Omega)$: Space of continuous functions on a compact support $\subset \Omega$.
- $\|\cdot\|_p$: p-norm.
- \bullet $\mathbb{R}, \mathbb{N}, \mathbb{C} :$ Set of reals, Naturals, Complex numbers.
- \bullet \int_{Ω} : Lebesgue integral over a set $\Omega.$

Contents

1	Preliminaries				5	
	1.1	Definition of measure				
	1.2					
	1.3		grablity			
	1.4					
		1.4.1	Holder's Inequality		. 6	
		1.4.2	Minkowski's Inequality		. 7	
	1.5	Equiva	alence Class And Vector Space		. 7	
		1.5.1	Almost everywhere concept		. 7	
		1.5.2	Equivalence class		. 7	
		1.5.3	Vector space		. 7	
		1.5.4	Convergence in $\mathcal{L}^p(\mu)$:			
2	Approximation in $\mathcal{L}^p(\mu)$ -spaces					
	2.1		tion:		. 9	
	2.2	Notati	ions:		. 9	
	2.3	Lemm	na:		. 9	
3	Apı	plicatio	ons		10	
		3.0.1	Lusin's theorem		. 10	
		3.0.2	Hardy's inequality			
		3.0.3	Examples:			
		3.0.4	Hardy's inequality for l_p spaces			
		3.0.5	Continuity of \mathcal{L}^p -norm:			
	D (o and Useful Teels		1.4	

1 Preliminaries

1.1 Definition of measure

• We specially define measure as a function with some domain of definition and some special properties. And according to study on the bunch of beneficial conditions allotted to measure a set which is the domain of definition of measure we see that all the conditions cannot hold simultaneously! The beneficial conditions are as follow:-

A measure is a function (denoted as μ) on the power set of a set X, is an extended real valued function on R such that

- $(i) \ \mu(E) > 0, \forall E \in \mathcal{P}(x),$
- (ii) $\mu(\phi) = 0$, and,
- (iii) μ is subadditive i.e $\mu(A) + \mu(B) \ge \mu(A \cup B) \forall A, B \in \mathcal{P}(x)$.
- Now what we do is to reform the domain of μ from the whole power set to a subset of a power set to actually reform the third condition from sub-additivity to countable additivity. And we call the subset of $\mathcal{P}(x)$ set of lebesgue measurable sets (denoted by S) and the new restricted measure to be lebesgure measure. We will use μ to denote lebesgue measure all over our discussion.

1.2 Lebesgue Measurablity

• Lebesgue measurable functions: Let (X, Σ) and (Y, T) be measurable spaces equipped with respective σ -algbras Σ and T. A function $f: X \to Y$ is said to be measurable if for every $E \in T$ the pre-image of E under f is in Σ ; i.e $\forall E \in T$

$$f^{-1}(E) = \{x \in X | f(x) \in E\} \in \Sigma.$$

•Note: As we are dealing with \mathcal{L}^p -spaces so your function is real-valued. Hence the above definition can be modified very neatly as

$$\{x \in X | f(x) > a \ \forall a \in \mathbb{R}\} \in \Sigma.$$

1.3 p-integrablity

 \bullet Definition of *p*-integrablity:

Let (X, S, μ) be a measure space. Let $f: X \to \mathbb{R}$ be a measurable function. Let $1 \le p < \infty$. We define

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}$$

and we say f is p-integrable is $||f||_p < +\infty$.

•Definition of essential supremum:

This is nothing but $||f||_{\infty}$. We say essential supremum exists finitly iff $||f||_{\infty} < +\infty$.

1.4 Some useful In-equalities

1.4.1 Holder's Inequality

• Definition of conjugate exponent: p and p' are called cojugate exponents when

$$\frac{1}{p} + \frac{1}{p'} = 1.$$

if p = 1 we say $q = \infty$.

