Module Mathèmatiques I : Algèbre I Filière: Cycle Préparatoire Sciences et Techniques Pour l'Ingénieur (STPI)

Chapitre: Polynôme et Fractions

1. Définitions

1.1. Définitions

Définition 1.

Un polynôme à coefficients dans K est une expression de la forme

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_2 X^2 + a_1 X + a_0,$$

avec $n \in \mathbb{N}$ et $a_0, a_1, \dots, a_n \in \mathbb{K}$.

L'ensemble des polynômes est noté $\mathbb{K}[X]$.

- Les a_i sont appelés les *coefficients* du polynôme.
- Si tous les coefficients a_i sont nuls, P est appelé le *polynôme nul*, il est noté 0.
- On appelle le *degré* de P le plus grand entier i tel que $a_i \neq 0$; on le note deg P. Pour le degré du polynôme nul on pose par convention deg $(0) = -\infty$.
- Un polynôme de la forme $P=a_0$ avec $a_0\in\mathbb{K}$ est appelé un *polynôme constant*. Si $a_0\neq 0$, son degré est 0.

Exemple 1.

- $X^3 5X + \frac{3}{4}$ est un polynôme de degré 3.
- $X^n + 1$ est un polynôme de degré n.

1. Définitions 2 POLYNÔMES

• 2 est un polynôme constant, de degré 0.

1.2. Opérations sur les polynômes

• Égalité. Soient $P=a_nX^n+a_{n-1}X^{n-1}+\cdots+a_1X+a_0$ et $Q=b_nX^n+b_{n-1}X^{n-1}+\cdots+b_1X+b_0$ deux polynômes à coefficients dans K.

$$P = Q \iff \forall i \ a_i = b_i$$

et on dit que P et Q sont égaux.

• Addition. Soient $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$ et $Q = b_n X^n + b_{n-1} X^{n-1} + \dots + b_1 X + b_0$. On définit:

$$P + Q = (a_n + b_n)X^n + (a_{n-1} + b_{n-1})X^{n-1} + \dots + (a_1 + b_1)X + (a_0 + b_0)$$

• **Multiplication.** Soient $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$ et $Q = b_m X^m + b_{m-1} X^{m-1} + \dots + b_1 X + b_0$. On définit

$$P \times Q = c_r X^r + c_{r-1} X^{r-1} + \dots + c_1 X + c_0$$

avec $r = n + m$ et $c_k = \sum_{i+j=k} a_i b_j$ pour $k \in \{0, \dots, r\}$.

• Multiplication par un scalaire. Si $\lambda \in \mathbb{K}$ alors $\lambda \cdot P$ est le polynôme dont le *i*-ème coefficient est λa_i .

Exemple 2.

- Soient $P = aX^3 + bX^2 + cX + d$ et $Q = \alpha X^2 + \beta X + \gamma$. Alors $P + Q = aX^3 + (b + \alpha)X^2 + (c + \beta)X + (d + \gamma)$, $P \times Q = (a\alpha)X^5 + (a\beta + b\alpha)X^4 + (a\gamma + b\beta + c\alpha)X^3 + (b\gamma + c\beta + d\alpha)X^2 + (c\gamma + d\beta)X + d\gamma$. Enfin P = Q si et seulement si a = 0, $b = \alpha$, $c = \beta$ et $d = \gamma$.
- La multiplication par un scalaire $\lambda \cdot P$ équivaut à multiplier le polynôme constant λ par le polynôme P.

L'addition et la multiplication se comportent sans problème :

Proposition 1.

Pour $P,Q,R \in \mathbb{K}[X]$ *alors*

- 0 + P = P, P + Q = Q + P, (P + Q) + R = P + (Q + R); $1 \cdot P = P$, $P \times Q = Q \times P$, $(P \times Q) \times R = P \times (Q \times R)$;
- $P \times (Q + R) = P \times Q + P \times R$.

Pour le degré il faut faire attention :

Proposition 2.

Soient P et Q deux polynômes à coefficients dans \mathbb{K} .

$$\deg(P \times Q) = \deg P + \deg Q$$

$$\deg(P+Q)\leqslant \max(\deg P,\deg Q)$$

On note $\mathbb{R}_n[X] = \{ P \in \mathbb{R}[X] \mid \deg P \leqslant n \}$. Si $P,Q \in \mathbb{R}_n[X]$ alors $P + Q \in \mathbb{R}_n[X]$.

1.3. Vocabulaire

Complétons les définitions sur les polynômes.

Définition 2.

- Les polynômes comportant un seul terme non nul (du type $a_k X^k$) sont appelés *monômes*.
- Soit $P = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$, un polynôme avec $a_n \neq 0$. On appelle *terme dominant* le monôme $a_n X^n$. Le coefficient a_n est appelé le coefficient dominant de P.
- Si le coefficient dominant est 1, on dit que *P* est un *polynôme unitaire*.

Exemple 3.

