This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5:

C12Q 1/68, B01D 57/02 G01N 27/26

(11) Internationale Veröffentlichungsnummer: Αŀ

WO 91/02815

(43) Internationales

Veröffentlichungsdatum:

7. März 1991 (07.03.91)

(21) Internationales Aktenzeichen:

PCT/EP90/01366

(22) Internationales Anmeldedatum: 18. August 1990 (18.08.90)

(74) Anwälte: WERNER, Hans-Karsten usw.; Deichmannhaus am Hauptbahnhof, D-5000 Köln 1 (DE).

(30) Prioritätsdaten:

P 39 27 467.5 P 40 06 974.5

19. August 1989 (19.08.89) 6. Mārz 1990 (06.03.90)

DE

(81) Bestimmungsstaaten: AT (europäisches Patent), BE (europäisches Patent), CH (europäisches Patent), DE (europäisches Patent) +, DK (europäisches Patent), ES (europäisches Patent), FR (europäisches Patent), GB (europäisches Patent), IT (europäisches Patent), JP, LU (europäisches Patent), IT (europäisches Pat päisches Patent), NL (europäisches Patent), SE (europäisches Patent), US.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): DIA-GEN INSTITUT FÜR MOLEKULARBIOLOGISCHE DIAGNOSTIK GMBH [DE/DE]; Niederheider Straße 3, D-4000 Düsseldorf 13 (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HENCO, Karsten [DE/ DEJ; Schlickumer Weg 23, D-4006 Erkrath 2 (DE). RIESNER, Detlev [DE/DE]; Eichenwand 15, D-4000 Düsseldorf 12 (DE). STEGER, Gerhard [DE/DE]; Opladener Straße 102, D-4000 Düsseldorf 1 (DE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: PROCESS AND DEVICE FOR SEPARATING AND DETECTING CONSTITUENTS OF A MIXTURE OF SUBSTANCES BY TEMPERATURE GRADIENT GEL ELECTROPHORESIS

(54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUR TRENNUNG UND DETEKTION VON KOMPONENTEN EINES STOFFGEMISCHES DURCH TEMPERATURGRADIENTEN-GELELEKTROPHORESE

(57) Abstract

In a process for separating and detecting constituents of a mixture of substances by temperature gradient gel electrophoresis (TGGE), a spatial temperature gradient is constructed from spatially separate temperature levels, or a temporal temperature gradient is constructed, or a temperature gradient is constructed from the spatial and temporal temperature gradients. The temperature levels used to construct the spatial temperature gradients are set by controllable heating or cooling devices. For the construction of the temporal temperature gradients, the temperature level at any point in the separating section in the separating medium can be varied with time as desired by means of controllable heating or cooling devices. A device for implementing the process with controllable heating or cooling devices for constructing temperature gradients, a hollow body arranged between the temperature levels which contains the separating medium used, and a thermostatted jacket which surrounds the hollow, are also

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Trennung und Detektion von Komponenten eines Stoffgemisches durch Temperaturgradienten-Gelelektrophorese (TGGE), wobei entweder ein räumlicher Temperaturgradient durch räumlich voneinander entfernte Temperaturniveaus oder ein zeitlicher Temperaturgradient oder ein Temperaturgradient durch Kombination des räumlichen und zeitlichen Temperaturgradienten aufgebaut wird. Die Temperaturniveaus zum Aufbau des räumlichen Temperaturgradienten werden durch regelbare Heiz- oder Kühlvorrichtungen eingestellt. Zum Aufbau des zeitlichen Temperaturgradienten ist an jedem Ort der Trennstrecke in dem Trennmedium das Temperaturniveau in zeitlicher Abhängigkeit mittels regelbarer Heizoder Kühlvorrichtungen frei wählbar einstellbar. Eine Vorrichtung zur Durchführung des Verfahrens mit regelbaren Heiz- oder Kühlvorrichtungen zum Aufbau von Temperaturgradienten einem zwischen den Temperaturniveaus angeordnten Hohlkörper enthaltend das zur Trennung verwendete Medium und einem Thermostatiermantel, der den Hohlkörper umschließt, wird be-

^{*} Siehe Rückseite

BENENNUNGEN VON "DE"

Bis auf weiteres hat jede Benennung von "DE" in einer internationalen Anmeldung, deren internationaler Anmeldetag vor dem 3. Oktober 1990 liegt, Wirkung im Gebiet der Bundesrepublik Deutschland mit Ausnahme des Gebietes der früheren DDR.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

ΑT	Österreich	ES	Spanien	MG	Madagaskar
ΑU	Australien	Pl	Finnland	ML	Mali
BB	Barbados	FR	Frankreich	MR	Mauritanion
BE	Bolgien	GA	Gabon	MW	Malawi
BF	Burkina Fasso	GB	Vereinigtes Königreich	NL	Niederlande
8G	Bulgarien	GR	Griechenland	NO	Norwegen
BJ	Benin	HU	Ungarn	PL	Polen
BR	Brasilien	IT	Italien	RO	Rumānien
CA	Kanada	JP	Japan	SD	Sudan
CP	Zentrale Afrikanische Republik	KP	Demokratische Volksrepublik Korea	SE	Schweden
œ	Kongo	KR	Republik Korea	SN	Senegal
CH	Schweiz .	u	Liechtenstein	SU	Soviet Union
СМ	Kamerun	LK	Sri Lanka	TD	Tschad
DE	Deutschland	LU	Luxemburg	TG	Togo
DK	Dānemark	MC	Monac	oUS	Vereinigte Staaten von Amerik

WO 91/02815

ł

5

10

15

20

25

30

- 1 -

PCT/EP90/01366

<u>Verfahren und Vorrichtung zur Trennung und Detektion von Komponenten eines Stoffgemisches durch Temperaturgradienten-Gelelektrophorese</u>

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Trennung und Detektion von Komponenten eines Stoffgemisches durch Temperaturgradienten-Gelelektrophorese (TGGE), insbesondere ein Verfahren zur Detektion von Mutationen von Nukleinsäurefragmenten durch Analyse des durch Hybridisierung des die Mutation aufweisenden Nukleinsäurefragments (Mutante) mit dem diese Mutation nicht aufweisenden Nukleinsäurefragments (Wildtyp) gewonnenen Heteroduplexes, ein Verfahren zur Probenaufbereitung unter Verwendung eines Oligonukleotids sowie dieses Oligonukleotid selbst, sowie eine Vorrichtung zur Durchführung der Temperaturgradienten-Gelelektrophorese.

Der Nachweis von Mutationen in genetischem Material oder der Nachweis der phänotypischen Konsequenz einer genetischen Mutation ist eine wichtige analytische Aufgabe in vielen Bereichen biologischer Forschung, angewandter Medizin, biotechnischer Produktion und Kriminalistik. Auf genetischer Ebene bedeutet eine Mutation den Austausch mindestens eines Nukleotides oder Basenpaares auf DNA- oder RNA-Ebene. Die Möglichkeiten des sogenannten "genetic engineering" erlauben mit Hybridisierungs- oder Sequenzierungstechniken den Nachweis einer Mutation in klonaler DNA oder RNA. Diese Techniken beschränken sich jedoch auf forschungsnahe Anwendungen. Für den Routineeinsatz konnte ein technischer Standard, der dem Vergleich mit immunologischen Methoden (ELISA usw.) standhält, nicht erreicht werden.

Die Temperaturgradienten-Gelelektrophorese (TGGE), wie sie in der DE-OS 36 22 591 beschrieben wurde, ist eine Methode zur Detektion geringer struktureller Unterschiede oder Besonderheiten biologischer Makromoleküle wie

10

15

Nukleinsäuren oder Proteine. Die Technik ist jedoch ungeeignet für eine automatisierbare Analyse, wie sie zum Beispiel bei Bestimmung vieler Einzelproben im klinischen Bereich bei der Analyse genetischer Erkrankungen oder in der forensischen Analytik notwendig ist. Mit Hilfe der TGGE-Technologie gelang es, Mutationen ohne umständliche differentielle Hybridisierung direkt sichtbar zu machen (Riesner et al. (1989), Electrophoresis 10, S. 377-389), jedoch beschränkt sich die Technik auf die Handhabung einer Flachbett-Gelelektrophorese für die forschungsmäßige Analytik. Ähnliche Resultate liefert die Kombination aus Flachbett-Gelelektrophorese und einem denaturierenden chemischen Gradienten, der sich aber kaum reproduzierbar formen läßt und somit für eine Automatisierung nicht in Frage kommt.

Die notwendige Voraussetzung für die empfindliche Erfassung selbst einzelner Mutationen in der TGGE ist ein 20 homogenes Temperaturniveau im Gel senkrecht zur Laufrichtung der Elektrophorese, d.h. an Orten gleichen elektrischen Potentials. Dies kann zum Beispiel durch die doppelseitig temperierte senkrechte Elektrophorese nach D.R. Thatcher und B. Hodson (1981), Biochemistry 197, S. 105-109, nicht hinreichend realisiert werden, da die thermisch nicht ausreichend verbundenen gegenüberliegenden Thermostatierplatten an Orten gleichen elektrischen Potentials nicht identische Temperaturen aufweisen.

30

25

Das Erscheinungsbild der belebten Natur ist auf genetischer Ebene in Form der Nukleinsäuren programmiert, bestehend entweder aus RNA- oder DNA-Kettenmolekülen. Veränderungen der genetischen Information werden als Mutationen bezeichnet und sind die Basis für evolutionäre Entwicklungen, für genetisch bedingte Erkrankungen und andere genetisch bedingte biologische Eigenschaften

eines Virus oder Organismus. Die Mehrzahl der erfolgten Mutationen ist für das System ohne erkennbare Auswirkung. Solche Mutationen werden als neutral bezeichnet.

Seit Einführung gentechnologischer Techniken ist es möglich geworden, eine Mutation zu entdecken, ihre zeitliche Entstehung zu bestimmen und ihren Einfluß auf eine biologische Funktion zu messen.

10 Mit der Methode der vergleichenden Sequenzanalyse (Sequenzierung) von homologen Sequenzen wird eine Mutation erkennbar. Unter dem Begriff Mutation wird ein einzelner Nukleotidaustausch, eine Deletion oder eine Insertion einzelner bis vieler Nukleotide oder eine Umordnung von 15 Kettensegmenten verstanden. Die Sequenzanalyse ist trotz großer Fortschritte in den letzten Jahren nach wie vor eine aufwendige Technik, unterstützt von kostspieligen Apparaturen und für Reihenanalysen ungeeignet. Lediglich die Suche nach an sich bekannten Mutationen, wie sie für 20 bestimmte Erberkrankungen, zum Beispiel alpha-1-Antitrypsin-Defizienz (Kidd, U.J., Wallace, R.B., Hakura, K. u. Woo, S.L.C. (1983), Nature 304, 230-234) beschrieben sind, hat sich technisch durch die Verwendung synthetischer Oligonukleotidsonden vereinfacht. Eine Anzahl 25 von Fragestellungen entzieht sich jedoch nahezu vollständig dem experimentellen Zugriff, wie zum Beispiel die Suche nach unbekannten Mutationen auf langen Gensegmenten, die nicht mit Restriktionsfragmentlängenpolymorphismen (RFLP) verknüpft sind, oder Reihenuntersu-30 chungen, die für die medizinische Genetik, Populationsanalysen, evolutionäre Verwandtschaftsanalysen, Virusvariantenanalysen usw. von Bedeutung sind.

Nukleinsäureketten (RNA und DNA) haben die Fähigkeit, mit sogenannten Komplementärsequenzen Doppelstrangstrukturen auszubilden. Es entstehen dabei DNA/DNA, RNA/RNA und DNA/RNA Doppelstrangstrukturen. Eine charakteristi-

15

20

sche Eigenschaft dieser Strukturen ist ein temperaturabhängiges Denaturieren (Schmelzen) der Doppelstränge. Das Schmelzen geschieht in einem sehr engen Temperaturintervall, d.h. es denaturieren große Abschnitte der Doppelstrangstruktur in einem einstufigen Prozeß. handelt sich somit um hochkooperativ ablaufende physikalische Reaktionen. Der Verlust der durchgängigen Doppelstrangstruktur äußert sich in einer veränderten Mobilität (meist ein Mobilitätsverlust) der betroffenen Nukleinsäure. Dieser Mobilitätsverlust kann in einem elektrophoretischen Trennverfahren ausgenutzt werden, um Nukleinsäuren verschiedener Schmelztemperaturen zu trennen. So wandern thermodynamisch instabilere Nukleinsäuren langsamer und somit weniger weit als solche mit stabilen Strukturen. Das zur Trennung verwendete Medium muß dabei einen Denaturierungsgradienten aufweisen, beispielsweise durch steigende Konzentration eines denaturierenden Agens. Die Stabilität der internen Bereiche der Basenpaare ist abhängig vom G/C-Gehalt sowie der Sequenz. Diese Effekte sind ausführlich untersucht worden (Meinkoth, S. u. Wahl, G. (1984), Analytical Biochem. <u>138</u>, 267-284).

