# Insper

# Computação Gráfica

WGSL & Raytracing 1

## WGSL - WebGPU Shading Language

- Linguagem moderna de shaders para web (maior acesso a hardware)
- Pode ser usada com JavaScript(JS), TypeScript(TS) e Rust
- Suporta Compute Shaders
- Fortemente tipada, ou seja, tipos de dados devem ser explicitamente definidos.
- A sintaxe e o design do WGSL foram feitos para ser mais seguros e menos propensos a erros comparado a outras linguagens de shaders: Rust based
- Links úteis:
  - https://webgpufundamentals.org/webgpu/lessons/webgpu-wgsl.html
  - o https://www.w3.org/TR/WGSL/
  - https://google.github.io/tour-of-wgsl/



### WGSL vs GLSL

| GLSL                                                                                  | WGSL                                                                                                                         |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| OpenGL/WebGL                                                                          | WebGPU                                                                                                                       |
| Tipada, mas com certa flexibilidade.                                                  | Linguagem com <b>tipagem forte</b> .                                                                                         |
| Tende a ser mais direta, com sintaxes menos rigorosas, mas também menos estruturadas. | Mais modular e estrita quanto à declaração de variáveis e funções.                                                           |
| Amplamente usado em gráficos desktop, dispositivos móveis e web através do WebGL.     | Projetado especificamente para ser usado em navegadores modernos e com suporte a multiplataforma.                            |
| Mais antigo e largamente usado.                                                       | Leva em consideração boas práticas de design moderno.                                                                        |
| Usado com WebGL, que pode ser mais lento ou ter menos controle de hardware moderno.   | Aproveita as vantagens do WebGPU, oferecendo melhor desempenho e controle de hardware, especialmente em computação paralela. |



### WGSL vs GLSL - Exemplos

#### **GLSL**

```
float foo(vec2 uv, float k)
{
    return k + length(uv);
}
```

```
float foo(vec2 uv, float k)
{
  float o = length(uv) + k;
  return o;
}
```

#### Ponteiros (Pointers):

GLSL não suporta

#### **WGSL**

```
fn foo(uv : vec2f, k : f32) -> f32
{
    return k + length(uv);
}
```

```
fn foo(uv : vec2f, k : f32) -> f32
{
   var o = length(uv) + k;
   return o;
}
```

#### **WGSL**

```
fn foo(uv: ptr<function, vec2f>) -> f32
{
   return length(uv);
}
foo(&uv);
```



### Compute Shader

- **Propósito Geral**: Realiza operações computacionais diretamente na GPU, como física, simulação, processamento de dados, etc., sem precisar gerar gráficos.
- Independente de Pipeline Gráfico: Desvinculado ao pipeline gráfico tradicional (vertex/fragment shaders), sendo independentemente da renderização.
- **Grupos de Trabalho (Workgroups)**: Divide a tarefa em grupos de trabalho para distribuir a carga computacional de forma eficiente entre os núcleos da GPU.
- Entrada/Saída de Dados: Recebe e escreve dados diretamente na memória da GPU (buffers, imagens), podendo manipular grandes volumes de dados.
- Aplicações Diversas: Usado para tarefas como física de partículas, inteligência artificial, simulação de fluidos, processamento de imagem, machine learning, etc.
- Exemplo: <a href="https://gubebra.itch.io/multiple-species-physarum">https://gubebra.itch.io/multiple-species-physarum</a>
- Simulação de agentes (partículas, objetos)

Resumindo: Mais customizável, maleável, robusto e geral.



### Compute Shader





### Compute Shader em WGSL

#### WGSL

```
const THREAD_COUNT = 16;
@compute @workgroup_size(THREAD_COUNT, THREAD_COUNT, 1)
fn render(@builtin(global_invocation_id) id : vec3u)
{
    ...
}
```

### Js

```
pass. {\color{red}dispatchWorkgroups} (rez.x \ / \ THREAD\_COUNT, \ rez.y \ / \ THREAD\_COUNT, \ 1);
```



## Ray Tracing

Esta parte do curso foi baseada no livro:

"Ray Tracing in One Weekend", por Peter Shirley **URL (series)**: https://raytracing.github.io/



## Ray Tracing – o que é

- Ray Tracing é uma técnica de renderização usada para criar imagens altamente realistas, simulando o comportamento reverso dos raios de luz.
- A técnica funciona ao **rastrear fontes de luz** partindo de uma câmera e verificando onde esses raios atingem objetos no ambiente.
- Cada interação de um raio com uma superfície tem cálculos de reflexão, refração, sombreamento e sombras com base nas propriedades do material e da iluminação da cena.
- Matemática para definir objetos (ex: geometrias) pode ser complexa.





