

### 64-040 Modul InfB-RS: Rechnerstrukturen

https://tams.informatik.uni-hamburg.de/ lectures/2016ws/vorlesung/rs

- Kapitel 9 -

#### Andreas Mäder



Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

Wintersemester 2016/2017

9 Codierung 64-040 Rechnerstrukturen

#### Codierung

Grundbegriffe

Ad-Hoc Codierungen

Einschrittige Codes

Quellencodierung Symbolhäufigkeiten

Informationstheorie

Entropie

Kanalcodierung

Fehlererkennende Codes

Zyklische Codes

Praxisbeispiele

Literatur

Unter **Codierung** versteht man das Umsetzen einer vorliegenden Repräsentation A in eine andere Repräsentation B

- ▶ häufig liegen beide Repräsentationen A und B in derselben Abstraktionsebene
- ▶ die Interpretation von B nach A muss eindeutig sein
- eine Umcodierung liegt vor, wenn die Interpretation umkehrbar eindeutig ist

▶ **Codewörter**: die Wörter der Repräsentation *B* aus einem

Zeichenvorrat Z

► Code: die Menge aller Codewörter

▶ Blockcode: alle Codewörter haben dieselbe Länge

▶ Binärzeichen: der Zeichenvorrat z enthält genau zwei Zeichen

▶ Binärwörter: Codewörter aus Binärzeichen

▶ Binärcode: alle Codewörter sind Binärwörter

- effiziente Darstellung und Verarbeitung von Information
- Datenkompression, -reduktion
- ▶ effiziente Übertragung von Information
  - ► Verkleinerung der zu übertragenden Datenmenge
  - ▶ Anpassung an die Technik des Übertragungskanals
  - Fehlererkennende und -korrigierende Codes
- ► Geheimhaltung von Information
  - z.B. Chiffrierung in der Kryptologie
- ▶ Identifikation, Authentifikation

## Unterteilung gemäß der Aufgabenstellung

- ▶ Quellencodierung: Anpassung an Sender/Quelle
- ▶ Kanalcodierung: Anpassung an Übertragungsstrecke
- ▶ **Verarbeitungscodierung**: im Rechner
- sehr unterschiedliche Randbedingungen und Kriterien für diese Teilbereiche: zum Beispiel sind fehlerkorrigierende Codes bei der Nachrichtenübertragung essentiell, im Rechner wegen der hohen Zuverlässigkeit weniger wichtig

#### Wertetabellen

- jede Zeile enthält das Urbild (zu codierende Symbol) und das zugehörige Codewort
- sortiert, um das Auffinden eines Codeworts zu erleichtern
- technische Realisierung durch Ablegen der Wertetabelle im Speicher, Zugriff über Adressierung anhand des Urbilds

#### Codebäume

- ► Anordnung der Symbole als Baum
- die zu codierenden Symbole als Blätter
- die Zeichen an den Kanten auf dem Weg von der Wurzel zum Blatt bilden das Codewort
- ► Logische Gleichungen
- ► Algebraische Ausdrücke

- siehe letzte Woche
- ► Text selbst als Reihenfolge von Zeichen
- ► ASCII, ISO-8859 und Varianten, Unicode

#### Für geschriebenen (formatierten) Text:

- ▶ Trennung des reinen Textes von seiner Formatierung
- ► Formatierung: Schriftart, Größe, Farbe, usw.
- diverse applikationsspezifische Binärformate
- ► Markup-Sprachen (SGML, HTML)

## Codierungen für Dezimalziffern

9.2 Codierung - Ad-Hoc Codierungen

64-040 Rechnerstrukturen

|   | BCD  | Gray | Exzess3 | Aiken | biquinär | 1-aus-10   | 2-aus-5 |
|---|------|------|---------|-------|----------|------------|---------|
| 0 | 0000 | 0000 | 0011    | 0000  | 000001   | 000000001  | 11000   |
| 1 | 0001 | 0001 | 0100    | 0001  | 000010   | 0000000010 | 00011   |
| 2 | 0010 | 0011 | 0101    | 0010  | 000100   | 000000100  | 00101   |
| 3 | 0011 | 0010 | 0110    | 0011  | 001000   | 0000001000 | 00110   |
| 4 | 0100 | 0110 | 0111    | 0100  | 010000   | 0000010000 | 01001   |
| 5 | 0101 | 0111 | 1000    | 1011  | 100001   | 0000100000 | 01010   |
| 6 | 0110 | 0101 | 1001    | 1100  | 100010   | 0001000000 | 01100   |
| 7 | 0111 | 0100 | 1010    | 1101  | 100100   | 0010000000 | 10001   |
| 8 | 1000 | 1100 | 1011    | 1110  | 101000   | 0100000000 | 10010   |
| 9 | 1001 | 1101 | 1100    | 1111  | 110000   | 1000000000 | 10100   |

- alle Codes der Tabelle sind Binärcodes
- alle Codes der Tabelle sind Blockcodes
- ▶ jede Spalte der Tabelle listet alle Codewörter eines Codes

- jede Wandlung von einem Code der Tabelle in einen anderen Code ist eine Umcodierung
- ▶ aus den Codewörtern geht nicht hervor, welcher Code vorliegt
- Dezimaldarstellung in Rechnern unüblich, die obigen Codes werden also kaum noch verwendet

▶ **Minimalcode**: alle  $N = 2^n$  Codewörter bei Wortlänge n

werden benutzt

▶ Redundanter Code: nicht alle möglichen Codewörter werden

benutzt

► **Gewicht**: Anzahl der Einsen in einem Codewort

**komplementär**: zu jedem Codewort *c* existiert ein gülti-

ges Codewort  $\overline{c}$ 

einschrittig: aufeinanderfolgende Codewörter unter-

scheiden sich nur an einer Stelle

**zyklisch**: bei n geordneten Codewörtern ist  $c_0 = c_n$ 

- ▶ der Name für Codierung der Integerzahlen im Stellenwertsystem
- Codewort

$$c = \sum_{i=0}^{n-1} a_i \cdot 2^i, \qquad a_i \in \{0, 1\}$$

- ▶ alle Codewörter werden genutzt: Minimalcode
- zu jedem Codewort existiert ein komplementäres Codewort
- ▶ bei fester Wortbreite ist  $c_0$  gleich  $c_n \Rightarrow$  zyklisch
- nicht einschrittig

- möglich für Mengen mit Ordnungsrelation
- ▶ Elemente der Menge werden durch Binärwörter codiert
- einschrittiger Code: die Codewörter für benachbarte Elemente der Menge unterscheiden sich in genau einer Stelle
- ➤ zyklisch einschrittig: das erste und letzte Wort des Codes unterscheiden sich ebenfalls genau in einer Stelle
- Einschrittige Codes werden benutzt, wenn ein Ablesen der Bits auch beim Wechsel zwischen zwei Codeworten möglich ist (bzw. nicht verhindert werden kann)
  - z.B.: Winkelcodierscheiben oder digitale Schieblehre
- ▶ viele interessante Varianten möglich (s. Knuth: AoCP [Knu11])

9.3 Codierung - Einschrittige Codes

64-040 Rechnerstrukturen

- ► Ablesen eines Wertes mit leicht gegeneinander verschobenen Übergängen der Bits [Hei05a], Kapitel 1.4
  - ▶ demoeinschritt(0:59) normaler Dualcode
  - demoeinschritt(einschritt(60)) einschrittiger Code
- maximaler Ablesefehler
  - ▶ 2<sup>n-1</sup> beim Dualcode
  - ▶ 1 beim einschrittigen Code
- ► Konstruktion eines einschrittigen Codes
  - rekursiv
  - ▶ als ununterbrochenen Pfad im KV-Diagramm (s.u.)

