Atividades Computação Evolucionária

•••

Aline Marina Lopes

Algoritmo Genético

Considerações Gerais

Configuração

Representação: Real

Inicialializaçao da

População: Aleatória

Critério de Parada: 300

gerações

Função de *Fitness:* Ranking Linear

Parâmetros

int geracoes = 300; //CRITÉRIO DE PARADA

int numeroDeVariaveis = 100; //VARIAVEIS

int mu = 100, lambda = 10; // VARIAVEIS

double taxMutacao = 1.0, taxCrossover = 0.8;//TAXAS

double interMin = -5.12, interMax = 5.12; //INTERVALO

Considerações Gerais

Seleção de Indivíduos

```
//SELECIONAR PAIS-TORNEIO
int numl, num2;
numl = rnd.nextInt(this.tamPopulacao);
num2 = rnd.nextInt(this.tamPopulacao);
if (populacao.getIndividuos().get(numl).getFuncaoObjetivo() > populacao.getIndividuos().get(num2).getFuncaoObjetivo()) {
    pail = numl;
} else {
    pail = num2;
do {
    numl = rnd.nextInt(this.tamPopulacao);
    num2 = rnd.nextInt(this.tamPopulacao);
    if (populacao.getIndividuos().get(num1).getFuncaoObjetivo() > populacao.getIndividuos().get(num2).getFuncaoObjetivo()) {
        pai2 = numl;
    } else {
        pai2 = num2;
 while (pail == pai2);
```

```
//COMBINAR POPULACOES
populacao.getIndividuos().addAll(novaPopulacao.getIndividuos());
//ORDENA INDIVIDUOS
Collections.sort(populacao.getIndividuos());
//SELECIONAR MELHORES INDIVIDUOS COM CORTE
populacao.getIndividuos().subList(tamPopulacao, populacao.getIndividuos().size()).clear();
```

Operador de Crossover

```
private void crossover(Individuo pail, Individuo pai2, Individuo filho) {
   Random rnd = new Random();
   int corte;
   corte = rnd.nextInt(pail.getCromossomos().size());
   filho.getCromossomos().clear();
   filho.getCromossomos().addAll(pail.getCromossomos().subList(0, corte));
   filho.getCromossomos().addAll(pail.getCromossomos().subList(corte, pail.getCromossomos().size()));
```

Operador de Mutação

```
private void mutacaol(Individuo filho) {

   Random rnd = new Random();
   double valor;
   for (int i = 0; i < filho.getCromossomos().size(); i++) {
        double valorRnd = rnd.nextDouble();
        if (valorRnd <= this.taxMutacao) {
            valor = this.getInterMin() + (this.getInterMax() - this.getInterMin()) * rnd.nextDouble();
        if (valor >= this.getInterMin() && valor <= this.getInterMax()) {
            filho.getCromossomos().set(i, valor);
        }
    }
}</pre>
```

Operador de Mutação

```
private void mutacao2(Individuo filho) {
   Random rnd = new Random();
   double valor:
   //REALIZA MUTAÇÃO
   double valorRnd = rnd.nextDouble();
   if (valorRnd <= this.taxMutacao) {
       //CORTE NA MUTACAO
       int genel, gene2;
       Random rndGene = new Random();
       genel = rndGene.nextInt(filho.getCromossomos().size());
       do {
           gene2 = rndGene.nextInt(filho.getCromossomos().size());
       } while (gene2 == gene1);
       int cont = 0:
       while (cont < 2) {
           valor = this.getInterMin() + (this.getInterMax() - this.getInterMin()) * rnd.nextDouble();
           if (valor >= this.getInterMin() && valor <= this.getInterMax()) {
               filho.getCromossomos().set(genel, valor);
           cont++;
```

Casos de Teste

Caso 1	Crossover	Mutação 1
Caso 2	Crossover	Mutação 2

Experimentos

Experimentos

Teste T Pareado

RESULTADO

t.test(Resultado~Caso, paired = T,data = dados)

Paired t-test data: Resultado by Caso t = -3.8876, df = 29, p-value = 0.0005423 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.003440038 -0.001068282 sample estimates: mean of the differences -0.00225416

