Restaurant
Recommendation
on yelp

Alif Naufal Farrashady A0218302U
Chng Jin Yang Ray A0218512M
Chua Yee Siong Danyel A0222792A

yelp

Background

Businesses

Recommended Reviews Your trust is our top concern, so businesses can't pay to alter or remove their reviews. Learn more. Da D. SoMa, San Francisco, CA Start your review of Las Vegas Brewing @ 0 **=** 0 5 stars Overall rating 234 reviews 1 star Newest First > English (233) v Filter by rating > Search reviews Q Kyle M. NV. NV □0 • 3 4/9/2023 What a wonderful atmosphere! We came in for our first time today. Chose the brewery because it's kid friendly right around the corner, has a diverse menu, plus bottomless Mimosas with brunch that's a no brainer. Food was immaculate, very friendly staff and on top of it, as soon as one Mamosa was finish the replacement was there right away. Oh don't let me forget happy Easter !!!! Thanks for the amazing service 09 Thanks 0 Love this 0 Oh no 0 Suzanne S. Las Vegas, NV 4/8/2023

Users

Background

Restaurants on Yelp

Figure 1: Count of Each Business Category

Motivation

How do recommendations on Yelp work?

Las Vegas, NV > Restaurants > Mexican

Best Mexican near me in Las Vegas, Nevada

Current recommendation system is:

A Rigid

Safe but monotonous

B Lacks Exploration

Into lesser known businesses

Motivation

Bandit Algorithms

Motivation

Problem

Solution

Overwhelming number of restaurant options on Yelp and rigidity of recommendations for users

Using bandit algorithms to provide personalized restaurant

recommendations to users

Highlights of Key Findings and Implications

Epsilon-Greedy

Epsilon-Decay

Softmax

Annealing Softmax

Upper Confidence Bound(UCB)

Bayesian UCB

Thompson Sampling

Linear UCB

Contextual Thompson Sampling

Data

Data - files

01 users.json

Business data with business attributes

02 business.json

User data including metadata

03 reviews.json

Full review text data including user and business id

checkin.json

Check Ins on a business

tip.json

Tips written by a user on a business

photo.json

06

04

05

Contains photo data including caption

Data - size

Data - filtering

Location

Restaurants Only

Data - filtering

Number of restaurants after filtering

Benchmark number to reduce complexity

20 - 40

Data - filtering

Average Stars per Restaurant

Las Vegas Minimum reviews

2000

Toronto Minimum reviews

500

Data - Final size

Data - Final size

Feature Engineering

Methodology - Evaluation Replay

Step 01 Step 02 Step 03

Set-up

Each restaurant is one arm, at each time step, a review (including features) is shown to the bandit algorithm

Select arm

Bandit algorithm will recommend a restaurant, contextual bandits will use features in their recommendations

Update

If recommended restaurant matches actual restaurant of review, bandit algorithm will update itself based on the reward of that review

Methodology

Model Name	Parameters Used
Non-contextual Bandit Algorithms	
Epsilon-greedy	epsilon=0.1 epsilon=0.3
Softmax	temperature=0.1 temperature=0.3
Annealing Softmax	
Upper Confidence Bound (UCB)	
Bayesian UCB	stdnum=3
Thompson Sampling	
Contextual Bandit Algorithms	
Linear UCB (LinUCB)	alpha = 0.1 alpha = 0.3
Contextual Thompson Sampling	delta=0.1, epsilon=0.1, R=0.01 delta=0.5, epsilon=0.5, R=0.01

- For Bayesian UCB & Thompson Sampling, reward assumed to follow Bernoulli, Beta distribution as conjugate prior, prior alpha and beta set to 1
- For contextual bandits, model parameters will be disjoint

Las Vegas - Cumulative Reward

- Softmax (temperature=0.1) was the best performing algorithm, followed by LinUCB(alpha=0.1)
- Epsilon-decay and Thompson Sampling had the lowest cumulative reward
- All 3 Softmax variants did well, outside these 3, the contextual bandits had the highest cumulative reward
- Features were useful in understanding distribution of rewards

Las Vegas - Average Reward

- Same order as cumulative reward
- Softmax (temperature=0.1) takes the longest to converge
- May have allowed it to achieve better long-term performance

Toronto - Cumulative Reward

- Softmax (temperature = 0.1) still performs the best
- Followed by Annealing Softmax and EpsilonGreedy algorithms
- Epsilon-decay, UCB and Contextual Thompson Sampling (delta=0.1, epsilon=0.5, R = 0.01) have lowest cumulative reward
- Contextual bandit algorithms fell short on performance
- Smaller size of Toronto dataset may have played a role

Toronto - Average Reward

- Same order as cumulative reward as well
- Other algorithms apart from Softmax (temperature = 0.1) not seem to stabilize as quickly
- Likely due to the smaller dataset compared to Las Vegas

Summary of Results

Softmax - best performing algorithm

Non-zero probability for other arms, vs 'argmax' approach

Bayesian UCB & Thompson Sampling struggled

Assumption of Bernoulli distribution may not be appropriate

LinUCB outperformed Contextual Thompson Sampling

Usage of multivariate Gaussian may not be suitable

Personalized recommendations possible

LinUCB achieved strong performance, features useful in helping to choose best arm

Limitations

Limited features available

Disjoint vs joint model parameters

Hyperparameter tuning

Conclusion

Softmax

Contextual Bandits

LinUCB

Thank You