# Symplectic excision

PRIVATE DRAFT IN PROGRESS

Yael Karshon Xiudi Tang

November 27, 2020

#### 1 Introduction

A couple of years ago, Alan Weinstein circulated the following question, which he and Christian Blohmann put in writing in their paper [2, Question 11.2].

Let M be a noncompact symplectic manifold, and let  $R \subset M$  be the image of a proper embedding of the ray  $[0, \infty)$ . Is  $M \setminus R$  symplectomorphic to M? Can a symplectomorphism between them be chosen to be the identity outside a prescribed neighbourhood U of R?

In his earlier paper [11], the second named author proved that such a symplectomorphism exists if the neighbourhood U is sufficiently big in the following sense: for some  $\varepsilon > 0$ , there exists a symplectic embedding of  $B_0^{2n-2}(\varepsilon) \times \mathbb{R}^2$  into U that maps

$$R_0 := \{0\} \times [0, \infty) \times \{0\}$$

onto R. Note that such a neighbourhood U has infinite volume. In this paper, we allow U to be arbitrary. This result is strictly stronger; for example, M can have finite volume.

Moreover, we extend this result to more general closed subsets Z of M. Our method is a novel variant of the symplectic isotopy extension theorem: we assume that there is a submanifold N of M that contains Z and a Hamiltonian flow  $(\psi_t)_t$  of N that sends all the points of Z to infinity in time  $\leq 1$  and whose time-1 flow is well defined on  $N \setminus Z$ , and we extend it to a Hamiltonian flow on M whose time-1 flow is well defined on  $M \setminus Z$ . The subtle point here is to ensure that the time-1 flow is well defined on  $M \setminus Z$ .

During our final preparations of this paper we learned of Bernd Stratmann's recent eprint [10], which achieves similar results. However, they excide the closed

subset Z by time-dependent Hamiltonians instead of time-independent ones in the present paper and their result does not apply to the Cantor brush  $C \times [0, \infty) \times \{0\}^{2n-2}$ , where C is the Cantor set, in  $(\mathbb{R}^{2n}, \omega_{\text{can}})$  as in Example 5.1.

**Definition 1.1.** Let  $(M, \omega)$  be a symplectic manifold, and let Z be a closed subset of M. A symplectic excision of Z from M is a symplectomorphism  $\varphi \colon M \setminus Z \to M$ . The symplectic excision  $\varphi$  is supported in a neighbourhood U of Z if it restricts to the identity map on some neighbourhood of  $M \setminus U$  in  $M \setminus Z$ . (Note that  $\varphi$  is not defined on all of U; it is defined only on  $U \setminus Z$ .) We similarly define presymplectic excision for a closed subset of a presymplectic manifold (meaning a manifold equipped with a closed two-form), smooth excision for a closed subset of a manifold, and topological excision for a closed subset of a topological manifold. Finally, a closed subset Z of a symplectic manifold M is symplectically neighbourhood excisable if for every neighbourhood U of Z in M there is a symplectic excision of Z from M that is supported in U.

For a topological manifold M and a non-empty subset Z of M, if  $M \setminus Z$  is homeomorphic to M, then Z must be closed in M and M must be noncompact.

## 2 Removing a ray

## 2.1 Removing a ray from $\mathbb{R}^{2n}$

In the present paper we use the convention  $X_F \, \lrcorner \, \omega = \mathrm{d}F$ . Consider  $\mathbb{R}^{2n}$  with coordinates  $(x_1, y_1, \ldots, x_n, y_n)$ , with the standard symplectic form  $\omega_{\mathrm{can}} := \mathrm{d}x_1 \wedge \mathrm{d}y_1 + \ldots + \mathrm{d}x_n \wedge \mathrm{d}y_n$ , and, in it, consider the ray

$$R_0 := \{0\}^{2n-2} \times [0, \infty) \times \{0\}.$$

**Theorem 2.1.**  $R_0$  is symplectically neighbourhood excisable from  $\mathbb{R}^{2n}$ .

*Proof.* Because there is a symplectomorphism from  $(-1,1) \times \mathbb{R}$  to  $\mathbb{R}^2$  that takes  $[0,1) \times \{0\}$  to  $[0,\infty) \times \{0\}$ , (for example, take the cotangent lift of the diffeomorphism  $t \mapsto t/(1-t)$  from (-1,1) to  $\mathbb{R}$ ), it is enough to show that

$$R_1 := \{0\}^{2n-2} \times [0,1) \times \{0\}$$

is symplectically neighbourhood excisable from

$$M := \mathbb{R}^{2n-2} \times (-1,1) \times \mathbb{R}.$$

We claim the following stronger result than is required. For any neighbourhood U of  $R_1$  in M there exists a smooth function  $F: M \to \mathbb{R}$ , with Hamiltonian vector field  $X_F$ , whose flow domain  $D \subset M \times \mathbb{R}$  is given by

$$D \cap (\{z\} \times \mathbb{R}) = \{z\} \times (S_z, T_z)$$

for all  $z \in M$ , such that

- F is supported in U;
- $T_z > 1$  in  $M \setminus R_1$ ;
- $T_z \leqslant 1$  on  $R_1$ ;
- $S_z < -1 \text{ in } M$ .

This claim completes the proof: the time-1 Hamiltonian flow of F is then a symplectomorphism from  $M \setminus R_1$  to M.

We will now prove this claim. Write

$$p = (x_1, y_1, \dots, x_{n-1}, y_{n-1}).$$

Let U be an arbitrary neighbourhood of  $R_1$  in M. Let  $\varepsilon > 0$  and let

$$h: [-\varepsilon, 1) \to \mathbb{R}_{>0}$$

be a smooth strictly decreasing function that converges to 0 at 1, such that the set  $\{x_n \in [-\varepsilon, 1), |p|^2 + y_n^2 \leq h(x_n)\}$  is contained in U. Let

$$U_1 := \{x_n \in (-\varepsilon, 1), |p|^2 + y_n^2 < h(x_n)\},\$$

so that  $U_1$  is contained in U, and

$$|p|^2 + y_n^2 \leqslant h(-\varepsilon)$$
 on  $U_1$ .

Fix a smooth function

$$\chi \colon M \to [0,1]$$

that is supported in  $U_1$  and is equal to 1 in a neighbourhood of  $R_1$ . Assume that  $d\chi = 0$  wherever  $\chi = 0$ ; this can be achieved, for instance, by replacing  $\chi$  by  $\rho \circ \chi$  where  $\rho(s) = 3s^2 - 2s^3$ .

Let

$$F(z) := \frac{1 - x_n^2}{|p|^2 + 1 - x_n^2} \chi(z) y_n.$$

Then  $F: M \to \mathbb{R}$  is supported in U.

We will calculate  $S_z$  and  $T_z$  explicitly for each  $z \in M$ .

