Day No. 1 10 - 02 - 2023

# Analog Systems Design

#### 1. Introduction

#### 1. Analog Vs Digital

- Analog: Continuous in Time and Amplitude
- Digital : Discrete in Time and Amplitude

## 2. Why Digital?

- Less sensitive to noise
- Easier to store (Digital Memories)
- Easier to process (Digital Signal Processing DSP)
- Amenable to automated design and testing
- Direct beneficiary of Moor's law

#### 3. Why Analog?

- All the physical signals in the world around us are analog
- We always need an analog interface circuit to connect between our physical world and our digital electronics



#### 4. ADC Functions

- Convert analog signal (Continuous in time and amplitude) to a digital signal (Discrete in time and amplitude) by
  - Sampling: Discretization of analog signal in time domain
  - Quantization : Discretization of analog signals in amplitude domain
  - Linking to a reference (V<sub>FS</sub>)

#### 5. DAC Functions

- Convert digital signal (Discrete in time and amplitude) to an analog signal (Continuous in time and amplitude) by
  - Amplitude Restoration: Convert digital levels to voltage amplitude
  - Holding : Holding voltage amplitude to convert signal form DT to CT
  - Linking to a reference  $(V_{FS})$



## 2. Sampling

#### 1. Sampling introduction

- Sampling is time discretization
  - Converts a continuous time signal to a discrete time signal
  - The result is a sequence of samples
- The Sampling instants are defined by a clock signal controls an electronic switch e.g. MOS
- The sampled signal is stored as a voltage on a capacitor
- The circuits is called sample and hold S/H circuit

## 2. Time and Frequency domains

- $TD_{step} = \Delta t = 1/f_s = 1/FD$  period
- $FD_{step} = \Delta f = 1/T_o = 1/TD$  period

| Time domain |          | Technique                      | Frequency domain |          | Where            |
|-------------|----------|--------------------------------|------------------|----------|------------------|
| CT/DT       | Periodic | $\leftrightarrow$              | C/D              | Periodic | in the<br>chain? |
| СТ          | Yes      | CT Fourier series (CTFS)       | Discrete         | No       | -                |
| СТ          | No       | CT Fourier transform (CTFT)    | Continuous       | No       | Before<br>S/H    |
| DT          | Yes      | DT Fourier series (DTFS) → FFT | Discrete         | Yes      | After<br>ADC     |
| DT          | No       | DT Fourier transform (DTFT)    | Continuous       | Yes      | After<br>S/H     |

## 3. Discrete and periodicity

- Sampling causes "images" in the frequency domain
  - The sampled signal is folded around fs and its multiples
  - The part from 0 to fs/2 is the only part that has a physical meaning



## 4. Aliasing and Nyquist criterion

- Aliasing is an effect that causes different signals to become indistinguishable (or aliases of one another) when sampled
- Nyquist criterion  $f_s \ge f_{nyq} = 2 \; BW$

