1. Recast each problem below as a problem in finding a solution \vec{x} to the vector equation $A\vec{x} = \vec{b}$, where A is a matrix and \vec{x} and \vec{b} are vectors. For each, define identify A, \vec{x} and \vec{b} . Do not solve.

a. Determine if
$$\begin{bmatrix} 7 \\ 5 \\ 10 \\ 6 \end{bmatrix}$$
 is a linear combination of $\begin{bmatrix} 3 \\ 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 2 \\ 3 \\ 3 \\ 1 \end{bmatrix}$.

If we label the first vector as \vec{w} and the triplet of vectors \vec{v}_1 , \vec{v}_2 , and \vec{v}_3 , then this problem is equivalent to determining whether there are scalar

coefficients
$$x_1$$
, x_2 and x_3 so that $\vec{w} = x_1 \vec{v}_1 + x_2 \vec{v}_2 + x_3 \vec{v}_3 = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

Let
$$A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 3 \\ 2 & 1 & 1 \end{bmatrix}$$
, $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, and $\vec{b} = \vec{w} = \begin{bmatrix} 7 \\ 5 \\ 10 \\ 6 \end{bmatrix}$ and we must

determine whether $A\vec{x} = \vec{b}$ has any solutions.

b. Find a vector in
$$\mathbf{R}^3$$
 whose scalar products with $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\3\\1 \end{bmatrix}$, and $\begin{bmatrix} 4\\1\\2 \end{bmatrix}$

are, respectively, 3, 4, and 5.

Let \vec{x} be the vector sought, let \vec{b} be the 3-vector whose components are the specified scalar products, and let A be the matrix whose rows are the specified vectors. So, this problem is equivalent to seeking the solutions \vec{x}

to
$$A\vec{x} = \vec{b}$$
 where $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 1 \\ 4 & 1 & 2 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$

to
$$A\vec{x} = \vec{b}$$
 where $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 1 \\ 4 & 1 & 2 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$.

c. $F = \frac{1}{3} \begin{bmatrix} 2 & 1 & -2 \\ 1 & 2 & 2 \\ -2 & 2 & -1 \end{bmatrix}$ is the matrix for a reflection across a plane

through the origin in \mathbb{R}^3 . Find all vectors normal (perpendicular) to this plane by using the fact that the image of a normal vector \vec{x} is $-\vec{x}$. We wish to solve $F \vec{x} = -\vec{x} = -I \vec{x}$ for \vec{x} or, equivalently, the equation

$$F\vec{x} + I\vec{x} = (F+I)\vec{x} = \vec{0}$$
. So, we let $A = F + I = \frac{1}{3}\begin{bmatrix} 5 & 1 & -2 \\ 1 & 5 & 2 \\ -2 & 2 & 4 \end{bmatrix}$ and

$$\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ and solve } A\vec{x} = \vec{b} .$$

2. Given $[A | \vec{b}]_{rref}$ in each case below, solve $A\vec{x} = \vec{b}$ completely.

a.
$$[A | \vec{b}]_{rref} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

We have a single (unique) solution $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

b.
$$[A | \vec{b}]_{rref} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
.

This system has no solution since the last column is a pivot column. Alternately, we note that the last row is equivalent to the inconsistent equation 0 = 1.

c.
$$[A|\vec{b}]_{rref} = \begin{bmatrix} 1 & 2 & 0 & 0 & 3 & 6 \\ 0 & 0 & 1 & 0 & 4 & 7 \\ 0 & 0 & 0 & 1 & 5 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} 6 \\ 0 \\ 7 \\ 8 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 3 \\ 0 \\ 4 \\ 5 \\ -1 \end{bmatrix}, \text{ where } \alpha \text{ and } \beta \text{ are any reals.}$$

- 3. Consider the equation $A\vec{x} = \vec{b}$ where A is an $m \times n$ matrix, \vec{x} is in \mathbb{R}^n and \vec{b} is in \mathbb{R}^m . Show that this equation cannot have a finite number of solutions greater than 1 by proceeding as follows.
- a. First, define what is meant by: \vec{w} is a solution of the equation above. $A\vec{w} = \vec{b}$.
- b. Suppose that \vec{u} and \vec{v} are distinct solutions to $A\vec{x} = \vec{b}$. Let \vec{z} be the difference between \vec{v} and \vec{u} . Note that $\vec{z} \neq \vec{0}$. What is $A(\alpha \vec{z})$ for any α in \mathbb{R} ?

