Dynamic Programming

Joy Mukherjee

Matrix Chain Multiplication

Four Matrices

A is of order 5 X 4

B is of order 4 X 3

C is of order 3 X 5

D is of order 5 X 2

If you calculate ABCD, what is the

minimum number of basic

multiplication needed?

A(r1 X c1)

B(r2 X c2)

Condition for Multiplication: c1 = r2

No of basic multiplication = r1 * c1 * c2

Order of AB(r1 X c2)

Matrix multiplication is associative

Matrix Chain Multiplication

Four Matrices

A is of order 5 X 4

B is of order 4 X 3

C is of order 3 X 5

D is of order 5 X 2

If you calculate ABCD, what is the minimum number of basic multiplication needed?

Option	Result
A(B(CD))	3*5*2 + 4*3*2 + 5*4*2 = 30 + 24 + 40 = 94
A((BC)D)	4*3*5 + 4*5*2 + 5*4*2 = 60 + 40 + 40 = 140
(AB)(CD)	5*4*3 + 3*5*2 + <mark>5*3*2</mark> = 60 + 30 + 30 = 120
(A(BC))D	4*3*5 + 5*4*5 + 5*5*2 = 60 + 100 + 50 = 210
((AB)C)D	5*4*3 + 5*3*5 + 5*5*2 = 60 + 75 + 50 = 185

Important Observation

Observation: The last multiplication for a sequence of n matrices can happen in (n-1) ways.

```
Opt(M1M2M3M4M5) = Min(R1, R2, R3, R4) where

R1 = Opt(M1) + Opt(M2M3M4M5) + M1.r * M1.c * M5.c

R2 = Opt(M1M2) + Opt(M3M4M5) + M1.r * M2.c * M5.c

R3 = Opt(M1M2M3) + Opt(M4M5) + M1.r * M3.c * M5.c

R4 = Opt(M1M2M3M4) + Opt(M5) + M1.r * M4.c * M5.c
```

Matrix Chain Multiplication

Four Matrices

A is of order 5 X 4

B is of order 4 X 3

C is of order 3 X 5

D is of order 5 X 2

```
A((BC)D) = 4*3*5 (basic multiplication needed for X=BC, order of X = 4 X 5)
+ 4*5*2 (basic multiplication needed for Y=XD=(BC)D, order of Y = 4 X 2)
+ 5*4*2 (basic multiplication needed for Z=AY=A((BC)D), order of Z = 5 X 2)
= 140
```

Optimal Substructure

Optimal Substructure

Input: n matrices, each matrix M[i] has r rows and c columns

$$R(i, j) = 0$$
 if $i = j$

 $R(i, j) = Minimum of \{R(i, k) + R(k+1, j) + M[i].r * M[k].c * M[j].c \} for all k = i to j-1$

Minimum basic multiplications needed to multiply matrices from Mi to Mj

Order of matrix resulted from multiplying Mi to Mk = $M[i].r \times M[k].c$

Order of matrix resulted from multiplying Mk+1 to $Mj = M[k+1].r \times M[j].c$

	M0	M1	M2	M3
r	5	4	3	5
С	4	3	5	2

$$R(i, j) = 0 \text{ if } i = j$$

$$R(i, j) = Minimum of$$

$${R(i, k) + R(k+1, j) + M[i].r * M[k].c * M[j].c}$$
 for all $k = i$ to j-1

	0	1	2	3
0	0	M0M1	M02=Min(M0(M1M2), (M0M1)M2))	M03=Min(M0(M13), (M0M1)(M2M3), (M02)M3)
1		0	M1M2	M13=Min(M1(M2M3), (M1M2)M3))
2			0	M2M3
3				0

	M0	M1	M2	M3
r	5	4	3	5
С	4	3	5	2

$$R(i, j) = 0 \text{ if } i = j$$

$$R(i, j) = Minimum of$$

 ${R(i, k) + R(k+1, j) + M[i].r * M[k].c * M[j].c}$ for all k = i to j-1 Min(M0(M1M2), (M0M1)M2))

	0	1	2	3
0	0	5*4*3 = 60	Min(60+5*4*5, 60+5*3*5)=135	Min(54+5*4*2, 60+54+5*3*2, 135+5*5*2) = 94
1		0	4*3*5 = 60	Min(30+4*3*2, 60+4*5*2)=54
2			0	3*5*2 = 30
3				0

