전기화재 및 예방대책

2018. 03. 00

CONTENTS

- I 전기화재의 원인, 접지공사, 피뢰설비, 화재경보기, 화재대책
- Ⅲ 예상문제

- 전기화재의 원인
 - 전기화재란 전기에 의한 발열이 발화원이 되어 발생하는 화재를 말한다.

	전기화재 발생원인	의 3요건
① 발화원	② 착화물	③ 출화의 경과

■ 전기화재 및 폭발의 원인

기기별 화재발생 비율	원인별(경로별) 화재발생 비율
• 이동용 전열기 : 35%(1순위)	• 단락 : 25%(1순위)
• 전등, 전화 등의 배선 : 27%	• 스파크 : 24%
전기 기기: 14%	누전: 15%
• 전기 장치 : 9%	• 접촉부 과열 : 12%
· 배선 기구 : 5%	• 절연 열화에 의한 발열 : 11%
• 고정용 전열기 : 5%	• 과전류 : 8%

- 전기화재의 원인
 - 전기화재 및 폭발의 원인

[점화원인]

둗	물리적 현상		화학적 현상
• 정전기	• 전기	• 혼합	• 화합
• 충격	• 마찰	• 분해	• 부가

■ 전기화재의 원인

- ❖ 단락에 의한 발화
 - 전기회로에서 전위차가 있는 두 점 사이를 저항이 작은 도선으로 연결하는 것. 쇼트라고도 한다.
 - ▶ 단락이 되면 순간적으로 큰 전류와 높은 열이 발생되어 화재의 원인이 된다. 회로 중에는 퓨즈를 설치하여 과대 전류의 흐름을 방지해야 한다.
- ❖ 누전에 의한 발화
 - 전선 및 전기 기기의 절연파괴, 손상등으로 전류가 누설되는 현상을 누전이라 하며, 누전으로 인한 발열로 화재가 발생한다.
 - ▶ 발화에 이르는 누설전류(누전전류)의 최소값은 300 ~ 500[mA]이다. (*)

- 전기화재의 원인
 - 전기화재의 원인
 - ❖ 과전류에 의한 발화
 - ▶ 전기 기기 또는 전선에서 허용전류 값 이상으로 전류가 흐르는 것을 과전류 라 한다.
 - ▶ Joule의 법칙 Q=I²RT(Q: 발생열, T: 전류가 흐르는 시간, I: 전류세기, R: 저항)에서 전류가 커지면 발생 열도 많아져서 화재의 원인이 된다.

절연전선의 과대전류 ★

- 인화(완화)단계 : 40~43A/mm²
- 착화단계: 43~60A/mm²

- 발화단계 : 60~120A/mm²
- · 순간용단: 120A/mm² 이상

절연물의 종류와 최고허용온도 ☆

· Y종 절연: 90℃

• A종 절연 : 105℃

• E종 절연 : 120℃

• B종 절연 : 130℃

• F종 절연: 155℃

• H종 절연 : 180℃

• C종 절연 : 180°C 초과

- 전기화재의 원인
 - 전기화재의 원인
 - ❖ 스파크에 의한 발화
 - ▶ 스위치로 전기회로를 개폐할 때 또는 전기 회로가 단락될 때 등으로 전기 스파크가 발생하고 이 스파크가 주위의 가연성 가스 등을 인화시켜 화재가 발생한다.
 - ❖ 접촉부의 과열에 의한 발화
 - 전선과 전선 등의 접속 상태가 불완전하면 접촉 저항이 높아져서 이 부분에서 발열로 인한 화재가 일어난다.
 - ▶ 아산화동 발열현상
 - ✓ 동선의 접촉부분에 접촉불량이 발생할 때 동이 산화 발열하여 주위의 동을 용해 시켜 들어가면서 아산화동을 증식시켜 발열하는 현상을 말한다.
 - ▶ 접촉저항을 저감시키는 방법
 - ✓ 접촉압력 및 접촉면적을 크게 한다.
 - ✓ 고유저항이 낮은 재료를 사용한다.
 - ✓ 접촉면을 청결하게 유지한다.
 - ✓ 접촉단지는 쉽게 부식되지 않는 재료를 사용한다.

