Solucionario

- b) Si a las pizzas medianas añadimos otro tipo de masa, como hay 4 ingredientes posibles para cada masa, el número de combinaciones aumenta hasta 28 posibles.
- c) P(pequeña con piña)= 2/24 =1/12 ya que se da una situación d'equiprobabilidad y de entre las 24 combinaciones, sólo dos son posibles (con masa fina o con masa clásica).
- d) Pueden escoger entre 6 combinaciones: JC, JA, JP, CA, CP, AP. (los ingredientes no pueden ser el mismo y además no importa el orden en que los coloquemos)
- e) P(aceitunas)= 3/6= ½ P(aceitunas y champiñones)= 1/6
- f) Si elimina un tamaño, elimina en total 8 opciones (la tercera parte de la variedad de pizzas). Si elimina una masa, cómo sólo hay dos tipos, elimina la mitad de las pizzas; y si elimina un ingrediente, cómo hay 4, elimina 6 opciones, es decir, la cuarta parte de las pizzas. En conclusión, si quiere suprimir el máximo de combinaciones posible eliminando una opción, le recomendaría que eliminase un tipo de masa.

1. Números reales

ACTIVIDADES

- 1. Naturales Racionales Enteros Racionales **Enteros** Racionales
- 2. Por ejemplo:
 - a) 2
 - b) 5
 - c) 5/4
- 3. Decimal limitado

Periódico mixto

Decimal limitado

Periódico mixto

Exacto

Periódico puro

Periódico puro

- **4.** 17/5 4423/1000
- **5.** 16/3 223/99 99682/999
- **6.** 193/30 11141/990 124 107/9 990
- **7.** a) Falso. 3 4 = -1 no es natural.
 - b) Falso. 6: 7 no es entero.
 - c) Cierto.
 - d) Falso. no es irracional.
 - e) Cierto.
 - f) Cierto.
 - g) Falso. no es irracional.
- 8. Respuesta abierta.

10. −√3

Primero representamos $\sqrt{3}$ y, luego, se transporta con un compás a la parte negativa de la recta.

$2\sqrt{5}$:

Primero representamos $\sqrt{5}$ y luego, con ayuda del compás, tomaremos el doble de esta longitud.

— Otra forma de hacerlo sería introducir el factor 2 en la raíz, con lo que obtendríamos $\sqrt{20}$, y representar este valor.

-3√6:

Primero representamos $\sqrt{6}\,$ y luego, con ayuda del compás, trasladamos esta longitud tres veces hacia la parte negativa de la recta.

— Otra forma de representar -3√6 sería la siguiente. Partimos de 3√6 e introducimos el factor en la raíz, con lo que obtenemos √54. Representamos este valor y, con ayuda del compás, lo trasladamos a la parte negativa de la recta.

11. 3 < 3,16227766... < 4

12. a) $-\sqrt{3} < -\frac{1}{2}$

b)
$$\pi < 3,1\hat{4}$$

c) $\pi < \sqrt{11}$

13.

$$-\sqrt{3} < -\frac{1}{3} < \sqrt{2} < \pi < 3,1514$$

Representación Intervalo

A TORRES DE LA TRANSITION INTERVALO

A TORRES DE LA TRANSI

15. En un intervalo abierto ninguno de los extremos pertenece al intervalo, mientras que en uno semiabierto uno de los extremos sí pertenece al intervalo.

16. (-8, -2)

17. [7, +∞)

Solucionario

21.

c) (-2,1)

Conjunto vacío: Ø

d) Ø

23. Por ejemplo:

$$A = (-\infty, -1], B = (-1, \infty)$$

24. Aplicando el teorema de Pitágoras, $h = \sqrt{2}$. Un ejemplo de aproximaciones sería:

Por defecto: 1 1,4 1,41
Por exceso: 2 1,42 1,415

25. a) 62 62,3 62,32

b) Unidades Décimas Centésimas

26.	Número	Orden de aproximación	Aproximación por truncamiento	Aproximación por redondeo		
	0,0034	milésimas	0,003	0,003		
	-4,67	décimas	-4,6	-4,7		
	11,23	unidades	11	11		
	13,66	décimas	13,6	13,7		
	0,0016	milésimas	0,001	0,002		
	4.55	décimas	4.5	4.6		

27. a) El mismo error: 2 m

b) En la piscina, ya que dividimos el mismo error absoluto en ambos casos por el valor exacto, que en el caso de la piscina es mucho menor.

