Matrix Computations Chapter 4: Eigenvalues, Eigenvectors, and Eigendecomposition

Section 4.1 Eigendecomposition

Jie Lu ShanghaiTech University

Eigenvalues and Eigenvectors

Definition: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$). If there exists $\mathbf{v} \in \mathbb{C}^n$, $\mathbf{v} \neq 0$ s.t.

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \qquad \text{for some } \lambda \in \mathbb{C}, \tag{*}$$

then we say \mathbf{v} is a (right) eigenvector associated with eigenvalue λ of \mathbf{A} .

- In general, Ax differs from x in magnitude and direction. However, if x is an eigenvector of A and A, x are real, then Ax and x are parallel
- (*) is called an eigenvalue problem or eigen-equation
- Any solution (v, λ) to (*) is called an eigen-pair of A
- If (\mathbf{v}, λ) is an eigen-pair of \mathbf{A} , $(\alpha \mathbf{v}, \lambda)$ for any $\alpha \in \mathbb{C}, \alpha \neq 0$ is also an eigen-pair of \mathbf{A}
- If there exists a **row** vector \mathbf{w} , $\mathbf{w} \neq 0$ s.t. $\mathbf{w} \mathbf{A} = \lambda \mathbf{w}$ for some $\lambda \in \mathbb{C}$, we say \mathbf{w} is a left eigenvector associated with eigenvalue λ of \mathbf{A}

Characteristic Polynomial

Every $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) has n (possibly repeated) eigenvalues

• From the eigenvalue problem,

- p(λ) := det(λ**I A**) is called the characteristic polynomial of **A** (The characteristic polynomial can also be defined to be det(**A** λ**I**), which differs from p(λ) by a sign (-1)ⁿ)
- $p(\lambda) = 0 \iff \lambda$ is an eigenvalue of **A**
- It can be shown that $p(\lambda)$ is a polynomial of degree n, i.e., $p(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \ldots + \alpha_n \lambda^n$ where α_i 's depend on ${\bf A}$ and in fact, $\alpha_n = 1$
- Therefore, $p(\lambda)$ has n roots, which are the n eigenvalues of **A**
- $p(\lambda)$ can be factored as $p(\lambda) = \prod_{i=1}^{n} (\lambda \lambda_i)$, where $\lambda_1, \dots, \lambda_n$ are the roots of $p(\lambda)$
- Given an eigenvalue λ of A, Null(λI A) is called the eigenspace of A associated with λ

Complex Eigenvalues and Eigenvectors

An eigenvalue can be complex even if A is real

- A polynomial $p(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \ldots + \alpha_n \lambda^n$ with real coefficients α_i 's can have complex roots
- Example: Consider

$$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

•
$$p(\lambda) = \lambda^2 + 1$$
, so $\lambda_1 = \mathbf{j}$, $\lambda_2 = -\mathbf{j}$

If **A** is real and there exists a real eigenvalue λ of **A**, the associated eigenvector **v** can be taken as real

- When $\lambda \mathbf{I} \mathbf{A}$ is real, we can define $\mathcal{N}(\lambda \mathbf{I} \mathbf{A})$ on \mathbb{R}^n
- If \mathbf{v} is a complex eigenvector of a real \mathbf{A} associated with a real λ , we can write $\mathbf{v} = \mathbf{v}_{\mathrm{R}} + \mathbf{j}\mathbf{v}_{\mathrm{I}}$, where $\mathbf{v}_{\mathrm{R}}, \mathbf{v}_{\mathrm{I}} \in \mathbb{R}^n$. We can verify that both of \mathbf{v}_{R} and \mathbf{v}_{I} are eigenvectors associated with λ

Some Properties

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

$$\updownarrow \qquad \text{Hermitian transpose}$$

$$\mathbf{v}^H \mathbf{A}^H = \lambda^* \mathbf{v}^H$$

$$\updownarrow \qquad \text{transpose, } \mathbf{A}^H = \mathbf{A}^T$$

$$\mathbf{A}\mathbf{v}^* = \lambda^* \mathbf{v}^*$$

- v* is an eigenvector associated with eigenvalue \(\lambda^* \)
- Complex eigenvalues appear in conjugate pairs
- A and A^T have the same set of eigenvalues because det(λI − A) = det(λI − A)^T = det(λI − A^T)

$$\mathbf{w}\mathbf{A} = \lambda \mathbf{w}$$

$$\updownarrow$$

$$\mathbf{A}^H \mathbf{w}^H = \lambda^* \mathbf{w}^H$$

$$\updownarrow$$

$$\mathbf{\Delta}^T \mathbf{w}^H = \lambda^* \mathbf{w}^H$$

- \mathbf{w}^H is an eigenvector associated with eigenvalue λ^* of \mathbf{A}^T
- \mathbf{w}^{T} is an eigenvector associated with eigenvalue λ of \mathbf{A}^{T}

Some Properties (cont'd)

Fact: The eigenvalues of any triangular matrix are its diagonal entries

Fact: $\mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular if and only if all its eigenvalues are nonzero

Fact: Suppose (\mathbf{v}, λ) is an eigen-pair of \mathbf{A} , then (\mathbf{v}, λ^k) is an eigen-pair of \mathbf{A}^k for any positive integer k