Führt die Mutation nun zu hinreichend großen Veränderungen in dem entsprechenden Bereich, so wird die mutierte Nukleinsäure ein anderes Schmelzverhalten aufweisen als die nicht mutierte. Häufig ist eine Mutation nur durch den Austausch eines Basenpaares gegen ein anderes Basenpaar gekennzeichnet (Transversion oder Transition). Daher ist der mutierte Nukleinsäurestrang in sich recht stabil und schmilzt in der Regel bei ähnlichen Temperaturen wie die nicht mutierte Form, so daß eine Diskriminierung nicht möglich ist. Solche Mutationen werden jedoch sichtbar, indem die mutierte Nukleinsäure mit einer Nukleinsäure, welche diese Mutation nicht aufweist (Wildtyp), in vergleichbaren Konzentrationen gemischt, bis

5

10

- 5 -

einschließlich der Strangtrennung denaturiert und danach wieder renaturiert wird. Dadurch entstehen alle Kombinationen der entsprechenden Nukleinsäure-Einzelstränge, unter anderem auch sogenannte Heteroduplices aus mutiertem Einzelstrang und nicht mutiertem Einzelstrang. Da in den Heteroduplices nun dem jeweiligen Nukleotid an der Stelle der Mutation das komplementäre Nukleotid fehlt, kommt es an diesen Positionen zu merklichen Destabilisierungen in den benachbarten Doppelhelix-Regionen. Die Heteroduplices werden dementsprechend eher aufschmelzen als die Duplices des Wildtyps oder der Mutante.

Nachteilig an den bislang bestehenden Verfahren sind die relativ umständliche Handhabung sowie die nicht immer sicher zu gewährleistende Aufspürung der vermuteten Mutationen.

Das der Erfindung zugrunde technische Problem ist somit 20 einmal, ein Verfahren bereitzustellen, das die Nachteile der Undurchführbarkeit der TGGE für den analytischen Routinebetrieb beseitigt und die TGGE insgesamt leichter handhabbar macht. Weiterhin soll eine Vorrichtung bereitgestellt werden, die eine automatische Auswertung der 25 TGGE ermöglicht. Die Vorrichtung soll auch die simultane Analyse von strukturell stark variierenden Nukleinsäuren ermöglichen. Ein weiteres technisches Problem ist die Verbesserung der Aufspürung, insbesondere die quantitative und/oder qualitative Erfassung, von Mutationen und/ 30 oder Genvarianten. Die Verbesserung soll in einer bestimmten Ausführungsform auch eine einfachere und sicherere Probenvorbereitung gewährleisten.

Diese technischen Probleme werden durch ein Verfahren gemäß dem kennzeichnenden Teil des Anspruchs 1 gelöst, indem entweder

5

30

- 6 -

- ein räumlicher Temperaturgradient in Richtung des zur Trennung verwendeten elektrischen Feldes durch mindestens zwei räumlich voneinander entfernte Temperaturniveaus aufgebaut wird oder
- ein zeitlicher Temperaturgradient durch zeitliche Variation der Temperatur eines Temperaturniveaus aufgebaut wird oder
- ein Temperaturgradient durch Kombination des räum lichen und zeitlichen Temperaturgradienten aufgebaut wird.
 - der Temperaturgradient leitend in die Gelmatrix übertragen wird,
- die Temperaturniveaus zum Aufbau des räumlichen Temperaturgradienten durch regelbare Heiz- oder Kühlvorrichtungen eingestellt werden, wobei Orte gleichen
 elektrischen Potentials identische Temperaturen aufweisen, oder
- zum Aufbau des zeitlichen Temperaturgradienten an jedem Ort der Trennstrecke in dem Trennmedium das Temperaturniveau in zeitlicher Abhängigkeit mittels einer oder mehrerer regelbarer Heiz- oder Kühlvorrichtungen frei wählbar einstellbar ist und ggf.
- am Ende der Trennstrecke die getrennten Komponenten detektiert werden.

Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind in den Unteransprüchen beschrieben. Der Verfahrensanspruch 12 betrifft eine bevorzugte Ausführungsform, wobei die Detektion von Mutationen von Nukleinsäuren quantitativ und qualitativ durchgeführt werden kann, und zwar durch Analyse des durch Hybridisierung des die Mutation aufweisenden Nukleinsäurefragments (Mutante) mit dem diese Mutation nicht aufweisenden Nukleinsäurefragment (Wildtyp) gewonnenen Heteroduplexes, wobei das die Mutation tragende, zu untersuchende Nukleinsäurefragment so gewählt wird, daß die Mutation in einer

thermodynamisch instabilen Region des Heteroduplexes liegt. Die darauf rückbezogenen Ansprüche 13 bis 36 betreffen bevorzugte Ausführungsformen dieses Verfahrens.

5

10

Die Verfahrensansprüche 47 bis 50 betreffen bestimmte Ausführungsformen der quantitativen Detektion, durch welche eine quantitative Analyse von Nukleinsäuren ermöglicht wird. Die Unteransprüche 48 bis 50 betreffen bevorzugte Ausführungsformen dieses Verfahrens.

Der Vorrichtungsanspruch 51 beschreibt eine Vorrichtung zur Durchführung der der Temperaturgradienten-Gelelektrophorese (TGGE), dadurch gekennzeichnet, daß zwischen mindestens zwei einen Temperaturgradienten aufbauenden Heiz- oder Kühlvorrichtungen (1, 2) mit Wärmereservoir (4, 5), bei mehr als zwei Heiz- oder Kühlvorrichtungen zwischen den entferntesten Heiz- oder Kühlvorrichtungen ein Hohlkörper (6), der die Heiz- oder Kühlvorrichtungen durchdringt, angeordnet ist, welcher das zur Trennung verwendete Trennmedium in seinem Lumen enthält, und der Hohlkörper (6) von einem wärmeleitenden Thermostatiermantel (7) umschlossen ist.

- Die Unteransprüche 52 bis 62 betreffen bevorzugte Ausführungsformen der betreffenden Vorrichtung, deren Vorteile sich aus der Beschreibung ergeben.
- Der räumliche Temperaturgradient des erfindungsgemäßen Verfahrens kann so aufgebaut werden, daß mit einer regelbaren Heiz- oder Kühlvorrichtung auf der Probenseite ein bestimmtes Temperaturniveau eingestellt wird, während das zweite, räumlich getrennte Temperaturniveau durch die Temperatur des Elektrophoresebades auf der gegenpoligen Seite definiert ist. Diese einfache Verfahrensweise ist dann möglich, wenn das Elektrophoresebad so dimensioniert ist, daß die Temperatur konstant

bleibt. Dazu ist ein hinreichend groß dimensioniertes Elektrophoresebad notwendig. Vorzugsweise wird jedoch auch hier das zweite Temperaturniveau etwa durch Peltierelemente, Heizdrähte oder thermostatierbare Wasserbäder regelbar ausgestaltet.

Nach dem Probenauftrag werden die Komponenten des zu trennenden Stoffgemisches längs des elektrischen Feldes 10 in das Trennmedium hineinwandern. Dabei erreichen sie das erste Temperaturniveau und erfahren eine Konformationsumwandlung, die in einer drastischen Reduktion der Wanderungsgeschwindigkeit resultiert. Dies wird entweder direkt durch die eingestellte Temperatur erreicht oder 15 in Kombination mit partiell denaturierenden Reagenzien. Sind die zu trennenden Komponenten beispielsweise Nukleinsäuren, werden durch die partielle Denaturierung die Doppelstränge teilweise zu größeren "Loops" aufgeweitet, die in dem Trennmedium quasi steckenbleiben und der Elek-20 trophorese nicht mehr folgen können. Wird nun die Temperatur gesenkt, so bilden sich die "Loop"-Regionen in Abhängigkeit ihrer thermodynamischen Stabilität zurück, wodurch die Mobilität der Nukleinsäuren in dem Trennmedium wieder erhöht wird. Die jeweilige Temperatur ist 25 eine Stoffcharakteristik der entsprechenden Nukleinsäure. Somit gelingt es, die verschiedenen Komponenten in Abhängigkeit der Temperatur zu trennen. Die Moleküle, deren Mobilität erhöht wurde, wandern durch die Trennstrecke und können am Zielpol der Elektrophorese detektiert 30 werden.

Es ist ebenfalls möglich, einen Temperaturgradienten mit steigender Temperatur in Elektrophorese-Richtung auszubilden, in welchem die Moleküle zunächst nach ihrem thermodynamisch partiellen Aufschmelzverhalten in dem Trennmedium getrennt werden. Bei tieferer Temperatur werden zunächst die thermodynamisch instabilsten Struk-

turen partiell thermisch denaturieren, zum Beispiel bei Nukleinsäuren durch Ausbildung von "Loop"-Regionen. Die Mobilität dieser Nukleinsäuren wird drastisch gesenkt, 5 so daß diese in dem Trennmedium entweder "steckenbleiben" oder zumindest nur noch sehr langsam wandern. Die übrigen Komponenten wandern weiter durch das Trennmedium, bis jeweils ihre spezifische Denaturierung zum drastischen Mobilitätsverlust der jeweiligen Moleküle in dem Trenn-10 medium führt. Bei bestimmter Wahl der Maschengröße des Trenngels führt die Restmobilität der quasi arretierten Biomoleküle dazu, daß nach einiger Zeit - wenn auch sehr langer Zeit - alle Komponenten des zu trennenden Gemisches die Trennstrecke durchwandern können. Unterstützt 15 wird dieser Effekt dadurch, daß die Mobilität der partiell denaturierten Nukleinsäuren bei vollständiger Denaturierung - also Trennung in die Einzelstränge - wieder drastisch zunimmt, da jetzt nur noch die Einzelstränge durch das Trennmedium wandern. Die thermodynamisch insta-20 bilsten Nukleinsäuren, die bei tiefen Temperaturen bereits ihre Mobilität verlieren, wandern zwar sehr langsam im Gel weiter, erreichen jedoch irgendwann ein höheres Temperaturniveau, das zum vollständigen Aufschmelzen führt, so daß die Doppelstränge in ihre Einzelstränge 25 zerfallen. Dies führt dann zu der oben beschriebenen beschleunigten Wanderungsgeschwindigkeit.

Dieser Effekt kann auch zur Beschleunigung der Elektrophorese insgesamt ausgenutzt werden. Sind die Komponenten durch Teildenaturierung und Mobilitätsverlust in dem Trennmedium voneinander getrennt worden, dann kann das Temperaturniveau des gesamten Trennmediums über den Schmelzpunkt der Doppelstränge hinaus erhöht werden, um alle Doppelstränge vollständig in Einzelstränge zu überführen. Danach gewinnen alle Komponenten ihre Mobilität zurück. Zur Durchführung dieser Verfahrensweise ist es jedoch erforderlich, daß die Temperatur entweder sehr

10

schnell über das gesamte Trennmedium äquilibriert wird oder die Elektrophorese bis zur Aquilibrierung der Temperatur unterbrochen wird, beispielsweise durch Abschaltung des elektrischen Feldes. Vorzugsweise sind die zu trennenden Moleküle von ähnlicher Größe. Die Verfahrensweise unter den beschriebenen Bedingungen gewährleistet dann bei der isothermischen Elektrophorese mit hohem Temperaturniveau, daß die getrennten Komponenten im weiteren Verlauf der Elektrophorese ihren relativen räumlichen Abstand beibehalten.

Eine andere Verfahrensweise benutzt lediglich ein zeitlich gesteuertes variables Temperaturprogramm vorzugs-15 weise an der Probenauftragsseite der Elektrophorese zum Aufbau eines zeitlichen Temperaturgradienten, der zur Trennung der Komponenten des Stoffgemisches führt. Man läßt die zu trennende Probe zunächst elektrophoretisch in das Trennmedium hineinwandern. Das Temperaturniveau 20 auf der Probenauftragsseite ist so gewählt, daß beispielsweise bei Nukleinsäuren die Doppelstränge zu "Loops" aufgeweitet sind, ohne jedoch vollständig aufgeschmolzen zu werden. Die Bildung von "Loops" kann durch geeignete Reagenzienwahl unterstützt werden. Dies führt dazu, daß 25 die zu analysierenden Komponenten am Beginn der Elektrophorese in dem Trennmedium quasi arretiert sind. Wird nun die Temperatur abschnittsweise gesenkt, so bilden sich die thermodynamisch stabilsten Doppelstränge zurück, so daß diese Nukleinsäuren eine erhöhte Mobilität auf-30 Diese beginnen dann durch das Trenngel zu weisen. wandern. Durch die nachfolgende Temperaturänderung werden dann nachfolgend die Nukleinsäuren mit der nächstniedrigeren thermodynamischen Stabilität mit der Wanderung beginnen. Es kann vorteilhaft sein, die Temperaturabsenkung schrittweise durchzuführen, um den Trennungseffekt in räumlicher Hinsicht zu verstärken. Die mit der Wanderung beginnenden Moleküle gewinnen quasi einen räum-

- 11 -

lichen Vorsprung beim Durchwandern des Trennmediums. Bei hinreichend großem Abstand der thermodynamischen Stabilität ist es jedoch auch möglich, den Temperaturgradienten relativ schnell kontinuierlich zu senken. Bei dieser Verfahrensweise kann es vorteilhaft sein, auch den Elektrophorese-Endpunkt mit einer regelbaren Heizoder Kühlvorrichtung zu versehen.

- Bei allen erfindungsgemäßen Verfahrensweisen ist es jedoch notwendig, zum Aufbau eines reproduzierbaren Temperaturgradienten bzw. reproduzierbarer isothermischer Bedingungen das Trennmedium mit einem thermisch leitenden Thermostatiermantel zu umschließen. Zur Ausbildung des reproduzierbaren Temperaturgradienten bzw. des isothermen Temperaturniveaus ist es unbedingt erforderlich, daß der Energiefluß im Thermostatiermantel klein ist gegenüber den Energieflüssen in Heiz- und Kühlelement.
- Die zur Temperatur-Gelelektrophorese verwendbaren Temperaturen liegen vorzugsweise im Bereich von 0 bis 100°C.

