

高知工科大学 経済・マネジメント学群

計量経済学応用

2. セレクションバイアス

た内 勇生

yanai.yuki@kochi-tech.ac.jp

このトピックの目標

- セレクションバイアス (selection bias、選択バイアス)を理解する
 - セレクションバイアスが生じるメカニズムを理解する
 - ▶ セレクションバイアスがあると困る理由を理解する
 - セレクションバイアスのフォーマルな定義(数式による 表現)を理解する

調査・観察データによる

因果推論

単純比較の失敗

例:病院は健康にいいか?

確認したい因果関係:「病院に行く」 → 「健康になる」

▶ 原因: 病院に行くこと

▶ 結果: 健康状態

- データを使って確認したい
 - トとりあえず、単純に考える
 - 「病院に行った人」と「病院に行かなかった人」 の健康状態を比較しよう!

データを使った単純な比較

「病院に行ったこと(通院)」と「健康状態」の関係

病院に行った?	サンプルサイズ (人数)	健康状態 (1が最悪, 5が最高)	標準誤差
行った	7,774	3.21	0.014
行かなかった	90,049	3.93	0.003

(出典: Angrist and Pischke 2009: p.13)

データからわかる事実:病院に**行かなかった**人のほうが健康

病院に行くと、健康を害する???

- データによって明らかになったこと: 病院に行かなった人のほうが健康
- 疑問:これは因果関係なのか?
 - ▶ 「病院に行くと、健康状態は悪化する」と言えるのか?
- 病院が健康に悪い理由を考えてみる:病院に行くと、
 - ▶ 他の人から病気をうつされる
 - ► 病院特有の危険にさらされる (例: X線で被曝する, 副作用のある薬を投与される)
 - ▶ 医療ミスの被害者になる
 - 病人やけが人をたくさん見て、憂鬱になる
 - ► 医療費のせいで食費が減り、栄養失調になる etc.

誰が病院に行くか

- 誰(どんな人)が病院に行くかを考えなくていいのか?
 - ▶ 健康な人:そもそも(あまり)病院に行かない!
 - ▶ 病院に行くのは、比較的健康状態が悪い人では?
- 原因である「病院に行くこと」は
 - ▶ 個人が選べる:セルフセレクション(自己選択)
 - 元の健康状態が悪い人ほど、「病院に行く」を選ぶ
 - 元の健康状態が良い人ほど、「病院に行かない」を選ぶ

セルフセレクション (自己選択)

単純な比較

セルフセレクション (自己選択)

単純比較の差は因果効果とは限らない!

- ・調査・観察データを単純比較しても、因果効果はわから ない
 - ▶「病院に行った人のほうが不健康である」という事実は、「病院に行くと、不健康になる」という因果関係を意味しない
 - 理由:セレクションバイアスがあるから!
 - セルフセレクション(自己選択)は、サンプルセレクションの一種 (未石 2015 [予習課題] を参照)

セレクションバイアス (selection bias)

- 因果推論の敵
- ・簡単に言うと、原因として考えている説明変数(処置変数)と応答変数(結果変数)の関係が、想定している因果関係以外に存在する状況
 - フォーマルな定義はもう少し後で
 - ► 例: 不健康な人ほど、病院に行きやすい

自己選択 (self selection) の例

『Rによる計量政治学』を読むと、所得が増える! (私の願望)

自己選択 (self selection) の例

自己選択、個人の最適化

- •Q:「計量政治経済研究室」は、学生の統計分析スキルを向上させるか?
- ・事実:「計量政治経済研究室(矢内研)」のメンバは統計分析スキルが高い
- 3つの可能性
 - ► 矢内[研]が学生の分析スキルを上げる(因果効果)
 - ▶ 分析スキルが高い人が、矢内研を選ぶ(セレクション)
 - 矢内研に入るために、分析スキルを上げる
 - ▶ 矢内研に入ると分析スキルが上がる人(向いている人)が矢内研に入り、結果としてスキルが上がる(最適化セレクション)

