Formal Methods and Functional Programming - Week 2 (Lectures)

· Author: Ruben Schenk

• Date: 08.03.2021

Contact: ruben.schenk@inf.ethz.ch

Substitution

Substitution describes replacing in A all occurrences of a free variable x with some term t. We write A[x/t] to indicate that we substitute x by t in A.

Example:

$$A \equiv \exists y. \ y * x = x * z \rightarrow A[x/2 - 1] \equiv \exists y. \ y * (2 - 1) = (2 - 1 * z)$$

Universal quantification

We introduce the following two rules:

$$rac{\Gamma dash A}{\Gamma dash orall x.A} \, orall - I^*, \qquad rac{\Gamma dash orall x.A}{\Gamma dash A[x/t]} \, orall - E$$

For the insertion rule, the side condition * denotes that x cannot be free in any assumption Γ .

Example:

$$\frac{\frac{\overline{\forall x.\,p(x) \vdash \forall z.\,p(z)}}{\forall x.\,p(x) \vdash p(f(y))}}{\frac{\overline{\forall x.\,p(x) \vdash p(f(y))}}{\forall -I}} \begin{array}{l} \text{distingliff} & \text{implicit α-conversion} \\ \text{with $x \equiv z$ and $t \equiv f(y)$} \\ \frac{\overline{\forall x.\,p(x) \vdash p(f(y))}}{\forall x.\,p(x) \vdash \forall y.\,p(f(y))} & \forall -I \\ \hline \vdash (\forall x.\,p(x)) \rightarrow (\forall y.\,p(f(y))) \\ \hline \rightarrow -I \end{array}$$

Existential quantification

We introduce the following two rules:

$$\frac{\Gamma \vdash A[x/t]}{\Gamma \vdash \exists x - A} \; \exists -I, \qquad \frac{\Gamma \vdash \exists x . A \quad \Gamma, A \vdash B}{\Gamma \vdash B} \; \exists -E^*$$

For the elimination rule, the side condition * denotes that x is neither free in B nor free in Γ .

Example:

$$\frac{\frac{\overline{\Gamma' \vdash \forall w. p(w) \rightarrow q}}{\Gamma' \vdash p(z) \rightarrow q} \, \forall \vdash E}{\frac{\Gamma' \vdash p(z) \rightarrow q}{\Gamma' \vdash p(z)}} \, \exists \vdash E \, *$$

$$\frac{\frac{\forall x. p(x) \rightarrow q, \exists y. p(y) \vdash q}{\forall x. p(x) \rightarrow q \vdash (\exists y. p(y)) \rightarrow q}}{\frac{\neg \forall x. p(x) \rightarrow q}{\vdash (\forall x. p(x) \rightarrow q) \rightarrow ((\exists y. p(y)) \rightarrow q)}} \, \exists \vdash E \, *$$
 where $\Gamma \equiv \forall x. p(x) \rightarrow q, \exists y. p(y) \, \text{ and } \Gamma' \equiv \Gamma, p(z)$

Equality

First order logic with equality

Equality is logical symbol with associated proof rules. We define it with:

- Extended language: $t_1=t_2\in Form$ if $t_1,t_2\in Term$
- Extended definition of \models : $\mathcal{I} \models t_1 = t_2$ if $\mathcal{I}(t_1) = \mathcal{I}(t_2)$

Equality

Equality is an equivalence rule, shown by the following three rules:

$$\tfrac{\Gamma\vdash t=t}{\Gamma\vdash t=t}\ ref, \qquad \tfrac{\Gamma\vdash t=s}{\Gamma\vdash s=t}\ sym, \qquad \tfrac{\Gamma\vdash t=s}{\Gamma\vdash t=r}\ trans$$

Equality is also a congruence on terms and all definable relations:

$$\begin{array}{ccc} \frac{\Gamma \vdash t_1 = s_1 & \cdots & \Gamma \vdash t_n = s_n}{\Gamma \vdash f(t_1, \dots, t_n) = f(s_1, \dots, s_n)} \ \text{cong}_1 \\ \\ \frac{\Gamma \vdash t_1 = s_1 & \cdots & \Gamma \vdash t_n = s_n & \Gamma \vdash p(t_1, \dots, t_n)}{\Gamma \vdash p(s_1, \dots, s_n)} \ \text{cong}_2 \end{array}$$

Correctness

Correctness is important for programs. But what does correctness mean? What properties should hold?

- Termination: Important for many, but not all programs
- Functional behavior: Function should return "correct" values.