Because the function F is the product of  $y_n$  with a function that takes values in [0,1] and is supported in  $U_1$ , if  $|F(z)| \ge c > 0$ , then  $z \in U_1$  and  $|y_n| \ge c$ . From the definition of  $U_1$ , this further implies that  $x_n \in [-\varepsilon, 1)$  and  $h(x_n) \ge c^2$ . Because  $h: [-\varepsilon, 1) \to \mathbb{R}_{>0}$  approaches 0, these inequalities imply that  $x_n \in [-\varepsilon, b]$  for some  $b \in [-\varepsilon, 1)$ . Hence, for each c > 0, the set  $\{|F| \ge c\}$  is compact, as it is closed in M and contained in  $\{x_n \in [-\varepsilon, b], |p|^2 + y_n^2 \le h(-\varepsilon)\}$ . So

$$F|_{M\setminus F^{-1}(0)}\colon M\setminus F^{-1}(0)\to \mathbb{R}\setminus\{0\}$$

is a proper map. In particular, all the non-zero level sets of F are compact.

At each point z with  $y_n \neq 0$ , if  $F(z) \neq 0$ , then  $F^{-1}(F(z))$  is compact, and if F(z) = 0, then  $(\chi(z) = 0)$ ; by the choice of  $\chi$  also  $d\chi|_z = 0$ ; and so  $\chi_F(z) = 0$ . We conclude that  $\chi_F$  is complete on  $\{y_n \neq 0\}$ . So for any point z with  $y_n \neq 0$  we have  $S_z = -\infty$  and  $T_z = \infty$ .

Compute  $X_F$  on  $\{y_n = 0\}$  explicitly for each  $z \in M$ :

$$X_F(p, x_n, 0) = \frac{1 - x_n^2}{|p|^2 + 1 - x_n^2} \chi(p, x_n, 0) \partial_{x_n}.$$

Since  $X_F$  is proportional to  $\partial_{x_n}$  and vanishes for  $x < -\varepsilon$ , we have  $S_z = -\infty$  for any point z with  $y_n = 0$ .

For a point z with  $y_n = 0$  and  $p \neq 0$ , we have  $|p|^2 > 0$ . By the comparison

$$\frac{1 - x_n^2}{|p|^2 + 1 - x_n^2} \chi(p, x_n, 0) b \leqslant \frac{1 - x_n^2}{|p|^2 + 1 - x_n^2}$$

and the completeness of the vector field  $\frac{1-x_n^2}{b+1-x_n^2}\partial_{x_n}$  on (-1,1) for b>0, we have  $T_z=\infty$ .

At each point with  $y_n = 0$  and p = 0, which we write as  $z = (0, x_n, 0)$ , we have  $X_F(0, x_n, 0) = \chi(0, x_n, 0)\partial_{x_n}$ . Because  $\chi(0, x_n, 0) = 1$  on the set  $\{x_n \ge 0\}$ , we have  $T_z \le 1$  when  $x_n \ge 0$  and  $T_z = 1$  when  $x_n = 0$ . Because the vector field is a positive multiple of  $\partial_{x_n}$ , the function  $x_n \mapsto T_z$  is strictly decreasing, and so  $T_z > 1$  whenever  $x_n < 0$ . So  $T_z \le 1$  if and only if  $x_n \ge 0$ .

We have now shown that  $T_z \leq 1$  if and only if  $z \in R_0$ , and that  $S_z = -\infty$  for all  $z \in M$ . This justifies our claim, and our proof is complete.

We contrast Theorem 2.1 with the analogous result of [11], which is weaker:

**Theorem 2.2.** [11, Theorem 1.1] For any  $\varepsilon > 0$ , there is a symplectomorphism  $\mathbb{R}^{2n} \to \mathbb{R}^{2n} \setminus R_0$  that is the identity outside  $\mathbb{B}_0^{2n-2}(\varepsilon) \times W(\varepsilon)$ , where  $W(\varepsilon) := \mathbb{B}_0^2(\varepsilon) \cup \{(x,y) \in \mathbb{R}^2 \mid x > \frac{\sqrt{2}\varepsilon}{2}, \ x|y| < \frac{\varepsilon^2}{2}\}.$ 

#### 2.2 Applications

Theorem 2.2 cannot be used to symplectically excise R from M if M has finite volume. In contrast, Theorem 2.1 allows us to remove a ray from any symplectic manifold.

Corollary 2.3. Let  $(M, \omega)$  be a symplectic manifold, and let  $\gamma \colon [0, \infty) \to M$  be a proper embedding with image R. Then R is symplectically neighbourhood excisable in M.

*Proof.* Let U be an open neighbourhood and  $V \subset U$  be a closed neighbourhood of R in M. There exists an open neighbourhood  $U_0$  of the standard ray  $R_0$  in  $\mathbb{R}^{2n}$  and a proper symplectic embedding  $\psi: (U_0, \omega_{\text{can}}) \to (M, \omega)$  such that

$$\psi(R_0) = R, \qquad W := \psi(U_0) \subseteq U.$$

By Theorem 2.1, there is symplectic excision  $\varphi_0$  of  $R_0$  from  $(\mathbb{R}^{2n}, \omega_{\operatorname{can}})$  that is the identity outside of a closed neighbourhood  $V_0 \subset U_0$  of  $R_0$  in  $\mathbb{R}^{2n}$ . Then

$$\varphi := \psi \circ \varphi_0 \circ \psi^{-1}|_{W \setminus R} \colon (W \setminus R, \omega) \to (W, \omega)$$

is a symplectic excision of R from W that is the identity in  $W \setminus \psi(V_0)$ . Since  $\psi$  is a proper embedding, the set  $\psi(V_0)$  is a closed neighbourhood of R in M. Extending  $\varphi$  by the identity we obtain a symplectic excision  $\widetilde{\varphi}$  of R from W that is supported (in W, hence) in U.

**Lemma 2.4.** Any exact 2-form on a smooth manifold has a primitive whose zero set is discrete.

*Proof.* Let  $\omega = d\theta$  be an exact 2-form on  $M^m$ . Let  $\phi = (x_1, \dots, x_n) \colon M \to \mathbb{R}^n$  be a smooth embedding and then the function

$$F: M \times \mathbb{R}^n \to T^*M,$$
  
$$F(x,s) = \theta(x) + \sum_{i=1}^n s_i \, d_x x_i,$$

where  $s = (x_1, \ldots, x_n)$ , is transversal to  $0_{T^*M}$ , the zero section of  $T^*M$ . By Transversality Theorem, for instance, in [6], we deduce that  $F(\cdot, s)$  is transversal to  $0_{T^*M}$  for almost every  $s \in \mathbb{R}^n$ . Choose such an s and let  $\rho = \sum_{i=1}^n s_i x_i$ . Then the zero set of  $\beta := \theta + d\rho = F(\cdot, s) \in \Omega^1(M)$  is a 0-submanifold of M, or equivalently, a discrete set of points in M, and we have  $d\beta = d\theta = \omega$ .

