Chapter 4 General Vector Spaces

- 4.1. Real Vector Spaces
- 4.2. Subspaces
- 4.3. Spanning Sets
- 4.4. Linear Independence
- 4.5. Coordinates and Basis
- 4.6. Dimension
- 4.8. Row Space, Column Space, and Null Space
- 4.9. Rank, Nullity, and the Fundamental Matrix Spaces

Chapter 4.6

Dimension

Number of Vectors in a Basis

THEOREM 4.6.1

All bases for a finite-dimensional vector space have the same number of vectors.

THEOREM 4.6.2

Let *V* be a finite-dimensional vector space, and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be any basis for *V*.

- (a) If a set in V has more than n vectors, then it is linearly dependent.
- (b) If a set in V has fewer than n vectors, then it does not span V.

Dimension

DEFINITION 1

The *dimension* of a finite-dimensional vector space V is denoted by dim(V) and is defined to be the number of vectors in a basis for V.

In addition, the zero vector space is defined to have dimension zero.

Remarks

• Some writers regard the empty set to be a basis for the zero vector space. (The empty set has no vectors and the zero vector space has dimension zero.)

• Engineers often use the term *degrees of freedom* for dimension.

Dimensions of Some Familiar Vector Spaces

EXAMPLE 1

```
\dim(R^n) = n [The standard basis has n vectors.]

\dim(P_n) = n + 1 [The standard basis has n + 1 vectors.]

\dim(M_{mn}) = mn [The standard basis has mn vectors.]
```

Dimension of Span(S)

EXAMPLE 2

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is a linearly independent set in a vector space V, then vectors in S automatically form a basis for span(S).

dim [span(S)] = r or dim [span{
$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$$
}] = r

The dimension of the space spanned by a linearly independent set of vectors is equal to the number of vectors in that set.

Dimension of a Solution Space

EXAMPLE 3

Find a basis for and the dimension of the solution space of the homogeneous system

$$x_1 + 3x_2 - 2x_3 + 2x_5 = 0$$

$$2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = 0$$

$$5x_3 + 10x_4 + 15x_6 = 0$$

$$2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 0$$

Solution

The solution of this system

$$x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 0$

EXAMPLE 3 Cont.

which can be written in vector form as

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (-3r - 4s - 2t, r, -2s, s, t, 0)$$

$$(x_1, x_2, x_3, x_4, x_5, x_6) = r(-3, 1, 0, 0, 0, 0) + s(-4, 0, -2, 1, 0, 0) + t(-2, 0, 0, 0, 1, 0)$$

This shows that the vectors

$$\mathbf{v}_1 = (-3, 1, 0, 0, 0, 0), \quad \mathbf{v}_2 = (-4, 0, -2, 1, 0, 0), \quad \mathbf{v}_3 = (-2, 0, 0, 0, 1, 0)$$
 span the solution space. So that these vectors are linearly independent.

Thus, the solution space has dimension 3.

Some Fundamental Theorems

A series of theorems that reveal the subtle interrelationships among the concepts of <u>linear independence</u>, <u>basis</u>, and dimension.

These theorems are essential to the understanding of vector spaces and the applications that build on them.

Plus/Minus Theorem

THEOREM 4.6.3

Let S be a nonempty set of vectors in a vector space V.

- (a) If S is a linearly independent set, and if \mathbf{v} is a vector in V that is outside of span(S), then the set $S \cup \{\mathbf{v}\}$ that results by inserting \mathbf{v} into S is still linearly independent.
- (b) If v is a vector in S that is expressible as a linear combination of other vectors in S, and if $S \{v\}$ denotes the set obtained by removing v from S, then S and $S \{v\}$ span the same space; that is,

$$\mathrm{span}(S) = \mathrm{span}(S - \{\mathbf{v}\})$$

Plus/Minus Theorem

Plus/Minus Theorem

EXAMPLE 4

Show that $\mathbf{p}_1 = 1 - x^2$, $\mathbf{p}_2 = 2 - x^2$, and $\mathbf{p}_3 = x^3$ are linearly independent vectors.

Solution The set $S = \{\mathbf{p}_1, \mathbf{p}_2\}$ is linearly independent since neither vector in S is a scalar multiple of the other. Since the vector \mathbf{p}_3 cannot be expressed as a linear combination of the vectors in S (why?), it can be adjoined to S to produce a linearly independent set $S \cup \{\mathbf{p}_3\} = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$

Basis, Linearly Independence, Dimension

THEOREM 4.6.4

Let V be an n-dimensional vector space, and let S be a set in V with exactly n vectors. Then

S is a basis for V if and only if S spans V or S is linearly independent.

Bases by Inspection

EXAMPLE 5

- (a) Explain why the vectors $\mathbf{v}_1 = (-3, 7)$ and $\mathbf{v}_2 = (5, 5)$ form a basis for \mathbb{R}^2 .
- (b) Explain why the vectors $\mathbf{v}_1 = (2, 0, -1), \mathbf{v}_2 = (4, 0, 7), \text{ and } \mathbf{v}_3 = (-1, 1, 4)$ form a basis for \mathbb{R}^3 .

Solution (a)

Since neither vector is a scalar multiple of the other, the two vectors form a linearly independent set in the two-dimensional space \mathbb{R}^2 , and hence they form a basis by Theorem 4.6.4.

EXAMPLE 5 cont.

Solution (b)

The vectors \mathbf{v}_1 and \mathbf{v}_2 form a linearly independent set in the xz-plane

The vector \mathbf{v}_3 is outside of the xz-plane, so the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is also linearly independent. Since R^3 is three-dimensional, Theorem 4.6.4 implies that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for the vector space R^3 .

Basis, Linearly Independence, Dimension

THEOREM 4.6.5

Let S be a finite set of vectors in a finite-dimensional vector space V.

- (a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
- (b) If S is a linearly independent set that is not already a basis for V, then S can be enlarged to a basis for V by inserting appropriate vectors into S.

Basis, Linearly Independence, Dimension

THEOREM 4.6.6

If W is a subspace of a finite-dimensional vector space V, then:

- (a) W is finite-dimensional.
- (b) $\dim(W) \leq \dim(V)$.
- (c) W = V if and only if $\dim(W) = \dim(V)$.

Chapter 4-6 Objectives

- ☐ Find a basis for and the dimension of the solution space of a homogeneous linear system.
- Use dimension to determine whether a set of vectors is a basis for a finite-dimensional vector space.
- Extend a linearly independent set to a basis.