COMP3206: Classification: generative approach

Srinandan Dasmahapatra

2017/8

Generation by sequence of noisy machines

- A **generative model** is one that provides a (stochastic) mechanism for reproducing the statistical properties of the observed data.
- A binomial distribution summarises the statistics of multiple binary outcomes, (Bernoulli trials). Example: biased coin tosses. A multinomial distribution captures the statistics of a loaded die.
- Model acceptance of applicant to ECS as Bernoulli trial either you get accepted or not. Table of acceptance rates:

- $\bullet \ \, \text{Application rates} \ \, (\pi_F^E, \pi_M^E, \pi_F^{CS}, \pi_M^{CS}) = (\overline{.1,.6}^{^E}, \overline{.9,.4}^{^{CS}}) \\$
- Overall acceptance rate for $\alpha=M, F$ is $\pi_{\alpha}^E \theta_{\alpha}^E + \pi_{\alpha}^{CS} \theta_{\alpha}^{CS}$.

Mixture distributions are generative models

- A **generative model** is one that provides a (stochastic) mechanism for reproducing the statistical properties of the observed data.
- The stochastic mechanism might involve a sequence of random choices, each modelled by a (simpler) stochastic mechanism
- Previous example: A model for choice followed by model for acceptance.
- A model of acceptance (M::F) is refined by introducing a new variable (M(E)::F(E), M(C)::F(C)).
- Mixture distributions refine models by introducing variables that can be unobservable.

Mixture of multinomials: rolling several loaded dice

• The probability of $\mathbf{x}=(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)},\ldots,\mathbf{x}^{(N)})$ outcomes of N rolls of a die is

$$p_d(x|\pmb{\theta}) = \left(\frac{N!}{n_1!n_2!n_3!n_4!n_5!n_6!}\right)\theta_1^{n_1}\theta_2^{n_2}\theta_3^{n_3}\theta_4^{n_4}\theta_5^{n_5}\theta_6^{n_6}.$$

 n_i counts occurrences of j.

- We have seen how to estimate θ from observations by MLE (counts) or Bayesian posteriors (counts + pseudocounts).
- But what if each throw is from one of several dice that look the same?

Mixture of multinomials: rolling several loaded dice

• If x describes rolled outcomes of H identical looking but differently weighted dice, chosen with probability π_i , called a mixture distribution, with mixture weights $\pi_i \geqslant 0$ and $\sum_i \pi_i = 1$.

$$p(\mathbf{x}) = \sum_{i=1}^{H} p(\mathbf{x}|\boldsymbol{\theta}^{(i)}) \pi_{i}$$

- **Estimation**: infer probabilities $\theta^{(i)}$ of dice i and mixture weights π_i from data x.
- Classification: which die is the most probable generator of observation $X = x^k \in \{1, \dots, 6\}$?

$$\underset{\mathfrak{i}}{\operatorname{argmax}}\, P(\mathfrak{i}|X=x^k) = \frac{P(X=x^k|\pmb{\theta}^{(\mathfrak{i})})\pi_{\mathfrak{i}}}{P(X=x^k)}$$

• Infer sequences $(i_1, i_2, i_3, ...)$ by hidden Markov models (HMMs)

Mixture of Gaussians: un/supervised learning

- **Estimation**: (input) data $\mathcal{X} = \{x^1, \dots, x^N\}$ (left); (output) colours and mathematical description of contours (right). That is, find $\boldsymbol{\theta}^{(i)}$: component means $\boldsymbol{\mu}_i$, covariances $\boldsymbol{\Sigma}_i$ and mixture weights π_i .
- Classification: for which assignment of colour is the probability of observations maximised?

$$\operatorname*{argmax}_{i} P(\mathfrak{i}|\mathbf{X}=\mathbf{x}^k) = \frac{P(\mathbf{X}=\mathbf{x}^k|\boldsymbol{\theta}^{(\mathfrak{i})})\pi_{\mathfrak{i}}}{P(\mathbf{X}=\mathbf{x}^k)}, \, \boldsymbol{\theta}^{(\mathfrak{i})} = (\boldsymbol{\mu}_{\mathfrak{i}}, \boldsymbol{\Sigma}_{\mathfrak{i}}), \, \mathfrak{i} \in \{\mathsf{red}, \boldsymbol{\mu}_{\mathfrak{i}}, \boldsymbol{\Sigma}_{\mathfrak{i}}\}$$

 Clustering: no coloured training examples (unsupervised learning).

