Лекция 9: Подпространства

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Определение подпространства. Примеры подпространств (1)

Определение

Непустое подмножество M векторного пространства V называется подпространством пространства V, если выполняются следующие условия:

- 1) если $x, y \in M$, то $x + y \in M$ (замкнутость подпространства относительно сложения векторов);
- 2) если $x \in M$, а t произвольное число, то $tx \in M$ (замкнутость подпространства относительно умножения вектора на число).

Приведем ряд примеров подпространств.

Пример 1. Пусть V — произвольное векторное пространство. Очевидно, что все пространство V и множество $M=\{\mathbf{0}\}$ являются подпространствами в V, причем V — наибольшее подпространство в V. Следующее простое наблюдение показывает, что $\{{\bf 0}\}$ — наименьшее подпространство в V.

Замечание 1

Нулевой вектор содержится в любом подпространстве M пространства V.

Доказательство. Если x — произвольный вектор из M, то по второму условию из определения подпространства $\mathbf{0} = 0 \cdot \mathbf{x} \in M$. $\mathbf{a} \mapsto \mathbf{x} \in \mathbb{R} \times \mathbb{R}$

Примеры подпространств (2)

Пример 2. Рассмотрим пространство \mathbb{R}_3 , которое, как отмечалось в лекции 7, можно отождествить с обычным трехмерным пространством. Пусть M — множество векторов, коллинеарных некоторой плоскости π . Ясно, что сумма двух векторов, коллинеарных π , и произведение вектора, коллинеарного π , на любое число коллинеарны π . Следовательно, M — подпространство в \mathbb{R}_3 . Аналогично доказывается, что множество векторов, коллинеарных некоторой прямой ℓ , также является подпространством в \mathbb{R}_3 .

Пример 3. В силу теоремы 1 из лекции 3 общее решение произвольной однородной системы линейных уравнений с n неизвестными есть подпространство пространства \mathbb{R}_n . Отметим без доказательства, что справедливо и обратное утверждение.

Замечание 2

Всякое подпространство пространства \mathbb{R}_n является пространством решений некоторой однородной системы линейных уравнений с п неизвестными.

Примеры подпространств (3)

Пример 4. Пусть V — произвольное векторное пространство и $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \in V$. Обозначим через M множество всевозможных линейных комбинаций векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Пусть $\mathbf{x}, \mathbf{y} \in M$, т. е.

$$\mathbf{x} = s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k$$
 u $\mathbf{y} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k$

для некоторых чисел s_1, s_2, \ldots, s_k и t_1, t_2, \ldots, t_k . Пусть, далее, t — произвольное число. Тогда

$$x + y = (s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k) + (t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k) =$$

$$= (s_1 + t_1) \mathbf{a}_1 + (s_2 + t_2) \mathbf{a}_2 + \dots + (s_k + t_k) \mathbf{a}_k,$$

$$t \mathbf{x} = t(s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k) = (ts_1) \mathbf{a}_1 + (ts_2) \mathbf{a}_2 + \dots + (ts_k) \mathbf{a}_k.$$

Мы видим, что $\mathbf{x}+\mathbf{y},$ $t\mathbf{x}\in M$, т.е. M — подпространство пространства V. Оно называется подпространством, порожденным векторами $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$ или линейной оболочкой векторов $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$, и обозначается через $\langle \mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k \rangle$. Ясно, что

ullet если ${f a}_1,{f a}_2,\ldots,{f a}_k$ — система порождающих (в частности, базис) пространства V, то $\langle {f a}_1,{f a}_2,\ldots,{f a}_k \rangle = V$.

Из определения подпространства вытекает, что

• $\langle a_1, a_2, \dots, a_k \rangle$ — наименьшее подпространство пространства V, содержащее векторы a_1, a_2, \dots, a_k .

Размерность подпространства (1)

Очевидно, что подпространство векторного пространства само является векторным пространством. Это позволяет говорить о размерности и базисе подпространства.

Предложение 1

Пусть M- подпространство векторного пространства V. Тогда $\dim M\leqslant \dim V$, причем $\dim M=\dim V$ тогда и только тогда, когда M=V.

