Quantum Mechanics 2

Robert C. Roleda Physics Department

Hydrogen Atom Kramers' Relation

Energy

Since we now know the energy eigenfunctions of Hydrogen atom, the expansion postulate can be harnessed to ease the calculations of expectation values of observables.

$$\psi(x) = \sum_{nlm} a_{nlm} u_{nlm}$$

Finding the expectation values of energy is straightforward since

$$Hu_{nlm} = \frac{E_1}{n^2} u_{nlm}$$

Hence,

$$\langle E \rangle = \langle \psi | H | \psi \rangle = \sum_{nlm} E_n |a_{nlm}|^2 = E_1 \sum_{nlm} \left| \frac{a_{nlm}}{n} \right|^2$$

Position and Momentum

Evaluation of momentum expectation values involves the operator

$$p = -i\hbar\nabla$$

Calculation of derivatives is aided by the recursion relation

$$\rho \frac{dL_s^k(\rho)}{d\rho} = sL_s^k(\rho) - (s+k)L_{s-1}^k(\rho)$$

Fortunately, expectation values of nearby powers of r are related to each other following a relation developed by Hendrik Anthony (Hans) Kramers

$$\frac{s+1}{n^2} Z^2 \langle r^s \rangle - Z(2s+1) a_0 \langle r^{s-1} \rangle + \frac{s}{4} [(2l+1)^2 - s^2] a_0^2 \langle r^{s-2} \rangle = 0$$

Radial Equation

The starting point of Kramers' relation is the radial equation

$$\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{2m}{\hbar^2}\left[E + \frac{Ze^2}{4\pi\varepsilon_0 r} - \frac{l(l+1)\hbar^2}{2mr^2}\right]r^2R = 0$$

If we consider the function

$$U(r) = rR(r)$$

Then

$$\frac{dR}{dr} = \frac{d(U/r)}{dr} = \frac{1}{r}\frac{dU}{dr} - \frac{U}{r^2}$$

$$\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) = \frac{d}{dr}\left(r\frac{dU}{dr} - U\right) = r\frac{d^2U}{dr^2} + \frac{dU}{dr} - \frac{dU}{dr} = r\frac{d^2U}{dr^2}$$

The radial equation can then be recast as

$$\frac{d^{2}U}{dr^{2}} + \frac{2m}{\hbar^{2}} \left[E + \frac{Ze^{2}}{4\pi\varepsilon_{0}r} - \frac{l(l+1)\hbar^{2}}{2mr^{2}} \right] U = 0$$

Effective Hamiltonian

We may then think of an effective radial Hamiltonian

$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dr^2} + \frac{l(l+1)\hbar^2}{2mr^2} - \frac{Ze^2}{4\pi\varepsilon_0 r}$$

such that

$$-\frac{\hbar^{2}}{2m}\frac{d^{2}U}{dr^{2}} + \left[\frac{l(l+1)\hbar^{2}}{2mr^{2}} - \frac{Ze^{2}}{4\pi\varepsilon_{0}r}\right]U = EU$$

The eigenenergies are known [hydrogen 2],

$$E_n = -\frac{m}{2n^2\hbar^2} \left(\frac{Ze^2}{4\pi\varepsilon_0}\right)^2$$

Expressing this in terms of the Bohr radius [Bohr]

$$a_0 = \frac{\hbar^2}{m} \left(\frac{e^2}{4\pi\varepsilon_0} \right)^{-1}$$

Effective Hamiltonian

With

$$\frac{e^2}{4\pi\varepsilon_0} = \frac{\hbar^2}{ma_0}$$

we have

$$E_n = -\frac{m}{2n^2\hbar^2} \frac{\hbar^2}{ma_0} \frac{Z^2 e^2}{4\pi\varepsilon_0} = -\frac{Z^2 e^2}{4\pi\varepsilon_0} \frac{1}{2n^2a_0} = -\frac{Z^2}{n^2a_0^2} \frac{\hbar^2}{2m}$$

The Radial Equation may then be expressed as

$$-\frac{\hbar^2}{2m}\frac{d^2U}{dr^2} + \left[\frac{l(l+1)\hbar^2}{2mr^2} - \frac{\hbar^2}{ma_0}\frac{Z}{r}\right]U = -\frac{Z^2}{n^2a_0^2}\frac{\hbar^2}{2m}U$$

