Matrix Analysis Homework 1

Michael Nelson

August 20, 2019

(1.a)
$$-z = -\sqrt{3} - i$$
 and $z^{-1} = (1/4)(\sqrt{3} - i)$.

(1.b) We have

$$z^{2} = (\sqrt{3} + i)(\sqrt{3} + i)$$
$$= 3 + 2\sqrt{3}i - 1$$
$$= 2 + 2\sqrt{3}i$$

and

$$z^{3} = zz^{2}$$

$$= (\sqrt{3} + i)(2 + 2\sqrt{3}i)$$

$$= 2\sqrt{3} + 6i + 2i - 2\sqrt{3}$$

$$= 8i.$$

- (1.c) We have r = 2 and $\theta = \pi/6$.
- (1.d) We have

$$z^{2} = (2e^{i(\pi/6)})^{2}$$
$$= 4e^{i(\pi/3)}$$

and

$$z^{3} = (2e^{i(\pi/6)})^{3}$$
$$= 8e^{i(\pi/2)}$$

and

$$z^{-1} = (2e^{i(\pi/6)})^{-1}$$
$$= (1/2)e^{-i(\pi/6)}.$$

2. We show that $\mathbb{Q}[i]$ is a field by showing that every nonzero element in $\mathbb{Q}[i]$ has an inverse. Let a+bi be a nonzero element in $\mathbb{Q}[i]$. Then the inverse of a+bi is given by

$$(a+bi)^{-1} = \frac{a-bi}{\sqrt{a^2+b^2}}. (1)$$

This is well-defined since a + bi being nonzero implies the denominator in (1) is nonzero.

(3.a) We first write the addition table

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2			l	5			
3	3	4	5	6	0	1	
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Next we write the multiplication table

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

- $(3.b) -2 \equiv 5 \mod 7 \text{ and } 2^{-1} \equiv 4 \mod 7.$
- (3.c) We have $2^2 \equiv 4 \mod 7$ and $2^2 \cdot 2 \equiv 1 \mod 7$. Therefore

$$2^{-1} \equiv 2^2 \mod 7$$
$$\equiv 4 \mod 7.$$

(3.d) Consider the sequence a^1, a^2, \ldots, a^p of p elements. Since each $a^i \in \mathbb{F}_p^{\times}$ and \mathbb{F}_p^{\times} has only p-1 elements, there must be a positive integer $k \leq p$ such that $a^k = 1$ (pidgeonhole principle). In particular, this implies $a^{k-1} = a^{-1}$, where k-1 < p.