| 1  | Representing the drivers of lifestyle change in Integrated Assessment Models using theories       |
|----|---------------------------------------------------------------------------------------------------|
| 2  | from environmental psychology: introducing the Motivation, Agency, and Past Behaviour             |
| 3  | (MAP) framework                                                                                   |
| 4  |                                                                                                   |
| 5  | Anne M. van Valkengoed* <sup>1</sup> , Goda Perlaviciute <sup>1</sup> , & Linda Steg <sup>1</sup> |
| 6  |                                                                                                   |
| 7  | <sup>1</sup> Faculty of Behavioural and Social Sciences, University of Groningen                  |
| 8  | Grote Kruisstraat 2/1, Groningen, 9712TS, The Netherlands                                         |
| 9  | * = corresponding author: <u>a.m.van.valkengoed@rug.nl</u>                                        |
| 10 |                                                                                                   |
| 11 |                                                                                                   |
| 12 |                                                                                                   |

13 Abstract

14 Sustainable lifestyle changes are an important demand-side solution to reduce CO<sub>2</sub> emissions. While sustainable lifestyles are increasingly included in integrated assessment models, 15 modellers have so far not managed to realistically model what drives changes in lifestyles. 16 17 Important questions about the feasibility and likelihood of lifestyle change, and how lifestyle changes can be accelerated or promoted thus go unanswered. Environmental psychology is a 18 19 discipline dedicated to understanding environmental behaviour, and its theories and findings could therefore be instrumental to informing the modelling of lifestyle change in integrated 20 assessment models. Yet, we identify two barriers currently hinder the systematic integration 21 of this knowledge into integrated assessment modelling. The first barrier is plurality: there are 22 many theories and findings that are potentially relevant to modelling lifestyle change, but 23 guidance is lacking on which to apply when. The second barrier is ambiguity: many theories 24 25 in psychology are not precise enough to unambiguously translate them into a mathematical model. To overcome the barrier of plurality, we introduce the Motivation, Agency, and Past 26 behaviour (MAP) framework, which summarises and integrates the insights of 8 prominent 27 28 behavioural theories used in environmental psychology and that can be used to determine 29 which theories and determinants are most relevant for specific modelling applications. To overcome the barrier of ambiguity, we identify three areas where the precision of theorizing in 30 31 environmental psychology can be improved, namely definitions and consistent use of constructs, the specification of relationships between constructs, and describing the strength 32 33 and boundary conditions of these relationships. We urge for closer collaborations between modellers and environmental psychologists to successfully model the drivers and impacts of 34 sustainable lifestyle change. 35 36 Keywords: lifestyle change, environmental behaviour, IAM, theory, environmental psychology, modelling 37

Representing the drivers of lifestyle change in Integrated Assessment Models using theories from environmental psychology: introducing the Motivation, Agency, and Past Behaviour (MAP) framework

Climate change poses a severe and global threat to people and nature (IPCC, 2023). While the consequences of climate change are already unfolding, the worst impacts can still be avoided if climate change is limited to 1.5 or 2 degrees (IPCC, 2018, 2023). Integrated assessment models (IAMs) play a critical role in outlining the pathways that could be taken to reduce greenhouse gas emissions and reach climate targets (see IPCC, 2023). While these models feature highly sophisticated representations of earth systems and economic and societal developments, the dynamics of human behaviour are not systematically represented (Beckage et al., 2021). Yet, changes in behaviour towards more sustainable lifestyles are critical elements in the response to climate change (e.g., Grubler et al., 2018; van Vuuren et al., 2018). Accurately representing such lifestyles changes in IAMs is thus essential to ensure their policy relevance to reach realistic and effective scenarios for combating climate change.

The field of environmental psychology has studied the drivers of pro-environmental

behaviour for over 40 years (e.g., Cone & Hayes, 1984; Stokols, 1978), and therefore represents a rich resource to inform the modelling of sustainable lifestyle changes. Yet, this literature has so far not been systematically applied in integrated assessment modelling. The aim of this paper is therefore to showcase what the environmental psychology literature can contribute to the climate modelling community, and to examine how its uptake in IAMs can be accelerated. We start by reviewing the current state of the art regarding the representation of human behaviour in IAMs. We then identify two barriers to effectively using the environmental psychology literature (and social science literature more generally) to model drivers of lifestyle changes. The first barrier is plurality: there are many potentially relevant theories and findings, making it difficult to decide what to include in IAMs. The second

barrier is ambiguity: many theories are not precise enough to unambiguously translate them into a mathematical model. We then introduce solutions to overcome these barriers for the environmental psychology literature, specifically. To overcome the barrier of plurality, we introduce the MAP-framework (Motivation, Agency, Past Behaviour): a meta-theoretical framework that summarises and integrates the key insights from 8 important theories in environmental psychology, and which can be used to determine which theories and determinants are most relevant for specific modelling applications. We illustrate the usage of the MAP-framework with a case study that focuses on electric vehicle adoption. To overcome the barrier of ambiguity, we introduce a comprehensive research agenda that identifies key areas in which the precision of theories in environmental psychology can be improved.

# Representing lifestyle change in IAMs

IAMs play a key role in climate science, discourse, and policy. Featuring sophisticated simulations of natural processes and economic and societal developments, they can be used to explore how different policies affect global CO<sub>2</sub> emissions, temperature levels, and economic outcomes (see Riahi et al., 2017). So far, IAMs have mainly focused on so-called supply-side solutions: solutions that aim to reduce greenhouse gas (GHG) emissions by either making the supply of energy more sustainable and more efficient, mostly via technological advances such as renewable and nuclear energy, or by removing emitted carbon from the atmosphere through carbon capture and storage (Creutzig et al., 2021; Mundaca et al., 2018). Supply-side solutions alone will however likely not be sufficient to reach the goal of limiting global warming to 1.5 degrees (Cap et al., 2024), while the feasibility of scaling up carbon capture and storage is also debated (Dziejarski et al., 2023; Kriegler et al., 2018).

In addition to supply-side solutions, more and more attention is therefore now being paid

In addition to supply-side solutions, more and more attention is therefore now being paid to the potential of demand-side solutions, which aim to reduce GHG emissions by lowering the demand for energy, goods and services by households, institutions, and businesses (Creutzig et al., 2021; Creutzig et al., 2024; Grubler et al., 2018; van Vuuren et al., 2018). Demand-side solutions can, if supplemented with infrastructural and technological changes, substantially reduce GHG emissions in different end-use sectors, from 40% in the food domain, to 73% in the electricity domain (IPCC, 2023). Interestingly, demand-side solutions can in many cases also contribute to increasing well-being, for example by reducing pollution and increasing health (Creutzig et al., 2021; Mundaca et al., 2018).

Many demand-side solutions require changes in people's lifestyles, including the way in which people travel, eat, use energy, and buy, use, and dispose of products (van den Berg et al., 2019). Sustainable lifestyle changes are, in the context of integrated assessment modelling, defined as changes in people's behaviour that lower the demand for energy in the broad sense of the word, and thus have a positive impact on the environment (van den Berg et al., 2019). While lifestyle changes are increasingly included in IAMs, they are currently often modelled exogenously as fixed assumptions, meaning they are assumed to be adopted by people universally, and without considering their feasibility and likelihood, nor how they could be affected by other developments that form part of the model, such as changes in the climate, implemented policies, or technology changes (see Figure 1) (Napp et al., 2019; Pettifor et al., 2023; Samadi et al., 2017; Saujot et al., 2020; Trutnevyte et al., 2019; van den Berg et al., 2019).

While exogenously modelling lifestyle change provides important insights into the potential of lifestyle change as a strategy to reduce GHG emissions, such models rely on the assumption that lifestyle changes will occur spontaneously (Saujot et al., 2020; Trutnevyte et al., 2019). Yet, decades of social science research demonstrate that behaviour change can be difficult to realise (e.g., Duckworth & Gross, 2020). Key questions regarding the feasibility and likelihood of lifestyle change as a demand-side solution thus currently go unanswered

(Otto et al., 2020). For example, to what extent are people willing to change their lifestyle, and which behaviours that are part of lifestyle changes are they more or less likely to adopt? Who are most open to change their lifestyles, who are least likely to change? Which factors affect the motivation and ability to change lifestyles? How quickly can changes in behaviour occur across social groups and under which conditions or policies is behaviour change more or less likely? In current modelling representations, lifestyle change thus remains a black box (Figure 1).



Figure 1. Simplified representation of the current exogenous modelling of lifestyle changes in IAMs.

To explore these questions and increase the behavioural realism of lifestyle change, IAMs will need to endogenously model lifestyle changes, meaning they explicitly consider the factors that affect the likelihood of lifestyle changes, or changes in people's environmental behaviours, and link them to other elements represented in IAMs (see Figure 2) (Samadi et al., 2017; van den Berg et al., 2019). Here, environmental psychology comes in as a relevant body of knowledge. Since at least the 1970s, environmental psychologists have studied environmental behaviour (e.g., Cone & Hayes, 1984; Stokols, 1978), which is defined as

'behaviour that change the availability of materials or energy from the environment or alter the structure and dynamics of ecosystems or the biosphere' (Steg & Vlek, 2009). More specifically, environmental psychologists are interested in what motivates people to engage in pro-environmental behaviour, or 'behaviour that harms the environment as little as possible, or even benefits the environment' (Steg & Vlek, 2009, p. 309), which conceptually aligns with sustainable lifestyle change. Indeed, virtually all behaviours that are considered relevant as part of a sustainable lifestyle, such as lowering the thermostat, traveling more sustainably, and eating a sustainable diet (e.g., see Eker et al., 2019; Grubler et al., 2018; McCollum et al., 2017) are (and have been) studied in the domain of environmental psychology (Hampton & Whitmarsh, 2023). Indeed, as we will show below, decades of work in this field have led to comprehensive insights into the factors that are relevant to understanding pro-environmental behaviour in general (see for example Bamberg & Möser, 2007; Klöckner, 2013; Steg et al., 2014), as well as specific types of pro-environmental behaviour (e.g., Gardner & Abraham, 2008; Geiger et al., 2019; Graves & Roelich, 2021).





Figure 2. Simplified representation of the desired endogenous modelling of lifestyle changes in IAMs.

Some initial studies already show that explicitly modelling the drivers of environmental behaviour using insights from environmental psychology can yield insights into if and under which conditions lifestyle changes can be achieved (see for example Beckage et al., 2018; Eker et al., 2019; McCollum et al., 2017; Moore et al., 2022). For example, a study that modelled the drivers of sustainable food consumption found that a significant global shift towards more sustainable consumption patterns was unlikely to occur without policy interventions (Eker et al., 2019). Moreover, particularly people's perceived self-efficacy (i.e., perceptions of being able to engage in the behaviour) and social norms (i.e., perceptions which behaviour is commonly done and approved of by others), rather than concerns about health or perceived risks of climate change, were key in realizing the societal shift to a more sustainable diet (Eker et al., 2019). Such insights are critical to developing effective interventions that target the relevant determinants of behaviour (see van Valkengoed et al., 2022), demonstrating why modelling specifically the drivers of environmental behaviour is so important.

