# Deepfake Detection for Mobile Devices

組員:徐仁瓏、曾文海、陳亦宥、蕭合亭

# **Outline**

Motivation

Goal

Challenge & Solution

Dataset

Conclusion





- 1. 小玉「Deepfake換臉A片」、韓國N號房2.0
- 2. Real time deepfake



在目前手機普及的時代,手機也成為現代人獲得訊息最常見的工具之一,但是這些訊息 常常參雜著偽造的訊息,例如透過生成式 AI 偽造影像。

為了讓人們能夠發現偽造影像我們將開發輕量化的 deepfake 偵測模型並部署到手機裝置,讓用戶能即時檢測影像真偽,減少受虛假資訊影響的機會。

手機裝置的算力和記憶體資源有限,因此開發輕量化模型是為了在有限資源下提供高效能的偵測能力。

Goal



# Goal

開發一款可在手機平台上運行的 Deepfake 偵測應用,主要針對圖像進行偵測,並涵蓋目前所有主流的Deepfake生成技術。

- ▶ 記憶體限制:確保模型在現有的記憶體下可以穩定運行,並將內存使用量降到最低,以 適應不同型號的手機。
- ▶ 處理能力要求:盡管即時性不是本次的強制需求,推理速度仍是影響用戶體驗的重要指標,因此會在模型設計中考量優化運算效率,使得模型在有限的算力下能提供相對快速的反應。

# Challenge & Solution



- □ 模型壓縮與性能權衡
- □ 適應性與泛化能力
- □ 部署到手機平台的兼容性

- □ 模型壓縮與性能權衡
- □ 適應性與泛化能力
- □ 部署到手機平台的兼容性

現有的Deepfake偵測模型,如基於CNN的架構(例如Xception、EfficientNet等),通常具有高準確率,但這些模型的計算複雜,無法直接在資源受限的裝置上運行。

| Xception |           | Ef       | AU       | AUC     |        |        |
|----------|-----------|----------|----------|---------|--------|--------|
| Net      | <b>B4</b> | B4ST     | B4Att    | B4AttST | FF++   | DFDC   |
| ✓        |           |          |          |         | 0.9273 | 0.8784 |
|          | <b>√</b>  |          |          |         | 0.9382 | 0.8766 |
|          |           | ✓        |          |         | 0.9337 | 0.8658 |
|          |           |          | ✓        |         | 0.9360 | 0.8642 |
|          |           |          |          | ✓       | 0.9293 | 0.8360 |
|          | <b>√</b>  | <b>√</b> |          |         | 0.9413 | 0.8800 |
|          | ✓         |          | ✓        |         | 0.9428 | 0.8785 |
|          | ✓         |          |          | ✓       | 0.9421 | 0.8729 |
|          |           | ✓        | ✓        |         | 0.9423 | 0.8760 |
|          |           | ✓        |          | ✓       | 0.9393 | 0.8642 |
|          |           |          | ✓        | ✓       | 0.9390 | 0.8625 |
|          | <b>√</b>  | <b>√</b> | <b>√</b> |         | 0.9441 | 0.8813 |
|          | ✓         | ✓        |          | ✓       | 0.9432 | 0.8769 |
|          | ✓         |          | ✓        | ✓       | 0.9433 | 0.8751 |
|          |           | ✓        | ✓        | ✓       | 0.9426 | 0.8719 |
|          | ✓         | ✓        | <b>√</b> | ✓       | 0.9444 | 0.8782 |

Video Face Manipulation Detection
Through Ensemble of CNNs

### **Xception**



### **EfficientNet**



### **BNext**





### Quantization

將 BNext model 中藍色部分 quantize 成 INT8 或 INT4。

### **Pruning**

Remove unsignificant weights

# Quantization

訓練模型需要部署在硬體較為受限的智慧型裝置,模型運算在吃緊的硬體資源中顯得笨重,此時可以採取模型優化策略改進。

### Pros:

- 神經網路的參數需要過多空間
- 減少檔案的大小
- 減少運算資源
- 達到更快更小的優化成果

# Post Training Quantization

訓練後量化 Post Training Quantization 是一種轉換技術,可以減少模型大小,同時還可以改善 CPU 和硬件加速器的延遲 模型精度幾乎沒有下降。



https://ai.google.dev/edge/litert/models/post training quantization?hl=zh-tw

# Post Training Quantization

### 訓練流程

### 模型準備:

獲取已訓練好的 float32 模型。

### 選擇量化框架:

選擇支持 PTQ 的框架。

### 校準數據集:

使用一小部分未標註的數據作為校準數據集,計算量化過程中的縮放比例(scale)和零點(zero-point)。

### 模型量化:

使用框架提供的工具對模型進行量化,將權重和激活轉換 為低精度。

### 驗證與性能測試:

驗證量化後的模型性能是否符合需求,並進行精度和推理速度測試。



 $\underline{\text{https://www.datature.io/blog/introducing-post-training-quantization-feature-and-mechanics-explained}\\$ 

# **Pruning**

Using Unstructure Pruning to achieve higher sparsity

- TensorFlow Lite
- Using XNNPACK library to apply pruning wrapper only to the parts that can be accelerated
- XNNPACK library is included with the pre-built TensorFlow Lite binaries for Android and iOS

# **Pruning**

### Using Iteritive Pruning and Fintuning

• Leveraging the process of iterative pruning, higher pruning rates can be achieved without any significant loss of model performance.



