DISPLAY DEVICE AND ITS DRIVING METHOD

Publication number: JP2001075528 (A)

Publication date:

2001-03-23

Inventor(s):

KASAHARA MITSUHIRO; MORI MITSUHIRO; HASHIGUCHI JUNPEI; KIKO

SHIGEO

Applicant(s):

MATSUSHITA ELECTRIC IND CO LTD

Classification:

- international:

G09G3/20; G09G3/28; G09G3/20; G09G3/28; (IPC1-7): G09G3/28

- European:

Application number: JP19990249015 19990902 **Priority number(s):** JP19990249015 19990902

Abstract of JP 2001075528 (A)

PROBLEM TO BE SOLVED: To provide a display device and its driving method in which stable discharge is always executed even through the lighting rate of discharge cells is varied. SOLUTION: In the method, the lighting rate of discharge cells for every subfield is detected by a subfield lighting rate measuring device 4 and subfield lighting rate signals SL are outputted. Overshoot waveforms of sustaining pulses are varied by a scan driver 6 and a sustained driver 7 in accordance with the signals SL.

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-75528

(P2001-75528A)

(43)公開日 平成13年3月23日(2001.3.23)

(51) Int.Cl.7		識別記号	F I		テーマコート*(参考)
G 0 9 G	3/28		G 0 9 G	3/28	J 5C080
	3/20	6 1 2		3/20	6 1 2 U
		6 2 1			6 2 1 G
		6 2 4			6 2 4 M

審査請求 未請求 請求項の数18 OL (全 19 頁)

(21)出願番号	特顧平11-249015	(71)出顧人	000005821
			松下電器産業株式会社
(22)出顧日	平成11年9月2日(1999.9.2)		大阪府門真市大字門真1006番地
		(72)発明者	笠原 光弘
			大阪府門真市大字門真1006番地 松下電器
			産業株式会社内
		(72)発明者	森光広
			大阪府門真市大字門真1006番地 松下電器
	•		産業株式会社内
		(74)代理人	100098305
			弁理士 福島 祥人

最終頁に続く

(54) 【発明の名称】 表示装置およびその駆動方法

(57)【要約】

【課題】 放電セルの点灯率が変化しても、常に安定に 放電を行うことができる表示装置およびその駆動方法を 提供する。

【解決手段】 サブフィールド点灯率測定器 4 によりサブフィールドごとの放電セルの点灯率を検出してサブフィールド点灯率信号 S L を出力し、スキャンドライバ 6 およびサステインドライバ 7 によりサブフィールド点灯率信号 S L に応じて維持パルスのオーバーシュート波形を変化させる。

【特許請求の範囲】

【請求項1】 複数の放電セルを選択的に放電させて画像を表示する表示装置であって、

選択された放電セルを放電させるための駆動パルスの電圧が各放電セルの放電開始電圧以上になるように前記駆動パルスをオーバーシュートさせる駆動手段と、

前記複数の放電セルの点灯率を検出する検出手段とを備え、

前記駆動手段は、前記検出手段により検出された点灯率 に応じて前記駆動パルスのオーバーシュート波形を変化 10 させることを特徴とする表示装置。

【請求項2】 前記駆動手段は、前記点灯率に応じて前記駆動パルスのオーバーシュート波形の振幅を変化させることを特徴とする請求項1記載の表示装置。

【請求項3】 前記駆動手段は、前記点灯率に応じて前記駆動パルスのオーバーシュート波形の周期を変化させることを特徴とする請求項1または2記載の表示装置。

【請求項4】 前記複数の放電セルは、容量性負荷を含み、

前記駆動手段は、

一端が前記容量性負荷に接続される少なくとも1つのインダクタンス素子を有するインダクタンス手段と、

前記容量性負荷と前記インダクタンス素子とのLC共振により前記駆動パルスをオーバーシュートさせる共振駆動手段とを含むことを特徴とする請求項 1~3のいずれかに記載の表示装置。

【請求項5】 前記インダクタンス手段は、インダクタンス値を変化させることができる可変インダクタンス手段を含み、

前記駆動手段は、前記可変インダクタンス手段のインダ 30 クタンス値を変化させることにより前記駆動パルスのオーバーシュート波形の周期を変化させることを特徴とする請求項4記載の表示装置。

【請求項6】 前記共振駆動手段は、前記インダクタンス素子の他端の電圧を変化させることができる第1の可変電圧手段を含み、

前記共振駆動手段は、前記第1の可変電圧手段の電圧を変化させることにより前記駆動パルスのオーバーシュート波形の振幅を変化させることを特徴とする請求項4または5記載の表示装置。

【請求項7】 前記インダクタンス手段は、

一端が前記容量性負荷に接続される第 1 のインダクタンス素子と、

前記第1のインダクタンス素子の一端と他端との間に直列に接続される第2のインダクタンス素子および一方向 導通素子とを含むことを特徴とする請求項4~6のいずれかに記載の表示装置。

【請求項8】 前記共振駆動手段は、前記容量性負荷から電荷を回収する第1の電荷回収手段を含むことを特徴とする請求項4~7のいずれかに記載の表示装置。

【請求項9】 1フィールドを複数のサブフィールドに 分割してサブフィールドごとに選択された放電セルを放 電させて階調表示を行うために、1フィールドの画像データを各サブフィールドの画像データに変換する変換手 段をさらに備え、

前記検出手段は、サブフィールドごとの点灯率を検出し、

前記駆動手段は、前記サブフィールドごとの点灯率に応じて前記駆動パルスのオーバーシュート波形を変化させることを特徴とする請求項1~8のいずれかに記載の表示装置。

【請求項10】 基礎駆動パルスを出力する基礎駆動手段をさらに含み、

前記駆動手段は、前記基礎駆動パルスに前記駆動パルス を重畳して出力することを特徴とする請求項1~9のいずれかに記載の表示装置。

【請求項11】 前記基礎駆動手段は、前記検出手段により検出された点灯率に応じて前記基礎駆動パルスの振幅を変化させることを特徴とする請求項10記載の表示20 装置。

【請求項12】 前記複数の放電セルは、容量性負荷を 含み、

前記基礎駆動手段は、

一端が前記容量性負荷に接続される第3のインダクタンス素子と、

前記容量性負荷と前記第3のインダクタンス素子とのL C共振により前記基礎駆動パルスを遷移させる共振基礎 駆動手段と、

前記第3のインダクタンス素子の他端の電圧を変化させることができる第2の可変電圧手段とを含み、

前記共振基礎駆動手段は、前記第2の可変電圧手段の電圧を変化させることにより前記駆動パルスの振幅を変化させることを特徴とする請求項11記載の表示装置。

【請求項13】 前記複数の放電セルは、容量性負荷を含み、

前記基礎駆動手段は、前記容量性負荷から電荷を回収する第2の電荷回収手段を含むことを特徴とする請求項10~12のいずれかに記載の表示装置。

【請求項14】 1フィールドを複数のサブフィールド40 に分割してサブフィールドごとに選択された放電セルを放電させて階調表示を行うために、1フィールドの画像データを各サプフィールドの画像データに変換する変換手段をさらに備え、

前記検出手段は、サブフィールドごとの点灯率を検出し、

前記基礎駆動手段は、前記サブフィールドごとの点灯率 に応じて前記基礎駆動パルスの振幅を変化させることを 特徴とする請求項10~13のいずれかに記載の表示装 置。

50 【請求項 15】 容量性負荷からなる複数の放電セルを

選択的に放電させて画像を表示する表示装置であって、 前記放電セルから電荷を回収する電荷回収手段と、

前記電荷回収手段により回収された電荷を用い、選択さ れた放電セルを放電させるための駆動パルスの電圧が各 放電セルの放電開始電圧以上になるように前記駆動パル スをオーバーシュートさせるオーバーシュート手段とを 備えることを特徴とする表示装置。

【請求項16】 所定の電圧を供給する電圧供給手段を さらに備え、

前記オーバーシュート手段は、前記電荷回収手段により 回収された電荷による電圧と前記電圧供給手段により供 給される電圧とを加算した電圧を用い、選択された放電 セルを放電させるための駆動パルスの電圧が各放電セル の放電開始電圧以上になるように前記駆動パルスをオー バーシュートさせることを特徴とする請求項15記載の 表示装置。

【請求項17】 前記電荷回収手段から放出される電荷 を補助するための電荷を供給する補助電荷供給手段をさ らに備え、

前記オーバーシュート手段は、前記放電セルの放電開始 後に、前記補助電荷供給手段により補充された電荷を用 いて前記放電セルへ放電電流を供給することを特徴とす る請求項16記載の表示装置。

