# **TD7**

# 1 2019

| D <sub>3h</sub>      | 1 E | 2 C <sub>3</sub> | 3 C <sub>2</sub> | $1 \sigma_h$ | 2 S <sub>3</sub> | $3 \sigma_v$ |
|----------------------|-----|------------------|------------------|--------------|------------------|--------------|
| $A_1'$               | 1   | 1                | 1                | 1            | 1                | 1            |
| $A_2'$               | 1   | 1                | -1               | 1            | 1                | -1           |
| E'                   | 2   | -1               | 0                | 2            | -1               | 0            |
| $A_1''$              | 1   | 1                | 1                | -1           | -1               | -1           |
| $A_2^{\prime\prime}$ | 1   | 1                | -1               | -1           | -1               | 1            |
| E''                  | 2   | -1               | 0                | -2           | 1                | 0            |

## 1. Éléments de symétrie

**1.1.** À gauche, les  $C_2$  et le plan  $\sigma_h$ , au centre l'axe  $S_3$  et  $C_3$ , à droite, les plans  $\sigma_\nu$ 



**1.2.** Il faut s'aider au maximum d'avoir un carré latin et que  $E \times \hat{R} = \hat{R}$ 



| $D_3$       | Е           | $C_3$       | $C_3^2$     | $C_2^{(1)}$ | $C_2^{(2)}$   | C <sub>2</sub> <sup>(3)</sup> |
|-------------|-------------|-------------|-------------|-------------|---------------|-------------------------------|
| Е           | Е           | $C_3$       | $C_{3}^{2}$ | $C_2^{(1)}$ | $C_2^{(2)}$   | $C_2^{(3)}$                   |
| $C_3$       | $C_3$       | $C_3^2$     | E           | $C_2^{(2)}$ | $C_{2}^{(3)}$ | $C_{2}^{(1)}$                 |
| $C_3^2$     | $C_3^2$     |             | $C_3$       | $C_2^{(3)}$ | $C_2^{(1)}$   | $C_2^{(2)}$                   |
| $C_2^{(1)}$ | $C_2^{(1)}$ | $C_2^{(2)}$ | $C_2^{(3)}$ | E           | $C_3$         | $C_3^2$                       |
| $C_2^{(2)}$ | $C_2^{(2)}$ | $C_2^{(3)}$ | $C_2^{(1)}$ | $C_3^2$     | E             | $C_3$                         |
| $C_2^{(3)}$ | $C_2^{(3)}$ | $C_2^{(1)}$ | $C_2^{(2)}$ | $C_3$       | $C_3^2$       | E                             |

**1.3.** (la première opération appliquée étant celle la plus à droite)

$$\sigma_{h} = E \times \sigma_{h} \tag{1}$$

$$S_3 = \sigma_h \times C_3 \tag{2}$$

$$\sigma_{v} = \sigma_{h} \times C_{2} \tag{3}$$

1.4.

| D <sub>3h</sub>                   | 1 E | 2 C <sub>3</sub> | 3 C <sub>2</sub> | $1 \sigma_h$ | 2 S <sub>3</sub> | $3 \sigma_{v}$ |
|-----------------------------------|-----|------------------|------------------|--------------|------------------|----------------|
| $\Gamma_{	ext{xyz}}$              | 3   | 0                | -1               | 1            | -2               | 1              |
| $\Gamma_{xyz}\otimes\Gamma_{xyz}$ | 9   | 0                | 1                | 1            | 4                | 1              |
| $\Gamma(\hat{R^2}, xyz)$          | 3   | 0                | 3                | 3            | 0                | 3              |
| $\Gamma$ (sym)                    | 6   | 0                | 2                | 2            | 2                | 2              |
| $\Gamma$ (antisym)                | 3   | 0                | -1               | -1           | 2                | -1             |

$$\Gamma_{xyz} \otimes \Gamma_{xyz} = (A_2'' \oplus E') \otimes (A_2'' \oplus E') = \underbrace{A_2'' \otimes A_2''}_{z^2; A_1'} \oplus \underbrace{2A_2'' \otimes E'}_{xz, yz, zx, zy; 2 E''} \oplus \underbrace{E' \otimes E'}_{x^2, y^2, xy, yx; A_1' \oplus A_2' \oplus E'}$$
(5)

$$= 2 A_1' \oplus A_2' \oplus E' \oplus 2 E''$$

$$\tag{6}$$

$$\Gamma(\text{antisym}) = A_2' \oplus E'' \tag{7}$$

$$\Gamma(\text{sym}) = 2 \, \text{A}_1' \oplus \text{E}' \oplus \text{E}'' \tag{8}$$

Ce qui nous intéresse est le produit symétrique, il faut donc enlever les composantes antisymétriques.