 Das Trennmedium besteht vorzugsweise aus Polyacrylamid-Gelen.
- Das technische Problem der Detektion von Komponenten eines Stoffgemisches, bei dem das Gemisch aus Nukleinsäuren besteht, die insbesondere lediglich eine Mutation aufweisen, wird durch ein Verfahren gemäß Patentanspruch 12 gelöst. Die Unteransprüche 13 bis 25 sind bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens. Das in den Patentansprüchen 26 bis 30 beanspruchte Oligonukleotid wird vorzugsweise als sogenannter Primer zum Start der polymerase chain reaction (PCR) verwendet (Saiki et al. (1985), Science 230, 1530-1534). Eine besondere Ausgestaltung des erfindungsgemäßen Verfahrens wird in den Patentansprüchen 32 bis 36 beschrieben. Die Patentansprüche 37 bis 43 betreffen die Verwendung des erfin-

- 12 -

dungsgemäßen Verfahrens. Die Ansprüche 44 bis 46 betreffen bevorzugte Mittel zur Durchführung des erfindungsgemäßen Verfahrens.

5

Das erfindungsgemäße Detektionsverfahren für Mutationen in Nukleinsäuregemischen wird im folgenden näher erläutert.

Das für die Mutationsanalyse in Frage kommende Nuklein-10 säurefragment wird zunächst auf eine passende Größe geschnitten. Dabei wird die Mutation in einen thermodynamisch labilen Bereich gelegt. Dieser Bereich kann entweder experimentell oder auch durch Berechnung ermittelt 15 Gegebenenfalls kann das Nukleinsäurefragment werden. durch PCR (polymerase chain reaction) amplifiziert werden. Dabei wird vorzugsweise die thermodynamisch stabilere Region so stabilisiert, daß sie unter maximal denaturierenden Bedingungen des analytischen Experimentes 20 noch stabil bleibt. Das Nukleinsäurefragment schmilzt dann nicht bis zur vollständigen Strangtrennung auf, sondern bildet eine Y-förmige Struktur geringer elektrophoretischer Mobilität aus. Insbesondere kann diese Stabilisierung durch Anfügung einer Region aus stabili-25 sierenden G/C-Nukleotiden oder ungeladenen Nukleotiden herbeigeführt werden. Der stabilisierende Einfluß von mehr als 40 G/C-Basenpaaren wurde bereits von Sheffield, V.C. et al. (1989) Proc. Natl. Acad. Sci. USA 86, 232-236, beschrieben. Überraschenderweise hat sich jedoch 30 gezeigt, daß bereits 20 bis 30 G/C-Basenpaare zur Stabilisierung ausreichend sind. Vorzugsweise bedient man Temperaturgradienten-Gelelektrophorese, sie erfindungsgemäß beschrieben wird. Aber auch die Methode der DE-OS 36 22 591 kann Verwendung finden, wobei der Temperaturgradient in einer Plattenelektrophoresevorrichtung ausgebildet wird und die Trennung mit einem auf einer Platte angeordneten Gel durchgeführt wird.

10

15

20

25

30

Will man bestimmte Nukleinsäurefragmente durch Amplifizierungsreaktionen wie der sogenannten PCR (polymerase chain reaction) vervielfältigen, werden dazu Oligonukleotide als sogenannte Primer verwendet. Diese Primer werden so gewählt, daß sie in der Lage sind, mit einem Teil der zu untersuchenden Nukleinsäure zu hybridisieren. Vorteilhafterweise sollen die Sonden mit den endständigen Regionen dieser zu untersuchenden Nukleinsäuren hybridisieren. Des weiteren ist es wünschenswert, die Primer mit Restriktionsschnittstellen zu versehen, um die amplifizierten Segmente in Vektoren einbauen zu können. In einer weiteren bevorzugten Ausführungsform weisen die Primer endständig chemische Gruppen auf, die als Affinitätsliganden dienen können.

In Figur 1 ist ein besonders bevorzugtes Oligonukleotid schematisch dargestellt, welches als Primer in einer PCR Verwendung finden kann. Der Primer Hnpl besteht aus einer hybridisierenden Sequenz 1, welche etwa 18 bis 25 Nukleotide aufweist. Zum freien Ende schließt sich eine G/C-Box aus vorzugsweise 20 bis 30 Nukleotiden an, gefolgt von einer Restriktionsschnittstelle sowie einer oder mehreren chemischen Gruppen, die als Affinitätsliganden dienen können. Der Primer p2 besteht ebenfalls aus einer hybridisierenden Sequenz 2, einer A/T-reichen Box mit 0 bis 20 Nukleotiden Länge und einer Restriktionsschnittstelle R2. Im Falle der Mutantenanalyse innerhalb hochpolymorpher Regionen ist es empfehlenswert, die Größe der Regionen C, D (Fig. 10) so klein wie möglich, im Extremfall auf O Nukleotide zu halten, um nur eine polymorphe Position zu erfassen. Dies sei an einem Beispiel der Sondenkonstruktion zum Nachweis der ß-Globin Thalassämie "Yugo" (IVS-1-6, T-C) exemplarisch ausgeführt.

Ein wichtiger Typ einer β -Globin Thalassämie ist die Splicing-Mutante (IVS-1-6, T-C) auf dem β -Globin Locus.

5

10

15

20

25

30

- 14 -

Diese Mutation verhindert das korrekte Splicing zwischen Exon 1 und Exon 2. Die Umgebung des mutierten Genortes IVS-1-6 ist in Figur 2 wiedergegeben. Es wird ein Ausschnitt des humanen Bgb-Locus 62200 bis 62350 (GenBank-Sequenz HUM HBB_PREMRNA) mit intron-Mutante IVS-1-6 und den erfindungsgemäß verwendeten Primern gezeigt.

Figur 3 zeigt das berechnete Schmelzverhalten dieser Nukleinsäure, erhalten unter Anwendung des von Gerhard Steger et al. entwickelten Rechenschemas (Steger, G., Po, T., Kaper, J. u. Riesner, D. (1987), Nucleic Acids Res. 15, 5085-5103). Das in Figur 2 wiedergegebene Segment schließt die intron 1-8 - Mutation IVS-1-6 ein. Die Numerierung korrespondiert mit der GenBank Sequenz HUM HBB_PREMRNA. Die optimale Sonde für denaturierende Gele basiert auf dem amplifizierten Segment 62233-62340. Der Primer la* ist mit einem sogenannten G/C-Schwanz konstruiert. BamHl- und EcoRl-Restriktionsschnittstellen wurden zur Integration in den Vektor pBR322 gewählt. Die Berechnungen für die verschiedenen DNA-Denaturierungszustände von B-Globin-Segmenten bei verschiedenen Temperaturen für 1 M NaCl sind graphisch dargestellt. Das in Figur 3 dargestellte Schmelzdiagramm ist wie folgt zu verstehen: Auf der Abszisse ist die Position der Nukleinsäuren angegeben, während die Ordinate die Wahrscheinlichkeit der Strangöffnung repräsentiert, bezogen auf die spezifische Nukleotidposition. Die dritte Achse des dreidimensionalen Diagramms entspricht einer Temperaturachse, wobei beachten ist, daß die Schmelztemperaturen ebenfalls abhängig sind von der Ionenstärke des Mediums. Die Wahrscheinlichkeit für den geöffneten Zustand eines Basenpaares ist in Schritten von 0,5°C berechnet. Die dreidimensionale Zeichnung illustriert das sequentielle Denaturierungsverhalten verschiedener kooperativ denaturierender Regionen. Wie in Figur 4 dargestellt, erniedrigt ein interner Loop von der Größe eines Basenpaares

bei Position 62302 die Schmelztemperatur der Region mit der geringsten Stabilität.

5

10

Die Figur 5 betrifft die Berechnung der temperaturabhängigen Schmelzkurve in integrierter Form (5a) und in der differentiellen Form (5b), wobei das Symbol (*) den Kurvenverlauf des Wildtyp-Homoduplex und (+) den Kurvenverlauf des Heteroduplex (Mv) als A/C-Fehlpaarung bedeuten.

Die Figur 5a zeigt die theoretisch abgeleitete optische Schmelzkurve des Nukleinsäuredoppelstrangs sowohl des Homo- als auch des Heteroduplexes (A/C). Figur 5b zeigt die erste Ableitung der in Figur 5a berechneten Schmelz-kurve. Es ist erkennbar, daß der Heteroduplex (+++) im Bereich der thermodynamisch labilen Region infolge der Mutation deutlich stärker destabilisiert ist als der Homoduplex (***) aufgrund des in sogenannten Mismatches hervorgehobenen internen Loops. In diesem Fall beträgt die Schmelzpunkterniedrigung dieser thermodynamisch instabilen Region etwa 4°C gegenüber dem Homoduplex.

25 Die Figur 6 zeigt die Analyse des amplifizierten Mutanten-Segments mit Primer la*, Primer lb gemäß Figur 2 und des amplifizierten Wildtyp-Segments auf der senkrechten Temperaturgradienten-Gelelektrophorese mit einem Gradienten von 10 bis 60°C. Die äquimolar gemischten 30 Fragmente wurden nach Denaturierung/Renaturierung aufgetragen. Die Heteroduplices (Mv, Vm) und die Homoduplices (Vv, Mm) werden aufgespalten gemäß der schematischen Darstellung. Eine homozygote DNA-Sonde vom Wildtyp wurde PCR-amplifiziert unter Einsatz der Primer la wie oben beschrieben. Das Fragment wurde zwischen die BamHl-/EcoRl-Stelle von pBR322 integriert. Eine DNA-Probe der homozygoten Mutante IVS-1-6 wurde amplifiziert mit BamHl und EcoRl geschnitten, denaturiert und hybridisiert mit einem

klonierten BamHl-/EcoRl-Fragment der Wildtyp gb-Sequenz.

Die resultierenden Homoduplices (2 Banden) und Heteroduplices (2 Banden) sind als vier unterschiedliche Banden
repräsentiert. Die Y-förmigen Konformationen wurden stabilisiert durch den Einsatz der G/C-reichen Oligonukleotid-Kette am stabilsten Ende der zu untersuchenden Nukleinsäure (s. Myers, R.M. et al. (1985), Nucleic Ācids
Res. 13, 3131). Bei Anwendung der parallelen Temperaturgradienten-Gelelektrophorese ergibt sich bei Mutation
IVS-1-6 im Probenmaterial das in Figur 7 dargestellte
Bild.

Die Figur 7 zeigt die Autoradiographie einer Analyse verschiedener Patienten-DNAs nach Amplifikation und Test mit dem Wild-Typ Standard (s. Fig. 6, Fig. 2). Die Patienten-DNAs, die die IVS-1-6-Mutation enthalten, weisen eine zweite Bande auf. Da die Test-DNA nur einen markierten Strang enthält, enthalten nur zwei der vier Banden die radioaktive Markierung (s. Einschub in Fig. 7). Der parallele Temperaturgradient verläuft zwischen 25 und 65°C.

25 Das Experiment zeigt darüberhinaus, daß das Mutantennachweissystem nicht nur zum qualitativen sondern auch zum quantitativen Nachweis geeignet ist. Das im molaren Unterschuß zugesetzte (radioaktiv) markierte Markerfragment (Wildtyp) verteilt sich nach Denaturierung/Renaturierung 30 anteilig auf die beiden Allele. Die Mutation des einen Allels hat keinen Einfluß auf die 1:1 Verteilung des Markers (Fig. 7). Der Marker selbst trägt nur unterhalb der experimentellen Fehlergrenze (± 10 %) zur Verschiebung des 1:1 Verhältnisses bei. Wenn der Standard wie im Fall der gleichverteilten Allele nicht im zu amplifizierenden Gemisch vorhanden ist, kann er extern zugesetzt werden. Ein interner Standard definierter Kopienzahl kann dazu dienen, ein Template quantitativ

WO 91/02815

5

zu erfassen, wenn es sich in einer Mutation vom Standard unterscheidet. Da exakt identische Primer eingesetzt werden, wirken sich Plateau-Effekte, ungleiche Primer-konzentrationen oder schlechte Replikationseffizienz immer streng symmetrisch auf beide Komponenten aus. Wenn sich Standard und zu messende Zielsequenz nicht um mehr als Faktor 100, vorzugsweise 10 unterscheiden, läßt sich die Kopienzahl über das Signalverhältnis korrekt ermitteln (Fig. 9). Experimentell bedeutet dieser Ansatz eine starke Vereinfachung, da die Polymerase Chane Reaction (PCR) unkontrolliert bis in die Sättigung getrieben werden kann.

15

20

25

30

10

Die Figur 9 verdeutlicht schematisch das Verfahren, das in Figur 7 beschrieben wird. Es wird der zu amplifizierenden DNA ein Standard bekannter Konzentrationen (Kopienzahl) zugesetzt, wobei sich der Standard in mindestens einer Mutation, z.B. einer Punktmutation, von der zu analysierenden Nukleinsäure unterscheidet. Diese Mischung wird einem enzymatischen Amplifizierungsverfahren bis zur Sättigung unterworfen. Danach wird dem Amplifikationsgemisch im Unterschuß der Standard in markierter Form zugesetzt. Nach mindestens einem Denaturierungs/Renaturierungszyklus wird die Markierung im zahlenmäßigen Verhältnis vom internen Standard und zu quantifizierender Zielsequenz in die entsprechenden Homound Heteroduplexe überführt. Die Trennung der Homo- und Heteroduplexe erfolgt mittels TGGE. Das Verhältnis der Signalintensität der entstandenen Banden ergibt nach Multiplikation mit der Standardkopienzahl die Menge der zu bestimmenden Zielsequenz.