- 전기화재의 원인
 - 전기화재의 원인
 - ❖절연열화 또는 탄화에 의한 발화
 - ▶ 시간의 경과에 따른 절연체의 열화로 절연성이 저하하거나 탄화현상 누적으로 이한 발열로 화재가 일어난다.
 - ➤ 트래킹 (Tracking) 현상
 - √ 충전전극 사이의 절연물 표면에 경년변화나 습기, 수분, 먼지, 기타 오염 물질등으로 유기 절연체의 표면에 발생하는 미소한 불꽃에 의해 탄화경로가 생기는 현상
 - ▶ 탄화현상(가네 하라현상)
 - ✓ 목재나 플라스틱 등의 유기절연체의 표면에 누전 스파크 등에 의하여 탄화 경로 (전기통로)가 생성되고 그 부분에 전류가 흐르게 되면 열의 발생에 의해 발화하게 되는 현상

[전로의 절연저항**☆☆**]

사용전압	절연저항
대지전압 150V 이하	0.1MΩ 이상
대지전압 150V 초과, 300V 이하	0.2MΩ 이상
대지전압 300V 초과, 400V 이하	0.3MΩ 이상
대지전압 400V 초과	0.4MΩ 이상

- 전기화재의 원인
 - 전기화재의 원인
 - ❖절연열화 또는 탄화에 의한 발화
 - ▶ 절연내력 시험
 - ✓ 시험 전압을 계속 10분간 가하여 이에 견디는 것을 합격으로 한다.

	최대 사용 전압	시험 전압	최저 시험 전압
1	7,000V 이하	1.5×최대 사용 전압	500V
2	25,000V 이하로서 중심선 다 중 접지	0.92×최대 사용 전압	500V
3	7,000V를 넘는 비접지식	1.25×최대 사용 전압	10,500V
4	60,000V를 넘는 접지식으로 서 중성점에 피뢰기 접속	1.1×최대 사용 전압	75,000V
5	60kV를 넘고 170kV 이하의 중성점 직접 접지식	0.72×최대 사용 전압	
6	170kV를 넘는 중성점 접지식	0.64×최대 사용 전압	

- 전기화재의 원인
 - 전기화재의 원인
 - ❖지락에 의한 발화
 - ▶ 전선의 하나 또는 두 선이 대지에 접촉하여 전류가 대지로 통하는 것을 지락이라고 하며, 이 때 흐르는 전류를 지락전류라 한다.
 - ▶ 지락전류가 흐를 때 고전압 회로인 경우 다음의 원인으로 발화원이 될 수 있다.
 - ✓ 금속체 등에 지락될 때의 스파크
 - ✓ 목재 등에 전류가 흐를 때의 발화현상

❖ 낙뢰에 의한 발화

▶ 낙뢰로 인하여 순간적으로 높은 전류가 흘러 절연의 파괴 또는 화재의 원인 이 된다.

❖ 정전기 스파크에 의한 발화

- ➢ 정전기 스파크에 의하여 가연성가스에 인화되는 경우 다음 조건이 만족되었을 때 화재가 일어난다.
 - ✓ 가연성 가스 및 증기가 폭발한계 내에 있을 것
 - ✓ 정전기 스파크의 에너지가 가연성가스 및 증기의 최소 착화에너지 이상일 것
 - ✓ 폭발성 분위기를 형성하는 충분한 방전에너지를 방출할 것

