SELF-PROGRAMMING THE MC68701 AND THE MC68701U4

Prepared By:
Patrick Svatek
Microprocessor Applications Engineering Department
Motorola Inc.
Austin, Texas

INTRODUCTION

The MC68701 and MC68701U4 are EPROM versions of the M6801 microcomputer (MCU) Family. The MC68701 on-chip resources include a 2K-byte EPROM, a three-function timer, a serial communication interface (SCI), up to 29 parallel lines, 128 bytes of RAM, and an oscillator. These resources give it extensive power and flexibility for ease of design. The MC68701U4 enhances the capabilities of the MC68701. Improved resources include a 4K-byte EPROM, two input-capture functions, three output-compare functions, a counter alternate address, and 192 bytes of RAM.

The MC68701/U4 MCUs can also program themselves. The MC68701/U4 CPU controls all movement of data into the on-chip EPROM during programming and requires only a few external devices to do the task. This application note explains how the MC68701/U4 MCUs program themselves and describes a fully-tested self programmer (including software and 1:1 artwork). The self-programmer includes a check to determine which of the two devices is being programmed.

ON-CHIP EPROM

A dual-purpose pin, RESET/Vpp, is used to reset the MCU and to power the on-chip EPROM. This pin is normally at 5.0 volts during non-programming operations and must be raised to Vpp (21 V) during programming of the EPROM.

The MCU EPROM is controlled by two bits (PLC and PPC) in the RAM/EPROM control register (see Figure 1).

Bit 0 of the register is called the programming latch control (PLC) and is used to control an address latch used during programming of the EPROM. When PLC is set, the latch is transparent. When PLC is clear, the address latch is enabled and latches each EPROM address asserted by the CPU. The PLC should be set during normal nonprogramming MCU operation and should be cleared only to program the EPROM. This bit is set during reset and can be cleared only in mode 0.

Bit 1 of the RAM/EPROM control register is called programming power control (PPC) and is used to gate programming power (Vpp) to the EPROM during programming. When PPC is set, Vpp is not applied to the EPROM. During normal nonprogramming operation, PPC should be set. The PPC bit should be cleared only to program the EPROM. This bit is set during reset and whenever the PLC bit is set. Bit 1 can be cleared only in mode 0 with the PLC bit clear.

The MC68701/U4 MCUs are programmed in mode 0. In this mode, all the interrupt and reset vectors are located at \$BFFO — \$BFFF. The on-chip EPROM for the MC68701 and MC68701U4 are located at \$F800 — \$FFFF and \$F000 — \$FFFF, respectively. The reset vectors direct the CPU to a bootstrap program that will fetch data sequentially from external memory or a peripheral controller and program each byte into the MCU EPROM. Once Vpp is applied to the RESET/Vpp pin, each data byte is programmed as follows:

7	6	5 -	4	3	2	1	0	_
STBY PWR	RAME	х	х	×	х	PPC	PLC	\$14

FIGURE 1 -- RAM/EPROM Control Register

- 1. Apply programming power (Vpp=21 V) to the RESET/Vpp pin.
- Clear the PLC control bit and set the PCC bit by writing \$FE to the RAM/EPROM control register.
- 3. Write data to the next EPROM location to be programmed. When triggered by a MPU write to the EPROM, internal latches capture both the EPROM address and the data byte.
- 4. Clear the PPC bit for programming time (tpp) by writing \$FC to the RAM/EPROM control register. This step gates Vpp from the RESET/Vpp pin to the EPROM.
- 5. Repeat Steps 1-4 for each byte to be programmed.
- 6. Set the PLC and PPC bits by writing \$FF to the RAM/EPROM control register.
- Remove the programming power (Vpp) from the RESET/Vpp pin. The EPROM can now be read and verified.

A MC68701/U4 SELF-PROGRAMMER

The MC68701/U4 self-programmer (see Figure 2) is designed for simplicity, low cost, and ease of use. The hardware and associated software provide for: (1) determination of which device type is being programmed, (2) verification that the inserted MCU is initially fully erased, (3) the programming of the MCU, and (4) verification of the programmed code.

