MMAN2300

Engineering Mechanics 2

Part B: Vibration Analysis

Continuous systems

Longitudinal vibration of bars

Longitudinal Vibration of a Uniform Bar or Rod

Section 8.3 Rao

Consider a homogeneous thin long bar of length l and cross-sectional area A, and subject to longitudinal vibrations due to an axial force F.

Longitudinal displacement of a bar

Take an element dx of the bar.

- u(x,t) is the longitudinal displacement of the element dx at a position x along the bar
- F is the longitudinal force acting on the element dx at position x
- $F + \frac{\partial F}{\partial x} dx$ is an expansion of the force acting on the element dx at position x + dx

Under elastic strain, the element dx stretches by an amount $\frac{\partial u}{\partial x}dx$, where $\varepsilon = \frac{\partial u}{\partial x}$ is the elastic strain.

- u is the longitudinal displacement of the element dx at a position x
- $u + \frac{\partial u}{\partial x} dx$ is the longitudinal displacement of the element dx at a position x + dx

The mass of the element dx is dm, where $dm = \rho dV = \rho A dx$

Using $\sum F = ma$ and taking the sum of the forces in the axial direction, we get:

$$F + \frac{\partial F}{\partial x}dx - F = dm \frac{\partial^2 u}{\partial t^2}$$

Hooke's law states:

$$F = \sigma A = EA \frac{\partial u}{\partial x}$$
 \Rightarrow $\frac{\partial F}{\partial x} = EA \frac{\partial^2 u}{\partial x^2}$

Substituting $\frac{\partial F}{\partial x}$ and dm into the equation of motion:

$$\Rightarrow EA \frac{\partial^2 u}{\partial x^2} = \rho A \frac{\partial^2 u}{\partial t^2}$$

$$\Rightarrow \frac{\partial^2 u}{\partial x^2} - \frac{1}{c_L^2} \frac{\partial^2 u}{\partial t^2} = 0$$
 is the wave equation for longitudinal vibration of a bar or rod.

$$c_L = \sqrt{\frac{E}{\rho}}$$

 $c_{\it L}$ is the longitudinal wavespeed (m/s) and represents the speed of propagation of the longitudinal waves along the bar.

The wave equation for longitudinal vibration of a bar is similar to that for lateral vibration of a string, that is, it is a 2^{nd} order partial differential equation.

Using the separation of variables technique: $u(x,t) = q(t)\phi(x)$, the general solution for u(x,t) can also be written in the same way as for the lateral displacement of a string, that is:

$$u(x,t) = (A\sin\omega_n t + B\cos\omega_n t)(C\sin kx + D\cos kx)$$

where $k = \omega/c_L$ is the longitudinal wavenumber [1/m]

The following boundary conditions are used to determine the coefficients C and D (and hence the ω_n 's and corresponding modeshapes)

Boundary Conditions	$\underline{x=0}$	$\underline{x = L}$
Fixed	u = 0	u = 0
Free	$\frac{\partial u}{\partial x} = 0$	$\frac{\partial u}{\partial x} = 0$
Spring load	$k_s u = EA \frac{\partial u}{\partial x}$	$k_s u = -EA \frac{\partial u}{\partial x}$
Inertia load	$M \frac{\partial^2 u}{\partial t^2} = EA \frac{\partial u}{\partial x}$	$M\frac{\partial^2 u}{\partial t^2} = -EA\frac{\partial u}{\partial x}$

Example 1

A bar is fixed at one end and free at the other. An axial force F_o is applied to the free end and released at t=0. Find an expression for the motion u(x,t) of the bar.

The general solution for the longitudinal displacement of the bar is:

$$u(x,t) = (A\sin\omega_n t + B\cos\omega_n t)(C\sin kx + D\cos kx)$$

Boundary conditions

• Fixed at
$$x = 0 \implies u(0,t) = 0$$

• Free at
$$x = l$$
 \Rightarrow $\frac{du(l,t)}{dx} = 0$

At x = 0

$$u(0,t) = (A \sin \omega_n t + B \cos \omega_n t)D = 0$$
 \Rightarrow $D = 0$

Hence

$$u(x,t) = (A\sin\omega_n t + B\cos\omega_n t)C\sin kx$$

$$\frac{du(x,t)}{dx} = (A\sin\omega_n t + B\cos\omega_n t)kC\cos kx$$

The second boundary condition requires

$$\frac{du(l,t)}{dx} = (A\sin\omega_n t + B\cos\omega_n t)kC\cos kl = 0$$

$$\Rightarrow kC\cos kl = 0$$

Now *k* and *C* are not zero – otherwise trivial solution!

$$\Rightarrow \cos kl = 0$$

$$\Rightarrow$$
 $kl = \frac{n\pi}{2}$, $n = 1, 3, 5 \dots$ etc

$$\Rightarrow$$
 $k = \frac{n\pi}{2l}$, $n = 1, 3, 5 \dots$ etc

$$\Rightarrow \omega_n = kc_L = \frac{n\pi c_L}{2l}, \quad n = 1, 3, 5 \dots \text{ etc}$$

$$\Rightarrow \qquad \omega_n = kc_L = \frac{(2n-1)\pi c_L}{2l} \,, \qquad n=1,\,2,\,3\,\,\ldots\,\,\infty$$

 ω_n $(n = 1, 2, 3 \dots \infty)$ are the natural frequencies of the bar.

