EXAMPLE OF ATTRIBUTE SELECTION 1

- Which attributes (features) are important in telling the difference between bad and good?
 - 1. Compute a set of potentially useful features for each image
 - 2. Perform feature selection using all weka methods
 - 3. The most frequently occurring features can be associated with aesthetic value.

EXAMPLE OF ATTRIBUTE SELECTION 2

Feature	Description					
F02	Earth Mover Distance from unsaturated grey					
	(Colourfulness)					
F01, F03 - F07	Average hue, saturation, brightness on all pixels and					
	the pixels in the centre of the image					
F08 - F19	Various wavelet functions used to compute levels of					
	smoothness on different scales					
F20 - F21	Image dimensions (width+height, width/height)					
F22	The number of contiguous regions based on colour					
	similarity larger than $1/100$ th of the total number of					
	pixels in the image					
F23 - F37	Average hue, saturation and brightness for each of the					
	5 largest contiguous regions of similar colours					
F38 - F42	Size in pixels of each of the 5 largest regions of similar					
	contiguous colours divided by the total number of pixels					
	in the image					
F43 - F44	Two variations on the measure of complimentary					
	colours					
F45 - F49	The location in the image of the centre of each of the					
	5 largest contiguous regions of similar colours					
F50 - F52	Depth of field effect (emulating telephoto lens zoom)					
	on each of the hue, saturation and brightness channels					

MOST IMPORTANT ATTRIBUTES

CFS	Gain	Info	OneR	Relief	Symmetric	Wrapper
	Ratio	Gain			Uncert	
F01	F30	F25	F25	F04	F30	F04
F04	F29	F41	F41	F07	F45	F18
F07	F27	F40	F26	F41	F39	F21
F13	F34	F39	F39	F25	F29	F31
F16	F28	F42	F40	F24	F35	F36
F25	F45	F44	F38	F03	F42	F41
F30	F33	F37	F31	F06	F27	
F37	F12	F43	F01	F01	F34	
F39	F39	F45	F04	F13	F37	
F40		F38	F07	F16	F25	
F42						
F45						

Number of occurrences

5 F39 5 F25 4 F41 4 F04 3 F45 3 F42 3 F40 3 F37 3 F30 3 F07 3 F01

• Golden Nugget. Only colour features are being used, no texture features.

EXAMPLE OF ATTRIBUTE SELEC

Classification accuracy of selected feature

Classifier	Full	CFS	GainRatio	InfoGain	OneR	Re
OneR	72	71	71	72	72	7:
J48	87	88	75	88	87	8
Random Forest	91	92	77	88	88	9
SMO	89	83	55	79	79	8

Classification accuracy of EVOLVED featu

Classifier	Accuracy
OneR	80.3%
J48	89.7%
Random Forest	91.8%
SMO	89.9%

AN EVOLVED FEATURE

PREPARATION OF DATA FOR DATA MINING

- This lecture will be based on the files in: /KDrive/SEH/SCSIT/Students/Courses /COSC2111/DataMining/
 - data/parking_duration_of_parking_event_vs_street_ID.csv
 This is a file of 12,208,179 parking events in the city of Melbourne.
 - data/parking-small.csv
 This is a random subset of 10,000 events
 - code-and-scripts/parking-time.sh
 This is a script for taking the arrival date-time and generating useful features for data mining.
- Some typical data Arrival Time 24/08/2012 11:34 17/03/2012 13:07 7/12/2011 19:50 3/03/2012 14:36 29/1/2012 12:26

PREPARATION OF DATA FOR DATA MINING

Very bad

- EXCEL or other spreadsheet
- Your favourite editor
- Interactive manual steps

• Why?

- The procedure always needs to be done several times
- Repeated manual steps introduce error
- Little value in learning from erroneous data

Very good

- Data preparation script that can be executed repeatedly and independently verified for correctness
- Uses mature utility programs

UNIX TOOLS FOR DATA MINERS

- Minimum requirement
 - cat, head, tail, cut, grep, pr, paste, sort, uniq,
 tr
 - Substitution with sed
 - Basic shell scripting
- To be an expert
 - Regular expressions
 - Advanced sed
 - Advanced shell scripting
 - awk or perl or python
- On a windows PC, install CYGWIN or equivalent
 Windows 10 has Ubuntu
 Mac has terminal

UNIX AND XWINDOWS ON UNIX SERVERS

- 1. Read the basic unix guide (Canvas week 6)
- 2. Use putty with X connection
- 3. On RMIT servers run xeyes to verify X connection
- 4. On RMIT servers start xclock to avoid timeout
- 5. putty demo

Important Unix tools

```
cat file1 file2 file3
Concatenate files to standard output
head -n 100 file
Send the first 100 lines to stdout
tail -n 10 file
Send the last 10 lines to stdout
cut -d',' -f7 file
Send col 7 to stdout
sed -e's/from/to/'|
Stream editor: replace first occurrence in
a line from with to
sed -e's+from+to+g'
replace all occurrences from with to
paste -d, col1 col2 col3
merge lines of files col1 col2 col3
fgrep str file
Get regular [fixed] expression
Send only lines that contain str to stdout
egrep -e'RE' file
Send only lines that contain the regular expression
RE to stdout
```

tr ' ',' file
Translate characters
Change all occurrences of space to comma

tr -d'\r' file
Delete all occurrences of the return character
sort file
Sort
uniq file
Omit or count repeated lines
wc -l file
Word count, count lines (-l)

