ml project

Ivy Zhao

2024-05-02

Predicting Heart Disease

The heart dataset (source: UCI Machine Learning Repository) contains 920 observations and 76 variables. However, we're only using the following 14 of the 76 variables in our study:

- age: patient age (in years)
- sex: gender of patient; 0 = male, 1 = female
- cp: chest pain type; 1 = typical angina, 2 = atypical angina, 3 = non-anginal pain, 4 = asymptomatic
- trestbps: resting blood pressure (in mmHg)
- chol: serum cholesterol (in mg/dl)
- fbs: fasting blood sugar > 120 mg/dl; 0 = false, 1 = true
- restecg: resting electrocardiographic results; 0 = normal, 1 = having ST-T wave abnormality, 2 = showing probable or definite left ventricular hypertrophy by Ester's criteria
- thalach: maximum heart race achieved
- exang: exercise included angina; 0 = no, 1 = yes
- oldpeak: ST depression induced by exercise relative to rest
- slope: the slope of the peak exercise ST segment; 1 = upsloping, 2 = flat, 3 = downsloping
- ca: number of major vessels (0-3) colored by fluoroscopy
- thal: thalassemia; 3 = normal, 6 = fixed defect, 7 = reversible defect
- num: diagosis of heart disease; 0 = no heart disease, 1 = have heart disease

Load, Merge, and Recode Data

library(dplyr)

##

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
```

intersect, setdiff, setequal, union
cleveland <- read.csv("/Users/jiayizhao/Desktop/2338 Machine Learning/heart_disease_final_data/processe
hungarian <- read.csv("/Users/jiayizhao/Desktop/2338 Machine Learning/heart_disease_final_data/processe
switzerland <- read.csv("/Users/jiayizhao/Desktop/2338 Machine Learning/heart_disease_final_data/processed.va.csv("/Users/jiayizhao/Desktop/2338 Machine Learning/heart_disease_final_data/processed.va.csv</pre>

```
nrow(cleveland)
## [1] 303
nrow(hungarian)
## [1] 294
nrow(switzerland)
## [1] 123
nrow(va)
## [1] 200
heart <- rbind(cleveland, hungarian, switzerland, va)
# check for missing values
heart[heart == "?"] <- NA</pre>
sum(is.na(heart))
## [1] 1759
sapply(heart, function(x) sum(is.na(x)))
##
                             cp trestbps
                                              chol
                                                         fbs
                                                              restecg thalach
        age
                  sex
                                                          90
                                                                             55
##
                                                30
          0
                    0
                                      59
##
      exang
             oldpeak
                          slope
                                      ca
                                              thal
                                                         num
##
         55
                            309
                                     611
                                               486
                                                           0
                   62
nrow(heart)
## [1] 920
ncol(heart)
## [1] 14
```

Univariable Analysis

```
library(dplyr)
heart$age <- as.numeric(heart$age)
heart$trestbps <- as.numeric(heart$trestbps)
heart$chol <- as.numeric(heart$chol)
heart$thalach <- as.numeric(heart$thalach)
heart$oldpeak <- as.numeric(heart$oldpeak)
heart <- na.omit(heart)
#Univariate Analysis on Continuous Data
summary(heart)</pre>
```

```
##
                                                     trestbps
                       sex
        age
                                        ср
## Min. :29.00
                  Min. :0.0000
                                   Min. :1.000
                                                  Min. : 94.0
## 1st Qu.:48.00
                  1st Qu.:0.0000
                                   1st Qu.:3.000
                                                  1st Qu.:120.0
## Median :56.00
                  Median :1.0000
                                   Median :3.000
                                                  Median :130.0
## Mean :54.52
                  Mean :0.6789
                                  Mean
                                        :3.164
                                                  Mean :131.7
## 3rd Qu.:61.00
                  3rd Qu.:1.0000
                                   3rd Qu.:4.000
                                                  3rd Qu.:140.0
## Max. :77.00
                  Max.
                         :1.0000
                                  Max.
                                        :4.000
                                                  Max. :200.0
```

```
##
         chol
                                                                thalach
                         fbs
                                           restecg
           :100.0
                                                                   : 71.0
##
   Min.
                   Length:299
                                         Length:299
                                                             Min.
    1st Qu.:211.0
                    Class :character
                                         Class : character
                                                             1st Qu.:132.5
   Median :242.0
                   Mode :character
                                         Mode :character
                                                             Median :152.0
##
##
    Mean
           :246.8
                                                             Mean
                                                                     :149.3
    3rd Qu.:275.5
                                                             3rd Qu.:165.5
##
   Max.
                                                                     :202.0
##
           :564.0
                                                             Max.
##
       exang
                           oldpeak
                                            slope
                                                                  са
##
   Length:299
                        Min.
                               :0.000
                                         Length:299
                                                             Length: 299
                        1st Qu.:0.000
##
   Class : character
                                         Class : character
                                                             Class : character
   Mode :character
                        Median :0.800
                                         Mode :character
                                                             Mode : character
##
                        Mean
                               :1.059
                        3rd Qu.:1.600
##
                        Max.
##
                               :6.200
##
        thal
                             nıım
##
    Length:299
                        Min.
                               :0.0000
                        1st Qu.:0.0000
##
    Class :character
    Mode :character
                        Median :0.0000
##
                        Mean
                               :0.9465
##
                        3rd Qu.:2.0000
##
                        Max.
                               :4.0000
sd_values <- sapply(heart[, c("age", "trestbps", "chol", "thalach", "oldpeak")], sd)</pre>
print(sd_values)
##
         age trestbps
                             chol
                                     thalach
                                               oldpeak
## 9.030264 17.747751 52.532582 23.121062 1.162769
#Univariate Analysis on Categorical Data
sex_counts <- table(heart$sex)</pre>
sex_percentages <- prop.table(sex_counts) * 100</pre>
sex_summary <- data.frame(sex = names(sex_counts),</pre>
                              Count = as.numeric(sex_counts),
                              Percentage = sex_percentages)
print(sex_summary)
     sex Count Percentage. Var1 Percentage. Freq
## 1
            96
       0
                              0
                                        32,10702
## 2
           203
                                        67.89298
       1
                              1
cp_counts <- table(heart$cp)</pre>
cp_percentages <- prop.table(cp_counts) * 100</pre>
cp_summary <- data.frame(cp = names(cp_counts),</pre>
                              Count = as.numeric(cp_counts),
                              Percentage = cp_percentages)
print(cp_summary)
     cp Count Percentage. Var1 Percentage. Freq
##
## 1 1
           23
                             1
## 2 2
           49
                             2
                                      16.387960
## 3 3
           83
                             3
                                      27.759197
## 4 4
          144
                                      48.160535
fbs_counts <- table(heart$fbs)</pre>
fbs_percentages <- prop.table(fbs_counts) * 100</pre>
fbs_summary <- data.frame(fbs = names(fbs_counts),</pre>
                              Count = as.numeric(fbs_counts),
```

```
Percentage = fbs_percentages)
print(fbs_summary)
     fbs Count Percentage. Var1 Percentage. Freq
## 1
       0
            256
                               0
                                         85.61873
                                         14.38127
## 2
       1
            43
                               1
restecg_counts <- table(heart$restecg)</pre>
restecg_percentages <- prop.table(restecg_counts) * 100</pre>
restecg_summary <- data.frame(restecg = names(restecg_counts),</pre>
                               Count = as.numeric(restecg_counts),
                               Percentage = restecg_percentages)
print(restecg_summary)
     restecg Count Percentage. Var1 Percentage. Freq
## 1
                                            49.832776
           0
                149
                                   0
## 2
                                             1.337793
           1
                                   1
## 3
                                            48.829431
                146
exang_counts <- table(heart$exang)</pre>
exang_percentages <- prop.table(exang_counts) * 100</pre>
exang_summary <- data.frame(exang = names(exang_counts),</pre>
                               Count = as.numeric(exang_counts),
                               Percentage = exang_percentages)
print(exang_summary)
     exang Count Percentage. Var1 Percentage. Freq
## 1
                                           66.88963
         0
                                 0
                                           33.11037
## 2
         1
slope_counts <- table(heart$slope)</pre>
slope_percentages <- prop.table(slope_counts) * 100</pre>
slope_summary <- data.frame(slope = names(slope_counts),</pre>
                               Count = as.numeric(slope_counts),
                               Percentage = slope_percentages)
print(slope summary)
     slope Count Percentage. Var1 Percentage. Freq
## 1
        1
              139
                                 1
                                          46.488294
## 2
         2
                                 2
                                          46.488294
             139
## 3
                                           7.023411
ca_counts <- table(heart$ca)</pre>
ca_percentages <- prop.table(ca_counts) * 100</pre>
ca_summary <- data.frame(ca = names(ca_counts),</pre>
                               Count = as.numeric(ca counts),
                               Percentage = ca_percentages)
print(ca_summary)
     ca Count Percentage. Var1 Percentage. Freq
## 1 0
          176
                              0
                                       58.862876
## 2 1
           65
                              1
                                       21.739130
                                       12,709030
## 3 2
           38
                              2
## 4 3
           20
                              3
                                        6.688963
thal_counts <- table(heart$thal)</pre>
thal_percentages <- prop.table(thal_counts) * 100</pre>
```

```
thal_summary <- data.frame(thal = names(thal_counts),</pre>
                               Count = as.numeric(thal_counts),
                               Percentage = thal_percentages)
print(thal_summary)
     thal Count Percentage. Var1 Percentage. Freq
## 1
             164
                                3
                                         54.849498
## 2
        6
             18
                                6
                                          6.020067
## 3
                                         39.130435
        7
             117
num_counts <- table(heart$num)</pre>
num_percentages <- prop.table(num_counts) * 100</pre>
num_summary <- data.frame(num = names(num_counts),</pre>
                               Count = as.numeric(num_counts),
                               Percentage = num_percentages)
print(num_summary)
##
     num Count Percentage. Var1 Percentage. Freq
## 1
           160
                               0
                                        53.511706
## 2
            56
                               1
                                       18.729097
       1
## 3
       2
             35
                               2
                                       11.705686
             35
                               3
## 4
       3
                                       11.705686
## 5
             13
                                        4.347826
```

Correlation Heatmap