- □ 模型壓縮與性能權衡
- □ 適應性與泛化能力
- □ 部署到手機平台的兼容性

適應性與泛化能力

挑戰: Deepfake技術多樣化且不斷演進,期望該模型在其他測試集上也能維持良好的偵測準確率,展現強大的泛化能力。考慮到

Deepfake技術的多樣化和不斷演進,我們將致力於找到有效的方法來提升模型在不同Deepfake生成技術下的適應性。

|                 |   | 20 gaross |   | 1100   | _ | 1100   | 230g23000 |   | 1100   | _ |        | 1           |  |  |  |  |
|-----------------|---|-----------|---|--------|---|--------|-----------|---|--------|---|--------|-------------|--|--|--|--|
| Xception        | ī | 0.8691    | Ī | 79.62% | Ī | 65.88% | 0.7795    | Ī | 76.14% | ī | 66.93% |             |  |  |  |  |
| Res2Net-101     | ī | 0.7693    | Ī | 83.01% | Ī | 71.28% | 0.6527    | 1 | 85.48% | Ī | 76.83% |             |  |  |  |  |
| EfficientNet-B7 | ī | 0.5782    | Ī | 89.59% | Ī | 77.05% | 0.7375    | Ī | 77.88% | ī | 70.08% |             |  |  |  |  |
| ViT             | ī | 0.6648    | Ī | 83.05% | Ī | 70.65% | 0.7419    | Ī | 76.40% | ī | 69.23% | FakeAVCeleb |  |  |  |  |
| Swin-Base       | ī | 0.5880    | Ī | 87.72% | Ī | 72.95% | 0.6373    | Ī | 89.10% | ī | 71.15% |             |  |  |  |  |
| MViT-V2-Base    | ī | 0.3654    | Ī | 92.96% | Ī | 84.65% | 0.4047    | 1 | 90.25% | Ī | 81.90% | i           |  |  |  |  |
| ResNet-3D       | Τ | 0.7903    | Ī | 83.55% | Ī | 68.00% | 1.1338    | Ī | 73.34% | ī | 62.50% | l           |  |  |  |  |
| TimeSformer     | ī | 0.9135    | Ī | 79.33% | Ī | 75.00% | 0.7900    | Ī | 76.65% | Ī | 70.50% |             |  |  |  |  |
|                 |   |           |   |        |   |        |           |   |        |   |        |             |  |  |  |  |
| Xception        | ī | 1.0426    | ī | 65.92% | ī | 61.60% | 1.2566    | T | 62.39% | Ī | 58.65% |             |  |  |  |  |
| Res2Net-101     | Ī | 1.0751    | Ī | 67.85% | Ī | 62.40% | 1.4218    | 1 | 65.46% | ī | 59.80% |             |  |  |  |  |
| EfficientNet-B7 | Ī | 0.7759    | Ī | 78.46% | Ī | 69.95% | 1.0103    | T | 67.24% | ī | 61.25% |             |  |  |  |  |
| ViT             |   | 0.5915    | Ī | 82.44% | Ī | 74.10% | 0.8504    | Ī | 75.11% | ī | 65.40% | CelebDF-V2  |  |  |  |  |
| Swin-Base       | Τ | 0.7136    | Ī | 74.58% | Ī | 67.05% | 0.7879    |   | 70.94% | Ī | 63.75% | CHODI VI    |  |  |  |  |
| MViT-V2-Base    | Ī | 0.9791    | Ī | 76.66% | Ī | 65.35% | 0.7912    |   | 68.69% | Ī | 62.70% |             |  |  |  |  |
| ResNet-3D       | Τ | 1.1992    | I | 66.12% | Ī | 65.00% | 1.5866    | Ī | 59.44% | Ī | 55.00% |             |  |  |  |  |
| TimeSformer     | Ī | 1.1745    | Ī | 73.68% | Ī | 63.00% | 0.7446    | ı | 80.40% | Ī | 71.00% |             |  |  |  |  |
|                 |   |           |   |        | Ī |        |           | Ī |        |   |        |             |  |  |  |  |
| Xception        | ī | 1.2988    | Ī | 64.22% | Ī | 54.70% | 1.3424    | T | 64.81% | I | 53.28% |             |  |  |  |  |
| Res2Net-101     | ī | 1.2052    | Ī | 69.51% | Ī | 58.60% | 1.6336    |   | 69.89% | Ī | 62.70% |             |  |  |  |  |
| EfficientNet-B7 | ī | 1.2835    | Ī | 70.49% | Ī | 59.13% | 1.2726    | T | 64.29% | ī | 59.23% |             |  |  |  |  |
| ViT             | ī | 1.1135    | Ī | 69.87% | Ī | 60.20% | 0.8981    |   | 68.20% | ī | 62.98% | DFDC        |  |  |  |  |
| Swin-Base       | Ī | 1.2534    | I | 71.53% | Ī | 58.63% | 1.1194    |   | 74.04% | ı | 61.48% | 2.20        |  |  |  |  |
| MViT-V2-Base    | Ī | 1.1775    | I | 69.63% | Ī | 62.15% | 0.9917    |   | 68.61% | Ī | 58.40% |             |  |  |  |  |
| ResNet-3D       | Ī | 1.2023    | I | 73.75% | I | 68.00% | 1.2788    |   | 67.04% | Ī | 61.00% |             |  |  |  |  |
|                 | _ |           | _ |        | - |        |           | - |        |   |        | 1           |  |  |  |  |

