Определение 1. Говорят, что многочлен P(z) имеет корень α кратности k, если P(z) делится на $(z-\alpha)^k$, но не делится на $(z-\alpha)^{k+1}$.

ТЕОРЕМА 1. Произвольный многочлен степени n > 0 с комплексными коэффициентами имеет ровно n комплексных корней (считаемых со своими кратностями).

Определение 2. Комплексная функция $f: \mathbb{C} \to \mathbb{C}$ комплексной переменной *непрерывна* в точке $z_0 \in \mathbb{C}$, если для всякого $\varepsilon > 0$ найдётся такое $\delta > 0$, что при всех z, где $|z - z_0| < \delta$, верно $|f(z) - f(z_0)| < \varepsilon$.

Задача 1 $^{\varnothing}$. Пусть $f \colon \mathbb{C} \to \mathbb{R}$ — вещественная функция на комплексной плоскости. Дайте определение того, что **a)** f ограничена на \mathbb{C} ; **b)** $\lim_{|z| \to +\infty} f(z) = +\infty$.

Задача 2. Пусть F(z) = f(z) + ig(z), где f и g — функции из $\mathbb C$ в $\mathbb R$. Докажите, что функция F непрерывна в точке z_0 тогда и только тогда, когда функции f и g непрерывны в точке z_0 .

Замечание. Далее P(z) — произвольный многочлен степени n>0 от комплексной переменной z с комплексными коэффициентами. P(z) задаёт функцию из \mathbb{C} в \mathbb{C} , а |P(z)| — функцию из \mathbb{C} в \mathbb{R} .

Задача 3[©]. (Поведение многочлена на бесконечности) Докажите, что $|P(z)| \to +\infty$ при $|z| \to +\infty$.

Задача 4. а) (*Непрерывность многочлена*) Докажите, что функция P(z) непрерывна на \mathbb{C} .

б) (*Непрерывность модуля многочлена*) Докажите, что функция |P(z)| непрерывна на \mathbb{C} .

Задача 5. (Поведение многочлена в круге) Докажите, что |P(z)| ограничен в любом круге (конечного радиуса) и достигает в нём своих максимума и минимума. (Вместо круга разрешается решить эту задачу для квадрата со сторонами, параллельными осям координат — этого достаточно для дальнейшего.)

Задача 6. (*Разложение Тейлора*) Докажите, что для любого $z_0 \in \mathbb{C}$ существуют такое $k \in \mathbb{N}$ и такие $c_k, c_{k+1}, \ldots, c_n \in \mathbb{C}$, что $c_k \neq 0$ и для любого $z \in \mathbb{C}$ справедливо равенство

$$P(z) = P(z_0) + c_k(z - z_0)^k + c_{k+1}(z - z_0)^{k+1} + \dots + c_n(z - z_0)^n$$
(*)

Представление P(z) в таком виде называется разложением Тейлора многочлена P(z) в точке z_0 .

Задача 7. Напишите разложение Тейлора для многочленов

а) $P(z)=z^3-3z-2$ в точке $z_0=-1;$ б) $P(z)=iz^3+2z^2-iz+179$ в точке $z_0=i;$

Задача 8 следующей задачи) Пусть (*) — разложение Тейлора многочлена P(z) в точке $z_0 \in \mathbb{C}$, и пусть $\mathbb{D}(z_0, r)$ — круг с центром в z_0 радиуса r. Докажите, что существует такое r > 0, что для любого $z \in \mathbb{D}(z_0, r)$, $z \neq z_0$ выполнено $|P(z)| < |P(z_0) + c_k(z - z_0)^k| + |c_k(z - z_0)^k|$.

Задача 9. (Поведение многочлена в малой окрестности точки) Пусть $P(z_0) \neq 0$. Докажите, что существует такое z_1 , что $|P(z_1)| < |P(z_0)|$.

Задача $\mathbf{10}^{\varnothing}$. (Поведение многочлена на плоскости)

- а) Докажите, что |P(z)| достигает на плоскости своего минимума: существует такое $\mu \geqslant 0$, что $|P(z)| \geqslant \mu$ при любом $z \in \mathbb{C}$, причём найдётся такое $z_0 \in \mathbb{C}$, что $|P(z_0)| = \mu$.
- **б)** Пусть μ такое, как в п. а). Докажите, что $\mu = 0$.

Задача 11. а) Докажите, что всякий многочлен ненулевой степени с комплексными коэффициентами имеет хотя бы один комплексный корень. **б**) Выведите из пункта а) основную теорему алгебры.

Задача 12. Разложите в произведение многочленов не более чем второй степени с вещественными коэффициентами многочлены **a)** $x^4 + 3x^2 + 2$; **b)** $x^4 + 4$; **b)** $x^6 + 8$; **r)** $x^n - 1$; **д)** $x^{2n} - \sqrt{3}x^n + 1$.

Задача 13. Докажите, что произвольный многочлен с вещественными коэффициентами раскладывается в произведение многочленов не более чем второй степени с вещественными коэффициентами.

Задача 14 Многочлен $P(x) \in \mathbb{R}[x]$ таков, что $P(x) \geqslant 0$ при всех $x \in \mathbb{R}$. Докажите, что его можно представить в виде суммы **a)** квадратов многочленов из $\mathbb{R}[x]$; **б)** двух таких квадратов.

Задача 15. Докажите, что максимум функции |P(z)| в фиксированном круге достигается в некоторой точке граничной окружности этого круга.

1 a	1	2 3	4 a	4 6	5	6	7 a	7 б	8	9	10 a	10 б	11 a	11 б	12 a	12 б	12 B	12 Г	12 д	13	14 a	14 15 6