Statistical Analysis of Solidification Crack Susceptibility

by

Nitesh Kumar Gouda

LIST OF CONTENTS

1.	Introduction3
2.	Motivation3
3.	Exploratory Data Analysis 4
4.	Distributional Analysis29
5.	Linear Regression41
6.	Hypothesis Testing47
7.	Conclusion

Introduction

Solidification defects such as porosity and hot cracking are commonly observed and existence of these drastically affects the physical and mechanical properties of the material. Hot cracking is a major problem for us so we should select our composition to minimize the hot crack susceptibility.

Austenitic stainless steels are the steels that contain no ferrite and these are susceptible to hot cracking during welding. Hot cracking means cracking that occurs during the welding, casting or hot working at the temperatures near melting point of material. The various types of the hot cracks occur in stainless steel weldments. Super solidus cracking may be manifest as solidification cracking, which occurring in presence of the liquid phase in fusion zone, or as liquation cracking in the heat-affected zone (HAZ) where it is accompanied by grain-boundary melting. Solidification cracking in the weld metal is considered the most deleterious and is more widely observed than the other types of cracking.

Solidification cracking is a major problem during welding of stainless steels. As there are many grades of steels are available and composition of all grades are different. So we should choose the composition such that it gives minimum solidification cracking susceptibility. So predicting the solidification cracking susceptibility by doing 'longitudinal vare strain test'. Higher the value of this means higher the susceptibility of cracking. We have the small experimental dataset which contains 487 rows and 23 columns (compositions, strain, and dependent variable).

Source of the Data: The Dataset is from a Journal on "Using deep neural network with small dataset to predict material defects" published by Shuo Feng, Huiyu Zhou, Hongbiao Dong.

Motivation:

As much research experience is available on the nature of hot cracking in stainless steels and various measures which required for minimizing it, but the complete understanding of the phenomenon is still lacking. Further, new materials are continuously being developed for various applications such as power systems, nuclear, chemical and petrochemical industries, driven by requirements of higher operating temperatures. The material design criteria for these systems may vary from thermal stability, and resistance to enhanced creep under irradiation and corrosion resistance in various media. Thus, these materials may not be designed primarily to be weldable and there is a continuing need to solve welding problems in their fabrication. In this study we will do EDA, Distributional Analysis, Hypothesis testing, linear regression for analyzing and predicting the solidification crack susceptibility.

Exploratory Data Analysis:

Data cleaning:

In [4]: df.head(10)

Raw dataset with 487 rows and 23 columns was reduced to 487 rows and 22 columns after the data pre-processing step. The extra column i.e 'Sr. No.' has been removed, and we have checked the data that whether there is any duplicate entry or null value is there but in our data I didn't find any of these. This dataset only contains parameters relevant to our study. After this data cleaning, data look like as:

