Interim Report

Daniel Laing

January 25, 2023

Contents

1	Theorems and Lemmas	1
	1.1 Sylow Theorems	1
	1.2 Isomorphism Theorems	2
2	Groups of Order 6	2
3	Generalisation to Groups of Order $2p$	3
4	Groups of order 4	4
5	Groups of order 9 (Might skip)	4
6	Generalisation to Groups of Order p^2	4
7	Groups of order 12	4
8	Generalisation to Groups of order $4p$	5
9	Groups of Order 30	5

1 Theorems and Lemmas

1.1 Sylow Theorems

Let G be a group of order $p^n m$ where p is a prime and $p \nmid m$.

Theorem 1.1 (1st Sylow Theorem). G has a Sylow p-subgroup, i.e. a subgroup of order p^n .

Theorem 1.2 (2^{nd} Sylow Theorem). All Sylow p-subgroups of G are conjugate to each other.

Corollary 1.2.1. If $n_p = 1$ then the Sylow p-subgroup is normal in G.

Theorem 1.3 (3rd Sylow Theorem). Let n_p denote the number of Sylow p-subgroups of G. Then:

- i) $n_p \mid m$
- ii) $n_p \equiv 1 \pmod{p}$

1.2 Isomorphism Theorems

Theorem 1.4.

Theorem 1.5.

Theorem 1.6.

Lemma 1.7. For a group G with $N \leq G$ and $H \leq G$, then

$$|NH| = |\{nh \mid n \in N, h \in H\}| = \frac{|N| \cdot |H|}{|N \cap H|}$$

Lemma 1.8. The automorphism group of C_n is isomorphic to the multiplicative group of integers $mod \ n$.

i.e. Aut $C_n \cong \mathbb{Z}/n\mathbb{Z}^*$

Proof. Any automorphism, φ of C_n has the property:

$$(x^i)\varphi = (x\varphi)^i$$

Hence φ is determined by it's effect on a generator, x, and preserves element order. In particular, φ sends generators to generators.

So for a generator, x, $x\varphi = x^k$ is surjective if x^k generates C_n . x^k generates C_n if $o(x^k) = n$ which is when gcd(n, k) = 1.

Denote $\varphi_k: x \mapsto x^k$.

Consider:

$$x\varphi_k\varphi_l = (x^k)\varphi_l = (x^k)^l = x^{kl} = x^{lk} = (x^l)^k = x\varphi_l\varphi_k$$

So we see that Aut C_n is abelian. Moreover, $x\varphi_k\varphi_l = x\varphi_{kl}$.

Now consider θ : Aut $C_n \to \mathbb{Z}/n\mathbb{Z}^*$ defined by $\varphi_k \theta = k$. We will show θ is an isomorphism.

 θ is surjective because every $k \in \mathbb{Z}/n\mathbb{Z}^*$ is coprime to n and so x^k is a generator of C_n , hence $\exists \varphi_k \in \operatorname{Aut} C_n$ such that $\varphi_k \theta = k$.

 θ is also injective because if $\varphi_k, \varphi_l \in \operatorname{Aut} C_n$ such that $\varphi_k \theta = \varphi_l \theta$ then k = l.

Finally, θ is a homomorphism because $(\varphi_k \varphi_l)\theta = \varphi_{kl}\theta = kl = (\varphi_k \theta)(\varphi_l \theta)$. So θ : Aut $C_n \to \mathbb{Z}/n\mathbb{Z}^*$ is an isomorphism.

2 Groups of Order 6

Let G be a group of order 6, and n_3 denote the number of Sylow 3-subgroups of G. Then by Theorem 1.3:

$$n_3 \equiv 1 \pmod{3}$$
 and $n_3 \mid 2 \implies n_3 = 1$

So G has one Sylow 3-subgroup, and because 3 is prime, it is isomorphic to C_3 , i.e.

$$C_3 \subseteq G$$

Any Sylow 2-subgroup of G will have order 2, and so $C_2 \leq G$.

