Text Mining: An Overview

David Madigan

madigan@yahoo.com

http://www.stat.columbia.edu/~madigan

in collaboration with:

David D. Lewis

Text Mining

- •Statistical text analysis has a long history in literary analysis and in solving disputed authorship problems
- •First (?) is Thomas C. Mendenhall in 1887

SCIENCE.

FRIDAY, MARCH 11, 1887.

THE CHARACTERISTIC CURVES OF COM-POSITION.

FIG. 2. - SHOWING FIVE GROUPS, OF ONE THOUSAND WORDS EACH, FROM 'OLIVER TWIST,'

Mendenhall

•Mendenhall was Professor of Physics at Ohio State and at University of Tokyo, Superintendent of the USA Coast and Geodetic Survey, and later, President of Worcester Polytechnic Institute

Mendenhall Glacier, Juneau, Alaska

AMERICAN STATISTICAL ASSOCIATION JOURNAL, MARCH 1963

MARK TWAIN AND THE QUINTUS CURTIUS SNODGRASS LETTERS: A STATISTICAL TEST OF AUTHORSHIP

CLAUDE S. BRINEGAR

 $X^2 = 127.2$, df=12

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION

Number 302

JUNE, 1963

Volume 58

INFERENCE IN AN AUTHORSHIP PROBLEM^{1,2}

A comparative study of discrimination methods applied to the authorship of the disputed *Federalist* papers

FREDERICK MOSTELLER

Harvard University

and

Center for Advanced Study in the Behavioral Sciences

AND

DAVID L. WALLACE

University of Chicago

- Hamilton versus Madison
- Used Naïve Bayes with Poisson and Negative Binomial model
- Out-of-sample predictive performance

Today

- Statistical methods routinely used for textual analyses of all kinds
- Machine translation, part-of-speech tagging, information extraction, question-answering, text categorization, disputed authorship (stylometry), etc.
- Not reported in the statistical literature (no statisticians?)

Text Mining's Connections with Language Processing

- Linguistics
- Computational linguistics
- Information retrieval
- Content analysis
- Stylistics
- Others

Why Are We Mining the Text?

Are we trying to understand:

- 1. The texts themselves?
- 2. The writer (or speakers) of the texts?
 - a. The writer as a writer?
 - b. The writer as an entity in the world?
- 3. Things in the world?
 - a. Directly linked to texts?
 - b. Described by texts?

Stylistic clues to author identity and demographics.

Text known to be linked to particular product.

Important terms for searching database of such messages.

To: model370email@bigco.com

Dear Sir or Madam, My drier made smoke and a big whoooshie noise when I started it! Was the problem drying my new Australik raincoat? It is made of oilcloth. I guess it was my fault.

Another entity information could be extracted on.

Customer probably won't make a fuss.

Granularity of Text Linked to Entity?

- Morphemes, words, simple noun phrases
- Clauses, sentences
- Paragraphs, sections, documents
- Corpora, networks of documents

Increasing linguistic agreement on structure and representations

Increasing size & complexity (and variance in these)

Ambiguity

- Correct interpretation of an utterance is rarely explicit!
 - People use massive knowledge of language and the world to understand NL
 - information readily inferred by speaker/reader will be left out
- The core task in NLP is resolving the resulting ambiguity

"I made her duck" [after Jurafsky & Martin]

- I cooked waterfowl for her.
- I cooked waterfowl belonging to her.
- I created the (plaster?) duck she owns.
- I caused her to quickly lower her head.
- I magically converted her into roast fowl.
- These vary in morphology, syntax, semantic, pragmatics.

....Plus, Phonetic and Visual Ambiguity

- Aye, made her duck!
- <u>I</u>made her....duck!
- Aye, maid. Her duck.

I made her c

Synonymy

- Can use different words to communicate the same meaning
 - (Of course also true for sentences,....)
- Synonymy in all contexts is rare:
 - a big plane = a large plane
 - a big sister ≠ a large sister
- And choice among synonyms may be a clue to topic, writer's background, etc.
 - rich vs. high SES

Metaphor & Metonymy

- Metaphor: use of a construct with one meaning to convey a very different one:
 - Television is eating away at the moral fiber of our country.
- Metonymy: mentioning one concept to convey a closely related one
 - "On the way downtown I stopped at a bar and had a couple of double Scotches. They didn't do me any good. All they did was make me think of Silver Wig, and I never saw her again." (Raymond Chandler, The Big Sleep)

Attribute Vectors

- Most text mining based on
 - Breaking language into symbols
 - Treating each symbol as an attribute
- But what value should each attribute have for a unit of text?

