Arquitectura de computadores l Introducción carlos.andres.delgado@correounivalle.edu.co

Carlos Andrés Delgado S.

Facultad de Ingeniería. Universidad del Valle

Agosto de 2017

Contenido

1 Introducción a los computadores

2 Estructura y función

Contenido

1 Introducción a los computadores

2 Estructura y función

El computador

Según el autor del [Stallings, 2010] un computador es: Máquina digital electrónica programable para el tratamiento automático de la información, capaz de recibirla, operar sobre ella mediante procesos determinados y suministrar los resultados de tales operaciones

Definiciones

- Arquitectura del computador: Se refiere a todos los atributos visibles por un programador del sistema
- Organización del computador: Se refiere a las unidades operacionales y las interconexiones para realizar operaciones de la arquitectura

Motivación

¿Por qué estudiar arquitectura de computadores?

- Diseñar mejores programas de base
- Optimizar programas
- Construir computadoras
- Evaluar desempeño
- Entender la relación entre poder de cómputo, espacio y costos

Motivación

Customeritating	000000	申申申 任公司	
Pro	1479m	4235m	
Skilling	PARTORIUM	FREE Shooing	
billy	Scalared Circleolis Inc.	bedreepen	
MATSIN	9 08	6.08	
Processor (CPI) Manufacturer	ted	Allo	
Processor speed	2.8/963	150€	
Doylay Resolution Maximum	1600-400	1960/98	
Server Serv	15.6 in	75.6 W	
Display Technology	LID	LEB	
Hard-Ones size	Secur	178	
KenCinentive	1801020889	109+143+82#	
Intervision (Morgani	£ in	47016	
Operating System	Window 16	Wednes 10	
Procesor Coard	4	4	
METHR	SOAS SOMM	D0903 S09AR4	
Wreten Competition	863.77 ole, 863.77 ojs/gje, 863.714.	BOE718,80E715g4,80E718J9	

Figura: Computadores en venta. Tomado de amazon.com

Motivación

Summary	Core / STORK V	A12 7th Gen A12- 9700P	Details	Com (7 6700K) v	A12 7th Gen A12 9790P
Clock speed Turbe clack speed Coses Is unlocked	4 GHz 4.2 GHz Qualitate Yes	2.5 GHz 3.4 GHz Guad rote Ne	L2 sache L2 sache per core L3 cache Manufacture	1 MB 0.35 MB/sone 8 MB 14 nm	3 MB 8.5 MB/core None 25 nm
			Operating temperature	Uninever-64°0	Unknown - 90°C

Figura: Los procesadores. Tomado de cpuboss.com

Motivación

Algunos términos:

- Hertz: Ciclos de reloj por segundo.
- Byte: Unidad de almacenamiento.
- Word: Palabra (cantidad de bits que se pueden mover dentro de una CPU)

Motivación

Medidas de capacidad y velocidad 6×105+=5,

- Kilo (K): 10³
- Mega (M) 10^6 2^{20}
- **Giga** (**G**): 10⁹
- Tera (T): 10¹²
- Peta (P): 10¹⁵

bit y byte

1 byte = 8 bits

Si hablamos de velocidad estamos en unidades de 10 y de capacidad en unidades de 2.

500Kb/s 4Mbps

20Mbps --> 20/8 = 2.4MB/sbits por segundo

Motivación

Medidas de capacidad y velocidad

■ 1KHz: 1000Hz

■ **1MHz**: 1000000Hz o 1000KHz

■ **1KB**: 2¹⁰Bytes = 1024 bytes

■ **1GB**: 2³⁰Bytes = 1024 MB

Las palabras (Word) suelen ser unidades de transferencia fija:8 bits, 16 bits, etc.

Motivación

En el caso de la velocidad del procesador F en Hertz, podemos conocer el tiempo de ciclo de reloj \mathcal{T} con esta formula:

$$T=\frac{1}{F}$$

Ejemplo, un procesador que trabaja a 133MHz, tiene un tiempo de ciclo de reloj de 7.52 nanosegundos

Contenido

1 Introducción a los computadores

2 Estructura y función

Definiciones

- Estructura: Como están interrelacionados los componentes
- Función: La operación de cada uno de los componentes como parte de una estructura

Vista funcional del computador

Vista funcional del computador

Un computador debe ser capaz de:

- Procesar datos
- Almacenar datos
- Transferir datos
- Debe existir un control de estas 3 operaciones

Función del computador

Figura: Transferencia de datos. Tomado de [Stallings, 2010]

Función del computador

Función del computador

Función del computador

Figura: Transferencia de datos E/S. Tomado de [Stallings, 2010]

Estructura

Figura: El computador. Tomado de [Stallings, 2010]

Estructura

Figura: El computado nivel superior. Tomado de [Stallings, 2010]

Estructura

La estructura interna del computador está compuesta por:

- Unidad Centra del Procesamiento (CPU)
- Memoria principal
- E/S
- Sistema de interconexión

El computador

Figura: La CPU. Tomado de [Stallings, 2010]

Estructura

La unidad central de procesamiento (CPU) está compuesta por:

- Unidad de control
- Unidad aritmético-lógica (ALU)
- Registros
- Interconexiones

El computador

Figura: La unidad de control. Tomado de [Stallings, 2010]

Referencias I

Stallings, W. (2010).

Computer Organization and Architecture: Designing for Performance.

Prentice Hall, 8th edition.

Chapter 1.

¿Preguntas?

Próximo tema:

Evolución y desempeño del computador (Capitulo 2)

