Modèles statistiques pour l'analyse des séquences biologiques

Franck Picard*

*UMR CNRS-5558, Laboratoire de Biométrie et Biologie Evolutive

franck.picard@univ-lyon1.fr

F. Picard (LBBE)

Outline

- Introduction
- Préliminaires & Notations
- Caractérisation statistique du modèle MC
- 4 Mise au point du Modèle Markovien d'ordre 1 (M1) et généralisation
- 5 Quel modèle choisir ?
- Définition mathématique d'un motif dans une séquence

F. Picard (LBBE) 2 / 60

Rapide historique de l'analyse automatique de séquences

- Avant la détermination de la structure de l'ADN, il n'existait pas de bases moléculaires à la génétique
- Une fois la structure élucidée (succession de 4 monomères) se pose la question de l'analyse de l'information contenue dans la molécule
- L'ancrage dans l'algorithmique du texte est "immédiat": l'ADN est un texte composé de 4 lettres
- Comment décoder ce langage ?
- C'est aussi la "grande époque" de l'analyse automatique du langage
- Comment extraire l'information contenue dans les séquences ?
- À la main ?

F. Picard (LBBE) 3 / 60

Un ancrage dans les "Computer Sciences"

- C'est la méthode de Sanger (1975) qui permet la détermination des séquences bases après bases
- A la fin des années 70, se lancent les grands projets de séquencage
- Tout de suite se pose la question du stockage, de l'accès et de l'organisation des données
- C'est aussi l'ère de la micro-informatique et de la popularisation des méthodes automatiques
- Mais une fois les séquences organisées, comment extraire de l'information pertinente de toute cette masse d'information?

F. Picard (LBBE) 4 / 60

Premiers développements méthodologiques

- Une des idées fondatrices de l'analyse de séquences est de supposer que la comparaison de deux séquences peut se faire par alignement, étant donné le mécanisme d'évolution des séquences
- Les premiers développements mathématiques majeurs concernent la résolution algorithmique du problème d'alignement
- Une question qui se pose également est l'étude de la composition des génomes en bases, et en motifs
- Trouver les motifs d'une taille donnée est un problème d'algorithmique dont les repercusions pratiques sont considérables

F. Picard (LBBE) 5 / 60

Un petit problème de significativité

- Après avoir aligné deux séquences, que dire du score d'alignement ? Il est grand? Petit? **significativement** grand/petit?
- On sait noter cet alignement, mais que faire de cette note ?
- Comment définir la significativité statistique des informations contenues dans les séquences ?
- Deux séquences s'alignent bien, mais par rapport à quoi ?
- Travaux de Karlin proposent une p-value pour le score d'alignement, utilisée dans BLAST

F. Picard (LBBE) 6 / 60

Les motifs

- On peut s'intéresser aux caractéristiques globales des compositions en base des génomes
- La motivation principale est que les structures observées ont un sens biologique
- Une question présente : y a-t-il des structures plus présentes que d'autres ?
- Plutôt que de s'intéresser aux structures globales, on peut se demander si certains mots sont évités dans un langage, ou au contraire utilisés de manière très fréquentes.
- Plusieurs contextes : motifs exceptionnels dans une séquence, motifs consensus dans plusieurs séquences

F. Picard (LBBE) 7 / 60

Les motifs dans les séquences d'ADN

- Un exemple historique dans l'étude des génomes sont les sites de restrictions chez les bactéries
- Ce sont des motifs de 6 lettres (nucléotides) qui constituent un point de cassure de l'ADN dès qu'ils sont reconnus par une enzyme
- Ils sont "peu" présents dans les génomes bactériens
- D'autres motifs sont primordiaux et garantissent une stabilité du génome
- Exemple du motif chi : GCTGGTGG très présent chez E.Coli
- Très présent ? Mais par rapport à quoi ?

F. Picard (LBBE) 8 / 60

Vers une démarche de tests statistiques

- Pour dire si un mot est exceptionnel, on doit se donner une référence
- Un mot sera exceptionnel par rapport à un attendu qui sera un modèle de référence
- La significativité du motif n'aura de sens que par rapport au modèle de référence
- Par exemple: il est possible que TGG soit beaucoup plus fréquent que TCG parce que TG est plus fréquent que TC
- Il sera donc important que le modèle de référence prenne en compte la fréquence des sous mots qui composent un mot.

F. Picard (LBBE) 9 / 60

Exemple (simple) de mauvaise spécification du modèle

- On observe un phénomène distribué selon une certaine loi (distribution en noir)
- On veut savoir si {Observer la valeur 2} est un événement exceptionnel
- On construit un modèle (rouge)
- Au vu du modèle rouge, la valeur 2 n'est pas du tout exceptionnelle!

