

Student Manual

ภารกิจสนามที่ 2

รายวิชา

FRA161 Robotics Exploration

ปีการศึกษา 2567

จุดประสงค์ภารกิจ 2

FRA161 Robotics Exploration

- 1. นักศึกษาสามารถนำองค์ความรู้ที่มีมาประยุกต์ใช้กับอุปกรณ์ที่กำหนดให้เพื่อทำตามภารกิจที่กำหนด
- 2. นักศึกษาสามารถแบ่งปันองค์ความรู้ในด้านต่างๆ เพื่อส่งเสริมให้นักศึกษาเกิด Learning Environment
- 3. นักศึกษาสามารถทำงานเป็นทีมร่วมกับผู้อื่นได้
- 4. นักศึกษาสามารถเข้าใจองค์ประกอบเบื้องต้นของรายวิชาในภาคการศึกษาชั้นปีที่ 1 ปีการศึกษา 1/2567
- 5. นักศึกษาได้เพิ่มพูนทักษะการบริหารจัดการโครงงาน มีความรับผิดชอบต่องานส่วนตัวและส่วนรวม

FRA141 Computer Programming for Robotics and Automation Engineering I

- 1. ผู้เรียนสามารถเขียนโปรแกรมควบคุมหุ่นยนต์ผ่านโปรแกรมคอมพิวเตอร์ได้
- 2. ผู้เรียนสามารถควบคุมการทำงานของหุ่นยนต์ 2 DOF ได้

FRA162 Engineering Skills for Robotics

- 1. ผู้เรียนสามารถสร้างแบบจำลองทางกลด้วย Program SolidWorks ได้
- 2. ผู้เรียนสามารถนำอุปกรณ์ทางไฟฟ้า มาประยุกต์และออกแบบหุ่นยนต์ 2 DOF ได้
- 3. ผู้เรียนสามารถพัฒนาการทำงานบนบอร์ด Microcontroller ร่วมกับหุ่นยนต์ได้

รายชื่ออาจารย์และผู้ช่วยสอน

อาจารย์

1. ผศ.ดร.เอกชัย เป็งวัง

2. อ.บวรศักดิ์ สกุลเกื้อกูลสุข

3. ดร.รัตนชัย รมัยธิติมา

ผู้ช่วยอาจารย์

1. นายลัทธวัฒน์ เลาหะพันธุ์ (พี่เทียน)

ผู้ช่วยสอน

2. นายปุณยวัจน์ ประจงกิจ (พี่หมี)

3. นายธฤต นามนิราศภัย (พี่วิช)

4. นายนครินทร์ เจตนาธรรมจิต (พี่ชัน)

5. นายภูนุวัฒน์ บุญเกิด (พี่เตเต้)

6. นายภูริวัฒ เกษมสุขไพศาล (พี่ว่าน)

7. นางสาววรกาญจน์ ลาสุวดี (พี่ปีใหม่)

กำหนดการเบื้องต้น

- 20/09/2567 : แจกโจทย์ภารกิจสนามที่ 2

- 25/10/2567 : ทำภารกิจสนาม 2 จริง

คำอธิบายภารกิจ

นักศึกษาต้องสร้างเครื่องหมุนที่สามารถหมุนไปยังตำแหน่งที่กำหนดได้ พร้อมกับจิ้มปากกาลงบนเป้าให้ แม่นยำที่สุด โดยทำงานเป็นกลุ่มตามกลุ่มของ Social Innovation หุ่นยนต์ต้องถูกออกแบบและประกอบเชิง วิศวกรรมเท่านั้น (ไม่อนุญาตให้ใช้กาวร้อนหรือเทป และต้องมีการออกแบบก่อนการสร้าง) และต้องสามารถ ตรวจสอบตำแหน่งเริ่มต้นได้ นักศึกษาจะต้องช่วยเหลือกันในกลุ่ม เพื่อให้หุ่นยนต์สามารถทำงานได้ตามข้อกำหนด ของภารกิจ

