Statistical Methods for High Dimensional Biology

Continuous models and intro to limma

Keegan Korthauer

3 February 2021

with slide contributions from Gabriela Cohen Freue and Jenny Bryan

Summary so far

- *t* tests can be used to test the equality of 2 population means
- ANOVA can be used to test the equality of more than 2 population means
- **Linear regression** provides a general framework for modeling the relationship between a response variable and different types of explanatory variables
 - *t* tests can be used to test the significance of *individual* coefficients
 - F tests can be used to test the simultaneous significance of multiple coefficients (e.g. multiple levels of a single categorical factor, or multiple factors at once)

What if we represent age as a continuous variable?

Linear model with age as continuous covariate

- Linear looks reasonable for gene Tmem176a, but not so much for Klf9
- For now, assume linear is reasonable

Simple Linear Regression Model (Matrix formulation)

$$\mathbf{Y} = \mathbf{X}\alpha + \boldsymbol{\varepsilon}$$

For 1 continuous/quantitative covariate:

$$\mathbf{Y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}, \quad \mathbf{X} = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ 1 & x_n \end{bmatrix}, \quad oldsymbol{lpha} = egin{bmatrix} lpha_0 \ lpha_1 \end{bmatrix}, \quad oldsymbol{arepsilon} = egin{bmatrix} arepsilon_1 \ dots \ \end{matrix} \end{bmatrix},$$

- $\alpha_0 =$ the **intercept** (expected value of y when x is equal to zero)
- α_1 = the **slope** (expected change in y for every one-unit increase in x)

Simple Linear Regression Model (Matrix formulation)

$$\mathbf{Y} = \mathbf{X}\alpha + \boldsymbol{\varepsilon}$$

Remember / convince yourself that the matrix algebra does indeed reproduce simple linear regression:

$$egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix} = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots \ 1 & x_n \end{bmatrix} egin{bmatrix} lpha_0 \ lpha_1 \end{bmatrix} + egin{bmatrix} arepsilon_1 \ arepsilon_2 \ dots \ \ dots \ dots \ dots \ dots \ dots \ \ dots \ \ dots \ \ dots \ \ dots \$$

$$=egin{bmatrix} lpha_0+x_1lpha_1+arepsilon_1\ lpha_0+x_2lpha_1+arepsilon_2\ dots\ lpha_0+x_nlpha_1+arepsilon_n \end{bmatrix} \ \Rightarrow y_i=lpha_0+x_ilpha_1+arepsilon_i$$

SLR with age covariate

Tmem176a


```
filter(twoGenes, gene == "Tmem176a") %>%
lm(expression ~ age, data = .) %>%
summary() %>% .$coeff
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.10007931 0.113949630 71.08474 3.579302e-41
## age -0.06137385 0.008214834 -7.47110 6.742526e-09
```

 $H_0: lpha_0=0$ tests the null hypothesis that the intercept is zero - usually, not of interest

SLR with age covariate

Tmem176a


```
filter(twoGenes, gene == "Tmem176a") %>%
lm(expression ~ age, data = .) %>%
  summary() %>% .$coeff
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.10007931 0.113949630 71.08474 3.579302e-41
## age -0.06137385 0.008214834 -7.47110 6.742526e-09
```

 $H_0: lpha_1=0$ tests the null hypothesis that there is no association between gene expression and age - usually of interest

How do we estimate the intercept and slope?

Is there an *optimal* line?

Which one is the **best** line?

Ordinary Least Squares

Ordinary Least Squares (OLS) regression: parameter estimates minimize the sum of squared errors **Error**: vertical (y) distance between the true regression line (unobserved) and the real observation **Residual**: vertical (y) distance between the fitted regression line and the real observation (estimated error)

OLS interactive demo

- Visual representation of the squared errors in OLS: http://setosa.io/ev/ordinary-least-squares-regression/
 - Visit the link and examine the first two plots
 - Drag points around in the first plot to see how the second plot changes
 - Adjust the slope and intercept for the regression line and observe how the second plot changes
- The squares of the errors are represented by the square areas in the second plot
 - which line minimizes the sum of these areas? OLS answers this question

OLS Estimator for Simple Linear Regression (1 covariate)

