

PROBLEMA DE LA MOCHILA 0/1 (CON PROGRAMACIÓN DINÁMICA)

CONTINUACIÓN

Programación 3 Javier Miranda

Escuela de Ingeniería Informática Universidad de Las Palmas de Gran Canaria

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$

Peso Beneficio Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

¡ Árbol completo de llamadas!

Árbol de todas las posibles llamadas recursivas con su beneficio

$$t(n-1, w)$$
 : $W_n > w$
 $t(n,w) - max(t(n-1,w), t(n-1,w-W_n) + B_n)$
 0 : $n <= 0$

```
t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max(t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n <= 0 \end{cases}
```

Si el peso del elemento *n* excede el peso máximo de la mochila, no podemos añadirlo y pasamos al siguiente

```
t(n-1, w) : W_n > w

t(n,w) - \max \{(t(n-1,w), t(n-1,w-W_n) + B_n)\}

0 : n <= 0
```

En el resto de los casos, tenemos dos posibilidades:

$$t(n-1, w)$$
 : $W_n > w$
 $t(n,w) - max(t(n-1,w)) t(n-1,w-W_n) + B_n)$
 0 : $n <= 0$

En el resto de los casos, tenemos dos posibilidades:

1. No añadir el elemento *n*, con lo que el problema se reduce a calcular la mochila óptima sin tener en cuenta *n*

$$t(n-1, w)$$
 : $W_n > w$
 $t(n,w) - max(t(n-1,w), t(n-1,w-W_n) + B_n)$
 0 : $n <= 0$

En el resto de los casos, tenemos dos posibilidades:

- 1. No añadir el elemento *n*, con lo que el problema se reduce a calcular la mochila óptima sin tener en cuenta *n*
- 2. Añadir n, con lo que ahora tenemos que calcular la mochila óptima restando su peso (w- W_n) pero teniendo en cuenta su beneficio (B_n)

$$t(n-1, w)$$
 : $W_n > w$
 $t(n,w) - max(t(n-1,w), t(n-1,w-W_n) + B_n)$: $n <= 0$

En el resto de los casos, tenemos dos posibilidades:

- 1. No añadir el elemento n, con lo que el problema se reduce a calcular la mochila óptima sin tener en cuenta n
- 2. Añadir n, con lo que ahora temenos que calcular la mochila óptima restando su peso (w- W_n) pero teniendo en cuenta su beneficio (B_n)

Y nos quedamos con la opción que maximice nuestro beneficio!

$$t(n,w) = \begin{cases} t(n-1, w) \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 \end{cases}$$

$$: W_n > w$$

: n <= 0

Programación Dinámica: Tabulation

Debemos crear una tabla para evitar repetir cálculos	Items:
y como vamos a implementar tabulation calculamos	1: (2,3)
la recurrencia a partir de los casos base (<i>bottom-up</i>)	2: (3,4)
¿ Cuál es el número mínimo de filas de la tabla ?	3: (4,5)
Codal co ci fidificio filifilifio de <u>lilas</u> de la tabla :	4: (5,6)

$$t(n,w) = \begin{cases} t(n-1, w) \\ max(t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 \end{cases}$$

$$: W_n > w$$

 $: n \le 0$

Programación Dinámica: Tabulation

Debemos crear una tabla para evitar repetir cálculos ... y como vamos a implementar tabulation calculamos la recurrencia a partir de los casos base (*bottom-up*)

¿ Cuál es el número mínimo de <u>filas</u> de la tabla ? El número de <u>ítems</u> (o sea, 4)

¿ Cuál es el número mínimo de columnas de la tabla?

Items:

1: (2,3)

2: (3,4)

3: (4,5)

$$t(n,w) = \begin{cases} t(n-1, w) \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 \end{cases}$$

$$: W_n > w$$

: n <= 0

Programación Dinámica: Tabulation

Debemos crear una tabla para evitar repetir cálculos
... y como vamos a implementar tabulation calculamos
la recurrencia a partir de los casos base (*bottom-up*)

2: (3,4) 3: (4,5)

1: (2,3)

Items:

¿ Cuál es el número mínimo de <u>filas</u> de la tabla ? El número de ítems (o sea, 4)

4: (5,6)

¿ Cuál es el número mínimo de columnas de la tabla ?