自己選択以外のセレクションバイアス

- サンプルセレクション
 - ▶単純な例
 - 知りたいこと:日本の大学3年生の統計学の知識
 - 母集団:日本の大学3年生全員
 - サンプル:KUTで「計量経済学応用」を受講している3年生
 - ▶ 例:企業による販売促進キャンペーンの効果
 - 処置:ある商品の販促メールを受け取るかどうか
 - 結果:商品を買うかどうか
 - 実施した販促:商品を買ってくれそうな人を選んでメールを送る

潜在的結果アプローチ

Potential Outcomes Approach (Rubin Causal Model)

記号の準備

- 個人:i = 1, 2, ..., N
- 処置 (treatment) : $D_i \in \{0,1\}$
 - ▶ 処置を受けた(病院に行った): $D_i = 1$
 - \blacktriangleright 処置を受けなかった(病院に行かなかった): $D_i = 0$
- 結果 (outcome) : $Y_i \in \{1,2,3,4,5\}$
- . 潜在的結果 (potential outcomes) $Y_i(D_i) = \begin{cases} Y_i(1) & \text{if} \quad D_i = 1 \\ Y_i(0) & \text{if} \quad D_i = 0 \end{cases}$

潜在的結果

- •1つひとつの行動に、1つの潜在的結果
- 病院と健康状態の例では:
 - ▶ 可能な行動: 「病院に行く」 or 「病院に行かない」
 - ▶ 潜在的結果
 - 病院に行った場合の健康状態
 - 病院に行かなかった場合の健康状態

処置と潜在的結果

。 $Y_i(D_i)$:処置が D_i の場合の潜在的結果

•
$$Y_i = Y_i(1)$$
 if $D_i = 1$

•
$$Y_i = Y_i(0)$$
 if $D_i = 0$

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$
$$= Y_i(0) + [Y_i(1) - Y_i(0)] D_i$$

因果効果の定義 (Rubinの因果モデル)

。個体iに関する因果効果(個体処置効果; individual treatment effect: ITE): δ_i

$$\delta_i \equiv Y_i(1) - Y_i(0)$$

因果効果は、潜在的結果の差

▶ 同一個体の同一時点での潜在的結果の差に

よって定義される

$$Y_i = Y_i(0) + [Y_i(1) - Y_i(0)]D_i$$
 $= Y_i(0) + \delta_i D_i$
塩果の
ベースライン

因果効果

通院と健康状態の例

- $Y_i(1) = Y_i(0) \Leftrightarrow \delta_i = 0$: 因果効果なし
- $Y_i(1) \neq Y_i(0) \Leftrightarrow \delta_i \neq 0$: 因果効果あり
 - $\delta_i > 0$: 通院が健康状態を改善する
 - $\delta_i < 0$:通院が健康状態を悪化させる
 - $oldsymbol{_}$ 効果(δ_i の値)は、潜在的結果のうちどちらを観察するか(観察される処置 D_i の値)によって変わらないはず

疑問

• ある個体(個人) i について

 $Y_i(1) \succeq Y_i(0)$

を同時に観察できる?

できない!!!!

因果推論の根本問題

(Holland 1986)

因果推論の根本問題

表1:処置前

表2:処置後

	潜在的結果		
処置	$Y_i(1)$	$Y_i(0)$	
あり $D_i=1$	Y_i として観察される	観察不能	
なし $D_i = 0$	観察不能	Y_i として観察される	

個体の因果効果は観察不可能!

複数の個体(集団)を考える

	潜在的結果		個体レベルの
観察対象	<i>Y</i> (1)	<i>Y</i> (0)	因果効果 δ
1	$Y_1(1)$	$Y_{1}(0)$	$Y_1(1) - Y_1(0)$
2	$Y_2(1)$	$Y_{2}(0)$	$Y_2(1) - Y_2(0)$
•	• •	• • •	•
i	$Y_i(1)$	$Y_i(0)$	$Y_i(1) - Y_i(0)$
•	•	• • •	•
N	$Y_N(1)$	$Y_N(0)$	$Y_N(1) - Y_N(0)$

- 個体レベルの因果効果 (ITE) は観察不能
- では、何なら観察できる?

