Generalidades de la materia

Dr. Ing. Rodrigo Gonzalez

rodrigo.gonzalez@ingenieria.uncu.edu.ar

Control y Sistemas

Facultad de Ingeniería, Universidad Nacional de Cuyo

Resumen

- Horarios
- 2 Cronograma
- Metodología
- 4 Herramientas
- Regularización
- Parciales
- Anteproyecto
- Proyecto final

Horarios

- Clases: martes de 8:30 a 12:30 h.
- Onsulta: miércoles de 14:00 a 15:00 h.
- Mesa: martes a 15:00 h.

Cronograma

CONTROL y SISTEMAS			
No	Fecha	Tema	Unidad
1	03/03/2020	Transformada Z. Modelos Discretos.	Unidad 1
2	10/03/2020	Representacion finita de numeros reales en formato punto fijo.	Unidad 1
3	17/03/2020	Representacion finita de numeros reales en formato punto flotante.	Unidad 1
	24/03/2020	Feriado: Día Nacional de la Memoria por la Verdad y Justicia	
4	31/03/2020	Etapas típicas en procesamiento digital de señales.	Unidad 2
5	07/04/2020	Diseño de filtros FIR.	Unidad 2
6	14/04/2020	Diseño de filtros IIR.	Unidad 2
7	21/04/2020	Diseño basado en modelos / PARCIAL 1.	Unidad 3
8	28/04/2020	Modelado de sistemas mecánicos, eléctricos y masa-resorte. Introduccion a Simscape / Modelado de sistemas hidráulicos y neumáticos / RECUPERATORIO 1.	Unidad 3
9	05/05/2020	Controladores PID de 1er y 2do orden (PI-D, I-PD).	Unidad 4
10	12/05/2020	Control óptimo (LQR). Minimum energy estimator (MEE).	Unidad 4
11	19/05/2020	Observador Proporcional integral.	Unidad 4
12	26/05/2020	Filtro de Kalman.	Unidad 4
13	02/06/2020	Definición de anteproyecto / PARCIAL 2.	Unidad 5
14	09/06/2020	Definición de anteproyecto / RECUPERATORIO 2.	Unidad 5

Metodología

- Clases teórico prácticas.
- Introducción teórica seguida de la práctica.
- Todas los contenidos se pueden bajar de http://github.com/rodralez/control.

Herramientas

- Programación en C, a partir del 10/03/2020.
- MATLAB, a partir del 10/03/2020.
- SIMULINK / SIMSCAPE, a partir del 21/04/2020.

Regularización

- Tener 75 % de asistencia.
- Participar en clase del 75 % de las actividades prácticas.
- Aprobar los 2 parciales, o sus recuperatorios.
- Presentar regularmente ejercicios resueltos en forma individual.
- Presentar un anteproyecto mecatrónico de carácter individual.

Parciales

- Parcial 1: martes 21 de abril.
- Recuperatorio 1: martes 28 de abril.
- Parcial 2: martes 2 de junio.
- Recuperatorio 2: martes 9 de junio.
- Los parciales se toman en la segunda parte de la clase.
- Se evalúan contenidos teórico prácticos.

Anteproyecto

- Título del proyecto final.
- Objetivos que se pretenden alcanzar.
- Breve descripción del proyecto a desarrollar con al menos la siguiente información:
 - Descripción de la planta a controlar.
 - Identificación de las variables de entrada y salida del sistema.
 - Tipo de control a implementar.
 - Herramientas de simulación que se usarán.

Proyecto final

- Se debe modelar y controlar un sistema mecatrónico a nivel simulación de mediana complejidad.
- El alumno debe tratar de solucionar un problema real.
- El control del sistema debe ser discreto. Se pueden utilizar controladores PID o en espacio de estados.
- Se debe incluir el modelado de un sensor ruidoso a la salida del sistema. Se debe usar un filtro anti-aliasing y proponer un filtrado adicional con el objetivo de mitigar el ruido.
- Se debe demostrar una correcta respuesta del sistema completo ante la presencia de ruido y perturbaciones.
- El uso de precisión punto fijo para la implementación del controlador discreto y los algoritmos de DSP se considera un plus.
- Se debe redactar un informe del proyecto final desarrollado.