UNIVERSITY COLLEGE OF ENGINEERING NAGERCOIL

(A Constituent College of Anna University, Chennai) Konam, Nagercoil - 629 004, Kanyakumari District.

LABORATORY RECORD

CS3491 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

(REGULATION 2021)

NAME	:	
EG NO	:	
SEM	:	
YEAR	:	

UNIVERSITY COLLEGE OF ENGINEERING NAGERCOIL (A Constituent College of Anna University, Chennai) Konam, Nagercoil - 629 004, Kanyakumari District.

by
this
024
nna
ent
1 (

EXTERNAL EXAMINER

INTERNAL EXAMINER

INDEX

S.NO.	DATE	EXPERIMENT TITLE	SIGN.
l			

Ex.No:1a	IMPLEMENTATION OF BASIC SEARCH
Date:	STRATEGIES – BFS

To implement a python program for Breadth First Search (BFS).

Breadth-First Search

- ➤ Breadth-first search (BFS) is a traversing algorithm which starts from a selected node (source or starting node) and explores all of the neighbour nodes at the present depth before moving on to the nodes at the next level of depth.
- ➤ It must be ensured that each vertex of the graph is visited exactly once to avoid getting into an infinite loop with cyclic graphs or to prevent visiting a given node multiple times when it can be reached through more than one path.
- ➤ Breadth-first search can be implemented using a queue data structure, which follows the first-in-first-out (FIFO) method i.e., the node that was inserted first will be visited first, and so on.

ALGORITHM:

- **Step 1**: We start the process by considering any random node as the starting vertex.
- **Step 2**: We enqueue (insert) it to the queue and mark it as visited.
- **Step 3**: Then we mark and enqueue all of its unvisited neighbours at the current depth or continue to the next depth level if there is any.
- **Step 4**: The visited vertices are removed from the queue.
- **Step 5**:The process ends when the queue becomes empty.

PROGRAM:

```
graph={
  '5':['3','7'],
  '3':['2','4'],
  '7':['8'],
  '2':[],
  '4':['8'],
  '8':[]
}
visited =[]
queue=[]
def bfs(visited,graph,node):
  visited.append(node)
  queue.append(node)
  while queue:
     m=queue.pop(0)
     print(m, end="")
     for neighbour in graph[m]:
       if neighbour not in visited:
          visited.append(neighbour)
          queue.append(neighbour)
print ("Following is the Breadth-First Search")
bfs(visited,graph,'5')
```


Ex.No:1b	
	IMPLEMENTATION OF BASIC SEARCH
Date:	STRATEGIES – DFS

To implement a python code for Depth First Search (DFS)

ALGORITHM:

Step: 1 Pick any node. If it is unvisited, mark it as visited and recur on all its adjacent nodes.

Step: 2 Repeat until all the nodes are visited, or the node to be searched is found.

Step: 3 visited is a set that is used to keep track of visited nodes.

Step: 4 The dfs function is called and is passed the visited set, the graph in the form of a dictionary, and A, which is the starting node.

Step: 5 dfs follows the algorithm described above:

- 1. It first checks if the current node is unvisited if yes, it is appended in the visited set.
- 2. Then for each neighbor of the current node, the dfs function is invoked again.
- 3. The base case is invoked when all the nodes are visited. The function then returns.

PROGRAM

```
graph = {
 '5': ['3','7'],
 '3': ['2', '4'],
 '7': ['8'],
 '2':[],
 '4': ['8'],
 '8':[]
visited = set()
def dfs(visited, graph, node): #function for dfs
  if node not in visited:
     print (node)
     visited.add(node)
     for neighbour in graph[node]:
        dfs(visited, graph, neighbour)
print("Following is the Depth-First Search")
dfs(visited, graph, '5')
```

OUTPUT:

Following is the Depth-First Search

RESULT:

Thus the program for depth-first search was implemented and executed successfully.

Ex.No:2a	
Date :	IMPLEMENTATION OF A* SEARCH ALGORITHM

To implement a path finding using A* search algorithm.

A* SEARCH:

- ➤ A* search finds the shortest path through a search space to the goal state using the heuristic function.
- ➤ This technique finds minimal cost solutions and is directed to a goal state called A* search.
- ➤ The A* algorithm also finds the lowest-cost path between the start and goal state, where changing from one state to another requires some cost.

STEPS FOR SOLVING A* SEARCH

➤ Given the graph, find the cost-effective path from A to G. That is A is the source node and G is the goal node.

Now from A, we can go to point B or E, so we compute f(x) for each of them,

$$A \rightarrow B = g(B) + h(B) = 2 + 6 = 8$$

$$A \to E = g(E) + h(E) = 3 + 7 = 10$$

- \triangleright Since the cost for A \rightarrow B is less, we move forward with this path and compute the f(x) for the children nodes of B.
- ➤ Now from B, we can go to point C or G, so we compute f(x) for each of them,

7

$$A \rightarrow B \rightarrow C = (2 + 1) + 99 = 102$$

$$A \rightarrow B \rightarrow G = (2 + 9) + 0 = 11$$

- \blacktriangleright Here the path $A \to B \to G$ has the least cost but it is still more than the cost of $A \to E$, thus we explore this path further.
- \triangleright Now from E, we can go to point D, so we compute f(x),

$$A \rightarrow E \rightarrow D = (3 + 6) + 1 = 10$$

- \triangleright Comparing the cost of A \rightarrow E \rightarrow D with all the paths we got so far and as this cost is least of all we move forward with this path.
- \triangleright Now compute the f(x) for the children of D

$$A \to E \to D \to G = (3 + 6 + 1) + 0 = 10$$

Now comparing all the paths that lead us to the goal, we conclude that $A \to E \to D \to G$ is the most cost-effective path to get from A to G.

ALGORITHM:

// A* Search Algorithm

Step 1: Place the starting node into OPEN and find its f (n) value.

Step 2: Remove the node from OPEN, having the smallest f (n) value. If it is a goal node then stop and return success.

Step 3: Else remove the node from OPEN, find all its successors.

Step 4: Find the f (n) value of all successors; place them into OPEN and place the removed node into CLOSE.

Step 5: Go to Step-2.

Step 6: Exit.