```
library(reshape2)
cor_matrix <- cor(heart[, c("age", "trestbps", "chol", "thalach", "oldpeak")])
melted_cor_matrix <- melt(cor_matrix)

library(ggplot2)
ggplot(melted_cor_matrix, aes(Var1, Var2, fill = value)) +
    geom_tile(color = "white") +
    scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, limit = c(-1,1), space theme_minimal() +
    theme(
        axis.text.x = element_text(angle = 45, vjust = 1, size = 8, hjust = 1),
        axis.text.y = element_text(size = 8)
    ) +
    labs(x = "", y = "", title = "")</pre>
```


Deal with NA's

```
#convert integers to numeric, standardization and replace na with median
heart$age <- as.numeric(heart$age)</pre>
heart$age <- scale(heart$age)</pre>
heart$age[is.na(heart$age)] <- median(heart$age, na.rm = TRUE)</pre>
heart$trestbps <- as.numeric(heart$trestbps)</pre>
heart$trestbps <- scale(heart$trestbps)</pre>
heart$trestbps[is.na(heart$trestbps)] <- median(heart$trestbps, na.rm = TRUE)
heart$chol <- as.numeric(heart$chol)</pre>
heart$chol <- scale(heart$chol)</pre>
heart$chol[is.na(heart$chol)] <- median(heart$chol, na.rm = TRUE)</pre>
heart$thalach <- as.numeric(heart$thalach)</pre>
heart$thalach <- scale(heart$thalach)</pre>
heart$thalach[is.na(heart$thalach)] <- median(heart$thalach, na.rm = TRUE)
heart$oldpeak <- as.numeric(heart$oldpeak)</pre>
heart$oldpeak <- scale(heart$oldpeak)</pre>
heart$oldpeak[is.na(heart$oldpeak)] <- median(heart$oldpeak, na.rm = TRUE)
#replace NA values in the character variables into mode
heart$fbs <- ifelse(is.na(heart$fbs), names(which.max(table(heart$fbs))), heart$fbs)
heart$restecg <- ifelse(is.na(heart$restecg), names(which.max(table(heart$restecg))), heart$restecg)
```

```
heart$exang <- ifelse(is.na(heart$exang), names(which.max(table(heart$exang))), heart$exang)
heart$slope <- ifelse(is.na(heart$slope), names(which.max(table(heart$slope))), heart$slope)
#remove ca & thal, as more than half of their observations are mising values.
heart$ca <- NULL
heart$thal <- NULL
#check for missing values
sum(is.na(heart))
## [1] 0
sapply(heart, function(x) sum(is.na(x)))
                            cp trestbps
##
                                             chol
                                                       fbs restecg thalach
        age
                 sex
##
          0
                             0
                                               0
                                                         0
##
      exang oldpeak
                         slope
                                    num
#convert character variables into factors
heart$sex <- factor(heart$sex,
                    levels = c(0, 1),
                    labels = c("male", "female"))
heart$cp <- factor(heart$cp,</pre>
                    levels = c(1, 2, 3, 4),
                    labels = c("typical angina", "atypial angina", "non-anginal pain", "asymptomatic"))
heart$fbs <- factor(heart$fbs,
                    levels = c(0, 1),
                    labels = c("false", "true"))
heart$restecg <- factor(heart$restecg,</pre>
                    levels = c(0, 1, 2),
                    labels = c("normal", "abonormal", "left ventricular hypertrophy"))
heart$exang <- factor(heart$exang,</pre>
                    levels = c(0, 1),
                    labels = c("no", "yes"))
heart$slope <- factor(heart$slope,</pre>
                    levels = c(1, 2, 3),
                    labels = c("upsloping", "flat", "downsloping"))
heart$num <- as.integer(heart$num > 0)
heart$num <- factor(heart$num,
                    levels = c(0, 1),
                    labels = c("no", "yes"))
```

Initial Data Preparation

```
library(tidyverse)
```

```
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v forcats 1.0.0 v stringr
                                   1.5.0
## v lubridate 1.9.3
                       v tibble
                                    3.2.1
                                    1.3.1
             1.0.2 v tidyr
## v purrr
## v readr
              2.1.4
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(caret)
## Loading required package: lattice
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
set.seed(123)
tr_ind <- sample(1:nrow(heart), 0.8 * nrow(heart))</pre>
heart_train <- heart[tr_ind, ]</pre>
heart_test <- heart[-tr_ind, ]</pre>
```

Random Forest & Gradient Boosting

```
# Random Forest
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
## The following object is masked from 'package:dplyr':
##
##
       combine
library(e1071)
library(caret)
set.seed(123)
rf.hd <- randomForest(num ~., data =heart_train,importance=TRUE)
rf.hd
##
## Call:
## randomForest(formula = num ~ ., data = heart_train, importance = TRUE)
                  Type of random forest: classification
```

```
Number of trees: 500
## No. of variables tried at each split: 3
##
           OOB estimate of error rate: 24.69%
##
## Confusion matrix:
        no yes class.error
##
## no 106 25
                 0.1908397
## yes 34 74
                 0.3148148
\# Split the test dataset into predictors (X_test) and outcome (y_test)
X_test <- heart_test[, -which(names(heart_test) == "num")] # Exclude the outcome variable</pre>
y_test <- heart_test$num</pre>
# Make predictions
predictions <- predict(rf.hd, X_test)</pre>
# Evaluate the model
confusion_matrix <- confusionMatrix(predictions,</pre>
                                     y_test,
                                     mode = "everything")
print(confusion_matrix)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction no yes
##
          no 27
          yes 2 23
##
##
##
                  Accuracy : 0.8333
##
                    95% CI: (0.7148, 0.9171)
       No Information Rate: 0.5167
##
##
       P-Value [Acc > NIR] : 3.014e-07
##
##
                     Kappa: 0.6685
##
##
    Mcnemar's Test P-Value: 0.1138
##
##
               Sensitivity: 0.9310
               Specificity: 0.7419
##
##
            Pos Pred Value: 0.7714
            Neg Pred Value: 0.9200
##
                 Precision: 0.7714
##
                    Recall: 0.9310
##
                        F1: 0.8438
##
##
                Prevalence: 0.4833
            Detection Rate: 0.4500
##
##
      Detection Prevalence: 0.5833
##
         Balanced Accuracy: 0.8365
##
##
          'Positive' Class : no
##
# Accuracy = 0.788
# F1 = 0.7153
# Training Error = 0.1997283
```

```
predict.train <- predict(rf.hd, new_data = heart_train,type= "response")</pre>
mean(predict.train != heart_train$num)
## [1] 0.2468619
# Testing Error = 0.2119565
predict.test <- predict(rf.hd,newdata = heart_test)</pre>
mean(predict.test != heart_test$num)
## [1] 0.1666667
# AUCROC
library(pROC)
## Type 'citation("pROC")' for a citation.
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
predictions.prob <- predict(rf.hd, X_test, type = "prob")</pre>
roc.rf <- roc(response = y_test, predictor = predictions.prob[,2], plot = TRUE)</pre>
## Setting levels: control = no, case = yes
## Setting direction: controls < cases
    0.8
    9.0
Sensitivity
    0.4
    0.0
                         1.0
                                               0.5
                                                                     0.0
                                           Specificity
print(auc(roc.rf))
```

Area under the curve: 0.926

```
# auc = 0.8754
#K-fold cross-validation
library(caret)
ctrl <- trainControl(method = "cv", number = 5, search = "grid")</pre>
tune_grid \leftarrow expand.grid(mtry = c(2, 4, 6, 8))
# Train the Random Forest model
rf_tuned <- train(num ~ .,
                  data = heart_train,
                                          # Training dataset
                  method = "rf",
                                           # Method for Random Forest
                  metric = "Accuracy",
                                          # Metric to optimize
                  trControl = ctrl,
                                           # Training control setup
                  tuneGrid = tune_grid)
                                           # Grid of hyperparameters
rf_tuned
## Random Forest
##
## 239 samples
## 11 predictor
    2 classes: 'no', 'yes'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 192, 191, 191, 191, 191
## Resampling results across tuning parameters:
##
##
    mtry Accuracy
                      Kappa
          0.7533688 0.4993379
##
##
          0.7324468 0.4580624
##
          0.7449468 0.4847485
##
           0.7491135 0.4927044
   8
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
#The final value used for the model was mtry = 2.
# Make predictions on the test set using the tuned model
predictions_tuned <- predict(rf_tuned, X_test)</pre>
# Evaluate the tuned model
confusion_matrix_tuned <- confusionMatrix(predictions_tuned, y_test,,</pre>
                                    mode = "everything")
print(confusion_matrix_tuned)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction no yes
         no 27
##
##
         yes 2 25
##
##
                  Accuracy: 0.8667
##
                    95% CI: (0.7541, 0.9406)
```