Out[4]:																									
		С	Si	Mn		P S	Cr	Ni	Мо	N	Nb		AI	Ti	V	В	Th	- 1	U	V e	Strain L	.ongi	tudinal_vare_	straint_te	st
	0	0.010	0.48	1.61	0.02	4 0.019	17.33	10.62	2.09	0.060	0.0		0.02	0.0	0.0	0.0	3.18	100	12.0	4.23	4.0			1.	.5
	1	0.011	0.58	1.06	0.03	2 0.013	16.95	10.50	2.15	0.078	0.0		0.02	0.0	0.0	0.0	3.18	100	12.0	4.23	4.0			1.	.1
	2	0.010	0.46	1.09	0.02	1 0.001	17.40	11.50	2.88	0.105	0.0		0.02	0.0	0.0	0.0	3.18	100	12.0	4.23	4.0			0.	.9
	3	0.010	0.51	1.60	0.02	1 0.001	17.55	12.95	2.76	0.113	0.0		0.02	0.0	0.0	0.0	3.18	100	12.0	4.23	4.0			3	.7
	4	0.012	0.46	1.54	0.02	7 0.023	16.28	10.15	2.06	0.098	0.0		0.02	0.0	0.0	0.0	3.18	100	12.0	4.23	4.0			1.	.5
	5	0.018	0.51	1.37	0.02	1 0.009	16.95	11.25	2.23	0.097	0.0		0.02	0.0	0.0	0.0	3.18	100	12.0	4.23	4.0			2	.4
	6	0.017	0.49	1.73	0.02	5 0.004	16.55	11.65	2.13	0.100	0.0		0.02	0.0	0.0	0.0	3.18	100	12.0	4.23	4.0			3	8.
	7	0.020	0.48	1.39	0.02	5 0.015	17.27	11.51	2.20	0.083	0.0		0.02	0.0	0.0	0.0	3.18	100	12.0	4.23	4.0			2	.4
	8	0.006	0.51	1.71	0.02	1 0.001	17.35	13.02	2.49	0.096	0.0		0.02	0.0	0.0	0.0	3.18	100	12.0	4.23	4.0			3	.1
	9	0.010	0.52	1.75	0.01	9 0.001	17.25	12.90	2.56	0.101	0.0		0.02	0.0	0.0	0.0	3.18	100	12.0	4.23	4.0			3	.0
	10	rows ×	22 cc	olumn	S																				
df.des	cribe	e()																							
		С		Si	i	Mn		P		S		(Cr		Ni		M	o		N	Nb		AI		Ti
count	487.0	00000	487.0	00000	487	7.000000	487.0	00000	487.00	00000	487.0	0000	00 48	37.00	0000	487	.00000	0 48	7.0000	000 4	487.000000		487.000000	487.0000	00
mean	0.0	61951	0.6	527844	1	1.510893	0.0	19168	0.00	7691	19.1	11207	74	14.68	7187	0	.92418	9	0.0523	364	0.082207		0.074885	0.1131	85
std	0.0	84147	0.6	62246	1	1.235992	0.0	09974	0.00	06582	3.2	765	13	8.15	5322	1	1.11505	9	0.0614	106	0.181109		0.162976	0.1932	230
min	0.0	01000	0.0	10000	(0.005000	0.0	01000	0.00	01000	12.6	3000	00	0.13	0000	0	.00000	0	0.0020	000	0.000000		0.002000	0.0000	00
25%	0.0	20000	0.2	260000	(0.930000	0.0	09500	0.00	03000	17.0	0000	00	9.65	0000	0	.00000	0	0.0190	000	0.000000		0.020000	0.0000	100
50%	0.0	50000	0.5	500000	1	1.430000	0.0	21000	0.00	05000	18.3	32000	00	12.03	0000	0	.19000	0	0.0300	000	0.000000		0.020000	0.0000	00
75%	0.0	61000	0.6	340000	1	1.700000	0.0	26000	0.0	12000	21.6	0000	00 '	16.87	0000	2	2.15000	0	0.0600	000	0.050000		0.023000	0.2500	100
max	0.4	70000	3.9	10000	8	8.360000	0.0	46000	0.03	32000	26.9	5000	00 3	33.95	0000	3	3.76000	0	0.3680	000	1.180000		1.080000	1.0600	100
			V		В		Th		1		U		V	9	St	train	Long	itudii	nal_va	re_str	raint_test				
count	. 48	37.0000	00 4	87.000	000	487.0000	000 4	87.0000	00 4	87.0000	00 4	487.0	0000) 48	7.000	0000				48	7.000000				
mean		0.0487	47	0.000	515	5.8409	955 1	47.1868	58	13.7125	26	2.6	6942	5	2.031	1930					3.845955				
std		0.1725	98	0.001	669	3.4530	002	81.7018	82	2.2586	16	1.1	15127	4	1.406	5767					4.188706				
min	in 0.000000		00	0.000000		3.0000	000	0 50.000000		8.000000		0 1.25000		0.000000			0.00			0.000000					
25%	0.000000		00	0.000000		3.1800	000 1	00 100.000000		12.000000		00 1.6700		00 1.000000		0000	0			0.410000					
50%	50% 0.000000		00	0.000000		5.0000	000 1	0 100.000000		13.000000		2.530000		2.000000			2.50			2.500000					
		0.0000	nn	0.000	000	6 4000	000 1	80.0000	00	16.0000	00	4.0	00000)	3.200	0000					6.005000				
75%		0.0000	00	0.000		0.1000		00.0000																	

Then I plotted the histograms, Box & whisker plots and for all the variables to explore the data

Stem & Leaf, Histogram, Box & Whisker Plot for wt% C

- ❖ As from the stem & Leaf plot it can be seen that mostly values are in between 0.001 & 0.06.
- From Box & whisker plot, it can be seen that there are few outliers in the data. $Q_1 = 0.02$, Q_2 or median = 0.05 and $Q_3 = 0.061$.
- ❖ From Histogram, it can be seen that mostly data lies between 0.001 & 0.15. but

Stem & Leaf, Histogram, Box & Whisker Plot for wt% Si

Stem and Leaf Plot of Si, wt%

- ❖ As from the stem & Leaf plot it can be seen that mostly values are in between 0.01
 & 0.8.
- ❖ From Box & whisker plot, it can be seen that there are few outliers in the data.1st

 Quartile is at 0.26, 2nd Quartile or median is 0.5 and 3rd Quartile is at 0.64.
- ❖ From Histogram, it can be seen that mostly data lies between 0.01 & 2. but some other Si% is also there whose frequency is very less. i.e an outlier. Peak of the data are at about 0.6 and 0.8

Stem & Leaf, Histogram, Box & Whisker Plot for wt% Mn

- ❖ As from the stem & Leaf plot it can be seen that mostly values are in between 0.005 & 3.7.
- From Box & whisker plot, it can be seen that there are few outliers in the data. $Q_1 = 0.93$, Q_2 or median = 1.43 and $Q_3 = 1.7$.
- ❖ From Histogram, it can be seen that mostly data lies between 0.005 & 3.7. but some other Mn % is also there whose frequency is very less. i.e an outlier. Peak of the data are at about 1.8.

