Simon Fraser University

Mechatronic Systems Engineering

Midterm Exam for ENSC 331/895: Introduction to MEMS

Instructor: Behraad Bahreyni

27 June 2011

Time: 100 minutes

Name:	Solutions	
Student n	ıımher:	

To verify identity, each candidate should be prepared to produce, upon request, his/her Simon Fraser University Library/IO card.

All writing must be submitted with this examination booklet (notes, drafts, calculations, etc.). This booklet must not be torn or mutilated in any way, and must not be taken from the examination room.

Caution: In accordance with the University's Academic Honesty Policy (T10.02), academic dishonesty in any form will not be tolerated. Prohibited acts include, but are not limited to, the following:

- making use of any books, papers, electronic devised or memoranda, other than those authorized by the examiners;
- speaking or communicating with other students who are writing examinations;
- copying from the work of other candidates;
- purposely exposing written papers to the view of other candidates.

Question	Mark
1	/ 13
2	/ 14
3	/ 12
4	/ 11
5	/ 10
6	/ 15
Total:	/ 75

Simon	Fraser	Univ	ersity
LJEERWEE .	T T COLUMN	T ARE T	CIDICA

Name:

ENSC331/895: Introduction to MEMS

Student number: ____

Midterm exam

27 June 2011

Time: 100 minutes

Page:

2/10

Deal-Groove model for oxidation rate of silicon:

$$t_{ox}^2 + At_{ox} = B(t + \tau)$$

Deal-Groove rate constants for oxidation of (100) silicon wafers

	A (μm)	B (µ)	$m^2/hr)$	τ (hr)
Temperature (°C)	Dry	Wet	Dry	Wet	Dry	Wet
900	0.423	1.136	0.004	0.172	2.79	0.169
1000	0.232	0.424	0.010	0.316	0.616	0.036
1100	0.139	0.182	0.024	0.530	0.174	0.010

Deal-Groove rate constants for oxidation of (111) silicon wafers

52	A (μm)	В (µ)	n^2/hr)	τ (hr)
Temperature (°C)	Dry	Wet	Dry	Wet	Dry	Wet
900	0.252	0.676	0.004	0.172	1.72	0.102
1000	0.138	0.252	0.010	0.316	0.391	0.022
1100	0.083	0.109	0.024	0.530	0.114	0.006

Doping profiles and surface density of dopants (x is the depth into the wafer):

Diffusion with constant concentration of dopants at the surface	$C(x,t) = C_s \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$	$Q = \frac{2\sqrt{Dt}}{\sqrt{\pi}}C_s$
Diffusion with <i>constant number</i> of dopants at the surface	$C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$	Q
Doping with implantation	$C(x) = C_p \exp\left(-\frac{(x - R_p)^2}{2\Delta R_p^2}\right)$	$Q = \sqrt{2\pi} C_P \Delta R_P$

Mean free path of gas molecules	

Thickness of spun photoresist
$$T = K \frac{C \eta}{\sqrt{\omega}}$$

Resolution in proximity and contact printing
$$R = \frac{3}{2} \sqrt{\lambda \left(s + \frac{z}{2}\right)}$$

Angle between
$$\langle \mathbf{h}_1 \mathbf{k}_1 \mathbf{l}_1 \rangle$$
 and $\langle \mathbf{h}_2 \mathbf{k}_2 \mathbf{l}_2 \rangle$ directions
$$\cos \theta = \frac{h_1 h_2 + k_1 k_2 + l_1 l_2}{\sqrt{(h_1^2 + k_1^2 + l_1^2)(h_2^2 + k_2^2 + l_2^2)}}$$

Diffusion constant	8	$D = D_0 \exp\left(-\frac{E_a}{L_m}\right)$
		$D = D_0 \exp\left(-k_B T\right)$

Boltzmann constant $k_B = 1.38 \times 10^{-23} J/K$	$1eV = 1.6 \times 10^{-19} J$
1 atmosphere = 760 Torr = 101 325 Pa	$1\mu m = 1000nm = 10^{-4}cm$

