

COMPUTANDO *ENSEMBLE METHODS*PARA PREDIZER EVASÕES ESTUDANTIS

RODOLFO BOLCONTE DONATO

Orientadora: Samara Martins Nascimento

Coorientador: Gustavo Wagner Diniz Mendes

SUMÁRIO

- Introdução:
 - Evasão Estudantil;
 - Justificativa;
 - Objetivos;
 - Classificação Automática de Dados;
 - Aprendizado de Máquina;
- Planejamento:
 - Preparação dos Dados;
 - Algoritmos Utilizados;
 - Métricas Estatísticas;
 - Metodologia Experimental.
- Resultados Obtidos:
 - Comparação dos Testes 1 e 2;
 - Comparação dos Testes 3 e 4;
 - Comparação dos Testes 5 e 6.
- Considerações Finais e Pesquisas Futuras

EVASÃO ESTUDANTIL

Fonte: https://sambatech.com/

EVASÃO ESTUDANTIL NO IFPB *CAMPUS* CAMPINA GRANDE

- Custo de uma evasão:
 - 1 aluno custa R\$ 3,7 mil por mês;
 - 10 alunos custam R\$ 444 mil por ano.
- Alunos do Curso Superior de Tecnologia (CST) em Telemática de 2007 a 2016:
 - 839 matrículas realizadas;
 - 439 matrículas evadidas.

08/06/2019

JUSTIFICATIVA

- Trabalho de Mestrado da Universidade Federal de Campina Grande (UFCG) para a previsão de evasões estudantis, testando duas estratégias computacionais [Melo 2016];
- Projeto de pesquisa para previsão de evasões estudantis nos cursos do Instituto Federal da Paraíba (IFPB) campus Campina Grande, com dois grupos de testes [Bolconte e Mendes 2017].

OBJETIVOS

• Geral:

• Comparar e definir o *Ensemble Method* mais adequado para a previsão automática de evasões estudantis do CST em Telemática do IFPB *campus* Campina Grande.

• Específicos:

- Definir atributos descritivos de evasões;
- Caracterizar o funcionamento dos algoritmos utilizados;
- Testar e comparar o desempenho dos *Ensemble Methods* utilizando o mesmo Algoritmo de Classificação;
- Definir o *Ensemble Method* mais adequado para a previsão de evasões num conjunto específico.

CLASSIFICAÇÃO AUTOMÁTICA DE DADOS

Fonte: https://resultato.com.br/

APRENDIZADO DE MÁQUINA

Fonte: https://lamfo-unb.github.io/

APRENDIZADO DE MÁQUINA

PREPARAÇÃO DOS DADOS

- Dados da plataforma *QAcadêmico* disponibilizados como *backup* pelo Instituto Federal da Paraíba:
 - Dados de todos os *campi* e seus cursos até o ano de 2016;
 - Garantia de dados não redundantes através de correção de valores pelo sistema.
- Realização de filtragem dos dados de alunos referentes ao CST em Telemática (de 2007.1 a 2015.1):
 - Organização de atributos descritivos de evasão estudantil ou não;
 - Uma tupla de informações para uma matrícula;
 - Total de 720 matrículas, 429 evadidas e 291 não evadidas.

ATRIBUTOS DESCRITIVOS

- Atributos Quantitativos e Qualitativos;
- Atributos utilizados:
 - Porcentagem do Curso;
 - Coeficiente de Rendimento do Aluno;
 - Quantidade de Períodos Letivos;
 - Quantidade de Disciplinas do Curso;
 - Quantidade de Disciplinas (Aprovadas, Reprovadas por Nota, Reprovadas por Falta, Canceladas e Trancadas);
 - Evasão.

08/06/2019

ALGORITMOS DE CLASSIFICAÇÃO

- Possibilidade de identificar a qual categoria já assimilada uma amostra pode pertencer;
- Algoritmos conhecidos:
 - K-Nearest Neighbor;
 - Naive Bayes;

08/06/2019

- Support Vector Machine;
- Árvore de Decisão.

