С. Р. Насыров

ПРОИЗВОДНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Печатается по решению Учебно-методической комиссии Института математики и механики им. Н. И. Лобачевского КФУ

Научный редактор кандидат физико-математических наук, доцент Р. Н. Гумеров

Насыров С.Р. Производная и неопределенный интеграл. – Казань: Казанский (Приволжский) федеральный университет, 2013. – 68 с.

В настоящем учебном пособии излагаются основы дифференциального исчисления функций одной вещественной переменной и неопределенный интеграл. Материал соответствует курсу «Математический анализ» для классических университетов (вторая половина 1-го семестра).

1 Производная и дифференциал

1.1 Определение производной

Пусть функций f определена на числовом промежутке I и точка $x_0 \in I$. Производной функции f в точке x_0 называется предел

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

если, конечно, он существует.

Число $\Delta x = x - x_0$ называется приращением аргумента, число $\Delta f = f(x) - f(x_0)$ — приращением функции, соответствующим приращению аргумента Δx . Производная функции f в точке x_0 обозначается $f'(x_0)$. Таким образом,

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{1}$$

ИЛИ

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$
 (2)

Функция f называется дифференцируемой в точке x_0 , если существует конечный предел (1), т. е. конечная производная $f'(x_0)$.

Теорема. Если функция f дифференцируема в точке x_0 , то f непрерывна в точке x_0 .

Доказательство. Имеем

$$f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0} (x - x_0).$$

Если функция f дифференцируема в точке x_0 , то существует

$$\lim_{x \to x_0} f(x) = f(x_0) + \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \lim_{x \to x_0} (x - x_0) = f(x_0) + f'(x_0) \cdot 0 = f(x_0).$$

Это означает непрерывность f в точке x_0 .

Функция f называется дифференцируемой на числовом промежутке I, если f дифференцируема в любой точке $x \in I$. Если функция f диффференцируема на I, то для любого $x \in I$ существует конечная производная f'(x). Таким образом, на I определена функция $f': I \to \mathbb{R}$, которая называется производной функции f на числовом промежутке I.

Пример. Рассмотрим функцию $f:\mathbb{R}\to\mathbb{R},$ заданную формулой $f(x)=x^2.$ Имеем

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0} = \lim_{x \to x_0} (x + x_0) = 2x_0$$

существует в любой точке $x_0 \in \mathbb{R}$. Производная f' на \mathbb{R} задается формулой f'(x) = 2x. В частности, f'(1) = 2.

Пусть функция f определена на I и $x_0 \in I$. Предположим, что существует $\varepsilon > 0$ такое, что $[x_0, x_0 + \varepsilon) \subset I$. Если существует

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0},$$

то этот предел называется *правосторонней производной функции* f e moчке x_0 и обозначается $f'_+(x_0)$. Аналогично определяется левосторонняя производная функции f в точке x_0 :

$$f'_{-}(x_0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Правосторонняя и левосторонняя производные называются односторонними производными функции в точке x_0 .

Очевидно, что для того чтобы функция была дифференцируемой в точке $x_0 \in I^0$, необходимо и достаточно, чтобы в этой точке существовали конечные производные $f'_+(x_0)$, $f'_-(x_0)$ и выполнялось равенство $f'_+(x_0) = f'_-(x_0)$.

1.2 Геометрический смысл производной

Пусть $M_0(x_0,f(x_0))$ и M(x,f(x)) — две точки графика Γ функции f, заданной на числовом промежутке I. Секущей графика называется прямая, проходящая через точки $M_0(x_0,f(x_0))$ и M(x,f(x)). Обозначим через $\beta=\beta(x)$ угол наклона секущей к оси OX, т. е. угол между положительным направлением оси абсцисс и вектором $\overrightarrow{M_0M}$, если $x>x_0$, угол между положительным направлением оси абсцисс и вектором $\overrightarrow{MM_0}$, если $x< x_0$. Условимся для определенности считать, что $|\beta|<\pi/2$. Будем говорить, что $pa\phiu\kappa$ Γ функции f имеет касательную в точке M_0 , если существует предел $\alpha=\lim_{x\to x_0}\beta(x)$. При этом угол α называется

4

углом наклона касательной к графику Γ функции f в точке M_0 . Ясно, что $|\alpha| \leq \pi/2$.

Рис. 1

Справедлива

Теорема (геометрический смысл производной). Функция f дифференцируема в точке x_0 тогда и только тогда, когда график Γ функции f имеет касательную в точке M_0 , наклоненную под углом $|\alpha| < \pi/2$. При этом

$$f'(x_0) = \operatorname{tg} \alpha.$$

Доказательство. Будем для определенности считать, что $x>x_0$, $f(x)\geq f(x_0)$. (Остальные возможные случаи рассмотрите самостоятельно!)

Из рассмотрения прямоугольного треугольника M_0MN на рис. 1 видно, что $|MN|=\Delta f$, $|M_0N|=\Delta x$ и

$$\operatorname{tg}\beta(x) = \frac{\Delta f}{\Delta x}.\tag{3}$$

С учетом (3) получаем, что функция f дифференцируема в точке $x_0 \iff \exists f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \in \mathbb{R} \iff \exists \lim_{x \to x_0} \operatorname{tg} \beta(x) \in \mathbb{R} \iff \exists \lim_{x \to x_0} \beta(x) \in \mathbb{R} = \alpha \in (-\pi/2; \pi/2)$. При этом

$$f'(x_0) = \lim_{x \to x_0} \operatorname{tg} \beta(x) = \operatorname{tg} \lim_{x \to x_0} \beta(x) = \operatorname{tg} \alpha.$$

Теорема доказана.

_

Упражнение. Докажите самостоятельно, что $f'(x_0) = +\infty$ $(f'(x_0) = -\infty)$ тогда и только тогда, когда график Γ функции f имеет касательную в точке M_0 , наклоненную под углом $\alpha = \pi/2$ $(\alpha = -\pi/2)$.

1.3 Физический смысл производной

Пусть какой-то объект движется прямолинейно из пункта A в пункт B. Обозначим через $s=s(t),\ t_1\leq t\leq t_2$ путь, пройденный с начального момента времени t_1 до момента времени t. Фиксируем некоторый момент времени $t_0,\ t_1< t_0< t_2$ и близкий к нему момент времени t. (Мы рассмотрим случай $t>t_0$, хотя возможен и случай $t< t_0$). За время $\Delta t=t-t_0$, отсчитываемое с момента времени t_0 , объект пройдет путь $\Delta s=s(t)-s(t_0)$. Отношение $\Delta s/\Delta t$ характеризует среднюю скорость объекта на указанном промежутке времени. При уменьшении Δt эта средняя скорость начинает все более точно характеризовать движение объекта в момент времени t_0 . Если существует предел

$$v(t_0) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t},$$

то этот предел называется меновенной скоростью или просто скоростью движения объекта в момент времени t_0 . С другой стороны данный предел — это производная $s'(t_0)$.

Таким образом, производная функции s=s(t) в точке t_0 равна скорости движения в момент времени t_0 :

$$v(t_0) = s'(t_0).$$

В этом состоит физический смысл производной.

Нетрудно сообразить, что в случае произвольных чисто математических функциональных зависимостей y = f(x) производная в точке характеризует скорость изменения (роста) функции в этой точке.

1.4 Основные правила вычисления производных

Теорема 1. Пусть функции f и допределены на числовом промежутке I и дифференцируемы в точке $x_0 \in I$. Тогда

1) для любых α , $\beta \in \mathbb{R}$ функция $\alpha f + \beta g$ дифференцируема в точке x_0 и

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0);$$

2) функция fg дифференцируема в точке x_0 и

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0);$$

3) если $g(x) \neq 0$, $x \in I$, то функция f/g дифференцируема в точке x_0 и

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

Доказательство. 1) Имеем $\Delta(\alpha f + \beta g) = (\alpha f(x) + \beta g(x)) - (\alpha f(x_0) + \beta g(x_0)) = \alpha (f(x) - f(x_0)) + \beta (g(x) - g(x_0)) = \alpha \Delta f + \beta \Delta g$, откуда

$$(\alpha f + \beta g)'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta(\alpha f + \beta g)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\alpha \Delta f + \beta \Delta g}{\Delta x} =$$
$$= \alpha \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} + \beta \lim_{\Delta x \to 0} \frac{\Delta g}{\Delta x} = \alpha f'(x_0) + \beta g'(x_0).$$

2) Преобразуем выражение $\Delta(fg)$. Имеем

$$\Delta(fg) = (fg)(x) - (fg)(x_0) = f(x)g(x) - f(x_0)g(x_0) =$$

$$= (f(x) - f(x_0))g(x) + f(x_0)(g(x) - g(x_0)) = \Delta f \cdot g(x) + f(x_0) \cdot \Delta g.$$

Значит,

$$(fg)'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta(fg)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \lim_{\Delta x \to 0} g(x) + f(x_0) \lim_{\Delta x \to 0} \frac{\Delta g}{\Delta x} =$$
$$= f'(x_0)g(x_0) + f(x_0)g'(x_0),$$

так как $\lim_{\Delta x \to 0} g(x) = g(x_0)$ в силу непрерывности функции g в точке x_0 , которая является следствием дифференцируемости.

3) Используя элементарные преобразования, получаем

$$\Delta\left(\frac{f}{g}\right) = \frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)} = \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)} =$$

$$= \frac{(f(x) - f(x_0))g(x_0) - f(x_0)(g(x) - g(x_0))}{g(x)g(x_0)} = \frac{\Delta f \cdot g(x_0) - f(x_0) \cdot \Delta g}{g(x)g(x_0)},$$
 откуда

$$\left(\frac{f}{g}\right)'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta(f/g)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{\Delta f}{\Delta x} \cdot g(x_0) - f(x_0) \cdot \frac{\Delta g}{\Delta x}}{g(x)g(x_0)} = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

7

Теорема 2 (дифференцирование обратной функции). Пусть функция f является непрерывной строго монотонной функцией на числовом промежутке I и в точке x_0 существует конечная производная $f'(x_0) \neq 0$. Тогда обратная функция f^{-1} является дифференцируемой в точке $y_0 = f(x_0)$ и

 $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$

Доказательство. Отметим, что в силу свойств монотонных функций обратная функция является также непрерывной на f(I). Имеем

$$(f^{-1})'(y_0) = \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} =$$

$$= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0}\right)^{-1} = \left(\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}\right)^{-1} = \frac{1}{f'(x_0)}.$$

При обосновании этих равенств мы использовали замену переменных и тот факт, что, в силу непрерывности функций f и f^{-1} , $y \to y_0$ тогда и только тогда, когда $x = f^{-1}(y) \to f^{-1}(y_0) = x_0$.

Теорема 3 (дифференцирование сложной функции). Пусть $f: I \to J, g: J \to \mathbb{R}, \ \textit{где } I, \ J - \textit{некоторые числовые промежутки.}$ Если f дифференцируема в точке x_0 , а g дифференцируема в точке y_0 , то сложная функция $g \circ f$ дифференцируема в точке x_0 и

$$(g \circ f)'(x_0) = g'(y_0)f'(x_0).$$

Доказательство. Имеем

$$(g \circ f)'(x_0) = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0}.$$

Преобразуем последнюю дробь. Если $f(x) \neq f(x_0)$, то

$$\frac{g(f(x)) - g(f(x_0))}{x - x_0} = \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \frac{f(x) - f(x_0)}{x - x_0}.$$

Если $f(x) = f(x_0)$, то

$$\frac{g(f(x)) - g(f(x_0))}{x - x_0} = 0 = g'(y_0) \cdot 0 = g'(y_0) \cdot \frac{f(x) - f(x_0)}{x - x_0}.$$

При $x \to x_0$ величина $y = f(x) \to f(x_0) = y_0$, так как f дифференцируема, следовательно, непрерывна в точке x_0 . Итак,

$$\frac{g(f(x)) - g(f(x_0))}{x - x_0} = h(x) \frac{f(x) - f(x_0)}{x - x_0},$$

где

$$h(x) = \begin{cases} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)}, & f(x) \neq f(x_0), \\ g'(y_0), & f(x) = f(x_0). \end{cases}$$

Ясно, что при $x \to x_0$ функция $h(x) \to g'(y_0)$, а $\frac{f(x) - f(x_0)}{x - x_0} \to f'(x_0)$. Это завершает доказательство теоремы.

1.5 Производные основных элементарных функций

Для вычисления производных элементарных функций нужно кроме правил дифференцирования, установленных в предыдущем пункте, знать производные основных элементарных функций или так называемую таблицу производных. Выведем производные основных элементарных функций.

1) $y=f(x)\equiv c=\mathrm{const},\ x\in\mathbb{R}.$ Тогда $\Delta y=c-c=0$ и в любой точке $x\in R$ производная

$$(c)' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0.$$

2) $y = f(x) = x^n, x \in \mathbb{R} \ (n \in \mathbb{N})$. Имеем

$$(x^n)' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{x^n + C_n^1 x^{n-1} \Delta x + C_n^2 x^{n-2} (\Delta x)^2 + \dots + (\Delta x)^n - x^n}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} [n x^{n-1} + \Delta x (C_n^2 x^{n-2} + C_n^3 x^{n-3} \Delta x + \dots + (\Delta x)^{n-1})] = n x^{n-1}.$$

Обобщение на произвольные показатели см. ниже, п. 7).

3) $y = \ln x, x > 0$. Имеем $\Delta y = \ln(x + \Delta x) - \ln x = \ln(1 + \frac{\Delta x}{x})$,

$$(\ln x)' = \lim_{\Delta x \to 0} \frac{\ln(1 + \frac{\Delta x}{x})}{\Delta x} = \lim_{t \to 0} \frac{\ln(1 + t)}{xt} = \frac{1}{x},$$

т. к. $ln(1+t) \sim t, t \to 0$.

4) $y = \log_a x$, x > 0 $(a > 0, a \ne 1)$.

$$(\log_a x)' = \left(\frac{\ln x}{\ln a}\right)' = \frac{1}{\ln a}(\ln x)' = \frac{1}{x \ln a}.$$

5) $y=e^x,\ x\in\mathbb{R}.$ Обратная к ней функция имеет вид $x=\ln y,$ y>0. Применяя теорему о дифференцируемости обратной функции, получаем

$$(e^x)' = \frac{1}{(\ln y)'} = \frac{1}{1/y} = y = e^x.$$

- 6) $y=a^x,\ x\in\mathbb{R}\ (a>0)$. Так как $y=e^{\ln a\cdot x}$, то, используя правило дифференцирования сложной функции и результат предыдущего пункта, получаем $(a^x)'=(e^{\ln a\cdot x})'=e^{\ln a\cdot x}(\ln a\cdot x)'=e^{\ln a\cdot x}\ln a=a^x\ln a$.
- 7) $y=x^{\alpha},\ x>0\ (\alpha\in\mathbb{R}).$ Используя правило дифференцирования сложной функции и подсчитанные в пп. 3) и 5) производные, получаем $(x^{\alpha})'=\left(e^{\alpha\ln x}\right)'=e^{\alpha\ln x}(\alpha\ln x)'=x^{\alpha}\alpha x^{-1}=\alpha x^{\alpha-1}.$

Отметим, что α может быть дробным и отрицательным. Например,

$$\left(\frac{1}{x}\right)' = (x^{-1})' = (-1)x^{-2} = -\frac{1}{x^2},$$

$$\left(\sqrt[3]{x}\right)' = \left(x^{\frac{1}{3}}\right)' = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3\sqrt[3]{x^2}}.$$

8) $y=\sin x,\ x\in\mathbb{R}.$ Имеем, с учетом известной эквивалентности $\sin x\sim x,\ x\to 0$:

$$\sin(x + \Delta x) - \sin x = 2\sin\frac{\Delta x}{2}\cos\frac{2x + \Delta x}{2} \sim \Delta x\cos\left(x + \frac{\Delta x}{2}\right),$$

 $\Delta x \to 0$. Значит, в силу непрерывности функции $y = \cos x$,

$$(\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \cos\left(x + \frac{\Delta x}{2}\right) = \cos x.$$

9) $y=\cos x,\;x\in\mathbb{R}.$ С использованием формул приведения имеем

$$(\cos x)' = \left(\sin\left(\frac{\pi}{2} - x\right)\right)' = \cos\left(\frac{\pi}{2} - x\right)\left(\frac{\pi}{2} - x\right)' = -\cos\left(\frac{\pi}{2} - x\right) = -\sin x.$$

10) $y = \operatorname{tg} x, \ x \in \mathbb{R}$. Имеем

$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)' \cos x - \sin x (\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

11) $y=\operatorname{ctg} x,\ x\in\mathbb{R}.$ С использованием формул приведения имеем

$$(\operatorname{ctg} x)' = \left(\operatorname{tg}\left(\frac{\pi}{2} - x\right)\right)' = \frac{1}{\cos^2\left(\frac{\pi}{2} - x\right)}\left(\frac{\pi}{2} - x\right)' = -\frac{1}{\sin^2 x}.$$

 $12)\;y=\arcsin x,\,x\in[-1;1].$ Обратная функция к ней есть $x=\sin y,\,y\in[-\pi/2;-\pi/2]\,$ и

$$(\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}},$$

 $x \in (-1;1)$. Заметим, что выбирается положительное значение радикала, так как $\cos y \ge 0, \ y \in [-\pi/2; -\pi/2]$.

13) $y = \arccos x, \ x \in [-1; 1]$. Производная

$$(\arccos x)' = \left(\frac{\pi}{2} - \arcsin x\right)' = -\left(\arcsin x\right)' = -\frac{1}{\sqrt{1-x^2}}, \quad x \in (-1;1).$$

14) $y = \arctan x, \ x \in \mathbb{R}$. Используя правило дифференцирования обратной функции, получаем

$$(\operatorname{arctg} x)' = \frac{1}{(\operatorname{tg} y)'} = \frac{1}{\cos^{-2} y} = \cos^{2} y = \frac{1}{1 + \operatorname{tg}^{2} y} = \frac{1}{1 + x^{2}}.$$

15) $y = \operatorname{arcctg} x, \ x \in \mathbb{R}$. Тогда

$$(\operatorname{arcctg} x)' = \left(\frac{\pi}{2} - \operatorname{arctg} x\right)' = -\left(\operatorname{arctg} x\right)' = -\frac{1}{1+x^2}.$$

Выпишем полученные производные.

