Completion and Outlier detection

2021-09-13

Completion

Delaigle 세팅 - out_type = 3 (지난주에 보여드린 결과), 20번 반복

### Out 2	ζ								
Method	PVE	Reconstr	uction	Comp	oletion	Eigenfu	unction	Eigenfuncti	on_cos
Yao	1.00	0.11	(0.01)	0.19	(0.03)	0.06	(0.04)	0.56	(0.01)
Kraus	0.91		<na></na>	0.47	(0.28)	0.08	(0.04)	0.57	(0.02)
Huber	0.89	0.17	(0.02)	0.40	(0.11)	0.04	(0.02)	0.56	(0.01)
Boente	1.00	0.19	(0.03)	0.42	(0.13)	0.13	(0.03)	0.59	(0.01)
Mest	0.92	0.16	(0.02)	0.34	(0.12)	0.11	(0.05)	0.58	(0.02)
Mest-sm	0.98	0.13	(0.02)	0.26	(0.08)	0.09	(0.05)	0.58	(0.02)
GK	0.93	0.16	(0.02)	0.36	(0.11)	0.12	(0.07)	0.59	(0.02)
GK-sm	0.99	0.14	(0.02)	0.28	(0.08)	0.10	(0.07)	0.58	(0.02)
PM-NA	0.96	0.14	(0.02)	0.30	(0.09)	0.09	(0.04)	0.57	(0.02)
PM-sm-NA	0.98	0.13	(0.02)	0.25	(0.07)	0.08	(0.04)	0.57	(0.02)
PM-Im	0.96	0.14	(0.02)	0.31	(0.09)	0.09	(0.06)	0.58	(0.02)
PM-sm-Im	0.98	0.13	(0.02)	0.26	(0.08)	0.08	(0.06)	0.57	(0.02)
### 0 (_								
### Out (Dogonata		Come	10++05	Edmonfo	.na+	Eigenfungti	00 000
	0.98			_		0.84		Eigenfuncti	(0.13)
		0.42							
Kraus		0 10			(0.70)	0.94			(0.11)
Huber			(0.04)				(0.06)		(0.02)
Boente			(0.04)				(0.04)		(0.02)
Mest			(0.03)				(0.07)		(0.03)
Mest-sm			(0.03)				(0.07)		(0.03)
	0.91		(0.03) (0.03)				(0.15) (0.15)		(0.05)
GK-sm PM-Im									(0.05)
			(0.03)				(0.18)		(0.06)
PM-sm-Im	0.96	0.15	(0.03)	0.31	(0.13)	0.16	(0.18)	0.60	(0.06)
## Out O	- 50 ^t	번 반복							
Method	PVE	Reconstr	uction	Comp	oletion	_		Eigenfuncti	
Mest	0.89	0.17	(0.03)	0.41	(0.15)	0.14	(0.08)	0.59	(0.03)
Mest-sm	0.94	0.16	(0.03)	0.35	(0.12)	0.13	(0.08)	0.59	(0.03)
GK	0.93	0.17	(0.04)	0.40	(0.15)	0.15	(0.11)	0.60	(0.04)
GK-sm	0.97	0.16	(0.03)	0.36	(0.14)		(0.11)	0.59	(0.04)
PM	0.92	0.16	(0.03)	0.39	(0.13)	0.15	(0.10)	0.60	(0.04)
PM-sm	0.94	0.15	(0.03)	0.33	(0.12)	0.14	(0.10)	0.60	(0.04)
PM-NA	0.94	0.15	(0.03)	0.35	(0.11)	0.13	(0.09)	0.59	(0.03)
PM-sm-NA	0.96	0.14	(0.03)	0.30	(0.10)	0.12	(0.09)	0.59	(0.03)
PM-Im	0.94	0.15	(0.03)	0.32	(0.11)	0.12	(0.10)	0.59	(0.04)