 $P(X) = (X - 1)(X^n + X^{n-1} + \dots + X + 1)$. On développe cette expression : $P(X) = (X^{n+1} + X^n + \dots + X^2 + X) - (X^n + X^n + \dots + X$ $X^{n-1} + \cdots + X + 1 = X^{n+1} - 1$. P(X) est donc un polynôme de degré n + 1, il est unitaire et est somme de deux monômes : X^{n+1} et -1.

Remarque.

Tout polynôme est donc une somme finie de monômes.

Mini-exercices.

- 1. Soit $P(X) = 3X^3 2$, $Q(X) = X^2 + X 1$, R(X) = aX + b. Calculer P + Q, $P \times Q$, $(P + Q) \times R$ et $P \times Q \times R$. Trouver a et b afin que le degré de P QR soit le plus petit possible.
- 2. Calculer $(X + 1)^5 (X 1)^5$.
- 3. Déterminer le degré de $(X^2 + X + 1)^n aX^{2n} bX^{2n-1}$ en fonction de a, b.
- 4. Montrer que si $\deg P \neq \deg Q$ alors $\deg(P+Q) = \max(\deg P, \deg Q)$. Donner un contre-exemple dans le cas où $\deg P = \deg Q$.
- 5. Montrer que si $P(X) = X^n + a_{n-1}X^{n-1} + \cdots$ alors le coefficient devant X^{n-1} de $P(X \frac{a_{n-1}}{n})$ est nul.

2. Arithmétique des polynômes

Il existe de grandes similitudes entre l'arithmétique dans \mathbb{Z} et l'arithmétique dans $\mathbb{K}[X]$. Cela nous permet d'aller assez vite et d'omettre certaines preuves.

2.1. Division euclidienne

Définition 3.

Soient $A, B \in \mathbb{K}[X]$, on dit que B divise A s'il existe $Q \in \mathbb{K}[X]$ tel que A = BQ. On note alors B|A.

On dit aussi que *A* est multiple de *B* ou que *A* est divisible par *B*.

Outre les propriétés évidentes comme A|A, 1|A et A|0 nous avons :

Proposition 3.

Soient A, B, $C \in \mathbb{K}[X]$.

- 1. Si A|B et B|A, alors il existe $\lambda \in \mathbb{K}^*$ tel que $A = \lambda B$.
- 2. Si A|B et B|C alors A|C.
- 3. Si C|A et C|B alors C|(AU + BV), pour tout $U, V \in \mathbb{K}[X]$.

Théorème 1 (Division euclidienne des polynômes).

Soient $A, B \in \mathbb{K}[X]$, avec $B \neq 0$, alors il existe un unique polynôme Q et il existe un unique polynôme R tels que :

$$A = BQ + R \quad et \quad \deg R < \deg B.$$

Q est appelé le quotient et R le reste et cette écriture est la division euclidienne de A par B.

Notez que la condition $\deg R < \deg B$ signifie R = 0 ou bien $0 \leqslant \deg R < \deg B$.

Enfin R = 0 si et seulement si B|A.

Démonstration.

Unicité. Si A = BQ + R et A = BQ' + R', alors B(Q - Q') = R' - R. Or $\deg(R' - R) < \deg B$. Donc Q' - Q = 0. Ainsi Q = Q', d'où aussi R = R'.

Existence. On montre l'existence par récurrence sur le degré de A.

- Si $\deg A = 0$ et $\deg B > 0$, alors A est une constante, on pose Q = 0 et R = A. Si $\deg A = 0$ et $\deg B = 0$, on pose Q = A/B et R = 0.
- On suppose l'existence vraie lorsque $\deg A \le n-1$. Soit $A=a_nX^n+\cdots+a_0$ un polynôme de degré n ($a_n\ne 0$). Soit $B=b_mX^m+\cdots+b_0$ avec $b_m\ne 0$. Si n< m on pose Q=0 et R=A.

Si $n \ge m$ on écrit $A = B \cdot \frac{a_n}{b_m} X^{n-m} + A_1$ avec $\deg A_1 \le n-1$. On applique l'hypothèse de récurrence à A_1 : il existe $Q_1, R_1 \in \mathbb{K}[X]$ tels que $A_1 = BQ_1 + R_1$ et $\deg R_1 < \deg B$. Il vient :

$$A = B\left(\frac{a_n}{b_m}X^{n-m} + Q_1\right) + R_1.$$

Donc $Q = \frac{a_n}{b_m} X^{n-m} + Q_1$ et $R = R_1$ conviennent.

Exemple 4.

On pose une division de polynômes comme on pose une division euclidienne de deux entiers. Par exemple si $A = 2X^4 - X^3 - 2X^2 + 3X - 1$ et $B = X^2 - X + 1$. Alors on trouve $Q = 2X^2 + X - 3$ et R = -X + 2. On n'oublie pas de vérifier qu'effectivement A = BQ + R.

Exemple 5.

Pour $X^4 - 3X^3 + X + 1$ divisé par $X^2 + 2$ on trouve un quotient égal à $X^2 - 3X - 2$ et un reste égale à 7X + 5.

2.2. pgcd

Soient $A, B \in \mathbb{K}[X]$, avec $A \neq 0$ ou $B \neq 0$. Il existe un unique polynôme unitaire de plus grand degré qui divise à la fois A et B.

