

Page 1 of 35

APPLICATION CERTIFICATION FCC Part 15C On Behalf of ZEGO ELECTRONIC COMPANY LIMITED

Zeraxa PRO Model No.: 66223

FCC ID: 2ACS627TX

Prepared for : ZEGO ELECTRONIC COMPANY LIMITED

Address : ROOM 703, KOWLOON BUILDING, 555 NATHAN

ROAD, KOWLOON, HONG KONG

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science

& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20181577

Date of Test : September 4, 2018

Date of Report : September 10, 2018

TABLE OF CONTENTS

Description Page

Test	t Report Certification	
1.	GENERAL INFORMATION	4
1.1	1. Description of Device (EUT)	4
1.2		
1.3	3. Special Accessory and Auxiliary Equipment	5
1.4	4. Description of Test Facility	5
1.5	5. Measurement Uncertainty	5
2.	MEASURING DEVICE AND TEST EQUIPMENT	6
3.	OPERATION OF EUT DURING TESTING	7
3.1	1. Operating Mode	7
3.2	2. Configuration and peripherals	7
4.	TEST PROCEDURES AND RESULTS	8
5.	20DB BANDWIDTH MEASUREMENT	9
5.1	1. Block Diagram of Test Setup	9
5.2		
5.3		
5.4		
5.5	5. Test Result	10
6.	BAND EDGE COMPLIANCE TEST	12
6.1	1. Block Diagram of Test Setup	12
6.2	2. The Requirement For Section 15.249	12
6.3	3. EUT Configuration on Measurement	12
6.4		
6.5		
6.6		
	RADIATED SPURIOUS EMISSION TEST	
7.1	· · · · · · · · · · · · · · · · · · ·	
7.2		
7.3	- · · · · · · · · · · · · · · · · · · ·	
7.4		
7.5	- r	
7.6		
7.7		
7.8	ϵ	
	ANTENNA REQUIREMENT	
8.1	1	
8.2	2. Antenna Construction	

Page 3 of 35

Test Report Certification

Applicant : ZEGO ELECTRONIC COMPANY LIMITED

Address : ROOM 703, KOWLOON BUILDING, 555 NATHAN ROAD,

KOWLOON, HONG KONG

Manufacturer : Shenzhen Yangri Electronic Company Limited

Address : The Third Industrial Area, Luotian community, Songgang town,

Shenzhen City, China

Product : Zeraxa PRO

Model No. : 66223

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.10: 2013

The EUT was tested according to FCC 47CFR 15.249 for compliance to FCC 47CFR 15.249 requirements

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.249 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test:	September 4, 2018
Date of Report :	September 10, 2018
Prepared by :	(S Yang Engaper)
Approved & Authorized Signer:	7 emily
	(Sean Liu, Manager)

Report No.: ATE20181577
Page 4 of 35

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Zeraxa PRO

Model Number : 66223

Frequency Range : 2415MHz-2465MHz

Number of Channels : 51

Modulation mode : GFSK

Antenna Gain : 0dBi

Antenna type : Wire antenna

Power Supply : DC 6V

Applicant : ZEGO ELECTRONIC COMPANY LIMITED

Address : ROOM 703, KOWLOON BUILDING, 555 NATHAN

ROAD, KOWLOON, HONG KONG

Manufacturer : Shenzhen Yangri Electronic Company Limited

Address : The Third Industrial Area, Luotian community, Songgang

town, Shenzhen City, China

1.2. Frequency List

Channel	Freq (MHz)	Channel	Freq (MHz)	Channel	Freq (MHz)	Channe1	Freq (MHz)	Channe1	Freq (MHz)
1	2415	12	2426	23	2437	34	2448	45	2459
2	2416	13	2427	24	2438	35	2449	46	2460
3	2417	14	2428	25	2439	36	2450	47	2461
4	2418	15	2429	26	2440	37	2451	48	2462
5	2419	16	2430	27	2441	38	2452	49	2463
6	2420	17	2431	28	2442	39	2453	50	2464
7	2421	18	2432	29	2443	40	2454	51	2465
8	2422	19	2433	30	2444	41	2455		
9	2423	20	2434	31	2445	42	2456		
10	2424	21	2435	32	2446	43	2457		
11	2425	22	2436	33	2447	44	2458		

Page 5 of 35

1.3. Special Accessory and Auxiliary Equipment

N/A

1.4. Description of Test Facility

EMC Lab : Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm : Shenzhen Accurate Technology Co., Ltd.

