课程目录

- 1. STM32WL 简介
- 2. STM32WL 硬件简介
- 3. STM32WL 软件简介
- 4. LoRa和LoRaWAN介绍
- 5. STM32WL LoRa 例程介绍

- 6. STM32WL 使用STM32 CubeMX 创建LoRa 节点应用
- 7. STM32WL LoRa RF 测试
- 8. STM32WL 安全特性介绍
- 9. STM32WL FUOTA 应用设计

STM32WL FUOTA 应用设计

David Liu

本节课程目录

1 STM32WL FUOTA 概览

5 总结

- 2 LoRaWAN FUOTA 的应用架构
- 3 STM32WL FUOTA 应用中的SBSFU
- 4 STM32WL LoRaWAN FUOTA例程简介

STM32WL FUOTA 概览

LoRa® -FUOTA

无线固件更新(FUOTA)

- LoRa® 联盟FUOTA技术工作组
 - 致力于LoRaWAN固件管理协议规范,
 - 该文档定义了右侧工作框图
- OTA固件更新利用了LoRa®联盟(Synch, FragMgt, MultiCast和FWMgt)标准化的客户端-服务器协议。
- FUOTA 基本步骤
 - 1.节点设备制造商生成更新固件
 - 2.将更新传输并提交到节点设备管理服务器
 - 3.将固件下载到节点设备
 - 4.通过更新代理更新节点设备固件

STM32WL LoRa® FUOTA

STM32WL无线固件更新(FUOTA)

FUOTA 更新流程

无线固件更新(FUOTA)流程

・通信

- 新的FW从服务器通过LoRaWAN协议传输到客户端(节点)
- 工作在Class-C 模式,数据以单播或组播模式传输

· FW更新

- FW更新任务由Update Agent module 执行
- Update Agent module基于 SBSFU功能实现FW更新

・存储

• FW存储由SBSFU管理

・安全

• 通过 LoRaWAN 协议 和 SBSFU 实现安全更新

LoRaWAN FUOTA 的应用架构

网络协议架构

LoRaWAN 协议由 MAC 层和在 LoRa 物理层上运行的应用层组成

LoRaWAN协议分层架构

Physical层提供以下服务:

- PHY 数据服务: 启用物理协议数据单元 (PPDU) 的 Tx/Rx
- PHY 管理服务: 启用个人区域网络信息库 (PIB) 管理

MAC 层提供以下服务:

- MAC 数据服务: 允通过PHY层 传输和接收 MAC 协议数据单元(MPDU)
- MAC 子层管理: 启用 PIB 管理

应用层提供了多个运行在 LoRaWAN 协议上的消息包。

- 远程组播设置包(FPort 200)
- 分片数据块传输包(FPort 201)
- 时钟同步包(FPort 202)
- 固件管理包(FPort 203)
- 更新代理模块(Update agent module)
- 应用程序

Physical medium (air interface)

网络/节点互通——时间同步

在设置 FUOTA 会话之前,终端设备必须使用 AppTimeReq 或 DeviceTimeReq 与网络同步其时间,如下图

所示。

网络/节点互通——多播、分段设置和会话创建

要在应用层接收数据块,需要在网络应用层和终端设备应用层之间进行一些参数交换。

- 多播组 ID
- 分片参数 (分片编号和分片大小)
- 多播组 Class C 会话的开始时间和结束时间 参数

网络/节点互通——片段广播和安全固件更新过程

STM32WL FUOTA 应用中的SBSFU

Secure Boot (SB)安全启动

- Secure Boot (root-of-trust services)安全启动
 - 安全启动软件存储在MCU 只读存储器中,并对执行的用户应用程序的完整性/真实性进行检查。
 - 每次发生复位时都会执行安全启动,并检查是否有新的固件更新需要完成。
 - 检查并激活 STM32 安全机制,以保护关键操作和秘密数据免受攻击。
 - 在每次执行之前检查用户应用程序代码的真实性和完整性,以确保无效或恶意代码不会被运行。

Secure Firmware Update (SFU)安全更新

安全

更新代理

・ 节点的存储器

• 节点设备的存储器大小 (Flash/RAM) 对FUOTA 功能有直接影响。 所需的存储器大小取决于固件映像的大小、管理新固件映像的技术以及bootloader的需求。

・ 更新代理(Update Agent)

