Zadanie Fuzzy systémy

Popis vstupov a výstupu fuzzy systému

ZADANIE A

Vstupy boli dva, jeden obsahoval počet áut na aktuálnej ceste a ten druhý obsahoval počet áut na vedľajšej ceste, ten bol vybraný ako väčšia hodnota z ostatných dvoch ciest. Počet áut bol dokopy na všetkých pruhoch danej cesty.

Výstup bola funkčná hodnota, ktorú sme získali po zadaní vstupov do **Mamdani** fuzzy systému. Výstup bol interval zeleného svetla na semafóre, ktory som zaokrúhlil na celé číslo, ktoré bolo v intervale od 5 po 30 sekúnd.

ZADANIE B

Vstupy sa nijako od zadania A nelíšili v žiadnom ohlade.

Výstup už nebol interval ale 4 mnou zvolené hodnoty. Ktore určovali ako dlho bude svietiť zelená. Na získanie týchto hodnôt som použil **Sugeno** fuzzy system, ktorý vracal konštantné hodnoty.

Krátky - 5 s Normálny – 10 s Dĺhy – 20 s Najdlhsi – 30s

Popis fuzzy množín

ZADANIE A

Oba vstupy, ako hodnota áut z hlavnej cesty tak ako z vedľajšej boli podla rovnakých kritérii rozdelené do 5 množín

Presné hodnoty

najmenej [0 1 5], malo [2 6 8], stredne [6 13 16], vela [13 21 25], najviac [20 30 30]

Tieto skupiny boli opäť volené čisto mnou na základe výsledkov za cieľom dosiahnutia najlepších výsledných hodnôt.

Rovnaké rozdelenie bolo použité aj v prípade vedľajšej cesty.

Naša výsledná funkcia "interval_zelenej" bola taktiež rozdelená do 5 množín.

Presné hodnoty

najkratsi[5 5 8], Kratky[6 9 12], stredny[9 14 17], dlhy[14 18 22], najdlhsi[18 30 30]

Môžeme vidieť že výsledky sú len v intervale 5 až 30

ZADANIE B

Množiny boli tentokrát použité typu "pimf" za cieľom zamedziť vracania priemerných hodnôt a taktiež zamedzeniu chyby. Zvolené hodnoty boli nastavené ručne preto tie desatinné čísla. Výsledky to zlepšilo.

Presné hodnoty

najmenej [-1.14 -0.265 2.56 4.216]

malo [3.97 5.03 6.87 7.93]

stredne[7.76 10.2 14.4 16.8]

vela [16.45 18.8 22.8 25.15]

najviac [24.9 28.38 30.62 34.1]

Výstupom nebola množina ale v tomto prípade konštanty, ktoré sú spomenuté vyššie.

Popis troch vybraných pravidiel

1. If (hlavna_cesta_pocet_aut is najmenej) and (vedlajsia_cesta_pocet_aut is najmenej) then (interval_zelenej is najkratsi) (1) 2. If (hlavna_cesta_pocet_aut is najmenej) and (vedlajsia_cesta_pocet_aut is malo) then (interval_zelenej is najkratsi) (1) 3. If (hlavna_cesta_pocet_aut is najmenej) and (vedlajsia_cesta_pocet_aut is stredne) then (interval_zelenej is najkratsi) (1) 4. If (hlavna_cesta_pocet_aut is najmenej) and (vedlajsia_cesta_pocet_aut is vela) then (interval_zelenej is najkratsi) (1) $5. \ If \ (hlavna_cesta_pocet_aut \ is \ najmenej) \ and \ (vedlajsia_cesta_pocet_aut \ is \ najviac) \ then \ (interval_zelenej \ is \ najkratsi) \ (1)$ 6. If (hlavna_cesta_pocet_aut is malo) and (vedlajsia_cesta_pocet_aut is najmenej) then (interval_zelenej is kratky) (1) 7. If (hlavna_cesta_pocet_aut is malo) and (vedlajsia_cesta_pocet_aut is malo) then (interval_zelenej is kratky) (1) 8. If (hlavna_cesta_pocet_aut is malo) and (vedlajsia_cesta_pocet_aut is stredne) then (interval_zelenej is kratky) (1) 9. If (hlavna_cesta_pocet_aut is malo) and (vedlajsia_cesta_pocet_aut is vela) then (interval_zelenej is kratky) (1) 10. If (hlavna_cesta_pocet_aut is malo) and (vedlajsia_cesta_pocet_aut is najviac) then (interval_zelenej is kratky) (1) 11. If (hlavna_cesta_pocet_aut is stredne) and (vedlajsia_cesta_pocet_aut is najmenej) then (interval_zelenej is stredny) (1) 12. If (hlavna_cesta_pocet_aut is stredne) and (vedlajsia_cesta_pocet_aut is malo) then (interval_zelenej is stredny) (1) 13. If (hlavna_cesta_pocet_aut is stredne) and (vedlajsia_cesta_pocet_aut is stredne) then (interval_zelenej is stredny) (1) 14. If (hlavna_cesta_pocet_aut is stredne) and (vedlajsia_cesta_pocet_aut is vela) then (interval_zelenej is stredny) (1) 15. If (hlavna_cesta_pocet_aut is stredne) and (vedlajsia_cesta_pocet_aut is najviac) then (interval_zelenej is stredny) (1) 16. If (hlavna_cesta_pocet_aut is vela) and (vedlajsia_cesta_pocet_aut is najmenej) then (interval_zelenej is dlhy) (1) 17. If (hlavna_cesta_pocet_aut is vela) and (vedlajsia_cesta_pocet_aut is malo) then (interval_zelenej is dlhy) (1) 18. If (hlavna_cesta_pocet_aut is vela) and (vedlajsia_cesta_pocet_aut is stredne) then (interval_zelenej is dlhy) (1) 19. If (hlavna_cesta_pocet_aut is vela) and (vedlajsia_cesta_pocet_aut is vela) then (interval_zelenej is dlhy) (1) 20. If (hlavna_cesta_pocet_aut is vela) and (vedlajsia_cesta_pocet_aut is najviac) then (interval_zelenej is dlhy) (1) 21. If (hlavna cesta pocet aut is najviac) and (vedlajsia cesta pocet aut is najmenej) then (interval zelenej is najdlhsi) (1) 22. If (hlavna_cesta_pocet_aut is najviac) and (vedlajsia_cesta_pocet_aut is malo) then (interval_zelenej is najdlhsi) (1) 23. If (hlavna_cesta_pocet_aut is najviac) and (vedlajsia_cesta_pocet_aut is stredne) then (interval_zelenej is najdlhsi) (1) 24. If (hlavna_cesta_pocet_aut is najviac) and (vedlajsia_cesta_pocet_aut is vela) then (interval_zelenej is najdlhsi) (1) 25. If (hlavna_cesta_pocet_aut is najviac) and (vedlajsia_cesta_pocet_aut is najviac) then (interval_zelenej

