Oznake

- $\mathbb{N} = \{0, 1, ...\}$ množica naravnih števil
- $\mathbb{Z} = \{..., -1, 0, 1, ...\}$ množica celih števil
- $[n] = \{1, ..., n\}$
- $Y^X = \{f: X \to Y\}$ množica vseh preslikav iz X v Y
- $2^X = P(X) = \{A \subseteq X\}$ množica vseh podmnožic
 množice X
- $\delta_{ij} = \begin{cases} 1; & j = i \\ 0; & j \neq i \end{cases}$ Kroneckerjeva delta

Lastnosti funkcji

• Injektivnost (različna elementa se vedno slikata v različno sliko)

$$\forall x, x' \in X : x \neq x' \Rightarrow f(x) \neq f(x')$$

$$f(x) = f(x') \Rightarrow x = x'$$

$$\exists f : X \to Y \text{ injekcija} \Rightarrow |X| \leq |Y|$$

• Surjektivnost (vsak element Z_f je slika vsaj enega elementa D_f)

$$\forall y \in Y \ \exists x \in X : y = f(x)$$

$$\exists f : X \to Y \ \text{surjekcija} \Rightarrow |X| \geq |Y|$$

• Bijektivnost (injekcija in surjekcija)

$$\forall y \in Y \not\exists x \in X : y = f(x)$$

$$\exists f : X \to Y \text{ bijekcija} \Rightarrow |X| = |Y|$$

Dirichletovo načelo

Če n kroglic razporedimo v k škatel in je n>k, bosta v vsaj eni škatli vsaj dve kroglici.

$$\exists f: X \to Y \text{ injekcija} \Rightarrow |X| \leq |Y|$$

$$|X| > |Y| \Rightarrow \nexists \text{injekcija } f: X \to Y$$

Posplošeno Dirichletovo načelo

Če n kroglic razporedimo v k škatel in je $n>r\cdot k$, bo v vsaj eni škatli vsaj r+1 kroglic.

Načelo vsote

$$A \cap B = \emptyset \Rightarrow |A \cup B| = |A| + |B|$$

Načelo vklučitev in izključitev

$$|A\cup B|=|A|+|B|-|A\cap B|$$

$$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cup B\cup C|$$

Načelo produkta

$$|A \times B| = |A| \cdot |B|$$

Asimptotična enakost

$$a_n \sim b_n \Leftrightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = 1$$

Eulerjeva funkcija

$$\varphi(n)=|\{k\in[n]:D(n,k)=1\}|=\text{št. proti }n\text{ tujih števil, ki so}\leq n$$

$$\varphi(p)=p-1\qquad p\in\mathbb{P}$$

$$\varphi(p^k)=p^k-p^{k-1}=p^k(1-\frac{1}{p})$$

$$\sum_{d|n}\varphi(d)=n$$

Funkcije in urejene izbire

N in K sta množici, kjer je n=|N| in k=|K|. K^N je množica vseh funkcij, ki slikajo iz N v K.

(Variacije s ponavljanjem) Število poljubnih funkcij, ki slikajo iz N v K je k^n . (Variacije brez ponavljanja) Število injektivnih funkcij, ki slikajo iz N v K je $n^{\underline{k}} = \frac{k!}{(k-n!)}$.

Padajoča potenca

$$k^{\underline{n}} = (k)_n = k \cdot (k-1) \cdot (k-2) \cdot \dots \cdot (k-n+1) = \frac{k!}{(k-n)!}$$

Naraščujoča potenca

$$k^{\overline{n}} = (k)^n = k \cdot (k+1) \cdot (k+2) \cdot \dots \cdot (k+n-1) = \frac{(k+n-1)!}{(k-1)!}$$

Stirlingova formula

$$n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$$

Funkcija gama

Funkcija gama je posplošitev fakultete.

