

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Escuela de Ingeniería

Departamento de Ingeniería Estructural y Geotécnica

IBM 2020 Introducción a la Biomecánica

Primer Semestre 2022

Taller 3

Gustavo Barrezueta - gabarrezueta@uc.cl

Problema 1.

i) $\operatorname{div}(\boldsymbol{u} \times \boldsymbol{v}) = \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{u} - \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v}$

Problema 2. El deslizamiento relativo entre dos membranas pleurales dentro de un pulmón puede ser modelado localmente mediante la siguiente descripción de movimiento:

$$\varphi(X,t) = \begin{bmatrix} X_1 + \gamma(t)X_2 \\ X_2 \\ X_3 \end{bmatrix}, \quad t \ge 0$$

Se pide:

- i) Entregue las expresión para el cambio relativo de volumen $J = \det \mathbf{F}$, y para el cambio relativo de área $\frac{da}{dA}$ de una superficie diferencial inicialmente orientada con normal \mathbf{E}_1 (dirección X_1)
- ii) Entregue los valores y direcciones principales del tensor lagrangeano de deformaciones E. Grafique como cambian los valores y direcciones principales de E para t > 0 asumiendo que $\gamma(t) = t$.
- iii) Linearize¹ el tensor \boldsymbol{E} para obtener el tensor de deformaciones infinitesimales $\boldsymbol{\varepsilon}$. Calcule las deformaciones y direcciones principales de $\boldsymbol{\varepsilon}$, y grafíquelas en función de t asumiendo que $\gamma(t)=t$. Compare con el resultado obtenido en ii)

Problema 3. Sea un movimiento de un continuo descrito por las siguientes ecuaciones,

$$x_1 = X_1 e^{-t}$$
 $x_2 = X_2 e^t$ $x_3 = X_3 + X_2 (e^{-t} - 1)$

y sea θ un campo de temperatura del cuerpo dado por

$$\theta = e^{-t}(x_1 - 2x_2 + 3x_3)$$

Determine el campo de velocidad en su forma espacial, y usando lo anterior, calcule la derivada material $D\theta/Dt$ del campo de temperatura.

¹Asumiendo que γ es pequeño