Multiple Run Ensemble Learning with Low-Dimensional KGEs

ESR 10, Cosimo Gregucci
25 November 2022

Motivation

- > link prediction SOTA obtained at high dimensions
 - → incresed training costs & risk of overfitting
- Instead of training a large sized embedding model, the paper proposes to execute multiple run of a low-dimension embedding model, and combine them
 - combination of low-dimensional KGEs outperforms
 the corrisponding high-dimensional one

Setting

$$> k \times d_1 = 1 \times d_h$$

k = number of multiple runs

 d_1 = dimension of each low-dimensional KGE

d_h = dimension of the high-dimensional KGE

Approach – KGE model M

- 1. k copies of M are generated.
 - $M_j \rightarrow j$ -th copy of M d_i dimensional embedding $\rightarrow (\mathbf{h}_i, \mathbf{r}_i, \mathbf{t}_i)$
- 2. Each M_i is trained separately
- 3. Score function:

$$f(h,r,t) = \frac{1}{k} \sum_{j=1}^{k} f_M(\boldsymbol{h}_j, \boldsymbol{r}_j, \boldsymbol{t}_j)$$
 where $f_M(\boldsymbol{h}_j, \boldsymbol{r}_j, \boldsymbol{t}_j) \rightarrow$ score of a triple (h,r,t) computed by the j-th copy of the model

Example – *MDistMult*

5

Generalization capabilities

TransE:

- Symmetric relation (eg. Similarto)

1.
$$h + r = t \rightarrow t + r \neq h \rightarrow f(h,r,t) \neq 0$$
, $f(t,r,h)=0$

2.
$$t + r = h \rightarrow h + r \neq t \rightarrow f(t,r,h) \neq 0$$
, $f(h,r,t) = 0$

By randomly initialize each run of the ensemble, MTransE might be able to model symmetrical pattern

Example with
different relational
patterns of FB15K

Relation	TransE $(d=200\times1)$	TransE $(d=1200\times1)$	MTransE $(d=200\times6)$
1-1	0.642	$0.663(\uparrow 0.021)$	$0.660(\uparrow 0.018)$
1-n	0.739	$0.748(\uparrow 0.009)$	$0.780(\uparrow 0.041)$
n-1	0.639	$0.650(\uparrow 0.011)$	$0.678(\uparrow 0.039)$
n-n	0.706	$0.709(\uparrow 0.003)$	$0.739(\uparrow 0.033)$
symmetric	0.358	$0.360(\uparrow 0.002)$	$0.411(\uparrow 0.053)$

Experiments

➤ Datasets statistics

Dataset	$ \mathcal{E} $	$ \mathcal{R} $	#Train	#Valid	#Test
FB15K	14951	1345	483142	50000	59071
FB15K237	14541	237	272115	17535	20466
WN18RR	40943	11	86835	3034	3134

> Metrics:

- MRR: Mean Reciprocal Rank
- Hits@N: Proportion of correct entities ranked in the top N

Experiments

MRR:

Training time per epoch:

12

10

8

Experiments - Freebase

	FB15K			FB15K-237				
	\overline{MRR}	Hits@1	Hits@3	Hits@10	MRR	Hits@1	Hits@3	Hits@10
TransE $(d=1200)$	0.704	0.604	0.781	0.862	0.277	0.186	0.303	0.464
MTransE ($d = 6 * 200$)	0.732	0.640	0.802	0.876	0.298	0.202	0.329	0.491
DitMult $(d = 1200)$	0.688	0.573	0.781	0.855	0.227	0.142	0.249	0.390
MDitMult $(d = 6 * 200)$	0.718	0.603	0.815	0.883	0.237	0.160	0.260	0.399
ComplEx $(d = 1200)$	0.696	0.580	0.791	0.862	0.226	0.139	0.249	0.398
MComplEx (d = 6 * 200)	0.710	0.590	0.810	0.886	0.240	0.162	0.264	0.400
RotatE $(d=1200)$	0.727	0.630	0.802	0.868	0.290	0.197	0.319	0.478
MRotatE ($d = 6 * 200$)	0.753	0.656	0.832	0.891	0.307	0.213	0.338	0.496
DitMultN3 ($d = 1200$)	0.836	0.796	0.865	0.909	0.355	0.260	0.390	0.547
MDitMultN3 ($d = 6 * 200$)	0.848	0.813	0.869	0.910	0.357	0.263	0.392	0.548
ComplExN3 ($d = 1200$)	0.843	0.802	0.871	0.910	0.360	0.265	0.395	0.549
MComplExN3 (d = 6 * 200)	0.859	0.829	0.877	0.911	0.364	0.268	0.400	0.555

9

Conclusion

- ➤ Multiple run of low-dimensional KGE models:
 - outperforms the corresponding high dimensional KGE
 - sligthly increse the generalization capabilities of the model