Wronskiano

Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar)

El objeto de esta nota es presentar una condición suficiente para la independencia lineal de conjuntos de funciones, simple de verificar.

Dado un intervalo I de \mathbb{R} , recordamos que $\mathcal{C}(I)$ denota al espacio vectorial compuesto por todas las funciones $f:I\to\mathbb{R}$ que son continuas en I y que $\mathcal{C}^k(I)$, con $k\in\mathbb{N}$, denota al subespacio de $\mathcal{C}(I)$ formado por las funciones $f:I\to\mathbb{R}$ que son k-veces derivables con continuidad en I (cuando el intervalo I contiene a alguno de sus extremos, se consideran en ese punto las derivadas laterales que correspondan). Recordemos que el conjunto de funciones continuas $\{f_1,\ldots,f_n\}$, con $f_i\in\mathcal{C}(I),\,i=1,\ldots,n$, es linealmente independiente si la única combinación lineal de las f_i que verifica la condición

$$c_1 f_1 + c_2 f_2 + \dots + c_n f_n = 0 \tag{1}$$

es la trivial, es decir, $c_1 = c_2 = \cdots = c_n = 0$.

Observamos que (1) es equivalente a la condición

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0 \quad \forall x \in I.$$

Dado un conjunto de funciones $\{f_1, \ldots, f_n\}$, con $f_i \in \mathcal{C}^{(n-1)}(I)$ para $i = 1, \ldots, n$ (observe que la cantidad de derivadas continuas que se supone tiene cada f_i es una menos que la cantidad de funciones que tiene el conjunto considerado), se define el wronskiano de $\{f_1, \ldots, f_n\}$, mediante

$$W(f_1, \dots, f_n)(x) = \det \begin{pmatrix} \begin{bmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{bmatrix} \end{pmatrix}, \quad x \in I.$$
 (2)

Por ejemplo, si consideramos las funciones $f_1(x) = x$, $f_2(x) = e^x$ y $f_3(x) = e^{-x}$, tenemos que

$$W(f_1, f_2, f_3)(x) = \det \left(\begin{bmatrix} x & e^x & e^{-x} \\ 1 & e^x & -e^{-x} \\ 0 & e^x & e^{-x} \end{bmatrix} \right) = 2x \quad \forall x \in \mathbb{R}.$$

El siguiente resultado da una condición suficiente para la independencia lineal de un conjunto de funciones en términos del wronskiano de ellas.

Teorema. Supongamos que $\{f_1, f_2, \dots, f_n\}$ es un conjunto de funciones pertenecientes a $\mathcal{C}^{n-1}(I)$ tal que para algún $x_0 \in I$, $W(f_1, \dots, f_n)(x_0) \neq 0$.

Entonces $\{f_1, f_2, \dots, f_n\}$ es linealmente independiente.

Demostración. Supongamos que para ciertos números reales c_1, \ldots, c_n ,

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0 \quad \forall x \in I.$$

Derivando sucesivamente ambos miembros de la igualdad resulta que para todo $x \in I$:

$$c_1 f_1'(x) + c_2 f_2'(x) + \dots + c_n f_n'(x) = 0$$

$$c_1 f_1''(x) + c_2 f_2''(x) + \dots + c_n f_n''(x) = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$c_1 f_1^{(n-1)}(x) + c_2 f_2^{(n-1)}(x) + \dots + c_n f_n^{(n-1)}(x) = 0$$

Lo anterior puede expresarse matricialmente:

$$\begin{bmatrix} f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x) \\ f'_{1}(x) & f'_{2}(x) & \cdots & f'_{n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x) \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \forall x \in I.$$

Entonces, en particular, tomando $x = x_0$ obtenemos la igualdad

$$\begin{bmatrix} f_1(x_0) & f_2(x_0) & \cdots & f_n(x_0) \\ f'_1(x_0) & f'_2(x_0) & \cdots & f'_n(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x_0) & f_2^{(n-1)}(x_0) & \cdots & f_n^{(n-1)}(x_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Como el determinante de la matriz cuadrada que aparece en el lado izquierdo de la igualdad es el wronskiano de f_1, \ldots, f_n evaluado en x_0 , y suponemos que éste no es nulo, tenemos que tal matriz es inversible y que por lo tanto $c_1 = c_2 = \cdots = c_n = 0$. Luego $\{f_1, f_2, \ldots, f_n\}$ es l.i., que es lo que queríamos probar.

