# Statistics - Data Dispersion

## Range:

- Range will give how data is distributed from starting point to ending point.
- It is the difference between the highest and lowest values in a data set.
- **Example:** Consider, students with marks: 1 mark is starting point and 99 marks is ending point
- So, that the data is flowing from 1 mark to 99 marks
- 1 = Lowest, 99 = Highest
- So, Range = Highest Lowest = 99 1 = 98
- Drawback: It will not consider middle values
- So, to consider, middle values we use mean deviation

#### Mean Deviation:

- It measures the average of the differences between each data point and the mean of the data set.
- It provides an idea of how spread out the values are around the mean.
- Where  $x_i$  are the data points,  $\bar{x}$  is the mean, and N is the number of data points.
- **Example**: Assume that 1,2,3,4,5, are the values
- Mean value =  $\bar{x}$  = 3
- $x_1 = 1$ ,  $x_2 = 2$ ,  $x_3 = 3$ ,  $x_4 = 4$ ,  $x_5 = 5$

- The deviation of  $x_1$  from mean  $\bar{x} = (x_1 \bar{x}) = 1 3 = -2$
- The deviation of  $x_2$  from mean  $\bar{x} = (x_2 \bar{x}) = 2 3 = -1$
- The deviation of  $x_3$  from mean  $\bar{x} = (x_3 \bar{x}) = 3 3 = 0$
- The deviation of  $x_4$  from mean  $\bar{x} = (x_4 \bar{x}) = 4 3 = 1$
- The deviation of  $x_5$  from mean  $\bar{x} = (x_5 \bar{x}) = 5 3 = 2$
- -2:  $x_1$  has 2 units below from the mean point
- +2:  $x_5$  has 2 units ahead from the mean point

# • Mean deviation = $\frac{1}{N} \times \sum_{i=1}^{N} (x_i - \bar{x})$

- Mean deviation =  $\frac{1}{5} * (x_1 \bar{x}) + (x_2 \bar{x}) + (x_3 \bar{x}) + (x_4 \bar{x}) + (x_5 \bar{x})$
- Mean deviation =  $\frac{(1-3)+(2-3)+(3-3)+(4-3)+(5-3)}{5}$
- Mean deviation =  $0 \rightarrow$  which is not correct
- **Drawback**: We are seeing individual observations has deviations
- But when we add all the deviation it might becomes zero
- So, we have to use Absolute Mean Deviation

#### **Absolute Mean Deviation:**

- x becomes |x|
- The deviation of  $x_1$  from mean  $\bar{x} = |x_1 \bar{x}| = |1 3| = 2$
- The deviation of  $x_2$  from mean  $\bar{x} = |x_2 \bar{x}| = |2 3| = 1$
- The deviation of  $x_3$  from mean  $\bar{x}$  =  $|x_3 \bar{x}| = |3 3| = 0$
- The deviation of  $x_4$  from mean  $\bar{x}$  =  $|x_4 \bar{x}| = |4 3| = 1$
- The deviation of  $x_5$  from mean  $\bar{x} = |x_5 \bar{x}| = |5 3| = 2$
- Absolute Mean Deviation =  $\frac{1}{N} \times \sum_{i=1}^{N} |x_i \bar{x}|$
- Absolute Mean deviation =  $\frac{1}{5}*|x_1-\bar{x}|+|x_2-\bar{x}|+|x_3-\bar{x}|+|x_4-\bar{x}|+|x_5-\bar{x}|$
- Absolute Mean deviation =  $\frac{|1-3|+|2-3|+|3-3|+|4-3|+|5-3|}{5}$
- Absolute Mean deviation =  $\frac{6}{5}$

Table for  $|\bar{x}|$ :

| x  | $ \bar{x} $ |
|----|-------------|
| -3 | 3           |
| -2 | 2           |
| -1 | 1           |
| 0  | 0           |
| 1  | 1           |
| 2  | 2           |
| 3  | 3           |

Graph for  $|\bar{x}|$ :



