Informatyczne Systemy Sterowania Ćwiczenie 3: Regulacja dwu- i trójpołożeniowa

Krzysztof Przybylski 239266

12 stycznia 2019

1 Wstęp

1.1 Cel ćwiczenia

Celem tego ćwiczenia jest symulacja działania systemu regulacji z przekaźnikami dwui trójpołożeniowymi. Ćwiczenie ma umożliwić zapoznanie się z nieliniowymi algorytmami sterowania (przełącznikami dwu- i trójpołożeniowymi) oraz zapoznanie się ze środowiskiem Simulink oraz Matlab w zakresie nieliniowych algorytmów sterowania.

1.2 Plan badań

- 1. Symulacja systemu regulacji. Dobór parametrów regulatora.
 - W trakcie realizacji zadania należy zasymulować działanie systemu regulacji pracującego z regulatorem oraz należy zbadać wpływ wartości parametrów przekaźników na przebieg błędu regulacji
 - (a) Regulator dwupołożeniowy bez histerezy.
 - (b) Regulator dwupołożeniowy z histerezą.
 - (c) Regulator trójpołożeniowy bez histerezy.
 - (d) Regulator trójpołożeniowy z histerezą.
- 2. Zastosowanie członów korekcyjnych.
 - (a) Modyfikacja systemów z zadania 1 o korekcję w postaci członu liniowego o transmitancji:

$$K_k(s) = \frac{k_k}{T_k s + 1} \tag{1}$$

(b) Doświadczalny dobor parametrów członu korekcyjnego.

2 Realizacja planu i wyniki

2.1 Symulacja systemu regulacji. Dobór parametrów regulatora.

System regulacji będziemy symulować przy użyciu programu Simulink będącego częścią pakietu MATLAB.

2.1.1 Regulator dwupołożeniowy bez histerezy

Schemat systemu do symulacji regulatora dwupołożeniowego przedstawiony został na poniższym rysunku.

Rys. 1: Schemat symulacji regulatora dwupołożeniowego.

Aby zasymulować regulator dwupołożeniowy bez histerezy trzeba ustawić parametry 'On' i 'Off' obiektu 'Relay' na wartość 0.

Za przeprowadzenie testu odpowiedzialna jest poniższa funkcja.

```
function testDwupolozeniowyBezHisterezy()
load_system('dwupolozeniowy.slx');
hold on;

set_param('dwupolozeniowy/Relay', 'OnSwitchValue', num2str(0));
set_param('dwupolozeniowy/Relay', 'OffSwitchValue', num2str(0));

sim('dwupolozeniowy.slx');
figure(1);
plot(u.time, u.signals.values, '-r');
figure(2);
plot(e.time, e.signals.values, '-k');
end
```

Fun. 1: Funkcja testująca regulator dwupołożeniowy bez histerezy.

Po wywołaniu tej funkcji otrzymałem poniższe wykresy.

Rys. 2: Wykresy $\varepsilon(t)$, oraz u(t) dla regulatora dwupołożeniowego bez histerezy.

Widać z nich, że wykres błędu oscyluje z czasem coraz bliżej zera, więc wartość na wyjściu jest blisko pożądanej, lecz z czasem rośnie również częstotliwość przełączania regulatora, przez co znacznie rośnie jego zużycie i maleje żywotność.

2.1.2 Regulator dwupołożeniowy z histerezą

Histereza dwupoziomowa sprawia, że przełączanie stanu z wysokiego na niski nie zachodzi przy tej samej wartości co przełączanie stanu z niskiego na wysoki. Jej działanie przedstawione zostało na poniższym obrazku.

Rys. 3: Jak działa histereza dwupoziomowa.

Symulacje regulatora dwupoziomowego z histerezą przeprowadzę na tym samym modelu, który posłużył mi w zadaniu 2.1.1, jednak w obiekcie 'Relay' parametry 'On' i 'Off' będą różne, dzięki czemu ustawimy żądaną histerezę.

Za przeprowadzenie testu odpowiedzialna jest poniższa funkcja.

```
{\tt function} \ \ {\tt testDwupolozeniowyZHistereza} \, (\, {\tt step} \; , \; \; {\tt stop} \; , \; \; {\tt drawU} \, )
    load_system('dwupolozeniowy.slx');
    hold on:
   i = step;
   while (i <= stop)
set_param('dwupolozeniowy/Relay', 'OnSwitchValue', num2str(i));
set_param('dwupolozeniowy/Relay', 'OffSwitchValue', num2str(-i));</pre>
    sim('dwupolozeniowy.slx');
10
    figure (1);
    plot(e.time, e.signals.values, 'DisplayName', strcat('a=', num2str(i)));
13
14
    if drawU
15
    figure(2);
16
17
    plot(u.time, u.signals.values);
18
20
   \mathtt{i} {=} \mathtt{i} {+} \mathtt{step} \; ;
21
   hold all;
22
   end
23
    end
```

Fun. 2: Funkcja testująca regulator dwupołożeniowy z histerezą.