#### Barriers to modelling sustainable lifestyle changes

At first glance, the environmental psychology literature thus seems perfectly suited to help modellers overcome the challenge of endogenously modelling of sustainable lifestyle changes in IAMs. Yet, despite a rich body of literature to build on and promising initial efforts, works that endogenously model sustainable lifestyle changes have been rare, and environmental psychology literature and findings have so far been represented in models to only a limited extent. While we currently have a handful of proof-of-concept studies (Beckage et al., 2018; Bury et al., 2019; Eker et al., 2019; McCollum et al., 2017; Moore et al., 2022), there is no consistent or dedicated stream of literature that considers how the modelling of

lifestyle changes can be further refined, that challenges or expands upon previous models, that considers which methods are most appropriate to capture behavioural dynamics, that synthesizes the best practices and challenges in the literature, or that discusses how the different theories and vast body of empirical findings in environmental psychology can be best applied.

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

The mere availability of a large literature on the drivers and barriers of proenvironmental behaviour therefore does not suffice to address the challenge of more systematically considering lifestyle changes in IAMs. We identify two barriers that currently hinder systematically applying insights from environmental psychology (but which broadly also apply to other bodies of social science literature that study environmental behaviour). The first barrier is that there is a large number of theories and findings that could be potentially relevant to modelling the drivers of environmental behaviour, and it is therefore difficult to determine which factors and theories to focus on (see also Elsawah et al., 2020; Müller-Hansen et al., 2017; Schlüter et al., 2017). We call this the barrier of plurality. Imagine you want to model factors influencing the adoption of a sustainable diet (see (Eker et al., 2019), for practical application). Various theories employed in environmental psychology could explain dietary choices, such as Protection Motivation Theory (Rogers, 1983), which proposes that behaviour depends on perception of risk sand perceived efficacy and costs of behaviours, Value-Belief-Norm Theory (Stern, 2000), which focuses on people's moral motivations to engage in behaviour, or the social identity approach (Abrams & Hogg, 1990) which particularly considers social reasons why people may or may not follow a vegetarian or vegan diet. The difference between theories, their explanatory scope, and the conditions under which particular theories perform better or worse in explaining particular behaviours, are often not clearly outlined in the descriptions of the theories, which can make it difficult to make an informed choice.

The second barrier is that many theories in environmental psychology (and beyond) are not yet precise enough to unambiguously translate them into mathematical expressions, which is needed to be able to integrate psychological theories into a model (De Cian et al., 2020; Poile & Safayeni, 2016; Schlüter et al., 2017; Schwarz et al., 2020; van Sluisveld et al., 2020). For example, theories often do not specify the strength or shape (e.g., linear, parabolic, sigmoidal) of relationships between predictors of behaviour, or how these relationships develop over time (Elsawah et al., 2020). As a result, researchers need to decide how they will translate the verbal description of a theory into mathematical equations, but such assumptions are currently difficult to determine and justify. Different modelling teams may thus interpret and implement the same theories in different ways, making it difficult to compare different modelling implementations to each other, and to determine which implementations are either more or less accurate, which hinders the cumulative improvement of modelling the drivers of environmental behaviour (Muelder & Filatova, 2018). We call this the barrier of ambiguity.

We propose two solutions to these barriers that will help make better use of the environmental psychology literature to represent the drivers of environmental behaviour in IAMs. First, to overcome the barrier of plurality, we introduce the Motivation, Agency, Past behaviour (MAP) framework, a meta-theoretical framework that summarizes and synthesizes insights from eight main behavioural theories in environmental psychology. This framework summarizes the key theorizing in environmental psychology, and enables researchers to identify and select relevant theories or determinants of environmental behaviour and lifestyles. Second, to overcome the barrier of ambiguity, we identify in what areas theorizing in environmental psychology lacks specificity, and suggest guidelines on how theorizing can be made more precise such that theories can be formalized (or rendered mathematically) within models with less ambiguity and uncertainty. A visual overview of the barriers and solutions is presented in Figure 3.



Figure 3. Visual overview of the main problem, key barriers, and proposed solutions.

# Overcoming the barrier of plurality: the MAP-framework

Within environmental psychology, there is a large body of theoretical and empirical literature on the determinants of environmental behaviour (e.g., Bamberg & Möser, 2007; IPCC, 2018; Klöckner, 2013; Steg, 2023). One way to cope with the plurality of theories is to develop a meta-theory: higher-order theorizing that analyses, structures, and compares different theories (APA, 2018a). Such meta-theory can be used to make an informed decision on which theory or which constructs to model, when, and why, thus helping the development of focused and concise models.

We introduce here a new meta-theoretical framework based on the most relevant theories in environmental psychology used to explain environmental behaviour, which outlines differences and overlaps between theories (see Figure 4). We call this meta-theory the MAP-framework (*Motivations, Agency, Past behaviour*). To develop the MAP-framework, we first determined, on the basis of literature reviews on pro-environmental behaviour and text books on environmental psychology (Bamberg & Möser, 2007; Dietz,

2023; Gifford & Nilsson, 2014; Gifford et al., 2011; Klöckner, 2013, 2015; Koger & Du Nann Winter, 2010; Scott et al., 2021; Steg & Nordlund, 2018; Steg & Vlek, 2009; Turuga et al., 2010; van Valkengoed et al., 2022; White et al., 2019), the most important theories used to explain environmental behaviour in the field, which are:

- 1. Theory of Planned Behaviour (Ajzen, 1991)
- 242 2. Protection Motivation Theory (Rogers, 1983)
- Norm Activation Model (Schwartz, 1977)

241

245

247

248

249

250

251

252

253

254

255

256

257

258

259

- 4. Value-Belief-Norm Theory (Stern, 2000)
  - 5. Environmental Self-Identity Theory (Van der Werff et al., 2013)
- 6. Focus Theory of Normative Conduct (Cialdini et al., 1990)
  - 7. The Social Identity Approach<sup>1</sup> (Abrams & Hogg, 1990)
    - 8. Habit Theory (Orbell & Verplanken, 2020)

A visual summary of each theory is presented in the Supplemental Material. We organise the insights and propositions of these theories along three main pillars (following Triandis, 1977). First, what motivations do people have to (not) engage in pro-environmental behaviour? Second, to what extent do people feel agency to engage in pro-environmental behaviour and reduce their environmental impact? Third, how does past environmental behaviour influence future pro-environmental behaviour? Importantly, we point out that the same or similar constructs appear in different theories under different names. To avoid confusion, we refer here to the same constructs across different theories using one single label following the overview of relevant constructs used to explain environmental behaviour provided in (van Valkengoed et al., 2022), while providing the label originally used in the theory between brackets and in cursive. We discuss this problem of inconsistent labelling of

<sup>&</sup>lt;sup>1</sup> The Social Identity Approach is strictly speaking not one distinct theory, but refers to the integrated insights from self-categorization theory (Turner, 1987) and social identity theory (Tajfel & Turner, 1986). We refer to the Social Identity Approach in this paper as we review constructs and ideas from both self-categorization and social identity theory.

constructs in more detail later. The following section introduces the main ideas of these 8 theories, and presents a comprehensive overview of key theorizing within environmental psychology.



Figure 4. Schematic overview of the MAP-framework, which showcases how 8 major theories used to explain environmental behaviour in environmental psychology fit into this framework, and how these theories overlap and differ from each other. NAM = Norm Activation Model. VBN = Value-Belief-Norm Theory.

What motivations do people have to (not) engage in pro-environmental behaviour?

Motivation can be defined as 'the impetus that gives purpose or direction to behaviour' (APA, 2018b), or more simply, the reasons people have for (not) engaging in behaviour. Across the theories, different motivational factors are identified, which can be summarized into three overarching types of motivation to engage in environmental behaviour: perceived personal costs and benefits, moral motivations, and social motivations (IPCC, 2022). Notably, the theories we included focus mostly on cognitions, or the contents of people's thoughts, to represent people's motivations. However, recent developments in the field demonstrate that

many of these motivations are not just cognitive, but are also accompanied by emotions, which can steer people to (not) act pro-environmentally (Brosch, 2021; Brosch & Steg, 2021). Below, we therefore highlight both cognitions as well as relevant emotions that can be associated with each of the motivations.

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

First, perceived **personal costs and benefits** refer to people's evaluations of what they can personally gain from acting pro-environmentally, which are offset against potential personal losses or discomforts (IPCC, 2018; Steg & Vlek, 2009). For example, turning down the heater may save people money (benefit) but may make people feel cold (costs). Costs and benefits can be cognitive evaluations of resources (e.g., time, money), but also affective (feeling good or comfortable, enjoying a behaviour). People's evaluations of the sum of costs and benefits reflect their attitude towards a particular behaviour, which is a key construct in the Theory of Planned Behaviour (Ajzen, 1991). Similarly, Protection Motivation Theory considers trade-offs between costs and benefits as part of the threat appraisal (Rogers, 1983), where costs are conceptualized as perceived risks, which is based on the perceived likelihood and severity of experiencing a hazard. Perception of a risk can be accompanied by emotions such as worry, concern, or fear (van der Linden, 2017). Protection Motivation Theory also proposes that people's motivation to act depends on the perceived rewards associated with not acting pro-environmentally (e.g., being more comfortable), which are referred to as maladaptive response rewards, and the perceived response costs associated with acting proenvironmentally (e.g., the amount of effort required): people are more likely to act proenvironmentally if response costs and maladaptive response rewards are perceived as low (Kothe et al., 2020; Rogers, 1983).

Second, people can be driven to act pro-environmentally because of **moral motivations,** or in other words, because they believe it is the right thing to do. Both the Norm

Activation Model (Schwartz, 1977) and Value-Belief-Norm Theory (Stern, 2000) focus on

moral motivations to explain pro-environmental behaviour. The Norm Activation Model proposes that people are more likely to act pro-environmentally when they feel a personal norm to act pro-environmentally, meaning they feel responsible and morally obliged to act in an environmentally friendly way (e.g., Schwartz, 1977). Personal norms are stronger when people are more aware that their own behaviour is causing environmental problems (i.e., problem awareness, also referred to as *awareness of consequences*), and when they more strongly believe their personal actions will help in resolving the problem (i.e., outcome efficacy, also referred to, perhaps confusingly, as ascription of responsibility within NAM and VBN; see Steg & de Groot, 2010). Outcome efficacy falls under the second pillar of the MAP-framework: Agency, explained below.

The Value-Belief-Norm Theory adds to this reasoning that this process of problem awareness, outcome efficacy, and personal norms depends on the extent to which people endorse different values. Specifically, the more people value nature and the environment (i.e., biospheric values), and find protecting and taking care of other people important (i.e., altruistic values), the more likely they will have a higher problem awareness, leading to stronger perceptions of outcome efficacy and a stronger personal norm to act environmentally-friendly. Conversely if people have strong egoistic and hedonic values, meaning they strongly value personal resources (e.g., money, status) and enjoyment and pleasure, respectively, people will likely have lower problem awareness, and thus lower perceived outcome efficacy and weaker personal norms to act pro-environmentally.

Emotions play an important role in explaining why personal norms can influence our behaviour. Specifically, acting in line with personal norms may elicit positive emotions such as pride, while failing to act according to personal norms can lead to negative emotions such as guilt and regret (Onwezen et al., 2013; Shipley & van Riper, 2022). The anticipation of feeling these positive or negative emotions plays an important role in whether people decide

to act in line with their personal norms, and thus act pro-environmentally or not (Brosch & Steg, 2021; Schneider et al., 2017).

