Chp. 6: Alternatives to fitting with least squares

Why do we need alternatives for fitting with least squares?

- ▶ Prediction accuracy: if $n \approx p$, there can be high variability in least squares fit and overfitting
 - If p > n, the variance is infinite and least squares fitting cannot be used
- Model interpretability: including many irrelevant variables can lead to unnecessary model complexity

Variability in least squares fit

With small number of observations per predictor, least squares will yield a set of coefficient estimates that result in a perfect fit to the data and residuals that are zero.

Despite perfect R^2 on the training data, this leads to overfitting and poor performance on test datasets.

Figure 1: Fig 6.22

Fig. 6.22 Estimating 2 parameters (β_0 and β_1) based on 20 vs. 2 observations

Alternatives to fitting with least squares

1. Subset selection

- ▶ Identify a subset of all *p* predictors we believe are related to the response, and then fit the model using this subset
- e.g. best subset selection, forward/backward selection

2. Shrinkage/Regularization

- Some of the coefficients may shrink to exactly zero (i.e. the lasso)
- 3. Dimension reduction
 - Project all p predictors into an M-dimensional space where M < p, and then perform linear regression model (e.g. principal components regression)

Part I: Subset selection

Best subset selection. Select the best model from among all 2^p possibilities:

- 1. Let M_0 denote the null model with no predictors.
- 2. For k = 1, 2, ..., p:
 - fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - \triangleright pick the best among these models and call it M_k .
- 3. Select a single best model from among $M_0, ..., M_p$

Very computationally intensive when p is large! With 2^p possibilities, already 1024 models with p = 10.

Part I: Subset selection

Forward stepwise selection. Start with a model containing *no* predictors, then add predictors one at a time until all predictors are in the model. At each step, add the variable that gives the greatest additional improvement to the model. Choose a single best model from among $M_0, ..., M_p$.

Backward stepwise selection. Start with a model containing *all* predictors, then remove the least useful predictor one at a time. Choose a single best model from among $M_0, ..., M_p$.

Hybrid approaches

Part I: Subset selection

Limitations of forward/backward selection:

- ▶ Backward selection requires n > p.
- 'Best' possible model may not be selected.

Advantages:

Less computationally intensive than best subset selection.

How to choose the best model?

The RSS and R^2 (for least squares) will always decline/increase as the number of variables increase so they are not very useful to choose the best model. Similarly for logistic regression, the deviance decreases with increasing number of predictors.

How to choose the best model?

Alternatively, we can:

- 1. Indirectly estimate test error by making an adjustment to the training error
 - $ightharpoonup C_p$, AIC, BIC, and Adjusted R^2
- 2. Cross-validation

How to choose the best model?

 C_p , AIC, BIC, and Adjusted R^2 estimate the training error by including a penalty term. E.g.:

$$C_p = \frac{1}{n}(RSS + 2d\hat{\sigma}^2),$$

where $\hat{\sigma}^2$ is an estimate of the variance of the error associated with each response measurement and d is the number of predictors.

Part II: Shrinkage (Ridge Regression)

Remember least squares, in which we fit the coefficients $\beta_0, \beta_1, ..., \beta_p$ in an effort to minimize the residual sum of squares:

$$RSS = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{i=1}^{p} \beta_i x_{ij})^2$$

Ridge regression is similar to least squares, but coefficients are estimated by minimizing a different quantity:

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

where $\lambda \geq 0$ is a tuning parameter.

Ridge regression is similar to least squares, but coefficients are estimated by minimizing a different quantity:

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

where $\lambda \geq 0$ is a tuning parameter.

The second term is a shrinkage penalty. Imposing this constraint should improve the fit, because shrinking the coefficients can significantly reduce their variance.

Note that the penalty term does not include the intercept β_0 , which is just a measure of the mean response when

$$x_{i1} = x_{i2} = \dots = x_{ip} = 0$$

$$\mathit{RSS} + \lambda \sum_{j=1}^p \beta_j^2$$

What happens when $\lambda = 0$?

$$\mathit{RSS} + \lambda \sum_{j=1}^p \beta_j^2$$

What happens when $\lambda \to \infty$?

Figure 2: Fig 6.4

Ridge regression uses L2 regularization to prevent overfitting.

 $||\beta||_2$ denotes the ℓ_2 norm of a vector, in this case the vector of coefficient estimates, $\hat{\beta}$.

It measures the distance of β from zero.

It is given by the equation $||\beta||_2 = \sqrt{\sum_{j=1}^p \beta_j^2}$.

Figure 3: Fig 6.4

In Fig. 6.4, what side of the x-axis corresponds to λ being very large? Very small?

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Why do you think it is recommended to standardize the predictors (so that all have standard deviation of one) before carrying out ridge regression?

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Least squares coefficient estimates are scale equivariant: multiplying X_j by a constant c simply leads to scaling of coefficient estimates by a factor of 1/c.

In contrast, the ridge regression coefficient estimate for X_j will depend on the scaling of the *j*th predictor as well as other predictors due to the regularization term.

- Works well in situations where least squares estimates have high variance $(p \approx n)$.
- ▶ Only fits a single model for any fixed value of λ , so is more computationally efficient than best subset selection.
- Assumes all predictors are related to response (can't set any coefficients to exactly 0).

Part II: Shrinkage methods (The Lasso)

The lasso can set some coefficients to zero by using a different penalty (an ℓ_1 penalty instead of an ℓ_2 penalty):

$$RSS + \lambda \sum_{i=1}^{p} |\beta_j|$$

The Lasso

Figure 4: Fig 6.6

Why does lasso set some predictors to exactly 0?

Consider p = 2 predictors:

Figure 5: Fig 6.7

Fig. 6.7

Solid blue areas represent constraint regions $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$ while red ellipses are contours of the RSS.

Lasso vs. least squares

Figure 6: Fig 6.13

Fig. 6.13 Simulated data with only two predictors truly related to the response. Minimum cross-validation error corresponds to a λ for which only these two predictors have large coefficient estimates.

Ridge regression vs. Lasso

When might ridge regression be better than the lasso? When might the lasso be better than ridge regression? How would each treat the issue of multicollinearity?

Elastic net regularization

Elastic net combines L1 and L2 penalties.

$$RSS + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=1}^{p} \beta_j^2$$

Let $\alpha = \frac{\lambda_2}{\lambda_1 + \lambda_2}$, then $\sum_{j=1}^p (\alpha |\beta_j| + (1-\alpha)\beta_j^2)$ is the elastic net penalty

Elastic net regularization

Figure 1: An image visualising how ordinary regression compares to the Lasso, the Ridge and the Elastic Net Regressors. Image Citation: Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.

Figure 7: Fig X