Training Dataset: FaceForensics++

ACC

LogLoss

No Augs

AUC

ACC

With Augs

LogLoss | AUC

Model

**Evaluation Dataset** 

Deepfake Detection: Analyzing Model Generalization Across Architectures, Datasets, and Pre-Training Paradigms

**Neighboring Pixel Relationship** 





Rethinking the Up-Sampling Operations in CNN-based Generative Network for Generalizable Deepfake Detection

Video-Level Blending and Spatiotemporal Adapter





Generalizing Deepfake Video Detection with Plug-and-Play: Video-Level Blending and Spatiotemporal Adapter

論文 Spatial-Phase Shallow Learning 中輸入 RGB+phase,使用 Xception 在 FF++c23 中的 AUC 從 94.86% 提高到 95.32%。

### Magnitude & Phase spectrum

| Methods              | H     | Q     | LQ    |       |  |
|----------------------|-------|-------|-------|-------|--|
| Methods              | ACC   | AUC   | ACC   | AUC   |  |
| Steg. Features [14]  | 70.97 | -     | 55.98 | -     |  |
| Cozzolino et al. [7] | 78.45 | -     | 58.69 | 2     |  |
| Bayer & Stamm [4]    | 82.97 | -     | 66.84 |       |  |
| Rahmouni et al. [36] | 79.08 | -     | 61.18 |       |  |
| MesoNet [1]          | 83.10 | -     | 70.47 | 12    |  |
| Face X-ray [22]      | -     | 87.35 | -     | 61.60 |  |
| Xception [6]         | 92.39 | 94.86 | 80.32 | 81.76 |  |
| Ours(Xception)       | 91.50 | 95.32 | 81.57 | 82.82 |  |

- Phase: 原始灰階圖傅立葉轉換後只保留指數部分 (phase spectrum) , 再轉換回原始域。
- Backbone: Xception 只保留 Block 1,2,3,12 以減少全局高層語義,強調局部低層特徵。

Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in Frequency Domain

- □ 模型壓縮與性能權衡
- □ 適應性與泛化能力
- □ 部署到手機平台的兼容性



將DeepFake模型成功部署在手機上(Google Pixel 9)進行運作,並且在使用體驗上達到不會讓使用有等待的感覺。

目標: RAM控制在1GB內,即時的推理完成

| ■ 圖形          |               | [单報問題]        |
|---------------|---------------|---------------|
| GPU 名稱        | Mali-G715 MP7 |               |
| GPU 頻率        | 940 MHz       |               |
| Shading units | 192           |               |
| FLOPS         | 2.5267 TFLOPS |               |
| Vulkan 版本     | 1.3           |               |
| OpenCL 版本     | 2.0           |               |
| FLOPS         |               | 2526.7 GFLOPS |

| 型號      | Pixel 9      | Pixel 9 Pro  | Pixel 9 Pro XL |
|---------|--------------|--------------|----------------|
| RAM(內存) | 12GB         | 16GB         | 16GB           |
| ROM     | 128GB/ 256GB | 128GB/ 256GB | 256GB/ 512GB   |
| 處理器     | Tensor G4    | Tensor G4    | Tensor G4      |
| 圖形處理器   | Mali-G715    | Mali-G715    | Mali-G715      |

https://www.landtop.com.tw/reviews/430



### FaceForensics++ (FF++)

描述:FF++資料集是深偽檢測研究中最早且最常用的資料集之一,包含四種不同的Deepfake生成技術(包括DeepFakes、FaceSwap、Face2Face、NeuralTextures),提供不同的影像質量級別(原始、高質量、低質量)。

**用途**:適合用於評估模型在各種深偽技術和圖像質量下的偵測性能。

總量:FF++包含1000個真實影片和4000個偽造影片(每種Deepfake生成技術生成1000個影片)。

**訓練、驗證、測試集劃分**:常見劃分為720個影片用於訓練、140個用於驗證、140個用於測試。

# Pristine | Deepfakes Face2Face FaceSwap NeuralTextures

### Celeb-DF

描述: Celeb-DF資料集專注於提升Deepfake影片的真實性, 採用了更高級的Deepfake生成技術, 使生成影片更加逼真且 難以分辨, 並包含多位名人視頻。

用途:適合用於測試模型在高仿真度Deepfake影像下的準確性,特別是對於高質量偽造影像的檢測。

總量: Celeb-DF v2版本包含590個真實影片和5639個偽造影片。

**訓練、驗證、測試集劃分**:通常使用70%的數據(約413部 真實影片和3950部偽造影片)進行訓練,15%用於驗證, 15%用於測試。



### DeepFake Detection Challenge (DFDC)

描述: DFDC資料集由Facebook提供,規模龐大,包含來自不同年齡、性別和種族的人物影像,並結合了多種Deepfake生成技術。

用途:適合用於測試模型在多樣化的人群、場景和生成技術上的泛化能力,是針對Deepfake模型訓練和測試的全面性資料集。

總量: DFDC資料集包含超過5000個真實影片和超過10 萬個偽造影片。

**訓練、驗證、測試集劃分**:官方劃分約80%數據用於訓練, 10%用於驗證, 10%用於測試。



# Results



# 報告

- 三個模型的參數比較(Xception / EfficientNetB4 / BNext)
- 三個模型在三個資料集的表現(FF++c23 / Celeb-DF / DFDC)
- 加入剪枝後的表現
- 加入量化後的表現
- 加入NPR的表現
- 加入VB的表現
- 加入其他方法(Maginitude, Phase)的表現

