Abstraktsete domeenide omaduspõhine testimine Bakalaureusetöö

Simmo Saan

Tartu Ülikool, arvutiteaduse instituut

Juuni, 2018

Simmo Saan Domeenide testimine Juuni, 2018 1

Ülesehitus

- Sissejuhatus
- 2 Teoreetiline taust
- Goblint analüsaator
- Testimise tulemused
- 5 Kokkuvõte

Simmo Saan Domeenide testimine Juuni, 2018 2 / 15

Sissejuhatus

- Staatiline analüüs programme ei käivitata
 - Vigade otsimine
 - Vigade puudumise tõestamine
- Abstraktne interpretatsioon
 - Ligikaudsed seisundid
 - Teooria garanteerib korrektsuse (ingl. sound)
- Analüsaatorites esineb vigu
 - Analüüus ja selle korrektsus rikutud

Simmo Saan Domeenide testimine Juuni, 2018 3 / 15

Sissejuhatus

- Staatiline analüüs programme ei käivitata
 - Vigade otsimine
 - Vigade puudumise tõestamine
- Abstraktne interpretatsioon
 - Ligikaudsed seisundid
 - Teooria garanteerib korrektsuse (ingl. sound)
- Analüsaatorites esineb vigu
 - Analüüus ja selle korrektsus rikutud

Eesmärk

Goblint analüsaatori

- Domeenide omaduspõhine testimine
- Vigade tuvastamine

Intervallid

- Täisarvude staatiliseks analüüsiks saab kasutada intervalle
 - Näiteks $[0,3], [-1,5], [2,2], [1,+\infty], [-\infty,+\infty]$
- Aritmeetilised tehted intervallidel
 - Näiteks liitmine [0,3] + [-1,5] = [-1,8]

Simmo Saan Domeenide testimine Juuni, 2018 4 / 15

Intervallid

- Täisarvude staatiliseks analüüsiks saab kasutada intervalle
 - Näiteks [0,3], [-1,5], [2,2], [1,+ ∞], [- ∞ ,+ ∞]
- Aritmeetilised tehted intervallidel
 - Näiteks liitmine [0,3] + [-1,5] = [-1,8]
- Osalise järjestuse seos sisalduvuse kaudu
 - Näiteks $[2,2] \sqsubseteq [0,3] \sqsubseteq [-1,5] \sqsubseteq [-\infty,+\infty]$
 - Kokkuleppeliselt väiksem tähendab täpsemat
- Ühendamise tehe ühendi kaudu
 - Näiteks $[0,3] \sqcup [5,7] = [0,7]$
- Suurim intervall
 - $\bullet \ \top = [-\infty, +\infty]$

Simmo Saan Domeenide testimine Juuni, 2018 4

Näidisanalüüs intervallidega

Simmo Saan Domeenide testimine Juuni, 2018 5 / 15

Näidisanalüüs intervallidega

Muutuja x väärtus

5 / 15

Simmo Saan Domeenide testimine Juuni, 2018

Täielikud võred

Domeen peab moodustama täieliku võre:

- Elementide hulk D
- Osalise järjestuse seos ⊑
- Ülemise raja tehe □
- Alumise raja tehe □
- Suurim element ⊤
- Vähim element ⊥

Simmo Saan Domeenide testimine Juuni, 2018 6 / 15

Olgu $\mathbb D$ täielik võre, siis iga $a,b,c\in\mathbb D$ korral:

Simmo Saan Domeenide testimine Juuni, 2018 7 / 15

Olgu $\mathbb D$ täielik võre, siis iga $a,b,c\in\mathbb D$ korral:

- kui $a \sqsubseteq b$ ja $b \sqsubseteq c$, siis $a \sqsubseteq c$
- kui $a \sqsubseteq b$ ja $b \sqsubseteq a$, siis a = b

Simmo Saan Domeenide testimine Juuni, 2018 7 / 15

Olgu $\mathbb D$ täielik võre, siis iga $a,b,c\in\mathbb D$ korral:

- a □ a
- kui $a \sqsubseteq b$ ja $b \sqsubseteq c$, siis $a \sqsubseteq c$
- kui $a \sqsubseteq b$ ja $b \sqsubseteq a$, siis a = b
- $a \sqsubseteq a \sqcup b$ ja $b \sqsubseteq a \sqcup b$
- $a \sqcap b \sqsubseteq a$ ja $a \sqcap b \sqsubseteq b$
- kui $a \sqsubseteq c$ ja $b \sqsubseteq c$, siis $a \sqcup b \sqsubseteq c$
- kui $c \sqsubseteq a$ ja $c \sqsubseteq b$, siis $c \sqsubseteq a \sqcap b$

Simmo Saan Domeenide testimine Juuni, 2018 7 / 15

Olgu $\mathbb D$ täielik võre, siis iga $a,b,c\in\mathbb D$ korral:

- a □ a
- kui $a \sqsubseteq b$ ja $b \sqsubseteq c$, siis $a \sqsubseteq c$
- kui $a \sqsubseteq b$ ja $b \sqsubseteq a$, siis a = b
- $a \sqsubseteq a \sqcup b$ ja $b \sqsubseteq a \sqcup b$
- $a \sqcap b \sqsubseteq a$ ja $a \sqcap b \sqsubseteq b$
- kui $a \sqsubseteq c$ ja $b \sqsubseteq c$, siis $a \sqcup b \sqsubseteq c$
- kui $c \sqsubseteq a$ ja $c \sqsubseteq b$, siis $c \sqsubseteq a \sqcap b$
- $\bullet \ (a \sqcup b) \sqcup c = a \sqcup (b \sqcup c)$
- $a \sqcup b = b \sqcup a$
- \bullet $a \sqcup a = a$
- $a \sqcup (a \sqcap b) = a$

- $\bullet (a \sqcap b) \sqcap c = a \sqcap (b \sqcap c)$
- $a \sqcap b = b \sqcap a$
- \bullet $a \sqcap a = a$
- $a \sqcap (a \sqcup b) = a$

Olgu $\mathbb D$ täielik võre, siis iga $a,b,c\in\mathbb D$ korral:

- a □ a
- kui $a \sqsubseteq b$ ja $b \sqsubseteq c$, siis $a \sqsubseteq c$
- kui $a \sqsubseteq b$ ja $b \sqsubseteq a$, siis a = b
- $a \sqsubseteq a \sqcup b$ ja $b \sqsubseteq a \sqcup b$
- $a \sqcap b \sqsubseteq a$ ja $a \sqcap b \sqsubseteq b$
- kui $a \sqsubseteq c$ ja $b \sqsubseteq c$, siis $a \sqcup b \sqsubseteq c$
- kui $c \sqsubseteq a$ ja $c \sqsubseteq b$, siis $c \sqsubseteq a \sqcap b$
- $\bullet \ (a \sqcup b) \sqcup c = a \sqcup (b \sqcup c)$
- $a \sqcup b = b \sqcup a$
- $a \sqcup a = a$
- $a \sqcup (a \sqcap b) = a$

•
$$a \sqcup \bot = a$$

•
$$a \sqcap \top = a$$

•
$$(a \sqcap b) \sqcap c = a \sqcap (b \sqcap c)$$

•
$$a \sqcap b = b \sqcap a$$

$$\bullet$$
 $a \sqcap a = a$

•
$$a \sqcap (a \sqcup b) = a$$

Olgu $\mathbb D$ täielik võre, siis iga $a,b,c\in\mathbb D$ korral:

- a ⊆ a
- kui $a \sqsubseteq b$ ja $b \sqsubseteq c$, siis $a \sqsubseteq c$
- kui $a \sqsubseteq b$ ja $b \sqsubseteq a$, siis a = b
- $a \sqsubseteq a \sqcup b$ ja $b \sqsubseteq a \sqcup b$
- $a \sqcap b \sqsubseteq a$ ja $a \sqcap b \sqsubseteq b$
- kui $a \sqsubseteq c$ ja $b \sqsubseteq c$, siis $a \sqcup b \sqsubseteq c$
- kui $c \sqsubseteq a$ ja $c \sqsubseteq b$, siis $c \sqsubseteq a \sqcap b$
- $\bullet \ (a \sqcup b) \sqcup c = a \sqcup (b \sqcup c)$
- $a \sqcup b = b \sqcup a$
- \bullet $a \sqcup a = a$
- $a \sqcup (a \sqcap b) = a$

- ⊥ <u></u> a
- $a \sqcup \bot = a$
- $a \sqcap \top = a$

Samaväärsed:

- **①** a <u>□</u> b
- $a \sqcup b = b$
- $\bullet \ (a \sqcap b) \sqcap c = a \sqcap (b \sqcap c)$
- $a \sqcap b = b \sqcap a$
- \bullet $a \sqcap a = a$
- $a \sqcap (a \sqcup b) = a$

Omaduspõhine testimine ja Goblint analüsaator

Omaduspõhine testimine:

- QuickCheck
- Hea matemaatiliste tingimuste kontrollimiseks
- Omadused predikaadid
- Generaatorid juhuslikud

Simmo Saan Domeenide testimine Juuni, 2018 8 / 15

Omaduspõhine testimine ja Goblint analüsaator

Omaduspõhine testimine:

- QuickCheck
- Hea matemaatiliste tingimuste kontrollimiseks
- Omadused predikaadid
- Generaatorid juhuslikud

Goblint analüsaator:

- TÜ, TUM
- Mitmelõimelised C programmid
- Andmejooksud
- Kirjutatud OCaml-is

Simmo Saan Domeenide testimine Juuni, 2018 8 / 15

Goblinti domeeni signatuur

```
module type S =
sig
  type t (* domeeni elementide tüüp *)
  val equal: t \rightarrow bool (* seos = *)
  val leg: t \rightarrow bool (* seos <math>\square *)
  val join: t \rightarrow t \rightarrow t (* tehe \sqcup *)
  val meet: t \rightarrow t \rightarrow t (* tehe \sqcap *)
  val bot: unit \rightarrow t (* element \perp *)
  val is bot: t -> bool
  val top: unit \rightarrow t (* element \top *)
  val is_top: t -> bool
  val widen: t \rightarrow t \rightarrow t (* tehe \sqcup *)
  end
```

