Exercises

30. Sketch the set of points $(x_1, x_2) = x^T$ in \mathbb{R}^2 such that

a)
$$||x||_2 = 1$$

(b)
$$||x||_1 = 1$$

(a)
$$||x||_2 = 1$$
 (b) $||x||_1 = 1$ (c) $||x||_{\infty} = 1$

• Let v_1, v_2, \dots, v_n be nonzero vectors in an inner product space V. If $\langle v_i, v_j \rangle = 0$ whenever $i \neq j$, then $\{v_1, v_2, \cdots, v_n\}$ is said to be an *orthogonal set* of vectors

Orthonormal Sets

- If $\{v_1, v_2, \dots, v_n\}$ is an orthogonal set of nonzero vectors in an inner product space V, then v_1, v_2, \cdots, v_n are linearly independent
- Proof

Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are mutually orthogonal nonzero vectors and

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \mathbf{0} \tag{1}$$

If $1 \le j \le n$, then, taking the inner product of \mathbf{v}_i with both sides of equation (1), we see that

$$c_1 \langle \mathbf{v}_j, \mathbf{v}_1 \rangle + c_2 \langle \mathbf{v}_j, \mathbf{v}_2 \rangle + \dots + c_n \langle \mathbf{v}_j, \mathbf{v}_n \rangle = 0$$
$$c_j ||\mathbf{v}_j||^2 = 0$$

and hence all the scalars c_1, c_2, \ldots, c_n must be 0.

- An orthonormal set of vectors is an orthogonal set of unit vectors
- The set $\{u_1, u_2, \dots, u_n\}$ will be orthonormal if and only if

$$\langle \boldsymbol{u}_i, \boldsymbol{u}_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

• Given any orthogonal set of nonzero vectors $\{v_1, v_2, \dots, v_n\}$, it is possible to form an orthonormal set by defining

$$u_i = \left(\frac{1}{\|v_i\|}\right)v_i$$

Ex 2. Form an orthonormal set

$$v_1 = (1, 1, 1)^T$$
 $v_2 = (2, 1, -3)^T$ $v_3 = (4, -5, 1)^T$

Solution

$$\mathbf{u}_1 = \left(\frac{1}{\|\mathbf{v}_1\|}\right) \mathbf{v}_1 = \frac{1}{\sqrt{3}} (1, 1, 1)^T$$

$$\mathbf{u}_2 = \left(\frac{1}{\|\mathbf{v}_2\|}\right) \mathbf{v}_2 = \frac{1}{\sqrt{14}} (2, 1, -3)^T$$

$$\mathbf{u}_3 = \left(\frac{1}{\|\mathbf{v}_3\|}\right) \mathbf{v}_3 = \frac{1}{\sqrt{42}} (4, -5, 1)^T$$

- If $B = \{u_1, u_2, \dots, u_k\}$ is an orthonormal set in an inner product space V, then B is a basis for the subspace $S = Span(u_1, u_2, \dots, u_k)$.
- B is an orthonormal basis for S
- Let $\{u_1, u_2, \dots, u_n\}$ be an orthonormal basis for an inner product space V. If $v = \sum_{i=1}^n c_i u_i$, then $c_i = \langle v, u_i \rangle$
- Proof

$$\langle \mathbf{v}, \mathbf{u}_i \rangle = \langle \sum_{j=1}^n c_j \mathbf{u}_j, \mathbf{u}_i \rangle = \sum_{j=1}^n c_j \langle \mathbf{u}_j, \mathbf{u}_i \rangle = \sum_{j=1}^n c_j \delta_{ji} = c_i$$

• Let $\{u_1, u_2, \dots, u_n\}$ be an orthonormal basis for an inner product space V. If $u = \sum_{i=1}^n a_i u_i$ and v = $\sum_{i=1}^{n} b_i \boldsymbol{u}_i$, then