- 전기화재의 원인
 - 전기화재 예방 대책
 - ❖ 일반적 예방대책
 - ❖ 접지할 것
 - ❖ 누전차단기 설치
 - ❖ 퓨즈 설치
 - ❖ 경보장치 설치
 - 전열기 재해방지 대책
 - ❖ 열판 밑에 차열판 있는 것 사용
 - ❖파일럿(점멸표시램프)부착 된 것 사용
 - ❖ 단열성이며 불연재의 받침대 사용
 - ❖ 주위로는 30~50cm, 위로 1~1.5m이내 가연성물질 접근금지
 - ❖ 배선 및 코드는 용량이 충분한 것 사용

- 접지공사
 - 접지공사의 종류 (***)

접지 종별	공작물 또는 기기의 종별	접지선의 굵기	접지 저항
제1종	 괴로기 고압 또는 특별 고압용 기기의 철대 및 금속제 외함 주상에 설치하는 3상 4선식 접지 계통 변압기 및 기기 외함 	단면적 6mm ² 이 상의 연동선	10Ω াঠ

- 접지공사
 - 접지공사의 종류 (***)

접지 종별	공작물 또는 기기의 종별	접지선의 굵기	접지 저항
제2종	주상에 설치하는 비접지 계 통의 고압 주상 변압기의 저 압측 중성점, 또는 저압측 의 한 단자와 그 변압기의 외함	단면적 16mm² 이 상 연동선(고압 전 로또는 15kV 이하 의 특별 고압 가 공 전선로를 변압 기에 의하여 결합 하는 경우에는 단 면적 6mm² 이상	150 1선지락 전류 Ω 이하

- 접지공사
 - 접지공사의 종류 (***)

제3종	 철주, 철탑 등 교류 전차선에 교차하는 고압 전선로의 완금 주상에 시설하는 고압 콘덴서, 고압 전압 조정기 및고압개폐기 등기기의 외함 옥내 또는 지상에 시설하는 400V 이하 저압 기기의외함 	단면적 2.5mm² 이상의 연동선	100Ω াই
특별 제3종	옥내 또는 지상에 시설하는 400V를 넘는 저압 기기의 외함	단면적 2.5mm² 이상의 연동선	10Ω 이하

- 접지공사
 - 접지공사의 목적
 - ❖전기기계 기구의 누전으로 인한 감전이 우려될 때 전기기계 · 기구의 금속제 외함을 접지시켜 누설전류를 접지선을 통해 땅으로 흐르게 하여 기기의 전압을 감소시켜 감전을 방지한다.

접지의 종류	목 적	
계통 접지 🏕	고압 전로와 저압 전로의 혼촉으로 인한 감전이나 화재를 방지하기 위해 변압기의 중성점을 접지하는 방식이다.	
기기 접지	누전되고 있는 기기에 접촉되었을 때의 감전을 방지한다	
피뢰기 접지	낙뢰로부터 전기 기기의 손상을 방지한다.	
정전기 장해 방지용 접지	정전기 축적에 의한 폭발 재해를 방지한다.	
지락 검출용 접지	누전 차단기의 동작을 확실하게 한다.	
등전위 접지 🏕	병원에 있어서의 의료 기기 사용 시의 안전을 위해 설치한다.	
잡음 대책용 접지	대책용 접지 잡음에 의한 Electronics 장치의 파괴나 오동작을 방지한다	
기능용 접지 건축물 내에 설치된 전자기기의 안정적 가동을 확보하 위한 목적으로 설치한다.		

- 접지공사
 - 중성점 접지
 - ❖ 중성점 접지의 목적
 - ▶ 지락고장시 대지 전위 상승을 억제하여 전선로 및 기기의 절연레벨을 경감 시킨다.
 - ▶ 지락고장 시 접지계전기의 동작을 확실하게 한다.
 - ▶ 아크 지락에 의한 이상전압의 경감 및 발생을 방지한다.

