<u>Claims</u>

1. A single-step or multi-step process for the preparation of a compound of formula (XI):

5

$$A \xrightarrow{Ar^1} Ar^2 \xrightarrow{N} R^3$$

$$(XI)$$

or a stereoisomer thereof, wherein;

10

A is hydrogen, hydroxy, C_1 - C_6 (preferably C_1 - C_4) alkyl, C_1 - C_6 (preferably C_1 - C_4) fluoroalkyl (particularly - CF_3), C_1 - C_6 (preferably C_1 - C_4) alkoxy, or OY wherein Y is a hydroxy protecting group or A, taken together with its geminal hydrogen, is an oxo group;

15

Ar¹ is phenyl optionally substituted by one or more (preferably one to two) substituents selected from fluoro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, trifluoromethyl, carboxy- C_1 - C_4 alkoxy and C_1 - C_4 alkoxy;

20

 Ar^2 is phenyl, naphthyl, pyridyl, thienyl, furyl, pyrrolyl or pyrimidyl, each being optionally substituted by one or more (preferably one to two) substituents selected from fluoro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, $di(C_1$ - C_4)alkylamino and C_1 - C_4 fluoroalkyl;

25

 R^1 is C_1 - C_6 alkyl or benzyl wherein the phenyl moiety of said benzyl is optionally substituted with C_1 - C_6 alkoxy or OY wherein Y is a hydroxy protecting group; and

15

 R^2 and R^3 are independently selected from hydrogen, C_1 - C_7 alkyl optionally substituted by one or more (preferably one to five) hydroxy or halo groups, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_7 (preferably C_1 - C_5) alkoxy, phenyl optionally substituted by fluoro (preferably substituted by one or two fluoro groups), phenyl- C_1 - C_7 (preferably C_1 - C_5) alkyl wherein the phenyl group is optionally substituted by fluoro, and -(C_1 - C_2) alkyl wherein n is one or two, X is O or S and C_1 - C_3 alkyl, or, when C_1 - C_3 is phenyl, C_1 - C_4 - C_5 - C_5 - C_7 alkyl; or

 R^2 and R^3 , together with the nitrogen atom to which they are attached, form a pyrrolidine, piperidine or morpholine ring, optionally substituted by C_1 - C_3 alkyl or fluoro;

comprising a step in which the N-Ar² bond is constructed by a copper-mediated aryl amination.

2. A process as claimed in claim 1 wherein a compound of formula 20 (IV):

$$\begin{array}{c|c}
Ar^1 & O \\
\hline
N & Ar^2 & N \\
\hline
N & R^3 \\
\hline
O & O \\
O & O
\end{array}$$
(IV)

or the enantiomer thereof, wherein Ar¹, Ar², R² and R³ are as defined in claim 1, is prepared by treating a compound of formula (II):

20

or the enantiomer thereof, wherein Ar¹ is as defined in claim 1, with a compound of formula (III):

- wherein Ar², R² and R³ are as defined in claim 1 and wherein one unsubstituted position on the Ar² moiety is substituted with a halogen group Hal, preferably Cl, Br or I, most preferably Br, in the presence of a cuprous salt, an amino ligand and a base.
- A process as claimed in claim 2 wherein the cuprous salt is Cul,
 CuBr or CuCl.
 - 4. A process as claimed in claim 2 wherein the amino ligand is 1,2 diaminocyclohexane.
 - 5. A process as claimed in claim 2 wherein the base is sodium carbonate, potassium carbonate or cesium carbonate.
- 6. A process as claimed in claim 1 wherein a compound of formula 25 (V):

HO
$$Ar^1$$
 Ar^2 R^3 R^3 R^2 R^2 R^3

or the enantiomer thereof, wherein Ar¹, Ar², R² and R³ are as defined in claim 1, is prepared by treating a compound of formula (IV):

$$\begin{array}{c|c}
Ar^1 & O \\
N & Ar^2 & N \\
N & R^2 \\
O & & R^2
\end{array}$$
(IV)

- or the enantiomer thereof, wherein Ar¹, Ar², R² and R³ are as defined in claim 1, with a base in the presence of water.
 - 7. A process as claimed in claim 1 wherein a compound of formula formula (VI):

$$Ar^{1} \qquad Ar^{2} \qquad R^{3}$$

$$O - S \qquad O$$

$$(VI)$$

wherein Ar¹, Ar², R² and R³ are as defined in claim 1, or the enantiomer thereof, is prepared by treating a compound of formula (V):

