UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR

Affin & Projektiv Geometri

Rami Abou Zahra

Contents

1.	Plana algebraiska kurvor	2
2.	Affina avbildningar	4
3.	Klassificering av andragradspolynom i två variabler	7
4.	Övningsuppgifter	8
5.	Komplexa planet \mathbb{C}^2	8
6.	Vad är bra med C-kurvor?	10
7.	Skärningstalet (skärningsmultiplicitet)	12
7.1.	. Konsekvenser av axiomen	13
8.	Vad vi vet nu om Bezouts sats	15
9.	Projektiv Geometri över \mathbb{R}	16
9.1	. Projektiva transformationer	18

1. Plana algebraiska kurvor

Vi inleder med definition:

Theorem 1.1: Plan affin algebraisk kurva

En **plan affin algebraisk kurva** är nollställesmängden till ett icke-konstant polynom $f(x,y) \in \mathbb{R}[x,y]$ där $\mathbb{R}[x,y]$ är mängden av alla polynom med 2 variabler med reella koefficienter.

Nollställesmängden kan betecknas $V(f) = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\}$

Theorem 1.2: Affin-avbildning

En linjär avbildning är på formen $x\mapsto ax$, medan en affin avbildning är "ungefär linjär", dvs $x\mapsto ax+b$

Ett sätt att betrakta polynom är att de är ett ändligt antal utförande av operatorer på kropp-element.

Exempel:

Betrakta följande polynom i \mathbb{R}^2 , ax + by + c = f(x, y). Polynomet är av grad 1, och är därför därmed ett linjärt polynom.

Exempel:

Vi kan även ha nollställesmängden som parabel med följande funktion $f(x,y) = y - x^2$

Bygger vi vidare på föregående exempel kommer vi fram till följande mer generella formel för att "omvandla" ett endimensionellt polynom till en flerdimensionell:

$$f(x,y) = y - p(x)$$

Där p(x) är ett godtyckligt polynom.

Exempel:

Om vi betraktar följande funktion $f(x,y) = x^2 + y^2$ (enhetscirkeln) så har den en nollställesmängd som är en punkt.

Exempel:

Om vi betraktar tomma-mängden som nollställesmängd (dvs exempelvis $f(x,y) = x^2 + y^2 + 1$) så är det absolut en valid nollställesmängd, men en obehaglig sådan ty det inte finns en intuitiv geometrisk bild, kan vi kalla den för en kurva? $f(x,y) = x^2 + 1$ har ju samma nollställesmängd!

Exempel:

Betrakta följande funktion f(x,y) = xy. Denna har unionen av x-axeln och y-axeln som lösningsmängd

En affin funktion från flervarren som vi kanske minns är faktiskt linjäriseringen av f:

$$f(\bar{r}) \approx f(\bar{r}_0) + \nabla f(\bar{r}_0) \cdot (\bar{r} - \bar{r}_0)$$

I den här kursen tillåter vi allmänna linjära basbyten, alltså ej bara isometriska avbildningar utan vi kan skala om ena axeln och krympa den/deformera den!

Theorem 1.3: Singulära punkter

En punkt \bar{r}_0 sådant att $f(\bar{r}_0) = 0$ sådant att $\nabla f(\bar{r}_0 = (0,0))$ kallas **singulär**. Singulära punkter bevaras under affin transformation.

Theorem 1.4: Transversell skärning

Två kurvor $f(\bar{r})=0$ och $g(\bar{r})=0$ sägs skära varandra transversellt i $[r]_0$ om $f(\bar{r}_0)=0=g(\bar{r}_0)$ och $\nabla f(\bar{r}_0)\neq 0\neq \nabla g(\bar{r}_0)$ och $\nabla f(\bar{r}_0)\neq 0$ ar inte parallella (linjärkombinationer av varandra)

I linjär algebra 2 skiljde vi på t.ex ellipser med olika halvaxlar (och andra former) genom att undersöka egenvärden $\{\lambda_1, \lambda_2\}$ i motsvarande kvadratiska form.

I linjär algebra använde vi ortonormala avbildningar som var isometriska, det ska vi strunta i här eftersom vi vill kunna deformera kurvor utan att bevara längd/vinklar

2. Affina avbildningar

En affin avbildning är $n\ddot{a}stan$ samma sak som en linjär avbildning, men inte riktigt! Den tillåter translationer (flytta saker axel-parallellt). Alltså, ej en isometri.

Theorem 2.1: Affin Avbildning

En avbildning $F: \mathbb{R}^n \to \mathbb{R}^n$ på formen $F(\bar{v}) = L(\bar{v}) + \bar{b}$ Där \bar{b} är en konstant vektor och $L: \mathbb{R}^n \to \mathbb{R}^n$, kallas för en **affin** avbildning

Anmärkning: I en linjär avbildning är den konstanta vektorn $\bar{b} = 0$, alltså är alla linjära avbildning affina.

Exempel:

Betrakta följande avbildning: $\bar{F}(x,y) = (ax + by + e, cx + dy + f) \ a,b,c,d,e,f \in \mathbb{R}$ Det är +e och +f som gör avbildningen affin

Anmärkning:

I exemplet är det e, f som är "translationerna" (translationsfaktor). Det enda de gör är att flytta saker, de bevarar längder och vinklar Alternativ notation:

$$\bar{F}\begin{pmatrix} x \\ y \end{pmatrix} = \underbrace{\begin{pmatrix} 2 & 3 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}}_{L(\bar{y})} - \underbrace{\begin{pmatrix} 1 \\ \pi \end{pmatrix}}_{\bar{h}}$$

Theorem 2.2: Affin Transformation

Om $det(\bar{L}) \neq 0$ så kallas \bar{F} för en **affin transformation**. En affin transformation är en bijektion.