 $|\bar{x}|$ : Power = 1  $--\rightarrow$  means it is a stright line == Linear

### **Key Points**:

- $|\bar{x}|$  graph is not continuous at point 0
- It is stopping at 0
- Any math equation fails here because it is non continuous
- If you take the differentiation of  $|\bar{x}|=\frac{x}{|\bar{x}|}$ , at x=0
- It is called indeterminant form (Not defined)

### Variance:

• 
$$x becomes |x^2|$$

• The deviation of 
$$x_1$$
 from mean  $\bar{x} = (x_1 - \bar{x})^2 = (1 - 3)^2 = 4$ 

• The deviation of 
$$x_2$$
 from mean  $\bar{x} = (x_2 - \bar{x})^2 = (2 - 3)^2 = 1$ 

• The deviation of 
$$x_3$$
 from mean  $\bar{x} = (x_3 - \bar{x})^2 = (3 - 3)^2 = 0$ 

• The deviation of 
$$x_4$$
 from mean  $\bar{x} = (x_4 - \bar{x})^2 = (4 - 3)^2 = 1$ 

• The deviation of 
$$x_5$$
 from mean  $\bar{x} = (x_5 - \bar{x})^2 = (5 - 3)^2 = 4$ 

• Variance=
$$\frac{1}{5}*(x_1-\bar{x})^2+(x_2-\bar{x})^2+(x_3-\bar{x})^2+(x_4-\bar{x})^2+(x_5-\bar{x})^2$$

• Variance= 
$$\frac{(1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2}{5}$$

• Suppose N numbers are there,

• Variance = 
$$=\frac{1}{N} \times \sum_{i=1}^{N} (x_i - \overline{x})^2$$

• Table for  $x^2$ :

| x  | x <sup>2</sup> |
|----|----------------|
| -3 | 9              |
| -2 | 4              |
| -1 | 1              |
| 0  | 0              |
| 1  | 1              |
| 2  | 4              |
| 3  | 9              |

### Graph for $x^2$ :



 $x^2$ : Power = 2 - --- means it is not a stright line, it is a parabola == Non - Linear

#### **Drawback**:

For example,

| Distance                 | $(x_i - \bar{x})$ | $(x_i - \bar{x})^2$ |
|--------------------------|-------------------|---------------------|
| 1km                      | 1 – 3 = 2         | $2^2 = 4 km^2$      |
| 2km                      | 2-3=1             | $1^2 = 1 km^2$      |
| 3km                      | 3 – 3 = 0         | $0^2 = 0 \ km^2$    |
| 4km                      | 4 – 3 = 1         | $1^2 = 1 km^2$      |
| 5km                      | 5 – 3 = 2         | $2^2 = 4 km^2$      |
| Average = $3km(\bar{x})$ |                   | $= 10km^2$          |

• Variance= 
$$\frac{(1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2}{5}$$

- Variance =  $\frac{10}{5}$
- Variance =  $2km^2$
- In above calculation, the Variance =  $2km^2$
- It is not only changing the values but also it is changing the units into square terms
- We will not able to do proper interpretation

#### Standard Deviation:

- Denoted with 'σ'
- Standard Deviation =  $\sigma = \sqrt{Variance}$

• Standard Deviation = 
$$\sigma = \sqrt{\frac{1}{N} * \sum_{i=1}^{N} (x_i - \overline{x})^2}$$

- Standard Deviation means how much a datapoint is deviated from the mean point.
- We have to avoid negative values
- From previous problem calculation, Variance = 2
- Standard Deviation =  $\sigma = \sqrt{Variance}$
- Standard Deviation =  $\sigma = \sqrt{2}$
- Standard Deviation =  $\sigma = 1.414$
- Standard Deviation is always less than Variance

# **Important Formulas:**

- 1) Range = Highest Lowest
- 2) Mean deviation =  $\frac{1}{N} \times \sum_{i=1}^{N} (x_i \bar{x})$
- 3) Absolute Mean Deviation =  $\frac{1}{N} \times \sum_{i=1}^{N} |x_i \bar{x}|$
- 4) Variance =  $=\frac{1}{N} * \sum_{i=1}^{N} (x_i \bar{x})^2$
- 5) Standard Deviation =  $\sigma = \sqrt{\frac{1}{N} * \sum_{i=1}^{N} (x_i \overline{x})^2}$