

2021년 혁신성장 청년인재 집중양성 추경 사업 빅데이터 분야

자연어 처리

강사 소개

• 양석환

- AiDA Lab 대표. 컴퓨터공학박사 (세부전공: 인공지능, 신경망, 기계학습)
- 1994년 COBOL을 이용한 백화점 POS 개발을 시작으로 개발자 생활 시작
- ㈜TGS(삼성SDS 컨소시엄): 부산경남 신발산업 업계 통합 ERP 개발
- 日本 NEC(NEC Soft, 東京)에서 개발자 근무, AIST(産業技術総合研究所, つくば) 로봇기술연수
- 학위 취득 후 ㈜지에스티 부설연구소 연구소장으로 스마트 팩토리 설계, 구축 및 관련 연구
- ㈜COMMAX, ㈜엑셈 등에서 AI사업부 근무
- 동국대학교에서 문화/예술/교육 분야에 대한 AI 기술 적용과 관련 정책에 대한 공동연구 수행
- 현재 AiDA Lab에서 AI기반 데이터 예측 및 분석 시스템 개발, AI 기술 교육

- 자연어(Natural Language)
 - 프로그래밍 언어와 같이 사람이 인공적으로 만든 언어가 아닌,
 - 사람이 일상생활과 의사소통에 사용해 온, 한국어, 영어와 같이 오랜 세월에 걸쳐 자연적으로 만들어진 언어라는 의미
 - 우리가 흔히 말하는 언어를 뜻함

- 자연어라고 부르는 까닭
 - 컴퓨터공학에서 언어라고 하면 우선적으로 C 등의 프로그래밍 언어를 떠올리기 때문

- 자연어 처리(Natural Language Processing, NLP)
 - 컴퓨터가 인간의 언어를 알아들을 수 있도록 인간의 언어를 분석하고 해석하여 처리하는 인공지능의 한 분야
 - 자연어를 컴퓨터로 해석하고, 의미를 분석하여 이해하고, 자동으로 생성하는 것 등에 관련된 분야

- 기존의 컴퓨터 관련 기술에서는
 - 컴퓨터에게 일을 시키기 위하여 사람이 컴퓨터의 언어를 학습함
- AI 기술을 사용하면...
 - 컴퓨터에게 일을 시키기 위하여 컴퓨터가 사람의 언어를 학습함

• 컴퓨터에게 일을 시키는 과정

- 자연어에 대한 연구는 오래전부터 이어져 오고 있음에도 불구하고 현재까지 도 아직 컴퓨터가 자연어를 사람처럼 이해하지 못함
- 그러나 언어에 대한 깊은 이해없이 피상적인 확률 및 통계를 이용하여 대량 의 정보를 처리하는 기술은 많이 발전한 상태임
- 대표사례
 - 검색 엔진: 인간의 언어를 깊이 이해하지 않고, 단어 간의 통계적 유사성에 바탕을 두고 문서를 검색함

- 자연어 처리에서 요구되는 기술들
 - 인공지능 기술
 - 컴퓨터 공학 기술
 - 언어학적 지식

- 자연어 처리의 활용 분야
 - 대량의 텍스트를 이해하고 수치화 하는 분야
 - 감성분석(Sentiment Analysis), 문서분류, 문서요약 등
 - 사용자의 의도를 파악하고 대화하거나 도움을 주는 분야
 - AI 스피커, Chatbot 등
 - 사용자의 입력을 받아 원하는 것을 검색하거나 답변을 제공하는 분야
 - 기계번역, 질의응답 시스템 등

• 딥러닝 적용 이전의 자연어 처리 방식

• 자연어 처리(분석 중심)의 일반적인 단계

• Lexical Analysis (어휘 분석)

- 기술 구성
 - Sentence Splitting: 마침표, 느낌표, 물음표 등을 기준으로 분리
 - Tokenizing: 문서나 문장을 분석하기 좋도록 나눔(띄어쓰기 또는 형태소 단위로)
 - Morphological: 토큰들을 좀 더 일반적인 형태로 분석해 단어 수를 줄임으로써 분석의 효율성을 높임(가장 작은 의미 단위로 토큰화 함)
 - Stemming(어간 추출, 형태소 분석): cars, car → car
 - = Lemmatization: 단어를 원형으로 표현
- 필요성: 입력된 문장을 잘 분할해서 효율성을 높이기 위함

