MATH7501: Mathematics for Data Science I
Unit 10: Partial Derivatives and Gradient Descent

Consider a surface f(x, y) with a particular point $P = (x_0, y_0)$.

Consider a surface f(x, y) with a particular point $P = (x_0, y_0)$. Then the slope of f at P in the x direction is $\frac{\partial f}{\partial x}$, evaluated at P; this partial derivative is the derivative of the single-variable function $f(x, y_0)$.

Consider a surface f(x, y) with a particular point $P = (x_0, y_0)$. Then the slope of f at P in the x direction is $\frac{\partial f}{\partial x}$, evaluated at P; this partial derivative is the derivative of the single-variable function $f(x, y_0)$. We can find the slope of f in the g-direction similarly.

Consider a surface f(x,y) with a particular point $P=(x_0,y_0)$. Then the slope of f at P in the x direction is $\frac{\partial f}{\partial x}$, evaluated at P; this partial derivative is the derivative of the single-variable function $f(x,y_0)$. We can find the slope of f in the y-direction similarly.

For example, if $f(x,y) = 1 - x^2 - y^2$, and $(x_0, y_0) = (1, -1)$, then $f(x, -1) = -x^2$, so $\frac{\partial f}{\partial x}(P) = -2$.

Consider a surface f(x, y) with a particular point $P = (x_0, y_0)$. Then the slope of f at P in the x direction is $\frac{\partial f}{\partial x}$, evaluated at P; this partial derivative is the derivative of the single-variable function $f(x, y_0)$. We can find the slope of f in the y-direction similarly.

For example, if $f(x,y) = 1 - x^2 - y^2$, and $(x_0,y_0) = (1,-1)$, then $f(x,-1) = -x^2$, so $\frac{\partial f}{\partial x}(P) = -2$. Also, $f(1,y) = y^2$, so $\frac{\partial f}{\partial y}(P) = 2$.

Figure 64: The surface $z = f(x, y) = 1 - x^2 - y^2$ and the intersection of the plane y = -1with the surface

 Figure 65: The surface z = f(x,y) = 1 - x² - y² and the intersection of the plane x = 1 with the surface.

Question

The volume of a solid with side lengths x, y, z is given by V(x, y, z) = xyz. Calculate the partial derivatives of V in all three variables.

Question

The volume of a solid with side lengths x, y, z is given by V(x, y, z) = xyz. Calculate the partial derivatives of V in all three variables.

Solution

If y, z are held and x changes, then we can see that

$$\frac{\partial V}{\partial x} = yz. \quad \frac{\partial (yz)}{\partial x} = yz \frac{\partial (x)}{\partial x}$$

Similarly,
$$\frac{\partial V}{\partial y} = xz$$
, $\frac{\partial V}{\partial z} = xy$.

For a given function f(x, y), the second order partial derivatives are found by differentiating f once with respect to one variable, and then differentiating again with respect to a second variable.

those two variables do not need to be the same.

For a given function f(x, y), the second order partial derivatives are found by differentiating f once with respect to one variable, and then differentiating again with respect to a second variable. We denote this with

$$\underbrace{f_{xx}}_{xx} = \frac{\partial^2 f}{\partial x^2}, \qquad \underbrace{f_{yy}}_{yy} = \frac{\partial^2 f}{\partial y^2},$$

$$\underbrace{f_{yy}}_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right), \qquad \underbrace{f_{yy}}_{yy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right).$$

For a given function f(x, y), the second order partial derivatives are found by differentiating f once with respect to one variable, and then differentiating again with respect to a second variable. We denote this with

$$f_{xx} = \frac{\partial^2 f}{\partial x^2}, \qquad f_{yy} = \frac{\partial^2 f}{\partial y^2},$$

$$f_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right), \qquad f_{yy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right).$$

$$\frac{\partial f}{\partial y} = \sin(y) - y \sin(x) + \sin(x) + \cos(y) + \cos(x)$$

$$\frac{\partial f}{\partial y} = \cos(y) - \sin(x) + \cos(y) - \sin(x)$$

Question

Let $f(x, y) = \underbrace{x}\sin(y) + y\cos(x)$. Calcualte all of the second order partial derivatives, and show that $f_{xy} = f_{yx}$.