**1.5.** Il suffit de lire la deuxième colonne après la table qui donne la même information  $x^2 + y^2, z^2, (x^2 - y^2, 2xy), (xy, yz)$ :

$$\Gamma(\text{sym}) = 2 \, \text{A}_1' \oplus \text{E}' \oplus \text{E}'' \tag{9}$$

On a bien les 6 termes correspondant à la diagonale supérieure d'un tenseur symétrique (xx, yy, zz, xy, xz, yz) avec redondance pour (yx, zx, zy).

#### 2. Aspects électroniques

- **2.1.** Toues les RI sont de dimension 1 ou 2, ce qui correspond aux dégénérescences essentielles possibles de la partie électronique.
- **2.2.** La base des 6 orbitales s est stable.

$$\Gamma_{s} = A_{1}' \oplus A_{2}'' \oplus E' \oplus E'' \tag{10}$$

**2.3.** On peut regarder l'allure des représentations correspondantes.



| D <sub>3h</sub>       | 1 E | 2 C <sub>3</sub> | 3 C <sub>2</sub> | $1 \sigma_h$ | 2 S <sub>3</sub> | $3 \sigma_{v}$ |
|-----------------------|-----|------------------|------------------|--------------|------------------|----------------|
| $\Gamma_{\mathrm{z}}$ | 1   | 1                | -1               | -1           | -1               | 1              |
| $\Gamma_{C}$          | 3   | 0                | 1                | 3            | 0                | 1              |
| $\Gamma_{ m p_z}$     | 3   | 0                | -1               | -3           | 0                | 1              |

$$\Gamma_{\mathbf{p}_z} = \mathbf{A}_2'' \oplus \mathbf{E}'' \tag{11}$$

C'est plus facile pour avoir des orbitales base des RI, il suffit de prendre les mêmes symétries que pour les orbitales s.



#### 3. Vibrations

- **3.1.** La molécule est non linéaire, il y a donc  $9 \times 3 6 = 21$  MNV.
- **3.2.** Vu la quantité, on va faire la méthode qui utilise les coordonnées cartésiennes!

| D <sub>3h</sub>       | 1 E | 2 C <sub>3</sub> | 3 C <sub>2</sub> | $1 \sigma_h$ | 2 S <sub>3</sub> | $3 \sigma_v$ |
|-----------------------|-----|------------------|------------------|--------------|------------------|--------------|
| $\Gamma_{	ext{xyz}}$  | 3   | 0                | -1               | 1            | -2               | 1            |
| $\Gamma_{ m s}$       | 6   | 0                | 0                | 0            | 0                | 2            |
| $\Gamma_{\mathrm{C}}$ | 3   | 0                | 1                | 3            | 0                | 1            |
| $\Gamma_{atomes}$     | 9   | 0                | 1                | 3            | 0                | 3            |
| $\Gamma_{tot}$        | 27  | 0                | -1               | 3            | 0                | 3            |

$$\Gamma_{\text{tot}} = 3 \, A_1' \oplus 2 \, A_2' \oplus 5 \, E' \oplus A_1'' \oplus 3 \, A_2'' \oplus 4 \, E'' \tag{12}$$

$$\Gamma_{\text{vib+rot}} = A_2'' \oplus E' \oplus A_2' \oplus E'' \tag{13}$$

$$\Gamma_{\text{MNV}} = 3 \, A_1' \oplus A_2' \oplus 4 \, E' \oplus A_1'' \oplus 2 \, A_2'' \oplus 3 \, E'' \tag{14}$$

**3.3.** Le problème est analogue à celui pour les orbitales s des hydrogènes. Donc :

$$\Gamma_{\ell_i} = A_1' \oplus A_2'' \oplus E' \oplus E'' \tag{15}$$

- **3.4.** La molécule devient alors  $C_{2\nu}$ .
- 3.5. On peut faire la descente en symétrie de la table :

$$\sigma_h \Rightarrow \sigma_{xz}$$
 (16)

$$\sigma_v \Rightarrow \sigma_{yz}$$
 (17)

| D <sub>3h</sub> | 1 E | 2 C <sub>3</sub> | 3 C <sub>2</sub> | $1 \sigma_h$ | 2 S <sub>3</sub> | $3 \sigma_v$ |
|-----------------|-----|------------------|------------------|--------------|------------------|--------------|
| $A_1'$          | 1   | 1                | 1                | 1            | 1                | 1            |
| $A_2'$          | 1   | 1                | -1               | 1            | 1                | -1           |
| E'              | 2   | -1               | 0                | 2            | -1               | 0            |
| $A_1''$         | 1   | 1                | 1                | -1           | -1               | -1           |
| $A_2''$         | 1   | 1                | -1               | -1           | -1               | 1            |
| E''             | 2   | -1               | 0                | -2           | 1                | 0            |

