Imperial College London

BSc, MSci and MSc EXAMINATIONS (MATHEMATICS)

May - June 2013

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science.

Probability & Statistics II

Date: Monday, 20 May 2013. Time: 2.00pm. Time allowed: 2 hours.

This paper has FOUR questions.

Candidates should start their solutions to each question in a new main answer book

Supplementary books may only be used after the relevant main book(s) are full.

Formula sheets are provided on pages 4 & 5.

- DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.
- Answer all the questions. Each question carries equal weight.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- Affix one of the labels provided to each answer book that you use, but DO NOT USE THE LABEL WITH YOUR NAME ON IT.
- Calculators may not be used.

1. Suppose X_1, \ldots, X_n are iid random variables, each with PDF

$$f_X(x) = \frac{1}{2\sigma} \exp\left\{-\frac{|x-\mu|}{\sigma}\right\} \text{ for } -\infty < x < \infty,$$

where $\sigma > 0$ and $-\infty < \mu < \infty$ are model parameters. For simplicity, assume that n is odd.

(a) Argue that

$$\frac{d}{d\mu} \mid x - \mu | = \begin{cases} -1 & \text{if } \mu < x \\ 1 & \text{if } \mu > x \end{cases}.$$

(The derivative does not exist for $\mu = x$, but you may ignore this.)

Derive the MLEs of μ and σ .

If you have trouble deriving the MLE of μ , just derive the MLE of σ for known μ .

(b) In this part suppose that μ is known to be zero.

Write down the simplified MLE of σ under this supposition. Call it $\widehat{\sigma}_0$.

Derive the distribution of $Y_i = |X_i|$. What named distribution is this?

State the distribution of $S = \sum_{i=1}^{n} |X_i|$. (No proof is needed if you use a standard result.)

Derive the sampling distribution of $n\hat{\sigma}_0/\sigma$.

(c) Again assuming that $\mu=0$, suppose we wish to construct a confidence interval for $\sigma.$

Propose a pivotal quantity for this purpose. State why your proposal is a pivot.

Use your pivot to construct a $100 \times (1-\alpha)\%$ confidence interval in terms of the $\frac{\alpha}{2}$ and $1-\frac{\alpha}{2}$ quantiles of a named distribution.

Can a shorter interval be constructed using the same pivot? (1-2 sentences are sufficient.)

- 2. (a) Suppose X and Y are independent standard normal RVs. Compute $\Pr(X^2 + Y^2 < 1)$.
 - (b) Let $X \sim N(\mu, \sigma^2)$ and let the conditional distribution of Y given X = x be $N(\alpha + \beta x, \tau^2)$. Compute E(Y), Var(Y), and the correlation of X and Y.
 - (c) Now let $X \sim \mathrm{N}(0,1)$ and let the conditional distribution of Y given X = x be $\mathrm{N}(x,1)$. Derive the conditional pdf of X given Y. State the name of this distribution. Derive the marginal pdf of Y. Be sure to state the name of this distribution.
 - (d) Suppose A and B are both sigma algebras. Show that $A \cap B$ is also a sigma algebra.

3. Suppose $f_X(x)$ and $f_Y(y)$ are two probability density functions with the same support. Let

$$W = rac{f_X(Y)}{f_Y(Y)}$$
 and $T = rac{Yf_X(Y)}{f_Y(Y)}$.

- (a) Compute $\mathrm{E}(T)$. Explain how this can be used to construct an unbiased estimator of $\mathrm{E}(X)$ from a random sample (Y_1,\ldots,Y_n) . Call your unbiased estimator S.
- (b) Now suppose

$$f_X(x) = e^{-x}$$
 for $x > 0$, and $f_Y(y) = \gamma e^{-\gamma y}$ for $y > 0$, with $\gamma > 0$

Compute $\mathrm{Var}(T)$ and $\mathrm{Var}(S)$. Explain carefully how your answer depends on γ . What value of γ minimizes the variances? Is this a sensible choice of γ ? What values of γ should absolutely be avoided when using S to estimate $\mathrm{E}(X)$? Why?