Stem & Leaf, Histogram, Box & Whisker Plot for wt% P

Stem and Leaf Plot of P, wt%

- ❖ As from the stem & Leaf plot it can be seen that peak is at 0.018.
- From Box & whisker plot, it can be seen that there are no outliers in the data. $Q_1 = 0.01$, Q_2 or median = 0.021 and $Q_3 = 0.026$, min = .001, max = 0.046.
- ❖ From Histogram, it can be seen that data lies in 2 ranges. 1st is in between .001 & .014 while 2nd is in between .016 to .036. while some other values are also there but frequency of these is very low.

Stem & Leaf, Histogram, Box & Whisker Plot for wt% S

Stem and Leaf Plot of S, wt%

Stem & Leaf, Histogram, Box & Whisker Plot for wt% Cr

- ❖ As from the stem & Leaf plot it can be seen that majority of values are in between 16.2 to 19.9.
- From Box & whisker plot, it can be seen that there are no outliers in the data. $Q_1 = 100$, Q_2 or median = 100 and $Q_3 = 180$, min = 50, max = 330
- ❖ From Histogram, it can be seen that peak is at about 18.3.

Stem & Leaf, Histogram, Box & Whisker Plot for wt% Ni

Stem and Leaf Plot of Ni, wt%

- ❖ As from the stem & Leaf plot and histogram, it can be seen that peak is at around 10.
- As in Box and whisker plot, it can be seen that there are many outliers in the data. Data has $Q_1 = 9.65$, Q_2 or median = 12.03 and $Q_3 = 16.87$, min = .13, max = 33.95
- ❖ From Histogram, it can be seen that majority of data lies in between 4.7 & 23. While some other Ni wt % is also there in the data.

Stem & Leaf, Histogram, Box & Whisker Plot for wt% Mo

Stem and Leaf Plot of Mo, wt%

- ❖ As from the stem & Leaf plot and histogram, it can be seen that peak is at around0.
- As in Box and whisker plot, it can be seen that there are no outliers in the data. Data has $Q_1 = 0.25$, Q_2 or median = 2.07 and $Q_3 = 2.34$, min = 0.01.
- ❖ From Histogram, it can be seen that majority of data lies in between 1.9 & 2.88. While some other Mo wt % is also there in the data.

Stem & Leaf, Histogram, Box & Whisker Plot for wt% N

Stem and Leaf Plot of N, wt%

- ❖ As from the stem & Leaf plot and histogram, it can be seen that peak is at around 0.006
- As in Box and whisker plot, it can be seen that there are many outliers in the data. Data has $Q_1 = 0.019$, Q_2 or median = 0.03, $Q_3 = .06$, min = .002.
- ❖ From Histogram, it can be seen that majority of data lies in between 0.002 & 0.17. While some other N wt % is also there in the data.

Stem & Leaf, Histogram, Box & Whisker Plot for wt% Nb

Stem and Lear Plot of ND, Wt%

```
1.18
                                            Key: aggr|stem|leaf
                                         345 11 8
                                                   = 11 .8x0.1 = 1.1800000000000000
145
    11 88
    10
143
     94
143
142
     7 35555888
142
     6 0111117
134
     5 23366666
127
119
     4 011133333339
108
       000013667
     2 0000333334445555555566677778899999
99
     1 00000000000111113333333335999999999
65
     0 0000011111444445555555555555555
 0.005
```


- * As in Box and whisker plot, it can be seen that there are 2 outliers in the data. Data has $Q_1=0.1$, Q_2 or median = 0.23, $Q_3=0.4$, min = 0.005
- ❖ From Histogram, it can be seen that majority of data lies in between 0.005 & 0.78. While some other Nb wt % is also there in the data as an outlier

Stem & Leaf, Histogram, Box & Whisker Plot for wt% Co

Stem and Leaf Plot of Co, wt%

Key: aggr|stem|leaf

$$|23|0 = 23.0x0.01 = 0.23$$

- * As in Box and whisker plot, it can be seen that there are no outliers in the data. Data has $Q_1 = 0.07$, Q_2 or median = 0.125, $Q_3 = 0.2$, min = 0.005
- ❖ From Histogram, it can be seen that there are multiple categories of data has been used for the experiment.

Stem and Leaf Plot of Cu, wt%

- As in Box and whisker plot, it can be seen that there are five outliers in the data. Data has $Q_1 = 0.014$, Q_2 or median = 0.32, $Q_3 = 0.52$, min = 0.005
- ❖ From Histogram and stem & leaf plot, it can be seen that mostly data lies between 0.005 and 0.74. while some different values also can be seen in the data.