【請求項18】 複数の放電セルを選択的に放電させて 画像を表示する表示装置の駆動方法であって、

前記複数の放電セルの点灯率を検出するステップと、 選択された放電セルを放電させるための駆動パルスの電 圧が各放電セルの放電開始電圧以上になるように前記駆 動パルスをオーバーシュートさせるとともに、前記検出 ステップにより検出された点灯率に応じて前記駆動パル 30 スのオーバーシュート波形を変化させるステップとを含 むことを特徴とする表示装置の駆動方法。

【発明の詳細な説明】

$[0\ 0\ 0\ 1]$

【発明の属する技術分野】本発明は、複数の放電セルを 選択的に放電させて画像を表示する表示装置およびその 駆動方法に関するものである。

$[0\ 0\ 0\ 2\]$

【従来の技術】PDP(プラズマディスプレイパネル) を用いたプラズマディスプレイ装置は、薄型化および大 40 画面化が可能であるという利点を有する。このプラズマ ディスプレイ装置では、画素を構成する放電セルの放電 の際の発光を利用することにより画像を表示している。

【0003】図16は、AC型PDPにおける放電セル の駆動方法を説明するための図である。図16に示すよ うに、AC型PDPの放電セルにおいては、対向する電 極 3 0 1, 3 0 2 の表面がそれぞれ誘電体層 3 0 3, 3 04で覆われている。

【0004】図16の(a)に示すように、電極30 1,302間に放電開始電圧よりも低い電圧を印加した 50

場合には、放電が起こらない。図16の(b)に示すよ うに、電極301,302間に放電開始電圧よりも高い パルス状の電圧(書き込みパルス)を印加すると、放電 が発生する。放電が発生すると、負電荷は電極301の 方向に進んで誘電体層303の壁面に蓄積され、正電荷 は電極302の方向に進んで誘電体層304の壁面に蓄 積される。誘電体層303.304の壁面に蓄積された 電荷を壁電荷と呼ぶ。また、この壁電荷により誘起され た電圧を壁電圧と呼ぶ。

【0005】図16の(c)に示すように、誘電体層3 10 03の壁面には負の壁電荷が蓄積され、誘電体層304 の壁面には正の壁電荷が蓄積される。この場合、壁電圧 の極性は外部印加電圧の極性と逆向きであるため、放電 の進行に従って放電空間内における実効電圧が低下し、 放電は自動的に停止する。

【0006】図16の(d)に示すように、外部印加電 圧の極性を反転させると、壁電圧の極性が外部印加電圧 の極性と同じ向きになるため、放電空間内における実効 電圧が高くなる。このときの実効電圧が放電開始電圧を 超えると、逆極性の放電が発生する。それにより、正電 荷が電極301の方向に進み、すでに誘電体層303に 蓄積されている負の壁電荷を中和し、負電荷が電極30 2の方向に進み、すでに誘電体層304に蓄積されてい る正の壁電荷を中和する。

【0007】そして、図16の(e)に示すように、誘 電体層303、304の壁面にそれぞれ正および負の壁 電荷が蓄積される。この場合、壁電圧の極性が外部印加 電圧の極性と逆向きであるため、放電の進行に従って放 電空間内における実効電圧が低下し、放電が停止する。

【0008】さらに、図16の(f)に示すように、外 部印加電圧の極性を反転させると、逆極性の放電が発生 し、負電荷は電極301の方向に進み、正電荷は電極3 02の方向に進み、図16の(c)の状態に戻る。

【0009】このように、高い書き込みパルスを印加す ることにより一旦放電が開始された後は、壁電荷の働き によりこの書き込みパルスよりも低い外部印加電圧(維 持パルス)の極性を反転させることにより放電を維持さ せることができる。書き込みパルスを変化することによ り放電を開始させることをアドレス放電と呼び、交互に 反転する維持パルスを印加することにより放電を維持さ せることを維持放電と呼ぶ。

【0010】上記のPDPに用いられる維持パルスの一 例として、特開平10-333635号公報に開示され る維持パルスがある。図17は、上記公報に記載される 維持パルスのパルス波形を示す図である。

【0011】図17に示す維持パルスでは、パネル外に 設置された容量素子、インダクタンス素子および抵抗素 子等からなる駆動回路を用い、容量成分とインダクタン ス成分とによって生じる共振によりオーバーシュート波 形を形成している。この駆動波形の最初のオーバーシュ

ートが、短時間かつ高電位の波形となり、維持放電における放電開始電圧を超える電圧となる。この結果、最初のオーバーシュートにより放電が発生し、この維持パルスを周期的に放電セルに与えることにより維持放電を行うことができる。

[0012]

【発明が解決しようとする課題】しかしながら、容量素子とインダクタンス素子とのLC共振による維持パルスを維持放電に用いた場合、PDPの点灯率が高くなって同時に複数の放電セルが維持放電を行うと、十分な放電 10電流を供給することができず、安定な維持放電を行うことができなかった。

【0013】本発明の目的は、放電セルの点灯率が変化しても、常に安定に放電を行うことができる表示装置およびその駆動方法を提供することである。

$[0\ 0\ 1\ 4\]$

【課題を解決するための手段】(1)第1の発明

第1の発明に係る表示装置は、複数の放電セルを選択的に放電させて画像を表示する表示装置であって、選択された放電セルを放電させるための駆動パルスの電圧が各放電セルの放電開始電圧以上になるように駆動パルスをオーバーシュートさせる駆動手段と、複数の放電セルの点灯率を検出する検出手段とを備え、駆動手段は、検出手段により検出された点灯率に応じて駆動パルスのオーバーシュート波形を変化させるものである。

【0015】本発明に係る表示装置においては、駆動パルスの電圧が放電開始電圧以上になるように駆動パルスをオーバーシュートさせるとともに、放電セルの点灯率を検出し、検出された点灯率に応じて駆動パルスのオーバーシュート波形を変化させている。したがって、放電セルの点灯率に応じた最適なオーバーシュート波形で駆動パルスを出力することができるので、点灯率が変化しても常に十分な放電電流を供給することができる。この結果、放電セルの点灯率が変化しても、常に安定に放電を行うことができる。

【0016】(2)第2の発明

第2の発明に係る表示装置は、第1の発明に係る表示装置の構成において、駆動手段は、点灯率に応じて駆動パルスのオーバーシュート波形の振幅を変化させるものである。

【0017】この場合、点灯率に応じて駆動パルスのオーバーシュート波形の振幅を変化させることにより、放電開始電圧に対する駆動パルスのオーバーシュート量を調整することができ、点灯率に応じた最適な放電電流を供給することができる。

【0018】(3)第3の発明

第3の発明に係る表示装置は、第1または2の発明に係る表示装置の構成において、駆動手段は、点灯率に応じて駆動パルスのオーバーシュート波形の周期を変化させるものである。

【0019】この場合、点灯率に応じて駆動パルスのオーバーシュート波形の周期を変化させることにより、放電開始電圧を超える駆動パルスの期間の長さを調整することができ、点灯率に応じた最適な放電電流を供給することができる。

【0020】(4)第4の発明

第4の発明に係る表示装置は、第1~3のいずれかの発明に係る表示装置の構成において、複数の放電セルは、容量性負荷を含み、駆動手段は、一端が容量性負荷に接続される少なくとも1つのインダクタンス素子を有するインダクタンス手段と、容量性負荷とインダクタンス素子とのLC共振により駆動パルスをオーバーシュートさせる共振駆動手段とを含むものである。

【0021】この場合、容量性負荷とインダクタンス素子とのLC共振により駆動パルスをオーバーシュートさせているので、少ない消費電力で駆動パルスを放電開始電圧以上に遷移させることができる。

【0022】(5)第5の発明

第5の発明に係る表示装置は、第4の発明に係る表示装置の構成において、インダクタンス手段は、インダクタンス値を変化させることができる可変インダクタンス手段を含み、駆動手段は、可変インダクタンス手段のインダクタンス値を変化させることにより駆動パルスのオーバーシュート波形の周期を変化させるものである。

【0023】この場合、点灯率に応じてインダクタンス値を変化させることができるので、簡略な回路構成で駆動パルスのオーバーシュート波形の周期を変化させることができる。

【0024】(6)第6の発明

第6の発明に係る表示装置は、第4または5の発明に係る表示装置の構成において、共振駆動手段は、インダクタンス素子の他端の電圧を変化させることができる第1の可変電圧手段を含み、共振駆動手段は、第1の可変電圧手段の電圧を変化させることにより駆動パルスのオーバーシュート波形の振幅を変化させるものである。

【0025】この場合、点灯率に応じてインダクタンス素子の他端の電圧を変化させることができるので、簡略な回路構成で駆動パルスのオーバーシュート波形の振幅を変化させることができる。

40 【0026】(7)第7の発明

第7の発明に係る表示装置は、第4~6のいずれかの発明に係る表示装置の構成において、インダクタンス手段は、一端が容量性負荷に接続される第1のインダクタンス素子と、第1のインダクタンス素子の一端と他端との間に直列に接続される第2のインダクタンス素子および一方向導通素子とを含むものである。