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n <= 0 \end{cases}$$

Número mínimo de filas = 4 Número mínimo de columnas = 5

Items:

1: (2,3)

2: (3,4)

3: (4,5)

$$t(n,w) = \begin{cases} t(n-1, w) \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 \end{cases}$$

Número mínimo de filas = 4 Número mínimo de columnas = 5

... pero si nos fijamos bien ...

 $: W_n > W$

: n <= 0

Items:

1: (2,3)

2: (3,4)

3: (4,5)

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ \max_{n \neq 0} (t(n-1,w), t(n-1,w-W_n) + B_n) \\ \vdots & : n <= 0 \end{cases}$$

Número mínimo de filas = 4 Número mínimo de columnas = 5

... pero si nos fijamos bien ...

1) El caso base es cuando n <= 0

Items:

1: (2,3)

2: (3,4)

3: (4,5)

$$t(n,w) = \begin{cases} t(n-1, w) \\ max(t(n-1,w), t(n-1, w-W_n) + B_n) \\ 0 \end{cases}$$

Número mínimo de filas = 5 Número mínimo de columnas = 5

nero mínimo de columnas = 5

... pero si nos fijamos bien ...

1: (2,3)2: (3,4)1) El caso base es cuando n <= 0 (añadimos una fila)
2: (4,5)2) Si lleno la mochila w = 0

1: (2,3)2: (3,4)3: (4,5)

 $: W_n > W$

: n <= 0

$$t(n,w) = \begin{cases} t(n-1, w) \\ max(t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 \end{cases}$$

$$: W_n > W$$

: n <= 0

Programación Dinámica: Tabulation

Número mínimo de filas = 5 Número mínimo de columnas = 6

Items:

1: (2,3)

2: (3,4)

3: (4,5)

$n \setminus W$	V 0	1	2	3	4	5
0						
1						
2						
3						
4						

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max(t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

$n \setminus W$	V 0	1	2	3	4	5
0						
1						
2						
3						
4						

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

for
$$w = 0$$
 to W
t $[0, w] = 0$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

$n \setminus V$	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

$$t(n,w) = \begin{cases} t(n-1, w) \\ max(t(n-1,w), t(n-1(w-W_n) + B_n)) \\ 0 \end{cases}$$

$$: W_n > w$$

: n <= 0

for w = 0 to W t [0, w] = 0for i = 1 to nt [i, 0] = 0

Items:

1: (2,3)

2: (3,4)

3: (4,5)

$n \setminus W$	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

$$t(n,w) = \begin{cases} t(n-1, w) \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 \end{cases}$$

$$: W_n > w$$

: n <= 0

Programación Dinámica: Tabulation

. . .

for i = 1 to n for w = 0 to W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

$n \setminus W$	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

$$t(n,w) = \begin{cases} t(n-1, w) \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 \end{cases}$$

. . .

for
$$i = 1$$
 to n
for $w = 0$ to W
if $w_i \le w$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

else

$n \setminus W$	<u>0</u>	11	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

. . .

for i = 1 to nfor w = 0 to Wif $w_i \le w$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

else t [i,w] = t [i-1,w]

$n \setminus W$	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

for i = 1 to n for w = 0 to W if $w_i \le w$ if $b_i + t [i-1,w-w_i] > t [i-1,w]$ $t [i,w] = b_i + t [i-1,w-w_i]$ else t [i,w] = t [i-1,w]else t [i,w] = t [i-1,w]

$n\backslash W$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

Ejemplo (1/17)

i\W	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

for
$$w = 0$$
 to W
 $V[0,w] = 0$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

Ejemplo (2/17)

i\W	7 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

for
$$i = 1$$
 to n

$$V[i,0] = 0$$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

Ejemplo (3/17)