Таблица производных основных элементарных функций.

$$(c)' = 0, (x^{\alpha})' = \alpha x^{\alpha - 1},$$

$$(\ln x)' = \frac{1}{x}, (\log_a x)' = \frac{1}{x \ln a},$$

$$(e^x)' = e^x, (a^x)' = a^x \ln a,$$

$$(\sin x)' = \cos x, (\cos x)' = -\sin x,$$

$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}, (\operatorname{ctg} x)' = -\frac{1}{\sin^2 x},$$

$$(\operatorname{arcsin} x)' = \frac{1}{\sqrt{1 - x^2}}, (\operatorname{arcctg} x)' = -\frac{1}{\sqrt{1 - x^2}},$$

$$(\operatorname{arcctg} x)' = \frac{1}{1 + x^2}, (\operatorname{arcctg} x)' = -\frac{1}{1 + x^2}.$$

Эту таблицу обязательно нужно выучить наизусть! Кроме того, безусловно нужно знать установленные выше основные правила дифференцрования:

$$(\alpha f + \beta g)' = \alpha f' + \beta g',$$

$$(fg') = f'g + fg',$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2},$$

$$(g \circ f)'(x) = g'(f(x))f'(x).$$

1.6 Логарифмическое дифференцирование

Пусть f(x) строго положительна на некотором числовом промежутке I и дифференцируема в точке $x \in I$, тогда

$$(\ln f(x))' = \frac{1}{f(x)} \cdot f'(x),$$

откуда

$$f'(x) = f(x)(\ln f(x))'.$$

Данная формула называется формулой логарифмического дифференцирования. Ее часто применяют при дифференцировании степеней, произведений, выражений, у которых логарифм имеет более удобный вид для дифференцирования, чем сама функция.

Примеры. 1) Пусть $y=f(x)^{g(x)}$, где f и g дифференцируемы в точке x и f>0 в окрестности точки x. Тогда $\ln y=g(x)\ln f(x)$ является дифференцируемой в точке x как произведение двух дифференцируемых функций и

$$y'(x) = f(x)^{g(x)} (g(x) \ln f(x))' = f(x)^{g(x)} \left(g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)} \right) =$$
$$= f(x)^{g(x)} g'(x) \ln f(x) + g(x) f(x)^{g(x)-1} f'(x).$$

Итак,

$$(f(x)^{g(x)})' = f(x)^{g(x)} g'(x) \ln f(x) + g(x) f(x)^{g(x)-1} f'(x).$$

Из полученной формулы видно, что для того, чтобы продифференцировать функцию, являющуюся степенью, основание и показатель которой

зависят от переменной дифференцирования, нужно продифференцировать ее сначала как показательную, затем как степенную и результаты сложить. Впрочем, эту формулу запоминать нет необходимости, можно просто применять формулу логарифмического дифференцирования, как это сделано в примере ниже.

2)
$$y = x^x$$
, $x > 0$. Имеем $(x^x)' = x^x(\ln x^x)' = x^x(x \ln x)' = x^x(\ln x + x \cdot \frac{1}{x}) = x^x(\ln x + 1)$.

3)
$$y = \sqrt{x-2}\sqrt[3]{x-3}\sqrt[4]{x-4}$$
, $x > 4$. Имеем

$$y' = y \left(\frac{1}{2} \ln(x - 2) + \frac{1}{3} \ln(x - 3) + \frac{1}{4} \ln(x - 4) \right)' =$$

$$= \sqrt{x - 2} \sqrt[3]{x - 3} \sqrt[4]{x - 4} \left(\frac{1}{2(x - 2)} + \frac{1}{3(x - 3)} + \frac{1}{4(x - 4)} \right).$$

1.7 Производные высших порядков

Пусть функция f дифференцируема на числовом промежутке I. Если функция f', которая является ее производной, дифференцируема в точке x_0 , то ее производная $(f')'(x_0)$ в этой точке называется ϵ второй производной функции f в точке x_0 и обозначается $f''(x_0)$. Если функция f' дифференцируема в любой точке $x \in I$, то производная функции f' на I называется ϵ второй производной функции f' на числовом промежутке I и обозначается f''.

Аналогично по индукции определяются третья, четвертая, . . . , n-ая производные функции f. Более подробно, пусть для некоторого натурального n>1 определена (n-1)-я производная $f^{(n-1)}$ функции f. Если $f^{(n-1)}$ дифференцируема в точке x_0 , то ее производная $(f^{(n-1)})'(x_0)$ в этой точке называется n-й производной функции f в точке x_0 и обозначается $f^{(n)}(x_0)$. Если функция $f^{(n-1)}$ дифференцируема в любой точке $x\in I$, то ее производная на I называется n-й производной функции f на числовом промежсутке I и обозначается $f^{(n)}$. Для производных младших порядков $(n\leq 3)$ приняты обозначения f', f'', f'''. Для старших производных в записи порядка n иногда вместо арабских используют римские числа, например, $f^{(IV)}$ вместо $f^{(4)}$. По определению полагают, что производная нулевого порядка — это сама функция.

Примеры. 1) Пусть
$$y=f(x)=(1+x)^{\alpha},\ x>-1.$$
 Тогда
$$y'=\alpha(1+x)^{\alpha-1},$$

$$y''=\alpha(\alpha-1)(1+x)^{\alpha-2},$$

$$y'''=\alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3},$$

$$y^{(n)} = \alpha(\alpha - 1) \cdots (\alpha - n + 1)(1 + x)^{\alpha - n}.$$

2) $y = \ln(1-x), x < 1$. Имеем

- 3) $y = e^x, x \in \mathbb{R}, y^{(n)} = e^x$ для любого натурального n.
- 4) $y = a^x$, $x \in \mathbb{R}$ (a > 0). Имеем $y' = a^x \ln a$, $y'' = a^x (\ln a)^2$, $y''' = a^x (\ln a)^3, \dots, y^{(n)} = a^x (\ln a)^n$.
- 5) $y = \sin x$, $x \in \mathbb{R}$. Тогда $y' = \cos x = \sin(x + \pi/2)$, $y'' = -\sin x = \sin(x + \pi)$, $y''' = -\cos x = \sin(x + 3\pi/2)$, $y^{(4)} = \sin x = \sin(x + 2\pi)$, ..., $y^{(n)} = \sin(x + n\pi/2)$.
- 6) $y = \cos x$, $x \in \mathbb{R}$. Тогда $y' = -\sin x = \cos(x + \pi/2)$, $y'' = -\cos x = \cos(x + \pi)$, $y^{(3)} = \sin x = \cos(x + 3\pi/2)$, ..., $y^{(n)} = \cos(x + n\pi/2)$.

 Φ ункция f, заданная на числовом промежутке I, называется henpe-рывно дифференцируемой на I, если f дифференцируема на I и производная f' является непрерывной функцией на I.

 Φ ункция f, заданная на числовом промежутке I, называется n раз непрерывно дифференцируемой на I, если функция $f^{(n-1)}$ дифференцируема на I и ее производная $f^{(n)}$ является непрерывной функцией на I.

 Φ ункция f, заданная на числовом промежутке I, называется δec конечно дифференцируемой на I, если функция f дифференцируема на

1 /

I любое количество раз. Если f бесконечно дифференцируема на I, то все ее производные дифференцируемы, следовательно, непрерывны на I.

1.8 Высшие производные линейной комбинации и произведения функций. Правило Лейбница.

1) Пусть функции f и g являются n раз дифференцируемыми g точке g0, тогда для любых констант g0, g0, g1, гинейная комбинация g1, g2, g3, является g3, дифференцируемой g4, точке g4, и g4, g5, g6, g6, g7, g8, g8, g9, g

Доказательство нетрудно провести с использованием метода полной математической индукции.

2) Подсчитаем несколько производных от произведения функций: (fg)' = f'g + fg', (fg)'' = f''g + 2f'g' + fg'', (fg)''' = f'''g + 3f''g' + 43f'g'' + fg'''. Из анализа этих формул можно заметить, что коэффициенты перед произведениями производных совпадают с биномиальными коэффициентами. На самом деле, это верно для произвольного n.

Условимся под нулевой производной $f^{(0)}$ функции f понимать саму функцию f .

Правило Лейбница. Пусть функции f и g являются n раз дифференцируемыми в точке x_0 , тогда произведение fg является n раз дифференцируемой функцией в точке x_0 и

$$(fg)^{(n)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(n-k)}(x_0) g^{(k)}(x_0).$$

Доказательство. Для простоты обозначений точку, в которой берутся производные, указывать не будем. Доказательство проведем индукцией по n. При $n=1,\,2,\,3$ справедливость утверждения теоремы установлена выше. Предположим, что оно верно для некоторого n=m:

$$(fg)^{(m)} = \sum_{k=0}^{m} C_m^k f^{(m-k)} g^{(k)}.$$

Докажем, что оно справедливо и при n=m+1. Дифференцируя предыдущее соотношение и используя правила дифференцирования линейной

комбинации и произведения, а также известное соотношение для биномиальных коэффициентов $C_m^k + C_m^{k-1} = C_{m+1}^k$, получаем

$$\begin{split} (fg)^{(m+1)} &= \left(\sum_{k=0}^m C_m^k f^{(m-k)} g^{(k)}\right)' = \\ &= \sum_{k=0}^m C_m^k f^{(m-k+1)} g^{(k)} + \sum_{k=0}^m C_m^k f^{(m-k)} g^{(k+1)} = \\ &= \sum_{k=0}^m C_m^k f^{(m-k+1)} g^{(k)} + \sum_{k=1}^{m+1} C_m^{k-1} f^{(m-k+1)} g^{(k)} = \\ &= f^{(m+1)} g + \sum_{k=1}^m C_m^k f^{(m-k+1)} g^{(k)} + \sum_{k=1}^m C_m^{k-1} f^{(m-k+1)} g^{(k)} + f g^{(m+1)} = \\ &= f^{(m+1)} g + \sum_{k=1}^m (C_m^k + C_m^{k-1}) f^{(m-k-1)} g^{(k)} + f g^{(m+1)} = \\ &= f^{(m+1)} g + \sum_{k=1}^m C_{m+1}^k f^{(m-k-1)} g^{(k)} + f g^{(m+1)} = \sum_{k=0}^{m+1} C_{m+1}^k f^{(m-k-1)} g^{(k)}, \end{split}$$

что и требовалось доказать.

Пример. Пусть
$$f(x)=(x^2+3x+1)e^x$$
. Найдем $f^{(100)}$. Имеем
$$(x^2+3x+1)'=2x+3,\ (x^2+3x+1)''=2,\ (x^2+3x+1)^{(n)}=0,\quad n\geq 3.$$

Используя правило Лейбница, получаем

$$f^{(100)}(x) = C_{100}^{0}(x^{2} + 3x + 1)e^{x} + C_{100}^{1}(2x + 3)e^{x} + C_{100}^{2}2e^{x} =$$

$$= [(x^{2} + 3x + 1) + 100(2x + 3) + 9900]e^{x} = (x^{2} + 203x + 10201)e^{x}.$$

1.9 Дифференциал функции

Рассмотрим примеры.

1) Пусть функция $y=x^2, \ x\in\mathbb{R}$. Рассмотрим приращение этой функции в точке x_0 :

$$\Delta y = (x_0 + \Delta x)^2 - x_0^2 = 2x_0 \cdot \Delta x + (\Delta x)^2 = 2x_0 \cdot \Delta x + o(\Delta x), \quad \Delta x \to 0.$$

Таким образом, приращение функции представимо в виде суммы функции, линейно зависящей от Δx , и величины, которая стремится к нулю быстрее, чем Δx . Например, при $x_0=1$ получаем

$$\Delta y = 2\Delta x + o(\Delta x), \quad \Delta x \to 0.$$

2) Пусть функция $y = x^2$, $x \in \mathbb{R}$. Ее приращение

$$\Delta y = (x_0 + \Delta x)^3 - x_0^3 = 3x_0^2 \Delta x + 3x_0 (\Delta x)^2 + (\Delta x)^3 = 3x_0^2 \Delta x + o(\Delta x),$$

 $\Delta x \to 0$. В частности, в точке $x_0 = -1$ имеем $\Delta y = 3\Delta x + o(\Delta x)$, $\Delta x \to 0$.

Теперь установим критерий дифференцируемости функции в точке.

Теорема. Функция f, заданная на числовом промежутке I, дифференцируема в точке x_0 тогда и только тогда, когда приращение функции в этой точке $\Delta f = f(x_0 + \Delta x) - f(x_0)$ можно представить в виде суммы

$$\Delta f = A\Delta x + o(\Delta x), \quad \Delta x \to 0.$$
 (*)

где A не зависит от Δx . При этом $A = f'(x_0)$.

Доказательство. Необходимость. Пусть f дифференцируема в точке x_0 . Тогда, по определению, существует конечный предел

$$A = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

и $A = f'(x_0)$. Следовательно,

$$\lim_{\Delta x \to 0} \frac{\Delta f - A \Delta x}{\Delta x} = 0,$$

т. е. $\Delta f - A\Delta x = o(\Delta x), \ \Delta x \to 0,$ откуда следует (*).

Достаточность. Пусть имеет место (*). Тогда

$$\frac{\Delta f}{\Delta x} = A + \frac{o(\Delta x)}{\Delta x} \to A, \quad \Delta x \to 0.$$

Это означает, что существует конечная производная $f'(x_0)$, равная A. Теорема доказана.

Из теоремы следует, что можно дать другое определение дифференцируемости функции в точке: функция дифференцируема, если ее приращение представимо в виде (*). Слагаемое $A\Delta x$ называется главной линейной частью приращения или $\partial u \phi \phi$ ренциалом функции f в точке x_0 .

Также вводится понятие дифференциала dx независимой переменной x: по определению, $dx = \Delta x$.

Дифференциал функции в точке x_0 обозначается $df(x_0)$. В отличие от дифференциала независимой переменной, дифференциал функции, вообще говоря, не совпадает с приращением, он отличается от него на величину $o(\Delta x)$:

$$\Delta f(x_0) = df(x_0) + o(\Delta x), \quad \Delta x \to 0.$$

Из доказанной теоремы следует, что $df(x_0) = A\Delta x = Adx$, где константа $A = f'(x_0)$. Из этих соотношений следует, что в точке x дифференцируемости функции f справедливы классические равенства

$$df(x) = f'(x)dx,$$

$$f'(x) = \frac{df(x)}{dx}.$$

Часто выражение в правой части последнего равенства рассматривают не как частное дифференциалов, а как единое целое. Это дает еще одно обозначение для производной. Такое обозначение использовал Лейбниц, а обозначение производной f' идет от Ньютона.

Покажем на рисунке отличие дифференциала функции от ее приращения и установим геометрический смысл дифференциала.

Рис. 2

Пусть функция f дифференцируема в точке x_0 , строго возрастает в окрестности точки x_0 и пусть $\Delta x>0$. Проведем касательную MB через точку M графика функции f, соответствующую значению аргумента x_0 . Тогда прирашение функции, соответствующее приращению аргумента

 Δx , есть длина отрезка AC, дифференциал есть длина отрезка AB, а длина отрезка BC является величиной, бесконечно малой по сравнению с Δx (длиной отрезка MA).

1.10 Техника нахождения дифференциалов

Из свойств производных вытекают следующие равенства для дифференциалов:

$$d(\alpha f + \beta g) = \alpha df + \beta dg,$$

$$d(fg) = df \cdot g + f \cdot dg,$$

$$d\left(\frac{f}{g}\right) = \frac{df \cdot g - f \cdot dg}{g^2}.$$

Установим справедливость, например, второй формулы. Имеем $d(fg)=(fg)'dx=(f'g+fg')dx=f'dx\cdot g+f\cdot gdx=df\cdot g+f\cdot dg$.

Примеры. 1) Найти df(2), если $f(x) = x \sin \pi x$. Имеем $df(x) = dx \sin \pi x + x d(\sin \pi x) = \sin \pi x dx + \pi x \cos \pi x dx = (\sin \pi x + \pi x \cos \pi x) dx$, $df(2) = 2\pi dx$.

2) Вычислить приближенно значение $\sqrt{1,0001}$. Имеем

$$\sqrt{1,0001} = \sqrt{1+0,0001} = f(x+\Delta x),$$

где $f(x) = \sqrt{x}, \ x = 1, \ \Delta x = 0,0001$. Имеем

$$f(x + \Delta x) - f(x) = \Delta f(x) \approx df(x) = d(\sqrt{x}) = \frac{dx}{2\sqrt{x}},$$

поэтому $f(x + \Delta x) \approx f(x) + \frac{dx}{2\sqrt{x}} = 1 + \frac{1}{2} \cdot 0,0001 = 1,00005$. Итак, $\sqrt{1,0001} \approx 1,00005$.

1.11 Инвариантность формы 1-го дифференциала

Если f — дифференцируемая функция независимой переменной x, то

$$df(x) = f'(x) dx. (1)$$

Предположим теперь, что x является функцией от некоторой переменой t. Найдем дифференциал сложной функции g(t)=f(x(t)). Имеем dg(t)=g'(t)dt=f'(x(t))x'(t)dt=f'(x(t))dx(t). Итак,

$$d(f(x(t))) = f'(x(t)) dx(t).$$
(2)

Сравнивая (1) и (2), получаем, что df = f'dx и в случае, когда x — независимая переменная, и когда x = x(t) — функция другой переменной t. Это свойство называется инвариантностью формы 1-го дифференциала.