Eine besonders einfache und effektive Probenvorbereitung für die Analyse der zu untersuchenden Nukleinsäure wird durch die Verwendung eines Primers mit Affinitätsgruppen ermöglicht. Als Affinitätsgruppen kommen beispielsweise

5

10

15

20

25

30

Histidyl- und Biotinylreste in Frage. Im Fall der Histidylreste kommen zwei bis acht, besonders bevorzugt sechs Histidylreste zum Einsatz. Dieser chemisch modifizierte Primer wird dann an einen polymeren Träger über entsprechende Affinitätsgruppen fixiert. Im Fall der histidylmodifizierten Primer empfiehlt sich ein an einen polymeren Träger gebundener Chelatkomplex aus zweiwertigen Übergangsmetallionen, wie Kupfer und Nickel, und Nitrilotriessigsäure. Die freien Koordinationsstellen des Übergangsmetallions werden durch zwei Histidylreste besetzt. Da Primer und Histidylreste kovalent miteinander verbunden sind, wird auf diese Weise der Primer an die polymere Matrix gebunden. Komplexe sind für rekombinante Proteine (EP-A-0 282 042, EP-A-0 186 069) an NTA-Harze beschrieben worden (EP-A-0 253 303). Werden beispielsweise Biotinylreste kovalent an den Primer gebunden, empfiehlt sich ein polymerer Träger, der Avidinmoleküle kovalent gebunden hat.

Als polymere Träger kommen entsprechend modifizierte Membranen oder entsprechend modifizierte Partikel in Frage. Der polymere Träger soll mechanisch hinreichend stabil sein, um bei Operationen auftretende Druckschwankungen aufgrund von Durchfluß unbeschadet zu überstehen. Werden nun Nukleinsäuren mit Mutationen unter Verwendung des beschriebenen Primers amplifiziert, so bilden sich Doppelstränge aus, welche an einem Ende (Primer-vermittelt) besagte Affinitätsgruppen tragen. Nach erfolgter hinreichender Amplifizierung bringt man das Reaktionsgemisch mit dem polymeren Träger und daran gebundenen Affinitätsgruppierungen wie Nickelchelaten oder Avidinmolekülen zur Umsetzung. So werden spezifisch die durch den Primer amplifizierten Sequenzen an der Oberfläche des festen Trägers gebunden. Dies kann entweder in einem Batch-Verfahren oder in Form einer Säulenfiltration erfolgen. Durch diese Vorgehensweise werden die unerwünsch-

- 19 -

ten Enzyme und Reagenzien, welche zur Amplifikation benötigt werden, einfach und schonend abgetrennt. Die an der Matrix gebundenen amplifizierten Nukleinsäurefragmente können nun in einfacher Weise mit einer markierten Nukleinsäuresonde, die vom Wildtyp abgeleitet ist, inkubiert werden. Durch einen oder mehrere Denaturierungs-/Renaturierungszyklen bilden sich Heteroduplexe, die nach Elution vom polymeren Träger, etwa durch Variation der Pufferbedingungen oder Auswaschen mit einem Kompetitor, der Analyse direkt unterzogen werden können. Die so aufgearbeiteten Proben können zum Beispiel unmittelbar der Temperatur-Gelelektrophorese unterzogen werden.

15

20

25

10

5

Die Figur 8 stellt ein erfindungsgemäßes Schema zur TGGEgerechten Probenvorbereitung dar. Der Primer Hnpl trägt
einen Oligo-Histidyl-Rest als 5'-gekoppelte Seitenkette
und ist somit unter neutralen oder alkalischen Bedingungen an NTA-Liganden tragende Festphasenträger zu
binden. Bei diesem Schritt werden kontaminierende Enzyme
und Reagenzien entfernt. Nach Zugabe des Nachweisreagenzes und eventuell interner Markersubstanzen wird der
Denaturierungs-/Renaturierungszyklus durchlaufen. Auf
diese Weise werden die umrahmten Strukturen Mm und Mv
(markierter Homoduplex/markierter Heteroduplex) zur TGGEAnalyse verfügbar. Das heißt, der zweite Strang des Analyten wird in der nachfolgenden TGGE-Analyse nachgewiesen.

30

Die erfindungsgemäße Vorrichtung, die in den Ansprüchen 51 bis 62 beansprucht wird, erlaubt insbesondere die Durchführung der erfindungsgemäßen Verfahren. Die Vorrichtung besteht aus mindestens zwei Heiz- oder Kühlvorrichtungen oder einer Heiz- und einer Kühlvorrichtung zum Aufbau des Temperaturgradienten. Die Heiz- oder Kühlvorrichtungen sind mit Wärmereservoirs verbunden, um die nach dem erfindungsgemäßen Verfahren geforderten

5

10

15

20

25

30

- 20 -

Energieflüsse zu gewährleisten. Die Wärmereservoirs und Heiz- oder Kühlvorrichtungen sind so ausgebildet, daß sie einen ein Trennmedium enthaltenden Hohlkörper voll-kommen umgeben. Dieser Hohlkörper enthält die zur Trennung verwendete Trennmatrix oder das trägerfreie Trennmedium in seinem Lumen. Zum Aufbau des reproduzierbaren Temperaturgradienten oder bei isothermer Verfahrensweise zur Gewährleistung eines reproduzierbaren einheitlichen Temperaturniveaus des Trennmediums ist der Hohlkörper von einem Thermostatiermantel umgeben. Dabei kann der Thermostatiermantel vorzugsweise thermisch leitend mit dem Wärmereservoir oder den Heiz- oder Kühlvorrichtungen verbunden sein.

In einer bevorzugten Ausführungsform kann der Thermostatiermantel durch eine Metallplatte gebildet werden, die mit Bohrungen versehen ist, in die der das Trennmedium enthaltende Hohlkörper, vorzugsweise Glas- oder Kunststoffröhrchen, eingeführt werden können. Vorzugsweise werden zwei Metallplatten mit eingefrästen parallelverlaufenden Nuten verwendet, wobei die durch die Nuten entstehenden Aussparungen nach dem Zusammenlegen der Metallplatten der äußeren Form des zur Trennung verwendeten Hohlkörpers entsprechen und die Metallplatten in unmittelbarem Wärmekontakt stehen.

Die Figur 10 zeigt schematisch den Aufbau einer bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung. Figur la zeigt einen Querschnitt durch den von einem Thermostatiermantel umschlossenen Hohlkörper mit innen angeordnetem Trennmedium längs der Linie A --- A.

Die Figur 11 zeigt eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung zum Aufbau eines zeitlichen Temperaturgradienten. Die Figur 12 zeigt schematisch eine Ausführungsform der erfindungsgemäßen Vorrichtung, die eine Vielzahl der zur Trennung verwendeten Hohlkörper aufnehmen kann.

Die Figur 13 verdeutlicht schematisch den erfindungsgemäßen Verfahrensablauf mit einer Vorrichtung gemäß Figur 11.

10

15

5

Die Figur 14 und 14a zeigt eine bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung gemäß Fig. 12. Hierbei ist der Thermostatiermantel aus einer aus zwei Teilen bestehenden Metallplatte gebildet. Der röhrenförmige, das Trennmedium enthaltende Hohlkörper wird in auf beiden Platten parallelverlaufenden Nuten gehalten.

Die Figuren 14a, 15a und b zeigen einen seitlichen Querschnitt durch die Vorrichtung gemäß Figur 14 längs der Linie B --- B, wobei Figur 15a als Momentaufnahme in schematischer Form die Probenaufnahme demonstriert. Die Figur 15b zeigt die Vorrichtung in betriebsbereitem Zustand, indem der zur Trennung verwendete Hohlkörper jeweils oben und unten in ein Pufferreservoir 50 eintaucht.

25

30

20

Die in Figur 10 dargestellte bevorzugte Ausführungsform besteht aus zwei Heiz- oder Kühlvorrichtungen 1, 2 mit den dazugehörigen Temperaturen T_2 und T_1 . Diese Heizbzw. Kühlvorrichtungen 1, 2 sind leitend mit Wärmereservoirs 4, 5 verbunden. Die Heiz- oder Kühlvorrichtungen sowie das Wärmereservoir weisen vorzugsweise zentrische Durchbohrungen auf. Durch diese Bohrungen ist ein Hohlkörper 6 vorzugsweise beidseitig durchdringend angeordnet. Der Hohlkörper 6 ist von einem Thermostatiermantel 7 allseitig umschlossen. Vorzugsweise befindet sich der Hohlkörper 6 im Thermostatiermantel 7 zentriert. Der Hohlkörper 6 enthält in seinem Lumen das zur Trennung verwendete Medium. Der Thermostatiermantel 7

5

10

15

20

25

30

- 22 -

besteht vorzugsweise aus wärmeleitendem Material, besonders bevorzugt einem Material, aus dem auch die Wärmereservoirs hergestellt sind. Die Temperaturniveaus 1, 2 werden vorzugsweise durch Peltierelemente, thermostatisierbare Flüssigkeitsbäder oder elektrische Heizungen 9 beheizt bzw. gekühlt. Am Ende der Trennstrecke ist eine Detektionseinheit 10 vorgesehen. Die Fig. 10a zeigt die Situation im Querschnitt längs der Linie A --- A. Der Zwischenraum zwischen der äußeren Wand des Hohlkörpers 6 und der inneren Wand des Thermostatiermantels 7 ist vorzugsweise durch eine viskose Flüssigkeit 8 ausgefüllt. Das Trennmedium füllt vollständig den Querschnitt des Hohlkörpers 6. Der Hohlkörper 6 ist vorzugsweise zylindrisch ausgebildet, besonders bevorzugt als Kapillare. Die an einer beliebigen Stelle der Trennstrecke herrschende Temperatur berechnet sich nach der Formel T = $T_2 - (T_2 - T_1) \times d_2/(d_1 + d_2)$. Dabei bedeutet d₁ der Abstand des Ortes von der Temperatur T, und d2 der Abstand des Ortes von der Temperatur T2, die jeweils an den Temperaturniveaus 2, 1 herrschen.

Die Fig. 11 zeigt eine bevorzugte Ausführungsform zur Durchführung des erfindungsgemäßen Verfahrens als einer von einem zeitlichen Temperaturgradienten überlagerten Elektrophorese. Sie besteht aus drei Temperaturniveaus 1, 2, 3, die vorzugsweise wiederum mit Wärmereservoirs verbunden sind. Die Komponenten Hohlkörper 6, Wärmeaustauschmantel 7, Detektionseinheit 10, Heiz- oder Kühlvorrichtung 9 sind ähnlich der Vorrichtung gemäß Fig. 10 ausgebildet. Lediglich der Thermostatiermantel 7 ist mit dem Wärmereservoir der Heiz- oder Kühlvorrichtung am Temperaturniveau 2 thermisch nicht leitend verbunden.

Die Figuren 13a bis 13d zeigen den Verfahrensablauf wie er beispielsweise mit einer Vorrichtung gemäß der Fig. 11 ausgeführt wird. Der Gradient des elektrischen Feldes,

10

15

20

25

30

das zur Trennung verwendet wird, ist in Richtung der Abszisse aufgetragen und symbolisiert gleichzeitig beliebige Orte der zu durchlaufenden Trennstrecke. Auf der Ordinate sind einmal in positiver Richtung die Temperaturniveaus in Abhängigkeit vom Ort eingezeichnet (Fig. 13a). Die Wanderungsgeschwindigkeit der Komponenten der zu trennenden Probe ist durch Stufenfunktion unterhalb der Temperaturkurve dargestellt. Z.B. ist die Wanderungsgeschwindigkeit (V) bei T_1 (t_0) ungefähr gleich Null. Aufgetragen wird die Probe bei Temperaturniveau T_0 , das in diesem Fall einfachheitshalber gleich dem Temperaturniveau T, am Ende der Elektrophorese-Trennstrecke sein soll. Nach Auftrag nehmen die Stoffe 1 und 2 das gepunktete Volumen in bezeichneter Position ein. Die Probe wandert längs des Feldgradienten in dem Trennmedium, bis sie das Temperaturniveau T, erreicht. Wenn beispielsweise die Probe aus Nukleinsäuren besteht, erfahren diese hier eine teilweise Denaturierung durch Aufweitung des Doppelstrangs in sogenannte "Loops". Dadurch bedingt wird die Wanderungsgeschwindigkeit reduziert. Die Probe wird aufkonzentriert an der Grenze zwischen T_0 und T_1 . Diese Situation ist in Fig. 13b in Form des geringeren Volumens dargestellt (Zeitpunkt t_1). Die Temperatur des Temperaturniveaus T₁ wird nun abgesenkt als Funktion der Zeit. Die thermodynamisch stabilere Fraktion, in Fig. 13c als Fraktion Nr. 2 gekennzeichnet, schließt nun die Doppelhelix und gewinnt höhere Mobilität. Dadurch bedingt beginnt diese Fraktion in das Trennmedium zu wandern. Fig. 13d zeigt nun die Situation bei einem Zeitpunkt t3, bei dem die Temperatur T so weit abgesunken ist, daß auch die thermodynamisch instabilere Probe, hier mit der Nr. 1 gekennzeichnet, mit der Wanderung durch das Trennmedium beginnt. Die Komponente Nr. 2 hat in dieser Zeit allerdings schon einen beträchtlichen Teil der Trennstrecke durchlaufen oder sie bei entsprechender Dimensionierung bereits verlassen, wo sie detektiert werden kann.

