1

Supplemental material to "Control Barrier Function Based Quadratic Programs with Application to Automotive Safety Systems"

Aaron D. Ames, Xiangru Xu, Jessy W. Grizzle, Paulo Tabuada

I. PROOF OF VALIDITY OF CBFs IN APPENDIX

First, we prove that the RCBF candidate $B_F^c := 1/h_F^c$ satisfies

$$\inf_{u \in U} \left[L_f B_F^c + L_g B_F^c u - \frac{1}{B_F^c} \right] \le 0, \tag{*}$$

where h_F^c is given in (54)-(57) and u satisfying (FC):

Case (i). $v_l \ge v_f, T_l \ge T_f$:

$$h_F^c(x) = D - \tau_d v_f.$$

Because

$$\dot{B}_F^c = -\frac{-\tau_d u/M + (v_l - v_f)}{(h_F^c)^2}.$$

If $u = -a_f M g$, then

$$L_f B_F^c + L_g B_F^c u = -\frac{\tau_d a_f g + (v_l - v_f)}{(h_F^c)^2} < 0,$$

which means that (*) holds.

Case (ii). $v_l \ge v_f, T_l < T_f$:

$$h_F^c(x) = D - \tau_d v_f - \frac{1}{2} \frac{(a_l v_f - a_f v_l)^2}{a_l a_f (a_l - a_f) g}.$$

Because

$$\dot{B}_F^c = -\frac{-\tau_d u/M + (v_l - v_f) - \frac{(a_l v_f - a_f v_l)(u a_l/M - a_f a_L)}{(a_l a_f (a_l - a_f)g)}}{(h_F^c)^2}.$$

If $u = -a_f M g$, then

$$L_f B_F^c + L_g B_F^c u = -\frac{\tau_d a_f g + (v_l - v_f) + \frac{(a_l v_f - a_f v_l)(a_l a_f g + a_f a_L)}{a_l a_f (a_l - a_f) g}}{(h_F^c)^2} < 0,$$

because $a_l > a_f$ and $a_l v_f > a_f v_l$ in this case. Then it follows that inequality (*) holds.

Case (iii). $v_l < v_f, T_l \ge T_f$:

$$h_F^c(x) = D - \tau_d v_f - \frac{1}{2} \frac{(v_f - v_l)^2}{(a_f - a_l)g}.$$

Because

$$\dot{B}_F^c = -\frac{-\tau_d u/M + (v_l - v_f) - \frac{(v_f - v_l)(u/M - a_L)}{(a_f - a_l)g}}{(h_F^c)^2}.$$

If $u = -a_f M g$, then

$$L_f B_F^c + L_g B_F^c u = -\frac{\tau_d a_f g + \frac{(v_f - v_l)(a_l g + a_L)}{(a_f - a_l)g}}{(h_F^c)^2} < 0,$$

because $v_f > v_l$ and $a_f > a_l$ in this case. It follows that inequality (*) holds.

Case (iv). $v_l < v_f, T_l < T_f$:

$$h_F^c(x) = D - \tau_d v_f - \frac{1}{2} \frac{v_f^2 a_l - v_l^2 a_f}{a_f a_l q}.$$

Because

$$\dot{B}_F^c = -\frac{-\tau_d u/M + (v_l - v_f) - \frac{(a_l v_f u/M - a_f v_l a_L)}{a_f a_l g}}{(h_F^c)^2}.$$

If $u = -a_f M g$, then

$$L_f B_F^c + L_g B_F^c u = -\frac{\tau_d a_f g + v_l + v_l a_L / a_l g}{(h_F^c)^2} < 0,$$

which means that inequality (*) holds.

On the other hand, if B_F^c is taken as

$$B_F^c = \log(\frac{h_F^c}{1 + h_F^c})$$

then because $\dot{B}_F^c = -\dot{h}_F^c/(h_F^c(1+h_F^c))$, it is easy to check that argument above is still valid for each case after minor modifications. Similarly, the optimal RCBF candidate B_F^o associated with h_F^o can also be shown to be a valid RCBF for the ACC problem.

II. OPTIMAL CBF FOR ACC

Recall that the *optimal RCBF* is $B_F^o = \frac{1}{h_F^o}$ or $B_F^o = -log(\frac{h_F^o}{1+h_F^o})$ with $h_F^o(x) = D - \Delta^*$ where Δ^* is given as follows:

(i) if $T_f > T_l$, then

$$\Delta^* = \max_{t \in [0, T_f]} (\Delta_1(t) + \tau_d(v_f - a_f gt)).$$

with

$$\Delta_1(t) = \begin{cases} (v_f t - \frac{1}{2} a_f g t^2) - (v_l t - \frac{1}{2} a_l g t^2), t \in [0, T_l), \\ (v_f t - \frac{1}{2} a_f g t^2) - \frac{v_l^2}{2 a_l g}, t \in [T_l, T_f], \end{cases}$$

