2019 级弘毅班《编译原理》第二次练习答案

- 一、 设有下述四组文法和其对应的终结符号串:
 - (a) (1)

$$S \Longrightarrow_{lm} 0S1$$

$$\Longrightarrow 00S11$$

$$\Longrightarrow 000S11$$

$$\Longrightarrow 0001111$$

(2)

$$S \Longrightarrow 0S1$$

$$\Longrightarrow 00S11$$

$$\Longrightarrow 000S11$$

$$\Longrightarrow 0001111$$

- (4) 该文法不是二义文法;
- $(5) \{ 0^n 1^n | n \ge 1 \}.$
- (6) 无左递归和左公因子.
- (b) (1)

$$S$$

$$\Longrightarrow + SS$$

$$\Longrightarrow + *SSS$$

$$\Longrightarrow + *aSS$$

$$\Longrightarrow + *aaS$$

$$\Longrightarrow + *aaa$$

$$\Longrightarrow + *aaa$$

(2)

$$S$$

$$\Longrightarrow + SS$$

$$\Longrightarrow + Sa$$

$$\Longrightarrow + *SSa$$

$$\Longrightarrow + *Saa$$

$$\Longrightarrow + *aaa$$

$$\Longrightarrow + *aaa$$

- (4) 该文法不是二义文法;
- (5) 以字母 a 组成的前缀表达式.
- (6) 无左递归和左公因子.

(c) (1) 两个不同的最左推导:

$$S \Longrightarrow S(S)S$$

$$\Longrightarrow S(S)S$$

$$\Longrightarrow (S)S$$

(2)

$$S \Longrightarrow S(S)S$$

$$\Longrightarrow S(S)$$

$$\Longrightarrow S(S(S)S)$$

$$\Longrightarrow S(S(S)S(S)S)$$

$$\Longrightarrow S(S(S)S(S)S)$$

$$\Longrightarrow S(S(S)S(S))$$

$$\Longrightarrow S(S(S)S(S)$$

$$\Longrightarrow S(S(S)S(S))$$

$$\Longrightarrow S(S(S)S(S)$$

$$\Longrightarrow S(S(S)$$

$$\Longrightarrow$$

- (4) 由(A)知该文法是二义文法;
- (5) 以"("和")"组成的嵌套的括号对.
- (6) 消除左递归后的文法:

$$\begin{array}{ccc} S & \to & S' \\ S' & \to & (S)SS' \mid \varepsilon \end{array}$$

(d)(1)

$$S$$

$$\Longrightarrow SS$$

$$\Longrightarrow S * S$$

$$\Longrightarrow (S) * S$$

$$\Longrightarrow (S+S) * S$$

$$\Longrightarrow (a+S) * S$$

$$\Longrightarrow (a+a) * S$$

$$\Longrightarrow (a+a) * A$$

(2)

$$S \Longrightarrow SS$$

$$\Longrightarrow Sa$$

$$\Longrightarrow S * a$$

$$\Longrightarrow (S) * a$$

$$\Longrightarrow (S+S) * a$$

$$\Longrightarrow (S+A) * a$$

$$\Longrightarrow (S+a) * a$$

$$\Longrightarrow (A+a) * a$$

(4) 该文法是二义文法. 因为 a+a+a 有两个不同的最左推导:

$$S \longrightarrow S + S$$

$$\Longrightarrow S + S + S$$

$$\Longrightarrow a + S + S$$

$$\Longrightarrow a + S + S$$

$$\Longrightarrow a + A + S$$

$$\Longrightarrow a + A + A$$

- (5) 以 a 组成的正规表达式, 其中并运算用 '+' 表示.
- (6) 消除左递归后的文法:

$$S \rightarrow (S)S' \mid aS'$$

$$S' \rightarrow +SS' \mid SS' \mid *S' \mid \varepsilon$$

- 二、 试为下列语言设计上下文无关文法并判断该语言是否为正则语言:
 - (1) 所有的有 a 和 b 组成的字符串,其中,每个 b 之前一定至少有一个 a; 解:该语言为正则语言,其对应的正规表达式为: $(a|ab)^*$,其对应的右线性文法为:

$$\begin{array}{ccc} S & \rightarrow & aS \mid aT \mid \varepsilon \\ T & \rightarrow & bS \end{array}$$

