Stack overflow tagging

Stack Overflow: Tag Prediction

1. Business Problem

1.1 Description

Description

Stack Overflow is the largest, most trusted online community for developers to learn, share their programming knowledge, and build their careers.

Stack Overflow is something which every programmer use one way or another. Each month, over 50 million developers come to Stack Overflow to learn, share their knowledge, and build their careers. It features questions and answers on a wide range of topics in computer programming. The website serves as a platform for users to ask and answer questions, and, through membership and active participation, to vote questions and answers up or down and edit questions and answers in a fashion similar to a wiki or Digg. As of April 2014 Stack Overflow has over 4,000,000 registered users, and it exceeded 10,000,000 questions in late August 2015. Based on the type of tags assigned to questions, the top eight most discussed topics on the site are: Java, JavaScript, C#, PHP, Android, jQuery, Python and HTML.

Problem Statemtent

Suggest the tags based on the content that was there in the question posted on Stackoverflow.

Source: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/

Data Source: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data (https://www.kaggle

Youtube: https://youtu.be/nNDqbUhtlRg (https://youtu.be/nNDqbUhtlRg)

 $Research\ paper: \underline{https://www.microsoft.com/en-us/research/wp-content/\underline{uploads/2016/02/tagging-1.pdf}\ \underline{(https://www.microsoft.com/en-us/research/wp-content/\underline{uploads/2016/02/tagging-1.pdf}\ \underline{(https://www.microsoft.com/en-us/research/wp-content/\underline{uploads/2016/$

content/uploads/2016/02/tagging-1.pdf)

Research paper: https://dl.acm.org/citation.cfm?id=2660970&dl=ACM&coll=DL (https://dl.acm.org/citation.cfm?id=2660970&dl=ACM&coll=DL)

1.3 Real World / Business Objectives and Constraints

- 1. Predict as many tags as possible with high precision and recall.
- 2. Incorrect tags could impact customer experience on StackOverflow.
- 3. No strict latency constraints.

2. Machine Learning problem

2.1 Data

2.1.1 Data Overview

Refer: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data (https://www.kaggle.com/c

All of the data is in 2 files: Train and Test.

```
Train.csv contains 4 columns: Id,Title,Body,Tags.

Test.csv contains the same columns but without the Tags, which you are to predict.

Size of Train.csv - 6.75GB

Size of Test.csv - 2GB

Number of rows in Train.csv = 6034195
```

The questions are randomized and contains a mix of verbose text sites as well as sites related to math and programming. The number of questions from each site may vary, and no filtering has been performed on the questions (such as closed questions).

Data Field Explaination

Dataset contains 6,034,195 rows. The columns in the table are:

```
Id - Unique identifier for each question

Title - The question's title

Body - The body of the question

Tags - The tags associated with the question in a space-seperated format (all lowercase, should not contain tabs '\t' or ampersands '&')
```

2.1.2 Example Data point

Title: Implementing Boundary Value Analysis of Software Testing in a C++ program? **Body:**

```
#include<
iostream>\n
#include<
stdlib.h>\n\n
using namespace std;\n\n
int main()\n
\{ \n
         int n,a[n],x,c,u[n],m[n],e[n][4];\n
         cout<<"Enter the number of variables";\n</pre>
                                                           cin>>n;\n\n
         cout<<"Enter the Lower, and Upper Limits of the variables";\n</pre>
         for(int y=1; y<n+1; y++)\n
            cin>>m[y];\n
            cin>>u[y];\n
         }\n
         for(x=1; x<n+1; x++) n
            a[x] = (m[x] + u[x])/2; \n
         }\n
         c=(n*4)-4;\n
         for(int a1=1; a1<n+1; a1++)\n
         {n n}
            e[a1][0] = m[a1]; \n
            e[a1][1] = m[a1]+1; \n
            e[a1][2] = u[a1]-1;\n
            e[a1][3] = u[a1]; \n
         }\n
         for(int i=1; i<n+1; i++)\n
            for(int l=1; l<=i; l++)\n
            {\n
                if(l!=1)\n
                 {\n
                     cout<<a[l]<<"\\t";\n
                }\n
            }\n
            for(int j=0; j<4; j++)\n
            {\n
                 cout<<e[i][j];\n</pre>
                 for(int k=0; k< n-(i+1); k++) \setminus n
                 {\n
                     cout<<a[k]<<"\\t";\n
                }\n
                cout<<"\\n";\n
            }\n
         }
              n\n
         system("PAUSE");\n
         return 0; \n
}\n
```

 $n\n$

The answer should come in the form of a table like $\n\$

```
50
            99
                                           50\n
            100
                          50
                                           50\n
            50
                                           50\n
                          1
            50
                         2
                                           50\n
                         99
                                           50\n
            50
            50
                         100
                                           50\n
            50
                         50
                                           1\n
            50
                         50
                                           2\n
            50
                          50
                                           99\n
                                           100\n
n\n
if the no of inputs is 3 and their ranges are\n
        1,100\n
        1,100\n
        1,100\n
        (could be varied too)
n\n
The output is not coming, can anyone correct the code or tell me what\'s wrong?
\n'
Tags : 'c++ c'
```

50\n

50\n

2.2 Mapping the real-world problem to a Machine Learning Problem

2.2.1 Type of Machine Learning Problem

It is a multi-label classification problem

1

2

50

50

Multi-label Classification: Multilabel classification assigns to each sample a set of target labels. This can be thought as predicting properties of a data-point that are not mutually exclusive, such as topics that are relevant for a document. A question on Stackoverflow might be about any of C, Pointers, FileIO and/or memory-management at the same time or none of these.

__Credit__: http://scikit-learn.org/stable/modules/multiclass.html

2.2.2 Performance metric

Micro-Averaged F1-Score (Mean F Score): The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:

```
F1 = 2 * (precision * recall) / (precision + recall)
```

In the multi-class and multi-label case, this is the weighted average of the F1 score of each class.

'Micro f1 score':

Calculate metrics globally by counting the total true positives, false negatives and false positives. This is a better metric when we have class imbalance.

'Macro f1 score':

Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

https://www.kaggle.com/wiki/MeanFScore (https://www.kaggle.com/wiki/MeanFScore)
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html (http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html)

Hamming loss: The Hamming loss is the fraction of labels that are incorrectly predicted. https://www.kaggle.com/wiki/HammingLoss (https://www.kaggle.com/wiki/HammingLoss)

3. Exploratory Data Analysis

3.1 Data Loading and Cleaning

3.1.1 Using Pandas with SQLite to Load the data

```
In [2]:
```

```
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import sqlite3
import csv
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from wordcloud import WordCloud
import re
import os
from sqlalchemy import create_engine # database connection
import datetime as dt
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem.snowball import SnowballStemmer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear_model import SGDClassifier
from sklearn import metrics
from sklearn.metrics import f1_score,precision_score,recall_score
from sklearn import svm
from sklearn.linear_model import LogisticRegression
from skmultilearn.adapt import mlknn
from skmultilearn.problem_transform import ClassifierChain
from skmultilearn.problem_transform import BinaryRelevance
from skmultilearn.problem_transform import LabelPowerset
from sklearn.naive_bayes import GaussianNB
from datetime import datetime
```

In [3]:

```
#Creating db file from csv
#Learn SQL: https://www.w3schools.com/sql/default.asp
if not os.path.isfile('train.db'):
   start = datetime.now()
   disk_engine = create_engine('sqlite:///train.db')
   start = dt.datetime.now()
   chunksize = 180000
   j = 0
   index_start = 1
   for df in pd.read_csv('Train.csv_', names=['Id', 'Title', 'Body', 'Tags'], chunksize=chunksize, iterator=True
 encoding='utf-8', ):
       df.index += index_start
       i+=1
       print('{} rows'.format(j*chunksize))
       df.to_sql('data', disk_engine, if_exists='append')
        index_start = df.index[-1] + 1
   print("Time taken to run this cell :", datetime.now() - start)
```

In [4]:

```
if os.path.isfile('train.db'):
    start = datetime.now()
    con = sqlite3.connect('train.db')
    num_rows = pd.read_sql_query("""SELECT count(*) FROM data""", con)
    #Always remember to close the database
    print("Number of rows in the database :","\n",num_rows['count(*)'].values[0])
    con.close()
    print("Time taken to count the number of rows :", datetime.now() - start)
else:
    print("Please download the train.db file from drive or run the above cell to genarate train.db file")
```

```
Number of rows in the database : 6034196
Time taken to count the number of rows : 0:01:57.510265
```

Checking for duplicates

In [7]:

```
#Learn SQl: https://www.w3schools.com/sql/default.asp
#below am considering 10k data points
if os.path.isfile('train.db'):
    start = datetime.now()
    con = sqlite3.connect('train.db')
    df_no_dup = pd.read_sql_query('SELECT Title, Body, Tags, COUNT(*) as cnt_dup FROM data GROUP BY Title, Body,
Tags limit 10000 ', con)
    con.close()
    print("Time taken to run this cell :", datetime.now() - start)
else:
    print("Please download the train.db file from drive or run the first to genarate train.db file")
```

Time taken to run this cell: 0:09:47.184572

In [8]:

```
df_no_dup.head()
# we can observe that there are duplicates
```

Out[8]:

	Title	Body	Tags	cnt_dup
0	Implementing Boundary Value Analysis of S	<pre><code>#include<iostream>\n#include&</code></pre>	C++ C	1
1	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding	1
2	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding columns	1
3	java.lang. No Class Def Found Error: javax/serv	I followed the guide in		

In [9]:

```
 print("number of duplicate questions :", num_rows['count(*)'].values[0]- df_no_dup.shape[0], "(",(1-((df_no_dup.shape[0]), "um_rows['count(*)'].values[0])))*100,"%)")
```

number of duplicate questions : 6024196 (99.83427783916864 %)

In [10]:

```
# number of times each question appeared in our database
df_no_dup.cnt_dup.value_counts()
```

Out[10]:

- 1 6227
- 2 3068
- 3 705

Name: cnt_dup, dtype: int64

In [11]:

```
start = datetime.now()
df_no_dup["tag_count"] = df_no_dup["Tags"].apply(lambda text: len(text.split(" ")))
# adding a new feature number of tags per question
print("Time taken to run this cell :", datetime.now() - start)
df_no_dup.head()
```

Time taken to run this cell: 0:00:01.095063

Out[11]:

	Title	Body	Tags	cnt_dup	tag_count
0	Implementing Boundary Value Analysis of S	<pre><code>#include<iostream>\n#include&</code></pre>	c++ c	1	2
1	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding	1	3
2	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding columns	1	4
3	java.lang.NoClassDefFoundError: javax/serv	I followed the guide in			

```
In [12]:
# distribution of number of tags per question
df_no_dup.tag_count.value_counts()
Out[12]:
3
     2918
2
     2657
     1908
     1303
    1214
Name: tag_count, dtype: int64
In [3]:
#Creating a new database with no duplicates
if not os.path.isfile('train_no_dup.db'):
    disk_dup = create_engine("sqlite:///train_no_dup.db")
    no_dup = pd.DataFrame(df_no_dup, columns=['Title', 'Body', 'Tags'])
    no_dup.to_sql('no_dup_train',disk_dup)
In [4]:
#This method seems more appropriate to work with this much data.
#creating the connection with database file.
if os.path.isfile('train_no_dup.db'):
    start = datetime.now()
    con = sqlite3.connect('train_no_dup.db')
    tag_data = pd.read_sql_query("""SELECT Tags FROM no_dup_train""", con)
    #Always remember to close the database
    con.close()
    # Let's now drop unwanted column.
    tag_data.drop(tag_data.index[0], inplace=True)
    #Printing first 5 columns from our data frame
    tag_data.head()
    print("Time taken to run this cell :", datetime.now() - start)
    print("Please download the train.db file from drive or run the above cells to genarate train.db file")
Time taken to run this cell: 0:02:10.011231
3.2 Analysis of Tags
3.2.1 Total number of unique tags
In [5]:
# Importing & Initializing the "CountVectorizer" object, which
#is scikit-learn's bag of words tool.
#by default 'split()' will tokenize each tag using space.
vectorizer = CountVectorizer(tokenizer = lambda x: x.split())
# fit transform() does two functions: First, it fits the model
# and learns the vocabulary; second, it transforms our training data
# into feature vectors. The input to fit_transform should be a list of strings.
tag_dtm = vectorizer.fit_transform(tag_data['Tags'])
In [6]:
print("Number of data points :", tag_dtm.shape[0])
print("Number of unique tags :", tag_dtm.shape[1])
Number of data points : 4206314
```

#'get_feature_name()' gives us the vocabulary. tags = vectorizer.get_feature_names() #Lets look at the tags we have. print("Some of the tags we have :", tags[:10])

Some of the tags we have : ['.a', '.app', '.asp.net-mvc', '.aspxauth', '.bash-profile', '.class-file ', '.cs-file', '.doc', '.drv', '.ds-store']

3.2.3 Number of times a tag appeared

Number of unique tags: 42048

In [7]:

In [8]:

```
# https://stackoverflow.com/questions/15115765/how-to-access-sparse-matrix-elements
#Lets now store the document term matrix in a dictionary.
freqs = tag_dtm.sum(axis=0).A1
result = dict(zip(tags, freqs))
```

In [9]:

```
#Saving this dictionary to csv files.
if not os.path.isfile('tag_counts_dict_dtm.csv'):
    with open('tag_counts_dict_dtm.csv', 'w') as csv_file:
        writer = csv.writer(csv_file)
        for key, value in result.items():
            writer.writerow([key, value])
tag_df = pd.read_csv("tag_counts_dict_dtm.csv", names=['Tags', 'Counts'])
tag_df.head()
```

Out[9]:

	Tags	Counts
() .a	18
1	.арр	37
2	asp.net-mvc	1
3	.aspxauth	21
4	.bash-profile	138

In [10]:

```
tag_df_sorted = tag_df.sort_values(['Counts'], ascending=False)
tag_counts = tag_df_sorted['Counts'].values
```

In [11]:

```
plt.plot(tag_counts)
plt.title("Distribution of number of times tag appeared questions")
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
```


In [12]:

```
plt.plot(tag_counts[0:10000])
plt.title('first 10k tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:10000:25]), tag_counts[0:10000:25])
```


400 [331	505 449	220 22/	120 17	728 133	364 11	162 100	120 01	L48 8	054 7151
6466	5865	5370	4983	4526	4281	4144	3929	3750	3593
3453	3299	3123	2989	2891	2738	2647	2527	2431	2331
2259	2186	2097	2020	1959	1900	1828	1770	1723	1673
1631	1574	1532	1479	1448	1406	1365	1328	1300	1266
1245	1222	1197	1181	1158	1139	1121	1101	1076	1056
1038	1023	1006	983	966	952	938	926	911	891
882	869	856	841	830	816	804	789	779	770
752	743	733	725	712	702	688	678	671	658
650	643	634	627	616	607	598	589	583	577
568	559	552	545	540	533	526	518	512	506
500	495	490	485	480	477	469	465	457	450
447	442	437	432	426	422	418	413	408	403
398	393	388	385	381	378	374	370	367	365
361	357	354	350	347	344	342	339	336	332
330	326	323	319	315	312	309	307	304	301
299	296	293	291	289	286	284	281	278	276
275	272	270	268	265	262	260	258	256	254
252	250	249	247	245	243	241	239	238	236
234	233	232	230	228	226	224	222	220	219
217	215	214	212	210	209	207	205	204	203
201	200	199	198	196	194	193	192	191	189
188	186	185	183	182	181	180	179	178	177
175	174	172	171	170	169	168	167	166	165
164	162	161	160	159	158	157	156	156	155
154	153	152	151	150	149	149	148	147	146
145	144	143	142	142	141	140	139	138	137
137	136	135	134	134	133	132	131	130	130
129	128	128	127	126	126	125	124	124	123
123	122	122	121	120	120	119	118	118	117
117	116	116	115	115	114	113	113	112	111
111	110	109	109	108	108	107	106	106	106
105	105	104	104	103	103	102	102	101	101
100	100	99	99	98	98	97	97	96	96
95	95	94	94	93	93	93	92	92	91
91	90	90	89	89	88	88	87	87	86
86	86	85	85	84	84	83	83	83	82
82	82	81	81	80	80	80	79	79	78
78	78	78	77	77	76	76	76	75	75
75	74	74	74	73	73	73	73	72	72]

In [13]:

Ò

```
plt.plot(tag_counts[0:1000])
plt.title('first 1k tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:1000:5]), tag_counts[0:1000:5])
```

first 1k tags: Distribution of number of times tag appeared questions 300000 250000 100000 50000 0

