

Representation

Bayesian Networks

Semantics & Factorization

- Grade
- · Course Difficulty
- Student Intelligence
- Student SAT
- Reference Letter

P(G,D,I,S,L)

Daphne Koller

Chain Rule for Bayesian Networks

P(D,I,G,S,L) = P(D) P(I) P(G|I,D) P(S|I) P(L|G)

Distribution defined as a product of factors!

Defining a joint distribution

What is the joint distribution P(D,I,G,S,L)?

Bayesian Network

- A Bayesian network is:
 - A directed acyclic graph (DAG) G whose nodes represent the random variables $X_1,...,X_n$
 - For each node X_i a CPD $P(X_i \mid Par_G(X_i))$
- The BN represents a joint distribution via the chain rule for Bayesian networks

$$P(X_1,...,X_n) = \prod_{i} P(X_i \mid Par_G(X_i))$$

BN Is a Legal Distribution: P ≥ 0

```
P is a product of CPDs

CPDs are non-negative
```

BN Is a Legal Distribution: $\Sigma P = 1$

 $\Sigma_{D,I,G,S,L} P(D,I,G,S,L) = \Sigma_{D,I,G,S,L} P(D) P(I) P(G|I,D) P(S|I) P(L|G)$

= $\sum_{D,I,G,S} P(D) P(I) P(G|I,D) P(S|I) \sum_{L} P(L|G)$

 $= \sum_{D,I} (S) P(D) P(I) P(G|I,D) P(S|I)$

 $= \sum_{D,I,G} P(D) P(I) P(G|I,D) \sum_{S} P(S|I)$

 $= \sum_{D,I} P(D) P(I) \sum_{G} P(G|I,D)$

What is the value of $\sum_L P(L \mid G)$

- \circ
- P(L)
- O P(G)
- None of the above

P Factorizes over G

- Let G be a graph over $X_1,...,X_n$.
- P factorizes over G if

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Par_G(X_i))$$

Genetic Inheritance

BNs for Genetic Inheritance

Representation

Bayesian Networks

Reasoning Patterns

The Student Network

Causal Reasoning

Evidential Reasoning

$$P(d^1) = 0.4$$

 $P(d^1 | g^3) \approx 0.63$

$$P(i^1) = 0.3$$

 $P(i^1 | g^3) \approx 0.08$

Daphne Koller

We find out that class is hard

 What happens to the posterior probability of high intelligence?

- O Goes up
- O Goes down
- O Doesn't change
- We can't know

Intercausal Reasoning

Intercausal Reasoning Explained

Intercausal Reasoning II

Student Aces the SAT

 What happens to the posterior probability that the class is hard?

Student gets a C 🕾

Student Aces the SAT

 What happens to the posterior probability that the class is hard?

Student Aces the SAT

Representation

Bayesian Networks

Flow of Probabilistic Influence

When can X influence Y?

condition on v changer belief into

Active Trails

• A trail $X_1 - ... - X_n$ is active if: it has no v-structures $X_{i-1} \to X_i \leftarrow X_{i+1}$

When can X influence Y Given evidence about Z

•
$$X \rightarrow Y$$

• $X \leftarrow Y$
• $X \rightarrow W \rightarrow Y$
• $X \leftarrow W \leftarrow Y$
• $X \leftarrow W \rightarrow Y$
• $X \leftarrow W \rightarrow Y$
• $X \rightarrow W \leftarrow Y$
• $X \rightarrow W \leftarrow Y$

When can X influence Y given evidence about Z

• 5 - I - G - D allows influence to flow when:

Active Trails

- A trail $X_1 ... X_n$ is active given Z if:
- have that X_i or one of its descendants $\in Z_i$
 - no other X_i is in Z

Active trails

 Which of the following are active trails if we observe G? (Mark all that apply.)

$$\bigcirc$$
 $C-D-G-I-S$

$$\bigcirc$$
 I-G-L-J-H

$$\bigcirc$$
 $C-D-G-I-S-J-L$

Independencies

Preliminaries

Independence

- For events α , β , $P \models \alpha \perp \beta$ if: $-P(\alpha, \beta) = P(\alpha) \cdot P(\beta)$
- $-P(\alpha|\beta) = P(\alpha)$
 - $-P(\beta | \alpha) = P(\beta)$
 - For random variables X,Y, $P \models X \perp Y$ if:

$$\rightarrow$$
 -P(X, Y) = P(X) P(Y)

