Diskretne strukture UNI Vaje 3

- 1. (a) Pokaži, da tromestni veznik $A(p,q,r) \equiv r \Rightarrow (\neg p \land \neg q)$ predstavlja poln nabor veznikov.
 - (b) Zaporedje izrazov A_n je definirano rekurzivno z

$$A_0 = \neg p$$

$$A_n = A(p, A_{n-1}, 1).$$

Izračunaj A_{2019} .

- 2. Naj bo A veznik $A(p,q,r) \equiv (p \vee q) \Rightarrow r$.
 - (a) Kateri izmed naborov $\{A\}$, $\{A,1\}$, $\{A,0\}$, $\{A,\neg\}$ so polni?
 - (b) Zaporedje izrazov A_n je definirano rekurzivno z

$$A_0 = \neg p$$

$$A_1 = \neg q$$

$$A_n = A(p, q, A_{n-1} \land A_{n-2})$$

Izračunaj A_{2019} .

- 3. Veznik A je definiran s predpisom $A(p,q,r) \equiv (p \wedge q) \vee (\neg p \wedge \neg r)$.
 - (a) Samo z veznikom A zapiši izraze 1, $p \land q$ in $p \Rightarrow q$.
 - (b) Kateri izmed naborov $\{A\}$, $\{A,1\}$, $\{A,0\}$, $\{A,\Rightarrow\}$, $\{A,\veebar\}$ so polni?
 - (c) Zaporedje izrazov I_n je definirano rekurzivno s predpisi

$$I_0 = \neg p$$

 $I_1 = p$
 $I_n = A(I_{n-1}, I_{n-2}, I_{n-2})$

Izračunaj I_{2019}

- 4. Kateri od naslednjih sklepov so pravilni?
 - (a) $p \vee q, \neg q \wedge r \Rightarrow \neg p \models q \vee r,$
 - (b) $p \Rightarrow q, r \Rightarrow s, p \lor r \models q \land s$,
 - (c) $p \wedge r, q \wedge p \Rightarrow \neg r \models \neg q$,
 - (d) $p \Rightarrow q, p \lor s, q \Rightarrow r, s \Rightarrow t, \neg r \models t$,
 - (e) $p \Rightarrow q, p \land s, q \land r \Rightarrow t, s \Rightarrow r \models t$,
 - (f) $p \Leftrightarrow q, \neg p, \neg (q \Rightarrow r) \lor t, s \lor t \Rightarrow r \models r \land \neg p,$