(2) 所有的有 a 和 b 组成的字符串,其中 a 出现的次数比 b 出现的次数多;解:该语言不是正则语言,设 T 表示 a 和 b 出现相同的语言,则任给一个 a 比 b 出现次数至少多一个的字符串 $w = (ta)^+t$,其中 $t \in T$,这样该语言的文法为:

$$\begin{array}{ccc} S & \rightarrow & TaS \mid TaT \\ T & \rightarrow & aTbT \mid bTaT \mid \varepsilon. \end{array}$$

文法为二义文法。

(3) $\{a^m b^n c^p d^q \mid m, n, p, q \in \mathbb{N} \land m + n = p + q\}$; (提示: 分情况考虑: $1/m \le q$: $S \to aSd \mid B$ with $B = \{b^n c^p d^q \mid n = p + q\}$. 这样 $B \to bBd \mid C$ with $C = \{b^n c^p \mid n = p\}$; 2/m > q: ...) **解:** 设 $B = \{b^n c^p d^q \mid n = p + q\}$, $C = \{b^n c^p \mid n = p\}$ 和 $D = \{a^m b^n c^p \mid m + n = p\}$. 则

$$S \rightarrow aSd \mid B \mid D$$

$$B \rightarrow bBd \mid C$$

$$C \rightarrow bCc \mid \varepsilon$$

$$D \rightarrow aDc \mid C$$

文法为二义文法, 因为 $\varepsilon \in B \cap D \subseteq S$. 该语言不是正则的.

(4) $\{a^mb^n \mid m, n \in \mathbb{N} \land 2m = 3n + 1\}$; (提示: 需要找出 a 增长与 b 增长之 关系,设 a 增长 p 个,b 增长 q 个,则 2(m+p) = 3(n+q) + 1, 这样 2p = 3q.)

解: 根据提示分析得到 a 增加 3 个与 b 增加 2 个保持平衡。当 n=1 时,m=2,因此最短的语句为 aab,故无二义文法为

$$S \rightarrow aaaSbb \mid aab$$

该语言不是正则的.

(5) 所有的有 a 和 b 组成的字符串,其中 a 和 b 出现的次数不等. 设 E 为 a 和 b 出现次数相等,A 为 a 比 b 多,B 为 b 比 a 多,S 为 a 和 b 不等,则

$$\begin{array}{cccc} S & \rightarrow & A \mid B \\ A & \rightarrow & AA \mid EaE \\ B & \rightarrow & BB \mid EbE \\ E & \rightarrow & aEbE \mid bEbE \mid \varepsilon \end{array}$$

二义文法,非正则语言.

(6) 所有的以 *a、b* 和 *c* 组成的字符串,其中,没有 *abb* 子串;**解**:没有 *abb* 子串的 DFA 如下所示:

故对应的文法为

$$S \rightarrow aA \mid bS \mid cS \mid \varepsilon$$

$$A \rightarrow aA \mid bB \mid cS \mid \varepsilon$$

$$B \rightarrow aA \mid cS \mid \varepsilon$$

无二义文法,该语言为正则语言.

(7) $\{a^mb^n \mid m > n \wedge m - n$ 是偶数 $\}$ 。 解: 设 $T = \{a^nb^n \mid n \in \mathbb{N}\}$. 设 $w \in S$, 则 $w = a^{2p}a^nb^n \ (p \ge 1)$. 这样可设计如下文法

$$\begin{array}{ccc} S & \rightarrow & aaS \mid aaT \\ T & \rightarrow & aTb \mid \varepsilon \end{array}$$

无二义文法,该语言不是正则的.

