Domain Generalization using Causal Matching

Divyat Mahajan, Shruti Tople, Amit Sharma Microsoft Research

Feature Distribution Matching

- Domain Invariant Representations
 - Bad if labels and domain are correlated (Class Imbalance)
- Class Conditional Version
 - But does the distribution of invariant features need to be the same across domains?
 - Variance in the distribution due to different noise levels across domains

Domain Adversarial Training (Ganin et al.)

Perfect Match

Training Domains

Rotation Angles: 15, 30, 45, 60, 76

Test Domains

Rotation Angles: 0, 90

- Perfect Match:
 - Same data point rotated by different angle across domains shares the same invariant feature
 - Match feature representations for the "counterfactuals" of each data point across domains

Causal View of Domain Generalization

- Object (0) can be interpreted as the base person where the Domain (D) corresponds to different views that lead to creation of an image (X) for that person (O)
- Domains can be interpreted as interventions: For each observed x_i^d , there area set of counterfactual inputs $x_i^{d\prime}$ where $d\neq d\prime$, but both correspond to the (possibly unobserved) same object (O)

Invariance Condition from SCM

- Invariance Condition: $X_C \perp \!\!\! \perp D \mid O$
- Perfect Match:

$$f_{\texttt{perfectmatch}} = \arg\min_{h,\Phi} \sum_{d=1}^{m} L_d(h(\Phi(X)), Y) + \lambda \sum_{\Omega(j,k)=1; d \neq d'} \operatorname{dist}(\Phi(\mathbf{x}_j^{(d)}), \Phi(\mathbf{x}_k^{(d')}))$$

- Prior work incorrectness:
 - Domain-invariant representations: $X_C \perp \!\!\! \perp D$
 - Class-conditional domain-invariant: $X_C \perp \!\!\! \perp D \mid Y_{true}$
 - Both incorrect due to backdoor path via Object O

Observational Data

- Latent base object not known generally in observational data (PACS, VLCS)
 - Perfect Match still applicable using self augmentations
- Class Conditional Approximation:
 - Data points with the same class label are likely to closer under causal features as compared to point with different class labels
- Inferring latent base objects / match function ($\Omega: X \times X \rightarrow \{0,1\}$)
 - Contrastive Loss: Dist(Anchor, Positive Match) Dist(Anchor, Negative Match)
- Iterative Contrastive Learning:
 - Initialize Ω with Random Match across domains with same class label
 - Using Ω to infer Positive Match given anchor and minimize contrastive loss
 - Update Ω based on nearest same-class pairs in the representation space

MatchDG

$$f_{\texttt{randommatch}} = \arg\min_{h,\Phi} \sum_{d=1}^{m} L_d(h(\Phi(X)), Y) + \lambda \sum_{\Omega_Y(j,k)=1; d \neq d'} \operatorname{dist}(\Phi(\mathbf{x}_j^{(d)}), \Phi(\mathbf{x}_k^{(d')})) \tag{2}$$

$$l(\mathbf{x}_j, \mathbf{x}_k) = -\log \frac{\exp(\sin(\Phi(\mathbf{x}_j), \Phi(\mathbf{x}_k))/\tau)}{\exp(\sin(\Phi(\mathbf{x}_j), \Phi(\mathbf{x}_k))/\tau) + \sum_{i=0, y_i \neq y_j}^{b} \exp(\sin(\Phi(\mathbf{x}_j), \Phi(\mathbf{x}_i))/\tau)}$$
(3)

Algorithm 1: MatchDG

Input: Dataset $(d_i, x_i, y_i)_{i=1}^n$ from m domains, τ , t

Output: Function $f: \mathcal{X} \to \mathcal{Y}$

Create random match pairs Ω_Y .

Build a n * m data matrix \mathcal{M} .

Phase I. while notconverged do

Phase 2. Compute matching based on Φ . Minimize the loss (2) to obtain f.

Chest X Ray Dataset

Details: Link

- Source Domains (NIH, ChexPert)
 - Images with class label 0 are translated vertically downwards
- Target Domains (Kaggle)
 - No spurious correlation

	NIH (Source)	Chex (Source)	RSNA (Target)
ERM	78.9 (0.34)	84.3 (3.52)	55.2 (2.27)
IRM	79.1 (1.01)	83.4 (2.42)	56.6 (2.04)
CSD	73.2 (3.35)	83.3 (2.03)	60.5 (0.82)
RandMatch	75.3 (1.87)	83.6 (1.84)	57.4 (1.76)
MatchDG	74.7 (0.66)	82.2 (0.68)	58.4 (0.62)
MDGHybrid	74.3 (0.91)	82.4 (1.03)	62.6 (0.72)

Evaluation Issues with DG

- OOD accuracy evaluated on few test domains (PACS, VLCS)
 - No guarantees regarding performance on a large set of unseen domains
 - Evaluation metrics to capture the extent to which DG algorithm learnt stable features
- Membership Inference (MI) Attacks
 - Utilize overfitting of ML models to predict train vs test dataset samples
 - Stable features → Better Generalization → Good Defense against MI attacks
- Connections between DG and Privacy Attacks
 - Theoretical: Causal models (stable feature learning) leads to better defense on MI attacks
 - <u>Empirical</u>: Use MI attacks to evaluate DG algorithms
 - <u>Software</u>: Toolkit to support DG algorithms and evaluate them on various privacy attacks