

Software Safety Requirements and Architecture Lane Assistance

Document Version: [Version]

Template Version 1.0, Released on 2017-06-21

Document history

Date	Version	Editor	Description
2019.05.05	1.0	Chenglei Qiao	Initial Revision

Table of Contents

Document history

Table of Contents

Purpose

Inputs to the Software Requirements and Architecture Document

Technical safety requirements

Refined Architecture Diagram from the Technical Safety Concept

Software Requirements

Refined Architecture Diagram

Purpose

The purpose is to derive the detailed software safety requirements for each technical safety requirement defined in the Technical Safety Concept, refine the architecture to the level of software units, and allocate each software safety requirement to a software unit.

Inputs to the Software Requirements and Architecture Document

Technical safety requirements

Technical Safety Requirements related to Functional Safety Requirement 01-01 are:

ID	Technical Safety Requirement	A S I L	Fault Tolerant Time Interval	Architecture Allocation	Safe State
Technical Safety Requirement 01	The LDW Safety component shall ensure that the amplitude of the LDW_Torque_Request sent to the Final Torque component is below Max_Torque_Amplitude	С	50 ms	LDW Safety	LDW_Torque _Request is set to zero
Technical Safety Requirement 02	As soon as the LDW function deactivates the LDW feature, the LDW Safety component shall send a signal to the car display ECU to turn on a warning light	С	50 ms	LDW Safety	LDW_Torque _Request is set to zero
Technical Safety Requirement 03	As soon as a failure is detected by the LDW function, it shall deactivate the LDW feature and the LDW_Torque_Request shall be set to zero	С	50 ms	LDW Safety	LDW_Torque _Request is set to zero
Technical Safety Requirement 04	The validity and integrity of the data transmission for LDW_Torque_Request signal shall be ensured	С	50 ms	Data Transmission Integrity Check	LDW_Torque _Request is set to zero

Technical Safety Requirement 05	conducted at start up of the	A	Ignition Cycle	Memory Test	LDW_Torque _Request is set to zero
--	------------------------------	---	-------------------	-------------	--

Refined Architecture Diagram from the Technical Safety Concept

Figure 1 Refined Architecture Diagram from the Technical Safety Concept

Software Requirements

Lane Departure Warning (LDW) Amplitude Malfunction Software Requirements:

ID Technical Safety Requirement	A Fault S Tolerant I Time L Interval	Allocation to Architecture	Safe State
---------------------------------	---	----------------------------	------------

Technical Safety Requirement 01	The LDW Safety component shall ensure that the amplitude of the LDW_Torque_Request sent to the Final Torque component is below Max_Torque_Amplitude	С	50 ms	LDW Safety	LDW_Torqu e_Request is set to zero
--	---	---	-------	------------	---

ID	Software Safety Requirement	AS-L	Allocation Software Elements	Safe State
Software Safety Requirement 01-01	The input signal "Primary_LDW_Torq_Req" shall be read and pre-processed to determine the torque request coming from the "Basic/Main LA Functionality" SW Component. Signal "processed_LDW_Torq_Req" shall be generated at the end of the processing	С	LDW_SAFETY_INPUT_P ROCESSING	N/A
Software Safety Requirement 01-02	In case the "processed_LDW_Torq_Req" signal has a value greater than "Max_Torque_Amplitude_LDW" (maximum allowed safe torque), the torque signal "limited_LDW_Torq_Req" shall be set to 0, else "limited_LDW_Torq_Req" shall take the value of "processed_LDW_Torq_Req"	С	TORQUE_LIMITER	limited_LDW_To rq_Req = 0 (Nm=Newton- meter)
Software Safety Requirement 01-03	The "limited_LDW_Torq_Req" shall be transformed into a signal "LDW_Torq_Req" which is suitable to be transmitted outside of the LDW Safety component ("LDW Safety") to the "Final EPS Torque" component. Also see SofSafReq02-01 and SofSafReq02-02	С	LDW_SAFETY_OUTPUT _GENERATOR	LDW_Torq_Req = 0 (Nm)

ID	Technical Safety Requirement	A S I L	Fault Tolerant Time Interval	Allocation to Architecture	Safe State
Technical Safety Requirement 02	As soon as the LDW function deactivates the LDW feature, the LDW Safety component shall send a signal to the car display ECU to turn on a warning light	С	50 ms	LDW Safety	LDW_Torqu e_Request is set to zero

