Esercitazione CICLO COMBINATO

Una turbina a gas opera secondo un ciclo Brayton (per i calcoli seguenti si faccia riferimento al ciclo ad aria standard, peso atomico 28.8) che opera tra una pressione iniziale di un'atmosfera e temperatura iniziale T_1 , all'ingresso del compressore, di 27°C ed una temperatura massima T_3 , all'ingresso in turbina, pari a 1427°C. Il rapporto monometrico di compressione che massimizza il lavoro specifico del cicloè pari β =20 Utilizzando tale rapporto si calcoli la temperatura all'uscita del compressore T_2
Si determini inoltre la portata di gas $\dot{m}_{gas} =$ necessaria affinché l'impianto eroghi una potenza netta di 250 MW e l'area utile di ingresso in turbina $A=$ sapendo che la velocità del gas all'ingresso della stessa è pari a 100 m/s.
Il 90% della potenza termica scaricata dall'impianto sopra descritto è trasferita ad una sezione a ciclo Rankine dove il vapore è condensato alla temperatura di 33°C, l'acqua è inviata in caldaia alla pressione di 15 MPa e riscaldata sino alla temperatura di 600°C. Il vapore subisce una prima espansione in una turbina ad alta pressione sino alla pressione di 1 MPa ed è quindi nuovamente surriscaldato sino a 600°C prima di essere espanso nella turbina di bassa pressione. Si determini il rendimento del ciclo Rankine η_r =, la potenza generata dalla sezione a vapore P_r = ed il rendimento globale del ciclo combinato η_{cc} = Commentate il valore del titolo del vapore al termine dell'espansione in turbina:
Una unità di generazione reale per fornire la stessa potenza del sistema reversibile deve essere alimentata con 17 m ³ /s di gas naturale con un potere calorifico pari a 8200 kcal/m ³ . Si determini il rendimento di secondo principio dell'unità di generazione reale η_{II} = Si spieghi perché questo ciclo combinato non può esistere nella realtà
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$