1. Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist one celebrity. The definition of a celebrity is that all the other n - 1 people know him/her but he/she does not know any of them.

Now you want to find out who the celebrity is or verify that there is not one. The only thing you are allowed to do is to ask questions like: "Hi, A. Do you know B?" to get information of whether A knows B. You need to find out the celebrity (or verify there is not one) by asking as few questions as possible (in the asymptotic sense).

You are given a helper function bool knows(a, b) which tells you whether A knows B. Implement a function int findCelebrity(n), your function should minimize the number of calls to knows. Note: There will be exactly one celebrity if he/she is in the party. Return the celebrity's label if there is a celebrity in the party. If there is no celebrity, return -1.

- 2. Given boolean 2D array. M[i][j] is True if person i knows person j. Find out the celebrity.
- 3. Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4], the contiguous subarray [2,3] has the largest product = 6.

- 4. Design a data structure that support constant contains(value), insert(value), remove(value) and getRandomElement().
- 5. Given a binary tree where all the right nodes are leaf nodes, flip it upside down and turn it into a tree with left leaf nodes.



6. You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

7. Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum  $\geq$  s. If there isn't one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,

the subarray [4,3] has the minimal length under the problem constraint.

8. Given a collection of distinct numbers, return all possible permutations.

For example,

[1,2,3] have the following permutations:

[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1].

9. Given an array of non-negative integers, you are initially positioned at the first index of the array. Each element in the array represents your maximum jump length at that position.

Your goal is to reach the last index in the minimum number of jumps.

For example: Given array A = [2,3,1,1,4]

The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)

Note: You can assume that you can always reach the last index.

10. You are given a string, s, and a list of words, words, that are all of the same length. Find all starting indices of substring(s) in s that is a concatenation of each word in words exactly once and without any intervening characters.

For example, given:

s: "barfoothefoobarman"

words: ["foo", "bar"]`

You should return the indices: [0,9].

(order does not matter).