After applying power, the user just toggles one switch and then monitors three LEDs which indicate MCU EPROM status. The self-programmer will enter either 2K or 4K bytes of the external 8K U4 EPROM into the MCU EPROM depending on which device is being programmed.

A copy of the 1:1 artwork necessary to fabricate a printed circuit board (PCB) for the self-programmer can be found at the end of this application note. In addition, a list of parts necessary to complete the PCB is furnished.

USING THE SELF-PROGRAMMER

To use the self-programmer, one does not need knowledge of the MC68701/U4 operation. However, a little knowledge of electronics is needed to program a device. Five steps are required as follows:

- 1. Insert the U4 EPROM containing the code to be programmed.
- Insert the desired MCU (MC68701) or MC68701U4) into its socket.
- 3. Apply power using switch S1.
- 4. Set switch S2 to the program position.
- 5. Monitor the LEDs.

Shortly after switch S2 is set to the program position, LED #1 (ERASE) should light indicating that the MCU EPROM is fully erased. At this point, the self-programmer has determined which of the two devices will be programmed. Within a few seconds, LED #1 will turn off and MCU EPROM programming will begin.

Approximately 105 (MC68701) or 210 (MC68701U4) seconds later, either (1) LED #2 (PASS) should light indicating that the MC68701/U4 is programmed and its contents have been verified or (2) LED #3 (FAIL) will light indicating that the MCU EPROM has failed verification after programming. At this time, switch S2 should be toggled to the RESET position and the power removed (S1). Another MCU may now be programmed.

If LED #1 (ERASE) and LED #3 (FAIL) both light, then the MCU is not fully erased. The self-programmer will make no further attempt to check for full erasure of the MCU.

The LEDs are color-coded to provide readily recognized pass and fail indications. LED #1 (ERASE) is amber, LED #2 (PASS) is green, and LED #3 (FAIL) is red. Zero insertion force sockets should be used for the MCU and the program U4 EPROM to simplify the use of the self-programmer.

CIRCUIT DESCRIPTION

The self-programmer consists of two MCM68766 EPROMs, a SN74LS373 transparent latch, a SN74LS138 1-of-8 decoder, a MCU socket, and associated parts as shown in Figure 2.

A 4-MHz crystal is used to obtain a 1-MHz clock operation. If another clock frequency is used, a change in the bootstrap software (MINPRGU4) will be required to ensure at least 50 milliseconds of programming time for each byte entered into the MCU EPROM. Byte programming time is governed by WAIT in MINPRGU4 and is indirectly related to the MCU clock frequency. An increase in the MCU clock frequency requires a proportional increase in the value of WAIT. A decrease in clock frequency should, likewise, be reflected in the value of WAIT.

The MCU can be optionally driven by an external TTL clock at pin 3 (with pin 2 grounded). If this option is used, the capacitors shown connected to pins 2 and 3 are not required.

Pins 8, 9, and 10 are connected to ground to place the MCU in mode 0 (programming mode) on the rising edge of RESET. The IRQ and NMI pins are connected as logic high to eliminate external interrupts.

The RESET/VPP pin is driven by a circuit that provides three voltage levels to this pin. Before applying power with switch S1, the user should place switch S2 in the RESET position. This action forces the RESET/VPP pin low. The second voltage level, established to toggling switch S2 to the PROG position, brings the MCU out of a RESET condition. The mode of operation (mode 0) is established during the rising edge of RESET. The MCU fetches the RESTART vector now located at \$BFFE — \$BFFF and executes the bootstrap program.

During programming, 21 volts is applied to the RESET/Vpp pin by the transistor pair, Q1 and Q2. Initially, transistor Q1 is on and transistor Q2 is off. Port pin P14 (pin 17) is set low forcing Q1 to turn off. With Q1 off, a Zener voltage of 22 volts is established at the base of Q2 forcing Q2 to conduct and reference the Q2 emitter and the RESET/Vpp pin to approximately 21.3 volts.

A SN74LS373 latch is used to demultiplex port 3 which is used both as a lower address port (A0-A7) and as a data port. An address strobe from the MCU is connected to LE of the SN74LS373 to latch the lower addresses at the proper time during each bus cycle. Once the addresses are latched, the port is used to data transfer.