 $\mathbb{P}\{\text{la distribution du modèle rouge dépasse 2}\} \leq \alpha$

F. Picard (LBBE) 10 / 60

Notion de P-valeur et exceptionnalité

- La p-value est l'outil de base pour prendre une décision à l'issue d'un test
- Elle quantifie l'exceptionnalité de l'observation au vu du modèle de référence
- Dans le cas des motifs :

 $\mathbb{P}\{\mathsf{Comptage}\ \mathsf{observ\'e}\ \mathsf{d'un}\ \mathsf{motif} \geq \mathsf{Comptage}\ \mathsf{attendu}\}$

• Elle s'interprète comme la probabilité d'observer les données si le modèle de référence était vrai

F. Picard (LBBE)

Pourquoi un modèle aléatoire de séquences

- Un modèle ici sera l'ensemble de toutes les séquences possibles dont la séguence d'ADN observée ne constitue qu'une réalisation
- On cherche un modèle qui décrit globalement les caractéristique de la séquence observée (même composition en moyenne par exemple)
- L'objectif n'est pas forcément de modéliser au mieux les séguences. mais de construire un modèle aléatoire qui prenne en compte certaines informations
- On souhaite ensuite détecter des écarts au modèle, c'est à dire des événements exceptionnels compte tenu des contraintes déjà prises en compte

F. Picard (LBBE) 12 / 60

Pourquoi des résultats mathématiques ?

- Une pratique courante consiste à simuler le modèle de référence, pour calculer les p-values empiriquement
- On simule un modèle de référence et on compte le nombre de fois que le modèle est au dessus de la valeur observée par exemple
- Mais il faut aussi bien définir ce modèle! Pour respecter la composition des séquences en bases par exemple
- Les contraintes combinatoires peuvent rendre cette stratégie impossible en pratique
- Les modèles de Markov sont naturels pour décrire une suite de variables aléatoires dépendantes
- Ils offrent un cadre probabiliste pour l'analyse de séquences
- Les résultats théoriques peuvent permettent d'éviter les stratégies combinatoires

F. Picard (LBBE)

Outline

- Introduction
- Préliminaires & Notations
- Caractérisation statistique du modèle MC
- 4 Mise au point du Modèle Markovien d'ordre 1 (M1) et généralisation
- 5 Quel modèle choisir ?
- 6 Définition mathématique d'un motif dans une séquence

F. Picard (LBBE) 14 / 60

Notations pour les séquences

- On dispose d'une séquence de taille n, $s_n = (x_1, \dots, x_n)$,
- On fait l'hypothèse que s_n est une réalisation d'une séquence aléatoire $S_n = (X_1, \dots, X_n)$
- Chaque (X_i) modélise une lettre de la séquence et S_n est une succession de variables aléatoires
- On note \mathcal{A} l'espace des possibles pour chaque lettre:

$$\forall i \in \{1, \ldots, n\}, X_i \in \mathcal{A}$$

- $A = \{A, T, G, C\}$ par exemple $S_6 = ACCTAG$, n = 6
- On note également $|\mathcal{A}|$ la taille de l'alphabet (le cardinal de \mathcal{A})

F. Picard (LBBE) 15 / 60

Loi d'une séquence

• La loi de la séquence S_n se note

$$\mathbb{P}\{S_n = s_n\} = \mathbb{P}\{X_1 = x_1, \dots, X_n = x_n\}$$

 $\mathbb{P}\{S_3 = ATG\} = \mathbb{P}\{X_1 = A, X_2 = T, X_3 = G\}$

- C'est la loi jointe de toutes les lettres de la séquence
- Si les X_i sont indépendantes alors

$$\mathbb{P}\{S_n = s_n\} = \prod_{i=1}^n \mathbb{P}\{X_i = x_i\}$$

- Si les Xi ne sont pas indépendantes alors la loi de la séquence est déterminée par la loi jointe.
- Mais quel modèle considérer pour la loi d'apparition des lettres ?

F. Picard (LBBE) 16 / 60

Comment définir un modèle statistique ?

- On utilise un modèle statistique pour obtenir une approximation de ce que l'on observe
- En général tous les modèles sont faux, mais certains permettent de bien synthétiser le phénomène observé
- Un modèle statistique est consituté d'une famille de lois de probabilités sur un même espace
- En général ces lois de probabilités dépendent d'un paramètre θ qui appartient à un ensemble Θ
- On note alors:

$$\mathcal{M}_{\theta} = \{ \mathbb{P}_{\theta}, \ \theta \in \Theta \}$$

17 / 60

Exemples de modèles statistiques

• le modèle binomial de paramètre θ :

$$\mathcal{M}_{\theta} = \{\theta \in \Theta = [0,1], \ \mathbb{P}\{X = 1\} = \theta\}$$

• le modèle gaussien de paramètres (μ, σ)

$$\mathcal{M}_{\theta} = \left\{ \theta = (\mu, \sigma) \in \Theta = \mathbb{R} \times \mathbb{R}^{+}, \\ f(x) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right) \right\}$$

Dans la suite, on va caractériser les modèles de Markov d'ordre m

F. Picard (LBBE) 18 / 60

Taille de modèle et qualité d'ajustement

- On définit la taille d'un modèle $|\mathcal{M}_{\theta}|$ par le nombre de paramètres (libres) qui le caractérisent
- Modèle de Bernoulli : $|\mathcal{M}_{\theta}| = 1$, modèle Gaussien: $|\mathcal{M}_{\theta}| = 2$.
- Plus le modèle sera "riche", plus il décrira les observations de manière précise
- Le nombre d'observations étant limité, un modèle riche aura comparativement peu d'observations pour estimer tous ses paramètres comparé à un modèle "plus simple"
- Il faudra prendre en compte cet élément quand on voudra comparer des modèles