ID	Software Safety Requirement	A S I L	Allocation Software Elements	Safe State
Software Safety Requirement 02-01	When the LDW function is deactivated (activation_status set to 0), the activation_status shall be sent to the car display ECU	С	LDW_SAFETY_ACTIV ATION, Car Display ECU	N/A

ID	Technical Safety Requirement	A S I L	Fault Tolerant Time Interval	Allocation to Architecture	Safe State
Technical Safety Requirement 03	As soon as a failure is detected by the LDW function, it shall deactivate the LDW feature and the LDW_Torque_Request shall be set to zero	С	50 ms	LDW Safety	LDW_Torqu e_Request is set to zero

ID	Software Safety Requirement	A S I L	Allocation Software Elements	Safe State
Software	Each of the SW elements shall	С	All	N/A

Safety Requirement 03-01	output a signal to indicate any error which is detected by the element. Error signal = error_status_input(LDW_SAFET Y_INPUT_PROCESSING), error_status_torque_limiter(TOR QUE_LIMITER), error_status_output_gen(LDW_SAFETY_OUTPUT_GENERAT OR)			
Software Safety Requirement 03-02	A software element shall evaluate the error status of all the other software elements and in case any 1 of them indicates an error, it shall deactivate the LDW feature ("activation_status"=0)	С	LDW_SAFETY _ACTIVATION	Activation_status = 0 (LDW function deactivated)
Software Safety Requirement 03-03	In case of no errors from the software elements, the status of the LDW feature shall be set to activated ("activation_status"=1)	С	LDW_SAFETY _ACTIVATION	N/A
Software Safety Requirement 03-04	In case an error is detected by any of the software elements, it shall set the value of its corresponding torque to 0 so that "LDW_Torq_Req" is set to 0	С	All	LDW_Torq_Req = 0
Software Safety Requirement 03-05	Once the LDW functionality has been deactivated, it shall stay deactivated till the time the ignition is switched from off to on again	С	LDW_SAFETY _ACTIVATION	Activation_status = 0 (LDW function deactivated)

ID	Technical Safety Requirement	A S I L	Fault Tolerant Time Interval	Allocation to Architecture	Safe State
Technical Safety Requirement 04	The validity and integrity of the data transmission for LDW_Torque_Request signal shall be ensured	С	50 ms	Data Transmission Integrity Check	LDW_Torqu e_Request is set to zero

ID	Software Safety Requirement	ASIL	Allocation Software Elements	Safe State
Software Safety Requirement 04-01	Any data to be transmitted outside of the LDW Safety component ("LDW Safety") including "LDW_Torque_Req" and "activation_status" (see SofSafReq03-02) shall be protected by an End2End(E2E) protection mechanism	С	E2ECalc	LDW_Torq_Req= 0 (Nm)
Software Safety Requirement 04-02	The E2E protection protocol shall contain and attach the control data: alive counter (SQC) and CRC to the data to be transmitted.	С	E2ECalc	LDW_Torq_Req= 0 (Nm)

ID	Technical Safety Requirement	A S I L	Fault Tolerant Time Interval	Allocation to Architecture	Safe State
Technical Safety Requirement 05	Memory test shall be conducted at start up of the EPS ECU to check for any faults in memory	Α	Ignition Cycle	Memory Test	LDW_Torqu e_Request is set to zero

ID	Software Safety Requirement	A S I L	Allocation Software Elements	Safe State
Software Safety Requirement 05-01	A CRC verification check over the software code in the Flash memory shall be done every time the ignition is switched from off to on to check for any corruption of content.	A	MEMORYTES T	Activation_status = 0
Software	Standard RAM tests to check	Α	MEMORYTES	Activation_status = 0

Safety Requirement 05-02	the data bus, address bus and device integrity shall be done every time the ignition is switched from off to on (E.g.walking 1s test, RAM pattern test. Refer RAM and processor vendor recommendations)		Т	
Software Safety Requirement 05-03	The test result of the RAM or Flash memory shall be indicated to the LDW_Safety component via the "test_status" signal	Α	MEMORYTES T	Activation_status = 0
Software Safety Requirement 05-04	In case any fault is indicated via the "test_status" signal the INPUT_LDW_PROCESSING shall set an error on error_status_input (=1) so that the LDW functionality is deactivated and the LDW_Torque is set to 0	Α	LDW_SAFET Y_INPUT_PR OCESSING	Activation_status = 0

Refined Architecture Diagram

Figure 2 Refined Architecture Diagram