Kraus 세팅 - out_type = 2, sig = 0.01, 20번 반복

Method	PVE	Reconstructi	on Coi	mpletion	Eigenfu	nction	Eigenfuncti	on_cos
Yao	0.96	0.81 (2.1	6) 0.7	6 (1.50)	1.69	(0.30)	0.96	(0.05)
Kraus	0.91	<na< td=""><td>> 139.71</td><td>(622.16)</td><td>1.77</td><td>(0.12)</td><td>0.99</td><td>(0.02)</td></na<>	> 139.71	(622.16)	1.77	(0.12)	0.99	(0.02)
Boente	1.00	0.04 (0.0	0.1	1 (0.04)	0.80	(0.06)	0.76	(0.02)
Mest	0.83	0.04 (0.0	0.0	6 (0.01)	0.66	(0.11)	0.72	(0.02)
Mest-sm	0.98	0.03 (0.0	0.0	5 (0.01)	0.33	(0.16)	0.65	(0.04)
GK	0.86	0.03 (0.0	0.0	5 (0.01)	0.46	(0.13)	0.68	(0.03)
GK-sm	0.98	0.02 (0.0	0.0	4 (0.01)	0.27	(0.15)	0.63	(0.04)
PM	0.88	0.03 (0.0	0.0	4 (0.01)	0.52	(0.13)	0.69	(0.03)
PM-sm	0.98	0.02 (0.0	0.0	3 (0.00)	0.18	(0.12)	0.60	(0.03)

Outlier detection

- 이전 결과들이 모두 Boente 세팅으로만 요약되어 있어, Delaigle 세팅에도 적용하여 결과 확인
- sensitivity가 outlier를 얼마나 잘 detect했는지를 나타냄
- 여기서 PM, PM-sm은 이전 파일에서 PM-NA, PM-sm-NA를 나타냄
 - PM에 imputation을 적용한 방법은 completion에서의 결과가 좋긴 했지만, 따로 reference한 방법이 아닌 제 생각에 좋을 것 같아서 해본 방법이었으며, 이론적으로 적절한 방법인지에 대해서는 의문임
- 비교 방법론
 - 1. PC1-adjbox: 1st PC score에 adjusted boxplot
 - 2. PC1-box: 1st PC score에 boxplot
 - 3. SD-adjbox: Score distance of adjusted boxplot
 - 4. SD-box: Score distance boxplot
 - 5. robMah-comp : Completion된 dense data에 rainbow::foutliers(..., method = "robMah") 함수로 outlier detection
 - 함수의 과정은 다음과 같음
 - 1. dense data를 robust PCA한 후의 PC score를 계산
 - 2. 계산한 PC score로 robust location, cov 계산 (여기서는 MCD estimator 사용)
 - 3. 2에서 계산한 estimate을 이용하여 Mahalanobis dist 계산하고 이에 대해 boxplot을 적용하여 outlier 를 detect
 - 6. robMah: K PC score들로 계산한 robust Mahalanaobis distance를 boxplot으로 outlier detection
 - 이미 계산한 PC score(completion X)에 robMah-comp의 2~3번 과정을 적용
 - 7. outmap : Outlier map (Score distance vs Orthogonal distance) plot에서 1사분면에 속하는 데이터를 outlier로 detect

Boente 세팅 - model = 4

Ś	Υ	а	_
Υ	_	а	L

	PC1-adjbox	PC1-box	SD-adjbox	SD-box	robMah-comp	robMah	outmap
sensitivity	0	0	0.004	0.179	0.862	0.875	0.257
specififity	1	1	0.968	1.000	1.000	1.000	0.998

\$Mest

	PC1-adjbox	PC1-box	SD-adjbox	SD-box	robMah-comp	robMah	outmap
sensitivity	0	0	0.182	0.83	0.886	0.885	0.998
specififity	1	1	0.869	1.00	1.000	1.000	0.992

\$GK

PC1-adjbox PC1-box SD-adjbox SD-box robMah-comp robMah outmap

sensitivity	0	0	0.270	0.879	0.894	0.888	0.997
specififity	1	1	0.852	1.000	1.000	1.000	0.994
\$PM							
	PC1-adjbox	PC1-box	SD-adjbox	SD-box	robMah-comp	robMah	outmap
sensitivity	0	0	0.281	0.865	0.901	0.874	1.000
specififity	1	1	0.868	1.000	1.000	1.000	0.992