19 / 60

Outline

- Introduction
- Préliminaires & Notations
- 3 Caractérisation statistique du modèle M0
- 4 Mise au point du Modèle Markovien d'ordre 1 (M1) et généralisation
- 5 Quel modèle choisir ?
- 6 Définition mathématique d'un motif dans une séquence

F. Picard (LBBE) 20 / 60

Présentation du modèle M0

 On suppose dans un premier temps l'indépendance des lettres dans la séquence

$$\mathbb{P}\{S_n = s_n\} = \prod_{i=1}^n \mathbb{P}\{X_i = x_i\}$$

 La loi de la séquence est déterminée par la probabilité d'apparition des 4 lettres:

$$\mathbb{P}\{X_i = A\}, \mathbb{P}\{X_i = T\}, \mathbb{P}\{X_i = G\}, \mathbb{P}\{X_i = C\}$$

On utilise la notation:

$$\forall x \in \mathcal{A}, \ \mu(x) = \mathbb{P}\{X_i = x\}, \ \text{avec} \ \sum_{x \in \mathcal{A}} \mu(x) = 1$$

F. Picard (LBBE) 21 / 60

Caractérisation formelle du modèle M0

Dans la suite, on notera:

$$\boldsymbol{\mu} = (\mu(\mathbf{x}))_{\mathbf{x} \in \mathcal{A}} = (\mu(\mathbf{A}), \mu(\mathbf{T}), \mu(\mathbf{G}), \mu(\mathbf{C}))$$

• Le modèle \mathcal{M}_{θ_0} est caractérisé par:

$$\mathcal{M}_{\theta_0} = \left\{ \theta_0 = \mu \in \Theta_0 = [0, 1]^{|\mathcal{A}|}, \sum_{x \in \mathcal{A}} \mu(x) = 1, \ \mathbb{P}_{\theta}\{X = x\} = \mu(x) \right\}$$

ullet La taille du modèle est $|\mathcal{M}_{ heta_0}| = |\mathcal{A}| - 1$ à cause de la contrainte

F. Picard (LBBE) 22 / 60

Définition des variables indicatrices

- Dans la suite, on aura besoin de ces variables aléatoires
- Si ω est un événement, alors $\mathbb{I}\{\omega\}=1$ si ω est vrai, et 0 sinon
- L'indicatrice est donc une variable aléatoire: on note $Y = \mathbb{I}\{\omega\}$

$$\mathbb{P}\{Y=1\} = \mathbb{P}\{\mathbb{I}\{\omega\}\} = p$$

- Y est une variable de Bernoulli: $Y \sim \mathcal{B}(p)$
- Son espérance et sa variance sont donc:

$$\mathbb{E}(Y) = p, \ \mathbb{V}(Y) = p(1-p)$$

F. Picard (LBBE) 23 / 60

Loi d'une séquence sous le modèle M0

- $\mathbb{I}\{X_i = \mathbb{A}\} = 1$ si la *i*ème lettre de la séquence est un \mathbb{A}
- Le nombre de A dans la séquence est donc donné par:

$$N(A) = \sum_{i=1}^{n} \mathbb{I}\{X_i = A\}$$

La loi d'une séquence sous le modèle M0 est donc:

$$\begin{split} \mathbb{P}\{S_n = s_n\} &= \prod_{i=1}^n \prod_{x \in \mathcal{A}} \mu(x)^{\mathbb{I}\{X_i = x\}} = \prod_{x \in \mathcal{A}} \mu(x)^{N(x)} \\ \mathbb{P}\{S_6 = \mathtt{ACCTAG}\} &= \mu(\mathtt{A})^2 \times \mu(\mathtt{T})^1 \times \mu(\mathtt{G})^1 \times \mu(\mathtt{C})^2 \end{split}$$

F. Picard (LBBE) 24 / 60

Notion de vraisemblance

- Le modèle \mathcal{M}_{θ} sert de lien entre les observations s_n et le paramètre θ
- Une fois observée, s_n donnera de l'information sur θ : c'est la démarche de l'inférence statistique
- On appelle vraisemblance du modèle \mathcal{M}_{θ} au vu de l'observation s la fonction de densité ayant servi à définir le modèle, mais du point de vue de \mathcal{M}_{θ}

$$\mathcal{L}_s(\mathcal{M}_{\theta}) = \mathbb{P}_{\mathcal{M}_{\theta}}(s)$$

• Quand le modèle \mathcal{M}_{θ} est caratérisé par un paramètre θ on note aussi:

$$\mathcal{L}_s(\theta) = \mathbb{P}_{\theta}(s)$$

F. Picard (LBBE) 25 / 60

Pourquoi la log-vraisemblance ?