Theorem 2.3: Euklidisk Transformation

En transformation som bevarar längd och vinklar, även kallad för ortonormal transformation

Notation: Mängden affina avbildningar noteras $Aff(n) = \{affina \text{ transformationer } \mathbb{R}^n \}$

Egenskaper:

- $F, G \in Aff(n) \Rightarrow F \circ G \in Aff(n)$
- Om $det(\bar{L}) \neq 0$ så är \bar{F} inverterbar (\bar{L} är inverterbar)
- id_{R^n} är affin

Proof 2.1: Egenskap 1

$$\begin{split} F(\bar{v}) = L(\bar{v}) + \bar{b} & G(\bar{w}) = M(\bar{w}) + \bar{c} \\ F(\bar{G}(\bar{w})) = F(\bar{M}(\bar{w}) + \bar{c}) = L(\bar{M}(\bar{w}) + \bar{c}) + \bar{b} = L(\bar{M}(\bar{w})) + L(\bar{c}) + \bar{b} \end{split}$$

Proof 2.2: Egenskap 2

$$\bar{y} = \bar{F}(\bar{x}) = \bar{L}(\bar{x}) + \bar{b}$$

 $\bar{F}^{-1}(\bar{y}) = \bar{L}^{-1}(\bar{y} - \bar{b})$

Anmärkning:

Man kan betrakta Aff(n) som en grupp, där identiteten är identitetsavbildningen $(\bar{b} = 0, \text{linjär identitet} = \text{enhetsmatrisen})$

Geometriska egenskaper hos Aff(n)

- Om l är en linjne, $\bar{F} \in AffA(n) \Rightarrow \bar{F}(l)$ är en linje
- Om l, l' är paralella linjer så är $\bar{F}(l) = \bar{F}(l')$
- Om två kurvor skär varandra transversellt så gäller detsamma bilderna av kurvorna
- $\bullet\,$ Säg att vi har 4 punkter på en linje, så bevarar \bar{F} längdförhållandet mellan dem:

$$\frac{\left|\bar{AB}\right|}{\left|\bar{CD}\right|} = \frac{\left|\bar{F(A)F(B)}\right|}{\left|\bar{F(C)F(D)}\right|}$$

Anmärkning:

Affina avbildningar bevarade nödvändigtvis inte längder och vinklar, men 4:e egenskapen här verkar tyda på att någonting bevaras.

Theorem 2.4

Säg att vi har en affin transformation $\bar{F} \in Aff(n)$, vi inducerar en avbildning:

$$\mathbb{R}[x_1, x_2 \cdots, x_n] \xrightarrow{F^*} \mathbb{R}[x_1, x_2, \cdots, x_n]$$

$$\mathbb{R}^n \xrightarrow{f \circ F} \mathbb{R}^n \xrightarrow{f} \mathbb{R}$$

$$f \mapsto f \circ \bar{F}$$

Exempel:

Betrakta följande avbildning: $\bar{F}: \mathbb{R}^2 \to \mathbb{R}^2$ sådant att $(x, y) \mapsto (x + y, x - y)$. $f \in \mathbb{R}[x, y] = x^2 + y^2$ ger följande:

$$F^*(f)(x,y) = f \circ \bar{F}(x,y)$$
$$(x+y)^2 + (x-y)^2 = 2(x^2 + y^2)$$

Theorem 2.5

Om
$$deg(f) = k$$
 så $deg(F^*(f)) = k$

Anmärkning:

Det här $\mathbb{R}[x_1, \cdots, x_n]$ är en ring med 1:a (identitet). Det är också en \mathbb{R} -algebra (ett vektorrum över \mathbb{R} så att multiplikation med $\lambda \in \mathbb{R}$ beter sig civiliserat m.a.p ringstruktur).

Då är $F^*: \mathbb{R}[x_1, \dots, x_n] \to \mathbb{R}[x_1, \dots, x_n]$ en \mathbb{R} -algebraringhomomorfi, det vill säga:

- $F^*(f+g) = F*(f) + F*(g)$
- $F^*(fg) = F^*(f)F^*(g)$
- $F^*(1) = 1$
- $F^*(\lambda f) = \lambda F^*(f)$

Notation:

Mängden av alla \mathbb{R} -algebraringhomomorfi betecknas för $Auf(\mathbb{R}[x_1,\cdots,x_n])=\{\mathbb{R}$ -algebraringhomomorfi $\}$

Theorem 2.6

Avbildningen Aff $(n) \underbrace{\longrightarrow}_* Auf(\mathbb{R}[x_1,\cdots,x_n])$ $F \mapsto F^*$ har egenskapen $(F \circ G)^* = G^* \circ F^*$

Proof 2.3: Bevis av föregående sats

$$(F \circ G)^*(f) = f \circ (F \circ G) = (f \circ F) \circ G = G^*(F^*(f)) = (G^* \circ F^*)(f)$$

Theorem 2.7: Affint ekvivalens

Låt $f, g \in \mathbb{R}[x_1, \dots, x_n]$. Vi säger att f och g är **affint ekvivalenta** om det finns en affin transformation $\bar{F} : \mathbb{R}^n \to \mathbb{R}^n$ och ett tal $(\lambda \neq 0)$ så att:

$$F^*(f) = \lambda g$$

Detta är en ekvivalensrelation på $\mathbb{R}[x_1, \cdots, x_n]$ $(f \sim g)$

3. Klassificering av andragradspolynom i två variabler

Vi vill veta hur många "andragradskurvor" det finns och vilka. Det är planen.

Vi kikar på det allmänna fallet $f(x,y) = ax^2 + bxy + cy^2 + dx + ey + f$.