- (c) Using the functional forms of f_X and f_Y given in part (b), derive the pdf of W. Be very careful about how your answer depends on γ .
- 4. Suppose (X_1,\ldots,X_n) is a random sample from a Uniform $(0,\alpha)$ distribution, for some $\alpha>0$. Let $T_n=2\bar{X}_n=\frac{2}{n}\sum_{i=1}^n X_i$ and $M_n=\max(X_1,\ldots,X_n)$.
 - (a) State the definition of convergence in distribution, $X_n \xrightarrow{\mathcal{D}} X$. State the definition of convergence in probability, $X_n \xrightarrow{\mathcal{P}} X$.
 - (b) Derive the sampling distribution of M_n . Show that $M_n \xrightarrow{\mathcal{P}} \alpha$.
 - (c) Show that T_n is an unbiased estimator of α , but that M_n is a biased estimator of α . Compute $\lim_{n\to\infty} \mathrm{bias}(M_n)$.
 - (d) This part deals with convergence in distribution. What is the asymptotic (large n) distribution of $\sqrt{n}(T_n \alpha)$? (Hint: use a theorem.) Derive the asymptotic (large n) distribution of $n(\alpha M_n)/\alpha$. (Prove your result.)

DISCRETE DISTRIBUTIONS	MASS CDF $E_{f_X}[X]$ $Var_{f_X}[X]$ MGF	F_X	$ -x $ θ $\theta(1-\theta)$ $\theta+\theta e^t$	$(1-\theta)^{n-x}$ $n\theta$ $n\theta(1-\theta)$ $(1-\theta+\theta e^t)^n$	exb {	$(1-(1- heta)^x$ $\frac{1}{ heta}$ $\frac{(1- heta)}{ heta^2}$ $\frac{6}{1-e^t}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1}{\theta} \theta^n (1-\theta)^x \qquad \frac{n(1-\theta)}{\theta} \qquad \frac{n(1-\theta)}{\theta^2} \qquad \left(\frac{\theta}{1-e^t(1-\theta)}\right)^n$
	PARAMETERS		$\theta \in (0,1) \qquad \theta^x (1-\theta)^{1-x}$	$ \} n \in \mathbb{Z}^+, \theta \in (0,1) \binom{n}{x} \theta^x (1-\theta)^{n-x} $	$\} \lambda \in \mathbb{R}^+ \frac{e^{-\lambda \lambda x}}{x!}$	$\theta \in (0,1) \tag{1-\theta}$		$ \qquad \qquad n \in \mathbb{Z}^+, \theta \in (0,1) \left(\begin{array}{c} n+x-1 \\ x \end{array} \right) \theta^n (1-\theta)^x $
	RANGE	×	$Bernoulli(heta) \qquad \{0,1\}$	Binomial (n, θ) $\{0, 1,, n\}$	$Poisson(\lambda)$ $\{0,1,2,\}$	Geometric(θ) {1, 2,}	$NegBinomial(n, \theta) \ \{n, n+1,\}$	{0,1,2,}

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives

$$f_Y(y) = f_X\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma}$$
 $F_Y(y) = F_X\left(\frac{y-\mu}{\sigma}\right)$ $M_Y(t) = e^{\mu t}M_X(\sigma t)$

$$\mathsf{E}_{f_Y}\left[Y\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right] \qquad \mathsf{V}_{\delta}$$