Po wywołaniu powyższej funkcji dla wartości (0.5, 0.6, true) otrzymałem poniższe wykresy.

Rys. 4: Wykresy $\varepsilon(t)$, oraz u(t) dla regulatora dwupołożeniowego z histerezą.

Widać na nich, że amplituda oscylacji błędu wokół zera z czasem stabilizuje się, a liczba przełączeń znacznie maleje w stosunku do regulatora dwupołożeniowego bez histerezy, a więc

i wydłuża się jego żywotnosć.

Aby zbadać wpływ zakresu histerezy na wykres $\varepsilon(t)$ wywołałem funkcję dla wartości (0.2, 0.8, false), w wyniku czego otrzymałem poniższe wykresy.

Rys. 5: Wykres $\varepsilon(t)$ dla regulatora dwupołożeniowego z histerezą przy rosnącym a.

Widać na nich, że w miarę zwiększania zakresu histerezy rośnie amplituda oscylacji wykresu błędu wokół zera, oraz maleje częstotliwość przełączeń regulatora.

2.1.3 Regulator trójpołożeniowy bez histerezy

Schemat systemu do symulacji regulatora trójpołożeniowego przedstawiony został na poniższym rysunku.

Rys. 6: Schemat symulacji regulatora trójpołożeniowego.

Aby zasymulować regulator trój
położeniowy bez histerezy nalezy parametry 'On' i 'Off' obiektów 'Relay
1' i 'Relay2' na wartość $0.\,$

Za przeprowadzenie testu odpowiedzialna jest poniższa funkcja.

```
function testTrojpolozeniowyBezHisterezy()
load_system('trojpolozeniowy.slx');
hold on;

set_param('trojpolozeniowy/Relay1', 'OnSwitchValue', num2str(0));
set_param('trojpolozeniowy/Relay1', 'OffSwitchValue', num2str(0));
set_param('trojpolozeniowy/Relay2', 'OnSwitchValue', num2str(0));
set_param('trojpolozeniowy/Relay2', 'OffSwitchValue', num2str(0));
set_param('trojpolozeniowy/Relay2', 'OffSwitchValue', num2str(0));

sim('trojpolozeniowy.slx');
figure(1);
plot(u.time, u.signals.values);
plot(e.time, e.signals.values);
splot(fun.time, fun.signals.values);
end
```

Fun. 3: Funkcja testująca regulator trójpołożeniowy bez histerezy.

Po wywołaniu tej funkcji otrzymałem poniższy wykres.

Rys. 7: Wykresy $\varepsilon(t)$, oraz u(t) dla regulatora trójpołożeniowego bez histerezy.

Widać z nich, że wykres błędu oscyluje z czasem coraz bliżej zera, więc wartość na wyjściu jest blisko pożądanej, lecz z czasem rośnie również częstotliwość przełączania regulatora, przez co znacznie rośnie jego zużycie i maleje żywotność.

Widać również, że regulator trójpołożeniowy nie wszedł w stan zerowy ani razu. Dzieje się tak, ponieważ przełączenia regulatora są zbyt szybkie.

2.1.4 Regulator trójpołożeniowy z histerezą

Histereza trójpoziomowa to nic innego niż połączenie dwóch histerez dwupoziomowych. Jej działanie przedstawione zostało na poniższym obrazku.

Rys. 8: Jak działa histereza trójpoziomowa.