- 在 FUOTA 过程的第一步(将数据块从服务器传输到节点设备),每次节点设备接收到来自服务器的片段时, 它都会存储在闪存中的下载映像槽中。
- 当从服务器接收到整个数据块(新固件映像) (接收到所有片段并完成重组)时,更新代理会生成一个 NVIC Reset 操作,以便将 MCU 的控制权转移到安全启动,以完成后续的安全更新。

STM32WL LoRaWAN FUOTA例程简介

STM32WL LoRaWAN FUOTA 工程目录

STM32Cube_FW_WL_V1.1.0\Projects\NUCLEO-WL55JC\Applications\LoRaWAN_FUOTA_DualCore

- 2_Images_SECoreBin —————— 定义加解密方案,为保护密钥和加解密操作提供安全的环境
- Linker_Common
- LoRaWAN_End_Node_DualCore 实现FOTA功能的双核LoRa应用程序
- Scripts

LoRaWAN 架构

LoRaWAN 的主要功能如下:

- LoRaWAN L2 (链路层) V1.0.3: A 类 (基线)、C 类 (连续)和 B 类 (信标)
- LoRaWAN RP (区域参数) V1.0.3
- •应用层 V1:
 - 时钟同步
 - 分片数据块
 - 远程组播设置

SBSFU功能

- 默认情况下,FUOTA LoRaWAN 项目配置了非对称加密。 确保固件身份验证、完整性和机密性(加密)。
- SBSFU 应用程序中没有本地加载程序(固件更新只能通过 OTA 进行)
- 无调试模式 (SBSFU 执行期间终端上不再显示更多信息)
- 默认情况下,除 IWDG(独立看门狗)外,所有安全外设均已启用,

如何创建一个STM32WL的FUOTA应用

LoRaWAN_End_Node 内存占用

Module	Flash memory size (bytes)	Description
HAL	5608	-
APP	3630	Main functions
UTILITIES	2938	Includes services (such as sequencer, time server, lpm, or traces)
LORAWAN	25384	LoRaWAN middleware
FUOTA	6400	Additional LoRaWAN packages for FUOTA
SUBGHZ_PHY	6752	RF middleware
MBMUX	2904	Mailbox interface
STARTUP	952	Arm startup objects (such as startup or init_table)
LIB	1064	Arm native libraries (such as memcpy, exit, or cmain)
Total application	54 K	Memory footprint for the Cortex-M0+ application

LoRaWAN_End_Node _CM0+ application

Module	Flash memory size (bytes)	Description
HAL	12054	-
APP	5596	Main functions
UTILITIES	2684	Includes services (such as sequencer, time server, lpm, or traces)
MBMUX	2114	Mailbox interface
STARTUP	908	Arm startup objects (such as startup or init_table)
LIB	1340	Arm native libraries (such as memcpy, exit, or cmain)
Total application	24 K	Memory footprint for the Cortex-M4 application

LoRaWAN_End_ Node_CM4 application

SBSFU 内存占用

SECoreBin application

Module	Flash memory size (bytes)	Description
HAL	4948	-
APP	798	Main functions
SE	1972	Secure Engine middleware
KMS	21572	Key management service middleware
STARTUP	264	Arm startup objects (such as startup or init_table)
LIB	274	Arm native libraries (such as memcpy, exit, or cmain)
Total application	29 K	Memory footprint for the SECoreBin application

SBSFU CM4 application

Module	Flash memory size (bytes)	Description
HAL	2552	-
APP	622	Main functions
SBSFU	1488	SBSFU core
STARTUP	810	Arm startup objects (such as startup or init_table)
LIB	120	Arm native libraries (such as memcpy, exit, or cmain)
Total application	6 K	Memory footprint for the SBSFU CM4 application

SBSFU CM0+ application

_{Module} Flas	∱Flash memory size (bytes)	Description
HAL	3360	-
APP	198	Main functions
SBSFU	12796	SBSFU core
SE	4780	Secure Engine middleware
SECORE_BIN	30972	Secure Engine library
STARTUP	699	Arm startup objects (such as startup or init_table)
LIB	354	Arm native libraries (such as memcpy, exit, or cmain)
Total application	52 K	Memory footprint for the SBSFU CM0+ application

总结

总结

1.STM32WL FUOTA 概览

- 2.LoRaWAN FUOTA 的应用架构 LoRaWAN协议架构,网络/节点互通——(时钟同步,多播、分段设置和会话创建,片段广播和安全 固件更新过程)
- 3. STM32WL FUOTA 应用中的SBSFU 安全启动,安全更新
- 4. STM32WL LoRaWAN FUOTA例程简介 LoRaWAN 软件架构, SBSFU, 内存占用

Thank you

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

