Signle-Paprameter Models (Supp.)

Asymptotic property of the posterior

Gwangsu Kim

JBNU

Second semester of 2024

Conjugate Prior Distribution I

■ Let \mathcal{F} be a class of sampling distribution $p(y|\theta)$, \mathcal{P} be a class of prior distribution $p(\theta)$.

Asymptotic property of the posterior

■ The class \mathcal{P} is conjugate for \mathcal{F} if

$$p(\theta|y) \in \mathcal{P}$$

for all $p(\cdot|\theta) \in \mathcal{F}$ and $p(\cdot) \in \mathcal{P}$.

- Exponential family and sufficient statistics
 - Exponential family

$$p(y_i|\theta) = f(y_i)g(\theta) \exp(\phi(\theta)^T u(y_i)).$$

Asymptotic property of the posterior

For i.i.d. y_1, \ldots, y_n , the density is

$$\left(\prod_{i=1}^{n} f(y_i)\right) g(\theta)^n \exp\left(\phi(\theta)^T \sum_{i=1}^{n} u(y_i)\right).$$

Conjugate Prior Distribution III

3 If
$$p(\theta) \propto g(\theta)^{\eta} \exp(\phi(\theta)^T v)$$
, then

$$p(\theta|y) \propto g(\theta)^{n+\eta} \exp(\phi(\theta)^T (v + t(y))),$$

Asymptotic property of the posterior

where
$$t(y) = \sum_{i=1}^{n} u(y_i)$$
.

Negative Binomial Distribution I

If $p(y|\theta) = \exp(-\theta) \theta^y/y!$ and $\theta \sim Gamma(\alpha, \beta)$, then

$$p(y) = \frac{p(y|\theta)p(\theta)}{p(\theta|y)}$$

$$= \frac{\theta^{y} \exp(-\theta) \theta^{\alpha-1} \exp(-\beta\theta) \beta^{\alpha} \Gamma(\alpha + y)}{y! \theta^{\alpha+y-1} \exp(-(1+\beta)\theta) (1+\beta)^{\alpha+y} \Gamma(\alpha)}$$

$$= \frac{\Gamma(\alpha + y)\beta^{\alpha}}{\Gamma(\alpha)y! (1+\beta)^{\alpha+y}} = {\alpha + y - 1 \choose y} \left(\frac{\beta}{\beta+1}\right)^{\alpha} \left(\frac{1}{\beta+1}\right)^{y}.$$

Asymptotic property of the posterior

Negative Binomial Distribution II

Thus, we have

Neg-bin
$$(y|\alpha,\beta) = \int Poisson(y|\theta)Gamma(\theta|\alpha,\beta)d\theta$$
.

Asymptotic property of the posterior

■ Usually, this is related to over-dispersion model, it means that the variance is larger than mean. In Poisson model, mean and variance are equal.

Asymptotic property of the posterior I

In limit probability theory can be put in a Bayesian context to show:

$$\left(\frac{\theta - E\left[\theta|y\right]}{\sqrt{\operatorname{Var}\left(\theta|y\right)}}\middle|y\right) \to N(0, 1),$$

where $\theta \in \mathbb{R}$.

$$\left(\operatorname{Cov}(\theta|y)^{-1/2}(\theta - E[\theta|y])\middle|y\right) \to N(0, I_p),$$

where $\theta \in \mathbb{R}^p$.

Asymptotic property of the posterior

Example of Data Analysis I

- Cancer of kidney/ureter in U. S. at 1980-1989.
 - Data are gathered in each county.
 - Population is varying through the counties.

Example of Data Analysis II

Highest kidney cancer death rates

Figure 2.7 The counties of the United States with the highest 10% agestandardized death rates for cancer of kidney/ureter for U.S. white males, 1980–1989. Why are most of the shaded counties in the middle of the country? See Section 2.8 for discussion.

Conjugate Prior Distribution

Example of Data Analysis III

Lowest kidney cancer death rates

Figure 2.8 The counties of the United States with the lowest 10% agestandardized death rates for cancer of kidney/ureter for U.S. white males, 1980-1989. Surprisingly, the pattern is somewhat similar to the map of the highest rates, shown in Figure 2.7.

Example of Data Analysis IV

■ This data implies that variations are different along with the populations of the counties.

Asymptotic property of the posterior

■ Counties in the Great Plains in the middle of the country appear in the lowest 10% and highest 10% simultaneously.

Example of Data Analysis V

Thus we consider the model of

$$y_j \sim Pois(10n_j\theta_j),$$

Asymptotic property of the posterior

where n_i is the population of the county, and prior of

$$\theta_j \sim Gamma(20, 430000).$$

Example of Data Analysis VI

■ Then $\theta_i|y_i \sim Gamma(20 + y_i, 430000 + 10n_i)$, it implies

$$E(\theta_j|y_j) = \frac{20 + y_j}{43000 + 10n_j},$$

$$Var(\theta_j|y_j) = \frac{20 + y_j}{(43000 + 10n_i)^2}.$$

Asymptotic property of the posterior

Small n_i results the relatively large weight of the prior in the posterior mean.

Example of Data Analysis VII

(Prior) predictive distribution gives that

$$y_j \sim \text{Neg-bin}(20, 430000/(10n_j)),$$

Asymptotic property of the posterior

and variance of $y_i/(10n_i)$ is larger when n_i is small, note that

$$E[y_j] = 10n_j \frac{\alpha}{\beta},$$

$$Var(y_j) = 10n_j \frac{\alpha}{\beta} + (10n_j)^2 \frac{\alpha}{\beta^2}.$$

Example of Data Analysis VIII

- How to choose $\alpha = 20$ and $\beta = 430000$? Data driven.
- In some case, we consider the parameter should be estimated, empirical Bayes approach (not full Bayesian).

Asymptotic property of the posterior

Example of Data Analysis IX

We have

$$y_j \sim \text{Neg-bin}\left(\alpha, \beta/(10n_j)\right)$$
,

Asymptotic property of the posterior

and

$$E[y_j] = 10n_j \frac{\alpha}{\beta},$$

$$Var(y_j) = 10n_j \frac{\alpha}{\beta} + (10n_j)^2 \frac{\alpha}{\beta^2}.$$

Using such as the moment method based on data.

