Fonction-courbe-limite

May 23, 2024

1 Calcul différentiel

1.1 Fonction, courbe, limite

A traiter avec:

- sympy import sympy as sp
- numpy et matplotlib

```
import numpy as np
import matplotlib.pyplot as plt
```

Soient la fonction f définie sur $\mathbb{R} \setminus \{-1; 1\}$ par $f(x) = \frac{3x^2 - 4}{x^2 - 1}$ et C_f sa courbe représentative. On cherche les limites aux bornes de l'ensemble de définitions.

```
[12]: import sympy as sp # importation de sympy comme sp
    x=sp.Symbol('x')
    # définition du symbole x
    f=sp.Function('f') # définition du symbole de la fonction
    f=(3*x**2-4)/(x**2-1)
    # définition de la fonction
    display(f)
    # affichage de la fonction
    display(r'la courbe de f pour x=[-10,10]')
    sp.plot(f)
    # traçage de la courbe de f pour x=[0,10]')
    sp.plot(f,(x,1.5,10)) # traçage de la courbe de f pour x=[1.5,10]
    sp.plot(f,(x,-10,-2)) # traçage de la courbe de f pour x=[1.5,10]
```

$$\frac{3x^2-4}{x^2-1}$$

^{&#}x27;la courbe de f pour x=[-10,10]'

'la courbe de f pour x=[0,10]'

[12]: <sympy.plotting.plot.Plot at 0x7f902d17c6a0>

On va donc remplir des tableaux de la forme:

1. pour
$$\lim_{x \to +\infty} f(x)$$

\overline{x}	10^{2}	10^{3}	10^{4}	10^{6}
f(x)				

lorsque $x \to +\infty$, la fonction f tend vers...

2. pour
$$\lim_{x \to -\infty} f(x)$$

\overline{x}	-10^{2}	-10^{3}	-10^{4}	-10^{6}
f(x)				

lorsque $x \to -\infty$, la fonction f tend vers...

3. pour
$$\lim_{x \to -1^{-}} f(x) \setminus$$

$$\frac{x}{f(x)}$$
 $-(1+10^{-2})$ $-(1+10^{-3})$ $-(1+10^{-4})$ $-(1+10^{-6})$

lorsque $x \to -1^-$, la fonction f tend vers...

4. pour $\lim_{x\to -1^{+}} f(x) \setminus$

$$\frac{x - 1 + 10^{-6} - 1 + 10^{-4} - 1 + 10^{-3} - 1 + 10^{-2}}{f(x)}$$

lorsque $x \to -1^+$, la fonction f tend vers...

5. pour $\lim_{x \to 1^{-}} f(x)$

\overline{x}	$1 + 10^{-2}$	$1 + 10^{-3}$	$1 + 10^{-4}$	$1 + 10^{-6}$
f(x)				

lorsque $x \to 1^-$, la fonction f tend vers...

6. pour $\lim_{x \to 1^+} f(x)$

\overline{x}	$1 + 10^{-6}$	$1 + 10^{-4}$	$1 + 10^{-3}$	$1 + 10^{-2}$
f(x)				

lorsque $x \to 1^+$, la fonction f tend vers...