

Segundo Examen Parcial

DOCENTE	CARRERA	CURSO
MSc. Vicente Machaca Arceda	Escuela Profesional de Ciencia de la Computación	Bioinformática

1. Resultados del estudiante

- (a) Conocimientos en computación
- (b) Análisis de problemas.
- (c) Diseño y desarrollo de soluciones.
- (d) Trabajo individual y en equipo.
- (h) Uso de herramientas modernas.

2. Competencias del trabajo

- Investiga sobre algoritmos y conceptos de Bioinformática para el alineamiento de secuencias y generación de árboles filogenéticos (a, h).
- Implementa una aplicación Web para el alineamiento de secuencias y generación de árboles filogenéticos (b, c, d).

3. Equipos y materiales

- C++, Python, Javascript
- BioPython

4. Entregables

- \blacksquare Se debe elaborar un informe en Latex donde se explique el proyecto.
- En el informe se debe agregar un enlace al repositorio Github.

Universidad Nacional de San Agustín de Arequipa Escuela Profesional de Ciencia de la Computación Bioinformática

5. Descripción del trabajo

Implementar una aplicación Web, donde se pueda realizar el alineamiento de secuencias y generación de árboles filogenéticos. La aplicación sigue el siguiente proceso: (1) debe alinear las secuencias, (2) generar las distancias y (3) luego mostrar el árbol filogenético. Para esto la aplicación debe tener implementado estos algoritmos:

- Alineamiento global (Needleman-Wunsch).
- Alineamiento local (Smith-waterman).
- BLAST.
- Alineamiento multiple MUSCLE o CLUSTAL (puede utilizar una librería).
- Jukes-cantor model (puede utilizar una librería).
- Kimura model (puede utilizar una librería).
- UPGMA.
- Neighbor Joining.

Puede adicionar otros algoritmos según vea conveniente. Los algoritmos adicionales pueden ser utilizados con ayuda de librerías. Luego, tambien es importante alinear, procesar distancias y construir el árbol filogenético de manera aislada. Por ejemplo, el usuario podría solo querer construir el árbol filogenético, ingresando como entrada un *csv* con las distancias entre secuencias.

El informe debe tener un enlace a un repositorío, en este se evalurá la participación de cada integrante. Si se detecta que no hay trabajo en equipo, todo el grupo tendra puntos en contra.

6. Rúbricas

Rúbrica	Cumple	Cumple con obs.	No cumple
Informe: El informe debe estar en La-	2	1	0
tex, tiene un contenido detallado y un			
formato limpio y facil de leer (b, c).			
Trabajo en equipo: Se comprueba el	4	2	0
trabajo en equipo en el repositorio Git-			
hub (d).			
Implementación: La aplicación Web	9	4.5	0
tiene todas las funcionalidades requeri-			
das (b, c).			
Métodos adicionales: La aplicación	3	1.5	0
tiene funcionalidadeds adicionales u			
otro métodos a los ya requeridos (h).			
Presentación: El alumno demuestra	2	1	0
dominio del tema durante la presenta-			
ción (a).			