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{i=1}^{n} a_i b_i$$

Orthonormal Sets

Proof

By Theorem 5.5.2,

$$\langle \mathbf{v}, \mathbf{u}_i \rangle = b_i \qquad i = 1, \dots, n$$

Therefore,

$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \sum_{i=1}^n a_i \mathbf{u}_i, \mathbf{v} \rangle = \sum_{i=1}^n a_i \langle \mathbf{u}_i, \mathbf{v} \rangle = \sum_{i=1}^n a_i \langle \mathbf{v}, \mathbf{u}_i \rangle = \sum_{i=1}^n a_i b_i$$

Parseval's Formula

• If $\{u_1, u_2, \dots, u_n\}$ is an orthonormal basis for an inner product space V and $v = \sum_{i=1}^n c_i u_i$, then

$$\|v\|^2 = \sum_{i=1}^n c_i^2$$

Proof

If
$$\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{u}_i$$
, then, by Corollary 5.5.3,

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^n c_i^2$$

Parseval's Formula

Ex 4. The vectors $u_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T$ and $u_2 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)^T$ form an orthonormal basis for \mathbb{R}^2

Solution

The vectors

$$\mathbf{u}_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T$$
 and $\mathbf{u}_2 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)^T$

form an orthonormal basis for \mathbb{R}^2 . If $\mathbf{x} \in \mathbb{R}^2$, then

$$\mathbf{x}^T \mathbf{u}_1 = \frac{x_1 + x_2}{\sqrt{2}}$$
 and $\mathbf{x}^T \mathbf{u}_2 = \frac{x_1 - x_2}{\sqrt{2}}$

It follows from Theorem 5.5.2 that

$$\mathbf{x} = \frac{x_1 + x_2}{\sqrt{2}} \, \mathbf{u}_1 + \frac{x_1 - x_2}{\sqrt{2}} \, \mathbf{u}_2$$

and it follows from Corollary 5.5.4 that

$$\|\mathbf{x}\|^2 = \left(\frac{x_1 + x_2}{\sqrt{2}}\right)^2 + \left(\frac{x_1 - x_2}{\sqrt{2}}\right)^2 = x_1^2 + x_2^2$$

Orthogonal Matrices

- An $n \times n$ matrix Q is said to be an orthogonal matrix if the column vectors of Q form an orthonormal set in \mathbb{R}^n
- An $n \times n$ matrix Q is orthogonal if and only of $Q^TQ = I$
- Proof

It follows from the definition that an $n \times n$ matrix Q is orthogonal if and only if its column vectors satisfy

$$\mathbf{q}_i^T \mathbf{q}_j = \delta_{ij}$$

However, $\mathbf{q}_i^T \mathbf{q}_i$ is the (i, j) entry of the matrix $Q^T Q$. Thus Q is orthogonal if and only if $Q^TQ = I$.

• If Q is an orthogonal matrix, then Q is invertible and $Q^{-1} = Q^T$

78

Orthogonal Matrices

Ex 6. For any fixed θ , the matrix

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

is orthogonal and

$$Q^{-1} = Q^{T} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

■ The matrix Q can be thought of as a linear transformation from \mathbb{R}^2 onto \mathbb{R}^2 that has the effect of rotating each vector by an angle θ while leaving the length of the vector unchanged

Orthonormal Sets

• Q^{-1} is a rotation by the angle $-\theta$

Orthogonal Matrices

In general, inner products are preserved under multiplication by an orthogonal matrix

$$\langle Qx, Qy \rangle = (Qy)^T Qx = y^T Q^T Qx = y^T x = \langle x, y \rangle$$

- If x = y, then $||Qx||^2 = ||x||^2$ and hence ||Qx|| = ||x||
- Multiplication by an orthogonal matrix preserves the lengths of vectors