```
##
       No Information Rate: 0.5167
       P-Value [Acc > NIR] : 1.105e-08
##
##
##
                      Kappa : 0.7342
##
##
   Mcnemar's Test P-Value: 0.2888
##
               Sensitivity: 0.9310
##
##
               Specificity: 0.8065
            Pos Pred Value: 0.8182
##
##
            Neg Pred Value: 0.9259
                 Precision: 0.8182
##
                    Recall : 0.9310
##
                         F1: 0.8710
##
##
                Prevalence: 0.4833
##
            Detection Rate: 0.4500
##
      Detection Prevalence: 0.5500
##
         Balanced Accuracy: 0.8687
##
          'Positive' Class : no
##
##
\#Accuracy = 0.8207
\#F1 = 0.7660
# Training Error = 0.0611413
predict.train <- predict(rf_tuned, newdata = heart_train)</pre>
mean(predict.train != heart_train$num)
## [1] 0.008368201
# Testing Error = 0.1793478
predict.test <- predict(rf_tuned,newdata = heart_test)</pre>
mean(predict.test != heart_test$num)
## [1] 0.1333333
# AUCROC
predictions.prob <- predict(rf_tuned, X_test, type = "prob")</pre>
roc.tuned.rf <- roc(response = y_test, predictor = predictions.prob[,2], plot = TRUE)</pre>
## Setting levels: control = no, case = yes
## Setting direction: controls < cases
```

```
Sensitivity

1.0

Specificity

Print(auc(roc. tuned.rf))
```

```
print(auc(roc.tuned.rf))
## Area under the curve: 0.9355
# auc = 0.8963
## Loaded gbm 2.1.9
## This version of gbm is no longer under development. Consider transitioning to gbm3, https://github.c
## [1] yes no
## Levels: no yes
## [1] yes no
## Levels: no yes
## [1] 0.07112971
## [1] 0.1333333
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction no yes
##
              26
                   5
          no
##
          yes 3
                  26
##
```

Accuracy : 0.8667

Kappa: 0.7336

No Information Rate: 0.5167

P-Value [Acc > NIR] : 1.105e-08

95% CI : (0.7541, 0.9406)

##

##

##

##

##

##

