# DEEPLEARNING WITH PYTORCH

## PART I

#### ◆ 딥러닝이란

- 머신 러닝의 한 분야
- 인간의 신경망인 뉴런(nerun)을 기반으로 구성된 인공 신경망
- 학습 데이터를 구분하는 충(Layer)을 많이 만들어 그 정확도를 올리는 방법
- 2016년 알파고에 적용
- 영상 인식, 음성 인식, 자연 언어 처리 등 분야에서 우수한 성능 발휘

| CPU | <ul> <li>Central Processing Unit 약자</li> <li>명령어 입력된 순서대로 데이터 처리하는 직렬(순차) 처리 방식에 특화된 구조</li> <li>명령어 : 한 번에 한 가지 처리</li> <li>실수 저장 방식 : 고정소수점 방식</li> <li>연산 : 더하기, 빼기 연산 빠르게 수행</li> </ul>        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPU | <ul> <li>Graphics Processing Unit 약자</li> <li>여러 명령어를 동시에 처리하는 병렬 처리 방식</li> <li>연산 수행 ALU가 코어당 수백~수천개 장착</li> <li>실수 저장 방식 : 부동소수점 연산 수행</li> <li>연산 : 그래픽, 음성 등 멀티미디어, 3차원 데이터 빠르게 처리</li> </ul> |

| GPGPU | <ul> <li>General Perpose computing on GPU 약자</li> <li>GPU를 프로그램 가능하도록 구성한 구조</li> <li>그래픽처리, 행렬, 벡터연산, 병열처리르 묶어 고속 계산 수행</li> </ul>                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CUDA  | <ul> <li>Compute Unified Device Architecture 약자</li> <li>그래픽 처리 장치에서 수행하는 알고리즘을 C프로그래밍 언어를 비롯한<br/>산업 표준언어 사용하여 작성할 수 있도록 하는 GPGPU기술</li> <li>2006년 NVIDIA에서 개발한 GPGPU 프로그래밍 도구</li> <li>NVIDIA GPU와 특별한 스트림 처리 드라이버 필요</li> </ul> |
| cuDNN | <ul> <li>cuda Deep Neural network Library 약자</li> <li>TensorFLow, PyTorch, Theano 등 대중적으로 널리 사용되는 <b>딥러닝 프레임워크</b></li> <li>가속화시켜주는 라이브러리</li> </ul>                                                                               |





- ◆ 인공신경망 (ANN : Artificial Neural Network)
  - 퍼셉트론(Perceptron)
    - 1945년 개념 제안, 1958년 구체적인 공학적 구현 제안
    - 생물학적 뉴런을 공학적인 구조로 변형한 것
    - 1969년 XOR문제 해결할 수 없는 단순선형분리기 불과함 증명 → 인기하락
    - 논리적인 추론으로 인공지능 트랜드 변화
    - 최초 인공신경망 개념을 공학적 구조로 구현한 것으로 큰 의미



- ◆ 인공신경망 (ANN : Artificial Neural Network)
  - 뉴런(Neuron) 동작 원리
    - ① 자극이 들어왔을 때 가지돌기와 축삭돌기 거쳐 시냅스 통해 전기적인 신호 사용 통신
    - ② 들어오는 자극이 일정하더라도 각 신경 세포마다 자극에 반응하는 정도가 조금씩 다름
    - ③ 자극을 강화시켜 전달하기도 하고 축소시켜 전달하기도 함





◆ 인공신경망 (ANN : Artificial Neural Network)

■ 퍼셉트론(Perceptron) 구조



$$\sum_{i=0}^{N-1} w_i x_i = oldsymbol{w} \cdot oldsymbol{x} = oldsymbol{w}^T oldsymbol{x}$$
 $y = a \left(\sum_{i=0}^{N-1} w_i x_i + b\right)$  편향(Bias)
활성함수 두 벡터의 내적
 $y = a (oldsymbol{w}^T oldsymbol{x} + b)$ 