$$\mu + \sigma E_{f_X}[X]$$
 Var_{f_Y}[Y

$$u+\sigma \mathsf{E}_{f_X}[X]$$
 Var $_{f_Y}[Y]$

			CONTINUOUS DISTRIBUTIONS	RIBUTIONS			
		PARAMS.	PDF	CDF	$E_{f_X}[X]$	$Var_{f_X}[X]$	MGF
	×		fy	1,			Mr
Uniform(lpha,eta) (stand. model $lpha=0,eta=1)$	(α,β)	α < 5 ∈ R	$\frac{1}{eta-lpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+\beta)}{2}$	$\frac{(eta-lpha)^2}{12}$	$\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$
$Exponential(\lambda)$ (stand. model $\lambda=1$)	ops E	+ \ \ \ \	$\lambda e^{-\lambda_2}$	$1 - e^{-\lambda x}$		1 Y=2	$\left(\frac{\lambda}{\lambda-t}\right)$
Gamma(lpha,eta) (stand. model $eta=1$)	·÷	$\alpha, eta \in \mathbb{R}^+$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta t}$		ع اهر	$\frac{\alpha}{\beta^2}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}$
Weibull(lpha,eta) (stand. model $eta=1$)	+	+ - - - - - - - -	$lphaeta x^{lpha-1}e^{-eta x^lpha}$	$1-e^{-\beta x^{lpha}}$	$\frac{\Gamma(1+1/\alpha)}{\beta^{1/\alpha}}$	$\frac{\Gamma\left(1+\frac{2}{\alpha}\right)-\Gamma\left(1+\frac{1}{\alpha}\right)^{2}}{\beta^{2}/\alpha}$	
$Normal(\mu,\sigma^2)$ (stand. model $\mu=0,\sigma=1)$	find a	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	σ <u>-</u> 5	e {µ+o²+²/2}
Student(u)	呂	+ ∰ → /	$\frac{(\pi \nu)^{-\frac{1}{2}\Gamma\left(\frac{\nu+1}{2}\right)}}{\Gamma\left(\frac{\nu}{2}\right)\left\{1+\frac{x^2}{\nu}\right\}^{(\nu+1)/2}}$		0 (if $\nu > 1$)	$\frac{\nu}{\nu-2} (\text{if } \nu > 2)$	
Pareto(heta, lpha)	+	$\theta, \alpha \in \mathbb{R}^+$	$\frac{\alpha \theta \alpha}{(\theta + x)^{\alpha + 1}}$	$1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha}$	$\frac{\theta}{\alpha - 1}$ (if $\alpha > 1$)	$\dfrac{\alpha heta^2}{(lpha-1)(lpha-2)}$ (if $lpha>2$)	
Beta(lpha,eta)	(0,1)	α, <i>0</i> ∈ 厘+	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	

	M2SI FINAL EXAM SOLUTION	2012-2013.
1a)	If $M < X$, $ x-y = x-y$ and $\frac{d}{dx} x-y = -1$. $M > x$, $ x-y = M-x$ and $\frac{d}{dx} x-y = 1$.	(a)mark
	$\begin{split} \mathcal{L}(A,\sigma) &= -n \log \sigma - \frac{1}{\sigma} \left[\sum_{i=1}^{m} x_i - M + c \right] \\ &= -\frac{1}{\sigma} \left[\sum_{i=1}^{m} \sum_{j=1}^{m} x_i - M + C \right] \end{split}$	
	This quantity will be zero if an equal number less than and greater than M, i.e., if M=	median (Vi,, Xa).
(3)	So there = median (x,, xn). Although Olldu does not exist & M = Xi., Continuous function of M. and l is increasing and decreasing for M& Amer, thus Amer is of l.	for MLA MILE
	$\frac{\partial l}{\partial \sigma^{2}} = \frac{n}{\sigma} + \frac{1}{\sigma^{2}} \sum_{i=1}^{n} X_{i} - M = 0 \implies \sigma_{mig}$ $\frac{\partial^{2} l}{\partial \sigma^{2}} = \frac{n}{\sigma^{2}} - \frac{2}{\sigma^{3}} \sum_{i=1}^{n} X_{i} - M , \text{ evaluated at the}$ $= \frac{n}{\sigma^{2}} - 2 \frac{n \sigma_{mig}}{\sigma_{mig}} = -\frac{n}{\sigma_{mig}} < 0 \implies r$	MLE this is
ь)	$ \frac{f_{X}(y)}{f_{X}(y)} = \frac{1}{2} \times (y_{1}) + \frac{1}{2} \times (-y_{1}) = \frac{1}{2} \exp \left\{-\frac{ y_{1} }{2}\right\} + \frac{1}{2} \exp \left\{-\frac{ y_{1} }{2$	dy = 1.
0	- = = = = = = = = = = = = = = = = = = =	\

