Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1. Data type of columns in a table

Ans)_After importing the table, just click on the table name and we can see the column name, data type of column, Nullable means column allows null values.

2. Time period for which the data is given

```
Ans) with start_date as (select order_purchase_timestamp as start from `sales.orders` order by order_purchase_timestamp limit 1 ),

end_date as ( select order_purchase_timestamp as final from `sales.orders` order by order_purchase_timestamp desc limit 1)

select start,end_date.final

from start_date,end_date;
```


3. Cities and States covered in the dataset

```
Ans) select customer_state , customer_city
from `sales.customers`
group by customer_state, customer_city;
```

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row //	customer_state	h	customer_city	le
1	RN		acu	
2	CE		ico	
3	RS		ipe	
4	CE		ipu	
5	SC		ita	
6	SP		itu	
7	SP		jau	
8	MG		luz	
9	SP		noa	

❖ In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
Ans) select count(*) as no_orders,
```

```
extract(year from order_purchase_timestamp) as Year,
extract(month from order_purchase_timestamp) as Month
from `sales.orders`
group by Year, Month
order by Year, Month;
```

Query results

JOB IN	NFORMATION	RESULTS	JSON	EXECUTIO
Row	no_orders	Year //	Month //	
1	4	2016	9	
2	324	2016	10	
3	1	2016	12	
4	800	2017	1	
5	1780	2017	2	
6	2682	2017	3	
7	2404	2017	4	
8	3700	2017	5	
g	3245	2017	б	

BigQuery Custom SQL

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
Ans) with hr as

(select count(*) as No_of_Orders,

extract(hour from order_purchase_timestamp) as Hour

from `sales.orders`

group by Hour)

select sum(No_of_Orders) as Total_orders,

case

when Hour between 4 and 8 then "Dawn"
```

```
when Hour between 9 and 12 then "Morning"
when Hour between 13 and 18 then "Afternoon"
else "Night"
end as Timing
from hr
group by Timing
order by Total_orders desc;
```

JOB INFORMATION RESULTS JSON

Row	Total_orders	Timing
1	38135	Afternoon
2	32677	Night
3	23535	Morning
4	5094	Dawn

Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by region, states

```
Ans) select count(order_id) as Number_orders,
concat(extract(year from order_purchase_timestamp) ,"-",
extract(month from order_purchase_timestamp) ) as Year_month,
customer_city as city,customer_state as state
from `sales.orders` as o
left join sales.customers as c on o.customer_id = c.customer_id
group by Year_month, state, city
order by Year_month , state, city;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXE	CUTION GRAPH PREVIEW	
Row	Number_ord	Year_month	/1	city	11	state	11
1	1	2016-10		cacimbinhas		AL	
2	1	2016-10		maceio		AL	
3	1	2016-10		apuarema		BA	
4	1	2016-10		eunapolis		ВА	
5	1	2016-10		iacu		BA	
6	1	2016-10		itabuna		BA	
7	1	2016-10		bela cruz		CE	
8	5	2016-10		fortaleza		CE	
9	1	2016-10		paracuru		CE	

										city / state / Nu	mber_orders
	sao paulo	rio de janeiro	belo horizo	brasilia	curitiba	campinas	porto alegre	salvador	guarulhos	sao bernard	niteroi
/ear_month	SP	RJ	MG	DF	PR	SP	RS	BA	SP	SP	F
2017-11						1	•	1	1	1	1
2018-1						1	1	1	1	1	1
2018-3								1	1	1	1
2018-4						•	1	1	1	1	1
2018-5					•	•	1	1	•	1	I .
2018-2			•		1	1	1	1	1	1	T.
2018-8					•	•	1	1	•	1	1
2018-7			•		•	1	1	1	•	1	1
2018-6		_	•	•	•	•	1	1	•	1	1
2017-12					1	1	1	1	1	1	1
2017-10				•	1	1	1	1	1	1	1
2017-8			•	1	1	1	1	1	1	1	1
2017-9			•	•	1	1	1	T.	I	1	1
2017-7		-	1	1	1	1	1	1	1	1	1
2017-5			1	I	1	1	1	1	1	1	1
2017-6		•	1	1	1	1	1	1	1	1	1
2017-3		•	•	1	1	1	T.	1	1	1	1
2017-4			1	1	1	1	1	1	1	1	1
2017-2		•	1	1	1	1	T	1	1	1	L
2017-1		1	1	1	1	1	1	1	1	1	T
2016-10	1	1	T	1	1	1	T	-	1	1	1
2018-9	1	1	1	-	-				1	-	

2. How are customers distributed in Brazil

