However, it will have significance provided $a(\mathbf{x})$ has a constrained functional form. We will shortly consider situations in which $a(\mathbf{x})$ is a linear function of \mathbf{x} , in which case the posterior probability is governed by a generalized linear model.

If there are K > 2 classes, we have

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_j p(\mathbf{x}|C_j)p(C_j)}$$
$$= \frac{\exp(a_k)}{\sum_j \exp(a_j)}, \tag{5.45}$$

which is known as the *normalized exponential* and can be regarded as a multi-class generalization of the logistic sigmoid. Here the quantities a_k are defined by

$$a_k = \ln\left(p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)\right). \tag{5.46}$$

The normalized exponential is also known as the *softmax function*, as it represents a smoothed version of the 'max' function because, if $a_k \gg a_j$ for all $j \neq k$, then $p(\mathcal{C}_k|\mathbf{x}) \simeq 1$, and $p(\mathcal{C}_j|\mathbf{x}) \simeq 0$.

We now investigate the consequences of choosing specific forms for the class-conditional densities, looking first at continuous input variables \mathbf{x} and then discussing briefly discrete inputs.

5.3.1 Continuous inputs

Let us assume that the class-conditional densities are Gaussian. We will then explore the resulting form for the posterior probabilities. To start with, we will assume that all classes share the same covariance matrix Σ . Thus, the density for class C_k is given by

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right\}.$$
(5.47)

First, suppose that we have two classes. From (5.40) and (5.41), we have

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$
 (5.48)

where we have defined

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \tag{5.49}$$

$$w_0 = -\frac{1}{2} \boldsymbol{\mu}_1^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2} \boldsymbol{\mu}_2^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2 + \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}.$$
 (5.50)

We see that the quadratic terms in \mathbf{x} from the exponents of the Gaussian densities have cancelled (due to the assumption of common covariance matrices), leading to a linear function of \mathbf{x} in the argument of the logistic sigmoid. This result is illustrated for a two-dimensional input space \mathbf{x} in Figure 5.13. The resulting decision boundaries correspond to surfaces along which the posterior probabilities $p(\mathcal{C}_k|\mathbf{x})$