- 접지공사
 - 중성점 접지
 - ❖ 중성점 접지의 구분
 - ▶ 비접지방식 : 중성점을 접지하지 않는 방식
 - ▶ 접지방식 : 중성점을 접지하는 방식

직접접지방식 ★	 변압기의 중성점을 직접 도체로 접지시키는 방식 이상전압 발생이 적다.
저항접지방식	 중성점에 저항기를 삽입하여 접지하는 방식 저항값의 대소에 따라 저 저항접지 방식과 고 저항 접지 방식으로 나누어진다.
소호리액터 접지방식 ★	 변압기의 중성점을 대지정전 용량과 공진하는 리액턴스를 갖는 리액터를 통해서 접지시키는 방식 지락고장이 발생해도 무정전으로 송전을 계속할수 있다. 지락전류가 거의 영에 가까워서 안정도가 높다.
리액터접지방식	• 접지용의 리액터 또는 변압기를 통하여 접지하는 방식

- 접지공사
 - 접지저항 저감대책 (*)
 - ❖ 접지극의 병렬 매설
 - ❖ 접지봉의 심타매설
 - ❖ 접지극의 규격을 크게
 - ❖토질 개량
 - ❖접지선
 - ❖접지전극
 - ❖ 보조 메쉬 (Mesh), 보조 전극 공법
 - ❖ 접지저항 저감제 사용(약품사용)

- 접지공사
 - 접지를 하지 않아도 되는 경우 (**)
 - ❖ 이중절연구조 또는 이와 동등 이상으로 보호되는 전기 기계 · 기구
 - ❖절연대 위 등과 같이 감전 위험이 없는 장소에서 사용하는 전기기계·기 구
 - ❖비접지방식의 전로(그 전기 기계·기구의 전원측의 전로에 설치한 절연 변압기의 2차 전압이 300볼트 이하, 정격용량이 3 킬로볼트 암페어 이하 이고 그 절연전압기의 부하측의 전로가 접지 되어 있지 아니한 것으로 한정한다)에 접속하여 사용되는 전기기계·기구

- 피뢰설비
 - 피뢰기의 설치 장소 (*)
 - ❖ 발전소, 변전소 또는 이에 준하는 장소의 가공 전선 인입구 및 인출구
 - ❖ 가공 전선로에 접속되는 배전용 변압기의 고압측 및 특별 고압측
 - ❖고압 가공 전선로로부터 공급을 받는 수전 전력의 용량이 500kW 이상의 수용 장소의 인입구
 - ❖특고압 가공 전선으로부터 공급을 받는 수용 장소의 인입구
 - ❖ 배전 선로 차단기, 개폐기의 전원측 및 부하측
 - ❖콘덴서의 전원측
 - 피뢰기의 종류
 - ❖저항형 피뢰기
 - ❖ 밸브형 피뢰기
 - ❖ 밸브저항형 피뢰기
 - ❖ 방출형 피뢰기
 - ❖종이 피뢰기 (p -valve 피뢰기)

- 피뢰설비
 - 피뢰기의 구성
 - ❖ 피뢰기는 직렬캡과 특성요소로 구성된다. (*)
 - ❖ 직렬캡 : 정상시에는 방전을 하지 않고 절연 상태를 유지하며, 이상 과전 압 발생시에는 신속히 이상전압을 대지로 방전하고 속류를 차단하는 역 할을 한다.
 - ❖ 특성요소 : 뇌전류 방전 시 피뢰기 자신의 전위 상승을 억제하여 자신의 절연 파괴를 방지하는 역할을 한다.

- 피뢰설비
 - 피뢰기가 구비해야 할 성능 (*)
 - ❖ 반복 동작이 가능할 것
 - ❖ 구조가 견고하며 특성이 변하지 않을 것
 - ❖점검, 보수가 간단할 것
 - ❖ 충격 방전 개시 전압과 제한 전압이 낮을 것
 - ❖ 뇌전류의 방전 능력이 크고, 속류의 차단이 확실하게 될 것
 - 피뢰기의 접지 (**)
 - ❖제1종 접지 공사(접지선 굵기 : 6mm² 이상의 연동선, 접지 저항 :100이 하)를 해야 한다.
 - 피뢰기의 보호 여유도 (*)

