Epuration des eaux usées :

- L'épuration d'une eau résiduaire doit logiquement passer par les phases suivantes :
 - ✓ <u>Phase de prétraitement</u>: Elimination des éléments grossiers.
 - ✓ <u>Traitement primaire</u>: Elimination des matières en suspension dont la densité est suffisamment différente de celle de l'eau.
 - ✓ <u>Traitement secondaire</u>: Elimination de la pollution (généralement par voie biologique) en s'attaquant aux matières colloïdales et dissoutes.
 - ✓ <u>Traitement tertiaire</u>: Elimination des pollutions résiduelles qui pourraient être gênantes en aval : germes pathogènes, azote, phosphore…etc.
- Le prétraitement : Il comporte trois phases principales :
 - ✓ La séparation des éléments grossiers ou dégrillage.
 - ✓ Le dessablage.
 - ✓ Le déshuilage, dégraissage.

dégrillage	Le dessablage	Déshuilage et dégraissage
Il s'agit de faire passer l'eau à	Cette opération s'effectue dans	Les huiles et graisses ont tendance à
travers des barreaux plus ou moins	des bassins de dessablement où	flotter au repos ou à faible vitesse
espacés.	l'on assure à l'effluant un	d'écoulement à la surface de
Le dégrillage a pour effet de retenir	écoulement calme à faible vitesse	l'effluent.
les objets les plus volumineux afin	ceci permet le dépôt des	On les sépare en utilisant leur plus
de faciliter l'évacuation des	particules sableuses.	faible densité par une opération de
matières retenues.	Le dessablage est indispensable	décantation.
Ces grilles sont souvent équipées	lorsque les eaux à traiter	Cette
d'un râteau pour nettoyage.	viennent d'un réseau unitaire.	Opération est indispensable lorsque
		les effluents proviennent de laiterie,
		d'abattoirs ou d'industries.

• Le traitement primaire :

- ✓ Décantation dans un décanteur primaire qui permet un temps de séjour de l'ordre de deux heures.
- ✓ La vitesse de surverse est souvent de l'ordre de 1 à 2m/h.
- ✓ Cette opération élimine environ le 1/3 de la DBO5.

• Le traitement secondaire :

- ✓ Le but recherché est d'atteindre l'abattement maximal en matière de DBO5 et de DCO pour éviter la sous oxygénation du milieu récepteur.
- ✓ Le principe de ce traitement consiste à oxyder la matière organique de l'effluent par l'intermédiaire de bactéries.
- ✓ Il s'agit donc d'une épuration biologique, les réactions aérobies (en présence d'oxygène) qui sont beaucoup plus rapides auront la préférence.
- ✓ Les traitements biologiques fonctionnent tous selon le même principe : la dégradation de la matière organique par la faune bactérienne.

• Les procédés de traitements :

- ✓ Epuration biologique par le sol
- ✓ L'infiltration Percolation
- ✓ Epuration biologique par lits bactériens
- ✓ Epuration par boues activées
- ✓ Le lagunage

• Epuration biologique par le sol :

- ✓ Cette opération se fait en pratiquant l'épandage de l'effluent sur le sol.
- ✓ Les matières organiques contenues dans l'effluent sont fixées par les particules terreuses, puis oxydées sous l'action des microbes et bactéries dont la plupart sont aérobies.
- ✓ Les meilleurs sols que l'on puisse utiliser sont sableux, les sols argileux sont peu propices car moins poreuses.

• L'infiltration - Percolation :

- ✓ Le principe est le même que l'épandage à la différence que l'eau est drainée verticalement et que le traitement biologique se fait dans le milieu non saturé.
- ✓ On risque de polluer des eaux souterraines "Saines" à l'origine.

Epuration biologique par lits bactériens :

✓ Le principe de la méthode consiste à créer un sol artificiel matérialisé par un milieu poreux et perméable et ce sur une hauteur de 1,5m à 5m.

