COMPUTATIONAL FINANCE: 422

Fixed-Income Securities

Panos Parpas

(Slides courtesy of Daniel Kuhn)

p.parpas@imperial.ac.uk

Imperial College

London

This Lecture

tr, 2h (452

· Tue 2h

- Basic terminology
- Examples of fixed-income securities
 - Annuities
 - Bonds
- Valuation of fixed-income securities
- Risk management of fixed-income securities 2 2 1
 - Credit and interest rate risk
 - Yield
 - Duration
 - Immunization

Further reading:

D.G. Luenberger: Investment Science, Chapters 3,5

Definitions

- Financial instrument: a legal obligation or claim having monetary value.
- Examples: stocks, bonds, mortgages, futures, insurance, etc.
- Security: a tradable financial instrument satisfying legal and regulatory requirements.
- Fixed-income security: security that promises a fixed (that is, definite) income over a span of time.
 - Examples: bonds, mortgages, annuities, etc.

⇒ A fixed-income security represents the ownership of a definite cash flow stream.

Remarks

The issuer of a fixed-income security could default (by, say, going bankrupt).

⇒ There is a (typically small) chance that the promised income is discontinued or delayed.

Some securities whose cash flows depend on contingencies or fluctuating indices are also called fixed-income:

- Adjustable-rate mortgages
- Callable bonds
- etc.

General idea: a fixed-income security's cash flow stream is fixed except in well-defined contingent circumstances.

Annuities

- Annuity: a contract that pays the holder money periodically according to a fixed schedule.
- Example: pension benefits

The present value of an annuity that pays a fixed amount A at the end of each of n equally spaced periods is

$$PV = \sum_{k=1}^{n} d_k A.$$

Geometric Series

Calculate
$$S_n = \sum_{k=0}^n x^k$$
 for $n \in \mathbb{N}$. We use the recursions:

$$(2) S_{n+1} = \underbrace{(1 + x + x^2 + \dots + x^n)}_{\text{Sn}} + \underbrace{x^{n+1}}_{\text{Sn}} = S_n + x^{n+1}$$
 (2)

$$S_{n} = \frac{1 - x^{n+1}}{1 - x}$$

$$S_{n} = \frac{1 - x^{n+1}}{1 - x}$$

$$S_{n} = \frac{1 - x^{n+1}}{1 - x}$$

For x < 1, we can calculate $S_{\infty} = \sum_{k=0}^{\infty} x^k$ to be

$$S_{\infty} = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}.$$

Annuity Valuation $S_{n-1} - \uparrow^{n+1}$

If the spot rate curve is constant, $s_k = r$ for all $k=1,2,\ldots,n$, then the value of the annuity becomes

Equivalently, we have
$$A = \frac{r(1+r)^n \mathrm{PV}}{(1+r)^n - 1} \, .$$

Tables give PV/A as a function of r and n.

Amortization

- You have borrowed \$1,000 at 12% interest compounded monthly, and you must repay this loan with equal monthly payments over 5 years.
- How much are the monthly payments?

Given: PV = \$1,000

$$\sqrt{m}$$
 $r = 12\%/12 = 1\%$ per month
 $n = 5 \times 12 = 60$

$$\Rightarrow A = \frac{r(1+r)^n PV}{(1+r)^n - 1} = \$22.24 \text{ per month}$$

Replacing a current obligation by periodic payments is called amortization.

Bonds

- Bond: an agreement to pay money according to the rules of the issue.
- Bond specifications:
 - maturity date: time of the last payment
 - face value or par value: an amount to be paid at the maturity date
 - coupon payment: an amount paid periodically expressed as a percentage of the face value (the last coupon is paid at maturity)
- F = face value, r_C = coupon rate $\Rightarrow C = r_C F$ = yearly coupon amount; f if there are f coupon payments per year, then each subannual coupon payment amounts to f

Payoff Structure of a Bond

A zero coupon bond has no coupon payments; it only pays the face value at maturity.