28.	Número	Truncamiento		Redondeo		
	Numero	E. Absoluto	E. relativo	E. Absoluto	E. relativo	
	0,0034	0,0004	0,12	0,0004	0,12	
	-4,67	0,07	0,015	0,03	0,006	
	11,23	0,23	0,02	0,23	0,02	
	13,66	0,06	0,004	0,06	0,003	
	0,0016	0,0006	0,375	0,0004	0,250	
	4 55	0.05	0.01	0.05	0.01	

La aproximación por redondeo siempre es igual o más precisa que el truncamiento.

- 29. a) La sensibilidad del primero es de 1 s y la del segundo de 1 min
 - b) Su sensibilidad
 - c) En el primero 11:42:55 \pm 00:00:01. En el segundo 11:42 \pm 00:01
 - d) Respuesta abierta
- 30. Efectuamos los cálculos directos.

$$\pi + \sqrt{8} = 5,97; \ \pi \cdot \sqrt{8} = 8,8862$$

Veamos si todas las ciffras de estos resultados son correctas.

$$3,14 \le \pi \le 3,15; \ 2,82 \le \sqrt{8} \le 2,83$$

 $3,14+2,82 \le \pi+\sqrt{8} \le 3,15+2,83$
 $5,96 \le \pi+\sqrt{8} \le 5,98$

Sólo podemos aceptar una de las dos cifras decimales obtenidas inicialmente para $\pi + \sqrt{8}$.

$$\pi + \sqrt{8} \simeq 6.0$$

 $3.14 \cdot 2.82 \le \pi \cdot \sqrt{8} \le 3.15 \cdot 2.83$
 $8.8548 \le \pi \cdot \sqrt{8} \le 8.9145$

No podemos aceptar ninguna de las cuatro cifras decimales obtenidas inicialmente para $\pi \cdot \sqrt{8}$.

$$\pi \cdot \sqrt{8} \simeq 9$$

Para calcular una cota de error en ambas operaciones:

$$3,14 + 2,82 < \pi + \sqrt{8} < 3,15 + 2,83$$

$$5,96 < \pi + \sqrt{8} < 5,98$$

$$\pi + \sqrt{8} = 5,9\pm0,1$$

$$3,14 \cdot 2,82 < \pi \cdot \sqrt{8} < 3,15 \cdot 2,83$$

$$8,8 < \pi \cdot \sqrt{8} < 8,9$$

$$\pi \cdot \sqrt{8} = 8\pm1$$

31. Puesto que la cantidad más pequeña que puede apreciar la cinta métrica es de 1 cm, el error máximo cometido en cada medición será de 0.01 m.

Al efectuar cuatro mediciones, una cota del error absoluto cometido es 0,04 m. El perímetro medirá entre 17,43 m y 17,51 m, aproximadamente 17,47 m.

- 32. a) Hasta los milímetros.
 - b) La medida de la arista estará comprendida entre 0,313 m y 0,315 m.

Área lateral = $4a^2$

$$4 \cdot 0.313^2 < 4 \cdot 0.3142 < 4 \cdot 0.315^2$$

Área lateral = 0,39 m²

Volumen = a^3

$$0.313^3 < 0.3143 < 0.315^3$$

0,030664297 < 0,030959144 < 0,031255875

Volumen = 0.031 m^3

33. La diagonal del cuadrado mide el doble que el radio de la circunferencia grande, 2 cm. Calculamos el lado del cuadrado aplicando el teorema de Pitágoras.

$$d^2 = I^2 + I^2$$
; $d^2 = 2I^2$; $I = \sqrt{\frac{d^2}{2}} = \sqrt{\frac{2^2}{2}} = \sqrt{2}$

I = 1,414213562...

Para calcular la longitud de la circunferencia pequeña debemos multiplicar este resultado por [].

