Departamento de Física da Faculdade de Ciências da Universidade de Lisboa

Física Experimental para Engenharia Informática

2019/2020) (1°. Semestre)	
Nome:	nº	Turma PL
Nome:	nº	Grupo:
Nome:	nº	Data://2019
Lab #5 – O Transformador e a	Retificação de Sina	<u>is Sinusoidais</u>
Notas MUITO Importantes 1. Registe os valores medidos respeitando se aparelhos, INCLUINDO OS ZEROS. Nos mu 2. Inclua sempre as unidades de cada valor me 3. Ao fazer os cálculos apresente os resultados 4. Para o cálculo das incertezas associados às considere que em todas as medidas feitas ha 5. As duas Pontas de Prova no osciloscópio tê comum e estão sempre com uma tensão aba alimentação. Selecione sempre o modo "Acco 6. O osciloscópio tem uma resistência interna do modo direto (atenuação 1x) e um de atenu	mpre os algarismos significa Itímetros escolha sempre a e idido ou calculado. ifinais respeitando os a.s. da grandezas obtidas na leitura <u>á uma incerteza</u> $\delta x = \delta y = \pm 0$ m o terminal da tensão de re- soluta de 0 volts, que provém plamento DC" nas entradas de e 1 M Ω // 20 pF no modo DC.	scala que dá mais a.s s parcelas. do ecrã do osciloscópio, 1,1 divisões (estimado). ferência ("crocodilo") em da ligação à tomada de do osciloscópio. As Pontas de Prova têm
 Equipamento necessário: Gerador de tensão alternada (sinal), com free Osciloscópio digital com pontas de prova. Resistências de 1k2, 3k3 e 4k7 Ω. Ponte de díodos ou 4 x 1N4148. Condensadores de 100 nF e 10 μF. Painel Breadboard. 	quência, fase, amplitude e valor	2200
Objetivos Fundamentar a utilização do osciloscópi Num sinal sinusoidal realizar a retificaçã	o de onda completa com uma	a ponte de díodos.
Experiência 1 – Medições de Tensã		
Objetivo: medir a amplitude de um sinal V(t) cor		
1. Pretende-se usar um sinal do tipo $V_G(t) = 7,5$	o sen(37699,1 t) V. <u>Calcule</u> o	seu periodo 1:
T do sinal =		
2. Selecione a posição "x1" na Ponta de Prova amplitude A _G numa escala que use o máximo	` ,	osciloscópio. <u>Meça</u> a sua
Escala Y: Ey= /div; di	stância Y de A _{G1} =	div
Amplitude (ddp) A_{G1} do sinal = \pm	V (propague a ince	teza de leitura Ey)
3. Selecione a posição "x10" na Ponta de Pra amplitude A _G numa escala que use o máximo		nsão V _G (t). <u>Meça</u> a sua
Escala Y: Ey= /div;	distância de A _{G2} =	div
Amplitude (ddp) A _{G2} do sinal =	± V (propag	gue a incerteza de leitura Ey)

Turma PL	nº	nº	nº	Grupo:	Data: /	/2019
- a	· · ·	••	· · ·			

4. Quanto vale a razão A_{G1}/ A_{G2} obtida pelos dois procedimentos de medida (x1 e x10)?

Figura 1. A Ponta de Prova (bloco a tracejado à esquerda) mede a ddp V_{pp} exterior. Quando se seleciona o modo "x10" introduz-se em série, no cabo coaxial, a resistência de 9 MΩ, a qual *não existe no modo* "x1". Na entrada do osciloscópio (bloco a tracejado à direita) está sempre a resistência de 1 MΩ ligada à massa. A tensão V_M efetivamente medida pelo osciloscópio é o potencial na extremidade superior da resistência de 1 MΩ. No modo "x10" corresponde à do ponto intermédio do "divisor de tensão" 9 MΩ com 1 MΩ.

5. <u>Usando a informação anterior demonstre analiticamente</u> que quando a ponta de prova está no modo "x10" o sinal medido V_M = V_{pp}/10. Compare este resultado com o valor obtido na alínea 4.

Experiência 2 – O Transformador de tensões variáveis no tempo.

Objetivo: obter a relação de transformação de um transformador.

