Digital Design

With an Introduction to the Verilog HDL, VHDL, and SystemVerilog

6th Edition, Global Edition

Chapter 05
Synchronous Sequential Logic

Block diagram of sequential circuit

- Outputs are function of inputs and present states
- Present states are supplied by memory elements

Synchronous clocked sequential circuit

- Two types of sequential logic
 - Synchronous: behavior depends on the signals affecting storage elements at discrete time
 - Asynchronous: behavior depends on inputs at any instance of time

SR latch with NOR gates

S	R	Q Q	-
1	0	1 0	(after $S = 1, R = 0$)
0	1	0 1	
1	0	$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	(after $S = 0, R = 1$) (forbidden)

- S=1,R=0 then Q=1(set)
- S=0,R=1 then Q=0(reset)
- S=0,R=0 then no change(keep condition)
- S=1,R=1 Q=Q'=0 (undefined)

SR latch with NAND gates

SR latch with control input

En	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	Q = 0; reset state
1	1	0	Q = 1; set state
1	1	1	Indeterminate

D latch

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

Graphic symbols for latches

Clock response in latch and flip-flop

- Latch: case (a), output changes as input changes
- Flip-flop: output only changes at clock edge

Master-slave D flip-flop

- Negative edge triggered D flip-flop
- Clk=0 : master disable, slave enable
 - Output has no relation with input
- Clk=1: master enable, slave disable

Graphic symbol for edge-triggered D flip-flop

JK flip-flop

- Set(J), Reset(K), Complement(J=K=1)
- D=JQ'+K'Q

T flip-flop

- Complementing flip-flop
- D=TQ'+T'Q

Flip-Flop Characteristic Tables

JK	<i>JK</i> Flip-Flop						
J	K	Q(t + 1)	I)				
0	0	Q(t)	No change				
0	1	0	Reset				
1	0	1	Set				
1	1	Q'(t)	Complement				

DF	lip-Flop	<i>T</i> F	lip-Flop
D	Q(t + 1)	T	Q(t + 1)
0	0 Reset	0	Q(t) No change
1	1 Set	1	Q'(t) Complement

D flip-flop with asynchronous reset

R	Clk	D	Q Q'
0	X	X	0 1
1	Ť	0	$\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}$

Example of sequential circuit

Analysis of clocked sequential circuit

- Behavior of clocked sequential circuit is determined from input, output and present state
- Outputs and next states are a function of inputs and present states

State Equations

- Specifies the next state and output as a function of the present state and inputs
- A(t+1)=Ax+Bx
- B(t+1)=A'x
- Y=(A+B)x'

Fig. 5-15 Example of Sequential Circuit

State Table for the Circuit of Fig. 5.15

Present State				ext ate	Output
A	В	x	A	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Second Form of the State Table

Pre	sent		Next State				Output		
State		x = 0		x = 1		x = 0	x = 1		
A	В	A	В	A	В	У	У		
0	0	0	0	0	1	0	0		
0	1	0	0	1	1	1	0		
1	0	0	0	1	0	1	0		
1	1	0	0	1	0	1	0		

State diagram of the circuit of Fig. 5.15

	sent ate	Input	Next State		Output	
A	В	x	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

Sequential circuit with D flip-flop

Present state	Inputs	Next state
A	x y	A
0	0 0	0
0	0 1	1
0	1 0	1
0	1 1	0
1	0 0	1
1	0 1	0
1	1 0	0
1	1 1	1

Sequential circuit with JK flip-flop

- State equation is not the same as the input equation
- Characteristic table or characteristic equation is needed
- Input equations
 - J_A=B K_A=Bx'
 - $J_B=x'$ $K_B=A'x+Ax'$

State Table for Sequential Circuit with JK Flip-Flops

Present State				5.90 D 75.00 D			Flip-Flop Inputs			
A	В	x	A	В	JA	K _A	J _B	K _B		
0	0	0	0	1	0	0	1	0		
0	0	1	0	0	0	0	0	1		
0	1	0	1	1	1	1	1	0		
0	1	1	1	0	1	0	0	1		
1	0	0	1	1	0	0	1	1		
1	0	1	1	0	0	0	0	0		
1	1	0	0	0	1	1	1	1		
1	1	1	1	1	1	0	0	0		