Vi försöker förenkla f(x,y) (som är ett allmänt polynom) m.h.a affina transformationer och multiplikation med konstanter $\lambda \neq 0$

Vi noterar från f(x,y) att vi har en bit som är en rent kvadratisk form $(ax^2 + bxy + cy^2)$, och vi vet att vi alltid kan diagnolisera kvadratiska former, m.h.a variabelbyte. Vi ser vad som händer om vi gör detta:

$$f(x,y) \Rightarrow x^2 + \lambda y^2 + Dx + Ey + f$$

Där $\lambda \in \{0, 1, -1\}$. Vi falluppdelar:

•
$$\lambda = \pm 1 \Rightarrow$$
 Vi kan kvadratkomplettera och vi får $\left(x + \frac{D}{2}\right)^2 - \frac{D^2}{4} + \lambda \left(y + \frac{E}{2\lambda}\right)^2 - \frac{E^2}{4\lambda} + f$

Vi samlar alla konstanter till en och gör ett variabelbyte på $x, y \Rightarrow x^2 + \lambda y^2 + F$

Theorem 3.1: Signaturen av en kvadratisk form

Hur många positiva resp. negativa egenvärden = signaturen. Betecknas som koordinater (x, y) där x = hur många positiva och y = hur många negativa.

Notera! Signaturen är oförändrad under affina transformationer (invariant)

Theorem 3.2

Om $f(x,y) = f_1(x,y) \cdot f_2(x,y)$, så är nollställesmängden unionen:

$$V(f) = V(f_1) \cup V(f_2)$$

Ur detta följer det att alla polynomringar $k[x_1, \dots, x_n]$ är faktoriella ringar (varje polynom har en entydig faktorisering i irreducibla polynom). Detta är inte så lätt att visa om vi har fler variabler än 1.

Theorem 3.3: Irreducibla komponenter

Det faktoriserade polynomet kommer ha bitar (faktorer) som korresponderar till element i nollställesmängden. Dessa kallar vi för **irreducibla komponenter**

Theorem 3.4

Två irreducibla kurvor f och g sammafaller (skär varandra) i högst $\ddot{a}ndligt$ många punkter

4. Övningsuppgifter

Vi påminner att om $f(x,y) = a^2 + bxy + cy^2 + dx + ey + f$ så är f(x,y) affint ekvivalent med exakt en av följande:

- $x^2 + y^2 1$ (cirkel) $x^2 y^2 1$ (hyperbel)

- x y 1 (hyperber) $x^2 y$ (parabel) $x^2 y^2$ (linjekon) $x^2 + y^2$ (punkt) x(x 1) (två parallella linjer)
- x^2 ("dubbellinje")
- $x^2 + 1$ (tom)
- $x^2 + y^2 + 1$ (tom)

Man skulle kunna säga att målet med första halvan av kurvan är att bevisa följande sats:

Theorem 4.1: Bezoutes Pseudosats

Om f, g är algebraiska kurvor så skär de varandra precis (deg f)(deg g) gånger

I nuläget är det här väldigt fel, vi kan hitta motexempel, men det ska inte stoppa oss! Vi vill gärna att den ska vara sann, för den är så elegant, så vi skapar en miljö där detta stämmer (eskapism i matematisk

Det finns 3 huvudsakliga skäl till varför den är falsk:

- Betrakta $f(x,y) = y x^2$ och g(x,y) = y + 1 (har inga reella lösningar)
- Betrakta $f(x,y) = y x^2$ och g(x,y) = y (ej transversell skärning)
- Betrakta 2 parallella linjer f(x,y)=x oh g(x,y)=x-1 (måste införa projektiv geometi, från affina planet till det projektiva)

5. Komplexa planet \mathbb{C}^2

 $\mathbb{C}^2 = \mathbb{C} \times \mathbb{C}$, består alltå av ordnade par (a+ib,c+id). Man kan tänka på det som $\mathbb{R}^4 \Rightarrow (a,b,c,d)$. Naturligtvis kan vi generalisera, upp till $\mathbb{C}^n = \{x_1, \dots, x_n : x_i \in \mathbb{C}\}.$

Man kan addera dessa vektorer precis som vanligt, multiplicera med $\lambda \in \mathbb{C}$ osv, hela den grundläggande teorin bakom vektorrum bevaras. Vi har alltså bara vektorrum över $\mathbb C$ istället för över $\mathbb R$

Vi kan exempelvis definiera en parametriserad linje på samma sätt som i \mathbb{R}^2 :

$$\bar{r}(t) = \bar{r}_0 + t\bar{v}$$
 $t \in \mathbb{C}$

Kuriosa:

Detta är en linje:

$$\mathbb{C}x\{0\} \subseteq \mathbb{C}^2$$

Theorem 5.1

Genom två olika punkter i \mathbb{C}^n går endast en linje

Theorem 5.2

 \mathbb{C}^2 , om två linjer inte är parallella (skiljer sig åt med en komplex faktor) så skär de varandra i en entydig punkt

Nu kan vi prata om V(f) till polynom $f(x,y) \in \mathbb{C}[x,y]$. Det är vad vi menar med plana affina algebraiska kurvor (nu har vi någonstans där de kan bo).

Vi definierar singularitet på samma sätt, det vill säga om Taylorutvecklingen inte har en linjär faktor så är den singulär i den punkten.