Recall that through linear approximations, we have

$$\Delta f \approx \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y.$$

Recall that through linear approximations, we have

$$\Delta f \approx \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y.$$

Therefore, if \underline{x} and \underline{y} are both changing with time \underline{t} , and we know how much x and y are changing by, we can approximate how much f is changing over time.

Recall that through linear approximations, we have

 $\Delta f \approx \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y.$

Therefore, if x and y are both changing with time t, and we know how much x and y are changing by, we can approximate how much f is changing over time.

Theorem (Multi-Variable Chain Rule)

If x, y are differentiable functions of t, and f is a differentiable function of x, y, then

$$\frac{df(x(t),y(t))}{dt} = \underbrace{\frac{\partial f}{\partial x}} \frac{dx}{dt} + \underbrace{\frac{\partial f}{\partial y}} \frac{dy}{dt}.$$

Question

Suppose the radius of a cylinder decreases at a rate of r'(t) = -2cm/s, and the height is kept constant at h(t) = 2cm. How fast is the volume decreasing when r(t) = 1cm?

Question

Suppose the radius of a cylinder decreases at a rate of $\underline{r'(t)} = -2cm/s$, and the height is kept constant at h(t) = 2cm. How fast is the volume decreasing when r(t) = 1cm?

Solution

We have
$$V = \pi r^2 \text{Nso}$$

$$V' = \pi 2 r h r' + (\pi r^2 h') + (2\pi r h r') + (-8\pi c m^3/s.)$$

Question

Suppose the radius of a cylinder decreases at a rate of $\underline{r'(t)} = -2cm/s$, and the height is kept constant at h(t) = 2cm. How fast is the volume decreasing when r(t) = 1cm?

Solution

We have
$$V = \pi r^2 h$$
 so
$$V' = \frac{\pi^2 r h r' + \pi r^2 h'}{\pi^2 r h' + \pi r^2 h'} = 2\pi r h r' = -8\pi c m^3 / s.$$

Question

Suppose now that the height is decreasing at 1cm/s. What is the rate of change of volume?

Question

Suppose the radius of a cylinder decreases at a rate of r'(t) = -2cm/s, and the height is kept constant at h(t) = 2cm. How fast is the volume decreasing when r(t) = 1cm?

Solution

We have
$$V = \pi r^2 h$$
 so $V' = \pi 2 r h r' + \pi r^2 h' = 2\pi r h r' = -8\pi c m^3/s$.

Question

Suppose now that the height is decreasing at 1cm/s. What is the rate of change of volume?

Solution

We have
$$V = \pi r^2 h$$
 so $V' = \pi 2 r h r' + \pi r^2 h' = -9\pi c m^3 / s$.

Of course, the chain rule extends to higher dimensions as well.

Of course, the chain rule extends to higher dimensions as well.

Question

Suppose a, b, c are the dimensions of a box which are changing over time. From the rate of change of the volume.

Of course, the chain rule extends to higher dimensions as well.

Question

Suppose a, b, c are the dimensions of a box which are changing over time. From the rate of change of the volume.

Solution

The volume is
$$V = abc$$
 so
$$\frac{dV}{dt} = V_a \frac{da}{dt} + V_b \frac{db}{dt} + V_c \frac{dc}{dt}$$
$$= bc \frac{da}{dt} + ac \frac{db}{dt} + ab \frac{dc}{dt}.$$

The partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ tell us the slope of f in the x,y directions, but they can also be used to describe the slope in any direction. Take a point $P \in \mathbb{R}^2$, and say we travel through P with $(x(t),y(t))=P+\mathbf{u}t$, where $\mathbf{u}=(u_1,u_2)$ is a unit-vector.

alt) is a scalar, ML+) is a scalar, (alt), M(+)) is a vector.

The partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ tell us the slope of f in the x,y directions, but they can also be used to describe the slope in *any direction*. Take a point $P \in \mathbb{R}^2$, and say we travel through P with $(x(t),y(t))=P+\mathbf{u}t$, where $\mathbf{u}=(u_1,u_2)$ is a unit-vector. Then, using the linear approximation,

$$f(x(t), y(t)) \approx f(x(0), y(0)) + \frac{\partial f}{\partial x} u_1 t + \frac{\partial f}{\partial y} u_2 t$$

$$= f(P) + t \left(\frac{\partial f}{\partial x} (P), \frac{\partial f}{\partial y} (P) \right) \cdot \mathbf{u}.$$

The partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ tell us the slope of f in the x,y directions, but they can also be used to describe the slope in any direction. Take a point $P \in \mathbb{R}^2$, and say we travel through P with $(x(t),y(t))=P+\mathbf{u}t$, where $\mathbf{u}=(u_1,u_2)$ is a unit-vector. Then, using the linear approximation,

$$f(x(t), y(t)) \approx f(x(0), y(0)) + \frac{\partial f}{\partial x} u_1 t + \frac{\partial f}{\partial y} u_2 t$$
$$= f(P) + t(\frac{\partial f}{\partial x}(P), \frac{\partial f}{\partial y}(P)) \cdot \mathbf{u}.$$

The expression $\underbrace{\left(\frac{\partial f}{\partial x}(P), \frac{\partial f}{\partial y}(P)\right) \cdot \mathbf{u}}_{\text{old}}$ is therefore referred to as the slope/directional derivative of f at P in the direction of \mathbf{u} .

The partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ tell us the slope of f in the x,y directions, but they can also be used to describe the slope in any direction. Take a point $P \in \mathbb{R}^2$, and say we travel through P with $(x(t),y(t))=P+\mathbf{u}t$, where $\mathbf{u}=(u_1,u_2)$ is a unit-vector. Then, using the linear approximation,

$$f(x(t), y(t)) \approx f(x(0), y(0)) + \frac{\partial f}{\partial x} u_1 t + \frac{\partial f}{\partial y} u_2 t$$

$$= f(P) + t(\frac{\partial f}{\partial x}(P), \frac{\partial f}{\partial y}(P)) \cdot \mathbf{u}.$$

The expression $(\frac{\partial f}{\partial x}(P), \frac{\partial f}{\partial y}(P)) \cdot \mathbf{u}$ is therefore referred to as the slope/directional derivative of f at P in the direction of \mathbf{u} . If $\mathbf{u} \neq 0$ is not a unit vector, then the directional derivative is simply $(\frac{\partial f}{\partial x}(P), \frac{\partial f}{\partial y}(P))$

Question

Find the directional derivative of $f(x,y) = 4 - x^2 - 4y^2$ at the point (1,1) in the (1,1) direction.

Question

Find the directional derivative of $f(x,y) = 4 - x^2 - 4y^2$ at the point (1,1) in the (1,1) direction.

Solution

The corresponding unit vector is $\mathbf{u} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$.

Question

Find the directional derivative of $f(x,y) = 4 - x^2 - 4y^2$ at the point (1,1) in the (1,1) direction.

Solution

The corresponding unit vector is $\mathbf{u} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$. We compute that $\frac{\partial f}{\partial t} = -2\mathbf{v}$ and $\frac{\partial f}{\partial t} = -8\mathbf{v}$.

$$\frac{\partial f}{\partial x} = -2x$$
 and $\frac{\partial f}{\partial y} = -8y$.

Question

Find the directional derivative of $f(x, y) = 4 - x^2 - 4y^2$ at the point (1,1) in the (1,1) direction.

Solution

The corresponding unit vector is $\mathbf{u} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$. We compute that $\frac{\partial f}{\partial x} = -2x \text{ and } \frac{\partial f}{\partial y} = -8y. \text{ Therefore the slope at } (1,1) \text{ in the } \mathbf{u}$ direction is $(-2,-8) \cdot (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}) = -\frac{10}{\sqrt{2}} = -5\sqrt{2}.$

$$(-2, -8)$$
, $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = -\frac{10}{\sqrt{2}} = -5\sqrt{2}$.

