1	What is claimed is:
2	•
3	1. A power tool with at least one handle (10, 26, 50, 62, 104) that comprises
4	at least one grip part (12, 72, 106) that is firmly connected to a mounting part (16,
5	70, 110) via at least one elastic, vibration-damping element (14, 24, 52, 108), via
6	which the grip part (12, 72, 106) is affixable to a housing (60),
7	wherein the connection between the grip part (12, 72, 106) and the mounting part
8	(16, 70, 110) is secured by means of the elastic element (14, 24, 52, 108) via at
9	least one movable retaining element (20, 22, 28, 64, 112).
10	
11	2. The power tool according to Claim 1,
12	wherein the retaining element (20, 28) is formed by a flexible component.
13	
14	3. The power tool according to Claim 2,
15	wherein the retaining element (20) is formed by a rope.
16	
17	4. The power tool according to one of the preceding claims,
18	wherein the retaining element (20) is located in the elastic element (14) along a
19	centerline.
20	
21	5. The power tool according to one of the preceding claims,
22	wherein the retaining element (20), in the installed state, is subjected to tensile
23	stresses, and the elastic element (14) is subjected to compressive stresses.
24	
25	6. The power tool according to one of the Claims 1 through 3,
26	wherein the retaining element (28) is formed by a band that encloses the elastic
27	element (52).
28	
29	7. The power tool according to Claim 1,

- 1 wherein the retaining element (22, 64, 112) is formed by a rigid component that is
- 2 supported in movable fashion relative to the mounting part (16, 70) and/or the
- 3 grip part (12, 72, 106).

4

- 5 8. The power tool according to Claim 7,
- 6 wherein the retaining element (112) is firmly supported in the mounting part (110)
- 7 and movable relative to the grip part (106).

8

- 9 9. The power tool according to Claim 8,
- wherein the retaining element (112) is firmly connected to a fastening screw
- 11 (114) located in the mounting part (110).

12

- 13 10. The power tool according to Claim 8 or 9,
- wherein the retaining element (112) is formed by a screw.

15

- 16 11. The power tool according to Claim 7,
- wherein the retaining element (22, 64) is connected to the grip part (12, 72) via
- the elastic element (24) and to the mounting part (16, 70) via the elastic element
- 19 (24).

20

- 21 12. The power tool according to one of the Claims 6 through 11,
- 22 wherein a maximum displacement of the elastic element (24, 52, 108) from a
- 23 normal position is determined by means of the retaining element (22, 28, 64,
- 24 112) in at least one tilting direction and/or in one sliding direction.

25

- 26 13. The power tool according to one of the preceding claims,
- 27 wherein the elastic element (108) comprises a non-circular cross-sectional area
- 28 (116) at least closely before a seating surface (134, 146) with the mounting
- 29 element (110) and/or with the grip part (106) that is smaller than the seating
- 30 surface (143, 146).

31

- 1 14. A method for the production of a handle of a power tool according to one
- 2 of the preceding claims,
- 3 wherein heat is dissipated from an internal region of the elastic element (108) via
- 4 at least one component (142) during production of the elastic element (108).

5

- 6 15. The method according to Claim 14,
- 7 wherein the component (142) is formed by a core that is removed after
- 8 production of the elastic element (108).