- 피뢰설비
 - 피뢰기의 점검 : 연 1 회 이상 (*)
 - ❖ 피뢰기의 점검은 매년 뇌우기 (6 ~ 7 월경) 전에 실시하는 것이 바람직하다.
 - ❖ 접지 저항측정
 - ❖지상의 각 접속부 검사
 - ❖지상의 단선, 용융, 기타 손상 유무 검사
 - 피뢰침의 종류
 - ❖돌침방식
 - ❖ 회전구체방식
 - ❖ 선행스트리머 방출형 피뢰침 (ESE 피뢰침)
 - 피뢰침의 구성요소 (*)
 - ❖돌출부(돌침)
 - ❖피뢰도선
 - ❖접지극

- 피뢰설비
 - 피뢰침의 설치 (*)
 - ❖ 피뢰침의 보호각은 45도 이하로 할 것
 - ❖ 피뢰침의 접지 저항은 10Ω 이하(제1 종 접지)로 할 것
 - ▶ 종합 접지 : 10Ω이하
 - ▶ 단독 접지 : 20 Ω이하
 - ❖돌침 : 돌침은 12mm 이상의 동, 철을 사용하여 1.5m 정도의 높이에 설 치
 - ❖ 피뢰 도선은 단면적이 30mm² 이상인 동선을 사용할 것
 - ❖ 피뢰침은 가연성 가스 등이 누설될 우려가 있는 밸브, 게이지 및 배기구 등의 시설물로부터 1.5m 이상 떨어진 장소에 설치할 것
 - ❖하나의 피뢰침 인하도선에 2개 이상의 접지극을 병렬 접속할 때 그 간격을 2m 이상으로 한다.

- 화재경보기
 - 누전경보기의 종류

정격전류	60[A] 초과	60[A] 이하
경보기의 종류	1급	1급 및 2급

■ 누전경보기의 구성

- 화재경보기
 - 누전경보기의 구성
 - ❖ 영상변류기 : 누설전류를 자동으로 검출하여 누전경보기의 수신기에 송신하는 장치
 - ❖ 수신기 : 변류기 로부터 검출된 신호를 수신하여 누전의 발생을 소방 대 상물의 관계인에게 경보를 통보하는 장치
 - ❖ 차단기구 : 경계전로에 누설전류가 흐르는 경우 그 경계 전로의 전원을 자동적으로 차단하는 장치
 - ❖ 음향장치 : 경보를 발하는 장치
 - 누전경보기의 수신기를 설치할 수 없는 장소 (**)
 - ❖ 가연성의 증기, 먼지, 가스등이나 부식성의 증기, 가스등이 다량으로 체류하는 장소
 - ❖ 화약류를 제조하거나 저장 또는 취급하는 장소
 - ❖습도가 높은 장소
 - ❖ 온도의 변화가 급격한 장소
 - ❖ 대전류 회로, 고주파 발생회로 등에 의한 영향을 받을 우려가 있는 장소

- 화재경보기
 - 전기 누전화재경보기의 설치 장소

제1종 장소	 연면적 300[m²] 이상인 것 계약 전류 용량(동일 건축물에 계약 종별이 다른 전기가 공급되는 경우에는 그중 최대 계약전류 용량을 말한다)이 100[A]를 초과하 는 것
제2종 장소	 연면적 500[m²]이상(사업장의 경우에는 1,000[m²]이상)인 것 계약 전류 용량이 100[A]를 초과하는 것(4층 이상의 공동 주택 및 사업장에 한한다)
제3종 장소	• 연면적 1000[m²]이상의 창고로서(내화건축물은 제외)벽, 바닥 또는 천장의 전부 또는 일부를 불연재료가 아닌 재료에 철망을 넣어 만든 구조의 것

- 화재대책
 - 화재의 구분 (***)