Si tomamos $\sqrt{2}$ como 1,41 y \square como 3,14, tenemos:

$$1,41 < \sqrt{2} < 1,42$$

 $3,14 < \square < 3,15$
 $1,41 \cdot 3,14 < \sqrt{2} \cdot \square < 1,42 \cdot 3,15$
 $4,4274 < \cdot \square < 4,473$

Así, la longitud de la circunferencia es I = 4,4 cm con una cota de error absoluto de 1 mm.

- **34.** a) -6; b) $\frac{3}{4}$
- **35.** 1,2020020002... y 0,35241030030...
- **36.** a) Racional; b) irracional; c) racional; d) racional; e) irracional; f) irracional.
- 37. Son irracionales los radicales a), c) y d).
- 38. Los apartados a), c) y e).

39. a)
$$x = -2,45$$

$$100x = -245$$

$$x = -\frac{245}{100} = -\frac{49}{20}$$

b)
$$x = -33,565$$

$$100x = -3356,56$$

$$-x = -33.56$$

$$99x = -3323$$

$$x = -\frac{3323}{99}$$

- c) Es un número irracional y no tiene fracción generatriz.
- d) Calculamos la fracción generatriz de .

$$x = 1, \hat{3}$$

$$10x = 13.3$$

$$-x = 1.3$$

$$9x = 12$$

$$x = \frac{12}{9} = \frac{2}{3}$$

Calculamos la fracción generatriz de 0,856.

$$x = 0.85\hat{6}$$

$$1000x = 856,6$$

$$-100x = 85,6$$

$$900x = 771$$

$$x = \frac{900}{771} = \frac{257}{300}$$

Para calcular la fracción generatriz de 1,3+0,856, sumamos:

$$\frac{4}{3} + \frac{257}{300} = \frac{219}{100}$$

- **40.** Por ejemplo: $\sqrt{10}$, \square y $\sqrt{12}$.
- **41.** a) Falsa. 3 y 4 son dos números enteros comprendidos entre $\sqrt{5}$ y $\sqrt{17}$.
 - b) Cierta.
 - c) Falsa. Los números decimales ilimitados no periódicos no son números racionales.
 - d) Cierta.

42.

Utilizamos el teorema de Pitágoras.

$$c^2 + c^2 = 4^2 \Rightarrow 2c^2 = 16$$

$$c^2 = \frac{16}{2} = 8 \Rightarrow c = \sqrt{8}$$

El lado del cuadrado mide $\sqrt{8}$ cm.

El número $\sqrt{8}$ es irracional por tratarse de una raíz cuadrada no entera.

Solucionario

43.
$$h^2 = I^2 - \frac{1}{2}^2 = I^2 - \frac{I^2}{4} = \frac{3I^2}{4}$$

$$h = \sqrt{\frac{3I^2}{4}} = \frac{\sqrt{3}}{2}I$$

La altura de un triángulo equilátero de lado / mide $\frac{\sqrt{3}}{2}$ /.

En cualquier triángulo equilátero la altura es $\frac{\sqrt{3}}{2}$ veces

la longitud del lado, ya que se obtiene multiplicando $\frac{\sqrt{3}}{2}$ por el lado.

44.

46.

47. Primero representamos el número $1+\sqrt{5}$. A continuación, trazamos la mediatriz del segmento entre 0 y $1+\sqrt{5}$ para representar el número de oro.

48. Hallamos la longitud de la hipotenusa del triángulo rectángulo cuyos catetos miden 5 y 3:

$$h^2 = 5^2 + 3^2 = 25 + 9 = 34 \Rightarrow h = \sqrt{34}$$

El punto P corresponde a la representación sobre la recta del número $\sqrt{34}$ ya que se obtiene al trasladar sobre la recta un segmento de longitud $\sqrt{34}$.

Hallamos la longitud de la hipotenusa del triángulo rectángulo cuyos catetos miden $\sqrt{34}$ y 1.

$$h'^2 = (\sqrt{34})^2 + 1^2 = 34 + 1 = 35$$

$$h' = \sqrt{35}$$

El punto Q corresponde a la representación sobre la recta del número $\sqrt{35}$, ya que se obtiene al trasladar sobre la recta un segmento de longitud $\sqrt{35}$.

