Analiza struktury c.d.

Wykład 5

elzbieta.golata@ue.poznan.pl
dr hab. Elżbieta Gołata, prof. nadzw. UEP,
Katedra Statystyki
Wydział Informatyki i Gospodarki Elektronicznej
Uniwersytet Ekonomiczny w Poznaniu

Miary analizy struktury

MILARY ANALIZY STRUKTURY

IKILASYCZNIE

POZYCYJNE

1. CHARAKTERYSTYKI TENDENCJI CENTRALNEJ

- średnia arytmetyczna
- średnia geometryczna
- średnia harmoniczna
- średnia kwadratowa

- kwantyle (kwartyle, decyle, percentyle)
- dominanta (wartość najczęściej występująca, moda)

2. CHARAKTERYSTYKI ZRÓŻNICOWANIA - DYSPERSJI - ZMIENNOŚCI

- odchylenie przeciętne
- wariancja
- odchylenie standardowe
- klasyczny współ. zmienności

- rozstęp, obszar zmienności
- odchylenie ćwiartkowe
- odchylenie decylowe ...
- pozycyjny współ. Zmienności

3. CHARAKTERYSTYKI ASYMETRII - SKOŚNOŚCI

- moment trzeci centralny

- pozycyjny miernik asymetrii

- moment trzeci centralny stand.

- pozycyjny współ. asymetrii

klasyczno-pozycyjny miernik asymetrii

klasyczno-pozycyjny współczynnik asymetrii

4 A. CHARAKTERYSTYKI KONCENTRACJI WOKÓŁ ŚREDNIEJ

(kurtozy-ekscesu)

moment czwarty centralny

moment czwarty centralny standaryzowany

4 B. CHARAKTERYSTYKI KONCENTRACJI-RÓWNOMIERNOŚCI PODZIAŁU

współczynnik koncentracji K

Statystyka opisowa

Podstawowe rodzaje badań statystycznych

MIARY DYSPERSJI

Miary oparte na różnicy

ROZSTĘP (empiryczny obszar zmienności) (RANGE)

$$R = X_{max} - X_{min}$$

- → wstępna ocena zmienności
- → miara łatwa do ustalenia
- → mała wartość poznawcza
- → przybliżona wartość R szereg rozdzielczy przedziałowy

ODCHYLENIE ĆWIARTKOWE (INTER-QUARTILE RANGE)

1/2 obszaru zmienności 50 % środkowych jednostek zbiorowości

$$Q(x) = \frac{Q_3 - Q_1}{2}$$

$$Q_2 - Q(x) < X_{typ} < Q_2 + Q(x)$$

Nietypowe dla danej zbiorowości są te jednostki, których wartości są niższe bądź wyższe od (Me-Q(x); Me+Q(x))

- \diamond nazywane prawdopodobnym, bo z prawdopodobieństwem równym 0,5 "trafiamy" na jednostkę zawartą między Q_I a Q_3
- ♦ nie nadaje się do działań algebraicznych
- ♦ stosowane wtedy, gdy nie można obliczyć średnich

Statystyka opisowa	Podstawowe rodzaje badań statystycznych

MIARY OPARTE NA ODCHYLENIACH

WARIANCJA

VARIANCE

Wariancja w populacji generalnej $\sigma^2 = \frac{\sum\limits_{i=1}^{N}(x_i-\mu)^2}{N}$

szereg szczególowy
$$s^{2}(x) = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

szereg punktowy
$$s^{2}(x) = \frac{\sum_{i=1}^{k} (x_{i} - \overline{x})^{2} n_{i}}{n-1}$$

szereg z przedziałami
$$s^2(x) = \frac{\sum_{i=1}^{K} (x'_i - \overline{x})^2 n_i}{n-1}$$

$$s^{2}(x) = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}}{n-1} = \frac{\sum_{i=1}^{n} x_{i}^{2} - n \cdot (\bar{x})^{2}}{n-1}$$

$$s^{2}(x) = \frac{\sum_{i=1}^{k} x_{i}^{2} n_{i} - \frac{(\sum_{i=1}^{k} x_{i}^{1} n_{i})^{2}}{n}}{n-1} = \frac{\sum_{i=1}^{k} x_{i}^{2} n_{i} - n \cdot (\bar{x})^{2}}{n-1}$$

$$s^{2}(x) = \frac{\sum_{i=1}^{k} (x'_{i} - \overline{x})^{2} n_{i}}{n-1} - \frac{i^{2}}{12}$$