Cet unique polynôme est appelé le pgcd (plus grand commun diviseur) de A et B que l'on note pgcd(A, B).

Remarque.

- pgcd(*A*, *B*) est un polynôme unitaire.
- Si A|B et $A \neq 0$, $pgcd(A, B) = \frac{1}{\lambda}A$, où λ est le coefficient dominant de A.
- Pour tout $\lambda \in K^*$, $pgcd(\lambda A, B) = pgcd(A, B)$.
- Comme pour les entiers : si A = BQ + R alors pgcd(A, B) = pgcd(B, R). C'est ce qui justifie l'algorithme d'Euclide.

Algorithme d'Euclide.

Soient *A* et *B* des polynômes, $B \neq 0$.

On calcule les divisions euclidiennes successives,

$$\begin{split} A &= BQ_1 + R_1 & \deg R_1 < \deg B \\ B &= R_1Q_2 + R_2 & \deg R_2 < \deg R_1 \\ R_1 &= R_2Q_3 + R_3 & \deg R_3 < \deg R_2 \\ \vdots & & \\ R_{k-2} &= R_{k-1}Q_k + R_k & \deg R_k < \deg R_{k-1} \\ R_{k-1} &= R_kQ_{k+1} \end{split}$$

Le degré du reste diminue à chaque division. On arrête l'algorithme lorsque le reste est nul. Le pgcd est le dernier reste non nul R_k (rendu unitaire).

Exemple 6.

Calculons le pgcd de $A = X^4 - 1$ et $B = X^3 - 1$. On applique l'algorithme d'Euclide :

$$X^4 - 1 = (X^3 - 1) \times X + X - 1$$

 $X^3 - 1 = (X - 1) \times (X^2 + X + 1) + 0$

Le pgcd est le dernier reste non nul, donc pgcd $(X^4 - 1, X^3 - 1) = X - 1$.

Calculons le pgcd de $A = X^5 + X^4 + 2X^3 + X^2 + X + 2$ et $B = X^4 + 2X^3 + X^2 - 4$.

$$X^{5} + X^{4} + 2X^{3} + X^{2} + X + 2 = (X^{4} + 2X^{3} + X^{2} - 4) \times (X - 1) + 3X^{3} + 2X^{2} + 5X - 2$$

$$X^{4} + 2X^{3} + X^{2} - 4 = (3X^{3} + 2X^{2} + 5X - 2) \times \frac{1}{9}(3X + 4) - \frac{14}{9}(X^{2} + X + 2)$$

$$3X^{3} + 2X^{2} + 5X - 2 = (X^{2} + X + 2) \times (3X - 1) + 0$$

Ainsi pgcd(A, B) = $X^2 + X + 2$.

Définition 4.

Soient $A, B \in \mathbb{K}[X]$. On dit que A et B sont premiers entre eux si pgcd(A, B) = 1.

Pour A, B quelconques on peut se ramener à des polynômes premiers entre eux : si pgcd(A, B) = D alors A et B s'écrivent : A = DA', B = DB' avec pgcd(A', B') = 1.

2.3. Théorème de Bézout

Théorème 2 (Théorème de Bézout).

Soient $A, B \in \mathbb{K}[X]$ des polynômes avec $A \neq 0$ ou $B \neq 0$. On note $D = \operatorname{pgcd}(A, B)$. Il existe deux polynômes $U, V \in \mathbb{K}[X]$ tels que AU + BV = D.

Ce théorème découle de l'algorithme d'Euclide et plus spécialement de sa remontée comme on le voit sur l'exemple suivant.

Exemple 8.

Nous avons calculé $pgcd(X^4 - 1, X^3 - 1) = X - 1$. Nous remontons l'algorithme d'Euclide, ici il n'y avait qu'une ligne : $X^4 - 1 = (X^3 - 1) \times X + X - 1$, pour en déduire $X - 1 = (X^4 - 1) \times 1 + (X^3 - 1) \times (-X)$. Donc U = 1 et V = -Xconviennent.

Pour $A = X^5 + X^4 + 2X^3 + X^2 + X + 2$ et $B = X^4 + 2X^3 + X^2 - 4$ nous avions trouvé $D = pgcd(A, B) = X^2 + X + 2$. En partant de l'avant dernière ligne de l'algorithme d'Euclide on a d'abord : $B = (3X^3 + 2X^2 + 5X - 2) \times \frac{1}{9}(3X + 4) - \frac{14}{9}D$ donc

$$-\frac{14}{9}D = B - (3X^3 + 2X^2 + 5X - 2) \times \frac{1}{9}(3X + 4).$$

La ligne au-dessus dans l'algorithme d'Euclide était : $A = B \times (X - 1) + 3X^3 + 2X^2 + 5X - 2$. On substitue le reste pour obtenir:

$$-\frac{14}{9}D = B - (A - B \times (X - 1)) \times \frac{1}{9}(3X + 4).$$

On en déduit

$$-\frac{14}{9}D = -A \times \frac{1}{9}(3X+4) + B(1+(X-1) \times \frac{1}{9}(3X+4))$$

Donc en posant $U = \frac{1}{14}(3X + 4)$ et $V = -\frac{1}{14}(9 + (X - 1)(3X + 4)) = -\frac{1}{14}(3X^2 + X + 5)$ on a AU + BV = D.

