MATH 180A - INTRODUCTION TO PROBABILITY PRACTICE MIDTERM #1

WINTER 2021

Name (Last, First):		
, , ,		
Student ID:		

REMEMBER THIS EXAM IS GRADED BY A HUMAN BEING. WRITE YOUR SOLUTIONS NEATLY AND COHERENTLY, OR THEY RISK NOT RECEIVING FULL CREDIT.

WINTER 2021

- 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
 - (a) Suppose that $A, B \in \mathcal{F}$ satisfy

$$\mathbb{P}(A) + \mathbb{P}(B) > 1.$$

Making no further assumptions on A and B, prove that $A \cap B \neq \emptyset$.

Solution. First method (proof by contradiction). Assume that $A \cap B = \emptyset$. Then $P(A \cup B) = P(A) + P(B) > 1$, contradiction. Therefore, $A \cap B \neq 0$. Second method.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \le 1,$$

therefore $P(A \cap B) \ge P(A) + P(B) - 1 > 0$, and we conclude that $A \cap B \ne \emptyset$.

(b) Prove that A is independent from itself if and only if $\mathbb{P}(A) \in \{0, 1\}$.

Solution. By definition, events A and B are independent if $P(A \cap B) = P(A)P(B)$. Take A = B, so that A being independent of A is equivalent to $P(A \cap A) = P(A)P(A)$. Since $A \cap A = A$, we have that P(A) satisfies

$$(P(A))^2 = P(A).$$

The only two numbers that satisfy the above equation are numbers 0 and 1.

- 2. Suppose we have an urn with 10 red balls, 15 blue balls, and 20 green balls. We draw three balls without replacement uniformly at random.
 - (a) What is the probability that we have more red balls than non-red balls?

Solution. Define the events $A = \{\text{more red balls than non-red balls}\}$ and for $i \in \{0, 1, 2, 3\}$ $R_i = \{\text{exactly } i \text{ red balls}\}$. Then $A = R_2 \cup R_3$, $\#A = \#R_2 + \#R_3$. Since the balls are chosen without replacement and order does not matter, we have that

(1)
$$\#\Omega = {45 \choose 3}, \quad \#R_i = {10 \choose i} {35 \choose 3-i},$$

therefore

(2)
$$P(A) = \frac{\binom{10}{2}\binom{35}{1} + \binom{10}{3}}{\binom{45}{3}}.$$

(b) What is the probability that we have more red balls than green balls?

Solution. Define the events $B = \{ \text{ more red balls than green balls} \}$, $D(i, j, k) = \{ i \text{ red balls, } j \text{ blue balls, } k \text{ green balls} \}$. Then $B = D(1, 2, 0) \cup D(2, 1, 0) \cup D(3, 0, 0) \cup D(2, 0, 1)$, and thus

(3)
$$P(B) = \frac{\binom{10}{1}\binom{15}{2} + \binom{10}{2}\binom{15}{1} + \binom{10}{3} + \binom{10}{2}\binom{20}{1}}{\binom{45}{3}}.$$

(c) What is the probability that at least two of the three balls have the same color?

Solution. Define the event $C = \{$ at least two have the same color $\}$. Then the complement of this event is given by $C^{\complement} = \{$ all three balls of different colors $\}$, which means that there is one red, one blue and one green. Therefore

(4)
$$P(C^{\complement}) = \frac{\binom{10}{1}\binom{15}{1}\binom{20}{1}}{\binom{45}{3}}, \quad P(C) = 1 - \frac{\binom{10}{1}\binom{15}{1}\binom{20}{1}}{\binom{45}{3}}.$$

- **3.** A box contains 3 coins, two of which are fair and the third has probability 3/4 of coming up heads. A coin is chosen randomly from the box and tossed 3 times.
 - (a) What is the probability that all 3 tosses are heads?

Solution. Define the following events:

$$A = \{\text{all 3 tosses are heads}\}\$$

$$B_1 = \{ \text{chosen coin is fair} \}$$

$$B_2 = \{\text{chosen coin is biased}\}.$$

Then B_1 and B_2 form a partition of the sample space with

$$P(B_1) = \frac{2}{3}, \qquad P(B_2) = \frac{1}{3},$$

and depending on which coin was chosen from the box, we have the conditional probabilities of observing heads on all three tosses

$$P(A|B_1) = \left(\frac{1}{2}\right)^3, \qquad P(A|B_2) = \left(\frac{3}{4}\right)^3.$$

Then we can compute P(A) using the law of total probability

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2)$$

$$= \frac{1}{8} \cdot \frac{2}{3} + \left(\frac{3}{4}\right)^3 \frac{1}{3}$$

$$= \frac{43}{192}.$$

(b) Given that all three tosses are heads, what is the probability that the biased coin was chosen?