Statystyka opisowa

ODCHYLENIE STANDARDOWE

Twierdzenie Czebyszewa

Niech c będzie pewną wielkością spełniającą warunek $c \ge 1$. Proporcja obserwacji jakiejkolwiek populacji lub próby znajdujących się w przedziale c odchyleń standardowych od średniej arytmetycznej równa jest co najmniej $1 - \frac{1}{c^2}$.

Przedział wartości jednostek populacji $(\mu - c \cdot \sigma; \mu + c \cdot \sigma)$ obejmuje wszystkie jednostki o wartościach średnia $\pm c$ odchyleń standardowych,

np.
$$c = 2$$
, wówczas $1 - \frac{1}{2^2} = 0.75$

tzn. co najmniej 75% jednostek danej populacji przyjmie wartości z przedziału $x \pm 2s(x)$

jeśli
$$c = 3$$
 wówczas $1 - \frac{1}{3^2} = 0.89$

tzn. co najmniej 89% jednostek danej populacji przyjmie wartości z przedziału $\overline{x} \pm 3s(x)$

Regula trzech sigm

Dla rozkładu normalnego mniej niż 0,026% jednostek przyjmuje wartości spoza przedziału $\mu \pm 3 \cdot \sigma(x)$

$$\mu \pm \sigma$$
 zawiera 68% obserwacji zawiera 95% obserwacji

 $\mu \pm 3\sigma$ zawiera ponad 99% obserwacji

Typowy przedział zmienności $\overline{x} - s(x) < x_{typ} < \overline{x} + s(x)$

Statystyka opisowa Podstawowe rodzaje badań statystycznych

ary dyspersji	

WŁASNOŚCI KRZYWEJ NORMALNEJ:

- jest symetryczna względem prostej $x=\mu$ (symetryczność);
- osiąga maksimum równe $\frac{1}{\sigma\sqrt{2\pi}}$ dla $x = \mu$ (jednomodalność);
- jej ramiona mają punkty przegięcia dla $x = \mu \sigma$ oraz $x = \mu + \sigma$ (zmienność);
- pole powierzchni pod krzywą normalną równe jest jedności
- jest określona dla $x \in (-\infty; +\infty)$
- funkcja gęstości przyjmuje zawsze wartości dodatnie

Z własności pierwszej wynika, że μ decyduje o położeniu krzywej względem osi OX. Natomiast z własności drugiej i trzeciej wynika, że parametr σ określa "smukłość" krzywej. Dwa parametry : μ i σ całkowicie określają funkcję gęstości rozkładu normalnego (określoność).

Statystyka opisowa	Podstawowe rodzaje badań statystycznych
--------------------	---

Miary dyspersji	

STANDARYZACJA

Znając wartości parametrów μ & σ rozkładu zmiennej losowej X można, stosując

przekształcenie standaryzacyjne

wyznaczyć wartość zmiennej Z dla dowolnej wartości badanego rozkładu

$$z = \frac{X - \mu}{\sigma}$$

- Zmienna Z przedstawia odchylenie od wartości oczekiwanej μ w jednostkach odchylenia standardowego s
- W ten sposób pozwala na względna ocenę wartości oryginalnej zmiennej
- Interpretacja zmiennej standaryzowanej ma 'dwie części':
 - a. Znak (+) bądź (-) informuje, czy zmienna oryginalna przyjmuje wartość mniejszą czy większą od średniej
 μ
 - b. Wartość zmiennej standaryzowanej wskazuje na 'odległość' od średniej w jednostkach odchylenia standardowego