NEURAL NETWORKS SUMMARY

- 1. Introduction
- 2. Biological origins
- 3. Computational neuron
- 4. Overview of architectures
- 5. Feed forward networks
- 6. Training of networks (JavaNNS Package)
- 7. Data encoding/preparation

BIOLOGICAL NEURON

- The neuron receives impulses (signals) from other neurons via dendrites
- The neuron sends impulses to other neurons via the axon
- Input at dendrite, output from axon
- Synapse: dendrite of one neuron and axon of another
- Impulses cause neurotransmitters (chemicals) to diffuse across the synapse
- Enhance (excite) or inhibit
- Action adjusted (by learning?)

CEREBRAL CORTEX

- ullet Contains 10^{11} neurons = no. stars in Milky Way
- Neurons massively connected
- ullet Each neuron is connected to 10^3 to 10^4 other neurons
- Much more complex and dense than telephone network
- ullet Brain contains 10^{14} to 10^{15} connections
- Brain message passing is 1,000,000 times slower than modern electronic circuits
- A complex decision like recognizing a face takes a few hundred milliseconds
- Operational speed of neurons is a few millisecon
- Thus computations cannot take more than 100 serial stages
- One hundred step rule

KINDS OF ARTIFICIAL NEURAL NETWORKS

- There are a very large number of network types
 - Hopfield
 - Hebbian
 - Recurrent
 - Radial Basis Functions
 - Kohonen self organizing map
 - **–** . . .
- We look only at the most frequently used types
 - Feed forward multi-layer perceptron with
 - with logistic OR linear threshold units
 - trained by backward error propagation

ARTIFICIAL NEURON

• Computation carried out by the neuron

$$x_{i} = \sum_{j=1}^{n} w_{ij} i n_{ij} + T_{i}$$
$$y_{i} = transfer function(x_{i})$$

- Transfer function is usually non-linear
- \bullet T_i
 - Threshold
 - also called the bias
 - sometimes written w_0

COMMON TRANSFER FUNCTIONS

Sigmoid/Logistic

Threshold

 $if \ x < t \ then \ 0 \ else \ 1$

DEEP NETWORK ACTIVATION FUNCTION

ReLU (Rectified linear Unit)

$$y_i = 0 \text{ for } x \leq 0$$

$$y_i = x \text{ for } x < 0$$

https://sebastianraschka.com/faq/docs/relu-derivative.html

ANN ARCHITECTURE 1

(Non data mining application)

Output Pattern

Input Pattern

- Two layer network [One layer of weights]
- Could be used for associative memory
- Encodes $((A_1, B_1), (A_2, B_2), ...(A_k, B_k))$
 - Put in a picture of a person, get out a name
 - Put in a partial/smudged picture, get out the full, clean picture
 - Put in a noisy audio signal, get out the clean sound
- Neural networks are particulary good at dealing with noisy, erroneous or incomplete patterns.

ANN ARCHITECTURE 2

- Feed Forward Network
- Can operate as a pattern classifier

Digits in Ascii Underwater Weather
Postcode Text Object Predicition

Output Pattern

Picture of an Speech Sonar Weather Envelope Waveform Signal Data

ANN ARCHITECTURE 3

- Feed Forward Network
- Function Approximator/Time series predictor

Prediction of Prediction of Survival Amount activity stock price months Rain

Output Pattern

Sunspot Stockmarket Heart attack Weather Time Series Time Series Data Data

NETWORK EXAMPLE

- ullet Suppose the input is $X_1=0, X_2=0$
 - Output from node A: $0 \times (-3.5) + 0 \times (-3.5) + 5.1 = 5.1$ logistic(5.1) = 0.99
 - Output from node B: $0\times (-5.4) + 0\times (-5.7) + 2.0 = 2.0 \\ logistic(2.0) = 0.88$
 - Output from node C: $0.99 \times 6.9 + 0.88 \times (-7.3) + (-3.0) = \\ 6.83 6.42 3.0 = -2.59 \\ logistic(-2.59) = 0.06$
- Output of network is 0.06

ANN FOR XOR

• Truth table for Exclusive OR (XOR)

$\overline{X_1}$	X_2	Output
0	0	0
0	1	1
1	0	1
1	1	0

• If each of these examples/patterns is input to the network

$\overline{X_1}$	X_2	Desired	Actual	Error	Squared
		Output	Output		Error
0	0	0	0.06	0.06	0.0036
0	1	1	0.92	0.08	0.0064
1	0	1	0.92	0.08	0.0064
1	1	0	0.10	0.10	0.01

• Total sum squared error (TSS) for n patterns $\sum_{i=1}^{n} (Desired_i - Actual_i)^2$ = 0.0264

Mean squared error (MSE) TSS/n = 0.0264/4 = 0.066

• TSS or MSE is plotted during training