Pole Elektrostatyczne Dwóch Ładunków

Leszek Buczek, maj 2015

Zadanie domowe. Fizyka. Temat: Stworzyć program komputerowy, który będzie rysował linie pola elektrostatycznego, jeżeli będziemy zadawali jako zmienne ładunek i odległość pomiędzy ładunkami.

Środowisko pracy:

Dlaczego GWBasic?

- Mam już trochę programów w C/C++.
- o Program jest łatwo wymienić na kod w C lub Pascal'u.
- Temat zadania jest prosty do kodowania i nie wymaga używania bogatej funkcjonalności C lub Pascal'a. Tak jak nie ma powodu wsiadać do Mercedesa aby dojechać na drugi koniec miasta wystarczy wziąć rower.
- Interpreter działa wolniej (sprawdza każdą napotkaną instrukcję w trakcie działania programu) więc jest czas na analizę powstającej grafiki.
- O Deklaracja zmiennych w GWBasic'u nie wymaga osobnego rejonu kodu. Można deklarować zmienne i przypisywać im wartości tuż przed jej użyciem.

Założenia programistyczne:

Powszechnie zakłada się, że ilość linii wychodząca z ładunku jest proporcjonalna do wielkości ładunku (ilości Coulombów). Przyjąłem więc wielkości ładunków od 1 do 5 mając na uwadze, że:

- Najmniejsza ilość linii wychodząca z ładunku to 5 (4 wydaje mi się niewystarczającą ilością).
- Wartość ładunku = 5 oznacza 25 linii dla jednego ładunku według mnie nie powinno być ich więcej aby łatwo analizować grafikę.

Przyjąłem rzeczywistą skalę: 1 cm na ekranie monitora to rzeczywiście 1 cm w modelu. Reszta jest tworem mojej wyobraźni.

Teoria

Pole sił elektrostatycznych rozpatruje się jako natężenie pola w danym punkcie. To właśnie natężenie pola charakteryzuje nam to pole. Pole mówi nam jaka siła będzie działać na ładunek próbny czyli taki, który nie wpływa na to pole ale odbiera jego istnienie. Z definicji pole elektrostatyczne to stosunek siły działającej na ładunek próbny, do wartości tego ładunku (symbolem natężenia pola jest *E*):

$$ec{E}=rac{ec{F}}{q}$$

i jej zastosowanie

Przyjąłem istnienie dwóch ładunków. W tym przypadku wymagane jest dodawanie sił pochodzących od tych źródeł, superpozycja czyli znajdywanie wektora wypadkowego w danym punkcie pola. Gdy źródłem pola jest siła działająca na ładunek próbny q (o wartości obojętnej 1) od strony ładunków Q_1 i Q_2 to

$$F_1 = k * Q_1 * q/r_1^2$$
 i $F_2 = k * Q_2 * q/r_2^2$

Ponieważ interesuje mnie tylko stosunek tych sił (a nie ich bezwzględna wartość), nie interesuje mnie bezwzględna długość wektorów tych sił. Silniejszy ładunek nie oznacza, aby był powodem szybszego "przemieszczania się" punktu w moim programie, kreślącym w konsekwencji linie pola. Pole jest statyczne. Wystarczy więc pominąć wartość k we wzorach, zostawiając tylko Q_1 , r_1 , Q_2 i r_2 . Wypadkowy wektor i tak 'sprasuję' równo jednocześnie w poziomie jak i w pionie i niezmiennie tak samo w ciągu całego działania programu (zmienna SKALA, ustawiona na wartość 100 w linii numer 2700).

Przedstawię wersję roboczą a nie egzekucyjną (pliku nie mającego w nazwie rozszerzenia EXE). Zaletą tego podejścia jest otwartość kodu do wglądu i edycji. Oprócz bowiem dynamicznej zmiany parametrów (podczas działania programu) możliwa jest wówczas statyczna zmiana wartości niektórych zmiennych jak np.

- środka układu współrzędnych aby ukazać co się dzieje w odleglejszej strefie od pozycji ładunków linia 170,
 zmienne XPQ i YPQ (współrzędne środka układu),
- o współczynnika wymiany długości z rzeczywistej na ekranową (pikselową) linia 170, zmienna FQ (F od słowa *Factor*),
- o skali 'sprasowania' wektora wypadkowego. Im większa skala, tym linie są bardziej płynne i rysunek dokładniejszy - staje się to istotne, gdy przyjmuje się małą odległość pomiędzy ładunkami dowolnego rodzaju o różnej 'Wielkości Ładunku'. W tym przypadku szybkość powstawania grafiki jest wolniejsza ale rysunek bardziej precyzyjny. W końcu teoria mówi, że najlepsze rozwiązanie znajduje się gdy odległość ta zmierza do zera. Jedynymi bowiem istotnymi parametrami są tu
 - kierunek i zwrot wektora wypadkowego
 - jednoczesne 'sprasowanie' współrzędnych tego wektora wypadkowego (i tylko jego na współrzędnych rzeczywistych) w tym samym stosunku i utrzymywanie tego stosunku od początku powstawania grafiki do jego końca linia 2700, zmienna SKALA (zalecana wielkość od 100 do 300)

Specjalne kody ASCII mające potencjalne zastosowane w programie (strona kodowa 852)

ą	165	ł	136	Ś	152
ć	134	ń	228	Ź	171
ę	169	ó	162	Ż	190
+	43	-	45	0 (zero)	48

Ą	164	Ł	157	Ś	151
Ć	143	Ń	227	Ź	141
Ę	168	Ó	224	Ż	189

Oczekiwana grafika jest podobna do tej w publikacjach:

Wyszczególnione poniżej kolejno procedury zaczynają się od liczb podzielnych przez 100 w celu łatwiejszej analizy kodu a także możliwości rozszerzenia wybranej procedury bez uciekania się do wymiany numeracji linii niżej kodowanych procedur.

Nr linii	Opis procedur zaczynających się od tego numeru linii
10	Ustawienie środowiska pracy
300	Wprowadzenie danych dla ładunku pierwszego (pojawi się on później po lewej stronie ekranu)
500	Wprowadzenie danych dla ładunku drugiego (pojawi się on później po prawej stronie ekranu)
700	Wprowadzenie odległości pomiędzy dwoma ładunkami
900	Pozycjonowanie i rysowanie ładunku pierwszego - małego okręgu po lewej stronie ekranu
1000	Pozycjonowanie i rysowanie ładunku drugiego - małego okręgu po prawej stronie ekranu
1100	Ustalenie maksymalnych i minimalnych rysowanych wartości X i Y - piksele ekranu
1200	Ustawienie początkowych punktów dla wykreślanych linii tuż przy rysunkach ładunków
1300	Wyjaśnienie kodowania: sytuacja rzeczywista versus punkty ekranu
1400	Wyznaczenie pozycji punktów wokół ładunku pierwszego (po lewej stronie) na ekranie skąd będą zaczynać
	się linie pola elektrostatycznego - te punkty będą stablicowane
1700	Wyznaczenie pozycji punktów wokół ładunku drugiego (po prawej stronie) na ekranie skąd będą zaczynać
	się linie pola elektrostatycznego - te punkty będą stablicowane
2000	Początek procedury podającej na wyjściu współrzędne rzeczywiste X i Y. Wyjaśnienie zmiennych kodu.
2800	Wyznaczenie warunków wstępnych dla grafiki linii
3000	Rysowanie linii dla ładunku pierwszego (po lewej stronie ekranu)
4000	Rysowanie linii dla ładunku drugiego (po prawej stronie ekranu)
5000	Procedura wyjścia z programu
10000	Podprogram - wymiana wielkości rzeczywistych na punkty ekranu

Uwaga: Wprowadzając 'coś' z klawiatury do komputera, wprowadzamy łańcuchy znakowe (nie liczby, nawet jak nam się wydaje, że są to liczby) i później wymieniamy je na liczby. Podobnie jest w języku Python gdzie wprowadzone 123 to faktycznie łańcuch znakowy "123" (jeden dwa trzy). Dopiero 'rzut' (casting) na integer lub float daje liczbę.

