

Softwareprojektmanagement

Einführung in das Projektmanagement bei Softwareprojekten

Prof. Dr.-Ing. Peter Hecker, Dipl.-Ing. Paul Frost, 11. April 2017

Agenda

- 04. April Kick-Off
- 11. April Projektmanagement
- 18. April Vorgehensmodelle
- 25. April Versionsverwaltung und Entwicklungsumgebungen
- 02. Mai Einführung Arduino/Funduino
- 09. Mai Entwicklungsumgebungen und Debugging
- 16. Mai Dokumentation und Testing
- 23. Mai Dateieingabe und -ausgabe
- 30. Mai GUI-Erstellung mit Qt
- 06. Juni Exkursionswoche
- 13. Juni Bibliotheken
- 20. Juni Netzwerke
- 27. Juni Projektarbeit
- 04. Juli Projektarbeit
- 11. Juli Vorbereitung der Abgabe

Teil I

Wiederholung

Klausur

Bedingungen für die Teilnahme an der Klausur

Ich war bereits für die Informatikprüfung angemeldet.

Bedingungen für die Bearbeitung der Projektmappe

- Ich war noch nicht für eine Prüfung angemeldet.
 ODFR
- Ich habe mich rechtzeitig von der Prüfung abgemeldet.
 ODER
- Ich brauche nur einen Schein.

Prüfungsmodalitäten

alter Modus

Prüfungsart

Informatik/C++: Klausur 180 Min Gewichtung: 2/3 API: Klausur 60 Min Gewichtung: 1/3

Voraussetzungen für die Vergabe von Leistungspunkten

50% innerhalb des Gesamtmoduls

Inhalte

Inhalte aus dem Sommersemester 2016 (siehe StudIP)

MATLAB/SIMULINK

Es wird keine Übung für Matlab/Simulink geben!

Übungsmöglichkeiten

- Rechner mit Matlab/Simulink-Installationen werden vom GITZ bereitgestellt.
- Online-Tutorial:
 - https://matlabacademy.mathworks.com/R2016b/portal.html?course=gettingstarted
- Folien sind im StudIP verfügbar

Prüfungsmodalitäten

neuer Modus

Prüfungsart

Informatik/C++: Klausur 180 Min Gewichtung: 2/3 API: Projektmappe Gewichtung: 1/3

Voraussetzungen für die Vergabe von Leistungspunkten

50% in Informatik/C++ und

50% in API

Ausarbeitung von Projektideen

Vorstellung von Projektideen zur Inspiration

Wie weit sollte ich heute sein?

- Ich sollte einer Gruppe angehören
- Die Gruppe sollte mindestens eine Projektidee ausgearbeitet haben
- Die Gruppe sollte Risiken formuliert haben
- Die Gruppe sollte erste Anforderungen formuliert haben

RFID-Verwaltung der Arduino-Kits

Die Idee

Verwaltung der Arduino-Kits über eine PC-Datenbank mithilfe von RFID

Funktionale Anforderungen

- Auslesen der Kit-Nr. mittels eines RFID-Lesers
- Zuweisung von Informationen (Bauteile, ausleihende Gruppe) zur Kit-Nr.
- Speicherung der Informationen auf dem PC
- Bearbeitung der gespeicherten Daten, beispielsweise bei Defekt von Bauteilen

RFID-Verwaltung der Arduino-Kits

Enthaltene Module

- RFID-Aufkleber und -Lesegerät
- Datenbank (PC)

Risiken

Verlorene Arbeitszeit bei Misslingen des Projektes

Nutzen

- Einfache Übersicht über Zustand der Kits
- Zeitersparnis bei der Verwaltung

Teil II

Softwareprojektmanagement

Abbildung 1: Wie der Kunde es erklärt hat1

¹ URL: http://projectcartoon.com.