Lagrange's Theorem tells us that C_3 has elements of orders 1 and 3, and C_2 has elements of order 1 and 2 hence:

$$C_3 \cap C_2 = 1$$

By Lemma 1.7:

$$|C_3C_2| = \frac{|C_3| \cdot |C_2|}{|C_3 \cap C_2|} = \frac{3 \cdot 2}{1} = 6$$

So $G = C_3C_2$, $C_3 \subseteq G$ and $C_3 \cap C_2 = 1 \implies G = C_3 \rtimes C_2$

Now we need to determine Aut C_3 . $C_3 = \{1, x, x^2 = x^{-1}\}$ and so Aut $C_3 = \{id, \psi : x \mapsto x^{-1}\} \cong C_2$. So if $C_3 = \langle x \rangle$ and $C_2 = \langle y \rangle$, then we have two possibilities for G:

Case 1:

$$G = \langle x, y \mid x^3 = y^2 = 1, \ y^{-1}xy = x \rangle$$

= $\langle x, y \mid x^3 = y^2 = 1, \ xy = yx \rangle$
= $C_3 \times C_2 \cong C_6$

Case 2:

$$G = \langle x, y \mid x^3 = y^2 = 1, \ y^{-1}xy = x^{-1} \rangle$$

 $\cong D_6$

Hence G is isomorphic to either C_6 or D_6 .

3 Generalisation to Groups of Order 2p

Let G be a group of order 2p where p is a prime number, and n_p denote the number of Sylow p-subgroups of G. Then by Theorem 1.3:

$$n_p \equiv 1 \pmod{p}$$
 and $n_p \mid 2 \implies n_p = 1$

So G has one Sylow p-subgroup, it is isomorphic to $C_p = \langle x \rangle$ hence:

$$C_p \subseteq G$$

A Sylow 2-subgroup of G will have order 2 so $C_2 = \langle y \rangle \leqslant G$.

Lagrange's Theorem tells us that C_p has elements of orders 1 and p, and C_2 has elements of order 1 and 2 hence:

$$C_p \cap C_2 = \mathbf{1}$$

By Lemma 1.7:

$$|C_p C_2| = \frac{|C_p| \cdot |C_2|}{|C_p \cap C_2|} = \frac{p \cdot 2}{1} = 2p$$

So $G = C_p C_2$, $C_p \subseteq G$ and $C_p \cap C_2 = 1 \implies G = C_p \rtimes C_2$

We want a homomorphism $\varphi: \operatorname{Aut} C_p \to C_2$. By Lemma 1.8, $\operatorname{Aut} C_p \cong \mathbb{Z}/p\mathbb{Z}^*$, so now we need to find elements of order 2 in $\mathbb{Z}/p\mathbb{Z}^*$.

An element $x \in \mathbb{Z}/p\mathbb{Z}^*$ of order 2 satisfies:

$$x^{2} = 1 \implies x^{2} - 1 = 0 \implies (x - 1)(x + 1) = 0$$

Hence x = 1 or -1. But 1 has order 1 so x can only be -1.

So $C_2\varphi$ could be 1 or $\langle \beta : x \mapsto x^{-1} \rangle$. This gives us two possibilities:

$$y\varphi = x \mapsto x$$
 or $y\varphi = x \mapsto x^{-1}$

Case 1:

$$G = \langle x, y \mid x^p = y^2 = 1, \ y^{-1}xy = x \rangle$$
$$= C_p \times C_2 \cong C_{2p}$$

Case 2:

$$G = \langle x, y \mid x^p = y^2 = 1, \ y^{-1}xy = x^{-1} \rangle$$

 $\cong D_{2p}$

Hence a group of order 2p is isomorphic to C_{2p} or D_{2p} .

4 Groups of order 4

From the Fundamental Theorem of Finite Abelian Groups, we know that a group G of order 4 could be isomorphic to one of C_4 and $C_2 \times C_2$. Now to show that these are the only possibilities, i.e. a group of order 4 must be abelian.