**Theorem 2.5.** Any exact symplectic manifold has a nowhere vanishing primitive (a Liouville form) of its symplectic form.

*Proof.* Let  $(M, \omega = d\theta)$  be an exact symplectic manifold. By Lemma 2.4 we choose a  $\rho \in \Omega^1(M)$  such that the zeroes of  $\beta = \theta + d\rho$  are isolated. The existence of such a  $\rho$  is claimed in [2] and proven differently in [9].

We construct an exhaustion of M by a sequence of compact subsets  $(K_j)_{j=1}^{\infty}$  such that for each  $j \in \mathbb{N}$ , any point in  $K_{j+1} \setminus K_j$  is joint by a smooth path in  $M \setminus K_j$  to a point in  $M \setminus K_{j+1}$ . The construction takes the unions of hypographs of an exhausion function for M with the bounded connected components of their complements, which was used in [4, 7, 8, 9].

Let  $(z_i)_{i=1}^N$  where  $N \in \mathbb{N} \cup \{\infty\}$  be the set of zeroes of  $\beta$ . We claim that there is a properly embedded ray  $R_i$  starting with  $z_i$  for each  $i \in [1, N] \cap \mathbb{N}$  such that they are pairwise disjoint and their union is closed in M. Our construction is step-by-step inside of  $M \setminus K_j$  for  $j = 1, 2, \ldots$  For any  $j \in \mathbb{N}$ , we draw a smooth path in  $M \setminus K_j$  from each of  $z_i$  or endpoint of a previous path to a point to a point in  $M \setminus K_{j+1}$ , so that all the new paths are disjoint with each other and with previous paths, and the joint paths are smooth. In this way, we obtain pairwise disjoint rays  $(R_i)_{i=1}^N$  with endpoints  $(z_i)_{i=1}^N$ . Moreover,  $R = \bigcup_{i=1}^N R_i$  is closed in M since  $R \cap K_j$  is compact for any  $j \in \mathbb{N}$ .

Let  $(U_i)_{i=1}^N$  be pairwise disjoint open neighbourhoods of  $(R_i)_{i=1}^N$  and let  $U = \bigcup_{i=1}^N U_i$ . By Corollary 2.3, for each  $i \in [1, N] \cap \mathbb{N}$  there is a symplectic excision  $\varphi_i$  of  $R_i$  from M supported in  $U_i$ , and then let  $\varphi \colon M \setminus R \to M$  be the composition of  $(\varphi_i)_{i=1}^N$ , which is supported in U. Let  $\alpha = (\varphi^{-1})^*\beta|_{M \setminus R}$  and then we have

$$d\alpha = d((\varphi^{-1})^*\beta|_{M \setminus R}) = (\varphi^{-1})^*\omega|_{M \setminus R} = \omega.$$

Moreover,  $\alpha$  has no zeroes since  $\beta$  has no zeroes in  $M \setminus R$ .

There are proofs of Corollary 2.3 and Theorem 2.5 in [9] by a more straightforward approach.

## 3 Extension of vector fields

We will construct symplectic vector fields on symplectic manifolds that extend presymplectic vector fields on constant rank submanifolds.

We follow the terminology of [2, 5].

**Definition 3.1.** A presymplectic form is a closed two-form. A presymplectic manifold is a manifold S equipped with a closed two-form  $\omega_S$ . A regular presymplectic manifold is a presymplectic manifold  $(S, \omega_S)$  in which  $\omega_S$  has constant rank.

On a presymplectic manifold  $(S, \omega_S)$ , a null vector field is a vector field v that is everywhere in the null space  $(TS)^{\omega_S}$  of the presymplectic form; a presymplectic vector field on S is a vector field v such that  $\mathcal{L}_v\omega_S=0$ ; a Hamiltonian vector field on S is a vector field v such that  $v \perp \omega_S$  is exact; a Hamiltonian pair is a pair (f,v) where v is a Hamiltonian vector field and f is a smooth function such that  $df=v \perp \omega_S$ .

In a regular presymplectic manifold  $(S, \omega_S)$ , the null spaces  $(TS)^{\omega_S}$  fit together into an involutive distribution that defines the *characteristic foliation* of  $(S, \omega_S)$ .

A constant rank submanifold of a symplectic manifold  $(M^{2n}, \omega)$  is a submanifold S of M such that the pullback  $\omega_S$  of  $\omega$  to S has constant rank.  $(S, \omega_S)$  is then a regular presymplectic manifold. Isotropic submanifolds, Lagrangian submanifolds, coisotropic submanifolds, and symplectic submanifolds are examples of constant rank submanifolds.

Remark 3.1. Fix a presymplectic manifold  $(S, \omega_S)$ . If  $\omega_S = 0$ , then every vector field on S is presymplectic. In general, every null vector field on S is presymplectic. However, unless  $\omega_S = 0$ , presymplectic vector fields on S are generally not null vector fields on S.

Every Hamiltonian vector field is presymplectic.

The null vector fields are exactly those Hamiltonian vector fields that together with the zero function 0 form a Hamiltonian pair (v, 0).

A function f that occurs in a Hamiltonian pair (v, f) is constant along the leaves of the Hamiltonian foliation. Thus, unless  $\omega_S$  is symplectic, not every function belongs to a Hamiltonian pair.

Given a Hamiltonian pair (v, f) and a vector field u, the pair (u, f) is a Hamiltonian pair if and only if the difference u - v is a null vector field.  $\diamond$ 

**Proposition 3.1.** Let S be a subspace of  $(\mathbb{R}^{2n}, \omega_{\operatorname{can}})$  and let  $\omega_S = \iota^* \omega$  where  $\iota \colon S \to M$  is the embedding. A vector field v on  $(S, \omega_S)$  is presymplectic if and only if there is a symplectic vector field  $\tilde{v}$  on  $(\mathbb{R}^{2n}, \omega_{\operatorname{can}})$  that extends v.

*Proof.* Let v be a vector field on S.

If  $\tilde{v}$  is a symplectic vector field on  $(\mathbb{R}^{2n}, \omega_{\text{can}})$  and  $v = \tilde{v}|_{S}$ , then

$$v \sqcup \omega_S = \iota^*(\iota_* v \sqcup \omega) = \iota^*(\tilde{v} \sqcup \omega),$$

which implies that  $d(v \perp \omega_S) = \iota^* d(\tilde{v} \perp \omega) = 0$  and v is presymplectic.