Abbildung 1: Wie der Projektleiter es verstanden hat

Abbildung 1: Wie der Analyst es auffast

Abbildung 1: Wie der Programmierer es geschrieben hat

Abbildung 1: Was die Beta-Tester erhalten

Abbildung 1: Wie der Wirtschaftsberater es verkauft

Abbildung 1: Wie das Projekt dokumentiert wurde

Abbildung 1: Was der Kunde wirklich gebraucht hätte

Problemstellung

- Anforderungen der Kunden werden nicht erfüllt
- Kosten f
 ür Software sind zu hoch
- Methoden der Softwareentwicklung ändern sich schnell
- Spezialisierung von Entwicklern kurzlebig (Innovationsdruck)
- Weiterverwendung alter Technologien
- Fokus auf Technologien zur Realisierung, nicht bei der eigtl. Anwendung

Problemstellung

- Anforderungen der Kunden werden nicht erfüllt
- Kosten f
 ür Software sind zu hoch
- Methoden der Softwareentwicklung ändern sich schnell
- Spezialisierung von Entwicklern kurzlebig (Innovationsdruck)
- Weiterverwendung alter Technologien
- Fokus auf Technologien zur Realisierung, nicht bei der eigtl. Anwendung

Problemstellung Anforderungen¹

- Kundenspezifische Problematik
 - Es ist nicht genau bekannt was entwickelt wird.
 - Anforderungen werden ungenau/falsch formuliert
 - Fachsprache kann für Verständnisprobleme sorgen
 - Unterschiedliche Anforderungen der Projektbeteiligten (Stakeholder)
- Randbedingungen
 - Politische Einschränkungen
 - Änderungen der Anforderungen möglich

¹Thomas Thüm. "Vorlesung Software Engineering, Anforderungsanalyse". S. 5.

Problemstellung Anforderungen¹

- Kundenspezifische Problematik
 - Es ist nicht genau bekannt was entwickelt wird.
 - Anforderungen werden ungenau/falsch formuliert
 - Fachsprache kann für Verständnisprobleme sorgen
 - Unterschiedliche Anforderungen der Projektbeteiligten (Stakeholder)
- Randbedingungen
 - Politische Einschränkungen
 - Änderungen der Anforderungen möglich

Notwendigkeit, Anforderungen so genau wie möglich auszuformulieren Auch zur rechtlichen Absicherung!

¹Thüm, "Vorlesung Software Engineering, Anforderungsanalyse", S. 5.

Möglichkeiten, Kundenanforderungen zu ermitteln

- Interviews
- Dokumentenanalyse
- Focus Group
- Prototyping
- Beobachtungen
- Fragebögen

²Thüm, "Vorlesung Software Engineering, Anforderungsanalyse", S. 19.

Sinnvolle Anforderungen

Die Qualität von Anforderungen wird über die folgenden Charakteristiken definiert³

- korrekt
- unzweideutig
- vollständig
- widerspruchsfrei
- priorisiert
- verifizierbar

³IEEE. IEEE Guide to Software Requirements Specification ANSI/IEEE Std 29148-2011. 2011.

Anforderungen verfassen⁴

Stilistisch sollten Anforderungen wie folgt formuliert werden:

- Kurze Sätze
- Eine Aussage pro Satz
- Keine Verschachtelungen
- Konsistente Terminologie
- Wenig Abkürzungen und nur bekannte Abk. verwenden
- Vermeidung von Generalität
- Verbindlichkeiten deutlich ausdrücken
- Aktiv formulieren

⁴Thüm, "Vorlesung Software Engineering, Anforderungsanalyse", S. 22.

Use-Case Diagramm

Akteur

Anwendungsfall

Assoziation

Ableitung

Einschließen

Erweiterung

11. April 2017 Prof. Dr.-Ing. Peter Hecker, Dipl.-Ing. Paul Frost Softwareprojektmanagement Seite 18

Beispiel

Use-Case Diagramm

- Ein Akteur kann Aktion A ausführen
- Wenn Aktion A ausgeführt wird ist Aktion B darin bereits enthalten
- Wenn Aktion A ausgeführt wird kann Aktion C im Anschluss ausgeführt werden

Abbildung 2: Beispiel eines Use-Case Diagramms

Lastenheft

- Definition
 - Vom Auftraggeber formuliert
 - Legt die Anforderungen fest
 - Englische Bezeichnung: Statement of Work
- Abgrenzung
 - Legt fest was, aber nicht wie es gemacht wird
 - Ist so präzise wie möglich, ohne einen Lösungsweg vorzugeben