- $\mathcal{L}_s(\theta) = \mathbb{P}_{\theta}(s)$ est une probabilité donc dans [0,1]
- Si on considère un n-échantillon (indépendance) alors la vraisemblance sera très "petite" (numériquement)

$$\mathcal{L}_s(\theta) = \prod_{i=1} \mathbb{P}_{\theta}(x_i)$$

• La transformation log est une fonction croissante: la maximisation de $\mathcal{L}_s(\theta)$ et de log $\mathcal{L}_s(\theta)$ donnera la même solution

$$\frac{\partial \log \mathcal{L}_s(\theta)}{\partial \theta} = \frac{1}{\mathcal{L}_s(\theta)} \times \frac{\partial \mathcal{L}_s(\theta)}{\partial \theta}$$

• La transformation log permet de manipuler des sommes au lieu de produits. Pour un *n*-échantillon:

$$\log \mathcal{L}_s(\theta) = \sum_{i=1}^n \log \mathbb{P}_{\theta}(x_i)$$

F. Picard (LBBE) 26 / 60

L'estimateur du maximum de vraisemblance

- Si on considère le modèle \mathcal{M}_{θ} , plusieurs valeurs de θ sont possibles
- Lorsqu'on dispose d'observations, on peut alors chercher le "meilleur modèle", celui dont la vraisemblance est la meilleure:

$$\widehat{ heta}(s) = rg \max_{ heta \in \Theta} \left\{ \log \mathcal{L}_s(heta)
ight\}$$

• La maximisation de la vraisemblance nécessite la résolution de l'équation:

$$\frac{\partial \log \mathcal{L}_s(\theta)}{\partial \theta} = 0$$

• L'estimateur du maximum de vraisemblance $\hat{\theta}(s)$ est la solution de cette équation

F. Picard (LBBE) 27 / 60

Retour au modèle M0

• La log-vraisemblance du modèle M0 est:

$$\log \mathcal{L}_s(\theta) = \log \mathbb{P}_{\theta} \{ S_n = s_n \} = \sum_{x \in \mathcal{A}} N(x) \log \mu(x)$$

• On cherche à maximiser la vraisemblance par rapport aux paramètres $\mu(x)$

$$\frac{\partial \log \mathcal{L}_{\theta}(S)}{\partial \mu(x)} = 0, \ \sum_{x \in \mathcal{A}} \mu(x) = 1$$

 C'est une maximisation sous contraintes qui se résout à l'aide des multiplicateurs de Lagrange.

L'estimateur du MV pour le modèle M0

 La solution de la maximisation sous contrainte donne (pour la séquence s):

$$\forall x \in \mathcal{A}, \ \widehat{\mu}_s(x) = \frac{N_s(x)}{n}$$

- C'est la fréquence empirique de chaque lettre dans la séquence
- Exemple pour s₆ = ACCTAG:

$$\widehat{\mu}_{s_6}(\mathtt{A}) = 2/6$$
; $\widehat{\mu}_{s_6}(\mathtt{T}) = 1/6$; $\widehat{\mu}_{s_6}(\mathtt{G}) = 1/6$; $\widehat{\mu}_{s_6}(\mathtt{C}) = 2/6$.

F. Picard (LBBE) 29 / 60

Propriétés statistiques des estimateurs

• Lorsqu'on estime les paramètres $\mu(x)$, les résultats dépendent des observations

- Un estimateur est une variable aléatoire
- on distinguera l'estimateur $\widehat{\mu}_S(x)$ de sa réalisation $\widehat{\mu}_s(x)$
- On peut donc s'intéresser à sa loi, et à ses propriétés asymptotiques

F. Picard (LBBE) 30 / 60

Rappels sur l'espérance et la variance

 Si Y prend la valeur réelle y avec probability p(y) alors l'espérance de Y s'écrit:

$$\mathbb{E}(Y) = \sum_{y} y p(y)$$

- l'espérance est un opérateur **linéaire**: $\mathbb{E}(Y+Z) = \mathbb{E}Y + \mathbb{E}Z$
- Si $Y \perp Z$, $\mathbb{E}(YZ) = \mathbb{E}Y \times \mathbb{E}Z$, sinon $\mathbb{E}(YZ) = \mathbb{E}Y \times \mathbb{E}Z cov(Y, Z)$
- La variance de Y s'écrit:

$$\mathbb{V}(Y) = \mathbb{E}[Y - \mathbb{E}(Y)]^2 = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2$$

• $\mathbb{V}(Y)$ mesure l'écart de Y à son espérance (sa dispersion)

F. Picard (LBBE) 31 / 60

Espérance du de l'EMV pour le modèle M0 - 1

- l'EMV pour les probabilités d'apparition des lettres dans le modèle M0: $\widehat{\mu}_S(x) = N_S(x)/n$
- La loi de l'EMV dépend de la loi du comptage des lettres

$$N_S(x) = \sum_{i=1}^n \mathbb{I}\{X_i = x\}$$

L'espérance du comptage peut se calculer:

$$\mathbb{E}(N_{S}(x)) = \mathbb{E}\left(\sum_{i=1}^{n} \mathbb{I}\{X_{i} = x\}\right) = n\mu(x)$$

 L'estimateur du MV des probabilités d'apparition est un estimateur sans biais:

$$\mathbb{E}(\widehat{\mu}_{S}(x)) = \mu(x)$$

F. Picard (LBBE) 32 / 60

Variance du de l'EMV pour le modèle M0 - 1

- La variance de l'EMV nécessite le calcul du carré de l'espérance du comptage
- Rappel sur les carré de sommes:

$$\left(\sum_{i} a_{i}\right)^{2} = \sum_{i} a_{i}^{2} + \sum_{i \neq j} a_{i} a_{j}$$