Conversely, let v be a presymplectic vector field on  $(S, \omega_S)$ . Let m be the dimension of S and let 2r be the rank of  $\omega_S$ . Then we can find symplectic coordinates  $z = (x_1, y_1, \dots, x_n, y_n)$  of  $\mathbb{R}^{2n}$ , such that

$$x_1, y_1, \dots, x_r, y_r, x_{r+1}, x_{r+2}, \dots, x_{m-r}.$$
 (3.1)

are coordinates on S and the remaining coordinates vanish on S. Let  $\pi: M \to S$  be the projection to the coordinates in (3.1). Write v in these coordinates as

$$v = \sum_{i=1}^{m-r} a^i \partial_{x_i} + \sum_{i=1}^r b^i \partial_{y_i},$$

and let

$$g(z) := \sum_{i=r+1}^{m-r} a^i(\pi(z)) y_i.$$

Now define an extension of v as

$$\tilde{v}(z) := \sum_{i=1}^{r} \left( a^{i}(\pi(z)) \partial_{x_{i}} + b^{i}(\pi(z)) \partial_{y_{i}} \right) + X_{g}(z) = v(\pi(z)) + \sum_{i=r+1}^{m-r} y_{i} X_{a^{i}}(\pi(z)).$$

Note that  $\omega = \sum_{i=1}^n \mathrm{d} x_i \wedge \mathrm{d} y_i$  and  $\omega_S = \sum_{i=1}^r \mathrm{d} x_i \wedge \mathrm{d} y_i$ . If v is presymplectic then

$$(\tilde{v} \sqcup \omega)(z) = \sum_{i=1}^{r} \left( a^{i}(\pi(z)) \, \mathrm{d}y_{i} - b^{i}(\pi(z)) \, \mathrm{d}x_{i} \right) = (v \sqcup \omega_{S})(\pi(z))$$

is closed, which implies that  $\tilde{v}$  is symplectic.



Figure 1: A splitting of the tangent bundle of M along N.

Recall that if  $\iota \colon N \to M$  is the inclusion of the submanifold then a smooth map  $\pi \colon W \subseteq M \to N$  is called a *smooth neighbourhood retraction* if  $\pi \circ \iota = \mathrm{id}_N$  and W is a neighbourhood of N in M. If moreover  $(M, \omega)$  is a symplectic manifold and the smooth neighbourhood retraction  $\pi$  satisfies that  $(TN)^{\omega}$  is invariant under  $\pi_*|_N \colon TM|_N \to TN$  then we call  $\pi$  a *symplectic neighbourhood retraction*.

**Lemma 3.2.** Let  $(M, \omega)$  be a symplectic manifold and  $(N, \omega_N)$  be a constant rank submanifold of M. For any splitting  $TN = (TN)^{\omega_N} \oplus E$  there is a symplectic neighbourhood retraction  $\pi \colon W \subseteq M \to N$  with  $E = (\ker \pi_*)^{\omega} \cap TN$ . For any symplectic neighbourhood retraction  $\pi \colon W \subseteq M \to N$ , the tangent bundle of N has a splitting  $TN = (TN)^{\omega_N} \oplus E$  where  $E = (\ker \pi_*)^{\omega} \cap TN$ .

Proof. When we have a splitting  $TN = (TN)^{\omega_N} \oplus E$  we choose another splitting  $E^{\omega} = (TN)^{\omega} \oplus E_1$  and then they yields  $TM|_N = TN \oplus (E \oplus E_1)^{\omega}$ ; see Figure 1. By identifying the normal bundle  $TM|_N/TN$  with  $(E \oplus E_1)^{\omega}$  we can construct a smooth neighbourhood retraction  $\pi \colon W \subseteq M \to N$  that annihilates  $(E \oplus E_1)^{\omega} \subseteq TM|_N$ . Since  $\pi_*|_N(TN \oplus E_1) = (TN)^{\omega_N} = TN \cap (TN)^{\omega}$ , the map  $\pi \colon W \to N$  a symplectic neighbourhood retraction and  $(\ker \pi_*)^{\omega} \cap TN = (E \oplus E_1) \cap TN = E$ .

Let  $\pi : W \subseteq M \to N$  be a symplectic neighbourhood retraction. For each point  $x \in N$  and vector  $v \in T_xN$ , let  $v_2 \in T_xM$  be given by

$$\omega(v_2, u) = \omega(v, \pi_* u)$$
 for all  $u \in T_x M$ , (3.2)

and let

$$v_1 \coloneqq v - v_2$$
.

For any  $u \in T_xN$ , we have  $\pi_*u = u$ , and so

$$\omega(v_1, u) = \omega(v, u) - \omega(v_2, u) = \omega(v, u) - \omega(v, \pi_* u) = 0.$$

So  $v_1 \in (T_x N)^{\omega}$ . For any  $u \in (T_x N)^{\omega}$ , we have  $\pi_* u \in (T_x N)^{\omega}$ , and so

$$\omega(v_2, u) = \omega(v, \pi_* u) = 0.$$

So  $v_2 \in T_xN$ . Then also  $v_1 = v - v_2 \in T_xN$ , and so  $v_1 \in (T_xN)^{\omega_N}$ . For any  $u \in \ker \pi_*|_x$ , we also have  $\omega(v_2, u) = 0$  since  $\pi_*u = 0$ . Therefore  $v_2 \in E$ . Since  $v = v_1 + v_2$ , this shows that the subspaces  $(T_xN)^{\omega_N}$  and  $E_x$  span  $T_xN$ . To show that the intersection of these subspaces is trivial, let  $v \in (T_xN)^{\omega_N} \cap E_x$ . For any  $u \in T_xM$ ,

$$\omega(v,u) = \omega(v,\underbrace{u - \pi_* u}_{\in \ker \pi_*}) + \omega_N(v,\underbrace{\pi_* u}_{\in TN}) = 0$$

because  $v \in (\ker \pi_*)^{\omega}$  and  $v \in (TN)^{\omega_N}$ . So v = 0. Because  $x \in N$  is arbitrary, we obtain a fibrewise splitting  $TN = (TN)^{\omega_N} \oplus E$ . Because N is a constant rank submanifold, the rank of  $(TN)^{\omega_N}$ , and hence of E, is constant.

**Lemma 3.3.** Let M be a smooth manifold and  $N \subset M$  a submanifold. Let  $\alpha$  be a section of the conormal bundle  $T_{M/N}^*$  to N in M; that is,  $\alpha$  is a smooth section of  $T^*M|_N$  that vanishes on TN. Then there is an open neighbourhood W of N in M and a smooth function  $F: W \to \mathbb{R}$  that vanishes on N and such that  $dF|_N = \alpha$ .