```
Ans)select count(customer_id) as no_customers,
customer_city as city,customer_state as state
from `sales.customers`
```

order by no_customers desc;

Query results

▲ SAVE RESULTS ▼

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	no_custome	city	1.	state	//
1	15540	sao paulo		SP	
2	6882	rio de janeiro		RJ	
3	2773	belo horizonte		MG	
4	2131	brasilia		DF	
5	1521	curitiba		PR	
6	1444	campinas		SP	
7	1379	porto alegre		RS	
8	1245	salvador		BA	
9	1189	guarulhos		SP	

Results per page:

50 **▼** 1 − 50 of 4310

Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.

 Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
Ans)with p1 as ( select price, Month from (select (price+freight_value) as
price,
extract(year from order_purchase_timestamp) as Year,
extract(month from order_purchase_timestamp) as Month,
from `sales.order_items`as o1
join `sales.orders`as o2 on o1.order_id=o2.order_id) as x
where Year = 2017 and Month between 1 and 8),
p2 as ( select price, Month from (select (price+freight_value) as price,
extract(year from order_purchase_timestamp) as Year,
extract(month from order_purchase_timestamp) as Month
from `sales.order_items`as o1
join `sales.orders`as o2 on o1.order_id=o2.order_id) as x
where Year = 2018 and Month between 1 and 8)
select round(((sum(p2.price)-sum(p1.price))/ sum(p1.price)) *100,3) as
Percentage_of_cost_increase_2017to2018
from p1 join p2 on p1.Month = p2.Month;
```

Query results

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET
Row	Percentage_of_	cost_increase_2017	to2018	
1			1.215	

2. Mean & Sum of price and freight value by customer state

```
Ans)select avg(price) as mean_price ,sum(price) as Total_price,

avg(freight_value) as mean_freight_value , sum(freight_value) as

Total_freight_value,

avg(price+freight_value) as mean_cost_of_order , sum(price+freight_value) as

Total_cost_of_order,

customer_state

from `sales.order_items` as o1

join `sales.orders` as o2 on o1.order_id=o2.order_id

join `sales.customers` as c on o2.customer_id=c.customer_id

group by customer_state;
```

Quer	y results				₫ 9	SAVE RESULTS *			\$
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH	PREVIEW		
Row	mean_price	Total_price	mean_freigh	Total_freigh	mean_cost	Total_cost	customer_state	11	/
1	109.653629	5202955.05	15.1472753	718723.069	124.800904	5921678.11	SP		
2	125.117818	1824092.66	20.9609239	305589.310	146.078742	2129681.97	RJ		
3	119.004139	683083.760	20.5316515	117851.680	139.535790	800935.440	PR		
4	124.653577	520553.340	21.4703687	89660.2600	146.123946	610213.600	SC		
5	125.770548	302603.939	21.0413549	50625.4999	146.811903	353229.440	DF		
6	120.748574	1585308.02	20.6301668	270853.460	141.378740	1856161.48	MG		
7	165.692416	178947.809	35.8326851	38699.3000	201.525101	217647.109	PA		
8	134.601208	511349.990	26.3639589	100156.679	160.965167	611506.670	ВА		
9	126.271731	294591.949	22.7668152	53114.9799	149.038546	347706.930	GO		

Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery

```
Ans) select
order_id, date_diff(order_delivered_customer_date, order_purchase_timestamp ,
day) as datediff_purchase_delivered,

date_diff(order_delivered_customer_date, order_estimated_delivery_date, day) as
datediff_estimated_received,

date_diff(order_estimated_delivery_date, order_purchase_timestamp, day) as
datediff_purchase_estimated

from `sales.orders`

order by datediff_purchase_delivered
desc, datediff_estimated_received, datediff_purchase_estimated ;
```


<u>NOTE</u> - If the difference is in positive integer then it shows the no.of days order delayed, If the difference is in Negative integer then it shows the no.of days order received early.

2. Create columns:

- a. time_to_delivery =
 order_purchase_timestamp-order_delivered_customer_date
- b. diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

```
Ans) select
order_id,date_diff(order_delivered_customer_date,order_purchase_timestamp ,
day) as time_to_delivery,
```

```
date_diff(order_delivered_customer_date,order_estimated_delivery_date, day) as
diff_estimated_delivery
from `sales.orders`
order by time_to_delivery desc,diff_estimated_delivery;
```

JOB IN	IFORMATION	RESULTS	JSON	EXEC	UTION DETAILS	EXECUTION GI
Row	order_id	le	time_to_delivery	11	diff_estimated_delivery	4
1	ca07593549f181	6d26a572e06		209	181	
2	1b3190b2dfa9d7	89e1f14c05b		208	188	
3	440d0d17af5528	15d15a9e41a		195	165	
4	2fb597c2f772eca	a01b1f5c561b		194	155	
5	0f4519c5f1c541d	ddec9f21b3bd		194	161	
6	285ab9426d6982	2034523a855f		194	166	
7	47b40429ed8cce	3aee9199792		191	175	
8	2fe324febf907e3	ea3f2aa9650		189	167	
9	2d7561026d542d	:8dbd8f0daea		188	159	

