

West Nile Virus

Ridzuan Alvin Mark

01 Introduction

02 **Data**

Preprocessing &

Feature

Engineering

03 **EDA** 04

Modelling

Cost Benefit Analysis

06

Conclusion and Recommendation

Introduction

Mosquitoes bad!

Problem Statement

CDPH has contracted us to study the patterns of mosquito propagation, and the *West Nile Virus*.

Produce usable insights to effectively predict the growth of propagation of the virus through the movement of the mosquito population.

Data Summary

Train - 2007, 2009, 2011, 2013 Test -2008, 2010, 2012, 2014

When sprays were done in 2011 and 2013

Meteorological data from 2008 to 2014

Data
Preprocessing
& Feature
Engineering

Data Treatment *

General

- Convert 'Date' to Datetime
- 'Year', 'Month', 'Day'

Train/Test Data

- Remove duplicate rows (capped at 50)
- Combine 'NumMosquitos' count for duplicate rows

Spray Data

Drop 'Time' column

Weather Data

- Assign missing values: "M", "-", "T"
- Impute Stn 2 missing data from Stn 1
- Drop columns with insufficient data
- Daylight Hours

Data Treatment *

Conoral

Imputing from Station 1 Data	'Depth', 'PrecipTotal', 'Snowfall'		
Dropping columns with insufficient data	'Water1'		
Filling in Trace "T" data with 0.005	'PrecipTotal', 'Snowfall'		
Daylight Hours	'Sunrise' + 'Sunset'		

Spray Data

Weather Data

- Assign missing values: "M", "-", "T"
- Impute Stn 2 missing data from Stn 1
- Drop columns with insufficient data
- **Daylight Hours**

Relative Humidity

Derived from Average Temperature and Dewpoint

Cyclical Transform of Month and Day

Makes more sense for cyclical variable

CodeSum split

Nominal columns for each classification

Clusterina

Latlong, resultspd result dir, Tavg Rhumid

A measure of the amount of moisture in the air as a proportion of the maximum amount of moisture that can exist at a given temperature.

$$RH = 100 imes \left[rac{e^{rac{17.625 imes D_p}{243.04 + D_p}}}{e^{rac{17.625 imes T}{243.04 + T}}}
ight]$$

Relative Humidity

Derived from Average Temperature and Dewpoint

Cyclical Transform of Month and Day

Makes more sense for cyclical variable

CodeSum split

Nominal columns for each classification

Clustering

Latlong, resultspd result dir, Tavg Rhumid

Represent cyclical values (in this case, month and day) as a function of sin/cos, to reflect cyclical nature

e.g. sin(December) is close to sin(January)

$$var_{sin} = sin\left(x \times \frac{2\pi}{\max(x)}\right)$$

$$var_{cos} = cos\left(x \times \frac{2\pi}{\max(x)}\right)$$

Relative Humidity

Derived from Average Temperature and Dewpoint

Cyclical Transform of Month and Day

Makes more sense for cyclical variable

CodeSum split

Nominal columns for each classification

Clustering

d result dir, Tavg Rhumid

Relative Humidity

Derived from Average Temperature and Dewpoint

Cyclical Transform of Month and Day

Makes more sense for cyclical variable

CodeSum split

Nominal columns for each classification

Clustering

Latlong, resultspd result dir, Tavg Rhumid

Tupling coordinate values

Latitude and Longitude

into single, categorical

column 'Coordinates'

Tuples are then dummified as specific location vectors

Derived from Average Temperature and Dewpoint

Cyclical Transform of Month and Day

Makes more sense for cyclical variable

CodeSum split

Nominal columns for each classification

Clustering

Latlong, resultspd result dir, Tavg Rhumid

Relative Humidity

Derived from Average Temperature and Dewpoint

Cyclical Transform of Month and Day

Makes more sense for cyclical variable

Next Section!