Simon Fraser University		Name:			
ENSC331/895: Introduction to	MEMS	Student number	:		
Midterm exam 27 Ju	ine 2011	Time: 100	0 minutes	Page:	<u>3/10</u>
Question 1 (2+2+2+4+3 marks	s)				
1-I. What is the main reason that s	ilicon has bed	come the most wide	ly used semico	onductor?	
Existance of 3i	Q2				
·					
1-II. Using less than 20 words exp	olain why mic	rofabrication proce	sses require a c	eleanroom.	
Particles have the					
Many of the proces					
many of the proces	sses reg	uire extrem	e Cleann	1255	•
					٠
			•		
1-III. Which microfabrication pro	cessing step i	s the most sensitive	to particles in	the environ	ment?
Lithography					
1-IV. Write four possible point microfabrication process. Note that				rules for	a given
Do NOT write more than 4 points					
a) Minimum line wid	lths	Etch	hole spa	.cing	
b) Minimum gaps					
c) Overlaps between lo	lyers				
d) <u>Enclosures</u>					
1-V. Assume that we want to form why we do not attempt this by pure for thermal oxidation?					
813 N4 grows from	the top	Surface of	the Piln	<u>n,8</u> i02	
grows from the both	om. It	is hard for	Silicon (atoms	
to pass through t	he Nitri	de layer.			

ENSC331/895: Introduction to MEMS

Student number:

Midterm exam

27 June 2011

Time: 100 minutes

Page:

4/10

Question 2 (4+3+7 marks)

2-I. A student needs to grow a 150nm thick layer of silicon dioxide on a (111) silicon wafer covered with a layer of native oxide. He calculates the required time for oxidation at 1000°C and loads the wafer into a furnace for *dry* oxidation. What is the thickness of the oxide film after two hours?

$$t_{ax}(2 hr) = 83$$
_____nm

Time required to grow 150 nm:

-> t=5.114 hrs.

2-II. After two hours, the lab technician turns on the steam flow into the furnace by mistake. The student takes out the wafer at exactly the time he had originally calculated. Aside from noticing the open steam valve, how may the student *immediately* realize that something has gone wrong during the process?

Different colour for the axide layer

Simon Fraser University

Name:

ENSC331/895: Introduction to MEMS

Student number:

Midterm exam

27 June 2011

Time: 100 minutes

Page:

<u>5/10</u>

2-III. What is the final thickness of the oxide layer (±5%) at the surface of the wafer when the student measures it?

$$t_{ox}(total) = 822$$
 nm

Calculate T'

$$0.083^{2} + 0.083 \times 0.424 = 6.316 (T')$$

$$\Rightarrow t_{oxp} = \begin{cases} 0.822 \ / \\ -1.02 \end{cases}$$

Simon Fraser University

Name:

ENSC331/895: Introduction to MEMS

Student number:

Midterm exam

27 June 2011

Time: 100 minutes

Page:

6/10

Question 3 (6+6 marks)

We would like to use the boron etch stop technique to create a membrane on a (100) silicon wafer. The etch stops if the boron concentration is higher than 5×10^{18} atoms/cm³. The process flow starts with doping the front side of the wafer using ion implantation with $Rp = 1\mu m$, $\Delta Rp = 0.43 \mu m$, and $C_s = 1 \times 10^{19} atoms/cm³$. Dopant concentration profile is displayed on the cross-section in the figure to the right (not to scale). A nitride layer is deposited on both sides of the wafer to serve as a hard mask during the etch (hatched areas).

3-I. The backside of the wafer is etched in KOH through an opening in the nitride layer until the etch stops at the depth where the boron concentration becomes higher than 5×10^{18} atoms/cm³. What is thickness of the silicon membrane (h)?

Membrane thickness (h): 1.4 µm

$$\frac{19}{10} = \frac{(x-1)^2}{2 \times 0.34^2} = 5 \times 10^{18}$$

$$\frac{(x-1)^2}{2 \times 0.34^2} = -\ln 0.5 \rightarrow (x-1)^2 = 0.16$$

$$\rightarrow 96 = 1 \pm 0.4 = \begin{cases} 1.4 \ \text{O.6} \end{cases}$$

3-II. For a separate set of wafers, the nitride layer is deposited only on the backside of the wafer but the rest of the process flow remains the same. What will be the silicon membrane thickness in this case?

