5. feladatsor: Struktúrák

1. feladat

Legyen $A = \{2, 3, 6, 8, 9, 12, 18\} \subset \mathbb{N}^+, R \subseteq A \times A \text{ és } aRb \iff a \mid b.$

- (a) Mutassa meg, hogy az R reláció részbenrendezés az A halmazon (másképp: Mutassa meg, hogy (A; R) részbenrendezett struktúra.
- (b) Rajzolja meg az R rendezési diagramját (Hasse-diagram).
- (c) Adja meg az $A \subset N$ halmaz következő jellemzőit ($(\mathbb{N}^+; |)$ -re nézve): minimális elem, legkisebb elem, maximális elem, legnagyobb elem, alsó korlát, felső korlát, infimum, szuprémum.
- (d) Hogyan változik (a)-(b)-(c), ha az A halmazhoz hozzávesszük az $1 \in \mathbb{N}$ elemet?
- (e) Hogyan változik (a)-(b)-(c), ha az A halmazt a szokásos \leq rendezéssel a $(\mathbb{N}; \leq)$ rendezési struktúrában tekintjük?

2. feladat

- (a) Bizonyítsa be, hogy $(\mathbb{N}^+; |)$ részbenrendezett struktúra. Részbenrendezett struktúra-e $(\mathbb{N}; |)$ illetve $(\mathbb{Z}; |)$?
- (b) Bizonyítsa be, hogy az alábbi relációval (N; <) részbenrendezett struktúra, sőt teljesen rendezett struktúra.

$$n, m \in \mathbb{N}, n \le m \iff \exists k \in \mathbb{N}(n+k=m)$$

3. feladat

Döntse el a következő relációkról, hogy részbenrendezési relációk-e az adott halmazon.

- (a) P a valós együtthatós polinomok halmaza, $R \subseteq P \times P$, $fRy \iff \deg f \leq \deg q$
- (b) $R \subseteq \mathbb{Z} \times \mathbb{Z}, aRb \iff |a| \le |b|$
- (c) V a 10 egység hosszúságú \mathbb{R}^2 -beli vektorok halmaza, $R \subseteq V \times V, xRy \iff$ az x vektor hajlásszöge kisebb-egyenlő mint az y vektor hajlásszöge (hajlásszög legyen $[0; 2\pi[-beli)]$
- (d) $R \subseteq \mathbb{R}^2 \times \mathbb{R}^2$, $xRy \iff$ az x vektor hossza kisebb-egyenlő mint az y vektor hossza

4. feladat (*)

Határozza meg a következő korlátokat, amikor

- (a) az egyes halmazok a valós számok R halmazának részhalmazai
- (b) az egyes halmazok a racionális számok Q halmazának részhalmazai
 - (1) $\sup\{1, 2, ..., n\}$ ahol $n \in \mathbb{N}^+$
 - (2) $\sup\{x \in \mathbb{R} \mid 0 < x < 1\}$
 - $(3) \sup\{x \in \mathbb{R} \mid 0 \le x \le 1\}$
 - (4) $\inf\{(-1)^n + \frac{1}{n} \mid n \in \mathbb{N} \setminus \{0\}\}$ (5) $\sup\{x \in \mathbb{Q} \mid x^2 < 2\}$

5. feladat (*)

Tekintsük a $H \subseteq \mathbb{R}$ részhalmazt \mathbb{R} -en a szokásos \leq rendezéssel. Határozza meg a H halmaz alsó illetve felső korlátait továbbá infimumát illetve szuprémumát.

- (a) $H = [1; 2] \cup (5; 7]$
- (b) $H = [-\infty; 3) \cup \{6, 7\}$
- (c) $H = (-\infty; 5) \cup (5; \infty)$

- (d) $H = [-3; 2] \cup (4; \infty)$
- (e) $H = (-3; 1] \cup (2; 4) \cup [5; 10)$
- (f) $H = \{-8\} \cup [1; \infty)$

6. feladat

- (a) Mutassa meg, hogy a következő relációk részbenrendezési relációk az adott halmazon.
- (b) Rajzolja meg a rendezések Hasse-diagramját.
- (c) Állapítsa meg a halmazok következő korlátait: minimális elem, legkisebb elem, maximális elem, legnagyobb elem.
- (d) Döntse el, hogy a következő halmazok bármely a,b eleméhez létezik-e $\inf\{a,b\}$ illetve $\sup\{a,b\}$.
 - (1) az $\{1,2,3,4\}$ halmaz legalább kételemű részhalmazainak halmazán $A \leq B \iff A \subseteq B$
 - (2) az $\{1,2,3,4\}$ halmaz legfeljebb kételemű részhalmazainak halmazán $A \leq B \iff B \subseteq A$
 - (3) az $\{3,6,9,10,20,30\}$ halmaz elemein $a \leq b \iff a \mid b$
 - (4) az $\{1, 2, 3, 4, 6, 12\}$ halmaz elemein $a \leq b \iff a \mid b$

7. feladat (*)

Legyen a természetes számokból álló rendezett párok halmazán $(\mathbb{N} \times \mathbb{N})$ definiálva a következő rendezés: $(a,b) \leq (c,d) \iff b < d \lor (a \leq c \land b = d)$. Bizonyítsa be, hogy \leq részbenrendezési reláció a $\mathbb{N} \times \mathbb{N}$ halmazon. Döntse el, hogy a \leq reláció teljes rendezés-e az $\mathbb{N} \times \mathbb{N}$ halmazon.

8. feladat

Legyen $A = \{a, b, c, d\}, f \subseteq A \times A$. Döntse el, hogy az f relációval az A halmaz jólrendezhető-e.

- (a) $f = \{(a,b), (a,c), (a,d), (b,c), (b,d), (c,d)\}$
- (b) $f = \{(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, c), (c, d), (d, d)\}$
- (c) $f = \{(a, a), (a, b), (a, d), (b, b), (b, d), (d, d), (a, c), (a, d), (c, c), (c, d)\}$

9. feladat

Döntse el, mely relációk teljes rendezések az $A = \{1, 2, 3, 4\}$ halmazon.

- (a) $f = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$
- (b) $f = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- (c) $f = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,4)\}$

- 10. feladat (*)
- 11. feladat (*)
- 12. feladat (*)
- 13. feladat (*)
- 14. feladat (*)

Felhasznált irodalom

Kovács Attila: Az informatika matematikai alapjai. ELTE IK Komputeralgebra Tanszék

Ismeretlen szerző: Matematikai analízis jegyzet. (5. feladat)

György Anna, Kárász Péter, Sergyán Szabolcs, Vajda István, Záborszky Ágnes: *Diszkrét matematika példatár*. Budapesti Műszaki Főiskola

Béres Zoltán, Csikós Pajor Gizella, Péics Hajnalka: Algebra elméleti összefoglaló és példatár. Bolyai Farkas Alapítvány

Koch-Gömöri Richárd, kgomoririchard@inf.elte.hu, kgomori.richard@gmail.com