

AMENDMENTS TO THE CLAIMS

The listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

1. (Currently Amended) An encryption apparatus for a common-key cipher, comprising:
 - a unit for generating a plurality of plaintext blocks P_i ($1 \leq i \leq N$) resulting from separating a plaintext P on a specific-length basis, the plaintext including ~~redundant data~~ and a message M ;
 - an encryption operation unit for generating [[a]] random-number blocks R_i ($1 \leq i \leq N+1$)
~~string R~~ from a secret key, ~~wherein the number of the random-number blocks R_i is greater than that of the plaintext blocks P_i , generating random-number blocks R_i ($1 \leq i \leq N+1$) from the random-number string R,~~ and performing an encryption operation for ciphertext blocks C_i ($1 \leq i \leq N$)
($1 \leq i \leq N+2$) by using the plaintext blocks P_i ($1 \leq i \leq N$) and the random-number blocks R_i ($1 \leq i \leq N$)
($1 \leq i \leq N+1$), ~~wherein the number N of the random number blocks is the same as that of the ciphertext blocks; the random-number string R being longer than the plaintext, and wherein the random-number blocks R_i ($1 \leq i \leq N+1$) being used for the encryption correspond~~
corresponding to the plaintext blocks P_i ($1 \leq i \leq N$); and
 - ~~a unit for generating a message-authentication-code of the ciphertext blocks C_i ($1 \leq i \leq N$) by using the ciphertext blocks C_i ($1 \leq i \leq N$) and the random-number blocks R_i (where $2 \leq i \leq N+1$) among the generated random-number blocks R_i , wherein the number N of the random-number blocks is the same as that of the ciphertext blocks; and~~
 - ~~an output unit for generating and outputting a ciphertext C comprising the ciphertext blocks and the message-authentication-code.~~
 - ~~an authentication operation unit for~~

~~generating random number blocks R_i ($2 \leq i \leq N+1$) from the random number string R , and performing an authentication operation for message authentication code blocks by using the ciphertext blocks C_i ($1 \leq i \leq N+2$) and the random number blocks R_i ($2 \leq i \leq N+1$), the random number blocks R_i ($2 \leq i \leq N+1$) being used for the authentication corresponding to the ciphertext blocks C_i ($1 \leq i \leq N+2$).~~

2. (Cancelled)
3. (Cancelled)
4. (Currently Amended) The encryption apparatus for a common-key cipher according to Claim 1, [[2,]] wherein:

the encryption operation unit is configured to perform performs the encryption operation by using an exclusive-OR logical sum, and to output the ciphertext blocks having a length the same as that of the plaintext blocks; and

the message-authentication-code generation unit authentication operation unit is configured to perform performing the authentication operation by using an arithmetic multiplication and an arithmetic addition, and to output the message-authentication-code comprising message-authentication-code blocks C_{N+1} and C_{N+2} having a length two times longer than that of the ciphertext blocks.
5. (Currently Amended) The encryption apparatus for a common-key cipher according to Claim 1, [[2,]] wherein:

the encryption operation unit is configured to perform performs the encryption operation by using an exclusive-OR logical sum, and to output the ciphertext blocks having a length the same as that of the plaintext blocks; and

the message-authentication-code generation unit authentication operation unit is configured to perform an performing the authentication operation by a multiplication on a finite field, and to output message-authentication-code comprising message-authentication-code blocks C_{N+1} and C_{N+2} having a length two times longer than that of the ciphertext blocks.
and an arithmetic addition.

Claims 6-9. (Cancelled)

10. (Currently Amended) A decryption apparatus for a common-key cipher, comprising:

a unit for generating a plurality of ciphertext blocks C_i ($1 \leq i \leq N$) and a message authentication-code by C'_i ($1 \leq i \leq N+2$) resulting from separating a ciphertext C on a specific-length basis;

an authentication operation unit configured for:

(a) generating [[a]] random-number string R from a secret key, wherein the number of the random-number blocks R_i is greater than that of the ciphertext blocks, generating random number blocks R_i ($1 \leq i \leq N+1$) from the random number string R, and

(b) generating performing an authentication operation for message-authentication-code blocks of ciphertext blocks C_i ($1 \leq i \leq N$) by using the ciphertext blocks C_i ($1 \leq i \leq N$) C'_i ($1 \leq i \leq N+2$) and the random-number blocks R_i (where $2 \leq i \leq N+1$), ($1 \leq i \leq N+1$), wherein the number N of the random-number blocks is the same as that of the ciphertext blocks, and

the random number string R being longer than the ciphertext, the random number blocks R_i (1≤i≤N+1) being used for the authentication corresponding to the ciphertext blocks C'; (1≤i≤N+2); and

(c) comparing the message-authentication-code blocks generated from the ciphertext blocks with the message-authentication code blocks included in the ciphertext blocks;

a decryption operation unit for, if the authentication operation has succeeded, generating random number blocks R_i (1≤i≤N) from the random number string R, and performing a decryption operation for to obtain plaintext blocks P_i [[P'_i]] (1≤i≤N) by using the ciphertext blocks C_i (1≤i≤N) C'; (1≤i≤N+2) and the random-number blocks R_i (1≤i≤N) among the random-number blocks R_i, wherein the number N of the random-number blocks is the same as that of the ciphertext blocks; and

an output unit for outputting a plaintext P comprising the plaintext blocks P_i (1≤i≤N), the random number blocks R_i (1≤i≤N) being used for the decryption corresponding to the ciphertext blocks C'; (1≤i≤N+2).

