Corrigé exercice 89 :

Partie A

- a. (C) passe par le point (-3;4) donc f(-3)=4.
 - $\stackrel{\textstyle (C)}{}$ admet au point d'abscisse –3 une tangente horizontale, donc f'(-3)=0
 - (C) passe par le point (-1, 2) donc f(-1) = 2
 - (C) admet au point d'abscisse –1 une tangente qui passe par l'origine O, donc $f^{\prime}(-1)=-2$
- b. f est croissante sur [-6;-5] donc sur [-6;-5], $f'(x)\geqslant 0$.
- 2. Sur [-6;5], C est toujours au-dessus de l'axe des abscisses sauf en x=1 où elle le croise. L'ensemble de solution de l'inéquation f(x)>0 est $\operatorname{donc}\left[-6;1[\cup]1;5\right]$

Résoudre l'équation $(f(x)-\dot{2})^2=4$ revient à résoudre f(x)-2=2 ou f(x)-2=-2 c'est à dire à trouver x tel que f(x)=4 ou f(x)=0 . Le point de Cd'ordonnée 4 a une abscisse égale à -3 et le point d'ordonnée 0 a une abscisse égale à 1. Les solutions de cette équation sur [-6; 5] sont donc -3 et 1.

Partie B

1. $(x+1)^2+4=x^2+2x+1+4=x^2+2x+5$. Pour tout $x \det \mathbb{R}, (x+1)^2 \geqslant 0 \operatorname{donc}(x+1)^2+4>0$ et donc f est définie sur \mathbb{R} . $f(0)=\frac{2}{5} \operatorname{donc} \frac{2b}{5}=\frac{2}{5} \operatorname{d'où} b=1$.

- 3. f est de la forme $f = \frac{u}{v}$, on peut donc calculer sa dérivée via la formule $f' = \frac{u'v v'u}{v^2}$. Et $f'(x) = \frac{(4x + 2a)(x^2 + 2x + 5) (2x + 2)(2x^2 + 2ax + 2b)}{(x^2 + 2x + 5)^2}$ on obtient alors $f'(x) = \frac{(4 2a)x^2 + 16x + 10a 4}{(x^2 + 2x + 5)^2}$ c'est à dire $f'(-3) = 0 \frac{(4 2a)x^2 + 16x + 10a 4}{(x^2 + 2x + 5)^2}$ 4. On a $f'(-3) = 0 \frac{(4 2a)x^2 + 16x + 10a 4}{(2a)x^2 + 2ax + 2b}$

$$f'(x) = \frac{8x^2 + 16x - 24}{\left(x^2 + 2x + 5\right)^2}.$$
 En développant
$$8(x+3)(x-1) \text{ on obtient } 8x^2 + 16x - 24. \text{ Donc}$$

$$f'(x) = \frac{8(x+3)(x-1)}{\left(x^2 + 2x + 5\right)^2}.$$

6. On obtient le tableau de signes ci-dessous.

x		-3		1		$+\infty$
x+3	⊕ <u> </u>	ø	+		+	
x-1	_		-	ф	+	
(x+3)(x-1)	+	ø	_	ø	+	

Et on neut alors en déduire le tableau de variations ci-dessous

(on peut aiors en deduire le tableau de variations ci-dessous.											
	x	∞		-3		1		$+\infty$				
	f'(x)		+	0	-	0	+					
	f			4 \		→ 0 —						

Corrigé exercice 96 :

1. Le volume de la boîte est $V=x^2h$ donc $h=\frac{V}{x^2}=\frac{10}{x^2}.$ $C(x)=5\times x^2+2\times 4\times xh=5x^2+\frac{80}{x}=\frac{5(x^3+16)}{x}.$

$$C(x) = 5 \times x^2 + 2 \times 4 \times xh = 5x^2 + \frac{80}{x} = \frac{5(x^3 + 16)}{x}$$

- 3. C est de la forme v donc pour calculer la dérivée on peut utiliser la formule $C'(x) = \frac{15x^2 \times x 5x^3 80}{x^2} = \frac{10x^3 80}{x^2}$, ce qui peut aussi s'écrire $C'(x) = \frac{10(x^3 - 8)}{x^2}$
- 4. C' est du signe de x^3-8 qui s'annule en x=2 et x=-2. On obtient alors le tableau de variations ci-dessous

