Scilab Textbook Companion for Introductory Methods Of Numerical Analysis by S. S. Sastry¹

Created by
Rohit Kumar Singh
B Tech
Others

NATIONAL INSTITUTE OF TECHNOLOGY, JAMSHEDPUR

College Teacher NA

Cross-Checked by Lavitha Pereira

December 2, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Introductory Methods Of Numerical Analysis

Author: S. S. Sastry

Publisher: Phi Learning

Edition: 5

Year: 2012

ISBN: 9788120345928

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Errors in numerical calculation	9
2	Solution of Algebraic and Transcendental Equation	17
3	interpolation	44
4	least squares and fourier transform	65
5	spline functions	81
6	Numerical Diffrentiation and Integration	87
7	Numerical linear algebra	107
8	Numerical Solution of ordinary diffrential equation	121
9	Numerical Solution of Partial Diffrential Equation	136

List of Scilab Codes

Exa 1.1	rounding off	9
Exa 1.2	percentage accuracy	9
Exa 1.3	absolute and relative errors	10
Exa 1.4	best approximation	10
Exa 1.5	relative error	11
Exa 1.6	absolute error and relative error	12
Exa 1.7	absolute error	12
Exa 1.8	difference in 3 significant figures	13
Exa 1.10	relative error	13
Exa 1.11	relative error	13
Exa 1.12	taylor series	14
Exa 1.13	taylor series	14
Exa 1.14	maclaurins expansion	15
Exa 1.15	series approximation	16
Exa 2.1	bisection method	17
Exa 2.2	bisection method	18
Exa 2.3	bisection method	18
Exa 2.4	bisection method	19
Exa 2.5	bisection method	20
Exa 2.6	false position method	21
Exa 2.7	false position method	22
Exa 2.8	false position method	22
Exa 2.9	false position method	23
Exa 2.10	iteration method	24
Exa 2.11	iteration method	25
Exa 2.12	iteration method	25
Exa 2.13	iteration method	26
Eva 2 14	aitkens process	26

Exa 2.15	newton raphson method
Exa 2.16	newton raphson method
Exa 2.17	newton raphson method
Exa 2.18	newton raphson method
Exa 2.19	newton raphson method
Exa 2.20	newton raphson method
Exa 2.21	ramanujans method
Exa 2.22	ramanujans method
Exa 2.23	ramanujans method
Exa 2.24	ramanujans method
Exa 2.25	secant method
Exa 2.26	secant method
Exa 2.27	mulllers method
Exa 2.28	graeffes method
Exa 2.29	quadratic factor by lins bairsttow method
Exa 2.31	method of iteration
Exa 2.32	newton raphson method
Exa 2.33	newton raphson method 41
Exa 2.34	newton raphson method
Exa 3.4	interpolation
Exa 3.6	interpolation
Exa 3.7	interpolation
Exa 3.8	interpolation
Exa 3.9	Gauss forward formula
Exa 3.10	practical interpolation
Exa 3.11	practical interpolation
Exa 3.12	practical interpolation
Exa 3.13	lagranges interpolation formula
Exa 3.14	lagranges interpolation formula
Exa 3.15	lagranges interpolation formula
Exa 3.16	lagranges interpolation formula
Exa 3.17	lagranges interpolation
Exa 3.18	error in lagranges interpolation formula
Exa 3.19	error in lagranges interpolation formula 59
Exa 3.21	hermites interpolation formula
Exa 3.22	newtons general interpolation formula 60
Exa 3.23	newtons divided formula 61
Exa 3.24	interpolation by iteration
	5

Exa 3.25	inverse intrpolation
Exa 3.26	double interpolation
Exa 4.1	least square curve fitting procedure
Exa 4.2	least square curve fitting procedure
Exa 4.3	least square curve fitting procedure
Exa 4.4	linearization of non linear law
Exa 4.5	linearization of non linear law
Exa 4.6	curve fitting by polynomial
Exa 4.7	curve fitting by polynomial
Exa 4.8	curve fitting by sum of exponentials
Exa 4.9	linear weighted least approx
Exa 4.10	linear weighted least approx
Exa 4.11	least square for quadratic equations
Exa 4.20	cooley Tukey method
Exa 5.1	linear splines
Exa 5.2	quadratic splines
Exa 5.3	cubic splines
Exa 5.4	cubic splines
Exa 5.5	cubic splines
Exa 5.7	surface fitting by cubic spline
Exa 5.8	cubic B splines
Exa 5.9	cubic B spline
Exa 6.1	numerical diffrentiation by newtons difference formula
Exa 6.2	numerical diffrentiation by newtons difference formula
Exa 6.3	numerical diffrentiation by newtons difference formula
Exa 6.4	estimation of errors
Exa 6.5	cubic spline method
Exa 6.6	derivative by cubic spline method
Exa 6.7	maximun and minimun of functions
Exa 6.8	trapezoidal method for integration
Exa 6.9	simpson 1by3 method for integration
Exa 6.10	integration by trapezoidal and simpsons method
Exa 6.11	rommbergs method
Exa 6.12	Trapezoidal and Simpsons rule
Exa 6.13	area using cubic spline method
Exa 6.15	eulers maclaurin formula
Exa 6.17	error estimate in evaluation of the integral
Exa 6.18	error estimate in evaluation of the integral

Exa 6.19	gauss formula	105
Exa 6.20	double integration	105
Exa 7.1	inverse of matrix	107
Exa 7.2	Factorize by triangulation method	107
Exa 7.3	Vector Norms	108
Exa 7.6	Gauss Jordan	109
Exa 7.7	modern gauss jordan method	110
Exa 7.8	LU decomposition method	111
Exa 7.9	ill conditioned linear systems	113
Exa 7.10	ill condiioned linear systems	114
Exa 7.11	ill conditioned linear systems	114
Exa 7.12	ill conditioned system	115
Exa 7.14	solution of equations by iteration method	115
Exa 7.15	eigenvalues and eigenvectors	116
Exa 7.16	largest eigenvalue and eigenvectors	117
Exa 7.17	housrholders method	118
Exa 7.18	single value decommposition	118
Exa 8.1	taylors method	121
Exa 8.2	taylors method	122
Exa 8.3	picards method	123
Exa 8.4	picards method	123
Exa 8.5	eulers method	124
Exa 8.6	error estimates in eulers	124
Exa 8.7	modified eulers method	125
Exa 8.8	runge kutta formula	126
Exa 8.9	runge kutta formula	127
Exa 8.10	initial value problems	128
Exa 8.11	adams moulton method	128
Exa 8.12	milnes method	129
Exa 8.13	milnes method	131
Exa 8.14	initial value problems	131
Exa 8.15	boundary value problem using finite difference method	132
Exa 8.16	boundary value problem using finite difference method	133
Exa 8.17	cubic spline method	133
Exa 8.18	cubic spline method	134
Exa 8.19	boundary value problem by cubic spline method	134
Exa 9.1	standard five point formula	136

Exa 9.2 solution of laplace equation by jacobi method gauss			
	del method and SOR method	136	
Exa 9.4	poisson equation	138	
Exa 9.6	bender schmidt formula	138	
Exa 9.7	bender schimdts formula and crank nicolson formula .	139	
Exa 9.8	heat equation using crank nicolson method	140	

Chapter 1

Errors in numerical calculation

Scilab code Exa 1.1 rounding off

```
1 //example 1.1
2 //rounding off
 3 //page 7
4 clc; clear; close;
 5 a1=1.6583;
 6 \quad a2=30.0567;
 7 \quad a3=0.859378;
 8 \quad a4=3.14159;
 9 printf('\nthe numbers after rounding to 4
        significant figures are given below\n')
10 printf('
                    \%f
                                 \%.4 \,\mathrm{g/n}',a1,a1);
11 printf('
                    \%f
                                 \%.4 \,\mathrm{g} \,\mathrm{n}', a2, a2);
12 printf('
                     \%f
                                 \%.4\,\mathrm{g}\,\mathrm{n}',a3,a3);
13 printf('
                     \%f
                                 \%.4 \,\mathrm{g} \,\mathrm{n}', a4, a4);
```

Scilab code Exa 1.2 percentage accuracy

```
1 // example 1.2
```

```
2 //percentage accuracy
3 //page 9
4 clc;clear;close;
5 x=0.51;// the number given
6 n=2;//correcting upto 2 decimal places
7 dx=((10^-n)/2)
8 p_a=(dx/x)*100;//percentage accuracy
9 printf('the percentage accuracy of %f after correcting to two decimal places is %f',x,p_a);
```

Scilab code Exa 1.3 absolute and relative errors

```
//example 1.3
//absolute and relative errors
//page 9
clc; clear; close;
X=22/7; //approximate value of pi
T_X=3.1415926; // true value of pi
A_E=T_X-X; //absolute error
R_E=A_E/T_X; //relative error
printf('Absolute Error = %0.7 f \n Relative Error = %0.7 f', A_E, R_E);
```

Scilab code Exa 1.4 best approximation

```
1 //example 1.4
2 //best approximation
3 //page 10
4 clc; clear; close;
5 A_X=1/3; // the actual number
6 X1=0.30;
7 X2=0.33;
8 X3=0.34;
```

```
9 A_E1 = abs(A_X - X1);
10 A_E2 = abs(A_X - X2);
11 A_E3 = abs(A_X - X3);
12 if (A_E1 < A_E2)
13 if (A_E1 < A_E3)
14
        B_A = X1;
15 end
16 end
17 if (A_E2 < A_E1)
18 if (A_E2 < A_E3)
        B_A = X2;
19
20 \, \text{end}
21 end
22 if (A_E3<A_E2)
23 if (A_E3 < A_E1)
24
        B_A = X3;
25 end
26 \text{ end}
27 printf ('the best approximation of 1/3 is \%.2g ',B_A)
```

Scilab code Exa 1.5 relative error

```
//relative error
//example 1.5
//page 10
clc;clear;close;
n=8.6;// the corrected number
N=1;//the no is rounded to one decimal places
E_A=(10^-N)/2;
E_R=E_A/n;
printf('the relative error of the number is:%0.4f',
E_R);
```

Scilab code Exa 1.6 absolute error and relative error

```
//example 1.6
//absolute error and relative error
//page 10
clc;clear;close;
s=sqrt(3)+sqrt(5)+sqrt(7);//the sum square root of
3,5,7
n=4;
Ea=3*((10^-n)/2);//absolute error
R_E=Ea/s;
printf('the sum of square roots is %0.4g \n',s);
printf('the absolute error is %f \n',Ea);
printf('the relative error is %f ',R_E);
```

Scilab code Exa 1.7 absolute error

```
1 //absolute error
2 //example 1.7
3 //page 10
4 clc; clear; close;
5 n = [0.1532 15.45 0.0000354 305.1 8.12 143.3 0.0212
      0.643 0.173]; // original numbbers
6 //rounding all numbers to 2 decimal places
7 n = [305.1 \ 143.3 \ 0.15 \ 15.45 \ 0.00 \ 8.12 \ 0.02 \ 0.64];
8 \quad sum = 0;
9 l = length(n);
10 for i=1:1
11
       sum = sum + n(i);
12 end
13 E_A = 2*(10^-1)/2+7*(10^-2)/2;
14 printf('the absolute error is:\%0.2f',E_A);
```

Scilab code Exa 1.8 difference in 3 significant figures

```
1 //difference in 3 significant figures
2 //example 1.8
3 //page 11
4 clc; clear; close;
5 X1=sqrt(6.37);
6 X2=sqrt(6.36);
7 d=X1-X2; // difference between two numbers
8 printf('the differencecorrected to 3 significant figures is %0.3g',d);
```

Scilab code Exa 1.10 relative error

```
1 //relative error
2 //example 1.10
3 //page 12
4 clc; clear; close;
5 a=6.54; b=48.64; c=13.5
6 da=0.01; db=0.02; dc=0.03;
7 s=(a^2*sqrt(b))/c^3;
8 disp(s, 's=');
9 r_err=2*(da/a)+(db/b)/2+3*(dc/c);
10 printf(' the relative error is :%f',r_err);
```

Scilab code Exa 1.11 relative error

```
1 //relative error
2 //example 1.11
```

```
3 //page 13
4 clc; clear; close;
5 x=1; y=1; z=1;
6 u=(5*x*y^3)/z^3;
7 dx=0.001; dy=0.001; dz=0.001;
8 u_max=((5*y^2)/z^3)*dx+((10*x*y)/z^3)*dy+((15*x*y^2)/z^4)*dz;
9 r_err=u_max/u;
10 printf(' the relative error is :%f',r_err);
```

Scilab code Exa 1.12 taylor series

```
1 //taylor series
2 //example 1.12
3 //page 12
4 clc;clear;close;
5 deff('y=f(x)', 'y=x^3+5*x-10');
6 deff('y=f1(x)', 'y=3*x^2-6*x+5')//first derivative
7 deff('y=f2(x)', 'y=6*x-6')//second derivative
8 deff('y=f3(x)', 'y=6')//third derivative
9 D=[f(0) f1(0) f2(0) f3(0)]
10 S1=0;
11 h=1;
12 for i=1:4
13     S1=S1+h^(i-1)*D(i)/factorial(i-1);
14 end
15 printf('the third order taylors series approximation of f(1) is :%d',S1);
```

Scilab code Exa 1.13 taylor series

```
1 //taylor series
2 //example 1.13
```

```
3 //page 16
4 clc; clear; close;
5 deff('y=f(x)', 'y=sin(x)');
6 deff('y=f1(x)', 'y=cos(x)');
7 deff('y=f2(x)', 'y=-sin(x)');
8 deff('y=f3(x)', 'y=-cos(x)');
9 deff('y=f4(x)', 'y=sin(x)');
10 deff('y=f5(x)', 'y=cos(x)');
11 deff('y=f6(x)', 'y=-sin(x)');
12 deff('y=f7(x)', 'y=-cos(x)');
13 D=[f(%pi/6) f1(%pi/6) f2(%pi/6) f3(%pi/6) f4(%pi/6)
       f5(%pi/6) f6(%pi/6) f7(%pi/6)];
14 S1=0;
15 h = \% pi/6;
16 printf ('order of approximation computed value of
                    absolute erorn\n';
       \sin(pi/3)
17 \text{ for } j=1:8
18 for i=1:j
        S1=S1+h^{(i-1)}*D(i)/factorial(i-1);
19
20 end
21 printf('%d
                                            \%0.9 f
                                   \%0.9 \text{ f} \text{ n}, j, S1, abs(sin(%pi
       /3)-S1));
22 S1=0;
23 end
```

Scilab code Exa 1.14 maclaurins expansion

```
// maclaurins expansion
// example 1.14
// page 18
clc; clear; close;
x=1;
n=8; // correct to 8 decimal places
for i=1:50
```

```
8    if x/factorial(i)<(10^-8/2) then
9        c=i;
10        break;
11
12    end
13 end
14 printf('no of terms needed to correct to 8 decimal places is :%d',c)</pre>
```

Scilab code Exa 1.15 series approximation

```
1 // series apprixamation
2 //example 1.15
3 / page 18
4 clc; clear; close;
5 x=1/11;
6 \text{ S1=0};
7 for i=1:2:5
             S1=S1+(x^i/(i))
9
        end
10 printf ('value of \log (1.2) is : \%0.8 \text{ f} \setminus \text{n} \cdot \text{n}',2*S1)
11 c = 0;
12 for i=1:50
        if (1/11)^i/i<(2*10^-7) then</pre>
13
14
             c=i;
15
             break;
16
            end
17 end
18 printf ('min no of terms needed to get value wuth
      same accuracy is :%d',c)
```

Chapter 2

Solution of Algebraic and Transcendental Equation

Scilab code Exa 2.1 bisection method

```
1 //example 2.1
2 // bisection method
3 //page 24
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3-x-1');
6 x1=1, x2=2; //f(1) is negative and f(2) is positive
7 d=0.0001; //for accuracy of root
8 c=1;
9 printf('Succesive approximations \t x1\t \tx2\t
        10 while abs(x1-x2)>d
       m = (x1+x2)/2;
11
12 printf('
                                       \t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\n
      ',x1,x2,m,f(m));
13
      if f(m)*f(x1)>0
14
           x1=m;
15
       else
16
           x2=m;
17 \text{ end}
```

```
18 c=c+1;// to count number of iterations
19 end
20 printf('the solution of equation after %i iteration
        is %g',c,m)
```

Scilab code Exa 2.2 bisection method

```
1 //example 2.2
2 // bisection method
3 //page 25
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3-2*x-5');
6 x1=2, x2=3; //f(2) is negative and f(3) is positive
7 d=0.0001; //for accuracy of root
9 printf ('Succesive approximations \t x1\t
                                                        \t x2 \t
         \operatorname{tm} t \operatorname{tf}(m) \operatorname{n}';
10 while abs(x1-x2)>d
        m = (x1+x2)/2;
12 printf('
                                            \t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\n
      ',x1,x2,m,f(m));
13
       if f(m)*f(x1)>0
14
             x1=m;
15
       else
16
            x2=m;
17 end
18 c=c+1; // to count number of iterations
20 printf ('the solution of equation after %i iteration
      is \%0.4\,\mathrm{g}',c,m)
```

Scilab code Exa 2.3 bisection method

```
1 // example 2.3
2 //bisection method
3 //page 26
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3+x^2+x+7');
6 x1=-3, x2=-2; //f(-3) is negative and f(-2) is
      positive
7 d=0.0001; //for accuracy of root
9 printf('Succesive approximations \t x1\t
                                                   \t x 2 \t
        10 while abs(x1-x2)>d
11
       m = (x1+x2)/2;
                                        \t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\n
12 printf('
      ',x1,x2,m,f(m));
       if f(m)*f(x1)>0
13
14
           x1=m;
15
       else
16
           x2=m;
17 \text{ end}
18 c=c+1; // to count number of iterations
19 end
20 printf ('the solution of equation after %i iteration
      is \%0.4\,\mathrm{g}',c,m)
```

Scilab code Exa 2.4 bisection method

```
1 //example 2.4
2 //bisection method
3 //page 26
4 clc; clear; close;
5 deff('y=f(x)', 'y=x*exp(x)-1');
6 x1=0,x2=1; //f(0) is negative and f(1) is positive
7 d=0.0005; //maximun tolerance value
8 c=1;
```

```
9 printf('Succesive approximations \t
                                                    x1 \setminus t
                                                             \t x2 \t
         \operatorname{tm} t
                   \t t t o l \ t
                                 \backslash tf(m) \backslash n');
10 while abs((x2-x1)/x2)>d
        m=(x1+x2)/2; //tolerance value for each iteration
11
12
       tol = ((x2-x1)/x2)*100;
13 printf('
                                               \t%f\t%f\t%f\t%f
       t\%f \setminus n', x1, x2, m, tol, f(m));
        if f(m)*f(x1)>0
14
15
              x1=m;
16
        else
17
              x2=m;
18 end
19 c=c+1; // to count number of iterations
20 \, \text{end}
21 printf ('the solution of equation after %i iteration
       is \%0.4\,\mathrm{g}, c,m)
```

Scilab code Exa 2.5 bisection method

```
1 // \text{example } 2.5
2 // bisection method
3 //page 27
4 clc; clear; close;
5 deff('y=f(x)', 'y=4*\exp(-x)*\sin(x)-1');
6 x1=0, x2=0.5; //f(0) is negative and f(1) is positive
7 d=0.0001; //for accuracy of root
8 c=1;
9 printf('Succesive approximations \t
                                          x1 \setminus t
                                                   \t x2 \t
        10 while abs(x2-x1)>d
       m = (x1+x2)/2;
11
                                        \t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\n
12 printf('
      ', x1, x2, m, f(m));
13
       if f(m)*f(x1)>0
14
           x1=m;
```

```
15     else
16         x2=m;
17   end
18   c=c+1;// to count number of iterations
19   end
20   printf('the solution of equation after %i iteration is %0.3g',c,m)
```

Scilab code Exa 2.6 false position method

```
1 // \text{example} 2.6
2 //false position method
3 / page 28
4 clc; clear; close
5 deff('y=f(x)', 'y=x^3-2*x-5');
6 a=2,b=3; //f(2) is negative and f(3) is positive
7 d=0.00001;
    printf('succesive iterations
                                       \ta\t
                                                 b\t
                                                         f (a
       )\t f(b)\t\ x1\n');
9 \text{ for } i=1:25
10
       x1=b*f(a)/(f(a)-f(b))+a*f(b)/(f(b)-f(a));
11
       if(f(a)*f(x1))>0
12
            b=x1;
13
       else
14
            a=x1;
15
       end
       if abs(f(x1)) < d
16
17
            break
18
       end
                                            \t%f %f
       printf('
                                                       \%f
19
          %f %f n',a,b,f(a),f(b),x1);
20 end
                                            %f', x1);
21 printf ('the root of the equation is
```

Scilab code Exa 2.7 false position method

```
1 // \text{example} 2.7
2 //false position method
3 //page 29
4 clc; clear; close
5 deff('y=f(x)', 'y=x^2.2-69');
6 a=5,b=6; //f(5) is negative and f(6) is positive
7 d=0.00001;
    printf('succesive iterations
                                         \ta \t
                                                    b \setminus t
                                                            f ( a
       )\t f(b)\t\ x1\n');
9 \text{ for } i=1:25
10
        x1=b*f(a)/(f(a)-f(b))+a*f(b)/(f(b)-f(a));
11
        if(f(a)*f(x1))>0
12
            b=x1;
13
       else
14
            a=x1;
15
        end
16
       if abs(f(x1)) < d
17
            break
18
        end
                                              \ t % f
                                                     \%\mathrm{f}
                                                         \%f
19
        printf('
           %f %f n',a,b,f(a),f(b),x1);
20 end
21 printf('the root of the equation is
                                              %f',x1);
```

