Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Diffusion Protokoll:

Praktikant: Felix Kurtz

E-Mail: felix.kurtz@stud.uni-goettingen.de

Versuchspartner: Skrollan Detzler Betreuer: Martin Ochmann

Versuchsdatum: 30.06.2014

Note:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	3			
2	Theorie 2.1 Ficksche Gesetze				
3	3.1 Versuchsaufbau	3 4 4			
4	Auswertung4.1 Konzentrationsverlauf in Abhängigkeit der Zeit	4 4 5			
5	Diskussion	5			
6	6 Anhang				
Lit	teratur	5			

1 Einleitung

In diesem Versuch soll das Phänomen der *Diffusion* untersucht werden. Darunter versteht man die Durchmischung von zwei verschiedenen Gasen oder Flüssigkeiten, welche mit der Zeit vonstatten geht. Sie spielt besonders in der Biologie bei osmotischen Prozessen eine große Rolle. Als eine von vielen Transportphänomenen wie Wärmeleitung ist sie jedoch am besten experimentell messbar.

Wir wollen hier die Diffusion von Methylenblau in Wasser untersuchen.

2 Theorie

- 2.1 Ficksche Gesetze
- 2.2 Wheatstone'sche Messbrücke
- 3 Durchführung
- 3.1 Versuchsaufbau

BILD

- 3.2 Konzentrationsverlauf in Abhängigkeit der Zeit
- 3.3 Konzentrationsverlauf in Abhängigkeit des Ortes

4 Auswertung

4.1 Konzentrationsverlauf in Abhängigkeit der Zeit

 $c0/16:(0.00188398\pm2.616~e-005)~\mathrm{mm}^2~/~\mathrm{s}$ $c0/32:(0.00196675\pm5.638~e-005)~\mathrm{mm}^2~/~\mathrm{s}$

$$D = \frac{m}{4 C^2} \tag{1}$$

- 4.2 Konzentrationsverlauf in Abhängigkeit des Ortes
- 5 Diskussion
- 6 Anhang

Literatur