Delaigle 세팅 - out_type = 2

- 여기서의 outlier 세팅이 heavy-tailed distribution으로부터 noise를 생성하다보니, 이 값이 큰 경우도 있고 작은 경우도 존재
- 따라서 noise가 작은 경우는 PC score 등이 차이가 크지 않아서 outlier로 detect하지 못하는 것으로 보임

¢	V	2	_

sensitivity specififity	PC1-adjbox 0 1	0	SD-adjbox 0.142 0.976	0.140	robMah-comp 0.062 0.981	0.288	outmap 0.105 0.998
\$Mest							
	PC1-adjbox	PC1-box	SD-adjbox	SD-box	robMah-comp	robMah	outmap
sensitivity	0	0	0.138	0.100	0.063	0.095	0.168
specififity	1	1	0.989	0.989	0.985	0.982	0.978
\$GK							
	PC1-adjbox	PC1-box	SD-adjbox	SD-box	robMah-comp	robMah	outmap
sensitivity	0	0	0.157	0.107	0.070	0.103	0.143
specififity	1	1	0.985	0.988	0.985	0.985	0.988
\$PM							
	PC1-adjbox	PC1-box	SD-adjbox	SD-box	robMah-comp	robMah	outmap
sensitivity	0	0	0.130	0.102	0.077	0.097	0.155
specififity	1	1	0.985				0.985

Delaigle 세팅 - out_type = 6(Boente 세팅의 model = 2)

- outlier generating을 Boente 세팅처럼 할 경우에는 Boente에서와 비슷한 형태를 보임
- 이 세팅은 앞의 Boente 세팅(model = 4)보다 spike 정도가 적은 세팅임

\$Yao

γIdO	PC1-adjbox	PC1-box	SD-adjbox	SD-box	robMah-comp	robMah	outmap
sensitivity	0	0	0.323	0.917	0.72	0.960	0.812
specififity	1	1	0.892	1.000	1.00	0.998	1.000
Ó3.6							
\$Mest							
	PC1-adjbox	PC1-box	SD-adjbox	SD-box	robMah-comp	robMah	outmap
sensitivity	0	0	0.283	0.978	0.693	0.975	0.997
specififity	1	1	0.854	1.000	1.000	1.000	0.989
\$GK							
	PC1-adjbox	PC1-box	SD-adjbox	SD-box	robMah-comp	robMah	outmap
sensitivity	0	0	0.343	0.975	0.65	0.973	0.998
specififity	1	1	0.867	1.000	1.00	1.000	0.995

\$PM

sensitivity specififity	PC1-adjbox 0 1	PC1-box 0 1	0.270	SD-box 0.988 1.000		0.973	outmap 1.000 0.993
Delaigle 세팅	- out_type =	7(Boente	세팅의 mod	el = 4)			
\$Yao	PC1-adibox	PC1-hox	SD-adibox	SD-hox	robMah-comp	rohMah	outman
sensitivity	0	0	0.743	1	0.983	1	0.59
specififity	1	1	0.857	1	1.000	1	1.00
\$Mest	D.G.1 1 1 1	D.G.1 . 1	GD 1'1	an 1	1 26 1	1 26 1	
sensitivity	PCI-adjbox 0	PCI-box	=	0.988	robMah-comp 0.973	0.988	0.998
specififity	1	1	0.850	1.000	1.000	1.000	0.988
\$GK							
	=		=		robMah-comp		-
sensitivity specififity	0	0	0.427			0.99	0.997 0.995
БРССТТТТСУ	_	_	0.003	1.00	1.000	1.00	0.333
\$PM	DC1 adibay	DC1 box	CD adibar	CD box	robMah-comp	robMah	out-man
sensitivity		0 VOG-134	0.445			0.988	0.998
specififity		1	0.855	1.00	1.00	1.000	0.993