1. Compute

$$\lim_{x \to 0} \left(\frac{\tan^{-1}(x)}{\tan^{-1}(x) + x} \right)^3.$$

Answer: $\frac{1}{8}$

Solution: So this function is nasty, let's kind of cheat a little bit.

$$\lim_{x \to 0} \left(\frac{\tan^{-1}(x) + x}{\tan^{-1}(x)} \right) = \lim_{x \to 0} \left(1 + \frac{x}{\tan^{-1}(x)} \right) = 2$$

$$\lim_{x \to 0} \left(\frac{\tan^{-1}(x) + x}{\tan^{-1}(x)} \right)^3 = \lim_{x \to 0} \left(\frac{1}{2} \right)^3 = \boxed{\frac{1}{8}}$$

2. Compute

$$\int_0^1 \frac{x^2}{1 + \sqrt{1 - x^2}} \, \mathrm{d}x \, .$$

Answer: $\frac{4-\pi}{4}$

Solution: We make the trig substitution $x = \sin \theta$.

We obtain

$$\begin{split} \int_0^{\pi/2} \frac{\sin^2 \theta \cos \theta}{1 + \cos \theta} d\theta &= \int_0^{\pi/2} \left(\frac{\sin \theta}{1 + \cos \theta} \right) \sin \theta \cos \theta d\theta \\ &= \int_0^{\pi/2} \tan \left(\frac{\theta}{2} \right) \sin \theta \cos \theta d\theta \\ &= \int_0^{\pi/2} 2 \tan \left(\frac{\theta}{2} \right) \sin \left(\frac{\theta}{2} \right) \cos \left(\frac{\theta}{2} \right) \cos \theta d\theta \\ &= 2 \int_0^{\pi/2} \sin^2 \left(\frac{\theta}{2} \right) \cos \theta d\theta \\ &= 2 \int_0^{\pi/2} \sin^2 \left(\frac{\theta}{2} \right) (1 - 2 \sin^2 \left(\frac{\theta}{2} \right)) d\theta \\ &= 2 \int_0^{\pi/2} \sin^2 \left(\frac{\theta}{2} \right) d\theta - 4 \int_0^{\pi/2} \sin^4 \left(\frac{\theta}{2} \right) d\theta \\ &= 2 \int_0^{\pi/2} \sin^2 \left(\frac{\theta}{2} \right) d\theta - 4 \int_0^{\pi/2} \sin^2 \left(\frac{\theta}{2} \right) (1 - \cos^2 \left(\frac{\theta}{2} \right)) d\theta \\ &= \int_0^{\pi/2} 4 \sin^2 \left(\frac{\theta}{2} \right) \cos^2 \left(\frac{\theta}{2} \right) - 2 \int_0^{\pi/2} \sin^2 \left(\frac{\theta}{2} \right) d\theta \\ &= \int_0^{\pi/2} \sin^2 \left(\frac{\theta}{2} \right) d\theta - 2 \int_0^{\pi/2} \sin^2 \left(\frac{\theta}{2} \right) d\theta \end{split}$$

Then, we evaluate each integral as follows:

$$\int_0^{\pi/2} \sin^2(\theta/2) d\theta = \int_0^{\pi/2} \frac{1 - \cos \theta}{2} d\theta$$
$$= \frac{\pi}{4} - \frac{1}{2} \int_0^{\pi/2} \cos \theta d\theta$$
$$= \frac{\pi}{4} - \frac{1}{2},$$

$$\int_0^{\pi/2} \sin^2(\theta) = \int_0^{\pi/2} \frac{1 - \cos(2\theta)}{2} d\theta$$
$$= \frac{\pi}{4} - \frac{1}{2} \int_0^{\pi/2} \cos(2\theta) d\theta$$
$$= \frac{\pi}{4}.$$

Thus, the integral is

$$\int_0^1 \frac{x^2}{1 + \sqrt{1 - x^2}} dx = \frac{\pi}{4} - 2\left(\frac{\pi}{4} - \frac{1}{2}\right) = \boxed{\frac{4 - \pi}{4}}$$

3. Compute

$$\sum_{n=0}^{\infty} \frac{n^3}{n!}.$$

Answer: 5e

Solution: The series is reminiscent of the power series definition for e^x . Our strategy will be to repeatedly take the derivative of the power series of e^x and multiply by x.

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Take the derivative and multiply by x:

$$e^x = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{n!}$$

$$xe^x = \sum_{n=1}^{\infty} \frac{nx^n}{n!} = \sum_{n=0}^{\infty} \frac{nx^n}{n!}.$$

Repeat:

$$e^x + xe^x = \sum_{n=1}^{\infty} \frac{n^2 x^{n-1}}{n!}$$

$$xe^{x} + x^{2}e^{x} = \sum_{n=0}^{\infty} \frac{n^{2}x^{n}}{n!}.$$

Repeat one last time:

$$e^{x} + 3xe^{x} + x^{2}e^{x} = \sum_{n=1}^{\infty} \frac{n^{3}x^{n-1}}{n!}$$

$$xe^{x} + 3x^{2}e^{x} + x^{3}e^{x} = \sum_{n=0}^{\infty} \frac{n^{3}x^{n}}{n!}.$$

We plug in x = 1 to get:

$$\sum_{n=0}^{\infty} \frac{n^3 x^n}{n!} = \boxed{5e}.$$