Report of Deep Learning for Natural Langauge Processing

Yuxiang Cheng ZY2303301 cyx1313@126.com

Abstract

给定的语料库中均匀抽取 1000 个段落作为数据集(每个段落可以有 K 个 token, K 可以取 20, 100, 500, 1000, 3000),每个段落的标签就是对应段落所属的小说。利用 LDA 模型在给定的语料库上进行文本建模,主题数量为 T (5,10,25,50,100),并把每个段落表示为主题分布后进行分类(分类器自由选择),分类结果使用 10 次交叉验证(i.e. 900 做训练,剩余 100 做测试循环十次)。首先在设定不同的主题个数 T 和 K 的情况下,观察分类性能变化,然后以 word 和 char 为基本单元下比较分类结果的差异,并用了 SVM、XGB、随机森林分类模型进行横行比较。

Introduction

LDA 模型

LDA 是自然语言处理中非常常用的一个主题模型,全称是隐含狄利克雷分布(Latent Dirichlet Allocation),简称 LDA。作用是将文档集中每篇文档的主题以概率分布的形式给出,然后通过分析分到同一主题下的文档抽取其实际的主题(模型运行结果就是一个索引编号,通过分析,将这种编号赋予实际的意义,通常的分析方法就是通过分析每个 topic 下最重要的 term 来进行总结归纳),根据主题分布进行主题聚类或文本分类。

分类模型

XGBoost (eXtreme Gradient Boosting) 是一种高效且强大的机器学习算法,用于解决分类和回归问题。它是基于梯度提升框架的集成学习方法,通过组合多个弱学习器(通常是决策树)来构建一个更强大的模型。

支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机,SVM 还包括核技巧,这使它成为实质上的非线性分类器。SVM 的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM 的的学习算法就是求解凸二次规划的最优化算法。

随机森林(Random Forest)是一种集成学习算法,用于解决分类和回归问题。它由多个决策树组成,每个决策树独立地进行预测,并通过投票或平均等方式来确定最终的预测结果。

Methodology& Experimental Studies

Experiment One:

设定 k 为 3000 , 并使用各个分类器的分类性能的变化如下表所示

主题	模型	训练精度	测试精度
5	Random Forest	0.115405743	0.09
5	SVM	0.097540574	0.08
5	XGB	0.132209738	0.11
10	Random Forest	0.121048689	0.08
10	SVM	0.100848939	0.08
10	XGB	0.12444444	0.07
25	Random Forest	0.098689139	0.08
25	SVM	0.097490637	0.07
25	XGB	0.109875156	0.09
50	Random Forest	0.118838951	0.08
50	SVM	0.084107366	0.09
50	XGB	0.11772784	0.1
100	Random Forest	0.113283396	0.15
100	SVM	0.111011236	0.11
100	XGB	0.119975031	0.13

从表中发现随着主题数的增加,训练准确度和测试准确度在增加,因此可以初步判断,主题数的增加有利于分类准确性,XGB和随机森林的表现相对SVM较好。

Experiment Two:

在主题数 T 为 100, k 为 25, 使用各个分类器的情况下分类性能的变化如下表所示

k	主题	模型	类型	训练精度	测试精度
100	25	Random Forest	Char	0.269013733	0.35
100	25	SVM	Char	0.22525593	0.17
100	25	XGB	Char	0.281460674	0.29
100	25	Random Forest	Word	0.113258427	0.09
100	25	SVM	Word	0.095318352	0.11
100	25	XGB	Word	0.107652934	0.08

从表中可以看出,在 Char 和 Word 中,Random Forest 的测试精度最高,并且以 char 为基本单元准确度较高。

Experiment Three:

在主题数 T 为 50, 基本单元为 word, 使用各个分类器的情况下分类性能的如下表所示

K	模型	类型	训练精度	测试精度
20	Random Forest	Word	0.126729089	0.08
20	SVM	Word	0.108751561	0.09
20	XGB	Word	0.114369538	0.09
20	Random Forest	Word	0.122259675	0.08
20	SVM	Word	0.108751561	0.09
20	XGB	Word	0.114369538	0.09
100	Random Forest	Word	0.111036205	0.09
100	SVM	Word	0.095318352	0.11
100	XGB	Word	0.107652934	0.08
100	Random Forest	Word	0.113258427	0.09
100	SVM	Word	0.095318352	0.11
100	XGB	Word	0.107652934	0.08
500	Random Forest	Word	0.09752809	0.12
500	SVM	Word	0.08855181	0.07
500	XGB	Word	0.09752809	0.15
1000	Random Forest	Word	0.104244694	0.12
1000	SVM	Word	0.080724095	0.09
1000	XGB	Word	0.109850187	0.11
3000	Random Forest	Word	0.098689139	0.08
3000	SVM	Word	0.097490637	0.07
3000	XGB	Word	0.109875156	0.09

从表中可以看出随着 k 的增加, 训练准确度和测试准确度先增后减小, 因此 K 选择 500 最为合适。

References

- [1] https://blog.csdn.net/Katherine_Cai_7/article/details/81634605
- [2] https://blog.csdn.net/weixin_44852067/article/details/130346159
- [3] https://www.zhihu.com/tardis/zm/art/31886934?source_id=1003
- [4] https://blog.csdn.net/weixin_44852067/article/details/130346159