

Plant Health Institute Montpellier

Coupling plant growth models, application on pest & disease models: an interaction structure proposal

Presentation by: Houssem TRIKI

Email: houssem.triki@cirad.fr

Founds: ½ Cirad, ½ Project EU DESIRA Robust

Certification: #DigitAg

Starting date of the project: 03/01/2022

Marc JAEGER (AMAP)
Fabrice PINARD (PHIM)

Robusta coffee tree and climate change in Uganda²

- 7th largest producer worldwide
- Pest crisis: Coffee Wilt Disease (CWD), 50%
 production losses (late 90s-2010)
 - Selection (clones)
- Re-emergence of pests and fungal diseases

Problematic

Estimation of the production of a plant subjected to a Pests & Diseases attack

- O Harvest estimation on the **short term** is privileged
- O The response of the plant to the attack is unknown on the long-term

Objectives

- Assessing the variation in production and the mechanisms related to it
- Establishing a coupled system

GreenLab growth Model

Inherits from both PBM and FSPM

Allows individual to plot scale

Quantification of structure

 Recurrence equations for organogenesis and growth

M. Jaeger, UMR AMAP, CIRAD

Pest & Diseases Models

- Building knowledge-based P&D models
 - Inspired by E. Lasso et al, IEEE Access, 2021.

Problems to "link" P&D and Plant models

- What are the nature of the interactions?
 - Which organs are affected? How? Is cohort assumption still relevant for the interaction? ...
- How to operate different cycles and synchronize them?
- Quantification of interactions between models
 - Calibration and validation
- How to simulated feedbacks due to model's dynamics behaviours?
 - Are the feedback resulting from implicit dynamics?

=> Modelling/simulating dynamic complex systems

Complex systems formalisms / tools

- Models exchange computational variables and fields at predetermined coupling intervals.
- Leads to a stiff interactions with overlapping data
- Considered as a weak coupling formalism nowadays

- Free, open environment (CIRAD/Inria, France) for integrating structural and functional plant models at different scales
- Various analysis, modelling and simulation tools
- Accessibility of the modules and tools to the community

Cecchis, D et al. 2012

Our proposal

Designing a specific structure handling the interactions in an independent way

- The components interact via information exchange
- Cohorts based scale approach for both
 P&D and plant model

- Being able to add multiple models or modules to the interaction
- Avoiding the complexity that comes with coupling multiple models

Structure of the interaction I Genericity

Structure of the interaction II Components

Cycle synchronisation module: Mediator

Gamma et al., 1995

System states module: System States

State & data recorder

P&D model's States and data

- ☐ Pest or disease population
 - ☐ Population evolution
 - ☐ Number of Attacked organs
- ☐ Number of fruits

Climate data

☐ Temperature ☐ Humidity

Platform States and data

- ☐ Temperature
 - ☐ Humidity
- ☐ Fruit Cohorts
- **□** Number of Attacked organs
- ☐ Damaged Fruit Cohort

Plant growth model
States and data

- ☐ Biomass
- ☐ Leaf Cohorts
- ☐ Fruit Cohorts
- ☐ Internode Cohorts

State & data recorder with state and cycles

Working environment

Julia and OpenAlea

- Modelling/development oriented language
- Open source
- Compatibility with other environments
- Can call algorithms (models) written in other languages (R, Python, MATLAB...)

```
mutable struct ScolyteGroup
    Born::String
    eggday::Int64
    PopulationInFruits::String
    population::Float64
   DevelopementRate::String
   developement::Float64
   Lifeexp::String
    lifeSpan::Float64
    function ScolyteGroup(eggday, population, developement, lifeSpan)
       Born = "eggday-->"
       PopulationInFruits = "population-->"
       DevelopementRate = "developement-->"
       Lifeexp = "biological age-->"
        new(Born, eggday, PopulationInFruits, population, DevelopementRate, developement, Lifeexp, lifeSpan)
end
```


A first implementation of the formalism

Cycle : Asynchronous

Interaction of Coffee Berry Borer with the coffee tree

- CBB
 - Coffee seeds = a food source
 - Attacks immature and mature coffee berries

- Premature fall of young berries
- A vulnerability to infections
- Partial loss of the yield

Results

Results

Perspectives

- Complete and improve the framework
- Applications:
 - Implementation using Greenlab as plant model
 - Other P&D integration (RB, BTB...)
- Validation using Field data (Uganda)

Conclusion

- Generalized framework proposal
- Integration of multiple cohorts based models
- Modular structure
- First implementation

References

Plant model

- Sievänen et al, 2009. Functional Structural Plant Models Case LIGNUM. (Invited Talk). PMA, 2009 Third International Symposium on IEEE
- P. de Reffye et al, 2021. Two decades of research with the GreenLab model in Agronomy. Annals of Botany.
- Zeigler et al, 2000. Theory of modeling and simulation. Academic press.
- P. de Reffye et al, 1988. Plant models faithful to botanical structure and development. ACM Siggraph Computer Graphics.
- Hallé, F. 1986. Modular growth in seed plants. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 313(1159), 77-87.
- Marcelis, L. F. M et al, 1998. Modelling biomass production and yield of horticultural crops: a review. Scientia Horticulturae.
- Cecchis, D et al. 2012. Development of a Parallel Coupler Library with Minimal Inter-process Synchronization for Large-scale Computer Simulations.

Pest & Diseases

- Gaitán et al, 2015. Compendium of coffee diseases and pests. APS Press, The American Phytopathological Society.
- Jaramillo, J et al, 2009. Development of an improved laboratory production technique for the coffee berry borer Hypothenemus hampei, using fresh coffee berries. *Entomologia experimentalis et applicata*, 130(3), 275-281
- Damon, A. 2000. A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bulletin of entomological research.
- Baker, P. S et al, 1994. Abiotic mortality factors of the coffee berry borer (Hypothenemus hampei). Entomologia experimentalis et applicata.