Symulacje regulatora trójpołożeniowego z histerezą przeprowadzę na tym samym modelu, który posłużył mi w zadaniu 2.1.3, jednak w obiektach 'Relay1' i 'Relay2' parametry 'On' i 'Off' będą różne, dzięki czemu uzyskam żądaną histerezę. Za przeprowadzenie testu odpowiedzialna jest poniższa funkcja.

```
function testTrojpolozeniowyZHistereza(start, step, stop)
    load_system('trojpolozeniowy.slx');
     hold on;
    i = 1:
 6
    s1 = start:
    s2 = start:
     while (s1 <= stop)
    s1 = s1 + step;
10
11
    s2 = s2 - step;
12
    set_param('trojpolozeniowy/Relay1', 'OnSwitchValue', num2str(s1*i));
set_param('trojpolozeniowy/Relay1', 'OffSwitchValue', num2str(s2*i));
set_param('trojpolozeniowy/Relay2', 'OnSwitchValue', num2str(-(s2*i)));
set_param('trojpolozeniowy/Relay2', 'OffSwitchValue', num2str(-(s1*i)));
13
14
15
17
18
    sim('trojpolozeniowy.slx');
19
    figure(1);
20
    %plot(relay.time, relay.signals.values);
plot(e.time, e.signals.values, 'DisplayName', num2str(s1));
%plot(fun.time, fun.signals.values);
    i = i +1;
    \quad \text{end} \quad
25
    hold all;
26
     end
```

Fun. 4: Funkcja testująca regulator trójpołożeniowy z histerezą.

Po wywołaniu powyższej funkcji dla wartości (0.2, 0.1, 0.8) otrzymałem poniższy wykres.

Rys. 9: Wykresy $\varepsilon(t)$, oraz u(t) dla regulatora trójpołożeniowego z histerezą.

Widać na nim, że w miarę zwiększania zakresu histerezy rośnie amplituda oscylacji wokół zera wykresu błędu.

2.2 Zastosowanie członów korekcyjnych.

Podstawową zaletą regulacji dwupołożeniowej jest prostota realizacji. Niestety, cecha ta jest okupiona pogorszeniem jakości parametrów regulacji w porównaniu regulacją ciągłą. Jedną z możliwości poprawienia jakości regulacji jest zastosowanie układu z korekcją. Człon korekcyjny posiada następującą transmitancję:

$$G_w = \frac{k}{T_k s + 1} \tag{2}$$

2.2.1 Modyfikacja systemów z zadania 1

Rys. 10: Schemat regulatora dwupolożeniowego z korekcją.

Rys. 11: Schemat regulatora trojpolożeniowego z korekcją.

Człon korekcyjny powoduje modyfikację sygnału błędu dzięki czemu przełączanie następuje szybciej.

2.2.2 Doświadczalny dobor parametrów członu korekcyjnego.

1. Regulator dwupołożeniowy.

Do sprawdzania regulatorów wykorzystałem następujące funkcje testujące.

```
{\tt function} \ \ {\tt testDwupolozeniowyKor} (\, {\tt start} \; , \; \; {\tt step} \; , \; \; {\tt stop} \, )
   load_system('dwupolozeniowy_kor.slx');
   hold on;
   s=start;
   while(s <= stop)
set_param('dwupolozeniowy_kor/Transfer Fcn3', 'Denominator', strcat('[', ←
          num2str(s),
   mumzstr(s), 'l']);
%set_param('dwupolozeniowy_kor/Transfer Fcn3', 'Denominator', strcat("[0.1 ←
", num2str(s), ']'));
%set_param('dwupolozeniowy_kor/Transfer Fcn3', 'Denominator', strcat("[0.1 ←
0.3]"));
10
   sim('dwupolozeniowy_kor.slx');
11
12
   figure (1);
   plot(e.time, e.signals.values, 'DisplayName', strcat('k=',num2str(s)));
15
   s= s+step;
16
17
   end
18
   hold all;
20
^{21}
22
   end
23
```

Fun. 5: Funkcja testująca regulator dwupoziomowy z korekcją zmiana T.

Analogicznie do testowania k

```
set_param('dwupolozeniowy_kor/Transfer Fcn3', 'Denominator', strcat("[0.1 ",↔ num2str(s), ']'));
```

Fun. 6: set param dla k.

Na początek testowany był układ z histerezą. Zadanie polegało on doświadczalnym dobraniu parametrów układu korekcyjnego. Parametrami nas interesującymi są Tk, k.

Rys. 12: Zmiana Tk przy stałym k=1

Z wyresu można zauważyć, że dla wartości k=1, wartość optymalna Tk=0.1 ze względu na najmniejsze wachania wartości.

Rys. 13: Zmiana k przy stałym Tk=0.1

Gdy Tk=0.1 najbardziej optymalne k=0.3 ze względu, że oscyluje najmniej.