• Lemma: Let 1 . Let <math>p' be it's conjugate exponent. Then, if a and b are non-negative reals, we have

$$a^{1/p}b^{1/p'} \le \frac{a}{p} + \frac{b}{p'}.$$

• Holder's Inequality: Let $1 \le p < \infty$ and let p' be the cojuget exponent. If f is p-integrable and g is p'-integrable (essetially bounded if p = 1), then

$$\int_{X} |fg| \ d\mu \le ||f||_{p} ||g||_{p'}.$$

Remark: If p=2, p'=2 then the in-equality has a special name called Cauchy-Schwartz ineuqality.

1.4.2 Minkowski's Inequality

Let $1 \leq p \leq \infty$. Let f and g be p-integrable (essentially bounded, if $p = \infty$) and

$$||f + g|| \le ||f||_p + ||g||_p.$$

1.5 Equivalence Class And Vector Space

1.5.1 Almost everywhere concept

- We say a condition happens in a domain a.e.(almost everywhere) \Rightarrow the codition happens on a set except a subset of measure zero of it.
- A set of measure zero is a sub set of X such that $\mu(A) = 0$ where $A \subset X$.
- We can see cosequently that if two functions f and g are equal a.e. the we write them as $f \sim g$ and we can eventually bring equality in sense of p-integration i.e we definitely observe that $||f||_p = ||g||_p$.

1.5.2 Equivalence class

 \bullet Now if we equip the set of all *p*-integrable functions with a binary relation " \sim " and we eventually see that is a equivalence relation and we can now classify the set into some equivalence classes.

1.5.3 Vector space

- We see that if we cosider each equivalence classes as a sigle element and put them in a set \mathcal{V} equipped with natural norm as $\|\cdot\|_p$ then $(\mathcal{V},\|\cdot\|_p)$ becomes a normed linear space. And we also say that $(\mathcal{V},\|\cdot\|_p) = \mathcal{L}^p(\mu)$.
- Proposition 1: Let (X, \mathcal{S}, μ) be a finite measure space. Then

$$\mathcal{L}^p(\mu) \subset \mathcal{L}^q(\mu)$$

with the inclusion being continuos, whenever $1 \le q \le p$.

• Remark: Let (X, \mathcal{S}, μ) be a finite measure space and let $f \in \mathcal{L}^{\infty}(\mu)$, $f \neq 0$.

$$\lim_{n\to\infty} \|f\|_p = \|f\|_{\infty}.$$

1.5.4 Convergence in $\mathcal{L}^p(\mu)$:

• Convergence in $\mathcal{L}^p(\mu)$: If $f \in \mathcal{L}^p(\mu)$, we say that the sequence $\{f_n\}_{n=1}^{\infty} \in \mathcal{L}^p(\mu)$ converges to f in $\mathcal{L}^p(\mu)$ if $\|f_n - f\|_p \to 0$ as $n \to \infty$.

- Lemma: Let $1 \leq p < \infty$. Let $(X, \mathcal{S}\mu)$ be a finite measure space. If $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $\mathcal{L}^p(\mu)$, then the sequence is Cauchy in measure.
- Cauchy in Measure: A sequence $\{f_n\}_{n=1}^{\infty}$ is said to be Cauchy in measure \Rightarrow for $\epsilon > 0$ be a fixed real, and for $n, m \in \mathbb{N}$ the set

$$A_{n,m}(\epsilon) = \{ x \in X | |f_n(x) - f_m(x)| \ge \epsilon \}$$

is of measure zero.

- Let $(X, \mathcal{S}\mu)$ be a measure space. Let $1 \leq p \leq \infty$. Then $\mathcal{L}^p(\mu)$ is a Banach space.
- Let $(X, \mathcal{S}\mu)$ be a measure space and let $f_n \to f$ in $\mathcal{L}^p(\mu)$ for some $1 \le p \le \infty$. Then, a subsequence $\{f_{n_k}\}$ such that $f_{n_k}(x) \to f(x)$ a.e.
- Lemma: Let $1 \leq p \leq \infty$. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence in $\mathcal{L}^p(\mu)$ converging pointwise a.e. to a function $f \in \mathcal{L}^p(\mu)$. Then $f_n \to f$ in $\mathcal{L}^p(\mu)$ iff, $\|f_n\|_p \to \|f\|_p$ as $n \to \infty$.