Repeated Eigenvalues

- Let $\lambda_1, \ldots, \lambda_n$ be the *n* eigenvalues of $\mathbf{A} \in \mathbb{R}^{n \times n}$
- WLOG, order $\lambda_1, \ldots, \lambda_n$ so that $\{\lambda_1, \ldots, \lambda_k\}$, $k \leq n$ is the set of all **distinct** eigenvalues of **A**: $\lambda_i \neq \lambda_j$ for all $i, j \in \{1, \ldots, k\}$, $i \neq j$ and $\lambda_i \in \{\lambda_1, \ldots, \lambda_k\}$ for all $i \in \{1, \ldots, n\}$
- Define the algebraic multiplicity of eigenvalue λ_i as the multiplicity of λ_i as root of $p(\lambda)$, denoted by μ_i
- Every λ_i may have multiple eigenvectors (scaling not counted)
- If dim $\mathcal{N}(\lambda_i \mathbf{I} \mathbf{A}) = r$, we can find r linearly independent \mathbf{v}_i 's
- Define the geometric multiplicity of eigenvalue λ_i as the maximum number of linearly independent eigenvectors associated with λ_i , denoted by γ_i
 - $\gamma_i = \dim \mathcal{N}(\lambda_i \mathbf{I} \mathbf{A}) = n \operatorname{rank}(\lambda_i \mathbf{I} \mathbf{A})$

Repeated Eigenvalues (cont'd)

Fact: For every eigenvalue λ_i of **A**, $\mu_i \geq \gamma_i$

Repeated Eigenvalues (cont'd)

Example:
$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

Repeated Eigenvalues (cont'd)

Example:
$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Similarity Transformation

- Let $\mathbf{Q} = [\mathbf{q}_1 \cdots \mathbf{q}_n] \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) be a nonsingular matrix
 - The columns of Q form a basis of \mathbb{R}^n (or \mathbb{C}^n)
- Let $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$). We call $\tilde{\mathbf{A}} = \mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}$ a similarity transformation
- A and \tilde{A} are said to be similar
- Similar matrices represent the same linear map under two (possibly) different bases, with **Q** being the change of basis matrix
- Interpretation: Consider a linear system Ax = y and let x = Qxx,
 y = Qyx

$$\mathbf{A}\mathbf{x} = \mathbf{y} \Leftrightarrow \mathbf{A}\mathbf{Q}\tilde{\mathbf{x}} = \mathbf{Q}\tilde{\mathbf{y}} \Leftrightarrow \mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}\tilde{\mathbf{x}} = \tilde{\mathbf{y}} \Leftrightarrow \tilde{\mathbf{A}}\tilde{\mathbf{x}} = \tilde{\mathbf{y}}$$

Similarity Transformation (cont'd)

- Every square matrix is similar to itself
- If A is similar to B and B is similar to C, then A is similar to C

• If A, B are invertible and similar, then A^{-1} and B^{-1} are also similar

 Similar matrices have the same characteristic polynomial, determinant, rank, nullity, trace, eigenvalues, algebraic multiplicity, geometric multiplicity, etc.

Eigendecomposition

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) is said to be diagonalizable, or admit an eigendecomposition, if there exists a nonsingular $\mathbf{V} \in \mathbb{C}^{n \times n}$ s.t.

$$\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{-1}$$

where $\Lambda = \operatorname{Diag}(\lambda_1, \dots, \lambda_n)$, or, **A** is similar to a diagonal matrix

 In this definition, we didn't say that (v_i, λ_i) is an eigen-pair of A, but it indeed has to be

$$\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{-1} \iff \mathbf{A} \mathbf{V} = \mathbf{V} \Lambda, \ \mathbf{V} \text{ nonsingular}$$
 $\iff \mathbf{A} \mathbf{v}_i = \lambda_i \mathbf{v}_i, \ i = 1, \dots, n,$
 $\mathbf{v}_1, \dots, \mathbf{v}_n \text{ linearly independent}$

• The key lies in finding n linearly independent eigenvectors to form \mathbf{V}

Eigendecomposition (cont'd)

Facts: Suppose A admits an eigendecomposition

1.
$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

2.
$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_{i}$$

- 3. $rank(\mathbf{A}) = number of nonzero eigenvalues of \mathbf{A}$
- 4. Suppose **A** is also nonsingular. Then, $\mathbf{A}^{-1} = \mathbf{V} \Lambda^{-1} \mathbf{V}^{-1}$

Note: Facts 1–2 are indeed true for any **A**; Facts 3–4 may not hold when **A** does not admit an eigendecomposition

Existence of Eigendecomposition

Question: Not every $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) admits an eigendecomposition

Counter example: Consider

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The characteristic polynomial is $p(\lambda) = -\lambda^3$, so $\lambda_1 = \lambda_2 = \lambda_3 = 0$

$$\mathcal{N}(\boldsymbol{A} - \lambda_1 \boldsymbol{I}) = \mathcal{N}(\boldsymbol{A}) = \mathcal{R}(\boldsymbol{A}^T)^{\perp} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$

Any $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathcal{N}(\mathbf{A})$ are linearly dependent Therefore, any \mathbf{V} satisfying $\mathbf{AV} = \mathbf{V}\Lambda$ is singular

Existence of Eigendecomposition (cont'd)

Fact: Eigenvectors associated with distinct eigenvalues are linearly independent

• If all the eigenvalues of A are distinct, i.e.,

$$\lambda_i \neq \lambda_j$$
, for all $i, j \in \{1, ..., n\}$ with $i \neq j$,

then A admits an eigendecomposition

Theorem

A admits an eigendecomposition if and only if $\mu_i = \gamma_i$ for each eigenvalue λ_i

Proof of the Fact