13

• Syntax Analysis (구문 분석)

• 내용

- 각각의 어절 단위로 구분, 해당 태그 부여 (Parsing Tree 이용)
- 의존성 구문 분석 트리로 표현 (Dependency Parsing)
- Saw(Root)를 기준으로 Alice(Subject), Bob(Object)의 관계를 나타냄
- 이러한 문법적 관계는 서로 직접적인 연관이 있음

• 필요성

- 언어는 문장의 구성에 규칙이 필요함
- 문장 구성을 위한 규칙과 문법을 구성하기 위하여

• Semantic Analysis (의미 분석)

• 내용

- Syntactic + Meaning
- 문장의 의미에 근거해서 그 문장을 해석하는 방법
- 여러 의미 분석 방법과 다양한 유형의 문법 이용
- 문장이 어떻게 구성되었는지 나타내는 규칙들로 구성된 일종의 형식 시스템

• 필요성

- 규칙에 따라 문장은 만들었는데, 문장이 의미적으로도 올바른 것인지 확인해야 함
 - 예: 사람이 사과를 먹는다(O), 사람이 비행기를 먹는다(X)

6시에 KBS에서 뭐하니?

질문 주제: 프로그램

채널: KBS

시작 시각: 18:00

• Pragmatic Analysis (실용 분석)

- 실용주의
 - 인간의 행동과 실제적인 측면에 대한 연구
 - 실제 상황에서의 언어, 표시, 단어 및 문장의 사용에 대한 연구
- 실용적인 상호 작용 컨텍스트(문맥, 맥락)에서의 의미 연구를 가리킴
 - 발언의 문자적 의미를 넘어 그 의미가 어떻게 구성되는지에 대한 것만 아니라 묵시적 의 미에 초점을 맞춤 → 상호작용의 도구로 언어를 선택
 - 사람들이 언어를 사용할 때, "그 표현이 무엇을 의미하는지"와 같은 사람 사이에서 서로 통신하고 이해하는 방법

• 실용주의 관점에서 고려해야 할 사항

- 연사와 청취자 사이의 의미 전달, 협상
- 발언에 대한 맥락
- 발언이 가지는 의미 및 의미에 대한 잠재력

• 필요성

• 대화의 흐름을 파악하여 발화자의 의도에 맞도록 응답해야 함

16

• 내용

- 대화의 흐름 상 어떤 의미를 가지는지 탐색
- 문맥의 구조 분석: 문장들 사이의 연관 관계 분석
- 의도 분석: 전후 관계를 통한 실제 의도 분석
- 대화 분석: 대표적인 담화 분석

- 딥러닝 적용 이전의 자연어 처리 방식의 문제점
 - 여러 단계의 모듈로 구성
 - 디자인이 복잡함
 - 상황에 따라 또 다른 서브 모듈 추가 빈번

시스템이 매우 무겁고 복잡하여 구현 및 시스템의 구성이 어려움

- 각각의 모듈이 완벽하게 동작하지 않음
 - 각기 발생한 오차가 중첩, 가중되어 뒤로 전파되는 오차의 전파 현상 발생
- 딥러닝의 적용화 함께 변화 시작
 - 각 하위 모듈의 딥러닝 모델화로 시작 -> 점차 End-to-End 모델로 대체

End-to-End Deep Learning Model

종단간 기계학습. 입력부터 출력까지 파이프라인 네트워크 없이 한번에 처리하는 모델의 형태

• 전통적인 자연어 처리 VS 딥 러닝을 통한 자연어 처리

전통적인 심볼릭 기반 접근 방법	딥러닝 기반 접근 방법			
이산적(Discrete), 심볼릭 공간	연속적(Continuous), 신경망 공간			
사람이 인지하기 쉬움	사람이 이해하기 어려움			
디버깅 용이	디버깅 어려움			
연산 속도 느림	연산 속도 빠름			
모호성과 유의성에 취약함	모호성과 유의성에 강인함			
여러 서브 모듈이 폭포수 형태를 취하므로 특징 추출에 노력이 필요함	End-to-End 모델을 통한 성능 개선과 시스템 간소화 가능			

