12012613 Sect 4.2 4. Since $\begin{cases} y_0 = f(x_0) \\ y_1 = f(x_0) \end{cases} \begin{cases} \pi_1(Y, y_0) = f_{\pi}(\pi_1(X, x_0)) \\ \pi_1(Y, y_0) = f_{\pi}(\pi_1(X, x_0)) \end{cases}$ path $\begin{cases} w : x_0 \sim x_1 \\ f_0 w : y_0 \sim y_1 \end{cases} \begin{cases} \omega_{\#} : \pi_1(X, x_0) \sim \pi_1(X, x_1) \\ f_0 w : y_0 \sim y_1 \end{cases} \begin{cases} f_0 \omega_{\#} : \pi_1(Y, y_0) \sim \pi_1(Y, y_0) \end{cases}$ Then we only need to prove: $f_{\pi} \circ \omega_{\#} = (f \circ \omega)_{\#} \circ f_{\pi}$ $\forall x \in \pi_i(X,x_0)$, then $f_{\pi} \circ w_{\#}(x) = f \circ (w^{-1}xw)$ $(f \circ \omega) \# f_{\pi}(x) = (f \circ \omega)^{-1}(f \circ x)(f \circ \omega)$ Since f is a homeomorphism, then (fow) (fow") = (foww") = Id, (fow) = fow" $(f \circ \omega)_{\#} \circ f_{\pi}(x) = (f \circ \omega^{-1})(f \circ x)(f \circ \omega)$ $= (f \circ w^{-1} \times) (f \circ w)$ $= f_0(\omega^{-1}x\omega)$ $=f_{\pi}\circ W_{\#}(x)$ Then the homeomorphic graph is exchangable. 5. Since r: X->A, i: AC-X, where $r|_{A} = \hat{i} = id|_{A}$, then $ro\hat{i} = id|_{A}$ Then $r_{\pi} \circ i_{\pi} = (r \circ i)_{\pi} = id$, Since $r_{\kappa} \circ i_{\kappa} : \pi_{1}(A, \infty) \rightarrow \pi_{1}(A, \infty)$ Then he is an injective, in is a surjective. 6. Suppose b' is the inverse path of b, then abis a loop path. Since X is simple connected, then X has constant basic group.

Then path ab^{-1} is homotopic to constant point path e, i.e. ab is e. Then b \sip eb \sip ab b \sip ae \sip a Thus, a⇔b.

 $\sqrt{W_{\#}} = W_{\#}$ $\Leftrightarrow \forall \forall \in \mathcal{L}^{1}(X'X'), \, \mathcal{M}_{1} \neq \mathcal{M} = \mathcal{M}_{1} \neq \mathcal{M}_{1}$ (left times ω , right times ω'^{-1}) $\Leftrightarrow \forall \alpha \in \pi_1(X, x), \alpha \omega \omega^1 = \omega \omega'^{-1} \alpha$ \Leftrightarrow ww'^{-1} is in the center of $\pi(X,x_0)$ [M] Sect 52. 7. (a) Since $f,g \in \Omega(G, X_o)$, then $f(s) \cdot g(s)$ is also a loop based on xo.

Then $f \otimes g \in \Omega(a, x_0)$ Since the point path ex. at x. is unit element in $\Omega(G, x_0)$ the inverse path \overline{a} is the inverse element of & in sclarx,),e=&&~ Then $(\Omega(X,x_0), \emptyset)$ is a group. (b) \\ \w, \w_\in \tau_1 (G, \chi_0), \desc(G, \chi_0)

 $= M_1 4 M^1 M_2 4 M^3$ € ℃(c' xº) Then \otimes induces the group operation on $\pi_i(G, x_a)$

Then W(x)⊗w(x)=w, xu,⊗w, xu,

(c) $\forall \alpha \in (X, x_0), (f * e_{x_0}) \otimes (e_{x_0} * g) (\alpha)$ $=(f\otimes g)(\ll)$ = f(d)-g(d) $= (f * g)(\alpha)$ $= (f * e_{X_0}) * (e_{X_0} * g) (\omega)$

Then $(f*e_{x_0})\circ(e_{x_0}*g)=(f*e_{x_0})*(e_{x_0}*g)$ Thus, o and * are the same. (d) $\forall \omega_1, \omega_2 \in \pi_1(G, X_0)$, $W_1 \otimes w_2 = W_1 * W_2$ = W2 * W1 Then π1(G,x₀) is abelian.