รูปที่ 1 แสดงภาพสนามภารกิจ 2

ขอบเขตและข้อจำกัดภารกิจ

- หุ่นยนต์ (เครื่องหมุน) สามารถหมุนไปยังตำแหน่งที่กำหนดได้
- หุ่นยนต์สามารถจิ้มปากกาลงบนเป้าหมายได้**หลังจากเคลื่อนที่ไปถึงยังตำแหน่งที่กำหนดแล้วเท่านั้น**
- สามารถใช้ Step Motor หรือ DC Motor ในการทำภารกิจ แต่ไม่อนุญาตให้ใช้ Servo Motor
- ไม่กำหนดรูปแบบการออกแบบ **แต่ไม่อนุญาตให้ใช้กาวหรือเทปกาวในการประกอบหุ่นยนต์**
- หุ่นยนต์ที่ออกแบบต้องมีองศาอิสระในการเคลื่อนที่ไม่เกิน 2 รูปแบบ (2 DOF)
- กำหนดระยะห่างจากจุดศูนย์กลางของเครื่องหมุนให้อยู่ห่างจากจุดศูนย์กลางของเป้า 350 mm
- ต้องมีกล่องวงจรไฟฟ้าเพื่อเก็บวงจรควบคุมให้เรียบร้อย
- ที่ตำแหน่ง 0° จะมี limit switch เพื่อใช้สำหรับการกำหนด home configuration
- การกำหนดตำแหน่งจะอิงจากตำแหน่ง 0° เป็นจุดเริ่มต้น โดยตำแหน่งเป้าหมายคือองศาที่กวาดออกไป จากตำแหน่งเริ่มต้น เช่น ถ้าหากเคลื่อนที่ไปยังตำแหน่ง 135° หมายความว่าที่**ตำแหน่ง 135° สามารถวัด** มุมเทียบกับตำแหน่ง 0° ได้ 135° โดยอ้างอิงจุดกลางสนามเป็นจุดหมุน (สามารถดูรูปได้ใน Dimension และอุปกรณ์ที่เกี่ยวข้องกับสนามภารกิจ 2)
- หุ่นยนต์ต้องยึดกับสนามบนอลูมิเนียมโปรไฟล์ 4 แท่งตรงกลางสนามเท่านั้น
- ไม่กำหนดขนาดและน้ำหนักของหุ่นยนต์ที่สร้าง
- ห้ามทำลายสนาม หรือกระทำการใดๆ ที่ทำให้สนามชำรุดเสียหายโดยเด็ดขาด
- หุ่นยนต์สามารถกำหนดตำแหน่งเป้าหมายได้จากการใส่ค่าในคอมพิวเตอร์ (วิธีใดก็ได้)
- มีหุ่นยนต์ส่งจำนวนกลุ่มละ 1 ตัว
- สิ่งที่มีให้คือ สนามภารกิจ(พร้อม limit switch) และเป้าสำหรับติดบนสนาม(สามารถปริ้นมาติดเพิ่มได้ด้วย ตัวเอง) ส่วนปากกาสำหรับจิ้มสามารถเลือกใช้ได้ตามที่ออกแบบไม่มีกำหนด

รูปแบบการทดสอบ

การทดสอบจะถูกแบ่งออกเป็น 2 ส่วน ส่วนแรกคือการทดสอบก่อนวันทดสอบจริง เพื่อวัดประสิทธิภาพ ของหุ่นยนต์ และส่วนที่ 2 คือการทดสอบหุ่นยนต์ในวันทดสอบจริง โดยรูปแบบการทดสอบมีดังนี้

1. การทดสอบประสิทธิภาพของหุ่นยนต์

ในการทดสอบนี้ ทางกลุ่มจะต้องวัดความแม่นยำและความเที่ยงตรงของหุ่นยนต์ พร้อมกับจัดทำรายงาน การบันทึกและวิเคราะห์ผล โดยเริ่มทดสอบจากการให้หุ่นยนต์เคลื่อนที่ไปยังตำแหน่งเป้าหมายที่กำหนด จากนั้นทำการจิ้มปากกาลงบนเป้าและบันทึกผลที่ได้ หลังจากนั้นให้เคลื่อนที่กลับไปยังตำแหน่ง Home ซึ่ง ทางกลุ่มจะต้องเป็นผู้กำหนดตำแหน่งของเป้าหมายและจำนวนครั้งที่ต้องการทดสอบในแต่ละเป้าหมาย เพื่อใช้ในการบันทึกผลด้วยตัวเอง พร้อมบอกหลักการและเหตุผลในการเลือกค่าดังกล่าว

หมายเหตุ: การทดสอบนี้จะต้องเก็บและวิเคราะห์ผล พร้อมกับส่งรายงานภายในระยะเวลาที่กำหนด ซึ่ง เวลาที่กำหนดจะมีการแจ้งในภายหลัง พร้อมกับรูปแบบการทำรายงาน

2. การทดสอบหุ่นยนต์ในวันทดสอบจริง(วันที่ทำภารกิจ 2)