• Mathematically: ε_i represents the error

$$y_i = lpha_0 + lpha_1 x_i + arepsilon_i, i = 1, \dots, n$$

• We want to find the line (i.e. an intercept and slope) such that the sum of squared errors is minimized

$$S(lpha_0,lpha_1)=\sum_{i=1}^n(y_i-lpha_0-lpha_1x_i)^2$$

- $\circ \ arepsilon_i = y_i lpha_0 lpha_1 x_i$ is the error
- $\circ S(\alpha_0, \alpha_1)$ is called an *objective function*
- How to obtain estimates $(\hat{\alpha}_0, \hat{\alpha}_1)$? Let's look at a more general case

OLS Estimator for Multiple Linear Regression (p covariates)

• Mathematically:

$$egin{aligned} S(lpha_0,lpha_1,lpha_2,\ldots,lpha_p) &= \sum_{i=1}^n (y_i-lpha_0-lpha_1x_{1i}-lpha_2x_{2i}-\ldots-lpha_px_{pi})^2 \ &= (\mathbf{y}-\mathbf{X}oldsymbol{lpha})^T(\mathbf{y}-\mathbf{X}oldsymbol{lpha}) \end{aligned}$$

- ullet We need to find values of $oldsymbol{lpha}=(lpha_0,lpha_1,\ldots,lpha_p)$ that minimize the sum of squares S
- To do so, take partial derviatives with respect to each coefficient, set to zero, and solve the system of equations:

$$rac{\partial S}{\partial lpha_0} = egin{bmatrix} rac{\partial S}{\partial lpha_0} \ rac{\partial S}{\partial lpha_1} \ dots \ rac{\partial S}{\partial lpha_p} \end{bmatrix} = egin{bmatrix} 0 \ 0 \ dots \ 0 \end{bmatrix}$$

Properties of OLS regression

Regression model: $\mathbf{Y} = \mathbf{X}\alpha + \boldsymbol{\varepsilon}$

OLS estimator: $\hat{\boldsymbol{\alpha}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$

Fitted/predicted values: $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\alpha}}$

$$= \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y}$$

where $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is called the "hat matrix"

Additional assumptions (required for results on the next few slides):

- 1. ε have mean zero
- 2. ε are iid (implies constant variance)

If ε are iid **Normal**, then OLS estimator is also MLE (Maximum Likelihood Estimator)

Properties of OLS regression (cont'd)

Residuals: (note NOT the same as errors ε)

$$\hat{oldsymbol{arepsilon}} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{X}\hat{oldsymbol{lpha}}$$

Estimated error variance:

$$\hat{\sigma}^2 = rac{1}{n-p}\hat{oldsymbol{arepsilon}}^T\hat{oldsymbol{arepsilon}}^T$$

Estimated covariance matrix of $\hat{\alpha}$:

$$\hat{Var}(\hat{oldsymbol{lpha}}) = \hat{\sigma}^2(\mathbf{X}^T\mathbf{X})^{-1}$$

Estimated standard errors for estimated regression coefficients: $\hat{se}(\hat{\alpha}_j)$, obtained by taking the square root of the diagonal elements of $\hat{Var}(\hat{\alpha})$

Inference in Regression (normal iid errors)

How to test $H_0: \alpha_j = 0$?

With a *t* statistic!

Under H_0 ,

$$rac{\hat{lpha_j}}{\hat{se}(\hat{lpha}_j)} \sim t_{n-p}$$

So a p value is obtained by computing a tail probability for the observed value of $\hat{\alpha_j}$ from a t_{n-p} distribution

Inference - what if we don't assume Normal errors?

How to test $H_0: \alpha_j = 0$?

With a *t* statistic!

Under H_0 , asymptotically (by CLT)

$$rac{\hat{lpha_j}}{\hat{se}(\hat{lpha}_j)} \sim t_{n-p}$$

So with a large enough sample size a p value for this hypothesis test is obtained by computing a tail probability for the observed value of $\hat{\alpha}_j$ from a t_{n-p} distribution

Diagnostics: plot(lm(y~x))

Do our assumptions hold?