PROGRAM:

```
def aStarAlgo(start_node, stop_node):
  open_set = set(start_node)
  closed_set = set()
  g = \{\}
                  #store distance from starting node
  parents = \{\}
                     # parents contains an adjacency map of all nodes
  #distance of starting node from itself is zero
  g[start\_node] = 0
  #start_node is root node i.e it has no parent nodes
  #so start_node is set to its own parent node
  parents[start_node] = start_node
  while len(open\_set) > 0:
     n = None
     #node with lowest f() is found
     for v in open_set:
       if n == None \text{ or } g[v] + heuristic(v) < g[n] + heuristic(n):
          n = v
     if n == stop_node or Graph_nodes[n] == None:
       pass
     else:
       for (m, weight) in get_neighbors(n):
          #nodes 'm' not in first and last set are added to first
          #n is set its parent
          if m not in open_set and m not in closed_set:
             open_set.add(m)
            parents[m] = n
            g[m] = g[n] + weight
```

```
#for each node m,compare its distance from start i.e g(m) to the
    #from start through n node
    else:
       if g[m] > g[n] + weight:
          #update g(m)
          g[m] = g[n] + weight
          #change parent of m to n
          parents[m] = n
          #if m in closed set,remove and add to open
          if m in closed_set:
            closed_set.remove(m)
            open_set.add(m)
if n == None:
  print('Path does not exist!')
  return None
# if the current node is the stop_node
# then we begin reconstructin the path from it to the start_node
if n == stop_node:
  path = []
  while parents[n] != n:
    path.append(n)
    n = parents[n]
  path.append(start_node)
  path.reverse()
  print('Path found: { }'.format(path))
  return path
```

```
# remove n from the open_list, and add it to closed_list
     # because all of his neighbors were inspected
     open\_set.remove(n)
     closed_set.add(n)
  print('Path does not exist!')
  return None
#define fuction to return neighbor and its distance
#from the passed node
def get_neighbors(v):
  if v in Graph_nodes:
     return Graph_nodes[v]
  else:
     return None
#for simplicity we ll consider heuristic distances given
#and this function returns heuristic distance for all nodes
def heuristic(n):
  H_dist = {
     'A': 11,
     'B': 6,
     'C': 5,
     'D': 7,
     'E': 3,
     'F': 6,
     'G': 5,
     'H': 3,
     'I': 1,
     'J': 0
```

```
return H_dist[n]

#Describe your graph here

Graph_nodes = {
    'A': [('B', 6), ('F', 3)],
    'B': [('A', 6), ('C', 3), ('D', 2)],
    'C': [('B', 3), ('D', 1), ('E', 5)],
    'D': [('B', 2), ('C', 1), ('E', 8)],
    'E': [('C', 5), ('D', 8), ('I', 5), ('J', 5)],
    'F': [('A', 3), ('G', 1), ('H', 7)],
    'G': [('F', 1), ('I', 3)],
    'H': [('F', 7), ('I', 2)],
    'T: [('E', 5), ('G', 3), ('H', 2), ('J', 3)],
}

aStarAlgo('A', 'J')
```

OUTPUT:

Path found: ['A', 'F', 'G', 'I', 'J']

RESULT:

Thus the program for A^* search algorithm for path was implemented and executed successfully.

Ex.No:2b	IMPLEMENTATION OF MEMORY BOUNDED A*
Date :	ALGORITHM

To implement memory bounded A* search for path finding problem.

Memory bounded A* Search:

- ➤ Memory Bounded A* is a shortest path algorithm based on the A* algorithm.
- ➤ The main advantage is that it uses a bounded memory, while the A* algorithm might need exponential memory. All other characteristics of are inherited from A*.
- ➤ This search is an optimal and complete algorithm for finding a least-cost path. Unlike A*, it will not run out of memory, unless the size of the shortest path exceeds the amount of space in available memory.

STEPS FOR MEMORY BOUND SEARCH

- **Step 1**: Works like A* until memory is full
- **Step 2**: When memory is full, drop the leaf node with the highest f-value (the worst leaf), keeping track of that worst value in the parent
 - **Step 3**: Complete if any solution is reachable
 - **Step 4**: Optimal if any optimal solution is reachable
 - **Step 5**: Otherwise, returns the best reachable solution

PROGRAM:

```
def aStarAlgo(start_node, stop_node):
  open_set = set(start_node)
  closed_set = set()
  g = \{\}
                  #store distance from starting node
  parents = \{ \}
                    # parents contains an adjacency map of all nodes
  #distance of starting node from itself is zero
  g[start\_node] = 0
  #start_node is root node i.e it has no parent nodes
  #so start_node is set to its own parent node
  parents[start_node] = start_node
  while len(open\_set) > 0:
     n = None
     #node with lowest f() is found
     for v in open_set:
       if n == None or g[v] + heuristic(v) < g[n] + heuristic(n):
          n = v
     if n == stop\_node or Graph\_nodes[n] == None:
       pass
     else:
       for (m, weight) in get_neighbors(n):
          #nodes 'm' not in first and last set are added to first
          #n is set its parent
          if m not in open_set and m not in closed_set:
            open_set.add(m)
            parents[m] = n
```

```
g[m] = g[n] + weight
    #for each node m,compare its distance from start i.e g(m) to the
    #from start through n node
    else:
       if g[m] > g[n] + weight:
          #update g(m)
          g[m] = g[n] + weight
          #change parent of m to n
         parents[m] = n
          #if m in closed set,remove and add to open
          if m in closed_set:
            closed_set.remove(m)
            open_set.add(m)
if n == None:
  print('Path does not exist!')
  return None
# if the current node is the stop_node
# then we begin reconstructin the path from it to the start_node
if n == stop_node:
  path = []
  while parents[n] != n:
    path.append(n)
    n = parents[n]
  path.append(start_node)
  path.reverse()
  print('Path found: { }'.format(path))
```

```
return path
     # remove n from the open_list, and add it to closed_list
     # because all of his neighbors were inspected
     open_set.remove(n)
     closed_set.add(n)
  print('Path does not exist!')
  return None
#define fuction to return neighbor and its distance
#from the passed node
def get_neighbors(v):
  if v in Graph_nodes:
     return Graph_nodes[v]
  else:
     return None
#for simplicity we ll consider heuristic distances given
#and this function returns heuristic distance for all nodes
def heuristic(n):
  H_dist = {
     'A': 11,
     'B': 6,
     'C': 5,
     'D': 7,
     'E': 3,
     'F': 6,
     'G': 5,
```

```
'H': 3,
      'I': 1,
      'J': 0
   }
  return H_dist[n]
#Describe your graph here
Graph_nodes = {
   'A': [('B', 6), ('F', 3)],
   'B': [('A', 6), ('C', 3), ('D', 2)],
   'C': [('B', 3), ('D', 1), ('E', 5)],
   'D': [('B', 2), ('C', 1), ('E', 8)],
   'E': [('C', 5), ('D', 8), ('I', 5), ('J', 5)],
   'F': [('A', 3), ('G', 1), ('H', 7)],
   'G': [('F', 1), ('I', 3)],
   'H': [('F', 7), ('I', 2)],
   'I': [('E', 5), ('G', 3), ('H', 2), ('J', 3)],
}
aStarAlgo('A', 'J')
```