【0027】この場合、駆動パルスをオーバーシュートさせるときに第1および第2のインダクタンス素子の合成インダクタンス値を用い、オーバーシュート後に駆動50パルスを元に戻すときに一方向導通素子により第2のイ

20

ンダクタンス素子を不能にして第1のインダクタンス素子のインダクタンス値を用いることにより、オーバーシュート時には急峻に駆動パルスを遷移させることができるとともに、元に戻すときにはオーバーシュート時よりも遅い周期で緩やかに遷移させることができる。

【0028】(8)第8の発明

第8の発明に係る表示装置は、第4~7のいずれかの発明に係る表示装置の構成において、共振駆動手段は、容量性負荷から電荷を回収する第1の電荷回収手段を含むものである。

【0029】この場合、容量性負荷から電荷を回収することができるので、電荷を効率よく使用することができ、消費電力を少なくすることができる。

【0030】(9)第9の発明

第9の発明に係る表示装置は、第1~8のいずれかの発明に係る表示装置の構成において、1フィールドを複数のサブフィールドに分割してサブフィールドごとに選択された放電セルを放電させて階調表示を行うために、1フィールドの画像データを各サブフィールドの画像データに変換する変換手段をさらに備え、検出手段は、サブフィールドごとの点灯率を検出し、駆動手段は、サブィールドごとの点灯率に応じて駆動パルスのオーバーシュート波形を変化させるものである。

【0031】この場合、サブフィールドごとに点灯率を 検出して駆動パルスのオーバーシュート波形を変化させ ているので、サブフィールドごとに放電セルの点灯率が 変化しても、常に安定に放電を行うことができる。

【0032】(10)第10の発明

第10の発明に係る表示装置は、第1~9のいずれかの 発明に係る表示装置の構成において、基礎駆動パルスを 出力する基礎駆動手段をさらに含み、駆動手段は、基礎 駆動パルスに駆動パルスを重畳して出力するものであ る。

【0033】この場合、2段階で放電開始電圧以上に駆動パルスを遷移させることができ、消費電力を低減することができるとともに、駆動パルスおよび/または基礎駆動パルスの波形を変化させることができるので、点灯率に応じたより最適な駆動パルスを出力することができる。

【0034】(11)第11の発明

第11の発明に係る表示装置は、第10の発明に係る表示装置の構成において、基礎駆動手段は、検出手段により検出された点灯率に応じて基礎駆動パルスの振幅を変化させるものである。

【0035】この場合、点灯率に応じて基礎駆動パルスの振幅を変更することにより、放電開始電圧に対する駆動パルスのオーバーシュート量を調整することができ、点灯率に応じた最適な放電電流を供給することができる。

【0036】(12)第12の発明

第12の発明に係る表示装置は、第11の発明に係る表示装置の構成において、複数の放電セルは、容量性負荷を含み、基礎駆動手段は、一端が容量性負荷に接続される第3のインダクタンス素子と、容量性負荷と第3のインダクタンス素子とのLC共振により基礎駆動パルスを遷移させる共振基礎駆動手段と、第3のインダクタンス素子の他端の電圧を変化させることができる第2の可変電圧手段とを含み、共振基礎駆動手段は、第2の可変電圧手段の電圧を変化させることにより駆動パルスの振幅を変化させるものである。

【0037】この場合、点灯率に応じて第3のインダクタンス素子の他端の電圧を変化させることができるので、簡略な回路構成で基礎駆動パルスの振幅を変化させることができる。

【0038】(13)第13の発明

第13の発明に係る表示装置は、第10~12のいずれかの発明に係る表示装置の構成において、複数の放電セルは、容量性負荷を含み、基礎駆動手段は、容量性負荷から電荷を回収する第2の電荷回収手段を含むものである。

【0039】この場合、基礎駆動手段により容量性負荷から電荷を回収することができるので、より少ない消費電力で放電を行うことができる。

【0040】(14)第14の発明

第14の発明に係る表示装置は、第10~13のいずれかの発明に係る表示装置の構成において、1フィールドを複数のサブフィールドに分割してサブフィールドごとに選択された放電セルを放電させて階調表示を行うために、1フィールドの画像データを各サブフィールドの画像データに変換する変換手段をさらに備え、検出手段は、サブフィールドごとの点灯率を検出し、基礎駆動手段は、サブフィールドごとの点灯率に応じて基礎駆動パルスの振幅を変化させるものである。

【0041】この場合、サブフィールドごとに点灯率を 検出して基礎駆動パルスの振幅を変化させているので、 サブフィールドごとに放電セルの点灯率が変化しても、 常に安定に放電を行うことができる。

【0042】(15)第15の発明

第15の発明に係る表示装置は、容量性負荷からなる複40数の放電セルを選択的に放電させて画像を表示する表示装置であって、放電セルから電荷を回収する電荷回収手段と、電荷回収手段により回収された電荷を用い、選択された放電セルを放電させるための駆動パルスの電圧が各放電セルの放電開始電圧以上になるように駆動パルスをオーバーシュートさせるオーバーシュート手段とを備えるものである。

【0043】本発明に係る表示装置においては、電荷回収手段により回収された電荷を用い、選択された放電セルを放電させるための駆動パルスの電圧が各放電セルの 50 放電開始電圧以上になるように駆動パルスをオーバーシ ュートさせているので、オーバーシュート波形により放電効率を向上させることができるとともに、回収した電荷を用いたオーバーシュート波形の生成により電荷を効率よく使用することができ、消費電力を少なくすることができる。

【0044】(16)第16の発明

第16の発明に係る表示装置は、第15の発明に係る表示装置の構成において、所定の電圧を供給する電圧供給手段をさらに備え、オーバーシュート手段は、電荷回収手段により回収された電荷による電圧と電圧供給手段に 10より供給される電圧とを加算した電圧を用い、選択された放電セルを放電させるための駆動パルスの電圧が各放電セルの放電開始電圧以上になるように駆動パルスをオーバーシュートさせるものである。

【0045】この場合、電荷回収手段により回収された電荷による電圧と電圧供給手段により供給される電圧とを加算した電圧を用い、選択された放電セルを放電させるための駆動パルスの電圧が各放電セルの放電開始電圧以上になるように駆動パルスをオーバーシュートさせているので、電荷の回収効率を高く維持したまま、放電に必要なオーバーシュート波形を安定に生成することができる。

【0046】(17)第17の発明

第17の発明に係る表示装置は、第16の発明に係る表示装置の構成において、電荷回収手段から放出される電荷を補助するための電荷を供給する補助電荷供給手段をさらに備え、オーバーシュート手段は、放電セルの放電開始後に、補助電荷供給手段により補充された電荷を用いて放電セルへ放電電流を供給するものである。

【0047】この場合、放電セルの放電開始後に、補助 電荷供給手段により補充された電荷を用いて放電セルへ 放電電流を供給しているので、十分な放電電流を安定に 供給することができる。

【0048】(18)第18の発明

第18の発明に係る表示装置の駆動方法は、複数の放電セルを選択的に放電させて画像を表示する表示装置の駆動方法であって、複数の放電セルの点灯率を検出するステップと、選択された放電セルを放電させるための駆動パルスの電圧が各放電セルの放電開始電圧以上になるように駆動パルスをオーバーシュートさせるとともに、検 40出ステップにより検出された点灯率に応じて駆動パルスのオーバーシュート波形を変化させるステップとを含むものである。

【0049】本発明に係る表示装置の駆動方法においては、駆動パルスの電圧が放電開始電圧以上になるように駆動パルスをオーバーシュートさせるとともに、放電セルの点灯率を検出し、検出された点灯率に応じて駆動パルスのオーバーシュート波形を変化させている。したがって、放電セルの点灯率に応じた最適なオーバーシュート波形で駆動パルスを出力することができるので、点灯 50

率が変化しても常に十分な放電電流を供給することができる。この結果、放電セルの点灯率が変化しても、常に 安定に放電を行うことができる。

[0050]

【発明の実施の形態】以下、本発明に係る表示装置の一例としてAC型プラズマディスプレイ装置について説明する。図 I は、本発明の一実施の形態によるプラズマディスプレイ装置の構成を示すブロック図である。

【0051】図1のプラズマディスプレイ装置は、A/Dコンバータ(アナログ・デジタル変換器)1、映像信号ーサブフィールド対応付け器2、サブフィールド処理器3、サブフィールド点灯率測定器4、データドライバ5、スキャンドライバ6、サステインドライバ7およびPDP(プラズマディスプレイパネル)8を備える。

