Guide to Computer Forensics and Investigations Sixth Edition

Chapter 6
Current Digital Forensics Tools

Objectives

Explain how to evaluate needs for digital forensics tools

 List some considerations for digital forensics hardware tools

Describe methods for validating and testing forensics tools

Evaluating Digital Forensics Tool Needs

- Consider open-source tools; the best value for as many features as possible
- Questions to ask when evaluating tools:
 - On which OS does the forensics tool run
 - What file systems can the tool analyze?
 - Can a scripting language be used with the tool to automate repetitive functions?
 - Does it have automated features?
 - What is the vendor's reputation for providing support?

Types of Digital Forensics Tools

- Hardware forensic tools
 - Range from single-purpose components to complete computer systems and servers
- Software forensic tools
 - Range from \$300 up
 - Types
 - Command-line applications
 - GUI applications
 - Commonly used to copy data from a suspect's disk drive to an image file

- Follow guidelines set up by NIST's Computer Forensics Tool Testing (CFTT) program
- All tools used should be well tested
- ISO standard 27037 states: Digital Evidence First Responders (DEFRs) should use validated tools
- All computer forensics tools, both hardware and software, perform specific functions. These function can be grouped into Five major categories:
 - Acquisition
 - Validation and verification
 - Extraction
 - Reconstruction
 - Reporting

Acquisition

Making a copy of the original drive

Acquisition subfunctions:

- Physical data copy
- Logical data copy logical partition
- Data acquisition format raw data format
- GUI acquisition
- Remote, live (logon), and memory acquisitions

- Acquisition (cont'd)
 - Two types of data-copying methods are used in software acquisitions:
 - Physical copying of the entire drive
 - Logical copying of a disk partition
 - The formats for disk acquisitions vary
 - From raw data to vendor-specific proprietary

You can view the contents of a raw image file with any hexadecimal editor

Figure 6-1 Viewing data in WinHex Courtesy of X-Ways AG, www.x-ways.net

- Acquisition (cont'd)
 - Creating smaller segmented files is a typical feature in vendor acquisition tools – segmented files are smaller and therefore can be stored in smaller media
 - Remote acquisition of files is common in larger organizations
 - Popular tools, such as AccessData and EnCase, can do remote acquisitions of forensics drive images on a network

- Validation and Verification
 - Validation
 - A way to confirm that a tool is functioning as intended
 - ensuring the integrity of data being copied

Verification

- Proves that two sets of data are identical by calculating hash values or using another similar method
- A related process is filtering, which involves sorting and searching through investigation findings to separate good data and suspicious data

- Validation and verification (cont'd)
 - Subfunctions of validation and verification include:-
 - Hashing ensure data hasn't been changed
 - CRC-32, MD5, SHA-1 (Secure Hash Algorithms)
 - Filtering To separate good files and files need to be investigated
 - Based on hash value sets
 - Analyzing file headers To check on change file type
 - Discriminate files based on their types
 - National Software Reference Library (NSRL) has compiled a list of known file hashes
 - For a variety of OSs, applications, and images

- Validation and discrimination (cont'd)
 - Many computer forensics programs include a list of common header values
 - With this information, you can see whether a file extension is incorrect for the file type
 - Most forensics tools can identify header values

Extraction

- Recovery task in a digital investigation
- Most challenging of all tasks to master!!
- Recovering data is the first step in analyzing an investigation's data

- Extraction (cont'd)
 - Subfunctions of extraction
 - Data viewing Different tools provide different way of viewing data
 - Keyword searching A good function but if wrong key word is used may produce "noise"
 - Decompressing or uncompressing
 - Carving Reconstructing fragments of files
 - Decrypting Can be a potential problem for investigation
 - Bookmarking or tagging
 - Keyword search speeds up analysis for investigators

- Extraction (cont'd)
 - From an investigation perspective, encrypted files and systems are a problem
 - Many password recovery tools have a feature for generating potential password lists
 - For a password dictionary attack
 - If a password dictionary attack fails, you can run a brute-force attack

Reconstruction

- Re-create a suspect drive to show what happened during a crime or an incident – Another reason is to create a copy of suspect drive for other investigators
- Methods of reconstruction
 - Disk-to-disk copy
 - Partition-to-partition copy
 - Image-to-disk copy
 - Image-to-partition copy
 - Rebuilding files from data runs and carving

- Reconstruction (cont'd)
 - To re-create an image of a suspect drive
 - Copy an image to another location, such as a partition, a physical disk, or a virtual machine
 - Simplest method is to use a tool that makes a direct disk-to-image copy

- Linux dd command
- ProDiscover
- Voom Technologies Shadow Drive

Reporting

- To perform a forensics disk analysis and examination, you need to create a report
- Subfunctions of reporting
 - Bookmarking or tagging
 - Log reports document investigation steps
 - Report generator

Considerations for Tools

- Considerations
 - Flexibility
 - Reliability
 - Future expandability
- Create a software library containing older versions of forensics utilities, OSs, and other programs

GUI Forensics Tools

- GUI forensics tools can simplify digital forensics investigations
- Have also simplified training for beginning examiners
- Most of them are put together as suites of tools
- Advantages
 - Ease of use
 - Multitasking
 - No need for learning older OSs

Other GUI Forensics Tools (Cont)

- Disadvantages
 - Excessive resource requirements i.e PC RAM
 - Produce inconsistent results Because of the type of OS used. 32 bits OS vs 64 bits OS
 - Create tool dependencies
 - Investigators' may want to use only one tool Refuse to change
 - Should be familiar with more than one type of tool

