Normal Distribution, Skewness & Kurtosis: A Beginner's Guide

Gaussian Normal Distribution

What is a Normal Distribution?

Simple Definition: A normal distribution is a bell-shaped curve where data is symmetrically distributed around the average (mean).

Think of it like: A perfect hill where most people are in the middle, and fewer people are at the very top or bottom.

Key Characteristics of Normal Distribution

1. Bell-Shaped Curve

- · Looks like a bell when you draw it
- Smooth, continuous curve
- Single peak in the middle

2. Symmetrical

- Left side is a mirror image of the right side
- If you fold it in half at the center, both sides match perfectly

3. Mean = Median = Mode

- All three measures of central tendency are the same
- They all occur at the center peak of the curve

4. Most Data Near the Center

- Majority of values cluster around the average
- Fewer values at the extremes (very high or very low)

What the chart shows—in simple words

- **Bell-shaped curve:** the smooth line forms a bell. That's the normal (Gaussian) curve fitted to the sample.
- **Symmetry:** the curve and the bars look the same on both sides of the center.
- **Mean = Median = Mode:** the three vertical lines (dashed, dotted, dash-dot) sit on top of each other at the center peak—showing they're (approximately) equal for normal data.
- Most data near the center: the light-shaded band marks the region from mean − 1σ to mean + 1σ. You can see most bars lie under this band. In our sample it's labeled on the plot (about ≈68%), which is what the normal rule predicts.

Real-World Examples of Normal Distribution

Example 1: Human Heights

Scenario: Heights of adult men in a country

Distribution:

- Average height: 5'9" (most common)
- Many people: 5'7" to 5'11" (near average)
- Some people: 5'5" to 6'1" (moderately different)
- Few people: Under 5'3" or over 6'3" (extreme heights)

Why it's normal: Most men are average height, with fewer very tall or very short men.

Example 2: IQ Scores

Scenario: Intelligence test scores in the population

Distribution:

- Average IQ: 100 (center of curve)
- Most people: 85-115 (near average intelligence)
- Some people: 70-130 (below or above average)
- **Few people**: Below 70 or above 130 (very low or very high)

Why it's normal: Intelligence naturally clusters around average, with fewer extremely high or low scores.

Example 3: Product Manufacturing

Scenario: Weight of chocolate bars from a factory **Distribution**:

• Target weight: 100g (what we aim for)

Most bars: 98-102g (close to target)Some bars: 96-104g (slight variations)

Few bars: Under 95g or over 105g (defects)

Why it's normal: Good manufacturing produces consistent results with small, random variations.

The Famous 68-95-99.7 Rule

This rule tells you exactly how data is spread in a normal distribution:

68% Rule (1 Standard Deviation)

- 68% of all data falls within 1 standard deviation of the mean
- **Example**: If average height is 5'9" with std dev 3", then 68% of men are between 5'6" and 6'0" **95% Rule (2 Standard Deviations)**
 - 95% of all data falls within 2 standard deviations of the mean
 - Example: 95% of men are between 5'3" and 6'3"

99.7% Rule (3 Standard Deviations)

- 99.7% of all data falls within 3 standard deviations of the mean
- **Example**: 99.7% of men are between 5'0" and 6'6"

Practical Application: Test Scores

Scenario: SAT scores are normally distributed

• Mean: 500 points

• Standard deviation: 100 points

What this means:

- **68% of students** score between 400-600
- 95% of students score between 300-700
- **99.7% of students** score between 200-800
- Only 2.5% score above 700 (high achievers)
- Only 2.5% score below 300 (need extra help)

Why Normal Distribution is Important

1. Prediction

Example: If you know test scores are normally distributed, you can predict what percentage of students will need tutoring (those below 400).

2. Quality Control

Example: If chocolate bar weights are normally distributed around 100g, you know 95% should be between 96-104g. Anything outside this range indicates a problem.

3. Decision Making

Example: Insurance companies use normal distribution to set premiums based on typical claims.

4. Statistical Analysis

Example: Many statistical tests assume normal distribution, making it the foundation for data analysis.

