

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1

Название Изучение функций распределения и функций плотности распределения
Дисциплина Моделирование
Студент Золотухин А. В.
Группа <u>ИУ7-74Б</u>
Оценка (баллы)
Преподаватель Рудаков И. В.

1 Задание

Разработать программу для построения графиков функции распределения и функции плотности распределения для следующих распределений:

- равномерное распределение;
- гиперэкспоненциальное распределение.

Разработать графический интерфейс, предоставляющий возможность выбора закона распределения и указания его параметров.

2 Теоретические сведения

2.1 Равномерное распределение

Функция плотности распределения f(x) случайной величины X, имеющей равномерное распределение на отрезке [a,b] ($X \sim R(a,b)$), где $a,b \in R$, имеет следующий вид:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{иначе.} \end{cases}$$
 (1)

Соответствующая функция распределения $F(x)=\int_{-\infty}^x f(t)dt$ принимает вид:

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & x \in [a,b] \\ 1, & x > b \end{cases}$$
 (2)

2.2 Гиперэкспоненциальное распределение

Функция плотности распределения f(x) случайной величины X, имеющей гиперэкспоненциальное распределение порядка n ($X \sim H_n(\lambda_1, \dots, \lambda_n, p_1, \dots, p_n)$) имеет следующий вид:

$$f(x) = \begin{cases} 0, & x < 0 \\ \sum_{i=1}^{n} \lambda_i p_i e^{-\lambda_i x} & x \ge 0 \end{cases},$$
 (3)

где $\sum_{i=1}^{n} p_i = 1$, $\lambda_i p_i \ge 0$ для всех $i = \overline{1, n}$.

Соответствующая функция распределения принимает вид:

$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - \sum_{i=1}^{n} p_i e^{-\lambda_i x} & x \ge 0 \end{cases}$$
 (4)

3 Результаты работы программы

3.1 Равномерное распределение

На рисунках 1 и 2 приведены результаты построения графиков функций плотности f(x) и распределения F(x) для случайных величин $X \sim R(-4,4)$ и $X \sim R(1,3)$, соответственно.

Рисунок 1 – Графики функций плотности f(x) и распределения F(x) для случайной величины $X \sim R(-4,4)$.

Рисунок 2 – Графики функций плотности f(x) и распределения F(x) для случайной величины $X \sim R(1,3)$.

3.2 Гиперэкспоненциальное распределение

На рисунках 3, 4 и 5 приведены результаты построения графиков функции плотности f(x) и распределения F(x) на отрезке $x \in [0,5]$ для случайных величин $X \sim H_1(1,1), X \sim H_2(1,2,0.7,0.3)$ и $X \sim H_4(2,1,3,4,0.3,0.1,0.5,0.1)$, соответственно.

Рисунок 3 – Графики функций плотности f(x) и распределения F(x) для случайной величины $X \sim H_1(1,1)$.

Рисунок 4 – Графики функций плотности f(x) и распределения F(x) для случайной величины $X \sim H_2(1,2,0.7,0.3).$

Рисунок 5 – Графики функций плотности f(x) и распределения F(x) для случайной величины $X \sim H_4(2,1,3,4,0.3,0.1,0.5,0.1).$