Term Weighting

- How strongly does a particular word indiciate the content of a document?
- Some clues:
 - Number of times word occurs in this document
 - Number of times word occurs in other documents
 - Length of document

IDF (inverse TF (term frequency) document frequency) otherwise

- "Cosine-normalized TFIDF weighting"
 - Many minor variants on this theme

Case Study: Representation for Authorship Attribution

- Statistical methods for authorship attribution
- Represent documents with attribute vectors
- Then use regression-type methods
- Bag of words?
- Stylistic features? (e.g., passive voice)
- Topic free?

1-of-K Sample Results: brittany-l

Feature Set	% errors	Number of Features		
"Argamon" function words, raw tf	74.8	380		
POS	75.1	44		
1suff	64.2	121		
1suff*POS	50.9	554		
2suff	40.6	1849		
2suff*POS	34.9	3655	4.6	million parameters
3suff	28.7	8676		
3suff*POS	27.9	12976		
3suff+POS+3suff*POS +Argamon	27.6	22057		
All words	23.9	52492		

89 authors with at least 50 postings. 10,076 training documents, 3,322 test documents.

BMR-Laplace classification, default hyperparameter

Features	Name in Short
The length of each word	charcount
Part of speeches	POS
Two-letter-suffix	Suffix2
Three-letter-suffix	Suffix3
Words, numbers, signs, punctuations	Words
The length of each word plus part of speech tags	Charcount+POS
Two-letter-suffix plus part of speech tags	Suffix2+POS
Three-letter-suffix plus part of speech tags	Suffix3+POS
Words, numbers, signs, punctuations plus part of speech tags	Words+POS
484 function words from Koppel et al's paper	484 features
Mosteller and Wallace function words	Wallace features
Words appear at least twice	$Words(\xi=2)$
Every word in the Federalist papers	Each word

The Federalist

- Mosteller and Wallace attributed all 12 disputed papers to Madison
- Historical evidence is more muddled
- Our results suggest attribution is highly dependent on the document representation

Table 1 Authorship of the Federalist Papers

Tuble 1 Hamorship of the 1 ederanst 1 apers						
Paper Number	Author					
1	Hamilton					
2-5	Jay					
6-9	Hamilton					
10	Madison					
11-13	Hamilton					
14	Madison					
15-17	Hamilton					
18-20	Joint: Hamilton and Madison					
21-36	Hamilton					
37-48	Madison					
49-58	Disputed					
59-61	Hamilton					
62-63	Disputed					
64	Jay					
65-85	Hamilton					

Table 3 The feature sets

Features	Name in Short
The length of each character	charcount
Part of speeches	POS
Two-letter-suffix	Suffix2
Three-letter-suffix	Suffix3
Words, numbers, signs, punctuations	Words
The length of each character plus the part of speeches	Charcount+POS
Two-letter-suffix plus the part of speeches	Suffix2+POS
Three-letter-suffix plus the part of speeches	Suffix3+POS
Words, numbers, signs, punctuations plus the part of speeches	Words+POS
The 484 function words in Koppel's paper	484 features
The feature set in the Mosteller and Wallace paper	Wallace features
Words appear at least twice	Words(>=2)
Each word shown in the Federalist papers	Each word

F. Summing up

In summary, the following points are clear:

1) Madison is the principal author. These data make it possible to say far more than ever before that the odds are enormously high that Madison wrote the 12 disputed papers. Weakest support is given for No. 55. Support for Nos. 62 and 63, most in doubt by current historians, is tremendous.