Miary dyspersji	

Rozkład zmiennej standaryzowanej Z

Wszystkie rozkłady zmiennej losowej X o rozkładzie normalnym o dowolnych parametrach $N(\mu;\sigma)$ można transformować do rozkładu zmiennej Z 'standaryzowanej' o rozkładzie normalnym N(0;1) Ważne cechy rozkładu standaryzowanego

- 1. Wartość oczekiwana jest równe zero 0
- 2. Odchylenie standardowe jest równe jedności 1
- 3. Kształt rozkładu po standaryzacji odpowiada rozkładowi zmiennej pierwotnej

Rozkład zmiennej standaryzowanej

X	Χ - μ	(Χ - μ)/ σ	Z	$(z_i - 0)^2$
26	26 - 19 = 7	1,40	+1.4	1,96
18	18 - 19 = -1	-0,20	-0.2	0,04
20	20 - 19 = 1	0,20	+0.2	0,04
12	12 - 19 = -7	-1,40	-1.4	1,96

suma

76

0,00

średnia std

19

$$\mu = 19$$

$$\sigma = 5$$

 $\mu = 0$

$$\sigma = 1$$

$$\mu = (1.4 + -0.2 + 0.2 + -1.4) / 4 = 0$$

$$\sigma = \sqrt{\frac{(1.4 - 0)^2 + (-0.2 - 0)^2 + (0.2 - 0)^2 + (-1.4 - 0)^2}{4}} = 1$$

Porównanie wartości zmiennych z różnych rozkładów

Grzegorz uzyskał 64 pkt. z testu z Botaniki

Karol otrzymał 52 pkt. z testu ze Statystyki

Który z przyjaciół lepiej napisał test?

Trudność w porównywaniu "surowych" wyników

Dlatego, stosując przekształcenie zwane 'standaryzacją', obydwa wyniki transformujemy w zmienną Z, która przedstawia je w porównywalnej skali, każdy z wyników w relacji do odpowiadającej rozkładowi pierwotnemu wartości oczekiwanej i odchyleniu standardowemu: μ & σ

Zmienna standaryzowana jest bezpośrednio porównywalna

Statystyka opisowa Podstawowe rodzaje badań statystycznych

Przykład

Dane są wyniki testu ze statystyki dla czterech studentów: A, B, C, D. Ponadto wiadomo, że: x = 58 oraz s(x) = 7. Oceń, czy praca studenta D jest dobra, czy zła na tle pozostałych.

Rozwiązanie:

Zgodnie z regułą trzech sigm wyróżnić można następujące przedziały zmienności badanej cechy: typowy $x \pm s(x)$, w którym mieści się około 2/3 obserwacji, zawierający około 75% jednostek ($x \pm 2s(x)$) oraz obejmujący prawie wszystkie jednostki ($x \pm 3s(x)$).

Dla zmiennej standaryzowanej przedziały te przyjmują następujące granice: (-1; 1), (-2; 2), (-3; 3).

$$x_A = 72$$
 $u_a = \frac{72 - 58}{7} = 2$ $1 - \frac{1}{2^2} = 0.75$ $x_B = 51p$ $u_B = \frac{51 - 58}{7} = -1$ $x_C = 58p$ $u_c = \frac{58 - 58}{7} = 0$ $x_D = 86$ $u_D = \frac{86 - 58}{7} = 4$ $1 - \frac{1}{4^2} = 0.94$

Student C napisał test na poziomie przeciętnym (wartość zmiennej standaryzowanej równa zero).

Student B napisał pracę na poziomie niższym od przeciętnego (dolnej granicy typowego przedziału zmienności).

Student A napisał test bardzo dobrze. Jego praca należy do 12,5% najlepszych testów.

Praca studenta D jest jedną z najlepszych.

