INSA AI 기반 고 디지털 미디어 복원 기술

팀원: 강신실, 김윤나, 노지수

색감 보정과 동시에 화질 개선

Deoldify

Deoldify의 한계점

 여러 개체에 대해 처리하지 못하여 결과적으로 색깔이 편향됨

Instance-aware Image Colorization

Instance-aware Image Colorization

- 여러 개체에 대해서 처리 가능한 장점
- Deoldify의 단점 보완

NoGAN의 한계점

- Training 과정에서 최소 141,971개(1%)의
 ImageNet data가 필요
- Stable한 model을 한번에 찾기 어려움

SinGAN

- 한 장의 Image로 학습 가능
- Multi-scale 구조를 통해서 Stable한 학습 가능

NoGAN 기반 이미지, 영상 색체

Instance-aware Image Colorization

SinGAN

Super-resolution

INSA

연구 과제 아이디어

Instance-aware Image Colorization

색감 보정

SinGAN

화질 개선

색감 보정 (Instance-aware Image Colorization)

이미지에서 인식된 각 개체에 대해 서 색을 입히고 전체 이미지와 융합 되도록 이미지 색감 보정

한 장의 이미지로 학습된 SinGAN 모델의 Multi-scale 파이프라인을 통해 이미지 화질 개선

색감 보정

Instance-aware Image Colorization

이전 Image Colorization 기법 특징

색상이 편향된 예시

- Neural Network을 활용하여 흑백의 이미지에 색상을 입혀 직접 매핑
- 기존 모델이 전체 이미지에 대한 학습 및 통합을 수행하기 때문에 여러 Instances(개체)를 포함하는 이미지의 경우에는 색상이 편향되는 경우가 있음

(a) Input

(b) Deoldify [1]

(c) Zhang *et al*. [41]

(d) Ours

객체가 다양하게 있을 경우,

(b)DeOldify와 (c)iDeepColor는 Colorization이 잘 적용이 안 됨

Method Overview

- 1. Object Detection : 이미지 내에 객체 별로 이미지를 잘라낸다.
- 2. Instance / Full-image Colorization : 잘린 이미지들과 전체 이미지 별로 기존의 잘 알려진 Mask R-CNN을 적용하여 Colorization을 한다.
- 3. Fusion Module: 잘린 이미지들과 전체 이미지를 합성한다.

2

Table 1. Quantitative comparison at the full-image level. The methods in the first block are trained using the ImageNet dataset. The symbol * denotes the methods that are finetuned on the COCO-Stuff training set.

Method	Ima	Imagenet ctest10k		COCOStuff validation split			Places205 validation split			
Wieniou	$LPIPS \downarrow$	PSNR ↑	SSIM ↑	<i>LPIPS</i> ↓	PSNR↑	SSIM ↑		$LPIPS \downarrow$	PSNR ↑	SSIM ↑
lizuka et al. [13]	0.200	23.636	0.917	0.185	23.863	0.922		0.146	25.581	0.950
Larsson et al. [17]	0.188	25.107	0.927	0.183	25.061	0.930		0.161	25.722	0.951
Zhang <i>et al</i> . [38]	0.238	21.791	0.892	0.234	21.838	0.895		0.205	22.581	0.921
7hang et al [41]	0 145	26 166	N 032	በ 13ዩ	26 823	0 937		0 149	25 823	N 948
Deoldify et al. [1]	0.187	23.537	0.914	0.180	23.692	0.920		0.161	23.983	0.939
Ours	0.134	26.980	0.933	0.125	27.777	0.940		0.130	27.167	0.954
Zhang <i>et al</i> . [41]*	0.140	26.482	0.932	0.128	27.251	0.938		0.153	25.720	0.947
Ours*	0.125	27.562	0.937	0.110	28.592	0.944		0.120	27.800	0.957

Table 2. **Quantitative comparison at the instance level.** The methods in the first block are trained using the ImageNet dataset. The symbol * denotes the methods that are finetuned on the COCO-Stuff training set.

Method	COCOStuff validation split				
Wichiod	<i>LPIPS</i> ↓	PSNR ↑	SSIM ↑		
lizuka et al. [13]	0.192	23.444	0.900		
Larsson et al. [17]	0.179	25.249	0.914		
Zhang <i>et al</i> . [38]	0.219	22.213	0.877		
7hang et al [41]	0 154	26 447	N 918		
Deoldify et al. [1]	0.174	23.923	0.904		
	0.11.	20.220	0.000		
Ours	0.115	28.339	0.929		
Zhang <i>et al</i> . [41]*	0.149	26.675	0.919		
Ours*	0.095	29.522	0.938		

 LPIPS (값이 낮을 수록 성능이 좋음)와

 PSNR, SSIM (값이 높을 수록 성능이 좋음)

 을 비교한 결과 DeOldify를 비롯한 다른

 모델보다 InstaColorization의 성능이 좋은

 것을 확인할 수 있다.