## Alguns Livros Interessantes







## Onde Ray Tracing é usado

Ray Tracing é computacionalmente "muito pesado". Contudo, com os avanços em recursos computacionais, essa técnica está se tornando viável até para aplicações em tempo real.

- Filmes/Animações
- Softwares de modelagem 3D: Blender / Maya
- Jogos: Reflexos / Sombras / AO / Lightmaps

#### **Toy Story 4 (offline)**



#### **Resident Evil Village (realtime)**



"some frames in *Monsters University* took a reported 29 hours each"



### Path Tracer

Um Path Tracer é um método de renderização baseada em Monte Carlo para produzir imagens de cenas tridimensionais. O livro de referência usa na prática Path Tracer.





## Projeto

Vocês irão desenvolver um Path Tracer, baseado na proposta do livro texto, em WGSL.









#### Path Tracer

#### Ideia básica do algoritmo:

- Crie x raios que saem da câmera virtual da cena
- Defina um número y máximo de reflexões (bounces)
- Para cada raio e a cada bounce, veja onde ele bateu (objetos na cena)
- Se bater em algo, pegue a cor e material do objeto
- Calcule a nova direção do raio após a colisão baseado no tipo de material, e multiplique a cor do pixel pela cor do material
- Se não bater em nada, retorne com a cor do ambiente
- Faça a média de cor com base no número x (raios por pixel)
- Acumule as cores (progressive rendering) e faça a transformação de espaço de cores (linear para gamma)



Fonte animação: link



### Criando câmera

Vamos deixar o ponto de vista no (0,0,0) olhando para o Z negativo. Varredura de pixels:

- Em CPU teríamos de passar por um loop pixel por pixel
- Em GPU o código para cada pixel roda automaticamente em paralelo



### Criando o raio da câmera



```
float aspect = iResolution.x/iResolution.y;
vec3 lower_left_corner = vec3(-1.0*aspect,-1.0, -1.0);
vec3 horizontal = vec3(2.0*aspect, 0.0, 0.0);
vec3 vertical = vec3(0.0,2.0, 0.0);
Ray r = Ray(vec3(0,0,0),
lower_left_corner+uv.x*horizontal+uv.y*vertical);
```



### Revisão de Produto Escalar

# Produto Escalar só faz sentido se estivermos operando com vetores, não com pontos no espaço!

#### **Propriedades**

- Comutativa:  $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$
- Distributiva:  $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$
- Multiplicação por escalar:  $\alpha(\vec{A} \cdot \vec{B}) = (\alpha \vec{A}) \cdot \vec{B} = \vec{A} \cdot (\alpha \vec{B})$
- O quadrado do módulo de um vetor é dado pelo produto escalar do vetor consigo mesmo.

$$\|\vec{A}\|^2 = \vec{A} \cdot \vec{A}$$



## Raio (half-line / semirreta)

Raios do RayTracer

$$P(t) = A + t\mathbf{d}$$

A é a origem do raio
d é o vetor diretor (que define a direção do raio)
t é um parâmetro real
P(t) é o ponto sobre o raio



## Raio (half-line / semirreta)

Raios do RayTracer

$$P(t) = A + t\mathbf{d}$$

A é a origem do raio
d é o vetor diretor (que define a direção do raio)
t é um parâmetro real
P(t) é o ponto sobre o raio





Esferas são objetos comumente vistos em RayTracers devido à simplicidade de calcular a intersecção de um raio com uma esfera. Equação de uma superfície esférica centrada na origem:

$$x^2 + y^2 + z^2 = R^2$$

Assim, para um ponto (x, y, z) pertencente à superfície esférica, a equação acima precisa ser verdadeira.

