DISCLAIMER

Questo è un file che contiene una lista di tutti i teoremi, osservazioni, definizioni, esempi, lemmi, corollari, formule e proposizioni **senza alcuna dimostrazione**, di conseguenza molte informazioni risulteranno essere senza alcun contesto se già non si conosce la materia. Detto questo, buona lettura

Algebra relazionale

Definizione 1

- Dominio
 - ullet A insieme finito o infinito
 - A, in algebra relazionale, è detto dominio

Definizione 2

- Prodotto cartesiano
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $D_1 \times \ldots \times D_n := \{v_1, \ldots, v_n) \mid v_1 \in D_1, \ldots, v_n \in D_n\}$ è detto **prodotto** cartesiano dei domini $D_1, \ldots D_n$

Definizione 3

- Relazione
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $k \in [1, n]$
 - $R \subseteq D_1 \times ... \times D_k$ è detta relazione di grado k
 - $-(t_1,\ldots,t_k)\in R$ è detta tupla di cardinalità k
 - $\forall i \in [1, k] \quad (t_1, \dots, t_k)[i] = t_i$
 - $\forall a, b \in [1, k] \mid a < b \quad (t_1, \dots, t_k)[a, b] = (t_a, \dots, t_b)$

Definizione 4

- Schema relazionale
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ è detto schema relazionale
 - -R, in algebra relazionale, è categorizzata tramite **attributi**, denotati con A_i , nomi con i quali si etichettano le colonne della tabella, dunque uno schema relazionale è l'insieme delle etichette
 - $\forall i \in [1, n] \quad \text{dom}(A_i) := D_i \text{ è detto dominio di } A_i$
 - $\forall i \in [1, n] \quad A_i \in dom(A_i)$

• Istanza di una relazione

- $n \in \mathbb{N}$
- D_1, \ldots, D_n domini
- $k \in [1, n]$
- $R \subseteq D_1 \times \ldots \times D_k$ relazione
- $R(A_1, \ldots, A_n)$ schema relazionale
- D_1, \ldots, D_k , l'insieme delle tuple di R, è detta istanza della relazione R

Operazioni

Definizione 5

• Proiezione

- $n \in \mathbb{N}$
- D_1, \ldots, D_n domini
- $R \subseteq D_1 \times \ldots \times D_n$ relazione
- $R(A_1, \ldots, A_n)$ schema relazionale
- $a, b \in [1, n] \mid a < b$
- $\pi_{A_a,...,A_b}(R) := D_a \times ... \times D_b$ è detta **proiezione di** R, associata ad uno schema relazionale $R(A_a, \ldots, A_b)$

• Selezione

- $n \in \mathbb{N}$
- D_1, \ldots, D_n domini
- $R \subseteq D_1 \times \ldots \times D_n$ relazione
- $R(A_1, \ldots, A_n)$ schema relazionale
- C espressione booleana
- $\sigma_C(R) \subseteq D_1 \times \ldots \times D_n$ è detta selezione di R
 - corrisponde all'insieme delle righe della tabella che rendono la condizione C

• Rinominazione

- $n \in \mathbb{N}$
- D_1, \ldots, D_n domini
- $R \subseteq D_1 \times \ldots \times D_n$ relazione
- $R(A_1, \ldots, A_n)$ schema relazionale
- $R' = \rho_{A'_1 \leftarrow A_1}(R)$, dove ρ è detto operatore di rinominazione
 - -R' sarà uno schema relazionale con la stessa istanza di R, ma con A_1 rinominato con A'_1

• Unione

- $D_1, \ldots, D_n, D'_1, \ldots, D'_n$ domini $| \forall i \in [1, n] \quad D_i = D'_i$
- $R_1 \subseteq D_1 \times \ldots \times D_n$ relazione
- $R_2 \subseteq D_1' \times \ldots \times D_n'$ relazione $R_1(A_1,\ldots,A_n)$ schema relazionale