Skewness

What is Skewness?

Simple Definition: Skewness measures how lopsided or asymmetrical your data distribution is. **Think of it like**: Imagine a seesaw - skewness tells you if one side is heavier than the other.

Types of Skewness

1. No Skew (Symmetrical)

Description: Data is evenly distributed on both sides of the mean Shape: Perfect bell curve

Characteristic: Mean = Median = Mode **Example**: Heights of adult population

Equal numbers of people above and below average height

Smooth, symmetrical distribution

- The histogram and the smooth curve form a **bell** that is **symmetric**.
- The three vertical lines (mean, median, mode) land in the **same place** (or almost), which is typical when there's **no skew**.
- The printed **skewness** value is close to **0**, confirming symmetry.
- Interpretation: about as many people are **above** the average height as **below**; deviations on each side are similar.

2. Positive Skew (Right Skew)

Description: Most data is on the left, with a long tail stretching to the right **Shape**: Looks like a hill with a long gentle slope to the right **Characteristic**: Mean > Median > Mode **Visual Analogy**: Like a ski jump - steep on the left, long gentle slope on the right

- Most observations sit on the left, and there's a long right tail (a few very large values).
- The vertical lines show Mode (left) < Median (middle) < Mean (right).
 - o The **mean** gets pulled **rightward** by the big incomes.
- The **skewness** value is **positive** (greater than 0), which quantifies the right-tail asymmetry.
- Interpretation: many people earn around the lower/middle range, and a smaller number earn **much more**, stretching the distribution to the right.

Real-World Examples of Positive Skew:

Example 1: Household Income

- Most families: Earn \$30,000-\$80,000 (clustered on left)
- Some families: Earn \$100,000-\$200,000 (middle)
- Few families: Earn \$500,000+ (long tail on right millionaires)

Why: There are many middle-class families but few extremely wealthy ones.

Example 2: House Prices in a City

- **Most houses**: \$150,000-\$400,000 (affordable range)
- **Some houses**: \$500,000-\$800,000 (luxury homes)
- Few houses: \$2,000,000+ (mansions create the long tail)

Example 3: Website Visit Duration

- **Most visitors**: Stay 1-5 minutes (quick browse)
- Some visitors: Stay 10-20 minutes (engaged users)
- **Few visitors**: Stay 60+ minutes (very engaged, create right tail)

3. Negative Skew (Left Skew)

Description: Most data is on the right, with a long tail stretching to the left **Shape**: Looks like a hill with a long gentle slope to the left **Characteristic**: Mode > Median > Mean **Visual Analogy**: Like a cliff - gentle slope on the left, steep drop on the right

- Shape: Most scores are high (right side), and a long tail extends left to lower scores.
 That's negative (left) skew.
- Center measures: The vertical lines show
 Mode (peak) > Median > Mean.
 Low outliers pull the mean left the most; the median moves a little; the mode stays near the high cluster.
 - Skewness value: The printed number is negative, confirming left skew.
 - **Shaded area:** Emphasizes the **longer left tail** (more probability on the low side compared with a symmetric bell).

Real-World Examples of Negative Skew:

Example 1: Age at Retirement

- Most people: Retire at 62-67 (clustered on right)
- **Some people**: Retire at 55-60 (early retirement)
- Few people: Retire at 40-50 (very early retirement creates left tail)

Why: Most people retire around normal age, but some retire much earlier.

Example 2: Test Scores (Well-Prepared Class)

- **Most students**: Score 80-95% (high performers)
- Some students: Score 65-75% (average)
- Few students: Score 40-60% (struggling students create left tail)

Example 3: Product Ratings

- **Most products**: Rated 4-5 stars (satisfied customers)
- Some products: Rated 3 stars (neutral)
- **Few products**: Rated 1-2 stars (very dissatisfied, create left tail)

How to Identify Skewness

Look at Mean vs Median:

Positive Skew: Mean > Median

- The few high values pull the average up
- Example: Income data where mean salary > median salary

Negative Skew: Mean < Median

- The few low values pull the average down
- Example: Test scores where mean score < median score

No Skew: Mean ≈ Median

- Values are evenly distributed
- Example: Heights where mean height ≈ median height

Practical Implications of Skewness

For Positive Skew (Income Example):

- **Median income** better represents typical family (\$65,000)
- **Mean income** misleading due to millionaires (\$85,000)
- Business decision: Target products for median income level

For Negative Skew (Test Scores Example):

- Few struggling students need extra help
- Most students performing well
- **Teaching decision**: Provide remedial support for the tail

Kurtosis

What is Kurtosis?

