# ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "ВЫСШАЯ ШКОЛА ЭКОНОМИКИ"»

Московский институт электроники и математики
Департамент компьютерной инженерии
Вдовкин Василий Алексеевич
студент группы № <u>БИВ-141</u>
(образовательная программа «Информатика и вычислительная техника»).

Домашнее задание по разделу «Метрология» дисциплины «Электротехника, электроника и метрология» Вариант: 141 v04

Проверка выборки на наличие промахов по критерию Диксона

|  |  | Проверил: |
|--|--|-----------|
|  |  |           |
|  |  |           |

# Содержание

| 1                | 1 Аннотация |                                   |   |  |  |  |
|------------------|-------------|-----------------------------------|---|--|--|--|
| 2                | Me          | годика обработки                  | 2 |  |  |  |
|                  | 2.1         | Критерий Диксона                  | 2 |  |  |  |
|                  | 2.2         | Среднее арифметическое значение   | 2 |  |  |  |
|                  | 2.3         | Среднее квадратическое отклонение | į |  |  |  |
| 3                | Опи         | исание реализованной программы    | 3 |  |  |  |
|                  | 3.1         | Интерфейс                         |   |  |  |  |
|                  | 3.2         | Особенности работы программы      | 4 |  |  |  |
| 4                | Рез         | ультаты обработки данных          | Ę |  |  |  |
| $\mathbf{C}_{1}$ | писо        | к литературы                      | Ę |  |  |  |
| $\Pi$            | рило        | жение                             | 7 |  |  |  |

### 1 Аннотация

В работе изучается проверка выборки на наличие промахов по критерию Диксона, рассматриваются основные характеристики выборки: среднее арифметическое значение, оценка среднего квадратического отклонения. Выборки состоят из многократных измерений напряжения с использованием платы сбора данных.

Для данных целей реализован программный продукт на языке JavaScript. Интерфейс программы создан на HTML с использованием библиотеки Bootstrap.

# 2 Методика обработки

### 2.1 Критерий Диксона

При использовании данного критерия полученные результаты измерений записываются в вариационный возрастающий ряд  $x_1 < x_2 < \cdots < x_n$ . Расчетное значение критерия определяется как

$$K_{\perp} = \frac{x_n - x_{n-1}}{x_n - x_1}$$

Если расчетное значение критерия будет больше критического значения  $K_{\rm Д}>Z_q,$  то проверяемое значение считается промахом и отбрасывается. Критические значения критерия приведены в табл. 1.

Таблица 1: Критические значения по Диксону

| m                   | $Z_q$   |          |          |          |  |  |
|---------------------|---------|----------|----------|----------|--|--|
| $\lfloor n \rfloor$ | q = 0.1 | q = 0.05 | q = 0.02 | q = 0.01 |  |  |
| 4                   | 0.68    | 0.76     | 0.85     | 0.89     |  |  |
| 5                   | 0.56    | 0.64     | 0.78     | 0.82     |  |  |
| 6                   | 0.48    | 0.56     | 0.64     | 0.7      |  |  |
| 8                   | 0.4     | 0.47     | 0.54     | 0.59     |  |  |
| 10                  | 0.35    | 0.41     | 0.48     | 0.53     |  |  |
| 14                  | 0.29    | 0.35     | 0.41     | 0.45     |  |  |
| 16                  | 0.28    | 0.33     | 0.39     | 0.43     |  |  |
| 18                  | 0.26    | 0.31     | 0.37     | 0.41     |  |  |
| 20                  | 0.26    | 0.3      | 0.36     | 0.39     |  |  |
| 30                  | 0.22    | 0.26     | 0.31     | 0.34     |  |  |

### 2.2 Среднее арифметическое значение

Одна из наиболее распространённых мер центральной тенденции, представляющая собой сумму всех зафиксированных значений, делённую на их количество. Нахо-

дится по формуле:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

где n — количество элементов выборки.

### 2.3 Среднее квадратическое отклонение

В теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания.

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2},$$

# 3 Описание реализованной программы

### 3.1 Интерфейс

Интерфейс программы состоит из двух элементов: окно ввода данных (рис. 1) и главная панель (рис. 2).



Рис. 1: Окно ввода данных

Кроме ручного ввода выборки можно загрузить примеры (кнопки «Файл 1», «Файл 2»). Программа сообщит, если введёные данные не верны. Ввести выборку с мощностью меньше 4 нельзя. После ввода необходимо нажать кнопку «Go».

Главная панель состоит из списков выборки, её вариационного ряда и информационного окна. В окне вариационного ряда подсвечены результаты измерений разными





Рис. 2: Главная панель

цветами (зелёный — не промах, жёлтый — промах по значимости 0.1 или 0.05, красный — промах по значимости 0.02 или 0.01). Чтобы увидеть коэффициент Диксона  $K_{\rm Д}$  для конкретного измерения, нужно на него кликнуть (рис. 3).



Рис. 3: Коэффициенты

### 3.2 Особенности работы программы

При сортировке выборки в вариационный ряд повторяющиеся значения не включаются для удобства. Для первого и второго элементов вариационного ряда  $K_{\rm Д}$  равен нулю.