Доказательство. Если M или V — нулевое пространство, то оба утверждения предложения выполняются тривиальным образом. Будем поэтому считать, что M и V — ненулевые пространства. Зафиксируем базис $(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k)$ подпространства M и базис $(\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_\ell)$ пространства V. Если $k > \ell$, то в силу леммы 2 из лекции 8 система векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ линейно зависима. Но это противоречит определению базиса. Следовательно, $k \leqslant \ell$, т. е. $\dim M \leqslant \dim V$.

Размерность подпространства (2)

Пусть $\dim M = \dim V$, т. е. $k = \ell$. Тогда система векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ является максимальной линейно независимой. В самом деле, в противном случае существует вектор \mathbf{a} такой, что система $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k, \mathbf{a}$ линейно независима. Но она содержит k+1 вектор, что противоречит лемме 2 из лекции 8. Таким образом, система векторов $(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k)$ является базисом пространства V. Следовательно, любой вектор из V является линейной комбинацией векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$. Поскольку эти векторы лежат в M, а M — подпространство в V, это означает, что любой вектор из V лежит в M, т. е. $V \subseteq M$. Обратное включение выполнено по условию, и потому M = V. Итак, если $\dim M = \dim V$, то M = V. Обратное утверждение очевидно.

Алгоритм нахождения базиса и размерности подпространства, порожденного данным набором векторов

Укажем способ нахождения базиса и размерности подпространства, порожденного данным набором векторов.

Алгоритм нахождения базиса и размерности подпространства пространства \mathbb{R}_n , порожденного данным набором векторов

Запишем данные векторы в матрицу по строкам и приведем эту матрицу к ступенчатому виду. Ненулевые строки полученной матрицы будут базисом нашего подпространства, а число этих строк равно его размерности.

Обоснование этого алгоритма будет дано в лекции 12.

Алгоритм выяснения того, принадлежит ли вектор подпространству

Рассмотрим следующую задачу: даны вектор $\mathbf{x} \in \mathbb{R}_n$ и подпространство M пространства \mathbb{R}_n , порожденное векторами $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$; требуется выяснить, принадлежит ли вектор \mathbf{x} подпространству M. Ясно, что $\mathbf{x} \in M$ тогда и только тогда, когда $\mathbf{x} = t_1\mathbf{a}_1 + t_2\mathbf{a}_2 + \dots + t_k\mathbf{a}_k$ для некоторых $t_1, t_2, \dots, t_k \in \mathbb{R}$. Расписав последнее равенство покомпонентно, мы получим систему n линейных уравнений с неизвестными t_1, t_2, \dots, t_k . В основной матрице этой сиситемы по столбцам записаны векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$, а в последнем столбце расширенной матрицы стоит вектор \mathbf{x} . Вектор \mathbf{x} лежит в M тогда и только тогда, когда эта система совместна. Вспоминая метод Гаусса решения систем линейных уравнений, получаем следующий алгоритм.

Алгоритм выяснения того, принадлежит ли вектор подпространству

Даны вектор $\mathbf{x} \in \mathbb{R}_n$ и подпространство M пространства \mathbb{R}_n , порожденное векторами $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$. Составим матрицу размера $n \times (k+1)$, в первых k столбцах которой запишем векторы $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$, а в последнем столбце — вектор \mathbf{x} . Начнем приводить ее к ступенчатому виду, не переставляя при этом столбцов. Если в процессе преобразований возникнет строка, в которой все элементы, кроме последнего, равны 0, а последний отличен от 0, то $\mathbf{x} \notin M$. Если же мы доведем матрицу до ступенчатого вида и такой строки не возникнет, то $\mathbf{x} \in M$.

Сумма и пересечение подпространств (1)

Введем две важные операции над подпространствами.

Определение

Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Суммой подпространств M_1 и M_2 называется множество всех векторов из V, являющихся суммой некоторого вектора из M_1 и некоторого вектора из M_2 . Пересечением подпространств M_1 и M_2 называется множество всех векторов из V, принадлежащих одновременно как M_1 , так и M_2 . Сумма подпространств M_1 и M_2 обозначается через M_1+M_2 , а их пересечение — через $M_1\cap M_2$.

Замечание 4

Если M_1 и M_2 — подпространства пространства V, то M_1+M_2 и $M_1\cap M_2$ также являются подпространствами в V.