ALGORITMO ÁRVORE DE DECISÃO

ENSEMBLE METHODS

- Utilização de vários modelos para obter desempenho maior que apenas um, trabalhando dentro de limitações, como velocidade de processamento e tempos de retorno [Julian 2016];
- Se dividem em:
 - Algoritmos de Agregação;
 - Algoritmos de Impulso.

ALGORITMO FLORESTA ALEATÓRIA

ALGORITMO AUMENTO DE GRADIENTE

MATRIZ DE CONFUSÃO

		VALOR PREVISTO	
		POSITIVO	NEGATIVO
VALOR REAL	POSITIVO	(VP) VERDADEIRO POSITIVO	(FP) FALSO POSITIVO
	NEGATIVO	(FN) FALSO NEGATIVO	(VN) VERDADEIRO NEGATIVO

- Para previsão de evasões:
 - VP: Evasões previstas corretamente;
 - FP: Não evasões previstas como evasões;
 - FN: Evasões previstas como não evasões;
 - VN: Não evasões previstas corretamente.

MÉTRICAS ESTATÍSTICAS

$$Acur\'{a}cia = \frac{(VN + VP)}{(VN + FP + FN + VP)}$$

$$Precisão = \frac{VP}{(VP + FP)}$$

$$Sensibilidade = \frac{VP}{(VP + FN)}$$

$$Taxa\ de\ Falsa\ Previsão\ Positiva = \frac{FP}{(FP+FN)}$$

 $Tempo de Processamento = T_f - T_i$

METODOLOGIA EXPERIMENTAL

- População do QAcadêmico com amostras referente ao CST em Telemática de 2007.1 a 2015.1;
- Conjunto de Dados divido com o método *Bootstrap* a cada Teste:
 - Dois Subconjuntos: um com 63,2% dos dados para Treino (455 amostras) e 36,8% para Teste (265 amostras).
- Cada Teste é executado 10 vezes, estendendo o método k-fold.

TESTES DESBALANCEADOS

- Testes com o Conjunto de Dados sem utilização de técnicas de Balanceamento de amostras:
 - Teste 1: Floresta Aleatória sem balanceamento de dados;
 - Teste 2: Aumento de Gradiente sem balanceamento de dados.

COMPARAÇÃO DOS TESTES 1 E 2

TESTES COM OVERSAMPLING

- Testes com o Conjunto de Dados balanceado com o método Oversampling:
 - Teste 3: Floresta Aleatória com balanceamento do tipo Oversampling;
 - Teste 4: Aumento de Gradiente com balanceamento do tipo Oversampling.

COMPARAÇÃO DOS TESTES 3 E 4

TESTES COM UNDERSAMPLING

- Testes com o Conjunto de Dados balanceado com o método *Undersampling*:
 - Teste 5: Floresta Aleatória com balanceamento do tipo *Undersampling*;
 - Teste 6: Aumento de Gradiente com balanceamento do tipo *Undersampling*.

COMPARAÇÃO DOS TESTES 5 E 6

CONSIDERAÇÕES FINAIS

- Aumento de Gradiente ligeiramente melhor que o Floresta Aleatória:
 - Tempo de Processamento determinante;
 - Menor custo computacional;
 - Menor inclinação na previsão de dados.
- Algoritmos trabalham melhor com Conjunto de Dados sem balanceamento, se utilizar *Bootstrap*.

PESQUISAS FUTURAS

- Utilização do Aumento de Gradiente em pesquisas similares;
- Definir os atributos que mais descrevem uma evasão ou não:
 - Least Absolute Shrinkage and Slection Operator (LASSO);
 - Recursive Feature Elimination (RFE).
- Utilização de atributos socioeconômicos para a classificação;
- Amostras referentes a um período de matrícula;
- Utilizar dados mais atuais;
- Informar os possíveis evasores aos setores de apoio ao estudante para a realização de medidas preventivas.

COMPUTANDO *ENSEMBLE METHODS*PARA PREDIZER EVASÕES ESTUDANTIS

RODOLFO BOLCONTE DONATO

Orientadora: Samara Martins Nascimento

Coorientador: Gustavo Wagner Diniz Mendes