

VLANs e Redes IP

Diogo Martins - 201105567

Isabel Fragoso - 201001771

Planeamento e Gestão de Redes

Professor João Neves

Porto 8 de Março de 2015

Índice

Índice	1
Introdução	2
1 - Computadores ligados ao Switch	2
2 - Criação de VLAN 60 no switch	3
3 - Criação de VLAN em dois switches	4
4 - Configuração do Spanning Tree Protocol	5
5 - Configuração de redes IP numa bancada	7
6 - Triângulo de routers	8
Conclusão	10
Bibliografia	10
Anexos	11

Introdução

Este trabalho teve como objetivo relembrar e aprofundar alguns dos conceitos já estudados na unidade curricular de Redes dos Computadores.

Para isso, procedemos à configuração dos *switches*, do *router* e dos computadores da bancada de maneira a podermos realizar todos os testes de conectividade bem como a gerar todos os *logs* necessários.

Este trabalho conta assim com seis etapas diferentes: a ligação básica dos computadores ao switch, a criação de uma *VLAN* – no nosso caso a *VLAN* 60, visto que a nossa bancada era a bancada 6, a criação de uma *VLAN* em dois *switches*, a configuração do *Spanning Tree Protocol*, a configuração de redes IP numa bancada e o triângulo de *routers*.

1 - Computadores ligados ao Switch

A primeira experiência, consistiu apenas na verificação de conectividade entre as máquinas ligadas ao *switch*.

Para tal, começou-se por isolar o *switch* da rede do laboratório e configurar os IP's dos computadores.

De seguida testou-se a conectividade entre os computadores que pode ser observada no excerto do *log* capturado no *Wireshark*:

```
16 12.626803
                172.16.2.61 172.16.2.62 ICMP
                                                                   98 Echo (ping) request id=0x483c, seq=3/768, ttl=64 (reply in 17)
17 12.626944
                 172.16.2.62
                             172.16.2.61 ICMP
                                                                   98 Echo (ping) reply
                                                                                             id=0x483c, seq=3/768, ttl=64 (request in 16)
                                                                   98 Echo (ping) request id=0x483c, seq=4/1024, ttl=64 (reply in 19)
18 13,625804
                172.16.2.61 172.16.2.62
                                           ICMP
19 13.625969
                172.16.2.62 172.16.2.61 ICMP
                                                                                           id=0x483c, seq=4/1024, ttl=64 (request in 18)
                                                                   98 Echo (ping) reply
                Hewlett-_5... Hewlett-_3... ARP
21 15,638946
                                                                   60 Who has 172,16,2,61? Tell 172,16,2,62
                Hewlett-_3... Hewlett-_5... ARP
                                                                   42 172.16.2.61 is at 00:11:0a:3c:cd:13
22 15.638960
24 17,005304
                Hewlett- 3... Broadcast
                                           ARP
                                                                   42 Who has 172,16,2,64? Tell 172,16,2,61
25 17.005456
                                                                   60 172.16.2.64 is at 00:22:64:19:01:f7
                Hewlett-_1... Hewlett-_3...
26 17.005468
                172.16.2.61 172.16.2.64 ICMP
                                                                   98 Echo (ping) request id=0x4840, seq=1/256, ttl=64 (reply in 27)
                                                                   98 Echo (ping) reply id=0x4840, seq=1/256, ttl=64 (request in 26) 98 Echo (ping) request id=0x4840, seq=2/512, ttl=64 (reply in 29)
27 17.005631
                172.16.2.64 172.16.2.61 ICMP
                172.16.2.61 172.16.2.64 ICMP
```

2 - Criação de VLAN 60 no switch

Uma VLAN é um grupo de estações que contêm um determinado conjunto de requerimentos comuns, independentemente da sua localização física. As VLANs são normalmente associadas com um determinado IP de uma sub-rede.

Esta configuração tinha como objetivo criar uma VLANs constituída por dois computadores: o gnu61 e o gnu62 com os seguintes endereços:

Rede: 172.16.60.0/24 gnu61: 172.16.60.61 gnu62: 172.16.60.62

Fazendo então testes de conectividade através de *pings*, é possível verificar que o computador 1 e 2 conseguem comunicar entre si, devido ao facto de se encontrarem na mesma VLAN, enquanto que ao tentar comunicar com os computador 3 ou 4 obtém-se a mensagem "*Destination Host Unreachable*".

