DE4034019

Patent number:

DE4034019

Publication date:

1992-07-09

Inventor:

Applicant: Classification:

- international:

(IPC1-7): G01D5/243; G08C15/10; G08C17/00

- european:

A61B5/00B; A61B5/00B4 DE19904034019 19901025

Application number: Priority number(s):

DE19904034019 19901025

Also published as:

WO9207505 (A1) EP0554279 (A1)

EP0554279 (B1)

Report a data error here

Abstract of DE4034019

The description concerns a measuring probe with a reception unit (3) which receives a highfrequency field irradiated from a remote transmission device (1) and a power supply unit (5) which generates a supply voltage for the measuring probe from the high-frequency output signal of the reception unit. In addition, there is a sensor unit (6) which has at least one sensor (9) and at least one reference component (10), the output signals of which are applied serially in the multiplex process by a multiplexer to a voltagecontrolled oscillator (7) which converts the output signals into a signal, the frequency of which is proportional to the output signal. Moreover, there are a modulation unit (14), the modulation travel of which is programmable and which modulates the high-frequency output signal of the reception unit with the output signal of the oscillator (7) and applies the modulated high-frequency signal to a transmission unit, and an identification unit (12) which generates an identification code with which the high-frequency signal can be modulated to identify the probe, the signal of which is transmitted.

Data supplied from the esp@cenet database - Worldwide

19 BUNDESREPUBLIK **DEUTSCHLAND**

Patentschrift _® DE 40 34 019 C 1

(51) Int. Cl.5: G 08 C 17/00

G 01 D 5/243 G 08 C 15/10 // G08B 13/00,A01K 11/00

DEUTSCHES PATENTAMT

- P 40 34 019.8-32 (21) Aktenzeichen: Anmeldetag:
 - - 25. 10. 90
- Offenlegungstag:

 - Veröffentlichungstag 9. 7.92
 - der Patenterteilung:

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eV, 8000 München, DE

(74) Vertreter:

Münich, W., Dipl.-Phys. Dr.rer.nat., Pat.-Anw.; Steinmann, O., Dr., Rechtsanw., 8000 München (72) Erfinder:

US

Bollerott, Michael, 4300 Essen, DE

6 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

40 75 632

29 49 075 C2 DE 32 19 558 A1 US 45 71 589

DE-Z.: NEUKOMM P.A. u.a. »Passive Telemetrie mit Absorptions-Modulation« in Design & Elektronik Nr.19, 1990, S.94-96, 98;

(54) Meßsonde

Beschrieben wird eine Meßsonde mit einer Empfangseinheit, die ein von einer beabstandeten Sende- und Auswerteeinrichtung abgestrahltes Hochfrequenzfeld empfängt, einer Energieversorgungseinheit, die aus dem hochfrequenten Ausgangssignal der Empfangseinheit eine Versorgungsspannung für die Meßsonde generiert, einer Sensoreinheit, deren Sensorsignal ein spannungsgesteuerter Oszillator in ein Signal umsetzt, dessen Frequenz proportional dem Ausgangssignal ist, und einer Modulationseinheit, die das hochfrequente Ausgangssignal der Empfangseinheit mit dem Ausgangssignal des Oszillators moduliert, und das modulierte Signal an eine Sendeeinheit anlegt.

Die Erfindung zeichnet sich dadurch aus, daß die Sensoreinheit wenigstens ein Referenzelement und/oder einen weiteren Sensor aufweist und eine Identifikationseinheit einen Identifikationscode erzeugt, deren Ausgangssignale ein Multiplexer im Multiplexverfahren an den spannungsgesteuerten Oszillator anlegt, mit dem das hochfrequente Trägersignal über den Oszillator modulierbar ist.

Beschreibung

Die Erfindung bezieht sich auf eine Meßsonde mit einer Empfangseinheit, die ein von einer beabstandeten Sende- und Auswerteeinrichtung abgestrahltes Hochfrequenzfeld empfängt, gemäß dem Oberbegriff des Anspruchs 1.

Derartige Meßsonden werden für die verschiedensten telemetrischen Messungen von physikalischen oder Anwendung ist die Messung der Körpertemperatur von Lebewesen, beispielsweise von Tieren in einer größeren Herde.

