HW 3

Question 7:

Solve the following questions from the Discrete Math zyBook:

- a) Exercise 3.1.1, sections a-g
 - 1. Exercise 3.1.1, section a
 - i. True
 - 1. $27 \in A$ is true because 27 is a multiple of 3 (9 X 3)
 - 2. Exercise 3.1.1, section b
 - i. False
 - 1. $27 \in B$ is false because the square root of 27 is not an integer
 - 3. Exercise 3.1.1, section c
 - i. True
 - 1. $100 \in B$ is true because the square root of 100 is an integer (+/-10)
 - 4. Exercise 3.1.1, section d
 - i. False
 - 1. $E \subseteq C$ or $C \subseteq E$ is false because all elements of E are not in C and all elements of C are not in E
 - 5. Exercise 3.1.1, section e
 - i. True
 - 1. $E \subseteq A$ is true because $\{3, 6, 9\}$ are all multiples of 3
 - 6. Exercise 3.1.1, section f
 - i. False
 - 1. $A \subset E$ is false because A is a largest set than E
 - 7. Exercise 3.1.1, section g
 - i. False
 - 1. $E \in A$ is false because it is not an element it is a set
- b) Exercise 3.1.2, sections a-e
 - 1. Exercise 3.1.2, section a
 - i. False
 - 1. 15 ⊂ A is false because 15 is not a set and therefore cannot be a subset or a proper subset
 - 2. Exercise 3.1.2, section b
 - i. True
 - 1. $\{15\} \subset A$ is true because 15 is an element of A and A has additional elements as well
 - 3. Exercise 3.1.2, section c
 - i. True
 - 1. $\emptyset \subset A$ is true because the empty set is a subset of every set, and A has additional elements as well
 - 4. Exercise 3.1.2, section d
 - i. True

- 1. $A \subseteq A$ is true because all elements of A are also in A
- 5. Exercise 3.1.2, section e
 - i. False
 - 1. $\emptyset \in B$ is false because the empty set is not an element of B
- c) Exercise 3.1.5, sections b, d
 - 1. Exercise 3.1.5, section b
 - i. $\{x \in N^+: x \text{ is a multiple of 3}\}$
 - ii. Infinite set
 - 2. Exercise 3.1.5, section d
 - i. $\{x \in \mathbb{N}: x \text{ is a multiple of } 10 \text{ and } x \text{ is } \le 1000\}$
 - ii. Cardinality is 101
- d) Exercise 3.2.1, sections a-k
 - 1. Exercise 3.2.1, section a
 - i. True
 - 1. 2 is an element of X
 - 2. Exercise 3.2.1, section b
 - i. True
 - 1. 2 is an element of X so the set $\{2\}$ is a subset of X
 - 3. Exercise 3.2.1, section c
 - i. False
 - 1. $\{2\}$ is not an element of X
 - 4. Exercise 3.2.1, section d
 - i. False
 - 1. 3 is not an element of X
 - 5. Exercise 3.2.1, section e
 - i. True
 - 1. The set $\{1, 2\}$ is an element of X
 - 6. Exercise 3.2.1, section f
 - i. True
 - 1. 1 and 2 are elements of X, therefore the set {1, 2} is a subset of X
 - 7. Exercise 3.2.1, section g
 - i. True
 - 1. 2 and 4 are elements of X, therefore the set {2, 4} is a subset of X
 - 8. Exercise 3.2.1, section h
 - i. False
 - 1. The set $\{2,4\}$ is not an element of X
 - 9. Exercise 3.2.1, section i
 - i. False
 - 1. 3 is not an element of X, therefore the set $\{2, 3\}$ is not a subset of X
 - 10. Exercise 3.2.1, section j
 - i. False
 - 1. The set $\{2,3\}$ is not an element of X
 - 11. Exercise 3.2.1, section k
 - i. False
 - 1. The cardinality of X is 6 not 7

Question 8:

Solve Exercise 3.2.4, section b from the Discrete Math zyBook

- a) Exercise 3.2.4, section b
 - 1. Let $A = \{1, 2, 3\}$. What is $\{X \in P(A): 2 \in X\}$

i.
$$P(A) = \{ \emptyset, \{ 1 \}, \{ 2 \}, \{ 3 \}, \{ 1,2 \}, \{ 1,3 \}, \{ 2,3 \}, \{ 1,2,3 \} \}$$

ii.
$$\{X \in P(A): 2 \in X\} = \{\{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$$

1. Identify all sets where 2 is an element of that set

Question 9:

Solve the following questions from the Discrete Math zyBook:

- a) Exercise 3.3.1, sections c-e
 - 1. Exercise 3.3.1, section c

i.
$$A \cap C = \{-3, 1, 17\}$$

2. Exercise 3.3.1, section d

i.
$$A \cup (B \cap C) = \{-5, -3, 0, 1, 4, 17\}$$

1. $(B \cap C) = \{-5, 1\}$

- 3. Exercise 3.3.1, section e
 - i. $A \cap B \cap C = \{1\}$

1.
$$A \cap B = \{1, 4\}$$

- b) Exercise 3.3.3, sections a, b, e, f
 - 1. Exercise 3.3.3, section a

i.
$$\bigcap_{i=2}^{5} A_{i}$$

$$1. \quad A_{2} = \{2^{0}, 2^{1}, 2^{2}\} = \{1, 2, 4\}$$

$$2. \quad A_{3} = \{3^{0}, 3^{1}, 3^{2}\} = \{1, 3, 9\}$$

$$3. \quad A_{4} = \{4^{0}, 4^{1}, 4^{2}\} = \{1, 4, 16\}$$

$$4. \quad A_{5} = \{5^{0}, 5^{1}, 5^{2}\} = \{1, 5, 25\}$$

2. Exercise 3.3.3, section b

3. Exercise 3.3.3, section e

i.
$$\bigcap_{i=1}^{100} C_i = \{ \mathbf{x} \in \mathbf{R} : -1/100 \le \mathbf{x} \le 1/100 \} = \{ \mathbf{x} \in \mathbf{R} : -\mathbf{0.01} \le \mathbf{x} \le \mathbf{0.01} \}$$

- 1. The intersection of all real numbers from -1 to 1 at i=1 and -0.01 to 0.01 at i=100 is the smaller range defined by i=100
- 4. Exercise 3.3.3, section f

$$\bigcup_{i=1}^{100} C_i = \{ \mathbf{x} \in \mathbf{R} : -1/1 \le \mathbf{x} \le 1/1 \} = \{ \mathbf{x} \in \mathbf{R} : -1 \le \mathbf{x} \le 1 \}$$

1. The union of all real numbers from -1 to 1 at i=1 to -0.01 to 0.01 at i=100 is the larger range defined by i=1

- c) Exercise 3.3.4, sections b, d
 - 1. Exercise 3.3.4, section b

i.
$$P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

1.
$$(A \cup B) = \{a, b, c\}$$

- 2. Exercise 3.3.4, section d
 - i. $P(A) \cup P(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$
 - 1. $P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$
 - 2. $P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\$

Question 10:

Solve the following questions from the Discrete Math zyBook:

- a) Exercise 3.5.1, sections b, c
 - 1. Exercise 3.5.1, section b
 - i. (foam, tall, non-fat)
 - 2. Exercise 3.5.1, section c
 - i. $B \times C = \{(foam, non-fat), (foam, whole), (no-foam, non-fat), (no-foam, whole)\}$
- b) Exercise 3.5.3, sections b, c, e
 - 1. Exercise 3.5.3, section b
 - i. True
 - 1. "All integers" is a subset of "all real numbers" so the cartesian product of Z^2 is a subset of \mathbb{R}^2
 - 2. Exercise 3.5.3, section c
 - i. True
 - 1. The elements in \mathbb{Z}^2 are pairs. The elements in \mathbb{Z}^3 are triples. Therefore, the two sets have no elements in common and their intersection is the empty set
 - 3. Exercise 3.5.3, section e
 - i. True
 - 1. If A is a subset of B, then all elements of A X C will also be in B X C
 - 2. B X C can be viewed as A X C and some additional "other elements" X C, and therefore A X C will be a subset of B X C
- c) Exercise 3.5.6, sections d, e
 - 1. Exercise 3.5.6, section d
 - i. {01, 011, 001, 0011}
 - 1. $x = \{0, 00\}$
 - 2. $y = \{1, 11\}$
 - 2. Exercise 3.5.6, section e
 - i. {aaa, aaaa, aba, abaa}
 - 1. $x = \{aa, ab\}$
 - 2. $y = \{a, aa\}$

