

Islamic University of Technology

${\it CSE~4810}$ Algorithm Engineering Lab

Lab 0

Name: Tasnimul Hasnat

ID: 190041113

Section 1A

February 7, 2024

Contents

1	Tas	k 1	1				
	1.1	Problem	1				
	1.2	Graph	1				
	1.3	Solution	2				
	1.4	Complexity Comparison	3				
2	Task 2						
	2.1	Find only the complexity for find3RDelement function	4				
	2.2	Find only the complexity for doingSomethingImportant	5				
	2.3	Find only the complexity for doingSomethingImportant	6				
2	Tas	k 3	7				
	3.1	Solution	7				
	3.2	Algorithm	7				
	3.3	Complexity	8				

$1 \quad Task 1$

1.1 Problem

Sort and draw the following functions with desmos in increasing order of asymptotic (big-O) complexity with justification:

a)
$$f_1(n) = n^{0.999} . \log_2(n)$$

b)
$$f_2(n) = \binom{n}{2}$$

c)
$$f_3(n) = (1000001 * 10^{-6})^n$$

d)
$$f_4(n) = n!$$

e)
$$f_5(n) = 2^{(10*10^7)}$$

f)
$$f_6(n) = n * \sqrt{n}$$

g)
$$f_7(n) = n^{\sqrt{n}}$$

h)
$$f_8(n) = \sum_{i=1}^n (i+1)$$

1.2 Graph

Plotting the given functions in desmos graphing calculator we get -

Figure 1: Plotted Function in Desmos

 ${\rm N.B}$ - f_5 is a large value (2^{10^8}) so it didn't fit inside the graph.

1.3 Solution

The complexities of the given equations are -

a)
$$f_1(n) = n^{0.999} \cdot \log_2(n)$$

For any $c > 0$, $\log_2(n)$ is $O(n^c)$.
So, $n^{0.999} \cdot \log_2(n) = O(n^{0.999} \cdot n^{0.001}) = O(n)$
Complexity = $O(n)$ or linear

b)
$$f_2(n) = \binom{n}{2}$$

 $\binom{n}{2} = \frac{n(n-1)}{2}$
Complexity = $O(n^2)$ or polynomial

c)
$$f_3(n) = (1000001 * 10^{-6})^n$$

 $(1000001 * 10^{-6})^n = 1.000001^n$
Complexity = $O(1.000001^n)$ or exponential

d)
$$f_4(n) = n!$$

Complexity = $O(n!)$ or factorial

e)
$$f_5(n) = 2^{(10*10^7)}$$

Complexity = $O(1)$ or constant

f)
$$f_6(n) = n * \sqrt{n}$$

Complexity = $O(n^{3/2})$ or polynomial

g)
$$f_7(n) = n^{\sqrt{n}}$$

 $n^{\sqrt{n}} = (2^{\log n})^{\sqrt{n}} = 2^{\sqrt{n}\log n}$
Complexity = $O(2^{\sqrt{n}\log n})$

h)
$$f_8(n) = \sum_{i=1}^n (i+1)$$

 $\sum_{i=1}^n (i+1) = \frac{n^2+n}{2} + n = \frac{n^2+3n}{2}$
Complexity = $O(n^2)$ or polynomial

1.4 Complexity Comparison

So, the increasing order of complexity ${\boldsymbol{-}}$

Complexity Comparison					
Rank	Function	Values	Complexity	O(n)	
1	$f_5(n)$	2(10*10 ⁷)	Constant	<i>O</i> (1)	
2	$f_1(n)$	$n^{0.999}.\log_2(n)$	Linear	O(n)	
3	$f_6(n)$	$n * \sqrt{n}$	Polynomial	$O(n^{1.5})$	
4	$f_2(n)$	$\binom{n}{2}$	Polynomial	$O(n^2)$	
5	$f_8(n)$	$\sum_{i=1}^{n} (i+1)$	Quadratic	$O(n^2)$	
6	$f_7(n)$	$(n)^{\sqrt{n}}$	Exponential	$O(2^{\sqrt{n}logn})$	
7	$f_3(n)$	$(1000001 * 10^{-6})^n$	Exponential	$O(1.000001^n)$	
8	$f_4(n)$	n!	Factorial	O(n!)	

2 Task 2

2.1 Find only the complexity for find3RDelement function

```
def find3RDelement(a):
    flag = 2
    for i in range(len(a)):
        if i == flag : return a[i]
    print(find3RDelement([1,2,7,4,5]))
```

The function find3RDelement searches for the 3rd element in a list. Whatever the length of the list is in the 3rd iteration the loop will return the value. Thus the find3RDelement is constant or O(1).

2.2 Find only the complexity for doingSomethingImportant

```
def doingSomethingImportant(p2,sr,sc,prev,new):
    row = len(p2)
    col = len(p2[0]) if len(p2) > 0 else 0
    if sr < 0 or sr >= row or sc < 0 or sc >= col :
        return
    if p2[sr][sc] != prev :
        return
    p2[sr][sc] = new
    doingSomethingImportant(p2 , sr - 1 , sc , prev , new)
    doingSomethingImportant(p2 , sr + 1 , sc , prev , new)
    doingSomethingImportant(p2 , sr , sc + 1 , prev , new)
    doingSomethingImportant(p2 , sr , sc - 1 , prev , new)
```

The **doingSomethingImportant** function is a flood fill algorithm. The time complexity of the algorithm depends on the size of the array. Thus for an array with n rows and m columns, the complexity will be O(nm).

2.3 Find only the complexity for doingSomethingImportant

The **doingSomethingImportant** function is the Dijkstra algorithm to find the shortest path from one node to another. The implementation uses a priority queue/min-heap. Thus the complexity will be $O((V + E) \log V)$.

3 Task 3

3.1 Solution

2D Peak - Binary Search (Recursive)

Steps:

- a) Pick middle column j = m/2
- b) Find global maximum on column j at (i, j)
- c) Compare (i, j 1), (i, j), (i, j + 1)
- d) Pick left columns if (i, j 1) > (i, j), Otherwise pick right columns
- e) (i, j) is a 2D-peak if neither condition holds
- f) Solve the new problem with half the number of columns.
- g) When you have a single column, find global maximum and youre done.

Whenever the domain is reduced to a single column, the coordinate having the max value of that column is its 2D peak.

3.2 Algorithm

```
# Recurse on right half
return peakFinder2D_binary(matrix[:, mid_col + 1:])
else:
    return max_row_index, mid_col # Found a peak
```

3.3 Complexity

- Divide-and-Conquer Approach: The function recursively divides the matrix in half, effectively halving the search space in each iteration. This logarithmic behavior leads to the log(m) component in the complexity.
- Finding Maximum in a Column: The argmax operation used to find the maximum element in a column takes O(n) time, as it needs to iterate through all elements in that column. This contributes to the n component in the complexity.
- Overall complexity: Combining these two factors, we find the total complexity as $O(n * log_2(m))$

In every iteration we are reducing the search domain by half in terms of columns. So the Complexity = $O(n * log_2(m))$ where n and m is the number of row and columns respectively.