Environmental Self-identity Theory (Van der Werff et al., 2013) proposes that another motivation to act pro-environmentally is people's perception of the extent to which they are an environmentally-friendly person (i.e., environmental self-identity). Environmental self-identity can play an important role in determining environmental behaviour, as people are motivated to act in line with how they see themselves (Festinger, 1957). We consider environmental self-identity as a form of moral motivation, as Environmental Self-Identity Theory proposes that environmental self-identity is rooted in and inferred from people's biospheric values: the more people endorse biospheric values, the stronger their environmental self-identity (Van der Werff et al., 2013).

Third, **social motivations** can play an important role in motivating pro-environmental behaviour. In general, people are motivated to be liked and accepted by others and to fit in (Cialdini et al., 1990). The Focus Theory of Normative Conduct proposes that people tend to conform to how they see other people act (the extent to which they think a behaviour is common, also known as the perceived descriptive norm), and to how they think others expect them to act (the extent to which a behaviour is (dis)approved of by others, or the perceived injunctive norm; Cialdini et al., 1990). Perceived injunctive norms are also included in the Theory of Planned Behaviour as a determinant of behaviour (referred to as *perceived subjective norm*). Adhering to or violating descriptive and injunctive social norms can be associated with positive emotions (feeling content, belonging) and negative emotions (shame), respectively (Packard & Schultz, 2023).

In addition, a part of people's identity is formed by the social groups they identify with, such as nationality, sports groups, a community, or their political affiliation, which is referred to as people's social identity (Tajfel & Turner, 1986). The Social Identity Approach

proposes that if people strongly identify with a particular group, they will be motivated to act in line with and internalise the values and goals of these groups and their members, which affects the likelihood that people act pro-environmentally (Fritsche et al., 2017). Specifically, if acting pro-environmentally is an important value or goal for a specific group, people who are associated and/or identify with this group will act more pro-environmentally themselves (Fielding & Hornsey, 2016).

To what extent do people feel agency to engage in pro-environmental behaviour and to reduce their environmental impact?

People's behaviour is not only determined by their motivations. People also need to feel they are be able to act upon their motivations and to reach their goals, which is defined as a sense of agency (Schlosser, 2015). Across the eight behavioural theories, three main factors reflecting this sense of agency are identified: self-efficacy, outcome efficacy, and collective efficacy.

First, self-efficacy (referred to as *perceived behavioural control* in the Theory of Planned Behaviour) refers to the extent to which people perceive themselves as capable of engaging in a specific behaviour (Ajzen, 1991). Self-efficacy depends on contextual factors that make it easier or harder (or even impossible) to perform the behaviour, such as available infrastructure, income, but also policy measures, such as laws or financial policies that hinder or promote particular behaviours (Steg & Vlek, 2009). Self-efficacy also depends on psychological factors, such as knowledge about how to perform the behaviour, or confidence in one's own abilities. Both the Theory of Planned Behaviour and Protection Motivation Theory propose that self-efficacy is a key determinant of environmental behaviour: the more people perceive themselves as capable of acting, the more likely they are to do so (Ajzen, 1991; Rogers, 1983).

Second, agency is determined by the perceived effectiveness or impact of one's behaviour in reducing environmental problems, which is referred to as perceived outcome efficacy (referred to as *ascription of responsibility* in VBN and NAM, *response efficacy* in PMT, sometimes referred to as *outcome expectancy* in other literature). Protection Motivation Theory, the Norm Activation Model, and Value-Belief-Norm Theory identify outcome efficacy as an important determinant of pro-environmental behaviour: the more people perceive pro-environmental behaviour as effective in reducing environmental problems, the more likely they are to engage in it (Rogers, 1983; Schwartz, 1977; Stern, 2000). Even if people perceive they can engage in a pro-environmental behaviour (i.e., high self-efficacy), they may still not engage in it if they perceive these actions as ineffective or contributing little to protecting the environment. Similar to self-efficacy, perceived outcome efficacy can depend on contextual factors (e.g., some behaviours objectively reduce more CO<sub>2</sub> emissions than others), but also on people's subjective evaluations (e.g., personal pro-environmental behaviour may feel futile in the face of pollution by large companies) (Gregersen et al., 2021).

Third, the Social Identity Approach identifies perceived collective efficacy as an important factor that can determine people's sense of agency (Mummendey et al., 1999; van Zomeren et al., 2008). Collective efficacy is defined as people's perceptions of whether the group they belong to is capable of reaching their goals through collective effort (e.g., Mummendey et al., 1999). In the context of environmental behaviour, it has been found that individuals are more strongly motivated to act pro-environmentally if they perceive higher collective efficacy (i.e., they perceive they can, as a group, have an impact and can meaningfully contribute to reducing environmental problems; Fritsche et al., 2017).

To what extent does past environmental behaviour influence future pro-environmental behaviour?

Next, people's pro-environmental behaviour is affected by their past behaviour. Specifically, people are more likely to act pro-environmentally if they did so in the past as well. Theories have proposed different pathways through which past pro-environmental behaviour can motivate future pro-environmental behaviour: First, Environmental Selfidentity Theory (Van der Werff et al., 2013) proposes that past behaviour can influence pro-environmental behaviour via environmental self-identity: if people reflect on the extent to which they have engaged in pro-environmental in the past, they may realise they are a more (or less) of a pro-environmental person than they previously thought. In other words, people can partly infer their environmental self-identity through their past actions, which then affects the motivation to engage in subsequent pro-environmental behaviour (Van der Werff et al., 2013).

Second, Habit Theory (Orbell & Verplanken, 2020) proposes that past behaviour can play an important role in determining environmental behaviour when people have formed habits. Habits are tendencies people develop to automatically and without thinking engage in a particular behaviour when they find themselves in a certain context or situation (also referred to as the contextual cue, see Klöckner & Verplanken, 2019). Habits are built up when a particular behaviour is effective at reaching a particular goal, and people therefore engage in the same behaviour in the same or similar setting many times (e.g., turning the lights off when leaving the room) (Linder et al., 2022). People typically do not think or plan to engage in habits, because the action becomes associated or linked to specific cues in the environment (Klöckner & Verplanken, 2019). Unsustainable habits can form a barrier to switching towards more pro-environmental behaviour, because they influence behaviour without conscious decision making (Linder et al., 2022). At the same time, if people engage in a new pro-environmental behaviour often enough and with satisfying outcomes, new habits can form,

which ensure that the behaviour will be maintained over time without the need for conscious effort (Lally et al., 2009).

How to use the MAP-framework to identify relevant drivers of environmental behaviour for inclusion in models

The MAP-framework integrates current theorizing in environmental psychology on the drivers of environmental behaviour, and structures this theorizing by identifying overarching categories of determinants across theories. The MAP-framework can thus help in overcoming barrier of plurality by guiding researchers towards a specific theory or set of determinants that are most relevant to the specific behaviour or lifestyle to be modelled. To this end, the MAP-framework can be used in one of two ways.

First, working with one specific theory can guide the development of a concise model as each theory consists of a limited set of constructs. The MAP-framework can be used to differentiate between and select one of the eight underlying behavioural theories we have discussed. Figure 4 illustrates how each theory is situated within the MAP-framework (a more detailed overview that also outlines the individual determinants within each theory is presented in the Supplemental Material). Each theory has a particular focus that may be more or less relevant to modelling a given behaviours. For example, theories focussing on social motivations (Focus Theory of Normative Conduct, Social Identity Approach) may be particularly relevant to explaining behaviours that occur in social setting, such as eating behaviour (Higgs & Thomas, 2016). Theories that focus on moral motivations (e.g., Value-Belief-Norm Theory, Norm Activation Model) may be more relevant to explaining behaviour that requires forgoing personal gains for collective goals, that occurs in private or for which strong social norms do not (yet) exist. To further facilitate selecting a relevant theory for specific modelling goals, we present an overview of the main aims of each theory and

suggestions for modelling applications in Table 1. An overview of all the constructs within each theory, and how these are positioned within the MAP-framework, is provided in Supplementary Table 1. A case study that demonstrates how the MAP-framework can be used in practice to select a relevant theory is presented in Box 1.

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

Second, instead of focusing on a single theory, researchers can choose to focus on modelling one of the overarching meta-theoretical pillars, that is, motivations, agency, or past behaviour. This approach may be particularly suited if there is evidence that one of these pillars is particularly important for the behaviour in question, or to explore research questions on how different determinants may interact. For example, modelling motivations can offer insight into which type of motivations (i.e., perceived costs and benefits, moral motivations, social motivations) are more or less important for different pro-environmental behaviours, how different motivations may conflict or interact in determining people's pro-environmental behaviour, and whether policies that target specific motivations can be effective in promoting behaviour. A focus on agency can be useful to explore under which conditions people feel empowered to act, and how different policies can influence this sense of agency. Focusing on past behaviour can help to gain insight into the potential speed and difficulty with which behavioural changes can be realised, as strong environmentally unfriendly habits can form a key barrier to behaviour change that need to be weakened before new behaviours can take hold (Linder et al., 2022). Working within each of these pillars further offers the opportunity to explore how constructs from different theories are related to each other. Specifically, because empirical studies within environmental psychology mostly focus on the relationships between variables within the same theory, exploring how constructs from different theories are related represents an opportunity to advance current theorizing and explore possible synergies and integration between theories.

Box 1: Selecting relevant theory to model drivers of lifestyle change using the MAP-framework: The case of electric vehicle adoption

In this case study, we will demonstrate the practical application of the MAP-framework to determine which theoretical framework is most appropriate to model a particular behaviour. We break down this process into 4 steps.

## Step 1: Determine target behaviour

Modelling the drivers of lifestyle change starts with determining which behaviour(s) should be represented in the model. A relevant starting point can be to select behaviour(s) with a large potential for emission reductions (Steg & Vlek, 2009). Studies demonstrate that switching from petrol to electric vehicles can reduce per capita carbon emissions by 500 - 2000 kg per year (Ivanova et al., 2020; Koide et al., 2021), making it one of the most promising areas where reductions in carbon emissions can be realized.