Tag number

```
200 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537
  22429
         21820
                20957 19758 18905 17728
                                              15533
                                                     15097
                                                             14884 13703
  13364
         13157
                12407
                       11658 11228
                                       11162
                                              10863
                                                     10600
                                                             10350
                                                                    10224
  10029
          9884
                 9719
                         9411
                                9252
                                        9148
                                               9040
                                                       8617
                                                              8361
                                                                      8163
   8054
          7867
                 7702
                         7564
                                 7274
                                        7151
                                               7052
                                                       6847
                                                              6656
                                                                      6553
   6466
          6291
                  6183
                         6093
                                 5971
                                        5865
                                               5760
                                                       5577
                                                              5490
                                                                      5411
   5370
          5283
                  5207
                         5107
                                 5066
                                        4983
                                               4891
                                                       4785
                                                              4658
                                                                      4549
   4526
          4487
                  4429
                         4335
                                 4310
                                        4281
                                               4239
                                                       4228
                                                              4195
                                                                      4159
   4144
          4088
                  4050
                         4002
                                 3957
                                        3929
                                               3874
                                                       3849
                                                              3818
                                                                      3797
   3750
          3703
                  3685
                         3658
                                 3615
                                        3593
                                               3564
                                                       3521
                                                              3505
                                                                      3483
   3453
          3427
                  3396
                         3363
                                 3326
                                        3299
                                               3272
                                                       3232
                                                              3196
                                                                      3168
   3123
          3094
                  3073
                         3050
                                 3012
                                        2989
                                               2984
                                                       2953
                                                              2934
                                                                      2903
   2891
          2844
                  2819
                         2784
                                 2754
                                        2738
                                               2726
                                                       2708
                                                              2681
                                                                      2669
   2647
          2621
                  2604
                         2594
                                 2556
                                        2527
                                               2510
                                                       2482
                                                              2460
                                                                      2444
   2431
          2409
                 2395
                         2380
                                 2363
                                        2331
                                               2312
                                                       2297
                                                              2290
                                                                      2281
   2259
          2246
                  2222
                         2211
                                 2198
                                        2186
                                               2162
                                                       2142
                                                              2132
                                                                      2107
   2097
          2078
                  2057
                         2045
                                 2036
                                        2020
                                               2011
                                                       1994
                                                              1971
                                                                      1965
   1959
          1952
                  1940
                         1932
                                 1912
                                        1900
                                               1879
                                                       1865
                                                              1855
                                                                      1841
                                        1770
                                                       1747
                                                              1741
   1828
          1821
                  1813
                         1801
                                 1782
                                               1760
                                                                      1734
   1723
          1707
                  1697
                         1688
                                 1683
                                        1673
                                               1665
                                                       1656
                                                              1646
                                                                      1639]
```

In [14]:

```
plt.plot(tag_counts[0:500])
plt.title('first 500 tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:500:5]), tag_counts[0:500:5])
```

```
first 500 tags: Distribution of number of times tag appeared questions
  300000
ed
ed
  250000
tag
  200000
times
  150000
to
  100000
Number
   50000
         0
              Ò
                        100
                                   200
                                               300
                                                           400
                                                                       500
                                     Tag number
```

```
100 [331505 221533 122769 95160 62023 44829 37170 31897
                                                                 26925 24537
  22429
         21820
                20957
                       19758 18905
                                      17728
                                              15533
                                                     15097
                                                             14884
                                                                    13703
  13364
         13157
                12407
                        11658
                               11228
                                       11162
                                              10863
                                                             10350
                                                                    10224
                                                     10600
  10029
          9884
                 9719
                         9411
                                9252
                                        9148
                                               9040
                                                       8617
                                                              8361
                                                                      8163
   8054
          7867
                 7702
                         7564
                                7274
                                        7151
                                               7052
                                                       6847
                                                              6656
                                                                      6553
   6466
          6291
                  6183
                         6093
                                5971
                                        5865
                                               5760
                                                       5577
                                                              5490
                                                                      5411
   5370
          5283
                  5207
                         5107
                                5066
                                        4983
                                               4891
                                                       4785
                                                                      4549
                                                              4658
   4526
          4487
                  4429
                         4335
                                4310
                                        4281
                                               4239
                                                       4228
                                                              4195
                                                                      4159
          4088
                  4050
                         4002
                                3957
                                        3929
                                               3874
                                                                      3797
   4144
                                                       3849
                                                              3818
   3750
          3703
                  3685
                         3658
                                3615
                                        3593
                                               3564
                                                       3521
                                                              3505
                                                                      3483]
```

In [15]:

```
plt.plot(tag_counts[0:100], c='b')
plt.scatter(x=list(range(0,100,5)), y=tag_counts[0:100:5], c='orange', label="quantiles with 0.05 intervals")
# quantiles with 0.25 difference
plt.scatter(x=list(range(0,100,25)), y=tag_counts[0:100:25], c='m', label = "quantiles with 0.25 intervals")

for x,y in zip(list(range(0,100,25)), tag_counts[0:100:25]):
    plt.annotate(s="({{}} , {{}})".format(x,y), xy=(x,y), xytext=(x-0.05, y+500))

plt.title('first 100 tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.legend()
plt.show()
print(len(tag_counts[0:100:5]), tag_counts[0:100:5])
```


20 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703]

In [16]:

```
# Store tags greater than 10K in one list
lst_tags_gt_10k = tag_df[tag_df.Counts>10000].Tags
#Print the length of the list
print ('{{}} Tags are used more than 10000 times'.format(len(lst_tags_gt_10k)))
# Store tags greater than 100K in one list
lst_tags_gt_100k = tag_df[tag_df.Counts>100000].Tags
#Print the length of the list.
print ('{{}} Tags are used more than 100000 times'.format(len(lst_tags_gt_100k)))
```

153 Tags are used more than 10000 times 14 Tags are used more than 100000 times

Observations:

- 1. There are total 153 tags which are used more than 10000 times.
- 2. 14 tags are used more than 100000 times.
- 3. Most frequent tag (i.e. c#) is used 331505 times.
- 4. Since some tags occur much more frequenctly than others, Micro-averaged F1-score is the appropriate metric for this probelm.

3.2.4 Tags Per Question

In [17]:

```
#Storing the count of tag in each question in list 'tag_count'
tag_quest_count = tag_dtm.sum(axis=1).tolist()
#Converting list of lists into single list, we will get [[3], [4], [2], [2], [3]] and we are converting this to [
3, 4, 2, 2, 3]
tag_quest_count=[int(j) for i in tag_quest_count for j in i]
print ('We have total {} datapoints.'.format(len(tag_quest_count)))
print(tag_quest_count[:5])
```

We have total 4206314 datapoints. [3, 4, 2, 2, 3]

In [18]:

```
print( "Maximum number of tags per question: %d"%max(tag_quest_count))
print( "Minimum number of tags per question: %d"%min(tag_quest_count))
print( "Avg. number of tags per question: %f"% ((sum(tag_quest_count)*1.0)/len(tag_quest_count)))
```

Maximum number of tags per question: 5 Minimum number of tags per question: 1 Avg. number of tags per question: 2.899440

In [19]:

```
sns.countplot(tag_quest_count, palette='gist_rainbow')
plt.title("Number of tags in the questions ")
plt.xlabel("Number of Tags")
plt.ylabel("Number of questions")
plt.show()
```


Observations:

- 1. Maximum number of tags per question: 5
- 2. Minimum number of tags per question: 1
- 3. Avg. number of tags per question: 2.899
- 4. Most of the questions are having 2 or 3 tags

3.2.5 Most Frequent Tags

In [20]:

```
# Ploting word cloud
start = datetime.now()
# Lets first convert the 'result' dictionary to 'list of tuples'
tup = dict(result.items())
#Initializing WordCloud using frequencies of tags.
wordcloud = WordCloud(
                          background_color='black',
                          width=1600,
                          height=800,
                    ).generate_from_frequencies(tup)
fig = plt.figure(figsize=(30,20))
plt.imshow(wordcloud)
plt.axis('off')
plt.tight_layout(pad=0)
fig.savefig("tag.png")
plt.show()
print("Time taken to run this cell :", datetime.now() - start)
```


Time taken to run this cell: 0:00:13.678783

Observations:

A look at the word cloud shows that "c#", "java", "php", "asp.net", "javascript", "c++" are some of the most frequent tags.

3.2.6 The top 20 tags

In [21]:

```
i=np.arange(30)
tag_df_sorted.head(30).plot(kind='bar')
plt.title('Frequency of top 20 tags')
plt.xticks(i, tag_df_sorted['Tags'])
plt.xlabel('Tags')
plt.ylabel('Counts')
plt.show()
```


Observations:

- 1. Majority of the most frequent tags are programming language.
- 2. C# is the top most frequent programming language.
- 3. Android, IOS, Linux and windows are among the top most frequent operating systems.

3.3 Cleaning and preprocessing of Questions

3.3.1 Preprocessing

- 1. Sample 100k data points
- 2. Separate out code-snippets from Body
- 3. Remove Spcial characters from Question title and description (not in code)
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

In [22]:

```
def striphtml(data):
    cleanr = re.compile('<.*?>')
    cleantext = re.sub(cleanr, ' ', str(data))
    return cleantext
stop_words = set(stopwords.words('english'))
stemmer = SnowballStemmer("english")
```

```
#http://www.sqlitetutorial.net/sqlite-python/create-tables/
def create connection(db file):
    """ create a database connection to the SQLite database
        specified by db_file
    :param db_file: database file
    :return: Connection object or None
        conn = sqlite3.connect(db_file)
        return conn
    except Error as e:
        print(e)
    return None
def create_table(conn, create_table_sql):
    """ create a table from the create_table_sql statement
    :param conn: Connection object
    :param create_table_sql: a CREATE TABLE statement
    :return:
    try:
        c = conn.cursor()
        c.execute(create_table_sql)
    except Error as e:
        print(e)
def checkTableExists(dbcon):
    cursr = dbcon.cursor()
    str = "select name from sqlite_master where type='table'"
    table_names = cursr.execute(str)
    print("Tables in the databse:")
    tables =table_names.fetchall()
    print(tables[0][0])
    return(len(tables))
def create_database_table(database, query):
    conn = create_connection(database)
    if conn is not None:
        create_table(conn, query)
        checkTableExists(conn)
        print("Error! cannot create the database connection.")
    conn.close()
sql_create_table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL, code text, tags tex
t, words_pre integer, words_post integer, is_code integer);"""
create_database_table("Processed.db", sql_create_table)
Tables in the databse:
QuestionsProcessed
In [24]:
# http://www.sqlitetutorial.net/sqlite-delete/
# https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
start = datetime.now()
read_db = 'train_no_dup.db'
write_db = 'Processed.db'
if os.path.isfile(read_db):
    conn_r = create_connection(read_db)
    if conn_r is not None:
        reader =conn_r.cursor()
        reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY RANDOM() LIMIT 100000;")
if os.path.isfile(write_db):
    conn_w = create_connection(write_db)
    if conn_w is not None:
        tables = checkTableExists(conn_w)
        writer =conn_w.cursor()
        if tables != 0:
            writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
            print("Cleared All the rows")
print("Time taken to run this cell :", datetime.now() - start)
```

Tables in the databse: QuestionsProcessed Cleared All the rows Time taken to run this cell: 0:03:55.652026

In [25]:

```
#http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/
start = datetime.now()
preprocessed_data_list=[]
reader.fetchone()
questions_with_code=0
len pre=0
len_post=0
questions_proccesed = 0
for row in reader:
    is_code = 0
    title, question, tags = row[0], row[1], row[2]
    if '<code>' in question:
        questions_with_code+=1
        is_code = 1
    x = len(question)+len(title)
    len_pre+=x
    code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
    question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
    question=striphtml(question.encode('utf-8'))
    title=title.encode('utf-8')
    question=str(title)+" "+str(question)
    question=re.sub(r'[^A-Za-z]+',' ',question)
    words=word_tokenize(str(question.lower()))
    #Removing all single letter and and stopwords from question except for the letter 'c'
    question=' \ '.join(str(stemmer.stem(j)) \ \textbf{for} \ j \ \textbf{in} \ words \ \textbf{if} \ j \ \textbf{not} \ \textbf{in} \ stop\_words \ \textbf{and} \ (len(j)!=1 \ \textbf{or} \ j=='c'))
    len_post+=len(question)
    tup = (question,code,tags,x,len(question),is_code)
    questions_proccesed += 1
    writer.execute("insert into QuestionsProcessed(question,code,tags,words_pre,words_post,is_code) values (?,?,?
,?,?,?)",tup)
    if (questions_proccesed%100000==0):
        print("number of questions completed=",questions_proccesed)
no_dup_avg_len_pre=(len_pre*1.0)/questions_proccesed
no_dup_avg_len_post=(len_post*1.0)/questions_proccesed
print( "Avg. length of questions(Title+Body) before processing: %d"%no_dup_avg_len_pre)
print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
print ("Percent of questions containing code: %d"%((questions_with_code*100.0)/questions_proccesed))
print("Time taken to run this cell :", datetime.now() - start)
Avg. length of questions(Title+Body) before processing: 1165
Avg. length of questions(Title+Body) after processing: 327
Percent of questions containing code: 57
Time taken to run this cell: 0:08:07.599397
In [26]:
# dont forget to close the connections, or else you will end up with locks
conn_r.commit()
conn_w.commit()
conn_r.close()
conn_w.close()
```

```
In [27]:
```

```
if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        reader =conn_r.cursor()
        reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
        print("Questions after preprocessed")
        print('='*100)
        reader.fetchone()
        for row in reader:
            print(row)
            print('-'*100)
conn_r.commit()
conn_r.close()
```

Questions after preprocessed

('cassandra get multipl row column slice possibl execut queri get row key fake key fake key column s lice c',)

('take java method name function arg clojur want creat function take symbol repres java method appli object execut get result much differ expect question symbol call second arg function instead valu bo und would actual want',)

('matlab candl chart handl use use handl chang background color chart thank',)

('cant play mpmovieplayercontrol record via avaudiorecord time tri play video small area screen record user sing time howev seem record success ni ad code point possibl blunder hope make sens flow see m enter even audiorecord stop pleas help search sinc last day luck',)

('hibern insid glassfish tri integr hibern framework web applic run glassfish howev find practic document tutori subject pleas recommend practic document subject thank advanc',)

('get current file encod python file environ tell encod sourc file insid run python process even pos

('get current file encod python file environ tell encod sourc file insid run python process even pos sibl',)

('send packet java applet written simpl java applet send sip packet server run within eclips sun applet viewer everyth work perfect attempt emb applet web browser use applet tag applet success run packet sent verifi use wireshark kind secur set ie chrome awar guess show code necessari thank',)

('generat random number sort java goal generat random number add linkedlist object sort element code far run problem want display sort element error get except thread main java util illegalformatconver

sionexcept java util array arraylist someon throw light problem thank enter imag descript',)

('someon use net framework client profil good reason use net framework client profil instead full ve rsion mean real life reason creat net applic sinc quit easi creat instal instal net framework client machin bother use client profil',)

In [28]:

```
#Taking 1 Million entries to a dataframe.
write_db = 'Processed.db'
if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcessed""", conn_r)
conn_r.commit()
conn_r.close()
```

In [29]:

preprocessed_data.head()

Out[29]:

	question	tags
0	codeignit uri error live site use codeignit ho	codeigniter routing uri http-status-code-404 host
1	cassandra get multipl row column slice possibl	cassandra
2	take java method name function arg clojur want	function clojure macros
3	matlab candl chart handl use use handl chang b	matlab candlestick-chart
4	cant play mpmovieplayercontrol record via avau	iphone mpmovieplayercontroller avaudiorecorder

```
In [30]:
```

```
print("number of data points in sample :", preprocessed_data.shape[0])
print("number of dimensions :", preprocessed_data.shape[1])
number of data points in sample : 99999
number of dimensions : 2
```

4. Machine Learning Models

4.1 Converting tags for multilabel problems

```
        X
        y1
        y2
        y3
        y4

        x1
        0
        1
        1
        0

        x1
        1
        0
        0
        0

        x1
        0
        1
        0
        0
```

In [38]:

```
# binary='true' will give a binary vectorizer
vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
multilabel_y = vectorizer.fit_transform(preprocessed_data['tags'])
```

We will sample the number of tags instead considering all of them (due to limitation of computing power)

In [40]:

```
def tags_to_choose(n):
    t = multilabel_y.sum(axis=0).tolist()[0]
    sorted_tags_i = sorted(range(len(t)), key=lambda i: t[i], reverse=True)
    multilabel_yn=multilabel_y[:,sorted_tags_i[:n]]
    return multilabel_yn

def questions_explained_fn(n):
    multilabel_yn = tags_to_choose(n)
    x= multilabel_yn.sum(axis=1)
    return (np.count_nonzero(x==0))
```

In [40]:

```
questions_explained = []
total_tags=multilabel_y.shape[1]
total_qs=preprocessed_data.shape[0]
for i in range(500, total_tags, 100):
    questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3))
```

```
In [41]:
```

```
fig, ax = plt.subplots()
ax.plot(questions_explained)
xlabel = list(500+np.array(range(-50,450,50))*50)
ax.set_xticklabels(xlabel)
plt.xlabel("Number of tags")
plt.ylabel("Number Questions coverd partially")
plt.grid()
plt.show()
# you can choose any number of tags based on your computing power, minimum is 50(it covers 90% of the tags)
print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
```


with 5500 tags we are covering 99.099 % of questions

In [42]:

```
multilabel_yx = tags_to_choose(5500)
print("number of questions that are not covered :", questions_explained_fn(5500),"out of ", total_qs)
```

number of questions that are not covered : 901 out of 99999

In [43]:

```
print("Number of tags in sample :", multilabel_y.shape[1])
print("number of tags taken :", multilabel_yx.shape[1],"(",(multilabel_yx.shape[1]/multilabel_y.shape[1])*100,"%)
")
```

Number of tags in sample : 18558 number of tags taken : 5500 (29.636814311887054 %)

We consider top 15% tags which covers 99% of the questions

4.2 Split the data into test and train (80:20)

In [44]:

```
total_size=preprocessed_data.shape[0]
train_size=int(0.80*total_size)

x_train=preprocessed_data.head(train_size)
x_test=preprocessed_data.tail(total_size - train_size)

y_train = multilabel_yx[0:train_size,:]
y_test = multilabel_yx[train_size:total_size,:]
```

In [45]:

```
print("Number of data points in train data :", y_train.shape)
print("Number of data points in test data :", y_test.shape)
```