		Takony 125 Geden and 1277. Bobiero 12at (editing) na meteber lab nout daje nezo ç.		
Opi	s programu			
Ustav	vienie środowiska pracy			
Pole e	elektrostatyczne na płaszczyźnie co najwyżej dwóch ładunków.			
Uwag	Uwagi: Ekran znakowy 80x25, gdzie 1,1 to górna lewa strefa ekranu.			
	Piksel (1,1) to górna lewa strefa ekranu.			
100	KEY OFF	Usuń widok klawiszy funkcyjnych w dole ekranu;		
110	SCREEN 9	Ustaw tryb ekranu. SCREEN 9 jest najlepszy do grafiki (640x350 pikseli);		
120	CLS	Wyczyść ekran monitora		
130	DIM X1P(25),Y1P(25),	Zadeklaruj użycie tablic 25-elementowych dla:		

	X2P(25),Y2P(25)	X1P(25) - rzeczywiste współrzędne X punktów ekranu, od których zaczynają
		się linie, tuż przy rysunku ładunku pierwszego;
		Y1P(25) - rzeczywiste współrzędne Y punktów ekranu, od których zaczynają
		się linie, tuż przy rysunku ładunku pierwszego;
		X2P(25) - rzeczywiste współrzędne X punktów ekranu, od których zaczynają
		się linie, tuż przy rysunku ładunku drugiego;
		Y2P(25) - rzeczywiste współrzędne Y punktów ekranu, od których zaczynają
		się linie, tuż przy rysunku ładunku drugiego;
140	DIM XX1P(25),YY1P(25),	Zadeklaruj użycie tablic 25-elementowych dla:
	XX2P(25),YY2P(25)	XX1P(25) - pikselowe (ekranowe) współrzędne X punktów ekranu, od
		których zaczynają się linie, tuż przy rysunku ładunku pierwszego;
		YY1P(25) - pikselowe (ekranowe) współrzędne Y punktów ekranu, od
		których zaczynają się linie, tuż przy rysunku ładunku pierwszego;
		XX2P(25) - pikselowe (ekranowe) współrzędne X punktów ekranu, od
		których zaczynają się linie, tuż przy rysunku ładunku drugiego;
		YY2P(25) - pikselowe (ekranowe) współrzędne Y punktów ekranu, od
		których zaczynają się linie, tuż przy rysunku ładunku drugiego;
170	XPQ=320:YPQ=210*1.2:	Współrzędne środka układu do którego będzie odnosiła się grafika. 1.2 to
	FQ=26	współczynnik korygujący zwężenie obrazu koła (bez 1.2 koło byłoby przedstawione
		jako owal);
		FQ - ilość pikseli na jednostkę rzeczywistą (tu 1 cm);
180	COLOR 15,0:	Ustaw kolor czcionki na biały (15), zostawiając tło czarne (0);
	LOCATE 1,28:	Ustaw kursor na 12-tym miejscu w pierwszej linii;
	PRINT "Leszek Buczek, 3 maja 2015";	Pisz tekst- CHR\$(162) to ó;
190	COLOR 7,0;	Zamień kolor czcionki na fioletowy (7) pozostawiając tło czarne (0);
	LOCATE 2,26:	Ustaw kursor w drugiej linii i kolumnie 25-ej;
	PRINT "Linie pola elektrostatycznego";	Pisz tekst ;
300	Wprowadzenie z klawiatury danych dla ładunku pierwszego (symbol ładunku	
		RODZAJ ŁADUNKU
310	F=0: COLOR 15,0:	Flaga - 0 znaczy wpisano z klawiatury poprawną wartość; czcionka biała
	LOCATE 4,10: PRINT "Pierwszy " CHR\$(136) "adunek [+,-,0] ":	Ustaw kursor w czwartej linii, kolumnie 10; pisz tekst;
	LOCATE 4,35: PRINT CHR\$(95): ZNAK1\$=INPUT\$(1)	Ustaw kursor w czwartej linii, kolumnie 35; pisz znak podkreślenia; czekaj na znak z
		klawiatury - oczekiwanym znakiem jest + albo - albo 0
320	IF ZNAK1\$=CHR\$(13) THEN GOTO 310	Jeżeli brak znaku (przyciśnięto ENTER) to zmuś ponownie do wpisania znaku
330	IF ZNAK1\$<>CHR\$(43) AND ZNAK1\$<>CHR\$(45) AND ZNAK1\$<>CHR\$(48)	Jeżeli nie jest to znak z zakresu +,-,0 to
	THEN F=1	zaznacz to flagą F
340	IF F=1	Jeżeli wpisano niepoprawną wartość to
	THEN LOCATE 5,10: PRINT ZNAK1\$ "? Wprowad" CHR\$(171) " jeden z	Ustaw kursor w piątej linii, kolumnie 10; wypisz ten znak i ostrzeżenie

	trzech znak" CHR\$(162) "w: + albo - albo 0"	
350	IF F=1	Jeżeli wpisano niepoprawną wartość to
	THEN LOCATE 4,34: PRINT SPC(2): GOTO 310	usuń wpisany znak i powtórz procedurę wpisania znaku
	ELSE LOCATE 5,10: PRINT SPC(52):	Jeżeli wpisano poprawną wartość to skasuj ostrzeżenie (jeżeli takie było)
	LOCATE 4,35: PRINT ZNAK1\$	wypisz na ekranie znak wprowadzony z klawiatury
360	IF ZNAK1\$=CHR\$(43)	Jeżeli wpisanym znakiem jest '+' to
	THEN KOL10=4	deklaruj użycie koloru <mark>czerwonego</mark>
	ELSE	W przeciwnym razie
	IF ZNAK1\$=CHR\$(45)	Jeżeli wpisanym znakiem jest '-' to
	THEN KOL10=1	deklaruj użycie koloru niebieskiego
	ELSE KOL10=7	Jeżeli wpisanym znakiem jest '0' to deklaruj użycie koloru cyjanowego
370	CIRCLE(300,48),4,KOL1O	Wykreśl okrąg o promieniu 4 danym kolorem o środku w współrzędnych
		pikselowych (300,48)
380	PAINT (300,48),KOL10	Maluj ten okrąg deklarowanym kolorem
390	IF ZNAK1\$=CHR\$(48)	Jeżeli wpisanym znakiem jest '0' to
	THEN L1=0:	deklaruj zerową ilość linii wychodzących od tego ładunku
	GOTO 510	Ignoruj procedurę wprowadzenia 'Wartości ładunku'
		WARTOŚĆ ŁADUNKU
400	F=0:	Flaga - 0 znaczy wpisano z klawiatury poprawną wartość
		Tu flaga użyta także po to aby rozbić zdanie z 'IF' bo przekracza dopuszczalną ilość
		250 znaków
	LOCATE 4,46: PRINT "Warto" CHR\$(152) CHR\$(134) SPC(1) CHR\$(136)	Pisz tekst na pozycji współrzędnych znakowych (4,46)
	"adunku, Q [1-5] ":	
	LOCATE 4,71: PRINT CHR\$(95): LAD1\$=INPUT\$(1)	Na pozycji (4,71) pisz podkreślenie i czekaj na cyfrę z klawiatury (będzie to znak)
410	IF LAD1\$=CHR\$(13) THEN GOTO 400	Jeżeli brak znaku (przyciśnięto ENTER) to zmuś ponownie do wpisania znaku
420	IF LAD1\$<>"1" AND LAD1\$<>"2" AND LAD1\$<>"3" AND LAD1\$<>"4" AND	Jeżeli znak nie jest z przedziału od '1' do '5' (to jeszcze nie cyfra !)
	LAD1\$<>"5"	
	THEN F=1	zmień wartość flagi wskazującej na błąd
430	IF F=1	Jeżeli wprowadzono błędne dane to
	THEN LOCATE 5,10: PRINT LAD1\$ "? Wprowad" CHR\$(171) " warto"	od pozycji (5,10) wypisz ten znak i ostrzeżenie
	CHR\$(152) CHR\$(134) SPC(1) CHR\$(136) "adunku jako jedn"	
	CHR\$(165) " z cyfr: 1, 2, 3, 4 lub 5"	
440	IF F=1	Jeżeli wprowadzono błędne dane to dodatkowo
	THEN LOCATE 4,70: PRINT SPC(2):	wyczyść znak z ekranu
	GOTO 400	powtórz procedurę wpisania 'wartości ładunku'
	ELSE LOCATE 5,10: PRINT SPC(68):	Jeżeli znak jest akceptowalny to wyczyść ostrzeżenie (jeżeli takie było)
	LOCATE 4,71: PRINT LAD1\$	napisz znak jaki wprowadzono (będzie to znak od '1' do '5' -jeszcze nie liczba

