

WEBENCH® Design Report

Design: 3961581/4 LM22675MRE-ADJ/NOPB LM22675MRE-ADJ/NOPB 12.0V-24.0V to 5.00V @ 1.0A

VinMin = 12.0V VinMax = 24.0V Vout = 5.0V Iout = 1.0A Device = LM22675MRE-ADJ/NOPB Topology = Buck Created = 1/15/15 1:00:48 PM BOM Cost = \$2.54 Footprint = 249.0 mm² BOM Count = 9 Total Pd = 0.92W

Flectrical BOM

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1. Cbst	Kemet	C0805C103K5RACTU Series= X7R	Cap= 10.0 nF ESR= 1.739 Ohm VDC= 50.0 V IRMS= 411.0 mA	1	\$0.01	0805 7 mm ²
2. Cin	TDK	C3225X7R2A225K230AB Series= X7R	Cap= 2.2 uF ESR= 2.8 mOhm VDC= 100.0 V IRMS= 9.8247 A	1	\$0.19	1210 15 mm ²
3. Cinx	Taiyo Yuden	GMK212B7105KG-T Series= X7R	Cap= 1.0 uF VDC= 35.0 V IRMS= 0.0 A	1	\$0.05	0805 7 mm ²
4. Cout	Kemet	C1210C106K8PACTU Series= X5R	Cap= 10.0 uF ESR= 8.0 mOhm VDC= 10.0 V IRMS= 6.9 A	1	\$0.18	1210 15 mm ²
5. D1	Diodes Inc.	B240A-13-F	VF@Io= 500.0 mV VRRM= 40.0 V	1	\$0.09	SMA 37 mm ²
6. L1	Bourns	SRN8040-330M	L= 33.0 μH DCR= 145.0 mOhm	1	\$0.22	SRN8040 100 mm ²

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
7.	Rfb1	Panasonic	ERJ-6ENF1001V Series= 225	Res= 1000.0 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
8.	Rfb2	Panasonic	ERJ-6ENF2871V Series= 225	Res= 2.87 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
9.	U1	Texas Instruments	LM22675MRE-ADJ/NOPB	Switcher	1	\$1.78	MDA 00D 50 mm²

Operating Values

Opo	oporating values						
#	Name	Value	Category	Description			
1.	Cin IRMS	354.157 mA	Current	Input capacitor RMS ripple current			
2.	Cout IRMS	74.932 mA	Current	Output capacitor RMS ripple current			
3.	IC lpk	1.13 A	Current	Peak switch current in IC			
4.	lin Avg	246.53 mA	Current	Average input current			
5.	L lpp	259.57 mA	Current	Peak-to-peak inductor ripple current			
6.	M1 Irms	474.781 mA	Current	Q lavg			
7.	BOM Count	9	General	Total Design BOM count			
8.	FootPrint	249.0 mm ²	General	Total Foot Print Area of BOM components			
9.	Frequency	500.0 kHz	General	Switching frequency			
10.	IC Tolerance	19.0 mV	General	IC Feedback Tolerance			
11.	M Vds Act	100.76 mV	General	Voltage drop across the MosFET			
12.	Pout	5.0 W	General	Total output power			
13.	Total BOM	\$2.54	General	Total BOM Cost			
14.	D1 Tj	39.682 degC	Op_Point	D1 junction temperature			
15.	Vout OP	5.0 V	Op_Point	Operational Output Voltage			
16.	Cross Freq	67.334 kHz	Op_point	Bode plot crossover frequency			
17.	Duty Cycle	22.542 %	Op_point	Duty cycle			
18.	Efficiency	84.508 %	Op_point	Steady state efficiency			
19.	IC Tj	52.166 degC	Op_point	IC junction temperature			
20.	ICThetaJA	60.0 degC/W	Op_point	IC junction-to-ambient thermal resistance			
21.	IOUT_OP	1.0 A	Op_point	lout operating point			
22.	Phase Marg	42.749 deg	Op_point	Bode Plot Phase Margin			
23.	VIN_OP	24.0 V	Op_point	Vin operating point			
24.	Vout p-p	7.805 mV	Op_point	Peak-to-peak output ripple voltage			
25.	Cin Pd	351.197 μW	Power	Input capacitor power dissipation			
26.	Cout Pd	44.918 μW	Power	Output capacitor power dissipation			
27.	Diode Pd	387.292 mW	Power	Diode power dissipation			
28.	IC Pd	369.439 mW	Power	IC power dissipation			
29.	L Pd	159.5 mW	Power	Inductor power dissipation			
30.	Total Pd	916.618 mW	Power	Total Power Dissipation			

Design Inputs

	0 1		
#	Name	Value	Description
1.	lout	1.0	Maximum Output Current
2.	lout1	1.0	Output Current #1
3.	VinMax	24.0	Maximum input voltage
4.	VinMin	12.0	Minimum input voltage
5.	Vout	5.0	Output Voltage
6.	Vout1	5.0	Output Voltage #1
7.	base_pn	LM22675	Base Product Number
8.	source	DC	Input Source Type
9.	Ta	30.0	Ambient temperature

Design Assistance

- 1. Part Description The LM22675 is a monolithic integrated circuit that provides all of the active functions for a step-down (buck) switching regulator capable of driving up to 1.0A loads with excellent line and load regulation characteristics. High efficiency (>90%) is obtained through the use of a low ON-resistance N-channel MOSFET.
- 2. LM22675 Product Folder: http://www.ti.com/product/lm22675: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.