Stem & Leaf, Histogram, Box & Whisker Plot for wt% Al

- As in Box and whisker plot, it can be seen that there are too many outliers in the data. Data has $Q_1 = 0.02$, Q_2 or median = 0.02, $Q_3 = 0.023$, min = 0.002
- ❖ From Histogram and stem & leaf plot, it can be seen that mostly data lies between 0.002 and 0.19.some data lies between 0.4 to 0.48 while some different values also can be seen in the data as an outlier.
- ❖ The peak can be seen at about 0.02

Stem & Leaf, Histogram, Box & Whisker Plot for wt% Ti

Stem and Leaf Plot of Ti, wt%

- As in Box and whisker plot, it can be seen that there are three outliers in the data. Data has $Q_1 = 0.26$, Q_2 or median = 0.35, $Q_3 = 0.46$, min = 0.005
- ❖ From Histogram and stem & leaf plot, it can be seen that mostly data lies between 0.2 and 0.59. while some different values also can be seen in the data as an outlier.
- ❖ The peak can be seen at about 0.46

Stem & Leaf, Histogram, Box & Whisker Plot for wt% V

Stem and Leaf Plot of V, wt%

- * As in Box and whisker plot, it can be seen that there are no outliers in the data. Data has $Q_1=0.49,\,Q_2$ or median =0.51, $Q_3=0.83$, min =0.11
- ❖ From Histogram and stem & leaf plot, it can be seen that there are many kind of V wt% has been used.
- ❖ The peak can be seen at about 0.49 & 0.84

Stem & Leaf, Histogram, Box & Whisker Plot for wt% B

Stem and Lear Plot of B, Wt%

```
Key: aggr|stem|leaf
                                        11 4
                                                  = 11.4x0.001 = 0.0114
58
    11 4
57
    10 44444
52
52
52
52
      6 00003
47
      5 00000000000000
34
      4 3333377777
24
      2 00000001222446
22
      1 2444499
8
```


- As in Box and whisker plot, it can be seen that there are 2 outliers in the data. Data has $Q_1 = 0.002$, Q_2 or median = 0.0045, $Q_3 = 0.005$, min = 0.0001
- ❖ From Histogram and stem & leaf plot, it can be seen that data lies in between 0.0012 to 0.0026 then 0.003 to 0.0063 then 0.014 to 0.114
- peak can be seen at about 0.005

Stem & Leaf, Histogram, Box & Whisker Plot for wt% Th

- As in Box and whisker plot, it can be seen that there are 2 outliers in the data. Data has $Q_1 = 3.18$, Q_2 or median = 5, $Q_3 = 6.14$, min = 3
- ❖ From Histogram and stem & leaf plot, it can be seen that multiple wt% of Th has been used.
- * peak can be seen at about 3

Stem & Leaf, Histogram, Box & Whisker Plot for wt% I

Stem and Leaf Plot of I, wt%

- As in Box and whisker plot, it can be seen that there are 4 outliers in the data. Data has $Q_1 = 100$, Q_2 or median = 100, $Q_3 = 180$, min = 50, max = 330
- ❖ From Histogram and stem & leaf plot, it can be seen that multiple wt% of I has been used for the experiment.
- peak can be seen at 100

Stem & Leaf, Histogram, Box & Whisker Plot for wt% Ve

- ❖ As in Box and whisker plot, it can be seen that there are 4 outliers in the data. Data has $Q_1 = 1.67$, Q_2 or median = 2.53, $Q_3 = 4$, min = 1.25
- ❖ From Histogram and stem & leaf plot, it can be seen that multiple wt% of Ve has been used for the experiment.
- peak can be seen at 4.2

Stem & Leaf, Histogram, Box & Whisker Plot for wt% U

Stem and Leaf Plot of U, wt%

- As in Box and whisker plot, it can be seen that there are 4 outliers in the data. Data has $Q_1 = 12$, Q_2 or median = 13, $Q_3 = 16$, min = 8
- ❖ From Histogram and stem & leaf plot, it can be seen that multiple wt% of U has been used for the experiment.
- peak can be seen at 12

Stem & Leaf, Histogram, Box & Whisker Plot for Strain

Stem and Leaf Plot of Strain, wt%

- As in Box and whisker plot, it can be seen that there are 4 outliers in the data. Data has $Q_1 = 1$, Q_2 or median = 2, $Q_3 = 3.2$, min = 0.2
- ❖ From Histogram and stem & leaf plot, it can be seen that multiple strain has been used for the experiment.
- \diamond peak can be seen at 0.5,1,2,4

Stem & Leaf, Histogram, Box & Whisker Plot for Longitudinal_vare_starint_test

Stem and Leaf Plot of Longitudinal_vare_straint_test, wt%

- As in Box and whisker plot, it can be seen that there are some outliers in the data. Data has $Q_1 = 1.2$, Q_2 or median = 3.45, $Q_3 = 6.92$, min = 0.01
- ❖ From Histogram and stem & leaf plot, it can be seen that data is distributed between 0 to 19.3.
- peak can be seen at 0.

Backward Elimination Method:

I made a OLS regression result using python for the current scenario and this looks like as:

	OLS Regression Results											
Dep. Varia	ole:		y R-s	quared:		0.463						
Model:				. R-squared:		0.445						
Method:		Least Squ	ianes F-s			25.32						
Date:	Т			b (F-statist	ic):	1.49e-53						
Time:				-Likelihood:	•	-1236.7						
No. Observa	ations:		487 AIC	:		2507.						
Df Residual	ls:		470 BIC	:		2579.						
Df Model:			16									
Covariance	Type:	nonro	bust									
	coef	std err	t	P> t	[0.025	0.975]						
const	-3,2536	1.389	-2.343	0.020	-5.983	-0.524						
x1	1.5159	0.342	4,436		0.844							
x2	-0.7511	0.202	-3.709		-1.149							
x3	74.3898	18.147	4,099	0.000	38,730	110.049						
x4	-39.3578	26.743	-1.472		-91,908	13.193						
x5	-0.1051	0.064	-1.632		-0.232	0.021						
x6	0.2828	0.024	11.653	0.000	0.235	0.331						
x7	-0.2416	0.158	-1.527	0.127	-0.552	0.069						
x8	6.9841	3.416	2.044	0.041	0.271	13.697						
x9	-1.1747	0.935	-1.256	0.210	-3.012	0.663						
X10	-12.2488	3.657	-3.349	0.001	-19.435	-5.062						
X11	0.8220	0.296	2.772	0.006	0.239	1.405						
X12	1.2039	1.029	1.170	0.243	-0.818	3.225						
X13	2.7564	1.155	2.387	0.017	0.487	5.026						
X14	253.1904	116.647	2.171	0.030	23.977	482.404						
X15	0.0047	0.002	1.883	0.060	-0.000	0.010						
X16	1.4113	0.110	12.792	0.000	1.194	1.628						
Omnibus:				bin-Watson:		1.226						
Prob(Omnibu	us):			que-Bera (JB):	144.695						
Skew:				b(JB):		3.80e-32						
Kurtosis:		4	1.876 Con	d. No.		1.40e+05						

As in addition of redundant variables, R^2 is not a good measure to check because its values either remains constant or increases in case of redundant variables. So I have checked the adjusted R^2 value. If by removing the column adj. R^2 is increasing then remove that column and if it is decreasing then do not remove that column. I removed the column for which p value is maximum and then check the adjusted R2 value and repeated the same process. So summary of my OLS results is shown below.

So this way I have reduced the 5 Variables (Al, U, C, Ve, Th) which were least important. Now I w ill do my further analysis on remaining 17 variables ('Si', 'Mn', 'P', 'S', 'Cr', 'Ni', 'Mo', 'N', 'Nb', 'Co', 'Cu', 'Ti', 'V', 'B', 'I', 'Strain', 'Longitudinal_vare_straint_test')

Distributional Analysis

Wt. % of B

Observation:

- From the density plot it could be seen that it has 2 peaks, one is in between 0 to 0.008 and second is in between 0.008 to 0.015.
- ♣ It shows that two types of Boron wt% has been used. But as from the PP and QQ plots, deviation from the standard normal distribution can be seen. So in below figure I am checking by taking assumed distribution as lognormal distribution.

- ♣ In the QQ plot it can be seen that there is an outlier but as this is an experimental data, so might be that they have done an experiment on taking the exceptionally low or high value of wt. % of boron.
- ♣ It could also be seen from the density plot that it has 2 peaks, one is in between -10 to -8 and second is in between -8 to -4. It shows that two types of Boron wt% has been used.

Wt. % of Co

Observation:

- ♣ In the density plot it can be seen that the three kind of Co wt% has been used, one is in between 0 to 0.1, second is in between 0.1 to 0.18 and thirdis in between 0.18 to 0.24.
- ♣ As from the PP and QQ plot we can assume it to be approx. normal distribution.

Wt. % of Cu

- In the density plot it can be seen that there are three peaks. One is in between 0 to 1, second is in between 1 to 2.5 and third is in between 2.5 to 4. This means that three kind of Cu wt. % has been used.
- 4 As this has a higher deviation from the Theoritical standard normal distribution so I am checking for lognormal distribution.

Observation:

Here the theoretical distribution has better fit actual distribution as compare to previous case so I am assuming the cu wt% as lognormal distribution.

Wt. % of Cr

- In the density plot it can be seen that there are two peaks. One is in between 10 to 22 and second is in between 22 to 26. It means that the two types of cr wt % has been used in the experimental data.
- From the PP and QQ plot we can see that this data is almost following normal distribution so I am taking the cr wt % as normal distribution.

Longitudinal Vare straint test

Observation:

As from the QQ plot it can be seen that it is a skewed distribution. So in below figure, I am checking the PP & QQ plot by taking my assumed distribution as lognormal distribution.

Observation:

As we can see that this has less deviation from the previous one so I am assuming that my dependent variable is following lognormal distribution.

Wt % I

Observation:

As we can see the 4 peaks in the density plot. It shows that the 4 kind of wt % I has been used in the experiment. That is in between 80-120, 160-190,270-280,290-320. As this is an experimental data so by having the different wt % of I, we might be interested to know the impact on other variables.

Wt % Mn

Observation:

As we can see the 3 peaks in the density plot. It shows that the 3 kind of wt % Mn has been used in the experiment. That is in between 0-4, 4-7, 7-8. But majority of wt % lies in the range of 0-2 %. From the PP and QQ plot, I am assuming this as an approximately normal distribution

Wt % Mo

Observation:

As we can see the 2 peaks in the density plot. It shows that the 2 kind of wt % Mo has been used in the experiment. That is in between 0-1, 1-4. But majority of wt % lies in the range of 2-2.5 %. From the PP and QQ plot also, these 2 peaks can be seen.

