Mostafa Sabri

Lecture 19

6.1 Inner Product, Length and Orthogonality

Inner Product in \mathbb{R}^n

If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, we define the *inner product* or *dot product* of \mathbf{u} and \mathbf{v} by

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix} = \sum_{i=1}^n u_i \mathbf{v}_i .$$

Find
$$\mathbf{u} \cdot \mathbf{v}$$
 if $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

Dot product in \mathbb{R}^n

Thm: If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $c \in \mathbb{R}$ then

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
 (symmetric)

2.
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$
 (linear)

3.
$$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v}),$$
 (linear)

4.
$$\mathbf{u} \cdot \mathbf{u} \ge 0$$

 $\mathbf{u} \cdot \mathbf{u} = 0 \iff \mathbf{u} = \mathbf{0}$ (positive definite)

<u>Proof.</u> Follows easily from the definition. Try it.

The *length* or *norm* of ${f v}$ is the nonnegative scalar

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + \dots + v_n^2}$$

Length of a vector

Figure: If **v** =
$$(a, b)$$
 then $||\mathbf{v}|| = \sqrt{a^2 + b^2}$.

From the definition we get for $c \in \mathbb{R}$,

$$||c\mathbf{v}|| = |c| ||\mathbf{v}||$$

If $\|\mathbf{v}\| = 1$ we say that \mathbf{v} is a *unit vector*.

Given $\mathbf{v} \in \mathbb{R}^n$, the vector $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector *in the* same direction as \mathbf{v} . This process to create \mathbf{u} from \mathbf{v} is called *normalizing* \mathbf{v} .

Distance

- 1. If $\mathbf{v} = (1, 0, -3, 5, -1)$, find a unit vector \mathbf{u} in the same direction as \mathbf{v} .
- 2. Let $H = \text{Span}\{(2,3)\}$. Find a unit vector **u** which is a basis for H.

The *distance between*
$$\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$
 is defined by
$$\operatorname{dist}(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$

- 3. Find the distance between $\mathbf{u} = (1, 2)$ and $\mathbf{v} = (3, 4)$.
- 4. Find the distance between $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$.

Orthogonal vectors

Thm: for
$$\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$
, we have
$$\|\mathbf{u} \pm \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 \pm 2\mathbf{u} \cdot \mathbf{v}.$$

Proof. We have
$$\|\mathbf{u} \pm \mathbf{v}\|^2 = (\mathbf{u} \pm \mathbf{v}) \cdot (\mathbf{u} \pm \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} \pm \mathbf{u} \cdot \mathbf{v} \pm \mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v} = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 \pm 2\mathbf{u} \cdot \mathbf{v}$$

We say that $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.

One intuition behind this definition is that in \mathbb{R}^2 , two vectors \mathbf{u} , \mathbf{v} are perpendicular iff dist $(\mathbf{u}$, \mathbf{v}) = dist $(\mathbf{u}$, $-\mathbf{v}$), see the next figure.

The theorem of Pythagoras

This, in turn, happens iff $\mathbf{u} \cdot \mathbf{v} = 0$.

Pythagorean Theorem: Two vectors \mathbf{u} and \mathbf{v} are orthogonal iff $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Orthogonal Complements

Given a subset $W \subset \mathbb{R}^n$, we define the orthogonal complement of W by

$$W^{\perp} = \{ \mathbf{v} \in \mathbb{R}^n : \mathbf{v} \cdot \mathbf{w} = 0 \quad \forall \mathbf{w} \in W \}$$

e.g. In \mathbb{R}^3 , if W is the xy plane, then W^{\perp} is the z axis.

Thm: Let $W \subset \mathbb{R}^n$ be a subset.

- 1. W^{\perp} is a subspace of \mathbb{R}^n .
- 2. If $W = \operatorname{Span}(S)$, then $\mathbf{v} \in W^{\perp} \iff \mathbf{v} \in S^{\perp}$.

