Timeline of Industrial Revolution

Industry 1.0:

Mechanization

(~ 1770-1820)

Computer &

Automation

(~ 1950-2000)

Industry 2.0: Mass Production (~ 1870-1950) Industry 4.0: Intelligent Things (~ 2000-)

Source: "Industry 4.0 and Maintenance", Norsk Forening for Vedlikehold (NFV)

Predicted Growth in Industrial Sectors

Source: "Industry 4.0: Building the Digital Enterprise", PwC, Global Industry 4.0 Survey, 2016.

Industrial Internet of Things (IIoT)

Network of objects ("things") embedded with computation and communication facilities to achieve industrial jobs by exchanging information among themselves

Challenges for Industrial Processes in Industry

4.0

• High risk market Dynamic market conditions Target for lowering cost Lack of skilled workforce Constrained workforce Ageing society Higher flexibility & convenience expected Supply chain management Media influence Efficient utilization of available resources. Resource utilization Increased cleanliness and lower waste footprint Increased product types **Product management** Lower product lifecycle expected

Source: "Industry 4.0", Wikipedia

Design Philosophy: IIoT for Industrial Processes

Expected Features of Industrial Processes with Industry 4.0

Source: "Industry 4.0", Wikipedia; "Industry 4.0: the fourth industrial revolution – guide to Industrie 4.0", i-Scoop

Futuristic Industrial Plant

Customized application demands

Cloud-based advanced analytics, cyber security

Smart 'things' tasked with sensing, actuation, computation, communication, and decision making

Different industrial processes – 3D printing, manufacturing, automation

Industrial resources, supply chain management

Figure: Components of Futuristic Industrial Plant in Industry 4.0 Source: Aazam et al., 2018.

Futuristic Industrial Plant: 5C Architecture for Cyber Physical Systems

Cyber Physical Systems System for supervised Control control: Self-configure, Self-System for optimized decision: Optimize, Self-Adjust Layer Human-readable interpretation & data visualization Cognitive Layer Network of smart objects: Intelligent identification, Sensor records machine data mining & analytics health data: data to Cyber Layer information interpretation Sensor-based monitoring: **Conversion Layer** data collection, interoperable objects/functionality **Connection Layer** Source: Lee et al., 2015; Aazam et al., 2018.

Industrial Processes Enablers

Source: Aazam et al., 2018.

Industrial Process 4.0: Operation Efficiency

- Benefits
 - Improved resource utilization
 - > Increased productivity
 - Cost reduction

Smart Water Management by *Thames Water*

- Sensor-based equipment status monitoring
- Failure detection
- Critical condition monitoring
- Dynamic response to critical conditions

Oil & Gas Industry Maintenance by Apache

- Sensor-based leak detection in pipe lines
- Failure detection in pumps
- Production monitoring
- Predictive analysis of loss

Source: Thames Water, "Draft Water Resources Management Plan 2019"
MapR Technologies, "Big Data and Apache Hadoop for the Oil and Gas Industry"

Industrial Process 4.0: Product Innovation

- Benefits
 - > Service-oriented deployment
 - Data monetization
 - Pay-per-use

Augmented Maintenance by Volkswagen

- Sensors collect data from automotive
- Augmented Reality-based app provide visual interpretation of on-board problem
- Problem analysis & diagnosis

Source: Volkswagen AG

Industrial Process 4.0: Enhanced Ecosystem

- Benefits
 - Connected ecosystem
 - > Innovative product lines
 - > Dynamic marketplace
 - > Pay-per-outcome

Increased Renewable Energy Production by General Electric

- Controlled power generation by using weather forecast
- Sensor-controlled maintenance
- Lower operation cost by analyzing collected data

Increased reliability in aircraft engines by *Rolls-Royce*

- Sensor-based remote analytics tools
- Predictive maintenance
- TotalCare program increases the engine reliability

Source: GE Renewable Energy; Rolls-Royce plc

Industrial Process 4.0: Autonomous Pull Economy

Benefits

- > End-to-end automation facility
- Updated demand information
- > Low waste generation
- > Better resource optimization

Factory Maintenance by General Electric

- Predix platform for Cloud-as-a-Service
- Pay-per-use pricing model
- Secure and compatible environment
- Analytical services helps in service optimization

Source: General Electric Inc.