Solution. Using the Bayes' rule, we have

$$P(B_2|A) = \frac{P(A|B_2)P(B_2)}{P(A)} = \frac{27}{43}.$$

4. Let X be a discrete random variable taking the values $\{1, 2, ..., n\}$ all with equal probability. Let Y be another discrete random variable taking values in $\{1, 2, ..., n\}$. Assume

that X and Y are independent. Show that $\mathbb{P}(X = Y) = \frac{1}{n}$. (Hint: you do not need to know the distribution of Y to calculate this.)

Solution. Since both random variables X and Y take values in the set $\{1, 2, ..., n\}$, the event $\{X = Y\}$ can be written as a disjoint union

$${X = Y} = \bigcup_{k=1}^{n} {X = k, Y = k},$$

therefore the probability of $\{X = Y\}$ is equal to

$$P(X = Y) = \sum_{k=1}^{n} P(X = k, Y = k).$$

From the independence of X and Y and the fact that P(X = k) = 1/n for all $k \in \{1, ..., n\}$ we have that

$$\sum_{k=1}^{n} P(X = k, Y = k) = \sum_{k=1}^{n} P(X = k)(Y = k).$$

$$= \frac{1}{n} \sum_{k=1}^{n} P(Y = k).$$

Since Y is distributed on $\{1,\ldots,n\}$, $\sum_{k=1}^n P(Y=k)=1$ and we conclude that P(X=Y)=1/n.

5. Consider a point P = (X, Y) chosen uniformly at random inside of the triangle in \mathbb{R}^2 that has vertices (1,0), (0,1), and (0,0). Let $Z = \max(X,Y)$ be the random variable defined as the maximum of the two coordinates of the point. For example, if $P = (\frac{1}{2}, \frac{1}{3})$, then $Z = \max(X,Y) = \frac{1}{2}$. Determine the cumulative distribution function of Z. Determine if Z is a continuous random variable, a discrete random variable, or neither. If continuous, determine the probability density function of Z. If discrete, determine the probability mass function of Z. If neither, explain why.

(Hint: Draw a picture.)

Solution.

First note, that since $Z = \max\{X, Y\}$, the event $\{Z \leq s\}$ can be rewritten as

$$\{\max\{X,Y\} \le s\} = \{X \le s, Y \le s\}.$$

So in order to compute the CDF of Z, we have to compute the probability that $X \leq s, Y \leq s$ for all $s \in \mathbb{R}$, where (X,Y) is uniformly chosen from the triangle with vertices (0,0), (0,1) and (1,0).

It is clear that $F_Z(s) = P(Z \le s) = 0$ if $s \le 0$ and $F_Z(s) = 1$ if $s \ge 1$. For $s \in (0,1)$ two situations are possible (see the picture below)

If $0 \le s \le 1/2$, then

$$P(X \le s, Y \le s) = \frac{\operatorname{Area}(A)}{\operatorname{Area of the triagle}} = \frac{s^2}{\frac{1}{2}} = 2s^2.$$

If $1/2 \le s \le 1$, then

$$P(X \le s, Y \le s) = \frac{\text{Area}(B)}{\text{Area of the triagle}} = \frac{\frac{1}{2} - (1 - s)^2}{\frac{1}{2}} = 1 - 2(1 - s)^2.$$

We finally get that

$$F_Z(s) = \begin{cases} 0, & s \le 0, \\ 2s^2, & 0 \le s \le 1/2, \\ 1 - 2(1-s)^2, & 1/2 \le s \le 1, \\ 1, & s \ge 0. \end{cases}$$

It is clear that the function is continuous at points s = 0 and s = 1, and we can check that it is also continuous at s = 1/2

$$2\left(\frac{1}{2}\right)^2 = \frac{1}{2} = 1 - 2\left(1 - \frac{1}{2}\right)^2.$$

6 WINTER 2021

Since the CDF of Z is continuous, the random variable Z is a continuous random variable. In order to compute its probability density function, differentiate the CDF

$$f_Z(s) = \begin{cases} 0, & s \le 0, \\ 4s, & 0 \le s \le 1/2, \\ 4 - 4s, & 1/2 \le s \le 1, \\ 0, & s \ge 0. \end{cases}$$