State diagram of the circuit of Fig. 5.18

Sequential circuit with T flip-flops (Binary Counter)

- Input equations and output equation
 - $T_A=Bx$, $T_B=x$
 - y=AB
- State equations are derived from characteristic equation
 - $A(t+1)=T_AA'+T_A'A$
 - $B(t+1)=T_BB'+T_B'B$

State Table for Sequential Circuit with T Flip-Flops

Present State		Input	Next State		Output
A	В	x	A	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

Block diagrams of Mealy and Moore state machines

- Mealy model: output is a function of the present state and input
 - Inputs must be synchronized with the clock
 - Outputs must be sampled at the clock edge
- Moore model: output is a function of the present state only

State Reduction

- State reduction is used to reduce the number of flip-flop and gates
- Only input/output sequences are important
- Interested in present states that go to the same next state and have the same output

State diagram

State Table

Present State	Next State		Out	Output		
	x = 0	x = 1	x = 0	x = 1		
а	а	b	0	0		
b	c	d	0	0		
c	a	d	0	0		
d	e	f	0	1		
e	a	f	0	1 ←		
f	g	f	0	1		
g	a	f	0	1		

Reducing the State Table

Present — State	Next State		Output	
	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	c	d	0	0
c	a	d	0	0
d	e	f	0	1
e	a	f	0	1
f	e	f	0	1

Reduced State diagram

Reduced the State Table

Present State	Next State		Ou	Output	
	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

Three Possible Binary State Assignments

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
а	000	000	00001
b	001	001	00010
C	010	011	00100
d	011	010	01000
e	100	110	10000

- m states circuit, codes must contain n bits where 2ⁿ≥m
- Three possible binary state assignments

Reduced State Table with Binary Assignment 1

Present State	Next State		Out	Output	
	x = 0	x = 1	x = 0	x = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

Design Procedure

- Sequential circuit design: requires state table
 - ⇔ Combinational circuit: truth table
- The number of flip-flop is determined from the number of states
 - If 2ⁿ states exist, there are *n* flip-flops
- Design steps
 - 1) Derive a state diagram or state table
 - 2) Reduce the number of states if necessary
 - 3) Assign binary code to the state
 - 4) Choose the type of flip-flops to be used
 - 5) Derive the flip-flop input equations and output equations
 - 6) Draw the logic diagram

State diagram for sequence detector

Three or more consecutive 1's in a string of bits coming through an input line

State Table for Sequence Detector

Present State		Input		ext ate	Output	
A	В	X	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

K-Maps for sequence detector

Logic diagram of a Moore-type sequence detector

Flip-Flop Excitation Tables

Q(t)	Q(t = 1)	J	K	Q(t)	Q(t = 1)	T
0	0	0	X	0	0	0
0	1	1	X	0	1	1
1	0	X	1	1	0	1
1	1	X	0	1	1	0

(a) JK Flip-Flop

(b) T Flip-Flop

State Table and JK Flip-Flop Inputs

Present State		Input	Next State		Flip-Flop Inputs				
A	В	x	A	В	J _A	K _A	J _B	K _B	
0	0	0	0	0	0	X	0	X	
0	0	1	0	1	0	X	1	X	
0	1	0	1	0	1	X	X	1	
0	1	1	0	1	0	X	X	0	
1	0	0	1	0	X	0	0	X	
1	0	1	1	1	X	0	1	X	
1	1	0	1	1	X	0	X	0	
1	1	1	0	0	X	1	X	1	

Maps for J and K input equations

Logic diagram for sequential circuit with JK flip-flops

State diagram of three-bit binary counter

3-bit counter has 3 flip-flops and can count from 0 to $2^{n}-1(n=3)$

State Table for Three-Bit Counter

Present State		Next State			Flip-Flop Inputs			
A ₂	A ₁	A_0	A ₂	<i>A</i> ₁	A ₀	T _{A2}	<i>T</i> _{A1}	T _{AO}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Maps for three-bit binary counter

Logic diagram of three-bit binary counter

