## 4.1.1 මූලික තර්ක ද්වාර වලට ම ආවේණික ක්රියාකාරීත්වයන් අනුව ඒවා විශ්ලේෂණය කිරීම (Basic Digital Logic Gates in terms of Their Unique Functionalities)

බුලියන් තර්කනය – හැදින්වීම (Introduction to Boolean Logic )

ගණනය හා තර්කමය විශ්ලේෂණය යනු පරිගණකයක මුලික ක්රියාවලියක් බව ඔබට මේ වන විටත් අවබෝදයක් තිබේ. මෙම ක්රියාවලි මෙහෙයවනු ලබන්නේ පරිගණකයේ ප්රධාන මෙහෙයුම් ඒකක (Processor) වන ගණිත සහ තර්කන ඒකකය (ALU – Arithmetic and Logic Unit) මගිනි. මෙමගින් පරිගණකයේ සියලුම ගණිතමය සහ තර්කමය කාර්යන් ඉටු කරයි.



උපුටාගැනීම : http://en.wikipedia.org/wiki/File:Vennandornot.svg ගණිතමය හා තාර්කික ඒකකය මගින් කෙරෙන සරළම තාර්කික මෙහෙයුම් ඔබට ඉතා හුරුපුරුදුය. > (විශාල), = (සමාන), <= (කුඩා හෝ සමාන), <= (විශාල හෝ සමාන) සහ (අසම) යන තාර්කික ප්රකාශන ඔබ ගණනයේ දී භාවිතා කරනු නිසැක ය.

මෙබදු තාර්කික ප්රකාශනයක ප්රථිපලය වන්නේ සත්යතා අගයයකි (truth values). එනම් සත්ය (true) හෝ අසත්ය (false) ය.

උදාහරණයක් ලෙස 8 =9 යන සැසදීම ලබා දෙනුයේ "අසත්ය" යන්න ය.

මූලිකව සැලකීමේදී පරිගණකයක සියලුම දත්ත හා විධාන නියෝජනය කරනු ලබන්නේ 1 සහ 0 යනුවෙන් හදුන්වනු ලබන එකිනෙකට වෙනස් වූ තත්ත්ව දෙකක් මගින් ය. බොහෝදුරට මෙම 1 සහ 0 යන අගයන් ලබාගැනීම, දෘධාංග මට්ටමින් විදුලිය යම් සංරචකයක් (component) හරහා ගලා යෑම 1 ලෙස ද විදුලිය ගමන් නොකිරීම 0 ලෙස ද සැලකිය හැකියි. මෙහිදී අපට 0 යනු අසත්ය අවස්ථාවත් 1 යනු සත්ය අවස්ථාවත් ලෙස සැලකිය හැකිය. මේ සංකල්පය බුලියන්

තර්කනය ලෙස හඳුන්වයි. බුලියන් තර්කනය හඳුන්වා දුන්නේ ජෝජ් බූල් නමැති ගණිතඥයා විසින්. ඒ 19 වන සියවසේදී පමණ. පරිගණක ක්ෂේත්රය සලකන විට ඉතාමත් වැදගත් තැනක් මේ බුලියන් තර්කනය උසුලයි. බුලියන් තර්කනයට ගණිතයේ කුලක සංකල්ප පදනම වී තිබෙනවා.



ජෝජ් බූල්

මෙම 0 සහ 1 කියන අගයන් දෙක භාවිතා කර විවිධ විධාන ක්රියාත්මක කල හැකිය. යම් අදානයකට (input) අදාල ප්රතිදානය (output) පාලනය කිරීමේ හැකියාව මෙමගින් ලැබේ. නමුත් මේවා පහසුවෙන් කල නොහැකිය. මන්ද යත් පරිගණකය යනු යන්ත්රයකි. එයට සිතීමේ හැකියාවක් නොමැත. මේ අවස්ථාවෙදී පර්යේෂකයන් විසින් ට්රාන්සිස්ටර නිෂ්පාදනය කළහ. ට්රාන්සිස්ටරයක් යනු අර්ධ සන්නායකයකි. මෙය වර්ධකයක් වගේම ස්වීචයක් ලෙසත් භාවිතා කල හැකිය. බොහොමයක් විදුලි උපාංග වල මේවා භාවිතාවේ. ඉතින් මේ ට්රාන්සිස්ටර වල තියෙන ඉක්මන් ක්රියාකාරිත්වය වගේම නිවැරදි බව නිසා පරිගණක සදහා ද මේවා යොදා ගැනීම ආරම්භ විය.

මුලින්ම ට්රාන්සිස්ටරය හදුන්වාදුන්නේ 1947 දී ඇමරිකාවෙහි බෙල් ලැබ්ස් හිදී වීලීයම් සොක්ලී, ජොන් බාඩින් සහ චොල්ටර් බ්රැටෙන් යන විදාඥයින් තිදෙනා ගේ එකමුතුවෙනි.