Example: Price of a 10-year Bond

Consider an 8% bond maturing in 10 years:

- the bond pays \$8 at the end of the years $1, 2, \dots, 9$ and \$108 at the end of year 10.
- the end-of-year discount factors for years $1, 2, \dots, 10$ can be calculated from a given spot rate curve.
- We take the products of the cash flows with the corresponding discount factors and sum.

Bond Terminology

- corporate bond: issued by a corporation
- municipal bond: issued by a municipality
 - treasury bond: issued by government, maturity more than 10 years, 2 coupon payments per year
 - treasury note: similar to treasury bond, but issued for 1-10 years
- treasury bill: similar to treasury bond, no coupon payments, matures in 3, 6, or 9 months

Quality Ratings I

- Bonds offer principally a deterministic income stream. However, they are subject to default if the issuer falls into bankruptcy.
- Rating classifications are published by Moody's and Standard & Poor's.
- Treasury securities are not rated, since they are considered to be essentially free of default risk.
- A bond with a low rating will have a lower price than a comparable bond with a higher rating.

Quality Ratings II

	Moody's	S&P	
4	Aaa	AAA	Best quality, smallest credit risk ~/ */
Învestment \(\)	Aa	AA	High grade
grade	Α	Α	High to medium grade
	Baa	BBB	Medium grade
•	Ва	BB	Judged to be speculative
Speculative (В	B	Increasingly speculative
grade	Caa	CCC	Danger of default
(junk bonds)	Ca	$\langle \hat{c} c \rangle$	High chance of default
,	С	C	Small chance of no default
	D	(\overline{D})	In default

Bond Quotes (finance.yahoo.com)

•	100								
BOND	SCREENER RESULTS		P.v	P/		A			
Туре	<u>Issue</u>	State	Price	Coupon(%)	Maturity	YTM(%)	Current Yield(%)	Fitch Ratings	Callable
Corp	EXPORT IMPORT BK KOREA	9	102.17	5.125	14-Feb-2011	-52.654	5.016	Α	No
Corp	BANK AMER CORP SUB INTINTS BE	=	102.05	6.500	15-Feb-2011	-44.685	6.369	Α	No
Corp	FEDERAL NATL MTG ASSN	-	102.22	4.500	15-Feb-2011	-38.219	4.402	AAA	No
Corp	NORTHROP GRUMMAN CORP	9	102.24	7.125	15-Feb-2011	-47.904	6.969	ВВВ	No
Corp	TYCO INTL GROUP S A	-	102.24	6.750	15-Feb-2011	-48.290	6.602	A	No
Corp	WAL MART STORES INC	-	102.15	4.125	15-Feb-2011	-49.144	4.038	AA	No
Muni	ALABAMA WTR POLLUTION CTL AUTH REF BDS	AL	104.12	4.000	15-Feb-2011	-91.731	3.842	Not Rated	No
Muni	SAN DIEGO CALIF PUB FACS FING REF LEASE REV BDS	CA	104.18	5.000	15-Feb-2011	-91.594	4.799	Α	No
Zero	U S TREAS SEC STRIPPED INT PMT 15-Feb-2011	2	100.03	0.000	15-Feb-2011	-0.677	0.000	AAA	No
Treas	T-NOTE 5.000 15-Feb-2011	=	100.26	5.000	15-Feb-2011	0.021	4.987	AAA	No
Corp	FEDERAL NATL MTG ASSN MTN		102.21	4.125	17-Feb-2011	-34.320	4.036	AAA	No
Corp	CISCO SYS INC		102.29	5.250	22-Feb-2011	-32.493	5.133	Α	No
Corp	FEDERAL HOME LOAN BANKS	-	102.00	0.250	25-Feb-2011	-24.964	0.245	AAA	No
Treas	T-NOTE 4.500 28-Feb-2011	-	100.39	4.500	28-Feb-2011	0.041	4.482	AAA	No
Corp	HERTZ CORP		102.55	7.400	1-Mar-2011	-21.916	7.216	В	No

Remark: The current yield of a bond is the ratio of the annual coupon payment and the bond's current price.

