Bioinformatik Wintersemester 2019 / 2020, Uni Potsdam Stefanie Hartmann

Networks Jan 10, 2020

bioinf WS19 • lec11 • S.Hartmann

course evaluation

- please complete the survey before Jan 29
- I will discuss results on Jan 31
- https://www.surveymonkey.de/r/CQ872K9

Klausuranmeldung in PULS

Klausur: 7. Februar 2020, 8:15h, 2.27.1.01

Nachklausur: 20. März 2020

Bioinformatik (4 LP)

Studiengang: BSBIWH20102

Bioinformatik (6 LP)

Studiengang: BSBIWH20172, BSICSH20132,

BSICSH20192, MSCOSH20132

(Bioinformatik + Molekulare Evolution)

bioinf WS19 • lec11 • S.Hartmann

Reading: network biology

- Introduction
- Basic network nomenclature
- Architectural features of cellular networks
- Motifs, modules, and hierarchical networks
- Network robustness
 - Topological robustness
- Beyond topology: characterizing the links

Box 1: Network measures

Box 2: Network models (random and scale-free only)

bioinf WS19 • lec11 • S.Hartmann

Graph theory

- a classical area in mathematics
- interaction with other and often distant areas
- graphs (networks)
 - consist of vertices (nodes) and edges (links)
 - can be undirected, directed, weighted, cyclic, acyclic

bioinf WS19 · lec11 · S.Hartmann

Bridges of Königsberg

- Leonhard Euler, 1735
- find a walk through the city that crosses each bridge exactly one time
- · abstraction into a graph
 - land = circle = node
 - bridge = connection = edge
- Eulerian path
 - Königsberg? for networks with which properties?

bioinf WS19 • lec11 • S.Hartmann

Graph representation

- graphs are excellent structures for storing, searching, and retrieving data
- · conceptually, representation

	а	b	С	d
а			1	1
b				
С		1		
d		1	1	

graph

adjacency matrix adjacency list

Early networks

networks (graphs): connected elements

mathematical description

- food webs
- social systems (insects, political parties, communities)
- road systems
- ...

bioinf WS19 • lec11 • S.Hartmann

Graph algorithms

- the properties of graphs are well studied
- there are lots of problems in graph theory for which (efficient!) solutions exist
 - traversal algorithms
 - search algorithms
 - subgraph problems
 - clustering ...
- state a biological problem in terms of graphs:
 - → algorithm available?

bioinf WS19 · lec11 · S.Hartmann

The internet!

early 1990

- · world wide web, graphical web browsers
- · connections in business, science, academia, homes

scientific interest in networks

- properties
- growth & dynamics
- effects
 - on markets
 - on communities

- ..

tools: graph theory

mathematics systems theory

bioinf WS19 · lec11 · S.Hartmann

Large-scale homology assignment

species A: ~25,000 protein sequences

species B: ~25,000 protein sequences

species C: ~25,000 protein sequences

species D: ~25,00

-

, b

data

- all protein sequences from a number of species goal
- identify all sets of homologs approach
 - · compare all against all sequences
 - identify significant matches

Large-scale homology assignment

a graph theoretic approach

- nodes: DNA/protein sequences
- edges: sequence similarity values (e.g., E-values)
- group (cluster) sequences (nodes) by edge weights
 - efficient cluster algorithms exist for graphs!

cluster
low E-values
within, higher Evalues between
similar
(homologous)
sequences

Assemble sequence reads, in practice

use a graph theoretic approach

• 1. construct overlap graph from the reads

Assemble sequence reads, in practice

use a graph theoretic approach

- 2. find the shortest path with the highest weights that passes each node (read!) exactly once
 - Hamiltonian path
 - heuristics are needed
 - optimal solution not guaranteed
 - used for long reads (Sanger, PacBio)
 - not feasible for short read data (Illumina)

Assemble sequence reads, in practice

use a graph theoretic approach

• 2. find the shortest path with the highest weights that passes each node (read!) exactly once