Vi kan nu tala om linjära & affina avbildningar över \mathbb{C}^n , dvs $\mathrm{Aff}_{\mathbb{C}}(n)$. De definieras på samma sätt:

$$\bar{F}(\bar{v}) = \bar{L}(\bar{v}) + \bar{b}$$
 $\bar{L} \in GL(n, \mathbb{C})$

Där $GL(n, \mathbb{C})$ = mängden av alla inverterbara $n \times n$ -matriser

Vi kan även här på samma sätt definiera $F^*:\mathbb{C}[x_1,\cdots,x_n]\to\mathbb{C}[x_1,\cdots,x_n]$

Återigen, på samma sätt kan vi definiera ekvivalens mellan polynom samt att det bara finns en linje i \mathbb{C}^2 precis som i \mathbb{R}

En kvadratisk form över \mathbb{C}^n är ekvivalent med en diagonalform med bara ettor och nollor I \mathbb{C}^2 har vi alltså följande kvadratiska former:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Theorem 5.3: Klassificering av andragradskurvor i \mathbb{C}^2

- $x^2 + y^2 1$ (cirkel)
- $x^2 y$ (parabel) (här kan vi använda T(x, y) = (x, iy) för att få cirkel)
- $x^2 + y^2$ (linjekors)
- x(x-1) (parallell linje)
- x^2 ("dubbellinje")

Exempel:

Betrakta följande polynom: $f(x,y) = x^2 + 2xy + y^2 + 2x - 3y + 1$

Vi behöver nldvändigtvis inte finna den kvadratiska formen här, utan vi kan göra det för hand genom att kvadratkomplettera alla kvadratiska termer med x och och xy:

$$\Rightarrow \underbrace{(x+y)^2}_{\text{kvadratiskt}} + \underbrace{2x - 3y + 1}_{\text{linjärt}}$$

$$x = x + y$$

$$y = 2x - 3y + 1$$

$$\Rightarrow \det\begin{pmatrix} 1 & 1 \\ 2 & -3 \end{pmatrix} \neq 0$$

$$\Rightarrow X^2 + Y \Rightarrow \text{Parabel}$$

Theorem 6.1

Om $f(x,y)=\mathbb{C}[x,y]$ samt icke-konstnat polynom, då har $V(f)\subseteq\mathbb{C}^2$ o
ändligt många punkter (överuppräknerligt)

Här är det lite intuitivt lätt att klura ut hur vi skall bevisa detta. Vi arbetar med komplexa tal, så rimligtvis någon sats inom komplexa polynom, såsom algebrans fundamentalsats!

Proof 6.1: Bevis av föregående sats

Vi vill hitta en massa lösningar genom att använda att vi vet lösnignarna till envariabelpolynom. Det vi kan göra är att undersöka hur V(f) skär linjen y=k (där k är en godtycklig konstant). Matar vi in detta i polynomet har vi f(x,c) som är ett polynom i en variabel, som har nollställen förutsatt att det inte är konstant $\neq 0$

Vi behöver nu undersöka vad som händer om polynomet är konstant allt för ofta, men för att göra detta behöver vi svara på frågan "vad betyder det att f(x,c) är konstant, säg = d?"

Då skulle f(x,c) - d = 0 alltid, vilket innebär att alla koefficienter i f beror på c, men om det skall vara 0 så måste c vara en gemensam rot till alla koefficienterna i f - d

Det finns max ändligt många sådana rötter, eftersom koefficienterna är bara polynom. Det finns ändligt många komplexa tal $c \in \mathbb{C}$ så att f(x,c) - d = 0

Exempel:

Givet $\hat{f}(x,y) = yx^2 + y^2x + 3$. Sätt y = c, vi får då:

$$f(x,c) = cx^2 + c^2x + 3$$

Typiskt sett har detta polynom 2 rötter, ty det är ett andragradspolynom, men det finns vissa undantag såsom när c är valt så att det blir konstant

I detta fall gäller detta när c=0, för det är då vi får ett konstant polynom

Theorem 6.2: Hillberts nollställessats

Denna sats gäller i allmän dimension, men vi ska formulera den för kurvor.

Tag 2st polynom $f, g \in \mathbb{C}[x, y]$

Vi har sett att V(f) = V(g) oavsett hur olika polynomen ser ut (för reella fall), vi kikar på hur det ser ut i den komplexa världen:

$$V(f) = V(g) \Leftrightarrow f, g$$
 har samma irreducibla faktorer

Exempel:

Givet V(f) finns ett "enklaste" polynom med denna nollställesmängd, nämligen den som har en irreducibel faktor (faktorer av multiplicitet 1), exempelvis:

$$V((x^{2} + y^{2} - 1)^{2})(x + y)^{3} = V((x^{2} + y^{2} - 1)(x + y))$$

Detta är det värsta som kan hända! Nollställesmängden bestämmer mer eller mindre polynomet upp till multiplicitet (i \mathbb{C})

Hur ser V(f) ut? Vi kikar närmare på definitionen av f(x,y) = 0:

$$f: \mathbb{C}^2 \to \mathbb{C} \Leftrightarrow f: \mathbb{R}^4 \to \mathbb{R}^2$$

Detta är två rella ekvationer i fyra rella variabler, vi förväntar oss (rell) dimension 2 (tänk gausseliminering, 2 ekvationer, 4 variabler, ger oftast 2 parametrar (om de är oberoende)).

Vi kan användan implicita funktionssatsen för att visa att lokalt kring icke-singulära punkter är V(f) en 2D disk

Sammanfattning:

- \bullet Komplexa kurvor har **många** punkter (med bevis)
- \bullet Komplexa kurva bestämmer f nästan entydigt (Hillberts nollställessats)
- Komplexa kurvor är rella ytor (Implicita funktionssatsen)

Tricket går i någon mening ut på att reducera till en variabel och sedan använda algebrans fundamentalsats, precis som man i flervarren reducerade till en variabel och bevisade envariabelfallet.

7. Skärningstalet (skärningsmultiplicitet)

Vi vill försöka hitta ett sätt att räkna skärningen mellan kurvor med multiplicitet.

Sättet vi kommer göra detta på är inte genom att definiera skärningstalet (detta gör vi sista föreläsningen), utan att vi komma lista upp de egenskaper vi vill ha och hitta axiom som gör att vi kan arbeta med dessa egenskaperna och hitta det vi vill hitta.

Vi vill definiera en funktion $I_p(f,g)$ där $p \in \mathbb{C}^2$ och $f,g \in \mathbb{C}[x,y]$. Tanken är att $I_p(f,g)$ = antalet gånger f,g skär varandra i p, det vill säga i \mathbb{C}^2

Denna funktion $I_p(f,g) \in \mathbb{N} \cup \{\infty\}$ (vi behöver o
ändligheten om exempelvis 2 kurvor är lika så sammanfaller de o
ändligt mycket).

