Задача	1	2	3	4	5	6	Овщо
получени точки							
от максимално	10	20	20	20	20	20	110

Всички отговори трябва да бъдат добре обосновани. Всичко изучавано на лекции или давано на домашно може да се ползва наготово. Всичко друго трябва да се изведе или докаже подробно и прецизно.

Зад. 1 По колко начина Дядо Коледа може да раздаде 200 неразличими подаръци на 100 деца

- 5 т. а) без ограничения;
- 5 т. 6) с единственото ограничение всяко дете да получи поне един подарък?

 $\mathbf{3aд.}\ \mathbf{2}$ Нека $\mathfrak{n}\in\mathbb{N}$ и $\mathfrak{m}\in\mathbb{N}$. Докажете тъждеството

$$\binom{n+1}{m+1} = \sum_{k=m}^{n} \binom{k}{m}$$

по два начина.

- 5 т. **а)** Чрез развиване на лявата страна, използвайки наготово изучаваното на лекции тъждество $\binom{p}{q} = \binom{p-1}{q} + \binom{p-1}{q-1}$ за $p,q \in \mathbb{N}^+$.
- 15 т. б) Чрез комбинаторни разсъждения.

Упътване за решението с комбинаторни разсъждения: представете си n+1 на брой билета, номерирани с числата $0, 1, 2, \ldots, n-1, n$. Ако е така, какво брои лявата страна? Можете ли да измислите подходящо разбиване на това множество, така че и дясната страна да го брои, макар и по-детайлно?

- 1 т. Зад. 3 Формулирайте теоремата на Нютон, изучавана на лекции.
- 19 т. Докажете теоремата на Нютон по индукция. За базов случай вземете степенен показател единица.