• 자연어 처리를 위한 심벌릭 데이터와 연속적인 데이터의 특징

심볼릭(이산적, Discrete) 공간	신경망(연속적, Continuous) 공간			
지식의 표현 방법 - 단어, 관계, 템플릿 - 고차원, 이산적, 희소 벡터 형태	지식의 표현 방법 - 간소화 및 일반화 된 지식 그래프 - 저차원, 연속적, 꽉 찬 벡터 형태			
추론(inference) - 거대한 지식 그래프로 인한 속도 감소 - 키워드 또는 템플릿 매칭에 민감함 (작은 차이에도 쉽게 결과가 바뀜)	추론(Inference) - 적은 메모리를 요구하며 빠르게 동작함 - 키워드 또는 템플릿 매칭에 강인함 (작은 차이에는 크게 영향을 받지 않음)			
사람이 이해할 수 있으나 연산 효율성이 낮음	디버깅 어려움			

- Word2Vec 등의 임베딩 기술 적용
 - 단어(토큰)를 연속적인 벡터로 표현 가능 → 모호성과 유의성 문제 해결

- 딥러닝 적용
 - End-to-End 방식의 모델 적용 → 성능향상 유도
 - 개선된 RNN 계열 모델(LSTM, GRU) 활용 고도화
 - 주의모델(Attention) 적용 → 긴 길이의 시퀀셜 데이터를 이용한 학습 용이

• 딥러닝 기반 자연어 처리 과정

- Phonetics(음성학) & Phonology(음운론)
 - 언어의 소리가 물리적으로 어떻게 형성되는지에 대한 이산적인 소리체계에 대한 연구 (예: disconnect → dis-k&-'nekt
 - 소리를 기준으로 분석하기 때문에 발생하기 쉬운 문제

- 음성 인식
 - 음성의 파형을 기호화 하여 인식하는 음성학&음운론 기반의 연구 분야

음소: 더이상 작게 나눌 수 없는 음운론 상의 최소 단위

23

• 형태론

• 어절

• 양쪽에 공백을 가지는 띄어쓰기 단위의 문자열

• 단어

• 단일 품사를 가지는 단위

• 형태소

- 의미를 가지는 언어 단위 중 가장 작은 단위
- 의미 또는 문법적 기능의 최소 단위
- 사전에 등록되어 있는 색인어의 집합

형태소의 예

나는 책을 읽었다. → 나, 는, 책, 을, 읽, 었다, . He tries to pass the exam.

• 형태소 분석

- 형태소를 비롯하여 어근, 접두(미)사, 품사 등 다양한 언어적 속성의 구조를 파악하는 것
- 입력된 문자열을 분석하여 형태소(Morpheme)라는 최소 의미 단위로 분리
- 사전 정보와 형태소 결합 정보 이용
- 정규 문법으로 분석 가능
- 언어에 따라 난이도가 다름
 - 영어, 프랑스어 등: 쉬움
 - 한국어: 어려움

• 구문론

• 문법

- 문장의 구조적 성질을 규칙으로 표현한 것
- 각 규칙을 이용하여 문장을 생성, 분석할 수 있음

• 구문 분석

- 문법을 이용하여 문장의 구조를 찾아내는 과정
- 문장의 구문 구조는 트리 형태로 표현 가능함
 - 몇 개의 형태소가 모여 구문 구조를 이루고
 - 구문 요소들 간의 결합구조를 트리형태로 구성

•의미 분석

• 개요

- 통사 분석 결과에 해석을 가하여 문장이 가진 의미를 분석함
- 형태소가 가진 의미를 표현하는 지식 표현 기법이 요구됨
- 통사적으로 옳으나 의미적으로 틀린 문장이 있을 수 있음
 - 돌이 걸어간다. (cf. 사람이 걸어간다.)
 - 바람이 달린다. (*cf.* 말이 달린다.)
- 모호성 등의 어려움이 있음
 - 말이 많다. (Horse? Speech? 해초?) (부피단위, 末(끝) 의 경우는 "많다"에 의해 대상 제외)

그러나 '시적 표현' 등을 통하여 통용되는 경우도 많음

• 실용 분석

- 문장과 실세계가 가지는 연관관계 분석
- 실세계의 지식과 상식의 표현이 요구됨
- 지시, 간접화법 등의 분석
 - 지시
 - 대명사 등의 지시 대상
 - 상대방에게 행동을 요구하는 언어적 행위

