

CHEMISTRY Chapter 15

SOLUCIONES

MOTIVATING STRATEGY

SOLUCIÓN:

Es una mezcla homogénea de dos o mas sustancias. Presenta una sola fase y es uniforme.

SOLVENTE:

Es la sustancia que disuelve al soluto, define las propiedades físicas de la solución y generalmente está en mayor proporción. Solo puede haber un solvente.

SOLUTO:

Es la sustancia que se disuelve, define las propiedades químicas de la solución y generalmente está en menor proporción. Pueden haber uno o más solutos.

TIPOS DE SOLUCIONES:

ESTADO DEL SISTEMA	SOLUCIÓN		EJEMBLO
	DISOLVENTE	SOLUTO	EJEMPLO
SÓLIDO	SÓLIDO	SÓLIDO	ALEACIONES (BRONCE)
	SÓLIDO	LÍQUIDO	AMALGAMA (ORO - MERCURIO)
	SÓLIDO	GAS	BOLSA DE NAFTALINA (AIRE – NAFTALENO)
LÍQUIDO	LÍQUIDO	SÓLIDO	AGUA SALADA (AGUA - SAL)
	LÍQUIDO	LÍQUIDO	VINAGRE (ÁCIDO ACÉTICO – AGUA)
	LÍQUIDO	GAS	BEBIDA GASEOSA (AGUA – DIÓXIDO DE CARBONO)
GASEOSO	GAS	SÓLIDO	GAS LIGERO (PALADIO – HIDRÓGENO)
	GAS	LÍQUIDO	HUMEDAD (AIRE - AGUA)
	GAS	GAS	AIRE (NITRÓGENO, OXÍGENO Y OTROS GASES)

CÁLCULOS FÍSICOS DE CONCENTRACIÓN

Unidades Físicas

Porcentaje en masa (% m)

$$\%m = \frac{m_{sto}}{m_{sol}} x 100\%$$

Porcentaje en volumen (% V)

$$\%V = \frac{V_{sto}}{V_{sol}} \times 100\%$$

Unidades Químicas

Molaridad (M)

$$M = \frac{\mathbf{n}_{sto}}{\mathbf{V}_{sol}}$$

$$M = \frac{\mathbf{m_{sto}}}{\overline{M}_{sto} \, \mathbf{V_{sol}}}$$

$$M = \frac{10 (\% \text{m})D_{\text{sol}}}{\overline{M}_{\text{sto}}}$$

Normalidad (N)

$$N = \frac{\# Eq - g_{sto}}{V_{sol}}$$

$$N = \frac{\mathbf{m_{sto}}}{\mathbf{mEq_{sto}} \times \mathbf{V_{sol}}}$$

$$N = M \cdot \Theta$$

$$Si \quad \theta = 1$$

$$N = M$$

CHEMISTRY

Si el porcentaje en masa de glucosa es 10%, determine cuánta glucosa hay en 200 g de solución.

A) 20 g

B) 25 g

C) 40 g

D) 50 g

$$\%m = \frac{m_{sto}}{m_{sol}} \times 100\%$$

$$10\% = \frac{m_{sto}}{200} \times 100\%$$

$$m_{sto} = 20 \text{ g}$$

Si se disuelve 20 g de NaOH (soluto) en 480 g de agua destilada, determine el porcentaje de NaOH.

$$\%m = \frac{m_{sto}}{m_{sol}} \times 100\%$$

$$\%m = \frac{20}{(20 + 480)} \times 100\%$$

$$\%m = \frac{20}{500}x\ 100\%$$

$$\%m = 4\%$$

Se tiene un 50% en peso de ácido en 500 gramos de vinagre. Determine el peso del ácido.

$$\%m = \frac{m_{sto}}{m_{sol}} \times 100\%$$

$$50\% = \frac{m_{sto}}{500} \times 100\%$$

$$50 = \frac{m_{sto}}{500}$$

$$m_{sto} = 250 \ g$$

Determine la molaridad de una solución si se tiene 10 moles de soluto contenido en 2,5 litros de dicha solución.

Resolución:

A)1 M

B)2 M

C)3 M

D)4 M

$$M = \frac{n_{sto}}{V_{sol}}$$

$$M = \frac{10}{2,5} \frac{mol}{L}$$

$$M = 4 M$$

Determine la normalidad de una solución de

 $Ca(OH)_2$ **1,2 M.**

A)1 N B)1,2 N C)2,4 N D)4,8 N

$$Ca(OH)_2$$

$$N = M.\theta$$

$$\theta = 2$$

$$N = (1,2).2$$

$$N = 2.4 \text{ N}$$

Suponiendo que en las siguientes figuras las esferas representadas corresponden a soluto disuelto en el volumen de solución designado, ¿cuál de las soluciones es la más concentrada?

Debemos recordar:

"La concentración de una solución depende de la cantidad de soluto disuelto, en tanto mayor sea dicha cantidad, mayor será la concentración"

- A) En 20 mL \rightarrow 3 esferas
- B) En 20 mL \rightarrow 2 esferas
- C) En 20 mL \rightarrow 2 esferas
- D) En 20 mL \rightarrow 1,25 esferas

7

A cuatro vasos que contienen volúmenes diferentes de agua se agrega una masa distinta de un soluto X, de acuerdo con la siguiente tabla, no existiendo precipitado en ninguna de ellas.

Vaso	Volumen de agua (ml)	Masa de X adicionada (g)
1	20	5
2	60	15
3	80	20
4	40	10

De acuerdo a lo anterior, es correcto afirmar que la concentración es

- A) mayor en el vaso 3.
- B) menor en el vaso 1.
- C) igual en los cuatro vasos.
- D) mayor en el vaso 2.

Debemos recordad que la concentración de una solución es la misma en cualquier porción analizada, entonces:

En (1): en 10 mL $H_2O \rightarrow 2.5 g X$ En (3): en

En (3): en 10 mL $H_2O \rightarrow 2,5 g X$

En (2): en 10 mL $H_2O \rightarrow 2.5 g X$

En (4) : en 10 mL $H_2O \rightarrow 2.5 g X$

Se observa que todos los vasos tienen la misma concentración