Na figura 2 a resistência R= 4K7 Ω está ligada ao enrolamento secundário do transformador (com menos espiras enroladas) e o gerador liga-se ao enrolamento primário do transformador (que tem mais espiras). O sinal do gerador é do tipo:

onde $A_G > 0 V$.

- Para estudar a relação de transformação <u>proceda à aquisição de dados da seguinte maneira</u>: (NOTA: nas opções do osciloscópio selecione a de mostrar valores pico-a-pico dos canais 1 e 2)
 - a. Varie a amplitude A_G do sinal do gerador, de 0v até ao máximo valor fornecido, escolhendo N= 11 valores diferentes, *igualmente espaçados entre si*.
 - b. Para cada valor escolhido registe as tensões pico-a-pico V_{pp} dos sinais $V_G(V)$ e $V_R(V)$ na resistência, a partir da grelha do osciloscópio. (*NOTA*: coloque as pontas de prova no modo "x1")
 - c. Construa uma tabela com os N valores registados.
- 2. Para os N valores obtidos <u>calcule</u> A_R/A_G. Comente o resultado justificando-o *analiticamente*.

	valoros do As						
valor da raz		A _G <u>calcule</u> a r deste transfo		adrão σ, incerteza	da média d	oπ e in	dique o
os valores	$N_p \pm \Delta_{Np}$ e N	$_{ m s}$ ± $\Delta_{ m Ns},$ recorre	endo obrigatoria	·			
enrolament	o com meno:	s espiras (prir	<i>mário</i>). R ficará	ligada ao enrolar	mento com		
Amplitude	e pico-a-pico	$A_{Gpp} =$	V				
Amplitude	e pico-a-pico	$A_{Rpp} =$	V				
C <u>alcule</u> A _{Rp}	_p /A _{Gpp} e comp	are-o com o r	esultado em 3.,	justificando analiti	<u>camente</u> es	ste valo	or.
	Inverta a o enrolamento (secundário Amplitudo Amplitudo Calcule A _{Rp}	Inverta a orientação do enrolamento com menos (secundário). Meça a am Amplitude pico-a-pico Amplitude pico-a-pico Calcule A _{Rpp} /A _{Gpp} e comp	Inverta a orientação do transformado enrolamento com menos espiras (prin (secundário). Meça a amplitude pico-a-Amplitude pico-a-pico $A_{Rpp} = C_{alcule} A_{Rpp}/A_{Gpp}$ e compare-o com o r	os valores $N_p\pm\Delta_{Np}$ e $N_s\pm\Delta_{Ns}$, recorrendo obrigatoria Propague a incerteza σ_m para obter as incertezas Δ_N . Inverta a orientação do transformador no circuito. Es enrolamento com menos espiras (primário). R ficará (secundário). Meça a amplitude pico-a-pico A_{Rpp} da ten Amplitude pico-a-pico A_{Rpp} = V Amplitude pico-a-pico A_{Rpp} = V Calcule A_{Rpp}/A_{Gpp} e compare-o com o resultado em 3.,	os valores $N_p\pm\Delta_{Np}$ e $N_s\pm\Delta_{Ns}$, recorrendo obrigatoriamente ao resultado Propague a incerteza σ_m para obter as incertezas Δ_N . $\frac{Inverta\ a\ orientação\ do\ transformador\ no\ circuito}{enrolamento\ com\ menos\ espiras\ (primário)}.\ R\ ficará\ ligada\ ao\ enrolar (secundário).\ Meça\ a\ amplitude\ pico-a-pico\ A_{Rpp}\ da\ tensão\ em\ R\ (saída).$ Amplitude pico-a-pico $A_{Rpp}=V$	os valores $N_p\pm\Delta_{Np}$ e $N_s\pm\Delta_{Ns}$, recorrendo obrigatoriamente ao resultado $R_{tr}\pm\Delta_{F}$ Propague a incerteza σ_m para obter as incertezas Δ_N . Inverta a orientação do transformador no circuito. Escolha a amplitude $A_G=2,5N$ enrolamento com menos espiras (primário). R ficará ligada ao enrolamento com (secundário). Meça a amplitude pico-a-pico A_{Rpp} da tensão em R (saída). Amplitude pico-a-pico $A_{Gpp}=V$ Amplitude pico-a-pico $A_{Rpp}=V$ Calcule A_{Rpp}/A_{Gpp} e compare-o com o resultado em 3., justificando analiticamente es	Inverta a orientação do transformador no circuito. Escolha a amplitude A_G = 2,5 V e liginario com menos espiras (primário). R ficará ligada ao enrolamento com mais (secundário). Meça a amplitude pico-a-pico A_{Rpp} da tensão em R (saída). Amplitude pico-a-pico A_{Gpp} = V Amplitude pico-a-pico A_{Rpp} = V Calcule A_{Rpp}/A_{Gpp} e compare-o com o resultado em 3., justificando analiticamente este vale