The Sylow theorems are not so helpful here, because $4 = 2^2$ so any Sylow 2-subgroup will be of order 4, which is just G.

5 Groups of order 9 (Might skip)

6 Generalisation to Groups of Order p^2

Let G be a group of order p^2 and consider $Z(G) \subseteq G$. By Lagrange's Theorem, Z(G) has order 1, p or p^2 .

7 Groups of order 12

Let G be a group of order $12 = 2^2 \cdot 3$, and n_3 and n_2 denote the number of Sylow 3-subgroups and Sylow 2-subgroups of G respectively. By Theorem 1.3:

$$n_2 \equiv 1 \pmod{2}$$
 and $n_2 \mid 3 \implies n_2 = 1$

$$n_3 \equiv 1 \pmod{3}$$
 and $n_3 \mid 4 \implies n_3 = 1$ or 4

G has a unique Sylow 2-subgroup of order $2^2=4$, say $H \subseteq G$, and we have already classified groups of order 4, so either C_4 or $V_4 \subseteq G$. A Sylow 3-subgroup of G will have order 3, so $C_3 \leqslant G$, and for some groups, $C_3 \subseteq G$.

Lagrange's Theorem tells us H has elements of order 1, 2, and 4, and C_3 has elements of order 1 and 3. Hence $H \cap C_3 = 1$.

Lemma 1.7 tells us:

$$|HC_3| = \frac{|H| \cdot |C_3|}{|H \cap C_3|} = 12$$

Hence $G = HC_3$, $C_3 \leqslant G$, $H \leq G$, and $H \cap C_3 = 1 \implies G = H \rtimes C_3$.

Since an automorphism, φ , must map generators to generators, Aut $C_4 \cong C_2$ because the generators of C_4 are x and x^{-1} . An automorphism of V_4 corresponds to a permutation of the three non-identity elements, hence Aut $V_4 \cong S_3$.

Case 1:
$$H = C_4$$
 i.e. $G = C_4 \rtimes C_3$.

A homomorphism $\psi: C_3 \to \operatorname{Aut} C_4 \cong C_2$, preserves order and together with Lagrange's Theorem means that the only possibility for ψ is trivial, i.e. $C_3\psi = 1$.

Hence $G \cong C_4 \times C_3 \cong C_{12}$.

Case 2:
$$H = V_4$$
 i.e. $G = (C_2 \times C_2) \times C_3$.

A trivial homomorphism $C_3\psi = \mathbf{1}$ yields the direct product $G \cong C_2 \times C_2 \times C_3 \cong C_2 \times C_6$. S_3 has one subgroup of order 3, hence there is essentially only one homomorphism $\psi : C_3 \to \operatorname{Aut} V_4$.

Still need to show this is A_4 .

If we instead consider G where $C_3 \subseteq G$, i.e. $G = C_3 \rtimes H$, then we again have two cases:

Case 1: $H = C_4$ i.e. $G = C_3 \rtimes C_4$.

Say $C_3 = \langle x \rangle$ and $C_4 = \langle y \rangle$. We know Aut $C_3 \cong C_2$ so a homomorphism ψ maps C_4 to the trivial group, **1** or to $\langle \beta : x \mapsto x^{-1} \rangle$.

If $C_4\psi = 1$ then $G = C_3 \times C_4 \cong C_4 \times C_3$, which we have already seen.

If $C_4\psi = \langle \beta \rangle$ then we have:

$$G = \langle x, y \mid x^3 = y^4 = 1, \ y^{-1}xy = x^{-1} \rangle$$

Case 2: $H = V_4$ i.e. $G = C_3 \rtimes (C_2 \times C_2)$.

If $\psi: (C_2 \times C_2) \to \operatorname{Aut} C_3$ is trivial then we obtain $G = C_3 \times C_2 \times C_2 \cong C_2 \times C_6$ which we have seen before.

