Probabilistic Graphical Models

Saeed Saremi

Assigned reading: Chapter 11, [Barber12] (23.2.2 & 23.2.5)¹

November 5, 2024

¹Barber, D. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012. http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf

OUTLINE

- ▶ Probabilistic graphical models
 - Conditional probability table
 - Inference in PGMs
- ▶ Inference in HMMs
 - DYNAMIC PROGRAMMING (a review)
 - $-\alpha$ -update algorithm
 - VITERBI algorithm

JOINT PROBABILITY DISTRIBUTION: AN EXAMPLE

S	R	W	P(S,R,W)
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

JOINT PROBABILITY DISTRIBUTION

- ▶ Canonical example is a multivariate Gaussian. The joint probability is specified by the mean, a *d*-dimensional vector, and the covariance matrix, a *d* × *d* symmetric matrix.
- ▶ Suppose we have d binary random variables. Then the joint distribution can be specified by a table with 2^d entries. This quickly becomes intractable, both for specification, and subsequently in estimation from data.
- ▶ The secret to tractability is conditional independence. This information can be captured by a directed acyclic graph (DAG). For such a graph, every node has well-defined parents and the joint distribution is the product of "local" conditional distributions.

CONDITIONAL PROBABILITY TABLE

$$P(R,S,W) = P(R)P(S|R)P(W|S,R)$$

$$\begin{array}{c|ccc} P(R) & R = \text{True} & R = \text{False} \\ \hline & 0.2 & 0.8 \end{array}$$

P(S R)	S = True	S = False
R = True		0.99
R = False	0.4	0.6

P(W S,R)	W = True	W = False
S = True, R = True	0.99	0.01
S = True, R = False	0.8	0.2
S = False, R = True	0.9	0.1
S = False, R = False	0.0	1.0

JOINT PROBABILITY DISTRIBUTION: AN EXAMPLE

$$\begin{array}{c|ccc} P(R) & R = \text{True} & R = \text{False} \\ \hline & 0.2 & 0.8 \end{array}$$

P(S R)	S = True	S = False
R = True		0.99
R = False	0.4	0.6

P(W S,R)	W = True	W = False
S = True, R = True	0.99	0.01
S = True, R = False	0.8	0.2
S = False, R = True	0.9	0.1
S = False, R = False	0.0	1.0

5	R	W	P(S,R,W)
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F F	F	Т	
F	F	F	

$$P(X_1,\ldots,X_d) = \prod_{i=1}^d P(X_i \mid \mathrm{pa}(X_i))$$

In general

$$|\mathrm{pa}(X_i)| \ll d$$

therefore this leads to a much more compact representation of the joint probability.

INFERENCE in PGMs

$$P(R = T \mid W = T) = \frac{P(R = T, W = T)}{P(W = T)} = \frac{\sum_{s \in \{T, F\}} P(R = T, S = s, W = T)}{\sum_{r, s \in \{T, F\}} P(R = r, S = s, W = T)}$$

INFERENCE in PGMs

$$P(R = T \mid W = T) = \frac{P(R = T, W = T)}{P(W = T)} = \frac{\sum_{s \in \{T, F\}} P(R = T, S = s, W = T)}{\sum_{r, s \in \{T, F\}} P(R = r, S = s, W = T)}$$

We can calculate any term in the numerator and denominator using our factorization, e.g.,

$$P(R = T, S = T, W = T) = P(R = T)P(S = T \mid R = T)P(W = T \mid S = T, R = T)$$

= 0.2 × 0.01 × 0.99
= 0.00198

Then the numerical results (check at home!) are:

$$P(R = T \mid W = T) = \frac{0.00198 + 0.1584}{0.00198 + 0.288 + 0.1584 + 0} \approx 0.36$$

THE WEATHER-ICE CREAM HMM

Figure: "stochastic automaton" representation of the HMM

THE WEATHER-ICE CREAM HMM

$$P(X_{1:T}, Y_{1:T}) = \prod_{t=1}^{T} P(X_t|X_{t-1})P(Y_t|X_t)$$

We are interested in various inference problems, e.g.:

- ▶ How can we reason about $P(X_T|Y_{1:T})$?
- What are the most likely states given the observations $Y_{1:T}$, i.e., find

$$\operatorname*{argmax}_{X_{1:T}} P(X_{1:T} \mid Y_{1:T}).$$

DYNAMIC PROGRAMMING

EXAMPLE: FIND CHEAPEST FLIGHT

- ▶ *K* choices at each stage, *T* stages
- ▶ The not-so-clever algorithm: brute force enumeration of all possible paths: $O(K^T)$
- We can do a lot better! The backtrace algorithm: $O(K^2T)!$

BACKTRACE

The core idea is to solve the problem recursively.