# 參數比較

| Our Design      | W/A | OPs      | #Param | Top-1 |
|-----------------|-----|----------|--------|-------|
| w/o Post-Quant. | WIA | $(10^8)$ | (MB)   | (%)   |
| BNext-18 (ours) | 1/1 | 1.64     | 5.4    | 68.4  |
| BNext-T (ours)  | 1/1 | 0.88     | 13.3   | 72.4  |
| BNext-S (ours)  | 1/1 | 1.90     | 26.7   | 76.1  |
| BNext-M (ours)  | 1/1 | 3.38     | 46.5   | 78.3  |
| BNext-L (ours)  | 1/1 | 8.54     | 106.1  | 80.6  |

| Model          | Channel | FLOPs(10^8) | MACs    | Params   |
|----------------|---------|-------------|---------|----------|
| Xception       | RGB     | 92          | 4.6 G   | 20.81 M  |
| Efficientnetb4 | RGB     | 1.16        | 58.0 M  | 19.34 M  |
| BNext-T        | RGB     | 1.20        | 59.9 M  | 29.84 M  |
| BNext-S        | RGB     | 1.82        | 90.97 M | 67.06 M  |
| BNext-M        | RGB     | 2.65        | 132.5 M | 132.97 M |

論文中的參數結果

實驗得出的參數結果

# FF++c23 (In-dataset)

| Model          | Channel | Variance | Test<br>Accuracy | Test<br>AUC | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|----------------|---------|----------|------------------|-------------|-----------------------------------------|---------------------------------|
| Xception       | RGB     | -        | 0.9429           | 0.9817      | 67.40                                   | 0.0013                          |
| Efficientnetb4 | RGB     | -        | 0.9330           | 0.9702      | 86.48                                   | 0.0017                          |
| BNext-T        | RGB     | -        | 0.8846           | 0.9195      | 137.37                                  | 0.0027                          |
| BNext-S        | RGB     | -        | 0.8942           | 0.9285      | 154.85                                  | 0.0031                          |
| BNext-M        | RGB     | -        | 0.9019           | 0.9373      | 167.81                                  | 0.0033                          |

## Challenge

適應性與泛化能力

挑戰: Deepfake技術多樣化且不斷演進,期望該模型在其他測試集上也能維持良好的偵測準確率,展現強大的泛化能力。考慮到Deepfake技術的多樣化和不斷演進,我們將致力於找到有效的方法來提升模型在不同Deepfake生成技術下的適應性。

| Swin-Base       | 0.5880 | 87.72%   72.95% | 0.6373 | 89.10%   71.15% |            |
|-----------------|--------|-----------------|--------|-----------------|------------|
| MViT-V2-Base    | 0.3654 | 92.96%   84.65% | 0.4047 | 90.25% 81.90%   |            |
| ResNet-3D       | 0.7903 | 83.55%   68.00% | 1.1338 | 73.34%   62.50% |            |
| TimeSformer     | 0.9135 | 79.33%   75.00% | 0.7900 | 76.65%   70.50% |            |
|                 |        |                 |        |                 |            |
| Xception        | 1.0426 | 65.92%   61.60% | 1.2566 | 62.39%   58.65% |            |
| Res2Net-101     | 1.0751 | 67.85%   62.40% | 1.4218 | 65.46%   59.80% |            |
| EfficientNet-B7 | 0.7759 | 78.46%   69.95% | 1.0103 | 67.24%   61.25% |            |
| ViT             | 0.5915 | 82.44% 74.10%   | 0.8504 | 75.11%   65.40% | CelebDF-V2 |
| Swin-Base       | 0.7136 | 74.58%   67.05% | 0.7879 | 70.94%   63.75% |            |
| MViT-V2-Base    | 0.9791 | 76.66%   65.35% | 0.7912 | 68.69%   62.70% |            |
| ResNet-3D       | 1.1992 | 66.12%   65.00% | 1.5866 | 59.44%   55.00% |            |
| TimeSformer     | 1.1745 | 73.68%   63.00% | 0.7446 | 80.40% 71.00%   |            |
|                 |        |                 |        |                 |            |
| Xception        | 1.2988 | 64.22%   54.70% | 1.3424 | 64.81%   53.28% |            |
| Res2Net-101     | 1.2052 | 69.51%   58.60% | 1.6336 | 69.89%   62.70% |            |
| EfficientNet-B7 | 1.2835 | 70.49%   59.13% | 1.2726 | 64.29%   59.23% |            |
| ViT             | 1.1135 | 69.87%   60.20% | 0.8981 | 68.20%   62.98% | DFDC       |
| Swin-Base       | 1.2534 | 71.53%   58.63% | 1.1194 | 74.04% 61.48%   |            |
| MViT-V2-Base    | 1.1775 | 69.63%   62.15% | 0.9917 | 68.61%   58.40% |            |
| ResNet-3D       | 1.2023 | 73.75% 68.00%   | 1.2788 | 67.04%   61.00% |            |
| TimeSformer     | 1.1116 | 73.77%   68.00% | 1.0129 | 74.04% 63.50%   |            |