Dla układu bez histerezy otrzymałem zbliżone wyniki:

Rys. 14: Zmiana Tk przy stałym k=1

Rys. 15: Zmiana K

2. Regulator trójpołożeniowy Do testowania regulatora trójpołożeniowego wykorzystałem poniższe funkcje.

```
{\color{red} \textbf{function}} \hspace{0.2cm} \textbf{testTrojpolozeniowyBezHisterezyKor} \hspace{0.1cm} (\hspace{0.1cm} \textbf{start} \hspace{0.1cm}, \hspace{0.1cm} \textbf{stop} \hspace{0.1cm})
     load_system('trojpolozeniowy_kor.slx');
     i = 1;
     s1 = start;
    while(s1 <= stop)
set_param('trojpolozeniowy_kor/Relay1', 'OnSwitchValue', num2str(0));
set_param('trojpolozeniowy_kor/Relay1', 'OffSwitchValue', num2str(0));
set_param('trojpolozeniowy_kor/Relay2', 'OnSwitchValue', num2str(0));
set_param('trojpolozeniowy_kor/Relay2', 'OffSwitchValue', num2str(0));</pre>
11
12
 13 \, \big| \, \% \text{set\_param} \, (\,\, \text{`trojpolozeniowy\_kor/Transfer Fcn3'}, \,\, \, \text{`Denominator'}, \,\, \, \text{strcat} \, (\,\, \text{`[', \leftarrow ]}) \, ) \, \} 
     num2str(s1), '1]'));
set_param('trojpolozeniowy_kor/Transfer Fcn3', 'Denominator', streat("[0.1 ↔
14
               , num2str(s1), ']'));
16
    sim('trojpolozeniowy_kor.slx');
figure(1);
17
18
    'Splot(relay.time, relay.signals.values);
plot(e.time, e.signals.values, 'DisplayName', strcat('Tk=', num2str(s1)));
19
     %plot(fun.time, fun.signals.values);
end
24
     hold all;
25
```

Fun. 7: Funkcja testująca regulator trójpołożeniowy bez histerezy.

```
{\tt function} \ \ {\tt testTrojpolozeniowyBezHisterezyKor(start\,,\ step\,,\ stop)}
    {\tt load\_system('trojpolozeniowy\_kor.slx}
    hold on;
    i = 1;
    s1 = start;
    while (s1 <= stop)
   swhite(s1 = scop)
set_param('trojpolozeniowy_kor/Relay1', 'OnSwitchValue', num2str(0.8));
set_param('trojpolozeniowy_kor/Relay1', 'OffSwitchValue', num2str(-0.6));
set_param('trojpolozeniowy_kor/Relay2', 'OnSwitchValue', num2str(0.6));
set_param('trojpolozeniowy_kor/Relay2', 'OffSwitchValue', num2str(-0.8));
10
11
12
   %set_param ('trojpolozeniowy_kor/Transfer Fcn3', 'Denominator', strcat ('[', ←
13
    num2str(s1), '1]'));
set_param('trojpolozeniowy_kor/Transfer Fcn3', 'Denominator', strcat("[0.1 ↔
", num2str(s1), ']'));
15
16
    sim('trojpolozeniowy_kor.slx');
17
    figure (1);
   %plot(relay.time, relay.signals.values); plot(e.time, e.signals.values, 'DisplayName', strcat('k=', num2str(s1)));
    %plot(fun.time, fun.signals.values);
21
|s1| = |s1| + |step|
23 | i = i + 1;
24
    \quad \text{end} \quad
    hold all;
26
    end
```

Fun. 8: Funkcja testująca regulator trójpołożeniowy z histerezą.

Rys. 16: Regulator trójpolożeniowy z histerezą przy zmianie Tk

Rys. 17: Regulator trójpołożeniowy z histerezą przy zmianie k Wybrane parametry to: Tk=0.1 k=1

Dla układu bez histerezy wykonałem takie same pomiary.

Rys. 18: Regulator trójpołożeniowy bez histerezy przy zmianie Tk

Rys. 19: Regulator trójpołożeniowy bez histerezy przy zmianie ${\bf k}$

3 Wnioski.

Histereza umożliwia zmieniszenie zużycia sprzętu przez zmniejszenie częstotliwości przełączeń między stanami, kosztem odchyłów od pożądanych wartości. Wybór zakresu histerezy zależy od systemu w którym działa regulator oraz od tego jakiej dokładności wyjściowej wymaga.

Regulator trójpołożeniowy pozwa na określenie 3 stanów, dzięki którym uzyskujemy większą kontrolę nad działaniem systemu.

Człon korekcyjny pozwala dostosować system do naszych potrzeb, wpływa on na zmianę częstotliwości przęłączania.