【0052】A/Dコンバータ1には、映像信号VDが入力される。A/Dコンバータ1は、アナログの映像信号VDをデジタルの画像データに変換し、映像信号ーサブフィールド対応付け器2へ出力する。映像信号ーサブフィールド対応付け器2は、1フィールドを複数のサブフィールドに分割して表示するため、1フィールドの画像データから各サブフィールドの画像データSPを作成し、サブフィールド処理器3およびサブフィールド点灯率測定器4へ出力する。サブフィールド処理器3は、サブフィールドごとの画像データSP等からデータドライバ駆動制御信号DS、スキャンドライバ駆動制御信号CSおよびサステインドライバ「駆動制御信号USを作成し、それぞれデータドライバ「スキャンドライバ(6およびサスティンドライバ)へ出力する。

【0053】PDP8は、複数のアドレス電極(データ電極)11、複数のスキャン電極(走査電極)12および複数のサステイン電極(維持電極)13を含む。複数のアドレス電極11は、画面の垂直方向に配列され、複数のスキャン電極12および複数のサステイン電極13は、画面の水平方向に配列されている。また、複数のサステイン電極13は、共通に接続されている。アドレス電極11、スキャン電極12およびサステイン電極13の各交点には、放電セル14が形成され、各放電セル14が画面上の画素を構成する。

【0054】データドライバ5は、PDP8の複数のアドレス電極11に接続されている。スキャンドライバ6は、各スキャン電極12ごとに設けられた駆動回路を内部に備え、各駆動回路がPDP8の対応するスキャン電極12に接続されている。サステインドライバ7は、PDP8の複数のサステイン電極13に接続されている。

【0055】データドライバ2は、データドライバ駆動 制御信号DSに従い、書き込み期間において、画像デー タSPに応じてPDP8の該当するアドレス電極11に 書き込みパルスを印加する。スキャンドライバ6は、ス キャンドライバ駆動制御信号CSに従い、書き込み期間 において、シフトパルスを垂直走査方向にシフトしつつ PDP8の複数のスキャン電極 12 に書き込みパルスを 順に印加する。これにより、該当する放電セルにおいて アドレス放電が行われる。

【0056】また、スキャンドライバ6は、スキャンド ライバ駆動制御信号CSに従い、維持期間において、周 期的な維持パルスをPDP8の複数のスキャン電極12 に印加する。一方、サステインドライバ7は、サステイ ンドライバ駆動制御信号USに従い、維持期間におい て、PDP8の複数のサステイン電極 13にスキャン電 極 1 2 の維持パルスに対して 1 8 0 度位相のずれた維持 10 パルスを同時に印加する。これにより、該当する放電セ ル14において維持放電が行われる。

【0057】サブフィールド点灯率測定器4は、サブフ ィールドごとの画像データSPから、PDP8上で同時 に駆動される放電セル14の点灯率を検出し、サブフィ ールド点灯率信号SLをスキャンドライバ 6 およびサス テインドライバ7へ出力する。スキャンドライバ6およ びサステインドライバ7は、後述するように、サブフィ ールド点灯率信号SLに応じて維持パルスのオーバーシ ュート波形を変化させる。

【0058】図1に示すプラズマディスプレイ装置で は、階調表示駆動方式として、ADS (Address Displa y-Period Separation :アドレス・表示期間分離)方式 が用いられている。図2は、図1に示すプラズマディス プレイ装置に適用されるADS方式を説明するための図 である。

【0059】ADS方式では、1フィールド(1/60 秒= 16.67ms)を複数のサブフィールドに時間的 に分割する。例えば、8ビットで256階調表示を行う 場合には、1フィールドを8つのサブフィールドSF1 ~SF8に分割する。また、各サブフィールドSFI~ SF8は、セットアップ期間P1、書き込み期間P2、 維持期間P3に分離され、セットアップ期間P1におい て各サブフィールドのセットアップ処理が行われ、書き 込み期間P2において点灯される放電セル14を選択す るためのアドレス放電が行われ、維持期間P3において 表示のための維持放電が行われる。

【0060】セットアップ期間P1において、サステイ ン電極 1 3 に単一パルスが加えられ、スキャン電極 1 2 (図2ではスキャン電極の本数としてn本が表示されて いるが、実際には、例えば480本のスキャン電極が用 いられる)にもそれぞれ単一パルスが加えられる。これ により予備放電が行われる。

【0061】書き込み期間P2においては、スキャン電 極 1 2 が順次走査され、アドレス電極 1 1 からパルスを 受けた放電セル 1 4 だけに所定の書き込み処理が行われ る。これによりアドレス放電が行われる。

【0062】維持期間P3においては、各サプフィール ドSF1~SF8に重み付けされた値に応じた維持パル スがサステイン電極 1 3 およびスキャン電極 1 2 へ出力 50

される。例えば、サブフィールドSF1では、サステイ ン電極 1 3 に維持パルスが 1 回印加され、走査電極 1 2 に維持パルスが1回印加され、書き込み期間P2におい て選択された放電セル14が2回維持放電を行う。ま た、サブフィールドSF2では、サステイン電極13に 維持パルスが2回印加され、スキャン電極12に維持パ ルスが2回印加され、書き込み期間P2において選択さ れた放電セル 1 4 が 4 回維持放電を行う。

【0063】上記のように、各サブフィールドSF1~ SF8では、サステイン電極13およびスキャン電極1 2に1回、2回、4回、8回、16回、32回、64 回、128回維持パルスが印加され、パルス数に応じた 明るさで放電セルが発光する。すなわち、維持期間P3 は、書き込み期間Р2で選択された放電セル14が明る さの重み付け量に応じた回数で放電する期間である。

【0064】このように、サブフィールドSF1~SF 8では、それぞれ、1、2、4、8、16、32、6 4、128の明るさの重み付けがなされ、これらのサブ フィールドSF1~SF8を組み合わせることにより、 明るさのレベルを0~255までの256段階で調整す ることができる。なお、サブフィールドの分割数および 重み付け値等は、上記の例に特に限定されず、種々の変 更が可能であり、例えば、動画疑似輪郭を低減するため に、サブフィールド8を二つに分割して二つのサブフィ ールドの重み付け値を64に設定してもよい。

【0065】本実施の形態では、スキャンドライバ6お よびサステインドライバ7が駆動手段および基礎駆動手 段に相当し、サブフィールド点灯率測定器 4 が検出手段 に相当し、映像信号ーサブフィールド対応付け器 2 が変 換手段に相当する。

【0066】次に、図1に示すプラズマディスプレイパ ネル装置に適用されるサステインドライバの第1の例に ついて説明する。図3は、図1に示すプラズマディスプ レイパネル装置に適用されるサステインドライバの第1 の例の構成を示す回路図である。なお、スキャンドライ バについても以下のサステインドライバと同様に構成す ることにより、スキャン電極13に印加される維持パル スのオーバーシュート波形を制御して同様の効果を得る ことができるので、スキャンドライバに関する詳細な説 明を省略し、サステインドライバ7についてのみ以下詳 細に説明する。

【0067】図3に示すサステインドライバは、オーバ ーシュート回路OS、FET(電界効果型トランジス) タ、以下トランジスタと称する) Q3を含む。オーバー シュート回路OSは、トランジスタQ1,Q2、回収コ ンデンサC1、回収コイルL1, L2、ダイードD1~ D4および可変電圧源VRI、VR2を含む。

【0068】トランジスタQ3は、一端が接地端子に接 続され、他端がノードNIに接続され、ゲートには制御 信号S3が入力される。ノードN1は、例えば、480

13

本のサステイン電極 1 3 に接続されているが、図 3 では、複数のサステイン電極 1 3 と接地端子との間の全容量に相当するパネル容量 C p が示されている。なお、この点に関しては、以下の他のサステインドライバについても同様である。

【0069】回収コイルL1の一端はノードN1に接続され、他端がノードN2に接続される。回収コイルL2の一端はノードN1に接続され、他端がダイオードD4のカソードに接続され、ダイオードD4のアノードがノードN2に接続される。

【0070】トランジスタQ 1は、一端がノードN 3に接続され、他端がダイオードD 1のアノードに接続され、ゲートには制御信号 S1が入力される。ダイオードD 1のカソードはノードN 2に接続される。ダイオードD 2のアノードはノードN 2に接続される。トランジスタQ 2 は、一端がダイオードD 2 のカソードに接続され、他端がノードN 4 に接続され、ゲートには制御信号 S2が入力される。

【0071】可変電圧源VR1は、ノードN3とノードN4との間に接続される。回収コンデンサC1の一端は20接地端子に接続され、他端がノードN4に接続される。可変抵抗VR2の一端は接地端子に接続され、他端がダイオードD3のアノードに接続される。ダイオードD3のカソードはノードN4に接続される。可変電圧源VR1、VR2は、維持パルスPsuの最大ピーク電圧(理論値)をVsusとすると、初期値としてVsus/4の電圧を出力し、サブフィールド点灯率信号SLに応じて出力電圧を変化させる。