450	L1=VAL(LAD1\$)	Zamień znak na liczbę
500	Wprowadzenie z klawiatury danych dla ładunku drugiego (symbol ładunku poj	jawi się po prawej stronie ekranu)
		RODZAJ ŁADUNKU
510	F=0:	Flaga - 0 znaczy wpisano z klawiatury poprawną wartość
	LOCATE 5,10: PRINT "Drugi " CHR\$(136) "adunek [+,-,0] ":	Ustaw kursor w piątej linii, kolumnie 10; pisz tekst;
	LOCATE 5,35: PRINT CHR\$(95): ZNAK2\$=INPUT\$(1)	Ustaw kursor w piątej linii, kolumnie 35; pisz znak podkreślenia; czekaj na znak z
		klawiatury - oczekiwanym znakiem jest + albo - albo 0
520	IF ZNAK2\$=CHR\$(13) THEN GOTO 510	Jeżeli brak znaku (przyciśnięto ENTER) to zmuś ponownie do wpisania znaku
530	IF ZNAK2\$<>CHR\$(43) AND ZNAK2\$<>CHR\$(45) AND ZNAK2\$<>CHR\$(48)	Jeżeli nie jest to znak z zakresu +,-,0 to
	THEN F=1	zaznacz to flagą F
540	IF F=1	Jeżeli wpisano niepoprawną wartość to
	THEN LOCATE 6,10: PRINT ZNAK2\$ "? Wprowad" CHR\$(171) " jeden z trzech znak" CHR\$(162) "w: + albo - albo 0":	Ustaw kursor w szóstej linii, kolumnie 10; wypisz ten znak i ostrzeżenie
	LOCATE 5,34: PRINT SPC(2): GOTO 510	usuń wpisany znak i powtórz procedurę wpisania znaku
	ELSE LOCATE 6,10: PRINT SPC(52):	Jeżeli wpisano poprawną wartość to skasuj ostrzeżenie (jeżeli takie było)
	LOCATE 5,35: PRINT ZNAK2\$	wypisz na ekranie znak wprowadzony z klawiatury
560	IF ZNAK2\$=CHR\$(43)	Jeżeli wpisanym znakiem jest '+' to
	THEN KOL2O=4	deklaruj użycie koloru czerwonego
	ELSE	W przeciwnym razie
	IF ZNAK2\$=CHR\$(45)	Jeżeli wpisanym znakiem jest '-' to
	THEN KOL2O=1	deklaruj użycie koloru niebieskiego
	ELSE KOL2O=7	Jeżeli wpisanym znakiem jest '0' to deklaruj użycie koloru cyjanowego
570	CIRCLE(300,62),4,KOL2O	Wykreśl okrąg o promieniu 4 danym kolorem o środku w współrzędnych
		pikselowych (300,62)
580	PAINT (300,62),KOL2O	Maluj ten okrąg deklarowanym kolorem
590	IF ZNAK2\$=CHR\$(48)	Jeżeli wpisanym znakiem jest '0' to
	THEN L2=0:	deklaruj zerową ilość linii wychodzących od tego ładunku
	GOTO 710	Ignoruj procedurę wprowadzenia 'Wartości ładunku'
		WARTOŚĆ ŁADUNKU
600	F=0:	Flaga - 0 znaczy wpisano z klawiatury poprawną wartość
		Tu flaga użyta także po to aby rozbić zdanie z 'IF' bo przekracza dopuszczalną ilość
		250 znaków
	LOCATE 5,46: PRINT "Warto" CHR\$(152) CHR\$(134) SPC(1) CHR\$(136) "adunku, Q [1-5] ":	Pisz tekst na pozycji współrzędnych znakowych (5,46)
	LOCATE 5,71: PRINT CHR\$(95): LAD2\$=INPUT\$(1)	Na pozycji (5,71) pisz podkreślenie i czekaj na cyfrę z klawiatury (będzie to znak)
610	IF LAD2\$=CHR\$(13) THEN GOTO 600	Jeżeli brak znaku (przyciśnięto ENTER) to zmuś ponownie do wpisania znaku
620	IF LAD2\$<>"1" AND LAD2\$<>"2" AND LAD2\$<>"3" AND LAD2\$<>"4" AND	Jeżeli znak nie jest z przedziału od '1' do '5' (to jeszcze nie cyfra !)
		- ,

	LAD2\$<>"5"	
	THEN F=1	zmień wartość flagi wskazującej na błąd
630	IF F=1	Jezeli wprowadzono błędne dane to
	THEN LOCATE 6,10: PRINT LAD2\$ "? Wprowad" CHR\$(171) " warto"	od pozycji (6,10) wypisz ten znak i ostrzeżenie
	CHR\$(152) CHR\$(134) SPC(1) CHR\$(136) "adunku jako jedn" CHR\$(165) "	
	z cyfr: 1, 2, 3, 4 lub 5"	
640	IF F=1	Jeżeli wprowadzono błędne dane to dodatkowo
	THEN LOCATE 5,70: PRINT SPC(2):	wyczyść znak z ekranu
	GOTO 600	powtórz procedurę wpisania 'wartości ładunku'
	ELSE LOCATE 6,10: PRINT SPC(68):	Jeżeli znak jest akceptowalny to wyczyść ostrzeżenie (jeżeli takie było)
	LOCATE 5,71: PRINT LAD2\$	napisz znak jaki wprowadzono (będzie to znak od '1' do '5' -jeszcze nie liczba
650	L2=VAL(LAD2\$)	Zamień znak na liczbę
700	Wprowadzenie odległości pomiędzy dwoma ładunkami	
710	LOCATE 6,18: PRINT "Odleg" CHR\$(136) "o" CHR\$(152) CHR\$(134) " pomi"	Napisz tekst zaczynając od pozycji współrzędnych znakowych (6,18) ekranu i zapytaj
	CHR\$(169) "dzy " CHR\$(136) "adunkami w cm [1-14]":	o odległość pomiędzy ładunkami
	LOCATE 6,59: PRINT CHR\$(95)	Na pozycji 6,59 pisz podkreślenie
720	P=0: I=0: ODL\$="": V\$=""	Inicjalizuj wartość zmiennych - liczbowych do zera, znakowych do pustego zbioru
730	WHILE (V\$<>CHR\$(13) AND I<6)	Wykonuj aż do [ENTER] albo ilości znaków większej od 6 (zaczynamy od 0)
740	V\$=INPUT\$(1):	Akceptuj znak z klawiatury
	I=I+1:	Podnieś licznik wpisanych znaków o jeden
	LOCATE 7,10: PRINT SPC(68)	Wyczyść linię, która jest tekstem z ostrzeżeniem
750	LOCATE 6,58: PRINT SPC(1):	Wyczyść znak z pozycji (6,58)
	LOCATE 6,58+1: PRINT V\$ CHR\$(95):	Dopisuj znaki wprowadzone z klawiatury z podkreśleniem na końcu
	F=0	Flaga - 0 znaczy wpisano z klawiatury poprawną wartość
760	IF V\$<>"0" AND V\$<>"1" AND V\$<>"2" AND V\$<>"3" AND V\$<>"4" AND	Jeżeli znak nie jest ani cyfrą ani przecinkiem to
	V\$<>"5" AND V\$<>"6" AND V\$<>"7" AND V\$<>"8" AND V\$<>"9" AND	
	V\$<>","	
	THEN F=1	Sygnalizuj błędny (nieakceptowalny) znak
770	IF F=1	Jeżeli wprowadzony znak jest nieakceptowalny to
	THEN LOCATE 7,1: PRINT SPC(78):	Wyczyść linię komentarzy ostrzeżeń
	LOCATE 7,10: PRINT "Wprowad" CHR\$(171) " cyfr" CHR\$(169) "	Od pozycji (,10) pisz ostrzeżenie
	lub przecinek":	
	I=I-1:	Zmniejsz licznik wprowadzonych znaków (ignoruj ostatni znak)
	LOCATE 6,59+I: PRINT CHR\$(95) SPC(2):	Wyczyść zły znak i daj podkreślenie
	GOTO 810	Omiń inne instrukcje w pętli WHILE dla tego znaku
780	IF V\$=","	Jeżeli znakiem jest przecinek
	THEN P=P+1:	Podnieś licznik przecinków o jeden (inicjalnie był zerem)
	V\$="."	Zamień przecinek na kropkę dla celów obliczeniowych

790	IF P>1	Jeżeli wprowadzony przecinek nie jest pierwszym przecinkiem to
	THEN LOCATE 7,1: PRINT SPC(78):	Wyczyść linię komentarzy ostrzeżeń
	LOCATE 7,10: PRINT "Mo" CHR\$(190) "e by" CHR\$(134) " tylko 1	Od pozycji (,10) pisz ostrzeżenie
	przecinek w liczbie":	
	I=I-1:	Zmniejsz licznik wprowadzonych znaków (ignoruj ostatni znak)
	P=P-1:	Zmniejsz licznik wprowadzonych przecinków/znaków
	LOCATE 6,59+1: PRINT CHR\$(95) SPC(2):	Ustaw kursor na miejscu wyświetlanych znaków wprowadzonych
	GOTO 810	Omiń ostatnią instrukcję w pętli WHILE dla tego znaku
800	ODL\$=ODL\$+V\$	Kompletuj zmienną znakową ODL\$ (odległość pomiędzy ładunkami)
810	WEND	While END - koniec pętli WHILE
820	LOCATE 8,58+I: PRINT SPC(3)	Ustaw kursor znakowy na odpowiedniej pozycji i wyczyść 3 znaki spacjami
830	ODLEG=VAL(ODL\$)	Zamień ciąg znaków 'odległości pomiędzy ładunkami' na liczbę
840	IF ODLEG<1 OR ODLEG>14	Sprawdź wielkość liczby -jeżeli nie jest z zakresu [1,14] to
	THEN LOCATE 7,10: PRINT "Wprowad" CHR\$(171) " warto" CHR\$(152)	W linii ostrzeżeń wypisz zdanie ostrzegawcze
	CHR\$(134) " odleg" CHR\$(136) "o" CHR\$(152) "ci " CHR\$(136)	
	"adunk" CHR\$(162) "w jako liczb" CHR\$(169) " pomi" CHR\$(169)	
	"dzy 1 a 14"	
850	IF ODLEG<1 OR ODLEG>14	Jeżeli nie jest z zakresu [1,14] to
	THEN LOCATE 6,58: PRINT SPC(6):	Wyczyść z ekranu wprowadzoną liczbę
	GOTO 710	Zacznij od nowa budować 'odległość pomiędzy ładunkami'
860	LOCATE 7,1: PRINT SPC(75)	(Jeżeli liczba jest zaakceptowana) Wyczyść linię ostrzeżeń (nawet jeżeli jest pusta)
900	Ustalenie pozycji ładunku pierwszego i rysowanie ładunku pierwszego jako ma	
920	XPOZ1=XPQ-ODLEG*FQ/2	910 '* Ustalenie pozycji x-owej pierwszego ładunku: y-kowa jest rowna 0
		'Pikselowy' środek ekranu, minus połowę odległości pomnożonej przez 'ilość pikseli
		na jednostkę' (domyślnie FQ=26; patrz linia 170)
940	CIRCLE(XPOZ1,YPQ/1.2),4,KOL1O	930 '* Rysuj ładunek pierwszy o promieniu 4 pikseli (po lewej stronie ekranu)
		1.2 to współczynnik korygujący zwężenie obrazu koła (bez 1.2 koło byłoby
		przedstawione jako owal)
950	PAINT (XPOZ1,YPQ/1.2),KOL1O	Maluj pierwszy ładunek tym samym kolorem co koło (KOL1O to numer koloru)
1000	Ustalenie pozycji ładunku drugiego i rysowanie ładunku drugiego jako małego	
1020	XPOZ2=XPQ+ODLEG*FQ/2	1010 '* Ustalenie pozycji x-owej drugiego ładunku; y-kowa jest rowna 0
		'Pikselowy' środek ekranu, plus połowę odległości pomnożonej przez 'ilość pikseli na
		jednostkę' (domyślnie FQ=26; patrz linia 170)
1040	CIRCLE(XPOZ2,YPQ/1.2),4,KOL2O	1030 '* Rysuj ładunek drugi o promieniu 4 pikseli (po prawej stronie ekranu)
		1.2 to współczynnik korygujący zwężenie obrazu koła (bez 1.2 koło byłoby
		przedstawione jako owal)
1050	PAINT (XPOZ2,YPQ/1.2),KOL2O	Maluj drugi ładunek tym samym kolorem co koło (KOL1O to numer koloru)
1100	Ustalenie maksymalnych i minimalnych rysowanych wartości X i Y w pikselach	ekranu