Question

If $f(x,y) = x^2 - 3y^2 + 6y$, find the slope at (1,0) in the direction of $\mathbf{i} - 4\mathbf{j}$.

Question

If $f(x,y) = x^2 - 3y^2 + 6y$, find the slope at (1,0) in the direction of $\mathbf{i} - 4\mathbf{j}$.

Solution

The norm of $\mathbf{u} = \mathbf{i} - 4\mathbf{j}$ is $||\mathbf{u}|| \neq \sqrt{17}$.

Question

If $f(x,y) = x^2 - 3y^2 + 6y$, find the slope at (1,0) in the direction of $\mathbf{i} - 4\mathbf{j}$.

Solution

The norm of $\mathbf{u} = \mathbf{i} - 4\mathbf{j}$ is $||\mathbf{u}|| = \sqrt{17}$. Also, note that $\frac{\partial f}{\partial x} = 2x$ and $\frac{\partial f}{\partial y} = 6 - 6y$.

Question

If $f(x,y) = x^2 - 3y^2 + 6y$, find the slope at (1,0) in the direction of $\mathbf{i} - 4\mathbf{j}$.

Solution

The norm of $\mathbf{u} = \mathbf{i} - 4\mathbf{j}$ is $||\mathbf{u}|| = \sqrt{17}$. Also, note that $\frac{\partial f}{\partial x} = 2x$ and $\frac{\partial f}{\partial y} = 6 - 6y$. Therefore

$$f_{\mathbf{u}}(1,0) = (2,0) \cdot \frac{(1,-4)}{\sqrt{17}} = -\frac{22}{\sqrt{17}}.$$

$$\left(\frac{3}{3}\right)$$

It is useful to give the vector (f_x, f_y) a name, since it comes up a lot when computing directional derivatives.

It is useful to give the vector (f_x, f_y) a name, since it comes up a lot when computing directional derivatives.

Definition (Gradient Vector)

We define $\nabla f = (f_x, f_y)$ to be the gradient of f, (or $\nabla f = (f_x, f_y, f_z)$ for functions of three variables). Then the derivative of f in the direction of \mathbf{u} is $\nabla f \cdot \frac{\mathbf{u}}{\|\mathbf{u}\|}$

It is useful to give the vector (f_x, f_y) a name, since it comes up a lot when computing directional derivatives.

Definition (Gradient Vector)

We define $\nabla f = (f_x, f_y)$ to be the *gradient* of f, (or $\nabla f = (f_x, f_y, f_z)$ for functions of three variables). Then the derivative of f in the direction of \mathbf{u} is $\nabla f \cdot \frac{\mathbf{u}}{||\mathbf{u}||}$

(Question)

Find the gradient of $f(x, y) = x^2 - 3(y - 1)^2 + 3$.

It is useful to give the vector (f_x, f_y) a name, since it comes up a lot when computing directional derivatives.

Definition (Gradient Vector)

We define $\nabla f = (f_x, f_y)$ to be the *gradient* of f, (or $\nabla f = (f_x, f_y, f_z)$ for functions of three variables). Then the derivative of f in the direction of \mathbf{u} is $\nabla f \cdot \frac{\mathbf{u}}{||\mathbf{u}||}$

(Question)

Find the gradient of $f(x, y) = x^2 - 3(y - 1)^2 + 3$.

Solution

$$\nabla f = (2x) - 6(y - 1)) = 2x\mathbf{i} - 6(y - 1)\mathbf{j}.$$

Question

Find the directional derivative of $g(x,y) = e^{x^2} \cos(y)$ at $(1,\pi)$ in the direction of $-3\mathbf{i} + 4\mathbf{j}$.

Question

Find the directional derivative of $g(x, y) = e^{x^2} \cos(y)$ at $(1, \pi)$ in the direction of $-3\mathbf{i} + 4\mathbf{j}$.