*Proof.* As a section of  $T_{M/N}^*$ , we can view  $\alpha$  as a function on the normal bundle  $T_{M/N} := TM|_N/TN$  that is linear on each fibre. By the tubular neighbourhood theorem, there exists a diffeomorphism  $\epsilon$  from  $T_{M/N}$  to an open neighbourhood W of N in M whose differential along the zero section induces the identity map on the normal bundle to the zero section. Let  $F := \alpha \circ \epsilon^{-1} : W \to \mathbb{R}$ . Then  $dF|_N = \alpha$ .

**Lemma 3.4.** Any Hamiltonian pair on a constant rank submanifold of a symplectic manifold can be extended to a Hamiltonian pair in a neighbourhood of the submanifold.

Proof. Let  $(M, \omega)$  be a symplectic manifold with a constant rank submanifold  $(N, \omega_N)$ . By Lemma 3.2 we choose a splitting  $TN = (TN)^{\omega_N} \oplus E$  and obtain a symplectic neighbourhood retraction  $\pi \colon W_2 \subset M \to N$  such that  $E = (\ker \pi_*)^\omega \cap TN$ . Let (f, v) be a Hamiltonian pair on  $(N, \omega_N)$  and we apply the splitting to v to obtain  $v = v_1 + v_2$  with  $v_1 \in \Gamma((TN)^{\omega_N})$  and  $v_2 \in \Gamma(E)$ . Since  $v_1$  is null then  $\alpha = v_1 \sqcup \omega$  is a section of  $T_{M/N}^*$  as it vanishes on sections of TN. By Lemma 3.3, there is an open neighbourhood  $W_1$  of N in M and a smooth function  $F_1 \colon W_1 \to \mathbb{R}$  which vanishes on N and  $dF_1|_N = \alpha$ . Note that  $(f, v_2)$  is also a Hamiltonian pair since  $v_1 \sqcup \omega_N = 0$ . By the fact that  $\pi$  preserves both TN and  $(TN)^\omega$ , we have that  $X_{f \circ \pi}|_N = v_2$ . Let  $W = W_1 \cap W_2$  and let  $H = F_1 + f \circ \pi \colon W \to \mathbb{R}$ . Then the Hamiltonian pair  $(H, X_H)$  extends (f, v).

Recall that a function on a topological space *vanishes at infinity* if all of the positive epigraph of its absolute value is compact, which is equivalent to being proper away from the zero locus. Any smooth manifold admits a positive smooth function vanishing at infinity, for instance, as the reciprocal of a positive exhaustion function.

**Theorem 3.5.** Let  $(M, \omega)$  be a symplectic manifold with a hypersurface  $(N, \omega_N)$ . Suppose that v is a null vector field on  $(N, \omega_N)$  whose support in N is closed in M. Let Z be a closed subset of N where v does not vanish. Then for any open neighbourhood U of Z in M there are smooth functions  $\chi_N \colon N \to [0,1]$  supported in  $U \cap N$  and  $F \colon M \to \mathbb{R}$  supported in U, such that  $\chi_N = 1$  on Z,  $\chi_F|_N = \chi_N v$ , and any forward flow of  $\chi_F$  started in  $M \setminus N$  is complete.

Proof. Let  $\pi \colon W \subseteq M \to N$  be a symplectic neighbourhood retraction and H be a smooth function on W constructed in Lemma 3.4, such that  $X_H|_N = v$ . Moreover, the construction identifies W with an open neighbourhood of the zero section of  $T_{M/N}$  and then H is linear on fibers of  $T_{M/N}$ . In particular, for any  $z \in M \setminus N$ , H(z) = 0 if and only if  $v(\pi(z)) = 0$ , by the one-codimensionality of  $N \subset M$ . We shrink U if necessary so that v never vanishes in U,  $U \subseteq W$ , and  $\pi(U) = U \cap N$ .

Choose a closed neighbourhood V of N in W on which  $\pi$  is proper and let  $H_1$  be a positive smooth function on M vanishing at infinity. Since H vanishes on N then  $W_3 = \{z \in W \mid |H(z)| < H_1(z)\}$  is an open neighbourhood of N in W. Choose a smooth cut-off function  $\chi \colon M \to [0,1]$  supported in  $U \cap V \cap W_3$  that equals 1 on Z. Moreover, suppose that  $\mathrm{d}\chi = 0$  wherever  $\chi = 0$ . This can

be achieved, for instance, by replacing  $\chi$  by  $\rho \circ \chi$  where  $\rho(s) = 3s^2 - 2s^3$ . Let  $\chi_N = \chi|_N$ .

The function  $F := \chi H : M \to \mathbb{R}$  satisfies  $X_F|_N = (\chi X_H)|_N = \chi_N v$  (where the first equality is because H vanishes on N). We claim that  $F|_{M\setminus N}$  satisfies  $\mathrm{d}F|_{M\setminus N} = 0$  wherever  $F|_{M\setminus N} = 0$ . Suppose H(z) = 0 for some point  $z \in W \setminus N$ . Then  $v(\pi(z)) = 0$ , and then  $\pi(z) \in N \setminus U$ , and then  $z \in \pi^{-1}(N \setminus U) \subseteq W \setminus U$ . Therefore, for any  $z \in M \setminus N$ , F(z) = 0 implies that  $z \notin U$ ; but in this case we have  $\chi(z) = 0$  and then  $\mathrm{d}\chi(z) = 0$ , which implies that  $\mathrm{d}F(z) = 0$ . This justifies our claim. Since

$$|F| = |\chi H| \le |\mathbb{1}_{W_2} H| \le H_1,$$

we have that F vanishes at infinity, since  $H_1$  does. Then F is proper away from the zero locus. In particular, all the non-zero level sets of F are compact. Then for any point  $z \in M \setminus N$ , either  $F(z) \neq 0$  and  $F^{-1}(F(z))$  is compact, or F(z) = 0 and  $X_F(z)$  vanishes. This shows that the forward flow of  $X_F$  started at  $z \in M \setminus N$  is complete.