- Constant variance
- iid errors
- Normality of errors

Linear regression

- ullet The nature of the regression function $f(x|oldsymbol{lpha})$ is one of the defining characteristics of a regression model
 - f is linear in $\alpha \Rightarrow$ linear model
 - $\circ f$ is not linear in $\alpha \Rightarrow$ nonlinear model
- For example, consider nonlinear parametric regression:

$$y_i = rac{1}{1 + e^{(\phi - x_i)/\eta}} + arepsilon$$

- ullet We just did simple linear regression (a linear model): $y_i=lpha_0+lpha_1x_i+arepsilon_i$
- What we could do instead: polynomial regression (also a linear model)

$$y_i = lpha_0 + lpha_1 x_i + lpha_2 x_i^2 + arepsilon_i$$

Polynomial regression

```
quadfit <- lm(expression ~ age + I(age^2), data = oneGene)</pre>
summary(quadfit)
##
## Call:
## lm(formula = expression ~ age + I(age^2), data = oneGene)
##
## Residuals:
      Min
          10 Median 30
##
                                    Max
## -1.6253 -0.6436 0.1023 0.4955 1.6996
##
## Coefficients:
##
   Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.482542 0.160883 52.725 < 2e-16 ***
## age -0.147339 0.032626 -4.516 6.52e-05 ***
## I(age^2) 0.005009 0.001164 4.303 0.000123 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7527 on 36 degrees of freedom
## Multiple R-squared: 0.362, Adjusted R-squared: 0.3265
## F-statistic: 10.21 on 2 and 36 DF, p-value: 0.0003069
```

Polynomial regression

Note that **this is still a linear model**, because it is linear in the $lpha_j$

Putting it all together (continuous + categorical variables)

Interaction between continuous and categorical variables

```
lm(expression ~ age*genotype, data = filter(twoGenes, gene=="Tmem176a"))
   summary() %>% .$coeff
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      8.031510398 0.15654982 51.3032221 1.567640e-34
                     -0.066454446 0.01141757 -5.8203672 1.331685e-06
## age
## genotypeNrlKO 0.142283869 0.22824752 0.6233753 5.370794e-01
## age:genotypeNrlKO 0.009873243 0.01644292 0.6004556 5.520712e-01
(Intercept): Intercept of WT line
age: slope of WT line
genotypeNrlKO: difference in intercepts (KO vs WT)
age: genotypeNrlKO: difference in slopes (KO vs WT)
```

Reminder about the Intercept

Intercept terms refer to the estimates when the continuous covariate is equal to zero. Note that this is not usually very interesting on its own.

Interaction between continuous and categorical variables

$$y_{ij} = lpha_0 + au_{KO} x_{ij,KO} + au_{Age} x_{ij,Age} + au_{KO:Age} x_{ij,KO} x_{ij,Age}$$

where

- $j \in \{WT, NrlKO\}, i = 1, 2, \dots, n_j$
- + $x_{ij,KO}$ is the dummy/indicator variable for WT vs KO ($x_{ij,KO}=1$ for j=NrlKO and 0 for j=WT)
- $x_{ij,Age}$ is the continuous age covariate

Interpretation of parameters:

- α_0 is the expected expression in WT for age = 0
- ullet The "intercept" for the knockouts is: $lpha_0+ au_{KO}$
- au_{Age} is the expected increase in expression in WT for every 1 day increase in age
- ullet The slope for the knockouts is: $au_{Age} + au_{KO:Age}$

Nested models

As always, you can assess the relevance of several terms at once - such as everything involving genotype - with an F test

We don't have evidence that genotype affects the intercept or the slope

F tests in regression

Model	Example	# params (df)	RSS
Reduced	expression ~ age	$p_{Red}=2$	RSS_{Red}
Full	expression ~ age * genotype	$p_{Full}=4$	RSS_{Full}

Full:
$$y_{ij} = lpha_0 + au_{KO} x_{ij,KO} + au_{Age} x_{ij,Age} + au_{KO:Age} x_{ij,KO} x_{ij,Age}$$

Reduced: $y_{ij} = lpha_0 + au_{Age} x_{ij,Age}$

Under the null hypothesis (that the reduced model explains the the same amount variation in the outcome as the full model),

$$F = rac{rac{RSS_{Red} - RSS_{Full}}{p_{Full} - p_{Red}}}{rac{RSS_{Full}}{n - p_{Full}}} \sim F_{p_{Fill} - p_{Red}, \, n - p_{Full}}$$

A significant F test means we reject the null; we have evidence that the full model explains significantly more variation in the outcome than the reduced.