- ◆ 인공신경망 (ANN : Artificial Neural Network)
  - 다층 퍼셉트론(MLP : Multi Layer Perceptron)
    - 퍼셉트론을 여러층 쌓아 올린 구조
    - 선형분리 불가능한 문제도 해결 가능
    - 인공신경망(ANN)을 의미함
    - 경사하강법 손실 함수 사용





◆ 인공신경망 (ANN : Artificial Neural Network)

■ 동작원리

#### [STEP1] 순전파 FORWARD PROPAGATION

- **입력층** ====> **출력층 방향** 계산 과정
- 신호와 가중치 곱한 값 출력층까지 차례대로 계산
- 피쳐1\*가중치1 + 피쳐2\*가중치2 + ..... + 피쳐n\*가중치n + b
  - → 활성화함수AF( 피쳐가중치합+b) → 결과값



◆ 인공신경망 (ANN : Artificial Neural Network)

■ 동작원리

#### [STEP2] 역전파 BACKWARD PROPAGATION

- **입력층 <==== 출력층 방향** 계산 과정
- 오류에 대한 미분값, 학습률, 경사하강법 이용 최적화 값 입력층으로 전달
- 현재 W, b (정답-예측값) → 미분값 \* 학습률 → 새로운 W, b 업데이트
  - → 이전 층으로 전달











- ◆ 인공신경망 (ANN : Artificial Neural Network)
  - 오류역전파 알고리즘 (Backward Propagation)
    - 1986년 제안된 효율적 최적화 알고리즘
    - 경사하강법 이용 파라미터(w, b) 업데이트하며 학습 진행
    - 각 Layer에서 손실함수 미분값 계산에 어려움을 해결한 알고리즘
    - 미분학의 '체인툴 ' 착안 → 연쇄법칙
    - 출력층에서 입력층로 오류를 전달하며 파라미터(w, b) 업데이트

- ◆ 인공신경망 (ANN : Artificial Neural Network)
  - 최적화 방법 경사하강법(Gradient Descent)
    - 손실함수의 값을 최소화하기 위해 기울기를 이용하는 사용
    - step-size 간격으로 수행, 보통 0.1~0.001 속도가 적당
    - 학습 데이터 수, 학습률에 따른 다양한 방법 존재

#### ◆ 인공신경망 (ANN : Artificial Neural Network)

#### ■ 최적화 방법 - 경사하강법(Gradient Descent)

| Batch Gradient Descent            | 전체 데이터 학습 후 검증 및 업데이트 진행, 많은 시간 및 계산량 소요                                  |
|-----------------------------------|---------------------------------------------------------------------------|
| SGD                               | 일부 학습 데이터(mini-batch) 선택 후 진행                                             |
| (Stochastic Gradien Descent)      | BGD에 비해 다소 부정확, 속도 빠름                                                     |
| Momentum                          | 업데이트 시 이전 값과 비교하여 같은 방향으로 업데이트 진행 -> 관성                                   |
| AdaGrad<br>(Adaptive Gradient)    | 변수들 update 시 각각의 변수마다 Ir 즉 step size 다르게 설정<br>갱신 정도 약해져 전혀 갱신되지 않는 경우 발생 |
| RMSProp / AdaDelta                | AdaGrad의 단점 보완, 과거 기울기는 조금 반영 + 최신 기울기 많이 반영                              |
| Adam (Adaptive Moment Estimation) | 과거 미분값 계속 가중평균 내면서 효율적 업데이트 R<br>MSProp + Momentum 방식 결합                  |

- ◆ 인공신경망 (ANN : Artificial Neural Network)
  - 기울기 소실/폭주 (Gradient Vanishing / Exploding )

#### [기울기소실]

- 역전파 과정에서 입력층으로 갈 수록 기울기가 점점 작아지는 현상
- 입력층 가까운 층에서 가중치 업데이트 제대로 되지 않는 문제 발생

#### [기울기 폭주]

- 역전파 과정에서 입력층으로 갈 수록 기울기가 비정상적으로 커지는 현상
- 순환신경망에서 발생

◆ 인공신경망 (ANN : Artificial Neural Network)

