ASSIGNMENT Fourier Analysis and Summability Theory

Akhlak Ansari

November 21, 2022

Department of Mathematics and Statistics

Under the Supervision of :

Dr. Jitendra Kumar Kushwaha

Asst. Professor

DDU Gorakhpur University,

Gorakhpur(U.P), India

Submitted By:

Name: Akhlak Ansari

F. Name: Ainul Haque Ansari

Class: M.Sc (Mathematics)

III rd Semester

Roll No: 2213010010011

Assignment Questions:

- 1. Prove Euler-Fourier formula for Fourier coefficients.
- 2. A necessary and sufficient condition for the Fourier series,

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

should converge to the sum s is that,

$$\lim_{n \to \infty} \int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right) \cdot u \, \phi\left(u\right)}{\sin\left(\frac{u}{2}\right)} = 0.$$

- 3. A function is defined by $f(x) = \begin{cases} x + x^2 & , -\pi < x < \pi \\ \pi^2 & , x = \pm \pi \end{cases}$ Find the Fourier series of f.
- 4. State and Prove Fejer-Lebesgue Theorem.
- 5. Discuss the Uniqueness of trigonometric series.

Solutions

Solution of Question No 1.

• Proof of Euler-Fourier formula for Fourier coefficients:

Since we know that Fourier series for f(x) is given by,

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 (1)

• Evaluation of a_0 :

Integrating equation(1) term by term within the integration limit 0 to 2π we have like this,

$$\int_0^{2\pi} f(x) \ dx = \frac{1}{2} \int_0^{2\pi} a_0 \ dx + \sum_{n=1}^{\infty} \left[\int_0^{2\pi} \left(a_n \cos nx + b_n \sin nx \right) dx \right]$$

Since,

$$\int_0^{2\pi} \cos nx \ dx = 0$$

and

$$\int_0^{2\pi} \sin nx \ dx = 0$$

$$\therefore \int_0^{2\pi} f(x) \ dx = \frac{1}{2} a_0 \int_0^{2\pi} \ dx = \frac{1}{2} a_0 \ x \Big|_0^{2\pi} = \frac{1}{2} a_0 \left[2\pi - 0 \right]$$

OR,

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \ dx$$

• Evaluation of a_n :

Multiplying equation (1) by $\cos mx$, $\forall m \in \mathbb{Z}$ and integrating term by term from 0 to 2π we have,

$$\int_0^{2\pi} f(x) \cos mx \, dx = \frac{1}{2} a_0 \int_0^{2\pi} \cos mx \, dx + \sum_{n=1}^{\infty} \left[\int_0^{2\pi} a_n \cos mx \cos nx \, dx + \int_0^{2\pi} b_n \cos mx \sin nx \, dx \right]$$

If m = n, then we have,

$$\int_0^{2\pi} f(x)\cos nx \ dx = 0 + a_n \cdot \pi + 0$$

OR,

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \ dx$$

• Evaluation of b_n :

Multiplying equation(1) by $\sin mx$, $\forall m \in \mathbb{Z}$ and integrating term by term from 0 to 2π we have,

$$\int_0^{2\pi} f(x) \sin mx \, dx = \frac{1}{2} a_0 \int_0^{2\pi} \sin mx \, dx + \sum_{n=1}^{\infty} \left[\int_0^{2\pi} a_n \sin mx \cos nx \, dx + \int_0^{2\pi} b_n \sin mx \sin nx \, dx \right]$$

If m = n, then above expression can be written as,

$$\int_{0}^{2\pi} f(x) \sin nx \, dx = 0 + 0 + b_n \cdot \pi$$

OR,

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \ dx$$

These above a_0, a_n, b_n are the required Euler-Fourier formula for the Fourier coefficients.

Solution of Question No 2.

Since we know that, By Dirichlet integral,

$$(s_n - s) = \frac{1}{2\pi} \int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right) \cdot u \,\phi(u)}{\sin\left(\frac{u}{2}\right)} du \tag{1}$$

where,
$$\phi(u) = f(x+u) + f(x-u) - 2s$$
.