49. a) Para que el resultado sea 2.

$$2,2 + \frac{n}{3} = 2 \Rightarrow \frac{n}{3} = -0,2 \Rightarrow n = -0,6 = -\frac{3}{5}$$

b) Para que el resultado sea -2.

$$\pi n + 3 = -2 \Rightarrow \pi n = -5 \Rightarrow n = -\frac{5}{\pi}$$

c) Para que el resultado sea 1.

$$\sqrt{2} + \frac{n}{3} - 4 = 1 \Rightarrow \frac{n}{3} = -\sqrt{2} + 5 \Rightarrow n = -3\sqrt{2} + 15$$

d) Para que el resultado sea $\frac{2 \cdot (3 + \pi)}{\pi}$.

$$\frac{3n}{\pi} + 2 = \frac{2 \cdot (3 + \pi)}{\pi} \Rightarrow \frac{3n}{\pi} = \frac{6}{\pi} \Rightarrow n = 2$$

e) Para que el resultado sea 10.

$$5 \cdot \frac{n+3\sqrt{3}}{\sqrt{27}} = 10 \Rightarrow n+3\sqrt{3} = 2\sqrt{27} \Rightarrow n=3\sqrt{3}$$

Solucionario

50. a)
$$\frac{21}{10} < \sqrt{5} < \frac{5}{2}$$

b)
$$\frac{\sqrt{16}}{2}$$
 < $\sqrt{6}$ < ϵ

c)
$$\sqrt[3]{343} < 7.5 < \sqrt{81}$$

51. a)
$$-\frac{2}{5} < -\frac{2}{7} < 0$$

b)
$$-\sqrt{100} < -9, \overline{9} < -9, 91$$

c)
$$-\frac{7}{3} < -2.3 < \sqrt[3]{-8}$$

52.
$$-\sqrt{4} < -\frac{9}{5} < -1.5 < 0 < 0.8 < \frac{\sqrt{25}}{4} < \sqrt{8} < 2\sqrt{3}$$

- **54.** a) [40 000,80 000]
 - b) (-20,0]
 - c) [0;3,6)

b)
$$\left(-\frac{1}{2}, \frac{13}{5}\right)$$

c)
$$(-4,5;-\sqrt{5})$$

56. El intervalo común es: $[-\sqrt{2},\sqrt{5}]$

57. a)
$$|x| < 4$$

c)
$$|x-2| < 3$$

d)
$$|x + 1| 2$$

c)
$$(-2,-1)$$

b) Por ejemplo,
$$\left[2, \frac{7}{2}\right)$$

60.	a)	ĺ
-----	----	---

Calle	Valor exacto	Valor aproximado	Valor exacto – Valor aproximado	Error absoluto	Error relativo
А	1 500	1 452	48	48	0,032
В	905	952	– 47	47	0,051
С	299	325	– 26	26	0,086

b) La medida de la calle A es la que se realizó con mayor precisión.

61. Respuesta sugerida:

Por defecto:

$$L = 2 \cdot 3, 1 \cdot 5 \text{ cm} = 31 \text{ cm}$$

$$L = 2 \cdot 3,14 \cdot 5 \text{ cm} = 31,4 \text{ cm}$$

Por exceso:

$$L = 2 \cdot 3, 2 \cdot 5 \text{ cm} = 32 \text{ cm}$$

$$L = 2 \cdot 3,15 \cdot 5 \text{ cm} = 31,5 \text{ cm}$$

62. Respuesta sugerida:

63. Entre 4,15 y 4,25, concretamente el intervalo [4,15, 4,25). Una cota de error absoluto es 0,1.

- **64.** a) 1,732; b) 0,2; c) 4,22.
- 65. a) Décimas de kilogramo. Por ejemplo: 62,7 kg.
 - b) Millar de metro. El radio de la Tierra mide 6371 km.
 - c) Diezmilésima de metro. Por ejemplo, 5,3 mm.
 - d) Centésima de hora. Por ejemplo, 1,54 h.

66.
$$A = [] \cdot r^2$$

a)
$$A = 3,1415 \cdot 5^2 = 78,5375$$

b)
$$A = 3,1416 \cdot 5^2 = 78,54$$

En la aproximación por exceso, porque 3,1416 tiene una cota de error absoluto de una cienmilésima y en cambio 3,1415 no tiene una cota de error tan pequeña.

