In The Name of God. The Merciful, The Compassionate.

Markov Matrices and Fourier Series

notes on Gilbert Strang videos, Lecture 24

1 Markov matrices

- 1. all entries ≥ 0
- 2. all columns add to 1
- Steady state: $\rightarrow \lambda = 1$
- Two facts:
 - 1. $\lambda = 1$ is an eigenvalue, $x_1 \ge 0$
 - -A-1I = matrix with all columns add to 0. So, it is singular and 1 is an eigenvalue for A
 - Also note that $\mathbf{1}^T$ is in $n((A-I)^T)$.
 - $-x_1$ is in n(A-I)
 - 2. All other $|\lambda_i| < 1$
- $\Rightarrow u_k = A^k u_0 = c_1 \lambda_1^k x_1 + c_2 \lambda_2^k x_2 + \dots$ \rightarrow $c_1 x_1 \text{ as } k \to \infty$
- x_1 part of u_0 is the steady state.

2 Projection with orthonormal basis $\{q_1, \ldots, q_n\}$

- Any $v = x_1 q_1 + x_2 q_2 + \ldots + x_n q_n$
- $q_1^T v = x_1, \dots$
- $\bullet \begin{bmatrix} | & & | \\ q_1 & \dots & q_n \\ | & & | \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = v$
- $\bullet \ \ Qx = v \Rightarrow x = Q^{-1}v = Q^Tv$

3 Fourier series

- $f(x) = a_0 + a_1 cos(x) + b_1 sin(x) + a_2 cos(2x) + b_2 sin(2x) + \dots$
- infinite, orthogonal bases (working in function space).
- bases are $1, cos(x), sin(x), cos(2x), sin(2x), \dots$
- inner product of functions: $f^Tg=\int f(x)g(x)\,\mathrm{d}x=\int_0^{2\pi}f(x)g(x)\,\mathrm{d}x\to$ orthonormal infinite bases
- $a_1 = ?$
- $\int_0^{2\pi} f(x)\cos(x)dx = a_1 \int_0^{2\pi} (\cos(x))^2 dx$
- $\Rightarrow a_1 = \frac{1}{\pi} \int_0^{2\pi} f(x) cos(x) dx$