Logikai tervezés – Házi feladat blokkvázlat Bálint Gergely Szilágyi Gábor

Teljes blokkvázlat:

<u>bemenetek</u> <u>kimenetek</u>

1. Blokk részletesen: sok ÉS kapu, a bejövő Data_valid jelet a bejövő Pixel bitjeivel egyenként összeéseli, így fekete pixellel számolunk tovább, ha a bejövő pixel érték érvénytelen.

Esetleg kell még az elejére egy pipeline regiszterréteg, mert a data valid jel fanoutja itt 25 (26 a továbbvitt, késleltetett példányával együtt) **2. Blokk részletesen**: beérkező pixel mentése és 5 különböző késleltetésű változat (pa, ..., pe) előállítása a DSP rész bemenetéhez, valamint színcsatornánként 1-1 kontroll jel késleltetése a blokkramok 9. bitjében

BRAM késleltető

egység

n órajellel késleltető FF-halom, vagy BRAM

BRAM késleltető egység

3 db párhuzamos, 4k x 9 bit blokkram, ciklikus címzés single port, read first mód, 8 bit (1 színcsatorna) + 1 bit (data_valid/hsync/vsync egy-egy színcsatorna mellé)

3*8 bit

3*1 bit

pe

Kontroll

ielek

Z-20

Egy számláló+ regiszter, ami megszámolja a két Hsync felfutó él között eltelő órajelciklusokat, vagyis a kép szélességét az invalid pixelekkel együtt (ez a w, ami 12 bites, mert 1080p esetén ennyibe fér bele a kép szélessége). Az előállított w értéket használják a BRAM-ok a ciklikus címzés reszeteléséhez.

Így minden sor hosszát az előző sor hosszának feltételezünk. Működés közbeni felbontásváltás esetén ez nem probléma, mert a hiba csak egy sorig áll fent, ami szabad szemmel nem látható.

3. Blokk részletesen: DSP

Szorzás: a súlyozómátrix sorait meg lehet valósítani kasztkád struktúrával, mert az csak ugyanannak a pixel streamnek a különböző késleltetésű változatait adja össze.

Egy DSP blokk elvileg 3 órajel késleltetést jelent (ha minden belső pieline regiszterjét használjuk) VERIFIKÁLNI

1 új pixelérték kiszámításához a 25 együtthatót 25 különböző idővel késleltetett pixelértékkel kell szorozni, és ezeket összeadni (késleltetések és együtthatók a következő oldalon). Az együtthatóablak egy sorában lévő pixelek késleltetése egyesével növekszik, ez azt jelenti, hogy az a sor elején lévő pixelt az aktuális és következő 4 órajelben kell felhasználnunk, majd egy sorhossznyi késleltetés múlva újra.

Fent látható, hogy az adott pixelt a kaszkádosított szorzó-összeadó blokkba emiatt egyszerre 5 helyen csatoljuk be, a +4 késleltetésről a számítás gondoskodik. A pb pixelt 5 hellyel később csatoljuk be a kaszkádszámításba, így elcsúszna a hozzá tartozó pa pixeltől. Ennek a megoldására az előző oldalon látható 5-ös késleltetések szolgálnak. Ezekkel a később becsatolt pixelek késleltetését "kiegyenlítjük".

Késleltetések a konvolúcióhoz:

4+4W	3+4W	2+4W	1+4W	0+4W
4+3W	3+3W	2+3W	1+3W	0+3W
4+2W	3+2W	2+2W	1+2W	0+2W
4+W	3+W	2+W	1+W	0+W
4	3	2	1	0

Együtthatók nevei:

h _{4w+4}	h _{4w+3}	h _{4w+2}	h _{4w+1}	h _{4w+0}
h _{3w+4}	h _{3w+3}	h _{3w+2}	h _{3w+1}	h _{3w+0}
h _{2w+4}	h _{2w+3}	h _{2w+2}	h _{2w+1}	h _{2w+0}
h _{w+4}	h _{w+3}	h _{w+2}	h _{w+1}	h _{w+0}
h ₄	h ₃	h ₂	h ₁	h ₀

4. Blokk részletesen: Státusz jelek késleltetése

A státuszjeleket a pixelekkel együtt késleltetjük a második blokk végéig. Itt a pixelek a DSP kaszkádba kerülnek, így a státuszjeleket a DSP kaszkád késleltetésével megfelelő mértékben kell késleltetni. Ez BRAM-mal és LUT-tal is megvalósítható, mivel viszonylag rövid késleltetésről van szó.