• Epuration par boues activées :

- ✓ Cette méthode consiste à apporter à l'effluent des bactéries aérobies destinées à accélérer l'oxydation. Les bactéries sont amenées sous forme de boues que l'on ajoute à l'effluent.
- ✓ Pour la technique des boues activées, les effluents décantés sont soumis à une aération violente dans des bassins d'activation dans lesquels les matières organiques sont oxydées puis ils passent dans un décanteur secondaire ou clarificateur où les flocs sédimentent.
- ✓ La fourniture d'oxygène indispensable à la vie des bactéries constitue une part importante des frais d'exploitation de ce type de traitement.
- ✓ Les stations de traitements par boues activées sont dites compactes et le procédé est dit intensif.
- ✓ Les inconvénients sont que telles stations demandent trop d'énergie et notamment pour le processus d'aération, une main d'œuvre spécialisée et une mécanisation de plus en plus sophistiquée.
- ✓ L'avantage est qu'elles occupent peu d'espace et permettent un bon rendement (le rapport DBO5 de sortie/ DBO5 entrée) est de l'ordre de 90 à 95%.

Le lagunage :

- ✓ Le lagunage est un procédé naturel d'épuration des eaux usées qui permet une séparation des éléments solides de la phase liquide par sédimentation et une épuration biologique due essentiellement à l'action des bactéries.
- ✓ Le lagunage fait partie de la série des traitements biologiques.
- ✓ Son grand avantage réside dans sa viabilité économique puisqu'on laisse la nature faire ce qu'elle peut.
- ✓ Cette technique nécessite un climat chaud et ne s'adapte pas pour les zones à faibles températures.
- ✓ Pour être efficace, le temps de séjour de l'eau au niveau des lagunes doit être de 30 jours au moins, la lagune ayant une profondeur de 1,5m à 2m.
- ✓ Le traitement biologique est assuré par la nature et en particulier par l'ensoleillement, la température minimale du site doit être supérieure à 10°c.
- ✓ L'inconvénient de cette technique est qu'elle occupe beaucoup d'espace : 5 ha environ pour une population de 40.000 habitants.

✓ Ce genre de stations se compose de bassin anaérobie, d'un bassin facultatif, un bassin de maturation.

Bassin anaérobie	Bassin facultatif	Bassin de maturation
 Il s'effectue dans des bassins peu profonds de 0,8 à 1,20m. 	La profondeur d'un bassin facultatif varie entre 1,5 et 2,5m.	 La lagune est composée d'un bassin d'une profondeur variant de 3 à 5m.
La lumière peut pénétrer et favoriser le développement d'algues vertes.	 La couche supérieure est aérobie, la zone centrale peuplée de bactéries 	 les matières décantées sont soumises à une fermentation anaérobie avec un dégagement
Ce procédé simple demande des surfaces importantes car les temps de réaction sont très longs.	facultatives et la zone inférieure est aérobie. Ies bactéries aérobies consomment de la	de gaz (H2S, CO2, CH4). Les temps de séjour sont supérieurs à 20 jours et dépassent fréquemment 50.
 on peut traiter par ce procédé de 25 à 50 Kg de DBO5 par hectare et par jour. 	matière organique en utilisant l'oxygène produit par les algues.	 Les rendements d'élimination peuvent varier entre 50 et 80%. L'inconvénient de ce procédé réside dans le dégagement d'odeurs nauséabondes.

• Le traitement complémentaire ou tertiaire :

- ✓ C'est un traitement qui peut être envisagé en cas d'insuffisance des traitements biologiques où pour une protection accrue du milieu récepteur.
- ✓ Les paramètres sur lesquels il faut agir sont :
 - La DBO.
 - La DCO.
 - Les matières en suspension qui sont le support de DBO et DCO.
 - Les nitrates et les phosphates, cause de l'eutrophisation.
 - > L'ammoniaque.
 - Les germes pathogènes.
 - Pour les MES, 1g/m3 de MES = 0,5 à 1g/m3 de DBO5 = 1 à 2g/m3 de DCO
- ✓ Les boues sont également traitées en vue d'une valorisation agricole et pour produire du gaz méthane CH4.

• Démarche et méthodologie pour l'étude d'une station d'épuration :

- ✓ Description générale du milieu physique.
- ✓ Diagnostic et caractéristiques du réseau d'assainissement.
- ✓ Données de bases pour le dimensionnement de la STEP :
 - > Population (pour les différents horizons).
 - Débits d'eaux usées pour différents horizons.
 - > Concentrations en DBO5, NTK et PT.
 - > Températures
 - > Evaporation.
 - Direction des vents.
 - ➤ Ph