Find the implied domain for f(x) and evaluate f(x) at given x.

4	$(1) (-\infty,0) \cup (0,1) \cup (1,\infty)$
$f(x) = \frac{4}{x^2 - x}$	(2) x=1 is out of domain, and therefore $f(1)$ does
	not exist.
	(3) $f(-1) = 2$
f(x) = X	(1) $(-\infty, 2) \cup (2, \infty)$
$f(x) = \frac{x}{x-2}$	(2) $f(3) = 3$
	(3) $f(0) = 0$
f(x) = x	(1) $(-\infty, -2) \cup (3, \infty)$
$f(x) = \frac{x}{\sqrt{x^2 - x - 6}}$	(2) x=3 is out of domain, and therefore $f(3)$ does
,	exist
	(3) $f(-4) = -\frac{2}{7}\sqrt{14}$ (1) $[-2,0] \cup [2,\infty)$
$f(x) = \sqrt{x(x^2 - 4)}$	(1) [−2,0]∪[2,∞)
$\int (x) - \sqrt{x}(x)$	(2) x=1 is out of domain and therefore $f(1)$ does
	not exist.
	(3) $f(-1) = \sqrt{3}$
$f(x) = \frac{-3x+1}{\sqrt{2-3x}}$	(3) $f(-1) = \sqrt{3}$ (1) $(-\infty, \frac{2}{3})$
$\sqrt{2-3x}$	
	(2) x=1 is out of domain and therefore $f(1)$ does
	not exist.
	(3) $f(-3) = \frac{10}{11}\sqrt{11}$
$f(x) = \frac{1}{x+1} + \frac{1}{x-2}$	(1) $(-\infty, -1) \cup (-1, 2) \cup (2, \infty)$
$\int (x)^{-1} \frac{1}{x+1} x^{-1} x^{-1}$	(2) x=2 is out of domain and therefore $f(2)$
	does not exist.
	(3) $f(0) = \frac{1}{2}$ (1) $(-4, \infty)$
(() 2 1	(1) (−4,∞)
$f(x) = 2 - \frac{1}{\sqrt{x+4}}$	(2) x=-5 is out of domain and therefore $f(-5)$
·	does not exist.
	(3) $f(2) = 2 - \frac{\sqrt{6}}{6}$
	$(3) \ J(2) - 2 - \frac{1}{6}$
	3
$f(x) = \sqrt{-2x^2 + 9x - 9}$	(1) $[\frac{3}{2},3]$
	(2) x=-1 is out of domain and therefore $f(-1)$
	does not exist.
	(2) $x = \frac{1}{2}$ is out of domain and therefore $f(\frac{1}{2})$
	does not exist.