 $A(\alpha \vec{z}) = \alpha A \vec{z} = \alpha (A\vec{u} - A\vec{v}) = \alpha (\vec{b} - \vec{b}) = \alpha \vec{0} = \vec{0}.$

c. Now, show that $\{\vec{u} + \alpha \vec{z} \mid \alpha \in \mathbf{R}\}$ is a set with infinitely many (different) vectors each of which is a solution to $A\vec{x} = \vec{b}$.

Since $A\vec{u} = \vec{b}$ and $A(\alpha \vec{z}) = \vec{0}$, we have $A(\vec{u} + \alpha \vec{z}) = A\vec{u} + A(\alpha \vec{z}) = \vec{b} + \vec{0} = \vec{b}$ for all real α . Since $\vec{z} \neq \vec{0}$, distinct α 's give distinct solutions.

4. a. Suppose that $f: \mathbb{R}^2 \to \mathbb{R}^2$ is linear, f triples vectors parallel to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

and doubles vectors parallel to $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$. Find $f \begin{bmatrix} x \\ y \end{bmatrix}$ for any real x and y.

Let A be the 2×2 matrix corresponding to f. Then, $A\begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 6 & 4 \end{bmatrix}$.

So, $A = \begin{bmatrix} 3 & 6 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 6 \\ 6 & 4 \end{bmatrix} \frac{1}{2-6} \begin{bmatrix} 2 & -3 \\ -2 & 1 \end{bmatrix} = \frac{-1}{4} \begin{bmatrix} -6 & -3 \\ 4 & -14 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 6 & 3 \\ -4 & 14 \end{bmatrix}.$

Therefore, $f\begin{bmatrix} x \\ y \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 6 & 3 \\ -4 & 14 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{3}{2}x + \frac{3}{4}y \\ -x + \frac{7}{2}y \end{bmatrix}$.

b. Solve for the matrix X if $\begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} X^{-1} \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 5 & 2 \\ -3 & 2 \end{bmatrix}^{-1}.$

Inverting both sides, we have $\begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} X \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 5 & 2 \\ -3 & 2 \end{bmatrix}$. Now,

multiplying on the left by $\begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}^{-1}$ and on the right by $\begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$, we get

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 5 & 2 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 5 & 2 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 15 \\ -4 & -4 \end{bmatrix}.$$

- 5. For each assertion below, indicate whether the assertion is true (T) or false (F). It is not necessary to show any work. However, a correct response earns full credit, an incorrect response earns <u>negative</u> half credit, and no response earns no credit.
- a. A linear system of 7 equations in 8 variables always has infinitely many solutions.

False.. It may have no solutions.

b. A 4×4 matrix of rank 4 is always invertible.

<u>True</u>. This assertion is equivalent to the assertion that the matrix is row-reducible to the identity.

c. Given any three nonzero vectors in \mathbb{R}^2 , no two of which are collinear, any one of them is a always a linear combination of the other two.

<u>True</u>. This was established by a geometrical argument in class and in homework. Any pair of non-collinear vectors in \mathbb{R}^2 spans \mathbb{R}^2 .

d. The function $f: \mathbf{R}^2 \to \mathbf{R}^2$ defined by $f \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ 1 \end{bmatrix}$ is linear.

False. Clearly, $f(\vec{0}) \neq \vec{0}$. It is also easy to show that, under f, the image of a sum is not the corresponding sum of the images and the image of a multiple is not that multiple of the image.

e. There is a 2×2 matrix A, different from the identity matrix, such that A^{2008} is the identity matrix.

<u>True</u>. There are many such matrices. For example, let A = -I or let A be a reflection across any line in \mathbb{R}^2 , or let A be the matrix for rotation by $\frac{2\pi}{2008}$, or let A be the matrix for rotation by $\frac{2\pi N}{2008}$ where N is any integer.

f. f and g are two linear transformations defined by $f(\vec{x}) = A\vec{x}$ and $g(\vec{x}) = B\vec{x}$ where A and B are 3×3 matrices. The composite function $f \circ g$ is also a linear transformation and its matrix is AB.

<u>True</u>. This is precisely the definition for the matrix of a composite.

g. No invertible 10×10 matrix can have more than 90 ones among its entries.

<u>False</u>. A 10×10 matrix with 92 or more ones would have 8 or fewer non-one entries. If the matrix had 8 or fewer non-one entries, these entries could be distributed over at most 8 rows. That would mean that, at least two rows would consist of all ones. Subtracting one of these rows of all ones

from the other would result in a row of all zeros. Therefore, the rref of such a matrix would have a row of zeros. Such a matrix would not be row-equivalent to the identity and it would therefore not be invertible. Among the 10×10 matrices with exactly 91 ones are the following.

It is not hard to see that $A_{rref} = I_{10}$ and so A is invertible. [Can you see how to show this? Hint: Begin by subtracting the second row from all the other rows.]