Linear regression summary

- linear model framework is extremely general
- one extreme (simple): two-sample common variance t-test
- another extreme (flexible): a polynomial, potentially different for each level of some factor
 - dichotomous variable? OK!
 - categorical variable? OK!
 - quantitative variable? OK!
 - various combinations of the above? OK!
- Don't be afraid to build models with more than 1 covariate

What about the other 45 thousand probesets??

```
eset
## ExpressionSet (storageMode: lockedEnvironment)
  assayData: 45101 features, 39 samples
##
    element names: exprs
## protocolData: none
## phenoData
    sampleNames: GSM92610 GSM92611 ... GSM92648 (39 total)
##
##
    varLabels: title geo_accession ... age (40 total)
##
    varMetadata: labelDescription
## featureData: none
## experimentData: use 'experimentData(object)'
    pubMedIds: 16505381
##
## Annotation: GPL1261
```

Linear regression of many genes

$$\mathbf{Y}_g = \mathbf{X}_g oldsymbol{lpha}_g + oldsymbol{arepsilon}_g$$

- The g in the subscript reminds us that we'll be fitting a model like this *for each gene g* that we have measured for all samples
- Most of the time, the design matrices \mathbf{X}_g are, in fact, the same for all g. This means we can just use \mathbf{X}
- Note this means that the residual degrees of freedom are also the same for all g

$$d_g = d = n - \text{dimension of } \boldsymbol{\alpha} = n - p$$

Linear regression of many genes (cont'd)

Data model:

$$\mathbf{Y}_g = \mathbf{X} oldsymbol{lpha}_g + oldsymbol{arepsilon}_g$$

Unknown error variance:

$$Var(oldsymbol{arepsilon}_g) = \sigma_g^2$$

Estimated error variance:

$$\hat{\sigma}_g^2 = s_g^2 = rac{1}{n-p} \hat{oldsymbol{arepsilon}_g}^T \hat{oldsymbol{arepsilon}_g}$$

Estimated variance of parameter estimates:

$$\hat{Var}(\hat{oldsymbol{lpha}_g}) = s_g^2(\mathbf{X}^T\mathbf{X})^{-1} = s_g^2\mathbf{V}$$

- $oldsymbol{\cdot}$ $oldsymbol{V}$ is the "unscaled covariance" matrix, and is the same for all genes!
- Estimated standard errors for estimated regression coefficients: $\hat{se}(\hat{\alpha}_{jg})$, obtained by taking the square root of the j^{th} diagonal element of $\hat{Var}(\hat{\alpha}_q)$, which is $s_q \sqrt{v_{jj}}$

So far, nothing is new - these are the "regular" *t* statistics for gene *g* and parameters *j*:

$$t_{gj} = rac{\hat{lpha}_{gj}}{s_g \sqrt{v_{jj}}} \sim t_d ext{ under } H_0$$

But there are so many of them!

Observed (i.e. empirical) issues with the "standard" *t*-test approach for assessing differential expression

Observed (i.e. empirical) issues with the "standard" *t*-test approach for assessing differential expression

Some genes with very **small p-values** (large -log10 p-values) are not **biologically meaningful** (small effect size)

How do we end up with small p-values but subtle effects?

$$t_{gj} = rac{\hat{lpha}_{gj}}{\hat{se}(\hat{lpha}_{gj})} = rac{\hat{lpha}_{gj}}{s_g \sqrt{v_{jj}}} \sim t_d ext{ under } H_0$$

- ullet Small variance estimate s_g leads to large t statistic o small p-value
- Estimates of variance from small sample sizes tend to under-estimate the true variance!
- This has led to the development of specialized methodology for assessing genome-wide differential expression

Empirical Bayesian techniques: limma

> Stat Appl Genet Mol Biol. 3, Article3 2004

Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments

Gordon K Smyth 1

Affiliations + expand

PMID: 16646809 DOI: 10.2202/1544-6115.1027

Smyth 2004

Why use limma instead of regular t-tests?

- **Borrows information** from all genes to get a better estimate of the variance (especially in smaller sample size settings)
- Efficiently fits many regression models without replicating unnecessary calculations!
- Arranges output in a convenient way to ease further analysis, visualization, and interpretation

How does Empirical Bayes work?

