Aayush Arya

January 11, 2023

Lecture Notes Advanced Quantum Mechanics

A word on the zero-point energy

In the Hamiltonian

$$H = \sum_{\vec{k}} \hbar \omega_k \left(a_k^{\dagger} a_k + \frac{1}{2} \right)$$

The constant $\hbar\omega_k \frac{1}{2}$ term is the zero point energy for each mode \vec{k} . There are an infinite number of modes \vec{k} , and the value of |k| is apparently not bounded from above (leading to arbitrarily large values of $\hbar\omega_k$) and there are infinite such terms. This causes H to diverge.

Mathematically this can be dodged by inserting a constant 'vacuum' energy density term Ω_0 that exactly cancels the zero-point energy. One place where using an arbitrary energy density Ω_0 is not allowed is *gravity*. In general relativity, this constant term has real physical implications. There are dark energy models that attribute the expansion of the universe to a negative energy density.

Another way to eliminate such an infinity is to take the sum \sum_{k}^{λ} , where λ dictates the **ultraviolet cutoff**.

Infinite volume limit $(\mathtt{L} \to \infty)$

$$\phi(\vec{x}) = \sqrt{\frac{hc^2}{L^3}} \sum_{\vec{k}} \frac{1}{\sqrt{2\omega_k}} \left(a_k e^{i\vec{k}\cdot\vec{x}} + a_k^{\dagger} e^{-i\vec{k}\cdot\vec{x}} \right)$$

The way to take the continuum limit is

$$\frac{1}{L^3} \sum_{\vec{k}} f(\vec{k}) \to \int \frac{d^3 \vec{k}}{(2\pi)^3} f(\vec{k})$$

We shall rescale the creation and annihilation operators that have the appropriate normalization.

$$a(\vec{k}) := L^{3/2} a_{\vec{k}}$$

which leads to a commutation relation

$$[a(\vec{k}), a(\vec{k}')^{\dagger}] = L^3 \delta_{kk'} \to (2\pi)^3 \delta^3(\vec{k} - \vec{k}')$$

when we go from discrete to continous variables, the Kronecker delta becomes a Dirac delta. Now, making this substitution

$$\phi(\vec{x}) = \sqrt{\hbar c^2} \int \frac{d^3 \vec{k}}{(2\pi)^3 \sqrt{2\omega_k}} \left(a(\vec{k}) e^{i\vec{k}\cdot\vec{x}} + a(\vec{k})^{\dagger} e^{-i\vec{k}\cdot\vec{x}} \right)$$

and so $L \to \infty$ we arrive at a nice form of the Hamiltonian

$$H_0 = \frac{1}{L^3} \sum_{\vec{k}} \hbar \omega_k \left(a(\vec{k})^{\dagger} a(\vec{k}) + \frac{1}{2} \right) \to \int \frac{d^3 \vec{k}}{(2\pi)^3} \hbar \omega_k (a_{\vec{k}}^{\dagger} a_{\vec{k}} + \frac{1}{2})$$

with H_0 we mean that this is the non-interacting part. The total Hamiltonian

$$H = H_0 + \Delta H, \quad \Delta H = \int d^3 \vec{x} \ V(\phi)$$

Momentum operator

$$\vec{P} = -\frac{1}{c^2} \int d^3 \vec{x} \dot{\phi} \vec{\nabla} \phi$$

It's also convenient to replace $\dot{\phi}$ with $\pi(\vec{x})$

$$\vec{P} = -\int d^3x \pi(\vec{x}) \vec{\nabla} \phi(\vec{x}) = \sum_{\vec{k}} \hbar k a_k^{\dagger} a_k = \frac{1}{L^3} \sum_{\vec{k}} a(\vec{k})^{\dagger} a(\vec{k}) \to \int \frac{d^3k}{(2\pi)^3} \hbar k a_k^{\dagger} a_k$$

Extension to a complex scalar field $\phi(x) \in \mathbb{C}$

Remember that the Lagrangian density has to be real $(\mathcal{L} \in \mathbb{R})$.

$$\mathcal{L} = \partial_{\mu}\phi\partial^{\mu}\phi^{\dagger} - \kappa^{2}\phi^{\dagger}\phi + \Omega_{0} + (V(\phi^{\dagger}\phi))$$

The mode expansion for such a complex field¹

$$\phi(\vec{x}) = \sqrt{\hbar c^3} \int \frac{d^3k}{(2\pi)^3 \sqrt{2\omega_k}} \left(a(\vec{k}) e^{i\vec{k}\cdot\vec{x}} + b(\vec{k})^{\dagger} e^{-i\vec{k}\cdot\vec{x}} \right)$$

and the conjugate momentum would be defined normally as

$$\pi(\vec{x}) = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \frac{1}{c} \partial^0 \phi^{\dagger} = \frac{1}{c^2} \dot{\phi}^{\dagger}$$

So this theory describes to particle species.

 $a(\vec{k})^{\dagger}|0\rangle$ is a one-particle state for particles of type 'a'. and $b(\vec{k})^{\dagger}|0\rangle$ for those of type 'b'. Here, due to the form of the κ^2 term in \mathcal{L} , the mass of both the particles is $m = \hbar \kappa/c$

Additional conserved quantity

Because of the U(1) symmetry², there exists a conserved current J^{μ} such that $\partial_{\mu}J^{\mu}=0$. The time-like component of this current corresponds to a charge.

$$Q = \frac{i}{\hbar} \int d^3 \vec{x} \left(\phi^{\dagger} \pi^{\dagger} - \pi \phi \right) = \int \frac{d^3 k}{(2\pi)^3} \left(a(\vec{k})^{\dagger} a(\vec{k}) - b(\vec{k})^{\dagger} b(\vec{k}) \right)$$

Type 'a' and type 'b' particles have equal and opposite charge.

¹The reason for the choice of the expansion in terms of a_k and b_k^{\dagger} and not just one of them is that otherwise the time-dependence would be more sophisticated, not first-order in the derivative.

 $^{^{2}\}phi(x) \rightarrow e^{i\alpha}\phi$ in turn implies $\phi^{\dagger} \rightarrow e^{-i\alpha}\phi^{\dagger}$ which for a constant α leaves the \mathcal{L} unchanged.

If we wanted to interpret this conserved charge as the electromagnetic charge, we would add a coupling term to the \mathcal{L}_{em} equal to $-eA_{\mu}j^{\mu}$.

Note that we need to impose extra conditions and another term to introduce a full gauge invariance in the theory 3 .

We do not yet have a theory that can describe the electron⁴ because it has a spin-1/2.

A relativistic quantum field theory of the electron

So far we've had

• scalar field $\phi'(x') = \phi(x)$, where

$$x'^{\mu} = A^{\mu}_{\nu}x^{\nu} + b^{\mu}$$

• a vector field

$$A^{\mu}: A'^{\mu}(x') = \Lambda^{\mu}_{\nu} A^{\nu}(x)$$

which led to the photon with polarization states $\lambda=\pm$

the angular momentum operator J_3 still had eigenvalues $\pm\hbar$ (J_3 $a_k^{\dagger}|0\rangle = \pm\hbar a_k^{\dagger}|0\rangle$), but an e-shall have only half-spin.

While trying to resolve this, we shall come to the Dirac theory.

³In the Hamiltonian for the em field that we had before, the $\frac{1}{2m} \left(\vec{p} - \frac{e}{c} \vec{A} \right)^2$ part has a term quadratic in \vec{A} which is needed for H to be gauge invariant

⁴The spin-statistics theorem says that in a relativistic theory one cannot have bosons with spin- $\frac{1}{2}$ and fermions with integer-spin.