Multivari	iate /	۹na	lysis	of
\ 	/ariar	nce		

Today . . .

- MANOVA—finding linear combinations that best separate groups (hey, wait a minute, didn't we just . . .)
- Where does MANOVA fit among the other ways that a data set could be analyzed?
- How does MANOVA extend univariate approaches?

To explore these questions, consider the ways that the following data could be analyzed:

Participants are randomly assigned to <u>one</u> of four groups that get different kinds of training for taking tests: no training, standard paper-pencil training, computer-based training, and both standard training and computer-based training.

Following training, \underline{all} participants complete a test of verbal ability and a test of quantitative ability in standard paper-and-pencil format \underline{and} in computer format (all counterbalanced).

			Within-S	ubjects	
		Standard Measure of Verbal Ability	Standard Measure of Quantitative Ability	Computer Measure of Verbal Ability	Computer Measure of Quantitative Ability
sd	No Training				
Between-Groups	Standard Training Only				
ween.	Computer Training Only				
Bel	Both				

		Standard Measure of Verbal Ability	Standard Measure of Quantitative Ability	Computer Measure of Verbal Ability	Computer Measure of Quantitative Ability
ο No Ti	aining				
Stanc Train Only Comp Train Only Both					
Comp Train Only					
Both					

	Group 1	Group 2	Group 3		Group G	
	M ₁ SD ₁	M ₂ SD ₂	M₃ SD₄		M _G SD _G	
	ທS _{Within G}	SS	Within Gro	ups		
					$\hat{\sigma}_{\overline{Y}}^2 = \frac{\hat{\sigma}}{I}$.2 <u>Y</u>
N	S _{Between G}	roups = SS	k-1	oups		
	F = :	MS _{Between} MS _{Within}	Groups Groups		$N\hat{\sigma}_{\overline{Y}}^2 = 0$	$\hat{\sigma}_{\scriptscriptstyle Y}^2$

	No Computer Training	Computer Training	
No Standard Training	M ₁₁	M ₁₂	M _{1.}
Standard Training	M ₂₁	M ₂₂	M _{2.}
	M _{.1}	M _{.2}	

The same principles hold for factorial designs. The *F* statistic is the ratio of two estimates of random variability under the null hypothesis, with the numerator an estimate based on variability of means. The variability of means could be based on marginal means.

					Verbal Ability	Quantitativ Ability
				Standard Measure		
			4	Computer Measure		
	Standard Measure of Verbal Ability	Standard Measure of Quantitative Ability	Computer Measure of Verbal Ability	Computer Measure of Quantitative Ability	The outo	
	Ability	Ability	Ability	Ability	measure have an	
No Training						
Standard Training Only					structure be built i	
Computer Training Only					analysis.	
Offic						

			Question	
		Computer Measure?	Quantitative Ability?	Both or Neither?
	Standard Measure of Verbal	-1	-1	1
sure	Standard Measure of Quantitative	-1	1	-1
Measure	Computer Measure of Verbal	1	-1	-1
	Computer Measure of Quantitative	1	1	1

			Question	
		Computer Measure?	Quantitative Ability?	Both or Neither?
	Standard Measure of Verbal	-1	-1	1
sure	Standard Measure of Quantitative	-1	1	-1
Measure	Computer Measure of Verbal	1	-1	-1
	Computer Measure of Quantitative	1	1	1

The contrasts create three new linear combinations of means. They represent the standard main effects and interaction from a repeated measures ANOVA. We can also simply sum the measures.

	No Computer Training	Computer Training
No Standard Training		
Standard Training		

two smaller designs create all main effects and interactions in the larger 2 x 2 x 2 x 2 design.

	Verbal Ability	Quantitative Ability
Standard Measure		
Computer Measure		

Each effect is a single degree of freedom—
15 in all (4 main, 6 two-way, 4 three-way, 1 four-way).

In combination, the

	Verbal Ability	Quantitativ Ability	'e		he outc ombina				actic	า ก	
Standard Measure	M ₁₁	M ₁₂		M	the wit					-	
Computer Measure	M ₂₁	M ₂₂		N A	ne desig		,				
	M _{.1}	M _{.2}			able are	•					
Mode x [
AOV_16 <-	aov(I(P_Verbal	-	P_Quan	_				P_NF	+	
AOV_16 <- Tx_C_N	aov(I(I F + I()	P_Verbal Tx_P_NF	- * T	P_Quan	t - C_Verb				P_NF	+	
AOV_16 <- Tx_C_N summary(AO	aov(I(I F + I()	P_Verbal Tx_P_NF	* T	P_Quant x_C_NF TRUE)), data =	Skills	_Trimme	d)	P_NF	+	
AOV_16 <- Tx_C_N	aov(I(F F + I(T V_16,	P_Verbal Tx_P_NF	* T	P_Quant x_C_NF TRUE)), data =	Skills	_Trimme	d)	P_NF	+	
AOV_16 <- Tx_C_N summary(AO	aov(I(F F + I(T V_16, :	P_Verbal Tx_P_NF	* T	P_Quant x_C_NF TRUE)), data = Mean Sq 1 786	Skills, value 10.7	_Trimme	d)) 9	P_NF	•	
AOV_16 <- Tx_C_N summary(AO ## ## (Interd	aov(I(F + I(T) V_16, F) Post Post	P_Verbal Tx_P_NF	* T	P_Quant x_C_NF TRUE) Sum Sq 786	Mean Sq 1 786 939	Skills, F value 10.7 12.8	Pr(>F 0.0014	d) 9 5	P_NF	+	
AOV_16 <- Tx_C_N summary(AO ## ## (Interd ## Tx_P_NF	aov(I(F) + I(T) V_16, ept)	P_Verbal Tx_P_NF intercep	* T = Df 1 1 1	P_Quant x_C_NF TRUE) Sum Sq 786 939	Mean Sq 1 786 939 3966	F value 10.7 12.8 54.0	Pr(>F 0.0014 0.0005	d) 9 5	P_NF	+	

