Nature Inspired Search and Optimisation Advanced Aspects of Nature Inspired Search and Optimisation

Lecture 10: Swarm Intelligence and Particle Swarm Optimisation

Shan He

School for Computational Science University of Birmingham

February 13, 2020

Outline of Topics

Swarm and swarm intelligence

BOID model

Particle Swarm Optimiser

What is swarm in nature?

Picture from NY Times

What is swarm in nature?

- Starlings swarm in Rome
- Sardine run

What is Swarm Intelligence?

- General definition: Collective behaviour of decentralized. self-organized natural or artificial systems
- Self-organized system: an initially disordered system, but global phenomena such as order or coordination will arise out of the local interactions between its components
- A swarm intelligence system typically consists of simple agents interacting with each other and their environment following simple rules
- Emergence: global phenomena such as functions, order or coordination emerges from these local interactions

Why animals evolved swarm?

- There is no clear, unique explanation to the evolution of swarm behaviour.
- Some possible explanations:
 - Better defence, e.g., early warning, confuse predator
 - Better foraging efficiency
 - Saving energy, e.g., wile geese fly in formation (wedge or skein)
- Outcomes of natural selection
- Can we learn from animal swarm for designing computer systems and algorithms?

What is Swarm Intelligence in CS?

- In CS, we define Swarm Intelligence as "a multi-agent system that has self-organized behaviour that shows some intelligent behaviour."
- Two main research fields:
 - Swarm Intelligence algorithms: a variety of novel algorithms inspired by natural swarm system:
 - Ant colony optimisation: an algorithm inspired by ants' collective behaviour, useful to solve combinatorial optimisation problems, such as finding better paths through graphs.
 - Particle Swarm Optimisation
 - Swarm Robotics: design coordination of multirobot systems which consist of large numbers of mostly simple physical robots.
 - Goes beyond distributed system, aims to promote scalability, e.g., controlling a large number of robots
 - Swarmanoid: Towards Humanoid Robotic Swarms
 - A Swarm of One Thousand Robots

BOID

- Invented In 1986 by Craig Reynolds to simulate coordinated animal motion such as bird flocks and fish schools. Click here for his website
- Winner of technical Oscar: 1997 Sci-Tech Awards from Academy of Motion Pictures and Science
- Each individual of the model is called boid which is manoeuvred by three simple predefined behaviours: Let's take a look at the film
- BOID models have been used in many films
- One famous example Batman Returns (1992): BOID was used to create bat swarms and "army" of penguins marching through the streets of Gotham City

Batman Returns (1992)

BOID

Each individual of the model is called boid which is manoeuvred by three simple predefined behaviours:

- Separation
- Alignment
- Cohesion

Separation

• Separation: Steer to avoid crowding local neighbour

Alignment

 Alignment: steer towards the average heading of local neighbour

Cohesion

 Cohesion: steer to move toward the average position of local neighbour

A much better BOID model

- Robert's amazing BOID model
- Made with Cinder
- If you want to learn Cinder to create your own model: Tutorial from Robert Hodgin

Particle Swarm Optimiser (PSO)

- Invented by Kennedy and Eberhart 1995
- Inspired by bird flocking and fish schooling, more precisely, BIOD
- Simple rules for searching global optima
- Primarily for real-valued optimisation problems
- Simpler but sometimes better than GAs

PSO: detailed algorithm

- Can be seen as a swarm of particles flying in the search space to find the optimal solution.
- Each particle is a solution to the problem, represented by position X_i^t in the search space
- \bullet Each particle also has a velocity V_i^{t+1} , used to update its position
- The variation operator consists of only two equations:

$$V_i^{t+1} = \omega V_i^t + c_1 r_1 (P_i - X_i^t) + c_2 r_2 (P_g - X_i^t)$$
 (1)

$$X_i^{t+1} = X_i^t + V_i^{t+1} (2)$$

 P_i is the best previous position of the i_{th} particle; P_g is the global best position of the swarm; $\omega \in (0,1]$ is inertia weight; c_1 and c_2 are constants, or so-called learning factors; r_1 and r_2 are random number in the range of (0,1)

Generic PSO Algorithm

```
\mathbf{X}^0 := generate an initial population of M particles (solutions)
P^{0} := X^{0}
terminationflag := false
t := 0
Evaluate the fitness of each particle in \mathbf{X}^0.
while (terminationflag != true)
         Select the best particle P_a from \mathbf{X}^t based on their fitness.
         For i = 1:M
                 If X_i^t is better than P_i then P_i := X_i^t; // Update P_i
                 Calculate V_i^{t+1} according equation (1)
                 Update X_i^{t+1} according equation (2)
         End For
         Evaluate the fitness of each particle in \mathbf{X}^{t+1}.
         t := t + 1
         If a termination criterion is met: terminationflag := true
Output P_a
```

PSO: algorithm illustration

- For the i_{th} particle X_i , its new search direction V_i^{k+1} is determined by:
 - Its current direction V_i^k
 - Its autobiographical memory, which remembers the best position P_i it has visited
 - The publicised knowledge, which is the best solution P_g currently found by the population

Conclusion

- One key problem faced by EC researcher is how to choose appropriate operators and parameters
- PSO: Plug-and-play optimisation algorithm
- Only 3 parameters, all not very sensitive
- My first paper: A particle swarm optimizer with passive congregation
- You can download my source code from Canvas