Lecture 2: Symmetries of regular n-gons

Let n be a positive integer. We want to "understand" the symmetries of the regular n- gon.

What does it mean to "understand"?

- We want a complete list of all symmetries.

- We want to calculate

compositions of symmetries.

Remark: Measuring angles

We will express angles in radians.

π radians = 180°

So, $120^{\circ} = 2\pi/3$ radians, $240^{\circ} = 4\pi/3$ radians, etc.

The case n=3

3 reflections in lines o, l, r Call them To, Te, Tr

3 rotations through 0, 27/2 4T/2

Let P= rotation through 2T/3. Then, $P^2 = P \circ P$ is rotation through 4T/3. So, the symmetries are $\{id, P, P^2, T_v, T_L, T_r\}$

Rotation through 0 radians = id. (identity)

Compositions

Rotations: {id, P, P3

Clearly, $P \circ P^2 = P^2 \cdot P = P^3$ = id.

Reflections: $\{T_v, T_e, T_r\}$ Clearly, $T_v^2 = T_L^2 = T_r^2 = id$

A sample calculation: Po T_=?

A complete table for colculating xoy

	,					
	ıd		P2	Tr	T,	τ_{r}
id	id	•	•	To		
P	٩	2	id	TL	Tr	To
P		id				. .
てか	To	7	ہر	id	2	L
Te	Te	てか	$\overline{\tau}_{r}$	2	id	p
$\overline{\mathcal{T}_{r}}$	Tr	7	7	0	P	bi

Objective - Do a similar calculation for only n

for any n.

- Make sure we have found
all isometries

all isometries

- Find some pattern in this table and express it more concisely.

A basic observation Po Label v

Par Partices as

P

 $G(P_i) = P_{i+1} \text{ or } P_{i-1}$

Convention:

If i = 0, Pi-1 is understood as

If (= n-1, Pi+1 is understood

In general P_i may also be called P_{n+i} or P_{i-n}.

Case 1

If
$$\sigma(P_1) = P_{i+1}$$
, then

 $\sigma(P_2) = P_{i+2}$, $\sigma(P_3) = P_{i+3}$, etc.

 $\sigma(P_{J}) = P_{c+J}.$

In fact the image of any

vertex is uniquely determined.

So, $\sigma = rotation through <math>\left(\frac{2\pi i}{n}\right)$.

Observe

In general, rotation preserves

"orientation", i.e. anti-clockwise

order of labels remains anti-clockwise after rotation.

Case 2

If $\sigma(P_1) = P_{i-1}$, $\sigma(P_2) = P_{i-2}$ $\sigma(P_3) = P_{i-3}$, etc. In general, $\sigma(P_i) = P_{i-j}$ Now the vertex labels run clockwise. So & cannot be

a rotation.

Let li be the line joining midpoints of PoPi and PiPi-

If P=Pi, take the first midpt to be Posimilarly, if P_1 = Pi_1, take the 2nd midpt to be P_1

It is easy to see that the reflection in li is a symmetry of the n-gon taking Po to P, P, to Pi-1 and, in general, P, to Pi-j.

Thus, $\sigma = reflection in li$

Observe

There are no other symmetries!
Why?

Any symmetry takes Po to some Pi. If it takes P, to Piti, it is the rotation through (2xi) (anti-clockwise).

If it takes P, to Pi-, it must be the reflection in the line li defined earlier. So, there are exactly 2n symmetries: n rotations and n reflections

Let $P = rotation through \frac{2\pi}{n}$

Then, $P^i = rotation through <math>\frac{2\pi i}{n}$

So, $\{id, P, P^2, \dots, P^{n-1}\}$ are the n rotations.

Let T= reflection in lo Recall: Lo = line joining Po

to midpoint of P.Pn-I

What can we say about Pit?

T takes
$$P_j$$
 to P_{n-j} for each j .

 P^i takes P_r to P_{r+i} for each r .

So P^i T takes P_j to $P_{(n-j)+i}$

for each j.

So, it takes Po to Pnoti = Pi.

It takes P_i to $P_{n-1+i} = P_{i-1}$.

So, we see that P'T is the reflection in the line li So, the n reflections are f τ, ρτ, ρ²τ, - · · , ρ" τ}

All symmetries: $\{id, P, P^2, \dots, P^{n-1}, T, P\tau, P^2\tau, \dots, P^{n-1}\tau\}$

What is TP'? Pi preserves orientation. T changes orientation. So TPi changes orientation. So

it is some reflection. Which one is it?

Pi takes Po to Pi T takes Pi to Pn-i So TPi takes Po to Pn-i So TPi is a reflection taking Po to Pn-i. So, $TP^{i} = P^{n-i} T$.

Note that $P^{n-i} \cdot P^i = P^n = id$ So, P^{n-i} = inverse of P^{i}

50, we will write p-1 instead of Pn-L

So, we have the rule

TP' = P-1

Now we can calculate any