- Empirical: observed
- **Bayesian**: incorporate 'prior' information
- Intuition: estimate prior information from data; *shrink* (nudge) all estimates toward the consensus

Shrinkage = borrowing information across all genes

Genome-wide OLS fits

- Gene by gene:
 - \circ lm(y \sim x, data = gene) for each gene
 - For example, using dplyr::group_modify and broom::tidy
- All genes at once, using limma:
 - o lmFit(myDat, desMat)
 - myDat contains all genes
 - desMat is a specially formatted design matrix (more on this later)
 - Or, even better, lmFit(eset, desMat) where eset is an ExpressionSet object

'Industrial scale' model fitting is good, because computations involving just the design matrix ${f X}$ are not repeated 30K unnecessarily

• OLS estimator:

$$\hat{oldsymbol{lpha}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

• Fitted/predicted values:

$$\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y}$$

OLS of first 2000 genes, using lm gene by gene

```
allGenes %>% head(10)
## # A tibble: 10 x 6
                 sample id expression dev stage
                                                   age genotype
##
      gene
      <chr>>
                                 <dbl> <fct>
                                                 <dbl> <fct>
##
                 <chr>>
   1 1415670_at GSM92610
                                 7.11 4W
                                                    28 NrlKO
    2 1415670_at GSM92611
                                 7.32 4W
                                                    28 NrlKO
    3 1415670_at GSM92612
                                 7.42 4W
                                                    28 NrlKO
    4 1415670_at GSM92613
                                 7.35 4W
                                                    28 NrlKO
                                                    -4 NrlKO
    5 1415670_at GSM92614
                                 7.24 E16
    6 1415670_at GSM92615
                                 7.34 E16
                                                    -4 NrlKO
   7 1415670_at GSM92616
                                 7.38 E16
                                                    -4 NrlKO
    8 1415670_at GSM92617
                                 7.22 P10
                                                    10 NrlKO
    9 1415670_at GSM92618
                                  7.22 P10
                                                    10 NrlKO
## 10 1415670_at GSM92619
                                  7.12 P10
                                                    10 NrlKO
```

```
system.time(lmfits <- allGenes %>%
     filter(gene %in% unique(allGenes$gene)[1:2000]) %>%
     group by(gene) %>%
     group_modify(~ tidy(lm(expression ~ age + genotype,
                            data = .x))) %>%
     select(gene, term, estimate) %>%
     pivot_wider(names_from = term, values_from = estimate)
           system elapsed
      user
   23.450
             0.722 26.688
lmfits %>% head() %>% as.data.frame()
             gene (Intercept)
                                        age genotypeNrlKO
## 1
      1415670_at
                     7.217851 0.0006225228 -0.0002861005
## 2
      1415671_at
                     9.320083 -0.0018405479
                                             0.1446053811
      1415672_at
                     9.759959 -0.0039281143 -0.0421705559
## 3
      1415673_at
## 4
                     8.404053
                               0.0039777804 -0.0436443351
## 5 1415674_a_at
                     8.517675 -0.0059840405
                                             0.0192159017
## 6
      1415675_at
                     9.665691 -0.0064185855 0.1330272055
```

OLS of **all** genes at once, using limma:

1415674 a at 8.517675 -0.0059840405 0.0192159017

9.665691 -0.0064185855 0.1330272055

```
system.time( limmafits <-</pre>
  lmFit(eset, model.matrix(~ age + genotype, data = pData(eset))))
##
     user system elapsed
            0.070
##
    0.200
                  0.353
limmafits$coefficients %>% head()
##
               (Intercept)
                                    age genotypeNrlKO
## 1415670 at
               7.217851
                           0.0006225228 -0.0002861005
## 1415671 at
                  9.320083 -0.0018405479 0.1446053811
## 1415672 at 9.759959 -0.0039281143 -0.0421705559
## 1415673 at 8.404053
                           0.0039777804 - 0.0436443351
```

So far, no shrinkage.

1415675 at

How can we better estimate the SE?

$$t_{gj} = rac{\hat{lpha}_{gj}}{\hat{se}(\hat{lpha}_{gj})} = rac{\hat{lpha}_{gj}}{s_g \sqrt{v_{jj}}} \sim t_d ext{ under } H_0$$

Small variance estimate leads to large t statistic, which leads to small p-value

Modeling in limma

limma assumes that for each gene g

$$\hat{lpha}_{gj}\,|\,lpha_{gj},\sigma_g^2\sim N(lpha_{gj},\sigma_g^2v_{jj}) \ s_g^2\,|\,\sigma_g^2\simrac{\sigma_g^2}{d}\chi_d^2$$

which are the same as the usual assumptions about ordinary t-statistics:

$$t_{gj} = rac{\hat{lpha}_{gj}}{\hat{se}(\hat{lpha}_{gj})} = rac{\hat{lpha}_{gj}}{s_g \sqrt{v_{jj}}} \sim t_d ext{ under } H_0$$

So far, nothing new...