## 4 Presymplectic excision

We recall the solution theory of an automonous ordinary differential equation of first order. Let I = (-1, 1). Consider a non-negative smooth function  $v: I \to [0, \infty)$  and the ordinary differential equation on I

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v(x). \tag{4.1}$$

The solution  $\gamma = \gamma_{t_0,x_0}$  to (4.1) with the initial condition  $(t_0,x_0)$  is given by Barrow's formula [1]

$$\begin{cases} t - t_0 = \int_{x_0}^{\gamma(t)} \frac{d\xi}{v(\xi)} & \text{if } v(x_0) > 0; \\ \gamma(t) = x_0 & \text{if } v(x_0) = 0. \end{cases}$$
(4.2)

In general, the flow

$$\Phi_v : D_v \to I,$$

$$\Phi_v(t, x) = \gamma_{0,x}(t)$$

of v is only defined on an open subset  $D_v$  of  $\mathbb{R} \times I$ , called the *flow domain* of v. Let the backward time function  $S_v \colon I \to [-\infty, 0)$  and the forward time function  $T_v \colon I \to (0, \infty]$  of v be defined by

$$D_v = \{(t, x) \in \mathbb{R} \times I \mid S_v(x) < t < T_v(x)\}.$$

Suppose now that v(x) = 0 for x close to -1. Then, for any  $x \in I$ ,

$$S_v(x) = -\infty (4.3)$$

and

$$T_{v}(x) = \begin{cases} \int_{x}^{1} \frac{\mathrm{d}\xi}{v(\xi)} \in (0, \infty] & \text{if } v(\xi) > 0 \text{ for all } \xi \in [x, 1); \\ \infty & \text{if } v(\xi) = 0 \text{ for some } \xi \in [x, 1). \end{cases}$$

$$(4.4)$$

Now we consider a model with parameters. Let  $P = [0, 1] \times [-1, 1]$ , recall that I = (-1, 1), and define

$$u: I \times P \times I \to [0, \infty), \quad u(a, b, c; x) := \chi_a(x)(1 - b)\frac{1 - x^2}{1 - x^2 + c}$$
 (4.5)

where for  $a \in I$ ,

$$\chi_{a} \colon I \to [0, 1], 
\chi_{a}(x) \coloneqq
\begin{cases}
\frac{\exp(-\frac{1}{x - (a - 1)/2})}{\exp(-\frac{1}{x - (a - 1)/2}) + \exp(-\frac{1}{a - x})}, & \frac{a - 1}{2} \leqslant x \leqslant a; \\
0, & -1 < x \leqslant \frac{a - 1}{2}; \\
1, & a \leqslant x < 1;
\end{cases} (4.6)$$

is a non-decreasing smooth function.

Consider the initial value problem

$$\begin{cases} \frac{\mathrm{d}\gamma}{\mathrm{d}t} = u(a, b, c; \gamma), \\ \gamma(0) = x; \end{cases} \tag{4.7}$$

let  $\gamma = \gamma_{a,b,c;x}$ :  $(S_u(a,b,c;x), T_u(a,b,c;x)) \to I$  be its maximal solution curve. The flow of u,

$$\Phi_u : D_u \to I, \quad \Phi_u(a, b, c; t, x) := \gamma_{a,b,c;x}(t).$$

is defined on

$$D_u = \{(a, b, c, t, x) \in I \times P \times \mathbb{R} \times I \mid S_u(a, b, c; x) < t < T_u(a, b, c; x)\}.$$

We calculate  $D_u$  explicitly. The backward time  $S_u(a, b, c; x)$  is always  $-\infty$ . For  $x \leq \frac{a-1}{2}$ , the forward time  $T_u(a, b, c; x) = \infty$ ; otherwise, we have

$$T_u(a, b, c; x) = \int_x^1 \frac{\mathrm{d}\xi}{u(a, b, c; \xi)} = \int_x^1 \frac{1}{(1 - b)\chi_a(\xi)} \left(1 + \frac{c}{1 - \xi^2}\right) \mathrm{d}\xi.$$

If  $x \geqslant a$  then

$$T_u(a,b,c;x) = \left[\frac{\xi}{1-b} + \frac{c}{2(1-b)} \ln \left| \frac{1+\xi}{1-\xi} \right| \right]_x^1 = \begin{cases} \frac{1-x}{1-b}, & c = 0, b < 1; \\ \infty, & c > 0 \text{ or } b = 1. \end{cases}$$
(4.8)

If  $\frac{a-1}{2} < x < a$  then

$$T_u(a, b, c; x) = \begin{cases} \frac{1-a}{1-b} + \int_x^a \frac{1 + \exp(\frac{1}{\xi - (a-1)/2} - \frac{1}{a-\xi})}{1-b} \, d\xi, & c = 0, b < 1; \\ \infty, & c > 0 \text{ or } b = 1. \end{cases}$$
(4.9)

Define the function  $\mu: I \times [-1,1) \to [-1,1)$  by

$$\int_{\mu(a,b)}^{1} \frac{1}{(1-b)\chi_a(\xi)} \,\mathrm{d}\xi = 1.$$

By (4.8) and (4.9) we conclude that  $\mu$  is a smooth function increasing in b such that  $\mu(a,b) = b$  for  $b \ge a$  and  $\mu(a,b)$  is greater than both b and  $\frac{a-1}{2}$  for b < a. Then for  $a \in I$  define the set

$$Z_{u(a,\cdot)} := \{ (b, c, x) \in P \times I \mid T_u(a, b, c; x) \leq 1 \}$$
  
= \{ (b, 0, x) \in P \times I \| b \in [-1, 1), x \geq \mu(a, b) \}.

**Lemma 4.1.** Let B be a smooth manifold and let  $N = B \times I$ . Let  $\lambda \colon B \to (-1,1]$  be a function, smooth on the support of  $1 - \lambda$ , such that  $a := \inf_B \lambda > -1$ . Let  $Z \subset N$  be the epigraph of  $\lambda$ . For any smooth  $v \colon N \to [0,\infty)$  consider the initial value problem

$$\begin{cases} \frac{\mathrm{d}\gamma}{\mathrm{d}t} = v(p;\gamma), \\ \gamma(0) = x \end{cases} \tag{4.10}$$

with solution  $\gamma \colon (S_v(p;x), T_v(p;x)) \to I$ . Then there is a choice of v such that  $S_v = -\infty$  and  $\{(p,x) \in N \mid T_v \leq 1\} = Z$ .

*Proof.* Note that  $\lambda$  is smooth on the closed subset

$$C = \overline{\{p \in B \mid \lambda(p) < 1\}}.$$

Define  $b: B \to [0, 1]$  as a smooth extension of  $\lambda|_C$  by Whitney extension theorem and define  $c: B \to [0, 1]$  as a smooth function whose zero locus is C by a theorem in [3]. Then we have

$$\begin{cases} b(p) = \lambda(p), c(p) = 0, & p \in C; \\ b(p) \in [-1, 1], c(p) \in (0, 1], & p \in B \setminus C. \end{cases}$$

If  $\lambda \equiv 1$  then Z is empty and we set v = 0. Otherwise, let  $a = \inf_B \lambda \in I$  and the map  $b \times c \times \operatorname{id}_I : N = B \times I \to [-1, 1] \times [0, 1] \times I$  pulls back  $u(a, \cdot)$  as in (4.5) to a function v on  $B \times I$ , in the sense that v(p, x) = u(a, b(p), c(p); x). Then we have

$$Z_v = (b \times c \times id_I)^{-1}(Z_{u(a,\cdot)}) = \{z \in M \mid T_z \le 1\}$$
  
= \{(p, x) \in B \times I \| c(p) = 0, x \geq b(p)\} = \{p \in C, x \in [\lambda(p), 1)\} = Z.