#MEDIA != #MEDIA 2

t.test(Resultado~Caso,data = dados)

Welch Two Sample t-test
data: Resultado by Caso
t = -3.8881, df = 29, p-value = 0.0005417
alternative hypothesis: true difference in means
is not equal to 0
95 percent confidence interval:
-0.003439907 -0.001068413
sample estimates:
mean in group Caso1 mean in group Caso2
999.8255
999.8277

Teste T Pareado

#MEDIA < #MEDIA 2

t.test(Resultado~Caso, data = dados, alternative="l")

Welch Two Sample t-test
data: Resultado by Caso
t = -3.8881, df = 29, p-value = 0.0002708
alternative hypothesis: true difference in means
is less than 0
95 percent confidence interval:
-Inf -0.00126907
sample estimates:
mean in group Caso1 mean in group Caso2
999.8255
999.8277

#MEDIA > #MEDIA 2

t.test(Resultado~Caso, data = dados, alternative="g")

Welch Two Sample t-test
data: Resultado by Caso
t = -3.8881, df = 29, p-value = 0.9997
alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
-0.00323925 Inf
sample estimates:
mean in group Caso1 mean in group Caso2
999.8255
999.8277

Calculadora Estatística

P value and statistical significance:

The two-tailed P value equals 0.0058

By conventional criteria, this difference is considered to be very statistically significant.

Confidence interval:

The mean of Caso1 minus Caso2 equals -0.001761556695 95% confidence interval of this difference: From -0.002945175969 to -0.000577937421

Intermediate values used in calculations:

t = 3.1268 df = 18 standard error of difference = 0.001

Learn more:

GraphPad's web site includes portions of the manual for GraphPad Prism that can help you learn statistics. First, review the meaning of <u>P values</u> and <u>confidence intervals</u>. Then learn how to interpret results from an <u>unpaired</u> or <u>paired</u> t test. These links include GraphPad's popular *analysis checklists*.

Calculadora Estatística

Group	Caso1	Caso2
Mean	999.825468074427	999.827229277563
SD	0.000001798311	0.002455393159
SEM	0.000000328325	0.000563305823
N	30	19

BoxPlot

RESULTADOS

TEMPO

Estratégia Evolucionária

Considerações Gerais

Configuração

Representação: Real

Inicialialização da

População: Aleatória

Critério de Parada: 300

gerações

Função de Fitness:

Ranking Linear

Parâmetros

int geracoes = 300; //CRITÉRIO DE PARADA

int numeroDeVariaveis = 100; //VARIAVEIS

int mu = 100, lambda = 10; // VARIAVEIS

double taxMutacao = 1.0;//TAXAS

double interMin = -5.12, interMax = 5.12; //INTERVALO

Considerações Gerais

Seleção de Indivíduos

```
for (int p = 0; p < populacao.getTamPopulacao(); p++) {
   for (int f = 0; f < mu / lambda; f++) {
        //Mutacao
        Random rnd = new Random();
        double valor = rnd.nextDouble();
        if (valor <= this.taxMutacao) {</pre>
```

```
populacao.getIndividuos().addAll(novaPopulacao.getIndividuos());
novaPopulacao.getIndividuos().clear();
Collections.sort(populacao.getIndividuos());
populacao.getIndividuos().subList(this.mu, populacao.getIndividuos().size()).clear();
```

Operador de Mutação

```
private void mutacaoPorBit(Individuo filho) {
    Random rnd = new Random();
    double valor:
    //Tenta realizar a mutação sob cada cromossomo do individuo
   for (int i = 0; i < filho.getCromossomos().size(); i++) {</pre>
        //gera um numero aleatorio entre 0 e 1 -> somente realiza a mutacao se o valor gerado for menos que a taxa de mutacao
       if (rnd.nextDouble() <= this.taxMutacao) {
            do {
                valor = this.getInterMin() + (this.getInterMax() - this.getInterMin()) * rnd.nextDouble();
                filho.getCromossomos().set(i, valor);
                if (valor < this.getInterMin() || valor > this.getInterMax()) {
                    valor = -this.getInterMin() + (this.getInterMax() - this.getInterMin()) * rnd.nextDouble();
                    filho.getCromossomos().set(i, valor);
            } while (valor < this.getInterMin() || valor > this.getInterMax());
```

