Differentiation

What is Differentiation?

- Differentiation is the process of finding the **derivative** of a function.
- The derivative tells us how fast something is changing.

Example: Speed of a Car

Imagine you're driving a car, and the **speedometer** shows your speed at every moment.

- If at time = 5 seconds, your speed is 30 km/h,
- And at time = 6 seconds, your speed is 35 km/h,
- Then your rate of change of speed is (35 30) / (6 5) = 5 km/h per second.

This rate of change is what **differentiation** calculates.

Key Idea: Calculus (specifically differentiation) is used in ML to optimize models.

- Derivative: Measures the instantaneous rate of change of a function.
 - Example: Speed is the derivative of distance with respect to time.

Why "Instantaneous"?

- It's the rate of change at an exact point (not an average over time).
- Analogy: Your car's speedometer shows your speed right now, not your average speed for the trip.

$$\lim_{\Delta x o 0} rac{f(x + \Delta x) - f(x)}{\Delta x}$$

Relation to Slope:

The derivative is the slope of the tangent line to the function's curve at a point.

• Example: For $y=x^2$, the slope at x=2 is 4.

Example:

- If a hill has a steep **upward** slope, the derivative is **positive**.
- If the hill is going downward, the derivative is negative.
- If the hill is **flat**, the derivative is **zero**.

So, differentiation helps us understand whether a function is increasing, decreasing, or flat at a particular point.

Derivative of a Constant

- Rule: The derivative of any constant (e.g., y=5) is 0.
- Why? Constants don't change, so their rate of change is zero.

$$\circ$$
 Example: If $y=7$, $\frac{dy}{dx}=0$.

Maxima and Minima

- Maxima: The highest point of a curve (like the top of a hill).
- Minima: The lowest point of a curve (like the bottom of a valley).

At these points, the

derivative is zero because the slope is flat.

Mathematically, $f'(x)=0 \label{eq:f'}$

means a function has reached a maximum or minimum.

To confirm whether it's a maximum or minimum, we use the **second derivative**:

- If **f''(x) > 0**, it's a **minimum** (valley).
- If f''(x) < 0, it's a maximum (peak).

Common Derivatives Cheatsheet

Power Rule:

$$\circ$$
 Example: $rac{d}{dx}(x^3)=3x^2$.

Trigonometric Functions:

$$\circ \ \ \tfrac{d}{dx}(\sin x) = \cos x.$$

$$\circ \ \ \tfrac{d}{dx}(\cos x) = -\sin x.$$

Exponentials/Logarithms:

$$\cdot \quad \frac{d}{dx}(e^x) = e^x.$$

$$\circ \ \ \tfrac{d}{dx}(\ln x) = \tfrac{1}{x}.$$

Power Rule

$$rac{d}{dx}(x^n)=nx^{n-1}$$

Example:

$$\frac{d}{dx}(x^3)=3x^2$$

- Bring the exponent down in front.
- Subtract 1 from the exponent.

Sum Rule

• The derivative of a sum is just the sum of the derivatives.

$$rac{d}{dx}(f(x)+g(x))=f'(x)+g'(x)$$
 $rac{d}{dx}(x^3+x^2)=3x^2+2x$

Product Rule

$$rac{d}{dx}[f(x)g(x)] = rac{f'(x)g(x) + f(x)g'(x)}{dx}$$

Example:

If $f(x) = x^2$ and $g(x) = \sin x$ then:

$$rac{d}{dx}(x^2\sin x) = rac{2x}{\sin x} + rac{\cos is}{x^2\cos x}$$

Quotient Rule

For division of two functions:

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

$$rac{d}{dx}\left(rac{x}{x+1}
ight) = rac{ extbf{(1)}(x+1) - x extbf{(1)}}{(x+1)^2} = rac{1}{(x+1)^2}$$

Chain Rule

Used when differentiating a function inside another function.

$$h(x) = f(g(x))$$

$$rac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

Example:

If $f(x) = \sin(x^2)$ then:

$$rac{d}{dx}(\sin x^2) = \cos(x^2) \cdot rac{2x}{}$$

Partial Differentiation

• When a function has **multiple variables**, we differentiate **one variable at a time** while keeping others constant.

If
$$f(x,y) = x^2 + y^3$$
, then:

$$rac{\partial f}{\partial oldsymbol{x}} = 2x, \quad rac{\partial f}{\partial oldsymbol{y}} = 3y^2$$

• This is useful in **machine learning** and **physics**, where functions often depend on multiple variables.

Example: Temperature in a Room

Imagine the temperature **T** inside a room depends on:

- x = Distance from the heater
- y = Distance from the window

The temperature function might be:

$$T(x,y) = 5x^2 + 3y + 10$$

• Here, x and y both affect T.

Now, what if we only want to know how T changes with x while ignoring y? → That's where partial differentiation comes in!

Example: Let $f(x, y) = 3x^2y + 2xy^3$.

Partial derivative with respect to x:

$$rac{\partial f}{\partial x} = 6xy + 2y^3 \quad ext{(since y is constant)}.$$

Partial derivative with respect to y:

$$rac{\partial f}{\partial y} = 3x^2 + 6xy^2$$
 (since x is constant).

Higher-Order Derivatives

- First derivative $f'(x) \rightarrow \text{tells us slope}$.
- Second derivative $f''(x) \rightarrow \text{tells us if the function is concave up or down.}$
- Third derivative f'''(x) → used in physics (jerk in motion).

Example:

$$f(x)=x^4, \quad f'(x)=4x^3, \quad f''(x)=12x^2, \quad f'''(x)=24x$$

If
$$f(x,y)=x^3+2xy$$
, then: $rac{\partial f}{\partial x}=3x^2+2y$ $rac{\partial^2 f}{\partial x^2}=6x$

Matrix Differentiation

If ${f X}$ is a matrix and ${f w}$ is a vector, differentiation is done using special rules:

$$\frac{d}{d\mathbf{w}}(\mathbf{X}\mathbf{w}) = \mathbf{X}$$

• Fundamental tool in machine learning, optimization, and deep learning

- We know f_1 & f_2
- Find out the derivatives of them wrt $x_1 \ \& \ x_2$

• $\frac{1}{2}$ This is the original matrix itself.

If ${f X}$ is a matrix and ${f w}$ is a vector, differentiation is done using special rules:

$$\frac{d}{d\mathbf{w}}(\mathbf{X}\mathbf{w}) = \mathbf{X}$$

This is heavily used in **gradient descent** optimization.

Little tougher example →

Derivative of:

$$y = X^T A X$$

$$\left(X, X_2\right) \begin{pmatrix} q_1 & q_2 \\ q_2 & q_2 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

• First let's multiply A & X

We called a_{12} & a_{21} as $\rightarrow a$

• Now multiply this with (x_1,x_2)

• We'll call this $\buildrel \buildrel \build$

Therefore,

