Диалоговые системы

8 декабря 2016 г.

План

1 Диалоговые системы и диалоговые менеджеры

Целеориентированные диалоговые менджеры (Goal-oriented)

General conversation

Диалоговые системы и диалоговые менеджеры

Диалоговый менеджер моделирует взаимодействие пользователя и «агента» (программа, бот) путем последовательности сообщений на естественном языке: $(a_1,u_1),(a_2,u_2),...(a_t,u_t)$. Задача агента — правильно выбрать следующее действие или реплику a_{t+1} .

- Диалоги:
 - Целеориентированные (Goal-oriented): решение конкретной задачи пользователя (звонок в колл-центр, заказ авиабилетов),
 - Беседа на общие темы (General conversation): выдача уместных реплик (чат-боты, тесты Тьюринга)
- Интерфейс: речь, текст

Структура диалогов

- ullet Базовая структура: приветствие o основная тема o завершение
- Модели:
 - Stack-model: диалог группируется по интентам пользователя
 - Cache-model: диалог группируется по лингвистическим фрагментам
- Инициативы: системная, пользовательская и смешанная
- Интерпретация пользовательских запросов: использование контекста диалога, стратегии подтверждения

Проблемы моделирования диалогов

- Эллиптические конструкции
 - А Какая погода в Москве?
 - B +10 C
 - А А завтра?
- Анафоры и кореференции: местоимения, отсылки к упомянутым сущностям (там/здесь, тот/этот)
- Вставные реплики:
 - А Ты куда идешь?
 - В А зачем тебе знать?
 - А Хочу пойти с тобой
 - В Я иду в магазин.
- Ненаправленность:
 - А Телефон.
 - В Я в ванной.
 - А Хорошо.
- Речевые акты: например, "Здесь холодно."
- Несмысловые реплики (ага, угу, ммм)

Goal-oriented

 Цель - решить конкретную задачу пользователя, например, заказать такси:

• Сценарии могут быть непростыми:

Goal-oriented: основные компоненты

Основные компоненты: Automatic Speech Recognition (ASR)

• По наблюдаемому речевому сигналу $O=o_1,o_2,...$ вычислить наиболее вероятную последовательность слов $W=w_1,w_2,...w_T$:

$$W = \arg\max_{w} P(O|W)P(W)$$

• Чтобы учитывать ошибку распознавания, необходимо иметь N-лучших гипотез $W_1, W_2, ..., W_N$, и соответсвующие оценки для вероятностей высказывания $P(W_1|O), P(W_2|O), ... P(W_N|O)$

Основные компоненты: Natural Language Understanding (NLU)

Для каждой последовательности слов W_t вычислять семантическое представление s_t , содержащее информацию об **интенте** и его параметрах - **слотах**, например

Мне нужно такси на Льва Толстого, 16 через 30 минут

- Интент: заказ такси

- Откуда: улица Льва Толстого, дом 16

- Когда: через 30 минут

– Куда: ?

Также, как и в случае с ASR, может быть несколько гипотез.

Основные компоненты: Natural Language Understanding (NLU)

• Классификатор интентов

- подойдет любой текстовый классификатор (например, на основе Bag-of-Words),
- важное отличие классификация по коротким высказываниям, может помочь посимвольная обработка 1 ,
- для разрешения кореференций и эллипсов используются отдельные модели 2

• Семантический теггер или Слот-филлер

- Каждому слову w_i ставит тег соответсвующего слота $slot_i$ или пустой тег \emptyset
- Используется ВІО-нотация: Begin, Inside, Output
- Модели: Conditional Random Fields (CRF) или рекуррентные нейросети³

¹X. Zhang, Character-level Convolutional Networks for Text Classification, 2015

²S. Wizeman et al. Learning Global Features for Coreference Resolution, 2016

³G. Mesnil et al. Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding, 2015 ← □ → ← ② → ← □ →

Основные компоненты: Dialog Manager

На основании семантического представления s_t выбирает действие a_t

- ullet Простейший подход табличный выбор $s_t o a_t$
- Supervised learning: $a_t = \operatorname{argmax}_a p(a|s_{1:t})$
- Reinforcement learning: Markov Decision Processes (MDP) или Partially Observable MDP (POMDP)

Supervised learning

Предсказание по последовательности⁴

• Необходимо много данных - симуляция пользователя

⁴J. D. Williams End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning, 2016

Reinforcement learning

Пусть каждому выбранному действию a_t соответствует награда r_t . Задача агента - выбрать такую стратегию действий π (policy), которая максимизирует суммарный выигрыш.

• MDP: S, A, P(s'|a,s), s_0 , $R: S \times A \rightarrow \mathbb{R}$

• POMDP: S, A, O, b_0 , P(s'|a,s), $P(o_t|s_t,a_t)$, $R: S \times A \rightarrow \mathbb{R}$

$$b_{t+1}(s_{t+1}) = P(s_{t+1}|o_{t+1}, a_t, b_t)$$

= $\nu P(o_{t+1}|s_{t+1}, a_t) \sum_{s_t} P(s_{t+1}|s_t, a_t) b_t(s_t)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ♡

Reinforcement learning: POMDP ⁵

 $^{^5}$ S. Young et al. POMDP-Based Statistical Spoken Dialog Systems: A Review, 2013 $_{\mbox{\tiny \sim}}$

Обучение: Q-learning⁶

- Суммарный выигрыш: $R_t = \sum_{k=1}^{\infty} \gamma^k r_{t+k} = r_t + \gamma R_{t+1}, \ 0 \le \gamma \le 1$
- Пусть есть некоторая стратегия π . Q-функцией называется функция