A conectividade entre os computadores da mesma VLAN pode ser observada no *log* capturado:

	10 12.976961	newtett5a:74:5e	newtertscrea:	ARP	00 1/2.10.00.02 IS at 00:21:5a:5a:74:3e
	11 12.976973	172.16.60.61	172.16.60.62	ICMP	98 Echo (ping) request id=0x4a29, seq=1/256, ttl=64 (reply in 12)
	12 12.977112	172.16.60.62	172.16.60.61	ICMP	98 Echo (ping) reply id=0x4a29, seq=1/256, ttl=64 (request in 11)
	13 13.975788	172.16.60.61	172.16.60.62	ICMP	98 Echo (ping) request id=0x4a29, seq=2/512, ttl=64 (reply in 14)
	14 13.975928	172.16.60.62	172.16.60.61	ICMP	98 Echo (ping) reply id=0x4a29, seq=2/512, ttl=64 (request in 13)
	15 14.038478	Cisco_7b:ce:81	Spanning-tree-(STP	60 Conf. Root = 32768/60/00:1e:14:7b:ce:80
	16 14.974789	172.16.60.61	172.16.60.62	ICMP	98 Echo (ping) request id=0x4a29, seq=3/768, ttl=64 (reply in 17)
	17 14.974933	172.16.60.62	172.16.60.61	ICMP	98 Echo (ping) reply id=0x4a29, seq=3/768, ttl=64 (request in 16)
	18 15.974572	172.16.60.61	172.16.60.62	ICMP	98 Echo (ping) request id=0x4a29, seq=4/1024, ttl=64 (reply in 19)
	19 15.974714	172.16.60.62	172.16.60.61	ICMP	98 Echo (ping) reply id=0x4a29, seq=4/1024, ttl=64 (request in 18)
_					

3 - Criação de VLAN em dois switches

Esta terceira experiência tinha como objectivo criar uma VLAN em dois *switches* para poder existir conectividade entre duas máquinas de diferentes bancadas.

Primeiro foi necessário criar a VLAN em cada *switch*, e adicionar o computador 4 de cada bancada. De seguida, para permitir a comunicação entre os dois computadores, foi necessário associar a VLAN à porta de *trunking* (que permite a circulação de tráfego de diversas VLANs simultaneamente) e utilizar encapsulação 802.1Q que coloca uma *tag* no *Header* da trama, o que permite identificar a VLAN a que se destina.

Por fim, é possível verificar a conectividade entre os dois computadores, 64 e 54:

2 0.685172 3 0.685191 4 1.685172 5 1.685191	172.16.65.54 172.16.65.64 172.16.65.54 172.16.65.64	172.16.65.64 172.16.65.54 172.16.65.64 172.16.65.54	ICMP ICMP ICMP ICMP	98 Echo (ping) request id=0x1c08, seq=73/18688, ttl=64 (reply in 3) 98 Echo (ping) reply id=0x1c08, seq=73/18688, ttl=64 (request in 2) 98 Echo (ping) request id=0x1c08, seq=74/18944, ttl=64 (request in 4) 98 Echo (ping) reply id=0x1c08, seq=74/18944, ttl=64 (request in 4)
6 2.000925	Cisco_7b:ce:84	Spanning-tree-(fo	STP	60 Conf. Root = 32768/65/00:1e:14:7b:ce:80
7 2.685189	172.16.65.54	172.16.65.64	ICMP	98 Echo (ping) request id=0x1c08, seq=75/19200, ttl=64 (reply in 8)
8 2.685208	172.16.65.64	172.16.65.54	ICMP	98 Echo (ping) reply id=0x1c08, seq=75/19200, ttl=64 (request in 7)
9 3.539431	Cisco_7b:ce:84	CDP/VTP/DTP/PAgP/	CDP	604 Device ID: gnu-sw6 Port ID: FastEthernet0/4
10 3.685183	172.16.65.54	172.16.65.64	ICMP	98 Echo (ping) request id=0x1c08, seq=76/19456, ttl=64 (reply in 11)
11 3.685199	172.16.65.64	172.16.65.54	ICMP	98 Echo (ping) reply id=0x1c08, seq=76/19456, ttl=64 (request in 10)
12 3.793740	172.16.65.64	172.16.65.54	ICMP	98 Echo (ping) request id=0x62a1, seq=1/256, ttl=64 (reply in 13)
13 3.793904	172.16.65.54	172.16.65.64	ICMP	98 Echo (ping) reply id=0x62a1, seq=1/256, ttl=64 (request in 12)
14 4.005743	Cisco_7b:ce:84	Spanning-tree-(fo	STP	60 Conf. Root = 32768/65/00:1e:14:7b:ce:80 Cost = 0 Port = 0x8004
15 4.685200	172.16.65.54	172.16.65.64	ICMP	98 Echo (ping) request id=0x1c08, seq=77/19712, ttl=64 (reply in 16)

Tal como na experiência anterior, a comunicação entre computadores associados a VLANs diferentes é impossível, obtendo a mensagem "Destination Host Unreachable".

