

RG500U SeriesHardware Design

5G Module Series

Version: 1.2

Date: 2024-09-23

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide schematic designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2024. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description
-	2022-07-13	Neeson ZHANG/ Dominic GONG/ Gale GAO	Creation of the document
1.0	2022-09-14	Neeson ZHANG/ Cavan ZHU	First official release
1.1	2023-02-28	Anthony LIU/ Cavan ZHU	 Added RG500U-CN and the related information. Added optional n5 and n71 bands for RG500U-EA. Updated the requirement of reserved test points of USB interface and debugging UART; Added notes related to reserved test points of VDD_EXT and RESET_N (Table 6, Table 10 and Chapter 3.8). Updated the ESR parameter requirements for bypass capacitor in power supply reference circuit (Chapter 3.5.2). Added the requirement of peak current (Chapter 3.5.3). Updated ADC typical resolution (Table 17). Updated the data of LB operating frequencies for ANT4 and ANT5 of RG500U-EA (Table 29). Updated the RF receiving sensitivity data for LTE and 5G NR bands of RG500U-EA (Table 44). Updated the recommended value of ramp-to-soak slope in soak zone, and of ramp-up slope and cool-down slope in reflow zone; add a note for the measured temperature of the solder joints (Table 46). Added the mounting direction of the module (Chapter 7.3.3).

			 Added applicable modules of RG500U-EB, RG500U-JO and RG500U-LA.
			2. Added n66 band and deleted n79 band for
			RG500U-EA.
			Added 5G SRS information;
			Added a note on LTE and UMTS features of
			RG 500U-JO;
			Updated the USB serial drivers (Table 7).
			4. Added a note on avoiding abnormal RF functions
			caused by current sink on the module's pins
		Kyle CHEN/	(Chapter 3.1). 5. Added the figure of DRX run time and power
1.2	2024-09-23	Cavan ZHU/	5. Added the figure of DRX run time and power consumption in sleep mode and related note
		Achang ZHANG	(Chapter 3.4.1).
			6. Updated the figure of power-up timing
			(Chapter 3.61.1).
			7. Updated the reference circuit for RF antennas and
			added relevant notes (Chapter 4.1.4).
			8. Updated the power consumption (Table 51 and
			Table 52).
			9. Updated module's coplanarity standard
			(Chapter 6.1).
			10. Updated the note for manufacturing and soldering
			(Chapter 7.2).

Contents

Sa	fety Informa	ation	3
Ab	out the Doc	cument	4
Сс	ntents		6
Та	ble Index		8
Fig	gure Index		10
1	Introduction	ion	12
•		pecial Mark	
2	Product O	Overview	13
	2.1. Ge	eneral Description	13
	2.2. Ke	y Features	15
	2.3. Fui	nctional Diagram	19
	2.4. EV	/B Kit	24
3	Application	on Interfaces	25
	3.1. Pin	n Assignment	26
	3.2. Pin	n Definition	31
	3.3. Op	perating Modes	42
	3.4. Po	wer Saving	42
	3.4.1.	Sleep Mode	42
	3.	.4.1.1. UART Application	
	3.	.4.1.2. USB Application without USB Suspend Function	44
	3.4.2.	Airplane Mode	44
	3.5. Po	wer Supply	45
	3.5.1.	Power Supply Pins	45
	3.5.2.	Voltage Stability Requirements	45
	3.5.3.	Reference Design for Power Supply	46
	3.6. Tui	rn On/Turn Off/Reset	47
	3.6.1.	Turn On with PWRKEY	47
	3.6.2.	Turn Off	49
	3.	.6.2.1. Turn Off with PWRKEY	49
	3.	.6.2.2. Turn Off with AT Command	49
	3.6.3.	Reset	50
	3.7. (U))SIM Interfaces	51
	3.8. US	SB Interface	53
	3.9. UA	ART Interfaces	55
	3.10. I2S	S Interface and SPI	57
	3.11. AD	OC Interface	58
	3.12. Ne	etwork Status Indication	59
	3.13. ST.	TATUS	60
	3.14. UA	\RT1_RI*	61
	3.15. US	SB_BOOT Interface	61

	3.16. I2C	Interface	62
	3.17. PC	le Interface	62
	3.18. Ant	tenna Tuner Control Interfaces	65
4	Antenna Ir	nterfaces	66
	4.1. Cel	Ilular Antenna Interfaces	66
	4.1.1.	Pin Definition	66
	4.1.2.	Cellular Antenna Mapping	70
	4.1.3.	Operating Frequency	74
	4.1.4.	Reference Design of Cellular Antenna Interface	77
	4.2. RF	Routing Guidelines	
	4.3. Ant	tenna Installation	82
	4.3.1.	Antenna Design Requirement	82
	4.3.2.	RF Connector Recommendation	82
	4.3.3.	Recommended RF Connector for Installation	83
	4.3	3.3.1. Assemble Coaxial Cable Plug Manually	83
	4.3	3.3.2. Assemble Coaxial Cable Plug with Fixture	84
	4.3.4.	Recommended Manufacturers of RF Connector and Cable	84
5	Reliability,	, Radio and Electrical Characteristics	85
	5.1. Abs	solute Maximum Ratings	85
	5.2. Pov	wer Supply Ratings	85
	5.3. Dig	gital I/O Characteristics	86
	5.4. Ope	erating and Storage Temperatures	87
	5.5. Pov	wer Consumption	87
	5.6. Tx	Power	100
	5.7. Rx	Sensitivity	102
	5.8. ESI	D Protection	107
	5.9. The	ermal Dissipation	108
6	Mechanica	al Information	109
	6.1. Med	chanical Dimensions	109
	6.2. Red	commended Footprint	111
	6.3. Top	o and Bottom Views	112
7	Storage, M	lanufacturing and Packaging	113
	7.1. Sto	orage Conditions	113
	7.2. Mai	nufacturing and Soldering	114
	7.3. Pac	ckaging Specification	116
	7.3.1.	Carrier Tape	116
	7.3.2.	Plastic Reel	117
	7.3.3.	Mounting Direction	117
	7.3.4.	Packaging Process	118
8	Appendix	References	119

Table Index

Table 1: Special Mark	12
Table 2: RG500U-CN Frequency Bands	13
Table 3: RG500U-EA Frequency Bands	13
Table 4: RG500U-EB Frequency Bands	14
Table 5: RG500U-LA Frequency Bands	14
Table 6: RG500U-JO Frequency Bands	14
Table 7: Key Features	15
Table 8: Parameter Definition	31
Table 9: Pin Description	31
Table 10: Overview of Operating Modes	42
Table 11: VBAT and GND Pins	45
Table 12: Pin Description of PWRKEY	47
Table 13: Pin Description of RESET_N	50
Table 14: Pin Description of (U)SIM Interfaces	52
Table 15: Pin Description of USB Interface	54
Table 16: Pin Description of Main UART Interface	55
Table 17: Pin Description of Debug UART Interface	56
Table 18: Pin Description of I2S Interface and SPI	57
Table 19: Pin Description of ADC Interface	58
Table 20: Characteristics of ADC Interface	58
Table 21: Pin Description of Network Connection Status/Activity Indication	59
Table 22: Working State of the Network Connection Status/Activity Indication	59
Table 23: Pin Description of STATUS	60
Table 24: Behaviors of the UART1_RI	61
Table 25: Pin Description of USB_BOOT Interface	61
Table 26: Pin Description of I2C Interface	62
Table 27: Pin Description of PCIe Interface	63
Table 28: Pin Description of Antenna Tuner Control Interfaces	65
Table 29: RG500U-CN Pin	66
Table 30: RG500U-EA Pin Definition of Cellular Antenna Interfaces	67
Table 31: RG500U-EB Pin Definition of Cellular Antenna Interfaces	67
Table 32: RG500U-LA Pin Definition of Cellular Antenna Interfaces	68
Table 33: RG500U-JO Pin Definition of Cellular Antenna Interfaces	69
Table 34: RG500U-CN Cellular Antenna Mapping	70
Table 35: RG500U-EA Cellular Antenna Mapping	70
Table 36: RG500U-EB Cellular Antenna Mapping	
Table 37: RG500U-LA Cellular Antenna Mapping	
Table 38: RG500U-JO Cellular Antenna Mapping	
Table 39: RG500U-CN Operating Frequencies	
Table 40: RG500U-EA Operating Frequencies	
Table 41: RG500U-EB Operating Frequencies	
1 0	_

Table 42: RG500U-LA Operating Frequencies	76
Table 43: RG500U-JO Operating Frequencies	77
Table 44: Antenna Requirements	82
Table 45: Absolute Maximum Ratings	85
Table 46: Module Power Supply Ratings	85
Table 47: 1.8 V I/O Requirements	86
Table 48: (U)SIM 1.8 V I/O Requirements	86
Table 49: (U)SIM 3.0 V I/O Requirements	86
Table 50: Operating and Storage Temperatures	87
Table 51: RG500U-CN Power Consumption	87
Table 52: RG500U-EA Power Consumption	90
Table 53: RG500U-EB Power Consumption	93
Table 54: RG500U-LA Power Consumption	96
Table 55: RG500U-JO Power Consumption	99
Table 56: RG500U-CN RF Output Power	100
Table 57: RG500U-EA RF Output Power	100
Table 58: RG500U-EB RF Output Power	101
Table 59: RG500U-LA RF Output Power	101
Table 60: RG500U-JO RF Output Power	101
Table 61: RG500U-CN Conducted RF Receiving Sensitivity (Unit: dBm)	102
Table 62: RG500U-EA Conducted RF Receiving Sensitivity (Unit: dBm)	103
Table 63: RG500U-EB Conducted RF Receiving Sensitivity (Unit: dBm)	104
Table 64: RG500U-LA Conducted RF Receiving Sensitivity (Unit: dBm)	106
Table 65: RG500U-JO Conducted RF Receiving Sensitivity (Unit: dBm)	107
Table 66: Electrostatic Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)	107
Table 67: Recommended Thermal Profile Parameters	115
Table 68: Carrier Tape Dimension Table (Unit: mm)	116
Table 69: Plastic Reel Dimension Table (Unit: mm)	117
Table 70: Related Documents	119
Table 71: Terms and Abbreviations	119

Figure Index

Figure 1: RG500U-CN Functional Diagram	20
Figure 2: RG500U-EA Functional Diagram	21
Figure 3: RG500U-EB Functional Diagram	22
Figure 4: RG500U-LA Functional Diagram	23
Figure 5: RG500U-JO Functional Diagram	24
Figure 6: RG500U-CN Pin Assignment (Top View)	26
Figure 7: RG500U-EA Pin Assignment (Top View)	27
Figure 8: RG500U-EB Pin Assignment (Top View)	
Figure 9: RG500U-LA Pin Assignment (Top View)	
Figure 10: RG500U-JO Pin Assignment (Top View)	30
Figure 11: DRX Run Time and Power Consumption in Sleep Mode	42
Figure 12: Sleep Mode Application via UART	43
Figure 13: Sleep Mode Application without Suspend Function	44
Figure 14: Power Supply Limits during Burst Transmission	45
Figure 15: Reference Circuit of Power Supply	
Figure 16: Reference Circuit of Power Supply	46
Figure 17: Turning on the Module Using Driving Circuit	
Figure 18: Turning on the Module Using a Button	48
Figure 19: Power-up Timing	48
Figure 20: Power-down Timing	49
Figure 21: Reference Circuit of RESET_N by Using Driving Circuit	50
Figure 22: Reference Circuit of RESET_N with a Button	51
Figure 23: Timing of Resetting the Module	51
Figure 24: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector	52
Figure 25: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector	53
Figure 26: Reference Circuit of USB Application	54
Figure 27: Reference Circuit with Voltage-level Translator Chip (Main UART)	56
Figure 28: Reference Circuit with Transistor Circuit (Main UART)	57
Figure 29: Reference Circuit of I2S Application with SPI	58
Figure 30: Reference Circuit of the Network Indication	60
Figure 31: Reference Circuit of STATUS	60
Figure 32: Reference Circuit of USB_BOOT Interface	62
Figure 33: PCIe Interface Reference Circuit (RC Mode)	64
Figure 34: PCIe Interface Reference Circuit (EP Mode)	64
Figure 35: RG500U-CN Reference Circuit of RF Antennas	77
Figure 36: RG500U-EA Reference Circuit of RF Antennas	78
Figure 37: RG500U-EB Reference Circuit of RF Antennas	78
Figure 38: RG500U-LA Reference Circuit of RF Antennas	79
Figure 39: RG500U-JO Reference Circuit of RF Antennas	79
Figure 40: Microstrip Line Design on a 2-layer PCB	80
Figure 41: Coplanar Waveguide Line Design on a 2-layer PCB	80

Figure 42:	Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)	. 81
Figure 43:	Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)	. 81
Figure 44:	Dimensions of the Receptacles (Unit: mm)	. 82
Figure 45:	Specifications of Mated Plugs Using Ø0.81 mm Coaxial Cables (Unit: mm)	. 83
Figure 46:	Plug in a Coaxial Cable Plug	. 83
Figure 47:	Pull out a Coaxial Cable Plug	. 84
Figure 48:	Install the Coaxial Cable Plug with Fixture	. 84
Figure 49:	Placement and Fixing of the Heatsink	108
Figure 50:	Module Top and Side Dimensions	109
Figure 51:	Module Bottom Dimension (Bottom View)	110
Figure 52:	Recommended Footprint	111
Figure 53:	Top and Bottom Views of the Module	112
Figure 54:	Recommended Reflow Soldering Thermal Profile	114
	Carrier Tape Dimension Drawing	
Figure 56:	Plastic Reel Dimension Drawing	117
Figure 57:	Mounting Direction	117
Figure 58:	Packaging Process	118

1 Introduction

This document defines RG500U series and describes its air interface and hardware interfaces which are connected with your applications.

With this document, you can quickly understand module interface specifications, electrical and mechanical details, as well as other related information of the module. The document, coupled with application notes and user guides, makes it easy to design and set up mobile applications with the module.

1.1. Special Mark

Table 1: Special Mark

Mark	Definition
*	Unless otherwise specified, an asterisk (*) after a function, feature, interface, pin name, command, argument, and so on indicates that it is under development and currently not supported; and the asterisk (*) after a model indicates that the model sample is currently unavailable.

2 Product Overview

2.1. General Description

RG500U series is a 5G NR/LTE/WCDMA wireless communication module, which provides data connectivity on 5G NR, LTE-FDD, LTE-TDD, HSDPA, HSPA+ and WCDMA networks.

RG500U series is an industrial-grade module for industrial and commercial applications only.

The following tables show the supported frequency bands of the module.

Table 2: RG500U-CN Frequency Bands

Mode	Frequency Band
5G NR	n1/n28/n41/n77/n78/n79
LTE-FDD	B1/B2/B3/B5/B7/B8/B20/B28
LTE-TDD	B34/B38/B39/B40/B41
WCDMA	B1/B2/B5/B8

Table 3: RG500U-EA Frequency Bands

Mode	Frequency Band
5G NR ¹	n1/n3/n5/n7/n8/n20/n28/n38/n40/n41/n66/n71*/n77/n78
LTE-FDD	B1/B2/B3/B4/B5/B7/B8/B20/B28/B66
LTE-TDD	B38/B40/B41
WCDMA	B1/B2/B5/B8

¹ n71 is optional. For more details, contact Quectel Technical Support.

Table 4: RG500U-EB Frequency Bands

Mode	Frequency Band
5G NR	n1/n3/n5/n7/n8/n20/n28/n38/n40/n41/n66/n77/n78
LTE-FDD	B1/B2/B3/B4/B5/B7/B8/B20/B28/B66
LTE-TDD	B38/B40/B41
WCDMA	B1/B2/B5/B8

Table 5: RG500U-LA Frequency Bands

Mode	Frequency Band
5G NR	n2/n5/n7/n8/n28/n38/n40/n66/n71/n78
LTE-FDD	B2/B4/B5/B7/B8/B26/B28/B66/B71
LTE-TDD	B38/B40
WCDMA	B2/B4/B5

Table 6: RG500U-JO Frequency Bands

Mode	Frequency Band
5G NR	n78

With a compact profile of 44.0 mm \times 41.0 mm \times 2.85 mm, RG500U series is an SMD type module which can be embedded in applications through its 392 LGA pins.

For details about CA and EN-DC configurations, see document [1].