Para um ponto dentro da superfície:  $x^2 + y^2 + z^2 < R^2$ 

Para um ponto fora da superfície da esfera:  $x^2 + y^2 + z^2 > R^2$ 

Para uma superfície esférica centrada em  $(C_x, C_y, C_z)$ :

$$(x-C_x)^2+(y-C_y)^2+(z-C_z)^2=r^2$$

Para um ponto P na superfície, podemos calcular o vetor (P-C), logo:

$$(\mathbf{P} - \mathbf{C})^2 = (x - C_x)^2 + (y - C_y)^2 + (z - C_z)^2$$

$$(\mathbf{P} - \mathbf{C}) \cdot (\mathbf{P} - \mathbf{C}) = (x - C_x)^2 + (y - C_y)^2 + (z - C_z)^2$$

Assim a equação da superfície esférica na forma vetorial é:

$$(\mathbf{P}-\mathbf{C})\cdot(\mathbf{P}-\mathbf{C})=r^2$$

Desejamos saber se o raio P(t) = A + td intersecta a esfera, assim:

$$(\mathbf{P}(t) - \mathbf{C}) \cdot (\mathbf{P}(t) - \mathbf{C}) = r^2$$

Ou expandindo:

$$(\mathbf{A} + \mathbf{t}\vec{d} - \mathbf{C}) \cdot (\mathbf{A} + \mathbf{t}\vec{d} - \mathbf{C}) = r^2$$

Fazendo  $\mathbf{A} - \mathbf{C} = \vec{e}$  :

$$(t\vec{d} + \mathbf{A} - \mathbf{C}) \cdot (t\vec{d} + \mathbf{A} - \mathbf{C}) = r^2$$
$$(t\vec{d} + \vec{e}) \cdot (t\vec{d} + \vec{e}) = r^2$$

Desejamos saber se o raio P(t) = A + td intersecta a esfera, assim:

$$(t\vec{d} + \vec{e}) \cdot (t\vec{d} + \vec{e}) = r^2$$

Desenvolvendo o produto escalar:

$$(\vec{d} \cdot \vec{d})t^2 + 2 \cdot (\vec{d} \cdot \vec{e}) \cdot t + (\vec{e} \cdot \vec{e} - r^2) = 0$$

Precisamos encontrar as raízes da equação de segundo grau.

$$\Delta = b^2 - 4ac \qquad X = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$(\vec{d} \cdot \vec{d})t^2 + 2 \cdot (\vec{d} \cdot \vec{e}) \cdot t + (\vec{e} \cdot \vec{e} - r^2) = 0$$

$$\vec{d} : \text{ vetor director da reta}$$

$$\vec{e} = A - C$$

#### Se o delta:

- positivo: temos duas raízes
- zero: temos uma raiz
- negativo: não temos solução



# Simplificando o código de intersecção de raios

$$(\mathbf{d} \cdot \mathbf{d}) \cdot t^2 + 2 \cdot (\mathbf{d} \cdot \mathbf{e}) \cdot t + (\mathbf{e} \cdot \mathbf{e} - r^2) = 0$$

 Primeiro: o produto escalar de um vetor por ele mesmo é igual ao quadrado do módulo daquele vetor.

$$\mathbf{e} \cdot \mathbf{e} = (A - C) \cdot (A - C) = ||A - C||^2$$



# Simplificando o código de intersecção de raios

$$(\mathbf{d} \cdot \mathbf{d}) \cdot t^2 + 2 \cdot (\mathbf{d} \cdot \mathbf{e}) \cdot t + (\mathbf{e} \cdot \mathbf{e} - r^2) = 0$$

 Segundo: como o valor do coeficiente de t da equação do segundo grau (b) aparece multiplicado por 2, podemos colocar em evidência esse fator 2 e simplificar a equação.

$$b = 2 \cdot (\mathbf{d} \cdot \mathbf{e})$$

$$\frac{b}{2} = \mathbf{d} \cdot \mathbf{e}$$

$$h = \mathbf{d} \cdot \mathbf{e}$$

$$b = 2h$$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-2h \pm \sqrt{(2h)^2 - 4ac}}{2a}$$

$$= \frac{-2h \pm 2\sqrt{h^2 - ac}}{2a}$$

$$= \frac{-h \pm \sqrt{h^2 - ac}}{a}$$

### Desenhando a esfera





Fonte animação: <u>link</u>



## Normais na Superfície

Para descobrir o vetor normal em um ponto na superfície de uma esfera, basta subtrair esse ponto do centro da esfera:

$$\vec{\mathbf{N}} = (\mathbf{P} - \mathbf{C})$$



### Esfera exibindo valores das normais

Neste exemplo, os valores das normais (x,y,z) foram mapeados para as cores na superfície (r,b,g).