2 Approximation in $\mathcal{L}^p(\mu)$ -spaces

2.1 Definition:

• Characteristic function: In a measure space (X, \mathcal{S}) $\chi_A : X \to \mathbb{R}$ is called a Characteristic function iff

$$\chi_A(x) = 1, if x \in A$$
$$= 0, o/w$$

 \bullet Simple Function : Linear combination of finitely many Characteristic functions. I.e.

$$f(x) = \sum_{k=1}^{N} a_k \chi_{A_k}$$

for some $N \in \mathbb{N}$ and $a_k \in \mathbb{R}$ with each $A_k \subset X$.

2.2 Notations:

- Let $\Omega \subset \mathbb{R}^n$ be a non-empty open set.
- Let S denote set of all real-valued simple functions defined on Ω which vanishes outside a set of finite Lebesgure measure.

2.3 Lemma :

- Lemma 1: If $1 \leq p < \infty$, a simple function ϕ belongs to $\mathcal{L}^p(\Omega)$ iff, $\phi \in \mathcal{S}$.
- Lemma 2: Let $\Omega \subset \mathbb{R}^N$ be a non-empty open set and let $1 \leq p < \infty$. Then \mathcal{S} is dense in $\mathcal{L}^p(\Omega)$.
- Lemma 3: Let $\Omega \subset \mathbb{R}^N$ be a non-empty open set and let $1 \leq p < \infty$. Let $f \in \mathcal{S}$. Then, f can be approximately by step functions in $\mathcal{L}^p(\Omega)$.
- Lemma 4: Let $\Omega \subset \mathbb{R}^N$ be a non-empty open set and let $1 \leq p < \infty$. Let $\mathcal{C}_c(\Omega)$ denote the space of continuous real-valued functions defined on Ω , having compact support contained in Ω . Then, $\mathcal{C}_c(\Omega)$ is dense in $\mathcal{L}^p(\Omega)$.

Proof: By Lemma 1.2 Lemma 1.3 we have set of step functions are dense in $\mathcal{L}^p(\Omega)$. So, we just have to show that step functions can be approximated by functions from $\mathcal{C}_c(\Omega)$. Which is nothing but mere visualization. Still let's give some mathematical sketch of it.

It can be shown that for a $\varepsilon > 0 \exists \varphi \in \mathcal{C}_c(\Omega)$, such that

$$m_N(\{x \in \Omega \mid \varphi(x) \neq f(x)\}) < \left(\frac{\varepsilon}{2\|f\|_{\infty}}\right)^p$$

and such that

$$\|\varphi\|_{\infty} \le \|f\|_{\infty}.$$

Then

$$\|\varphi - f\|_p^p \le 2^p \|f\|_{\infty}^p m_N \left(\{ x \in \Omega \mid \varphi \neq f(x) \} \right) < \varepsilon^p$$

so that $\|\varphi - f\|_p < \varepsilon$. This completes the proof.

- The above result is not true for $p = \infty$.
- Lemma 5: For $1 \leq p < \infty$, $\mathcal{L}^p(\Omega)$ is separable.
- Lemma 6: $\mathcal{L}^{\infty}(\Omega)$ is not separable.

3 Applications

3.0.1 Lusin's theorem

Statement: Let $E \subset \mathbb{R}^N$ be a measurable set of finite measure. Let $f: E \to \mathbb{R}$ be a mesurable function. Let $\varepsilon > 0$ be given. Then, $\exists \varphi \in \mathcal{C}_c(\mathbb{R}^{\mathbb{N}})$ such that

$$m_N(\{x \in E \mid \varphi(x) \neq f(x)\}) < \varepsilon$$

.

Further if f is bounded, we can ensure that

$$\|\varphi\|_{\infty} \leq \|f\|_{\infty}$$
.