Properties of Orthogonal Matrices

- If Q is an $n \times n$ orthogonal matrix, then
 - a. the column vectors of Q forms an orthonormal basis for \mathbb{R}^n
 - b. $Q^TQ = I$
 - c. $Q^T = Q^{-1}$
 - d. $\langle Qx, Qy \rangle = \langle x, y \rangle$
 - e. $||Qx||^2 = ||x||^2$

Permutation Matrices

- A *permutation matrix* is a matrix formed from the identity matrix by reordering its columns
 - Permutation matrices are orthogonal matrices
- If P is the permutation matrix formed by reordering the columns of I in the order (k_1, \dots, k_n) , then $P = (e_{k_1}, \dots, e_{k_n})$
- If A is an $m \times n$ matrix, then

$$AP = (Ae_{k_1}, \cdots, Ae_{k_n}) = (a_{k_1}, \cdots, a_{k_n})$$

• Postmultiplication of A by P reorders the columns of A in the order (k_1, \dots, k_n)

Permutation Matrices

• Since $P = (e_{k_1}, \dots, e_{k_n})$ is orthogonal, it follows that

$$P^{-1} = P^T = \begin{bmatrix} \boldsymbol{e}_{k_1}^T \\ \vdots \\ \boldsymbol{e}_{k_n}^T \end{bmatrix}$$

- The k_1 column of P^T will be e_1 , the k_2 column will be e_2 , and so on. Thus, P^T is a permutation matrix
- The matrix P^T can be formed directly from I by reordering its rows in the order (k_1, \dots, k_n)
- In general, a permutation matrix can be formed from *I* by reordering either its rows or its columns
- In general, if P is an $n \times n$ permutation matrix
 - premultiplication of an $n \times r$ matrix B by P reorders the rows of B
 - postmultiplication of an $m \times n$ matrix A by P reorders the columns of A

• If the column vectors of A form an orthonormal set of vectors in \mathbb{R}^m , then $A^TA = I$ and the solution to the least squares problem Ax = b is

$$\widehat{\boldsymbol{x}} = A^T \boldsymbol{b}$$

Proof

The (i, j) entry of A^TA is formed from the ith row of A^T and the jth column of A. Thus, the (i, j) entry is actually the scalar product of the ith and jth columns of A. Since the column vectors of A are orthonormal, it follows that

$$A^T A = (\delta_{ij}) = I$$

Consequently, the normal equations simplify to

$$\widehat{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{b} = A^T \boldsymbol{b}$$

- If we have an orthonormal basis for R(A), the projection $p = A\hat{x}$ can be determined in terms of the basis elements
- Let S be a subspace of an inner product space V and let $x \in V$. Let $\{u_1, u_2, \dots, u_n\}$ be an orthonormal basis for S. If $p = \sum_{i=1}^n c_i u_i$ where $c_i = \langle x, u_i \rangle$ for each i, then $p x \in S^{\perp}$
- Proof

We will show first that $(\mathbf{p} - \mathbf{x}) \perp \mathbf{u}_i$ for each i:

$$\langle \mathbf{u}_i, \mathbf{p} - \mathbf{x} \rangle = \langle \mathbf{u}_i, \mathbf{p} \rangle - \langle \mathbf{u}_i, \mathbf{x} \rangle$$

$$= \langle \mathbf{x}_i, \sum_{j=1}^n c_j \mathbf{u}_j \rangle - c_i$$

$$= \sum_{j=1}^n c_j \langle \mathbf{u}_i, \mathbf{u}_j \rangle - c_i$$

$$= 0$$

So $\mathbf{p} - \mathbf{x}$ is orthogonal to all the \mathbf{u}_i 's. If $\mathbf{y} \in S$, then

$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{u}_i$$

and hence

$$\langle \mathbf{p} - \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{p} - \mathbf{x}, \sum_{i=1}^{n} \alpha_i \mathbf{u}_i \rangle = \sum_{i=1}^{n} \alpha_i \langle \mathbf{p} - \mathbf{x}, \mathbf{u}_i \rangle = 0$$

If $\mathbf{x} \in S$, the preceding result is trivial, since, by Theorem 5.5.2, $\mathbf{p} - \mathbf{x} = \mathbf{0}$. If $\mathbf{x} \notin S$, then \mathbf{p} is the element in S closest to \mathbf{x} .