4 - Configuração do Spanning Tree Protocol

Spanning Tree Protocol é um protocolo para equipamentos de rede que permite resolver problemas de *loops* em redes comutadas.

Quando vários switches estão ligados entre si é necessário que haja vários caminhos diferentes para a circulação das tramas, ou seja, se um *switch* apresentar alguma falha isso não deverá fazer com que a rede deixe de funcionar.

Porém, se conectarmos os *switches* de maneira a que haja múltiplos caminhos físicos para o mesmo destino poderão ocorrer *loops* no encaminhamento de pacotes.

O STP garante que um desses caminhos físicos estará bloqueado e só será ativado em caso de falha de um switch, sendo que o objetivo do STP é evitar as *broadcast storms*. As *broadcast storms* ocorrem porque, como as tramas dos *broadcasts* e dos *multicasts* são encaminhados pelos switches para todas as portas, os switches vão repetidamente fazer um *re-broadcast* das mensagens de *broadcast* e espalhá-las pela rede. Se essa trama for enviada para uma topologia em loop não conseguirá de lá sair.

Para esta configuração utilizamos as bancadas 4, 5 e 6 do laboratório l320, interligando os seus *switches* entre si.

O *root switch* escolhido desta rede foi o da bancada 6 porque este era o que apresentava o menor ID e a porta bloqueada foi a porta do *switch* que liga a bancada 4 à 5, visto que o tráfego tem obrigatoriamente que passar pelo *switch* 6.

A eleição do root é feita da seguinte maneira:

- 1. Através do *bridge-ID* de cada *switch*, composto por 2 bytes referentes ao valor da prioridade e outros 6 bytes referentes ao MAC *address* do *switch*.
- 2. Escolhendo o menor MAC address da rede

Neste caso particular, o *root switch* escolhido foi o da bancada 6. Como a prioridade era igual para todos os switch (32769) a escolha foi determinada através do MAC *address* como podemos verificar:

SW4: $001E.147C.8F80_{16} = 129192726400_{10}$ **SW5**: $001E.147B.D500_{16} = 129192678656_{10}$ **SW6**: $001E.147B.CE80_{16} = 129192676992_{10}$

Após termos retirado um dos cabos de interligação que estava ativo pudemos verificar que o *root switch* se manteve mas que a configuração da rede se modificou:

Como deixaram de existir *loops*, deixaram de existir portas bloqueadas, pois todas são necessárias à comunicação entre os *switches*.

Forçando o *switch* 5 a ser o *root switch* da rede podemos verificar que a porta bloqueada foi aquela que fazia ligação entre o *switch* 6 e o 4, de maneira a evitar *loops* e assim, evitar *broadcast storms*:

5 - Configuração de redes IP numa bancada

Para esta experiência, o primeiro passo passou por criar duas VLANs, a 60 e a 61. Na VLAN 60 foram ligados os computadores gnu61 e gnu62 e na VLAN 61 o gnu64. Por omissão, o computador gnu63 fica ligado à VLAN 1.

De seguida atribuiu-se uma rede rede IP a cada VLAN. Para o efeito, configurou-se cada máquina com os seguintes IPs:

gnu61: 172.16.60.61 gnu62: 172.16.60.62 gnu64: 172.16.61.64

Após a atribuição de IP's, fez-se a ligação ao *router* através da configuração da porta de *trunking*. Como cada VLAN está directamente ligada ao *router*, não é necessária a configuração de rotas, sendo apenas necessário em cada computador definir o IP do *router* como *default gateway*.

Por fim, realizaram-se testes de conectividade que comprovaram que era possível a troca de tráfego entre qualquer uma das máquinas.

6 - Triângulo de routers

Para esta parte final do trabalho foi necessário configurar *switches*, *routers* e computadores de três bancadas. Utilizaram-se as bancadas 6, 5 e 2 para a realização desta experiência. Para isso, primeiro configuramos as VLANs internas de cada bancada, procedendo-se então seguidamente à configuração dos routers.

