Cornection Cornection

without it quantum computing would not be possible

CANDIDATE: ALEXANDER FERRARO

SUPERVISOR: PHILIPP HAUKE

Operator	Gate(s)	Matrix
Pauli-X (X)	X	 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$-\!$	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$- \boxed{\mathbf{Z}} -$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Phase (S, P)	$- \boxed{\mathbf{S}} -$	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	$-\!$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)	Z	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
\mathbf{SWAP}		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

Quantum computation and necessity of quantum error correction

• Quantum computers are based on qubits as unit of information:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

- Qubits properties of quantum mechanics: such as quantum entanglement and superposition
- One can operate on qubits through logic gates.
- Qubits are delicate objects and it is impossible to isolate completely.
- Noise can act on quits

FERRARO ALEXANDER, 21/09/2021

Quantum errors

The most general approach is to describe the error with CPTP maps:

$$ho o \sum_k E_k
ho E_k^{\dagger}$$
 with $\sum_k E_k^{\dagger} E_k = 1$.

Example of single qubit error:

X error or Bit Flip:

$$\alpha | 0 \rangle + \beta | 1 \rangle \rightarrow X | \psi \rangle \rightarrow \alpha | 1 \rangle + \beta | 0 \rangle$$

Z error Phase flip:

$$\alpha | 0 \rangle + \beta | 1 \rangle \rightarrow Z | \psi \rangle \rightarrow \alpha | 0 \rangle - \beta | 1 \rangle$$

General rotation:

$$R_{\phi} | \psi \rangle \rightarrow cos(\frac{\phi}{2})I | \psi \rangle - \mathbf{i}sin(\frac{\phi}{2})Z | \psi \rangle$$

Inspiration from the classic

Repetition code:

$$0 \rightarrow 000$$

$$1 \rightarrow 111$$

• Then suppose a bit-flip error happens:

$$000 \rightarrow error \rightarrow 100$$

 We can restore the initial bit by majority vote:

$$100 \rightarrow correction \rightarrow 000$$

quantum problems

 We cannot copy an arbitrary state: Nocloning theorem

$$|\psi\rangle \longrightarrow |\psi\rangle |\psi\rangle |\psi\rangle$$

- Looking at the state destroys the information the superposition
- Correct multiple errors not only bit flip.
- Continuous errors (continuous phase rotation)

3 Bit-Flip Code

• We cannot clone—> spread the information (Encoding procedure).

From:
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |000\rangle + \beta |111\rangle \rightarrow \alpha |0\rangle_L + \beta |1\rangle_L$$

We don't copy we use entangled state to spread the information and protect it.

• The space spanned by $\{ |000\rangle, |111\rangle \}$ is called code space and its elements are the codewords.

In this simulation the data qubit is prepared in:

$$|\psi\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle$$

3 Bit-Flip Code: noise assumption

- The noise applies X with probability p and I with probability (1-p)
- it acts independently and it is identically distributed on each qubit
- only the channel is an error source
- probability for the 3 qubit code has to be less that $p < \frac{1}{2}$

Measurement just after the error

3 Bit-Flip Code

- Suppose a bit flip error happens on the second qubit: $\alpha |000\rangle + \beta |111\rangle \rightarrow X_2 \quad error \rightarrow \alpha |010\rangle + \beta |101\rangle$
- Syndrome measurement: Detect which error occurred without getting information from the state.

We measure the error not the state!

• One way to do this is to measure the fact that one qubit is different from the other two. In practice we store the results in the ancillas.

3 Bit-Flip Code: Syndrome measurement

Measurement after error correction

Phase flip code

• A phase shift can be viewed as a bit flip in the computational basis:

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}, |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

•In fact: **HZH=X**

Fidelity

The fidelity is a quantity that can represent the similarity between the initial and final state, it can give an appropriate measurement of the quality of the code:

$$\mathcal{F}(\rho, |\psi_i\rangle) = \langle \psi_i | \rho | \psi_i \rangle$$

We don't know the state in advance, we need to use the minimum fidelity:

$$\mathcal{F}(\rho, |\psi\rangle) = \min_{\psi} \langle \psi | \rho | \psi \rangle$$

Is the 3 qubit code worth the efforts?