The corresponding modeshapes for the bar are (note: D=0)

$$\phi(x) = \sin kx = \sin \frac{(2n-1)\pi x}{2l}, \qquad n = 1, 2, 3 \dots \infty$$

The solution for the longitudinal displacement of the fixed-free bar becomes

$$u(x,t) = \sum_{n=1}^{\infty} \left(A \sin(\frac{(2n-1)\pi c_L t}{2l} + B \cos(\frac{(2n-1)\pi c_L t}{2l}) \sin\frac{(2n-1)\pi x}{2l} \right)$$

Example 2

Determine the ω_n 's of a uniform bar of length l undergoing longitudinal vibration. The bar is fixed at one end and has a concentrated mass M attached to the other end.

The general solution for the longitudinal displacement of the bar is

$$u(x,t) = (A\sin\omega_n t + B\cos\omega_n t)(C\sin kx + D\cos kx)$$

Boundary conditions

• Fixed at
$$x = 0$$
 \Rightarrow $u(0,t) = 0$

• Inertial load at
$$x = l$$
 \Rightarrow $M \frac{\partial^2 u(l,t)}{\partial t^2} = -EA \frac{\partial u(l,t)}{\partial x}$

At x = 0

$$u(0,t) = (A\sin\omega_n t + B\cos\omega_n t)D = 0$$
 \Rightarrow $D = 0$

$$\Rightarrow u(x,t) = (A\sin\omega_n t + B\cos\omega_n t)C\sin kx$$

$$\frac{du(x,t)}{dx} = (A\sin\omega_n t + B\cos\omega_n t)kC\cos kx$$

$$\frac{d^2 u(x,t)}{dt^2} = -\omega_n^2 (A \sin \omega_n t + B \cos \omega_n t) C \sin kx$$

The second boundary condition requires

$$M\frac{\partial^2 u(l,t)}{\partial t^2} = -EA\frac{\partial u(l,t)}{\partial x}$$

$$\Rightarrow -M\omega_n^2 (A\sin\omega_n t + B\cos\omega_n t)C\sin kl = -EA(A\sin\omega_n t + B\cos\omega_n t)kC\cos kl$$

$$\Rightarrow M\omega_n^2 \sin kl = EAk \cos kl$$

$$\Rightarrow \tan kl = \frac{EAk}{M\omega_n^2}$$

We want the RHS of the above equation to be a function of kl.

From
$$k = \omega/c_L$$
 and $c_L = \sqrt{E/\rho}$

$$\Rightarrow \qquad \omega_n^2 = k^2 c_L^2 = k^2 \frac{E}{\rho}$$

$$\Rightarrow \tan kl = \frac{EAk}{Mk^2c_L^2} = \frac{\rho A}{M}\frac{1}{k}$$

Multiply the RHS by $\frac{l}{l}$

$$\Rightarrow$$
 $\tan kl = \frac{\rho Al}{M} \frac{1}{kl}$

This frequency equation is called a transcendental equation in terms of kl. A transcendental equation is also called a natural frequency equation or a characteristic equation.

The ω_n 's for the system can be obtained from the transcendental equation by plotting $\tan x$ and $\frac{\rho A l}{M} \frac{1}{x}$ against x, where $x = k l = \frac{\omega_n l}{c_L}$.

The points of intersection yield solutions for x and hence the ω_n 's.

In this example, two special cases arise

- $\rho Al \ll M$
- $\rho Al >> M$

It is possible to approximate the ω_n 's from the transcendental frequency equation in these two special cases.

Case 1 $\rho Al \ll M$

$$\tan kl = \frac{\rho Al}{M} \frac{1}{kl}$$
 \Rightarrow $kl \tan kl = \frac{\rho Al}{M}$

The RHS of the above equation will be very small. Hence, the LHS must also be very small.

$$\Rightarrow$$
 $kl \tan kl$ is very small \Rightarrow kl is small

Using $\sin \theta \approx \theta$, $\cos \theta \approx 1$ and $\tan \theta \approx \theta$ for small θ

$$\Rightarrow kl \tan kl \approx (kl)^2 = \left(\frac{\omega_n l}{c_L}\right)^2$$

$$\Rightarrow \qquad \left(\frac{\omega_n l}{c_L}\right)^2 = \frac{\rho A l}{M}$$

$$\Rightarrow \qquad \omega_n^2 = \frac{\rho A l}{M} \frac{c_L^2}{l^2} = \frac{\rho A}{M} \frac{E}{\rho l} = \frac{EA}{lM}$$

$$\Rightarrow$$
 $\omega_n = \sqrt{\frac{EA}{lM}}$

In this case, there is only one ω_n and it is equivalent to that of a single DOF bar-mass system, where the bar in longitudinal vibration has equivalent stiffness $k_{eq} = \frac{EA}{I}$.

