LUV VERMA

Khoury College of Computer Sciences \diamond Boston, MA \diamond +1(857) 869-3556 verma.lu@northeastern.edu \diamond LinkedIn \diamond Medium \diamond GitHub

EDUCATION

MS in Artificial Intelligence, Northeastern University, USA

Coursework: Deep Learning, Natural Language Processing, Advanced Perception

Jan 2023 - present GPA: 4.0/4.0

PhD in Applied Mechanics, Indian Institute of Technology, Madras

July 2014 - Nov 2018

Research Area: Inspection of Damaged Smart Composites

SKILLS

Technical Skills Deep Learning, NLP, Computer Vision, Machine Learning, Big Data

Programming Python, Java, C++, SQL, MATLAB

ML/DL Frameworks
PyTorch, Keras, Tensorflow, CUDA, HuggingFace, OpenCV, NLTK, Pandas
Big-Data Frameworks
Apache Spark, Azure Databricks, Lakehouse, Delta Lake, Delta Engine

Learning In-progress NeRFs, Big-Data, Cloud Computing, Databricks

Certifications Generative AI with LLMs, Accelerated Computing with CUDA in Python

PROFESSIONAL EXPERIENCE

Senior Data Scientist General Electric Aerospace Nov 2021 - Dec 2022 Bangalore, India

- Novel Deep Learning and Regression Modeling for FEA & CFD Simulations:
 - **Problem**: Needed a method to analyze critical parameters in a limited range of FEA & CFD simulations to improve the efficiency of design space exploration.
 - Models: Deep Learning (Variational Auto Encoder), Machine Learning (Regression Models).
 - Impact: Developed a method and achieved a drastic reduction in simulation time, decreasing from 3 weeks to just 2 hours, enhancing the design space exploration.
- Computer Vision-based Tool for Detecting Failure Modes in Aviation Components:
 - Problem: Required a solution to detect and categorize failure modes in critical aviation components, particularly high-pressure turbine blades.
 - Models: Segmentation Models (U-Net & FCN-8).
 - **Impact**: Developed a tool that was adopted by internal teams, enabling damage rating on a scale of 1 to 10. This transitioned 6 months of raw image analysis to just 1 month of model fine-tuning tailored to various damage types.

Research Engineer

July 2019 - July 2021 Bangalore, India

General Electric Research

- Detection System for False Alarms in Wind Turbines:
 - **Problem**: Developed a solution to detect false alarms in the high-speed shaft coupling of wind turbines.
 - Models: Machine Learning Classification Algorithms.
 - Impact: Filed a patent for the developed solution. Significantly reduced downtime and man-hours, decreasing response time from 8 hours per fault to just 1 hour.
- Surface Crack Detection in Wind Turbine Pitch Bearings:
 - **Problem**: Identified invisible surface cracks in pitch bearings of wind turbines.
 - Models: CNN based Yolo-v3 Object Detection Algorithm.
 - **Impact**: Clustered different failure modes in pitch bearing, enhancing fleet management. Introduced prognosis of pitch-bearing surfaces, facilitating proactive maintenance.

PUBLICATIONS & PROJECTS

Paper 1, Paper 2: Published two research papers in psychology, applying statistical methods such as structural equation modeling and mediation analysis for hypotheses testing. Utilized multi-label classification to build prediction models (to capture the relationship between the mediator and dependent variable), and conducted correlation and bias checks to refine respondent data

Image Reconstruction: Conducted an ablation study on the Vector Quantized Generative Adversarial Network (VQGAN), focusing on vector quantization loss, important for image-to-image generation using single A100 GPU using PyTorch. The work explored critical parameters such as codebook vectors, latent dimensions, and the effect of 2D positional encodings on image reconstruction.

Machine Translation Model:

- Objective: Focussed on balancing model complexity with computational efficiency in language models with millions of parameters.
- Approach: Conducted ablation studies on a sequence-to-sequence transformer model tailored for the machine translation task.
- Model: Implemented Sequence-to-Sequence encoder-decoder transformer pipeline in PyTorch.
- Results: Achieved a significant reduction in model complexity, reducing parameters from 257 million to 26 million.