A SN74LS373 1-of-8 decoder is used to address decoding of two external 8K EPROMs. The external EPROM containing the user program is decoded at \$6000 — \$7FFF while the bootstrap program is decoded at \$A000 — \$BFFF. The SN74LS138 decoder is gated with the MCU E clock to ensure that the EPROM drivers are in a high impedance during E clock low cycle time thus eliminating contention on the lower multiplexed address/data bus.

MEMORY MAP

The self-programmer memory map consists of five address spaces and is shown in Figure 3. Four of the address spaces are fixed by the MCU during programming and cannot be relocated. These spaces consist of a MCU internal register area (\$0000 — \$001F) and MCU external interrupt vectors (\$BFFO — \$BFFF). The other two areas are device dependent and are listed below:

FIGURE 3 — Self-Programmer Memory Map

Function	MC68701	MC68701U4		
MCU Internal RAM	\$0080 — \$00FF	\$0040 — \$00FF		
MCU Internal EPROM	\$F800 — \$FFFF	\$F000 - \$FFFF		

The fifth address space is used for an MCM68766 8K EPROM which contains the code to be entered into the MCU on-chip EPROM. This MCM68766 EPROM has been arbitrarily located at \$6000 — \$7FFF and can be relocated for a custom programmer design. Since the MCM68766 is a 8K EPROM, the user will have to locate this program in the upper 2K bytes (\$7800 — \$7FFF) or upper 4K (\$7000 — \$7FFF) for programming a MC68701 or a MC68701U4, respectively.

The user should map MINPRGU4 at address \$1800 — \$1FFF within U3 EPROM. The MCU program should reside at \$1800 — \$1FFF (MC68701) and \$1000 — \$1FFF (MC68701U4) within U4 EPROM for correct correspondence with the memory maps.

PROGRAM DESCRIPTION

The self-programmer uses a bootstrap program, MINPRGU4, to control programming of the MCU EPROM. The program performs the following functions:

- 1. Initializes the MCU.
- 2. Determines whether a MC68701 or MC68701U4 MCU is being programmed.
- 3. Checks that the EPROM is fully erased.
- 4. Programs the EPROM.
- 5. Verifies the program.

The MINPRGU4 bootstrap program also controls the state of the three LEDs that indicate the programming status of the MCU. A detailed flowchart of MINPRGU4 is shown in Figure 4. A complete listing is presented at the back of this application note.

PROGRAM MODIFICATIONS AND CONSIDERATIONS

Additions or modifications to MINPRGU4 can be made by inserting routines between the basic blocks shown on the flowchart in Figure 4. For convenience, the start and stop addresses of each block are located directly to the left of each block (see Figure 4).

Parameters IMBEG, IMEND, PNTR, and WAIT (stored in RAM locations \$80 — \$87) determine the size of the data block to be programmed into the MCU, the first MCU EPROM location to be programmed, and the time period that Vpp will be applied to the EPROM. These parameters can be changed to allow programming of selected EPROM locations and to allow changes in the MCU operating frequency. These parameters, once selected, should remain constant during programming.

One modification to MINPRGU4 can be verification of the MCU EPROM if the EPROM is not fully erased. This is an alternative to lighting LEDs #1 and #3 and waiting. This modification allows verification of MCUs that have been previously programmed and used.

FIGURE 4 — Flow Chart for MINPRGU4

APPENDIX A

This appendix provides a copy of the 1:1 artwork necessary to fabricate a printed circuit board (PCB) for the self-programmer. In addition, a parts list if furnished to allow the user to complete the PCB.

NOTE

Permission is hereby granted by Motorola, Inc., Microprocessor Products Division, in Austin, Texas for use of this artwork.

