ML4AAD - Final Project

Winter Semeseter 18/19

Neeratyoy Mallik

4774378

February 24, 2019

2 (similar) datasets with differing size, # of classes, class balance

2 (similar) datasets with differing size, # of classes, class balance

BOHB outperforms SMAC in high dimensional, mixed data

CNN Structure

INPUT → [CONV → BATCHNORM? → ACTIVATION → DROPOUT? → MAXPOOL?]* $M \rightarrow [FC \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT?]*K \rightarrow OUTPUT M ∈ {1,2,3}; K ∈ {0,1,2}; ? → <math>\top or \bot$

CNN Structure

 $INPUT \rightarrow [CONV \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT? \rightarrow MAXPOOL?]*M \rightarrow [FC \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT?]*K \rightarrow OUTPUT M ∈ {1,2,3}; K ∈ {0,1,2}; ? \rightarrow <math>\top or \bot$

- CONVolution layers
 - Kernel size
 - Padding
 - Stride
- ACTIVATION (relu/sigmoid/tanh)
- BATCHNORM, DROPOUT
 - True or False
- MAXPOOL (if True)
 - Kernel size (=stride)

CNN Structure

 $INPUT \rightarrow [CONV \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT? \rightarrow MAXPOOL?]*M \rightarrow [FC \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT?]*K \rightarrow OUTPUT M ∈ {1,2,3}; K ∈ {0,1,2}; ? \rightarrow <math>\top or \bot$

- CONVolution layers
 - Kernel size
 - Padding
 - Stride
- ACTIVATION (relu/sigmoid/tanh)
- BATCHNORM, DROPOUT
 - True or False
- MAXPOOL (if True)
 - Kernel size (=stride)
- Learning rate
- Optimizer
- Batch size

CNN Structure

 $INPUT \rightarrow [CONV \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT? \rightarrow MAXPOOL?]*M \rightarrow [FC \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT?]*K \rightarrow OUTPUT M ∈ {1,2,3}; K ∈ {0,1,2}; ? → <math>\top or \bot$

- CONVolution layers
 - Kernel size
 - Padding
 - Stride
- ACTIVATION (relu/sigmoid/tanh)
- BATCHNORM, DROPOUT
 - True or False
- MAXPOOL (if True)
 - Kernel size (=stride)
- Learning rate
- Optimizer
- Batch size

- >30 hyperparameters
- (Budget = Epochs) → expensive runs

CNN Structure

 $INPUT \rightarrow [CONV \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT? \rightarrow MAXPOOL?]*M \rightarrow [FC \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT?]*K \rightarrow OUTPUT M ∈ {1,2,3}; K ∈ {0,1,2}; ? → <math>\top or \bot$

- CONVolution layers
 - Kernel size
 - PaddingStride
- ACTIVATION (relu/sigmoid/tanh)
- BATCHNORM, DROPOUT
 - True or False
- MAXPOOL (if True)
 - Kernel size (=stride)
- Learning rate
- Optimizer
- Batch size

- >30 hyperparameters
- (Budget = Epochs) \rightarrow expensive runs

BOHB params:

eta	min_budget	max_budget
2	1	16
4	1	16
3	1	9
2	1	10

BOHB on KMNIST (and K49)

Dataset	eta_min_max_iter	Validation	Train	Test	вонв
	(BOHB)	Accuracy	Accuracy	Accuracy	Runtime
KMNIST	2_1_16_10	98.08%	99.58%	94.69%	<3 hrs
KMNIST	3_1_9_20	97.17%	98.23%	93.26%	<3 hrs
KMNIST	4_1_16_20	98.26%	99.95%	95.98%	<4 hrs
KMNIST	2_1_10_14	97.77%	99.98%	94.09%	<4 hrs
KMNIST	3_2_20_20	98.31%	99.57%	95.51%	<6 hrs

BOHB on KMNIST (and K49)