<u>NOTE</u> - If the difference is in positive integer then it shows the no.of days order delayed, If the difference is in Negative integer then it shows the no.of days order received early

Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
Ans)select customer_state, round(avg(freight_value),3) as mean_freight_value,
round(avg(date_diff(order_delivered_customer_date, order_purchase_timestamp ,
day))) as mean_time_to_delivery,
round(avg(date_diff(order_estimated_delivery_date, order_delivered_customer_date ,
day))) as mean_diff_estimated_delivery

from `sales.order_items` as o1

join `sales.orders` as o2 on o1.order_id=o2.order_id

join `sales.customers` as c on o2.customer_id=c.customer_id
```

group by customer_state

order by mean_freight_value desc;

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION
Row	customer_state	11	mean_freigh	mean_time	mean_diff_e	
1	RR		42.984	28.0	17.0	
2	РВ		42.724	20.0	12.0	
3	RO		41.07	19.0	19.0	
4	AC		40.073	20.0	20.0	
5	PI		39.148	19.0	11.0	
6	MA		38.257	21.0	9.0	
7	ТО		37.247	17.0	11.0	
8	SE		36.653	21.0	9.0	

	customer_state	mean_freight_value •	mean_time_to_delivery	mean_diff_estimated_delivery
1.	RR	42.98	28	17
2.	PB	42.72	20	12
3.	RO	41.07	19	19
4.	AC	40.07	20	20
5.	PI	39.15	19	11
6.	MA	38.26		9
7.	то	37.25	17	11
8.	SE	36.65	21	9
9.	AL	35.84	24	8
10.	PA	35.83	23	13
11.	RN	35.65	19	13
12.	AP	34.01	28	17
13.	AM	33.21	26	19
14.	PE	32.92	18	13
15.	CE	32.71		10
16.	MT	28.17	18	14
17.	BA	26.36	19	10
18.	MS	23.38	15	10
19.	G0	22.77	15	11
20.	ES	22.06	15	10
21.	RS	21.74	15	13
22.	sc	21.47	15	11
23.	DF	21.04	13	11
24.	RJ	20.96	15	11
25.	MG	20.63	12	12
26.	PR	20.53	11	13
27.	SP	15.15	8	10

4. Sort the data to get the following:

Ans)

a) Top 5 states with highest average freight value - sort in desc/asc limit 5

```
select customer_state, round(avg(freight_value),3) as mean_freight_value
from `sales.order_items` as o1

join `sales.orders` as o2 on o1.order_id=o2.order_id

join `sales.customers` as c on o2.customer_id=c.customer_id

group by customer_state

order by mean_freight_value desc

limit 5;
```

Row	customer_state	mean_freigh
1	RR	42.984
2	РВ	42.724
3	RO	41.07
4	AC	40.073
5	PI	39.148

b) Top 5 states with lowest average freight value - sort in desc/asc limit 5

```
select customer_state, round(avg(freight_value),3) as mean_freight_value
from `sales.order_items` as o1

join `sales.orders` as o2 on o1.order_id=o2.order_id

join `sales.customers` as c on o2.customer_id=c.customer_id

group by customer_state

order by mean_freight_value
```

JOB INFORMATION		RESULTS	JSON	EXECUT
Row	customer_state	h	mean_freigh	
1	SP		15.147	
2	PR		20.532	
3	MG		20.63	
4	RJ		20.961	
5	DF		21.041	

C) Top 5 states with highest average time to delivery

```
select customer_state,

round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp ,
day))) as mean_time_to_delivery,

from `sales.order_items` as o1

join `sales.orders` as o2 on o1.order_id=o2.order_id

join `sales.customers` as c on o2.customer_id=c.customer_id

group by customer_state

order by mean_time_to_delivery desc

limit 5;
```

Row	customer_state //	mean_time
1	AP	28.0
2	RR	28.0
3	AM	26.0
4	AL	24.0
5	PA	23.0

d)Top 5 states with lowest average time to delivery

```
select customer_state,
round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp ,
day))) as mean_time_to_delivery,
from `sales.order_items` as o1
join `sales.orders` as o2 on o1.order_id=o2.order_id
join `sales.customers` as c on o2.customer_id=c.customer_id
group by customer_state
order by mean_time_to_delivery
limit 5;
```

Row	customer_state	mean_time
1	SP	8.0
2	PR	11.0
3	MG	12.0
4	DF	13.0
5	RS	15.0

e) Top 5 states where delivery is really fast compared to estimated date

