Tema 4: Probabilidad

Profesora: Carmen Elvira Ramos Domínguez

Índice

- Fenómenos Determinista y Aleatorio.
- Sucesos. Operaciones con Sucesos y Propiedades.
- Probabilidad. Consecuencia de los Axiomas.
- Asignación de Probabilidades
- Espacio Probabilístico Equiprobable.
- Probabilidad Condicionada.
- Independencia de Sucesos.
- Regla de la Multiplicación.
- > Teorema de Probabilidad Total.
- Representación en Árbol de Sucesos.
- > Teorema de Bayes.
- Análisis Combinatorio.

Fenómenos Determinista y Aleatorio

Definición: Existen fenómenos cuyo resultado es previsible bajo ciertas condiciones dadas, salvo quizás errores de medida. A estos fenómenos se les denomina fenómenos deterministas.

Definición: Un fenómeno o experimento aleatorio es un fenómeno observable en el que interviene el azar y cuyo resultado no se puede determinar, ni aunque se realice bajo las mismas condiciones.

El concepto de Probabilidad surge al tratar de medir o cuantificar la posibilidad de que ocurra un determinado resultado del experimento aleatorio.

Nociones de Probabilidad

- ¿Cuál es la probabilidad de aprobar Estadística?
- ¿Cuál es la probabilidad de pertenecer al grupo de tarde de 2º del Grado en Ingeniería Informática?
- Todos los días nos hacemos preguntas sobre probabilidad e intuitivamente entendemos su concepto.
- Frecuentista: La probabilidad de un resultado es la frecuencia relativa de ese resultado, la proporción de observaciones en que ocurriría dicho resultado al realizar un experimento aleatorio repetidas veces.

		Frecuencia	Porcentaje
Validos	Mañana	102	48,11
	Tarde	110	51,89
	Total	212	100

Espacios Muestrales

Definición: Dado un experimento aleatorio, recibe el nombre de espacio muestral asociado con dicho experimento al conjunto cuyos elementos son todos los posibles resultados diferentes del experimento.

Ejemplo: El lanzamiento de un dado, $\Omega = \{1,2,3,4,5,6\}$

Tipos de Espacios Muestrales:

- 1. Espacios Muestrales Finitos: Aquellos compuesto por un nº finito de elementos. Ejemplo: La tirada de una ruleta
- 2. Espacios Muestrales Infinitos Numerables: Aquellos con un nº infinito de elementos, pero que podemos enumerar. Ejemplo: Nº de Llamadas que se reciben en una centralita en un intervalo de tiempo
- 3. Espacios Muestrales Infinitos No Numerables: Aquellos con un nº infinito de elementos, que no podemos enumerar. Ejemplo: Elección de un nº en el intervalo [0, 1]

Sucesos

Definición: Un suceso A de un experimento aleatorio es un subconjunto de resultados posibles del experimento.

$$A \subseteq \Omega$$

Tipos de Sucesos:

- 1. Sucesos Simples: Aquellos sucesos que sólo pueden ocurrir de una sola forma, es decir, no se pueden descomponer. Ejemplo: Salir un 1 en el lanzamiento de un dado.
- 2. Sucesos Compuestos: Aquellos que pueden ocurrir de más de una forma, esto es, están formados por otros sucesos simples. Ejemplo: Salir par en el lanzamiento de un dado.

Operaciones con Sucesos

- 1. Unión de Sucesos: $A \cup B$ es aquel suceso que ocurre siempre que ocurre A o siempre que ocurre B.
- 2. Intersección de Sucesos: A ∩ B es aquel suceso que ocurre siempre que ocurran A y B, de forma simultánea.
- 3. Suceso Complementario: A^c es aquel suceso que ocurre siempre que no ocurre A
- 4. Suceso Imposible: Ø es aquel suceso que no ocurre nunca. Es intersección de un suceso con su complementario. A∩A^c=Ø
- 5. Suceso Seguro: Ω es aquel suceso que siempre ocurre.
- 6. Sucesos Incompatibles: Dos sucesos A y B de un cierto experimento aleatorio se dicen incompatibles si su intersección es el suceso imposible. $A \cap B = \emptyset$.
- 7. Suceso Contenido en Otro: Dados dos sucesos A y B de un experimento aleatorio se dice que A está contenido en B si siempre que ocurre A ocurre B. A B.
- 8. Diferencia de Sucesos: A B es aquel suceso que ocurre siempre que ocurre A y no ocurre B. A B = A \cap B°.