Scilab code Exa 2.8 false position method

```
1 //example 2.8
2 //false position method
3 //page 29
4 clc;clear;close
```

```
5 deff('y=f(x)', 'y=2*x-log10(x)-7');
6 a=3,b=4; //f(3) is negative and f(4) is positive
7 d=0.00001;
    printf('succesive iterations
                                           \ta \t
                                                      b\t
                                                              f (a
       ) \ t
                f(b) \setminus t \setminus x1 \setminus n';
9 \text{ for } i=1:25
        x1=b*f(a)/(f(a)-f(b))+a*f(b)/(f(b)-f(a));
10
        if(f(a)*f(x1))>0
11
12
             b=x1;
13
        else
14
             a=x1;
15
        end
16
        if abs(f(x1)) < d
17
             break
18
        end
        printf('
                                                \t%f %f %f
19
           %f %f n',a,b,f(a),f(b),x1);
20 end
21 printf ('the root of the equation is
                                                \%0.4\,\mathrm{g}',x1);
```

Scilab code Exa 2.9 false position method

```
1 // \text{example } 2.9
2 //false position method
3 //page 30
4 clc; clear; close
5 deff('y=f(x)', 'y=4*exp(-x)*sin(x)-1');
6 a=0,b=0.5; //f(0) is negative and f(0.5) is positive
7 d=0.00001;
    printf('succesive iterations
                                            \ta \t
                                                       b \setminus t
                                                                f (a
        )\t
                f(b) \setminus t \setminus x1 \setminus n';
9 \text{ for } i=1:25
        x1=b*f(a)/(f(a)-f(b))+a*f(b)/(f(b)-f(a));
10
        if(f(a)*f(x1))>0
11
12
             b=x1;
```

```
13
       else
14
            a=x1;
15
       end
16
       if abs(f(x1)) < d
17
            break
18
       end
                                            \t%f %f %f
19
       printf('
          %f %f n',a,b,f(a),f(b),x1);
20 end
21 printf('the root of the equation is
                                           %f', x1);
```

Scilab code Exa 2.10 iteration method

```
1 // \text{example} 2.10
2 //iteration method
3 //page 33
4 clc; clear, close;
5 deff('x=f(x)', 'x=1/(sqrt(x+1))');
6 	 x1=0.75, x2=0;
7 n=1;
8 d=0.0001; // accuracy opto 10^-4
9 c=0; // to count no of iterations
10 printf('successive iterations t\x1\tf(x1)\n')
11 while abs(x1-x2)>d
                                    \ t%f
                                             %f\n',x1,f(x1)
12 printf('
      )
13 x2=x1;
14 x1=f(x1);
15 c = c + 1;
16 end
17 printf(' the root of the equation after %i iteration
       is \%0.4\,\mathrm{g}',c,x1)
```

Scilab code Exa 2.11 iteration method

```
1 // example 2.11
2 //iteration method
3 / page 34
4 clc; clear, close;
5 deff('x=f(x)', 'x=(cos(x)+3)/2');
6 x1=1.5; // as roots lies between 3/2 and pi/2
7 x2=0;
8 d=0.0001; // accuracy opto 10^-4
9 c=0; // to count no of iterations
10 printf('successive iterations t\x1\tf(x1)\n')
11 while abs(x2-x1)>d
                                    \t^{\%}f %f\n',x1,f(x1)
12 printf('
      )
13 x2=x1;
14 \times 1 = f(x1);
15 c = c + 1;
16 end
17 printf(' the root of the equation after %i iteration
       is \%0.4\,\mathrm{g}',c,x1)
```

Scilab code Exa 2.12 iteration method

```
//example 2.12
//iteration method
//page 35
clc;clear,close;
deff('x=f(x)','x=exp(-x)');
x1=1.5;// as roots lies between 0 and 1
x2=0;
d=0.0001;// accuracy opto 10^-4
c=0;// to count no of iterations
printf('successive iterations \t\x1\t f(x1)\n')
while abs(x2-x1)>d
```

Scilab code Exa 2.13 iteration method

```
1 // example 2.12
2 //iteration method
3 //page 35
4 clc; clear, close;
5 deff('x=f(x)', 'x=1+(\sin(x)/10)');
6 x1=1; // as roots lies between 1 and pi evident from
      graph
7 x2=0;
8 d=0.0001; // accuracy opto 10^-4
9 c=0;// to count no of iterations
10 printf('successive iterations t\x1\tf(x1)\n')
11 while abs(x2-x1)>d
                                     \t 1 % f \t % f \ n ', x1, f (x1))
12 printf('
13 x2=x1;
14 x1=f(x1);
15 c = c + 1;
16 \text{ end}
17 printf(' the root of the equation after %i iteration
       is \%0.4\,\mathrm{g}',c,x1)
```

Scilab code Exa 2.14 aitkens process

```
1 // example 2.14
2 //aitken's process
3 //page 36
4 clc, clear, close
5 deff('x=f(x)', 'x=(3+\cos(x))/2');
6 \times 0 = 1.5;
7 y = 0;
8 e=0.0001;
9 c = 0;
                                             \t x 0 \t
10 printf('successive iterations
                                                           x1 \setminus t
         x2 \setminus t
                     x3 \ t
                               y \setminus n'
11 for i=1:10
12
        x1=f(x0), x2=f(x1), x3=f(x2);
        y=x3-((x3-x2)^2)/(x3-2*x2+x1);
13
14
        d=y-x0;
        x0=y;
15
        if abs(f(x0)) < e then
16
17
             break;
18
        end
19
        c=c+1;
20 printf('
                                             \t \%f
                                                     \% f
                                                            \%f
      \%f
            %f \ n', x0, x1, x2, x3, y)
21 end
22 printf ('the root of the equation after %i iteration
       is %f',c,y);
```

Scilab code Exa 2.15 newton raphson method

```
1 //example 2.15
2 //newton-raphson method
3 //page 39
4 clc; clear; close
5 deff('y=f(x)', 'y=x^3-2*x-5');
6 deff('y1=f1(x)', 'y1=3*x^2-2'); // first derivative of the function
```

```
7 x0=2; // initial value
8 d=0.0001;
9 c=0; n=1;
10 printf ('successive iterations \t x0\t f(x0)\t
             f1(x0)\n';
11 while n==1
      x2=x0;
12
       x1=x0-(f(x0)/f1(x0));
13
14
      x0=x1;
15 printf('
                                  \t^{f}\t^{f}\t^{f}\
     x1), f1(x1))
16 c = c + 1;
17 if abs(f(x0)) < d then
18 break;
19 end
20 end
21 printf('the root of %i iteration is:%f',c,x0);
```

Scilab code Exa 2.16 newton raphson method

```
1 //example 2.16
2 //newton-raphson method
3 //page 40
4 clc; clear; close
5 deff('y=f(x)', 'y=x*sin(x)+cos(x)');
6 deff('y1=f1(x)', 'y1=x*cos(x)'); // first derivation of
      the function
7 x0=%pi;// initial value
8 d=0.0001;
9 c=0; n=1;
10 printf ('successive iterations \t x0\t f(x0)\t
            f1(x0)\n';
11 while n==1
12
       x2=x0
13
      x1=x0-(f(x0)/f1(x0));
```

Scilab code Exa 2.17 newton raphson method

```
1 // \text{example} 2.17
2 //newton-raphson method
3 / page 40
4 clc; clear; close
5 deff('y=f(x)', 'y=x*exp(x)-1');
6 deff('y1=f1(x)', 'y1=exp(x)+x*exp(x)'); // first
      derivative of the function
7 x0=0; // initial value
8 d=0.0001;
9 c=0; n=1
10 printf('successive iterations \t x0\t f(x0)\t
             f1(x0)\n';
11 while n==1
12
       x2=x0;
13
       x1=x0-(f(x0)/f1(x0));
14
       x0=x1;
15 printf('
                                   \t^{f}\t^{f}\t^{f}\
     x1), f1(x1))
16 c = c + 1;
17 if abs(f(x0)) < d then
18 break;
19 end
20 end
```

```
21 printf('the root of %i iteration is:%f',c,x0);
```

Scilab code Exa 2.18 newton raphson method

```
1 //example 2.18
2 //newton-raphson method
3 //page 41
4 clc; clear; close
5 deff('y=f(x)', 'y=\sin(x)-x/2');
6 deff('y1=f1(x)', 'y1=cos(x)-1/2');
7 x0=%pi/2;// initial value
8 d=0.0001;
9 c=0; n=1;
10 printf('successive iterations \tx0\t
                                                f(x0) \setminus t
             f1(x0)\n';
11 while n==1
12
       x2=x0;
13
       x1=x0-(f(x0)/f1(x0));
14
       x0=x1;
15
                                   \t^{f}\t^{f}\t^{f}\
16 printf('
     x1), f1(x1))
17 c = c + 1;
18 if abs(f(x0)) < d then
19
       break;
20 end
21 end
22 printf('the root of %i iteration is:\%0.4g',c,x0);
```

Scilab code Exa 2.19 newton raphson method

```
1 //example 2.19
2 //newton-raphson method
```

```
3 //page 41
4 clc; clear; close
5 deff('y=f(x)', 'y=4*\exp(-x)*\sin(x)-1');
6 deff('y1=f1(x)', 'y1=cos(x)*4*\exp(-x)-4*\exp(-x)*\sin(x)
     ) ');
7 x0=0.2; // initial value
8 d=0.0001;
9 c=0; n=1;
10 printf ('successive iterations \t x0\t f(x0)\t
              f1(x0)\n');
11 while n==1
12
       x2=x0;
13
       x1=x0-(f(x0)/f1(x0));
14
       x0=x1;
15 printf('
                                     \t^{\%}f\t^{\%}f\t^{\%}f\n',x2,f(
      x1), f1(x1))
16 c = c + 1;
17 if abs(f(x0)) < d then
18 break;
19 end
20 \text{ end}
21 printf('the root of %i iteration is:\%0.3g',c,x0);
```

Scilab code Exa 2.20 newton raphson method

```
1 //example 2.20
2 //generalized newton-raphson method
3 //page 42
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3-x^2-x+1');
6 deff('y1=f1(x)', 'y1=3*x^2-2*x-1');
7 deff('y2=f2(x)', 'y2=6*x-2');
8 x0=0.8; // initial value to finf double root
9 n=1;
10 printf('successive iterations \tx0\t x1\t
```

```
x2 \setminus n')
11 while n==1
12 x1=x0-(f(x0)/f1(x0));
13 x2=x0-(f1(x0)/f2(x0));
14 if abs(x1-x2) < 0.000000001 then
15
        x0 = (x1 + x2)/2;
16
       break;
17 else
18
        x0 = (x1 + x2)/2;
19 end
20 printf('
                                           %f \ t\%f \ t\%f \ ',x0,
      x1,x2);
21 end
22 printf('\n \nthe double root is at: \%f',x0);
```

Scilab code Exa 2.21 ramanujans method

```
1 //ramanujan's method
2 //example 2.21
3 //page 45
4 clc; clear; close;
5 deff('y=f(x)', '1-((13/12)*x-(3/8)*x^2+(1/24)*x^3)');
6 \quad a1=13/12, a2=-3/8, a3=1/24;
7 b1=1;
8 b2=a1;
9 b3=a1*b2+a2*b1;
10 b4=a1*b3+a2*b2+a3*b1;
11 b5=a1*b4+a2*b3+a3*b2:
12 b6=a1*b5+a2*b4+a3*b3;
13 b7 = a1 * b6 + a2 * b5 + a3 * b4;
14 b8=a1*b7+a2*b6+a3*b5;
15 b9=a1*b8+a2*b7+a3*b6;
16 printf('\n\n\%f',b1/b2);
17 printf('\n%f',b2/b3);
18 printf('\n\%f',b3/b4);
```

```
19  printf('\n%f',b4/b5);
20  printf('\n%f',b5/b6);
21  printf('\n%f',b6/b7);
22  printf('\n%f',b7/b8);
23  printf('\n%f',b8/b9);
24  printf('\n it appears as if the roots are converging at 2')
```

Scilab code Exa 2.22 ramanujans method

```
1 //ramanujan's method
2 //example 2.22
3 //page 46
4 clc; clear; close;
5 deff('y=f(x)', 'x+x^2+x^3/2+x^4/6+x^5/24');
6 \quad a1=1, a2=1, a3=1/2, a4=1/6, a5=1/24;
7 b1=1;
8 b2=a2;
9 b3=a1*b2+a2*b1;
10 b4=a1*b3+a2*b2+a3*b1;
11 b5=a1*b4+a2*b3+a3*b2;
12 b6=a1*b5+a2*b4+a3*b3;
13 printf('\n\%f',b1/b2);
14 printf('\n\%f',b2/b3);
15 printf('\n\%f',b3/b4);
16 printf('\n\%f',b4/b5);
17 printf('\n\%f', b5/b6);
18 printf('\n it appears as if the roots are converging
       at around \%f', b5/b6);
```

Scilab code Exa 2.23 ramanujans method

```
1 //ramanujan's method
```

```
2 //example 2.23
3 //page 47
4 clc; clear; close;
5 deff('y=f(x)', '1-2*((3/2)*x+(1/4)*x^2-(1/48)*x^4+x
      ^{6}/1440 - x^{8}/80640);
6 \quad a1=3/2, a2=1/4, a3=0, a4=1/48, a5=0, a6=1/1440, a7=0, a8
      =-1/80640;
7 b1=1;
8 b2=a1;
9 b3=a1*b2+a2*b1;
10 b4=a1*b3+a2*b2+a3*b1;
11 b5=a1*b4+a2*b3+a3*b2;
12 b6=a1*b5+a2*b4+a3*b3;
13 b7 = a1 * b6 + a2 * b5 + a3 * b4;
14 b8=a1*b7+a2*b6+a3*b5;
15 b9=a1*b8+a2*b7+a3*b6;
16 printf('\n\%f',b1/b2);
17 printf('\n\%f', b2/b3);
18 printf('\n\%f',b3/b4);
19 printf('\n\%f',b4/b5);
20 printf('\n\%f', b5/b6);
21 printf('\n\%f', b6/b7);
22 printf('\n\%f',b7/b8);
23 printf('\n it appears as if the roots are converging
       at around %f', b7/b8)
```

Scilab code Exa 2.24 ramanujans method

```
1 //ramanujan's method
2 //example 2.23
3 //page 47
4 clc; clear; close;
5 deff('y=f(x)', '1-(x-x^2/factorial(2)^2+x^3/factorial(3)^2-x^4/factorial(4)^2)');
6 a1=1,a2=-1/(factorial(2)^2),a3=1/(factorial(3)^2),a4
```

```
=-1/(factorial(4)^2),a5=-1/(factorial(5)^2),a6
=1/(factorial(6)^2);

7 b1=1;
8 b2=a1;
9 b3=a1*b2+a2*b1;
10 b4=a1*b3+a2*b2+a3*b1;
11 b5=a1*b4+a2*b3+a3*b2;
12 printf('\n\n\f',b1/b2);
13 printf('\n\f',b2/b3);
14 printf('\n\f',b3/b4);
15 printf('\n\f',b4/b5);
16 printf('\n it appears as if the roots are converging at around \( \%f',b4/b5); \)
```

Scilab code Exa 2.25 secant method

```
1 // \text{example} 2.25
2 //secant method
3 //page 49
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3-2*x-5');
6 \text{ x1=2, x2=3// initial values}
7 n=1;
8 c = 0;
                                                                \tx2
9 printf('successive iterations
                                              \backslash tx1
                                 f(x3) \setminus n'
       t
                 x3 \setminus t
10 while n==1
11
        x3=(x1*f(x2)-x2*f(x1))/(f(x2)-f(x1));
12 printf('
                                               t\%f t\%f t\%f t\%f n
      ',x1,x2,x3,f(x3));
13 if f(x3)*f(x1)>0 then
14 \times 2 = \times 3;
15 else
16 \times 1 = \times 3;
17 \text{ end}
```

```
18 if abs(f(x3)) < 0.000001 then
19     break;
20 end
21 c=c+1;
22 end
23 printf('the root of the equation after %i iteration
     is: %f',c,x3)</pre>
```

Scilab code Exa 2.26 secant method

```
1 // example 2.26
2 //secant method
3 / page 50
4 clc; clear; close;
5 deff('y=f(x)', 'y=x*exp(x)-1');
6 \text{ x1=0, x2=1// initial values}
7 n = 1;
8 c = 0;
                                                             \t x2
9 printf('successive iterations
                                          \backslash \operatorname{tx} 1
     t
                x3 \setminus t
                               f(x3) \setminus n'
10 while n==1
11
        x3=(x1*f(x2)-x2*f(x1))/(f(x2)-f(x1));
                                             \t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f
12 printf('
       ',x1,x2,x3,f(x3));
13 if f(x3)*f(x1)>0 then
14 x2=x3;
15 else
16 \times 1 = \times 3;
17 \text{ end}
18 if abs(f(x3)) < 0.0001 then
19
        break;
20 end
21 c = c + 1;
23 printf ('the root of the equation after %i iteration
```

Scilab code Exa 2.27 mulllers method

```
1 // example 2.27
2 //mulller 's method
3 //page 52
4 clc; clear; close;
5 deff ('y=f(x)', 'y=x^3-x-1');
6 x0=0,x1=1,x2=2;// initial values
7 n=1; c=0;
8 printf(' successive iterations \t x0\t x1\t
        x2 \setminus t f(x0) \setminus t
                            f(x1) \setminus t \quad f(x2) \setminus n'
9 while n==1
10
       c=c+1;
11 y0=f(x0), y1=f(x1), y2=f(x2);
12 h2=x2-x1, h1=x1-x0;
13 d2=f(x2)-f(x1), d1=f(x1)-f(x0);
                                          14 printf('
      \t \%f\t \%f\t \%f\n',x0,x1,x2,f(x0),f(x1),f(x2))
15 A=(d2/h2-d1/h1)/(h1+h2);
16 B=d2/h2+A*h2;;
17 S = sqrt(B^2-4*A*f(x2));
18 x3=x2-(2*f(x2))/(B+S);
19 E = abs((x3-x2)/x2)*100;
20 if E<0.003 then
21
       break;
22 else
23
       if c==1 then
24
     x2=x3;
25 end
26 if c==2 then
27
       x1=x2;
28
       x2=x3;
```

```
29 end
30 if c==3 then
31
       x0=x1;
32
       x1=x2;
33
       x2=x3;
34
    end
    if c==3 then
35
        c=0;
36
37
    end
38 end
39 end
40 printf('the required root is: %0.4f',x3)
```

Scilab code Exa 2.28 graeffes method

```
1 // graeffe 's method
2 //example 2.28
3 //page 55
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3-6*x^2+11*x-6');
6 x = poly(0, 'x');
7 \text{ g=f}(-x);
8 printf('the equation is:\n')
9 \operatorname{disp}(g(x)*f(x));
10 A=[1 14 49 36];//coefficients of the above equation
11 printf('\%0.4g\n', sqrt(A(4)/A(3)));
12 printf('\%0.4g\n', sqrt(A(3)/A(2)));
13 printf('\%0.4g\n', sqrt(A(2)/A(1));
14 printf('the equation is:\n')
15 disp(g*(-1*g));
16 B=[1 98 1393 1296];
17 printf(\%0.4 g n, (B(4)/B(3))^(1/4));
18 printf('\%0.4g\n',(B(3)/B(2))^(1/4));
19 printf(\%0.4 g\n',(B(2)/B(1))(1/4));
20 printf ('It is apparent from the outputs that the
```

Scilab code Exa 2.29 quadratic factor by lins bairsttow method

```
1 // quadratic factor by lin's—bairsttow method
2 //example 2.29
3 //page 57
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3-x-1');
6 \quad a = [-1 \quad -1 \quad 0 \quad 1];
7 r1=1; s1=1;
8 b4=a(4);
9 deff('b3=f3(r)', 'b3=a(3)-r*a(4)');
10 deff('b2=f2(r,s)', 'b2=a(2)-r*a(3)+r^2*a(4)-s*a(4)');
11 deff('b1=f1(r,s)', 'b1=a(1)-s*a(3)+s*r*a(4)');
12 A = [1, 1; 2, -1];
13 C = [0;1];
14 X = A^- - 1 * C;
15 dr=X(1,1); ds=X(2,1);
16 \text{ r2=r1+dr}; \text{s2=s1+ds};
17 //second pproximation
18 r1=r2; s1=s2;
19 b11=f1(r2,s2);
20 b22=f2(r2,s2);
21 h = 0.001;
22 dr_b1 = (f1(r1+h,s1)-f1(r1,s1))/h;
23 ds_b1=(f1(r1,s1+h)-f1(r1,s1))/h;
24 dr_b2=(f2(r1+h,s1)-f2(r1,s1))/h;
25 \text{ ds_b2=(f2(r1,s1+h)-f2(r1,s1))/h;}
26 A = [dr_b1, ds_b1; dr_b2, ds_b2];
27 C=[-f1(r1,s1);-f2(r1,s2)];
28 X = A^{-1} * C;
29 r2=r1+X(1,1);
30 \text{ s2=s1+X(2,1)};
31 printf('roots correct to 3 decimal places are: %0
```