Smart Factory of Future

- > Application areas
 - > Facility management
 - Connected factory
 - > Inventory management
 - Production line management
 - Process safety and security
 - > Service quality control
 - Supply chain optimization
 - Packaging management

Facility Management

- Sensor-equipped manufacturing facility
- Provision for condition-based monitoring
- Machinery health monitoring
- Optimization & remote functional control
- Higher efficiency, lower cost & energy expense

Connected Factory

- Connected components of factory machinery, engineers, and manufacturers
- Enables automation and optimization
- Remote control and management
- Ease of command and control
- Facilitate identification of Key Result Areas (KRAs)

Inventory management

- Tracking of items by monitoring events in supply chain
- Global inter-connectivity facilitates real-time updates
- Higher visibility & transparency
- Realistic and fail-safe estimate for customers
- Supply optimization & cost reduction

Production line management

- End-to-end production line management with sensors
- Ease of process re-adjustment facility
- Detailed understanding of production delay & failures
- Process flow analytics

Process safety and security

- Safe & secure working environment
- Complete record & analytics on accidents, injuries & causes
- Optimized financial planning & insurance schemes
- Ensured precautions for safe environments

Service quality control

- End-to-end product cycle monitoring
- Provision to ensure quality for raw materials, factory environment
- Waste management
- Multi-level product quality check
- Enabling feedbacks from customers
- Holistic analytics

Supply chain optimization

- Real-time monitoring of supply chain elements in multiple dimensions
- Ease & transparency for related personnel
- Identification of inter-block dependency

Packaging management

- Sensor-based packaging facility
- Real-time monitoring
- Detailed analytics on customers usage patterns
- Multi-point trace enables package condition monitoring
- Continued customer satisfaction & reduced cost

Functional Viewpoint of Industrial Processes

- Highlights the <u>stakeholder's</u> <u>concerns</u> regarding the industrial processes
- Flexible & applicable to various types of industrial processes
- Importance to specific domain varies across industries

Source: A. Gilchrist, "Industry 4.0 - The Industrial Internet of Things", APress

Operational Domain of Industrial Processes

- Cross-environment interconnected control system
- Intra and Inter factory communication
- Distributed analysis & learning

Source: A. Gilchrist, "Industry 4.0 - The Industrial Internet of Things", APress

References

- [1] M. Aazam, S. Zeadally, K. A. Harras "Deploying Fog Computing in Industrial Internet of Things and Industry 4.0", *IEEE Trans. on Industrial Informatics*, pp. 1-9, 2018.
- [2] J. Lee, B. Bagheri, H.-A. Kao, "A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems," Manufacturing Letters, vol. 3, pp. 18-23, 2015.
- [3] "Industry 4.0: Building the Digital Enterprise", PwC, Global Industry 4.0 Survey, 2016.
- [4] Thames Water, "Draft Water Resources Management Plan 2019", Web: https://www.thameswater.co.uk/
- [5] MapR Technologies, "Big Data and Apache Hadoop for the Oil and Gas Industry", Web:
- https://mapr.com/resources/big-data-and-apache-hadoop-oil-and-gas-industry/
- [6] Volkswagen AG, Web: https://www.volkswagenag.com
- [7] GE Renewable Energy, Web: https://www.ge.com/renewableenergy
- [8] Rolls-Royce plc, Web: https://www.rolls-royce.com
- [9] General Electric, Web: https://www.ge.com

References (cont.)

- [10] "Industry 4.0: the fourth industrial revolution guide to Industrie 4.0", i-Scoop, Web: https://www.i-scoop.eu/industry-4-0/
- [11] L. D. Xu, W. He, S. Li, "Internet of Things in Industries: A Survey," IEEE Trans. on Industrial Informatics, vol. 10, no. 4, pp. 2233-2243, 2014.
- [12] "Industry 4.0", Wikipedia, Web: https://en.wikipedia.org/wiki/Industry_4.0
- [13] "8 Uses, Applications, and Benefits of Industrial IoT in Manufacturing", New Generation Applications Pvt Ltd, Web: https://www.newgenapps.com/blog/8-uses-applications-and-benefits-of-industrial-iot-in-manufacturing
- [14] A. Gilchrist, "Industry 4.0 The Industrial Internet of Things", APress, DOI 10.1007/978-1-4842-2047-4.
- [15] "Industry 4.0 and Maintenance", Norsk Forening for Vedlikehold (NFV), Web: https://www.nfv.no/images/Temahefter/Industry_4_0_and_Maintenance-revised_-_27.10.16.pdf

Thank You!!