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}(R|s_t = s, a_t = a))$$

• Задача - найти оптимальную стратегию

$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s, a)$$

• Итерационный алгоритм:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$$

⁶S. Russel, P. Norvig Artificial intelligence (3rd edition), глава 21 (3 × 4 3 × 3 3 4 3 ×

Обучение: Q-learning

- ϵ -стратегия: вместо жадной стратегии выбора a', максимизирующего Q-функцию, с вероятностью ϵ выбираем случайное действие (exploration-exploitation)
- ullet Если пространство ${\mathcal S}$ слишком велико применяем нейронные сети:

$$Loss(a|s) = \frac{1}{2} \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)^2$$

Обучение: policy-gradient

• Идея: вместо того, чтобы сначала строить Q-функцию, можно сразу искать оптимальную стратегию 7 среди вероятностных распределений, т.е. $\pi \sim p(a|s_t,\theta)$

$$J(heta) = \mathbb{E}(R) = \sum_{a_{1:T} \in \mathcal{A}} p_{ heta}(a_{1:T}) R(a_{1:T}) o \mathsf{max}$$

 На практике используется приближение с помощью стохастического метода градиентного спуска:

$$\nabla J(\theta) = \sum_{a_{1:T} \in \mathcal{A}} \nabla p_{\theta}(a_{1:T}) R(a_{1:T})$$

$$= \sum_{a_{1:T} \in \mathcal{A}} p_{\theta}(a_{1:T}) \nabla \log p_{\theta}(a_{1:T}) R(a_{1:T})$$

$$= \mathbb{E}_{a_{1}} \mathbb{E}_{a_{2}} ... \mathbb{E}_{a_{T}} \nabla \log p_{\theta}(a_{t}|a_{1:(t-1)}) \sum_{t=1}^{T} r(a_{1:t}))$$

⁷J. Li et al. Deep Reinforcement Learning for Dialogue Generation, 2016 ≥ √ ⊲

Основные компоненты: Natural Language Generator (NLG) & Text-to-speech synthesis (TTS)

- Цель: исходя из полученного действия, сгенерировать текстовую реплику агента (NLG): $a_t \to l_t$ и речевой сигнал (TTS)
- Для генерации I_t используются контекстные грамматики, реже нейронные сети для генерации шаблонов 8

⁸Tsung-Hsien Wen et al. Multi-domain Neural Network Language Generation for Spoken Dialogue Systems

General conversation

- Цель на каждом шаге диалога агентом должна быть сгенерирована реплика (reply), которая:
 - Синтаксически корректна
 - Связана по смыслу с предыдущим контекстом диалога (context)
 - По возможности не является слишком общим ответом (например, "я не знаю", "ага")
- Источники данных: OpenSubtitles, Twitter, различные мессенджеры
- Подходы:
 - Порождающий: моделируем P(reply|context)
 - Ранжирующий: строим функцию Sim(reply, context)

General conversation: порождающий подход

- Модели заимствованы из технологий машинного перевода
- Стандартный подход: sequence-to-sequence ⁹
- Рекуррентная encoder-decoder архитектура:
 - encoder прочитывает исходный контекст
 - decoder генерирует результат, опираясь на выход encoder'a

⁹Sutskever I. Vinyals O. Le Q. Sequence to Sequence Learning with Neural Networks, 2014

General conversation: порождающий подход

• Обучение по методу максимального правдоподобия

$$\prod_{t=1}^{T} p_{ heta}(\textit{reply}_t|\textit{reply}_{1:(t-1)},\textit{context})
ightarrow \max_{ heta}$$

- Генерация реплик: $\operatorname{argmax}_{reply} p_{\theta}(reply|reply_{1:(t-1)}, context)$ используется метод beam-search.
- Стандартные модификации: LSTM, GRU рекуррентные сети, двунаправленный encoder, сеть с вниманием ¹⁰

¹⁰D. Bahdanau, Neural Machine Translation by Jointly Learning to Align and Translate. 2015

- Чтобы штрафовать обзие ответы, вместо максимума правдоподобия используется критерий совместной информации $(MMI)^{11}$:
 - $\log P(reply|context) \alpha \log P(reply)$
 - $(1 \alpha) \log P(reply|context) + \alpha \log P(context|reply)$
- Для построения таких последовательностей можно также Монте-Карло оценку:

$$\log P(reply|context) - \frac{\alpha}{K} \sum_{k=1}^{K} \log P(reply|context_k)$$

• Для обучения применяется метод, аналогичный policy-gradient: MMI функционал используется в расчете функции награды R^{12}

¹¹J. Li et al. A Diversity-Promoting Objective Function for Neural Conversation Models, 2016

¹²J. Li et al. Deep Reinforcement Learning for Dialogue Generation, 2016

General conversation: ранжирующий подход

- Вместо генерации ответов можно выбирать наиболее уместные из заранее заготовленных
- Плюсы
 - Меньше риски сгенерировать грамматически некорректный ответ или ответ с обсценной лексикой
 - Обучение намного быстрее
 - Меньше проявляется проблема «общих» ответов
- Минусы
 - Множество реплик сильно ограничено

General conversation: ранжирующий подход

Модели ¹³, ¹⁴

- Энкодеры реплик любые сети, которые по набору слов могут получить вектор, например
 - рекуррентные или сверточные по словам или символам,
 - полносвязные поверх BoW моделей
- Функция уместности

$$Sim(reply, context) = \frac{h_{reply}^{T} h_{context}}{\|h_{reply}\| \|h_{context}\|}$$

 Для обучения нужны отрицательные примеры - применяем случайное семплирование

¹³Huang P. S. et al. Learning Deep Structured Semantic Models for Web Search Using Clickthrough Data, 2013