Mixture of Gaussians

• For random variable X described by Gaussian pdf $\mathcal{N}(X|\mu, \Sigma)$, p-dimensional data point $x^n \in (x, x+dx)$ has probability density p(X=x)dx where

$$p(\mathbf{x}^n|\mathbf{\mu}, \mathbf{\Sigma}) = (\sqrt{(2\pi)^p |\mathbf{\Sigma}|})^{-1} \exp\left(-\frac{1}{2}(\mathbf{x}^n - \mathbf{\mu})^\mathsf{T} \mathbf{\Sigma}^{-1} (\mathbf{x}^{-n} \mathbf{\mu})\right),$$

where $|\Sigma|$ is the determinant of Σ . A mixture of Gaussians has a probability density

$$p(\mathbf{X} = \mathbf{x}^n) = \sum_{i=1}^{H} \mathcal{N}(\mathbf{X} = \mathbf{x}^n | \mathbf{\mu}_i, \mathbf{\Sigma}_i) \pi_i$$

where the mixture weights $\pi_i \geqslant 0$ satisfy $\sum_i \pi_i = 1$,.

• Need to learn the component means μ_i , covariances Σ_i and mixture weights π_i from data $\mathcal{X} = \{x^1, \dots, x^n, \dots, x^N\}$.

Learning the parameters of a Gaussian by Maximum Likelihood

Estimation: (input) data $\mathcal{X} = \{x^1, \dots, x^N\}$ (left); (output) mathematical description of contours (right). That is, find mean vector $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$.

Maximum Likelihood Estimation (MLE) of parameters of Gaussian distribution

• Assuming data are drawn i.i.d. from Gaussian $\mathcal{N}(x|\mu,\Lambda)$, $\Lambda \triangleq \Sigma^{-1}$, the log likelihood $\mathcal{L}(\mu,\Lambda)$ is

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Lambda}) = -\sum_{n=1}^{N} \frac{1}{2} (\boldsymbol{x}^{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Lambda} (\boldsymbol{x}^{n} - \boldsymbol{\mu}) + \frac{N}{2} \log \det(\boldsymbol{\Lambda}) + \text{const.}$$

• Optimal μ : $\frac{\partial}{\partial \mu} \mathcal{L}(\mu, \Lambda) = 0 = \sum_{n} \Lambda (x^{n} - \mu)$

$$\sum \Lambda x^n = \sum \Lambda \mu = N \Lambda \mu \Rightarrow \mu = \frac{1}{N} \sum x^n.$$

• Optimal Λ : $\frac{\partial}{\partial \Lambda} \mathcal{L}(\mu, \Lambda) = 0$. (log det A = trace log A for any A.)

$$\Sigma = \Lambda^{-1} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^n - \mathbf{\mu})(\mathbf{x}^n - \mathbf{\mu})^{\mathsf{T}}.$$

Learning the parameters of a Mixture of Gaussians by Maximum Likelihood

• Cannot maximise log likelihood in the same way:

$$\log p(\mathbf{x}) = \log \left(\sum_{i=1}^{H} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \pi_i \right)$$

- Introduce a hidden variable z_i that takes a value 0/1 and $\sum_{i=1}^{H} z_i = 1$. The marginal distribution over $\mathbf{Z} = (Z_1, \dots, Z_i, \dots, Z_H)$ is specified as the mixing weights π_i , i.e., $p(Z_i = z_i = 1) = \pi_i$.
- Define joint distribution over the hidden and observed variables (X,Z).

Introducing "responsibilities" of each mixture component by Bayes

• The posterior distributions over the hidden variables $\gamma(Z_i) \equiv p(Z_i = 1|X) \text{ are called } \textit{responsibilities} \text{ and are obtained} \\ \text{from the joint using Bayes' rule:}$

$$\gamma(Z_i) = \frac{p(\boldsymbol{x}|Z_i=1)p(Z_i=1)}{\sum_j p(\boldsymbol{x}|Z_j=1)p(Z_j=1)} = \frac{\mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)\pi_i}{\sum_j \mathcal{N}(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)\pi_j}$$

Learning the parameters of a Mixture of Gaussians by Expectation Maximisation: μ_k from $\frac{\partial}{\partial \mu_k} \mathcal{L} = 0$

• At a maximum of log likelihood:

$$\begin{split} 0 &= \frac{\partial}{\partial \mu_k} \sum_n \log p(\boldsymbol{x}^n) = \sum_n \frac{\partial}{\partial \mu_k} \log \left(\sum_{i=1}^H \mathcal{N}(\boldsymbol{x}^n | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \boldsymbol{\pi}_i \right) \\ &= -\sum_n^N \frac{\mathcal{N}(\boldsymbol{x}^n | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \boldsymbol{\pi}_i}{\sum_{j=1}^H \mathcal{N}(\boldsymbol{x}^n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j) \boldsymbol{\pi}_j} \boldsymbol{\Sigma}_i^{-1} (\boldsymbol{x}^n - \boldsymbol{\mu}_i) \\ &= \boldsymbol{\Sigma}_i^{-1} \left(\sum_n^N \gamma(\boldsymbol{Z}_{ni}) \boldsymbol{x}^n - \boldsymbol{\mu}_i \sum_n \gamma(\boldsymbol{Z}_{ni}) \right), \end{split}$$

where $\gamma(Z_{nj})$ is the responsibility of the j-th mixture component for the n-th data point.

