Universidad de la República, Facultad de Ciencias Económicas y de Administración.

ECONOMETRÍA I - CURSO 2015

PRACTICO 7 Tópicos de Teoría Asintótica

EJERCICIO 1 (Repaso Estadística II)

- i) Recuerde las definiciones de convergencia en probabilidad, convergencia en media y convergencia en distribución.
- ii) Sea X una variable aleatoria tal que:
 - X = 0, con P(X = 0) = 0.5
 - X = 1, con P(X = 1) = 0.5, y sea una sucesión $X_1, X_2, ..., X_n$ de variables aleatorias idénticamente distribuidas tales que $X_n = X$, para todo n.

Se define la variable Y = 1 - X.

¿Es cierto que Xn converge en probabilidad a Y? Justifique.

¿Es verdadero que Xn converge en media a Y? Justifique.

Finalmente, ¿se cumple que Xn converge en distribución a Y? Justifique.

EJERCICIO 2 (Repaso Estadística II)

Sea una variable aleatoria $Y \sim N(\mu = 50; \sigma = 1.7)$. Se consideran muestras aleatorias simples con reposición de medias muestrales calculadas a partir de N observaciones i.i.d. de Y: $\overline{Y_1}, \overline{Y_2}, \dots \overline{Y_n}$ (el término general de la sucesión es $\overline{Y_n} = \frac{1}{N} \sum_{i=1}^{i=N} Y_i$, considerándose los casos en que N = 10, 50, 100, 500, 1000, 10000). En lo que sigue se trabajará con n = 100.

<u>ler caso</u>: Los elementos de la sucesión son promediados para definir el estadístico: $\overline{\overline{Y_n}} = \frac{1}{n} \sum_{i=1}^{j=n} \overline{Y_j}$.

Tamaño Muestra Inicial (N)	Cantidad Muestras (n)	Media	Varianza	Mínimo	Máximo
10	100	50.00097	.3308333	48.09917	51.72934
50	100	50.00299	.0553431	49.43293	50.60966
100	100	50.00066	.0324034	49.55311	50.42008
500	100	50.00808	.0070341	49.79076	50.21925
1000	100	50.00602	.0029154	49.88082	50.12190
10000	100	49.99783	.0002516	49.95482	50.03926

<u>2do caso</u>: Se define el estadístico "primer observación de la muestra": de las N observaciones iniciales, se elige la primera de ellas y se promedia en las n muestras.

Tamaño Muestra Inicial (N)	Cantidad Muestras (n)	Media	Varianza	Mínimo	Máximo
10	100	50.07748	3.546948	45.96568	54.89072
50	100	50.15595	3.125549	45.09898	54.35179
100	100	50.01869	3.832873	43.38124	54.10126
500	100	49.99636	3.292846	45.40297	54.95060
1000	100	50.11849	2.654474	46.05355	54.46286
10000	100	50.39916	3.079707	46.42887	55.69289

 $\underline{3}$ er caso: Se define el estadístico "máximo de la muestra": de las N observaciones iniciales, se elige el máximo de ellas y se promedia en las n muestras.

Tamaño Muestra Inicial (N)	Cantidad Muestras (n)	Media	Varianza	Mínimo	Máximo
10	100	52.45009	.8612687	50.15248	54.77333
50	100	53.88606	.7439522	52.26095	56.56131
100	100	54.17222	.6519774	52.79483	56.99885
500	100	55.21258	.4571618	54.04671	57.83738
1000	100	55.51743	.2932233	54.10310	56.79222
10000	100	56.54477	.2536974	55.53807	58.50704

Se desea obtener una estimación de la media de la población con los datos anteriores.

Se pide:

- i) Analice las propiedades de insesgamiento y de consistencia de los estimadores para la media poblacional considerados.
- ii) Analice la eficiencia de los estimadores de la media considerados (formal e intuitivamente), ilustrando con la información disponible.
- iii) Indiqué qué estimadores utilizaría para el desvío de Y. (Analice las propiedades de insesgamiento y consistencia para cada uno de ellos).

EJERCICIO 3

Sea $X_1, X_2, ... X_n, ...$ una sucesión de variables aleatorias i.i.d. de $X \sim U_{[0;1]}$.

Se considera el estadístico $M_n = \max\{X_1, X_2, ... X_n\}$.

Probar que: $n(1 - Mn) \rightarrow_D Y \sim exp(1)$. (El estadístico n(1 - Mn) converge en distribución a la variable Y).

EJERCICIO 4

Dado el modelo de regresión de lineal clásico $y = X\beta + \mu$ y sabiendo que $\lim_{n \to \infty} \left(\frac{X'X}{n} \right) = \Sigma$ es una matriz de constantes finitas, simétrica y definida positiva, demostrar que $\hat{\beta} = (X'X)^{-1}X'y$ es consistente como estimador de β .

EJERCICIO 5

Considerando el MRLM bajo los supuestos:

a) X matriz de efectos fijos y rango(X) = k < N.

$$\mathbf{b)} \quad \lim_{n \to \infty} \left(\frac{\mathbf{X}'\mathbf{X}}{n} \right) = Q$$

- c) $E(\varepsilon) = 0$
- **d)** $E(\varepsilon'\varepsilon) = \sigma^2 I$
- i)
- Demuestre que el $plim \frac{\hat{\boldsymbol{\mathcal{E}}}'\hat{\boldsymbol{\mathcal{E}}}}{N-k} = plim \frac{\boldsymbol{\mathcal{E}}'\,\boldsymbol{\mathcal{E}}}{N}$ Aplicando la LEY DÉBIL DE LOS GRANDES NÚMEROS (Guía Est. II, TM. ii) 8.4., pág 48), demuestre que $plim \frac{1}{N} \sum_{i=1}^{i=N} \boldsymbol{\varepsilon}_i^2 = \boldsymbol{\sigma}_{\boldsymbol{\varepsilon}}^2$. Concluya la consistencia de $\hat{\boldsymbol{\sigma}}_{MCO}^2$ como estimador de $\hat{\boldsymbol{\sigma}}_{\boldsymbol{\varepsilon}}^2$.