1.12 Дифференциалы высших порядков

Рассмотрим дифференциал функции f точке x_0 :

$$df(x_0) = f'(x_0) dx,$$

где $dx = \Delta x = x - x_0$. При фиксированном x_0 дифференциал является функцией от $dx = \Delta x$. Если же f дифференцируема на числовом промежутке I, то для любого $x \in I$ имеем df(x) = f'(x) dx, следовательно дифференциал зависит еще и от x. В этом случае df(x) является функцией двух переменных — dx и x.

Рассмотрим теперь дифференциал df(x) как функцию от точки x при фиксированном dx. Если эта функция дифференцируема по x в точке x_0 , то ее дифференциал называется вторым дифференциалом функции в точке x_0 и обозначается $d^2f(x_0)$. Подсчитаем его через производные функции:

$$d^{2}f(x_{0}) = d(df)(x_{0}) = (df)'(x_{0})dx = (f'(x)dx)'|_{x=x_{0}}dx = f''(x_{0})dx^{2}.$$

Мы видим, что как функция от dx второй дифференциал является квадратичной формой. При этом,

$$f''(x_0) = \frac{d^2 f(x_0)}{dx^2}.$$

Как и в случае первой производной, выражение в правой части можно принять за другое обозначение второй производной (по Лейбницу).

Аналогично определяются дифференциалы произвольного порядка. Если дифференциал (n-1)-го порядка $d^{n-1}(x) = f^{(n-1)}(x) dx^{n-1}$ как функция переменной x является дифференцируемой функцией в точке x_0 (при фиксированном dx!), то ее дифференциал называется дифференциалом n-го порядка в точке x_0 и обозначается $d^n f(x_0)$. Имеем

$$d^{n}f(x_{0}) = d(d^{n-1}f)(x_{0}) = (d^{n-1}f)'(x_{0}) dx =$$

$$= (f^{(n-1)}(x) dx^{n-1})'|_{x=x_{0}} dx = f^{(n)}(x_{0}) dx^{n}.$$

Итак,

$$d^n f(x) = f^{(n)}(x) dx^n, \quad f^{(n)}(x) = \frac{d^n f(x)}{dx^n}.$$

Теперь покажем, что, в отличие от первого дифференциала, форма дифференциала второго порядка не обладает свойством инвариантности.

Найдем второй дифференциал сложной функции g(t) = f(x(t)). Имеем $dg(t) = f'(x(t))x'(t)\,dt$,

$$d^{2}g(t) = (f'(x(t))x'(t)dt)'dt = [f''(x(t))(x'(t))^{2} + f'(x(t))x''(t)]dt^{2} =$$

$$= f''(x(t))(dx(t))^{2} + f'(x(t))d^{2}x(t),$$

что не совпадает с $f''(x(t))(dx(t))^2$.

1.13 Дифференцирование функций, заданных параметрически

Рассмотрим функцию $y=\sqrt{1-x^2},\ |x|\leq 1.$ Зависимость y от x можно задать не в явном виде, а параметрически, используя третью переменную t (параметр):

$$x = \cos t$$
, $y = \sin t$, $0 \le t \le \pi$.

Такое задание функции называется параметрическим. Дадим общее определение.

Пусть на числовом промежутке I заданы функции x=x(t), y=y(t), $t\in I$. Если x=x(t) непрерывна и строго монотонна на I, то существует обратная к ней функция t=t(x) на x(I) и тогда y=y(t(x)) определяет на x(I) некоторую функцию. Для краткости, как это обычно делается на практике, будем обозначать эту функцию через y=y(x), хотя, строго говоря, это не совсем корректно. Будем говорить, что

$$x = x(t), y = y(t), t \in I,$$

является параметрическим заданием функции y = y(x).

В механике и физике часто в качестве параметра t берут время, а в качестве x и y — декартовы координаты движущейся материальной точки.

Найдем производную функции, заданной неявно. Используем инвариантность формы первого дифференциала:

$$y_x' = \frac{dy}{dx} = \frac{y_t'dt}{x_t'dt} = \frac{y_t'}{x_t'}.$$

Здесь нижний индекс означает переменную, по которой производится дифференцирование. Отсюда выводим, что дифференцирование по x равносильно дифференцированию по t и делению на x_t' . С использованием этого замечания можно легко находить производные более высоких порядков. Например, вторая производная от y по x равна

$$y_{x^2}'' = (y_x')_x' = \frac{(y_x')_t'}{x_t'} = \frac{\left(\frac{y_t'}{x_t'}\right)_t'}{x_t'} = \frac{y_{t^2}''x_t' - y_t'x_{t^2}''}{(x_t')^3}.$$

Для произвольного n

$$y_{x^n}^{(n)} = \frac{\left(y_{x^{n-1}}^{(n-1)}\right)_t'}{x_t'}.$$

Пример. Пусть

$$x = \cos t, \ y = \sin t, \quad 0 \le t \le \pi.$$

Имеем

$$y'_x(x) = \frac{y'_t(t)}{x'_t(t)} = \frac{\cos t}{-\sin t} = -\operatorname{ctg} t,$$
$$y''_{x^2}(x) = \frac{(-\operatorname{ctg} t)'_t}{(\cos x)'_t} = -\frac{1}{\sin^3 t},$$

где $t = \arccos x$.

2 Основные теоремы дифференциального исчисления

Теорема Ферма. Пусть функция f задана на отрезке [a;b] и в некоторой внутренней точке $c \in (a;b)$ достигает своего минимума или максимума. Если в точке c существует производная, то f'(c) = 0.

Доказательство. Рассмотрим для определенности случай, когда c — точка максимума функции f. Тогда $f(c) \geq f(x)$, $x \in [a;b]$. Так как c — внутренняя точка [a;b], существует $\varepsilon > 0$ такое, что $O_{\varepsilon}(c) \subset [a;b]$.

Пусть в точке $\,c\,$ существует производная. Если $\,c < x < c + arepsilon\,,\,$ то $\,x-c>0\,,\,\,f(x)-f(c)\leq 0\,,\,$ поэтому

$$\frac{f(x) - f(c)}{x - c} \le 0 \Longrightarrow f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \le 0.$$

Аналогично, если $c-\varepsilon < x < c$, то x-c < 0, $f(x)-f(c) \leq 0$, поэтому

$$\frac{f(x) - f(c)}{x - c} \ge 0 \Longrightarrow f'(c) = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} \ge 0.$$

Таким образом, f'(c) = 0. Теорема доказана.

Теорема Ролля. Пусть функция f является непрерывной на отрезке [a;b] и имеет производную в любой точке интервала (a;b). Если f(a) = f(b), то существует точка $c \in (a;b)$ такая, что f'(c) = 0.

Доказательство. Если функция $f \equiv {\rm const}$ на [a;b], то в любой точке $x \in (a;b)$ имеем f'(x)=0.

Если $f \not\equiv$ const на [a;b], то по теореме Вейерштрасса существуют точки $c, d \in [a;b]$ такие, что $f(c) = \max_{[a;b]} f$, $f(d) = \min_{[a;b]} f$, при этом f(c) > f(d). Значит, либо f(c), либо f(d) не совпадает с f(a) = f(b). Предположим для определенности, что $f(c) \not= f(a) = f(b)$. Тогда $c \not= a$, $c \not= b$, таким образом, $c \in (a,b)$. Применяя теорему Ферма, получаем, что f'(c) = 0. Теорема доказана.

Теорема Лагранжа (формула конечных приращений). Пусть f непрерывна на отрезке [a;b] и имеет производную в любой точке интервала (a;b). Тогда существует точка $c \in (a,b)$ такая, что

$$f(b) - f(a) = f'(c)(b - a).$$
 (*)

Доказательство. Пусть g(x)=(f(b)-f(a))x-(b-a)f(x). Эта функция непрерывна на [a;b], имеет производную в любой точке интервала (a;b) и g(b)=g(a)=f(b)a-f(a)b. По теореме Ролля существует точка $c\in(a;b)$ такая, что g'(c)=0. Но g'(x)=(f(b)-f(a))-(b-a)f'(x). Таким образом, (f(b)-f(a))-(b-a)f'(c)=0, откуда следует формула (*). Теорема доказана.

Замечания. 1) Поясним название «формула конечных приращений». Дело в том, что производная есть предел отношения приращения функции к приращению аргумента, когда последнее стремится к нулю:

$$\frac{f(x) - f(x_0)}{x - x_0} \to f'(x_0), \ x \to x_0$$

Формулу (*) можно записать в виде

$$\frac{f(b) - f(a)}{b - a} = f'(c). \tag{**}$$

Дробь в левой части последнего равенства можно трактовать как отношение приращения функции к приращению аргумента, при этом приращение аргумента равно b-a и к нулю не стремится, т. е. является конечным. Тем не менее, без операции предельного перехода это отношение равняется производной функции f, правда, в некоторой, вообще говоря, неизвестной точке c, промежуточной между a и b.

2) Дадим геометрическую интерпретацию формулы конечных приращений. Она эквивалентна (**). Левая часть (**) представляет собой тангенс угла наклона β секущей к графику функции f, проходящей через точки M(a,f(a)) и N(b,f(b)), к оси абсцисс. Правая часть есть тангенс угла наклона α касательной к графику функции f в точке L(c,f(c)) к оси абсцисс. Таким образом, (**) эквивалентно равенству $\mathrm{tg}\,\beta=\mathrm{tg}\,\alpha$, откуда следует, что $\beta=\alpha$ (если мы будем фиксировать значения углов в пределах $(-\pi/2;\pi/2)$). Итак, теорема Лагранжа утверждает, что если график функции имеет касательную в любой внутренней точке отрезка [a;b], то существует касательная, параллельная секущей, проходящей через концевые точки графика с абсциссами a и b (рис. 3).

3) Формулу конечных приращений можно записать по другому. Пусть $\theta = \frac{c-a}{b-a}$. Ясно, что $\theta \in (0;1)$ и $c=a+\theta(b-a)$. В новых обозначениях формула конечных приращений принимает вид

$$f(b) - f(a) = f'(a + \theta(b - a))(b - a), \quad \theta \in (0; 1),$$

$$f(a+h) - f(a) = f'(a+\theta h)h, \quad \theta \in (0;1).$$

2.1 Свойства функций, которые являются производными

Теорема. Пусть функция f является непрерывной на [a;b) (на (a;b]) и имеет производную в любой точке $x \in (a,b)$. Если существует $\lim_{x\to a+} f'(x)$ ($\lim_{x\to b-} f'(x)$), то существует правая производная $f'_+(a)$ в точке a (левая производная $f'_-(b)$ в точке b), при этом

$$f'_{+}(a) = \lim_{x \to a+} f'(x) \quad (f'_{-}(b) = \lim_{x \to b-} f'(x)).$$

Доказательство. Рассмотрим для примера первый случай. Предположим, что существует $\lim_{x\to a+} f'(x)$. Пусть $x\in (a,b)$. Тогда по формуле конечных приращений

$$\frac{f(x) - f(a)}{x - a} = f'(t_x), \tag{*}$$

где t_x — некоторая точка интервала (a,x). Пусть $x \to a+$, тогда по теореме о двух милиционерах $t_x \to a+$. Следовательно, существует $\lim_{x\to a+} f'(t_x) = \lim_{x\to a+} f'(x)$. В силу (*) существует

$$\lim_{x \to a+} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a+} f'(t_x) = \lim_{x \to a+} f'(x).$$

По определению, в точке a существует правая производная $f'_+(a)$ и $f'_+(a)=\lim_{x\to a+}f'(x)$. Теорема доказана.

Следствие 1. Пусть функция непрерывна на интервале (a;b) и имеет производную в любой точке (a;b), за исключением, быть может, точки $x_0 \in (a,b)$. Если существует $\lim_{x\to x_0} f'(x)$, то в точке x_0 существует производная и $f'(x_0) = \lim_{x\to x_0} f'(x)$.

Следствие 2. Если функция f дифференцируема на (a;b), то любая точка разрыва функции f' — точка разрыва второго рода.

Примеры. 1) Пусть $y = \sqrt[3]{x}$. Если $x \neq 0$, то существует $y'(x) = (1/3)x^{-2/3}$. Если $x \to 0$, то $y'(x) \to +\infty$. Значит существует $y'(0) = +\infty$.

2) Пусть $y=\sqrt[3]{x^2}$. Если $x\neq 0$, то существует $y'(x)=(2/3)x^{-1/3}$. Существуют односторонние пределы

$$\lim_{x \to 0+} y'(x) = +\infty, \quad \lim_{x \to 0-} y'(x) = -\infty.$$

Значит, в точке x=0 существуют односторонние производные $y'_+(0)=$ $=+\infty,\ y'_-(0)=-\infty,$ но обычная производная не существует.

- 3) Функция $y=\operatorname{sign} x$ не является производной никакой функции на $\mathbb R$.
 - 4) Функция

$$y = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

дифференцируема в любой точке $x \neq 0$ и

$$y'(x) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}.$$

Отметим, что не существует предела функции y'(x) при $x \to 0$, так как $2x\sin\frac{1}{x}\to 0$ (как произведение ограниченной функции и функции, стремящейся к нулю), в то время как $\cos\frac{1}{x}$ предела не имеет. Геометрически это означает, что угол наклона касательной не стремится ни к какому пределу при $x\to 0$. Однако существует производная y'(0)=0, т. е. график этой функции имеет касательную в начале координат. Докажем это. Действительно, по определению,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0.$$

Этот пример показывает, что из существования касательной к графику функции в точке (существует предельной положение секущей) не следует непрерывность угла наклона касательной в соответствующей точке.

Теорема Дарбу (о промежуточном значении производной). Пусть функция f имеет производную в любой точке $x \in [a;b]$. Тогда функция f' принимает на [a;b] любое значение, промежуточное между f'(a) и f'(b).

Доказательство. Можно считать, что $f'(a) \neq f'(b)$.

1) Рассмотрим сначала случай, когда f'(a) и f'(b) имеют разные знаки. Пусть, для определенности, f'(a) < 0 < f'(b). Покажем, что существует такая точка $c \in (a;b)$, что f'(c) = 0. Так как

$$f'(a) = \lim_{x \to a+} \frac{f(x) - f(a)}{x - a} < 0,$$

существует $\varepsilon > 0$ такое, что

$$\frac{f(x) - f(a)}{x - a} < 0, \quad x \in (a, a + \varepsilon).$$

Значит, f(x) - f(a) < 0, т. е. f(x) < f(a), $x \in (a; a + \varepsilon)$. Аналогично показываем, что в силу того, что f'(b) < 0, существует $\varepsilon' > 0$ такое, что f(x) < f(b), $x \in (b - \varepsilon'; b)$. По теореме Вейерштрасса функция f принимает минимальное значение на [a; b], т. е. существует точка $c \in [a; b]$ такая, что $f(c) = \min_{[a;b]} f$. Так как f(x) < f(a) вблизи точек a и b, то $c \neq a$, $c \neq b$. Следовательно, $c \in (a; b)$. По теореме Ферма f'(c) = 0.

2) Теперь рассмотрим общий случай. Пусть, для определенности, f'(a) < f'(b). Фиксируем некоторое число γ такое, что $f'(a) < \gamma < f'(b)$. Покажем, что существует такая точка $c \in (a;b)$, что $f'(c) = \gamma$. Чтобы свести дело к предыдущему случаю рассмотрим функцию $g(x) = f(x) - \gamma x$. Эта функция непрерывна на [a;b] и в любой точке $x \in [a;b]$ имеет производную $g'(x) = f'(x) - \gamma$. Имеем

$$g'(a) = f'(a) - \gamma < 0 < f'(b) - \gamma = g'(b).$$

В пункте 1) доказано, что в этом случае существует такая точка $c \in (a;b)$, что g'(c)=0. Значит, $f'(c)=\gamma$. Теорема доказана.

2.2 Обобщенная формула конечных приращений

Теорема Коши (обобщенная формула конечных приращений). Пусть функции f и g непрерывны на отрезке [a;b], имеют производные в любой точке $x \in (a;b)$, причем по крайней мере одно из чисел f'(x), g'(x) конечно. Тогда существует такая точка $c \in (a;b)$, что

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

Доказательство. Рассмотрим функцию

$$h(x) = (f(b) - f(a))g(x) - (g(b) - g(a))f(x).$$

Как и при доказательстве обычной формулы конечных приращений показываем, что существует точка $c \in (a; b)$, в которой h'(c) = 0. Последнее равенство равносильно доказываемому.

Правило Лопиталя 2.3

Правило Лопиталя дает очень простой и эффективный способ вычисления пределов функции h в точке x_0 в случае, когда h представима в виде отношения двух дифференцируемых функций, стремящихся одновременно к нулю (случай $\frac{0}{0}$) или к бесконечности (случай $\frac{\infty}{\infty}$) в данной точке. Функция f на конечном или бесконечном интервале, за исключением быть может самой точки x_0 , при этом точка x_0 является либо внутренней точкой, либо концевой точкой интервала.