2.2. Key Features

Table 7: Key Features

Feature	Details				
	Supply voltage range: 3.3–4.3 V				
Power Supply	Typical supply voltage: 3.8 V				
	RG500U-CN:				
	 WCDMA B1/B2/B5/B8: Class 3 (23 dBm ±2 dB) 				
	 LTE B1/B2/B3/B5/B7/B8/B20/B28: Class 3 (23 dBm ±2 dB) 				
	• LTE B34/B38/B39/B40/B41: Class 3 (23 dBm ±2 dB)				
	• LTE B41 HPUE: Class 2 (26 dBm ±2 dB)				
	• 5G NR n1: Class 3 (23 dBm ±2 dB)				
	• 5G NR n28: Class 3 (23 dBm +2/-2.5 dB)				
	• 5G NR n41/n77/n78/n79: Class 3 (23 dBm +2/-3 dB)				
	• 5G NR n41/n78/n79 HPUE: Class 2 (26 dBm +2/-3 dB)				
	RG500U-EA:				
	 WCDMA B1/B2/B5/B8: Class 3 (23 dBm ±2 dB) 				
	 LTE B1/B2/B3/B4/B5/B7/B8/B20/B28/B38/B40/B41/B66: Class 3 				
	(23 dBm ±2 dB)				
	• LTE B41 HPUE: Class 2 (26 dBm ±2 dB)				
	• 5G NR n1/n3/n5/n7/n8/n20/n38/n40/n41/n66: Class 3 (23 dBm ±2 dB)				
	• 5G NR n28/n71*: Class 3 (23 dBm +2/-2.5 dB)				
	• 5G NR n77/n78: Class 3 (23 dBm +2/-3 dB)				
Transmitting Power	• 5G NR n41/n77/n78 HPUE: Class 2 (26 dBm +2/-3 dB)				
	RG500U-EB:				
	 WCDMA B1/B2/B5/B8: Class 3 (23 dBm ±2 dB) 				
	 LTE B1/B2/B3/B4/B5/B7/B8/B20/B28/B38/B40/B41/B66: 				
	Class 3(23 dBm ±2 dB)				
	• 5G NR n1/n3/n5/n7/n8/n20/n38/n40/n41/n66: Class 3 (23 dBm ±2 dB)				
	• 5G NR n28: Class 3 (23 dBm +2/-2.5 dB)				
	• 5G NR n77/n78: Class 3 (23 dBm +2/-3 dB)				
	• 5G NR n41/n77/n78 HPUE: Class 2 (26 dBm +2/-3 dB)				
	RG500U-LA:				
	 WCDMA B2/B4/B5: Class 3 (23 dBm ±2 dB) 				
	• LTE B2/B4/B5/B7/B8/B26/B28/B38/B40/B66/B71: Class 3 (23 dBm ±2 dB)				
	• 5G NR n2/n5/n7/n8/n38/n40/n66: Class 3 (23 dBm ±2 dB)				
	• 5G NR n28/n71: Class 3 (23 dBm +2/-2.5 dB)				
	• 5G NR n78: Class 3 (23 dBm +2/-3 dB)				
	• 5G NR n78 HPUE: Class 2 (26 dBm +2/-3 dB)				
	RG500U-JO:				
	• 5G NR n78: Class 3 (23 dBm +2/-3 dB)				

- 5G NR n78 HPUE: Class 2 (26 dBm +2/-3 dB)
- 3GPP Release Standard

RG500U-CN/RG500U-EA/RG500U-EB/RG500U-LA/RG500U-JO:

Supports 3GPP Rel-15

RG500U-CN: 3GPP Rel-16 (Optional)

- Supported modulations:
 - UL: BPSK, QPSK, 16QAM, 64QAM and 256QAM
 - DL: QPSK, 16QAM, 64QAM and 256QAM
- Supported MIMO:
 - DL: 4 × 4 MIMO

RG500U-CN: n1/n41/n77/n78/n79

RG500U-EA: n1/n3/n7/n38/n40/n41/n77/n78

RG500U-EB: n1/n3/n7/n28/n38/n40/n41/n66/n77/n78

RG500U-LA: n2/7/28/38/40/66/78

RG500U-JO: n78
- DL: 2 × 2 MIMO
RG500U-CN: n28

RG500U-EA: n5/n8/n20/n28/n71*

RG500U-EB: n5/n8/n20 **RG500U-LA**: n5/8/71

UL: 2 × 2 MIMO

RG500U-CN: n41/n77/n78/n79 **RG500U-EA:** n38/n40/n41/n77/n78 **RG500U-EB:** n38/n40/n41/n77/n78

RG500U-LA: n38/40/78

Supports SCS 15 kHz and 30 kHz ²

RG500U-JO: n78

- Supports SA and NSA operation modes
- Supports Option 3x, 3a, 3 and Option 2
- Max. transmission data rates ³:

RG500U-CN:

- NSA: 2.2 Gbps (DL)/575 Mbps (UL)
- SA: 2 Gbps (DL)/1 Gbps (UL)

RG500U-EA/RG500U-EB/RG500U-LA:

- NSA: 2.6 Gbps (DL)/650 Mbps (UL)
- SA: 2 Gbps (DL)/1 Gbps (UL)

RG500U-JO:

- SA: 2 Gbps (DL)/1 Gbps (UL)
- SRS

RG500U-CN

NSA: 1T2R (n41/n78/n79)

5G NR Features

² 5G NR FDD bands only support 15 kHz SCS, and 5G NR TDD bands only support 30 kHz SCS.

³ The maximum rates are theoretical and the actual values depend on the network configuration.

	- SA: 2T4R (n41/n77/n78/n79) RG500U-EA - NSA: 1T2R (n40) 1T4R(n38/n41/n77/n78) - SA: 2T4R (n38/n40/n41/n77/n78) RG500U-EB - NSA: 1T4R (n38/n40/n41/n77/n78) - SA: 2T4R (n38/n40/n41/n77/n78) RG500U-LA - NSA: 1T2R (n40) 1T4R(n78) - SA: 2T4R (n38/n40/n78) RG500U-JO
LTE Features ⁴	 SA: 2T4R (n78) Supports up to: CA: 3CC (DL), 2CC (UL) FDD: Cat 12 (DL), Cat 13 (UL) TDD: Cat 12 (DL), Cat 13 (UL) Supports 1.4/3/5/10/15/20 MHz RF bandwidths Supported modulations: UL: QPSK, 16QAM and 64QAM DL: QPSK, 16QAM, 64QAM and 256QAM Supports DL 2 x 2 MIMO Max. transmission data rates: 600 Mbps (DL)/150 Mbps (UL)
UMTS Features ⁴	 Supports 3GPP Rel-9 DC-HSDPA, HSDPA, HSPA+ and WCDMA Supports QPSK, 16QAM and 64QAM modulations Max. transmission data rates: DC-HSDPA: 42.2 Mbps (DL) HSUPA: 11 Mbps (UL) WCDMA: 384 kbps (DL)/384 kbps (UL)
Internet Protocol Features	 Supports TCP/UDP/PPP/NTP/NITZ/FTP/HTTP/PING/CMUX*/HTTPS/ FTPS/SSL/FILE/MQTT*/MMS*/SMTP*/SMTPS* protocols Supports the protocols PAP and CHAP
SMS	 Text and PDU modes Point-to-point MO and MT SMS cell broadcast SMS storage: (U)SIM by default
(U)SIM Interfaces	Supports SIM/USIM cards: 1.8/3.0 V
USB Interface	 Compliant with USB 3.0 and 2.0 specifications, with maximum transmission rates up to 5 Gbps on USB 3.0 and 480 Mbps on USB 2.0 Used for AT command communication, data transmission, software debugging and firmware upgrade

⁴ RG500U-JO does not support LTE and UMTS features.

	• Supports USB serial drivers for: Windows 8.1/10/11, Linux 2.6–6.7,							
	Android 4.x–13.x Main UART interface:							
	Used for data transmission and AT command communication							
	Baud rate: 115200 bps by default Net own art DTS and CTS bardware flow control							
UART Interfaces	Not support RTS and CTS hardware flow control Polyug HART interfaces:							
	Debug UART interface:							
	Used for log outputBaud rate: 115200 bps							
	·							
	Supports 16-bit linear data format							
PCM Interface	Supports short frame synchronization							
	Supports master mode by default Con be multipleyed into ISS function.							
	 Can be multiplexed into I2S function Supports two digital audio interfaces: SPI and I2S 							
Audio Features								
	Supports echo cancellation and noise suppression							
Network Indication	NET_MODE and NET_STATUS to indicate network connectivity status							
	 Supports PCIe Gen 2 with backward compatibility 							
	 Supports RC and EP modes 							
PCIe Interface	 Supports 1 lane, 5 Gbps/lane 							
	 Can be used to connect to an Ethernet IC 							
	 Supports PCIe drive for Linux 3.10–6.7 							
Antenna Tuner	RG500U-CN: GRFC interfaces dedicated for the external antenna tuner							
Control Interfaces	RG500U-EA/RG500U-EB/RG500U-LA/RG500U-JO: GRFC interfaces							
Control Interfaces	dedicated for the external antenna tuner*							
	Cellular antenna interfaces							
	RG500U-CN: ANT0-ANT3							
	RG500U-EA: ANTO-ANT5							
Antenna Interfaces	RG500U-EB: ANT0, ANT2, ANT4, ANT5							
	RG500U-LA: ANT0-ANT5							
	RG500U-JO: ANT1, ANT3, ANT4, ANT5							
	 50 Ω characteristic impedance 							
	RG500U-CN/EA/EB/LA 5G NR/LTE/WCDMA							
Rx-diversity	• RG500U-JO 5G NR							
	• Compliant with 3GPP TS 27.007, 27.005							
AT Commands	Compliant with Quectel enhanced AT commands							
Physical	● Size: (44.0 ±0.2) mm × (41.0 ±0.2) mm × (2.85 ±0.2) mm							

Characteristics	Weight: approx. 13 g			
Temperature Ranges	 Operating temperature range: -30 to +75 °C ⁵ Extended temperature range: -40 to +85 °C ⁶ 			
Firmware Upgrade	Storage temperature range: -40 to +90 °C Via USB or DFOTA			
RoHS	All hardware components are fully compliant with EU RoHS directive			

2.3. Functional Diagram

The following figure shows a block diagram of RG500U series and illustrates the major functional parts.

- Power management
- Baseband part
- Flash
- RF part
- Peripheral interfaces

_

⁵ To meet the normal operating temperature range requirements, it is necessary to ensure effective thermal dissipation, e.g., by adding passive or active heatsinks, heat pipes, vapor chambers. Within this range, the module's indicators comply with 3GPP specification requirements.

⁶ To meet the extended operating temperature range requirements, it is necessary to ensure effective thermal dissipation, e.g., by adding passive or active heatsinks, heat pipes, vapor chambers. Within this range, the module retains the ability to establish and maintain functions such as voice, SMS, data transmission and emergency call, without any unrecoverable malfunction. Radio spectrum and radio network remain uninfluenced, whereas the value of one or more parameters, such as Pout, may decrease and fall below the range of the 3GPP specified tolerances. When the temperature returns to the normal operating temperature range, the module's indicators will comply with 3GPP specification requirements again.

Figure 1: RG500U-CN Functional Diagram

Figure 2: RG500U-EA Functional Diagram

Figure 3: RG500U-EB Functional Diagram

Figure 4: RG500U-LA Functional Diagram

Figure 5: RG500U-JO Functional Diagram

2.4. **EVB Kit**

Quectel supplies an evaluation board (5G EVB) with accessories to develop and test the module. For more details, see *document* [2].

3 Application Interfaces

RG500U series is equipped with 392 LGA pins that can be connected to cellular application platform. The following interfaces are described in detail in subsequent chapters:

- Power supply
- (U)SIM interfaces
- USB interface
- UART interfaces
- I2S interface and SPI
- ADC interface
- Network status indication
- STATUS
- UART1_RI*
- USB_BOOT interface
- I2C interface
- PCIe interface
- Antenna tuner control interfaces

3.1. Pin Assignment

The following figure shows the pin assignment of the module.

Figure 6: RG500U-CN Pin Assignment (Top View)

Figure 7: RG500U-EA Pin Assignment (Top View)

Figure 8: RG500U-EB Pin Assignment (Top View)

Figure 9: RG500U-LA Pin Assignment (Top View)

Figure 10: RG500U-JO Pin Assignment (Top View)

NOTE

- 1. Keep all RESERVED or unused pins unconnected.
- 2. All GND pins should be connected to ground.
- 3. Ensure that the pull-up power supply of the module's pins is VDD_EXT or controlled by VDD_EXT, and there is no current sink on the module's pins before the module turns on. For more details, contact Quectel Technical Support.

3.2. Pin Definition

The following tables show the pin definition and description of RG500U series.

Table 8: Parameter Definition

Parameter	Description				
Al	Analog Input				
AO	Analog Output				
AIO	Analog Input/Output				
DI	Digital Input				
DO	Digital Output				
DIO	Digital Input/Output				
OD	Open Drain				
PI	Power Input				
РО	Power Output				

DC characteristics include power domain and rated current.

Table 9: Pin Description

Power Supply						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
VBAT_BB	235, 236, 238	PI	Power supply for the module's baseband part	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V		
VBAT_RF1	229, 230, 232, 233	PI	Power supply for the module's RF part	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V		
VBAT_RF2	107, 109, 110,	PI	Power supply for the module's RF part	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	VBAT_RF2 is only used to connect decoupling capacitors and there is	

	112				no need to connect it to the external power supply.
VDD_EXT	66	PO	Provides 1.8 V for external circuits	Vnom = 1.8 V I _O max = 50 mA	Used for external pull-up circuits. All external signals connected to the module that require 1.8 V pull-up must be pulled up to VDD_EXT. A test point is recommended to be reserved.
GND	140–147 178, 179	', 149, 1), 181, 1	51, 152, 154–156, 158	s, 160, 161, 163, 164 s, 191, 194–197, 200	-129, 131–134, 136, 137, , 167–170, 172, 173, 176, , 202, 203, 205, 206, 209,
Turn On/Off					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	7	DI	Turns on/off the module		Active low/ Low-level pulses are active. Internally pulled up to VBAT with a 20 k Ω resistor.
RESET_N	8	DI	Resets the module		Active Low/Low-level pulses are active. Internally pulled up to VBAT with a 20 kΩ resistor. A test point is recommended to be reserved if unused.
Status Indicati	on				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
STATUS	237	DO	Indicates the module's operation status	1.8 V	1.8 V power domain. If unused, keep them
NET_MODE	240	DO	Indicates the module's network		open.

			registration mode		
NET_STATUS	243	DO	Indicates the module's network activity status	-	
SLEEP_IND	102	DO	Indicates the module's sleep mode	-	
USB Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	82	AI	USB connection detect	Vmax = 5.25 V Vmin = 3.4 V Vnom = 5.0 V	For USB connection detection only, not for power supply. A test point must be reserved.
USB_DP	83	AIO	USB 2.0 differential data (+)		Requires differential impedance of 90 Ω .
USB_DM	85	AIO	USB 2.0 differential data (-)		USB 2.0 compliant. Test points must be reserved.
USB_SS_TX_ P	91	AO	USB 3.0 super-speed transmit (+)		
USB_SS_TX_ M	89	AO	USB 3.0 super-speed transmit (-)		Requires differential impedance of 90 Ω.
USB_SS_RX_ P	88	AI	USB 3.0 super-speed receive (+)		If unused, keep them open.USB 3.0 compliant.
USB_SS_RX_ M	86	AI	USB 3.0 super-speed receive (-)		
(U)SIM Interfac	es				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM1_VDD	245	РО	(U)SIM1 card power supply	1.8/3.0 V	
USIM1_DATA	248	DIO	(U)SIM1 card data	USIM1_VDD 1.8/3.0	
USIM1_CLK	247	DO	(U)SIM1 card clock		

244				
277	DO	(U)SIM1 card reset		
249	DI	(U)SIM1 card hot-plug detect	1.8 V	If unused, keep it open.
250	РО	(U)SIM2 card power supply		
251	DIO	(U)SIM2 card data	USIM2_VDD	
253	DO	(U)SIM2 card clock	1.8/3.0 V	
254	DO	(U)SIM2 card reset		
252	DI	(U)SIM2 card hot-plug detect	1.8 V	If unused, keep it open.
rface				
Pin No.	I/O	Description	DC Characteristics	Comment
68	DO	Main UART transmit	_	
70	DI	Main UART receive	1.8 V	If unused, keep them open.
258	DI	Main UART data terminal ready, sleep mode control		
100	DO	Main UART ring indication	-	
261	DO	Main UART data carrier detect	-	
terface				
Pin No.	I/O	Description	DC Characteristics	Comment
	I/O DI	Description Debug UART receive	Characteristics	Comment Test points must be
Pin No.		Debug UART		
Pin No. 108	DI	Debug UART receive Debug UART	Characteristics	Test points must be
Pin No. 108	DI	Debug UART receive Debug UART	Characteristics	Test points must be
Pin No. 108 105	DI DO	Debug UART receive Debug UART transmit	Characteristics 1.8 V	Test points must be reserved.
	250 251 253 254 252 rface Pin No. 68 70 258 100	250 PO 251 DIO 253 DO 254 DO 252 DI rface Pin No. I/O 68 DO 70 DI 258 DI 100 DO	hot-plug detect 250 PO (U)SIM2 card power supply 251 DIO (U)SIM2 card data 253 DO (U)SIM2 card clock 254 DO (U)SIM2 card reset 252 DI (U)SIM2 card hot-plug detect 252 DI (U)SIM2 card hot-plug detect 254 DO Description 68 DO Main UART transmit 70 DI Main UART data 258 DI terminal ready, 3leep mode control 100 DO Main UART ring 100 DO Main UART data 100 Main UART data 100 Main UART ring 101 Main UART data 102 Main UART data 103 Main UART data 104 Main UART data 105 Main UART data 106 Main UART data 107 Main UART data 108 Main UART data 109 Main UART data 100 Main UART data	hot-plug detect 250 PO (U)SIM2 card power supply 251 DIO (U)SIM2 card data 253 DO (U)SIM2 card clock 254 DO (U)SIM2 card reset 255 DI (U)SIM2 card reset 252 DI (U)SIM2 card hot-plug detect 253 DO Description 254 DO Description 255 DI Main UART transmit 256 DI Main UART data terminal ready, sleep mode control 258 DI Main UART ring indication 261 DO Main UART data 250 Main UART data 251 DO Main UART data 252 DI Main UART data 253 DI Main UART ring indication 254 DO Main UART data 255 Main UART data 255 Main UART data 256 DO Main UART data 257 Main UART data 258 DI Main UART data 258 DI Main UART ring indication 258 Main UART data 258 Main UART data 259 Main UART data 250 Main UART data 250 Main UART data 251 Main UART data 252 Main UART data 253 Main UART data 254 DO Main UART data 255 Main UART data 256 Main UART data 257 Main UART data 258 Main UART data

I2S Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
I2S_WS	259	DO	I2S word select		I2S supports master mode only by default. Can be multiplexed into PCM_SYNC.
I2S_SCK	256	DO	I2S clock	− 1.8 V	I2S supports master mode only by default. Can be multiplexed into PCM_CLK.
I2S_DIN	257	DI	I2S data in	1.0 V	I2S supports master mode only by default. Can be multiplexed into PCM_IN.
I2S_DOUT	255	DO	I2S data out	-	I2S supports master mode only by default. Can be multiplexed into PCM_OUT.
PCM Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PCM_SYNC	71	DO	PCM data frame sync		Can be multiplexed into I2S_WS.
PCM_CLK	73	DO	PCM clock	4.0.1/	Can be multiplexed into I2S_SCK.
PCM_IN	74	DI	PCM data input	− 1.8 V	Can be multiplexed into I2S_DIN.
PCM_OUT	76	DO	PCM data output	_	Can be multiplexed into I2S_DOUT.
PCle Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PCIE_REFCLK_	- 40	AIO	PCIe reference clock (+)	impedance PCI Expr Specifica 2.1 comp Supports In RC mo	Requires differential impedance of 100 Ω. PCI Express Base Specification Revision 2.1 compliant.
PCIE_REFCLK_	⁻ 38	AIO	PCIe reference clock (-)		Supports PCIe Gen 2. In RC mode, it is an output signal.

