IGEE-UMBB

EE 174: Recitations set 4

- 1. Let W be a subspace of dimension m of the vector space V of dimension n; Show that:
 - (a) $m \leq n$
 - (b) if m = n then W = V
- **2.** Consider $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (x+y,x+y)
 - (a) Is T linear?
 - (b) Is $v_1 = (1,0)$ and $v_2 = (1,1)$ a basis for R^2 ? Are their images also a basis for R^2 ? What can you conclude?
- **3**. Consider $L: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x,y,z) = (x,y)
 - (a) Is L linear? What does it represent geometrically?
 - (b) Is $v_1 = (1,0,0)$ and $v_2 = (0,1,0)$ a basis for R^3 ? Are their images a basis for the codomain? What do you conclude?
- **4.** Let $L: V \to W$ be a linear mapping; Show that:
 - a) L is onto if and only if $r(L) = \dim W$
 - **b)** If dim $V = \dim W$, then L is **one-to-one** if and only if L is **onto**.
- **5.** Find the nullity of the linear mapping $L: P_n \to R$ defined by $L[p(x)] = \int_0^1 p(x) dx$ where $p(x) = a_0 + a_1 x + \dots + a_n x^n$; Deduce the rank of L
- **6.** Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x,y,z) = (x+y+z,y-z,x-y+z); Is T nonsingular? If so, determine $T^{-1}(x,y,z)$.