Ztablicowanie otrzymanych wielkości - będą wykorzystane w procedurze

1200 Ustawienie początkowych punktów dla wykreślanych linii tuż przy rysunkach ładunków. Ich ilość jest następująca:

- Dla 'wartości ładunku' = 1, wyprowadzanych jest 5 linii, z tym, że pierwsza linia w linii prostej pomiędzy ładunkami jest pominięta co można zauważyć w publikacjach.
- Dla innej 'wartości ładunku', wyprowadzanych jest linii w ilości 5*'wartość ładunku'.

Potrzebne są zarówno wartości rzeczywiste jak i ekranowe.

1580 XX1P(I)=XX: YY1P(I)=YY

Potrzebne obliczenia w strefie fizyki ładunku, wykonywane są na dokładnych wartościach rzeczywistych.

Ekranowe (pikselowe) wartości potrzebne są do pozycjonowania linii na ekranie (punkty końcowe minimalnych linii tworzących linie ciągłą) są ustawione w konkretnym pikselu ekranu - daje to wrażenie linii nie perfekcyjnie regularnych ale bardzo dobrze widocznych.

Wszystkie obliczane tu wielkości dotyczą strefy realnej. Dopiero procedura od numeru 10000 zamienia je na punkty ekranu.

'* Wspolrzedne poczatkow linii na ekranie

1400 Ładunek pierwszy - Wyznaczenie pozycji punktów wokół ładunku pierwszego (po lewej stronie) na ekranie skąd będą zaczynać się linie pola elektrostatycznego - te punkty beda stablicowane.

To, że zmienne dotyczą ładunku pierwszego charakteryzuje cyfra 1 w nazwach zmiennych: L1, ILOSCL1, XPOZ1R, YPOZ1R, X1P, Y1P, XX1P, YY1P, KATL1 Jeżeli ładunek jest neutralny to nie wychodzą od niego linie - pomiń procedurę 1420 XPOZ1R= -ODLEG/2: YPOZ1R=0 Pozycja środka ładunku pierwszego Promień okregu na którym zaczynają się rysunki linii (okrąg ten nie jest wyświetlany 1430 R=.2 ale jego punkty - początki linii - będą zapamiętywane/tablicowane) Pozycja x-owa 1-go punktu wokół ładunku pierwszego. Pozycja ta ustawiona jest 1440 X1P(1) = XPOZ1R + Rnaprzeciw ładunku drugiego 1450 Y1P(1)= 0 Pozycja v-owa 1-go punktu wokół ładunku pierwszego Przygotuj punkt do wejścia do podprogramu (wejście to X i Y; wyjście będzie XX i YY) 1460 X=X1P(1): Y=Y1P(1) Wywołaj podprogram zamieniający punkty rzeczywiste na punkty ekranowe 1470 GOSUB 10000 1480 XX1P(1)=XX: YY1P(1)=YY Zapamiętaj pierwszy punkt ekranowy. Stąd linie nie będą wyprowadzane! Ilość linii wychodzących z ładunku pierwszego. Tu zaczyna się pozycjonowane 1490 ILOSCL1=L1*5 1500 '*- Te linie trzeba rozlozyc rownomiernie na okregu o promieniu R następnych punktów (po pierwszym, już wypozycjonowanym) rzeczywistych i ekranowych 1510 KATL1=360/ILOSCL1 Kat w stopniach do następnego punktu. 1520 '- Jeden stopien to 0.017453 radiana, wiec... Ustalanie pozycji następnych punktów na okręgu R. Od nich będą rysowane linie. 1530 FOR I=2 TO ILOSCL1 Zapamiętanie tych ekranowych (pikselowych) wartości w tablicy co najwyżej 25elemenowei X-owa wartość realna/rzeczywista 1540 X1P(I)= XPOZ1R + R*COS(.017453*KATL1*(I-1)) 1550 Y1P(I)= R*SIN(.017453*KATL1*(I-1)) Y-owa wartość realna/rzeczywista Przygotowanie współrzednych (X,Y) do zamiany na wielkości ekranowe 1560 X=X1P(I): Y=Y1P(I) 1570 GOSUB 10000 Wykonanie konwersji wartości rzeczywistych na ekranowe

1590 NEXT I zaczynającej się od numeru linii 3000 1700 Ładunek drugi - Wyznaczenie pozycji punktów wokół ładunku drugiego (po prawej stronie) na ekranie skąd będą zaczynać się linie pola elektrostatycznego - te punkty beda stablicowane To, że zmienne dotyczą ładunku drugeg charakteryzuje cyfra 2 w nazwach zmiennych: L2, ILOSCL2, XPOZ2R, YPOZ2R, X2P, Y2P, XX2P, YY2P, KATL2 1710 IF L2=0 THEN ILOSCL2=0: GOTO 2000 '* Ladunek zerowy czyli brak ladunku Jeżeli ładunek jest neutralny to nie wychodzą od niego linie - pomiń procedure 1720 XPOZ2R= ODLEG/2: YPOZ2R=0 Pozycja środka ładunku drugiego Promień okręgu na którym zaczynają się rysunki linii (okrąg ten nie jest wyświetlany 1730 R=.2 ale jego punkty - początki linii - będą zapamiętywane/tablicowane) Pozycja x-owa 1-go punktu wokół ładunku drugiego. Pozycja ta ustawiona jest 1740 X2P(1)= XPOZ2R - R naprzeciw ładunku pierwszego Pozycja y-owa 1-go punktu wokół ładunku drugiego 1750 Y2P(1)=0Przygotuj punkt do wejścia do podprogramu (wejście to X i Y; wyjście będzie XX i YY) 1760 X=X2P(1): Y=Y2P(1) 1770 GOSUB 10000 Wywołaj podprogram zamieniający punkty rzeczywiste na punkty ekranowe Zapamiętaj pierwszy punkt ekranowy. Stąd linie nie będą wyprowadzane! 1780 XX2P(1)=XX: YY2P(1)=YY 1790 ILOSCL2=L2*5 Ilość linii wychodzących z ładunku drugiego. Tu zaczyna się pozycjonowane 1800 '*- Te linie trzeba rozlozyc rownomiernie na okregu o promieniu R następnych punktów (po pierwszym, już wypozycjonowanym) rzeczywistych i ekranowych Kat w stopniach do nastepnego punktu. 1810 KATL2=360/ILOSCL2 1820 '- Jeden stopien to 0.017453 radiana, wiec... 1830 FOR I=2 TO ILOSCL2 Ustalanie pozycji następnych punktów na okręgu R. Od nich będą rysowane linie. Zapamiętanie tych ekranowych (pikselowych) wartości w tablicy co najwyżej 25elemenowei X-owa wartość realna/rzeczywista 1840 X2P(I)= XPOZ2R - R*COS(.017453*KATL2*(I-1)) 1850 Y2P(I)= R*SIN(.017453*KATL2*(I-1)) Y-owa wartość realna/rzeczywista 1860 X=X2P(I): Y=Y2P(I) Przygotowanie współrzędnych (X,Y) do zamiany na wielkości ekranowe Wykonanie konwersji wartości rzeczywistych na ekranowe 1870 GOSUB 10000 Stablicowanie otrzymanych wielkości - będą wykorzystane w procedurze 1880 XX2P(I)=XX: YY2P(I)=YY '* Wspolrzedne poczatkow linii na ekranie zaczynającej się od numeru linii 4000 1890 NEXT I W tym momencie mamy wszystkie potrzebne ustawienia - teraz można podjąć się obliczeń natężenia pola (najpierw dla punktów w pobliżu ładunków) i wykreślania linii.

