Alifatické uhľovodíky

Pre pripomenutie: uhľovodíky sú organické zlúčeniny, zložené <u>len z uhlíka a vodíka</u> ©

-delenie uhľov. 1. <u>ahľatiské uhľovodíky</u> a)nazýtené (alkány+cykloalkány),b)nenasýtené (alkény, alkíny)

2 atomatické uhľovodiky = arény (benzén, naftalén, styrén...)

alifatické uhľovodíky	Koncovia.	všeobecný vzarec	Priklad
Alkány -nasýtená uhľ. -acyklické	 vyjadruje pritomnosť len jednoduchých vázieb medzi uhlíkmi v uhľov reťazci 	C _n H _{2n+2} (kde n = 1, 2, 3,)	metán etán propán
Cykloalkány -nasýtené uhľ., cyklické	predpona coffe + koncovka - ko	C _n H _{2n} (kde n = 3, 4,)	cyklopropán cyklobután
Alkény - nenasýtené uhľ -acyklické	vyjadruje pritomnosť A dvojitej vázby modzi,uhlíkmi v uhľov refazci	C _n H _{2n} (kdc n = 2, 3,)	propén but-1-én but-2-én
Alkiny - nenasytené uhľ -acyklické	vyjadruje pritomnosť jednej 3 väzby medzi uhlíkmi v uhľov reťazci	C _n H _{2n-2} (kdc n = 2, 3,)	but-1-in but-2-in 2.0

 od najjednoduchších aktalických uhřovodíkov sú odvodená skoro všetky organická zbúčeniny, ich názvoslovie tvorí základ názvov zložitejších derivátov uhřovodíkov (okrem C+H majú aj -N,O, S -Cl.)

Alkány

- kovieninė vizby (o-vizby čisa ugma)
- starší názov parafiny (z latinského málo zlúčivý)
- z hľadiska štruktúry môžu byť lincárne (s priamym uhlíkovým refazcom), alebo rozvetvené (majú aj terciárny alebo kvartérny uhlík)
- názvotlovie: tvoria homologický rad, v ktorom sa každý nasledujúci člen tíší
 od predchádzajúceho konštantnou relativnou alomovou hmotnosťou

_Ar(C)+2.Ar(H)=		a homologickým prírastkom - CH-	
Názov alkánu	Sumirny molek.vz	Struktúrny vzorec	Racionálny
metán	СН4	H-Ç-H	CH.
ctán	C ₂ H ₆	- H-C-C-H 0	Сн,-сн,
propin	C ₃ H ₆	H H H H-C-C-C-H	CH ₁ -CH ₂ -CH ₁

I. Existujú aj alkány

12+2.

	s vyskim pačiani
7	uhlikar ako 101
1	11C
_	12C
	Akā zhičenina je na
	obrázku?
-	15
	7 7 46

butin	C ₄ H ₁₁₁	4 4 4 4	CH+(CH ₂) ₂ -CH ₁
	,	 	
pentán	C ₅ H ₁₂	H-¢-¢-¢-¢-H	CH ₁ -(CH ₂) ₂ -CH ₃
hexán	C ₆ H ₁₄		CH-{CH ₂ }-CH ₁
heptán	C ₂ H _{1A}	H-C-C-C-C-C-C-C-H	CH ₁ -(CH ₂) ₂ -CH ₃
oktán	CaHea		CH+(CH2)4-CH
nonán	C4H20		CH ₁ -(CH ₂) ₇ -CH ₁
dekim	C10H22	*	CH ₁ -(CH ₂) ₂ -CH ₁

 okolo vázby C - C môże dochádzať k rotácii a tým k vzniku rôznych konformácii molekúl, napríklad u etánu:

rýhodnejšia je naridynava

Albany tronto referent increasy regulated.

heran (C.H.,)

3-metylpentán (C,H.,)

- výskyt: plynné v zemnom plynu, kvapalné+tuhé v rope, tuhé v uhli
- fyzikálne viastnosti:
 - a) skupenstvo: závisi od dĺžky uhlikového reťazca (od počtu C)
 - plynné všetky alkány s počtom uhlíkov <u>C. C.</u>
 kvapalné všetky alkány s počtom uhlíkov <u>C. C.</u>
 - tuhé všetky alkány s počtom uhlíkov vyšším ako Čis.

 b) vzhľad: sú bezfarebné látky, kvapalné alkány s nižšou teplotou varu páchnu po benzíne, všetky ovtatné sú bez zápachu
 - c) nerozpustnosť <u>sú nepolárne látky</u> majú nepolárne vázby v molekule medzi C a C ale aj C a H sa rozpúšťajú veľmi dobre <u>v nepolárnych</u> <u>rozpúšťadlách</u> (benzén) a nerozpušťajú sa v polárnych rozpúšťadlách (voda), kvanalné alkány sú samotné dobrými rozpúšťadlam nepol. látok