Доказательство. В силу замечания 1 каждое из подпространств M_1 и M_2 содержит нулевой вектор. Следовательно, $\mathbf{0}=\mathbf{0}+\mathbf{0}\in M_1+M_2$ и $\mathbf{0}\in M_1\cap M_2$. В частности, множества M_1+M_2 и $M_1\cap M_2$ — непустые. Далее, пусть $\mathbf{x},\mathbf{y}\in M_1+M_2$ и t — произвольное число. Тогда $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2$ и $\mathbf{y}=\mathbf{y}_1+\mathbf{y}_2$, для некоторых $\mathbf{x}_1,\mathbf{y}_1\in M_1$ и $\mathbf{x}_2,\mathbf{y}_2\in M_2$.

Сумма и пересечение подпространств (2)

Учитывая, что M_1 и M_2 — подпространства, получаем, что

$$x + y = (x_1 + x_2) + (y_1 + y_2) = (x_1 + y_1) + (x_2 + y_2) \in M_1 + M_2,$$

 $tx = t(x_1 + x_2) = tx_1 + tx_2 \in M_1 + M_2.$

Следовательно, M_1+M_2 — подпространство в V. Далее, пусть ${\bf x},{\bf y}\in M_1\cap M_2$ и t — произвольное число. Тогда ${\bf x},{\bf y}\in M_1$ и ${\bf x},{\bf y}\in M_2$. Поскольку M_1 и M_2 — подпространства, имеем ${\bf x}+{\bf y}\in M_1$, ${\bf x}+{\bf y}\in M_2$ $t{\bf x}\in M_1$ и $t{\bf x}\in M_2$. Следовательно, ${\bf x}+{\bf y}\in M_1\cap M_2$ и $t{\bf x}\in M_1\cap M_2$, и потому $M_1\cap M_2$ — подпространство в V.

Замечание 5

Если M_1 и M_2 — подпространства пространства V, то подпространство M_1+M_2 содержит M_1 и M_2 и является наименьшим подпространством в V, обладающим указанным свойством.

Доказательство. Если $\mathbf{x} \in M_1$, то $\mathbf{x} = \mathbf{x} + \mathbf{0}$. Поскольку $\mathbf{0} \in M_2$, имеем $\mathbf{x} \in M_1 + M_2$. Следовательно, $M_1 \subseteq M_1 + M_2$. Аналогично проверяется, что $M_2 \subseteq M_1 + M_2$. Пусть теперь M — подпространство в V, содержащее M_1 и M_2 . Предположим, что $\mathbf{x} \in M_1 + M_2$. Тогда $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ для некоторых $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$. Следовательно, $\mathbf{x}_1 \in M$ и $\mathbf{x}_2 \in M$, откуда $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 \in M$. Таким образом, $M_1 + M_2 \subseteq M$.

Сумма и пересечение подпространств (3)

Из определения пересечения подпространств немедленно вытекает

Замечание 6

Если M_1 и M_2 — подпространства пространства V, то пространство $M_1 \cap M_2$ содержится в M_1 и в M_2 и является наибольшим подпространством в V, обладающим указанным свойством.

Размерность суммы подпространств (1)

Первым из двух основных результатов данной лекции является

Теорема 1

Пусть V- векторное пространство, а M_1 и M_2- его подпространства. Тогда размерность суммы подпространств M_1 и M_2 равна сумме размерностей этих подпространств минус размерность их пересечения.

Доказательство. Из предложения 1 вытекает, что $\dim(M_1 \cap M_2) \leqslant \dim M_1$ и $\dim(M_1 \cap M_2) \leqslant \dim M_2$. Положим

$$\dim(M_1\cap M_2)=k,\ \dim M_1=k+\ell\ \mathsf{u}\ \dim M_2=k+m.$$

Если $M_1=\{\mathbf{0}\}$, то, очевидно, $M_1\cap M_2=\{\mathbf{0}\}$, dim $M_1=\dim(M_1\cap M_2)=0$, $M_1+M_2=M_2$ и потому

$$\dim(M_1 + M_2) = \dim M_2 = \dim M_1 + \dim M_2 - \dim(M_1 \cap M_2).$$

Аналогично разбирается случай, когда $M_2=\{\mathbf{0}\}$. Итак, далее можно считать, что пространства M_1 и M_2 — ненулевые, и, в частности, каждое из них имеет базис. Будем также считать, что $M_1\cap M_2\neq \{\mathbf{0}\}$ (в противном случае следует во всех дальнейших рассуждениях заменить базис пространства $M_1\cap M_2$ на пустой набор векторов; сами рассуждения при этом только упростятся). Пусть $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$ — базис пространства $M_1\cap M_2$. В силу теоремы 3 из лекции 8 этот набор векторов можно дополнить как до базиса M_1 , так и до базиса M_2 . $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_n$