මූලික තර්ක ද්වාර වලට හැදින්වීම (Introduction to Logic Gates)

ට්රාන්සිස්ටර් භාවිතා කර පරිගණකය තම ක්රියාකාරකම් කරන්නේ කෙසේ දැයි බලමු.

මේ සඳහා යොදා ගන්නේ තාර්කික ද්වාර හෙවත් ද්වාර කපාටයි (Logic Gates). මුලික තාර්කික ද්වාර වන්නේ NOT, AND, OR වන අතර. ඒවාගේ ව්යුත්පන්න ලෙස NAND, NOR, XOR සහ XNOR යන ඒවාද භාවිතා වේ. මෙම තර්කන ද්වාර වල සිදුවිය හැකි ක්රියාවලිය වගුවක් මඟින් ඉදිරිපත් කරන්න පුළුවන්. එය සත්යතා වගු (Truth Table) ලෙස හඳුන්වයි.

ප්රකාශනක් ලියන විට බොහෝ වෙලාවට එහි නම භාවිත නොකරයි. ඒ වෙනුවට එහි ලකුණ භාවිත කෙරේ. මෙම මෙහෙයුම් වල ප්රථිපල වන්නේ ද සත්යතා අගයන් ම වන බැවින් එම ප්රථිපල නැවත නැවත ආකලනය කල හැක. මෙවැනි ආකලනයන් සුඑකිරීමට බුලියානු වීජගණිතය (Boolean Algebra) නමින් හදුන්වනු ලබන විශේෂ ගණිත ක්රමයක් භාවිත කල හැක.NOT තාර්කික ද්වාරය ( NOT Gate)



යම් ද්වාරයක් හරහා විභවයක් ගමන් ගන්නා අවස්ථාවේදී නිකුත් වන අගය 0 වීමත් එම ද්වාරය හරහා විභවයක් නොපවතින අවස්ථාවේදී නිකුත් වන අගය 1 වීමත් මෙම NOT ද්වාරය මගින් සිදුකරන තර්කනයි. මෙම පරිපථය INVERTER නමින් හැදින්වේ.

Α

В

0

උදාහරණයක් ලෙස මෙම NOT ද්වාරයේදී විදුලි පරිපථයක විදුලි යතුරු ක්රියාත්මක කල විට එහි ඇති විදුලි බුබුල ක්රියා විරහිත වේ.



මෙහිදී ආදාන අගයන් සියල්ල 1 වුවිට ප්රතිපලය ලෙස 1ප්රතිදානය වේ. අන් සෑම අවස්ථාවකම ප්රතිපලය 0 වේ.මෙය

|   | <br><u> </u> |   |                                                                          |
|---|--------------|---|--------------------------------------------------------------------------|
| Α | В            | Q | සංඛ්යා ගුණ කිරීමට සමාන බැවින් Y = A.B ලෙස දක්වා ඇත.උදාහරණයක් ලෙස පහත     |
|   |              |   | ශ්රේණිගත ලෙස සම්බන්ධ කර ඇති සරළ විදුලි පරිපථයේ විදුලි බුබුල දැල්වීම සඳහා |
|   |              |   | එහි ඇති විදුලි යතුරු දෙකම එකවර ක්රියාත්මක කල යුතු ය.                     |
| 0 | 0            | 0 | A A B A                                                                  |
|   |              |   |                                                                          |
| 0 | 1            | 0 | $\mathbf{I}^{Y}$                                                         |
|   | '            |   | $\square$                                                                |
| _ |              |   | lacksquare                                                               |
| 1 | 0            | 0 |                                                                          |
|   |              |   | <del></del>                                                              |
| - |              |   | OR තාර්කික ද්වාරය (OR Gate)                                              |
| 1 | 1            | 1 |                                                                          |



මෙහිදී ආදානය දත්ත දෙකක් හෝ වැඩි ගණනක් තිබිය හැක. මෙහිදී ඇතුළුවන සියලුම ආදාන (input) 0 වූ විට පමණක්

|   | 1 ( |   |                                                                                                                                                              |
|---|-----|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A | В   | Q | ප්රතිදානය (output) 0 වන අතර අන් සෑම අවස්ථාවකම ප්රතිදානය 1 ක් වේ.උදාහරණයක්<br>වශයෙන් පහත පරිපථයේ විදුලි බුබුල දැල්වීමට එහි ඇති විදුලි යතුරු දෙකෙන් එක් යතුරක් |
| 0 | 0   | 0 | ක්රියාත්මක කිරිම ප්රමාණවත් ය.<br>                                                                                                                            |
| 0 | 1   | 1 |                                                                                                                                                              |
| 1 | 0   | 1 | <u>+</u>                                                                                                                                                     |
| 1 | 1   | 1 | සංයෝජිත <mark>තාර්කික</mark> ද් <mark>වාර (C</mark> ombinational logic gates)                                                                                |

