CS 211: Computer Architecture Digital Logic

Topics:

- Converting truth tables to expressions
- Karnaugh maps

_	ens ipu	ts	ı
A	В	С	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Given a circuit, isolate the rows in which the output of the circuit should be true

	ens iput		ı
Α	В	С	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Given a circuit, isolate that rows in which the output of the circuit should be true

A product term that contains exactly one instance of every variable is called a minterm

Given the expressions for each row, build a larger Boolean expression for the entire table.

This is a sum-of-products (SOP) form.

Output = $\overline{A}BC + \overline{A}BC + \overline{A}B\overline{C} + \overline{A}BC$

Finally build the circuit.

- Problem: SOP forms are often not minimal.
- Solution: Make it minimal. We'll go over two ways.

First approach: algebraic

The Result

Karnaugh Maps or K-Maps

K-maps are a graphical technique to view minterms and how they relate.

The "map" is a diagram made up of squares, with each square representing a single minterm.

Minterms resulting in a "1" are marked as "1", all others are marked "0"

Α	В	Output
0	0	0
0	1	1
1	0	0
1	1	1

Α	В	Output
0	0	0
0	1	1
1	0	0
1	1	1

Finding Commonality

Finding the "best" solution

Grouping become simplified products.

Both are "correct". "A+B" is preferred.

Simplify Example

Simplify Example

- Note in higher maps, several variables occupy a given axis
- The sequence of 1s and 0s follow a Gray Code Sequence.

Out= $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + \overline{A}B\overline{C}$

Out=
$$\overline{A}$$

Out= $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + \overline{A}B\overline{C} + \overline{A}BC + \overline{A}B\overline{C}$

Out =
$$\overline{A}$$
 + B

Back to our earlier example.....

The K-map and the algebraic produce the same result.

Up... up... and let's keep going

Out= $\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D}$

Few more examples

Out= $\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}C\overline{D} + A\overline{B}\overline{C}\overline{D} + ABCD$

Few more examples

Don't Care Conditions

- Suppose we know that a disallowed input combo is A=1, B=0
- Can we replace F with a simpler function G whose output matches for all inputs we do care about?
- Let H be the function with Don't-care conditions for obsolete inputs

	Α	В	F	Н	G
	0	0	1	H 1 0 X	1
Inputs will	0	1	0	0	0
not occur	1	0	0	Χ	1
	1	1	1	1	1

$$G = AB + \overline{B}$$

- Both F & G are appropriate functions for H
- G can substitute for F for valid input combinations

Don't Cares can Greatly Simplify Circuits

Sometimes "don't cares" greatly simplify circuitry

Formal Definition of Minterms

e.g., Minterms for 3 variables A,B,C

Α	В	С	minterm
0	0	0	m0 ĀĒŌ
0	0	1	m1 ĀBC
0	1	0	m2 ĀBĒ
0	1	1	m3 ĀBC
1	0	0	m4 ABC
1	0	1	m5 ABC
1	1	0	m6 ABC
1	1	1	m7 ABC

- A product term in which all variables appear once, either complemented or uncomplemented (i.e., an entry in the truth table).
- Each minterm evaluates to 1 for exactly one variable assignment, 0 for all others.
- Denoted by mX where X corresponds to the variable assignment for which mX = 1.

Minterm Example

__ (variables appear once in each minterm)

Α	В	С	F	F	minterm	
0	0	0	1	0	m0 ĀĒŌ	F = ABC + ABC + ABC + ABC
0	0	1	1	0	m1 ĀBC	= m0 + m1 + m2 + m4 + m5
0	1	0	1	0	m2 ĀBŌ	$= \sum m(0,1,2,4,5)$
0	1	1	0	1	m3 ĀBC	= Zm(0,1,2,4,0)
1	0	0	1	0	m4 ABC	$\overline{F} = \overline{A}BC + AB\overline{C} + ABC$
1	0	1	1	0	m5 ABC	= m3 + m6 + m7
1	1	0	0	1	m6 ABC	$=\sum m(3,6,7)$
1	1	1	0	1	m7 ABC	

