

PERSAMAAN NON-LINIER METODE TERBUKA

Persamaan Non-Linier

Metode Terbuka

- Titik Tetap
- Newton Rhapson
- Secant

Metode Tertutup

- Tabel
- Bagi Dua
- Regula Falsi

1. Metode Titik Tetap

Akar dan **Titik Tetap** dari suatu fungsi f adalah dua hal yang berbeda. **Akar** suatu fungsi adalah perpotongan fungsi f dengan sumbu-x **Titik tetap** suatu fungsi adalah perpotongan fungsi f dengan garis f dengan garis f dengan garis f

Ketika kita menggunakan iterasi titik tetap untuk menemukan akar dari suatu fungsi *f*, maka **akar tersebut adalah titik tetap dari fungsi lain** *g*, bukan fungsi *f*.

Susunlah persamaan f(x) = 0 menjadi bentuk $\mathbf{x} = \mathbf{g}(\mathbf{x})$, lalu bentuklah menjadi prosuder iterasi berikut:

$$\mathbf{x}_{r+1} = \mathbf{g}(\mathbf{x}_r)$$

Contoh Iterasi Titik Tetap

Tentukan akar hampiran pada iterasi ke-3 untuk persamaan $x^2 - 2x - 6 = 0$ dengan menggunakan metode iterasi titik tetap, kemudian tentukan error relative hampirannya!

Terdapat 3 Alternatif Cara untuk menyelesaikan soal tersebut, yaitu:

Cara 1

$$x^{2} - 2x - 6 = 0$$

 $2x = x^{2} - 6$
 $x = \frac{x^{2} - 6}{2}$
 $x_{r+1} = \frac{x_{r}^{2} - 6}{2}$

Cara 2

$$x^{2} - 2x - 6 = 0$$

$$x^{2} = 2x + 6$$

$$x = \sqrt{2x + 6}$$

$$x_{r+1} = \sqrt{2x_{r} + 6}$$

Cara 3

$$x^{2} - 2x - 6 = 0$$

$$x(x - 2) = 6$$

$$x = \frac{6}{x - 2}$$

$$x_{r+1} = \frac{6}{x_{r} - 2}$$

Contoh Iterasi Titik Tetap

Tentukan akar hampiran pada iterasi ke-3 untuk persamaan $x^2 - 2x - 6 = 0$ dengan menggunakan metode iterasi titik tetap, kemudian tentukan error relative hampirannya!

Solusi dengan Cara 2:

1. Tentukan prosedur iterasi $x_{r+1} = g(x_r)$

$$x^{2} - 2x - 6 = 0$$

 $x^{2} = 2x + 6$
 $x_{r+1} = \sqrt{2xr+6}$

2. Proses Iterasi

Iterasi ke-1
$$x_1 = \sqrt{2x_0 + 6} = \sqrt{2(0) + 6} = \sqrt{6} = 2,4495$$

Iterasi ke-2 $x_2 = \sqrt{2x_1 + 6} = \sqrt{2(2,4495) + 6} = \sqrt{10,8990} = 3,3014$
Iterasi ke-3 $x_3 = \sqrt{2x_2 + 6} = \sqrt{2(3,3014) + 6} = \sqrt{12,6027} = 3,5500$

3. Kesimpulan: Karena iterasi ke-2 dan ke-3 adalah 3,3014 dan 3,5500 maka error relative hampiran pada iterasi ke-3 adalah

$$\varepsilon_{RA} = \left| \frac{3,5500 - 3,3014}{3,5500} \right| = 0,0700 = 7\%$$