Feature Set	10-fold Error Rate
Charcount	0.21
POS	0.19
Suffix2	0.12
Suffix3	0.09
Words	0.10
Charcount+POS	0.12
Suffix2+POS	0.08
Suffix3+POS	0.04
Words+POS	0.08
484 features	0.05
Wallace features	0.05
Words (>=2)	0.05
Each Word	0.05

four papers to Hamilton

Supervised Learning for Text Classification

Predictive Modeling

Goal: learn a mapping: $y = f(x; \mathbb{Y})$

Need: 1. A model structure

- 2. A score function
- 3. An optimization strategy

Categorical $y \times \{c_1,...,c_m\}$: classification

Real-valued y: regression

Note: usually assume $\{c_1,...,c_m\}$ are mutually exclusive and exhaustive

Classifier Types

Discriminative: model $p(c_k \mid x)$

- e.g. linear regression, logistic regression, CART

Generative: model $p(\mathbf{x} \mid c_k, [\mathbf{x}]_k)$

- e.g. "Bayesian classifiers", LDA

Regression for Binary Classification

Can fit a linear regression model to a 0/1 response

Predicted values are not necessarily between

zero and one

With p>1, the decision
boundary is linear
e.g. 0.5 = b0 + b1 x1 + b2 x2

Naïve Bayes via a Toy Spam Filter Example

- Naïve Bayes is a generative model that makes drastic simplifying assumptions
- Consider a small training data set for spam along with a bag of words representation

#	Message	Spam
1	the quick brown fox	no
2	the quick rabbit ran and ran	yes
3	rabbit run run run	no
4	rabbit at rest	yes

Training data comprising four labeled e-mail messages.

#	and	at	brown	fox	quick	rabbit	ran	rest	run	the
1	0	0	1	1	1	0	0	0	0	1
2	1	0	0	0	1	1	2	0	0	1
3	0	0	0	0	0	1	0	0	3	0
4	0	1	0	0	0	1	0	1	0	0

Term vectors corresponding to the training data.

	X_1	X_2	X_3	X_4	X_5	X_6	Y
#	brown	fox	quick	rabbit	rest	run	Spam
1	1	1	1	0	0	0	0
2	0	0	1	1	0	2	1
3	0	0	0	1	0	3	0
4	0	0	1	1	1	0	1

Term vectors after stemming and stopword removal with the Spam label, coded as 0=no, 1=yes.

Naïve Bayes Machinery

•We need a way to estimate:

$$Pr(Y = 1 | X_1 = x_1, \dots, X_d = x_d)$$

•Via Bayes theorem we have:

$$= \frac{Pr(Y=1) \times Pr(X_1 = x_1, \dots, X_d = x_d | Y = 1)}{Pr(X_1 = x_1, \dots, X_d = x_d)}$$

or, on the log-odds scale:

$$\log \frac{Pr(Y=1|X_1=x_1,\ldots,X_d=x_d)}{Pr(Y=0|X_1=x_1,\ldots,X_d=x_d)}$$

$$= \log \frac{Pr(Y=1)}{Pr(Y=0)} + \log \frac{Pr(X_1=x_1,\ldots,X_d=x_d|Y=1)}{Pr(X_1=x_1,\ldots,X_d=x_d|Y=0)}$$

Naïve Bayes Machinery

Naïve Bayes assumes:

$$Pr(X_1 = x_1, \dots, X_d = x_d | Y = 1) = \prod_{i=1}^d Pr(X_i = x_i | Y = 1)$$

and

$$Pr(X_1 = x_1, \dots, X_d = x_d | Y = 0) = \prod_{i=1}^d Pr(X_i = x_i | Y = 0)$$

leading to:

$$\log \frac{Pr(Y=1|X_1=x_1,\ldots,X_d=x_d)}{Pr(Y=0|X_1=x_1,\ldots,X_d=x_d)}$$

$$= \log \frac{Pr(Y=1)}{Pr(Y=0)} + \sum_{i=1}^{d} \log \frac{Pr(X_i = x_i | Y=1)}{Pr(X_i = x_i | Y=0)}$$

Maximum Likelihood Estimation

$$\log \frac{\widehat{Pr}(Y=1)}{\widehat{Pr}(Y=0)} = \log \frac{2/4}{2/4} = 0$$

weights of evidence

$$\widehat{\frac{Pr(X_3 = 1|Y = 1)}{Pr(X_3 = 1|Y = 0)}} = \log \frac{2/2}{1/2} = \log 2$$

	X_1	X_2	X_3	X_4	X_5	X_6	Y
#	brown	fox	quick	rabbit	rest	run	Spam
1	1	1	1	0	0	0	0
2	0	0	1	1	0	2	1
3	0	0	0	1	0	3	0
4	0	0	1	1	1	0	1

Naïve Bayes Prediction

•Usually add a small constant (e.g. 0.5) to avoid divide by zero problems and to reduce bias

	X_1	X_2	X_3	X_4	X_5	X_6
	brown	fox	quick	rabbit	rest	run
Term Present	-1.10	-1.10	0.51	0.51	1.10	0
Term Absent	0.51	0.51	-1.10	-1.10	-0.51	0

Estimated Weights of evidence for the example.