Scilab code Exa 2.31 method of iteration

```
1 //method of iteration
2 //example 2.31
3 //page 62
4 clc; clear; close;
5 deff('x=f(x,y)', '(3*y*x^2+7)/10');
6 deff('y=g(x,y)', '(y^2+4)/5');
7 h=0.0001;
8 \times 0 = 0.5; y0 = 0.5;
9 f1_dx = (f(x0+h, y0) - f(x0, y0))/h;
10 f1_dy = (f(x0, y0+h) - f(x0, y0))/h;
11 g1_dx = (g(x0+h,y0)-g(x0,y0))/h;
12 g1_dy = (g(x0+h,y0)-g(x0,y0))/h;
13 if f1_dx+f1_dy<1 & g1_dx+g1_dy<1
14
        printf('coditions for convergence is satisfied\n
15 end
16 printf( 'X \setminus t
                            Y \setminus t \setminus n \setminus n';
17 for i=1:10
        X = (3*y0*x0^2+7)/10;
18
19
        Y = (y0^2 + 4)/5;
20
        printf('\%f\t
                            %f \setminus t \setminus n', X, Y);
21
        x0=X; y0=Y;
22 end
23 printf('\n\n CONVERGENCE AT (1 1) IS OBVIOUS');
```

Scilab code Exa 2.32 newton raphson method

```
1 //newton raphson method
2 //example 2.32
```

```
3 //page 65
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=3*y*x^2-10*x+7');
6 deff('x=g(y)', 'x=y^2-5*y+4');
7 hh = 0.0001;
8 \times 0 = 0.5, y_0 = 0.5; //initial values
9 f0=f(x0,y0);
10 g0=g(y0);
11 df_dx = (f(x0+hh,y0)-f(x0,y0))/hh;
12 df_dy = (f(x0, y0+hh) - f(x0, y0))/hh;
13 dg_dx = (g(y0) - g(y0))/hh;
14 dg_dy = (g(y0+hh)-g(y0))/hh;
15 D1=determ([df_dx,df_dy;dg_dx,dg_dy]);
16 h=determ([-f0,df_dy;-g0,dg_dy])/D1;
17 k=determ([df_dx,-f0;dg_dx,-g0])/D1;
18 x1 = x0 + h;
19 y1 = y0 + k;
20 f0=f(x1,y1);
21 g0=g(y1);
22 df_dx = (f(x1+hh,y1)-f(x1,y1))/hh;
23 df_dy = (f(x1, y1+hh)-f(x1, y1))/hh;
24 dg_dx = (g(y1) - g(y1))/hh;
25 \, dg_dy = (g(y1+hh)-g(y1))/hh;
26 D2=determ([df_dx,df_dy;dg_dx,dg_dy]);
27 h=determ([-f0,df_dy;-g0,dg_dy])/D2;
28 k=determ([df_dx,-f0;dg_dx,-g0])/D2;
29 x2=x1+h;
30 \text{ y} 2 = \text{y} 1 + \text{k};
31 printf(' the roots of the equation are x2=\%f and y2=
      \%f, x2, y2);
```

Scilab code Exa 2.33 newton raphson method

```
1 //newton raphson method
2 //example 2.33
```

```
3 //page 66
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x^2+y^2-1');
6 deff('x=g(x,y)', 'x=y-x^2');
7 hh=0.0001;
8 x0=0.7071, y0=0.7071; //initial values
9 f0=f(x0,y0);
10 g0=g(x0,y0);
11 df_dx = (f(x0+hh,y0)-f(x0,y0))/hh;
12 df_dy = (f(x0, y0+hh)-f(x0, y0))/hh;
13 dg_dx = (g(x0+hh,y0)-g(x0,y0))/hh;
14 dg_dy = (g(x0, y0+hh)-g(x0, y0))/hh;
15 D1=determ([df_dx,df_dy;dg_dx,dg_dy]);
16 h=determ([-f0,df_dy;-g0,dg_dy])/D1;
17 k=determ([df_dx,-f0;dg_dx,-g0])/D1;
18 x1 = x0 + h;
19 y1 = y0 + k;
20 f0=f(x1,y1);
21 g0=g(x1,y1);
22 df_dx = (f(x1+hh,y1)-f(x1,y1))/hh;
23 df_dy = (f(x1, y1+hh)-f(x1, y1))/hh;
24 dg_dx = (g(x1+hh,y1)-g(x1,y1))/hh;
dg_dy = (g(x1, y1+hh)-g(x1, y1))/hh;
26 D2=determ([df_dx,df_dy;dg_dx,dg_dy]);
27 h=determ([-f0,df_dy;-g0,dg_dy])/D2;
28 k=determ([df_dx,-f0;dg_dx,-g0])/D2;
29 x2=x1+h;
30 \text{ y} 2 = \text{y} 1 + \text{k};
31 printf(' the roots of the equation are x2=\%f and y2=
      \%f, x2, y2);
```

Scilab code Exa 2.34 newton raphson method

```
1 //newton raphson method
2 //example 2.33
```

```
3 //page 66
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=sin(x)-y+0.9793');
6 deff('x=g(x,y)', 'x=cos(y)-x+0.6703');
7 hh=0.0001;
8 \times 0 = 0.5, y_0 = 1.5; //initial values
9 f0=f(x0,y0);
10 g0=g(x0,y0);
11 df_dx = (f(x0+hh,y0)-f(x0,y0))/hh;
12 df_dy = (f(x0, y0+hh)-f(x0, y0))/hh;
13 dg_dx = (g(x0+hh,y0)-g(x0,y0))/hh;
14 dg_dy = (g(x0, y0+hh)-g(x0, y0))/hh;
15 D1=determ([df_dx,df_dy;dg_dx,dg_dy]);
16 h=determ([-f0,df_dy;-g0,dg_dy])/D1;
17 k=determ([df_dx,-f0;dg_dx,-g0])/D1;
18 x1=x0+h;
19 y1 = y0 + k;
20 f0=f(x1,y1);
21 g0=g(x1,y1);
22 df_dx = (f(x1+hh,y1)-f(x1,y1))/hh;
23 df_dy = (f(x1, y1+hh)-f(x1, y1))/hh;
24 dg_dx = (g(x1+hh,y1)-g(x1,y1))/hh;
25 dg_dy = (g(x1, y1+hh)-g(x1, y1))/hh;
26 D2=determ([df_dx,df_dy;dg_dx,dg_dy]);
27 h=determ([-f0,df_dy;-g0,dg_dy])/D2;
28 k=determ([df_dx,-f0;dg_dx,-g0])/D2;
29 x2=x1+h;
30 \text{ y} 2 = \text{y} 1 + \text{k};
31 printf(' the roots of the equation are x2=\%0.4f and
      y2=\%0.4 f ', x2, y2);
```

Chapter 3

interpolation

Scilab code Exa 3.4 interpolation

```
1 // \text{example } 3.4
2 //interpolation
3 / page 86
4 clc; clear; close;
5 x = [1 \ 3 \ 5 \ 7];
6 y = [24 120 336 720];
7 h=2//interval between values of x
8 c = 1;
9 for i=1:3
       d1(c)=y(i+1)-y(i);
10
11
       c=c+1;
12 end
13 c=1;
14 for i=1:2
15 d2(c)=d1(i+1)-d1(i);
16
       c = c + 1
17 end
18 c=1;
19 for i=1:1
20
       d3(c)=d2(i+1)-d2(i);
21
       c=c+1;
```

```
22 \text{ end}
23
24 d=[d1(1) d2(1) d3(1)];
25 \text{ x0=8;}//\text{value at 8;}
26 \text{ pp=1};
27 y_x = y(1);
28 p=(x0-1)/2;
29 \text{ for } i=1:3
30
        pp=1;
31
        for j=1:i
32
        pp=pp*(p-(j-1))
34 \text{ y_x=y_x+(pp*d(i))/factorial(i);}
35 end
36 printf('value of function at %f is : %f',x0,y_x);
```

Scilab code Exa 3.6 interpolation

```
1 // \text{example } 3.6
2 //interpolation
3 //page 87
4 clc; clear; close;
5 x = [15 20 25 30 35 40];
6 \quad y = [0.2588190 \quad 0.3420201 \quad 0.4226183 \quad 0.5 \quad 0.5735764
       0.6427876];
7 h=5//interval between values of x
8 c = 1;
9 \text{ for } i=1:5
10
        d1(c)=y(i+1)-y(i);
        c=c+1;
11
12 end
13 c=1;
14 for i=1:4
        d2(c)=d1(i+1)-d1(i);
15
16
        c = c + 1
```

```
17 \text{ end}
18 c = 1;
19 for i=1:3
20
       d3(c)=d2(i+1)-d2(i);
21
        c = c + 1;
22 end
23 c = 1;
24 for i=1:2
25
        d4(c)=d3(i+1)-d3(i);
26
        c=c+1;
27 \text{ end}
28 c = 1;
29 for i=1:1
        d5(c)=d4(i+1)-d4(i);
30
31
        c=c+1;
32 end
33 c=1;
34 d=[d1(5) d2(4) d3(3) d4(2) d5(1)];
35 \times 0=38; //value at 38 \text{ degree}
36 pp=1;
37 y_x = y(6);
38 p=(x0-x(6))/h;
39 \text{ for } i=1:5
40
       pp=1;
41
       for j=1:i
42
       pp=pp*(p+(j-1))
43 end
44 y_x=y_x+((pp*d(i))/factorial(i));
46 printf('value of function at %i is : %f', x0, y_x);
```

Scilab code Exa 3.7 interpolation

```
1 //example 3.7
2 //interpolation
```

```
3 //page 89
4 clc;clear;close;
5 x=[0 1 2 4];
6 y=[1 3 9 81];
7 //equation is y(5)-4*y(4)+6*y(2)-4*y(2)+y(1)
8 y3=(y(4)+6*y(3)-4*y(2)+y(1))/4;
9 printf(' the value of missing term of table is :%d', y3);
```

Scilab code Exa 3.8 interpolation

```
1 // \text{example } 3.8
2 //interpolation
3 //page 89
4 clc; clear; close;
5 x = [0.10 \ 0.15 \ 0.20 \ 0.25 \ 0.30];
6 y = [0.1003 \ 0.1511 \ 0.2027 \ 0.2553 \ 0.3093];
7 h=0.05//interval between values of x
8 c = 1;
9 \text{ for } i=1:4
10
        d1(c) = y(i+1) - y(i);
11
        c=c+1;
12 end
13 c=1;
14 for i=1:3
        d2(c)=d1(i+1)-d1(i);
15
        c=c+1
16
17 end
18 c=1;
19 for i=1:2
        d3(c)=d2(i+1)-d2(i);
20
21
        c=c+1;
22 end
23 c = 1;
24 \text{ for } i=1:1
```

```
25
        d4(c)=d3(i+1)-d3(i);
26
        c = c + 1;
27 end
28
29 d=[d1(1) d2(1) d3(1) d4(1)];
30 x0=0.12; // value at 0.12;
31 pp=1;
32 y_x = y(1);
33 p=(x0-x(1))/h;
34 for i=1:4
35
        pp=1;
36
        for j=1:i
37
        pp=pp*(p-(j-1))
38
        end
39 y_x=y_x+(pp*d(i))/factorial(i);
41 printf('value of function at %f is :\%0.4 \,\mathrm{g} \,\mathrm{n}',x0,
      y_x);
42 d=[d1(4) d2(3) d3(2) d4(1)];
43 x0=0.26; //value at 0.26;
44 \text{ pp=1};
45 \quad y_x = y(5);
46 p=(x0-x(5))/h;
47 \text{ for } i=1:4
48
        pp=1;
49
        for j=1:i
50
        pp=pp*(p-(j-1))
51
        end
52 y_x=y_x+(pp*d(i))/factorial(i);
53 end
54 printf('value of function at %f is :\%0.4 \,\mathrm{g} \,\mathrm{n} \,\mathrm{n}',x0,
      y_x);
55 d = [d1(4) d2(3) d3(2) d4(1)];
56 x0=0.40; //value at 0.40;
57 pp=1;
58 y_x = y(5);
59 p = (x0-x(5))/h;
60 \text{ for } i=1:4
```

```
61
        pp=1;
62
        for j=1:i
        pp=pp*(p+(j-1))
63
64
        end
65 y_x=y_x+(pp*d(i))/factorial(i);
66 end
67 printf('value of function at %f is :\%0.4\,\mathrm{g}\,\mathrm{n}',x0,
      y_x);
68 d=[d1(4) d2(3) d3(2) d4(1)];
69 x0=0.50; //value at 0.50;
70 pp=1;
71 y_x = y(5);
72 p = (x0 - x(5))/h;
73 printf('value of function at %f is :\%0.5 \,\mathrm{g} \,\mathrm{n}',x0,
      y_x);
```

Scilab code Exa 3.9 Gauss forward formula

```
1 // \text{example } 3.9
2 //Gauss' forward formula
3 / page 3.9
4 clc; clear; close;
5 x = [1.0 1.05 1.10 1.15 1.20 1.25 1.30];
6 y = [2.7183 \ 2.8577 \ 3.0042 \ 3.1582 \ 3.3201 \ 3.4903
      3.66693];
7 h=0.05//interval between values of x
8 c=1;
9 \text{ for } i=1:6
        d1(c)=y(i+1)-y(i);
10
11
        c=c+1;
12 end
13 c=1;
14 for i=1:5
15
        d2(c)=d1(i+1)-d1(i);
16
        c = c + 1
```

```
17 end
18 c=1;
19 for i=1:4
20
        d3(c)=d2(i+1)-d2(i);
21
        c = c + 1;
22 \text{ end}
23 c = 1;
24 \text{ for } i=1:3
25
        d4(c)=d3(i+1)-d3(i);
26
        c=c+1;
27 \text{ end}
28 c = 1;
29 \text{ for } i=1:2
        d5(c)=d4(i+1)-d4(i);
30
31
        c=c+1;
32 \text{ end}
33 c=1;
34 for i=1:1
        d6(c)=d5(i+1)-d5(i);
35
36
        c=c+1;
37 \text{ end}
38 d = [d1(4) d2(3) d3(3) d4(2) d5(1) d6(1)];
39 x0=1.17; //value at 1.17;
40 pp=1;
41 \quad y_x = y(4);
42 p = (x0 - x(4))/h;
43 for i=1:6
44
        pp=1;
        for j=1:i
45
46
        pp=pp*(p-(j-1))
47
        end
48 y_x=y_x+(pp*d(i))/factorial(i);
49 end
50 printf('value of function at %f is :\%0.4\,\mathrm{g}\,\mathrm{n}',x0,
       y_x);
```

Scilab code Exa 3.10 practical interpolation

```
1 // practical interpolation
2 //example 3.10
3 / page 97
4 clc; clear; close;
5 x = [0.61 \ 0.62 \ 0.63 \ 0.64 \ 0.65 \ 0.66 \ 0.67];
6 y=[1.840431 1.858928 1.877610 1.896481 1.915541
      1.934792 1.954237];
7 h=0.01//interval between values of x
8 c=1;
9 for i=1:6
10
       d1(c)=y(i+1)-y(i);
       c=c+1;
11
12 end
13 c = 1;
14 for i=1:5
15
       d2(c)=d1(i+1)-d1(i);
16
       c = c + 1
17 \text{ end}
18 c=1;
19 for i=1:4
20
       d3(c)=d2(i+1)-d2(i);
21
       c=c+1;
22 \quad end
23 c = 1;
24 for i=1:3
       d4(c)=d3(i+1)-d3(i);
26
       c=c+1;
27 \text{ end}
28 d=[d1(1) d2(1) d3(1) d4(1)];
29 \times 0 = 0.644;
30 p = (x0 - x(4))/h;
31 y_x = y(4);
```

Scilab code Exa 3.11 practical interpolation

```
1 //practical interpolation
2 // example 3.11
3 //page 99
4 clc; clear; close;
5 x = [0.61 \ 0.62 \ 0.63 \ 0.64 \ 0.65 \ 0.66 \ 0.67];
6 y = [1.840431 \ 1.858928 \ 1.877610 \ 1.896481 \ 1.915541
      1.934792 1.954237];
7 h=0.01//interval between values of x
8 c = 1;
9 \text{ for } i=1:6
10
        d1(c) = y(i+1) - y(i);
        c=c+1;
11
12 end
13 c=1;
14 for i=1:5
       d2(c)=d1(i+1)-d1(i);
15
16
        c = c + 1
17 end
```

```
18 c = 1;
19 for i=1:4
        d3(c)=d2(i+1)-d2(i);
20
21
        c=c+1;
22 \quad end
23 c = 1;
24 \text{ for } i=1:3
        d4(c)=d3(i+1)-d3(i);
25
26
        c=c+1;
27 \text{ end}
28 d=[d1(1) d2(1) d3(1) d4(1)];
29 \times 0 = 0.638;
30 p = (x0 - x(4))/h;
31 \quad y_x = y(4);
32 y_x = y_x + p*(d1(3)+d1(4))/2+p^2*(d2(2))/2; //stirling
33 printf ('the value at %f by stirling formula is: %f
       \n \n', x0, y_x);
34 y_x = y(3);
35 p = (x0 - x(3))/h;
36 \quad y_x = y_x + p * d1(3) + p * (p-1) * (d2(2)/2);
37 printf(' the value at %f by bessels formula is : \%f\
       n \setminus n', x0, y_x);
```

Scilab code Exa 3.12 practical interpolation

```
8 c=1;
9 for i=1:6
        d1(c)=y(i+1)-y(i);
10
11
        c=c+1;
12 end
13 c=1;
14 for i=1:5
        d2(c)=d1(i+1)-d1(i);
15
        c = c + 1
16
17 \text{ end}
18 c = 1;
19 for i=1:4
20
        d3(c)=d2(i+1)-d2(i);
21
        c=c+1;
22 \quad end
23 c = 1;
24 \text{ for } i=1:3
25
        d4(c)=d3(i+1)-d3(i);
26
        c=c+1;
27 end
28 \times 0 = 1.7475;
29 y_x = y(3);
30 p = (x0 - x(3))/h;
31 y_x=y_x+p*d1(3)+p*(p-1)*((d2(2)+d2(3))/2)/2;
32 printf(' the value at %f by bessels formula is : %0
      .10 f n ', x0, y_x);
33 y_x = y(4);
34 q = 1 - p;
35 y_x=q*y(3)+q*(q^2-1)*d2(2)/6+p*y(4)+p*(p^2-1)*d2(2)
      /6;
36 printf(' the value at %f by everrets formula is : %0
      .10 f n ', x0, y_x);
```

Scilab code Exa 3.13 lagranges interpolation formula

```
1 //example 3.13
2 //lagrange's interpolation formula
\frac{3}{\sqrt{\text{page } 104}}
4 clc; clear; close;
5 x = [300 304 305 307];
6 y = [2.4771 \ 2.4829 \ 2.4843 \ 2.4871];
7 \times 0 = 301;
8 \log_301=0;
9 poly(0, 'x');
10 for i=1:4
11
        p=y(i);
12
        for j=1:4
13
             if i~=j then
                 p=p*((x0-x(j))/(x(i)-x(j)))
14
15
             end
        end
16
17
        log_301 = log_301 + p;
18
19 disp(log_301, 'log_301=');
```

Scilab code Exa 3.14 lagranges interpolation formula

```
1 //example 3.14
2 //lagrange's interpolation formula
3 / page 105
4 clc; clear; close;
5 y = [4 12 19];
6 x = [1 3 4];
7 y_x = 7;
8 \quad Y_X = 0;
9 poly(0,'y');
10 for i=1:3
       p=x(i);
11
12
       for j=1:3
13
            if i~=j then
```

Scilab code Exa 3.15 lagranges interpolation formula

```
1 // example 3.15
2 //lagrange's interpolation formula
3 //page 105
4 clc; clear; close;
5 x = [2 2.5 3.0];
6 y = [0.69315 \ 0.91629 \ 1.09861];
7 deff('y=10(x)', 'y=(x-2.5)*(x-3.0)/(-0.5)*(-1.0)')
8 x = poly(0, 'x');
9 disp(10(x), '10(x)=');
10 deff('y=l1(x)', 'y=((x-2.0)*(x-3.0))/((0.5)*(-0.5))')
11 x = poly(0, 'x');
12 disp(11(x), 'l1(x)=');
13 deff('y=12(x)', 'y=((x-2.0)*(x-2.5))/((1.0)*(0.5))')
14 x = poly(0, 'x');
15 disp(12(x), '12(x)=');
16 f_x=10(2.7)*y(1)+11(2.7)*y(2)+12(2.7)*y(3);
17 printf(' the calculated value is %f:',f_x);
18 printf('\n\n the error occured in the value is \%0.9 f
      ', abs(f_x-log(2.7)))
```

Scilab code Exa 3.16 lagranges interpolation formula

```
1 //example 3.162 //lagrange's interpolation formula
```

```
\frac{3}{\text{page }} 104
4 clc; clear; close;
5 x = [0 \%pi/4 \%pi/2];
6 y = [0 0.70711 1.0];
7 x0 = \% pi/6;
8 \sin_x 0=0;
9 poly(0, 'x');
10 for i=1:3
11
        p=y(i);
12
        for j=1:3
13
             if j~=i then
14
                 p=p*((x0-x(j))/(x(i)-x(j)))
15
             end
16
        end
17
        sin_x0=sin_x0+p;
18
19 disp(sin_x0, 'sin_x0=');
```

