# S60 PROJET DYNAMIQUE MÉCANIQUE

- A) Déterminer le site et l'azimut du canon pour atteindre la cible
- 1) Détermination de l'azimute par rapport au nord

### Considérations:

- Coordonnée GPS du canon : Lampaul-Plouarzel, Finistère, France : 48.44727, -4.76045, 31
- Coordonnée GPS de la cible : île de balanec : 48.4173141, -4.9831359

On trouve facilement l'azimut par rapport au nord grâce au site « dcode » qui le calcule à notre place. On le note  $\alpha = -101$  °

# 2) Détermination du site du canon sans frottement

## Considérations:

• Référentiel d'étude : terrestre considéré galiléen

• Système : projectile de masse m et de centre d'inertie G considéré comme un point

• Repère :  $R_0(O, \vec{ex}, \vec{ey})$ 

• Les frottements sont négligés

## Données:

• Masse du projectile : m=40 kq

• Vitesse initiale :  $v_0 = 1200 \, m/s$ 

• Distance à parcourir : d = OB = 17 km

• Altitude église : h=31m

•  $q=9.81 \,\mathrm{m.s}^{-2}$ 

## Paramétrage:



Conditions initiales:

$$(\overrightarrow{OG})\begin{pmatrix} x_0=0\\ y_0=h \end{pmatrix}$$
  $(\overrightarrow{v_0})\begin{pmatrix} v_{0x}=v_0.\cos(\alpha)\\ v_{0y}=v_0.\sin(\alpha) \end{pmatrix}$ 

Bilan des actions mécaniques extérieures :

Le projectile est soumis à son poids

$$(\overrightarrow{P_G})\begin{pmatrix} 0 \\ -mg \end{pmatrix}$$

Bilan des quantités d'accélération:

Application du PFD

$$\sum (\vec{F}_{ext/s}) = m.(\vec{a})$$
$$(\vec{P}_G) = m.(\vec{a})$$

Projections sur  $(\vec{e}_x, \vec{e}_y)$ 

$$\begin{pmatrix} 0 = m \cdot a_{x} \\ -m \cdot g = m \cdot a_{y} \end{pmatrix}$$

$$\begin{pmatrix} \ddot{x} = 0 \\ \ddot{y} = -g \end{pmatrix}$$

$$\begin{pmatrix} \dot{x} = v_{0x} = v_{0} \cdot \cos(\alpha) \\ \dot{y} = -g \cdot t + v_{0y} = -g \cdot t + v_{0} \cdot \sin(\alpha) \end{pmatrix}$$

$$\begin{pmatrix} x = v_{0} \cdot \cos(\alpha) \cdot t + x_{0} \\ y = -g \cdot t^{2} + v_{0} \cdot \sin(\alpha) \cdot t + y_{0} \end{pmatrix}$$

or 
$$(x_0 = 0, y_0 = h)$$

donc on obtient l'équation horaire suivante

$$(\overrightarrow{OG}) \left( y = \frac{x = v_0.t.\cos(\alpha)(1)}{2}.g.t^2 + v_0.\sin(\alpha).t + h(2) \right)$$

On peut isoler t dans (1) et le substituer dans (2) pour obtenir une seul équation

$$\left( y = \frac{x}{v_0 \cdot \cos(\alpha)} (1) \right)$$

$$\left( y = \frac{-1}{2} \cdot g \cdot \left( \frac{x}{v_0 \cdot \cos(\alpha)} \right)^2 + v_0 \cdot \sin(\alpha) \cdot \left( \frac{x}{v_0 \cdot \cos(\alpha)} \right) + h(2) \right)$$

On obtient l'équation de la trajectoire y en fonction de x et  $\alpha$ 

$$y = \frac{-1}{2} \cdot g \cdot (\frac{x}{v_0 \cdot \cos(\alpha)})^2 + v_0 \cdot \sin(\alpha) \cdot (\frac{x}{v_0 \cdot \cos(\alpha)} + h)$$

# Résolution par méthode numérique : Maxima

• On cherche les solutions de  $\alpha$  pour y=0 et x=d et  $\alpha \in [0; \frac{\pi}{2}]$ 

On trouve la relation suivante

$$x(\alpha) = \frac{\cos(\alpha).v_{0.}\sqrt{\sin(\alpha)^2.v_0^2 + 2.g.h} + \cos(\alpha).\sin(\alpha).v_0^2}{q}$$

On obtient le graphe suivant où  $a=\alpha$ 



On trouve la portée maximale  $x_{max}=146800\,m=146.8\,km$ . On remarque également que  $x(\alpha)=d$  à deux solutions, on les note  $\alpha_1$  et  $\alpha_2$ .

On résout  $x(\alpha_1)=d$  avec  $\alpha_1\in[0\,;0,2]$  et  $x(\alpha_2)=d$  avec  $\alpha_1\in[1,4\,;1,6]$ 

On trouve  $\alpha_1 = 5,621.10^{-2} rad$  et  $\alpha_2 = 1,513 rad$ 

• On peut désormais tracer les trajectoires

Graphe de y(x) pour  $\alpha = \alpha_1 = 5,621.10^{-2}$  rad



*Graphe de y*(x) *pour*  $\alpha = \alpha_2 = 1,513$  *rad* 



# 2) Détermination du site du canon avec frottement

#### Considérations:

• Référentiel d'étude : terrestre considéré galiléen

• Système : projectile de masse m et de centre d'inertie G considéré comme un solide sans moments dynamiques

• Repère :  $R_0(O, \vec{ex}, \vec{ey})$ 

• On considère la traînée comme une force de frottement tel que :  $(\vec{F}_f) = -k \cdot v^2 \cdot \frac{\vec{v}}{\|\vec{v}\|}$  avec

$$k = \frac{1}{2} \cdot \rho_{air} \cdot S_f \cdot C_x$$

## Données:

• Masse volumique de l'air :  $\rho_{air} = 1,225 \, kg/m^3$ 

• Coefficient de traînée du projectile :  $C_x = 0.04$ 

• Diamètre obus :  $D_{obus} = 155 mm$ 

•  $S_f = \frac{S_s}{2} = 2. \pi . r^2 = 2. \pi \left(\frac{D_s}{2}\right)^2 = \frac{\pi}{2} . D_s^2 = 37.10^{-3} m^2$ 

•  $k=9.10^{-4}$ 

# Paramétrage:



Bilan des actions mécaniques extérieures :

Le projectile est soumis à son poids et à la traînée

$$(\overrightarrow{P_G}) \begin{pmatrix} 0 \\ -mg \end{pmatrix} \qquad (\overrightarrow{F_{f/G}}) \begin{pmatrix} -k.\sqrt{(v_x^2 + v_y^2)}.v_x \\ -k.\sqrt{(v_x^2 \cdot v_y^2)}.v_y \end{pmatrix}$$

Bilan des quantités d'accélération :

 $m.\vec{a}$ 

Application du PFD

$$\sum_{\overrightarrow{P_G}} (\overrightarrow{F_{ext/s}}) = m.(\overrightarrow{a})$$
 
$$(\overrightarrow{P_G}) + (\overrightarrow{F_{f/G}}) = m.(\overrightarrow{a})$$

Projections sur  $(\vec{e}_x, \vec{e}_y)$ 

$$\begin{pmatrix} 0 - k . \sqrt{(v_x^2 + v_y^2)} . v_x = m . a_x \\ -m . g - k . \sqrt{(v_x^2 . v_y^2)} . v_y = m . a_y \end{pmatrix}$$

$$\begin{pmatrix} \ddot{x} = \frac{-k}{m} . \sqrt{(\dot{x}^2 + \dot{y}^2)} . \dot{x} \\ \ddot{y} = -g - \frac{k}{m} . \sqrt{(\dot{x}^2 . \dot{y}^2)} . \dot{y} \end{pmatrix}$$



Graphe  $y(x)\alpha = 0.0755$  rad