Simple Definition: Kurtosis measures how "peaked" or "flat" your distribution is compared to a normal distribution, and how heavy the tails are.

Think of it like: Comparing different mountain shapes - some are sharp peaks, others are flat hills.

Types of Kurtosis

1. Mesokurtic (Normal Kurtosis)

Description: Exactly like a normal distribution Shape: Standard bell curve Tails: Normal thickness

Peak: Normal height

Example: Human heights - perfect bell curve with normal peak and tails

- The histogram aligns well with the smooth **Normal** curve.
- Excess kurtosis ≈ 0 (printed on the chart): neither heavy nor thin tails.
- What it means: A balanced peak and tails. Outliers occur as often as the normal model predicts.

2. Leptokurtic (High Kurtosis)

Description: Sharper peak and heavier (thicker) tails than normal Shape: Tall, narrow peak with fat

tails **Characteristic**: More extreme values than expected **Visual Analogy**: Like a sharp mountain peak with wide base

- The Laplace curve rises sharper at the center and its tails fall off more slowly.
- Excess kurtosis > 0 (you'll see a large positive number, often around ~3 for Laplace), confirming heavier tails.
- What it means: More probability in the center and tails—so you see more extreme values
 (outliers) than a normal curve would predict. Think daily returns with occasional jumps, large
 insurance claims, etc.

Real-World Examples of Leptokurtic:

Example 1: Stock Market Returns

- Most days: Small gains/losses around 0% (sharp peak)
- **Some days**: Moderate changes ±2-5%
- Few days: Extreme crashes or booms ±10-20% (fat tails)
- Interpretation: More extreme market events than normal distribution would predict

Example 2: Website Server Response Times

- Most requests: Processed in 100-200ms (sharp peak)
- Some requests: Take 300-500ms
- Few requests: Take 5,000+ms due to server issues (heavy tail)
- Interpretation: More extreme delays than normal

3. Platykurtic (Low Kurtosis)

Description: Flatter peak and thinner tails than normal **Shape**: Wide, flat distribution **Characteristic**:

Fewer extreme values than expected **Visual Analogy**: Like a flat hill or plateau

- The Uniform curve is flat with finite ends (no long tails).
- Excess kurtosis < 0 (about −1.2 for uniform), indicating thin tails and a flatter top than normal.
- What it means: Fewer outliers than normal. Many processes with strong caps/limits look more platykurtic.

Real-World Examples of Platykurtic:

Example 1: Uniform Random Numbers

• **Distribution**: Every number equally likely

Shape: Flat line (rectangular)

• Interpretation: No peak, very thin tails

Example 2: Student Grades (Easy Test)

• Most students: Score between 80-95%

• Few students: Score below 75% or above 98%

• Shape: Flat distribution across high scores

• Interpretation: Test was too easy, little discrimination

Comparative overlay (PDFs only)

- All three curves are plotted together (same center and variance):
 - Normal sits in the middle.
 - o Laplace shows a taller peak and fatter tails (leptokurtic).
 - o Uniform shows a flatter middle and abrupt ends (platykurtic).