Eine Meßsonde gemäß dem Oberbegriff des Anspruchs 1 ist aus der DE-A-32 19 558 bekannt. Diese Meßsonde weist eine Energieversorgungseinheit auf, die aus dem hochfrequenten Ausgangssignal der Empfangseinheit eine Versorgungsspannung für die Meßsonde generiert. Damit benötigt die Meßsonde zur Stromversorgung kein eigenes Netzteil bzw. keine eige- 20 kennen, ob eine Frequenzänderung durch Schwankunne Batterie oder einen eigenen Akkumulator.

Ferner weist die Meßsonde eine Sensoreinheit auf, die bei der bekannten Meßsonde ein Widerstand ist. Das Sensorsignal setzt ein spannungsgesteuerter Oszillator in ein Signal um, dessen Frequenz proportional dem 25 Meßsignal ist. Eine Modulationseinheit moduliert das hochfrequente Trägersignal der Empfangseinheit mit dem Ausgangssignal des Oszillators und legt das modulierte Signal an eine Sendeeinheit an.

Diese bekannte Meßsonde hat damit zwar den Vor- 30 teil, daß sie auch noch nach Jahren benutzt werden kann, da sie die gesamte Energie, die sie benötigt von außen über ein Hochfreqeuenzfeld bezieht.

Nachteilig bei der bekannten Meßsonde ist jedoch, daß sich nicht mehrere Sensoren verwenden lassen, de- 35 ren elektrische Eigenschaften sich in Abhängigkeit von dem oder den Meßsignalen verändern, und/oder die keine Widerstandssensoren sind.

Weiterhin bestehen keine Übermittlungsmöglichkeiten eines Identifikationscodes. Es ist daher nicht möglich, mehrere Mikromeßsonden gleichzeitig zu betreiben und ihre Signale voneinander zu unterscheiden.

Weiterhin kann keine direkte Kalibrierung der Meßund Empfangsgeräte durchgeführt werden, da die Absolutfrequenz der Sonde durch den verwendeten Oszilla- 45 tor und die angewandte CMOS-Technologie stark streut (etwa 30-40% Streuung). Hierbei ist zu berücksichtigen, daß bei Meßsonden gemäß dem Oberbegriff des Anspruchs 1 die Versorgungsspannung aufgrund von Schwankungen der Feldstärke des Hochfrequenz- 50 feldes stark schwanken kann.

Es ist Aufgabe der Erfindung, eine Meßsonde mit einer Empfangseinheit, die ein von einer beabstandeten Sende- und Auswerteeinrichtung abgestrahltes Hochfrequenzfeld empfängt, einer Energieversorgungsein- 55 heit, die aus dem hochfrequenten Ausgangssignal der Empfangseinheit eine Versorgungsspannung für die Meßsonde generiert, einer Sensoreinheit, deren Sensorsignal ein spannungsgesteuerter Oszillator in ein Signal umsetzt, dessen Frequenz proportional dem Meßsignal 60 ist, und einer Modulationseinheit, die das hochfrequente Trägersignal der Empfangseinheit mit dem Ausgangssignal des Oszillators moduliert, und das modulierte Signal an eine Sendeeinheit anlegt, derart weiterzubilden, daß eine Eichung der Meßsignale und/oder die Messung 65 kationscode, und mehrerer Werte sowie die Übertragung des Identifikationscodes möglich ist.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst,

daß die Sensoreinheit wenigstens ein Referenzelement und/oder einen weiteren Sensor aufweist, deren Ausgangssignale ein Multiplexer im Multiplexversahren an den spannungsgesteuerten Oszillator anlegt, und daß eine Identifikationseinheit einen Identifikationscode erzeugt, mit dem das hochfrequente Trägersignal über den Oszillator modulierbar ist.

Erfindungsgemäß wird neben der oder den Meßgrö-Ben ein Identifikationscode übertragen, der es ermögchemischen Meßgrößen verwendet. Eine beispielhafte 10 licht, beim Einsatz von mehreren Meßsonden eine Unterscheidung vorzunehmen, welche Meßsonde welche Größe oder Größen mißt bzw. welches Ausgangssignal "gerade" übertragen wird.

> Durch die Verwendung eines Multiplexers ist es wei-15 terhin möglich, eine Eichung von externen Meßgeräten vorzunehmen, die das von der Mikromeßsonde ausgesandte Signal auffangen und verarbeiten: Hierzu wird das Signal eines Referenzelementes vom Multiplexer übertragen, so daß es beispielsweise möglich ist, zu ergen der Versorgungsspannungen oder durch eine Änderung des Sensorausgangssignals hervorgerufen wird.