Modeling in limma - shrinkage

- limma imposes a hierarchical model, which describes how the gene-wise α_{gj} 's and σ_g^2 's vary **across the genes**
 - We are no longer considering genes in isolation
- this is done by assuming a **prior distribution** for those quantities
- Prior distribution for **gene-specific variances** σ_g^2 : an inverse Chi-square with mean s_0^2 and d_0 degrees of freedom:

$$rac{1}{\sigma_g^2} \sim rac{1}{d_0 s_0^2} \chi_{d_0}^2 \, .$$

• this should feel funny compared to previous lectures - σ_g^2 is no longer a **fixed** quantity! (i.e. this is **Bayesian**)

How does this help us get a better estimate of the variance?

- The **posterior distribution** is an updated version of the observed likelihood based on incorporating the prior information
- The posterior mean for gene-specific variance:

$$ilde{s}_g^2 = rac{d_0 s_0^2 + d s_g^2}{d_0 + d} \, .$$

• How to think about it: a weighted mean of the prior (indirect evidence) and the observed (direct evidence) gene-specific variances:

$$ilde{s}_g^2 = rac{d_0}{d_0 + d} s_0^2 + rac{d}{d_0 + d} s_g^2 \, .$$

• More simply: "shrinking" the observed gene-specific variance towards the "typical" variance implied by the prior

Moderated *t*-statistic

• plug in this posterior mean estimate to obtain a 'moderated' *t*-statistic:

$${ ilde t}_{gj} = rac{\hatlpha_{gj}}{ ilde s_g \sqrt{v_{jj}}}$$

• Under limma assumptions, we know the null distribution for the moderated *t*-statistic:

$${ ilde t}_{gj} \sim t_{d_0+d} ext{ under } H_0$$

- ullet parameters from the prior d_0 and s_0^2 are estimated from the data
- This is how limma is a **hybrid** of frequentist (*t*-statistic) and Bayesian (hierarchical model) approaches

Side-by-side comparison of key quantities and results

	OLS	limma
Estimated gene-wise residual variance:	$s_g^2 = rac{1}{n-p} \hat{oldsymbol{arepsilon}}^T \hat{oldsymbol{arepsilon}}$	$ ilde{s}_g^2=rac{d_0s_0^2+ds_g^2}{d_0+d}$
t -statistic for $H_0: lpha_{gj} = 0$:	$t_{gj}=rac{\hat{lpha}_{gj}}{s_g\sqrt{v_{jj}}}$	$ ilde{t}_{\it gj} = rac{\hat{lpha}_{\it gj}}{ ilde{s}_{\it g}\sqrt{v_{\it jj}}}$
distribution of the $\it t$ -statistic under $\it H_0$:	$t_{gj} \sim t_d$	${ ilde t}_{gj} \sim t_{d_0+d}$

^{*}Not shown: estimation formulas for prior parameters d_0 and s_0^2

Moderated vs traditional tests

- moderated variances will be "shrunk" toward the typical gene-wise variance, relative to to raw sample residual variances
- ullet degrees of freedom for null distribution **increase** relative to default (d vs d_0+d)
 - $\circ \rightarrow$ makes it closer to a standard normal
 - $\circ \rightarrow$ makes tail probabilities (p-values) smaller
 - $\circ \rightarrow$ easier to reject the null
- overall, when all is well *limma will deliver statistical results that are* more stable *and* more powerful*

Preview: limma workflow

```
responses, design matrix (made by YOU)
      fit a separate linear model for
                                       lmFit(...)
      each response, e.g. gene
fitted models
       apply an Empirical Bayes
       procedure for moderating
                                       eBayes (...)
       estimates of error variance
      extract estimated parameters
      or p-values or ...
                                       topTable(...)
      compare big models to small
      etc etc
```

Preview: Functions that make your life easier

Function	Description
model.matrix	Takes in your data frame and makes a design matrix
limma::lmFit	Fits the linear model to all genes (each gene separately) – replace gene with "feature" depending on your data
limma::makeContrasts	Create the contrast matrix C that you desire
limma::contrast.fit	Apply a contrast to your estimates
limma::eBayes	Use output of linear regression to compute moderated t statistics
limma::topTable	Query your results; sort your p-values; sort genes; Adjust for multiple comparisons

Getting help

Documentation

To view documentation for the version of this package installed in your system, start R and enter:

browseVignettes("limma")

PDF	Limma One Page Introduction
<u>PDF</u>	usersguide.pdf
PDF	Reference Manual
<u>Text</u>	NEWS

Bioconductor homepage for limma