Tilastollinen päättely, syksy 2013 - kevät 2014

2. kurssikoe 24. 2. 2014

Huom. Kokeessa saa käyttää laskinta mutta ei omia taulukoita!

1. Tilastollinen malli muodostuu riippumattomista satunnaismuuttujista Y_1, \ldots, Y_n , jotka noudattavat kukin jatkuvaa jakaumaa, jonka tiheysfunktio on

$$f(y; \lambda) = 2\lambda y \exp(-\lambda y^2), \qquad y > 0,$$

ja jossa $\lambda > 0$. Muodosta mallin uskottavuusfunktio ja etsi parametrille λ yksiulotteinen tyhjentävä tunnusluku.

- 2. a) Erään tilastollisen mallin parametria θ koskevaa hypoteesia H_0 : $\theta = \theta_0$ päätetään testata käyttäen testisuuretta t(y), jonka suurten arvojen tiedetään olevan kriittisiä H_0 :lle. Esitä p-arvon eli havaitun merkitsevyystason määritelmä ja selitä, miksi pienen p-arvon voidaan tulkita todistavan H_0 :aa vastaan.
 - b) Mitä tarkoitetaan valintakorjauksella ja milloin se on tarpeen? Pari virkettä riittää.
- 3. Toistokokeessa (onnistumistodennäköisyys θ) suoritetaan 6 toistoa ja lasketaan onnistumisten lukumäärä k. Halutaan testata hypoteesia $H_0: \theta \leq 0.3$ vastaan hypoteesia $H_1: \theta > 0.3$. Testisuureena on k.
 - a) Millaiset k:n arvot (pienet vai suuret) todistavat H_0 :aa vastaan ja H_1 :n puolesta?
 - b) Toimitaan merkitsevyystasolla 0.10. Ilmoita vastaava kriittinen alue (eli mitkä k:n arvot johtavat H_0 :n hylkäämiseen ja H_1 :n hyväksymiseen). Perustele tarkasti.
 - c) Laske testin voima pisteessä $\theta = 0.6$.

Alla on taulukoitu binomijakauman $Bin(6,\theta)$ pistetodennäköisyydet eräillä θ :n arvoilla:

\boldsymbol{k}	$\theta = 0.1$	$\theta = 0.2$	$\theta = 0.3$	$\theta = 0.4$	$\theta = 0.5$
0	.5314	.2621	.1176	.0467	.0156
1	.3543	.3932	.3025	.1866	.0938
2	.0984	.2458	.3241	.3110	.2344
3	.0146	.0819	.1852	.2765	.3125
4	.0012	.0154	.0595	.1382	.2344
5	.0001	.0015	.0102	.0369	.0938
6	.0000	.0001	.0007	.0041	.0156

- 4. Olkoot $Y_1, \ldots, Y_n \sim P(\mu) \perp$ ja olkoon $\hat{\mu} = \overline{Y}$ suurimman uskottavuuden estimaattori.
 - a) Mitä normaalijakaumaa $\hat{\mu}$ approksimatiivisesti noudattaa, kun n on suuri?
 - b) Havaintoja on n=50 ja niiden keskiarvo on $\overline{y}=15$. Muodosta Waldin testiin (eli yo. normaaliapproksimaatioon) perustuva approksimatiivinen 95 %:n luottamusväli μ :lle.

Muistin tueksi:

Jakauman $P(\mu)$ pistetodennäköisyydet ovat $f(y;\mu) = e^{-\mu}\mu^y/y!$, kun y = 0, 1, 2, ..., ja odotusarvo sekä varianssi kumpikin μ .

Jos $Z \sim N(0,1)$, niin $P(Z \ge 1.96) \approx 0.025$.