ในการทดสอบนี้ ทางกลุ่มจะต้องสาธิตการทำภารกิจของหุ่นยนต์เพื่อตรวจสอบว่ากลุ่มสามารถออกแบบ และสร้างหุ่นยนต์ให้ทำตามภารกิจได้หรือไม่ โดยจะพิจารณาขอบเขตและข้อจำกัดของภารกิจเป็นอันดับ แรก ตามมาด้วยการตรวจสอบความแม่นยำจากการทำงานของหุ่นยนต์ วิธีการทดสอบจะเป็นการให้ หุ่นยนต์เคลื่อนที่ไปยังตำแหน่งที่อาจารย์และ TA สุ่มขึ้นมา ซึ่งเมื่อหุ่นยนต์เคลื่อนที่ไปถึงและสามารถจิ้ม ปากกาลงบนเป้าได้ จะทำการนับคะแนน (คะแนนจะอิงตามเกณฑ์การให้คะแนนในหัวข้อต่อไป) โดยการ ตรวจสอบความแม่นยำจะสุ่มเป้าหมายให้หุ่นยนต์เคลื่อนที่ไปทั้งหมด 5 ครั้ง และทุกครั้งที่เคลื่อนที่ไปถึง เป้าหมายและนับคะแนนแล้ว จะต้องให้หุ่นยนต์กลับไปยังตำแหน่ง Home ก่อนที่จะเปลี่ยนเป้าหมาย ส่วน ต่อไปจะเป็นการวัดความเที่ยงตรง โดยอาจารย์และ TA จะกำหนดเป้าหมายหนึ่งเป้าหมายให้กับหุ่นยนต์ ซึ่งหุ่นยนต์จะต้องเคลื่อนที่ไป-กลับระหว่างตำแหน่งที่กำหนดกับตำแหน่ง Home จำนวน 10 รอบ เมื่อถึง ตำแหน่งที่กำหนด หุ่นยนต์จะต้องจิ้มปากกาลงบนเป้า โดยการนับคะแนนจะเหมือนกับการทดสอบความ แม่นยำ คือหุ่นยนต์จะต้องจิ้มปากกาลงบนเป้าก่อนจึงจะนับคะแนน

เกณฑ์การให้คะแนน (การให้คะแนนจะเป็นการวัดคะแนนที่ได้ของวันทดสอบจริง)

- ปากกาจิ้มลงบนวงสีเขียว +5 คะแนน
- ปากกาจิ้มลงบนวงสีเทา +3 คะแนน
- ปากกาจิ้มลงบนวงสีแดง +1 คะแนน
- ปากกาจิ้มออกนอกเป้า -2 คะแนน ตัวอย่างการให้คะแนน: เมื่อหุ่นเคลื่อนที่ไปถึงยังตำแหน่งที่กำหนด แล้วปากกาจิ้มลงบนเป้าบริเวณพื้นที่สี เขียวตรงกลางจะได้คะแนน +5

การใช้งานอาคารสถานที่ และระบบยืมคืนอุปกรณ์

การกระทำใดที่จะส่งผลให้เกิดฝุ่นหนัก เช่น การเลื่อย, การเจาะ จะสามารถทำได้ในห้อง Machine Shop ที่ชั้น 1 อาคารฟิโบ้เท่านั้น และจำนวนอุปกรณ์หรือชนิดอุปกรณ์สามารถดูได้ในระบบยืมคืนของรายวิชา ซึ่ง สามารถเข้าตรวจสอบได้ทาง FRA161 lending และสามารถดูจำนวนอุปกรณ์ทั้งหมดได้ทาง

FRA161 items list

หมายเหตุ: หากมีอัพเดทเนื้อหาในส่วนต่าง ๆ สามารถติดตามได้ทางกลุ่ม Facebook ของรายวิชา

Dimension และอุปกรณ์ที่เกี่ยวข้องกับสนามภารกิจ 2

รูปที่ 2 แสดงภาพ Dimension TOP VIEW สนามภารกิจ 2

รูปที่ 3 แสดงภาพ Dimension FRONT VIEW สนามภารกิจ 2

รูปที่ 4 แสดงภาพ Dimension SIDE VIEW สนามภารกิจ 2

รูปที่ 5 แสดงภาพ Dimension TOP VIEW เป้าภารกิจสนาม

รูปที่ 6 แสดงภาพ แขนติดเป้าภารกิจ

รูปที่ 7 แสดงภาพ Limit Switch

รูปที่ 8 แสดงภาพสายไฟที่ให้จาก Limit Switch(สามารถเสียบเข้ากับ Arduino connector pin ได้พอดี)