$i\W$

Items:

$$=$$

$$i=1$$
 $b_i=3$
 $3: (4,3)$
 $4: (5,6)$

$$b_i = 3$$

$$w_i = \underline{2}$$

$$w=1$$

$$w-w_{i} = -1$$

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ &V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ &\text{else} \\ &V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ &\text{else} |V[i\text{,}w] = V[i\text{-}1\text{,}w] | // |w_i| > w \end{split}$$

Items:

1: (2,3)

$$i=1$$
 $b_i=3$
 $3: (4,5)$
 $4: (5,6)$

$$b_{i}=3$$

$$w_i = 2$$

$$w=2$$

$$\mathbf{w} - \mathbf{w}_{i} = 0$$

0

0

0

3

4

if $w_i \le w$ // item i can be part of the solution if $b_i + V[i-1,w-w_i] > V[i-1,w]$ $V[i,w] = b_i + V[i-1,w-w_i]^{-1}$ else V[i,w] = V[i-1,w]else $V[i,w] = V[i-1,w] // w_i > w$

0

Items:

1: (2,3)

$$v_i$$

$$w_i = 2$$

$$W=3$$

$$\mathbf{w} - \mathbf{w}_{i} = 1$$

Ejemplo (5/17)

if $\mathbf{w_i} \le \mathbf{w}$ // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1, w-w_i]} \ge \mathbf{V[i-1, w]}$ $[\mathbf{V[i, w]} = \mathbf{b_i} + \mathbf{V[i-1, w-w_i]}]$ else $V[i, \mathbf{w}] = V[i-1, \mathbf{w}]$ else $V[i, \mathbf{w}] = V[i-1, \mathbf{w}]$ // $W_i \ge \mathbf{w}$

Ejemplo (6/17)

$i \mid W \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$ $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ $1 \quad 0 \quad 0 \quad 3 \quad 3$ $2 \quad 0 \quad 0$ $3 \quad 0 \quad 0$ $4 \quad 0 \quad 0$

Items:

$$i=1$$

$$b_i = 3$$

$$w_i = 2$$

$$w=4$$

$$W-W_i = 2$$

if $w_i \le w$ // item i can be part of the solution if $b_i + V[i-1,w-w_i] > V[i-1,w]$

$$|\mathbf{V}[\mathbf{i},\mathbf{w}] = \mathbf{b}_{\mathbf{i}} + \mathbf{V}[\mathbf{i}-\mathbf{1},\mathbf{w}-\mathbf{w}_{\mathbf{i}}] > \mathbf{V}[\mathbf{i}-\mathbf{1},\mathbf{w}]$$
else

$$V[i,w] = V[i-1,w]$$
else $V[i,w] = V[i-1,w] // w_i > w$

Ejemplo (7/17)

4

0

Items:

$$i=1$$

$$b_i = 3$$

$$w_i = 2$$

$$w=5$$

$$w-w_i = 3$$

if $w_i \le w$ // item i can be part of the solution if $b_i + V[i-1,w-w_i] \ge V[i-1,w]$

$$[\mathbf{V}[\mathbf{i},\mathbf{w}] = \mathbf{b}_{\mathbf{i}} + \mathbf{V}[\mathbf{i}-\mathbf{1},\mathbf{w}-\mathbf{w}_{\mathbf{i}}]]$$
 else

$$V[i,w] = V[i-1,w]$$
else $V[i,w] = V[i-1,w] // w_i > w$

Ejemplo (8/17)

$i\W$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=2 $b_i=4$ $w_i=3$

w=1

 $W-W_i = -2$

Ejemplo (9/17)

$i\W$

$$i=2$$

$$b_i = 4$$

$$i=2$$
 $b_i=4$
 $w_i=3$

$$w=2$$

$$W-W_{i} = -1$$

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ & V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ & \text{else} \\ & V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ & \text{else}[V[i\text{,}w] = V[i\text{-}1\text{,}w]] \text{ // } w_i > w \end{split}$$

Ejemplo (10/17)