					In EP mode, it is an input signal.
PCIE_TX0_M	44	AO	PCIe transmit 0 (-)		Requires differential
PCIE_TX0_P	46	AO	PCIe transmit 0 (+)		impedance of 100 Ω. PCI Express Base
PCIE_RX0_M	32	Al	PCIe receive 0 (-)		Specification Revision 2.1 compliant.
PCIE_RX0_P	34	Al	PCIe receive 0 (+)		Supports PCIe Gen 2.
PCIE_CLKREQ	36	DI, OD	PCIe clock request		In RC mode, it is an input signal. In EP mode, it is an output signal.
PCIE_RST	39	DIO	PCIe reset	1.8 V	In RC mode, it is an output signal. In EP mode, it is an input signal.
PCIE_WAKE	30	DI, OD	PCIe wake up		In RC mode, it is an input signal. In EP mode, it is an output signal.
WLAN Applicat	ion Interfa	ce			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
				Onaracteristics	
WLAN_PWR_ EN1	216	DO	Controls WLAN PA	Onaraciensios	
	216	DO DO		1.8 V	
EN1 WLAN_PWR_			power Controls WLAN	_	
EN1 WLAN_PWR_ EN2	219	DO	power Controls WLAN other power	_	
EN1 WLAN_PWR_ EN2 WLAN_EN WLAN_SLP_	219	DO DO	power Controls WLAN other power WLAN enable 32.768 kHz sleep	_	
EN1 WLAN_PWR_ EN2 WLAN_EN WLAN_SLP_ CLK	219	DO DO	power Controls WLAN other power WLAN enable 32.768 kHz sleep	_	Comment
EN1 WLAN_PWR_ EN2 WLAN_EN WLAN_SLP_ CLK SDIO Interface	219 222 225	DO DO AO	power Controls WLAN other power WLAN enable 32.768 kHz sleep clock output	1.8 V	Comment
EN1 WLAN_PWR_ EN2 WLAN_EN WLAN_SLP_ CLK SDIO Interface Pin Name	219 222 225 Pin No.	DO DO AO	power Controls WLAN other power WLAN enable 32.768 kHz sleep clock output Description	DC Characteristics	Comment
EN1 WLAN_PWR_ EN2 WLAN_EN WLAN_SLP_ CLK SDIO Interface Pin Name SDC1_CLK	219 222 225 Pin No. 47	DO DO AO I/O DO	power Controls WLAN other power WLAN enable 32.768 kHz sleep clock output Description SDIO clock	1.8 V	Comment

1			
SDC1_DATA_ 2	51	DIO	SDIO data bit 2
SDC1_DATA_	52	DIO	SDIO data bit 3

RG500U-CN Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT0	130	AIO	Antenna 0 interface: - WCDMA: LMB TRX - LTE: LMHB TRX - 5G NR: n1/n28 TRX & n41 TRX1 & n77/n78/n79 DRX1 - Refarming: n1/n28 TRX	
ANT1	157	AIO	Antenna 1 interface: - WCDMA: LMB DRX - LTE: LMHB DRX - 5G NR: n1 DRX0 & n28 DRX & n77/n78/n79 TRX1 & n41 DRX1 - Refarming: n1 DRX0 & n28 DRX	50 Ω characteristic impedance.
ANT2	166	AIO	Antenna 2 interface: - 5G NR: n41/n77/n78/n79 DRX0 & n1 DRX1	_
ANT3	184	AIO	Antenna 3 interface: - 5G NR: n41/n77/n78/n79 TRX0 & n1 PRX1	_

RG500U-EA Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT0	130	AIO	Antenna 0 interface: - WCDMA: LMB TRX - LTE: LMB & B40 TRX - 5G NR: n1/n3/n66 PRX1 & n5/n8/n20/n28 TRX & n40 TRX1 - Refarming: n1/n3/n66 PRX1 & n5/n8/n20/n28 TRX & n40 TRX1	50 Ω characteristic impedance.
ANT1	139	AIO	Antenna 1 interface: - LTE: B7/B38/B41 TRX - 5G NR: n7 PRX1 & n38/n41 TRX1 & n77/n78 DRX0 - Refarming: n38 TRX1 & n7 PRX1	_

			Antenna 2 interface:
			- WCDMA: LMB DRX
			- LTE: LMB & B40 DRX
ANT2	148	AIO	- 5G NR: n1/n3/n40/n66 DRX1 &
			n5/n8/n20/n28 DRX
			- Refarming: n1/n3/n40/n66 DRX1 &
			n5/n8/n20/n28 DRX
			Antenna 3 interface:
			- LTE: B7/B38/B41 DRX
ANT3	157	AIO	- 5G NR: n7/n38/n41 DRX1 &
			n77/n78 TX1 & PRX1
			- Refarming: n7/n38 DRX1
			Antenna 4 interface:
ANT4	166	AIO	- 5G NR: LMHB DRX0 & n77/n78
			DRX1
ANT5	101	A10	Antenna 5 interface:
CIVIA	184	AIO	- 5G NR: LMHB & n77/n78 TRX0

RG500U-EB Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT0	130	AIO	Antenna 0 interface: - WCDMA: LMB TRX - LTE: LMHB TRX - 5G NR: n1/n3/n7/n28/n66 PRX1 & n5/n8 TRX & n38/n40/n41 TRX1 & n77/n78 DRX0 - Refarming: n1/n3/n7/n28/n66 PRX1 & n5/n8 TRX & n38/n40 TRX1	50Ω characteristic impedance.
ANT2	148	AIO	Antenna 2 interface: - WCDMA: LMB DRX - LTE: LMHB DRX - 5G NR: n1/n3/n7/n28/n38/n40/n41/n66 DRX1 & n5/n8/n20 DRX & n77/n78 TX1 & PRX1 - Refarming: n1/n3/n7/n28/n38/n40/n66 DRX1 & n5/n8/n20 DRX	50 Ω characteristic impedance.
ANT4	166	AIO	Antenna 4 interface: - 5G NR: LMHB DRX0 & n77/n78 DRX1	50 Ω characteristic impedance.
ANT5	184	AIO	Antenna 5 interface: - 5G NR: LMHB & n77/n78 TRX0	50 Ω characteristic impedance.

RG500U-LA	Antenna Inte	rfaces		
Pin Name	Pin No.	I/O	Description	Comment
ANT0	130	AIO	Antenna 0 interface: - WCDMA: LMB TRX LTE: LMB & B40 TRX - 5G NR: n2/n28/n66 PRX1 & n8/n71 TRX & n40 TRX1 - Refarming: n2/n28/n66 PRX1 & n8/n71 TRX & n40 TRX1	
ANT1	139	AIO	Antenna 1 interface: - LTE: B7/B38 TRX - 5G NR: n7 PRX1 & n38 TRX1 & n78 DRX0 - Refarming: n38 TRX1 & n7 PRX1	-
ANT2	148	AIO	Antenna 2 interface: - WCDMA: LMB DRX - LTE: LMB & B40 DRX - 5G NR: n2/n28/n66/n40 DRX1 & n5/n8 DRX - Refarming: n2/n28/n66/n40 DRX1 & n5/n8 DRX	50 Ω characteristic impedance.
ANT3	157	AIO	Antenna 3 interface: - LTE: B7/B38 DRX - 5G NR: n7/n38 DRX1 & n78 TX1 & PRX1 - Refarming: n7/n38 DRX1	
ANT4	166	AIO	Antenna 4 interface: - 5G NR: LMHB DRX0 & n78 DRX1	_
ANT5	184	AIO	Antenna 5 interface: - 5G NR: LMHB & n78 TRX0	-
RG500U-JO	Antenna Inte	rfaces		
Pin Name	Pin No.	I/O	Description	Comment
ANT0	130	AIO	Reserved	
ANT1	139	AIO	Antenna 1 interface: - 5G NR: n78 DRX0	$50 \ \Omega$ characteristic impedance.
ANT2	148	AIO	Reserved	
ANT3	157	AIO	Antenna 3 interface: - 5G NR: n78 TX1 & PRX1	50 Ω characteristic impedance.

ANT4	166	AIO	Antenna 4 interface		50 Ω characteristic			
			- 5G NR: n78 DR		impedance.			
ANT5	184	AIO	Antenna 5 interface - 5G NR: n78 TR>		50 Ω characteristic			
				KU	impedance.			
RG500U-CN Antenna Tuner Control Interfaces								
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment			
GRFC1	117	DO	Generic RF Controller					
GRFC2	120	DO	Generic RF Controller	1.8 V				
RG500U-EA/E	B/LA/JO Ar	itenna 1	Funer Control Interfac	ces*				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment			
GRFC1	117	DO	Generic RF Controller	4.0.1/				
GRFC2	120	DO	Generic RF Controller	- 1.8 V				
SPI								
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment			
SPI1_CLK								
	210	DO	SPI clock	_				
SPI1_CS	210	DO	SPI clock SPI chip select	-	Only master made is			
				- 1.8 V	Only master mode is supported by default.			
SPI1_CS	207	DO	SPI chip select SPI master-in	- 1.8 V	•			
SPI1_CS SPI1_MISO	207	DO DI	SPI chip select SPI master-in slave-out SPI master-out	1.8 V	•			
SPI1_CS SPI1_MISO SPI1_MOSI	207	DO DI	SPI chip select SPI master-in slave-out SPI master-out	1.8 V DC Characteristics	•			
SPI1_CS SPI1_MISO SPI1_MOSI ADC Interface	207 213 204	DO DI DO	SPI chip select SPI master-in slave-out SPI master-out slave-in	DC	supported by default.			
SPI1_CS SPI1_MISO SPI1_MOSI ADC Interface Pin Name	207 213 204 Pin No. 241	DO DI DO	SPI chip select SPI master-in slave-out SPI master-out slave-in Description General-purpose	DC Characteristics	supported by default.			
SPI1_CS SPI1_MISO SPI1_MOSI ADC Interface Pin Name ADC0	207 213 204 Pin No. 241	DO DI DO	SPI chip select SPI master-in slave-out SPI master-out slave-in Description General-purpose	DC Characteristics	supported by default.			

W_DISABLE#	114	DI	Airplane mode control
EXT_RST	75	DO	External audio reset
EXT_INT	281	DI	External audio interrupt

RG500U-CN RESERVED Pins

Pin Name	Pin No.
RESERVED	1–6, 9–11, 13–17, 19–25, 27–29, 31, 35, 37, 41, 43, 45, 53–65, 67, 69, 72, 79, 80, 87, 92–95, 97–99, 101, 103, 104, 106, 111, 121, 135, 138, 139, 148, 150, 153, 159, 162, 165, 171, 174, 175, 177, 180, 183, 186, 189, 192, 193, 198, 199, 201, 208, 217, 218, 220, 221, 223, 239, 242, 246, 260, 262–280, 282–298

RG500U-EA/LA RESERVED Pins

Pin Name	Pin No.
RESERVED	1–6, 9–11, 13–17, 19–25, 27–29, 31, 35, 37, 41, 43, 45, 53–65, 67, 69, 72, 79, 80, 87,
	92–95, 97–99, 101, 103, 104, 106, 111, 121, 135, 138, 150, 153, 159, 162, 165, 171,
	174, 175, 177, 180, 183, 186, 189, 192, 193, 198, 199, 201, 208, 217, 218, 220, 221,
	223, 239, 242, 246, 260, 262–280, 282–298

RG500U-EB RESERVED Pins

Pin Name	Pin No.
	1–6, 9–11, 13–17, 19–25, 27–29, 31, 35, 37, 41, 43, 45, 53–65, 67, 69, 72, 79, 80, 87,
RESERVED	92–95, 97–99, 101, 103, 104, 106, 111, 121, 135, 138, 139, 150, 153, 157, 159, 162,
RESERVED	165, 171, 174, 175, 177, 180, 183, 186, 189, 192, 193, 198, 199, 201, 208, 217, 218,
	220, 221, 223, 239, 242, 246, 260, 262–280, 282–298

RG500U-JO RESERVED Pins

Pin Name	Pin No.
RESERVED	1–6, 9–11, 13–17, 19–25, 27–29, 31, 35, 37, 41, 43, 45, 53–65, 67, 69, 72, 79, 80, 87,
	92–95, 97–99, 101, 103, 104, 106, 111, 121, 130, 135, 138, 148, 150, 153, 159, 162,
	165, 171, 174, 175, 177, 180, 183, 186, 189, 192, 193, 198, 199, 201, 208, 217, 218,
	220, 221, 223, 239, 242, 246, 260, 262–280, 282–298

3.3. Operating Modes

Table 10: Overview of Operating Modes

Mode	Details				
Full Functionality	Idle	Software is active. The module has registered on the network, and it is ready to send and receive data.			
Mode	Voice/Data	Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate.			
Minimum Functionality Mode	AT+CFUN=0 can set the module to a minimum functionality mode without removing the power supply. In this case, both RF function and (U)SIM card are invalid.				
Airplane Mode	AT+CFUN=4 or W_DISABLE# pin can set the module to airplane mode. In this case, RF function is invalid.				
Sleep Mode	In this mode, the power consumption of the module is reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally.				
Power Down Mode	not active. The serial interfaces are not accessible. Operating voltage (connection)				

3.4. Power Saving

3.4.1. Sleep Mode

The module is able to reduce the power consumption to an ultra-low level during sleep mode. The following section describes power saving procedures.

Figure 11: DRX Run Time and Power Consumption in Sleep Mode

DRX cycle values are transmitted over the wireless network.

3.4.1.1. UART Application

If the MCU communicates with the module via main UART interface, the following preconditions can make the module enter sleep mode.

- Execute AT+QSCLK=1 to enable sleep mode.
- Drive UART1_DTR high.

The following figure shows the connection between the module and the MCU.

Figure 12: Sleep Mode Application via UART

You can wake up the module by driving UART1_DTR low.

NOTE

- 1. Pay attention to the level match shown in dotted line between the module and the MCU.
- 2. When the module has a URC to report, UART1_RI signal wakes up the MCU. See *Chapter 3.14* for details about UART1_RI behaviors.

3.4.1.2.USB Application without USB Suspend Function

The module does not support USB suspend function. Please disconnect USB_VBUS with an external control circuit to make the module enter sleep mode.

- Execute AT+QSCLK=1 to enable sleep mode.
- Ensure UART1 DTR is held at high level or keep it open.
- Disconnect USB_VBUS.

The following figure shows the connection between the module and the host.

Figure 13: Sleep Mode Application without Suspend Function

You can wake up the module by switching on the power switch to supply power to USB_VBUS.

Pay attention to the level match shown in dotted line between the module and the host.

3.4.2. Airplane Mode

When the module enters airplane mode, the RF function does not work and all AT commands related to the RF function are inaccessible. You can set this mode via the following ways.

Hardware:

The W_DISABLE# pin is pulled up by default. Driving it low makes the module enter airplane mode.

Software:

AT+CFUN=<fun> provides the choice of functionality level by setting <fun> into 0, 1 or 4.

- AT+CFUN=0: Minimum functionality mode. Both (U)SIM and RF functions are disabled.
- AT+CFUN=1: Full functionality mode (by default).

• AT+CFUN=4: Airplane mode. RF function is disabled.

3.5. Power Supply

3.5.1. Power Supply Pins

RG500U series provides 7 VBAT pins dedicated for connection with the external power supply. There are two separate voltage domains for VBAT.

- Four VBAT_RF1 pins for module's RF part.
- Three VBAT BB pins for module's baseband part.

Table 11: VBAT and GND Pins

Pin Name	Pin No.	Description	Min.	Тур.	Max.	Unit
VBAT_RF1	229, 230, 232, 233	Power supply for the module's RF part	3.3	3.8	4.3	V
VBAT_BB	235, 236, 238	Power supply for the module's baseband part	3.3	3.8	4.3	V
GND	12, 18, 26, 33, 42, 84, 90, 96, 13, 140–147, 149, 151, 152, 154–15, 178, 179, 181, 182, 185, 187, 18, 211, 212, 214, 215, 224, 226–22	56, 158, 160, 161, 163, 164, 38, 190, 191, 194–197, 200,	167–17	70, 172,	173, 17	76,

3.5.2. Voltage Stability Requirements

The power supply range of the module is from 3.3 V to 4.3 V. Make sure the input voltage never drops below 3.3 V. The following figure shows the voltage drop during burst transmission.

Figure 14: Power Supply Limits during Burst Transmission

To decrease the voltage drop, use a bypass capacitor of about 220 μ F with low ESR (ESR \leq 0.7 Ω). Meanwhile, it is recommended to reserve a multi-layer ceramic chip (MLCC) capacitor array composed of three ceramic capacitors (100 nF, 33 pF, 10 pF) for VBAT_BB and VBAT_RF respectively, and place these capacitors close to VBAT pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be not less than 2.0 mm, and the width of VBAT_RF1 and VBAT_RF2 trace should be not less than 2.5 mm. In principle, the longer the VBAT trace is, the wider it should be.