Orthogonal Complements

<u>Proof.</u> 1. We have $\mathbf{0} \in W^{\perp}$ since $\mathbf{0} \cdot \mathbf{w} = 0$ for any $\mathbf{w} \in W$. If $\mathbf{u}, \mathbf{v} \in W^{\perp}$, then $\mathbf{u} + \mathbf{v} \in W^{\perp}$ since $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w} = 0 + 0 = 0 \ \forall \mathbf{w} \in W$. Finally, if $\mathbf{u} \in W^{\perp}$ and $c \in \mathbb{R}$ then $c\mathbf{u} \in W^{\perp}$ since $(c\mathbf{u}) \cdot \mathbf{w} = c(\mathbf{u} \cdot \mathbf{w}) = c0 = 0$ for any $\mathbf{w} \in W$.

2. If $\mathbf{v} \in W^{\perp}$ then $\mathbf{v} \cdot \mathbf{w} = 0$ for all $\mathbf{w} \in W$, in particular, for all $\mathbf{w} \in S$.

Conversely, if $\mathbf{v} \in S^{\perp}$ and $S = \{\mathbf{w}_1, \dots, \mathbf{w}_m\}$, then $\mathbf{v} \cdot \mathbf{w}_i = 0$ for all i. Now let $\mathbf{w} \in W$. Then $\mathbf{w} = \sum_{i=1}^m \alpha_i \mathbf{w}_i$ for some $\alpha_i \in \mathbb{R}$. So $\mathbf{v} \cdot \mathbf{w} = \mathbf{v} \cdot (\sum_{i=1}^m \alpha_i \mathbf{w}_i) = \sum_{i=1}^m \alpha_i (\mathbf{v} \cdot \mathbf{w}_i) = \sum_{i=1}^m 0 = 0$. Hence, $\mathbf{v} \in W^{\perp}$.

Orthogonal Complements

Thm: Let
$$A$$
 be an $m \times n$ matrix. Then $(\text{Row}(A))^{\perp} = \text{Nul}(A)$ and $(\text{Col}(A))^{\perp} = \text{Nul}(A^{T})$.

<u>Proof.</u> 1. We have

$$\mathbf{w} \in \operatorname{Nul}(A) \iff A\mathbf{w} = \mathbf{0} \iff \begin{bmatrix} \operatorname{row}_1(A) \cdot \mathbf{w} \\ \vdots \\ \operatorname{row}_m(A) \cdot \mathbf{w} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

 $\iff \mathbf{w} \cdot \operatorname{row}_i(A) = 0 \ \forall i \iff \mathbf{w} \in S^{\perp} \iff w \in (\operatorname{Row}(A))^{\perp},$
where $S = \{\operatorname{row}_1(A), \dots, \operatorname{row}_m(A)\}$ and we used the previous theorem.

2. Using 1., $\operatorname{Nul}(A^T) = (\operatorname{Row}(A^T))^{\perp} = (\operatorname{Col}(A))^{\perp}$.

Angles

If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, we define the angle θ between \mathbf{u} and \mathbf{v} by

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$
.

In other words, if **u**, **v** are nonzero, then $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$.

This definition is consistent with our intuition in \mathbb{R}^2 :

Angle:

In fact, the law of cosines says that

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta.$$

On the other hand

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\mathbf{u} \cdot \mathbf{v}.$$

Simplifying yields the formula we gave.

Thm: If W is a subspace then $W \cap W^{\perp} = \{ \mathbf{0} \}$.

<u>Proof.</u> Let $\mathbf{v} \in W \cap W^{\perp}$. Then $\mathbf{v} \cdot \mathbf{v} = 0$ if we think of the first \mathbf{v} as belonging to W and the second as belonging to W^{\perp} . It follows that $\mathbf{v} = \mathbf{0}$. This proves $W \cap W^{\perp} \subseteq \{\mathbf{0}\}$. But $\mathbf{0} \in W \cap W^{\perp}$ as it is a subspace. So $W \cap W^{\perp} = \{\mathbf{0}\}$. \square