Axiom 0:

Vi vill kunna titta på skärningen i vilket affint koordinatssystem som helst (bevaras under affin transformation): (Affint invariant)

$$I_p(f,g) = I_{F^{-1}(p)}(F^*f, F^*g) \qquad \forall F \in \mathrm{Aff}_{\mathbb{C}}(2)$$

Axiom 1:

Säger att f och g skär varandra lika många gånger som g och f skär varandra:

$$I_p(f,g) = I_p(g,f)$$

Axiom 2:

Skärningstalet mellan f och g skall vara nollskillt omm punkten p ligger på båda kurvorna:

$$I_p(f,g) \neq 0 \Leftrightarrow f(p) = g(p) = 0$$

Axiom 3:

Koordinataxlarna (speciella kurvor) skär varandra i en enda punkt, alltså borde de har skärningstalet 1:

$$I_0(x,y) = 1$$

Axiom 4:

$$I_{\mathcal{P}}(f,gh) = I_{\mathcal{P}}(f,g) + I_{\mathcal{P}}(f,h)$$

Axiom 5:

Skärningstalet i p mellan f och g är detsamma som skärningstalet mellan f och g + fh:

$$I_n(f,g) = I_n(f,g+fh) \quad \forall h \in \mathbb{C}[x,y]$$

Motivering: Antag först att $p \in V(f) \cap V(g) \Leftrightarrow f(p) = 0 = g(p)$. Då gäller:

$$\underbrace{g(p)}_{=0} + \underbrace{f(p)}_{=0} h(p) = 0 \Leftrightarrow I_p(f, g + fh) \neq 0$$

Dvs $I_p(f,g) = 0$ omm $I_p(f,g+fh) = 0 \forall h$.

Vi kan också se att f, g skär varandra transversellt i p omm g + fh skär varandra transversellt i p

Exempel:Hur kan axiomen användas för beräkning?

Vi vet vad vi vill i vissa situationer, betrakta $f(x,y) = y - x^2$, vi vill hitta $I_0(y,y-x^2)$. Rimligtvis borde detta vara 2

Vi använder axiom 5, och adderar -y i andra inputen så vi får $I_0(y, -x^2)$ Nu kan vi använda axiom 4, ty det är samma sak $I_0(y, x^2) + \underbrace{I_0(y, -1)}_{=0}$ (vi använder axiom 2, eftersom

de skär ej varandra)

$$\Rightarrow I_0(y, x^2) = I_0(y, x) + I_0(y, x) = 2I_0(x, y) = 2$$

7.1. Konsekvenser av axiomen.

Vi skall titta på olika sätt att beräkna skärningstalet givet två polynom och en punkt. Framförallt, i fallet när en av kurvorna är grafen till ett envariabelpolynom (y - p(x) = 0)

Vi har redan sett följande exempel:

$$I_0(y, y - x^m)$$

(då m=2) så såg vi att $I_0=m$. I den räkningen såg vi även att detta var lika med $I_0(y,x^m)$, där vi har m-st multiplar av y-axeln

Theorem 7.1

Om ett polynom $h(p) \neq 0$ så gäller:

$$I_p(f,gh) = I_p(f,g)$$

Detta är praktiskt, för man kan kasta bort faktorer som är nollskillda och förenkla mycket. Beviset sker genom att använda 4de axiomet samt det andra.

Skärningstalet verkar generalisera multipliciten för envariabelfallet, exempelvis kan vi betrakta x^3 som har ett nollställe, fast multiplicitet 3.

Theorem 7.2

Om f = y - p(x) (graf till envariabelpolynom) och a är ett nollställe till p(x) med multipleitet k så:

$$I_{(a,0)}(y - p(x), y) = k$$

Proof 7.1: Föregående sats

a nollställe av multipleitet k betyder per definition:

$$p(x) = (x - a)^k q(x)$$

för något polynom q där $q(a) \neq 0$

Vi räknar:

$$I_{(a,0)}(y - p(x), y) = I_{(a,0)}(p(x), y) = I_{(a,0)}((x - a)^k q(x), y)$$

$$\Leftrightarrow I_{(a,0)}((x - a)^k, y) \text{ (Theorem 7.1)}$$

$$kI_{(a,0)}((x - a), y) = kI_{(0,0)}(x, y) = k$$

Theorem 7.3

Antag att f är en faktor till g $(g = f \cdot h)$. Det betyder att $f(p) \Rightarrow I_p(f,g) = \infty$:

$$I_p(f,g) = I_p(f,fh) = I_p(f,0) = I_p(f,0^n) = nI_p(f,0) \ge 1 \ge n$$

Ovning:

Om h delar f och h delar g samt h(p) = 0

Exempel:

Beräkna skärningstalet mellan $y-x^2$ och $y^3+2xy+x^6$ i origo:

$$\begin{split} I_{(0,0)}((y-x^2),(y^3+2xy+x^6)) &= I_{(0,0)}(y-x^2,2xy+x^6+x^2y^2) = I_{(0,0)}(y-x^2,2xy+x^6+yx^4) \\ &\Rightarrow I_{(0,0)}(y-x^2,(2x+x^4)y+x^6) = I_{(0,0)}(y-x^2,2(x^3+x^6)) \\ &\Rightarrow I_{(0,0)}(y-x^2,x^3\underbrace{(2+2x^3))}_{\neq \ 0\ \mathrm{i}\ (0,0)} \\ &\Rightarrow I_{(0,0)}(y-x^2,x^3) = 3I_{(0,0)}(y-x^2,x) = 3I_{(0,0)}(y,x) = 3\cdot 1 = 3 \end{split}$$

Tricket är att reducera till ett envariabelfall. I vårat fall så hade vi tur att y inte var upphöjt till något och därmed lätt att multiplicera med polynom.

