CLAIM AMENDMENTS

- claim 1, (cancelled) claim 2, (cancelled) (cancelled) claim 3. (cancelled) claim 4, (cancelled) claim 5, (cancelled) claim 6. claim 7. (cancelled) claim 8, (cancelled) claim 9, (cancelled)
- (currently amended) An apparatus for measuring a 10. 1 temperature in an electrical apparatus, comprising: 2 a first glass fiber impressed with a first Bragg grating 3 having a specific first Bragg reflection wavelength λ_{BGI} and 4 positioned at a location in an electrical apparatus at which a 5 temperature is to be measured, whereby the Bragg reflection 6 7 wavelength λ_{BGI} of said first Bragg grating is shifted as a function 8 of change in said temperature at said location; a source of broad-band light coupled to said first glass 9 fiber for launching said broad-band light into said first glass 10 fiber; 11 a second glass fiber impressed with a second Bragg 12
- 12 <u>a second glass fiber impressed with a second Bragg</u>
 13 <u>grating having a specific second Bragg reflection wavelength λ_{BG2} </u>
 14 <u>different from the specific Bragg reflection wavelength λ_{BG1} of the</u>
- 15 first Bragg grating;

16	an optocoupler for coupling said first glass fiber with
17	said second glass fiber so that reflected light from the first
18	Bragg grating is conducted to said second Bragg grating; and
19	a photodetector coupled to said second glass fiber
20	downstream of said second Bragg grating and receiving nonreflected
21	light from said second Bragg grating, said photodetector having an
22	output voltage dependent upon detected light intensity and
23	representing a measurement of said temperature at said location,
24	a plurality of said first Bragg gratings being written
25	into said first glass fiber in spaced-apart relationship and
26 .	positioned at a corresponding number of locations of said
27	electrical apparatus at which temperatures are to be measured, said
28	second Bragg grating having a variable second Bragg reflection
29	wavelength λ_{BG2} , said photodetector comprising a photodiode and a
30	transimpedance amplifier connected to said photodiode, said
31	apparatus, further comprising means for mechanically deforming
32	said second glass fiber in a micrometer range to vary said specific
33	second Bragg reflection wavelength λ_{BG2} of said second glass fiber,
34	said optocoupler having a branch to which a further glass fiber is
35	coupled, said apparatus further comprising means for converting a
36	light signal in said further glass fiber to a voltage, an output
37	signal of said photodetector being normalized to the voltage into
38	which the light signal in said further glass fiber is converted The
39	apparatus defined in claim 5 wherein said photodetector comprises
40	comprising a photodiode and a transimpedance amplifier connected to
41	said photodiode, said apparatus furth r comprising means for

Pat. App. 09/919,338

Atty's 21919

mechanically deforming said second glass fiber in a micrometer 42 range to vary said specific second Bragg reflection wavelength λ_{BG2} 43 of said second glass fiber, said optocoupler having a branch to 44 which a further glass fiber is coupled, said apparatus further 45 comprising means for converting a light signal in said further 46 glass fiber to a voltage, an output signal of said photodetector 47 being normalized to the voltage into which the light signal in said 48 49 further glass fiber is converted.

Claim 11, (cancelled)
Claim 12, (cancelled)

(currently amended) An apparatus for measuring a 1 13. temperature in an electrical apparatus, comprising: 2 a first glass fiber impressed with a first Bragg grating 3 having a specific first Bragg reflection wavelength λ_{BGI} and 4 positioned at a location in an electrical apparatus at which a 5 6 temperature is to be measured, whereby the Bragg reflection wavelength λ_{BGI} of said first Bragg grating is shifted as a function 7 of change in said temperature at said location; 8 a source of broad-band light coupled to said first glass 9 fiber for launching said broad-band light into said first glass 10 11 fiber: a second glass fiber impressed with a second Bragg 12 grating having a specific second Bragg reflection wavelength λ_{BG2} 13

