CENG 280

Formal Languages and Abstract Machines

Spring 2022-2023

Homework 3

Name Surname: Burak YILDIZ Student ID: 2449049

Answer for Q1

1)

0 - Equivalence $\equiv \{q_0, q_1, q_3, q_4\}$, $\{q_2, q_5\}$

1 - Equivalence $\equiv \{q_0, q_1, q_3, q_4\}, \{q_2, q_5\}$

Since they are same we stop and the resulting DFA is as follows:

 $E_{q_0q_1q_3q_4} = a^* \cup Lb$

 $E_{q_2q_5} = bLa^*$

No two strings d^i and d^j , with $i \neq j$, are equivalent under L'. Simply because there is a string (namely $a^k b^{2i} c^k$) which when affixed d^i gives a string in L', but when affixed to d^j produces a string not in L'. Hence it has infinitely many equivalence classes. So by the Myhill-Nerode Theorem this language is not regular.

Answer for Q2

 $S \rightarrow Bb \mid MS \mid SMB$ $B \to Bb \mid \epsilon$ $M \rightarrow \epsilon \mid MM \mid aMb \mid bMa$

2) Let L be the language given in the question and
$$L_1=\{a^ib^i\mid i\geq 0\},\ L_2=\{b^kc^k\mid k\geq 0\}.$$
 So that $L=L_1L_2$ The CFG for L_1 is $S_1\to aS_1b\mid \epsilon$ and the CFG for L_2 is $S_2\to bS_2c\mid \epsilon$ Sor for L the CFG is: $S_3\to S_1S_2$ $S_1\to aS_1b\mid \epsilon$ $S_2\to bS_2c\mid \epsilon$ 3) $S\to 0S_1\mid 1S_1$ $S\to 0S\mid 1S\mid \epsilon$

Answer for Q3

1) This is the language: (0(0+1)*0) + (1(0+1)*1) + e

2) This CFG generates the language that has at leas two 1's in it we can show the language as: $(0+1)^*1(0+1)^*1(0+1)^*$