We know sum of n iid exportials is gamma (n, λ) , where λ is the scale parameter of the exponetials. Thus Sugamma $(n, \frac{1}{n})$.

 $\frac{n}{\sigma} = \frac{S}{\sigma} \sim G_{amma}(n, 1)$, noting that the second parameter of a gamma distin is a Scale parameter.

The is an appropriate pivol. This quantity depends only on the random sample and T and has a known, complety specified distin.

Let go be the 2 quantile of gamma (n.1)
go be the 1-2 quantile of gamma (n.1).

Pr (gr = n to = 100 (1-d) %

Solving for to

 $P_{C}\left(\frac{n\hat{G}_{0}}{gu} \leq T \leq \frac{n\hat{G}_{0}}{gL}\right) = 100(1-a)\%$ $S_{0}\left(\frac{n\hat{G}_{0}}{gu}, \frac{n\hat{G}_{0}}{gL}\right) \text{ is } \approx 100(1-a)\% \text{ CT.}$

Following the above calculation, any interval of the form

$$\left(\frac{n\hat{\sigma}_0}{g_U^\star},\;\frac{n\hat{\sigma}_0}{g_L^\star}\right) = n\hat{\sigma}_0\left(\frac{1}{g_U^\star},\;\frac{1}{g_L^\star}\right)$$

is a $100 \times (1-\alpha)\%$ confidence interval, just so long as $\Pr(g_L^\star < V < g_U^\star) = 100 \times (1-\alpha)\%$, where $V \sim \operatorname{GAMMA}(n,1)$. Finding g_L^\star and g_U^\star satisfying this constraint, such that

$$\frac{1}{g_L^*} - \frac{1}{g_U^*} < \frac{1}{g_L} - \frac{1}{g_U}$$

results in a shorter interval.

An alternate solution is to argue that the minimum-width confidence interval at a given confidence level is a set of the form $\{x: f_X(x|\sigma^2) \geq c\}$ where c is a constant and f_X is the pdf of the pivot, in this case, $n\hat{\sigma}_0/\sigma$.

Pr (x2+Y2-1) = [= exp = 1 (x2+y2)] = [= [= e^2/2 drea $= \int_{2\pi}^{1/2} \left[-e^{-\frac{R}{2}} \right] d\theta = \left(1 - e^{-\frac{1}{2}} \right) \int_{2\pi}^{2\pi} d\theta = 1 - e^{-\frac{1}{2}}$ Alternatively, $U=X^2\cdot Y^2-\chi_2^2$, so $U=\exp(\frac{1}{2})$ and $R(U=1)=\int_0^1 \frac{1}{2}e^{-\alpha/2}d\alpha=1-e^{-\alpha/2}d\alpha$ E(Y)= E[E(MX)] E[E(YIX)] = E[O+BX] = O+BM. Vor (Y) = E[Var (YIX)] + Var [E(YIX)] = E[T2] + Ver (a+BX) = T2 + B2 T2 E(XY) = E[E(XY|X)] = E[XE(Y|X)] = E(UX+BX2) = UM+B(M2+02) Con(X,Y) = E(XY) - E(X) E(Y) = O(M + B(M2+62) - (O(M + BM2) = B 52-Corr (XY) = Cov (XY) = BU/JE2+ B202. frigg (xly) of fry (xy) = 1 exp {-1 [x2 + (y-x)2]} = = = expf- = [x2 4/2 - 2x4 + x2] d = exp = = [2x2 - 2x4] d = exp = (x - 2)26 -> XIY~ N(3, 2) 1 Mark => Y~N(0,2) 1 mark

