2.1 Classwork: Angle measures

1. Use the image of the protractor to measure each of the angles.

- 2. (a) Write down the name of the angle below using proper geometric notation.
 - (b) Find the measure of the angle in degrees with a protractor.
 - (c) Is it an acute, obtuse, or right angle?

LDEF

acute 60290

- 3. Circle True or False for each statement.
 - (a) T F Point P is the vertex
 - (b) $\overrightarrow{\text{T}}$ F \overrightarrow{OP} , \overrightarrow{OS} are opposite rays
 - (c) T F $m\angle ROS = 90^{\circ}$
 - (d) T $\stackrel{\frown}{F}$ $\angle QOS$ is an acute angle

4. Using the given ray \overrightarrow{AB} as one leg, draw an angle that measures 55°.

5. Draw the square ABCD having the base \overline{AB} . (use a straight edge and protracter or square to work accurately)

(a) Label the vertices C, D and mark the side congruencies with hash marks. Measure and mark the length in centimeters of \overline{AB} . (label the units)

(b) Draw the diagonal \overline{AC} with a dashed line. Measure and label its length rounded to the nearest tenth of a centimeter (nearest millimeter).

6. Write the appropriate name for the type of angle depending on its measure in degrees. (acute, right, obtuse, or straight)

(a) m∠ = 90: right anyle

(b) $90 < m\angle < 180$: obtrse angle (c) $0 < m\angle < 90$: acree angle (d) $m\angle = 180$: Straight angle

Name: Solvons

3 October 2022

2.1 Homework: Length and area test review

1. Find the distance between P and Q.

2. Find RS, given R = 0.7 and S = 5.3.

3. Find the area of $\triangle ABC$. The altitude h of the triangle is 7 centimeters and the base AB = 10 cm. (diagram not to scale)

$$A = \frac{1}{2}(10)(7)$$

= 35 cm²

4. Solve each equation for x then check your result.

(a)
$$(3x+4)+(x-2)=22$$

 $4x+2=23$
 $x=5$

$$(3(5)+4)+(5-2)=??2$$

(b)
$$(6x-21) + (2x-3) = 5x$$

 $8x-24 = 5x$
 $3x = 824$
 $x = 8$
 $(6(8)-21)+(2(8)-3)=5(8)$
 $(6(8)-21)+(2(8)-3)=5(8)$
 $(6(8)-21)+(2(8)-3)=5(8)$

Do Not Solve! Complete the diagram of the situation, model with an equation to the right, and circle where it states what to find.

5. The point Q is on the segment \overline{PR} with PQ=2x, QR=11, and PR=21 (Find x.

2×+1/=21

6. The point Q is the midpoint of \overline{PR} , PQ = 11, and QR = 2x + 1. Find x.

7. Given \overline{PQR} , with PQ = 3x - 7, QR = x + 3, and PR = 12. Find PQ.

8. Given that Q bisects \overline{PR} . PQ = 2x - 5, PR = 42. Find x.

9. Given collinear points P, Q, R, and S. Also, PQ = 3x and PS = 72. Furthermore, $\overline{PQ} \cong \overline{QR} \cong \overline{RS}$. Find \widehat{x} .

 $3 \times = \frac{1}{3} (72)$

10. The points P, Q and R are collinear, with PQ = x + 4 and PR = 27. \overline{QR} is twice the length of \overline{PQ} . (Find QR.

2.1 Extension: Absolute value algebra problems

1. Given x = -5 simplify each expression. (try to do them without a calculator)

(a)
$$|x+7| = 2$$

(c)
$$|x| + |x| = /O$$

(b)
$$|x-7| = /2$$

(d)
$$3|x+3|+x=$$
3 (2) + (-5) = /

2. Solve the equation 2|x+3|=20 twice. (then check both answers)

(a) Assume
$$|x+3|$$
 is positive

$$2\left(x+3\right) = 20$$

$$x+3 = 10$$

$$x = 7$$

(b) Assume |x+3| is negative

3. Find all values of x satisfying the equation. (show the two cases and checks)

$$|x-3|+3=11$$

$$\sqrt{x-3} = 8$$

$$\gamma - 3 = 8$$

Check:

Check:
$$|11-3|+3=11$$

8+3 = 11 ×

Unit 2: Angles 4 October 2022

2.2 Classwork: Angle addition

1. Write down the name of the *three* angles shown in the diagram below and their angle measures, using your protractor.

(d) What do you notice about the angle measures?

