Inteligência Artificial II

Redes Neurais MLP Prof. Tales Bitelo Viegas

Conceito de Rede Neural Artificial (RNA)

"Uma Rede Neural é um processador paralelamente distribuído, constituído de unidades de processamento simples, que têm a propensão natural para armazenar conhecimento experimental e torná-lo disponível para uso." (Haykin, 2001)

Conceito de Rede Neural Artificial (RNA)

- Uma Rede Neural se assemelha ao cérebro em dois aspectos (Haskin, 2001):
 - O conhecimento é adquirido pela rede a partir do ambiente, através de um processo de aprendizagem
 - Forças de conexão entre os neurônios, conhecidas como pesos sinápticos, são usados para armazenar o conhecimento adquirido.

Modelo de Neurônio

- Modelo desenvolvido por McCulloch & Pitts na década de 1940.
- Elementos do neurônio:
 - Entradas X₁, X₂, ..., X_n. X₀ é sempre 1
 - Pesos sinápticos: Wkn, onde k é o neurônio e n a entrada
 - Wko: peso do bias
 - Vk: campo local induzido
 - Q: função de transferência ou ativação
 - Yk: saída do neurônio k

Neurônio Artificial

- ► $V_k = \Sigma (W_{ki} * x_i)$ para i=0 até n
- $ightharpoonup Y_k = Q(V_k)$

Neurônio Artificial

- Função de Transferência
 - Limiar

$$Q(V_k) = 1 \text{ se } V_k >= 0$$

0 se $V_k < 0$

Rede Neurais Artificiais MLP

- MLP: MultiLayer Perceptron
- Redes perceptron de múltiplas camadas (feed forward), totalmente conectadas, contendo uma ou mais camadas ocultas

Fases de Construção

- Fase de Aprendizagem
 - Pré-processamento dos dados
 - Treinamento da rede

- Fase de Generalização
 - Pré-processamento dos dados
 - Teste da rede
 - Pós-processamento

Aprendizagem

- Tanto na fase de aprendizagem quanto de generalização dos dados (padrões, amostras de entrada rotuladas) devem ser pré-processados.
- Os dados são particionados em dois subconjuntos distintos: conjunto de **treino** e conjunto de **teste**.
 - O conjunto de **treino** é usado no treinamento da rede – fase aprendizagem (~80% das amostras)
 - O conjunto de **teste** é usado para validar a rede fase de generalização (~20% das amostras)

Pré-Processamento

A rede trabalha apenas com valores de entrada numéricos, os quais devem pertencer ao intervalo [0..1]

Topologia da Rede

- Para estimar o número de neurônios de uma camada oculta pode-se usar a seguinte heurística:
 - numNeuronios = raiz(numEntradas x numSaídas)
 - Ex: numEntradas = 2, numSaídas = 2 numNeuronios = 2

Topologia da Rede

- Uma rede com 10 entradas e 5 saídas terá
 ~7 neurônios na camada oculta.
- Esta heurística pode ser usada para definir o número de neurônios de qualquer camada oculta.
- Definida a topologia, a rede pode ser então treinada para reconhecer os padrões

Treinamento

- O algoritmo Error Backpropagation é usado para treinar a rede. Ele possui 2 etapas: forward e backward. Em cada etapa a rede é percorrida em um sentido
- A fase forward (para frente) propagação é utilizada para definir a saída da rede para um dado padrão de entrada.
- A fase backward (para trás) retropropagação
 utiliza a saída desejada e a saída gerada pela rede para atualizar os pesos de suas conexões.

Treinamento

- Os ciclos de treinamento de uma rede são medidos em épocas
- Uma época corresponde a passagem de todos os padrões do conjunto de treino uma vez pela rede
- Para treinar uma rede são necessárias várias épocas

Treinamento

Propagação (fase forward)

Retroprogação (fase backward)

O conjunto de treino da rede são N pares de valores (X,D), onde X=[x₁,x₂,...,x₂] e D=[d₁,d₂,...,dm], sendo **z** o número de atributos de cada padrão de entrada e **m** o número de saídas desejadas.

Etapas:

- 1 Iniciar todos os pesos da rede com valores arbitrários não nulos
- 2 Apresentar cada padrão n de entrada do conjunto de treino e propagá-lo até a saída da rede (geração dos Y's da última camada, a camada de saída), onde n=1 até N

- Propagação: para cada neurônio k da rede:
 - V_k(n) = Σ (w_{ki}(n) * x_i(n)), onde k é o neurônio e i a entrada, para i=0 até z (total de entradas, ou seja, total de atributos de u padrão **n** do conjunto de treino). Quando o neurônio for de uma camada oculta, x_i será y_i (saída do neurônio i da camada anterior).
 - $Y_k(n) = Q(v_k(n)), a saída é gerada pela aplicação da função de transferência Q sobre o campo local induzido v.$