Wt % N

Observation:

As we can see the 2 peaks in the PP plot. It shows that the 2 kind of wt % N has been used in the experiment. That is in between 0-0.2, 0.3-0.4. But majority of wt % lies in the range of 0-0.1 %. In the below figure I am checking the distribution of my data by taking the assumed distribution as lognormal distribution.

Observation:

♣ As we can see that this data is almost fitting the lognormal distribution so I am assuming the distribution of N as lognormal distribution.

Wt % Nb

Observation:

♣ As we can see from the QQ plot that this data has 2 outliers. And this also can be seen in the density plot also. This data has little deviation from the normal distribution but I am assuming this to be normal distribution for further analysis.

Wt % Ni

Observation:

As we can see from the density plot that this data has 2 peaks. One is in between 0-22 while second is in between 29-34. It means that the 2 type of wt % Ni has been used. This data has little deviation from the normal distribution but I am assuming this to be normal distribution for further analysis.

Wt % P

Observation:

As we can see from the PP & QQ plot that this data has 2 peaks. One is in between 0-0.01 while second is in between 0.02-0.03. It means that the 2 type of wt % P has been used. This data has little deviation from the normal distribution but I am assuming this to be normal distribution for further analysis.

Wt % Si

Observation:

As we can see from the PP & QQ plot that this data has 3 peaks. One is in between 0-1 while second is in between 1-2 and third is in between 3.5-4. It means that the 3 type of wt % Si has been used. This data has much deviation from the normal distribution so in below figure I am checking the distribution of wt % Si by taking the theoretical distribution as lognormal distribution

Observation:

As we can see from the PP and QQ plot that this data is almost following the lognormal distribution. So I am assuming this to be lognormal distribution for my further analysis.

Wt % S

Observation:

As we can see from the PP & QQ plot that this data has multiple peaks. It shows that the multiple type of wt % S has been used in the experiment. This data has deviation from the normal distribution but I am assuming for my further analysis that wt% S is normally distributed

Wt % Ti

Observation:

- As we can see from the PP & QQ plot that this data has multiple peaks. It shows that the multiple type of wt % Ti has been used in the experiment.
- This data has deviation from the normal distribution but I am assuming for my further analysis that wt% Ti is normally distributed

Strain

Observation:

- ♣ As we can see from the PP & QQ plot that this data has multiple peaks. It shows that the multiple type of strain has been applied in the experiment.
- ♣ This data has deviation from the normal distribution but still I am assuming for my further analysis that strain is normally distributed

Wt % V

Observation:

- As we can see from the PP & QQ plot that this data has 3 peaks. It shows that the 3 type of wt % V has been used in the experiment. Which are in the range of 0.15-0.25,0.5-0.6,0.6-0.77.
- This data has deviation from the standard normal distribution but I am assuming for my further analysis that wt% V is normally distributed.

Summary of Distributional Analysis:

Sr. No.	Variable	Distribution				
1	Si	Lognormal				
2	Mn	Normal				
3	Р	Normal				
4	S	Normal				
5	Cr	Normal				
6	Ni	Normal				
7	Mo	Normal				
8	N	Lognormal				
9	Nb	Normal				
10	Co	Normal				
11	Cu	Lognormal				
12	Ti	Normal				
13	V	Normal				
14	В	Lognormal				
15	Ι	Normal				
16	Strain	Normal				
17	Longitudinal vare straint test (Target variable)	Lognormal				

Linear Regression Analysis:

First of all I have drawn the heat map to find the correlation among all variables.

Now I have made the Pair plot to know the relation of all variables in graphical way.

Observation: As we can see that the Ni has highest correlation. But my columns have zero values also, which should be removed. So in the linear regression plots I have removed the zero values from the columns and then I have calculated correlation coefficient and R2.

Now fit the linear regression equation in all independent variables and dependent variable to know the impact of each independent variable on dependent variable.

Regression Equation is: Y = 0.21207690296827073 * %Ni + 0.7311417232340188 & R2 is: 0.17049408742698918 , Correlation is: 0.4129092968522133

Observation: The graph between Longitudinal vare straint test vs % Ni shows that the coefficient of correlation is 0.4129 and equation of line is:

$$Y = 0.212 * (\% Ni) + 0.73$$

Regression Equation is: Y = 0.0018607079084987136*%l + 3.57208307416594&R2 is: 0.001317227665661108, Correlation is: 0.036293631199717506

Observation: The graph between Longitudinal vare straint test vs % I shows that the coefficient of correlation is 0.036 and equation of line is:

$$Y = 0.00186 * (\% I) + 3.572$$

Regression Equation is: Y = 223.01031080729223 * %B + 5.641269243305044 & R2 is: 0.042738028683517 , Correlation is: 0.20673177956839872

Observation: The graph between Longitudinal vare straint test vs % B shows that the coefficient of correlation is 0.206 and equation of line is:

$$Y = 223.01 * (\% B) + 5.64$$

Regression Equation is: Y = 0.14824730914970535 * %Ti + 5.896329804394503 & R2 is : 3.571060243756954e-05 , Correlation is : 0.00597583487368665