Output:

Path found: ['A', 'F', 'G', 'I', 'J']

#for simplicity we ll consider heuristic distances given #and this function returns heuristic distance for all nodes def heuristic(n):

```
H_dist = {
```

```
'A': 11,
     'B': 6,
     'C': 99,
     'D': 1,
     'E': 7,
     'G': 0,
   }
  return H_dist[n]
#Describe your graph here
Graph\_nodes = \{
  'A': [('B', 2), ('E', 3)],
  'B': [('A', 2), ('C', 1), ('G', 9)],
  'C': [('B', 1)],
  'D': [('E', 6), ('G', 1)],
  'E': [('A', 3), ('D', 6)],
  'G': [('B', 9), ('D', 1)]
}
aStarAlgo('A', 'G')
```

Output:

Path found: ['A', 'E', 'D', 'G']

RESULT:

Thus the program for memory bounded A* search was implemented and executed successfully.

Ex.No:3	- IMPLEMENT NAIVE BAYES MODEL
Date :	

To implement a program for Naïve Bayes model

NAÏVE BAYES CLASSIFIER ALGORITHM

- ➤ Naive Bayes is among one of the very simple and powerful algorithms for classification based on Bayes Theorem with an assumption of independence among the predictors.
- > The Naive Bayes classifier assumes that the presence of a feature in a class is not related to any other feature.
- ➤ Naive Bayes is a classification algorithm for binary and multi-class classification problems.

Bayes Theorem

- Based on prior knowledge of conditions that may be related to an event, Bayes theorem describes the probability of the event
- conditional probability can be found this way
- Assume we have a Hypothesis(*H*) and evidence(*E*),
- According to Bayes theorem, the relationship between the probability of Hypothesis before getting the evidence represented as *P*(*H*) and the probability of the hypothesis after getting the evidence represented as *P*(H|E) is:

P(H|E) = P(E|H)*P(H)/P(E)

STEPS INVOLVE NAÏVE BAYES ALGORITHM

Step 1: Handling Data

Data is loaded from the .csv file and spread into training and tested assets.

Step 2: Summarizing the data

Summarise the properties in the training data set to calculate the probabilities and make predictions.

Step 3: Making a Prediction

A particular prediction is made using a summarise of the data set to make a single prediction

Step 4: Making all the Predictions

Generate prediction given a test data set and a summarise data set.

Step 4: Evaluate Accuracy:

Accuracy of the prediction model for the test data set as a percentage correct out of them all the predictions made.

Step 4: Trying all together

Finally, we tie to all steps together and form our own model of Naive Bayes Classifier.

PROGRAM:

```
import pandas as pd

msg=pd.read_csv('naivetext.csv',names=['message','label'])
print('The dimensions of the dataset',msg.shape)
msg['labelnum']=msg.label.map({'pos':1,'neg':0})
X=msg.message
y=msg.labelnum
print(X)
print(y)
```

#splitting the dataset into train and test data

```
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(X,y)
print ('\n The total number of Training Data :',ytrain.shape)
print ('\n The total number of Test Data :',ytest.shape)
```

#output of count vectoriser is a sparse matrix

```
from sklearn.feature_extraction.text import CountVectorizer count_vect = CountVectorizer()
```

```
xtrain_dtm = count_vect.fit_transform(xtrain)
xtest_dtm=count_vect.transform(xtest)
print('\n The words or Tokens in the text documents \n')
print(count_vect.get_feature_names())
df=pd.DataFrame(xtrain_dtm.toarray(),columns=count_vect.get_feature_names())
```

Training Naive Bayes (NB) classifier on training data.

```
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB().fit(xtrain_dtm,ytrain)
predicted = clf.predict(xtest_dtm)
```

#printing accuracy, Confusion matrix, Precision and Recall

Output:

The dimensions of the dataset (18, 2) 0 I love this sandwich 1 This is an amazing place 2 I feel very good about these beers

- 3 This is my best work
- 4 What an awesome view
- 5 I do not like this restaurant
- 6 I am tired of this stuff
- 7 I can't deal with this
- 8 He is my sworn enemy
- 9 My boss is horrible
- 10 This is an awesome place
- 11 I do not like the taste of this juice
- 12 I love to dance
- 13 I am sick and tired of this place
- 14 What a great holiday
- 15 That is a bad locality to stay
- 16 We will have good fun tomorrow
- 17 I went to my enemy's house today

Name: message, dtype: object 0 1 1 1

2 1

2 1

3 1

4 1

50

60

0 0

110

12 1

130

14 1

150

161

170

Name: labelnum, dtype: int64

The total number of Training Data: (13,)

The total number of Test Data: (5,)

The words or Tokens in the text documents

['about', 'am', 'amazing', 'an', 'and', 'awesome', 'beers', 'best', 'can', 'deal', 'do', 'enemy', 'feel',

'fun', 'good', 'great', 'have', 'he', 'holiday', 'house', 'is', 'like', 'love', 'my', 'not', 'of', 'place',

```
'restaurant', 'sandwich', 'sick', 'sworn', 'these', 'this', 'tired', 'to', 'today', 'tomorrow', 'very',
'view', 'we', 'went', 'what', 'will', 'with', 'work']
Accuracy of the classifier is 0.8
Confusion matrix
[[2 1]
[0 2]]
The value of Precision 0.66666666666666
```

The value of Recall 1.0

RESULT:

Thus the program for naïve Bayes model was implemented and executed successfully.

Ex.No:4	- Implement Bayesian networks
Date :	Implement Dayesian networks

To write a program to construct a Bayesian network to diagnose heart disease.

ALGORITHM:

- 1. Read Cleveland Heart Disease data.
- 2. Display the data.
- 3. Display the Attributes names and datatyes.
- 4. Create Model- Bayesian Network.
- 5. Learn CPDs using Maximum Likelihood Estimators
- 6. Compute the Probability of HeartDisease given restecg.
- 7. computing the Probability of HeartDisease given cp.

