Operations Research Assignment-2022 (Writing Codes in Python / C++)

1. Find the optimum solution of the LPP using the B.F.S. Method:

(a)

$$\begin{aligned} & \text{max}: \quad Z = C^T X \\ & \text{s. to} \quad AX = b, \quad X \geq 0 \end{aligned}$$

(b)

$$\min: \quad Z = C^T X$$

s. to $AX = b, \quad X \ge 0$

2. Find the optimum solution of the LPP using the Simplex Method:

$$\begin{aligned} & \text{max}: \quad Z = C^T X \\ & \text{s. to} \quad AX \leq b, \quad X \geq 0 \end{aligned}$$

3. Find the optimum solution of the LPP using the Big-M Method:

(a)

$$\max: \quad Z = C^T X$$
 s. to $AX \begin{pmatrix} \leq \\ = \\ \geq \end{pmatrix} b, \quad X \geq 0$

(b)

min:
$$Z = C^T X$$

s. to $AX \begin{pmatrix} \leq \\ = \\ \geq \end{pmatrix} b$, $X \geq 0$

4. Find the optimum solution of the LPP using the Two-Phase Simplex Method:

$$\max / \min: \ Z = C^T X$$

s. to
$$AX \begin{pmatrix} \leq \\ = \\ \geq \end{pmatrix} b$$
, $X \geq 0$

5. Find the optimum solution of the LPP using the Dual-Simplex Method:

$$\min: \quad Z = C^T X$$

s. to
$$AX \ge b$$
, $X \ge 0$

6. Find the optimum solution of the LPP using the Revised-Simplex Method:

$$\max: \quad Z = C^T X$$

s. to
$$AX \le b$$
, $X \ge 0$

- 7. Find the optimum solution of the Integer Programming Problem by Cutting Plane Method of Gomory.
- 8. Find the B.F.S.(Phase-I solution) of the Balanced Transportation Method by using:
 - (a) North West Corner Rule (NWCR)
 - (b) Least Cost Method (LCM)

Test the B.F.S. for optimality. Find the Phase II solution by MODI (MOdified DItribution) method.

- 9. Find the optimal solution of the Assignment Problem (size: n by n) using Hungarian Method.
- 10. (a) Find the solution of a $m \times n$ stable game.
 - (b) Find the solution of a $m \times n$ unstable game using Primal-Dual LP Method.

Note: Write your code in Python and C++

Send your Codes to : mpbiswal.iitkgp2022@gmail.com by 31-03-2022

(Only one e-mail is permitted - Early Submission is better)