They sum

42+75 x118

2. $m\angle ABD = 25^{\circ}$, $m\angle DBC = 50^{\circ}$. Find $m\angle ABC$.

m lASC = 25°+50 = 750

3. Answer based on the diagram below.

(b) Name an angle that is complementary to ∠DOE: ∠B • C

4. $\angle POQ$ and $\angle QOR$ are complementary angles. Given $m\angle POQ=51^{\circ}$, find $m\angle QOR$.

$$51 + \chi = 90$$

$$\chi = 39$$

- 5. Given $\text{m} \angle ADB = 110^{\circ}$, $\text{m} \angle ADC = 75^{\circ}$, and $\text{m} \angle BDC = 3x + 5$. Find x.
 - (a) Label the diagram.
 - (b) Write an equation.
 - (c) Solve for x.

$$(3 \times +5) + 75 = 110$$

 $3x = 30$
 $x = 10$

(d) Check your answer
$$(3(10)+35)+75 = 10$$

6. Apply the Angle Addition postulate. Write and equation to support your work.

Given
$$m\angle ABD = 80^{\circ}$$
 and

$$m\angle DBC = 35^{\circ}$$
.

Find $m \angle ABC$.

7. Given the angle measures and situation shown, write an equation and solve for x.

$$m\angle ABD = 2x$$

$$m\angle DBC = 50^{\circ}$$

$$m \angle ABC = 110^{\circ}$$

$$2x + 50 = 1/6$$
 $2x = 60$
 $x = 30$

8. The ray \overrightarrow{BD} makes a 90° angle with the line \overleftarrow{ABC} , and $m\angle DBE = x^{\circ}$, $m\angle EBC = 25^{\circ}$. Find x. Start by writing an equation to support your work.

9. Two supplementary angles have measures $\text{m} \angle ABD = 5x$ and $\text{m} \angle DBC = 125^{\circ}$. Write an equation, then solve for x.

$$5x+125=180$$

 $5x=55$
 $x=11$

10. Given the angle measures and perpendicular situation shown, $\overrightarrow{BD} \perp \overleftarrow{ABC}$. Find x.

$$m\angle DBE = 40^{\circ}$$

 $m\angle EBC = 3x + 5^{\circ}$

$$(3 \times +5) + 40 = 90$$

 $37 = 45$
 $x = 15^{\circ}$

11. A linear pair have measures $\text{m} \angle ABD = 7x + 16^{\circ}$ and $\text{m} \angle DBC = 5x + 20^{\circ}$. Find $\text{m} \angle ABD$.

$$(7x+16) + (5-x+20) = 180$$

$$12x+36 = 180$$

$$12x = 144$$

$$x = 12$$

$$7x+16$$

Unit 2: Angles 4 October 2022 Solutions

2.2 Homework: Angle addition

- 1. The size of an angle is its "measure," which can be from 0° to 360°
 - (a) Write down the name of this angle. Start with an angle symbol \angle .

1 DEF

(b) What is the degree measure made by these two opposite rays, \overrightarrow{BA} and \overrightarrow{BC} ?

180°

(c) What is the degree measure of the angle, $m \angle XYZ$?

900

- 2. Given the diagram, answer each using proper notation, including the angle symbol \angle .
 - (a) Name the ray opposite to \overrightarrow{OR} :
 - 90° (b) What is the measure of $\angle POM$?

(e) Spicy: Are $\angle NOP$ and $\angle QOR$ complementary, supplementary, or neither?

Angle addition situations

3. Apply the Angle Addition postulate. Write and equation to support your work.

Given $m\angle ABD = 50^{\circ}$, $m\angle ABC = 90^{\circ}$.

Find $m \angle DBC$. $\Rightarrow \infty$

4. Given the angle measures and situation shown, write an equation and solve for x.

$$m\angle ABD = 2x$$

$$m\angle DBC = 2x + 15^{\circ}$$

$$m\angle ABC = 115^{\circ}$$

5. The ray \overrightarrow{BD} makes a 90° angle with the line \overleftarrow{ABC} , and $m\angle DBE = 3x + 20^\circ$, $m\angle EBC =$ 25°.

Find x, writing an equation to support your work.

$$(3x+20) + 85 = 90$$

 $3x = 45$
 $x = 15$

2.2 Extension: Clock problems

- 1. A clock face is shown with both hands vertical, pointing at the 12, indicating 12:00.
 - (a) Draw the positions of the minute and hour hands at 3:00 on the second clock.
 - (b) What angle is made by the two hands at 3:00?