Data set:heart.csv

PROGRAM:

import numpy as np

import pandas as pd

import csv

 $from\ pgmpy.estimators\ import\ Maximum Likelihood Estimator$

from pgmpy.models import BayesianModel

from pgmpy.inference import VariableElimination

#read Cleveland Heart Disease data

```
heartDisease = pd.read_csv('heart.csv')
heartDisease = heartDisease.replace('?',np.nan)
#display the data
print('Sample instances from the dataset are given below')
print(heartDisease.head())
#display the Attributes names and datatyes
print('\n Attributes and datatypes')
print(heartDisease.dtypes)
#Creat Model- Bayesian Network
model=BayesianModel([('age', 'heartdisease'), ('sex', 'heartdisease'), ('exang', 'heart
disease'),('cp','heartdisease'),('heartdisease','restecg'),('heartdisease','chol')])
#Learning CPDs using Maximum Likelihood Estimators
print('\n Learning CPD using Maximum likelihood estimators')
model.fit(heartDisease,estimator=MaximumLikelihoodEstimator)
# Inferencing with Bayesian Network
print('\n Inferencing with Bayesian Network:')
HeartDiseasetest_infer = VariableElimination(model)
#computing the Probability of HeartDisease given restecg
print(\\n 1.Probability of HeartDisease given evidence=restecg :1')
q1=HeartDiseasetest_infer.query(variables=['heartdisease'],evi
dence={'restecg':1})
print(q1)
```



```
\label{lem:print} $$ print('\n 2.Probability of HeartDisease given evidence= cp:2') $$ q2=HeartDiseasetest\_infer.query(variables=['heartdisease'],evidence=\{'cp':2\}) $$ print(q2) $$
```

OUTPUT:

```
======= RESTART: E:\ML Lab - 2020-21\MLLab-/\ML/.py =========
Few examples from the dataset are given below
 age sex cp trestbps chol ... oldpeak slope ca thal heartdisease
                    233 ...
               145
                                2.3
                160 286 ...
 67
                                1.5
                                       2 3
1
      1 4
                                              7
2 67
                120 229 ...
                                       2 2
                                2.6
      1 4
                                               3
                     250 ...
204 ...
       1 3
0 2
                130
                                       3 0
3
   37
                                3.5
                                1.4
  41
                 130
```

[5 rows x 14 columns]

Attributes and datatypes int64 int64 sex int64 int64 trestbps int64 chol fbs int64 resteca int64 thalach int64 exang float64 oldpeak slope int64 object thal object heartdisease int64 dtype: object

Learning CPD using Maximum likelihood estimators

Inferencing with Bayesian Network:

1. Probability of HeartDisease given evidence= restecg

heartdisease	phi(heartdisease)
heartdisease(0)	0.1012
heartdisease(1)	0.0000
heartdisease(2)	0.2392
heartdisease(3)	0.2015
heartdisease(4)	0.4581

2. Probability of HeartDisease given evidence= cp

phi(heartdisease)
0.3610
0.2159
0.1373
0.1537
0.1321

RESULT:

Thus the program to construct a Bayesian network was implemented and executed successfully.

Ex.No:5a	Implement Regression models (Linear Regression)
Date :	

To write a program to implement linear for modeling relationships between a dependent variable with a given set of independent variables.

DEFINITION:

Let us consider a dataset where we have a value of response y for every feature x:

х	0	1	2	3	4	5	6	7	8	9
у	1	3	2	5	7	8	8	9	10	12

A scatter plot of the above dataset looks like:-

Now, the task is to find a **line that fits best** in the above scatter plot so that we can predict the response for any new feature values. This line is called a **regression line**.

PROGRAM:

```
import numpy as np
import matplotlib.pyplot as plt
def estimate\_coef(x, y):
  # number of observations/points
  n = np.size(x)
  # mean of x and y vector
  m_x = np.mean(x)
  m_y = np.mean(y)
  # calculating cross-deviation and deviation about x
  SS xy = np.sum(y*x) - n*m y*m x
  SS_x = np.sum(x*x) - n*m_x*m_x
  # calculating regression coefficients
  b_1 = SS_xy / SS_xx
  b_0 = m_y - b_1 * m_x
  return (b_0, b_1)
def plot_regression_line(x, y, b):
  # plotting the actual points as scatter plot
  plt.scatter(x, y, color = "m",
         marker = "o", s = 30)
  # predicted response vector
  y_pred = b[0] + b[1]*x
  # plotting the regression line
  plt.plot(x, y_pred, color = "g")
  # putting labels
  plt.xlabel('x')
```

```
plt.ylabel('y')

# function to show plot
plt.show()

def main():
    # observations / data
    x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12])

# estimating coefficients
b = estimate_coef(x, y)
print("Estimated coefficients:\nb_0 = {} \
    \nb_1 = {}".format(b[0], b[1]))

# plotting regression line
plot_regression_line(x, y, b)

if __name__ == "__main__":
    main()
```

OUTPUT:

RESULT:

Thus the python program to implement linear regression model was implemented and executed successfully.

Ex.No:5b	Implement Regression models (Logistic Regression)	
Date :		

To implement Logistic Regression using Python

ALGORITHM

- ➤ Import all the library function
- ➤ Import make_classification from sklearn datasets
- ➤ Generate Dataset for Logistic Regression
- ➤ Import pyplot from matplotlib
- ➤ Classify the Dataset based on the given features.

PROGRAM:

n_redundant=0,

```
from sklearn.datasets import make_classification
from matplotlib import pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import pandas as pd
# Generate and dataset for Logistic Regression
x, y = make_classification(
    n_samples=100,
    n_features=1,
    n_classes=2,
    n_clusters_per_class=1,
    flip_y=0.03,
    n_informative=1,
```

```
n_repeated=0
)
print(x,y)
OUTPUT:
[[ 0.68072366]
 [-0.806672]
 [-0.25986635]
 [-0.96951576]
 [-1.55870949]
 [-0.71107565]
 [ 0.058580821
 [-2.06472972]
 [-0.61592043]
 [ 1.25423915]
 [ 0.81852686]
 [-1.65141186]
 [-0.5894455]
 [ 1.02745431]
 [-0.32508896]
 [-0.53886171]
 [ 1.14821234]
 [ 0.87538478]
 [ 0.95887802]
 [ 1.30514551]
 [-1.02478688]
 [ 0.16563384]
 [ 0.776260361
 [-1.00622251]
 [-0.55976575]
 [ 1.33550038]
 [ 1.60327317]
 [ 1.82115858]
 [-0.68603388]
 [ 1.8733355 ]
 [-0.52494619]
 [-2.03314002]
 [0.47001797]
 [ 1.55400671]
 [-1.34062378]
```

[-0.38624537]