- Festlegen des Funktionsumfangs
 - Der Benutzer soll die Möglichkeit haben, Messaufzeichnungen zu editieren
 - Die gemessene Entfernung soll auf einer grafischen Benutzeroberfläche angezeigt werden
- Festlegen der Zielplattform
 - Die grafischen Benutzeroberfläche soll auf mobilen Endgeräten bedienbar sein
 - Vorgabe von Betriebssystemen (iOS 8, Android 5.1, Windows 10)

Ungültige Anforderungen

- Nutzung einer bestimmten Webtechnologie (HTML 5, Java)
- Codierungsvorschriften für Daten

Pflichtenheft

Definition

- Vom Auftragnehmer formuliert
- Legt die Vorgaben für die Umsetzung fest
- Englische Bezeichnung: Proposal

Abgrenzung

- Wie möchte der Auftragnehmer die im Lastenheft definierten Anforderungen erfüllen
- Bereitet die mögliche Umsetzung im ersten Schritt vor
- Ermöglicht eine Abschätzung des Gesamtaufwands
- Erleichtert die Planung eines Angebots für den Auftrag

Institut für

- Definition der genutzten Technologien
 - Implementierung als Webapplikation unter Einsatz von verbreiteten Technologien (Javascript, HTML, CSS)
 - Festlegung einer Datenbankstruktur (MySQL, SQLite)
 - Nutzung von Onlinekartendiensten zur Datenvisualisierung
- Beschreibung der Umsetzung von Funktionen
 - Anzeige mittels PDF-Plugin im Browser
 - Nutzung von Simulationsmodellen für die Berechnung von Daten
 - Bereitstellen von Daten via Cloud-Dienst
- Festlegen von Implementierungsstandards
 - Datenübertragung in verschlüsselter Form
 - Codierung der Daten in XML
 - Implementierungsform und Dokumentationsstandards

Institut für

Flugführung

Auftragsvergabe

Abbildung 4: Projektziele

- Vier entgegengesetzte Ziele in der Produktentwicklung
- Kompromisse zwischen den Zielen
- Bei Änderungen sind manche Ziele schwerer zu erreichen
- Aufgabe eines Projektmanagers
 - Erreichen der definierten Ziele
 - Einhaltung eines passenden Gleichgewichts
- Maßnahmen eines Projektmanagers
 - Planung vor dem Projektstart
 - Kontrolle des Projektverlaufs

Risiko und Risikomanagement

Risiko

- Jedes Projekt birgt Risiken
- Ergebnis der Unsicherheiten eines Projekts
- Jede Unternehmung wird durch unerkannte Risiken gefährdet
- Ein Risiko ist ein Problem in der Zukunft

Risikomanagement

- Umgang mit den Risiken eines Projekts
- Generelle Unternehmensziele sind Aufgabe der Führungsebene
- Risikomanagement ist der Teil der sich mit den Abweichungen vom Ziel beschäftigt

Institut für

Klassisch organisierte Projekte schaffen nicht die Budgetvorgaben

- Entwicklung wird teurer als geplant
- Geplante Entwicklungszeiten werden überschritten
- Die Qualität des Ergebnisses ist geringer als geplant
- Abbruch des Projekts als letzte Konsequenz
- Beispiele aus dem öffentlichen Entwicklungssektor
 - Toll-Collect (Mautsystem), +6,9 Mrd. Euro⁵
 - FISCUS (geplante Software für Finanzämter), +4,6 Mrd. Euro¹
 - DoSV, Abwicklungssystem für Numerus-Clausus-Bewerbungen

Woher kommen diese Probleme in der Realisierung?