【0072】本例では、回収コイルL1,L2およびダイオードD4がインダクタンス手段に相当し、トランジスタQ1,Q2、ダイオードD1~D3、回収コンデンサC1および可変電圧源VR1,VR2が共振駆動手段に相当し、可変電圧源VR1,VR2が可変電圧手段に相当し、回収コイルL1,L2が第1および第2のインダクタンス素子に相当し、回収コンデンサC1が第1の電荷回収手段に相当する。

【0073】また、本例では、回収コンデンサC1が電荷回収手段に相当し、回収コイルL1, L2、トランジスタQ1, Q2、ダイオードD1~D4および可変電圧源VR1, VR2がオーバーシュート手段に相当し、可40変電圧源VR1が電圧供給手段に相当し、可変電圧源VR2が補助電荷供給手段に相当する。

【0074】図4は、図3に示すサステインドライバの維持期間の動作を示すタイミング図である。図4には、図3のノードN1の電圧(維持パルスPsu)およびトランジスタQ1~Q3に入力される制御信号S1~S3が示される。なお、制御信号S1~S3は、サステインドライバ駆動制御信号USとしてサブフィールド処理器3から出力される信号である。

【0075】まず、期間TAにおいて、制御信号S1が 50 寄与する。したがって、回収コイルL1,L2の合成イ

ハイレベルになりトランジスタQ1がオンし、制御信号 S3がロウレベルになりトランジスタQ3がオフする。このとき、制御信号S2はロウレベルにあり、トランジスタQ2がオフしている。したがって、可変電圧源VR1がトランジスタQ1およびダイオードD1を介してノードN2に接続され、回収コイルL1, L2およびパネル容量CpによるLC共振によりノードN1の電圧が滑らかに上昇する。

【0076】ここで、ダイオードD4が回収コイルL2と直列に接続されているが、回収コイルL2に流れる電流は制限されず、回収コイルL1, L2がともにLC共振動作に寄与する。したがって、回収コイルL1のインダクタンス値より小さい回収コイルL1, L2の合成インダクタンス値によりLC共振が発生し、LC共振の周期が短くなり、ノードN1の電圧が急峻に上昇する。

【0077】また、ノードN3の電圧は、可変電圧源VR1の電圧Vsus/4と可変電圧源VR2の電圧Vsus/4とが加算され、Vsus/2に設定されている。したがって、ノードN1の電圧が、放電開始電圧Vstを超え、Vsus/2の2倍の電圧すなわちVsusまで理論的には上昇する。ただし、回路内の抵抗成分によるエネルギー損失により電圧降下を起こし、ノードN1の電圧は、Vsusよりやや低い値となる(なお、実際には放電により放電開始電圧Vstをや地越える電圧までしか上昇しない)。ノードN1の電圧が放電開始電圧Vstを超えると、放電セル14の維持放電が開始され、放電電流が上昇し始める。また、このとき、回収コンデンサC1の電荷が放出される。

【0078】最大ピーク電圧に達した後、ノードN10 電圧は反転し、放電開始電圧Vst より低くなる。このとき、放電電流は、ノードN10 電圧が最大ピーク電圧に達してからやや遅れてから極大値をとるとともに、そのタイミングにはノードN10 電圧がすでにピーク値より低くなっているため、従来の駆動回路による放電電流よりもその極大値が抑えられる。したがって、より少ない消費電力で維持放電を行うことが可能となる。以降、維持パルスPsu は振動的に減衰しながら、Vsus/2 に収束する。

【0079】次に、期間TBにおいて、制御信号S1がロウレベルになりトランジスタQ1がオフし、制御信号S2がハイレベルになりトランジスタQ2がオンする。したがって、可変電圧源VR1および回収コンデンサC1がダイオードD2およびトランジスタQ2を介してノードN2に接続され、回収コイルL1およびパネル容量CpによるLC共振によりノードN1の電圧が滑らかに降下する。

【0080】ここで、ダイオードD4が回収コイルL2 と直列に接続されているため、回収コイルL2に流れる 電流が制限され、回収コイルL1のみがLC共振動作に 寄与する、したがって、回収コイルL1、L2の合成イ

ンダクタンス値より大きい回収コイルLIのインダクタンス値によりLC共振が発生し、LC共振の周期が長くなり、ノードNIの電圧が緩やかに降下する。

【0081】また、ノードN4の電圧は、可変電圧源VR2の電圧すなわちVsus/4に設定されている。したがって、ノードN1の電圧は、理論的には、Vsus/2から降下し接地電位に達するが、実際には、上記と同様に回路内の抵抗成分によるエネルギー損失により接地電位までは立ち下がらない。また、このとき、パネル容量Cpに蓄えられた電荷は、回収コンデンサC1に蓄えられ、電荷の回収が行われる。

【0082】次に、期間TCにおいて、制御信号S2がロウレベルになりトランジスタQ2がオフし、制御信号S3がハイレベルになりトランジスタQ3がオンする。したがって、ノードN1が接地端子に接続され、ノードN1の電圧が急激に降下し、接地電位に固定される。

【0083】上記の動作を維持期間において繰り返し行うことにより、オーバーシュート波形を有する周期的な維持パルスPsuを複数のサステイン電極 13に印加することができる。

【0084】ここで、図3に示すサステインドライバに ついて放電効率および電荷回収効率の観点から説明す る。オーバーシュート波形を駆動パルスに用いることに よりPDPの放電効率を向上することができるが、イン ダクタンス素子等を用いたオーバーシュート回路により 大きなオーバーシュート波形を出力するためには、イン ダクタンス素子の両端の電圧差を大きくしなければなら ない。一方、インダクタンス素子等から構成される従来 の電力回収回路による駆動パルスにオーバーシュート波 形を重畳しようとすると、電力回収回路によりほぼ放電 30 開始電圧まで電荷が放電セルに蓄積されてしまうので、 大きなオーバーシュート波形を発生させることができな い。このため、大きなオーバーシュート波形を生成する ためには、電力回収回路の回収効率を低下させて電力回 収回路からの放電セルへの電荷の蓄積を減少させる必要 がある。したがって、オーバーシュート波形を用いて放 電効率を向上しても、PDPの充放電電力の増大をもた らし、消費電力を増大させることとなる。

【0085】図3に示すサステインドライバは、上記のような課題を解消することができる。すなわち、PDP8の放電セル14すなわちパネル容量Cpに蓄えられた電荷は、維持パルスPsuの立ち下がり時にトランジスタQ2がオンすることにより引き出されて回収コンデンサC1に蓄えられる。一方、維持パルスPsuの立ち上がり時は、トランジスタQ1がオンしてPDP8の放電セル14を駆動する。このとき、回収コイルL1,L2には、トランジスタQ1を介して、回収コンデンサC1に蓄えられた電荷による電圧と可変電圧源VR1により発生される電圧とが加算された電圧が印加される。

【0086】したがって、従来の電力回収回路と比較す 50

ると、可変電圧源VRIが発生する電圧が新たに加えられ、トランジスタQIが回収コイルLI, L2およびパネル容量Cpを駆動することになる。この結果、可変電圧源VRIの電圧により大きなオーバーシュート波形を安定に発生されることが可能となる。また、このとき、回収コンデンサCIにより回収された電荷も、オーバーシュート波形の生成に用いられるので、回収された電荷を有効に活用することができる。

【0087】また、オーバーシュート波形の印加によって放電セル14で放電が開始したとき、十分な放電電流を流すため、回収コンデンサC1で回収した電荷以上の電荷が必要になる。この放電に必要な電荷は、可変電圧源VR2から供給される。したがって、放電開始後に必要な放電電流を可変電圧源VR2から供給することができ、維持放電を安定に行うことが可能となる。

【0088】上記の構成により、回収された電荷と電圧源から供給される電荷とを用いてオーバーシュート波形を生成することができるので、電荷の回収効率を高く維持したまま、大きなオーバーシュート波形を安定して生の成することができる。この結果、放電効率の向上と電荷回収効率の向上とを両立することができるので、消費電力を著しく低減することができ、実用上極めて有用な表示装置を提供することができる。なお、点灯率に応じて電圧を変化させない場合は、可変電圧源VRI,VR2の代わりに所定の電圧を出力する電圧源を用いてもよい。

【0089】次に、上記のように構成されたサステインドライバの維持パルスの制御動作について説明する。図5は、図3に示すサステインドライバの維持パルスの制御動作を説明するための波形図である。

【0090】あるサブフィールドにおいて、点灯率が大きい場合、サブフィールド点灯率信号SLにより可変電圧源VR1,VR2の出力電圧がVsus/4より大きくされ、図5の(a)に示すように駆動パルスPsuの振幅が大きくなる。したがって、放電開始電圧Vstを超えるオーバーシュート部分が大きくなり、十分に放電電流を供給することが可能となり、点灯率が大きくなっても、安定に維持放電を行うことが可能となる。