11. (Cancelled)

12. (Currently Amended) The decryption apparatus for a common-key cipher according to Claim 10, [[11,]] wherein the decryption operation unit does not perform the decryption operation, if the authentication operation has failed.

Claims 13-23. (Cancelled)

24. (New) The decryption apparatus for a common-key cipher according to claim 12,

wherein:

the message-authentication included in the ciphertext has a length two times longer than the ciphertext blocks;

the authentication operation unit is configured to perform the authentication operation by using an arithmetic multiplication, and outputs the message-authentication-code comprising message-authentication-code blocks C_{n+1} and C_{n+2} , wherein the message-authentication-code has a length two times longer than that of the ciphertext blocks; and

the decryption operation unit is configured to perform the decryption operation by using an exclusive-OR logical sum, and to output the plaintext blocks having a length the same as that of the ciphertext blocks.

25. (New) A computer-readable medium having stored thereon instructions which, when executed by a processor, cause the processor to perform the steps of:

generating a plurality of plaintext blocks P_i ($1 \leq i \leq N$) resulting from separating a plaintext P on a specific-length basis, the plaintext including a message M ;

generating random-number blocks R_i ($1 \leq i \leq N+1$) from a secret key, wherein the number of the random-number blocks R_i is greater than that of the plaintext blocks P_i ;

performing an encryption operation for ciphertext blocks C_i ($1 \leq i \leq N$) by using the plaintext blocks P_i ($1 \leq i \leq N$) and the random-number blocks R_i ($1 \leq i \leq N$) wherein the number N of the random number blocks is the same as that of the ciphertext blocks;

generating a message-authentication-code of the ciphertext blocks C_i ($1 \leq i \leq N$) by using the ciphertext blocks C_i ($1 \leq i \leq N$) and the random-number blocks R_i (where $2 \leq i \leq N+1$) among the

generated random-number blocks R_i , wherein the number N of the random-number blocks is the same as that of the ciphertext blocks; and

generating and outputting a ciphertext C comprising the ciphertext blocks and the message-authentication-code.

26. (New) The computer-readable medium according to Claim 25, further comprising the steps of:

performing the encryption operation by using an exclusive-OR logical sum;
outputting the ciphertext blocks having a length the same as that of the plaintext blocks;
performing the authentication operation by using an arithmetic multiplication and an arithmetic addition; and
outputting the message-authentication-code comprising message-authentication-code blocks C_{N+1} and C_{N+2} having a length two times longer than that of the ciphertext blocks.

27. (New) The computer-readable medium according to Claim 25, further comprising the steps of:

performing the encryption operation by using an exclusive-OR logical sum;
outputting the ciphertext blocks having a length the same as that of the plaintext blocks;
performing an authentication operation by a multiplication on a finite field; and
outputting the message-authentication-code comprising message-authentication-code blocks C_{N+1} and C_{N+2} having a length two times longer than that of the ciphertext blocks.

28. (Currently Amended) A computer-readable medium having stored thereon instructions which, when executed by a processor, cause the processor to perform the steps of:

generating a plurality of ciphertext blocks C_i ($1 \leq i \leq N$) and a message authentication-code by separating a ciphertext C on a specific-length basis;

generating random-number string R from a secret key, wherein the number of the random-number blocks R_i is greater than that of the ciphertext blocks;

generating message-authentication-code blocks of ciphertext blocks C_i ($1 \leq i \leq N$) by using the ciphertext blocks C_i ($1 \leq i \leq N$) and the random-number blocks R_i (where $2 \leq i \leq N+1$), wherein the number N of the random-number blocks is the same as that of the ciphertext blocks;

comparing the message-authentication-code blocks generated from the ciphertext blocks with the message-authentication code blocks included in the ciphertext blocks;

performing, if the authentication operation has succeeded, a decryption operation ~~for to obtain~~ plaintext blocks P_i ($1 \leq i \leq N$) by using the ciphertext blocks C_i ($1 \leq i \leq N$) and the random-number blocks R_i (where $1 \leq i \leq N$) among the random-number blocks R_i , wherein the number N of the random-number blocks is the same as that of the ciphertext blocks; and outputting a plaintext P comprising the plaintext blocks P_i ($1 \leq i \leq N$).

29. (Currently Amended) The computer-readable medium according to Claim 28, wherein the decryption operation unit does not perform the decryption operation, if the authentication operation has failed.