Propiedades de las Operaciones

- 1. Asociativa: $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
- 2. Conmutativa: $(A \cup B) = (B \cup A)$ $(A \cap B) = (B \cap A)$
- 3. Elemento Neutro: $(A \cup \emptyset) = A$ $(A \cap \Omega) = A$
- 4. Distributiva: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- 5. Leyes de Morgan: $(A \cup B)^C = A^C \cap B^C$ $(A \cap B)^C = A^C \cup B^C$

Frecuencia de un Suceso y propiedades

Definición: Sea A un suceso se define la frecuencia absoluta "n_A" del suceso A como el número de veces que ocurre el suceso A en una serie de n repeticiones similares del experimento.

Definición: Se define la frecuencia relativa "f_A" de un suceso A como el cociente entre la frecuencia absoluta de dicho suceso y el número de veces que se realiza el experimento.

Propiedades: 1.- $0 \le f_A \le 1 \ \forall A$

2.-
$$f_{\Omega} = 1$$

3.-
$$f_{\varnothing} = 0$$

4.- Sean A y B dos sucesos con A \cap B = \emptyset , entonces:

$$n_{A \cup B} = n_A + n_B$$
 y como consecuencia $f_{A \cup B} = f_A + f_B$

Probabilidad

Definición: Sea Ω el espacio muestral asociado con un experimento aleatorio, se define la probabilidad como una aplicación que asigna a cada suceso A un número P(A) del intervalo [0,1] que satisface los tres siguientes axiomas.

1.- 0 <=
$$P(A) \forall A$$

2.-
$$P(Ω) = 1$$

3.- $P(A \cup B) = P(A) + P(B)$, para cualesquiera A y B dos sucesos incompatibles $(A \cap B = \emptyset)$.

Consecuencias de los Axiomas:

1.-
$$P(A^{C}) = 1 - P(A)$$

2.-
$$P(\emptyset) = 0$$

3.- Sea A
$$\subset$$
 B entonces P(A) <= P(B)

4.-
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Asignación de Probabilidades

Sea un experimento aleatorio con espacio muestral

$$\Omega = \{e_1, e_2, e_3, ..., e_n\}$$
 finito

donde cada e, es un suceso elemental.

Como los sucesos elementales son todos incompatibles

$$e_i \cap e_j = \emptyset y \Omega = \bigcup_{i=1}^n e_i$$

Entonces:

1=
$$P(\Omega)$$
 = $P(\bigcup_{i=1}^{n} e_i)$ = $\sum_{i=1}^{n} P(e_i)$

Por tanto:

- 1. Asignamos $P(e_1) = p_1$, $P(e_2) = p_2$, ..., $P(e_n) = p_n$ con $0 \le p_i \le 1$ $y \sum_{i=1}^{n} p_i = 1$
- 2. Entonces dado cualquier $A = \bigcup_{e_i \in A} e_i$ se tiene:

$$P(A) = \sum_{e_i \in A} P(e_i) = \sum_{e_i \in A} p_i$$

Espacio Probabilístico Equiprobable

Definición: El espacio probabilístico equiprobable es un espacio en el cual todos los sucesos elementales tienen igual probabilidad.

Dado
$$\Omega = \{e_1, e_2, e_3, ..., e_n\} \Rightarrow P(e_i) = \frac{1}{n} \forall i = 1, 2, ..., n$$

En estos casos se aplica la Regla de Laplace para el cálculo de probabilidades:

Sea A entonces:

$$P(A) = \frac{n^{\circ} \text{ de casos favorables}}{n^{\circ} \text{ de casos posibles}} = \frac{n^{\circ} \text{ de sucesos elementales en A}}{n^{\circ} \text{ total de sucesos elementales}}$$

Probabilidad Condicionada

Dados A y B dos sucesos asociados con un experimento aleatorio. Supongamos que estamos interesados en la probabilidad de que ocurra A y nos informan de que ha ocurrido B.

¿Cambiaría la probabilidad inicial de que ocurra A?