Membrane thickness: 0.8 µm

The top silicon will also be etched

Simon	Fraser	Univer	sity
-------	--------	--------	------

Name:

ENSC331/895: Introduction to MEMS

Student number:

Midterm exam

27 June 2011

Time: 100 minutes

Page:

<u>7/10</u>

Question 4 (5+6 marks)

We want to develop the design rules for the release stage in a surface micromachining process. A dry isotropic etchant of the sacrificial layer (light gray area in the figure) is used for the release step. The maximum undercut after the release process is 10µm.

4-I. What are the maximum lateral dimensions of a structure that has to be fully released at the end of the process if we do not want to have etch holes on it?

Maximum lateral dimensions: 20

Allowing for a 10% slower etch -> (L, w) max = 18 pm

4-II. Assume that the etch holes are created in a symmetric pattern on the structures that have to be released (see the figure). What is the recommended edge-to-edge spacing between the etch holes?

Allow for up to 10% variation in etch rates.

Etch hole spacing (edge-to-edge): 42.73 µm

Largest distance is diagonal

ENSC331/895: Introduction to MEMS

Student number: ____

Time: 100 minutes

Page:

8/10

Midterm exam

27 June 2011

Question 5 (4+6 marks)

We would like to etch $40\mu m$ deep groves on a (100) wafer (cross section shown to the right). The groves are etched in a KOH solution through a masking layer of thermally grown SiO_2 . The relative etch rate of (100) to (111) planes is 100:1. The relative etch rate of (100) planes to SiO_2 is 120:1.

Use the equation on the 2nd page for angles between the planes.

5-I. What is the minimum required thickness of the SiO_2 layer (T_{ox} on the figure) so that it survives the process? Allow for a 10% variation in relative etch rates.

$$SiO_2$$
 thickness (T_{ox}) : 0.294 μm

5-II. What is the required width of the mask opening (W on the figure) on the oxide layer?

Width of the opening (W): 56.6 µm

Etch depth =
$$ton \theta$$

 $W/2$ = $w = \frac{2 \times 40}{ton 54.7} = 56.6 \mu m$
 $\theta = \cos^{-1} \frac{1}{\sqrt{3}} = 54.7^{\circ}$

ignore the undercut If not a bit narrower

		•		
Simon Fraser Univer	sity	Name:		
ENSC331/895: Introd	uction to MEMS	Student number	r:	
Midterm exam	27 June 2011	Time: 10	00 minutes	Page: 9/10
Question 6 (15 marks)			
Cross section of a micro silicon wafer is used as flow using ONLY the fo given process more than	the substrate. Design llowing processes. Yo	the process		
 Lithography Thermal oxidation Thermal evaporation Sputtering Piranha cleaning Nitride CVD 	 Doping KOH etc XeF₂ etc HF etch Nitride l Silicon l 	ching ing RIE	SIO ₂	SI ₃ N ₄
Write down the processi NOT provide details on				
Number of masks:		•		^
Step 1: Piranha cleanir	ng			
Step 2: Therma	1 Oxidation		_	
Step 3: Lithagra	aphy			
Step 3: <u>Lithagra</u> Step 4: <u>HF etc.</u>	hing	·	_	
Step 5: Silican				
Step 6: Nitride	CVD			
Step 7: <u>Nitride</u>	RIE		_	
Step 7: $\underbrace{\text{Nitride}}_{\text{Step 8: }} XeF_2$	etching			
Step 9:				
Step 10:				
Step 11:				
Step 12:				
Step 13:				
Step 14:				

Step 15: ____

Simon Fraser University		Name:	
ENSC331/895: Introduction to MEMS		Student number:	
Midterm exam	27 June 2011	Time: 100 minutes	Page: <u>10/10</u>

You can use this space to answer the question or for your calculations