Observation: The graph between Longitudinal vare straint test vs % Ti shows that the coefficient of correlation is 0.0059 and equation of line is:

$$Y = 0.148 * (\% Ti) + 5.89$$

Regression Equation is: Y = -13.97921494711038 * %Co + 3.542010011432809 & R2 is: 0.30318339292835145 , Correlation is: -0.5506209158108248

Regression Equation is: Y = 6.15634806761952 * %V + 1.5067045784816882 & R2 is : 0.3109833885399754 , Correlation is : 0.5576588460160705

Observation: The graph between Longitudinal vare straint test vs % Co shows that the coefficient of correlation is -0.55 and equation of line is:

$$Y = -13.98 * (\% Co) + 3.54$$

Observation: The graph between Longitudinal vare straint test vs % V shows that the coefficient of correlation is 0.56 and equation of line is:

$$Y = 6.156 * (\% V) + 1.506$$

Regression Equation is: Y = -0.2832586799841041 * %Cu + 5.36882593948368 & R2 is: 0.002529166323072692 , Correlation is: -0.0502908174826448

Regression Equation is: Y = -3.9755325071504464 * %Nb + 4.638209958094953 & R2 is : 0.0849273491161341 , Correlation is : -0.2914229728695631

Observation: The graph between Longitudinal vare straint test vs % Cu shows that the the coefficient of correlation is -0.05 and equation of line is:

$$Y = -0.28 * (\% Cu) + 3.54$$

Observation: The graph between Longitudinal vare straint test vs % Nb shows that the coefficient of correlation is -0.29 and equation of line is:

$$Y = -3.97 * (\% Nb) + 4.638$$

Regression Equation is: Y = 0.8014244303968018*%Strain + 2.2220791253103815 & R2 is: 0.0722592202837131 , Correlation is: 0.2688107518008033

Observation: The graph between Longitudinal vare straint test vs Strain shows that the coefficient of correlation is 0.27 and equation of line is:

$$Y = 0.8 * (Strain) + 2.22$$

Regression Equation is: Y = 0.0487132573281195*%Cr + 2.9149434504269833 & R2 is: 0.0014519730814665957, Correlation is: 0.03810476455073034

Observation: The graph between Longitudinal vare straint test vs % Cr shows that the coefficient of correlation is 0.038 and equation of line is:

$$Y = 0.048 * (\% Cr) + 2.91$$

Regression Equation is: Y = -76.13103379338 * %S + 4.431491581471219 & R2 is : 0.014309362468283371 , Correlation is : -0.11962174747211884

Observation: The graph between Longitudinal vare straint test vs % S shows that the coefficient of correlation is -0.12 and equation of line is:

$$Y = -76.13 * (\% S) + 4.43$$

 $\label{eq:Regression} \begin{array}{l} \text{Regression Equation is: Y} = 0.051115848674409985*\% Mo + 3.6601479014480462\\ \& \ R2 \ \ \text{is: } 0.00023552938211670183 \ \ , \\ \text{Correlation is: } 0.015346966544457632 \end{array}$

Observation: The graph between Longitudinal vare straint test vs % Mo shows that the coefficient of correlation is 0.015 and equation of line is:

$$Y = 0.05 * (\% Mo) + 3.66$$

Regression Equation is: Y = -9.45538010439083 * %N + 4.341073087433431 & R2 is: 0.019213804677714948 , Correlation is: -0.13861386899482658

Regression Equation is: Y = 6.558772977034891 * %P + 3.7202337869802458 & R2 is : 0.00024389984539824441 , Correlation is : 0.01561729315208767

Observation: The graph between Longitudinal vare straint test vs % N shows that the coefficient of correlation is -0.14 and equation of line is:

$$Y = -9.45 * (\% N) + 4.34$$

Regression Equation is: Y = -0.23067341589760726 * %Si + 3.9907817323302934 & R2 is: 0.0013300683380467239 , Correlation is: -0.036470101974723404

Observation: The graph between Longitudinal vare straint test vs % Si shows that the coefficient of correlation is -0.036 and equation of line is:

$$Y = -0.23 * (\% Si) + 3.99$$

Observation: The graph between Longitudinal vare straint test vs % P shows that the coefficient of correlation is 0.016 and equation of line is:

$$Y = 6.56 * (\% P) + 3.72$$

Regression Equation is: Y = -0.4439388915107579 * %Mn + 4.516699088435466 & R2 is: 0.017160027810089757 , Correlation is: -0.13099628929893303

Observation: The graph between Longitudinal vare straint test vs % Mn shows that the coefficient of correlation is -0.13 and equation of line is:

$$Y = -0.44 * (\% Mn) + 4.51$$

Hypothesis Testing

- ❖ Hypothesis testing is done when the population mean is unknown or we can say that hypothesis testing is used to determine whether a statement about the value of a population parameter should be rejected or not.
- ❖ The null hypothesis, denoted by H₀ is a tentative assumption about a population parameter while the alternative hypothesis denoted by Hₐ is the opposite of what is stated in the null hypothesis.
- ❖ The hypothesis testing uses data from a sample to test the two competing statements indicated by H_o and H_a but in my data (487 rows and 22 columns) population parameters are known because this is an experimental data ,so I am performing the hypothesis testing by taking the 5 random sample of sample size = 50 and then I am taking mean of all five sample mean as sample mean.
- As in this part of submission we were supposed to do Hypothesis testing and Regression analysis. As I did my regression analysis in the EDA so here I am performing hypothesis testing for all variables.