Программа выбирает критические значения из таблицы 1 по принципу наименьшего отличия табличного n от мощности исследуемой выборки. Например, при мощности 13, будут выбраны данные, соответствующие n=14. В случае мощности 12 будет выбран ближайший наибольший n=14.

# 4 Результаты обработки данных

Результаты обработки предложенных в файлах данных можно увидеть на рис. 4 и рис. 5.



Рис. 4: Файл 1

# Список литературы

[1] Сергеев А.Г., Крохин В.В. Метрология: Учеб. пособие для вузов. -М.: Логос, 2001. -408 с.: ил. ISBN 5-94010-039-2

| Выборка (16) | Вариац. ряд |
|--------------|-------------|
| 1.698        | 1.575       |
| 1.684        | 1.579       |
| 1.641        | 1.583       |
| 1.703        | 1.613       |
| 1.666        | 1.628       |
| 1.628        | 1.631       |
| 1.664        | 1.639       |
| 1.575        | 1.641       |
| 1.672        | 1.664       |
| 1.579        | 1.666       |
| 1.691        | 1.672       |
| 1.631        | 1.684       |
| 1.704        | 1.691       |
| 1.583        | 1.698       |
| 1.639        | 1.703       |
| 1.613        | 1.704       |

```
Информация

Параметры выборки

Ср. арифметическое: 1.65
Ср. квадр. откл: 0.04
Z(0.1): 0.28
Z(0.05): 0.33
Z(0.02): 0.39
Z(0.01): 0.43

Промахи по Диксону (q - значимость)

q = 0.1
1.583 (0.50 > 0.28)
1.613 (0.79 > 0.28)
1.613 (0.79 > 0.33)
q = 0.02
1.583 (0.50 > 0.39)
1.613 (0.79 > 0.39)
1.613 (0.79 > 0.39)

q = 0.01
1.583 (0.50 > 0.39)
1.613 (0.79 > 0.39)
```

