

Topic Models

Advanced Machine Learning for NLP Jordan Boyd-Graber

Low-Dimensional Space for Documents

- Last time: embedding space for words
- This time: embedding space for documents
- Generative story
- New inference techniques

Why topic models?

- Suppose you have a huge number of documents
- Want to know what's going on
- Can't read them all (e.g. every New York Times article from the 90's)
- Topic models offer a way to get a corpus-level view of major themes

Why topic models?

- Suppose you have a huge number of documents
- Want to know what's going on
- Can't read them all (e.g. every New York Times article from the 90's)
- Topic models offer a way to get a corpus-level view of major themes
- Unsupervised

Roadmap

- What are topic models
- How to know if you have good topic model
- How to go from raw data to topics

From an **input corpus** and number of topics $K \rightarrow$ words to topics

From an input corpus and number of topics $K \to \mathbf{words}$ to topics

TOPIC 1

computer, technology, system, service, site, phone, internet, machine

TOPIC 2

sell, sale, store, product, business, advertising, market, consumer

TOPIC 3

play, film, movie, theater, production, star, director, stage

Conceptual Approach

For each document, what topics are expressed by that document?

Topics from Science

human	evolution	disease	computer
genome	evolutionary	host	models
$_{ m dna}$	species	bacteria	information
genetic	organisms	diseases	$_{ m data}$
genes	life	resistance	computers
sequence	origin	bacterial	system
gene	biology	new	network
$\overline{\text{molecular}}$	groups	strains	systems
sequencing	phylogenetic	$\operatorname{control}$	model
map	living	infectious	parallel
information	diversity	$_{ m malaria}$	$_{ m methods}$
genetics	group	parasite	networks
mapping	new	parasites	software
project	two	united	new
sequences	common	tuberculosis	simulations

Why should you care?

- Neat way to explore / understand corpus collections
 - E-discovery
 - Social media
 - Scientific data
- NLP Applications
 - Word Sense Disambiguation
 - Discourse Segmentation
 - Machine Translation
- Psychology: word meaning, polysemy
- Inference is (relatively) simple

Matrix Factorization Approach

- K Number of topics
- M Number of documents
- V Size of vocabulary

Matrix Factorization Approach

- K Number of topics
- M Number of documents
- V Size of vocabulary

- If you use singular value decomposition (SVD), this technique is called latent semantic analysis.
- Popular in information retrieval.

Alternative: Generative Model

- How your data came to be
- Sequence of Probabilistic Steps
- Posterior Inference

Alternative: Generative Model

- How your data came to be
- Sequence of Probabilistic Steps
- Posterior Inference
- Blei, Ng, Jordan. Latent Dirichlet Allocation. JMLR, 2003.

Multinomial Distribution

- Distribution over discrete outcomes
- Represented by non-negative vector that sums to one
- Picture representation

Multinomial Distribution

- Distribution over discrete outcomes
- Represented by non-negative vector that sums to one
- Picture representation

Come from a Dirichlet distribution

Dirichlet Distribution

$$P(\boldsymbol{p} \mid \alpha \boldsymbol{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k} - 1}$$

Dirichlet Distribution

$$P(\boldsymbol{p} \mid \alpha \boldsymbol{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k} - 1}$$

$$\alpha = 3$$
, $\mathbf{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \alpha = 6$, $\mathbf{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \alpha = 30$, $\mathbf{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

Dirichlet Distribution

$$P(\boldsymbol{p} \mid \alpha \boldsymbol{m}) = \frac{\Gamma(\sum_k \alpha m_k)}{\prod_k \Gamma(\alpha m_k)} \prod_k p_k^{\alpha m_k - 1}$$

$$\alpha = 14$$
, $\mathbf{m} = (\frac{1}{7}, \frac{5}{7}, \frac{1}{7}) \alpha = 14$, $\mathbf{m} = (\frac{1}{7}, \frac{1}{7}, \frac{5}{7}) \alpha = 2.7$, $\mathbf{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

• If $\phi \sim \text{Dir}(()\alpha)$, $w \sim \text{Mult}(()\phi)$, and $n_k = |\{w_i : w_i = k\}|$ then

$$p(\phi|\alpha, \mathbf{w}) \propto p(\mathbf{w}|\phi)p(\phi|\alpha)$$
 (1)

$$\propto \prod_{k} \phi^{n_k} \prod_{k} \phi^{\alpha_k - 1}$$
 (2)

$$\propto \prod_{k} \phi^{a_k + n_k - 1}$$
 (3)

Conjugacy: this posterior has the same form as the prior

• If $\phi \sim \text{Dir}(()\alpha)$, $w \sim \text{Mult}(()\phi)$, and $n_k = |\{w_i : w_i = k\}|$ then

$$p(\phi|\alpha, \mathbf{w}) \propto p(\mathbf{w}|\phi)p(\phi|\alpha)$$
 (1)

$$\propto \prod_{k} \phi^{n_k} \prod_{k} \phi^{\alpha_k - 1}$$
 (2)

$$\propto \prod_{k} \phi^{\alpha_k + n_k - 1}$$
 (3)

Conjugacy: this posterior has the same form as the prior

TOPIC 1

computer, technology, system, service, site, phone, internet, machine

TOPIC 2

sell, sale, store, product, business, advertising, market, consumer

TOPIC 3

play, film, movie, theater, production, star, director, stage

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer play, film, movie, theater, production, star, director, stage

Hollywood studios are preparing to let people download and buy electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer play, film, movie, theater, production, star, director, stage

Holly food studios are preparing to let people download and buy electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer play, film, movie, theater, production, star, director, stage

Holly ood studies are preparing to let people download and the electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer play, film, movie, theater, production, star, director, stage

Holowood studies are preparing to let people download and to electronic cones of movies over the Incenet, much as record lakes now sell sens for 99 cents through Apple Computer's iTunes music storand other online services ...

• For each topic $k\in\{1,\ldots,K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ

- For each topic $k \in \{1,\ldots,K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1,\ldots,M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α

- For each topic $k \in \{1, ..., K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, \dots, M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1, ..., N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .

- For each topic $k \in \{1, ..., K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, \dots, M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1, ..., N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .
- Choose the observed word w_n from the distribution β_{z_n} .

- For each topic $k \in \{1, ..., K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, \dots, M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1, ..., N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .
- Choose the observed word w_n from the distribution eta_{z_n} .

Topic Models: What's Important

- Topic models
 - Topics to word types—multinomial distribution
 - Documents to topics—multinomial distribution
- Focus in this talk: statistical methods
 - Model: story of how your data came to be
 - Latent variables: missing pieces of your story
 - Statistical inference: filling in those missing pieces
- We use latent Dirichlet allocation (LDA), a fully Bayesian version of pLSI, probabilistic version of LSA

Topic Models: What's Important

- Topic models (latent variables)
 - Topics to word types—multinomial distribution
 - o Documents to topics—multinomial distribution
- Focus in this talk: statistical methods
 - Model: story of how your data came to be
 - Latent variables: missing pieces of your story
 - Statistical inference: filling in those missing pieces
- We use latent Dirichlet allocation (LDA), a fully Bayesian version of pLSI, probabilistic version of LSA