Multilevel Modeling

AKA ... Hierarchical Linear Modeling, Mixed Modeling

Nesting/Clustering of Observations

- The most famous example of nested data is *students within classes*
- Let's say we are looking at the relationship between academic selfesteem and grades; can we ignore the fact that the students are 'nested' within classes?
 - E.g., could students within the same class share some characteristics?

Some Examples of Nesting/ Clustering in Psychology

- Students within classrooms
- Students within schools
- Participants within geographic location
- Clients within therapists
- Therapists within clinics
- Clients within neighbourhoods
- Clients within clinics
- Time points within individuals
- Adolescents within peer groups

Naming the Levels

- Here, we would say that clients are nested within therapists
 - The lowest level, in this case clients (C1 ... C9), is called <u>level one</u>
 - The next highest level, in this case therapist, is called <u>level two</u>
- Note that we can have higher orders of level (e.g., clients within therapists within clinics), but we will focus on only two-level problems for now

Why is it Important to Consider 'Nesting' or 'Clustering'?

- In the example here, clients
 within a given therapist appear to
 be more similar than clients
 across therapists
 - It is also possible that relationships among variables might differ within different clusterings
- What would be the consequences of ignoring which therapist treated each client?

Table 1
Simulated Data Illustrating Therapist Effects of Client
Alliance Ratings

	Psychotherapist 1	Psychotherapist 2	Psychotherapist 3
Client1	6.50	_	_
Client2	5.50	_	_
Client3	6.00	_	_
Client4	_	4.50	_
Client5	_	4.00	_
Client6	_	4.00	_
Client7	_	_	4.00
Client8	_	_	3.50
Client9	_	_	3.00
Avg. Psychotherapist	6.00	4.17	3.50

Consequences of Ignoring the Clustering/Nesting

- Exaggerate the 'effective sample size'
 - Imagine that all clients with the same therapist have the same score
 - Do we really have N = 9, or do we have N = 3?
- Eliminate the chance to explore within therapist vs between therapist variability, look for predictors of therapist variability, compare therapists against the average therapist, etc.

Table 1
Simulated Data Illustrating Therapist Effects of Client
Alliance Ratings

	Psychotherapist 1	Psychotherapist 2	Psychotherapist 3
Client1	6.50	_	_
Client2	5.50	_	_
Client3	6.00	_	_
Client4	_	4.50	_
Client5	_	4.00	_
Client6	_	4.00	_
Client7	_	_	4.00
Client8	_	_	3.50
Client9	_	_	3.00
Avg. Psychotherapist	6.00	4.17	3.50

Consequences of Ignoring the Clustering/Nesting

- Violate the independence assumption
 - Clients are supposed to be independent of one another, but are 'related' because of their shared therapist

Table 1
Simulated Data Illustrating Therapist Effects of Client
Alliance Ratings

	Psychotherapist 1	Psychotherapist 2	Psychotherapist 3
Client1	6.50	_	_
Client2	5.50	_	_
Client3	6.00	_	_
Client4	_	4.50	_
Client5	_	4.00	_
Client6	_	4.00	_
Client7	_	_	4.00
Client8	_	_	3.50
Client9	_	_	3.00
Avg. Psychotherapist	6.00	4.17	3.50

Introduction to the Multilevel Model (MLM)

- Recall the traditional General Linear Model
 - $Y_i = b_o + b_1 X_{1i} + b_2 X_{2i} + ... + e_i$ (i = 1, ..., N)
- Fixed Coefficients
 - The coefficients (b_0 , b_1 , b_2 , etc.) are assumed to be *fixed*, which implies that they are suitable/appropriate for (i.e., constant across) all i = 1, ..., N units (e.g., subjects)
 - However, what if we were running a clinical study and some clients saw *Psychotherapist* 1, some saw Psychotherapist 2, etc.,
 - The model coefficients might differ across the different psychotherapists
 - E.g., b_o may differ for subjects depending on which psychotherapist they saw

Random Coefficients

- Unlike fixed coefficients, random coefficients can take on different values
 - E.g., clients who saw *Psychotherapist* 1 might have one b_o (b_{o,PT_1}), clients who saw *Psychotherapist* 2 might have one b_o (b_{o,PT_2}), and clients who saw Psychotherapist 3 might have one b_o (b_{o,PT_3})
- We can even compute the amount of variability in the random coefficients, or compare the amount of 'between therapist' variability to the amount of 'within therapist' variability
- Before multilevel models, each of these coefficients (b_{o,PT_1} , b_{o,PT_2} , ...) might have been calculated by analyzing the results separately for each psychotherapist
 - Multilevel models have advantages in terms of computing parameters (e.g., shrinkage/partial pooling), but we won't delve into these issues here

Between vs Within Cluster Variability

- Within Therapist Variability
- Between Therapist Variability
- Intraclass Correlation Coefficient

•
$$ICC = \frac{Between\ Cluster\ Variability}{Between\ Cluster\ Variability + Within\ Cluster\ Variability}$$

Random Intercept MLM

- In addition to computing an "average" (fixed) intercept, we are also going to allow the intercepts to vary across the level 2 units (e.g., therapists)
- Level 1 Model
 - $Y_{ij} = b_{oj} + e_{ij}$ ($i = 1, ..., n_i$; j = 1, ..., J)
 - Y_{ii} = the outcome score for the *i*th subject within the *j*th cluster
 - b_{oi} = random intercept, which can vary across the levels of j (level 2 variable, e.g., therapist)
 - e_{ij} = level 1 residual $(Y_{ij} b_{oj})$, how much each unit differs from their cluster mean/intercept
- Level 2 Model
 - $b_{oj} = \gamma_{oo} + u_{oj}$
 - γ_{oo} = fixed intercept (across all j units)
 - The first o references its role in the level 1 model and second o references its role in the level 2 model (an intercept for an intercept ...)
 - u_{oj} is a residual, indicating how much the jth cluster intercept deviates from the overall intercept (b_o)