【0091】一方、点灯率が小さい場合、サブフィールド点灯率信号SLにより可変電圧源VR1,VR2の電圧がVsus/4より小さくされ、図5の(b)に示すように駆動パルスPsuの振幅が小さくなる。したがって、放電開始電圧Vstを超えるオーバーシュート部分が小さくなり、点灯率が小さい場合に必要十分な放電電流を供給することができ、無駄な電力を供給することがなく、消費電力を低減することができる。

【0092】上記のように、図3に示すサステインドライバでは、サプフィールドごとの点灯率に応じて維持パルスPsuのオーバーシュート波形の振幅を変化させることにより、点灯率が変化しても、常に安定した維持放

電を行うことができるとともに、消費電力を低減するこ とが可能となる。

【0093】次に、図1に示すプラズマディスプレイパ ネル装置に適用されるサステインドライバの第2の例に ついて説明する。図6は、図1に示すプラズマディスプ レイ装置に適用されるサステインドライバの第2の例の 構成を示す回路図である。

【0094】図6に示すサステインドライバと図3に示 すサステインドライバとで異なる点は、回収コイルL 1. L 2 およびダイオード D 4 がサブフィールド点灯率 10 信号SLを受ける可変インダクタンス部VLに変更さ れ、可変電圧源VRI,VR2が電圧源VI,V2に変 更された点である。その他の点は図3に示すサステイン ドライバと同様であるので、同一部分には同一符号を付 し詳細な説明を省略し、以下異なる部分についてのみ詳 細に説明する。

【0095】図6に示すように、可変インダクタンス部 VLは、ノードN1とノードN2との間に接続され、サ ブフィールド点灯率信号SLに応じてインダクタンス値 を変化させる。電圧源V1は、ノードN3とノードN4 との間に接続され、電圧Vsus/4を出力する。電圧 源V2は、ダイオードD3のアノードと接地端子との間 に接続され、電圧Vsus/4を出力する。

【0096】本例では、可変インダクタンス部VLがイ ンダクタンス手段および可変インダクタンス手段に相当 し、その他の点は、第1の例のサステインドライバと同 様である。また、可変インダクタンス部VL、トランジ スタQ1,Q2、ダイオードD1~D3および電圧源V 1. V2がオーバーシュート手段に相当し、電圧源V1 が電圧供給手段に相当し、電圧源 V 2 が補助電荷供給手 段に相当する。

【0097】図7は、図6に示す可変インダクタンス部 の一例を示す回路図である。図7に示す可変インダクタ ンス部VLは、回収コイルLR1~LRnおよびスイッ チSW1~SWnを含む。回収コイルLR1およびスイ ッチSW1はノードN2とノードN1との間に直列に接 続され、以後同様に回収コイルLR2~LRnおよびス イッチSW2~SWnがそれぞれノードN2とノードN 1との間に直列に接続される。スイッチSW1~SWn は、点灯率に応じた合成インダクタンス値になるよう に、サブフィールド点灯率信号SLに応じてオンまたは オフされる。

【0098】回収コイルLR1~LRnのインダクタン ス値としては、回収コイルLRIのインダクタンス値を L0、回収コイルLR2のインダクタンス値をL0/ 2、回収コイルLR3のインダクタンス値をL0/4、 …、回収コイルLRnのインダクタンス値をL0/2 とすると、スイッチSW1~SW2の開閉状態を種 々組み合わせることにより回収コイルの数以上の種々の インダクタンス値を設定することができる。例えば、n 50 =3の場合、L0、L0/2、L0/3、L0/4、L 0/5、L0/6の6種類のインダクタンス値を設定す ることができる。

18

【0099】なお、可変インダクタンス部の構成は、上 記の例に特に限定されず、サブフィールド点灯率信号S Lに応じてインダクタンス値を可変できるものであれば 他の構成であってもよく、可飽和リアクトルおよび電流 源等を用いて1次側巻線に流れる電流を電流源により制 御して2次側巻線のインダクタンス値を変化させる可変 インダクタンス部等を用いてもよい。

【0100】上記のように構成された第2の例のサステ インドライバの維持パルスPsuの制御動作について説 明する。図8は、図6に示すサステインドライバの維持 パルスPsuの制御動作を説明するための波形図であ る。なお、図6に示すサステインドライバの基本動作 は、図4を用いて説明した図3に示すサステインドライ バの基本動作と同様であるので、詳細な説明を省略す る。

【0 1 0 1】あるサブフィールドの点灯率が大きい場 合、可変インダクタンス部VLはサブフィールド点灯率 信号SLに応じてインダクタンス値を大きくし、図8の (a) に示すように、オーバーシュート波形の周期T1 が長くなる。したがって、放電開始電圧Vstを超える オーバーシュート期間が長くなり、十分に放電電流を供 給することが可能となり、点灯率が大きくなっても、安 定に維持放電を行うことが可能となる。

【0102】一方、点灯率が小さい場合、可変インダク タンス部VLはサブフィールド点灯率信号SLに応じて インダクタンス値を小さくし、図8の(b)に示すよう に、オーバーシュート波形の周期T2が短くなる。した がって、放電開始電圧Vstを超えるオーバーシュート 期間が短くなり、点灯率が小さい場合に必要十分な放電 電流を供給することができ、無駄な電力を供給すること がなく、消費電力を低減することができる。

【0103】上記のように、図6に示すサステインドラ イバでは、サブフィールドごとの点灯率に応じて維持パ ルスPsuのオーバーシュート波形の周期を変化させる ことにより、点灯率が変化しても、常に安定した維持放 電を行うことができるとともに、消費電力を低減するこ 40 とが可能となる。

【0104】次に、図1に示すプラズマディスプレイパ ネル装置に適用されるサステインドライバの第3の例に ついて説明する。図9は、図1に示すプラズマディスプ レイパネル装置に適用されるサステインドライバの第3 の例の構成を示す回路図である。

【0105】図9に示すサステインドライバと、図3に 示すサステインドライバとで異なる点は、トランジスタ Q3の代わりに電力回収回路PRがノードN1に接続さ れ、オーバーシュート回路OSの可変電圧源VR2およ び回収コンデンサCIが接地電位の代わりに電力回収回

路PRからベース電圧Vsbを供給される点であり、そ の他の点は図3に示すサステインドライバと同様である ので、同一部分には同一符号を付し詳細な説明を省略 し、以下異なる部分についてのみ詳細に説明する。

【0106】図9に示すように、電力回収回路PRは、 トランジスタQ $4\sim Q7$ 、ダイオードD5, D6、回収 コイルし3および回収コンデンサС2を含む。

【0107】電力回収回路PRの出力端は、ノードN1 に接続されている。トランジスタQ4は、一端が電源端 子V3に接続され、他端がノードN1に接続され、ゲー 10 トには制御信号S4が入力される。電源端子V3には、 ベース電圧Vsbが印加される。電源端子V3は、ノー ドN5に接続され、オーバーシュート回路OSの可変電 圧源VR2および回収コンデンサC1にベース電圧Vs bを供給する。トランジスタQ5は、一端がノードN1 に接続され、他端が接地端子に接続され、ゲートには制 御信号S5が入力される。

【0 1 0 8】回収コンデンサC 2 は、ノードN 7 と接地 端子との間に接続される。ノードN7とノードN6との 間にはトランジスタQ6およびダイオードD5が直列に 接続され、ノードN6とノードN7との間にはダイオー ドD6およびトランジスタQ7が直列に接続されてい る。トランジスタQ6のゲートには、制御信号S6が入 力され、トランジスタQ7のゲートには制御信号S7が 入力される。回収コイルL3は、ノードN1とノードN 6との間に接続される。

【0109】本例では、電力回収回路PRが基礎駆動手 段に相当し、トランジスタQ6、Q7、ダイオードD 5, D6および回収コンデンサC2が共振基礎駆動手段 に相当し、回収コイルL3が第3インダクタンス素子に 30 相当し、回収コンデンサ С 2 が第 2 の電荷回収手段に相 当し、その他の点は図3に示すサステインドライバと同 様である。

【0110】図10は、図9に示すサステインドライバ の維持期間の動作を示すタイミング図である。図10に は、図9のノードNIの電圧(維持パルスPsu)およ びトランジスタQ1, Q2, Q4~Q7に入力される制 御信号S1, S2, S4~S7が示される。なお、制御 信号S1, S2, S4~S7は、サブフィールド処理器 3からサステインドライバ駆動制御信号USとして出力 される信号である。