# Step 2: Determine the drivers and barriers of the target behaviour

We can determine the drivers and barriers of the adoption of electric vehicles by examining literature reviews and meta-analyses. Here, we focus on two literature reviews (Gerber Machado et al., 2023; Pamidimukkala et al., 2024), that respectively review the results of 124 and 537 articles. Table 2 provides an overview of the determinants that are related to the adoption of electric vehicles as listed in these review articles. Both reviews list a wide array of relevant determinants, demonstrating the plurality of relevant research findings researchers may encounter when reading overviews of the literature.

| Table 2. Overview of determinants of electric vehicle adoption extracted from literature |                              |  |  |  |  |  |
|------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|
| reviews                                                                                  |                              |  |  |  |  |  |
| (Gerber Machado et al., 2023)                                                            | (Pamidimukkala et al., 2024) |  |  |  |  |  |

- 1. Purchase price
- 2. Operational costs
- 3. Purchase price discount
- 4. Location/availability of charging stations
- 5. Charging time
- 6. Aesthetics
- 7. Incentives (subsidies, tax exemption/discounts, rebates, lane access, parking)
- 8. Attitudes
- 9. Subjective norms
- 10. Perceived behavioural control
- 11. Environmental protection concerns
- 12. Environmental knowledge
- 13. Risk attitude
- 14. Low pollutant emissions
- 15. Socio-demographic variables (e.g., age, gender)
- 16. Greenhouse gas emission reduction
- 17. Reduced noise
- 18. Time required to charge EV
- 19. Charging capability
- 20. Availability of charging station
- 21. Charging fee
- 22. Speed
- 23. Range
- 24. Power
- 25. Fuel efficiency
- 26. Battery capacity
- 27. Vehicle age
- 28. Acceleration

- 1. Insufficient number of charging stations
- 2. Lack of adequate staff at charging/service stations
- 3. Purchase subsidies
- 4. Tax exemptions for EV purchase and use
- 5. Electricity subsidies
- 6. Reduced costs for charging
- 7. Free public parking lots
- 8. Access to special lanes (bus/HOV lanes)
- 9. License plate lottery policy
- 10. Personal carbon trading policy
- 11. Reduced air pollution
- 12. Reduced energy consumption
- 13. Pollution from producing batteries
- 14. Lack of battery recycling facilities
- 15. Limited driving range
- 16. Longer charging time
- 17. Fast initial acceleration
- 18. High speed
- 19. Less safety
- 20. Low reliability
- 21. Comfortable
- 22. Less maintenance
- 23. Low fuel economy
- 24. Ease of operation
- 25. Smoother to drive
- 26. Low engine noise
- 27. High purchase cost
- 28. Low fuel costs
- 29. Low maintenance costs
- 30. High battery replacement cost
- 31. Low quality of after-sales service
- 32. Unavailability of EV models at dealerships
- 33. Consumers' lack of market knowledge
- 34. Practical experience with driving EVs
- 35. EV-related knowledge
- 36. Daily use of an EV
- 37. More environmental benefits
- 38. Less fuel consumption
- 39. Necessary to society
- 40. Positive message to society
- 41. Affordability of EVs
- 42. Use of EVs in daily life

| 43. Influenced by family, co-workers, and neighbors |
|-----------------------------------------------------|
| 44. Peer pressure exerted by others                 |
| 45. Openness to new experience                      |
| 46. Negative emotions                               |
| 47. More efficient and self-disciplined             |
| 48. More outgoing and energetic                     |
| 49. High motivation                                 |
| 50. Better self-image                               |
| 51. Better social status                            |
| 52. Pride                                           |
| 53. Feeling good about emission                     |
| reduction contribution                              |
| 54. Socio-demographic variables                     |

# Step 3: Organize existing literature by sorting it into relevant MAP domains

To simplify and restructure the large number of determinants obtained from the literature reviews, we can sort them into their respective MAP domains (see Figure 5). Note that this overview combines some of the overlapping or similar determinants mentioned in Table 2, and discards some determinants that are indirect predictors of behaviour (e.g., personality traits, socio-demographic characteristics).

| Costs & benefits                                   | Moral<br>motivations                                                           | Social<br>motivations                                     | Agency                                                    | Past<br>Behaviour               |
|----------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|---------------------------------|
| Purchase costs                                     | Environmental protection concerns                                              | Subjective norms                                          | Location/availability of<br>charging stations             | Previous<br>experience<br>w/ EV |
| Operational /<br>maintenance<br>costs / fuel costs | Environmental<br>knowledge                                                     | Positive message to society                               | Perceived behavioural control                             |                                 |
| Governmental incentives                            | Environmental<br>benefits (GHG<br>reduction, air<br>pollution)                 | Influenced by<br>family, co-<br>workers, and<br>neighbors | Lack of adequate staff<br>at charging/service<br>stations |                                 |
| Aesthetics                                         | Reduced energy consumption                                                     | Peer pressure exerted by others                           | Lack of battery recycling facilities                      |                                 |
| Attitudes<br>towards EV                            | Pollution from<br>producing<br>batteries                                       | Better social status                                      | Unavailability of EV models at dealerships                |                                 |
| Reduced noise                                      | Necessary to society                                                           |                                                           |                                                           |                                 |
| Time required to charge EV                         | Pride / better self-<br>image / feeling<br>good about<br>emission<br>reduction |                                                           |                                                           |                                 |
| Speed / Power /<br>Acceleration                    |                                                                                |                                                           |                                                           |                                 |
| Range                                              |                                                                                |                                                           |                                                           |                                 |
| Fuel efficiency                                    |                                                                                |                                                           |                                                           |                                 |
| Less safety                                        |                                                                                |                                                           |                                                           |                                 |
| Low reliability                                    |                                                                                |                                                           |                                                           |                                 |
| Comfortable /<br>smoother to drive                 |                                                                                |                                                           |                                                           |                                 |
| Ease of operation                                  |                                                                                |                                                           |                                                           |                                 |
| Low quality of<br>after-sales<br>service           |                                                                                |                                                           |                                                           |                                 |
| Knowledge about<br>EVs                             |                                                                                |                                                           |                                                           |                                 |

Figure 5. Overview of how the determinants of the adoption of electric vehicles fit into the MAP-framework.

Based on this overview, we can now see that most of the determinants of the adoption of electric vehicles are related to perceptions of the costs and benefits of electric vehicles.

Examples of perceived costs include buying and operating the vehicle, perceived unreliability, and lower safety levels. Examples of benefits include less noise while driving,

comfort, and governmental incentives such as subsidies or priority parking. Perceived agency seems also an important determinant, with especially the perceptions of the available infrastructure to operate the electric vehicle (e.g., a sufficient number of charging stations) being listed as a critical factor determining the adoption of the electric vehicle. While moral and social motivations are also mentioned in both reviews, these factors are discussed in less detail and seem to play a less prominent role<sup>2</sup>.

## **Step 4: Select theory that covers the identified relevant MAP domains**

The analysis in step 3 suggests that the drivers of electric vehicle adoption are primarily cost and benefit motivations and perceived agency. Examining the MAP-framework presented in Figure 4, we can determine that an appropriate theoretical framework to represent the adoption of electric vehicles would therefore be Protection Motivation Theory, because its constructs cover both the trade-off between costs and benefits of driving an electric vehicle, as well as perceptions of agency by considering self- and outcome efficacy. Indeed, the Protection Motivation Theory appeared to be successful in explaining the adoption of electric vehicles (Bockarjova & Steg, 2014; Langbroek et al., 2017). An alternative option could be the Theory of Planned Behaviour, which covers both perceived costs and benefits and perceived agency (albeit in less detail than Protection Motivation Theory), but which also includes social motivations as a possible additional factor. Importantly, we recommend researchers do not attempt to include each individual variable mentioned in the literature in their model, but rather rely on more overarching theoretical constructs to reflect these considerations. For example, the higher purchasing costs, smaller driving range, longer charging time, and lower reliability can all be subsumed under 'perceived costs' of switching to an electric vehicle.

<sup>&</sup>lt;sup>2</sup> It may also be the case that social and moral motivations do play an important role, but they have been understudied in the domain in question, and are therefore not represented accurately in literature reviews. Ensuring that environmental behaviour is studied from different theoretical perspectives is therefore an important imperative for environmental psychologists and other social scientists.

## Overcoming the barrier of ambiguity

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

The MAP-framework addresses the problem of navigating the extensive environmental psychology literature when modelling the drivers of sustainable lifestyle change. However, this addresses only part of the challenge of modelling lifestyle change. Indeed, the second barrier that hinders the modelling of the drivers of environmental behaviour, ambiguity, remains: many theories in environmental psychology are yet not precise enough to unambiguously translate them into a mathematical model (e.g., Schlüter et al., 2017). When a model is developed based on a specific theory, there are typically many elements that need to be specified which are however often not considered in the original formulation of the theory, nor explored in the literature more broadly. As a result, researchers need to make many assumptions when they want to render psychological theories in a model (see for example Beckage et al., 2018). Indeed, modelling teams working with the same theory have come up with greatly varying models (Muelder & Filatova, 2018). This can be problematic, as different implementations of the same theory can yield different modelling results and conclusions, while it is often not clear which modelling approach should be considered best or most accurate (Muelder & Filatova, 2018). Reducing ambiguity by making theories more precise is therefore an important goal in order to improve and systematize the uptake of behavioural theories in modelling environmental behaviour. Below, we first identify three areas relating to the formulation and application of behavioural theories in environmental psychology that can contribute to ambiguity. We then offer a set of recommendations on how theorizing and the use of behavioural theories in environmental psychology can become more precise and standardized in order to reduce ambiguity and promote their systematic uptake in modelling the drivers of environmental behaviour.

#### 1. The definition and use of constructs

The first area where ambiguity of theories can arise is the definition and application of key constructs within theories. Constructs (also referred to as concepts, determinants, or variables) refer to the individual components of a theory that jointly explain the dependent variable, in this case environmental behaviour (see also Table 1 and Supplemental Material, listing the key constructs included in the theories that form the MAP-framework). Currently, ambiguity can arise because there are inconsistencies in how constructs are called, defined and measured in the environmental psychology literature, and it is not always clear which exact set of constructs are associated with a particular theory.

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

First, there can be inconsistencies in how the constructs that make up a theory are defined and measured. For example, there is much discussion about how the concept of self-efficacy (or perceived behavioural control) in the Theory of Planned Behaviour should be understood, stemming partly from an unclear conceptualization within the original theory (e.g., Ajzen, 2006; Kraft et al., 2005). Similarly, the construct of risk perception within Protection Motivation Theory is assessed in many different ways across studies: some researchers focus on measuring its sub-components of perceived vulnerability and severity, while others assess risk perception as a more overarching construct, often collapsing these two dimensions (Kothe et al., 2020; van Valkengoed & Steg, 2019). Researchers also often do not explicitly provide clear definitions of the constructs that they are studying (Bringmann et al., 2022; Flake & Fried, 2020). This can inadvertently obscure differences between studies, as readers may (incorrectly) assume that studies that mention the same constructs are also understanding and measuring these constructs in the same way (also known as the "jingle" fallacy, see Flake & Fried, 2020; Lilienfeld & Strother, 2020). Similarly, we have already shown in this article that the same (or very similar) constructs may appear under different labels in different theories (also known as the "jangle" fallacy, see Flake & Fried, 2020; Lilienfeld & Strother, 2020). For example, the construct of outcome efficacy is also referred to as *outcome expectancy*,

response efficacy, and ascription of responsibility across the literature. The use of different labels for the same constructs makes it more difficult to find relevant articles and to accurately synthesize the literature.

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

Second, it is not always clear which set of constructs make up a theory. Many theories represented in the MAP-framework have been proposed 20, 30, or even 40 years ago, and are also used in different fields of application (e.g., understanding health behaviour, see Ogden, 2019). These theories have been tested frequently and by different researchers, over time yielding insights on which parts of the theory are supported and where the theory can be improved. Suggestions to remove or add constructs have been proposed, either by the original authors of the theory, or by other researchers. For example, the first iteration of Protection Motivation Theory did not include self-efficacy (Rogers, 1975) which was only added during a later revision of the model (Rogers, 1983). Over time, different common practices within a field may develop on how theories are tested. For example, the Theory of Planned Behaviour proposes that attitudes, self-efficacy, and injunctive norms are predicted by behavioural beliefs, control beliefs, and normative beliefs, respectively (Ajzen, 1991). Yet, these sets of beliefs are rarely measured in practice, with most researchers testing only attitudes, selfefficacy, and injunctive norms (e.g., Yuriev et al., 2020). Similarly, some components of Protection Motivation Theory proposed by the original author, such as response costs (i.e., the perceived costs associated with engaging in a behaviour), are only rarely included in tests or discussions of the model (Kothe et al., 2020; Milne et al., 2000). When common practices deviate from the original formulation of the theory, it may be unclear for researchers which components of the theory should or should not be included, and how to determine why (not). In sum, theories in psychology can be ambiguous because specific constructs are interpreted and tested in different ways, and because it can be unclear which combination of constructs represent a theory.

