COMUNICACIÓN DE 2 CUBECELL POR LoRaWAN A TRAVÉS DE MQTT

1. Introducción

Este proyecto permite que dos dispositivos Heltec CubeCell HTCC-AB02 se comuniquen de forma indirecta usando LoRaWAN, un Gateway Dragino LPS8v2 y The Things Network (TTN).

- El CubeCell Emisor envía periódicamente un mensaje (en este ejemplo, "Hello") a TTN usando la activación OTAA.
- El CubeCell Receptor se une a TTN y, a través de downlinks generados, recibe y muestra el mensaje en formato legible.
- La comunicación entre ambos dispositivos se realiza a través de TTN; el Gateway solo reenvía los paquetes.
- Se utiliza una integración MQTT (implementada mediante un script en Python) para suscribirse a los uplinks del emisor y, al detectar un mensaje, publicar un downlink dirigido al receptor.
- Además, se ha configurado un Custom JavaScript Formatter en TTN para decodificar el downlink y mostrar el mensaje (por ejemplo, "Hello") en formato ASCII.

2. Requisitos

Hardware:

- 2 placas Heltec CubeCell HTCC-AB02
- 2 antenas LoRa (una por placa)
- 1 Gateway Dragino LPS8v2 (con conexión a Internet)

Software y Herramientas:

- Arduino IDE con soporte para CubeCell (instalado desde el Gestor de Placas)
- Cuenta en The Things Network (TTN)
- Python 3 instalado en tu sistema
- La librería Python paho-mqtt (se instala ejecutando pip install paho-mqtt)

3. Configuración en TTN

A. Registro del Gateway

- 1. Conecta el Gateway Dragino LPS8v2 a Internet mediante WiFi configurándolo en modo WAN Client.
- 2. Accede a la interfaz web del Gateway, configura la red y el modo LoRaWAN y verifica que el Gateway esté conectado (indicador verde).
- 3. En TTN, registra el Gateway ingresando su Gateway EUI y configurándolo para la región *EU868*.

B. Creación de la Aplicación y Registro de Dispositivos

- 1. En la consola TTN, crea una nueva aplicación (por ejemplo, "lorawan-appiot").
- 2. Registra dos dispositivos:
 - CubeCell-1 (Emisor): Configúralo en OTAA y asigna sus claves (DevEUI, JoinEUI y AppKey).
 - CubeCell-2 (Receptor): Regístralo en OTAA con claves distintas (se recomienda un JoinEUI diferente, por ejemplo, generando uno nuevo para distinguirlo).

C. Payload Formatters

- 1. En el dispositivo receptor (CubeCell-2) en TTN, accede a la sección *Payload Formatters > Downlink*.
- 2. Selecciona "Custom JavaScript Formatter" y pega el siguiente código (el cuál convierte el arreglo de bytes recibido a un string ASCII):

```
function decodeDownlink(input) {
  var bytes = input.bytes;
  var message = "";
  for (var i = 0; i < bytes.length; i++) {
    message += String.fromCharCode(bytes[i]);
  }
  return {
    data: {
    message: message</pre>
```

ÁLVARO GONZÁLEZ LAGO

```
},
  warnings: [],
  errors: []
};
```

 Guarda la configuración. Este formatter se encargará de decodificar los mensajes enviados al receptor, mostrando "Hello" (por ejemplo) en texto legible en la consola de TTN.

4. Configuración de MQTT mediante Script Python

Se utilizará un script en Python con la librería *paho-mqtt* para automatizar la publicación de downlinks en TTN al detectar uplinks del emisor.

A. Instalación:

• Ejecuta en la terminal:

pip install paho-mqtt

B. Configuración y Uso:

- 1. Define en el script tus credenciales de TTN:
 - Application ID (por ejemplo, "lorawan-app-iot")
 - API Key (obtenida en TTN→Other integrations→MQTT→Generate new API Key)
 - IDs de los dispositivos: Ejemplo: "cubecell-1" (emisor) y "cubecell-2" (receptor).
- 2. Configura los tópicos MQTT (están en el script de Python):
 - Tópico de uplink del emisor: v3/lorawan-appiot@ttn/devices/cubecell-1/up
 - Tópico de downlink del receptor: v3/lorawan-appiot@ttn/devices/cubecell-2/down/push
- 3. El script se conectará al broker MQTT de TTN (usando el dominio eu1.cloud.thethings.network en el puerto 1883 para conexión no cifrada, o 8883 si se desea TLS).

ÁLVARO GONZÁLEZ LAGO

- 4. Al recibir un mensaje en el tópico de uplink del emisor, el script extraerá el payload (en Base64) y lo utilizará para construir un mensaje JSON de downlink, que se publicará en el tópico del receptor.
- 5. El script convierte el payload de Base64 a ASCII (para que veas en la consola del script el mensaje legible) y lo vuelve a enviar tal como está al receptor.

Nota: No es necesario configurar MQTT en el Gateway. El Gateway únicamente reenvía los paquetes hacia TTN, que cuenta con su propio broker MQTT integrado.

5. Funcionamiento del Sistema

CubeCell-1 (Emisor):

 Se une a TTN mediante OTAA y envía uplinks periódicos (por ejemplo, cada 15 segundos) con el mensaje "Hello".

• TTN:

- Recibe el uplink y, a través del script Python o mediante la consola TTN, se programa un downlink dirigido al CubeCell-2.
- El Custom JavaScript Formatter en el receptor decodifica el payload binario a texto ASCII para su visualización.

• CubeCell-2 (Receptor):

- Se une a TTN y, para abrir su ventana de recepción, envía uplinks periódicos (por ejemplo, cada 30 segundos).
- Cuando TTN envía el downlink, el receptor lo recibe y, mediante su función de manejo de downlink, imprime el mensaje en el Monitor Serie en formato legible (mostrando "Hello").

6. Proceso de Prueba y Verificación

1. Programación de los Dispositivos:

- Carga el código del Emisor en CubeCell-1.
- o Carga el código del Receptor en CubeCell-2.
- o (El código de emisor y receptor están en el repositorio.)

2. Configuración en TTN:

- Asegúrate de que ambos dispositivos se han unido exitosamente a TTN y aparecen en Live Data.
- Revisa los campos en TTN para confirmar que las claves y la configuración regional son correctas.

3. Ejecución del Script MQTT (Python):

- Ejecuta el script Python, que se conectará al broker MQTT de TTN, se suscribirá al tópico de uplink del emisor y enviará automáticamente un downlink al receptor cada vez que reciba un mensaje.
- Observa en la consola del script que se imprime el mensaje en ASCII ("Hello") antes de enviarlo.

4. Verificación en el Receptor:

- o Abre el Monitor Serie del CubeCell-2.
- Verifica que aparezca el mensaje de downlink recibido, tanto en formato hexadecimal como en texto ASCII, gracias al *Custom JavaScript Formatter* en TTN y al código de procesamiento en el receptor.

7. Conclusiones

Con este sistema, se demuestra la comunicación indirecta entre dos CubeCell usando TTN y MQTT, donde:

- El Emisor envía mensajes uplink.
- Un script Python automatiza el reenvío de esos mensajes como downlinks al Receptor.
- El Receptor, mediante su ventana de recepción, capta el mensaje y lo procesa, mostrando el contenido de forma legible (por ejemplo, "Hello").

Esta documentación, junto con los códigos de Emisor y Receptor (que se encuentran en archivos separados dentro del repositorio), permite replicar y probar el sistema de comunicación LoRaWAN completo.