Facultatea de Automatica si Calculatoare, Universitatea Politehnica din Bucuresti

Examen Partial MN

/12

Student:		Grupa:	
Descriere curs:	MN, An I, Semestrul II	Rezultate Examen	
Titlu curs:	Metode Numerice	Subject	Punctaj
Profesor:	Florin POP, George POPESCU	1	/3
Durata examenului:	90 minute	2	/3
Tip Examen:	"Closed Book"	3	/0
Materiale Aditionale:	Nu! (!Fara telefoane mobile!)	9	/2
NI	,	4	/2
Numar pagini:		± 5	/0
		9	/2

Subjecte (Numarul δ)

3 puncte

1. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ 2 & 13 \end{pmatrix}$. Calculati facorizarea LU-Cholesky $(A = LL^T)$ pentru maricea A. Scrieti o functie MATLAB, function [L U] = Choleschy(A), $A \in \mathbb{R}^{nxn}$.

3 puncte

2. Fie reflectorul Hauseholder $H = I - 2uu^T$. Demonstrati ca daca se alege vectorul u de forma $u = \frac{v + ||v|| e_1}{||v + ||v|| e_1||}$ atunci H este ortogonala si $Hv = -||v|| e_1$.

2 puncte

- 3. In expresia polinomului de interpolare Lagrange $P_n(x) = \sum_{i=0}^n f(x_i) L_i(x)$, multiplicatorii Lagrange sunt $L_i(x) = \prod_{j=0, j\neq i}^n \frac{x-x_j}{x_i-x_j}$
 - a) Aratati ca $L_i(x_j) = \delta_{ij}$ si $\sum_{i=0}^n L_i(x) = 1$. Aratati ca multiplicatorii Lagrange sunt invarianti la o schimbare liniara de variabile.
 - b) Exprimati polinomul de interpolare Lagrange in cazul absciselor echidistante date prin $x = x_0 + uh$, $x_i = x_0 + ih$. Scrieti o functie MATLAB pentru calculul lui P(u).

2 puncte

4. Pentru functia f(x) cunoscuta prin tabelul urmator, calculati functiile spline polinomiale de ordin 2, $s_0(x)$ si $s_1(x)$ tensionate, daca $s_0'(1) = 2$ si $s_1'(4) = -1$ si x = [1 2 4] si $f = [3 \ 4 \ 6].$

2 puncte

5. Metodele de interpolare cu spline-uri aproximeaza mai bine o functie, cunoscuta intr-un set de puncte, decat metrodele de interpolare cu polinom de interpolare pe tot intervalul (Lagrange, Hermite, etc.)? Explicati.