Теорема (правило Лопиталя). Пусть функции f и q дифференцируемы на интервале (a;b) за исключением, быть может, точки x_0 , предельной для (a;b). Пусть функции g и g' не обращаются в нуль на (a;b) за исключением, быть может, точки x_0 . Предположим, что выполняется одно из условий:

- 1) $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ (*chyuaй* $\frac{0}{0}$),

2) $\lim_{x\to x_0} f(x) = \pm \infty$, $\lim_{x\to x_0} g(x) = \pm \infty$ (случай ∞). Если существует предел $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$, то существует предел $\lim_{x\to x_0} \frac{f(x)}{g(x)} u$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Доказательство. Рассмотрим для примера случай, когда $x_0 = a$. Пусть

$$\alpha = \lim_{x \to a+} \frac{f'(x)}{g'(x)}.$$

Можно считать, что $\alpha \neq +\infty$. Докажем, что для любого $r > \alpha$ существует $b_r \in (a;b)$ такое, что

$$\frac{f(x)}{g(x)} < r, \quad x \in (a; b_r). \tag{1}$$

Фиксируем число $p \in (\alpha; r)$. Так как

$$\lim_{x \to a+} \frac{f'(x)}{g'(x)} = \alpha < p,\tag{2}$$

то существует $b' \in (a;b)$ такое, что

$$\frac{f'(x)}{g'(x)} < p, \quad x \in (a; b').$$

Рассмотрим любые точки $x, y \in (a; b')$ такие, что $g(x) \neq g(y)$. По теореме Коши существует точка t, лежащая между x и y, такая, что

$$\frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f'(t)}{g'(t)}.$$
 (3)

Так как $x, y \in (a; b')$, то и $t \in (a; b')$. Из (2) и (3) тогда следует, что

$$\frac{f(x) - f(y)}{g(x) - g(y)} < p. \tag{4}$$

1) Рассмотрим сначала случай $\frac{0}{0}$. Фиксируем $x \in (a,b')$. Так как $g(x) \neq 0$ и $g(y) \to 0$, $y \to a+$, то то существует $b'' \in (a;b')$ такое, что $g(x) \neq g(y)$, $y \in (a;b'')$. Таким образом, для любого $y \in (a;b'')$ имеет место (4). Переходя к пределу в (4) при $y \to a+$ с учетом условий теоремы, получаем, что

$$\frac{f(x)}{g(x)} = \lim_{y \to a+} \frac{f(x) - f(y)}{g(x) - g(y)} \le p < r, \quad x \in (a; b'),$$

и (1) установлено с $b_r = b'$.

2) Теперь рассмотрим случай $\frac{\infty}{\infty}$. Фиксируем $y \in (a;b')$. Так как

$$\lim_{x \to a+} \frac{g(x) - g(y)}{g(x)} = 1 - \lim_{x \to a+} \frac{g(y)}{g(x)} = 1 > 0,$$

то существует $b'' \in (a; b')$ такое, что

$$\frac{g(x) - g(y)}{g(x)} > 0, \quad x \in (a; b'').$$

Умножив обе части (4) на положительное выражение $\frac{g(x)-g(y)}{g(x)}$, получаем

$$\frac{f(x) - f(y)}{g(x)}$$

откуда следует, что

$$\frac{f(x)}{g(x)} (6)$$

Так как $\frac{f(y)-pg(y)}{g(x)} \to 0$, $x \to a+$, то существует $b''' \in (a;b'')$ такое, что

$$\frac{f(y) - pg(y)}{g(x)} < r - p, \quad x \in (a; b'''). \tag{7}$$

Из (6) и (7) следует (1) с $b_r = b'''$.

Итак, (1) доказано и для случая $\frac{0}{0}$, и для случая $\frac{\infty}{\infty}$. Совершенно аналогично доказывается, что если $\alpha > -\infty$, то для любого $s < \alpha$ существует $b_s \in (a;b)$ такое, что

$$\frac{f(x)}{g(x)} > s, \quad x \in (a; b_s). \tag{8}$$

Из (1) и (8) следует утверждение теоремы. Действительно, если $\alpha \in \mathbb{R}$, то для любого $\varepsilon > 0$, беря в качестве r число $\alpha + \varepsilon$, а в качестве s число $\alpha - \varepsilon$, получаем:

$$\alpha - \varepsilon < \frac{f(x)}{g(x)} < \alpha + \varepsilon, \quad x \in (a; \widetilde{b}), \ \widetilde{b} := \min\{b_r, b_s\},$$

откуда

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \alpha = \lim_{x \to a+} \frac{f'(x)}{g'(x)}.$$

Если $\alpha=-\infty$, то из (1) легко вывести, что

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = -\infty = \lim_{x \to a+} \frac{f'(x)}{g'(x)}.$$

Наконец, случай $\alpha = +\infty$ рассматривается аналогично случаю $\alpha = -\infty$ с использованием (8).

Примеры. 1) Найдем $\lim_{x\to +\infty} \frac{x}{e^x}$. Так как $\lim_{x\to +\infty} x = \lim_{x\to +\infty} e^x = +\infty$, имеем неопределенность типа $\frac{\infty}{\infty}$. Предел отношения производных существует и равен

$$\lim_{x \to +\infty} \frac{(x)'}{(e^x)'} = \lim_{x \to +\infty} \frac{1}{e^x} = 0,$$

следовательно,

$$\lim_{x \to +\infty} \frac{x}{e^x} = 0.$$

Заметим, что на практике часто применяют правило Лопиталя эвристически, сводя предел отношения функций к пределу отношения производных, в надежде, что он существует. Существование последнего оправдывает предыдущие вычисления. Часто правило Лопиталя приходится применять несколько раз.

2) Правило Лопиталя можно применять и для вычисления предела произведения функций. Приведем пример, когда неопределенность типа $0 \cdot \infty$ сводится к неопределенности типа $\frac{\infty}{\infty}$:

$$\lim_{x \to 0+} (x \ln x) = \lim_{x \to 0+} \frac{\ln x}{x^{-1}} = \lim_{x \to 0+} \frac{x^{-1}}{-x^{-2}} = -\lim_{x \to 0+} x = 0.$$

3) Правило Лопиталя иногда применяют для вычисления предела суммы или разности функций. Правило Лопиталя полезно сочетать с другими приемами вычисления пределов, например, заменяя выражения в числителе или знаменателе на эквивалентные выражения:

$$\lim_{x\to 0} \left(\operatorname{ctg} x - \frac{1}{x}\right) = \lim_{x\to 0} \left(\frac{\cos x}{\sin x} - \frac{1}{x}\right) = \lim_{x\to 0} \frac{x \cos x - \sin x}{x \sin x} =$$

$$= \lim_{x\to 0} \frac{x \cos x - \sin x}{x^2} = \lim_{x\to 0} \frac{\cos x - x \sin x - \cos x}{2x} = -\frac{1}{2} \lim_{x\to 0} \sin x = 0.$$

2.4 Формула Тейлора

Формула Тейлора дает способ приближенного вычисления значения функции f в окрестности некоторой точки. Этот способ основан на замене функции на некоторый достаточно близкий многочлен — так называемый многочлен Тейлора.

Пусть функция f определена в окрестности точки a и n раз дифференцируема с точке a. Многочленом Тейлора n-го порядка функции f в точке a называется многочлен

$$P_n(x) := f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Отметим, что коэффициенты P_n очень просто определяются через производные функции f в точке a. Вычисление многочлена в точке x сводится к выполнению основных арифметических операций — сложения и умножения, поэтому приближенная формула

$$f(x) \approx P_n(x)$$

часто является весьма эффективной.

Сначала отметим интересное свойство многочлена Тейлора.

Лемма. Имеют место равенства

$$P_n^{(k)}(a) = f^{(k)}(a), \quad 0 \le k \le n.$$
 (*)

Эти равенства проверяются непосредственным дифференцированием.

Известно несколько вариантов формулы Тейлора в зависимости от формы остатка (абсолютной погрешности) $r_n(x) = f(x) - P_n(x)$.

Теорема (формула Тейлора с остаточным членом в форме Лагранжа). Пусть функция f является n раз дифференцируемой на конечном или бесконечном интервале (c;d) и в любой точке $x \in (c;d)$ существует ее (n+1)-я производная. Пусть точка $a \in (c;d)$. Тогда для любого $x \in (c;d)$ существует точка \widetilde{x} , лежащая между a и x такая, что

$$f(x) = P_n(x) + \frac{f^{(n+1)}(\widetilde{x})}{(n+1)!} (x-a)^{n+1}, \tag{**}$$

e

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k$$

— многочлен Tейлора n-го порядка функции f в точке a .

Доказательство. Фиксируем точку $x \in (c;d)$. Рассмотрим на (c;d) функцию

$$g(t) = f(t) - P_n(t) - \frac{f(x) - P_n(x)}{(x - a)^{n+1}} (t - a)^{n+1}.$$

Найдем производные функции g. При $0 \le k \le n$ имеем

$$g^{(k)}(t) = f^{(k)}(t) - P_n^{(k)}(t) - \frac{f(x) - P_n(x)}{(x-a)^{n+1}}(n+1)n \cdot \dots \cdot (n-k+2)(t-a)^{n-k+1}.$$

Из последнего равенства с учетом (*) следует, что

$$g^{(k)}(a) = 0, \quad 0 \le k \le n.$$

Теперь заметим, что

$$g(x) = f(x) - P_n(x) - \frac{f(x) - P_n(x)}{(x - a)^{n+1}} (x - a)^{n+1} = 0.$$

Из равенств g(x) = g(a) = 0 и теоремы Ролля следует, что существует точка x_1 , лежащая между a и x, такая, что $g'(x_1) = 0$. Из равенств $g'(x_1) = g'(a) = 0$ аналогично выводим, что существует точка x_2 , лежащая между a и x_1 , такая, что $g''(x_2) = 0$. Продолжая этот процесс,

получаем, что для любого k, $1 \le k \le n+1$ существует точка x_k , лежащая между a и x_{k-1} , такая, что $g^{(k)}(x_k)=0$. Ясно, что точка $\widetilde{x}:=x_{n+1}$ лежит между a и x и $g^{(n+1)}(\widetilde{x})=0$. С другой стороны,

$$g^{(n+1)}(t) = f^{(n+1)}(t) - \frac{f(x) - P_n(x)}{(x-a)^{n+1}}(n+1)!,$$

поэтому

$$f^{(n+1)}(\widetilde{x}) - \frac{f(x) - P_n(x)}{(x-a)^{n+1}}(n+1)! = 0,$$

откуда следует (**). Теорема доказана.

Замечания. 1) Формулу Тейлора при a=0 называют часто формулой Маклорена. Она имеет вид

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \frac{f^{(n+1)}(\widetilde{x})}{(n+1)!} x^{n+1}.$$

2) Если $f^{(n+1)}$ ограничена в некоторой окрестности точки a , то остаточный член

$$\frac{f^{(n+1)}(\widetilde{x})}{(n+1)!}(x-a)^{n+1} = o((x-a)^n), \quad x \to a.$$

Формулу Тейлора с такой формой остатка называют локальной формулой Тейлора или формулой Тейлора с остатком в форме Пеано. Мы докажем этот вариант формулы Тейлора ниже при более слабых предположениях. Если известна оценка $|f^{(n+1)}(x)| \leq M$, $x \in (c;d)$, то тогда можно оценить остаток

$$\left| \frac{f^{(n+1)}(\widetilde{x})}{(n+1)!} (x-a)^{n+1} \right| \le \frac{M|x-a|^{n+1}}{(n+1)!}$$

в явном виде. Такая оценка важна для оценки погрешности приближенной формулы с учетом того, что точка \widetilde{x} , как правило, неизвестна.

3) Поскольку точка \widetilde{x} лежит между x и a, то ее можно записать в виде $\widetilde{x}=a+\theta(x-a)$, где $\theta\in(0,1)$.

Теорема (формула Тейлора с остаточным членом в форме Пеано). Пусть функция f дифференцируема (n-1) раз в некоторой окрестности точки а и в точке а существует конечная n-ая производная. Тогда утверждается, что

$$f(x) = P_n(x) + o((x - a)^n), \quad x \to a,$$

где P_n — многочлен Тейлора n-го порядка функции f в точке a .

Доказательство. Требуется доказать, что $f(x) - P_n(x) = o((x-a)^n)$, $x \to a$, т. е. что

$$\lim_{x \to a} \frac{f(x) - P_n(x)}{(x - a)^n} = 0.$$

Для вычисления этого предела применим (n-1) раз правило Лопиталя. При этом, воспользуемся равенствами (*). Имеем при $0 \le k \le n-1$

$$\lim_{x \to a} (f(x) - P_n(x))^{(k)} = \lim_{x \to a} (f^{(k)}(x) - P_n^{(k)}(x)) = f^{(k)}(a) - P_n^{(k)}(a) = 0$$

в силу того, что $f^{(k)}$ и $P^{(k)}$ дифференцируемы, следовательно, непрерывны в точке a. Таким образом, раскрывая неопределенности типа $\frac{0}{0}$, получаем

$$\lim_{x \to a} \frac{f(x) - P_n(x)}{(x - a)^n} = \lim_{x \to a} \frac{f'(x) - P'_n(x)}{n(x - a)^{n-1}} = \lim_{x \to a} \frac{f''(x) - P''_n(x)}{n(n - 1)(x - a)^{n-2}} = \cdots$$

$$\dots = \lim_{x \to a} \frac{f^{(n-1)}(x) - P_n^{(n-1)}(x)}{n!(x - a)} = \lim_{x \to a} \frac{f^{(n-1)}(x) - f^{(n-1)}(a) - f^{(n)}(a)(x - a)}{n!(x - a)} =$$

$$= \frac{1}{n!} \left[\lim_{x \to a} \frac{f^{(n-1)}(x) - f^{(n-1)}(a)}{x - a} - f^{(n)}(a) \right] = \frac{1}{n!} (f^{(n)}(a) - f^{(n)}(a)) = 0.$$

При этом мы воспользовались равенством

$$P_n^{(n-1)}(x) = f^{(n-1)}(a) + f^{(n)}(a)(x-a)$$

и, при обосновании предпоследнего равенства, определением производной. Теорема доказана.

2.5 Представление по формуле Тейлора некоторых элементарных функций

1) Рассмотрим функцию $y=e^x,\ x\in\mathbb{R}$. Представим ее по формуле Тейлора в точке a=0. Функция $y=e^x$ бесконечно дифференцируема и $y^{(n)}(x)=e^x$. Поэтому для любого $x\in\mathbb{R}$ и любого $n\in\mathbb{N}$ имеет место равенство

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + r_n(x),$$

где

$$r_n(x) = \frac{e^{\tilde{x}}}{(n+1)!} x^{n+1}.$$

Здесь \widetilde{x} — некоторая точка, лежащая между 0 и x. Если x>0, то $|e^{\widetilde{x}}| \leq e^x$ и

$$|r_n(x)| \le \frac{e^x}{(n+1)!} x^{n+1}.$$

Если x<0, то $\left|e^{\tilde{x}}\right|\leq 1$ и

$$|r_n(x)| \le \frac{|x|^{n+1}}{(n+1)!}.$$

2) Рассмотрим функцию $y = \sin x$, $x \in \mathbb{R}$. Представим ее по формуле Тейлора в точке a = 0. Имеем $y^{(n)}(x) = \sin(x + \frac{\pi}{2}n)$,

$$y^{(n)}(0) = \sin \frac{\pi n}{2} = \begin{cases} 0, & n = 2k, \\ (-1)^k, & n = 2k + 1. \end{cases}$$

Таким образом, многочлен Тейлора в точке a=0 содержит только нечетные степени и

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^k \frac{x^{2k+1}}{(2k+1)!} + r_{2k+2}(x),$$

где

$$r_{2k+2}(x) = \frac{\sin\left(\theta x + \frac{\pi}{2}(2k+3)\right)}{(2k+3)!}x^{2k+3}.$$

Ясно, что

$$|r_{2k+2}| \le \frac{|x|^{2k+3}}{(2k+3)!}.$$

3) Аналогично получаем разложение функции $y=\cos x,\ x\in\mathbb{R}$. Учитывая, что $y^{(n)}(x)=\cos(x+\frac{\pi}{2}n)$, получаем

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^k \frac{x^{2k}}{(2k)!} + r_{2k+1}(x),$$

где

$$r_{2k+1}(x) = \frac{\cos\left(\theta x + \frac{\pi}{2}(2k+2)\right)}{(2k+2)!} x^{2k+2},$$
$$|r_{2k+1}| \le \frac{|x|^{2k+2}}{(2k+2)!}.$$

4) $y = (1+x)^{\alpha}, x \in \mathbb{R} \ (\alpha \in \mathbb{R})$. Имеем

$$y(x) = (1+x)^{\alpha}, y(0) = 1,$$

$$y'(x) = \alpha(1+x)^{\alpha-1}, y'(0) = \alpha,$$

$$y''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2}, y''(0) = \alpha(\alpha-1),$$

$$y'''(x) = \alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3}, y'''(0) = \alpha(\alpha-1)(\alpha-2).$$

По индукции найдем

$$y^{(n)}(x) = \alpha(\alpha - 1) \cdot \dots \cdot (\alpha - n + 1)(1 + x)^{\alpha - n},$$

$$y^{(n)}(0) = \alpha(\alpha - 1) \cdot \dots \cdot (\alpha - n + 1).$$

Таким образом, получаем

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \dots$$
$$\dots + \frac{\alpha(\alpha-1)\cdot\dots\cdot(\alpha-n+1)}{n!}x^n + o(x^n), \quad x \to 0.$$
 (*)

Отметим, что если α — натуральное число, то коэффициенты полинома Тейлора при x^k совпадают с биномиальными коэффициентами C^k_α при $0 \le k \le \alpha$ и равны нулю при $k > \alpha$. При любом $n \ge \alpha$ в этом случае полином Тейлора совпадает с многочленом $(1+x)^\alpha$, а остаточный член равен нулю. Поэтому формулу (*) иногда называют обобщенным биномом Ньютона.

Упражнения. 1) Запишите остаточный член в (*) в форме Лагранжа и оцените его.

- 2) Найдите условия, при которых остаточные члены в приведенных выше разложениях стремятся к нулю, если степень многочлена Тейлора стремится к бесконечности.
 - 3) Докажите, что

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n), \quad x \to 0.$$

3 Исследование функций с помощью производных

Теорема 1. Пусть функция f непрерывна на отрезке [a;b] и диф-ференцируема на интервале (a;b). Для того чтобы функция f была постоянной на [a;b], необходимо и достаточно, чтобы $f' \equiv 0$ на (a;b).

