EE 660
Jenkins

Due: Tues., 11/26/2019, 2:00 PM

Posted: 11/19/2019

Reading - Unsupervised Learning (USL)

(no reading problems to turn in)

Sources

• **[Xu and Wunsch]** Rui Xu and Donald Wunsch II, "Survey of Clustering Algorithms", *IEEE Trans. Neural Networks*, Vol. 16, No. 3 (May 2005). Available from USC Library (electronic journals), or from the link posted on D2L with this assignment.

• [Murphy] Selected sections from Ch. 25

Reading

• **Introduction:** Xu and Wunsch Section I.

• EM: Xu and Wunsch Section II D (p 653), to end of p. 653.

• Introduction, similarity measures, hierarchical graphical techniques:

Murphy 25.1.0, 25.1.1, 25.5.0-25.5.3.

• Finish graphical techniques, how to choose *K* (number of clusters):

Xu and Wunsch Section II M (starting on page 664).

- **Optional reading** you're not responsible for this, but if you'd like to delve further into unsupervised learning on your own, these are some suggested places to start:
 - Browse other sections of Xu and Wunsch, and other sections of Murphy Ch. 25.

<u>Homework Problem – Semi-Supervised Learning (SSL)</u>

1. Consider a 2-class semi-supervised learning problem in which there are l labeled samples and u = 1 unlabeled sample. (For example, think of being given l labeled samples, and then acquiring unlabeled samples one at a time.) There is 1 feature, and each class is modeled as a Gaussian:

$$p(x|y=c, \underline{\theta}) = N(x|\mu_c, \sigma_c^2), \quad c = 1,2$$

In the parts below, you will use EM to estimate the means μ_1 and μ_2 . You may assume the priors and variances are given constants. Generally the subscripts h and i will indicate unlabeled and labeled samples, respectively.

a) Consider the t^{th} iteration of EM. Derive the E step in terms of given quantities: that is, starting from

$$p\left(\mathcal{H}\middle|\mathcal{D},\underline{\theta}^{(t)}\right) = p\left(y_h = c_h\middle|x_h,\underline{\theta}^{(t)}\right) = \gamma_{hc_h}^{(t)}, c_h = 1,2$$

show that:

$$\gamma_{hc_h}^{(t)} = \frac{\pi_{c_h}}{\alpha_h^{(t)} \sqrt{2\pi\sigma_{c_h}^2}} \exp\left\{-\frac{\left(x_h - \mu_{c_h}^{(t)}\right)^2}{2\sigma_{c_h}^2}\right\}$$

in which
$$\pi_{c_h} \triangleq p\left(y_h = c_h \middle| \underline{\theta}^{(t)}\right) = p\left(y_h = c_h\right)$$
. Also, find $\alpha_h^{(t)}$.

In parts (b)-(d), you will derive the M step formulas, also for the t^{th} iteration of EM.

b) First, show that

$$p(\mathcal{D},\mathcal{H}|\underline{\theta}) = p(x_h|y_h = c_h,\underline{\theta})\pi_{c_h} \prod_{i=1}^l p(x_i|y_i = c_i,\underline{\theta})\pi_{c_i}$$

in which $\pi_{c_i} = p \left(y_i = c_i \middle| \underline{\theta} \right) = p \left(y_i = c_i \right)$ and similarly for π_{c_h} .

c) Take $\ln p(\mathcal{D}, \mathcal{H}|\underline{\theta})$ from your result of (b), plug in for the normal densities, and drop any additive terms that are constants of $\underline{\theta}$. Then plug in to the M equation:

$$\underline{\theta}^{(t+1)} = \underset{\underline{\theta}}{\operatorname{arg \, max}} \ \mathbf{E}_{\mathcal{H} \mid \mathcal{D}, \underline{\theta}^{(t)}} \left\{ \ln p(\mathcal{D}, \mathcal{H} \mid \underline{\theta}) \right\}$$

$$= \underset{\underline{\theta}}{\operatorname{arg \, max}} \ \sum_{c_{t}=1}^{2} \gamma_{hc_{h}}^{(t)} \ln p(\mathcal{D}, \mathcal{H} \mid \underline{\theta})$$

and simplify to get:

$$\underline{\theta}^{(t+1)} = \arg\max_{\underline{\theta}} \left\{ \sum_{c_h=1}^{2} \gamma_{hc_h}^{(t)} \left[-\frac{\left(x_h - \mu_{c_h}\right)^2}{\sigma_{c_h}^2} \right] + \sum_{i=1}^{l} \left[-\frac{\left(x_i - \mu_{c_i}\right)^2}{\sigma_{c_i}^2} \right] \right\}$$

in which a constant multiplicative factor of $\frac{1}{2\pi}$ has been dropped. (**Hint:** you may find it useful to use $\gamma_{h1}^{(t)} + \gamma_{h2}^{(t)} = 1$.)

- d) Re-write your result of part (c) to express it in terms of $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$. (**Hint**: you might find it useful to use the indicator function.) Then solve for $\underline{\theta}^{(t+1)} = \left[\mu_1^{(t+1)}, \mu_2^{(t+1)}\right]^T$. (**Hint:** find the argmax by taking $\frac{\partial}{\partial \mu_1}$ and setting equal to 0; similarly for μ_2 .) Let l_1 = number of labeled samples with label $c_i = 1$, and l_2 = umber of labeled samples with label $c_i = 2$. (Note that $\gamma_{hc_h}^{(t)}$ is constant of μ_1 and μ_2 because it used the (constant) estimates $\mu_1^{(t)}$ and $\mu_2^{(t)}$ from the E step.)
- e) Given: $\pi_1 = \pi_2 = 0.5$, $\sigma_1^2 = \sigma_2^2 = 1$; data as follows:

labeled data $\{(x_i, y_i)\}_{i=1}^l = \{(1,1), (2,1), (4,2)\};$ unlabeled sample $x_h = 3$.

Suppose the values for $\underline{\theta}$ at the beginning of the t^{th} iteration of EM are: $\mu_1^{(t)} = 1.5$, $\mu_2^{(t)} = 4.0$. Note that you may solve this part (e) by hand, or use a computer to assist you (your choice).

- (i) Calculate the responsibilities $\gamma_{h1}^{(t)}$ and $\gamma_{h2}^{(t)}$ from the E step (using part (a));
- (ii) Calculate the new mean estimates $\mu_1^{(t+1)}$ and $\mu_2^{(t+1)}$ from the M step (using part (d) result).