Necessary Condition:

Suppose that given Fourier series, converges to 's' as $n \to \infty$

$$\lim_{n \to \infty} (s_n f)(x) = s$$

or,

$$\lim_{n \to \infty} \left[\left(s_n f \right) (x) - s \right] \to 0.$$

So, according to the equation(1) above can be written as,

$$\lim_{n \to \infty} \left[\frac{1}{2\pi} \int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right) \cdot u \, \phi\left(u\right)}{\sin\left(\frac{u}{2}\right)} du \right] \to 0, \text{ as } n \to \infty.$$

or,

$$\lim_{n \to \infty} \left[\int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right) \cdot u \, \phi\left(u\right)}{\sin\left(\frac{u}{2}\right)} du \right] \to 0, \text{ as } n \to \infty.$$

Sufficient Condition:

Given that,

$$\lim_{n \to \infty} \left[\int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right) \cdot u \,\phi\left(u\right)}{\sin\left(\frac{u}{2}\right)} du \right] = 0$$

or,

$$\lim_{n\to\infty} \left[\frac{1}{2\pi} \int_0^\pi \frac{\sin\left(n+\frac{1}{2}\right) \cdot u \, \phi\left(u\right)}{\sin\left(\frac{u}{2}\right)} du \right] \to 0, \text{ as } n\to\infty.$$

Now, by equation (1) we get as,

$$\lim_{n \to \infty} \left[\left(s_n f \right) \left(x \right) - s \right] \to 0.$$

or,

$$\lim_{n \to \infty} (s_n f)(x) = s.$$

Solution of Question No 3.

Since, we know that, If a function f(x) is 2π periodic then, the Fourier series of the function f(x) is given by,

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 (1)

where, the Euler-Fourier coefficients a_0, a_n, b_n can be computed using the formula,

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

Given, function is $f(x) = \begin{cases} x + x^2 & , & -\pi < x < \pi \\ \pi^2 & , & x = \pm \pi \end{cases}$, so the Fourier series of the function can be written as,

$$x + x^{2} = \frac{1}{2}a_{0} + \sum_{n=1}^{\infty} (a_{n}\cos nx + b_{n}\sin nx)$$
 (2)

Computation of a_0 :

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x + x^2) \, dx$$

$$= \frac{1}{\pi} \left[\frac{x^2}{2} + \frac{x^3}{3} \right] \Big|_{-\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{\pi^2}{2} + \frac{\pi^3}{3} - \frac{\pi^2}{2} + \frac{\pi^3}{3} \right]$$

$$a_0 = \frac{2\pi^2}{3}$$

Computation of a_n:

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(x + x^{2} \right) \cos nx \, dx$$

$$= \frac{1}{\pi} \left[\left(x + x^{2} \right) \left(\frac{\sin nx}{n} \right) \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \left\{ \left(1 + 2x \right) \left(\frac{\sin nx}{n} \right) \right\} dx \right]$$

$$= \frac{1}{\pi} \left[\left(1 + 2x \right) \left(\frac{\cos nx}{n^{2}} \right) \Big|_{-\pi}^{\pi} + \int_{-\pi}^{\pi} 2 \cdot \left(\frac{\cos nx}{n^{2}} \right) dx \right]$$

$$= \frac{1}{\pi} \left[\left\{ \frac{\left(1 + 2\pi \right) \cos n\pi}{n^{2}} - \frac{\left(1 - 2\pi \right) \cos \left(-n\pi \right)}{n^{2}} \right\} + 2 \cdot \left(\frac{\sin nx}{n^{3}} \Big|_{-\pi}^{\pi} \right) \right]$$

$$= \frac{1}{\pi} \left[\frac{\left\{ \left(1 + 2\pi \right) - \left(1 - 2\pi \right) \right\} \cos n\pi}{n^{2}} + 0 \right]$$

$$= \frac{1}{\pi} \left[\frac{4\pi \cos n\pi}{n^{2}} \right]$$

$$= \frac{4 \cos n\pi}{n^{2}}$$

$$a_{n} = \frac{4 \left(-1 \right)^{n}}{n^{2}}$$

Computation of b_n :

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x + x^2) \sin nx \, dx$$
$$= \frac{1}{\pi} \left[(x + x^2) \left(-\frac{\cos nx}{n} \right) \Big|_{-\pi}^{\pi} + \int_{-\pi}^{\pi} (1 + 2x) \left(\frac{\cos nx}{n} \right) dx \right]$$

or.

