Cách giải phương trình lượng giác cơ bản

1. Lý thuyết

a) Phương trình $\sin x = m$

Trường hợp 1: |m| > 1. Phương trình vô nghiệm.

Trường hợp 2: $|\mathbf{m}| \le 1$. Phương trình có nghiệm.

- Nếu m biểu diễn được dưới dạng sin của những góc đặc biệt thì:

$$\sin x = m \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = \pi - \alpha + k2\pi \end{bmatrix} (k \in \mathbb{Z})$$

- Nếu m không biểu diễn được dưới dạng sin của những góc đặc biệt thì:

$$\sin x = m \Leftrightarrow \begin{cases} x = \arcsin m + k2\pi \\ x = \pi - \arcsin m + k2\pi \end{cases} (k \in \mathbb{Z})$$

- Các trường hợp đặc biệt:

$$\sin x = 0 \Leftrightarrow x = k\pi (k \in \mathbb{Z})$$

$$\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + k2\pi (k \in \mathbb{Z})$$

$$\sin x = -1 \Leftrightarrow x = -\frac{\pi}{2} + k2\pi (k \in \mathbb{Z})$$

b) Phương trình $\cos x = m$

Trường hợp 1: |m| > 1. Phương trình vô nghiệm.

Trường hợp 2: $|\mathbf{m}| \le 1$. Phương trình có nghiệm.

- Nếu m biểu diễn được dưới dạng cos của những góc đặc biệt thì:

$$\cos x = m \Leftrightarrow \cos x = \cos \alpha \Leftrightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = -\alpha + k2\pi \end{bmatrix} (k \in \mathbb{Z})$$

- Nếu m không biểu diễn được dưới dạng cos của những góc đặc biệt thì:

$$\cos x = m \Leftrightarrow \begin{bmatrix} x = \arccos m + k2\pi \\ x = -\arccos m + k2\pi \end{bmatrix} (k \in \mathbb{Z})$$

- Các trường hợp đặc biệt:

$$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi (k \in \mathbb{Z})$$

$$\cos x = 1 \Leftrightarrow x = k2\pi (k \in \mathbb{Z})$$

$$\cos x = -1 \Leftrightarrow x = \pi + k2\pi (k \in \mathbb{Z})$$

- c) Phương trình: tan x=m. Điều kiện: $x\neq \frac{\pi}{2}+k\pi \big(k\in \mathbb{Z}\big)$
- Nếu m biểu diễn được dưới dạng tan của những góc đặc biệt thì:

$$\tan x = m \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \big(k \in \mathbb{Z} \big)$$

- Nếu m không biểu diễn được dưới dạng tan của những góc đặc biệt thì:

$$\tan x = m \Leftrightarrow x = \arctan m + k\pi (k \in \mathbb{Z})$$

- d) Phương trình: cot x = m. Điều kiện: $x \neq k\pi(k \in \mathbb{Z})$
- Nếu m biểu diễn được dưới dạng cot của những góc đặc biệt thì:

$$\cot x = m \Leftrightarrow \cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi (k \in \mathbb{Z})$$

- Nếu m không biểu diễn được dưới dạng cot của những góc đặc biệt thì:

$$\cot x = m \Leftrightarrow x = \operatorname{arccot} m + k\pi (k \in \mathbb{Z})$$

e) Chú ý:

Nếu gặp bài toán yêu cầu tìm số đo độ của góc lượng giác sao cho sin (cos, tan, cot) của chúng bằng m.

Ví dụ: $\sin(x+20^\circ) = \frac{1}{2}$ ta có thể áp dụng các công thức nghiệm nêu trên, lưu ý sử dụng kí hiệu số đo độ trong công thức nghiệm.

chứ không viết
$$\begin{bmatrix} x + 20^\circ = 30^\circ + k2\pi \\ x + 20^\circ = 180^\circ - 30^\circ + k2\pi \end{bmatrix} (k \in \mathbb{Z})$$

2. Phương pháp giải:

Sử dụng công thức nghiệm cơ bản của phương trình lượng giác.

