TD 2: Régimes transitoires

Paul Dufour Julie Fiadino

Contents

1	COURS	3
	1.1 Condensateur	3
	1.2 Bobine	3
	1.3 Valeurs pour $t = 0$ et $t = \infty$	3
	1.4 Recherche de l'équation	4
	1.5 Tracer la courbe	5
2	Exercice 1	7

1 COURS

1.1 Condensateur

Définition

Un condensateur est composé de 2 surfaces conductrices séparées par un objet isolant.

Représentation graphique :

La capacité C est exprimée en Farad.

Loi d'Ohm : $i(t) = C \frac{du(t)}{dt}$ Constante de temps : $\tau = RC$

Conventions

Par convention, l'intensité et la tension s'écrivent en minuscule quand elles dépendent du temps. Elles sont notées en majuscules sinon.

Attention

L'intensité i étant la dérivée de la tension, il ne peut pas y avoir de discontinuité de tension dans un condensateur. Cela demanderai une tension infinie.

1.2 Bobine

Définition

Une bobine est constituée d'un fil enroulé

Représentation graphique :

L'inductance L est exprimée en Henry.

Loi d'Ohm : $u(t) = L \frac{di(t)}{dt}$ Constante de temps : $\tau = \frac{L}{R}$

Attention

La tension u étant la dérivée de l'intensité, il ne peut pas y avoir de discontinuité d'intensité dans une bobine. Cela demanderai une intensité infinie.

1.3 Valeurs pour t = 0 et $t = \infty$

Le calcul des valeurs en 0 et ∞ permettent de tracer l'allure de la courbe.

1. Condensateur:

Comme il n'y a pas de discontinuité de tension, la tension à 0 est égale à la valeur initiale, qui correspond à la valeur à 0^- (souvent 0 et parfois donnée dans l'énoncé).

L'intensité peut être retrouvée à l'aide de loi des mailles/loi des noeuds.

A $t = \infty$, le condensateur se comporte comme un interrupteur ouvert. Sa tension a donc une valeur constante et son intensité est nulle.

2. Bobine:

Comme il n'y a pas de discontinuité de courant, l'intensité à 0 est égale à la valeur initiale, qui correspond à la valeur à 0⁻ (souvent 0 et parfois donnée dans l'énoncé).

La tension peut être retrouvée à l'aide de loi des mailles/loi des noeuds.

A $t = \infty$, la bobine se comporte comme un fil. Son intensité a donc une valeur constante et sa tension est nulle.

Astuce

Pour les valeurs à ∞ , il n'y a pas besoin de se rappeler des équivalents pour retrouver l'intensité et la tension.

Dans un condensateur, à $t=\infty$ la tension est constante donc l'intensité est nulle car il s'agit de la dérivée de celle-ci.

Dans une bobine, à $t=\infty$ l'intensité est constante donc la tension est nulle car il s'agit de la dérivée de celle-ci.

1.4 Recherche de l'équation

Pour trouver l'équation, on utilise les lois de base et les propriétés des condensateurs et des bobines.

Prenons ce circuit pour exemple:

D'après la loi des mailles on a : $E - U_R - u(t) = 0$

Or d'après la loi d'Ohm on a $U_R = Ri(t)$ Donc E - Ri(t) - u(t) = 0

Dans un condensateur, $i(t) = C \cdot \frac{du(t)}{dt}$

Donc $RC \cdot \frac{du(t)}{dt} + u(t) = E$

Si on pose y = u(t), on a RCy' + y = E

On résoud donc l'équation différentielle pour trouver l'équation de u(t).

Dans le cas d'une bobine :

En utilisant la même méthode que précédement, on a E-Ri(t)-u(t)=0

Dans un condensateur, $u(t) = L \cdot \frac{di(t)}{dt}$ Donc $Ri(t) + L \cdot \frac{di(t)}{dt} = E$

Si on pose y = i(t), on a Ry' + Ly = E

Astuce

Pour résoudre les équations, il est plus simple de faire apparaître les constantes de temps.

Dans le cas d'un condensateur, il n'y a pas de modifications à faire, mais pour une bobine on peut transformer l'équation comme ceci : $i(t) + \frac{L}{R} \cdot \frac{di(t)}{dt} = E$.

1.5 Tracer la courbe

Pour tracer la courbe, on a besoin des valeurs à t=0 et $t=\infty$, ainsi que de l'équation trouvée à l'aide de l'intégrale.

Prenons par exemple l'équation d'un condensateur : $u(t) = E - E \cdot e^{-\frac{t}{RC}}$ On a donc les valeurs suivantes $u(0^-) = u(0^+) = 0$ et $u(\infty) = E$

On commence par placer les points à 0^- , 0^+ et ∞ .

Ensuite on relit les points avec une courbe

Remarque

Pour savoir dans quel sens est la courbure de l'exponentielle, il suffit de regarder son signe.

S'il y a un - devant l'exponentielle, la courbe a cette tête là :

Sinon, elle a cette tête là:

On peut aussi tracer la dérivée i(t), qui a pour équation $i(t) = E \cdot e^{-\frac{t}{RC}}$ et les valeurs $i(0^-) = 0$, $i(0^+) = E$ et $i(\infty) = 0$.

On place donc les points à 0^- , 0^+ et ∞ .

Et on les relit avec la courbe

2 Exercice 1

1. À $t = 0^-$, K ouvert :

À $t = O^+, K$ fermé :

Il n'y a pas de changement brusque de tension dans un condensateur, donc $U_C(0^+)=U_0$ D'après la loi d'Ohm : $U_R=Ri_C(0^+)$

Donc d'après la loi des mailles :

E -
$$Ri_C(0^+) - U_C(0^+) = 0$$

 $i_C(0^+) = \frac{E - U_C}{R}$

À $t \to \infty$, U_C est une constante.

Donc $i_C(\infty) = 0$ Donc $U_R = 0$

Donc d'après la loi des mailles : $U_C(\infty) = E$