## 2. Specifying relationships between constructs

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A second area where theories can be ambiguous is in the description of the relationships between constructs. First, relationships between two constructs in theories are often described in terms of the direction and causality of the relationship, meaning that the relationship is described as either positive or negative (e.g., higher self-efficacy is positively associated with stronger intentions to act pro-environmentally; Edwards & Berry, 2010). When a mathematical model is specified on the basis of a theory, it is however necessary to specify the shape of the relationship between two constructs, too (i.e., whether the relationship is linear, sigmoidal, curvilinear, or another shape, e.g., Schlüter et al., 2017). This information is often not provided within the original propositions of theories, and in studying environmental behaviour, researchers rarely make and test hypotheses about the shape of relationships between constructs. When testing theories, researchers often by default test linear relationships, which is the underlying assumption in many standard statistical tests (Edwards & Berry, 2010). There is thus very little information available about the shape of the relationships between constructs in a model. Importantly, specifying different relationship shapes (i.e., linear, curvilinear or sigmoidal) does affect the results of models representing the drivers of environmental behaviour (Beckage et al., 2018), and this aspect of constructing a model should therefore not be ignored or overlooked. Second, descriptions of theories are often unclear on how more complex relationships between three or more constructs should be interpreted or tested. For example, within the Theory of Planned Behaviours it unclear whether self-efficacy should be considered a moderator of the relationship between intentions and behaviour, a direct predictor of

behaviour, or both (e.g., Hagger et al., 2022). In addition, it is not clearly specified what

relationships and/or interactions between attitudes, self-efficacy, and perceived subjective

norms are expected (Hagger et al., 2022). As another example, Protection Motivation Theory

proposes that risk perception, self-efficacy, and outcome efficacy interact as follows: *if* [outcome efficacy] and/or self-efficacy are high, then increases in [risk perception] will produce a positive main effect [on behaviour]. On the other hand, if outcome efficacy and/or self-efficacy are low, then increases in [risk perception] will either have no effect or a boomerang effect, actually reducing intentions (Rogers, 1983, p. 156)<sup>3</sup>. Yet, this description does not clearly state what relationship is expected if self-efficacy is high and outcome efficacy is low, or vice versa, nor does it specify when no effect or a boomerang effect may be expected (Weinstein, 1993). What the exact configuration of a theoretical model looks like is therefore not always self-evident.

Third, many theories do not specify how relationships between constructs may develop over time (e.g., Vancouver et al., 2018). Psychological theories are often focused on describing when a particular behaviour is more or less likely to occur, and the relationships between constructs and the dependent variable often represent a snap shot at a particular point in time. Far fewer theories explicitly consider how the relationships between constructs and the dependent variable may develop over time, for example by considering feedback loops after a behaviour occurs (Davis et al., 2015; Roe, 2008). The aim of IAMs is typically to examine how outcomes develop over time, and specifying potential feedback loops between determinants and behaviour in the model is therefore essential (van Vuuren et al., 2018). Hence, ambiguity can currently arise regarding how changes over time should be represented.

Some examples of potential feedback loops were already discussed above within the MAP-framework. For example, engaging in pro-environmental behaviour could strengthen people's environmental self-identity, which in turn motivates people to engage in more pro-environmental behaviour (Van der Werff et al., 2013). Within some of the other discussed theories, it is also possible that feedback loops occur, even though they are not explicitly part

<sup>&</sup>lt;sup>3</sup> Words between brackets indicate changes made to the original quote by the authors to keep the labelling of constructs consistent in this paper.

of the original model. For example, within the framework of the Theory of Planned Behaviour, it has been proposed that if people have acted pro-environmentally and had a good or bad experience with it, this could influence their attitudes towards the behaviour, which in turn affects the likelihood that they will engage in the behaviour again (Albarracín & Wyer, 2000; Fishbein, 2010). Similarly, by engaging in pro-environmental behaviour people may realise the behaviour was more or less difficult to perform than anticipated, which could increase or decrease their sense of self-efficacy, respectively (Fishbein, 2010). More systematically theorizing about and testing such temporal dynamics is thus a critical step for theory development.

## 3. Strength of relationships and boundary conditions of theories

A final reason where theorizing may be ambiguous is because the strength of relationships between model variables is rarely predicted or specified. As previously mentioned, relationships between constructs within theories are mostly described in terms of their direction only (i.e., which variable predicts which, and is it a positive or negative relationship). Yet, to specify a mathematical model, it is also necessary to indicate the strength of the relationship between constructs. One way to circumvent this problem could be to rely on meta-analyses to gain information on the average strength of relationships between constructs across studies. However, many meta-analyses report a high level of heterogeneity between studies (Linden & Honekopp, 2021 see for example van Valkengoed & Steg (2019)), which can often only be explained to a limited extent because there is limited theorizing and empirical evidence on which moderators may account for this heterogeneity (Bryan et al., 2021; Linden & Honekopp, 2021). Hence, it is typically unclear how strong of a relationship between constructs can be expected, and under which conditions we can expect that the relationship is stronger or weaker. The inability to account for this heterogeneity may be partially due to the fact that many theories do not clearly specify the boundary conditions

under which the theory is most applicable (Bryan et al., 2021). The lack of theorizing on the strength of the relationships under different conditions, and the often observed but unaccounted heterogeneity between studies thus forms a final source of ambiguity.

Recommendations to reduce ambiguity in theories and their application

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

To reduce these sources of ambiguity and increase the precision of theories in environmental psychology used to explain environmental behaviour, we offer three recommendations to social and behavioural scientists conducting theoretical and empirical work on the driver of environmental behaviour. First, we recommend that researchers testing theories should be much more transparent and explicit in describing their theory. At minimum, researchers need to clearly describe 1) which constructs they consider part of the theory and justify why they focus on that specific set of constructs, 2) offer clear and precise labels, definitions and operationalisations for the constructs they are examining (see also Flake & Fried, 2020), and 3) make clear which relationships they expect between constructs, including possible moderation and mediation effects, specifying the strength of these relationships and considering possible feedback loops between determinants and behaviour. Second, we recommend that researchers in environmental psychology strive to work towards a consensus on how theories are understood and tested, which is regularly updated to accurately reflect the current state of the art. Review articles can contribute to this by tracking developments in theories over time, and by mapping differences in the understanding and application of a theory. Expert consensus methods, such as expert group meetings and workshops, can subsequently be used to address and resolve potential discrepancies in how researchers understand and test theories, and to develop agreed-upon configurations of theories and definitions of key constructs (see for example Hagger et al., 2016; Michie et al., 2005). Importantly, to reduce the variability between studies in terms of the measurement of

constructs, it is important that the research community develops and agrees upon the use of

standardized and validated measures to assess constructs, as well as using the same label for each construct consistently (see Flake & Fried, 2020). The current state of art should ideally also be easily accessible and updatable, for example via regularly updated review articles, community wikis, textbooks or encyclopaedia projects (Steg & de Groot, 2019).

Third, there is a need for novel theorizing to address some of the sources of ambiguity. Specifically, theorizing is necessary on the functional form of relationships between constructs within a theory, the strength of those relationships, and how relationships develop over time. It is also necessary that heterogeneity between studies is better accounted for, which requires more exact specification of the boundary conditions of theories. Novel theorizing also invites novel empirical work to test such propositions.

#### Conclusion

Lifestyle change represents a promising demand-side solution that can deliver substantial reductions in CO<sub>2</sub> emissions, lowering the need for risky carbon capture and storage technologies, and increasing the likelihood that we can limit climate change to below 2°C. To understand and maximize the potential of lifestyle changes, it is important to accurately model the drivers of these behavioural changes in IAMs. We see great potential for environmental psychology to contribute key insights to modelling the drivers of lifestyle changes, but there are key barriers that need to be addressed before this can happen in a systematic and valid way. Specifically, there needs to be better guidance for researchers on how to navigate the expansive environmental psychology literature, and theories need to become more precise in order to reduce ambiguity and to ease the process of rendering theories mathematically. We hope the MAP-framework we introduced in this article, as well as our recommendations for making theories more precise, can contribute to reducing these barriers and expedite the systematic uptake of environmental psychology literature in the

modelling of the drivers of lifestyle change. Yet, the recommendations in this article will only be useful if they are taken up by environmental psychologists and integrated assessment modellers alike. The modelling of the drivers of environmental behaviour can only succeed if there are close collaborations between integrated assessment modellers and environmental psychologists. So far, environmental psychologists have hardly been involved in the discussion on the modelling of lifestyle changes, and we therefore urge them to more actively participate, for example by more explicitly considering implications for modelling in their theorizing and studies, and by taking up the research recommendations provided in this article to make theorizing more specific. We ask integrated assessment modellers to continue inviting environmental psychologists and other social and behavioural scientists to contribute to their efforts, for example by asking for recommendations or feedback on which theories are most suitable to modelling particular behaviours of lifestyle changes, or on how particular theories can best be represented. Such collaborations can represent win-win situations that benefit both the behavioural realism of lifestyle models, improve the development and refinement of psychological theories, and ultimately provide critical insights on how to utilize the potential of lifestyle change to limit climate change to 2°C.