14	different from the specific Bragg reflection wavelength λ_{BGI} of the
15	first Bragg grating;
16	an optocoupler for coupling said first glass fiber with
17	said second glass fiber so that reflected light from the first
18	Bragg grating is conducted to said second Bragg grating; and
19	a photodetector coupled to said second glass fiber
20 -	downstream of said second Bragg grating and receiving nonreflected
21	light from said second Bragg grating, said photodetector having an
22	output voltage dependent upon detected light intensity and
23	representing a measurement of said temperature at said location,
24	a plurality of said first Bragg gratings being written
25	into said first glass fiber in spaced-apart relationship and
26	positioned at a corresponding number of locations of said
27	electrical apparatus at which temperatures are to be measured, said
28	second Bragg grating having a variable second Bragg reflection
29	wavelength λ_{BG2} , said photodetector comprising a photodiode and a
30	transimpedance amplifier connected to said photodiode, said
31	apparatus, further comprising means for mechanically deforming
32	said second glass fiber in a micrometer range to vary said specific
33	second Bragg reflection wavelength λ_{BG2} of said second glass fiber,
34	said optocoupler having a branch to which a further glass fiber is
35	coupled, said apparatus further comprising means for converting a
36	light signal in said further glass fiber to a voltage, an output
37	signal of said photodetector being normalized to the voltage into
38	which the light signal in said further glass fiber is converted The
39	apparatus defined in claim 5, said apparatus further comprising

means for mechanically deforming said second glass fiber in a 40 micrometer range to vary said specific second Bragg reflection 41 wavelength λ_{BG2} of said second glass fiber, wherein said optocoupler 42 having a branch to which a further glass fiber is coupled, said 43 apparatus further comprising means for converting a light signal in 44 said further glass fiber to a voltage, an output signal of said 45 photodetector being normalized to the voltage into which the light 46 signal in said further glass fiber is converted. 47

Claim 14, cancelled.

(currently amended) An apparatus for measuring a 15. 1 temperature in an electrical apparatus, comprising: 2 a first glass fiber impressed with a first Bragg grating 3 having a specific first Bragg reflection wavelength λ_{BGI} and 4 positioned at a location in an electrical apparatus at which a 5 temperature is to be measured, whereby the Bragg reflection 6 wavelength λ_{BGI} of said first Bragg grating is shifted as a function 7 of change in said temperature at said location; 8 a source of broad-band light coupled to said first glass 9 fiber for launching said broad-band light into said first glass 10 11 fiber: a second glass fiber impressed with a second Bragg 12 grating having a specific second Bragg reflection wavelength λ_{BG2} 13 different from the specific Bragg reflection wavelength λ_{BGI} of the 14 15 first Bragg grating;

L6	an optocoupler for coupling said first glass fiber with
17	said second glass fiber so that reflected light from the first
18	Bragg grating is conducted to said second Bragg grating; and
19	a photodetector coupled to said second glass fiber
20	downstream of said second Bragg grating and receiving nonreflected
21	light from said second Bragg grating, said photodetector having an
22	output voltage dependent upon detected light intensity and
23	representing a measurement of said temperature at said location,
24	a plurality of said first Bragg gratings being written
25	into said first glass fiber in spaced-apart relationship and
26	positioned at a corresponding number of locations of said
27	electrical apparatus at which temperatures are to be measured, said
28	second Bragg grating having a variable second Bragg reflection
29	wavelength λ_{BG2} , said photodetector comprising a photodiode and a
30	transimpedance amplifier connected to said photodiode, said
31	apparatus, further comprising means for mechanically deforming
32	said second glass fiber in a micrometer range to vary said specific
33	second Bragg reflection wavelength λ_{BG2} of said second glass fiber,
34	said optocoupler having a branch to which a further glass fiber is
35 .	coupled, said apparatus further comprising means for converting a
36	light signal in said further glass fiber to a voltage, an output
37	signal of said photodetector being normalized to the voltage into
38	which the light signal in said further glass fiber is converted,
39	The apparatus defined in claim 5 wherein said optocoupler has
40	having a branch to which a further glass fiber is coupled, said
41	apparatus further comprising means for converting a light signal in

- said further glass fiber to a voltage, an output signal of said
- photodetector being normalized to the voltage into which the light
- 44 signal in said further glass fiber is converted.