$$b_n = \frac{1}{\pi} \left[\left(\pi + \pi^2 \right) \left(-\frac{\cos n\pi}{n} \right) - \left(-\pi + \pi^2 \right) \left(-\frac{\cos \left(-n\pi \right)}{n} \right) + \left\{ \left(1 + 2x \right) \left(\frac{\sin nx}{n^2} \right) \Big|_{-\pi}^{\pi} \right\} - \int_{-\pi}^{\pi} 2 \cdot \left(\frac{\sin nx}{n^2} \right) dx \right]$$

Figure 1: Fourier Series Approx.

$$b_n = \frac{1}{\pi} \left[\left\{ \left(\pi + \pi^2 \right) - \left(-\pi + \pi^2 \right) \right\} \left(-\frac{\cos n\pi}{n} \right) + 2 \cdot \left(\frac{\cos nx}{n^3} \Big|_{-\pi}^{\pi} \right) \right]$$

$$= \frac{1}{\pi} \left[\frac{-2\pi \cos n\pi}{n} + \frac{2\cos n\pi}{n^3} - \frac{2\cos \left(-n\pi \right)}{n^3} \right]$$

$$= \frac{1}{\pi} \left(-\frac{2\pi \cos n\pi}{n} \right)$$

$$b_n = -\frac{2\left(-1 \right)^n}{n}$$

Using the values of a_0, a_n, b_n in equation (1) we have,

$$f(x) = \frac{2\pi^2}{2 \cdot 3} + \sum_{n=1}^{\infty} \left[\left\{ \frac{4(-1)^n}{n^2} \right\} \cdot \cos nx - \left\{ \frac{2(-1)^n}{n} \right\} \sin nx \right]$$

or,

$$f(x) = \frac{\pi^2}{3} + 4\left[-\cos x + \frac{1}{2^2}\cos 2x - \frac{1}{3^2}\cos 3x + \cdots\right] - 2\left[-\sin x + \frac{1}{2}\sin 2x - \frac{1}{3}\sin 3x + \cdots\right]$$

Hence, this is the Fourier series of the given problem.

Answer of Question No. 4:

Statement of Fejer-Lebesgue Theorem:

The Fourier series of f(x), where $x \in [0, 2\pi]$ is (C, 1) summable to sum f(x) for every value of x, for which

$$\int_0^t \left| f(x+u) - f(x-u) \right| du = o(t)$$

In particular, the Fourier series of f(x) is (C, 1) summable almost everywhere, for every value of x.

Proof of Fejer-Lebesgue Theorem:

The Fourier series of f(x) is given by,

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 (1)

Let, $(s_n f)(x)$ be n^{th} partial sum of the Fourier series mentioned in equation (1) then,

$$(s_n f)(x) = \frac{1}{2}a_0 + \sum_{m=1}^{n} (a_m \cos mx + b_m \sin mx)$$

The (C,1) means of above is given by,

$$(\sigma_n f)(x) = \frac{1}{n} \sum_{k=0}^{n-1} (s_k f)(x)$$

by, using Fejer's integral we get as,

$$(\sigma_n f)(x) = \frac{1}{2\pi n} \int_0^{\pi} \frac{\sin^2\left(\frac{nu}{2}\right)}{\sin^2\left(\frac{u}{2}\right)} \left[f(x+u) + f(x-u) \right] du \tag{2}$$

If f(x) = 1, then

$$(\sigma_n f)(x) = 1$$

$$1 = \frac{1}{2\pi n} \int_0^{\pi} \left(\frac{\sin^2\left(\frac{nu}{2}\right)}{\sin^2\left(\frac{u}{2}\right)} \right) \cdot 2 \ du$$
 (3)

Multiplying equation (3) by f(x) and subtracting from equation (2), we have,

$$(\sigma_n f)(x) - f(x) = \frac{1}{2\pi n} \int_0^{\pi} \left(\frac{\sin^2\left(\frac{nu}{2}\right)}{\sin^2\left(\frac{u}{2}\right)} \right) \left[f(x+u) + f(x-u) - 2f(x) \right] du$$
$$= \frac{1}{2\pi n} \int_0^{\pi} \left(\frac{\sin^2\left(\frac{nu}{2}\right)}{\sin^2\left(\frac{u}{2}\right)} \right) \phi(u) du$$

where,
$$\phi(u) = \left[f(x+u) + f(x-u) - 2f(x) \right].$$
or.

