

Assessing Neurological States from Physiological Signals

Mona Ibrahim 900212749

Shaymaa Nabil 900214260

Table of Contents

01 Introduction

Introduction

Traditionally, an EEG (electroencephalography) is used to measure the electrical activity in the brain, helping in diagnosing the brain condition. However, it's resource intensive and requires specialized equipment

Non-EEG physiological signals examination has been introduced where it "evaluates brain and nervous system functioning"

Problem Statement

Classify these collected physiological signals into either one of the four neurological states:

- **Physical stress**
- **Cognitive stress**
- **Emotional stress**
- Relaxation

Retrieved from Physionet and is collected at the Quality of Life Laboratory at University of Texas at Dallas

Collected using non-invasive wrist worn biosensors

Measure 5 different attributes

20 subjects, where each had to undergo a series of 7 stages

Electrodermal activity (EDA)

Temperature

Acceleration

Heart rate (HR)

Arterial oxygen level (Sp02)

03

Dataset Preprocessing

Data preprocessing

Initial Signal Processing

Signal Types and Sampling Rates

- AccTempEDA File:
 - Sampling Rate: 8 Hz (8 samples/second).
- Sp02HR File:
 - Sampling Rate: 1 Hz (1 sample/second).

Annotation Parsing

- Sample Indices: Define start and end points for each stage (8 Hz).
- Stage Names: Labels such as 'Relax', 'PhysicalStress'.

Initial Signal Processing

Segmentation Process

- **For each stage (except last):** Extract data from sample[j] to sample[j+1].
- For the last stage: Extract from sample[j] to the end of the recording.

Result:

 Signals are grouped into dictionaries by stage (e.g., Relax, PhysicalStress).

Signal Resizing

- **Objective:** Ensure consistent lengths across subjects and stages.
- Resized based on minimum lengths for each stage:
 - AccTempEDA Signals: e.g., 2384 samples for 'Relax'.
 - Sp02HR Signals: e.g., 298 samples for most stages.
- Approach: Truncate longer signals; pad shorter ones.

Feature Extraction

- Combine data into a single vector per observation:
 - AccTempEDA Signals: 8 samples × 5 signals = 40 values.
 - **Sp02HR Signals:** 1 sample each from Sp02 and HR = 2 values.
- Total Features per Observation: 40 + 2 = 42 Features.

Feature Vector

04

Modeling and Results

Approach for modeling

Goal: Classify Activity Stages

Stages: Relax, Physical Stress, Emotional Stress, Cognitive Stress.

Methodology:

- 1. Train machine learning models for each subject individually.
- 2. Use labeled feature vectors for training.
- 3. Evaluate performance for accurate classification.

Model Results

99.18%

Random Forest

Using Cross Validation without PCA

	Model	Cross-Validation	Leave-one out	PCA	Accuracy
0	Multi-Layer Perceptron	Yes		Yes	98.85
1	Multi-Layer Perceptron		Yes	Yes	66.42
2	Multi-Layer Perceptron	Yes		NO	66.42
3	KNN	Yes		Yes	93.68
4	KNN		Yes	Yes	71.62
5	KNN	Yes	==	NO	91.48
6	Random Forest	Yes		Yes	98.80
7	Random Forest		Yes	Yes	77.55
8	Random Forest	Yes		NO	99.18
9	Decision Tree	Yes		Yes	93.93
10	Decision Tree		Yes	Yes	77.19
11	Decision Tree	Yes		NO	95.64
12	Naive Bayes	Yes		Yes	90.51
13	Naive Bayes		Yes	Yes	72.53
14	Naive Bayes	Yes		No	91.76
15	FLDA	Yes		Yes	91.86
16	FLDA		Yes	Yes	77.24
17	FLDA	Yes		No	91.89
18	LS	Yes		Yes	64.36
19	LS		Yes	Yes	41.71
20	LS	Yes		No	64.28

Due to robustness against overfitting and capturing nonlinear interactions within the data.

Feature Importance

- Exploring the feature importance for Random Forests.
- Used Gini importance
- The most important feature in the feature vector feature 17 that is related to "az" which is part of the Electrodermal activity

Max importance feature: 17

Importance: 0.0955849550981549

Value Related to az

Feature	Importance		
1	0.003918		
2	0.008186		
3	0.004017		
4	0.005090		
5	0.005818		
6	0.004335		
7	0.005105		
8	0.001730		
9	0.003299		
10	0.001519		
11	0.005849		
12	0.002760		
13	0.004015		
14	0.001629		
15	0.003640		
16	0.003829		
17	0.095585		
18	0.088780		
19	0.057243		
20	0.046901		
21	0.061616		
22	0.057379		
23	0.070388		
24	0.048101		
25	0.027703		
26	0.037728		
27	0.019445		

05

Graphical User Interface (GUI)

GUI

Input = Subject Number

Randomly select signal vector at time 't' that contains a combination of the different attributes for that particular subject

Output = classification of the state this vector is at

-

comparing it to the ground truth

GUI

Better help doctors and Lab-technicians in identifying signals faster,

minimizing the inference time where the results are just a click away; in addition to, minimizing the human error

For future work, we would like to upgrade such an application to take a subject's file as an input even if it isn't contained within the dataset, so that it's more dynamic and can be generalized and used over more numbers of patients.

GUI

Neurological Status Prediction

Enter Patient Number:

Predict

06 Conclusion

Random Forest achieved the highest accuracy in classifying neurological states using physiological signals.

Future work could focus on

- Expanding the dataset
- Refining the classifiers
- Improving the GUI to further enhance usability and accuracy.

References

- Cleveland Clinic Medical. (2022, April 1). Neurological exam. Cleveland Clinic.
 https://my.clevelandclinic.org/health/diagnostics/22664-neurological-exam
- EEG (electroencephalogram). (2024, May 29). Mayo Clinic. https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875