【0 1 1 1】まず、期間TAにおいて、制御信号S5が ロウレベルになりトランジスタQ5がオフし、制御信号 S6がハイレベルになりトランジスタQ6がオンする。 このとき、制御信号SI、S2、S4、S7はそれぞれ ロウレベルにあり、トランジスタQ1, Q2, Q4, Q 7はオフしている。したがって、回収コンデンサС2が トランジスタQ6およびダイオードD5を介してノード N6に接続され、回収コイルL3およびパネル容量Cp によるLC共振によりノードNIの電圧が滑らかに上昇 50 する。

【0 1 1 2】ここで、ノードN7の電圧は、ベース電圧 Vsbの2分の1に設定され、ノードN1の電圧は、理 論的には、ベース電圧Vsbまで上昇するが、回路内の 抵抗成分によるエネルギー損失により電圧降下を起こ し、実際にはVsbよりやや低い電圧まで上昇する。こ のとき、回収コンデンサC2の電荷がトランジスタQ 6、ダイオードD5および回収コイルL3を介してパネ ル容量Cpへ放出される。

【0 1 1 3】次に、期間TBにおいて、制御信号S4が ハイレベルになりトランジスタQ4がオンし、制御信号 S6がロウレベルになりトランジスタQ6がオフする。 したがって、電源端子V3がトランジスタQ4を介して ノードN1に接続され、ノードN1の電圧が急速に上昇 し、ベース電圧Vsbに固定される。

【0 1 1 4 】次に、期間TCにおいて、制御信号S1が ハイレベルになりトランジスタQ1がオンし、制御信号 S 4 がロウレベルになりトランジスタQ 4 がオフする。 したがって、可変電圧源VR1がトランジスタQ1およ びダイオードD1を介してノードN1に接続される。こ のとき、ダイオードD4は機能せず、回収コイルL1, L2がともにLC共振動作に寄与する。したがって、回 収コイルLIのインダクタンス値より小さい回収コイル L1, L2の合成インダクタンス値によりLC共振が発 生し、LC共振の周期が短く、ノードN1の電圧が急峻 に上昇する。

【0 1 1 5 】ここで、可変電圧源VR1, VR 2 の初期 の出力電圧は、それぞれvo/4に設定され、ノードN 3の電圧は、ベース電圧Vsb、可変電圧源VR1, V R2の出力電圧vo/4をそれぞれ加算した電圧(Vs b+vo/2) になり、ノードN1の電圧は、放電開始 電圧Vstを超え、理論的には、ベース電圧Vsbから さらにvoだけ上昇する(Vsb+voが上記のVsu sに相当する)。ただし、回路内の抵抗成分によるエネ ルギー損失により電圧降下を発生し、Vsb+voより やや低い電圧まで上昇する(なお、実際には放電により 放電開始電圧Vstをやや越える電圧までしか上昇しな い)。ノードNIの電圧が放電開始電圧Vstを超える と、放電セル 1 4 の維持放電が開始され、放電電流が上 昇し始める。また、このとき、回収コンデンサClの電 荷が放出される。

【0116】最大ピーク電圧に達した後、ノードN1の 電圧は反転し、放電開始電圧Vstより低くなる。この とき、放電電流は、ノードNIの電圧が最大ピーク電圧 に達してからやや遅れてから極大値をとるとともに、そ のタイミングにはノードNIの電圧がすでにピーク値よ り低くなっているため、従来の駆動回路による放電電流 よりもその極大値が抑えられる。したがって、より少な い消費電力で維持放電を行うことが可能となる。以降、 維持パルスPsuは振動的に減衰しながら、ベース電圧

Vsbよりvo/2だけ高い電圧に収束する。

【0117】次に、期間TDにおいて、制御信号S1が ロウレベルになりトランジスタQIがオフし、制御信号 S2がハイレベルになりトランジスタQ2がオンする。 したがって、可変電圧源VRIおよび回収コンデンサC 1がトランジスタQ2およびダイオードD2を介してノ ードN2に接続される。このとき、回収コイルL2には 直列にダイオードD4が接続されているため、回収コイ ルし2を流れる電流が制限され、回収コイルし2はLC 共振動作に寄与せず、回収コイルLIのみがLC共振動 10 作に寄与する。したがって、回収コイルL1,L2の合 成インダクタンス値より大きい回収コイルLIのインダ クタンス値によりLC共振が発生し、LC共振の周期が 長くなり、ノードNIの電圧が緩やかに降下する。

【0118】ここで、ノードN4の電圧は、可変電圧源 VR2によりベース電圧Vsbよりvo/4だけ高い電 圧に設定されている。したがって、ノードNIの電圧 は、理論的には、ベース電圧Vsbまで降下するが、実 際には、回路内の抵抗成分によりVsbよりやや高い電 圧まで降下する。また、このとき、パネル容量Cpに蓄 20 えられている電荷は、回収コンデンサCIに蓄えられ、 電荷の回収が行われる。

【0119】次に、期間TEにおいて、制御信号S2が ロウレベルになりトランジスタQ2がオフし、制御信号 S7がハイレベルになりトランジスタQ7がオンする。 したがって、回収コンデンサС2がトランジスタQ7お よびダイオードD6を介してノードN6に接続され、回 収コイルL3およびパネル容量CpによるLC共振によ りノードNIの電圧が滑らかに降下する。

【0 1 2 0】 ここで、ノードN7の電圧は、回収コンデ 30 ンサС2によりVsb/2に設定されている。したがっ て、ノードNIの電圧は、理論的には、接地電位まで降 下するが、回路内の抵抗成分によるエネルギー損失によ り接地電位よりやや高い電圧まで降下する。また、この とき、パネル容量Cpに蓄えられた電荷は、回収コイル L 3、ダイオードD6およびトランジスタQ7を介して 回収コンデンサC2に蓄えられ、電荷の回収が行われ る。

【0 1 2 1】次に、期間TFにおいて、制御信号S5が ハイレベルになりトランジスタQ5がオンし、制御信号 40 S7がロウレベルになりトランジスタQ7がオフする。 したがって、ノードNIがトランジスタQ5を介して接 地端子に接続され、ノードNIの電圧が急激に降下し、 接地電位に固定される。

【0122】上記の動作を維持期間において繰り返し行 うことにより、電力回収回路PRによる基礎駆動パルス とオーバーシュート回路OSによる駆動パルスとを重畳 した周期的な維持パルスPsuを複数のサステイン電極 13に印加することができる。

【0 1 2 3】次に、上記のように構成されたサステイン 50

ドライバの維持パルスの制御動作について説明する。図 11は、図9に示すサステインドライバの維持パルスの 制御動作を説明するための波形図である。

【0124】あるサブフィールドにおいて、点灯率が大 きい場合、サブフィールド点灯率信号SLにより可変電 圧源VR1, VR2の出力電圧がvo/4より大きくさ れ、図11の(a)に示すように駆動パルスPsuの上 段の駆動パルスの振幅が大きくなる。したがって、放電 開始電圧Vstを超えるオーバーシュート部分が大きく なり、十分に放電電流を供給することが可能となり、点 灯率が大きくなっても、安定に維持放電を行うことが可 能となる。

【0 1 2 5】 一方、点灯率が小さい場合、サブフィール ド点灯率信号SLにより可変電圧源VR1.VR2の電 圧がvo/4より小さくされ、図11の(b)に示すよ うに駆動パルスPsuの上段の駆動パルスの振幅が小さ くなる。したがって、放電開始電圧Vstを超えるオー バーシュート部分が小さくなり、点灯率が小さい場合に 必要十分な放電電流を供給することができ、無駄な電力 を供給することがなく、消費電力を低減することができ る。

【0126】上記のように、図9に示すサステインドラ イバでは、サブフィールドごとの点灯率に応じて維持パ ルスPsuの上段の駆動パルスのオーバーシュート波形 の振幅を変化させることにより、点灯率が変化しても、 常に安定した維持放電を行うことができるとともに、消 費電力を低減することが可能となる。

【0127】次に、図1に示すプラズマディスプレイパ ネル装置に適用されるサステインドライバの第4の例に ついて説明する。図12は、図1に示すプラズマディス プレイ装置に適用されるサステインドライバの第4の例 の構成を示す回路図である。

【0 1 2 8】図 1 2 に示すサステインドライバと図 9 に 示すサステインドライバとで異なる点は、回収コイルL 1, L 2 およびダイオードD 4 がサブフィールド点灯率 信号SLを受ける可変インダクタンス部VLに変更さ れ、可変電圧源VR1, VR2が電圧源V1, V2に変 更された点である。その他の点は図9に示すサステイン ドライバと同様であるので、同一部分には同一符号を付 し詳細な説明を省略し、以下異なる部分についてのみ詳 細に説明する。

