Math 100 Homework 4

1- Acknowledgment Statement: Please write the following statement as the answer to Exercise 1 and place your signature right below the statement.

"I acknowledge that it is my responsibility to carefully read the class notes before attempting the homework problems. I understand that what is in the class notes is the minimum I should know, and I should not expect to pass this course if I do not fully understand the material covered in the class notes."

- 2- Which of the following statements describes our precise definition of a vector in R"?
 - (a) We defined a vector in Rⁿ as a "quantity" having magnitude as well as direction.
 - (b) We defined a vector in Rⁿ as a directed line segment.
 - We defined a vector in \mathbb{R}^n as an element of \mathbb{R}^n , that is, a vector in \mathbb{R}^n is a matrix with exactly one column and n entries.
- 3- Let $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Compute the following scalar multiples of \mathbf{v} . In each case, draw a diagram depicting \mathbf{v} and the computed scalar multiple of v with arrows originating from the origin.
- (c) $\frac{1}{2}$ v

- 4- Compute the following sums. In each case, draw a diagram to visually verify the parallelogram rule.

- 5- What type of geometric object do we obtain when considering the collection of all scalar multiples of the vector v =
- 6- What type of geometric object do we obtain when considering the collection of all scalar multiples of the vector $\mathbf{v} = \begin{bmatrix} 1 \end{bmatrix}$?
- 7- What type of geometric object do we obtain when considering the collection of all the linear combinations of the vectors v = 1

- 8- Let L be the line y = 2x in the xy-plane. What type of geometric object do we obtain if we add the vector $\mathbf{p} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ to each point on this line? We will get a Mew line through point $\mathbf{p} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ parallel to Original line
- 9- Determine if b is a linear combination of a₁, a₂, and a₃.

Mes bis a linear combo of a 192,93

$$a_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, a_2 = \begin{bmatrix} -2 \\ 3 \\ -2 \end{bmatrix}, a_3 = \begin{bmatrix} -6 \\ 7 \\ 5 \end{bmatrix}, b = \begin{bmatrix} 11 \\ -5 \\ 9 \end{bmatrix}$$
 When $x_3 = \frac{2}{11}$, $x_2 = \frac{-41}{33}$, $x_3 = \frac{245}{33}$

Scanned with CamScanner

10- Let $A = \begin{bmatrix} 2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1 \end{bmatrix}$, let $b = \begin{bmatrix} 10 \\ 3 \\ 7 \end{bmatrix}$, and let W be the set of all linear combinations of the columns of A.

a. Is bin W? No Since RHS = Pivot columns then fore there doesn't exist numbers that makes be a linear combination of the columns of A.

b. Show that the second column of A is in W. $\overrightarrow{OA}_1 + \overrightarrow{IA}_1 + \overrightarrow{OA}_3 = \overrightarrow{A}_2$

Bold Problem

11- Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} h \\ -3 \\ -5 \end{bmatrix}$. For what value(s) of h is y in the plane generated by \mathbf{v}_1 and \mathbf{v}_2 ?

Scanned with CamScanner