Размерность суммы подпространств (2)

Пусть $\mathbf{a}_1, \ \mathbf{a}_2, \ \dots, \ \mathbf{a}_k, \ \mathbf{b}_1, \ \mathbf{b}_2, \ \dots, \ \mathbf{b}_\ell$ — базис M_1 , а $\mathbf{a}_1, \ \mathbf{a}_2, \ \dots, \ \mathbf{a}_k, \ \mathbf{c}_1, \ \mathbf{c}_2, \ \dots, \ \mathbf{c}_m$ — базис M_2 . Докажем, что набор векторов

$$\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k, \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_\ell, \mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_m$$
 (1)

является базисом пространства M_1+M_2 . Этого достаточно для доказательства теоремы, так как число векторов в этом наборе равно

$$k + \ell + m = (k + \ell) + (k + m) - k = \dim M_1 + \dim M_2 - \dim(M_1 \cap M_2).$$

Пусть $\mathbf{x} \in M_1 + M_2$. Тогда $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, где $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$. Ясно, что вектор \mathbf{x}_1 является линейной комбинацией векторов \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_k , \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_ℓ , а вектор \mathbf{x}_2 — линейной комбинацией векторов \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_k , \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_m . Следовательно, вектор $\mathbf{x}_1 + \mathbf{x}_2$ является линейной комбинацией векторов (1). Таким образом, набор векторов (1) является системой образующих пространства $M_1 + M_2$. В силу леммы 1 из лекции 8 остается доказать, что этот набор векторов линейно независим. В самом деле, предположим, что

$$t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k + s_1 \mathbf{b}_1 + s_2 \mathbf{b}_2 + \dots + s_\ell \mathbf{b}_\ell + r_1 \mathbf{c}_1 + r_2 \mathbf{c}_2 + \dots + r_m \mathbf{c}_m = \mathbf{0}$$
 (2)

для некоторых чисел $t_1, t_2, \ldots, t_k, s_1, s_2, \ldots, s_\ell, r_1, r_2, \ldots, r_m$. Требуется доказать, что все эти числа равны 0.

Размерность суммы подпространств (3)

Положим $\mathbf{y}=s_1\mathbf{b}_1+s_2\mathbf{b}_2+\cdots+s_\ell\mathbf{b}_\ell$. Очевидно, что $\mathbf{y}\in M_1$. С другой стороны, из (2) вытекает, что

$$\mathbf{y}=-t_1\mathbf{a}_1-t_2\mathbf{a}_2-\cdots-t_k\mathbf{a}_k-r_1\mathbf{c}_1-r_2\mathbf{c}_2-\cdots-r_m\mathbf{c}_m\in M_2.$$

Следовательно, $\mathbf{y} \in M_1 \cap M_2$. Но тогда вектор \mathbf{y} есть линейная комбинация векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Таким образом, существуют числа q_1, q_2, \dots, q_k такие, что $\mathbf{y} = s_1\mathbf{b}_1 + s_2\mathbf{b}_2 + \dots + s_\ell\mathbf{b}_\ell = q_1\mathbf{a}_1 + q_2\mathbf{a}_2 + \dots + q_k\mathbf{a}_k$. Следовательно,

$$q_1 \mathbf{a}_1 + q_2 \mathbf{a}_2 + \dots + q_k \mathbf{a}_k - s_1 \mathbf{b}_1 - s_2 \mathbf{b}_2 - \dots - s_\ell \mathbf{b}_\ell = \mathbf{0}.$$
 (3)

Поскольку векторы \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_k , \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_ℓ образуют базис пространства M_1 , они линейно независимы. Поэтому линейная комбинация, стоящая в левой части равенства (3), тривиальна. В частности, $s_1=s_2=\dots=s_\ell=0$. Следовательно, равенство (2) принимает вид

$$t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_k\mathbf{a}_k+r_1\mathbf{c}_1+r_2\mathbf{c}_2+\cdots+r_m\mathbf{c}_m=\mathbf{0}.$$

Учитывая, что векторы $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k, \mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_m$ образуют базис пространства M_2 (и, в частности, линейно независимы), мы получаем, что $t_1 = t_2 = \cdots = t_k = r_1 = r_2 = \cdots = r_m = 0$. Итак, все коэффициенты в левой части равенства (2) равны 0, что и требовалось доказать.