Stabiliser formalism

- Phase and bit flip act on the same circuit,
- Numbers of qubits start rising is difficult to take into account all the possible scenarios.
- We can rephrase the syndromes using the stabiliser formalism, via measurement of commuting operator.
- Elements of stabiliser set \mathcal{S} must satisfy this:

$$M|u\rangle = |u\rangle \quad \forall u \in \mathscr{C}, \quad \forall M \in \mathscr{S}.$$

- Codewords are eigenstate of stabilisers.
- Suitable set of stabiliser is the Pauli group.
- An error E can commute or anticommute with the stabilisers:

$$M(E|\psi\rangle_L) = \pm EM|\psi\rangle_L = \pm (E|\psi\rangle_L)$$

• If we look to the eigenvalue of the generators of the stabiliser set, we can get information about the error.

Syndromes with Stabilisers

- Only n-k stabiliser are needed
- We can operate directly on encoded states

•
$$|\psi\rangle_{System} = \frac{1}{2} \left(|\psi\rangle_I + \lambda |\psi\rangle_I \right) |0\rangle + \frac{1}{2} \left(|\psi\rangle_I - \lambda |\psi\rangle_I \right) |1\rangle$$

- So if we measure $|1\rangle$ from the ancilla we know that an error has occured
- Repeating the process for all the n-k stabilisers gives us a string associated with the error:

$$|0\rangle_a \sum_i (E_i |\psi\rangle_L) \rightarrow \sum_i |s_i\rangle_a (E_i |\psi\rangle_L).$$

$$\begin{vmatrix} 0 \rangle_L = \frac{1}{\sqrt{8}} [|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |01111100\rangle + |1101001\rangle \end{vmatrix}$$

$$\begin{vmatrix} 1 \rangle_L = \frac{1}{\sqrt{8}} [|11111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle + |1110000\rangle + |0100101\rangle + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle$$

CSS codes

 Sometimes is difficult to find a stabiliser set from the very beginning. We can recycle from classical codes.

$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Steane 7 qubit code simulation, only X errors

$$\begin{bmatrix}
1 & 0.9 & 0.8 & 0.7 & 0.6 & 0.7 & 0.6 & 0.7 & 0.6 & 0.7 & 0.6 & 0.7 & 0.4 & 0.3 & 0.2 & 0.25 & 0.2 & 0.25 & 0.2 & 0.25 & 0.2 & 0.25 & 0.25 & 0.2 & 0.25$$

Hamming bound

- Can we do better?
- Yes, the best that we can create for a single code is to encode 1 qubit in 5 physical one, and the code can correct up to 1 error.
- Quantum Hamming bound:

 $j \rightarrow$ all the possible weight of error

$$\binom{n}{j}$$
 \rightarrow location of error

 $3^j \rightarrow 3$ possible error (X,Y, Z)

 $2^k \rightarrow \text{dimension logical space}$

 $2^n \rightarrow \text{total space}$

Fault tolerant computation and error propagation

computes directly on encoded quantum

Fault tolerant gates

 Implement in transversal way, through encoded blocks. In this way we shift the probability to not be able to correct the error from

$$p \rightarrow cp^2$$
 where $c < \frac{1}{p}$, we want the prob to decrease.

- Only with CNOT, Hadamard, Rotation $\pi/4$ gate we cannot reach universal computation $UE |\psi\rangle = \left(UEU^{\dagger}\right) U |\psi\rangle$
- Need a gate more : Toffoli or $\pi/8$ rotation gate
- $\pi/8$ rotation gate implemented in a fault-tolerant way through teleportation protocols

Threshold theorem

- It says that if the error rate of a physical system is below some threshold value, arbitrarily long reliable fault-tolerant quantum computation is possible
- 2 procedure: Concatenation and fault-tolerant gates

level 0 level 1 level 2 ... level
$$k$$

$$p \rightarrow cp^2 \rightarrow c^{-1}(cp^2)^2 \rightarrow ... \rightarrow c^{-1}(cp)^{2^k}$$
level 0 level 1 level 2 ... level k

$$T \rightarrow NT \rightarrow N^2T \rightarrow ... \rightarrow N^kT$$

Threshold theorem

- Achieve total error rate is below a certain ε : $Tp_k < \varepsilon$, T are the number of logical gates to implement.
- we can achieve fault tolerant computation with only : $\#gates \sim O(T \operatorname{poly}(\log T/\epsilon))$.

Conclusions

