MULTIPLE CORRECT (OBJECTIVE QUESTIONS) EXERCISE - II

1. If
$$I = \int_{0}^{2\pi} \sin^2 x \, dx$$
, then

(A) I =
$$2\int_{0}^{\pi} \sin^{2} x \ dx$$

(A)
$$I = 2 \int_{0}^{\pi} \sin^{2} x \, dx$$
 (B) $I = 4 \int_{0}^{\pi/2} \sin^{2} x \, dx$

$$(C) I = \int_{0}^{2\pi} \cos^2 x \, dx$$

(C)
$$I = \int_{0}^{2\pi} \cos^2 x \, dx$$
 (D) $I = 8 \int_{0}^{\pi/4} \sin^2 x \, dx$

- **2.** The value of integral $\int_{0}^{\infty} xf(\sin x) dx$ is
- (A) $\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx$ (B) $\pi \int_{0}^{\pi/2} f(\sin x) dx$

(C) 0

- (D) None of these
- 3. $\int_{0}^{x} \frac{x}{(1+x)(1+x^2)} dx$
- (A) $\frac{\pi}{4}$

- (C) is same as $\int_{-1}^{\infty} \frac{dx}{(1+x)(1+x^2)}$ (D) cannot be evaluated
- **4.** The value of integral $\int_{-\infty}^{b} \frac{|x|}{x} dx$, a < b is
- (A) b a if a > 0 (B) a b if b < 0 (C) b + a if a < 0 < b (D) |b| |a|

- **5.** If $f(x) = \int_{-\pi}^{\pi} (\cos^4 t + \sin^4 t) dt$, $f(x + \pi)$ will be equal to
- (A) $f(x) + f(\pi)$ (B) $f(x) + 2(\pi)$
- (C) $f(x) + f(\frac{\pi}{2})$ (D) $f(x) + 2f(\frac{\pi}{2})$

- **6.** The value of $\int_{-\infty}^{1} \frac{2x^2 + 3x + 3}{(x+1)(x^2 + 2x + 2)} dx$ is
- (A) $\frac{\pi}{4}$ +2 ℓ n 2-tan⁻¹ 2 (B) $\frac{\pi}{4}$ +2 ℓ n 2 tan $\frac{1}{3}$
- (C) $2 \ln 2 \cot^{-1} 3$ (D) $-\frac{\pi}{4} + \ln 4 + \cot^{-1} 2$
- **7.** A function f(x) which satisfies, $f'(\sin^2 x) = \cos^2 x$ for all real x & f(1) = 1 is
- (A) $f(x) = x \frac{x^3}{2} + \frac{1}{3}$ (B) $f(x) = x^2 \frac{x}{2} + \frac{1}{2}$
- (C) a polynomial of degree two (D) f(0) = 1/2
- **8.** If $I_n = \int_0^1 \frac{dx}{(1+x^2)^n}$; $n \in \mathbb{N}$, then which of the following statements hold good?
- (A) $2n I_{n+1} = 2^{-n} + (2n-1) I_n$ (B) $I_2 = \frac{\pi}{8} + \frac{1}{4}$
- (C) $I_2 = \frac{\pi}{8} \frac{I}{4}$ (D) $I_3 = \frac{\pi}{16} \frac{5}{48}$
- **9.** If f(x) is integrable over [1, 2], then $\int_{0}^{x} f(x) dx$ is
- (A) $\lim_{n \to \infty} \frac{1}{n} \sum_{n=0}^{\infty} f\left(\frac{r}{n}\right)$ (B) $\lim_{n \to \infty} \frac{1}{n} \sum_{n=0}^{\infty} f\left(\frac{r}{n}\right)$
- (C) $\lim_{n\to\infty} \frac{1}{n} \sum_{n=0}^{\infty} f\left(\frac{r+n}{n}\right)$ (D) $\lim_{n\to\infty} \frac{1}{n} \sum_{n=0}^{\infty} f\left(\frac{r}{n}\right)$
- **10.** If $f(x) = 2^{\{x\}}$, where $\{x\}$ denotes the fractioal aprt of x. Then which of the following is true?
- (A) f is periodic (B) $\int_{\mathbb{R}} 2^{\{x\}} dx = \frac{1}{\ln 2}$
- (C) $\int_{0}^{1} 2^{\{x\}} dx = \log_2 e$ (D) $\int_{0}^{100} 2^{\{x\}} dx = 100 \log_2 e$
- **11.** If $f(x) = \int_{0}^{x} (2\cos^2 3t + 3\sin^2 3t) dt$, $f(x + \pi)$ is equal to

 (A) $f(x) + f(\pi)$ (B) $f(x) + 2f(\frac{\pi}{2})$

- (C) $f(x) + 4f\left(\frac{\pi}{4}\right)$
- (D) None of these