2000 Początek procedury podającej na wyjściu współrzędne rzeczywiste X i Y

Parametry użyte do uzyskania obrazu graficznego (pytajnik poniżej '?' zastępuje cyfrę 1 lub 2):

- J numer punktu, od którego zaczyna sie linia. Zastępuje poprzednie I Pierwszy punkt to (znak? zastępuje cyfry 1 i 2):
 - J=1 w przypadku, gdy drugi ładunek jest neutralny. Oznacza to, że wszystkie linie w liczbie Wartość Ładunku (LAD?\$)=ILOSCL?*5 będą wykreślane tylko wtedy, gdy drugi ładunek jest neutralny.
 - J=2 w przypadku, gdy obydwa ładunki są albo tego samego znaku, albo znaku przeciwnego do siebie. Oznacza to, że pierwsza linia dla obu ładunków nie będzie wykreślana a są one dla obu ładunków naprzeciwko siebie. Upraszcza to programowanie a jednocześnie pozostawia obraz łatwiejszy do zrozumienia idei linii pola.

Przypadki	(istotne	dla celu	kodowania	programu):
-----------	----------	----------	-----------	------------

PRZYP=1 Pierwszy ładunek jest zerowy/neutralny. Dla tego przypadku współrzędne natężenia pola pochodzącego od tego ładunku są wyzerowane:

J dla drugiego ładunku jest 1.

PRZYP=2 Drugi ładunek jest zerowy/neutralny. Dla tego przypadku współrzędne natężenia pola pochodzącego od tego ładunku są wyzerowane:

J dla pierwszego ładunku jest 1.

PRZYP=3 Pierwszy i drugi ładunek są przeciwnych znaków. Dla tego przypadku od czerwonego ładunku (+) wychodzą jasnoczerwone linie a od

niebieskiego (-) linie jasnoniebieskie.

Początkowo J=2 co oznacza pierwszą kreśloną linię nie na przeciwko ładunku drugiego. Teoretycznie siła działająca na ładunek próbny jest od + i do -. W praktyce kodowania przyjęto zwrot siły od pierwszego do drugiego ładunku obojętnie jaki by nie był pierwszy (+ czy -) i drugi ładunek. W końcu kierunek działania sił jest umowny. Wobec tego, zwrot wektora siły pochodzącej od ładunku drugiego jest przeciwny

(K=-1).

PRZYP=4 Pierwszy i drugi ładunek są takiego samego znaku. Dla tego przypadku linie pola są tego samego koloru (cyjanowy).

Początkowo J=2 co oznacza pierwszą kreśloną linię nie na przeciwko ładunku drugiego. Równie dobrze mogło być J=1.

Zwrot wektora siły pochodzącej od ładunku drugiego jest taki sam jak ładunku pierwszego: K=1.

K - zwrot wektora siły pochodzącej od ładunku drugiego:

K=1 - dla ładunku drugiego gdy on jest tego samego znaku co pierwszy

K=-1 - dla ładunku drugiego gdy on jest innego znaku co pierwszy.

Początkowe punkty wykreślanych linii wyznaczone są przez:

X?P(J) i Y?P(J) - rzeczywiste współrzędne tuż przy ładunku.

XX?P(J) i YY?P(J) - współrzędne obrazu na ekranie tuż przy ładunku.

Współrzędne następnych punktów nie są już tablicowane bo nie muszą być zapamiętywane: punkt końcowy staje sie punktem początkowym.

Końcowe punkty wykreślanych linii wyznaczone są przez:

Okno graficzne dla wykreślanych linii (MINX, MAXX, MINY i MAXY):

MINX - minimalna wartość X okna graficznego w pikselach ekranu

MAXX - maksymalna wartość X okna graficznego w pikselach ekranu

MINY - minimalna wartość Y okna graficznego w pikselach ekranu

MAXY - maksymalna wartość Y okna graficznego w pikselach ekranu

Zbliżenie linii do przeciwnego ładunku na odległość nie mniejszą niż R, gdzie R jest promieniem okręgów na których zaczynają się linie przeciwnego ładunku (a więc także kończą roboczego ładunku).

SKALA - Skala jest stała dla wszystkich współrzędnych obu sił - ustalona na bazie doświadczenia.

2700 SKALA=100 '* Im SKALA wieksza tym lepsza ale za bardzo spowalnia rysunek

Zobrazowanie zastosowania zmiennej zmiany zwrotu wektora (zmienna K)

Zobrazowanie zastosowania skali (zmienna SKALA)

2800	Wyznaczenie warunkow wstepnych dla grafiki linii	
2830 I	IF ZNAK1\$=CHR\$(48) THEN PRZYP=1:	Jeżeli pierwszy ładunek jest zerowy (neutralny)
	J=1:	Przygotuj pod rysowanie linii numer 1 ładunku drugiego (ona nie będzie rysowana)
	GOTO 4030	Skocz do linii numer 4030 (zacznij rozważać rysowanie linii ładunku drugiego)
2840 I	IF ZNAK2\$=CHR\$(48) THEN PRZYP=2:	Jeżeli drugi ładunek jest zerowy (neutralny)
	J=1:	Przygotuj pod rysowanie linii numer 1 ładunku pierwszego (ona nie będzie rysow.)
	GOTO 3030	Skocz do linii numer 3030 (zacznij rozważać rysowanie linii ładunku pierwszego)
2850 I	IF (ZNAK1\$=CHR\$(43) AND ZNAK2\$=CHR\$(45)) OR	Jeżeli ładunki są przeciwnych znaków
	(ZNAK1\$=CHR\$(45) AND ZNAK2\$=CHR\$(43))	
	THEN PRZYP=3: K=-1:	Zmień zwrot siły pochodzącej od ładunku drugiego
	KOLOR=11:	Ustaw kolor na jednolity dla linii obu ładunków (tu: cyjanowy)
	J=2:	Przygotuj pod rysowanie linii ładunku pierwszego (nie rysuj pierwszej linii)
	GOTO 3030	Skocz do linii numer 3030 (zacznij rysowanie linii ładunku pierwszego)
2860 I	IF (ZNAK1\$=CHR\$(43) AND ZNAK2\$=CHR\$(43)) OR	Jeżeli ładunki są tego samego znaku
	(ZNAK1\$=CHR\$(45) AND ZNAK2\$=CHR\$(45))	
	THENPRZYP=4: K=1:	Ne zmieniaj zwrotu siły pochodzącej od ładunku drugiego
		(Kolor linii będzie zależał od rodzaju ładunków)
	J=2:	Przygotuj pod rysowanie linii ładunku pierwszego (nie rysuj pierwszej linii)
	GOTO 3030 '* Rysuj linie ladunku 1-go	Skocz do linii numer 3030 (zacznij rysowanie linii ładunku pierwszego)
	Rysowanie linii dla ładunku pierwszego (po lewej stronie ekranu)	
3030	FOR M=J TO ILOSCL1 'STEP=1, domyślnie	Wykonaj to co poniżej tyle razy ile linii ma być rysowane od ładunku pierwszego
		(ILOSCL1 - J). J=2 a więc nie rysuj pierwszej linii - tej prowadzącej w linii prostej do
		drugiego ładunku.
3040	X1PL=X1P(M): Y1PL=Y1P(M)	Weź wartości współrzędnych rzeczywistych punktu początkowego
3050	XX=XX1P(M): YY=YY1P(M)-14	Weź wartości współrzędnych ekranowych (w pikselach) punktu początkowego
		(obliczone już wcześniej)
3060	IF PRZYP<>3	Jeżeli ładunki są przeciwnych znaków
	THEN IF ZNAK1\$=CHR\$(43)	Jeżeli pierwszy ładunek jest dodatni (+)
	THEN KOLOR=5	Przypisz kolor magneta dla tych linii
	ELSE KOLOR=2	W innym przypadku - a będzie to ładunek ujemny (-), daj liniom kolor zielony
		ej wartości różnej od zera) albo przestań rysować (RYSUJ=0)
		go na ekranie monitora i przypisz mu kolor
3070	RYSUJ=1	Każ programowi rysować
3080	PSET(XX,YY),KOLOR '* Ustaw pioro i kolor na punkcie poczatkowym	Ustaw wartość pozycji punktu początkowego na ekranie monitora i przypisz mu
		kolor
	<u> </u>	zasu gdy zmienna logiczna RYSUJ zmieni się na 0 (zero)
3090	WHILE RYSUJ '* RYSUJ=0 znaczy 'nie rysuj'; RYSUJ=1 znaczy 'rysuj'	To co poniżej rób wiele razy. Na razie nie wiemy ile razy. Skoro RYSUJ ustawione jest