三、(1) 定义两非终结符集合:

$$\mathcal{E} = \{ U \mid U \in N \land U \stackrel{*}{\Rightarrow} w \in T^* \}$$
$$\mathcal{A} = \{ U \mid U \in N \land S \stackrel{*}{\Rightarrow} \alpha U\beta \}$$

(1) 所有的经过 0 次或多次推出终结符的非终结符集 \mathcal{E} :

$$\mathcal{E} = \{ U \mid X \in T \land U \stackrel{*}{\Rightarrow} w \in T^* \}.$$

 \mathcal{E} 可递归定义为:

$$\begin{cases}
\mathcal{E}_0 = \emptyset \\
\mathcal{E}_{i+1} = E_i \cup \{P \mid P \in N \land \exists P \to X_1 X_2 \cdots X_n \\
\land X_j \in T \cup \mathcal{E}_i (j = 1, 2, \dots, n\}
\end{cases}$$

求 \mathcal{E} 的算法如下:

```
Set E = emptyset;
int change = 1;
while (change) {
  change = 0;
  foreach nonterminal P in (N - E) do
   foreach production (P -> X1 X2 ... Xn) do {
     int is new = 1;
     foreach Xi do {
       if (Xi in (N - E)) {
         is_new = 0;
         break;
       }
     }
     if (is new) {
       E = E + \{P\};
       change = 0;
     }
}
```

(2) 所有的从文法开始符号 S 能够推出的非终结符集 A:

$$\mathcal{A} = \{ U \mid U \in N \land S \stackrel{*}{\Rightarrow} \alpha U \beta \}.$$

A 可递归定义为:

```
 \left\{ \begin{array}{ll} \mathcal{A}_0 &=& \{S\} \\ \mathcal{A}_{i+1} &=& A_i \cup \{X \,|\, X \in N \land \exists P \to \alpha X \beta \land P \in \mathcal{A}_i\} \end{array} \right.  求 \mathcal{A} 的算法如下:

Set A = \{S\};
int change = 1;
while (change) {
   change = 0;
   foreach nonterminal P in (A) do
   foreach production (P -> X1 X2 ... Xn) do {
     foreach Xi do {
        if (Xi in (N - A)) {
        change = 1;
        A = A + {Xi};
     }
   }
}
```

} 算法**:**

- 1/ calcul the nonterminal set E which can generate the terminals.
- 2/ delete all production of nonterminal in N E.
- 3/ calcul the accessible set A.
- 4/ delete all productions of nonterminal in N A.
- (2) 用下述文法检验你的算法:

$$S \rightarrow 0 \mid A$$

$$A \rightarrow AB$$

$$B \rightarrow 1$$

```
1/\mathcal{E} = \{B, S\}; 2/N - \mathcal{E} = \{A\}; 3/A = \{S\}; 4/(N - \mathcal{E}) - A = \{B\}. so S \to 0 是仅剩的产生式. 思考: 为什么不能先计算 A,再计算 \mathcal{E}?
```

四、 对下述文法消除左递归和左公因子、求 First 和 Follow 集、构造 LL(1) 分析表

(1)
$$S \rightarrow SS + |SS*| a$$
.

消除左递归和左公因子的等价文法:

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & ST \mid \varepsilon \\ T & \rightarrow & +S' \mid *S' \end{array}$$

该文法是 LL(1) 文法.

(2) $S \rightarrow 0S1 \mid 01$. 消除左递归和左公因子的等价文法:

$$\begin{array}{ccc} S & \rightarrow & 0S' \\ S' & \rightarrow & S1 \mid 1 \end{array}$$

该文法是 LL(1) 文法. 其 LL(1) 分析表如下所示:

状态	0	1	\$
S	$S \to 0S'$		
S'	$S \to S1$	$S \rightarrow 1$	

(3) $S \to S(S)S \mid \varepsilon$. 消除左递归和左公因子的等价文法:

$$S \rightarrow (S)SS \mid \varepsilon$$

该文法是二义文法,因此不是 LL(1) 文法. 不能用递归下降分析法分析.

状态()\$
$$S$$
 $S \rightarrow (S)SS$, $S \rightarrow \varepsilon$ $S \rightarrow \varepsilon$ $S \rightarrow \varepsilon$

而与之等价的文法:

$$S \rightarrow (S)S \mid \varepsilon$$

是 LL(1) 文法. 其 LL(1) 分析表如下所示:

状态 () \$
$$S \to S \to S \to \varepsilon$$

(4) $S \rightarrow (L) \mid a \text{ and } L \rightarrow L, S \mid S$. 消除左递归和左公因子的等价文法:

$$S \rightarrow (L) \mid a$$

$$L \rightarrow SL'$$

$$L' \rightarrow SL' \mid \varepsilon$$

该文法是 LL(1) 文法.

