Medical Image Processing for Diagnostic Applications

Parallel Beam – On Noise, Filtering and Window Functions

Online Course – Unit 35 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Effect of Noise on Filtering

Window Functions

General Idea

Common Examples

The According Filters

Filter Results

Summary

Take Home Messages
Further Readings

Additive Noise (+2%)

Figure 1: Projection of the cylinder phantom with 2% noise added

Additive Noise (+2%)

Figure 2: Filtered result of the noiseless projection

Additive Noise (+2%): After Filtering

since center frequencz is killed and high frequencies are amplified

ramp filter

Figure 3: Filtered result of the noisy projection

Noise ...

- ... is amplified when filtering with the ramp filter.
- ... has to be taken care of in an appropriate manner.
- ... is indirectly proportional to the applied dose.
- ... affects different reconstruction methods differently.

Topics

Effect of Noise on Filtering

Window Functions good for removing noise (high frequency noise)

General Idea

Common Examples

The According Filters

Filter Results

Summary

Take Home Messages
Further Readings

Window Functions

Window functions are used to improve signals as high frequencies are reduced or even eliminated:

- → Noise reduction
- → Reduces high frequencies caused by cutting

Many window functions are known:

- Cosine window
- Shepp-Logan window

• . . .

Window Functions: Filter Adaptation

1. Apply the window function W in frequency domain:

$$P'(\omega,\theta) = W(\omega) \cdot P(\omega,\theta).$$

2. Then apply the filter *H*:

$$Q'(\omega,\theta) = H(\omega) \cdot P'(\omega,\theta) = H(\omega) \cdot W(\omega) \cdot P(\omega,\theta).$$
filter window

3. Rewrite the filtering equation to an adjusted filter H':

$$Q'(\omega, \theta) = H'(\omega) \cdot P(\omega, \theta)$$

$$\Rightarrow$$
 $H'(\omega) = H(\omega) \cdot W(\omega)$. filtering plus window

Rectangular Window (Frequency Cut-off)

Figure 4: Rectangular window function in frequency domain (left) and its counterpart in spatial domain (right)

Cosine Window: $cos(\pi \cdot x)$

Figure 5: Cosine window function in frequency domain (left) and its counterpart in spatial domain (right)

Shepp-Logan Window: $\frac{\sin(\pi \cdot x)}{(\pi \cdot x)}$

Figure 6: Shepp-Logan window function in frequency domain (left) and its counterpart in spatial domain (right)

Rectangular Filter

Figure 7: Rectangular filter in frequency domain (left) and its counterpart in spatial domain (right)

Cosine Filter

Figure 8: Cosine filter in frequency domain (left) and its counterpart in spatial domain (right)

Shepp-Logan Filter

Figure 9: Shepp-Logan filter in frequency domain (left) and its counterpart in spatial domain (right)

Ramp Filter Result

Figure 10: Filtered noisy projection using the rectangular window (left) vs. itself, the ramp filter (right)

Cosine Filter Result

Figure 11: Filtered noisy projection using the cosine window (left) vs. the ramp filtered result (right)

Shepp-Logan Filter Result

Figure 12: Filtered noisy projection using the Shepp-Logan window (left) vs. the ramp filtered result (right)

Topics

Effect of Noise on Filtering

Window Functions
General Idea
Common Examples
The According Filters
Filter Results

Summary

Take Home Messages Further Readings

Take Home Messages

- Noise has a severe effect on the filtering result.
- Window functions can be used to reduce this effect.
- We have learned about the frequency cut-off, the cosine window and the Shepp-Logan window.

Further Readings

The original Ram-Lak article is:

G. N. Ramachandran and A. V. Lakshminarayanan. "Three-dimensional Reconstruction from Radiographs and Electron Micrographs: Application of Convolutions instead of Fourier Transforms". In: *Proceedings of the* National Academy of Sciences of the United States of America 68.9 (Sept. 1971), pp. 2236–2240

The concise reconstruction book from 'Larry 'Zeng:

Gengsheng Lawrence Zeng. Medical Image Reconstruction – A Conceptual Tutorial. Springer-Verlag Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-05368-9

Another mathematical examination of filtered backprojection can be found in

Thorsten Buzug. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Springer Berlin Heidelberg, 2008. DOI: 10.1007/978-3-540-39408-2