## Ablesen des Wertes aus Dualcode



64-040 Rechnerstrukturen



# Ablesen des Wertes aus einschrittigem Code



64-040 Rechnerstrukturen



# Gray-Code: Prinzip eines Winkeldrehgebers

9.3 Codierung - Einschrittige Codes

64-040 Rechnerstrukturen



A. Mäder

374

## Gray-Code: mehrstufiger Drehgeber

9.3 Codierung - Einschrittige Codes

64-040 Rechnerstrukturen



64-040 Rechnerstrukturen



9.3 Codierung - Einschrittige Codes

64-040 Rechnerstrukturen



- Starte mit zwei Codewörtern: 0 und 1
- ▶ Gegeben: Einschrittiger Code *C* mit *n* Codewörtern
- ▶ Rekursion: Erzeuge Code C₂ mit (bis zu) 2n Codewörtern
  - 1. hänge eine führende 0 vor alle vorhandenen n Codewörter
  - hänge eine führende 1 vor die in umgekehrter Reihenfolge notierten Codewörter

```
{ 0, 1 }
{ 00, 01, 11, 10 }
{ 000, 001, 011, 010, 110, 111, 101, 100 }
```

⇒ Gray-Code

9.3 Codierung - Einschrittige Codes

64-040 Rechnerstrukturen

| x <sub>3</sub> x <sub>2</sub> x <sub>1</sub> | × <sub>0</sub> | 01 | 11 | 10 |
|----------------------------------------------|----------------|----|----|----|
| 00                                           | 0              | 1  | 3  | 2  |
| 01                                           | 4              | 5  | 7  | 6  |
| 11                                           | 12             | 13 | 15 | 14 |
| 10                                           | 8              | 9  | 11 | 10 |

| \ x <sub>1</sub> | × <sub>0</sub> | 0.4  |      | 4.0  |
|------------------|----------------|------|------|------|
| $x_3 x_2$        | 00             | 01   | 11   | 10   |
| 00               | 0000           | 0001 | 0011 | 0010 |
| 01               | 0100           | 0101 | 0111 | 0110 |
| 11               | 1100           | 1101 | 1111 | 1110 |
| 10               | 1000           | 1001 | 1011 | 1010 |

- ▶ 2D-Diagramm mit  $2^n = 2^{n_y} \times 2^{n_x}$  Feldern
- ▶ gängige Größen sind: 2×2, 2×4, 4×4 darüber hinaus: mehrere Diagramme der Größe 4×4
- ► Anordnung der Indizes ist im einschrittigen-Code / Gray-Code

⇒ benachbarte Felder unterscheiden sich gerade um 1 Bit

## Einschrittiger Code: KV-Diagramm



64-040 Rechnerstrukturen





- ► Pfade 0,1,3,2,6,7,5,13,15,14,10,11,9,8,12,4
- 1,3,7,6,14,15,11,9,13,12,4,5
- ▶ jeder Pfad entspricht einem einschrittigen Code
- ▶ geschlossener Pfad: zyklisch einschrittiger Code

# Einschrittiger Code: KV-Diagramm (cont.)

9.3 Codierung - Einschrittige Codes

64-040 Rechnerstrukturen



| $x_3 x_2$ | × <sub>0</sub> | 01  | 11 | 10    |
|-----------|----------------|-----|----|-------|
| 00        | 0              | 1   | 3  | 2   ` |
| 01        | 4              | 5   | 7  | 6     |
| 11        | 12             | 13  | 15 | 14    |
| 10        | 8              | 9   | 11 | 10    |
| 1///4     |                | 100 |    |       |

Pfade 4.5.13.15.7.6.14.10.8.12

- 2,6,14,10
- ▶ linke und rechte Spalte unterscheiden sich um 1 Bit obere und untere Zeile unterscheiden sich um 1 Bit
- ⇒ KV-Diagramm als "außen zusammengeklebt" denken
- ⇒ Pfade können auch "außen herum" geführt werden

#### Umwandlung: Dual- in Graywort

- 1. MSB des Dualworts wird MSB des Grayworts
- von links nach rechts: bei jedem Koeffizientenwechsel im Dualwort wird das entsprechende Bit im Graywort 1, sonst 0
- ightharpoonup Beispiele 0011 ightarrow 0010, 1110 ightarrow 1001, 0110 ightarrow 0101 usw.
- ▶ in Hardware einfach durch paarweise XOR-Operationen [HenHA] Hades Demo: 10-gates/15-graycode/dual2gray

### Umwandlung: Gray- in Dualwort

- 1. MSB wird übernommen
- von links nach rechts: wenn das Graywort eine Eins aufweist, wird das vorhergehende Bit des Dualworts invertiert in die entsprechende Stelle geschrieben, sonst wird das Zeichen der vorhergehenden Stelle direkt übernommen
- ▶ Beispiele  $0010 \rightarrow 0011$ ,  $1001 \rightarrow 1110$ ,  $0101 \rightarrow 0110$  usw.
- ▶ in Hardware einfach durch Kette von XOR-Operationen

9.4 Codierung - Quellencodierung

64-040 Rechnerstrukturen

- Einsatz zur Quellencodierung
- Minimierung der Datenmenge durch Anpassung an die Symbolhäufigkeiten
- häufige Symbole bekommen kurze Codewörter, seltene Symbole längere Codewörter
- anders als bei Blockcodes ist die Trennung zwischen Codewörtern nicht durch Abzählen möglich
- ⇒ Einhalten der Fano-Bedingung notwendig oder Einführen von Markern zwischen den Codewörtern

9.4 Codierung - Quellencodierung

Eindeutige Decodierung eines Codes mit variabler Wortlänge?

## Fano-Bedingung

Kein Wort aus einem Code bildet den Anfang eines anderen Codeworts

- ▶ die sogenannte Präfix-Eigenschaft
- ▶ nach R. M. Fano (1961)
- ein Präfix-Code ist eindeutig decodierbar
- ► Blockcodes sind Präfix-Codes

64-040 Rechnerstrukturen

9.4 Codierung - Quellencodierung

► Telefonnummern: das Vorwahlsystem gewährleistet die Fano-Bedingung

110, 112 : Notrufnummern

42883 2502 : Ortsnetz (keine führende Null)

040 42883 2502 : nationales Netz

0049 40 42883 2502 : internationale Rufnummer

► Morse-Code: Fano-Bedingung verletzt

64-040 Rechnerstrukturen

9.4 Codierung - Quellencodierung

| Co | detabe                     | elle |                                    | • k | urzer Ton                                     | —langer   | Ton                                      |
|----|----------------------------|------|------------------------------------|-----|-----------------------------------------------|-----------|------------------------------------------|
| Α  | • -                        | S    | • • •                              |     | ullet $-ullet$ $-ullet$ $-ullet$              | S-Start   | - • - • -                                |
| В  | $-\bullet \bullet \bullet$ | T    | _                                  | ,   | ••                                            | Verst.    | $\bullet$ $\bullet$ $\bullet$ $ \bullet$ |
| C  | $- \bullet - \bullet$      | U    | • • -                              | ?   | $\bullet \bullet \bullet \bullet$             | S-Ende    | ullet $-ullet$ $-ullet$                  |
| D  | $-\bullet \bullet$         | V    | $\bullet \bullet \bullet -$        | ,   | •                                             | V-Ende    | • • • - • -                              |
| Ε  | •                          | W    | •                                  | Į.  | - • - •                                       | Error     | • • • • • • •                            |
| F  | ullet $ullet$ $-ullet$     | Х    | $- \bullet \bullet -$              | /   | $- \bullet \bullet - \bullet$                 |           |                                          |
| G  | •                          | Υ    | -•                                 | (   | - • •                                         | Ä         | • - • -                                  |
| Н  | • • • •                    | Z    | ••                                 | )   | - • •                                         | À         | •                                        |
| 1  | • •                        | 0    |                                    | &   | ullet $-ullet$ $ullet$                        | É         | • • - • •                                |
| J  | •                          | 1    | •                                  | :   | ••                                            | È         | •-•-                                     |
| K  | - • -                      | 2    | • •                                | ;   | - ullet - ullet - ullet                       | Ö         | •                                        |
| L  | ullet — $ullet$ $ullet$    | 3    | • • •                              | =   | -••-                                          | Ü         | • •                                      |
| М  |                            | 4    | • • • • -                          | +   | ullet $-ullet$ $-ullet$                       | В         | • • • • •                                |
| N  | <b>-</b> •                 | 5    | • • • • •                          | -   | $- \bullet \bullet \bullet \bullet -$         | CH        |                                          |
| 0  |                            | 6    | $-\bullet \bullet \bullet \bullet$ | _   | • • • -                                       | Ñ         | •                                        |
| Р  | ullet —— $ullet$           | 7    | ••                                 | п   | ullet - $ullet$ - $ullet$                     | M. A. (2) |                                          |
| Q  | •-                         | 8    | •                                  | \$  | $\bullet \bullet \bullet - \bullet \bullet -$ | 1,200     |                                          |
| R  | • - •                      | 9    | •                                  | @   | ••-                                           | SOS       |                                          |

9.4 Codierung - Quellencodierung

| ► Eindeutigkeit | Codewort: | • • • • • - •   |
|-----------------|-----------|-----------------|
|                 | E         | •               |
|                 | I         | • •             |
|                 | N         | <b>-•</b>       |
|                 | R         | ullet — $ullet$ |
|                 | S         | • • •           |

- bestimmte Morse-Sequenzen sind mehrdeutig
- ▶ Pause zwischen den Symbolen notwendig
- Codierung
  - ► Häufigkeit der Buchstaben = 1 / Länge des Codewortes
  - ► Effizienz: kürzere Codeworte
  - Darstellung als Codebaum

# Morse-Code: Codebaum (Ausschnitt)

9.4 Codierung - Quellencodierung

64-040 Rechnerstrukturen



- Symbole als Knoten oder Blätter
- ► Knoten: Fano-Bedingung verletzt
- ► Codewort am Pfad von Wurzel zum Knoten/Blatt ablesen

### Umschlüsselung des Codes für binäre Nachrichtenübertragung

- ▶ 110 als Umschlüsselung des langen Tons
  - 10 als Umschlüsselung des kurzen Tons •
  - 0 als Trennzeichen zwischen Morse-Codewörtern
- der neue Code erfüllt die Fano-Bedingung jetzt eindeutig decodierbar: 101010011011011001010100 (SOS)
- ▶ viele andere Umschlüsselungen möglich, z.B.:
  - 1 als Umschlüsselung des langen Tons –
  - 01 als Umschlüsselung des kurzen Tons •
  - 00 als Trennzeichen zwischen Morse-Codewörtern

Gegeben: die zu codierenden Urwörter  $a_i$  und die zugehörigen Wahrscheinlichkeiten  $p(a_i)$ 

- ▶ Ordnung der Urwörter anhand ihrer Wahrscheinlichkeiten  $p(a_1) \ge p(a_2) \ge \cdots \ge p(a_n)$
- ► Einteilung der geordneten Urwörter in zwei Gruppen mit möglichst gleicher Gesamtwahrscheinlichkeit. Eine Gruppe bekommt als erste Codewortstelle eine 0, die andere eine 1
- Diese Teilgruppen werden wiederum entsprechend geteilt, und den Hälften wieder eine 0, bzw. eine 1, als nächste Codewortstelle zugeordnet
- ▶ Das Verfahren wird wiederholt, bis jede Teilgruppe nur noch ein Element enthält
- vorteilhafter, je größer die Anzahl der Urwörter (!)