Factoring out $-\hbar^2/2m$, we get

$$\frac{d^2U}{dr^2} - \left[\frac{l(l+1)}{r^2} - \frac{2Z}{a_0 r} + \frac{Z^2}{n^2 a_0^2} \right] U = 0 \quad \odot$$

Multiplying the new radial equation by Ur^s and integrating, we have

$$\int Ur^{s}U''dr - l(l+1)\int Ur^{s-2}U dr + \frac{2Z}{a_0}\int Ur^{s-1}U dr - \frac{Z^2}{n^2a_0^2}\int Ur^{s}U dr = 0$$

We now note that since Radial functions are real,

$$\int Ur^{s}U dr = \int rRr^{s}rR dr = \int R^{*}r^{s}R r^{2}dr = \langle r^{s} \rangle$$

Thus,

$$\int Ur^s U'' dr - l(l+1)\langle r^{s-2}\rangle + \frac{2Z}{a_0}\langle r^{s-1}\rangle - \frac{Z^2}{n^2 a_0^2}\langle r^s\rangle = 0$$

Let us now consider the integral

$$I = \int Ur^s U'' dr$$

Integrating by parts

$$I = \int Ur^{s}U''dr = Ur^{s}U'\Big|_{0}^{\infty} - \int U'd(r^{s}U)$$

Since the eigenfunctions are square-integrable,

$$\lim_{r\to\infty}U(r)=0$$

Thus the exact term vanishes and

$$I = -\int U'd(r^{s}U) = -\int U'r^{s}U'dr - s\int U'r^{s-1}Udr$$

Let

$$I = -I_1 - sI_2$$

where

$$I_1 = \int U' r^S U' dr$$

$$I_2 = \int U' r^{s-1} U dr$$

We now note that

$$d(U'r^{s+1}U') = (s+1)(U'r^{s}U')dr + 2U'r^{s+1}U''dr$$

Hence,

$$I_1 = \int U' r^s U' dr = \frac{1}{s+1} U' r^{s+1} U' \Big|_0^{\infty} - \frac{2}{s+1} \int U' r^{s+1} U'' dr$$

We now expand U'' by using the Radial equation \odot

$$U'' = \frac{d^2U}{dr^2} = \left[\frac{l(l+1)}{r^2} - \frac{2Z}{a_0r} + \frac{Z^2}{n^2a_0^2}\right] U$$

We then have

$$I_1 = -\frac{2}{s+1} \int U' r^{s+1} U'' dr = -\frac{2}{s+1} \int U' r^{s+1} \left[\frac{l(l+1)}{r^2} - \frac{2Z}{a_0 r} + \frac{Z^2}{n^2 a_0^2} \right] U \ dr$$

$$= -\frac{2}{s+1} \left[l(l+1) \int U' r^{s-1} U dr - \frac{2Z}{a_0} \int U' r^s U dr + \frac{Z^2}{n^2 a_0^2} \int U' r^{s+1} U dr \right]$$

All remaining integrals are now of the form

$$I' = \int U'r^s U dr$$

To evaluate integrals like I', we note that

$$d(Ur^{s}U) = sUr^{s-1}Udr + 2Ur^{s}U'dr$$

Thus,

$$I' = \int U' r^{s} U dr = \frac{1}{2} U r^{s} U \Big|_{0}^{\infty} - \frac{s}{2} \int U r^{s-1} U dr = -\frac{s}{2} \langle r^{s-1} \rangle$$

Using the

$$I' = \int U'r^s \ U \ dr = -\frac{s}{2} \langle r^{s-1} \rangle$$

we find that

$$I_1 = -\frac{2}{s+1} \left[l(l+1) \int U' r^{s-1} U dr - \frac{2Z}{a_0} \int U' r^s U dr + \frac{Z^2}{n^2 a_0^2} \int U' r^{s+1} U dr \right]$$