■ 기울기 소실/폭주 (Gradient Vanishing / Exploding )

- 해결방법
  - ▶ 활성화 함수
  - ▶ 가중치 초기화
  - ▶ 배치 정규화

◆ 인공신경망 (ANN : Artificial Neural Network)

■ 기울기 소실/폭주 (Gradient Vanishing / Exploding )

• 해결방법 → 활성화 함수

입력/은닉층: ReLu계열 출력층: Sigmoid/Softmax/Linear 함수

| Step Function    | - 퍼셉트론에서 사용 즉, 이진분류에 사용<br>- 값이 0보다 작으면 0 출력 / 크면 1출력 |
|------------------|-------------------------------------------------------|
| Sigmoid Function | - 0 ~ 1 사이의 값 출력, 평균 0.5<br>- 분류에서 확률 표현 위해서 사용 → 출력층 |
| Softmax Function | - 0.0 ~ 1.0 사이 값 출력<br>- 다중 분류 → 출력층                  |

- ◆ 인공신경망 (ANN : Artificial Neural Network)
  - 기울기 소실/폭주 (Gradient Vanishing / Exploding )
    - 해결방법 → 활성화 함수

| ReLU Function<br>(Rectified Linear Unit) | - 입력이 0을 넘으면 그 입력을 그대로 출력<br>- 입력이 0이하면 0을 출력 → 0 : 죽은 ReLU                                              |
|------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Leaky ReLU Function                      | <ul> <li>입력값이 음수면 기울기가 0이되는 경우 =&gt; 죽은 ReLU</li> <li>입력값이 음수일 경우 0이 아니라 0.001과 같은 매우 작은 수 반환</li> </ul> |
| tanh Function                            | 1~1 범위값 출력                                                                                               |

- ◆ 인공신경망 (ANN : Artificial Neural Network)
  - 기울기 소실/폭주 (Gradient Vanishing / Exploding )
    - 해결방법 → 가중치 초기화
      - ▶ 세이비어/글로럿 초기화(Xavier/Glorot Initialization)
        - 2010년 세이비어 글로럿과 요슈아 벤지오 제안
        - 여러 층의 기울기 분산 균형 맞춰 특정 층 너무 주목/ 다른 층 뒤쳐지는 것 막음
        - 좋은 성능 AF : Sigmoid(), tanh( ) 같은 S자 형태 계열
        - 좋지 않은 AF : ReLu() 계열

- ◆ 인공신경망 (ANN : Artificial Neural Network)
  - 기울기 소실/폭주 (Gradient Vanishing / Exploding )
    - 해결방법 → 가중치 초기화
      - > 헤 초기화( He initialization)
        - 세이비어 초기화와 유사
        - 다음 층의 뉴런의 수를 반영하지 않음
        - 좋은 성능 AF : ReLU 계열 → ReLU + He 초기화 방법이 좀 더 보편적

- ◆ 인공신경망 (ANN : Artificial Neural Network)
  - 기울기 소실/폭주 (Gradient Vanishing / Exploding )
    - 해결방법 → 입력 데이터 정규화(Normalization)
      - > 배치 정규화(Batch tialization)
        - 각 층에 입력되는 데이터를 AF 전 평균과 분산으로 정규화 → 학습 효율적
        - 작은 미니 배치보다는 크기가 어느정도 되는 미니 배치에서 하는 것이 좋음
        - 피쳐 단위로 평균/분산
        - RNN 적용 어려움



- ◆ 인공신경망 (ANN : Artificial Neural Network)
  - 기울기 소실/폭주 (Gradient Vanishing / Exploding )
    - 해결방법 → 입력 데이터 정규화(Normalization)
      - > 층 정규화(Layer Normalization)
        - data sample 단위로 평균(mean)과 표준편차(std) 계산해서 정규화
        - 특성 개수와 상관없이 batch 내부 데이터 개수의 샘플 평균, 표준편차 값 사용
        - 작은 batch size에서도 효과적인 이용
        - 고정 길이 정규화로 RNN 사용 가능

