Central limit theorem in action

Vikram Kulkarni

November 10, 2015

1 Explanation

This python code simulates coin flips. Assume heads = 1 and tails = 0, or vice versa. Flip the coin n times and compute the sum. Repeat the experiment m times. Therefore there are m sums. Create a histogram recording the frequency of each sum (and divide by m for normalization purposes). The central limit theorem predicts a probability distribution of the sums in the form of a Gaussian:

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp \left[\frac{-0.5(x-\mu)^2}{\sigma^2} \right]$$
 (1)

Here x is the value of the sum, μ is the theoretical mean $(\frac{n}{2})$, and σ^2 is the variance $(\frac{n}{4})$. The python code simply plots this distribution on top of the histogram as a comparison. The resulting plot should look similar to this:

Figure 1: n = 400, m = 5000