Aufgabe 1 (Black-Scholes-Modell; 4 Punkte). Zeigen Sie, dass das Semimartingal

$$X_t = X_0 e^{\sigma W_t + t(\mu - \sigma^2/2)}$$

für $\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}_+$ und einer Standard Brown'schen Bewegung W folgende Darstellung besitzt

$$dX_t = \mu X_t dt + \sigma X_t dW_t = X_t d(\mu t + \sigma W_t).$$

Wir wenden die Itô-Formel auf $f(Y_t) = e^{Y_t}$ mit $Y_t = \sigma W_t + t(\mu - \sigma^2/2)$ an Da Y_t stetig ist, gilt $Y_- = Y$ und $\langle Y^c, Y^c \rangle = \langle Y \rangle = \sigma^2 t$. Zunächst ist nämlich $\sigma^2 t$ stetig, verschwindet für t = 0 und ist wachsend, also ist $\sigma^2 t \in \mathcal{V}$. Es müsste noch gezeigt werden, dass $Y_t^2 - \sigma^2 t$ ein Martingal ist. Mit $f'(Y_t) = f''(Y_t) = e^{Y_t} = X_t$ erhalten wir

$$X_t = X_0 + \int_0^t X_s dY_s + \frac{1}{2} \int_0^t X_s d\langle Y \rangle_s.$$

Durch Nachdifferenzieren, sowie $d\langle Y \rangle_s = \sigma^2 ds$, erhalten wir

$$= X_0 + \int_0^t X_s \sigma dW_s + \int_0^s \left(\mu - \frac{\sigma^2}{2}\right) ds + \frac{1}{2} \int_0^t X_s \sigma^2 ds$$

= $X_0 + \int_0^t X_s \sigma dW_s + \int_0^s X_s \mu ds$.

Nach Definition 1 von Blatt 9 mit $H_t = \mu X_t$ und $K_t = \sigma X_t$ besitzt X_t dann die angegebene Darstellung.

Aufgabe 3 (4 Punkte). Wir betrachten das zweidimensionale Semimartingal $\tilde{S}=(\tilde{S}^0_t,\tilde{S}^1_t)_{t\geq 0}\in \mathscr{S}$, welches für $r>-1,\mu\in\mathbb{R},\sigma\in\mathbb{R}_+$ und einer (bezüglich dem Maß P) Standard Brown'schen Bewegung W folgende Darstellung besitzt

$$d\tilde{S}^0_t = r\tilde{S}^0_t dt$$

und

$$d\tilde{S}_t^1 = \mu \tilde{S}_t^1 dt + \sigma \tilde{S}_t^1 dW_t.$$

Geben Sie eine explizite Form von \tilde{S} an.

Lösung: Für \tilde{S}^0_t gilt nach Umstellen $\frac{d\tilde{S}^0_t}{dt} = r\tilde{S}^0_t$, was durch $\tilde{S}^0_t = \tilde{S}^0_0 e^{rt}$ erfüllt wird. Die differentielle Darstellung von \tilde{S}^1_t ist die gleiche wie die von X_t in Aufgabe 1. Damit hat \tilde{S}^1_t die explizite Form $\tilde{S}^1_t = \tilde{S}^0_0 e^{\sigma W_t + t(\mu - \sigma^2/2)}$.

Zeigen Sie, dass es zu fixem T>0 ein zu P_T äquivalentes Maß Q_T gibt, sodass der Prozess S gegeben durch $S=\tilde{S}/\tilde{S}^0=(1,\tilde{S}^1/\tilde{S}^0)$ ein lokales Martingal bis T ist.

Hinweis: Verwenden Sie die Aussage aus Aufgabe 16 aus dem Skript (ohne Beweis).

Lösung: die 1 in der ersten Komponente ist schon mal ein lokales Martingal bezüglich jedem Maß, betrachte also $\tilde{S}^1/\tilde{S}^0 = \tilde{S}_0^1/\tilde{S}_0^0 e^{\sigma W_t + t[(\mu - r) - \sigma^2/2]} =:$ $\tilde{S}_0^1/\tilde{S}_0^0 X_t$. Wählen wir $\theta = -(\mu - r)/\sigma$ in Aufgabe 16 (und W = B), dann kommt heraus, dass $M_t' = B_t + \frac{\mu - r}{\sigma}t$ eine Brown'sche Bewegung unter Q ist. Somit ist $X_t = e^{\sigma M_t' - \frac{\sigma^2}{2}t}$ mit M_t' einer Brown'schen Bewegung bezüglich Q, also eine geometrische Brown'sche Bewegung ohne Drift. In diesem Fall ist X_t ein Martingal was noch gezeigt werden sollte.

