Homework 7 Suggested Solutions

- 1. Consider a game involving a glove market. Players 1 and 2 each have a left-hand glove and player 3 has a right-hand glove. The worth of a coalition is the amount that it will get for the gloves in its possession. Every pair of gloves (left and right) can be sold in the market for \$50. A single glove cannot be sold in the market.
 - (a) Describe the game in coalition function form.
 - (b) Compute the Core and the Shapley Value of the game.
 - (c) Is the Shapley Value in the core?

Solution:

- (a) The coalitional game with transferable utility that describes this game is a pair $(N; \nu)$ such that
 - (i) $N=\{1,2,3\}.$
 - (ii) $\nu: 2^N \to \mathbb{R}$ is the coalition function that associates every coaltion $S \in 2^N$ with a real number $\nu(S)$.

$$v(\emptyset) = 0$$
, $v(1) = v(2) = v(3) = 0$
 $v(1,2) = 0$, $v(1,3) = v(2,3) = 50$
 $v(1,2,3) = 50$

(b) The set of imputations is given by the triangle whose vertices are (50,0,0), (0,50,0) and (0,0,50). An imputation $x = (x_1, x_2, x_3)$ is in the Core of this game if and only if

$$x_1 + x_2 + x_3 = 50$$

 $x_1 + x_3 \ge 50$
 $x_2 + x_3 \ge 50$.

Thus, the Core is simply $(x_1 = 0, x_2 = 0, x_3 = 50)$.

$$C(N; \nu) = \{x \in \mathbb{R}^3 | x = (0, 0, 50)\}\$$

To compute the Shapley Value note that players 1 and 2 only contribute to a coalition when they join player 3. Moreover, player 3 contributes whenever he joins player 1, player 2 or a coalition of these two.

$$\begin{split} \phi_1 &= \phi_2 = \frac{1!(3-1-1)!}{3!} 50 = \frac{25}{3} \\ \phi_3 &= \frac{1!(3-1-1)!}{3!} 50 + \frac{1!(3-1-1)!}{3!} 50 + \frac{1!(3-2-1)!}{3!} 50 = \frac{100}{3} \end{split}$$

Figure 1 Core and Shapley value of the glove game.

(c) Clearly, the Shapley value is not in the Core.

$$\varphi = (\frac{25}{3}, \frac{25}{3}, \frac{100}{3}) \notin \mathrm{C}(\mathrm{N}; \nu)$$

2. Let v be a simple game on players set N and let T be the set of veto players in v. Show that the Core of a simple game is not empty if and only if there is (at least one) veto player in N.

Solution:

- (i) Consider $x \in C(N; \nu)$.
- Since $x(N) = \sum_{i \in N} x_i = v(N) = 1$, there must exist a player i such that $x_i > 0$.
- Consider the coalition $N\setminus\{i\}$. Since it does not "block" x, it must be that $x(N\setminus\{i\}) \ge v(N\setminus\{i\})$.
- However, we know that $x(N\setminus\{i\}) < 1$. This implies $v(N\setminus\{i\}) < 1$.
- By simple game, it must be that $v(N\setminus\{i\})=0$.
- This implies that *i* is a veto player since $x = 1 \ge v(i)$.
- (ii) Let player i be a veto player.
 - We define x such that $x_j = v(N) = 1$ if j = i and $x_j = 0$ if $j \neq i$ and show no coalition "blocks" x.
 - For every coalition S
 - If i ∈ S then x(S) = 1 since it includes i. Hence x(S) = 1 ≥ v(S) and S does not block x.
 - If $i \notin S$ then x(S) = 0. Hence x(S) = 0 = v(S) and S does not block x.

3. Let (N, v) be the transferable utility game where $N = \{1, 2, 3\}$, $v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$ and $v(\{1, 2\}) = v(\{1, 3\}) = v(\{2, 3\}) = v(\{1, 2, 3\}) = 1$. Show that the Core of this game is empty, i.e., $C(v) = \emptyset$.

Solution:

An imputation $x = (x_1, x_2, x_3)$ is in the Core of this game if and only if

$$x_1 + x_2 \ge 1$$

 $x_1 + x_3 \ge 1$
 $x_2 + x_3 \ge 1$.

Hence, $2x_1 + 2x_2 + 2x_3 \ge 3$ or $x_1 + x_2 + x_3 \ge \frac{3}{2} > 1 = v(N)$. Thus $C(N; v) = \emptyset$.

- **4.** Calculate the Shapley Value in the following simple majority games:
- (a) [17;7,8,9,9]
- (b) [10;7,5,4,3]

Solution: Total number of orderings: 4! = 24.

(a) When is player 1 pivotal? Never! Null player.

When is player 2 pivotal?

- Whenever player 2 is the second to arrive, the one in front is player 3 or player 4 (2 cases) and the two behind are player 1 and whoever is not in front. (2 cases)
 - 4 cases
- When player 2 is the third to arrive and the two in front are player 1 and either player 3 or 4 (2 · 2 cases) and the one behind is either player 3 or 4.
 - 4 cases

When is player 3 (player 4) pivotal?

- In front player 2 or player 4 (2 cases). Behind player 1 and the other of player 2 and 4 (2 cases).
 - 4 cases
- In front player 1 and either player 2 or 4 ($2 \cdot 2$ cases) and the one behind is the other of player 2 and 4.
 - 4 cases

Shapley value of the game: $\varphi = \{0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\}$. (Note that it is enough to compute the Shapley value of player 2 to obtain all the others.)

- (b) When is player 1 pivotal?
- The one in front: either player 2, 3 or 4 (3 cases). The two behind: other two (2 cases).
 - 6 cases
- The two in front: either player 2, 3 or 4 (3 cases). The one behind: the remaining one.
 - 6 cases

When is player 2 pivotal?

- The one in front is player 1 and the two behind are players 3 and 4 (2 cases).
- The two in front are players 3 and 4 and the one behind is player 2 (2 cases).

When is player 3 pivotal? Same as 2. When is player 4 pivotal? Same as 2. Shapley value of the game: $\phi = \{\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\}.$