Training Dataset: FaceForensics++

ACC

65.88%

71.28%

77.05%

70.65%

LogLoss

0.7795

0.6527

0.7375

0.7419

With Augs

AUC

79.62%

83.01%

89.59%

83.05%

LogLoss

0.8691

0.7693

0.5782

0.6648

Model

Xception

ViT

Res2Net-101

EfficientNet-B7

No Augs

AUC

76.14%

85.48%

77.88%

76.40%

ACC

66.93%

76.83%

70.08%

69.23%

**Evaluation Dataset** 

FakeAVCeleb

Deepfake Detection: Analyzing Model Generalization Across Architectures, Datasets, and Pre-Training Paradigm

## **Celed-DF (Cross-dataset)**

| Model          | Channel | Variance | Test<br>Accuracy | Test<br>AUC | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|----------------|---------|----------|------------------|-------------|-----------------------------------------|---------------------------------|
| Xception       | RGB     | -        | 0.7577           | 0.7744      | 255.25                                  | 0.0032                          |
| Efficientnetb4 | RGB     | -        | 0.7496           | 0.7652      | 263.76                                  | 0.0033                          |
| BNext-T        | RGB     | -        | 0.7703           | 0.7833      | 242.83                                  | 0.0031                          |
| BNext-S        | RGB     | -        | 0.7541           | 0.7614      | 266.07                                  | 0.0034                          |
| BNext-M        | RGB     | -        | 0.7850           | 0.8022      | 260.82                                  | 0.0033                          |

## **DFDC (Cross-dataset)**

| Model          | Channel | Variance | Test<br>Accuracy | Test<br>AUC | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|----------------|---------|----------|------------------|-------------|-----------------------------------------|---------------------------------|
| Xception       | RGB     | -        | 0.6230           | 0.5842      | 1976.69                                 | 0.0035                          |
| Efficientnetb4 | RGB     | -        | 0.4315           | 0.6279      | 1810.15                                 | 0.0032                          |
| BNext-T        | RGB     | -        | 0.5996           | 0.6442      | 1734.09                                 | 0.0030                          |
| BNext-S        | RGB     | -        | 0.6263           | 0.6658      | 1899.69                                 | 0.0033                          |
| BNext-M        | RGB     | -        | 0.4889           | 0.6667      | 2036.45                                 | 0.0036                          |

## Pruning

比例:20%

方法:L1非結構化剪枝

-> 選擇 Conv20%, FC20%

#### • Ablation (test on FF++c23)

| Model       | Conv. | FC  | Test<br>Accuracy | Test   | MACs   | Params  |
|-------------|-------|-----|------------------|--------|--------|---------|
| BNext-<br>M | -     | -   | 0.9019           | 0.9373 | 132.5M | 132.97M |
| BNext-<br>M | 20%   | 30% | 0.9017           | 0.9359 | 132.5M | 132.97M |
| BNext-<br>M | 30%   | 20% | 0.8846           | 0.9177 | 132.5M | 132.97M |
| BNext-<br>M | 20%   | 20% | 0.9019           | 0.9394 | 132.5M | 132.97M |
| BNext-<br>M | 10%   | 20% | 0.8997           | 0.9413 | 132.5M | 132.97M |

## **Pruning**

#### • FF++c23

| Model  | Channel | Pruning | Test<br>Accuracy | Test   | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|--------|---------|---------|------------------|--------|-----------------------------------------|---------------------------------|
| BNext- | RGB     | False   | 0.9019           | 0.9373 | 164.70                                  | 0.0033                          |
| BNext- | RGB     | True    | 0.9019           | 0.9394 | 332.95                                  | 0.0066                          |

#### Celeb-DF

| Model  | Channel | Pruning | Test<br>Accuracy | Test<br>AUC | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|--------|---------|---------|------------------|-------------|-----------------------------------------|---------------------------------|
| BNext- | RGB     | False   | 0.7850           | 0.8022      | 260.82                                  | 0.0033                          |
| BNext- | RGB     | True    | 0.7776           | 0.8114      | 269.21                                  | 0.0034                          |

#### • DFDC

| Model  | Channel | Pruning | Test<br>Accuracy | Test   | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|--------|---------|---------|------------------|--------|-----------------------------------------|---------------------------------|
| BNext- | RGB     | False   | 0.4889           | 0.6667 | 2036.45                                 | 0.0036                          |
| BNext- | RGB     | True    | 0.4842           | 0.6576 | 1935.48                                 | 0.0034                          |

## Pruning 2 - Sensitivity Analysis

Prune each layer and test the model





Base ratio: 0.2

If accuracy in analysis > 0.55, set ratio higher

- Ablation (test on FF++c23)

| Model   | Test Acc | Test<br>AUC | MACs    | Params  |
|---------|----------|-------------|---------|---------|
| BNext-M | 0.9019   | 0.9373      | 132.5M  | 132.97M |
| BNext-M | 0.8930   | 0.9102      | 132.5 M | 132.97M |



## Quantization

#### **BNext**



## **Quantization**

#### • BNextM (FF++c23)

| Model       | I-SE-<br>O(bits) | Test<br>Accuracy | Test   | MACs    | Params  | Inference<br>Time<br>(unit:<br>seconds) | Average time per image |
|-------------|------------------|------------------|--------|---------|---------|-----------------------------------------|------------------------|
| BNext-<br>M | 32-32-<br>32     | 0.9019           | 0.9373 | 510.48M | 132.97M | 164.70                                  | 0.003:                 |
| BNext-<br>M | 8-32-8           | 0.9022           | 0.9351 | 438.95M | 132.97M | 305.15                                  | 0.0060                 |
| BNext-<br>M | 8-8-8            | 0.9001           | 0.9393 | 438.95M | 132.97M | 340.13                                  | 0.0067                 |
| BNext-      | 8-4-8            | 0.9036           | 0.9448 | 438.95M | 132.97M | 339.23                                  | 0.0067                 |

-> 選擇 8-4-8 的 model

## **Quantization**

#### • FF++c23

| Model  | Channel | Quantization<br>(I-SE-O) | Test<br>Accuracy | Test   | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|--------|---------|--------------------------|------------------|--------|-----------------------------------------|---------------------------------|
| BNext- | RGB     | 32-32-32                 | 0.9019           | 0.9373 | 164.70                                  | 0.0033                          |
| BNext- | RGB     | 8-4-8                    | 0.9036           | 0.9448 | 339.23                                  | 0.0067                          |

#### · Celeb-DF

| Model  | Channel | Quantization<br>(I-SE-O) | Test<br>Accuracy | Test<br>AUC | Time<br>(unit:<br>seconds) | time<br>per<br>image |
|--------|---------|--------------------------|------------------|-------------|----------------------------|----------------------|
| BNext- | RGB     | 32-32-32                 | 0.7850           | 0.8022      | 260.82                     | 0.0033               |
| BNext- | RGB     | 8-4-8                    | 0.7882           | 0.8243      | 606.82                     | 0.0077               |

#### • DFDC

| Model       | Channel | Quantization<br>(I-SE-O) | Test<br>Accuracy | Test   | Inference Time (unit: seconds) | Average<br>time<br>per<br>image |
|-------------|---------|--------------------------|------------------|--------|--------------------------------|---------------------------------|
| BNext-<br>M | RGB     | 32-32-32                 | 0.4889           | 0.6667 | 2036.45                        | 0.0036                          |
| BNext-<br>M | RGB     | 8-4-8                    | 0.6096           | 0.6632 | 2877.49                        | 0.0050                          |

## **NPR**



-> 選擇參數為 w\_1 的 model

| Model       | Size<br>Ixl | w_j | Test<br>Accuracy | Test<br>AUC |
|-------------|-------------|-----|------------------|-------------|
| BNext-<br>M | 2x2         | w_1 | 0.9035           | 0.9373      |
| BNext-<br>M | 2x2         | w_2 | 0.9010           | 0.9366      |
| BNext-<br>M | 2x2         | w_3 | 0.8946           | 0.9323      |
| BNext-<br>M | 2x2         | w_4 | 0.9037           | 0.9269      |
| BNext-<br>M | 2x2         | max | 0.8796           | 0.9146      |
| BNext-<br>M | 3x3         | max | 0.8514           | 0.8825      |
| BNext-<br>M | 4x4         | max | 0.8891           | 0.9185      |

## NPR

#### • FF++c23

| Model       | Channel | Variance | Test<br>Accuracy | Test<br>AUC | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|-------------|---------|----------|------------------|-------------|-----------------------------------------|---------------------------------|
| BNext-<br>M | RGB     | -        | 0.9019           | 0.9373      | 164.70                                  | 0.0033                          |
| BNext-      | RGB     | +NPR     | 0.9035           | 0.9373      | 163.78                                  | 0.0032                          |

#### · Celeb-DF

| Model       | Channel | Variance | Test<br>Accuracy | Test   | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|-------------|---------|----------|------------------|--------|-----------------------------------------|---------------------------------|
| BNext-<br>M | RGB     | -        | 0.7850           | 0.8022 | 260.82                                  | 0.0033                          |
| BNext-      | RGB     | +NPR     | 0.7327           | 0.7618 | 255.52                                  | 0.0032                          |

#### • DFDC

| Model  | Channel | Variance | Test<br>Accuracy | Test<br>AUC | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|--------|---------|----------|------------------|-------------|-----------------------------------------|---------------------------------|
| BNext- | RGB     | -        | 0.4889           | 0.6667      | 2036.45                                 | 0.0036                          |
| BNext- | RGB     | +NPR     | 0.6996           | 0.6239      | 1804.87                                 | 0.0032                          |

## VB& StA

#### Video Blending (VB)



Figure 2: The overall pipeline of the proposed video-level blending method (VB). The whole process involves repeatedly performing Frame-by-Frame Synthesis for a video clip. Two main steps in the frame-by-frame synthesis are Landmark. Perturbation and Region Mask Extraction, where the former is designed to add mastom perturbation to the given facial landmarks and the lame is no extract the mask of each facial tendenties and the lame is no be seen in the tendential.

#### Spatial-Temporal Adapter (STA)



Figure 3: The overall pipeline of the proposed adapter-based strategy. We propose a novel and efficient adapter-based method that can be plug-and-play inserted into any SoTA image detector.

| Model   | VB&STA | MACs   | Params  |
|---------|--------|--------|---------|
| BNext-M | False  | 132.5M | 132.97M |
| BNext-M | True   | 59.3G  | 150.84M |

#### 計算量會變超級大!!!

| Model  | freeze | STA  | I3C  | VB  | Test<br>Accuracy | Test   | Inference<br>Time<br>(unit:<br>seconds) | Averag<br>time<br>per<br>video |
|--------|--------|------|------|-----|------------------|--------|-----------------------------------------|--------------------------------|
| BNext- | freeze | +STA | +13C | +VB | 0.7860           | 0.6008 | 48.99                                   | 0.0980                         |
| BNext- | freeze | +STA | +13C | -   | 0.7880           | 0.5762 | 49.54                                   | 0.0991                         |
| BNext- | freeze | -    | +13C | +VB | 0.8000           | 0.5698 | 19.24                                   | 0.0385                         |
| BNext- | freeze | -    | -    | +VB | 0.7860           | 0.6149 | 19.19                                   | 0.0384                         |
| BNext- | freeze | -    | -    | -   | 0.7980           | 0.6338 | 19.18                                   | 00384                          |

# Magnitude & Phase Spectrum

• FF++c23 Inference Average Test Test Time time Model Channel Accuracy AUC (unit: per seconds) image BNext-RGB 0.9019 0.9373 164.70 0.0033 BNext-RGB+Magnitude 308.25 0.9073 0.9437 0.0061 Μ BNext-RGB+Phase 0.9061 0.9408 519.00 0.0103 M BNext-RGB+Magnitude+Phase 0.8986 0.9329 550.25 0.0109 M

# Magnitude & Phase Spectrum

· Celeb-DF

| Model       | Channel             | Test<br>Accuracy | Test   | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|-------------|---------------------|------------------|--------|-----------------------------------------|---------------------------------|
| BNext-      | RGB                 | 0.7850           | 0.8022 | 260.82                                  | 0.0033                          |
| BNext-      | RGB+Magnitude       | 0.7684           | 0.7877 | 475.27                                  | 0.0060                          |
| BNext-      | RGB+Phase           | 0.7782           | 0.7949 | 742.92                                  | 0.0094                          |
| BNext-<br>M | RGB+Magnitude+Phase | 0.7891           | 0.8285 | 810.31                                  | 0.0102                          |

# Magnitude & Phase Spectrum

• DFDC

| Model       | Channel             | Test<br>Accuracy | Test   | Inference<br>Time<br>(unit:<br>seconds) | Average<br>time<br>per<br>image |
|-------------|---------------------|------------------|--------|-----------------------------------------|---------------------------------|
| BNext-<br>M | RGB                 | 0.4889           | 0.6667 | 2036.45                                 | 0.0036                          |
| BNext-<br>M | RGB+Mag             | 0.3984           | 0.6526 | 3302.80                                 | 0.0058                          |
| BNext-      | RGB+Phase           | 0.5044           | 0.6625 | 21237.21                                | 0.0372                          |
| BNext-      | RGB+Magnitude+Phase | 0.5355           | 0.6659 | 5108.31                                 | 0.0089                          |

#### • FF++c23

|          | • FF++C2 | 23   |       |     |    |               |          |
|----------|----------|------|-------|-----|----|---------------|----------|
|          | Model    | Pru. | Quan. | NPR | MP | Test Accuracy | Test AUC |
| Ablation | BNextM   | -    | -     | -   | -  | 0.9019        | 0.9373   |
| _        | BNextM   | v    | -     | -   | -  | 0.9019        | 0.9394   |
| Study    | BNextM   | -    | v     | -   | -  | 0.9036        | 0.9448   |
|          | BNextM   | -    | -     | v   | -  | 0.9035        | 0.9373   |
|          | BNextM   | -    | -     | -   | v  | 0.8986        | 0.9329   |
|          | BNextM   | v    | v     | -   | -  | 0.8000        | 0.5480   |
|          | BNextM   | v    | -     | v   | -  | 0.8919        | 0.9281   |
|          | BNextM   | v    | -     | -   | v  | 0.8978        | 0.9298   |
|          | BNextM   | -    | v     | v   | -  | 0.8000        | 0.5480   |
|          | BNextM   | -    | v     | -   | v  | 0.8000        | 0.5480   |
|          | BNextM   | -    | -     | v   | v  | 0.8858        | 0.9225   |
|          | BNextM   | V    | v     | ٧   | -  | 0.8000        | 0.5480   |
|          | BNextM   | ٧    | v     | -   | v  | 0.8000        | 0.5480   |
|          | BNextM   | v    | -     | v   | v  | 0.8878        | 0.9246   |
|          | BNextM   | -    | v     | v   | v  | 0.8000        | 0.5480   |
|          | BNextM   | ٧    | V     | v   | ٧  | 0.8000        | 0.5480   |