Minterm Example

Circuits may be specified in the form $\sum m(0, 2, 4, 5, 6, 7, 13, 15)$, where the indices correspond to positions in a Karnaugh map:

				_	
		00	01	11	10
	00	0	1	3	2
AB	01	4	5	7	6
AD	11	12	13	15	14
	10	8	9	11	10

Minterm Example

Circuits may be specified in the form $\sum m(0, 2, 4, 5, 6, 7, 13, 15)$, where the indices correspond to positions in a Karnaugh map:

		00	01	11	10
	00	1	0	0	1
AB	01	1	1	1	1
AD	11	0	1	1	0
	10	0	0	0	0

Formal Definition of Maxterms

Α	В	С	maxterm
0	0	0	M0 A+B+C
0	0	1	M1 A+B+C
0	1	0	M2 A+B+C
0	1	1	M3 A+B+C
1	0	0	M4 Ā+B+C
1	0	1	M5 Ā+B+Ō
1	1	0	M6 A+B+C
1	1	1	M7 Ā+Ē+Ĉ

- A sum term in which all variables appear once, either complemented or uncomplemented.
- Each maxterm evaluates to 0 for exactly one variable assignment, 1 for all others.
- Denoted by MX where X corresponds to the variable assignment for which MX = 0.

Maxterm Example

Α	В	С	maxterm	F	
0	0	0	M0 A+B+C	1	
0	0	1	M1 A+B+C	1	$F = (A+\overline{B}+\overline{C}) (\overline{A}+\overline{B}+C) (\overline{A}+\overline{B}+\overline{C})$
0	1	0	M2 A+B+C	1	= (M3) (M6) (M7)
0	1	1	M3 A+B+C	0	$= \prod M(3,6,7)$
1	0	0	M4 Ā+B+C	1	= [[[VI(3,0,7)
1	0	1	M5 Ā+B+Ō	1	
1	1	0	M6 Ā+B+C	0	
1	1	1	M7 Ā+B+C	0	

Maxterm Example

Then we can find the usual sum of products: CD 01 11 $F = BD + \bar{A}\bar{D}$ AB

Maxterm Example

Converting Between Canonical Forms

DeMorgans: same terms

Product of Sums Example

K-maps and Implicants

• Implicant: a product term, which, viewed in a K-Map is a 2ⁱ x 2^j size "rectangle" (possibly wrapping around) where i=0,1,2, j=0,1,2

Implicants

• Implicant: a product term, which, viewed in a K-Map is a 2ⁱ x 2^j size "rectangle" (possibly wrapping around) where i=0,1,2, j=0,1,2

Note: bigger rectangles = fewer literals

More Implicant Terminology

Implicant: product term, which when viewed in a K-map, is a rectangle of 1s

Prime implicant: an implicant not contained in another implicant

Essential prime implicant: a prime implicant that is the only prime implicant to cover some minterm

Example

- List all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?

Example

- Step 1: Identify all Pls and essential Pls
- Step 2: Include all Essential Pls in the circuit (Why?)
- Step 3: If any 1-valued minterms are uncovered by EPIs, choose PIs that are "big" and do a good job covering
- Selection Rule: a heuristic for usually choosing "good" Pls: choose the Pls that minimize overlap with one another and with EPIs

Design Example

Design Example

	Input					Output					
Va	W	Χ	Υ	Z	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1
Χ	1	0	1	0	Χ	Χ	Χ	Χ	Х	Χ	Χ
Χ	1	0	1	1	Χ	Χ	Χ	Χ	Х	Χ	Χ
Χ	1	1	0	0	X	Χ	Χ	Χ	Χ	Χ	Χ
Χ	1	1	0	1	X	X	Χ	Χ	X	Χ	Χ
Χ	1	1	1	0	X	Χ	Χ	Χ	Х	Χ	Χ
Χ	1	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ

Design Example