In addition, to avoid the surge, use a TVS diode of which the reverse working voltage should be 5.1 V. The following figure shows the star structure of the power supply.

Figure 15: Reference Circuit of Power Supply

3.5.3. Reference Design for Power Supply

The power source is critical to the module's performance. The continuous current of the power supply should be 3 A at least and the peak current should be 4 A at least.

The following figure shows a reference design for +5 V input power source.

Figure 16: Reference Circuit of Power Supply

To avoid corrupting the data in the internal flash, do not switch off the power supply when the module works normally. Only after shutting down the module with PWRKEY or AT command can you cut off the power supply.

3.6. Turn On/Turn Off/Reset

3.6.1. Turn On with PWRKEY

Table 12: Pin Description of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	7	DI	Turns on/off the module	Active low/Low-level pulses are active. Internally pulled up to VBAT with a 20 k Ω resistor.

The module can be turned on by driving the PWRKEY pin low for at least 1.2 s. It is recommended to use an open drain/collector driver to control the PWRKEY.

A simple reference circuit is illustrated in the following figure.

Figure 17: Turning on the Module Using Driving Circuit

Another way to control the PWRKEY is using a button directly. When you are pressing the key, electrostatic strike may be generated from finger. Therefore, you must place a TVS component nearby the button for ESD protection. A reference circuit is shown in the following figure.

Figure 18: Turning on the Module Using a Button

The turn-on timing is illustrated in the following figure.

Figure 19: Power-up Timing

NOTE

- Make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time difference between powering up VBAT and pulling down PWRKEY pin should not be less than 30 ms.
- 2. A 20K resistor is integrated internally in PWRKEY and is pulled up to VBAT_BB.
- 3. If the module needs to turn on automatically but does not require turn-off function, PWRKEY can be

driven low directly to ground with a 1K resistor.

3.6.2. Turn Off

The module can be turned off by following ways:

- Use the PWRKEY pin.
- Use AT+QPOWD.

3.6.2.1.Turn Off with PWRKEY

Drive the PWRKEY pin low for at least 800 ms and then release PWRKEY. After this, the module executes power-down procedure.

The turn-off timing is illustrated in the following figure.

Figure 20: Power-down Timing

3.6.2.2. Turn Off with AT Command

It is also a safe way to use **AT+QPOWD** to turn off the module, which is similar to turning off the module via the PWRKEY pin.

See document [3] for details about AT+QPOWD.

- 1. To avoid corrupting the data in the internal flash, do not switch off the power supply when the module works normally. Only after turning off the module with PWRKEY or AT command can you cut off the power supply.
- 2. When turning off module with the AT command, keep PWRKEY at high level after execution of the command. Otherwise, the module will be turned on again after successful turn-off.

3.6.3. Reset

You can reset the module by driving RESET_N low for 40–600 ms and then releasing it. The RESET_N signal is sensitive to interference, so it is recommended to route the trace as short as possible and surround it with ground.

Table 13: Pin Description of RESET_N

Pin Name	Pin No.	I/O	Description	Comment
RESET_N	8	DI	Resets the module	Active Low/Low-level pulses are active. Internally pulled up to VBAT with a 20 $k\Omega$ resistor. A test point is recommended to be reserved if unused.

The recommended circuit is similar to the PWRKEY control circuit. You can use an open drain/collector driver or button to control RESET_N.

Figure 21: Reference Circuit of RESET_N by Using Driving Circuit

Figure 22: Reference Circuit of RESET_N with a Button

Figure 23: Timing of Resetting the Module

- 1. Use RESET_N only when you fail to turn off the module with the AT+QPOWD and PWRKEY.
- 2. RESET_N is internally pulled up with a 20 k Ω resistor.
- 3. Ensure that there is no large capacitance on PWRKEY and RESET_N.

3.7. (U)SIM Interfaces

The (U)SIM interfaces circuitry meets ETSI and IMT-2000 requirements. Either 1.8 V or 3.0 V (U)SIM card is supported.

Table 14: Pin Description of (U)SIM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
USIM1_VDD	245	РО	(U)SIM1 card power supply	
USIM1_DATA	248	DIO	(U)SIM1 card data	
USIM1_CLK	247	DO	(U)SIM1 card clock	
USIM1_RST	244	DO	(U)SIM1 card reset	
USIM1_DET	249	DI	(U)SIM1 card hot-plug detect	1.8 V power domain. If unused, keep it open.
USIM2_VDD	250	РО	(U)SIM2 card power supply	
USIM2_DATA	251	DIO	(U)SIM2 card data	
USIM2_CLK	253	DO	(U)SIM2 card clock	
USIM2_RST	254	DO	(U)SIM2 card reset	
USIM2_DET	252	DI	(U)SIM2 card hot-plug detect	1.8 V power domain. If unused, keep it open.

The module supports (U)SIM card hot-plug via the USIM1_DET and USIM2_DET, and both high and low level detections are supported. The function is disabled by default and you can configure it via **AT+QSIMDET**. See **document [3]** for more details about the command.

The following figure shows a reference design for (U)SIM interface with an 8-pin (U)SIM card connector.

Figure 24: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector

If the function of (U)SIM card hot-plug is not needed, keep USIM1_DET and USIM2_DET disconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

Figure 25: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector

To enhance the reliability and availability of the (U)SIM card in applications, follow the criteria below in the (U)SIM circuit design:

- Place the (U)SIM card connector as close to the module as possible. Keep the trace length as short as possible, at most 200 mm.
- Keep (U)SIM card signals away from RF and VBAT traces.
- Make sure the ground between the module and the (U)SIM card connector is short and wide. Keep
 the trace width of ground and USIM_VDD not less than 0.5 mm to maintain the same electric
 potential.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground.
- To offer good ESD protection, add a TVS array of which the junction capacitance should be less than 26 pF. Add 0 Ω resistors in series between the module and the (U)SIM card to facilitate debugging. Additionally, keep the (U)SIM peripheral circuit close to the (U)SIM card connector.
- For USIM_DATA, a 20 kΩ pull-up resistor must be added near the (U)SIM card connector.

3.8. USB Interface

RG500U series provides one integrated Universal Serial Bus (USB) interface which complies with the USB 3.0/2.0 specifications and supports SuperSpeed, high-speed, full-speed and low-speed modes. The USB interface is used for AT command communication, data transmission, software debugging and firmware upgrade.

Table 15: Pin Description of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	82	AI	USB connection detect	For USB connection detection only, not for power supply. A test point must be reserved.
USB_DP	83	AIO	USB differential data (+)	USB 2.0 compliant. Requires differential impedance of 90 Ω .
USB_DM	85	AIO	USB differential data (-)	Test points must be reserved.
USB_SS_TX_P	91	AO	USB 3.0 super-speed transmit (+)	
USB_SS_TX_M	89	AO	USB 3.0 super-speed transmit (-)	USB 3.0 compliant.
USB_SS_RX_P	88	Al	USB 3.0 super-speed receive (+)	Requires differential impedance of 90 Ω.
USB_SS_RX_M	86	Al	USB 3.0 super-speed receive (-)	

For more details about the USB 2.0/3.0 specifications, visit http://www.usb.org/home.

Test points must be reserved for USB 2.0 interface for debugging and firmware upgrading in your design. The following figure shows a reference circuit of USB interface.

Figure 26: Reference Circuit of USB Application

To ensure the signal integrity of USB data lines, place R1, R2, R3, R4, C1 and C2 close to the module, C3 and C4 close to the host, and keep the resistors close to each other.

When designing the USB interface, you should follow the following principles to meet USB 2.0 & USB 3.0 specifications.

- Route the USB signal traces as differential pairs with ground surrounded. The impedance of USB differential trace is 90 Ω.
- For USB 2.0 signal traces, the trace length should be less than 250 mm, and the differential data pair matching should be less than 2 mm. For USB 3.0 signal traces, length matching of each differential data pair (Tx/Rx) should be less than 0.15 mm.
- Do not route signal traces under crystals, oscillators, magnetic devices, PCIe and RF signal traces.
 Route the USB differential traces at inner-layer of the PCB, and surround the traces with ground on that layer and with ground planes above and below.
- Junction capacitance of the ESD protection components might cause influences on USB data lines, so you should pay attention to the selection of the components. Typically, the stray capacitance should be less than 1.0 pF for USB 2.0, and less than 0.4 pF for USB 3.0.
- Keep the ESD protection components as close to the USB connector as possible.
- If possible, reserve a 0 Ω resistor on USB_DP and USB_DM lines respectively.

3.9. UART Interfaces

The module provides two UART interfaces: one main UART interface and one debug UART interface.

- Main UART interface supports 115200 bps baud rate by default. This interface is used for data transmission and AT command communication.
- Debug UART interface supports 115200 bps baud rate. It is used for log output.

Table 16: Pin Description of Main UART Interface

Pin Name	Pin No.	I/O	Description	Comment
UART1_TXD	68	DO	Main UART transmit	
UART1_RXD	70	DI	Main UART receive	_
UART1_DTR	258	DI	Main UART data terminal ready, sleep mode control	1.8 V power domain. If unused, keep them open.
UART1_RI	100	DO	Main UART ring indication	
UART1_DCD	261	DO	Main UART data carrier detection	

Table 17: Pin Description of Debug UART Interface

Pin Name	Pin No.	I/O	Description	Comment
DBG_RXD	108	DI	Debug UART receive	1.8 V power domain. Test points must be
DBG_TXD	105	DO	Debug UART transmit	reserved.

The module provides 1.8 V UART interfaces. Use a voltage-level translator if the application is equipped with a 3.3 V UART interface. A voltage-level translator TXS0108EPWR provided by Texas Instruments is recommended.

The following figure shows a reference design.

Figure 27: Reference Circuit with Voltage-level Translator Chip (Main UART)

Visit http://www.ti.com for more information.

Another example with transistor circuit is shown as below. For the design of circuits shown in dotted lines, see that shown in solid lines, but pay attention to the direction of connection.

Figure 28: Reference Circuit with Transistor Circuit (Main UART)

- 1. For all signals connected to the module with level-shift circuit required, the power supply for their reference voltage is required to be controlled by VDD_EXT, that is, be turned on later than VDD_EXT.
- 2. Transistor circuit solution is not suitable for applications with high baud rates exceeding 460 kbps.
- 3. The level-shifting circuits (*Figure 27* and *Figure 28*) take the main UART as an example. The circuits of the debug UART is connected in the same way as the main UART.

3.10. I2S Interface and SPI

RG500U series supports audio communication via one I2S digital interface and one SPI. And the I2S interface can be multiplexed into PCM function.

Table 18: Pin Description of I2S Interface and SPI

Pin Name	Pin No.	I/O	Description	Comment
I2S_WS	259	DO	I2S word select	
I2S_SCK	256	DO	I2S clock	- 1.8 V power domain.
I2S_DIN	257	DI	I2S data in	I2S and SPI support master mode only
I2S_DOUT	255	DO	I2S data out	by default.
SPI1_CLK	210	DO	SPI clock	_

SPI1_CS	207	DO	SPI chip select
SPI1_MISO	213	DI	SPI master-in slave-out
SPI1_MOSI	204	DO	SPI master-out slave-in
EXT_RST	75	DO	External audio reset
EXT_INT	281	DI	External audio interrupt

The following figure shows a reference design of SLIC application.

Figure 29: Reference Circuit of I2S Application with SPI

3.11. ADC Interface

The module provides one Analog-to-Digital Converter (ADC) interface. To improve the accuracy of ADC, surround the trace of ADC with ground.

Table 19: Pin Description of ADC Interface

Pin Name	Pin No.	Description
ADC0	241	General-purpose ADC interface

Table 20: Characteristics of ADC Interface

Parameter	Min.	Тур.	Max.	Unit	
-----------	------	------	------	------	--

ADC0 Input Voltage Range	0	-	VBAT	V
ADC0 Resolution	-	11	-	bits

- 1. The input voltage of ADC should not exceed VBAT.
- 2. It is prohibited to supply any voltage to ADC pin when VBAT is removed.

3.12. Network Status Indication

The network indication pins NET_MODE and NET_STATUS can drive the network status indication LEDs. The following tables describe the pin description and logic level changes in different network status.

Table 21: Pin Description of Network Connection Status/Activity Indication

Pin Name	Pin No.	I/O	Description	Comment
NET_MODE	240	DO	Indicates the module's network registration mode	1.8 V power domain.
NET_STATUS	243	DO	Indicates the module's network activity status	 If unused, keep them open.

Table 22: Working State of the Network Connection Status/Activity Indication

Pin Name	Status	Description
NET MODE	Always High	Registered on 5G network
NET_MODE	Always Low	Others
	Blink slowly (200 ms High/1800 ms Low)	Network searching
NET STATUS	Blink slowly (1800 ms High/200 ms Low)	Idle
NET_STATUS	Blink quickly (125 ms High/125 ms Low)	Data transmission is ongoing
	Always High	Voice calling

A reference circuit is shown in the following figure.

Figure 30: Reference Circuit of the Network Indication

3.13. STATUS

The STATUS pin indicates the module's operation status. It outputs high level when the module is powered on successfully

Table 23: Pin Description of STATUS

Pin Name	Pin No.	I/O	Description	Comment
STATUS	237	DO	Indicates the module's operation status	1.8 V power domain.

A reference circuit is shown as below.

Figure 31: Reference Circuit of STATUS

STATUS can't be used as the turn-off status indication when the module' VBAT is not turned on.

3.14. UART1_RI*

You can configure UART1_RI behaviors flexibly. The default behavior of the UART1_RI is shown as below.

Table 24: Behaviors of the UART1_RI

State	Response
Idle	UART1_RI keeps at a high level.
URC	UART1_RI outputs 120 ms low pulse when a new URC returns.

3.15. USB_BOOT Interface

RG500U series provides a USB_BOOT pin. You can make the module enter download mode after being turned on by pulling up USB_BOOT to VDD_EXT before turning on the module. In this mode, the module supports firmware upgrade over USB 2.0 interface.

Table 25: Pin Description of USB_BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	81	DI	Forces the module into download mode	1.8 V power domain. Test points are recommended to be reserved.

The following figure shows a reference circuit of USB_BOOT interface.

Figure 32: Reference Circuit of USB_BOOT Interface

3.16. I2C Interface

The module provides one I2C interface, and the speed rate can be up to 3.4 Mbps.

Table 26: Pin Description of I2C Interface

Pin Name	Pin No.	I/O	Description	Comment
I2C1_SCL	77	OD	I2C serial clock	Require an external pull-up to
I2C1_SDA	78	OD	I2C serial data	 VDD_EXT. If unused, keep them open.

3.17. PCle Interface

RG500U series includes one PCIe interface which is in compliance with *PCI Express Base Specification Revision 2.1*. The key features of the PCIe interface are as below:

- Supports PCIe Gen 2 with backward compatibility
- Data rate at 5 Gbps/lane
- Can be used to connect to an Ethernet IC
- Supports RC and EP mode

Table 27: Pin Description of PCIe Interface

Pin Name	Pin No.	I/O	Description	Comment
PCIE_REFCLK_P	40	AIO	PCIe reference clock (+)	PCI Express Base Specification Revision 2.1 compliant.
PCIE_REFCLK_M	38	AIO	PCIe reference clock (-)	Supports PCIe Gen 2. Requires differential impedance of 100 Ω. In RC mode, it is an output signal. In EP mode, it is an input signal.
PCIE_TX0_M	44	АО	PCIe transmit 0 (-)	_ PCI Express Base Specification
PCIE_TX0_P	46	AO	PCIe transmit 0 (+)	Revision 2.1 compliant. Supports PCIe Gen 2.
PCIE_RX0_M	32	Al	PCIe receive 0 (-)	Requires differential impedance of
PCIE_RX0_P	34	Al	PCIe receive 0 (+)	- 100 Ω.
PCIE_CLKREQ	36	DI, OD	PCIe clock request	1.8 V power domain. In RC mode, it is an input signal. In EP mode, it is an output signal.
PCIE_RST	39	DIO	PCIe reset	1.8 V power domain. In RC mode, it is an output signal. In EP mode, it is an input signal.
PCIE_WAKE	30	DI, OD	PCIe wake up	1.8 V power domain.In RC mode, it is an input signal.In EP mode, it is an output signal.

The following figure shows the reference design of PCIe interface.

Figure 33: PCIe Interface Reference Circuit (RC Mode)

Figure 34: PCIe Interface Reference Circuit (EP Mode)

To enhance the reliability and availability in applications, follow the criteria below in the PCIe interface circuit design:

 Keep trace of the PCIe data and control signals away from sensitive circuits and signals, such as RF, audio, and clock signals.

- Add a capacitor in series on Tx/Rx traces to prevent any DC bias.
- Keep the maximum trace length less than 300 mm.
- Keep the length matching of each differential data pair (Tx/Rx/REFCLK) less than 0.15 mm for PCle routing traces.
- Keep the differential impedance of PCIe data trace as 100 Ω ±10 %.
- You must not route PCle data traces under components or cross them with other traces.

When connecting PCle interface to host or PC with 3.3 V power domain, you need to use a voltage-level translator chip to maintain level matching.

3.18. Antenna Tuner Control Interfaces

The module controls the external antenna tuner through GRFC signals. The following table shows the pin description of the interfaces.

Table 28: Pin Description of Antenna Tuner Control Interfaces

Pin Name	Pin No.	I/O	Description	Comment	
GRFC1	117	DO	Generic RF Controller	If unused keep them ones	
GRFC2	120	DO	Generic RF Controller	 If unused, keep them open. 	

NOTE

For RG500U-EA/RG500U-EB/RG500U-LA/RG500U-JO, antenna tuner control interfaces are under development.

