Linear Algebra, EE 10810EECS205004

Second Exam (10:10 AM - 1:00 PM, Friday, December 18th, 2020) (Dated: Fall, 2020)

Total scores: 120

1. (25%) [Determinant]

Let matrix $\overline{\overline{B}}$ be formed by the column vectors $\{\vec{v}_1,\vec{v}_2,\vec{v}_3,\vec{v}_4\}$, i.e.,

mn vectors
$$\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$$
, i.e.,
$$\overline{B} \equiv (\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \ \vec{v}_4) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}, \quad
\begin{bmatrix}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
2 & 0 & 0 & 1
\end{bmatrix}$$
(1)

- (a) (5%) Calculate $det[2 \cdot \overline{\overline{B}}^{(-2)}]$.
- (b) (10%) Calculate $\overline{\overline{B}}^{(-10)}$
- (c) (10%) What is the minimum distant from \vec{v}_1 to the subspace of span = $\{\vec{v}_2, \vec{v}_3, \vec{v}_4\}$, where the distance between two column vectors \vec{x} and \vec{y} is defined as $\sqrt{(\vec{x} \vec{y})^t(\vec{x} \vec{y})}$, or $||\vec{x} \vec{y}||$.

2. (10%) [Distinct Eigenvalues]

Let $\overline{\overline{A}}$ be a positive definite $(\forall \lambda_i > 0)$, symmetric matrix $(\overline{\overline{A}} = \overline{\overline{A}}^l)$. Prove that eigenvectors corresponding to distinct eigenvalues are orthogonal.

3. (15%) [Vandermode Matrix]

$$\overline{\overline{V}} \equiv \begin{pmatrix}
1 & x_1 & x_1^2 & x_1^3 \\
1 & x_2 & x_2^2 & x_2^3 \\
1 & x_3 & x_3^3 & x_3^3 \\
1 & x_4 & x_4^2 & x_3^3
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & \chi_{\tau} - \chi_1 & \chi_1^{\tau} - \chi_1^{\tau} & \chi_2^{\tau} - \chi_1^{\tau} \\
1 & \chi_{5} - \chi_1 & \chi_1^{\tau} - \chi_1^{\tau} & \chi_3^{\tau} - \chi_1^{\tau} \\
1 & \chi_{5} - \chi_1 & \chi_1^{\tau} - \chi_1^{\tau} & \chi_3^{\tau} - \chi_1^{\tau}
\end{pmatrix} (2)$$

(a) (5%) Find the determinant of Vandermode matrix, i.e., $det[\overline{\overline{V}}]$.

(b) (10%) Find the inverse matrix by using Cramer's rule, i.e., $(\overline{\overline{V}})^{-1} = \overline{\overline{C}}^t/det[\overline{\overline{V}}]$.

1-22+2

 $\mathbb{R}_{1} = \left(\begin{array}{c} a & b \\ c & d \end{array} \right) \left(\begin{array}{c} a & b \\ c & d \end{array} \right)$

 $(\alpha-t)(d-t)-bc=(t^{2}+3t+2)$

t-(a+d)t+ad-bc=

4. (25%) [Diagonal Matrix]

Let $P_2(\mathcal{R})$ be the set of all polynomials with degree less than or equal 2 and with coefficients from a real field \mathcal{R} . Let a linear operator $\hat{T}: P_2(\mathcal{R}) \to P_2(\mathcal{R})$ be defined by $\hat{T}(f) = f(0) + f(1)(x + x^2)$.

- (a) (10%) Find a basis β such that $\left[\hat{T}\right]_{\beta}$ is a diagonal matrix.
- (b) (5%) Show the diagonal matrix.
- (c) (10%) Evaluate

with the constant α . Here, tr denotes trace.

5. (25%) [Cayley-Hamilton Theorem]

Suppose that a 2×2 matrix $\overline{\overline{M}}$ satisfies

where $\overline{\overline{I}}$ is a 2 × 2 identity matrix and $\overline{\overline{O}}$ is a 2 × 2 zero matrix.

- (a) (10%) Determine the eigenvalues of $\overline{\overline{M}}$.
- (b) (10%) Is $\overline{\overline{M}}^{-1}$ diagonalizable? If yes, find $\overline{\overline{M}}^{-1}$; If not, explain your answer.
- (c) (5%) Calculate $\overline{\overline{M}}^{(-2)}$ with the help of Cayley-Hamilton theorem.

6. (20%) [Square Root of Matrix]