ITBA

Grupo 7: Julián Arce, Roberto Catalán y Gian Luca Pecile

TP3: DIFUSIÓN DE UN GAS 2D

INTRODUCCIÓN

Introducción

Sistema Real

Sistema Real

Modelo de difusión de gas pasando por una ranura.

Introducción

Fundamentos

Fundamentos

- · Dinámica regida por eventos
- N partículas en una caja donde se definen al azar:
 - · posiciones en un lado de la ranura
 - · dirección con igual módulo de velocidad
- Interacciones elásticas entre partículas y contorno
- · Sistema sin gravedad

Introducción Fundamentos

Algoritmo

- Se definen las posiciones y velocidades iniciales, los radios y tamaño de la caja
- 2. Se calcula el tiempo t_c hasta el primer evento
- 3. Se evolucionan todas las partículas según sus ecuaciones de movimiento hasta el instante t_c
- 4. Se guarda el estado del sistema (posiciones y velocidades)
- 5. Con el "operador de colisión" se determinan las nuevas velocidades después del choque, solo para las partículas que chocaron
- 6. Se repite el proceso nuevamente

Vxi > 0

$$(x_{p2} - R) = x(0) + vx t$$
 \Rightarrow $t_c = (x_{p2} - R - x(0)) / vx$

Vxi < 0

$$(x_{p1} + R) = x(0) + vx t$$
 \Rightarrow $t_c = (x_{p1} + R - x(0)) / vx$

$$t_{c} = \left\{egin{array}{ccc} \infty & si \ \Delta v \cdot \Delta r \geq 0, \ \infty & si \ d < 0, \ -rac{\Delta v \cdot \Delta r \ + \sqrt{d}}{\Delta v \cdot \Delta v} & en \ otro \ caso \end{array}
ight.$$

$$x_i(t_c) = x_i(0) + v_{x_i}t_c$$

$$y_i(t_c) = y_i(0) + v_{y_i}t_c$$

Introducción

Colisiones

- · Choque elástico
 - · Sin fricción
 - · Sin rotación
- · Choque con pared
- · Choque entre partículas

Fundamentos

si choca con pared Vertical
$$\rightarrow$$
 (- vx , vy)

si choca con pared Horizontal
$$\rightarrow$$
 $(vx, -vy)$

$$J = rac{2 \, m_i \, m_j \, (\Delta v \cdot \Delta r)}{\sigma \, (m_i + m_j)}$$
 $J_x = rac{J \, \Delta \, x}{\sigma}$
 $vx_i{}^d = vx_i{}^a + J_x/m_i$
 $vx_j{}^d = vx_j{}^a - J_x/m_j$
 $vy_i{}^d = vy_i{}^a + J_y/m_i$
 $vy_j{}^d = vy_j{}^a - J_y/m_j$

IMPLEMENTACIÓN

Implementación UML

Diagrama UML

SIMULACIONES

Simulaciones Características

Características

- Velocidad inicial: 0,01 m/s
- · Fracción de partículas (fp): porcentaje de partículas dentro de ranura
- Criterio de corte: $fp \sim 0.5 \pm \epsilon$

Pitch

Presión v Temperatura

- · Ajuste de modelo PV ~ T
 - · Se analiza el cumplimiento de la ley de gases ideales.
- · Conservación de la energía

$$P = rac{dF}{dl}$$

$$F = \frac{dI}{dt}$$

$$K_{prom} = rac{\sum_{i=1}^{N} rac{1}{2} m v^i}{N}$$

RESULTADOS

Resultados en la companya de la companya del companya del companya de la companya

Animación I

https://youtu.be/cnleQVdP8T8

$$N = 100$$

Animación

•
$$slot = 0.01$$

Resultados

Animación II

https://youtu.be/d3ZlpVjDI9s

$$N = 100$$

Animación

$$slot = 0.02$$

Resultados

Animación III

https://youtu.be/VTG0BlTct4Y

$$N = 100$$

Animación

$$slot = 0.05$$

fp v time l

- · N: variable
- · Slot: fijo (0,02)

Tiempo hasta equilibrio

· N: variable

· fp: 0.5

· Slot: fijo (0,02)

fp v time II

- · Slot: variable
- · N: fijo (100)

Tiempo hasta equilibrio

- slot_size: variable
- · N: fijo (100)
- fp: (0.5)

Resultados

KvP

· v: variable

Gráficos: Presión

- · Slot: fijo (0,02)
- N: fijo (100)

Resultados Gráficos: Ajuste Lineal

Ajuste Lineal

- · v: variable
- Slot: fijo (0,02)
- N: fijo (100)

CONCLUSIONES

Conclusiones

— El tiempo de **equilibrio** se ve fuertemente afectado por el **tamaño de la ranura**.

— El modelo cumple con la **ley de gases ideales**.