Number of data points in train data : (79999, 5500) Number of data points in test data : (20000, 5500)

4.3 Featurizing data

```
In [46]:
start = datetime.now()
vectorizer = TfidfVectorizer(min_df=0.00009, max_features=200000, smooth_idf=True, norm="l2", \
                             tokenizer = lambda x: x.split(), sublinear_tf=False, ngram_range=(1,3))
x_train_multilabel = vectorizer.fit_transform(x_train['question'])
x_test_multilabel = vectorizer.transform(x_test['question'])
print("Time taken to run this cell :", datetime.now() - start)
Time taken to run this cell: 0:01:37.727128
In [47]:
print("Dimensions of train data X:",x_train_multilabel.shape, "Y:",y_train.shape)
print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)
Dimensions of train data X: (79999, 90081) Y: (79999, 5500)
Dimensions of test data X: (20000, 90081) Y: (20000, 5500)
In [48]:
# https://www.analyticsvidhya.com/blog/2017/08/introduction-to-multi-label-classification/
\#https://stats.stackexchange.com/questions/117796/scikit-multi-label-classification
# classifier = LabelPowerset(GaussianNB())
from skmultilearn.adapt import MLkNN
classifier = MLkNN(k=21)
# train
classifier.fit(x_train_multilabel, y_train)
# predict
predictions = classifier.predict(x_test_multilabel)
print(accuracy_score(y_test,predictions))
print(metrics.f1_score(y_test, predictions, average = 'macro'))
print(metrics.f1_score(y_test, predictions, average = 'micro'))
print(metrics.hamming_loss(y_test,predictions))
11 11 11
# we are getting memory error because the multilearn package
# is trying to convert the data into dense matrix
```

Out[48]:

#MemorvError

#<ipython-input-170-f0e7c7f3e0be> in <module>() #----> classifier.fit(x_train_multilabel, y_train)

"\nfrom skmultilearn.adapt import MLkNN\nclassifier = MLkNN(k=21)\n\n# train\nclassifier.fit(x_train _multilabel, y_train)\n\n# predict\npredictions = classifier.predict(x_test_multilabel)\nprint(accur acy_score(y_test,predictions))\nprint(metrics.fl_score(y_test, predictions, average = 'macro'))\nprint(metrics.fl_score(y_test, predictions, average = 'micro'))\nprint(metrics.hamming_loss(y_test,pred ictions))\n\n"

4.5 Modeling with less data points (100k data points) and more weight to title and 500 tags only.

Traceback (most recent call last)

In [30]:

```
sql_create_table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL, code text, tags text
, words_pre integer, words_post integer, is_code integer);"""
create_database_table("Titlemoreweight.db", sql_create_table)
```

Tables in the databse: QuestionsProcessed In [31]:

```
# http://www.sqlitetutorial.net/sqlite-delete/
# https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
read_db = 'train_no_dup.db'
write_db = 'Titlemoreweight.db'
train_datasize = 90000
if os.path.isfile(read_db):
   conn_r = create_connection(read_db)
    if conn_r is not None:
       reader =conn_r.cursor()
        # for selecting first 0.5M rows
        reader.execute("SELECT Title, Body, Tags From no_dup_train LIMIT 100000;")
        # for selecting random points
        #reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY RANDOM() LIMIT 500001;")
if os.path.isfile(write_db):
    conn_w = create_connection(write_db)
   if conn_w is not None:
        tables = checkTableExists(conn_w)
        writer =conn_w.cursor()
        if tables != 0:
           writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
            print("Cleared All the rows")
```

Tables in the databse: QuestionsProcessed Cleared All the rows

4.5.1 Preprocessing of questions

- 1. Separate Code from Body
- 2. Remove Spcial characters from Question title and description (not in code)
- 3. Give more weightage to title: Add title three times to the question
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

```
In [32]:
#http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/
start = datetime.now()
preprocessed_data_list=[]
reader.fetchone()
questions_with_code=0
len_pre=0
len_post=0
questions_proccesed = 0
for row in reader:
   is_code = 0
   title, question, tags = row[0], row[1], str(row[2])
   if '<code>' in question:
        questions_with_code+=1
        is_code = 1
   x = len(question)+len(title)
   len_pre+=x
   code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
   question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
   question=striphtml(question.encode('utf-8'))
   title=title.encode('utf-8')
   # adding title three time to the data to increase its weight
   # add tags string to the training data
   question=str(title)+" "+str(title)+" "+str(title)+" "+question
      if questions_proccesed<=train_datasize:</pre>
         question=str(title)+" "+str(title)+" "+str(title)+" "+question+" "+str(tags)
#
      else:
          question=str(title)+" "+str(title)+" "+str(title)+" "+question
   question=re.sub(r'[^A-Za-z0-9#+.\-]+',' ',question)
   words=word_tokenize(str(question.lower()))
   \#Removing all single letter and and stopwords from question except for the letter 'c'
   question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop_words and (len(j)!=1 or j=='c'))
   len_post+=len(question)
```

```
if (questions_proccesed%100000==0):
    print("number of questions completed=",questions_proccesed)

no_dup_avg_len_pre=(len_pre*1.0)/questions_proccesed
no_dup_avg_len_post=(len_post*1.0)/questions_proccesed

print( "Avg. length of questions(Title+Body) before processing: %d"%no_dup_avg_len_pre)
print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
print ("Percent of questions containing code: %d"%((questions_with_code*100.0)/questions_proccesed))
print("Time taken to run this cell :", datetime.now() - start)

Avg. length of questions(Title+Body) before processing: 1232
```

writer.execute("insert into QuestionsProcessed(question,code,tags,words_pre,words_post,is_code) values (?,?,?

```
In [33]:
```

,?,?,?)",tup)

```
# never forget to close the conections or else we will end up with database locks
conn_r.commit()
conn_w.commit()
conn_r.close()
conn_w.close()
```

Percent of questions containing code: 57 Time taken to run this cell: 0:13:32.701480

tup = (question,code,tags,x,len(question),is_code)

Avg. length of questions(Title+Body) after processing: 441

questions_proccesed += 1

```
In [34]:
```

```
if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        reader =conn_r.cursor()
            reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
        print("Questions after preprocessed")
        print('='*100)
        reader.fetchone()
        for row in reader:
            print(row)
            print('-'*100)
    conn_r.commit()
    conn_r.close()
```

Questions after preprocessed

('dynam datagrid bind silverlight dynam datagrid bind silverlight dynam datagrid bind silverlight bind datagrid dynam code wrote code debug code block seem bind correct grid come column form come grid column although necessari bind nthank repli advance..',)

('java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid java.lang.noclassdeffounde rror javax servlet jsp tagext taglibraryvalid java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid follow guid link instal jstl got follow error tri launch jsp page java.lang.noclas sdeffounderror javax servlet jsp tagext taglibraryvalid taglib declar instal jstl 1.1 tomcat webapp tri project work also tri version 1.2 jstl still messag caus solv',)

('java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index use follow code display caus solv',)

('better way updat feed fb php sdk better way updat feed fb php sdk better way updat feed fb php sdk novic facebook api read mani tutori still confused.i find post feed api method like correct second w ay use curl someth like way better',)

('btnadd click event open two window record ad btnadd click event open two window record ad btnadd c lick event open two window record ad open window search.aspx use code hav add button search.aspx nwh en insert record btnadd click event open anoth window nafter insert record close window',)

('sql inject issu prevent correct form submiss php sql inject issu prevent correct form submiss php sql inject issu prevent correct form submiss php check everyth think make sure input field safe type sql inject good news safe bad news one tag mess form submiss place even touch life figur exact html use templat file forgiv okay entir php script get execut see data post none forum field post problem use someth titl field none data get post current use print post see submit noth work flawless statem ent though also mention script work flawless local machin use host come across problem state list in put test mess',)

('countabl subaddit lebesgu measur countabl subaddit lebesgu measur countabl subaddit lebesgu measur

let lbrace rbrace sequenc set sigma -algebra mathcal want show left bigcup right leq sum left right countabl addit measur defin set sigma algebra mathcal think use monoton properti somewher proof star t appreci littl help nthank ad han answer make follow addit construct given han answer clear bigcup bigcup cap emptyset neq left bigcup right left bigcup right sum left right also construct subset mon oton left right leq left right final would sum leq sum result follow',)

('hql equival sql queri hql equival sql queri hql equival sql queri hql queri replac name class prop erti name error occur hql error',)

('undefin symbol architectur i386 objc class skpsmtpmessag referenc error undefin symbol architectur i386 objc class skpsmtpmessag referenc error undefin symbol architectur i386 objc class skpsmtpmessag g referenc error import framework send email applic background import framework i.e skpsmtpmessag so mebodi suggest get error collect2 ld return exit status import framework correct sorc taken framework follow mfmailcomposeviewcontrol question lock field updat answer drag drop folder project click co pi nthat',)

Saving Preprocessed data to a Database

In [35]:

```
#Taking 100k entries to a dataframe.
write_db = 'Titlemoreweight.db'
if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcessed""", conn_r)
conn_r.commit()
conn_r.close()
```

```
In [36]:
```

```
preprocessed_data.head()
```

Out[36]:

tags	question	
c# silverlight data-binding	dynam datagrid bind silverlight dynam datagrid	0
c# silverlight data-binding columns	dynam datagrid bind silverlight dynam datagrid	1
jsp js	java.lang.noclassdeffounderror javax servlet j	2
java jdb	java.sql.sqlexcept microsoft odbc driver manag	3
facebook api facebook-php-sd	better way updat feed fb php sdk better way up	4

In [37]:

```
print("number of data points in sample :", preprocessed_data.shape[0])
print("number of dimensions :", preprocessed_data.shape[1])
```

```
number of data points in sample : 99999 number of dimensions : \mathbf{2}
```

Converting string Tags to multilable output variables

In [38]:

```
vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
multilabel_y = vectorizer.fit_transform(preprocessed_data['tags'])
```

In [41]:

```
questions_explained = []
total_tags=multilabel_y.shape[1]
total_qs=preprocessed_data.shape[0]
for i in range(500, total_tags, 100):
    questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3))
```

In [42]:

```
fig, ax = plt.subplots()
ax.plot(questions_explained)
xlabel = list(500+np.array(range(-50,450,50))*50)
ax.set_xticklabels(xlabel)
plt.xlabel("Number of tags")
plt.ylabel("Number Questions coverd partially")
plt.grid()
plt.show()
# you can choose any number of tags based on your computing power, minimum is 500(it covers 90% of the tags)
print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
print("with ",500,"tags we are covering ",questions_explained[0],"% of questions")
```


with $\,$ 5500 tags we are covering $\,$ 99.481 % of questions with $\,$ 500 tags we are covering $\,$ 92.5 % of questions

Selecting 500 Tags

```
In [43]:
# we will be taking 500 tags
multilabel_yx = tags_to_choose(500)
print("number of questions that are not covered:", questions_explained_fn(500),"out of ", total_qs)
number of questions that are not covered: 7500 out of 99999
In [44]:
x_train=preprocessed_data.head(train_datasize)
x_test=preprocessed_data.tail(preprocessed_data.shape[0] - 90000)
y_train = multilabel_yx[0:train_datasize,:]
y_test = multilabel_yx[train_datasize:preprocessed_data.shape[0],:]
In [45]:
print("Number of data points in train data :", y_train.shape)
print("Number of data points in test data :", y_test.shape)
Number of data points in train data: (90000, 500)
Number of data points in test data: (9999, 500)
4.5.2 Featurizing data with Tfldf vectorizer
In [46]:
start = datetime.now()
vectorizer = TfidfVectorizer(min_df=0.00009, max_features=20000, smooth_idf=True, norm="l2", \
                             tokenizer = lambda x: x.split(), sublinear_tf=False, ngram_range=(1,3))
x_train_multilabel = vectorizer.fit_transform(x_train['question'])
x_test_multilabel = vectorizer.transform(x_test['question'])
print("Time taken to run this cell :", datetime.now() - start)
Time taken to run this cell: 1:22:00.514420
In [49]:
print("Dimensions of train data X:",x_train_multilabel.shape, "Y :",y_train.shape)
print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)
Dimensions of train data X: (90000, 20000) Y: (90000, 500)
Dimensions of test data X: (9999, 20000) Y: (9999, 500)
4.5.3 Applying Logistic Regression with OneVsRest Classifier
In [50]:
start = datetime.now()
classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.00001, penalty='l1'), n_jobs=-1)
classifier.fit(x_train_multilabel, y_train)
predictions = classifier.predict (x_test_multilabel)
print("Accuracy :", metrics.accuracy_score(y_test, predictions))
print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
precision = precision_score(y_test, predictions, average='micro')
recall = recall_score(y_test, predictions, average='micro')
f1 = f1_score(y_test, predictions, average='micro')
print("Micro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions, average='macro')
recall = recall_score(y_test, predictions, average='macro')
f1 = f1_score(y_test, predictions, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
```

Accuracy: 0.1909190919093
Hamming loss 0.0030715071507150713
Micro-average quality numbers
Precision: 0.7155, Recall: 0.3213, F1-measure: 0.4435

print (metrics.classification_report(y_test, predictions))
print("Time taken to run this cell :", datetime.now() - start)

_	quality numb 4468, Recall: precision	ers 0.2155, recall	F1-measure: f1-score	0.2710 support
	•			
0 1	0.84 0.69	0.38 0.21	0.53 0.33	374 902
2	0.57	0.10	0.17	229
3	0.63	0.15	0.24	129
4 5	0.78 0.90	0.50 0.48	0.61 0.62	683 517
6	0.78	0.38	0.51	704
7	0.87	0.64	0.74	385
8 9	0.91 0.72	0.58 0.59	0.71 0.65	902 945
10	0.83	0.51	0.63	335
11 12	0.74 1.00	0.42 0.42	0.54 0.59	66 12
13	0.78	0.42	0.55	308
14	0.32	0.12	0.17	143
15 16	0.92 0.65	0.14 0.23	0.24 0.34	81 199
17	0.63	0.25	0.36	252
18 19	0.63 0.89	0.49 0.57	0.55 0.70	69 292
20	0.55	0.21	0.70	472
21	0.78	0.56	0.65	116
22 23	0.82 0.61	0.42 0.31	0.56 0.41	354 107
24	0.81	0.36	0.50	138
25	0.19	0.09	0.12	67
26 27	0.90 0.28	0.20 0.05	0.32 0.09	96 176
28	0.62	0.14	0.23	35
29 30	1.00 0.31	0.15 0.67	0.26 0.42	20 27
31	0.00	0.00	0.00	6
32	0.71	0.57	0.64	96
33 34	0.65 0.81	0.42 0.26	0.51 0.40	71 184
35	0.84	0.61	0.71	124
36 37	0.00	0.00	0.00	22 73
38	0.34 0.69	0.18 0.41	0.23 0.51	73 134
39	0.66	0.27	0.38	109
40 41	0.00 0.53	0.00 0.12	0.00 0.20	7 80
42	0.00	0.00	0.00	6
43	0.40	0.10	0.16	416
44 45	0.44 0.52	0.30 0.25	0.36 0.33	27 142
46	0.70	0.22	0.34	72
47 48	0.79 0.67	0.51 0.29	0.62 0.41	121 34
49	0.73	0.27	0.40	88
50	0.84	0.72	0.77	60
51 52	0.83 0.66	0.62 0.37	0.71 0.48	16 67
53	0.37	0.17	0.23	59
54 55	0.20 0.67	0.09 0.42	0.12 0.52	35 19
56	0.68	0.55	0.61	74
57	0.00	0.00	0.00	46
58 59	0.58 0.41	0.21 0.15	0.31 0.22	33 81
60	0.93	0.73	0.82	73
61 62	0.30 0.36	0.04 0.19	0.08 0.25	135 21
63	0.88	0.29	0.44	24
64	0.68	0.25	0.36	153
65 66	0.71 0.50	0.38 0.14	0.49 0.22	40 7
67	0.66	0.53	0.58	59
68 69	0.21 0.47	0.10 0.15	0.14 0.22	29 131
70	0.50	0.05	0.09	21
71 72	0.62	0.40	0.48	20
72 73	0.00 0.00	0.00 0.00	0.00 0.00	9 1
74	1.00	0.07	0.12	15
75 76	0.71 0.87	0.29 0.62	0.42 0.72	17 55
77	0.00	0.00	0.00	2
78	0.44	0.04	0.07	103

79 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 145 146 147 148 149 150 151 152 153 154 155 156 157 158 160 161
0.58 1.00 0.43 0.43 0.00 0.80 0.44 0.00 1.00 0.79 0.93 0.00 0.57 0.655 0.62 0.69 1.00 0.00 0.00 0.00 0.00 0.50 0.01 0.50 0.51 0.52 0.00 0.71 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.75 0.81 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.27 0.26 0.18 0.00 0.43 0.00 0.43 0.00 0.44 0.00 0.12 0.14 0.25 0.00 0.00 0.00 0.43 0.00 0.00 0.43 0.00 0.00
0.37 0.35 0.32 0.25 0.00 0.56 0.40 0.00 0.57 0.81 0.91 0.02 0.03 0.04 0.07 0.00 0.00 0.00 0.05 0.00 0.12 0.00 0.12 0.00 0.22 0.00 0.23 0.33 0.33 0.38 0.00 0.22 0.00 0.22 0.00 0.22 0.00 0.32 0.00 0.32 0.00 0.32 0.00 0.32 0.00 0.32 0.00 0.32 0.00 0.32 0.00 0.32 0.00 0.32 0.00 0.32 0.00 0.32 0.00 0.32 0.00 0.32 0.00 0.33 0.30 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.04 0.05 0.05 0.00
26 14 23 17 35 28 11 15 13 87 39 22 8 18 8 8 38 25 29 57 0 4 23 31 50 10 37 28 51 21 286 30 9 18 2 23 66 24 1 24 26 34 0 3 8 21 8 23 53 1 9 6 5 10 27 21 3 29 24 36 57 34 8 8 8 8 19 35 8 32 38 21 31 32 32 34 36 36 36 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38

