ELEC 207 Instrumentation and Control

11 – Analog to Digital Conversion

Dr Roberto Ferrero

Email: Roberto.Ferrero@liverpool.ac.uk

Telephone: 0151 7946613

Office: Room 506, EEE A block

Measurement system

General structure

Measurement system

Signal processing Sampling and A/D conversion

Before converting an analog signal into a digital form, the signal needs to be **sampled**:

 While the analog signal is defined in the continuous time domain, only some samples at discrete times are considered for the A/D conversion;

 If sampling is done correctly, no information is lost; otherwise, huge errors may arise.

Signal sampling

Sampling theorem

NOT CORRECT SAMPLING (ALIASING)

 The sampling frequency must be higher than (not equal to) twice the highest frequency component present in the signal:

$$f_s > 2f_{max}$$

Signal sampling

Limitations in the sampling frequency

The maximum achievable sampling frequency is limited by the employed hardware, and in particular by:

- A/D conversion speed;
- Communication speed (data transfer);
- Signal processing speed.

Different types of A/D converters allow different sampling frequencies:

Usually, a higher sampling frequency corresponds to a worse accuracy.

Quantisation

Digital signal resolution

The number of bits used to encode information in digital form determines the number of different codes available and therefore the **resolution of the digital signal**:

- N bits allow 2^N different codes:
 - > E.g., with 3 bits we can write: 000, 001, 010, 011, 100, 101, 110, 111;
 - This is similar to digital numbers in base 10;

The resolution of a binary signal is therefore:

$$resolution = \frac{range}{2^N}$$

© Bentley, Principles of Measurement Systems, 4th ed., Pearson 2005.

Digital to analog converters (DACs)

General principles

Before considering how a (sampled) analog signal can be converted into a digital form, let's consider the opposite conversion, **from digital to analog**:

- Each bit has to be converted into a voltage and weighted based on its position in the binary number:
 - ➤ E.g., the binary number 101101 means:

$$1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$

- There are two main types of digital to analog converters (DACs):
 - Binary weighted resistor network;
 - R-2R ladder network.

Digital to analog converters (DACs)

Binary weighted resistor network

The conversion is achieved in the following way:

- The value of each bit corresponds to the state of a switch (0 = open, 1 = closed);
- The weight of the bit is obtained by using resistors with different values, which change the gain of the amplifier for each bit:

$$V_{OUT} = -\frac{R_F}{R} V_{REF} \sum_{i=0}^{N-1} \frac{b_i}{2^{N-1-i}}$$

© Bentley, Principles of Measurement Systems, 4th ed., Pearson 2005.

Digital to analog converters (DACs)

R-2R ladder network

The main disadvantage of the previous converter is that it requires a **wide range of resistors**, from R to $2^{N-1}R$, and they must all have similar tolerance and stability.

To overcome this problem, the R-2R ladder network can be used instead:

- Only two (similar) values of resistance are required: R and 2R;
- This is the most common DAC:
 - It is fast and low-cost.

General principles

Analog to digital converters (ADCs) convert a (sampled) analog signal into a digital form.

The following two parameters must be considered in the design/choice of an ADC:

- The number of bits, which determines the resolution of the digital signal (note that this does not necessarily correspond to the accuracy!);
- The conversion time, which determines the maximum sampling frequency and therefore the maximum frequency bandwidth of the input analog signal;
- The cost and complexity of the converter.

Successive approximation converter (1)

The conversion is achieved by a **sequence of guesses**:

• At each cycle, the value of one bit is guessed as 0, starting from the most significant bit (MSB), with all remaining bits set at 1:

The guessed output is then converted into an analog signal by a DAC

and compared to the input signal to find whether the guess was correct or wrong;

 The conversion time is proportional to the number of bits.

© Bentley, Principles of Measurement Systems, 4th ed., Pearson 2005.

Successive approximation converter (2)

Example:	Clock pulse	DAC input	DAC V_q output (volts)	Comparator output V_C	Result
lanut valta sa					
Input voltage:	1 Clear register	00000000	0	0	
0.515 V	2 First guess	01111111 $(127)_{10}$	1.27	1 HIGH	$b_7 = 0$
	3 Next guess	<u>0</u> 0111111	0.63	1 HIGH	$b_6 = 0$
 8 bits. 	4	$(63)_{10}$ 00011111	0.31	0 LOW	$b_5 = 1$
	5	$(31)_{10}$ 00101111	0.47	0 LOW	$b_4 = 1$
	6	$(47)_{10}$ 00110111	0.55	1 HIGH	$b_3 = 0$
	O	$(55)_{10}$	0.55	THOH	$\nu_3 = 0$
	7	<u>00110</u> 011	0.51	0 LOW	$b_2 = 1$
© Bentley, Principles of Measurement Systems, 4th ed., Pearson 2005.	8	$(51)_{10}$ 001101 01	0.53	1 HIGH	$b_1 = 0$
	9 Final guess	$(53)_{10}$ 0011010	0.52	1 HIGH	$b_0 = 0$
UNIVERSITY OF	$(52)_{10}$				
V LIVERPOOL	Output digital signal = 00110100				

Dual slope converter (1)

output

Another common ADC is the **dual slope converter**, based on the following principle:

- Firstly, the (positive) input signal is integrated for a fixed time;
- Then, a constant negative signal is integrated, and the time required for the integrator to go back to 0 is measured.

© Bentley, Principles of Measurement Systems, 4th ed., Pearson 2005.

Dual slope converter (2)

This principle is implemented by the following circuit:

- The digital output is the counter output when the negative ramp reaches 0, which is proportional to the input signal:
 - ➤ The converter resolution is given by the number of bits in the counter and does not affect the conversion time.

References

Textbook: Principles of Measurement Systems, 4th ed.

For further explanation about the points covered in this lecture, please refer to the following chapters and sections in the **Bentley** textbook:

- Chapter 10, Sec. 10.1.1: Sampling;
- Chapter 10, Sec. 10.1.2: Quantisation;
- Chapter 10, Sec. 10.1.5: Digital-to-analogue converters (DACs);
- Chapter 10, Sec. 10.1.6: Analogue-to-digital converters (ADCs).

NOTE: Topics not covered in the lecture are not required for the exam.

References

Textbook: Measurement and Instrumentation, 2nd ed.

For further explanation about the points covered in this lecture, please refer to the following chapters and sections in the **Morris-Langari** textbook:

- Chapter 6, Sec. 6.1: Introduction;
- Chapter 6, Sec. 6.2: Preliminary definitions;
- Chapter 6. Sec. 6.3: Sensor signal characteristics;
- Chapter 6, Sec. 6.4: Aliasing;
- Chapter 6, Sec. 6.5: Quantization.

NOTE: Topics not covered in the lecture are not required for the exam.