Primeiro foram configuradas as rotas de forma estática, sendo que mais tarde procedeu-se à configuração de forma dinâmica.

Através da imagem seguinte é possível perceber as rotas estáticas e dinâmicas implementadas, sendo que as rotas estáticas se destinam para as VLANs inseridas num mesmo *switch* e portanto, ligadas directamente ao *router*, enquanto que as dinâmicas são utilizadas para a conexão aos routers de bancadas diferentes:

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 10 subnets
C 172.16.60.0 is directly connected, FastEthernet0/0.1
C 172.16.61.0 is directly connected, FastEthernet0/0.2
R 172.16.56.0 [120/1] via 172.16.66.253, 00:00:06, FastEther net0/0.3

[120/1] via 172.16.26.254, 00:00:25, FastEther net0/1
R 172.16.50.0 [120/1] via 172.16.66.253, 00:00:06, FastEther net0/0.3
R 172.16.51.0 [120/1] via 172.16.66.253, 00:00:06, FastEther net0/0.3
C 172.16.26.0 is directly connected, FastEthernet0/1
R 172.16.20.0 [120/1] via 172.16.26.254, 00:00:25, FastEther net0/1
R 172.16.20.0 [120/1] via 172.16.26.254, 00:00:25, FastEther net0/1
C 172.16.20.0 is directly connected, FastEthernet0/0
C 172.16.66.0 is directly connected, FastEthernet0/0.3
```

Após toda a configuração pudemos então verificar que os computadores de diferentes bancadas conseguem comunicar entre eles, como se pode verificar através do *log*:

Time	Source	Destination	Protocol	Length	Info							
5 3.185062	172.16.61.61	172.16.60.62	ICMP		98 Ech	o (ping)	request	id=0x140c,	seq=1/256,	ttl=64 (rep	ly in 6)
8 4.185500	172.16.61.61	172.16.60.62	ICMP		98 Ech	o (ping)	request	id=0x140c,	seq=2/512,	ttl=64 (rep	ly in 9)
11 5.184533	172.16.61.61	172.16.60.62	ICMP		98 Ech	o (ping)	request	id=0x140c,	seq=3/768,	ttl=64 (rep	ly in 1	2)
20 17.350104	172.16.61.61	172.16.21.21	ICMP		98 Ech	o (ping)	request	id=0x1416,	seq=1/256,	ttl=64 (rep	ly in 2	1)
23 18.350803	172.16.61.61	172.16.21.21	ICMP		98 Ech	o (ping)	request	id=0x1416,	seq=2/512,	ttl=64 (rep	ly in 2	4)
26 19.349802	172.16.61.61	172.16.21.21	ICMP		98 Ech	o (ping)	request	id=0x1416,	seq=3/768,	ttl=64 (rep	ly in 2	7)
29 20.348805	172.16.61.61	172.16.21.21	ICMP		98 Ech	o (ping)	request	id=0x1416,	seq=4/1024	, ttl=64 (re	oly in	30)
31 21.348536	172.16.61.61	172.16.21.21	ICMP		98 Ech	o (ping)	request	id=0x1416,	seq=5/1280	, ttl=64 (re	oly in	32)
38 28.308259	172.16.61.61	172.16.50.53	ICMP		98 Ech	o (ping)	request	id=0x141d,	seq=1/256,	ttl=64 (rep	ly in 3	9)
40 29.309492	172.16.61.61	172.16.50.53	ICMP		98 Ech	o (ping)	request	id=0x141d,	seq=2/512,	ttl=64 (rep	ly in 4	1)
43 30.308536	172.16.61.61	172.16.50.53	ICMP		98 Ech	o (ping)	request	id=0x141d,	seq=3/768,	ttl=64 (rep	ly in 4	4)
45 31.308531	172.16.61.61	172.16.50.53	ICMP		98 Ech	o (ping)	request	id=0x141d,	seq=4/1024	, ttl=64 (re	oly in	46)
48 32.308527	172.16.61.61	172.16.50.53	ICMP		98 Ech	o (ping)	request	id=0x141d,	seq=5/1280	, ttl=64 (re	oly in	49)

Conclusão

Após esta exposição do trabalho realizado concluí-se que todos as experiências foram bem sucedidas e ajudaram a recordar e aprofundar ligeiramente o conhecimento que vinha de Redes de Computadores.

As experiências permitiram não só compreender melhor certos conceitos como também ajudar a familiarizar com o equipamento usado nos laboratórios, nomeadamente os *switches* e *routers* da Cisco e o sistema operativo IOS.

Bibliografia

- Andrew S. Tanenbaum & David J. Wetherall, "Computer Networks", Pearson Education Limited, 5th Edition, 2014, ISBN: 978-1-292-02422-6
- Cisco, "Catalyst 3560 Switch Software Configuration Guide, Rel. 12.2(25)SE", [Online]
 Disponível em: http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3560/ software/release/12-2 25 se/configuration/guide/3560scg/swcli.html