Solution

The norm of $\mathbf{u} = -3\mathbf{i} + 4\mathbf{j}$ is $||\mathbf{u}|| = 5$, and

$$\nabla g = \frac{2xe^{x^2}\cos(y)\mathbf{i} - \sin(y)e^{x^2}\mathbf{j}}{3} + 4^3 = 5^3$$

Question

Find the directional derivative of $g(x, y) = e^{x^2} \cos(y)$ at $(1, \pi)$ in the direction of $-3\mathbf{i} + 4\mathbf{j}$.

Solution

The norm of $\mathbf{u} = -3\mathbf{i} + 4\mathbf{j}$ is $||\mathbf{u}|| = 5$, and $\nabla g = 2xe^{x^2}\cos(y)\mathbf{i} - \sin(y)e^{x^2}\mathbf{j}$. Therefore

$$g_{\mathbf{u}} = \nabla g(\overline{1}, \pi) \underbrace{\frac{\mathbf{u}}{\|\mathbf{u}\|}}_{= (2e\cos(\pi), -\sin(\pi)e)} \cdot (\frac{-3}{5}, \frac{4}{5}) = \frac{6e}{5}.$$

In general, the gradient $\nabla f(a,b)$ points in the direction perpendicular to the contour (line of constant f) passing through (a,b). In fact, $\nabla f(a,b)$ points in the direction of the shaprest increase of f.

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/partial-derivative-and-gradient-articles/a/the-gradient

Question

Consider the function f(x,y) = mx + ny + c for some $m, n, c \in \mathbb{R}$ and $n \neq 0$. Find the gradient of f and compare to the contours.

Question

Consider the function f(x, y) = mx + ny + c for some $m, n, c \in \mathbb{R}$ and $n \neq 0$. Find the gradient of f and compare to the contours.

Solution

The contours are $y = -\frac{mx}{n} + C$. The gradient vector is $\nabla f = (m, n)$, which points in the direction perpendicular to the contours.

$$= (1) - \frac{m}{n}$$

$$= (m, n) \cdot (1) - \frac{m}{n}$$

Question

Consider the function f(x, y) = mx + ny + c for some $m, n, c \in \mathbb{R}$ and $n \neq 0$. Find the gradient of f and compare to the contours.

Solution

The contours are $y = -\frac{mx}{n} + C$. The gradient vector is $\nabla f = (m, n)$, which points in the direction perpendicular to the contours.

Question

Consider the function $f(x, y) = x^2 + y^2$. Describe the gradient and the contours.

Question

Consider the function f(x, y) = mx + ny + c for some $m, n, c \in \mathbb{R}$ and $n \neq 0$. Find the gradient of f and compare to the contours.

Solution

The contours are $y=-\frac{mx}{n}+C$. The gradient vector is $\nabla f=(m,n)$, which points in the direction perpendicular to the contours.

Question

Consider the function $f(x,y) = x^2 + y^2$. Describe the gradient and the contours.

Solution

The contours are the concentric circles centered at the origin.

Question

Consider the function f(x, y) = mx + ny + c for some $m, n, c \in \mathbb{R}$ and $n \neq 0$. Find the gradient of f and compare to the contours.

Solution

The contours are $y = -\frac{mx}{n} + C$. The gradient vector is $\nabla f = (m, n)$, which points in the direction perpendicular to the contours.

Question

Consider the function $f(x, y) = x^2 + y^2$. Describe the gradient and the contours.

Solution

The contours are the concentric circles centered at the origin. The gradient is (2x,2y), which is radial, always points perpendicular to the circles.

Question

The temperature of a metal-plate if $T(x,y) = 20 - 4x^2 - y^2$. Find the gradient at the point (2,-3). Hence describe the direction of maximal increase in temperature, and the direction of constant temperature.

Question

The temperature of a metal plate if $T(x,y) = 20 - 4x^2 - y^2$. Find the gradient at the point (2,-3). Hence describe the direction of maximal increase in temperature, and the direction of constant temperature.

Solution

The gradient is $\nabla T = (-8x, -2y)$, which is (-16, 6) at the specified point.