Die erfindungsgemäße Meßsonde kann damit zur hochgenauen Messung beliebiger physikalischer oder chemischer Größen und darüberhinaus auch zur Identifikation des Meßobjekts eingesetzt werden: Dies ist zum Beispiel der Fall, wenn die Mikromeßsonde zur Identifikation von Tieren, die in großen Herden zusammenleben oder die sehr selten sind, dienen soll. Die Sonde wird dabei dem Tier durch eine Injektion eingesetzt oder durch eine kleine Operation eingepflanzt. Die Sonde ermöglicht eine eindeutige, kaum entfernbare Kennzeichnung der Tiere und damit darüberhinaus eine Art Diebstahlsicherung, da sich die Meßsonde nur durch eine Operation wieder entfernen läßt.

Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben: Gemäß Anspruch 2 weist die Identifikationseinheit eine Steuerlogik und einen Speicher auf, in dem die Identifikationscodes gespeichert sind. Nach Anspruch 3 überträgt die Steuereinheit den seriellen, Biphase-kodierten Datenstrom an den Oszillator, der daraus ein FSK-Signal macht.

Um den Identifikationscode einmal einzugeben, wird gemäß Anspruch 4 eine Programmiereinheit mit der Meßsonde verbunden.

Der im Anspruch 5 gekennzeichnete Oszillator mit einem Fensterkomparator hat den Vorteil, daß seine Frequenz weitgehend unabhängig von Schwankungen der Versorgungsspannung ist.

Weiterhin ist es von Vorteil, wenn gemäß Anspruch 6 die Empfangs- und die Sendeeinheit denselben Schwingkreis verwenden.

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben, auf die im übrigen bezüglich der Offenbarung aller im Text nicht näher erläuterten erfindungsgemäßen Einzelheiten ausdrücklich verwiesen wird. Es zeigt

Fig. 1 den prinzipiellen Aufbau einer Meßeinrichtung, bei der eine erfindungsgemäße Meßsonde verwendbar

Fig. 2 den Aufbau einer erfindungsgemäßen Meßsonde mit Referenzsignal und programmierbarem Identifi-

Fig. 3 einen erfindungsgemäß verwendeten Oszillator mit Fensterkomparator.

Fig. 1 zeigt den prinzipiellen Aufbau einer Meßein-

richtung, bei der eine erfindungsgemäße Meßsonde verwendbar ist. Die Meßeinrichtung weist einen Hochfrequenzsender 1 und eine Sendeantenne 2 sowie eine Empfangs- und Auswerteelektronik 3 und eine Empfangsantenne 4 auf. Die eigentliche Meßsonde weist eine Sende- und Empfangsantenne 5 und den in Fig. 2 näher beschriebenen Steuer- und Meßteil 6 auf.

Fig. 2 zeigt den Steuer- und Meßteil im einzelnen: Ein Oszillator 7, der seine Frequenz proportional zur Änderung eines noch näher beschriebenen Sensorsignals än- 10 dert, treibt einen Modulator 8, der in Abhängigeit von der Oszillatorfrequenz eine Amplitudenmodulation eines Hochfrequenzträgersignals durchführt. Der Oszillator bezieht seine Energie aus dem Hochfrequenzträgersignal, das er selber anschließend moduliert. Der Oszil- 15 lator muß daher so aufgebaut sein, daß die Oszillatorfrequenz weitgehend unabhängig von der Betriebsspannung ist.

An den Eingangsanschluß des Oszillators 7 werden durch einen Multiplexer 8 wenigstens ein Sensor 91_N 20 und wenigstens ein, einem oder mehreren Sensoren zugeordnetes Referenzelement 10_{1-N}, die beispielsweise Widerstände sein können, angelegt. Damit lassen sich auf einfache Weise ein oder mehrere Referenzfrequenzen erzeugen, die zum Kalibrieren von externen Meß- 25 geräten benutzt und/oder zur Erzeugung des Identifikationscodes benutzt werden können.

Selbstverständlich können anstelle von Widerständen als Sensor- und Referenzelemente auch andere Bauteile. wie zum Beispiel Kapazitäten verwendet werden. Der 30 Oszillator 7 muß dann nur so umdimensioniert werden, daß er die Änderung dieses oder dieser Bauteile in eine Frequenzänderung umsetzt.