구분 등급	화재의 구분	표시 색	소화기의 종류
A급	일반 가연물화재 (종이, 섬유, 목재 등)	백색	물소화기, 산·알칼리소화기, 강화액소화기
B급	유류화재	황색	분말소화기, 포소화기, 이산화탄소(탄산가스, CO ₂) 소화기
C급	전기화재 (발전기, 변압기 등)	청색	분말소화기, 이산화탄소(탄산가스)소화기, 할로겐화물소화기
D급	금속화재 (금속분 등)	무색, 표시없음	팽창질석, 팽창진주암, 건조사

- 화재대책
 - 예방대책 : 화재가 발생하기 전에 미리 발화를 방지히는 대책을 말한다.
 - 국한대책 : 화재가 더 이상 확대되지 않도록 하는 대책을 말한다.
 - ❖ 가연성 물질의 집적방지
 - ❖건물 및 설비의 불연성화
 - ❖ 위험물 시설의 지하매설
 - ❖ 방화벽, 방유제 등의 정비
 - ❖ 일정한 공지의 확보
 - 소화대책: 초기소화 및 본격적인 소화활동을 뜻하며 소화설비로서 수동식 소화기, 자동식 스프링클러, 물분무 소화장치, 소방 호스용의 옥내외 소화전(消火桂) 등이 있다.
 - 피난대책: 비상구 등을 통하여 대피하는 대책을 말한다. 이때 피난구의 문은 안에서 바깥으로 열리는 구조로 하여야 한다.

- 1. 다음 전선이 연소될 때의 순서가 맞는 것은? (05.03.20)
 - ① 착화단계 순시용단단계 발화단계 인화단계
 - ② 인화단계 착화단계 발화단계 순시용단단계
 - ③ 순시용단단계 착화단계 인화단계 발화단계
 - ④ 발화단계 순시용단단계 착화단계 인화단계

- 2. 전기설비의 경로별 재해중 가장 높은 것은? (05.05.29)
 - ① 접촉부의 과열
 - ② 과전류
 - ③ 누전
 - ④ 단락

3. 다음 전기화재의 원인으로 거리가 먼 것은? (05.05.29)

- ① 누전
- ② 단락
- ③ 과전류
- ④ 접지

- 4. 발화까지 이르는 누전전류의 최소치는 일반적으로 어느 정도인가? (05.08.07)
 - ① 100~250 mA
 - 2) 300~500 mA
 - ③ 550~650 mA
 - (4) 700~800 mA

- 5. 전기설비로 인한 화재폭발의 위험분위기를 생성하지 않도록 하기 위해 필요한 대책 중 옳지 않은 것은? (05.08.07)
 - ① 폭발성 가스 누설 및 방출 방지
 - ② 폭발성 가스의 체류 방지
 - ③ 폭발성 분진의 생성 방지
 - ④ 폭발성 가스의 사용 방지

- 6. 가스레인지에서 새어나온 가연성 가스가 집안 가득 차 있다. 어두컴컴한 실내를 밝히기 위해 거실 형광등을 켜는 순간 큰 폭발이 일어났다. 다음 중 점화원으로 추정되는 것 중 가 장 타당한 것은? (05.08.07)
 - ① 마찰
 - ② 충격
 - ③ 정전기
 - ④ 전기불꽂

7. 변압기 전로의 1선지락 전류가 6A일 때 제2종 접지 저항치는 얼마인가? (05.08.07)

- 10Ω
- ② 15Ω
- 3 20Ω
- ④ 25Ω

- 8. 누전화재라는 것을 입증하기 위한 요건이 아닌 것은? (06.03.05)
 - ① 누전점
 - ② 발화점
 - ③ 접지점
 - ④ 접속점

- 9. 피뢰기의 제한전압이 700[KV]이고, 충격절연강도가 1,000[KV]라면, 보호여유도는? (06.03.05)
 - 12[%]
 - 2 27[%]
 - 3 39[%]
 - 43[%]

10. 다음 중 유류에 의한 화재는? (06.05.14)