Scilab code Exa 3.17 lagranges interpolation

```
1 //lagrange's interpolation
2 //example 3.17
3 //page 106
4 clc; clear; close;
5 x = [0 3 4];
6 y = [-12 \ 12 \ 24];
7 //1 appears to be one the roots the polynomial
8 \text{ for } i=1:3
9
       r_x(i)=y(i)/(x(i)-1);
10 \text{ end}
11 deff('y=l0(x)', 'y=((x-3)*(x-4))/((-3)*(-4))')
12 x = poly(0, 'x');
13 disp(10(x), '10(x)=');
14 deff('y=l1(x)', 'y=((x-0)*(x-4))/((3)*(-1))')
15 x = poly(0, 'x');
```

```
16 disp(l1(x),'l1(x)=');
17 deff('y=l2(x)','y=((x-0)*(x-3))/((4)*(1))')
18 x=poly(0,'x');
19 disp(l2(x),'l2(x)=');
20 disp(l0(x)*r_x(1)+l1(x)*r_x(2)+l2(x)*r_x(3),'f_(x)=');
21 disp((x-1)*(l0(x)*r_x(1)+l1(x)*r_x(2)+l2(x)*r_x(3))','the required polynimial is:')
```

Scilab code Exa 3.18 error in lagranges interpolation formula

```
1 //error in lagrange's interpolation formula
2 //example 3.18
3 / page 107
4 clc; clear; close;
5 x = [2 2.5 3.0];
6 \quad y = [0.69315 \quad 0.91629 \quad 1.09861];
7 deff('y=10(x)', 'y=(x-2.5)*(x-3.0)/(-0.5)*(-1.0)')
8 x = poly(0, 'x');
9 disp(10(x), '10(x) = ');
10 deff('y=11(x)', 'y=((x-2.0)*(x-3.0))/((0.5)*(-0.5))')
11 x = poly(0, 'x');
12 disp(11(x), 'l1(x)=');
13 deff('y=12(x)', 'y=((x-2.0)*(x-2.5))/((1.0)*(0.5))')
14 x = poly(0, 'x');
15 disp(12(x), '12(x)=');
16 f_x=10(2.7)*y(1)+11(2.7)*y(2)+12(2.7)*y(3);
17 printf(' the calculated value is %f:',f_x);
18 err=abs(f_x-log(2.7));
19 deff('y=R_n(x)', 'y=(((x-2)*(x-2.5)*(x-3))/6)');
20 est_err=abs(R_n(2.7)*(2/8))
21 if est_err>err then
       printf('\n\n the error agrees with the actual
22
          error')
23 end
```

Scilab code Exa 3.19 error in lagranges interpolation formula

```
1 //error in lagrenge's interpolation
2 // \text{example } 3.19
3 //page 107
4 clc; clear; close;
5 x = [0 \%pi/4 \%pi/2];
6 y = [0 \ 0.70711 \ 1.0];
7 deff('y=10(x)', 'y=((x-0)*(x-\%pi/2))/((\%pi/4)*(-\%pi/2))
      /4))<sup>'</sup>)
8 x = poly(0, 'x');
9 disp(10(x), 'l0(x)=');
10 deff('y=l1(x)', 'y=((x-0)*(x-\%pi/4))/((\%pi/2)*(\%pi/4)
      ) ')
11 x=poly(0, 'x');
12 disp(11(x), 'l1(x)=');
13 f_x=10(\%pi/6)*y(2)+11(\%pi/6)*y(3);
14 err=abs(f_x-sin(\%pi/6));
15 deff('y=f(x)', 'y=((x-0)*(x-\%pi/4)*(x-\%pi/2))/6');
16 if abs(f(%pi/6))>err then
       printf('\n\n the error agrees with the actual
17
           error')
18 \text{ end}
```

Scilab code Exa 3.21 hermites interpolation formula

```
//hermite's interpolation formula
//exammple 3.21
//page 110
clc;clear;close;
x=[2.0 2.5 3.0]
```

```
6 y = [0.69315 \ 0.91629 \ 1.09861]
7 deff('y=f(x)', 'y=log(x)')
8 h=0.0001;
9 \text{ for } i=1:3
10
       y1(i) = (f(x(i)+h)-f(x(i)))/h;
11 end
12 deff('y=10(x)', 'y=(x-2.5)*(x-3.0)/(-0.5)*(-1.0)')
13 a = poly(0, 'x');
14 disp(10(a), '10(x)=');
15 deff('y=l1(x)', 'y=((x-2.0)*(x-3.0))/((0.5)*(-0.5))')
16 \ a = poly(0, 'x');
17 disp(11(a), 'l1(x)=');
18 deff('y=12(x)', 'y=((x-2.0)*(x-2.5))/((1.0)*(0.5))')
19 a=poly(0,'x');
20 disp(12(a), '12(x)=');
21 dl0 = (l0(x(1)+h)-l0(x(1)))/h;
22 dl1=(l1(x(2)+h)-l1(x(2)))/h;
23 d12=(12(x(3)+h)-12(x(3)))/h;
24 \times 0 = 2.7;
25 u0 = [1-2*(x0-x(1))*d10]*(10(x0))^2;
26 u1 = [1-2*(x0-x(2))*d11]*(11(x0))^2;
27 u2=[1-2*(x0-x(3))*d12]*(12(x0))^2;
28 v0 = (x0 - x(1)) *10(x0)^2;
29 v1 = (x0 - x(2)) * 11(x0)^2;
30 v2=(x0-x(3))*12(x0)^2;
31 H=u0*y(1)+u1*y(2)+u2*y(3)+v0*y1(1)+v1*y1(2)+v2*y1(3)
32 printf(' the approximate value of \ln (\%0.2 \, \mathrm{f}) is \%0.6 \, \mathrm{f}
      : ',x0,H);
```

Scilab code Exa 3.22 newtons general interpolation formula

```
1 //newton's general interpolation formula
2 //example 3.22
3 //page 114
```

```
4 clc; clear; close;
5 x=[300 304 305 307];
6 y=[2.4771 2.4829 2.4843 2.4871];
7 for i=1:3
8     d1(i)=(y(i+1)-y(i))/(x(i+1)-x(i));
9 end
10 for i=1:2
11     d2(i)=(d1(i+1)-d1(i))/(x(i+2)-x(i));
12 end
13 x0=301;
14 log301=y(1)+(x0-x(1))*d1(1)+(x0-x(2))*d2(1);
15 printf(' valure of log(%d) is :%0.4 f',x0,log301);
```

Scilab code Exa 3.23 newtons divided formula

```
1 //example 3.22
2 //newton's divided formula
3 //page 114
4 clc; clear; close
5 x = [-1 \ 0 \ 3 \ 6 \ 7];
6 y = [3 -6 39 822 1611];
7 \text{ for } i=1:4
        d1(i) = (y(i+1) - y(i))/(x(i+1) - x(i));
8
9 end
10 for i=1:3
        d2(i)=(d1(i+1)-d1(i))/(x(i+2)-x(i));
11
12 end
13 \text{ for } i=1:2
        d3(i)=(d2(i+1)-d2(i))/(x(i+3)-x(i));
14
15 end
16 for i=1:1
17
        d4(i) = (d3(i+1)-d3(i))/(x(i+4)-x(i));
18 end
19 X = poly(0, 'X')
20 f_x=y(1)+(X-x(1))*(d1(1))+(X-x(2))*(X-x(1))*d2(1)+(X-x(1))*d2(1)
```

```
-x(1))*(X-x(2))*(X-x(3))*d3(1)+(X-x(1))*(X-x(2))
*(X-x(3))*(X-x(4))*d4(1)
21 disp(f_x, 'the polynomial equation is =')
```

Scilab code Exa 3.24 interpolation by iteration

```
1 //interpolation by iteration
2 //example 3.24
3 //page 116
4 clc; clear; close;
5 x = [300 304 305 307];
6 y = [2.4771 \ 2.4829 \ 2.4843 \ 2.4871];
7 x0=301;
8 \text{ for } i=1:3
       d=determ([y(i),(x(i)-x0);y(i+1),(x(i+1)-x0)])
10
       d1(i)=d/(x(i+1)-x(i));
11 end
12 for i=1:2
       d=determ([d1(i),(x(i+1)-x0);d1(i+1),(x(i+2)-x0)
          ])
       d2(i)=d/(x(i+2)-x(i+1));
14
15 end
16 for i=1:1
17
       d=determ([d2(i),(x(i+2)-x0);d2(i+1),(x(i+3)-x0))
       d3(i)=d/(x(i+3)-x(i+2));
18
19 end
20 printf(' the value of log(\%d) is : \%f',x0,d3(1))
```

Scilab code Exa 3.25 inverse intrpolation

```
1 //inverse intrpolation
2 //example 3.25
```

```
3 / page 118
4 clc; clear; close;
5 x = [2 3 4 5];
6 y = [8 27 64 125];
7 \text{ for } i=1:3
        d1(i) = y(i+1) - y(i);
9 end
10 \text{ for } i=1:2
        d2(i)=d1(i+1)-d1(i);
11
12 end
13 for i=1:1
14
        d3(i)=d2(i+1)-d2(i);
15 end
16 yu=10; // square rooot of 10
17 y0=y(1);
18 d = [d1(1) d2(1) d3(1)];
19 u1 = (yu - y0)/d1(1);
20 u2=((yu-y0-u1*(u1-1)*d2(1)/2)/d1(1));
21 u3 = (yu - y0 - u2 * (u2 - 1) * d2 (1) / 2 - u2 * (u2 - 1) * (u2 - 2) * d3 (1)
       /6)/d1(1);
22 \quad u4 = (yu - y0 - u3 * (u3 - 1) * d2 (1) / 2 - u3 * (u3 - 1) * (u3 - 2) * d3 (1)
       /6)/d1(1);
23 u5 = (yu - y0 - u4 * (u4 - 1) * d2 (1) / 2 - u4 * (u4 - 1) * (u4 - 2) * d3 (1)
       /6)/d1(1);
24 printf(' \%f \n \%f \n \%f \n \%f \n \%f \n ',u1,u2,u3,u4
       ,u5);
25 printf (' the approximate square root of %d is: \%0.3\,\mathrm{f}
       ', yu, x(1)+u5)
```

Scilab code Exa 3.26 double interpolation

```
1 //double interpolation
2 //example 3.26
3 //page 119
4 clc; clear; close;
```

```
5 y = [0 1 2 3 4];
 6 \quad x = [0 \quad 1 \quad 4 \quad 9 \quad 16; 2 \quad 3 \quad 6 \quad 11 \quad 18; 6 \quad 7 \quad 10 \quad 15 \quad 22; 12 \quad 13 \quad 16 \quad 21
        28;18 19 22 27 34];
7 printf(' y \setminus t \setminus n');
 8 for i=1:5
 9
          printf('\n%d',y(i));
10 \text{ end}
11 printf('\nn
                                                                        —\n ');
12 printf(^{,}0\t
                            1 \setminus t
                                      2 \setminus t
                                                3 \setminus t
                                                         4 \setminus t \setminus n');
13 printf('
        n');
14 for i=1:5
         for j=1:5
16 printf('%d\t',x(i,j));
17 \text{ end}
18 printf('\n');
19 end
20 / for x = 2.5;
21 for i=1:5
          z(i)=(x(i,3)+x(i,4))/2;
22
23 end
24 / y = 1.5;
25 Z = (z(2) + z(3))/2;
26 printf(' the interpolated value when x=2.5 and y=1.5
         is : %f',Z);
```

Chapter 4

least squares and fourier transform

Scilab code Exa 4.1 least square curve fitting procedure

```
1 // \text{example } 4.1
   2 //least square curve fitting procedure
   3 / page 128
   4 clc; clear; close;
   5 x = [1 2 3 4 5];
   6 y=[0.6 2.4 3.5 4.8 5.7];
   7 \text{ for } i=1:5
                                    x_2(i)=x(i)^2;
                                    x_y(i) = x(i) * y(i);
   9
10 \, \text{end}
11 S_x=0, S_y=0, S_x=0, S_x=0, S_x=0, S_x=0, S_y=0, S_y=0,
12 for i=1:5
                                  S_x=S_x+x(i);
13
14
                                    S_y=S_y+y(i);
15
                                    S_x2=S_x2+x_2(i);
                                    S_xy=S_xy+x_y(i);
16
17 \text{ end}
18 a1=(5*S_xy-S_x*S_y)/(5*S_x2-S_x^2);
19 a0=S_y/5-a1*S_x/5;
```

```
20 printf('x\t y\t x^2\t x*y\t
                                                                    (y-
        avg(S_y)) \setminus t(y-a0-a1x)^2 \setminus n \setminus n';
21 for i=1:5
                                         %d t %0.2 f t
22 printf ('\%d\t \%0.2 f\t
       \%0.2 \text{ f} \setminus \text{t}
                                              \%.4 \text{ f} \text{ t} \text{ n}, x(i), y(i),
       x_2(i), x_y(i), (y(i)-S_y/5)^2, (y(i)-a0-a1*x(i))^2
23 S1=S1+(y(i)-S_y/5)^2;
24 S2=S2+(y(i)-a0-a1*x(i))^2;
25 end
26 printf('
       n \setminus n');
                           \%0.2 \text{ f} \setminus \text{t}
27 printf(^{\prime}\%d\t
                                          %d t %0.2 f t
       \%0.2 \text{ f} \setminus \text{t}
                                          \%0.4 \text{ f} \setminus t \setminus n \setminus n', S_x, S_y,
       S_x2, S_xy, S1, S2);
28 cc=sqrt((S1-S2)/S1);//correlation coefficient
29 printf('the correlation coefficient is:\%0.4f',cc);
```

Scilab code Exa 4.2 least square curve fitting procedure

```
1 // example 4.2
2 //least square curve fitting procedure
3 //page 129
4 clc; clear; close;
5 x = [0 2 5 7];
6 y = [-1 5 12 20];
7 \text{ for } i=1:4
8
       x_2(i)=x(i)^2;
       xy(i)=x(i)*y(i);
9
10 \text{ end}
11 printf('x\t y\t x^2\t xy\t \n\n');
12 S_x=0, S_y=0, S_x2=0, S_xy=0;
13 for i=1:4
14 printf('\%d\t
                    %d∖t
                             %d∖t
                                       %d\t n', x(i), y(i)
```

```
,x_2(i),xy(i));
15 S_x=S_x+x(i);
16 S_y = S_y + y(i);
17 S_x2=S_x2+x_2(i);
18 S_xy=S_xy+xy(i);
19 end
                                 %d∖t
                                            %d\t n', S_x, S_y,
20 printf('%d \setminus t
                        %d \ t
      S_x2, S_xy);
21 A = [4, S_x; S_x, S_x2];
22 B = [S_y; S_xy];
23 C = (A)^{-1} * B;
24 printf ('Best straight line fit Y=\%.4 f+x(\%.4 f)', C
      (1,1),C(2,1));
```

Scilab code Exa 4.3 least square curve fitting procedure

```
1 // \text{example } 4.3
2 //least square curve fitting procedure
3 / page 130
4 clc; clear; close;
5 x = [0 1 2 4 6];
6 y = [0 1 3 2 8];
7 z = [2 4 3 16 8];
8 \text{ for } i=1:5
9
        x2(i)=x(i)^2;
        y2(i)=y(i)^2;
10
        z2(i)=z(i)^2;
11
12
        xy(i) = x(i) * y(i);
13
        zx(i)=z(i)*x(i);
        yz(i)=y(i)*z(i);
14
15 end
16 S_x=0, S_y=0, S_z=0, S_x=0, S_y=0, S_z=0, S_z=0, S_z=0, S_z=0, S_z=0, S_z=0
      =0, S_yz=0;
17 for i=1:5
18
        S_x=S_x+x(i);
```

```
19
        S_y=S_y+y(i);
20
        S_z=S_z+z(i);
        S_x2=S_x2+x2(i);
21
22
        S_y2=S_y2+y2(i);
23
        S_z2=S_z2+z2(i);
24
        S_xy=S_xy+xy(i);
        S_zx=S_zx+zx(i);
25
26
        S_yz=S_yz+yz(i);
27 \text{ end}
                                              x^2 \ t
                                  z \setminus t
                     y\t
                                                           xy \setminus t
28 printf('x \setminus t
                   y^2 \dot{t} yz\n\n',);
           zx \setminus t
  for i=1:5
29
                       %d∖ t
30
        printf('%d\t
                                 %d∖t
                                              %d t
                                                        %d t
                               %d\n',x(i),y(i),z(i),x2(i),
                     %d t
           %d t
           xy(i),zx(i),y2(i),yz(i));
31
32 printf('
      n \setminus n');
                                 %d\t
                                            %d∖t
33 printf('\%d\t
                      %d∖t
                                                      %d\t
                                                               %d
      \setminus t
           %d∖t
                        %d\n\n', S_x, S_y, S_z, S_x2, S_xy, S_zx
       ,S_y2,S_yz);
34 \quad A = [5, 13, 14; 13, 57, 63; 14, 63, 78];
35 B = [33; 122; 109];
36 C = A^-1*B;
37 printf('solution of above equation is:a=\%d b=\%d c=\%d
       ',C(1,1),C(2,1),C(3,1));
```

Scilab code Exa 4.4 linearization of non linear law

```
1 //example 4.4
2 //linearization of non-linear law
3 //page 131
4 clc; clear; close;
5 x=[1 3 5 7 9];
```

```
6 y = [2.473 \ 6.722 \ 18.274 \ 49.673 \ 135.026];
   for i=1:5
          Y(i) = log(y(i));
8
          x2(i)=x(i)^2;
9
10
          xy(i)=x(i)*Y(i);
11 end
12 S_x=0, S_y=0, S_x2=0, S_xy=0;
                                             X^2 \setminus t
13 printf('X\t
                                                            XY \setminus n \setminus n');
                         Y=\ln y \setminus t
14 for i=1:5
                                 \%0.3 \text{ f} \setminus \text{t}
                                                 %d \ t
                                                            \%0.3 \, f \setminus n', x(i),
          printf('%d\t
15
              Y(i), x2(i), xy(i));
          S_x=S_x+x(i);
16
17
          S_y=S_y+Y(i);
          S_x2=S_x2+x2(i);
18
          S_xy=S_xy+xy(i);
19
20 end
21 printf('
        n \setminus n')
                                          %d\t
22 printf('%d \setminus t
                          \%0.3 \text{ f} \setminus \text{t}
                                                      \%0.3 \text{ f} \text{ t} \text{ n} \text{ n}, S_x,
        S_y, S_x2, S_xy);
23 A1=((S_x/5)*S_xy-S_x*S_y)/((S_x/5)*S_x2-S_x^2);
24 A0=(S_y/5)-A1*(S_x/5);
25 \quad a = exp(A0);
26 printf ('y=\%0.3 \text{ fexp} (\%0.2 \text{ fx})',a,A1);
```

Scilab code Exa 4.5 linearization of non linear law

```
1 //example 4.5
2 //linearization of non-linear law
3 //page 131
4 clc; clear; close;
5 x=[3 5 8 12];
6 y=[7.148 10.231 13.509 16.434];
7 for i=1:4
```

```
X(i) = 1/x(i);
9
          Y(i) = 1/y(i);
10
          X2(i)=X(i)^2;
11
          XY(i)=X(i)*Y(i);
12 end
13 S_X=0, S_Y=0, S_X2=0, S_XY=0;
14 printf('X \setminus t Y \setminus t
                                      X^2 \setminus t
                                                    XY \setminus t \setminus n \setminus n';
15 \text{ for } i=1:4
16 printf('%0.3 f\t
                                 \%0.3 \text{ f} \setminus \text{t}
                                                 \%0.3 \text{ f} \text{ t} \%0.3 \text{ f} \text{ t} ', X (
        i),Y(i),X2(i),XY(i));
17 S_X = S_X + X(i);
18 S_Y = S_Y + Y(i);
19 S_X2=S_X2+X2(i);
20 S_XY = S_XY + XY(i);
21 end
22 printf('
        n \setminus n');
23 printf('\%0.3 f\t
                                 \%0.3 \text{ f} \setminus \text{t}
                                                 \%0.3 \text{ f} \text{ t} \%0.3 \text{ f} \text{ n} \text{ n},
        S_X, S_Y, S_{X2}, S_{XY});
24 A1=(4*S_XY-S_X*S_Y)/(4*S_X2-S_X^2);
25 \text{ Avg}_X=S_X/4;
26 Avg_Y=S_Y/4;
27 AO = Avg_Y - A1 * Avg_X;
28 printf ('y=x/(\%f+\%f*x)', A1, A0);
```

