DAY-10

sleep_health

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\sleep_health.csv")[0:500]
 df

Out[2]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	H _t
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	
4	5	Male	28	Sa l es Representative	5.9	4	30	8	Obese	140/90	
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140/95	
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	

374 rows × 13 columns

In [3]: df.head(10)

Out[3]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Hea Rat
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	7
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	7
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	7
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	8
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	8
5	6	Male	28	Software Engineer	5.9	4	30	8	Obese	140/90	8
6	7	Male	29	Teacher	6.3	6	40	7	Obese	140/90	8
7	8	Male	29	Doctor	7.8	7	75	6	Normal	120/80	7
8	9	Male	29	Doctor	7.8	7	75	6	Normal	120/80	7
9	10	Male	29	Doctor	7.8	7	75	6	Normal	120/80	7

In [4]: df.describe()

Out[4]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Ste
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.0000
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775	6816.8449
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676	1617.9156
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000	3000.0000
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000	5600.0000
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000	7000.0000
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000	8000.0000
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000	10000.0000

```
In [5]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 374 entries, 0 to 373
         Data columns (total 13 columns):
              Column
                                       Non-Null Count Dtype
              Person ID
                                                       int64
          0
                                       374 non-null
          1
              Gender
                                       374 non-null
                                                       object
          2
              Age
                                       374 non-null
                                                       int64
              Occupation
                                       374 non-null
                                                       object
          3
                                                       float64
          4
              Sleep Duration
                                       374 non-null
              Quality of Sleep
          5
                                       374 non-null
                                                       int64
             Physical Activity Level 374 non-null
                                                       int64
          7
              Stress Level
                                       374 non-null
                                                       int64
          8
              BMI Category
                                       374 non-null
                                                       object
              Blood Pressure
                                       374 non-null
                                                       object
          10 Heart Rate
                                       374 non-null
                                                       int64
          11 Daily Steps
                                       374 non-null
                                                       int64
          12 Sleep Disorder
                                       374 non-null
                                                       object
         dtypes: float64(1), int64(7), object(5)
         memory usage: 38.1+ KB
In [6]: | df.columns
Out[6]: Index(['Person ID', 'Gender', 'Age', 'Occupation', 'Sleep Duration',
                 'Quality of Sleep', 'Physical Activity Level', 'Stress Level',
                'BMI Category', 'Blood Pressure', 'Heart Rate', 'Daily Steps',
                'Sleep Disorder'],
               dtype='object')
In [8]: x=df[['Person ID', 'Age', 'Sleep Duration',
                 'Quality of Sleep', 'Physical Activity Level', 'Stress Level', 'Heart Rate']
         y=df['Daily Steps']
In [9]: #to split my dataset into traning and test data
         from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.3)
In [10]: from sklearn.linear model import LinearRegression
         lr = LinearRegression()
         lr.fit(x_train,y_train)
Out[10]: LinearRegression()
In [11]: | print(lr.intercept )
         13284.907088348442
In [12]: |print(lr.score(x_test,y_test))
         0.873258275734101
```

```
In [13]: lr.score(x_train,y_train)
Out[13]: 0.7772690323888585
```

Ridge Regression

```
In [14]: from sklearn.linear_model import Ridge,Lasso
In [15]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[15]: Ridge(alpha=10)
In [16]: rr.score(x_test,y_test)
Out[16]: 0.8711719409609766
```

Lasso Regression

Evaluation Matrics

0.8540481297557856