New message: "the quick rabbit rests"

•New message: "the quick rabbit rests"

	X_1	X_2	X_3	X_4	X_5	X_6
	brown	fox	quick	rabbit	\mathbf{rest}	run
Term Vector	0	0	1	1	1	0
Weight of Evidence	0.51	0.51	0.51	0.51	1.10	0

•Predicted log odds:

$$0.51 + 0.51 + 0.51 + 0.51 + 1.10 + 0 = 3.04$$

Corresponds to a spam probability of 0.95

A Close Look at Logistic Regression for Text Classification

Logistic Regression

Linear model for log odds of category membership:

$$\log \frac{p(y=1|x_i)}{p(y=-1|x_i)} = \left(\underbrace{x_i} \right) b_i x_{ij} = bx_i$$

Maximum Likelihood Training

• Choose parameters $(b_j|s)$ that maximize probability (likelihood) of class labels $(y_i|s)$ given documents $(x_i|s)$

$$L(\boldsymbol{eta}) = p(\boldsymbol{eta}|D) = (\prod_{i=1}^{n} \frac{1}{1 + \exp(-\boldsymbol{eta}^{T} \boldsymbol{x_i} y_i)})$$

- Tends to overfit
- Not defined if d > n
- Feature selection

Shrinkage/Regularization/Bayes

- Avoid combinatorial challenge of feature selection
- L1 shrinkage: regularization + feature selection
- Expanding theoretical understanding
- Large scale
- Empirical performance

Ridge Logistic Regression

Maximum likelihood plus a constraint:

$$\sum_{j=1}^{p} \beta_j^2 \le s$$

Lasso Logistic Regression

Maximum likelihood plus a constraint:

$$\sum_{j=1}^{p} \left| \beta_{j} \right| \leq s$$

Posterior Modes with Varying Hyperparameter - Gaussian

Posterior Modes with Varying Hyperparameter - Laplace

Bayesian Perspective

Polytomous Logistic Regression (PLR)

$$P(y_i = k \mid \mathbf{x_i}) = \frac{\exp(\vec{\beta}_k \mathbf{x}_i)}{\sum_{k'} \exp(\vec{\beta}_k \mathbf{x}_i)}$$

- Elegant approach to multiclass problems
- Also known as polychotomous LR, multinomial LR, and, ambiguously, multiple LR and multivariate LR

Why LR is Interesting

- Parameters have a meaning
 - How log odds increases w/ feature values
- Lets you
 - Look at model and see if sensible
 - Use domain knowledge to guide parameter fitting (more later)
 - Build some parts of model by hand
- Cavaet: realistically, a lot can (does) complicate this interpretation

Measuring the Performance of a Binary Classifier

1	Actual Value	Predicted Probability
2	0	0.006
3	0	0.01
4	0	0.025
5	0	0.04
6	0	0.07
7	0	0.08
8	0	0.1
9	0	0.35
10	0	0.49
11	0	0.64
12	1	0.71
13	1	0.75
14	0	0.88
15	1	0.93
16	0	0.97
17	1	0.98
18	1	0.983
19	1	0.984
20	1	0.99

Suppose we use a cutoff of 0.5...

actual outcome

1 predicted outcome 0

Test Data

More generally...

misclassification rate: $\frac{b+c}{a+b+c+d}$

sensitivity: $\frac{a}{a+c}$

(aka recall)

specificity: $\frac{d}{b+d}$

predicitive value positive: $\frac{a}{a+b}$

(aka precision)

Suppose we use a cutoff of 0.5...

actual outcome

1 7 3 predicted outcome 0 10

sensitivity:
$$\frac{7}{7+0}$$
 = 100%

specificity:
$$\frac{10}{10+3} = 77\%$$

Suppose we use a cutoff of 0.8...

