Project Week05 - Yue Yu(yy404)

Problem1

Pass all the tests.

```
repo > Week05 > Project > 💠 test_functions.py
       class TestDataFrames(unittest.TestCase):
           def test_9_1(self):
               var_total = VaR_t(fit_t(pnl_sum)[0], fit_t(pnl_sum)[
               es_total = ES_t(fit_t(pnl_sum)[0], fit_t(pnl_sum)[1]
               value_temp = totalValues['currentValue'][0]
               new_row = pd.DataFrame({'Stock': ['Total'], 'VaR95':
               out = pd.concat([out, new_row], ignore_index=True)
               self.assertDataFramesAlmostEqualByTen(out.iloc[:,1:]
347
PROBLEMS 15
              OUTPUT
                       TERMINAL
 ∨ TERMINAL
     return std(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)
    .-398.01346131399316
   -5.871649545329733
   /home/yy404/fintech545/repo/Week05/Project/test_functions.py:333: F
    with empty or all-NA entries is deprecated. In a future version,
   en determining the result dtypes. To retain the old behavior, exclu
     out = pd.concat([out, new_row], ignore_index=True)
   -16472.614161385045
   -7.6518567739179435
   -2547.870788681481
   -10.063443661782529
    -----
   Ran 28 tests in 39.764s
   OK
```

Problem2

Using the data in problem1.csv, the VaR and ES are calculated by 3 fitting methods as following:

	VaR	ES
Normal distribution with EW	0.0911693	0.1141065
MLE + t distribution	0.0764756	0.1132179
Historic Simulation	0.0759807	0.1167766

We can see that the VaR under the Normal Distribution with EW is noticeably the largest,

while the VaR under MLE-fitted t distribution and Historical Simulation are approximately similar. However, the ES estimates for these three fitting methods are very close. I believe this is because the Normal Distribution is more concentrated in the center, whereas the t Distribution has thicker tails. Moreover, from the graphical perspective, the t Distribution aligns better with Historical Simulation, and one could argue it is closer to real-world conditions.

Problem3

By fitting Generalized T model to portfolio A and B, and Normal distribution to portfolio ES, the VaR and ES as following:

Portfolio	VaR	ES	
A	9022.89	11752.09	
В	6886.91	8962.14	
C	6217.31	7568.13	
Total	21333.03	28153.62	

By comparing the VaR from Copula with the methods last week, we can see the VaR is completely different, which due to the different portfolios and returns. I adventure a guess:

this simulation results are closer to the simulation results of the Historic simulation. Copula is suitable for portfolios with complex correlation structures due to their ability to handle non-linear dependencies and extreme situations.

Delta Normal is simpler but may overlook important risk factors, potentially resulting in less accurate risk management.

Portfolio	Copula	Delta Normal	Monte Carlo	Historic
A	9022.89	15426.97	14014.13	17933.41
В	6886.91	8082.57	7474.11	10983.46
C	6217.31	18163.29	16285.41	21409.75
Total	21333.03	38941.38	35642.05	49544.19