• Pour le carré du comptage on a:

$$N_{S}^{2}(x) = \left(\sum_{i=1}^{n} \mathbb{I}\{X_{i} = x\}\right)^{2}$$
$$= \sum_{i=1}^{n} \mathbb{I}\{X_{i} = x\} + \sum_{i=1}^{n} \sum_{i \neq i} \mathbb{I}\{X_{i} = x, X_{j} = x\}$$

F. Picard (LBBE) 33 / 60

Variance du de l'EMV pour le modèle M0 - 2

• L'espérance du carré du comptage est donc:

$$\mathbb{E}(N_{S}^{2}(x)) = \sum_{i=1}^{n} \mathbb{E}(\mathbb{I}\{X_{i} = x\}) + \sum_{i=1}^{n} \sum_{j \neq i} \mathbb{E}(\mathbb{I}\{X_{i} = x, X_{j} = x\})$$

$$= n\mu(x) + n(n-1)\mu^{2}(x)$$

$$\mathbb{V}(N_{S}(x)) = n\mu(x)(1 - \mu(x))$$

• La variance de l'EMV pour les probabilités d'apparition des lettres:

$$\mathbb{V}\left(\widehat{\mu}_{S}(x)\right) = \frac{\mu(x)(1-\mu(x))}{n}$$

F. Picard (LBBE) 34 / 60

Propriétés statistiques de l'EMV pour le modèle M0 - 2

 L'inégalité de Bienaymé-Tchebychev peut s'utiliser pour quantifier la concentration d'une variable aléatoire autour de son espérance

$$\mathbb{P}\{|Y - \mathbb{E}Y| \ge \varepsilon\} \le \frac{\mathbb{V}Y}{\varepsilon^2}$$

 A l'aide de l'inégalité de Bienaymé-Tchebychev on montre la convergence de l'estimateur vers la vraie valeur du paramètre

$$\mathbb{P}\{|\widehat{\mu}(x) - \mu(x)| \ge \varepsilon\} \le \frac{\mu(x)(1 - \mu(x))}{n\varepsilon^2} \le \frac{1}{4n\varepsilon^2}$$

• Déterminer la loi du comptage est plus difficile

F. Picard (LBBE) 35 / 60

Outline

- Introduction
- Préliminaires & Notations
- Caractérisation statistique du modèle MC
- 4 Mise au point du Modèle Markovien d'ordre 1 (M1) et généralisation
- Quel modèle choisir ?
- 6 Définition mathématique d'un motif dans une séquence

F. Picard (LBBE) 36 / 60

Passage au modèle de Markov d'ordre 1: M1

• La fréquence d'apparition des dinucléotides suggère que l'hypothèse d'indépendance entre les bases est trop simplificatrice

	A	C	G	T	somme
Α	1112	561	1024	713	3410
С	795	413	95	470	1773
G	820	457	661	432	2370
T	684	342	590	548	2164

- N(AG) = 561 désigne le comptage du dinucléotide AG,
- N(A+) = 3410 désigne le comptage des dinucléotide qui commencent par un A.

		C	G	T
Α	0.33	0.16	0.30	0.21
C	0.45	0.23	0.05	0.27
G	0.35	0.19	0.28	0.18
T	0.33 0.45 0.35 0.32	0.16	0.27	0.25

F. Picard (LBBE) 37 / 60

Présentation du modèle M1 - 1

- Le modèle de Markov d'ordre 1 introduit une dépendance des positions à l'ordre 1 (mémoire à distance 1)
- (X_1, \ldots, X_n) est une chaîne de Markov d'ordre 1 ssi:

$$\mathbb{P}\{X_{k+1} = x_{k+1} | X_k = x_k, \dots, X_1 = x_1\} = \mathbb{P}\{X_{k+1} = x_{k+1} | X_k = x_k\}$$

- Ce modèle suppose que les variables (X_{k-1}, \ldots, X_1) ne donnent pas d'information sur la loi de X_{k+1}
- La loi d'une séquence de taille *n* sous le modèle M1 s'écrit:

$$\mathbb{P}\{S_n = s_n\} = \mathbb{P}\{X_1 = x_1, \dots, X_n = x_n\}
= \mathbb{P}\{X_1 = x_1\} \times \mathbb{P}\{X_2 = x_2 | X_1 = x_1\} \dots
\times \mathbb{P}\{X_n = x_n | X_{n-1} = x_{n-1}\}$$

F. Picard (LBBE) 38 / 60

Présentation du modèle M1 - 2

- La loi de la chaîne de Markov est entièrement déterminée par:
 - La loi d'émission de la première lettre: $\mathbb{P}\{X_1 = x\} = \mu(x)$
 - Les probabilités conditionnelles $\mathbb{P}\{X_i = y | X_{i-1} = x\} = \pi(x, y)$
- On fait en général l'hypothèse de stationarité : la loi des X_i ne dépend pas de l'endroit où l'on se trouve dans la séquence
- Exemple $\mathbb{P}{S = ACCACC}$

$$= \mu_1(\mathtt{A}) \times \pi_2(\mathtt{A},\mathtt{C}) \times \pi_3(\mathtt{C},\mathtt{C}) \times \pi_4(\mathtt{C},\mathtt{A}) \times \pi_5(\mathtt{A},\mathtt{C}) \times \pi_6(\mathtt{C},\mathtt{C})$$