$$x>0 \qquad \Gamma(x)=\int_0^\infty t^{x-1}e^{-t}dt$$

$$\Gamma(n+1)=n! \qquad \Gamma(\frac{1}{2})=\sqrt{\pi}$$

Podmnožice in načrti

Binomski koeficient

Za nožico N in število k je binomski koeficient množica vseh podmnožic množice N moči k:

$$\binom{N}{k} = \{ A \subseteq N : |A| = k \}$$

Za $n, k \in \mathbb{N}$ je binomski koeficient:

$$\binom{n}{k} = \left| \binom{[n]}{k} \right|$$

Za binomski koeficient veljajo naslednje enaksti:

$$\binom{n}{0} = 1$$

$$\binom{n}{1} = n$$

$$\binom{n}{n} = 1$$

$$\binom{n}{k} = 0 \quad \text{za } k > n$$

$$\binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n}{k} = \frac{n^{\underline{k}}}{k!} = \frac{n(n-1)\dots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$

Obstaja tudi rekurzivna zveza:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Binomski izrek

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Izbori

Imamo n optevilčenih kroglic. Na koliko načinov lahko izberemo k kroglic?

	s ponavljanjem	brez ponavljanja	
variacije vrstni red je pomemben	n^k	$n^{\underline{k}}$	
kombinacije vrstni red ni pomemben	$\binom{n+k-1}{k}$	$\binom{n}{k}$	

Kompozicije

Kompozicija števila n je l-terica števil λ_i , katerih vsota je n.

$$\lambda = (\lambda_1, ..., \lambda_l); \quad \lambda_i \in \mathbb{Z}, \ \lambda_i > 0$$

Število n ima 2^{n-1} kompozicij in $\binom{n-1}{k-1}=\binom{n-1}{n-k}$ kompozicij sk členi.

Šibke kompozicije

Šibke kompozicije se od navadnih razlikujejo po tem, da lahko vsebujejo tudi 0.

$$\lambda = (\lambda_1, ..., \lambda_l); \qquad \lambda_i \in \mathbb{Z}, \ \lambda_i \ge 0$$

Število n ima ∞ šibkih kompozicij in $\binom{n+k-1}{n}=\binom{n+k-1}{k-1}$ šibkih kompozicij skčleni.

Načelo vključitev in izključitev

$$|A\cup B|=|A|+|B|-|A\cap B|$$

$$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|-|A\cap B\cap C|$$

$$|A_{1} \cup ... \cup A_{n}| = |A_{1}| + ... + |A_{n}|$$

$$- |A_{1} \cap A_{2}| - |A_{1} \cap A_{3}| - ... - |A_{1} \cap A_{n}| - ... - |A_{n-1} \cap A_{n}|$$

$$+ |A_{1} \cap A_{2} \cap A_{3}| + |A_{1} \cap A_{2} \cap A_{4}| + ... + |A_{n-2} \cap A_{n-1} \cap A_{n}|$$

$$- |A_{1} \cap A_{2} \cap A_{3} \cap A_{4}| + ...$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \sum_{1 \le j_{1} \le ... \le j_{i} \le n} |A_{j_{1}} \cap A_{j_{2}} \cap ... \cap A_{j_{i}}|$$

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{\emptyset \ne S \subseteq [n]} (-1)^{|S|-1} |A_{S}|; \qquad A_{S} = \bigcap_{i \in S} A_{i}$$

$$\left| \bigcap_{i=1}^{n} A_{i}^{C} \right| = \sum_{S \subseteq [n]} (-1)^{|S|} |A_{S}|$$

Načrti

 $\mathcal{B} = \{B_1, B_2, ..., B_b\}$ je načrt s parametri $(v, k, \lambda),$ če velja:

- $B_1, ..., B_b \subseteq X$
- \bullet |X| = v

- $|B_1| = ... = |B_b| = k$
- Za $\forall i \in X$ je $i \in B_j$ za λ različnih j-jev

Načrt lahko prikažemo s tabelo kljukic v kateri stolpci predstavljajo bloke vrstice pa elemente množice X.

$$\begin{array}{c|c}
 & B \in \mathcal{B} \\
\hline
 x \in X & \begin{cases}
\checkmark; x \in B \\
0; x \notin B
\end{cases}
\end{array}$$

V vsakem stolpcu je k kljukic.