DeOldify

InstaColorization

흑백 이미지를 colorization시킨 DeOldify와 InstaColorization

화질 개선

SinGAN

SinGAN (ICCV, 2019)

SinGAN으로 얻는 기대 효과

한 장의 이미지를 이용해서 GAN Network를 학습 가능한 Model

Pipeline이 Multi-scale로 되어 있기 때문에 다양한 Application에 쉽게 적용 가능 Multi-scale의 일부분을 사용해서 적용할 예정

SinGAN (ICCV, 2019)

SinGAN's Multi-scale Pipeline

SinGAN은 GAN의 피라미드 구조로 이루어져 있으며, Training 과정과 Inference 과정 모두 coarse-to-fine fashion으로 수행된다. 하나의 Image Data를 이용해서 Image의 다양한 Scale에서의 Patch 분포를 학습한다.

SinGAN (ICCV, 2019)

Super-Resolution Example Result

전체 데이터셋으로 학습시킨 모델

Input

하나의 이미지로 학습시킨 모델

하나의 이미지로 학습시킨 모델과 여러 데이터셋을 이용하여 학습시킨 EDSR 중에서 **SinGAN이 생성한 이미지의 화질이 가장 좋은 것을 확인**할 수 있다.

DIP (27.485/7.188) **ZSSR** (27.933/8.455) **SinGAN** (26.068/3.831)

	SRGAN	EDSR		
RMSE	16.34	12.29		
NIQE	3.41	6.50		

왜곡 정도를 나타내는 RMSE와 이미지의 품질을 나타내는 NIQE (값이 낮을 수록 성능이 좋음)을 비교한 결과 다른 모델과 비교하여 SinGAN의 성능이 비슷하거나 좋은 것을 확인할 수 있다.

	DIP	ZSSR	SinGAN
RMSE	13.82	13.08	16.22
NIQE	6.35	7.13	3.71

연구 과제 수행 계획

실험 세팅

데이터셋

학습 데이터셋

데이터셋	이미지 특징	이미지 개수
ImageNet	 Image Colorization의 벤치마크 데이터셋으로 많이 쓰임 객체 중심적 이미지가 주를 이름 	1.3M
COCO-Stuff	• 객체가 여러 개인 자연 경관 이미지가 주를 이룸	118K

검증 데이터셋

80 90년대 영상 컨텐츠 및 오래된 이미지

End-to-End 모델 구조 - Training

다운 그레이드 후 색감 필터링 한 이미지

색감 보정

Instance-aware Image Colorization

- Object Detection
- Instance/Full Image Colorization
- Fusion Module

다운 그레이드한 이미지

화질 개선

SinGAN

- Multi-scale patch Generator
- Multi-scale patch Discriminator

Benchmark dataset인 ImageNet의 이미지

End-to-End 모델 구조 - 최종

INSA

색감 보정 + 화질 개선

Q

• GIGABYTE 지포스 RTX 3090: 400만원

• LG모니터 32UN650 32인치: 50만원

• 기타 부품: 50만원

• 문헌 구입비: 100만원

연구 수행 계획

	강신실	김윤나	노지수
데이터 수집 및 전처리	√		√
색감 보정 모델 분석		√	√
색감 보정 모델 개발			√
화질 개선 모델 분석	√	√	
화질 개선 모델 개발	√		
모델 통합		√	√
모델 튜닝	√	√	√

강신실 (팀장)

- 서울시립대학교 전자전기컴퓨터공학과 석사과정
- GAN과 VAE을 활용한 추천 시스템 연구
- 2019 X-TWICE 머신러닝 기반 와인 추천시스템 프로젝트 수상
- 2019 빅데이터 연계 경진대회 수상

김윤나

- 서울시립대학교 컴퓨터과학과 석사과정
- 데이터 차원 축소 및 그래프 기반의 추천 시스템
- Object detection을 활용한 장애물 알림 서비스 제작
- zero-shot 기반 화질 개선 프로젝트 진행

노지수

- 서울시립대학교 컴퓨터과학과 석사과정
- Reinforcement Learning 활용한 추천 시스템
- YOLO와 GAN을 활용한 Object
 Detection&Image Inpainting 프로젝트 진행
- 제 10회 공개SW 개발자대회 본선 진출

Thank you