Site Location : 1/F., Building A, Changyuan New Material Port, Science

& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

1.5. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 06, 2018	One Year
EMI Test Receiver	Rohde&Schwarz	ESR	101817	Jan. 06, 2018	One Year
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 06, 2018	One Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 06, 2018	One Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 06, 2018	One Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 06, 2018	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 06, 2018	One Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 06, 2018	One Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 06, 2018	One Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 06, 2018	One Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 06, 2018	One Year
Conducted Emissio	n Measurement Soft	ware: ES-K1 V1.	71		

Radiated Emission Measurement Software: EZ_EMC V1.1.4.2

Page 7 of 35

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: **Transmitting mode**

Low Channel: 2415MHz Middle Channel: 2445MHz High Channel: 2465MHz

3.2. Configuration and peripherals

EUT

Figure 1 Setup: Transmitting mode

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.215(c)	20dB Bandwidth	Compliant
Section 15.249(d)	Band Edge Compliance Test	Compliant
Section 15.205(a), Section 15.209(a), Section 15.249, Section 15.35	Radiated Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	N/A
Section 15.203	Antenna Requirement	Compliant

Note: The power supply mode of the EUT is DC 6V, According to the FCC standard requirements, conducted emission is not applicable.

5. 20DB BANDWIDTH MEASUREMENT

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.215(c)

The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system RF bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The hopset shall be such that the near-term distribution of frequencies appears random, with sequential hops randomly distributed in both direction and magnitude of change in the hopset while the long-term distribution appears evenly distributed.

5.3. Operating Condition of EUT

- 5.3.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.3.2. Turn on the power of all equipment.
- 5.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 2415, 2445, 2465MHz.

5.4.Test Procedure

- 5.4.1. Place the EUT on the table and set it in transmitting mode.
- 5.4.2.Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 5.4.3.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz, Detector function=peak, Trace=max hold, Sweep=auto.
- 5.4.4.Set the measured low, middle and high frequency and test 20dB bandwidth with spectrum analyzer.

5.5.Test Result

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)				
Low	2415	1.366				
Middle	2445	1.310				
High	2465	1.350				

The spectrum analyzer plots are attached as below.

Low channel

Comment A:
Date: 12.SEP.2018 18:10:24

Middle channel

Comment A:
Date: 12.SEP.2018 18:14:45

High channel

Comment A: Date: 12.SEP.2018 16:03:57

6. BAND EDGE COMPLIANCE TEST

6.1.Block Diagram of Test Setup

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

6.2. The Requirement For Section 15.249

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

6.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

Report No.: ATE20181577
Page 13 of 35

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2415, 2465MHz.

6.5. Test Procedure

Radiate Band Edge:

- 6.5.1. The EUT is placed on a turntable, which is 1.5m above the ground plane and worked at highest radiated power.
- 6.5.2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 6.5.3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 6.5.4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

RBW=1MHz, VBW=1MHz

6.5.5. The band edges was measured and recorded.

6.6.Test Result

Pass.

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

- 3. Display the measurement of peak values.
- 4. The average measurement was not performed when peak measured data under the limit of average detection.

The spectrum analyzer plots are attached as below.

Page 14 of 35

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1309

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2415MHz

Model: 66223 Manufacturer: Yangri

Note: Report NO.:ATE20181577 Polarization: Horizontal

Power Source: DC 6V

Date: 2018/09/04 Time: 15:27:18 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	41.36	-8.00	33.36	74.00	-40.64	peak	200	302	
2	2390.000	32.12	-8.00	24.12	54.00	-29.88	AVG	200	158	
3	2400.000	41.54	-7.97	33.57	74.00	-40.43	peak	200	26	
4	2400.000	32.65	-7.97	24.68	54.00	-29.32	AVG	200	48	