Solucionario

- **67.** a) 1,732
 - b) -1,0
 - c) 43,07
 - d) 1,58113
- **68.** a) $2,828 \le \sqrt{8} \le 2,829 \text{ y } 3,605 \le \sqrt{13} \le 3,606$ $2,828 + 3,605 \le \sqrt{8} + \sqrt{13} \le 2,829 + 3,606$ $6.433 \le \sqrt{8} + \sqrt{13} \le 6.435$
 - b) $2,718 \le \varepsilon \le 2,719 \text{ y } 2,236 \le \sqrt{5} \le 2,237$ $2,718 \cdot 2,236 \le e \cdot \sqrt{5} \le 2,719 \cdot 2,237$ $6.077448 \le e \cdot \sqrt{5} \le 6.082403$
 - c) $1,414 \le \sqrt{2} \le 1,415$, $2,645 \le \sqrt{7} \le 2,646$ y $3.316 \le \sqrt{11} \le 3.317$ $1,414 \cdot 2,645 \le \sqrt{2} \cdot \sqrt{7} \le 1,415 \cdot 2,646$ $3.74003 \le \sqrt{2} \cdot \sqrt{7} \le 3.74409$ $3,74003 + 3,316 \le \sqrt{2} \cdot \sqrt{7} + \sqrt{11} \le 3,74409 + 3.317$ $7.05603 \le \sqrt{2} \cdot \sqrt{7} + \sqrt{11} \le 7.06109$
- **69.** El redondeo hasta las milésimas es $\sqrt{7}$ = 2,646. Tenemos que $|2,645751311...-2,646| \simeq 0,00025$. Por tanto, una cota del error absoluto es 0,001.
- **70.** a) $2.828 \le \sqrt{8} \le 2.829 \text{ y } 3.605 \le \sqrt{13} \le 3.606$

Así, tenemos que:

 $2,828 + 3,605 \le \sqrt{8} + \sqrt{13} \le 2,829 + 3,606$ $6.433 \le \sqrt{8} + \sqrt{13} \le 6,435$

b) $2,718 \le \varepsilon \le 2,719 \text{ y } 2,236 \le \sqrt{5} \le 2,237$

Así, tenemos que:

 $2,718 \cdot 2,236 \le \varepsilon \cdot \sqrt{5} \le 2,719 \cdot 2,237$ $6,077448 \le \varepsilon \cdot \sqrt{5} \le 6,082403$

c) $1,414 \le \sqrt{2} \le 1,415$, $2,645 \le \sqrt{7} \le 2,646$ y $3,316 \le \sqrt{11} \le 3,317$

Así, tenemos que:

 $1.414 \cdot 2.645 \le \sqrt{2} \cdot \sqrt{7} \le 1.415 \cdot 2.646$ $3,74003 \le \sqrt{2} \cdot \sqrt{7} \le 3,74409$ $3,74003 + 3,316 \le \sqrt{2} \cdot \sqrt{7} + \sqrt{11} \le 3,74409 + 3,317$ $7.05603 \le \sqrt{2} \cdot \sqrt{7} + \sqrt{11} \le 7.06109$

- **71.** a) $1.73 \le \sqrt{3} \le 1.74$ $2,23 \le \sqrt{5} \le 2,24$ $3.96 \le \sqrt{3} + \sqrt{5} \le 3.98$
 - b) $1.41 \le \sqrt{2} \le 1.42$ $3,14 \le \pi \le 3,15$ $6.55 \le 2 + \sqrt{2} + \pi \le 6.57$

- c) $2,44 \le \sqrt{6} \le 2,45$ $3,14 \le \pi \le 3,15$ $8,72 \le 2\pi + \sqrt{6} \le 8,75$
- d) $\sqrt{7}\pi + 2\sqrt{4}\sqrt{3} = \sqrt{7}\pi + 4\sqrt{3}$ $2,64 \le \sqrt{3} \le 2,65$ $3,14 \le \pi \le 3,15$

 $1.73 \le \sqrt{3} \le 1.74$ $15.2096 \le \sqrt{7}\pi + 2\sqrt{4}\sqrt{3} \le 15.3075$

- 72. Respuesta abierta.
- **73.** $2.64 \le \sqrt{7} \le 2.65$, $4.58 \le \sqrt{21} \le 4.59$ y $1.73 \le \sqrt{3} \le 1.74$. Tenemos que el área del trapecio es A = $\frac{\sqrt{7} + \sqrt{21}}{2} \cdot \sqrt{3}$.