- [-1.06339387]
- [-1.41465045]
- [0.58850401]
- [0.80925135]
- [-0.82066568]
- [-0.01262654]
- [-0.75104194]
- [-1.09609801]
- [-0.306520931
- [-0.6945338]
- [-0.90156651]
- [-0.96587756]
- [0.53851931]
- [0.16533166]
- [0.10000100]
- [-1.04609567]
- [-1.15065139]
- [-0.76739642]
- [0.83776929]
- [2.20562241]
- [-0.80368921]
- [-0.86160904]
- [0.86032131]
- [-0.65752318]
- [1.81228279]
- [-0.81507664]
- [0.93532773]
- [1.76874632]
- [0.32893072]
- [1.02960085]
- [-1.84150254]
- [0.16156709]
- [-1.05944665]
- 0.287881361
- [-1.05549933]
- [1.37528673]
- [1.66369265]
- [1.00307203]
- [1.71761177]
- [1.96597594] [-0.65315492]
- [-0.295982631
- [-1.15345006]
- [-1.03851861]
- [1.69109822]
- [1.92402678]

```
[-0.89593983]
 [-0.58208549]
 [-1.18750595]
 [-1.06231671]
 [-0.79230653]
  1.421472781
  1.2887393 ]
  1.93706073]
 [-1.03110736]
 [-1.20543711]
  0.794465491
  1.29599432]
  0.49396915]
 [ 0.63241066]
 [ 0.72416825]
 [-1.76099355]
 [-0.61639759]
 [-0.43854548]
 [ 1.43886371]
 [-0.77167438] [1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1
1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1
1 1 0 0 0 1 0 1 1 1 1
```

Create a scatter plot plt.scatter(x, y, c=y, cmap='rainbow') plt.title('Scatter Plot of Logistic Regression') plt.show()

Split the dataset into training and test dataset

x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1)

x_train.shape

OUTPUT:

```
(75, 1)

log_reg=LogisticRegression()

log_reg.fit(x_train, y_train)

y_pred=log_reg.predict(x_test)

confusion_matrix(y_test, y_pred)
```

OUTPUT:

```
array([[12, 0], [ 2, 11]], dtype=int64)
```

RESULT:

Thus the python program to implement logistic regression model was implemented and executed successfully.

Ex.No:6a	Implement Decision Tree
Date:	

To implement Decision Tree using python.

ALGORITHM

- ➤ Import Decision tree classifier from sklearn model
- ➤ Import train_test_split from sklearn.model
- ➤ Import accuracy_score from sklearn.metrics
- ➤ Import classification_report from sklearn.metrics
- ➤ Read the dataset values from the provided URL
- > Print the dataset shape
- > Print the dataset observation
- > Separate the target variable
- > Splitting the dataset into train and test
- > Perform training with giniIndex
- > Creating the classifier object
- > Perform training with entropy
- ➤ Create Function to make prediction from the given dataset
- ➤ Create Function to calculate accuracy from the given dataset.

PROGRAM:

import numpy as np

import pandas as pd

from sklearn.metrics import confusion_matrix

 $from \ sklearn.model_selection \ import \ train_test_split$

from sklearn.tree import DecisionTreeClassifier

```
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
def importdata():
      balance_data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-'+'databases/balance-scale/balance-scale.data',sep= ',', header = None)
      # Printing the dataset shape
      print ("Dataset Length: ", len(balance_data))
      print ("Dataset Shape: ", balance_data.shape)
      # Printing the dataset obseravtions
      print ("Dataset: ",balance_data.head())
      return balance_data
def splitdataset(balance_data):
      # Separating the target variable
      X = balance_data.values[:, 1:5]
      Y = balance_data.values[:, 0]
      # Splitting the dataset into train and test
      X_train, X_test, y_train, y_test = train_test_split(
      X, Y, test\_size = 0.3, random\_state = 100
      return X, Y, X_train, X_test, y_train, y_test
# Function to perform training with giniIndex.
def train_using_gini(X_train, X_test, y_train):
```

```
# Creating the classifier object
      clf_gini = DecisionTreeClassifier(criterion = "gini",
                   random_state = 100,max_depth=3, min_samples_leaf=5)
      # Performing training
      clf_gini.fit(X_train, y_train)
      return clf_gini
# Function to perform training with entropy.
def tarin_using_entropy(X_train, X_test, y_train):
      # Decision tree with entropy
      clf_entropy = DecisionTreeClassifier(
                   criterion = "entropy", random_state = 100,
                   max_depth = 3, min_samples_leaf = 5)
      # Performing training
      clf_entropy.fit(X_train, y_train)
      return clf_entropy
# Function to make predictions
def prediction(X_test, clf_object):
      # Predicton on test with giniIndex
      y_pred = clf_object.predict(X_test)
      print("Predicted values:")
      print(y_pred)
      return y_pred
# Function to calculate accuracy
def cal_accuracy(y_test, y_pred):
```

```
print("Confusion Matrix: ",
            confusion_matrix(y_test, y_pred))
      print ("Accuracy : ",
      accuracy_score(y_test,y_pred)*100)
      print("Report : ",
      classification_report(y_test, y_pred))
# Driver code
def main():
      # Building Phase
      data = importdata()
      X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
      clf_gini = train_using_gini(X_train, X_test, y_train)
      clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
      # Operational Phase
      print("Results Using Gini Index:")
      # Prediction using gini
      y_pred_gini = prediction(X_test, clf_gini)
      cal_accuracy(y_test, y_pred_gini)
      print("Results Using Entropy:")
      # Prediction using entropy
      y_pred_entropy = prediction(X_test, clf_entropy)
      cal_accuracy(y_test, y_pred_entropy)
# Calling main function
if __name_ ==" __main_ _":
      main()
```

OUTPUT:

```
Dataset Length:
Dataset Shape: (625, 5)
       0
         1
           2
             3
Dataset:
0
 В
   1
     1
       1
         1
         2
1
 R
   1
     1
       1
2
       1
         3
 R
   1
     1
3
   1
     1
       1
         4
 R
4
 R
   1
     1
       1
         5
Results Using Gini Index:
Predicted values:
'L' 'R' 'L' 'R' 'L'
'L' 'R' 'L' 'L' 'L'
'L' 'R' 'R' 'L' 'R'
'R' 'R' 'L' 'L' 'R'
'R' 'R' 'L' 'R' 'L'
'R' 'R' 'R' 'R' 'R'
'R' 'L' 'L' 'L' 'L'
'R' 'L' 'R' 'L' 'R'
'R' 'R' 'R' 'R' 'R'
'L' 'L' 'R' 'R' 'R' 'R' 'L' 'R' 'R' 'L' 'R' 'L'
'T,' 'T,' 'T,' 'R' 'R'
'L' 'R' 'R' 'L' 'L' 'R' 'R' 'R']
Confusion Matrix: [[ 0 6 7]
[ 0 67 18]
[ 0 19 71]]
Accuracy: 73.40425531914893
              precision recall f1-score
Report :
support
           0.00
                 0.00
                       0.00
                              13
      В
      L
           0.73
                 0.79
                       0.76
                              85
           0.74
                 0.79
                       0.76
                              90
      R
```

