Alternating Series with Logarithm. Determine for which values of p > 0 the following series is absolutely convergent, conditionally convergent, and divergent:

$$S = \sum_{n=2}^{\infty} \log(1 + (-1)^n n^{-p}).$$

Answer. The series is absolutely convergent for p > 1, conditionally convergent for 1/2 , and divergent for <math>0 .

- Proof. The second order Taylor expansion of log(1+x) with Lagrange's residue is

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3(1+\xi)^3},$$

where ξ is some real number between 0 and x. Hence

$$\log(1 + (-1)^n n^{-p}) = (-1)^n n^{-p} - \frac{n^{-2p}}{2} + \frac{(-1)^n n^{-3p}}{3(1 + \xi_{p,n})^3}$$
$$= (-1)^n n^{-p} - \frac{n^{-2p}}{2} \left(1 - \frac{(-1)^n n^{-p}}{3(1 + \xi_{p,n})^3}\right),$$

where $\xi_{p,n}$ is between 0 and $(-1)^n n^{-p}$. Now, the series S can be written as the term-wise sum of series $S = S_1 + (-S_2)$, where

$$S_1 = \sum_{n=2}^{\infty} (-1)^n n^{-p},$$

$$S_2 = \sum_{n=2}^{\infty} \frac{n^{-2p}}{2} \left(1 - \frac{(-1)^n n^{-p}}{3(1 + \xi_{p,n})^3} \right).$$

Then, the result follows from the following lemmas.

Lemma 1. S_1 is absolutely convergent for p > 1, and conditionally convergent for 0 .

- Proof. Apply p-test and alternating series test respectively to S_1 .

Lemma 2. S_2 is absolutely convergent for p > 1/2, and divergent for 0 .

- *Proof.* We have

$$\left| \frac{(-1)^n n^{-p}}{3(1+\xi_{p,n})^3} \right| < \frac{n^{-p}}{3(1-2^{-p})^3} \xrightarrow[n \to \infty]{} 0,$$

hence

$$\left(1 - \frac{(-1)^n n^{-p}}{3(1 + \xi_{p,n})^3}\right) \underset{n \to \infty}{\longrightarrow} 1.$$

Then, by the comparison test, convergence/divergence of S_2 is the same as that of $\sum_{n=2}^{\infty} \frac{n^{-2p}}{2}$. Finally, applying the *p*-test the result follows.

So:

- 1. If p > 1 then S_1 and S_2 are absolutely convergent, hence, S is absolutely convergent.
- 2. If $1/2 then <math>S_1$ is conditionally convergent and S_2 is absolutely convergent, hence S is conditionally convergent.
- 3. If $0 then <math>S_1$ is (conditionally) convergent and S_2 is divergent, hence S is divergent.

This completes the proof.

Miguel A. Lerma - 6/22/2022