V vsaki vrstici je λ kljukic.

$$b\cdot k = v\cdot \lambda \Rightarrow k\,|\,v\cdot \lambda$$

$$b \le \binom{v}{k} \qquad \qquad \frac{v \cdot \lambda}{k} \le \binom{v}{k}$$

$$\lambda \le \frac{k}{v} \frac{v!}{k!(v-k)!} = \frac{(v-1)!}{(k-1)!(v-k)!} = \binom{v-1}{k-1}$$

Načrt s pareametri (v, K, λ) obstaja \Leftrightarrow

$$k \mid v \cdot \lambda$$
, $\lambda \leq \begin{pmatrix} v - 1 \\ k - 1 \end{pmatrix}$

t-načrti

 \mathcal{B} je t-načrt s parametri (v, k, λ_t) , če

- $B_i \subseteq X$
- \bullet |X| = v
- $|B_i| = k$
- $\forall S \subseteq X, |S| = t$ velja $S \subseteq B_i$ za natanko λ_t indeksov i.

Če je $\mathcal B$ t-načrt s parametri (v,k,λ_t) , je tudi (t-1)-načrt s parametri (v,k,λ_{t-1}) kjer je

$$\lambda_{t-1} = \lambda_t \cdot \frac{v - t + 1}{k - t + 1}$$

Če je \mathcal{B} t-načrt s parametri (v, K, λ_t) , potem je \mathcal{B} tudi s-načrt s parametri (v, K, λ_s) kjre je $1 \leq s \leq t$ in

$$\lambda_s = \lambda_t \cdot \frac{v - t + 1}{k - t + 1} \cdot \frac{v - t + 2}{k - t + 2} \cdot \dots \cdot \frac{v - s}{k - s}$$

Permutacije, razdelitve in razčlenitve

Stirlingova števila 1. vrste

Permutacijo lahko zapišemo kot produkt disjunktnih ciklov.

c(n,k) ... število premutacij v S_n s k cikli

$$c(n,n) = 1$$
 $c(n,n-1) = \binom{n}{2}$ $c(n,1) = (n-1)!$ $c(n,0) = \delta_{n0}$

Za Stirlingova števila 1. vrste ni enostavne formule imamo pa rekurzivno zvezo:

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k)$$

Vseh premutacij v S_n je

$$\sum_{k} c(n,k) = n!$$

Izrek:

$$\sum_{k} c(n,k)x^{k} = x^{\overline{n}}$$

Stirlingova števila 2. vrste

 $\mathcal{B} = B_1, ..., B_k$ je razdelitev (razbitje, praticija) množice X, če velja:

- $B_i \neq \emptyset$
- $B_i \cap B_j = \emptyset$
- $\bullet \bigcup_{i=1}^k B_i = X$

S(n,k) ... število razdelitev [n] s k bloki.

$$S(n,n) = 1 S(n,n-1) = \binom{n}{2} S(n,1) = 1 S(n,0) = \delta_{n,0}$$

$$S(n,k) = 0 \text{za } k > n \text{ ali } k < 0$$

Število surjekcij iz [n] v [k] je enako k!S(n,k). Po načelu vključitev in izključitev je število surjekcij iz [n] v [k] enako:

$$\sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^n$$

Torej je

$$S(n,k) = \frac{\sum_{j=0}^{n} (-1)^{k-j} {k \choose j} j^n}{k!}$$

Za Stirlingova števila 2. vrste velja tudi rekurzivna zveza:

$$S(n,k) = S(n-1,k-1) + k S(n-1,k)$$

Izrek:

$$\sum_{k} S(n,k) x^{\underline{k}} = x^{n}$$

S(n,k)je enako številu ekvivalenčnih relacij zkekvivalenčnimi razredi na $\left[n\right]$

Bellova števila

B(n) ... število vseh razdelitve [n]

$$B(n) = \sum_{k} S(n, k)$$

Rekurzivna zveza:

$$B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(k)$$

B(n) je enako številu ekvivalenčnih relacij na [n]