Qty.	Reference Design	Value/Description
		Resistors (1/4 Watt)
3	R1-R3	470 ohms
1	R4	3.9 kilohms
2	R5,R7	10 kilohms
1	R6	1.0 kilohms
1	R8	27 ohms (1/2 watt)
1	R9	100 ohms
		Diodes/Transistors
2	Q-Q2	2N4401 transistor (NPN)
1	D1	1N4748A or 1N5251 Zener (22 V ±5%)
2 1 2	D2, D3	Silicon (1N3064, 1N4148, etc.)
3	CR1-CR3	LED
		Switches
1	S1	SPDT American ST1-1 or C & K 7101
1	S2	DPDT C & K 7201
		Capacitors
2	C1, C2	10 pF
1	C3	$0.1~\mu\mathrm{F}$
2	C4, C5	100 μF, 35 V
	٠.	Motorola ICs
1	U1	SN74LS138 Decoder
1	U2	SN74LS373 Latch
2	U3, U4	MC68766 8K × 8 EPROM
1	U5	MC68701 or MC68701U4 MCU
		Miscellaneous
1	Y1	4.0 MHz Crystal (NYMPH)
ī	_	ASTEC ADIP 26ADS (26 V)
_		• •


```
PAGE 001 MINPRGU4.SA:1
00001
00002
                              OPT
                                     Z01,LLE=96
00003
00004
00005
                             THIS PROGRAM WILL CHECK, PROGRAM AND VERIFY
00006
                             THE MC68701 OR THE MC68701U4 EPROM. IT ALSO
00007
                             DETERMINES WHETHER A MC68701 OR A MC68701U4 IS
80000
                             BEING PROGRAMMED.
00009
00010
00011
                                  EQUATES
00012
                                               PORT 1 DATA DIR. REGISTER
               0000 A PIDDR EQU
                                     $00
00013
                                              PORT 1 DATA REGISTER
                                     $02
00014
               0002 A P1DR
                              EQU
                                              TIMER CONTROL/STAT REGISTER
                                     $08
00015
               8000
                    A TCSR
                              EQU
                                     $09
                                               COUNTER REGISTER
               0009
                    A TIMER EQU
00016
                                     $0B
                                               OUTPUT COMPARE REGISTER
               000B
                    A OUTCMP EQU.
00017
                                               RAM/EROM CONTROL REGISTER
                    A EPMCNT EQU
                                     $14
00018
               0014
                                              TIMER/CONTROL REG. 2
               0018 A TCR2
                              EQU
                                     $18
00019
00020
                                  LOCAL
                                              VARIABLES
00021
00022
                                     $80
00023A 0080
                              ORG
                                               START OF MEMORY BLOCK
               0002
                     A IMBEG
                                     2
00024A 0080
                              RMB
                                     2
                                               LAST BYTE OF MEMORY BLOCK
               0002
                     A IMEND
                              RMB.
00025A 0082
                     A PNTR
                                               FIRST BYTE OF EPROM TO BE PGM'D
               0002
                              RMB
                                     2
00026A 0084
                                               COUNTER VALUE
00027A 0086
               0002
                     A WAIT
                              RMB
00028
                                     $B850
                              ORG
00029A B850
                                               INITIALIZE STACK
00030A B850 8E OOFF A START LDS
                                     #$FF
                                               INIT. PORT 1
                              LDAA
                                     #$17
00031A B853 86 17
                     Α
                     Α
                              STAA
                                     P1DDR
                                               DDR
00032A B855 97 00
                     Α
                              STAA
                                     P1DR
                                               DATA REGISTER (ALL LED'S OFF)
00033A B857 97 02
                                                            (NO Vpp APPLIED)
00034
00035
                                         DETERMINE WHETHER A MC68701 OR A MC68701U4
00036
                                         IS BEING PROGRAMMED.
00037
00038
                                               TCR2 = $03 ON RESET
                                     TCR2
                              LDAA
00039A B859 96 18
                                      #%00000011 IF 701U4, THIS VALUE
                              CMPA
00040A B85B 81 03
                     Α
                                               GO TO '701U4 MEMORY SETUP
00041A B85D 27 16 B875
                              BEQ
                                     P4K
                                               SECOND CHECK
00042A B85F 86 FE
                              LDAA
                                      #$FE
                     Α
                              STAA
                                     TCR2
                                               WRITE A ZERO TO TCR2-0 (CLOCK)
00043A B861 97 18
                     Α
00044A B863 96 18
                              LDAA
                                     TCR2
                                               NOW READ IT BACK
                     Α
00045A B865 84 01
                     A
                              ANDA
                                      #$01
                                               MASK CLOCK BIT
                                               MC68701U4 IF "Z" = 1
00046A B867 27 0C B875
                              BEQ
                                      P4K
00047
                                 INITIALIZE EPROM MEMORY SIZE TO MC68701(2K)
00048
00049
00050A B869 CC 7800 A
                                               START OF EPROM
                              LDD
                                      #$7800
00051A B86C DD 80
                     Α
                               STD
                                      IMBEG
                                               START OF '701 EPROM
                               LDD
                                      #$F800
00052A B86E CC F800
                     Α
00053A B871 DD 84
                               STD
                                      PNTR'
00054A B873 20 OA B87F
                               BRA
                                      BLKROM
00055
                                  INITIALIZE EPROM MEMORY SIZE TO MC68701U4(4K)
00056
00057
00058A B875 CC 7000 A P4K
                               LDD
