Causality and Causal Misperception in Dynamic Games

Sungmin Park

The Ohio State University

May 18, 2024

What I do

Question

What is a useful way to model people's

misperceptions about causal relationships?

Answer

Let agents have observation-consistent expectations

(OCE) or Maximum Entropy (MaxEnt) OCE

Motivation

Difficulty of correct causal inference

Inferring causality from observed data is difficult

- Difficulty is due to unobserved variables or simultaneity, e.g.:
 - What is the effect of education on earnings?
 - What is the effect of police on crime?
- The challenge persists even as the sample size grows large
- Much work by econometricians, applied microeconomists, statisticians, and computer scientists is to address this hurdle

Given this difficulty, why should we expect agents in our models to have correct beliefs about causality?

Books on causal inference

IIIDEA PEARI

Main results

OCE and MaxEnt OCE

An observation-consistent expectations (OCE) is maximum entropy (MaxEnt) OCE if and only if it exhibits correlation neglect

MaxEnt OCE Equilibrium Every finite extensive-form game with perfect recall and observational constraint has a MaxEnt OCE equilibrium.

Causality

(Not today)

A causal relation satisfies the axioms of causation if and only if it has a probabilistic "event structure representation."

Literature

Decision making under causal misperceptions

- Theory: DM's perception is distorted by a subjective DAG* that is exogenous (Spiegler, 2016, 2022, 2023) or chosen by DM (Eliaz and Spiegler, 2020; Eliaz et al., 2022)
 - * A directed acyclic graph (DAG) specifies a set of conditional independence assumptions between random variables.
- Experiment: When subjects are given the same data but are presented with different causal narratives, they make different choices (Kendall and Charles, 2022)

Self-confirming equilibrium (SCE) and conjectural equilibrium (CE)

- SCE: Each player has a correct belief about others' strategies on the equilibrium path of play (Fudenberg and Levine, 1993; Fudenberg and Kreps, 1995)
- CE: Each player has a belief about others' strategies consistent with observation (Battigalli and Guaitoli, 1988; Battigalli, 1997; Azrieli, 2009)

Simplest example

And a silly one; smokers please don't take this seriously

A smoker's decision problem

- Smoker chooses to smoke (s = 1) or not (s = 0)
- Nature gives cancer (y = 1) with probability π_s and no cancer (y = 0) with probability 1 π_s
 Smoking causes cancer: π₁ > π₀
- ullet Smoker gets r for smoking and 1 for staying healthy
- A strategy is the probability $\sigma \in [0,1]$ of smoking.
- A smoker's **belief** is $\beta = (\beta_0, \beta_1)$ where β_s is the subjective probability of getting cancer with s.

OCE

Definition (OCE)

Given strategy $\sigma\in[0,1]$, an observation-consistent expectations (OCE) is a belief $\beta\in[0,1]^2$ such that

$$(1-\sigma)\beta_0 + \sigma\beta_1 = (1-\sigma)\pi_0 + \sigma\pi_1.$$

Interpretation

- Smoker sees others choosing σ and getting cancer with frequencey $\sigma \pi_1 + (1 \sigma)\pi_0$, but does not know π_0 or π_1
- What the smoker thinks Nature does (β) and what Nature really does (π) are observationally equivalent

Illustration of OCE

Observational equivalence

What I think Nature does

What Nature **really** does

Remark: There are infinitely many OCEs for any strategy $\sigma \in [0,1]$.

MaxEnt OCE

Let $\mathbf{p}(\sigma, \beta)$ be the vector of probabilities over the 4 outcomes (s, y):

$$\mathbf{p}(\sigma,\beta) = [\sigma\beta_1 \quad \sigma(1-\beta_1) \quad (1-\sigma)\beta_0 \quad (1-\sigma)(1-\beta_0)]^T.$$

Definition (MaxEnt OCE)

Given strategy $\sigma \in (0,1)$, an OCE $\beta^* \in [0,1]^2$ is a maximum entropy (MaxEnt) OCE if it satisfies

$$\beta^* \in \operatorname*{argmax}_{\beta \in [0,1]^2} G(\mathbf{p}(\sigma,\beta))$$
 subject to
$$(1-\sigma)\beta_0 + \sigma\beta_1 = (1-\sigma)\pi_0 + \sigma\pi_1, \qquad (\beta \text{ is an OCE})$$
 where $G(\cdot)$ is the Shannon entropy function.