$i\W$ 0 0 0 0 ()0 3 3 3 3 3 0 0 3 0 4 0

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=2 $b_i=4$ $w_i=3$

w=3

 $W-W_i = 0$

if $w_i \le w$ // item i can be part of the solution

if
$$\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$$

 $[\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}]$
else

$$V[i,w] = V[i-1,w]$$
else $V[i,w] = V[i-1,w] // w_i > w$

Ejemplo (11/17)

$i\W$ 0 0 0 0 0 0 3 3 3 0 0 0 0 3 0 4 0

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$b_i = 4$$

$$i=2$$
 $b_i=4$
 $w_i=3$

$$w=4$$

$$w-w_i = 1$$

if $w_i \le w$ // item i can be part of the solution if $b_i + V[i-1,w-w_i] > V[i-1,w]$ $|V[i,w] = b_i + V[i-1,w-w_i]|$ else V[i,w] = V[i-1,w]else $V[i,w] = V[i-1,w] // w_i > w$

Ejemplo (12/17)

$i\W$

Items:

$$i=2$$

$$b_i = 4$$

$$i=2$$
 $b_i=4$
 $w_i=3$

$$w=5$$

$$w-w_i = 2$$

if $w_i \le w$ // item i can be part of the solution

if
$$\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$$

 $[\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}]$
else
 $V[i,w] = V[i-1,w]$

else
$$V[i,w] = V[i-1,w] // w_i > w$$

Ejemplo (13/17)

$i\W$

$$=3$$

$$b_i = 5$$

$$w_i = \underline{4}$$

$$w = 1..3$$

Ejemplo (14/17)

W $i\W$

Items:

$$i=3$$

$$b_i = 5$$

$$w_i = \underline{4}$$

$$w=4$$

$$w-w_i=0$$

if $w_i \le w$ // item i can be part of the solution

$$if \mathbf{b}_{i} + \mathbf{V}[\mathbf{i}-1,\mathbf{w}-\mathbf{w}_{i}] \ge \mathbf{V}[\mathbf{i}-1,\mathbf{w}]$$

$$[\mathbf{V}[\mathbf{i},\mathbf{w}] = \mathbf{b}_{i} + \mathbf{V}[\mathbf{i}-1,\mathbf{w}-\mathbf{w}_{i}]]$$
else
$$V[\mathbf{i},\mathbf{w}] = V[\mathbf{i}-1,\mathbf{w}]$$
else
$$V[\mathbf{i},\mathbf{w}] = V[\mathbf{i}-1,\mathbf{w}] // \mathbf{w}_{i} \ge \mathbf{w}$$

Ejemplo (15/17)

$i\W$

$$i=3$$

$$i=3$$
 4: (5,6) $b_i=5$

$$b_i = 5$$

$$w_i = \underline{4}$$

$$w=5$$

$$w-w_i=1$$

$$\begin{split} &\text{if } \mathbf{w}_i \mathrel{<=} \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ &V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ &\text{else} \\ &|\mathbf{V[i\text{,}w]} = \mathbf{V[i\text{-}1\text{,}w]}||_{\text{}} \\ &\text{else } V[i\text{,}w] = V[i\text{-}1\text{,}w] \text{ // } w_i > w \end{split}$$

Ejemplo (16/17)

W $i\W$

$$i=4$$
 4: (5,6)

$$b_i = \overline{6}$$

$$w_i = \underline{5}$$

$$w = 1..4$$

Ejemplo (17/17)

if
$$w_i \le w$$
 // item i can be part of the solution if $b_i + V[i-1,w-w_i] > V[i-1,w]$

$$V[i,w] = b_i + V[i-1,w-w_i]$$

else
$$[V[i,w] = V[i-1,w]]$$
 else $V[i,w] = V[i-1,w]$ // $W_i > w$

Items:

$$b_i = 6$$

$$w_i = \underline{5}$$

$$w=5$$

$$w-w_i=0$$

¿ Qué elementos contiene la mochila?