                                      #$7000
                                               START OF EPROM
```

```
PAGE 002 MINPRGU4.SA:1
                        STD
LDD
STD
                                   IMBEG
00059A B878 DD 80
00060A B87A CC F000 A
                                    #$F000
                                             START OF '701U4 EPROM
00061A B87D DD 84 A
                                    PNTR
00062
00063
                             BLANK
                                            CHECK
00064
                                   PNTR CHECK IF EPROM ERASED
00065A B87F DE 84 A BLKROM LDX
00066A B881 C6 00
                 Α
                            LDAB
                                   #$00 GET READY FOR CMPR.
00067A B883 A6 00
                 A ERASE LDAA
                                    0,X
                                           LOAD EPROM CONTENTS
00068A B885 11
                        BA
BNE
CPX
BEQ
                             CBA
                                            COMPARE TO ZERO
00069A B886 26 29 B8B1
                                 ERROR1
                                           BRANCH IF NOT ZERO
00070A B888 8C FFFF A
                                 #$FFFF CHECK IF DONE
                                   NEXT
00071A B88B 27 03 B890
                                            IF SO BRANCH
00072A B88D 08
                                            GO AGAIN
00073A B88E 20 F3 B883
                             BRA
                                   ERASE
00074
00075A B890 86 16
                    A NEXT
                             LDAA
                                    #$16
                                            TURN ON ERASED LED
00076A B892 97 02
                    Α
                             STAA
                                    P1DR
00077
00078
                             DELAY LOOP (3.5 SEC)
00079
00080A B894 DF 86
                             STX
                    Α
                                    WAIT
00081A B896 CE 0046 A
                                   #$0046 GET READY FOR 70 TIMES THRU LOOP
                           LDX
00082A B899 09 STALL1 DEX
00083A B89A CC C350 A LDD
                                   #$C350
                                           INIT. 50MS LOOP
                           ADDD TIMER
00084A B89D D3 09 A
00084A B89U D3 U9 A CLR
00085A B89F 7F 0008 A CLR
00086A B8A2 DD 0B A STD
00087A R8A4 86 40 A LDAA
                                            BUMP CURRENT VALUE
                                   TCSR
                                            CLEAR OCF
                                   OUTCMP
                                            SET OUTPUT COMPARE
                                   #$40
                                            NOW WAIT FOR OCF
                   A STALL2 BITA
00088A B8A6 95 08
                                   TCSR
00089A B8A8 27 FC B8A6 00090A B8AA 8C 0000 A
                                   STALL2
                                            NOT YET
                      BEQ
                            CPX
                                   #$0000
                                            70 TIMES YET?
00091A B8AD 26 EA B899
                            BNE
                                   STALL1
                                            NOPE
00092A B8AF 20 06 B8B7
                            BRA
                                   PGINT
00093
                    A ERROR1 LDAA
00094A B8B1 86 02
                                   #$02
                                            LIGHT ERROR AND ERASE LED
00095A B8B3 97 02
                   A STAA
                                   P1DR
00096A B8B5 20 5F B916
                             BRA
                                   SELF
00098A B8B7 CE 7FFF A PGINT LDX
                                   #$7FFF
                                            INIT. IMEND
00099A B8BA DF 82
                    A STX
                                   IMÈND
00100A B8BC CE C350 A
                           LDX
                                    #$C350
                                            INIT. WAIT (4.0 MHZ)
                    Α
00101A B8BF DF 86
                            STX
                                   WAIT
00102
                              PROGAMMING LOOP
00103
00104
00105A B8C1 86 07
                    A EPROM LDAA
                                    #$07
                                            TURN OFF LEDS AND APPLY Vpp
00106A B8C3 97 02
                    Α
                             STAA
                                    P1DR
00107A B8C5 DE 84
                    Α
                            LDX
                                            SAVE CALLING ARGUMENT
                                   PNTR
00108A B8C7 3C
                            PSHX
                                            RESTORE WHEN DONE
00109A B8C8 DE 80
                                            USE STACK
                            LDX
                                   IMBEG
                    EPROO2 PSHX
00110A B8CA 3C
                                            SAVE POINTER ON STACK
                                            REMOVE VPP, SET LATCH
00111A B8CB 86 FE
                                   #$FE
                            LDAA
00112A B8CD 97 14
                   Α
                            STAA
                                   EPMCNT PPC=1,PLC=0
00113A B8CF A6 00
                  Α
                           LDAA
                                   0,X
                                            MOVE DATA MEMORY-TO-LATCH
00114A B8D1 DE 84
                    Α
                            LDX
                                   PNTR
                                            GET WHERE TO PUT IT
                  Α
00115A B8D3 A7 00
                            STAA
                                   0,X
                                            STASH AND LATCH
00116A B8D5 08
                            INX
                                            NEXT ADDR.
```

```
PAGE 003 MINPRGU4.SA:1
00117A B8D6 DF 84
                               STX
                                      PNTR
                                                ALL SET FOR NEXT
00118A B8D8 86 FC
                      Α
                                                ENABLE EPROM POWER (VPP)
                               LDAA
                                       #$FC
00119A B8DA 97 14
                      Α
                               STAA
                                      EPMCNT
                                                PPC=0,PLC=0
00120
