TP5: Segmentation d'image

Table of Contents

1)	Seuillage	. 1
	Seuillage adaptatif	
3)	Ligne de partage des eaux	6
4)	Contours actifs	. 9
5)	Détection de cercles	14
6)	Pré- et Post-traitements	16

1) Seuillage

coins.png

Maximum Dice : 0.989423 Optimal threshold : 105.000000

Otsu Thresholding Dice : 0.981009 Threshold : 126.000000

- · La méthode d'Otsu fonctionne relativement bien (résultat en général proche du seuil optimal)
- L'ajout un bruit gaussien tend à étaler l'histogramme de chacune des classes (car cela revient à convoluer l'histogramme par une gaussienne). Par conséquent, cela rend plus difficile la séparation des classes. Le seuillage est donc très sensible au bruit.
- L'ajout d'une variation d'illumination ne permet plus de séparer correctement les deux classes par un simple seuillage

2) Seuillage adaptatif

coins.png

Otsu Thresholding Dice : 0.981009

Adaptive Thresholding Dice : 0.976246

coins_bruite.png

Otsu Thresholding Dice : 0.949146

Adaptive Thresholding Dice: 0.774698

coins-bg.png

Otsu Thresholding Dice : 0.764233

Adaptive Thresholding Dice : 0.986184

coins-bg_bruite.png

Otsu Thresholding Dice : 0.718796

Adaptive Thresholding Dice: 0.694901

- La méthode de seuillage adaptatif est efficace pour les images avec une variation d'illumation.
- La méthode de seuillage adaptatif reste néanmoins très sensible au bruit

3) Ligne de partage des eaux

Ces résulats ont été obtenus en seuillant la norme du gradient

coins.png

Norme du gradient

Watershed

Binarisation Dice : 0.976137

coins_bruite.png

Norme du gradient

Watershed

Binarisation Dice : 0.975128

coins-bg.png

Norme du gradient

Watershed

Binarisation Dide: 0.543612

coins-bg_bruite.png

Norme du gradient

Watershed

Binarisation Dice : 0.153956

- Si on ne seuille pas la norme du gradient : beaucoup trop de régions segmentées (sur-segmentation).
- La qualité de la segmentation dépend grandement de la qualité de l'image de gradient.

4) Contours actifs

Résultats obtenus avec une boite englobante comme initialisation

coins.png

Active Contour (Chan-Vese) Dice: 0.996659

Active Contour (Edge) Dice: 0.745264

coins_bruite.png

Active Contour (Chan-Vese) Dice : 0.945907

Initialisation

Active Contour (Edge) Dice : 0.578028

coins-bg.png

Active Contour (Chan-Vese) Dice : 0.774883

Initialisation

Active Contour (Edge) Dice : 0.748614

Résultats obtenus avec une initialisation très proche de la solution

coins.png

Active Contour (Chan-Vese) Dice : 0.997734

Initialisation

Active Contour (Edge) Dice : 0.958872

coins_bruite.png

Active Contour (Chan-Vese) Dice : 0.984378

Initialisation

Active Contour (Edge) Dice : 0.950908

coins-bg.png

Active Contour (Chan-Vese) Dice : 0.783682

Initialisation

Active Contour (Edge) Dice : 0.882391

coins-bg_bruite.png

Active Contour (Chan-Vese) Dice : 0.805733

Initialisation

Active Contour (Edge) Dice : 0.934896

- La qualité du résultat des contours actifs dépend fortement de l'initialisation, notamment pour la méthode 'edge'.
- Néanmoins, la méthode 'edge' est plus robuste au bruit et aux variations d'illumination
- Importance du paramètre SMOOTHFACTOR qui définit le compromis entre attache aux données et régularité du contour (Attention, par défaut il est à 0 pour 'Chan-Vese' et à 1 pour 'edge')

5) Détection de cercles

Hough Transform Dice: 0.971564

coins_bruite.png

Hough Transform Dice: 0.940566

coins-bg.png

Hough Transform Dice: 0.967013

coins-bg_bruite.png

• La transformée de Hough est très robuste au bruit et au variation d'illumination grâce à l'a priori très fort sur la forme des objets recherchés.

6) Pré- et Post-traitements

Exemple de résultats qu'il est possible d'obtenir sur chacune des images

coins.png

Dice: 1.000000

Erreur de segmentation

coins_bruite.png

Dice: 0.992620

Erreur de segmentation

coins-bg.png

Dice: 0.986334

Erreur de segmentation

coins-bg_bruite.png

Dice: 0.898744

Erreur de segmentation

Published with MATLAB® R2013b