La información está en la tabla

i = i - 1

... sólo tenemos que recorrerla hacia atrás!

i∖W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

```
    i=n, k=W
    if V[i,k] ≠ V[i-1,k] then
        // El i<sup>th</sup> elemento está en la mochila
        i = i-1, k = k-w<sub>i</sub>
else
```

// El ith elemento no está en la mochila

Beneficio Máximo

i\W	<i>J</i> 0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0	0	3	3	3	3	
2	0	0	3	4	4	7	
3	0	0	3	4	5	7	
i→ 4	0	0	3	4	5	7	

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$k=5$$

$$b_i = 6$$

$$w_i = 5$$

$$V[i,k] = 7$$

$$V[i-1,k] = 7$$

i=n, k=W
while i,k > 0
if
$$V[i,k] \neq V[i-1,k]$$
 then
el elemento i^{th} está en la mochila
 $i = i-1, k = k-w_i$
else
 $i = i-1$

$i\W$ ()

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (<u>5</u>,6)

i=4 k= 5

 $b_i = 6$

 $w_i = 5$

V[i,k] = 7

V[i-1,k] = 7

i=n, k=W
while i,k > 0
if
$$V[i,k] \neq V[i-1,k]$$
 then
el elemento ith está en la mochila
 $i = i-1, k = k-w_i$
else
 $|i = i-1|$

$i\W$ i→ $\mathbf{0}$

Items:

1: (2,3)

2: (3,4)

3: (<u>4</u>,<u>5</u>)

4: (5,6)

$$b_i = 5$$

k=5

$$w_i=4$$

$$V[i,k] = 7$$

$$V[i-1,k] = 7$$

i=n, k=W
while i,k > 0
if
$$V[i,k] \neq V[i-1,k]$$
 then
el elemento ith está en la mochila
 $i = i-1, k = k-w_i$
else
 $|i = i-1|$

$i\W$ () $\mathbf{0}$

i=n, k=W
while i,k > 0
if
$$V[i,k] \neq V[i-1,k]$$
 then
el elemento i^{th} está en la mochila
 $i=i-1, k=k-w_i$
else
 $i=i-1$

Items:

$$b_i = 4$$

k=5

$$w_i=3$$

$$V[i,k] = 7$$

$$V[i-1,k] = 3$$
$$k - w_i = 2$$

$$k - w_i = 2$$

$i\W$ $\mathbf{0}$

i=n, k=W
while i,k > 0
if
$$V[i,k] \neq V[i-1,k]$$
 then
el elemento i^{th} está en la mochila
 $i=i-1, k=k-w_i$
else
 $i=i-1$

Items:

$$b_i = 3$$

k=2

$$w_i = 2$$

$$V[i,k] = 3$$

$$V[i-1,k] = 0$$
$$k - w_i = 0$$

$$k - w_i = 0$$

i=0

k=0

Encontrando los elementos

$i\W$ $i \rightarrow$ ()

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

La mochila óptima contiene {1, 2}

i=n, k=W
while i,k > 0

if
$$V[i,k] \neq V[i-1,k]$$
 then

el elemento i^{th} está en la mochila k

 $i = i-1, k = k-w_i$
else

 $i = i-1$

Programación Dinámica: Tabulation

Fase 1 del algoritmo: Rellenar la tabla

for
$$w = 0$$
 to W
V[0,w] = 0

for
$$i = 1$$
 to n $V[i,0] = 0$

for i = 1 to n
for w = 0 to W
if
$$w_i \le w$$

if $b_i + V[i-1,w-w_i] > V[i-1,w]$
 $V[i,w] = b_i + V[i-1,w-w_i]$
else
 $V[i,w] = V[i-1,w]$
else
 $V[i,w] = V[i-1,w]$

Fase 2 del algoritmo: Utilizando el contenido # de la tabla identificar los items elegidos

```
→ while ....
```

```
if V[i,k] \neq V[i-1,k] then

// El i^{th} elemento <u>está</u> en la mochila

i = i-1, k = k-w_i

else

// El i^{th} elemento <u>no está</u> en la mochila

i = i-1
```