五、 设含有否定 \neg 和蕴含 \rightarrow 运算的命题公式文法 G(F) 定义如下: (2020 年考题)

$$F \rightarrow F \rightarrow F \mid \neg F \mid (F) \mid a$$

其中: 'a', '→', '¬', '('和')' 为终结符, F 是文法开始符号.

(1) 试写出语句 "¬(a→a)"的一个最左推导; 语句 "¬(a→a)"的最左推导如下:

$$\begin{array}{cccc} F & \Longrightarrow & \neg F & & \Longrightarrow & \neg (\mathbf{a} \rightarrow F) \\ & \Longrightarrow & \neg (F) & & \Longrightarrow & \neg (\mathbf{a} \rightarrow a) \\ & \Longrightarrow & \neg (F \rightarrow F) & & \Longrightarrow & \neg (\mathbf{a} \rightarrow a) \end{array}$$

(2) 试消除文法 G(F) 中的左递归和左公因子; 消除左递归和左公因子后的文法如下:

$$\begin{array}{ccc} F & \rightarrow & \neg FF' \mid \operatorname{a} F' \mid (F) \, F' \\ F' & \rightarrow & \rightarrow F \, F' \mid \varepsilon \end{array}$$

(3) 试对消除左递归后的文法所有非终结符求 First 集和 Follow 集;

非终结符	First	Follow
\overline{F}	a, (, ¬	→,), \$
$\overline{F'}$	→ , ε	→,), \$

(4) 试对消除左递归后的文法构造 LL(1) 分析表,从而说明消除左递归后的文法不是 LL(1) 文法; LL(1) 分析表如下所示

		a	コ	→	()	\$
ſ	F	$F o\mathtt{a} F'$	$F \to \neg FF'$		$F \to (F)F'$		
ſ	F'			$F' \to \to FF' \mid \varepsilon$		$F' \to \varepsilon$	$F' \to \varepsilon$

分析表有冲突项,故不是 LL(1) 文法.

(5) 试利用你的分析表写出语句"¬(a→a)"的一个正确的分析过程. 语句"¬(a→a)"的分析过程如下所示:

剩余串	分析栈	分析动作
¬(a→a)\$	F\$	$F \rightarrow \neg FF'$
¬(a→a)\$	$\neg FF'$ \$	match-advance
(a→a)\$	FF'\$	$F \to (F)F'$
(a→a)\$	(F)F'F'\$	match-advance
a → a)\$	F)F'F'\$	$F o\mathtt{a} F'$
a→a)\$	$\mathtt{a} F') F' F' \$$	match-advance
→a)\$	F')F'F'\$	$F' \rightarrow \rightarrow FF'$
→a)\$	$\rightarrow FF')F'F'$ \$	match-advance
a)\$	FF')F'F'\$	$F o \mathtt{a} F'$
a)\$	$\mathtt{a}F'F')F'F'\$$	match-advance
)\$	F'F')F'F'\$	$F' \to \varepsilon$
)\$	F')F'F'\$	$F' \to \varepsilon$
)\$)F'F'\$	match-advance
\$	F'F'\$	$F' \to \varepsilon$
\$	F'\$	$F' \to \varepsilon$
\$	\$	分析成功

六、 设文法 G(F) 如题二所示:

(2020 年考题)

(1) 试对语句"¬a→a"画出两棵不同的语法树,从而说明该文法为二义文法; 语句"¬a→a"的两棵不同的语法树为: 语法树 1:

语法树 2:

(2) 试设计一个与文法 G(F) 等价的无二义的文法,使得蕴含 $(F \to F)$ 为**右**结合,且其的优先级**低于**否定. 无二义文法:

$$F \rightarrow N \rightarrow F \mid N$$

$$N \rightarrow \neg N \mid A$$

$$A \rightarrow (F) \mid \mathbf{a}$$