E de Pk

Yield

- 2:10 (Brlak)
- A bond's yield is the interest rate at which the PV of the stream of payments (coupon payments & face value redemption) is equal to the current price.
- More properly, it is called yield to maturity (YTM).
- Consider a bond with price P and face value F that makes m coupon payments of C/m per year, and there are n remaining periods. The bond's YTM λ is such that

Price-Yield Curve and Coupon Rate

9 Bond data: F = 1000, m = 2, n = 60 (i.e., 30 years).

⇒ Inverse dependence between price and yield!

Price-Yield Curve and Maturity

● Bond data: F = 1000, m = 2, Coupon = 10%.

⇒ The longer the time to maturity, the more sensitive is the price of the bond to the yield.

Interest Rate Risk

- The price-yield curve describes the interest rate risk associated with a bond.
 - The yield can roughly be identified with the market rate for the underlying bond.
 - Suppose you bought a 10% bond with F = 1000, m = 2, n = 60, when the yield was $10\% \Rightarrow \text{price} = 1000$.
 - If the yield rises to 11%, then the price of your bond drops to $913 \Rightarrow a 8.72\%$ loss!

- Long bonds are more sensitive to interest rate changes than short bonds.
 \(\lambda \text{wwpon} \) \(\lambda \text{ | \lambda \tex
- When there are coupons, maturity time does not exactly correspond to sensitivity.
- Another measure of time length termed duration does give a quantitative measure of interest rate sensitivity.

Macaulay Duration I

$$P_{+0} = \sum_{k \neq l} P_k d_k \uparrow f$$

Suppose that cash flows are received at times

 t_0, t_1, \ldots, t_n . The Macaulay duration of this stream is

The Macaulay duration of this stream is
$$D = \frac{\text{PV}(t_0)t_0 + \text{PV}(t_1)t_1 + \dots + \text{PV}(t_n)t_n}{\text{PV}(t_0) + \text{PV}(t_1) + \dots + \text{PV}(t_n)}, \quad \text{PV}_{t_0 t_1}$$

where $PV(t_k)$ denotes the present value of the cash flow that occurs at time t_k computed w.r.t. the yield.

$$\Rightarrow$$
 Weighted average of the cash flow times, where the weight of time t_k is given by $w_k = PV(t_k)/PV_{tot}$ with $PV_{tot} = PV(t_0) + PV(t_1) + \cdots + PV(t_n)$.

~ grammersion/from

Macaulay Duration II

$$D = \sum_{i=0}^{N} w_i + j$$

Macaulay duration is a weighted average of times

it is quoted in years.

- In practice, when people refer to duration, they often mean Macaulay duration.
- By definition of D, the following relations hold.
 - Zero-coupon bond:

Macaulay duration = maturity date

Coupon bond:

Macaulay duration < maturity date

Macaulay Duration III

- Consider a bond with the following specifications:
 - $-\epsilon$ coupon rate per year
- ⇒ This bond's Macaulay duration is given by

$$D = \frac{1 + \lambda/m}{\lambda} - \frac{1 + \lambda/m + n(c/m - \lambda/m)}{c[(1 + \lambda/m)^n - 1] + \lambda}.$$

Modified Duration I

- Let $P(\lambda)$ be the price of a bond as a function of yield, and denote by λ_0 the current yield.
- **Def.**: The modified duration D_M of this bond is

$$\boxed{ D_M = -\frac{1}{P(\lambda_0)} \frac{\mathrm{d}P(\lambda)}{\mathrm{d}\lambda} \Big|_{\lambda = \lambda_0}}.$$

Intuition:

- sensitivity = derivative;
- the minus sign ensures that $D_M \geq 0$;
- dividing by $P(\lambda_0)$ makes D_M a relative sensitivity.