Termination

If f is defined in terms of functions g_1, \ldots, g_k , and each g_j terminates, then so does f. If we work with recursion, a sufficient condition for termination is: Arguments are smaller along a well-founded order of function's domain.

- An order > on a set $\mathcal S$ is <code>well-founded</code> iff. there is no infinite decreasing chain chain $x_1>x_2>x_3>\cdots$, for $x_i\in\mathcal S$
- We write $>_{\mathcal{S}}$ to indicate the domain \mathcal{S} , i.e. $>_{\mathcal{S}} \subseteq \mathcal{S} \times \mathcal{S}$

Well-founded relations

We can construct new well-founded relations from existing ones the following way:

Let R_1 and R_2 be binary relations on a set S. The composition of R_1 and R_2 is defined as

$$R_2 \circ R_1 \equiv \{(a, c) \in S \times S \mid \exists b \in S. \ a R_1 \ b \wedge b R_2 \ c\}.$$

Remark: For a binary relation R, we write a R b for $(a, b) \in R$.

Let $R \subseteq S \times S$. Define:

- $R^1 \equiv R$
- $\bullet \quad R^{n+1} \equiv R \circ R^n \text{, for } n \geq 1$
- $R^+ \equiv \bigcup_{n>1} R^n$

So $a R^+ b$ iff. $a R^i b$ for some $i \ge 1$.

```
Lemma: Let R\subseteq S\times S. Let s_0,s_i\in S and i\geq 1. Then s_0 R^i s_i iff- there are s_1,\ldots,s_{i-1}\in S such that s_0 R s_1 R \ldots R s_{i-1} R s_i.
```

Theorem: If > is a well-founded order on a set S, then >⁺ is also well-founded on S.

Termination: Example

Consider the following two Haskell snippets for calculating the factorial of a (positive) integer:

We know look at the above examples in terms of termination:

- function fac:
 - \circ fac n has only fac (n-1) as a recusrive call and n>n-1, hence > is the standard ordering over the natural numbers.
- function fac2:
 - fac2 (n, a) has only fac2 (n-1, n*a) as a recursive call and the first argument is always smaller under >.

Reasoning

Equational reasoning

Equational reasoning include proofs based on the simple idea, that functions are equations.

For example we can have the following simple Haskell program:

```
1     swap :: (Int, Int) -> (Int, Int)
2     swap (a, b) = (b, a)
```

More formally:

```
\forall a \in \mathcal{Z}, \, \forall b \in \mathcal{Z}, \, \mathrm{swap}(a, \, b) = (b, \, a)
```

Reasoning by cases

Consider the following Haskell snippet:

Can we prove that $\max n m \ge n$?

- We have that $n \geq m \vee \neg (n \geq m)$
- We now show $\max n m \ge n$ for both cases:
 - Case 1: $n \ge m$, then $\max i n m = n$ and $n \ge n$
 - Case 2: $\neg (n \ge m)$, then $\max i \ n \ m = m$. But m > n, so $\max i \ n \ m \ge n$

Proof by induction

We use a domino principle formulated by induction proof rule.

Example: To prove $\forall n \in \mathcal{N}. P$

- Base case: Prove P[n/0]
- Step case: For an arbitrary m not free in P, prove P[n/m+1] under the assumption P[n/m].

Well-founded induction

The induction schema for well-founded induction is given by:

- ullet To prove P for all natural numbers n
- Well-founded step: For an arbitrary m (not free in P), prove P[n/m] under the assumption that P[n/l] holds, for all l < m (where also l is not free in P).

List and Abstraction

List type

Lists require a new type constructor:

• If T is a type, then $\lceil T \rceil$ is a type.

The elements of $\left[T\right]$ are given by:

- Empty list: [] :: [T]
- Non-empty list: (x:xs)::[T], if x::T and xs::[T]

In Haskell we can use the following shorthand: 1:(2:(3:[])) written as [1, 2, 3].

Functions on lists

We should always include the case where the list is empty!

Example: sumList

```
1 sumList [] = 0
2 sumList (x:xs) = x + sumList xs
```

Patterns

Pattern matching has two purposes:

- 1. checks if an argument has the proper form
- 2. binds values to variables

Example: (x:xs) matches with $[2, 3, 4] \rightarrow x = 2, xs = [3, 4]$.

Patterns are inductively defined with:

- $\bullet \quad \text{Constants:} \ -2, \ '1', \ True, \ [], \dots$
- Variables: x, foo, \dots
- Wild card: _
- Tuples: (p_1, \ldots, p_k) , where p_i are patterns
- Non-empty lists: $(p_1:p_2)$, where p_i are patterns

Moreover, patterns require to be linear, this means that each variable can occur at most once.