Výpis všetkých pravidiel

Pravidlá boli založené na jednoduchej sedliackej logike

"Málo áut, na hlavnej ceste? Malý interval na malej ceste"

Všetky pravidlá boli rovnaké pre zadania A aj B

Pravidlo č.1

Ak je na hlavnej ceste veľmi málo áut(množina najmenej) a na vedľajšej ceste je taktiež veľmi málo áut (najmenej) tak prečo by mali čakať rozdielne, keďže je na hlavnej málo áut a interval je od 5 čo znamená že stihnú prejsť minimálne dve autá. A množina najmenej dosahuje vrchol keď je na ceste 1 auto.

Pravidlo č.5

Na druhej strane pokiaľ je na hlavnej ceste veľmi málo áut a na vedľajšej je to plné, čiže je tam minimálne 20 áut, je zbytočne aby hlavná cesta mala dlhý interval. Keď bude krátky, rýchlejšie sa dostaneme na cestu, ktorá je preplnená.

Pravidlo č.20

Presný opak nastáva v prípade že je hlavná plná a vedľajšia prázdna. Ideálne je počkať kým odíde čo najviac áut z hlavnej ale nie príliš dlho aby sa začala preplňovať vedľajšia cesta. Na to máme maximálny interval 30s.

Otázka nastáva, čo robiť v prípade že sú obe cesty plné? Môžeme k tomu pristupovať rovnako ako keby boli obe úplne prázdne? Alebo dáme interval na čo najvyšší aby sme vyplnili cesty postupne? Ja som si zvolil druhú možnosť.

Výsledky simulácie

ZADANIE A

<u>Počet áut</u>

Výsledky boli uspokojujúce, samozrejme vždy je tam miesto pre zlepšenie ale na našej demo verzii bol splnený maximálny počet 15 áut na cestu.

Najhoršie na tom boli cesty A1 a A3 v časoch ich "špičiek". Cesta A2 to stále zvládala relatívne na výbornú.

Počet áut v tomto prípade bol maximálne 13 na A32. Pri niektorých behoch sa stalo že maximálny počet bol aj 15 ale len veľmi zriedkavo a nikdy mi ju zatiaľ neprekročil.

<u>Intervaly</u>

Intervaly sa pohybovali v hodnotách 6 – 25. Najvýraznejšie intervaly mala v prvej časti A1 a v druhej A2. Najlepšie na tom bola A2, kde môžeme vidieť najkratšie intervaly s najmenším rozptylom.

ZADANIE B

<u>Počet áut</u>

Výsledky áut boli omnoho lepšie, dostávali sa maximálne na hodnotu 8-9. V tomto prípade 7. Výsledok bude pravdepodobne kvôli tomu že zvolené konštanty sú násobkami 2.5s, teda času, ktorý potrebuje auto na prejdenie cesty a teda nedochádza k žiadnej strate času.

Najhoršie na tom bol úsek A12, ktorý bol aj tak lepši než najhorší zo zadania A.

<u>Intervaly</u>

Vzácne sa stalo, že interval překročil 10s, v tomto prípade sa to stalo jediný raz. V tomto prípade boli intervaly len 5s alebo 10s.

Tabuľky pre konkrétny beh budú za textom.

Na záver by som chcel povedať že obe zadania boli spustené viac násobne a výsledky sedeli.

ZADANIE A – OBRÁZKY