na wartość inną niż 0 (zero), ta pętla logiczna (WHILE wykonana przynajmniej raz. Spodziewamy się jednak, ż razy, aż do momentu gdy RYSUJ przyjmie wartość 0 (zer				
I razy az do momentu gdy RYSIII przyjmie Wartosc II izej	•			
pętli instrukcją bezwarunkową taką jak GOTO (instrukcj	_			
przeciwieństwo instrukcji logicznej dopuszczającej więc				
3100 IF PRZYP=2 Jeżeli ładunek drugi jest neutralny, pomiń wpływ ładun				
THEN F2X=0: F2Y=0: Przyjmij, że współrzędne siły pochodzącej od ładunku				
GOTO 3270 Skocz do linii numer 3270 pomijając wpływ ładunku dr				
Obliczanie wpływu ładunku drugiego na ładunek próbny czyli teraz oblicz siłę wywieraną na punkt (ładunek próbny) przez ł				
Obliczanie odległości pomiędzy środkiem ładunku drugiego a ładunkiem próbnym (naszym punktem roboczym)				
RX i RY spełniło swoją rolę i ich wartości nie są już potrzebne. Zastąpimy je nowymi (potrzebnymi teraz) wartościan	mi			
RX - odległość współrzędnej X-owej pomiędzy ładunkiem drugim i próbnym				
RY - odległość współrzędnej Y-owej pomiędzy ładunkiem drugim i próbnym				
3160 RX=X1PL-XPOZ2R '* x-owa srodka ladunku 2-go jest zawsze dodatnia				
3170 RY=Y1PL '*YPOZ2R=0 wiec RY=Y1PL a jego kwadrat zawsze nieujemny YPOZ2R=0 - Y-owa współrzędna obu ładunków jest zer	em więc jej nie odejmujemy			
ani ją nie dodajemy do Y1PL				
3180 R2=SQR(RX^2+RY^2) To twierdzenie Pitagorasa (pierwiastek z sumy kwadrat	tów); ^ znaczy potęguj			
Obliczanie siły działającej na ładunek próbny ze strony ładunku drugiego.				
R2 nigdy nie będzie równy 0 (zeru) bo punkt ładunku próbnego nigdy nie osiągnie środka ładunku drugiego.				
Granicami są XPOZ2R+R, XPOZ2R-R, YPOZ2R+R i YPOZ2R-R				
3240 F2=L2/R2^2 F2 to bezwzględna długość wektora siły powodowanej	ładunkiem drugim			
3250 F2X=F2*RX/R2*K F2X to współrzędna X-owa siły F2				
3260 F2Y=F2*RY/R2*K F2Y to współrzędna Y-owa sily F2				
Obliczanie wpływu ładunku pierwszego na ładunek próbny czyli teraz oblicz siłę wywieraną na punkt (ładunek próbny) przez ładunek pierwszy				
Obliczanie odległości pomiędzy środkiem ładunku pierwszego a ładunkiem próbnym (naszym punktem roboczym	1)			
RX i RY spełniło swoją rolę i ich wartości nie są już potrzebne. Zastąpimy je nowymi (potrzebnymi teraz) wartościan	mi			
RX - odległość współrzędnej X-owej pomiędzy ładunkiem pierwszym i próbnym				
RY - odległość współrzędnej Y-owej pomiędzy ładunkiem pierwszym i próbnym				
3320 RX=X1PL-XPOZ1R '* x-owa srodka ladunku 1-go jest zawsze ujemna				
3330 RY=Y1PL '*YPOZ1R=0 wiec RY=Y1PL a jego kwadrat zawsze nieujemny YPOZ1R=0 - Y-owa współrzędna obu ładunków jest zer	rem więc jej nie odejmujemy			
ani ją nie dodajemy do Y1PL				
3340 R1=SQR(RX^2+RY^2) To twierdzenie Pitagorasa (pierwiastek z sumy kwadrat	tów); ^ znaczy potęguj			
Obliczanie siły działającej na ładunek próbny ze strony ładunku pierwszego.				
R1 nigdy nie będzie równy 0 (zeru) bo punkt ładunku próbnego nigdy nie osiągnie środka ładunku pierwszego.				
Granicami są XPOZ1R+R, XPOZ1R+R i YPOZ1R-R				
	Land and Committee of			
3400 F1=L1/R1^2 F1 to bezwzględna długość wektora siły powodowanej	radunkiem pierwszym			
	iadunkiem pierwszym			

	kalę (SKALA) wziętą po prostu z doświadczenia (patrzenia na wynik grafiki - jeżeli linie		
nie są 'płynne' a nawet zachodzą na siebie, to koniecznie musimy zwiększyć wartość z			
SKALA aby grafikę otrzymać szybciej (program wykonuje wtedy mniej obliczeń) Uwaga: Linie pola elektrostatycznego nie mogą zachodzić na siebie ani się przecinać!			
	nogą zachodzie na siebie ani się przecinac :		
, ,	Dodaj do cichia wanétrzodno V owo obu waktorów		
, , , , , , , , , , , , , , , , , , , ,	Dodaj do siebie współrzędne X-owe obu wektorów		
, , ,	Dodaj do siebie współrzędne Y-owe obu wektorów		
Do tej pory odjęcie od siebie współrzędnych wektorów oznacz			
Zawieś ten wektor w punkcie ładunku próbnego aby znaleźć następny punkt, w któr			
wypadkowego) będą początkiem następnego wektora wypadkowego początku			
a) Zawiesimy ten wektor w punkcie ładunku próbnego aby			
b) Znajdziemy mu odpowiadaj			
3470 X1KL=X1PL+FX:	Współrzędna X-owa końca wektora wypadkowego zawieszonego w punkcie ładunku		
V4V1 V4D1 EV	próbnego		
Y1KL=Y1PL+FY '* To sa nastepne punkty linii	Współrzędna Y-owa końca wektora wypadkowego zawieszonego w punkcie ładunku		
3480 'Wejdz z tymi punktami do podprogramu aby znalezc punkt na ekranie	próbnego		
Sprawdź czy ta linia prowadzona od ładunku pierwszego nie przecina granicy otoczki ł			
Może się zdarzyć, że linia przetnie ładu			
3500 IF X1KL <xpoz2r+r and="" x1kl="">XPOZ2R-R AND</xpoz2r+r>	Jeżeli linia prowadzona od ładunku pierwszego (a nie jest to linia dla neutralnego		
Y1KL <ypoz2r+r and="" y1kl="">YPOZ2R-R AND</ypoz2r+r>	ładunku drugiego i		
PRZYP<>2	nie jest to PRZYP=2), wtedy:		
THEN RYSUJ=0:	Przerwij rysowanie tej linii		
GOTO 3550	Pomiń (zignoruj) dalsze instrukcje pętli WHILE		
ELSE	W przeciwnym wypadku:		
X=X1KL: Y=Y1KL:	Przygotuj współrzędne punktu końcowego wektora wypadkowego do zamiany go		
	na punkt ekranu		
GOSUB 10000	Konwertuj (zamień) te współrzędne na współrzędne ekranu monitora		
Sprawdź czy rysowana linia nie	e przekracza okna graficznego.		
Dlaczego linie wykraczające poza okno graficzne nie są kontynuowane tak, aby dociel	rały do ładunku drugiego? Odpowiedź: Zdecydowałem się na to ponieważ przypadek		
ładunków przeciwnych znaków o zdecydowanej różnicy 'wartości ładunku' (jeder	n ładunek 1 a drugi 5) dawałoby taką samą ilość linii przy obu ładunkach pomimo		
zdecydowanej różnicy i	ch 'wartości ładunków'.		
3510 IF XX <minx or="" xx="">MAXX OR YY<miny or="" yy="">MAXY</miny></minx>	Jeżeli punkt jest poza ekranem graficznym (wykreślana linia przecina granice		
	wyznaczone oknem graficznym):		
THEN RYSUJ=0:	Przerwij rysowanie tej linii		
GOTO 3550	Pomiń (zignoruj) dalsze instrukcje pętli WHILE		
Nadal rysuj linę a po narysowaniu tej minimalnej kreseczki zamień wartość współrzęc	1 1 1		
wektora wypadkowego, którego współrzęd			
3520 LINE -(XX,YY-14),KOLOR '* Rysuj linie do tego punktu od punktu poprzed.	Rysuj następny mały odcinek linii z góry ustalonym kolorem. Liczba 14 to wysokość		
, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,		