On en déduit que :

$$\begin{array}{lll} A_{1}' \Rightarrow A_{1} & & & & & \\ A_{2}' \Rightarrow B_{1} & & & & \\ E' \Rightarrow A_{1} \oplus B_{1} & & & & \\ A_{1}'' \Rightarrow A_{2} & & & & \\ A_{2}'' \Rightarrow B_{2} & & & & \\ E'' \Rightarrow A_{2} \oplus B_{2} & & & & \\ E'' \Rightarrow A_{2} \oplus B_{2} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

| $C_{2v}$                   | Е  | $C_2$ | $\sigma_{v}(xz)$ | $\sigma_v^\prime(yz)$ |
|----------------------------|----|-------|------------------|-----------------------|
| $\Gamma_{\mathrm{atomes}}$ | 9  | 1     | 3                | 3                     |
| $\Gamma_{ m xyz}$          | 3  | -1    | 1                | 1                     |
| $\Gamma_{ m tot}$          | 27 | -1    | 3                | 3                     |

La formule de décomposition donne la même chose.

# 4. Détermination de groupe ponctuel de symétrie

**4.1.** Il s'agit du groupe  $D_{2d}$ .

| C <sub>2h</sub>           | Е | C <sub>2</sub> | i  | $\sigma_{\rm h}$ |
|---------------------------|---|----------------|----|------------------|
| $A_{u}$                   | 1 | 1              | 1  | 1                |
| $\mathrm{B}_{\mathrm{g}}$ | 1 | -1             | 1  | -1               |
| $A_{\mathbf{u}}$          | 1 | 1              | -1 | -1               |
| $B_{\mathbf{u}}$          | 1 | -1             | -1 | 1                |

### 1. Éléments et opérations de symétrie

1.1.



1.2.

| $C_{2h}$        | E                         | $C_2$           | i            | $\sigma_{\rm h}$ |
|-----------------|---------------------------|-----------------|--------------|------------------|
| Е               | E                         | $C_2$           | i            | $\sigma_{\rm h}$ |
| $C_2$           | $C_2$                     | E               | $\sigma_{h}$ | i                |
| i               | i                         | $\sigma_{h} \\$ | E            | $C_2$            |
| $\sigma_{h} \\$ | $\sigma_{\boldsymbol{h}}$ | i               | $C_2$        | E                |

**1.3.** Il faut coupler  $C_{2,y}$  avec une inversion dans le plan  $\sigma_{xz}$ .

### 2. Aspects électroniques

**2.1.** On peut voir que toutes les RI sont de dimension 1, donc ce sera le cas des fonctions d'onde spatiales.

2.2.

En sommant toutes les lignes de la table, on trouve :

$$\Gamma_s = A_g \oplus B_g \oplus A_u \oplus B_u \tag{26}$$

2.3.



**2.4.** Les bases  $\{S_1, S_2\}$ ,  $\{p_{z_1}, p_{z_2}\}$ ,  $\{p_{x_1}, p_{x_2}\}$  et  $\{p_{y_1}, p_{y_2}\}$  sont toutes stables.

| C <sub>2h</sub>   | Е | $C_2$ | i | $\sigma_{\rm h}$ |
|-------------------|---|-------|---|------------------|
| $\Gamma_{N_i}$    | 2 | 0     | 0 | 2                |
| $\Gamma_{S_{i}}$  | 2 | 0     | 0 | 2                |
| $\Gamma_{p_{zi}}$ | 2 | 0     | 0 | -2               |
| $\Gamma_{p_{xi}}$ | 2 | 0     | 0 | 2                |
| $\Gamma_{p_{yi}}$ | 2 | 0     | 0 | 2                |

$$\Gamma_{S_i} = \Gamma_{p_{xi}} = \Gamma_{p_{yi}} = A_g \oplus B_u \tag{27}$$

$$\Gamma_{\mathbf{p}_{zi}} = \mathbf{B}_{\mathbf{g}} \oplus \mathbf{A}_{\mathbf{u}} \tag{28}$$



