TPM is not the holy way

Benoît Forgette

03/06/2022

Table of Contents

Presentation

Story telling

State of the art
TPM2.0 protocol
TPM chipset
Existing TPM sniffer

TPMEavesEmu TPMEE
Sniffing by emulation
Case studied
Attack on encrypted sessions

MITM attack

Conclusion

Presentation

- ► Benoit Forgette (MadSquirrel)
- ► Security research engineer
- ► Embeded devices/Android/Automation

Presentation

Q

- ► Benoit Forgette (MadSquirrel)
- Security research engineer
- ► Embeded devices/Android/Automation

Table of Contents

Presentation

Story telling

State of the art
TPM2.0 protocol
TPM chipset
Existing TPM sniffer

TPMEavesEmu TPMEE

Sniffing by emulation Case studied Attack on encrypted sessions

MITM attack

Conclusion

Story telling

OnLogic Helix 310

Story telling

TPM NPCT750 (25€)

Table of Contents

Presentation

Story telling

State of the art

TPM2.0 protocol
TPM chipset
Existing TPM sniffer

TPMEavesEmu TPMEE

Sniffing by emulation Case studied Attack on encrypted sessions

MITM attack

Conclusion

Motherboard connection

TPM protocol

TPM2.0 protocol

TPM2 Session authentication

TPM2.0 protocol

TPM2 Session encryption

TPM chipset

Integrity of each boot step store inside the TPM chip

TPM chipset

BIOS Code	PCR 0		
BIOS Configuration	PCR 1		
Option ROM Code	PCR 2	Static operating system	PCR 8 to 15
Option ROM Configuration	PCR 3		
MBR Code	PCR 4		
MBR configuration	PCR 5	Debug	PCR 16
State transition and wake event	PCR 6	Application support	PCR 23
Platform manufacturer-specific measurements	PCR 7		

TPM chipset

BIOS Code	PCR 0	Grub command line	PCR 8
BIOS Configuration	PCR 1	Executed Modules Grub	PCR 9
Option ROM Code	PCR 2	Grub binary or IMA	PCR 10
Option ROM Configuration	PCR 3	Kernel and initrd	PCR 11
MBR Code	PCR 4	Entire booting process	PCR 12
MBR configuration	PCR 5	Debug	PCR 16
State transition and wake event	PCR 6	Application support	PCR 23
Platform manufacturer-specific measurements	PCR 7		

Existing TPM sniffer

- ▶ LPC protocol, we can use TPM Specific LPC Sniffer
- ► SPI protocol, we can use Bitlocker SPI toolkit
- ► I2C protocol, we can use TPMGenie

TPM Specific LPC Sniffer and Bitlocker SPI toolkit are really specific on Windows

Table of Contents

Presentation

Story telling

State of the art
TPM2.0 protocol
TPM chipset
Existing TPM sniffer

TPMEavesEmu TPMEE

Sniffing by emulation Case studied Attack on encrypted sessions

MITM attack

Conclusion

Sniffing by emulation

	PCRs checking	Authentication	Encryption
Tpm2-initramfs-tool	not by default	enable	disable
Systemd-cryptenroll	not by default	enable	disable
Clevis	not at all	enable	disable
Bitlocker	in progress	enable	disable

	PCRs checking	Authentication	Encryption
Tpm2-initramfs-tool	not by default	enable	disable
Systemd-cryptenroll	not by default	enable	disable
Clevis	not by default	enable	disable
Bitlocker	in progress	enable	disable

Summary of the attack

BIOS Code	undetected	PCR 0
BIOS Configuration	detected	PCR 1
Option ROM Code	undetected	PCR 2
Option ROM Configuration	undetected	PCR 3
MBR Code	detected	PCR 4
MBR configuration	undetected	PCR 5
State transition and wake event	undetected	PCR 6
Platform manufacturer-specific measurements	undetected	PCR 7

Grub command line	detected	PCR 8
Executed Modules Grub	detected	PCR 9
Grub binary or IMA	undetected	PCR 10
Kernel and initrd	undetected	PCR 11
Entire booting process	undetected	PCR 12
Debug	undetected	PCR 16
Application support	undetected	PCR 23