### Face frontal e traseira

Os raios lançados podem intersectar as superfícies dos objetos pelo lado interno ou externo, para obter a direção basta fazer uma operação de produto escalar dos vetores.





## Antialiasing & Luz

Artefatos podem surgir nas bordas dos objetos na imagem. Vamos fazer um antialising para reduzir esse problema.





Fonte animação: link

Vamos lançar vários raios por pixel?



### Gerador de Números Aleatórios

Precisamos de uma rotina que gere números reais aleatórios na faixa: 0 ≤ r < 1

Além disso, precisamos de um gerador de números que gere um ponto aleatório dentro de um retângulo 2D.

O WGSL (nenhuma linguagem de GPU) não possui uma função de números aleatórios de forma nativa. Assim temos de fazer uma.





## Várias amostras por pixel

Vamos lançar vários raios por pixel e depois fazer uma média.





Fonte animação: link

```
fn sample_square(rngState: ptr<function, u32>) -> vec2f
{
   return vec2f(rng_next_float(rngState), rng_next_float(rngState));
}
var uv = (fragCoord + sample_square(&rng_state)) / vec2(rez);
```



## Antes e depois do Antialiasing



Somente anti-aliasing?

Gabarito do projeto: <a href="https://gubebra.itch.io/raytracing">https://gubebra.itch.io/raytracing</a>



### Materiais difusos

Os raios de luz que refletem em uma superfície difusa tem uma distribuição de sua direção definida com uma certa aleatoriedade.





### Reflexão Lambertiana



Normalize(Normal + RandomInSphere())

#### Lambertian distribution:

- A distribuição dispersa os raios refletidos de maneira proporcional a cos(φ)
- $\phi$  é o ângulo entre o raio refletido e a normal da superfície
- Isso significa que um raio refletido tem maior probabilidade de dispersar em uma direção próxima à normal da superfície
- Há menor probabilidade de dispersar em direções afastadas da normal

### Reflexão Lambertiana

#### Função random: Ponto em uma esfera

```
fn rng_next_vec3_in_unit_sphere(state: ptr<function, u32>) -> vec3<f32>
{
  var z = 2.0 * rng_next_float(state) - 1.0;
  var a = 2.0 * PI * rng_next_float(state);
  var r = sqrt(1.0 - z * z);
  var x = r * cos(a);
  var y = r * sin(a);
  return vec3(x, y, z);
}
```



### Resultado

Parece que tem algo estranho.

Deveria Acontecer



#### Mas Acontece



ou



Shadow Acne - Os raios intersectam diretamente com a própria geometria.

ou seja, um t=0.0001 de inicio de raio resolve!

# Exemplo (10 amostras)



# Exemplo (100 amostras)



## Projeto Raytracer

#### Rubrica/Dicas/Código

https://github.com/Gustavobb/raytracing-wgsl-template - Fazer um fork



### Projeto Raytracer

#### Se você fizer:

```
para cada raio (samples_per_pixel):
    crie um raio
    trace do raio:

para cada bounce:
    para cada esfera (nesse caso):
    veja se a colisão foi encontrada (colisão mais perto) e pegue cor/material do objeto

se colisão foi encontrada:
    calcule a nova direção do acordo com o material
    calcule a cor do raio de acordo com o material
    calcule a nova origem do raio de acordo com a colisão

se colisão não foi encontrada:
    retorne a cor de fundo e cor do objeto

faça a média das cores dos raios
```

#### Com a aula de hoje, você chega (cena "Basic"):



# Insper

# Computação Gráfica

Luciano Soares <a href="mailto:lpsoares@insper.edu.br">lpsoares@insper.edu.br</a>

Fabio Orfali <fabioo1@insper.edu.br>

Gustavo Braga <gustavobb1@insper.edu.br>