【0129】図12に示すように、可変インダクタンス 部VLは、ノードNIとノードN2との間に接続され、 サブフィールド点灯率信号SLに応じてインダクタンス 値を変化させる。電圧源VIは、ノードN3とノードN 4との間に接続され、電圧vo/4を出力する。電圧源 V2は、ダイオードD3のアノードとノードN5との間 に接続され、電圧 vo/4を出力する。可変インダクタ ンス部VLの構成は、第2の例のサステインドライバに 用いたものと同様である。

【0130】本例では、可変インダクタンス部VLがインダクタンス手段および可変インダクタンス手段に相当し、その他の点は、第3の例のサステインドライバと同様である。

【0131】上記のように構成された第4の例のサステインドライバの維持パルスPsuの制御動作について説明する。図13は、図12に示すサステインドライバの維持パルスPsuの制御動作を説明するための波形図である。なお、図12に示すサステインドライバの基本動作は、図10を用いて説明した図9に示すサステインド 10ライバの基本動作と同様であるので、詳細な説明を省略する。

【0132】あるサブフィールドの点灯率が大きい場合、可変インダクタンス部VLはサブフィールド点灯率信号SLに応じてインダクタンス値を大きくし、図13の(a)に示すように、維持パルスPsuの上段の駆動パルスのオーバーシュート波形の周期Tlが長くなる。したがって、放電開始電圧Vstを超えるオーバーシュート期間が長くなり、十分に放電電流を供給することが可能となり、点灯率が大きくなっても、安定に維持放電20を行うことが可能となる。

【0133】一方、点灯率が小さい場合、可変インダクタンス部VLはサブフィールド点灯率信号SLに応じてインダクタンス値を小さくし、図13の(b)に示すように、維持パルスPsuの上段の駆動パルスのオーバーシュート波形の周期T2が短くなる。したがって、放電開始電圧Vstを超えるオーバーシュート期間が短くなり、点灯率が小さい場合に必要十分な放電電流を供給することができ、無駄な電力を供給することがなく、消費電力を低減することができる。

【0134】上記のように、図12に示すサステインドライバでは、サブフィールドごとの点灯率に応じて維持パルスPsuの上段の駆動パルスのオーバーシュート波形の周期を変化させることにより、点灯率が変化しても、常に安定した維持放電を行うことができるとともに、消費電力を低減することが可能となる。

【0135】次に、図1に示すプラズマディスプレイパネル装置に適用されるサステインドライバの第5の例について説明する。図14は、図1に示すプラズマディスプレイパネル装置に適用されるサステインドライバの第 405の例の構成を示す回路図である。

【0136】図14に示すサステインドライバと図9に示すサステインドライバと異なる点は、可変電圧源VR1,VR2が電圧源Vl,V2に変更され、電源端子V3が可変電圧源VR3に変更された点であり、その他の点は図9に示すサステインドライバと同様であるので、同一部分には同一符号を付し詳細な説明を省略し、以下異なる部分についてのみ詳細に説明する。

【0137】図14に示すように、可変電圧源VR3は、ノードN5と接地端子との間に接続され、サブフィ

ールド点灯率信号SLにより出力電圧を変化させる。可変電圧源VR3は、初期の出力電圧としてベース電圧Vsbを出力する。電圧源V1は、ノードN3とノードN4との間に接続され、電圧vo/4を出力する。電圧源V2は、ダイオードD3のアノードとノードN5との間に接続され、電圧vo/4を出力する。

24

【0138】本例において、可変電圧源VR3が第2の可変電圧手段に相当し、その他の点は第3の例のサステインドライバと同様である。

【0139】次に、上記のように構成されたサステインドライバの維持パルスの制御動作について説明する。図15は、図14に示すサステインドライバの維持パルスの制御動作を説明するための波形図である。なお、図14に示すサステインドライバの基本動作は、図10を用いて説明した図9に示すサステインドライバの基本動作と同様であるので、詳細な説明を省略する。

【0140】あるサブフィールドにおいて、点灯率が大きい場合、サブフィールド点灯率信号SLにより可変電圧源VR3の出力電圧がVsbより大きくされ、図15の(a)に示すように駆動パルスPsu下段の基礎駆動パルスの振幅(電圧VH)が大きくなる。したがって、放電開始電圧Vstを超えるオーバーシュート部分が大きくなり、十分に放電電流を供給することが可能となり、点灯率が大きくなっても、安定に維持放電を行うことが可能となる。

【0141】一方、点灯率が小さい場合、サブフィールド点灯率信号SLにより可変電圧源VR3の電圧がVsbより小さくされ、図15の(b)に示すように駆動パルスPsuの基礎駆動パルスの振幅(電圧VL)が小さくなる。したがって、放電開始電圧Vstを超えるオーバーシュート部分が小さくなり、点灯率が小さい場合に必要十分な放電電流を供給することができ、無駄な電力を供給することがなく、消費電力を低減することができる。

【0142】上記のように、図14に示すサステインドライバでは、サブフィールドごとの点灯率に応じて維持パルスPsuの下段の基礎駆動パルスの振幅を変化させることにより、点灯率が変化しても、常に安定した維持放電を行うことができるとともに、消費電力を低減することが可能となる。

【0143】なお、上記の説明では、ADS方式によるサプフィールド分割を例に説明したが、アドレス・サステイン同時駆動方式によるサプフィールド分割等であっても同時に点灯される放電セルの点灯率を検出することにより本発明を同様に適用することが可能である。また、上記の説明では、立ち上がり時に放電させる正極性の駆動パルスを用いる表示装置について説明したが、立ち下がり時に放電させる負極性の駆動パルスを用いる表示装置にも本発明を同様に適用することが可能である。

【0144】また、上記の説明では、AC型プラズマデ

50

ィスプレイパネル装置について説明したが、DC型等のプラズマディスプレイパネル装置にも本発明を同様に適用することができ、また、放電を制御することにより画像を表示する他の表示パネルを用いた表示装置、例えば、デジタルミラーデバイス(DMD)を用いたデジタルライトプロセッシング装置(DLP)等にも同様に適用可能である。

[0 1 4 5]

【発明の効果】本発明によれば、放電セルの点灯率に応じて駆動パルスのオーバーシュート波形を変化させてい 10 るので、点灯率に応じて放電セルを最適に放電させることができ、点灯率が変化した場合でも、安定に放電動作を行わせることが可能となる。

【図面の簡単な説明】

【図1】本発明の一実施の形態によるプラズマディスプレイパネル装置の構成を示すブロック図

【図2】図1に示すプラズマディスプレイパネル装置に 用いられるADS方式を説明するための図

【図3】図1に示すプラズマディスプレイパネル装置に 適用されるサステインドライバの第1の例の構成を示す 20 回路図

【図4】図3に示すサステインドライバの維持期間の動作を示すタイミング図

【図5】図3に示すサステインドライバの維持パルスの 制御動作を説明するための波形図

【図6】図1に示すプラズマディスプレイパネル装置に 適用されるサステインドライバの第2の例の構成を示す 回路図

【図7】図6に示す可変インダクタンス部の一例を示す 回路図

【図8】図6に示すサステインドライバの維持パルスの 制御動作を説明するための波形図

【図9】図1に示すプラズマディスプレイパネル装置に 適用されるサステインドライバの第3の例の構成を示す 回路図

【図10】図9に示すサステインドライバの維持期間の*

*動作を示すタイミング図

【図 1 1 】図 9 に示すサステインドライバの維持パルスの制御動作を説明するための波形図

【図12】図1に示すプラズマディスプレイパネル装置 に適用されるサステインドライバの第4の例の構成を示 す回路図

【図 1 3】図 1 2 に示すサステインドライバの維持パルスの制御動作を説明するための波形図

【図 14】図 1 に示すプラズマディスプレイパネル装置 0 に適用されるサステインドライバの第 5 の例の構成を示 す回路図

【図 15】図 14に示すサステインドライバの維持パルスの制御動作を説明するための波形図

【図 1 6 】従来のプラズマディスプレイ装置の放電セルの駆動方法を説明するための図

【図 1 7 】 従来のプラズマディスプレイパネル装置の維持パルスの一例を示す波形図

【符号の説明】

1 A/Dコンバータ

0 2 映像信号-サブフィールド対応付け器

3 サブフィールド処理器

4 サブフィールド点灯率測定器

5 データドライバ

6 スキャンドライバ

7 サステインドライバ

8 PDP

11 アドレス電極

12 スキャン電極

13 サステイン電極

30 OS オーバーシュート回路

PR 電力回収回路

Q1~Q7 FET

C1~С3 回収コンデンサ

T1~T6 ダイオード

L1~L3 回収コイル

VRI~VR3 可変電圧源

【図3】

【図9】

【図11】

図12]

【図14】

【図15】

【図16】

フロントページの続き

(72)発明者 橋口 淳平

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72) 発明者 木子 茂雄

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

F ターム(参考) 5C080 AA05 BB05 DD09 DD26 EE29 FF07 FF12 HH05 JJ02 JJ03 JJ04 JJ05