Aufgabe 4 (4 Punkte). Sei S ein lokal beschränkter càdlàg Prozess. Die Menge $K^{\text{simple}} \subset L^{\infty}(\Omega, \mathcal{A}, P)$ sei gegeben durch

$$K^{\text{simple}} := \{ (H \cdot S)_{\infty} \mid H = \sum_{i=1}^{n} h_{i} \mathbb{1}_{\llbracket \tau_{i-1}, \tau_{i} \rrbracket} \text{ einfacher Prozess, } S^{\tau_{n}} \text{ beschränkt} \}.$$

Weiter existiere ein Maß Q mit den Eigenschaften

- 1. $Q \sim P$, d.h. Q ist äquivalent zu P, und
- 2. der Prozess S ist ein lokales Martingal unter Q.

Sei weiter $L^{\infty}_{+}(\Omega, \mathcal{A}, P) := \{ f \in L^{\infty}(\Omega, \mathcal{A}, P \mid f \geq 0) \}$. Zeigen Sie

$$K^{\mathrm{simple}} \cap L^{\infty}_{+}(\Omega, \mathscr{A}, P) = \{0\}.$$

Formulieren Sie die ökonomische Interpretation dieser Aussage.

Hinweis: Verwenden Sie Aufgabe 5.

Entsprechend Proposition 5.1.7 in [DS06] ist dies eine direkte Konsequenz von Aufgabe 5. Sei in der Tat S ein lokal beschränktes Martingal, sodass

 $(H \cdot S)_{\infty} \in (H \cdot S)_{\infty} \in K^{\text{simple}} \cap L_{+}^{\infty}(\Omega, \mathscr{A}, P)$. Nach Aufgabe 5 gilt dann $E_{Q}[(H \cdot S)_{\infty}] = 0$. Da $(H \cdot S)_{\infty} \in L_{+}^{\infty}(\Omega, \mathscr{A}, P)$ gilt außerdem $(H \cdot S)_{\infty} \geq 0$. Somit muss schon $(H \cdot S)_{\infty} = 0$ gelten. Das ist eine Richtung des Fundamental Theorem of Asset Pricing – Existiert ein äquivalentes Martingalmaß Q, so ist der Markt frei von Arbitrage.

Aufgabe 5 (Bonus 4 Punkte). Zeigen Sie: Ein lokal beschränkter càdlàg Prozess S ist ein lokales Martingal genau dann, wenn

$$E[(H \cdot S)_{\infty}] = 0,$$

für alle einfachen Prozesse $H = \sum_{i=1}^n h_i \mathbb{1}_{\llbracket \tau_{i-1}, \tau_i \rrbracket}$, sodass S^{τ_n} beschränkt ist.

Hinweis: Betrachten Sie eine lokalisierende Folge von Stoppzeiten $(T_n)_{n\in\mathbb{N}}$, sodass S^{T_n} ein beschränkter Prozess ist. Die Martingaleigenschaft von S^{T_n} folgt nun, falls $E[S^{T_n}_{\sigma_2} \mid \mathscr{F}_{\sigma_1}] = S^{T_n}_{\sigma_1}$ für alle Stoppzeiten $\sigma_1 \leq \sigma_2 \leq T_n$ (Diese Aussage muss ebenfalls gezeigt werden).

