Последовательности множеств. Пределы $\underline{\text{Пример}}$. Пусть $\{A_i\}_{i=1}^{\infty}$ – некоторый (счётный) набор множеств, являющихся подмножествами Ω . Выразите при помощи операций над множествами A_i следующие элементы $\omega \in \Omega$: а) Элементы, общие для всех A_i в наборе; 6 Обладающее топологией, или порождающей её метрикой.

- b) Элементы, являющиеся общими для всех $A_{i \geq n}$ (номер n не известен заранее);
- с) Элементы, являющиеся общими для бесконечного количества A_i (например, повторяющиеся в каждом A_i с чётным номером).

Решение.

- а) Очевидно, что общими для всех A_i являются элементы $\omega \in \cap_{i=1}^{\infty} A_i$.
- b) Ответ: $\omega \in \bigcup_{j=1}^{\infty} \cap_{i=j}^{\infty} A_i$. Логика такая: $B_j = \bigcap_{i=j}^{\infty} A_i$ это элементы, принадлежащие всем множествам A_i , начиная с номера j. Очевидно, что $B_j \subset B_{j+1} \subset \ldots$, тогда объединение B_j по всем натуральным j равно "самому большому" предельному множеству B_{∞} , в которое попадают все ω , отсутствующие только в конечном наборе A_i .
- с) Дополнением к искомому множеству являются $\omega \in \Omega$, попавшие только в конечное количество множеств A_i , т.е. для каждого из этих ω существует номер n, такой, что $\omega \notin A_{i \geq n} \Rightarrow \omega \in \overline{A}_{i \geq n} = \bigcup_{j=1}^{\infty} \bigcap_{i=j}^{\infty} \overline{A}_i$. Тогда искомое множество это $\overline{\bigcup_{j=1}^{\infty} \bigcap_{i=j}^{\infty} \overline{A}_i} = \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} A_i$.

Объяснение полученного результата: рассмотрим последовательность $C_j = \bigcup_{i=j}^{\infty} A_i$ – элементов, принадлежащих хотя бы одному из множеств A_i с номерами от j. Это убывающая последовательность множеств, т.е. $C_j \supset C_{j+1} \supset \ldots$, и поэтому $\bigcap_{j=1}^{\infty} C_j = \lim_{j \to \infty} C_j = C_{\infty}$. В отличие от элементов $\omega \in \Omega$, попавших только в конечное число A_i , те из них, которые попали в бесконечное количество A_i окажутся в каждом из C_i , а следовательно, и в C_{∞} .

Построенные в приведённом примере множества называются нижним пределом последовательности $\{A_i\}_{i=1}^{\infty}$ – в пункте b), и верхним пределом последовательности $\{A_i\}_{i=1}^{\infty}$ – в пункте c). Обозначения:

$$\lim_{i \to \infty} \inf A_i = \overline{\lim}_{i \to \infty} = \bigcup_{j=1}^{\infty} \bigcap_{i=j}^{\infty} A_i,$$
(3)

$$\limsup_{i \to \infty} A_i = \lim_{i \to \infty} = \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} A_i.$$
(4)

В общем случае, выражения наподобие (3) и (4) несложно получить, записав определение требуемого множества с помощью кванторов, а затем заменяя \forall на пересечение, а \exists на объединение. Например, верхний предел последовательности множеств A_1, A_2, \ldots это $\{\omega \in \Omega : \forall n \in \mathbb{N} \ \exists k \geq n : \omega \in A_k\}$.

Можно заметить, что всегда выполняется

$$\liminf_{i \to \infty} A_i \subset \limsup_{i \to \infty} A_i,$$

например, если элементами A_n являются числа $(-1)^n$, то $\liminf_{i \to \infty} A_i = \emptyset$, а $\limsup_{i \to \infty} A_i = \{-1, 1\}$.

Последовательность множеств $\{A_i\}_{i=1}^{\infty}$ называется монотонной, если $\forall i \in \mathbb{N}$ выполнено $A_i \subset A_{i+1}$, либо $A_i \supset A_{i+1}$. В первом случае последовательность называется возрастающей, во втором – убывающей. Можно заметить, что для таких последовательностей нижний предел всегда равен верхнему.

<u>Пример.</u> Пусть задана последовательность $A_n = [0, 1/n], n \in \mathbb{N}$. Тогда $\liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n = \{0\}$. Задача.

Честную монетку подбрасывают бесконечное число раз; все возможные элементарные исходы можно представить в виде последовательностей из "O" и "P". Пусть A_n – событие, что при n-м подбрасывании выпала решка, а X_n – суммарное количество решек, выпавших после n бросков.

- а) Постройте вероятностное пространство эксперимента и проверьте, что исходы $\sup_{n\to\infty} \frac{X_n}{n} \le 0.5$ являются случайным событием.
- b) Выразите событие $\lim_{n\to\infty} \frac{X_n}{n} \leq \frac{2}{5}$.

Решение.

