Dynamic Programming

Machine Learning

Daniele Loiacono

Outline and References

- Outline
 - Policy Evaluation
 - Policy Improvement
 - ► Policy Iteration
 - Generalized Policy Iteration
 - ▶ Efficiency of DP

- References
 - ► Reinforcement Learning: An Introduction [RL Chapter 4]
 - ► <u>Fundamentals of Reinforcement Learning</u> (Coursera)

- To solve an MDP we need to find an optimal policy
- ☐ Unfortunately we cannot use a bruteforce approach:
 - $ightharpoonup |\mathcal{A}|^{|\mathcal{S}|}$ deterministic policies to evaluate
 - ► |S| linear equations to solve for each policy
- Dynamic Programming (DP) is a method that allow to solve a complex problem by breaking it down into simpler sub-problems in a recursive manner
- We will see how to use DP to solve an MDP thanks to the Bellman Equations

Policy Evaluation

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V^{\pi}(s') \right)$$

$$\pi, r, p, \gamma \longrightarrow \boxed{\mathbf{DP}} \longrightarrow \mathbf{V}_{\pi}$$

- To solve an MDP we need to find an optimal policy
- ☐ Unfortunately we cannot use a bruteforce approach:
 - $ightharpoonup |\mathcal{A}|^{|\mathcal{S}|}$ deterministic policies to evaluate
 - ▶ |S| linear equations to solve for each policy
- Dynamic Programming (DP) is a method that allow to solve a complex problem by breaking it down into simpler sub-problems in a recursive manner
- We will see how to use DP to solve an MDP thanks to the Bellman Equations

Policy Evaluation

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V^{\pi}(s') \right)$$

$$\pi, r, p, \gamma \longrightarrow \boxed{DP} \longrightarrow V_{\pi}$$

- To solve an MDP we need to find an optimal policy
- ☐ Unfortunately we cannot use a bruteforce approach:
 - $ightharpoonup |\mathcal{A}|^{|\mathcal{S}|}$ deterministic policies to evaluate
 - ▶ |S| linear equations to solve for each policy
- Dynamic Programming (DP) is a method that allow to solve a complex problem by breaking it down into simpler sub-problems in a recursive manner
- We will see how to use DP to solve an MDP thanks to the Bellman Equations

Policy Evaluation

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V^{\pi}(s') \right)$$

$$\pi, r, p, \gamma \longrightarrow \boxed{DP} \longrightarrow V_{\pi}$$

- To solve an MDP we need to find an optimal policy
- ☐ Unfortunately we cannot use a bruteforce approach:
 - $ightharpoonup |\mathcal{A}|^{|\mathcal{S}|}$ deterministic policies to evaluate
 - ► |S| linear equations to solve for each policy
- Dynamic Programming (DP) is a method that allow to solve a complex problem by breaking it down into simpler sub-problems in a recursive manner
- We will see how to use DP to solve an MDP thanks to the Bellman Equations

Policy Evaluation

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V^{\pi}(s') \right)$$

$$\pi, r, p, \gamma \longrightarrow \boxed{DP} \longrightarrow V_{\pi}$$

Iterative Policy Evaluation

☐ We search the solution of the Bellman expectation equation:

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V_{\pi}(s') \right)$$

□ DP solves this problem through iterative application of Bellman equation:

$$V_{k+1}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V_k(s') \right)$$

▶ At each iteration k, the value-function V_k is updated for all state $s \in S$

$$V_0 o V_1 o \cdots o V_k o V_{k+1} o V_\pi$$
 sweep

▶ It can be proved that V_k converge to V_{π} as $k \to \infty$ for any V_0

Iterative Policy Evaluation (2)

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

«in place» update

until $\Delta < \theta$

Iterative Policy Evaluation: a Small Gridworld Example

- ☐ Let consider gridworld environment with two terminal states, where
 - $ightharpoonup \gamma = 1$
 - $r(s,a) = -1 \quad \forall s, a$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

V_0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

V_2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

V_{10}

0.0	-6.1	-8.4	-9.0	
-6.1	-7.7	-8.4	-8.4	
-8.4	-8.4	-7.7	-6.1	
-9.0	-8.4	-6.1	0.0	

V_1

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

V_3

_				
	0.0	-2.4	-2.9	-3.0
	-2.4	-2.9	-3.0	-2.9
	-2.9	-3.0	-2.9	-2.4
	-3.0	-2.9	-2.4	0.0

I_{∞}

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Policy Improvement

☐ Do you remember how to derive optimal policy from optimal value functions?

$$\pi^*(s) = \operatorname*{arg\,max}_{a} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^*(s') \right\} = \operatorname*{arg\,max}_{a} Q^*(s, a)$$

☐ What happens if we act greedy with respect to non optimal value function?

$$\pi'(s) = \operatorname*{arg\,max}_{a} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_{\pi}(s') \right\} = \operatorname*{arg\,max}_{a} Q_{\pi}(s, a), \quad \forall s \in \mathcal{S}$$

- \square Is π' different from π ?
 - ▶ If not, it means that π is already the optimal policy π^* (as it satisfies the Bellman Optimality equations)
 - ▶ Otherwise, is π ' better or as good as π ?

