1&2. Linear regression function by Gradient descent

```
for i in range(0, 300000, 1):

Xw = np.dot(train, w_wgt)

gradient = np.dot(np.transpose(train), Xw - np.transpose(y_ans))

gradient_n = np.dot(2*Eta[comp]/5652, gradient)

w_wgt = w_wgt - gradient_n - np.dot( w_wgt, 2*lamda[comp]*Eta[comp])
```

參數解釋:

- i. *train*: 就是 Lost function 中的 X,包含了我所有的 training data。
- ii. w_wgt: weight,是一個(64*1)的矩陣,包含 9hr*7paremeters+1bias。
- iii. y_ans : 從 training data 中取得的答案,扣除掉每月的第一天前九小時得到的資料。
- iv. Eta[]: learning rate,為了比較不同 learning rate 的影響,所以用了一個 array 來存
- v. Lamda[]: 同 Eta[], importance of regularization

作法解釋:

我將每一個月一號的 0:00 到二十號的 14:00 當作每筆資料的起始小時,再將每一個月連接起來。因此我的 training data 共有(24*20-9)*12=5652 筆資料。其中每筆資料包含了九個小時,每小時我抽取出七種 feature 來訓練,最後再加上 bias。所以我的 training data 是一個(5652*64)的矩陣。

在 Gradient descent 的過程中,由於我的 training data 是一個大矩陣,所以在計算時我用到了矩陣運算的技巧來處理 gradient,並非直接將 Loss function 作微分,其過程如下:

$$L = \sum (\hat{y} - X \cdot w)^2 = \|(\hat{y} - X \cdot w)\|^2$$
$$= (\hat{y} - X \cdot w)^T \cdot (\hat{y} - X \cdot w)$$
$$= \hat{y}^T \cdot \hat{y} - 2(Xw)^T \cdot \hat{y} + (Xw)^T \cdot (Xw)$$
$$\nabla L = -2X^T \cdot \hat{y} + 2X^T (Xw)$$

 ∇ L 就是這 5652 筆資料的 gradient,因此在計算新的 weight 時需要將這個 gradient 做平均,乘上 Learning rate 之後便能與 weight 相減得到新的 weight 了。後面 Lamda 項是 regularization 的參數。

 $= 2X^T(Xw - \hat{v})$

*** 所選取的七個參數,分別為:NO NO2 NOx O3 PM10 PM2.5 SO2 根據 https://goo.gl/fi4qDU ,氮硫氧化物與臭氧跟 PM2.5 相關性高 但是無法考慮到冬天東北季風帶來的影響

3. Regularization

斂的解,降低 Loss。

這張圖有利用 Adagrad 的方法,動態調整 learning rate。與上圖比較,可以看出 Loss 有比較小,更早趨近於 local optimum 的值。

4. Learning rate

train 到一半就會發現值 nan 掉了。

由圖可以明顯看出,較小的 rate 趨近於最小值的速度也比較慢,其中最下面那條線就是我所選擇的 rate 所跑出的圖形,其 Loss 下降較快速。若選擇更大的learning rate 的話,其結果無法呈現在圖表中,