4 Antenna Interfaces

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

The module includes four or six cellular antenna interfaces. The impedance of antenna port is 50 Ω .

4.1. Cellular Antenna Interfaces

4.1.1. Pin Definition

Table 29: RG500U-CN Pin of Cellular Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT0	130	AIO	Antenna 0 interface: - WCDMA: LMB TRX - LTE: LMHB TRX - 5G NR: n1/n28 TRX & n41 TRX1 & n77/n78/n79 DRX1 - Refarming: n1/n28 TRX	
ANT1	157	AIO	Antenna 1 interface: - WCDMA: LMB DRX - LTE: LMHB DRX - 5G NR: n1 DRX0 & n28 DRX & n77/n78/n79 TRX1 & n41 DRX1 - Refarming: n1 DRX0 & n28 DRX	50 Ω characteristic impedance.
ANT2	166	AIO	Antenna 2 interface: - 5G NR: n41/n77/n78/n79 DRX0 & n1 DRX1	_
ANT3	184	AIO	Antenna 3 interface: - 5G NR: n41/n77/n78/n79 TRX0 & n1 PRX1	_

Table 30: RG500U-EA Pin Definition of Cellular Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT0	130	AIO	Antenna 0 interface: - WCDMA: LMB TRX LTE: LMB & B40 TRX - 5G NR: n1/n3/n66 PRX1 & n5/n8/n20/n28 TRX & n40 TRX1 - Refarming: n1/n3/n66 PRX1 & n5/n8/n20/n28 TRX & n40 TRX1	
ANT1	139	AIO	Antenna 1 interface: - LTE: B7/B38/B41 TRX - 5G NR: n7 PRX1 & n38/n41 TRX1 & n77/n78 DRX0 - Refarming: n38 TRX1 & n7 PRX1	
ANT2	148	AIO	Antenna 2 interface: - WCDMA: LMB DRX - LTE: LMB & B40 DRX - 5G NR: n1/n3/n40/n66 DRX1 & n5/n8/n20/n28 DRX - Refarming: n1/n3/n40/n66 DRX1 & n5/n8/n20/n28 DRX	50 Ω characteristic impedance.
ANT3	157	AIO	Antenna 3 interface: - LTE: B7/B38/B41 DRX - 5G NR: n7/n38/n41 DRX1 & n77/n78 TX1 & PRX1 - Refarming: n7/n38 DRX1	-
ANT4	166	AIO	Antenna 4 interface: - 5G NR: LMHB DRX0 & n77/n78 DRX1	
ANT5	184	AIO	Antenna 5 interface: - 5G NR: LMHB & n77/n78 TRX0	-

Table 31: RG500U-EB Pin Definition of Cellular Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT0	130	AIO	Antenna 0 interface: - WCDMA: LMB TRX - LTE: LMHB TRX - 5G NR: n1/n3/n7/n28/n66 PRX1 & n5/n8 TRX & n38/n40/n41 TRX1 & n77/n78 DRX0 - Refarming: n1/n3/n7/n28/n66 PRX1 & n5/n8 TRX & n38/n40 TRX1	50 Ω characteristic impedance.

		Antenna 2 interface:
		- WCDMA: LMB DRX
		- LTE: LMHB DRX
148	AIO	- 5G NR: n1/n3/n7/n28/n38/n40/n41/n66 DRX1 &
		n5/n8/n20 DRX & n77/n78 TX1 & PRX1
		- Refarming: n1/n3/n7/n28/n38/n40/n66 DRX1 &
		n5/n8/n20 DRX
166	^1	Antenna 4 interface:
100	AIO	- 5G NR: LMHB DRX0 & n77/n78 DRX1
101	A10	Antenna 5 interface:
184	AIO	- 5G NR: LMHB & n77/n78 TRX0
	148 166 184	166 AIO

Table 32: RG500U-LA Pin Definition of Cellular Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT0	130	AIO	Antenna 0 interface: - WCDMA: LMB TRX LTE: LMB & B40 TRX - 5G NR: n2/n28/n66 PRX1 & n8/n71 TRX & n40 TRX1 - Refarming: n2/n28/n66 PRX1 & n8/n71 TRX & n40 TRX1	
ANT1	139	AIO	Antenna 1 interface: - LTE: B7/B38 TRX - 5G NR: n7 PRX1 & n38 TRX1 & n78 DRX0 - Refarming: n38 TRX1 & n7 PRX1	- 50 Ω
ANT2	148	AIO	Antenna 2 interface: - WCDMA: LMB DRX - LTE: LMB & B40 DRX - 5G NR: n2/n28/n66/n40 DRX1 & n5/n8 DRX - Refarming: n2/n28/n66/n40 DRX1 & n5/n8 DRX	characteristic impedance.
ANT3	157	AIO	Antenna 3 interface: - LTE: B7/B38 DRX - 5G NR: n7/n38 DRX1 & n78 TX1 & PRX1 - Refarming: n7/n38 DRX1	_
ANT4	166	AIO	Antenna 4 interface: - 5G NR: LMHB DRX0 & n78 DRX1	
ANT5	184	AIO	Antenna 5 interface: - 5G NR: LMHB & n78 TRX0	

Table 33: RG500U-JO Pin Definition of Cellular Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT0	130	AIO	- Reserved	
ANT1	139	AIO	Antenna 1 interface: - n78 DRX0	
ANT2	148	AIO	- Reserved	50 Ω
ANT3	157	AIO	Antenna 3 interface: - n78 TX1 & PRX1	characteristic impedance.
ANT4	166	AIO	Antenna 3 interface: - 5G NR: n78 DRX1	
ANT5	184	AIO	Antenna 4 interface: - 5G NR: n78 TRX0	_

4.1.2. Cellular Antenna Mapping

Table 34: RG500U-CN Cellular Antenna Mapping

Antenna	Pin	WCDMA	LTE	5G NR				LB	MHB	n77/n78	~70 (MU=)
	No.	WCDIVIA		Refarming	n1	n41	n77/n78/n79	(MHz)	(MHz)	(MHz)	n79 (MHz)
ANT0	130	LMB TRX	LMHB TRX	n1/n28 TRX	-	TRX1	DRX1	699–960	1710–2690	3300–4200	4400–5000
ANT1	157	LMB DRX	LMHB DRX	n1 DRX0 & n28 DRX	-	DRX1	TRX1	758–960	1805–2690	3300–4200	4400–5000
ANT2	166	-	-	-	DRX1	DRX0	DRX0	-	2110–2690	3300–4200	4400–5000
ANT3	184	-	-	-	PRX1	TRX0	TRX0	-	2110–2690	3300–4200	4400–5000

Table 35: RG500U-EA Cellular Antenna Mapping

Antenna	Pin	WCDMA	LTE	5G NR				LB	МНВ	n77/n78	70 (MILL-)
	No.	WCDIVIA		Refarming	LMHB	n41	n77/n78	(MHz)	(MHz)	(MHz)	n79 (MHz)
ANT0	130	LMB TRX	LMB & B40 TRX	n1/n3/n66 PRX1 & n40 TRX1 & n5/n8/n20/n28 TRX	-	-	-	703–960	1710–2400	-	-
ANT1	139	-	B7/B38/B41 TRX	n38 TRX1 & n7 PRX1	-	TRX1	DRX0	-	2496–2690	3300–4200	-

ANT2	148	LMB DRX	LMB & B40 DRX	n1/n3/n40/n66 DRX1 & n5/n8/n20/n28 DRX	-	-	-	758–960	1805–2400	-	-
ANT3	157	-	B7/B38/B41 DRX	n7/n38 DRX1	-	DRX1	TX1 & PRX1	-	2496–2690	3300–4200	-
ANT4	166	-	-	-	DRX0	DRX0	DRX1	617–894	1805–2690	3300–4200	-
ANT5	184	-	-	-	TRX0	TRX0	TRX0	617–894	1710–2690	3300–4200	-

Table 36: RG500U-EB Cellular Antenna Mapping

Antenna	Pin	VALODRAA	LTE		NR		LB	МНВ	n77/n78	70 (BALL-)	
	No.	WCDMA		Refarming	LMHB	n41	n77/n78	(MHz)	(MHz)	(MHz)	n79 (MHz)
ANT0	130	LMB TRX	LMHB TRX	n1/n3/n7/ n28/n66 PRX1 & n5/n8 TRX & n38/n40 TRX1	-	TRX1	DRX0	703–960	1710–2690	3300–4200	-
ANT1	139	-		-	-	-	-	-	-	-	-
ANT2	148	LMB DRX	LMHB DRX	n1/n3/n7/n28/ n38/n40/n66 DRX1 & n5/n8/n20 DRX	-	DRX1	TX1 & PRX1	758–960	1805–2690	3300–4200	-
ANT3	157	-	-	-	-	-	-	-	-	-	-

ANT4	166	-	-	-	DRX0	DRX0	DRX1	61	17–894	1805–2690	3300–4200	-
ANT5	184	-	-	-	TRX0	TRX0	TRX0	61	17–894	1710–2690	3300–4200	-

Table 37: RG500U-LA Cellular Antenna Mapping

Antonno	Pin	WCDMA	LTE		5G	NR		LB	MHB	n77/n78	n70 (MU=)
Antenna	No.	WODINA		Refarming	LMHB	n41	n78	(MHz)	(MHz)	(MHz)	n79 (MHz)
ANT0	130	LMB TRX	LMB & B40 TRX	n2/n28/n66 PRX1 & n40 TRX1 & n8/n71 TRX	-	-	-	617–960	1710–2400	-	-
ANT1	139	-	B7/B38 TRX	n38 TRX1 & n7 PRX1	-	-	DRX0	-	2496–2670	3300–3800	-
ANT2	148	LMB DRX	LMB & B40 DRX	n2/n28/n66/n40 DRX1 & n5/n8 DRX	-	-	-	617–960	1805–2400	-	-
ANT3	157	-	B7/B38 DRX	n7/n38 DRX1	-	-	TX1 & PRX1	-	2496–2670	3300–3800	-
ANT4	166	-	-	-	DRX0	-	DRX1	617–960	1805–2690	3300–3800	-
ANT5	184	-	-	-	TRX0	-	TRX0	617–960	1710–2690	3300–3800	-

Table 38: RG500U-JO Cellular Antenna Mapping

Antenna	Pin	Pin WCDMA	LTE	5G NR			LB	МНВ	n77/n78	n79 (MHz)	
	No.	WCDMA	LTE	Refarming	LMHB	n41	n78	(MHz)	(MHz)	(MHz)	117 3 (141112)
ANT0	130	-	-	-	-	-	-	-	-	-	-
ANT1	139	-	-	-	-	-	DRX0	-	-	3300–3800	-
ANT2	148	-	-	-	-	-	-	-	-	-	-
ANT3	157	-	-	-	-	-	TX1 & PRX1	-	-	3300–3800	-
ANT4	166	-	-	-	-	-	DRX1	-	-	3300–3800	-
ANT5	184	-	-	-	-	-	TRX0	-	-	3300–3800	-

NOTE

- 1. DRX1 = DRX MIMO
- 2. TRX1 = TX1 + PRX MIMO
- 3. PRX1 = PRX MIMO

4.1.3. Operating Frequency

Table 39: RG500U-CN Operating Frequencies

Band Name	Transmit (MHz)	Receive (MHz)	LTE-FDD	LTE-TDD	UMTS	5G NR
IMT (2100)	1920–1980	2110–2170	B1	-	B1	n1
B2	1850–1910	1930–1990	B2	-	B2	-
DCS (1800)	1710–1785	1805–1880	B3	-	-	-
Cell (850)	824–849	869–894	B5	-	B5	-
IMT-E (2600)	2500–2570	2620–2690	B7	-	-	-
EGSM (950)	880–915	925–960	B8	-	B8	-
EU800	832–862	791–821	B20	-	-	-
700 APAC	703–748	758–803	B28	-	-	n28
B34	2010–2025	2010–2025	-	B34	-	-
B38	2570–2620	2570–2620	-	B38	-	-
B39	1880–1920	1880–1920	-	B39	-	-
B40	2300–2400	2300–2400	-	B40	-	-
B41/B41-XGP	2496–2690	2496–2690	-	B41	-	n41
n77	3300–4200	3300–4200	-	-	-	n77
n78	3300–3800	3300–3800	-	-	-	n78
n79	4400–5000	4400–5000	-	-	-	n79

Table 40: RG500U-EA Operating Frequencies

Band Name	Transmit (MHz)	Receive (MHz)	LTE-FDD	LTE-TDD	UMTS	5G NR
IMT (2100)	1920–1980	2110–2170	B1	-	B1	n1
B2	1850–1910	1930–1990	B2	-	B2	-
DCS (1800)	1710–1785	1805–1880	В3	-	-	n3
B4	1710–1755	2110–2155	B4	-	-	-
Cell (850)	824–849	869–894	B5	-	B5	n5
IMT-E (2600)	2500–2570	2620–2690	B7	-	-	n7
EGSM (950)	880–915	925–960	B8	-	B8	n8
EU800	832–862	791–821	B20	-	-	n20
700 APAC	703–748	758–803	B28	-	-	n28
B38	2570–2620	2570–2620	-	B38	-	n38
B40	2300–2400	2300–2400	-	B40	-	n40
B41/B41-XGP	2496–2690	2496–2690	-	B41	-	n41
B66	1710–1780	2110–2180	B66	-	-	n66
n71	663–698	617–652				n71*
n77	3300–4200	3300–4200	-	-	-	n77
n78	3300–3800	3300–3800	-	-	-	n78

Table 41: RG500U-EB Operating Frequencies

Band Name	Transmit (MHz)	Receive (MHz)	LTE-FDD	LTE-TDD	UMTS	5G NR
IMT (2100)	1920–1980	2110–2170	B1	-	B1	n1
B2	1850–1910	1930–1990	B2	-	B2	-
DCS (1800)	1710–1785	1805–1880	ВЗ	-	-	n3
B4	1710–1755	2110–2155	B4	-	-	-

Cell (850)	824–849	869–894	B5	-	B5	n5
IMT-E (2600)	2500–2570	2620–2690	В7	-	-	n7
EGSM (950)	880–915	925–960	B8	-	B8	n8
EU800	832–862	791–821	B20	-	-	n20
700 APAC	703–748	758–803	B28	-	-	n28
B38	2570–2620	2570–2620	-	B38	-	n38
B40	2300–2400	2300–2400	-	B40	-	n40
B41/B41-XGP	2496–2690	2496–2690	-	B41	-	n41
B66	1710–1780	2110–2180	B66	-	-	n66
n77	3300–4200	3300–4200	-	-	-	n77
n78	3300–3800	3300–3800	-	-	-	n78

Table 42: RG500U-LA Operating Frequencies

Band Name	Transmit (MHz)	Receive (MHz)	LTE-FDD	LTE-TDD	UMTS	5G NR
B2	1850–1910	1930–1990	B2	-	B2	n2
B4	1710–1755	2110–2155	B4	-	B4	-
Cell (850)	824–849	869–894	B5	-	B5	n5
IMT-E (2600)	2500–2570	2620–2690	B7	-	-	n7
EGSM (950)	880–915	925–960	B8	-	-	n8
B26	814–849	859–894	B26	-	-	-
700 APAC	703–748	758–803	B28	-	-	n28
B38	2570–2620	2570–2620	-	B38	-	n38
B40	2300–2400	2300–2400	-	B40	-	n40
B66	1710–1780	2110–2180	B66	-	-	n66
B71	663–698	617–652	B71	-	-	n71

n78	3300–3800	3300–3800	-	-	-	n78

Table 43: RG500U-JO Operating Frequencies

Band Name	Transmit (MHz)	Receive (MHz)	LTE-FDD	LTE-TDD	UMTS	5G NR
n78	3300–3800	3300–3800	-	-	-	n78

4.1.4. Reference Design of Cellular Antenna Interface

A reference design of cellular antenna interface is shown as below. Reserve a dual L-type circuit for better antenna performance. The capacitors in parallel with ground are not mounted by default.

Figure 35: RG500U-CN Reference Circuit of RF Antennas

Figure 36: RG500U-EA Reference Circuit of RF Antennas

Figure 37: RG500U-EB Reference Circuit of RF Antennas

Figure 38: RG500U-LA Reference Circuit of RF Antennas

Figure 39: RG500U-JO Reference Circuit of RF Antennas

NOTE

- 1. Use a dual L-type circuit for antenna interfaces for better RF performances and for the ease of future debugging, and place as close to the antenna as possible.
- 2. Keep the impedance of the cellular antennas (ANT0–ANT5) traces as 50 Ω when routing.

- 3. Keep at least 15 dB isolation between RF antennas to improve the receiving sensitivity, and at least 20 dB isolation between 5G NR UL MIMO antennas.
- 4. The isolation between each antenna trace on PCB is recommended to be more than 75 dB.
- 5. Keep digital circuits such as switch mode power supply, (U)SIM card, USB interface, camera module, display connector and SD card away from the antenna traces.
- 6. It is recommended that the straight-line distance between the antenna and the module be greater than 15 mm to achieve better wireless performance of the whole device.
- 7. If there is DC power at the antenna ports, C3, C6, C9 and C12 must be used for DC-blocking to prevent short circuit to ground. The capacitance value is recommended to be 100 pF, which can be adjusted according to actual requirements. If there is no DC power in the peripheral design, C3, C6, C9 and C12 should not be reserved.

4.2. RF Routing Guidelines

For the PCB, control the characteristic impedance of all RF traces to $50~\Omega$. The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

Figure 40: Microstrip Line Design on a 2-layer PCB

Figure 41: Coplanar Waveguide Line Design on a 2-layer PCB

Figure 42: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)

Figure 43: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50Ω .
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- Reserve clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be at least twice of the width of RF signal traces (2 x W).
- Keep RF traces away from interference sources (such as DC-DC, (U)SIM/USB/SDIO high frequency digital signals, display signals, and clock signals), and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see **document [4]**.