Sei zunächst S ein lokales Martingal, H ein einfacher Prozess, sodass S^{τ_n} beschränkt ist. Dann ist für die lokalisierende Folge $(T_k)_{k\in\mathbb{N}}$ von S der Prozess S^{T_k} ein Martingal. Sei $k\in\mathbb{N}$ so, dass $T_k\geq \tau_n$, dann sind auch die S^{τ_i} Martingale. Nach Definition 2 von Blatt 3 gilt $(H\cdot S)_t=\sum_{i=1}^n h_i(S_t^{\tau_i}-S_t^{\tau_{i-1}})$ mit $h_i\in L^\infty(\mathscr{F}_{\tau_{i-1}})$. Somit gilt für $t=\infty$, dass $(H\cdot S)_\infty=\sum_{i=1}^n h_i(S_{\tau_i}-S_{\tau_{i-1}})$. Entsprechend dem Beweis von Theorem 216 im Skript zur Vorlesung Wahrscheinlichkeitstheorie gilt wegen der Definition des stochastischen Integrals für einfache Prozesse

$$E[(H \cdot S)_{\infty}] = \sum_{i=1}^{n} E[h_i(S_{\tau_i} - S_{\tau_{i-1}})].$$

Mit der Turmeigenschaft der bedingten Erwartung erhalten wir

$$= \sum_{i=1}^{n} E[E[h_i(S_{\tau_i} - S_{\tau_{i-1}}) \mid \mathscr{F}_{\tau_{i-1}}]].$$

Da die h_i jeweils $\mathscr{F}_{\tau_{i-1}}$ -messbar sind, folgt

$$= \sum_{i=1}^{n} E[h_i E[S_{\tau_i} - S_{\tau_{i-1}} \mid \mathscr{F}_{\tau_{i-1}}]].$$

Da S^{T_k} ein Martingal ist, erhalten wir schließlich

$$= \sum_{i=1}^{n} E[h_i(S_{\tau_{i-1}} - S_{\tau_{i-1}})] = 0.$$

Für die Rückrichtung gehen wir entsprechend Lemma 5.1.3 in [DS06] vor. Es gelte nun $E[(H \cdot S)_{\infty}] = 0$ für alle einfachen Prozesse H, sodass S^{τ_n} beschränkt ist. Wir wollen zeigen, dass S ein lokales Martingal ist, also eine Folge von Stoppzeiten $(T_n)_{n\in\mathbb{N}}$ finden, sodass S^{T_n} für jedes $n\in\mathbb{N}$ ein Martingal ist. Da S lokal beschränkt ist gibt es eine Folge $(T_n)_{n\in\mathbb{N}}$, sodass S^{T_n} beschränkt ist. Gilt nun $E[S^{T_n}_{\sigma_2} \mid \mathscr{F}_{\sigma_1}] = S^{T_n}_{\sigma_1}$ für alle $\sigma_1 \leq \sigma_2 \leq T_n$, so gilt auch $E[S_t^{T_n} \mid \mathscr{F}_{\sigma_1}] = S_{\sigma_1}^{T_n}$ für alle $t > T_n$, denn hier gilt $S_t^{T_n} = S_{T_n}$. Somit ist S^{T_n} dann ein Martingal. Es sollte noch gezeigt werden, dass der Prozess S^{T_n} gleichgradig integrierbar ist. Um zu zeigen, dass S^{T_n} ein Martingal ist, reicht es also zu zeigen, dass für alle $\sigma_1 \leq \sigma_2 \leq T_n$ gilt $E[S_{\sigma_2} \mid$ \mathscr{F}_{σ_1}] = S_{σ_1} . Hierzu gehen wir wie in der Rückrichtung des Beweises von Theorem 159, dem Fundamental Theorem of Asset Pricing, vor. Wählen wir für $F \in \mathscr{F}_{\sigma_1} H_t = \mathbb{1}_F \mathbb{1}_{(\sigma_1, \sigma_2]}(t)$, sodass $(H \cdot S)_{\infty} = \mathbb{1}_F (S_{\sigma_2} - S_{\sigma_1})$, dann erhalten wir nach Voraussetzung $0 = E[(H \cdot S)_{\infty}] = E[\mathbb{1}_F(S_{\sigma_2} - S_{\sigma_1})] =$ $E[\mathbb{1}_F S_{\sigma_2}] - E[\mathbb{1}_F S_{\sigma_1}]$, was uns die definierende Eigenschaft der Bedingten Erwartung $E[S_{\sigma_2} \mid \mathscr{F}_{\sigma_1}]$ nachrechnet. Somit ist $E[S_{\sigma_2} \mid \mathscr{F}_{\sigma_1}] = S_{\sigma_1}$, was wir zeigen wollten.

References

[DS06] Kapitel 5. In: Delbaen, Freddy; Schachermayer, Walter: The Kreps-Yan Theorem. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. – ISBN 978-3-540-31299-4, 71-83