Нахождение базиса и размерности суммы подпространств

Рассмотрим вопрос о том, как найти базис и размерность суммы подпространств. Пусть подпространство M_1 имеет базис $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$, а подпространство M_2 — базис $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_\ell$. Предположим, что $\mathbf{x} \in M_1 + M_2$. Тогда существуют векторы $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$ такие, что $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$. В силу выбора векторов \mathbf{x}_1 и \mathbf{x}_2 имеем

$$\mathbf{x}_1 = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k$$
 in $\mathbf{x}_2 = s_1 \mathbf{b}_1 + s_2 \mathbf{b}_2 + \dots + s_\ell \mathbf{b}_\ell$

для некоторых чисел t_1, t_2, \dots, t_k и s_1, s_2, \dots, s_ℓ . Следовательно,

$$\mathbf{x} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k + s_1 \mathbf{b}_1 + s_2 \mathbf{b}_2 + \dots + s_\ell \mathbf{b}_\ell.$$

Это означает, что пространство M_1+M_2 содержится в подпространстве, порожденном набором векторов $\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_k,\mathbf{b}_1,\mathbf{b}_2,\dots,\mathbf{b}_\ell$. С другой стороны, очевидно, что каждый из этих векторов, а значит и подпространство, ими порожденное, содержится в M_1+M_2 . Следовательно,

$$M_1 + M_2 = \langle a_1, a_2, \dots, a_k, b_1, b_2, \dots, b_\ell \rangle.$$

Алгоритм нахождения базиса и размерности суммы подпространств

Учитывая изложенный выше в данной лекции алгоритм нахождения базиса и размерности подпространства, попрожденного данным набором векторов, получаем

Алгоритм нахождения базиса и размерности суммы подпространства пространства \mathbb{R}_n

Пусть даны базисы подпространств M_1 и M_2 пространства \mathbb{R}_n . Запишем в матрицу по строкам координаты базисных векторов обоих подпространств и приведем эту матрицу к ступенчатому виду. Ненулевые строки полученной матрицы будут базисом суммы подпространств M_1 и M_2 , а число этих строк равно ее размерности.

Отметим, что, найдя размерность суммы подпространств M_1 и M_2 , мы сможем найти и размерность их пересечения, так как, в силу теоремы 1,

$$\dim(M_1 \cap M_2) = \dim M_1 + \dim M_2 - \dim(M_1 + M_2). \tag{4}$$

Базис пересечения ищется несколько сложнее. Способ решения этой задачи будет указан в лекции 13.

Прямая сумма (1)

Определение

Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Говорят, что сумма подпространств M_1 и M_2 является их *прямой суммой*, если $M_1 \cap M_2 = \{\mathbf{0}\}$. Прямая сумма подпространств M_1 и M_2 обозначается через $M_1 \oplus M_2$ или $M_1 \dotplus M_2$.

Вторым основным результатом данной лекции является

Теорема 2

Пусть V- векторное пространство, а M_1 и M_2- его подпространства. Следующие условия эквивалентны:

- 1) $M_1 + M_2$ является прямой суммой подпространств M_1 и M_2 ;
- 2) $\dim(M_1 + M_2) = \dim M_1 + \dim M_2$;
- 3) любой вектор из M_1+M_2 единственным образом представим в виде суммы вектора из M_1 и вектора из M_2 ;
- 4) нулевой вектор пространства V единственным образом представим в виде суммы вектора из M_1 и вектора из M_2 .

Доказательство теоремы 2 дано на следующем слайде.

Прямая сумма (2)

Доказательство. Эквивалентность условий 1) и 2) непосредственно вытекает из теоремы 1 и того факта, что размерность нулевого пространства равна 0. Импликация 3) \Longrightarrow 4) очевидна. Остается доказать импликации 1) \Longrightarrow 3) и 4) \Longrightarrow 1).