Understanding Kurtosis in Practice

High Kurtosis (Leptokurtic) Implications:

Finance Example: Stock with high kurtosis

- Risk: More likely to have extreme price movements
- Strategy: Need larger safety margins
- **Decision**: Consider more conservative investment

Quality Control Example: Product measurements with high kurtosis

- Issue: More defects than normal distribution predicts
- Action: Investigate process for sudden changes
- Solution: Improve process control

Low Kurtosis (Platykurtic) Implications:

Marketing Example: Customer satisfaction scores with low kurtosis

- Observation: Responses spread evenly across scale
- Interpretation: Customers have mixed, moderate opinions
- Action: Improve product to create more satisfied customers

Education Example: Test scores with low kurtosis

- Observation: Scores spread evenly, no clear peak
- Interpretation: Test doesn't discriminate well between students
- Action: Redesign test for better assessment

Combining Skewness and Kurtosis

Real-World Example: Employee Productivity Scores

	mean	median	std (ddof=1)	skewness	excess kurtosis	min	max
Scenario 1: Normal	70.046	70.08	7.958	-0.002	-0.192	45.225	95.394
Scenario 2: +Skew, High Kurt	35.707	33.267	10.881	1.234	2.096	20.046	100
Scenario 3: -Skew, Low Kurt	76.906	77.931	9.784	-0.579	0.243	30.728	97.491

Scenario 1: Normal Distribution

- **Skewness**: 0 (symmetrical)
- Kurtosis: Normal (mesokurtic)
- Interpretation: Balanced workforce with predictable performance
- Management: Standard performance management works

- What you see: A symmetric bell of scores around ~70. The mean and median are almost identical; the tails look "normal thickness."
- What it means: Performance is balanced and predictable—few extreme highs or lows.
- **Management action:** Standard performance management (clear goals, routine feedback) is appropriate.

Scenario 2: Positive Skew + High Kurtosis

- **Skewness**: Positive (most employees average, few superstars)
- Kurtosis: High (some extremely high performers)
- Interpretation: Most employees average, but some exceptional performers
- Management: Identify and retain top performers, develop others

- What you see: Most employees cluster around a moderate score, with a long right tail and more outliers than normal. The mean > median (pulled up by the top performers). The chart text shows positive skew and high excess kurtosis.
- What it means: A handful of exceptional performers lift the average; the group has fat tails (occasional very high scores).
- Management action: Identify, reward, and retain top performers; create stretch opportunities and develop the rest.

Scenario 3: Negative Skew + Low Kurtosis

- **Skewness**: Negative (most employees high performers, few struggling)
- **Kurtosis**: Low (performance spread evenly)
- Interpretation: Generally high-performing team with consistent results
- Management: Focus on helping the few struggling employees

- What you see: Most employees score high, with a left tail of a few struggling individuals.
 Mean < median (pulled left by the few low scores). Kurtosis is lower (thinner tails / more even spread near the top).
- What it means: A generally high-performing team with few underperformers and few extremes overall.
- Management action: Support the small struggling group (coaching, resources) and keep sustaining excellence for the majority.

Practical Applications Summary

For Business Decision Making:

Normal Distribution: Use standard statistical methods and planning **Positive Skew**: Focus on median, plan for typical customer/employee **Negative Skew**: Address the struggling minority, celebrate high performers **High Kurtosis**: Prepare for extreme events, increase safety margins **Low Kurtosis**: Expect consistent, predictable outcomes

For Risk Management:

High Kurtosis: Higher risk of extreme events (market crashes, system failures) **Low Kurtosis**: Lower risk, more predictable outcomes **Skewness**: Identifies which direction extreme events are likely

Key Takeaways

Normal Distribution:

- What: Bell-shaped, symmetrical curve
- When: Heights, IQ scores, measurement errors
- Use: Prediction, quality control, statistical testing

Skewness:

- What: Measures asymmetry (lopsidedness)
- **Positive**: Income, house prices (few very high values)
- Negative: Test scores, product ratings (few very low values)
- Use: Choose mean vs median, understand data bias

Kurtosis:

- What: Measures peak sharpness and tail thickness
- **High**: Stock returns, server response times (more extremes)
- Low: Uniform data, easy tests (fewer extremes)
- **Use**: Risk assessment, outlier prediction

Understanding these concepts helps you:

- 1. Choose the right statistics (mean vs median)
- 2. **Set appropriate expectations** (normal vs skewed outcomes)
- 3. **Manage risk** (prepare for extreme events)
- 4. **Make better decisions** (based on actual data patterns)