Urbildmenge  $\{A, B, C, D\}$  und zugehörige Wahrscheinlichkeiten  $\{0.45, 0.1, 0.15, 0.3\}$ 

- 0. Sortierung nach Wahrscheinlichkeiten ergibt  $\{A, D, C, B\}$
- 1. Gruppenaufteilung ergibt  $\{A\}$  und  $\{D, C, B\}$ Codierung von A mit 0 und den anderen Symbolen als 1\*
- 2. weitere Teilung ergibt  $\{D\}$ , und  $\{C, B\}$
- 3. letzte Teilung ergibt  $\{C\}$  und  $\{B\}$
- $\Rightarrow$  Codewörter sind A = 0, D = 10, C = 110 und B = 111

#### mittlere Codewortlänge L

- $L = 0.45 \cdot 1 + 0.3 \cdot 2 + 0.15 \cdot 3 + 0.1 \cdot 3 = 1.8$
- ▶ zum Vergleich: Blockcode mit 2 Bits benötigt L= 2



## Codierung nach Fano: Deutsche Großbuchstaben

9.5 Codierung - Symbolhäufigkeiten

64-040 Rechnerstrukturen

| Buchstabe ai | Wahrscheinlichkeit $p(a_i)$ | Code (Fano)   | Bits |
|--------------|-----------------------------|---------------|------|
| Leerzeichen  | 0.15149                     | 000           | 3    |
| E            | 0.14700                     | 001           | 3    |
| N            | 0.08835                     | 010           | 3    |
| R            | 0.06858                     | 0110          | 4    |
| T            | 0.06377                     | 0111          | 4    |
| S            | 0.05388                     | 1000          | 4    |
|              |                             |               |      |
| Ö            | 0.00255                     | 111111110     | 9    |
| J            | 0.00165                     | 1111111110    | 10   |
| Υ            | 0.00017                     | 11111111110   | 11   |
| Q            | 0.00015                     | 111111111110  | 12   |
| Χ            | 0.00013                     | 1111111111111 | 12   |

Ameling: Fano-Code der Buchstaben der deutschen Sprache, 1992

Gegeben: die zu codierenden Urwörter  $a_i$  und die zugehörigen Wahrscheinlichkeiten  $p(a_i)$ 

- ▶ Ordnung der Urwörter anhand ihrer Wahrscheinlichkeiten  $p(a_1) \le p(a_2) \le \cdots \le p(a_n)$
- ▶ in jedem Schritt werden die zwei Wörter mit der geringsten Wahrscheinlichkeit zusammengefasst und durch ein neues ersetzt
- das Verfahren wird wiederholt, bis eine Menge mit nur noch zwei Wörtern resultiert
- rekursive Codierung als Baum (z.B.: links 0, rechts 1)
- ergibt die kleinstmöglichen mittleren Codewortlängen
- ► Abweichungen zum Verfahren nach Fano sind aber gering
- ▶ vielfältiger Einsatz (u.a. bei JPEG, MPEG, ...)

Urbildmenge  $\{A, B, C, D\}$  und zugehörige Wahrscheinlichkeiten  $\{0.45, 0.1, 0.15, 0.3\}$ 

- 0. Sortierung nach Wahrscheinlichkeiten ergibt  $\{B, C, D, A\}$
- 1. Zusammenfassen von B und C als neues Wort E, Wahrscheinlichkeit von E ist dann p(E) = 0.1 + 0.15 = 0.25
- 2. Zusammenfassen von E und D als neues Wort F mit p(F) = 0.55
- 3. Zuordnung der Bits entsprechend der Wahrscheinlichkeiten
  - F = 0 und A = 1
  - ▶ Split von F in D = 00 und E = 01
  - ▶ Split von E in C = 010 und B = 011
- $\Rightarrow$  Codewörter sind A=1, D=00, C=010 und B=011

64-040 Rechnerstrukturen

9.5 Codierung - Symbolhäufigkeiten

- $\blacktriangleright \mathsf{Alphabet} = \{E, I, N, S, D, L, R\}$
- ▶ relative H\u00e4ufigkeiten
  E = 18, I = 10, N = 6, S = 7, D = 2, L = 5, R = 4
- ► Sortieren anhand der Häufigkeiten
- Gruppierung (rekursiv)
- Aufbau des Codebaums
- Ablesen der Codebits

# Bildung eines Huffman-Baums (cont.)

9.5 Codierung - Symbolhäufigkeiten

64-040 Rechnerstrukturen

D R L N S I E
2 4 5 6 7 10 18

D R L N S I E

L N 6 5 1 E 7 10 18

13 6 S I 11 E 7 10 11 E







# Bildung eines Huffman-Baums (cont.)

9.5 Codierung - Symbolhäufigkeiten

64-040 Rechnerstrukturen



I 00
 L 010
 N 011
 D 1000
 R 1001
 S 101
 E 11

1001 00 11 101 11 R I E S E



## Codierung nach Huffman: Deutsche Großbuchstaben

9.5 Codierung - Symbolhäufigkeiten

64-040 Rechnerstrukturen

| Zeichen     | Code   | Zeichen | Code         |
|-------------|--------|---------|--------------|
| Leerzeichen | 001    | 0       | 000110       |
| E           | 010    | В       | 100010       |
| N           | 111    | Z       | 100011       |
| R           | 0110   | W       | 100110       |
| 1           | 0111   | F       | 100111       |
| S           | 1010   | K       | 0001011      |
| T           | 1100   | V       | 0001111      |
| D           | 1101   | Ü       | 00010100     |
| Н           | 00000  | Р       | 00010101     |
| Α           | 00001  | Ä       | 00011100     |
| U           | 10000  | Ö       | 000111010    |
| L           | 10010  | J       | 0001110110   |
| С           | 10110  | Υ       | 00011101111  |
| G           | 10111  | Q       | 000111011100 |
| M           | 000100 | X       | 000111011101 |

## Codierung nach Huffman: Codebaum

9.5 Codierung - Symbolhäufigkeiten

64-040 Rechnerstrukturen



ca. 4.5 Bits/Zeichen, 1.7-Mal besser als ASCII

9.5 Codierung - Symbolhäufigkeiten

64-040 Rechnerstrukturen

- ▶ Sei *C* ein Huffman-Code mit durchschnittlicher Codelänge *L*
- ightharpoonup Sei D ein weiterer Präfix-Code mit durchschnittlicher Codelänge M, mit M < L und M minimal
- ▶ Berechne die C und D zugeordneten Decodierbäume A und B
- Betrachte die beiden Endknoten für Symbole kleinster Wahrscheinlichkeit:
  - Weise dem Vorgängerknoten das Gewicht  $p_{s-1} + p_s$  zu
  - streiche die Endknoten
  - mittlere Codelänge reduziert sich um  $p_{s-1} + p_s$
- ▶ Fortsetzung führt dazu, dass Baum C sich auf Baum mit durchschnittlicher Länge 1 reduziert, und D auf Länge <1. Dies ist aber nicht möglich.

Was passiert, wenn ein Symbol eine Häufigkeit  $p_0 \ge 0.5$  aufweist?

- ▶ die Huffman-Codierung müsste weniger als ein Bit zuordnen, dies ist jedoch nicht möglich
- ⇒ Huffman- (und Fano-) Codierung ist in diesem Fall ineffizient
  - ▶ Beispiel: Bild mit einheitlicher Hintergrundfarbe codieren
  - ► andere Ideen notwendig
    - ► Lauflängencodierung (Fax, GIF, PNG)
    - Cosinustransformation (JPEG), usw.

64-040 Rechnerstrukturen

9.5 Codierung - Symbolhäufigkeiten

### was tun, wenn

- die Symbolhäufigkeiten nicht vorab bekannt sind?
- ▶ die Symbolhäufigkeiten sich ändern können?