Доказательство. Необходимость очевидна. Докажем достаточность. Пусть $f' \equiv 0$ на (a;b). Рассмотрим любые точки x_1 и $x_2 \in [a;b]$. По формуле конечных приращений существует точка $c \in (a;b)$ такая, что $f(x_1) - f(x_2) = f'(c)(x_1 - x_2)$. Так как f'(c) = 0, из этого равенства получаем $f(x_1) - f(x_2) = 0$, следовательно, значения функции в любых двух точках отрезка [a;b] совпадают и f = const на [a;b]. Теорема доказана.

Следствие. Пусть функции f и g непрерывны на [a;b] и дифференцируемы на (a;b). Если f'=g' на (a;b), то f и g отличаются на константу на [a;b].

Пример. Пусть $f(x) = \arcsin x, \ g(x) = -\arccos x, \ x \in [-1;1]$. Эти функции дифференцируемы на [-1;1] и

$$f'(x) = g'(x) = \frac{1}{\sqrt{1 - x^2}}, \quad x \in (-1; 1).$$

Следовательно, f(x) = g(x) + C, C = const, $x \in [-1; 1]$. Для нахождения константы заметим, что $C = f(0) - g(0) = \pi/2$. Итак, $\arcsin x = -\arccos x + \pi/2$, $x \in [-1; 1]$.

Теорема 2. Пусть функция f непрерывна на (a;b) и для всех $x \in (a;b)$ существует производная f'(x). Для того чтобы функция f была монотонно возрастающей (убывающей) на (a;b), необходимо и достаточно, чтобы выполнялось условие $f'(x) \geq 0$ ($f'(x) \leq 0$), $x \in (a;b)$.

Доказательство. Необходимость. Пусть, для определенности, функция f возрастает на (a;b). Для любого $x_0 \in (a;b)$ имеем

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Если $x \in (x_0; b)$, то $f(x) \ge f(x_0)$ и $x - x_0 > 0$, откуда

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

По теореме о переходе к пределу в неравенствах получаем при $x \to x_0 +$, что $f'(x_0) \ge 0$.

Достаточность. Пусть, для определенности, $f'(x) \ge 0$, $x \in (a;b)$. Рассмотрим любые две точки $x_1, x_2 \in (a;b)$ такие, что $x_1 < x_2$. По формуле конечных приращений существует такая точка $c \in (a;b)$, что $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$. Так как $f'(c) \ge 0$, $x_2 - x_1 > 0$, получаем, что $f(x_2) - f(x_1) \ge 0$, т. е. $f(x_2) \ge f(x_1)$. Это означает, что функция f монотонно возрастает на (a;b). Теорема доказана.

Теорема 3. Пусть функция f непрерывна на (a;b) и для любого $x \in (a;b)$ существует производная f'(x). Для того чтобы функция f была строго монотонно возрастающей (убывающей) на (a;b), необходимо и достаточно, чтобы выполнялось условие $f'(x) \geq 0$ ($f'(x) \leq 0$),

 $x \in (a;b)$ и множество $A = \{x \in (a;b) \mid f'(x) = 0\}$ не содержало никакого интервала.

Доказательство. Необходимость. Предположим, для определенности, что f строго монотонно возрастает на (a;b). По теореме 2 для любого $x \in (a;b)$ имеет место неравенство $f'(x) \geq 0$. Докажем, что множество A не содержит никакого интервала. Предположим противное, т. е. что некоторый интервал $(x_1;x_2) \subset A$, $x_1 < x_2$. По теореме 1 тогда $f \equiv \text{const}$ на $(x_1;x_2)$. Это противоречит строгой монотонности f на (a;b).

Достаточность. Пусть, для определенности, $f'(x) \geq 0$, $x \in (a;b)$, и множество A не содержит никакого интервала. Тогда по теореме 2 функция f монотонно возрастает на (a;b). Предположим, что f не является строго монотонно возрастающей на (a;b). Тогда существуют точки x_1 , $x_2 \in (a;b)$ такие, что $x_1 < x_2$ и $f(x_1) = f(x_2)$. В силу монотонного возрастания f для любого $x \in (x_1;x_2)$ имеем $f(x_1) \leq f(x) \leq f(x_2) = f(x_1)$, откуда $f(x) \equiv f(x_1)$ на $(x_1;x_2)$. По теореме 1 $f'(x) \equiv 0$, $x \in (x_1;x_2)$. Следовательно, $(x_1;x_2) \subset A$ — противоречие с нашими предположениями. Теорема доказана.

Примеры. 1. Рассмотрим функцию $y=x^3, x \in \mathbb{R}$. Имеем $y'(x)=3x^2 \geq 0, x \in \mathbb{R}$, поэтому наша функция монотонно возрастает. При этом множество $A=\{0\}$ не содержит никакого интервала, поэтому функция строго монотонно возрастает.

- 2. Рассмотрим функцию $y = x^2$, $x \in \mathbb{R}$. Имеем y'(x) = 2x, $x \in \mathbb{R}$. Если x > 0, то y'(x) > 0, если x < 0, то y'(x) < 0, Таким образом, рассматриваемая функция строго монотонно возрастает на $(0; +\infty)$ и строго монотонно убывает на $(-\infty; 0)$.
- 3. Пусть $y=3x^2+2x^3,\ x\in\mathbb{R}$. Имеем $y'(x)=6x+6x^2$. При этом y'(x)>0 тогда и только тогда, когда $x\in(-\infty;-1)\cup(0;+\infty);$ y'(x)<0 тогда и только тогда, когда $x\in(-1;0)$. Таким образом, y=y(x) строго монотонно возрастает на интервалах $(-\infty;-1)$ и $(0;+\infty)$ и строго монотонно убывает на (-1;0).

3.1 Точки локального экстремума функции

Пусть функция f непрерывна на интервале (a;b). Точка $x_0 \in (a;b)$ называется точкой локального максимума (минимума) функции f, если существует такая окрестность $O_{\varepsilon}(x_0)$ точки x_0 , лежащая в (a;b), что для любого $x \in O_{\varepsilon}(x_0)$ выполняется неравенство $f(x) \leq f(x_0)$ ($f(x) \geq f(x_0)$). Точки локального максимума и минимума называются точками локального экстремума функции f. В дальнейшем слово «локальный» часто будем опускать.

Теорема 1 (необходимое условие экстремума функции). Пусть функции f непрерывна на (a;b) и x_0 — точка локального экстремума функции f. Тогда либо производная $f'(x_0)$ не существует, либо f'(x)=0.

Доказательство. Достаточно применить теорему Ферма на любом отрезке, содержащем внутри точку x_0 .

Точка x_0 называется *критической точкой* функции f, если либо не существует $f'(x_0)$, либо f'(x)=0. Теорема 1 утверждает, что любая точка экстремума функции f является критической точкой f.

Примеры. 1) Пусть $y = \sqrt[3]{x^2}$, $x \in \mathbb{R}$. Тогда $f'(x) = (2/3)x^{-1/3}$ $(x \neq 0)$. Нетрудно видеть, что точка x = 0 является точкой локального минимума функции, при этом производной y'(0) не существует.

2) Пусть $y=x^3,\ x\in\mathbb{R}$. Тогда $y'(x)=3x^2$ существует для любого x и y'(x)=0 тогда и только тогда, когда x=0. Таким образом, единственная критическая точка — это точка x=0. Но эта точка не является точкой экстремума, так как функция $y=x^3$ строго монотонно возрастает на \mathbb{R} .

Пусть функция f определена в окрестности точки x_0 и существует $\varepsilon > 0$ такое, что f(x) < 0 при $x \in (x_0 - \varepsilon; x_0)$ и f(x) > 0 при $x \in (x_0; x_0 + \varepsilon)$. Тогда говорят, что функция f меняет знак $c \ll w$ на $\ell \ll w$ при переходе через точку $\ell \ll w$ при п

Если $f(x) \neq 0$ в некоторой проколотой окрестности точки x_0 и либо строго положительна, либо строго отрицательна, то будем говорить, что при переходе через точку x_0 функция f знак не меняет.

Теорема 2 (первое достаточное условие экстремума функции). Пусть функция f определена в окрестности точки x_0 и в этой окрестности существует производная f'. Если производная f' меняет знак $c \ll w$ на $\ell \ll w$ ($\ell \ll w$) при переходе через точку $\ell \ll w$, то $\ell \ll w$ почка локального минимума (максимума) функции $\ell \ll w$ деляется точкой локального экстремума функции $\ell \ll w$.

Доказательство. Предположим, для определенности, что f' меняет знак с «—» на «+» при переходе через точку x_0 . Тогда существует $\varepsilon > 0$ такое, что f'(x) < 0 при $x \in (x_0 - \varepsilon; x_0)$ и f'(x) > 0 при $x \in (x_0; x_0 + \varepsilon)$.

Значит, f строго монотонно убывает на $(x_0 - \varepsilon; x_0]$ и строго монотонно возрастает на $[x_0; x_0 + \varepsilon]$. Тогда для любого $x \in (x_0 - \varepsilon; x_0 + \varepsilon)$, не равного x_0 , имеем $f(x) > f(x_0)$. Таким образом, x_0 — точка локального минимума функции f.

Если f' не меняет знак при переходе через точку x_0 , то в силу критерия строгой монотонности функция f либо строго монотонно возрастает, либо строго монотонно убывает в некоторой окрестности точки x_0 , поэтому точка x_0 не может быть точкой локального экстремума функции f. Теорема доказана.

Пример. Рассмотрим функцию $y = x \ln x$, x > 0. Эта функция непрерывна. Найдем ее производную. Имеем $y'(x) = \ln x + 1$. Производная обращается в нуль только в точке x = 1/e. При $x \in (0; 1/e)$ производная y'(x) < 0, в то время как y'(x) > 0 при $x \in (1/e; +\infty)$. Итак, при переходе через точку 1/e производная меняет знак с « – » на « + », поэтому x = 1/e точка локального минимума рассматриваемой функции.

Теорема 3. (второе достаточное условие экстремума функции). Пусть функция f определена в окрестности точки x_0 , дифференцируема в этой окрестности, $f'(x_0) = 0$ и существует $f''(x_0)$. Если $f''(x_0) > 0$, то x_0 — точка локального минимума функции f. Если $f''(x_0) < 0$, то x_0 — точка локального максимума функции f.

Доказательство. Пусть, для определенности, $f''(x_0) > 0$. Тогда

$$0 < f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f'(x)}{x - x_0}.$$

Следовательно, существует окрестность $O_{\varepsilon}(x_0)$ такая, что

$$\frac{f'(x)}{x - x_0} > 0, \quad x \in O_{\varepsilon}(x_0).$$

Значит, f'(x) > 0, $x \in (x_0; x_0 + \varepsilon)$; f'(x) < 0, $x \in (x_0 - \varepsilon; x_0)$. Итак, производная f' меняет знак при переходе через точку x_0 с «—» на «+». По теореме 2 точка x_0 — точка локального минимума. Теорема доказана.

Примеры. 1) Рассмотрим функцию $y=x^2,\ x\in\mathbb{R}$. Имеем $y'(x)=2x=0\Longleftrightarrow x=0,\ y''(0)=2>0$. Таким образом, точка x=0— точка локального минимума.

- 2) Пусть $y = x \ln x$, x > 0. Имеем $y'(x) = \ln x + 1 = 0 \iff x = 1/e$, y''(x) = 1/x, y''(1/e) = e > 0. По теореме 2 точка x = 0 точка локального минимума.
- 3) Рассмотрим функцию $y=x^4, x\in\mathbb{R}$. Имеем $y'(x)=4x^3=0\Longleftrightarrow x=0$. Так как $y(x)=x^4>0(0), x\neq 0$, точка x=0— точка локального минимума. Но $y''(x)=12x^2, \ y''(0)=0$. Таким образом, теорема 3 в этом случае не применима.
- 4) Пусть $y=x^3, x\in\mathbb{R}$. Тогда $y'(x)=3x^2=0\Longleftrightarrow x=0, y''(x)=6x, y''(0)=0$. Итак, как и в предыдущем примере y'(0)=y''(0)=0. Однако функция $y=x^3$ строго монотонно возрастает, поэтому точка x=0 не является точкой локального экстремума.

После рассмотрения двух последних примеров возникает естественный вопрос: как в случае $f'(x_0) = f''(x_0) = 0$ определить, является ли точка x_0 точкой экстремума функции f или нет? Частичный ответ на это дает следующая

Теорема 4. Пусть функция f дифференцируема (n-1) раз в некоторой окрестности точки x_0 и в точке x_0 существует конечная производная $f^{(n)}(x_0)$ $(n \ge 2)$. Предположим, что

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, \text{ no } f^{(n)}(x_0) \neq 0.$$
 (*)

Если n — четное число, то x_0 — точка локального минимума функции f, если $f^{(n)}(x_0) > 0$, и локального максимума, если $f^{(n)}(x_0) < 0$. Если n — нечетное число, то x_0 не является точкой локального экстремума функции f.

Доказательство. Запишем локальную формулу Тейлора для производной функции f в точке x_0 :

$$f'(x) = f'(x_0) + f''(x_0)(x - x_0) + \frac{f'''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n-1)}(x_0)}{(n-2)!}(x - x_0)^{n-2} + \dots + \frac{f^{(n)}(x_0)}{(n-1)!}(x - x_0)^{n-1} + o((x - x_0)^{n-1}), \quad x \to x_0.$$

С учетом (*) получаем

$$f'(x) = \frac{f^{(n)}(x_0)}{(n-1)!}(x-x_0)^{n-1} + o((x-x_0)^{n-1}), \quad x \to x_0.$$

Запишем остаточный член $o((x-x_0)^{n-1})$ в виде $\alpha(x)(x-x_0)^{n-1}$, где $\alpha(x)\to 0,\ x\to x_0$. Тогда

$$f'(x) = \varphi(x)(x - x_0)^{n-1}$$
, где $\varphi(x) = \frac{f^{(n)}(x_0)}{(n-1)!} + \alpha(x)$.

Отметим, что

$$\lim_{x \to x_0} \varphi(x) = \frac{f^{(n)}(x_0)}{(n-1)!} \neq 0.$$

Предположим, что n четно. Если $f^{(n)}(x_0) > 0$, то $\lim_{x \to x_0} \varphi(x) > 0$, следовательно, $\varphi(x) > 0$ в некоторой ε -окрестности точки x_0 . Кроме того, (n-1) нечетно, поэтому $(x-x_0)^{n-1} > 0$, $x > x_0$; $(x-x_0)^{n-1} < 0$, $x < x_0$. Отсюда выводим, что $f'(x) = \varphi(x)(x-x_0)^{n-1} > 0$ при $x \in (x_0; x_0 + \varepsilon)$; $f'(x) = \varphi(x)(x-x_0)^{n-1} < 0$ при $x \in (x_0 - \varepsilon; x_0)$. Итак, f' меняет знак с «—» на «+» при переходе через точку x_0 , следовательно, по теореме 2 точка x_0 — точка локального минимума функции f.

Если $f^{(n)}(x_0) > 0$, то применяем предыдущие рассуждения к функции (-f). В результате получаем, что x_0 — точка локального минимума функции (-f), т. е. локального максимума функции f.

Наконец, рассмотрим случай, когда n нечетно. Тогда (n-1) четно и $(x-x_0)^{n-1}>0$, $x\neq x_0$. Поскольку φ не меняет знак в некоторой ε -окрестности точки x_0 , производная $f'(x)=\varphi(x)(x-x_0)^{n-1}>0$ также не меняет знак в этой окрестности. По теореме 2 точка x_0 не является точкой локального экстремума функции f. Теорема доказана.

Примеры. 1) Пусть $y=x^4,\ x\in\mathbb{R}$. При x=0 имеем y'(0)=y''(0)=y'''(0)=0, но $y^{(4)}(0)\neq 0$. Применяя теорему 4 для n=4, получаем, что x=0 — точка локального минимума этой функции.

2) Пусть $y=x^3, x\in\mathbb{R}$. При x=0 имеем y'(0)=y''(0)=0, но $=y'''(0)\neq 0$. Применяя теорему 4 для n=3, получаем, что x=0 не является точкой локального экстремума данной функции.

3.2 Исследование выпуклости функций с помощью производных.

Пусть функция f определена на (a;b) и имеет производную в каждой точке этого интервала. Говорят, что функция f выпукла вниз (вверх) на (a;b), если для любого $x_0 \in (a;b)$ касательная к графику этой функции в точке $(x_0;f(x_0))$ лежит строго ниже (выше) этого графика, за исключением точки касания.

Теорема (критерий выпуклости). Пусть функция f дифференцируема на (a;b). Для того чтобы функция f была выпуклой вниз (b) на (a;b), необходимо и достаточно, чтобы f' строго монотонно возрастала (yb) на (a;b).

Доказательство. Необходимость. Пусть, к примеру, f выпукла вниз на (a;b). Возьмем любые две точки $t_1, t_2 \in (a;b)$ такие, что $t_1 < t_2$. В силу строгой выпуклости вниз функции f касательные к графику f в точках $(t_1; f(t_1))$ и $(t_2; f(t_2))$ лежат строго ниже графика, за исключением точек касания.

Уравнения касательных в этих точках имеют вид:

$$y = g_1(x) := f'(t_1)(x - t_1) + f(t_1)$$
 и $y = g_2(x) := f'(t_2)(x - t_2) + f(t_2)$.

По условию выпуклости

$$f(t_1) > g_2(t_1) = f'(t_2)(t_1 - t_2) + f(t_2), \quad f(t_2) > g_1(t_2) = f'(t_1)(t_2 - t_1) + f(t_1).$$

Складывая два последних неравенства, получаем

$$f(t_1) + f(t_2) > f'(t_2)(t_1 - t_2) + f(t_2) + f'(t_1)(t_2 - t_1) + f(t_1),$$

откуда

$$0 > (f'(t_1) - f'(t_2))(t_2 - t_1).$$

Следовательно, $f'(t_1) - f'(t_2) < 0$, так как $t_2 - t_1 > 0$. Значит,

$$t_1 < t_2 \Longrightarrow f'(t_1) < f'(t_2).$$

Это доказывает строгое монотонное возрастание производной на (a;b).