Por tanto, tenemos:

$$2,64+4,58 \le \sqrt{7} + \sqrt{21} \le 2,65+4,59$$

 $7,22 \le \sqrt{7} + \sqrt{21} \le 7,24$

$$3,61 \le \frac{\sqrt{7} + \sqrt{21}}{2} \le 3,62$$

$$3,61 \cdot 1,73 \le \frac{\sqrt{7} + \sqrt{21}}{2} \cdot \sqrt{3} \le 3,62 \cdot 1,74$$

$$6,2453 \le \frac{\sqrt{7} + \sqrt{21}}{2} \cdot \sqrt{3} \le 6,2988$$

Así, el área del trapecio es aproximada es 6,2 cm². El valor exacto estará en el intervalo 6,2±0,1 cm².

74. Error absoluto = 40 - 38 = 2

Error relativo =
$$\frac{2}{40}$$
 = 0,05 = 5 %

El porcentaje de error relativo cometido es 5%.

75. Primero Marina tiene que calcular el área de la cortina:

$$2,23 \le \sqrt{5} \le 2,24 \text{ y } 4,47 \le \sqrt{20} \le 4,48$$

 $2,23 \cdot 4,47 \le \sqrt{5} \cdot \sqrt{20} \le 2,24 \cdot 4,48$
 $9,9681 \le \sqrt{5} \cdot \sqrt{20} \le 10,0352$

Así, Marina tiene que comprar al menos 10,0352 metros de tela para su cortina.

Marina tiene tres opciones:

- Tipo A: Cada metro de tela tiene 1,4 m² de área. Así, ella tiene que comprar 8 metros de tela $(1,4 \cdot 8 = 11,2 \text{ m}^2)$. Por tanto ella pagaría 6,99 · 8 = 55,92 €;
- Tipo B: Cada metro de tela tiene 1,45 m² de área. Así, ella tiene que comprar 7 metros de tela (1,45 · 7 = 10,15 m²). Por tanto ella pagaría 9,99 · 7 = 69,93 €;
- Tipo C: Cada metro de tela tiene 1,5 m² de área. Así, ella tiene que comprar 7 metros de tela $(1,5 \cdot 7 = 10,5 \text{ m}^2)$. Por tanto ella pagaría 7,99 · 7 = 55,93 €;

Por tanto, la mejor solución será Marina comprar la tela Tipo A.

76. En un pentágono regular la relación entre la longitud de una de las diagonales y el lado del pentágono es el número de oro ():

$$\Phi = \frac{1+\sqrt{5}}{2}$$

$$\frac{d}{l} = \frac{1+\sqrt{5}}{2} \Rightarrow \frac{6+6\sqrt{5}}{l} = \frac{1+\sqrt{5}}{2} \Rightarrow \frac{1+\sqrt{5}}{2} \Rightarrow l = \frac{2\cdot(6+6\sqrt{5})}{1+\sqrt{5}} = 12 \text{ m}$$

El lado del pentágono mide 12 m.

$$P = 12 \cdot 5 = 60$$

El perímetro del pentágono mide 60 m.

77. Según la fórmula:

$$Error(\%) = \frac{Error absoluto}{Valor exacto} \cdot 100$$

El error relativo será mayor cuanto más pequeño sea el número. Así, del intervalo [5, 100], el 5 tendrá el error relativo más grande.

Para encontrar el número mínimo de decimales probamos con diferente cantidad de decimales:

$$E_1 = \frac{|5,1-5|}{5} \cdot 100 = \frac{0,1}{5} \cdot 100 = 2 \% > 0,1 \%$$

$$E_2 = \frac{|5,01-5|}{5} \cdot 100 = \frac{0,01}{5} \cdot 100 = 0,2 \% > 0,1 \%$$

$$E_3 = \frac{|5,001-5|}{5} \cdot 100 = \frac{0,001}{5} \cdot 100 = 0,02 \% < 0,1 \%$$

Tenemos que tomar un mínimo de tres decimales.

