Assignment -1 Report

Name: Varun Chhangani and Vijendra Kumar Saini (S20170010173) (S20170010177)

Problem Statement:-

To implement K-NN classifier for given Data-set, And find the best K-value and p-value for the Minkowski distance metric (using r-fold cross validation; With a fixed r value).

K-NN:-

In pattern recognition the k-nearest neighbour algorithm(k-NN) is a non-parametric method for classification and regression(Supervised machine Learning algorithm). In both cases, the input consists of k closest training examples in the feature space. The output depends on whether k-NN is used for classification or regression. So, In k-NN classification, the output is a class membership. An object is classified by a popularity vote of its neighbours, with the object being assigned to the class most common among it's kth neighbours neighbours (k is positive integer, typically small). If k=1, then the object is simply assigned to the class of that single nearest neighbor.

• There is one *issue*, How to find the distance.

Cross Validation:-

- How to find appropriate k value for k-NN classifier ?
- Cross-validation is a statistical method used to estimate the skill of machine learning models.
- r-fold cross validation:-

Cross-validation is a re-sampling procedure used to evaluate machine learning models on a limited data sample. The procedure has a single parameter called k that refers to the number of groups that a given data sample is to be split into. As such, the procedure is often called r-fold cross-validation. When a specific value for r is chosen, it may be used in place of r in the reference to the model, such as r=10 becoming 10-fold cross-validation.

Cross-validation is primarily used in applied machine learning to estimate the skill of a machine learning model on unseen data. That is, to use a limited sample in order to estimate how the model is expected to perform in general when used to make predictions on data not used during the training of the model.

Data-set-1:- (Wheat Seeds Data-set)

Description:

This data-set contains 210 examples. Each examples has 7 input features and 3 classes /(labelled as 1, 2, 3).

Code:

- meta-data:- file_name, number_of_training_examples, num_of_features_stored (attributes) metadata.h
- We used train data to do 10-fold cross validation.
- To find the value of k and p, we iterate the value of k from 1 to 10. For every iteration values of k and p varies from 1 to 10.
- we are randomly shuffling data before training. because all class labels are in a particular order.
- Command to run:
 - First edit the metadata.h file. Then,:

```
$ gcc knn.c -lm -g -o knn
$ ./knn
```

Observations and Results:

- Cause of Random shuffling, it's giving small variation in the accuracy.
- OUTPUTS:
 - $\begin{array}{l} -\ 90\%\ k\ 1\ p\ 1 \\ -\ 87.6\%\ k\ 1\ p\ 1 \\ -\ 86.52\%\ k\ 10\ p\ 1 \end{array}$
 - 86.19% k 7 p 10
- On the basis of multiple run best value of :-
 - K = 1, p = 1 , Accuracy = 90%

Data-set-2:- (Optical recognition of Handwritten Digits Data-Set)

Description:

This data-set has two files - optdigits.tra for training and optdigits.tes for testing. We have to remove ','(comma) and replace with ''(null space) . There are 3823 train examples. Each example has 64 features and a class between 0-9.

• The meta-data file stored in metadata.h

Code:

- meta-data:- file_name, number_of_training_examples, num_of_features_stored (attributes) metadata.h
- We used trained data to do 10 fold cross validation.
- To find the value of k and p, we iterate the value of k from 1 to 10, and k and p varies from 1 to 10
- Command to run:
 - First edit the metadata.h file. Then,:

```
$ gcc knn.c -lm -g -o knn
$ ./knn
```

Observations and Results:

- Cause of Random shuffling, it's giving small variation in the accuracy.
- OUTPUTS:
 - -98.6% k 1 p 2
 - -98% k2p2
 - 98.7% k 1 p 2
- On the basis of multiple run best value of :-
 - K = 1, p = 2, Accuracy = 98.7%