00121
                                NOW WAIT 50 MSEC TIMEOUT USING COMPARE
00122
00123A B8DC DC 86
                      Α
                               LDD
                                      WAIT
                                                GET CYCLE COUNTER
00124A B8DE D3 09
                      Α
                               ADDD
                                      TIMER
                                                BUMP CURRENT VALUE
00125A B8E0 7F 0008
                      Α
                               CLR
                                       TCSR
                                                CLEAR OCF
00126A B8E3 DD OB
                                      OUTCMP
                                                SET OUTPUT COMPARE
                      Α
                               STD
                                                NOW WAIT FOR OCF
00127A B8E5 86 40
                               LDAA
                                      #$40
                      A
00128A B8E7 95 08
                                      TCSR
                      A EPROO4 BITA
00129A B8E9 27 FC B8E7
                                      EPR004
                                                NOT YET
                               BEQ
                                                SET UP FOR NEXT ONE
00130A B8EB 38
                               PULX
00131A B8EC 08
                               INX
                                                NEXT
00132A B8ED 9C 82
                      Α
                               CPX
                                      IMEND
                                                MAYBE DONE
00133A B8EF 23 D9 B8CA
                               BLS
                                      EPR002
                                                NOT YET
00134A B8F1 86 17
                               LDAA
                                      #$17
                                                REMOVE Vpp AT PIN
00135A B8F3 97 02
                      Α
                               STAA
                                      P1DR
00136A B8F5 86 FF
                      Α
                               LDAA
                                      #$FF
                                                REMOVE VPP, INHIBIT LATCH
00137A B8F7 97 14
                      Α
                                      EPMCNT
                               STAA
                                                EPROM CAN NOW BE READ
                               PULX
00138A B8F9 38
                                                RESTORE PNTR
00139A B8FA DF 84
                               STX
                                      PNTR
00140
00141
                                  VERIFY
                                                NEW
                                                         CODE
00142
00143A B8FC DE 80
                               LDX
                                      IMBEG
                                                SET UP POINTER
00144A B8FE 3C
                        VERF2
                               PSHX
                                                SAVE POINTER ON STACK
00145A B8FF A6 00
                     Α
                               LDAA
                                                GET DESIRED DATA
                                      0,X
00146A B901 DE 84
                                               GET EPROM ADDR.
                     Α
                               LDX
                                      PNTR
00147A B903 E6 00
                      Α
                               LDAB
                                      0,X
                                                GET DATA TO BE CHECKED
00148A B905 11
                                                CHECK IF SAME
                               CBA
00149A B906 26 10 B918
                               BNE
                                      ERROR2
                                                BRANCH IF ERROR(LIGHT LED)
00150A B908 08
                               INX
                                                NEXT ADDR
00151A B909 DF 84
                                      PNTR
                               STX
                                                ALL SET FOR NEXT
00152A B90B 38
                               PULX
                                                SETUP FOR NEXT ONE
00153A B90C 08
                               INX
                                                NEXT
00154A B90D 8C 8000
                               CPX
                                      #$8000
                                               MAYBE DONE
00155A B910 26 EC B8FE
                               BNE
                                      VERF2
                                               NOT YET
00156
00157A B912 86 15
                                      #$15
                               LDAA
00158A B914 97 02
                               STAA
                                      P1DR
                                               LIGHT VERIFY LED
00159
00160A B916 20 FE B916 SELF
                               BRA
                                      SELF
                                               WAIT FOREVER
00161
00162A B918 86 13
                     A ERROR2 LDAA
                                      #$13
                                               LIGHT ERROR LED
00163A B91A 97 02
                     Α
                               STAA
                                      P1DR
00164A B91C 20 F8 B916
                               BRA
                                      SELF
00165
00166
                                RESTART
                                                AND INTR. VEC.
00167
00168A BFF0
                               ORG
                                      $BFF0
00169A BFF0
               B916
                               FDB
                    Α
                                      SELF
00170A BFF2
               B916
                               FDB
                                      SELF
                     Α
00171A BFF4
               B916
                                      SELF
                     Α
                               FDB
00172A BFF6
               B916
                     Α
                               FDB
                                      SELF
00173A BFF8
               B916
                     Α
                               FDB
                                      SELF
00174A BFFA
               B916
                     Α
                               FDB
                                      SELF
```

