Lógica Digital (1001351)

Funções e Circuitos Lógicos

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 27 de fevereiro de 2019

Uma variável binária

(a) Two states of a switch

(b) Symbol for a switch

Figure 2.1 A binary switch.

Uma variável binária

(a) Simple connection to a battery

(b) Using a ground connection as the return path

Figure 2.2 A light controlled by a switch.

Funções lógicas E (série) e OU (paralelo)

(a) The logical AND function (series connection)

(b) The logical OR function (parallel connection)

Figure 2.3 Two basic functions.

$$L(x_1,x_2)=x_1.x_2$$

onde
 $L=1$ se $x_1=1$ **E** $x_2=1$,
 $L=0$ caso contrário.

$$L(x_1, x_2) = x_1 + x_2$$
 onde $L = 1$ se $x_1 = 1$ OU $x_2 = 1$ OU $x_1 = x_2 = 1$, $L = 0$ se $x_1 = x_2 = 0$.

Combinando as funções

Figure 2.4 A series-parallel connection.

$$L(x_1, x_2, x_3) = (x_1 + x_2).x_3$$

Função lógica NÃO (inversão ou complemento)

Figure 2.5 An inverting circuit.

representações possíveis:
$$\overline{x}=x'=!x=\sim x=\mathsf{NOT}x$$
 para $f(x_1,x_2)=x_1+x_2$, temos seu complemento $\overline{f}(x_1,x_2)=\overline{x_1+x_2}$ $=(x_1+x_2)'=!(x_1+x_2)=\sim (x_1+x_2)=\mathsf{NOT}(x_1+x_2)$

x_1	x_2	$x_1.x_2$	$x_1 + x_2$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Tabela Verdade para as funções lógicas AND e OR

Lógica Proposicional

prop	osições	negação	conjunção	disjunção	implicação	equivalência
p	q	$\sim p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \Leftrightarrow q$
0	0		0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
_1	1		1	1	1	1

Tabela Verdade para os conectivos lógicos

x_1	x_2	x_3	$x_1.x_2.x_3$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
_1	1	1	1	1

Funções lógicas AND e OR com três entradas

x_1	x_2	$x_1 + x_2$	$\overline{x_1 + x_2}$	$\overline{x_1}$	$\overline{x_2}$	$\overline{x_1} + \overline{x_2}$
0	0	0	1			
0	1	1	0			
1	0	1	0			
1	1	1	0			

Provando que
$$\overline{f}(x_1,x_2)=\overline{x_1+x_2}
eq \overline{x_1}+\overline{x_2}$$

x_1	x_2	$x_1 + x_2$	$\overline{x_1 + x_2}$	$\overline{x_1}$	$\overline{x_2}$	$\overline{x_1} + \overline{x_2}$
0	0	0	1	1	1	
0	1	1	0	1	0	
1	0	1	0	0	1	
1	1	1	0	0	0	

Provando que $\overline{f}(x_1,x_2)=\overline{x_1+x_2}\neq \overline{x_1}+\overline{x_2}$

x_1	x_2	$x_1 + x_2$	$\overline{x_1 + x_2}$	$\overline{x_1}$	$\overline{x_2}$	$\overline{x_1} + \overline{x_2}$
0	0	0	1	1	1	1
0	1	1	0	1	0	1
1	0	1	0	0	1	1
_1	1	1	0	0	0	0

Provando que
$$\overline{f}(x_1,x_2)=\overline{x_1+x_2}\neq \overline{x_1}+\overline{x_2}$$

 As funções lógicas AND, OR e NOT podem ser usadas para implementar funções lógicas de qualquer complexidade;

- As funções lógicas AND, OR e NOT podem ser usadas para implementar funções lógicas de qualquer complexidade;
- Uma função complexa pode exigir muitas dessas operações básicas para sua implementação;

- As funções lógicas AND, OR e NOT podem ser usadas para implementar funções lógicas de qualquer complexidade;
- Uma função complexa pode exigir muitas dessas operações básicas para sua implementação;
- Cada operação lógica pode ser implementada eletronicamente com transistores, resultando em um elemento de circuito chamado de porta lógica;

- As funções lógicas AND, OR e NOT podem ser usadas para implementar funções lógicas de qualquer complexidade;
- Uma função complexa pode exigir muitas dessas operações básicas para sua implementação;
- Cada operação lógica pode ser implementada eletronicamente com transistores, resultando em um elemento de circuito chamado de porta lógica;
- Uma porta lógica tem uma ou mais entradas e uma saída que é uma função de suas entradas;

- As funções lógicas AND, OR e NOT podem ser usadas para implementar funções lógicas de qualquer complexidade;
- Uma função complexa pode exigir muitas dessas operações básicas para sua implementação;
- Cada operação lógica pode ser implementada eletronicamente com transistores, resultando em um elemento de circuito chamado de porta lógica;
- Uma porta lógica tem uma ou mais entradas e uma saída que é uma função de suas entradas;
- Podemos projetar um circuito lógico desenhando um esquemático, consistindo de símbolos gráficos representando as portas lógicas.

Figure 2.8 The basic gates.

$$x_1$$

$$x_2$$

$$x_3$$

$$f = (x_1 + x_2) \cdot x_3$$

Figure 2.9 The function from Figure 2.4.

(b) Truth table for f

Síntese de uma função lógica

Funções lógicas equivalentes

- Em geral, uma função lógica pode ser implementada com uma variedade de circuitos com diferentes custos:
- As funções lógicas vistas anteriormente são funcionalmente equivalentes;
- É possível notar a equivalência a partir da análise dos circuitos e contrução das tabelas verdade;
- 0 mesmo resultado pode ser alcançado através da manipulação algébrica de expressões lógicas, que fornece a base para técnicas modernas de projeto.

Função XOR

Figure 2.11 An example of a logic circuit.

$$L = f(x, y) = x \oplus y$$

Aplicação: meio somador

(a) Evaluation of S = a + b

Figure 2.12 Addition of binary numbers.

$$S_0 = f(a, b) = a \oplus b$$

$$S_1 = f(a, b) = a.b$$

Bibliografia

- ▶ Brown, S. & Vranesic, Z. Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009
- ► http://ecalculo.if.usp.br/ferramentas/logica/logica.htm

Lógica Digital (1001351)

Funções e Circuitos Lógicos

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 27 de fevereiro de 2019

