7.3 Do Now: Slope and the tangent function, similar triangles

1. (a) Graph and label $\triangle ABC$ with A(0,0), B(4,7), and C(4,0). Calculate each length:

i.
$$AC =$$

ii.
$$BC =$$

iii.
$$AB =$$

- (b) Write down the equation of the line \overrightarrow{BC} .
- (c) Write down the equation of the line \overrightarrow{AB} .
- (d) The tangent of an angle is the ratio of the side lengths *opposite* over *adjacent* to the angle. Write down the value as a fraction.

$$\tan \angle BAC =$$

(e) Find $m \angle BAC$ with a calculator's inverse tangent function, $m \angle BAC = \tan^{-1}(\frac{opp}{adj})$

2. Express the result to the nearest thousandth.

(a)
$$\tan 34^{\circ} =$$

(b)
$$\tan 60^{\circ} =$$

3. Round each value to the nearest degree.

(a)
$$tan^{-1}(1) =$$

(b)
$$\tan^{-1}(\sqrt{3}) =$$

- 4. Given right $\triangle JKL$ with $\overline{JK} \perp \overline{KL}$, JK = 8, $m \angle J = 22^{\circ}$. (mark the diagram)
 - (a) Let x be the length of the side opposite $\angle J$, x = KL. Write an equation expressing $\tan \angle J$ as a ratio of *opposite* over *adjacent*.

(b) Solve the equation for x = KL.

(c) Use the Pythagorean formula to find the length JL