90°

- 2. How many degrees does the minute hand move in an hour? 360°
- 3. How many degrees does the hour hand move in an hour? $\frac{360}{12} = 30^{\circ}$
- 4. How many minutes does it take the minute hand to move 15 minutes?
- 5. How many minutes does it take the hour hand to move 15 minutes? 3(60) = 180 minutes
- 6. Write an expression to model the angle measure the minute hand makes versus vertical after t minutes. $angle = t \frac{360}{60} = 6t$
- 7. Mark the positions of the minute and hour hands at 3:30. What angle is made now?

8. Two supplementary angles have measures $\text{m} \angle ABD = 2x$ and $\text{m} \angle DBC = 4x + 60^{\circ}$. Write an equation, then find x.

9. Given the perpendicular situation shown, $\overrightarrow{BD} \perp \overleftarrow{ABC}$ and angle measures given. Find x.

$$m\angle DBE = 35^{\circ}$$

$$m\angle EBC = 3x + 10^{\circ}$$

$$35 + (3\pi + 10) = 90$$

 $3x = 45$
 $x = 15$

10. The perimeter of the isosceles $\triangle FGH$ is 115 and $\overline{FH} \cong \overline{GH}$. Given FG = 5x + 16 and $FH = 34\frac{1}{2}$.

Write an equation to find x, then solve and check.

$$P = 2(34\frac{2}{2}) + 5x + 16 = 115$$

$$= 69 + 16 + 5x = 115$$

$$5x = 30$$

$$x = 6$$

2.3 Classwork: Vertical angles

1. As shown below, two lines intersect making four angles: $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$.

- (b) Name an angle that is adjacent to ∠4. ______
- (c) True or false, ∠2 and ∠4 are vertical angles. Thue
- 2. Two lines intersect with $m\angle 1=80^{\circ}$. Find and mark the measures of $\angle 2$, $\angle 3$, and $\angle 4$.

3. Given the situation in the diagram, answer each question. Circle True or False.

- (a) True or False: \overrightarrow{RP} and \overrightarrow{UP} are opposite rays.
- (b) True or False: $\angle TPR$ is an obtuse angle.
- (c) True or False: $\angle RPS$ and $\angle SPU$ are supplementary angles.
- (d) True of False: $\angle RPS$ and $\angle SPT$ are adjacent angles.

- 4. Identify the true statements
 - (a) $\angle 1 \cong \angle 2$

(d) $m \angle 2 + m \angle 3 = 90^{\circ}$

5. Measure the required angles of the diagram below and answer the questions.

(a)
$$m \angle AOB = \underline{55^{\circ}}$$
 $m \angle BOC = \underline{35^{\circ}}$ $m \angle DOE = \underline{55^{\circ}}$

$$m \angle BOC = 35^{\circ}$$

$$m \angle DOE = \underline{55}$$

- (b) Name an angle that is vertical to ∠DOE: ∠AoB
- (c) Name an angle that is complementary to ∠AOB: ∠Boc

6. Angles APC and CPD form a linear pair. $m\angle APC = 10x + 15$ and $m\angle CPD = 3x - 4$. Find m∠CPD. Check your answer for full credit.

$$(10x+15) + (3x-4) = 180$$

$$13x + 11 = 180$$

$$13x = 169$$

$$7 = 13$$

$$[10(13)+15]+[3(13)-9]=180?$$

$$145+35=180$$

Unit 2: Angles 7 October 2022 SOLUTIONS

2.3 Homework: Vertical angles

1. Two lines intersect with $m\angle 1 = 65^{\circ}$. Find the measures of $\angle 2$, $\angle 3$, and $\angle 4$, marking them on the diagram.

2. As shown below, two lines intersect making four angles: $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$.

Given $m \angle 1 = 70^{\circ}$.

(a) Find m∠3

(b) Find m∠4

3. Given the situation in the diagram, answer each question. Circle True or False.

- (a) True or False. \overrightarrow{RP} and \overrightarrow{UP} are opposite rays.
- (b) True or False: $\angle TPR$ is supplementary to $\angle TPU$.
- (c) True or False: $\angle RPS$ and $\angle TPS$ are complementary angles.
- (d) True or (False:) $\angle RPS$ and $\angle TPU$ are vertical angles.

- 4. Find the measure of the angle in degrees and the given segment's length in centimeters.
 - (a) *m∠UST* = _____**5**′**6**°
- (b) $SU = \frac{5.2}{5.2}$ cm
- (c) Name a pair of opposite rays: 5R, 5T

- 5. Given the diagram below.
 - (a) Name an angle that is vertical to ∠DOE: ∠AOB
 - (b) Name the ray that is opposite to \overrightarrow{OB} :
 - (c) Name an angle that is complementary to ∠AOB: ∠Boc

