Cifrado Asimétrico

- Comparación vs simétrico
- Obteniendo CIA en algoritmos asimetricos
- Algoritmos:
 - DSA
 - RSA
- PKI
- TLS
- OpenPGP

Sistemas de cifrado simétrico

Algoritmos de cifrado simétrico Largo de llave típico: 80 a 256 bits Ejemplos: DES, 3DES, AES, Blowfish

Sistemas de cifrado asimétrico

Algoritmos de cifrado Asimétrico Largo de llave típico: 512 a 4096 bits Ejemplos: DSA, RSA, ElGamal, DH

Elección de la contraseña

(PLAUSIBLE ATTACK ON A WEAK REMOTE, WEB SERMCE, YES, CRACKING A STOLEN HAGH IS FASTER, BUT IT'S NOT WHAT THE AVERAGE USER SHOULD WORKY ABOUT.)

DIFFICULTY TO GUESS:

EASY

DIFFICULTY TO REMEMBER: HARD

IMAGINATION: LET'S BUILD A MILLION-DOLLAR
TO CRACK IT. WHAT WOULD (ACTUALLY HAPPEN: HIS LAPTOP'S ENCRYPTED.

THIS \$5 WRENCH UNTIL

HE TEUS US THE PASSMORD. No GOOD! IT'S BLAST! OUR 4096-BIT RSA! IS FOILED!

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Cifrado Asimétrico

- Protocolos que utilizan cifrado asimétrico
 - TLS (Transport Layer Security) SSL (Secure Socket Layer)
 - HTTP Acceso a sitios web
 - FTP Transferencia de archivos
 - DNS Resolución de nombres
 - SMTP Transferencia de emails
 - SIP Comunicación de voz (VoIP)
 - VPN Interconexión segura de redes
 - SSH (Secure Shell)
 - OpenPGP (Pretty Good Privacy)

Confidencialidad

- Llave Pública (Cifra) + Llave Privada (Descifra)
- Alice y Bob generan su par de llaves e intercambian la publica

Confidencialidad (Cont.)

 Alice utiliza la llave publica de Bob y un algoritmo de cifrado

Confidencialidad (Cont.)

Alice le envía el documento cifrado a Bob

Confidencialidad (Cont.)

 Bob utiliza su llave privada y el algoritmo de cifrado para descifrar

Confidencialidad (cont.)

 Cuando se cifra utilizando una llave pública solo se puede descifrar usando su par privado

- Todavía no tenemos Autenticidad.
 - Trudy puede pretender ser Alice
- Tampoco tenemos Integridad.
 - Trudy puede interceptar el mensaje y enviar otro en su lugar

Autenticidad

Llave Privada (Cifra) + Llave Pública (Descifra)

Autenticidad (Cont.)

Alice le envía el documento cifrado a Bob

Autenticidad (Cont.)

 Bob utiliza la llave publica de Alice y el algoritmo de cifrado para descifrar Texto cifrado

Autenticidad (cont.)

- Cuando se cifra un documento utilizando una llave privada, cualquiera puede descifrar con la llave publica
- Solo el que tenga la llave privada pudo cifrar ese documento

 Todavía nos falta mantener la integridad del documento

CIA

Hash del documento cifrado + Llave privada (cifrar)

 Alice le envía a Bob el documento cifrado (con la llave publica de Bob) y el Hash de dicho documento (cifrado con la llave privada de Alice)

- Bob descifra el hash usando la llave pública de Alice
- Computa por su cuenta el hash del documento cifrado y lo compara con el hash descifrado
- Si son iguales se logra INTEGRIDAD + AUTENTICIDAD

 Bob utiliza su llave privada y el algoritmo de cifrado para descifrar Texto cifrado

- Hash cifrado usando llave privada = Firma digital
- Posibles problemas:
 - Llave privada comprometida
 - Se consigue una copia de su llave privada
 - El que tiene la copia se puede hacer pasar por Alice
 - Puede descifrar los documentos que solo Alice podía descifrar
 - Llave publica falsa
 - Se genera un par de llaves a nombre de Alice
 - Se distribuye la llave publica (falsa) de Alice
 - Bob recibe documentos firmados con la llave privada (falsa) de Alice y los descifra usando la llave publica (falsa) de Alice - Efectivamente cree que es Alice quien le envía el documento.

Algoritmo DSA

- Digital Signature Algorithm
- Únicamente para proveer firmas digitales
- Permite firmar un documento, código, aplicación, etc.
 - hash (sha-2) cifrado con DSA utilizando llaves de 2048bits o mas.