becomes

$$\begin{split} I_1 &= -\frac{2}{s+1} \left[-l(l+1) \frac{s-1}{2} \langle r^{s-2} \rangle + \frac{2Z}{a_0} \frac{s}{2} \langle r^{s-1} \rangle - \frac{Z^2}{n^2 a_0^2} \frac{s+1}{2} \langle r^s \rangle \right] \\ &= l(l+1) \frac{(s-1)}{(s+1)} \langle r^{s-2} \rangle - \frac{2Z}{a_0} \frac{s}{s+1} \langle r^{s-1} \rangle + \frac{Z^2}{n^2 a_0^2} \langle r^s \rangle \end{split}$$

and

$$I_2 = \int U'r^{s-1}Udr = -\frac{s-1}{2}\langle r^{s-2}\rangle$$

Hence,

$$\begin{split} I &= -I_1 - sI_2 \\ &= -l(l+1)\frac{(s-1)}{(s+1)}\langle r^{s-2}\rangle + \frac{2Z}{a_0}\frac{s}{s+1}\langle r^{s-1}\rangle - \frac{Z^2}{n^2a_0^2}\langle r^s\rangle + \frac{s(s-1)}{2}\langle r^{s-2}\rangle \\ &= (s-1)\left[\frac{s}{2} - \frac{l(l+1)}{(s+1)}\right]\langle r^{s-2}\rangle + \frac{2Z}{a_0}\frac{s}{s+1}\langle r^{s-1}\rangle - \frac{Z^2}{n^2a_0^2}\langle r^s\rangle \end{split}$$

Since I is also,

$$I = \int Ur^{s}U''dr = l(l+1)\langle r^{s-2}\rangle - \frac{2Z}{a_0}\langle r^{s-1}\rangle + \frac{Z^2}{n^2a_0^2}\langle r^{s}\rangle$$

the two relations combine to give

$$\begin{split} &(s-1)\left[\frac{s}{2} - \frac{l(l+1)}{(s+1)}\right] \langle r^{s-2} \rangle + \frac{2Z}{a_0} \frac{s}{s+1} \langle r^{s-1} \rangle - \frac{Z^2}{n^2 a_0^2} \langle r^s \rangle - l(l+1) \langle r^{s-2} \rangle \\ &+ \frac{2Z}{a_0} \langle r^{s-1} \rangle - \frac{Z^2}{n^2 a_0^2} \langle r^s \rangle = 0 \end{split}$$

Combining factors of the same powers, for $\langle r^{s-2} \rangle$

$$(s-1)\left[\frac{s}{2} - \frac{l(l+1)}{(s+1)}\right] - l(l+1) = (s-1)\left[\frac{s}{2} - \frac{l(l+1)}{(s+1)} - \frac{l(l+1)}{(s-1)}\right]$$

$$= \frac{s(s+1)(s-1) - 2(s-1)l(l+1) - 2(s+1)l(l+1)}{2(s+1)} = \frac{s(s^2-1) - 4sl(l+1)}{2(s+1)}$$

$$= \frac{s}{2}\left[\frac{s^2 - 1 - 4l^2 - 4l}{(s+1)}\right] = \frac{s}{2}\left[\frac{s^2 - (2l+1)^2}{(s+1)}\right]$$

For $\langle r^{s-1} \rangle$,

$$\frac{2Z}{a_0} \frac{s}{s+1} + \frac{2Z}{a_0} = \frac{2Z}{a_0} \left[\frac{s}{s+1} + 1 \right] = \frac{2Z}{a_0} \left[\frac{s+s+1}{s+1} \right] = \frac{2Z}{a_0} \left[\frac{2s+1}{s+1} \right]$$

For $\langle r^s \rangle$,

$$-\frac{Z^2}{n^2 a_0^2} - \frac{Z^2}{n^2 a_0^2} = -\frac{2Z^2}{n^2 a_0^2}$$

We then have

$$\frac{s}{2} \left[\frac{s^2 - (2l+1)^2}{(s+1)} \right] \langle r^{s-2} \rangle + \frac{2Z}{a_0} \left[\frac{2s+1}{s+1} \right] \langle r^{s-1} \rangle - \frac{2Z^2}{n^2 a_0^2} \langle r^s \rangle = 0$$

or

$$\frac{s+1}{n^2} Z^2 \langle r^s \rangle - (2s+1) Z a_0 \langle r^{s-1} \rangle + \frac{s}{4} [(2l+1)^2 - s^2] a_0^2 \langle r^{s-2} \rangle = 0$$