Statystyka opisowa

Podstawowe rodzaje badań statystycznych

WSPÓŁCZYNNIK ZMIENNOŚCI

Klasyczny
$$V_{S(x)} = \frac{s(x)}{\overline{x}} \cdot 100\%$$

Porównanie zmienności

- opisowa miara względna służąca do porównań
- cech jednoimiennych (takich samych) w różnych zbiorowościach
- cech różnorodnych w tej samej zbiorowości

COEFFICIENT OF VARIATION

Pozycyjny
$$V_{Q(x)} = \frac{Q(x)}{Me} \cdot 100\%$$

Miary dyspersji	

RÓWNOŚĆ WARIANCYJNA

Dekompozycja wariancji na dwa addytywne składniki:

♦ średnią arytmetyczną z wariancji warunkowych.

$$\overline{s_j^2(x)} = \frac{1}{n} \sum_{j=1}^{l} s_j^2(x) n_j$$

♦ wariancja średnich warunkowych

$$s^{2}(\bar{x}_{j}) = \frac{1}{n} \sum_{j=1}^{l} (\bar{x}_{j} - \bar{x})^{2} n_{j}$$

$$s^{2}(x) = \overline{s_{j}^{2}(x)} + s^{2}(\bar{x}_{j})$$

Równość wariancyjna nie jest przekształcalna na równość odchyleń standardowych, stąd jej składniki nie są interpretowane merytorycznie, mogą jednak odpowiadać na pytanie, jaki jest udział obu wariancji szczegółowych w wariancji ogólnej

PRZYKŁAD

W grupie 100 losowo wybranych klientów badano wydatki na zakup soków i napojów (cecha X) otrzymując następujące wyniki. Proszę wyznaczyć wariancję badanej cechy dla całej zbiorowości. Jak duże jest zróżnicowanie wysokości wydatków na napoje w zależności od miejsca zakupu?

n - 100 klientów, w tym: n_1 = 40 klientów małych sklepów

 $n_2 = 60$ klientów supermarketów

małe sklepy: $\bar{x}_l = 6 \text{ PLN}$

supermarkety: $\bar{x}_2 = 32 \text{ PLN}$

ogółem: $\bar{x} = ? PLN$ $s^2(x) = ? PLN^2$

Rozwiązanie:

• Średnia ogólna średnia ważona ze średnich dla podgrup: $\bar{x} = \frac{1}{100}(6 \cdot 40 + 32 \cdot 60) = 21,6$

• Średnia arytmetyczna z dwóch wariancji: $\overline{s_j^2(x)} = \frac{1}{100}(2 \cdot 40 + 10 \cdot 60) = 6,8$

• Wariancja dwóch średnich warunkowych: $s^{2}(\bar{x}_{j}) = \frac{1}{100}[(6-21,6)^{2} \cdot 40 + (32-21,6)^{2} \cdot 60] = 162,24$

• Wariancja ogólna - równość wariancyjna: $s^2(x) = \overline{s_j^2(x)} + s^2(\overline{x}_j) = 6,8 + 162,24 = 169,04$

Jaką część zmienności ogólnej stanowi zmienność wewnątrzgrupowa?

$$\frac{\overline{s_j^2(x)}}{s^2(x)} = \frac{6.8}{169.04} = 0.04$$

Jaką część zmienności ogólnej stanowi zmienność międzygrupowa?

$$\frac{s^2(\bar{x}_j)}{s^2(x)} = \frac{162,24}{169,04} = 0,96$$

Miary asymetrii Rachunek momentów

WSPÓŁCZYNNIKI ASYMETRII

$$A_{s(x)} = \frac{\overline{x} - D}{s(x)}$$

klasyczno-pozycyjny współczynnik asymetrii $A_{s(x)} \in <-1;1>$

$$A_{Q(x)} = \frac{Q_3 + Q_1 - 2Q_2}{2Q(x)}$$
 pozycyjny współczynnik asymetrii $A_{Q(x)} \in <-1;1>$

$$A_{Q(x)} = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)} \qquad Q_3 - Q_2 > Q_2 - Q_1 \qquad a + Q_3 - Q_2 < Q_2 - Q_1 \qquad a - Q_3 - Q_2 < Q_2 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_1 \qquad a - Q_3 - Q_2 < Q_3 - Q_2 < Q_3 - Q_3 < Q_3 < Q_3 - Q_3 < Q_3 < Q_3 - Q_3 < Q_3$$

$$Q_3 - Q_2 > Q_2 - Q_1$$

$$Q_3 - Q_2 < Q_2 - Q_1$$

Miary asymetrii	
Rachunek momentów	

Rozkład symetryczny

Miary asymetrii	
Rachunek momentów	

Asymetria prawostronna

Statystyka opisowa	Podstawowe rodzaje badań statystycznych
--------------------	---