Interpretation

MaxEnt OCE is the belief with the least information among all OCEs

Result

MaxEnt OCE ⇒ correlation neglect

Proposition

For every $\sigma \in (0,1)$, the MaxEnt OCE β^* satisfies

$$\beta_0^* = \beta_1^* = (1 - \sigma)\pi_0 + \sigma\pi_1.$$

Meaning. The smoker doesn't think smoking causes cancer

Intuition. The smoker observes no evidence of dependence between smoking and cancer, so he believes in none.

General result (Theorem 1). MaxEnt OCE ⇔ correlation neglect, whenever agents observe only the marginal prob. distribution between two variables

Definition of equilibrium

Motivation

- ullet OCE and MaxEnt OCE take the strategy σ as given
- Is there an equilibrium where this σ is subjectively optimal?

Definition

A strategy-belief pair (σ, β) is an **OCE equilibrium** if

- **1** Given the belief β , the strategy σ is a best response, and
- **2** Given the strategy σ , the belief β is an OCE.

An OCE equilibrium (σ,β) is a MaxEnt OCE equilibrium if some $\{(\sigma^j,\beta^j)\}_{j=1}^\infty \to (\sigma,\beta)$ where each σ^j is the MaxEnt OCE given β .

Result: OCE equilibria

Every strategy is rationalizable with some OCE

Proposition

A strategy-belief pair (σ, β) is an OCE equilibrium if and only if

1
$$\sigma = 0$$
, $\beta_0 = \pi_0$, and $\beta_1 \ge \pi_0 + r$,

2
$$\sigma = 1$$
, $\beta_1 = \pi_1$, and $\beta_0 \ge \pi_1 - r$, or

3
$$\sigma \in (0,1)$$
, $\beta_0 = (1-\sigma)\pi_0 + \sigma(\pi_1 - r)$, and $\beta_1 = (1-\sigma)(\pi_0 + r) + \sigma\pi_1$.

What I **think** Nature does

Nature $[\beta_1]$ Smoke No cancer $[1-\beta_1]$ Smoker $[\alpha]$ Don't smoke $[1-\sigma]$ Nature $[\alpha]$ No cancer $[\beta_0]$

What Nature **really** does

Result: MaxEnt equilibrium

A sharper prediction

Proposition

A strategy-belief pair (σ, β) is a MaxEnt OCE equilibrium if and only if

$$\sigma=1$$
 and $(\beta_0,\beta_1)=(\pi_1,\pi_1).$

Meaning

Continue smoking while thinking that smoking doesn't cause cancer

Intuition

 MaxEnt OCE implies correlation neglect, so no other strategy is a best response.

Generalizing the observational constraint

Motivation

 Correlation neglect sounds too naïve. Can we make agents more sophisticated? Yes! Give them better observation

Definition

Given an observation constraint matrix C and strategy σ , an OCE is a belief

 β such that

$$C\mathbf{p}(\sigma,\beta) = C\mathbf{p}(\sigma,\pi).$$

Examples of C:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

Generalizing the approach to extensive-form games

Finite extensive-form game with perfect recall + observational constraint

- *N*: set of players,
- *H*: set of histories,
- ι: mapping of non-terminal histories to players,
- π : probability distribution of Nature's moves,
- ullet \mathcal{I} : collection of information sets,
- u: payoff function, and
- C: observational constraint matrix

OCE and MaxEnt OCE

- σ_i : Player *i*'s (behavioral) strategy
- β_i : Player *i*'s belief about others' moves (including Nature's)

Definition

Let a strategy profile σ be given. A belief β_i is an OCE for player i if

$$C\mathbf{p}(\sigma_i, \beta_i) = C\mathbf{p}(\sigma_i, (\pi, \sigma_{-i})).$$

Let a totally mixed strategy profile σ be given. An OCE β_i^* for player i is a MaxEnt OCE for player i if

$$\beta_i^* \in \operatorname*{argmax}_{\beta_i \text{ is an OCE}_i(\sigma_{-i})} G(\mathbf{p}(\sigma_i, \beta_i)),$$

where G is the Shannon entropy function.