Learning the parameters: the means from $\frac{\partial}{\partial \mu_{\nu}} \mathcal{L} = 0$

From the optimisation in the previous slide:

$$\mu_k = \frac{\sum_n \gamma(Z_{nk}) x^n}{\sum_n \gamma(Z_{nk})} = \frac{1}{N_k} \sum_n \gamma(Z_{nk}) x^n$$

Defined $N_{\rm k}$ as the accumulated contribution to all data points of each mixture component (accumulated responsibilities).

Learning the parameters of a Mixture of Gaussians:

Σ_k , π_k

• Similarly, by taking derivatives w.r.t. Σ_k^{-1} ,

$$\Sigma_{k} = \frac{1}{N_{k}} \sum_{n} \gamma(Z_{nk}) (x^{n} - \mu_{k}) (x^{n} - \mu_{k})^{T}$$

• For π_k : Constrained optimisation with cost function $\log p(\mathbf{x}|\mathbf{\pi}, \mathbf{\mu}, \mathbf{\Sigma}) + \lambda \left(\sum_{k=1}^H \pi_k - 1\right)$:

$$\pi_k = \frac{N_k}{\sum_k N_k} = \frac{N_k}{N}$$

• We started with some $\{\pi, \mu_i, \Sigma_i\}$ and computed responsibilities $\gamma(Z_{ni})$. These in turn determine a new set of values for $\{\pi_i, \mu_i, \Sigma_i\}$.

Learning the parameters of a Mixture of Gaussians by Expectation Maximisation: Σ_k , π_k

- We started with some $\{\pi, \mu_i, \Sigma_i\}$ and computed responsibilities $\gamma(Z_{ni})$. These in turn determine a new set of values for $\{\pi_i, \mu_i, \Sigma_i\}$.
- Expectation Maximisation iteratively estimates parameters of each mixture component by taking:
 - expectation values (E step) of hidden and visible data with respect to current distribution, called total data likelihood.
 - perform maximum likelihood (M step): counting step counts occurrence of fractions (estimated as responsibilities) of the event type.

Generative mixture model: Probabilistic Latent Semantic Analysis (PLSA) for text classification - I

- Document corpus $D\ni d$ contains words $w\in W$. Assume $t\in T$ hidden topics to explain co-occurrence $(w,d), 0\leqslant \pi_t\leqslant 1$, with $\sum_{t=1}^{|T|}\pi_t=1$.
- For n^{th} word position in document d draw topic $t_n \sim p(Z_n = t_n \in T | d \in D)$
- Given topic for this word position, draw word $w_n \sim p(W_n = w_n | Z_n = t_n \in T) = \theta_{w_n | t}$
- If document d has |d| words,

$$p(w_1,...,w_{|d|},Z_1,...,Z_{|d|}) = \prod_{n=1}^{|d|} p(w_n|Z_n)p(Z_n|d)$$

Generative mixture model: Probabilistic Latent Semantic Analysis (PLSA) for text classification - 2

- Vocabulary W; $t \in T$ hidden topics; $d \in D$ document corpus
- How to best explain co-occurrence (w,d), $0 \leqslant \pi_t \leqslant 1$, with $\sum_{t=1}^{|T|} \pi_t = 1$?
- To generate word in nth location in document d, draw topic $t \sim p(Z_n = t \in T | d \in D)$, and draw word $w_n \sim p(W_n = w_n | Z_n = t \in T) = \theta_{w_n | t}$. Each document has one topic.
- Marginal distribution over observed data:

$$\begin{array}{lcl} p(\{w_n\}) & = & \sum_{\{Z_n = t_n\}} \prod_{n=1}^{|d|} p(w_n|Z_n = t_n) p(Z_n = t_n|d) \\ & = & \prod_{n=1}^{|d|} \sum_{t=1}^{|T|} p(w_n|t_n) p(t_n|d) \end{array}$$

Topic modelling with Latent Dirichlet Allocation

- Corpus of documents, size M. Specific document, size N.
- For each word position n, word w_n has topic $Z_n = t_n$ generating it. Multinomial: $w_n \sim p(W_n = w_n \in W|Z_n = t_n, \theta)$.

- For each word a new topic is chosen, not one topic for the entire document. $Z_n \sim \theta$. Multinomial: $p(Z_n = t_n \in T|\theta)$. Mixed membership model.
- Prob(topic) $\theta \sim \text{Dirichlet}(\alpha)$ (prior). Prob(word) has β prior.

Generative classifiers

- Introduced estimation of parameters of probability distributions in classification context
- Bayes' theorem provides method of classification
- Estimation performed by MLE (or Bayesian posterior distributions)
- Mixture models estimated by iterative procedure, EM.
- Examples of discrete mixture distributions in topic modelling.
- Next subject: discriminative classifiers