Mathematical aspects in machine learning

Lorenz Richter BTU Cottbus-Senftenberg

October 14, 2017

Contents

1 Statistical learning theory 1 $\mathbf{2}$

Bibliography

1 Statistical learning theory

We consider data from an input space \mathcal{X} and an output space \mathcal{Y} , specifically the sample $S_n = \{(X_i, Y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}$. The goal is to learn a (prediction) function $f: \mathcal{X} \to \mathcal{Y}$ that maps input to output data.

Example 1.1. $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, 1\}$ (binary classification), $\mathcal{Y} = \mathbb{N}$, $\mathcal{Y} = \mathbb{R}$ (regression).

In order to develop a proper theory we need to make some assumptions:

- There exists an unknown probability distribution \mathbb{P} over $\mathcal{X} \times \mathcal{Y}$.
- The data S_n are i.i.d. from \mathbb{P} , i.e. $(X_i, Y_i) \sim \mathbb{P}$ for every $i = 1, \ldots, n$.
- The future data (sometimes called test data) also comes from \mathbb{P} .

In order to measure how good we learn the prediction function f we consider a loss function $l: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ that indicates deviations from predictions and true values. Being stochastically more meaningful, we consider for any function f the expected loss

$$L(f) := \mathbb{E}_{(X,Y) \sim \mathbb{P}}[l(f(X),Y)],$$

which in statistics is sometimes called "(Bayes-)Risk". The goal is to come up with a learning algorithm $\mathcal{A}: S_n \mapsto \hat{f}_n$ (i.e. $f_n := \mathcal{A}(S_n)$, indicating that the function depends on the n training data) s.t. $L(\hat{f}_n)$ is small. We therefore consider $\mathbb{E}[l(\hat{f}_n(X),Y)|S_n]$, i.e. the expectation conditioned on the samples, which is still a random quantity (as it depends on the sample data) 1 .

Definition 1.2. A predictor f^B is called Bayes-optimal if it minimizes the expected loss, i.e.

$$L(f^B) = \inf_f L(f) =: L^B.$$

Remark 1.3. Bayes-optimality depends on \mathbb{P} , S_n and l.

Example 1.4 (Zero noise or function learning). One could consider the case that our targets Y are deterministically prescribed by a function q, i.e. $\mathbb{P}(Y=q(X)|X=x)=1$. However, this is a rather unrealistic case.

Example 1.5 (Binary classification). Consider $\mathcal{Y} = \{0,1\}$ and the loss $l(y',y) = \mathbb{1}\{y' \neq y\}$. One can show that the Bayes-optimal predictor (in this case classifier) is $f^B(x) = \mathbb{1}\{\mathbb{P}(Y=1|X=x) > \frac{1}{2}\}$.

Example 1.6 (Regression). We consider $\mathcal{Y} = \mathbb{R}$ and $l(y',y) = (y'-y)^2$. Then the Bayes-optimal predictor is $f^B(x) = \mathbb{E}[Y|X=x].$

¹We will continuously omit the measure \mathbb{P} in the expected value.

Somehow we need to work with our sample S_n . We therefore define the empirical risk to be

$$L_n(f) = \frac{1}{n} \sum_{i=1}^{n} l(f(X_i), Y_i).$$

We see that $\mathbb{E}[L_n(h)] = L(h)$ and can therefore consider empirical risk minimization (ERM), namely

$$\hat{f}_n := \operatorname*{arg\,inf}_f L_n(f)$$

as a reasonable strategy to learn the function f. However, the following example shows that this is not always a good idea.

Example 1.7. Consider $\mathcal{X} = [0,1], \mathcal{Y} = \{0,1\}, l(y',y) = \mathbb{1}\{y' \neq y\}$ and $\mathbb{P}(Y=1|x) = 1$ for all $x \in \mathcal{X}$. Define the predictor as

$$\hat{f}_n(x) = \begin{cases} 1 & \text{if } (x,y) \in S_n \text{ for some value } y \\ 0 & \text{otherwise} \end{cases}.$$

Note again that this predictor is not fixed, but depends on the data. We can see that it performs very badly: $L_n(\hat{f}_n) = 0$, but $L(\hat{f}_n) = 1$. This is a stereotypical example of what is described as overfitting.

2 Bibliography

- [1] Hartmann, C. (2017). Wahrscheinlichkeitstheorie. Lecture script, BTU Cottbus-Senftenberg.
- [2] Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.