The Classical Linear Regression Model (CLRM)

EC 339

Marcio Santetti Fall 2023

Motivation

OLS works, but it needs assumptions

- The goal when using OLS is to obtain unbiased, efficient, and consistent estimators.
- Moreover, we want to be able to do hypothesis testing.
- All these properties are made possible through **7 assumptions**.
- This set of assumptions is known as the Classical Linear Regression Model (CLRM).

The Classical Assumptions

The set of Classical Assumptions

- 1. The regression model is linear, correctly specified, and has an additive stochastic error term.
- **2**. The stochastic error term (u_i) has a **zero** population mean.
- **3**. All explanatory variables (x_i) are **uncorrelated** with the error term.
- **4**. Observations of the error term are **uncorrelated** with each other.
- **5**. The error term has a **constant variance**.
- **6**. No explanatory variable is a **perfect linear function** of any other explanatory variable.
- **7**. The error term is **normally distributed**.

"The regression model is **linear**, **correctly specified**, and has an **additive** stochastic error term."

- Linear means linear in **parameters** (β_i) ;
- Correctly specified means that it has the correct functional form and no omitted variables.
- And an **additive** error term implies **no** other form in which u_i appears in a model.

• Examples:

$$y_i = eta_0 eta_1 x_{1i} + eta_2 x_{2i} + u_i$$
 $y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} u_i$ $y_i = eta_0 + log(eta_1) x_{1i} + eta_2 x_{2i} + u_i$

One of the main reasons for a *violation* of CLRM Assumption I is an **incorrectly specified** model.

- This may happen due to
 - Incorrect **functional form** (data visualization matters!);
 - **Omitted** variables (leading to omitted variables bias).

A regression's error term may sometimes be a **black box**.

• Recall that any potentially omitted variable(s) lie(s) there!

Therefore, our models must have a **theoretical** motivation.

What is bias?

An estimator is **biased** if its expected value is different from the *true* population parameter.

When considering our slope coefficients $(\hat{\beta}_i)$, we expect that they, on average, are close to the **"true"** population parameter, β_{pop} .

Unbiased:
$$\mathbb{E}\left[\hat{eta}_{OLS}
ight]=eta_{pop}$$

Biased:
$$\mathbb{E} igl[\hat{eta}_{OLS} igr]
eq eta_{pop}$$

"The stochastic error term (u_i) has a **zero** population mean."

- Values of the stochastic error term are defined by **pure chance**.
- It follows a probability **distribution** centered around zero.
- Also known as the **exogeneity** assumption.

From standard Microeconomic theory, recall:

- Factors that influence the **demand** for a given good:
 - Price of the good itself, price of substitutes, preferences...

"The stochastic error term (u_i) has a **zero** population mean."

In practice, what is the difference between $\mathbb{E}[u \mid x] = 0$ and $\mathbb{E}[u \mid x] \neq 0$?

"All explanatory variables (x_i) are **uncorrelated** with the error term."

- Observed values of the independent variable are determined independently of the values contained in the error term
- $Cor(x_i,u_i) \neq 0 \implies$ **violation** of CLRM Assumption III.
- A possible reason: a variable correlated with some x_i being **omitted** from the model.

"Observations of the error term are **uncorrelated** with each other."

- Also known as autocorrelation.
- Common in time-series data.
- Occurs when the model's disturbances are correlated **over time**, i.e., $Cor(u_t, u_j) \neq 0$ for $t \neq j$.

Behavior of u_t over time (positive serial correlation)

Behavior of u_t over time (negative serial correlation)

"The error term has a **constant variance**."

- Also known as the **homoskedasticity** assumption.
- If violated, we have **heteroskedasticity**.
- Extremely **common** in cross-section data sets (also in financial time-series data).

• This assumption implies that the error term has the **same variance** for each value of the independent variable.

$$\circ Var(u|x) = \sigma^2$$

• Homoskedastic residuals:

• **Heteroskedastic** residuals:

"No explanatory variable is a **perfect linear function** of any other explanatory variable."

- Also known as the **no perfect multicollinearity** assumption.
- Only completely **violated** if an independent variable x_i is a **deterministic** function of another variable x_j , for $i \neq j$

Examples:

- $x_3 = x_1 1,000$
- $x_2 = 50 + x_1$

"The error term is **normally distributed**."

• Summarized by $u_i \sim \mathcal{N}(0, \sigma^2)$.

OLS **still works** without this assumption!

But crucial for hypothesis testing and inference.

The Gauss-Markov theorem

The Gauss-Markov theorem

From CLRM Assumptions I through VI, we guarantee that OLS is BLUE.

We will learn how to deal with the most common **violations** of CLRM Assumption after the Midterm exam.

Next time: CLRM in practice