Proof: Construct $E_n = \{x \in E | |f(x)| \le n\}.$

Then $E_n \uparrow E$. Since E has finite measure, we can choose $m \in \mathbb{N}$ such that $m_N(E \backslash E_m) < \frac{\varepsilon}{3}$. Now, we define a function $\tilde{f} : \mathbb{R}^N \to \mathbb{R}$ by

$$\tilde{f}(x) = f(x), \text{ if } x \in E_m$$

$$\tilde{f}(x) = 0, \text{ o/w}$$

. \tilde{f} is integrable on \mathbb{R}^N as \tilde{f} is bounded and E_m has finite measure. Hence, there

exists a sequence $\{\varphi_n\}_{n=1}^{\infty}$ in $\mathcal{C}_c(\mathbb{R}^{\mathbb{N}})$ such that $\varphi_n \to \tilde{f}$ in $\mathcal{L}^1(\mathbb{R}^N)$ by the Lemma 4. Then, there exists a subsequence $\{\varphi_{n_k} \text{ which converges to } \tilde{f} \text{ pointwise almost everywhere on } \mathbb{R}^N$.

Now as E_m has finite measure, we can find $F \subset E_m$ such that $m_N(E_m \backslash F) < \frac{\varepsilon}{3}$ such that $\varphi_{n_k} \to \tilde{f}$ uniformly on F, by virtue of Egorof's theorem. Again, since F is of finite measure we can find a compact set K such that $m_N(F \backslash K) < \frac{\varepsilon}{3}$. Hence, $m_N(E \backslash K) < \varepsilon$.

Since $\{\varphi_{n_k}\}$ converges uniformly to $\tilde{f}onK$, it follows that the restriction of \tilde{f} to K is cont. But $K \subset F \subset E_m$ and so $\tilde{f} = f$ for every $X \in K$.

Now, by Tietze extension theorem we can find a continuous function $g: \mathbb{R}^N \to \mathbb{R}$ such that $\|g\|_{\infty} \leq m$ and such that g = f on K.

Finally, let $\psi \in \mathcal{C}_c(\mathbb{R}^N)$ be such that $0 \leq \psi \leq 1$ and such that $\psi \equiv 1$ on K by Urysohn's lemma. Let $\varphi = \psi g$. Then $\varphi \in \mathcal{C}_c(\mathbb{R}^N)$, and

$$\{x \in E \mid \varphi(x) \neq f(x)\} \subset E \setminus K$$

measure of which is less that ε . Also $\|\varphi\|_{\infty} \leq m$ and, if f is bounded, $m \leq \|f\|_{\infty} \leq M$ where $M \in \mathbb{R}^+$. Hence we get this comparison as $\|\varphi\|_{\infty} \leq \|f\|_{\infty}$.

3.0.2 Hardy's inequality

Let $1 . Let <math>f \in \mathcal{L}^p(0, \infty)$. For $0 < x < \infty$, define

$$F(x) = \frac{1}{x} \int_{(0,\infty)} f \ dm_1.$$

Then $F \in \mathcal{L}^p(0,\infty)$ and

$$||F||_p \le \frac{p}{p-1} ||f||_p.$$

Proof:

3.0.3 Examples:

Example 1: The Hardy's inequality is not true when p=1. To show this let's cosider a function $f(x)=e^{-x}\in\mathcal{L}^1(0,\infty)$. Now if we construct

$$F(x) = \frac{1}{x} \int_{(0,x)} f \ dm_1 = \frac{1}{x} \int_0^x e^{-t} \ dt = \frac{1 - e^{-x}}{x}.$$

Before we gonna show Hardy's inequality, we see that F(x) is not integrable

over $(0, \infty)$. Why?

As, $F(x) \ge \frac{1-e^{-1}}{x}, x \ge 1$, Then,

$$\int_{1}^{\infty} F(x) \ge (1 - e^{-1}) \int_{1}^{\infty} \frac{1}{x} > \infty.$$

So, basically $F(x) \notin \mathcal{L}^1(0,\infty)$. So, no meaning of Hardy's inequality.

