Probabilistic CFG

Ambiguity in Parsing

- Time flies like an arrow.
- Fruit flies like a banana.
- I saw the man with the telescope.

Probabilistic Augmentation

$S \rightarrow NP VP$	[.80]	$Det \rightarrow that[.05] \mid the[.80] \mid a$	[.15]
$S \rightarrow Aux NP VP$	[.15]	$Noun \rightarrow book$	[.10]
$S \rightarrow VP$	[.05]	$Noun \rightarrow flights$	[.50]
$NP \rightarrow Det Nom$	[.20]	$Noun \rightarrow meal$	[.40]
$NP \rightarrow Proper-Noun$	[.35]	$Verb \rightarrow book$	[.30]
$NP \rightarrow Nom$	[.05]	Verb ightarrow include	[.30]
$NP \rightarrow Pronoun$	[.40]	$Verb \rightarrow want$	[.40]
$Nom \rightarrow Noun$	[.75]	$Aux \rightarrow can$	[.40]
$Nom \rightarrow Noun Nom$	[.20]	$Aux \rightarrow does$	[.30]
$\textit{Nom} \rightarrow \textit{Proper-Noun Nom}$	[.05]	$Aux \rightarrow do$	[.30]
$VP \rightarrow Verb$	[.55]	$Proper-Noun \rightarrow TWA$	[.40]
$VP \rightarrow Verb NP$	[.40]	$Proper-Noun \rightarrow Denver$	[.40]
$VP \rightarrow Verb NP NP$	[.05]	$Pronoun \rightarrow you[.40] \mid I[.60]$	

	Rı	ules	P		R	Rules	P
S	\rightarrow	Aux NP VP	.15	S	\rightarrow	Aux NP VP	.15
NP	\rightarrow	Pro	.40	NP	\rightarrow	Pro	.40
VP	\rightarrow	V NP NP	.05	VP	\rightarrow	V NP	.40
NP	\rightarrow	Nom	.05	NP	\rightarrow	Nom	.05
NP	\rightarrow	PNoun	.35	Nom	\rightarrow	PNoun Nom	.05
Nom	\rightarrow	Noun	.75	Nom	\rightarrow	Noun	.75
Aux	\rightarrow	Can	.40	Aux	\rightarrow	Can	.40
NP	\rightarrow	Pro	.40	NP	\rightarrow	Pro	.40
Pro	\rightarrow	you	.40	Pro	\rightarrow	you	.40
Verb	\rightarrow	book	.30	Verb	\rightarrow	book	.30
PNoun	\rightarrow	TWA	.40	Pnoun	\rightarrow	TWA	.40
Noun	\rightarrow	flights	.50	Noun	\rightarrow	flights	.50

CYK ALGORITHM

The CYK Algorithm

- The membership problem:
 - Problem:
 - Given a context-free grammar G and a string w
 - $-\mathbf{G} = (V, \Sigma, P, S)$ where
 - » V finite set of variables
 - » ∑ (the alphabet) finite set of terminal symbols
 - » P finite set of rules
 - » S start symbol (distinguished element of V)
 - » V and Σ are assumed to be disjoint
 - G is used to generate the string of a language
 - Question:
 - Is w in L(G)?

The CYK Algorithm

- J. Cocke
- D. Younger,
- T. Kasami

 Independently developed an algorithm to answer this question.

The CYK Algorithm Basics

 The Structure of the rules in a Chomsky Normal Form grammar

Uses a "dynamic programming" or "table-filling algorithm"

Chomsky Normal Form

- Normal Form is described by a set of conditions that each rule in the grammar must satisfy
- Context-free grammar is in CNF if each rule has one of the following forms:

```
-A \rightarrow BC at most 2 symbols on right side
```

$$-A \rightarrow a$$
, or terminal symbol

$$-S \rightarrow \lambda$$
 null string

```
where B, C \in V – {S}
```

- Each row corresponds to one length of substrings
 - Bottom Row Strings of length 1
 - Second from Bottom Row Strings of length 2

•

– Top Row – string 'w'

X_{i, i} is the set of variables A such that
 A → w_i is a production of G

 Compare at most n pairs of previously computed sets:

$$(X_{i,i}, X_{i+1,j}), (X_{i,i+1}, X_{i+2,j}) ... (X_{i,j-1}, X_{j,j})$$

X _{1,5}				
X _{1,4}	X _{2,5}			
X _{1,3}	X _{2, 4}	X _{3,5}		
X _{1, 2}	X _{2,3}	X _{3, 4}	X _{4,5}	
X _{1, 1}	X _{2, 2}	X _{3,3}	X _{4, 4}	X _{5,5}
w ₁	w ₂	w ₃	w ₄	w ₅

Table for string 'w' that has length 5

Looking for pairs to compare

Example CYK Algorithm

- Show the CYK Algorithm with the following example:
 - CNF grammar G
 - $S \rightarrow AB \mid BC$
 - A → BA | a
 - B \rightarrow CC | b
 - C → AB | a
 - w is baaba
 - Question Is baaba in L(G)?

