Algorithms in the Time of COVID19 Solving Recurrences¹ - Recitation 2

September 25, 2020

¹Contact: Liangzu Peng (1p2528@nyu.edu)

Recitation 2

- ► About writing (proofs)
- ► Approaches of solving recurrences + examples
- Exercises

About writing (proofs)

In general:

- Put reader first.
- Put definition before usage.
- Use English words as much as possible
 - ▶ avoid \forall and \exists and their combinations $\forall \exists \forall \exists \exists$.
- ► Read Knuth.²

In homework:

- ▶ I am your reader.
- You can use results already known from the class.

^{2 &}quot;Mathematical writing", https://jmlr.csail.mit.edu/ reviewing-papers/knuth_mathematical_writing.pdf

 $Approaches \ of \ solving \ recurrences$

Approach 1: The Master Theorem.

Problem 1. Solve the following recurrence relation:

$$T(n) = 4T(n/2) + n^2 \sqrt{n}$$
 (1)

 $Approaches \ of \ solving \ recurrences$

Approach 2: unfold the recurrence relation directly.

Problem 2. Solve the following recurrence relation:

$$T(n) = n^{\frac{1}{2}}T(n^{\frac{1}{2}}) + n.$$
 (2)

Approaches of solving recurrences

Approach 3: Generating functions.³

Definition

Given a sequence of numbers $a_0, a_1, \ldots, a_k, \ldots$, we define its *formal power series* by:

$$F(z) = \sum_{k>0} a_k z^k = a_0 + a_1 z + \dots + a_k z^k + \dots$$
 (3)

We also refer to F as the *generating function* for the sequence $\{a_k\}_{k\geq 0}$.

Our **primary interest** is in the generating functions for the sequence $\{T(n)\}_{n\geq 0}$ defined by some recurrence relation.

 $^{^3}$ "A generating function is a clothesline on which we hang up a sequence of numbers for display." - Herb Wilf

Problem 3. Find the generating function for the sequence

- ightharpoonup (1, 1, 1, ...).
- $\blacktriangleright \{(\binom{n}{k})\}_{k=0}^n.$

Problem 4. What sequences are defined by the following generating functions?

- $ightharpoonup \frac{1}{1+z}$
 - $ightharpoonup \frac{1}{1-2z}$

 - $ightharpoonup rac{1}{1-z^2}$ $ightharpoonup \frac{1}{(1-z)^2}$

Problem 5. Solve the following recurrence relation using the generating function.

$$T(n) = T(n-1) + 1 (4)$$

$Approaches \ of \ solving \ recurrences$

Approach 4: Guess + Induction

Problem 6. Solve the recurrence relation

$$T(n) = T(bn) + T(n - bn) + n,$$
(5)

where $b \in (0,1)$ is a constant number.

Problem 7. Consider the recurrence relations

- T(n) = 2T(n/2) + n and
- $f(n) = f(n-1) + \lg n.$

Prove that $T(n) = \Theta(f(n))$.

Problem 8. Solve the following recurrence relation.

$$T(n) = T(n/2) + T(n/4) + T(n/8) + n.$$
 (6)

Problem 9. Solve the recurrence relation

$$T(n) = 2T(\frac{n}{2} - 1) + n \tag{7}$$

Problem 10. Let T(n) = 4T(n/3) + n. Use Guess + Induction to prove that

$$T(n) = O(n^{\log_3 4}). \tag{8}$$

Problem 11. Solve the following recurrence relation:

$$T(n) = T(n/5) + T(7n/10 + 6) + n.$$
 (9)

Problem 12. Solve the following recurrence relation:

$$T(n) = n^{\frac{3}{4}}T(n^{\frac{1}{4}}) + n. {(10)}$$

Problem 13. Solve the following recurrence relation:

$$T(n) = T(n-2) + n^2.$$
 (11)

Problem 14. Multiplying a power series by 1/(1-z) has nice effect on a power series. If $F(z) = \sum_{k \ge 0} a_j z^j$, what sequence has generating function F(z)/(1-z)? That is, if

$$\frac{F(z)}{1-z} = \sum_{k>0} b_k z^k,$$
 (12)

what are the numbers b_k in terms of the a_j ?

Problem 15. Solve the recurrence defined by the Fibnacci sequence F_n using generating functions.

$$F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}.$$
 (13)