Sequence assembly of short reads

- also uses graph theoretic approaches
- · different type of graph, different type of path
 - de Bruijn graph
 - Eulerian path
 - much more efficent
 - does not guarantee the correct sequence, either!
- many different variations & implementations exist

bioinf WS19 • lec11 • S.Hartmann

Comparison of protein structures

comparison of

- positions in a 3D coordinate system
- arrangement of secondary structure elements
- secondary structure graph

bioinf WS19 • lec11 • S.Hartmann

Graphs in biology Metabolic networks Protein-protein interactions bioinf WS19 • lec11 • S.Hartmann

Understanding biological systems

describing graphs

 type, number of nodes, number of connections (total, per node), shortest paths, subgraphs, ...

specific terms are used

- degree: num. of links one node has
- diameter: max distance between any two nodes
- components: disconnected sets of nodes
- clustering coefficient: measures presence of subsets

_

Understanding biological systems

describing graphs

• type, number of nodes, number of connections (total, per node), shortest paths, subgraphs, ...

specific terms are used

analyzing graphs

- · search for substructures or paths
- modelling flow through the network

efficient algorithms exist

bioinf WS19 • lec11 • S.Hartmann

A (partial) map of the internet (1999) http://cheswick.com/ches/map/gallery/jun99-ip.gif

Early network theory (~1960-2000)

random networks

- · edges are placed randomly
- most nodes have about the same number of edges
- example: US highway system

Scale-free networks

scale-free network

- large!
- a few nodes have lots of edges (→ hubs)
- most nodes have very few edges
- example: US airline system

Large networks

Network	Nodes	Links	Directed / Undirected	nodes	edges (links)	(K)
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.34
www	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Mobile-Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorships	Undirected	23,133	93,437	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Papers	Citations	Directed	449,673	4,689,479	10.43
E.coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

http://barabasi.com/networksciencebook/

bioinf WS19 • lec11 • S.Hartmann

Scale-free networks

- WWW, internet
- social networks
- scientific publications / authors
- network of Hollywood actors
- cellular metabolism
 - most molecules participate in 1-2 reactions
 - a few molecules participate in most reactions
- protein-protein interactions
 - most proteins interact with 1-2 other proteins
 - a few proteins interact with many proteins

Scale-free networks

properties

- · robust!
- random / accidental failures generally don't bring down the entire system
- · vulnerable when hubs fail

implications & applications (biology!)

- random mutations → unaffected proteins allow the network to keep working
- basic science: understand complex systems
- applied science: drug development

bioinf WS19 • lec11 • S.Hartmann

Example: Modelling metabolic fluxes

- reconstruction of metabolic network
 - key pathways? species-specific differences? alternative pathways? hubs?
- analyze structure, resources, adaptability
 - · differential equations, matrix operations
 - model network behavior under different conditions
- verification with experimental data (isotopes)
- detailed dynamic analysis of kinetics
- → systems biology

bioinf WS19 • lec11 • S.Hartmann

Today's computer lab

KEGG: Kyoto Encyclopedia of Genes and Genomes

- · database of metabolic networks
- · generic networks
- species-specific networks

Network science

- interdisciplinary
 - different networks, but same general properties, same language, same general tasks
 - cross-fertilization despite different goals, details, challgenges
- data-driven
 - based on graph theory, but based on real data
- quantitative
 - graph theory, mathematics, statistics, engineering, etc
- computational

bioinf WS19 • lec11 • S.Hartmann

Terms and concepts

- graph, node, vertex, edge, link, Eulerian path, (un)directed graph, (un)weighted graph, adjacency matrix/list, hub
- graphs in biology (examples, nodes, edges, types)
- using graphs to solve problems
 - homolog assignment, sequence assembly
- · using graphs to understand biological systems
 - description:
 random vs. scale free network
 (examples, properties, implications)
 - analysis & modelling not covered!