$$V(r) = \frac{1}{2} kr^{2}$$

$$= \frac{1}{2} k(x^{2}+g^{2})$$

$$= \frac{1}{2} k(x^{2}+g^{2$$

Veft =
$$\frac{1}{2} kr^2 + \frac{1}{2mr^2} \delta^2$$

= $\frac{1}{2kr^2} + \frac{1}{2mr^2}$

Value of r that minimizes Veft

 $\frac{1}{2kr} = 0 = 7$
 $\frac{1}{2kr$

Note: r= min, 广= 0 => Circular orbit, chanse L to change the radius $W_0 = /K$ if r=rmin then we have a Circular orbit 1) initial position 2 the initial velocity have to be Perpen diculai

2)
$$r_0$$
 must be equal to r_0 min

 $r_0 = (r_0)$, r_0)

3) $V(r) = V_0 \times r_0^2$
 $r_0 = -V_0 \times r_0^2$
 $r_0 = V_0 \times r_0^2$

$$\vec{r}_{o} = (r_{min}, o)$$

$$\vec{v}_{o} = (o, w_{o}, r_{min})$$

$$\vec{\sigma}(\vec{r}) = -K \vec{r}$$

$$= -W_{o}^{2} \vec{r}$$

Salutions Fer Analytical Position Because X = -k $y = -\frac{k}{m}y$ X29 equations ef motion circ Separate

$$X = A \cos(\omega_{ot}) + B \sin(\omega_{ot})$$
 $g = C \cos(\omega_{ot}) + D \sin(\omega_{ot})$
 $initial \ Conditions$
 $\overline{Y_o} = (\Gamma_{min}, o) \xrightarrow{A = \Gamma_{min}} C = (\sigma_i, \omega_o \Gamma_{min}) \xrightarrow{B = 0} C = \sigma$
 $X(o) = A = (\Gamma_{min}) \xrightarrow{B = 0} C = \sigma$
 $X(o) = A = (\Gamma_{min}) \xrightarrow{B = 0} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min}) \xrightarrow{A = \Gamma_{min}} C = \sigma$
 $X = (\Gamma_{min})$

 $X = \Gamma_{min} Cos(Wot)$ $S = \Gamma_{min} Sin(Wot)$ $S = -Wo^{2} \tilde{r}$ $S = -Wo^{2} \tilde{r}$ $S = -Wo^{2} \tilde{r}$