Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе № 1

Дисциплина: Низкоуровневое программирование

Тема: машина Тьюринга-Поста

Вариант: 5

Выполнил студент гр. 3530901/90002		(подпись)	Е.В.Бурков
Принял преподаватель		(подпись)	Д. С. Степанов
	"	27	2021 г.

Санкт-Петербург

Формулировка задачи

Необходимо построить машину Тьюринг-Поста, решающую задачу перевода десятичного числа в унитарный код. Выполнить моделирование её работы в симуляторе.

Алфавит машины

Алфавит машины состоит из 10 десятичных цифр (с 0 до 9 соответственно) и пробельного символа. Далее, для удобства прочтения пробельный символ будет обозначаться как "В".

Кодирование чисел

Десятичное число будет записано в привычном формате. Результат будет представлен в унитарном коде.

Унитарный код (или one-hot) – двоичный код, содержащий только одну 1. *Пример: 7 в унитарном коде будет представлено как "10000000"*.

Формат данных и положение головки

Перед началом работы на входной ленте должно быть представлено десятичное число X. Остальные ячейки должны быть заполнены пробельными символами. Головка должна указывать на старший разряд числа X.

В результате работы машины на ленте кроме пробельных символов будет находиться представление нашего числа в унитарном коде. Головка будет указывать на начало числа.

Примеры

В следующей таблице (табл. 1) представлены примеры входных и выходных лент.

Табл. 1 Примеры работы устройства

Входная лента	Выходная лента	Комментарий
B11B	B10000000000B	Обычный перевод в унитарный
٨	٨	код.
B0B	B1B	Ноль в унитарном коде можно
٨	٨	представить как одну единицу.
BBB	BBB	На вход не было подано число и
٨	٨	машина ничего не вывела.
B11B232B	undefined behavior	Необходимо, чтобы лента была
۸		заполнена пробелами.

Описание работы

Закодированный алгоритм в данной машине прост: вычитаем единицу из десятичного числа и прибавляем единицу к унитарному числу. В начале исполнения головка проходит мимо десятичного числа, не изменяя его. После через "В" ставит единицу, это начало этого числа в унитарном коде. После машина переходит в младший разряд числа и вычитает единицу. При вычитании также есть контроль переносов. После очередного вычитания головка переходит к унитарному числу и добавляет в его конец ноль, что означает прибавление единицы. Так повторяется пока десятичное число не превратиться в ноль, на этом шаге машина переходит в 10 состояние и переносит каретку в старший разряд унитарного числа. В конце не производится инкрементация унитарного числа изза того, что мы в начале работы уже поставили единицу, которая "отвечает за ноль".

Описание управляющего автомата

Для объяснения работы управляющего автомата сначала приведём формальное описание всех состояний, а после продемонстрируем граф переходов.

- Q1 начальное состояние. Если число равно нулю, то сразу выводим единицу и завершаем работу. Если под головкой нету цифры, то завершаем работу. В ином случае переходим к состоянию 9.
- Q9 данное состояние отвечает за проход по цифрам слева направо до пробела. Как только будет достигнут "В" переходим в состояние 6.
- Q6 данное состояние отвечает за установку единицы в начало нашего результата. Также, при переходе в него из Q5 переводит автомат в состояние 7.
- Q7 проходит по ещё не сформированному результату и ставит 0 в конец.
- Q8 Возвращение головки в младший разряд числа.
- Q2 Перемещение головки по цифрам до пробельного символа.
- Q3 вычитание единицы из десятичного числа. Если цифра 0, то остаёмся в этом состоянии пока не вычтем из старшего разряда. Если это не удаётся сделать, то число рано нулю и можно переходить в финальное десятое состояние.
- Q4 коррекция числа, когда ноль в старшем разряде. Если коррекция была выполнена, или в ней не было необходимости, то переходим в состояние Q5.
- Q5 переход обратно к унитарному коду, для работы с ним.
- Q10 Удаление нулей и остановки головки на начале результата.

Граф переходов с таблицей представлен на рисунке 1 и таблице 2.

Рис. 1 Граф переходов КА

Табл.2 Короткие пояснения к переходам

Переход	Описание
A	Выход при некорректной записи числа
В	Переход к поиску конца числа
С	Переход к младшему разряду
D	Начало унитарного числа
Е	Вычитание, если цифра ноль
F	Вычитание если цифры 1-9
G	Переход к унитарному числу
Н	Проверка на ноль, если заимствовались разряды
I	Если число кончилось
J (Q5 loop)	Проход через десятичное число влево
K	В состояние увеличения результата
L	Единица найдена, можно искать пробел и ставить там ноль
M	Запись единицы в начале унитарного кода
N	Перебор нулей
О	Возвращение к числу
P	Проход через унитарное число влево
Q	Возвращение к пробелу между числами
R	Перебор числа
S	Переход к записи унитарного числа
U	Удаление остатка числа
V	Перевод каретки в начало результата

Примеры работы

В качества примера рассмотрим перевод числа 12 в унитарный код в следующей таблице.

Табл. 3 Пример работы

	Twest 5 Tipinaep pace 121
Начальное положение головки и ленты	-4 -3 -2 -1\0 /1 2 3 4 5 6 7
Проходим через число	2 1 0 1 2 3 4 5 6
Записана начальная единица	1 0 1 2 /3 4 ! 1 2 1
Первое вычитание	-3 -2 -1\0 \nathered{1} 2 3 4 5
Инкрементация	-2 -1 0 1 2\3/4 5 6
Вычитание из нуля	2 -1 0\1/2 3 4 5 6 -2 -1\0/1 2 3 4 5 6 1 0 1 0 0 1 9 1 0 0
Удаление незначащего нуля	-1\ 0 /1 2 3 4 5 6 7 1 0\ 1 /2 3 4 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Работа с последней единицей	2 ·1 0 1 /2 3 4 5 6 7 0 1 /2 3 4 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Результат	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

В данной лабораторной работе мной была построена машина Пост-Тьюринга, удовлетворяющая выданному мне индивидуальному заданию.

Листинг

На рисунке 2 можно увидеть скриншот симулятора, с введённой машиной, которая получилась в результате моего синтеза.

Рис. 2 Симулятор машины Тьюринга