Scilab code Exa 4.6 curve fitting by polynomial

```
1 //example 4.6
2 //curve fitting by polynomial
3 //page 134
4 clc;clear;close;
5 x=[0 1 2];
6 y=[1 6 17];
7 for i=1:3
```

```
x2(i)=x(i)^2;
8
9
        x3(i)=x(i)^3;
10
        x4(i)=x(i)^4;
        xy(i)=x(i)*y(i);
11
12
        x2y(i)=x2(i)*y(i);
13
   end
                             x^2 \setminus t x^3 \setminus t x^4 \setminus t
14 printf('x \setminus t
                     \mathbf{v} \setminus \mathbf{t}
                                                         x*v \setminus t
       x^2*y t n n';
15 S_x=0, S_y=0, S_x2=0, S_x3=0, S_x4=0, S_xy=0, S_x2y=0;
16 for i=1:3
        \textbf{printf} (\ '\%d \backslash \, t
                                     %d t
                            %d t
                                             %d t
                                                       %d t
                                                                %d t
17
              %d\n', x(i), y(i), x2(i), x3(i), x4(i), xy(i), x2y
            (i));
18
        S_x=S_x+x(i);
19
         S_y=S_y+y(i);
        S_x2=S_x2+x2(i);
20
        S_x3=S_x3+x3(i);
21
22
        S_x4=S_x4+x4(i);
         S_xy=S_xy+xy(i);
23
24
        S_x2y = S_x2y + x2y(i);
25 end
26 printf('
       n \setminus n');
27 printf ('%d\t
                      %d t
                               %d t
                                        %d t
                                                 %d t
                                                                   %d
                                                          %d t
       n', S_x, S_y, S_x2, S_x3, S_x4, S_xy, S_x2y);
28 A = [3, S_x, S_x2; S_x, S_x2, S_x3; S_x2, S_x3, S_x4];
29 B = [S_y; S_xy; S_x2y];
30 C = A^{-1} * B;
31 printf('a=\%d b=\%d c=\%d \n\n',C(1,1),C(2,1),C(3,1))
32 printf('exact polynomial :\%d + \%d*x + \%d*x^2',C(1,1),
       C(2,1),C(3,1)
```

Scilab code Exa 4.7 curve fitting by polynomial

```
1 // \text{example } 4.7
2 //curve fitting by polynomial
3 / page 134
4 clc; clear; close;
5 x = [1 3 4 6];
6 y = [0.63 2.05 4.08 10.78];
7 \text{ for } i=1:4
        x2(i)=x(i)^2;
8
        x3(i)=x(i)^3;
9
        x4(i)=x(i)^4;
10
         xy(i)=x(i)*y(i);
11
12
         x2y(i)=x2(i)*y(i);
13 end
                           x^2 t x^3 t x^4 t x*y t
14 printf('x \setminus t
                     y \setminus t
       x^2*y t n n';
15 S_x=0, S_y=0, S_x2=0, S_x3=0, S_x4=0, S_xy=0, S_x2y=0;
16 for i=1:4
17
         printf('%d\t
                            \%0.3 \text{ f} \setminus \text{t}
                                         %d t
                                                  %d t
                                                           %d t
                     %d\n', x(i), y(i), x2(i), x3(i), x4(i), xy(i)
            .3 f\t
            i),x2y(i));
         S_x=S_x+x(i);
18
19
         S_y=S_y+y(i);
20
         S_x2=S_x2+x2(i);
21
         S_x3=S_x3+x3(i);
22
         S_x4=S_x4+x4(i);
23
         S_xy=S_xy+xy(i);
24
         S_x2y=S_x2y+x2y(i);
25 end
26 printf('
       n n';
                       \%0.3 \text{ f} \setminus \text{t}
                                    %d∖t
                                             %d t
                                                      %d t
27 printf ('\%d\t
                                                               \%0.3 \text{ f}
            \%0.3 \text{ f} \ \text{n}', S_x, S_y, S_x2, S_x3, S_x4, S_xy, S_x2y);
28 A = [4, S_x, S_x2; S_x, S_x2, S_x3; S_x2, S_x3, S_x4];
29 B = [S_y; S_xy; S_x2y];
30 C = A^{-1} * B;
31 printf ('a=\%0.2 \, \text{f} b=\%0.2 \, \text{f} c=\%0.2 \, \text{f} \n\n',C(1,1),C
       (2,1),C(3,1));
```

```
32 printf ('exact polynomial :\%0.2 \, \text{f} + \%0.2 \, \text{f} *x + \%0.2 \, \text{f} *x^2', C(1,1), C(2,1), C(3,1))
```

Scilab code Exa 4.8 curve fitting by sum of exponentials

```
1 //curve fitting by sum of exponentials
2 // example 4.8
3 / page 137
4 clc; clear; close;
5 x = [1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1. 1.9];
6 \quad y = [1.54 \quad 1.67 \quad 1.81 \quad 1.97 \quad 2.15 \quad 2.35 \quad 2.58 \quad 2.83 \quad 3.11];
7 s1=y(1)+y(5)-2*y(3);
8 h=x(2)-x(1);
9 I1=0;
10 for i=1:3
         if i==1 | i==3 then
11
12
             I1=I1+y(i)
13
      elseif (modulo(i,2)) == 0 then
14
15
                  I1 = I1 + 4 * y(i)
16
17
       elseif (modulo(i,2))~=0 then
                I1 = I1 + 2 * y(i)
18
19
                  end
20
         end
         I1 = (I1 * h) / 3
21
22
23 \quad I2 = 0;
24 \text{ for } i=3:5
         if i==3 | i==5 then
25
             I2 = I2 + y(i)
26
27
28
      elseif (modulo(i,2))==0 then
29
                  I2 = I2 + 4 * y(i)
30
```

```
elseif (modulo(i,2))~=0 then
31
                I2=I2+2*y(i)
32
33
                 end
34
        end
35
        I2=(I2*h)/3;
36
        for i=1:5
37
             y1(i)=(1.0-x(i))*y(i);
38
        end
39
        for i=5:9
40
             y2(i)=(1.4-x(i))*y(i);
41
        end
42 \quad I3=0;
43 \text{ for } i=1:3
        if i==1 | i==3 then
44
            I3 = I3 + y1(i)
45
     elseif (modulo(i,2))==0 then
46
                 I3 = I3 + 4 * y1(i)
47
48
            elseif (modulo(i,2))~=0 then
49
                I3=I3+2*y1(i)
50
                 end
51
        end
52
        I3 = (I3*h)/3
53 \quad I4=0;
54 \text{ for } i=3:5
        if i==3|i==5 then
55
56
            I4 = I4 + y2(i)
57
      elseif (modulo(i,2)) == 0 then
58
59
                 I4 = I4 + 4 * y2(i)
60
61
       elseif (modulo(i,2))~=0 then
62
                I4 = I4 + 2 * y2(i)
63
                 end
64
        end
        I4 = (I4*h)/3;
65
        s2=y(5)+y(9)-2*y(7);
66
67 \quad I5=0;
68 \text{ for } i=5:7
```

```
69
         if i==5 | i==7 then
 70
             I5=I5+y(i)
      elseif (modulo(i,2))==0 then
 71
 72
                  I5 = I5 + 4 * y(i)
 73
 74
        elseif (modulo(i,2))~=0 then
 75
                 I5 = I5 + 2 * y(i)
 76
                  end
 77
         end
 78
         I5=(I5*h)/3;
 79 \quad I6=0;
 80 \text{ for } i=7:9
81
         if i==7 | i==9 then
             I6=I6+y(i)
 82
 83
 84
       elseif (modulo(i,2)) == 0 then
 85
                  I6 = I6 + 4 * y(i)
 86
 87
        elseif (modulo(i,2))~=0 then
                 I6 = I6 + 2 * y(i)
 88
 89
                  end
90
         end
91 16 = (16*h)/3;
92 	 17 = 0;
93 for i=5:7
         if i==5|i==7 then
94
95
             I7 = I7 + y2(i)
96
97
       elseif (modulo(i,2))==0 then
98
                  I7 = I7 + 4 * y2(i)
99
100
        elseif (modulo(i,2))~=0 then
101
                 I7 = I7 + 2 * y2(i)
102
                  end
103
         end
104
         I7 = (I7*h)/3;
105 \quad I8=0;
106 \text{ for } i=7:9
```

```
if i==7 | i==9 then
107
            18=18+y2(i)
108
109
      elseif (modulo(i,2))==0 then
110
111
                 18=18+4*y2(i)
112
113
       elseif (modulo(i,2))~=0 then
                18=18+2*y2(i)
114
115
                 end
116
         end
117
         I8 = (I8 * h) / 3;
118 A=[1.81 2.180;2.88 3.104];
119 C = [2.10; 3.00];
120 Z = A^- - 1 * C
121 X = poly(0, 'X');
122 y=X^2-Z(1,1)*X-Z(2,1);
123 R = roots(y)
124 printf(' the unknown value of equation is %1.0 f
                                                              \%1
       .0 f', R(1,1), R(2,1));
```

Scilab code Exa 4.9 linear weighted least approx

```
1 //linear weighted least approx
2 //example 4.9
3 / page 139
4 clc; clear; close;
5 x = [0 2 5 7];
6 y = [-1 5 12 20];
7 w=10; // given weight 10;
8 \quad W = [1 \quad 1 \quad 10 \quad 1];
9 \text{ for } i=1:4
        Wx(i) = W(i) * x(i);
10
        Wx2(i)=W(i)*x(i)^2;
11
12
        Wx3(i)=W(i)*x(i)^3;
13
        Wy(i) = W(i) * y(i);
```

```
14
        Wxy(i) = W(i) * x(i) * y(i);
15
16 S_x=0, S_y=0, S_W=0, S_W=0, S_W=0, S_W=0, S_W=0, S_W=0;
17 \text{ for } i=1:4
18
        S_x=S_x+x(i)
19
        S_y=S_y+y(i)
20
        S_W=S_W+W(i)
        S_Wx = S_Wx + Wx(i)
21
22
        S_Wx2=S_Wx2+Wx2(i)
23
        S_Wy = S_Wy + Wy(i)
24
        S_Wxy = S_Wxy + Wxy(i)
25 end
26 A = [S_W, S_Wx; S_Wx, S_Wx2];
27 C = [S_Wy; S_Wxy];
                          W∖ t
                                  Wx t Wx^2 t Wy t
28 printf('x \setminus t
                     y \setminus t
                                                                Wxy
       \t \n \n \;
29 \text{ for } i=1:4
30
        printf('%d\t
                           %d t
                                    %d t
                                              %d t
                                                      %d t
                                                               %d t
                %d\t n', x(i), y(i), W(i), Wx(i), Wx2(i), Wy(i)
            , Wxy(i))
31 end
32 printf('
       n \setminus n');
33 printf('\%d\t
                     %d∖t
                              %d∖t
                                       %d t
                                                %d t
       \%d \ t \ n', S_x, S_y, S_W, S_Wx, S_Wx2, S_Wy, S_Wxy);
34 X = A^- - 1 * C;
35 printf('\n\nthe equation is y=\%f+\%fx', X(1,1), X(2,1))
```

Scilab code Exa 4.10 linear weighted least approx

```
1 //linear weighted least approx
2 //example 4.10
3 //page 139
4 clc;clear;close;
```

```
5 x = [0 2 5 7];
6 y = [-1 5 12 20];
7 w=100; //given weight 100;
8 \quad W = [1 \quad 1 \quad 100 \quad 1];
9 \text{ for } i=1:4
10
        Wx(i)=W(i)*x(i);
        Wx2(i)=W(i)*x(i)^2;
11
12
        Wx3(i)=W(i)*x(i)^3;
        Wy(i)=W(i)*y(i);
13
        Wxy(i) = W(i) * x(i) * y(i);
14
15
       end
16 S_x=0, S_y=0, S_w=0, S_w=0, S_w=0, S_w=0, S_w=0, S_w=0;
17 for i=1:4
        S_x=S_x+x(i)
18
19
        S_y=S_y+y(i)
20
        S_W=S_W+W(i)
        S_Wx = S_Wx + Wx(i)
21
22
        S_Wx2=S_Wx2+Wx2(i)
        S_Wy = S_Wy + Wy(i)
23
        S_Wxy = S_Wxy + Wxy(i)
24
25 end
26 A = [S_W, S_Wx; S_Wx, S_Wx2];
27 C = [S_Wy; S_Wxy];
                                Wx t Wx^2 t Wy t
                   \mathbf{y} \setminus \mathbf{t}
                         W∖ t
28 printf('x \setminus t
                                                             Wxy
      \t \n \n \;
29 \text{ for } i=1:4
30
        printf('%d\t
                          %d t
                                  %d t
                                           %d t
                                                    %d t
                                                            %d \ t
                , Wxy(i))
31 end
32 printf('
      n \setminus n');
33 printf('\%d\t
                   %d∖t
                             %d t
                                     %d t
                                              %d t
                                                      %d t
      \%d\ t\ n', S_x, S_y, S_W, S_Wx, S_Wx2, S_Wy, S_Wxy);
34 X = A^{-1} * C;
35 printf('\n\nthe equation is y=\%f+\%fx',X(1,1),X(2,1))
36 printf('\n\nthe value of y(5) is \%f', X(1,1)+X(2,1)
```

Scilab code Exa 4.11 least square for quadratic equations

```
1 //least square for quadratic equations
2 //example 4.11
\frac{3}{\text{page }} 141
4 clc; clear; close;
5 I1=integrate('1', 'x',0,%pi/2);
6 I2=integrate('x','x',0,%pi/2);
7 I3=integrate('x^2', 'x',0,%pi/2);
8 I4=integrate('x^3','x',0,%pi/2);
9 I5=integrate('x^4', 'x',0,%pi/2);
10 I6=integrate('\sin(x)', 'x',0,%pi/2);
11 I7=integrate('x*sin(x)', 'x',0,%pi/2);
12 I8=integrate('x^2*\sin(x)', 'x',0,%pi/2);
13 printf('the equations are:\n\n');
14 A=[I1,I2,I3;I2,I3,I4;I3,I4,I5];
15 C=[I6; I7; I8];
16 X = A^- - 1 * C;
17 printf(' the quadratic equation is of the form %f+
      \%fx+\%fx^2', X(1,1), X(2,1), X(3,1));
18 //value of sin pi/4
19 y=X(1,1)+X(2,1)*\%pi/4+X(3,1)*(\%pi/4)^2
20 printf ( ' \ n \sin(pi/4) = \%0.9 f',y)
21 printf('\n\nerror in the preecing solution \%0.9 \,\mathrm{f}',
      abs(y-sin(%pi/4)))
```

Scilab code Exa 4.20 cooley Tukey method

```
1 //cooley-Tukey method
2 //example 4.20
3 //page 168
```

```
4 clc; clear; close;
5 f = [1,2,3,4,4,3,2,1];
6 F1(1,1)=f(1)+f(5);
7 F1(1,2)=f(1)-f(5);
8 F1(2,1)=f(3)+f(7);
9 F1(2,2)=f(3)-f(7);
10 F1(3,1)=f(2)+f(6);
11 F1(3,2)=f(2)-f(6);
12 F1(4,1)=f(4)+f(8);
13 F1(4,2)=f(4)-f(8);
14 printf ('the solutions after first key equation n \ ')
15 disp(F1);
16 F2(1,1)=F1(1,1)+F1(2,1);
17 F2(1,2) = F1(1,1) + F1(2,1);
18 F2(2,1)=F1(1,2)+\%i*F1(3,2);
19 F2(2,2) = F1(3,2) - \%i * F1(4,2);
20 F2(3,1) = F1(1,1) - F1(2,1);
21 F2(3,2)=F1(1,1)-F1(2,1);
22 F2(4,1) = F1(1,2) + \%i * F1(2,2);
23 F2(4,2) = F1(3,2) - \%i * F1(1,2);
24 printf ('the solutions after second key equation n \ '
25 disp(F2);
26
27 W = [1, (1-\%i)/sqrt(2), -\%i, -(1+\%i)/sqrt(2), -1, -(1-\%i)/
      sqrt(2),%i,(1+%i)/sqrt(2)];
28 F3(1) = F2(1,1) + F2(1,2);
29 F3(2) = F2(2,1) + W(2) * F2(2,2);
30 F3(3) = F2(3,1) + F2(3,2);
31 F3(4) = F2(4,1) + W(4) * F2(4,2);
32 F3(5) = F2(3,1) + F2(3,2);
33 F3(6) = F2(2,1) + W(6) * F2(2,2);
34 F3(7) = F2(3,1) + F2(3,2);
35 F3(8) = F2(4,1) + W(8) * F2(4,2);
36 printf ('the solutions after third key equation n \ ')
37 disp(F3);
```

Chapter 5

spline functions

Scilab code Exa 5.1 linear splines

```
1 //linear splines
2 //example 5.1
3 //page 182
4 clc; clear; close;
5 X=[1 2 3];
6 y=[-8 -1 18];
7 m1=(y(2)-y(1))/(X(2)-X(1));
8 deff('y1=s1(x)','y1=y(1)+(x-X(1))*m1');
9 m2=(y(3)-y(2))/(X(3)-X(2));
10 deff('y2=s2(x)','y2=y(2)+(x-X(2))*m2');
11 a=poly(0,'x');
12 disp(s1(a));
13 disp(s2(a));
14 printf(' the value of function at 2.5 is %0.2f: ',s2 (2.5));
```

Scilab code Exa 5.2 quadratic splines

```
1 // quadratic splines
2 // \text{example } 5.2
3 //page 18
4 clc; clear; close;
5 X = [1 2 3];
6 y = [-8 -1 18];
7 h=X(2)-X(1);
8 m1 = (y(2) - y(1)) / (X(2) - X(1));
9 m2=(2*(y(2)-y(1)))/h-m1;
10 m3 = (2*(y(3)-y(2)))/h-m2;
11 deff('y2=s2(x)', 'y2=(-(X(3)-x)^2*m1)/2+((x-X(2))^2*m1)
      m3)/2+y(2)+m2/2;
12 = poly(0, 'x');
13 disp(s2(a));
14 printf('the value of function is 2.5: \%0.2f', \$2(2.5)
15 x = 2.0;
16 h=0.01;
17 deff('y21=s21(x,h)', 'y21=(s2(x+h)-s2(x))/h');
18 d1=s21(x,h);
19 printf('\n\nthe first derivative at 2.0 : \%0.2 \,\mathrm{f}',d1);
```

Scilab code Exa 5.3 cubic splines

```
1 //cubic splines
2 //example 5.3
3 //page 188
4 clc; clear; close;
5 X=[1 2 3];
6 y=[-8 -1 18];
7 M1=0, M2=8, M3=0;
8 h=1;
9 deff('y=s1(x)', 'y=3*(x-1)^3-8*(2-x)-4*(x-1)')
10 deff('y=s2(x)', 'y=3*(3-x)^3+22*x-48');
11 h=0.0001; n=2.0;
```

```
12 D=(s2(n+h)-s2(n))/h;
13 a=poly(0,'x');
14 disp(s1(a),'s1(x)=');
15 disp(s2(a),'s2(x)=');
16 disp(s2(2.5),'y(2.5)=');
17 disp(D,'y1(2.0)=');
```

Scilab code Exa 5.4 cubic splines

```
1 //cubic spline
2 // \text{example } 5.4
3 / page 189
4 clc; clear; close;
5 x = [0 \%pi/2 \%pi]
6 y = [0 1 0]
7 h=x(2)-x(1)
8 \quad MO = 0; M2 = 0;
9 M1 = ((6*(y(1)-2*y(2)+y(3))/h^2)-M0-M2)/4;
10 X = \% pi/6;
11 s1 = (((x(2)-X)^3)*(M0/6)+((X-x(1))^3)*M1/6+(y(1)-(h))
       ^2)*M0/6)*(x(2)-X)+(y(2)-(h^2)*M1/6)*(X-x(1)))/h;
12 x = [0 \%pi/4 \%pi/2 3*\%pi/4 \%pi];
13 y = [0 \ 1.414 \ 1 \ 1.414];
14 \quad MO = 0, M4 = 0;
15 A=[4 1 0;1 4 1;0 1 4]; //calculating value of M1 M2
      M3 by matrix method
16 \quad C = [-4.029; -5.699; -4.029];
17 B = A^- - 1 * C
18 printf ('M0=%f\t
                         M1=%f\ t
                                     M2=\%f \setminus t
                                                  M3=\%f \setminus t
                                                              M4=
      %f \ t \ n \ ', MO, B(1,1), B(2,1), B(3,1), M4);
19 h = \% pi/4;
20 X = \% pi/6;
21 s1 = [-0.12408 * X^3 + 0.7836 * X]/h;
22 printf(' the value of \sin(pi/6) is: %f',s1)
```

Scilab code Exa 5.5 cubic splines

```
1 //cubic spline
2 //example 5.5
3 //page 191
4 clc; clear; close;
5 x=[1 2 3];
6 y=[6 18 42];
7 m0=40;
8 m1=(3*(y(3)-y(1))-m0)/4;
9 X=poly(0, 'X');
10 s1=m0*((x(2)-X)^2)*(X-x(1))-m1*((X-x(1))^2)*(x(2)-X)+y(1)*((x(2)-X)^2)*[2*(X-x(1))+1]+y(2)*((X-x(1))^2)*[2*(x(2)-X)+1];
11 disp(s1, 's1=');
```

Scilab code Exa 5.7 surface fitting by cubic spline

```
//surface fitting by cubic spline
//example 5.7
//page 195
clc;clear;close;
z=[1 2 9;2 3 10;9 10 17];
deff('y=L0(x)', 'y=x^3/4-5*x/4+1');
deff('y=L1(x)', 'y=-x^3/2+3*x/2');
deff('y=L2(x)', 'y=x^3/4-x/4');
x=0.5;y=0.5;
S=0;
S=S+L0(x)*(L0(x)*z(1,1)+L1(x)*z(1,2)+L2(x)*z(1,3));
S=S+L1(x)*(L0(x)*z(2,1)+L1(x)*z(2,2)+L2(x)*z(2,3));
S=S+L2(x)*(L0(x)*z(3,1)+L1(x)*z(3,2)+L2(x)*z(3,3));
printf('approximated value of z(0.5 0.5)=%f\n\n',S);
```

```
15 printf(' error in the approximated value : \%f',(abs (1.25-S)/1.25)*100)
```