$$(\sigma_n f)(x) - f(x) = \frac{2}{n\pi} \int_0^\delta \left\{ \left(\frac{\sin^2 \frac{nu}{2}}{u^2} \right) \cdot \phi(u) \right\} du + \frac{1}{2n\pi} \int_0^\delta \sin^2 \frac{nu}{2} \left[\frac{1}{\sin^2 \frac{u}{2}} - \frac{1}{\left(\frac{u}{2}\right)^2} \right] \phi(u) du + \frac{1}{2n\pi} \int_\delta^\pi \left\{ \left(\frac{\sin^2 \frac{nu}{2}}{\sin^2 \frac{u}{2}} \right) \cdot \phi(u) \right\} du$$

$$(\sigma_n f)(x) - f(x) = I_1 + I_2 + I_3 \text{ (say)}, \ \forall \ 0 < \delta < \pi$$
 (4)

then, $|I_2| \to 0$ as $n \to \infty$.

&,

$$|I_3| \le \frac{1}{2n\pi} \int_{\delta}^{\pi} \frac{|\phi(u)|}{\sin^2 \frac{u}{2}} du \to 0 \text{ as } n \to \infty.$$

Let,

$$I_{2} = \int_{0}^{\delta} \left\{ \left(\frac{\sin^{2} \frac{nu}{2}}{u^{2}} \right) \cdot \phi(u) \right\} du$$

$$\phi(t) = \int_0^t |\phi(u)| du$$

$$\leq \int_0^t |f(x+u) - f(x)| dx + \int_0^t |f(x-u) - f(x)| du$$

$$\therefore \phi(t) = o(t)$$

Rough idea of Manipulation of above expression

Since,
$$\phi(u) = f(x+u) + f(x-u) - f(x)$$

It can be written as, $= \{f(x+u) - f(x)\} + \{f(x-u) - f(x)\}\$

$$|\phi(u)| = |\{f(x+u) - f(x)\} + \{f(x-u) - f(x)\}|$$

or,

$$\int_0^t |\phi(u)| \, du \le \int_0^t |f(x+u) - f(x)| \, du + \int_0^t |f(x-u) - f(x)| \, du$$
$$= o(t) + o(t) = o(t)$$

For, $\epsilon > 0$, \exists a positive integer n > 0, $\forall n \in \mathbb{Z}$ such that,

$$\phi(t) < \epsilon \cdot t$$
, whenever $t < n$.

We know that,

$$\phi(t) = o(t) \implies \lim_{t \to 0} \frac{\phi(t)}{t} = 0$$

For, $\epsilon > 0$, $\exists \eta > 0$, such that,

$$\left| \frac{\phi(t)}{t} - 0 \right| < \epsilon , |t| < \eta , t > 0$$

$$\frac{\phi(t)}{t} < \epsilon , t < \eta$$

$$\therefore \phi(t) < \epsilon \cdot t , t < \eta$$

Choose, $n > \frac{1}{\eta}$

$$I_{1} = \int_{0}^{\delta} \left\{ \left(\frac{\sin^{2} \frac{nu}{2}}{u^{2}} \right) \cdot \phi\left(u\right) \right\} du$$

$$= \int_{0}^{\frac{1}{n}} \left\{ \left(\frac{\sin^{2} \frac{nu}{2}}{u^{2}} \right) \cdot \phi\left(u\right) \right\} du + \int_{\frac{1}{n}}^{\eta} \left\{ \left(\frac{\sin^{2} \frac{nu}{2}}{u^{2}} \right) \cdot \phi\left(u\right) \right\} du + \int_{\eta}^{\delta} \left\{ \left(\frac{\sin^{2} \frac{nu}{2}}{u^{2}} \right) \cdot \phi\left(u\right) \right\} du$$
Next,

$$|I'_{1\cdot 1}| = \left| \int_0^{\frac{1}{n}} \left\{ \left(\frac{\sin^2 \frac{nu}{2}}{u^2} \right) \cdot \phi(u) \right\} du \right|$$

$$\leq \int_0^{\frac{1}{n}} \frac{\left(\frac{nu}{2} \right)^2}{u^2} \cdot \phi(u) du$$

$$\leq \frac{n^2}{4} \int_0^{\frac{1}{n}} |\phi(u)| du$$

$$\leq \frac{n^2}{4} \left(\frac{\epsilon}{n} \right)$$

$$|I'_{1\cdot 1}| \leq \frac{n\epsilon}{4}$$

$$|I'_{1\cdot 2}| \leq \int_{\frac{1}{n}}^{\eta} \frac{\sin^2 \left(\frac{nu}{2} \right)}{u^2} \phi(u) du$$

