# Packet 4: Interval Estimation

### Large sample results:

The  $t_{\nu}$ -distribution is heavy-tailed:



For example, if  $T \sim t_5$  (n = 6),

$$P(-1.96 < Z < 1.96) = P(-2.57 < T_5 < 2.57) = 0.95.$$

$$P(-2.23 < T_{10} < 2.23) = P(-2.09 < T_{20} < 2.09) = 0.95.$$

$$P(-2.04 < T_{30} < 2.04) = P(-1.98 < T_{100} < 1.98) = 0.95.$$

As the sample size n increases, the  $t_{n-1}$  distribution approaches the standard Normal distribution.



Thus, if n is large (typically  $n \geq 30$ ),  $t_{n-1} \sim N(0,1)$ , and a 95% confidence interval for  $\mu$  becomes close to

$$\left(\bar{X} - 1.96 \frac{S}{\sqrt{n}}, \quad \bar{X} + 1.96 \frac{S}{\sqrt{n}}\right).$$

If  $X_1, X_2, \ldots, X_n$  are i.i.d. but do NOT follow a  $N(\mu, \sigma^2)$ , we can still obtain approximated C.I. of  $\mu$  from C.L.T., which tells us that, with sufficiently many i.i.d. samples collected, the sample mean  $\bar{X}$  follows  $N(\mu, \sigma^2/n)$  approximately. In addition,  $\sigma^2 \approx S^2$  when n is large.

The  $100(1-\alpha)\%$  confidence interval of  $\mu$  is

$$\left(\bar{X} - Z_{\alpha/2} \frac{S}{\sqrt{n}}, \ \bar{X} + Z_{\alpha/2} \frac{S}{\sqrt{n}}\right).$$

*Example*: If we knew there were 100 ducks living in the neiborhood. We observed 40 of them when we visited Penn State Duck Pond. We assume that  $X_1, X_2, \ldots, X_{100} \stackrel{i.i.d.}{\sim}$  Bernoulli( $\theta$ ) where  $X_i$  is 1 if the duck i were at Duck Pond when we visited and 0 otherwise.

Find a 95% confidence interval for  $\theta$  the probability of a duck appeared at Duck Pond.

One-sided confidence interval for  $\mu$  when  $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ .

Sometimes we might want only a lower or upper bound on  $\mu$ , and it is also possible to form a one-sided confidence interval, for example,

• Rainfall amount for flood hazards.

The upper one-sided confidence interval is  $(-\infty, u(X)]$ .

$$P(\theta \le u(X)) = 1 - \alpha.$$

• Wind speed for power supply.

The lower one-sided confidence interval is  $[l(X), \infty)$  such that

$$P(l(X) \le \theta) = 1 - \alpha.$$

Example: In vdB (1985), 148 (= n) galactic globular clusters are observed, and the average brightness is  $\bar{x} = -7.1$  magnitude (an astronomical measure of brightness). Assuming that  $\sigma = 1.2$  mag,

- 1. Find a 95% confidence interval for the population average brightness  $\mu$ .
- 2. Find a 95% one sided confidence interval with the lower bound for the population average brightness  $\mu$ .

#### Summary of confidence interval for $\mu$

1. If  $\sigma^2$  is known, a  $100(1-\alpha)\%$  confidence interval for  $\mu$  is

$$\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right),$$

where  $z_{\alpha/2}$  is a constant satisfying  $P(Z>z_{\alpha/2})=\frac{\alpha}{2}$  if  $Z\sim N(0,1)$ .

An one sided  $100(1-\alpha)\%$  confidence interval with lower bound for  $\mu$  is

$$\left(\bar{X}-z_{\alpha}\frac{\sigma}{\sqrt{n}}, \infty\right);$$

An one sided  $100(1-\alpha)\%$  confidence interval with upper bound for  $\mu$  is

$$\left(-\infty, \ \bar{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right),$$

where  $z_{\alpha}$  is a constant satisfying  $P(Z > z_{\alpha}) = \alpha$  if  $Z \sim N(0, 1)$ .

2. If  $\sigma^2$  is unknown, a 100(1 -  $\alpha)\%$  confidence interval for  $\mu$  is

$$\left(\bar{X} - t_{\alpha/2} \frac{S}{\sqrt{n}}, \ \bar{X} + t_{\alpha/2} \frac{S}{\sqrt{n}}\right),$$

where  $t_{\alpha/2}$  is a constant such that  $P(T > t_{\alpha/2}) = \frac{\alpha}{2}$  if  $T \sim t_{n-1}$ .

An one sided  $100(1-\alpha)\%$  confidence interval with lower bound for  $\mu$  is

$$\left(\bar{X}-t_{\alpha}\frac{S}{\sqrt{n}}, \infty\right);$$

An one sided  $100(1-\alpha)\%$  confidence interval with upper bound for  $\mu$  is

$$\left(-\infty, \ \bar{X} + t_{\alpha} \frac{S}{\sqrt{n}}\right),\,$$

where  $t_{\alpha}$  is a constant satisfying  $P(T > t_{\alpha}) = \alpha$  if  $T \sim t_{n-1}$ .