(ii) if $T_f \leq T_l$, then

$$\Delta^* = \max_{t \in [0, T_f]} (\Delta_2(t) + \tau_d(v_f - a_f g t)),$$

with

$$\Delta_2(t) = (v_f t - \frac{1}{2} a_f g t^2) - (v_l t - \frac{1}{2} a_l g t^2), \ t \in [0, T_f],$$

The explicit form of Δ^* can be derived by solving the optimization problem above. The results are as follows:

Case(I) $a_f = a_l$ (Ia) $v_f \leq v_l$:

$$\Delta^* = 1.8v_f$$

(Ib) $v_f > v_l$

(**Ib-1**)
$$v_l < v_f \le v_l + 1.8a_f g$$
:

$$\Delta^* = 1.8 v_f$$

(**Ib-2**) $v_f > v_l + 1.8a_f$:

$$\Delta^* = \frac{1}{2} \frac{(1.8a_f g - v_f)^2}{a_f g} + 1.8v_f - \frac{v_l^2}{2a_l g}$$

Case(II) $a_f > a_l$ (IIa) $v_f < \frac{a_f}{a_l} v_l$

(IIa-1)
$$v_l \ge v_f$$
:

$$\Delta^* = 1.8v_f$$

(IIa-2) $v_l < v_f$

(IIa-2-1)
$$v_f \leq v_l + 1.8 a_f g$$
:

$$\Delta^* = 1.8v_f$$

(IIa-2-2) $v_f > v_l + 1.8 a_f g$:

$$\Delta^* = \frac{1}{2} \frac{(v_l + 1.8a_f g - v_f)^2}{(a_f - a_l)g} + 1.8v_f$$

(IIb)
$$v_f \geq \frac{a_f}{a_l} v_l$$

(IIb-1) $v_f \leq v_l + 1.8 a_f g$:

$$\Delta^* = 1.8v_f$$

(IIb-2)
$$v_f > v_l + 1.8 a_f g$$

(IIb-2-1)
$$\frac{v_f - 1.8a_f g}{a_f g} \le \frac{v_l}{a_l g}$$
:

$$\Delta^* = \frac{1}{2} \frac{(v_l + 1.8a_f g - v_f)^2}{(a_f - a_l)g} + 1.8v_f$$

(IIb-2-2)
$$\frac{v_f - 1.8a_f g}{a_f g} > \frac{v_l}{a_l g}$$
:

$$\Delta^* = \frac{1}{2} \frac{(1.8a_f g - v_f)^2}{a_f g} + 1.8v_f - \frac{v_l^2}{2a_l g}$$

Case(III) $a_f < a_l$

(IIIa)
$$v_f \leq \frac{a_f}{a_l} v_l$$
:

$$\Delta^* = 1.8v_f$$

(IIIb)
$$v_f > \frac{a_f}{a_l} v_l$$

(IIIb-1)
$$v_f \leq v_l$$

(IIIb-1-1)
$$v_f \leq 1.8a_f g + \frac{a_f}{a_l} v_l$$
:

$$\Delta^* = 1.8v_f$$

(IIIb-1-2)
$$v_f > 1.8a_f g + \frac{a_f}{a_i} v_i$$
:

If
$$(v_l - v_f + 1.8a_f g)^2 \ge \frac{[a_l(v_f - 1.8a_f g) - a_f v_l]^2}{a_l a_f}$$
,

$$\Delta^* = 1.8v_f$$

If
$$(v_l - v_f + 1.8a_f g)^2 < \frac{[a_l(v_f - 1.8a_f g) - a_f v_l]^2}{a_l a_f}$$
,

$$\Delta^* = \frac{1}{2} \frac{(1.8a_f g - v_f)^2}{a_f g} + 1.8v_f - \frac{v_l^2}{2a_l g}$$

(IIIb-2) $v_f > v_l$

(IIIb-2-1) $v_f \ge 1.8a_f g + v_l$:

$$\Delta^* = \frac{1}{2} \frac{(1.8a_f g - v_f)^2}{a_f g} + 1.8v_f - \frac{v_l^2}{2a_l g}$$

(IIIb-2-2) $v_f < 1.8a_f g + v_l$

(IIIb-2-2-1) $v_f \leq 1.8 a_f g + \frac{a_f}{a_l} v_l$:

$$\Delta^* = 1.8v_f$$

(IIIb-2-2-2)
$$v_f > 1.8a_f g + \frac{a_f}{a_l} v_l$$

If
$$(v_l - v_f + 1.8a_f g)^2 \ge \frac{[a_l(v_f - 1.8a_f g) - a_f v_l]^2}{a_l a_f}$$
,

$$\Delta^* = 1.8 v_f$$

If
$$(v_l - v_f + 1.8a_f g)^2 < \frac{[a_l(v_f - 1.8a_f g) - a_f v_l]^2}{a_l a_f}$$
,

$$\Delta^* = \frac{1}{2} \frac{(1.8a_f g - v_f)^2}{a_f g} + 1.8v_f - \frac{v_l^2}{2a_l g}$$