Достаточность. Пусть, к примеру, f' строго монотонно возрастает на (a;b). Фиксируем точку $t\in(a;b)$ и запишем уравнение касательной к графику функции f в точке (t,f(t)):

$$y = g(x) := f'(t)(x - t) + f(t).$$

Требуется доказать, что касательная лежит строго ниже графика за исключением точки касания, т. е. для любого $s \in (a;b)$ выполняется неравенство f(s) > g(s). Преобразуем разность f(s) - g(s) с использованием формулы конечных приращений:

$$f(s) - g(s) = f(s) - f(t) - f'(t)(s - t) = (f'(c) - f'(t))(s - t), \quad (*)$$

где точка c лежит между t и s.

Если t < s, то t < c < s и f'(t) < f'(c) в силу строго возрастания f'. Следовательно, f'(c) - f'(t) > 0, s - t > 0, откуда в силу (*) имеем f(s) - g(s) > 0, т. е. f(s) > g(s). Аналогично разбирается случай t > s. Теорема полностью доказана.

Замечание. Строгое возрастание (убывание) f' означает, что касательная к графику функции f в точке (x, f(x)) поворачивается против часовой стрелки (по часовой стрелке) при увеличении x.

Теорема (достаточное условие выпуклости). Пусть функция f дважды диффференцируема на (a;b). Если f''>0 (f''<0) на (a;b), то функция f строго выпукла вниз (beep) на (a;b).

Доказательство. Если f''>0 на (a;b), то f' строго монотонно возрастает на (a;b). По предыдущей теореме функция f выпукла вниз на (a;b). Аналогично исследуется случай f''<0.

Примеры. 1) Пусть $y = x \ln x$, x > 0. Имеем $y'(x) = \ln x + 1$, y''(x) = 1/x > 0, x > 0. Таким образом, функция y(x) строго выпукла вниз на $(0; +\infty)$.

2) Пусть $y=x^n,\ x\in\mathbb{R},$ где $n\in\mathbb{N},\ n\geq 2.$ Имеем $y'(x)=nx^{n-1},$ $y''(x)=n(n-1)x^{n-2}.$

Если n — четное число, то y''(x) > 0, $x \neq 0$, поэтому в силу критерия строгой монотонности y' строго монотонно возрастает на \mathbb{R} , откуда следует, что y выпукла вниз на \mathbb{R} .

Если n — нечетное число, то y''(x)>0 при x>0; y''(x)<0 при x<0. Таким образом, y выпукла вниз на $(0;+\infty)$ и выпукла вверх на $(-\infty;0)$. Отметим, что в точке x=0 меняется направление выпуклости функции.

3.3 Точки перегиба

Пусть функция f имеет производную в любой точке интервала (a;b). Точка $x_0 \in (a;b)$ называется точкой перегиба функции f, если в этой точке меняется направление выпуклости функции f, т. е. существует число $\varepsilon > 0$ такое, что $O_{\varepsilon}(x_0) \subset (a;b)$ и функция f выпукла вниз (или вверх) на $(x_0 - \varepsilon; x_0)$ и выпукла вверх (соответственно вниз) на $(x_0; x_0 + \varepsilon)$.

Теорема (необходимое условие точки перегиба). Пусть функция f непрерывно дифференцируема на интервале (a;b) и x_0 — точка перегиба функции f. Тогда либо $f''(x_0)$ не существует, либо $f''(x_0) = 0$.

Доказательство. Предположим, для определенности, что функция f выпукла вниз на $(x_0-\varepsilon;x_0)$ и выпукла вверх на $(x_0;x_0+\varepsilon)$ для некоторого малого $\varepsilon>0$. В силу критерия выпуклости это значит, что f' строго возрастает на $(x_0-\varepsilon;x_0)$ и строго убывает на $(x_0;x_0+\varepsilon)$. По условию теоремы f' непрерывна, поэтому x_0 — точка локального максимума функции f'. В силу необходимого условия экстремума, если $f''(x_0)=(f')'(x_0)$ существует, то $f''(x_0)=0$. Теорема доказана.

Теорема (достаточное условие точки перегиба). Пусть функция f имеет производную в любой точке (a;b) и дважды дифференцируема на интервале (a;b), за исключением, быть может, точки x_0 . Если f'' меняет знак при переходе через точку x_0 , то x_0 — точка перегиба функции f. Если f'' не меняет знак при переходе через точку x_0 , то x_0 не является точкой перегиба функции f.

Доказательство. Пусть, для определенности, функция f'' меняет знак с «—» на «+» при переходе через точку x_0 . Тогда для некоторого малого $\varepsilon > 0$ функция f выпукла вверх на $(x_0 - \varepsilon; x_0)$ и выпукла вниз на $(x_0; x_0 + \varepsilon)$. Таким образом, в точке x_0 меняется направление

выпуклости функции f, т. е. x_0 — точка перегиба.

Если f'' не меняет знак при переходе через точку x_0 , то для некоторого $\varepsilon > 0$ функция f либо выпукла вниз на $(x_0 - \varepsilon; x_0) \cup (x_0; x_0 + \varepsilon)$, либо выпукла ввверх на этом множестве. Значит, x_0 не является точкой перегиба функции f. Теорема доказана.

Пример. Пусть $y=\sqrt[3]{x},\ x\in\mathbb{R}$. Тогда $y'=(1/3)x^{-2/3},\ x\neq 0$. Так как существует $\lim_{x\to 0}y'(x)=+\infty$, то существует $y'(0)=+\infty$. Кроме того, $y''=-(2/9)x^{-5/3},\ x\neq 0$. Если x>0, то y''(x)<0; если x<0, то y''(x)>0. Таким образом, в точке x=0 вторая производная меняет знак, т. е. x=0 является точкой перегиба.

3.4 Асимптоты

Пусть в точке x_0 существует по крайней мере один из пределов $\lim_{x\to x_0-} f(x)$, $\lim_{x\to x_0+} f(x)$ и этот предел равен $+\infty$ или $-\infty$. Тогда говорят, что прямая $x=x_0$ является вертикальной асимптотой графика функции f. Если оба предела существуют и равны $+\infty$ или $-\infty$, то асимптота называется двусторонней, в противном случае — односторонней.

Предположим что при $x \to +\infty$ или $x \to -\infty$ имеет место асимптотика f(x) = kx + b + o(1) (k и b — некоторые константы), т. е. $\lim_{x \to (\pm)\infty} (f(x) - kx - b) = 0$, то говорят, что прямая y = kx + b является наклонной асимптотой графика функции f при $x \to +\infty$ или $x \to -\infty$. Если прямая y = kx + b является наклонной асимптотой графика функции f и при $x \to +\infty$, и при $x \to -\infty$, то она называется двусторонней асимптотой. Если k = 0, то асимптоту y = b называют горизонтальной асимптотой.

Теорема. Для того чтобы прямая y = kx + b являлась асимптотой к графику функции f при $x \to (\pm) \infty$, необходимо и достаточно, чтобы существовали конечные пределы

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = k, \quad \lim_{x \to \pm \infty} (f(x) - kx) = b. \tag{*}$$

Доказательство. Рассмотрим для определенности случай $x \to +\infty$.

Необходимость. Пусть $f(x) = kx + b + o(1), x \to +\infty$. Тогда

$$f(x) - kx = b + o(1), \quad \frac{f(x)}{x} = k + \frac{b}{x} + \frac{1}{x} \cdot o(1) \quad x \to +\infty,$$

откуда следует (*).

Достаточность. Пусть существуют пределы (*). Тогда

$$\lim_{x \to +\infty} (f(x) - kx - b) = 0,$$

откуда следует, что прямая y = kx + b является асимптотой к графику функции f при $x \to +\infty$. Теорема доказана.

Замечание. Если $f(x) \to (\pm)\infty$, когда $x \to (\pm)\infty$, и существует конечный предел $\lim_{x\to(\pm)\infty} f'(x)$, то по правилу Лопиталя существует конечный предел

$$k = \lim_{x \to \perp \infty} \frac{f(x)}{x} = \lim_{x \to \perp \infty} f'(x).$$

4 Первообразная и неопределенный интеграл

Пусть функция f определена на числовом промежутке I и для некоторой функции F на I имеет место равенство

$$F'(x) = f(x), \quad x \in I.$$

Тогда функция F называется nервообразной функции <math>f на I.

Примеры. 1) $(\sin x)' = \cos x$, $x \in \mathbb{R}$. Поэтому функция $y = \sin x$ является первообразной функции $y = \cos x$ на \mathbb{R} .

2) $(\ln x)' = \frac{1}{x}, \ x>0,$ поэтому функция $y=\ln x$ является первообразной функции $y=\frac{1}{x}$ на $\{x>0\}$.

Справедлива

Теорема 1. Если функция f является непрерывной на числовом промежутке I, то она обладает первообразной на I.

Эта теорема будет доказана позже. Установим, что представляет из себя множество первообразных функции f на числовом промежутке I.

Теорема 2. Если функция G является первообразной функции f на числовом промежутке I, то функция F является первообразной f на I тогда и только тогда, когда выполняется равенство

$$F(x) - G(x) \equiv \text{const}, \quad x \in I.$$
 (*)

Доказательство. Если функции F и G являются первообразными функции f на I , то

$$(F(x) - G(x))' = F'(x) - G'(x) = f(x) - f(x) = 0, \quad x \in I.$$

Отсюда следует, что F(x) - G(x) — постоянная функция на I.

Обратно, пусть имеет место (*). Тогда $F(x) \equiv G(x) + \mathrm{const}$, $x \in I$, и $F'(x) \equiv G'(x) = f(x)$, $x \in I$. Таким образом, F является первообразной для f на I. Теорема доказана.

Примеры. Имеем $(x^2)'=2x,\ x\in\mathbb{R}$. Поэтому одной из первообразных функции y=2x на \mathbb{R} будет функция $y=x^2$. Кроме того, первообразной функции y=2x будет любая функция вида $y=x^2+\mathrm{const}$, например, $y=x^2+1,\ y=x^2+e,\ y=x^2-\pi$ и т. д. Других первообразных у этой функции нет.

Совокупность всех первообразных функции f на числовом промежутке I называется неопределенным интегралом функции f и обозначается $\int f(x) \, dx$. Если F — одна из первообразных функции f, то

$$\int f(x) \, dx = F(x) + C,$$

где C — произвольная константа.

Свойства неопределенных интегралов

- 1) $\left(\int f(x)dx\right)' = f(x)$.
- 2) $d\left(\int f(x) dx\right) = f(x) dx$.
- 3) Если существуют $\int f(x)\,dx$ и $\int g(x)\,dx$, то для любых α , $\beta\in\mathbb{R}$ существует

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx.$$

Доказательство. Равенства 1) и 2) следуют сразу из определения неопределенного интеграла. Равенство 3) следует из линейности операции

дифференцирования:

$$\left(\alpha \int f(x) dx + \beta \int g(x) dx\right)' =$$

$$= \alpha \left(\int f(x) dx\right)' + \beta \left(\int g(x) dx\right)' = \alpha f(x) + \beta g(x).$$

4.1 Таблица основных неопределенных интегралов

$$\int 1 dx = x + C, \qquad \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C \quad (\alpha \neq -1),$$

$$\int \frac{dx}{x} = \ln|x| + C, \qquad \int e^x dx = e^x + C,$$

$$\int a^x dx = \frac{a^x}{\ln a} + C, \qquad \int \sin x dx = -\cos x + C,$$

$$\int \cos x dx = \sin x + C, \qquad \int \frac{dx}{\cos^2 x} = \tan x + C,$$

$$\int \frac{dx}{\sin^2 x} = -\cot x + C, \qquad \int \frac{dx}{\sqrt{1 - x^2}} = \arcsin x + C,$$

$$\int \frac{dx}{1 + x^2} = \arctan x + C, \qquad \int \frac{dx}{1 - x^2} = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right| + C.$$

4.2 Способы интегрирования элементарных функций

1. Способ разложения. При нахождении первообразных можно использовать линейность интеграла:

$$\int \sum_{k=1}^{n} a_k f_k(x) \, dx = \sum_{k=1}^{n} a_k \int f_k(x) \, dx.$$

Примеры.

1)
$$\int \frac{x^2 dx}{x^2 + 1} = \int \frac{(x^2 + 1 - 1) dx}{x^2 + 1} = \int \left(1 - \frac{1}{1 + x^2}\right) dx = x - \arctan x + C.$$

$$2) \int \frac{dx}{1 - \cos 4x} = \int \frac{dx}{2\sin^2 2x} = \int \frac{dx}{8\sin^2 x \cos^2 x} = \frac{1}{8} \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx = \frac{1}{8} \left(\int \frac{dx}{\cos^2 x} + \int \frac{dx}{\sin^2 x} \right) = \frac{1}{8} (\operatorname{tg} x - \operatorname{ctg} x) + C.$$

40

2. Замена переменных в интеграле

Теорема. Пусть функция $x = \varphi(t)$ строго монотонна на числовом промежутке I, $\varphi(I) = J$, и является дифференцируемой на I, причем $\varphi'(t) \neq 0$, $t \in I$. Если функция y = f(x) имеет первообразную F на числовом промежутке J, m. e.

$$\int f(x) dx = F(x) + C, \quad x \in J,$$
(1)

mo

$$\int f(\varphi(t))\varphi'(t) dt = F(\varphi(t)) + C, \quad t \in I.$$
 (2)

Обратно, из (2) следует (1).

Доказательство. Пусть имеет место (1). Тогда $F'(x)=f(x), x\in J.$ Используя правило дифференцирования сложной функции, получаем

$$F(\varphi(t))'_t = F'(x)|_{x=\varphi(t)}\varphi'(t) = f(x)|_{x=\varphi(t)}\varphi'(t) = f(\varphi(t))\varphi'(t),$$

откуда следует (2).

Обратно, если справедливо (2), то

$$(F(\varphi(t)))_t' = f(\varphi(t))\varphi'(t). \tag{3}$$

В силу того, что функция $x=\varphi(t)$ строго монотонна, на J существует обратная функция $t=\varphi^{-1}(x)$. Так как функция $x=\varphi(t)$ дифференцируема на I, причем $\varphi'(t)\neq 0,\ t\in I$, то обратная функция φ^{-1} дифференцируема на J и

$$(\varphi^{-1})'_x = \frac{1}{\varphi'(t)},$$
 где $t = \varphi^{-1}(x).$

Используя (3), получаем

$$F'(x) = (F \circ \varphi \circ \varphi^{-1}(x))'_x = (F \circ \varphi)'_t \cdot (\varphi^{-1}(x))'_x =$$
$$= f(\varphi(t))\varphi'(t) \cdot \frac{1}{\varphi'(t)} = f(\varphi(t)) = f(x).$$

Следовательно, справедливо (1). Теорема доказана.

Замечание. Равенство (2) можно записать в виде

$$\int f(\varphi(t)) d\varphi(t) = F(\varphi(t)) + C, \quad t \in I.$$

Это объясняет обозначение неопределенного интеграла $\int f(x) dx$ (точнее, наличие в нем сомножителя dx после функции f(x), от которой интеграл берется). Этот сомножитель напоминает о необходимости умножать подинтегральное выражение $f(\varphi(t))$, полученное после замены переменной в функции f(x), на производную $\varphi'(t)$!

Примеры. 1) Рассмотрим $\int \cos 2x \, dx$. Сделаем замену переменных в этом интеграле $t=2x, \ x=t/2, \ dx=dt/2$. Тогда

$$\int \cos 2x \, dx = \int \cos t \, \frac{dt}{2} = \frac{1}{2} \int \cos t \, dt = \frac{1}{2} \sin t + C = \frac{1}{2} \sin 2x + C.$$

2) Подсчитаем интеграл, преобразуя подинтегральное выражение:

$$\int \frac{\sin x dx}{2 + \cos x} = -\int \frac{d(\cos x)}{2 + \cos x} = -\int \frac{d(2 + \cos x)}{2 + \cos x} = -\ln(2 + \cos x) + C.$$

Отметим, что в этом примере мы не вводили явно новую переменную $t=2+\cos x$. На практике часто применяют такой прием.

3. Интегрирование по частям.

Теорема. Пусть функции f и g дифференцируемы на числовом промежутке I и существует $\int g(x) \, f'(x) \, dx$. Тогда существует $\int f(x) \, g'(x) \, dx$ и

$$\int f(x) g'(x) dx = f(x)g(x) - \int g(x) f'(x) dx.$$
 (1)

Доказательство. Найдем производную от функции, стоящей в правой части (1). Имеем

$$\left(f(x) g(x) - \int g(x) f'(x) dx\right)' = (f(x)g(x))' - g(x)f'(x) =$$

$$= f'(x) g(x) + f(x) g'(x) - g(x) f'(x) = f(x) g'(x).$$

Таким образом, справедливо (1). Теорема доказана.

Замечание. Формулу интегрирования по частям можно записать в виде

$$\int f(x) dg(x) = f(x) g(x) - \int g(x) df(x).$$

۲1

Примеры. 1) $\int xe^x dx = \int x d(e^x) = xe^x - \int e^x dx = xe^x - e^x + C$.

2)
$$\int x \ln x \, dx = \int \ln x \, d\left(\frac{x^2}{2}\right) = \ln x \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \, d(\ln x) = \frac{x^2}{2} \ln x - \int \frac{x}{2} \, dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C$$
.

3) Найдем $I = \int e^x \sin x dx$. Имеем

$$I = \int \sin x \, d(e^x) = \sin x \cdot e^x - \int e^x d(\sin x) = \sin x \cdot e^x - \int e^x \cos x \, dx =$$

$$= \sin x \cdot e^x - \int \cos x \, d(e^x) = \sin x \cdot e^x - \cos x \cdot e^x + \int e^x \, d(\cos x) =$$

$$= \sin x \cdot e^x - \cos x \cdot e^x - \int e^x \sin x \, dx = \sin x \cdot e^x - \cos x \cdot e^x - I.$$

Отметим, что последнее равенство справедливо с точностью до произвольной константы. Из него следует, что $2I=\sin x\cdot e^x-\cos x\cdot e^x$, откуда $I=\frac{1}{2}(\sin x-\cos x)e^x+C$.