Simulasi Titik Tetap pada Excel

lterasi ke-i	xr+1 = (xr^2 - 6)/2		xr+1 = sqrt(2*xr+6)		xr+1 = 6/(xr-2)	
	xi	Galat	xi	Galat	xi	Galat
0	0		0		0	
1	-3	1	2,44949	1	-3	1
2	1,5	3	3,30136	0,258036	-1,2	1,5
3	-1,875	1,8	3,550031	0,070048	-1,875	0,36
4	-1,24219	0,509434	3,619401	0,019166	-1,54839	0,210938
5	-2,22849	0,442587	3,638516	0,005254	-1,69091	0,084287
6	-0,51693	3,311024	3,643766	0,001441	-1,62562	0,040165
7	-2,86639	0,819659	3,645207	0,000395	-1,65489	0,01769
8	1,108105	3,586752	3,645602	0,000108	-1,64164	0,008075
9	-2,38605	1,464409	3,64571	2,97E-05	-1,64761	0,003627
10	-0,15338	14,5566	3,64574	8,15E-06	-1,64491	0,001641
11	-2,98824	0,948672	3,645748	2,24E-06	-1,64613	0,00074
12	1,464782	3,040057	3,64575	6,14E-07	-1,64558	0,000334
13	-1,92721	1,760054	3,645751	1,68E-07	-1,64583	0,000151
14	-1,14294	0,68619	3,645751	4,62E-08	-1,64572	6,81E-05
15	-2,34685	0,512991	3,645751	1,27E-08	-1,64577	3,07E-05

2. Metode Newton Rhapson

Misal diberikan tebakan awal yaitu x₀

Garis singgung fungsi di titik x_0 memiliki kemiringan $f'(x_0)$

Persamaan garis singgung tersebut adalah: $f(x) - f(x_0) = f'(x_0)(x - x_0)$

$$f(x) - f(x_0) = f'(x_0)(x - x_0)$$

Akar hampiran didapat Ketika garis singgung memotong sumbu-x, sehingga didapat:

$$\frac{0 - f(x_0)}{f'(x_0)} + x_0 = x \longrightarrow x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)}, \quad dimana \ f'(x_r) \neq 0$$

Contoh Newton Rhapson

Tentukan akar hampiran pada iterasi ke-3 untuk persamaan $x^2 - 2x - 6 = 0$ dengan menggunakan metode iterasi titik tetap, kemudian tentukan error relative hampirannya!

Solusi:

1. Menentukan turunan pertama fungsi

$$f(x) = x^2 - 2x - 6$$

$$f'(x) = 2x - 2$$

2. Menentukan tebakan awal, misal $x_0 = 0$

3. Proses Iterasi

Iterasi ke-1

$$f(0) = 0^2 - 2(0) - 6 = -6$$

$$f'(0) = 2(0) - 2 = -2$$

$$x_1 = 0 - (-6/-2) = -3$$

Iterasi ke-2

$$f(-3) = (-3)^2 - 2(-3) - 6 = 9$$

$$f'(-3) = 2(-3) - 2 = -8$$

$$x_2 = -3 - (9/-8) = -1,875$$

Iterasi ke-3

$$f(-1,875) = (-1,875)^2 - 2(-1,875) - 6 = 1,2656$$

$$f'(-1,875) = 2(-1,875) - 2 = -5,75$$

$$x_3 = (-1,875) - (1,2656/-5,75) = -1,6549$$

Kesimpulan:

Akar hampiran pada iterasi ke-3 adalah -1,6549. Karena akar hampiran pada iterasi ke-2 dan ke-3 adalah -1,875 dan -1,6549 maka error relative hampirannya adalah

$$\varepsilon_{RA} = \left| \frac{-1,6549 - (-1,875)}{-1,6549} \right| = 0,1330 = 13,30\%$$

Simulasi Newton Rhapson pada Excel

Iterasi ke-i	xi	f(xi)	f'(xi)	Galat	
0	0	-6	-2		
1	-3	9	-8	1	
2	-1,875	1,265625	-5,75	0,6	
3	-1,65489	0,048448	-5,30978	0,133005	
4	-1,64577	8,33E-05	-5,29153	0,005544	
5	-1,64575	2,48E-10	-5,2915	9,56E-06	
6	-1,64575	0	-5,2915	2,84E-11	
7	-1,64575	0	-5,2915	0	
8	-1,64575	0	-5,2915	0	
9	-1,64575	0	-5,2915	0	
10	-1,64575	0	-5,2915	0	
11	-1,64575	0	-5,2915	0	
12	-1,64575	0	-5,2915	0	
13	-1,64575	0	-5,2915	0	
14	-1,64575	0	-5,2915	0	
15	-1,64575	0	-5,2915	0	