After eliminating the less important columns in EDA, my data look like as:

	Si	Mn	P	S	Cr	Ni	Мо	N	Nb	Со	Cu	Ti	V	В	- 1	Strain	Longitudinal_vare_straint_test
0	0.48	1.61	0.024	0.019	17.33	10.62	2.09	0.060	0.0	0.00	0.0	0.0	0.0	0.0	100	4.0	1.5
1	0.58	1.06	0.032	0.013	16.95	10.50	2.15	0.078	0.0	0.00	0.0	0.0	0.0	0.0	100	4.0	1.1
2	0.46	1.09	0.021	0.001	17.40	11.50	2.88	0.105	0.0	0.00	0.0	0.0	0.0	0.0	100	4.0	0.9
3	0.51	1.60	0.021	0.001	17.55	12.95	2.76	0.113	0.0	0.00	0.0	0.0	0.0	0.0	100	4.0	3.7
4	0.46	1.54	0.027	0.023	16.28	10.15	2.06	0.098	0.0	0.15	0.0	0.0	0.0	0.0	100	4.0	1.5

I am performing Two-Tailed Tests for population mean and explaining the hypothesis as:

H_o: Assumed Population mean = Sample mean

H_{a:} Assumed population mean is not equal to sample mean

Here for my data, actual population mean is known so I am taking actual population mean as Assumed population mean.

I have taken the level of significance (alpha) = 0.05 for my hypothesis testing.

I have calculated the Z value using the formula:

$$z = (x - \mu) / (\sigma / \sqrt{n})$$

Then I calculated the corresponding p-value and I compared with the alpha/2 and p-value/2.

If p-value/2 >alpha/2 then accept the null hypothesis and if p-value/2 <alpha/2 then reject the null hypothesis.

I have performed these all calculations for all the independent variables using python. Link of python code is attached on the top of this report.

Elements	Mu	Sigma	Xbar	Z	half_p_value	alpha/2_value
Si	0.6278	0.6616	0.6381	0.0976	0.4611	0.025
Mn	1.5109	1.2347	1.5814	0.3613	0.3589	0.025
Р	0.0192	0.0100	0.0190	-0.0783	0.5312	0.025
S	0.0077	0.0066	0.0082	0.4471	0.3274	0.025
Cr	19.1121	3.2731	18.8292	-0.5467	0.7077	0.025
Ni	14.6872	8.1469	15.5180	0.6449	0.2595	0.025
Mo	1.5205	1.0652	1.4585	-0.3687	0.6438	0.025
N	0.0524	0.0613	0.0585	0.6308	0.2641	0.025
Nb	0.2761	0.2375	0.2462	-0.7970	0.7873	0.025
Co	0.1229	0.0757	0.1271	0.3458	0.3648	0.025
Cu	0.5607	0.7845	0.5725	0.0949	0.4622	0.025
Ti	0.3603	0.1720	0.3626	0.0850	0.4661	0.025
V	0.5521	0.2425	0.5629	0.2819	0.3890	0.025
В	0.0043	0.0026	0.0043	-0.0619	0.5247	0.025
1	147.1869	81.6180	145.6250	-0.1210	0.5482	0.025
Strain	2.0361	1.4037	1.9910	-0.2032	0.5805	0.025
Longitudinal_vare_straint_test	4.6246	4.1777	4.6364	0.0178	0.4929	0.025

Here it can be clearly seen that for all the variables, half p-value is greater than half alpha-value so do not reject the null hypothesis. i.e for all variables, population mean is equal to the assumed population mean.

Conclusion:

In this study we have done Exploratory Data Analysis of the solidification crack susceptibility data to understand the data by making Histograms, Box & Whisker plots and Stem and leaf plots. Then we identified the distribution of each variable and fitted Linear Regression lines to predict the solidification cracking susceptibility for any existing and new grade of steels. Then we performed the Hypothesis testing by taking level of significance as 0.05. I also found that the **V** is the most important variable which influence the solidification cracking susceptibility, and after this **Ni** is the 2nd most important variable which affects the most. I found the multiple linear regression equation to predict the solidification crack susceptibility of any new material. The equation is:

Y = -3.2536 + 1.5159 * (% Si) -0.7511 * (% Mn) + 74.3898 * (% P) -39.36 * (% S) -0.105 * (% Cr) + 0.2828 * (% Ni) - 0.2416 * (% Mo) + 6.9841 * (% N) - 1.17 * (% Nb) - 12.24 * (% Co) + 0.82 * (% Cu) + 1.2 * (% Ti) + 2.76 * (% V) + 253.19 * (% B) + 0.0047 * (% I) + 1.41 * Strain

Drive Link for Code: https://drive.google.com/drive/folders/1VsM086vovgkgGDCH-Q6Xfa8G7qawD1GK?usp=sharing