- $R_2(A'_1,\ldots,A'_n)$ schema relazionale
- r_1 istanza di R_1
- r_2 istanza di R_2
- $r_1 \cup r_2 := \{t \mid t \in r_1 \lor t \in r_2\}$ è detta unione delle istanze r_1 e r_2
 - dunque, l'unione di istanze è definita solamente per istanze con stesso numero di attributi, e attributi con stesso dominio

• Differenza

- $n \in \mathbb{N}$
- $D_1, \ldots, D_n, D'_1, \ldots, D'_n$ domini $| \forall i \in [1, n] \quad D_i = D'_i$
- $R_1 \subseteq D_1 \times \ldots \times D_n$ relazione
- $R_2 \subseteq D_1' \times \ldots \times D_n'$ relazione
- $R_1(A_1, \ldots, A_n)$ schema relazionale
- $R_2(A_1,\ldots,A_n)$ schema relazionale
- r_1 istanza di R_1
- r_2 istanza di R_2
- $r_2 r_1 := \{t \mid t \in r_2 \land t \notin r_1\}$ è detta differenza delle istanze r_1 e r_2
 - dunque, la differenza di istanze è definita solamente per istanze con stesso numero di attributi, e attributi con stesso dominio

• Intersezione

- $n \in \mathbb{N}$
- $D_1, \ldots, D_n, D'_1, \ldots, D'_n$ domini $| \forall i \in [1, n] \quad D_i = D'_i$
- $R_1 \subseteq D_1 \times \ldots \times D_n$ relazione
- $R_2 \subseteq D_1' \times \ldots \times D_n'$ relazione
- $R_1(A_1,\ldots,A_n)$ schema relazionale
- $R_2(A'_1,\ldots,A'_n)$ schema relazionale
- r_1 istanza di R_1
- r_2 istanza di R_2
- $r_1 \cap r_2 := r_2 (r_2 r_1)$ è detta intersezione delle istanze r_1 e r_2
 - dunque, la differenza di istanze è definita solamente per istanze con stesso numero di attributi, e attributi con stesso dominio

• Prodotto cartesiano

- $n \in \mathbb{N}$
- $D_1, \ldots, D_n, D'_1, \ldots, D'_n$ domini $| \forall i \in [1, n] \quad D_i = D'_i$
- $R_1 \subseteq D_1 \times \ldots \times D_n$ relazione
- $R_2 \subseteq D_1' \times \ldots \times D_n'$ relazione
- $R_1(A_1, \ldots, A_n)$ schema relazionale
- $R_2(A'_1,\ldots,A'_n)$ schema relazionale
- r_1 istanza di R_1
- r_2 istanza di R_2
- $r_1 \times r_2 := \{(t_1,t_2) \mid t_1 \in r_1 \wedge t_2 \in r_2\}$ è detto prodotto cartesiano delle istanze r_2 e r_2

Definizione 6

- Hp
 - $-n \in \mathbb{N}$

- $\begin{array}{ll} -D_1,\ldots,D_B,\ldots,D_n,D_1',\ldots,D_B',\ldots,D_n' \text{ domini } | \ \forall i \in [1,n] \\ -R_1 \subseteq D_1 \times \ldots \times D_B \times \ldots \times D_n \text{ relazione} \\ -R_2 \subseteq D_1' \times \ldots \times D_B' \times \ldots \times D_n' \text{ relazione} \end{array}$

- $-R_1(A_1,\ldots,B,\ldots,A_n)$ schema relazionale
- $-R_2(A_1,\ldots,B,\ldots,A_n)$ schema relazionale
- $-r_1$ istanza di R_1
- $-r_2$ istanza di R_2