245	0.00	0.00	0.00	6
246	0.00	0.00	0.00	2
	1.00			13
247		0.08	0.14	
248	0.83	0.50	0.62	30
249	0.71	0.45	0.56	11
250	0.20	0.10	0.13	10
251	0.82	0.38	0.51	24
252	0.20	0.08	0.12	12
253	0.25	0.08	0.12	12
254	0.00	0.00	0.00	1
255	1.00	0.50	0.67	2
256	0.00	0.00	0.00	1
257	0.67	0.25	0.36	16
258	0.50	0.06	0.11	16
259	0.00	0.00	0.00	2
260	0.00	0.00	0.00	17
261	0.00	0.00	0.00	0
262	0.75	0.27	0.40	11
263	0.00	0.00	0.00	1
264	0.33	0.05	0.09	20
265	0.00	0.00	0.00	3
266	0.25	0.04	0.06	28
267	0.50	0.47	0.48	17
268	0.71	0.50	0.59	10
269	0.79	0.48	0.59	23
270	0.38	0.38	0.38	8
271	0.00	0.00	0.00	20
272	0.00	0.00	0.00	0
273	0.00	0.00	0.00	6
274	0.25	0.17	0.20	6
275	0.71	0.31	0.43	39
276	1.00	0.78	0.88	9
277	0.00	0.00	0.00	8
278	0.00	0.00	0.00	6
279	0.80	0.80	0.80	5
280	0.00	0.00	0.00	4
281	1.00	0.67	0.80	3
282	1.00	0.67	0.80	15
283	0.00	0.00	0.00	0
284	0.67	0.32	0.44	37
285	0.50	0.14	0.22	21
286	0.50	0.09	0.15	11
287	0.00	0.00	0.00	18
288	0.88	0.44	0.58	16
289	0.00	0.00	0.00	11
290	0.74	0.58	0.65	24
291	0.50	0.25	0.33	4
292	0.50	0.22	0.31	9
293	0.50	0.55	0.52	11
294	0.00	0.00	0.00	14
295	0.00	0.00	0.00	13
296	0.50	0.25	0.33	8
297	0.43	0.19	0.26	16
298	0.00	0.00	0.00	34
299	0.00	0.00	0.00	16
300	0.50	0.10	0.16	21
301	0.81	0.57	0.67	23
302	0.80	0.36	0.50	11
303	0.00	0.00	0.00	3
304	0.29	0.12	0.17	16
305	0.00	0.00	0.00	6
306	0.00	0.00	0.00	3
307	0.00	0.00	0.00	2
308	0.00	0.00	0.00	14
309	0.67	0.40	0.50	25
310	1.00	0.06	0.11	17
311	0.25	0.07	0.11	30
312	0.00	0.00	0.00	11
313	1.00	0.07	0.13	14
314	0.33	0.14	0.20	14
315	0.00	0.00	0.00	38
316	1.00	0.14	0.25	7
317	0.38	0.23	0.29	26
318	0.50	1.00	0.67	1
319	0.00	0.00	0.00	5
320	0.00	0.00	0.00	0
321	0.00	0.00	0.00	0
322	0.80	0.50	0.62	8
323	0.89	0.67	0.76	12
324	0.64	0.55	0.59	29
325	0.00	0.00	0.00	4
326	0.20	0.10	0.13	10
327	0.00	0.00	0.00	8

328	0.00	0.00	0.00	10
329	0.00	0.00	0.00	0
330	1.00	0.33	0.50	3
331	1.00	0.08	0.15	12
332	0.00	0.00	0.00	0
333	0.67	0.29	0.40	7
334	0.00	0.00	0.00	14
335	0.00	0.00	0.00	Θ
336	0.00	0.00	0.00	17
337	0.89	0.40	0.55	20
338	1.00	0.06	0.12	16
339	0.67	0.31	0.42	13
340	0.59	0.50	0.54	26
341	1.00	0.83	0.91	6
342	0.00	0.00	0.00	0
343	0.00	0.00	0.00	0
344	0.25	0.07	0.11	15
345	0.00	0.00	0.00	0
346	0.00			1
		0.00	0.00	
347	1.00	0.25	0.40	4
348	0.00	0.00	0.00	5
349	0.67	0.14	0.24	14
350	0.50	0.25	0.33	12
351	0.33	0.15	0.21	13
352	0.00	0.00	0.00	15
353	0.60	0.33	0.43	9
354	0.00	0.00	0.00	19
355	0.50	0.50	0.50	2
356				6
	1.00	0.17	0.29	
357	0.71	0.62	0.67	8
358	0.45	0.26	0.33	19
359	0.50	0.17	0.25	12
360	0.50	0.05	0.09	20
361	0.62	0.26	0.37	19
362	1.00	0.56	0.72	16
363	1.00	0.10	0.18	10
364	1.00	0.38	0.55	8
365	0.00	0.00	0.00	11
366	0.00	0.00	0.00	4
		0.00		
367	0.00 0.44		0.00	1
368		0.44	0.44	9
369	1.00	0.83	0.91	6
370	1.00	0.14	0.25	7
371	0.50	0.20	0.29	10
372	0.00	0.00	0.00	1
373	0.00	0.00	0.00	2
374	0.50	0.06	0.10	18
375	0.00	0.00	0.00	12
376	0.00	0.00	0.00	16
377	0.00	0.00	0.00	1
378	0.00	0.00	0.00	0
379	0.00	0.00	0.00	14
380	1.00	0.33	0.50	3
		0.57	0.73	7
381	1.00			
382	0.80	0.40	0.53	10
383	0.00	0.00	0.00	9
384	0.50	0.22	0.31	9
385	0.00	0.00	0.00	7
386	0.83	0.83	0.83	6
387	0.00	0.00	0.00	4
388	0.00	0.00	0.00	8
389	0.00	0.00	0.00	4
390	0.00	0.00	0.00	3
391	0.92	0.46	0.62	26
392	0.00	0.00	0.00	3
393	0.45	0.25	0.32	20
394	0.00	0.00	0.00	3
395	0.00	0.00	0.00	1
396	0.00	0.00	0.00	3
397	1.00	0.67	0.80	3
398	0.73	0.42	0.53	19
399		0.65	0.77	23
	0.94			10
400	0.94 0.00	0.00	0.00	13
400 401	0.94		0.00 0.48	21
	0.94 0.00	0.00		
401	0.94 0.00 0.88	0.00 0.33	0.48	21
401 402	0.94 0.00 0.88 0.86	0.00 0.33 0.55	0.48 0.67	21 11
401 402 403	0.94 0.00 0.88 0.86 1.00	0.00 0.33 0.55 0.17	0.48 0.67 0.29	21 11 6 13
401 402 403 404 405	0.94 0.00 0.88 0.86 1.00	0.00 0.33 0.55 0.17 0.54 0.72	0.48 0.67 0.29 0.54 0.78	21 11 6
401 402 403 404 405 406	0.94 0.00 0.88 0.86 1.00 0.54 0.86 0.00	0.00 0.33 0.55 0.17 0.54 0.72 0.00	0.48 0.67 0.29 0.54 0.78 0.00	21 11 6 13 25 2
401 402 403 404 405 406 407	0.94 0.00 0.88 0.86 1.00 0.54 0.86 0.00	0.00 0.33 0.55 0.17 0.54 0.72 0.00 0.14	0.48 0.67 0.29 0.54 0.78 0.00	21 11 6 13 25 2
401 402 403 404 405 406 407 408	0.94 0.00 0.88 0.86 1.00 0.54 0.86 0.00 0.25	0.00 0.33 0.55 0.17 0.54 0.72 0.00 0.14 0.00	0.48 0.67 0.29 0.54 0.78 0.00 0.18	21 11 6 13 25 2 7
401 402 403 404 405 406 407	0.94 0.00 0.88 0.86 1.00 0.54 0.86 0.00	0.00 0.33 0.55 0.17 0.54 0.72 0.00 0.14	0.48 0.67 0.29 0.54 0.78 0.00	21 11 6 13 25 2

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 445 450 451 452 453 454 455 456 457 458 469 471 472 473 474 475 476 477 478 479 480 481 482 483 485 487 488 489 481 485 486 487 488 489 481 485 486 487 488 489 481 485 486 487 488 489 489 480 481 485 486 487 488 489 489 480 481 485 486 487 488 489 480 481 485 486 487 488 489 489 480 481 485 486 487 488 489 489 480 481 485 486 487 488 489 489 480 481 485 486 487 488 489 489 480 480 481 485 486 487 488 489 489 480 480 480 480 480 480 480 480	411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.75 0.00 0.00	0.00 0.88 1.00 0.00 0.00 1.00 0.00 0.00 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.50 0.00 0.30 0.25 0.50 0.00 0.57 0.52 0.00 0.57 0.52 0.00 0.57 0.52 0.00	0.00 0.41 0.29 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.33 0.60 0.00 0.73 0.65 0.00 0.67 0.00 0.67 0.00 0.67 0.00 0.00 0.42 0.00 0.42 0.00 0.44 0.38 0.00 0.44 0.38 0.00 0.44 0.38 0.00 0.45 0.00 0.45 0.00	0.00 0.56 0.44 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 10 7 0 18 28 12 35 10 12 6 9 2 7 21 6 6 2 30 9 10 3 3 4 4 15 13 7 13 8 22 6 13 19 11 16 6 3 19 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	18 17 7 14 3 17 0 8 0 10 1 2 6 1 4 8 2 18 26 0

```
494
                   0.33
                             0.33
                                                     3
                                       0.33
         495
                   1.00
                             0.40
                                       0.57
                   1.00
                                       0.29
         496
                             0.17
                                                    12
         497
                   0.00
                             0.00
                                       0.00
                                                     0
                   0.00
                             0.00
                                       0.00
         498
                                                     6
         499
                   0.50
                             0.27
                                       0.35
                                                    11
   micro avg
                   0.72
                             0.32
                                       0.44
                                                 19042
                             0.22
                   0.45
                                       0.27
                                                19042
   macro avg
                   0.63
                                                 19042
weighted avg
                             0.32
                                        0.41
                                       0.35
                                                 19042
                   0.45
                             0.32
 samples avg
Time taken to run this cell: 0:04:41.032406
In [52]:
from sklearn.externals import joblib
joblib.dump(classifier, 'lr_with_more_title_weight.pkl')
['lr_with_more_title_weight.pkl']
In [53]:
start = datetime.now()
classifier_2 = OneVsRestClassifier(LogisticRegression(penalty='l1'), n_jobs=-1)
classifier_2.fit(x_train_multilabel, y_train)
predictions_2 = classifier_2.predict(x_test_multilabel)
print("Accuracy :",metrics.accuracy_score(y_test, predictions_2))
print("Hamming loss ",metrics.hamming_loss(y_test,predictions_2))
precision = precision_score(y_test, predictions_2, average='micro')
recall = recall_score(y_test, predictions_2, average='micro')
f1 = f1_score(y_test, predictions_2, average='micro')
print("Micro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions_2, average='macro')
recall = recall_score(y_test, predictions_2, average='macro')
f1 = f1_score(y_test, predictions_2, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print (metrics.classification_report(y_test, predictions_2))
print("Time taken to run this cell :", datetime.now() - start)
Accuracy: 0.18771877187718772
Hamming loss 0.0030895089508950896
Micro-average quality numbers
Precision: 0.7030, Recall: 0.3270, F1-measure: 0.4464
Macro-average quality numbers
Precision: 0.4477, Recall: 0.2272, F1-measure: 0.2819
                           recall f1-score support
              precision
                   0.84
                                       0.53
           0
                             0.39
                                                   374
           1
                   0.69
                             0.23
                                        0.34
           2
                   0.53
                             0.08
                                       0.14
                                                   229
           3
                   0.65
                             0.16
                                        0.25
           4
                   0.78
                             0.51
                                       0.62
                                                   683
           5
                             0.47
                                        0.62
                   0.91
                                                   517
                             0.38
           6
                   0.79
                                       0.51
                                                   704
           7
                   0.88
                             0.63
                                       0.73
                                                   385
                                       0.71
           8
                   0.91
                             0.58
                                                   902
           9
                   0.71
                             0.60
                                       0.65
          10
                   0.83
                             0.53
                                       0.65
                                                   335
                   0.72
                             0.39
                                       0.51
          11
                                                   66
                   1.00
                             0.50
                                       0.67
                                                   12
          12
```

13

14

15

16

17

18

19

20

21

22

23

24

25

0.78

0.35

0.92

0.62

0.64

0.67

0.89

0.55

0.78

0.81

0.58

0.75

0.24

0.42

0.15

0.15

0.23

0.26

0.52

0.57

0.21

0.56

0.42

0.30

0.36

0.12

0.54

0.21

0.26

0.33

0.37

0.59

0.69

0.31

0.65

0.55

0.40

0.48

0.16

308

143

81

199

252

69

292

472

116

354

107

138

67

26	0.91	0.22	0.35	96
27	0.29	0.05	0.09	176
28	0.50	0.11	0.19	35
29	1.00	0.15	0.26	20
30	0.29	0.63	0.40	27
31	1.00	0.17	0.29	6
32	0.72	0.55	0.62	96
33	0.67	0.39	0.50	71
34	0.80	0.28	0.41	184
35	0.84	0.58	0.69	124
36	0.00	0.00	0.00	22
37	0.37	0.22	0.28	73
38	0.67	0.43	0.52	134
39	0.64	0.26	0.37	109
40	0.00	0.00	0.00	7
41	0.50	0.12	0.20	80
42	0.00	0.00	0.00	6
43	0.39	0.12	0.19	416
44	0.47	0.30	0.36	27
45	0.47	0.26	0.34	142
46 47	0.71 0.80	0.21	0.32 0.64	72 121
48	0.71	0.53 0.29	0.42	34
49	0.71	0.26	0.42	88
50	0.74	0.70	0.39	60
51	0.83	0.62	0.71	16
52	0.64	0.37	0.47	67
53	0.36	0.17	0.23	59
54	0.17	0.09	0.11	35
55	0.64	0.47	0.55	19
56	0.69	0.55	0.62	74
57	0.00	0.00	0.00	46
58	0.58	0.21	0.31	33
59	0.39	0.15	0.21	81
60	0.91	0.73	0.81	73
61	0.30	0.07	0.12	135
62	0.40	0.19	0.26	21
63	0.89	0.33	0.48	24
64	0.68	0.25	0.36	153
65	0.67	0.40	0.50	40
66	0.67	0.29	0.40	7
67	0.67	0.49	0.57	59
68	0.19	0.10	0.13	29
69	0.42	0.11	0.17	131
70	0.50	0.05	0.09	21
71	0.57	0.40	0.47	20
72	0.00	0.00	0.00	9
73	0.00	0.00	0.00	1
74 75	0.50	0.07	0.12 0.46	15 17
76	0.67 0.85	0.35 0.60	0.40	55
77	0.00	0.00	0.00	2
78	0.36	0.05	0.09	103
79	0.64	0.35	0.45	26
80	0.75	0.21	0.33	14
81	0.43	0.26	0.32	23
82	0.33	0.18	0.23	17
83	0.00	0.00	0.00	35
84	0.73	0.39	0.51	28
85	0.36	0.36	0.36	11
86	0.00	0.00	0.00	11
87	1.00	0.40	0.57	5
88	0.83	0.77	0.80	13
89	0.94	0.90	0.92	87
90	0.10	0.03	0.04	39
91	0.56	0.16	0.24	32
92	0.56	0.18	0.27	28
93	0.55	0.33	0.41	18
94	0.50	0.12	0.20	8
95 96	0.86	0.47	0.61	38
96 97	0.64 1.00	0.36 0.03	0.46 0.07	25 29
98	0.00	0.03	0.00	57
99	0.00	0.00	0.00	0
100	0.00	0.00	0.00	4
101	0.75	0.39	0.51	23
102	0.00	0.00	0.00	3
103	0.50	0.07	0.12	15
104	0.00	0.00	0.00	19
105	0.91	0.43	0.59	23
106	0.50	0.12	0.19	50
107	0.00	0.00	0.00	10
108	0.75	0.16	0.27	37