```
##
    Mcnemar's Test P-Value : 0.7237
##
##
##
               Sensitivity: 0.8966
               Specificity: 0.8387
##
            Pos Pred Value: 0.8387
##
##
            Neg Pred Value: 0.8966
                 Precision: 0.8387
##
##
                    Recall : 0.8966
##
                        F1: 0.8667
##
                Prevalence: 0.4833
##
            Detection Rate: 0.4333
##
      Detection Prevalence : 0.5167
##
         Balanced Accuracy: 0.8676
##
          'Positive' Class : no
##
##
## Using 60 trees...
```

Setting levels: control = no, case = yes

Setting direction: controls < cases

Area under the curve: 0.9288

## I	[ter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3723	nan	0.0100	0.0015
##	2	1.3667	nan	0.0100	0.0021
##	3	1.3612	nan	0.0100	0.0019
##	4	1.3569	nan	0.0100	0.0020
##	5	1.3532	nan	0.0100	0.0014

##	6	1.3486	nan	0.0100	0.0020
##	7	1.3451	nan	0.0100	0.0011
##	8	1.3413	nan	0.0100	0.0020
##	9	1.3367	nan	0.0100	0.0016
##	10	1.3328	nan	0.0100	0.0019
##	20	1.2938	nan	0.0100	0.0017
##	40	1.2315	nan	0.0100	0.0008
##	60	1.1824	nan	0.0100	0.0011
##	80	1.1410	nan	0.0100	0.0002
##	100	1.1044	nan	0.0100	0.0007
##	120	1.0736	nan	0.0100	0.0004
##	140	1.0482	nan	0.0100	0.0004
##	150	1.0375	nan	0.0100	0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3731	nan	0.0100	0.0017
##	2	1.3685	nan	0.0100	0.0014
##	3	1.3633	nan	0.0100	0.0022
##	4	1.3594	nan	0.0100	0.0015
##	5	1.3553	nan	0.0100	0.0012
##	6	1.3514	nan	0.0100	0.0012
##	7	1.3475	nan	0.0100	0.0021
##	8	1.3440	nan	0.0100	0.0015
##	9	1.3406	nan	0.0100	0.0011
##	10	1.3366	nan	0.0100	0.0021
##	20	1.3013	nan	0.0100	0.0020
##	40	1.2381	nan	0.0100	0.0014
##	60	1.1852	nan	0.0100	0.0008
##	80	1.1433	nan	0.0100	0.0006
##	100	1.1080	nan	0.0100	0.0006
##	120	1.0795	nan	0.0100	0.0003
##	140	1.0529	nan	0.0100	0.0002
##	150	1.0415	nan	0.0100	0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3731	nan	0.0100	0.0018
##	2	1.3681	nan	0.0100	0.0015
##	3	1.3637	nan	0.0100	0.0022
##	4	1.3587	nan	0.0100	0.0021
##	5	1.3548	nan	0.0100	0.0010
##	6	1.3511	nan	0.0100	0.0016
##	7	1.3463	nan	0.0100	0.0021
##	8	1.3430	nan	0.0100	0.0009
##	9	1.3375	nan	0.0100	0.0018
##	10	1.3323	nan	0.0100	0.0017
##	20	1.2941	nan	0.0100	0.0013
##	40	1.2351	nan	0.0100	0.0008
##	60	1.1842	nan	0.0100	0.0005
##	80	1.1409	nan	0.0100	0.0006
##	100	1.1030	nan	0.0100	0.0007
##	120	1.0734	nan	0.0100	0.0004
##	140	1.0504	nan	0.0100	0.0003
##	150	1.0398	nan	0.0100	0.0003
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3701	nan	0.0100	0.0023
##	2	1.3619	nan	0.0100	0.0037
##	3	1.3550	nan	0.0100	0.0022
##	4	1.3478	nan	0.0100	0.0032
##	5	1.3410	nan	0.0100	0.0029
##	6	1.3370	nan	0.0100	0.0012
##	7	1.3319	nan	0.0100	0.0019
##	8	1.3251	nan	0.0100	0.0028
##	9	1.3180	nan	0.0100	0.0026
##	10	1.3139	nan	0.0100	0.0006
##	20	1.2607	nan	0.0100	0.0006
##	40	1.1646	nan	0.0100	0.0013
##	60	1.0902	nan	0.0100	0.0010
##	80	1.0329	nan	0.0100	0.0001
##	100	0.9869	nan	0.0100	0.0003
##	120	0.9455	nan	0.0100	-0.0003
##	140	0.9124		0.0100	0.0003
##	150	0.8967	nan nan	0.0100	0.0004
##	100	0.0301	nan	0.0100	0.0003
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improvo
##	1	1.3711		0.0100	Improve 0.0020
##	2	1.3637	nan	0.0100	0.0020
##	3	1.3570	nan	0.0100	0.0032
##	4	1.3500	nan	0.0100	0.0018
##	5	1.3426	nan		0.0033
##	6		nan	0.0100	0.0031
	7	1.3355	nan	0.0100	0.0031
##		1.3281	nan	0.0100	
##	8	1.3226	nan	0.0100	0.0025
##	9	1.3154	nan	0.0100	0.0035
##	10	1.3085	nan	0.0100	0.0023
##	20	1.2537	nan	0.0100	0.0016
##	40	1.1627	nan	0.0100	0.0010
##	60	1.0911	nan	0.0100	0.0013
##	80	1.0360	nan	0.0100	0.0009
##	100	0.9898	nan	0.0100	0.0006
##	120	0.9553	nan	0.0100	0.0003
##	140	0.9242	nan	0.0100	-0.0002
##	150	0.9086	nan	0.0100	-0.0001
##	T+	Toolon	ValidDaniana	C+ C:	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3714	nan	0.0100	0.0022
##	2	1.3654	nan	0.0100	0.0025
##	3	1.3593	nan	0.0100	0.0023
##	4	1.3527	nan	0.0100	0.0027
##	5	1.3457	nan	0.0100	0.0033
##	6	1.3391	nan	0.0100	0.0030
##	7	1.3319	nan	0.0100	0.0033
##	8	1.3267	nan	0.0100	0.0025
##	9	1.3220	nan	0.0100	0.0012
##	10	1.3175	nan	0.0100	0.0017
##	20	1.2651	nan	0.0100	0.0025
##	40	1.1738	nan	0.0100	0.0018
##	60	1.1064	nan	0.0100	0.0006

##	80	1.0545	nan	0.0100	0.0006
##	100	1.0094	nan	0.0100	0.0007
##	120	0.9700	nan	0.0100	-0.0001
##	140	0.9382	nan	0.0100	-0.0001
##	150	0.9248	nan	0.0100	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3697	nan	0.0100	0.0030
##	2	1.3621	nan	0.0100	0.0027
##	3	1.3543	nan	0.0100	0.0027
##	4	1.3462		0.0100	0.0027
##	5		nan		0.0019
		1.3396	nan	0.0100	
##	6	1.3314	nan	0.0100	0.0030
##	7	1.3229	nan	0.0100	0.0031
##	8	1.3149	nan	0.0100	0.0027
##	9	1.3080	nan	0.0100	0.0025
##	10	1.3000	nan	0.0100	0.0030
##	20	1.2367	nan	0.0100	0.0012
##	40	1.1275	nan	0.0100	0.0009
##	60	1.0432	nan	0.0100	0.0003
##	80	0.9803	nan	0.0100	0.0003
##	100	0.9211	nan	0.0100	0.0009
##	120	0.8741	nan	0.0100	-0.0002
##	140	0.8355	nan	0.0100	0.0001
##	150	0.8166	nan	0.0100	0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	${\tt Improve}$
##	1	1.3699	nan	0.0100	0.0025
##	2	1.3615	nan	0.0100	0.0036
##	3	1.3536	nan	0.0100	0.0028
##	4	1.3474	nan	0.0100	0.0016
##	5	1.3390	nan	0.0100	0.0036
##	6	1.3320	nan	0.0100	0.0027
##	7	1.3239	nan	0.0100	0.0029
##	8	1.3160	nan	0.0100	0.0030
##	9	1.3100	nan	0.0100	0.0022
##	10	1.3022	nan	0.0100	0.0033
##	20	1.2438	nan	0.0100	0.0026
##	40	1.1468	nan	0.0100	0.0018
##	60	1.0689	nan	0.0100	0.0014
##	80	1.0045	nan	0.0100	0.0007
##	100	0.9497	nan	0.0100	0.0001
##	120	0.9061	nan	0.0100	0.0003
##	140	0.8686	nan	0.0100	-0.0004
##	150	0.8521	nan	0.0100	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3701	nan	0.0100	0.0034
##	2	1.3628	nan	0.0100	0.0026
##	3	1.3558	nan	0.0100	0.0019
##	4	1.3497	nan	0.0100	0.0018
##	5	1.3447	nan	0.0100	0.0026
##	6	1.3383	nan	0.0100	0.0015
##	7	1.3312	nan	0.0100	0.0023
11	,	1.0012	nan	0.0100	0.000 1

##	8	1.3259	nan	0.0100	0.0013
##	9	1.3201	nan	0.0100	0.0022
##	10	1.3134	nan	0.0100	0.0031
##	20	1.2580	nan	0.0100	0.0015
##	40	1.1698	nan	0.0100	0.0021
##	60	1.0943	nan	0.0100	0.0014
##	80	1.0388	nan	0.0100	0.0011
##	100	0.9924	nan	0.0100	0.0007
##	120	0.9534	nan	0.0100	0.0001
##	140	0.9227	nan	0.0100	-0.0001
##	150	0.9072	nan	0.0100	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3709	nan	0.0100	0.0027
##	2	1.3649	nan	0.0100	0.0026
##	3	1.3599	nan	0.0100	0.0017
##	4	1.3562	nan	0.0100	0.0014
##	5	1.3518	nan	0.0100	0.0017
##	6	1.3475	nan	0.0100	0.0015
##	7	1.3416	nan	0.0100	0.0025
##	8	1.3378	nan	0.0100	0.0014
##	9	1.3333	nan	0.0100	0.0024
##	10	1.3283	nan	0.0100	0.0025
##	20	1.2856	nan	0.0100	0.0019
##	40	1.2103	nan	0.0100	0.0015
##	60	1.1560	nan	0.0100	0.0005
##	80	1.1095	nan	0.0100	0.0006
##	100	1.0745	nan	0.0100	0.0006
				0.0200	0.000
##	120	1.0428	nan	0.0100	0.0006
## ##	120 140	1.0428 1.0154	nan nan	0.0100	0.0006
##	140	1.0154	nan	0.0100	0.0001
## ##					
## ## ##	140 150	1.0154 1.0046	nan nan	0.0100 0.0100	0.0001 0.0003
## ## ## ##	140 150 Iter	1.0154 1.0046 TrainDeviance	nan nan ValidDeviance	0.0100 0.0100 StepSize	0.0001 0.0003 Improve
## ## ## ##	140 150 Iter 1	1.0154 1.0046 TrainDeviance 1.3725	nan nan ValidDeviance nan	0.0100 0.0100 StepSize 0.0100	0.0001 0.0003 Improve 0.0013
## ## ## ## ##	140 150 Iter 1 2	1.0154 1.0046 TrainDeviance 1.3725 1.3669	nan nan ValidDeviance nan nan	0.0100 0.0100 StepSize 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027
## ## ## ## ##	140 150 Iter 1 2 3	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623	nan nan ValidDeviance nan nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026
## ## ## ## ## ##	140 150 Iter 1 2 3 4	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579	nan nan ValidDeviance nan nan nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015
## ## ## ## ## ##	140 150 Iter 1 2 3 4 5	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528	nan nan ValidDeviance nan nan nan nan nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0026
## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475	nan nan ValidDeviance nan nan nan nan nan nan nan nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0026 0.0025
## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435	nan nan ValidDeviance nan nan nan nan nan nan nan nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0026 0.0025 0.0017
## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3435	nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024
## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3387	nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0026 0.0025 0.0017 0.0024 0.0017
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3345 1.3345	nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024 0.0017 0.0026
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3345 1.3294 1.2861	Nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024 0.0017 0.0026 0.0020
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3345 1.3294 1.2861 1.2138	Nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024 0.0017 0.0026 0.0020 0.0012
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3345 1.3294 1.2861 1.2138 1.1570	nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024 0.0017 0.0026 0.0020 0.0012
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3345 1.2861 1.2138 1.1570 1.1123	nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024 0.0017 0.0026 0.0020 0.0012 0.0005 0.0006
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3345 1.294 1.2861 1.2138 1.1570 1.1123 1.0740	nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024 0.0017 0.0026 0.0020 0.0012 0.0005 0.0006 0.0007
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3345 1.3294 1.2861 1.2138 1.1570 1.1123 1.0740 1.0428	nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024 0.0017 0.0026 0.0020 0.0012 0.0005 0.0006 0.0007