4.3 Интегрирование рациональных функций

Рациональной функцией называется функция, которая представима в виде отношения двух многочленов:

$$y = \frac{P(x)}{Q(x)}.$$

В частности, многочлены являются рациональными функциями. Примерами рациональных функций являются

$$y = \frac{x^2 + 1}{x^3 - x}$$
, $y = \frac{1}{x}$, $y = x^3 + 3x^2$.

Одной из основных задач теории интегрирования является задача нахождения первообразной элементарной функции, которая также является элементарной. К сожалению, эта задача не всегда разрешима. Если функция f имеет элементарную первообразную, то говорят, что интеграл $\int f(x) \, dx$ берется в конечном виде. Примерами интегралов, которые не берутся в конечном виде, являются интегралы $\int e^{-x^2} \, dx$, $\int \frac{dx}{\ln x}$ и др.

Нашей ближайшей задачей будет доказательство того, что интеграл от любой рациональной функции берется в конечном виде.

Интегрирование простейших рациональных функций

Простейшими рациональными функциями будем называть функции вида

$$\frac{1}{(x-a)^n}$$
, $\frac{\gamma x + \delta}{(ax^2 + bx + c)^n}$, $n \in \mathbb{N}$, $a, b, c, \gamma, \delta \in \mathbb{R}$,

а также многочлены. Начнем с интегрирования дробей вида $\frac{1}{(x-a)^n}, \ n \in \mathbb{N}$. Если n=1, то

$$\int \frac{dx}{x-a} = \ln|x-a| + C.$$

При n > 1 имеем

$$\int \frac{dx}{(x-a)^n} = \frac{(x-a)^{1-n}}{1-n} + C.$$

Теперь займемся интегрированием дробей $\frac{\alpha x + \beta}{(ax^2 + bx + c)^n}$, $n \in \mathbb{N}$, $a,b,c,\alpha,\beta \in \mathbb{R}$, при условии, что $a \neq 0$ и дискриминант $\Delta = b^2 - 4ac < 0$, т. е. квадратный трехчлен $ax^2 + bx + c$ не имеет действительных корней.

Имеем

$$ax^{2} + bx + c = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right].$$

Обозначим

$$t = x + \frac{b}{2a}$$
, $\alpha = \sqrt{\frac{-\Delta}{4a^2}} > 0$.

Тогда

$$\int \frac{(\gamma x + \delta)dx}{(ax^2 + bx + c)^n} = \frac{\gamma}{a^n} \int \frac{t dt}{(t^2 + \alpha^2)^n} + \frac{2a\delta - b\gamma}{2a^{n+1}} \int \frac{dt}{(t^2 + \alpha^2)^n}.$$

Таким образом, достаточно вычислить интегралы

$$\int \frac{t \, dt}{(t^2 + \alpha^2)^n} \quad \text{if} \quad \int \frac{dt}{(t^2 + \alpha^2)^n}.$$

Первый интеграл вычисляется с помощью замены переменной:

$$\int \frac{t \, dt}{(t^2 + \alpha^2)^n} = \frac{1}{2} \int \frac{d(t^2 + \alpha^2)}{(t^2 + \alpha^2)^n} = \begin{cases} \frac{1}{2} \ln(t^2 + \alpha^2) + C, & n = 1, \\ -\frac{1}{2(n-1)(t^2 + \alpha^2)^{n-1}} + C, & n > 1. \end{cases}$$

Теперь покажем, как вычислить интеграл

$$I_n = \int \frac{dt}{(t^2 + \alpha^2)^n}.$$

Если n=1, то

$$I_1 = \int \frac{dt}{t^2 + \alpha^2} = \frac{1}{\alpha} \int \frac{d(t/\alpha)}{(t/\alpha)^2 + 1} =$$
$$= \frac{1}{\alpha} \operatorname{arctg} \frac{t}{\alpha} + C = \frac{1}{\alpha} \operatorname{arctg} \frac{x + b/(2a)}{\alpha} + C.$$

Пусть n>1. Покажем, как свести вычисление I_n к вычислению I_{n-1} . Применяя метод разложения и интегрирование по частям, получаем

$$I_{n} = \int \frac{dt}{(t^{2} + \alpha^{2})^{n}} = \frac{1}{\alpha^{2}} \int \frac{[(t^{2} + \alpha^{2}) - t^{2}] dt}{(t^{2} + \alpha^{2})^{n}} = \frac{1}{\alpha^{2}} \int \frac{dt}{(t^{2} + \alpha^{2})^{n-1}} - \frac{1}{\alpha^{2}} \int \frac{t^{2} dt}{(t^{2} + \alpha^{2})^{n}} = \frac{1}{\alpha^{2}} I_{n-1} + \frac{1}{\alpha^{2} 2(n-1)} \int t \cdot d\left(\frac{1}{(t^{2} + \alpha^{2})^{n-1}}\right) = \frac{1}{\alpha^{2}} I_{n-1} + \frac{1}{\alpha^{2} 2(n-1)} \left(\frac{t}{(t^{2} + \alpha^{2})^{n-1}} - \int \frac{dt}{(t^{2} + \alpha^{2})^{n-1}}\right) = \frac{1}{\alpha^{2}} \left(1 - \frac{1}{2(n-1)}\right) I_{n-1} + \frac{1}{2\alpha^{2}(n-1)} \frac{t}{(t^{2} + \alpha^{2})^{n-1}}.$$

Итак, получаем рекуррентную зависимость

$$I_n = \frac{1}{\alpha^2} \left(1 - \frac{1}{2(n-1)} \right) I_{n-1} + \frac{1}{2\alpha^2(n-1)} \frac{t}{(t^2 + \alpha^2)^{n-1}}.$$

Многочлены легко интегрируются с использованием метода разложения и табличного интеграла от степенной функции $\int x^n dx$.

Интегрирование рациональных функций общего вида

Рассмотрим интеграл от рациональной функции $\int \frac{P_m(x)}{Q_n(x)} dx$, где подинтегральная функция является отношением двух многочленов порядков m и n соответственно. Можно считать, что $n \geq 1$. Если $m \geq n$, то, деля $P_m(x)$ на $Q_n(x)$ с остатком, получаем, что существуют многочлены $R_{n-m}(x)$, $S_r(x)$, r < n, такие, что

$$\frac{P_m(x)dx}{Q_n(x)} = R_{m-n}(x) + \frac{S_r(x)dx}{Q_n(x)}.$$

E 1

Поскольку интеграл от $R_{m-n}(x)$ вычисляется легко, достаточно подсчитать интеграл $\int \frac{S_r(x)dx}{Q_n(x)}$.

Рациональная функция $\frac{S_r(x)dx}{Q_n(x)}$ представляет собой правильную дробь (r < n). Для ее интегрирования воспользуемся известными фактами из алгебры.

1) Многочлен Q_n можно представить в виде произведения

$$Q_n(x) = \prod_{j=1}^k (x - a_j)^{\delta_j} \prod_{i=1}^l (\alpha_i x^2 + \beta_i x + \gamma_i)^{\varepsilon_i}.$$
 (1)

Здесь a_j — попарно различные числа, которые являются корнями многочлена Q_n кратностей $\delta_j \in \mathbb{N}$. Квадратичные трехчлены $\alpha_i x^2 + \beta_i x + \gamma_i$ имеют отрицательные дискриминанты $\Delta_j = \beta_i^2 - 4\alpha_i \gamma_i$, причем никакие два из них не пропорциональны, а числа $\varepsilon_i \in \mathbb{N}$. Отметим, что комплексные нули квадратичного трехчлена $\alpha_i x^2 + \beta_i x + \gamma_i$ являются комплексными нулями многочлена Q_n кратности ε_i .

2) В курсе алгебры доказывается, что правильную дробь $\frac{S_r(x)}{Q_n(x)}$ можно представить в виде суммы простейших дробей

$$\frac{S_r(x)}{Q_n(x)} = \sum_{j=1}^k \sum_{r=1}^{\delta_j} \frac{A_{jr}}{(x - a_j)^r} + \sum_{i=1}^l \sum_{s=1}^{\varepsilon_i} \frac{B_{is}x + C_{is}}{(\alpha_i x^2 + \beta_i x + \gamma_i)^s}.$$
 (2)

Если известно разложение (1), то для интегрирования левой части (2) методом разложения требуется найти неизвестные коэффициенты A_{jr} , B_{is} и C_{is} в правой части (2).

Для их определения обе части равенства (2) умножаются на $Q_n(x)$ и оно переходит в равенство двух многочленов. Можно сравнить коэффициенты при разных степенях переменной x в этих многочленов и получить систему линейных уравнений для определения A_{jr} , B_{is} и C_{is} . Иногда к этим уравнениям присоединяют равенства, которые получаются, если вместо x поставить какое-то конкретное значение, например, $x = a_j$ для некоторого j. Часто такие равенства позволяют гораздо быстрее решить систему линейных уравнений. После определения констант A_{jr} , B_{is} и C_{is} задача в силу (2) сводится к интегрированию простейших дробей.

$$\int \frac{x^2 + x + 1}{x^3 - 2x^2 + x} \, dx.$$

Прежде всего отметим, что дробь является правильной, так как степень числителя меньше степени знаменателя. Разложим знаменатель на множители. Имеем

$$Q_3(x) = x^3 - 2x^2 + x = x(x-1)^2.$$

Таким образом, подинтегральная функция представима в виде суммы

$$\frac{x^2 + x + 1}{x^3 - 2x^2 + x} = \frac{A_{11}}{x} + \frac{A_{21}}{x - 1} + \frac{A_{22}}{(x - 1)^2}.$$

Найдем константы A_{11} , A_{21} и A_{22} . Для их определения умножим обе части последнего равенства на $Q_3(x)=x^3-2x^2+x=x(x-1)^2$. Тогда получим

$$x^{2} + x + 1 = A_{11}(x - 1)^{2} + A_{21}x(x - 1) + A_{22}x$$
(3)

или

$$x^{2} + x + 1 = A_{11}(x^{2} - 2x + 1) + A_{21}(x^{2} - x) + A_{22}x.$$

Сравнивая коэффициенты при одинаковых степенях многочленов в левой и правой частях, получаем систему для определения A_{11} , A_{21} и A_{22} :

$$\begin{cases}
A_{11} + A_{21} &= 1, \\
2A_{11} + A_{21} - A_{22} &= -1, \\
A_{11} &= 1,
\end{cases} \tag{4}$$

откуда $A_{11}=1,\ A_{21}=0,\ A_{22}=3.$ После определения коэффициентов получаем

$$\int \frac{x^2 + x + 1}{x^3 - 2x^2 + x} \, dx = \int \frac{dx}{x} + \frac{3}{(x - 1)^2} = \ln|x| - \frac{3}{x - 1} + C.$$

Отметим, что можно было бы сразу найти значения A_{11} и A_{22} , не прибегая к системе (4). Для этого можно было бы подставить значения x=0 и x=1 в (3).

Подводя итог проведенным в последних двух пунктах исследованиям, сформулируем следующий результат.

Теорема. Интеграл от любой рациональной функции берется в конечном виде.

4.4 Метод рационализации

Выше мы уже отмечали важность задачи вычисления интегралов в конечном виде. Суть метода рационализации заключается в том, чтобы

с помощью замены переменных свести интеграл $\int f(x) dx$ к интегралу $\int f(\varphi(t)) \varphi'(t) dt$, где подинтегральная функция $f(\varphi(t)) \varphi'(t)$ является рациональной. Далее интеграл $\int f(\varphi(t)) \varphi'(t) dt$ берется в конечном виде, что позволяет вычислить и исходный интеграл интеграл $\int f(x) dx$.

Напомним, что рациональной функцией нескольких переменных u_1, u_2, \ldots, u_n называется функция

$$q(u_1, u_2, \dots, u_n) = \frac{P(u_1, u_2, \dots, u_n)}{Q(u_1, u_2, \dots, u_n)},$$

где $P(u_1,u_2,\ldots,u_n)$ и $Q(u_1,u_2,\ldots,u_n)$ — многочлены от n переменных $u_1,\ u_2,\ldots,\ u_n$. Очевидно, что если $r_1(t),\ r_2(t),\ldots,\ r_n(t)$ — рациональные функции переменной t и функция $q(u_1,u_2,\ldots,u_n)$ — рациональная функция переменных $u_1,\ u_2,\ldots,\ u_n$, то $q(r_1(t),r_2(t),\ldots,r_n(t))$ — рациональная функция от переменной t.

4.5 Интегрирование тригонометрических функций

1) Рассмотрим сначала задачу нахождения интегралов вида

$$\int R(\sin x, \cos x) \, dx,\tag{1}$$

где $R(u_1, u_2)$ — рациональная функция двух переменных.

Пример. Интеграл

$$\int \frac{\sin x + \cos^2 x}{2\sin x \cos x + 1} \, dx$$

является интегралом такого типа, поскольку в данном случае

$$R(u_1, u_2) = \frac{u_1 + u_2^2}{2u_1u_2 + 1}$$

рациональная функция двух переменных.

а) Универсальная подстановка $t=\operatorname{tg}\frac{x}{2}$

Теорема 1. Если $R(u_1, u_2)$ — рациональная функция двух переменных, то интеграл (1) рационализируется заменой переменных $t = \operatorname{tg} \frac{x}{2}$.

Доказательство. Если $t=\operatorname{tg}\frac{x}{2},$ то

$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}} = \frac{2t}{1 + t^2},$$

$$\cos x = \frac{1 - \lg^2 \frac{x}{2}}{1 + \lg^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}.$$

Кроме того,

$$x = 2 \operatorname{arctg} t \Longrightarrow dx = \frac{2 dt}{1 + t^2}.$$

В результате получаем

$$\int R(\sin x, \cos x) dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2 dt}{1+t^2},$$

где подинтегральная функция является рациональной от переменной t. Теорема доказана.

Пример. Вычислить

$$I = \int \frac{\operatorname{ctg} x \, dx}{\sin x + \cos x - 1}.$$

Поскольку $\operatorname{ctg} x = \cos x/\sin x$, подинтегральная функция является рациональной от $\sin x$ и $\cos x$, поэтому интеграл рационализируется универсальной подстановкой. Имеем

$$\sin x = \frac{2t}{1+t^2}, \quad \cos x = \frac{1-t^2}{1+t^2},$$

$$\operatorname{ctg} x = \frac{1 - t^2}{2t}, \quad dx = \frac{2dt}{1 + t^2},$$

поэтому

$$I = \int \frac{\frac{1-t^2}{2t} \cdot \frac{2\,dt}{1+t^2}}{\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} - 1} = \int \frac{(1-t^2)\,dt}{2t^2(1-t)} = \frac{1}{2} \int \frac{(1+t)dt}{t^2} = \frac{1}{2} \left(-\frac{1}{t} + \ln|t| \right) + C = \frac{1}{2} \left(-\cot\frac{x}{2} + \ln\left|\tan\frac{x}{2}\right| \right) + C.$$

Замечание. Универсальная подстановка всегда рационализирует интегралы вида (1), но часто приводит к сложным вычислениям. поэтому наряду с ней применяются и другие подстановки, которые рационализируют интегралы (1) не всегда, а только если функция R удовлетворяет дополнительным условиям.

Теорема 2. Пусть $R(u_1, u_2)$ — рациональная функция двух переменных.

- 1) Если $R(u_1, -u_2) \equiv -R(u_1, u_2)$ то интеграл (1) рационализируется заменой переменных $t = \sin x$.
- 2) Если $R(-u_1,u_2) \equiv -R(u_1,u_2)$ то интеграл (1) рационализируется заменой переменных $t=\cos x$.
- 3) Если $R(-u_1,-u_2)\equiv R(u_1,u_2)$ то интеграл (1) рационализируется заменой переменных $t=\operatorname{tg} x$.

Доказательство. 1) Из равенства $R(u_1,-u_2)\equiv -R(u_1,u_2)$ следует, что функция $\frac{R(u_1,u_2)}{u_2}$ как функция от второй переменной является четной. Следовательно, эта функция содержит u_2 только в четных степенях, т. е. является рациональной функцией \widetilde{R} от переменных u_1 и u_2^2 :

$$\frac{R(u_1, u_2)}{u_2} \equiv \widetilde{R}(u_1, u_2^2).$$

Используя этот факт, получаем, что

$$\int R(\sin x, \cos x) dx = \int \frac{R(\sin x, \cos x)}{\cos x} \cos x \, dx =$$

$$= \int \widetilde{R}(\sin x, \cos^2 x) d\sin x = \int \widetilde{R}(t, 1 - t^2) dt.$$

Функция $\widetilde{R}(t,1-t^2)$ является рациональной функцией от переменной t и, таким образом, замена переменных $t=\sin x$ рационализирует интеграл (1).

