Negate
If m is even and n is odd, then m+n is odd.
1. Felentify statements and the logical of water involved
$\bigcirc \qquad \Rightarrow \qquad \qquad \mathbb{R}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3) P: m is eyen
(Li) Q: n is odd
PAQ > R
2) Negate this statement // - (PAQ => R) = [PAQ) A (-R)
$\left[\neg (P \Rightarrow A) = P \wedge \neg Q \right]$
3) Replace w/ english sentences
m is odd and n is even, and m+n is (not odd) even.
$\neg (A \Rightarrow B) \equiv (A) \land \neg B$
$A \sim P \wedge Q \qquad P \Rightarrow Q = \neg Q \Rightarrow \neg P$ $B \sim R$
(PAB) A(~R) contrapositive

一(アラみ) 三

(a=b transhire relation of shequality $n = 1 \mod 3$ C= b = a $n^2 \equiv 1^2 \mod 3$ r n = 1 un mod 3 w = 1d $\int_{-\infty}^{2} = 1 = n \mod 3$ $n^2 = 1$ in mod 3 $n^2 = 1 = 1$ in mod 3 world. 1 Cogical equivalence (_____) [2 statements are l.e.]

Same truth

+able ____ 2 Pross Arrect proofs
Ly proof by contrapositive - Proof by cases PAUSE false; true)

[true of only when both are true) (true only when atteart on is

Show
$$((P \land Q) \Rightarrow R)$$

$$= (P \wedge \sim R) \Rightarrow (\sim Q)$$

3. Pool by cases

Direct [n.n.>0] [inequalities don't change when positive numbers are invoked]

fautdogy.

*

$$(\cancel{k})$$

NEIN Suppose ME5

"what can n be?" ne{1,2,314,59

IN in this class, don't include 0.

$$\begin{bmatrix} \mathbb{N} \\ \mathbb{Z}_{>0} \end{bmatrix}$$
 possitive integers $\mathbb{Z}_{>0}$ non-negative integers

ab = 6 $a, b \in \mathbb{Z}_{>0}$

(a+b=6)

"What can aib be?"

$$\rightarrow$$
 $\begin{pmatrix} 2.3 \\ 3.2 \end{pmatrix}$ and $\begin{pmatrix} 1.6 \\ 6.1 \end{pmatrix}$

" what can alb be"

2,4 g

6 = 2.3 = 1.2.3

Given a statement like this, this is your "scratchwork" to figure out the cases.

$$Cox I$$
: $a=3,b=2$

Case I :
$$a=1, b=6$$

$$y=6$$
, $7iy \in \mathbb{R}$ $\mathbb{Z}_{>0}$ 2 ditions

"what can a, y be!"

 $\{x \in \mathbb{R}, x \neq 0\}$ $\{y = 6|x\}$

Prove
$$\underline{n \in \mathcal{I}}$$
, then one element of the set $\left\{n-3, n-2, n-1, n, n+1, n+2, n+3\right\}$ is divisible by $\overline{4}$. $n+3$.

Proof: $(mod \ 7) \textcircled{a}$ $\left\{(n+3) \ -3, (n+3) \ -2\right\}$

Consider
$$\underline{\square}$$
 mod $\overline{\uparrow}$

Case I. $n \equiv 1 \mod 7$
 $n-1 \equiv 0 \mod 7$

Therefore $\overline{\uparrow} \mid n-1$

(a | b a divides b)

Case $\underline{\square}$ $n \equiv 2 \mod 7$

Case $\underline{\square}$ $n \equiv 3 \mod 7$

[METY
$$n = 4$$
 mod 7]
$$\begin{bmatrix}
n - 4 = 0 \text{ mod } 7
\end{bmatrix}$$

$$n - 4 + 1 = 1 \text{ mod } 7$$

$$n + 3 = 0 \text{ mod } 7$$

$$- 5 = 2 \text{ mod } 7$$

Strategy / Idea of a proof"

written proof.

PAD

Indicate method of proof (22)

Update A grood is not for you a proof written to be read

The words not symbols (2) inplies

Logical proof (2)

The for all I there oxists

 $\neg (\exists) \equiv \forall$

Horall x 16 P, then a Contrapositive

71, 1 => Q =

Yr 30, 7 (2 =) -1 (?

both contrapositive