Рис. 5: Файл 2

# Приложение

Демострация программы доступна по ссылке: http://metrology.posos.xyz/

### Листинг 1: kek.js

```
1 'use strict';
2 $('#myModal').modal({
    backdrop: 'static',
     keyboard: false
4
5 })
6
7 $("#myModal").modal('show');
8
9 $("#load1").click(function(event) {
    var arr = [1.679, 1.694, 1.632, 1.644, 1.782, 1.676, 1.707, 1.675,
10
        1.654, 1.622, 1.694, 1.64];
     $("#input").val(arr.join('\n'));
11
12 });
13
14 $("#load2").click(function(event) {
     var arr = [1.698, 1.684, 1.641, 1.703, 1.666, 1.628, 1.664, 1.575,
15
        1.672, 1.579, 1.691, 1.631, 1.704, 1.583, 1.639, 1.613];
     $("#input").val(arr.join('\n'));
16
17 });
18
19 $("#goBtn").click(function(event) {
20
21
     function sortFunction(a, b){
22
       if(a<b)
23
          return -1
       if(a>b)
24
25
          return 1
26
       return 0
27
     }
28
29
     $('#myModal').modal({
30
       backdrop: '',
       keyboard: true
31
       });
32
33
34
     var paramsRaw = $("#input").val().split(/\n|\s/).filter(Boolean);
     console.log(paramsRaw);
35
     for (var i=0;i<paramsRaw.length;i++) {</pre>
36
       paramsRaw[i] = parseFloat(paramsRaw[i].replace(",", "."));
37
       if (isNaN(paramsRaw[i]) === true) {
38
         $("#myModalLabel").text("
39
                                                                        ");
40
         $("#input").addClass('bg-danger');
```

```
41
         return;
42
       }
43
     }
44
45
     if (paramsRaw.length < 4) {</pre>
       $("#myModalLabel").text("
46
                                                           3
                                ");
       $("#input").addClass('bg-danger');
47
48
       return;
49
     }
50
51
     $("#myModal").modal('hide');
     var samples = $('#samples');
52
53
     toTable(paramsRaw, samples);
54
     samples.prepend(
55
       $('').attr('class','list-group-item active').append(
56
57
                          ('+paramsRaw.length + ')'
58
       )
     );
59
60
61
     var paramsDick = [];
62
     $.each(paramsRaw, function(i, el){
         if($.inArray(el, paramsDick) === -1) paramsDick.push(el);
63
64
     });
65
     paramsDick = paramsDick.sort(sortFunction);
     toTable(paramsDick, $('#varser'));
66
67
     $('#varser').prepend(
       $('').attr('class','list-group-item active').append(
68
                       . ,
69
      )
70
71
     );
72
73
     parseDicson(paramsDick, paramsRaw);
74
75
     $('#cont').css('display','block');
76 });
77
78 function toTable(params, table) {
79
     table.empty();
     for (var i=0; i<params.length; i++) {</pre>
80
       table.append(
81
           $('<a>').attr('href','#').attr(
82
83
            'data-toggle', 'popover'
         ).popover(
84
85
           {placement:'right'}
86
         ).addClass('list-group-item').append(params[i])
```

```
87
        );
88
      }
89 }
90
91 function generalToUI(params, coeffs) {
      var levels = [
92
           0.10, 0.05, 0.02, 0.01
93
94
      ];
      var total = 0;
95
96
97
      $.each(params, function() {
          total += this;
98
99
      });
100
101
      var avAr = total/params.length;
102
      total = 0;
103
      $.each(params, function() {
104
          total += Math.pow((this-avAr),2);
105
      });
106
      var avSq = Math.sqrt(total/params.length);
107
      $('#genParams').append(
        $('').attr('class','list-group-item-text').append(
108
109
                                                : ' + avAr.toFixed(2)
        )
110
111
      ).append(
112
        $('').attr('class','list-group-item-text').append(
113
                                   .: ' + avSq.toFixed(2)
114
        )
115
      );
      for (var i=0; i < coeffs.length; i++) {</pre>
116
        $('#genParams').append(
117
118
          $('').attr('class','list-group-item-text').append(
119
            'Z('+levels[i]+'): ' + coeffs[i]
120
          )
121
        );
122
      }:
123 }
124
125 function dickToUI(errors, dickCoeffs, paramsDick, paramsRaw,
       criticalCoeffs) {
      console.log(dickCoeffs);
126
      for (var i=0; i<dickCoeffs.length; i++) {</pre>
127
        $('#varser').children().eq(
128
129
          i +1
        ).addClass(
130
131
          'list-group-item-success'
132
        ).attr(
```

```
133
          'data-content', dickCoeffs[i].toFixed(2)
134
        );
135
      }
136
      for (var i=0; i<errors.length; i++) {</pre>
137
        if (errors[i].length == 0) {
          $('#q'+i).addClass('list-group-item-success').append(
138
            $('').attr('class','list-group-item-text').append(
139
140
            )
141
142
          ):
143
        } else {
144
          for (var j=0; j<errors[i].length; j++) {</pre>
            if (i<2) {</pre>
145
146
               $('#varser').children().eq(
147
                 $.inArray(errors[i][j], paramsDick)+1
148
               ).addClass(
                 'list-group-item-warning'
149
150
              );
151
               $('#q'+i).addClass('list-group-item-warning');
            } else {
152
153
               $('#varser').children().eq(
                 $.inArray(errors[i][j], paramsDick)+1
154
155
               ).addClass(
                 'list-group-item-danger'
156
157
               );
158
               $('#q'+i).addClass('list-group-item-danger');
159
            }
160
            $('#q'+i).append(
161
               $('').attr('class','list-group-item-text').append(
                 errors[i][j] + ' (' +
162
163
                 dickCoeffs[$.inArray(errors[i][j], paramsDick)].toFixed(2)
                 + ' > ' + criticalCoeffs[i] + ')'
164
165
               )
166
            );
167
          }
168
        }
169
      }
170 }
171
172 function parseDicson(paramsDick, paramsRaw) {
173
      var errors = [[],[],[],[]];
174
      var count = paramsRaw.length;
      var levels = [
175
176
           0.10, 0.05, 0.02, 0.01
177
      ];
178
      var critical = [
179
        [4, [0.68, 0.76, 0.85, 0.89]],
```

```
180
        [5, [0.56, 0.64, 0.78, 0.82]],
181
        [6, [0.48, 0.56, 0.64, 0.7]],
182
        [8, [0.4, 0.47, 0.54, 0.59]],
183
        [10,[0.35, 0.41, 0.48, 0.53]],
184
        [14, [0.29, 0.35, 0.41, 0.45]],
        [16,[0.28, 0.33, 0.39, 0.43]],
185
186
        [18,[0.26, 0.31, 0.37, 0.41]],
        [20,[0.26, 0.3, 0.36, 0.39]],
187
        [30,[0.22, 0.26, 0.31, 0.34]]
188
189
      1:
190
191
      var criticalCoeffs = [];
192
      var min = Infinity;
193
      for (var i=0; i < critical.length; i++) {</pre>
194
        var div = Math.abs(count - critical[i][0]);
195
        if (div <= min) {</pre>
          min = div;
196
197
          criticalCoeffs = critical[i][1];
198
        }
199
      }
200
      console.log(criticalCoeffs);
      generalToUI(paramsRaw, criticalCoeffs);
201
202
203
      var dickCoeffs = [0,0];
204
      console.log(paramsDick);
205
      for (var i=2; i<paramsDick.length; i++) {</pre>
        var coeff = (paramsDick[i]-paramsDick[i-1])/(paramsDick[i]-paramsDick
206
            [0]);
        dickCoeffs.push(coeff);
207
        for (var p=0; p<criticalCoeffs.length; p++) {</pre>
208
209
          if (coeff.toFixed(2)>criticalCoeffs[p].toFixed(2)) {
210
             errors[p].push(paramsDick[i]);
211
          }
212
        }
213
      }
214
      dickToUI(errors, dickCoeffs, paramsDick, paramsRaw, criticalCoeffs);
215 };
```