Die Identifikationscodelogik besteht im wesentlichen aus zwei Teilen, einer Programmierlogik 11, mit deren 35 Hilfe jede Mikromeßsonde einen spezifischen Code erhält, der in einem nicht flüchtigen Speicher 12, beispielsweise einem ROM, EPROM, EEPROM, Fuseable Link-Speicher und einer Logikschaltung 13, die diesen Code aus dem Speicher ausliest und in einen seriellen Daten- 40 strom verwandelt. Die Logik die den seriellen Datenstrom erzeugt ist ein Teil der Steuerlogik.

Die Steuerlogik koordiniert das Zusammenspiel der einzelnen Schaltungsteile und erzeugt ein Datenprotokoll zur Aussendung der Meßdaten und des Identifika- 45 tionscodes. Sie schaltet für eine gewisse Zeit den oder die Sensoren an den Eingangsanschluß des Oszillators, so daß während dieser Zeit die Oszillatorfrequenz proportional zum Meßsignal ist.

Damit die einzelnen Meßdaten voneinander unter- 50 schieden werden können, falls der Oszillator die gleiche Frequenz erzeugt, sollte zwischen den Meßsignalen eine kurze Pause liegen oder aber für eine kurze Zeit ein Referenzsignal gesendet werden. Anschließend schaltet die Steuerlogik für eine definierte Zeit den oder die 55 Referenzwiderstände an den Eingang des Oszillators. Die Zeit, für die die Referenzwiderstände am Eingang des Oszillators anliegen, wird durch einen Taktteiler ermittelt, der die Anzahl der Schwingungen des Referenzsignals mißt. Der Identifikationscode wird übertragen, 60 miergerät aus mit Energie versorgt und nicht über den indem er zunächst in einen seriellen digitalen Biphase-Code umgesetzt wird. Die Empfangs- und Auswerteelektronik 3 kann aus dem Biphase-Code sowohl den Takt als auch die Daten sehr einfach zurückgewinnen. Der Biphase-Code wird dann im Oszillator in ein FSK- 65 Signal umgesetzt, wobei über den Multiplexer ein Referenzelement an den Oszillator angelegt wird. Die Frequenzen F1 und F2 werden über einen Taktteiler er-

zeugt, der durch den Biphase-Code umgeschaltet wird. Der Taktteiler gehört mit zum Oszillator. Bei der FSK-Modulation (Frequency Shift Keying Modulation) entspricht eine logische "1" dabei einer Frequenz F1 und eine logische "0" einer Frequenz F2. Das gesamte Datenprotokoll besteht darin, daß nach einer Startkennung zunächst der Identifikationscode ausgestrahlt wird. Anschließend wird eine Stopkennung übertragen und danach wird für eine bestimmte Zeit das oder die Meßsignale ausgesandt. Ferner werden noch Parity-Bits zur Sicherung und Fehlererkennung übertragen.

Wie lange das oder die Meßsignale übertragen werden, sollte sich nach der gewünschten Meßgenauigkeit richten. Nach Beendigung eines Sendezyklusses beginnt die Steuerlogik von vorne und sendet wieder einen Daten- und Meßzyklus aus. Die Start- und Stopkennung lassen sich an dem Wert der Frequenz und der Zeitdauer in der sie gesandt werden, erkennen. Der Identifikationscode sollte mit einer möglichst hohen Datenrate übertragen werden, damit es zum einen möglich ist, eine große Datenmenge zu übertragen und zum anderen, damit ein gesamter Zyklus nicht zu lange dauert.

Da nur ein Oszillator verwendet wird, erreicht man, daß die Betriebsspannung auf alle Signale nahezu den gleichen Einfluß hat. Dies bedeutet, daß man aus der Anderung der Referenzfrequenz den Einfluß der Betriebsspannung auf die Meßfrequenz ermitteln und dadurch auch beseitigen kann. Dies ermöglicht es, die Mikromeßsonde in einem weiten Betriebsspannungsbereich zu betreiben, was gleichzusetzen ist mit einem großen räumlichen Sende- und Empfangsbereich um die Hochfrequenzsonde und Empfangsantennen herum. Es läßt sich somit eine erhebliche Verbesserung der Genauigkeit des Meßsignals erreichen ohne die Betriebsspannungsunterdrückung der Schaltung zu erhöhen. Dies wäre nur mit erheblichem Aufwand möglich und würde bedeuten, daß die abgestrahlte Hochfrequenzleistung erheblich größer sein müßte als momentan.