Goblinti täiendamine

• Domeenidesse generaatorid:

```
val arbitrary: unit -> t QCheck.arbitrary
```

- Kõik omadused omaduspõhiste testidena
 - Näiteks ülemraja kommutatiivsus ($a \sqcup b = b \sqcup a$):

- D testitav domeen
- arb selle generaator

Simmo Saan Domeenide testimine Juuni, 2018 10 / 15

QCheck'i väljund

```
generated error fail pass / total time test name
Г√1
    300
               0
                   10 / 100
                                0.0s trier: leg trans
[ ] 300
               0
                 1 / 100
                                0.0s trier: leg antisym
「√ 7 100
               0
                  100 / 100
                                0.0s trier: join leg
[X]
           0
                  1 / 100
                                0.0s trier: join assoc
「√ 7 100
           0
               0 100 / 100
                                0.0s trier: join comm
「√ 7 100
           0
                  100 / 100
                                0.0s trier: join idem
               0
                  100 / 100
「√ 7 100
           0
               0
                                0.0s trier: join abs
--- Failure ------
Test trier: join assoc failed (91 shrink steps):
```

Simmo Saan Domeenide testimine Juuni, 2018 11 / 15

 $(0, 1, Not {3}([-63,63]))$

Ülevaatlikud tulemused

		Testide arv		
Lähenemine	Võrdlemine	Kokku	Erindi teke	Mittekehtivad
Alt üles	equal	468	~35	~75
	leq	468	$\sim \! 35$	${\sim}69$
Ülalt alla	equal	27	0	~12
	leq	27	0	~ 12

Simmo Saan Domeenide testimine Juuni, 2018 12 / 15

Ülevaatlikud tulemused

		Testide arv		
Lähenemine	Võrdlemine	Kokku	Erindi teke	${\sf Mittekehtivad}$
Alt üles	equal	468	~35	~75
	leq	468	$\sim \! 35$	\sim 69
Ülalt alla	equal	27	0	~12
	leq	27	0	~ 12

Erindi tekkimise ja mittekehtimisel põhjuseid:

- Viga domeeni implementeerimisel
- Mittekehtimine teoreetilisel tasandil
- Teadlik ja dokumenteeritud mittekehtimine
- Sõltumine teistest probleemsetest omadustest/domeenidest

Simmo Saan Domeenide testimine Juuni, 2018 12 / 15

Trieri domeen

- Goblintis vaikimisi kasutusel
- Elemendid:
 - Üksikud täisarvud
 - Välistatud täisarvude hulgad (ingl. exclusion set)

Simmo Saan Domeenide testimine Juuni, 2018 13 / 15

Trieri domeen

- Goblintis vaikimisi kasutusel
- Elemendid:
 - Üksikud täisarvud
 - Välistatud täisarvude hulgad (ingl. exclusion set)
- Mittekehtiv ülemraja assotsiatiivsus

$$(a \sqcup b) \sqcup c = a \sqcup (b \sqcup c)$$

näiteks argumentidel

$$a = 0$$
, $b = 1$, $c = \text{Not } \{3\}([-63,63])$

Viga domeeni disainis

Simmo Saan Domeenide testimine

Kokkuvõte

Tehtud:

- Domeenide omaduste komplekt
- Goblinti täiendused: omadused ja generaatorid
- Goblinti domeenide testimine
- Tulemuste esmane analüüs

Kokkuvõte

Tehtud:

- Domeenide omaduste komplekt
- Goblinti täiendused: omadused ja generaatorid
- Goblinti domeenide testimine
- Tulemuste esmane analüüs

Järeldus

Omaduspõhist testimist on võimalik efektiivselt rakendada abstraktsetest domeenidest vigade leidmiseks.

Aitäh!

Domeenide omadused (2)

Programmianalüüsis:

- Laiendamise tehe □
 - $a \sqcup b \sqsubseteq a \sqcup b$
- Kitsendamise tehe □
 - \bullet $a \sqcap b \sqsubseteq a \sqcap b \sqsubseteq a$

Abstraktsiooni korrektsus:

- Abstraktsioonifunktsioon $\alpha: \mathbb{D}_1 \to \mathbb{D}_2$
- kui $a \sqsubseteq b$, siis $\alpha(a) \sqsubseteq \alpha(b)$
- $\alpha(f_1(x_1)) \sqsubseteq f_2(\alpha(x_1))$
 - ullet f_1 , f_2 vastavad monotoonsed tehted

Simmo Saan Domeenide testimine Juuni, 2018

Testitud täisarvude domeenid Goblintis

2 / 2

Simmo Saan Domeenide testimine Juuni, 2018