• Oss

- in questa situazione, si verifica che $r_1 \times r_2$ conterrà delle tuple senza significato, poiché esiste un attributo con stesso nome in R_1 e in R_2 , ovvero B
- per risolvere questo problema, spesso l'operatore × viene utilizzato congiuntamente a
 - * infatti, per ottenere un prodotto cartesiano con significato è necessario prima rinominare l'attributo in comune in uno dei due schemi relazionali, per differenziarli, e dunque $R'_2 = \rho_{B' \leftarrow B}(R_2)$, e sia r'_2 l'istanza di R'_2
 - * successivamente, facendo $r_1 \times r'_2$, si otterra un'istanza contenente delle tuple ancora senza significato, che sarà possibile rimuovere selezionando attraverso $\sigma_{B'=B}(r_1 \times r_2')$
 - * infine, a questo punto si avranno due colonne perfettamente identiche, e dunque è sufficiente proiettare prendendo solo una delle colonne tra B e B', e quindi $\pi_{A_1,\dots,B,\dots,A_n,A_1',\dots,\hat{B}',\dots,A_n'}(\sigma_{B=B'}(r_1\times r_2'))$ è il prodotto cartesiano cercato

Def

- · Join naturale
 - $n \in \mathbb{N}$
 - $D_1, \ldots, D_n, D'_1, \ldots, D'_n$ domini $| \forall i \in [1, n] \quad D_i = D'_i$
 - $R_1 \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R_2 \subseteq D'_1 \times \ldots \times D'_n$ relazione
 - $R_1(A_1, \ldots, A_n)$ schema relazionale
 - $R_2(A_1, \ldots, A_n)$ schema relazionale
 - r_1 istanza di R_1
 - r_2 istanza di R_2
 - $r_1 \bowtie r_2$ è detto join naturale di r_1 e r_2 !!! SCRIVERE BENE LA
 - dunque, il join naturale costituisce il prodotto cartesiano "con significato" discusso precedentemente SCRIVERE BENE LA DEFINIZIONE
 - dunque, il join naturale costituisce il prodotto cartesiano "con significato" discusso precedentemente

Teorema 1

!!! 4.30

Teorema 2

 $-n \in \mathbb{N}$

```
-D_1,\ldots,D_n,D'_1,\ldots,D'_n \text{ domini } | \forall i \in [1,n] \quad D_i = D'_i
-R_1 \subseteq D_1 \times \ldots \times D_n \text{ relazione}
-R_2 \subseteq D'_1 \times \ldots \times D'_n \text{ relazione}
-R_1(A_1,\ldots,A_n) \text{ schema relazionale}
-R_2(A'_1,\ldots,A'_n) \text{ schema relazionale}
- \nexists A \in \{A_1,\ldots,A_n,A'_1,\ldots,A'_n\} \mid \exists A' \in \{A_1,\ldots,A_n,A'_1,\ldots,A'_n\} : A = A', \text{ dunque gli attributi di } R_1 \text{ ed } R_2 \text{ sono tutti distinti}
-r_1 \text{ istanza di } R_1
-r_2 \text{ istanza di } R_2
 \text{Th}
```

Dipendenze funzionali

Definizione 7

- Dipendenza funzionale
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - $X = \{A_i \mid A_i \in R(A_1, \dots, A_n)\} \mid X \neq \emptyset$
 - $Y = \{A_i \mid A_i \in R(A_1, ..., A_n)\} \mid Y \neq \emptyset$
 - $X \to Y$ è detta dipendenza funzionale su R
 - r istanza di R soddisfa $X \to Y \iff \forall t_1, t_2 \in R$ $t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$
- Istanza legale
 - $n, k \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - F_1, \ldots, F_k dipendenze funzionali su R
 - $F = \{F_1, \ldots, F_k\}$
 - r istanza di R legale su $F \iff \forall i \in [1, k] \quad r$ soddisfa F_i

Definizione 8

- Chiusura di un insieme di dipendenze funzionali
 - $n, k \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - F_1, \ldots, F_k dipendenze funzionali su R
 - $F = \{F_1, \dots, F_k\}$
 - $L = \{r \text{ istanza di } R \mid r \text{ legale su } F\}$

- $F^+ := \bigcup \{ \text{dipendenze funzionali in } r \}$
 - -ovvero, è l'insieme delle dipendenze funzionali derivabili da ogni istanza legale su ${\cal F}$
 - -di fatto, ogni istanza legale in L soddisferà ogni dipendenza funzionale in ${\cal F}^+$