Figure: What is the cheapest way to get to CHICAGO?

- ▶ BACKTRACE: To solve the problem of finding the cheapest way to get to stage t+1, we only need to know the cheapest way to get to nodes in stage t.
- stage-to-stage computation is $O(K^2)$.
- ▶ There are T stages: the total computation is $O(K^2T)$

VITERBI BACKTRACE

 $\operatorname*{argmax}_{X_{1:T}} P(X_{1:T} \mid Y_{1:T})$

HMM REVIEW

- ▶ A set of K states in $X_t \in [K] = \{1, ..., K\}$.
- ▶ Transition probabilities

$$P(X_t|X_{t-1})$$

- ▶ A sequence of observations $Y_{1:T} = (Y_1, ..., Y_T)$ with $Y_t \in \mathcal{Y} = [L]$.
- ▶ A sequence of observation likelihoods, also called emission probabilities,

$$P(Y_t|X_t)$$
.

- An initial probability distribution over states denoted by $P(X_1)$.
- Given these, we know the joint probability $P(X_{1:T}, Y_{1:T})$:

$$P(X_{1:T}, Y_{1:T}) = \prod_{t=1}^{T} p(Y_t|X_t) P(X_t|X_{t-1})$$

WARMUP: α -UPDATE ALGORITHM

FILTERING: $P(X_t|Y_{1:t})$

α -UPDATE ALGORITHM

▶ Define $\alpha(X_t)$:

$$\alpha(X_t) = P(X_t, Y_{1:t})$$

 \nearrow We can express $\alpha(X_t)$ in terms of $\alpha(X_{t-1})$:

$$\alpha(X_t) = P(Y_t|X_t) \sum_{X_{t-1}} \alpha(X_{t-1}) P(X_t|X_{t-1}), \quad t > 1$$

▶ The iteration starts at $\alpha(X_1) = P(Y_1|X_1)P(X_1)$

$$P(X_t, Y_{1:t}) = \sum_{X_{t-1}} P(X_t, X_{t-1}, Y_{1:t-1}, Y_t)$$

VITERBI ALGORITHM I

• We are interested in the most likely sequence $X_{1:T}$ of $P(X_{1:T} \mid Y_{1:T})$:

$$\underset{X_{1:T}}{\operatorname{argmax}} P(X_{1:T} | Y_{1:T}) = \underset{X_{1:T}}{\operatorname{argmax}} P(X_{1:T}, Y_{1:T})$$

▶ Start with the following:

$$\max_{X_{T}} \prod_{t=1}^{T} p(Y_{t}|X_{t}) P(X_{t}|X_{t-1}) = \left(\prod_{t=1}^{T-1} P(Y_{t}|X_{t}) P(X_{t}|X_{t-1})\right) \underbrace{\max_{X_{T}} P(Y_{T}|h_{T}) P(X_{T}|X_{T-1})}_{\mu(X_{T-1})}$$

▶ The "message" $\mu(X_{T-1})$ conveys information from the end of the chain to the penultimate timestep. We can continue recursively:

$$\mu(X_{t-1}) = \max_{X_t} P(Y_t|X_t) P(X_t|X_{t-1}) \mu(X_{t-1}), \quad 2 \le t \le T$$

with
$$\mu(X_T) = 1$$
.

VITERBI ALGORITHM II

▶ Maximizing over $X_2, ..., X_T$ is "compressed" into the message $\mu(X_1)$ so that the most likely state X_1^* is given by

$$X_1^* = \operatorname*{argmax}_{X_1} p(Y_1|X_1) P(X_1) \mu(X_1)$$

▶ Once computed, BACKTRACKING gives

$$X_t^* = \operatorname*{argmax}_{X_t} P(Y_t|X_t) P(X_t|X_{t-1}^*) \mu(X_t)$$

▶ This is the probabilistic form of our BACKTRACKING algorithm to find the cheapest flight!