Linear Independence

Ch.11

mailto:eyeofyou@korea.ac.kr

July 2, 2020

1 Linear Independence

LI: Definition

Definition 1 (Linear Combinations, Span, Linear (in)dependence). \mathcal{L} is <u>spanned</u> set generated by <u>linear combination</u> of k vectors $\mathbf{v_1}, \dots, \mathbf{v_k}$

$$\mathcal{L}[\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^{\mathbf{n}}] := \left\{ \sum_{i=1}^{k} r_i \mathbf{v}_i : \forall r_i \in \mathbb{R} \right\}$$

 v_1, \cdots, v_k are linearly independent iff:

$$\mathcal{L}[\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^{\mathbf{n}}] \subset \mathbb{R}^k$$

Otherwise, v_1, \cdots, v_k are <u>linearly dependent</u>

Note: Different vectors can span the same space. Canonical basis $\mathbf{e_i}$ can be the representative vector (basis) for \mathbb{R}^n space.

LI: Alternative Definition

Definition 2 (Linear (in)dependence: Alternative definition). $v_1, \dots, v_k \in \mathbb{R}^n$ are <u>linearly</u> dependent iff:

$$\exists c_1, \cdots, c_k \neq 0 \quad s.t. \quad \sum_{i=1}^k c_i \mathbf{v_i} = \mathbf{0}$$

 $v_1, \cdots, v_k \in \mathbb{R}^n$ are linearly independent iff:

$$\sum_{i=1}^{k} c_i \mathbf{v_i} = \mathbf{0} \quad \Rightarrow \quad c_1 = \dots = c_k = 0$$

Theorems

Theorem 1 (11.1). $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^n$ are linearly dependent iff

$$A \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} = \mathbf{0}$$

has nonzero solution \mathbf{c} , where A is $n \times k$ matrix whose $C_i = \mathbf{v_i}$. i.e.,

$$A = (\mathbf{v_1} \quad \mathbf{v_2} \quad \cdots \quad \mathbf{v_k})$$

Theorem 2 (11.2). $v_1, v_2, \dots, v_n \in \mathbb{R}^n$ are linearly independent iff

$$\det \begin{pmatrix} \mathbf{v_1} & \mathbf{v_2} & \cdots & \mathbf{v_n} \end{pmatrix} \neq 0$$

Checking LI

Procedure: Checking Linear (in)dependence

- 1. Stack $\mathbf{v_i}$ to make $k \times n$ matrix, A.
- 2. Calculate rank(A): this is the dimension of $\mathcal{L}[\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^n]$
- 3. $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^n$ are linearly independent iff rank(A) = k. Otherwise, they are linearly dependent

Note: $rank(A^T) = rank(A)$

Theorem 3 (11.3). If k > n, any set of k vectors in \mathbb{R}^n is linearly dependent.

2 Spanning Sets

3 Basis and Dimension in \mathbb{R}^n

Basis

Definition 3 (Basis). Let $V = \mathcal{L}[\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^n]$. If $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^n$ are linearly independent, $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^n$ is called a <u>basis</u> of V. More generally, $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^n$ forms a basis of V if:

- 1. $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^n \ span \ V$
- 2. $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^n$ are linearly independent

Theorem 4 (11.7). Every basis of \mathbb{R}^n contains n vectors.

Linear Independence and Basis

Theorem 5 (11.8). Let $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n} \in \mathbb{R}^n$ be a collection of n vectors in \mathbb{R}^n . And let $n \times n$ matrix $A = (\mathbf{v_1} \cdots \mathbf{v_n})$. Then the following statements are equivalent:

- 1. $v_1, v_2, \cdots, v_n \in \mathbb{R}^n$ are linearly independent.
- 2. $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n} \in \mathbb{R}^n \ span \ \mathbb{R}^n$
- 3. $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n} \in \mathbb{R}^{\mathbf{n}}$ form a basis of \mathbb{R}^n
- 4. $\det(A) \neq 0$