Random Intercept MLM: Composite Model

- If we substitute the Level 2 model into the Level 1 model, we get the composite model:
 - Level 1: $Y_{ij} = b_{oj} + e_{ij}$, Level 2: $b_{oj} = \gamma_{oo} + u_{oj}$
 - Composite: $Y_{ij} = \gamma_{oo} + u_{oj} + e_{ij}$
- Note the two residuals, a level 1 residual (e_{ij}), and a level 2 residual (u_{oj})
 - e_{ij} represents deviations of each level 2 intercept from the observed outcome (e.g., deviations of each client from their therapist intercept, $e_{ij} = Y_{ij} b_{oi}$)
 - u_{oj} represents deviations of each level 2 unit around the level 1 intercept (e.g., deviations of each therapist mean, b_{oj} , from the fixed intercept, γ_{oo} , $u_{oj} = b_{oj} \gamma_{oo}$)
 - We are also interested in the variances of the residuals (σ_e^2 , $\sigma_{u_0}^2$), for example to know at what levels it might be worthwhile to explore predictors

Visualizing the Random Intercept Model

- s_{11} = first unit in cluster 1
- X = data point
- No slope to any line because this is an intercept only model

Here we are just showing two 'clusters', each with two units/subjects

Adding Level 1 Predictors to the Random Intercept MLM

- We can add predictors at any level of a MLM
- Level 1 predictors need to be measured at Level 1
 - E.g., if level 1 is clients and level 2 is therapists, we need variables measured at the client level
 - E.g., client anxiety scores
- Level 1
 - $Y_{ij} = b_{oj} + b_1 X_{ij} + e_{ij}$
 - X_{ij} is level 1 variable, measured for each case i in each cluster j
 - b_1 : a one unit increase in X is expected to increase Y by b_1 units
 - Note: no *j* subscript on b_1 (fixed coefficient)
 - Let's assume depression is the outcome and anxiety is a level 1 predictor
 - $DEP_{ij} = b_{oj} + b_1 ANX_{ij} + e_{ij}$
- Composite Model
 - $Y_{ij} = \gamma_{oo} + u_{oj} + b_1 X_{ij} + e_{ij}$

Adding Level 2 Predictors to the Random Intercept MLM

- Level 2 predictors must be measured at Level 2 (i.e., no i subscript)
- Level 2
 - $b_{oj} = \gamma_{oo} + \gamma_{o1} Z_j + u_{oj}$
 - γ_{o1} : a one unit increase in Z is expected to produce a γ_{o1} unit change in b_{oj}
 - Recall $(\gamma_{oo}, \gamma_{o1})$: 1st subscript is role in the level 1 model, 2nd subscript is role in the level 2 model
- Composite Model (no level 1 predictor)
 - $Y_{ij} = \gamma_{oo} + \gamma_{o1}Z_j + u_{oj} + e_{ij}$
- Back to the therapists nested within clients example:
 - $b_{oj} = \gamma_{oo} + \gamma_{o1}$ TherExp_j + u_{oj}
 - Does the years of experience of the therapist affect the average depression level of the clients?

Random Intercept and Slope MLM

- The slope for the level one predictor is allowed to vary across the clusters (level two units)
- Level 1:
 - $Y_{ij} = b_{oj} + b_{1j} X_{ij} + e_{ij}$
 - Note the j subscript on X
 - b_{ij} : a one unit increase in X_{ij} is expected to increase Y_{ij} by b_{ij} units
- Level 2 (no level 2 predictors):
 - $b_{oj} = \gamma_{oo} + u_{oj}$
 - $b_{1j} = \gamma_{10} + u_{1j}$
 - y_{10} = intercept for the level 2 slope parameter
 - u_{1j} = residual for the level 2 slope parameter (b_{1j} γ_{10})

Random Intercept and Slope MLM: Composite Model

- Level 1:
 - $Y_{ij} = b_{oj} + b_{1j}X_{ij} + e_{ij}$
- Level 2 (no level 2 predictors):
 - $b_{oj} = \gamma_{oo} + u_{oj}$
 - $b_{ij} = \gamma_{io} + u_{1j}$
- Composite Model
 - $Y_{ij} = \gamma_{oo} + u_{oj} + (\gamma_{1o} + u_{1j}) X_{ij} + e_{ij}$
 - $Y_{ij} = \gamma_{oo} + \gamma_{1o} X_{ij} + u_{oj} + u_{1j} X_{ij} + e_{ij}$

What Would the Data Look Like?

	ther	ther_exp	client	anx	dep
[1,]	1	8	1	17	20
[2,]	1	8	2	15	13
[3,]	1	8	3	19	23
[4,]	1	8	4	19	16
[5,]	2	6	5	18	11
[6,]	2	6	6	17	20
[7,]	2	6	7	24	25
[8,]	2	6	8	30	25
[9,]	3	13	9	19	16
[10,]	3	13	10	21	20
[11,]	3	13	11	17	22
[12,]	3	13	12	21	19

Visualizing Random Intercept/Slope Models

Excluded Topics

- We have just scraped the surface of multilevel models
- For example, we have not discussed:
 - Effect sizes
 - Assumptions
 - Comparing Models
 - Cross-Level Interactions
 - Etc., etc., etc.