- 24 -

Diese Ausführungsform verwendet vorzugsweise eine sehr kurze Kapillare mit Trennmedium und läßt sich an drei thermisch voneinander getrennten Bereichen thermostatieren (T_0, T_1, T_2) . Die an der Temperaturgrenze zwischen T_0 und T_1 stattfindende partielle Denaturierung, beispielsweise von Nukleinsäuren zur Bildung interner "Loops", kann durch entsprechende Reagenzien unterstützt werden.

An den Grenzen der einzelnen Temperaturniveaus kommt es jedoch über einen flüssigen Wärmetauscher zu unscharfen Temperaturgrenzen, so daß die Darstellung gemäß Fig. 12 nur als idealisierte Rechteckform von Temperatur und Wanderungsgeschwindigkeit gesehen werden soll. Um trotzdem eine möglichst scharfe Grenze der Temperaturniveaus zu gewährleisten, wird bevorzugt, die Temperaturniveaus $T_2/T_1/T_0$ nicht wärmeleitend zu verbinden.

Diese erfindungsgemäße Verfahrensweise ist auch mit flächigen Trennmedien realisierbar, die einseitig temperiert werden, wie es für einfache räumliche Temperaturgradienten in der deutschen Patentanmeldung P 36 22 591

25
 beschrieben ist.

5

10

15

20

30

Die Fig. 12 zeigt eine bevorzugte Vorrichtung, die dadurch gekennzeichnet ist, daß Heiz- und Kühlvorrichtungen 1, 2 mit den entsprechenden Wärmereservoirs 4, 5 eine Vielzahl der Hohlkörper 6 aufnehmen können, indem die Vorrichtungen 1, 2 und 4, 5 blockartig - 4a, 5a - ausgestaltet sind und eine Vielzahl von Durchbohrungen 11 aufweisen, durch die die Hohlkörper 6 hinausragend, vorzugsweise endseitig hinausragend angeordnet sind. Diese Vorrichtung hat den Vorteil, daß sich mit einer Vorrichtung eine Großzahl von Analysen mit dem Ziel der Detektion von bekannten oder unbekannten Mutationen durchführen läßt. Die Vorrichtung gewährleistet, daß mehrere

5

10

15

20

25

30

- 25 -

Proben gleichzeitig unter Temperierung durch verschiedene Thermostatierelemente, jedoch mit je einem gemeinsamen Heiz- oder Kühlsystem analysiert werden können. Eine bevorzugte Ausführungsform ist auf das Format Mikrotiter (96 Well) adaptiert im Sinne linearer Mehrkanalsysteme, vorzugsweise 8 oder 12, oder einem 96-Kanal-System. Als "Read out"-System finden vorzugsweise fluoreszenzmarkierte Nukleinsäuresonden Verwendung, die optisch durch handelsübliche Detektionssysteme am Anfang und/oder am Ende der Thermostatiervorrichtung als Funktion der Trenndauer und ortsfest registriert werden können. Damit lassen sich mit Hilfe von geeigneten Reagenzienkits Mutationen in genetischem Material automatisch auswerten.

Die thermische Äquilibrierung der jeweiligen Heiz- oder Kühlvorrichtungen kann homogen elektrisch über Heizdrähte, vorzugsweise jedoch über Peltierelemente erfolgen. Auch flüssige Heizvorrichtungen in Form thermostatierbarer Flüssigkeitsbäder kommen in Frage. Hierbei ist
jedoch darauf zu achten, daß die mit den thermostatierbaren Ummantelungen der Kapillare verbundenen Heiz- oder
Kühlvorrichtungen gegenüber allen Ummantelungen nahezu
identische Temperaturen an den jeweiligen übergangsstellen aufweisen. Dieses läßt sich durch eine symmetrisch gebaute Peltierheizung/-Kühlung realisieren oder
im Falle der Flüssigtemperierung durch gegenläufige durchströmte Kanäle, wobei die Summe der Temperaturen gegenüberliegender Flüsse an jeder Kapillarposition nahezu
identisch bleibt.

Die erfindungsgemäß ausgestaltete Temperaturgradienten-Gelelektrophorese eignet sich insbesondere auch für eine Vorgehensweise, bei der ein Temperaturgradient nicht räumlich dimensioniert ist, sondern zeitlich variabel bzw. zeitlich gradientenförmig aufgebaut wird. Darunter ist zu verstehen, daß ein Heiz- oder Kühlreservoir mit

5

10

30

- 26 -

einem zeitlich definierten Temperaturprogramm geregelt wird, wodurch sich die Mobilitäten der zu trennenden Moleküle letztlich als Funktion der Zeit steuern lassen. So läßt sich zum Beispiel eine offene zirkuläre Nukleinsäure oder auch eine partiell denaturierte doppelsträngige Nukleinsäure bei hohen Temperaturen im Gel quasi "arretieren" und erst nach Ablauf einer bestimmten Zeit durch Senken der Temperatur nach reversibler Strukturrückbildung in dem Trennmedium mobilisieren. Dies gilt für die Trennung in Kapillaren und auf flächigen Trägern. Der Vorteil dieser Technik liegt darin, daß hierbei äußerst kurze Trennstrecken realisiert werden können.

Die schematischen Figuren 15a und b zeigen eine bevorzugte Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, in welches gemäß Figur 14 12 Proben simultan analysiert werden können. Es ist erkennbar, daß insgesamt 4 Temperaturniveaus To bis To variabel geregelt werden können. Mit dieser bevorzugten Vorrichtung lassen sich sowohl räumliche, zeitliche als auch Kombinationen aus raumlichen und zeitlichen Gradienten aufbauen. Diese erfindungsgemäße Vorrichtung ist besonders geeignet, im Laboratorium die Parameter zur Trennung der zu anlysierenden Proben zu optimieren.

Die Figur 14 zeigt eine bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung. Es sind insgesamt 4 regelbare Heiz- bzw. Kühlvorrichtungen (35 bis 38) vorhanden. Die Temperaturniveaus T₀ bis T₃ sind unabhängig voneinander regelbar. Die Temperatur wird durch Einleiten entsprechend temperierter Flüssigkeiten, durch die Zuläufe 40, in die hier als Metallblöcke ausgestalteten Temperaturreservoirs eingestellt. Auf der gegenüberliegenden Seite der Zuflüsse 40 werden die zur Temperierung verwendeten Flüssigkeiten durch entsprechende Abläufe (hier nicht gezeichnet) abgeleitet. Der das Temperaturniveau

35 bildende Metallblock ist mit Durchbohrungen versehen, in welchen die zur Trennung verwendeten Hohlkörper 6 durchgeschoben werden können. Die den Thermostatiermantel bildende Metallplatte 7 ist aus zwei Teilen, die vorzugsweise verschraubt sind, aufgebaut. In dieser Platte befinden sich an jeweils gegenüberliegenden Positionen eingefräste Nuten, die auf den Durchmesser des Hohlkörpers 6 abgestimmt sind. Die Metallblöcke 35 bis 38, welche die entsprechenden Temperaturniveaus bereitstellen, sind mittels eines Verbindungsstücks 43 durch Schrauben mit dem Thermostatiermantel 7 verbunden.

Die Figur 14a zeigt einen Querschnitt der in Figur 14 gezeichneten Vorrichtung längs der Linie B --- B. Der 15 zur Trennung dienende Hohlkörper 6 durchdringt die den Thermostatiermantel bildenden Hohlkörper 7 vollständig. Vorzugsweise befindet sich im Zwischenraum, der zwischen Hohlkörper 6 und Thermostatiermantel 7 gebildet wird, eine viskose Flüssigkeit. Die Metallblöcke 37 und 38 20 sind thermisch leitend durch direkten Kontakt der planaren Seitenflächen mit dem Thermostatiermantel 7 verbunden. Vorzugsweise sind die Blöcke 37, 38 und der Thermostatiermantel 7 aus dem selben Material gefertigt. 25 In einer besonderen Ausführungsform sind diese Elemente der erfindungsgemäßen Vorrichtung einstückig. Die das Temperaturniveau T_0 , T_1 aufbauenden Metallblöcke sind beispielsweise einstückig mit dem den Hohlkörper 6 umfassenden Thermostatiermantel. Die die Temperaturniveaus 30 \mathbf{T}_0 , \mathbf{T}_1 aufbauenden Metallblöcke 35, 36 sind durchbohrt. Die Bohrungen in den verschiedenen Metallblöcken und dem Thermostatiermantel werden zur Deckung gebracht, so daß der zur Trennung verwendete Hohlkörper 6 durch die aus den einzelnen Elementen 35, 36, 37 und 38 aufgebaute Vorrichtung hindurchgeschoben werden kann. Die Metallblöcke 35 bis 38 sind mit den Durchbohrungen 15 (Querschnitt) versehen, durch welche die zum Aufbau

- 28 -

des jeweiligen Temperaturniveaus verwendete Flüssigkeit hindurchströmt.

5

10

15

20

25

30

Im folgenden wird beschrieben, wie das in der Figurenbeschreibung zu Figur 2 und 3 beschriebene Gemisch aus markierten Hybriden, die einen Homoduplex und einen Heteroduplex (Einbasen-mismatch) repräsentieren, getrennt wird. Die zwei in der Figurenbeschreibung zu Figur 2 und 3 beschriebenen klonierten Inserts (Wildtyp und IVS-1-6) wurden in Form ihrer EcoRl/Bam Hl verdauten Plasmide (je 45 ng) gemischt. Ihnen wurde in limitierter Menge (9 ng bezogen auf Plasmid) das radioaktiv markierte Insert beigemischt, wobei der Radioaktivitätsmarker 32P-dATP, dCTP, dGTP, dTTP-Einbau mit Polymerase-1 Klenow-Fragment erfolgt. Die spezifische Aktivität betrug ca. 10^6 cpm/pMol Schnittstelle. Die Mischung wurde in 55 μ l Puffer 10 mM Tris, 1 mM EDTA pH 7,5 bei 98°C für 2 Minuten denaturiert und nach Einstellen auf 250 mM NaCl bei 50°C für eine Stunde renaturiert. Die DNA wurde mit 2,5 Vol. Ethanol 30 Minuten bei -20°C gefällt, mit 80 % Ethanol gewaschen und getrocknet. Die Probe wurde in 0,01 x TBE Bromphenolblau aufgenommen. 13.000 cpm in 3 μ l wurden auf einer planen Platinelektrode (Fig. 15a 30) als Tropfen 40 vorgelegt. Der Probenauftrag erfolgte elektrophoretisch nach Eintauchen der Kathoden-seitigen Kapillare durch Anlegung einer Spannung von 100 V gegen die geerdete Platinkathode 30 (Fig. 15a) für je 2 Minuten. Da der TBE-Puffer (89 mM Tris, 89 mM Borsäure, 2,5 mM EDTA, pH 8,3) in Richtung hoher pH-Werte eine hohe Pufferkapazität aufweist, wird die Probe trotz niedriger Pufferkonzentration (0,01 x TBE) nicht um mehr als eine pH-Einheit alkalischer (pH 8,3 bis 9,3). Ca. 50 % der markierten Nukleinsäure wird auf diese Weise vom Gel aufgenommen.

10

15

20

Als Kapillaren wurden gefüllte Glaskapillaren mit 5 % Polyacrylamid-Gel und einem Innendurchmesser von 0,45 mm verwendet. Die Pufferbedingungen waren mit 0,1 x TBE, 4 M Harnstoff gewählt. Die Figur 15b zeigt schematisch die erfindungsgemäße Vorrichtung beim Elektrophoresebetrieb. nach erfolgter Probenaufnahme werden beide Enden der Kapillaren 6 in Kontakt mit je 100 ml Pufferreservoir 50 gebracht.

a) Die Probe wurde in einem räumlichen Gradienten aufgetrennt ($T_3 = 30$ °C, $T_2 70$ °C).

Tabelle l zeigt die Differenz der Wanderungsstrecken des Homoduplexes verglichen mit der jeweiligen Wanderungsstrecke des Heteroduplexes in cm. Im erwarteten Temperaturintervall 40°C bis 50°C ergibt sich die experimentell gewünschte Auftrennung der Signale.

	dauer (min.)	Differenz der Kapillargel-Position (mm) von Wildtyp Fragment und IVS-1-6-Fragment
	30	0
25	42	0
	54	0
	66	0
	78	2
2.0	90	4
30	102	6
	114	6
	126	7
	138	7
	150	9
	162	11

Die Daten beruhen auf Einzelmessungen in getrennten Kapillaren.

5

20

- 30 -

b) Analog der Vorgehensweise der Figuren 13a bis d wurde die Probe auf der Seite T_0 aufgetragen. ($T = T_2$ 37 = T_3 = 30°C) und die Trennung über die 4 mm Trennstrecke mit der Temperatur T_1 durchgeführt. Nur die Proben, die T_1 im Temperaturintervall (40 < T_1 < 50) passiert haben, werden aufgetrennt.

Während der Elektrophorese wurde erfindungsgemäß das Temperaturniveau von T₁ linear abgesenkt. Die Proben, die T₁ knapp unterhalb der Temperatur erreichen, bei der die Dissoziation in die Einzelstränge erfolgt (50°C), werden im Segment T₁ 36 (4 mm Trennstrecke) in Banden in einem relativen Abstand von bis zu 1 cm getrennt.