In Lemma 4.1, when  $(B, \omega_B)$  is a symplectic manifold and  $\lambda$  is smooth, we equip N with a presymplectic structure  $\omega_N$  that is the pullback of  $\omega_B$  by the projection  $N = B \times I \to B$ . Consider the flow  $(\psi_t)_{t \in \mathbb{R}}$  generated by the vector field v on N. The domain and range of  $\psi_t$  are subsets of N, depending on  $S_v$  and  $T_v$ . To be precise,

$$\psi_t \colon \{(p, x) \in N \mid T_v(p; x) > t\} \to \{(p, x) \in N \mid S_v(p; x) < -t\}.$$

If we define subsets  $K_t = \{S_v \ge -t\}$  and  $Z_t = \{T_v \le t\}$  of N then  $\psi_t$ :  $(N \setminus Z_t, \omega_N) \to (N \setminus K_t, \omega_N)$  is a presymplectomorphism. In particular, when  $K_t = \emptyset$ , the map  $\psi_t$  is a presymplectic excision of  $Z_t$  from  $(N, \omega_N)$ .

# 5 Symplectic excision

### 5.1 Time-independent Hamiltonian flows

We prove a symplectic excision result for closed subsets of codimension at least one

**Theorem 5.1.** Let  $(M, \omega)$  be a symplectic manifold with a properly embedded cooriented hypersurface N. The co-oriented hypersurface N determines an orientation of its characteristic foliation  $\xi$  generated by  $X_y \in \mathfrak{X}(N)$  where y is a defining function of N compatible with the co-orientation. Suppose that  $\kappa \colon N \to N/\xi$  is a principle  $\mathbb{R}$ -bundle with the  $\mathbb{R}$ -action given by the flow of  $X_y$ . Then  $B := N/\xi$  is equipped with a symplectic form  $\omega_B$  descended from  $\omega_N$  by  $\kappa$ . Further suppose that all forward flow line of  $X_y$  goes to infinity in M.

Choose a presymplectomorphism  $\psi \colon (B \times I, \omega_B \oplus 0) \to (N, \omega_N)$  so that  $\psi_* \partial_x$  is positively proportional to  $X_y$ , where I = (-1,1) with coordinate x. Let  $\lambda \colon C \to (-1,1]$  be a smooth function on a closed subset C of B and let  $Z \subset N$  be the image of  $\{(p,x) \in B \times I \mid x \geqslant \lambda(p)\}$  under  $\psi$ . Then Z is symplectically neighbourhood excisable from  $(M,\omega)$ .

Proof. As a closed subset of B, by a theorem in [3], C can be realized as the zero locus of a smooth function  $c \colon B \to [0,1]$ . Let  $b \colon B \to [0,1]$  be a smooth extension of  $\lambda$ . By Lemma 4.1, there is a smooth function  $v \colon B \times I \to [0,\infty)$  so that  $S_v = -\infty$  and  $Z_v = Z$ . By the abuse of notation we identify v with  $v\partial_x$  where x is the coordinate on I in  $B \times I$ , and then v is a null vector field on  $(B \times I, \omega_{B \times I})$ . Note that v never vanishes on Z or otherwise at fixed points of v we would have  $T_v = \infty$ . Let U be an open neighbourhood of Z in M. By Theorem 3.5, there is a smooth  $\chi_N \colon N \to [0,1]$  supported in  $U \cap N$  which equals 1 on Z, and a smooth  $F \colon M \to \mathbb{R}$  supported in U with Hamiltonian vector field  $w = X_f$  such that  $w|_N = \chi_N v$  and w is complete on  $M \setminus N$ . We now analyse the dynamical behavior of w. On  $M \setminus N$ , by completeness,  $S_w = -\infty$  and  $T_w = \infty$ . On N, we have  $S_w \leqslant S_v = -\infty$  and  $T_w \geqslant T_v$ ; in particular, on Z, we have  $T_w = T_v \leqslant 1$ . On  $N \setminus Z$ , we have  $T_w \geqslant T_v > 1$ , and therefore  $Z_w = Z_v = Z$ . The time-1 map  $\varphi = \Phi_w^1$  is a symplectic excision of Z from  $(M, \omega)$  supported in U.

It is interesting to note that we can excise subsets with complicated topology.

**Example 5.1.** The Cantor brush  $C \times [0, \infty) \times \{0\}^{2n-2}$ , where C is the Cantor set, is symplectically neighbourhood excisable from  $(\mathbb{R}^{2n}, \omega_{\operatorname{can}})$ ; see Figure 2.



Figure 2: Removing the Cantor brush.

Theorem 2.1 is a special case of the results in this section. Namely, let  $(M,\omega)=(\mathbb{R}^{2n},\omega_{\operatorname{can}})$ . Take  $N\subset M$  to be given by the vanishing of  $y_n$  and coordinated by  $y_n$ . Then  $(B,\omega_B)=(\mathbb{R}^{2n-2},\operatorname{d} x_1\wedge\operatorname{d} y_1+\cdots+\operatorname{d} x_{n-1}\wedge\operatorname{d} y_{n-1})$  with coordinates  $(x_1,y_1,\ldots,x_{n-1},y_{n-1})$  and we assume  $\psi\colon B\times I\to N,\omega_N)$  maps x=0 in I to  $x_n=0$  in N. Let  $C=\{0\}^{2n-2}\subset B$ , and  $\lambda=0$  on C. Then Theorem 2.1 follows from Theorem 5.1.

#### 5.2 A remark on time-independent excisions

Throughout this paper, as in [11], in order to symplectically excise Z from  $(M, \omega)$ , we find a Hamiltonian on M, and we excise the set of points that escape to infinity in time  $\leq 1$ . Arranging the flow to be supported in an arbitrary neighbourhood of the set Z is non-trivial. The dynamics of the localized flow are complicated.

**Lemma 5.2.** Let  $(M, \omega)$  be a symplectic manifold with a smooth function  $F: M \to \mathbb{R}$  supported in U. If the periodic orbits of  $X_F$  are not dense, then there is a symplectic embedding  $\psi: (B^{2n-2}, \omega_{\operatorname{can}}) \times (\mathbb{R}^2, \omega_{\operatorname{can}}) \to (U, \omega)$ .