Teorema 3

• **Hp** $-n, k \in \mathbb{N}$ $-D_1, \dots, D_n \text{ domini}$ $-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$ $-R(A_1, \dots, A_n) \text{ schema relazionale}$ $-F_1, \dots, F_k \text{ dipendenze funzionali su } R$ $-F = \{F_1, \dots, F_k\}$ • **Th** $-F \subset F^+$

Teorema 4

• **Hp** $-n, k \in \mathbb{K}$ $-D_1, \dots, D_n \text{ domini}$ $-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$ $-R(A_1, \dots, A_n) \text{ schema relazionale}$ $-X, Y \subseteq R(A_1, \dots, A_n) \mid Y \subseteq X$ $-F_1, \dots, F_k \text{ dipendenze funzionali su } R$ $-F = \{F_1, \dots, F_k\}$ • **Th** $-X \to Y \in F^+$

Definizione 9

- Chiave di una relazione
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - $X \subseteq R(A_1, ..., A_n)$ è detta superchiave di $R \iff \forall r$ istanza di $R \quad \forall t_1, t_2 \in r \quad t_1[X] = t_2[X] \implies t_1 = t_2$
 - X è detta chiave di $R \iff X$ è la chiave di R con minor numero di attributi

Teorema 5

• Hp $-n \in \mathbb{N}$ $-D_1, \dots, D_n \text{ domini}$ $-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$

```
- R(A_1, ..., A_n) schema relazionale

- K \subseteq R(A_1, ..., A_n)

• Th

- K superchiave di R \iff K \to R \in F^+

- K chiave di R \iff K superchiave di R \land \nexists K' \subseteq K \mid K' \to R
```

Assiomi di Armstrong

Definizione 10

- Assiomi di Armstrong
 - $n, k \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - F_1, \ldots, F_k dipendenze funzionali su R
 - $F = \{F_1, \dots, F_k\}$
 - F^A è l'insieme delle dipendenze funzionali ottenute partendo da F applicando gli assiomi di Armstrong
 - $\forall X, Y \subseteq R(A_1, \dots, A_n) \quad X \to Y \in F \implies X \to Y \in F^A$
 - $\forall X,Y\subseteq R(A_1,\ldots,A_n)$ $Y\subseteq X\implies X\to Y\in F^A$ è detto assioma della riflessività
 - $\forall X,Y,Z\subseteq R(A_1,\ldots,A_n)$ $X\to Y\in F^A\implies XZ\to YZ\in F^A$ è detto assioma dell'aumento
 - $\forall X,Y\subseteq R(A_1,\ldots,A_n)$ $X\to Y,Y\to Z\in F^A\implies X\to Z\in F^A$ è detto assioma della transitività

Teorema 6

```
• Hp
-n, k \in \mathbb{N}
-D_1, \dots, D_n \text{ domini}
-R \subseteq D_1 \times \dots \times D_n \text{ relazione}
-R(A_1, \dots, A_n) \text{ schema relazionale}
-F_1, \dots, F_k \text{ dipendenze funzionali su } R
-F = \{F_1, \dots, F_k\}
• Th
-F \subseteq F^A
```

Teorema 7

• **Hp**

$$-n, k \in \mathbb{N}$$

$$-D_1, \dots, D_n \text{ domini}$$

$$-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$$

$$-R(A_1, \dots, A_n) \text{ schema relazionale}$$

$$-X, Y, Z \subseteq R(A_1, \dots, A_n)$$

```
\begin{array}{l} -F_1,\ldots,F_k \text{ dipendenze funzionali su }R\\ -F=\{F_1,\ldots,F_k\} \end{array}
• Th-X\to Y, X\to Z\in F^A\implies X\to YZ\in F^A \text{ è detta regola dell'unione}
```

Teorema 8

• Hp $-n,k\in\mathbb{N}$ $-D_1,\ldots,D_n \text{ domini}$ $-R\subseteq D_1\times\ldots\times D_n \text{ relazione}$ $-R(A_1,\ldots,A_n) \text{ schema relazionale}$ $-X,Y,Z\subseteq R(A_1,\ldots,A_n)$ $-F_1,\ldots,F_k \text{ dipendenze funzionali su } R$ $-F=\{F_1,\ldots,F_k\}$ • Th $-X\to Y\in F^A\wedge Z\subseteq Y\implies X\to Z\in F^A \text{ è detta regola della decomposizione}$