Miary asymetrii
Rachunek momentów

RACHUNEK MOMENTÓW

Dowolnym k-tym momentem rozkładu nazywamy średnią arytmetyczną z odchyleń poszczególnych wartości zmiennej X od dowolnej liczby x_0 podniesionych do k-tej potęgi:

$$m_k = \frac{\sum (x_i - x_0)^k n_i}{n}$$

MOMENTY ZWYKŁE

$m_{1} = \frac{\sum (x_{i} - 0)}{n} = \frac{\sum x_{i}}{n} = \bar{x}$ $m_{2} = \frac{\sum (x_{i} - 0)^{2}}{n} = \frac{\sum x_{i}^{2}}{n} = \bar{x}^{2}$

MOMENTY CENTRALNE

$$\mu_1 = \frac{\sum (x_i - \overline{x})n_i}{n} = 0$$
 zawsze równy zero
$$\mu_2 = \frac{\sum (x_i - \overline{x})^2 n_i}{n} = s^2(x)$$
 wariancja
$$\mu_3 = \frac{\sum (x_i - \overline{x})^3 n_i}{n}$$
 miara asymetrii
$$\mu_4 = \frac{\sum (x_i - \overline{x})^4 n_i}{n}$$
 miara ekscesu

moment trzeci centralny wyrażony w jednostkach odchylenia standardowego:

$$\alpha_{3} = \frac{\sum (x_{i} - \bar{x})^{3} n_{i}}{n}$$

$$\alpha_{3} = \frac{\mu_{3}}{\sqrt{\mu_{2}^{3}}}$$

$$\alpha'_{3} = \frac{\mu_{3}}{s^{3}(x) + |\mu_{3}|}$$

$$1 < \alpha'_{3} < 1$$

moment czwarty centralny wyrażony w jednostkach odchylenia standardowego:

$$\alpha_4 = \frac{\sum (x_i - \overline{x})^4 n_i}{s^4(x)}$$

$$\alpha_4 = \frac{n}{s^4(x)}$$

$$\alpha_4 = 3$$

$$\alpha_4 > 3$$

$$\alpha_4 < 3$$

$$\alpha'_4 = \frac{\mu_4 - s^4(x)}{\mu_4}$$
 $\alpha'_4 \in <0;1$)

dla rozkładu normalnego $\alpha'_{4} = 0,66(6)$

$$\alpha'_4 = 0,66(6)$$

5 - liczbowa synteza	

5 - LICZBOWA SYNTEZA FIVE NUMBER SUMMARY

SYNTETYCZNY OPIS ZBIOROWOŚCI PRZY POMOCY PIĘCIU LICZB

Przykład

W 2000 r. Pentor opublikował informacje dotyczące czasu oglądania telewizji przez dzieci w wieku szkolnym według różnych charakterystyk społecznych. W przykładowej próbie 20 dzieci w jednej z poznańskich szkół podstawowych otrzymano następujące informacje o przeciętnej liczbie godzin spędzanych przed telewizorem w ciągu tygodnia:

Proszę przedstawić i zinterpretować 5 – liczbową syntezę.