Scilab code Exa 5.8 cubic B splines

```
1 //cubic B-splines
\frac{2}{\text{example }} 5.8
3 //page 200
4 clc; clear; close;
5 k = [0 1 2 3 4];
6 \text{ pi} = [0 \ 0 \ 4 \ -6 \ 24];
7 x = 1;
8 S = 0;
9 \text{ for } i=3:5
        S=S+((k(i)-x)^3)/(pi(i));
10
11 end
12 printf(' the cubic splines for x=1 is \%f \n\n', S);
13 S = 0;
14 x=2;
15 \text{ for } i=4:5
        S=S+((k(i)-x)^3)/(pi(i));
16
17 \text{ end}
18 printf (' the cubic splines for x=2 is \%f(n);
```

Scilab code Exa 5.9 cubic B spline

```
1 //cubic B-spline
2 //example 5.8
3 //page 201
4 clc; clear; close;
5 k=[0 1 2 3 4];
6 x=1; //for x=1
7 s11=0; s13=0; s14=0;
```

```
8 \text{ s} 24 = 0;
9 s12=1/(k(3)-k(2));
10 s22=((x-k(1))*s11+(k(3)-x)*s12)/(k(3)-k(1));
11 s23 = ((x-k(2))*s11+(k(4)-x)*s13)/(k(4)-k(2));
12 s33 = ((x-k(1))*s22+(k(4)-x)*s23)/(k(4)-k(1));
13 s34 = ((x-k(2))*s23+(k(5)-x)*s24)/(k(5)-k(2));
14 s44 = ((x-k(1))*s33+(k(5)-x)*s34)/(k(5)-k(1));
15 printf ( 's11=\%f\t
                          s22=\%f \setminus t
                                        s23=\%f \ t
      \t s34=\%f\t s44=\%f\n\n', s11, s22, s23, s33, s34,
      s44);
16 x=2; // for x=2;
17 s11=0; s12=0, s14=0; s22=0;
18 s13=1/(k(4)-k(3));
19 s23 = ((x-k(2))*s12+(k(4)-x)*s13)/(k(4)-k(2));
20 s24 = ((x-k(3))*s13+(k(5)-x)*s14)/(k(3)-k(1));
21 s33 = ((x-k(1))*s22+(k(4)-x)*s23)/(k(4)-k(1));
22 s34 = ((x-k(2))*s23+(k(5)-x)*s24)/(k(5)-k(2));
23 s44 = ((x-k(1))*s33+(k(5)-x)*s34)/(k(5)-k(1));
24 printf ( 's13=\%f\t
                       s23=\%f \ t
                                         s24=\%f \ t
      %f∖t
               s34=\%f \ t
                             s44 = \% f \ n \ n', s13, s23, s24, s33,
      s34, s44);
```

Chapter 6

Numerical Diffrentiation and Integration

Scilab code Exa 6.1 numerical diffrentiation by newtons difference formula

```
1 // \text{example } 6.1
2 //numerical diffrentiation by newton's difference
       formula
\frac{3}{\sqrt{\text{page } 210}}
4 clc; clear; close
5 x = [1.0 1.2 1.4 1.6 1.8 2.0 2.2];
6 \quad y = [2.7183 \quad 3.3201 \quad 4.0552 \quad 4.9530 \quad 6.0496 \quad 7.3891
       9.0250];
7 c=1;
8 for i=1:6
         d1(c)=y(i+1)-y(i);
10
        c=c+1;
11 end
12 c=1;
13 for i=1:5
        d2(c)=d1(i+1)-d1(i);
15
         c=c+1;
16 \text{ end}
```

```
17 c = 1;
18 \text{ for } i=1:4
        d3(c)=d2(i+1)-d2(i);
19
20
        c=c+1;
21 end
22 c = 1;
23 \text{ for } i=1:3
        d4(c)=d3(i+1)-d3(i);
24
25
        c=c+1;
26 \text{ end}
27 c = 1;
28 \text{ for } i=1:2
29
        d5(c)=d4(i+1)-d4(i);
30
        c=c+1;
31 end
32 c = 1;
33 for i=1:1
34
        d6(c)=d5(i+1)-d5(i);
35
        c=c+1;
36 end
37 \times 0=1.2// first and second derivative at 1.2
38 h = 0.2;
39 f1=((d1(2)-d2(2)/2+d3(2)/3-d4(2)/4+d5(2)/5)/h);
40 printf ('the first derivative of fuction at 1.2 is: %f
      \n',f1);
41 f2=(d2(2)-d3(2)+(11*d4(2))/12-(5*d5(2))/6)/h^2;
42 printf('the second derivative of fuction at 1.2 is:
      %f\n',f2);
```

Scilab code Exa 6.2 numerical diffrentiation by newtons difference formula

```
1 //example 6.2
2 //numerical diffrentiation by newton's difference
    formula
```

```
\frac{3}{\text{page }} 211
 4 clc; clear; close
 5 x = [1.0 1.2 1.4 1.6 1.8 2.0 2.2];
 6 \quad y = [2.7183 \quad 3.3201 \quad 4.0552 \quad 4.9530 \quad 6.0496 \quad 7.3891
       9.0250];
 7 c=1;
8 \text{ for } i=1:6
        d1(c)=y(i+1)-y(i);
10
        c=c+1;
11 end
12 c=1;
13 for i=1:5
14
        d2(c)=d1(i+1)-d1(i);
15
        c=c+1;
16 \, \text{end}
17 c=1;
18 \text{ for } i=1:4
        d3(c)=d2(i+1)-d2(i);
20
        c=c+1;
21 end
22 c=1;
23 \text{ for } i=1:3
24
        d4(c)=d3(i+1)-d3(i);
25
        c=c+1;
26 \text{ end}
27 c = 1;
28 \text{ for } i=1:2
29
        d5(c)=d4(i+1)-d4(i);
30
        c=c+1;
31 end
32 c=1;
33 for i=1:1
        d6(c)=d5(i+1)-d5(i);
35
        c=c+1;
36 \, \text{end}
37 \text{ x0=2.2//first} and second derivative at 2.2
38 h=0.2;
39 f1=((d1(6)+d2(5)/2+d3(4)/3+d4(3)/4+d5(2)/5)/h);
```

Scilab code Exa 6.3 numerical diffrentiation by newtons difference formula

```
1 // example 6.3
2 //numerical diffrentiation by newton's difference
      formula
3 //page 211
4 clc; clear; close
5 x = [1.0 1.2 1.4 1.6 1.8 2.0 2.2];
6 y = [2.7183 \ 3.3201 \ 4.0552 \ 4.9530 \ 6.0496 \ 7.3891
      9.0250];
7 c=1;
8 for i=1:6
        d1(c) = y(i+1) - y(i);
10
        c=c+1;
11 end
12 c=1:
13 for i=1:5
        d2(c)=d1(i+1)-d1(i);
14
15
        c=c+1;
16 \, \text{end}
17 c=1;
18 \text{ for } i=1:4
19
       d3(c)=d2(i+1)-d2(i);
```

```
20
       c=c+1;
21 end
22 c = 1;
23 for i=1:3
24
       d4(c)=d3(i+1)-d3(i);
25
       c=c+1;
26 end
27 c=1;
28 for i=1:2
       d5(c)=d4(i+1)-d4(i);
29
30
       c=c+1;
31 end
32 c = 1;
33 for i=1:1
34
       d6(c)=d5(i+1)-d5(i);
35
       c=c+1;
36 end
37 \times 0 = 1.6 // \text{first} and second derivative at 1.6
38 h=0.2;
39 f1 = (((d1(3)+d1(4))/2-(d3(2)+d3(3))/4+(d5(1)+d5(2))
      /60))/h
40 printf ('the first derivative of function at 1.6 is:
      %f\n', f1);
41 f2=((d2(3)-d4(2)/12)+d6(1)/90)/(h^2);
42 printf ('the second derivative of function at 1.6 is:
      %f\n',f2);
```

Scilab code Exa 6.4 estimation of errors

```
1 //example 6.4
2 //estimation of errors
3 //page 213
4 clc; clear; close
5 x=[1.0 1.2 1.4 1.6 1.8 2.0 2.2];
6 y=[2.7183 3.3201 4.0552 4.9530 6.0496 7.3891
```

```
9.0250];
7 c = 1;
8 for i=1:6
9 d1(c)=y(i+1)-y(i);
10
       c=c+1;
11 end
12 c=1;
13 for i=1:5
       d2(c)=d1(i+1)-d1(i);
14
15
       c=c+1;
16 \, \text{end}
17 c=1;
18 for i=1:4
19
       d3(c)=d2(i+1)-d2(i);
20
       c=c+1;
21 end
22 c = 1;
23 \text{ for } i=1:3
       d4(c)=d3(i+1)-d3(i);
24
25
       c=c+1;
26 \text{ end}
27 c=1;
28 \text{ for } i=1:2
       d5(c)=d4(i+1)-d4(i);
29
30
       c=c+1;
31 end
32 c=1;
33 for i=1:1
       d6(c)=d5(i+1)-d5(i);
35
       c=c+1;
37 \times 0 = 1.6 // \text{first} and second derivative at 1.6
38 h=0.2;
39 f1=((d1(2)-d2(2)/2+d3(2)/3-d4(2)/4+d5(2)/5)/h);
40 printf ('the first derivative of fuction at 1.2 is: %f
      n', f1);
41 f2=(d2(2)-d3(2)+(11*d4(2))/12-(5*d5(2))/6)/h^2;
42 printf('the second derivative of fuction at 1.2 is:
```

Scilab code Exa 6.5 cubic spline method

```
1 // cubic spline method
2 // example 6.5
3 // page 214
4 clc; clear; close;
5 x=[0 %pi/2 %pi];
6 y=[0 1 0];
7 M0=0,M2=0;
8 h=%pi/2;
9 M1=(6*(y(1)-2*y(2)+y(3))/(h^2)-M0-M2)/4;
10 deff('y=s1(x)', 'y=2*((-2*3*x^2)/(%pi^2)+3/2)/%pi');
11 S1=s1(%pi/4);
12 disp(S1, 'S1(pi/4)=');
13 deff('y=s2(x)', 'y=(-24*x)/(%pi^3)');
14 S2=s2(%pi/4);
15 disp(S2, 'S2(pi/4)=');
```

Scilab code Exa 6.6 derivative by cubic spline method

```
// derivative by cubic spline method
// example 6.6
// page 216
clc; clear; close;
y=[-12 -8 3 5]
deff('y=f(x)', 'y=x^3/15-3*x^2/20+241*x/60-3.9');
deff('y=s2(x)', 'y=[((2-x)^3/6)*(14/55)+(x+1)^3/6*(-74/55)]/3+[-8-21/55]*(2-x)/3+[3-(9/6)*(-74/55)]*(x+1)/3');
h=0.0001;
x0=1.0;
y1=(s2(x0+h)-s2(x0))/h;
printf(' the value y1(%0.2f) is : %f',x0,y1);
```

Scilab code Exa 6.7 maximum and minimum of functions

```
14 disp(p, 'p=');
15 h=0.1;
16 x0=1.2;
17 X=x0+p*h;
18 printf(' the value of X correct to 2 decimal places
        is : %0.2 f', X);
19 Y=y(5)-0.2*d1(4)+(-0.2)*(-0.2+1)*d2(3)/2;
20 disp(Y, 'the value Y=');
```

Scilab code Exa 6.8 trapezoidal method for integration

```
1 // \text{example } 6.8
2 //trapezoidal method for integration
3 //page 226
4 clc; clear; close;
5 x = [7.47 7.48 7.49 7.0 7.51 7.52];
6 f_x=[1.93 \ 1.95 \ 1.98 \ 2.01 \ 2.03 \ 2.06];
7 h=x(2)-x(1);
8 l = length(x);
9 area=0;
10 for i=1:1
       if i == 1 | i == 1 then
11
12
           area=area+f_x(i)
13
      else
14
           area=area+2*f_x(i)
15
       end
16 end
17 area=area*(h/2);
18 printf('area bounded by the curve is %f', area);
```

Scilab code Exa 6.9 simpson 1by3 method for integration

```
1 // \text{example } 6.8
```

```
2 //simpson 1/3rd method for integration
3 //page 226
4 clc; clear; close;
5 x = [0.00 \ 0.25 \ 0.50 \ 0.75 \ 1.00];
6 y = [1.000 0.9896 0.9589 0.9089 0.8415];
7 y = y^2;
8 h=x(2)-x(1);
9 l = length(x);
10 area=0;
11 for i=1:1
       if i==1|i==1 then
12
13
           area=area+y(i)
14
     elseif (modulo(i,2))==0 then
15
               area=area+4*y(i)
16
17
      elseif (modulo(i,2))~=0 then
18
19
              area=area+2*y(i)
20
               end
21
       end
22 area=area*(h*%pi)/3;
23 printf('area bounded by the curve is \%f', area);
```

Scilab code Exa 6.10 integration by trapezoidal and simpsons method

```
1 //example 6.10
2 //integration by trapezoidal and simpson's method
3 //page 228
4 clc; clear; close
5 deff('y=f(x)', 'y=1/(1+x)');
6 h=0.5;
7 x=0:h:1;
8 l=length(x);
9 for i=1:l
10 y(i)=f(x(i));
```

```
11 end
12 area=0; //trapezoidal method
13 for i=1:1
14
        if i==1 | i==1 then
15
            area=area+y(i)
16
       else
17
            area=area+2*y(i)
18
        end
19 end
20 \text{ area=area*(h/2)};
21 printf ('area bounded by the curve by trapezoidal
      method with h=\%f is \%f \setminus n \setminus n', h, area);
22 area=0; //simpson 1/3rd rule
23 for i=1:1
        if i==1|i==1 then
24
            area=area+y(i)
25
26
27
      elseif (modulo(i,2))==0 then
28
                 area=area+4*y(i)
29
30
       elseif (modulo(i,2))~=0 then
               area=area+2*y(i)
31
32
                 end
33
        end
34 \text{ area}=(\text{area*h})/3;
35 printf('area bounded by the curve by simpson 1/3rd
      method with h=\%f is \%f \setminus n \setminus n', h, area);
36 h=0.25;
37 \quad x = 0 : h : 1;
38 l = length(x);
39 \text{ for } i=1:1
40
        y(i) = f(x(i));
41 end
42 area=0; //trapezoidal method
43 \text{ for } i=1:1
        if i==1|i==1 then
44
            area=area+y(i)
45
46
       else
```

```
47
            area=area+2*y(i)
48
        end
49 end
50 \text{ area=area*}(h/2);
51 printf('area bounded by the curve by trapezoidal
      method with h=\%f is \%f \setminus n \setminus n', h, area);
52 area=0; //simpson 1/3rd rule
53 \text{ for } i=1:1
        if i==1 | i==1 then
54
55
            area=area+y(i)
56
      elseif (modulo(i,2))==0 then
57
58
                 area=area+4*y(i)
59
       elseif (modulo(i,2))~=0 then
60
                area=area+2*y(i)
61
62
                 end
63
        end
64 area=(area*h)/3;
65 printf ('area bounded by the curve by simpson 1/3rd
      method with h=\%f is \%f \setminus n \setminus n', h, area);
66 h=0.125;
67 x = 0:h:1;
68 l = length(x);
69 \quad for \quad i=1:1
70
        y(i)=f(x(i));
71 end
72 area=0; //trapezoidal method
73 for i=1:1
        if i==1 | i==1 then
74
75
            area=area+y(i)
76
       else
77
            area=area+2*y(i)
78
        end
79 end
80 area=area*(h/2);
81 printf('area bounded by the curve by trapezoidal
      method with h=\%f is \%f \setminus n \setminus n', h, area);
```

```
82 area=0; //simpson 1/3rd rule
83 for i=1:1
        if i==1|i==1 then
84
85
            area=area+y(i)
86
87
     elseif (modulo(i,2))==0 then
88
                area=area+4*y(i)
89
       elseif (modulo(i,2))~=0 then
90
               area=area+2*y(i)
91
92
                end
93
        end
94 \text{ area}=(\text{area*h})/3;
95 printf('area bounded by the curve by simpson 1/3rd
      method with h=\%f is \%f \setminus n \setminus n', h, area);
```

Scilab code Exa 6.11 rommbergs method

```
1 //example 6.11
2 //rommberg's method
3 / page 229
4 clc; clear; close;
5 deff('y=f(x)', 'y=1/(1+x)');
6 k = 1;
7 h=0.5;
8 x=0:h:1;
9 l = length(x);
10 for i=1:1
11
       y(i)=f(x(i));
12 end
13 area=0; //trapezoidal method
14 for i=1:1
       if i==1|i==1 then
15
16
          area=area+y(i)
17
     else
```

```
18 area=area+2*y(i)
19 end
20 \text{ end}
21 area=area*(h/2);
22 I(k) = area;
23 k=k+1;
24 h = 0.25;
25 \quad x=0:h:1;
26 l=length(x);
27 \text{ for } i=1:1
       y(i)=f(x(i));
28
29 end
30 area=0; //trapezoidal method
31 for i=1:1
32 if i = 1 | i = 1 then
33
           area=area+y(i)
34 else
35
           area=area+2*y(i)
36
      end
37 \text{ end}
38 \text{ area=area*(h/2)};
39 I(k)=area;
40 k=k+1;
41 h=0.125;
42 x = 0:h:1;
43 l = length(x);
44 for i=1:1
       y(i)=f(x(i));
45
46 \text{ end}
47 area=0;//trapezoidal method
48 for i=1:1
       if i==1|i==1 then
49
50
           area=area+y(i)
51 else
           area=area+2*y(i)
52
53 end
54 end
55 \text{ area=area*(h/2)};
```

Scilab code Exa 6.12 Trapezoidal and Simpsons rule

```
1 //example 6.12
2 //Trapezoidal and Simpson's rule
3 //page 230
4 clc; clear; close;
5 deff('y=f(x)', 'y=sqrt(1-x^2)');
    k=10:10:50
6
    for i=1:length(k)
8
         T_area(i)=0,S_area(i)=0;
9
      h=1/k(i);
        x = 0 : h : 1
10
11
        l=length(x);
12
        for j=1:1
            y(j)=f(x(j));
13
14
        end
15
        for j=1:1
16
        if j==1|j==1 then
           T_{area(i)} = T_{area(i)} + y(j)
17
18
       else
19
           T_{area(i)}=T_{area(i)}+2*y(j)
20
        end
21
22 \, \mathrm{end}
```

```
23 T_area(i)=T_area(i)*(h/2);
24 \text{ for } j=1:1
        if j==1|j==1 then
25
26
            S_{area(i)}=S_{area(i)}+y(j)
27
28
      elseif (modulo(j,2))==0 then
29
                 S_{area(i)}=S_{area(i)}+4*y(j)
30
       elseif (modulo(i,2))~=0 then
31
               S_area(i) = S_area(i) + 2*y(j)
32
33
                 end
34
        end
35 S_area(i)=S_area(i)*(h)/3;
36 end
37 printf(' no of subintervals
                                           Trapezoidal Rule
              Simpsons Rule\t \n \n')
38 for i=1:length(k)
39 printf(' \%0.9\,\mathrm{g}
                                                    \%0.9 \, \text{g}
                           \%0.9\,\mathrm{g}
                                              n',k(i),T_{area}
       (i), S_area(i));
40
41 end
```

Scilab code Exa 6.13 area using cubic spline method

```
1 //area using cubic spline method
2 //example 6.2
3 //page 230
4 clc; clear; close;
5 x=[0 0.5 1.0];
6 y=[0 1.0 0.0]
7 h=0.5;
8 M0=0, M2=0;
9 M1=(6*(y(3)-2*y(2)+y(1))/h^2-M0-M2)/4;
10 M=[M0 M1 M2];
```

Scilab code Exa 6.15 eulers maclaurin formula

```
1 //euler's maclaurin formula
2 //example 6.15
3 //page 233
4 clc; clear; close;
5 y=[0 1 0];
6 h=%pi/4;
7 I=h*(y(1)+2*y(2)+y(3))/2+(h^2)/12+(h^4)/720;
8 printf(' the value of integrand with h=%f is: %f\n\n',h,I)
9 h=%pi/8;
10 y=[0 sin(%pi/8) sin(%pi*2/8) sin(%pi*3/8) sin(%pi*4/8)]
11 I=h*(y(1)+2*y(2)+2*y(3)+2*y(4)+y(5))/2+(h^2)/2+(h^2)/12+(h^4)/720;
12 printf(' the value of integrand with h=%f is: %f',h,I)
```

Scilab code Exa 6.17 error estimate in evaluation of the integral

```
1 // example 6.17

2 // error estimate in evaluation of the integral

3 // page 236

4 clc; clear; close;

5 deff('z=f(a,b)', 'z=cos(a)+4*cos((a+b)/2)+cos(b)')
```

```
6 a=0,b=%pi/2,c=%pi/4;
7 I(1)=(f(a,b)*((b-a)/2)/3)
8 I(2)=(f(a,c)*((c-a)/2)/3)
9 I(3)=(f(c,b)*((b-c)/2)/3)
10 Area=I(2)+I(3);
11 Error_estimate=((I(1)-I(2)-I(3))/15);
12 Actual_area=integrate('cos(x)','x',0,%pi/2);
13 Actual_error=abs(Actual_area-Area);
14 printf('the calculated area obtained is:%f\n', Area)
15 printf('the actual area obtained is:%f\n', Actual_area)
16 printf('the actual error obtained is:%f\n', Actual_error)
```

