Introducción

- Recursos Limitados (CPU, Memoria, Dispositivos, etc)
- Procesos
 - 1.Solicitan
 - 2.Usan
 - 3.Liberan
- Si un recurso no está disponible, un proceso puede bloquearse.


```
Auto 1
                   Auto 2
                                  Auto 3
                                                  Auto 4
wait(a);
               wait(b);
                               wait(c);
                                              wait(d);
wait(b);
               wait(c);
                               wait(d);
                                              wait(a);
avanzar();
               avanzar();
                               avanzar();
                                              avanzar();
signal(a);
               signal(b);
                                              signal(d);
                               signal(c);
signal(b);
               signal(c);
                                              signal(a);
                               signal(d);
```

```
a = 1
b = 1
c = 1
d = 1
```



```
Proceso 1 Proceso 2

wait (sem_a);
wait (sem_b);
wait (sem_b);
* SECCIÓN CRÍTICA *
signal (sem_a);
signal (sem_b);
signal (sem_b);
signal (sem_a);
```

```
sem_a = 1
sem_b = 1
```

<u>Deadlock</u>

Definición

Bloqueo permanente de un conjunto procesos donde cada uno de estos procesos está esperando un evento que sólo puede generar un proceso del conjunto.

Deadlock

Tipos de recursos:

- Reutilizables
- Consumibles

Grafo de asignación de recursos:

 Permite representar el estado del sistema con respecto a la asignación de los recursos a cada proceso en un momento determinado.

PROCESO

RECURSO CON 1 INSTANCIA

RECURSO CON 3 INSTANCIAS

Deadlock

- Hay 3 procesos.
- Hay 1 recurso con dos instancias.
- Hay 2 recursos con una instancia.
- El *P1* solicita 1 de *R1* y 1 de *R2*.
- El *P1* tiene asignado 1 de *R1*.
- El *P2* solicita 1 de *R3*.
- El P2 no tiene recursos asignados.
- El P3 no solicita recursos.
- El P3 tiene asignado 1 de R2 y 1 de R3.


```
Proceso 1
                                    Proceso 2
       wait (sem a);
                              wait (sem b);
                                                     4
       wait (sem b);
                              wait (sem a);
       * SECCIÓN CRÍTICA *
                              * SECCIÓN CRITICA *
P1 se
                                                     P2 se
       signal (sem a);
                              signal (sem b);
                                                     bloquea
bloquea
       signal (sem b);
                              signal (sem a);
```


$$sem_a = 1 \theta -1$$

 $sem_b = 1 \theta -1$

- Ciclos:
 - Si no hay ciclos no hay Deadlock.
 - Si hay un ciclo en el grafo puede implicar la existencia de Deadlock.
 - Si hay un ciclo y además todos los recursos son de una sola instancia, entonces hay Deadlock.

<u>Deadlock</u>

Grafo de asignación de recursos:

Ciclos:

Ciclo CON Deadlock

Ciclo SIN Deadlock

Condiciones para la existencia de Deadlock

- Mutua Exclusión.
- Retención y Espera.
- Sin desalojo de recursos.

Condiciones Necesarias

```
Proceso 1 Proceso 2

wait (sem_a);
wait (sem_b);
wait (sem_b);
* SECCIÓN CRÍTICA *
signal (sem_a);
signal (sem_b);
signal (sem_b);
signal (sem_a);
```

Condiciones para la existencia de Deadlock

- Mutua Exclusión.
- Retención y Espera.
- Sin desalojo de recursos.

Espera Circular.

Necesarias Condiciones
Necesarias y
Suficientes

Condiciones

<u>Deadlock</u>

Tratamiento del Deadlock:

Estrategias para que nunca ocurra Deadlock.

Estrategias en la que puede ocurrir Deadlock.

- 1) Prevención de Deadlock:
 - Garantiza que no ocurrirá Deadlock.
 - Impedir que se produzca alguna de las cuatro condiciones.
 - Mutua-Exclusión.
 - Retención y Espera.
 - Sin desalojo de recursos.
 - Espera Circular.