Calculating the Bottom ROW

- $X_{1,2} = (X_{i,i}, X_{i+1,j}) = (X_{1,1}, X_{2,2})$
- → {B}{A,C} = {BA, BC}
- Steps:
 - Look for production rules to generate BA or BC
 - There are two: S and A

$$-X_{1,2} = \{S, A\}$$

```
S \rightarrow AB \mid BC
A \rightarrow BA \mid a
B \rightarrow CC \mid b
C \rightarrow AB \mid a
```

		_		
{S, A}				
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	a

- $X_{2,3} = (X_{i,i}, X_{i+1,j}) = (X_{2,2}, X_{3,3})$
- → {A, C}{A,C} = {AA, AC, CA, CC} = Y
- Steps:
 - Look for production rules to generate Y
 - There is one: B

$$-X_{2,3} = \{B\}$$

$$S \rightarrow AB \mid BC$$

 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

{S, A}	{B}			
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

•
$$X_{3,4} = (X_{i,i}, X_{i+1,j}) = (X_{3,3}, X_{4,4})$$

•
$$\rightarrow$$
 {A, C}{B} = {AB, CB} = Y

- Steps:
 - Look for production rules to generate Y
 - There are two: S and C

$$-X_{3,4} = \{S, C\}$$

```
S \rightarrow AB \mid BC

A \rightarrow BA \mid a

B \rightarrow CC \mid b

C \rightarrow AB \mid a
```

{S, A}	{B}	{S, C}		
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	a	b	а

•
$$X_{4,5} = (X_{i,i}, X_{i+1,j}) = (X_{4,4}, X_{5,5})$$

- → {B}{A, C} = {BA, BC} = Y
- Steps:
 - Look for production rules to generate Y
 - There are two: S and A

$$-X_{4,5} = \{S, A\}$$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

		1		
SC Al	∫ D }	{S, C}	SC Al]
{S, A} {B}	{B} {A, C}	{A, C}	{S, A} {B}	{A, C}
b	a	a	b	a

•
$$X_{1,3} = (X_{i,i}, X_{i+1,j}) (X_{i,i+1}, X_{i+2,j})$$

= $(X_{1,1}, X_{2,3}), (X_{1,2}, X_{3,3})$

- → {B}{B} U {S, A}{A, C}= {BB, SA, SC, AA, AC} = Y
- Steps:
 - Look for production rules to generate Y
 - There are NONE: S and A

 S → AB | BC
 A → BA | a

 B → CC | b
 C → AB | a
 - no elements in this set (empty set)

Ø				
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	a	а	b	а

•
$$X_{2,4} = (X_{i,i}, X_{i+1,j}) (X_{i,i+1}, X_{i+2,j})$$

= $(X_{2,2}, X_{3,4}), (X_{2,3}, X_{4,4})$

- → {A, C}{S, C} U {B}{B}= {AS, AC, CS, CC, BB} = Y
- Steps:
 - Look for production rules to generate Y
 - $S \rightarrow AB \mid BC$ – There is one: B $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $-X_{2.4} = \{B\}$

$$C \rightarrow AB \mid a$$

		7		
	(7)]	
Ø	{B}			1
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	a	а	b	а

•
$$X_{3,5}$$
 = $(X_{i,i}, X_{i+1,j}) (X_{i,i+1}, X_{i+2,j})$
= $(X_{3,3}, X_{4,5}), (X_{3,4}, X_{5,5})$

- → {A,C}{S,A} U {S,C}{A,C}
 = {AS, AA, CS, CA, SA, SC, CA, CC} = Y
- Steps:
 - Look for production rules to generate Y
 - There is one: B

$$-X_{3,5} = \{B\}$$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

		_		
			1	
Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

Final Triangular Table

{S, A, C}	← X _{1, 5}			
Ø	{S, A, C}			
Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

- Table for string 'w' that has length 5
- The algorithm populates the triangular table

Example (Result)

Is baaba in L(G)?

Yes

We can see the S in the set X_{1n} where 'n' = 5 We can see the table the cell X_{15} = (S, A, C) then if S $\in X_{15}$ then baaba $\in L(G)$

Try this one

• She eats a fish with a fork

Theorem

- The CYK Algorithm correctly computes X_{ij} for all i and j; thus w is in L(G) if and only if S is in X_{1n} .
- The running time of the algorithm is O(n³).

References

- J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Second Edition, Addison Wesley, 2001
- T.A. Sudkamp, An Introduction to the Theory of Computer Science Languages and Machines, Third Edition, Addison Wesley, 2006

Question

- Show the CYK Algorithm with the following example:
 - CNF grammar G
 - $S \rightarrow AB \mid BC$
 - A → BA | a
 - $B \rightarrow CC \mid b$
 - C → AB | a
 - w is ababa
 - Question Is ababa in L(G)?
- Basics of CYK Algorithm
 - The Structure of the rules in a Chomsky Normal Form grammar
 - Uses a "dynamic programming" or "table-filling algorithm"
- Complexity O(n3)