Scilab code Exa 6.18 error estimate in evaluation of the integral

```
1 // example 6.18
2 // error estimate in evaluation of the integral
3 // page 237
4 clc; clear; close;
5 deff('z=f(a,b)', 'z=8+4*sin(a)+4*(8+4*sin((a+b)/2))
      +8+4*\sin(b)')
6 a=0, b=\%pi/2, c=\%pi/4;
7 I(1) = (f(a,b)*((b-a)/2)/3)
8 I(2) = (f(a,c)*((c-a)/2)/3)
9 I(3) = (f(c,b)*((b-c)/2)/3)
10 Area=I(2)+I(3);
11 Error_estimate=((I(1)-I(2)-I(3))/15);
12 Actual_area=integrate('8+4*\cos(x)', 'x',0,%pi/2);
13 Actual_error=abs(Actual_area-Area);
14 printf ('the calculated area obtained is:\%f \ n', Area)
15 printf('the actual area obtained is:\%f\n',
      Actual_area)
16 printf ('the actual error obtained is: %f\n',
      Actual_error)
```

Scilab code Exa 6.19 gauss formula

Scilab code Exa 6.20 double integration

```
1 // \text{example } 6.20
2 //double integration
3 / page 247
4 clc; clear; close;
5 deff('z=f(x,y)', 'z=exp(x+y)');
6 \text{ h0=0.5, k0=0.5};
7 h=[0 \ 0.5 \ 1]; k=[0 \ 0.5 \ 1];
8 for i=1:3
       for j=1:3
          x(i,j)=f(h(i),k(j));
10
11
       end
12 end
13 T_{area}=h0*k0*(x(1,1)+4*x(1,2)+4*x(3,2)+6*x(1,3)+x
      (3,3))/4//trapezoidal method
```

- 14 printf('the integration value by trapezoidal method is %f\n ',T_area);
- 15 $S_{area}=h0*k0*((x(1,1)+x(1,3)+x(3,1)+x(3,3)+4*(x(1,2)+x(3,2)+x(2,3)+x(2,1))+16*x(2,2)))/9$
- 16 printf('the integration value by Simpson method is %f',S_area);

Chapter 7

Numerical linear algebra

Scilab code Exa 7.1 inverse of matrix

```
1 //example 7.1
2 //inverse of matrix
3 //page 256
4 clc; clear; close;
5 A=[1,2,3;0,1,2;0,0,1];
6 A_1=1/A//inverse of matrix
7 for i=1:3
8     for j=1:3
9         printf('%d ',A_1(i,j))
10     end
11     printf('\n')
12 end
```

Scilab code Exa 7.2 Factorize by triangulation method

```
1 //example 7.2
2 //Factorize by triangulation method
3 //page 259
```

```
4 clc; clear; close;
5 A = [2,3,1;1,2,3;3,1,2];
6 L(1,2)=0, L(1,3)=0, L(2,3)=0;
7 U(2,1)=0, U(3,1)=0, U(3,2)=0;
8 for i=1:3
9
       L(i,i)=1;
10 \text{ end}
11 for i=1:3
12
       U(1,i) = A(1,i);
13 end
14 L(2,1)=1/U(1,1);
15 \text{ for } i=2:3
16
       U(2,i)=A(2,i)-U(1,i)*L(2,1);
17 end
18 L(3,1) = A(3,1) / U(1,1);
19 L(3,2) = (A(3,2) - U(1,2) * L(3,1)) / U(2,2);
20 U(3,3) = A(3,3) - U(1,3) * L(3,1) - U(2,3) * L(3,2);
21 printf('The Matrix A in Triangle form\n')
22 printf('Matrix L\n');
23 for i=1:3
24
       for j=1:3
            printf('%.2f',L(i,j));
25
26
       end
27
       printf('\n');
28 end
29 printf('\n');
30 printf('Matrix U\n');
31 for i=1:3
32
       for j=1:3
            printf('%.2f',U(i,j));
33
34
35
       printf('\n');
36 \text{ end}
```

Scilab code Exa 7.3 Vector Norms

```
1 //example 7.3
2 // Vector Norms
3 //page 262
4 clc; clear; close;
5 A = [1,2,3;4,5,6;7,8,9];
6 s = 0;
7 for i=1:3
        for j=1:3
8
9
             s=s+A(j,i);
10
        end
        C(i)=s;
11
12
        s=0;
13 end
14 printf('||A||1=%d\n', max(C));
15 for i=1:3
        for j=1:3
16
             s=s+(A(i,j)*A(i,j))
17
18
        end
19 end
20 printf('||A|||e=\%.3 \text{ f} \cdot \text{n'}, \text{sqrt(s)});
21 \text{ s=0};
22 \text{ for } i=1:3
23
        for j=1:3
             s=s+A(i,j);
24
25
        end
26
        C(i)=s;
27
        s=0;
28 end
29 printf('||A||=\%d\n', max(C));
```

Scilab code Exa 7.6 Gauss Jordan

```
1 //example 7.4
2 //Gauss Jordan
3 //page 266
```

```
4 clc; clear; close;
5 A=[2,1,1,10;3,2,3,18;1,4,9,16];//augmented matrix
6 for i=1:3
7
        j = i
8
        while (A(i,i) == 0 \& j <= 3)
9
10 for k=1:4
        B(1,k) = A(j+1,k)
11
12
        A(j+1,k)=A(i,k)
        A(i,k)=B(1,k)
13
14 end
15 disp(A);
16 j = j + 1;
17 \text{ end}
18 disp(A);
19 for k=4:-1:i
20
        A(i,k)=A(i,k)/A(i,i)
21 end
22 disp(A)
23 \text{ for } k=1:3
24
        if(k~=i) then
25
             l=A(k,i)/A(i,i)
26
             for m=i:4
27
                  A(k,m) = A(k,m) - 1 * A(i,m)
28
             end
29
        end
30 end
31 disp(A)
32 \text{ end}
33 \text{ for } i=1:3
        printf('\nx(\%i)=\%g\n',i,A(i,4))
34
35 end
```

Scilab code Exa 7.7 modern gauss jordan method

```
1 //modern gauss jordan method
2 //example 7.7
3 / page 269
4 clc; clear; close;
5 A = [2 1 1; 3 2 3; 1 4 9];
6 I = eye(3,3);
7 I1=[1;0;0];
8 I2=[0;1;0];
9 \quad I3 = [0;0;1];
10 A1=A^-1*I1;
11 A2=A^-1*I2;
12 A3=A^-1*I3;
13 for i=1:3
       AI(i,1) = A1(i,1)
14
15 end
16 for i=1:3
       AI(i,2) = A2(i,1)
17
18 end
19 for i=1:3
       AI(i,3) = A3(i,1)
20
21 end
22 printf('the inverse of the matrix\n')
23 \text{ for } i=1:3
24
       for j=1:3
                            ',AI(i,j))
            printf('%0.2g
25
26
       end
27
       printf('\n');
28
       end
```

Scilab code Exa 7.8 LU decomposition method

```
1 //LU decomposition method
2 //example 7.8
3 //page 273
4 clc; clear; close;
```

```
5 A = [2,3,1;1,2,3;3,1,2];
6 B = [9;6;8]
7 L(1,2)=0, L(1,3)=0, L(2,3)=0;
8 U(2,1)=0, U(3,1)=0, U(3,2)=0;
9 \text{ for } i=1:3
10
        L(i,i)=1;
11 end
12 for i=1:3
13
       U(1,i) = A(1,i);
14 end
15 L(2,1)=1/U(1,1);
16 \text{ for } i=2:3
17
       U(2,i)=A(2,i)-U(1,i)*L(2,1);
18 end
19 L(3,1) = A(3,1) / U(1,1);
20 L(3,2) = (A(3,2) - U(1,2) * L(3,1)) / U(2,2);
21 U(3,3) = A(3,3) - U(1,3) * L(3,1) - U(2,3) * L(3,2);
22 printf ('The Matrix A in Triangle form \n')
23 printf('Matrix L \setminus n');
24 for i=1:3
25
        for j=1:3
            printf('%.2f',L(i,j));
26
27
        end
        printf('\n');
28
29 end
30 printf('\n');
31 printf('Matrix U\n');
32 for i=1:3
33
        for j=1:3
            printf('%.2f',U(i,j));
34
35
        end
36
        printf('\n');
37 \text{ end}
38 Y=L^-1*B;
39 X = U^{-1} * Y;
40 printf (' the values of x=\%f, y=\%f, z=\%f', X(1,1), X(2,1)
      ,X(3,1));
```

Scilab code Exa 7.9 ill conditioned linear systems

```
1 //ill conditioned linear systems
2 //example 7.9
3 / page 276
4 clc; clear; close;
5 A = [2 1; 2 1.01];
6 B = [2; 2.01];
7 X = A^{-1} * B;
8 \quad A_e = 0;
9 for i=1:2
10
        for j=1:2
            A_e = A_e + A(i,j)^2;
11
12
        end
13 end
14 A_e = sqrt(A_e);
15 inv_A = A^-1;
16 invA_e=0;
17 for i=1:2
18
        for j=1:2
             invA_e=invA_e+inv_A(i,j)^2;
19
20
        end
21 end
22 invA_e=sqrt(invA_e);
23 C = A_e * invA_e
24 \text{ de_A=determ}(A);
25 \text{ for } i=1:2
26
        s=0;
27
        for j=1:2
             s=s+A(i,j)^2
28
29
        end
        s=sqrt(s);
30
31
       k=de_A/s;
32 end
```

```
33 if k<1 then
34 printf(' the fuction is ill conditioned')
35 end
```

Scilab code Exa 7.10 ill condiioned linear systems

```
1 //ill conditioned linear systems
2 //example 7.10
3 //page 277
4 clc; clear; close;
5 A=[1/2 1/3 1/4;1/5 1/6 1/7;1/8 1/9 1/10]//hilbert's matrix
6 de_A=det(A);
7 if de_A<1 then
8    printf('A is ill-conditioned')
9 end</pre>
```

Scilab code Exa 7.11 ill conditioned linear systems

```
1 //ill conditioned linear system
2 //example 7.11
3 //page 277
4 clc; clear; close;
5 A = [25 24 10;66 78 37;92 -73 -80];
6 	ext{de_A=det}(A);
7 \text{ for } i=1:3
8
        s=0;
9
       for j=1:3
            s=s+A(i,j)^2
10
11
        end
       s=sqrt(s);
12
       k=de_A/s;
13
14 end
```

```
15 if k<1 then
16    printf(' the fuction is ill conditioned')
17 end</pre>
```

Scilab code Exa 7.12 ill conditioned system

```
//ill-conditioned system
//example 7.12
//page 278
clc;clear;close;
//the original equations are 2x+y=2 2x+1.01y=2.01
A1=[2 1;2 1.01];
C1=[2;2.01];
x1=1;y1=1//approximate values
A2=[2 1;2 1.01];
C2=[3;3.01];
C=C1-C2;
X=A1^-1*C;
x=X(1,1)+x1;
y=X(2,1)+y1;
printf(' the exact solution is X=%f \t Y=%f',x,y);
```

Scilab code Exa 7.14 solution of equations by iteration method

```
1 //solution of equations by iteration method
2 //example 7.14
3 //page 282
4 //jacobi's method
5 clc; clear; close;
6 C=[3.333;1.5;1.4];
7 X=[3.333;1.5;1.4];
8 B=[0 -0.1667 -0.1667;-0.25 0 0.25;-0.2 0.2 0];
9 for i=1:10
```

```
10
        X1 = C + B * X;
11
        printf('X%d',i);
12
        for k=1:3
13
            for 1=1:1
                14
15
            end
            printf('\n');
16
17
        end
18
       X = X1;
19 end
20 printf (' the solution of the equation is converging
      at 3 1 1 \setminus n \setminus n;
21 //gauss-seidel method
22 \quad C = [3.333; 1.5; 1.4];
23 X = [3.333; 1.5; 1.4];
24 B = [0 -0.1667 -0.1667; -0.25 0 0.25; -0.2 0.2 0];
25 \text{ X1=C+B*X};
26 x=X1(1,1); y=X1(2,1); z=X1(3,1);
27 \text{ for } i=1:5
       x=3.333-0.1667*y-0.1667*z
28
29
       y=1.5-0.25*x+0.25*z
       z=1.4-0.2*x+0.2*y
30
        printf(' the value after \%d iteration is : \%f\t
31
           %f t %f t n n', i, x, y, z)
32 end
33 printf(' again we conclude that roots converges at 3
        1 1')
```

Scilab code Exa 7.15 eigenvalues and eigenvectors

```
1 //eigenvalues and eigenvectors
2 //example 7.15
3 //page 285
4 clc; clear; close
5 A=[5 0 1;0 -2 0;1 0 5];
```

```
6 x = poly(0, 'x');
7 for i=1:3
       A(i,i) = A(i,i) - x;
8
9 end
10 d=determ(A);
11 X=roots(d);
12 printf(' the eigen values are \n\')
13 disp(X);
14 \quad X1 = [0;1;0]
15 X2=[1/sqrt(2);0;-1/sqrt(2)];
16 X3=[1/sqrt(2);0;1/sqrt(2)];
17 // after computation the eigen vectors
18 printf('the eigen vectors for value %0.2g is',X(3));
19 disp(X1);
20 printf('the eigen vectors for value \%0.2\,\mathrm{g} is', X(2));
21 disp(X2);
22 printf('the eigen vectors for value \%0.2\,\mathrm{g} is', X(1));
23 disp(X3);
```

Scilab code Exa 7.16 largest eigenvalue and eigenvectors

```
//largest eigenvalue and eigenvectors
//example 7.16
//page 286
clc; clear; close;
    A=[1 6 1;1 2 0;0 0 3];
    I=[1;0;0]; //initial eigen vector
    X0=A*I
    disp(X0, 'X0=')
    X1=A*X0;
    disp(X1, 'X1=')
    X2=A*X1;
    disp(X2, 'X2=')
    X3=X2/3;
disp(X3, 'X3=')
```

```
15  X4=A*X3;
16  X5=X4/4;
17  disp(X5, 'X5=');
18  X6=A*X5;
19  X7=X6/(4*4);
20  disp(X7, 'X7=');
21  printf('as it can be seen that highest eigen value is 4 \n\n the eigen vector is %d %d %d', X7(1), X7(2), X7(3));
```

Scilab code Exa 7.17 householders method

```
1 //housrholder 's method
2 //example 7.17
3 //page 290
4 clc; clear; close;
5 A = [1 3 4; 3 2 -1; 4 -1 1];
6 S=sqrt(A(1,2)^2+A(1,3)^2);
7 v2=sqrt([1+(A(1,2)/S)]/2)
8 v3=A(1,3)/(2*v2*S)
9 V = [0 v2 v3];
10 P1=[1 0 0;0 1-2*v2^2 -2*v2*v3;0 -2*v2*v3 1-2*v3^2];
11 A1 = P1 * A * P1;
12 printf(' the reduced matrix is \n\n');
13 for i=1:3
14
       for j=1:3
           printf('%0.2 f ',A1(i,j));
15
16
       end
17
       printf('\n');
18 end
```

Scilab code Exa 7.18 single value decomposition

```
1 //single value decommposition
2 //example 7.18
3 / page 292
4 clc; clear; close;
5 A = [1 2; 1 1; 1 3];
6 \quad A1 = A' * A;
7 x = poly(0, 'x');
8 A1(1,1)=A1(1,1)-x;
9 A1(2,2)=A1(2,2)-x;
10 de_A1=det(A1);
11 C=roots(de_A1);
12 printf ('eigen values are \%0.2 \,\mathrm{f} \ \%0.2 \,\mathrm{f} \ \mathrm{n} \ \mathrm{n}', \mathrm{C}(1), \mathrm{C}
       (2));
13 X1 = [0.4033; 0.9166];
14 X2 = [0.9166; -0.4033];
15 Y1 = (A * X1) / sqrt(C(1));
16 Y2 = (A * X2) / sqrt(C(2));
17 printf(' singular decomposition of A is given by \n\
18 D1 = [Y1(1) Y2(1); Y1(2) Y2(2); Y1(3) Y2(3)];
19 D2=[sqrt(C(1)) 0;0,sqrt(C(2))];
20 D3 = [X1(1) X2(1); X1(2) X2(2)];
21 \text{ for } i=1:3
22
        for j=1:2
             printf('%0.4 f', D1(i,j))
23
24
        end
25
        printf('\n')
26 \, \text{end}
27 printf('\n\n')
28 \text{ for } i=1:2
29
        for j=1:2
30
             printf('%0.4 f', D2(i,j))
31
        end
        printf('\n')
32
33 end
34 printf('\n\n');
35 \text{ for } i=1:2
        for j=1:2
36
```

```
\begin{array}{lll} 37 & & \texttt{printf('\%0.4\,f} & ',\texttt{D3(i,j))} \\ 38 & & \texttt{end} \\ 39 & & \texttt{printf('\backslash n')} \\ 40 & \texttt{end} \end{array}
```

Chapter 8

Numerical Solution of ordinary diffrential equation

Scilab code Exa 8.1 taylors method

```
1 // \text{example } 8.1
2 //taylor's method
3 / page 304
4 clc; clear; close;
5 f=1; //value of function at 0
6 deff('z=f1(x)', 'z=x-f^2');
7 deff('z=f2(x)', 'z=1-2*f*f1(x)');
8 deff('z=f3(x)', 'z=-2*f*f2(x)-2*f2(x)^2');
9 deff('z=f4(x)', 'z=-2*f*f3(x)-6*f1(x)*f2(x)');
10 deff('z=f5(x)', 'z=-2*f*f4(x)-8*f1(x)*f3(x)-6*f2(x)^2
      <sup>'</sup>);
11 h=0.1; // value at 0.1
12 \text{ k=f};
13
            for j=1:5
14
                if j==1 then
                     k=k+h*f1(0);
15
16
                elseif j==2 then
17
                     k=k+(h^j)*f2(0)/factorial(j)
                elseif j == 3
18
```

Scilab code Exa 8.2 taylors method

```
1 //taylor's method
2 //example 8.2
3 //page 304
4 clc; clear; close;
5 f=1; //value of function at 0
6 f1=0;//value of first derivatie at 0
7 deff('y=f2(x)', 'y=x*f1+f')
8 deff('y=f3(x)', 'y=x*f2(x)+2*f1');
9 deff('y=f4(x)', 'y=x*f3(x)+3*f2(x)');
10 deff('y=f5(x)', 'y=x*f4(x)+4*f3(x)');
11 deff('y=f6(x)', 'y=x*f5(x)+5*f4(x)');
12 h=0.1; // value at 0.1
13 \text{ k=f};
14
            for j=1:6
15
                 if j==1 then
16
                      k=k+h*f1;
17
                 elseif j==2 then
                      k=k+(h^{j})*f2(0)/factorial(j)
18
19
                 elseif j == 3
20
                      k=k+(h^j)*f3(0)/factorial(j)
21
                 elseif j ==4
22
                      k=k+(h^j)*f4(0)/factorial(j)
```

Scilab code Exa 8.3 picards method

```
1 //example 8.3
2 //picard 's method
3 //page 306
4 clc; clear; close;
5 deff('z=f(x,y)', 'z=x+y^2')
6 y(1)=1;
7 for i=1:2
8     y(i+1)=y(1)+integrate('f(x,y(i))', 'x',0,i /10);
9     printf(' \n y (%g) = %g\n',i/10 ,y(i+1));
10 end
```

Scilab code Exa 8.4 picards method

```
1 //example 8.4
2 //picard's method
3 //page 306
4 clc; clear; close;
5 deff('z=f(x,y)', 'z=x^2/(y^2+1)')
6 y(1)=0; // value at 0
7 c=0.25;
8 for i=1:3
9     y(i+1)=y(1)+integrate('f(x,y(i))', 'x',0,c);
```

Scilab code Exa 8.5 eulers method

```
1 //example 8.5
2 //euler's method
3 //page 308
4 clc; clear; close;
5 deff('z=f(y)', 'z=-y')
6 y(1)=1; //value at 0
7 h=0.01; c=0.01;
8 for i=1:4
9     y(i+1)=y(i)+h*f(y(i))
10     printf('\ny(\%g)=\%g\n',c,y(i+1));
11     c=c+0.01;
12 end
```

Scilab code Exa 8.6 error estimates in eulers

```
1 //example 8.6
2 //error estimates in euler's
3 //page 308
4 clc; clear; close;
5 deff('z=f(y)', 'z=-y')
6 y(1)=1; // value at 0
7 h=0.01; c=0.01;
8 for i=1:4
9     y(i+1)=y(i)+h*f(y(i))
10     printf ('\ny(%g)=%g\n',c,y(i+1));
11     c=c+0.01;
12 end
```

```
13 for i=1:4
       L(i) = abs(-(1/2)*h^2*y(i+1));
       printf('L(%d) = \%f\n\n',i,L(i))
15
16 end
17 e(1)=0;
18 for i=1:4
       e(i+1) = abs(y(2) * e(i) + L(1));
       printf ('e(\%d)=\%f\n\n',i,e(i))
20
21 end
22 Actual_value=exp(-0.04);
23 Estimated_value=y(5);
24 err=abs(Actual_value-Estimated_value);
25 if err<e(5) then
       disp(' VERIFIED');
26
27 end
```