78. Si el radio de la circunferencia mide 0,50 mm, significa que su valor se sitúa entre 0,49 mm y 0,51 mm. Si no consideramos el error de , tenemos que el área está comprendida entre:

$$2 \cdot \cdot \cdot 0,49 \text{ mm} < L < 2 \cdot \cdot \cdot 0,51 \text{ mm}$$

 $3,07876... < L < 3,20442...$

Por tanto la longitud será de 3 mm y no podemos aproximarla más.

79. Calculamos la diagonal de la base de un ortoedro de 40 cm de arista.

$$d = \sqrt{40^2 + 40^2} = \sqrt{3200} = 56,57 \ \varnothing$$

→ 56,57 cm < 67 cm

Calculamos la diagonal del ortoedro.

$$D = \sqrt{3200 + 40^2} = \sqrt{4800} = 69,28 \ \emptyset$$

→ 69,28 cm > 67 cm

Podrá empaquetar la flauta situándola diagonalmente en el interior del paquete postal.

PON A PRUEBA TUS COMPETENCIAS

1. a) Tenemos que $3,4641 \le \sqrt{12} \le 3,4642$ y

$$7,0710 \le \sqrt{50} \le 7,0711$$
.

Así.

$$3,4641+7,0710 \le \sqrt{12} + \sqrt{50} \le 3,4642+7,0711$$

 $10.5351 \le \sqrt{12} + \sqrt{50} \le 10.5353$

Por tanto, el lado mayor mide $\sqrt{12} + \sqrt{50} \simeq 10,535$ hectómetros.

b) Tenemos que

$$4 \cdot 10,5351 \le 4 \cdot \left(\sqrt{12} + \sqrt{50}\right) \le 4 \cdot 10,5353$$

$$42,1404 \le 4 \cdot \left(\sqrt{12} + \sqrt{50}\right) \le 42,1412$$

El área es $42,14 \text{ hm}^2 \simeq 0,4214 \text{ km}^2$.

c) Por el Teorema de Pitágoras tenemos que

$$h^2 = 4^2 + (\sqrt{12})^2 \rightarrow h^2 = 16 + 12 \rightarrow h^2 = 28 \rightarrow h = \sqrt{28}$$

Redondeando hasta las milésimas $\sqrt{28} \simeq 5,292$ hectómetros.

d) Tenemos que $2.5,2915 \le 2\sqrt{28} \le 2.5,2916$, esto es, $10,583 \le 2\sqrt{28} \le 10,5832$

También tenemos que

$$2 \cdot 10,5351 \le 2 \cdot (\sqrt{12} + \sqrt{50}) \le 2 \cdot 10,5353$$

$$21,0702 \le 2 \cdot (\sqrt{12} + \sqrt{50}) \le 21,0706$$

Δοί

$$10,583 + 21,0702 \le 2\sqrt{28} + 2 \cdot (\sqrt{12} + \sqrt{50}) \le$$

≤10,5832+21,0706

$$31,6532 \le 2\sqrt{28} + 2 \cdot (\sqrt{12} + \sqrt{50}) \le 31,6538$$

Por tanto el perímetro del terreno es aproximadamente 31,653 hm = 3165,3 m.

Javier debe comprar al menos 3 166 metros de cercado.

- e) Tenemos que 3166/250 = 12,664. Por tanto Javier debe comprar 13 bobinas.
- f) Javier va a gastar $13 \cdot 18 = 234$ euros.
- **2.** a) 1,96 m.
 - b) |1,95702 1,96| = |-0,00298| = 0,00298.
 - c) error relativo = $\frac{0,00298}{1,95702} \simeq 0,0015$
 - d) El tanque tiene un volumen de agua $V = 3.5 \cdot 3 \cdot 1.96 = 20.58 \text{ m}^3.$
 - e) Tenemos que el volumen con la altura exacta es igual a $V = 3.5 \cdot 3 \cdot 1,95702 = 20,54871$ m³. Tenemos que el volumen con la altura exacta es igual a:

$$|20,54871 - 20,58| = |-0,03129| = 0,03129$$

Por tanto, una cota del error absoluto es 0,04.

