8.1

Characteristic equations:

$$r_{t} = ae^{z_{t}}k_{t}^{\alpha - 1}$$

$$c_{t} = e^{z_{t}}k_{t}^{\alpha} - k_{t+1}$$

$$c_{t}^{-1} = \beta E\{c_{t+1}^{-1}r_{t+1}\}$$

Steady states:

$$\bar{r} = \alpha \bar{k}^{\alpha - 1}$$

$$1 = \beta \bar{r}$$

$$\bar{c} = \bar{k}^{\alpha} - \bar{k}$$

Linearization and solving of F, G, H, L, &M:

$$F = \frac{\alpha \overline{K}^{\alpha-1}}{\overline{K}^{\alpha} - \overline{K}}$$

$$H = \frac{\alpha^{2} \overline{K}^{2(\alpha-1)}}{\overline{K}^{\alpha} - \overline{K}}$$

$$G = -\frac{\alpha \overline{K}^{\alpha-1} (\alpha + \overline{K}^{\alpha-1})}{\overline{K}^{\alpha} - \overline{K}}$$

$$L = -\frac{\alpha \overline{K}^{2\alpha-1}}{\overline{K}^{\alpha} - \overline{K}}$$

$$P = \frac{-G \pm \sqrt{G^{2} - 4FH}}{2F}$$

$$M = \frac{\alpha^{2} \overline{K}^{2(\alpha-1)}}{\overline{K}^{\alpha} - \overline{K}}$$

$$Q = -\frac{LN + M}{FN + FP + G}$$

and we get:

$$F = 2.38051966287$$

$$H = 1.68371931464$$

$$G = -5.16150615175$$

$$L = -1.6279703344$$

$$M = 1.68371931464$$

$$P = 0.83409605$$

$$Q = 0.14998134$$

Policy function:

Note that this is similar to the closed form solution.

8.2

Characteristic equations:

$$c_{t} = e^{z_{t}} k_{t}^{\alpha} - k_{t+1}$$

$$c_{t}^{-1} = \beta E \{ c_{t+1}^{-1} r_{t+1} \}$$

$$r_{t} = a e^{z_{t}} k_{t}^{\alpha - 1}$$

Steady states:

$$\bar{c} = \bar{k}^{\alpha} - \bar{k}$$
$$1 = \beta \bar{r}$$
$$\bar{r} = \alpha \bar{k}^{\alpha - 1}$$

After linearizing,

$$\tilde{c}_t = -\frac{\bar{k}}{\bar{c}}\tilde{k}_{t+1} + \frac{\bar{k}^{\alpha}}{\bar{c}}\alpha\tilde{k}_t + \frac{\bar{k}^{\alpha}}{\bar{c}}z_t$$
$$\tilde{c}_t = E\{\tilde{r}_{t+1}\} - E\{\tilde{c}_{t+1}\}$$

 $\tilde{r}_t = z_t + (\alpha - 1)\tilde{k}_t$

Then we have that

$$F = \frac{\bar{k}^2}{\bar{c}}$$

$$G = \frac{\alpha \bar{k}^{\alpha+1} - \bar{k}^2}{\bar{c}} + (\alpha - 1)\bar{k}$$

$$H = \frac{\alpha \bar{k}^{1+\alpha}}{\bar{c}}$$

$$L = \frac{\bar{k} - \bar{k}^{\alpha+1}}{\bar{c}}$$

$$M = \frac{\bar{k}^{1+\alpha}}{\bar{c}}$$

and that

$$P = \frac{-G \pm \sqrt{G^2 - 4FH}}{2F}$$

$$Q = -\frac{LN + M}{FN + FP + G}$$

Policy function:

$$\tilde{X}_t = (I_P)\bar{X} + P\tilde{X}_{t-1} + Q\tilde{z}_t$$

Numerical answers:

$$\bar{k}=.19278, \bar{r}=1.0204, \bar{c}=.36926, F=.100646, G=-4.8408, L=.22864, H=.102700, M=.293428, C=.22864, C=.22864, C=.22864, L=.22864, C=.22864, C$$

Policy function graphed:

Policy Function

8.3

$$\begin{split} E[F\tilde{X}_{t+1} + G\tilde{X}_t + H\tilde{X}_{t-1} + L\tilde{Z}_{t+1} + M\tilde{Z}_t] &= 0 \\ E[F(P\tilde{X}_t) + G\tilde{Z}_{t+1} + L\tilde{Z}_{t+1} + M\tilde{Z}_t] &= 0 \\ E[(FP+G)\tilde{X}_t + H\tilde{X}_{t-1} + (FQ+L)\tilde{Z}_{t+1} + M\tilde{t}] &= 0 \\ E[(FP+G)(P\tilde{X}_{t-1} + Q\tilde{Z}_t) + H\tilde{X}_{t-1} + (FG+L)(N\tilde{Z}_t + \varepsilon_{t+1}) + M\tilde{Z}_t] &= 0 \\ &= (FP^2 + GP + H)\tilde{X}_{t-1} + (FPQ + GQ + FQN + LN + M)Z_t &= 0 \\ [(FP+G)P+H]\tilde{X}_{t-1} + [(FQ+L)N + (FP+G)Q + M]\tilde{Z}_t &= 0 \end{split}$$

8.4

Steady state values:

$$k = 7.2875, c = 1.4845, r = 0.1215, w = 1.3280, l = 0.5797, T = 0.0742, y = 2.2133$$
 and $i = 0.7287$

8.5

	\bar{k}	\bar{c}	\bar{r}	\bar{w}	\bar{l}	\bar{T}	\bar{y}	\overline{i}
δ	-48.345	-3.511	1	-7.287	1.32	-0.176	-4.121	-0.61
au	-2.323	-0.234	0.023	-0.165	-0.139	0.849	-0.467	-0.232
\bar{z}	0	0	0	0	0	0	0.77	0
α	25.986	2.085	0	4.396	-0.769	0.104	4.684	2.599
γ	0.139	0.028	0	0	0.019	0.001	0.042	0.014
ξ	-0.802	-0.163	0	0	-0.11	-0.008	-0.243	-0.08
β	65.438	1.751	-1.096	7.988	0.26	0.088	8.295	6.544
a	-1.849	-0.377	0	0	-0.254	-0.019	-0.562	-0.185

8.6

We have that

$$F = \begin{bmatrix} 2.9046023 & -3.74013067 \\ 0. & 0. \end{bmatrix}$$

$$G = \begin{bmatrix} -5.88765983 & 3.8571742 \\ 2.90460231 & -8.11672985 \end{bmatrix}$$

$$H = \begin{bmatrix} 2.96699945 & 0. \\ -2.87232918 & 0. \end{bmatrix}$$

$$L = \begin{bmatrix} -2.1684962 \\ 0. \end{bmatrix}$$

$$M = \begin{bmatrix} 2.23635669 \\ -1.6363563 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.9153012 & 0. \\ -0.02633366 & 0. \end{bmatrix}$$

$$Q = \begin{bmatrix} 0.54506616 \\ -0.00654893 \end{bmatrix}$$

8.7
Linearized policy function graph:

8.9

The Average of Simulations												
Moments	mean 🔽	standard deviation 🔻	coefficient of variation	relative volatility 🔽	persistence 🔻	cyclicality						
GDP	1.283715524	0.03510534	37.24852981	1	0.891533728	1						
Consumption	0.861192975	0.042786171	24.98820726	1.227219641	0.221775606	0.78149153						
Investment	0.422522549	0.02636165	12.26032256	0.764775265	-0.905572216	0.062553135						
Labor Output	0.579791437	0.000380504	16.82381253	0.011037014	-0.88766256	0.015412588						
The Standard Errors of Simulations												
Moments	mean standard error	standard deviation	coefficient of variation	relative volatility	persistence	cyclicality						
GDP	0.009415936	0.00478594	5.09039541	0	0.029556273	0						
Consumption	0.009078493	0.004416592	3.417720146	0.096610274	0.183179171	0.061570432						
Investment	0.000345482	0.003954702	1.675552461	0.155610955	0.028189465	0.007479617						
Labor Output	1.10E-05	5.67E-05	2.299393347	0.002229548	0.03376364	0.028413377						

8.10

8.11 Lower computational time leads to a loss in accuracy.