- 1) \Longrightarrow 3). Пусть $\mathbf{x} \in M_1 + M_2$. По определению суммы подпространств $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, где $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$. Остается доказать, что такое представление вектора \mathbf{x} единственно. Предположим, что $\mathbf{x} = \mathbf{y}_1 + \mathbf{y}_2$, где $\mathbf{y}_1 \in M_1$ и $\mathbf{y}_2 \in M_2$. Учитывая, что $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 = \mathbf{y}_1 + \mathbf{y}_2$, имеем $\mathbf{x}_1 \mathbf{y}_1 = \mathbf{y}_2 \mathbf{x}_2$. Ясно, что $\mathbf{x}_1 \mathbf{y}_1 \in M_1$, а $\mathbf{y}_2 \mathbf{x}_2 \in M_2$. Следовательно, $\mathbf{x}_1 \mathbf{y}_1 = \mathbf{y}_2 \mathbf{x}_2 \in M_1 \cap M_2$. Но $M_1 \cap M_2 = \{\mathbf{0}\}$. Поэтому $\mathbf{x}_1 \mathbf{y}_1 = \mathbf{y}_2 \mathbf{x}_2 = \mathbf{0}$, откуда $\mathbf{x}_1 = \mathbf{y}_1$ и $\mathbf{x}_2 = \mathbf{y}_2$.
- ${f 4})\Longrightarrow {f 1}$). Предположим, что $M_1\cap M_2
 eq {f 0}$, т. е. существует ненулевой вектор ${f x}\in M_1\cap M_2$. Тогда вектор ${f 0}$ может быть двумя различными способами представлен в виде суммы вектора из M_1 и вектора из M_2 : ${f 0}={f x}+(-{f x})$ и ${f 0}=(-{f x})+{f x}$. Мы получили противоречие с условием ${f 4}$).

Из доказательства теоремы 2 вытекает

Замечание 7

Если $V = M_1 \oplus M_2$, \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_{ℓ} — базис M_1 , а \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_m — базис M_2 , то \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_{ℓ} , \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_m — базис пространства V.

Прямая сумма (3)

При решении задач полезно иметь в виду следующее

Замечание 8

 $V=\mathit{M}_1\oplus \mathit{M}_2$ тогда и только тогда, когда

$$\dim(M_1+M_2)=\dim M_1+\dim M_2=\dim V.$$

Доказательство. Если $V=M_1\oplus M_2$, то, в частности, $M_1+M_2=V$, и потому $\dim(M_1+M_2)=\dim V$. А $\dim M_1+\dim M_2=\dim(M_1+M_2)$ в силу теоремы 2. Обратно, если $\dim(M_1+M_2)=\dim M_1+\dim M_2=\dim V$, то $M_1+M_2=V$ в силу предложения 1 и $\dim(M_1\cap M_2)=0$ в силу (4). Из последнего равенства вытекает, что $M_1\cap M_2=\{0\}$. Объединяя этот факт с равенством $M_1+M_2=V$, получаем, что $V=M_1\oplus M_2$.

Прямая сумма (4)

Из замечания 8 вытекает следующий алгоритм.

Алгоритм выяснения того, является ли пространство \mathbb{R}_n прямой суммой своих подпространств M_1 и M_2

Предполагаем, что нам известны векторы, порождающие каждое из подпространств M_1 и M_2 . Используя алгоритм нахождения базиса и размерности подпространства, порожденного данным набором векторов, находим $\dim M_1$ и $\dim M_2$. Если $\dim M_1 + \dim M_2 \neq n$, то $\mathbb{R}_n \neq M_1 \oplus M_2$. Если $\dim M_1 + \dim M_2 = n$, пользуясь алгоритмом нахождения базиса и размерности суммы подпространств, находим $\dim (M_1 + M_2)$. Если $\dim (M_1 + M_2) = n$, то $\mathbb{R}_n = M_1 \oplus M_2$, в противном случае $\mathbb{R}_n \neq M_1 \oplus M_2$.

Проекция вектора на подпространство

Определение

Предположим, что $V=M_1\oplus M_2$ и $\mathbf{x}\in V$. В силу теоремы 2 существуют однозначно определенные векторы $\mathbf{x}_1\in M_1$ и $\mathbf{x}_2\in M_2$ такие, что $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2$. Вектор \mathbf{x}_1 называется проекцией \mathbf{x} на M_1 параллельно M_2 , а вектор \mathbf{x}_2 — проекцией \mathbf{x} на M_2 параллельно M_1 .