Modified Duration II

Modified duration determines the percentage change in the price of a bond given a change in yield:

$$D_{M} = -\frac{1}{P(\lambda_{0})} \frac{dP(\lambda)}{d\lambda} \Big|_{\lambda = \lambda_{0}} \approx -\frac{1}{P} \frac{\Delta P}{\Delta \lambda}$$

$$\Rightarrow \Delta P \approx -D_{M} P \Delta \lambda.$$

If the yield increases by 1%, what percentage change will occur in a bond price with modified duration of 5?

Answer: The price will decrease by 5%!

Relation between D and D_M **I**

Theorem 0.1 If
$$\lambda$$
 is the yield and m the number of compounding periods per year, then
$$D_M = \frac{D}{1 + \lambda/m}.$$

When $D_M = \frac{D}{1 + \lambda/m}$

Proof For the stream
$$c_0$$
 c_1 c_2 we have

Proof. For the stream
$$c_0, c_1, \ldots, c_n$$
 we have

$$\Rightarrow \textit{In the case of continuous compounding} \ D_M = D.$$
 Proof. For the stream c_0, c_1, \ldots, c_n we have
$$PV_k = \frac{c_k}{(1+\lambda/m)^k}, \quad PV_{\text{tot}} = \sum_{k=0}^n \frac{c_k}{(1+\lambda/m)^k}, \quad D = \sum_{k=0}^n \frac{k}{m} \frac{PV_k}{PV_{\text{tot}}}.$$

$$\Rightarrow \frac{\mathsf{d}\,\mathrm{PV}_{\mathrm{tot}}}{\mathsf{d}\lambda} = \sum_{k=0}^{n} \frac{-(k/m)c_k}{(1+\lambda/m)^{k+1}} = -\frac{1}{1+\lambda/m} \sum_{k=0}^{n} \frac{(k/m)c_k}{(1+\lambda/m)^k}$$
$$= -\frac{1}{1+\lambda/m} \sum_{k=0}^{n} \frac{k}{m} \mathrm{PV}_k = -\frac{\mathrm{PV}_{\mathrm{tot}}D}{1+\lambda/m}$$

Relation between D and D_M II

Thus, we find

$$D_M = -\frac{1}{\mathrm{PV_{tot}}} \frac{\mathsf{d}\,\mathrm{PV_{tot}}}{\mathsf{d}\lambda} = \frac{D}{1 + \lambda/m} \,.$$

This observation completes the proof.

Example: A 10%, 30 year bond with semiannual coupons is selling at par and has Macaulay duration D = 9.94.

By how many percent will the bond's price change if yield increases by 1%?

$$(\Delta P \approx -D_M \Delta \lambda) = -\frac{D}{1 + \lambda/m} \Delta \lambda = -\frac{9.94}{1 + 10\%/2} 1\% = -9.47\%$$

⇒ A 1% increase in yield causes a 9.47% drop in price!

Duration of a Portfolio I

- Consider a set of m fixed-income securities with prices P_i and durations D_i for $i=1,2,\ldots,m$, all computed at a common yield.
- The portfolio consisting of the aggregate of these securities has price P and duration D given by

The formula for D is true for the Macaulay duration as well as for the modified duration!

Duration of a Portfolio II

Consider two cash flow streams A and B with

$$D^{A} = \sum_{k=0}^{n} \frac{t_{k} P V_{k}^{A}}{P^{A}} \quad \text{and} \quad D^{B} = \sum_{k=0}^{n} \frac{t_{k} P V_{k}^{B}}{P^{B}}.$$

$$D^{A+B} = \sum_{k=0}^{n} \frac{t_{k} (P V_{k}^{A} + P V_{k}^{B})}{P^{A} + P^{B}} = \sum_{k=0}^{n} \frac{t_{k} P V_{k}^{A}}{P^{A} + P^{B}} + \sum_{k=0}^{n} \frac{t_{k} P V_{k}^{B}}{P^{A} + P^{B}}$$