$$-P(X|Y) = P(X)$$

$$-P(Y|X) = P(Y)$$

-P(X|Y) = P(X) -P(X|Y) - P(X) $V_{*,2} P(*,y), P(y)$

Independence

 i^1

 i^1

I	٥	G	Prob.
i ⁰	ď	g^1	0.126
i ⁰	ď	g ²	0.168
i ⁰	ď	g^3	0.126
i ⁰	d^1	g^1	0.009
i ⁰	d^1	g ²	0.045
i ⁰	d^1	g^3	0.126
j ¹	ď	g^1	0.252
j ¹	ď	g ²	0.0224
j ¹	ď	g^3	0.0056
j ¹	d^1	g^1	0.06
j ¹	d^1	g ²	0.036
j ¹	d^1	g ³	0.024

0.18

0.28

0.12

 d^1

 d^0

 d^1

I	Prob	
i ⁰	0.6	
i ¹	0.4	

PO			
٥	Prob		
ďo	0.7		
d^1	0.3		

Conditional Independence

For (sets of) random variables X,Y,Z

$$P \models (X \perp Y \mid Z) \text{ if:}$$

$$-P(X, Y \mid Z) = P(X \mid Z) P(Y \mid Z)$$

$$-P(X \mid Y \mid Z) = P(X \mid Z)$$

$$-P(Y \mid X \mid Z) = P(X \mid Z)$$

$$-P(X, Y, Z) \propto \phi_1(X, Y) \phi_2(Y, Z)$$

Conditional Independence

Conditional Independence

I	5	G	Prob.
i ⁰	s ⁰	g^1	0.126
i ⁰	s ⁰	g ²	0.168
i ⁰	s ⁰	g^3	0.126
i ⁰	s^1	g^1	0.009
i ⁰	s^1	g ²	0.045
i ⁰	s^1	g^3	0.126
j ¹	s ⁰	g^1	0.252
j ¹	s ⁰	g ²	0.0224
j ¹	s ⁰	g^3	0.0056
j ¹	s^1	g^1	0.06
j ¹	S^1	g ²	0.036
j ¹	S ¹	g ³	0.024

 $P(S,G \mid \underline{i}^0)$

S	G	Prob.
s ⁰	g ¹	0.19
s ⁰	g ²	0.323
s ⁰	g ³	0.437
s ¹	g ¹	0.01
s¹	g ²	0.017
s ¹	<i>g</i> ³	0.023

I	
G	5
P(s)	-)

• • •	•
5	Prob
s ⁰	0.95
s ¹	0.05

PIGITO

=		
G	Prob.	
9 ¹	0.2	
g ²	0.34	
g ³	0.46	

Daphne Koller

Conditioning can Lose Independences

I	D	G	Prob.
i ⁰	d ^o	g^1	0.126
i ⁰	ď	g ²	0.168
io	q ₀	g ³	0.126
i ⁰	d^1	g^1	0.009
i ⁰	d^1	g ²	0.045
i ⁰	d^1	g^3	0.126
j ¹	d ^o	9^1	0.252
j ¹	d ^o	g ²	0.0224
j ¹	d ^o	<i>g</i> ³	0.0056
j ¹	d¹	g ¹	0.06
j ¹	d¹	g ²	0.036
j ¹	d^1	g ³	0.024

	Р(I,D 9	g¹)	
	I	D	Prob.	
	i ⁰	ďo	0.282	
	i ⁰	d^1	0.02	
	i ¹	ďº	0.564	
L	i ¹	d¹	0.134	
L				

Representation

Independencies

Bayesian Networks

Independence & Factorization

$$P(X,Y) = P(X) P(Y)$$
 X,Y independent $P(X,Y,Z) \propto \phi_1(X,Z) \phi_2(Y,Z)$ (X \pm Y | Z)

- Factorization of a distribution P implies independencies that hold in P
- If P factorizes over G, can we read these independencies from the structure of G?