Die Kombination räumlicher und zeitlicher Gradienten der Temperatur, wie sie mit einem statisch chemischen Gradientensystem nicht erreicht werden kann, ist für einige Anwendungen von großer praktischer Bedeutung. Zwei Anwendungen seien exemplarisch dargestellt. Sie werden in Figur 16 schematisch erläutert.

a) Fragmente sehr unterschiedlicher nativer Wanderungsge-25 schwindigkeit, z.B. infolge stark differierender Größen der Fragmente, sind gemeinsam nur schwierig zu analysieren. Mitunter unterliegt das schnellwandernde kleine Fragment 60 (Fragmente und ihre jeweiligen Gelpositionen sind als kleine Balken repräsentiert) 30 bereits der Strangtrennung, während das große Fragment 70 die Temperatur beginnender Denaturierung noch nicht erreicht hat. Erfindungsgemäß wird die hohe Temperatur T, so eingestellt, daß noch keine Trennung des stabilsten Doppelhelix-Segments bzw. der G:C Klammer eintritt. Die Temperatur T, wird jedoch während der Elektrophorese von niedriger Temperatur auf stetig höhere Temperatur geregelt, höchstens bis $T_1 = T_2$ erreicht ist. Auf diese Weise durchläuft jedes Molekül den

Temperaturgradienten, unabhängig von seiner Wanderungsgeschwindigkeit bzw. Größe.

5

10

15

20

25

b) Renaturierungsexperimente, wie sie in der Figur 16b und 16c schematisch beschrieben sind, ergeben nur dann scharfe Bandensignale, wenn nicht allein ein räumlicher Temperaturgradient durchlaufen wird. In diesem Fall kommt es nämlich zu einem unerwünschten Effekt der Bandenverbreiterung bei der Rückfaltung, der umso störender ist, je steiler die Denaturierungskurve verläuft. In diesem Fall wird die Front der Bande gegenüber dem Bandenende stark beschleunigt, da rückseitig eine niedrigere Temperatur herrscht. Im Ergebnis wird die Bande diffus. Der Effekt ist hingegen sehr erwünscht, wenn umgekehrt die Bandenfront in Laufrichtung gesehen relativ bei höheren Temperaturen läuft. Erfindungsgemäß läßt sich dies auch bei Renaturierungsexperimenten erreichen durch Kombination räumlicher und zeitlicher Gradienten. Anstelle einer Renaturierung in einem linearen T-Gradienten, wie er z.B. mit einer Vorrichtung gemäß Figur 1 durchgeführt werden kann, kann die Probe in einem relativ steigenden Gradienten zwischen T_1 und T_2 (Figur 10) in den Zeiten t₀ bis t₃ (Figur 16b und c) der Elektrophorese unterworfen und analysiert werden, wobei jedoch beide Temperaturen gemeinsam (Figur 16b) oder nur T_1 (Figur 16c) in einem Maße herabgesetzt werden, daß die Probe mit der Laufzeit einer niedrigeren Temperatur ausgesetzt ist, die Bandenfront jedoch immer eine höhere Temperatur hat als ihre Rückseite. Auf diese Weise tritt erfindungsgemäß eine Bandenschärfung ein.

30

Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung können sowohl zur analytischen Erfassung und quantitativen Erfassung als auch zur Präparation von Komponenten aus Stoffgemischen verwendet werden. Die

- 32 -

Analyse und Präparation können an vielen Proben simultan durchgeführt werden; Detektion und Auswertung können automatisch erfolgen. Insbesondere eignen sich Verfahren und Vorrichtung zur Präparation und Analyse von Viroiden, viralen Nukleinsäuren, Satelliten-RNA, zur Analyse von Mutationen in Nukleinsäuren, zur Analyse von Mutationen in Proteinen und zur Analyse von Protein-Nukleinsäure-Komplexen.

10

15

20

5

Die TGGE erweist sich zur Präparation von Varianten als besonders vorteilhaft, da die direkte Sequenzierung von Varianten möglich wird ohne vorherige Klonierung. Dies wird ermöglicht durch Elution geringster Mengen einer spezifischen Variante, die einer enzymatischen Amplifikation und nachfolgender Sequenzierung unterworfen wird. Solche Arbeitsweisen werden in Zukunft an Bedeutung gewinnen, da durch Sicherheitsauflagen das Arbeiten mit sonst zur Amplifikation verwendeten Vektoren und das Arbeiten mit rekombinanten Organismen erschwert wird.

25

25

30

<u>Patentansprüche</u>

- Verfahren zur Trennung und Detektion von Komponenten eines Stoffgemisches durch Temperaturgradienten-Gelelektrophorese (TGGE), dadurch gekennzeichnet, daß entweder
- ein räumlicher Temperaturgradient in Richtung des zur Trennung verwendeten elektrischen Feldes durch mindestens zwei räumlich voneinander entfernte Temperaturniveaus aufgebaut wird oder
 - ein zeitlicher Temperaturgradient durch zeitliche Variation der Temperatur eines Temperaturniveaus aufgebaut wird oder
 - ein Temperaturgradient durch Kombination des räumlichen und zeitlichen Temperaturgradienten aufgebaut wird,
- der Temperaturgradient leitend in die Gelmatrix übertragen wird,
 - die Temperaturniveaus zum Aufbau des räumlichen Temperaturgradienten durch regelbare Heiz- oder Kühlvorrichtungen eingestellt werden, wobei Orte gleichen elektrischen Potentials identische Temperaturen aufweisen, oder
 - zum Aufbau des zeitlichen Temperaturgradienten an jedem Ort der Trennstrecke in dem Trennmedium das Temperaturniveau in zeitlicher Abhängigkeit mittels einer oder mehrerer regelbarer Heiz- oder Kühlvorrichtungen frei wählbar einstellbar ist und ggf.
 - am Ende der Trennstrecke die getrennten Komponenten detektiert werden.
 - Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zeit, in der die Temperaturänderungen stattfinden, kürzer ist als die Zeit des Durchlaufs der Komponenten des zu trennenden Gemisches durch das Trennmedium während der Elektrophorese.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Elektrophorese für die Dauer der Temperaturäquilibrierung abgeschaltet wird.

5

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Temperatur im Bereich von 0 bis 100°C regelbar ist.

Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Temperaturregelung der Temperaturniveaus durch thermostatisierte Flüssigkeitsbäder, Peltierheizungen oder elektrische Heizungen erfolgt.

15

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sich das Trennmedium in einem zylindrischen Hohlkörper oder auf einem flächigen Träger befindet.

20

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß sich das Trennmedium in einem Glas- oder Kunststoffröhrchen befindet oder der flächige Träger eine Metallplatte mit einer darauf befindlichen Folie ist.

25

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Detektion der Komponenten automatisch erfolgt.

- 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die zu trennenden Komponenten geladene Biopolymere sind.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die zu trennenden Komponenten Nukleinsäuren oder Proteine sind.

- 11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Elektrophorese in einer polymeren Mediumstruktur, vorzugsweise an Polyacrylamid als Trennmedium oder in einem trägerfreien Medium durchgeführt wird.
- 12. Verfahren zur qualitativen und quantitativen Detektion von Mutationen von Nukleinsäuren durch Analyse
 des durch Hybridisierung des die Mutation aufweisenden Nukleinsäurefragments (Mutante) mit dem diese
 Mutation nicht aufweisenden Nukleinsäurefragment
 (Wildtyp) gewonnenen Heteroduplexes, wobei das die
 Mutation tragende, zu untersuchende Nukleinsäurefragment so gewählt wird, daß die Mutation in einer thermodynamisch instabilen Region des Heteroduplexes
 liegt.
- 13. Verfahren nach Anspruch 12, wobei die Auswahl der die Mutation enthaltenden thermodynamisch instabilen Region durch Berechnung erfolgt.
- 14. Verfahren nach einem der Ansprüche 12 und/oder 13,
 wobei das zu untersuchende Nukleinsäurefragment so
 gestaltet wird, daß die Mutation in der thermodynamisch instabilsten Region liegt.
- 15. Verfahren nach einem der Ansprüche 12 bis 14, wobei die thermodynamisch stabilere Region des Nukleinsäurefragments endständig Oligo-G- und/oder -C-Nukleotide trägt.
 - 16. Verfahren nach Anspruch 15, wobei die Anzahl der Gund/oder C-Nukleotide 20 bis 30 beträgt.
 - 17. Verfahren nach einem der Ansprüche 12 bis 16, wobei die Nukleinsäuren durch Polymerase Chain Reaction (PCR) amplifiziert werden.

WO 91/02815 PCT/EP90/01366

5

20

25

30

- 36 -

- 18. Verfahren nach einem der Ansprüche 12 bis 17, wobei die beiden verwendeten Oligonukleotide in unmittelbarer Nachbarschaft zur nachzuweisenden Mutation an die zu amplifizierende DNA hybridisieren.
- 19. Verfahren nach einem der Ansprüche 12 bis 18, wobei die zu untersuchenden Heterduplices nach Probenvorbereitung einer Temperaturgradienten-Gelelektrophorese (TGGE) unterzogen werden.
- 20. Verfahren nach Anspruch 19, wobei der Temperaturgradient senkrecht zur Richtung des elektrischen Feldes
 verläuft.
 - 21. Verfahren nach Anspruch 19, wobei der Temperaturgradient parallel zur Feldrichtung des elektrischen Feldes verläuft.
 - 22. Verfahren nach Anspruch 21, wobei der Temperaturgradient zeitlich variiert wird.
 - 23. Verfahren nach Anspruch 22, wobei der Temperaturgradient von einem höheren Temperaturniveau kathodenseitig des elektrischen Feldes ausgeht, das über dem
 Schmelzpunkt der thermodynamisch instabilen Region
 der Heteroduplices liegt, und zeitlich in Richtung
 zum Niveau des anodenseitig liegenden tieferen Temperaturniveaus reguliert wird.
 - 24. Verfahren nach Anspruch 21, wobei das anodenseitige Temperaturniveau des statischen Temperaturgradienten höher liegt als das Temperaturniveau der Kathodenseite.
 - 25. Verfahren nach Anspruch 21, wobei das kathodenseitige Temperaturniveau des statischen Temperaturgradienten höher liegt als das Temperaturniveau der Anodenseite.

WO 91/02815

20

- 26. Oligonukleotid mit 5'-terminalen Affinitätsgruppen.
- 5 27. Oligonukleotid nach Anspruch 26, wobei als Affinitätsgruppe zwei bis acht Histidinreste 5'-terminal gebunden sind.
- 28. Oligonukleotid nach Anspruch 27, wobei die Anzahl der Histidinreste sechs beträgt.
 - 29. Oligonukleotid nach Anspruch 26, wobei als Affinitätsgruppe Biotinylreste 5'-terminal gebunden sind.
- 30. Oligonukleotid nach einem der Ansprüche 26 bis 29, enthaltend zusätzlich eine Restriktionsschnittstelle und/oder eine G/C-reiche Box und/oder eine A/T-reiche Box und eine mit der zu untersuchenden Nukleinsäuresequenz hybridisierende Sequenz.
 - 31. Verwendung des Oligonukleotids nach einem der Ansprüche 26 bis 30 als Primer in der PCR zur Amplifizierung der zu untersuchenden Nukleinsäuren und/oder in einem Verfahren nach einem der Ansprüche 12 bis 25.
- 32. Verfahren nach einem der Ansprüche 12 bis 25, wobei die die Mutation tragende Nuhleinsäure unter Verwendung des Oligonukleotids nach einem der Ansprüche 26 bis 30 amplifiziert wird, an einem zu den Affinitätsgruppen der Oligonukleotide nach Ansprüchen 26 bis 30 an fester Phase fixierten affinen Material gebunden wird, sodann in Gegenwart gewünschtenfalls markierter, die Mutation nicht aufweisender Nukleinsäure-Einzel- oder -Doppelstränge mindestens einem Denaturierungs-/Renaturierungszyklus unterworfen wird, anschließend eluiert und danach dem Trennungsverfahren unterworfen wird.

WO 91/02815 PCT/EP90/01366

5

- 38 -

- 33. Verfahren nach Anspruch 32, wobei das zu der Affinitätsgruppe des Oligonukleotids nach Anspruch 26 affine Material ein polymerer Träger ist, der ein Chelat aus einem Chelatbildner und einem Übergangsmetallion enthält.
- 34. Verfahren nach Anspruch 33, wobei das zu der Affinitätsgruppe des Oligonukleotids affine Material ein
 polymerer Träger ist, der ein Chelat aus über kovalent an den Träger gebundener Nitrilotriessigsäure
 und Nickel²⁺ enthält.
- 35. Verfahren nach Anspruch 32, wobei das zu der Affinitätsgruppe des Oligonukleotids nach einem der Ansprüche 26 bis 30 affine Material ein polymerer Träger ist, der kovalent gebundenes Avidin oder Streptavidin aufweist.
 - 36. Verfahren nach einem der Ansprüche 32 bis 35, wobei der polymere Träger eine Membran oder ein partikelförmiges Material ist.
- 37. Verwendung des Verfahrens nach einem der Ansprüche 12 bis 25 und/oder 32 bis 36 zur Auffindung und Charakterisierung von Mutationen in DNA oder RNA wie Punktmutationen, Deletionen, Insertionen und Umstellungen der Nukleinsäurekette.
 - 38. Verwendung des Verfahrens nach einem der Ansprüche 12 bis 25 und/oder 32 bis 36, wobei das Probenmaterial aus lebendem, totem fossilem und in vivo nicht mehr stoffwechselaktivem Gewebe stammt.
 - 39. Verwendung des Verfahrens nach einem der Ansprüche 12 bis 25 und/oder 32 bis 36 zur Durchführung genetischer Studien wie forensische Analytik, Aufklärung

WO 91/02815

von Erbkrankheiten und/oder genetisch charakterisierter Anomalien, Individuenanalytik, Fingerprinting.