- 2) Этот случай разбирается аналогично случаю 1).
- 3) Рассмотрим рациональную функцию двух переменных $Q(v,u_2):=R(v\cdot u_2,u_2)$. Тогда

$$Q(v, -u_2) = R(-v \cdot u_2, -u_2) = R(v \cdot u_2, u_2) = Q(v, u_2).$$

Таким образом, $Q(v, u_2)$ содержит переменную u_2 только в четных степенях, т. е. является рациональной функцией \widetilde{Q} от переменных v и u_2^2 :

$$Q(v, u_2) \equiv \widetilde{Q}(v, u_2^2).$$

С учетом этого получаем:

$$\int R(\sin x, \cos x) \, dx = \int R(\operatorname{tg} x \cos x, \cos x) \, dx =$$

$$= \int Q(\operatorname{tg} x, \cos x) \, dx = \int \widetilde{Q}(\operatorname{tg} x, \cos^2 x) \, dx.$$

Сделаем в последнем интеграле замену переменных $t = \lg x$. Имеем

$$\cos^2 x = \frac{1}{1 + \lg^2 x} = \frac{1}{1 + t^2}, \quad dx = d \arctan t = \frac{dt}{1 + t^2},$$

поэтому

$$\int R(\sin x, \cos x) dx = \int \widetilde{Q}\left(t, \frac{1}{1+t^2}\right) \frac{dt}{1+t^2}.$$

Функция $\widetilde{Q}\left(t,\frac{1}{1+t^2}\right)\frac{1}{1+t^2}$ является рациональной от переменной t, поэтому замена переменных $t=\operatorname{tg} x$ рационализирует интеграл (1). Теорема доказана.

Примеры. 1) Рассмотрим интеграл

$$\int \frac{\cos^3 x \, dx}{1 + \sin x}.$$

Подинтегральная функция меняет знак при замене $\cos x$ на $(-\cos x)$. Согласно теореме 2 интеграл рационализируется заменой $t = \sin x$. Имеем

$$\int \frac{\cos^3 x \, dx}{1 + \sin x} = \int \frac{\cos^2 x \, d\sin x}{1 + \sin x} = \int \frac{(1 - \sin^2 x) \, d\sin x}{1 + \sin x} = \int \frac{(1 - t^2) \, dt}{1 + t} =$$
$$= \int (1 - t) \, dt = t - \frac{t^2}{2} + C = \sin x - \frac{\sin^2 x}{2} + C.$$

2) Найдем интеграл

$$\int \frac{\sin x \cos x \, dx}{\sin^4 x + \cos^4 x}.$$

Этот интеграл подпадает под случай 3) теоремы 2, следовательно, берется заменой $t=\operatorname{tg} x$. Имеем

$$\int \frac{\sin x \cos x \, dx}{\sin^4 x + \cos^4 x} = \int \frac{\operatorname{tg} x \cos^2 x \, dx}{(\operatorname{tg}^4 x + 1) \cos^4 x} = \int \frac{\operatorname{tg} x \, d(\operatorname{tg} x)}{\operatorname{tg}^4 x + 1} = \int \frac{t \, dt}{t^4 + 1} =$$
$$= \frac{1}{2} \int \frac{d(t^2)}{(t^2)^2 + 1} = \frac{1}{2} \operatorname{arctg} t^2 + C = \frac{1}{2} \operatorname{arctg} \operatorname{tg}^2 x + C.$$

3) Заменой $t = \lg x$ вычислим интеграл

$$\int tg^4 x \, dx = \int \frac{t^4 dt}{1+t^2} = \int \frac{(t^4 - 1) + 1dt}{1+t^2} = \int \left(t^2 - 1 + \frac{1}{1+t^2}\right) \, dt =$$
$$= \frac{t^3}{3} - t + \operatorname{arctg} t + C = \frac{tg^3 x}{3} - tg x + x + C.$$

Указанные подстановки можно сочетать с другими способами вычисления интегралов, описанными выше.

4.6 Интегрирование иррациональных функций, содержащих радикалы

1. Интегрирование выражений вида

$$R\left(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{m_1}{n_1}}, \left(\frac{ax+b}{cx+d}\right)^{\frac{m_2}{n_2}}, \dots, \left(\frac{ax+b}{cx+d}\right)^{\frac{m_k}{n_k}}\right),$$

где R — рациональная функция (k+1) переменных, m_j и n_j — некоторые целые числа, $n_j > 0$.

Теорема. Интеграл

$$I = \int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{m_1}{n_1}}, \left(\frac{ax+b}{cx+d}\right)^{\frac{m_2}{n_2}}, \dots, \left(\frac{ax+b}{cx+d}\right)^{\frac{m_k}{n_k}}\right) dx$$

рационализируется заменой

$$t = \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{N}},$$

 $r\partial e\ N\ -$ наименьшее общее кратное чисел $n_1,\ n_2,\cdots,n_k.$

Доказательство. Для любого $1 \leq i \leq k$ имеем $\frac{m_i}{n_i} = \frac{M_i}{N}$, где $M_i \in \mathbb{Z}$. Следовательно,

$$\left(\frac{ax+b}{cx+d}\right)^{\frac{m_i}{n_i}} = t^{M_i}$$

является рациональной функцией от переменной t. Кроме того,

$$\frac{ax+b}{cx+d} = t^N \Longrightarrow x = \frac{dt^N - b}{a - ct^N},$$

следовательно,

$$dx = \frac{(ad - bc)Nt^{N-1}}{(a - ct^{N})^{2}} dt = r(t) dt,$$

где r(t) — рациональная функция. Окончательно имеем

$$I = \int R\left(\frac{dt^N - b}{a - ct^N}, t^{M_1}, t^{M_2}, \dots, t^{M_k}\right) r(t) dt,$$

где подинтегральная функция является рациональной. Теорема доказана.

Пример.

$$\int \frac{dx}{\sqrt{x} + \sqrt[3]{x}} = \int R(x^{\frac{1}{2}}, x^{\frac{1}{3}}) dx,$$

где R — рациональная функция, берется заменой $x=t^6$. Имеем

$$\int \frac{dx}{\sqrt{x} + \sqrt[3]{x}} = \int \frac{d(t^6)}{t^3 + t^2} = 6 \int \frac{t^5 dt}{t^3 + t^2} = 6 \int \frac{t^3 dt}{t + 1} = 6 \int \frac{(t^3 + 1) - 1}{t + 1} dt =$$

$$= 6 \int \left(t^2 - t + 1 - \frac{1}{t + 1} \right) dt = 6 \left(\frac{t^3}{3} - \frac{t^2}{2} + t - \ln|t + 1| \right) + C =$$

$$= 2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6 \ln\left(\sqrt[6]{x} + 1\right) + C.$$

2. Подстановки Эйлера

Рассмотрим интегралы вида

$$\int R(x, \sqrt{ax^2 + bx + c}) \, dx,$$

где R — рациональная функция двух переменных ($a \neq 0$).

Если подкоренное выражение $ax^2+bx+c>0$ по крайней мере для одного x, то выполняется по крайней мере одно из условий: $a>0,\ c>0$ или $\Delta=b^2-4ac>0$. В последнем случае $ax^2+bx+c=a(x-x_1)(x-x_2)$, где x_1 и x_2 — корни квадратного трехчлена.

Теорема (Эйлер). Интеграл вида

$$\int R(x, \sqrt{ax^2 + bx + c}) \, dx,$$

 $rde\ R$ — рациональная функция двух переменных, рационализируется по крайней мере одной подстановкой t=t(x):

- 1) $ecnu \ a > 0$, $mo \ t \pm \sqrt{ax} = \sqrt{ax^2 + bx + c}$;
- 2) $ecnu \ c > 0$, $mo \ xt \pm \sqrt{c} = \sqrt{ax^2 + bx + c}$;
- 3) $ecnu \Delta > 0$, mo $t(x-x_1) = \sqrt{ax^2 + bx + c} = \sqrt{a(x-x_1)(x-x_2)}$.

Доказательство. Рассмотрим для примера случай 3) (случаи 1) и 2) рассмотрите самостоятельно!).

Если $t(x-x_1)=\sqrt{ax^2+bx+c}=\sqrt{(x-x_1)(x-x_2)}$, то $t^2(x-x_1)^2=a(x-x_1)(x-x_2)$, откуда $t^2(x-x_1)=a(x-x_2)$. Из последнего соотношения находим

$$x = \frac{x_1 t^2 - a x_2}{t^2 - a} = r(t),$$

таким образом, x=r(t) — рациональная функция от t. Кроме того, $dx=r'(t)\,dt$, где r'(t) — также рациональная функция, и

$$\sqrt{ax^2 + bx + c} = t(x - x_1) = t(r(t) - x_1)$$

— рациональная функция от t. Учитывая это, получаем

$$\int R(x, \sqrt{ax^2 + bx + c}) \, dx = \int R(r(t), t(r(t) - x_1)) \, r'(t) \, dt,$$

т. е. указанная подстановка Эйлера рационализирует рассматриваемый интеграл. Теорема доказана.

Пример. Рассмотрим интеграл

$$I = \int \frac{dx}{x + \sqrt{x^2 + 2x + 3}}.$$

Поскольку a=1>0, можно применить первую подстановку Эйлера $t\pm\sqrt{x}=\sqrt{x^2+2x+3}$. Знак перед \sqrt{x} лучше выбрать «—», так как в этом случае знаменатель дроби $x+\sqrt{x^2+2x+3}$ совпадает с новой переменной t и вычисления получаются гораздо проще. Итак,

$$t = x + \sqrt{x^2 + 2x + 3}$$

откуда $t-x=\sqrt{x^2+2x+3}$, $t^2-2tx+x^2=x^2+2x+3$ и

$$x = \frac{t^2 - 3}{2(t+1)}, \quad dx = \frac{t^2 + 2t + 3}{2(t+1)^2}.$$

С учетом этих вычислений получаем

$$I = \frac{1}{2} \int \frac{(t^2 + 2t + 3) dt}{t(t+1)^2}.$$

Разложим подинтегральное выражение на простейшие дроби:

$$\frac{(t^2+2t+3)}{t(t+1)^2} = \frac{A}{t} + \frac{B}{t+1} + \frac{C}{(t+1)^2},$$

где A, B и C — неизвестные константы. Умножив обе части равенства на $t(t+1)^2,$ получаем

$$t^{2} + 2t + 3 = A(t+1)^{2} + Bt(t+1) + Ct.$$

Из последнего соотношения при t=0 получаем, что A=3, а при t=-1 — что C=-2. Сравнивая коэффициенты при t^2 , получим A+B=1, откуда B=-2. Окончательно имеем

$$I = \frac{1}{2} \int \left(\frac{3}{t} - \frac{2}{t+1} - \frac{2}{(t+1)^2} \right) = \frac{1}{2} \left(3 \ln|t| - 2 \ln|t+1| + \frac{2}{t+1} \right) + C = \frac{1}{2} \int \left(\frac{3}{t} - \frac{2}{(t+1)^2} - \frac{2}{(t+1)^2} \right) dt$$

$$= \frac{3}{2} \ln \left(x + \sqrt{x^2 + 2x + 3} \right) - \ln \left(x + 1 + \sqrt{x^2 + 2x + 3} \right) + \frac{1}{x + 1 + \sqrt{x^2 + 2x + 3}} + C.$$

Замечание. Использование подстановок Эйлера часто приводит к сложным вычислениям. Поэтому иногда вместо них используют другие подстановки, в которые входят тригонометрические или гиперболические функции. Используя равенство

$$ax^{2} + bx + c = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right]$$

и линейную замену $x_1 = x + \frac{b}{2a}$, легко свести интеграл

$$\int R(x, \sqrt{ax^2 + bx + c}) \, dx,$$

к интегралу

$$\int R_1(x_1, \sqrt{\pm x_1^2 \pm \alpha^2}) \, dx_1,$$

где R_1 — рациональная функция, знаки в подкоренном выражении зависят от знака коэффициента a и дискриминанта $\Delta = b^2 - 4ac$. Поэтому достаточно научиться вычислять интегралы вида

$$\int R(x, \sqrt{\pm x^2 \pm \alpha^2}) \, dx,$$

где R — рациональная функция.

1) Рассмотрим интегралы вида

$$\int R(x, \sqrt{\alpha^2 - x^2}) \, dx.$$

Для их вычисления можно применять подстановки вида $x=\alpha\sin x,\ x=$ $=\alpha\cos t,\ x=\frac{\alpha}{\cot t},\ x=\alpha \cot t.$

2) В интегралах вида

$$\int R(x, \sqrt{\alpha^2 + x^2}) \, dx$$

можно делать замены переменных $x=\alpha \operatorname{tg} t, \ x=\alpha \operatorname{sh} t, \ x=\frac{\alpha}{\operatorname{sh} t}.$

3) Для интегралов

$$\int R(x, \sqrt{x^2 - \alpha^2}) \, dx$$

используют замены $x = \frac{\alpha}{\cos t}$, $x = \frac{\alpha}{\sin t}$, $x = \alpha \cot t$, $x = \alpha \cot t$.

После проведения этих замен исчезают радикалы и интегралы сводятся к интегралам от рациональных функций от тригонометрических или гиперболических функций. Докажите это самостоятельно!

Пример. Делая замену $x = \sinh t$, получаем

$$\int \frac{dx}{\sqrt{1+x^2}} = \int \frac{d(\operatorname{sh} t)}{\sqrt{1+\operatorname{sh}^2 t}} = \int dt = t + C = \operatorname{arcsh} x + C.$$

Найдем $\operatorname{arcsh} x$. Если $x=\operatorname{sh} t$, то $x=(e^t-e^{-t})/2$, откуда $e^{2t}-2xe^t+1=0$, $e^t=x\pm\sqrt{x^2+1}$. Выбираем перед радикалом знак «+», так как $e^t>0$. Окончательно получаем $t=\operatorname{arcsh} x=\ln(x+\sqrt{x^2+1})$ и

$$\int \frac{dx}{\sqrt{1+x^2}} = \ln(x + \sqrt{x^2 + 1}) + C.$$

Интегрирование дифференциального бинома.

Теорема (Чебышев). Рассмотрим интеграл

$$\int x^m (a+bx^n)^p dx, \quad (a \neq 0, \ b \neq 0)$$

 $rde\ m$, $n\ u\ p$ — рациональные числа. $B\ cnedy$ ющих $mpex\ cny$ чаях этот интеграл рационализируется указанными подстановками.

- 1) Если p целое число, то используется подстановка $t=x^{1/s}$, где s наименьшее общее кратное знаменателей дробей, представляющих собой рациональные числа m и n.
- 2) Eсли $\frac{m+1}{n}$ целое число, то $t=(a+bx^n)^{1/s}$, где s знаменатель дроби, представляющей собой рациональное число p.
- 3) Если $\frac{m+1}{n}+p$ целое число, то $t=(ax^{-n}+b)^{1/s}$, где s знаменатель дроби, представляющей собой рациональное число p.

Доказательство. Рассмотрим для примера случай 3) (остальные случаи рассмотрите самостоятельно!).

Пусть $t=(ax^{-n}+b)^{1/s}$. Тогда $t^s=ax^{-n}+b$, откуда $x^n=\frac{a}{t^s-b}$. Таким образом, $x^n=r(t)$, где r(t) — рациональная функция. Имеем

$$\frac{ndx}{x} = \frac{r'(t)dt}{r(t)},$$

поэтому

$$\int x^m (a+bx^n)^p dx = \int x^{m+np} (ax^{-n}+b)^p dx = \int x^{m+np+1} (ax^{-n}+b)^p \frac{dx}{x} =$$

$$= \int (x^n)^{\frac{m+1}{n}+p} (ax^{-n}+b)^p \frac{dx}{x} = \int (r(t))^{\frac{m+1}{n}+p} t^{ps} \frac{r'(t)dt}{nr(t)}.$$

Последний интеграл представляет собой интеграл от рациональной функции от переменной t. Теорема доказана.

Замечание. П. Л. Чебышев на самом деле доказал также, что в остальных случаях интеграл в конечном виде не берется.

Список литературы

- [1] Никольский С.М. Курс математического анализа, изд. 6-е., стер. Москва: Физматлит, 2001. 591 с.
- [2] Зорич В.А. Математический анализ, ч. I, изд 4-е, испр. M.: МЦНМО, 2002. 657 с.
- [3] Шерстнев А.Н. Конспект лекций по математическому анализу, изд. 4-е. Казань: КГУ, 2005. 373 с.
- [4] Кудрявцев Л.Д. Математический анализ, т. 1. М.: Высшая школа, 1973. 614 с.
- [5] Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления, т. 1, изд. 8-е. Москва: Физматлит, 2003. 679 с.
- [6] Демидович Б.П. Сборник задач по математическому анализу: учебное пособие для вузов. Москва: АСТ, 2010. 558 с.
- [7] Гелбаум Б., Олмстед Дж. Контрпримеры в анализе. М.: Мир, 1967. $251~\mathrm{c}$.

Содержание

1	Производная и дифференциал					
	1.1	Определение производной	Ç			
	1.2	Геометрический смысл производной	4			
	1.3	Физический смысл производной	6			
	1.4	Основные правила вычисления производных	6			
	1.5	Производные основных элементарных функций	Ć			
	1.6	Логарифмическое дифференцирование	12			
	1.7	Производные высших порядков	13			
	1.8	Высшие производные линейной комбинации и произведения				
		функций. Правило Лейбница	15			
	1.9	Дифференциал функции	16			
	1.10	Техника нахождения дифференциалов	19			
	1.11	Инвариантность формы 1-го дифференциала	19			
	1.12	Дифференциалы высших порядков	20			
	1.13	Дифференцирование функций, заданных				
		параметрически	21			
2	Основные теоремы дифференциального					
	исчисления 2					
	2.1	Свойства функций, которые являются				
		производными	25			
	2.2	Обобщенная формула конечных приращений	27			
	2.3	Правило Лопиталя	28			
	2.4	Формула Тейлора	31			
	2.5	Представление по формуле Тейлора некоторых элементар-				
		ных функций	34			
3	Исследование функций с помощью производных 30					
	3.1	Точки локального экстремума функции	39			
	3.2	Исследование выпуклости функций с помощью				
		производных.	43			
	3.3	Точки перегиба	45			
	3.4	Асимптоты	46			

4	Пеј	рвообразная и неопределенный интеграл	47
	4.1	Таблица основных неопределенных интегралов	49
	4.2	Способы интегрирования элементарных функций	49
	4.3	Интегрирование рациональных функций	52
	4.4	Метод рационализации	56
	4.5	Интегрирование тригонометрических функций	57
	4.6	Интегрирование иррациональных функций, содержащих	
		радикалы	61