weighted avg	0.	. 68		0.73	3	0	.71		188
Results Using En Predicted values		7 :							
['R' 'L' 'R' 'L'	'R'	'L'	'R'	'L'	'R'	'R'	'R'	'R'	'L'
'L' 'R' 'L' 'R' 'L' 'R' 'L' 'R'	'L'	'L'	'R'	'L'	'R'	'L'	'R'	'L'	'R'
'L' 'R' 'L' 'L' 'L' 'L' 'R' 'L'	'R'	'L'	'R'	'L'	'R'	'R'	'L'	'L'	'R'
'L' 'L' 'R' 'L' 'R' 'L' 'R' 'R'	'L'	'R'	'R'	'R'	'L'	'L'	'R'	'L'	'L'
'R' 'L' 'L' 'L' 'R' 'L' 'R' 'L'	'R'	'R'	'R'	'L'	'R'	'L'	'L'	'L'	'L'
'R' 'R' 'L' 'R' 'R' 'R' 'L' 'L'	'L'	'R'	'R'	'L'	'L'	'L'	'R'	'L'	'L'
'R' 'R' 'R' 'R' 'R' 'R' 'L' 'R' 'L'	'R'	'R'	'L'	'R'	'R'	'L'	'R'	'R'	'L'
'R' 'R' 'R' 'L' 'L' 'L' 'L' 'R'	'R'	'R'	'R'	'L'	'R'	'R'	'R'	'L'	'L'
'R' 'L' 'R' 'L' 'L' 'R' 'R' 'L'	'L'	'R'	'L'	'R'	'R'	'R'	'R'	'R'	'L'
'R' 'R' 'R' 'R' 'R' 'L' 'R' 'L' 'L' 'L' 'L' 'L'	'R'	'R'	'L'	'R'	'L'	'R'	'L'	'R'	'L'
'R' 'R' 'L' 'L'		'R'	'R'	'R']					
Confusion Matrix [0 63 22] [0 20 70]]	: [[0	6 7	7]					
Accuracy: 70.7	44680	8510	06383	3					
Report : support		J	prec	ision	Ω	reca	all	f1-	score
В		.00		0.00			.00		13
L R		.71 .71		0.74			.72 .74		85 90
accuracy macro avg weighted avg		.47 .66		0.53		0	.71 .49 .68		188 188 188

accuracy

macro avg 0.49 0.53

0.73

0.51

188

188

RESULT:	
NEOULI.	
Thus the python program to implement decision tree was implemented	
and are outed an according	
and executed successfully.	

Ex.No:6b	Implement Random Forest
Date:	

To Implement Random Forest using python.

ALGORITHM:

- ➤ Import Load digits from sklearn.datasets
- > Import Random forest classifier from sklearn datasets
- > Train the given dataset using Random Forest Classifier.
- > Obtain the score from the trained dataset

PROGRAM:

```
import pandas as pd
```

from sklearn.datasets import load_digits

```
digits = load_digits()
```

dir(digits)

```
Out[2]: ['DESCR', 'data', 'feature_names', 'frame', 'images', 'target', 'target_names']
```

% matplotlib inline

import matplotlib.pyplot as plt

plt.gray()

for i in range(4):

plt.matshow(digits.images[i])

df = pd.DataFrame(digits.data)

df.head()

df['target'] = digits.target

df[0:12]

X = df.drop('target',axis='columns')

y = df.target

from sklearn.model_selection import train_test_split

```
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=20)
model.fit(X_train, y_train)
model.score(X_test, y_test)
 Out[7]: 0.9861111111111112
y_predicted = model.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_predicted)
cm
% matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sn
plt.figure(figsize=(10,7))
sn.heatmap(cm, annot=True)
plt.xlabel('Predicted')
plt.ylabel('Truth')
```


RESULT:

Thus the python program to implement random forest was implemented and executed successfully.

Ex.No:7	Implement SVM Model
Date:	

To implement SVM Model using python.

ALGORITHM

- > From sklearn datasets import load_iris.
- ➤ Display the feature names from load_iris
- > Import pyplot from from matplotlib
- > Find the sepal length and sepal width from the given dataset
- > Find the petal length and petal width from the trained dataset

PROGRAM

iris.feature_names

df=pd.DataFrame(iris.data, columns=iris.feature_names)

df.head()

Out[6]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

df['target']=iris.target

df.head()

Out[7]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

iris.target_names

```
Out[8]: array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
```

df[df.target==2].head

df['flower_name']=df.target.apply(lambda x:iris.target_names[x])

df.head()

Out[11]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa

from matplotlib import pyplot as plt

%matplotlib inline

df0=df[df.target==0]

df1=df[df.target==1]

df2=df[df.target==2]

df2.head()

Out[16]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
100	6.3	3.3	6.0	2.5	2	virginica
101	5.8	2.7	5.1	1.9	2	virginica
102	7.1	3.0	5.9	2.1	2	virginica
103	6.3	2.9	5.6	1.8	2	virginica
104	6.5	3.0	5.8	2.2	2	virginica

plt.xlabel('sepal length (cm)')

plt.ylabel('sepal width (cm)')

plt.scatter(df0['sepal length (cm)'],df0['sepal width

(cm)'],color='green',marker='+')

plt.scatter(df1['sepal length (cm)'],df1['sepal width

(cm)'],color='blue',marker='*')

Out[21]: <matplotlib.collections.PathCollection at 0x1ca7eafcbb0>

plt.xlabel('petal length (cm)')

plt.ylabel('petal width (cm)')

plt.scatter(df0['petal length (cm)'],df0['petal width

(cm)'],color='green',marker='+')

plt.scatter(df1['petal length (cm)'],df1['petal width (cm)'],color='blue',marker='*')

from sklearn.model_selection import train_test_split

x = df.drop(['target','flower_name'], axis='columns')

x.head()

Out[24]:	0 1 2 3	5.1 4.9 4.7 4.6	3.5 3.0 3.2	1.4 1.4 1.3	0.2				
	1 2 3	4.9 4.7	3.0	1.4	0.2				
	2	4.7							
	3		3.2	1.3					
		4.6		1.0	0.2				
		4.0	3.1	1.5	0.2				
	4	5.0	3.6	1.4	0.2				
y=df.targe x_train, x_		in, y_test=	= train_test	_split(x,y,tes	st_size=0				
len(x_train	n)								
Out[29]: 120									
len(x_test	,								
Out[30]:	30								
from sklearn.svm import SVC									
model = SVC(kernel='linear')									
model.fit(x_train, y_	train)							
Out[38]:	v	SVC							
	SVC(ker	nel='line	ear')						
	<u></u>								

RESULT:

Out[24]:

Thus the python program to implement SVM model was implemented and executed successfully.