Case 2 $\rho Al >> M$

$$\Rightarrow kl \tan kl = \frac{\rho Al}{M}$$

$$\Rightarrow \frac{\rho A l}{M} \to \infty$$

$$\Rightarrow \tan kl \to \infty$$

$$\Rightarrow kl = \frac{n\pi}{2}, \qquad n = 1, 3, 5 \dots \text{ etc}$$

$$\Rightarrow \omega_n = kc_L = \frac{n\pi c_L}{2l}, \quad n = 1, 3, 5 \dots \text{ etc}$$

$$\Rightarrow \qquad \omega_n = kc_L = \frac{(2n-1)\pi c_L}{2l}, \qquad n = 1, 2, 3 \dots \infty$$

This is the same ω_n equation of a fixed-free bar in longitudinal vibration, that is, the attached mass M becomes negligible.

Example 3

Find the natural frequency equation for longitudinal vibration of the bar shown in the figure below. Note that k_1 and k_2 are spring stiffness and are not to be confused with wavenumber k.

The general solution for the longitudinal displacement of the bar is

$$u(x,t) = (A\sin\omega_n t + B\cos\omega_n t)(C\sin kx + D\cos kx)$$

Boundary conditions

• Spring load at
$$x = 0$$
 \Rightarrow $k_1 u(0,t) = EA \frac{\partial u(0,t)}{\partial x}$

• Spring load at
$$x = l$$
 \Rightarrow $k_2 u(l,t) = -EA \frac{\partial u(l,t)}{\partial x}$

where
$$\frac{du(x,t)}{dx} = (A \sin \omega_n t + B \cos \omega_n t)(kC \cos kx - kD \sin kx)$$

At
$$x = 0$$

$$k_1(A\sin\omega_n t + B\cos\omega_n t)D = EA(A\sin\omega_n t + B\cos\omega_n t)kC$$

$$\Rightarrow D = \frac{EAk}{k_1}C$$

At
$$x = l$$

$$k_2(A\sin\omega_n t + B\cos\omega_n t)(C\sin kl + D\cos kl) = -EA(A\sin\omega_n t + B\cos\omega_n t)(kC\cos kl - kD\sin kl)$$

$$\Rightarrow k_2(C\sin kl + D\cos kl) = -EAk(C\cos kl - D\sin kl)$$

Group the sin and cos terms

$$\Rightarrow$$
 $\sin kl(k_2C - EAkD) = \cos kl(-EAkC - k_2D)$

Substitute for
$$D = \frac{EAk}{k_1}C$$

$$\Rightarrow \sin kl \left(k_2 C - \frac{E^2 A^2 k^2}{k_1} C \right) = \cos kl \left(-EAkC - \frac{EAkk_2}{k_1} C \right)$$

$$\Rightarrow \sin kl \left(\frac{k_1 k_2 - E^2 A^2 k^2}{k_1} \right) = \cos kl \left(-\frac{EAk(k_1 + k_2)}{k_1} \right)$$

$$\Rightarrow \tan kl = -\frac{EAk(k_1 + k_2)}{k_1k_2 - E^2A^2k^2}$$

We need an equation in terms of kl. Multiply the RHS by $\frac{l^2}{l^2}$

$$\Rightarrow \tan kl = -\frac{EAl(k_1 + k_2)(kl)}{k_1k_2l^2 - E^2A^2(kl)^2}$$

This is the transcendental equation of a bar spring-loaded at both ends in longitudinal vibration, from which the natural frequencies can be obtained.

The ω_n 's for the system can be obtained from the transcendental equation by plotting $\tan x$ and $\frac{-ax}{b-cx^2}$ against x, where $x = kl = \frac{\omega_n l}{c_L}$.

The points of intersection yield solutions for x and hence the ω_n 's.

Various configurations of a uniform bar or rod of length *l* in longitudinal vibration, illustrating the natural frequencies and modeshapes

Table 6.1 Inman reference text

In the table below, k is the spring stiffness (not wavenumber)

 $\lambda_n = kl$ where k is the wavenumber for the product kl

Configuration	Frequency (rad/s) or characteristic equation	Mode shape
Free-free	$\omega_n = \frac{n\pi c}{l}, n = 0, 1, 2, \dots$	$\cos \frac{n\pi x}{l}$
Fixed-free	$\omega_n = \frac{(2n-1)\pi c}{2l}, n = 1, 2, \dots$	$\sin\frac{(2n-1)\pi x}{2l}$
Fixed-fixed	$\omega_n = \frac{n\pi c}{l}, n = 1, 2, \dots$	$\sin \frac{n\pi x}{l}$
Fixed-spring	$\lambda_n \cot \lambda_n = -\left(\frac{kl}{EA}\right)$ $\omega_n = \frac{\lambda_n c}{l}$	$\sin \frac{\lambda_n x}{l}$
Fixed-mass	$\cot \lambda_n = \left(\frac{m}{\rho A l}\right) \lambda_n$ $\omega_n = \frac{\lambda_n c}{l}$	$\sin \frac{\lambda_n x}{l}$