actual outcome

1 0
predicted outcome
0 2 11

sensitivity:
$$\frac{5}{5+2} = 71\%$$

specificity:
$$\frac{11}{11+2} = 85\%$$

Note there are 20 possible thresholds

 ROC computes sensitivity and specificity for all possible thresholds and plots them

- Note if threshold = minimum
 c=d=0 so sens=1; spec=0
- If threshold = maximum
 a=b=0 so sens=0; spec=1

	0.4			1					
_	A1		f _x		_	_			
	Α	С	D	E	F	G	Н	I	
1			a	b	С	d	sensitivity	specificity	!
2	0	0.005694	_		0	1	1	0.083333	
3	0	0.009911	8		0	2	1	0.166667	
4	0	0.025475	8	9	0	3	1	0.25	
5	0	0.039375	8	8	0	4	1	0.333333	
6	0	0.070495	8	7	0	5	1	0.416667	
7	0	0.080184	8	6	0	6	1	0.5	
8	0	0.099051	8	5	0	7	1	0.583333	
9	0	0.346722	8	4	0	8	1	0.666667	
10	0	0.493576	8	3	0	9	1	0.75	
11	0	0.635592	8	2	0	10	1	0.833333	
12	1	0.705922	7	2	1	10	0.875	0.833333	
13	1	0.753097	6	2	2	10	0.75	0.833333	
14	0	0.88035	6	1	2	11	0.75	0.916667	
15	1	0.92832	5	1	3	11	0.625	0.916667	
16	0	0.970674	5	0	3	12	0.625	1	
17	1	0.97985	4	0	4	12	0.5	1	
18	1	0.983794	3	0	5	12	0.375	1	
19	1	0.984132	_	_	6	12	0.25	1	
20	1	0.99631	1	0	7	12	0.125	1	
21	1	0.999876	1	0	8	12	0.111111	1	
22									
23									

sens<-c(1,1,1,1,1,1,1,1,1,1,0.875,0.75,0.75,0.625,0.625,0.5,0.375,0.25,0.125,0.1111]
spec<-c(0.083333333,0.166666667,0.25,0.333333333,0.4166666667,0.5,0.583333333,0.66666
33333,0.916666667,0.916666667,1,1,1,1,1,1)
plot(1-spec,sens,type="b",xlab="1-specificity",ylab="sensitivity",main="ROC curve")</pre>

ROC curve

 "Area under the curve" is a common measure of predictive performance

So is squared error: S(y_i-yhat)²
 also known as the "Brier Score"

Text Classification Example

- ModApte subset of Reuters-21578
 - 90 categories; 9603 training docs; 18978 features
- Reuters RCV1-v2
 - 103 cats; 23149 training docs; 47152 features
- OHSUMED heart disease categories
 - 77 cats; 83944 training docs; 122076 features
- Cosine normalized TFxIDF weights

Dense vs. Sparse Models (Macroaveraged F1)

	ModApte	RCV1-v2	OHSUMED
Lasso	52.03	56.54	51.30
Ridge	39.71	51.40	42.99
Ridge/500	38.82	46.27	36.93
Ridge/50	45.80	41.61	42.59
Ridge/5	46.20	28.54	41.33
SVM	53.75	57.23	50.58

ModApte - 21,989 features

RCV1 - 47,152 features

OHSUMED - 122,076 features

An Example Model (category "grain")

Word	Beta	Word	Beta
corn	29.78	formal	-1.15
wheat	20.56	holder	-1.43
rice	11.33	hungarian	-6.15
sindt	10.56	rubber	-7.12
madagascar	6.83	special	-7.25
import	6.79	• • •	• • •
grain	6.77	beet	-13.24
contract	3.08	rockwood	-13.61

Text Sequence Modeling

Introduction

- Textual data comprise sequences of words:
 "The quick brown fox..."
- Many tasks can put this sequence information to good use:
 - Part of speech tagging
 - Named entity extraction
 - Text chunking
 - Author identification

Part-of-Speech Tagging

- Assign grammatical tags to words
- Basic task in the analysis of natural language data
- Phrase identification, entity extraction, etc.
- Ambiguity: "tag" could be a noun or a verb
- "a tag is a part-of-speech label" context resolves the ambiguity

The Penn Treebank POS Tag Set

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%,&
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-∞nj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	Ç6	Left quote	(" or ")
POS	Possessive ending	Ś	27	Right quote	(' or ")
PP	Personal pronoun	I, you, he	(Left parenthesis	([, (, {, <)
PP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),],>)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster	¥6	Sentence-final punc	(.17)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(:;)
RP	Particle	up, off			30 % 53

POS Tagging Process

POS Tagging Algorithms

- Rule-based taggers: large numbers of handcrafted rules
- Probabilistic tagger: used a tagged corpus to train some sort of model, e.g. HMM.