- Cisco, "Cisco 3900 Series, 2900 Series, and 1900 Series Software Configuration Guide", [Online]
 Disponível em: http://www.cisco.com/c/en/us/td/docs/routers/access/1900/software/configuration.html

Anexos

1 - Scripts Experiência 2

Switch

configure terminal vlan 60 end

configure terminal interface fastethernet 0/1 switchport mode access switchport access vlan 60 end

configure terminal interface fastethernet 0/2 switchport mode access switchport access vlan 60 end

2 - Scripts Experiência 3

Switch

configure terminal vlan 65 end

configure terminal interface fastethernet 0/4 switchport mode access switchport access vlan 65 end

configure terminal interface gigabitethernet 0/2 switchport mode trunk end

configure terminal interface gigabitethernet 0/2 switchport mode trunk switchport trunk allowed vlan add 65 end

configure terminal no monitor session 1 monitor session 1 source vlan 65 monitor session 1 destination gigabitethernet 0/2 end

3 - Scripts Experiência 5

Switch

configure terminal vlan 60 end

configure terminal interface fastethernet 0/1 switchport mode access switchport access vlan 60 end

configure terminal interface fastethernet 0/2 switchport mode access switchport access vlan 60 end

configure terminal
vlan 61
end

configure terminal interface fastethernet 0/4 switchport mode access switchport access vlan 61 end

configure terminal interface gigabitethernet 0/2 switchport mode trunk end

configure terminal interface gigabitethernet 0/2 switchport mode trunk VLANs e Redes IP

switchport trunk allowed vlan all end

Router

interface fastethernet 0/0.1 encapsulation dot1Q 60 ip address 172.16.60.254 255.255.255.0 no shutdown exit

interface fastethernet 0/0.2 encapsulation dot1Q 61 ip address 172.16.61.254 255.255.255.0 no shutdown exit

interface fastethernet 0/0.3 encapsulation dot1Q 1 ip address 172.16.66.254 255.255.255.0 no shutdown exit

4 - Scripts Experiência 6

Switch

configure terminal vlan 60 end

configure terminal interface fastethernet 0/2 switchport mode access switchport access vlan 60 end

configure terminal interface fastethernet 0/3 switchport mode access switchport access vlan 60 end

configure terminal
vlan 61
end

configure terminal interface fastethernet 0/1 switchport mode access switchport access vlan 61 end

configure terminal vlan 66 end

configure terminal interface fastethernet 0/13 switchport mode access switchport access vlan 66 end

configure terminal interface gigabitethernet 0/2 switchport mode trunk end

configure terminal interface gigabitethernet 0/2 switchport mode trunk switchport trunk allowed vlan all end

Router

configure terminal interface fastethernet 0/0.1 encapsulation dot1Q 60 ip address 172.16.60.254 255.255.255.0 no shutdown exit exit

configure terminal interface fastethernet 0/0.2 encapsulation dot1Q 61 ip address 172.16.61.254 255.255.255.0 no shutdown exit exit

configure terminal interface fastethernet 0/0.3 encapsulation dot1Q 66 ip address 172.16.66.254 255.255.255.0 no shutdown exit exit

configure terminal interface fastethernet 0/1 ip address 172.16.26.253 255.255.255.0 no shutdown exit exit

Rotas estáticas

```
configure terminal ip route 172.16.20.0 255.255.255.0 fastethernet 0/1 exit

configure terminal ip route 172.16.21.0 255.255.255.0 fastethernet 0/1 exit

configure terminal ip route 172.16.50.0 255.255.255.0 fastethernet 0/0.3 exit

configure terminal ip route 172.16.51.0 255.255.255.0 fastethernet 0/0.3 exit

configure terminal ip route 172.16.56.0 255.255.255.0 fastethernet 0/0.3 exit
```

Rotas dinâmicas

configure terminal

router rip version 2

network 172.16.50.0 network 172.16.51.0 network 172.16.56.0 network 172.16.20.0 network 172.16.21.0

no auto-summary end show ip route