Le corollaire suivant s'appelle aussi le théorème de Bézout.

Corollaire 1.

Soient A et B deux polynômes. A et B sont premiers entre eux si et seulement s'il existe deux polynômes U et V tels que AU + BV = 1.

Corollaire 2.

Soient A, B, $C \in \mathbb{K}[X]$ avec $A \neq 0$ ou $B \neq 0$. Si C|A et C|B alors $C|\operatorname{pgcd}(A,B)$.

Corollaire 3 (Lemme de Gauss).

Soient $A, B, C \in \mathbb{K}[X]$. Si A|BC et pgcd(A, B) = 1 alors A|C.

2.4. ppcm

Proposition 5.

Soient $A, B \in \mathbb{K}[X]$ des polynômes non nuls, alors il existe un unique polynôme unitaire M de plus petit degré tel que

Cet unique polynôme est appelé le ppcm (plus petit commun multiple) de A et B qu'on note ppcm(A, B).

Exemple 10.

$$\operatorname{ppcm}\left(X(X-2)^2(X^2+1)^4,(X+1)(X-2)^3(X^2+1)^3\right) = X(X+1)(X-2)^3(X^2+1)^4.$$

De plus le ppcm est aussi le plus petit au sens de la divisibilité :

Proposition 6.

Soient $A, B \in \mathbb{K}[X]$ des polynômes non nuls et $M = \operatorname{ppcm}(A, B)$. Si $C \in \mathbb{K}[X]$ est un polynôme tel que $A \mid C$ et $B \mid C$, alors M|C.

Mini-exercices.

- 1. Trouver les diviseurs de $X^4 + 2X^2 + 1$ dans $\mathbb{R}[X]$, puis dans $\mathbb{C}[X]$.
- 2. Montrer que $X 1|X^n 1$ (pour $n \ge 1$).
- 3. Calculer les divisions euclidiennes de A par B avec $A = X^4 1$, $B = X^3 1$. Puis $A = 4X^3 + 2X^2 X 5$ et $B = X^2 + X$; $A = 2X^4 - 9X^3 + 18X^2 - 21X + 2$ et $B = X^2 - 3X + 1$; $A = X^5 - 2X^4 + 6X^3$ et $B = 2X^3 + 1$.
- 4. Déterminer le pgcd de $A = X^5 + X^3 + X^2 + 1$ et $B = 2X^3 + 3X^2 + 2X + 3$. Trouver les coefficients de Bézout U, V. Mêmes questions avec $A = X^5 - 1$ et $B = X^4 + X + 1$.
- 5. Montrer que si AU + BV = 1 avec $\deg U < \deg B$ et $\deg V < \deg A$ alors les polynômes U, V sont uniques.

3. Racine d'un polynôme, factorisation

3.1. Racines d'un polynôme

Définition 5.

Soit $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in \mathbb{K}[X]$. Pour un élément $x \in \mathbb{K}$, on note $P(x) = a_n x^n + \dots + a_1 x + a_0$. On associe ainsi au polynôme *P* une *fonction polynôme* (que l'on note encore *P*)

$$P: \mathbb{K} \to \mathbb{K}, \quad x \mapsto P(x) = a_n x^n + \dots + a_1 x + a_0.$$

Définition 6.

Soit $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. On dit que α est une *racine* (ou un *zéro*) de P si $P(\alpha) = 0$.

Proposition 7.

$$P(\alpha) = 0 \iff X - \alpha \text{ divise } P$$

Démonstration. Lorsque l'on écrit la division euclidienne de P par $X - \alpha$ on obtient $P = Q \cdot (X - \alpha) + R$ où R est une constante car $\deg R < \deg(X - \alpha) = 1$. Donc $P(\alpha) = 0 \iff R(\alpha) = 0 \iff R = 0 \iff X - \alpha | P$.

Définition 7.

Soit $k \in \mathbb{N}^*$. On dit que α est une *racine de multiplicité* k de P si $(X - \alpha)^k$ divise P alors que $(X - \alpha)^{k+1}$ ne divise pas P. Lorsque k = 1 on parle d'une racine simple, lorsque k = 2 d'une racine double, etc.

On dit aussi que α est une racine d'ordre k.

Proposition 8.

Il y a équivalence entre :

- (i) α est une racine de multiplicité k de P.
- (ii) If existe $Q \in \mathbb{K}[X]$ tel que $P = (X \alpha)^k Q$, avec $Q(\alpha) \neq 0$.
- (iii) $P(\alpha) = P'(\alpha) = \dots = P^{(k-1)}(\alpha) = 0$ et $P^{(k)}(\alpha) \neq 0$.

La preuve est laissée en exercice.

Remarque.

Par analogie avec la dérivée d'une fonction, si $P(X) = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{K}[X]$ alors le polynôme $P'(X) = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{K}[X]$ $a_1 + 2a_2X + \cdots + na_nX^{n-1}$ est le **polynôme dérivé** de *P*.