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3345 1.2138 1.2138 1.1570 1.1123 1.0740 1.0428 1.0155	nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024 0.0017 0.0026 0.0020 0.0012 0.0005 0.0006 0.0007 0.0002 0.0002
#########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3345 1.3294 1.2861 1.2138 1.1570 1.1123 1.0740 1.0428	nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024 0.0017 0.0026 0.0020 0.0012 0.0005 0.0006 0.0007
########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3345 1.2861 1.2138 1.1570 1.1123 1.0740 1.0428 1.0155 1.0039	nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024 0.0017 0.0026 0.0020 0.0012 0.0005 0.0006 0.0007 0.0002 0.0003 0.0005
#########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.0154 1.0046 TrainDeviance 1.3725 1.3669 1.3623 1.3579 1.3528 1.3475 1.3435 1.3387 1.3345 1.2138 1.2138 1.1570 1.1123 1.0740 1.0428 1.0155	nan	0.0100 0.0100 StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0001 0.0003 Improve 0.0013 0.0027 0.0026 0.0015 0.0025 0.0017 0.0024 0.0017 0.0026 0.0020 0.0012 0.0005 0.0006 0.0007 0.0002 0.0002

##	2	1.3685	nan	0.0100	0.0017
##	3	1.3632	nan	0.0100	0.0027
##	4	1.3572	nan	0.0100	0.0024
##	5	1.3527	nan	0.0100	0.0020
##	6	1.3491	nan	0.0100	0.0009
##	7	1.3437	nan	0.0100	0.0025
##	8	1.3386	nan	0.0100	0.0025
##	9	1.3341	nan	0.0100	0.0016
##	10	1.3288	nan	0.0100	0.0024
##	20	1.2842	nan	0.0100	0.0020
##	40	1.2118	nan	0.0100	0.0016
##	60	1.1566	nan	0.0100	0.0007
##	80	1.1128	nan	0.0100	0.0006
##	100	1.0756	nan	0.0100	0.0006
##	120	1.0438	nan	0.0100	0.0004
##	140	1.0180	nan	0.0100	0.0003
##	150	1.0058	nan	0.0100	0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3691	nan	0.0100	0.0035
##	2	1.3606	nan	0.0100	0.0039
##	3	1.3527	nan	0.0100	0.0035
##	4	1.3468	nan	0.0100	0.0021
##	5	1.3393	nan	0.0100	0.0028
##	6	1.3313	nan	0.0100	0.0032
##	7	1.3235	nan	0.0100	0.0030
##	8	1.3161	nan	0.0100	0.0032
##	9	1.3084	nan	0.0100	0.0039
##	10	1.3027	nan	0.0100	0.0029
##	20	1.2375	nan	0.0100	0.0021
##	40	1.1392	nan	0.0100	0.0018
##	60	1.0599	nan	0.0100	0.0012
##	80	0.9967	nan	0.0100	0.0008
##	100	0.9457	nan	0.0100	0.0007
##	120	0.8977	nan	0.0100	0.0011
##	140	0.8598	nan	0.0100	0.0002
##	150	0.8436	nan	0.0100	0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3700	nan	0.0100	0.0024
##	2	1.3614	nan	0.0100	0.0040
##	3	1.3532	nan	0.0100	0.0038
##	4	1.3462	nan	0.0100	0.0031
##	5	1.3395	nan	0.0100	0.0026
##	6	1.3325	nan	0.0100	0.0030
##	7	1.3247	nan	0.0100	0.0033
##	8	1.3178	nan	0.0100	0.0034
##	9	1.3101	nan	0.0100	0.0027
##	10	1.3034	nan	0.0100	0.0032
##	20	1.2403	nan	0.0100	0.0028
##	40	1.1370	nan	0.0100	0.0017
##	60	1.0596	nan	0.0100	0.0013
##	80	1.0021	nan	0.0100	0.0005
##	100	0.9521	nan	0.0100	0.0004

##	120	0.9115	nan	0.0100	0.0004
##	140	0.8760	nan	0.0100	0.0003
##	150	0.8602	nan	0.0100	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3684	nan	0.0100	0.0037
##	2	1.3610	nan	0.0100	0.0033
##	3	1.3543	nan	0.0100	0.0026
##	4	1.3462	nan	0.0100	0.0036
##	5	1.3391	nan	0.0100	0.0031
##	6	1.3313	nan	0.0100	0.0037
##	7	1.3239	nan	0.0100	0.0038
##	8	1.3164	nan	0.0100	0.0036
##	9	1.3089	nan	0.0100	0.0036
##	10	1.3027	nan	0.0100	0.0030
##	20	1.2417	nan	0.0100	0.0027
##	40	1.1400	nan	0.0100	0.0015
##	60	1.0673	nan	0.0100	0.0013
##	80	1.0041	nan	0.0100	0.0010
##	100	0.9557	nan	0.0100	0.0005
##	120	0.9120	nan	0.0100	0.0008
##	140	0.8780	nan	0.0100	0.0000
##	150	0.8607	nan	0.0100	0.0000
##	.		** 1 · 10 ·	a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3675	nan	0.0100	0.0036
##	2	1.3595	nan	0.0100	0.0030
##	3	1.3507	nan	0.0100	0.0035
##	4	1.3418	nan	0.0100	0.0035
##	5	1.3339	nan	0.0100	0.0027
##	6	1.3249	nan	0.0100	0.0038
##	7	1.3174	nan	0.0100	0.0038
##	8	1.3090	nan	0.0100	0.0034
##	9 10	1.2998	nan	0.0100	0.0032
## ##	20	1.2926 1.2155	nan	0.0100 0.0100	0.0028
##	40	1.0921	nan	0.0100	0.0024
##	60	1.0034	nan	0.0100	0.0013
##	80	0.9339	nan nan	0.0100	0.0016
##	100	0.8725	nan	0.0100	0.0003
##	120	0.8212	nan	0.0100	0.0002
##	140	0.7746	nan	0.0100	-0.0002
##	150	0.7529	nan	0.0100	0.0002
##	100	0.1023	nan	0.0100	0.0002
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3675	nan	0.0100	0.0038
##	2	1.3590	nan	0.0100	0.0033
##	3	1.3509	nan	0.0100	0.0034
##	4	1.3429	nan	0.0100	0.0028
##	5	1.3340	nan	0.0100	0.0038
##	6	1.3246	nan	0.0100	0.0034
##	7	1.3161	nan	0.0100	0.0040
##	8	1.3088	nan	0.0100	0.0023
##	9	1.3002	nan	0.0100	0.0039
	_	-		· · ·	

##					
##	10	1.2915	nan	0.0100	0.0040
##	20	1.2228	nan	0.0100	0.0017
##	40	1.1107	nan	0.0100	0.0012
##	60	1.0239	nan	0.0100	0.0007
##	80	0.9550	nan	0.0100	0.0004
##	100	0.8951	nan	0.0100	0.0012
##	120	0.8466	nan	0.0100	0.0003
##	140	0.8100	nan	0.0100	-0.0001
##	150	0.7932	nan	0.0100	0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3695	nan	0.0100	0.0033
##	2	1.3612	nan	0.0100	0.0028
##	3	1.3528	nan	0.0100	0.0039
##	4	1.3444	nan	0.0100	0.0034
##	5	1.3391	nan	0.0100	0.0019
##	6	1.3322	nan	0.0100	0.0031
##	7	1.3260	nan	0.0100	0.0029
##	8	1.3188	nan	0.0100	0.0027
##	9	1.3110	nan	0.0100	0.0026
##	10	1.3045	nan	0.0100	0.0029
##	20	1.2382	nan	0.0100	0.0029
##	40	1.1427	nan	0.0100	0.0019
##	60	1.0622	nan	0.0100	0.0008
##	80	0.9989	nan	0.0100	0.0004
##	100	0.9505	nan	0.0100	0.0002
##	120	0.9089	nan	0.0100	0.0005
##	140	0.8708	nan	0.0100	-0.0002
##	150				
		0.8548	nan	0.0100	-0.0002
	130	0.8548	nan	0.0100	-0.0002
##					
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ## ##	Iter 1	TrainDeviance 1.3743	ValidDeviance nan	StepSize 0.0100	Improve 0.0015
## ## ## ##	Iter	TrainDeviance 1.3743 1.3710	ValidDeviance nan nan	StepSize 0.0100 0.0100	Improve 0.0015 0.0013
## ## ## ##	Iter	TrainDeviance 1.3743 1.3710 1.3672	ValidDeviance nan nan nan	StepSize 0.0100 0.0100 0.0100	Improve 0.0015 0.0013 0.0017
## ## ## ## ##	Iter	TrainDeviance 1.3743 1.3710 1.3672 1.3633	ValidDeviance nan nan nan nan	StepSize 0.0100 0.0100 0.0100 0.0100	Improve 0.0015 0.0013 0.0017 0.0022
## ## ## ##	Iter	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593	ValidDeviance nan nan nan nan nan	StepSize 0.0100 0.0100 0.0100 0.0100 0.0100	Improve 0.0015 0.0013 0.0017 0.0022 0.0011
## ## ## ## ## ##	Iter	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550	ValidDeviance nan nan nan nan nan nan	StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021
## ## ## ## ## ##	Iter	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519	ValidDeviance nan nan nan nan nan nan nan	StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519 1.3491	ValidDeviance nan nan nan nan nan nan nan nan	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519 1.3491 1.3450	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0010
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519 1.3491 1.3450 1.3402	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0010 0.0021 0.0020
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519 1.3491 1.3450 1.3402 1.3046	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0010 0.0021 0.0020 0.0011
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519 1.3491 1.3450 1.3402 1.3046 1.2401	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0021 0.0020 0.0011 0.0021
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519 1.3491 1.3450 1.3402 1.3046 1.2401 1.1920	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0021 0.0020 0.0011 0.0013 0.0011
######################################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519 1.3491 1.3450 1.3402 1.3046 1.2401 1.1920 1.1484	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0021 0.0020 0.0011 0.0013 0.0011 0.0008
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0010 0.0021 0.0020 0.0011 0.0013 0.0011 0.0008 0.0008
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519 1.3491 1.3450 1.3402 1.3046 1.2401 1.1920 1.1484 1.1143 1.0829	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0021 0.0020 0.0011 0.0013 0.0011 0.0008 0.0008 0.0004
## ## ## ## ## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519 1.3491 1.3450 1.3402 1.3046 1.2401 1.1920 1.1484 1.1143 1.0829 1.0572	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0021 0.0020 0.0011 0.0013 0.0011 0.0008 0.0008 0.0004 0.0005
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519 1.3491 1.3450 1.3402 1.3046 1.2401 1.1920 1.1484 1.1143 1.0829	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0021 0.0020 0.0011 0.0013 0.0011 0.0008 0.0008 0.0004
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance 1.3743 1.3710 1.3672 1.3633 1.3593 1.3550 1.3519 1.3491 1.3450 1.3402 1.3046 1.2401 1.1920 1.1484 1.1143 1.0829 1.0572	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0021 0.0020 0.0011 0.0013 0.0011 0.0008 0.0008 0.0008 0.0004 0.0005 0.0004
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0021 0.0020 0.0011 0.0013 0.0011 0.0008 0.0008 0.0004 0.0005
#########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0011 0.0021 0.0020 0.0011 0.0013 0.0011 0.0008 0.0008 0.0004 0.0005 0.0004 Improve 0.0022
########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0015 0.0013 0.0017 0.0022 0.0011 0.0021 0.0010 0.0021 0.0020 0.0011 0.0013 0.0011 0.0008 0.0008 0.0008 0.0004 0.0005 0.0004