- 3 Iniciar a retropropagação
 - Calcular o erro. Para cada neurônio k da camada de saída:
 - erro $_k(n) = d_k(n) y_k(n)$, onde $d_k \in a$ saída desejada, o rótulo (a classe) do padrão n

- Calcular a energia do erro instantâneo para o padrão propagado:
 - $[ε(n) = \frac{1}{2} * Σ(erro_k(n))^2$, onde n identifica o padrão e k=1 até o número de neurônios da camada de saída.
- Calcular os gradientes δ da camada de saída. Para cada neurônio k da camada de saída.
- Calcular o ajuste dos pesos de k:
 - $\Delta w_{ki}(n) = \delta_k(n) * η * y_i(n)$, onde é a $\mathbf{\eta}$ taxa de aprendizagem intervalo típico (0;1]

- Ajustar os pesos dos neurônios da camada de saída:

 - Pode-se usar ainda a constante de momento α , intervalo típico [0;1]:
- Calcular os gradientes δ da camadas ocultas. Para cada neurônio k de uma camada oculta:
 - $\delta_k(n) = Q'(v_k(n)) * \Sigma(\delta_j(n) * w_{jk}(n+1))$, onde j são os neurônios com os quais o neurônio k tem conexão a direita. Como a camada à direita já sofreu retropropagação, seus pesos já foram atualizados, por isto aparece n+1.

- Da mesma forma, calcular o **ajuste dos pesos** de k:
 - $\Delta w_{ki}(n) = \delta_k(n) * η * y_i(n)$, quando o ajuste for a primeira camada oculta, a mais a esquerda, y_i será x_i .
- Da mesma forma, ajustar os pesos dos neurônios da camada oculta:
 - $\square w_{ki}(n+1) = w_{ki}(n) + \Delta w_{ki}(n)$
 - Pode-se usar ainda a constante de momento α:

 4 - Terminada a retropropagação do padrão n atual, repetir os passos 2 e 3 para o padrão seguinte (n+1) do conjunto de treino até que todos os padrões tenham sido processados pela rede, caracterizando, assim, uma época.

- 5 Ao final de cada época, calcular o erro médio quadrado E:
 - \Box E_{época} = 1/N * Σ[ε(j)], onde j=1 até N.
 - O erro médio quadrado é a média aritmética dos erros instantâneos dos padrões do conjunto de treino

- 6 Parar o algoritmo quando:
 - For atingido um número pré-definido de épocas
 - O erro médio quadrado for menor que um valor prédefinido
 - A variação do erro médio quadrado nas últimas x épocas for inferior a um valor pré-definido
 - Número de padrões corretamente classificados não se alterar
 - Uma combinação destes critérios
- A seguir, algumas heurísticas para melhorar o algoritmo

Heurísticas para as funções de transferência

- Funcionam melhor quando são usadas com algumas constantes (Haykin, 2001)
 - Logística: $Q(V_k) = 1/1 + \exp(-\mathbf{a}^*V_k)$
 - Tangente hiperbólica: $Q(V_k) = \mathbf{a} * tanh(\mathbf{b}*V_k)$,
 - Onde a=1,7159 e b=2/3

Heurísticas para as funções de Transferência

- Derivadas das funções:
 - Logística:
 - $Q'(V_k) = Q(V_k) * (1 Q(V_k))$
 - Tangente hiperbólica:

Heurísticas para a taxa de aprendizagem η e a constante de momento α

- Algumas taxas de aprendizagem usadas: 0.01, 0.1, 0.3, 0.5 e 0.9
- Algumas constantes de momento usadas: 0, 0.1, 0.5 e 0.9
- O valor que proporcionar a melhor curva de aprendizagem, determinada pelo erro médio, é a melhor escolha.

Heurísticas para a taxa de aprendizagem η e a constante de momento α

- A taxa de aprendizagem pode ser atualizada ao longo da fase de treinamento:
 - $\eta(n) = \eta_0/(1 + (n / \tau))$, onde η_0 é o valor inicial da taxa e deve ser alto; τ é uma constante que ajudará a atualizar a taxa.

Heurísticas para a taxa de aprendizagem η e a constante de momento α

- Para melhorar o desempenho da rede, pode-se:
 - Submeter os padrões do conjunto de treino aleatoriamente
 - Submeter primeiramente o padrão que na época anterior gerou o maior erro

Generalização

- Feito o treinamento da rede, os pesos que mapeiam os padrões de entrada nas saídas desejadas foram encontrados.
- A generalização consiste em **propagar** pela rede os padrões pré-processados do conjunto de teste e analisar os resultados gerados pela rede.
- Visto que as funções de transferência geram valores contínuos é comum um pósprocessamento da saída gerada

Pós-Processamento

- É uma regra de decisão, geralmente baseada em algum valor limiar que auxilia a definir a que classe o padrão de teste pertence.
 - Ex: se Y >= 0.8 então Y = 1