Digital Forensics Hardware Tools

- Technology changes rapidly
- Hardware eventually fails
- Schedule equipment replacements periodically
- When planning your budget consider:
 - Amount of time you expect the forensic workstation to be running
 - Failures how often does it fail?
 - Consultant and vendor fees support the h/w
 - Anticipate equipment replacement –
 the more you use, the more the
 equipment will breakdown

https://blog.inkjetwholesale.com.au/

Forensic Workstations

- Carefully consider what you need
- Categories
 - Stationary workstation
 - Portable workstation
 - Lightweight workstation

Ref: http://forensic.acmeportable.com

- Balance what you need and what your system can handle
 - Remember that RAM and storage need updating as technology advances

Forensic Workstations (Cont)

- Police agency labs
 - Need many options
 - Use several PC configurations due to diverse investigations
- Keep a hardware library in addition to your software library
- Private corporation labs
 - Handle only system types used in the organization

Forensic Workstations (Cont)

- Building a forensic workstation is not as difficult as it sounds
 - Advantages
 - Customized to your needs
 - Save money
 - Disadvantages
 - Hard to find support for problems
 - Can become expensive if careless

Ref: https://digitalintelligence.com

Also need to identify what you intend to analyze

Recommendations for a Forensic Workstation

- Some vendors offer workstations designed for digital forensics
- Having vendor support can save you time and frustration when you have problems
- Can mix and match components to get the capabilities you need for your forensic workstation
- Determine where data acquisitions will take place
 i.e acquire data in the field, may want to carry
 - something light

Recommendations for a Forensic Workstation (Cont)

- Recommendations when choosing stationary or lightweight workstation:
 - Full tower to allow for expansion devices
 - As much memory and processor power as budget allows
 - Different sizes of hard drives
 - 400-watt or better power supply with battery backup
 - External FireWire and USB 2.0 ports
 - Assortment of drive adapter bridges

Recommendations for a Forensic Workstation (Cont)

- Recommendations when choosing stationary or lightweight workstation (cont'd):
 - Ergonomic keyboard and mouse
 - A good video card with at least a 17-inch monitor
 - High-end video card and dual monitors
- If you have a limited budget, one option for outfitting your lab is to use high-end game PCs – can perform well with modifications!

Using a Write-Blocker

Write-blocker

- Prevents data writes to a hard disk
 - A write blocker is any tool that permits read-only access to data storage devices without compromising the integrity of the data.

- Software-enabled blockers
 - Typically run in a shell mode (Windows CLI)
 - Example: PDBlock from Digital Intelligence

Hardware options

- Ideal for GUI forensic tools
 - They prevent Windows or Linux from writing data to the blocked drive.
- Act as a bridge between the suspect drive and the forensic workstation

Ref: https://www.cru-inc.com

Using a Write-Blocker (Cont)

- You can navigate to the blocked drive with any application – no problem accessing the blocked drive's applications after write-blocker is installed.
- Discards the written data
 - For the OS the data copy is successful

Ref: http://blog.zoller.lu

- Connecting technologies
 - FireWire
 - USB 2.0 and 3.0
 - SATA, PATA, and SCSI controllers

Validating and Testing Forensic Software

- It is important to make sure the evidence you recover and analyze can be admitted in court
- You must test and validate your software to prevent damaging the evidence

Using National Institute of Standards and Technology Tools

- NIST publishes articles, provides tools, and creates procedures for testing/validating forensics software
- Computer Forensics Tool Testing (CFTT) project
 - Manages research on computer forensics tools
- NIST has created criteria for testing computer forensics tools based on:
 - Standard testing methods
 - ISO 17025 criteria for testing items that have no current standards

Using National Institute of Standards and Technology Tools (Cont)

- Your lab must meet the following criteria for tool testing
 - Establish categories for digital forensics tools
 - Identify forensics category requirements
 - Develop test assertions :
 - Based on the requirements, create tests to test tool's capability
 - Identify test cases
 - Establish a test method
 - Report test results
- ISO 5725 specifies results must be repeatable and reproducible

Using National Institute of Standards and Technology Tools (Cont)

- NIST created the National Software Reference Library (NSRL) project
 - Collects all known hash values for commercial software applications and OS files
 - Uses SHA-1 to generate a known set of digital signatures called the Reference Data Set (RDS)
 - Helps filtering known information
 - This could help to speed up investigation time
 - Can use RDS to locate and identify known bad files

Using Validation Protocols

- Always verify your results by performing the same tasks with other similar forensics tools
- Use at least two tools
 - Retrieving and examination
 - Verification
- Understand how forensics tools work
- One way to compare results and verify a new tool is by using a disk editor, such as Hex Workshop or WinHex
 - Disk editor can be used to view data on a disk in its raw format.

Using Validation Protocols (Cont)

- Disk editors do not have a flashy interface, however they:
 - Are reliable tools
 - Can access raw data
- Computer Forensics Examination Protocol
 - Perform the investigation with a GUI tool
 - Verify your results with a disk editor
 - Compare hash values obtained with both tools

Using Validation Protocols (Cont)

- Digital Forensics Tool Upgrade Protocol To ensure evidence data will not be corrupted, we need to:-
 - Test
 - New releases (Tools)
 - OS patches and upgrades
 - If you find a problem, report it to forensics tool vendor
 - Do not use the forensics tool until the problem has been fixed
 - Use a test hard disk for validation purposes
 - Check the Web for new editions, updates, patches, and validation tests for your tools

Summary

- Consult your business plan to get the best hardware and software
- Computer forensics tools functions
 - Acquisition
 - Validation and verification
 - Extraction
 - Reconstruction
 - Reporting
- Maintain a software library on your lab

Summary

- Computer Forensics tools types
 - Software
 - Hardware
- Forensics software
 - GUI
- Forensics hardware
 - Customized equipment Make one yourself
 - Commercial options Buy off the shelf
 - Include workstations and write-blockers
- Always run a validation test when upgrading your forensics tools