109	0.47	0.29	0.36	28
110	0.90	0.18	0.30	51
111	0.33	0.38	0.36	21
112	0.00	0.00	0.00	286
113 114	0.96 0.00	0.87 0.00	0.91 0.00	30 9 18
115	0.00	0.00	0.00	2 23
116	0.00	0.00	0.00	
117	0.33	0.09	0.14	
118	0.79	0.47	0.59	66
119	0.80	0.33	0.47	24
120	0.00	0.00	0.00	1
121	0.50	0.21	0.29	24
122	0.86	0.46	0.60	26
123	0.25	0.03	0.05	34
124	0.00	0.00	0.00	0
125	1.00	0.67	0.80	
126	0.00	0.00	0.00	8
127	1.00	0.19	0.32	21
128	1.00	0.62	0.77	8
129 130	0.71 0.00	0.52 0.52 0.00	0.60 0.00	23 53
131 132	0.00	0.00	0.00	1 9
133	0.00	0.00	0.00	6
134	1.00		0.33	5
135	0.86	0.60	0.71	10
136	0.00	0.00	0.00	27
137	0.11	0.14	0.12	21
138	1.00	0.33	0.50	3
139	0.33	0.07	0.11	29
140	0.89	0.67	0.76	24
141 142 143	0.75 0.33 0.47	0.33 0.13	0.46 0.19	36 15 27
144 145	0.64 0.00	0.30 0.47 0.00	0.36 0.54 0.00	34
146	0.14	0.01	0.02	86
147	0.40	0.25	0.31	8
148	0.88	0.37	0.52	19
149	0.44	0.20	0.27	35
150	0.00	0.00	0.00	8
151	0.20	0.33	0.25	
152	0.17	0.07	0.10	28
153	1.00	0.50	0.67	
154	0.00	0.00	0.00	1
155	0.33	0.09	0.14	11
156	0.53	0.15	0.24	52
157	0.56	0.42	0.48	43
158	1.00	0.14	0.25	7
159 160	0.63 0.53	0.47 0.27	0.54 0.36	55 37
161	1.00	0.25	0.40	16
162	0.00	0.00	0.00	21
163	0.25	0.03	0.05	75
164	0.20	0.05	0.08	20
165	0.00	0.00	0.00	227
166	0.89		0.19	75
167 168	0.40 0.56	0.14 0.16 0.56	0.21 0.25	14 31
169 170 171	0.71 0.85 0.00	0.48 0.00	0.63 0.61 0.00	18 23 5
172	0.74	0.52	0.61	27
173	0.50	0.50	0.50	2
174	0.30	0.08	0.13	36
175	0.82	0.47	0.60	19
176	1.00	0.80	0.89	10
177	0.17	0.08	0.11	12
178	0.00	0.00	0.00	0
179	0.00		0.00	0
180	0.33	0.14	0.20	14
181	0.00	0.00	0.00	12
182	0.00	0.00	0.00	1
183	0.64	0.37	0.47	38
184	0.00	0.00	0.00	
185	0.89	0.29	0.43	28
186	0.33	0.50	0.40	4
187	1.00	0.70	0.82	30
188	0.68	0.56	0.61	27
189	0.39	0.15	0.21	48
190	0.00	0.00	0.00	12
191	0.71	0.20	0.31	50

192	0.54	0.32	0.40	22
193	0.00	0.00	0.00	4
194	0.69	0.44	0.54	25
195	1.00	0.14	0.25	7
196	0.86	0.63	0.73	19
197	0.64	0.27	0.38	52
198	1.00	0.11	0.20	9
199	0.00	0.00	0.00	13
200	0.00	0.00	0.00	28
201	0.50	0.17	0.25	6
202	0.80	0.24	0.36	17
203	0.00	0.00	0.00	21
204	1.00	0.56	0.72	34
205	0.00	0.00	0.00	1
206	0.40	0.06	0.10	35
207	0.00	0.00	0.00	3
208	0.00	0.00	0.00	4
209	0.25	0.11	0.15	28
210	0.00	0.00	0.00	1
211	0.60	0.15	0.24	20
212	1.00	0.50	0.67	6
213	0.00	0.00	0.00	2
214	0.56	0.33	0.42	15
215	0.67	0.13	0.22	30
216	0.70	0.37	0.48	38
217	0.33	0.08	0.13	12
218	0.00	0.00	0.00	1
219	0.00	0.00	0.00	16
220	0.80	0.05	0.10	79
221	1.00	0.13	0.24	15
222	0.00	0.00	0.00	15
223	1.00	0.32	0.49	34
224	0.00	0.00	0.00	5
225	1.00	0.67	0.80	3
226	0.77	0.69	0.73	48
227	0.00	0.00	0.00	0
228	0.50	0.20	0.29	5
229	0.87	0.77	0.82	26
230	0.43	0.12	0.18	26
231	0.00	0.00	0.00	0
232	0.50	0.21	0.30	14
233	0.00	0.00	0.00	2
234	0.87	0.54	0.67	24
235	0.00	0.00	0.00	1
236	0.29	0.13	0.18	15
237	0.71	0.41	0.52	41
238	0.80	0.18	0.30	22
239	1.00	0.20	0.33	10
240	1.00	0.54	0.70	26
241	0.92	0.73	0.81	15
242	0.57	0.80	0.67	15
243	0.83	0.69	0.75	29
244	0.50	0.24	0.33	29
245	0.00	0.00	0.00	6
246	0.00	0.00	0.00	2
247	1.00	0.08	0.14	13
248	0.84	0.53	0.65	30
249	0.67	0.55	0.60	11
250	0.33	0.20	0.25	10
251	0.83	0.42	0.56	24
252	0.25	0.08	0.12	12
253	0.25	0.08	0.12	12
254	0.00	0.00	0.00	1
255	1.00	0.50	0.67	2
256	0.00	0.00	0.00	1
257	0.67	0.38	0.48	16
258	0.67	0.12	0.21	16
259	0.00	0.00	0.00	2
260	0.00	0.00	0.00	17
261	0.00	0.00	0.00	0
262	0.75	0.27	0.40	11
263	0.00	0.00	0.00	1
264	0.50	0.10	0.17	20
265	0.00	0.00	0.00	3
266	0.33	0.04	0.06	28
267	0.53	0.47	0.50	17
268	0.71	0.50	0.59	10
269	0.75	0.39	0.51	23
270	0.38	0.38	0.38	8
270	0.00			20
		0.00	0.00	
272	0.00	0.00	0.00	0
273	0.00	0.00	0.00	6
274	0.20	0.17	0.18	6

275	0.67	0.31	0.42	39
276	0.88	0.78	0.82	9
277	0.00	0.00	0.00	8
278	1.00	0.17	0.29	6
279	0.80	0.80	0.80	5
280	0.00	0.00	0.00	4
281	0.67	0.67	0.67	3
282	1.00	0.67	0.80	15
283	0.00	0.00	0.00	0
284	0.57	0.35	0.43	37
285	0.50	0.14	0.22	21
286	0.33	0.09	0.14	11
287	0.00	0.00	0.00	18
288	0.88	0.44	0.58	16
289	0.00	0.00	0.00	11
290	0.75	0.62	0.68	24
291	0.50	0.25	0.33	4
292	0.50	0.22	0.31	9
293	0.55	0.55	0.55	11
294	0.00	0.00	0.00	14
295	0.00	0.00	0.00	13
296	0.50	0.25	0.33	8
297	0.43	0.19	0.26	16
298	0.00	0.00	0.00	34
299	0.00	0.00	0.00	16
300	0.60	0.14	0.23	21
301	0.80	0.52	0.63	23
302	0.80	0.36	0.50	11
303	0.00	0.00	0.00	3
304	0.38	0.19	0.25	16
305	0.00	0.00	0.00	6
306	0.00	0.00	0.00	3
				2
307	0.00	0.00	0.00	
308	0.00	0.00	0.00	14
309	0.64	0.36	0.46	25
310	1.00	0.06	0.11	17
311	0.33	0.13	0.19	30
312	0.00	0.00	0.00	11
313	0.67	0.14	0.24	14
314	0.40	0.14	0.21	14
315	0.50	0.03	0.05	38
316	1.00	0.14	0.25	7
317	0.33	0.19	0.24	26
318	0.50	1.00	0.67	1
319	0.00	0.00	0.00	5
320	0.00	0.00	0.00	0
321	0.00	0.00	0.00	0
322	0.80	0.50	0.62	8
323	0.89	0.67	0.76	12
324	0.64	0.55	0.59	29
325	0.00	0.00	0.00	4
326	0.17	0.10	0.12	10
327	0.00	0.00	0.00	8
328	1.00	0.10	0.18	10
329	0.00	0.00	0.00	0
330	0.50	0.33	0.40	3
331	0.67	0.17	0.27	12
332	0.00	0.00	0.00	0
333	0.75	0.43	0.55	7
334	0.00	0.00	0.00	14
335	0.00	0.00	0.00	0
336	0.00	0.00	0.00	17
337	0.79	0.55	0.65	20
338	1.00	0.06	0.12	16
339	0.67	0.31	0.42	13
340	0.57	0.46	0.51	26
341	1.00	0.83	0.91	6
342	0.00	0.00	0.00	0
343	0.00	0.00	0.00	0
344	0.67	0.13	0.22	15
345	0.00	0.00	0.00	0
346	0.00	0.00	0.00	1
				4
347	1.00	0.25	0.40	
348	0.00	0.00	0.00	5
349	0.75	0.21	0.33	14
350	0.50	0.25	0.33	12
351	0.38	0.23	0.29	13
352	0.00	0.00	0.00	15
353	0.60	0.33	0.43	9
354	0.00	0.00	0.00	19
355	0.50	0.50	0.50	2
356	1.00	0.17	0.29	6
357	0.83	0.62	0.71	8

358	0.55	0.32	0.40	19
359	0.56	0.42	0.48	12
360	0.25	0.05	0.08	20
361	0.56	0.26	0.36	19
362	1.00	0.62	0.77	16
363	1.00	0.20	0.33	10
364	1.00	0.50	0.67	8
365	0.00	0.00	0.00	11
366	0.00	0.00	0.00	4
367	0.00	0.00	0.00	1
368	0.44	0.44	0.44	9
369	1.00	1.00	1.00	6
370	1.00	0.14	0.25	7
371	0.33	0.10	0.15	10
372	0.00	0.00	0.00	1
373	1.00	0.50	0.67	2
374	0.75	0.17	0.27	18
375	1.00	0.08	0.15	12
376	0.00	0.00	0.00	16
377	0.00	0.00	0.00	1
378	0.00	0.00	0.00	0
379	0.00	0.00	0.00	14
380	0.00	0.00	0.00	3
381	0.80	0.57	0.67	7
382	0.71	0.50	0.59	10
383	0.00	0.00	0.00	9
384	0.50	0.22	0.31	9
385	0.00	0.00	0.00	7
386	0.83	0.83	0.83	6
387	0.00	0.00	0.00	4
	0.00	0.00	0.00	8
388				
389	0.00	0.00	0.00	4
390	0.00	0.00	0.00	3
391	0.94	0.58	0.71	26
392	0.00	0.00	0.00	3
393	0.50	0.30	0.37	20
394	0.00	0.00	0.00	3
395	0.00	0.00	0.00	1
396	0.00	0.00	0.00	3
397	1.00	0.67	0.80	3
398	0.73	0.42	0.53	19
399	0.94	0.65	0.77	23
400	0.50	0.08	0.13	13
401	0.70	0.33	0.45	21
		0.64		
402	0.88		0.74	11
403	1.00	0.17	0.29	6
404	0.58	0.54	0.56	13
405	0.86	0.72	0.78	25
406	0.00	0.00	0.00	2
407	0.33	0.14	0.20	7
408	0.00	0.00	0.00	1
409	0.00	0.00	0.00	6
410	0.00	0.00	0.00	0
411	0.00	0.00	0.00	18
412	0.78	0.41	0.54	17
413	1.00	0.29	0.44	7
			0.00	
414	0.00	0.00		14
415	0.33	0.33	0.33	3
416	1.00	0.06	0.11	17
417	0.00	0.00	0.00	0
418	0.00	0.00	0.00	8
419	0.00	0.00	0.00	0
420	0.71	0.50	0.59	10
421	0.00	0.00	0.00	1
422	0.00	0.00	0.00	2
423	0.00	0.00	0.00	6
424	1.00	1.00	1.00	1
425	0.00	0.00	0.00	4
426	0.00	0.00	0.00	8
427	0.67	1.00	0.80	2
428	0.60	0.17	0.26	18
429	0.62	0.58	0.60	26
430 431	0.00	0.00	0.00	0 14
431	0.00	0.00	0.00	14
432	1.00	0.30	0.46	10
433	0.00	0.00	0.00	7
434	0.00	0.00	0.00	0
435	0.00	0.00	0.00	Θ
436	0.00	0.00	0.00	18
437	0.56	0.18	0.27	28
438	0.78	0.58	0.67	12
439	0.00	0.00	0.00	35
440	1.00	0.30	0.46	10

	441	0.50	0.25	0.33	12
	442	0.75	0.50	0.60	6
	443	0.00	0.00	0.00	9
	444	0.00	0.00	0.00	2
	445	1.00	0.43	0.60	7
	446	0.80	0.57	0.67	21
	447 448	0.00	0.00 0.00	0.00	6 6
	449	1.00	0.50	0.67	2
	450	1.00	0.03	0.06	30
	451	0.00	0.00	0.00	9
	452	1.00	0.90	0.95	10
	453	0.00	0.00	0.00	3
	454	0.67	0.67	0.67	3
	455	0.00	0.00	0.00	9
	456	0.00	0.00	0.00	1
	457	0.00	0.00	0.00	3
	458	0.00	0.00	0.00	4
	459	1.00	0.53	0.70	15
	460	0.00	0.00	0.00	13
	461	1.00	0.29	0.44	7
	462	1.00	0.23	0.38	13
	463 464	0.00 1.00	0.00	0.00	8 22
	465	0.25	0.68 0.17	0.81	6
	466	0.50	0.23	0.32	13
	467	0.20	0.16	0.18	19
	468	0.33	0.03	0.05	35
	469	0.00	0.00	0.00	1
	470	0.00	0.00	0.00	2
	471	0.70	0.41	0.52	17
	472	0.12	0.02	0.04	44
	473	1.00	0.20	0.33	10
	474	1.00	0.64	0.78	11
	475	0.58	0.55	0.56	66
	476	0.00	0.00	0.00	3
	477	0.40	0.20	0.27	10
	478	0.00	0.00	0.00	1
	479 480	0.00	0.00 0.00	0.00	9 5
	481	0.33	0.08	0.12	13
	482	0.00	0.00	0.00	1
	483	0.50	0.20	0.29	5
	484	1.00	0.33	0.50	9
	485	0.80	0.33	0.47	12
	486	0.50	0.29	0.36	7
	487	1.00	0.08	0.14	13
	488	0.00	0.00	0.00	Θ
	489	1.00	0.25	0.40	4
	490	0.50	0.33	0.40	3
	491	0.00	0.00	0.00	3
	492 493	0.00 0.29	0.00 0.14	0.00 0.19	1 14
	494	0.50	0.33	0.40	3
	495	0.67	0.40	0.50	5
	496	0.00	0.00	0.00	12
	497	0.00	0.00	0.00	0
	498	0.00	0.00	0.00	6
	499	0.67	0.36	0.47	11
micro	avg	0.70	0.33	0.45	19042
macro	avg	0.45	0.23	0.28	19042
weighted	avg	0.63	0.33	0.41	19042
samples	avg	0.45	0.32	0.35	19042
•	-				

Time taken to run this cell: 0:18:32.439164

4.5.4 Featurizing data with BOW vectorizer and up to 4 grams

In [47]:

Time taken to run this cell: 0:36:09.898222

```
In [48]:
print("Dimensions of train data X:",x_train_multilabel.shape, "Y:",y_train.shape)
print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)
Dimensions of train data X: (90000, 20000) Y: (90000, 500)
Dimensions of test data X: (9999, 20000) Y: (9999, 500)
Hyper parameter tuning on alpha
In [49]:
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
In [50]:
start=datetime.now()
param_grid = {"estimator__alpha": [10**-5, 10**-3, 10**-1, 10**1, 10**2]}
clf = OneVsRestClassifier(SGDClassifier(loss='log',penalty='l1'))
model = GridSearchCV(clf,param_grid, scoring = 'f1_micro', cv=2,n_jobs=-1)
model.fit(x_train_multilabel , y_train)
print("Time taken to run this cell :", datetime.now() - start)
Time taken to run this cell: 7:56:27.496709
In [57]:
best_param=print(model.best_params_)
{'estimator__alpha': 0.001}
Applying Logistic Regression with OneVsRest Classifier
In [64]:
start = datetime.now()
classifier_2 = OneVsRestClassifier(LogisticRegression(C=0.001,penalty='l1'), n_jobs=-1)
classifier_2.fit(x_train_multilabel, y_train)
predictions_2 = classifier_2.predict(x_test_multilabel)
print("Accuracy :",metrics.accuracy_score(y_test, predictions_2))
print("Hamming loss ",metrics.hamming_loss(y_test,predictions_2))
precision = precision_score(y_test, predictions_2, average='micro')
recall = recall_score(y_test, predictions_2, average='micro')
f1 = f1_score(y_test, predictions_2, average='micro')
print("Micro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions_2, average='macro')
recall = recall_score(y_test, predictions_2, average='macro')
f1 = f1_score(y_test, predictions_2, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print (metrics.classification_report(y_test, predictions_2))
print("Time taken to run this cell :", datetime.now() - start)
Accuracy: 0.11421142114211422
Hamming loss 0.00355875587559
Micro-average quality numbers
Precision: 0.8559, Recall: 0.0789, F1-measure: 0.1445
Macro-average quality numbers
Precision: 0.0546, Recall: 0.0102, F1-measure: 0.0156
              precision
                          recall f1-score support
```

0

1

3

4

5

6

0.78

0.38

0.47

0.53

0.88

0.95

0.86

0.90

0.20

0.00

0.07

0.12

0.27

0.38

0.26

0.46

0.32

0.01

0.12

0.20

0.41

0.55

0.40

0.61

374

902

229

129

683

517

704

385

8 9 10 11 12 13 14 15 16 17 18 19 20 1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
0.97 0.99 0.99 0.99 0.72 1.00 0.93 1.00 0.00 1.00 0.71 0.94 0.00 0.78 0.81 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.26 0.02 0.18 0.39 0.33 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.42 0.04 0.30 0.51 0.50 0.30 0.01 0.00 0.01 0.00 0.28 0.51 0.00 0.57 0.12 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.0
902 945 335 66 12 308 143 81 199 252 69 292 472 116 354 107 138 67 96 71 184 124 22 73 134 109 7 80 61 61 61 71 81 81 81 81 81 81 81 81 81 8