Алгоритм нахождения проекции вектора на подпространство

Пусть $V=M_1\oplus M_2$ и $\mathbf{x}\in V$. Предположим, что нам известны базис $\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_k$ подпространства M_1 и базис $\mathbf{b}_1,\mathbf{b}_2,\dots,\mathbf{b}_\ell$ подпространства M_2 . В силу замечания 7 $\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_k,\mathbf{b}_1,\mathbf{b}_2,\dots,\mathbf{b}_\ell$ — базис пространства V. Найдем координаты вектора \mathbf{x} в этом базисе. Пусть они имеют вид $(t_1,t_2,\dots,t_k,s_1,s_2,\dots,s_\ell)$. Тогда $t_1\mathbf{a}_1+t_2\mathbf{a}_2+\dots+t_k\mathbf{a}_k$ — проекция \mathbf{x} на M_1 параллельно M_2 , а $s_1\mathbf{b}_1+s_2\mathbf{b}_2+\dots+s_\ell\mathbf{b}_\ell$ — проекция \mathbf{x} на M_2 параллельно M_1 .

Обоснование этого алгоритма очевидно: если, в указанных обозначениях, $\mathbf{y}=t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_k\mathbf{a}_k$ и $\mathbf{z}=s_1\mathbf{b}_1+s_2\mathbf{b}_2+\cdots+s_\ell\mathbf{b}_\ell$, то $\mathbf{y}\in M_1$, $\mathbf{z}\in M_2$ и $\mathbf{x}=\mathbf{y}+\mathbf{z}$.

Проекция вектора на подпространство: пример (1)

В качестве примера применения алгоритмов, указанных на двух предыдущих слайдах, рассмотрим следующую задачу.

Задача. Проверить, что пространство \mathbb{R}_4 является прямой суммой подпространства M_1 , порожденного векторами $\mathbf{a}_1=(1,-1,2,1)$, $\mathbf{a}_2=(2,0,3,2)$, $\mathbf{a}_3=(1,1,1,1)$, и подпространства M_2 , порожденного векторами $\mathbf{b}_1=(2,1,3,2)$, $\mathbf{b}_2=(2,2,2,1)$, $\mathbf{b}_3=(2,0,4,3)$, и найти проекцию вектора $\mathbf{x}=(0,2,1,3)$ на M_1 параллельно M_2 .

Решение. Найдем размерность и базис подпространства M_1 :

$$\begin{pmatrix} 1 & -1 & 2 & 1 \\ 2 & 0 & 3 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 2 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Таким образом, dim $M_1=2$, а в качестве базиса пространства M_1 можно взять векторы ${\bf a_1}$ и ${\bf a_2'}=(0,2,-1,0)$. Найдем теперь размерность и базис подпространства M_2 :

$$\begin{pmatrix} 2 & 1 & 3 & 2 \\ 2 & 2 & 2 & 1 \\ 2 & 0 & 4 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 3 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & -1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 3 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Таким образом, $\dim M_2=2$, а в качестве базиса пространства M_2 можно взять векторы \mathbf{b}_1 и $\mathbf{b}_2'=(0,1,-1,-1)$. Мы видим, в частности, что $\dim M_1+\dim M_2=4$.

Проекция вектора на подпространство: пример (2)

Найдем теперь размерность пространства $M_1 + M_2$:

$$\begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 2 & -1 & 0 \\ 2 & 1 & 3 & 2 \\ 0 & 1 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 3 & -1 & 0 \\ 0 & 1 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}.$$

Мы видим, что $\dim(M_1+M_2)=4$. С учетом сказанного ранее, отсюда вытекает, что $\mathbb{R}_4=M_1\oplus M_2$. Объединяя найденные ранее базисы подпространств M_1 и M_2 , получаем, что векторы \mathbf{a}_1 , \mathbf{a}_2' , \mathbf{b}_1 , \mathbf{b}_2' образуют базис пространства \mathbb{R}_4 . Разложим вектор \mathbf{x} по этому базису:

$$\begin{pmatrix} 1 & 0 & 2 & 0 & | & 0 \\ -1 & 2 & 1 & 1 & | & 2 \\ 2 & -1 & 3 & -1 & | & 1 \\ 1 & 0 & 2 & -1 & | & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & 0 & | & 0 \\ 0 & 2 & 3 & 1 & | & 2 \\ 0 & -1 & -1 & -1 & | & 1 \\ 0 & 0 & 0 & -1 & | & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & 0 & | & 0 \\ 0 & 2 & 3 & 1 & | & 2 \\ 0 & 0 & 1 & -1 & | & 4 \\ 0 & 0 & 0 & -1 & | & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & 0 & | & 0 \\ 0 & 2 & 3 & 1 & | & 2 \\ 0 & 0 & 0 & -1 & | & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & | & -2 \\ 0 & 2 & 0 & 0 & | & 2 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & -1 & | & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & | & -2 \\ 0 & 2 & 0 & 0 & | & 2 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & -3 \\ 0 & 0 & 0 & 1 & | & -3 \end{pmatrix}.$$

Итак, $\mathbf{x}=-2\mathbf{a}_1+\mathbf{a}_2'+\mathbf{b}_1-3\mathbf{b}_2'$. Следовательно, проекцией вектора \mathbf{x} на M_1 параллельно M_2 является вектор $-2\mathbf{a}_1+\mathbf{a}_2'=(-2,4,-5,-2)$.

Ответ: (-2, 4, -5, -2).

|□▶ ◀♬▶ ◀돌▶ ◀돌▶ = 돌 : 쒸٩⊙

«Дополняющее» подпространство (1)

В дальнейшем нам пригодится следующее утверждение

Предложение 2

Для произвольного подпространства M векторного пространства V существует такое подпространство M' в V, что $V=M\oplus M'$.

Доказательство. Ясно, что если $M=\{\mathbf{0}\}$, то в качестве M' можно взять V, а если M=V, то достаточно положить $M'=\{\mathbf{0}\}$. Пусть теперь $\{\mathbf{0}\}\subset M\subset V$. Положим $\dim V=n$ и $\dim M=k$. В силу сказанного 0< k< n. Пусть $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$ — базис M. В силу теоремы 3 из лекции 8 существуют векторы $\mathbf{a}_{k+1},\ldots,\mathbf{a}_n$ такие, что векторы $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_n$ образуют базис V. Положим $M'=\langle \mathbf{a}_{k+1},\ldots,\mathbf{a}_n\rangle$. Проверим, что нулевой вектор единственным образом представим в виде суммы вектора из M и вектора из M'. Существование такого представления очевидно, поскольку $\mathbf{0}=\mathbf{0}+\mathbf{0}$ (см. замечание 1). Предположим теперь, что $\mathbf{0}=\mathbf{x}+\mathbf{y}$, где $\mathbf{x}\in M$, а $\mathbf{y}\in M'$. Тогда

$$\mathbf{x} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k$$
 u $\mathbf{y} = t_{k+1} \mathbf{a}_{k+1} + \dots + t_n \mathbf{a}_n$.

Следовательно, $\mathbf{0}=\mathbf{x}+\mathbf{y}=t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_n\mathbf{a}_n$. Поскольку $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_n$ — базис пространства V, получаем, что $t_1=t_2=\cdots=t_n=0$. Но тогда $\mathbf{x}=\mathbf{0}$ и $\mathbf{y}=\mathbf{0}$. Итак, вектор $\mathbf{0}$ единственным образом представим в виде суммы вектора из M и вектора из M'. В силу теоремы $2M+M'=M\oplus M'$.

«Дополняющее» подпространство (2)

Осталось доказать, что M+M'=V. Пусть ${\bf a}$ — произвольный вектор из V. Разложим его по базису ${\bf a_1},{\bf a_2},\ldots,{\bf a_n}$: ${\bf a}=q_1{\bf a_1}+q_2{\bf a_2}+\cdots+q_n{\bf a_n}$. Положим ${\bf b}=q_1{\bf a_1}+q_2{\bf a_2}+\cdots+q_k{\bf a_k}$ и ${\bf c}=q_{k+1}{\bf a_{k+1}}+\cdots+q_n{\bf a_n}$. Тогда ${\bf b}\in M$, ${\bf c}\in M'$ и ${\bf a}={\bf b}+{\bf c}$. Следовательно, $V\subseteq M+M'$. Обратное включение очевидно, и потому M+M'=V.