5http:

//www.spiegel.de/wirtschaft/soziales/grossprojekte-in-deutschland-die-top-und-flop-ten-a-1033977.html

Spezifische Probleme der Softwareentwicklung

- Software ist schwer messbar/beurteilbar
 - (Zwischen-) Ergebnisse sind für IT-Laien oft schwer beurteilbar
 - Es besteht ein hoher Verifizierungs-Aufwand
- Zusammenhang zwischen Anforderung und Kosten ist nicht intuitiv
 - Kleine Anforderungsänderungen können große Auswirkungen haben
 - Oftmals viele Änderungen der Anforderungen während des **Projektverlaufs**
- Es besteht starke Personalabhängigkeit
 - Programmierer sind nicht einfach austauschbar
 - Es bestehen erhebliche Produktivitätsunterschiede zwischen Programmierern

Ansätze zur Problemvermeidung

- Man muss das Rad nicht jedes mal neu erfinden
 - Viele Probleme wurden bereits gelöst und Lösungen sind frei verfügbar
 - Kein Zeitverlust bei der Implementierung standardisierter Lösungen
- Anforderungsbasierte Entwicklungsmodelle
 - Nur festgeschriebene (wenn auch flexible) Anforderungen umsetzen
- Weniger generische Ansätze, gezielteres Vorgehen erspart Zeit
- Dokumentation des gesamten Entwicklungsprozesses
 - Vorteil bei Personalwechsel und Weiterentwicklung
 - Vorgeschrieben bei der Entwicklung sicherheitskritischer Software
- Einbindung aller Beteiligten (Kunden, Management, Entwickler, etc.)
- Regelmäßige Updates der Anforderungen

Ständige Steuerung durch Projektmanager nötig

⇒ Risikomanagement

Risikomanagement

- Überwachungsprozess Vom Entwicklungsprozess separiert aber integriert
- frühzeitige Erkennung und Bewertung möglicher Probleme
- Rechtzeitige Auswahl und Anwendung von Maßnahmen
- Projektbeginn: Mangel an Informationen zur Risikobewertung
- Im Projektverlauf: bessere Informationsbasis

Das Eisenhower-Prinzip

Prioritäten:

- A Aufgabe ist wichtig und dringend
- Aufgabe ist wichtig, aber nicht dringend
- C Aufgabe ist dringend, aber nicht wichtig
- D Aufgabe ist weder wichtig noch dringend

Wichtigkeit

Dringlichkeit

- Anforderungen generieren
- Anforderungen feiner abstufen
- TODO-Liste erstellen
- Abhängigkeiten erstellen

- Ein Vorgang oder eine Gruppierung pro Zeile
- Ein Vorgang enthält
 - Fortlaufende Nr.
 - Bezeichnung
 - Dauer
 - Vorangegangene Vorgänge als Abhängigkeiten

Abbildung 5: Gantt-Diagramm⁶

6_{URL}

http://de.wikipedia.org/w/index.php?title=Datei:Gantt_diagramm.svg&filetimestamp=20111004155955&.

Meilensteine und der kritische Pfad

Meilensteine sind Termine

- bei denen Liefergegenstände vorliegen können
- bei denen Prüfungen anliegen können
- bei denen weitere Entscheidungen getroffen werden

Sie werden in der Regel als Rauten abgebildet

Kritischer Pfad

- Weg durch ein Netzwerk aller Arbeitsgänge
- Verlängerung eines Vorgangs verlängert die Projektlaufzeit

Praxisdemonstration: MS Project und Visio

Software zur Projektplanung

- Microsoft Project
 - Für Studenten im Rahmen von DreamSpark verfügbar: https://www.tu-braunschweig.de/it/service-interaktiv/software/doku/msdn-aa/elms/login
- OpenProj (http://sourceforge.net/projects/openproj/)
 - Import von Microsoft Project Dateien
 - OpenSource, Programmiersprache Java, Crossplatflorm
- TaskJuggler: (http://taskjuggler.org/)
 - Basiert auf einer Projektbeschreibungssprache
 - OpenSource, Programmiersprache Ruby, Linux
- GanttProject(http://www.ganttproject.biz/)
- Open Workbench (http://sourceforge.net/projects/openworkbench/)
- Planner (http://live.gnome.org/Planner)

Die Erstellung von UML-Diagrammen kann über die folgenden Produkte erfolgen:

- Microsoft Visio
 - Für Studenten im Rahmen von DreamSpark verfügbar: https://www.tu-braunschweig.de/it/service-interaktiv/software/doku/msdn-aa/elms/login
- ArgoUML(http://argouml.tigris.org/)
- StarUML(http://staruml.io)