• 모호성

• 개념

• 단어의 중의성에 따라 발생하는 특징. 하나의 표현이 여러 의미를 가질 수 있는 성질

• 발생원인

- 언어는 계속 진화하며, 특히 효율성을 극대화하는 방향으로 진화하기 때문
- 최대한 짧은 문장 내에 많은 정보를 담고자 함(정보량이 낮은 내용은 생략)
- 생략된 문맥(Context)을 인간은 여러 지식을 이용하여 효율적으로 채울 수 있지만, 기계는 이러한 작업에 매우 취약함

• 모호성의 예시

• 단어의 중의성에 의한 예시

원문	차를 마시러 공원에 가던 <mark>차</mark> 안에서 나는 그녀에게 <mark>차</mark> 였다.
G사	I was kicking her in the car that wend to the park for tea.
M사	I was a car to her, in the car I had a car and went to the park.
N사	I got dumped by her on the way to the park for tea.
K사	I was in the car going to the park for tea and I was in her car.
S사	I got dumped by her in the car that was going to the park for a cup of tea.

업체별 한→영 기계번역 결과

- "차"를 표현한 단어들: tea, car, kick, dumped
- 일부는 표현을 빠뜨리거나 일부는 단어를 잘못 선택함 → 정확한 번역은 찾기 어려움

• 문장 내 정보 부족에 따른 예시

원문	나는 철수를 안 때렸다.
해석 1	철수는 맞았지만 때린 사람이 나는 아니다.
해석 2	나는 누군가를 때렸지만 그게 철수는 아니다.
해석 3	나는 누군가를 때린 적도 없고 철수도 맞은 적이 없다.

원문	선생님은 울면서 돌아오는 우리를 위로했다.
해석 1	선생님은 울면서 / 돌아오는 우리를 위로했다.
해석 2	선생님은 / 울면서 돌아오는 우리를 / 위로했다.
•••	•••

• 다양한 표현

- 여러 상황을 표현, 묘사하기 위하여 다양한 표현이 사용되지만 그 의미는 동 일한 경우가 매우 많음 그런데 사람이 이해하는 단어의 의미가 미묘하게 다른 경우 또한 매우 많음
 - 골든 리트리버 한 마리가 잔디밭에서 공중의 공을 향해 달려가고 있습니다.
 - 공이 날아가는 방향으로 개가 뛰어가고 있습니다.
 - 개가 잔디밭에서 공을 쫓아가고 있습니다.
 - 잔디밭에서 강아지가 공을 향해 뛰어가고 있습니다.
 - 날아가는 공을 향해 멍멍이가 신나게 뛰어갑니다.
 - 밝은 갈색의 개가 공을 잡으러 뛰어가고 있습니다.

•불연속적 데이터

- 기존의 자연어 처리
 - 이산 데이터를 대상으로 하였으므로 비교적 처리가 쉬운 편이었음
- 딥러닝 기반의 자연어 처리
 - 데이터를 딥러닝 모델에 적용하려면 연속적인 값으로 바꾸어 주어야 함
 - 벡터화, 단어 임베딩 등이 역할을 수행하고 있지만
 - 애초에 연속적인 값이 아니었기 때문에 딥러닝 모델의 구현에 다양한 제약이 존재함

• 차원의 저주

- 불연속 데이터이므로 많은 종류의 데이터를 표현하려면 데이터 종류만큼의 대규모의 차원이 필요함. 어휘의 크기(규모)만큼의 차원이 요구됨.
- 어휘 표현을 위한 방식을 희소 표현에서 분산 표현으로 변형하는 등 다양한 개선안 연구
- 적절한 단어 임베딩 모델을 연구, 적용하여 차원 축소를 통해 해결 또는 개선

• 노이즈와 정규화

- 노이즈가 제대로 분리되지 않거나 영향력이 커지면 데이터의 원래 의미까지 손상 가능
- 연속 데이터의 경우 일부가 약간 변경되어도 큰 영향이 없으나, 자연어 데이터는 불연속 데이터(심볼)이기 때문에 완전히 다른 의미가 되어버릴 수 있음
- 띄어쓰기, 어순 차이 등으로 인한 정제(정규화) 이슈도 큰 어려움의 요소

한국어의 자연어 처리가 어려운 이유

• 교착어

종류	대표적인 언어	특징				
교착어	한국어, 일본어, 몽골어	어간에 접사가 붙어 단어를 이루고 의미와 문법적 기능이 정해짐				
굴절어	라틴어, 독일어, 러시아어	단어의 형태가 변함으로써 문법적 기능이 정해짐				
고립어	영어, 중국어	어순에 따라 단어의 문법적 기능이 정해짐				