The image of a non-trivial homomorphism $\psi: (C_2 \times C_2) \to \operatorname{Aut} C_3$ is C_2 , so by Theorem 1.4: $\ker \theta = C_2$.

Choose $a, b \in C_2 \times C_2$ with $a, b \neq 1$ such that $a\theta = \beta : x \mapsto x^{-1}$ and $b\theta = \mathrm{id} : x \mapsto x$. Then:

$$G = \langle x, a, b \mid x^3 = a^2 = b^2 = 1, \ ab = ba, \ a^{-1}xa = x^{-1}, \ b^{-1}xb = x \rangle$$

Let y = xb. The order of y = lcm(o(x), o(b)) = lcm(2, 3) = 6 because x and b commute. $y^3 = x^3b^3 = b$ so:

$$a^{-1}ya = a^{-1}xba = a^{-1}xab = x^{-1}b = x^2b = y^2y^3 = y^{-1}$$

Hence:

$$G = \langle a, y \mid y^6 = a^2 = 1, \ a^{-1}ya = y^{-1} \rangle \cong D_{12}$$

So a group G of order 12 is isomorphic to one of:

$$C_{12}$$
, $C_2 \times C_6$ A_4 D_{12} or $\langle x, y \mid x^3 = y^4 = 1, y^{-1}xy = x^{-1} \rangle$

8 Generalisation to Groups of order 4p

Suppose G is a group of order 4p where p is a prime number. Let n_2 denote the number of Sylow 2-subgroups.

9 Groups of Order 30

Let G be a group of order $30 = 2 \cdot 3 \cdot 5$, and let n_3 and n_5 denote the number of Sylow 3-subgroups and Sylow 5-subgroups of G respectively. Then by Theorem 1.3:

$$n_3 = 1 \text{ or } 10 \text{ and } n_5 = 1 \text{ or } 6$$

If $n_3 = 10$, then there are 20 elements of order 3, and if $n_5 = 6$ then there are 24 elements of order 5 in G. G only has 30 elements, so then either:

$$n_3 = 1$$
 and $n_5 = 6$, $n_3 = 10$ and $n_5 = 1$ or $n_3 = n_5 = 1$

Hence either $C_3 \subseteq G$ or $C_5 \subseteq G$.

Let $H = C_3C_5$ and by Lagrange's Theorem, $C_3 \cap C_5 = \mathbf{1}$, hence |H| = 15 by Lemma 1.7. We know from our classification of groups of order pq that $H \cong C_{15}$. Notice that C_2 is a Sylow 2-subgroup of G, and by the same argument, $C_2 \cap C_{15} = \mathbf{1}$ and $|C_2C_{15}| = 30$. Hence $G = C_2C_{15}$.

Because $|C_{15}| = 15 = \frac{30}{2}$, the index of C_{15} in G is 2, and we know a subgroup of index 2 is normal, so $C_{15} \subseteq G$. Moreover, $G = C_{15} \rtimes C_2$.

By Lemma 1.8:

$$\operatorname{Aut} C_{15} = \mathbb{Z}/15\mathbb{Z}^* \cong (\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z})^* \cong \mathbb{Z}/3\mathbb{Z}^* \times \mathbb{Z}/5\mathbb{Z}^* \cong C_2 \times C_4$$

A homomorphism, $\psi: C_2 \to C_2 \times C_4$ preserves element order, and there are 3 elements of order 2 in $C_2 \times C_4$: (x,1), $(1,y^2)$ and (x,y^2) where $\langle x,y \rangle = C_2 \times C_4$. We know that ψ is determined by it's effect on a generator, so if $\langle z \rangle = C_2$ then $z\psi$ has four possibilities:

Case 1: $z\psi = (1,1)$.

When $z\psi = (1,1)$, then ψ is the trivial homomorphism, and so we obtain:

$$G \cong C_2 \times C_{15} \cong C_{30}$$

Case 2: $z\psi = (x, 1)$.

Case 3: $z\psi = (1, y^2)$.

Case 4: $z\psi = (x, y^2)$.