ISA SOFTWARE V.1.3

1. Caso di studio : Grafo $P_2^{(1)}\times CF_5^{(1)}$

Definition 1.1. Un grafo (non orientato e finito) è una coppia ordinata (V, E) dove V è un insieme finito ed E è un multiinsieme di coppie non ordinate di elementi di V. L'insieme V contiene i vertici del grafo ed E i suoi lati. Per un generico grafo G, l'insieme dei suoi vertici è indicato con V(G) e quello dei suoi lati con E(G).

La struttura dati con la quale si è scelto di memorizzare il grafo è la matrice di adicenza.

Definition 1.2. La matrice di adiacenza di un grafo G i cui vertici siano v_1, v_2, \ldots, v_n è una matrice A(G) = [a(i, j)] simmetrica di ordine $n \times n$ in cui si pone:

$$a(i,j) = \begin{cases} 1 & \text{se } (v_i, v_j) \in E(G) \\ 0 & \text{altrimenti} \end{cases}$$

Di seguito viene mostrata invece la lista di adiacenza che permette una più facile lettura delle adiacenze:

$$\begin{cases} (1;1) \longrightarrow (2;1), (1;2), (1;5), \\ (2;1) \longrightarrow (1;1), (1;2), (2;2), (2;5), \\ (1;2) \longrightarrow (1;1), (2;1), (2;2), (1;3), \\ (2;2) \longrightarrow (2;1), (1;2), (1;3), (2;3), \\ (1;3) \longrightarrow (1;2), (2;2), (2;3), (1;4), \\ (2;3) \longrightarrow (2;2), (1;3), (1;4), (2;4), \\ (1;4) \longrightarrow (1;3), (2;3), (2;4), (1;5), \\ (2;4) \longrightarrow (2;3), (1;4), (1;5), (2;5), \\ (1;5) \longrightarrow (1;1), (1;4), (2;4), (2;5), \\ (2;5) \longrightarrow (2;1), (2;4), (1;5), \end{cases}$$

 $Date \hbox{: January 15, 2016.}$

Key words and phrases. sample.tex.

1.1. Calcolo insiemi indipendenti con metodo forza bruta.

Definition 1.3. Un insieme indipendente di un grafo è un insieme di vertici non adiacenti del grafo.

Definiamo T(n,k)il numero di $k\text{-sottoinsiemi indipendenti di Grafo }P_2^{(1)}\times CF_5^{(1)}$.

Ecco alcuni valori

T(n,k)	k = 0	1	2	3	4	5
0	1					
1	1	2				
2	1	4	1			
3	1	6	4			
4	1	8	13	2		
5	1	10	26	14	1	
6	1	12	43	46	9	
7	1	14	64	106	50	4

Seguono le successioni delle antidiagonali, della somma delle righe e dei valori massimali di k per cui esistono insiemi indipendenti:

n	0	1	2	3	4	5	6	7
AD_n	1	1	3	5	8	13	24	41
RS_n	1	3	6	11	24	52	111	239
K_n	0	1	2	2	3	4	4	5

Ricerca delle bijezioni disabilitata per questa stampa.

Wilf: Non possiamo usare il metodo di Wilf per trovare la Fgo delle somme delle righe in quanto il grafo è un circuito.