- 2. Aké sumárne vzorce by muli:
 - a) alkány s 23 uhlíkmi L25 HS
 - b) alking sa 70 uhilkmi C30 H14n
 - c) cykloalkány so 70 uhlikmi

نوه ۱۲۹

d) elkiny so 14 uhlikmi

C14 HZ6

i. Zopakujme si pojmy, akjmi reakciomi sii: a) substitucia maliochemili, maliochemili,

> esadicia - Ampoleni novisenis necelinali naisto

X(C)=2,5 X(H)=2,2

všetky sú horť avé, a kvalikom horia na CO₂ a H₂O

Uloha: Zanište horenie metánu chemickou reakciou a reakciu vyrovnajte: CH4+0++ C0++++

- inak sú pomerne málo reaktívne, reagujú až pri vyšších teplotách alebo univvom UV ziarenia
- v molekule obsahujú len nepolárne vázby -štienja sa homolyticky, pričom vznikajú radikály s voľným elektrónom
 - typickými reakciami sů ;
 - a) radikálové substitúcie dochádza k nahradeniu atómu vodíkov nane, halogenácia - chlorácia.
 - b) eliminácia dochádza k zvýšeniu násobnosti vázieb (napr. dehydrogenácia)
 - azidócia horenie, napr. metánu kúrenie zemným plynom, silne exotermická reakcia, pri kt. vzniká teplo O

Radikálová substitúcia - prebieha v 3 krokoch:

LINICIACIA-začatie reakcie, vznik radikálov - z pepolárnych molekůl napr. Cl2 - pre ich vznik je potrebné UV žiarenie

2.PROPAGACIA-sirenie, reakcia radikálov so substrátom a vznik navieh

3.TERMINÁCIA-ukončenie, zánik radikálov ich vzájomnou reakciou

Vzniknutý radikál chlóru iniciuje reakciu s alkánom, pričom vznikne alkylový

radiká) (napr.metylový CH3+): CH4 + •Cl → CH3+ + HCl

Metylový radikál reaguje s ďalšou molekulou Cla:

Sumárne môžeme predchádzajúcu reakciu napisať takto CH. + CI. -W → CH.CI + HCI

Pomenujie produkty reakcie blowlova a college fresh

4. Benzin sa používa na odstraňovanie aicktorich masinich thréa aleba reáve na CHUCZO, -> ? Hot Captent. Na

:áklade akých vlastnosti je to možné?

Co je ckolovickeišle? Kürenie drevom. uhlim, zemným plynom?

Čo je radikál?

Co le untiuxidant?

V nadbytku Cla prebieha substitúcia do ďalších stupňov - vzniká: dichlórmetán CHCI. willnessen

Abdres motos constitu administria, pre bierreto ciertaletro is collisioneras attinese varios - delevelrossendet marcia witastan arangu e protesta legas a pritorercal lutulosatura (P. Ns. Pd.

Priprava alkánov: adíciou vodíka- hydrogenácia na nenasýtené uhľovodíky (alkény, alkíny)

✓ Uloha: Zanište adiciu vodika na etén.

> naidoležiteilie alkany:

- a) metán -CH4 je bezfarebný plyn bez zápachu, tvorí hlavnú zložku zemného plynu (98%), bahenného plynu (vzniká pri rozklade rastlin v bahne) a bioplynu, metán vzniká i v baniach, nie je jedovatý ale znižuje obsah kyslika vo vzduchu, môže spôsobiť výbuch, používa sa na výrobu metapolu, acetylėnu, vodika, sadzi(farbiyo nneumatik), chlórovaných derivátov, acetaldehydu, kyseliny octovej.
- Spolu s CO₂ je významným skleníkovým plynom prispievajúcim ktyl globálnemu otepřovaniu. COz i Chila i francji Oa i Ola O And b) etán - v malom množstve je v zemnom plyne, prevažne sa ziskava z ropy.
- vyrába sa z neho etén a z neho polyetylén (plast)
- c) propán a bután sú spolu s metánom v zemnom plyne, bezfarebné plyny bez zápachu, horľavé, používajú sa ako pohodné látky (LPG) propán-butánová zmes, čistým butánom sa plnia zapaľovače
- d) iznoktán 2,2,4-trimetylpentán používa sa na určovanie kvality benzinu ako oktánové číslo (okt číslo 100) čím je oktánové číslo vyššie, tým je benzin kvalitnejti a odolnejti proti samovznieteniu (klepaniu motora) Natural 95 znamená, že benzín obsahuje 95% iznoktánu a 5% nheptánu (má oktánové číslo 0).

Zapište: 2,2,4-trimetylpentán

Ktoré z alkónov nàideme v domácnosti? Pomiéte si obcázkami.

mountered

CHEC

n-heptán