- ① A급
- ② B급
- ③ C급
- ④ D급

11. 피뢰기가 반드시 가져야 할 성능 중 틀린 것은? (06.05.14)

- ① 방전개시 전압이 높을 것
- ② 뇌전류 방전능력이 클 것
- ③ 속류 차단을 확실하게 할 수 있을 것
- ④ 반복 동작이 가능할 것

12. 금속물질 화재의 소화방법으로 가장 부적절한 것은? (06.08.06)

- ① 포말소화
- ② 탄산가스
- ③ 물
- ④ 건조사

- 13. 전기화재를 발화원으로 분류한 출화형태가 아닌 것은? (06.08.06)
 - ① 감전에 의한 출화
 - ② 전기배선 또는 전기기기로부터의 출화
 - ③ 정전기 불꽃에 의한 출화
 - ④ 누전에 의한 출화

14. 누전경보기의 구성요소가 아닌 것은? (06.08.06)

- ① 변류기
- ② 단로기
- ③ 수신기
- ④ 차단기구

15. 전로의 사용전압이 400V 이상인 저압 전로의 절연저항값은 몇 MΩ 이상이어야 하는가? (06.08.06)

- ① 0.1
- (2) 0.2
- 3 0.3
- (4) 0.4

16. 제3종 접지공사의 접지저항은 얼마인가? (07.03.04)

- ① 100 이하
- ② 100Ω 이하
- ③ 150Ω 이하
- ④ 300Ω 이하

- 17. 화약류 또는 위험물의 저장이나 취급하는 시설물에 피뢰침 을 설치할 때 준수사항으로 틀린 것은? (07.03.04)
 - ① 보호각은 45도 이하로 할 것
 - ② 접지극과 대지간의 접지저항은 10Ω 이하로 할 것
 - ③ 피뢰도선은 단면적이 10mm² 이상인 동선을 사용할 것
 - ④ 가연성 가스 등의 저장시설물로부터 1.5미터 이상 떨어진 장소에 설치 할 것

18. 저압전선로 중 절연부분의 전선과 대지간 및 전선의 심선 상호간의 절연저항은 사용전압에 대한 누설전류가 최대 공 급전류의 얼마를 넘지 않아야 하는가? (07.03.04)

- ① 1/1000
- 2 1/1500
- 3 1/2000
- 4 1/2500

19. 접지의 종류와 목적에 대한 설명으로 틀린 것은? (07.03.04)

- ① 계통 접지: 고압전로와 저압전로가 혼촉되었을 때 감전 및 화재 방지
- ② 피뢰 접지: 낙뢰로부터 전기기기의 손상방지
- ③ 기기 접지: 누전되고 있는 기기에 접촉시의 감전방지
- ④ 등전위 접지: 정전기의 축적에 의한 폭발방지

20. 다음 중 B급 화재에 해당되는 것은? (07.05.13)

- ① 인화물질(유류)에 의한 화재
- ② 전기장치에 의한 화재
- ③ 마그네슘 등에 의한 금속화재
- ④ 일반 가연물에 의한 화재

- 21. 뇌전압에 의한 손상의 우려가 있는 고압 및 특별고압의 전로 중 피뢰기를 시설하여야 할 곳이 아닌 것은? (07.05.13)
 - ① 발전소, 변전소 또는 이에 준하는 장소의 가공전선인입구 또는 인 출구
 - ② 가공전선로에 접속하는 배전용 변압기의 고압측 및 특별고압측
 - ③ 고압 및 특별고압의 지중전선로로부터 공급 받는 수용장소의 인출 구
 - ④ 가공전선로와 지중전선로가 접속되는 곳

22. 위험물 • 폭발물 등의 저장장소에 설치하는 피뢰침의 보호 각은 얼마 이하로 하는가? (08.03.02)