		kursora, który podnosi okno graficzne - wprowadzone w celu korekcji obrazu.
3530	X1PL=X1KL:	Współrzędne punktu końcowego 'starego' wektora stają się współrzędnymi punktu
	Y1PL=Y1KL	początkowego 'nowego' wektora
3540	WEND	Koniec pętli WHILE (WEND czyli While END) - jej początek to linia 3090
3550	NEXT M	Koniec pętli FOR - jej początek to linia 3030
4000	Rysowanie linii dla ładunku drugiego (po prawej stronie ekranu)	
	Kod jest taki sam jak z 'Rysowanie linii ładunku pierwszego' z tym, że dotyczy	ładunku drugiego
	(Numeracja linii - tamte linie + 1000)	
4030	FOR M=J TO ILOSCL2	Wykonaj to co poniżej tyle razy ile linii ma być rysowane od ładunku drugiego
		(ILOSCL2 - J). J=2 a więc nie rysuj pierwszej linii - tej prowadzącej w linii prostej do
		pierwszego ładunku.
4040	X2PL=X2P(M): Y2PL=Y2P(M)	Weź wartości współrzędnych rzeczywistych punktu początkowego
4050	XX=XX2P(M): YY=YY2P(M)-14	Weź wartości współrzędnych ekranowych (w pikselach) punktu początkowego
		(obliczone już wcześniej)
4060	IF PRZYP<>3	Jeżeli ładunki są przeciwnych znaków
	THEN IF ZNAK2\$=CHR\$(43)	Jeżeli pierwszy ładunek jest dodatni (+)
	THEN KOLOR=5	Przypisz kolor magneta dla tych linii
	ELSE KOLOR=2	W innym przypadku - a będzie to ładunek ujemny (-), daj liniom kolor zielony
	Ustaw wartość logiczną 'rysuj' (RYSUJ jest 'prawdą' dla każc	lej wartości różnej od zera) albo przestań rysować (RYSUJ=0)
	Ustaw wartość pozycji punktu początkowe	ego na ekranie monitora i przypisz mu kolor
4070	RYSUJ=1	Każ programowi rysować
4080	PSET(XX,YY),KOLOR '* Ustaw pioro i kolor na punkcie poczatkowym	Ustaw wartość pozycji punktu początkowego na ekranie monitora i przypisz mu
		kolor
	Rysuj jedną konkretną linię ładunku pierwszego aż do	czasu gdy zmienna logiczna RYSUJ zmieni się na 0 (zero)
4090	WHILE RYSUJ '* RYSUJ=0 znaczy 'nie rysuj'; RYSUJ=1 znaczy 'rysuj'	To co poniżej rób wiele razy. Na razie nie wiemy ile razy. Skoro RYSUJ ustawione jest
		na wartość inną niż 0 (zero), ta pętla logiczna (WHILE podczas gdy) zostanie
		wykonana przynajmniej raz. Spodziewamy się jednak, że będzie wykonana wiele
		razy, aż do momentu gdy RYSUJ przyjmie wartość 0 (zero) albo wymusimy wyjście z
		pętli instrukcją bezwarunkową taką jak GOTO (instrukcja bez żadnego 'ale' -
		przeciwieństwo instrukcji logicznej dopuszczającej więcej niż jeden przypadek).
4100	IF PRZYP=1	Jeżeli ładunek pierwszy jest neutralny, pomiń wpływ ładunku pierwszego na drugi:
	THEN F1X=0: F1Y=0:	Przyjmij, że współrzędne siły pochodzącej od ładunku pierwszego są zerowe
	GOTO 4270	Skocz do linii numer 4270 pomijając wpływ ładunku pierwszego na ładunek drugi
		oblicz siłę wywieraną na punkt (ładunek próbny) przez ładunek pierwszy
		szego a ładunkiem próbnym (naszym punktem roboczym)
		one. Zastąpimy je nowymi (potrzebnymi teraz) wartościami
		między ładunkiem pierwszym i próbnym
	RY - odległość współrzędnej Y-owej po	między ładunkiem pierwszym i próbnym

4160	RX=X2PL-XPOZ1R '* x-owa srodka ladunku 1-go jest zawsze ujemna	
4170	RY=Y2PL '*YPOZ1R=0 wiec RY=Y2PL a jego kwadrat zawsze nieujemny	YPOZ1R=0 - Y-owa współrzędna obu ładunków jest zerem więc jej nie odejmujemy
		ani ją nie dodajemy do Y2PL
4180	R1=SQR(RX^2+RY^2)	To twierdzenie Pitagorasa (pierwiastek z sumy kwadratów); ^ znaczy potęguj
	Obliczanie siły działającej na ładunek	próbny ze strony ładunku pierwszego.
	R1 nigdy nie będzie równy 0 (zeru) bo punkt ładunku pi	róbnego nigdy nie osiągnie środka ładunku pierwszego.
	Granicami są XPOZ1R+R, XPO	Z1R-R, YPOZ1R+R i YPOZ1R-R
4240	F1=L1/R1^2 '* F1 to dlugosc wektora sily powodowanej ladunkiem 1-ym	F1 to bezwzględna długość wektora siły powodowanej ładunkiem pierwszym
4250	F1X=F1*RX/R1*K '* F1X to wspolrzedna x-owa sily F1	F1X to współrzędna X-owa siły F2
4260	F1Y=F1*RY/R1*K '* F1Y to wspolrzedna y-kowa sily F1	F1Y to współrzędna Y-owa siły F2
	Obliczanie wpływu ładunku drugiego na ładunek próbny czyli teraz o	oblicz siłę wywieraną na punkt (ładunek próbny) przez ładunek drugi
	Obliczanie odległości pomiędzy środkiem ładunku drugi	ego a ładunkiem próbnym (naszym punktem roboczym)
	RX i RY spełniło swoją rolę i ich wartości nie są już potrzeb	ne. Zastąpimy je nowymi (potrzebnymi teraz) wartościami
	RX - odległość współrzędnej X-owej po	omiędzy ładunkiem drugim i próbnym
	RY - odległość współrzędnej Y-owej po	omiędzy ładunkiem drugim i próbnym
4320	RX=X2PL-XPOZ2R '* x-owa srodka ladunku 2-go jest zawsze dodatnia	
4330	RY=Y2PL '*YPOZ2R=0 wiec RY=Y2PL a jego kwadrat zawsze nieujemny	YPOZ2R=0 - Y-owa współrzędna obu ładunków jest zerem więc jej nie odejmujemy
		ani ją nie dodajemy do Y2PL
4340	R2=SQR(RX^2+RY^2)	To twierdzenie Pitagorasa (pierwiastek z sumy kwadratów); ^ znaczy potęguj
	Obliczanie siły działającej na ładunek	c próbny ze strony ładunku drugiego.
	R2 nigdy nie będzie równy 0 (zeru) bo punkt ładunku į	próbnego nigdy nie osiągnie środka ładunku drugiego.
	Granicami są XPOZ2R+R, XPO	Z2R-R, YPOZ2R+R i YPOZ2R-R
4400	F2=L2/R2^2	F1 to bezwzględna długość wektora siły powodowanej ładunkiem drugim
4410	F2X=F2*RX/R2	F1X to współrzędna X-owa siły F1
4420	F2Y=F2*RY/R2	F1Y to współrzędna Y-owa siły F1
Dodawa	anie do siebie współrzędnych wektorów sił: F1 i F2 i podzielenie wyniku przez s	skalę (SKALA) wziętą po prostu z doświadczenia (patrzenia na wynik grafiki - jeżeli linie
nie są 'p	płynne' a nawet zachodzą na siebie, to koniecznie musimy zwiększyć wartość z	miennej SKALA; jeżeli linie są takie, jak oczekujemy, to zmniejszamy wartość zmiennej
	SKALA aby grafikę otrzymać szybciej (pr	ogram wykonuje wtedy mniej obliczeń)
	Uwaga: Linie pola elektrostatycznego nie n	nogą zachodzić na siebie ani się przecinać!
4440	' Dodaj do siebie wektory sily: FX=F1X+F2X i FY=F1Y+F2Y i	
4450	FX=(F1X+F2X)/SKALA:	Dodaj do siebie współrzędne X-owe obu wektorów
	FY=(F1Y+F2Y)/SKALA '* Im wieksza SKALA tym lepsza	Dodaj do siebie współrzędne Y-owe obu wektorów
	Do tej pory odjęcie od siebie współrzędnych wektorów oznacz	zało, że były one zawieszone w punkcie o współrzędnych (0,0).
Zawie	s ten wektor w punkcie ładunku próbnego aby znaleźć następny punkt, w któr	ym będzie ładunek próbny. Te wielkości są rzeczywiste (współrzędne końca wektora
,		ıjącego następny cykl pętli WHILE. Zanim zaczniemy następny cykl pętli WHILE:
	a) Zawiesimy ten wektor w punkcie ładunku próbnego aby	znaleźć następny punkt, w którym będzie ładunek próbny,
	b) Znajdziemy mu odpowiadaj	ący punkt na ekranie monitora
	X2KL=X2PL+FX:	Współrzędna X-owa końca wektora wypadkowego zawieszonego w punkcie ładunku