| Celeb-l | DF   |       |     |    |               |          |
|---------|------|-------|-----|----|---------------|----------|
| Model   | Pru. | Quan. | NPR | MP | Test Accuracy | Test AUC |
| BNextM  | -    | -     | -   | -  | 0.7850        | 0.8022   |
| BNextM  | v    | -     | -   | -  | 0.7776        | 0.8114   |
| BNextM  | -    | V     | -   | -  | 0.7882        | 0.8243   |
| BNextM  | -    | -     | v   | -  | 0.7327        | 0.7618   |
| BNextM  | -    | -     | -   | V  | 0.7891        | 0.8285   |
| BNextM  | v    | V     | -   | -  | 0.7188        | 0.5061   |
| BNextM  | v    | -     | v   | -  | 0.7473        | 0.7567   |
| BNextM  | v    | -     | -   | ٧  | 0.7959        | 0.8365   |
| BNextM  | -    | V     | v   | -  | 0.7188        | 0.5061   |
| BNextM  | -    | V     | -   | ٧  | 0.7188        | 0.5061   |
| BNextM  | -    | -     | v   | ٧  | 0.7743        | 0.7893   |
| BNextM  | v    | ٧     | v   | -  | 0.7188        | 0.5061   |
| BNextM  | V    | ٧     | -   | ٧  | 0.7188        | 0.5061   |
| BNextM  | V    | -     | V   | ٧  | 0.7750        | 0.7939   |
| BNextM  | -    | V     | V   | ٧  | 0.7188        | 0.5061   |
| BNextM  | v    | ٧     | v   | V  | 0.7188        | 0.5061   |

**Ablation** 

Study

|          | • DFDC | • DFDC |       |     |    |               |          |  |  |
|----------|--------|--------|-------|-----|----|---------------|----------|--|--|
|          | Model  | Pru.   | Quan. | NPR | MP | Test Accuracy | Test AUC |  |  |
| Ablation | BNextM | -      | -     | -   | -  | 0.4889        | 0.6667   |  |  |
| _        | BNextM | v      | -     | -   | -  | 0.4842        | 0.6576   |  |  |
| Study    | BNextM | -      | ٧     | -   | -  | 0.6096        | 0.6632   |  |  |
|          | BNextM | -      | -     | v   | -  | 0.6996        | 0.6239   |  |  |
|          | BNextM | -      | -     | -   | ٧  | 0.5355        | 0.6659   |  |  |
|          | BNextM | v      | v     | -   | -  | 0.8436        | 0.4976   |  |  |
|          | BNextM | v      | -     | v   | -  | 0.6390        | 0.6403   |  |  |
|          | BNextM | v      | -     | -   | v  | 0.6449        | 0.6692   |  |  |
|          | BNextM | -      | v     | v   | -  | 0.8436        | 0.4976   |  |  |
|          | BNextM | -      | v     | -   | v  | 0.8436        | 0.4976   |  |  |
|          | BNextM | -      | -     | v   | v  | 0.6379        | 0.6137   |  |  |
|          | BNextM | v      | v     | ٧   | -  | 0.8436        | 0.4976   |  |  |
|          | BNextM | v      | v     | -   | ٧  | 0.8436        | 0.4976   |  |  |
|          | BNextM | ٧      | -     | ٧   | ٧  | 0.6012        | 0.6305   |  |  |
|          | BNextM | -      | ٧     | ٧   | ٧  | 0.8436        | 0.4976   |  |  |
|          | BNextM | v      | V     | v   | ٧  | 0.8436        | 0.4976   |  |  |

# Conclusion



### Conclusion

- ➤ 將模型壓縮至適合手機部署的規格。
- ➤ 保持準確度以確保良好的測試效果。
- ▶ 設法提升模型在跨資料集上的表現,以實現更強的泛化能力。

## **Conclusion**

• FF++c23

| Model          | Variance   | Test Accuracy | Test AUC |
|----------------|------------|---------------|----------|
| Xception       | -          | 0.9429        | 0.9817   |
| EfficientNetB4 | -          | 0.9330        | 0.9702   |
| BNext-M        | -          | 0.9019        | 0.9373   |
| BNext-M        | Prun. + MP | 0.8978        | 0.9298   |

#### Celeb-DF

| Model          | Variance   | Test Accuracy | Test AUC |
|----------------|------------|---------------|----------|
| Xception       | -          | 0.7577        | 0.7744   |
| EfficientNetB4 | -          | 0.7496        | 0.7652   |
| BNext-M        | -          | 0.7850        | 0.8022   |
| BNext-M        | Prun. + MP | 0.7959        | 0.8365   |

| • DFDC         |            |               |          |  |
|----------------|------------|---------------|----------|--|
| Model          | Variance   | Test Accuracy | Test AUC |  |
| Xception       | -          | 0.6230        | 0.5842   |  |
| EfficientNetB4 | -          | 0.4315        | 0.6279   |  |
| BNext-M        | -          | 0.4889        | 0.6667   |  |
| BNext-M        | Prun. + MP | 0.6449        | 0.6692   |  |

## Challenges & Future work

- **實驗驗證**:需先執行一次實驗,確認結果是否與論文一致。
- ➤ 模型穩定性: BNext 為 BNN 模型,進行模型壓縮或加入方法可能導致不穩定或無法收斂。
- ▶ 超參數篩選:建議針對每種方法的超參數進行全面實驗,以尋求最佳解。
- ➤ Pruning:應先匯入權重再進行剪枝。應採用結構化剪枝方法來減小模型。
- ▶ 轉換模型:模型中的一些 Module 是自訂義,因此TorchScript並不支援。可以尋找 TorchScript 的相同功能 Module 替代或是在 Android Studio 使用 Java 寫過。



You are correct. The image on the right is real.

Play again.



 $\underline{https://www.whichfaceisreal.com/results.php?r=1\&p=1\&i1=image-2019-02-18\_215504.jpeg\&i2=21923.jpeg$ 







FF++資料集測試



whichfaceisreal測試











自己的照片測試(Generative AI)



自己的照片測試(濾鏡)