Again, if $p = \infty$ we see that $||f||_{\infty} = 1$. But $||F||_{\infty} > \infty$. So, we see that again $F \notin \mathcal{L}^{\infty}(0,\infty)$. So, again Hardy's inequality doesn't make sense here.

3.0.4 Hardy's inequality for l_p spaces

Hardy's inequality hods for sequence spaces (l_p) as well, When 1 .

To, see this we need a comparision between $\mathcal{L}^p(\Omega)$ space and l_p spaces. As, any function $f \in \mathcal{L}^p(\Omega)$ has domain of definition Ω like wise in l_p space the domain of definition of any sequence $\{x_n\} \in l_p$ is \mathbb{N} .

So, if we look at the p-norm of l_p according as $\mathcal{L}^p(\Omega)$ we see that

$$\int_{\Omega} |f|^p = \lim_{n \to \infty} \frac{b-a}{n} \sum_{r=1}^n |f(a + \frac{b-a}{n}r)|^p$$

(if we set for now $\Omega := (a, b)$).

$$= \lim_{n \to \infty} \frac{n}{n} \sum_{r=1}^{n} |x_r|^p.$$

As our function is $\{x_n\}$ and the domain variable is n. And the partion of the domain $\{1, 2, 3, \ldots\}$ is $\{(0, 1), (1, 2), (2, 3), \ldots\}$ where we see that a = 0 and we sustitute everything to our equation to get the equivalent form in l_p .

Thus we see that as in Hardy's inequality we construct $F(n) = y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$. And the result thus similarly follow here also as:

$$||y||_p \le \frac{p}{p-1} ||x||_p.$$

3.0.5 Continuity of \mathcal{L}^p -norm:

• Remark: This property is very strong that the contiuity of the function itself. As in \mathcal{L}^p continuity actually defined as convergence in \mathcal{L}^p so, from there it is valid to say the function is continuous when it is in \mathcal{L}^p in the sense of \mathcal{L}^p convergence.

Proposition: Let $1 \leq p < \infty$. Let $f \in \mathcal{L}^p(\mathbb{R}^N)$. For $h \in \mathbb{R}^N$, define

$$\tau_h(f)(X) = f(x-h), \ x \in \mathbb{R}^N.$$

Then

$$\lim_{h \to 0} \|\tau_h(f) - f\|_p = 0.$$

Proof: By the change of variable property of Legesgue integration we see that $\tau_h(f) \in \mathcal{L}^p(\mathbb{R}^N)$, whenever $f \in \mathcal{L}^p(\mathbb{R}^N)$ and aslo that $\|\tau_h(f)\|_p = \|f\|_p$.

Let $\varepsilon > 0$ be given. Choose $\varphi \in \mathcal{C}_c(\mathbb{R}^N)$ such that

$$||f - \varphi||_p < \frac{\varepsilon}{3} \tag{1}$$

Then, we also have

$$\|\tau_h(f) - \tau_h(\varphi)\|_p = \|f - \varphi\|_p < \frac{\varepsilon}{3}$$
 (2)

Let the support of φ be contained in the box $[-a,a]^N$. Since φ is uni-formly continuous, $\exists \ 0 < \delta < 1$ such that, whenever $|h| < \delta$, we have

$$|\varphi(x-h) - \varphi(x)| < \frac{\varepsilon}{3} (2a)^{-\frac{N}{p}},$$

 $\forall x \in \mathbb{R}^N$. Then for $|h| < \delta$,

$$\int_{\mathbb{R}^N} |\tau_h(\varphi) - \varphi| \ dm_1 = \int_{[-a,a]^n} |\varphi(x-h) - \varphi(x)|^p \ dm_1 < \left(\frac{\varepsilon}{3}\right)^p,$$

so that

$$\|\tau_h(\varphi) - \varphi\|_p < \frac{\varepsilon}{3} \tag{3}$$

Then result now follows on combining the relations (1),(2),(3).

4 Referrence and Useful Tools:

- 1. Measure and Integration [S.Kesavan].
- 2. Overleaf software: https://www.overleaf.com/project/6292570ec3c93ed57bea65cc