SI

NO

A veces las probabilidades varían a medida que se tiene más información sobre el experimento.

Ejemplo: Lanzamiento de un dado.

$$A = \{Salir un 1\}$$
 $B = \{Salir par\}$ $C = \{Salir impar\}$

$$P(A) = 1/6$$

$$P(B) = 1/2$$

$$P(A) = 1/6$$
 $P(B) = 1/2$ $P(C) = 1/2$

$$P(A/B) = 0$$
 y $P(A/C) = 1/3$ Probabilidad

Probabilidad Condicionada

Definición: Dado un suceso B con 0 < P(B) para cualquier otro suceso A definimos la probabilidad de suceso A condicionada al suceso B por:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

La probabilidad condicionada es una probabilidad y como tal cumple los axiomas:

1.- 0 <=
$$P(A/B) \forall A$$

2.-
$$P(\Omega/B) = 1$$

3.- Si
$$A_1$$
 y A_2 son incompatibles ($A_1 \cap A_2 = \emptyset$) entonces:

$$P((A_1 \cup A_2)/B) = P(A_1/B) + P(A_2/B),$$

Independencia de Sucesos

Definición: Dados los sucesos A y B diremos que son independientes si el conocimiento de la ocurrencia de B no afecta para nada a la probabilidad de ocurrir A y viceversa. P(A) = P(A/B) y P(B) = P(B/A)

Proposición: Dados los sucesos A y B son independientes sii $P(A \cap B) = P(A) \times P(B)$

Definición: Dados los sucesos A, B y C diremos que son independientes si cumplen las siguientes condiciones:

1.-
$$P(A \cap B) = P(A)P(B)$$
, $P(A \cap C) = P(A)P(C)$, $P(B \cap C) = P(B)P(C)$
2.- $P(A \cap B \cap C) = P(A)P(B)P(C)$

Definición: Los sucesos A_1 , A_2 , ..., A_n son independientes si cualquier subconjunto propio de los mismos es independiente y $P(A_1 \cap A_2 \cap \cap A_n) = P(A_1)P(A_2) P(A_n)$

Regla de la Multiplicación

La definición de probabilidad condicionada se puede reescribir de modo que proporcione una expresión general para la probabilidad de la Intersección de dos sucesos P(A ∩ B) = P(A/B)P(B) = P(B/A)P(A)

Ejemplo: Una urna con tres bolas rojas y 2 blancas. Se extrae al azar tres bolas y se pide calcular la probabilidad de que sean las tres rojas.

B_i = la bola extraída en i-ésimo lugar es roja.

$$P(B_1 \cap B_2 \cap B_3) = P(B_1) P(B_2/B_1) P(B_3/B_2 \cap B_1) = \frac{3}{5} \frac{2}{4} \frac{1}{3} = \frac{6}{60} = \frac{1}{10}$$

❖ Sean A₁, A₂,, A_n sucesos y B = $\bigcap_{i=1}^{n}$ A_i entonces: P(B) = P(A₁) P(A₂/A₁)P(A₃/A₂ ∩ A₁) P(A_n / $\bigcap_{i=1}^{n-1}$ A_i)

Representación en Árbol

Los sucesos compuestos se suelen representar mediante un árbol.

- 1. En el primer nivel se colocan los diferentes sucesos simples y en las ramas sus probabilidades.
- 2. En los segundos niveles se colocan los sucesos y en las ramas las probabilidades de dichos sucesos condicionados a los sucesos del primer nivel de esa rama.
- 3. En los niveles siguientes se colocan los sucesos y en las ramas las probabilidades condicionadas a la intersección de los sucesos de los niveles anteriores de la misma rama.

Representación en Árbol

Representación en Árbol

Ejemplo: Una urna con tres bolas rojas y 2 blancas. Se extrae al azar tres bolas y se pide calcular la probabilidad de que la tercera sea roja.

Teorema de Probabilidad Total

Definición: Dado un conjunto de sucesos $\{A_i\}_{i=1,2,...,n}$ tales que:

1.
$$\bigcup_{i=1}^{n} A_i = \Omega$$

2.
$$A_i \cap A_j = \emptyset \quad \forall i \neq j, i, j = 1, 2,, n$$

reciben el nombre de Sistema Completo de Sucesos.

