

南 开 大 学 网络空间安全学院网络技术与应用

实验 4: 互联网组网与路由器配置

姓名:郑盛东

学号:2010917

年级: 2020 级

专业:信息安全、法学双学位班

指导教师:张建忠、徐敬东

2023年11月28日

景目

一、实	验内容说明									1
(-)	实体环境下互联网组网与路由器配置 .									1
(<u> </u>	仿真环境下的互联网组网与路由器配置							•		1
二、实	验准备									2
(-)	实体环境下互联网组网与路由器配置 .									2
(<u> </u>	仿真环境下互联网组网与路由器配置 .							•		2
三、实	验过程									4
(-)	实体环境下互联网组网与路由器配置 .									4
(二)	仿真环境下互联网组网与路由器配置 .									6

一、 实验内容说明

(一) 实体环境下互联网组网与路由器配置

在实体环境下完成互联网组网与路由器配置,要求如下:

- 1. 在机房实验室环境下, 通过将局域网划分为不同子网, 用多 IP 主机作为路由器, 组建互联网。
- 2. 在命令行方式下,按照静态路由方式,配置路由器和主机,测试互联网的连通性。

(二) 仿真环境下的互联网组网与路由器配置

在仿真环境下完成互联网组网与路由器配置,要求如下:

- 1. 学习路由器的配置方法和配置命令。
- 2. 参考实体实验,组建由多个路由器组成的互联网。物理网络可以由集线器、交换机构成。
- 3. 按照静态路由方式配置路由器和主机,测试互联网的连通性。
- 4. 利用动态路由方式配置路由器和主机,测试互联网的连通性。
- 5. 在仿真环境的"模拟"方式中观察数据包在互联网中的传递过程,并进行分析。

二、 实验准备

(一) 实体环境下互联网组网与路由器配置

根据实际环境不同,实验方案可以分为具有路由器的网络环境、双网卡(多网卡)方案、单网卡多 IP 方案,仿真软件方案等。本次实验采用双网卡方案,使用四台主机进行实验,其中 2台用作路由器 R1、R2,另外 2台用作主机 A、主机 B。

需要注意的是,担当路由器的主机需要在 cmd 中输入 ""services.msc"" 打开服务,开启 "Routing and Remote Access" 自启动服务,而主机 A、B 则需要关闭防火墙。

路由器配置命令如下:

- 1. 在命令行窗口中, 通过 "route print" 命令查看路由表。
- 2. 通过"route add 179.1.3.0 mask 255.255.255.0 206.1.3.2 metric 5 if 6" 创建静态路由表项
- 3. 通过"route delete 179.1.3.0 mask 255.255.255.0 206.1.3.2" 删除静态路由表项

(二) 仿真环境下互联网组网与路由器配置

使用 packet tracer 软件进行仿真,具体拓扑结构、ip 设置、路由设置如下图所示。

图 1: 静态路由拓扑

图 2: RIP 拓扑

配置路由器 ip 端口, 先进入特权模式, 再进入全局模式, 选定需要配置的端口, 通过"ip address 10.1.0.2 255.255.0.0" 命令完成配置, 最后激活。

```
enable 进入特权模式
config teminal 进入全局模式
interface gig0/0
ip address 10.1.0.2 255.255.0.0
no shutdown 激活
exit
```

配置静态路由,先进入特权模式,再进入全局模式,通过"ip route 10.3.0.0 255.255.0.0 10.2.0.1" 命令完成静态路由配置,返回特权模式通过"show ip route"命令查看路由表。

```
enable 进入特权模式
config teminal 进入全局模式
ip route 10.3.0.0 255.255.0.0 10.2.0.1
exit show ip route
exit
```

配置 RIP 动态路由,先进入特权模式,再进入全局模式,配置 RIP 并选择版本 2,通过 "network 10.1.0.0"命令为连接到该路由器的网络配置 RIP,等待一定时间后,通过"tracert 10.3.0.3"查看数据包路由路径。

```
enable 进入特权模式
config teminal 进入全局模式
router rip
version 2
network 10.1.0.0
network 10.2.0.0
exit
tracert 10.3.0.3
```

三、 实验过程

(一) 实体环境下互联网组网与路由器配置

使用主机 A 去 ping 主机 B 以确认连通性。由 tracert 可知, 主机 A 发送的数据包首先经过其默认网关,这时都是在第一个网络下传输的,接着到达路由器 1,顺着路由器 1 到达了路由器 2,进入第二个网络,最后由路由器 2 传至主机 B,这时在第三个网络。

```
C: Wsers Administrator > ping 179.3.0.2

正在 Ping 179.3.0.2 貝有 32 字节的数据:
来自 179.3.0.2 的回复: 字节=32 时间=1ms TTL=126

179.3.0.2 的 Ping 统计信息:
数据包: 已发送 = 4. 已接收 = 4, 丢失 = 0 <0% 丢失>,
往返行程的估计时间 < 以毫秒为单位>:
最短 = 1ms,最长 = 1ms,平均 = 1ms

C: Wsers \Administrator > tracert 179.3.0.2

通过最多 30 个跃点跟踪
到 STU67 [179.3.0.2] 的路由:

1 * <1 毫秒 * stu96 [179.1.0.2]
2 1 ms * 1 ms STU76 [179.2.0.1]
3 1 ms 1 ms 1 ms STU67 [179.3.0.2]

跟踪完成。
```