### Dynamic Huffman Coding (Knuth 1985)

- ► Encoder protokolliert die (bisherigen) Symbolhäufigkeiten
- Codebaum wird dynamisch aufgebaut und ggf. umgebaut
- Decoder arbeitet entsprechend:
   Codebaum wird mit jedem decodierten Zeichen angepasst
- Symbolhäufigkeiten werden nicht explizit übertragen

D. E. Knuth: Dynamic Huffman Coding, 1985 [Knu85]

- ► Leon G. Kraft, 1949 https://de.wikipedia.org/wiki/Kraft-Ungleichung
- ▶ Eine notwendige und hinreichende Bedingung für die Existenz eines eindeutig decodierbaren s-elementigen Codes C mit Codelängen  $l_1 \leq l_2 \leq l_3 \leq \cdots \leq l_s$  über einem q-nären Zeichenvorrat F ist:

$$\sum_{i=1}^s \frac{1}{q^{l_i}} \le 1$$

▶ Beispiel  $\{1,00,01,11\}$  ist nicht eindeutig decodierbar, denn  $\frac{1}{2}+3\cdot\frac{1}{4}=1.25>1$ 

64-040 Rechnerstrukturen

9.5 Codierung - Symbolhäufigkeiten

- ▶ Sei  $F = \{0, 1, 2\}$  (ternäres Alphabet)
- ► Seien die geforderten Längen der Codewörter: 1,2,2,2,2,3,3,3
- ► Einsetzen in die Ungleichung:  $\frac{1}{3} + 5 \cdot \frac{1}{3^2} + 3 \cdot \frac{1}{3^3} = 1$
- ⇒ Also existiert ein passender Präfixcode.
  - Konstruktion entsprechend des Beweises
    - 0 10 11 12 20 21 220 221 222

Sei  $l_s = m$  und seien  $u_i$  die Zahl der Codewörter der Länge i

▶ Wir schreiben

$$\sum_{i=1}^{s} \frac{1}{q^{l_i}} = \sum_{j=1}^{m} \frac{u_j}{q^j} = \frac{1}{q^m} \sum_{j=1}^{m} u_j \cdot q^{m-j} \le 1$$

$$u_m + \sum_{j=1}^{m-1} u_j \cdot q^{m-j} \le q^m$$
 (\*)

- Jedes Codewort der Länge i "verbraucht" q<sup>m-i</sup> Wörter aus F<sup>m</sup>
- ► Summe auf der linken Seite von (\*) ist die Zahl der durch den Code C benutzten Wörter von F<sup>m</sup>
- ⇒ erfüllt C die Präfix-Bedingung, dann gilt (\*)



- ► Informationsbegriff
- ► Maß für die Information?
- ► Entropie
- ► Kanalkapazität



- ▶ n mögliche sich gegenseitig ausschließende Ereignisse  $A_i$  die zufällig nacheinander mit Wahrscheinlichkeiten  $p_i$  eintreten
- ▶ stochastisches Modell  $W{A_i} = p_i$
- ▶ angewendet auf Informationsübertragung: das Symbol a<sub>i</sub> wird mit Wahrscheinlichkeit p<sub>i</sub> empfangen
- Beispiel
  - ▶  $p_i = 1$  und  $p_i = 0$   $\forall j \neq i$
  - ▶ dann wird mit Sicherheit das Symbol A<sub>i</sub> empfangen
  - der Empfang bringt keinen Informationsgewinn
- $\Rightarrow$  Informationsgewinn ("Überraschung") wird größer, je kleiner  $p_i$

9.6 Codierung - Informationstheorie

64-040 Rechnerstrukturen

- ▶ Wir erhalten die Nachricht A mit der Wahrscheinlichkeit  $p_A$  und anschließend die unabhängige Nachricht B mit der Wahrscheinlichkeit  $p_B$
- ▶ Wegen der Unabhängigkeit ist die Wahrscheinlichkeit beider Ereignisse gegeben durch das Produkt p<sub>A</sub> · p<sub>B</sub>
- ▶ Informationsgewinn ("Überraschung") größer, je kleiner pi
- ▶ Wahl von 1/p als Maß für den Informationsgewinn?
- möglich, aber der Gesamtinformationsgehalt zweier (mehrerer)
   Ereignisse wäre das Produkt der einzelnen Informationsgehalte
- ightharpoonup additive Größe wäre besser  $\Rightarrow$  Logarithmus von 1/p bilden

- Umkehrfunktion zur Exponentialfunktion
- formal: für gegebenes a und b ist der Logarithmus die Lösung der Gleichung  $a = b^x$
- falls die Lösung existiert, gilt:  $x = \log_b(a)$
- ▶ Beispiel  $3 = \log_2(8)$ , denn  $2^3 = 8$
- Rechenregeln
  - ►  $log(x \cdot y) = log(x) + log(y)$  (Addition statt Multiplikation)
  - $b^{\log_b(x)} = x$  und  $\log_b(b^x) = x$

  - $\log_2(x) = \ln(x)/\ln(2) = \ln(x)/0,693141718$

- ▶  $\log_2(x) = 0.b_1b_2b_3... = \sum_{k>0} b_k 2^{-k}$  mit  $b_k \in \{0, 1\}$  $\log_2(x^2) = b_1.b_2b_3...$  wegen  $\log(x^2) = 2\log(x)$
- Berechnung

Input: 1 < x < 2 (ggf. vorher skalieren)

Output: Nachkommastellen  $b_i$  der Binärdarstellung von Id(x)

Informationsgehalt eines Ereignisses  $A_i$  mit Wahrscheinlichkeit  $p_i$ ?

- als messbare und daher additive Größe
- durch Logarithmierung (Basis 2) der Wahrscheinlichkeit:

$$I(A_i) = \log_2(\frac{1}{p_i}) = -\log_2(p_i)$$

- ► Informationsgehalt I (oder Information) von A<sub>i</sub> auch Entscheidungsgehalt genannt
- ▶ Beispiel: zwei Nachrichten A und B

$$I(A) + I(B) = \log_2(\frac{1}{p_A \cdot p_B}) = \log_2(\frac{1}{p_A}) + \log_2(\frac{1}{p_B})$$

$$I(A_i) = \log_2(\frac{1}{p_i}) = -\log_2(p_i)$$

- ▶ Wert von *I* ist eine reelle Größe
- ▶ gemessen in der Einheit 1 Bit
- ▶ Beispiel: nur zwei mögliche Symbole 0 und 1 mit gleichen Wahrscheinlichkeiten  $p_0 = p_1 = \frac{1}{2}$  Der Informationsgehalt des Empfangs einer 0 oder 1 ist dann  $I(0) = I(1) = \log_2(1/\frac{1}{2}) = 1$  Bit
- ► Achtung: die Einheit "Bit" nicht verwechseln mit Binärstellen "bit" oder den Symbolen 0 und 1

- Vor dem Empfang einer Nachricht gibt es Ungewissheit über das Kommende
   Beim Empfang gibt es die Überraschung
   Und danach hat man den Gewinn an Information
- ▶ Alle drei Begriffe in der oben definierten Einheit Bit messen
- ▶ Diese Quantifizierung der Information ist zugeschnitten auf die Nachrichtentechnik
- umfasst nur einen Aspekt des umgangssprachlichen Begriffs Information

#### Meteorit

- ightharpoonup die Wahrscheinlichkeit, an einem Tag von einem Meteor getroffen zu werden, sei  $p_M=10^{-16}$
- ▶ Kein Grund zur Sorge, weil die Ungewissheit von  $I = \log_2(1/(1-p_M)) \approx 3, 2 \cdot 10^{-16}$  sehr klein ist Ebenso klein ist die Überraschung, wenn das Unglück nicht passiert ⇒ Informationsgehalt der Nachricht "Ich wurde nicht vom Meteor erschlagen" ist sehr klein
- ▶ Umgekehrt wäre die Überraschung groß:  $\log_2(1/p_M) = 53,15$

### Würfeln

- ▶ bei vielen Spielen hat die 6 eine besondere Bedeutung
- ▶ hier betrachten wir aber zunächst nur die Wahrscheinlichkeit von Ereignissen, nicht deren Semantik
- ▶ die Wahrscheinlichkeit, eine 6 zu würfeln, ist  $\frac{1}{6}$
- $I(6) = \log_2(1/\frac{1}{6}) = 2,585$



### Information eines Buchs

- Gegeben seien zwei Bücher
  - 1. deutscher Text
  - 2. mit Zufallsgenerator mit Gleichverteilung aus Alphabet mit 80-Zeichen erzeugt
- ▶ Informationsgehalt in beiden Fällen?
  - Im deutschen Text abhängig vom Kontext!
     Beispiel: Empfangen wir als deutschen Text "Der Begrif", so ist "f" als nächstes Symbol sehr wahrscheinlich
  - 2. beim Zufallstext liefert jedes neue Symbol die zusätzliche Information  $I = \log_2(1/(1/80))$
- ⇒ der Zufallstext enthält die größtmögliche Information