Detta påminner lite om polynomdivision. Det är stort sett det vi gjort, fast i två variabler (vilket man allmänt inte kan med polynomdivision).

Theorem 7.4: Polynomdiv. av flervariabla funktioner i ringar

 $p(x) \in k[x], \quad f(x,y) \in k[x,y]$

Då finns entydiga polynom q(x, y) och r(x) så att:

$$f(x,y) = (y - p(x))q(x,y) + r(x)$$

Dessutom är r(x) = f(x, p(x))

Theorem 7.5

Låt f = y - p(x) $g \in \mathbb{C}[x,y]$, $f \neq gh$. Låt även $k = \text{mult}_{x=0}$ g(x,p(x))Då är skärningsmultipliciten av f med g i origo = k:

$$I_{(0,0)}(y - p(x), g(x,y)) = k$$

$$(p(0) = 0 \text{ och } g(0,0) = 0)$$

Exempel:

$$I_{(0,0)}(y - \underbrace{x^2}_{p(x)}, \underbrace{x^3 + 2xy + x^6}_{g(x,y)})$$
$$g(x, p(x)) = g(x, x^2) = x^6 + 2x^3 + x^6 = x^3(2 + 2x^3)$$

Svar: 3

Theorem 7.6: Generalisering av föregående sats

Låt f = y - p(x) och $g \in \mathbb{C}[x,y]$ och f inte delar g. Om vi skriver:

$$g(x, p(x)) = r(x) = c(x - a_1)^{s_1} \cdots (x - a_n)^{s_n}$$

 $I_{(a_i, p(a_i))}(f, g) = s_i \text{ och } 0 \text{ annars}$

8. Vad vi vet nu om Bezouts sats

Målet med denna kurs är i någon mening att studera denna sats, men för att göra detta behövde vi införa ett par saker såsom \mathbb{C} . Sen har vi infört I_p för att räkna antal, det som verkar fattas är den projektiva delen.

Vi ska fortsätta tala lite om I_p , där vi tidigare kunde finna lösningar till grafen av en funktion av x eftersom vi kunde dela bort f = y - p(x) från g

Vi har en sats som vi skulle vilja ha till följd av våra axiom, om 2 kurvor skär varandra transversellt så borde skärningstalet vara 1. Nu ska vi visa att det är så:

Theorem 8.1: $I_p = 1$ för transversella skärningar

Om
$$f(p) = g(p) = 0$$
 där $p = (a, b)$ och $\nabla f(p) \neq 0 \neq 0 \nabla g(p)$

Om $\nabla \neq 0$ vet vi från implicita funktionssatsen vet vi att de konvergerar mot glatta funktioner. Vi vet också att vi kan uttrycka f, g som en funktion av en variabel, men det följer. Vi antar också att $\nabla f(p) \neq \lambda \nabla g(p)$

Då är
$$I_p(f,g)=1$$

Hur går vi till väga för att bevisa detta? I geometri ska vi inte bara betrakta punkter i ett plan, vi måste tänka att vi inte bara ska betrakta f, g eftersom vi lever nu i den affina världen, så kom alltid ihåg att vi kan alltid använda affina transformationer för att göra det lite lättare att räkna ut.

Theorem 8.2: Följdsats

Om $\nabla f(p) \neq 0$ och L är en linje genom p sådan att $L \neq$ tangentlinjen till f, vilket betyder att linjen är transversell till f.

Då är skärningstalet mellan L och f = 1

Om $I_p(f, L) > 1$ så kan det vara så att gradienterna är parallella, dvs L är parallel med tangentlinjen enligt satsen.

Standardexempel

Skärning mellan $y=x^2$ och y=c var noll i \mathbb{R}^2 , detta löste vi med att införa \mathbb{C} . Här hittar vi då 2 lösningar, $(\pm i\sqrt{|c|},c)\in\mathbb{C}^2$

Övning: Visa att $I_{(\pm i\sqrt{|c|},c)}(y-x^2,c)=1$

9. Projektiv Geometri över \mathbb{R}

Vår "vanliga" synsätt på geometri är euklidisk geometri. De ser ut precis som vi mäter de.

En rektangel är bestämd av sina vinklar som är räta och längden av sina motstående sidor som är samma. Har vi 2st rektanglar där längder skiljer sig så är även rektanglarna sklida. Vi kan inte rotera och flytta den för att den ska bli den andra rektangeln, inga euklidiska transformationer åstadkommer detta. Skalärprodukten är inte bevarad, dvs längder och vinklar.

I euklidisk geometri finns det cirklar som inte är samma sak som ellipser exempelvis.

Vi kan säga att euklidisk geometri är "som geometri är i den verkliga världen", men det må vara så det är i den verkliga världen men det är inte så det ser ut med våra ögon. Exmepelvis med tågräls som är paralella som enligt euklidisk geometri inte skär i ∞ , men våra ögon säger att de gör de.

Vad projektiv geomtri gör är att omvandla euklidisk geometri till vad vi faktiskt ser. Folk som tittar på saker i världen kallar vi konstnärer, särskillt om de försöker avbilda det. Det var så projektiv geometri uppkom (under renässansen i florens)

Vi vill i den här kursen göra plan geometri, men sättet vi kommer göra det på är inte genom ortonormala axlar, utan betrakta planet från från z-axeln, vi vill "stå på" xy-planet och titta på vad som händer.