Algorithm O(n³)

```
int MCM(int n, Matrix m[])
    int i, k, l, T[n][n];
    for(I = 0; I < n; I++) {
         for(i = 0; i < n-1; i++) {
              i = i+l;
              if(I == O) T[i][i] = O;
              else {
                   T[i][i] = T[i][i] + T[i+1][i] + m[i].r * m[i].c * m[i].c;
                   for(k = i+1; k < i+1; k++) // k denotes the intermediate break points
                        if(T[i][i] > T[i][k] + T[k+1][j] + m[i].r * m[k].c * m[j].c)
                             T[i][i] = T[i][k] + T[k+1][j] + m[i].r * m[k].c * m[j].c;
    return T[0][n-1];
```

Optimal Binary Search Tree

BST has three nodes 2, 5, 7 with frequency of search 30, 5, 50 respectively.

Level of root is 1.

Search cost of a BST node a = level(a) X frequency(a).

Objective: Construct a BST of all keys such that the total search cost is minimum.

Optimal Binary Search Tree

BST has three nodes 2, 5, 7 with frequency of search 30, 5, 50 respectively.

Level of root is 1.

Search cost of a BST node a = level(a) X frequency(a).

Objective: Construct a BST of all keys such that the total search cost is minimum.

Recursion

```
Any key can be a root (index of the root).
```

```
OPT(F[], start, end, level)
```

```
= 0 if start > end
```

```
= F[start] * level if start = end
```

```
= Minimum<sub>root = start to end</sub>{ F[root] * level
```

- + OPT(F, start, root-1, level+1)
- + OPT(F, root+1, end, level+1) }

Recursion

Any key can be a root (read as "index of the root").


```
\begin{aligned} &\mathsf{OPT}(\mathsf{F}[],\,0,\,\mathsf{n}\text{-}1,\,1) \\ &= \mathsf{Minimum}_{\mathsf{i}\,=\,0\,\,\mathsf{to}\,\,(\mathsf{n}\text{-}1)} \{\,\mathsf{F}[\mathsf{i}]\,\,^*\,\,1\,+\,\,\mathsf{OPT}(\mathsf{F},\,0,\,\mathsf{i}\text{-}1,\,2)\,+\,\,\mathsf{OPT}(\mathsf{F},\,\mathsf{i}\text{+}1,\,\mathsf{n}\text{-}1,\,2)\,\,\} \\ &\mathsf{OPT}(\mathsf{F}[],\,0,\,\mathsf{i}\text{-}1,\,2) \\ &= \mathsf{Minimum}_{\mathsf{j}\,=\,0\,\,\mathsf{to}\,\,(\mathsf{i}\text{-}1)} \{\,\mathsf{F}[\mathsf{j}]\,\,^*\,\,2\,+\,\,\mathsf{OPT}(\mathsf{F},\,0,\,\mathsf{j}\text{-}1,\,3)\,+\,\,\mathsf{OPT}(\mathsf{F},\,\mathsf{j}\text{+}1,\,\mathsf{i}\text{-}1,\,3)\,\,\} \\ &\mathsf{OPT}(\mathsf{F}[],\,\,\mathsf{i}\text{+}1,\,\,\mathsf{n}\text{-}1,\,2) \\ &= \mathsf{Minimum}_{\mathsf{i}\,=\,\mathsf{i}\text{+}1\,\,\mathsf{to}\,\,(\mathsf{n}\text{-}1)} \{\,\mathsf{F}[\mathsf{j}]\,\,^*\,\,2\,+\,\,\mathsf{OPT}(\mathsf{F},\,\,\mathsf{i}\text{+}1,\,\,\mathsf{j}\text{-}1,\,3)\,+\,\,\mathsf{OPT}(\mathsf{F},\,\,\mathsf{j}\text{+}1,\,\,\mathsf{n}\text{-}1,\,3)\,\,\} \end{aligned}
```

Observation

- Value of Key does not matter.
- The search cost of i-th level key
 - = i X frequency
 - = frequency added each time it

passes a level

BST has three nodes 2, 5, 7 with frequency of search 30, 5, 50 respectively.


```
Total Search cost = 30*1 + 50*2 + 5*3 = 145
```

- = (30 + 50 + 5) + (50 + 5) + 5
- = Total Search cost through level 1+ Total Search cost through level 2+Total Search cost through level 3

Idea: To calculate search cost at a given level in O(1) time, we calculate the prefix sum for the F[] Before the DP for OPT BST starts, we need to calculate prefix sum (levelSum) for the F[] in O(n) time.