### Einzelner Buchstabe

- ▶ die Wahrscheinlichkeit, in einem Text an einer gegebenen Stelle das Zeichen "A" anzutreffen sei  $W\{A\} = p = 0,01$
- ▶ Informationsgehalt  $I(A) = \log_2(1/0, 01) = 6,6439$
- ▶ wenn der Text in ISO-8859-1 codiert vorliegt, werden 8 Binärstellen zur Repräsentation des "A" benutzt
- der Informationsgehalt ist jedoch geringer

**Bit**: als Maß für den Informationsgehalt **bit**: Anzahl der Binärstellen 0 und 1

Obige Definition der Information lässt sich nur jeweils auf den Empfang eines speziellen Zeichens anwenden

- ▶ Was ist die durchschnittliche Information bei Empfang eines Symbols?
- diesen Erwartungswert bezeichnet man als Entropie des Systems (auch mittlerer Informationsgehalt)
- ▶ Wahrscheinlichkeiten aller möglichen Ereignisse  $A_i$  seien  $W\{A_i\} = p_i$
- lacktriangle da jeweils eines der möglichen Symbole eintrifft, gilt  $\sum_i p_i = 1$

▶ dann berechnet sich die Entropie *H* als Erwartungswert

$$H = E\{I(A_i)\}\$$

$$= \sum_{i} p_i \cdot I(A_i)$$

$$= \sum_{i} p_i \cdot \log_2(\frac{1}{p_i})$$

$$= -\sum_{i} p_i \cdot \log_2(p_i)$$

▶ als Funktion der Symbol-Wahrscheinlichkeiten nur abhängig vom stochastischen Modell

- 1. drei mögliche Ereignisse mit Wahrscheinlichkeiten  $\{\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\}$
- ▶ dann berechnet sich die Entropie zu  $H = -(\frac{1}{2}\log_2(\frac{1}{2}) + \frac{1}{3}\log_2(\frac{1}{3}) + \frac{1}{6}\log_2(\frac{1}{6})) = 1,4591$
- 2. Empfang einer Binärstelle mit den Wahrscheinlichkeiten  $p_0 = q$  und  $p_1 = (1 q)$ .
- ▶ für  $q = \frac{1}{2}$  erhält man  $H = -(\frac{1}{2}\log_2(\frac{1}{2}) + (1 \frac{1}{2})\log_2(1 \frac{1}{2})) = 1.0$
- mittlerer Informationsgehalt beim Empfang einer Binärstelle mit gleicher Wahrscheinlichkeit für beide Symbole ist genau 1 Bit



Entropie bei Empfang einer Binärstelle mit den Wahrscheinlichkeiten  $p_0=q$  und  $p_1=(1-q)$ 

- ► mittlerer Informationsgehalt einer Binärstelle nur dann 1 Bit, wenn beide möglichen Symbole gleich wahrscheinlich
- entsprechendes gilt auch für größere Symbolmengen
- ▶ Beispiel: 256 Symbole (8-bit), gleich wahrscheinlich  $H = \sum_i p_i \log_2(1/p_i) = 256 \cdot (1/256) \cdot \log_2(1/(1/256)) = 8$  Bit

## Entropie: einige Eigenschaften

9.7 Codierung - Entropie

64-040 Rechnerstrukturen

- 1.  $H(p_1, p_2, \ldots, p_n)$  ist maximal, falls  $p_i = 1/n$   $(1 \le i \le n)$
- 2. H ist symmetrisch, für jede Permutation  $\pi$  von  $1, 2, \ldots, n$  gilt:  $H(p_1, p_2, \ldots, p_n) = H(p_{\pi(1)}, p_{\pi(2)}, \ldots, p_{\pi(n)})$
- 3.  $H(p_1, p_2, ..., p_n) \ge 0$  mit H(0, 0, ..., 0, 1, 0, ..., 0, 0) = 0
- 4.  $H(p_1, p_2, \ldots, p_n, 0) = H(p_1, p_2, \ldots, p_n)$
- 5.  $H(1/n, 1/n, ..., 1/n) \le H(1/(n+1), 1/(n+1), ..., 1/(n+1))$
- 6. H ist stetig in seinen Argumenten
- 7. Additivität: seien  $n, m \in N^+$   $H(\frac{1}{n \cdot m}, \frac{1}{n \cdot m}, \dots, \frac{1}{n \cdot m}) = H(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}) + H(\frac{1}{m}, \frac{1}{m}, \dots, \frac{1}{m})$

▶ möglicher Informationsgehalt  $H_0$  ist durch Symbolcodierung festgelegt (entspricht mittlerer Codewortlänge  $\bar{I}$ )

$$H_0 = \sum_i p_i \cdot \log_2(q^{l_i})$$

- ▶ stochastisches Modell  $W\{A_i\} = p_i$ (Wahrscheinlichkeiten von Ereignissen  $A_i$ )
- ► Codierung der Ereignisse (der Symbole) C(A<sub>i</sub>) durch Code der Länge I<sub>i</sub> über einem q-nären Alphabet
- für Binärcodes gilt  $H_0 = \sum_i p_i \cdot l_i$
- ▶ binäre Blockcodes mit Wortlänge N bits:  $H_0 = N$

- ▶ **Redundanz** (engl. *code redundancy*): die Differenz zwischen dem möglichen und dem tatsächlich genutzten Informationsgehalt  $R = H_0 H$ 
  - möglicher Informationsgehalt H<sub>0</sub> ist durch Symbolcodierung festgelegt = mittlere Codewortlänge
  - ▶ tatsächliche Informationsgehalt ist die Entropie H
- ▶ relative Redundanz:  $r = \frac{H_0 H}{H_0}$
- ▶ binäre Blockcodes mit Wortlänge N bits:  $H_0 = N$  gegebener Code mit m Wörtern  $a_i$  und  $p(a_i)$ :

$$R = H_0 - H = H_0 - \left( -\sum_{i=1}^{m} p(a_i) \cdot \log_2(p(a_i)) \right)$$
$$= N + \sum_{i=1}^{m} p(a_i) \cdot \log_2(p(a_i))$$

### Informationstheorie ursprünglich entwickelt zur

- ▶ formalen Behandlung der Übertragung von Information
- ▶ über reale, nicht fehlerfreie Kanäle
- deren Verhalten als stochastisches Modell formuliert werden kann
- ► zentrales Resultat ist die Kanalkapazität C des binären symmetrischen Kanals
- ▶ der maximal pro Binärstelle übertragbare Informationsgehalt

$$C = 1 - H(F)$$

mit H(F) der Entropie des Fehlerverhaltens

## Erinnerung: Modell der Informationsübertragung

9.8 Codierung - Kanalcodierung

64-040 Rechnerstrukturen



- Informationsquelle
- ► Sender mit möglichst effizienter Kanalcodierung
- gestörter und verrauschter Übertragungskanal
- ▶ Empfänger mit Decodierer und Fehlererkennung/-korrektur
- ► Informationssenke und -verarbeitung

- ▶ Wahrscheinlichkeit der beiden Symbole 0 und 1 ist gleich  $(\frac{1}{2})$
- ► Wahrscheinlichkeit *P*, dass bei Übertragungsfehlern aus einer 0 eine 1 wird = Wahrscheinlichkeit, dass aus einer 1 eine 0 wird
- ▶ Wahrscheinlichkeit eines Fehlers an Binärstelle *i* ist unabhängig vom Auftreten eines Fehlers an anderen Stellen
- ► Entropie des Fehlerverhaltens

$$H(F) = P \cdot \log_2(1/P) + (1-P) \cdot \log_2(1/(1-P))$$

▶ Kanalkapazität ist C = 1 - H(F)

9.8 Codierung - Kanalcodierung



- ▶ bei P = 0, 5 ist die Kanalkapazität C = 0
- ⇒ der Empfänger kann die empfangenen Daten nicht von einer zufälligen Sequenz unterscheiden
  - bei P > 0,5 steigt die Kapazität wieder an (rein akademischer Fall: Invertieren aller Bits)

Die Kanalkapazität ist eine obere Schranke

- wird in der Praxis nicht erreicht (Fehler)
- ► Theorie liefert keine Hinweise, wie die fehlerfreie Übertragung praktisch durchgeführt werden kann



## Shannon-Theorem

C. E. Shannon: *Communication in the Presence of Noise*; Proc. IRE, Vol.37, No.1, 1949

9.8 Codierung - Kanalcodierung

64-040 Rechnerstrukturen

#### Gegeben:

binärer symmetrischer Kanal mit der Störwahrscheinlichkeit P und der Kapazität C(P)

#### Shannon-Theorem

Falls die Übertragungsrate R kleiner als C(P) ist, findet man zu jedem  $\epsilon > 0$  einen Code  $\mathcal C$  mit der Übertragungsrate  $R(\mathcal C)$  und  $C(P) \geq R(\mathcal C) \geq R$  und der Fehlerdecodierwahrscheinlichkeit  $< \epsilon$ 

auch: C. E. Shannon: A Mathematical Theory of Communication

# Shannon-Theorem (cont.)

C. E. Shannon: *Communication in the Presence of Noise*; Proc. IRE, Vol.37, No.1, 1949

9.8 Codierung - Kanalcodierung

64-040 Rechnerstrukturen

- ⇒ Wenn die Übertragungsrate kleiner als die Kanalkapazität ist, existieren Codes, die beliebig zuverlässig sind
- ... und deren Signalübertragungsraten beliebig nahe der Kanalkapazität liegen
- ▶ leider liefert die Theorie keine Ideen zur Realisierung
- ▶ die Nachrichten müssen sehr lang sein
- der Code muss im Mittel sehr viele Fehler in jeder Nachricht korrigieren
- ▶ mittlerweile sehr nah am Limit: Turbo-Codes, LDPC Codes, usw.