688

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

689

690

# Table 1

Overview of the original purpose and key constructs of the eight behavioural theories within the MAP-framework, and suggested application of the theory in modelling.

| Theory                          | Original purpose                                                                              | Key constructs                                                                                                                                     | Suggested modelling application                                                                                                                                                                                                                                          | Potential sources for parametrization of models                                                                                                                                        |
|---------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theory of planned behaviour     | Explaining planned<br>behaviour (i.e.,<br>behaviour that<br>people consciously<br>plan to do) | - Attitudes - Injunctive norms - Self-efficacy - (Intentions)*                                                                                     | <ul> <li>Understanding the influence of perceived personal costs and benefits on pro-environmental behaviour</li> <li>Modelling effects of policies or societal developments that change the perceived costs and benefits of behaviour (e.g., price policies)</li> </ul> | Yuriev et al., (2020). Proenvironnmental behaviors through the lends of the theory of planned behaviour: A scoping review. <i>Resources, Conservation and Recycling</i> , 155, 104660. |
| Protection<br>Motivation Theory | Explaining how people respond to threats                                                      | <ul> <li>Risk perception</li> <li>Maladaptive response rewards</li> <li>Response costs</li> <li>Self-efficacy</li> <li>Outcome efficacy</li> </ul> | <ul> <li>Understanding people's responses to climate-related hazards</li> <li>Modelling effects of policies or societal developments that increase perceived risks of climate change, or increase efficacy to respond</li> </ul>                                         | Kothe et al., (2019). Protection motivation theory and proenvironmental behaviour: a systematic mapping review.  Australian Journal of Psychology, 71(4), 411-432                      |

| Norm Activation<br>Model / Value-<br>Belief Norm Theory | Explaining when people engage in moral behaviour, or behaviour that benefits others even if this involves some personal costs | <ul> <li>Biospheric, Altruistic, Egoistic, and Hedonic, values (VBN)</li> <li>Problem awareness</li> <li>Outcome efficacy</li> <li>Personal norm</li> </ul> | - | Understanding when people 'self-sacrifice', or engage in moral behaviour that does not benefit themselves directly but benefits others or the environment Modelling effects of policies or societal developments that strengthen people's biospheric or altruistic values (or weaken egoistic or hedonic values), or that increase problem awareness, outcome efficacy, or personal norms on pro-environmental behaviour. | No overview article<br>summarizing studies on Norm<br>Activation Model / VBN<br>available yet                                                                                   |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental self-<br>identity theory                  | Explaining how people's sense of identity as an environmental person can lead them to act proenvironmentally.                 | <ul> <li>Biospheric values</li> <li>Past behaviour</li> <li>Environmental self-identity</li> </ul>                                                          | - | Understanding how environmental self-identity can develop based on biospheric values and past behaviour Modelling effects of interventions or societal developments that strengthen environmental self-identity by strengthen biospheric values or reminding people of past pro-environmental behaviour.                                                                                                                  | Vesely et al. (2021) Climate change action as a project of identity: Eight meta-analyses. <i>Global Environmental Change</i> , 70, 102322.                                      |
| Focus Theory of<br>Normative Conduct                    | Explaining how social norms influence behaviour                                                                               | - Descriptive norms - Injunctive norms                                                                                                                      | - | Understanding how people's environmental behaviour depends on the perceived behaviour and expectations of other people Modelling effects of interventions or societal developments that change (perceptions of) descriptive and injunctive norms.                                                                                                                                                                         | Farrow et al. (2017). Social norms and pro-environmental behaviour: A review of the evidence. <i>Ecological economics</i> , 140, 1-13.                                          |
| Social Identity<br>Approach                             | Explaining how individual's beliefs and behaviours are influenced by group membership                                         | <ul> <li>Perceived         group goals and         values</li> <li>Collective         efficacy</li> <li>Group         identification**</li> </ul>           | - | Understanding how people's affiliation with certain groups (e.g., political affiliation) can affect proenvironmental behaviour via perceived group goals and values and collective efficacy  Modelling effects of interventions or societal developments that change group goals and values or                                                                                                                            | Fielding & Hornsey (2016). A Social Identity Analysis of Climate Change and Environmental Attitudes and Behaviors: Insights and Opportunities. Frontiers in Psychology, 7, 121. |

|              |                                                                                       |                                                                     |   | collective efficacy in order to promote pro-<br>environmental behaviour.                                                                                                              |                                                                                                   |
|--------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Habit Theory | Explain how<br>behaviour and<br>behaviour change<br>is affected by<br>people's habits | <ul><li>Habit strength</li><li>Contextual cues</li><li>**</li></ul> | - | Understanding how habits affect changes in environmental behaviours  Modelling the effects of behaviour change interventions on behaviour change, taking into account habit strength. | No overview article summarizing studies on habit theory and environmental behaviour available yet |

<sup>\*</sup> intentions form part of the TPB framework, but are not mentioned as a separate motivation in the MAP-framework, as it is not a motivation in itself, but rather is reflective of the fact that the TPB framework by definition focusses on planned actions that are preceded by an intention.

<sup>\*</sup> Group identification and contextual cues serve as moderating factors within their respecting theories, and are not direct predictors of behaviour (see Figure 1). They are therefore not discussed as motivating factors within the MAP-framework, but are listed here to give a representative overview of each theory.

#### References

- Abrams, D., & Hogg, M. A. (1990). An introduction to the social identity approach. In *Social identity theory: Constructive and critical advances*. Springer-Verlag Publishing.
- Ajzen, I. (1991). The Theory of Planned Behaviour. *Organizational Behaviour and Human Decision Processes*, 50, 179-211.
- Ajzen, I. (2006). Perceived Behavioral Control, Self-Efficacy, Locus of Control, and the Theory of Planned Behavior1. *Journal of Applied Social Psychology*, *32*(4), 665-683. https://doi.org/10.1111/j.1559-1816.2002.tb00236.x
- APA. (2018a). *APA Dictionary: metatheory*. American Psychological Association. Retrieved 04-02-2024 from <a href="https://dictionary.apa.org/metatheory">https://dictionary.apa.org/metatheory</a>
- APA. (2018b). *APA Dictionary: motivation*. American Psychological Association. Retrieved 04-02-2024 from <a href="https://dictionary.apa.org/motivation">https://dictionary.apa.org/motivation</a>
- Bamberg, S., & Möser, G. (2007). Twenty years after Hines, Hungerford, and Tomera: A new metaanalysis of psycho-social determinants of pro-environmental behaviour. *Journal of Environmental Psychology*, 27(1), 14-25. https://doi.org/10.1016/j.jenvp.2006.12.002
- Beckage, B., Gross, L. J., Lacasse, K., Carr, E., Metcalf, S. S., Winter, J. M.,...Hoffman, F. M. (2018). Linking models of human behaviour and climate alters projected climate change. *Nature Climate Change*, 8(1), 79-84. <a href="https://doi.org/10.1038/s41558-017-0031-7">https://doi.org/10.1038/s41558-017-0031-7</a>
- Beckage, B., Lacasse, K., Winter, J. M., Gross, L. J., Fefferman, N., Hoffman, F. M.,...Kinzig, A. (2021). The Earth has humans, so why don't our climate models?
- Bockarjova, M., & Steg, L. (2014). Can Protection Motivation Theory predict pro-environmental behavior? Explaining the adoption of electric vehicles in the Netherlands. *Global Environmental Change*, 28, 276-288. https://doi.org/10.1016/j.gloenvcha.2014.06.010
- Bringmann, L. F., Elmer, T., & Eronen, M. I. (2022). Back to Basics: The Importance of Conceptual Clarification in Psychological Science. *Current Directions in Psychological Science*, *31*(4), 340-346. <a href="https://doi.org/10.1177/09637214221096485">https://doi.org/10.1177/09637214221096485</a>
- Brosch, T. (2021). Affect and emotions as drivers of climate change perception and action: a review. *Current Opinion in Behavioral Sciences*, 42, 15-21.

  <a href="https://doi.org/10.1016/j.cobeha.2021.02.001">https://doi.org/10.1016/j.cobeha.2021.02.001</a>
- Brosch, T., & Steg, L. (2021). Leveraging emotion for sustainable action. *One Earth*, 4(12), 1693-1703. <a href="https://doi.org/10.1016/j.oneear.2021.11.006">https://doi.org/10.1016/j.oneear.2021.11.006</a>
- Bryan, C. J., Tipton, E., & Yeager, D. S. (2021). Behavioural science is unlikely to change the world without a heterogeneity revolution. *Nat Hum Behav*, *5*(8), 980-989. https://doi.org/10.1038/s41562-021-01143-3
- Bury, T. M., Bauch, C. T., & Anand, M. (2019). Charting pathways to climate change mitigation in a coupled socio-climate model. *PLoS Comput Biol*, *15*(6), e1007000. https://doi.org/10.1371/journal.pcbi.1007000
- Cap, S., de Koning, A., Tukker, A., & Scherer, L. (2024). (In)Sufficiency of industrial decarbonization to reduce household carbon footprints to 1.5°C-compatible levels. *Sustainable Production and Consumption*, 45, 216-227. <a href="https://doi.org/10.1016/j.spc.2023.12.031">https://doi.org/10.1016/j.spc.2023.12.031</a>
- Cialdini, R. B., Reno, R. R., & Kallgren, C. A. (1990). A focus theory of normative conduct: Recycling the concept of norms to reduce littering in public places. *Journal of Personality and Social Psychology*, 58(6), 1015-1026.
- Cone, J. D., & Hayes, S. C. (1984). *Environmental Problems/Behavioural Solutions*. Cambridge University Press.
- Creutzig, F., Niamir, L., Bai, X., Callaghan, M., Cullen, J., Díaz-José, J.,...Ürge-Vorsatz, D. (2021). Demand-side solutions to climate change mitigation consistent with high levels of well-being. *Nature Climate Change*, *12*(1), 36-46. <a href="https://doi.org/10.1038/s41558-021-01219-y">https://doi.org/10.1038/s41558-021-01219-y</a>
- Creutzig, F., Roy, J., & Minx, J. (2024). Demand-side climate change mitigation: where do we stand and where do we go? *Environmental Research Letters*, 19(4). <a href="https://doi.org/10.1088/1748-9326/ad33d3">https://doi.org/10.1088/1748-9326/ad33d3</a>

- Davis, R., Campbell, R., Hildon, Z., Hobbs, L., & Michie, S. (2015). Theories of behaviour and behaviour change across the social and behavioural sciences: a scoping review. *Health Psychol Rev*, *9*(3), 323-344. <a href="https://doi.org/10.1080/17437199.2014.941722">https://doi.org/10.1080/17437199.2014.941722</a>
- De Cian, E., Dasgupta, S., Hof, A. F., van Sluisveld, M. A. E., Köhler, J., Pfluger, B., & van Vuuren, D. P. (2020). Actors, decision-making, and institutions in quantitative system modelling. *Technological Forecasting and Social Change*, 151. https://doi.org/10.1016/j.techfore.2018.10.004
- Dietz, T. (2023). Decisions for Sustainability: Facts and Values. Cambridge University Press.
- Duckworth, A. L., & Gross, J. J. (2020). Behavior Change. *Organ Behav Hum Decis Process*, 161(Suppl), 39-49. <a href="https://doi.org/10.1016/j.obhdp.2020.09.002">https://doi.org/10.1016/j.obhdp.2020.09.002</a>
- Dziejarski, B., Krzyżyńska, R., & Andersson, K. (2023). Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. *Fuel*, *342*. https://doi.org/10.1016/j.fuel.2023.127776
- Edwards, J. R., & Berry, J. W. (2010). The Presence of Something or the Absence of Nothing: Increasing Theoretical Precision in Management Research. *Organizational Research Methods*, 13(4), 668-689. https://doi.org/10.1177/1094428110380467
- Eker, S., Reese, G., & Obersteiner, M. (2019). Modelling the drivers of a widespread shift to sustainable diets. *Nature Sustainability*, 2(8), 725-735. <a href="https://doi.org/10.1038/s41893-019-0331-1">https://doi.org/10.1038/s41893-019-0331-1</a>
- Elsawah, S., Filatova, T., Jakeman, A. J., Kettner, A. J., Zellner, M. L., Athanasiadis, I. N.,...Lade, S. J. (2020). Eight grand challenges in socio-environmental systems modeling. *Socio-Environmental Systems Modelling*, 2. <a href="https://doi.org/10.18174/sesmo.2020a16226">https://doi.org/10.18174/sesmo.2020a16226</a>
- Festinger, L. (1957). A theory of cognitive dissonance. Stanford University Press.
- Fielding, K. S., & Hornsey, M. J. (2016). A Social Identity Analysis of Climate Change and Environmental Attitudes and Behaviors: Insights and Opportunities. *Front Psychol*, 7, 121. https://doi.org/10.3389/fpsyg.2016.00121
- Flake, J. K., & Fried, E. I. (2020). Measurement Schmeasurement: Questionable Measurement Practices and How to Avoid Them. *Advances in Methods and Practices in Psychological Science*, *3*(4), 456-465. https://doi.org/10.1177/2515245920952393
- Fritsche, I., Barth, M., Jugert, P., & Masson, T. (2017). A social identity model of pro-environmental action (SIMPEA). *Psychological Review*, *125*(2), 245-269.
- Gardner, B., & Abraham, C. (2008). Psychological correlates of car use: A meta-analysis. *Transportation Research Part F: Traffic Psychology and Behaviour*, 11(4), 300-311. <a href="https://doi.org/10.1016/j.trf.2008.01.004">https://doi.org/10.1016/j.trf.2008.01.004</a>
- Geiger, J. L., Steg, L., van der Werff, E., & Ünal, A. B. (2019). A meta-analysis of factors related to recycling. *Journal of Environmental Psychology*, *64*, 78-97. https://doi.org/10.1016/j.jenvp.2019.05.004
- Gerber Machado, P., Rodrigues Teixeira, A. C., Moutinho dos Santos, E., & Mouette, D. (2023). Electric vehicles adoption: A systematic review (2016–2020). *WIREs Energy and Environment*, 12(5). https://doi.org/10.1002/wene.477
- Gifford, R., & Nilsson, A. (2014). Personal and social factors that influence pro-environmental concern and behaviour: a review. *Int J Psychol*, 49(3), 141-157. https://doi.org/10.1002/ijop.12034
- Gifford, R., Steg, L., & Reser, J. P. (2011). Environmental psychology. In P. R. Martin, F. M. Cheung, M. C. Knowles, M. Kyrios, L. Littlefield, J. B. Overmier, & J. M. Priet (Eds.), *IAAP handbook of applied psychology* (pp. 440-470). Wiley Blackwell.
- Graves, C., & Roelich, K. (2021). Psychological Barriers to Pro-Environmental Behaviour Change: A Review of Meat Consumption Behaviours. *Sustainability*, *13*(21). https://doi.org/10.3390/su132111582
- Gregersen, T., Doran, R., Bohm, G., & Poortinga, W. (2021). Outcome expectancies moderate the association between worry about climate change and personal energy-saving behaviors. *PLoS One*, *16*(5), e0252105. <a href="https://doi.org/10.1371/journal.pone.0252105">https://doi.org/10.1371/journal.pone.0252105</a>
- Grubler, A., Wilson, C., Bento, N., Boza-Kiss, B., Krey, V., McCollum, D. L.,...Valin, H. (2018). A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals

- without negative emission technologies. *Nature Energy*, *3*(6), 515-527. https://doi.org/10.1038/s41560-018-0172-6
- Hagger, M. S., Cheung, M. W., Ajzen, I., & Hamilton, K. (2022). Perceived behavioral control moderating effects in the theory of planned behavior: A meta-analysis. *Health Psychol*, 41(2), 155-167. <a href="https://doi.org/10.1037/hea0001153">https://doi.org/10.1037/hea0001153</a>
- Hagger, M. S., Luszczynska, A., de Wit, J., Benyamini, Y., Burkert, S., Chamberland, P. E.,...Gollwitzer, P. M. (2016). Implementation intention and planning interventions in Health Psychology: Recommendations from the Synergy Expert Group for research and practice. *Psychol Health*, *31*(7), 814-839. <a href="https://doi.org/10.1080/08870446.2016.1146719">https://doi.org/10.1080/08870446.2016.1146719</a>
- Hampton, S., & Whitmarsh, L. (2023). Choices for climate action: A review of the multiple roles individuals play. *One Earth*, 6(9), 1157-1172. https://doi.org/10.1016/j.oneear.2023.08.006
- Higgs, S., & Thomas, J. (2016). Social influences on eating. *Current Opinion in Behavioral Sciences*, 9, 1-6. https://doi.org/10.1016/j.cobeha.2015.10.005
- IPCC. (2018). Global Warming of 1.5°C.An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and
- related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,
- sustainable development, and efforts to eradicate poverty. Cambridge University Press.
- IPCC. (2022). Chapter 6: Energy Systems. In *Climate Change 2022: Mitigation of Climate Change*. Cambridge University Press.
- IPCC. (2023). Summary for Policymakers. In C. W. Team;, H. Lee, & J. Romero (Eds.), *Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change* (pp. 1-34). IPCC.
- Ivanova, D., Barrett, J., Wiedenhofer, D., Macura, B., Callaghan, M., & Creutzig, F. (2020). Quantifying the potential for climate change mitigation of consumption options. *Environmental Research Letters*, 15(9). https://doi.org/10.1088/1748-9326/ab8589
- Klöckner, C. A. (2013). A comprehensive model of the psychology of environmental behaviour—A meta-analysis. *Global Environmental Change*, 23(5), 1028-1038. https://doi.org/10.1016/j.gloenvcha.2013.05.014
- Klöckner, C. A. (2015). Decision Models What Psychological Theories Teach Us about People's Behaviour. In *The Psychology of Pro-Environmental Communication* (pp. 69-102). Palgrave Macmillan
- Klöckner, C. A., & Verplanken, B. (2019). Yesterday's Habits Preventing Change for Tomorrow? About the Influence of Automaticity on Environmental Behaviour. In L. Steg & J. I. M. de Groot (Eds.), *Environmental Psychology: An Introduction*. Wiley.
- Koger, S. M., & Du Nann Winter, D. (2010). *The psychology of environmental problems: Psychology for sustainability*. Psychology Press.
- Koide, R., Lettenmeier, M., Akenji, L., Toivio, V., Amellina, A., Khodke, A.,...Kojima, S. (2021). Lifestyle carbon footprints and changes in lifestyles to limit global warming to 1.5 °C, and ways forward for related research. *Sustainability Science*, *16*(6), 2087-2099. <a href="https://doi.org/10.1007/s11625-021-01018-6">https://doi.org/10.1007/s11625-021-01018-6</a>
- Kothe, E. J., Ling, M., North, M., Klas, A., Mullan, B. A., & Novoradovskaya, L. (2020). Protection motivation theory and pro-environmental behaviour: A systematic mapping review. *Australian Journal of Psychology*, 71(4), 411-432. https://doi.org/10.1111/ajpy.12271
- Kraft, P., Rise, J., Sutton, S., & Roysamb, E. (2005). Perceived difficulty in the theory of planned behaviour: perceived behavioural control or affective attitude? *Br J Soc Psychol*, 44(Pt 3), 479-496. <a href="https://doi.org/10.1348/014466604X17533">https://doi.org/10.1348/014466604X17533</a>
- Kriegler, E., Luderer, G., Bauer, N., Baumstark, L., Fujimori, S., Popp, A.,...van Vuuren, D. P. (2018). Pathways limiting warming to 1.5 degrees C: a tale of turning around in no time? *Philos Trans A Math Phys Eng Sci*, 376(2119). https://doi.org/10.1098/rsta.2016.0457
- Lally, P., van Jaarsveld, C. H. M., Potts, H. W. W., & Wardle, J. (2009). How are habits formed: Modelling habit formation in the real world. *European Journal of Social Psychology*, 40(6), 998-1009. <a href="https://doi.org/10.1002/ejsp.674">https://doi.org/10.1002/ejsp.674</a>

- Langbroek, J. H., Franklin, J. P., & Susilo, Y. O. (2017). Changing towards electric vehicle use in Greater Stockholm. *EJTIR*, *17*(3), 306-329.
- Lilienfeld, S. O., & Strother, A. N. (2020). Psychological measurement and the replication crisis: Four sacred cows. *Canadian Psychology / Psychologie canadienne*, *61*(4), 281-288. https://doi.org/10.1037/cap0000236
- Linden, A. H., & Honekopp, J. (2021). Heterogeneity of Research Results: A New Perspective From Which to Assess and Promote Progress in Psychological Science. *Perspect Psychol Sci*, 16(2), 358-376. <a href="https://doi.org/10.1177/1745691620964193">https://doi.org/10.1177/1745691620964193</a>
- Linder, N., Giusti, M., Samuelsson, K., & Barthel, S. (2022). Pro-environmental habits: An underexplored research agenda in sustainability science. *Ambio*, *51*(3), 546-556. https://doi.org/10.1007/s13280-021-01619-6
- McCollum, D. L., Wilson, C., Pettifor, H., Ramea, K., Krey, V., Riahi, K.,...Fujisawa, S. (2017). Improving the behavioral realism of global integrated assessment models: An application to consumers' vehicle choices. *Transportation Research Part D: Transport and Environment*, 55, 322-342. https://doi.org/10.1016/j.trd.2016.04.003
- Michie, S., Johnston, M., Abraham, C., Lawton, R., Parker, D., Walker, A., & Psychological Theory, G. (2005). Making psychological theory useful for implementing evidence based practice: a consensus approach. *Qual Saf Health Care*, *14*(1), 26-33. https://doi.org/10.1136/qshc.2004.011155
- Milne, S., Sheeran, P., & Orbell, S. (2000). Prediction and Intervention in Health-Related Behavior: A Meta-Analytic Review of Protection Motivation Theory. *Journal of Applied Social Psychology*, 30(1), 106-143. <a href="https://doi.org/10.1111/j.1559-1816.2000.tb02308.x">https://doi.org/10.1111/j.1559-1816.2000.tb02308.x</a>
- Moore, F. C., Lacasse, K., Mach, K. J., Shin, Y. A., Gross, L. J., & Beckage, B. (2022). Determinants of emissions pathways in the coupled climate-social system. *Nature*, 603(7899), 103-111. https://doi.org/10.1038/s41586-022-04423-8
- Muelder, H., & Filatova, T. (2018). One Theory Many Formalizations: Testing Different Code Implementations of the Theory of Planned Behaviour in Energy Agent-Based Models. *Journal of Artificial Societies and Social Simulation*, 21(4). <a href="https://doi.org/10.18564/jasss.3855">https://doi.org/10.18564/jasss.3855</a>
- Mummendey, A., Kessler, T., Klink, A., & Mielke, R. (1999). Strategies to cope with negative social identity: Predictions by social identity theory and relative deprivation theory. *Journal of Personality and Social Psychology*, 76(2), 229-246.
- Mundaca, L., Ürge-Vorsatz, D., & Wilson, C. (2018). Demand-side approaches for limiting global warming to 1.5 °C. *Energy Efficiency*, *12*(2), 343-362. <a href="https://doi.org/10.1007/s12053-018-9722-9">https://doi.org/10.1007/s12053-018-9722-9</a>
- Müller-Hansen, F., Schlüter, M., Mäs, M., Donges, J. F., Kolb, J. J., Thonicke, K., & Heitzig, J. (2017). Towards representing human behavior and decision making in Earth system models an overview of techniques and approaches. *Earth System Dynamics*, 8(4), 977-1007. https://doi.org/10.5194/esd-8-977-2017
- Napp, T. A., Few, S., Sood, A., Bernie, D., Hawkes, A., & Gambhir, A. (2019). The role of advanced demand-sector technologies and energy demand reduction in achieving ambitious carbon budgets. *Applied Energy*, 238, 351-367. <a href="https://doi.org/10.1016/j.apenergy.2019.01.033">https://doi.org/10.1016/j.apenergy.2019.01.033</a>
- Ogden, J. (2019). Health psychology. McGraw-Hill.
- Onwezen, M. C., Antonides, G., & Bartels, J. (2013). The Norm Activation Model: An exploration of the functions of anticipated pride and guilt in pro-environmental behaviour. *Journal of Economic Psychology*, *39*, 141-153. <a href="https://doi.org/10.1016/j.joep.2013.07.005">https://doi.org/10.1016/j.joep.2013.07.005</a>
- Orbell, S., & Verplanken, B. (2020). Changing Behavior Using Habit Theory. In *The Handbook of Behavior Change* (pp. 178-192). <a href="https://doi.org/10.1017/9781108677318.013">https://doi.org/10.1017/9781108677318.013</a>
- Otto, I. M., Wiedermann, M., Cremades, R., Donges, J. F., Auer, C., & Lucht, W. (2020). Human agency in the Anthropocene. *Ecological Economics*, *167*. https://doi.org/10.1016/j.ecolecon.2019.106463
- Packard, C. D., & Schultz, P. W. (2023). Emotions as the Enforcers of Norms. *Emotion Review*, *15*(4), 279-283. <a href="https://doi.org/10.1177/17540739231194315">https://doi.org/10.1177/17540739231194315</a>
- Pamidimukkala, A., Kermanshachi, S., Rosenberger, J. M., & Hladik, G. (2024). Barriers and Motivators to the Adoption of Electric Vehicles: A Global Review. *Green Energy and Intelligent Transportation*. <a href="https://doi.org/10.1016/j.geits.2024.100153">https://doi.org/10.1016/j.geits.2024.100153</a>