图 3: 实体 ping 和 tracert

(二) 仿真环境下互联网组网与路由器配置

在静态路由下使用 PC0 去 pingPC2,结果如图 7。可知两机连通。动态路由结果相同。

```
C:\>tracert 10.3.0.1
Tracing route to 10.3.0.1 over a maximum of 30 hops:
                           0 ms
          0 ms
                                            0 ms
                                                            10.1.0.2
          0 ms
                           0 ms
                                              ms
                                                            10.3.0.1
Trace complete.
C:\>ping 10.3.0.1
Pinging 10.3.0.1 with 32 bytes of data:
Reply from 10.3.0.1: bytes=32 time<1ms TTL=254 Reply from 10.3.0.1: bytes=32 time<1ms TTL=254
Reply from 10.3.0.1: bytes=32 time<1ms TTL=254 Reply from 10.3.0.1: bytes=32 time<1ms TTL=254
Ping statistics for 10.3.0.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

图 4: 仿真 ping 和 tracert

"模拟"方式观察数据包的传递过程。通信过程主要分为三个阶段。

第一个阶段,各主机和路由器 ARP 缓存尚未保存响应 IP 和 mac 映射关系,需要进行 ARP 获得 mac 地址进行转发。

- 1. 首先设备由于 ping 命令产生了 ICMP 报文,下一条地址是 10.1.0.2,即默认网关,主机 A 在本地的 ARP 表中寻找目标默认网关的 mac 地址,发现不在,因此需要先发送 ARP 请求,产生 ARP 报文。
- 2.ARP 由 PC0 传至交换机,交换机检查本地是否储存目的 MAC,发现没有储存,于是向 PC1 和 router0 发送 ARP 请求。router0 收到了 PC1 的 arp 请求后,因知晓本机 MAC 匹配了 arp 请求的 MAC 地址,因此向交换机发送一个 arp 响应。交换机收到响应后,将 arp 响应中的 mac 地址记录到本机的 MAC 表中。随后交换机向 PC0 发出 arp 响应,PC0 收到后,更新本机的 ARP 表。
- 3.PC0 将此前缓存好的 ICMP 报文发送,交给交换机,由于交换机已储存好 PC0 的默认网关的 MAC 地址,因此顺利将报文转交给 router0。
- 4. 由于 router0 并没有 router1 的 mac 地址, 因此丢弃了 ICMP 报文, 并向 router1 发送了一个 arp 请求, 而 router1 也对此作出了响应。

第二个阶段,PC0、switch0、router0 都记录好了相应的 mac 地址,因此数据包能够顺利地传输至 router1,但 router1 虽接收到 ICMP 报文,但却没有目标主机的 MAC 地址,因此丢弃 ICMP 报文,发出 ARP 请求。接下来的情况与第一阶段的步骤 2 类似,router1 发给 switch1 后,switch1 再向 PC2、PC3 发出请求,由于 PC2 做出响应,因此 switch1 记录得到 PC2 的地址,而 router1 最终也掌握到 10.3.0.0 的网络信息。

第三个阶段, , PC0 再度发送 ICMP 报文, 由于前两阶段的铺垫, 报文成功到达 PC2, 而 PC2 也向 PC0 发出应答, PC0 成功收到。至此两机实现了连通。

Time(sec)	Last Device		At Device	Туре
0.000		步骤1	PC0	ICMP
0.000			PC0	ARP
0.001	PC0		Switch0	ARP
0.002	Switch0	步骤2	PC1	ARP
0.002	Switch0	少珠と	Router0	ARP
0.003	Router0		Switch0	ARP
0.004	Switch0		PC0	ARP
0.004			PC0	ICMP
0.005	PC0	步骤3	Switch0	ICMP
0.006	Switch0		Router0	ICMP
0.006		步骤4	Router0	ARP
0.007	Router0	少報件	Router1	ARP
0.008	Router1		Router0	ARP

图 5: 阶段 1

图 6: 阶段 2

12.010	-	PC0	ICMP
12.011	PC0	Switch0	ICMP
12.012	Switch0	Router0	ICMP
12.013	Router0	Router1	ICMP
12.014	Router1	Switch1	ICMP
12.015	Switch1	PC2	ICMP
12.016	PC2	Switch1	ICMP
12.017	Switch1	Router1	ICMP
12.018	Router1	Router0	ICMP
12.019	Router0	Switch0	ICMP
12.020	Switch0	PC0	ICMP

图 7: 阶段 3