The Brown Corpus

- Comprises about 1 million English words
- HMM's first used for tagging on the Brown Corpus
- 1967. Somewhat dated now.
- British National Corpus has 100 million words

Simple Charniak Model

- •What about words that have never been seen before?
- •Clever tricks for smoothing the number of parameters (aka priors)

some details...

$$P(t^i \mid w^j) \stackrel{\text{est}}{=} \lambda_1(w^j) \frac{C(t^i, w^j)}{C(w^j)} + \lambda_2(w^j) \frac{C_n(t^i)}{C_n()}$$

 $C(t^i,w^j)$ number of times word j appears with tag i

- $C(w^j)$ number of times word j appears
- $\mathrm{C}_n(t^i)$ number of times a word that had never been seen with tag i gets tag i
 - $C_n()$ number of such occurrences in total

$$\lambda_1(w^j) = \begin{cases} 1 & \text{if } C(w^j) \ge 1\\ 0 & \text{otherwise.} \end{cases}$$

Test data accuracy on Brown Corpus = 91.51%

HMM

$$\mathcal{T}(w_{1,n}) = \arg \max_{t_{1,n}} \prod_{i=1}^{n} P(t_i \mid t_{i-1}) P(w_i \mid t_i)$$

$$= \arg \max_{t_{1,n}} \prod_{i=1}^{n} P(t_i \mid t_{i-1}) \frac{P(t_i \mid w_i)}{P(t_i)}$$

$$P(t_i \mid t_{i-1}) \stackrel{\text{est}}{=} (1 - \epsilon) \frac{C(t_{i-1}, t_i)}{C(t_{i-1})} + \epsilon$$

Morphological Features

- Knowledge that "quickly" ends in "ly" should help identify the word as an adverb
- "randomizing" -> "ing"
- Split each word into a root ("quick") and a suffix ("ly")

Morphological Features

- Typical morphological analyzers produce multiple possible splits
- "Gastroenteritis"???

$$\mathcal{T}(w_{1,n}) = \arg \max_{t_{1,n}} \sum_{r_{1,n},s_{1,n}} \prod_{i=1}^{n} P(t_{i} \mid t_{i-1})
= \arg \max_{t_{1,n}} \sum_{r_{1,n},s_{1,n}} \prod_{i=1}^{n} P(t_{i} \mid t_{i}) P(r_{i} \mid t_{i}) (35)
= \arg \max_{t_{1,n}} \sum_{r_{1,n},s_{1,n}} \prod_{i=1}^{n} P(t_{i} \mid t_{i-1}) P(s_{i} \mid t_{i})
\frac{P(r_{i})P(t_{i} \mid r_{i})}{|r^{j}|!} e^{-5} \prod_{k=1}^{|r^{j}|} P(l_{i} \mid l_{i-1})$$
(36)

Achieves 96.45% on the Brown Corpus

Inference in an HMM

- Compute the probability of a given observation sequence
- Given an observation sequence, compute the most likely hidden state sequence
- Given an observation sequence and set of possible models, which model most closely fits the data?