##	4	1.3590	nan	0.0100	0.0013
##	5	1.3559	nan	0.0100	0.0013
##	6	1.3517	nan	0.0100	0.0021
##	7	1.3483	nan	0.0100	0.0016
##	8	1.3452	nan	0.0100	0.0015
##	9	1.3414	nan	0.0100	0.0018
##	10	1.3373	nan	0.0100	0.0013
##	20	1.3046	nan	0.0100	0.0017
##	40	1.2454	nan	0.0100	0.0014
##	60	1.1955	nan	0.0100	0.0003
##	80	1.1513	nan	0.0100	0.0003
##	100	1.1153	nan	0.0100	0.0001
##	120	1.0855	nan	0.0100	0.0006
##	140	1.0584	nan	0.0100	0.0003
##	150	1.0471	nan	0.0100	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3728	nan	0.0100	0.0022
##	2	1.3691	nan	0.0100	0.0008
##	3	1.3654	nan	0.0100	0.0015
##	4	1.3610	nan	0.0100	0.0021
##	5	1.3578	nan	0.0100	0.0010
##	6	1.3536	nan	0.0100	0.0021
##	7	1.3486	nan	0.0100	0.0021
##	8	1.3445	nan	0.0100	0.0020
##	9	1.3409	nan	0.0100	0.0006
##	10	1.3372	nan	0.0100	0.0019
##	20	1.3023	nan	0.0100	0.0012
##	40	1.2411	nan	0.0100	0.0010
##	60	1.1936	nan	0.0100	0.0005
##	80	1.1541	nan	0.0100	0.0007
##	100	1.1190	nan	0.0100	0.0007
##	120	1.0878	nan	0.0100	0.0005
##	140	1.0641	nan	0.0100	-0.0005
##	150	1.0514	nan	0.0100	0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3710	nan	0.0100	0.0031
##	2	1.3648	nan	0.0100	0.0032
##	3	1.3577	nan	0.0100	0.0022
##	4	1.3517	nan	0.0100	0.0021
##	5	1.3441	nan	0.0100	0.0030
##	6	1.3368	nan	0.0100	0.0030
##	7	1.3311	nan	0.0100	0.0016
##	8	1.3251	nan	0.0100	0.0026
##	9	1.3193	nan	0.0100	0.0019
##	10	1.3135	nan	0.0100	0.0024
##	20	1.2591	nan	0.0100	0.0023
##	40	1.1678	nan	0.0100	0.0017
##	60	1.0957	nan	0.0100	0.0008
##	80	1.0369	nan	0.0100	0.0010
##	100	0.9855	nan	0.0100	0.0005
##	120	0.9437	nan	0.0100	0.0005
##	140	0.9042	nan	0.0100	0.0001

## ##	150	0.8872	nan	0.0100	0.0002
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3729	nan	0.0100	0.0013
##	2	1.3665	nan	0.0100	0.0025
##	3	1.3585	nan	0.0100	0.0027
##	4	1.3521	nan	0.0100	0.0023
##	5	1.3469	nan	0.0100	0.0014
##	6	1.3398	nan	0.0100	0.0031
##	7	1.3329	nan	0.0100	0.0024
##	8	1.3262	nan	0.0100	0.0023
##	9	1.3198	nan	0.0100	0.0025
##	10	1.3127	nan	0.0100	0.0027
##	20	1.2568	nan	0.0100	0.0019
##	40	1.1694	nan	0.0100	0.0009
##	60	1.0949	nan	0.0100	0.0012
##	80	1.0352	nan	0.0100	0.0007
##	100	0.9856	nan	0.0100	0.0001
##	120	0.9435	nan	0.0100	0.0005
##	140	0.9104	nan	0.0100	0.0000
##	150	0.8935	nan	0.0100	0.0003
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3716	nan	0.0100	0.0016
##	2	1.3665	nan	0.0100	0.0017
##	3	1.3611	nan	0.0100	0.0014
##	4	1.3542	nan	0.0100	0.0034
##	5	1.3477	nan	0.0100	0.0021
##	6	1.3423	nan	0.0100	0.0018
##	7	1.3363	nan	0.0100	0.0026
##	8	1.3288	nan	0.0100	0.0027
##	9	1.3235	nan	0.0100	0.0016
##	10	1.3174	nan	0.0100	0.0019
##	20	1.2606	nan	0.0100	0.0009
##	40	1.1697	nan	0.0100	0.0016
##	60	1.0984	nan	0.0100	0.0005
##	80	1.0391	nan	0.0100	0.0010
##	100	0.9910	nan	0.0100	0.0002
##	120	0.9528	nan	0.0100	0.0007
##	140	0.9180	nan	0.0100	0.0001
##	150	0.9012	nan	0.0100	0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3699	nan	0.0100	0.0027
##	2	1.3622	nan	0.0100	0.0032
##	3	1.3534	nan	0.0100	0.0038
##	4	1.3450	nan	0.0100	0.0030
##	5	1.3370	nan	0.0100	0.0030
##	6	1.3291	nan	0.0100	0.0031
##	7	1.3208	nan	0.0100	0.0032
##	8	1.3145	nan	0.0100	0.0022
##	9	1.3073	nan	0.0100	0.0022
##	10	1.2988	nan	0.0100	0.0032
##	20	1.2362	nan	0.0100	0.0005

##	40	1.1268	nan	0.0100	0.0010
##	60	1.0346	nan	0.0100	0.0013
##	80	0.9616	nan	0.0100	0.0003
##	100	0.9015	nan	0.0100	0.0002
##	120	0.8512	nan	0.0100	0.0008
##	140	0.8063	nan	0.0100	-0.0006
##	150	0.7857	nan	0.0100	-0.0002
##	200	011001		0.0200	0.000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3697	nan	0.0100	0.0031
##	2	1.3637		0.0100	0.0031
			nan		
##	3	1.3564	nan	0.0100	0.0027
##	4	1.3487	nan	0.0100	0.0027
##	5	1.3425	nan	0.0100	0.0020
##	6	1.3345	nan	0.0100	0.0035
##	7	1.3274	nan	0.0100	0.0026
##	8	1.3206	nan	0.0100	0.0024
##	9	1.3138	nan	0.0100	0.0024
##	10	1.3081	nan	0.0100	0.0020
##	20	1.2429	nan	0.0100	0.0020
##	40	1.1362	nan	0.0100	0.0014
##	60	1.0523	nan	0.0100	0.0008
##	80	0.9864	nan	0.0100	0.0005
##	100	0.9332	nan	0.0100	0.0000
##	120	0.8845	nan	0.0100	0.0011
##	140	0.8453	nan	0.0100	0.0003
##	150	0.8268	nan	0.0100	0.0002
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	Iter 1	TrainDeviance	ValidDeviance nan	StepSize	Improve
## ##	1	1.3705	nan	0.0100	0.0033
## ## ##	1 2	1.3705 1.3649	nan nan	0.0100 0.0100	0.0033
## ## ## ##	1 2 3	1.3705 1.3649 1.3583	nan nan nan	0.0100 0.0100 0.0100	0.0033 0.0022 0.0022
## ## ## ##	1 2 3 4	1.3705 1.3649 1.3583 1.3512	nan nan nan nan	0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028
## ## ## ## ##	1 2 3 4 5	1.3705 1.3649 1.3583 1.3512 1.3466	nan nan nan nan nan	0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015
## ## ## ## ##	1 2 3 4 5	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397	nan nan nan nan nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028
## ## ## ## ## ##	1 2 3 4 5 6 7	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339	nan nan nan nan nan nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339	nan nan nan nan nan nan nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270	nan nan nan nan nan nan nan nan nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3270 1.3270 1.3212	nan nan nan nan nan nan nan nan nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0022
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604	nan nan nan nan nan nan nan nan nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0022
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626	nan nan nan nan nan nan nan nan nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0020 0.0020
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927	nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0020 0.0017 0.0016
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927 1.0310	nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0022 0.0022 0.0022 0.0020 0.0022 0.0020 0.0017 0.0016 0.0012
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927	nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0020 0.0017 0.0016
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927 1.0310	nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0022 0.0022 0.0022 0.0020 0.0022 0.0020 0.0017 0.0016 0.0012
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927 1.0310 0.9815	nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0022 0.0022 0.0022 0.0020 0.0017 0.0016 0.0012 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927 1.0310 0.9815 0.9415	nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0022 0.0020 0.0017 0.0016 0.0012 0.0001 -0.0005
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927 1.0310 0.9815 0.9415	nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0022 0.0020 0.0017 0.0016 0.0012 0.0001 -0.0005 0.0004
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927 1.0310 0.9815 0.9415	nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0022 0.0020 0.0017 0.0016 0.0012 0.0001 -0.0005 0.0004
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927 1.0310 0.9815 0.9415 0.9043 0.8872	nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0022 0.0020 0.0017 0.0016 0.0012 0.0001 -0.0005 0.0004 0.0002
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927 1.0310 0.9815 0.9415 0.9043 0.8872	nan	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0022 0.0020 0.0017 0.0016 0.0012 0.0001 -0.0005 0.0004 0.0002
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927 1.0310 0.9815 0.9415 0.9043 0.8872	nan	0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0022 0.0020 0.0017 0.0016 0.0012 0.0001 -0.0005 0.0004 0.0002
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927 1.0310 0.9815 0.9415 0.9043 0.8872 TrainDeviance 1.3731 1.3685	nan	0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0022 0.0020 0.0017 0.0016 0.0012 0.0001 -0.0005 0.0004 0.0002 Improve 0.0016 0.0021
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.3705 1.3649 1.3583 1.3512 1.3466 1.3397 1.3339 1.3270 1.3212 1.3153 1.2604 1.1626 1.0927 1.0310 0.9815 0.9415 0.943 0.8872 TrainDeviance 1.3731 1.3685 1.3635	nan	0.0100 0.0100	0.0033 0.0022 0.0022 0.0028 0.0015 0.0028 0.0022 0.0022 0.0020 0.0022 0.0020 0.0017 0.0016 0.0012 0.0001 -0.0005 0.0004 0.0002 Improve 0.0016 0.0021 0.0019

##	6	1.3520	nan	0.0100	0.0015
##	7	1.3485	nan	0.0100	0.0013
##	8	1.3437	nan	0.0100	0.0017
##	9	1.3394	nan	0.0100	0.0020
##	10	1.3352	nan	0.0100	0.0019
##	20	1.2998	nan	0.0100	0.0009
##	40	1.2390	nan	0.0100	0.0010
##	60	1.1896	nan	0.0100	0.0008
##	80	1.1505	nan	0.0100	-0.0004
##	100	1.1147	nan	0.0100	0.0002
##	120	1.0826	nan	0.0100	0.0003
##	140	1.0560	nan	0.0100	0.0001
##	150	1.0443	nan	0.0100	0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3727	nan	0.0100	0.0017
##	2	1.3686	nan	0.0100	0.0017
##	3	1.3638	nan	0.0100	0.0021
##	4	1.3599	nan	0.0100	0.0014
##	5	1.3553	nan	0.0100	0.0020
##	6	1.3510	nan	0.0100	0.0019
##	7	1.3474	nan	0.0100	0.0020
##	8	1.3436	nan	0.0100	0.0019
##	9	1.3395	nan	0.0100	0.0013
##	10	1.3352	nan	0.0100	0.0011
##	20	1.2980	nan	0.0100	0.0012
##	40	1.2358	nan	0.0100	0.0011
##	60	1.1863	nan	0.0100	0.0009
##	80	1.1431	nan	0.0100	0.0003
##	100	1.1072	nan	0.0100	0.0001
##	120	1.0784	nan	0.0100	0.0004
##	140	1.0527	nan	0.0100	0.0004
##	150	1.0411	nan	0.0100	0.0002
##	100	1.0411	nan	0.0100	0.0002
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3710	nan	0.0100	0.0020
##	2	1.3675	nan	0.0100	0.0016
##	3	1.3633	nan	0.0100	0.0010
##	4	1.3589	nan	0.0100	0.0011
##	5	1.3551	nan	0.0100	0.0016
##	6	1.3515	nan	0.0100	0.0016
##	7	1.3481	nan	0.0100	0.0010
##	8	1.3442		0.0100	0.0009
##	9	1.3413	nan	0.0100	0.0019
##	10	1.3378	nan	0.0100	0.0005
##	20	1.3033	nan	0.0100	0.0013
##		1.2426	nan	0.0100	
##	40 60	1.1923	nan	0.0100	0.0013 0.0011
##			nan		
	80	1.1476	nan	0.0100	0.0008
##	100	1.1131	nan	0.0100	0.0006
##	120	1.0814	nan	0.0100	0.0004
##	140	1.0538	nan	0.0100	0.0001
##	150	1.0420	nan	0.0100	0.0004
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3683	nan	0.0100	0.0032
