

Formal Methods and Functional Programming

Session 8: Induction on the shape of derivation trees

Assignment

Here are repeated the Natural Deduction rules we consider:

$$\frac{\underline{\Gamma},\underline{A}\vdash\underline{A}}{\underline{\Gamma}\vdash\underline{A}\land\underline{B}}(Ax) \quad \frac{\underline{\Gamma}\vdash\underline{A}\quad\underline{\Gamma}\vdash\underline{B}}{\underline{\Gamma}\vdash\underline{A}\land\underline{B}}(\land -\mathrm{I}) \quad \frac{\underline{\Gamma}\vdash\underline{A}\land\underline{B}}{\underline{\Gamma}\vdash\underline{A}}(\land -\mathrm{EL})$$

The lemma to be proven is:

$$\forall D_1, D_2, \Gamma, A, B \cdot \operatorname{root}(D_1) = (\Gamma, A \vdash B) \land \operatorname{root}(D_2) = (\Gamma \vdash A) \Rightarrow \exists D_3 \cdot \operatorname{root}(D_3) = (\Gamma \vdash B)$$

We will prove this by induction on the shape of the derivation tree D_1 .

Answer

Proof: Let
$$P(D_1) \equiv \forall D_2, \Gamma, A, B \cdot \underbrace{\operatorname{root}(D_1) = (\Gamma, A \vdash B)}_{\operatorname{Ant}_1} \land \underbrace{\operatorname{root}(D_2) = (\Gamma \vdash A)}_{\operatorname{Ant}_2} \Rightarrow \exists D_3 \cdot \operatorname{root}(D_3) = (\Gamma \vdash B).$$

We prove $\forall D_1 \cdot P(D_1)$ by induction on the shape of the derivation tree D_1 . That way, we get the induction hypothesis $\forall D_1' \sqsubseteq D_1 \cdot P(D_1')$, that is, the proposition holds for all proper subtrees of D_1 . For example, if the last applied rule of a derivation tree is \land -I, then the induction hypothesis holds for the two subtrees whose roots are the two premises of the rule, as well as for all their proper subtrees.

Let D_2, Γ, A, B be arbitrary, and assume that A_{NT_1} and A_{NT_2} hold. We need to show that the right-hand side of the implication holds. That is, $\exists D_3 \cdot \mathtt{root}(D_3) = (\Gamma \vdash B)$. We proceed by a case analysis of the last rule applied in the derivation.

Case Ax:

Recall: the definition of the rule is:

$$\frac{}{\Gamma, A \vdash A} (Ax)$$

and we know that $\mathtt{root}(D_1) = (\Gamma, A \vdash B)$ and so, by unifying (or pattern matching) $(\Gamma, A \vdash B)$ and $(\underline{\Gamma}, \underline{A} \vdash \underline{A})$ we get $\underline{A} \equiv B$ and $(\underline{\Gamma}, \underline{A}) = (\Gamma', B) = (\Gamma, A)$ for some Γ'

The use of equality in $(\Gamma', B) = (\Gamma, A)$ – and the fact that Γ, A denotes $\Gamma \cup \{A\}$ – also explains why we can neither conclude that $\Gamma = \Gamma'$, nor that $A \equiv B$. However, we do know $B \in (\Gamma, A)$.

The derivation is thus of the form:

$$\frac{}{\Gamma, A \vdash B} (Ax)$$

To show: $\exists D_3 \cdot \mathtt{root}(D_3) = (\Gamma \vdash B)$

We perform a case distinction on whether or not $A \equiv B$:

Case $A \equiv B$:

In this case, we can conclude by choosing the required D_3 to be D_2 , since, from A_{NT_2} we know that $root(D_2) = (\Gamma \vdash A)$.

Case $A \not\equiv B$:

From $(\Gamma',B)=(\Gamma,A)$ and $A\not\equiv B$ it follows that $B\in\Gamma$, and thus, for some Γ'' , we have $\Gamma=(\Gamma'',B)$. Thus, we need a derivation tree with root $\Gamma'',B\vdash B$, which can be obtained by a single instance of the AX rule.

Case \wedge -I:

Recall: the definition of the rule is:

$$\frac{\underline{\Gamma} \vdash \underline{A} \quad \underline{\Gamma} \vdash \underline{B}}{\underline{\Gamma} \vdash \underline{A} \land \underline{B}} (\land -\mathrm{I})$$

and we know that $\mathtt{root}(D_1) = (\Gamma, A \vdash B)$ and so, by unifying (or pattern matching) $(\Gamma, A \vdash B)$ and $(\underline{\Gamma} \vdash \underline{A} \land \underline{B})$ we get $\underline{\Gamma} = (\Gamma, A)$ and $B \equiv (C \land D)$ for some C, D.

