

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =100V, I_D =240A $R_{DS(ON)}$ =2.0m Ω , typical (TO-220)@ V_{GS} =10V $R_{DS(ON)}$ =1.8m Ω , typical (TO-263)@ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

3 Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N020-TC	VST10N020	TO-220C	-	-	-
VST10N020-T3	VST10N020	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	100	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	240	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	170	А
Pulsed Drain Current (Note 1)	I _{DM}	960	А
Maximum Power Dissipation	P _D	340	W
Derating factor		2.27	W/°C
Single pulse avalanche energy (Note 4)	E _{AS}	2784	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 2)	Rejc	0.44	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	60	°C/W

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	n	Min	Тур	Max	Unit
Off Characteristics	<u> </u>				•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA		100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V		-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V		-	-	±100	nA
On Characteristics (Note 2)	<u> </u>				•		
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA		2.0	3.0	4.0	V
Dunin Course On State Begintered	Б	V _{GS} =10V, I _D =120A	TO-220	-	2.0	2.3	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}		TO-263		1.8	2.1	mΩ
Gate resistance	R _G			-	2.5	-	Ω
Forward Transconductance	g FS	V _{DS} =5V,I _D =1	20A		200	-	S
Dynamic Characteristics (Note3)	<u>.</u>				•		
Input Capacitance	C _{Iss}	- V _{DS} =50V,V _{GS} =0V, F=1.0MHz		-	17000	-	PF
Output Capacitance	Coss			-	1500	-	PF
Reverse Transfer Capacitance	C _{rss}			-	77	-	PF
Switching Characteristics (Note 3)				•			•
Turn-on Delay Time	t _{d(on)}	V_{DD} =50V, I_{D} =120A V_{GS} =10V, R_{G} =1.6 Ω		-	37	-	nS
Turn-on Rise Time	t _r			-	29	-	nS
Turn-Off Delay Time	t _{d(off)}			-	82	-	nS
Turn-Off Fall Time	t _f			-	34	-	nS
Total Gate Charge	Qg	V 50VI	1004	-	252	-	nC
Gate-Source Charge	Q _{gs}	- V _{DS} =50V,I _D =120A, - V _{GS} =10V		-	72		nC
Gate-Drain Charge	Q_{gd}			-	63		nC
Drain-Source Diode Characteristics	•						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =120A		-		1.2	V
Diode Forward Current (Note 2)	Is			-	-	240	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 120A		-	105	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note2)		-	290	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. The value of $R_{\theta JA}$ is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ and the maximum allowed junction temperature of 150° C. The value in any given application depends on .the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.
- 3. Guaranteed by design, not subject to production
- 4. EAS condition : Tj=25 $^{\circ}\text{C}$,V $_{\text{DD}}$ =50V ,V $_{\text{G}}$ =10V ,L=0.5mH ,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

T_J-Junction Temperature(°C)

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance

TO-220-3L Package Information

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
А	4.400	4.600	0.173	0.181	
A1	2.250	2.550	0.089	0.100	
b	0.710	0.910	0.028	0.036	
b1	1.170	1.370	0.046	0.054	
С	0.330	0.650	0.013	0.026	
c1	1.200	1.400	0.047	0.055	
D	9.910	10.250	0.390	0.404	
E	8.9500	9.750	0.352	0.384	
E1	12.650	12.950	0.498	0.510	
е	2.540	2.540 TYP.		TYP.	
e1	4.980	5.180	0.196	0.204	
F	2.650	2.950	0.104	0.116	
Н	7.900	8.100	0.311	0.319	
h	0.000	0.300	0.000	0.012	
L	12.900	13.400	0.508	0.528	
L1	2.850	3.250	0.112	0.128	
V	6.900	REF.	0.276 REF.		
Ф	3.400	3.800	0.134	0.150	