$$|I'_{1\cdot 2}| \leq \int_{\frac{1}{n}}^{\eta} \frac{\left| \sin^2 \left(\frac{nu}{2} \right) \right|}{u^2} |\phi(u)| du$$

$$\leq \int_{\frac{1}{n}}^{\eta} \frac{|\phi(u)|}{u^2} du$$

$$= \left\{ \frac{\phi(u)}{u^2} \right\} \Big|_{\frac{1}{n}}^{\eta} - \int_{\frac{1}{n}}^{\eta} \left\{ \frac{-2}{u^3} \phi(u) \right\} du$$

Since, $\phi(t) < \epsilon \cdot t$ then,

$$|I'_{1\cdot 2}| \le \frac{1}{n^2}\phi(n) - \eta^2 \frac{1}{2} \left(\frac{1}{n}\right) + 2 \int_{\frac{1}{n}}^{\eta} \frac{\epsilon u}{u^3} du$$
So, $|I'_{1\cdot 2}| < \frac{\epsilon \eta}{n^2} - \frac{\eta^2 \epsilon}{n} + 2\epsilon \left(\frac{-1}{u}\Big|_{\frac{1}{n}}^{\eta}\right)$

$$< \frac{\epsilon}{\eta} - n\epsilon + 2\epsilon \left(\eta - \frac{1}{\eta}\right)$$

$$< \frac{-\epsilon}{\eta} + n\epsilon$$

$$< \frac{\epsilon}{\eta} + 2n\epsilon$$
Page 12

$$|I'_{1\cdot 2}| < \epsilon n + 2n\epsilon$$

$$= 3n\epsilon \text{ Since}, \ \frac{1}{\eta} < n$$
 So,
$$|I'_{1\cdot 2}| < 3n\epsilon$$

Similarly,

$$I'_{1\cdot3} = \int_{\eta}^{\delta} \frac{\sin^2\left(\frac{nu}{2}\right)}{u^2} \phi(u) du$$

$$|I'_{1\cdot3}| \le \int_{\eta}^{\delta} \frac{\sin^2\left(\frac{nu}{2}\right)}{u^2} |\phi(u)| du$$

$$\le \frac{1}{\eta^2} \int_{\eta}^{\delta} |\phi(u)| du$$

$$= \frac{A}{\eta^2} \left(\because \frac{1}{u^2} \le \frac{1}{\eta^2}, \ \forall \ u \in [\eta, \delta]\right)$$

where,
$$A = \int_{\eta}^{\delta} |\phi(u)| du$$

$$\therefore |I'_{1:3}| < \frac{A}{n^2}.$$

Now,
$$I_1 = \frac{2}{n\pi} \int_0^{\delta} \frac{\sin^2\left(\frac{nu}{2}\right)}{u^2} \phi(u) du = \frac{2}{n\pi} \left[I'_{1\cdot 1} + I'_{1\cdot 2} + I'_{1\cdot 3} \right]$$

$$|I_1| \leq \frac{2}{n\pi} \left[n \cdot \frac{\epsilon}{4} + 3n\epsilon + \frac{A}{\eta^2} \right]$$

$$= \frac{2}{\pi} \left[\frac{\epsilon}{4} + 3\epsilon + \frac{A}{\eta^2 n} \right]$$

So, $|I_1| \to 0$ as $n \to \infty$, ϵ is an arbitrary choosen positive number.

$$I_1 \to 0 \text{ as } n \to \infty$$

Then by equation no.(4),

$$\lim_{n \to \infty} \left[\left(\sigma_n f \right) (x) - f(x) \right] = 0$$

The Fourier series of f(x) is (C,1) summable to the sum f(x) i.e The Fourier series of f(x) is (C,1) summable to f(x) almost everywhere.

Answer of Question No 5.

Uniqueness of Trigonometric Series:

Statement:

If two trigonometric series converges to the same sum in $(0, 2\pi)$ with possible exception of a finite no. of points, then correspondent coefficients of these series are equal. i.e. The series are identical.

