# **Cryptographic Hashing**



Applied Cryptography

## **Digest functions**

- - Sort of text "fingerprint"
- ▶ Produce very different values for similar texts
  - Cryptographic one-way hash functions

    Colissions Facist
- Relevant properties:
  - Preimage resistance
    - · Given a digest, it is infeasible to find an original text producing it
  - 2<sup>nd</sup>-preimage resistance
  - Given a text, it is infeasible to find another one with the same digest
     Collision resistance
     It is infeasible to find any two texts with the same digest

  - · Birthday paradox



Applied Cryptography





### **Rainbow tables**

- - For all possible input, we compute and store the digest
  - But the table size is given by the digest length
    - · Not usually applicable
- > Solution: rainbow tables
  - Trade space with time
  - Store only part of the outputs
    - · For direct matching
  - Find for more matches using computation



Applied Cryptography

5

### **Rainbow tables**

- - Which is not the inverse of H
  - The goal of R is to produce a new input given a hashing result



- - But we can use many different R functions
  - · Collisions scan still occur
    - But will not create a problem unless occurring at the exact same column
    - · And that case can be identified (and discarded) by identical outputs
- A table with m k-length rows can invert k×m hashes
  - At most
  - Only I<sub>0</sub> and I<sub>k</sub> is stored per row



3

# Rainbow tables: exploitation A set of m random inputs is generated I<sub>0</sub> = {I<sub>0,1</sub>, ... I<sub>0,m</sub>} A set of m k-length chain outputs is computed I<sub>k</sub> = {I<sub>k,1</sub>, ... I<sub>k,m</sub>} Given a target o Look for R(o) in I<sub>k</sub> If found in row r, compute chain from I<sub>0,r</sub> until finding i such that H(i) = o If not found, compute o<sub>r</sub> from o using H and R for each row r

do it. It needs a key

• H and R are applied 1 to k times, using different R functions

Applied Cryptography

• and see if  $o_r = I_{k,r}$ 

© André Zúquete / Tomás Oliveira e Silva







# **Authenticated encryption**

- ▷ Encryption mixed with integrity control
  - Error propagation
  - Authentication tags
- - GCM (Galois/Counter Mode)
  - CCM (Counter with CBC-MAC)



Applied Cryptography

11



