Линейная регрессия

Ельцов Данил, Михаил Михайлов

22 декабря 2020 г.

Содержание

1	Постановка задачи	2
2	Используемые данные	2
3	3 Описание решения	2
	3.1 Идея решения	2
	3.2 Подготовка данных	2
	3.3 Вычисление коэффициентов	3
	3.3.1 Теоретический расчет параметров	3
	3.3.2 Предсказание целевой переменной	3
	3.4 Построение регрессионной модели	3
4	. Результаты	4

Резюме

По датасетам с Kaggle и официальной статистики по COVID-19 в мире была построена регрессионная модель, способная по демографическим данным страны предсказать кривую развития пандемии в отдельно взятой стране.

На вход модель принимает числовые характеристики конкретной страны и результатом работы программы являются коэффициенты логистической прямой

1 Постановка задачи

Предсказать динамику роста новой коронавирусной инфекции в конкретной стране, основываясь на ее географических и демографических особенностях.

2 Используемые данные

Был взят датасет, содержащий числовые характеристики самых больших стран с Kaggle. Представляет из себя несколько таблиц одинакогового формата: id, country, country_code, feature

Также был взят датасет, содержащий официальную статистику по развитию коронавируса в разных странах.

3 Описание решения

3.1 Идея решения

В результате анализа темпов развития COVID-19 в различных странах было сделано предположение, что развитие коронавируса в целом происходит согласно логистической кривой. В следствие этого было решено построить регрессионную модель для предсказания её параметров.

3.2 Подготовка данных

Для начала необходимо было объединить все характеристики стран в один CSV-файл, что легко было сделано с помощью их трех-буквенного кода. Затем мы к каждой стране из этой таблицы сопоставили посчитанные для неё коэффициенты логистической регрессии. В результате получился файл **clear_data.csv**, имеющий следующую структуру:

$$(ISO-code|rfactor|Median-age|Sex-ratio|Urbanization-rate)$$

3.3 Вычисление коэффициентов

Дифференциальное уравнение процесса выглядит следующим образом

$$\frac{dP}{dt} = rP(1 - \frac{P}{K})$$

где

- Р количество зараженных
- г коэффициент роста
- К поддерживающая емкость среды

Поддерживающую емкость среды, как критическое значение заболевших было решено взять значение, после которого рост устремится к нулю, у нас оно предполагается равным $0.75*P_{max}$, где P_{max} - число жителей в данной стране.

3.3.1 Теоретический расчет параметров

После применения некоторых алгебраических операций и усреднений мы выводим формулу для расчёта коэффициента роста r

$$r = 2 * \frac{1}{n} \sum_{i=1}^{n} \frac{dP_i}{P_i}$$

3.3.2 Предсказание целевой переменной

Для предсказания коэффициента r логистической кривой конкретной страны будут использованы её следующие демографические признаки:

- sex ratio
- median_age
- urbanization_rate

3.4 Построение регрессионной модели

После предпосчета параметров регрессии для каждой страны мы запустили обучение модели LinearRegression из популярной библиотеки для машинного обучения - sklearn,

которая подобрала коэффициенты регрессионной кривой, минимизирующий средний квадрат ошибки. Мы сохранили веса модели линейной регрессии для осуществления дальнейших предсказаний с ее помощью, используя библиотеку joblib.

4 Результаты

- Подборка датасета Данил Ельцов, Михаил Михайлов
- Анализ данных Данил Ельцов, Михаил Михайлов
- Построение модели Михаил Михайлов
- Отчёт Данил Ельцов
- Code