การแข่งขันคณิตศาสตร์และวิทยาศาสตร์ระหว่างโรงเรียนครั้งที่ 20: TUMSO 20th

วิชาคอมพิวเตอร์

เวลา 09:00 น. - 14:00 น.

วันที่ 12 มกราคม 2567

Kusuriya 2 (75 คะแนน)

0.25 seconds, 256 megabytes

หลังจากที่ Maomao เลือกสมุนไพรเสร็จแล้วขั้นตอนต่อมาก็คือขั้นตอนการปรุง แต่หากใช้เพียงแค่สมุนไพรอย่างเดียว รสชาติที่ออกมา นั้นอาจจะไม่ถูกใจมากนัก ดังนั้นจึงต้องใช้เครื่องปรุงต่าง ๆ มาช่วย

ซึ่ง Maomao มีเครื่องปรุงทั้งหมด N ชนิด โดยที่ชนิดที่ i จะมีความหวาน A_i และความเปรี้ยว B_i และเมื่อนำแต่ละเครื่องปรุงมารวม กัน ความหวานลัพธ์เท่ากับผลคูณของความหวานของเครื่องปรุงทุกชนิดที่ใช้ ความเปรี้ยวลัพธ์เท่ากับผลบวกของความเปรี้ยวของเครื่อง ปรุงทุกชนิดที่ใช้ ค่ารสชาติเท่ากับผลต่างของความหวานลัพธ์และความเปรี้ยวลัพธ์ (ต้องใช้เครื่องปรุงอย่างน้อย 1 ชนิด เพื่อให้รสชาติที่ ออกมานั้นถูกใจบ้าง) หรืออธิบายอีกอย่างได้ว่า

ให้ $S\in \mathcal{P}(\{1,2,\ldots,N\})-\{arnothing\}$ แทนเซ็ตของชนิดเครื่องปรุงที่นำมาใช้ ให้ $f:\mathcal{P}(\{1,2,\ldots,N\}) o\mathbb{N}$ แทนความหวาน ลัพธ์ของเครื่องปรุงทุกชนิดที่ใช้ จะได้ว่า

$$f(S) = \prod_{i \in S} A_i$$

และให้ $g:\mathcal{P}(\{1,2,\ldots,N\}) o \mathbb{N}$ แทนความเปรี้ยวลัพธ์ของเครื่องปรุงทุกชนิดที่ใช้ จะได้ว่า

$$g(S) = \sum_{i \in S} B_i$$

จะได้ว่า $h:\mathcal{P}(\{1,2,\ldots,N\}) o\mathbb{N}$ แทนค่ารสชาติของเครื่องปรุงทุกชนิดที่ใช้ จะได้ว่า

$$h(S) = \left| \prod_{i \in S} A_i - \sum_{i \in S} B_i \right| = |f(S) - g(S)|$$

เพราะฉะนั้นจะได้ว่า $l:\mathcal{P}(\{1,2,\dots,N\}) o \mathbb{N}$ แทนค่าความอร่อยของเครื่องปรุงทุกชนิดที่ใช้ จะได้ว่า

$$l(S) = \sum_{x=1}^{h(S)} x^3 - \sum_{x=1}^{h(S)} x^2 + \sum_{x=1}^{h(S)} x$$

แต่เนื่องจาก Maomao นั้นชอบกินพิษ จึงอยากทำยาที่มีความอร่อยน้อยที่สุดที่เป็นไปได้ Maomao จึงอยากให้คุณช่วยว่าความอร่อย ที่น้อยที่สุดเป็นเท่าใด

วิชาคอมพิวเตอร์

เวลา 09:00 น. - 14:00 น.

วันที่ 12 มกราคม 2567

ข้อมูลนำเข้า

ข้อมูลนำเข้ามีทั้งหมด N+1 บรรทัด

บรรทัดแรกประกอบด้วยจำนวนเต็ม N แทนจำนวนเครื่องปรุงที่สามารถใช้ได้ $(1 \leq N \leq 10)$

บรรทัดที่ 2 ถึง N+1 แต่ละบรรทัดประกอบด้วยจำนวนเต็ม 2 จำนวน คือ A_i และ B_i แทนความหวานและความเปรี้ยวของเครื่อง ปรุงชนิดที่ i $(1 \leq A_i, B_i \leq 100)$

รับประกันว่าถ้า $S = \{1, 2, \dots, N\}$ แล้ว f(S) และ g(S) จะมีค่าไม่เกิน $5 \cdot 10^4$

ข้อมูลส่งออก

ตอบจำนวนเต็มเพียงหนึ่งตัว แทนความอร่อยที่น้อยที่สุดที่เป็นไปได้

การให้คะแนน

ชุดทดสอบจะถูกแบ่งเป็น 5 ชุด จะได้คะแนนในแต่ละชุดก็ต่อเมื่อโปรแกรมให้ผลลัพธ์ถูกต้องในชุดทดสอบย่อยทั้งหมด

ชุดที่ 1 (2 คะแนน) จะมี N=1

ชุดที่ 2 (3 คะแนน) จะมี $A_i=1$ และ $B_i=1$ สำหรับทุก $i=1,2,\dots,N$

ชุดที่ 3 (3 คะแนน) จะมี N=2

ชุดที่ 4 (11 คะแนน) จะมี $1 \leq N \leq 5$

ชุดที่ 5 (56 คะแนน) ไม่มีเงื่อนไขเพิ่มเติม

ตัวอย่างข้อมูลนำเข้าและข้อมูลส่งออก

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	1
3 8	
5 8	

การแข่งขันคณิตศาสตร์และวิทยาศาสตร์ระหว่างโรงเรียนครั้งที่ 20: TUMSO 20th

วิชาคอมพิวเตอร์

เวลา 09:00 น. - 14:00 น.

วันที่ 12 มกราคม 2567

คำอธิบาย

เลือก
$$S=\{1,2\}$$
 จะได้ว่า $f(S)=\prod_{i\in S}A_i=A_1\cdot A_2=15$ และ $g(S)=\sum_{i\in S}B_i=B_1+B_2=16$ เพราะฉะนั้น $h(S)=|f(S)-g(S)|=1$ ดังนั้น $l(S)=\sum_{x=1}^{h(S)}x^3-\sum_{x=1}^{h(S)}x^2+\sum_{x=1}^{h(S)}x=1$