- ① 60도
- ② 45도
- ③ 30도
- ④ 20도

- 23. 접지공사시 접지공사의 종류와 접지선의 굵기가 서로 잘못 연결된 것은? (08.03.02)
 - ① 제1종 단면적 6mm² 이상의 연동선
 - ② 제2종 단면적 16mm² 이상의 연동선
 - ③ 제3종 단면적 2.5mm² 이상의 연동선
 - ④ 특별 제3종 단면적 6mm² 이상의 연동선

24. 다음 중 특별 제3종 접지공사의 접지저항으로 옳은 것은? (08.05.11)

- ① 5Q 이하
- ② 10Ω 이하
- ③ 500 이하
- ④ 100Ω 이하

25. 전기설비에서 제1종 접지공사는 접지저항을 몇 Ω 이하로 해야 하는가? (08.07.27)

- 1 5
- 2 10
- 3 50
- 4 100

26. 기계·기구의 철대 및 외함의 접지공사 종별이 옳게 연결된 것은? (08.07.27)

- ① 400V 미만인 저압용의 것 제1종 접지공사
- ② 400V 이상의 저압용의 것 제2종 접지공사
- ③ 고압용의 것 제3종 접지공사
- ④ 특별고압용의 것 제1종 접지공사

27. 접지저항이 10Ω 이하이고, 접지선의 굵기는 단면적 $6mm^2$ 이상의 연동선을 사용하여야 하는 접지공사는? (09.03.01)

- ① 제1종 접지공사
- ② 제2종 접지공사
- ③ 제3종 접지공사
- ④ 특별 제3종 접지공사

- 28. 누전으로 인해 목재 등이 탄화되고 지속적으로 열이 발생, 이로 인하여 화재가 발생하는 것을 무엇이라 하는가? (09.05.10)
 - ① 가네하라현상
 - ② 톰슨효과
 - ③ Flash현상
 - ④ 제벡효과

- 29. 저압전로에서 그 전로에 지락이 생겼을 경우에 0.5초 이내에 자동적으로 전로를 차단하는 장치를 시설하는 경우 제3종 접지공사와 특별 제3종 접지 공사의 저항치는 자동차단기의 정격감도 전류에 따라 달라지는데 정격감도 전류가 30mA 일 경우 접지저항값으로 옳은 것은? (09.07.26)
 - ① 150Ω이하
 - ② 300Ω이하
 - ③ 500Ω이하
 - ④ 1000Ω이하

30. 전로의 사용전압과 전로의 전선 상호간 및 전로와 대지간의 절연저항이 잘못 연결된 것은? (09.07.26)

- ① 사용전압이 110V 인 경우 0.1MΩ 이상
- ② 사용전압이 220V 인 경우 0.2MΩ 이상
- ③ 사용전압이 440V 인 경우 0.3MΩ 이상
- ④ 사용전압이 550V 인 경우 0.4MΩ 이상

31. 다음 중 발화점에 대한 설명으로 옳은 것은? (09.07.26)

- ① 점화원에 의해 불이 붙을 수 있는 최저 온도
- ② 점화원에 의해 불이 붙을 수 있는 최저 증기농도
- ③ 주위의 열로 인하여 스스로 불이 붙을 수 있는 최저 증기농도
- ④ 주위의 열로 인하여 스스로 불이 붙을 수 있는 최저 온도

32. 변압기 전로의 1선 지락 전류가 6A 일 때 제2종 접지공사의 접지저항값은 얼마인가? (10.05.09)

- 10Ω
- ② 15Ω
- 3 20Ω
- ④ 25Ω

- 33. 고저압 혼촉방지를 위해 변압기의 2차측(저압측)에 시설하는 접지공사의 종류와 접지저항의 최대값으로 옳은 것은? (단, 최대 1선 지락전류는 2Ω 이다.) (10.07.25)
 - ① 제1종 접지공사. 10[Ω]
 - ② 제2종 접지공사. 75[Ω]
 - ③ 제3종 접지공사. 100[Ω]
 - ④ 특별 제3종 접지공사. 10[Ω]

Thank you