ECO 352, Stony Brook University, Fall 2022 Problem set # 1.

Serguei Maliar

Problem 1. Consider a system of nonlinear equations:

$$x^2 + y^2 = 10$$
$$x - 3y = -10$$

- a) Following the provided example and class notes, write the code for the gradient descent method and Newton method that computes the solution by reformulating this system as a problem of minimizing the squared sum of residuals. Try out different initial guesses. How many solutions this system has?
- b) Look for optimization routines that are available in MATLAB such as fminsearch and fminunc. Solve the system by using such routines by converting this system of equations into a problem of minimizing the squared sum of residuals. Compare the performance of MATLAB software with your code, in particular, the running time.
- c) Try to solve this system of equations using the MATLAB solver "fsolve" without converting this problem into an optimization problem.
 - d) Repeat the calculations with another system of equations

$$x^2 + y^2 = 26$$
$$3x^2 + 25y^2 = 100$$

Try out different initial guesses. How many solutions this system has? Explain the problems you encounter.

Problem 2. We now experiment with the linear regression. Instead of using a fixed actual data set, we will use simulated data which we can adapt to our experiments as needed. Let us draw p random variables of length n from a normal distribution N(0,1) to produce a matrix of

features
$$p \times n$$
. Add a column of ones to get $X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix}$. Draw random errors

features
$$p \times n$$
. Add a column of ones to get $X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix}$. Draw random errors $\varepsilon = \begin{bmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{bmatrix}$ where $\varepsilon_i \sim N\left(0, \sigma^2\right)$. Given a set of coefficients where $\theta = \begin{bmatrix} \theta_1 \\ \dots \\ \theta_p \end{bmatrix}$, let us construct the torget (label) possible as $\alpha = X\theta + \varepsilon$. Let us use $\theta = \delta = 1$, we that are drawn from a uniform

the target (label) variable as $y = X\theta + \varepsilon$. Let us use θ_i , i = 1, ..., p that are drawn from a uniform distribution [-1,1] and let us assume $\sigma = (p+1)/10$. This leaves us with two free parameters n and p. Thus, given these two parameters, your code must produce y and X. The goal is to estimate the regression coefficients θ .

- 1) Estimate the regression by using OLS.
- 2) The gradient descent method.
- 3) The Newton method.

Write all three methods yourself without relying on the MATLAB routines. Compare the cost of the three methods under different values of n and p.