Modified Recursion

```
OPT(F[], start, end, levelSum)
= 0
                      if start > end
= F[start]
                      if start = end
                                                                   start,
                                                                                   root +
                                                                                   1, end
                                                                  root - 1
= Minimum<sub>root = start to end</sub>{ levelSum[end] - levelSum[start-1]
                           + OPT(F, start, root-1, levelSum)
                           + OPT(F, root+1, end, levelSum) }
Note that levelSum[end] - levelSum[start-1] = F[start] + F[start-1]+...+F[end]
```

root

Key		2	8	9	20	99
Frequency		8	1	5	2	10
LevelSum (Prefix Sum)	0	8	9	14	16	26

i = 3

```
 \begin{aligned} & \mathsf{OPT}(\mathsf{F}[],\,1,\,5,\,\mathsf{levelSum}[]) = \mathsf{Minimum}_{\mathsf{i}\,=\,1\,\mathsf{to}\,5} \{\,26\,+\,\,\mathsf{OPT}(\mathsf{F},\,1,\,\mathsf{i}\,-\,1,\,\mathsf{levelSum})\,+\,\,\mathsf{OPT}(\mathsf{F},\,\mathsf{i}\,+\,1,\,5,\,\mathsf{levelSum})\,\} \\ & \mathsf{OPT}(\mathsf{F},\,1,\,\mathsf{i}\,-\,1,\,\mathsf{levelSum}) = \mathsf{Minimum}_{\mathsf{j}\,=\,1\,\mathsf{to}\,\,\mathsf{i}\,-\,1} \{\mathsf{levelSum}[\mathsf{i}\,-\,1]\,-\,\mathsf{levelSum}[\mathsf{0}]\,+\,\,\mathsf{OPT}(\mathsf{F},\,1,\,\mathsf{j}\,-\,1,\,\mathsf{levelSum})\,+\,\,\mathsf{OPT}(\mathsf{F},\,\mathsf{j}\,+\,1,\,\mathsf{i}\,-\,1,\,\mathsf{levelSum})\,\} \\ & \mathsf{OPT}(\mathsf{F},\,\mathsf{i}\,+\,1,\,5,\,\mathsf{levelSum}) = \mathsf{Minimum}_{\mathsf{j}\,=\,\mathsf{i}\,+\,1\,\mathsf{to}\,5} \{\mathsf{levelSum}[\mathsf{5}]\,-\,\mathsf{levelSum}[\mathsf{i}]\,+\,\,\mathsf{OPT}(\mathsf{F},\,\mathsf{i}\,+\,1,\,\mathsf{j}\,-\,1,\,\mathsf{levelSum})\,\} \\ & \mathsf{levelSum}) +\,\,\mathsf{OPT}(\mathsf{F},\,\mathsf{j}\,+\,1,\,5,\,\mathsf{levelSum})\,\} \end{aligned}
```

	0	1 (123)	2(128)	3(4095)
F	0	30	5	50
L	0	30	35	85

	1	2	3
1	30	Min{0+OPT(2,2), OPT(1,1)+0} + 35)	Min{0+OPT(2,3), OPT(1,1)+OPT(3,3), OPT(1,2)+0} + (L[3]-L[0])
2	0	5	Min{0+OPT(3,3), OPT(2,2)+0} + (L[3]-L[1])
3	0	0	50

	0	1	2	3
F	0	30	5	50
L	0	30	35	85

	1	2	3
1	30	$Min{5, 30} + 35 = 40$	Min{60, 30+50, 40} + 85 = 125
2	0	5	Min{50, 5} + 55 = 60
3	0	0	50

Algorithm

```
int OPT(int n, int F[])
     int i, j, l, k, cost[n][n];
     S[0] = F[0];
     for(i = 1; i < n; i++) S[i] = F[i] + S[i-1];
    for (l = 1; l < n; l++) {
          for (i = 0; i < n-l; i++) {
               j = i+l;
               int fsum = (i == 0)? S[j] : S[j] - S[i-1];
               cost[i][j] = cost[i+1][j] + fsum;
               for (k=i+1; k<=j; k++) {
                    int c = cost[i][k-1] + ((k < j)? cost[k+1][j]:0) + fsum;
                    if (c < cost[i][j])
                         cost[i][j] = c;
     return cost[0][n-1];
```