C.Física Moderna: Taller 12 Momentum angular

1 Capa M del átomo de hidrógeno

Un electrón en un átomo de hidrógeno se encuentra en la capa M.

- 1. Determinar su energía y el número de estados de esta configuración.
- 2. En cada caso calcular el ángulo que hace el momentum angular con el eje z y realizar un diagrama con las direcciones permitidas.

2 Representación del operador momento angular

Obtenga el operador \hat{L}_z en coordenadas rectangulares y luego en coordenadas esféricas. Asumiendo que el operador \hat{L}_z cumple una ecuación de valore propios determinar las funciones propias correspondientes a este operador.

3 Transiciones del átomo de hidrógeno

Si las transiciones permitidas entre capas y subcapas en el átomo de hidrógeno cumplen la condición $\Delta \ell = \pm 1$, realizar un diagrama con los niveles y subniveles de energía y las transiciones permitidas entre los diferentes estados n y ℓ .

4 Hidrógeno en presencia de un campo magnético

Un átomo de hidrógeno se introduce en un espacio donde existe un campo magnético B en la dirección z. La energía se puede escribir de la forma $E=E_n+E_B$, donde E_n es la energía del átomo en ausencia del campo magnético y clásicamente $E_B=(e/2m_e)\vec{L}\cdot\vec{B}$.

- 1. Determine que sucede con los niveles de energía correspondientes a las subcapas s,p,d.
- 2. Las reglas de transición ahora son $\Delta m_{\ell} = 0, \pm 1$; ¿qué sucede con las líneas espectrales emitidas por el átomo en presencia de un campo magnético? Realice una representación en niveles de energía.

FORMULAS ÚTILES

: Momento angular: $\hat{L} = \hat{r} \times \hat{p}$

: Coordenadas esféricas: $x = r \sin \theta \cos \phi$ $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

: Momento Angular: $L = \sqrt{\ell(\ell+1)}\hbar$ $L_z = m_\ell\hbar$ $\cos\theta = \frac{L_z}{L_z}$

Número Cuántico	Símbolo	Posibles Valores
Principal	n	1,2,3,
Orbital	ℓ	0,1,2,, n-1
Magnético	m_ℓ	$0, \pm 1, \pm 2,, \pm \ell$