Arquitetura e Organização de Computadores II

Conteúdo Programático

1. Introdução

- 1.1. Evolução histórica das arquiteturas
- 1.2. Taxonomia de arquiteturas paralelas
- 1.3. Visão geral das arquiteturas existentes

2. Arquiteturas Superescalares

- 2.1. Paralelismo em nível de instrução
- 2.2. Predição de desvio e execução especulativa
- 2.3. Escalonamento dinâmico de instruções
- 2.4. Arquitetura Multiple-Issue e Escalonamento Estático de instruções
- 2.5. Desempenho e Eficiência

Conteúdo pragmático

- 3. Arquiteturas de Multiprocessamento Simétrico
 - 3.1. Arquiteturas NUMA (Acesso Não Uniforme a Memória)
 - 3.2. Arquiteturas multinúcleo e multithreading
 - 3.3. Organizações de Arquiteturas Simétricas
 - 3.4. Topologias de Rede
 - 3.5. Coerência de cache e Protocolos
 - 3.6. Desempenho e eficiência
- 4. Arquiteturas Não Convencionais
 - 4.1. Processadores vetoriais
 - 4.2. Processadores VLIW
 - 4.3. Multiprocessadores embarcados
 - 4.4. Clusters e outros multiprocessadores de passagem de mensagem

Conteúdo pragmático

- 5. Aspectos Tecnológicos de Última Geração
 - 5.1. Sistemas de armazenamento
 - 5.2. Unidades de processamento gráfico (gpu)
- 6. Atividades com simulação de arquiteturas

Critério de Avaliação

- Avaliações periódicas
 - o 2 provas com valor 10,0 ambas com peso 1
 - 1 trabalho prático com valor 10,0 com peso 1
- Avaliação Final:
 - Uma prova com valor 10,0

- Durante os últimos 65 anos o progresso na tecnologia de computação foi muito alto:
 - Por menos de US\$ 500,00 se compra um computador com mais desempenho, memória principal e armazenamento que um computador de US\$ 1 milhão em 1985;
- Durante os primeiros 25 anos de existência dos computadores eletrônicos a melhoria de desempenho era cerca de 25% ao ano.
- Com o surgimento dos microprocessadores (final da década de 70) o crescimento subiu para 35% ao ano.

 Com uma alta taxa de crescimento combinado com as vantagens de produção microprocessadores (custo reduzido devido a produção em massa) a computação se tornou cada vez mais baseada em microprocessadores.

- Existiram também alterações no mercado que colaboraram com o sucesso de novas arquiteturas:
 - i. Eliminação da programação direta em assembly
 - ii. Criação de S.Os padronizados;

- Com todas essas mudanças um novo conjunto de arquiteturas com instruções mais simples tornou-se possível no início da década de 80:
 - RISC: Reduced Instruction Set Computer;

- As máquinas baseadas em RISC tiveram duas características as quais chamaram a atenção dos projetistas de arquiteturas:
 - Paralelismo em nível de instrução (Instruction-Level Parallelism ILP);
 - Uso de cache;

- Tais evoluções maximizaram o padrão de desempenho:
 - Algumas arquiteturas acompanharam tal evolução e outras apenas deixaram de existir;
 - A arquitetura x86 da intel adaptou seus projetos traduzindo instruções do tipo 80x86 para instruções do tipo RISC;
 - Isso causou um overhead no hardware fazendo com que em algumas aplicações outras arquiteturas tivessem vantagem;

- A combinação de melhorias na organização e na arquitetura dos computadores trouxe um acréscimo anual de desempenho por volta de 50%.
- Esse crescimento trouxe 4 principais impactos:
 - Melhorou a capacidade para os usuários de computador;
 - Novas classes de computadores devido a redução de custo;
 - Dominância de projetos baseados em microprocessadores;
 - Desenvolvedores puderam trocar linguagens orientadas a desempenho por linguagens mais produtivas, mudando também a implementação de software.

- Desde 2003 a melhoria de desempenho dos uniprocessadores caiu para cerca de 22% ao ano;
 - Consequência do limite de dissipação de calor.
- Isso trouxe o surgimento de uma nova tendência:
 - Vários processadores por chip;
- Assim sinaliza-se uma passagem histórica, onde, além do ILP, conta-se também com:
 - Paralelismo em nível de Thread (Thread-Level Parallelism TLP);
 - Paralelismo em nível de dados (Data-Level Parallelism DLP);
- Tanto TLP quanto DLP s\u00e3o explicitamente Paralelos
 - Tarefa do programador modelar o software para aproveitar tais recursos.