а) В качестве множества элементарных исходов можно взять все последовательности из 0 и 1:⁷

$$\Omega = \left\{ \omega = (\omega_1, \omega_2, \ldots), \ \omega_i \in \{0, 1\} \right\}, \quad X_n(\omega) = \sum_{i=1}^n \omega_i.$$

Прообразами событий $\{X_n < t\}$ являются наборы бесконечных последовательностей ω , таких, что в их первых n элементах $\omega_1, \ldots, \omega_n$ количество значений "P" меньше числа t. При t < 0 такой набор будет пустым, а при n < t будет содержать все элементы Ω . По построению, для любого $n \in \mathbb{N}$ экспериментатор может отличить событие $\{X_n < t\}$ от других, т.е. они принадлежат σ -алгебре случайных событий. Событие $\{\sup_{n\to\infty} X_n/n \le 0.5\}$ можно описать так:

$$\forall n \in \mathbb{N} \ \exists \varepsilon > 0: \ \frac{X_n}{n} < 0.5 - \varepsilon \Rightarrow \left\{ \omega: \sup_{n \to \infty} \frac{X_n(\omega)}{n} \le 0.5 \right\} = \bigcap_{n=1}^{\infty} \bigcup_{\varepsilon > 0} \left\{ \omega: \frac{X_n(\omega)}{n} < 0.5 - \varepsilon \right\}. \tag{5}$$

В выражении (5) переменная $\varepsilon > 0$ нужна для того, чтобы исключить случаи, когда $\frac{X_n}{n}$ образует возрастающую последовательность с пределом равным 0.5. При этом полученное выражение содержит несчётное объединение по всем возможным $\varepsilon > 0$, что легко можно заменить на счётное объединение по всем $\frac{1}{k}$, $k \in \mathbb{N}$. В итоге получаем

$$\left\{ \sup_{n \to \infty} \frac{X_n}{n} \le 0.5 \right\} = \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \left\{ \omega : \frac{X_n(\omega)}{n} < 0.5 - \frac{1}{k} \right\}.$$

b) Рассмотрим элементарный исход ω , для которого численная последовательность $\frac{X_n(\omega)}{n}$ имеет предел $x \leq \frac{2}{5}$. В таком случае, по определению предела численной последовательности, выполняется

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; \forall k > N, \; \left| \frac{X_k(\omega)}{k} - x \right| < \varepsilon.$$
 (6)

Нам нужно выразить ω , для которых утверждение (6) выполнено. Зафиксируем x и $\varepsilon > 0$, тогда нужные нам исходы удовлетворяют свойствам $\left\{\omega: \left|\frac{X_k(\omega)}{k} - x\right| < \varepsilon\right\}$ для всех k больше некоторого номера N, то есть

$$\bigcup_{n=1}^{\infty} \bigcap_{k>n} \left\{ \omega : \left| \frac{X_k(\omega)}{k} - x \right| < \varepsilon \right\}$$
 (7)

Последнее, что осталось сделать – это избавиться от неизвестных x и ε . Поскольку наше выражение верно для произвольного $\varepsilon > 0$, то оно содержится в пересечении всех аналогичных событий, в которых ε заменен на стремящуюся к нулю сверху последовательность, например $\frac{1}{m}$ при $m \to \infty$. В случае

⁷Множество случайных событий на таком Ω определить не очень просто, поскольку, как мы знаем, Ω является несчетным множеством. Стандартной конструкцией в таком случае является т.н. циллиндрическая σ -алгебра, порожденная событиями вида $\{\omega: \omega_1 \in B_1, \ldots, \omega_n \in B_n\}$, где $B_1, \ldots B_n$ – борелевские множества на \mathbb{R} .

х нужно сделать объединение по всем возможным его значениям – подойдут рациональные числа на отрезке [0, 0.4]. В итоге получаем

$$\{\omega: \lim_{n\to\infty}\frac{X_n(\omega)}{n}\leq \frac{2}{5}\} = \bigcup_{x\in\mathbb{Q}\cap[0,0.4]}\bigcap_{m=1}^{\infty}\bigcup_{n=1}^{\infty}\bigcap_{k\geq n}\left\{\omega: \left|\frac{X_k(\omega)}{k}-x\right|<\frac{1}{m}\right\}.$$

Полученный результат свидетельствует о том, что предельные характеристики нашего эксперимента оказалось возможным выразить, используя случайные события вида $\{X_n < t\}$. Это, в том числе, означает, что наша модель вероятностного пространства позволяет определять и работать с мерами подобных событий, что является теоретическим основанием закона больших чисел и центральной предельной теоремы в теории вероятностей.

Топологии

<u>Определение</u>. Пусть X непустое множество. Множество au подмножеств X называется топологией на X если

- 1. само X и пустое множество \emptyset принадлежат τ ;
- 2. объединение любого (конечного или бесконечного) числа множеств из τ принадлежит τ , и
- 3. пересечение любых двух множеств из τ принадлежит τ . Пара (X,τ) называется топологическим пространством.

Пример. Пусть $X = \{a, b, c, d, e, f\}$ и

$$\tau_1 = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e, f\}\}.$$

Тогда au_1 является топологией на X так как удовлетворяет условиям определения.

Пример. Пусть $X = \{a, b, c, d, e\}$ и

$$\tau_2 = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, e\}, \{b, c, d\}\}\$$

Тогда au_2 не является топологией на X так как объединение

$$\{c,d\} \cup \{a,c,e\} = \{a,c,d,e\}$$

двух членов τ_2 не принадлежит τ_2 ; то есть, τ_2 не удовлетворяет условию (ii) определения.

<u>Пример</u>. Пусть $\mathbb N$ множество всех натуральных чисел и пусть τ состоит из $\mathbb N$ и всех конечных подмножеств $\mathbb N$. Тогда τ не является топологией на $\mathbb N$, так как бесконечное объединение

$$\{2\} \cup \{3\} \cup \cdots \cup \{n\} \cup \cdots = \{2, 3, \dots, n, \ldots\}$$

членов τ не принадлежит τ ; то есть, τ не обладает свойством (ii) определения.

<u>Определение</u>. Пусть X любое непустое множество и пусть τ семейство всех подмножеств X. Тогда τ называется дискретной топологией на множестве X. Топологическое пространство (X, τ) называется дискретным пространством.