Quiz 1 - Linear Algebra - CSE/ECE 344/544

Maximum score: 25

Name:

Roll no:

Instructions:

- 1. Attempt all True/False questions with justification. A statement is true if it is *always* true.
- 2. There will be partial grading for answers without justification. For incorrect answers, there will be negative marking (-1 point for each incorrectly answered T/F question).
- 3. Please do not copy. Institute's plagiarism policy is strictly enforced.

Questions:

- 1. (2 points each) Mark the following statements as True or False. Justify each answer.
 - a. Any system of n linear equations in n variables has at most n solutions.
 - b. If **A** is an m x n matrix and the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for some **b**, then the columns of **A** span \mathbf{R}^m .
 - c. If none of the vectors in the set $S = \{v_1, v_2, v_3\}$ in \mathbb{R}^3 is a multiple of one of the other vectors, then S is linearly independent.
 - d. Left multiplying a matrix \mathbf{B} by a diagonal matrix \mathbf{A} , with nonzero entries on the diagonal, scales the rows of \mathbf{B} .
 - e. If BC = BD, then C = D.
 - f. If A and B are $n \times n$, then $(A + B)(A B) = A^2 B^2$.
 - g. If AB = BA and if A is invertible, then $A^{-1}B = BA^{-1}$.
 - h. If x is orthogonal to both u and v, then x must be orthogonal to u-v.

- i. If a square matrix ${\bf U}$ has orthonormal columns, then it also has orthonormal rows. (Orthonormal vectors are unit vectors that are mutually orthogonal.)
- j. If a matrix ${\bf U}$ has orthonormal columns, then ${\bf U}{\bf U}^{\bf T}={\bf I}.$
- 2. (2 points) Prove that $(\mathbf{ABC})^{-1} = \mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$.
- 3. (3 points) Given \mathbf{u} in $\mathbf{R}n$ with $\mathbf{u}^{\mathrm{T}}\mathbf{u} = 1$, let $\mathbf{P} = \mathbf{u}\mathbf{u}^{\mathrm{T}}$ (outer product) and $\mathbf{Q} = \mathbf{I} 2\mathbf{P}$. Justify the following statements:
 - a. $\mathbf{P}^2 = \mathbf{P}$ b. $\mathbf{P}^T = \mathbf{P}$ c. $\mathbf{Q}^2 = \mathbf{I}$