Teorema 9

• Hp
$$-n,k\in\mathbb{N}$$

$$-D_1,\ldots,D_n \text{ domini}$$

$$-R\subseteq D_1\times\ldots\times D_n \text{ relazione}$$

$$-R(A_1,\ldots,A_n) \text{ schema relazionale}$$

$$-X,Y,Z\subseteq R(A_1,\ldots,A_n)$$

$$-F_1,\ldots,F_k \text{ dipendenze funzionali su } R$$

$$-F=\{F_1,\ldots,F_k\}$$
• Th
$$-X\to Y,WY\to Z\in F^A\implies XW\to Z\in F^A \text{ è detta regola della pseudotransitività}$$

Teorema 10

• Hp
$$-n,k \in \mathbb{N}$$

$$-i,j \in [1,n] \mid i < j$$

$$-D_1, \ldots, D_n \text{ domini}$$

$$-R \subseteq D_1 \times \ldots \times D_n \text{ relazione}$$

$$-R(A_1, \ldots, A_n) \text{ schema relazionale}$$

$$-A_i, \ldots, A_j \subseteq R(A_1, \ldots, A_n)$$

$$-F_1, \ldots, F_k \text{ dipendenze funzionali su } R$$

$$-F = \{F_1, \ldots, F_k\}$$
• Th
$$-X \to A_i \ldots A_j \in F^A \iff \forall h \in [i,j] \quad X \to A_h \in F^A$$

Definizione 11

• Chiusura di un insieme di attributi

- $n, k \in \mathbb{N}$
- D_1, \ldots, D_n domini
- $R \subseteq D_1 \times \ldots \times D_n$ relazione
- $R(A_1, \ldots, A_n)$ schema relazionale
- $X \subseteq R(A_1, \ldots, A_n)$
- F_1, \ldots, F_k dipendenze funzionali su R
- $F = \{F_1, \dots, F_k\}$
- $X_F^+ := \{A \subseteq R(A_1, \dots, A_n) \mid X \to A \in F^A\}$ è detta chiusura di X rispetto ad F
 - $-\,$ ovvero, è l'insieme degli attributi funzionalmente dipendenti da Xattraverso l'applicazione degli assiomi di Armstrong

Teorema 11

• **Hp** $-n, k \in \mathbb{N}$ $-D_1, \dots, D_n \text{ domini}$ $-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$ $-R(A_1, \dots, A_n) \text{ schema relazionale}$ $-X \subseteq R(A_1, \dots, A_n)$ $-F_1, \dots, F_k \text{ dipendenze funzionali su } R$ $-F = \{F_1, \dots, F_k\}$ • **Th** $-X \subseteq X_F^+$

Teorema 12

• **Hp**

$$-n,k\in\mathbb{N}$$

$$-D_1,\ldots,D_n \text{ domini}$$

$$-R\subseteq D_1\times\ldots\times D_n \text{ relazione}$$

$$-R(A_1,\ldots,A_n) \text{ schema relazionale}$$

$$-X,Y\subseteq R(A_1,\ldots,A_n)$$

$$-F_1,\ldots,F_k \text{ dipendenze funzionali su } R$$

$$-F=\{F_1,\ldots,F_k\}$$
• **Th**

$$-X\to Y\in F^A\iff Y\subseteq X_F^+$$

Teorema 13

• **Hp**

$$-n, k \in \mathbb{N}$$

$$-D_1, \dots, D_n \text{ domini}$$

$$-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$$

$$-R(A_1, \dots, A_n) \text{ schema relazionale}$$

$$-F_1, \dots, F_k \text{ dipendenze funzionali su } R$$

$$-F = \{F_1, \dots, F_k\}$$
• **Th**

$$-F^+ = F^A$$