Dataset	eta_min_max_iter (BOHB)	Validation Accuracy	Train Accuracy	Test Accuracy	BOHB Runtime
KMNIST	2_1_16_10	98.08%	99.58%	94.69%	<3 hrs
KMNIST	3_1_9_20	97.17%	98.23%	93.26%	<3 hrs
KMNIST	4_1_16_20	98.26%	99.95%	95.98%	<4 hrs
KMNIST	2_1_10_14	97.77%	99.98%	94.09%	<4 hrs
KMNIST	3_2_20_20	98.31%	99.57%	95.51%	<6 hrs
K49	3_1_9_10	89.06%	99.93%	88.12%	<5 hrs
K49	2_1_10_10	91.19%	99.25%	88.25%	<12 hrs

BOHB on KMNIST (and K49)

Dataset	eta_min_max_iter	Validation	Train	Test	ВОНВ
	(BOHB)	Accuracy	Accuracy	Accuracy	Runtime
KMNIST	2_1_16_10	98.08%	99.58%	94.69%	<3 hrs
KMNIST	3_1_9_20	97.17%	98.23%	93.26%	<3 hrs
KMNIST	4_1_16_20	98.26%	99.95%	95.98%	<4 hrs
KMNIST	2_1_10_14	97.77%	99.98%	94.09%	<4 hrs
KMNIST	3_2_20_20	98.31%	99.57%	95.51%	<6 hrs
K49	3_1_9_10	89.06%	99.93%	88.12%	<5 hrs
K49	2_1_10_10	91.19%	99.25%	88.25%	<12 hrs

Model: KMNIST → K49

KMNIST	K49	K49	Run-
Test	Train	Test	time
94.69%	96.45%	89.91%	<1hr
95.51%	95.62%	90.20%	<1hr
95.98%	99.63%	93.07%	<1hr

5/6

Model: KMNIST \rightarrow K49

KMNIST	K49	K49	Run-
Test	Train	Test	time
94.69%	96.45%	89.91%	<1hr
95.51%	95.62%	90.20%	<1hr
95.98%	99.63%	93.07%	<1hr

Configuration: KMNIST \rightarrow K49 Hyperparameters for BOHB:

- batch size
- # of channels
- $\bullet~\#$ of FC layers and neurons

KMNIST	K49	K49	Run-
Test	Train	Test	time
95.51%	99.86%	93.85%	<6hrs
95.98%	99.93%	94.19%	<20hrs

Model: KMNIST → K49

KMNIST	K49	K49	Run-
Test	Train	Test	time
94.69%	96.45%	89.91%	<1hr
95.51%	95.62%	90.20%	<1hr
95.98%	99.63%	93.07%	<1hr

Configuration: KMNIST → K49 Hyperparameters for BOHB:

- batch size
- # of channels
- # of FC layers and neurons

KMNIST	K49	K49	Run-
Test	Train	Test	time
95.51%	99.86%	93.85%	<6hrs
95.98%	99.93%	94.19%	<20hrs

Issues: (i) Under-represented classes; (ii) Slow experiments;

93.07%

Model: KMNIST → K49 **KMNIST** K49 K49 Run-Test Train Test time 96.45% 89.91% 94.69% <1hr 95.51% 95.62% 90.20% <1hr

0 - 1,000 0 - 19	000		- h-130000
0 02 04 06 00 U0			- 1-1
613 014 016 014 017 018 01	aso ass a	l ois ois	air ais ais
2.5 2.5 5.20 5.20 1.0	***		- 1-16.0000

Configuration: KMNIST \rightarrow K49 Hyperparameters for BOHB:

99.63%

batch size

95.98%

- # of channels
- # of FC layers and neurons

KMNIST	K49	K49	Run-
Test	Train	Test	time
95.51%	99.86%	93.85%	<6hrs
95.98%	99.93%	94.19%	<20hrs

<u>Issues</u>: (i) Under-represented classes; (ii) Slow experiments; [(iii) What if only K49?]

<1hr

February 24, 2019

Final Results

Final numbers to report.