The derivation tree D_1 is then of the form

$$\begin{array}{c|c}
\hline
D_4 & D_5 \\
\hline
\Gamma \vdash C & \Gamma, A \vdash D \\
\hline
\Gamma, A \vdash C \land D
\end{array} (\land \text{-I})$$

where D_4 and D_5 are derivation trees rooted on the left and right premises, respectively. That is, $root(D_4) = (\Gamma \vdash C)$ and $root(D_5) = (\Gamma, A \vdash D)$.

To show:
$$\exists D_3 \cdot \mathtt{root}(D_3) = (\Gamma \vdash C \land D)$$

We can apply the induction hypothesis to the derivation trees D_4 and D_5 as they are proper subtrees of D_1 . We rename quantified variables in order not to increase confusion and ambiguity.

By applying the induction hypothesis to D_4 we arrive at

$$\begin{split} P(D_4) &\equiv \forall D_2', \Gamma', A', B' \cdot \\ &\operatorname{root}(D_4) = (\Gamma', A' \vdash B') \wedge \operatorname{root}(D_2') = (\Gamma' \vdash A') \\ &\Rightarrow \exists D_3' \cdot \operatorname{root}(D_3') = (\Gamma' \vdash B') \end{split}$$

In order to get the conclusion of the above implication, we need to instantiate the quantified variables and show that the left-hand side of the implication holds.

Let us consider the first antecedent, that is, $\operatorname{root}(D_4) = (\Gamma', A' \vdash B')$. We could instantiate the quantified variables that occur in it in any way we like, but because we already know that $\operatorname{root}(D_4) = (\Gamma, A \vdash C)$, the likely useful instantiation would be: $\Gamma' = \Gamma$, $A' \equiv A$ and $B' \equiv C$.

The second conjunct then becomes $\text{root}(D_2') = (\Gamma \vdash A)$, which is Ant_2 if we instantiate $D_2 = D_2'$.

This gives us the desired conclusion of the implication, namely $\exists D_3' \cdot \text{root}(D_3') = (\Gamma \vdash C)$.

By applying the induction hypothesis to D_5 and from instantiating the quantified variables in a similar way we then also obtain that there is some derivation D_3'' with $root(D_3'') = (\Gamma \vdash D)$.

We conclude this case by choosing the required derivation D_3 to be:

Case \land -EL:

Recall: the definition of the rule is:

$$\frac{\underline{\Gamma} \vdash \underline{A} \land \underline{B}}{\underline{\Gamma} \vdash \underline{A}} (\land \text{-EL})$$

and we know that $\operatorname{root}(D_1) = (\Gamma, A \vdash B)$ and so, by unifying (or pattern matching) $(\Gamma, A \vdash B)$ and $(\underline{\Gamma} \vdash \underline{A})$ we get $\underline{\Gamma} = (\Gamma, A)$ and $\underline{A} = B$. Then, for some C, the derivation tree D_1 is then of the form

$$\begin{array}{c|c}
\hline
D_4 \\
\hline
\Gamma, A \vdash B \land C \\
\hline
\Gamma, A \vdash B
\end{array} (\land -EL)$$

where D_4 is the derivation tree rooted at the premise with

$$\mathtt{root}(D_4) = (\Gamma, A \vdash B \land C)$$

.

To show:
$$\exists D_3 \cdot \mathtt{root}(D_3) = \Gamma \vdash B$$

We can apply the induction hypothesis to D_4 because it is a proper subtree of D_1 . We rename quantified variables in order not to increase confusion and ambiguity, arriving to

$$\begin{split} P(D_4) &\equiv \forall D_2', \Gamma', A', B' \cdot \\ &\operatorname{root}(D_4) = (\Gamma', A' \vdash B') \wedge \operatorname{root}(D_2') = (\Gamma' \vdash A') \\ &\Rightarrow \exists D_3' \cdot \operatorname{root}(D_3') = (\Gamma' \vdash B') \end{split}$$

Let us consider the first antecedent, that is, $\operatorname{root}(D_4) = (\Gamma', A' \vdash B')$. We could instantiate the quantified variables that occur in it in any way we like, but because we already know that $\operatorname{root}(D_4) = (\Gamma, A \vdash B \land C)$, the likely useful instantiation would be: $\Gamma' = \Gamma$, $A' \equiv A$ and $B' \equiv B \land C$.

The second conjunct then becomes $\text{root}(D_2') = (\Gamma \vdash A)$, which is Ant_2 if we instantiate $D_2 = D_2'$, allowing us to deduce:

$$\begin{aligned} \operatorname{root}(D_4) &= (\Gamma, A \vdash B \land C) \land \operatorname{root}(D_2) = (\Gamma \vdash A) \\ \Rightarrow \exists D_3' \cdot \operatorname{root}(D_3') &= (\Gamma \vdash B \land C) \end{aligned}$$

that gives us the desired conclusion of the implication, namely, there is some D_3' with $\mathtt{root}(D_3') = (\Gamma \vdash B \land C)$.

We conclude this case by choosing the required derivation D_3 to be:

$$\begin{array}{c|c}
D_3' \\
\hline
\Gamma \vdash B \land C \\
\hline
\Gamma \vdash B
\end{array} (\land -EL)$$