= $\mu(\mathtt{A}) \times \pi^2(\mathtt{A},\mathtt{C}) \times \pi^2(\mathtt{C},\mathtt{C}) \times \pi(\mathtt{C},\mathtt{A})$ si stationaire

• On peut aussi écrire $\mathcal{D}(X_i,\ldots,X_{i+h})=\mathcal{D}(X_{i+\ell},\ldots,X_{i+h+\ell})$

F. Picard (LBBE) 39 / 60

Propriétés remarquables des matrices de transition

Rappel sur les probabilités conditionnelles

$$\sum_{y\in\mathcal{A}}\pi(x,y)=1$$

• La matrice π est une matrice stochastique

F. Picard (LBBE) 40 / 60

Notion de stationarité - 1

• Pour déduire la loi de X_{i+2} à partir de la loi de X_i

$$\mathbb{P}\{X_{i+1} = x_{i+1} | X_i = x_i\} = \pi(x_i, x_{i+1})
\mathbb{P}\{X_{i+2} = x_{i+2} | X_i = x_i\} = \sum_{x_{i+1} \in \mathcal{A}} \pi(x_i, x_{i+1}) \times \pi(x_{i+1}, x_{i+2})$$

- On reconnait la formule d'un produit matriciel entre la ligne x_i et la colonne x_{i+2} de π
- C'est le terme (x_i, x_{i+2}) de la matrice $\pi \times \pi = \pi^2$

$$\mathbb{P}\{X_{i+1} = \bullet\} = \mathbb{P}\{X_i = \bullet\} \times \pi$$

• Par recurrence on peut montrer que la transition en k pas dans les modèles M1 est donnée par l'élément de π^k

$$\mathbb{P}\{X_{i+1} = \bullet\} = \mathbb{P}\{X_1 = \bullet\} \times \boldsymbol{\pi}^i$$

F. Picard (LBBE) 41 / 60

Notion de stationarité - 2

• Si la loi stationnaire existe, elle doit vérifier la relation suivante:

$$\mu(x_{i+1}) = \sum_{x_i \in \mathcal{A}} \mu(x_i) \times \pi(x_i, x_{i+1})$$

$$\mu = \mu \times \pi$$

- Donc si on suppose que X_1 est de loi μ alors tous les (X_i) seront de même loi (sans être indépendants)
- Sous certaines conditions (ergodicité) on sait que cette distribution stationnaire est unique

F. Picard (LBBE) 42 / 60

Caratérisation formelle du modèle M1

• Le modèle \mathcal{M}_{θ_1} est donc caractérisé par:

$$\theta_{1} = \begin{cases} \mu = (\mu(x))_{x} \in [0, 1], x \in \mathcal{A}, & \sum_{x \in \mathcal{A}} \mu(x) = 1\\ \pi = (\pi(x, y))_{x, y} \in [0, 1], x \in \mathcal{A}, y \in \mathcal{A}, \sum_{y \in \mathcal{A}} \pi(x, y) = 1 \end{cases}$$
$$\Theta_{1} = [0, 1]^{\mathcal{A}} \times [0, 1]^{\mathcal{A} \times \mathcal{A}}$$

• La taille du modèle \mathcal{M}_{θ_1} est donc $|\mathcal{M}_{\theta_1}| = 4-1+16-4$

F. Picard (LBBE) 43 / 60

Log-Vraisemblance et EMV du modèle M1

• La log-vraisemblance des paramètres μ, π pour une séquence S:

$$\log \mathcal{L}_{S}(\mu, \pi) = \log \mu(x_{1})$$

$$+ \sum_{i=2}^{n} \sum_{x \in \mathcal{A}} \sum_{y \in \mathcal{A}} \mathbb{I}\{X_{i} = x, X_{i+1} = y\} \log \pi(x, y)$$

$$= \log \mu(x_{1}) + \sum_{x \in \mathcal{A}} \sum_{y \in \mathcal{A}} N(x, y) \log \pi(x, y)$$

- Sa maximisation se fait également sous contrainte
- Les EMV sont:

$$\widehat{\mu}(x) = N(x)/n$$
 $\widehat{\pi}(x,y) = N(x,y)/N(x+)$

F. Picard (LBBE) 44 / 60

Généralisation à l'ordre *m*

- Une séquence S_n est une chaîne de Markov d'ordre m > 1 avec une distribution initiales $\mu_m(x)$ et matrice de transition π
- $\forall x_i \in \mathcal{A}, \ \mathbb{P}\{X_1 = x_1, \dots, X_m = x_m\} = \mu(x_1, \dots, x_m)$
- $\mathbb{P}\{X_i|X_{i-m}=x_{i-m},\ldots,X_{i-1}=x_{i-1}\}=\pi(x_{i-m},\ldots,x_{i-1},x_i)$
- I'EMV de μ et de π sont:

$$\widehat{\mu}(x_1, \dots, x_{m-1}, x_m) = \frac{N(x_1, \dots, x_{m-1}, x_m)}{n - m + 1}$$

$$\widehat{\pi}(x_1, \dots, x_m, x_{m+1}) = \frac{N(x_1, \dots, x_m, x_{m+1})}{N(x_1, \dots, x_m, x_m, +)}$$

ullet La taille du modèle $\mathcal{M}_{ heta^m}$ est $(|\mathcal{A}|-1) imes |\mathcal{A}|^m$

