# Model Documentation of the 'Space backpack model'

#### 1 Nomenclature

#### 1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

#### 2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^3 u$$
  $\in \mathbb{R}^2 w \in \mathbb{R}^1 z$   $\in \mathbb{R}^4 y \in \mathbb{R}^2$ 

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

#### 2.1 Exemplary parameter values

| Symbol    | Value                                                              |
|-----------|--------------------------------------------------------------------|
| A         | 0 1.0 0                                                            |
|           | $\begin{bmatrix} -79.285 & -0.113 & 0 \end{bmatrix}$               |
|           | $\begin{bmatrix} 28.564 & 0.041 & 0 \end{bmatrix}$                 |
| $B$ $B_1$ |                                                                    |
|           | $\begin{bmatrix} 0.041 & -0.0047 \\ 0.02 & 0.0014 \end{bmatrix}$   |
|           | $\begin{bmatrix} -0.03 & -0.0016 \end{bmatrix}$                    |
|           | $\begin{bmatrix} 0 & 0 \\ 0.041 & 0.0047 \end{bmatrix}$            |
|           | $\begin{bmatrix} 0.041 & -0.0047 \\ -0.03 & -0.0016 \end{bmatrix}$ |
|           | $\begin{bmatrix} -0.03 & -0.0010 \end{bmatrix}$                    |
| $C_1$     | $\begin{bmatrix} 0 & 0 & 1.0 \\ 1.0 & 0 & 0 \end{bmatrix}$         |
|           | $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$                          |
|           |                                                                    |
| C         | $\begin{bmatrix} 0 & 0 & 1.0 \end{bmatrix}$                        |
|           | 1.0 0 0                                                            |
|           | [0]                                                                |
| $D_{11}$  | 0                                                                  |
|           | 0                                                                  |
|           |                                                                    |
| $D_{12}$  | $\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$        |
|           | $\begin{bmatrix} 0 & 0 \\ 0.1 & 0 \end{bmatrix}$                   |
|           | 0.1 0                                                              |
|           |                                                                    |
| $D_{21}$  | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$                             |
|           | [4]                                                                |

### 3 Derivation and Explanation

This model is part of the "'COMPleib"'- library and was automatically imported into ACKREP.

The original description was:

 $\rm NN15$  Space backpack model P. L. D. Peres and J. C. Geromel, "An Alternate Numerical Solution to the Linear Quadratic Problem", TOAC, Vol. 39, Nr. 1, pp. 198-202, 1994

## 4 Simulation



Figure 1: Simulation of the Space backpack model.

#### References

[1] . L. D. Peres and J. C. Geromel, "An Alternate Numerical Solution to the Linear Quadratic Problem", TOAC, Vol. 39, Nr. 1, pp. 198-202, 1994