Pada iterasi ke-6 ditemukan akar sejati karena nilai f(x) = 0

3. Metode Secant

Dalam metode secant diperlukan dua nilai tebakan awal, misal x_0 dan x_1 Akan diperoleh titik $(x_0, f(x_0) dan (x_1, f(x_1)))$

Akar hampiran didapatkan dari perpotongan garis yang melalui titik $(x_0, f(x_0))$ dan $(x_1, f(x_1))$ dengan sumbu-x

Perhatikan!

Persamaan garis $\frac{y - f(x_0)}{f(x_1) - f(x_0)}$

$$\frac{y - f(x_0)}{f(x_1) - f(x_0)} = \frac{x - x_0}{x_1 - x_0}$$

Memotong sumbu-x:
$$(y = 0)$$

$$\frac{0 - f(x_0)}{f(x_1) - f(x_0)} = \frac{x - x_0}{x_1 - x_0} \longrightarrow x = x_0 - \frac{f(x_0)(x_1 - x_0)}{f(x_1) - f(x_0)}$$

Prosedur Iterasi:

$$x_{r+1} = x_r - \frac{f(x_r)(x_r - x_{r-1})}{f(x_r) - f(x_{r-1})}$$

Contoh Metode Secant

Tentukan akar hampiran pada iterasi ke-3 untuk persamaan $x^2 - 2x - 6 = 0$ dengan menggunakan metode secant, kemudian tentukan error relative hampirannya!

Solusi:

1. Menentukan dua tebakan awal, misal $x_{-1} = 0 \text{ dan } x_0 = 1$

2.

Proses Iterasi
Iterasi ke-1
$$f(x_1) = f(0) = 0^2 - 2(0) - 6 = -6$$

$$f(x_0) = f(1) = 1^2 - 2(1) - 6 = -7$$

$$x_1 = 1 - \frac{(-7)(1-0)}{(-7) - (-6)} = 1 - 7 = -6$$
Iterasi ke-2
$$f(x_1) = f(-6) = (-6)^2 - 2(-6) - 6 = 42$$

$$x_2 = (-6) - \frac{(42)(-6-1)}{(42) - (-7)} = (-6) - (-6) = 0$$
Iterasi ke-3
$$f(x_2) = f(0) = (0)^2 - 2(0) - 6 = -6$$

$$x_3 = 0 - \frac{(-6)(0 - (-6))}{(-6) - (42)} = 0 - 0.75 = -0.75$$

Akar hampiran pada iterasi ke-3 adalah -0,75

Kesimpulan: Karena akar hampiran pada iterasi ke-2 dan ke-3 adalah 0 dan -0,75, maka error relative hampirannya adalah

$$\varepsilon_{RA} = \left| \frac{-0.75 - 0}{-0.75} \right| = 1 = 100\%$$

Simulasi Metode Secant pada Excel

lterasi ke-i	xi	f(xi)	Galat
-1	0	-6	
0	1	-7	
1	-6	42	1,166667
2	0	-6	#DIV/0!
3	-0,75	-3,9375	1
4	-2,18182	3,123967	0,65625
5	-1,54839	-0,50572	0,409091
6	-1,63664	-0,04811	0,053925
7	-1,64592	0,000905	0,005638
8	-1,64575	-1,6E-06	0,000104
9	-1,64575	-5E-11	1,79E-07
10	-1,64575	D 0	5,79E-12
11	-1,64575	0	0

Latihan Soal

- 1. Cari akar persamaan dari $f(x) = 7x^2 21x + e^x$ menggunakan metode Iterasi Titik Tetap, Newton Raphson, dan Secant dengan $x_0 = 0.3$ dan $x_1 = 0.5$.
- 2. Cari akar persamaan dari $f(x) = 3x^3 2x e^x$ menggunakan metode Iterasi Titik Tetap, Newton Raphson, dan Secant dengan $x_0 = 0.1$ dan $x_1 = 0.7$.