Scilab code Exa 8.7 modified eulers method

```
1 // \text{example } 8.7
2 //modified euler's method
3 //page 310
4 clc; clear; close;
5 h=0.05;
6 f=1;
7 deff('z=f1(x,y)', 'z=x^2+y');
8 \quad x = 0:0.05:0.1
9 y1=0;
10 y1(1)=f+h*f1(x(1),f);
11 y1(2)=f+h*(f1(x(1),f)+f1(x(2),y1(1)))/2;
12 y1(3)=f+h*(f1(x(1),f)+f1(x(3),y1(2)))/2;
13 y2(1)=y1(2)+h*f1(x(2),y1(2));
14 y2(2)=y1(2)+h*(f1(x(2),y1(2))+f1(x(3),y2(1)))/2;
15 y2(3)=y1(2)+h*(f1(x(2),y1(2))+f1(x(3),y2(2)))/2;
16 printf(' y1(0) \ t \ y1(1) \ t \ y1(2) \ t \ y2(0) \ t \ y2(1) \ t \ y3
      (2) \setminus n \setminus n;
```

Scilab code Exa 8.8 runge kutta formula

```
1 // \text{example } 8.8
2 //runge-kutta formula
3 //page 313
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=y-x')
6 y=2; x=0; h=0.1;
7 K1=h*f(x,y);
8 K2=h*f(x+h,y+K1);
9 y1=y+(K1+K2)/2
10 printf ('\n y(0.1) by second order runge kutta
      method: \%0.4 f', y1);
11 y=y1; x=0.1; h=0.1;
12 K1=h*f(x,y);
13 K2=h*f(x+h,y+K1);
14 y1=y+(K1+K2)/2
15 printf ('\n y(0.2) by second order runge kutta
      method: \%0.4 \, \text{f}', y1);
16 y=2, x=0, h=0.1;
17 K1=h*f(x,y);
18 K2=h*f(x+h/2,y+K1/2);
19 K3=h*f(x+h/2,y+K2/2);
20 K4=h*f(x+h,y+K3);
y1=y+(K1+2*K2+2*K3+K4)/6;
22 printf ('\n y(0.1) by fourth order runge kutta
      method: \%0.4 \, f', y1);
23 y=y1, x=0.1, h=0.1;
24 K1=h*f(x,y);
25 K2=h*f(x+h/2,y+K1/2);
```

```
26 K3=h*f(x+h/2,y+K2/2);

27 K4=h*f(x+h,y+K3);

28 y1=y+(K1+2*K2+2*K3+K4)/6;

29 printf ('\n y(0.1) by fourth order runge kutta

method:%0.4 f',y1);y=2,x=0,h=0.1;
```

Scilab code Exa 8.9 runge kutta formula

```
1 // \text{example } 8.9
2 //runge kutta method
3 / page
           315
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=1+y^2');
6 y=0, x=0, h=0.2;
7 K1=h*f(x,y);
8 K2=h*f(x+h/2,y+K1/2);
9 K3=h*f(x+h/2,y+K2/2);
10 K4=h*f(x+h,y+K3);
11 y1=y+(K1+2*K2+2*K3+K4)/6;
12 printf ('\n y(0.2) by fourth order runge kutta
      method: \%0.4 \, f', y1);
13 y=y1, x=0.2, h=0.2;
14 K1=h*f(x,y);
15 K2=h*f(x+h/2,y+K1/2);
16 K3=h*f(x+h/2,y+K2/2);
17 K4=h*f(x+h,y+K3);
18 y1=y+(K1+2*K2+2*K3+K4)/6;
19 printf ('\n y(0.4) by fourth order runge kutta
      method: \%0.4 \, f', y1);
y=2, x=0, h=0.1;
21 \quad y = y1, x = 0.4, h = 0.2;
22 \text{ K1=h*f(x,y)};
23 K2=h*f(x+h/2,y+K1/2);
24 K3=h*f(x+h/2,y+K2/2);
25 K4=h*f(x+h,y+K3);
```

```
26 y1=y+(K1+2*K2+2*K3+K4)/6;
27 printf ('\n y(0.6) by fourth order runge kutta
method:%0.4 f',y1);
```

Scilab code Exa 8.10 initial value problems

```
1 //example 8.10
2 //initial value problems
3 //page 315
4 clc; clear; close;
5 deff('y=f1(x,y)','y=3*x+y/2');
6 y(1)=1;
7 h=0.1; c=0;
8 for i=1:2
9     y(i+1)=y(i)+h*f1(c,y(i))
10     printf('\ny(%g)=%g\n',c,y(i))
11     c=c+0.1;
12 end
```

Scilab code Exa 8.11 adams moulton method

```
1 //example 8.11
2 //adam's moulton method
3 //page 316
4 clc; clear; close;
5 deff('y=f(x,y)','y=1+y^2');
6 y=0,x=0,h=0.2,f1(1)=0;
7 K1=h*f(x,y);
8 K2=h*f(x+h/2,y+K1/2);
9 K3=h*f(x+h/2,y+K2/2);
10 K4=h*f(x+h,y+K3);
11 y1=y+(K1+2*K2+2*K3+K4)/6;
12 f1(1)=y1;
```

```
13 printf ('\n y(0.2) by fourth order runge kutta
      method: \%0.4 \, \text{f}', y1);
14 y=y1, x=0.2, h=0.2;
15 K1=h*f(x,y);
16 K2=h*f(x+h/2,y+K1/2);
17 K3=h*f(x+h/2,y+K2/2);
18 K4=h*f(x+h,y+K3);
19 y1=y+(K1+2*K2+2*K3+K4)/6;
20 \text{ f1}(2) = \text{y1};
21 printf ('\n y(0.4) by fourth order runge kutta
      method: \%0.4 \, f', y1);
y=2, x=0, h=0.1;
23 y=y1, x=0.4, h=0.2;
24 \text{ K1=h*f(x,y)};
25 K2=h*f(x+h/2,y+K1/2);
26 \text{ K3=h*f}(x+h/2,y+K2/2);
27 K4=h*f(x+h,y+K3);
y1=y+(K1+2*K2+2*K3+K4)/6;
29 f1(3) = y1;
30 printf ('\n y(0.6) by fourth order runge kutta
      method: \%0.4 \, f', y1);
y_p=y_1+h*(55*(1+f_1(3)^2)-59*(1+f_1(2)^2)+37*(1+f_1(1))
      ^2) -9) /24;
32 y_c = y1 + h*(9*(1+(y_p-1)^2)+19*(1+f1(3)^2)-5*(1+f1(2))
      ^2)+(1+f1(1)^2))/24;
33 printf('\nthe predicted value is:\%0.4 f:\n',y_p);
34 printf(' the computed value is:\%0.4 f:',y_c);
```

Scilab code Exa 8.12 milnes method

```
1 //example 8.12
2 //milne's method
3 //page 320
4 clc;clear;close;
5 deff('y=f(x,y)', 'y=1+y^2');
```

```
6 \text{ y=0}, \text{x=0}, \text{h=0.2}, \text{f1(1)=0};
7 printf('x
                                                          y1=1+y^2 \ln n
                                     У
        ')
8 Y1(1)=1+y^2;
9 printf('%0.4 f
                                \%0.4 \mathrm{f}
                                                \%0.4 \text{ f} \ \text{n',x,y,(1+y)}
       ^2));
10 K1=h*f(x,y);
11 K2=h*f(x+h/2,y+K1/2);
12 K3=h*f(x+h/2,y+K2/2);
13 K4=h*f(x+h,y+K3);
14 y1=y+(K1+2*K2+2*K3+K4)/6;
15 f1(1)=y1;
16 Y1(2)=1+y1^2;
17 printf('%0.4 f
                                 \%0.4 \text{ f}
                                                \%0.4 \text{ f} \ \text{n}', x+h, y1, (1+
       y1^2));
18 y=y1, x=0.2, h=0.2;
19 K1=h*f(x,y);
20 K2=h*f(x+h/2,y+K1/2);
21 K3=h*f(x+h/2,y+K2/2);
22 K4=h*f(x+h,y+K3);
23 y1=y+(K1+2*K2+2*K3+K4)/6;
24 f1(2) = y1;
25 \text{ Y1}(3) = 1 + \text{y1}^2
26 printf('%0.4 f
                                 \%0.4 \text{ f}
                                                \%0.4 \text{ f} \ \text{n',x+h,y1,(1+)}
       y1^2));
27 y=y1, x=0.4, h=0.2;
28 \text{ K1=h*f(x,y)};
29 K2=h*f(x+h/2,y+K1/2);
30 K3=h*f(x+h/2,y+K2/2);
31 K4=h*f(x+h,y+K3);
32 y1=y+(K1+2*K2+2*K3+K4)/6;
33 f1(3) = y1;
34 \text{ Y1}(4) = 1 + \text{y1}^2;
35 printf('%0.4 f
                                 \%0.4 \text{ f}
                                                \%0.4 \text{ f} \ \text{n}', x+h, y1, (1+
       y1^2));
36 \quad Y_4 = 4*h*(2*Y1(2)-Y1(3)+2*Y1(4))/3;
37 printf('y(0.8)=\%f\n',Y_4);
38 \quad Y = 1 + Y_4^2;
```

```
39 Y_4=f1(2)+h*(Y1(3)+4*Y1(4)+Y)/3;//more correct value 40 printf('y(0.8)=%f\n',Y_4);
```

Scilab code Exa 8.13 milnes method

```
1 // \text{example } 8.13
2 // milne 's method
3 //page 320
4 clc; clear; close;
5 deff('y=f1(x,y)', 'y=x^2+y^2-2');
6 \quad x = [-0.1 \quad 0 \quad 0.1 \quad 0.2];
7 y = [1.0900 1.0 0.8900 0.7605];
8 h=0.1;
9 \text{ for } i=1:4
       Y1(i)=f1(x(i),y(i));
10
11 end
12 printf('
                                                        y1=x^2+
                Х
                                    У
      y^2-2
               n n';
13 for i=1:4
14 printf(' %0.2 f
                                 \%f
                                                 \%f
      n', x(i), y(i), Y1(i);
15 end
16 Y_3=y(1)+(4*h/3)*(2*Y1(2)-Y1(3)+2*Y1(4));
17 printf ('y (0.3)=\%f\n', Y_3)
18 \quad Y1_3=f1(0.3,Y_3);
19 Y_3=y(3)+h*(Y1(3)+4*Y1(4)+Y1_3)/3;//corrected value
20 printf ('corrected y(0.3) = \%f', Y_3)
```

Scilab code Exa 8.14 initial value problems

```
1 //example 8.14
2 //initial-value problem
3 //page 322
```

```
4 clc; clear; close;
5 deff('y=f(x)', 'y=13*exp(x/2)-6*x-12');
6 s1=1.691358; s3=3.430879;
7 printf('the erorr in the computed values are %0.7g %0.7g', abs(f(0.5)-s1), abs(f(1)-s3))
```

Scilab code Exa 8.15 boundary value problem using finite difference method

```
1 //boundary value problem using finite difference
      method
2 //example 8.15
\frac{3}{\sqrt{\text{page } 328}}
4 clc; clear; close;
5 deff('y=f(x)', 'y=cos(x)+((1-cos(1))/sin(1))*sin(x)-1
       <sup>'</sup>);
6 h1=1/2;
7 \text{ Y=f } (0.5);
8 y0=0, y2=0;
9 y1=4*(1/4+y0+y2)/7
10 printf('computed value with h=\%f of y(0.5) is \%f\n',
      h1,y1)
11 printf ('error in the result with actual value \%f \setminus n',
       abs(Y-y1) )
12 h2=1/4;
13 y0=0, y4=0;
14 //solving the approximated diffrential equation
15 \quad A = [-31/16 \quad 1 \quad 0; 1 \quad -31/16 \quad 1; 0 \quad 1 \quad -31/16];
16 X = [-1/16; -1/16; -1/16];
17 C = A^- - 1 * X;
18 printf('computed value with h=\%f of y(0.5) is \%f\n',
      h2,C(2,1))
19 printf ('error in the result with actual value %f\n',
      abs (Y-C(2,1)))
```

Scilab code Exa 8.16 boundary value problem using finite difference method

```
1 //boundary value problem using finite difference
      method
2 //example 8.16
3 / page 329
4 clc; clear; close;
5 deff('y=f(x)', 'y=sinh(x)')
6 y0=0//y(0)=0;
7 y4=3.62686//y(2)=3.62686
8 h1=0.5;
9 Y = f(0.5)
10 //arranging and calculating the values
11 A = [-9 \ 4 \ 0; 4 \ -9 \ 4; 0 \ 4 \ -9];
12 \quad C = [0;0;-14.50744];
13 X = A^{-1} + C
14 printf('computed value with h=\%f of y(0.5) is \%f\n',
      h1,X(1,1))
15 printf('error in the result with actual value \%f\n',
      abs(Y-X(1,1))
16 h2=1.0;
17 y0=0//y(0)=0;
18 y2=3.62686//y(2)=3.62686
19 y1 = (y0 + y2)/3;
20 Y = (4 * X (2,1) - y1)/3;
21 printf ('with better approximation error is reduced
      to \%f', abs (Y-f(1.0));
```

Scilab code Exa 8.17 cubic spline method

```
1 //cubic spline method
2 //example 8.17
```

Scilab code Exa 8.18 cubic spline method

```
1 //cubic spline method
2 //example 8.18
3 //page 331
4 clc; clear; close;
5 //after arranging and forming equation
6 A=[10 -1 0 24;0 16 -1 -32;1 20 0 16;0 1 26 -24];
7 C=[36;-12;24;-9];
8 X=A^-1*C;
9 printf('Y1=%f\n\n',X(4,1));
10 printf('the error in the solution is:%f',abs((2/3)-X(4,1)))
```

Scilab code Exa 8.19 boundary value problem by cubic spline method

```
1 //boundary value problem by cubisc spline nethod
2 //example 8.18
3 //page 331
4 clc; clear; close;
5 h=1/2;
```

```
6 //arranging in two subintervals we get
7 A=[10 -1 0 24;0 16 -1 -32;1 20 0 16;0 1 26 -24];
8 C=[36;-12;24;-9];
9 X=A^-1*C
10 printf('the computed value of y(1.5) is %f', X(4,1));
;
```

Chapter 9

Numerical Solution of Partial Diffrential Equation

Scilab code Exa 9.1 standard five point formula

```
1 //standard five point formula
2 //example 9.1
3 //page 350
4 clc; clear; close;
5 u2=5; u3=1;
6 for i=1:3
7     u1=(u2+u3+6)/4;
8     u2=u1/2+5/2;
9     u3=u1/2+1/2;
10     printf(' the values are u1=%d\t u2=%d\t u3=%d\t\n\n', u1, u2, u3);
11 end
```

Scilab code Exa 9.2 solution of laplace equation by jacobi method gauss seidel method and SOR method

```
1 //solution of laplace equation by jacobi method,
       gauss-seidel method and SOR method
2 // \text{example } 9.2
3 / page 351
4 clc; clear; close;
5 u1=0.25; u2=0.25; u3=0.5; u4=0.5; //initial values
6 printf('jacobis iteration process\n\')
                                              u4 \ t \ n \ '
7 printf('u1\t
                        u2 \setminus t
                                   u3 \setminus t
                                              8 printf('\%f\t
                        %f \ t
                                   %f \ t
      u3,u4)
9 \text{ for } i=1:7
        u11 = (0+u2+0+u4)/4
10
11
        u22 = (u1 + 0 + 0 + u3)/4;
12
        u33 = (1+u2+0+u4)/4;
13
        u44 = (1+0+u3+u1)/4;
        u1=u11; u2=u22; u3=u33; u4=u44;
14
15 printf('\%f\t
                       %f∖t
                                   %f \ t
                                              ,u33,u44)
16 end
17 printf(' gauss seidel processn\n');
18 u1=0.25; u2=0.3125; u3=0.5625; u4=0.46875; //initial
       values
                                              u4 \ t \ n \ '
19 printf ('u1\t
                        u2 \setminus t
                                   u3\t
20 printf('\%f\t
                        %f \ t
                                   %f \ t
                                              %f \setminus t \setminus n', u1, u2,
      u3,u4)
21 \text{ for } i=1:4
22
        u1 = (0+u2+0+u4)/4
23
        u2 = (u1 + 0 + 0 + u3)/4;
        u3 = (1+u2+0+u4)/4;
24
        u4 = (1+0+u3+u1)/4;
25
        printf('%f\t
                             %f \setminus t
                                        %f\t
                                                   %f \setminus t \setminus n', u1,
           u2,u3,u4)
27 end
28 printf('u1\t
                        u2 \setminus t
                                   u3 \setminus t
                                              u4 \ t \ n \ '
29 printf ('\%f\t
                        %f \ t
                                   %f \ t
                                              u3,u4)
```

Scilab code Exa 9.4 poisson equation

```
1 //poisson equation
 2 //exaample 9.4
 3 / page 354
4 clc; clear; close;
 5 u2=0; u4=0;
 6 printf(' u1\t
                              u2 \setminus t u3 \setminus t u4 \setminus t \setminus n \setminus n;
 7 \text{ for } i=1:6
 8
          u1=u2/2+30;
          u2=(u1+u4+150)/4;
 9
10
          u4=u2/2+45;
          printf(' \%0.2 \text{ f} \setminus \text{t}
11
                                       \%0.2 \text{ f} \setminus \text{t}
                                                   \%0.2 \text{ f} \setminus \text{t}
                                                                      \%0.2 \text{ f} \text{ n}',
              u1,u2,u2,u4);
12 end
13 printf(' from last two iterates we conclude u1=67
        u2 = 75
                    u3 = 75
                                 u4=83 n'
```

Scilab code Exa 9.6 bender schmidt formula

```
//bender-schmidt formula
//example 9.6
//page 362
clc;clear;close;
deff('y=f(x)','y=4*x-x^2');
u=[f(0) f(1) f(2) f(3) f(4)];
u11=(u(1)+u(3))/2;
u12=(u(2)+u(4))/2;
u13=(u(3)+u(5))/2;
printf('u11=%0.2 f\t u12=%0.2 f\t u13=%0.2 f\t \n',
u11,u12,u13)
u21=(u(1)+u12)/2;
```

```
12 u22 = (u11 + u13)/2;
13 u23=(u12+0)/2;
14 printf(' u21=\%0.2 \text{ f} \text{ t} u22=\%0.2 \text{ f} \text{ t} u23=\%0.2 \text{ f} \text{ t} \n',
        u21,u22,u23)
15 u31=(u(1)+u22)/2;
16 \quad u32 = (u21 + u23)/2;
17 u33=(u22+u(1))/2;
18 printf(' u31=\%0.2 \text{ f} \text{ t} u32=\%0.2 \text{ f} \text{ t} u33=\%0.2 \text{ f} \text{ t} \n',
        u31,u32,u33)
19 u41=(u(1)+u32)/2;
20 u42 = (u31 + u33)/2;
21 u43 = (u32 + u(1))/2;
22 printf (' u41=\%0.2 \text{ f} \text{ t} u42=\%0.2 \text{ f} \text{ t} u43=\%0.2 \text{ f} \text{ t} \n',
        u41,u42,u43)
23 u51=(u(1)+u42)/2;
24 	 u52 = (u41 + u43)/2;
25 	 u53 = (u42 + u(1))/2;
26 printf (' u51=\%0.2 \text{ f} \text{ t} u52=\%0.2 \text{ f} \text{ t} u53=\%0.2 \text{ f} \text{ t} \n',
        u51,u52,u53)
```

Scilab code Exa 9.7 bender schimdts formula and crank nicolson formula

```
//bender-schimdt's formula and crank-nicolson
    formula
//example 9.7
//page 363
//bender -schimdt's formula
clc;clear;close;
deff('y=f(x,t)', 'y=exp(-%pi^2*t)*sin(%pi*x)');
u=[f(0,0) f(0.2,0) f(0.4,0) f(0.6,0) f(0.8,0) f(1,0)];
u11=u(3)/2;u12=(u(2)+u(4))/2;u13=u12;u14=u11;
printf('u11=%f\t u12=%f\t u13=%f\t u14=%f\n\n',
    u11,u12,u13,u14)
u21=u12/2;u22=(u12+u14)/2;u23=u22;u24=u21;
```

Scilab code Exa 9.8 heat equation using crank nicolson method

```
1 //heat equation using crank-nicolson method
\frac{2}{\text{example }} 9.8
3 / page 364
4 clc; clear; close;
5 U=0.01878;
6 /h=1/2; l=1/8, i=1;
7 u01=0; u21=1/8;
8 u11=(u21+u01)/6;
9 printf(' u11=\%f\n\n',u11);
10 printf('error is \%f \setminus n \setminus n', abs(u11-U));
11 //h=1/4, l=1/8, i=1,2,3
12 \quad A = [-3 \quad -1 \quad 0; 1 \quad -3 \quad 1; 0 \quad 1 \quad -3];
13 C = [0;0;-1/8];
14 X = A^- - 1 * C;
15 printf(' u12=\%f\n\n',X(2,1));
16 printf('error is \%f \setminus n \setminus n', abs(X(2,1)-U));
```