

- **5.22.** Se a intensidade da carga distribuída que atua sobre a viga é w = 3 kN/m, determine as reações no rolete A e no pino B.
- **5.23.** Se o rolete em A e o pino em B podem suportar uma carga de até 4 kN e 8 kN, respectivamente, determine a intensidade máxima da carga distribuída w, medida em kN/m, de modo que não haja ruptura dos suportes.

$$\zeta + \Sigma M_B = 0;$$
 $3(4)(2) - N_A \sin 30^\circ (3 \sin 30^\circ) - N_A \cos 30^\circ (3 \cos 30^\circ + 4) = 0$
 $N_A = 3.713 \text{ kN} = 3.71 \text{ kN}$ **Ans.**

Using this result to write the force equation of equilibrium along the x and y axes,

$$+ \Sigma F_x = 0;$$
 3.713 sin 30° - $B_x = 0$

$$B_x = 1.856 \text{ kN} = 1.86 \text{ kN}$$

Ans.

$$+\uparrow \Sigma F_y = 0;$$
 $B_y + 3.713 \cos 30^\circ - 3(4) = 0$

$$B_{\rm v} = 8.7846 \, \rm kN = 8.78 \, kN$$

5.23

$$\zeta + \Sigma M_B = 0;$$
 $w(4)(2) - N_A \sin 30^\circ (3 \sin 30^\circ) - N_A \cos 30^\circ (3 \cos 30^\circ + 4) = 0$

$$N_A = 1.2376 w$$

Using this result to write the force equation of equilibrium along x and y axes,

$$+ \Sigma F_x = 0;$$
 1.2376 w sin 30° - $B_x = 0$ $B_x = 0.6188$ w

$$+\uparrow \Sigma F_y = 0;$$
 $B_y + 1.2376 w \cos 30^\circ - w(4) = 0$ $B_y = 2.9282 w$

Thus,

$$F_B = \sqrt{B_x^2 + B_y^2} = \sqrt{(0.6188 \, w)^2 + (2.9282 \, w)^2} = 2.9929 \, w$$

It is required that

$$F_B < 8 \text{ kN};$$
 2.9929 $w < 8$ $w < 2.673 \text{ kN/m}$

And

$$N_A < 4 \text{ kN};$$
 1.2376 $w < 4$ $w < 3.232 \text{ kN/m}$

Thus, the maximum intensity of the distributed load is

$$w = 2.673 \text{ kN/m} = 2.67 \text{ kN/m}$$

5.26. O caminhão é simetricamente apoiado no solo por duas extensões laterais em A e duas em B, descarregando sua suspensão e dando estabilidade contra o tombamento. Se o guindaste e o caminhão possuem massa de 18 Mg e centro de massa em G_1 , e a lança possui massa de 1,8 Mg e centro de massa em G_2 , determine as reações verticais em cada um dos quatro apoios no solo em função do ângulo de lança θ quando a lança estiver suportando uma carga com massa de 1,2 Mg. Represente em gráfico os resultados medidos de $\theta = 0^{\circ}$ até o ângulo crítico onde começa a ocorrer uma inclinação do veículo.

5.26

$$+\Sigma M_B = 0; \qquad -N_A (4) + 18(10^3)(9.81)(1) + 1.8(10^3)(9.81)(2 - 6\sin\theta)$$
$$+ 1.2(10^3)(9.81)(2 - 12.25\sin\theta) = 0$$
$$N_A = 58860 - 62539\sin\theta$$

Tipping occurs when $N_A = 0$, or

$$\theta = 70.3^{\circ}$$

$$+\uparrow \Sigma F_y = 0;$$
 $N_B + 58\,860 - 62\,539\sin\theta - (18 + 1.8 + 1.2)\left(10^3\right)(9.81) = 0$ $N_B = 147\,150 + 62\,539\sin\theta$

Since there are two outriggers on each side of the crane,

$$N_A' = \frac{N_A}{2} = (29.4 - 31.3 \sin \theta) \text{ kN}$$
 Ans.

$$N_B' = \frac{N_B}{2} = (73.6 + 31.3 \sin \theta) \text{ kN}$$
 Ans.

5.38. A lança deverá apoiar duas cargas verticais, \mathbf{F}_1 e \mathbf{F}_2 . Se o cabo CB pode sustentar uma carga máxima de 1500 N antes de se romper, determine as cargas críticas se $F_1 = 2F_2$. Além disso, qual é a intensidade da reação máxima no pino A?