- d) Exercise 3.5.7, sections c, f, g
 - 1. Exercise 3.5.7, section c
 - i. {aa, ab, ac, ad}

1.
$$(A \times B) = \{ab, ac\}$$

2.
$$(A \times C) = \{aa, ab, ad\}$$

- 2. Exercise 3.5.7, section f
 - i. $P(A \times B) = \{ \emptyset, \{ab\}, \{ac\}, \{ab, ac\} \}$

1.
$$(A \times B) = \{ab, ac\}$$

- 3. Exercise 3.5.7, section g
 - i. $P(A) \times P(B) = \{ (\emptyset,\emptyset), (\emptyset, \{b\}), (\emptyset, \{c\}), (\emptyset, \{b, c\}), (\{a\},\emptyset), (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{b, c\}) \}$
 - 1. $P(A) = \{\emptyset, \{a\}\}\$
 - 2. $P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\$

Question 11:

Solve the following questions from the Discrete Math zyBook:

- a) Exercise 3.6.2, sections b, c
 - 1. Exercise 3.6.2, section b

		_
i. ($(B \cup A) \cap$	$(B \cup A) = A$

1.	_	
	$(A \cup B) \cap (A \cup B)$	Commutative Law
2.	_	
	$A \cup (B \cap B)$	Distributive Law
_		
3.	$A \cup \emptyset$	Complement Law

2. Exercise 3.6.2, section c

i.
$$A \cap B = A \cup B$$

1.	-	
	$\bar{\mathbf{A}} \cup \bar{\mathbf{B}}$	De Morgan's Law
2.	$\bar{\mathbf{A}} \cup \mathbf{B}$	Double Complement Law

- b) Exercise 3.6.3, sections b, d
 - 1. Exercise 3.6.3, section b

i. Suppose
$$A = \{1, 2, 3\}$$
 and $B = \{2, 3\}$

ii.
$$(B \cap A) = \{2, 3\}$$

iii.
$$A - (B \cap A) = \{1\}$$

- iv. $\{1\}$ does not equal $\{1, 2, 3\}$
- 2. Exercise 3.6.3, section d

i. Suppose
$$A = \{2, 3\}$$
 and $B = \{1, 2, 3\}$

ii.
$$(B - A) = \{1\}$$

iii.
$$(B - A) \cup A = \{1\} \cup \{2, 3\} = \{1, 2, 3\}$$

iv.
$$\{1, 2, 3\}$$
 does not equal $\{2, 3\}$

c) Exercise 3.6.4, sections b, c

1. Exercise 3.6.4, section b

	$A \cap (B - A)$	
1.	_	
	$A \cap (B \cap A)$	Set subtraction law
2.	_	
	$\mathbf{A} \cap (\mathbf{A} \cap \mathbf{B})$	Commutative law
3.	_	
	$(A \cap A) \cap B$	Associative law
4.	$\emptyset \cap \mathbf{B}$	Complement law
5.	$\mathbf{B} \cap \mathbf{\emptyset}$	Commutative law
6.	Ø	Domination law

2. Exercise 3.6.4, section c

	A U (B - A)	
1.	_	
	$A \cup (B \cap A)$	Set subtraction law
2.	_	
	$A \cup (A \cap B)$	Commutative law
3.	_	
	$(A \cup A) \cap (A \cup B)$	Distributive law
4.	$\mathbf{U} \cap (\mathbf{A} \cup \mathbf{B})$	Complement law
5.	$(A \cup B) \cap U$	Commutative law
6.	(A U B)	Identity law