		próbnego		
	Y2KL=Y2PL+FY '* To sa nastepne punkty linii	Współrzędna Y-owa końca wektora wypadkowego zawieszonego w punkcie ładunku		
4480	' Wejdz z tymi punktami do podprogramu aby znalezc punkt na ekranie	próbnego		
		dunku pierwszego wyznaczonej przez promień R. Jeżeli tak, to przerwij rysowanie linii.		
	, ,	unek i nieznacznie wyjdzie poza niego.		
4500	IF X2KL <xpoz1r+r and="" x2kl="">XPOZ1R-R AND</xpoz1r+r>	Jeżeli linia prowadzona od ładunku drugiego (a nie jest to linia dla neutralnego		
	Y2KL <ypoz1r+r and="" y2kl="">YPOZ1R-R AND</ypoz1r+r>	ładunku pierwszego i		
	PRZYP<>1	nie jest to PRZYP=1), wtedy:		
	THEN RYSUJ=0:	Przerwij rysowanie tej linii		
	GOTO 4550	Pomiń (zignoruj) dalsze instrukcje pętli WHILE		
	ELSE	W przeciwnym wypadku:		
	X=X2KL: Y=Y2KL:	Przygotuj współrzędne punktu końcowego wektora wypadkowego do zamiany go na punkt ekranu		
	GOSUB 10000	Konwertuj (zamień) te współrzędne na współrzędne ekranu monitora		
	Sprawdź czy rysowana linia ni	e przekracza okna graficznego.		
Dlacze	ego linie wykraczające poza okno graficzne nie są kontynuowane tak, aby docie	rały do ładunku drugiego? Odpowiedź: Zdecydowałem się na to ponieważ przypadek		
ła	adunków przeciwnych znaków o zdecydowanej różnicy 'wartości ładunku' (jede	n ładunek 1 a drugi 5) dawałoby taką samą ilość linii przy obu ładunkach pomimo		
	zdecydowanej różnicy i	ch 'wartości ładunków'.		
4510	IF XX <minx or="" xx="">MAXX OR YY<miny or="" yy="">MAXY</miny></minx>	Jeżeli punkt jest poza ekranem graficznym (wykreślana linia przecina granice		
		wyznaczone oknem graficznym):		
	THEN RYSUJ=0:	Przerwij rysowanie tej linii		
	GOTO 4550	Pomiń (zignoruj) dalsze instrukcje pętli WHILE		
Nadal	rysuj linę a po narysowaniu tej minimalnej kreseczki zamień wartość współrzęc	dnej rzeczywistej punktu końcowego wektora wypadkowego na początek następnego		
	<u> </u>	dne końca obliczy następny cykl pętli WHILE		
4520	LINE -(XX,YY-14),KOLOR '* Rysuj linie do tego punktu od punktu poprzed.	Rysuj następny mały odcinek linii z góry ustalonym kolorem. Liczba 14 to wysokość		
		kursora, który podnosi okno graficzne - wprowadzone w celu korekcji obrazu.		
4530	X2PL=X2KL:	Współrzędne punktu końcowego 'starego' wektora stają się współrzędnymi punktu		
	Y2PL=Y2KL	początkowego 'nowego' wektora		
4540	WEND	Koniec pętli WHILE (WEND czyli While END) - jej początek to linia 4090		
4550	NEXT M	Koniec pętli FOR - jej początek to linia 4030		
5000	Procedura wyjścia z programu			
5010	LOCATE 25,18:	Ustaw kursor tekstowy na pozycji (25,18) ekranu (ostatnia linia na ekranie);		
	PRINT "Naci" CHR\$(152) "nij dowolny klawisz aby wyj" CHR\$(152) CHR\$(134)	Pisz tekst;		
	" z programu";			
5020	S\$=INKEY\$: IF S\$="" THEN 5020	Czekaj na przyciśnięcie jakiegokolwiek klawisza;		
5030	CLS:	Wyczyść ekran monitora;		
	END	Zakończ program		

10000	000 Podprogram - wymiana wielkości rzeczywistych na punkty ekranu		
10030	XQ=X: YQ=Y		Zamień X i Y na wielkości robocze podprogramu;
10040	XXQ=CINT(XQ*FQ)+XPQ	'*XX-pikselowa wspolrzedna X punktu na ekranie	Dostosuj współrzędną rzeczywistą X-ową punktu do współrzędnych X-owych
			ekranowych
10050	YYQ=CINT(-YQ*FQ)+YPQ	'*YY-pikselowa wspolrzedna Y punktu na ekranie	Dostosuj współrzędną rzeczywistą Y-ową punktu do współrzędnych Y-owych
		' FQ - jednostka obu osi ukladu w pikselach	ekranowych
			Instrukcja CINT odpowiada za znalezienie najbliższego piksela (aktywnego punktu
			ekranowego) aby obraz naszego punktu nie był rozmazany;
10060	XX=XXQ: YY=YYQ/1.2	'* 1.2 - wspolczynnik korygujacy zwezenie obrazu	Zamień obliczone przez podprogram wielkości na te, które wyjdą z podprogramu do
			programu głównego;
10070	RETURN		Zakończ podprogram i skocz do miejsca tuż po linii skąd wywołany został
			podprogram (instrukcją GOTO 10000). Wszystkie zmienne w GWBasic'u są
			traktowane jak globalne stąd wartości wszystkich zmiennych podprogramu są
			widoczne w programie głównym (RETURN to powrót do programu głównego i nic
			nie 'zwraca' do programu głównego)

War	Warunki testowe						
		Ładune		Odległść ładunkw	Skala	Rezultat testu	
Rodzaj	Wartość	Rodzaj	Wartość	0.010010001000		Mezaltat testa	
0		0		od 1 do 14, w tym liczby nie będące całkowitymi	od 1 do 200	Taki jak oczekiwany	
0		+	od 1 do 5	od 1 do 14, w tym liczby nie będące całkowitymi	od 60 do 200	Użycie skali poniżej 60 daje niesatysfakcjonujące rezultaty	
0		-	od 1 do 5	od 1 do 14, w tym liczby nie będące całkowitymi	od 60 do 200	Użycie skali poniżej 60 daje niesatysfakcjonujące rezultaty	
+	od 1 do 5	0		od 1 do 14, w tym liczby nie będące całkowitymi	od 60 do 200	Użycie skali poniżej 60 daje niesatysfakcjonujące rezultaty	
-	od 1 do 5	0		od 1 do 14, w tym liczby nie będące całkowitymi	od 60 do 200	Użycie skali poniżej 60 daje niesatysfakcjonujące rezultaty	
+	od 1 do 5	-	od 1 do 5	od 1 do 14, w tym liczby nie będące całkowitymi	od 60 do 200	Użycie skali poniżej 150 daje niesatysfakcjonujące rezultaty, tym	
						bardziej nie do akceptacji im odległości pomiędzy ładunkami	
						maleją. Użycie SKALA=200 daje dobre rezultaty.	
-	od 1 do 5	+	od 1 do 5	od 1 do 14, w tym liczby nie będące całkowitymi	od 60 do 200	Użycie skali poniżej 150 daje niesatysfakcjonujące rezultaty, tym	
						bardziej nie do akceptacji im odległości pomiędzy ładunkami	
						maleją. Użycie SKALA=200 daje dobre rezultaty.	
+	od 1 do 5	+	od 1 do 5	od 1 do 14, w tym liczby nie będące całkowitymi	od 60 do 200	Użycie skali poniżej 100 daje niesatysfakcjonujące rezultaty, tym	
						bardziej nie do akceptacji im odległości pomiędzy ładunkami	
						maleją i tym bardziej gdy zwiększa się różnica pomiędzy	
						wartościami ładunków. Użycie SKALA=200 daje dobre rezultaty.	
-	od 1 do 5	-	od 1 do 5	od 1 do 14, w tym liczby nie będące całkowitymi	od 60 do 200	Użycie skali poniżej 100 daje niesatysfakcjonujące rezultaty, tym	
						bardziej nie do akceptacji im odległości pomiędzy ładunkami	
						maleją i tym bardziej gdy zwiększa się różnica pomiędzy	
						wartościami ładunków. Użycie SKALA=200 daje dobre rezultaty.	

Warunek testu	Specyfika danych	Rezultat
Niepoprawne wprowadzenie ładunku a; ++; +0; 3; abc.d		Odpowiedź programu jest poprawna: Wyświetlanie wiadomości, usuwanie niepoprawnych
		danych, usunięcie wiadomości w przypadku wprowadzenia poprawnych danych.
Niepoprawne wprowadzenie wielkości	1.3; 0.5; aaa; 3.4; 4,2	Odpowiedź programu jest poprawna: Wyświetlanie wiadomości, usuwanie niepoprawnych
ładunku		danych, usunięcie wiadomości w przypadku wprowadzenia poprawnych danych.
Niepoprawne wprowadzenie odległości 0.9; aaa; 4A; 4,6; 14.1; 100; -5		Odpowiedź programu jest poprawna: Wyświetlanie wiadomości, usuwanie niepoprawnych
ładunków		danych, usunięcie wiadomości w przypadku wprowadzenia poprawnych danych.
Zmiana środka układu współrzędnych,	Dla obu: od 100 do 400	Użycie wielkości pozaekranowych przerywa działanie programu. Jakakolwiek wielkość wstępna
XPQ, YPQ	(inicjalnie XPQ=320:YPQ=219)	punktów ładunku poza oknem graficznym niekontrolowanie przerywa działanie programu.
Zmiana skali, SKALA	od 1 do 500	Użycie skali poniżej 50 nie daje dobrych rezultatów. Zalecana skala to od 150 do 300. Użycie
	(inicjalnie SKALA=150)	wyższych wartości skali (SKALA>300) jest zbyteczne i wyraźnie spowalnia działanie programu.
Zmiana jednostki długości na osi układu	od 1 do 50	Użycie FQ<10 nie ma sensu ze względu na rozmiar okręgów, będących początkami linii. FQ>38
współrzędnych FQ	(inicjalnie FQ=26)	powoduje niekontrolowane przerwanie działania programu. FQ w granicach 15-30 jest OK.