Enhancing Customer Churn Prediction Through Integrated Machine Learning and Al-Driven Dashboards: The Development of the TriView Al Platform

BY Hui Yi Huang

Business Problem

- Understanding customer behavior is crucial to improving retention
- Modern dashboards for data visualization often focus on linear predictions

Main Purpose

To streamline and accelerate decision-making by providing a single upgraded dashboard that delivers clearer insights and faster responses for churn analysis.

TRIVIEW AI DASHBOARD

- 1. Data visualization
- 2. Machine learning (ML)
- 3. Natural language generation (NLG)

KEY FEATURES FOR CHURN

Simplified and highlight essential factors

Dataset Features

'E-commerce Customer Churn Analysis and Prediction' from Kaggle.

Variable	Discerption	
CustomerID	Unique customer ID	
Churn	Churn Flag	
Tenure	Tenure of customer in organization	
PreferredLoginDevice	Preferred login device of customer	
CityTier	City tier	
WarehouseToHome	Distance in between warehouse to home of customer	
PreferredPaymentMode	Preferred payment method of customer	
Gender	Gender of customer	
HourSpendOnApp	Number of hours spend on mobile application or website	
NumberOfDeviceRegistered	Total number of deceives is registered on particular customer	
PreferedOrderCat	Preferred order category of customer in last month	
SatisfactionScore	Satisfactory score of customer on service	
MaritalStatus	Marital status of customer	
NumberOfAddress	Total number of added added on particular customer	
Complain	Any complaint has been raised in last month	
OrderAmountHikeFromlastYear	Percentage increases in order from last year	
CouponUsed	Total number of coupon has been used in last month	
OrderCount	Total number of orders has been places in last month	
DaySinceLastOrder	Day Since last order by customer	
Cashback Amount	Average cashback in last month	

- E-commerce focus
- Manageable complexity for light cleaning
- Small enough to prioritize development
- Real-world data, ensuring applicability
- Enough feature variety

Techniques

Tableau's Function

Machine Learning

- Integration with Python **TabPy**
- Extension of Generative AI Arria
- Real-time dynamic prediction and report

Classification Models:

Logistic Regression, Support Vector Classifier (SVC), Multilayer Perceptron (MLP), Random Forest, Decision Tree, Gradient Boosting.

Limitation

TabPy's Trade-off

Balancing Efficiency and Complexity

Pipeline

Python – EDA (Exploratory Data Analysis)

- Summary statistics for key variables
- Distributions of numerical features and categorical features by histograms, segmenting the chart into churned and non-churned customer groups.
- Examined **correlations** between features

Key Insights

- **Tenure:** Customers with shorter tenure have higher churn rates.
- **Complain:** Customers who complaints are more likely to churn.
- Marital Status: Single customers show a higher likelihood of churning.
- **Satisfaction Score:** High satisfaction alone may not guarantee retention.
- Day Since Last Order, Number Of Device Registered, and Cashback

 Amount have minor correlation with churn.

Python – Preparing for Machine learning

Data Cleaning & Preparation

- Imputed **missing values** (median/mode).
- One-Hot **Encoding** for categorical variables.
- Outlier treatment with Interquartile Range (IQR) method.
- Standardized features and split data.

Modeling & Evaluation

- Implemented selected classification models
- **Evaluated** models using accuracy, F1-score, and recall score.

	Model	DataFrame	Accuracy	F1 Score	Recall Score
0	Logistic Regression	Standardized	0.891285	0.623053	0.512821
1	SVC	Standardized	0.911051	0.687697	0.558974
2	MLP	Standardized	0.964061	0.893617	0.861538
3	Random Forest	Standardized	0.955076	0.860335	0.789744
4	Decision Tree	Standardized	0.957772	0.881612	0.897436
5	Gradient Boosting	Standardized	0.907457	0.696165	0.605128

Python – Best models, Feature Importance

- Used Cross-Validation to fine-tune hyperparameters and achieved optimal models.
- Extracted Feature Importance based on the models, MLP and Random Forest (Recall score: 0.85).

Key Insights

Number of Addresses, Warehouse to Home, and City Tier,
 which did not appear as significant in the earlier analyses.

	Top Feature
0	Tenure
1	Complain
2	DaySinceLastOrder
3	SatisfactionScore
4	NumberOfAddress
5	NumberOfDeviceRegistered
6	WarehouseToHome
7	CashbackAmount
8	MaritalStatus_Single
9	CityTier

Tableau – TabPy for Machine Learning

Machine Learning

- Exported the dataset into a list with all features in same data types for TabPy.
- Defined the top 10 features as parameters, applied StandardScaler, and integrated the Random Forest Classifier with the best parameters.
- Created a dynamic visualization that displays real-time churn predictions.

Tableau – Visualizations and Generative AI

Visualizations

- Created key metrics using SQL calculated fields.
- Divided into demographic section, behavior section, activity section, and purchase section.
- Created dynamic visualizations with interactive filters of churn value.

Generative Al

• Integrated Arria, the extension of generative AI, for automated reports based on user-selected data.

TriView Al Dashboard

Objective Achievements

- Uncovered the crucial hidden features that significantly influence churn rates.
- The integration of machine learning and natural language generation within a Dashboard.

Benefits of TriView AI Dashboard for Business

REAL-TIME PREDICTION

IDENTIFICATION OF KEY FEATURES

STREAMLINED DECISION-MAKING

BY Hui Yi Huang