Page 15 of 35

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1308

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2415MHz

Model: 66223 Manufacturer: Yangri

Note: Report NO.:ATE20181577

Polarization: Vertical Power Source: DC 6V

Date: 2018/09/04 Time: 15:26:42 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	40.75	-8.00	32.75	74.00	-41.25	peak	200	302	
2	2390.000	30.21	-8.00	22.21	54.00	-31.79	AVG	150	156	
3	2400.000	41.54	-7.97	33.57	74.00	-40.43	peak	200	112	
4	2400.000	31.52	-7.97	23.55	54.00	-30.45	AVG	150	45	

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Distance:

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20181577

Page 16 of 35

Job No.: frank2018 #1307 Polarization: Horizontal Standard: FCC PK Power Source: DC 6V

Standard: FCC PK Power Source: DC 6V
Test item: Radiation Test Date: 2018/09/04

 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 15:25:58

 EUT:
 Zeraxa PRO
 Engineer Signature:

Mode: TX 2465MHz

Model: 66223

Manufacturer: Yangri

Note: Report NO.:ATE20181577

No	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	42.07	-7.76	34.31	74.00	-39.69	peak	250	302	
2	2483.500	32.01	-7.76	24.25	54.00	-29.75	AVG	200	156	
3	2500.000	43.38	-7.71	35.67	74.00	-38.33	peak	250	74	
4	2500.000	33.25	-7.71	25.54	54.00	-28.46	AVG	200	246	

Page 17 of 35

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1306

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2465MHz

Model: 66223 Manufacturer: Yangri

Note: Report NO.:ATE20181577

Polarization: Vertical Power Source: DC 6V

Date: 2018/09/04 Time: 15:23:58 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	42.07	-7.76	34.31	74.00	-39.69	peak	200	201	
2	2483.500	32.51	-7.76	24.75	54.00	-29.25	AVG	150	154	
3	2500.000	43.38	-7.71	35.67	74.00	-38.33	peak	200	265	
4	2500.000	33.54	-7.71	25.83	54.00	-28.17	AVG	150	223	

Report No.: ATE20181577
Page 18 of 35

7. RADIATED SPURIOUS EMISSION TEST

7.1.Block Diagram of Test Setup

7.1.1.Block diagram of connection between the EUT and peripherals

7.1.2.Semi-Anechoic Chamber Test Setup Diagram

(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

Page 19 of 35

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

7.2. The Limit For Section 15.249

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph A8.4(4), the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

7.3. Restricted bands of operation

7.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{2}$
13.36-13.41			

Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

7.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Page 21 of 35

7.5. Operating Condition of EUT

- 7.5.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.5.2. Turn on the power of all equipment.
- 7.5.3.Let the EUT work in TX modes and measure it. The transmit frequency are 2415, 2445, 2465MHz.

7.6. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter(Below 1GHz) and 1.5m(above 1GHz) high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

The bandwidth of test receiver is set at 9 kHz in below 30MHz, and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 26.5GHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

RBW (120 kHz), VBW (300 kHz) for QP detector below 1GHz Peak detector above 1GHz RBW (1 MHz), VBW (3MHz) for Peak measurement RBW (1 MHz), VBW (10Hz) for AV measurement

Page 22 of 35

7.7. Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	48.69	-13.35	35.34	46	-10.66	QP

Frequency(MHz) = Emission frequency in MHz

Reading($dB\mu\nu$) = Uncorrected Analyzer/Receiver reading

Factor (dB/m) = Antenna factor + Cable Loss – Amplifier gain

Result($dB\mu\nu/m$) = Reading($dB\mu\nu$) + Factor(dB/m)

Limit $(dB\mu v/m) = Limit$ stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

QP = Quasi-peak Reading

Calculation Formula:

 $Margin(dB) = Result (dB\mu V/m) - Limit(dB\mu V/m)$

Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

7.8. The Field Strength of Radiation Emission Measurement Results

Pass.

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The EUT is tested radiation emission in three axes. The worst emissions are reported in all channels.
- 4. The radiation emissions from 9KHz-30MHz and 18GHz-26.5GHz are not reported, because the test values lower than the limits of 20dB.

The spectrum analyzer plots are attached as below.