Question

The temperature of a metal plate if $T(x,y) = 20 - 4x^2 - y^2$. Find the gradient at the point (2,-3). Hence describe the direction of maximal increase in temperature, and the direction of constant temperature.

Solution

The gradient is $\nabla T = (-8x, -2y)$, which is (-16, 6) at the specified point. To find the angle this makes with the x-axis, write $-16 = r\cos(\theta)$ and $6 = r\sin(\theta)$, so that $r = 2\sqrt{73}$ and $\theta = \pi - \arctan(\frac{6}{16})$.

The direction of constant tomporature is porporalicular to

Question

The temperature of a metal plate if $T(x, y) = 20 - 4x^2 - y^2$. Find the gradient at the point (2, -3). Hence describe the direction of maximal increase in temperature, and the direction of constant temperature.

Solution

The gradient is $\nabla T = (-8x, -2y)$, which is (-16, 6) at the specified point. To find the angle this makes with the x-axis, write $-16 = r\cos(\theta)$ and $6 = r\sin(\theta)$, so that $r = 2\sqrt{73}$ and $\theta = \pi - \arctan(\frac{6}{16})$. The direction of constant temperature is then $\frac{\pi}{2} - \arctan(\frac{6}{16})$.

Question

A team is mapping the ocean floor. They produce the model $D(x,y) = 1700 - 30x^2 - 50\sin(\frac{\pi y}{2})$ in m, with $(x,y) \in [-2,2] \times [-2,2]$ in km.

$$(x,y) \in [-2,2] \times [-2,2]$$
 in km.

Question

A team is mapping the ocean floor. They produce the model $D(x,y)=1700-30x^2-50\sin(\frac{\pi y}{2})$ in m, with $(x,y)\in[-2,2]\times[-2,2]$ in km. There is a leaking oil well at (1,0.5); find the depth at this location, as well as the direction and magnitude of steepest increase here.

Question

A team is mapping the ocean floor. They produce the model $D(x,y)=1700-30x^2-50\sin(\frac{\pi y}{2})$ in m, with $(x,y)\in[-2,2]\times[-2,2]$ in km. There is a leaking oil well at (1,0.5); find the depth at this location, as well as the direction and magnitude of steepest increase here.

Solution

The depth at (1,0.5) is $D(1,0.5) = 250 - 30 - 50 \sin(\frac{\pi}{4}) \approx 184.6 \text{m}$.

Question

A team is mapping the ocean floor. They produce the model $D(x,y)=1700-30x^2+50\sin(\frac{\pi y}{2})$ in m, with $(x,y)\in[-2,2]\times[-2,2]$ in km. There is a leaking oil well at (1,0.5); find the depth at this location, as well as the direction and magnitude of steepest increase here.

Solution

The depth at (1, 0.5) is

 $D(1,0.5)=250-30-50\sin(\frac{\pi}{4})\approx 184.6m$. The gradient at this point is

$$\nabla D(1, 0.5) = (-60, -\frac{50\pi}{2}\cos(\frac{\pi}{4})) \neq (-60, -\frac{25\pi}{\sqrt{2}}),$$

which is measured in m/km.

Question

A team is mapping the ocean floor. They produce the model $D(x,y)=1700-30x^2-50\sin(\frac{\pi y}{2})$ in m, with $(x,y)\in[-2,2]\times[-2,2]$ in km. There is a leaking oil well at (1,0.5); find the depth at this location, as well as the direction and magnitude of steepest increase here.

Solution

The depth at (1,0.5) is $D(1,0.5)=250-30-50\sin(\frac{\pi}{4})\approx 184.6m$. The gradient at this point is

$$\nabla D(1,0.5) = (-60, -\frac{50\pi}{2}\cos(\frac{\pi}{4})) = (-60, -\frac{25\pi}{\sqrt{2}}),$$

which is measured in m/km. This makes an angle of $\arctan(\frac{25\pi}{60\sqrt{2}})$

with the positive x-axis, and has a magnitude of $\sqrt{3600+\frac{625\pi^2}{2}}$.