

Goals for today

- 1. Identify tell-tale signs of an unstable slope.
- 2. Compare and contrast avoidance, prevention, and protection strategies for dealing with landslide hazards.
- **3. List** the mitigation techniques commonly used for avoidance, prevention and protection strategies.
- **4. Identify** the appropriate mitigation strategy for a variety of risk situations.

Discussion - Telltale signs

You are thinking of purchasing a home built on a steep slope.

In groups of 2 or 3, list things to look for that could suggest the slope is unstable.

Landslide Cause & Effect

Cause

Reduces shear strength or increase shear

Trigger

Initiates motion

Effect

Fall, slide, flow, or complex movement

stress

Once we identify a hazard we move to mitigation (solving the problem)

Mitigation

Start with investigation and monitoring

All of this is expensive!

In some cases, especially very slow slides, it is cheaper to repair damage and ignore the landslide

Investigation – Geologic Mapping

Map materials Predict type of and properties failure on site Glacial sediment = Igneous/metamorphic rocks Rotational landslide more likely Without soil cover = rockfall/slide more likely

Investigation - Hazard Mapping

Investigation – imaging and modelling

LiDAR imagery is a technique used to scan the surface topography of the Earth. The technique 'sees through' trees.

Technique used to see where previous landslides have occurred.

Dan McShane

Yellow = past, oldest landslides

Orange = past landslides

Red = past, recent landslides

Mitigation

- After investigation, three paths to mitigate landslides
- 1) Avoidance move to a different area, avoid problem
- 2) Prevention do something to make sure landslides don't occur or don't occur when people are there
- 3) Protection armour or strengthen the area that might be affected if landslides occur

1) Avoidance

In almost all cases avoidance is too expensive

Scenarios:

- Buying all the property in a town
- Moving a completed highway
- Or convincing someone to leave a family home

Before the 2014
Oso Landslide a
buyout program
was considered but
not implemented

2) Prevention

a) Removal of material

- Very simple
- Remove the material (somehow)
- Too expensive for many situations, but cheaper than avoidance
- Pretty good for some rockfalls

2) Prevention – Stabilizing Slopes

Slopes undercut when building roads?

Apply a resisting force at the bottom. Retaining walls, or gabions

2) Prevention – Stabilizing Slopes

2) Prevention - Anchors

$$FS = \frac{\text{resisting forces } (T_f)}{\text{driving forces } (T)}$$

2) Prevention - Drainage

Too much water? Remove with drainage pipes

Stabilization with Vegetation

Planting trees and shrubs (or Hydroseeding) to hold slopes together with roots.

3) Protection

Minimize hazard

Let the landslides occur but control where they go

Or armour where they go

Rock Barrier

Rock Net

Rockfall Shed

3) Protection

Rock Fences
Catch falling/rolling rocks
and dissipate kinetic energy

D. Weis

3) Protection

Debris flow retention structures

- Debris Flow = Water + debris
- Remove debris from water
- No more flow

Mitigation Activity

List the mitigation techniques commonly used for prevention and protection strategies.

Identify the appropriate mitigation strategy for a variety of risk situations.

Slide 1

Slide 3

Slide 4