PAGE 004 MINPRGU4.SA:1

00175A BFFC B916 A FDB SELF 00176A BFFE B850 A FDB START 00177 END

TOTAL ERRORS 00000--00000

```
B87F BLKROM 00054 00065*
0014 EPMCNT 00018*00112 00119 00137
B8C1 EPROM 00105*
B8CA EPRO02 00110*00133
B8E7 EPRO04 00128*00129
B883 ERASE 00067*00073
B8B1 ERROR1 00069 00094*
B918 ERROR2 00149 00162*
0080 IMBEG 00024*00051 00059 00109 00143
           00025*00099 00132
0082 IMEND
B890 NEXT
            00071 00075*
000B OUTCMP 00017*00086 00126
0000 P1DDR
           00013*00032
            00014*00033 00076 00095 00106 00135 00158 00163
0002 P1DR
B875 P4K
            00041 00046 00058*
            00092 00098*
B8B7 PGINT
            00026*00053 00061 00065 00107 00114 00117 00139 00146 00151
0084 PNTR
            00096 00160*00160 00164 00169 00170 00171 00172 00173 00174 00175
B916 SELF
B899 STALL1 00082*00091
B8A6 STALL2 00088*00089
B850 START
            00030*00176
            00019*00039 00043 00044
0018 TCR2
            00015*00085 00088 00125 00128
0008 TCSR
0009 TIMER
           00016*00084 00124
            00144*00155
B8FE VERF2
0086 WAIT
            00027*00080 00101 00123
```

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/ Affirmative Action Employer.

MOTOROLA Semiconductor Products Inc.

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 • A SUBSIDIARY OF MOTOROLA INC.