Theorem 9.1: Rella projektiva planet

Det reella projektiva planet $\mathbb{R}P^2$ (= $P^2(\mathbb{R}) = P_{\mathbb{R}}^2$) är en följande mängd av ekvivalensklasser:

$$\mathbb{R}P^2 = \mathbb{R}^3 \left\{ \bar{0} \right\} / \sim$$

där ~ är relationen. $\bar{x} \sim \bar{y} \Leftrightarrow \exists \lambda \in \mathbb{R} \left\{ 0 \right\} : \bar{x} = \lambda \bar{y}$

Man kan säga att $\mathbb{R}P^2 = \{\text{linjer genom orio i } \mathbb{R}^3\}$

Punkter i $\mathbb{R}P^2$ representeras av en trippel av tal (3-dimensionell vektor) i \mathbb{R}^3 , exempelvis på följande sätt (x, y, z) och skall alltså betraktas som lika med (tx, ty, tz). Det enda villkoret vi har är att $(x, y, z) \neq (0, 0, 0)$.

Detta sätt att betrakta (x, y, z) kallas för homogena koordinater. Punkter i $\mathbb{R}P^2$ kallas projektiva punkter.

Anmärkning:

Varje punkt (x, y, z) i $\mathbb{R}P^2$ där $z \neq 0$, har en unik representant där z = 1 $\left(\frac{x}{z}, \frac{y}{z}, 1\right)$. Varje sådan punkt (x, y, z) motsvarar förstås också en projektiv punkt.

Vi har en injektiv funktion $(x,y) \mapsto (x,y,1)$ vars bild täcker det mesta av $\mathbb{R}P^2$.

För att beskriva dessa punkter räcker det alltså med att ge 2 koordinater (x, y). Precis som vi kan använda latitud och longitud och rita en bit av jordytan i en kartbok.

Denna del av $\mathbb{R}P^2$ kallas för den affina (x,y) kartan

Exempel:

Punkten
$$(2,1,3)$$
 har $z \neq 0$ och har $\left(\frac{2}{3},\frac{1}{3}\right)$ som projektiv punkt i $\mathbb{R}P^2$

Exempel:

Mängden av projektiva punkter som uppfyller $zy=x^2+z^2$ och dessutom har $z\neq 0$ utgör kurvan $y=x^2+1$ i xy-kartan eftersom vi sätter z=1.

Men, om z=0 så får vix=0, medan y kan anta vilket värde som helst, det finns alltså en projektiv punkt kvar, nämligen (0,1,0) (egentligen (0,y,0) men de är homogena koordinater för samma punkt). Det motsvarar "horizonten".

De andra affina kartorna xz och yz definieras analogt. Tänk på det som $\mathbb{R}^2\subset\mathbb{R}P^2$

Exempels

(2,1,3) har koordinater (2,3) i xz-kartan (dela med y, vilket är 1)

Exempel:

Den återstående punkten (0,1,0) syns bara i en karta, dvs i xz-kartan, där den är origo.

Theorem 9.2

Givet säg, xy-kartan, så är linjen i oändligheten mängden:

$$L_{\infty}^{xy} = \{(x, y, z) \in \mathbb{R}P^2 : z = 0\}$$

Theorem 9.3: Homogent polynom

Ett polynom $F(x_1, \dots, x_n) \in k[x_1, \dots, x_n]$ kallas homogent av grad d om alla termer har total grad d.

Exmepelvis:

$$t^d F(x, y, z) = F(tx, ty, tz)$$

Anmärkning:

Om $F(x, y, z) \in \mathbb{R}[x, y, z]$ är homogent och $F(a, b, c) = 0 \Rightarrow F(ta, tb, tc) = 0$ Detta betyder att V(F) i $\mathbb{R}P^2$ är väldefinierad. Vi kallar V(F) för en reell plan projektiv kurva

Exempel:

x+y+z=0 är ett homogent polynom av grad 1. Detta beskriver ett plan, men vi ska tänka på det som en projektiv linje. Mer allmänt kan vi sätta vilka koefficienter som hels, dvs ax+by+cz=0. I kartan z=1 har linjen ekvationen ax+by+c=0 i xy-planet

Exempel:

Om vi bygger vidare på föregående exempel, om a=b=0 och z=0 r linjen i $\propto xy$ -kartan

Theorem 9.4

Givet två olika projektiva punkter, finns en entydig projektiv linje genom den (som i euklidisk geometr).

Givet två olika linjer i $\mathbb{R}P^2$ finns en entydig projektiv punkt som ligger på båda

Proof 9.1

Vå projektiva punkter är två olika linjer. En entydig projektiv linje är då ett plan, och detta plan spänns up av de två olika linjerna

Två olika linjer i det projektiva planet är två olika plan, och dessa plan skär varandra i en linje, som projektivt är en punkt □

Theorem 9.5

Givet ett polynom $f(x,y) \in \mathbb{R}[x,y]$ av grad d, definierar vi dess homogenisering som $F(x,y,z) = z^d f\left(\frac{x}{z},\frac{y}{z}\right)$

Exempel:

$$f(x,y) = y - x^2 - 1 \Rightarrow F(x,y,z) = z^2 \left(\frac{y}{z} - \left(\frac{x}{z}\right)^2 - 1\right) = zy - x^2 - z^2$$

Anmärkning:

Ger oss en projektiv kurva givet en affin kurva. Det omvända gäller om vi betraktar kartor till det projektiva planet.

Exempel:

 $f(y,z) = zy - z^2 - 1 \Rightarrow zy - z^2 - x^2 = F(x,y,z)$. Vad är $zy - z^2 = 1$? En hyperbel förstås! Detta är ju det vi visat med våra klassificeringar som vi gjort, det vill säga en cirkel = parabel = hyperbel.

Med homogenisering kan vi tänka oss att vi kan gå från affina kurvor till projektiva kurvor med hjälp av homogenisering.

Theorem 9.6: Projektiva tangentlinjen

Den projektiva tangentlinjen till F(x, y, z) = 0 i punkten P = (a, b, c) ges av (vi antar $\nabla F(a, b, c) \neq 0$):

$$\frac{\partial F}{\partial x}(a,b,c)x + \frac{\partial F}{\partial y}(a,b,c,)y + \frac{\partial F}{\partial z}(a,b,c)z = 0$$

9.1. Projektiva transformationer.

Kommer ersätta affina transformationer, är en större klass av avbildningar men kan vara lättare att hantera. För att begripa dessa är det bra att ha koll på linjära transformationer.

