Time, Motion and Trajectories



### Smooth three dimensional trajectories



#### **Applications**

- Trajectory generation in robotics
- Planning trajectories for quad rotors



#### General Set up

- Start, goal positions (orientations)
- Waypoint positions (orientations)
- Smoothness criterion
   Generally translates to minimizing rate of change of "input"
- Order of the system (n)
   Order of the system determines the input
   Boundary conditions on (n-1)<sup>th</sup> order and lower derivatives



#### Calculus of Variations

$$x^{\star}(t) = \underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \mathcal{L}(\dot{x}, x, t) dt$$
function

function

#### Examples

• Shortest distance path (geometry)  $x^*(t) = \arg\min_{x(t)} \int_0^T \dot{x}^2 dt$ 

$$x^{\star}(t) = \arg\min_{x(t)} \int_{0}^{T} \dot{x}^{2} dt$$

• Fermat's principle (optics) 
$$x^*(t) = \underset{x(t)}{\operatorname{argmin}} \int_0^T 1 dt$$

• Principle of least action (mechanics)  $x^*(t) = \underset{x(t)}{\operatorname{argmin}} \int_0^T T(\dot{x}, x, t) - V(x, t) dt$ 

#### Calculus of Variations

$$x^{\star}(t) = \underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \mathcal{L}(\dot{x}, x, t) dt$$

Consider the set of all differentiable curves, x(t), with a given x(0) and x(T).





#### Calculus of Variations

$$x^{\star}(t) = \underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \mathcal{L}(\dot{x}, x, t) dt$$

#### **Euler Lagrange Equation**

Necessary condition satisfied by the "optimal" function x(t)

$$\frac{d}{dt} \left( \frac{\partial \mathcal{L}}{\partial \dot{x}} \right) - \frac{\partial \mathcal{L}}{\partial x} = 0$$



# Smooth trajectories (n=1)

$$x^{\star}(t) = \arg\min_{x(t)} \int_{0}^{T} \dot{x}^{2} dt$$

$$x(0) = x_{0}, \ x(T) = x_{T} \quad \underset{u = \dot{x}}{\overset{input}{u = \dot{x}}}$$

### Smooth trajectories (n=1)

$$x^{\star}(t) = \arg\min_{x(t)} \int_{0}^{T} \dot{x}^{2} dt$$

#### **Euler Lagrange Equation**

$$\frac{d}{dt} \left( \frac{\partial \mathcal{L}}{\partial \dot{x}} \right) - \frac{\partial \mathcal{L}}{\partial x} = 0$$

$$\mathcal{L}(\dot{x}, x, t) = (\dot{x})^2 \quad \Longrightarrow \quad \ddot{x} = 0$$

$$x = c_1 t + c_0$$



## Smooth trajectories (n=1)

$$x^{\star}(t) = \arg\min_{x(t)} \int_{0}^{T} \dot{x}^{2} dt$$

$$x(0) = x_0, \ x(T) = x_T$$





# Smooth trajectories (general *n*)

$$x^{\star}(t) = \underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \left(x^{(n)}\right)^{2} dt$$

$$\lim_{x \to \infty} u = x^{(n)}$$



## Euler-Lagrange Equation

$$x^{\star}(t) = \operatorname*{argmin}_{x(t)} \int_{0}^{T} \mathcal{L}\left(x^{(n)}, x^{(n-1)}, \dots, \dot{x}, x, t\right) dt$$

#### **Euler Lagrange Equation**

Necessary condition satisfied by the "optimal" function

$$\frac{\partial \mathcal{L}}{\partial x} - \frac{d}{dt} \left( \frac{\partial \mathcal{L}}{\partial \dot{x}} \right) + \frac{d^2}{dt^2} \left( \frac{\partial \mathcal{L}}{\partial \ddot{x}} \right) + \dots + (-1)^n \frac{d^n}{dt^n} \left( \frac{\partial \mathcal{L}}{\partial x^{(n)}} \right) = 0$$



## Smooth Trajectories

$$x^{\star}(t) = \underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \left(x^{(n)}\right)^{2} dt$$

 $\bullet$  n=1, shortest distance

velocity

- $\bullet$  n=2, minimum acceleration
- $\bullet$  n=3, minimum jerk
- *n*=4, minimum snap

n – order of system  $n^{th}$  derivative is input



# **Smooth Trajectories**

$$x^{\star}(t) = \underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \left(x^{(n)}\right)^{2} dt$$

 $\bullet$  n=1, shortest distance

velocity

- $\bullet$  n=2, minimum acceleration
- $\bullet$  n=3, minimum jerk
- *n*=4, minimum snap

Why is the minimum velocity curve also the shortest distance curve?