Operador de Mutação

```
private void mutacaoParcial(Individuo filho) {
   Random rnd = new Random():
   double valor:
    //Realiza mutação sobre a primeira metate do individuo
    for (int i = 0; i < filho.getCromossomos().size() / 2; i++) {</pre>
        do {
            valor = this.getInterMin() + (this.getInterMax() - this.getInterMin()) * rnd.nextDouble();
            filho.getCromossomos().set(i, valor);
            if (valor < this.getInterMin() || valor > this.getInterMax()) {
                valor = -this.getInterMin() + (this.getInterMax() - this.getInterMin()) * rnd.nextDouble();
                filho.getCromossomos().set(i, valor);
        } while (valor < this.getInterMin() || valor > this.getInterMax());
```

Casos de Teste

Caso 1	Mutação por Bit
Caso 2	Mutação Parcial

Experimentos

Experimentos

Teste T Pareado

RESULTADO

Paired t-test

```
data: Tempo by Caso
t = 42, df = 29, p-value < 2.2e-16
alternative hypothesis: true difference in means
is not equal to 0
95 percent confidence interval:
4553.321 5019.479
sample estimates:
mean of the differences
4786.4
```

```
#MEDIA != #MEDIA 2
```

t.test(Resultado~Caso,data = dados)

Welch Two Sample t-test

data: Tempo by Caso
t = 39.215, df = 52.063, p-value < 2.2e-16
alternative hypothesis: true difference in means
is not equal to 0
95 percent confidence interval:
4541.488 5031.312
sample estimates:
mean in group Caso1 mean in group Caso2
23349.57
18563.17

Teste T Pareado

#MEDIA < #MEDIA 2

t.test(Resultado~Caso, data = dados, alternative="l")

Welch Two Sample t-test

data: Tempo by Caso
t = 39.215, df = 52.063, p-value = 1
alternative hypothesis: true difference in means
is less than 0
95 percent confidence interval:
 -Inf 4990.798
sample estimates:
mean in group Caso1 mean in group Caso2
 23349.57
 18563.17

#MEDIA > #MEDIA 2

t.test(Resultado~Caso, data = dados,
alternative="g")

Welch Two Sample t-test

data: Tempo by Caso
t = 39.215, df = 52.063, p-value < 2.2e-16
alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
4582.002 Inf
sample estimates:
mean in group Caso1 mean in group Caso2
23349.57 18563.17

Calculadora Estatística

P value and statistical significance:

The two-tailed P value equals 0.0001

By conventional criteria, this difference is considered to be extremely statistically significant.

Confidence interval:

The mean of Caso1 minus Caso2 equals 84.160472054507 95% confidence interval of this difference: From 45.152990566237 to 123.167953542776

Intermediate values used in calculations:

t = 4.4127 df = 29 standard error of difference = 19.072

Learn more:

GraphPad's web site includes portions of the manual for GraphPad Prism that can help you learn statistics. First, review the meaning of <u>P values and confidence intervals</u>. Then learn how to interpret results from an <u>unpaired or paired than the paired of paired than the paired of paired than the paired of paired than the property of the paired of th</u>

Calculadora Estatística

Group	Caso1	Caso2	
Mean	1343.426555745397	1259.266083690890	
SD	24.863179103492	88.733386746296	
SEM	4.539374682091	16.200425841592	
N	30	30	

BoxPlot

RESULTADOS

TEMPO

EVOLUÇÃO DIFERENCIAL

Considerações Gerais

Configuração

Representação: Real

Inicialialização da

População: Aleatória

Critério de Parada: 300

gerações

Função de Fitness:

Ranking Linear

Parâmetros

int geracoes = 300; //CRITÉRIO DE PARADA

int numeroDeVariaveis = 100; //VARIAVEIS

int mu = 100, lambda = 10; // VARIAVEIS

double taxMutacao = 1.0, taxCrossover = 0.8;//TAXAS

double interMin = -5.12, interMax = 5.12; //INTERVALO

Considerações Gerais

```
for (int g = 0; g < gmax; g++) {
    //Para cada vetor da população
    for (int i = 0; i < Np; i++) {
        //Selecionar aleatoriamente
        Random rnd = new Random();
        int r0 = rnd.nextInt(Np);
        int rl, r2;
        do {
            rl = rnd.nextInt(Np);
        } while (r1 == r0);
        do {
            r2 = rnd.nextInt(Np);
        } while (r2 == 1 || r2 == r0):
        Individuo trial = new Individuo(min, max, D);
        trial.criar():
        Individuo xr0 = (Individuo) populacao.getIndividuos().get(r0);
        Individuo xrl = (Individuo) populacao.getIndividuos().get(rl);
        Individuo xr2 = (Individuo) populacao.getIndividuos().get(r2);
        Individuo target = new Individuo(min, max, randomNum);
                                          populacao.getIndividuos().clear();
```

populacao.getIndividuos().addAll(novaPopulacao.getIndividuos());
Collections.sort(populacao.getIndividuos());
populacao.getIndividuos().subList(this.Np, populacao.getIndividuos().size()).clear();

Operador de Perturbação

```
private void pertubacao (Individuo trial, Individuo xrl, Individuo xr2) {
    //Diferenca entre rl e r2
    ArrayList<Double> diferencas = new ArrayList<>();
    double diferenca:
    for (int i = 0; i < D; i++) {
       do {
            diferenca = xrl.getCromossomos().get(i) - xr2.getCromossomos().get(i);
            trial.getCromossomos().set(i, diferenca);
            if (diferenca < this.getMin() || diferenca > this.getMax()) {
                diferenca = -xrl.getCromossomos().get(i) - xr2.getCromossomos().get(i);
                trial.getCromossomos().set(i, diferenca);
       } while (diferenca < this.getMin() || diferenca > this.getMax());
```

Operador de Mutação

```
private void mutacao(Individuo trial, Individuo xr0) {
   //Multiplicar por F a diferenca e somar com xr0
    double valor:
    for (int i = 0; i < D; i++) {
        do {
            valor = xr0.getCromossomos().get(i) + this.F * (trial.getCromossomos().get(i));
            trial.getCromossomos().set(i, valor);
            if (valor < this.getMin() || valor > this.getMax()) {
                valor = -xr0.getCromossomos().get(i) + this.F * (trial.getCromossomos().get(i));
                trial.getCromossomos().set(i, valor);
        } while (valor < this.getMin() || valor > this.getMax());
```

Operador de Mutação Parcial

```
private void mutacaoParcial(Individuo trial, Individuo xr0) {
   //Multiplicar por F a diferenca e somar com xr0
   double valor:
   for (int i = 0; i < D / 2; i++) {
       do {
            valor = xr0.getCromossomos().get(i) + this.F * (trial.getCromossomos().get(i));
            trial.getCromossomos().set(i, valor);
           if (valor < this.getMin() || valor > this.getMax()) {
                valor = -xr0.getCromossomos().get(i) + this.F * (trial.getCromossomos().get(i));
                trial.getCromossomos().set(i, valor);
       } while (valor < this.getMin() || valor > this.getMax());
```

Operador de Crossover

```
private void crossover(Individuo trial, Individuo target) {
    Random rnd = new Random();
    int |Rand = rnd.nextInt(D);
    for (int i = 0; i < this.D; i++) {
        if (!(rnd.nextDouble() <= this.Cr || i == jRand)) {
            trial.getCromossomos().set(i, target.getCromossomos().get(i));
```

Casos de Teste

Caso 1	Perturbação	Mutação por Bit	Crossover
Caso 2	Perturbação	Mutação Parcial	Crossover

Experimentos

Experimentos

Teste T Pareado

RESULTADO

Paired t-test

```
data: Tempo by Caso
t = 1.1767, df = 29, p-value = 0.2489
alternative hypothesis: true difference in means
is not equal to 0
95 percent confidence interval:
-1441.315 5346.381
sample estimates:
mean of the differences
1952.533
```

```
#MEDIA != #MEDIA 2
```

t.test(Resultado~Caso,data = dados)