4.3. Antenna Installation

4.3.1. Antenna Design Requirement

Table 44: Antenna Requirements

Туре	Requirements					
	 VSWR: ≤ 2 					
	• Efficiency: > 30 %					
	 Input Impedance: 50 Ω 					
Cellular	Cable insertion loss:					
	< 1 dB: LB (< 1 GHz)					
	< 1.5 dB: MB (1–2.3 GHz)					
	< 2 dB: HB (> 2.3 GHz)					

4.3.2. RF Connector Recommendation

The receptacle dimensions are illustrated as below.

Figure 44: Dimensions of the Receptacles (Unit: mm)

The following figure shows the specifications of mated plugs using Ø0.81 mm coaxial cables.

Figure 45: Specifications of Mated Plugs Using Ø0.81 mm Coaxial Cables (Unit: mm)

4.3.3. Recommended RF Connector for Installation

4.3.3.1. Assemble Coaxial Cable Plug Manually

The illustration for plugging in a coaxial cable plug is shown below, $\theta = 90^{\circ}$ is acceptable, while $\theta \neq 90^{\circ}$ is not.

Figure 46: Plug in a Coaxial Cable Plug

The illustration of pulling out the coaxial cable plug is shown below, $\theta = 90^{\circ}$ is acceptable, while $\theta \neq 90^{\circ}$ is not.

Figure 47: Pull out a Coaxial Cable Plug

4.3.3.2. Assemble Coaxial Cable Plug with Fixture

The pictures of installing the coaxial cable plug with a fixture is shown below, $\theta = 90^{\circ}$ is acceptable, while $\theta \neq 90^{\circ}$ is not.

Figure 48: Install the Coaxial Cable Plug with Fixture

4.3.4. Recommended Manufacturers of RF Connector and Cable

For more details, visit https://www.i-pex.com.

5 Reliability, Radio and Electrical Characteristics

5.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 45: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_RF/VBAT_BB	-0.3	6.0	V
USB_VBUS	-0.3	5.5	V
Peak Current of VBAT_BB	-	1.5	A
Peak Current of VBAT_RF	-	2.5	A
Voltage at Digital Pins	-0.3	1.98	V

5.2. Power Supply Ratings

Table 46: Module Power Supply Ratings

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
VBAT	VBAT_BB and VBAT_RF1	The actual input voltages must be kept between the minimum and maximum values.	3.3	3.8	4.3	V

5.3. Digital I/O Characteristics

Table 47: 1.8 V I/O Requirements

Parameter	Description	Min.	Max.	Unit
V _{IH}	High-level input voltage	0.7 × VDD_EXT	VDD_EXT	V
V _{IL}	Low-level input voltage	-0.3	0.3 × VDD_EXT	V
V _{OH}	High-level output voltage	0.9 × VDD_EXT	VDD_EXT	V
VoL	Low-level output voltage	0	0.1 × VDD_EXT	V

VDD_EXT is module's I/O voltage domain.

Table 48: (U)SIM 1.8 V I/O Requirements

Parameter	Description	Min.	Max.	Unit
USIM_VDD	Power supply	1.62	1.98	V
VIH	High-level input voltage	0.7 × USIM_VDD	USIM_VDD	V
V _{IL}	Low-level input voltage	-0.3	0.3 × USIM_VDD	V
V _{OH}	High-level output voltage	0.9 × USIM_VDD	1.98	V
V _{OL}	Low-level output voltage	0	0.1 × USIM_VDD	V

Table 49: (U)SIM 3.0 V I/O Requirements

Parameter	Description	Min.	Max.	Unit
USIM_VDD	Power supply	2.7	3.3	V
V _{IH}	High-level input voltage	0.7 x USIM_VDD	USIM_VDD	V
VIL	Low-level input voltage	-0.3	0.3 × USIM_VDD	V
V _{OH}	High-level output voltage	0.9 × USIM_VDD	3.3	V
V _{OL}	Low-level output voltage	0	0.1 × USIM_VDD	V

5.4. Operating and Storage Temperatures

Table 50: Operating and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range ⁷	-30	-	+75	°C
Extended Temperature Range ⁸	-40	-	+85	°C
Storage Temperature Range	-40	-	+90	°C

5.5. Power Consumption

Table 51: RG500U-CN Power Consumption

Description	Condition	Тур.	Unit
OFF state	Power down	70	μΑ
	AT+CFUN=0 (USB disconnected)	3.85	mA
	AT+CFUN=4 (USB disconnected)	3.95	mA
	WCDMA PF = 64 (USB disconnected)	6.55	mA
Sleep state	LTE-FDD PF = 64 (USB disconnected)	5.95	mA
	LTE-TDD PF = 64 (USB disconnected)	5.95	mA
	5G NR-FDD PF = 64 (USB disconnected)	17.15	mA
	5G NR-TDD PF = 64 (USB disconnected)	17.15	mA
Idle state	WCDMA PF = 64 (USB disconnected)	31.5	mA

⁷ To meet the normal operating temperature range requirements, it is necessary to ensure effective thermal dissipation, e.g., by adding passive or active heatsinks, heat pipes, vapor chambers. Within this range, the module can meet 3GPP specifications.

_ 7

⁸ To meet the extended operating temperature range requirements, it is necessary to ensure effective thermal dissipation, e.g., by adding passive or active heatsinks, heat pipes, vapor chambers. Within this range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P_{out}, may undergo a reduction in value, exceeding the specified tolerances of 3GPP. When the temperature returns to the normal operating temperature level, the module will meet 3GPP specifications again.

	WCDMA PF = 64 (USB connected)	58.5	mA
	LTE-FDD PF = 64 (USB disconnected)	31.5	mA
	LTE-FDD PF = 64 (USB connected)	58.5	mA
	LTE-TDD PF = 64 (USB disconnected)	31.5	mA
	LTE-TDD PF = 64 (USB connected)	58.5	mA
	5G NR-FDD PF = 64 (USB disconnected)	43.5	mA
	5G NR-FDD PF = 64 (USB connected)	69.5	mA
	5G NR-TDD PF = 64 (USB disconnected)	43.5	mA
	5G NR-TDD PF = 64 (USB connected)	69.5	mA
	WCDMA B1 HSDPA CH10700 @ 22.9 dBm	705	mA
	WCDMA B1 HSUPA CH10700 @ 20.4 dBm	635	mA
	WCDMA B2 HSDPA CH9800 @ 22.8 dBm	595	mA
	WCDMA B2 HSUPA CH9800 @ 20.7 dBm	515	mA
NCDMA	WCDMA B5 HSDPA CH4408 @ 22.7 dBm	595	mA
	WCDMA B5 HSUPA CH4408 @ 20.7 dBm	515	mA
	WCDMA B8 HSDPA CH3012 @ 22.5 dBm	625	mA
	WCDMA B8 HSUPA CH3012 @ 20.5 dBm	540	mA
	LTE-FDD B1 CH300 @ 22.8 dBm	725	mA
	LTE-FDD B2 CH900 @ 23.3 dBm	780	mA
	LTE-FDD B3 CH1575 @ 23.0 dBm	750	mA
	LTE-FDD B5 CH2525 @ 23.1 dBm	750	mA
LTE	LTE-FDD B7 CH3100 @ 23.0 dBm	850	mA
	LTE-FDD B8 CH3625 @ 23.1 dBm	700	mA
	LTE-FDD B20 CH6300 @ 23.0dBm	650	mA
	LTE-FDD B28 CH9460 @ 23.0 dBm	700	mA
	LTE-TDD B34 CH36275 @ 23.5 dBm	370	mA

	LTE-TDD B38 CH38000 @ 23.3 dBm	415	mA
	LTE-TDD B39 CH38450 @ 23.4 dBm	315	mA
	LTE-TDD B40 CH39150 @ 23.4 dBm	425	mA
	LTE-TDD B41 CH40620 @ 23.2 dBm	405	mA
	5G NR-FDD n1 CH424000 @ 22.9 dBm	975	mA
	5G NR-FDD n1 CH428000 @ 22.2 dBm	1100	mA
	5G NR-FDD n1 CH432000 @ 22.5 dBm	1080	mA
	5G NR-FDD n28 CH153600 @ 22.9 dBm	980	mA
	5G NR-FDD n28 CH156600 @ 22.9 dBm	1010	mA
	5G NR-FDD n28 CH158600 @ 22.9 dBm	980	mA
	5G NR-TDD n41 CH501204 @ 26.5 dBm	665	mA
	5G NR-TDD n41 CH518598 @ 26.6 dBm	695	mA
	5G NR-TDD n41 CH535998 @ 26.0 dBm	670	mA
5G NR	5G NR-TDD n77 CH623334 @ 24.1 dBm	610	mA
	5G NR-TDD n77 CH650000 @ 24.3 dBm	625	mA
	5G NR-TDD n77 CH676666 @ 24.3 dBm	630	mA
	5G NR-TDD n78 CH620668 @ 26.4 dBm	635	mA
	5G NR-TDD n78 CH636666 @ 26.7 dBm	640	mA
	5G NR-TDD n78 CH652666 @ 26.4 dBm	660	mA
	5G NR-TDD n79 CH695090 @ 25.7 dBm	605	mA
	5G NR-TDD n79 CH713522 @ 25.6 dBm	640	mA
	5G NR-TDD n79 CH731976 @ 25.6 dBm	660	mA
	WCDMA B1 CH10700 @ 22.9 dBm	740	mA
	WCDMA B2 CH9800 @ 22.9 dBm	610	mA
WCDMA voice call	WCDMA B5 CH4408 @ 22.5 dBm	600	mA
	WCDMA B8 CH3012 @ 22.6 dBm	630	mA

Table 52: RG500U-EA Power Consumption

Description	Condition	Тур.	Unit
OFF state	Power down	81	μΑ
	AT+CFUN=0 (USB disconnected)	4.67	mA
	AT+CFUN=4 (USB disconnected)	4.8	mA
	WCDMA PF = 64 (USB disconnected)	6.59	mA
Sleep state	LTE-FDD PF = 64 (USB disconnected)	6.79	mA
	LTE-TDD PF = 64 (USB disconnected)	6.85	mA
	5G NR-FDD PF = 64 (USB disconnected)	18.17	mA
	5G NR-TDD PF = 64 (USB disconnected)	16.05	mA
	WCDMA PF = 64 (USB disconnected)	31.36	mA
	WCDMA PF = 64 (USB connected)	58.77	mA
	LTE-FDD PF = 64 (USB disconnected)	32.12	mA
	LTE-FDD PF = 64 (USB connected)	60.88	mA
I-II4-4-	LTE-TDD PF = 64 (USB disconnected)	31.67	mA
Idle state	LTE-TDD PF = 64 (USB connected)	58.78	mA
	5G NR-FDD PF = 64 (USB disconnected)	45.15	mA
	5G NR-FDD PF = 64 (USB connected)	73.78	mA
	5G NR-TDD PF = 64 (USB disconnected)	44.82	mA
	5G NR-TDD PF = 64 (USB connected)	71.79	mA
	WCDMA B1 HSDPA CH10700 @ 22.1 dBm	593	mA
	WCDMA B1 HSUPA CH10700 @ 20.1 dBm	517	mA
MODMA	WCDMA B2 HSDPA CH9800 @ 22.1 dBm	598	mA
WCDMA	WCDMA B2 HSUPA CH9800 @ 20.3 dBm	527	mA
	WCDMA B5 HSDPA CH4400 @ 23.2 dBm	610	mA
	WCDMA B5 HSUPA CH4400 @ 20.9 dBm	522	mA

	WCDMA B8 HSDPA CH3013 @ 23.0 dBm	572	mA
	WCDMA B8 HSUPA CH3013 @ 20.8 dBm	491	mA
	LTE-FDD B1 CH300 @ 22.8 dBm	749	mA
	LTE-FDD B2 CH900 @ 22.7 dBm	680	mA
	LTE-FDD B3 CH1575 @ 23.0 dBm	672	mA
	LTE-FDD B4 CH2175 @ 23.0 dBm	700	mA
	LTE-FDD B5 CH2525 @ 23.4 dBm	671	mA
	LTE-FDD B7 CH3100 @ 23.0 dBm	932	mA
LTE	LTE-FDD B8 CH3625 @ 23.4 dBm	638	mA
	LTE-FDD B20 CH6300 @ 23.4 dBm	675	mA
	LTE-FDD B28 CH9460 @ 23.0 dBm	670	mA
	LTE-FDD B66 CH38000 @ 23.0 dBm	670	mA
	LTE-TDD B38 CH38000 @ 23.1 dBm	420	mA
	LTE-TDD B40 CH39150 @ 23.4 dBm	540	mA
	LTE-TDD B41 CH40620 @ 26.2 dBm	620	mA
	5G NR-FDD n1 CH427000 @ 22.9 dBm	1143	mA
	5G NR-FDD n1 CH428000 @ 22.7 dBm	1149	mA
	5G NR-FDD n1 CH429000 @ 22.9 dBm	1149	mA
	5G NR-FDD n3 CH364000 @ 22.5 dBm	1003	mA
	5G NR-FDD n3 CH368500 @ 22.4 dBm	1055	mA
5G NR	5G NR-FDD n3 CH373000 @ 22.5 dBm	1061	mA
	5G NR FDD n5 CH175800 @ 22.7 dBm	913	mA
	5G NR FDD n5 CH176300 @ 22.8 dBm	909	mA
	5G NR FDD n5 CH176800 @ 22.8 dBm	886	mA
	5G NR-FDD n7 CH526000 @ 23.4 dBm	1310	mA
	5G NR-FDD n7 CH531000 @ 23.2 dBm	1189	mA

5G NR-FDD n7 CH536000 @ 23.3 dBm	1311	mA
5G NR-FDD n8 CH187000 @ 23.0 dBm	893	mA
5G NR-FDD n8 CH188500 @ 22.7 dBm	903	mA
5G NR-FDD n8 CH190000 @ 22.9 dBm	942	mA
5G NR-FDD n20 CH160200 @ 23.6 dBm	948	mA
5G NR-FDD n20 CH161200 @ 23.4 dBm	914	mA
5G NR-FDD n20 CH162200 @ 23.2 dBm	950	mA
5G NR-FDD n28 CH154600 @ 23.2 dBm	971	mA
5G NR-FDD n28 CH157600 @ 23.0 dBm	982	mA
5G NR-FDD n28 CH158600 @ 23.0 dBm	982	mA
5G NR-TDD n38 CH518000 @ 24.6 dBm	610	mA
5G NR-TDD n38 CH519000 @ 24.6 dBm	607	mA
5G NR-TDD n38 CH520000 @ 24.6 dBm	606	mA
5G NR-TDD n40 CH468000 @ 24.2 dBm	642	mA
5G NR-TDD n40 CH470000 @ 24.2 dBm	637	mA
5G NR-TDD n40 CH472000 @ 24.4 dBm	630	mA
5G NR-TDD n41 CH509202 @ 26.7 dBm	751	mA
5G NR-TDD n41 CH518598 @ 26.4 dBm	749	mA
5G NR-TDD n41 CH528000 @ 26.6 dBm	750	mA
5G NR-FDD n66 CH426000 @ 24.2 dBm	1175	mA
5G NR-FDD n66 CH429000 @ 23.9 dBm	1185	mA
5G NR-FDD n66 CH434000 @ 24.4 dBm	1195	mA
5G NR-TDD n77 CH623334 @ 26.2 dBm	715	mA
5G NR-TDD n77 CH650000 @ 26.9 dBm	692	mA
5G NR-TDD n77 CH676666 @ 26.5 dBm	689	mA
5G NR-TDD n78 CH623334 @ 26.3 dBm	717	mA

	5G NR-TDD n78 CH636666 @ 26.7 dBm	719	mA
	5G NR-TDD n78 CH650000 @ 26.7 dBm	685	mA
	WCDMA B1 CH10700 @ 22.9 dBm	617	mA
MCDMA voice cell	WCDMA B2 CH9800 @ 23.0 dBm	613	mA
WCDMA voice call	WCDMA B5 CH4400 @ 23.6 dBm	635	mA
	WCDMA B8 CH3013 @ 23.6 dBm	594	mA

Table 53: RG500U-EB Power Consumption

Description	Condition		Unit
OFF state	Power down	85	μΑ
	AT+CFUN=0 (USB disconnected)	4.72	mA
	AT+CFUN=4 (USB disconnected)	4.79	mA
	WCDMA PF = 64 (USB disconnected)	6.72	mA
Sleep state	LTE-FDD PF = 64 (USB disconnected)	6.91	mA
	LTE-TDD PF = 64 (USB disconnected)	7	mA
	5G NR-FDD PF = 64 (USB disconnected)	17.28	mA
	5G NR-TDD PF = 64 (USB disconnected)	15.58	mA
	WCDMA PF = 64 (USB disconnected)	31.93	mA
	WCDMA PF = 64 (USB connected)	59.76	mA
	LTE-FDD PF = 64 (USB disconnected)	32.05	mA
	LTE-FDD PF = 64 (USB connected)	59.78	mA
Idle state	LTE-TDD PF = 64 (USB disconnected)	32.14	mA
	LTE-TDD PF = 64 (USB connected)	60.18	mA
	5G NR-FDD PF = 64 (USB disconnected)	43.17	mA
	5G NR-FDD PF = 64 (USB connected)	71.55	mA
	5G NR-TDD PF = 64 (USB disconnected)	41.15	mA