##	2	1.3605	nan	0.0100	0.0030
##	3	1.3546	nan	0.0100	0.0019
##	4	1.3471	nan	0.0100	0.0028
##	5	1.3400	nan	0.0100	0.0033
##	6	1.3345	nan	0.0100	0.0020
##	7	1.3281	nan	0.0100	0.0019
##	8	1.3210	nan	0.0100	0.0024
##	9	1.3137	nan	0.0100	0.0027
##	10	1.3081	nan	0.0100	0.0022
##	20	1.2511	nan	0.0100	0.0024
##	40	1.1579	nan	0.0100	0.0001
##	60	1.0836	nan	0.0100	0.0014
##	80	1.0215	nan	0.0100	0.0004
##	100	0.9698	nan	0.0100	0.0004
##	120	0.9259	nan	0.0100	-0.0004
##	140	0.8886		0.0100	0.0004
##	150	0.8728	nan nan	0.0100	0.0004
##	100	0.0720	nan	0.0100	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3708		0.0100	0.0014
##	2	1.3633	nan	0.0100	0.0014
##	3	1.3569	nan	0.0100	0.0038
##	4	1.3499	nan	0.0100	0.0022
##	5		nan		0.0026
##	6	1.3434	nan	0.0100	0.0026
	7	1.3355	nan	0.0100	0.0027
##		1.3293	nan	0.0100	
##	8	1.3218	nan	0.0100	0.0034
##	9	1.3160	nan	0.0100	0.0020
##	10	1.3091	nan	0.0100	0.0029
##	20	1.2501	nan	0.0100	0.0012
##	40	1.1552	nan	0.0100	0.0017
##	60	1.0824	nan	0.0100	0.0003
##	80	1.0227	nan	0.0100	0.0012
##	100	0.9751	nan	0.0100	0.0008
##	120	0.9341	nan	0.0100	0.0000
##	140	0.8994	nan	0.0100	0.0004
##	150	0.8823	nan	0.0100	-0.0001
##	T+	Ti-Di	ValidDaniana	C+ C:	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3702	nan	0.0100	0.0030 0.0015
##	2	1.3651	nan	0.0100	
##	3	1.3588	nan	0.0100	0.0028
##	4	1.3536	nan	0.0100	0.0018
##	5	1.3468	nan	0.0100	0.0032
##	6	1.3403	nan	0.0100	0.0019
##	7	1.3325	nan	0.0100	0.0035
##	8	1.3256	nan	0.0100	0.0035
##	9	1.3194	nan	0.0100	0.0022
##	10	1.3139	nan	0.0100	0.0021
##	20	1.2565	nan	0.0100	0.0021
##	40	1.1614	nan	0.0100	0.0011
##	60	1.0893	nan	0.0100	0.0010

##	80	1.0298	nan	0.0100	0.0008
##	100	0.9795	nan	0.0100	0.0009
##	120	0.9383	nan	0.0100	0.0007
##	140	0.9038	nan	0.0100	-0.0003
##	150	0.8862	nan	0.0100	0.0005
##	200	0.0002		0.0200	0.000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improvo
##	1	1.3682		0.0100	Improve 0.0028
			nan		
##	2	1.3605	nan	0.0100	0.0025
##	3	1.3517	nan	0.0100	0.0028
##	4	1.3439	nan	0.0100	0.0033
##	5	1.3363	nan	0.0100	0.0032
##	6	1.3286	nan	0.0100	0.0026
##	7	1.3208	nan	0.0100	0.0030
##	8	1.3130	nan	0.0100	0.0035
##	9	1.3054	nan	0.0100	0.0028
##	10	1.2984	nan	0.0100	0.0023
##	20	1.2290	nan	0.0100	0.0014
##	40	1.1183	nan	0.0100	0.0012
##	60	1.0264	nan	0.0100	0.0012
##	80	0.9541	nan	0.0100	0.0005
##	100	0.8938	nan	0.0100	0.0006
##	120	0.8432	nan	0.0100	-0.0001
##	140	0.7953	nan	0.0100	-0.0001
##	150	0.7768	nan	0.0100	0.0001
##	100	0.7700	nan	0.0100	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3683		0.0100	0.0033
	2		nan		
##		1.3608	nan	0.0100	0.0029
##	3	1.3541	nan	0.0100	0.0028
##	4	1.3466	nan	0.0100	0.0029
##	5	1.3381	nan	0.0100	0.0038
##	6	1.3309	nan	0.0100	0.0030
##	7	1.3248	nan	0.0100	0.0022
##	8	1.3187	nan	0.0100	0.0021
##	9	1.3117	nan	0.0100	0.0035
##	10	1.3043	nan	0.0100	0.0034
##	20	1.2357	nan	0.0100	0.0020
##	40	1.1307	nan	0.0100	0.0016
##	60	1.0508	nan	0.0100	0.0001
##	80	0.9823	nan	0.0100	0.0010
##	100	0.9245	nan	0.0100	0.0005
##	120	0.8771	nan	0.0100	-0.0001
##	140	0.8325	nan	0.0100	0.0004
##	150	0.8131	nan	0.0100	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3689	nan	0.0100	0.0022
##	2	1.3627		0.0100	0.0022
##	3	1.3554	nan	0.0100	0.0021
			nan		
##	4	1.3488	nan	0.0100	0.0019
##	5	1.3419	nan	0.0100	0.0025
##	6	1.3363	nan	0.0100	0.0017
##	7	1.3303	nan	0.0100	0.0022

##	8	1.3230	nan	0.0100	0.0031
##	9	1.3158	nan	0.0100	0.0029
##	10	1.3090	nan	0.0100	0.0032
##	20	1.2522	nan	0.0100	0.0023
##	40	1.1528	nan	0.0100	0.0013
##	60	1.0806	nan	0.0100	0.0008
##	80	1.0247	nan	0.0100	0.0011
##	100	0.9745	nan	0.0100	0.0002
##	120	0.9311	nan	0.0100	0.0000
##	140	0.8956	nan	0.0100	-0.0003
##	150	0.8797	nan	0.0100	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3728	nan	0.0100	0.0025
##	2	1.3678	nan	0.0100	0.0024
##	3	1.3633	nan	0.0100	0.0014
##	4	1.3579	nan	0.0100	0.0023
##	5	1.3537	nan	0.0100	0.0023
##	6	1.3490	nan	0.0100	0.0023
##	7	1.3445	nan	0.0100	0.0023
##	8	1.3412	nan	0.0100	0.0013
##	9	1.3362	nan	0.0100	0.0022
##	10	1.3310	nan	0.0100	0.0021
##	20	1.2893	nan	0.0100	0.0021
##	40	1.2261	nan	0.0100	0.0009
##	60	1.1728	nan	0.0100	0.0003
##	80	1.1312	nan	0.0100	0.0011
##	100	1.0971	nan	0.0100	0.0002
##	120	1.0661	nan	0.0100	0.0002
##	140	1.0389		0.0100	-0.0004
##	150	1.0265	nan nan	0.0100	0.0002
##	100	1.0200	nan	0.0100	0.0003
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improvo
##	1	1.3730		0.0100	Improve 0.0015
	2		nan		0.0013
## ##	3	1.3686 1.3634	nan	0.0100 0.0100	0.0018
##	4	1.3594	nan	0.0100	0.0023
		1.3574	nan	0.0100	0.0014
##	5 6	1.3550	nan	0.0100	0.0003
	7		nan		
##		1.3499	nan	0.0100	0.0024 0.0023
##	8	1.3451 1.3406	nan	0.0100	0.0023
##	9		nan	0.0100	
##	10	1.3363	nan	0.0100	0.0021
##	20	1.2954	nan	0.0100	0.0019
##	40	1.2300	nan	0.0100	0.0014
##	60	1.1766	nan	0.0100	0.0011
##	80	1.1328	nan	0.0100	0.0007
##	100	1.0956	nan	0.0100	0.0003
##	120	1.0640	nan	0.0100	0.0006
##	140	1.0377	nan	0.0100	0.0004
##	150	1.0262	nan	0.0100	0.0002
##	Τ.	m · p ·	W 1 · ID ·	a. a.	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3713	nan	0.0100	0.0024

##	2	1.3662	nan	0.0100	0.0023
##	3	1.3613	nan	0.0100	0.0016
##	4	1.3580	nan	0.0100	0.0012
##	5	1.3541	nan	0.0100	0.0014
##	6	1.3493	nan	0.0100	0.0024
##	7	1.3441	nan	0.0100	0.0023
##	8	1.3383	nan	0.0100	0.0021
##	9	1.3337	nan	0.0100	0.0022
##	10	1.3293	nan	0.0100	0.0022
##	20	1.2901	nan	0.0100	0.0013
##	40	1.2262	nan	0.0100	0.0009
##	60	1.1721	nan	0.0100	0.0009
##	80	1.1258	nan	0.0100	0.0006
##	100	1.0917	nan	0.0100	0.0005
##	120	1.0605	nan	0.0100	0.0004
##	140	1.0351	nan	0.0100	0.0003
##	150	1.0231	nan	0.0100	0.0004
##		1,0201		0.0100	0,0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3702	nan	0.0100	0.0031
##	2	1.3632	nan	0.0100	0.0022
##	3	1.3558	nan	0.0100	0.0032
##	4	1.3485	nan	0.0100	0.0027
##	5	1.3425	nan	0.0100	0.0027
##	6	1.3355	nan	0.0100	0.0021
##	7	1.3289	nan	0.0100	0.0031
##	8	1.3226	nan	0.0100	0.0031
##	9	1.3156	nan	0.0100	0.0023
##	10	1.3089	nan	0.0100	0.0031
##	20	1.2525	nan	0.0100	0.0021
##	40	1.1559	nan	0.0100	0.0021
##	60	1.0812		0.0100	0.0013
##	80	1.0191	nan	0.0100	0.0012
##	100	0.9653	nan	0.0100	0.0003
		0.9189	nan	0.0100	0.0001
## ##	120 140	0.8805	nan	0.0100	-0.0003
##	150	0.8620	nan	0.0100	0.0005
	150	0.8020	nan	0.0100	0.0005
##	Ttom	TrainDeviance	ValidDeviance	C+onCino	Tmmmorro
	Iter 1	1.3709		StepSize	Improve
##	2		nan	0.0100	0.0027
##		1.3652	nan	0.0100	0.0021
##	3	1.3564	nan	0.0100	0.0032
##	4	1.3488	nan	0.0100	0.0029
##	5	1.3429	nan	0.0100	0.0017
##	6	1.3378	nan	0.0100	0.0017
##	7	1.3307	nan	0.0100	0.0030
##	8	1.3236	nan	0.0100	0.0028
##	9	1.3167	nan	0.0100	0.0026
##	10	1.3094	nan	0.0100	0.0024
##	20	1.2521	nan	0.0100	0.0024
##	40	1.1563	nan	0.0100	0.0014
##	60	1.0824	nan	0.0100	0.0008
##	80	1.0235	nan	0.0100	0.0004
##	100	0.9717	nan	0.0100	0.0002

##	120	0.9302	nan	0.0100	0.0006
##	140	0.8955	nan	0.0100	0.0002
##	150	0.8787	nan	0.0100	0.0002
##	.			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3700	nan	0.0100	0.0031
##	2	1.3623	nan	0.0100	0.0027
##	3	1.3557	nan	0.0100	0.0030
##	4	1.3474	nan	0.0100	0.0037
##	5	1.3419	nan	0.0100	0.0023
##	6	1.3347	nan	0.0100	0.0037
##	7	1.3282	nan	0.0100	0.0029
##	8	1.3221	nan	0.0100	0.0022
##	9	1.3151	nan	0.0100	0.0033
##	10	1.3090	nan	0.0100	0.0027
##	20	1.2501	nan	0.0100	0.0016
##	40	1.1544	nan	0.0100	0.0015
##	60	1.0799	nan	0.0100	0.0011
##	80	1.0230	nan	0.0100	0.0008
##	100	0.9753	nan	0.0100	0.0004
##	120 140	0.9359	nan	0.0100 0.0100	-0.0001 0.0001
##		0.9028	nan		
##	150	0.8883	nan	0.0100	-0.0000
##	Ttom	TrainDeviance	ValidDeviance	C+onCiao	Tmnmarra
## ##	Iter 1	1.3678		StepSize 0.0100	Improve 0.0038
##	2	1.3603	nan	0.0100	0.0036
##	3	1.3510	nan	0.0100	0.0023
##	4	1.3432	nan	0.0100	0.0032
##	5	1.3345	nan nan	0.0100	0.0035
##	6	1.3284	nan	0.0100	0.0033
##	7	1.3213	nan	0.0100	0.0021
##	8	1.3141	nan	0.0100	0.0024
##	9	1.3066	nan	0.0100	0.0029
##	10	1.2998	nan	0.0100	0.0020
##	20	1.2301	nan	0.0100	0.0026
##	40	1.1166	nan	0.0100	0.0013
##	60	1.0232	nan	0.0100	0.0015
##	80	0.9488	nan	0.0100	0.0005
##	100	0.8926	nan	0.0100	0.0005
##	120	0.8404	nan	0.0100	0.0004
##	140	0.7948	nan	0.0100	0.0003
##	150	0.7748	nan	0.0100	0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3695	nan	0.0100	0.0030
##	2	1.3609	nan	0.0100	0.0032
##	3	1.3540	nan	0.0100	0.0025
##	4	1.3454	nan	0.0100	0.0042
##	5	1.3384	nan	0.0100	0.0024
##	6	1.3302	nan	0.0100	0.0029
##	7	1.3233	nan	0.0100	0.0029
##	8	1.3153	nan	0.0100	0.0032
##	9	1.3084	nan	0.0100	0.0022

##	10	1.3017	nan	0.0100	0.0023
##	20	1.2367	nan	0.0100	0.0024
##	40	1.1306	nan	0.0100	0.0019
##	60	1.0479	nan	0.0100	0.0005
##	80	0.9795	nan	0.0100	0.0012
##	100	0.9248	nan	0.0100	0.0011
##	120	0.8766	nan	0.0100	0.0002
##	140	0.8349	nan	0.0100	-0.0004
##	150	0.8177	nan	0.0100	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	${\tt Improve}$
##	1	1.3709	nan	0.0100	0.0029
##	2	1.3629	nan	0.0100	0.0037
##	3	1.3555	nan	0.0100	0.0030
##	4	1.3490	nan	0.0100	0.0021
##	5	1.3427	nan	0.0100	0.0024
##	6	1.3359	nan	0.0100	0.0025
##	7	1.3295	nan	0.0100	0.0020
##	8	1.3228	nan	0.0100	0.0029
##	9	1.3157	nan	0.0100	0.0029
##	10	1.3111	nan	0.0100	0.0014
##	20	1.2527	nan	0.0100	0.0025
##	40	1.1560	nan	0.0100	0.0018
##	60	1.0800	nan	0.0100	0.0004
##	80	1.0213	nan	0.0100	0.0007
##	100	0.9693	nan	0.0100	0.0011
##	120	0.9267	nan	0.0100	-0.0002
##	140	0.8909	nan	0.0100	0.0003
##	150	0.8758	nan	0.0100	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3684	nan	0.0100	0.0041
##	2	1.3596	nan	0.0100	0.0039
##	3	1.3524	nan	0.0100	0.0027
##	4	1.3442	nan	0.0100	0.0039
##	5	1.3376	nan	0.0100	0.0028
##	6	1.3299	nan	0.0100	0.0033
##	7	1.3227	nan	0.0100	0.0028
##	8	1.3149	nan	0.0100	0.0028
##	9	1.3075	nan	0.0100	0.0030
##	10	1.3017	nan	0.0100	0.0017
##	20	1.2397	nan	0.0100	0.0016
##	40	1.1378	nan	0.0100	0.0014
##	60	1.0538	nan	0.0100	0.0011
##	80	0.9888	nan	0.0100	0.0007
##	100	0.9338	nan	0.0100	0.0010
##	120	0.8894	nan	0.0100	0.0002
##	140	0.8487	nan	0.0100	-0.0002
##	150	0.8322	nan	0.0100	-0.0002

^{##} Stochastic Gradient Boosting

^{##}

^{## 239} samples

^{## 11} predictor