Del Teorema recién demostrado se deduce el siguiente

Corolario. Si $\{f_1, f_2, \dots, f_n\}$, con $f_i \in \mathcal{C}^{(n-1)}(I)$ para $i = 1, \dots, n$, es un conjunto linealmente dependiente entonces necesariamente

$$W(f_1,\ldots,f_n)(x)=0 \quad \forall x\in I.$$

En resumen, si el wronskiano de un conjunto de funciones cuyo dominio es el intervalo I es distinto de cero en algún punto $x_0 \in I$, el conjunto es l.i.; si el conjunto es l.d. entonces el wronskiano se anula en todo punto $x \in I$.

Ejemplos.

- 1. Las funciones $f_1(x) = x$, $f_2(x) = e^x$ y $f_3(x) = e^{-x}$ son l.i. en cualquier intervalo I de la recta que contenga más de un punto. En efecto, $W(f_1, f_2, f_3)(x) = 2x$, que es diferente de cero en cualquier punto de I distinto de cero.
- 2. Las funciones $f_1(x) = e^x$ y $f_2(x) = e^{x+1}$ son linealmente dependientes en cualquier intervalo I, pues

$$-ef_1(x) + f_2(x) = 0 \qquad \forall x \in I.$$

Por otra parte,

$$W(f_1, f_2)(x) = e^x e^{x+1} - e^x e^{x+1} = 0 \quad \forall x \in I,$$

como indica el corolario del teorema.

La pregunta natural que uno puede formularse es si la condición

$$W(f_1,\ldots,f_n)(x)=0 \quad \forall x\in I.$$

implica que $\{f_1, f_2, \ldots, f_n\}$ sea necesariamente linealmente dependiente. La respuesta en este caso es negativa, es decir, existen conjuntos de funciones $\{f_1, f_2, \ldots, f_n\}$ que son linealmente independientes y que, sin embargo, su wronskiano es nulo en I.

Ejemplo. Consideremos I = [-1,1], $f_1(x) = x^2$, $f_2(x) = x|x|$. Un simple cálculo muestra que $f_2'(x) = -2x$ si x < 0, $f_2'(0) = 0$ y que $f_2'(x) = 2x$ si x > 0. Por lo tanto f_2' es continua en I. Teniendo en cuenta esto último calculamos $W(f_1, f_2)(x)$ y comprobamos que $W(f_1, f_2)(x) = 0$ para todo $x \in I$.

Por otra parte $\{f_1, f_2\}$ es l.i. en I. Para probarlo, supongamos que

$$c_1 x^2 + c_2 x |x| = 0 \qquad \forall x \in I.$$

Entonces, en particular, tomando x = 1, obtenemos

$$c_1 1^2 + c_2 1 |1| = 0 \Rightarrow c_1 = -c_2,$$

y tomando x = -1 resulta

$$|c_1(-1)|^2 + |c_2(-1)| - 1| = 0 \Rightarrow |c_1| = |c_2|$$

Pero entonces $c_1 = c_2 = 0$ y $\{f_1, f_2\}$ es l.i.

Puede probarse que la condición de anulación del wronskiano implica la dependencia lineal del conjunto de funciones si se cumplen hipótesis adicionales. Un ejemplo de esto es el siguiente resultado:

Proposición. Supongamos que $\{f,g\}$ es un conjunto de funciones derivables con continuidad en I y que $f(x) \neq 0$ para todo $x \in I$.

Entonces, si W(f,g)(x) = 0 para todo $x \in I$, $\{f,g\}$ es linealmente dependiente.

Demostración. Consideremos la función $h = \frac{g}{f}$, la cual es derivable con continuidad en todo punto de I porque f nunca se anula. Dado que

$$h' = \left(\frac{g}{f}\right)' = \frac{g'f - gf'}{f^2} = \frac{W(f,g)}{f^2} = 0,$$

tenemos que h es constante en I y, por lo tanto, g es un múltiplo de f, lo cual implica que $\{f,g\}$ es l.d.