	5G NR-TDD PF = 64 (USB connected)	69.41	mA
	WCDMA B1 HSDPA CH10700 @ 22.7 dBm	592	mA
	WCDMA B1 HSUPA CH10700 @ 20.7 dBm	507	mA
	WCDMA B2 HSDPA CH9800 @ 22.4 dBm	548	mA
MACONA	WCDMA B2 HSUPA CH9800 @ 20.2 dBm	471	mA
WCDMA	WCDMA B5 HSDPA CH4400 @ 22.6 dBm	602	mA
	WCDMA B5 HSUPA CH4400 @ 20.0 dBm	494	mA
	WCDMA B8 HSDPA CH3013 @ 22.4 dBm	530	mA
	WCDMA B8 HSUPA CH3013 @ 20.9 dBm	481	mA
	LTE-FDD B1 CH300 @ 23.0 dBm	681	mA
	LTE-FDD B2 CH900 @ 22.8 dBm	649	mA
	LTE-FDD B3 CH1575 @ 22.8 dBm	670	mA
	LTE-FDD B4 CH2175 @ 22.9 dBm	687	mA
	LTE-FDD B5 CH2525 @ 23.6 dBm	706	mA
	LTE-FDD B7 CH3100 @ 23.3 dBm	1116	mA
LTE	LTE-FDD B8 CH3625 @ 23.3 dBm	626	mA
	LTE-FDD B20 CH6300 @ 23.6dBm	670	mA
	LTE-FDD B28 CH9460 @ 23.7 dBm	668	mA
	LTE-FDD B66 CH38000 @ 22.8 dBm	636	mA
	LTE-TDD B38 CH38000 @ 23.1 dBm	388	mA
	LTE-TDD B40 CH39150 @ 23.4 dBm	551	mA
	LTE-TDD B41 CH40620 @ 23.0 dBm	388	mA
	5G NR-FDD n1 CH427000 @ 22.9 dBm	1084	mA
FOND	5G NR-FDD n1 CH428000 @ 22.7 dBm	1086	mA
5G NR	5G NR-FDD n1 CH429000 @ 22.9 dBm	1098	mA
	5G NR-FDD n3 CH364000 @ 22.6 dBm	976.	mA

5G NR-FDD n3 CH368500 @ 22.5 dBm	1001	mA
5G NR-FDD n3 CH373000 @ 22.8 dBm	1033	mA
5G NR FDD n5 CH175800 @ 22.7 dBm	899	mA
5G NR FDD n5 CH176300 @ 22.5 dBm	916	mA
5G NR FDD n5 CH176800 @ 22.6 dBm	924	mA
5G NR-FDD n7 CH526000 @ 23.3 dBm	1178	mA
5G NR-FDD n7 CH531000 @ 23.2 dBm	1138	mA
5G NR-FDD n7 CH536000 @ 23.1 dBm	1226	mA
5G NR-FDD n8 CH187000 @ 22.4 dBm	909	mA
5G NR-FDD n8 CH188500 @ 22.0 dBm	954	mA
5G NR-FDD n8 CH190000 @ 22.9 dBm	868	mA
5G NR-FDD n20 CH160200 @ 23.0 dBm	922	mA
5G NR-FDD n20 CH161200 @ 23.3 dBm	922	mA
5G NR-FDD n20 CH162200 @ 23.2 dBm	913	mA
5G NR-FDD n28 CH154600 @ 23.1 dBm	976	mA
5G NR-FDD n28 CH157600 @ 23.3 dBm	992	mA
5G NR-FDD n28 CH157600 @ 23.3 dBm	992	mA
5G NR-TDD n38 CH518000 @ 24.3 dBm	577	mA
5G NR-TDD n38 CH519000 @ 24.3 dBm	574	mA
5G NR-TDD n38 CH520000 @ 24.3 dBm	576	mA
5G NR-TDD n40 CH468000 @ 23.9 dBm	609	mA
5G NR-TDD n40 CH470000 @ 23.9 dBm	604	mA
5G NR-TDD n40 CH472000 @ 24.1 dBm	602	mA
5G NR-TDD n41 CH509202 @ 26.7 dBm	736.	mA
5G NR-TDD n41 CH518598 @ 26.8 dBm	706	mA
5G NR-TDD n41 CH528000 @ 26.6 dBm	739	mA

	5G NR-FDD n66 CH426000 @ 24.3 dBm	1129	mA
	5G NR-FDD n66 CH429000 @ 24.2 dBm	1153	mA
	5G NR-FDD n66 CH434000 @ 24.4 dBm	1146	mA
	5G NR-TDD n77 CH623334 @ 26.6 dBm	663	mA
	5G NR-TDD n77 CH650000 @ 26.6 dBm	659	mA
	5G NR-TDD n77 CH676666 @ 26.5 dBm	662	mA
	5G NR-TDD n78 CH623334 @ 26.7 dBm	663	mA
	5G NR-TDD n78 CH636666 @ 27.1 dBm	663	mA
	5G NR-TDD n78 CH650000 @ 27.1 dBm	656	mA
	WCDMA B1 CH10700 @ 23.3 dBm	619.	mA
WCDMA voice call	WCDMA B2 CH9800 @ 23.3 dBm	583	mA
	WCDMA B5 CH4400 @ 23.5 dBm	660	mA
	WCDMA B8 CH3013 @ 23.7 dBm	589.	mA

Table 54: RG500U-LA Power Consumption

Description	Condition	Тур.	Unit
OFF state	Power down	85	μΑ
	AT+CFUN=0 (USB disconnected)	4.46	mA
	AT+CFUN=4 (USB disconnected)	4.59	mA
	WCDMA PF = 64 (USB disconnected)	6.2	mA
Sleep state	LTE-FDD PF = 64 (USB disconnected)	6.73	mA
	LTE-TDD PF = 64 (USB disconnected)	6.81	mA
	5G NR-FDD PF = 64 (USB disconnected)	16.82	mA
	5G NR-TDD PF = 64 (USB disconnected)	15.75	mA
Idle state	WCDMA PF = 64 (USB disconnected)	32.16	mA
	WCDMA PF = 64 (USB connected)	59.94	mA

	LTE-FDD PF = 64 (USB disconnected)	32.18	mA
	LTE-FDD PF = 64 (USB connected)	60.15	mA
	LTE-TDD PF = 64 (USB disconnected)	32.38	mA
	LTE-TDD PF = 64 (USB connected)	60.53	mA
	5G NR-FDD PF = 64 (USB disconnected)	43.21	mA
	5G NR-FDD PF = 64 (USB connected)	71.31	mA
	5G NR-TDD PF = 64 (USB disconnected)	41.94	mA
	5G NR-TDD PF = 64 (USB connected)	69.58	mA
	WCDMA B2 HSDPA CH9800 @ 21.9 dBm	554	mA
	WCDMA B2 HSUPA CH9800 @ 19.8 dBm	481	mA
	WCDMA B4 HSDPA CH1675 @ 22.3 dBm	630	mA
WCDMA	WCDMA B4 HSUPA CH1675 @ 21.6 dBm	605	mA
	WCDMA B5 HSDPA CH4400 @ 21.9 dBm	529	mA
	WCDMA B5 HSUPA CH4400 @ 19.6 dBm	452	mA
	LTE-FDD B2 CH900 @ 23.3 dBm	687	mA
	LTE-FDD B4 CH2175 @ 23.8 dBm	659	mA
	LTE-FDD B5 CH2525 @ 23.5 dBm	640	mA
	LTE-FDD B7 CH3100 @ 23.0 dBm	671	mA
	LTE-FDD B8 CH3625 @ 23.5 dBm	670	mA
LTE	LTE-FDD B26 CH8865 @ 23.5 dBm	671	mA
	LTE-FDD B28 CH9460 @ 23.3 dBm	689	mA
	LTE-FDD B66 CH66886 @ 23.6 dBm	651	mA
	LTE-TDD B38 CH38000 @ 23.3 dBm	401	mA
	LTE-TDD B40 CH39150 @ 23.4 dBm	434	mA
	LTE-FDD B71 CH68786 @ 22.9 dBm	610	mA
5G NR	5G NR-FDD n2 CH388000 @ 23.4 dBm	972	mA

5G NR-FDD n2 CH392000 @ 23.2 dBm	1010	mA
5G NR-FDD n2 CH396000 @ 23.5 dBm	1025	mA
5G NR FDD n5 CH175800 @ 22.8 dBm	871	mA
5G NR FDD n5 CH176300 @ 23.6 dBm	864	mA
5G NR FDD n5 CH176800 @ 23.6 dBm	871	mA
5G NR-FDD n7 CH526000 @ 22.3 dBm	1105	mA
5G NR-FDD n7 CH531000 @ 22.2 dBm	1147	mA
5G NR-FDD n7 CH536000 @ 22.2 dBm	1137	mA
5G NR-FDD n8 CH187000 @ 22.9 dBm	842	mA
5G NR-FDD n8 CH188500 @ 22.8 dBm	857	mA
5G NR-FDD n8 CH190000 @ 22.6 dBm	887	mA
5G NR-FDD n28 CH153600 @ 23.3 dBm	920	mA
5G NR-FDD n28 CH156600 @ 22.5 dBm	914	mA
5G NR-FDD n28 CH158600 @ 22.9 dBm	970	mA
5G NR-TDD n38 CH516000 @ 24.0 dBm	575	mA
5G NR-TDD n38 CH519000 @ 23.9 dBm	570	mA
5G NR-TDD n38 CH522000 @ 23.8 dBm	570	mA
5G NR-TDD n40 CH462000 @ 23.1 dBm	600	mA
5G NR-TDD n40 CH470000 @ 23.2 dBm	595	mA
5G NR-TDD n40 CH478000 @ 23.2 dBm	590	mA
5G NR-FDD n66 CH424000 @ 23.4 dBm	1028	mA
5G NR-FDD n66 CH429000 @ 23.5 dBm	1033	mA
5G NR-FDD n66 CH434000 @ 23.4 dBm	1046	mA
5G NR-FDD n71 CH125400 @ 23.2 dBm	818	mA
5G NR-FDD n71 CH126900 @ 23.1 dBm	826	mA
5G NR-FDD n71 CH128400 @ 23.4 dBm	799	mA

	5G NR-TDD n78 CH620668 @ 25.3 dBm	674	mA
	5G NR-TDD n78 CH636666 @ 25.5 dBm	657	mA
	5G NR-TDD n78 CH652666 @ 25.5 dBm	654	mA
	WCDMA B2 CH9800 @ 23.3 dBm	616	mA
WCDMA voice call	WCDMA B4 CH1675 @ 22.3 dBm	625	mA
	WCDMA B5 CH4400 @ 23.2 dBm	584	mA

Table 55: RG500U-JO Power Consumption

Description	Condition	Тур.	Unit
OFF state	Power down	89.8	μΑ
	AT+CFUN=0 (USB disconnected)	4.75	mA
Class state	AT+CFUN=4 (USB disconnected)	4.88	mA
Sleep state	5G NR-TDD PF = 64 (USB disconnected)	15.26	mA
	5G NR-TDD PF = 64 (USB connected)	NA	mA
Idle state	5G NR-TDD PF = 64 (USB disconnected)	43.7	mA
idle state	5G NR-TDD PF = 64 (USB connected)	69	mA
	5G NR-TDD n78 CH623334 @ 26.7 dBm	663	mA
5G NR	5G NR-TDD n78 CH636666 @ 27.1 dBm	663	mA
	5G NR-TDD n78 CH650000 @ 27.1 dBm	656	mA

5.6. Tx Power

Table 56: RG500U-CN RF Output Power

Mode	Frequency Band	Max. RF Output Power	Min. RF Output Power
WCDMA	B1/B2/B5/B8	23 dBm ±2 dB (Class 3)	< -50 dBm
LTE	B1/B2/B3/B5/B7/B8/B20/B28/ B34/B38/B39/B40/B41	23 dBm ±2 dB (Class 3)	< -40 dBm
	B41 HPUE	26 dBm ±2 dB (Class 2)	< -40 dBm
5G NR	n1	23 dBm ±2 dB (Class 3)	< -40 dBm ⁹
	n28	23 dBm +2/-2.5 dB (Class 3)	< -40 dBm ⁹
	n41/n77/n78/n79	23 dBm +2/-3 dB (Class 3)	< -40 dBm ⁹
	n41/n78/n79 HPUE	26 dBm +2/-3 dB (Class 2)	< -40 dBm ⁹

Table 57: RG500U-EA RF Output Power

Mode	Frequency Band	Max. RF Output Power	Min. RF Output Power
WCDMA	B1/B2/B5/B8	23 dBm ±2 dB (Class 3)	< -50 dBm
B1/B2/B3/B4/B5/B7/B8/B20/28/ B38/B40/B41/B66		23 dBm ±2 dB (Class 3)	< -40 dBm
	B41 HPUE	26 dBm ±2 dB (Class 2)	< -40 dBm
5G NR	n1/n3/n5/n7/n8/n20/n38/n40/ n41/n66	23 dBm ±2 dB (Class 3)	< -40 dBm ⁹
	n28	23 dBm +2/-2.5 dB (Class 3)	< -40 dBm ⁹
	n77/n78	23 dBm +2/-3 dB (Class 3)	< -40 dBm ⁹
	n41/n77/n78 HPUE	26 dBm +2/-3 dB (Class 2)	< -40 dBm ⁹

^

⁹ For 5G NR bands, different channel bandwidth has different minimum power standard. For details, see *Clause 6.3.1* in *TS 38.101-1 [2].*

Table 58: RG500U-EB RF Output Power

Mode	Frequency Band	Max. RF Output Power	Min. RF Output Power
WCDMA	B1/B2/B5/B8	23 dBm ±2 dB (Class 3)	< -50 dBm
LTE	B1/B2/B3/B4/B5/B7/B8/B20/28/ B38/B40/B41/B66	23 dBm ±2 dB (Class 3)	< -40 dBm
5G NR	n1/n3/n5/n7/n8/n20/n38/n40/ n41/n66	23 dBm ±2 dB (Class 3)	< -40 dBm ⁹
	n28	23 dBm +2/-2.5 dB (Class 3)	< -40 dBm ⁹
	n77/n78	23 dBm +2/-3 dB (Class 3)	< -40 dBm ⁹
	n41/n77/n78 HPUE	26 dBm +2/-3 dB (Class 2)	< -40 dBm ⁹

Table 59: RG500U-LA RF Output Power

Mode	Frequency Band	Max. RF Output Power	Min. RF Output Power
WCDMA	B2/B4/B5	23 dBm ±2 dB (Class 3)	< -50 dBm
LTE	B2/B4/B5/B7/B8/B26/28/B38/ B40/B66/B71	23 dBm ±2 dB (Class 3)	< -40 dBm
	n2/n5/n7/n8/n38/n40/n66	23 dBm ±2 dB (Class 3)	< -40 dBm ⁹
EO ND	n28/n71	23 dBm +2/-2.5 dB (Class 3)	< -40 dBm ⁹
5G NR	n78	23 dBm +2/-3 dB (Class 3)	< -40 dBm ⁹
	n78 HPUE	26 dBm +2/-3 dB (Class 2)	< -40 dBm ⁹

Table 60: RG500U-JO RF Output Power

Mode	Frequency Band	Max. RF Output Power	Min. RF Output Power
EC ND	n78	23 dBm +2/-3 dB (Class 3)	< -40 dBm ⁹
5G NR n78 HPUE	n78 HPUE	26 dBm +2/-3 dB (Class 2)	< -40 dBm ⁹

5.7. Rx Sensitivity

Table 61: RG500U-CN Conducted RF Receiving Sensitivity (Unit: dBm)

RF Receiving Sensitivity (Typ.)					
Frequency Band	Primary	Diversity	SIMO 10	3GPP (SIMO)	
WCDMA B1	-109.0	-110.0	-112	-106.7	
WCDMA B2	-108.0	-108.5	-111	-104.7	
WCDMA B5	-108.5	-111.0	-112.5	-104.7	
WCDMA B8	-108.5	-109.5-	-112	-103.7	
LTE-FDD B1 (10 MHz)	-98.0	-98.0	-101.5	-96.3	
LTE-FDD B2 (10 MHz)	-97.5	-97.0	-101.0	-94.3	
LTE-FDD B3 (10 MHz)	-97.0	-97.5	-101.0	-93.3	
LTE-FDD B5 (10 MHz)	-97.5	-99.5	-102.0	-94.3	
LTE-FDD B7 (10 MHz)	-95.5	-97.0	-100.0	-94.3	
LTE-FDD B8 (10 MHz)	-97.5	-99.0	-101.5	-93.3	
LTE-FDD B20 (10 MHz)	-98.0	-97.5	-101.0	-93.3	
LTE-FDD B28 (10 MHz)	-97.5	-98.5	101.0	-94.8	
LTE-TDD B34 (10 MHz)	-97.5	-96.5	-100.5	-96.3	
LTE-TDD B38 (10 MHz)	-96.5	-97.5	-100.5	-96.3	
LTE-TDD B39 (10 MHz)	-98.5	-97.5	-101.5	-96.3	
LTE-TDD B40 (10 MHz)	-97.0	-96.0	-100.0	-96.3	
LTE-TDD B41 (10 MHz)	-96.5	-96.5	-100.0	-94.3	
5G NR FDD n1 (5 MHz)	-99.5	-100.0	-107	-102	
5G NR FDD n28 (5 MHz)	-96.5	-97.3	-100.0	-97.8	

¹⁰ For the SIMO receiving sensitivity, WCDMA, LTE and 5G n28 bands are tested with 2 Rx antennas, and 5G n1/n41/n77/n78/n79 bands are tested with 4 Rx antennas.