$$D^{A+B} = \sum_{k=0}^{n} \frac{t_k (PV_k^A + PV_k^B)}{P^A + P^B} = \sum_{k=0}^{n} \frac{t_k PV_k^A}{P^A + P^B} + \sum_{k=0}^{n} \frac{t_k PV_k^B}{P^A + P^B}$$

$$= \frac{P^A}{P^A + P^B} \sum_{k=0}^{n} \frac{t_k PV_k^A}{P^A} + \frac{P^B}{P^A + P^B} \sum_{k=0}^{n} \frac{t_k PV_k^B}{P^B}$$

$$= \frac{P^A}{P^A + P^B} D^A + \frac{P^B}{P^A + P^B} D^B.$$

COMPLITATIONAL FINANCE 400

Immunization I

- Problem of major practical value:
 - Construct a portfolio which is protected (immunized) against changes in interest rates.

Example:

- You have an obligation to pay £1,000 in 2 years, but you can only buy bonds of maturities 1 or 5 years.
 - Buying 1 year bonds: you face reinvestment risk as you do not know the bond prices in 1 year.
 - Buying 5 year bonds: you may fail to meet your obligation when interest rates change, i.e., you may not be able to sell the bond after 1 year at the desired price.

Immunization II

- Assume that you face a series of cash obligations and you wish to acquire a portfolio that you will use to pay these obligations.
- The stream of obligations has present value P and duration D.
- You can invest in two bonds with present values P_1 and P_2 and durations D_1 and D_2 , respectively.
- ⇒ Construct a portfolio whose present value and duration equal those of your obligations.

$$\left. \begin{array}{l}
P = x_1 P_1 + x_2 P_2 \\
D = \frac{x_1 P_1}{P} D_1 + \frac{x_2 P_2}{P} D_2
\end{array} \right\} \quad \text{Solve for } x_1 \text{ and } x_2!$$

Immunization III

- Obligation: £1,000 in 2 years.
- You can invest in a 1 year and 5 year zero coupon bond.

	Obligation	Bond 1	Bond 2
Face value	1000	100	100
Maturity	2	1	5
Coupon Yield	0	0	0
Yield	0.09	0.09	0.09
Mac. Duration	2	1	5
Price	841.68	91.74	64.99

- Form a portfolio with the same price and duration as the obligation.
- Let x_1 and x_2 be the numbers of bond 1 and 2 held in the portfolio, respectively.

Immunization IV

- Match prices: $91.74x_1 + 64.99x_2 = 841.68$
- Match durations: $\frac{91.74x_1}{841.68}1 + \frac{64.99x_2}{841.68}5 = 2$
- $\Rightarrow x_1 = 6.88 \text{ and } x_2 = 3.24$

Convexity I

- Idea behind immunization: Taylor expansion!
- λ_0 is the current value of the yield.
- We can expand a fixed-income security's price as a function of yield around λ_0 :

$$P(\lambda) = P(\lambda_0) + P'(\lambda_0)(\lambda - \lambda_0) + \frac{1}{2}P''(\lambda_0)(\lambda - \lambda_0)^2 + \cdots$$

- $P(\lambda_0)$ is the price.
- $P'(\lambda_0) = -D_M P(\lambda_0)$ is the (unnormalized) duration.
- $P''(\lambda_0) = P(\lambda_0)C$ is the (unnormalized) convexity.
- We can match as many terms as we like to adjust the Taylor series of our portfolio to that of our obligation.

Convexity II

The Convexity of a fixed-income security is defined as

$$C = \frac{1}{P(\lambda_0)} \left. \frac{\mathsf{d}^2 P(\lambda)}{\mathsf{d}\lambda^2} \right|_{\lambda = \lambda_0}.$$

• If $\Delta \lambda$ is a small change in yield and ΔP is the corresponding change in price, then

$$\Delta P \approx -D_M P \Delta \lambda + \frac{PC}{2} (\Delta \lambda)^2$$
.

This is a second-order approximation to the price-yield curve.

⇒ Convexity can be used to improve immunization!