Mở rộng công thức nghiệm, với u(x) và v(x) là hai biểu thức của x.

$$\sin u(x) = \sin v(x) \Leftrightarrow \begin{bmatrix} u(x) = v(x) + k2\pi \\ u(x) = \pi - v(x) + k2\pi \end{bmatrix} (k \in \mathbb{Z})$$

$$\cos u(x) = \cos v(x) \Leftrightarrow u(x) = \pm v(x) + k2\pi (k \in \mathbb{Z})$$

$$\tan u(x) = \tan v(x) \Leftrightarrow u(x) = v(x) + k\pi (k \in \mathbb{Z})$$

$$\cot u(x) = \cot v(x) \Leftrightarrow u(x) = v(x) + k\pi (k \in \mathbb{Z})$$

3. Ví dụ minh họa

Ví dụ 1: Giải các phương trình sau:

a)
$$\sin\left(x - \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

b)
$$3\cos(x+1) = 1$$

c)
$$\tan(3x + 15^{\circ}) = \sqrt{3}$$

d)
$$\cot\left(\frac{\pi}{3} - x\right) - 1 = 0$$

Lời giải

a)

$$\sin\left(x - \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \Leftrightarrow \sin\left(x - \frac{\pi}{3}\right) = \sin\frac{\pi}{3} \Leftrightarrow \begin{bmatrix} x - \frac{\pi}{3} = \frac{\pi}{3} + k2\pi \\ x - \frac{\pi}{3} = \pi - \frac{\pi}{3} + k2\pi \end{bmatrix}$$

$$\left[x = \frac{2\pi}{3} + k2\pi\right]$$

$$\Leftrightarrow \begin{vmatrix} x = \frac{2\pi}{3} + k2\pi \\ x = \pi + k2\pi \end{vmatrix} (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x = \frac{2\pi}{3} + k2\pi; x = \pi + k2\pi; k \in \mathbb{Z}$.

$$b) 3\cos(x+1) = 1$$

$$\Leftrightarrow \cos \left({x + 1} \right) = \frac{1}{3} \Leftrightarrow x + 1 = \pm \arccos \frac{1}{3} + k2\pi \\ \Leftrightarrow x = -1 \pm \arccos \frac{1}{3} + k2\pi \\ \left(k \in \mathbb{Z} \right).$$

Vậy họ nghiệm của phương trình là: $x = -1 \pm \arccos \frac{1}{3} + k2\pi; k \in \mathbb{Z}$.

c) Điều kiện xác định:
$$\cos(3x+15^{\circ}) \neq 0$$

$$\Leftrightarrow$$
 3x +15° \neq 90° + k180°

$$\Leftrightarrow$$
 3x \neq 75° + k180°

$$\Leftrightarrow$$
 x \neq 25° + k60° (k \in \mathbb{Z})

Ta có:
$$\tan(3x+15^\circ) = \sqrt{3}$$

$$\Leftrightarrow \tan(3x+15^\circ) = \tan 60^\circ$$

$$\Leftrightarrow$$
 3x +15° = 60° + k180°

$$\Leftrightarrow$$
 3x = 45° + k180°

$$\Leftrightarrow$$
 x = 15° + k60° (k \in Z) (Thỏa mãn)

Vậy họ nghiệm của phương trình là: $x = 15^{\circ} + k60^{\circ}$; $k \in \mathbb{Z}$.

d) Điều kiện xác định:
$$\sin\left(\frac{\pi}{3} - x\right) \neq 0 \Leftrightarrow \frac{\pi}{3} - x \neq k\pi \Leftrightarrow x \neq \frac{\pi}{3} - k\pi \left(k \in \mathbb{Z}\right)$$

$$\cot\left(\frac{\pi}{3}-x\right)-1=0$$

$$\Leftrightarrow \cot\left(\frac{\pi}{3} - x\right) = 1$$

$$\Leftrightarrow \cot\left(\frac{\pi}{3} - x\right) = \cot\frac{\pi}{4}$$

$$\Leftrightarrow \frac{\pi}{3} - x = \frac{\pi}{4} + k\pi$$

$$\Leftrightarrow x = \frac{\pi}{12} - k\pi (k \in \mathbb{Z})$$
 (Thỏa mãn)

Vậy họ nghiệm của phương trình là: $x = \frac{\pi}{12} - k\pi; k \in \mathbb{Z}$.

Ví dụ 2: Giải các phương trình sau:

a)
$$\sin\left(3x - \frac{3\pi}{4}\right) = \sin\left(\frac{\pi}{6} - x\right)$$

b)
$$\cos 5x - \sin x = 0$$

c)
$$\cos\left(2x - \frac{\pi}{4}\right) + \sin\left(\frac{\pi}{3} - x\right) = 0$$

d)
$$\cot\left(x + \frac{\pi}{3}\right) = \cot\left(-2x\right)$$

Lời giải

a)
$$\sin\left(3x - \frac{3\pi}{4}\right) = \sin\left(\frac{\pi}{6} - x\right)$$

$$\Leftrightarrow \begin{bmatrix} 3x - \frac{3\pi}{4} = \frac{\pi}{6} - x + k2\pi \\ 3x - \frac{3\pi}{4} = \pi - \frac{\pi}{6} + x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} 4x = \frac{11\pi}{12} + k2\pi \\ 2x = \frac{19\pi}{12} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{11\pi}{48} + \frac{k\pi}{2} \\ x = \frac{19\pi}{24} + k\pi \end{bmatrix} (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x = \frac{11\pi}{48} + \frac{k\pi}{2}; x = \frac{19\pi}{24} + k\pi; k \in \mathbb{Z}$.

b)
$$\cos 5x - \sin x = 0 \iff \cos 5x = \sin x \iff \cos 5x = \cos \left(\frac{\pi}{2} - x\right)$$

$$\Leftrightarrow \begin{bmatrix} 5x = \frac{\pi}{2} - x + k2\pi \\ 5x = -\frac{\pi}{2} + x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} 6x = \frac{\pi}{2} + k2\pi \\ 4x = -\frac{\pi}{2} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{12} + \frac{k\pi}{3} \\ x = -\frac{\pi}{8} + \frac{k\pi}{2} \end{bmatrix} (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x = \frac{\pi}{12} + \frac{k\pi}{3}; x = -\frac{\pi}{8} + \frac{k\pi}{2}; k \in \mathbb{Z}$.

c)
$$\cos\left(2x - \frac{\pi}{4}\right) + \sin\left(\frac{\pi}{3} - x\right) = 0$$

$$\Leftrightarrow \cos\left(2x - \frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{3} - x\right)$$

$$\Leftrightarrow \cos\left(2x - \frac{\pi}{4}\right) = \sin\left(x - \frac{\pi}{3}\right)$$

$$\Leftrightarrow \cos\left(2x - \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{2} - x + \frac{\pi}{3}\right)$$

$$\Leftrightarrow \begin{bmatrix} 2x - \frac{\pi}{4} = \frac{\pi}{2} - x + \frac{\pi}{3} + k2\pi \\ 2x - \frac{\pi}{4} = -\frac{\pi}{2} + x - \frac{\pi}{3} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} 3x = \frac{13\pi}{12} + k2\pi \\ x = -\frac{7\pi}{12} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{13\pi}{36} + \frac{k2\pi}{3} \\ x = -\frac{7\pi}{12} + k2\pi \end{bmatrix} (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là $x = \frac{13\pi}{36} + \frac{k2\pi}{3}; x = -\frac{7\pi}{12} + k2\pi; k \in \mathbb{Z}$.

d) Điều kiện xác định:
$$\begin{cases} \sin\left(x+\frac{\pi}{3}\right) \neq 0 \\ \sin\left(-2x\right) \neq 0 \end{cases} \Leftrightarrow \begin{cases} x+\frac{\pi}{3} \neq k\pi \\ -2x \neq k\pi \end{cases} \Leftrightarrow \begin{cases} x \neq -\frac{\pi}{3} + k\pi \\ x \neq -\frac{k\pi}{2} \end{cases} \quad \left(k \in \mathbb{Z}\right)$$

Ta có:
$$\cot\left(x + \frac{\pi}{3}\right) = \cot\left(-2x\right)$$

$$\Leftrightarrow x + \frac{\pi}{3} = -2x + k\pi$$

$$\Leftrightarrow 3x = -\frac{\pi}{3} + k\pi$$

$$\Leftrightarrow x = -\frac{\pi}{9} + \frac{k\pi}{3} (k \in \mathbb{Z})$$
(Thỏa mãn)

Vậy họ nghiệm của phương trình là: $x = -\frac{\pi}{9} + \frac{k\pi}{3}; k \in \mathbb{Z}$.

Ví dụ 3: Giải các phương trình sau:

a)
$$(1 + 2\cos x)(3 - \cos x) = 0$$

b)
$$(\cot x + 1)\sin 3x = 0$$

c)
$$\frac{\sin 3x}{\cos 3x - 1} = 0$$

d) tanx.tan2x = 1

Lời giải

a)
$$(1 + 2\cos x)(3 - \cos x) =$$

$$0 \Leftrightarrow \begin{bmatrix} 1 + 2\cos x = 0 \\ 3 - \cos x = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \cos x = -\frac{1}{2} \\ \cos x = 3(\text{Loai}) \end{bmatrix} \Leftrightarrow x = \pm \frac{2\pi}{3} + k2\pi (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là $x = \pm \frac{2\pi}{3} + k2\pi; k \in \mathbb{Z}$.

b) Điều kiện xác định: $\sin x \neq 0 \Leftrightarrow x \neq k\pi (k \in \mathbb{Z})$

Ta có: $(\cot x + 1)\sin 3x = 0$

$$\Leftrightarrow \begin{bmatrix} \cot x + 1 = 0 \\ \sin 3x = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \cot x = -1 \\ 3x = k\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{4} + k\pi \\ x = \frac{k\pi}{3} \end{bmatrix} \quad (k \in \mathbb{Z})$$

Kết hợp với điều kiện xác định ta được họ nghiệm của phương trình là:

$$x = -\frac{\pi}{4} + k\pi; \ x = \pm \frac{\pi}{3} + k\pi; k \in \mathbb{Z}.$$

$$\cos 3x - 1 \neq 0 \Longleftrightarrow \cos 3x \neq 1 \Longleftrightarrow 3x \neq k2\pi \Longleftrightarrow x \neq \frac{k2\pi}{3} \big(k \in \mathbb{Z} \big).$$

Ta có:
$$\frac{\sin 3x}{\cos 3x - 1} = 0 \Rightarrow \sin 3x = 0 \Leftrightarrow 3x = k\pi \Leftrightarrow x = \frac{k\pi}{3} (k \in \mathbb{Z})$$

Kết hợp với điều kiện xác định ta được họ nghiệm của phương trình là: $x=\frac{\pi}{3}+\frac{k2\pi}{3}\big(k\in\mathbb{Z}\big).$

d) Điều kiện xác định:
$$\begin{cases} \cos x \neq 0 \\ \cos 2x \neq 0 \end{cases} \Leftrightarrow \begin{cases} x \neq \frac{\pi}{2} + k\pi \\ 2x \neq \frac{\pi}{2} + k\pi \end{cases} \Leftrightarrow \begin{cases} x \neq \frac{\pi}{2} + k\pi \\ x \neq \frac{\pi}{4} + \frac{k\pi}{2} \end{cases} (k \in \mathbb{Z})$$

tanx.tan2x = 1 (*)

Trường hợp 1: tanx = 0. Thay vào (*) (vô lí).

Trường hợp 2: $\tan x \neq 0 \Leftrightarrow x \neq k\pi (k \in \mathbb{Z})$

(*)
$$\Leftrightarrow$$
 tan 2x ≠ $\frac{1}{\tan x}$

$$\Leftrightarrow \tan 2x = \cot x$$

$$\Leftrightarrow \tan 2x = \tan \left(\frac{\pi}{2} - x\right)$$

$$\Leftrightarrow 2x = \frac{\pi}{2} - x + k\pi$$

$$\Leftrightarrow 3x = \frac{\pi}{2} + k\pi$$

$$\iff x = \frac{\pi}{6} + \frac{k\pi}{3} (k \in \mathbb{Z})$$

Kết hợp với điều kiện xác định ta được họ nghiệm của phương trình là

$$x = \pm \frac{\pi}{6} + k\pi; k \in \mathbb{Z}.$$

4. Bài tập tự luyện

Câu 1. Họ nghiệm của phương trình
$$\tan\left(x + \frac{\pi}{5}\right) + \sqrt{3} = 0$$
 là

A.
$$\frac{8\pi}{15} + k\pi; k \in \mathbb{Z}$$

B.
$$-\frac{8\pi}{15} + k\pi; k \in \mathbb{Z}$$

A.
$$\frac{8\pi}{15} + k\pi; k \in \mathbb{Z}$$
 B. $-\frac{8\pi}{15} + k\pi; k \in \mathbb{Z}$ **C.** $-\frac{8\pi}{15} + k2\pi; k \in \mathbb{Z}$ **D.**

$$\frac{8\pi}{15} + k2\pi; k \in \mathbb{Z}$$

Câu 2. Số nghiệm của phương trình: $\sqrt{2}\cos\left(x+\frac{\pi}{3}\right)=1$ với $0 \le x \le 2\pi$ là :

$$C$$
 1

Câu 3. Các nghiệm phương trình $\sin\left(2x + \frac{\pi}{3}\right) = \frac{1}{2}$ là:

A.
$$\begin{bmatrix} x = -\frac{\pi}{4} + k\pi \\ x = \frac{5\pi}{12} + k\pi \end{bmatrix}, k \in \mathbb{Z}$$

B.
$$x = \frac{\pi}{4} + k\pi$$
$$x = \frac{5\pi}{12} + k\pi$$
$$k \in \mathbb{Z}$$

C.
$$\begin{bmatrix} x = \frac{\pi}{4} + k\pi \\ x = -\frac{\pi}{12} + k\pi \end{bmatrix}, k \in \mathbb{Z}$$

$$\mathbf{D.} \begin{vmatrix} x = -\frac{\pi}{4} + \frac{k\pi}{2} \\ x = \frac{\pi}{12} + \frac{k\pi}{2} \end{vmatrix}, k \in \mathbb{Z}$$

Câu 4. Các nghiệm của phương trình $\cos(3x+15^\circ) = \frac{\sqrt{3}}{2}$ là:

A.
$$\begin{cases} x = 25^{\circ} + k.120^{\circ} \\ x = -15^{\circ} + k.120^{\circ} \end{cases}, k \in \mathbb{Z}$$

B.
$$\begin{cases} x = 5^{\circ} + k.120^{\circ} \\ x = 15^{\circ} + k.120^{\circ} \end{cases}, k \in \mathbb{Z}$$

C.
$$\begin{cases} x = 25^{\circ} + k.120^{\circ} \\ x = 15^{\circ} + k.120^{\circ} \end{cases}, k \in \mathbb{Z}$$

D.
$$\begin{cases} x = 5^{\circ} + k.120^{\circ} \\ x = -15^{\circ} + k.120^{\circ} \end{cases}, k \in \mathbb{Z}$$

Câu 5. Nghiệm của phương trình 2sinx.cosx = 1 là:

A.
$$x = k2\pi; k \in \mathbb{Z}$$

A.
$$x = k2\pi; k \in \mathbb{Z}$$
 B. $x = \frac{\pi}{4} + k\pi; k \in \mathbb{Z}$ **C.** $x = \frac{k\pi}{2}; k \in \mathbb{Z}$

C.
$$x = \frac{k\pi}{2}; k \in \mathbb{Z}$$

D.

$$x = k\pi; k \in \mathbb{Z}$$

Câu 6. Phương trình $\tan x = \tan \frac{x}{2}$ có họ nghiệm là:

A.
$$x = k2\pi; k \in \mathbb{Z}$$

B.
$$x = k\pi; k \in \mathbb{Z}$$

C.
$$x = \pi + k2\pi; k \in \mathbb{Z}$$
 D.

$$x = \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$$

Câu 7. Nghiệm của phương trình $\sin 3x = \cos x$ là:

A.
$$x = k\pi; \ x = \frac{k\pi}{2}; k \in \mathbb{Z}$$

B.
$$x = \frac{\pi}{8} + \frac{k\pi}{2}$$
; $x = \frac{\pi}{4} + k\pi$; $k \in \mathbb{Z}$

C.
$$x = k\pi; \ x = \frac{\pi}{4} + k\pi; k \in \mathbb{Z}$$

D.
$$x = k2\pi; \ x = \frac{\pi}{2} + k2\pi; k \in \mathbb{Z}$$

Câu 8. Nghiệm âm lớn nhất và nghiệm dương nhỏ của phương trình $\sin 4x + \cos 5x =$ 0 theo thứ tư là:

A.
$$x = -\frac{\pi}{18}$$
; $x = \frac{\pi}{2}$

A.
$$x = -\frac{\pi}{18}$$
; $x = \frac{\pi}{2}$ **B.** $x = -\frac{\pi}{18}$; $x = \frac{2\pi}{9}$ **C.** $x = -\frac{\pi}{18}$; $x = \frac{\pi}{6}$

C.
$$x = -\frac{\pi}{18}$$
; $x = \frac{\pi}{6}$

$$x = -\frac{\pi}{18}$$
; $x = \frac{\pi}{3}$

Câu 9. Giải phương trình
$$\sin\left(4x - \frac{\pi}{4}\right) + \sin\left(2x - \frac{\pi}{3}\right) = 0$$