5G NR TDD n41 (100 MHz)	-87.0	-88.1	-92.5	-86.7
5G NR TDD n77 (100 MHz)	-86.5	-87.0	-93.5	-86.3
5G NR TDD n78 (100 MHz)	-86.5	-88.2	-92.5	-86.8
5G NR TDD n79 (100 MHz)	-87.5	-88.6	-94.5	-86.8

Table 62: RG500U-EA Conducted RF Receiving Sensitivity (Unit: dBm)

Enament David	RF Rec	ACDD (OIMO)		
Frequency Band	Primary	Diversity	SIMO 11	3GPP (SIMO)
WCDMA B1	-109.2	-109.4	-112.1	-106.7
WCDMA B2	-108.6	-108.3	-111.3	-104.7
WCDMA B5	-109.7	-109.5	-112.6	-104.7
WCDMA B8	-108.8	-109.9	-112.5	-103.7
LTE-FDD B1 (10 MHz)	-97.3	-97.1	-100.2	-96.3
LTE-FDD B2 (10 MHz)	-97.2	-97.1	100.1	-94.3
LTE-FDD B3 (10 MHz)	-98.0	-98.5	-101.2	-93.3
LTE-FDD B4 (10 MHz)	-96.9	-95.5	-99.3	-96.3
LTE-FDD B5 (10 MHz)	-97.7	-97.7	-100.6	-94.3
LTE-FDD B7 (10 MHz)	-96.2	-97.8	-100.1	-94.3
LTE-FDD B8 (10 MHz)	-96.9	-98.0	-100.4	-93.3
LTE-FDD B20 (10 MHz)	-98.2	-97.5	-100.9	-93.3
LTE-FDD B28 (10 MHz)	-97.6	-97.9	-100.7	-94.8
LTE-FDD B66 (10 MHz)	-96.7	-95.6	-99.2	-95.8
LTE-TDD B38 (10 MHz)	-96.7	-96.5	-99.5	-96.3
LTE-TDD B40 (10 MHz)	-97.2	-97.5	-100.3	-96.3

 $^{^{11}}$ For the SIMO receiving sensitivity, WCDMA, LTE and 5G n5/n8/n20/n28/n71 bands are tested with 2 Rx antennas, and 5G n1/n3/n7/n38/n40/n41/n66/n77/n78/n79 bands are tested with 4 Rx antennas.

RG500U_Series_Hardware_Design

LTE-TDD B41 (10 MHz)	-96.4	-96.3	-99.3	-94.3
5G NR FDD n1 (20 MHz)	-94.0	-95.7	-99.6	-95.8
5G NR FDD n3 (20 MHz)	-94.9	-96.0	-99.1	-92.8
5G NR FDD n5 (20MHz)	-94.4	-93.3	-96.6	-90.1
5G NR FDD n7 (20 MHz)	-92.7	-94.4	-99.3	-93.8
5G NR FDD n8 (20 MHz)	-95.0	-93.6	-96.9	-89.3
5G NR FDD n20 (20 MHz)	-94.0	-94.9	-97.0	-89.1
5G NR FDD n28 (20 MHz)	-95.4	-95.3	-97.7	-90.1
5G NR TDD n38 (40 MHz)	-90.5	-92.1	-96.6	-92.7
5G NR TDD n40 (80 MHz)	-88.4	-89.0	-93.2	-89.6
5G NR FDD n66 (20 MHz)	-94.2	-95.8	-99.6	-95.3
5G NR TDD n41 (100 MHz)	-86.2	-87.2	-91.5	-86.7
5G NR TDD n77 (100 MHz)	-87.7	-85.6	-92.1	-86.3
5G NR TDD n78 (100 MHz)	-87.8	-85.7	-92.3	-86.8

Table 63: RG500U-EB Conducted RF Receiving Sensitivity (Unit: dBm)

Eroquency Pond	RF Re	2CDD (SIMO)		
Frequency Band	Primary	Diversity	SIMO 12	3GPP (SIMO)
WCDMA B1	-109.2	-109.6	-112.1	-106.7
WCDMA B2	-108.5	-108.5	-111.3	-104.7
WCDMA B5	-109.5	-110.7	-113.0	-104.7
WCDMA B8	-108.8	-110.4	-112.6	-103.7
LTE-FDD B1 (10 MHz)	-97.0	-97.3	-100.3	-96.3
LTE-FDD B2 (10 MHz)	-97.0	-97.3	-100.1	-94.3
LTE-FDD B3 (10 MHz)	-98.1	-98.6	-101.2	-93.3

 $^{^{12}}$ For the SIMO receiving sensitivity, WCDMA, LTE and 5G n5/n8/n20 bands are tested with 2 Rx antennas, and 5G n1/n3/n7n28//n38/n40/n41/n66/n77/n78 bands are tested with 4 Rx antennas.

LTE-FDD B4 (10 MHz)	-96.6	-96.6	-99.5	-96.3
LTE-FDD B5 (10 MHz)	-97.5	-98.8	-101.2	-94.3
LTE-FDD B7 (10 MHz)	-96.1	-97.6	-99.7	-94.3
LTE-FDD B8 (10 MHz)	-96.7	-98.7	-100.7	-93.3
LTE-FDD B20 (10 MHz)	-98.1	-97.6	-100.8	-93.3
LTE-FDD B28 (10 MHz)	-97.7	-97.9	-100.7	-94.8
LTE-FDD B66 (10 MHz)	-96.4	-96.3	-99.3	-95.8
LTE-TDD B38 (10 MHz)	-96.1	-96.5	-99.2	-96.3
LTE-TDD B40 (10 MHz)	-96.0	-97.2	-99.5	-96.3
LTE-TDD B41 (10 MHz)	-95.8	-96.3	-98.8	-94.3
5G NR FDD n1 (20 MHz)	-94.2	-95.8	-99.9	-95.8
5G NR FDD n3 (20 MHz)	-95.0	-96.2	-99.4	-92.8
5G NR FDD n5 (20MHz)	-94.4	-94.1	-96.7	-90.1
5G NR FDD n7 (20 MHz)	-93.1	-94.7	-99.6	-93.8
5G NR FDD n8 (20 MHz)	-94.7	-94.0	-96.6	-89.3
5G NR FDD n20 (20 MHz)	-92.9	-94.7	-96.4	-89.1
5G NR FDD n28 (20 MHz)	-95.1	-94.9	-99.9	-90.1
5G NR TDD n38 (40 MHz)	-91.3	-91.9	-96.1	-92.7
5G NR TDD n40 (80 MHz)	-88.6	-89.4	-93.3	-89.6
5G NR TDD n41 (100 MHz)	-86.3	-87.0	-91.3	-86.7
5G NR FDD n66 (20 MHz)	-94.3	-95.8	-99.8	-95.3
5G NR TDD n77 (100 MHz)	-88.0	-86.9	-92.7	-86.3
5G NR TDD n78 (100 MHz)	-88.3	-86.7	-93.0	-86.8

Table 64: RG500U-LA Conducted RF Receiving Sensitivity (Unit: dBm)

Francisco Bond	RF Rec	CORR (CIMO)		
Frequency Band	Primary	Diversity	SIMO 13	3GPP (SIMO)
WCDMA B2	-110.3	-110.4	-113.8	-104.7
WCDMA B4	-109.1	-108.9	-112.3	-106.7
WCDMA B5	-109.0	-110.2	-113.1	-104.7
LTE-FDD B2 (10 MHz)	-98.3	-98.5	-101.4	-94.3
LTE-FDD B4 (10 MHz)	-97.2	-97.3	-100.3	-96.3
LTE-FDD B5 (10 MHz)	-97.4	-98.6	-101.0	-94.3
LTE-FDD B7 (10 MHz)	-96.5	-97.4	-99.2	-94.3
LTE-FDD B8 (10 MHz)	-96.5	-98.4	-100.5	-93.3
LTE-FDD B26 (10 MHz)	-97.3	-98.5	-100.9	-93.3
LTE-FDD B28 (10 MHz)	-97.4	-97.6	-100.5	-94.8
LTE-FDD B66 (10 MHz)	-97.2	-97.3	-100.3	-96.5
LTE-TDD B38 (10 MHz)	-96.4	-96.3	-98.4	-96.3
LTE-TDD B40 (10 MHz)	-96.9	-97.2	-100.1	-96.3
LTE-FDD B71 (10 MHz)	-97.8	-96.7	-100.3	-93.5
5G NR FDD n2 (20 MHz)	-94.2	-95.3	-99.5	-93.8
5G NR FDD n5 (20MHz)	-93.1	-94.1	-96.0	-90.1
5G NR FDD n7 (20 MHz)	-92.7	-94.1	-99.2	-93.8
5G NR FDD n8 (20 MHz)	-93.8	-93.9	-96.4	-89.3
5G NR FDD n28 (20 MHz)	-94.1	-94.0	-98.5	-77.8
5G NR TDD n38 (40 MHz)	-90.5	-91.9	-96.5	-92.7
5G NR TDD n40 (80 MHz)	-88.0	-88.8	-93.0	-89.6

 $^{^{13}}$ For the SIMO receiving sensitivity, WCDMA, LTE and 5G n5/n8/n28/n71 bands are tested with 2 Rx antennas, and 5G n2/n7/n38/n40/n41/n66/n77/n78 bands are tested with 4 Rx antennas.

5G NR FDD n66 (20 MHz)	-94.2	-95.3	-99.5	-95.3	
5G NR FDD n71 (20 MHz)	-93.2	-92.4	-95.3	-85.3	
5G NR TDD n78 (100 MHz)	-88.1	-85.3	-92.3	-86.8	

Table 65: RG500U-JO Conducted RF Receiving Sensitivity (Unit: dBm)

Eroguenov Pond	RF Re	3GPP (SIMO)		
Frequency Band	Primary	Diversity	SIMO 14	3GFF (SIMO)
5G NR TDD n78 (100 MHz)	-88.1	-86.7	-92.5	-86.8

5.8. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

Table 66: Electrostatic Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)

Tested Interface	Contact Discharge	Air Discharge	Unit
VBAT, GND	±5	±10	kV
Antenna Interfaces	±4	±8	kV
Other Interfaces	±0.5	±1	kV

¹⁴ For the SIMO receiving sensitivity, n78 bands are tested with 4 Rx antennas.

5.9. Thermal Dissipation

The module offers the best performance when all internal IC chips are working within their operating temperatures. When the IC chip reaches or exceeds the maximum junction temperature, the module may still work but the performance and function (such as RF output power, data rate.) will be affected to a certain extent. Therefore, the thermal design should be maximally optimized to ensure all internal IC chips always work within the recommended operating temperature range.

The following principles for thermal consideration are provided for reference:

- Keep the module away from heat sources on your PCB, especially high-power components such as processor, power amplifier, and power supply.
- Maintain the integrity of the PCB copper layer and drill as many thermal vias as possible.
- Follow the principles below when the heatsink is necessary:
 - Do not place large size components in the area where the module is mounted on your PCB to reserve enough place for heatsink installation.
 - Attach the heatsink to the shielding cover of the module; In general, the base plate area of the heatsink should be larger than the module area to cover the module completely;
 - Choose the heatsink with adequate fins to dissipate heat;
 - Choose a TIM (Thermal Interface Material) with high thermal conductivity, good softness and good wettability and place it between the heatsink and the module;
 - Fasten the heatsink with four screws to ensure that it is in close contact with the module to prevent the heatsink from falling off during the drop, vibration test, or transportation.

Figure 49: Placement and Fixing of the Heatsink

6 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm, and the dimensional tolerances are ±0.2 mm unless otherwise specified.

6.1. Mechanical Dimensions

Figure 50: Module Top and Side Dimensions

Figure 51: Module Bottom Dimension (Bottom View)

NOTE

The module's coplanarity standard: ≤ 0.13 mm.

6.2. Recommended Footprint

Figure 52: Recommended Footprint

NOTE

- 1. Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.
- 2. To keep the reliability of the mounting and soldering, keep the motherboard thickness as at least 1.2 mm.

6.3. Top and Bottom Views

Figure 53: Top and Bottom Views of the Module

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

7 Storage, Manufacturing and Packaging

7.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: the temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours ¹⁵ in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement mentioned above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ±5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

¹⁵ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not unpack the modules in large quantities until they are ready for soldering.

NOTE

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

7.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.15–0.18 mm. For more details, see **document [5]**.

The peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

Figure 54: Recommended Reflow Soldering Thermal Profile

Table 67: Recommended Thermal Profile Parameters

Factor	Recommended Value
Soak Zone	
Ramp-to-soak Slope	0-3 °C/s
Soak Time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Ramp-up Slope	0-3 °C/s
Reflow Time (D: over 217°C)	40–70 s
Max. Temperature	235–246 °C
Cool-down Slope	-3-0 °C/s (refer to NOTE 1 below)
Reflow Cycle	
Max. Reflow Cycle	1

NOTE

- 1. For large-form-factor modules (that is, minimum side length ≥ 30 mm) with two-piece shielding covers, use a cool-down slope of -1–0 °C/s to reduce the thermal stress, preventing cover lifting. Due to the large-size form factors of such modules, an excessive temperature change may cause excessive thermal deformation of the metal shielding frame and cover. Therefore, reduce the ramp-up and cool-down slopes in the liquid phase of the solder paste to avoid excessive temperature change. If possible, choose a reflow oven with more than 10 temperature zones during production so that there are more temperature zones to set up to meet the optimal temperature curve.
- 2. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
- If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 4. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 5. Avoid using materials that contain mercury (Hg), such as adhesives, for module processing, even if the materials are RoHS compliant and their mercury content is below 1000 ppm (0.1 %).
- 6. Corrosive gases may corrode the electronic components inside the module, affecting their reliability and performance, and potentially leading to a shortened service life that fails to meet the designed lifespan. Therefore, do not store or use unprotected modules in environments containing

- corrosive gases such as hydrogen sulfide, sulfur dioxide, chlorine, and ammonia.
- Due to the complexity of the SMT process, please contact Quectel Technical Support in advance
 for any situation that you are not sure about, or any process (e.g. selective soldering, ultrasonic
 soldering) that is not mentioned in *document* [6].

7.3. Packaging Specification

This chapter outlines the key packaging parameters and processes. All figures below are for reference purposes only, as the actual appearance and structure of packaging materials may vary in delivery

The modules are packed in a tape and reel packaging as specified in the sub-chapters below.

7.3.1. Carrier Tape

Carrier tape dimensions are illustrated in the following figure and table:

Figure 55: Carrier Tape Dimension Drawing

Table 68: Carrier Tape Dimension Table (Unit: mm)

W	Р	Т	Α0	В0	K0	K1	F	Е	
72	56	0.4	44.7	41.7	4.2	5.2	34.2	1.75	

7.3.2. Plastic Reel

Plastic reel dimensions are illustrated in the following figure and table:

Figure 56: Plastic Reel Dimension Drawing

Table 69: Plastic Reel Dimension Table (Unit: mm)

øD1	øD2	W
380	180	72.5

7.3.3. Mounting Direction

Figure 57: Mounting Direction

7.3.4. Packaging Process

Place the modules onto the carrier tape cavity and cover them securely with cover tape. Wind the heat-sealed carrier tape onto a plastic reel and apply a protective tape for additional protection. 1 plastic reel can load 200 modules.

Place the packaged plastic reel, humidity indicator card and desiccant bag into a vacuum bag, and vacuumize it.

Place the vacuum-packed plastic reel into a pizza box.

Put the 4 packaged pizza boxes into 1 carton and seal it. 1 carton can pack 800 modules.

Figure 58: Packaging Process

8 Appendix References

Table 70: Related Documents

Document Name		
[1] Quectel_RG500U_Series_CA&EN-DC_Features		
[2] Quectel_RG200U&RG500U_Series_5G_EVB_User_Guide		
[3] Quectel_RGx00U&RM500U_Series_AT_Commands_Manual		
[4] Quectel_RF_Layout_Application_Note		
[5] Quectel_Module_Stencil_Design_Requirements		
[6] Quectel_Module_SMT_Application_Note		

Table 71: Terms and Abbreviations

Abbreviation	Description
2CC	2 Component Carrier
3CC	3 Component Carrier
ADC	Analog-to-Digital Converter
APT	Average Power Tracking
bps	Bits Per Second
CA	Carrier Aggregation
CHAP	Challenge Handshake Authentication Protocol
CMUX	Connection Multiplexing
DL	Downlink

DRX	Discontinuous Reception
DTR	Data Terminal Ready
EP	PCI Express Endpoint Device
ESD	Electrostatic Discharge
ESR	Equivalent Series Resistance
FDD	Frequency Division Duplex
FTP	File Transfer Protocol
FTPS	FTP-over-SSL
GRFC	Generic RF Controls
HSDPA	High-Speed Down Link Packet Access
HSPA	High-Speed Packet Access
HSUPA	High-Speed Uplink Packet Access
HTTP	Hypertext Transfer Protocol
HTTPS	Hyper Text Transfer Protocol over Secure Socket Layer
LTE	Long Term Evolution
MIMO	Multiple-Input Multiple-Output
MMS	Multimedia Messaging Service
MQTT	Message Queuing Telemetry Transport
MSL	Moisture Sensitivity Level
NAND	NON-AND
NITZ	Network Identity and Time Zone
NTP	Network Time Protocol
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PCle	Peripheral Component Interconnect Express

PDU	Protocol Data Unit
PING	Packet Internet Groper
PMU	Power Management Unit
PRX	Primary Receive
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RTC	Real-Time Clock
SCS	Subcarrier Spacing
SIMO	Single Input Multiple Output
SMS	Short Message Service
SMTP	Simple Mail Transfer Protocol
SMTPS	Simple Mail Transfer Protocol Secure
SSL	Secure Sockets Layer
TCP	Transmission Control Protocol
тсхо	Temperature Compensated Crystal Oscillator
TDD	Time Division Duplexing
UART	Universal Asynchronous Receiver/Transmitter
UDP	User Datagram Protocol
UL	Uplink
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
(U)SIM	(Universal) Subscriber Identity Module
USB	Universal Serial Bus
V _{IH}	High-level Input Voltage

V _{IL}	Low-level Input Voltage
Vmax	Maximum Voltage
Vmin	Minimum Voltage
Vnom	Nominal Voltage
V _{OH}	Low-level Output Voltage
V _{OL}	High-level Input Voltage
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access
WLAN	Wireless Local Area Network