3. If  $\sigma^2$  is unknown and n is large  $(n \ge 30)$ , a  $100(1-\alpha)\%$  confidence interval for  $\mu$  is

$$\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right).$$

An one sided  $100(1-\alpha)\%$  confidence interval with lower bound for  $\mu$  is

$$\left(\bar{X}-z_{\alpha}\frac{\sigma}{\sqrt{n}}, \infty\right);$$

An one sided  $100(1-\alpha)\%$  confidence interval with upper bound for  $\mu$  is

$$\left(-\infty, \ \bar{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right),$$

where the standard deviation  $\sigma$  could be replaced by the sample standard deviation  $S = \sqrt{\frac{\sum_{i=1}^{n}(X_i - \bar{X})^2}{n-1}}$  if  $\sigma$  is unknown.

#### Factors that affect the width of the confidence interval

Take two sided cofidence interval as an example:

## Chap 7.2 Confidence interval for the difference of two means

We are interested in comparing two populations denoted by X and Y. We independently collect two sets of random samples:

$$X_1, \dots, X_n \sim N(\mu_X, \sigma_X^2), Y_1, \dots, Y_m \sim N(\mu_Y, \sigma_Y^2).$$

Find  $100(1-\alpha)\%$  confidence interval of  $\mu_X - \mu_Y$ .

Case I: If  $\sigma_X^2$  and  $\sigma_Y^2$  are both known,

C.I. for  $\mu_X - \mu_Y$ :

1. Two sided  $100(1-\alpha)\%$  confidence interval:

$$\left(\bar{X} - \bar{Y} - z_{\alpha/2}\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}, \quad \bar{X} - \bar{Y} + z_{\alpha/2}\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}\right),$$

2. An one sided  $100(1-\alpha)\%$  confidence interval with lower bound for  $\mu$  is

$$\left(\bar{X} - \bar{Y} - z_{\alpha} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}, \infty\right);$$

3. An one sided  $100(1-\alpha)\%$  confidence interval with upper bound for  $\mu$  is

$$\left(-\infty, \ \bar{X} - \bar{Y} + z_{\alpha} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}\right),$$

Case II: If  $\sigma_X^2$  and  $\sigma_Y^2$  are both unknown, but we may assume  $\sigma_X^2 = \sigma_Y^2$ 

C.I. for  $\mu_X - \mu_Y$ :

1. Two sided  $100(1-\alpha)\%$  confidence interval:

$$\left(\bar{X} - \bar{Y} - t_{\alpha/2,(n+m-2)}\sqrt{\frac{S_p^2}{n} + \frac{S_p^2}{m}}, \ \bar{X} - \bar{Y} - t_{\alpha/2,(n+m-2)}\sqrt{\frac{S_p^2}{n} + \frac{S_p^2}{m}}\right),$$

2. An one sided  $100(1-\alpha)\%$  confidence interval with lower bound for  $\mu$  is

$$\left(\bar{X} - \bar{Y} - t_{\alpha,(n+m-2)}\sqrt{\frac{S_p^2}{n} + \frac{S_p^2}{m}}, \infty\right);$$

3. An one sided  $100(1-\alpha)\%$  confidence interval with upper bound for  $\mu$  is

$$\left(-\infty, \ \bar{X} - \bar{Y} + t_{\alpha,(n+m-2)} \sqrt{\frac{S_p^2}{n} + \frac{S_p^2}{m}}\right),$$

## Case III: If $\sigma_X^2$ and $\sigma_Y^2$ are both unknown and $\sigma_X^2 \neq \sigma_Y^2$

When n and m are both large, then

#### Case IV: paired samples

Suppose X and Y are always collected in pairs  $(X_1, Y_1), (X_2, Y_1), ..., (X_n, Y_n)$ .

 $X_i \sim N(\mu_X, \sigma_X^2)$  – blood pressure before treatment for patient i.

 $Y_i \sim N(\mu_Y, \sigma_Y^2)$  – blood pressure after treatment for patient i.

To know whether treatment is effective, we estimate  $\mu_X - \mu_Y$ .

Note that  $X_i$  and  $Y_i$  are not independent! Let  $D_i = X_i - Y_i \sim N(\mu_X - \mu_Y, \sigma_X^2 + \sigma_Y^2)$ . It is reduce to a one-population problem with D = X - Y, and the parameter of interest being  $\mu_D = \mu_X - \mu_Y$ .

Two sided  $100(1-\alpha)\%$  confidence interval:

- 1. If  $\sigma_D^2$  is known:
- 2. If  $\sigma_D^2$  is unknown:
- 3. If sample size is large  $(n \ge 30)$ :



More Examples: 7.2-2, 7.2-4