 $\bar{F}: \mathbb{R}^3 \to \mathbb{R}^3$ - en linjär avbildning med ker $\bar{F} = \{\bar{0}\}$. Detta betyder att den är injektiv (men eftersom vi går från $\mathbb{R}^3 \to \mathbb{R}^3$ så är den även bijektiv).

Eftersom det är en bijektiv homomorfi, är det även en isomorfi.

Anmärkning:

Om L är en linje genom origo, så är $\bar{F}(L)$ också det. Den här avbildning inducerar en avbildning $F_P: \mathbb{R}P^2 \to \mathbb{R}P^2$ på det projektiva planet.

Det händer nästan ingenting här, i homogena koordinater ges $L=(x,y,z)\ F_P(x,y,z)$ av F(x,y,z)

Exempela

Betrakta följande linjär avbildning $\bar{F}(x, y, z) = (2x, 2y, 2z)$, då är $F_P = id_{\mathbb{R}P^2}$ eftersom de projektivt är samma (kom ihåg ekvivalensrelationen)

Exempel:

En allmän transformation \bar{F} ges av en matris $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Att beräkna \bar{F}_P är bara att betrakta $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ som homogena koordinater, och räkna som vanligt.

Exempel:

Om matrisen är exempelvis
$$\begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ax + by + cz \\ dx + ey + fz \\ z \end{pmatrix}$$

Låt oss titta på den här i xy-kartan (z=1). Då ser den ut som $(x,y) \leftrightarrow (x,y,1) \Rightarrow \begin{pmatrix} ax+by+c\\ dx+ey+f\\ 1 \end{pmatrix}$

I xy-kartan ser alltså avbildningen ut på följande vis $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax + by + c \\ dx + ey + f \end{pmatrix}$

Men notera! Detta är ju bara en affin avbildning! Med andra ord, projektiva avbildningar generaliserar affina avbildningar (en projektiv avbildning med z = 1 visade vi nu var affin).

Exempel:

Vilka avbildningar bevarar linjen z=0? Jo det måste vara en affin avbildning på följande form:

$$\begin{pmatrix} a & 0 & c \\ 0 & a & f \\ 0 & 0 & i \end{pmatrix} \Rightarrow (ax, ay, 0) = (x, y, 0)$$

Exempel:

Låt $\bar{F}(x,y,z) = (x,z,y)$. Detta är en spegling i y=z. Hur ser den ut i xy-kartan?

Vi gör följande:
$$(x,y) \mapsto (x,y,1) = (x,1,y) = \left(\frac{x}{y},\frac{1}{y},1\right) \leftrightarrow \left(\frac{x}{y},\frac{1}{y}\right)$$

Säg att vi har 4 punkter i planet (hörn i en rektangel), vad kan hända med dessa under en affin transformation? Under affin transformation får exempelvis vi parallelogram.

Theorem 9.7

Låt z_1, \dots, z_4 och w_1, \dots, w_4 vara punkter i det projektiva planet. De ska ha egenskaperna så att 3 av de ligger aldrig på en rät linje (se det som hörn i en fyrhörning)

Då finns en entydig projektiv transformation F så att $F(z_i) = w_i$ $i = 1 \cdots 4$

Proof 9.2

Representera $z_i \in \mathbb{R}P^2$ med en vektor $\bar{z_i} \in \mathbb{R}$ och samma med w_i

Villkoret betyder att ingen deltrippel av $\{\bar{z_1}, \cdots, \bar{z_4}\}$ är i samma plan (dvs linjärt beroende). De utgör alltså en bas för \mathbb{R}^3 . Detsamma för $\bar{w_i}$

Eftersom 3 nu utgör en bas så kan vi uttrycka den fjärde som en linjärkombination av de andra:

$$\bar{z}_4 = \sum_{i=1}^3 a_i \bar{z}_i$$
$$\bar{w}_4 = \sum_{i=1}^3 b_i \bar{w}_i$$

Vi definierar nu en linjär avbildning $\bar{F}: \mathbb{R}^3 \to \mathbb{R}^3$ genom:

$$\bar{F}(\bar{z}_i) = \frac{b_i}{a_i} \bar{w}_i \qquad i = 1, 2, 3$$

Då får vi:

$$\bar{F}(\bar{z_4}) = \bar{F}\left(\sum_{i=1}^3 a_i \bar{z_i}\right) = \sum_{i=1}^3 a_i \bar{F}(\bar{z_i}) = \sum_{i=1}^3 a_i \frac{b_i}{a_i} \bar{w_i} = \sum_{i=1}^3 b_i \bar{w_i} = \bar{w_4}$$

Detta visar existens. Om $G: \mathbb{R}^3 \to \mathbb{R}^3$ också har samma egenskap, dvs $G(\bar{z}_i) = \lambda_i \bar{w}_i$

$$G(\bar{z_4}) = \sum_{i=1}^{3} a_i \bar{z_i} = \sum_{i=1}^{3} a_i G(z_i) = \sum_{i=1}^{3} a_i \lambda_i \bar{w_i}$$

Å andra sidan $G(\bar{z_4}) = \lambda_4 \bar{w_4} = \sum_{i=1}^{3} \lambda_4 b_i \bar{w_i}$

$$\Rightarrow \lambda_i = \lambda_4 \frac{b_i}{a_i}$$

Så
$$\bar{G}(\bar{z}_i)=\lambda_4 \frac{b_i}{a_i} \bar{w}_i=\lambda_4 \bar{F}(\bar{z}_i)$$

Från detta följer det att $\bar{G}=\lambda_4 \bar{F}$ så $\bar{G_P}=\bar{F_p}$