Equilibrium

• μ_i : Player i's posteriors over histories within information sets

Definition

A triple (σ, β, μ) is an **OCE equilibrium** if for every player i,

- **1** (Sequential rationality) the strategy σ_i is sequentially rational given (β_i, μ_i) : $\sigma_i \in \operatorname{argmax} u_i(\sigma_i, \beta_i, \mu_i | I)$ at every info set $I \in \mathcal{I}_i$
- **2** (Observational consistency) the belief β_i is an OCE given σ , and
- **3** (Bayes-consistency) the posterior function μ_i satisfies Bayes rule given (σ_i, β_i) .

An OCE equilibrium (σ, β, μ) is a MaxEnt OCE equilibrium if there exists $\{(\sigma^k, \beta^k)_{k=1}^{\infty}\} \to (\sigma, \beta)$ where each β_i^k is the MaxEnt OCE given σ^k .

Result: existence

Theorem

Every finite extensive-form game with perfect recall and observational constraint has a MaxEnt OCE equilibrium.

Meaning

 There always exists an equilibrium where everyone is best-responding to their misperceptions, even as those beliefs are the least informed ones based on observation.

Proof idea

• With ϵ -constrained strategies, mappings from a strategy profile σ to a MaxEnt OCE β and posterior function μ are well-behaved.

Illustration: Ultimatum-like game with causal misperception

Manager-Worker game

- Manager (Player 1) decides a fair or unfair bonus to Worker (Player 2)
- Even if manager chooses a fair bonus, Nature might change it to unfair or keep it fair
- If worker receives fair bonus, he accepts. If not, he either accepts or rejects.
 - o He gets a thrill for rejecting an unfair Manager
- Worker doesn't know how likely Manager treats him unfairly ex ante or ex post

$$C = \begin{bmatrix} 1 & \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \end{bmatrix}$$

Standard prediction

Proposition

In the unique Perfect Bayesian Equilibrium,

- Manager offers an unfair bonus 1 out of 7 times
- Worker accepts an unfair bonus 5 out of 9 times
 - He infers (correctly) that any unfair offer is due to Manager 1 out of 3 times

Perfect Bayesian Equilibrium Nature Fair [6/7]Unfair Unfair Accept Reject Reject Accept (Accept) [5/9](9,1)(0,0) (5,5)(9,1)(0,3)

Intuition

 There is no ex-ante uncertainty about other players' strategies, so there is no causal misperception

My prediction

Proposition

In the unique MaxEnt OCE equilibrium,

- Manager always offers the fair bonus
 - o She believes (correctly) worker will reject any unfair offer.
- Worker always rejects an unfair offer.
 - He believes (incorrectly) that Manager offers the unfair bonus 1 out of 6 times
 - He infers (incorrectly) that any unfair offer is due to Manager
 1 out of 2 times

Intuition

 \bullet Worker has no clue about Manager's and Nature's strategies beyond what he observes with C

Takeaways

Use my solution concept if you want to ...

- allow causal misperception in a dynamic model
- let misperception arise endogenously from observational constraints, and
- want narrow predictions

Thank you!

References I

- Azrieli, Yaron (2009) "On pure conjectural equilibrium with non-manipulable information," *International Journal of Game Theory*, 38, 209–219.
- Battigalli, Pierpaolo (1997) "On rationalizability in extensive games," *Journal of Economic Theory*, 74 (1), 40–61.
- Battigalli, Pierpaolo and Danilo Guaitoli (1988) Conjectural equilibria and rationalizability in a macroeconomic game with incomplete information: Università Commerciale L. Bocconi.
- Eliaz, Kfir, Simone Galperti, and Ran Spiegler (2022) "False narratives and political mobilization," arXiv preprint arXiv:2206.12621.
- Eliaz, Kfir and Ran Spiegler (2020) "A model of competing narratives," *American Economic Review*, 110 (12), 3786–3816.
- Fudenberg, Drew and David M Kreps (1995) "Learning in extensive-form games I. Self-confirming equilibria," *Games and Economic Behavior*, 8 (1), 20–55.

References II

- Kendall, Chad W and Constantin Charles (2022) "Causal narratives," Technical report.
- Spiegler, Ran (2016) "Bayesian networks and boundedly rational expectations," *The Quarterly Journal of Economics*, 131 (3), 1243–1290.
- ——— (2022) "On the behavioral consequences of reverse causality," *European Economic Review*, 149, 104258.
- ——— (2023) "Behavioral causal inference," arXiv preprint arXiv:2305.18916.