Report No.: ATE20181577 Page 23 of 35

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Horizontal

Power Source: DC 6V Date: 18/09/04/ Time: 10/26/44 Engineer Signature:

Distance:

Job No.: frank2018 #1247

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2415MHz Model: 66223

Manufacturer: YangRi

Note: Report NO.:ATE20181577

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	200.7471	35.05	-18.68	16.37	43.50	-27.13	QP	200	93	
2	279.3104	34.97	-16.73	18.24	46.00	-27.76	QP	200	215	
3	686.6340	34.30	-8.20	26.10	46.00	-19.90	QP	200	116	
4	809.9238	34.88	-5.72	29.16	46.00	-16.84	QP	200	166	
5	887.3976	34.77	-4.39	30.38	46.00	-15.62	QP	200	233	
6	955.3509	34.09	-3.35	30.74	46.00	-15.26	QP	200	252	

ACCURATE TECHNOLOGY CO., LTD.

Report No.: ATE20181577
Page 24 of 35

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1246

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2415MHz

Model: 66223 Manufacturer: YangRi

Note: Report NO.:ATE20181577

Polarization: Vertical

Power Source: DC 6V

Date: 18/09/04/ Time: 10/26/22 Engineer Signature:

								limit1:		
60										
50										
40										
30								4	will your	, AND
20	Make the control of t		hajallipatanish paramentari baran far	. n sv.s. i hajdysvýtka pl	haraly deplay design	La Popularia	Makethareth	gaalitadii ahii		
10	Manager Strategick Little Parket Little Commencer	wall	his Market of the second of the second	י יייין אידיאיי						
0.0										

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	189.1074	36.23	-19.52	16.71	43.50	-26.79	QP	100	103	
2	297.5459	36.19	-16.33	19.86	46.00	-26.14	QP	100	251	
3	421.3287	35.68	-13.69	21.99	46.00	-24.01	QP	100	185	
4	686.6340	33.84	-8.20	25.64	46.00	-20.36	QP	100	123	
5	875.0131	33.86	-4.61	29.25	46.00	-16.75	QP	100	255	
6	996.4926	33.26	-2.74	30.52	54.00	-23.48	QP	100	21	

Report No.: ATE20181577 Page 25 of 35

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1248

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

Zeraxa PRO EUT: Mode: TX 2445MHz

Model: 66223 Manufacturer: YangRi

Report NO.:ATE20181577 Note:

Polarization: Horizontal

Power Source: DC 6V

Date: 18/09/04/ Time: 10/27/20 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	118.0956	36.98	-21.27	15.71	43.50	-27.79	QP	200	114	
2	195.1830	35.86	-18.96	16.90	43.50	-26.60	QP	200	165	
3	369.9658	36.43	-14.23	22.20	46.00	-23.80	QP	200	48	
4	507.5693	36.92	-12.06	24.86	46.00	-21.14	QP	200	159	
5	754.9628	36.04	-6.65	29.39	46.00	-16.61	QP	200	113	
6	890.5212	40.36	-4.32	36.04	46.00	-9.96	QP	200	102	

Page 26 of 35

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1249

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2445MHz

Model: 66223 Manufacturer: YangRi

Note: Report NO.:ATE20181577

Polarization: Vertical

Power Source: DC 6V

Date: 18/09/04/ Time: 10/27/56 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	116.0391	35.93	-21.23	14.70	43.50	-28.80	QP	100	95	
2	190.4411	36.09	-19.41	16.68	43.50	-26.82	QP	100	156	
3	296.5022	35.60	-16.34	19.26	46.00	-26.74	QP	100	129	
4	369.9658	35.31	-14.23	21.08	46.00	-24.92	QP	100	41	
5	631.1070	35.45	-9.24	26.21	46.00	-19.79	QP	100	156	
6	890.5212	36.97	-4.32	32.65	46.00	-13.35	QP	100	302	

ACCURATE TECHNOLOGY CO., LTD.

