Pattern Recognition Machine Learning

vamshi, SC15M045

February 18, 2016

distance metric $d(x,y) = (x-y)^2, x,y \in \mathbb{R}$

- 1. $d(x,y) = d(y,x) \implies symmetric$
- 2. d(x,y) >= 0 and $d(x,y) = 0 \iff x = y$

3.
$$d(x,y) = (x-y)^2 = x^2 + y^2 - 2xy$$

> $(x-0)^2 + (y-0)^2$

> d(x,0) + d(0,y), if x and y are of oppsite signs

Triangle inequality not satisfied $\implies d(x,y) = (x-y)^2$ is not a metric on real line.

2

 x_0 is an accumulation point of $A \subset (X, d)$.i.e. every neighbourhood of x_0 contains at least one point of A distinct from x_0 . Let $B(x_0, r) = \{x \in X : d(x, x_0) < r\}$ be the open ball centered around x_0 of radius r, i.e $\forall r \in \mathbb{R}, \exists$ at least one $y \in A$ such that $y \in B(x_0, r)$ and $x_0 \neq y$

 \therefore Neighborhood of x_0 contains infinitely many points of A.

3

 $x = (x_1, x_2,x_n), y = (y_1, y_2, ...y_n), d(x, y) = max_i |y_i - x_i|$ Let $\{x^{(n)}\}$ be the cauchy sequence in $\mathbb{R}^n . \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } d(x^{(m)}, x^{(n)}) < \epsilon \text{ for } m, n > N.$

 $d(x^{(m)},x^{(n)}) = max_i |x_i^{(n)} - x_i^{(m)}| < \epsilon \implies \forall i \text{ and } m,n > N, |x_i^{(n)} - x_i^{(m)}| < \epsilon.\text{i.e.}$ Every i^{th} component of sequence $\{x^{(n)}\}$ forms a cauchy sequence of real numbers. Since cauchy sequences are bounded every sequence of the real numbers has a monotone subsequence. By the Monotone Convergence Theorem, we have that the subsequence converges. Since the subsequence converges, cauchy sequence also converges. Hence (X,d) is complete.

4

Let $y=m_1x$ and $y=m_2x$ be the straight lines passing through the origin. Union of points on these two lines $V=\{(x,y);y=m_1x\text{ or }y=m_2x\}$. Let $X_1=(x_1,y_1), X_2=(x_2,y_2)\in V$ such that $y_1=m_1x_1, y_2=m_2x_2$ \therefore $X_3=X_1+X_2=(x_1+x_2,y_1+y_2)=(x_1+x_2,m_1x_1+m_2x_2)\notin V$.i.e, X_3 lies neither on $y=m_1x$ nor on $y=m_2x$. Hence V is not a subspace of \mathbb{R}^2

 $M = \{v_1 = (1, 1, 1), v_2 = (0, 0, 2)\}$ contains two linearly independent vectors in \mathbb{R}^3 . Dimension of vector space formed by span of M is 2. span of $M = \{\alpha_1 v_1 + \alpha_2 v_2; \alpha_1, \alpha_2 \in \mathbb{R}\}$

6

 $(X_1,\|.\|_1), (X_2,\|.\|_2) \text{ are normed spaces.Product space } X = X_1 \mathbf{x} X_2. \mathbf{i.e, any element}$ in X can be written as $x = (x_1,x_2), x_1 \in X_1, x_2 \in X_2$ $\|x\| = \max(\|x_1\|_1, \|x_2\|_2). \text{ clearly}$ $1. \|x\| >= 0 \text{ and } \|x\| = 0 \iff x_1 = 0 \text{ and } x_2 = 0.i.e, x = 0$ $2. \|\alpha x\| = \max(\|\alpha x_1\|_1, \|\alpha x_2\|_2) = |\alpha| * \max(\|x_1\|_1, \|x_2\|_2) = |\alpha| \|x\|$ $3. \text{ Let } x = (x_1, x_2), y = (y_1, y_2), z = x + y = (x_1 + y_1, x_2 + y_2)$ $\|z\| = \|x + y\| = \max(\|x_1 + y_1\|_1, \|x_2 + y_2\|_2)$ $< \max(\|x_1\|_1, \|x_2\|_2) + \max(\|y_1\|_1, \|y_2\|_2)$ $< \|x\| + \|y\|$

Hence X is a normed space.

7

 $X=\mathbb{C}^{2x2}$ vector space of complex 2x2 matrices and $T:X\to X$ and T(x)=bx, b is fixed, $b\in X$

- 1. $T(\alpha x) = b(\alpha x) = \alpha bx = \alpha T(x)$
- 2. T(x+y) = b(x+y) = bx + by = T(x) + T(y)

Hence T is linear

8

$$\langle x, u \rangle > = \langle x, v \rangle, \forall x \implies \langle x, u - v \rangle = 0, \forall x \implies u - v = 0 \implies u = v$$