CodeSum split

Nominal columns for each classification

Clustering

Latlong, resultspd result dir, Tavg Rhumid

03

EDA & Modeling

Data insights Modeling Flow

Exploratory Data Analysis

EDA • Number of Mosquito Caught per year

EDA • WNV presences by Months per Year

EDA • Weather condition by Years over span of month

EDA • Clustering for Wnv Presence (Lat/Long)

EDA • Clustering for Wnv Presence (Wind)

EDA • Clustering for Wnv Presence (Temp/Humidity)

EDA • Feature correlation with Virus presence (>= 0.025 & <= -0.025)

EDA • Feature correlation with each other

Baseline Model

Oversampling and PCA comparison

- Log Regression baseline with no resampling
- SMOTENC was chosen for oversampling technique to help with our imbalance class
- o PCA

Score	LR no resampling	LR SMOTE resampling	LR ADASYN resampling	LR SVMSMOTE resampling	LR SMOTENC resampling	LR SMOTENC PCA
Acc (train)	0.87	0.99	0.99	0.99	0.99	0.75
Acc (test)	0.75	0.73	0.73	0.73	0.74	0.73
MisclassRate(test)	0.25	0.27	0.27	0.27	0.26	0.27
Recall (test)	0.69	0.68	0.68	0.69	0.68	0.68
Spec (test)	0.75	0.73	0.73	0.74	0.74	0.74
Precision (test)	0.14	0.13	0.13	0.13	0.13	0.13
F1 (test)	0.23	0.22	0.22	0.22	0.22	0.22
ROC_AUC (test)	0.72	0.71	0.71	0.71	0.71	0.71

- Use Pycaret Best model function (sort by AUC)
 - Random Forest Classifier
 - Extra Trees Classifier
 - Logistic Regression
 - Extreme Gradient Boosting (Self add in)

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс	TT (Sec)
rf	Random Forest Classifier	0.9391	0.9908	0.9697	0.9136	0.9408	0.8782	0.8799	0.9460
et	Extra Trees Classifier	0.9429	0.9907	0.9632	0.9255	0.9440	0.8859	0.8867	0.9000
lr	Logistic Regression	0.9610	0.9891	0.9503	0.9710	0.9605	0.9221	0.9223	0.6220

Random Forest

- Able to predict 68% of class 1 and 80% of class 0
- AUC score 0.74

Accuracy_score(test):0.79
MisclassificationRate_score(test):0.21
Recall_score(test):0.68
Specificity_score(test):0.80
Precision_score(test):0.16
F1_score(test):0.26
ROC AUC score(test):0.74

XGBoost

- Able to predict 75% of class 1 and 74% of class 0
- AUC score 0.74

Accuracy_score(test):0.74
MisclassificationRate_score(test):0.26
Recall_score(test):0.75
Specificity_score(test):0.74
Precision_score(test):0.14
F1_score(test):0.24
ROC_AUC_score(test):0.74

Baseline vs Best Model

Extra Trees Model interpretation

Feature Importance Plot

Extra Trees SHAP Values

- High Feature values with Positive impact:
 - Year
 - CULEX PIPIENS/RESTUANS mix
 - TEMP Average

- Low Feature values with Positive impact:
 - CULEX RESTUANS only
 - STATION
 - Month_Cyclical
 - Cluster_latlong

O4 Cost Benefit Analysis

Cost Benefit Analysis

Cost Benefit Analysis

Medical Cost

- Personnel who get serious illness may need to be hospitalised
- Substantial cost incurred for treatment of such patient (estimated US\$21,000 per patient).
- 15 cases need to be prevented to cover the cost of spray programme.

Impact to Workforce / Productivity

- Personnel may be absent from work affecting Chicago's workforce productivity.
- Significant impact to businesses if West Nile Virus is not under control
- Estimated loss of US\$281 for each man-day loss.
- 358 cases need to be prevented to cover the cost of spray programme

- Based on our model, positive observations of presence of Wnv in Year 2012 (highest in test data across 2008, 2010, 2012 and 2014).
- Selective spray of pesticide using prediction from model..

Conclusion and Recommendation

Conclusion and Limitations

- Pesticide spraying is an effective means for prevention of West Nile Virus.
- Recommend CDPH to adopt Extra Trees model (our best model) to predict presence of Wnv carrying mosquito to derive spray regime.
- Model and prediction is limited to:
 - Chicago only (or locations with similar weather conditions)
 - 6 known mosquito types

M

Recommendations

Life Cycle

Weather

Larvicide

Together we can achieve a West Nile Virus Free-Day...