91	0.00	0.00	0.00	32
92	0.00	0.00	0.00	28
93	0.50	0.06	0.10	18
94	1.00	0.12	0.22	8
95	0.00	0.00	0.00	38
96	0.00	0.00	0.00	25
97	0.00	0.00	0.00	29
98	0.00	0.00	0.00	57
99	0.00	0.00	0.00	0
100	0.00	0.00	0.00	4
101	0.00	0.00	0.00	23
102	0.00	0.00	0.00	3
103	0.00	0.00	0.00	15
104	0.00	0.00	0.00	19
105	0.00	0.00	0.00	23
106	0.00	0.00	0.00	50
107	0.00	0.00	0.00	10
108	0.00	0.00	0.00	37
109	0.00	0.00	0.00	28
110	0.00	0.00	0.00	51
111	0.00	0.00	0.00	21
112	0.00	0.00	0.00	286
113	0.00	0.00	0.00	30
114	0.00	0.00	0.00	9
115	0.00	0.00	0.00	18
116	0.00	0.00	0.00	2
117	0.00	0.00	0.00	23
118	0.00	0.00	0.00	66
119	0.00	0.00	0.00	24
120	0.00	0.00	0.00	1
121	0.00	0.00	0.00	24
122	0.00	0.00	0.00	26
123	0.00	0.00	0.00	34
124	0.00	0.00	0.00	0
125	0.00	0.00	0.00	3
126	0.00	0.00	0.00	8
127	0.00	0.00	0.00	21
128	0.00	0.00	0.00	8
129	0.00	0.00	0.00	23
130	0.00	0.00	0.00	53 1
131	0.00	0.00	0.00	1
132	0.00	0.00	0.00	9
133	0.00	0.00	0.00	6
134	0.00	0.00	0.00	5
135	0.00	0.00	0.00	10
136	0.00	0.00	0.00	27
137	0.00	0.00	0.00	21
138	0.00	0.00	0.00	3
139	0.00	0.00	0.00	29
140	0.00	0.00	0.00	24
141	0.00	0.00	0.00	36
142	0.00	0.00	0.00	15
143	0.00	0.00	0.00	27
144	0.00	0.00	0.00	34
145	0.00	0.00	0.00	8
146	0.00	0.00	0.00	86
147	0.00	0.00	0.00	8
148	0.00	0.00	0.00	19
149	0.00	0.00	0.00	35
150	0.00	0.00	0.00	8
151	0.00	0.00	0.00	3
152	0.00	0.00	0.00	28
153	0.00	0.00	0.00	2
154	0.00	0.00	0.00	1
155	0.00	0.00	0.00	11
156	0.00	0.00	0.00	52
157	0.00	0.00	0.00	43
158	0.00	0.00	0.00	7
159	0.00	0.00	0.00	55
160	0.00	0.00	0.00	37
161	0.00	0.00	0.00	16
162	0.00	0.00	0.00	21
163	0.00	0.00	0.00	75
164	0.00	0.00	0.00	20
165	0.00	0.00	0.00	227
166	0.00	0.00	0.00	75
167	0.00	0.00	0.00	14
168	0.00	0.00	0.00	31
169	0.00	0.00	0.00	18
170	0.00	0.00	0.00	23
171	0.00	0.00	0.00	5
172	0.00	0.00	0.00	27
173	0.00	0.00	0.00	2

174	0.00	0.00	0.00	36
175 176	0.00 0.00	0.00 0.00	0.00 0.00	19 10
177	0.00	0.00	0.00	12
178	0.00	0.00	0.00	0
179 180	0.00 0.00	0.00 0.00	0.00 0.00	0 14
181	0.00	0.00	0.00	12
182	0.00	0.00	0.00	1
183	0.00	0.00	0.00	38
184 185	0.00 0.00	0.00 0.00	0.00 0.00	2 28
186	0.00	0.00	0.00	4
187	0.00	0.00	0.00	30
188	0.00	0.00	0.00	27
189 190	0.00 0.00	0.00 0.00	0.00 0.00	48 12
191	0.00	0.00	0.00	50
192	0.00	0.00	0.00	22
193	0.00	0.00	0.00	4
194 195	0.00 0.00	0.00 0.00	0.00 0.00	25 7
196	0.00	0.00	0.00	19
197	0.00	0.00	0.00	52
198	0.00 0.00	0.00	0.00	9 13
199 200	0.00	0.00 0.00	0.00 0.00	28
201	0.00	0.00	0.00	6
202	0.00	0.00	0.00	17
203 204	0.00 0.00	0.00 0.00	0.00 0.00	21 34
205	0.00	0.00	0.00	1
206	0.00	0.00	0.00	35
207	0.00	0.00	0.00	3
208 209	0.00 0.00	0.00 0.00	0.00 0.00	4 28
210	0.00	0.00	0.00	1
211	0.00	0.00	0.00	20
212	0.00	0.00	0.00	6
213 214	0.00 0.00	0.00 0.00	0.00 0.00	2 15
215	0.00	0.00	0.00	30
216	0.00	0.00	0.00	38
217	0.00	0.00	0.00	12
218 219	0.00 0.00	0.00 0.00	0.00 0.00	1 16
220	0.00	0.00	0.00	79
221	0.00	0.00	0.00	15
222 223	0.00 0.00	0.00 0.00	0.00 0.00	15 34
224	0.00	0.00	0.00	5
225	0.00	0.00	0.00	3
226	0.00	0.00	0.00	48
227 228	0.00 0.00	0.00 0.00	0.00 0.00	0 5
229	0.00	0.00	0.00	26
230	0.00	0.00	0.00	26
231	0.00	0.00	0.00	0
232 233	0.00 0.00	0.00 0.00	0.00 0.00	14 2
234	0.00	0.00	0.00	24
235	0.00	0.00	0.00	1
236 237	0.00 0.00	0.00 0.00	0.00 0.00	15 41
238	0.00	0.00	0.00	22
239	0.00	0.00	0.00	10
240	0.00	0.00	0.00	26 15
241 242	0.00 0.00	0.00 0.00	0.00 0.00	15 15
243	0.00	0.00	0.00	29
244	0.00	0.00	0.00	29
245 246	0.00	0.00	0.00	6
246 247	0.00 0.00	0.00 0.00	0.00 0.00	2 13
248	0.00	0.00	0.00	30
249	0.00	0.00	0.00	11
250	0.00	0.00	0.00	10 24
251 252	0.00 0.00	0.00 0.00	0.00 0.00	24 12
253	0.00	0.00	0.00	12
254	0.00	0.00	0.00	1
255 256	0.00 0.00	0.00 0.00	0.00 0.00	2 1
230	0.00	0.00	0.00	1

257	0.00	0.00	0.00	16
258	0.00	0.00	0.00	16
259	0.00	0.00	0.00	2
260	0.00	0.00	0.00	17
261	0.00	0.00	0.00	0
262	0.00	0.00	0.00	11
263	0.00	0.00	0.00	1
264	0.00	0.00	0.00	20
265	0.00	0.00	0.00	3
266	0.00	0.00	0.00	28
267	0.00	0.00	0.00	17
268	0.00	0.00	0.00	10
269	0.00	0.00	0.00	23
270	0.00	0.00	0.00	8
271	0.00	0.00	0.00	20
272	0.00	0.00	0.00	0
273	0.00	0.00	0.00	6
274	0.00	0.00	0.00	6
275	0.00	0.00	0.00	39
276	0.00	0.00	0.00	9
277	0.00	0.00	0.00	8
				6
278	0.00	0.00	0.00	
279	0.00	0.00	0.00	5
280	0.00	0.00	0.00	4
281	0.00	0.00	0.00	3
282	0.00	0.00	0.00	15
283	0.00	0.00	0.00	0
284	0.00	0.00	0.00	37
285	0.00	0.00	0.00	21
286	0.00	0.00	0.00	11
287	0.00	0.00	0.00	18
288	0.00	0.00	0.00	16
289	0.00	0.00	0.00	11
290	0.00	0.00	0.00	24
291	0.00	0.00	0.00	4
292	0.00	0.00	0.00	9
293	0.00	0.00	0.00	11
294	0.00	0.00	0.00	14
295	0.00	0.00	0.00	13
296	0.00	0.00	0.00	8
297	0.00	0.00	0.00	16
298	0.00	0.00	0.00	34
299	0.00	0.00	0.00	16
300	0.00	0.00	0.00	21
301	0.00	0.00	0.00	23
		0.00	0.00	
302	0.00			11
303	0.00	0.00	0.00	3
304	0.00	0.00	0.00	16
305	0.00	0.00	0.00	6
306	0.00	0.00	0.00	3
307	0.00	0.00	0.00	2
308	0.00	0.00	0.00	14
309	0.00	0.00	0.00	25
310	0.00	0.00	0.00	17
311	0.00	0.00	0.00	30
312	0.00	0.00	0.00	11
313	0.00	0.00	0.00	14
314	0.00	0.00	0.00	14
315	0.00	0.00	0.00	38
316	0.00	0.00	0.00	7
317	0.00	0.00	0.00	26
318	0.00	0.00	0.00	1
319	0.00	0.00	0.00	5
320	0.00	0.00	0.00	0
321	0.00	0.00	0.00	0
322	0.00	0.00	0.00	8
323	0.00	0.00	0.00	12
324	0.00	0.00	0.00	29
325	0.00	0.00	0.00	4
326	0.00	0.00	0.00	10
327	0.00	0.00	0.00	8
328	0.00	0.00	0.00	10
329	0.00	0.00	0.00	0
330	0.00	0.00	0.00	3
331	0.00	0.00	0.00	12
332	0.00	0.00	0.00	0
333	0.00			7
		0.00	0.00	
334	0.00	0.00	0.00	14
335	0.00	0.00	0.00	0
336	0.00	0.00	0.00	17
337	0.00	0.00	0.00	20
338	0.00	0.00	0.00	16
339	0.00	0.00	0.00	13

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 367 368 363 364 365 367 368 369 371 372 373 374 375 377 378 379 380 381 382 383 384 385 386 387 378 379 380 381 382 383 384 385 386 387 378 379 380 381 382 383 384 385 386 387 378 379 380 381 382 383 384 385 386 387 378 378 379 380 381 382 383 384 385 386 387 378 378 379 380 381 382 383 384 385 386 387 387 388 389 390 391 392 393 394 395 396 397 397 398 399 400 401 402 403 404 405 406 406 406 406 407 407 408 409 409 409 409 409 409 409 409
0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
0.00 0.00
26 6 0 0 15 0 1 4 5 14 12 13 15 9 19 2 6 8 19 12 20 19 16 10 8 11 4 1 1 2 18 18 19 19 19 7 6 10 10 10 10 10 10 10 10 10 10 10 10 10

	423	0.00	0.00	0.00	6
	424	0.00	0.00	0.00	1
	425	0.00	0.00	0.00	4
	426 427	0.00 0.00	0.00	0.00	8 2
	428	0.00	0.00	0.00	18
	429	0.00	0.00	0.00	26
	430	0.00	0.00	0.00	0
	431	0.00	0.00	0.00	14
	432	0.00	0.00	0.00	10
	433	0.00	0.00	0.00	7
	434	0.00	0.00	0.00	0
	435 436	0.00 0.00	0.00	0.00	0 18
	437	0.00	0.00	0.00	28
	438	0.00	0.00	0.00	12
	439	0.00	0.00	0.00	35
	440	0.00	0.00	0.00	10
	441	0.00	0.00	0.00	12
	442	0.00	0.00	0.00	6
	443	0.00	0.00	0.00	9
	444	0.00	0.00	0.00	2
	445 446	0.00	0.00	0.00	7 21
	447	0.00	0.00	0.00	6
	448	0.00	0.00	0.00	6
	449	0.00	0.00	0.00	2
	450	0.00	0.00	0.00	30
	451	0.00	0.00	0.00	9
	452	0.00	0.00	0.00	10
	453	0.00	0.00	0.00	3
	454	0.00	0.00	0.00	3
	455 456	0.00 0.00	0.00	0.00	9 1
	457	0.00	0.00	0.00	3
	458	0.00	0.00	0.00	4
	459	0.00	0.00	0.00	15
	460	0.00	0.00	0.00	13
	461	0.00	0.00	0.00	7
	462	0.00	0.00	0.00	13
	463	0.00	0.00	0.00	8
	464	0.00	0.00	0.00	22
	465 466	0.00	0.00	0.00	6 13
	467	0.00	0.00	0.00	19
	468	0.00	0.00	0.00	35
	469	0.00	0.00	0.00	1
	470	0.00	0.00	0.00	2
	471	0.00	0.00	0.00	17
	472	0.00	0.00	0.00	44
	473	0.00	0.00	0.00	10
	474 475	0.00 0.00	0.00	0.00	11 66
	476	0.00	0.00	0.00	3
	477	0.00	0.00	0.00	10
	478	0.00	0.00	0.00	1
	479	0.00	0.00	0.00	9
	480	0.00	0.00	0.00	5
	481	0.00	0.00	0.00	13
	482 483	0.00 0.00	0.00	0.00	1 5
	484	0.00	0.00	0.00	9
	485	0.00	0.00	0.00	12
	486	0.00	0.00	0.00	7
	487	0.00	0.00	0.00	13
	488	0.00	0.00	0.00	0
	489	0.00	0.00	0.00	4
	490	0.00	0.00	0.00	3
	491	0.00	0.00	0.00	3
	492 493	0.00 0.00	0.00	0.00	1 14
	494	0.00	0.00	0.00	3
	495	0.00	0.00	0.00	5
	496	0.00	0.00	0.00	12
	497	0.00	0.00	0.00	0
	498	0.00	0.00	0.00	6
	499	0.00	0.00	0.00	11
.	21/4	0.00	0.00	0 14	10042
micro macro	avg	0.86 0.05	0.08 0.01	0.14 0.02	19042 19042
weighted	avg avg	0.37	0.01	0.02	19042
samples	avg	0.14	0.08	0.10	19042
-					

37

38

39

40

0.17

0.53

0.17

0.00

0.04

0.51

0.06

0.00

0.07

0.52

0.09

0.00

73

134

109

Applying Logistic Regression with OneVsRest Classifier and loss='log'

```
In [59]:
start = datetime.now()
classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.001, penalty='l1'), n_jobs=-1)
classifier.fit(x_train_multilabel, y_train)
predictions = classifier.predict (x_test_multilabel)
print("Accuracy :",metrics.accuracy_score(y_test, predictions))
print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
precision = precision_score(y_test, predictions, average='micro')
recall = recall_score(y_test, predictions, average='micro')
f1 = f1_score(y_test, predictions, average='micro')
print("Micro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions, average='macro')
recall = recall_score(y_test, predictions, average='macro')
f1 = f1_score(y_test, predictions, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print (metrics.classification_report(y_test, predictions))
print("Time taken to run this cell :", datetime.now() - start)
Accuracy: 0.1415141514151415
Hamming loss 0.003614161416141614
Micro-average quality numbers
Precision: 0.5458, Recall: 0.3044, F1-measure: 0.3909
Macro-average quality numbers
Precision: 0.3243, Recall: 0.1876, F1-measure: 0.2169
             precision recall f1-score support
                  0.38
                           0.47
                                     0.42
                                                 374
          0
                  0.67
                          0.16
                                    0.25
                                     0.16
                                                229
          2
                  0.26
                           0.12
          3
                  0.34
                            0.22
                                     0.27
                                                 129
                           0.48
                                     0.57
          4
                  0.69
                                                683
                           0.52
          5
                  0.69
                                     0.59
          6
                  0.79
                           0.29
                                     0.42
                                                704
          7
                            0.70
                                     0.66
                  0.63
                                                 385
          8
                  0.69
                           0.51
                                     0.58
                                                902
          9
                  0.71
                           0.62
                                     0.66
                                                 945
         10
                  0.72
                           0.49
                                     0.59
                                                335
         11
                  0.59
                            0.44
                                     0.50
                                                 66
                                                12
                  0.47
                           0.67
                                     0.55
         12
                  0.72
                           0.44
                                     0.54
                                                308
         13
                           0.17
                                     0.21
                                                143
         14
                  0.27
         15
                  0.48
                           0.30
                                     0.37
                                                 81
         16
                  0.49
                           0.31
                                     0.38
                                                199
         17
                  0.56
                           0.23
                                    0.33
                                               252
         18
                  0.41
                           0.36
                                     0.38
                                                 69
         19
                  0.76
                           0.63
                                     0.69
                                                292
                           0.27
         20
                  0.47
                                     0.35
                                                472
                  0.69
                           0.68
                                     0.69
         21
                                               116
                                     0.54
                  0.80
                           0.41
                                                354
         22
         23
                  0.50
                           0.24
                                     0.33
                                                 107
                  0.86
                           0.09
                                     0.16
         24
                                                138
                                                67
         25
                  0.21
                           0.15
                                     0.17
         26
                  0.81
                           0.27
                                     0.41
                                                 96
         27
                  0.21
                           0.18
                                     0.19
                                                176
                           0.20
                                     0.30
         28
                  0.64
                                                 35
         29
                  1.00
                           0.25
                                     0.40
                                                 20
                  0.06
                           0.30
                                     0.10
         30
                                                 27
         31
                  1.00
                           0.33
                                     0.50
                  0.56
                           0.65
                                     0.60
                                                96
         32
         33
                  0.57
                           0.39
                                     0.47
                                                 71
         34
                  0.68
                            0.21
                                     0.32
                                                184
         35
                  0.78
                            0.56
                                     0.65
                                                124
         36
                  0.00
                           0.00
                                     0.00
                                                 22
```