Welch Two Sample t-test

data: Tempo by Caso
t = 1.255, df = 54.003, p-value = 0.2149
alternative hypothesis: true difference in means
is not equal to 0
95 percent confidence interval:
-1166.553 5071.619
sample estimates:
mean in group Caso1 mean in group Caso2
12782.27 10829.73

Teste T Pareado

#MEDIA < #MEDIA 2

t.test(Resultado~Caso, data = dados, alternative="l")

Welch Two Sample t-test

data: Tempo by Caso
t = 1.255, df = 54.003, p-value = 0.8926
alternative hypothesis: true difference in means
is less than 0
95 percent confidence interval:
 -Inf 4556.178
sample estimates:
mean in group Caso1 mean in group Caso2
 12782.27 10829.73

#MEDIA > #MEDIA 2

t.test(Resultado~Caso, data = dados,
alternative="g")

Welch Two Sample t-test

Calculadora Estatística

P value and statistical significance:

The two-tailed P value equals 0.0002

By conventional criteria, this difference is considered to be extremely statistically significant.

Confidence interval:

The mean of Caso1 minus Caso2 equals 120.901894305033 95% confidence interval of this difference: From 63.223136522109 to 178.580652087957

Intermediate values used in calculations:

```
t = 4.2871
df = 29
standard error of difference = 28.202
```

Learn more:

GraphPad's web site includes portions of the manual for GraphPad Prism that can help you learn statistics. First, review the meaning of <u>P values and confidence intervals</u>. Then learn how to interpret results from an <u>unpaired or paired than the paired of paired than the paired of paired than the paired of paired than the property of the paired of th</u>

Calculadora Estatística

Group	Caso1	Caso2
Mean	365.942263345820	245.040369040787
SD	199.941267083063	60.968150573026
SEM	36.504114052520	11.131210452739
N	30	30

BoxPlot

RESULTADOS

TEMPO

Análise

		Melhor Indivíduo -Tempo	Pior Indivíduo - Resultados	Pior Indivíduo - Tempo
AG	999.8255 Caso 1 999.8255	845 Caso 2 1098	999.8388 Caso 2 999.8388	2398 Caso 1 1129
EE	1141.235 Caso 2 1302.221	18051 Caso 2 23007	1390.713 Caso1 1374.161	24615 Caso 1 21025
ED	143.2822 Caso 1 143.2822	4657 Caso 2 6611	732.4979 Caso 1 386.9741	29686 caso 1 23264

Análise

	Média	DP-Resultados	DP-Tempo	Tempo Médio
AG	999.8266 999.8255 99.8277	0.00249965 1.798308e-06 0.003175489	217.42 230.6753 54.21664	105735 1196.433 918.2667
EE	1301.346 1301.346 1259.266	77.29612 24.86318 88.73339	2458.485 546.7295 546.7295	20956.37 23349.57 18563.17
ED	305.4913 365.9423 245.0404	158.7223 199.9413 60.96815	6054.688 6795.8 5140.795	11806 12782.27 10829.73

Anova AG x EE

Summary of Data				
	Treatments			
	1	2	Total	
N	30	30	60	
ΣΧ	29994.764	37777.9825	67772.7466	
Mean	999.8255	1259.2661	1129.5458	
ΣX^2	29989528.9983	47800866.8898	77790395.8881	
Std.Dev.	0	88.7334	144.8539	

Anova AG x EE

Result Details					
Source	SS	df	MS		
Between-trea tments	1009641.495 5	1	1009641.495 5	F = 256.46203	
Within-treat ments	228334.8038	58	3936.807		
Total	1237976.299 3	59			

Anova AG x ED

Summary of Data						
	Treatments					
	1	2	3	4	5	Total
N	30	25				55
ΣΧ	29994.7 64	8749.32 71				38744.0 912
Mean	999.825 5	349.973 1				704.438
ΣX ²	299895 28.9983	399222 1.4573				339817 50.4556
Std.Dev.	0	196.870				351.950

Anova AG x ED

Result Details					
Source	SS	df	MS		
Between-trea tments	5758747.095 5	1	5758747.095 5	F = 328.11876	
Within-treat ments	930192.459	53	17550.8011		
Total	6688939.554 4	54			