Lahova števila

 $L(n,k)\dots$ število razdelitev[n]na kmed seboj linearno urejenih blokov Rekurzivna zveza:

$$L(n,k) = L(n-1,k-1) + (n-1+k)L(n-1,k)$$

Izrek:

$$\sum_{k} L(n,k) x^{\underline{k}} = x^{\overline{n}}$$

Formula za Lahova števila:

$$L(n,k) = \frac{n!}{k!} \binom{n-1}{k-1}$$

Multinomski koeficient

$$\binom{n}{n_1, \dots, n_k} = \frac{n!}{n_1! \cdot \dots \cdot n_k!}$$

 $n_1 + ... n_k$ mora biti enako n

Multinomski izrek

$$(x_1 + \dots + x_k)^n = \sum_{\substack{(n_1, \dots, n_k) \\ \text{sibka kompozicija } n}} \binom{n}{n_1, \dots, n_k} x_1^{n_1} x_2^{n_2} \dots x_k^{n_k}$$

Razčlenitev

 $\lambda=(\lambda_1,...,\lambda_l),\ \lambda_1\geq...\geq\lambda_l>0,\ \lambda_i\in\mathbb{N}$ je razčlenitev števila $n=\lambda_1+...\lambda_l$

- $\lambda_1, ... m \lambda_l$ so členi
- $\lambda_1 + ... + \lambda_l = |\lambda|$ je velikost λ
- $l = l(\lambda)$ dolžina

Razčlenitev lahko grafično predstavimo z **Ferrersovim diagramom**: V i. vrstico narišemo λ_i pikic. Naprimer (4, 3, 3, 1, 1, 1) je razčlenitev 13.

• • • •

Konjugirana razčlenitev λ' ali λ^C

Dobimo jo tako, da diagram transponiramo.

Naprimer 433111' = 6331:

$$\lambda_i' = |\{j : \lambda_j \ge i\}| = \max\{j : \lambda_j \ge i\}$$

$$|\lambda'| = |\lambda|$$
 $l(\lambda') = \lambda_1$ $\lambda'_1 = l(\lambda)$ $\lambda'' = \lambda$

p(n) ... število razčlenitev n

 $p_k(n)$... število razčlenitev $n \le k$ členi

 $\overline{p_k}(n)$... število razčlenitevnz največkčleni

Rekurzivne zveze:

$$p_k(n) = \overline{p_n}(n-k)$$

$$p_k(n) = p_{n-1}(n-1) + p_k(n-k)$$

$$\overline{p_k}(n) = p_k(n) + \overline{p_{k-1}}(n) = \overline{p_{k-1}}(n) + \overline{p_k}(n-k)$$

Eulerjev petkotniški izrek

$$p(n) = \sum_{k=1}^{\infty} (-1)^{k-1} \left(p \left(n - \frac{k(3k-1)}{2} \right) + p \left(n - \frac{k(3k+1)}{2} \right) \right)$$

Dvanajstera pot

Imamo n kroglic in k škatel. Na koliko načinov lahko damo kroglice v škatle. To je analogija za preslikave.

kroglice	škatle	vse preslikave	injekcije	surjekcije
ločimo	ločimo	k^n	$k^{\underline{n}}$	k! S(n,k)
ne ločimo	ločimo	$\binom{n+k-1}{k-1}$	$\binom{k}{n}$	$\binom{n-1}{k-1}$
ločimo	ne ločimo	$\sum_{i=0}^{k} S(n,i)$	$\begin{cases} 1; \ k \ge n \\ 0; k < n \end{cases}$	S(n,k)
ne ločimo	ne ločimo	$\overline{p_k}(n)$	$\begin{cases} 1; \ k \ge n \\ 0; k < n \end{cases}$	$p_k(n)$

Rodovne funkcije

Kako lahko predstavimo zaporedje:

1. Z eksplicitno formulo:

$$a_n = 2^n$$
 $b_n = n!$ $F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right)$

2. Z rekurzivno formulo:

$$a_n = F(a_0, a_1, ..., a_{n-1}, n)$$
 in začetni členi a_i

$$a_n = 2a_{n-1}$$
 $b_n = n(b_{n-1})$ $F_n = F_{n-1} + F_{n-2}$
 $a_0 = 1$ $F_0 = F_1 = 1$

3. S približkom oziroma asimptotično formulo

$$b_n \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 $F_n \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1}$

$$a_n \sim b_n \Leftrightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = 1$$

4. Z rodovno funkcijo