Flow of influence & d-separation

Definition: X and Y are <u>d-separated</u> in G given Z if there is no active trail in G between X and Y given Z

Notation: $d\text{-sep}_{G}(X, Y \mid Z)$

d-separation

 Which of the following are true d-separation statements? Difficulty (Mark all that apply.)

d-sep(D,I | L)
d-sep(D,J | L)
d-sep(D,J | L,I)
d-sep(D,J | L,H,I)

Factorization ⇒ Independence: BNs

Theorem: If P factorizes over G, and d-sep_G(X, Y | Z)

then P satisfies (X
$$\perp$$
 Y \mid Z)
$$P(D,I,G,S,L) = P(D)P(I)P(G\mid D,I)P(S\mid I)P(L\mid G)$$

$$\underline{P(D,S)} = \sum_{\underline{G,\mathbb{Z},I}} P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G)$$

$$= \sum_{\underline{I}} P(D)P(I)P(S \mid I) \sum_{\underline{G}} (P(G \mid D,I) \sum_{\underline{L}} P(L \mid G))$$

Daphne Koller

PEDIS

Any node is d-separated from its non-descendants given its parents

Grade

If P factorizes over G, then in P, any variable is independent of its non-descendants given its parents

Daphne Koller

I-maps

• d-separation in $G \Rightarrow P$ satisfies corresponding independence statement

$$I(G) = \{(X \perp Y \mid Z) : d-sep_G(X, Y \mid Z)\}$$

 Definition: If P satisfies I(G), we say that G is an I-map (independency map) of P

I-maps

Factorization ⇒ Independence: BNs Theorem: If P factorizes over G, then G is an I-map for P

Car read from & independencies in P regardless et parameters

Independence ⇒ Factorization

Theorem: If G is an I-map for P, then P factorizes over G

 $P(D,I,G,S,L) = P(D)P(I \mid D)P(G \mid D,I)P(S \mid D,I,G)P(L \mid D,I,G,S)$

 $P(D, I, G, S, L) = P(D)P(I)P(G \mid D, I)P(S \mid I)P(L \mid G)$

Summary

Two equivalent views of graph structure:

- Factorization: G allows P to be represented
- I-map: Independencies encoded by G hold in P

If P factorizes over a graph G, we can read from the graph independencies that must hold in P (an independency map)

Representation

Bayesian Networks

Naïve Bayes

Naïve Bayes Model

Naïve Bayes Classifier

$$\frac{P(C=c^1 \mid x_1, \dots, x_n)}{P(C=c^2 \mid x_1, \dots, x_n)} = \frac{P(C=c^1)}{P(C=c^2)} \prod_{i=1}^n \frac{P(x_i \mid C=c^1)}{P(x_i \mid C=c^2)}$$

Bernoulli Naïve Bayes for Text

$$\frac{P(C=c^1 \mid x_1, \dots, x_n)}{P(C=c^2 \mid x_1, \dots, x_n)} = \frac{P(C=c^1)}{P(C=c^2)} \prod_{i=1}^n \frac{P(x_i \mid C=c^1)}{P(x_i \mid C=c^2)}$$

Daphne Koller

Multinomial Naïve Bayes for Text

$$\frac{P(C=c^1 \mid x_1, \dots, x_n)}{P(C=c^2 \mid x_1, \dots, x_n)} = \frac{P(C=c^1)}{P(C=c^2)} \prod_{i=1}^n \frac{P(x_i \mid C=c^1)}{P(x_i \mid C=c^2)}$$

Daphne Koller

Summary

- Simple approach for classification
 - Computationally efficient
 - Easy to construct
- Surprisingly effective in domains with many weakly relevant features
- Strong independence assumptions reduce performance when many features are strongly correlated

Representation

Bayesian Networks

Application: Diagnosis

Medical Diagnosis: Pathfinder (1992)

- Help pathologist diagnose lymph node pathologies (60 different diseases)
- Pathfinder I: Rule-based system
- Pathfinder II used naïve Bayes and got superior performance

Heckerman et al.

Medical Diagnosis: Pathfinder (1992)

- Pathfinder III: Naïve Bayes with better knowledge engineering
- No incorrect zero probabilities
- Better calibration of conditional probabilities
 - P(finding | disease₁) to P(finding | disease₂)
 - Not P(finding₁ | disease) to P(finding₂ | disease)

Heckerman et al.

Medical Diagnosis: Pathfinder (1992)

- Pathfinder IV: Full Bayesian network
 - Removed incorrect independencies
 - Additional parents led to more accurate estimation of probabilities
- BN model agreed with expert panel in 50/53 cases, vs 47/53 for naïve Bayes model
- Accuracy as high as expert that designed the model

Heckerman et al.

Pradhan et al.

Medical Diagnosis (Microsoft)

Medical Diagnosis (Microsoft)

Fault Diagnosis

• Microsoft troubleshooters

Fault Diagnosis

- Many examples:
 - Microsoft troubleshooters
 - Car repair
- Benefits:
 - Flexible user interface
 - Easy to design and maintain -