Homework 1 Computer Science Fall 2016 B565

Professor Dalkilic

August 27, 2016

Directions

Please follow the syllabus guidelines for your homework. I will provide the LATEX of this document too. The homework is due Sunday, September 4 by 5:00 p.m.

Notation an Definitions

- Mathematical structures are italicized. For example, we write a set as X, not X.
- Use standard notation. For example, \cup , \cap for union and intersection.
- Let Π be a partition of X. We define a binary relation \sim_{Π} on X as follows:

$$x\sim_\Pi y\quad \leftrightarrow\quad x,y\in B, B\in\Pi$$

We write $\sim_{\Pi[x]}$ to mean $B \in \Pi$ such that $x \in B$

Definition Equivalence Relation.

Let Π be a partition of X and \sim_{Π} be a on relation on X. \sim_{Π} is an equivalence relation if:

- Reflexivity $(\forall x \in X) \ x \sim_{\Pi} x$
- Symmetry $(\forall x, y \in X) \ x \sim_{\Pi} y \to y \sim_{\Pi} x$
- Transitivity $(\forall x, y, z \in X)$ $x \sim_{\Pi} y \wedge y \sim_{\Pi} z \rightarrow x \sim_{\Pi} z$

Problems

- 1. Define the following terms
 - (a) Partition of a non-empty (finite) set X.
 - (b) Distance metric d over X.
 - (c) Show that given an equivalence relation \sim over a non-empty (finite) set X, there is an associated unique partition Π .
 - (d) Given a set X, a partition Π , and the equivalence relation \sim_{Π} , and distance metric d over X, choose two distinct points $x, y \in X$ such that
 - i. $x, y \in B \in \Pi$ where d(x, y) = k. Then there must be two distinct points $a, b \in X$ where $a \sim_{\Pi[x]} b$ such that d(a, b) = k. True or False

- ii. $x \in B, y \in B'$ where $B, B' \in \Pi \land B \neq B'$ and d(x, y) = k. Then there may not be two distinct points $a, b \in X$ such that d(a, b) = k. TRUE OR FALSE
- iii. If |X| = n, then there must be n distinct, non-empty blocks $B_1, B_2, \ldots, B_n \in \Pi$ True or False
- iv. If $|\Pi| = n$, then there are n distinct $x_1, x_2, \ldots, x_n \in X$. True or False
- vi. $x \in B, y \in B'$ where $B, B' \in \Pi \land B \neq B'$ and d(x, y) = k. Then $(\forall x' \in X) \ x' \in B \land x \neq x' \rightarrow d(x, x') < k$. True or False
- 2. Let $X = \{1, 2, 3, 4, 5, 6\}$. Find the *smallest* equivalence relation \sim such that:

$$\begin{array}{ccc} (1,2) & \in & \sim \\ (2,3) & \in & \sim \end{array}$$

 $(5,2) \in \sim$

 $(4,6) \in \sim$

 $(7,7) \in \sim$

Why would a data scientist be interested in the smallest?

3. Let $X = \{0, 3, 7, 8, 9\}$. Form a partition that has three blocks such that

$$d(x,y) = [(x-y)^2]^{1/2}$$

has a minimum intrablock distance.

INPUT TOTIntraBlockDis(Set $X = \{B_1, B_2, \dots, B_n\}$, distance d over X)

 $\triangleright X$ is a partition and B_i are the blocks.

```
\begin{array}{l} \mathbf{OUTPUT} \ R_{\geq 0} \ v \\ v \leftarrow 0 \\ \mathbf{for} \ i = 1, n \ \mathbf{do} \\ v \leftarrow v + \mathtt{IntraBlockDis}(B_i, d) \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{return} \ v \\ \\ \mathbf{INPUT} \ \mathtt{IntraBlockDis}(\mathsf{Set} \ X = \{x_1, x_2, \dots, x_n\}, \ \mathrm{distance} \ d) \\ \mathbf{OUTPUT} \ R_{\geq 0} \ v \\ v \leftarrow 0 \\ \mathbf{for} \ i = 1, n - 1 \ \mathbf{do} \\ \mathbf{for} \ j = i + 1, n \ \mathbf{do} \\ v \leftarrow v + d(i, j) \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{return} \ v \\ \end{array}
```

EXAMPLE. Assume $X = \{1, 2, 3, 4, 5\}$ and d(x, y) = |x - y|. Then IntraBlockDis(X, d) = 20. The calculation is shown below:

i	j	d(i,j)	v
1	2	1	1
	2 3 4 5 3 4 5 4 5 5	$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	3
	4		6
	5	4	10
2	3	1	11
	4	2 3	13
	5		16
3	4	$\begin{array}{ c c }\hline 1\\ 2 \end{array}$	17
	5	2	19
4	5	1	20

- 4. Show the results of TOTIntraBlockDis($\{\{1,2\},\{3\},\{4,10\}\},d(x,y)=|x-y|$).
- 5. Write the InterBlockDis algorithm that takes a partition and distance function and returns the distance between blocks. Use this function to calculation the interblock distance on the partition in Problem 3.
- 6. This problem asks you to prove (or disprove) that a function d is a metric. We give an example of a proof first.

Prove (or disprove with a counter example) that d defined below is a metric.

Proof

Let $d: \mathbb{R}^2_{>0} \to \mathbb{R}_{\geq 0}$ such that

$$d(x,y) = \left\{ \begin{array}{ll} |x-y|/\max\{x,y\}, & x+y>0 \\ 0 & o.w. \end{array} \right.$$

$$(\forall \, x) \, \, d(x,x) = 0.$$
 Assume $a = 0$
$$d(a,a) = 0 \, \text{by definition.}$$
 Assume $a > 0 \, \text{w.l.o.g.}$
$$d(a,a) = |a-a|/a = 0$$

$$(\forall \, x,y) \, d(x,y) = d(y,x)$$
 Assume $a \leq b$. Then $\max\{a,b\} = b$. Since $d(a,b) = (b-a)/b$ and $d(b,a) = (b-a)/b$, then $d(a,b) = d(b,a)$
$$(\forall \, x,y,z) \, d(x,y) + d(y,z) \geq d(x,z)$$
 Assume $a \leq b \leq c \, \text{w.l.o.g.}$
$$(b-a)/b + (c-b)/c \geq (c-a)/c$$

$$(b-a)/b \geq (b-a)/c$$

$$c \geq b$$

Prove (or disprove with a counter example) that d is a metric.

Let $d: \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ such that

$$d(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|$$

7. Stirling numbers of the second kind gives the number of ways to partition a set of n elements into k blocks, written S(n,k) and is the sum

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} i^n$$

Implement this function in R and create a plot for n = 20, k = 1, 2, ..., 10. You will turn in your R source code called Stirling and attach the visualization to your homework.

- 8. In no more than a paragraph, summarize the paper, "On the Surprising Behavior of Distance Metrics in High Dimensional Space."
- 9. Curse of Dimensionality. A hypersphere describes the set of points within a fixed distance from a given point. We can write the volume of a hypersphere in n dimensions of unit radii as the recursion:

$$V_0 = 1 \tag{1}$$

$$V_1 = 2 (2)$$

$$V_1 = 2$$
 (2)
 $V_n = \frac{2\pi}{n} V_{n-2}$ (3)

Using R, plot the volume of the hypersphere in $n = 0, 1, \dots, 20$ dimensions of unit radii. Discuss the plot and how it relates to the paper in the previous question. The R code is called CoD.