<u>Deadlock</u>

- 1) Prevención de Deadlock:
 - Condición 1: Mutua-Exclusión
 - Si hay recursos que no se pueden compartir no puede evitarse.

<u>Deadlock</u>

- 1) Prevención de Deadlock:
 - Condición 2: Retención y Espera
 - Solicitar todos los recursos juntos.
 - Solicitar los recursos de a uno o varios, utilizarlos y liberarlos.

- 1) Prevención de Deadlock:
 - Condición 3: Sin desalojo de recursos
 - Si un proceso que tiene recursos asignados solicita uno que no está disponible, debe liberar sus recursos.
 - Si un proceso A solicita un recurso que está asignado a otro proceso B que está a la espera de más de recursos. El recurso asignado al proceso B puede asignarse al proceso A.

- 1) Prevención de Deadlock:
 - Condición 4: Espera Circular
 - Asignar un número de orden a los recursos. Los recursos sólo pueden solicitarse en orden creciente.

- 2) Evasión o Predicción de Deadlock:
 - Garantiza que no ocurrirá Deadlock.
 - Técnicas:
 - 1) Denegar el inicio de un proceso.
 - 2) Denegar la asignación de un recurso.
 - Algoritmo del Banquero.

<u>Deadlock</u>

Tratamiento del Deadlock:

- 2) Evasión o Predicción de Deadlock:
 - 1) Denegar el inicio de un proceso.

$$M_{n+1} + \sum_{i=1}^{n} M_i <= RT$$

Mi = Necesidades Máximas declaradas por el proceso i.

n = Cantidad actual de procesos

RT = Recursos Totales del sistema.

- 2) Evasión o Predicción de Deadlock:
 - 2) Algoritmo del Banquero
 - Estado Seguro ==> No habrá Deadlock
 - Se asigna el recurso al proceso.
 - Estado Inseguro ==> Podría existir Deadlock
 - No se asigna el recurso al proceso.

<u>Deadlock</u>

- 2) Evasión o Predicción de Deadlock:
 - 2) Algoritmo del Banquero

Tratamiento del Deadlock:

- 2) Evasión o Predicción de Deadlock:
 - 2) Algoritmo del Banquero

Estado del sistema:

- Vector de Recursos Totales del sistema.
- Vector de Recursos Disponibles del sistema.

Tratamiento del Deadlock:

- 2) Evasión o Predicción de Deadlock:
 - 2) Algoritmo del Banquero

Estado del sistema:

- Matriz de necesidades máximas declaradas por el proceso.
- Matriz de recursos asignados a los procesos.

Tratamiento del Deadlock:

- 2) Evasión o Predicción de Deadlock:
 - 2) Algoritmo del Banquero

Estado del sistema: Ejemplo

Necesidades Máximas

	R1	R2	R3
P1	2	2	0
P2	2	0	2
Р3	2	2	1

Recursos Asignados

		_	
	R1	R2	R3
P1	0	1	0
P2	2	0	1
Р3	1	0	1

Recursos Totales

R1	R2	R3
3	2	3

Recursos Disponibles

R1	R2	R3
0	1	1

Tratamiento del Deadlock:

2) Evasión o Predicción de Deadlock:

2) Algoritmo del Banquero Algoritmo de seguridad

	R1	R2	R3
P1	2	2	0
P2	2	0	2
РЗ	2	2	1

Recursos Asignados

	R1	R2	R3
P1	0	1	0
P2	2	0	1
РЗ	1	0	1

Necesidades pendientes

	R1	R2	R3
P1	2	1	0
P2	0	0	1
P3	1	2	0

Recursos Totales

R1	R2	R3
3	2	3

Recursos Disponibles

R1	R2	R3
0	1	1

Tratamiento del Deadlock:

R1	R2	R3
0	1	1

2) Evasión o Predicción de Deadlock:

2) Algoritmo del Banquero Algoritmo de seguridad

	R1	R2	R3
P1	2	2	0
P2	2	0	2
РЗ	2	2	1

Recursos Asignados

	R1	R2	R3
P1	0	1	0
P2	2	0	1
РЗ	1	0	1

Necesidades pendientes

	R1	R2	R3
P1	2	1	0
P2	0	0	1
P3	1	2	0

Recursos Totales

R1	R2	R3
3	2	3

Recursos Disponibles

R1	R2	R3
0	1	1

Tratamiento del Deadlock:

2) Evasión o Predicción de Deadlock:

2) Algoritmo del Banquero Algoritmo de seguridad

R1	R2	R3
0	1	1

Finaliza P2

R1	R2	R3
2	1	2

Necesidades Máximas

	R1	R2	R3
P1	2	2	0
P2	2	0	2
РЗ	2	2	1

Recursos Asignados

	R1	R2	R3
P1	0	1	0
P2	2	0	1
Р3	1	0	1

Necesidades pendientes

	R1	R2	R3	
P1	2	1	0	
P2	0	0	1	
P3	1	2	0	

Recursos Totales

R1	R2	R3
3	2	3

Recursos Disponibles

R1	R2	R3
0	1	1

	R1	R2	R3	L
P1	2	1	0	
P2	0	0	1	
P3	1	2	0	

- 2) Evasión o Predicción de Deadlock:
 - 2) Algoritmo del Banquero Algoritmo de seguridad

R1	R2	R3
0	1	1
0	1	1

Finaliza P2			
R1	R2	R3	
2	1	2	

Finaliza P1			
R1	R2	R3	
2	2	2	

Necesid	ade	s M	áxim	as
---------	-----	-----	------	----

	R1	R2	R3
P1	2	2	0
P2	2	0	2
РЗ	2	2	1

Recursos Asignados

	R1	R2	R3
P1	0	1	0
P2	2	0	1
РЗ	1	0	1

Necesidades pendientes

	R1	R2	R3
P1	2	1	0
P2	0	0	1
P3	1	2	0

Recursos Totales

R1	R2	R3
3	2	3

Recursos Disponibles

R1	R2	R3
0	1	1

Deadlock

Tratamiento del Deadlock:

- 2) Evasión o Predicción de Deadlock:
 - 2) Algoritmo del Banquero Algoritmo de seguridad

0	1	1
,.	D.	

Finaliza P2			
R1	R2	R3	
2	1	2	

Finaliza P1			
R1	R2	R3	
2	2	2	

Finaliza P3			
R1	R2	R3	
3	2	3	

				1. 1. 4. 7	
Necesic	la H	-	1.1.5	1444	
Distance and Section 1	K20-C 1	1000	IVIJH	ржи	THREE

	R1	R2	R3
P1	2	2	0
P2	2	0	2
РЗ	2	2	1

Recursos Asignados

	R1	R2	R3
P1	0	1	0
P2	2	0	1
Р3	1	0	1

Recursos Disponibles

R1	R2	R3
0	1	1

Es Estado Seguro. La secuencia Segura es P2 \rightarrow P1 \rightarrow P3

Necesidades pendientes

R3

R1

Recursos Totales

R1	R2	R3
3	2	3

- 2) Evasión o Predicción de Deadlock:
 - 2) Algoritmo del Banquero Algoritmo de solicitud de recursos
 - Se simula la asignación del recurso y se aplica el algoritmo de seguridad.

Tratamiento del Deadlock:

• 2) Evasión o Predicción de Deadlock:

2) Algoritmo del Banquero Algoritmo de solicitud de recursos

	R1	R2	R3
P1	2	2	0
P2	2	0	2
РЗ	2	2	1

Recursos Asignados

	R1	R2	R3
P1	0	1	0
P2	2	0	1
РЗ	1	0	1

Necesidades pendientes

	R1	R2	R3
P1	2	1	0
P2	0	0	1
P3	1	2	0

P3 solicita una instancia de R2

Recursos Totales

R1	R2	R3
3	2	3

Recursos Disponibles

R1	R2	R3
0	1	1

Tratamiento del Deadlock:

• 2) Evasión o Predicción de Deadlock:

2) Algoritmo del Banquero Algoritmo de solicitud de recursos

	R1	R2	R3
P1	2	2	0
P2	2	0	2
РЗ	2	2	1

Recursos Asignados

	R1	R2	R3
P1	0	1	0
P2	2	0	1
Р3	1	0	1

Necesidades pendientes

		R1	R2	R3
	P1	2	1	0
=	P2	0	0	1
	P3	1	2	0

P3 solicita una instancia de R2

Recursos Totales

R1	R2	R3
3	2	3

Recursos Disponibles

R1	R2	R3
0	10	1

- 3) Detección y Recuperación de Deadlock:
 - Puede ocurrir Deadlock.
 - No hay restricciones para asignar recursos disponibles.
 - Periódicamente se ejecuta el Algoritmo de Detección para determinar la existencia de Deadlock.

- 3) Detección y Recuperación de Deadlock:
 - Opciones de Recuperación:
 - Terminar procesos involucrados.
 - Retroceder el proceso a un estado anterior.
 - Terminar algún proceso involucrado hasta que deje de existir Deadlock.
 - Expropiar Recursos hasta que no exista Deadlock.

- 3) Detección y Recuperación de Deadlock:
 - Criterios de selección de procesos para terminar o expropiar:
 - Menor tiempo de procesador consumido.
 - Menor cantidad de salida producida.
 - Mayor tiempo restante estimado.
 - Menor número total de recursos asignados.
 - Menor prioridad

Tratamiento del Deadlock:

• 3) Detección y Recuperación de Deadlock:

Recursos Asignados

	R1	R2	R3
P1	0	1	0
P2	2	0	1
РЗ	1	1	1
P4	0	0	0

Recursos Totales

R1	R2	R3
3	2	3

Solicitudes Actuales

	R1	R2	R3
P1	2	1	0
P2	0	0	1
Р3	1	1	0
P4	0	1	1

Recursos Disponibles

R1	R2	R3
0	0	1

<u>Deadlock</u>

Tratamiento del Deadlock:

3) Detección y Recuperación de Deadlock:

R1	R2	R3
0	0	1

	R1	R2	R3
P1	0	1	0
P2	2	0	1
Р3	1	1	1
P4	0	0	
Ρ4	٥	ט	O

Recursos Totales

R1	R2	R3
3	2	3

Recursos Asignados Solicitudes Actuales

	R1	R2	R3
P1	2	1	0
P2	0	0	1
Р3	1	1	0
D.4		4	4
P4	Ü	Т	Т

Recursos Disponibles

R1	R2	R3
0	0	1

<u>Deadlock</u>

Tratamiento del Deadlock:

• 3) Detección y Recuperación de Deadlock:

R1	R2	R3
0	0	1

Recursos Asignados Solicitudes Actuales

	R1	R2	R3	
P1	0	1	0	
P2	2	0	1	
	4	•	-	
P3	1	1	1	
2		((
P4	Ü	U	U	

Recursos Totales

R1	R2	R3
3	2	3

		R1	R2	R3
	P1	2	1	0
	P2	0	0	1
	P3	1	1	0
_	P4	0	1	1

Recursos Disponibles

R1	R2	R3
0	0	1

Finaliza P2

R1	R2	R3
2	0	2

Tratamiento del Deadlock:

3) Detección y Recuperación de Deadlock:

R1	R2	R3
0	0	1

Recursos Asignados Solicitudes Actuales

	R1	R2	R3	
P1	0	1	0	
P2	2	0	1	
. –		•		
P3	1	1	1	
2		((
- P4	U	U	U	

Recursos Totales

R1	R2	R3
3	2	3

	R1	R2	R3	
P1	2	1	0	
P2	0	0	1	
P3	1	1	0	
P4	0	1	1	L

Recursos Disponibles

R1	R2	R3
0	0	1

Finaliza P2

R1	R2	R3
2	0	2

Los recursos no alcanzan para finalizar P1 y P3, por lo tanto estos procesos están en Deadlock.

P4 está en inanición.

Deadlock

Tratamiento del Deadlock:

4) No tratarlo!

Tratamiento del Deadlock:

Estrategia Integrada

 Agrupación de recursos y a cada grupo se le aplica alguna de las técnicas.