Viterbi Algorithm

$$\delta_{j}(t) = \max_{x_{1}...x_{t-1}} P(x_{1}...x_{t-1}, o_{1}...o_{t-1}, x_{t} = j, o_{t})$$

The state sequence which maximizes the probability of seeing the observations to time t-1, landing in state j, and seeing the observation at time t

Viterbi Algorithm

Viterbi Small Example

$$Pr(x_1=T) = 0.2$$

$$Pr(x_2=T|x_1=T) = 0.7$$

$$Pr(x_2=T|x_1=F) = 0.1$$

$$Pr(o=T|x=T) = 0.4$$

$$Pr(o=T|x=F) = 0.9$$

$$o_1=T; o_2=F$$

Brute Force

$$Pr(x_1=T,x_2=T, o_1=T,o_2=F) = 0.2 \times 0.4 \times 0.7 \times 0.6 = 0.0336$$

 $Pr(x_1=T,x_2=F, o_1=T,o_2=F) = 0.2 \times 0.4 \times 0.3 \times 0.1 = 0.0024$
 $Pr(x_1=F,x_2=T, o_1=T,o_2=F) = 0.8 \times 0.9 \times 0.1 \times 0.6 = 0.0432$
 $Pr(x_1=F,x_2=F, o_1=T,o_2=F) = 0.8 \times 0.9 \times 0.9 \times 0.1 = 0.0648$

 $Pr(X_1, X_2 | o_1 = T, o_2 = F)$ $Pr(X_1, X_2, o_1 = T, o_2 = F)$

Viterbi Small Example

$$\hat{X}_2 = \operatorname*{arg\,max}_{j} \delta_{j}(2)$$

$$\delta_j(2) = \max_i \delta_i(1) a_{ij} b_{jo_2}$$

$$\delta_T(1) = \Pr(x_1 = T) \Pr(o_1 = T \mid x_1 = T) = 0.2 \times 0.4 = 0.08$$

 $\delta_F(1) = \Pr(x_1 = F) \Pr(o_1 = T \mid x_1 = F) = 0.8 \times 0.9 = 0.72$

$$\begin{split} & \delta_{T}(2) = \max \left(\delta_{F}(1) \times \Pr(x_{2} = T \mid x_{1} = F) \Pr(o_{2} = F \mid x_{2} = T), \delta_{T}(1) \times \Pr(x_{2} = T \mid x_{1} = T) \Pr(o_{2} = F \mid x_{2} = T) \right) \\ &= \max \left(\underbrace{0.72 \times 0.1 \times 0.6}_{0.08 \times 0.7 \times 0.6}, 0.08 \times 0.7 \times 0.6 \right) = 0.0432 \\ & \delta_{F}(2) = \max \left(\delta_{F}(1) \times \Pr(x_{2} = F \mid x_{1} = F) \Pr(o_{2} = F \mid x_{2} = F), \delta_{T}(1) \times \Pr(x_{2} = F \mid x_{1} = T) \Pr(o_{2} = F \mid x_{2} = F) \right) \\ &= \max \left(\underbrace{0.72 \times 0.9 \times 0.1}_{0.008 \times 0.3 \times 0.1}, 0.0.08 \times 0.3 \times 0.1 \right) = 0.0648 \end{split}$$

Other Developments

Toutanova et al.,
 2003, use a
 "dependency
 network" and richer
 feature set

•Idea: using the "next" tag as well as the "previous" tag should improve tagging performance

Named-Entity Classification

- "Mrs. Frank" is a person
- "Steptoe and Johnson" is a company
- "Honduras" is a location
- etc.

 Bikel et al. (1998) from BBN "Nymble" statistical approach using HMMs

$$[w_{i} \mid w_{i-1}, nc_{i}, nc_{i-1}] = \begin{cases} [w_{i} \mid w_{i-1}, nc_{i}] & \text{if } nc_{i} = nc_{i-1} \\ [w_{i} \mid nc_{i}, nc_{i-1}] & \text{if } nc_{i} \neq nc_{i-1} \end{cases}$$

- "name classes": Not-A-Name, Person, Location, etc.
- Smoothing for sparse training data + word features
- Training = 100,000 words from WSJ
- Accuracy = 93%
- $450,000 \text{ words} \rightarrow \text{same accuracy}$

Word Feature	Example Text	Intuition
twoDigitNum	90	Two-digit year
fourDigitNum	1990	Four digit year
containsDigitAndAlpha	A8956-67	Product code
containsDigitAndDash	09-96	Date
containsDigitAndSlash	11/9/89	Date
containsDigitAndComma	23,000.00	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount, percentage
otherNum	456789	Other number
allCaps	BBN	Organization
capPeriod	M.	Person name initial
firstWord	first word of sentence	No useful capitalization information
initCap	Sally	Capitalized word
lowerCase	can	Uncapitalized word
other	,	Punctuation marks, all other words