3.2. Théorème de d'Alembert-Gauss

Passons à un résultat essentiel de ce chapitre :

Théorème 3 (Théorème de d'Alembert-Gauss).

Tout polynôme à coefficients complexes de degré $n \geqslant 1$ a au moins une racine dans \mathbb{C} . Il admet exactement n racines si on compte chaque racine avec multiplicité.

Nous admettons ce théorème.

Exemple 11.

Soit $P(X) = aX^2 + bX + c$ un polynôme de degré 2 à coefficients réels : $a, b, c \in \mathbb{R}$ et $a \neq 0$.

- Si $\Delta = b^2 4ac > 0$ alors P admet 2 racines réelles distinctes $\frac{-b + \sqrt{\Delta}}{2a}$ et $\frac{-b \sqrt{\Delta}}{2a}$.
- Si $\Delta < 0$ alors P admet 2 racines complexes distinctes $\frac{-b+i\sqrt{|\Delta|}}{2a}$ et $\frac{-b-i\sqrt{|\Delta|}}{2a}$.
- Si $\Delta = 0$ alors *P* admet une racine réelle double $\frac{-b}{2a}$.

En tenant compte des multiplicités on a donc toujours exactement 2 racines.

Exemple 12.

 $P(X) = X^n - 1$ admet *n* racines distinctes.

Sachant que P est de degré n alors par le théorème de d'Alembert-Gauss on sait qu'il admet n racines comptées avec multiplicité. Il s'agit donc maintenant de montrer que ce sont des racines simples. Supposons -par l'absurde- que $\alpha \in \mathbb{C}$ soit une racine de multiplicité $\geqslant 2$. Alors $P(\alpha) = 0$ et $P'(\alpha) = 0$. Donc $\alpha^n - 1 = 0$ et $n\alpha^{n-1} = 0$. De la seconde égalité on déduit $\alpha = 0$, contradictoire avec la première égalité. Donc toutes les racines sont simples. Ainsi les n racines sont distinctes. (Remarque : sur cet exemple particulier on aurait aussi pu calculer les racines qui sont ici les racines n-ième de l'unité.)

Pour les autres corps que les nombres complexes nous avons le résultat plus faible suivant :

Théorème 4.

Soit $P \in \mathbb{K}[X]$ de degré $n \ge 1$. Alors P admet au plus n racines dans \mathbb{K} .

Exemple 13.

 $P(X) = 3X^3 - 2X^2 + 6X - 4$. Considéré comme un polynôme à coefficients dans \mathbb{Q} ou \mathbb{R} , P n'a qu'une seule racine (qui est simple) $\alpha = \frac{2}{3}$ et il se décompose en $P(X) = 3(X - \frac{2}{3})(X^2 + 2)$. Si on considère maintenant P comme un polynôme à coefficients dans \mathbb{C} alors $P(X) = 3(X - \frac{2}{3})(X - i\sqrt{2})(X + i\sqrt{2})$ et admet 3 racines simples.

3.3. Polynômes irréductibles

Définition 8.

Soit $P \in \mathbb{K}[X]$ un polynôme de degré ≥ 1 , on dit que P est *irréductible* si pour tout $Q \in \mathbb{K}[X]$ divisant P, alors, soit $Q \in \mathbb{K}^*$, soit il existe $\lambda \in \mathbb{K}^*$ tel que $Q = \lambda P$.

Remarque.

- Un polynôme irréductible P est donc un polynôme non constant dont les seuls diviseurs de P sont les constantes ou P lui-même (à une constante multiplicative près).
- La notion de polynôme irréductible pour l'arithmétique de K[X] correspond à la notion de nombre premier pour
- Dans le cas contraire, on dit que P est $r\acute{e}ductible$; il existe alors des polynômes A, B de $\mathbb{K}[X]$ tels que P = AB, avec $\deg A \geqslant 1$ et $\deg B \geqslant 1$.

Exemple 14.

- Tous les polynômes de degré 1 sont irréductibles. Par conséquent il y a une infinité de polynômes irréductibles.
- $X^2 1 = (X 1)(X + 1) \in \mathbb{R}[X]$ est réductible.
- $X^2 + 1 = (X i)(X + i)$ est réductible dans $\mathbb{C}[X]$ mais est irréductible dans $\mathbb{R}[X]$.
- $X^2 2 = (X \sqrt{2})(X + \sqrt{2})$ est réductible dans $\mathbb{R}[X]$ mais est irréductible dans $\mathbb{Q}[X]$.

Nous avons l'équivalent du lemme d'Euclide de $\mathbb Z$ pour les polynômes :

Proposition 9 (Lemme d'Euclide).

Soit $P \in \mathbb{K}[X]$ un polynôme irréductible et soient $A, B \in \mathbb{K}[X]$. Si P|AB alors P|A ou P|B.

Démonstration. Si P ne divise pas A alors pgcd(P,A) = 1 car P est irréductible. Donc, par le lemme de Gauss, P divise В.

3.4. Théorème de factorisation

Théorème 5.

Tout polynôme non constant $A \in \mathbb{K}[X]$ s'écrit comme un produit de polynômes irréductibles unitaires :

$$A = \lambda P_1^{k_1} P_2^{k_2} \cdots P_r^{k_r}$$

où $\lambda \in \mathbb{K}^*$, $r \in \mathbb{N}^*$, $k_i \in \mathbb{N}^*$ et les P_i sont des polynômes irréductibles distincts.

De plus cette décomposition est unique à l'ordre près des facteurs.

Il s'agit bien sûr de l'analogue de la décomposition d'un nombre en facteurs premiers.

3.5. Factorisation dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$

Théorème 6.

Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1.

Donc pour $P \in \mathbb{C}[X]$ de degré $n \ge 1$ la factorisation s'écrit $P = \lambda (X - \alpha_1)^{k_1} (X - \alpha_2)^{k_2} \cdots (X - \alpha_r)^{k_r}$, où $\alpha_1, ..., \alpha_r$ sont les racines distinctes de P et $k_1, ..., k_r$ sont leurs multiplicités.

Démonstration. Ce théorème résulte du théorème de d'Alembert-Gauss.

Théorème 7.

Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 ainsi que les polynômes de degré 2 ayant un discriminant $\Delta < 0$.

Soit $P \in \mathbb{R}[X]$ de degré $n \geqslant 1$. Alors la factorisation s'écrit $P = \lambda (X - \alpha_1)^{k_1} (X - \alpha_2)^{k_2} \cdots (X - \alpha_r)^{k_r} Q_1^{\ell_1} \cdots Q_s^{\ell_s}$, où les α_i sont exactement les racines réelles distinctes de multiplicité k_i et les Q_i sont des polynômes irréductibles de degré 2: $Q_i = X^2 + \beta_i X + \gamma_i$ avec $\Delta = \beta_i^2 - 4\gamma_i < 0$.

Exemple 15.

 $P(X) = 2X^4(X-1)^3(X^2+1)^2(X^2+X+1)$ est déjà décomposé en facteurs irréductibles dans $\mathbb{R}[X]$ alors que sa décomposition dans $\mathbb{C}[X]$ est $P(X) = 2X^4(X-1)^3(X-i)^2(X+i)^2(X-j)(X-j^2)$ où $j = e^{\frac{2i\pi}{3}} = \frac{-1+i\sqrt{3}}{2}$.

Exemple 16.

Soit $P(X) = X^4 + 1$.

• Sur \mathbb{C} . On peut d'abord décomposer $P(X) = (X^2 + i)(X^2 - i)$. Les racines de P sont donc les racines carrées complexes de i et -i. Ainsi P se factorise dans $\mathbb{C}[X]$:

$$P(X) = \left(X - \frac{\sqrt{2}}{2}(1+i)\right)\left(X + \frac{\sqrt{2}}{2}(1+i)\right)\left(X - \frac{\sqrt{2}}{2}(1-i)\right)\left(X + \frac{\sqrt{2}}{2}(1-i)\right).$$

• Sur \mathbb{R} . Pour un polynôme à coefficient réels, si α est une racine alors $\bar{\alpha}$ aussi. Dans la décomposition ci-dessus on regroupe les facteurs ayant des racines conjuguées, cela doit conduire à un polynôme réel :

$$P(X) = \left[\left(X - \frac{\sqrt{2}}{2} (1+i) \right) \left(X - \frac{\sqrt{2}}{2} (1-i) \right) \right] \left[\left(X + \frac{\sqrt{2}}{2} (1+i) \right) \left(X + \frac{\sqrt{2}}{2} (1-i) \right) \right]$$

= $\left[X^2 + \sqrt{2}X + 1 \right] \left[X^2 - \sqrt{2}X + 1 \right],$

qui est la factorisation dans $\mathbb{R}[X]$.

Mini-exercices.

- 1. Trouver un polynôme $P(X) \in \mathbb{Z}[X]$ de degré minimal tel que : $\frac{1}{2}$ soit une racine simple, $\sqrt{2}$ soit une racine double et i soit une racine triple.
- 2. Montrer cette partie de la proposition 8 : « $P(\alpha) = 0$ et $P'(\alpha) = 0 \iff \alpha$ est une racine de multiplicité ≥ 2 ».
- 3. Montrer que pour $P \in \mathbb{C}[X]$: « P admet une racine de multiplicité $\geqslant 2 \iff P$ et P' ne sont pas premiers entre eux ».
- 4. Factoriser $P(X) = (2X^2 + X 2)^2(X^4 1)^3$ et $Q(X) = 3(X^2 1)^2(X^2 X + \frac{1}{4})$ dans $\mathbb{C}[X]$. En déduire leur pgcd et leur ppcm. Mêmes questions dans $\mathbb{R}[X]$.
- 5. Si pgcd(A, B) = 1 montrer que $pgcd(A + B, A \times B) = 1$.
- 6. Soit $P \in \mathbb{R}[X]$ et $\alpha \in \mathbb{C} \setminus \mathbb{R}$ tel que $P(\alpha) = 0$. Vérifier que $P(\bar{\alpha}) = 0$. Montrer que $(X \alpha)(X \bar{\alpha})$ est un polynôme irréductible de $\mathbb{R}[X]$ et qu'il divise P dans $\mathbb{R}[X]$.

4. Fractions rationnelles

Définition 9.

Une fraction rationnelle à coefficients dans $\mathbb K$ est une expression de la forme

$$F = \frac{P}{Q}$$

où $P,Q \in \mathbb{K}[X]$ sont deux polynômes et $Q \neq 0$.

Toute fraction rationnelle se décompose comme une somme de fractions rationnelles élémentaires que l'on appelle des « éléments simples ». Mais les éléments simples sont différents sur $\mathbb C$ ou sur $\mathbb R$.

4.1. Décomposition en éléments simples sur ${\mathbb C}$

Théorème 8 (Décomposition en éléments simples sur C).

Soit P/Q une fraction rationnelle avec $P,Q \in \mathbb{C}[X]$, $\operatorname{pgcd}(P,Q) = 1$ et $Q = (X - \alpha_1)^{k_1} \cdots (X - \alpha_r)^{k_r}$. Alors il existe une et une seule écriture :

$$\frac{P}{Q} = E + \frac{a_{1,1}}{(X - \alpha_1)^{k_1}} + \frac{a_{1,2}}{(X - \alpha_1)^{k_1 - 1}} + \dots + \frac{a_{1,k_1}}{(X - \alpha_1)} + \frac{a_{2,1}}{(X - \alpha_2)^{k_2}} + \dots + \frac{a_{2,k_2}}{(X - \alpha_2)} + \dots$$

Le polynôme E s'appelle la *partie polynomiale* (ou *partie entière*). Les termes $\frac{a}{(X-\alpha)^i}$ sont les *éléments simples* sur \mathbb{C} .

Exemple 17.

• Vérifier que
$$\frac{1}{X^2+1} = \frac{a}{X+i} + \frac{b}{X-i}$$
 avec $a = \frac{1}{2}$ i, $b = -\frac{1}{2}$ i.
• Vérifier que $\frac{X^4 - 8X^2 + 9X - 7}{(X-2)^2(X+3)} = X + 1 + \frac{-1}{(X-2)^2} + \frac{2}{X-2} + \frac{-1}{X+3}$.

Comment se calcule cette décomposition? En général on commence par déterminer la partie polynomiale. Tout d'abord si $\deg Q > \deg P$ alors E(X) = 0. Si $\deg P \leqslant \deg Q$ alors effectuons la division euclidienne de P par Q: P = QE + Rdonc $\frac{P}{Q} = E + \frac{R}{Q}$ où $\deg R < \deg Q$. La partie polynomiale est donc le quotient de cette division. Et on s'est ramené au cas d'une fraction $\frac{R}{Q}$ avec $\deg R < \deg Q$. Voyons en détails comment continuer sur un exemple.

Exemple 18.

- Décomposons la fraction $\frac{P}{Q} = \frac{X^5 2X^3 + 4X^2 8X + 11}{X^3 3X + 2}$.

 Première étape : partie polynomiale. On calcule la division euclidienne de P par $Q: P(X) = (X^2 + 1)Q(X) + 2X^2 5X + 9$. Donc la partie polynomiale est $E(X) = X^2 + 1$ et la fraction s'écrit $\frac{P(X)}{Q(X)} = X^2 + 1 + \frac{2X^2 5X + 9}{Q(X)}$. Notons que pour la fraction $\frac{2X^2-5X+9}{Q(X)}$ le degré du numérateur est strictement plus petit que le degré du dénominateur. **Deuxième étape : factorisation du dénominateur.** Q a pour racine évidente +1 (racine double) et -2 (racine
 - simple) et se factorise donc ainsi $Q(X) = (X-1)^2(X+2)$.
 - **Troisième étape : décomposition théorique en éléments simples.** Le théorème de décomposition en éléments simples nous dit qu'il existe une unique décomposition : $\frac{P(X)}{Q(X)} = E(X) + \frac{a}{(X-1)^2} + \frac{b}{X-1} + \frac{c}{X+2}$. Nous savons déjà que $E(X) = X^2 + 1$, il reste à trouver les nombres a, b, c.
 - Quatrième étape : détermination des coefficients. Voici une première façon de déterminer a,b,c. On récrit la fraction $\frac{a}{(X-1)^2} + \frac{b}{X-1} + \frac{c}{X+2}$ au même dénominateur et on l'identifie avec $\frac{2X^2 - 5X + 9}{O(X)}$:

$$\frac{a}{(X-1)^2} + \frac{b}{X-1} + \frac{c}{X+2} = \frac{(b+c)X^2 + (a+b-2c)X + 2a-2b+c}{(X-1)^2(X+2)}$$

qui doit être égale à

$$\frac{2X^2 - 5X + 9}{(X-1)^2(X+2)}$$

 $\frac{2X^2 - 5X + 9}{(X - 1)^2(X + 2)}.$ On en déduit b + c = 2, a + b - 2c = -5 et 2a - 2b + c = 9. Cela conduit à l'unique solution a = 2, b = -1, c = 3.

$$\frac{P}{Q} = \frac{X^5 - 2X^3 + 4X^2 - 8X + 11}{X^3 - 3X + 2} = X^2 + 1 + \frac{2}{(X - 1)^2} + \frac{-1}{X - 1} + \frac{3}{X + 2}.$$

Cette méthode est souvent la plus longue.

Quatrième étape (bis) : détermination des coefficients. Voici une autre méthode plus efficace.

Notons
$$\frac{P'(X)}{Q(X)} = \frac{2X^2 - 5X + 9}{(X - 1)^2(X + 2)}$$
 dont la décomposition théorique est : $\frac{a}{(X - 1)^2} + \frac{b}{X - 1} + \frac{c}{X + 2}$

Pour déterminer a on multiplie la fraction $\frac{P'}{Q}$ par $(X-1)^2$ et on évalue en x=1.

Tout d'abord en partant de la décomposition théorique on a :

$$F_1(X) = (X-1)^2 \frac{P'(X)}{Q(X)} = a + b(X-1) + c \frac{(X-1)^2}{X+2}$$
 donc $F_1(1) = a$

D'autre part

$$F_1(X) = (X-1)^2 \frac{P'(X)}{Q(X)} = (X-1)^2 \frac{2X^2 - 5X + 9}{(X-1)^2 (X+2)} = \frac{2X^2 - 5X + 9}{X+2}$$

donc $F_1(1) = 2$. On en déduit a = 2.

On fait le même processus pour déterminer c: on multiplie par (X+2) et on évalue en -2. On calcule $F_2(X)=(X+2)\frac{p'(X)}{Q(X)}=\frac{2X^2-5X+9}{(X-1)^2}=a\frac{X+2}{(X-1)^2}+b\frac{X+2}{X-1}+c$ de deux façons et lorsque l'on évalue x=-2 on obtient d'une part $F_2(-2)=c$ et d'autre part $F_2(-2)=3$. Ainsi c=3.

Comme les coefficients sont uniques tous les moyens sont bons pour les déterminer. Par exemple lorsque l'on évalue la décomposition théorique $\frac{P'(X)}{Q(X)} = \frac{a}{(X-1)^2} + \frac{b}{X-1} + \frac{c}{X+2}$ en x=0, on obtient :

$$\frac{P'(0)}{Q(0)} = a - b + \frac{c}{2}$$

Donc $\frac{9}{2} = a - b + \frac{c}{2}$. Donc $b = a + \frac{c}{2} - \frac{9}{2} = -1$.

4.2. Décomposition en éléments simples sur $\mathbb R$

Théorème 9 (Décomposition en éléments simples sur \mathbb{R}).

Soit P/Q une fraction rationnelle avec $P,Q \in \mathbb{R}[X]$, pgcd(P,Q) = 1. Alors P/Q s'écrit de manière unique comme

- d'une partie polynomiale E(X),

 d'éléments simples du type a/(X-a)ⁱ,
 d'éléments simples du type aX+b/(X²+αX+β)ⁱ.
 Où les X – α et X² + αX + β sont les facteurs irréductibles de Q(X) et les exposants i sont inférieurs ou égaux à la puissance correspondante dans cette factorisation.

Exemple 19.

Décomposition en éléments simples de $\frac{P(X)}{Q(X)} = \frac{3X^4 + 5X^3 + 8X^2 + 5X + 3}{(X^2 + X + 1)^2(X - 1)}$. Comme deg $P < \deg Q$ alors E(X) = 0. Le dénominateur est déjà factorisé sur \mathbb{R} car $X^2 + X + 1$ est irréductible. La décomposition théorique est donc :

$$\frac{P(X)}{Q(X)} = \frac{aX+b}{(X^2+X+1)^2} + \frac{cX+d}{X^2+X+1} + \frac{e}{X-1}.$$

Il faut ensuite mener au mieux les calculs pour déterminer les coefficients afin d'obtenir :

$$\frac{P(X)}{Q(X)} = \frac{2X+1}{(X^2+X+1)^2} + \frac{-1}{X^2+X+1} + \frac{3}{X-1}.$$

Mini-exercices.

- 1. Soit $Q(X) = (X-2)^2(X^2-1)^3(X^2+1)^4$. Pour $P \in \mathbb{R}[X]$ quelle est la forme théorique de la décomposition en éléments simples sur $\mathbb C$ de $\frac{p}{Q}$? Et sur $\mathbb R$?
- 2. Décomposer les fractions suivantes en éléments simples sur \mathbb{R} et $\mathbb{C}:\frac{1}{X^2-1}$; $\frac{X^2+1}{(X-1)^2}$; $\frac{X}{X^3-1}$.
- 3. Décomposer les fractions suivantes en éléments simples sur $\mathbb{R}: \frac{X^2+X+1}{(X-1)(X+2)^2}$; $\frac{2X^2-X}{(X^2+2)^2}$; $\frac{X^6}{(X^2+1)^2}$.
- 4. Soit $F(X) = \frac{2X^2 + 7X 20}{X + 2}$. Déterminer l'équation de l'asymptote oblique en $\pm \infty$. Étudier la position du graphe de F par rapport à cette droite.