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 67 68 69 77 77 78 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 99 99 99 99 99 99 99 99 99 99 99
0.69 0.00 0.00 0.42 0.38 0.67 0.88 0.41 0.64 0.78 0.59 0.60 0.22 0.09 0.64 0.58 1.00 0.50 0.35 0.89 0.28 0.13 0.67 0.74 0.45 0.20 0.65 0.11 0.29 0.03 0.16 0.17 0.00 0.07 0.77 0.00 0.08 0.58 1.00 0.26 0.19 0.10 0.33 0.36 0.09 0.25 0.80 0.25 0.80 0.30 0.25 0.80 0.42 0.50 0.81 0.47 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.0
0.14 0.00 0.00 0.30 0.32 0.19 0.42 0.26 0.16 0.82 0.81 0.40 0.10 0.06 0.37 0.62 0.04 0.27 0.20 0.74 0.12 0.19 0.25 0.32 0.53 0.14 0.59 0.07 0.04 0.05 0.20 0.11 0.00 0.11 0.00 0.18 0.73 0.01 0.00 0.11 0.00 0.18 0.73 0.01 0.00 0.11 0.00 0.18 0.05 0.00 0.11 0.00 0.18 0.00 0.18 0.00 0.18 0.00 0.19 0.27 0.29 0.30 0.10 0.00 0.11 0.00 0.12 0.00 0.13 0.00 0.14 0.36 0.00 0.10 0.00 0.10 0.00 0.17 0.00 0.17 0.00 0.17 0.00 0.05 0.05 0.05 0.00 0.17 0.00 0.05
0.23 0.00 0.00 0.35 0.35 0.30 0.57 0.32 0.25 0.80 0.68 0.44 0.07 0.47 0.60 0.08 0.35 0.81 0.17 0.16 0.36 0.45 0.48 0.17 0.16 0.36 0.45 0.48 0.17 0.16 0.36 0.45 0.48 0.17 0.62 0.09 0.07 0.04 0.18 0.10 0.09 0.07 0.04 0.18 0.19 0.00 0.21 0.00 0.21 0.36 0.41 0.36 0.41 0.00 0.21 0.36 0.41 0.00 0.21 0.36 0.41 0.36 0.41 0.00 0.21 0.36 0.41 0.36 0.41 0.00 0.21 0.36 0.41 0.36 0.41 0.36 0.41 0.36 0.41 0.36 0.41 0.36 0.41 0.36 0.41 0.09 0.22 0.70 0.83 0.13 0.00 0.21 0.00 0.21 0.36 0.41 0.36 0.41 0.36 0.41 0.62 0.70 0.83 0.13 0.00 0.24 0.33 0.43 0.66 0.41 0.00 0.00 0.00 0.24 0.33 0.44 0.41 0.00 0.00 0.00 0.24 0.33 0.43 0.44 0.49 0.40 0.40 0.40 0.40 0.41 0.00 0.24 0.33 0.43 0.44 0.49 0.40 0.40 0.40 0.00 0.00 0.00 0.24 0.35 0.00 0.01 0.00
80 6416 27 142 72 121 34 88 60 16 67 59 35 19 74 46 33 81 73 135 21 24 153 40 7 59 29 131 21 20 9 1 15 17 55 2 103 26 14 23 17 35 28 11 15 36 28 11 15 37 38 11 57 38 11 57 38 11 57 57 57 57 58 58 58 58 58 58 58 58 58 58 58 58 58

147 0.24 0.50 148 0.62 0.26 149 0.24 0.14 150 0.00 0.00 151 0.33 1.00 152 0.25 0.21 153 0.07 0.50 154 0.00 0.00 155 0.00 0.00 156 0.39 0.31 157 0.45 0.35 158 0.50 0.14 159 0.70 0.38	148 0.62 0.26 149 0.24 0.14 150 0.00 0.00 151 0.33 1.00 152 0.25 0.21 153 0.07 0.50 154 0.00 0.00 155 0.00 0.00 156 0.39 0.31 157 0.45 0.35 158 0.50 0.14
	62 0.27 0.14 63 0.18 0.04 64 0.27 0.20 65 0.00 0.00 66 0.00 0.00 67 0.00 0.00 68 0.43 0.10 69 0.25 0.11 70 0.80 0.52 71 0.00 0.00 72 0.78 0.67 73 0.17 0.50 74 0.43 0.08 75 0.63 0.63 76 0.90 0.90 77 0.09 0.17

207	0.00	0.00	0.00	3
208	0.00	0.00	0.00	4
209	0.09	0.07	0.08	28
210	0.00	0.00	0.00	1
211	0.12	0.05	0.07	20
212	0.20	0.17	0.18	6
213	0.00	0.00	0.00	2
214	0.56	0.33	0.42	15
215	0.00	0.00	0.00	30
216	1.00	0.13	0.23	38
217	0.29	0.17	0.21	12
218	0.00	0.00	0.00	1
219	0.20	0.06	0.10	16
220	0.75	0.04	0.07	79
221	0.33	0.07	0.11	15
222	0.00	0.00	0.00	15
223	1.00	0.24	0.38	34
224	0.00	0.00	0.00	5
225	0.50	0.67	0.57	3
226	0.81	0.71	0.76	48
227	0.00	0.00	0.00	0
228	0.00	0.00	0.00	5
229	0.85	0.88	0.87	26
230	0.00	0.00	0.00	26
231	0.00	0.00	0.00	0
232	0.44	0.29	0.35	14
233	0.00	0.00	0.00	2
234	0.52	0.71	0.60	24
235	0.00	0.00	0.00	1
236	0.14	0.13	0.14	15
237	0.65	0.41	0.51	41
238	0.00	0.00	0.00	22
239	0.67	0.20	0.31	10
240	1.00	0.62	0.76	26
241	0.81	0.87	0.84	15
242	0.44	0.47	0.45	15
243	0.75	0.52	0.61	29
244	0.43	0.21	0.28	29
245	0.00	0.00	0.00	6
246	0.33	0.50	0.40	2
247	0.33	0.08	0.12	13
248	0.87	0.43	0.58	30
249	0.57	0.36	0.44	11
250	0.00	0.00	0.00	10
251	0.71	0.21	0.32	24
252	0.44	0.33	0.38	12
253	0.06	0.08	0.07	12
254	0.00	0.00	0.00	1
255	0.20	0.50	0.29	2
256	0.00	0.00	0.00	1
257	0.50	0.12	0.20	16
258	0.00	0.00	0.00	16
259	0.00	0.00	0.00	2
	0.00		0.00	17
260		0.00		
261	0.00	0.00	0.00	0
262	0.67	0.18	0.29	11
263	0.00	0.00	0.00	1
264	0.00	0.00	0.00	20
265	0.00	0.00	0.00	3
266	0.20	0.04	0.06	28
267	0.33	0.24	0.28	17
268	0.75	0.90	0.82	10
269	0.88	0.30	0.45	23
270	0.40	0.25	0.31	8
271	0.00	0.00	0.00	20
272	0.00	0.00	0.00	0
273	0.00	0.00	0.00	6
274	0.00	0.00	0.00	6
275	0.46	0.33	0.39	39
276	0.75	0.67	0.71	9
277	0.00	0.00	0.00	8
278	0.00	0.00	0.00	6
279	0.00	0.00	0.00	5
280	0.00	0.00	0.00	4
281	0.50	0.67	0.57	3
282	1.00	0.60	0.75	15
283	0.00	0.00	0.75	0
284	0.41	0.00	0.31	37
285	0.00			21
		0.00	0.00	
286	0.50	0.09	0.15	11
287	0.00	0.00	0.00	18
288	0.50	0.19	0.27	16
289	0.00	0.00	0.00	11

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 327 328 329 330 331 332 333 334 335 336 337 338 338 339 339 339 339 339 339 339 339	290
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.14 0.00	0.76
0.00 0.00	0.54
0.00 0.00	0.63
14 9 11 14 13 8 16 34 16 21 23 11 3 16 6 3 2 14 25 17 30 11 14 14 38 7 26 10 8 8 12 29 4 10 8 10 10 11 11 12 13 16 16 17 17 19 10 10 10 10 10 10 10 10 10 10 10 10 10	24

373	0.00	0.00	0.00	2
				18
374	0.00	0.00	0.00	
375	0.00	0.00	0.00	12
376	0.00	0.00	0.00	16
377	0.00	0.00	0.00	1
378	0.00	0.00	0.00	0
379	0.00	0.00	0.00	14
380	0.33	0.33	0.33	3
381	1.00	0.29	0.44	7
382	0.67	0.40	0.50	10
383	0.00	0.00	0.00	9
384	0.83	0.56	0.67	9
385	0.00	0.00	0.00	7
386	0.62	0.83	0.71	6
387	0.00	0.00	0.00	4
388	0.00	0.00	0.00	8
389	1.00	0.25	0.40	4
390	0.00	0.00	0.00	3
391	0.94	0.58	0.71	26
392	0.00	0.00	0.00	3
393	1.00	0.15	0.26	20
394	0.00	0.00	0.00	
				3
395	0.00	0.00	0.00	1
396	0.00	0.00	0.00	3
397	1.00	0.33	0.50	3
398	1.00	0.11	0.19	19
399	0.95	0.78	0.86	23
400	0.00	0.00	0.00	13
401	0.17	0.10	0.12	21
402	1.00	0.27	0.43	11
403	0.50	0.17	0.25	6
404	0.57	0.31	0.40	13
405	0.91	0.40	0.56	25
406	1.00	0.50	0.67	2
407	0.00	0.00	0.00	7
408	0.00	0.00	0.00	1
409	0.00	0.00	0.00	6
410	0.00	0.00	0.00	0
411	0.00	0.00	0.00	18
412	0.83	0.29	0.43	17
413	0.00	0.00	0.00	7
414	0.00	0.00	0.00	14
415	0.00	0.00	0.00	3
416	0.40	0.12	0.18	17
417	0.00	0.00	0.00	Θ
418	1.00	0.12	0.22	8
419	0.00	0.00	0.00	0
420	0.67	0.20	0.31	10
421	0.00	0.00	0.00	1
422	0.00	0.00	0.00	2
423	0.00	0.00	0.00	6
424	0.00	0.00	0.00	1
425	1.00	0.25	0.40	4
426	0.00	0.00	0.00	8
427	1.00	1.00	1.00	2
428	0.62	0.28	0.38	18
429	0.39	0.46	0.42	26
430	0.00	0.00	0.00	0
431	0.00	0.00	0.00	14
432	0.00	0.00	0.00	10
433	0.00	0.00	0.00	7
434				
	0.00	0.00	0.00	0
435	0.00	0.00	0.00	0
436	0.00	0.00	0.00	18
437	0.38	0.11	0.17	28
438	0.50	0.08	0.14	12
439	0.00	0.00	0.00	35
440	0.00	0.00	0.00	10
441	1.00	0.25	0.40	12
442	0.67	0.67	0.67	6
443	0.00	0.00	0.00	9
444				
	0.00	0.00	0.00	2
445	1.00	0.29	0.44	7
446	0.83	0.24	0.37	21
447	0.00	0.00	0.00	6
448	0.00	0.00	0.00	6
449	0.00	0.00	0.00	2
450	0.00	0.00	0.00	30
451	0.00	0.00	0.00	9
452	1.00	0.40	0.57	10
453	0.00	0.00	0.00	3
454	0.00	0.00	0.00	3
455	0.00	0.00	0.00	9

	456	0.00	0.00	0.00	1
	457	0.00	0.00	0.00	3
	458	0.00	0.00	0.00	4
	459	1.00	0.27	0.42	15
	460	0.00	0.00	0.00	13
	461	0.00	0.00	0.00	7
	462	0.00	0.00	0.00	13
	463	0.00	0.00	0.00	8
	464	0.00	0.00	0.00	22
	465	0.00	0.00	0.00	6
	466	0.50	0.08	0.13	13
	467	0.12	0.11	0.11	19
	468	0.25	0.06	0.09	35
	469	0.00	0.00	0.00	1
	470	0.00	0.00	0.00	2
	471	0.86	0.35	0.50	17
	472	0.00	0.00	0.00	44
	473	1.00	0.10	0.18	10
	474	1.00	0.64	0.78	11
	475	0.00	0.00	0.00	66
	476	0.00	0.00	0.00	3
	477	0.40	0.20	0.27	10
	478	0.00	0.00	0.00	1
	479	0.00	0.00	0.00	9
	480	0.00	0.00	0.00	5
	481	0.00	0.00	0.00	13
	482	0.00	0.00	0.00	1
	483	1.00	0.20	0.33	5
	484	0.33	0.22	0.27	9
	485	0.40	0.17	0.24	12
	486	1.00	0.14	0.25	7
	487	0.00	0.00	0.00	13
	488	0.00	0.00	0.00	0
	489	1.00	0.50	0.67	4
	490	0.50	0.33	0.40	3
	491	0.00	0.00	0.00	3
	492	0.00	0.00	0.00	1
	493	0.14	0.07	0.10	14
	494	0.00	0.00	0.00	3
	495	0.50	0.20	0.29	5
	496	0.00	0.00	0.00	12
	497	0.00	0.00	0.00	Θ
	498	0.00	0.00	0.00	6
	499	0.00	0.00	0.00	11
	- -				
micro	avg	0.55	0.30	0.39	19042
macro	avg	0.32	0.19	0.22	19042
weighted	avg	0.50	0.30	0.36	19042
samples	avg	0.39	0.30	0.31	19042
1	J				

Time taken to run this cell: 0:03:01.978203

Applying Logistic Regression with OneVsRest Classifier loss='Hinge'

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 40

41

42

43

44 45 0.66

0.36

0.48

0.56

0.22

0.34

0.18

0.26

0.12

0.14

0.12

0.11

0.11

0.44

0.33

0.34

0.56

0.07

0.13

0.41

0.28

0.04

0.17

0.00

0.33

0.17

0.31

0.65

0.62

0.60

0.57

0.36

0.41

0.27

0.32

0.16

0.29

0.30

0.67

0.50

0.56

0.44

0.36

0.54

0.14

0.21

0.49

0.41

0.14

0.31

0.00

0.58

0.41

0.33

0.66

0.46

0.54

0.57

0.27

0.37 0.22

0.29

0.14

0.19 0.17

0.18

0.18

0.49

0.38

0.35

0.55

0.09

0.16

0.45

0.33

0.07

0.22

0.00

0.42

0.24

0.32

292

472

116

354

107

67

96

176

20

27

6

96

71

124

22

73

134

109

7

80

6

416

27

142

```
In [61]:
start = datetime.now()
classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', alpha=0.00001, penalty='l1'), n_jobs=-1)
classifier.fit(x_train_multilabel, y_train)
predictions = classifier.predict (x_test_multilabel)
print("Accuracy :",metrics.accuracy_score(y_test, predictions))
print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
precision = precision_score(y_test, predictions, average='micro')
recall = recall_score(y_test, predictions, average='micro')
f1 = f1_score(y_test, predictions, average='micro')
print("Micro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions, average='macro')
recall = recall_score(y_test, predictions, average='macro')
f1 = f1_score(y_test, predictions, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print (metrics.classification_report(y_test, predictions))
print("Time taken to run this cell :", datetime.now() - start)
Accuracy: 0.0968096809680968
Hamming loss 0.006205020502050205
Micro-average quality numbers
Precision: 0.2915, Recall: 0.4398, F1-measure: 0.3506
Macro-average quality numbers
Precision: 0.1702, Recall: 0.2992, F1-measure: 0.2044
              precision recall f1-score support
           0
                   0.40
                            0.52
                                       0.45
           1
                   0.43
                            0.42
                                       0.42
                                                  902
           2
                   0.14
                             0.21
                                       0.17
                                                  229
           3
                   0.20
                             0.19
                                       0.19
                                                  129
           4
                   0.51
                            0.64
                                      0.57
                                                  683
           5
                   0.59
                            0.56
                                      0.58
                                                  517
           6
                             0.48
                                       0.49
                                                  704
                   0.50
           7
                   0.51
                             0.70
                                       0.59
                                                  385
           8
                  0.66
                            0.72
                                      0.69
           9
                  0.69
                            0.69
                                      0.69
                                                  945
          10
                   0.50
                            0.56
                                      0.53
                                                  335
          11
                   0.24
                            0.53
                                      0.33
                                                  66
                            0.67
                                       0.27
          12
                  0.17
                                                  12
          13
                   0.50
                             0.54
                                      0.52
                                                  308
          14
                   0.13
                             0.22
                                       0.16
                                                  143
          15
                   0.21
                             0.35
                                       0.26
                                                   81
          16
                   0.27
                            0.36
                                      0.31
                                                  199
          17
                   0.39
                            0.45
                                      0.42
                                                  252
          18
                   0.27
                             0.57
                                       0.36
                                                   69
```