- 교착어의 수많은 파생 형태는 파싱, 형태소 분석, 언어 모델 등 전 분야에서 자연어처리를 어렵게 함
- 접사가 붙어 다양한 단어가 생겨나므로 하나의 어근에서 비롯된 비슷한 의미 의 단어가 매우 많이 생성됨

한국어의 자연어 처리가 어려운 이유

• 교착어의 형태변화 사례 (일부만 표기)

원형	피동	높임	과거	추측	전달		결과
잡						+다	잡다
잡	+히					+다	잡히다
잡	+히	+시				+다	잡히시다
잡	+히	+시	+ 었			+다	잡히셨다
잡			+았(었)			+다	잡았다
잡				+겠		+다	잡겠다
잡					+더라		잡더라
잡	+히		+었			+다	잡혔다
잡	+히		+었	+겠		+다	잡혔겠다
•••							
잡	+히	+시	+았(었)	+겠	+더라		잡히셨겠더라

• 접사에 따라 단어의 역할 결정 → 어순은 크게 중요하지 않음

번호	문장	정상여부
1	나는 밥을 먹으러 간다.	0
2	간다 나는 밥을 먹으러.	0
3	먹으러 간다 나는 밥을.	0
4	밥을 먹으러 간다 나는	0
5	나는 먹으러 간다 밥을.	0
6	나는 간다 밥을 먹으러.	0
7	간다 밥을 먹으러 나는.	0
8	간다 먹으러 나는 밥을.	0

번호	문장	정상여부
9	먹으러 나는 밥을 간다.	Χ
10	먹으러 밥을 간다 나는.	X (?)
11	밥을 간다 나는 먹으러.	Χ
12	밥을 나는 먹으러 간다.	Ο
13	나는 밥을 간다 먹으러.	Χ
14	간다 나는 먹으러 밥을.	Ο
15	먹으러 간다 밥을 나는.	0
16	밥을 먹으러 나는 간다.	Ο

문장을 끊어서 사용한다면 문제 없는 경우도 발생함

• 띄어쓰기

 한국어의 띄어쓰기는 근대에 들어서 도입되었으므로 문장에서 띄어쓰기의 중요도가 낮음 → 영어의 경우, 띄어쓰기만으로 단어의 분리가 가능하지만 한국어는 불가능함

- 평서문과 의문문
 - 영어의 경우, 의문문과 평서문의 형태가 완전히 구별되지만 한국어는 의문문 과 평서문이 같은 형태의 문장구조를 가지는 경우가 매우 많음
 - 물음표가 없으면 알 수 없는 경우가 많음

언어	평서문	의문문
영어	I ate my lunch.	Did you have lunch?
한국어	점심 먹었어.	점심 먹었어?

• 주어 생략

- 영어의 경우
 - 기본적으로 명사가 매우 중요함
 - 매우 특별한 경우를 제외하고는 주어가 생략되는 경우가 없음
- 한국어의 경우
 - 동사를 중시하며 주어는 자주 생략됨
 - 문맥 정보를 이용하여 생략된 정보를 메꿈 > 컴퓨터가 취약한 부분

- 한자 기반의 단어
 - 한자를 조합하여 만들어진 단어가 많음
 - 한자 기반의 단어는 각 글자가 의미를 가지며, 그 의미들이 합쳐져서 하나의 단어의 뜻을 나타냄 (영어도 라틴어 기반의 단어는 조합형)

언어	단어	의문문
영어	Concentrate	con(=together) + centr(=center) + ate(=make)
한국어	집중(集中)	集(모을 집) + 中(가운데 중)

• 문제의 발생

- 한글이 한자를 대체하면서 문제가 발생함
- 한자는 표어문자, 한글은 표음문자
 - 표어문자: 하나 하나의 문자가 하나의 말, 단어, 형태소를 이루는 문자시스템
 - 표음문자: 문자에서 각 글자가 특정 의미를 가지지 않고, 단지 각 음성에 대응하여 발음을 나 타내는 문자 시스템
- 한자(표어문자) → 한글(표음문자) → 정보의 손실 발생 → 모호성 등의 문제 유발
 - 인간은 정보의 손실로 발생한 모호성을 문맥의 이해를 통해 해석 가능. 기계는 어려움
- 다른 언어보다 중의성에 따른 문제가 더욱 가중됨