- Pettifor, H., Mastrucci, A., Wilson, C., van Ruijven, B., Agnew, M., & Gallic, T. L. (2023). Endogenous simulation of low-carbon lifestyle change in global climate mitigation pathways. *Environmental Research Letters*, *19*(1). https://doi.org/10.1088/1748-9326/acf6d6
- Poile, C., & Safayeni, F. (2016). Using Computational Modeling for Building Theory: A Double Edged Sword. *Journal of Artificial Societies and Social Simulation*, 19(3). https://doi.org/10.18564/jasss.3137
- Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S.,...Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. *Global Environmental Change*, 42, 153-168. <a href="https://doi.org/10.1016/j.gloenvcha.2016.05.009">https://doi.org/10.1016/j.gloenvcha.2016.05.009</a>
- Roe, R. A. (2008). Time in Applied Psychology. *European Psychologist*, *13*(1), 37-52. https://doi.org/10.1027/1016-9040.13.1.37
- Rogers, R. W. (1975). A Protection Motivation Theory of Fear Appeals and Attitude Change. *Journal of Psychology*, 91, 93-114.
- Rogers, R. W. (1983). Cognitive and Physiological Processes in Fear Appeals and Attitude Change: A Revised Theory of Protection Motivation. In B. L. Cacioppo & L. L. Petty (Eds.), *Social Psychophysiology: A sourcebook* (pp. 153-176). Guildford Press.
- Samadi, S., Gröne, M.-C., Schneidewind, U., Luhmann, H.-J., Venjakob, J., & Best, B. (2017). Sufficiency in energy scenario studies: Taking the potential benefits of lifestyle changes into account. *Technological Forecasting and Social Change*, *124*, 126-134. https://doi.org/10.1016/j.techfore.2016.09.013
- Saujot, M., Le Gallic, T., & Waisman, H. (2020). Lifestyle changes in mitigation pathways: policy and scientific insights. *Environmental Research Letters*, 16(1). <a href="https://doi.org/10.1088/1748-9326/abd0a9">https://doi.org/10.1088/1748-9326/abd0a9</a>
- Schlosser, M. (2015). Agency. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy.
- Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W.,... Wijermans, N. (2017). A framework for mapping and comparing behavioural theories in models of social-ecological systems. *Ecological Economics*, 131, 21-35. <a href="https://doi.org/10.1016/j.ecolecon.2016.08.008">https://doi.org/10.1016/j.ecolecon.2016.08.008</a>
- Schneider, C. R., Zaval, L., Weber, E. U., & Markowitz, E. M. (2017). The influence of anticipated pride and guilt on pro-environmental decision making. *PLoS One*, *12*(11), e0188781. https://doi.org/10.1371/journal.pone.0188781
- Schwartz, S. H. (1977). Normative influences on altruism. In L. Berkowitz (Ed.), *Advances in experimental social psychology* (Vol. 10, pp. 221-278). Academic Press.
- Schwarz, N., Dressler, G., Frank, K., Jager, W., Janssen, M., Müller, B.,...Groeneveld, J. (2020). Formalising theories of human decision-making for agent-based modelling of social-ecological systems: practical lessons learned and ways forward. *Socio-Environmental Systems Modelling*, 2. https://doi.org/10.18174/sesmo.2020a16340
- Scott, B. A., Amel, E. L., Koger, S. M., & Manning, C. M. (2021). *Psychology for Sustainability*. Routlegde.
- Shipley, N. J., & van Riper, C. J. (2022). Pride and guilt predict pro-environmental behavior: A meta-analysis of correlational and experimental evidence. *Journal of Environmental Psychology*, 79. <a href="https://doi.org/10.1016/j.jenvp.2021.101753">https://doi.org/10.1016/j.jenvp.2021.101753</a>
- Steg, L. (2023). Psychology of Climate Change. *Annu Rev Psychol*, 74, 391-421. https://doi.org/10.1146/annurev-psych-032720-042905
- Steg, L., Bolderdijk, J. W., Keizer, K., & Perlaviciute, G. (2014). An Integrated Framework for Encouraging Pro-environmental Behaviour: The role of values, situational factors and goals. *Journal of Environmental Psychology*, 38, 104-115. <a href="https://doi.org/10.1016/j.jenvp.2014.01.002">https://doi.org/10.1016/j.jenvp.2014.01.002</a>
- Steg, L., & de Groot, J. (2010). Explaining prosocial intentions: testing causal relationships in the norm activation model. *British Journal of Social Psychology*, 49(Pt 4), 725-743. https://doi.org/10.1348/014466609X477745
- Steg, L., & de Groot, J. I. M. (2019). Environmental Psychology: An Introduction. Wiley.
- Steg, L., & Nordlund, A. (2018). Theories to Explain Environmental Behaviour. In L. Steg & J. I. M. de Groot (Eds.), *Environmental Psychology: An Introduction* (pp. 217-227). Wiley.

- Steg, L., & Vlek, C. (2009). Encouraging pro-environmental behaviour: An integrative review and research agenda. *Journal of Environmental Psychology*, 29(3), 309-317. https://doi.org/10.1016/j.jenvp.2008.10.004
- Stern, P. C. (2000). Toward a Coherent Theory of Environmentally Significant Behavior. *Journal of Social Issues*, *56*(3), 407-424.
- Stokols, D. (1978). Environmental Psychology. Annual Review of Psychology, 29, 253-295.
- Tajfel, H., & Turner, J. C. (1986). The social identity theory of intergroup behaviour. In S. Worchel & W. G. Austin (Eds.), *Psychology of Intergroup Relations* (pp. 7-24). Nelson-Hall.
- Triandis, H. C. (1977). *Interpersonal Behaviour*. Brooks/Cole Publishing Company.
- Trutnevyte, E., Hirt, L. F., Bauer, N., Cherp, A., Hawkes, A., Edelenbosch, O. Y.,...van Vuuren, D. P. (2019). Societal Transformations in Models for Energy and Climate Policy: The Ambitious Next Step. *One Earth*, 1(4), 423-433. https://doi.org/10.1016/j.oneear.2019.12.002
- Turuga, R. M. R., Howart, R. B., & Borsuk, M. E. (2010). Pro-environmental behavior: Rational chocie meets moral motivation. *Annals of the New York Academy of Sciences*, 1185, 211-224.
- van den Berg, N. J., Hof, A. F., Akenji, L., Edelenbosch, O. Y., van Sluisveld, M. A. E., Timmer, V. J., & van Vuuren, D. P. (2019). Improved modelling of lifestyle changes in Integrated Assessment Models: Cross-disciplinary insights from methodologies and theories. *Energy Strategy Reviews*, 26. <a href="https://doi.org/10.1016/j.esr.2019.100420">https://doi.org/10.1016/j.esr.2019.100420</a>
- van der Linden, S. (2017). Determinants and Measurement of Climate Change Risk Perception, Worry, and Concern. In S. van der Linden (Ed.), *Oxford Research Encyclopedia of Climate Science*. Oxford University Press.
- Van der Werff, E., Steg, L., & Keizer, K. (2013). I Am What I Am, by Looking Past the Present. *Environment and Behavior*, 46(5), 626-657. https://doi.org/10.1177/0013916512475209
- van Sluisveld, M. A. E., Hof, A. F., Carrara, S., Geels, F. W., Nilsson, M., Rogge, K.,...van Vuuren, D. P. (2020). Aligning integrated assessment modelling with socio-technical transition insights: An application to low-carbon energy scenario analysis in Europe. *Technological Forecasting and Social Change*, 151. https://doi.org/10.1016/j.techfore.2017.10.024
- van Valkengoed, A. M., Abrahamse, W., & Steg, L. (2022). To select effective interventions for proenvironmental behaviour change, we need to consider determinants of behaviour. *Nat Hum Behav*. https://doi.org/10.1038/s41562-022-01473-w
- van Valkengoed, A. M., & Steg, L. (2019). Meta-analyses of factors motivating climate change adaptation behaviour. *Nature Climate Change*, 9(2), 158-163. <a href="https://doi.org/10.1038/s41558-018-0371-y">https://doi.org/10.1038/s41558-018-0371-y</a>
- van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., van den Berg, M., Bijl, D. L., de Boer, H. S.,...van Sluisveld, M. A. E. (2018). Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. *Nature Climate Change*, 8(5), 391-397. https://doi.org/10.1038/s41558-018-0119-8
- van Zomeren, M., Postmes, T., & Spears, R. (2008). Toward an integrative social identity model of collective action: a quantitative research synthesis of three socio-psychological perspectives. *Psychol Bull*, *134*(4), 504-535. <a href="https://doi.org/10.1037/0033-2909.134.4.504">https://doi.org/10.1037/0033-2909.134.4.504</a>
- Vancouver, J. B., Wang, M., & Li, X. (2018). Translating Informal Theories Into Formal Theories: The Case of the Dynamic Computational Model of the Integrated Model of Work Motivation. *Organizational Research Methods*, 23(2), 238-274. https://doi.org/10.1177/1094428118780308
- Weinstein, N. D. (1993). Testing four competing theories of health-protective behavior. *Health Psychology*, *12*(4), 324-333.
- White, K., Habib, R., & Hardisty, D. J. (2019). How to SHIFT Consumer Behaviors to be More Sustainable: A Literature Review and Guiding Framework. *Journal of Marketing*, 83(3), 22-49. https://doi.org/10.1177/0022242919825649
- Yuriev, A., Dahmen, M., Paillé, P., Boiral, O., & Guillaumie, L. (2020). Pro-environmental behaviors through the lens of the theory of planned behavior: A scoping review. *Resources*, *Conservation and Recycling*, 155. <a href="https://doi.org/10.1016/j.resconrec.2019.104660">https://doi.org/10.1016/j.resconrec.2019.104660</a>