集団の平均を考える

• 平均処置効果(平均因果効果; average treatment effect; ATE)

ATE =
$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

- ▶ E[*Y*(1)] : すべての個体が処置1を受けたときの結果の 期待値
- ► E[Y(0)] : すべての個体が処置0を受けたときの結果の 期待値

処置群と統制群

- 処置の値が2種類(Oか1)しかないとき
 - ▶ 処置1を受ける:処置を受ける
 - 処置を受けた個体のグループ:処置群、実験群
 - ▶ 処置0を受ける:処置を受けない
 - 処置を受けなかった個体のグループ:統制群、比較 群、対照群

平均処置効果 (ATE) は観察できる?

ATE = $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$

- 全個体が処置1を受けたとき: E[Y(1)] は観察(推定)可能
- 全個体が処置Oを受けたとき: E[Y(0)] は観察(推定)可能
- ・処置1を受けた個体と処置0を受けた個体がいるとき:ど ちらの期待値も観察(推定)できない

★ATE は観察できない!

観察したいものと観察できるもの

- ・観察したいもの:以下の2つを「同時に」観察したい
 - ▶ E[Y(1)]:全個体が処置1を受けたときの結果の期待値
 - ▶ E[Y(0)]:全個体が処置0を受けたときの結果の期待値
- ・観察できるもの
 - $\mathbb{E}[Y(1) \mid D = 1]$:実際に処置1を受けた個体が処置1を受けたときの結果の平均値
 - $> \mathbb{E}[Y(0) \mid D = 0]$:実際に処置0を受けた個体が処置0を受けたときの結果の平均値

何が計算できるか

- 観察された平均値の比較

* ATT (average treatment effect for the treated): 処置群における平均処置効果

$$\mathbb{E}[Y(1) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 0]$$

$$= \mathbb{E}[Y(1) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 0]$$

$$+(\mathbb{E}[Y(0) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 1])$$

$$+\mathbb{E}[Y(1) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 0]$$

$$+\mathbb{E}[Y(0) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 0]$$

29

セレクションバイアス

- Selection bias: $\mathbb{E}[Y(0) \mid D=1] \mathbb{E}[Y(0) \mid D=0]$
 - ▶ $\mathbb{E}[Y(0) \mid D=1]$: 処置を受けた群の個体が、処置を受けなかったときの潜在的結果の期待値
 - \blacktriangleright $\mathbb{E}[Y(0) \mid D=0]: 処置を受けなかった群の個体が、処置を受けなかったときの潜在的結果の期待値$
- ・ $\mathbb{E}[Y(0) \mid D = 1] = \mathbb{E}[Y(0) \mid D = 0]$ ならセレクションバイアスはない → その場合、ATT が推定できる (ATE ではないので注意)
- バイアスがある: 処置の値と潜在的結果の値に相関がある
 - ▶ 処置を受けた群と受けていない群で、結果のベースラインに違いがある
 - $_{-}$ 例:病院に行った($D_i=1$)人たちのほうが、潜在的な健康状態が悪い($Y_i(0)$ の値が小さい)

©2022 Yuki

まとめ

- 多くの場合、調査・観察データの単純比較では、因果効果は 不明
 - 理由:セレクションバイアスがあるから
- ・セレクションバイアスの定義: $\mathbb{E}[Y(0) \mid D=1] \mathbb{E}[Y(0) \mid D=0]$
- セレクションバイアスが起こるメカニズムの例
 - サンプルセレクション:偏ったサンプリング、偏った処置
 - ◆ セルフセレクション(自己選択)
- 因果推論の課題: セレクションバイアスにどう対処する?

31

次回予告

3. 無作為化比較試験 (RCT)