- Tais alterações geraram diferentes mercados de computadores, onde cada um deles tem suas diferentes necessidades e aplicações:
 - Dispositivo pessoal móvel;
 - Computação desktop;
 - Servidores;
 - Computadores cluster;
 - Computadores embarcados

- Dispositivo pessoal móvel:
 - Dispositivo sem fio e com interfaces de usuário;
 - Celulares, Tablets, etc..
 - Custo é a principal preocupação
 - Eficiência energética baseada frequentemente no uso de baterias;
 - Aplicativos baseados na web e orientados para mídia;
 - Armazenamento em memória flash;
 - Consequência de requisitos de energia e tamanho
 - Necessidade de Minimizar a memória e o consumo de potência;
 - A eficiência energética depende também da dissipação de calor, e não só da bateria

- Computação desktop:
 - Primeiro e maior mercado em termos financeiros;
 - Desde de 2008 mais da metade dos computadores desktop fabricados por ano corresponde a laptops;
 - Busca relação preço desempenho;
 - O desempenho medido é principalmente em desempenho de cálculo e gráfico;
 - A computação desktop é bem caracterizada em termos de aplicações e benchmarks;
 - Porém o uso de aplicações web vem crescendo o que impõe novos desafios em avaliação de sistemas desktop

Servidores:

- Com o início da computação desktop os servidores passaram a ser usados para oferecer serviços de arquivo e computação em maior escala;
- Tem como principais características:
 - Disponibilidade;
 - Throughput eficiente;

Clusters:

- Com o fornecimento de software como serviço a classe de computadores chamada cluster também cresceu;
- Fatores críticos para clusters são:
 - Preço-desempenho;
 - Consumo de potência;
 - Uma grande quantidade do custo de um cluster é associado a sua potencia e seu resfriamento.
- Sua escalabilidade é tratada por softwares;
- Enfatizam aplicações interativas, armazenamento em grande escala, etc.

- Computadores embarcados:
 - São mais limitados que um dispositivo pessoal móvel em questão de hardware e software;
 - Em geral n\u00e3o executam software de terceiros;
 - Alguns exemplos são computadores que são encontrados em:
 - Fornos de micro-ondas;
 - Carros;
 - Switches;
 - Impressoras;
 - etc
 - Tem a mais extensa gama de poder de processamento e custo;
 - Podem variar de US\$0,10 até US\$100,00;

Classes de Paralelismo e Arquiteturas Paralelas

Classes de Paralelismo

- Existem basicamente dois tipos de paralelismo:
 - Paralelismo em nível de dados (Data-Level Parallelism DLP):
 - Dados que podem ser operados ao mesmo tempo;
 - Paralelismo em nível de tarefas (Task-Level Parallelism TLP):
 - Tarefas que podem ser operadas de maneira independente e em paralelo;

Arquiteturas Paralelas

- Os dois tipos de paralelismo podem ser explorados pelo hardware de quatro principais maneiras;
 - Paralelismo em nível de instrução;
 - Arquiteturas Vetoriais e unidades de processador gráfico;
 - Paralelismo em nível de thread;
 - Paralelismo em nível de requisição;

Arquiteturas Paralelas

- Paralelismo em nível de instrução;
 - Explora o paralelismo em nível de dados;
 - Usa duas principais ideias;
 - Pipelining;
 - Executar os estágios de uma instrução de maneira paralela
 - Execução especulativa;
 - Executar instruções com base em especulações e descartá-las quando a especulação estiver errada
- Arquiteturas Vetoriais e unidades de processador gráfico;
 - Explora paralelismo em nível de dados;
 - Realiza a aplicação da mesma instrução em uma coleção de dados diferentes;

Arquiteturas Paralelas

- Paralelismo em Nível de Thread:
 - Explora o paralelismo:
 - Em nível de dados;
 - Em nível de tarefas;
 - O hardware utilizado é fortemente acoplado, porém é permitida a interação entre threads;
- Paralelismo em nível de requisição:
 - Explora o paralelismo em tarefas muito desacopladas
 - Tais tarefas são especificadas pelo programador ou pelo S.O.

 Essas 4 maneiras de suporte a paralelismo por parte do hardware podem ser classificadas de acordo com a taxonomia criada por Michael Flynn por volta de 1960.

		Fluxo de dados	
		Simples	Multiplo
Fluxo de instruções	Simples	SISD	SIMD
	Multiplo	MISD	MIMD

- Fluxo simples de instruções, fluxo simples de dados (Single struction stream, single data stream SISD):
 - Categoria composta pelos uniprocessadores;
 - Pode explorar paralelismo em nível de instrução;
 - Exemplos:
 - Pentium 4;
 - Athlon XP;
 - etc...

- Fluxo simples de instruções, fluxos múltiplos de dados (Single instruction stream, multiple data streams SIMD)
 - Categoria composta por computadores de múltiplos processadores;
 - O paralelismo ocorre em nível de dados;
 - Todos os processadores executam a mesma instrução;
 - Cada um em seu conjunto de dados.
 - Exemplos:
 - Arquiteturas vetoriais;
 - Unidades de Processamento Gráfico;
 - etc...

- Fluxos múltiplos de instruções, fluxo simples de dados (Multiple instruction streams, single data stream MISD);
 - Categoria composta por computadores de múltiplos processadores;
 - Todos eles executam diferentes instruções sobre o mesmo conjunto de dados;
 - Não existem processadores comerciais deste tipo;

- Fluxos múltiplos de instruções, fluxos múltiplos de dados (Multiple instruction streams, multiple data streams MIMD)
 - Categoria composta por computadores de múltiplos processadores;
 - Cada processador tem suas executa suas próprias instruções sobre seu próprio conjunto de dados;
 - Podem ser arquiteturas que exploram o paralelismo principalmente de duas maneiras:
 - Em nível de thread;
 - Em nível de requisições;

Referencias

PATTERSON, D. A.; HENNESSY, J. L. Computer Architecture: A Quantitative Approach. Fifth Edition

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design: The Hardware/Software Interface. Fourth edition