Proof:

Let us consider two trigonometric series,

$$\frac{1}{2}a_0' + \sum_{n=1}^{\infty} (a_n' \cos nx + b_n' \sin nx) \tag{1}$$

$$\frac{1}{2}a_0'' + \sum_{n=1}^{\infty} \left(a_n'' \cos nx + b_n'' \sin nx \right) \tag{2}$$

defined on interval $(0,2\pi)$. Suppose both the series converges to the same sum ,

$$f(x) = s$$
 in interval $(0, 2\pi)$

except at finite no. of points. Then,

$$\frac{1}{2}\left(a_0' - a_0''\right) + \sum_{n=1}^{\infty} \left\{ \left(a_n' - a_n''\right) \cos nx + \left(b_n' - b_n''\right) \sin nx \right\} \to 0 \text{ in } (0, 2\pi)$$

Let,
$$a_0 = a'_0 - a''_0$$
, $a_n = a'_n - a''_n$, $b_n = b'_n - b''_n$ Then,

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \text{ converges to 0 in } (0, 2\pi)$$

By Cantor's Lemma, we have,

 $(a_n \cos nx + b_n \sin nx) \to 0 \text{ as } n \to \infty \implies a_n \to 0 \& b_n \to 0 \text{ as } n \to \infty.$ Now,

$$F(x) = \frac{1}{4}a_0x^2 - \sum_{n=1}^{\infty} \frac{(a_n \cos nx + b_n \sin nx)}{n^2}$$

therefore, F(x) is a continuous function of x in $[0, 2\pi]$. Now, by Riemann's first theorem, we have,

$$G(x,h) = \frac{F(x+2h) + F(x-2h) - 2F(x)}{4h^2} \to 0 \text{ as } h \to \infty \ \forall \ x \in (0,2\pi)$$

 \implies Second generalized derivative of F(x) is zero. Since F(x) is continuous and $a_n \to 0$, $b_n \to 0$ as $n \to \infty$. This implies that F(x) is a <u>linear function</u> in $(0, 2\pi)$. i.e

$$F(x) = ax + b$$
, where $a, b \in \mathbb{R}$

$$\implies ax + b = \frac{1}{4}a_0x^2 - \sum_{n=1}^{\infty} \left(\frac{a_n \cos nx + b_n \sin nx}{n^2}\right)$$
or,
$$\sum_{n=1}^{\infty} \left(\frac{a_n \cos nx + b_n \sin nx}{n^2}\right) = \frac{1}{4}a_0x^2 - ax - b$$
(3)

This series, $\sum_{n=1}^{\infty} \left(\frac{a_n \cos nx + b_n \sin nx}{n^2} \right)$ is a periodic function of period 2π .

 $\therefore \frac{1}{4}a_0x^2 - ax - b$ is also periodic with period 2π . $\implies a_0 = 0$, a = 0.

so,
$$\sum_{n=1}^{\infty} \left(\frac{a_n \cos nx + b_n \sin nx}{n^2} \right) = -b \tag{4}$$

Multiplying equation (4) by $\cos(mx)$ and integrating term by term in $(0, 2\pi)$, we have,

$$\sum_{n=1}^{\infty} \left\{ \int_{0}^{2\pi} \frac{a_n}{n^2} \left(\cos mx \cdot \cos nx \right) dx + \int_{0}^{2\pi} \frac{b_n}{n^2} \left(\cos mx \cdot \sin nx \right) dx \right\} = -b \int_{0}^{2\pi} \cos mx \, dx$$

$$\implies \frac{a_m}{m^2} \times \pi = 0$$

$$\implies a_m = 0$$

$$\implies a_n = 0$$

$$\implies a'_n - a''_n = 0$$

$$\implies a'_n = a''_n.$$

Multiplying equation (4) by $\sin(mx)$ and integrating term by term in $(0, 2\pi)$, we have,

$$\sum_{n=1}^{\infty} \left\{ \int_{0}^{2\pi} \frac{a_n}{n^2} \left(\sin mx \cdot \cos nx \right) dx + \int_{0}^{2\pi} \frac{b_n}{n^2} \left(\sin mx \cdot \sin nx \right) dx \right\} = -b \int_{0}^{2\pi} \sin mx \, dx$$

$$\implies \frac{b_m}{m^2} \times \pi = 0$$

$$\implies b_m = 0$$

$$\implies b_n = 0$$

$$\implies b'_n - b''_n = 0$$

$$\implies b'_n = b''_n.$$

This is the required proof of uniqueness of trigonometric series.