.0		
d)	Since of is a sigma algebra, we know	
	1) Ø E A	
	ii) If A e x then A e x	195
	iii) if A, Az, E & then O'AI E &	
	1=1	
	Liberte du B.	
<u></u>	Now	** ***
	i) Because & ex and & & B, & & AB	-
	ii) If A E X A B then A ext so A Ext and A E B	
	so Re eB. Thus As e 11 B.	
10	III) If A, Az, EARB then A, Ac, Ex so UA: Ex	
	and A. As, EB S. U; AI EB. Thus U; AI EXAB.	
	Q12 (1) 12, 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	4)
<u></u>		
(MINITED AND TO A STATE OF THE		ten i
		E servicionisco
MODE TO SERVICE STATE OF THE S		
		10 44
		7
(0)		0.00
(200 100 100 100 100 100 100 100 100 100		
innui m waters		Management (Management)
		348400 341 8 141 - 31 - 3141
10000-10-10-10-10-10-10-10-10-10-10-10-1		www.common.com/will at State of the
0_		
		Mily up thing

 $\exists a) \quad E(T) = \left\{ y \frac{S_{\kappa}(y)}{I_{\nu}(y)} \cdot S_{\gamma}(y) \cdot dy = \left\{ y \cdot S_{\kappa}(y) \cdot dy = E(\kappa) \right\}. \right\}$ $S = \frac{1}{n} \sum_{i} X_{i} \frac{f^{A}(X_{i})}{f^{A}(X_{i})} \cdot E(S) = \frac{1}{n} \sum_{i=1}^{n} E\left[X_{i} \frac{f^{A}(X_{i})}{f^{A}(X_{i})}\right] = E(X_{i}),$ by the above calculation. Given a random sample of Y:, we can estimate E(x) using the estimator S. S is an un blased estimeter es E(x) because E(s) = E(x). $= \frac{\Gamma(3)}{8(2-3)^3} \quad \text{if} \quad 8 < 0.$ E(T) = E(x) = 1 for the given fx (x). $V_{ar}(T) = \frac{943}{3}(2-3)^3 - 1$ & 3 < 2Var (S) = Var (T) = 13 (3-8)3 - 1 5m 8 <2 We can minimize the variances, by maximizing & (2-8)3 or log & + 3 log (2-8). Differentiating, we find &= I minimizes the variances. This is a sensible choice as it results is T-X. Elymark Value of 8 72 result is estimators of ELK) with infint variance. For these values there is no granates 5? > E(X) since the law of large numbers does not apply.

C/W= x e= Y(1-8) Y= -log(xw) | dy = w 1-31 for x +1. (If t=1, W=1. So we may ignore this trivial case.) Support of Y is (o, w). Support of W is (0, 1/4) if 8 = 1

(1/4, 10) if 8 = 1 D Sw(w) = Sy (-109 (8w)) dy = 11-8100 exp (3 m) € = 11-81W (8W)8/1-8 = 138 WIT Sor (00 W 1/8 if tol. We know E(W) = \(\frac{\int_{\colored}(y)}{\int_{\colored}(y)} \fra Compeding from the pdf. E(W) = 1-8 ((8W) 3/1-8 dw = 21/8 ((1-8) W/1-7) 1/8 = 1 if 3<1 = 31/1-8 [00 3/1-8 dw = 31/1-8 [(1-8) w'/1-8] = 1 is 5>1