46	0.25	0.25	0.25	72
47	0.46	0.64	0.54	121
48	0.16	0.41	0.23	34
49	0.29	0.36	0.32	88
50	0.45	0.70	0.55	60
51	0.42	0.81	0.55	
				16
52	0.37	0.51	0.43	67
53	0.19	0.24	0.21	59
54	0.04	0.17	0.07	35
55	0.21	0.42	0.28	19
56	0.42	0.57	0.48	74
57	0.11	0.22	0.15	46
58	0.12	0.30	0.17	33
59	0.24	0.44	0.31	81
60	0.57	0.75	0.65	73
61	0.24	0.21	0.23	135
62	0.07	0.19	0.10	21
63	0.16	0.38	0.22	24
64	0.27	0.44	0.34	153
65	0.17	0.40	0.24	40
66	0.21	0.57	0.31	7
67	0.34	0.54	0.42	59
				29
68	0.06	0.17	0.09	
69	0.20	0.17	0.18	131
70	0.06	0.10	0.07	21
71	0.14	0.25	0.18	20
72	0.05	0.11	0.07	9
73	0.00	0.00	0.00	1
74	0.08	0.27	0.12	15
75	0.07	0.18	0.10	17
76	0.44	0.71	0.55	55
77	0.00	0.00	0.00	2
78	0.18	0.27	0.22	103
79	0.19	0.38	0.25	26
80	0.24	0.50	0.33	14
81	0.20	0.48	0.28	23
82	0.08	0.18	0.11	17
83	0.10	0.11	0.11	35
84	0.35	0.57	0.43	28
85	0.26	0.64	0.37	11
		0.00	0.00	
86	0.00			11
87	0.36	0.80	0.50	5
88	0.29	0.77	0.43	13
89	0.66	0.89	0.76	87
90	0.14	0.23	0.17	39
91	0.16	0.28	0.20	32
92	0.06	0.29	0.10	28
93	0.14	0.33	0.20	18
94	0.13	0.25	0.17	8
95	0.35	0.66	0.46	38
		0.44		
96	0.20		0.28	25
97	0.03	0.03	0.03	29
98	0.05	0.05	0.05	57
99	0.00	0.00	0.00	Θ
100	0.00	0.00	0.00	4
101	0.27	0.61	0.38	23
102	0.00	0.00	0.00	3
103	0.00	0.00	0.00	15
104	0.00	0.00	0.00	19
105	0.27	0.43	0.33	23
106	0.17	0.18	0.18	50
107	0.08	0.10	0.09	10
108	0.20	0.30	0.24	37
109	0.25	0.46	0.32	28
110	0.19	0.29	0.23	51
				21
111	0.19	0.43	0.26	
112	0.32	0.04	0.07	286
113	0.61	0.83	0.70	30
114	0.00	0.00	0.00	9
115	0.03	0.06	0.04	18
116	0.00	0.00	0.00	2
117	0.04	0.13	0.06	23
118	0.52	0.53	0.53	66
119	0.35	0.38	0.36	24
120	0.00	0.00	0.00	1
121	0.13	0.29	0.18	24
122	0.32	0.50	0.39	26
123	0.04	0.09	0.06	34
124	0.00	0.00	0.00	0
125	0.15	0.67	0.25	3
126	0.03		0.05	8
		0.12		
127	0.20	0.24	0.22	21
128	0.23	0.62	0.33	8

129	0.46	0.57	0.51	23
130	0.09	0.15	0.11	53
131	0.00	0.00	0.00	1
132	0.03	0.11	0.05	9
133	0.12	0.33	0.17	6
134	1.00	0.20	0.33	5
135	0.39	0.70	0.50	10
136	0.00	0.00	0.00	27
137	0.12	0.33	0.18	21
				3
138	0.00	0.00	0.00	
139	0.09	0.21	0.13	29
140	0.38	0.62	0.47	24
141	0.35	0.61	0.45	36
142	0.09	0.20	0.13	15
143	0.26	0.37	0.30	27
144	0.32	0.62	0.42	34
145	0.00	0.00	0.00	8
146	0.11	0.10	0.11	86
147	0.14	0.38	0.21	8
148	0.38	0.53	0.44	19
149	0.15	0.31	0.21	35
150	0.02	0.12	0.04	8
151	0.06	0.67	0.11	3
152	0.10	0.14	0.12	28
153	0.08	0.50	0.13	2
154	0.00	0.00	0.00	1
155	0.08	0.18	0.11	11
156	0.19	0.29	0.23	52
157	0.31	0.60	0.41	43
				7
158	0.03	0.14	0.06	
159	0.41	0.62	0.50	55
160	0.27	0.41	0.33	37
161	0.09	0.25	0.14	16
162	0.02	0.05	0.03	21
163	0.10	0.15	0.12	75
164	0.12	0.15	0.13	20
165	0.40	0.02	0.03	227
166	0.24	0.13	0.17	75
167	0.12	0.36	0.18	14
168	0.19	0.19	0.19	31
169	0.18	0.33	0.23	18
170	0.41	0.52	0.46	23
171	0.00	0.00	0.00	5
172	0.45	0.70	0.55	27
173	0.07	0.50	0.12	2
174	0.11	0.25	0.16	36
175	0.21	0.42	0.28	19
176	0.42	0.80	0.55	10
177	0.10	0.17	0.12	12
178	0.00	0.00	0.00	0
179	0.00	0.00	0.00	0
	0.21			
180		0.50	0.29	14
181	0.00	0.00	0.00	12
182	0.00	0.00	0.00	1
183	0.30	0.50	0.38	38
184	0.00	0.00	0.00	2
185	0.28	0.32	0.30	28
186	0.12	0.75	0.20	4
187	0.59	0.73	0.66	30
188	0.43	0.56	0.48	27
189	0.16	0.19	0.17	48
190	0.06	0.17	0.08	12
191	0.37	0.32	0.34	50
192	0.15	0.27	0.19	22
193	0.00	0.00	0.00	4
194	0.37	0.56	0.44	25
195	0.21	0.57	0.31	7
196	0.45	0.68	0.54	19
197	0.30	0.42	0.35	52
198	0.11	0.33	0.16	9
199	0.06	0.15	0.08	13
200	0.10	0.14	0.12	28
201	0.05	0.17	0.08	6 17
202	0.10	0.12	0.11	17
203	0.03	0.05	0.04	21
204	0.66	0.74	0.69	34
205	0.00	0.00	0.00	1
206	0.07	0.11	0.09	35
207	0.00	0.00	0.00	3
208	0.00	0.00	0.00	4
209	0.16	0.21	0.18	28
210	0.00	0.00	0.00	1
211	0.08	0.20	0.11	20

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 240 241 242 243 244 250 251 252 253 254 255 256 257 258 259 260 261 262 263 265 266 267 268 269 279 270 270 270 270 270 270 270 270 270 270	
0.00 0.21 0.08 0.26 0.05 0.00 0.07 0.14 0.20 0.07 0.36 0.16 0.40 0.63 0.00 0.62 0.20 0.00 0.52 0.00 0.52 0.00 0.52 0.00 0.52 0.00 0.52 0.20 0.31 0.23 0.04 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.00 0.01 0.07 0.00 0.00 0.00 0.00	
0.00 0.40 0.17 0.37 0.17 0.017 0.017 0.017 0.012 0.24 0.33 0.20 0.38 0.60 0.67 0.71 0.00 0.40 0.77 0.00 0.29 0.00 0.54 0.01 0.05 0.00 0.54 0.17 0.00 0.55 0.00 0.55 0.20 0.55 0.20 0.55 0.20 0.55 0.20 0.55 0.20 0.55 0.20 0.55 0.20 0.55 0.20 0.55 0.20 0.55 0.20 0.55 0.20 0.20	
0.00 0.27 0.11 0.31 0.07 0.00 0.09 0.18 0.25 0.11 0.37 0.25 0.50 0.67 0.00 0.13 0.69 0.23 0.00 0.54 0.00 0.54 0.00 0.31 0.10 0.40 0.40 0.12 0.10 0.40 0.11 0.10 0.40 0.11 0.10 0.10	
15 30 38 12 1 16 79 15 15 34 5 34 6 0 5 26 14 2 2 4 1 15 41 2 2 10 26 15 15 29 29 6 2 13 30 11 10 24 11 12 12 11 12 12 13 14 15 16 16 17 10 10 10 10 10 10 10 10 10 10 10 10 10	

295	0.00	0.00	0.00	13
296	0.06	0.25	0.09	8
297	0.10	0.31	0.16	16
298	0.07	0.12	0.09	34
299	0.16	0.25	0.20	16
300	0.15	0.19	0.17	21
301	0.32	0.43	0.37	23
302	0.29	0.55	0.37	11
303	0.06	0.67	0.11	3
				16
304	0.07	0.19	0.10	
305	0.06	0.17	0.09	6
306	0.04	0.33	0.07	3
307	0.00	0.00	0.00	2
308	0.03	0.14	0.05	14
309	0.31	0.44	0.37	25
310	0.02	0.06	0.03	17
311	0.14	0.20	0.16	30
312	0.10	0.18	0.12	11
313	0.04	0.14	0.06	14
314	0.07	0.36	0.11	14
315	0.02	0.03	0.02	38
316	0.19	0.43	0.26	7
317	0.14	0.27	0.19	26
318	0.06	1.00	0.11	1
319	0.00	0.00	0.00	5
320	0.00	0.00	0.00	0
321	0.00	0.00	0.00	0
322	0.19	0.50	0.28	8
323	0.57	0.67	0.62	12
324	0.42	0.55	0.48	29
325	0.10	0.50	0.16	4
326	0.11	0.50	0.18	10
327	0.00	0.00	0.00	8
328	0.12	0.30	0.17	10
329	0.00	0.00	0.00	0
330	0.00	0.00	0.00	3
331	0.08	0.25	0.12	12
332	0.00	0.00	0.00	0
333	0.12	0.43	0.19	7
334	0.03	0.07	0.04	14
335	0.00	0.00	0.00	Θ
336	0.03	0.06	0.04	17
337	0.31	0.45	0.37	20
338	0.17	0.25	0.20	16
339	0.06	0.15	0.08	13
340	0.31	0.38	0.34	26
341	0.26	0.83	0.40	6
342	0.00	0.00	0.00	Θ
343	0.00	0.00	0.00	Θ
344	0.11	0.20	0.14	15
345	0.00	0.00	0.00	0
346	0.00	0.00	0.00	1
347	0.04	0.25	0.06	4
348	0.06	0.20	0.09	5
349	0.10	0.21	0.14	14
350	0.12	0.33	0.18	12
351	0.09	0.31	0.14	13
352	0.00	0.00	0.00	15
353	0.38	0.56	0.45	9
354	0.08	0.11	0.09	19
355	0.10	0.50	0.17	2
356	0.05	0.17	0.07	6
357	0.43	0.75	0.55	8
358	0.32	0.47	0.38	19
359	0.14	0.17	0.15	12
360	0.03	0.05	0.04	20
361	0.40	0.32	0.35	19
362	0.67	0.62	0.65	16
363	0.15	0.30	0.20	10
364	0.21	0.38	0.27	8
365	0.12	0.27	0.16	11
366	0.05	0.25	0.09	4
367	0.00	0.00	0.00	1
368	0.12	0.44	0.19	9
369	0.32	1.00	0.48	6
370	0.00	0.00	0.00	7
371	0.07	0.20	0.11	10
372	0.00	0.00	0.00	1
373	0.00	0.00	0.00	2
374	0.12	0.17	0.14	18
375	0.12	0.17	0.14	12
376	0.05	0.12	0.07	16
377	0.00	0.00	0.00	1
	0.00	2.00		_

378	0.00	0.00	0.00	0
379	0.04	0.07	0.05	14
380	0.20	0.33	0.25	3
381	0.25	0.57	0.35	7
382	0.23	0.40	0.29	10
383	0.00	0.00	0.00	9
384	0.22	0.56	0.31	9
385	0.00	0.00	0.00	7
386	0.40	0.67	0.50	6
387	0.04	0.25	0.07	4
388	0.00	0.00	0.00	8
389	0.00	0.00	0.00	4
390	0.00	0.00	0.00	3
391	0.48	0.62	0.54	26
392	0.00	0.00	0.00	3
393	0.30	0.30	0.30	20
394	0.00	0.00	0.00	3
395	0.00	0.00	0.00	1
396	0.00	0.00	0.00	3
397	0.20	0.67	0.31	3
398	0.30	0.58	0.39	19
399	0.78	0.78	0.78	23
400	0.09	0.15	0.11	13
401	0.31	0.48	0.38	21
402	0.43	0.82	0.56	11
403	0.14	0.17	0.15	6
404	0.33	0.62	0.43	13
405	0.71	0.88	0.79	25
406	0.00	0.00	0.00	2
				7
407	0.02	0.14	0.03	
408	0.14	1.00	0.25	1
409	0.00	0.00	0.00	6
410	0.00	0.00	0.00	0
411	0.15	0.22	0.18	18
412	0.28	0.41	0.33	17
413	0.10	0.29	0.14	7
414	0.11	0.14	0.12	14
415	0.07	0.33	0.12	3
416	0.17	0.18	0.17	17
417	0.00	0.00	0.00	0
418	0.17	0.38	0.23	8
				0
419	0.00	0.00	0.00	
420	0.27	0.40	0.32	10
421	0.00	0.00	0.00	1
422	0.00	0.00	0.00	2
423	0.00	0.00	0.00	6
424	0.00	0.00	0.00	1
425	0.15	0.50	0.24	4
426	0.00	0.00	0.00	8
427	0.12	1.00	0.21	2
428	0.22	0.44	0.30	18
429	0.40	0.65	0.50	26
430	0.00	0.00	0.00	0
431	0.06	0.14	0.08	14
432	0.17	0.20	0.18	10
433			0.00	7
	0.00	0.00		
434	0.00	0.00	0.00	0
435	0.00	0.00	0.00	0
436	0.15	0.22	0.18	18
437	0.22	0.29	0.25	28
438	0.26	0.50	0.34	12
439	0.03	0.14	0.04	35
440	0.14	0.20	0.17	10
441	0.19	0.33	0.24	12
442	0.20	0.50	0.29	6
443	0.00	0.00	0.00	9
444	0.00	0.00	0.00	2
445	0.33	0.57	0.42	7
446	0.45	0.62	0.52	21
447	0.43	0.02	0.07	6
448	0.00	0.00	0.00	6
449	0.09	0.50	0.15	2
450 451	0.12	0.13	0.12	30
451	0.00	0.00	0.00	9
452	0.47	0.90	0.62	10
453	0.00	0.00	0.00	3
454	0.00	0.00	0.00	3
455	0.09	0.22	0.12	9
456	0.00	0.00	0.00	1
457	0.00	0.00	0.00	3
458	0.05	0.25	0.08	4
459	0.29	0.40	0.33	15
460	0.00	0.00	0.00	13

	461	0.17	0.43	0.24	7
	462	0.33	0.31	0.32	13
	463	0.17	0.25	0.20	8
	464	0.42	0.73	0.53	22
	465	0.10	0.17	0.12	6
	466	0.12	0.31	0.17	13
	467	0.11	0.21	0.15	19
	468	0.24	0.11	0.15	35
	469	0.00	0.00	0.00	1
	470	0.00	0.00	0.00	2
	471	0.21	0.24	0.22	17
	472	0.12	0.23	0.16	44
	473	0.12	0.30	0.17	10
	474	0.32	0.73	0.44	11
	475	0.57	0.67	0.62	66
	476	0.05	0.33	0.08	3
	477	0.24	0.50	0.32	10
	478	0.00	0.00	0.00	1
	479	0.14	0.44	0.22	9
	480	0.01	0.20	0.02	5
	481	0.05	0.15	0.07	13
	482	0.08	1.00	0.15	1
	483	0.15	0.40	0.22	5
	484	0.18	0.44	0.26	9
	485	0.17	0.17	0.17	12
	486	0.25	0.29	0.27	7
	487	0.06	0.08	0.07	13
	488	0.00	0.00	0.00	0
	489	0.17	0.50	0.25	4
	490	0.12	0.33	0.18	3
	491	0.00	0.00	0.00	3
	492	0.00	0.00	0.00	1
	493	0.13	0.21	0.16	14
	494	0.06	0.33	0.11	3
	495	0.16	0.60	0.25	5
	496	0.12	0.17	0.14	12
	497	0.00	0.00	0.00	Θ
	498	0.00	0.00	0.00	6
	499	0.12	0.27	0.17	11
micro	avg	0.29	0.44	0.35	19042
macro	avg	0.17	0.30	0.20	19042
weighted	avg	0.36	0.44	0.38	19042
samples	avg	0.38	0.43	0.36	19042

Time taken to run this cell: 0:02:32.796529

Summary

In [4]:

```
from prettytable import PrettyTable
x = PrettyTable()
x.field_names = ["Sr.No", "MODEL","FEATURIZATION","ALPHA",'micro-f1-score','macro-f1']

x.add_row(['1', 'SGD classifier+ one vs rest(log)','Tfidf', '0.00001', '0.4435', '0.2710' ])
x.add_row(['2', 'Logistic Regression+ one vs rest', 'BOW', '0.001', '0.1445', '0.0156'])
x.add_row(['3', 'SGD classifier+one vs rest(log)', 'BOW', '0.001', '0.3909', '0.2169'])
x.add_row(['4', 'SGD classifier+one vs rest(hinge)', 'BOW', '0.001', '0.3506', '0.2044'])
print(x)
```

	Sr.No	MODEL	FEATURIZATION	+ ALPHA +	micro-f1-score	macro-f1
İ	1	SGD classifier+ one vs rest(log)	Tfidf	0.00001	0.4435	0.2710
İ	2	Logistic Regression+ one vs rest	BOW	0.001	0.1445	0.0156
İ	3	SGD classifier+one vs rest(log)	BOW	0.001	0.3909	0.2169
İ	4	SGD classifier+one vs rest(hinge)	BOW	0.001	0.3506	0.2044
+-		+	+	+	+	++

In []: