Problem Statement

Linear Regression

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [4]:
    a=pd.read_csv("horse1.csv")
    a
```

Out[4]:		Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Country
	0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sverige
	1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	СҮНо	52	Sverige
	2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	СҮНо	52	Sverige
	3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sverige
	4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	СҮНо	52	Sverige
	•••										
	27003	14.06.2020	Sha Tin	11	1200	Gress	1450000	6	A Hamelin	59	Australia
	27004	21.06.2020	Sha Tin	2	1200	Gress	967000	7	K C Leung	57	Australia
	27005	21.06.2020	Sha Tin	4	1200	Gress	967000	6	Blake Shinn	57	Australia
	27006	21.06.2020	Sha Tin	5	1200	Gress	967000	14	Joao Moreira	57	New Zealand
	27007	21.06.2020	Sha Tin	11	1200	Gress	1450000	7	C Schofield	55	New Zealand
	27008 r	ows × 21 c	olumns	;							

To display top 10 rows

```
In [5]:
         c=a.head(15)
```

\neg		$\Gamma \subset \mathbb{T}$	
J	uч	$I \supset I$	

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Country	
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sverige	
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	СҮНо	52	Sverige	
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	СҮНо	52	Sverige	
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sverige	
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	СҮНо	52	Sverige	
5	10.12.2017	Sha Tin	1	1800	Gress	1310000	4	СҮНо	52	Sverige	
6	01.01.2018	Sha Tin	9	1800	Gress	1310000	9	C Schofield	54	Sverige	
7	04.02.2018	Sha Tin	5	1800	Gress	1310000	6	Joao Moreira	57	Sverige	
8	03.03.2018	Sha Tin	8	1800	Gress	1310000	3	СҮНо	56	Sverige	
9	11.03.2018	Sha Tin	10	1600	Gress	1310000	8	СҮНо	57	Sverige	
10	28.03.2018	Happy Valley	8	1800	Gress	1310000	9	M F Poon	53	Sverige	
11	11.04.2018	Happy Valley	6	1650	Gress	1310000	11	W M Lai	55	Sverige	
12	25.04.2018	Happy Valley	3	2200	Gress	1310000	2	W M Lai	54	Sverige	
13	09.05.2018	Happy Valley	7	1650	Gress	1310000	3	W M Lai	54	Sverige	
14	22.09.2018	Sha Tin	4	1600	Gress	920000	11	СҮНо	57	Sverige	
15 r	15 rows × 21 columns										

To find Missing values

```
In [6]:
         c.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 15 entries, 0 to 14 Data columns (total 21 columns):

Column Non-Null Count Dtype

```
Dato
                                    object
0
                     15 non-null
    Track
                                    object
1
                     15 non-null
2
    Race Number
                     15 non-null
                                    int64
3
    Distance
                     15 non-null
                                    int64
4
    Surface
                     15 non-null
                                    object
5
    Prize money
                    15 non-null
                                    int64
    Starting position 15 non-null
                                    int64
6
7
                     15 non-null
                                    object
    Jockey
8
    Jockey weight
                    15 non-null
                                    int64
9
    Country
                    15 non-null
                                    object
10 Horse age
                    15 non-null
                                    int64
11 TrainerName
                    15 non-null
                                    object
12 Race time
                     15 non-null
                                    object
13 Path
                     15 non-null
                                    int64
                                    int64
14 Final place
                    15 non-null
15 FGrating
                                    int64
                     15 non-null
16 Odds
                     15 non-null
                                    object
17 RaceType
                     15 non-null
                                    object
18 HorseId
                     15 non-null
                                    int64
19 JockeyId
                     15 non-null
                                    int64
                     15 non-null
20 TrainerID
                                    int64
dtypes: int64(12), object(9)
```

memory usage: 2.6+ KB

To display summary of statistics

```
In [7]:
           a.describe()
Out[7]:
                         Race
                                                                 Starting
                                                                                 Jockey
                                    Distance
                                               Prize money
                                                                                            Horse age
                      Number
                                                                 position
                                                                                 weight
          count 27008.000000
                               27008.000000 2.700800e+04 27008.000000 27008.000000 27008.000000 27008.00
                                                                              55.867373
          mean
                      5.268624
                                 1401.666173 1.479445e+06
                                                                 6.741447
                                                                                              5.246408
                                                                                                            1.67
            std
                      2.780088
                                  276.065045 2.162109e+06
                                                                 3.691071
                                                                               2.737006
                                                                                              1.519880
                                                                                                            1.63
                      1.000000
                                 1000.000000 6.600000e+05
                                                                 1.000000
                                                                              47.000000
                                                                                              2.000000
                                                                                                            0.00
            min
           25%
                      3.000000
                                 1200.000000 9.200000e+05
                                                                 4.000000
                                                                              54.000000
                                                                                              4.000000
                                                                                                            0.00
           50%
                      5.000000
                                 1400.000000 9.670000e+05
                                                                 7.000000
                                                                              56.000000
                                                                                              5.000000
                                                                                                            1.00
           75%
                      8.000000
                                 1650.000000
                                              1.450000e+06
                                                                10.000000
                                                                               58.000000
                                                                                              6.000000
                                                                                                            3.00
                     11.000000
                                 2400.000000 2.800000e+07
                                                                14.000000
                                                                              63.000000
                                                                                             12.000000
                                                                                                           11.00
           max
```

To display column heading

```
In [8]:
               a.columns
Out[8]: Index(['Dato', 'Track', 'Race Number', 'Distance', 'Surface', 'Prize money', 'Starting position', 'Jockey', 'Jockey weight', 'Country', 'Horse age',
                         'TrainerName', 'Race time', 'Path', 'Final place', 'FGrating', 'Odds', 'RaceType', 'HorseId', 'JockeyId', 'TrainerID'],
                       dtype='object')
```

Pairplot

```
In [9]: s=a.dropna(axis=1)
s
```

Out[9]:

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Country
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sverige
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	СҮНо	52	Sverige
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	СҮНо	52	Sverige
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sverige
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	СҮНо	52	Sverige
•••			•••							
27003	14.06.2020	Sha Tin	11	1200	Gress	1450000	6	A Hamelin	59	Australia
27004	21.06.2020	Sha Tin	2	1200	Gress	967000	7	K C Leung	57	Australia
27005	21.06.2020	Sha Tin	4	1200	Gress	967000	6	Blake Shinn	57	Australia
27006	21.06.2020	Sha Tin	5	1200	Gress	967000	14	Joao Moreira	57	New Zealand
27007	21.06.2020	Sha Tin	11	1200	Gress	1450000	7	C Schofield	55	New Zealand

27008 rows × 21 columns

```
In [10]: s.columns
```

```
In [11]: sns.pairplot(c)
```

Out[11]: <seaborn.axisgrid.PairGrid at 0x24f8ce17b50>

Distribution Plot

```
In [12]: sns.displot(c['Dato'])
```

Out[12]: <seaborn.axisgrid.FacetGrid at 0x24f90eb0370>

Correlation

Out[24]: <AxesSubplot:>

Train the model - Model Building

To split dataset into training end test

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

```
In [49]: from sklearn.linear_model import LinearRegression
In [50]: lr=LinearRegression()
lr.fit(g_train,h_train)
Out[50]: LinearRegression()
In [51]: print(lr.intercept_)
```

Coeffecient

```
In [52]: coeff=pd.DataFrame(lr.coef_,g.columns,columns=['Co-effecient'])
coeff
```

```
        Distance
        0.0

        Prize money
        0.0

        Starting position
        0.0

        Horseld
        0.0

        Jockeyld
        0.0
```

Best Fit line

```
In [53]: prediction=lr.predict(g_test)
   plt.scatter(h_test,prediction)
```

Out[53]: <matplotlib.collections.PathCollection at 0x24f9417c9d0>

To find score

```
In [54]: print(lr.score(g_test,h_test))
1.0
```

Import Lasso and ridge

```
In [55]: from sklearn.linear_model import Ridge,Lasso
```

Ridge

Lasso

```
In [59]:
    l=Lasso(alpha=6)
    l.fit(g_train,h_train)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model_coordinate_descent.
py:530: ConvergenceWarning: Objective did not converge. You might want to increase t
he number of iterations. Duality gap: 0.0, tolerance: 0.0
 model = cd_fast.enet_coordinate_descent(