```
select customer_state,
round(avg(date_diff(order_estimated_delivery_date,order_delivered_customer_d
ate, day))) as mean_diff_estimated_delivery
from `sales.order_items` as o1
join `sales.orders` as o2 on o1.order_id=o2.order_id
join `sales.customers` as c on o2.customer_id=c.customer_id
group by customer_state
order by mean_diff_estimated_delivery desc
limit 5;
```

JOB INFORMATION		RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	11	mean_diff_e	
1	AC		20.0	
2	AM		19.0	
3	RO		19.0	
4	RR		17.0	
5	AP		17.0	

f) Top 5 states where delivery is not so fast compared to estimated date

```
select customer_state,
round(avg(date_diff(order_estimated_delivery_date,order_delivered_customer_d
ate, day))) as mean_diff_estimated_delivery

from `sales.order_items` as o1

join `sales.orders` as o2 on o1.order_id=o2.order_id

join `sales.customers` as c on o2.customer_id=c.customer_id

group by customer_state

order by mean_diff_estimated_delivery

limit 5;
```

Row	customer_state	mean_diff_e
1	AL	8.0
2	SE	9.0
3	MA	9.0
4	SP	10.0
5	BA	10.0

❖ Payment type analysis:

1. Month over Month count of orders for different payment types

```
Ans) select concat(extract(year from order_purchase_timestamp) ,"-",
extract(month from order_purchase_timestamp) ) as Year_month, payment_type ,
count(o.order_id) as no_of_orders
from `sales.orders` as o
join `sales.payments` as p on o.order_id = p.order_id
group by Year_month, payment_type
order by Year_month ;
```

JOB INFORMATION RESULTS		JSON EXECUTION DETAILS E		AILS EXE	CUTIO	
Row	Year_month	/1	payment_type	11	no_of_orders	
1	2016-10		credit_card		254	
2	2016-10		UPI		63	
3	2016-10		voucher		23	
4	2016-10		debit_card		2	
5	2016-12		credit_card		1	
6	2016-9		credit_card		3	
7	2017-1		credit_card		583	
8	2017-1		UPI		197	
9	2017-1		voucher		61	

2. Distribution of payment installments and count of orders

Ans) select payment_installments , count(order_id) as no_of_orders

```
from `sales.payments`
group by payment_installments
order by no_of_orders desc;
```

JOB INFORMATION RESULTS JSON

Row /	payment_in	no_of_orders //
1	1	52546
2	2	12413
3	3	10461
4	4	7098
5	10	5328
6	5	5239
7	8	4268
8	6	3920
9	7	1626

★ Actionable Insights & Recommendations -

- ★ The given data data types Integer, float, string, Timestamp and all the columns are nullable which means they allow nulls and some rows have been missing in date columns, the data contains the orders of e-commerce business in Brazil along with customer and sellers information with different locations and times with a detailed division of cost of orders as price & freight value.
- ★ The data is provided for the Orders that are placed between 4th September 2016 to 17th October 2018 which can be considered as a two year data.
- ★ There is a growing trend on e-commerce in Brazil as per the data and we can also the increasing number of order by year, we can also see the peak number of orders are seen in months of November, January, March which are the time periods of Thanksgiving, Christmas, New-Year and Good Friday, it would be a great profit in sales if the Organization puts up more offers, restock the best selled items—and also to launch new products—during these months.
- ★ Compared to 2017,in 2018 we can see a standard number of orders every month
- ★ Brazilian customers tend to buy mostly during Afternoon and Night, also very less interested in buying during Dawn.

- ★ 42% of the customers are from state SP which is almost near to half of the orders, it, great that a single state is producing such a high number but the organization can concentrate on other states as well to increase the Revenue.
- ★ There is a cost increase of 1.215% in orders from 2017 to 2018 between months January to August which shows us an increased chance of Revenue and profit from year to year, this shows the positive impact of E-commerce on Economy as the increase of cost is less when compared to inflation rate.
- ★ The total cost and Total price of orders is high in state SP but mean cost and mean price are high in state PB which indicates that people of SP are purchasing more number of products but people of PB are purchasing more expensive products, even the number of orders is less in PB the average cost of products is high, so there is a opportunity to increase the sales in PB as they tend to buy expensive products.
- ★ Mean freight cost is high in RR,PB,RO,AC,PI in these places providing a free delivery above a certain order value could increase the orders from that region along with revenue
- ★ States SP,PR,MG,DF have the lowest Freight cost and delivery time which indicates the warehouse and sellers might be mostly of these regions, So spreading the warehouses across the country and trying to add the local state sellers might increase the orders very effectively
- ★ Payments are mostly done using Credit card, so having ties with credit card companies to provide seasonal offers may result in increased revenue and second most used payment method UPI has higher chances of increasing in future, having ties with UPI companies also helps for future.
- ★ Most of the installments for payments are only one Installments but encouraging the EMI process and creating swift process with awareness of using Credit cards for EMI process can have good results.