Solucionario

3. a) Usando una regla de tres, llamando x el peso del diamante en miligramos, tenemos que:

$$x = 1.2 \cdot 200 \rightarrow x = 240 \text{ mg} = 0.24 \text{ g}$$

- b) El error absoluto fue |0,24-0,236| = 0,004.
- c) Una cota del error absoluto es 0,005.
- d) Usando una regla de tres, llamando x el peso del diamante en quilates, tenemos que:

$$x = \frac{236}{200} \rightarrow x = 1,18$$
 quilates

- e) El error relativo fue de $\frac{0,004}{0,236} \simeq 0,017$.
- **4.** a) La arista del cubo mide $\sqrt[3]{4096} = 16$ pies.
 - b) Usando una regla de tres, llamando x la longitud de la arista en centímetros, tenemos que:

$$x = 16.30,48 \rightarrow x = 487,68 \text{ cm} = 4,8768 \text{ m}$$

Así, la arista del cubo mide 4.8768 metros.

- c) El error absoluto fue de |4,8768-5| = |-0,1232| =
- d) El error relativo fue de $\frac{0,1232}{4.8768} = 0,0253$
- e) Usando una regla de tres, llamando x la longitud del diámetro del cilindro en centímetros, tenemos que:

$$x = 5.30,48 \rightarrow x = 152,4 \text{ cm} = 1,524 \text{ m}$$

- f) El volumen del cilindro es: $V = \pi \cdot 0.762^2 \cdot 4.8768 \rightarrow$ $\rightarrow V = \pi \cdot 0.580644 \cdot 4.8768 \rightarrow V = 8.896 \text{ m}^3$
- g) El volumen del cubo sin contar en cilindro es 4,87683 = 115,986 m3. Por tanto el volumen de la escultura es $115,986 - 8,896 = 107,09 \text{ m}^3$.
- **5.** a) Usando una regla de tres, llamando *x* el tiempo aproximado de revolución de la ISS en segundos, tenemos que:

$$x = 93 \cdot 60 = 5580$$

Por tanto, la ISS tarda 5580 segundos aproximadamente para dar una vuelta completa alrededor de la

b) Usando una regla de tres, llamando x el tiempo exacto de revolución de la ISS en segundos, tenemos que:

$$x = 92,69 \cdot 60 = 5561,4$$

Así, el tiempo exacto de revolución de la ISS es de 5561,4 segundos.

- c) El error absoluto fue de |5580 5561,4| = 18,6 s.
- d) Una cota del error absoluto es 18,7.
- e) El error relativo es de $\frac{18,6}{5561.4} \simeq 0,00334$.

2. Potenciación y radicación

ACTIVIDADES

1. Por ejemplo:

La velocidad de la luz es 3 · 108 m/s

La distancia de la Tierra al Sol es de 1.496 · 10¹¹ m.

Los polinomios están formados por monomios de distintos grados.

2. Por ejemplo:

Se pueden calcular sin utilizar la calculadora las potencias de exponente entero y en algunos casos las de exponente racional $(4^{1/2} = \sqrt{4} = 2)$

- **3.** a) 8
 - b) -8
 - c) -8
 - d) 8
- **4.** a) 9/4
 - b) 9/4

- c) 9/2
- d) 9/4
- 5. Aplicando las propiedades de las potencias y simplificando:
 - a) 243/32
- d) π^{-19}
- b) 1
- e) $x \cdot y$
- f) (a/b)9
- 6. La a y la d son falsas. La b y la c son ciertas.
- **7.** a) $\left(\frac{x}{2}\right)^{\frac{11}{15}}$; b) $\left(\frac{-3}{4}\right)^{4-\frac{2}{5}+1} = \left(\frac{-3}{4}\right)^{\frac{23}{5}}$;
 - c) $\left(1+\sqrt{2}\right)^{\frac{9}{5}-\left(-\frac{1}{2}\right)} = \left(1+\sqrt{2}\right)^{\frac{23}{10}}$; d) 1.
- 8. Redondeando a 2 cifras significativas en todos los casos:
 - $2.7 \cdot 10^{6}$
- $6.8 \cdot 10^{-8}$
- $4,0 \cdot 10^{-4}$
- $7,5 \cdot 10^{-7}$

- $5.1 \cdot 10^{2}$
- $5.5 \cdot 10^{7}$
- $1.2 \cdot 10^{7}$