Experiência 3 – Retificação de onda completa.

Objetivo: obter a retificação de ciclo completo com uma ponte de díodos.

1. Na Fig. 3 a resistência R= 3K3 Ω . Monte o circuito ligando a ponte de díodos ao enrolamento secundário do transformador (com menos espiras) e o gerador ao enrolamento primário (com mais espiras). Atenção à orientação dos díodos. O sinal do gerador é:

 $V_G(t) = 7.4 \text{ sen}(150796.0 \text{ t}) \text{ volt}$

Figura 3

calcule a frequência:

· · · · · · · · · · · · · · · · · · ·	Turma PL	n ^c	' nº_	nº_	Grupo :	Data:	//2019
---------------------------------------	----------	----------------	-------	-----	---------	-------	--------

2. <u>Ajuste o gerador</u> de sinal para os valores pretendidos de frequência *f* e amplitude A_g e visualize com o osciloscópio o sinal V_G(t). <u>Meça no osciloscópio os valores</u> de *T* e A_G realmente conseguidos. Registe todas as medições (escalas e distâncias) realizadas.

- => $A_G=$ \pm V e freq= \pm Hz
- 3. Meça o sinal obtido (ddp) na resistência, $V_R(t)$. Anote os valores de T e amplitude A_R . Caracterize $V_R(t)$ comparando-o com $V_G(t)$ e justifique detalhadamente a razão do que se observa. Guarde e imprima uma imagem do écran com os dois sinais.

 \Rightarrow A_R = \pm V e freq = \pm Hz

Experiência 4 – Tensão Retificada com alisamento.

Objetivo: entender o efeito do condensador na retificação de onda completa.

1. Na fig. 4 a resistência R= 1k2 Ω . No circuito já montado introduza um condensador C= 100 nF, em paralelo com a resistência R. O sinal do gerador é do tipo:

 $V_G(t) = 7.4 \text{ sen}(150796,0 \text{ t}) \text{ volt}$

Figura 4

2. Que alterações observa no sinal $V_R(t)$ quando o compara com o resultado da alínea anterior? Guarde e imprima uma imagem do écran com os dois sinais.

Turma PL	nº	nº	nº	Grupo:	Data:	/ /2019

3. Substitua o condensador usado por outro de capacidade C= 10 μ F (nota: é eletrolítico e tem polaridade). Que alterações observa no sinal $V_R(t)$ quando comparado com o resultado da alínea anterior? Guarde e imprima uma imagem do écran com os dois sinais $V_R(t)$ e $V_G(t)$.

4. Considere que a resistência R no circuito representa um dispositivo ou aparelho (leitor de mp3, motherboard, telemóvel, etc.) que necessita de uma ddp contínua para funcionar. Justifique a designação de "fonte de alimentação retificada" ao circuito apresentado.

Nota auxiliar

Figura 5 – Representação de um sinal sinusoidal de tensão com as suas características.

$$V(t) = A sen(\omega t + \phi) + V_o$$

A = amplitude = "Peak value" na figura (volt)

 $\omega = 2\pi f = \text{frequência angular (rad/s)}$

T = 1/f = "Period" na figura (s)

 ϕ = fase inicial (rad)

V_{pp} = 2A = tensão "pico a pico" (Volt)

V_o = valor médio da tensão V(t) (Volt)

= valor y da linha a vermelho na figura.

Entrega obrigatória do relatório na Semana Seguinte