F. Picard (LBBE) 45 / 60

Outline

- Introduction
- Préliminaires & Notations
- Caractérisation statistique du modèle MC
- 4 Mise au point du Modèle Markovien d'ordre 1 (M1) et généralisation
- Quel modèle choisir ?
- Définition mathématique d'un motif dans une séquence

F. Picard (LBBE) 46 / 60

Un modèle, pour quoi faire?

- Si on cherche le modèle qui explique au mieux les données, alors l'idée est de mettre en compétition plusieurs modèles et de choisir le "meilleur" au sens d'un certain critère
- Si on cherche à détecter des structures exceptionnelles par rapport au modèle de référence, il ne faut pas que ces structures soient prévues par le modèle de référence
- Analogie : on met dans le modèle tout ce qu'on sait et on regarde ce qu'il reste!

F. Picard (LBBE) 47 / 60

Quel ordre pour quel motif?

- Dans le modèle de Markov d'ordre 1, $\widehat{\pi}(x,y) = N(x,y)/N(x+)$
- C'est la probabilité qu'un x soit suivi d'un y qui est estimée par la proportion de x suivis d'un y
- Un modèle d'ordre m prend en compte la composition ("s'adapte à") des mots de taille 1 à m+1
- Un motif de taille h peut donc être étudié dans les modèles d'ordre maximal h-2.
- Le modèle d'ordre h-2 prend en compte la composition de la séquence en mots de longueur h-1

F. Picard (LBBE) 48 / 60

Principe de la selection de modèles

- Pour comparer des modèles, on cherche à les "noter"
- La vraisemblance d'un modèle permet de quantifier la qualité d'ajustement d'un modèle aux données
- Mais cette qualité dépend du nombre de paramètres du modèle! La vraisemblance augmente avec la dimension du modèle
- Pour une comparaison "équitable" il faut comparer des modèles en "pénalisant" leur dimension
- On utilise des vraisemblances pénalisées:

$$\log \widetilde{\mathcal{L}}_{S}(\mathcal{M}_{\theta}) = \log \mathcal{L}_{S}(\mathcal{M}_{\theta}) - \beta \operatorname{pen}(|\mathcal{M}_{\theta}|)$$

F. Picard (LBBE) 49 / 60

Différents critères de selection de modèles

 Les critères diffèrent dans leurs objectifs et dans leur définition de la pénalité

$$\begin{aligned} \mathsf{AIC} &= & \log \mathcal{L}_{\mathcal{S}}(\mathcal{M}_{\theta}) - |\mathcal{M}_{\theta}|/2 \\ \mathsf{BIC} &= & \log \mathcal{L}_{\mathcal{S}}(\mathcal{M}_{\theta}) - \frac{|\mathcal{M}_{\theta}|}{2} \times \log(n) \end{aligned}$$

	M0	M1	M2	M3	M4	M5	M6
HIV							
AIC	26.37	25.80	25.68	25.70	26.10	28.03	40.00
BIC	26.39	25.89	26.03	27.08	31.62	50.10	128.26
E. Coli							
AIC	12861	12743	12626	12546	12497	12456	12435
BIC	12862	12743	12627	12548	12508	12497	12599

F. Picard (LBBE) 50 / 60

Outline

- Introduction
- 2 Préliminaires & Notations
- Caractérisation statistique du modèle M0
- 4 Mise au point du Modèle Markovien d'ordre 1 (M1) et généralisation
- Quel modèle choisir ?
- 6 Définition mathématique d'un motif dans une séquence

F. Picard (LBBE) 51 / 60

Notations

- Un motif est défini comme une sous-séquence w d'une séquence S
- C'est une séquence connue de longueur *h* telle que:

$$\mathbf{W}=(W_1,\ldots,W_h)\in\mathcal{A}^h$$

- On définit les occurrences pour savoir combien a-t-on de motifs (et où ils se trouvent)
- La position d'un motif est définie par la position de sa première lettre W₁
- C'est une variable aléatoire!