5

- 40. Verwendung des Verfahrens nach einem der Ansprüche 12 bis 25 und/oder 32 bis 36, wobei Feincharakterisierungen von Stammabweichungen in der industriellen Mikrobiologie, bei medizinisch relevanten Krankheitserregern, den Viren, insbesondere bei den für häufige Mutationen bekannten Viren, Bakterien, Pilzen und Einzellern durchgeführt werden.
- 41. Verwendung des Verfahrens nach einem der Ansprüche 12 bis 25 und/oder 32 bis 36, wobei evolutionäre Entwicklungsstudien betrieben werden.
- 42. Verwendung des Verfahrens nach einem der Ansprüche 12 bis 25 und/oder 32 bis 36 zur präparativen Herstellung gefundener Mutanten, wobei eine Mutante als einzelne Bande in der Detektionseinheit aufgespürt wird und direkt oder durch Richtungsänderung der Spannungsgradienten im Rahmen einer Elektroelution isoliert, direkt PCR-amplifiziert oder direkt sequenziert und/oder kloniert wird.
- 43. Verwendung des Verfahrens nach einem der Ansprüche 12 bis 25 und/oder 32 bis 36 zur Bestimmung und Zuordnung von Individuen, wobei genetisch amplifizierte
 Gensegmente, insbesondere solche aus Einzel-KopieRegionen des Genoms, mit einem homogenen Standardsegment hybridisiert werden oder mit homologen Sequenzen
 einer auf Identität des zugehörigen Individuums zu
 prüfenden, analog genetisch amplifizierten DNA hybridisiert werden.
 - 44. Mittel zur Durchführung des Verfahrens nach einem der Ansprüche 12 bis 25 und/oder 32 bis 36, bestehend

WO 91/02815

5

aus einem Gemisch von Reagentien wie einer oder mehrerer markierter Nukleinsäuresonden, einer teilweise
oder vollständig homologen Standardnukleinsäure in
nicht markierter Form sowie einem Hybridisierungspuffer, der im Temperaturbereich zwischen 0 und 100°C
Denaturierung und Renaturierung von Doppelstrangstrukturen erlaubt.

- 45. Mittel zur Durchführung des Verfahrens nach einem der Ansprüche 12 bis 25 und/oder 32 bis 36, bestehend aus einem Gemisch von mindestens einer markierten Nukleinsäuresonde, einer teilweise oder vollständig homologen Standardnukleinsäure in nicht markierter Form sowie einem Hybridisierungspuffer, der im Temperaturbereich zwischen 0 und 100°C Denaturierung und Renaturierung von Doppelstrangstrukturen erlaubt.
- 46. Mittel gemäß Anspruch 45, wobei das Gemisch einen Festphasenträger nach einem der Ansprüche 32 bis 36 enthält, mit dessen Hilfe amplifizierte Segmente direkt dem Reaktionsgemisch entzogen werden können.
- oder spezifischen Gensequenzen, wobei einem Gemisch differierender Sequenzen, deren eine Konzentration bekannt ist, im Unterschuß ein Marker-Nukleinsäuremolekül zugesetzt wird, dessen Sequenz mit der Sequenz eines der vorgenannten Sequenzen identisch ist und dieses Gemisch mindestens einem Denaturierungsund Renaturierungszyklus unterworfen und analysiert wird.
 - 48. Verfahren nach Anspruch 47, wobei die Sequenz der markierten Nukleinsäure mit der Sequenz der Nukleinsäure, deren Konzentration bekannt ist, identisch ist.

5

- 49. Verfahren nach Anspruch 47 und/oder 48, wobei die nach einem Denaturierungs-/Renaturierungszyklus gebildeten Hybride mittels Temperaturgradientengelelektrophorese (TGGE) getrennt werden und deren relative Signalintensitäten gemessen werden.
- 50. Verfahren nach einem der Ansprüche 47 bis 49, wobei die zu analysierenden Nukleinsäuren durch enzymatische Amplifikation erhalten worden sind.
- 51. Vorrichtung zur Durchführung der Temperaturgradienten-Gelelektrophorese (TGGE), dadurch gekennzeichnet, 15 daß zwischen mindestens zwei einen Temperaturgradienten aufbauenden Heiz- oder Kühlvorrichtungen (1, 2) mit Wärmereservoir (4, 5), bei mehr als zwei Heizoder Kühlvorrichtungen zwischen den entferntesten Heiz- oder Kühlvorrichtungen, ein Hohlkörper (6), 20 der die Heiz- oder Kühlvorrichtungen durchdringt, angeordnet ist, welcher das zur Trennung verwendete Trennmedium in seinem Lumen enthält, und daß der Hohlkörper (6) von einem wärmeleitenden Thermostatiermantel (7) umgeben ist, der mit mindestens einer der 25 Heiz- und/oder Kühlvorrichtungen (1, 2) thermisch verbunden ist.
 - 52. Vorrichtung nach Anspruch 51, dadurch gekennzeichnet, daß der Hohlkörper (6) zylindrisch ausgebildet ist.
 - 53. Vorrichtung nach Anspruch 51 und/oder 52, dadurch gekennzeichnet, daß der Hohlkörper (6) eine Kapillare ist.
 - 54. Vorrichtung nach einem der Ansprüche 51 bis 53, dadurch gekennzeichnet, daß zwischen der äußeren Wand des Hohlkörpers (6) und der inneren Wand des Thermostatiermantels (7) ein Wärmeaustauscher (8) vorgesehen ist.

WO 91/02815 PCT/EP90/01366

5

10

20

25

30

- 42 -

- 55. Vorrichtung nach Anspruch 54, dadurch gekennzeichnet, daß der Wärmeaustauscher (8) aus einer viskosen Flüssigkeit besteht.
- 56. Vorrichtung nach einem der Ansprüche 51 bis 55, dadurch gekennzeichnet, daß die Heiz- oder Kühlvorrichtungen ein thermostatisiertes Flüssigkeitsbad und Peltierheizungen (9) oder elektrische Heizungen und/oder ein Wärmereservoir (4, 5) aufweisen.
- 57. Vorrichtung nach einem der Ansprüche 51 bis 56, dadurch gekennzeichnet, daß der Thermostatiermantel

 (7) mit allen Heiz- oder Kühlvorrichtungen (1, 2)
 wärmeleitend verbunden ist.
 - 58. Vorrichtung nach einem der Ansprüche 51 bis 57, dadurch gekennzeichnet, daß eine dritte Heiz- oder
 Kühlvorrichtung (3) an der Probenaufnahmeseite vorgesehen ist.
 - 59. Vorrichtung nach Anspruch 58, dadurch gekennzeichnet, daß der Thermostatiermantel (7) von der zweiten Vorrichtung (2) thermisch entkoppelt ist.
 - 60. Vorrichtung nach einem der Ansprüche 51 bis 59, dadurch gekennzeichnet, daß die Heiz- oder Kühlvorrichtungen (1, 2) zeitlich regelbar sind.
 - 61. Vorrichtung nach einem der Ansprüche 51 bis 60, dadurch gekennzeichnet, daß die Heiz- oder Kühlvorrichtungen (1, 2) mit den entsprechenden Wärmereservoirs (4, 5) eine Vielzahl von Hohlkörpern (6) aufnehmen, indem die Vorrichtungen (1, 2) und (4, 5) blockartig (4a, 5a) ausgestaltet sind und eine Vielzahl von Durchbohrungen (11) aufweisen, durch die die Hohlkörper (6) hindurchragend angeordnet sind.

5

10

- 62. Vorrichtung nach Anspruch 61, dadurch gekennzeichnet, daß die Hohlkörper (6) endseitig über die blockartig ausgestalteten Vorrichtungen (4a, 5a) hinausragen.
- 63. Verwendung der Vorrichtung nach einem der Ansprüche 51 bis 62 zur Trennung von Stoffgemischen, in denen mindestens eine Komponente im Temperaturbereich des Temperaturgradienten eine thermische Umwandlung erfährt.
- 64. Verwendung der Vorrichtung nach einem der Ansprüche 51 bis 62 in dem Verfahren nach einem der Ansprüche 1 bis 62.
- 65. Verwendung der Vorrichtung nach einem der Ansprüche
 51 bis 62 zum Nachweis und zur Unterscheidung von
 Viroiden, viralen Nukleinsäuren, Satelliten-RNA, zur
 Analyse von Mutationen in Nukleinsäuren, zur Analyse
 von Mutationen in Proteinen und zur Analyse von Protein-/Nukleinsäure-Komplexen.
- 66. Verwendung der Vorrichtung nach einem der Ansprüche 51 bis 62 zur Präparation von Komponenten des zu trennenden Stoffgemisches.
- 67. Verwendung der Vorrichtung nach einem der Ansprüche
 51 bis 62 zur Präparation von Viroiden, viralen
 Nukleinsäuren, Satelliten-RNA, zur Präparation von
 mutierten Nukleinsäuren in Homo- und Heteroduplices,
 zur Präparation von Proteinen und zur Präparation
 von Protein-/Nukleinsäure-Komplexen.

Generelles Sondendesign zur TGGE - Analyse genomischer Mutationen

Fig. 1

Fig. 2

3/18

Fig. 3

DUBO: (USERS.STEGER.SEO) HUMHBB_PREMRNA.LIS:3

GenBank: MUNHBB 62155 - 63760 : pre-mRNA 62205 - 62296 : Exon1 62427 - 62649 : Exon2 63500 - 63628 : Exon3

This file: 62155 - 62649 = 1 - 495 51 - 142 : Exon2 272 - 495 : Exon3

1 ACATTIGCTI CIGACACAAC IGIGTICACI AGCAACCICA AACAGACACC

51 ATGGTGCACC TGACTCCTGA GGAGAAGTCT GCCGTTACTG CCCTGTGGGG

101 CAAGGTGAAC GTGGATGAAG ITGGTGGTGA GGCCCTGGGC AGGTTGGTAT

151 CAAGGTTACA AGACAGGTTT AAGGAGACCA ATAGAAACTG GGCATGTGGA

201 GACAGAGAAG ACTETTGGGT TTCTGATAGG CACTGACTCT CTCTGCCTAT

251 TEGETETATIT TECCASECTI AGGETGETGS TEGETETACCE TEGGACCEAG

301 AGGITETTIG AGICCITIGG GGATCIGICC ACTCCIGATG CIGITATGGG

351 CAACCCTAAG GIGRAGGCTC ATGGCCAAGAA AGTGCTCGGT GCCTTTAGTG

401 ATGGEETGGE TEACCTGGAC AACCTCAAGG GCACCTTTGC CACACTGAGT

451 GAGCTGCACT GTGACAAGCT GCACGTGGAT CCTGAGAACT TCAGG

DUBO: (USERS.STEGER.SEQ) KARSTEN9.LIS; 1

125 GenBank: HUMHBB GC-clamp + Pla/62233-62338(=Plb)

CEGECGETACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGACCAATAG

pot. Hut. bei 62302(= Position 29): T -> C

5/18

Fig. 5a

7/18 Fig. 7

Amplifikation und TGGE-Probenvorbereitung

TGGE Bestimmung der PCR -template Kopienzahl / Anfangskonzentration

Interner Standard template

20 Zyklen / 100% Effizienz

20 Zyklen / 80% Effizienz

1.05 µg : 0.105 µg

12.1 ng: 1.21 ng

10:1

10:1

TGGE Signal Intensitäten

template = 0.1 pg

10/18

Fig. 10

Fig. 11

WO 91/02815 12/18 PCT/EP90/01366

Multikanal - Version im Mikrotiterformat

Fig. 12

Fig. 13 a-d

Fig. 14

Fig. 14a

Fig. 15a

Fig. 15b

a)

18/18

b)

Fig. 16

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP90/01366

I. CLASSIFICATION OF SUBJECT MATTER (if several class According to International Patent Classification (IPC) or to both Na Int.Cl ⁵ : Cl2Q 1/68, B0lD 57/02, G0lN II. FIELDS SEARCHED Minimum Docume Classification System Int.Cl ⁵ Cl2Q, G0lN, B0lD	tional Classification and IPC	
Int.C1 ⁵ : C12Q 1/68, B01D 57/02, G01N II. FIELDS SEARCHED Minimum Docume Classification System	27/26	
II. FIELDS SEARCHED Minimum Docume Classification System		
II. FIELDS SEARCHED Minimum Docume Classification System		
Classification System	entation Searched 7	
5		
Int.Cl ⁵ Cl2Q, GOlN, BOlD	Classification Symbols	
Int.Cl Cl2Q GOIN BOID		
_ ===, ====, ====		
Documentation Searched other	than Minimum Documentation s are included in the Fields Searched	
TO BIO Extent that odds a position	are meloded in the riside Searched	
III. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category • Citation of Document, 11 with Indication, where ap	propriate, of the relevant passages 12	Relevant to Claim No. 13
X Electrophoresis, Volume 10 (5-6) 19 June 1989	1
VCH, (Weinheim, DE),	2 0,, 23 0 0 2505,	*
D. Riesner et al.: "Temp	erature-gradient gel	
electrophoresis of nucle		
conformational transitio	ns, sequence variations.	
and protein-nucleic acid	interactions",	
pages 377-389, see the w	hole article; in	
particular abstract; pag	e 378, column 1, line	
54 - column 2, line 14		
(cited in the application	n)	
A Y		51-67
*		12,37-41,
		19–25
Y Methods in Enzymology, Volum	- e 155 1987	12 27 41
Academic Press, Inc., (Orlando FLA US)	12,37-41, 19-25
R.M. Myers et al.: "Dete	ction and localization	19-25
of single base changes b	y denaturing gradient	<u>'</u>
gel electrophoresis", pa	ges 501-527	
see page 502, lines 22-3	3; page 505, line 40 -	
page 506, line 20		
	-	
	./.	
 Special categories of cited documents: 10 "A" document defining the general state of the art which is not 	"T" later document published after the or priority date and not in conflict.	e international filing date
considered to be of particular relevance	cited to understand the principle invention	or theory underlying the
"E" earlier document but published on or after the international filling date	"X" document of particular relevance	e; the claimed invention
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another	involve an inventive step	
citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance cannot be considered to involve a	n inventive step when the
other means	document is combined with one of ments, such combination being of in the art.	bylous to a person skilled
aPa document published prior to the international filing date but later than the priority date claimed	"&" document member of the same p	stent family
IV. CERTIFICATION		
Date of the Actual Completion of the International Search	Date of Mailing of this International Sea	arch Report
13 November 1990 (13.11.90)	8 February 1991 (08.02	2.91)
International Searching Authority	Signature of Authorized Officer	
European Patent Office	Organis of Maniguizes Curces	