```
##
     2 classes: 'no', 'yes'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 192, 191, 190, 191, 192
## Resampling results across tuning parameters:
##
##
     interaction.depth n.minobsinnode Accuracy
                                                    Kappa
##
                         5
                                        0.7570560 0.5018753
##
                        10
     1
                                        0.7442086 0.4762721
##
     1
                        15
                                        0.7403857 0.4689432
                                        0.7531517 0.4978995
##
     3
                         5
##
     3
                        10
                                        0.7489850 0.4889287
##
                                        0.7489886 0.4895727
     3
                        15
##
     5
                         5
                                        0.7493324 0.4912688
##
     5
                        10
                                        0.7660027 0.5259506
##
                        15
                                        0.7448184 0.4804674
##
## Tuning parameter 'n.trees' was held constant at a value of 150
## parameter 'shrinkage' was held constant at a value of 0.01
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 150, interaction.depth =
## 5, shrinkage = 0.01 and n.minobsinnode = 10.
# Training Error =0.5027174
predict_train <- predict(boost_tuned, n.trees = 1000, type = "prob", newdata = heart_train)</pre>
predicted_train_classes <- ifelse(predict_train[, 2] > 0.5, 1, 0)
mean(predicted_train_classes != heart_test$num)
## Warning in predicted_train_classes != heart_test$num: longer object length is
## not a multiple of shorter object length
## [1] 0.5062762
# Testing Error = 0.1793478
predict_test <- predict(boost_tuned, n.trees = 1000, type = "prob", newdata = heart_test)</pre>
predicted_test_classes <- ifelse(predict_test[, 2] > 0.5, 1, 0)
mean(predicted_test_classes != heart_test$num)
## [1] 0.15
# Confusion Matrix
predictions_test <- factor(predicted_test_classes, levels = c(0, 1), labels = c("no", "yes"))</pre>
conf_matrix_test <- confusionMatrix(predictions_test, y_test,mode = "everything")</pre>
print(conf_matrix_test)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction no yes
##
          no 27
                   7
          yes 2 24
##
##
##
                  Accuracy: 0.85
                    95% CI: (0.7343, 0.929)
##
       No Information Rate: 0.5167
##
```

```
P-Value [Acc > NIR] : 6.136e-08
##
##
                     Kappa : 0.7013
##
##
    Mcnemar's Test P-Value: 0.1824
##
##
##
               Sensitivity: 0.9310
               Specificity: 0.7742
##
##
            Pos Pred Value : 0.7941
##
            Neg Pred Value: 0.9231
##
                 Precision: 0.7941
##
                    Recall : 0.9310
##
                        F1: 0.8571
                Prevalence: 0.4833
##
##
            Detection Rate: 0.4500
##
      Detection Prevalence: 0.5667
##
         Balanced Accuracy: 0.8526
##
##
          'Positive' Class : no
##
# accuracy = 0.8207
#F1 = 0.7519
# AUCROC
predictions.prob <- predict(boost_tuned, X_test, type = "prob")</pre>
roc.tuned.gbm <- roc(response = y_test, predictor = predictions.prob[,2], plot = TRUE)</pre>
## Setting levels: control = no, case = yes
## Setting direction: controls < cases
```


print(auc(roc.tuned.gbm))

Area under the curve: 0.9355

auc = 0.904