Lehrstuhl für INFORMATIONSTECHNISCHE REGELUNG

Prof. Dr.-Ing. Sandra Hirche

Lehrstuhl für STEUERUNGS- UND REGELUNGSTECHNIK

Prof. Dr.-Ing./Univ. Tokio Martin Buss

Technische Universität München

DYNAMISCHE SYSTEME

8. Übung

1. Aufgabe: Sliding-Mode-Regler

Ein Gleichspannungswandler (DC/DC-Converter) soll mittels einer Sliding-Mode-Regelung betrieben werden. Durch geeignetes Ansteuern eines Transistors soll eine gewünschte Ausgangsspannung V_d erreicht werden. Das System wird durch folgende Gleichungen beschrieben:

$$\dot{x}_1 = -\frac{1}{L}x_2 + \frac{V_0}{L}u$$

$$\dot{x}_2 = \frac{1}{C}x_1 - \frac{1}{RC}x_2$$

wobei R, L, C, $V_0 > 0$.

Das Schaltsignal u kann nur binäre Werte annehmen, d. h. $u \in \{0, 1\}$.

Der Zustand x_1 bezeichnet den Strom, x_2 die Ausgangsspannung. V_0 ist die konstante Eingangsspannung.

1.1 Berechnen Sie den Strom x_1^* , der im eingeschwungenen Zustand nötig ist, um eine gewünschte Ausgangsspannung $x_2^* = V_d$ zu erhalten.

Es sei nun $s = x_1 - x_1^*$ und $u = \frac{1}{2}(1 - \text{sgn(s)})$.

- 1.2 Berechnen Sie das Systemverhalten $\underline{\dot{x}}_{av} = \underline{f}_{av}(x)$, $\underline{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ in s=0 mit der Methode von Filippov.
- 1.3 Skizzieren Sie den Verlauf von $x_2(t)$ nach Erreichen von s=0.
- 1.4 Untersuchen Sie die Existenz des Sliding Mode.

2. Aufgabe:

Gegeben sei das nichtlineare System 2.Ordnung

$$\underline{\dot{x}} = A\underline{x} + \underline{b}(\underline{x})u, \quad \underline{x} \in \mathbb{R}^2, \ u \in \mathbb{R}$$

$$A = \begin{bmatrix} -1 & 2 \\ -3 & -4 \end{bmatrix} , \quad \underline{b} = \begin{bmatrix} \sin^2 y \\ \cos^2 y \end{bmatrix} , \quad y = \begin{bmatrix} 1 & 1 \end{bmatrix} \underline{x} .$$

- 2.1 Entwerfen Sie eine Sliding-Mode-Regelung (Regelziel y=0).
- 2.2 Untersuchen Sie das Verhalten auf s=0 mit Equivalent Control.

3. Aufgabe: Simple Inverted Pendulum

Es wird ein einfaches invertiertes Pendel betrachtet, welches durch folgende Differentialgleichung beschrieben wird:

$$J\ddot{\theta} - mql\sin\theta = \tau$$
 $J, m, q, l > 0$

3.1 Verwenden Sie $\tau=-\tau_0\,{\rm sign}(s_1)$ als Stellgröße und die Schaltmannigfaltigkeit $s_1=c_1\dot{\theta}+c_2\theta$, $c_1,c_2>0$. Überprüfen Sie die Existenz des Sliding Mode.

Nachdem das Drehmoment τ in einem realen System nicht diskontinuierlich sein kann, wird obiges Systemmodell um die Dynamik eines Gleichstrommotors erweitert:

$$L\frac{di}{dt} + Ri + K_n \dot{\theta} = u \qquad \tau = K_m i$$

 $L, R, K_n, K_m > 0$ sind Motorparameter, i ist der Motorstrom und u die Eingangsspannung.

3.2 Bestimmen Sie den Strom i^* , welcher dem Pendel folgende Dynamik einprägt:

$$\ddot{\theta} = -\alpha_1 \theta - \alpha_2 \dot{\theta} .$$

3.3 Untersuchen Sie die Existenz und Stabilität von Sliding Mode für den Regler $u=-u_0\,{\rm sign}(s_2)$ mit $s_2=i-i^*$.