*Proof.* Since the periodic orbits of  $w := X_F$  is not dense, there is a ball  $B^{2n}(\varepsilon)$  for some  $\varepsilon > 0$  and a symplectic embedding

$$\psi_0 \colon (B^{2n}(\varepsilon), \omega_{\mathrm{can}}) \hookrightarrow (U, \omega)$$

whose image intersects no periodic orbit of w. Let B be the intersection of  $B^{2n}(\varepsilon)$  with a hyperplane S so that  $\psi_0(B)$  is transversal to the flow of w. Denoting by  $\nu$  a normal vector to S we extend  $\psi_0$  to a symplectic embedding

$$\psi_1 : (B + \mathbb{R}\nu, \omega_{\mathrm{can}}) \hookrightarrow (U, \omega)$$

in the way that  $\nu$  and w are  $\psi_1$ -related. Combining some known facts in symplectic geometry, we obtain a chain of symplectic embeddings and symplectomorphisms

$$\psi \colon (B^{2n-2}, \omega_{\operatorname{can}}) \times (\mathbb{R}^2, \omega_{\operatorname{can}}) \hookrightarrow (B^{2n-1}(\varepsilon) \times \mathbb{R}, \omega_{\operatorname{can}}) \simeq (B + \mathbb{R}\nu, \omega_{\operatorname{can}}) \stackrel{\psi_1}{\hookrightarrow} (U, \omega).$$

Corollary 5.3. Let  $(M, \omega)$  be a symplectic manifold and let  $\gamma \colon [0, \infty) \to M$  be a proper embedding with image R. If U is an open neighbourhood of R in M that admits no symplectically embedded  $(B^{2n-2}, \omega_{\operatorname{can}}) \times (\mathbb{R}^2, \omega_{\operatorname{can}})$ , then there is no symplectic excision of R from  $(M, \omega)$  supported in U realized as the time-1 map  $\varphi$  of the Hamiltonian flow of any  $F \colon M \to \mathbb{R}$ , unless the periodic orbits of  $X_F$  are dense.

#### 5.3 Excision in stages

Until now we only considered time-independent Hamiltonians. By iterating the excision procedure, that is, by comosing the flow maps of a sequence of such Hamiltonians, we can excise more complicated subsets. This gives us a glimps into

what we could achieve with time-dependent Hamiltonians. Here we discuss two examples.

Recall that an *unrooted tree* is a connected directed graph with no cycles. We define a *half-open unrooted tree* as a tree with one of its node removed. A ray and a ray with two horns are examples of unrooted trees, while a singleton, a line segment, and a double Y are examples of half-open unrooted trees.



Figure 3: Removing a tree.

**Example 5.2.** Any properly embedded finite half-open unrooted tree T in a symplectic manifold  $(M, \omega)$  is symplectically neighbourhood excisable from it.

Proof. We prove by induction on the size of the tree. Let U be an open neighbourhood of T in M. Fix a leaf z of T and let  $L_z$  be the branch connecting z that is closed at z and open at the other end. Let  $U_z \subseteq U$  be an open neighbourhood of z in  $M \setminus (T \setminus L_z)$ . By Corollary 2.3 we obtain a symplectic excision  $\varphi_z \colon M \setminus T \to M \setminus (T \setminus L_z)$  of  $L_z$  from  $(M \setminus (T \setminus L_z), \omega)$  supported in  $U_z$ . If we know that  $T \setminus L_z$  is symplectically neighbourhood excisable from  $(M, \omega)$  by the induction hypothesis then so is T.

Another interesting question is that, given a compact subset K of a symplectic manifold  $(M, \omega)$ , is  $(M \setminus K, \omega)$  symplectomorphic to M with several punctured points?

**Example 5.3.** Let  $(M, \omega)$  be a symplectic manifold with a compact connected embedded unrooted tree T. Then for any open neighbourhood U of T in M there is a symplectomorphism  $\varphi \colon (M \setminus T, \omega) \to (M \setminus \{z_0\}, \omega)$  supported in U for any  $z_0 \in T$ .

Proof. For any  $z_0 \in T$ , note that  $T \setminus \{z_0\}$  is the disjoint union of finitely many half-open unrooted trees  $T_j$ ,  $j \in \{1, ..., k\}$  for some  $k \in \mathbb{N}$ , each of which is properly embedded in  $M \setminus \{z_0\}$ . Applying Example 5.2 k times to each of  $T_i$  in  $(M \setminus \{z_0\}, \omega)$  we obtain the symplectic neighbourhood excisability of  $\bigsqcup_{j=1}^k T_j$  from  $(M \setminus \{z_0\}, \omega)$ . In other words, for any open neighbourhood U of T in M there is a symplectomorphism  $\varphi \colon (M \setminus T, \omega) \to (M \setminus \{z_0\}, \omega)$  supported in U.



Figure 4: Retracting a hole.

### References

- [1] V. I. Arnold. *Ordinary differential equations*. Universitext. Springer-Verlag, Berlin, 2006. Translated from the Russian by Roger Cooke, Second printing of the 1992 edition.
- [2] C. Blohmann and A. Weinstein. Hamiltonian Lie algebroids. *ArXiv e-prints*, 2018, 1811.11109.
- [3] A.-P. Calderón and A. Zygmund. Local properties of solutions of elliptic partial differential equations. *Studia Math.*, 20:171–225, 1961.

- [4] R. E. Greene and K. Shiohama. Diffeomorphisms and volume-preserving embeddings of noncompact manifolds. *Trans. Amer. Math. Soc.*, 255:403–414, 1979.
- [5] V. Guillemin, V. Ginzburg, and Y. Karshon. *Moment maps, cobordisms, and Hamiltonian group actions*, volume 98 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 2002. Appendix J by Maxim Braverman.
- [6] V. Guillemin and A. Pollack. *Differential topology*. AMS Chelsea Publishing, Providence, RI, 2010. Reprint of the 1974 original.
- [7] A. Pelayo and X. Tang. Moser-Greene-Shiohama stability for families. *J. Symplectic Geom.*, 17(5):1427–1446, 2019.
- [8] A. Pelayo and X. Tang. Moser stability for volume forms on noncompact fiber bundles. *Differential Geom. Appl.*, 63:120–136, 2019.
- [9] B. Stratmann. Nowhere vanishing primitive of a symplectic form. arXiv e-prints, 2020, 2003.02602.
- [10] B. Stratmann. Removing parametrized rays symplectically. arXiv e-prints, 2020, 2009.05465.
- [11] X. Tang. Removing a Ray from a Noncompact Symplectic Manifold. *International Mathematics Research Notices*, 2020, https://doi.org/10.1093/imrn/rnaa007. rnaa007.

Xiudi Tang xiudi.tang@utoronto.ca

DEPARTMENT OF MATHEMATICAL AND COMPUTATIONAL SCIENCES
UNIVERSITY OF TORONTO MISSISSAUGA
3359 MISSISSAUGA ROAD
MISSISSAUGA, ON L5L 1C6, CANADA

Yael Karshon karshon@math.toronto.edu

DEPARTMENT OF MATHEMATICAL AND COMPUTATIONAL SCIENCES
UNIVERSITY OF TORONTO MISSISSAUGA
3359 MISSISSAUGA ROAD

MISSISSAUGA, ON L5L 1C6, CANADA