Let's find the volume of the solid obtained by rotating about the *y*-axis the region bounded by $y = 2x^2 - x^3$ and y = 0.

To compute the inner radius and the outer radius of the washer, we have to solve the cubic equation $y = 2x^2 - x^3$ for x in terms of y; Hard!

Let S be the solid obtained by rotating about the y-axis the region bounded by y = f(x) [where $f(x) \ge 0$], y = 0, x = a, and x = b, where $b > a \ge 0$.

We divide the interval [a, b] into n subintervals $[x_{i-1}, x_i]$ of equal width Δx and let \overline{x}_i be the midpoint of the ith subinterval.

If the rectangle with base $[x_{i-1}, x_i]$ and height $f(\overline{x}_i)$ is rotated about the *y*-axis, then the result is a cylindrical shell with average radius \overline{x}_i , height $f(\overline{x}_i)$, and thickness Δx its volume is

$$V_i = (2\pi \overline{x}_i)[f(\overline{x}_i)] \Delta x$$

$$\lim_{n\to\infty}\sum_{i=1}^n 2\pi \overline{x}_i f(\overline{x}_i) \Delta x = \int_a^b 2\pi x f(x) dx$$

Example

Find the volume of the solid obtained by rotating about the *y*-axis the region bounded by $y = 2x^2 - x^3$ and y = 0.

Solution:

Figure 6