Rozwiązanie:

WARTOŚCI EKSTREMALNE: MIN=5 GODZIN MAX=66 GODZIN

Kwartyle:

♦ Ponieważ n=20 n/4=5 $Q_1=21+0,25*(25-21)=22$ ♦ Ponieważ n=20 n/2=10 $Q_2=31+0,5*(31-30)=30,5$ ♦ Ponieważ n=20 3/4n=15 $Q_3=35+0,75*(38-35)=37,25$

5 - liczbowa synteza

Łącznie z uzupełniającą informacją o zróżnicowaniu badanej zbiorowości, 5-liczbową syntezę można zapisać następujaco:

$$Min = 5$$
 $Q_1 = 22$ $Q_2 = 30,5$ $Q_3 = 37,25$ $Max = 66$ $Q_1 - Min = 17$ $Q_2 - Q_1 = 8,5$ $Q_3 - Q_2 = 6,75$ $Max - Q_3 = 28,75$

JEDNOSTKI O WARTOŚCIACH SKRAJNYCH - OUTLIERS

jednostki, które przyjmują wartość cechy z tego przedziału **nie** są traktowane jako odstające. <DG. GG>

$$DG = Q_1 - 1.5 \cdot IQR$$

$$GG = Q_3 + 1.5 \cdot IQR$$

$$IQR = Q_3 - Q_1$$
.

Rozstęp między-kwartylowy
$$IQR = 37,25 - 22 = 15,25$$

$$IQR = 37,25 - 22 = 15,2$$

$$Q_1$$
-1,5 · $IQR = 22$ - 1,5 · 15,25 = -0,875

$$Q_3+1.5 \cdot IQR = 37.25 + 1.5 \cdot 15.25 = 60.125$$

Statystyka opisowa

Podstawowe rodzaje badań statystycznych

5 - liczbowa synteza

WYKRES PUDEŁKOWY – BOXPLOT

- ♦ Przedstaw 5-liczbowa syntezę
- ❖ Narysuj oś liczbową i nanieś na nią wielkości obliczone w poprzednim kroku. Powyżej osi zaznacz krótkie odcinki pionowe w miejscach odpowiadających kwartylom i połącz je tworząc prostokąt podzielony na dwie części w miejscu odpowiadającym kwartylowi drugiemu.
- ♦ Zaznacz przy pomocy krótkich odcinków pionowych wartości ekstremalne. Połącz odcinkami (tzw. wąsami) boki
 prostokąta odpowiadające kwartylom z wartościami minimalna i maksymalną.

$$Min = 5$$
 $Q_1 = 22$ $Q_2 = 30,5$ $Q_3 = 37,25$ $Max = 66$ $Q_1 - Min = 17$ $Q_2 - Q_1 = 8,5$ $Q_3 - Q_2 = 6,75$ $Max - Q_3 = 28,75$

5 - liczbowa synteza	

ZMODYFIKOWANY WYKRES PUDEŁKOWY

- ♦ Wyznacz kwartyle
- → Zidentyfikuj potencjalne wartości odstające oraz wartości ekstremalne* nie będące wartościami odstającymi, tzn. zawarte w przedziale <DG; GG>. Jeżeli w zbiorze nie występują wartości odstające, wówczas są to po prostu wartości ekstremalne tzn. Min i Max
- ♦ Narysuj oś liczbową i nanieś na nią wielkości obliczone w pierwszym kroku. Powyżej osi zaznacz krótkie odcinki pionowe w miejscach odpowiadających kwartylom i połącz je tworząc prostokąt podzielony na dwie części w miejscu odpowiadającym medianie. Zaznacz przy pomocy krótkich odcinków pionowych wartości *ekstremalne**. Połącz odcinkami (tzw. wąsami) boki prostokąta odpowiadające kwartylom z wartościami *ekstremalnymi**.
- ♦ Narysuj gwiazdkę odpowiadającą każdej potencjalnej wielkości odstającej

5 - liczbowa synteza

Ekstremalna D*= Min

Min = 5 $Q_1 = 22$ $Q_2 = 30,5$ $Q_3 = 37,25$ Max = 66 $Q_1 - Min = 17$ $Q_2 - Q_1 = 8,5$ $Q_3 - Q_2 = 6,75$ $Max - Q_3 = 28,75$

Ekstremalna $G^*=43$

5 - liczbowa synteza

Dziękuję za uwagę