F. Picard (LBBE) 52 / 60

Indicatrice d'occurrence

• On note $Y_i(\mathbf{w})$ la variable indicatrice qui vaut 1 si \mathbf{w} est à la position i dans la séquence \mathbf{S}

$$Y_i(\mathbf{w}) = \begin{cases} 1 \text{ si } (X_i, \dots, X_{i+h-1}) = (W_1, \dots, W_h) \\ 0 \text{ sinon} \end{cases}$$

• La loi de $Y_i(\mathbf{w})$ est une loi de Bernoulli

$$\mathbb{P}\{Y_i(\mathbf{w})=1\} = \mathbb{P}\{X_i = W_1, \dots, X_{i+h-1} = W_h\}$$

ullet On note cette probabilité $\mu(\mathbf{w})$, la probabilité d'occurrence du mot \mathbf{w}

F. Picard (LBBE) 53 / 60

Probabilité d'occurence d'un mot

- Le calcul de cette probabilité dépend du modèle de référence
- On choisit souvent le modèle M1

$$\mu(\mathbf{w}) = \mathbb{P}\{X_i = W_1, \dots, X_{i+h-1} = W_h\}$$

= $\mu(W_1) \times \pi(W_1, W_2) \times \pi(W_{h-1}, W_h)$

- Etant donné que le modèle de Markov est stationnaire, cette probabilité ne dépend pas de l'endroit où l'on se place dans la séguence
- L'esperance et la variance de l'indicatrice sont:

$$\mathbb{E}Y_i(\mathbf{w}) = \mu(\mathbf{w})$$

$$\mathbb{V}Y_i(\mathbf{w}) = \mu(\mathbf{w})(1 - \mu(\mathbf{w}))$$

F. Picard (LBBE) 54 / 60

Comptage d'un motif

 Le nombre d'occurrences d'un motif est défini à partir des indicatrices d'occurrence:

$$N(\mathbf{w}) = \sum_{i=1}^{n-h+1} Y_i(\mathbf{w})$$

• L'espérance du comptage se déduit

$$\mathbb{E}(\mathsf{N}(\mathsf{w})) = (n-h+1)\mu(\mathsf{w})$$

• Mais la variance du comptage dépend du recouvrement des occurrences ! les $Y_i(\mathbf{w})$ ne sont pas indépendantes

F. Picard (LBBE) 55 / 60

Loi exacte ou approximation?

• Déterminer la loi exacte du comptage $N(\mathbf{w})$ signifie calculer pour toutes les valeurs k de $N(\mathbf{w})$

$$\mathbb{P}\{N(\mathbf{w})=k\}$$

- Des développements existent pour calculer ces probabilités par reccurrence mais leur calcul est coùteux
- Une alternative est de considérer une loi approchée
- Une manière d'approcher une loi est de s'intéresser à la loi asymptotique, quand la longueur de la séquence tend vers l'infini

F. Picard (LBBE) 56 / 60

Rappel sur le Théorème central limite

- C'est un théorème à la base de beaucoup de demonstrations / approximations en statistique
- Si les X_k sont des variables aléatoires réelles i.i.d. d'espérance $\mathbb{E}(X)$ et de variance $\mathbb{V}(X)$ alors

$$\sqrt{n}rac{ar{X}-\mathbb{E}(X)}{\sqrt{\mathbb{V}(X)}} \mathop{\sim}\limits_{n o\infty} \mathcal{N}(0,1)$$

- Dans le cas des motifs, $N(\mathbf{w})$ est bien une somme de variables aléatoires
- Quelle est la qualité d'approximation de la loi asymptotique ?

F. Picard (LBBE) 57 / 60

Approximation Gaussienne pour les comptages de mots

 En pratique, on considère une estimation de l'esperance du comptage:

$$\widehat{\mathbb{E}}(N(\mathbf{w})) = (n-h+1)\widehat{\mu}(\mathbf{w})$$

$$= (n-h+1)\frac{\prod_{j=1}^{h-1}N(W_j, W_{j+1})}{\prod_{j=2}^{h-1}N(W_j)}$$

• On construit ensuite le score d'exceptionalité:

$$Z(\mathbf{w}) = \frac{N_{\text{obs}}(\mathbf{w}) - \widehat{\mathbb{E}}(N(\mathbf{w}))}{\sqrt{\widehat{\mathbb{V}}(N(\mathbf{w}))}}$$

• $\widehat{\mathbb{V}}(N(\mathbf{w}))$ est difficile à calculer parce qu'elle dépend du recouvrement des motifs

F. Picard (LBBE) 58 / 60

Approximation de Poisson pour les comptages

- D'autres approximations asymptotiques ont été développées
- Si Y_i sont des variables aléatoires iid de loi p_i alors $\lambda = \sum_i p_i$

$$\sum_{i=1}^n Y_i \sim \mathcal{P}(\lambda)$$

- Mais dans le cas des motifs, les $Y_i(\mathbf{w})$ ne sont pas indépendantes !
- La méthode de Chen-Stein permet de mesurer l'erreur commise lorsque l'on approche une somme de variables aléatoires de Bernoulli dépendantes par une loi de Poisson

F. Picard (LBBE) 59 / 60

Domaines de validité des approximations

- Il n'existe pas d'approximation meilleure qu'une autre sur tous les critères
- Pour étudier les qualités d'approximation, on peut comparer les p-values obtenues par la loi exacte (quand on peut la calculer) aux p-values calculées à partir des approximations
- L'approximation Gaussienne est valide pour les mots courts et fréquents
- L'approximation de Poisson composée donne de bons résultats également même pour les mots rares
- Idée: utiliser plusieurs approximations pour vérifier la concordance des résultats

F. Picard (LBBE) 60 / 60