

Politecnico di Milano Academic Year 2015/2016 Software Engineering 2: "myTaxiService" Project Plan

Massimo Schiavo, Marco Edoardo Cittar 1st February 2016

Purpose

In the first part of this document we are going to show through two different procedures, the size of our app and the estimated cost.

In the second part instead we are going to show the project tasks and their relative division during the project.

In the last part we will show our risk project management.

Functional Points

A **function point** is a "unit of measurement" to express the amount of business functionality an information system provides to a user. Function points measure software size. The table below shows the weights values that we have used to calculate the FP value.

Function Types		Weight	
N. Inputs N. Outputs N. Inquiry N. ILF N. EIF	Simple	Medium	Complex
	3	4	6
	4	5	7
	3	4	6
	7	10	15
	5	7	10

We have used this table to find the functional points of our app.

In particular:

We have taken into consideration these aspects:

Internal Logic Files (ILFs)

It's a user identifiable group of logically related data that resides entirely within the application.

External Logic Files (EIFs)

It's a user identifiable group of logically related data that is used for reference purposes only.

External Inputs (EIs)

It is an elementary process in which data crosses the boundary from outside to inside.

External Inquiries (EIQs)

It's an elementary process with both input and output components that result in data retrieval from one or more internal logical files and external interface files.

External Outputs (Eos)

It is an elementary process in which derived data passes across the boundary from inside to outside.

Aspect	Total cost	Description
Internal Logic File	56	The application stores information about: Users, Drivers, Requests, TaxiQueue, Taxis and Locations.
External Logic File	10	The application has to manage the position of each taxis from an external service based on GPS locations
External Inputs	26	The application has to manage all the interactions between users and driver.
External Inquiries	13	The application allows a user to view the number of taxi available in his zone according to his phone GPS location and the application allows a driver to view the pending user's requests in order to confirm them.
External Outputs	0	There is no external output
TOTAL	105	we can hypostasize the size of the project in terms of lines of code. LOC = 105 * 46 = 4830 Lines Of Code.

COCOMO II

COnstructive **CO**st **MO**del II is a model that allows one to estimate the cost, effort, and schedule when planning a new software development activity.

Scale Factors	Very Low	Low	Nominal	High	Very High	Extra High
	thoroughly unpreceden ted	largely unpreceden ted	somewhat unpreceden ted	generally familiar	largely familiar	thoroughly familiar
PREC	teu	teu	teu			
SF _i :	6.20	4.96	3.72	2.48	1.24	0.00
FLEX	rigorous	occasional	some	general	some	general
SF,:	5.07	relaxation 4.05	relaxation 3.04	conformity 2.03	conformity 1.01	goals 0.00
•	little (20%)	some (40%)	often (60%)	generally	mostly	full (100%)
RESL	(2070)	(10,10)	01.011 (007.0)	(75%)	(90%)	iuii (10070)
SF _i :	7.07	5.65	4.24	2.83	1.41	0.00
	very difficult	some	basically	largely	highly	seamless
	interactions	difficult interactions	cooperative interactions	cooperative	cooperative	interactions
TEAM		Interdetions	Interdebons			
SF _i :	5.48	4.38	3.29	2.19	1.10	0.00
		Equivalent Pr				
PMAT	SW-CMM	SW-CMM	SW-CMM	SW-CMM	SW-CMM	SW-CMM
	Level 1	Level 1	Level 2	Level 3	Level 4	Level 5
SF _j :	7.80	Upper 6.24	4.68	3.12	1.56	0.00

We have used this table for the first part and all the other table relative to the different aspects found in the manual of this model.

In particular:

Aspect	Incidence	Value	Description
PRECEDENTNESS	Very low	6,20	It reflects the previous experience in past project like this. For us, this kind of project is the first in our life we are doing and that's why this value will be very low.
DEVELOPMENT FLEXIBILITY	Very high	1,01	It reflects the degree of flexibility in the development process. The professor left us a large space of flexibility without forcing us with too much details, that's why this value is going to be very high.
RISK RESOLUTION	Very high	1,41	According to our project risk management.
TEAM COHESION	Very high	1,10	It reflects how well the development team know each other and work together. At the beginning of the project we didn't know each other and both of us did not know how the other worked. Although this aspect, we hadn't any problems on work's organization and division of tasks. Due to these considerations, this value will be very high.
PROCESS MATURITY	High	3,12	There are two ways of rating Process Maturity. We have chosen the second that s organized around the 18 Key Process Areas (KPAs) in the SEI Capability Maturity Model. We can consider this value as high.
	TOTAL	12,84	

Driver factor	Incidence	value
Required software reliability	Very high	1.26
Database size	High	1.00
Product complexity	Nominal	1.00
Required reusability	High	1.07
Documentation match to life-cycle needs	Nominal	1.00
Execution time constraint	Very low	n/a
Main storage constraint	Very low	n/a
Platform volatility	Low	0.87
Analyst capability	Very high	0.71
Personnel continuity	Very low	1.29
Application experience	Low	1.10
Platform experience	-	-
Programmer capability	-	-
Language and tool experience	-	-
TOTAL (PRODUCT)		1.18

Effort estimation

The final equation gives us the effort estimation measured in Person-Months (PM)

The values of A, B, C, and D in the COCOMO II.2000 calibration are:

$$A = 2.94$$
 $B = 0.91$

$$C = 3.67$$
 D = 0.28

EAF is the product of all the cost drivers that is equal to: 1.18

KSLOC represents the estimated lines of code obtained from the FP analysis: 4830

E is the exponent derived from the Scale Drivers with the equation below:

$$B+0.01* sum{i} SF[i] = 0.91 + 0.01 * 12.84 = 1.0384$$

With all of these parameters we can calculate the final effort:

Effort =
$$2.94*1.18*4.830^{1.0384}$$
 = **17.8008 PM**

Shedule estimation

We are going to use this formula to compute the estimated duration:

Where
$$F = 0.28 + 0.2 * (E-B) = 0.28 + 0.2 * (1.0384-0.91) = 0.3057$$

So
$$\rightarrow$$
 Duration = 3.67 * 17.8008^{0.3057} = **8.84** \rightarrow **9**

The duration estimated by these computations is not similar to how the reality is. It is also truth that in our project we had just to do the documentation. Probably if we were to do also the implementation and development of the entire application, the duration of the global project could be about 9 months.