XOR තාර්කික ද්වාරය (XOR Gate)



මෙහිදී පරිපථය වෙත ලැබෙන සමජාතීය ආදානයන් (input) සදහා ප්රතිදානය (output) 0 වන අතර විෂමජාතීය ආදානයන් (input) සදහා ප්රතිදානය (output) 1 වේ. උදාහරණයක් ලෙස, ආහාර ගැනීමෙන් පසු බිමට ලක්

| විෂමජා | ාතීය ආදා | නයන් ( | input) සදහා ප්රතිදානය (Output) 1 වේ. උදාහරණයක් ලෙස, ආහාර ගැනීමෙන් පසු බිමට තෙ<br>_                                                                           |
|--------|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α      | В        | Q      | හෝ කොපි අතරින් යමක් තෝරාගැනීමට සිදුවු වීට , තේ කොපි දෙකම බිමට නොගනී.                                                                                         |
| 0      | 0        | 0      | _NAND (NOT + AND) තාර්කික ද්වාරය (NAND Gate)                                                                                                                 |
| 1      | 0        | 1      |                                                                                                                                                              |
| 0      | 1        | 1      |                                                                                                                                                              |
| 1      | 1        | 0      | -මෙම ද්වාරය මගින් සිදු වන්නේ AND ද්වාරය මගින් ප්රතිදානය(output) වූ දත්තයන්ගේ<br>පරස්පරය යි. එනම් සියලුම ආදනයන් (input) 1 වූ විට ලැබෙන ප්රතිපලය 0 වේ. අන් සෑම |
|        | '        | V      | ්අවස්ථාවකම ප්රතිදානය (output) $1$ වේ. මෙම වීජීය ආකාරයෙන් දැක්වුවහොත් $Y$ = (A.B)'                                                                            |
| Α      | В        | Q      | යනුවෙන් ලියනු ලැබේ.NOR (NOT + OR) තාර්කික ද්වාරය (NOR Gate)                                                                                                  |
|        |          |        |                                                                                                                                                              |
| 0      | 0        | 1      |                                                                                                                                                              |
|        |          |        | නැති තර්කය (NOT) හා නොහොත් තර්කය (OR) සම්බන්ධ වූ විට NOR ද්වාරය නම් වේ .                                                                                     |
| 0      | 1        | 1      | මෙහෙදී නිරූපණය වන ප්රතිදානය(output) වන්නේ OR තර්ක ද්වාරයේ පරස්පරයයි. එනම්                                                                                    |

සියලුම ආදාන(input) අගයන් 0 වූ විට පමණක් ප්රතිදානය(output) 1 වේ. අන් අවස්ථාවල

| 1     | 0 | 1 | A | В | Q          | දී ප්රතිද                                                                                                          | ානය 0 ෙ | ອව.XNC      | DR තාර්කික ද්වාරය (XNOR Gate) |  |
|-------|---|---|---|---|------------|--------------------------------------------------------------------------------------------------------------------|---------|-------------|-------------------------------|--|
| 1     | 1 | 0 | 0 | 0 | 1          | A.                                                                                                                 | )       |             | <b>&gt;</b> out               |  |
|       |   |   | 0 | 1 | 0          | KOR as                                                                                                             | ン       | ්<br>යන තර් | කින දෙකෙහිම සංකලනයක් ලෙස මෙම  |  |
|       |   |   | 1 | 0 | 0          | පරිපථය හදුනාගත හැක. මේ සඳහා ආදානය වන අවස්ථා සියල්ලම එකම<br>වර්ගයේ පමණක් නම් 1 ප්රතිදානය (output) වන අතර අන් සියලුම |         |             |                               |  |
|       |   |   | 1 | 1 | 0          | A B Q අවස්ථා වල ප්රතිදානය (output) 0 වේ.The following two tabs change content below                                |         |             |                               |  |
|       |   |   |   |   |            | 0                                                                                                                  | 0       | 1           |                               |  |
|       |   |   |   |   |            | 1                                                                                                                  | 0       | 0           |                               |  |
| 0 1 0 |   |   |   |   |            |                                                                                                                    |         |             |                               |  |
| 1 1 1 |   |   |   |   |            |                                                                                                                    |         |             |                               |  |
|       |   |   |   | N | <b>1</b> a | th                                                                                                                 | IS      |             |                               |  |
|       |   |   |   |   |            | q                                                                                                                  | 8       | ,           | com                           |  |