HO
$$Ar^1$$
 Ar^2
 R^3
 R^2
 R^3
 R^2
 R^3

- or the enantiomer thereof, wherein Ar¹, Ar², R² and R³ are as defined in claim 1, with a thionyl halide.
- 8. A process as claimed in claim 1 wherein a compound of formula 10 (VII):

wherein Ar¹, Ar², R² and R³ are as defined in claim 1, or the enantiomer thereof, is prepared by oxidising a compound of formula (VI):

$$\begin{array}{c|c}
Ar^1 & O \\
N & Ar^2 & N \\
N & R^3 \\
O - S & R^2
\end{array}$$
(VI)

20

wherein Ar1, Ar2, R2 and R3 are as defined in claim 1, or the enantiomer

thereof.

9. A process as claimed in claim 1 wherein a compound of formula (IX):

5

$$A \xrightarrow{Ar^1} Ar^2 \xrightarrow{N} R^3$$

$$SO_3H$$

$$(IX)$$

wherein A, Ar¹, Ar², R² and R³ are as defined in claim 1, or a zwitterion thereof, or a stereoisomer of either, is prepared by treating a compound of formula (VII):

15

wherein Ar^{1} , Ar^{2} , R^{2} and R^{3} are as defined in claim 1, or the enantiomer thereof, with a compound of formula (VIII):

20

wherein A is as defined in claim 1, or the enantiomer thereof.

10. A process as claimed in claim 1 wherein a compound of formula (X):

$$A \xrightarrow{Ar^1} Ar^2 \xrightarrow{N} R^3$$

$$(X)$$

5

wherein A, Ar^1 , Ar^2 , R^2 and R^3 are as defined in claim 1, or a stereoisomer thereof is prepared by hydrolytically cleaving the -SO₃H group in a compound of formula (IX):

10

$$A \xrightarrow{Ar^1} Ar^2 \xrightarrow{N} R^3$$

$$SO_3H$$

$$(IX)$$

15

wherein A, Ar^1 , Ar^2 , R^2 and R^3 are as defined in claim 1, or a zwitterion thereof, or a stereoisomer of either.

11. A process as claimed in claim 1 wherein a compound of the formula (XI), as defined in claim 1, or a stereoisomer thereof, is prepared by the reductive alkylation of a compound of formula (X):

$$A \xrightarrow{Ar^1} Ar^2 \xrightarrow{N} R^3$$

$$(X)$$

wherein A, Ar¹, Ar², R² and R³ are as defined above, or a stereoisomer thereof.

12. A process for the preparation of a compound of formula (XI), as defined in claim 1, or a stereoisomer thereof, comprising the reductive amination of a compound of formula (X):

$$A \xrightarrow{Ar^1} Ar^2 \xrightarrow{N} R^3$$

$$(X)$$

or a stereoisomer thereof, wherein A, Ar¹, Ar², R² and R³ are as defined in claim 1.

13. A process for the preparation of a compound of formula (IV):

$$Ar^{1}$$

$$Ar^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

20

or the enantiomer thereof, wherein Ar1, Ar2, R2 and R3 are as defined in

claim 1, comprising treating a compound of formula (II):

5

or the enantiomer thereof, wherein Ar¹ is as defined in claim 1, with a compound of formula (III):

10

wherein Ar^2 , R^2 and R^3 are as defined in claim 1 and wherein one unsubstituted position on the Ar^2 moiety is substituted with a halogen group Hal, preferably Cl, Br or I, most preferably Br, in the presence of a cuprous salt, an amino ligand and a base.

14. A compound of formula:

$$Ar^{1}$$

$$Ar^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

20

or

$$\begin{array}{c|c}
Ar^1 & O \\
\hline
Ar^2 & N \\
\hline
O - S \\
O \\
(VI)
\end{array}$$

or

$$\begin{array}{c|c}
Ar^1 & O \\
\hline
 N & R^3 \\
\hline
 O - SO_2 & (VII)
\end{array}$$

5

wherein Ar¹, Ar², R² and R³ are as defined in claim 1.