Page 27 of 35

Report No.: ATE20181577

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1251

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2465MHz

Model: 66223 Manufacturer: YangRi

TX 2465MHz

Note: Report NO.:ATE20181577

Date: 18/09/04/ Time: 10/28/24 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	33.5700	36.48	-17.30	19.18	40.00	-20.82	QP	200	45	
2	68.0241	37.82	-22.78	15.04	40.00	-24.96	QP	200	169	
3	206.4701	36.76	-18.51	18.25	43.50	-25.25	QP	200	158	
4	241.8377	38.31	-18.23	20.08	46.00	-25.92	QP	200	48	
5	381.8519	36.49	-14.14	22.35	46.00	-23.65	QP	200	159	
6	679.4346	36.04	-8.33	27.71	46.00	-18.29	QP	200	302	

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20181577

Page 28 of 35

Job No.: frank2018 #1250

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2465MHz

Model: 66223 Manufacturer: YangRi

Note: Report NO.:ATE20181577

Polarization: Vertical

Power Source: DC 6V

Date: 18/09/04/ Time: 10/28/05

Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	33.5700	36.48	-17.30	19.18	40.00	-20.82	QP	100	159	
2	68.0241	37.82	-22.78	15.04	40.00	-24.96	QP	100	200	
3	118.9284	36.10	-21.30	14.80	43.50	-28.70	QP	100	123	
4	379.1779	35.29	-14.15	21.14	46.00	-24.86	QP	100	136	
5	631.1070	35.45	-9.24	26.21	46.00	-19.79	QP	100	215	
6	890.5212	36.97	-4.32	32.65	46.00	-13.35	QP	100	132	

Page 29 of 35

Above 1GHz ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1252

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2415MHz

Model: 66223 Manufacturer: YangRi

Note: Report NO.:ATE20181577 Polarization: Horizontal

Power Source: DC 6V

Date: 18/09/04/ Time: 10/31/38 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1265.884	44.77	-11.99	32.78	74.00	-41.22	peak	200	198	
2	2415.024	89.47	-7.90	81.57	114.00	-32.43	peak	200	45	
3	4830.057	48.39	-2.10	46.29	74.00	-27.71	peak	200	158	
4	9460.230	36.39	5.45	41.84	74.00	-32.16	peak	200	159	
5	15471.706	32.53	12.64	45.17	74.00	-28.83	peak	200	115	
6	17895.518	32.02	15.42	47.44	74.00	-26.56	peak	200	302	

Report No.: ATE20181577 Page 30 of 35

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1253

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2415MHz

Model: 66223 Manufacturer: YangRi

Note: Report NO.:ATE20181577

Polarization: Vertical

Power Source: DC 6V

Date: 18/09/04/ Time: 10/31/38 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1265.884	44.77	-11.99	32.78	74.00	-41.22	peak	150	126	
2	2415.024	91.47	-7.90	83.57	114.00	-30.43	peak	150	56	
3	3547.258	41.92	-4.39	37.53	74.00	-36.47	peak	150	89	
4	4830.057	49.89	-2.10	47.79	74.00	-26.21	peak	150	159	
5	10942.278	36.79	5.80	42.59	74.00	-31.41	peak	150	154	
6	17180.926	30.94	15.02	45.96	74.00	-28.04	peak	150	302	

Page 31 of 35

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1254

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

Zeraxa PRO EUT: Mode: TX 2445MHz

Model: 66223 Manufacturer: YangRi

Note: Report NO.:ATE20181577 Polarization: Horizontal

Power Source: DC 6V

Date: 18/09/04/ Time: 10/33/06 Engineer Signature:

No. Freq. (MHz) Reading (dBuV/m) Factor (dB) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Detector (cm) Height (cdg.) Degree (deg.) Remark 1 1295.707 44.11 -11.90 32.21 74.00 -41.79 peak 150 124 2 1919.389 42.58 -9.39 33.19 74.00 -40.81 peak 150 123 3 2408.600 42.10 -7.96 34.14 74.00 -39.86 peak 150 156 4 2445.007 90.21 -7.88 82.33 114.00 -31.67 peak 150 48 5 4890.017 47.07 -2.02 45.05 74.00 -28.95 peak 150 165 6 17947.683 31.90 15.45 47.35 74.00 -26.65 peak 150 302											
2 1919.389 42.58 -9.39 33.19 74.00 -40.81 peak 150 123 3 2408.600 42.10 -7.96 34.14 74.00 -39.86 peak 150 156 4 2445.007 90.21 -7.88 82.33 114.00 -31.67 peak 150 48 5 4890.017 47.07 -2.02 45.05 74.00 -28.95 peak 150 165	No.	A 25	State of the state		G. 100 C.		921 300 300	Detector			Remark
3 2408.600 42.10 -7.96 34.14 74.00 -39.86 peak 150 156 4 2445.007 90.21 -7.88 82.33 114.00 -31.67 peak 150 48 5 4890.017 47.07 -2.02 45.05 74.00 -28.95 peak 150 165	1	1295.707	44.11	-11.90	32.21	74.00	-41.79	peak	150	124	
4 2445.007 90.21 -7.88 82.33 114.00 -31.67 peak 150 48 5 4890.017 47.07 -2.02 45.05 74.00 -28.95 peak 150 165	2	1919.389	42.58	-9.39	33.19	74.00	-40.81	peak	150	123	
5 4890.017 47.07 -2.02 45.05 74.00 -28.95 peak 150 165	3	2408.600	42.10	-7.96	34.14	74.00	-39.86	peak	150	156	
The state of the s	4	2445.007	90.21	-7.88	82.33	114.00	-31.67	peak	150	48	
6 17947.683 31.90 15.45 47.35 74.00 -26.65 peak 150 302	5	4890.017	47.07	-2.02	45.05	74.00	-28.95	peak	150	165	
	6	17947.683	31.90	15.45	47.35	74.00	-26.65	peak	150	302	

Report No.: ATE20181577
Page 32 of 35

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1255

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2445MHz

Model: 66223 Manufacturer: YangRi

Note: Report NO.:ATE20181577

Polarization: Vertical

Power Source: DC 6V

Date: 18/09/04/ Time: 10/33/06 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1295.707	44.11	-11.90	32.21	74.00	-41.79	peak	200	176	
2	2445.007	88.71	-7.88	80.83	114.00	-33.17	peak	200	112	
3	4890.017	46.57	-2.02	44.55	74.00	-29.45	peak	200	41	
4	7050.590	37.33	1.86	39.19	74.00	-34.81	peak	200	188	
5	11631.997	35.64	6.71	42.35	74.00	-31.65	peak	200	48	
6	17947.683	31.90	15.45	47.35	74.00	-26.65	peak	200	301	

Report No.: ATE20181577 Page 33 of 35

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

ACCURATE TECHNOLOGY CO., LTD.

Job No.: frank2018 #1257 Polarization: Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2465MHz

Model: 66223 Manufacturer: YangRi

Note: Report NO.:ATE20181577 Horizontal

Power Source: DC 6V

Date: 18/09/04/ Time: 10/33/06 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1295.707	44.11	-11.90	32.21	74.00	-41.79	peak	150	210	
2	2465.045	90.64	-7.80	82.84	114.00	-31.16	peak	150	132	
3	3996.886	39.18	-3.30	35.88	74.00	-38.12	peak	150	46	
4	4930.044	45.59	-1.92	43.67	74.00	-30.33	peak	150	136	
5	8643.983	35.81	4.42	40.23	74.00	-33.77	peak	150	156	
6	17947.683	31.90	15.45	47.35	74.00	-26.65	peak	150	302	

Page 34 of 35

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: frank2018 #1256

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Zeraxa PRO Mode: TX 2465MHz

Model: 66223 Manufacturer: YangRi

Report NO.:ATE20181577 Note:

Polarization: Vertical

Power Source: DC 6V

Date: 18/09/04/ Time: 10/33/06 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1295.707	44.11	-11.90	32.21	74.00	-41.79	peak	200	143	
2	2465.045	87.64	-7.80	79.84	114.00	-34.16	peak	200	166	
3	4930.044	44.59	-1.92	42.67	74.00	-31.33	peak	200	46	
4	7967.435	36.35	3.30	39.65	74.00	-34.35	peak	200	199	
5	11631.997	35.64	6.71	42.35	74.00	-31.65	peak	200	152	
6	17947.683	31.90	15.45	47.35	74.00	-26.65	peak	200	302	

Page 35 of 35

8. ANTENNA REQUIREMENT

8.1. The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****