Summary of the attack

BIOS Code	undetected	PCR 0
BIOS Configuration	detected	PCR 1
Option ROM Code	undetected	PCR 2
Option ROM Configuration	undetected	PCR 3
MBR Code	detected	PCR 4
MBR configuration	undetected	PCR 5
State transition and wake event	undetected	PCR 6

Grub command line	detected	PCR 8
Executed Modules Grub	detected	PCR 9
Grub binary or IMA	undetected	PCR 10
Kernel and initrd	undetected	PCR 11
Entire booting process	undetected	PCR 12
Debug	undetected	PCR 16
Application support	undetected	PCR 23

Use by bitlocker

Demo

Demo

Dump memory 1. Break when the PC is on high address (>0xfffffff0000...) 2. Dump the RAM vmlinuz-5.10.0-9-amd64 5.10.0-9-amd64 (debian-kernel@lists.debian.org) ... 5.10.0-9-amd64 SMP mod_unload modversions /lib/firmware/5.10.0-9-amd64 vermagic=5.10.0-9-amd64 /usr/src/linux-headers-5.10.0-9-amd64 linux-kbuild-5.10 (>= 5.10.70-1) APT: LastinstalledKernel "5.10.0-9-amd64": 5.10.0-9-amd64 vermagic=5.10.0-9-amd64 SMP mod_unload modversions CUPS/2.3.3on2 (Linux 5.10.0-9-amd64: x86-64) IPP/2.0 p2 (Linux 5.10.0-9-amd64; x86 64) IPP/2.0 boot/initrd.img-5.10.0-9-amd64 hoot/vmlinuz-5 10 0-9-amd64 /uer/erc/linux-headers-5 10 0-9-amd64 /lib/modules/5.10.0-9-amd64 /usr/share/bug/linux-image-5.10.0-9-amd64 OSRFI FASE=5 10.0-9-amd64 OSRFI EASE=5.10.0-9-amd64

Table of Contents

Presentation

Story telling

State of the art
TPM2.0 protocol
TPM chipset
Existing TPM sniffer

TPMEavesEmu TPMEE
Sniffing by emulation
Case studied
Attack on encrypted sessions

MITM attack

Conclusion

MITM attack

MITM attack

MITM attack

Table of Contents

Presentation

Story telling

State of the art
TPM2.0 protocol
TPM chipset
Existing TPM sniffer

TPMEavesEmu TPMEE
Sniffing by emulation
Case studied
Attack on encrypted sessions

MITM attack

Conclusion

To summarize:

- 1. Some boot decryption implementation don't check PCR register.
- 2. An USB boot is enable on BIOS or that BIOS is vulnerable.

To summarize:

- 1. Some boot decryption implementation don't check PCR register.
- 2. An USB boot is enable on BIOS or that BIOS is vulnerable.
- All comunication can be sniffed;
- MITM on TPM protocol is possible;
- Priviledge escalation is possible to gain a root access.

To summarize:

- 1. Some boot decryption implementation don't check PCR register.
- 2. An USB boot is enable on BIOS or that BIOS is vulnerable.
- All comunication can be sniffed;
- MITM on TPM protocol is possible;
- Priviledge escalation is possible to gain a root access.

What you should do?

To summarize:

- 1. Some boot decryption implementation don't check PCR register.
- 2. An USB boot is enable on BIOS or that BIOS is vulnerable.
- All comunication can be sniffed;
- MITM on TPM protocol is possible;
- Priviledge escalation is possible to gain a root access.

What you should do?

- Encrypt the communication
- Verify the PCRs!

To summarize:

- 1. Some boot decryption implementation don't check PCR register.
- 2. An USB boot is enable on BIOS or that BIOS is vulnerable.
- All comunication can be sniffed;
- MITM on TPM protocol is possible;
- Priviledge escalation is possible to gain a root access.

What you should do?

- Encrypt the communication
- Verify the PCRs!

The tool is available at https://github.com/quarkslab/tpmee

Thank you

Contact information:

Email: bforgette@quarkslab.com

Phone: +33 1 58 30 81 51

Website: https://www.quarkslab.com

Twitter: https://twitter.com/Mad5quirrel

Quarkslab