Policy Improvement Theorem

 \Box For any pair deterministic policies π ' and π such that:

$$Q_{\pi}(s, \pi'(s)) \ge Q_{\pi}(s, \pi(s)), \quad \forall s \in \mathcal{S}$$

then π ' is better or as good as π

$$\pi' \geq \pi$$

- If $\exists s \in \mathcal{S}$ s.t. $Q_{\pi}(s, \pi'(s)) > Q_{\pi}(s, \pi(s))$ then $\pi' > \pi$
- Proof

$$V_{\pi}(s) \leq Q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma V_{\pi}(S_{t+1}) | S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma Q_{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} Q_{\pi}(S_{t+2}, \pi'(S_{t+2})) | S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \dots | S_{t} = s \right] = V_{\pi'}(s)$$

Policy Improvement: a Small Gridworld Example

□ Let's go back to the value function we found iteratively for a random policy in the Small Gridworld example

Policy Improvement: a Small Gridworld Example

Policy Iteration

☐ We can exploit the policy improvement theorem to find the optimal policy:

Policy Iteration (2)

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathbb{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$\begin{aligned} v &\leftarrow V(s) \\ V(s) &\leftarrow \sum_{s',r} p(s',r|s,\pi(s)) \big[r + \gamma V(s') \big] \\ \Delta &\leftarrow \max(\Delta,|v-V(s)|) \end{aligned}$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

$$R_t = \begin{cases} -10 & \text{in blue states} \\ -1 & \text{in other states} \end{cases}$$

$$\gamma = 1$$

Evaluation Improvement

Evaluation Improvement

Evaluation Improvement

$$R_t = \begin{cases} -10 & \text{in blue states} \\ -1 & \text{in other states} \end{cases}$$

$$\gamma = 1$$

Evaluation Improvement

$$R_t = \begin{cases} -10 & \text{in blue states} \\ -1 & \text{in other states} \end{cases}$$

$$\gamma = 1$$

Evaluation Improvement

$$R_t = \begin{cases} -10 & \text{in blue states} \\ -1 & \text{in other states} \end{cases}$$

$$\gamma = 1$$

Evaluation Improvement

$$R_t = \begin{cases} -10 & \text{in blue states} \\ -1 & \text{in other states} \end{cases}$$

$$\gamma = 1$$

Evaluation Improvement

$$R_t = \begin{cases} -10 & \text{in blue states} \\ -1 & \text{in other states} \end{cases}$$

$$\gamma = 1$$

Evaluation Improvement

$$R_t = \begin{cases} -10 & \text{in blue states} \\ -1 & \text{in other states} \end{cases}$$

$$\gamma = 1$$

Evaluation Improvement

$$R_t = \begin{cases} -10 & \text{in blue states} \\ -1 & \text{in other states} \end{cases}$$

$$\gamma = 1$$

Evaluation Improvement

$$R_t = \begin{cases} -10 & \text{in blue states} \\ -1 & \text{in other states} \end{cases}$$

$$\gamma = 1$$

Evaluation Improvement

$$R_t = \begin{cases} -10 & \text{in blue states} \\ -1 & \text{in other states} \end{cases}$$

$$\gamma = 1$$

Evaluation Improvement

$$R_t = \begin{cases} -10 & \text{in blue states} \\ -1 & \text{in other states} \end{cases}$$

$$\gamma = 1$$

Optimal policy and value function

Generalized Policy Iteration

□ Policy iteration alternates complete policy evaluation and improvement up to the

convergence:

- □ Policy iteration framework allows also to find the optimal policy interleaving partial evaluation and improvement steps
- ☐ In particular, Value Iteration is one of the most popular GPI method

Value Iteration

☐ In the policy evaluation step, only a single sweep of updates is performed:

$$\pi'(s) = \underset{a}{\operatorname{arg max}} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_{\pi}(s') \right\}, \forall s \in \mathcal{S}$$

$$V_{k+1}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi'(a|s) \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_{k}(s') \right), \forall s \in \mathcal{S}$$

□ Combining them, we simply need to iterate the update of the value function using the Bellman optimality equation:

$$V_{k+1}(s) \leftarrow \max_{a} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_k(s') \right], \forall s \in \mathcal{S}$$

lacksquare It can be proved that $\lim_{k \to \infty} V_k = V^*$

Value Iteration (2)

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

```
 \begin{array}{l} | \quad \Delta \leftarrow 0 \\ | \quad \text{Loop for each } s \in \mathbb{S} \text{:} \\ | \quad \quad v \leftarrow V(s) \\ | \quad \quad \quad V(s) \leftarrow \max_a \sum_{s',r} p(s',r \,|\, s,a) \big[ r + \gamma V(s') \big] \\ | \quad \quad \quad \quad \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ | \quad \quad \quad \text{until } \Delta < \theta \end{array}
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Asynchronous Dynamic Programming

- □ All the DP methods described so far require exhaustive sweeps of the entire state set.
- Asynchronous DP does not use sweeps:
 - Pick a state at random
 - Apply the appropriate backup
 - ► Repeat until convergence criterion is met
- ☐ Can you select states to backup intelligently?
 - ► An agent's experience can act as a guide.

Efficiency of DP

- ☐ To find an optimal policy is **polynomial** in the number of states and actions
 - ▶ Value Iteration: $O(|S|^2|A|)$
 - ▶ Policy Iteration: iterative evaluation $O\left(\frac{|\mathcal{S}|^2 \log(1/\epsilon)}{\log(1/\gamma)}\right)$, improvement $O\left(\frac{|A|}{1-\gamma}\log\left(\frac{|S|}{1-\gamma}\right)\right)$
- □ Unfortunately, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (curse of dimensionality)
- ☐ In practice, classical DP can be applied to problems with a few millions of states
- Asynchronous DP can be applied to larger problems, and is appropriate for parallel computation
 - ▶ But it is easy to come up with MDPs for which DP methods are not practical
- Linear programming approaches can be also used instead of DP but they do not typically scale well on larger problems