Form PCT/ISA/210 (second sheet) (January 1985)

International Application No. PCT/EP90/01366

III. DOCU	MENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEE	דו
Category *	Citation of Document, with Indication, where appropriate, of the relevant passages	Relevant to Claim No
A	Nucleic Acids Research, Volume 13, No. 9, 10 May 1985, IRL, (Oxford, GB), R.M. Myers et al.: "Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electro- phoresis", pages 3131-3145 see abstract: page 3132, lines 10-35; page 3133, lines 4-15	12-16
A	Proceedings of the National Academy of Sciences USA, Volume 86, January 1989, V.C. Sheffield et al.: "Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes", pages 232-236 see abstract; page 232, column 2, lines 23-43 (cited in the application)	17,18,31, 42
A	Nucleic Acids Research, Volume 16, No. 23, 23 December 1988, IRL, (Oxford, GB), AC. Syvänen et al.: "Quantification of polymerase chain reaction products by affinity-based hybrid collection", pages 11327-11338 see abstract	32–36
A	EP, A, 0318273 (NORTHEASTERN UNIVERSITY) 31 May 1989 see abstract	51–67
A	EP, A, 0253303 (F. HOFFMANN-LA ROCHE & CO.) 20 January 1988 see page 3, line 28 - page 6, line 22 (cited in the application)	33–34
P,X	Nucleic Acids Research, Volume 18, No. 9, 11 May 1990, IRL, (Oxford, GB), R.M. Wartell et al.: "Detecting base pair substitutions in DNA fragments by temperature- gradient gel electrophoresis", pages 2699- 2705 see the whole article: in particular abstract	1,12

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET	
V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1	
This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following real 1. Claim numbers because they relate to subject matter not required to be searched by this Authority, namely:	sons:
2. Claim numbers, because they relate to parts of the international application that do not comply with the prescribed ments to such an extent that no meaningful international search can be carried out, specifically:	require-
Claim numbers, because they are dependent claims and are not drafted in accordance with the second and third senter	•
PC1 PURE 6.4(a).	nces or
VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 2	
This International Searching Authority found multiple inventions in this international application as follows: 1. Claims 1,3-25 and 31-67 (all partially) 2. Claims 1,3-25 and 31-67 (all partially), 2 (entirely) 3. Claims 12-18,31-48,50 (all partially) 4. Claims 26-30 (all entirely)	
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable of the international application.	
2. As only some of the required additional search fees were timely paid by the applicant, this international search report cover those claims of the international application for which fees were paid, specifically claims:	rs only
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted invention first mentioned in the claims; it is covered by claim numbers: 1,3-25 and 31-67 (all partially)	cted to
4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority (with payment of any additional fee.	did not
Remark on Protest	1
The additional search fees were accompanied by applicant's protest. No protest accompanied the payment of additional search fees.	1

Form PCT/ISA/210 (supplemental sheet (2)) (January 1985)

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

EP 9001366 SA 39209

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 05/02/91

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date		nt family mber(s)	Publication date
EP-A- 0318273	31-05-89	US-A- JP-A-	4898658 1167652	06-02-90 03-07-89
EP-A- 0253303	20-01-88	AU-B- AU-A- JP-A- US-A- ZA-A-		10-05-90 14-01-88 25-02-88 31-10-89 11-01-88
				-

INTERNATIONALER RECHERCHENBERICH

Internationales Aktenzeichen PCT/EP 90/01366

													-100 0			eshan\6	
I. KLAS	SSIFIKATION	DES A	NMELDU	NGSGE	GENS	TAN	DS (bei m	ohrer	en K	L'Incom	ikasia	Symbo	der ID	C ELIE	anzu	geben/-	
Nach	der Internation	nalen Pa	tentklassifi	kation	(IPC) d	oder n	acn der n	ation	Sien	V18331	IKALIU		UEI 11	•			
Int.C	• •		2 1/68	, B	01	D :	57/02	, (G ()1 N	27	/26					
II. RECI	HERCHIERT	SACH	GEBIETE				nierter Mi			457							\dashv
					Rec	cherch				ionssy	mbole						
Klassifika	ationssystem							(1833)	TIKE	1011337							
int .C	.1.5		C 12	Q,	G ()1 1	N, B	01	D								
		Reci	herchierte n	icht zu	m Min	destp	rüfstoff g	ehôre	nde	Veröff	entlich	ungen	, sowe	it diese	•		1
				u	nter di	e rech	nerchierte	n Sac	hget	iete fa	llen ^o						
III. EIN	SCHLÄGIGE	VERÖF	FENTLICH	IUNGE	Na							2 anhlis	oben T	-ile 12	\neg	Betr. Anspruch f	Vr. 13
Art*	Kennzeic	hnung de	er Veröffen	tlichun	3 ¹¹ ,50v	veit er	rforderlic	h unti	er A	ngape (er ma	sgeom	cnen i	6116	+	Dett. Pinepres	
x	Ele		phore	imbo	- i -		H' 1									1	
	-	D. gel Ana sec aci sie die	Riesn l elec alysis quence id int ehe de e Zusa Zeile	er e trop of val erac en ge mme:	et a phor cor riat ctic anze nfa:	el.: res: nfo: tion ons en ssu spa	: "Te is of rmati ns, a ", Sei Arti Arti ng; s	ona ind iter kel	al p: n; te	tra tra rote 377- insl 378	insi in- 389 besc	tic nuc	ns, clei ere	,			
Ì	ir	der	Anme:	ldun	ig e	:IWë	ihnt										Ì
A				-	-							•				51-67	
Y															Ì	12,37-4 19-25	1,
							-				•	•	/-				
"E" a	ondere Katego Veröffentlichu definiert, aber älteres Dokum tionalen Anme	ng, die nicht al ent, das Ededatun	is besonder jedoch erst n veröffend	s bedet am odd	utsam er nach orden i	anzus n dem ist	interna-		ist Ve	eldedat und n erständ ler der	um od nit der nis de ihr zug	er den Anme s der runde	n Prio eldung Erfin liegen	ritätsda nicht l dung z den Th	kollid Jugrui Jeorie	n internationaler veröffentlicht w liert, sondern nu ndeliegenden Pri angegeben ist	r zum inzips
	Veröffentlichu zweifelhaft en fentlichungsda nannten Veröf anderen beso	scheinen num ein fentlichu nderen (zu lassen, ier anderen ing belegt w Grund ange	oder o im Re erden s geben	cherch oil ode ist (w	henber ir die a rie aus	richt ge- us einem sgeführt)		te ke	Erfino eit beru eröffen	ung ka hend b tlichur	etraci	cht als htet w beson	neu oo erden nderer i	ier au Bedeu erfind	utung; die beans of erfinderischer utung; die beanst derischer Tätigkt	oruch-
	Veröffentlicht eine Benutzu bezieht Veröffentlicht	ng, eine	Ausstellun	g oder	rionale	n An	meldeda-		ru ei ga ei	hend (ner od orie in nen Fa	oetraci er meh Verbin chman	reren Idung In nahi	erden andere gebrac elieger	, wenn en Verö eht wird ad ist	i die offent d und	veromentichung dichungen dieser didiese Verbindu	Kate- ng für
1 .	tum, aber nac licht worden i	h dem bi	eanspruchte	n Prior	itātsda	mw A	eroffent-	8	'" V	eröffer	ntlichu	ng, die	Mitgl	ied der	selbe	n Patentfamilie i	st
	ESCHEINIGU							1.	A b			. :		alas P	- has	chenberichts	
D	atum des Abs		der internati vember			erche		ľ	~DS€	::NUECIA1	nw os			FEB			
<u>.</u>								-+	less	erche:4	e etpe h			ten Be			
lr	nternationale		ienbehörde inäisches	Patent	tamt					ine Ime						per	

III.EINS	CHLÄGIGE VERÖFFENTLICHUNGEN (Fortsetzung von Blatt 2)	Betr. Anspruch Nr.	
Art *	Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile	Bett. Attaproces fer.	1
Y	Methods in Enzymology, Band 155, 1987, Academic Press, Inc., (Orlando, FLA, US), R.M. Myers et al.: "Detection and locali- zation of single base changes by denaturing gradient gel electrophoresis", Seiten 501- 527	12,37-41, 19-25	
	siehe Seite 502, Zeilen 22-33; Seite 505, Zeile 40 - Seite 506, Zeile 20		,
A	Nucleic Acids Research, Band 13, Nr. 9, 10. Mai 1985, IRL, (Oxford, GB), R.M. Myers et al.: "Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis", Seiten 3131- 3145	12-16	ē,
	siehe Zusammenfassung; Seite 3132, Zeilen 10-35; Seite 3133, Zeilen 4-15		
A .	Proceedings of the National Academy of Sciences USA, Band 86, Januar 1989, V.C. Sheffield et al.: "Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes", Seiten 232-236 siehe Zusammenfassung; Seite 232, Spalte 2,	17,18,31,	
	Zeilen 23-43 in der Anmeldung erwähnt		
A	Nucleic Acids Research, Band 16, Nr. 23, 23. Dezember 1988, IRL, (Oxford, GB), AC. Syvänen et al.: "Quantification of polymerase chain reaction products by affinity-based hybrid collection", Seiten 11327-11338 siehe Zusammenfassung	32-36	
A	EP, A, 0318273 (NORTHEASTERN UNIVERSITY) 31. Mai 1989 siehe Zusammenfassung	51-67	
A	EP, A, 0253303 (F. HOFFMANN-LA ROCHE & CO.) 20. Januar 1988 siehe Seite 3, Zeile 28 - Seite 6, Zeile 22 in der Anmeldung erwähnt	33-34	
P,X	Nucleic Acids Research, Band 18, Nr. 9, 11. Mai 1990, IRL, (Oxford, GB), R.M. Wartell et al.: "Detecting base pair substitutions in DNA fragments by temperature- gradient gel electrophoresis", Seiten 2699- 2705 siehe den ganzen Artikel; insbesondere die Zusammenfassung	1,12	Ŧ

WEITERE ANGABEN ZU BLATT 2	
· ·	
·	
V. BEMERKUNGEN ZU DEN ANSPRÜCHEN, DIE SICH ALS NICHT RECHERCHIERBAR ERWIESE	N HABEN ¹
Gemäß Artikel 17 Absatz 2 Buchstabe a sind bestimmte Ansprüche aus folgenden Gründen nicht Gegenstand der in Recherche gewesen:	ternationalen
1. Ansprüche Nr, weil sie sich auf Gegenstände beziehen, die zu recherchieren die Behörde nicht	verpflichtet ist, nämlich
•	
2. Ansprüche Nr , weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgesch	hriebenen Anforderungen
so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, namlic	h
•	
	ļ
3. Ansprüche Nr, weil sie abhängige Ansprüche und nicht entsprechend Satz 2 und 3 der Regel 6.	4 a) PCT about the size
· ·	or ror augerate sing.
VI. X BEMERKUNGEN BEI MANGELNDER EINHEITLICHKEIT DER ERFINDUNG2	
Die Internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen er	nthale:
1. Patentansprüche 1.3-25 und 31-67 (3336 Acidonia)	
- 4. FALCHUANSDIUGNO 4-75 und 21-67 /-11	: . /
	(gesamt)
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt : Recherchenbericht auf alle recherchierbaren Ansprüche der internationalen Anmeldung.	sich der internationale
2. Da der Anmelder nur einige der erforderlichen zurätzlichen Beschausband in	
tionale Recherchenbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren gezahlt w	streckt sich der interna- orden sind, nämlich
3. X Der Anmelder bre die nefestedisken auffahl	
3. LX Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der inte bericht beschränkt sich daher auf die in den Ansprüchen zuerst erwahnte Erfindung; sie ist in folgenden An	ernationale Recherchen-
1,3-25 und 31-67 (alle teilweise)	spruchen erfaßt:
· · · · · · · · · · · · · · · · · · ·	
4. Da für alle recherchierbaren Ansprüche eine Recherche ohne einen Arbeitsaufwand durchgeführt werden ko	
The state of the s	onte, der eine zu- suhr nicht verlangt.
benieven a mes Mioaspruchs	-
Die zusätztlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.	
Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.	

ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.

EP 9001366

39209 SA

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 05/02/91
Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

EP-A- 0318273 31-05-89 US-A- 4898658 06-02 JP-A- 1167652 03-07	-9 0
EP-A- 0253303 20-01-88 AU-B- 596674 10-05 AU-A- 7524587 14-01 JP-A- 63044947 25-02 US-A- 4877830 31-10 ZA-A- 8704860 11-01	-88 -88 -89