When the outcome measures are summed, the analysis becomes the between-groups part of the design. In this case, the intercept test is not meaningful. It merely tests if the grand mean is different from 0.

In a factorial, A x B, design, the sums of squares methods are:

Type I SS:

- SS(A)
- SS(B|A)
- SS(AxB|A,B)
- Type II SS:
 SS(A|B)
 - SS(B|A)
 - 55(B|A)
- SS(AxB|A,B)
 Type III SS
 - SS(A|B,AxB)
 - SS(B|A,AxB)
 - SS(AxB|A,B)

Different functions in R will use different defaults. If the design is balanced, it won't

matter, but if the predictors are correlated, then this must be given some careful attention.

By constructing single degree of freedom effects, we have completely defined the problem in a way with no freedom to explore the data.

The group distinctions are locked into traditional main effects and the interaction—each a simple comparison of one "group" to another "group."

The linear combinations on the outcome side are likewise restrictive, comprising simple differences among collections of means.

In a way, this a very simple and very restrictive discriminant analysis.

	1	
The factorial design imposes structure on the data.		
How might we relax the restrictions on the dependent variable side to allow an alternative		
discriminant analysis?		
How might we relax the restrictions on the independent variable side to allow an alternative discriminant analysis?		
What do we lose by relaxing the restrictions imposed by the factorial designs?		
	_	
By relaxing the constraints imposed by both factorial		
designs, we arrive at a traditional discriminant analysis: "Are there linear combinations of the		
outcome variables that produce maximum separation of the groups?"		
Both the traditional ANOVA and the discriminant analyses operate on linear combinations. They		
differ in whether the weights are imposed (guided by theory or design) or derived (identified by the analysis). Both are "best" in an important way.		
How might the two approaches be blended?		
	_	
One difference between MANOVA and discriminant		
analysis is that the groups to be discriminated in MANOVA are often under experimental control.		
A second (trivial) difference is that the groups are usually labeled as the independent variable rather than the outcome.		
The goal, however, is the same: Find independent		
linear combinations of variables that best separate the groups (however they are defined).		

MANOVA has traditionally relied on a broader number of statistical tests for determining the significance of the linear combinations and for determining the nature of the discrimination that is identified.

Four common tests of significance represent generalizations of the univariate approach to significance testing.

In the univariate model, an F test gauges the amount of between-groups variability to within-groups variability.

Group 1	Group 2	Group 3	 Group G
M ₁	M ₂	M ₃	M_G
SD₁	SD ₂	SD ₄	SD_G

$$MS_{ ext{Within Groups}} = rac{SS_{ ext{Within Groups}}}{N-k}$$
 $MS_{ ext{Between Groups}} = rac{SS_{ ext{Between Groups}}}{k-1}$
 $F = rac{MS_{ ext{Between Groups}}}{MS_{ ext{Within Groups}}}$

$$\hat{\sigma}_{\overline{Y}}^2 = \frac{\hat{\sigma}_{Y}^2}{N}$$

$$N\hat{\sigma}_{\overline{y}}^2 = \hat{\sigma}_{y}^2$$

In the multivariate model, the single sums of squares are replaced by matrices of sums of squares and cross-products for the effect or hypothesis (**H**) and for error (**E**). Different combinations of these matrices define the four most common tests of significance:

- Roy's test is a function of the largest eigenvalue of HE-1
- Lawley and Hotelling's Trace = tr(HE⁻¹)
- Pillai's test is a function of tr(H(H+E)-1)
- Wilk's likelihood test is based on $\Lambda = |E|/|H+E|$

The latter three usually agree because they use much the same information.

There are two other problems that MANOVA can help solve:	
The multiple ANOVAs approach, with each DV analyzed separately, produces a large number of significance tests. These tests will not produce independent assessments if the measures are correlated. This approach can also produce a large number of significance tests (and inflate the Type I error rate). Correlation Anong Outcome Measures (Residuals) The multiple ANOVAs approach, with each DV analyzed separately, produces a large number of significance tests (and inflate the Type I error rate).	
The multiple outcomes may not be in the same metric, eliminating the repeated measures option. Even if in the same metric, the comparisons may not make conceptual sense. MANOVA provides additional interesting ways to view the data that overcome this "metric" problem.	
Next time	
Example and extending the interpretations from discriminant analysis	