**2.7.** Les groupes d'orbitales sur l'azote sont orthogonales entre elles (même celles appartenant aux mêmes RI). Par contre, les orbitales sur les atomes d'hydrogène ne sont pas orthogonales à celles sur les atomes d'azote.

|                  | $S_i$        |                  | p                | $\mathbf{o}_{x}$ | p                | y        | p            | z            |
|------------------|--------------|------------------|------------------|------------------|------------------|----------|--------------|--------------|
|                  | $A_{g}$      | $B_{\mathrm{u}}$ | $B_{\mathrm{u}}$ | $A_{g}$          | $B_{\mathrm{u}}$ | $A_{g}$  | $A_{u}$      | $B_{g}$      |
| Ag               | $\checkmark$ |                  |                  | $\checkmark$     |                  | <b>√</b> |              |              |
| $A_{u}$          |              |                  |                  |                  |                  |          | $\checkmark$ |              |
| $B_{\mathbf{u}}$ |              | $\checkmark$     | $\checkmark$     |                  | $\checkmark$     |          |              |              |
| $B_{\mathbf{g}}$ |              |                  |                  |                  |                  |          |              | $\checkmark$ |

**2.8.** Le difluor est  $D_{\infty h}$ , on peut donc faire une descente en symétrie de  $D_{\infty h}$  vers  $C_{2h}$ . On en déduit que l'état fondamental de l'hydrazine est  $A_g$ .

2.9.

| D | ∞h      | Е | $2C_{\infty}^{\phi}$ | $\infty \sigma_{v}$ | i  |     | $2 S_{\infty}^{\phi}$ | $\infty$ C <sub>2</sub> |
|---|---------|---|----------------------|---------------------|----|-----|-----------------------|-------------------------|
| Ι | $I_{g}$ | 2 | •                    | 0                   | 2  |     | •                     | 0                       |
| Δ | Δu      | 2 | •                    | 0                   | -2 | ••• | •                     | 0                       |

*Remarque* : il faut faire attention à l'ordre des opérations qui n'est pas forcément le même d'un groupe à l'autre.

| C <sub>2h</sub> | Е   | C <sub>2</sub> | i       | $\sigma_{\rm h}$ |
|-----------------|-----|----------------|---------|------------------|
| $\Pi_{g}$       | 2 2 | 0              | 2<br>-2 | 0                |
| $\Delta_{ m u}$ | Z   | U              | -2      | U                |

On en déduit:

$$\Pi_{g} \Rightarrow A_{g} \oplus B_{g} \tag{29}$$

$$\Delta_{\mathbf{u}} \Rightarrow \mathbf{A}_{\mathbf{u}} \oplus \mathbf{B}_{\mathbf{u}} \tag{30}$$

(31)

### 3. Vibrations

**3.1.** La molécule est non linéaire, il y a donc  $6 \times 3 - 6 = 12$  MNV.

**3.2.** 

| C <sub>2h</sub>         | Е  | $C_2$ | i  | $\sigma_{\rm h}$ |
|-------------------------|----|-------|----|------------------|
| $\Gamma_{Atomes}$       | 6  | 0     | 0  | 2                |
| $\Gamma_{\mathrm{xyz}}$ | 3  | -1    | -3 | 1                |
| $\Gamma_{ m tot}$       | 18 | 0     | 0  | 2                |

$$\Gamma_{\text{tot}} = 5 A_g \oplus 4 B_g \oplus 4 A_u \oplus 5 B_u$$
 (32)

$$\Gamma_{\text{rot+vib}} = A_g \oplus 2 \ B_g \oplus A_u \oplus 2 \ B_u \tag{33}$$

$$\Gamma_{\rm MNV} = 4~{\rm A_g} \oplus 2~{\rm B_g} \oplus 3~{\rm A_u} \oplus 3~{\rm B_u} \tag{34} \label{eq:mnv}$$

(35)

**3.3.** 

$$\begin{array}{cccccc} C_{2h} & E & C_2 & i & \sigma_h \\ \\ \Gamma_{\ell,N-H} & 4 & 0 & 0 & 0 \\ \\ \Gamma_{\ell,N-N} & 1 & 1 & 1 & 1 \end{array}$$

$$\Gamma_{\ell} = 2 A_g \oplus B_g \oplus A_u \oplus B_u \tag{36}$$

**3.4.** On a une rotation selon l'axe y des deux groupements  $NH_2$  en contresens l'un par rapport à l'autre. Le mode est  $A_u$ .