Ex.No:8	Implement Ensembling Techniques(Bagging)
Date:	

To implement Ensembling Techniques(Bagging) using python.

ALGORITHM

- > Import the panda's library
- > Read the dataset from the path "C:/python/prima.csv"
- ➤ Display the first five rows from the dataframe using head() function.
- > Returns the number of missing values in the dataset using isnull.sum() function.
- ➤ Preprocess the given dataset using Standard scalar function
- > Find the cross value score using Decision tree classifier.

PROGRAM

import pandas as pd

 $df = pd.read_csv("pima-indians-diabetes.csv")$

df.head()

Out[2]:		num preg	glucose_conc	diastolic bp	thickness	insulin	bmi	diab pred	age	diabetes
			9	шш-ш-					9-	
	0	6	148	72	35	0	33.6	0.627	50	1
	1	1	85	66	29	0	26.6	0.351	31	0
	2	8	183	64	0	0	23.3	0.672	32	1
	3	1	89	66	23	94	28.1	0.167	21	0
	4	0	137	40	35	168	43.1	2.288	33	1

df.isnull().sum()

```
Out[3]: num_preg 0
glucose_conc 0
diastolic_bp 0
thickness 0
insulin 0
bmi 0
diab_pred 0
age 0
diabetes 0
dtype: int64
```

df.describe()

Out[4]:

	num_preg	glucose_conc	diastolic_bp	thickness	insulin	bmi	diab_pred	age	diabetes
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

df.diabetes.value_counts()

Out[11]: 0 500

Name: diabetes, dtype: int64

X = df.drop("diabetes",axis="columns")

y = df.diabetes

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

 $X_scaled = scaler.fit_transform(X)$

X_scaled[:3]

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, stratify=y, random_state=10)

X_train.shape

```
Out[15]: (576, 8)
```

X_test.shape

```
Out[16]: (192, 8)
```

y_train.value_counts()

Out[17]: 0 375 1 201

Name: diabetes, dtype: int64

201/375

Out[18]: 0.536

y_test.value_counts()

Out[19]: 0 125 1 67

Name: diabetes, dtype: int64

67/125

```
Out[20]: 0.536
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier
scores = cross_val_score(DecisionTreeClassifier(), X, y, cv=5)
scores
 Out[21]: array([0.66233766, 0.65584416, 0.66883117, 0.81045752, 0.7254902])
scores.mean()
 Out[22]: 0.7045921398862576
from sklearn.ensemble import BaggingClassifier
bag_model = BaggingClassifier(
  base_estimator=DecisionTreeClassifier(),
  n_estimators=100,
  max_samples=0.8,
  oob_score=True,
  random_state=0
)
bag_model.fit(X_train, y_train)
bag_model.oob_score_
  Out[23]: 0.753472222222222
bag_model.score(X_test, y_test)
```

RESULT:

Thus the python program to implement Ensembling Techniques(Bagging)was implemented and executed successfully.

Ex.No: 9	Implement Clustering Algorithms(KMeans)
Date:	F

To implement clustering algorithm using python.

ALGORITHM:

- ➤ Import MinMaxScaler from sklearn preprocessing
- > From sklearn datasets import load_iris
- ➤ Display the first five rows of the dataset using head function
- ➤ Apply Kmeans to the given dataset and find the septal length, septal width and petal length and petal width

PROGRAM

from sklearn.cluster import KMeans

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

from matplotlib import pyplot as plt

from sklearn.datasets import load_iris

% matplotlib inline

iris = load_iris()

df = pd.DataFrame(iris.data,columns=iris.feature_names)

df.head()

Out[5]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

df['flower'] = iris.target

df.head()

Out[6]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	flower
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

df.drop(['sepal length (cm)', 'sepal width (cm)', 'flower'],axis='columns',inplace=True)

df.head(3)

Out[7]:

	petal length (cm)	petal width (cm)
0	1.4	0.2
1	1.4	0.2
2	1.3	0.2

km = KMeans(n_clusters=3)

yp = km.fit_predict(df)

yp

df['cluster'] = yp

df.head(2)

Out[9]:

	petal length (cm)	petal width (cm)	cluster
0	1.4	0.2	1
1	1.4	0.2	1

df.cluster.unique()

df1 = df[df.cluster==0]

df2 = df[df.cluster==1]

df3 = df[df.cluster==2]

plt.scatter(df1['petal length (cm)'],df1['petal width (cm)'],color='blue')
plt.scatter(df2['petal length (cm)'],df2['petal width (cm)'],color='green')
plt.scatter(df3['petal length (cm)'],df3['petal width (cm)'],color='yellow')


```
sse = []
k_rng = range(1,10)

for k in k_rng:
    km = KMeans(n_clusters=k)
    km.fit(df)
    sse.append(km.inertia_)

plt.xlabel('K')

plt.ylabel('Sum of squared error')

plt.plot(k_rng,sse)

out[13]: [cmatplotlib.lines.Line2D at 0x1c34fba9ea02]
```


RESULT:

Thus the python program to implement clustering algorithm was implemented and executed successfully.

Ex.No: 10	Implement EM for Bayesian networks
Date :	

To implement EM for Bayesian networks using python

ALGORITHM:

• **Initialize the parameters**: Start by initializing the parameters of the Bayesian network (e.g., probabilities in conditional probability tables).

• E-step (Expectation):

O Use the current parameter estimates and the observed data (and possibly incomplete data) to estimate the hidden or missing variables using probabilistic inference (like the forward-backward algorithm for hidden Markov models or sum-product algorithm for general Bayesian networks). Compute the expected values of the hidden variables given the current parameter estimates.

• M-step (Maximization):

- Update the parameter estimates based on the expected values obtained in the E-step.
- This involves maximizing the expected log-likelihood of the complete data with respect to the model parameters.

• Repeat E-step and M-step:

 Alternate between E-step and M-step until convergence (e.g., when the change in parameter estimates falls below a predefined threshold or after a fixed number of iterations).