Algoritmo RSA

- Ron RIVEST, Adi SHAMIR, Len ADLEMAN
- Ampliamente utilizado
- No solo se usa para firma digital como el DSA
- Llaves de 2048bits o mas

Public Key Certificate

- Utilizado para acreditar la titularidad (la pertenencia) de una llave pública.
- Basado en X.509
- Incluye (entre otros) información sobre:
 - La identidad del titular
 - El algoritmo utilizado para generar la llave
 - Firma digital del titular
 - La llave pública del titular
 - Información sobre el certificante (quien provee la autenticidad del certificado)
 - Firma del certificante
 - Propósito del certificado
 - Fechas de validez

PKI

- Public Key Infrastructure
- Infraestructura que provee los servicios necesarios para dar el soporte en cualquier escala a los certificados de llave pública
- La infraestructura necesita contar con diversos elementos de hardware, software, personas, políticas y procedimientos.
- Utilizado para crear, administrar, almacenar, distribuir y revocar certificados de llave pública

- Certificados PKI
 - Documento que identifica al titular y su llave pública
 - Debe ser firmado por la CA para proveer autenticidad
- Autoridad Certificante de PKI (CA)
 - Un tercero confiable el cual firma las llaves públicas de las entidades en un sistema de PKI

- Componentes básicos
 - Usuarios de PKI: Personas, Dispositivos, Servidores, Empresas
 - CA para la administración
 - Almacenamiento y protocolos
 - Infraestructura organizacional como Local Registry Authorities (LRAs)
 - Marco Legal
 - https://www.argentina.gob.ar/modernizacion/firmadigital

- Se puede proveer certificados de diferentes clases que determinan cuan confiable es una entidad
- Cuanto mas alto el numero de clase, mas riguroso es el procedimiento para obtener el certificado
- Clase 0 Propósitos de testeo. No se realizan verificaciones de identidad
- Clase 1 Para individuos, pensado para emails.
- Clase 2 Para organizaciones que necesitan demostrar su identidad
- Clase 3 Para servidores y firma de software
- Clase 4 Para transacciones de negocio entre empresas
- Clase 5 Para organizaciones privadas o seguridad gubernamental

- Algunos PKIs ofrecen la posibilidad o inclusive requieren del uso/generación de dos juegos de llaves públicas y privadas
 - El primero solo para cifrar
 - La llave pública para cifrar, la privada descifrar
 - El segundo solo para firma digital
 - La llave privada para firmar, la publica se usa para verificación de la firma
 - Pueden diferir en largos de llaves y/o en algoritmos a utilizar

- Public Key Cryptography Standards (PKCS)
- Definen como es el formato para lograr el intercambio seguro de la información protegida
 - PKCS #1: RSA Cryptography Standard
 - PKCS #3: DH Key Agreement Standard
 - PKCS #5: Password-Based Cryptography Standard
 - PKCS #6: Extended-Certificate Syntax Standard
 - PKCS #7: Cryptographic Message Syntax Standard
 - PKCS #8: Private-Key Information Syntax Standard
 - PKCS #10: Certification Request Syntax Standard
 - PKCS #12: Personal Information Exchange Syntax Standard
 - PKCS #13: Elliptic Curve Cryptography Standard
 - PKCS #15: Cryptographic Token Information Format Standard

Ejemplo PKCS

Petición de inscripción de certificado

PKCS#7
PKCS#10

PKCS#7

Certificado firmado

- Topología Básica de PKI Single Root
- Emite todos los certificados para las entidades finales
- Difícil de escalar en grandes entornos
- Requiere de una administración estrictamente centralizada
- Genera un único punto de falla Autoridad Certificante Raíz (Root CA)

Topología jerárquica

1 – Petición de Inscripción

3 – La CA firma la petición de inscripción (el certificado) y se lo envía a la entidad que pidió la inscripción 2 – Cuando la RA aprueba la Petición de Alice (proceso burocrático acorde a las políticas) agrega info adicional al certificado y lo envía a la CA

Autoridad Certificante Raíz (Root CA)

LAB PKI

https://pki-tutorial.readthedocs.org/en/latest/simple/index.html

TLS

- Ocurre un intercambio de mensajes entre el cliente y el servidor para intercambiar llaves y acordar algoritmos a usar
 - Handshake Protocol
 - El cliente ofrece un listado de posibilidades
 - El servidor responde con con opciones aceptadas negociando los algoritmos a utilizar, y presenta su certificado
 - Se establece un ID de sesión
 - Intercambio de llaves maestras de la sesion
 - Cierre de handshake
 - Record Protocol
 - El cliente y el servidor intercambian el resto de la información utilizando 'CIA'

TLS (Cont.)

TLS 1.1 and 1.2/SSL Protocol Sequences

http://www.zytrax.com/tech/survival/ssl.html

https://www.comparitech.com/net-admin/decrypt-ssl-with-wireshark/

OpenPGP

- Pretty Good Privacy
- GNU Privacy Guard
- Utilizado para 'CIA' de e-mails
- Publicación de Llave Pública en 'key servers'
- 'Web of Trust' vs CA
- https://emailselfdefense.fsf.org/es/