Um den Modulationshub zu verbessern und um die Oszillatorfrequenz unabhängiger von der Betriebsspannung zu machen, wird der Modulator 14 direkt an den Schwingkreis angeschlossen und nicht wie bisher hinter der Gleichrichterdiode. Der Modulationshub ist ebenfalls programmierbar; dies ermöglicht eine optimale Anpassung an die Sende- und Empfangseinheit. Dadurch kann ein maximaler Signal-Störabstand erzielt werden, ohne daß die Betriebsspannung aufgrund eines zu hohen Modulationsgrads zusammenbricht. Der Modulationshub erhöht sich um die Durchlaßspannung der Gleichrichterdiode und die Betriebsspannung kann durch einen Kondensator stabilisiert werden, der parallel zum Oszillator liegt und nur durch den Oszillator entladen wird. Dadurch wird das modulierte Signal noch mehr von der Betriebsspannung entkoppelt.

Mit einem Programmiergerät, welches nur einmal während einer Programmierphase an die Sonde angeschlossen wird, wird der spezifische Identifikationscode und die Anzahl der verwendeten Meßsensoren programmiert. Die Sonde wird dabei nur vom Program-Hochfrequenzempfangskreis.

Fig. 3 zeigt einen Oszillator, der als Fensterkomparator ausgebildet ist, und hierzu zwei Komparatoren Komp 1 und Komp 2 aufweist. Durch diesen in Fig. 3 näher dargestellten Aufbau des Oszillators wird eine weitgehende Unabhängigkeit der Frequenz von der Versorgungsspannung VCC sichergestellt. Im übrigen wird zum Aufbau des Oszillators auf Fig. 3 verwiesen.

6

Patentansprüche

1. Meßsonde mit einer Empfangseinheit, die ein von einer beabstandeten Sende- und Auswerteeinrichtung abgestrahltes Hochfrequenzfeld empfängt, einer Energieversorgungseinheit, die aus dem hochfrequenten Ausgangssignal der Empfangseinheit eine Versorgungsspannung für die Meßsonde generiert,

einer Sensoreinheit, deren Sensorsignal ein spannungsgesteuerter Oszillator in ein Signal umsetzt, dessen Frequenz proportional dem Ausgangssignal ist, und

einer Modulationseinheit, die das hochfrequente Ausgangssignal der Empfangseinheit mit dem Ausgangssignal des Oszillators moduliert, und das modulierte Signal an eine Sendeeinheit anlegt,

dadurch gekennzeichnet, daß die Sensoreinheit wenigstens ein Referenzelement und/oder einen weiteren Sensor aufweist, deren Ausgangssignale 20 ein Multiplexer im Multiplexverfahren an den spannungsgesteuerten Oszillator anlegt und daß eine Identifikationseinheit einen Identifikationscode erzeugt, mit dem das hochfrequente Trägersignal über den Oszillator modulierbar ist.

2. Meßsonde nach Anspruch 1, dadurch gekennzeichnet, daß die Identifikationseinheit eine Steuerlogik und einen Speicher aufweist, in dem die Identifikationscodes gespeichert sind.

3. Meßsonde nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Steuereinheit den seriellen Biphase-kodierten Datenstrom an den Oszillator überträgt, der daraus ein FSK-Signal macht.

4. Meßsonde nach Anspruch 2 und 3, dadurch gekennzeichnet, daß eine Programmiereinheit mit der 35 Meßsonde verbindbar ist, um in den Speicher die jeweiligen Identifikationscodes einzugeben.

5. Meßsonde nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Oszillator ein Oszillator mit einem Fensterkomparator ist.

 Meßsonde nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Empfangs- und die Sendeeinheit denselben Schwingkreis verwenden.

7. Meßsonde nach einem der Ansprüche 1 bis 6, 45 dadurch gekennzeichnet, daß der Modulationshub programmierbar ist.

Hierzu 3 Seite(n) Zeichnungen

50

55

60

Nummer: Int. Cl.⁵: DE 40 34 019 C1

Veröffentlichungstag: 9. Juli 1992

G 08 C 17/00 9 Juli 1992

FIG. 1

Nummer:

DE 40 34 019 C1

Int. Cl.⁵;

G 08 C 17/00

Veröffentlichungstag: 9. Juli 1992

Nummer: Int. Cl.5:

DE 40 34 019 C1 G 08 C 17/00

Veröffentlichungstag: 9. Juli 1992

FIG. 3