#### Motivation

- ► Informationstheorie
- Kanalkapazität
- ► Shannon-Theorem
- zuverlässige Datenübertragung ist möglich
- ▶ aber (bisher) keine Ideen für die Realisierung
- ⇒ fehlererkennende Codes
- ⇒ fehlerkorrigierende Codes

#### diverse mögliche Fehler bei der Datenübertragung

|  | Verwech: | slung | eines | Zeichens |  |
|--|----------|-------|-------|----------|--|
|--|----------|-------|-------|----------|--|

► USW.

$$a \rightarrow b$$

$$ab \rightarrow ba$$

$$abc \rightarrow cba$$

$$aa \rightarrow bb$$

- ▶ abhängig von der Technologie / der Art der Übertragung
  - Bündelfehler durch Kratzer auf einer CD
  - ▶ Bündelfehler bei Funk durch längere Störimpulse
  - ▶ Buchstabendreher beim "Eintippen" eines Textes

- ▶ **Block-Code**: *k*-Informationsbits werden in *n*-Bits codiert
- ► Faltungscodes: ein Bitstrom wird in einen Codebitstrom höherer Bitrate codiert
  - ▶ Bitstrom erzeugt Folge von Automatenzuständen
  - Decodierung über bedingte Wahrscheinlichkeiten bei Zustandsübergängen
  - im Prinzip linear, Faltungscodes passen aber nicht in Beschreibung unten
- ▶ **linearer** (n, k)-**Code**: ein k-dimensionaler Unterraum des  $GF(2)^n$
- modifizierter Code: eine oder mehrere Stellen eines linearen Codes werden systematisch verändert (d.h. im GF(2) invertiert) Null- und Einsvektor gehören nicht mehr zum Code
- ▶ nichtlinearer Code: weder linear noch modifiziert

## Einschub: GF(2), $GF(2)^n$

de.wikipedia.org/wiki/Endlicher\_Körper

en.wikipedia.org/wiki/GF(2)

9.9 Codierung - Fehlererkennende Codes

64-040 Rechnerstrukturen

#### Boole'sche Algebra

Details: Mathe-Skript, Wikipedia, v.d. Heide [Hei05a]

- basiert auf: UND, ODER, Negation
- ▶ UND  $\approx$  Multiplikation ODER  $\approx$  Addition
- ▶ aber: kein inverses Element für die ODER-Operation ⇒ kein Körper

## Galois-Feld mit zwei Elementen: GF(2)

- Körper, zwei Verknüpfungen: UND und XOR
- ► UND als Multiplikation XOR als Addition mod 2
- ▶ additives Inverses existiert:  $x \oplus x = 0$

9.9 Codierung - Fehlererkennende Codes

64-040 Rechnerstrukturen

- systematischer Code: wenn die zu codierende Information direkt (als Substring) im Codewort enthalten ist
- zyklischer Code
  - ein Block-Code (identische Wortlänge aller Codewörter)
  - für jedes Codewort gilt: auch alle zyklischen Verschiebungen (Rotationen, z.B. rotate-left) sind Codeworte
  - ⇒ bei serieller Übertragung erlaubt dies die Erkennung/Korrektur von Bündelfehlern

- Automatic Repeat Request (ARQ): der Empfänger erkennt ein fehlerhaftes Symbol und fordert dies vom Sender erneut an
  - bidirektionale Kommunikation erforderlich
  - unpraktisch bei großer Entfernung / Echtzeitanforderungen
- ➤ Vorwärtsfehlerkorrektur (Forward Error Correction, FEC): die übertragene Information wird durch zusätzliche Redundanz (z.B. Prüfziffern) gesichert
  - der Empfänger erkennt fehlerhafte Codewörter und kann diese selbständig korrigieren
- ▶ je nach Einsatzzweck sind beide Verfahren üblich
- auch kombiniert

- ► **Hamming-Abstand**: die Anzahl der Stellen, an denen sich zwei Binärcodewörter der Länge *w* unterscheiden
- ► Hamming-Gewicht: Hamming-Abstand eines Codeworts vom Null-Wort
- ▶ Beispiel a = 01100011b = 10100111
- ⇒ Hamming-Abstand von a und b ist 3 Hamming-Gewicht von b ist 5
  - ▶ Java: Integer.bitcount( a ^ b )

- Zur Fehlererkennung und Fehlerkorrektur ist eine Codierung mit Redundanz erforderlich
- Repräsentation enthält mehr Bits, als zur reinen Speicherung nötig wären
- Codewörter so wählen, dass sie paarweise mindestens den Hamming-Abstand d haben
   dieser Abstand heißt dann Minimalabstand d
- $\Rightarrow$  Fehlererkennung bis zu (d-1) fehlerhaften Stellen Fehlerkorrektur bis zu ((d-1)/2) -"-

# Fehlererkennende und -korrigierende Codes (cont.)

9.9 Codierung - Fehlererkennende Codes

64-040 Rechnerstrukturen



# Fehlererkennende und -korrigierende Codes (cont.)

9.9 Codierung - Fehlererkennende Codes

64-040 Rechnerstrukturen



## Man fügt den Daten Prüfinformation hinzu, oft Prüfsumme genannt

- zur Fehlerkennung
- zur Fehlerkorrektur
- zur Korrektur einfacher Fehler, Entdeckung schwerer Fehler

#### verschiedene Verfahren

- Prüfziffer, Parität
- Summenbildung
- CRC-Verfahren (cyclic-redundancy check)
- ▶ BCH-Codes (Bose, Ray-Chauduri, Hocquengham)
- ► RS-Codes (Reed-Solomon)

- ▶ das Anfügen eines **Paritätsbits** an ein Binärcodewort  $z = (z_1, ..., z_n)$  ist die einfachste Methode zur Erkennung von Einbitfehlern
- die Parität wird berechnet als

$$p = \left(\sum_{i=1}^{n} z_i\right) \mod 2$$

▶ gerade Parität (even parity):  $y_{even} = (z_1, ..., z_n, p)$  $p(y_{even}) = (\sum_i y_i) \mod 2 = 0$ 

ungerade Parität (odd parity): 
$$y_{odd} = (z_1, ..., z_n, \overline{p})$$
  
 $p(y_{odd}) = (\sum_i y_i) \mod 2 = 1$ 

- ▶ in der Praxis meistens Einsatz der ungeraden Parität: pro Codewort y<sub>odd</sub> mindestens je eine Null und Eins
- ► Hamming-Abstand zweier Codewörter im Paritätscode ist mindestens 2, weil sich bei Ändern eines Nutzbits jeweils auch die Parität ändert: *d* = 2
- Erkennung von Einbitfehlern möglich:
   Berechnung der Parität im Empfänger und Vergleich mit der erwarteten Parität
- ► Erkennung von (ungeraden) Mehrbitfehlern

- Anordnung der Daten / Informations-Bits als Matrix
- Berechnung der Parität für alle Zeilen und Spalten
- ▶ optional auch für Zeile/Spalte der Paritäten
- ▶ entdeckt 1-bit Fehler in allen Zeilen und Spalten
- erlaubt Korrektur von allen 1-bit und vielen n-bit Fehlern
- ▶ natürlich auch weitere Dimensionen möglich n-dimensionale Anordnung und Berechnung von n Paritätsbits

| Н | 100 1000 | 0 |
|---|----------|---|
| Α | 100 0001 | 0 |
| Μ | 100 1101 | 0 |
| Μ | 100 1101 | 0 |
| I | 100 1001 | 1 |
| Ν | 100 1110 | 0 |
| G | 100 0111 | 0 |
|   | 100 1001 | 1 |

9.9 Codierung - Fehlererkennende Codes

| Fehlerfall | 100 1000                | 0 |
|------------|-------------------------|---|
|            | 100 0 <mark>1</mark> 01 | 0 |
|            | 1 <mark>1</mark> 0 1101 | 0 |
|            | 100 1101                | 0 |
|            | 000 1001                | 1 |
|            | 100 1110                | 0 |
|            | 100 0111                | 0 |
|            | 100 1000                | 1 |

- ► Symbol: 7 ASCII-Zeichen, gerade Parität (*even*) 64 bits pro Symbol (49 für Nutzdaten und 15 für Parität)
- ▶ links: Beispiel für ein Codewort und Paritätsbits
- rechts: empfangenes Codewort mit vier Fehlern, davon ein Fehler in den Paritätsbits