• p is the element of S that is closest to x; that is, ||y-x|| > ||p-x|| for any $y \neq p$ in S

Orthonormal Sets

Proof

If $y \in S$ and $y \neq p$, then

$$\|\mathbf{y} - \mathbf{x}\|^2 = \|(\mathbf{y} - \mathbf{p}) + (\mathbf{p} - \mathbf{x})\|^2$$

Since $y - p \in S$, it follows from Theorem 5.5.7 and the Pythagorean law that

$$\|\mathbf{y} - \mathbf{x}\|^2 = \|\mathbf{y} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{x}\|^2 > \|\mathbf{p} - \mathbf{x}\|^2$$

Therefore, $\|y - x\| > \|p - x\|$.

The vector \mathbf{p} defined by (3) and (4) is said to be the *projection of* \mathbf{x} *onto* S.

■ Let S be a nonzero subspace of \mathbb{R}^m and let $b \in \mathbb{R}^m$. If $\{u_1, u_2, \dots, u_n\}$ is an orthonormal basis for S and $U = [u_1, u_2, \dots, u_n]$, then the projection p of b onto S is given by

$$\boldsymbol{p} = UU^T\boldsymbol{b}$$

Proof

It follows from Theorem 5.5.7 that the projection \mathbf{p} of \mathbf{b} onto S is given by

$$\mathbf{p} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = U \mathbf{c}$$

where

$$\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1^T \mathbf{b} \\ \mathbf{u}_2^T \mathbf{b} \\ \vdots \\ \mathbf{u}_k^T \mathbf{b} \end{pmatrix} = U^T \mathbf{b}$$

Therefore,

and Perception Lab.

$$\mathbf{p} = UU^T \mathbf{b}$$

- If P is a projection matrix corresponding to a subspace of S of \mathbb{R}^m , then, for any $b \in \mathbb{R}^m$, the projection p of b onto S is unique
- If Q is also a projection matrix corresponding to S, then

$$Q\mathbf{b} = \mathbf{p} = P\mathbf{b}$$

$$\boldsymbol{q}_j = Q\boldsymbol{e}_j = P\boldsymbol{e}_j = \boldsymbol{p}_j$$
 for $j = 1, \dots, m$

Orthonormal Sets

and hence Q = P

The projection matrix for a subspace S of \mathbb{R}^m is unique

Ex 7. Let S be the set of all vectors in \mathbb{R}^3 of the form $(x, y, 0)^T$. Find the vector \mathbf{p} in S that is closest to $w = (5, 3, 4)^{T}$

Orthonormal Sets

Solution

Let $\mathbf{u}_1 = (1, 0, 0)^T$ and $\mathbf{u}_2 = (0, 1, 0)^T$. Clearly, \mathbf{u}_1 and \mathbf{u}_2 form an orthonormal basis for S. Now,

$$c_1 = \mathbf{w}^T \mathbf{u}_1 = 5$$
$$c_2 = \mathbf{w}^T \mathbf{u}_2 = 3$$

The vector **p** turns out to be exactly what we would expect:

$$\mathbf{p} = 5\mathbf{u}_1 + 3\mathbf{u}_2 = (5, 3, 0)^T$$

Alternatively, **p** could have been calculated using the projection matrix UU^T :

$$\mathbf{p} = UU^T \mathbf{w} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 0 \end{bmatrix}$$

Exercises

12. If Q is an $n \times n$ orthogonal matrix and x and y are nonzero vectors in \mathbb{R}^n , then how does the angle θ_2 between Qx and Qy compare with the angle θ_1 between x and y?