

화률및화륜수2

통계·데이터과학과이기재교수

통계학개론

목차

- 1 확률변수
- 2 기댓값과 분산

통계학개론

01

확률변수

확률변수(random variable)

▶ 표본공간의 각 원소에 실수값을 대응시켜 주는 함수

- 이산형 확률변수
 - 불량품의 수, 고속도로에서의 사고건수, 방문자수 등

- 연속형 확률변수
 - 전구의 수명, 몸무게, 체온, 통근시간 등

확률변수 예제1

> 동전을 두 번 던지는 실험

X = "두 번 던질 때 나온 앞면의 수"

$$P(X = 2) = P(\{앞\!) = \frac{1}{4}$$

$$P(X = 1) = P(\{ 앞뒤, 뒤앞\}) = \frac{2}{4}$$

$$P(X = 0) = P(\{ \pm | \pm | \}) = \frac{1}{4}$$

확률변수 예제2

> 동전을 2개 던지는 실험

X = "동전 2개 던질 때 나온 앞면의 수"

- 확률변수 X의 확률분포함수

X	0	1	2
P(X=x)	1/4	1/2	1/4

- 확률변수 X의 누적확률분포함수

X	0	1	2
$P(X \leq x)$	1/4	3/4	1

확률변수 예제3

> 200가구를 조사대상으로 지난 일년 동안 각 가구에서 병원 방문 회수 조사

병원방문 횟수	0	1	2	3	4
기구수	74	80	30	10	6

확률변수 X = "병원 방문 회수"의 확률분포함수와 누적 확률분포함수는?

확률분포함수		누적확 률분 포함수		
X = x	P(X=x)	X = x	$P(X \leq x)$	
0	0.37	0	0.37	
1	0.40	1	0.77	
2	0.15	2	0.92	
3	0.05	3	0.97	
4	0.03	4	1.00	
계	1.00	_	9 <u></u>	

이산형 확률분포의 성질

- ▶ 확률분포함수 p(x) = P(X = x)에 대하여
 - $0 \le p(x) \le 1,$
 - $\sum_{\mathbf{Z} \in x} p(x) = 1$
 - $P(a < X \le b) = \sum_{a \le x \le b} p(x)$

연속형 확률변수 사례

- 회사까지의 출근 소요 시간
 - -확률변수 X = "출근 소요 시간"

$a \leq X < b$	도수	상대도수
20≤X<30분	5일	5/100
30≤X<40분	10일	10/100
40≤X<50분	20일	20/100
50≤X<60분	4 0일	40/100
60≤X<70분	20일	20/100
70≤X<80분	5일	5/100
합계	100일	1

출근시간의 히스토그램

"출근시간이 30분에서 50분 사이일 확률

$$\Rightarrow P(30 \le X < 50) = \frac{10}{100} + \frac{20}{100} = 0.3$$

> 지난 1년 동안의 통근시간에 대한 상대도수 히스토그램

연속형 확률변수의 확률분포함수

연속형 확률변수의 확률분포함수

• 연속형 확률변수 X에 대한 $P(a \le X < b)$

- 수학적 표현

$$P(a \le X \le b) = \int_a^b f(x) dx$$

확률밀도함수 f(x)의 성질

- $f(x) \ge 0$
- $\int_{-\infty}^{\infty} f(x) = 1$
- $P(a < X \le b) = \int_a^b f(x) dx$

02

기댓값과 분산

확률변수 X의 기댓값(평균)

- \rightarrow 확률변수 X의 확률밀도함수를 f(x)라고 하면
 - 이산형

$$E(X) = \mu = \sum x_i f(x_i)$$
$$E(g(X)) = \sum g(x_i) f(x_i)$$

- 연속형

$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$
$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f(x) dx$$

확률변수 X의 기댓값

> 어느 자동차 판매영업소의 1주일간 자동차 판매대수 확률분포

'X = 1주일간 판매대수'

x_i	0	1	2	3	4	5	계
$f(x_i)$	0.1	0.1	0.2	0.3	0.2	0.1	1.0

$$E(X) = \sum x_i f(x_i)$$

$$= 0 \times 0.1 + 1 \times 0.1 + 2 \times 0.2 + 3 \times 0.3 + 4 \times 0.2 + 5 \times 0.1$$

$$= 2.7$$

확률변수 X의 분산

- $Var(X) = \sigma^2 = E[(X \mu)^2]$
- \rightarrow 확률변수 X의 확률밀도함수를 f(x)라고 하면
 - 이산형

$$\sum_{i} (x_i - \mu)^2 f(x_i)$$

- 연속형

$$\int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx$$

 $\sigma = \sqrt{Var(x)} : 표준편차$

> 기댓값과 분산의 계산

X = '동전을 2개 던질 때 앞면이 나온 횟수'

풀이

X	0	1	2
P(X=x)	1/4	1/2	1/4

$$E(X) = \mu = 0 \times \frac{1}{4} + 1 \times \frac{2}{4} + 2 \times \frac{1}{4} = 1$$

$$Var(X) = E(X^{2}) - \mu^{2}$$

$$= 0^{2} \times \frac{1}{4} + 1^{2} \times \frac{2}{4} + 2^{2} \times \frac{1}{4} - 1 = \frac{1}{2}$$

새로운 확률변수 aX + b

- \rightarrow 새로운 확률변수 aX + b의 기댓값과 분산
 - E(aX + b) = aE(X) + b
 - $Var(aX + b) = a^2Var(X)$

여기서, a와 b는 임의의 상수

표준화된 확률변수

(standardized random variable)

- ightharpoonup 평균이 μ , 표준편차가 σ 인 확률변수 X에 대해서
 - 표준화된 확률변수 $Z = \frac{X \mu}{\sigma}$
 - 확률변수 Z의 평균은 0, 분산은 1

6강

다음시간안내

확률분포와 표본분포1