문자의 발전 단계에서 가장 발전한 문자 체계는 표음문자임

• 서브워드 단위로 단어를 분절할 경우 가중되는 중의성 문제 사례

형태	텍스트
원문	저는 여기에 한 가지 문제점이 있다고 생각합니다.
형태소에 따른 분절	저/는/여기/에/한/가지/문제점/이/있/다고/생각/합니다/.
출현 빈도 기반의 서브워드 분절	_저 _는 _여기 _에 _한 _가지 _문 제 점 _이 _있 _다고 _생각 _합니다

- 문제점(問題點) → "문(問, 물을 문) 제(題, 제목 제) 점(點, 점 점)"으로 각각 분절됨
- 제 → 결제(決濟)의 제(濟, 건널 제), 제공(提供)의 제(提, 끌 제) 등 다양한 "제"가 있음
- 신경망 모델에서는 제는 각각의 의미를 가진 여러 개의 의미에 대하여 각각 임베딩 됨
 - → 하나의 벡터가 아니기 때문에 여러 개의 벡터에 대한 평균 값으로 임베딩 됨
 - → 애매한 처리 결과를 유발함

그런데 이런 경우는 사람도 헷갈림. 기계만의 문제가 아님

• 딥러닝의 자연어 처리 정복 과정

- 2010, RNN을 활용한 언어모델 시도
 - 기존의 n-gram 기반 언어모델의 한계 극복 시도
- 2013, 구글, word2vec 발표
 - 단순한 구조의 신경망 사용, 단어를 효과적으로 잠 재공간에 투사
 - 비슷한 의미의 단어일수록 저차원의 잠재공간에서 가깝게 위치함
 - 딥러닝 기반 자연어 처리 시, 네트워크 내부는 어떤 식으로 동작하는지에 대한 인사이트 획득

- 2014, Yoon Kim, CNN만을 활용한 텍스트 분류 모델 제시
 - "문장은 단어의 시퀀셜 데이터 → RNN을 사용해야 한다"라는 고정관념을 깨뜨림
 - CNN 만들 활용해 기존의 텍스트 분류보다 성능을 끌어올린 텍스트 분류 모델 제시
 - 단어 임베딩 벡터와 결합하여 성능의 극대화를 이끌어냄

- 자연어 생성 시작
 - 2014, seq2seq 모델, Attention(주의) 기법 → 성공적인 기계번역 적용
 - → 자연어 처리 분야에서 기존의 한정적인 적용 사례 탈피
 - → 주어진 정보에 기반하여 자유롭게 문장을 생성하는 자연어 생성(NLG, Natural Language Generation)이 가능해짐
 - → 기계번역 외에도 문장 요약, 챗봇 등 더 넓고 깊은 주제에 도입 시도 증가
 - 기계번역은 end-to-end을 활용하여 최초로 상용화에 성공

- 메모리를 활용한 심화 연구
 - Attention 기법의 성공 →연속적인 방식으로 정보를 읽고 쓰는 기법에 대한 관심 증가
 - 메모리 증강 신경망(MANN) 확산

MANN: Memory Augmented Neural Network

- 신경망을 통해 메모리를 활용하는 기법
 - 뉴럴 튜링 머신(NTM, Neural Turing Machine) 제시
 - 차별화 가능한 뉴럴 컴퓨터(DNC, Differentiable Neural Computer) 등장
- 원하는 정보를 신경망을 통해 저장, 필요할 때 잘 조합해서 꺼내 사용하는 QA 등의 문제에 효율적으로 대응 가능 (Question Answering System)

• 강화학습의 적용

- 딥러닝의 기계번역 분야 적용에 대한 문제점
 - 딥러닝의 손실 함수와 기계번역에서의 목적 함수 사이의 괴리
 - 영상 처리 분야의 경우, 기존 MSE 손실 함수의 한계를 벗어나기 위하여 GAN 모델을 도입하여 생성모델 구현
 - 자연어 생성에도 GAN 모델에 강화학습 기법을 반영한 SeqGAN 등의 모델 제시 → 강화학습의 폴리시 그래디언트(Policy Gradients) 기법을 자연어 생성에 적용 성공
- 강화학습을 이용하여 실제 자연어 생성에서의 목적 함수로부터 보상을 받을 수 있게 됨 → 사람이 생성한 것과 유사한 문장 생성 능력의 극대화 유도