Teorema: Sea un suceso B cualquiera y un sistema completo de sucesos $\{A_i\}_{i=1,2,...,n}$ tales que $P(A_i) > 0 \ \forall i$, el Teorema de Probabilidad Total establece que:

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B/A_i)$$

Teorema de Probabilidad Total

Teorema de Bayes

Teorema: Dado un sistema completo de sucesos $\{A_i\}_{i=1,2,...,n}$ y un suceso cualquiera B, el Teorema de Bayes establece:

$$P(A_i /B) = \frac{P(A_i)P(B/A_i)}{\sum_{i=1}^{n} P(A_i)P(B/A_i)}$$

Definición: El Análisis Combinatorio es una herramienta fundamental en el estudio de los experimentos aleatorios con espacio muestral asociado finito. Se usa sobre todo en espacios equiprobables.

Combinaciones de n elementos tomados de m en m: Dado un conjunto de n elementos se quiere averiguar el nº de grupos distintos de m elementos que se pueden formar con la condición de que dos grupos son distintos si están formados por distintos elementos, esto es, "no se tiene en cuenta el orden".

$$\binom{n}{m} = \frac{n!}{m! (n-m)!}$$

Ejemplo: Elegir 2 ordenadores entre 10. Solución: 45 posibilidades

Variaciones de n elementos tomados de m en m: Dado un conjunto de n elementos se quiere averiguar el nº de grupos distintos de m elementos que se pueden formar con la condición de que dos grupos son distintos si están formados por distintos elementos o si los elementos están ordenados de manera distinta dentro del grupo, esto es, "se tiene en cuenta el orden".

$$n (n-1)(n-2) \dots (n-m+1) = \frac{n!}{(n-m)!}$$

Ejemplo: ¿Cuántas palabras con 2 letras se pueden formar con sentido y sin él a partir de 3 letras?

AB AC BC Solución: 3x2 = 6 palabras
BA CA CB

Permutaciones de n elementos: Dado n elementos se quiere averiguar el nº de formas distintas que hay de ordenarlos.

$$P_n = n (n-1)(n-2) \dots 1 = n!$$

Ejemplo: ¿De cuántas formas distintas se pueden sentar cinco personas en una fila?

$$n = n - 1$$
 $n - 2$ $n - 2$ $n - 3$ $n - 4$ n

Solución: 5! = 120 ordenaciones

Variaciones con repetición de n elementos tomados de m en m: Dado un conjunto de n elementos se quiere averiguar el nº de grupos distintos de tamaño m que se pueden formar de forma que los elementos pueden aparecer repetidos y con la condición de que dos grupos son distintos si están formados por distintos elementos o si los elementos están situados en distinto lugar.

$$n^{m} = \overbrace{n n n \dots n}^{m}$$

Ejemplo: ¿Cuántas nº de loterías distintos existen?

Solución: $10^5 = 100.000$ números

Permutaciones con repetición: Es el conjunto de ordenaciones distintas que se pueden hacer con m elementos en los que en cada ordenación cada elemento puede aparecer repetido n_1 , n_2 , n_3 ,, n_m veces, con

$$n_1 + n_2 + n_3 + ... + n_m = n y n_1, n_2, n_3,, n_m >= 0$$

$$PR_n = \frac{n!}{n_1! n_2! n_3!, n_m!}$$

Ejemplo: ¿De cuántas formas distintas podemos colocar 3 libros de Estadística, 2 de Sistemas Operativos y 4 de Inglés en una estantería?

| Solución:
$$\frac{9!}{3!2!4!}$$
 = 1260 maneras

Combinaciones con repetición de n elementos tomados de m en m: Dado un conjunto de n elementos se quiere averiguar el nº de grupos distintos de m elementos que se pueden formar de forma que los elementos pueden aparecer repetidos y con la condición de que dos grupos son distintos si están formados por distintos elementos.

$${m+n-1 \choose m} = \frac{(m+n-1)!}{m!(n-1)!}$$

Ejemplo: Supongamos que se tienen n = 3 urnas y m = 7 bolas que se quieren introducir en las mismas. ¿Cuántas posibilidades hay?

$$O_1$$
 O_2 O_3 O_4 O_4 O_5 O_4 O_5 O_5