9.9 Codierung - Fehlererkennende Codes

64-040 Rechnerstrukturen

| H 100 1000 | 0 | Fehlerfall | 100 1000                | 0   |
|------------|---|------------|-------------------------|-----|
| A 100 0001 | 0 |            | 100 0 <mark>1</mark> 01 | 0 1 |
| M 100 1101 | 0 |            | 100 1101                | 0   |
| M 100 1101 | 0 |            | 100 1101                | 0   |
| I 100 1001 | 1 |            | 100 1001                | 1   |
| N 100 1110 | 0 |            | 100 1110                | 0   |
| G 100 0111 | 0 |            | 100 0111                | 0   |
| 100 1001   | 1 |            | 100 1001                | 1   |
|            | ' |            | 1000                    |     |

- ► Empfänger: berechnet Parität und vergleicht mit gesendeter P.
- ▶ Einzelfehler: Abweichung in je einer Zeile und Spalte
- ⇒ Fehler kann daher zugeordnet und korrigiert werden
- ▶ Mehrfachfehler: nicht alle, aber viele erkennbar (korrigierbar)

## Zweidimensionale Parität: Dezimalsystem

9.9 Codierung - Fehlererkennende Codes

64-040 Rechnerstrukturen

- ▶ Parität als Zeilen/Spaltensumme mod 10 hinzufügen
- Daten
  3 7 4
  5 4 8
  1 3 5

64-040 Rechnerstrukturen

- ▶ an EAN (*European Article Number*) gekoppelt
- Codierung eines Buches als Tupel
- 1. Präfix (nur ISBN-13)
- 2. Gruppennummer für den Sprachraum als Fano-Code: 0-7, 80-94, 950-995, 9960-9989, 99900-99999
  - ▶ 0, 1: englisch AUS, UK, USA...
  - 2: französisch F...
  - ▶ 3: deutsch A. DE. CH
- 3. Verlag, Nummer als Fano-Code: 00 - 19 (1 Mio Titel), 20 - 699 (100 000 Titel) usw.
- 4. verlagsinterne Nummer
- 5. Prüfziffer

- ► ISBN-10 Zahl: *z*<sub>1</sub>, *z*<sub>2</sub>, . . . , *z*<sub>10</sub>
- ▶ Prüfsumme berechnen, Symbol X steht für Ziffer 10

$$\sum_{i=1}^{9} (i \cdot z_i) \mod 11 = z_{10}$$

► ISBN-Zahl zulässig, genau dann wenn

$$\sum_{i=1}^{10} (i \cdot z_i) \mod 11 = 0$$

▶ Beispiel: 0-13-713336-7  $1 \cdot 0 + 2 \cdot 1 + 3 \cdot 3 + 4 \cdot 7 + 5 \cdot 1 + 6 \cdot 3 + 7 \cdot 3 + 8 \cdot 3 + 9 \cdot 6 = 161$   $161 \mod 11 = 7$  $161 + 10 \cdot 7 = 231$  231 mod 11 = 0

- ▶ Prüfziffer schützt gegen Verfälschung einer Ziffer
  - -"- Vertauschung zweier Ziffern-"- "Falschdopplung" einer Ziffer
- ▶ Beispiel: vertausche i-te und j-te Ziffer (mit  $i \neq j$ )

Prüfsumme: 
$$\langle korrekt \rangle$$
 -  $\langle falsch \rangle$ 

$$=i\cdot z_i+j\cdot z_j-j\cdot z_i-i\cdot z_j=(i-j)\cdot (z_i-z_j)$$
 mit  $z_i\neq z_j$ .

- dreifache Wiederholung jedes Datenworts
- ▶ (3,1)-Hamming-Code: Generatormatrix ist  $G = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
- ightharpoonup Codewörter ergeben sich als Multiplikation von G mit dem Informationsvektor u (jeweils ein Bit)

$$u = 0$$
:  $x = (111)^T \cdot (0) = (000)$   
 $u = 1$ :  $x = (111)^T \cdot (1) = (111)$ 

- ▶ Verallgemeinerung als *n*-fach Wiederholungscode
- $\triangleright$  systematischer Code mit Minimalabstand D=n
- ▶ Decodierung durch Mehrheitsentscheid: 1-bit Fehlerkorrektur
- Nachteil: geringe Datenrate

#### 9.9 Codierung - Fehlererkennende Codes

- Hamming-Abstand 3
- ▶ korrigiert 1-bit Fehler, erkennt (viele) 2-bit und 3-bit Fehler

## (N, n)-Hamming-Code

- ▶ Datenwort *n*-bit  $(d_1, d_2, \dots d_n)$ um *k*-Prüfbits ergänzen  $(p_1, p_2, \dots p_k)$
- $\Rightarrow$  Codewort mit N = n + k bit
  - Fehlerkorrektur gewährleisten:  $2^k > N+1$ 
    - ▶ 2<sup>k</sup> Kombinationen mit k-Prüfbits
    - ▶ 1 fehlerfreier Fall
    - N zu markierende Bitfehler

64-040 Rechnerstrukturen

9.9 Codierung - Fehlererkennende Codes

- 1. bestimme kleinstes k mit  $n \le 2^k k 1$
- 2. Prüfbits an Bitpositionen:  $2^0, 2^1, \dots 2^{k-1}$ Originalbits an den übrigen Positionen

| Position | 1     | 2                     | 3     | 4                     | 5     | 6     | 7     | 8                     | 9     |     |
|----------|-------|-----------------------|-------|-----------------------|-------|-------|-------|-----------------------|-------|-----|
| Bit      | $p_1$ | <i>p</i> <sub>2</sub> | $d_1$ | <i>p</i> <sub>3</sub> | $d_2$ | $d_3$ | $d_4$ | <i>p</i> <sub>4</sub> | $d_5$ | .10 |

3. berechne Prüfbit *i* als mod 2-Summe der Bits (XOR), deren Positionsnummer ein gesetztes *i*-bit enthält

$$p_1=d_1\oplus d_2\oplus d_4\oplus d_5\oplus\ldots$$

$$p_2 = d_1 \oplus d_3 \oplus d_4 \oplus d_6 \oplus \dots$$

$$p_3 = d_2 \oplus d_3 \oplus d_4 \oplus d_8 \oplus \dots$$

$$p_4=d_5\oplus d_6\oplus d_7\oplus d_8\oplus\ldots$$

. . .

Prüfbits werden dabei auch berücksichtigt





## (7,4)-Hamming-Code

 $p_1 = d_1 \oplus d_2 \oplus d_4$   $p_2 = d_1 \oplus d_3 \oplus d_4$   $p_3 = d_2 \oplus d_3 \oplus d_4$ 

#### (15,11)-Hamming-Code

 $p_1 = d_1 \oplus d_2 \oplus d_4 \oplus d_5 \oplus d_7 \oplus d_9 \oplus d_{11}$   $p_2 = d_1 \oplus d_3 \oplus d_4 \oplus d_6 \oplus d_7 \oplus d_{10} \oplus d_{11}$   $p_3 = d_2 \oplus d_3 \oplus d_4 \oplus d_8 \oplus d_9 \oplus d_{10} \oplus d_{11}$   $p_4 = d_5 \oplus d_6 \oplus d_7 \oplus d_8 \oplus d_9 \oplus d_{10} \oplus d_{11}$ 

- ▶ sieben Codebits für je vier Datenbits
- ▶ linearer (7,4)-Block-Code
- ► Generatormatrix ist

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

▶ Codewort  $c = G \cdot d$ 

Prüfmatrix H orthogonal zu gültigen Codewörtern:  $H \cdot c = 0$ 

$$H = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

für ungültige Codewörter  $H \cdot c \neq 0$ 

⇒ "Fehlersyndrom" liefert Information über Fehlerposition / -art

#### Fazit: Hamming-Codes

- + größere Wortlangen: besseres Verhältnis von Nutz- zu Prüfbits
- + einfaches Prinzip, einfach decodierbar
- es existieren weit bessere Codes

• Codieren von d = (0, 1, 1, 0)

$$c = G \cdot d = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

• Prüfung von Codewort c = (1, 1, 0, 0, 1, 1, 0)

$$H \cdot c = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

• im Fehlerfall c = (1, 1, 1, 0, 1, 1, 0)

$$H \cdot c = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

⇒ Fehlerstelle:

$$\begin{pmatrix}
1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{pmatrix}$$

- (n, k)-Code: k-Informationsbits werden in n-Bits codiert
- ▶ Minimalabstand d der Codewörter voneinander
- ermöglicht Korrektur von r Bitfehlern  $r \leq (d-1)/2$
- $\Rightarrow$  nicht korrigierbar sind:  $r + 1, r + 2, \dots$  n Bitfehler
  - ▶ Übertragungskanal hat Bitfehlerwahrscheinlichkeit
- ⇒ Wortfehlerwahrscheinlichkeit: Summe der Wahrscheinlichkeiten nicht korrigierbarer Bitfehler

# Fehlerrate: (7,4)-Hamming-Code

9.9 Codierung - Fehlererkennende Codes

64-040 Rechnerstrukturen



[Hei05a]