ta) We say Xn 2 X is now Fxn (x) = Fx (x) at all Points of continuity of Fx. We say $X_n \xrightarrow{P} X$ if $\forall \in \text{70}$ Non $\Pr(|X_n - X| < \epsilon) = 1$. b) We note the Em if and only if X,..., Xn Em. Fina(m) = Pr (Mn sm) = The Pr (X; sm) = (m) for osms & lin Fm (m) = lin (m) = 0 for m < of So Ma Da. But convergence in dist's to a constant is equivalent to convergence in probability to a constant. I.o., c) E(E) = = = [(X) = 2E(X) = 2= d. Smo (m) = dm Fma (m) = n (m) at for 0 & m & at $E(M_n) = \begin{pmatrix} \alpha & n & m^n & dm & = \frac{n+1}{n+1} & \alpha & m+1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{n+1}{n+1} \neq 0.$ BIAS (Mn) = E(Mn) - d = o (not - 1) = -od - o o as n-soo. d) E(W) = 2 , Var (X1) = 12 So By the CLT Ny (Xn - 2) 0, N(0,1) 12 NO (Tn-d) D N(0,1) Nn (Ty-a) → N(0, 3).

d	$ Let U_n = n(\alpha - M_n)/\alpha = V_n(u) = Pr(M_n = u) = Pr(M_n = \alpha(1 - \frac{u}{n})) = 1 - F_{M_n}(\alpha(1 - \frac{u}{n})) = 1 - (1 - \frac{u}{n})^n$	
	$\lim_{n \to \infty} F_{u_n}(u) = J_{u_n}^{-1/2} $	e wa
The sale partners of the sale of	I.e., Un -> Exponital (1).	10 12
0		
84 MARINE MA A A A A A A A A A A A A A A A A A A		
0		
	· .	
0		

Marks

Suppose X_1, \ldots, X_n are iid random variables, each with PDF

$$f_X(x) = \frac{1}{2\sigma} \exp\left\{-\frac{|x-\mu|}{\sigma}\right\} \text{ for } -\infty < x < \infty,$$

where $\sigma > 0$ and $-\infty < \mu < \infty$ are model parameters. For simplicity, assume that n is odd.

(a) Argue that

$$\frac{d}{d\mu} \mid x - \mu | = \begin{cases} -1 & \text{if } \mu < x \\ 1 & \text{if } \mu > x \end{cases}.$$

(The derivative does not exist for $\mu = x$, but you may ignore this.)

(3) Derive the MLEs of μ and σ .

If you have trouble deriving the MLE of μ , just derive the MLE of σ for known μ .

- In this part suppose that μ is known to be zero.
- Write down the simplified MLE of σ under this supposition. Call it $\widehat{\sigma}_0$. Derive the distribution of $Y_i = |X_i|$. What named distribution is this?
- 23 tate the distribution of $S = \sum_{i=1}^{n} |X_i|$. (No proof is needed if you use a standard result.)
- (2) Derive the sampling distribution of $n\hat{\sigma}_0/\sigma$.
- (c) Again assuming that $\mu = 0$, suppose we wish to construct a confidence interval for σ .
- Propose a pivotal quantity for this purpose. State why your proposal is a pivot.
- \bigcirc Use your pivot to construct a 100 imes (1-lpha)% confidence interval in terms of the $rac{lpha}{2}$ and $1 - \frac{\alpha}{2}$ quantiles of a named distribution.
- (2) Can a shorter interval be constructed using the same pivot? (1-2 sentences are sufficient.)
- 2. (a) Suppose X and Y are independent standard normal RVs. Compute $\Pr(X^2 + Y^2 < 1)$.
 - (b) Let $X \sim N(\mu, \sigma^2)$ and let the conditional distribution of Y given X = x be $N(\alpha + \beta x, \tau^2)$. Compute E(Y), Var(Y), and the correlation of X and Y.
 - (c) Now let $X \sim N(0,1)$ and let the conditional distribution of Y given X = x be N(x,1).
 - \bigcirc Derive the conditional pdf of X given Y. State the name of this distribution.
 - Derive the marginal pdf of Y. Be sure to state the name of this distribution.
 - Suppose $\mathcal A$ and $\mathcal B$ are both sigma algebras. Show that $\mathcal A\cap\mathcal B$ is also a sigma algebra.