Teil III

Projektarbeit

Bewertung der Projektmappe

Bewertung von vier Teilbereichen

- 1. Projektmanagement
- 2. Softwareentwicklung
- 3. Qualitätssicherung
- 4. Projektdarstellung

TB1: Projektmanagement

- Konzeption
 - min 2 Anforderungen wurden nach den vorgestellten Kriterien formuliert
 - Anforderungen werden im Quellcode umgesetzt
 - Ein Use-Case-Diagramm erstellt
 - Lastenheft erstellt
- Entwicklung nach einem Vorgehensmodell
- Zeitplanung
 - Zeitplan erstellt
 - Projektfortschritt fortlaufend dokumentiert Wöchentlicher Turnus
- Meilensteine
 - Min 2 Meilensteine gesetzt
 - Meilensteine dokumentiert

Punkte, die von allen Gruppenmitgliedern zu bearbeiten sind, werden in rot dargestellt.

TB2: Softwareentwicklung

- Feinentwurf
 - Pflichtenheft erstellt
 - Mindestens ein Diagramm erstellt (Sequenz-, Zustands- oder Aktivitätsdiagramm)
- Versionsverwaltung
 - min 10 Commits
 - Kleinteilige Commits
 Kleine Änderungen, bzw. nicht den gesamten Quellcode auf einmal in die Versionsverwaltung einpflegen
- Dokumentation des Quellcodes
 - Funktionen, Klassen und Variablen wurden sinnvoll benannt
 - Dokumentation zu Funktionen, Klassen und Variablen angefertigt

Punkte, die von allen Gruppenmitgliedern zu bearbeiten sind, werden in rot dargestellt.

TB3: Qualitätssicherung

- Testing
 - Zu jeder eigenen Anforderung sollte eine Testfunktion implementiert werden
 - Dokumentation der Tests
- Code-Reviews
 - Protokollierung eines internen Code-Reviews
 - Protokollierung eines externen Code-Reviews
 - Min. 2 Bug/Featurereports generiert
 - Min. 2 Bug/Featurereports bearbeitet und dokumentiert
- Programm/Skript ist im master-Branch ausführbar

Punkte, die von allen Gruppenmitgliedern zu bearbeiten sind, werden in rot dargestellt.

TB4: Projektdarstellung

- Projektverlauf dokumentiert und/oder
- Darstellung des Endprodukts über ein Video, Präsentation, Screenshots...

Anmeldung der Gruppe

Wichtig:

Jede Anmeldung über GITHUB CLASSROOM kann nur einmal erfolgen.

Aufgabe 1

- Alle Gruppenmitglieder melden sich bei https://github.com an.
- Einer der Gruppe legt ein Team bei

 ${\tt classroom.github.com/group-assignment-invitations/7f87857a5f8c192cabf8aec2b7209dc8} \ \boldsymbol{an.}$

- Eine Autorisierung von GITHUB CLASSROOM ist erforderlich.
- Die restlichen Gruppenmitglieder schließen sich dem erstellten Team über die gleiche URL an.

Lastenheft erstellen

Aufgabe 2

- Die bereits erstellten Anforderungen sollen überarbeitet werden, dass…
 - ... sie den Kriterien aus Folie 16 und 17 entsprechen.
 - ... sie fortlaufend nummeriert sind.
- Ein Use-Case-Diagramm erstellen
- Die überarbeiteten Anforderungen sollen im Lastenheft dokumentiert werden. Das Lastenheft wird in dem Wiki der Projektsarbeitsgruppe auf der Seite "Lastenheft" erstellt.

Zeitplan und Meilensteine ausarbeiten

Aufgabe 3

- Die Punkte aus dem Lastenheft sollen in den Zeitplan übernommen werden.
- Erstellung von zwei Meilensteinen pro Gruppenmitglied
- Der Zeitplan soll erstmal auf dem eigenen Rechner gespeichert werden.

Praxisdemonstration

Praxisdemonstration: Projektarbeit in GітНив

Fragen?

Gibt es Fragen?

Vielen Dank für eure Aufmerksamkeit