P = Effort/ Duration =
$$17.8008/9 = 1.98 \rightarrow 2$$

Task chart diagram

On the right part of the diagram we can find a list of task for the Requirements Analysis and Specification Document, on the left it's shown the «work in progress» during the project period.

						O	tob	er 20	015																
Task ID	Activity	Resource		12	13	14	15	16	19	20	21	22	23	26	27	28	29	30	02	03	04	05	06	09	10
T1	Requirements Analysis and Specification Document		¥												T1										П
T1.1	Identification of actors	Both						T1.	1																
T1.2	Functional requirements specification	Both						П			1	1.2													
T1.3	Scenarios description	Massimo														T1.	3								
⊿T1.4	UML diagrams															_T1	.4								
T1.4.1	Use case diagram	Both										1	1.4	.1		П									
T1.4.2	Sequence diagrams	Marco						7							T	1.4.2	2	4			-				
T1.4.3	Class diagram	Both												T1	.4.3			Г							
T1.4.4	State machine diagrams	Marco																	T1	4.4					
T1.5	Consistency checking with Alloy	Massimo																		T1.5	5				

Task chart diagram

On the right part of the diagram we can find a list of task for the Design Document, on the left it's shown the «work in progress» during the project period.

							N	ove	mbe	20	15												
Task ID	Activity	Resource	05 0	06 0	9 1	11	12	13	16	17	18	19	20	23 2	4 25	5 26	27	30	01	02	03	04	07
T2	Design Document	v											T2										
T2.1	Selection of components to be integrated	Massimo						T2.															
T2.2	Architectural style and patterns choice	Massimo										Ţ	2.2										
T2.3	Expected runtime execution of algorithms	Marco								T2.	3												
T2.4	Algorithms design	Marco							T2	2.4													
T2.5	User interface mockups	Marco						Т						T2	.5								
T2.6	Verify satisfaction of RASD requirements	Both														П		TZ	2.6				

Task chart diagram

On the right part of the diagram we can find a list of task for the Test Plan, on the left it's shown the «work in progress» during the project period.

												J	anu	агу	201	6				
Task ID	Activity	Resource	3	0	04	05	06	07	08	11	12	13	14	15	18	19	20	21	22	25
T3	Test Plan		/	1									T3	}						
T3.1	Choice of integration strategy	Massimo										j	Г3,1							
T3.2	Integration tests to be performed	Marco													Ta	3.2				

Task chart diagram

On the right part of the diagram we can find a list of task for the Project Plan, on the left it's shown the «work in progress» during the project period.

					Ja	nua	ry 2	016							
Task ID	Activity	Resource		19	20	21	22	25	26	27	28	29	01	02	03
T4	Project Plan		v							T4					
T4.1	Size estimation	Massimo						T4.1							
T4.2	Effort and cost estimation	Massimo									T4.	2			
T4.3	Tasks identification	Marco					T4	1.3							
T4.4	Tasks schedule	Marco								T4.4	1				
T4.5	Resources allocation	Marco									T	4.5			

Project risk management

Risk	Probability	Effect	Strategy
The database used in the	Moderate.	Serious.	Alert the customer when the
system cannot process and	It depends on how much the	The system can go down and	capacity of database is
manage all the transactions	application will be used in	cannot process some	running out fast. Two
per second as expected	the market.	requests from the users	alternatives:
			Delete the oldest data.
			Adding a new database to
			the system.
The server has a data	Low.	Catastrophic.	This can happen principally
overload.	This risk has a pre-strategy	If this case occur, the entire	during the rush hour. It is
	used to manage it because	system goes down not only	useful to increase the server
	tests about stress were	by processing the last	capability during these
	done.	requests but it is also	hours.
		impossible to access into the	
		system while the system is	
		still down.	

Risk	Probability	Effect	Strategy
A user's request considered	Low.	Serious.	Force a minimum cellular
by him as sent, it is actually	This can happen only if	A user believes he has sent a	coverage to all the users for
never been sent due to a	people are in a place with	request, but in reality, it is	using correctly the
network error.	little cellular coverage.	not true.	application.
Market risk.	Moderate.	Moderate.	It is useful to study
This is meant as the	This risk can be taken into	Probably the money	accurately the target
possibility to not have an	consideration based on	coverage spent on the	population before staring to
expected number of	what the city is smart.	project will has much time	develop the app. It is a good
downloads due to the age of	Integrate a service like this	to be regained.	thing make a survey by
the population in relation to	in a city whose population is		which obtain the habits of
those who use the service.	old would make little sense.		the citizens.
The teenager and the part of			
the population that is young,			
use much more the railways			
services than the taxi.			

Risk	Probability	Effect	Strategy
People risks.	High.	Low.	The customer can inform
This is associated with the		Probably the absence of	about these two figures to
availability, skill level, and		these two figures mean a	include in the project team
retention of the people on		low palatability level of the	only during the
the development team.		application in terms of	development part according
Probably it could be useful		design. The functional use of	of course to the estimated
to have a programmer and a		the application is anyway	cost.
designer in our team.		guaranteed.	