A.
$$x = \frac{7\pi}{72} + \frac{k\pi}{3}$$
$$x = \frac{\pi}{24} + k\pi$$

$$\mathbf{B.} \quad \begin{vmatrix} \mathbf{x} = \frac{7\pi}{72} + \frac{\mathbf{k}\pi}{3} \\ \mathbf{x} = \frac{11\pi}{24} + 2\mathbf{k}\pi \end{vmatrix} (\mathbf{k} \in \mathbb{Z})$$

C.
$$x = \frac{7\pi}{72} + \frac{k\pi}{3}$$
 $(k \in \mathbb{Z})$
$$x = \frac{11\pi}{4} + k\pi$$

$$\mathbf{D.} \begin{bmatrix} x = \frac{7\pi}{72} + \frac{k\pi}{3} \\ x = \frac{11\pi}{24} + k\pi \end{bmatrix} (k \in \mathbb{Z})$$

Câu 10. Nghiệm của phương trình $\sin x \cdot (2\cos x - \sqrt{3}) = 0$ là:

A.
$$x = k\pi$$

$$x = \pm \frac{\pi}{6} + k2\pi (k \in \mathbb{Z})$$

B.
$$x = k\pi$$

$$x = \pm \frac{\pi}{6} + k\pi (k \in \mathbb{Z})$$

C.
$$x = k2\pi$$

$$x = \pm \frac{\pi}{3} + k2\pi (k \in \mathbb{Z})$$

D.
$$x = \pm \frac{\pi}{6} + k2\pi; k \in \mathbb{Z}$$

Câu 11. Nghiệm của phương trình tanx = cotx

A.
$$x = \frac{\pi}{4} + \frac{k\pi}{2}; k \in \mathbb{Z}$$

B.
$$x = -\frac{\pi}{4} + k\pi; k \in \mathbb{Z}$$

C.
$$x = \frac{\pi}{4} + k\pi; k \in \mathbb{Z}$$

D.
$$x = \frac{\pi}{4} + \frac{k\pi}{4}; k \in \mathbb{Z}$$

Câu 12. Nghiệm của phương trình tan3x.cot2x = 1 là

A.
$$\frac{k\pi}{2}$$
, $k \in \mathbb{Z}$

A.
$$\frac{k\pi}{2}$$
, $k \in \mathbb{Z}$ **B.** $-\frac{\pi}{4} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$ **C.** $k\pi, k \in \mathbb{Z}$

C.
$$k\pi, k \in \mathbb{Z}$$

D. Vô

nghiệm.

Câu 13. Phương trình $(\sin x + 1)(\sin x - \sqrt{2}) = 0$ có các nghiệm là:

A.
$$x = -\frac{\pi}{2} + k2\pi; k \in \mathbb{Z}$$

B.

$$x = \pm \frac{\pi}{4} + k2\pi, x = -\frac{\pi}{8} + k\pi; k \in \mathbb{Z}$$

$$\mathbf{C.} \ \mathbf{x} = \frac{\pi}{2} + \mathbf{k} 2\pi; \mathbf{k} \in \mathbb{Z}$$

D.
$$x = \pm \frac{\pi}{2} + k2\pi; k \in \mathbb{Z}$$

Câu 14. Giải phương trình $\frac{\cos 2x}{1-\sin 2x} = 0$

A.
$$x = \frac{\pi}{4} + k\pi, (k \in \mathbb{Z})$$

B.
$$x = \frac{3\pi}{14} + k\pi, (k \in \mathbb{Z})$$

C.
$$x = \frac{3\pi}{4} + k2\pi, (k \in \mathbb{Z})$$

D.
$$x = \frac{3\pi}{4} + k\pi, (k \in \mathbb{Z})$$

Câu 15. Tìm tổng các nghiệm của phương trình $\sin\left(5x + \frac{\pi}{3}\right) = \cos\left(2x - \frac{\pi}{3}\right)$ trên

 $[0;\pi]$

$$\mathbf{A.} \ \frac{7\pi}{18}$$

B.
$$\frac{4\pi}{18}$$

C.
$$\frac{47\pi}{8}$$

D.
$$\frac{47\pi}{18}$$

Bảng đáp án

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	В	С	D	В	A	В	C	D	A	A	D	A	D	D