5.38

$$\zeta + \Sigma M_A = 0; \qquad -2F_2(1.5\cos 30^\circ) - F_2(2.5\cos 30^\circ)$$

$$+ \frac{4}{5}(1500)(2.5\sin 30^\circ) + \frac{3}{5}(1500)(2.5\cos 30^\circ) = 0$$

$$F_2 = 724 \text{ N} \qquad \text{Ans.}$$

$$F_1 = 2F_2 = 1448 \text{ N}$$

$$F_1 = 1.45 \text{ kN} \qquad \text{Ans.}$$

$$\pm \Sigma F_x = 0; \qquad A_x - \frac{4}{5}(1500) = 0$$

$$A_x = 1200 \text{ N}$$

$$F_A = \sqrt{(1200)^2 + (1272)^2} = 1749 \,\text{N} = 1.75 \,\text{kN}$$

 $+\uparrow \Sigma F_y = 0;$ $A_y - 724 - 1448 + \frac{3}{5}(1500) = 0$

 $A_{\rm v} = 1272 \, {\rm N}$

6.2. Determine a força em cada membro da treliça e indique se os membros estão sob tração ou compressão. Considere $P_1 = 20$ kN, $P_2 = 10$ kN.

6.2

Method of Joints. Start at joint C and then proceed to joint D.

Joint C. Fig. a

$$\stackrel{+}{\rightarrow} \Sigma F_x = 0; \qquad F_{CB} = 0$$

$$+\uparrow \Sigma F_{v} = 0;$$
 $F_{CD} - 45 = 0$ $F_{CD} = 45.0 \text{ kN } (C)$

Joint D. Fig. b

$$+\uparrow \Sigma F_y = 0;$$
 $F_{DB}\left(\frac{3}{5}\right) - 45.0 = 0$ $F_{DB} = 75.0 \text{ kN } (T)$

$$\pm \Sigma F_x = 0;$$
 30 + 75.0 $\left(\frac{4}{5}\right) - F_{DA} = 0$ $F_{DA} = 90.0 \text{ kN } (C)$ Ans.

Ans.

*6.12. Determine a força em cada membro da treliça e indique se os membros estão sob tração ou compressão. Considere $P_1 = 3$ kN, $P_2 = 6$ kN.

6.12

Support Reactions. Referring to the FBD of the entire truss shown in Fig. a,

$$+\Sigma M_A = 0;$$

$$\zeta + \Sigma M_A = 0;$$
 $N_D(12) - 3(4) - 6(8) = 0$ $N_D = 5.00 \text{ kN}$

$$N_D = 5.00 \text{ kN}$$

$$\zeta + \Sigma M_D = 0$$

$$\zeta + \Sigma M_D = 0;$$
 6(4) + 3(8) - $A_v(12) = 0$ $A_v = 4.00 \text{ kN}$

$$A_{\rm y} = 4.00 \, \rm kN$$

$$\pm \Sigma F_{\rm r} = 0;$$
 $A_{\rm r} = 0$

Method of Joints. We will carry out the analysis of joint equilibrium according to the sequence of joints A, D, B and C.

Joint A. Fig. b

$$\uparrow \Sigma F_{y} = 0;$$

$$+\uparrow \Sigma F_y = 0;$$
 $4.00 - F_{AE}\left(\frac{1}{\sqrt{2}}\right) = 0$

$$F_{AE} = 4\sqrt{2} \text{ kN (C)} = 5.66 \text{ kN (C)}$$

Ans.

$$\pm \Sigma F_x = 0$$

$$\pm \Sigma F_x = 0; \qquad F_{AB} - 4\sqrt{2} \left(\frac{1}{\sqrt{2}}\right) = 0 \qquad F_{AB} = 4.00 \text{ kN (T)}$$

$$F_{AB} = 4.00 \text{ kN (T)}$$

6.33. Determine a força nos membros *AF*, *BF* e *BC* da treliça e indique se os membros estão sob tração ou compressão.

6.33

$$\zeta + \Sigma M_B = 0;$$
 $F_{AF}(1.5) - 8(2) - 4(4) = 0$
$$F_{AF} = 21.33 \text{ kN (T)} = 21.3 \text{ kN (T)}$$
 Ans.

$$F_{AF} = 21.33 \text{ kN (T)} = 21.3 \text{ kN (T)}$$
 Ans.
 $\zeta + \Sigma M_F = 0;$ $F_{BC}(1.5) - 4(2) = 0$
 $F_{BC} = 5.333 \text{ kN (C)} = 5.33 \text{ kN (C)}$ Ans.

Also, write the force equation of equilibrium along the x axis, we can obtain \mathbf{F}_{BF} directly.

$$\pm \Sigma F_x = 0;$$
 4 + 8 - $F_{BF} \left(\frac{3}{5} \right) = 0$ $F_{BF} = 20.0 \text{ kN (C)}$ Ans.