# Fehlerrate: (23,12)-Golay-Code

9.9 Codierung - Fehlererkennende Codes

64-040 Rechnerstrukturen



[Hei05a]

## Fehlerrate: (2048,8)-Randomcode

9.9 Codierung - Fehlererkennende Codes

64-040 Rechnerstrukturen



[Hei05a]

- ▶ jedem n-bit Wort  $(d_1, d_2, ..., d_n)$  lässt sich ein Polynom über dem Körper  $\{0, 1\}$  zuordnen
- Beispiel, mehrere mögliche Zuordnungen

$$100 \, 1101 = 1 \cdot x^{6} + 0 \cdot x^{5} + 0 \cdot x^{4} + 1 \cdot x^{3} + 1 \cdot x^{2} + 0 \cdot x^{1} + 1 \cdot x^{0}$$

$$= x^{6} + x^{3} + x^{2} + x^{0}$$

$$= x^{0} + x^{3} + x^{4} + x^{6}$$

$$= x^{0} + x^{-3} + x^{-4} + x^{-6}$$

- mit diesen Polynomen kann "gerechnet" werden: Addition, Subtraktion, Multiplikation, Division
- ► Theorie: Galois-Felder

#### CRC (Cyclic Redundancy Check)

- ▶ Polynomdivision als Basis für CRC-Codes erzeugt Prüfbits
- zyklisch: Codewörter werden durch Schieben und Modifikation (mod 2 Summe) ineinander überführt
- Familie von Codes zur Fehlererkennung insbesondere auch zur Erkennung von Bündelfehlern
- ▶ in sehr vielen Codes benutzt
  - ▶ Polynom 0x04C11DB7 (CRC-32) in Ethernet, ZIP, PNG ...
  - weitere CRC-Codes in USB, ISDN, GSM, openPGP . . .

- Sehr effiziente Software- oder Hardwarerealisierung
  - rückgekoppelte Schieberegister und XOR LFSR (Linear Feedback Shift Register)
  - Beispiel  $x^5 + x^4 + x^2 + 1$



- Codewort erstellen
  - ▶ Datenwort d<sub>i</sub> um k 0-bits verlängern, Grad des Polynoms: k
  - bitweise in CRC-Check schieben
  - ▶ Divisionsrest bildet Registerinhalt p<sub>i</sub>
  - ▶ Prüfbits p<sub>i</sub> an ursprüngliches Datenwort anhängen

- Test bei Empfänger
  - übertragenes Wort bitweise in CRC-Check schieben gleiches Polynom / Hardware wie bei Codierung
  - ► fehlerfrei, wenn Divisionsrest/Registerinhalt = 0
- ▶ je nach Polynom (# Prüfbits) unterschiedliche Güte
- ► Galois-Felder als mathematische Grundlage
- en.wikipedia.org/wiki/Cyclic\_redundancy\_check en.wikipedia.org/wiki/Computation\_of\_CRC de.wikipedia.org/wiki/Zyklische\_Redundanzprüfung de.wikipedia.org/wiki/LFSR

### Praxisbeispiel: EAN-13 Produktcode de.wikipedia.org/wiki/European\_Article\_Number

9.11 Codierung - Praxisbeispiele

64-040 Rechnerstrukturen

#### Kombination diverser Codierungen:

- ► Land, Unternehmen, Artikelnummer, Prüfsumme
- ▶ 95-stelliges Bitmuster
  - ▶ schwarz  $\hat{=} 1$ , weiss  $\hat{=} 0$
  - max. vier aufeinanderfolgende weisse/schwarze Bereiche
  - Randzeichen: 101 Trennzeichen in der Mitte: 01010
- ▶ 13 Ziffern: 7 links, 6 rechts
  - ▶ jede Ziffer mit 7 bit codiert, je zwei Linien und Freiräume
  - ▶ 3 Varianten pro Ziffer: links ungerade/gerade, rechts
  - 12 7iffern Code
  - ▶ 13. Ziffer als Prüfsumme über Abfolge von u/g Varianten

NEKTARINEN GELB |2404105||001722 Gewicht: 9.11 Codierung - Praxisbeispiele

▶ Polycarbonatscheibe, spiralförmige geprägte Datenspur







- ▶ spiralförmige Spur, ca. 16000 Windungen, Start innen
- ▶ geprägte Vertiefungen pits, dazwischen lands
- ▶ Wechsel pit/land oder land/pit codiert 1, dazwischen 0
- Auslesen durch Intensität von reflektiertem Laserstrahl
- ▶ 650 MiB Kapazität, Datenrate ≈ 150 KiB/sec (1x speed)

64-040 Rechnerstrukturen

- 9.11 Codierung Praxisbeispiele
  - von Anfang an auf billigste Fertigung ausgelegt
  - mehrstufige Fehlerkorrekturcodierung fest vorgesehen
  - ► Kompensation von Fertigungsmängeln und -toleranzen
  - ► Korrektur von Staub und Kratzern, etc.
  - ► Audio-CD: Interpolation nicht korrigierbarer Fehler
  - Daten-CD: geschachtelte weitere Codierung
  - ▶ Bitfehlerrate < 10<sup>11</sup>

- ▶ Daten in *Frames* à 24 Bytes aufteilen
- ▶ 75 *Sektoren* mit je 98 Frames pro Sekunde
- ► Sektor enthält 2 352 Bytes Nutzdaten (und 98 Bytes *Subcode*)
- pro Sektor 784 Byte Fehlerkorrektur hinzufügen
- ▶ Interleaving gegen Burst-Fehler (z.B. Kratzer)
- ► Code kann bis 7 000 fehlende Bits korrigieren
- eight-to-fourteen Modulation: 8-Datenbits in 14 Codebits
   2..10 Nullen zwischen zwei Einsen (pit/land Übergang)
- ▶ Daten-CD zusätzlich mit äußerem 2D Reed-Solomon Code
- ▶ pro Sektor 2048 Bytes Nutzdaten, 276 Bytes RS-Fehlerschutz

#### Joint Picture Experts Group Bildformat (1992)

- ▶ für die Speicherung von Fotos / Bildern
- verlustbehaftet

#### mehrere Codierungsschritte

- 1. Farbraumkonvertierung: RGB nach YUV
- 2. Aufteilung in Blöcke zu je 8x8 Pixeln
- 3. DCT (discrete cosinus transformation)
- 4. Quantisierung (einstellbar)
- 5. Huffman-Codierung

verlustbehaftet verlustfrei verlustfrei

verlustbehaftet verlustfrei

9.11 Codierung - Praxisbeispiele

Motion Picture Experts Group: Sammelname der Organisation und diverser aufeinander aufbauender Standards

#### Codierungsschritte für Video

- 1. Einzelbilder wie JPEG (YUV, DCT, Huffman)
- 2. Differenzbildung mehrerer Bilder (Bewegungskompensation)
- 3. Group of Pictures (I-Frames, P-Frames, B-Frames)
- 4. Zusammenfassung von Audio, Video, Metadaten im sogenannten PES (*Packetized Elementary Stream*)
- 5. Transport-Stream Format für robuste Datenübertragung

64-040 Rechnerstrukturen

9.11 Codierung - Praxisbeispiele

# Digital Video Broadcast: Sammelname für die europäischen Standards für digitales Fernsehen

#### Codierungsschritte

- 1. Videocodierung nach MPEG-2 (geplant: MPEG-4)
- 2. Multiplexing mehrerer Programme nach MPEG-TS
- 3. optional: Metadaten (Electronic Program Guide)
- 4. vier Varianten für die eigentliche Kanalcodierung
  - DVB-S: Satellite
  - DVB-C: Cable
  - DVB-T: Terrestrial
  - ► DVB-H: Handheld/Mobile

- [Ham87] R.W. Hamming: *Information und Codierung*. VCH. 1987. ISBN 3-527-26611-9
- [Hei05a] K. von der Heide: Vorlesung: Technische Informatik 1 interaktives Skript. Universität Hamburg, FB Informatik, 2005. tams.informatik.uni-hamburg.de/lectures/2004ws/ vorlesung/t1
- [Hei05b] K. von der Heide: Vorlesung: Digitale Datenübertragung. Universität Hamburg, FB Informatik, 2005, Vorlesungsskript. tams.informatik.uni-hamburg.de/lectures/2005ss/ vorlesung/Digit
- [HenHA] N. Hendrich: HADES HAmburg DEsign System. Universität Hamburg, FB Informatik, Lehrmaterial. tams.informatik.uni-hamburg.de/applets/hades

[RL09] W.E. Ryan, S. Lin: *Channel codes: classical and modern.* Cambridge University Press, 2009. ISBN 0-521-84868-7

[Knu85] D.E. Knuth: Dynamic Huffman Coding. in: J. of Algorithms 6 (1985), Nr. 2, S. 163–180

[Knu11] D.E. Knuth: The Art of Computer Programming, Volume 4A, Combinatorial Algorithms, Part 1. Addison-Wesley Professional, 2011. ISBN 978-0-201-03804-0