ECON 711B - Voting Game

Alex von Hafften

11/5/2020

Ideas for setup:

- Continuum of players.
- Discrete choices: Vote and not vote. Democratic vote for democrats; republicans vote for republicans.

Stylized facts:

- Costly voting.
- Signal from voting increases with income.

Result:

• Voting rates increase with income.

Higher income and voting

- Two types of players: R and D.
- If more Rs vote than Ds, Rs win and Rs get payoff x. If more Ds vote than Rs, Ds win and Ds get payoff $x \in \mathbb{R}_+$.
- There is a continuum of each type of players. For each type, player $w \in [0,1]$ earns w per unit of time.
- It takes $c \in (0,1)$ units of time to vote. So the cost of voting is cw.
- The benefit of voting is a signal of your in-group-ness. The strength of the signal is f(w). Assume that f is strictly increasing (f' > 0) and strictly convex (f'' > 0).
- The payoff for a D is

$\overline{u_D} =$	R wins	D wins
v = 1	f(w) - cw	f(w) - cw + x
v = 0	0	x

• The payoff for a R is

$\overline{u_R} =$	D wins	R wins
v = 1	f(w) - cw	f(w) - cw + x
v = 0	0	x

- Since the unit mass of an individual is zero, they cannot sway the result of the election.
- Voting is a dominant strategy if cw < f(w).
- Not voting is a dominant strategy if cw > f(w)

• Result is lower income agents don't vote and higher income agents vote despite the higher time-cost trade-off.