Espaces de Bergman

Leçons: 201, 202, 205, 208, 213, 234, 235, 243, 245

Théorème 1

Soit Ω un ouvert connexe et $\mathcal{H}^2(\Omega)$ l'ensemble des fonctions f holomorphes sur Ω et de carré intégrable pour la mesure de Lebesgue sur \mathbb{C} identifié à \mathbb{R}^2 . On munit cet espace du produit scalaire hermitien $\langle f,g\rangle=\int_{\Omega}f(x+iy)\overline{g(x+iy)}\mathrm{d}x\mathrm{d}y$ et de la norme $\|\cdot\|$ associée. Alors :

- 1 $\mathcal{H}^2(\Omega)$ est un espace de Hilbert.
- **2** Si $\Omega = \mathbb{D}$ est le disque unité, et $e_n : z \mapsto \sqrt{\frac{n+1}{\pi}} z^n$, alors $(e_n)_{n \in \mathbb{N}}$ est une base hilbertienne de $\mathcal{H}^2(\Omega)$.

Démonstration. 1 Soit $f \in \mathcal{H}^2(\Omega)$, $a \in \Omega$ et ρ tel que $D(a,\rho) \subset \Omega$. Alors selon la formule de la moyenne, $f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta$ pour tout $r < \rho$. Donc en multipliant par r et en intégrant, on obtient par un changement de coordonnées polaires :

$$\frac{\rho^{2}}{2}f(a) = \frac{1}{2\pi} \int_{r=0}^{\rho} \int_{\theta=0}^{2\pi} f(a+re^{i\theta})r d\theta dr = \frac{1}{2\pi} \iint_{D(a,\rho)} f(x+iy) dx dy$$

Ainsi,
$$f(a) = \frac{1}{\pi \rho^2} \iint_{P(a,c)} f(x+iy) dx dy$$
.

Donc en utilisant l'inégalité de Hölder, on a $|f(a)| \le \frac{1}{\pi \rho^2} ||f||| 1 || \le \frac{1}{\sqrt{\pi \rho}} ||f||$.

Montrons ensuite, grâce à cette inégalité, que $\mathcal{H}^2(\Omega)$ est complet. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $\mathcal{H}^2(\Omega)$.

Soit K compact de Ω . La distance d de K au fermé $\mathbb{C} \setminus \Omega$, en le supposant non vide, est donc atteinte et strictement positive.

Si $z \in K$, alors $D(z,d) \subset \Omega$ car $d = \inf_{x \in K, y \notin \Omega} |x-y|$. Donc pour tout z dans K, pour tout $n, m \in \mathbb{N}$, $|f_n(z) - f_m(z)| \le \frac{1}{\sqrt{\pi}d} \|f_n - f_m\|$ donc (f_n) vérifie le critère de Cauchy uniforme sur tout compact, donc converge uniformément sur tout compact de Ω vers une fonction holomorphe f^{-1} .

Par ailleurs, $L^2(\Omega)$ est complet selon le théorème de Riesz-Fischer, donc il existe $g \in L^2(\Omega)$ tel que (f_n) converge vers g pour la norme $\|\cdot\|$. De plus, ce même théorème nous assure qu'il existe une sous suite $(f_{\phi(n)})_{n\in\mathbb{N}}$ convergeant vers g presque partout. Par suite, f=g presque partout et $f\in \mathcal{H}^2(\Omega)$, ce qui conclut.

2 D'abord, $(e_n)_{n\in\mathbb{N}}$ est orthonormée.

En effet, si $n, m \in \mathbb{N}$, alors

^{1.} Ce point est moins élémentaire qu'il n'y paraît. On trouve pour tout compact d'intérieur non vide K de Ω un certain f_K holomorphe sur K qui est la limite de $(f_{n|K})_{n\in\mathbb{N}}$ pour la norme uniforme. Pour aboutir à la limite f voulue, considérons une suite exhaustive de compacts de Ω , c'est à dire une suite $(K_p)_{p\in\mathbb{N}}$ de compacts tels que $\Omega = \bigcup_{p\in\mathbb{N}} K_p$, et pour tout p, $K_p \subset K_{p+1}$; et posons $f(x) = f_{K_p}(x)$ si $x \in K_p$.

$$\langle e_n, e_m \rangle = \iiint_{\mathbb{D}} \sqrt{\frac{(n+1)(m+1)}{\pi^2}} \frac{1}{x+iy^m} (x+iy)^m \, \mathrm{d}x \, \mathrm{d}y$$

$$= \frac{\sqrt{(n+1)(m+1)}}{\pi} \int_{r=0}^1 \int_{\theta=0}^{2\pi} r^{m+n} e^{i\theta(n-m)} r \, \mathrm{d}\theta \, \mathrm{d}r$$

$$= \begin{cases} 0 & \text{si} \quad n \neq m \\ \frac{n+1}{\pi} \times \frac{1}{2n+2} \times 2\pi = 1 \quad \text{si} \quad n = m \end{cases}$$

Pour montrer que $(e_n)_n$ est une suite totale, il suffit de montrer que $\mathrm{Vect}((e_n)_n)^\perp = \{0\}$. Soit $f \in \mathcal{H}^2(\Omega)$. Écrivons le développement en série entière de f autour de $0: \forall z \in \mathbb{D}, f(z) = \sum_{m=0}^{+\infty} \alpha_m z^m$, le membre de droite étant uniformément convergent sur tout disque fermé $\overline{D}(0,r)$.

Par ailleurs, pour tout $n \in \mathbb{N}^*$,

$$c_n = \langle e_n, f \rangle = \sqrt{\frac{n+1}{\pi}} \iiint_{\mathbb{D}} \overline{z}^n f(z) dx dy = \sqrt{\frac{n+1}{\pi}} \iiint_{m=0}^{+\infty} \alpha_m \overline{z}^n z^m dx dy.$$

Par convergence uniforme, on a pour tout 0 < r < 1:

$$\iint_{\overline{D}(0,r)} \overline{z}^n f(z) dx dy = \sum_{m=0}^{+\infty} \alpha_m \iint_{\overline{D}(0,r)} \overline{z}^n z^m dx dy$$

$$\stackrel{x=rx',y=ry'}{=} \sum_{m=0}^{+\infty} \alpha_m r^2 r^n r^m \langle e_n, e_m \rangle \times \frac{\pi}{\sqrt{(n+1)(m+1)}} = \pi \alpha_n \frac{r^{2n+2}}{n+1}$$

Donc $c_n = \lim_{r \to 1^-} \frac{\pi \alpha_n r^{2n+2}}{n+1} \sqrt{\frac{n+1}{\pi}} = \frac{\sqrt{\pi} \alpha_n}{\sqrt{n+1}}$, de sorte que si $\forall n \in \mathbb{N}, \langle e_n, f \rangle = 0$, alors f = 0.

Référence : François BAYEN et Christian MARGARIA (1986). *Problèmes de mathématiques appliquées, tome 2 : espaces de Hilbert et opérateurs*. Ellipses, mais surtout tiré du fichier de développements d'Adrien Laurent.