Program:

import numpy as np

Simulated data generation for the Bayesian network

np.random.seed(42)

True probabilities for our network

 $true_prob_A = 0.6$

true_prob_B_given_A = np.array([[0.8, 0.2], [0.3, 0.7]])

Generate observed data

 $sample_size = 1000$

data_A = np.random.choice([0, 1], size=sample_size, p=[1-true_prob_A, true_prob_A])

data_B = np.zeros(sample_size)

for i in range(sample_size):

 $data_B[i] = np.random.choice([0, 1], p=true_prob_B_given_A[data_A[i]])$

#EM algorithm for parameter estimation

def expectation_step(data_A, data_B, prob_A, prob_B_given_A):

E-step: Expectation

Compute the expected values of hidden variables (none here)

return None

def maximization_step(data_A, data_B, hidden_variables):

M-step: Maximization

Update parameter estimates based on the observed and hidden data

```
# Estimate probability of A
```

```
prob_A = np.mean(data_A)
```

Estimate conditional probability of B given A

```
prob_B_given_A = np.zeros((2, 2))
```

for a in [0, 1]:

$$data_B_given_A = data_B[data_A == a]$$

return prob_A, prob_B_given_A

EM iterations

Initialize parameters

```
estimated_prob_A = 0.5
```

estimated_prob_B_given_A = np.array([[0.5, 0.5], [0.5, 0.5]])

Perform EM iterations

num_iterations = 10

for i in range(num_iterations):

hidden_vars = expectation_step(data_A, data_B, estimated_prob_A, estimated_prob_B_given_A)

estimated_prob_A, estimated_prob_B_given_A = maximization_step(data_A, data_B, hidden_vars)

Print the estimated parameters

print("Estimated probability of A:", estimated_prob_A)

print("Estimated conditional probability of B given A:")
print(estimated_prob_B_given_A)

OUTPUT:

Estimated probability of A: 0.579

Estimated conditional probability of B given A:

[[0.7719715 0.2280285]

 $[0.2970639\ 0.7029361]]$

RESULT:

Thus the python program to implement EM for Bayesian network was implemented and executed successfully.

Ex.No: 11	Build simple Neural Network
Date:	

To implement simple neural network using python

ALGORITHM

- > Define the activation function
- > Train the input values and obtain the output from the given dataset.
- Test the given dataset from the output obtained from the given dataset
- ➤ Obtain the forward and Backward pass from the trained dataset

PROGRAM

```
# importing dependancies
import numpy as np
# The activation function
def activation(x):
    return 1 / (1 + np.exp(-x))
weights = np.random.uniform(-1,1,size = (2, 1))

training_inputs = np.array([[0, 0, 1, 1, 0, 1]]).reshape(3, 2)
training_outputs = np.array([[0, 1, 1]]).reshape(3, 1)
```

```
# forward pass
  dot_product = np.dot(training_inputs, weights)
  output = activation(dot_product)
  # backward pass.
  temp2 = -(training_outputs - output) * output * (1 - output)
  adj = np.dot(training_inputs.transpose(), temp2)
  # 0.5 is the learning rate.
  weights = weights - 0.5 * adj
# The testing set
test_input = np.array([1, 0])
test_output = activation(np.dot(test_input, weights))
# OR of 1, 0 is 1
print(test_output)
OUTPUT:
```

RESULT:

[0.79971054]

Thus the python program to implement neural network was implemented and executed successfully.

Ex.No: 12	Puild Doon Looming Normal Notwork model	
Date:	Build Deep Learning Neural Network model	

To build a deep learning neural network model using python.

ALGORITHM

- ➤ Load data from the test file using import loadtxt
- > Import sequential from tensorflow
- > Import Dense from tensor flow
- ➤ Load data from from the test file from the path 'C:/python/pima-indians-diabetes.csv', delimiter=','
- > Split the given dataset into input and output variables.
- > Fit the keras model on the given dataset.

PROGRAM

```
from numpy import loadtxt
```

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

dataset = loadtxt('C:/python/pima-indians-diabetes.csv', delimiter=',')

split into input (X) and output (y) variables

X = dataset[:,0:8]

y = dataset[:,8]

define the keras model

```
model = Sequential()
model.add(Dense(12, input_shape=(8,), activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# compile the keras model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit the keras model on the dataset
model.fit(X, y, epochs=150, batch_size=10)
```

OUTPUT:

```
Epoch 1/150
 77/77 [=========] - 2s 3ms/step - loss: 13.2217 - accuracy: 0.6510
 Epoch 2/150
 77/77 [=========] - 0s 3ms/step - loss: 3.3423 - accuracy: 0.6120
 Epoch 3/150
 77/77 [=========] - 0s 3ms/step - loss: 1.2471 - accuracy: 0.4388
 Epoch 4/150
 77/77 [=========] - 0s 2ms/step - loss: 0.9386 - accuracy: 0.4440
 Epoch 5/150
 77/77 [=========] - 0s 2ms/step - loss: 0.8108 - accuracy: 0.4544
 Epoch 6/150
 77/77 [========= ] - 0s 2ms/step - loss: 0.7445 - accuracy: 0.4974
 Epoch 7/150
 77/77 [=========] - 0s 2ms/step - loss: 0.7119 - accuracy: 0.5664
 Epoch 8/150
 Epoch 9/150
 77/77 [=========] - 0s 2ms/step - loss: 0.6767 - accuracy: 0.6315
# evaluate the keras model
_, accuracy = model.evaluate(X, y)
print('Accuracy: %.2f' % (accuracy*100))
```

OUTPUT:

```
model.fit(X, y, epochs=150, batch_size=10, verbose=0)
# evaluate the keras model
_, accuracy = model.evaluate(X, y, verbose=0)
# make probability predictions with the model
predictions = model.predict(X)
# round predictions
rounded = [round(x[0]) \text{ for } x \text{ in predictions}]
# make class predictions with the model
predictions = (model.predict(X) > 0.5).astype(int)
  24/24 [======= ] - 0s 3ms/step
from numpy import loadtxt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# load the dataset
dataset = loadtxt('C:/python/pima-indians-diabetes.csv', delimiter=',')
# split into input (X) and output (y) variables
X = dataset[:,0:8]
y = dataset[:,8]
# define the keras model
model = Sequential()
model.add(Dense(12, input_shape=(8,), activation='relu'))
model.add(Dense(8, activation='relu'))
```

```
model.add(Dense(1, activation='sigmoid'))

# compile the keras model

model.compile(loss='binary_crossentropy',optimizer='adam',

metrics=['accuracy'])

# fit the keras model on the dataset

model.fit(X, y, epochs=150, batch_size=10, verbose=0)

# make class predictions with the model

predictions = (model.predict(X) > 0.5).astype(int)

# summarize the first 5 cases

for i in range(5):

print('%s => %d (expected %d)' % (X[i].tolist(), predictions[i], y[i]))
```

OUTPUT:

RESULT:

Thus the python program to build deep learning neural network model was implemented and executed successfully..