CHAPTER FIVE

Polygons

A polygon is a plane figure bounded by straight lines.

Polygon	
Number of sides	Name
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon

The interior and exterior angles of a polygon:

- The interior angles of a polygon are those angles, which lie within the polygon.
- The exterior angles of a polygon are those ones, which lie outside the polygon

Example:

I = interior angle.

e = exterior angle.

- For any polygon, the sum of the exterior angles = 360°
- Q1) Calculate the value of each exterior angle of a regular decagon.

Soln

Decagon has 10 sides and as such has 10 exterior angles. But since the sum of the exterior angles of any polygon = 360° ,

=> 10 exterior angles $= 360^{\circ}$,

=> 1 exterior angle = $\frac{1}{10} x 360 = 36^{\circ}$.

Each exterior angle = 36° .

Q2) Find the value of each exterior angle of a regular pentagon.

Soln

Since pentagon has 5 sides, then it has 5 exterior angles.

But since the sum of the exterior angles of a polygon = 360° , => 5 exterior angles = 360° , => 1 exterior angle = $\frac{1}{5} \times 360^{\circ} = 72$.

The value of each exterior angle of a pentagon = 72° .

Q3.

For the given figure, determine the value of x.

Soln

The given figure is a quadrilateral or a polygon. The angle marked $5x^{\circ}$, $4x^{\circ}$, $3x^{\circ}$ and $8x^{\circ}$ are the exterior angles, and since the sum of the exterior angles of a polygon = 360° , => $3x + 8x + 5x + 4x = 360^{\circ}$,

$$=>20x = 360, => x = 18^{\circ}.$$

Q4.

For the given figure, determine

- a) the value of x.
- b) the values of the angles marked x, 2x, 3x, 4x and 5x.

Soln

- a) The given figure has five sides and as such it is a pentagon which is a polygon. The angles marked x° , $2x^{\circ}$, $3x^{\circ}$, $4x^{\circ}$, and $5x^{\circ}$ are the exterior angles. Since the sum of the exterior angles of a polygon = 360° , then $x^{\circ} + 2x^{\circ} + 3x^{\circ} + 4x^{\circ} + 5x^{\circ} = 360^{\circ}$, => $15x^{\circ} = 360^{\circ} => x = \frac{360}{15} = 24^{\circ}$.
- b) i. the angle marked $x^{\circ} = 24^{\circ}$.
 - ii. The angle marked $2x = 2(24) = 48^{\circ}$.

iii. The angle marked $3x = 3(24) = 72^{\circ}$.

- i. The angle marked $4x = 4(24) = 96^{\circ}$.
- ii. The angle marked $5x = 5(24) = 120^{\circ}$.

Q5

For the given figure, determine the values of the angles marked x and 3x.

Soln.

The given figure is a polygon and the angles marked, x° , $3x^{\circ}$, 30° and 80° are the exterior angles. Since the sum of the exterior angles = 360° , => $x^{\circ} + x^{\circ} + 3x^{\circ} + 30^{\circ} + 80^{\circ} = 360^{\circ}$, => $5x + 110^{\circ} = 360 => 5x = 360 - 110 = 250$, => $x = \frac{250}{5} = 50^{\circ}$.

The value of the angle marked $x = 50^{\circ}$, and that of the angle marked $3x = 3(50) = 150^{\circ}$.