CS & IT

ENGINEERING

Discrete Maths
Set Theory
Basic of sets

Lecture No.1

By-SATISH YADAV SIR

TOPICS TO BE COVERED

Set: unordered collections of an objects.

$$a \in A$$

er mile A

clement E Set

I. ovder does not matter.

{a,b,c} or [b,a,c]

ala

d'Repth are not allowed.

Roster method.;

Set builder notation:

$$(1,7) = \{2,3,4,5,6\}$$

 $(a,b) = \{n \mid a < n < b\}$

$$An = \begin{bmatrix} -2n, 3n \end{bmatrix}$$

equal sets:

$$A.B$$
 $\forall n(neader)$
 $A=B$

eq2.
$$A = \{ij\}$$
 or $\{\emptyset\}$
 $|A| = 1$.

Igleton set

Pw

Subset (<)

set1 ≤ set 2.

ASB

Yn(neA-)neB)

 $\forall n (n \in \phi \longrightarrow x \in s)$

A={1,218={1,2,31

ASB

Any set S.

1) p = 5.

2) S = S.

proper serbset (c)

ACB A < B

+n(n∈A→neB)∧∃n(neBnn¢A) | L |A|<|B| OR |A|=|B|.

A SB.

A (S | B)

set: A

powerset
$$(p(A)/2^f)$$
 — set of au subsets.

element E set

Set
$$\subseteq$$
 set $A = \{n, \{n\}\} \{\{n\}\}\}$

element \subseteq set $\{n\} \in A$
 $\{n$

$$A = \left\{ \begin{array}{c} 1 \\ \hline 2 \end{array} \right\} \left\{ \begin{array}{c} 2 \\ \hline e_2 \end{array} \right\}$$

$$A = \left\{ \begin{array}{c} e_1 \\ \phi \end{array}, \left\{ \begin{array}{c} e_2 \\ \phi \end{array} \right\} \right\}$$

$$2. \phi \subseteq A(Thm)$$

