EXPERIMENTO No.1

FUNCIONES LOGICAS BASICAS

OBJETIVO:

El objetivo de éste laboratorio es el de estudiar las funciones lógicas AND (Y), OR (O) y NOT (NO o INVERSOR). También se estudiarán las representaciones de estas funciones mediante las tablas de verdad y el algebra de Boole.

INTRODUCCION:

En éste laboratorio estudiaremos los circuitos para las funciones AND y OR ,utilizando para ello diodos y resistencias, y luego pasaremos a utilizar los circuitos integrados comerciales que realizan estas funciones lógicas. En éstos circuitos de la electrónica digital, las señales de entrada y salida son niveles de voltáje que pueden variar entre dos niveles definidos. Asi, por ejemplo,+5 V puede considerarse como "1" lógico, mientras que 0 V puede considerarse como "0" lógico. También, + 12 V puede considerarse como "1" lógico, mientras que -12 V puede ser "0" lógico.

MATERIALES:

Para realizar ésta experiencia se requiere del siguiente material:

- a) Un voltimetro digital
- b) Un osciloscopio de dos canales
- c) Un generador de funciones
- d) Fuente de alimentación de 5V
- e) Dos (2) diodos 1N914 ó equivalente
- f) Dos (2) resistencias de 1K de 1/2 Watts
- g) Dos (2) resistencias de 390 ohmios de 1/2 Watts

- h) Un circuito integrado 74LS08 (AND)
- i) Un circuito integrado 74LS32 (OR)
- j) Un circuito integrado 74LS04 (NOT)
- k) Dos (2) LED de color rojo XC554R ó equivalente

I. Estudio de funciones logicas AND y OR utilizando diodos y resistencia.

a) CIRCUITO AND (Y)

Para estudiar éste circuito AND mediante la utilización de diodos y resistencia, proceda a implementar el circuito que aparece abajo

En éste circuito, las entradas son A y B. La salida es S ,ó sea que el circuito es una compuerta AND con dos entradas y una salida. Para observar la salida S, podemos utilizar un LED para tener una indicación visual del estado de la salida. También podemos utilizar un voltimetro digital o un osciloscopio.

Ahora proceda a completar la tabla de verdad para éste circuito.

TABLA DE VERDAD

A	В	S
0V	0V	
0V	5V	
5V	0V	
5V	5V	

b) CIRCUITO OR (O)

Para es estudio de la función lógica OR procederemos a implementar el circuito a base de diodos y resistencia, tal comose ilustra en la figura de abajo. Al igual que el circuito anterior, este circuito OR posee dos entradas y una salida.

FIG. 2

La salida S de éste circuito la podemos observar utilizando un LED, un voltímetro digital ó un osciloscopio.

Ahora, proceda a completar la tabla de verdad para éste circuito.

TABLA DE VERDAD

A	В	S
0V	0V	
0V	5V	
5V	0V	
5V	5V	

c) CIRCUITO INVERSOR (NOT)

Para el estudio de ésta función lógica tendremos necesidad de utilizar el circuito integrado 74LS04, cuyo diagrama de localización de las patillas aparece en la Fig. 3.

FIG. 3

Este circuito integrado posee internamente seis (6) circuitos inversores (NOT) independientes, tal como se ilustra en la ilustración de la FIG. 4.

FIG. 4

Inicialmente, del paquete solo utilizaremos un circuito inversor. Ahora arme el circuito que se presenta en la FIG. 5.

FIG. 5

Aquí, al igual que en circuitos anteriores se puede observar la salida mediante el uso de un LED, voltímetro digital, ó un osciloscopio. Observe que éste circuito solo tiene una entrada y una salida.

Como paso siguiente, proceda a completar la tabla de verdad para éste circuito.

TABLA DE VERDAD

A	S
0V	
5V	

Considerando el circuito de la FIG. 5, conecte la entrada A al generador de funciones, ajustado para producir ondas cuadradas para niveles TTL, a una frecuencia de 1 KHz. Conecte la salida S al canal B del osciloscopio y la entrada A al canal A. Haga un dibujo de lo que usted observa. Explique.

Ahora concecte varios circuitos inversores en serie, tal como se ilustra en la FIG. 6, y aplique la señal del generador de funciones a la entrada A. Conecte el canal A del osciloscopio a la entrada A, y la salida S al canal B. Qué observa?. Explique.

FIG. 6

PREGUNTAS

- a) Explique el funcionamiento del circuito AND con diodos y resistencia. Haga cálculos para apoyar su explicación.
- b) Explique el funcionamiento del circuito OR con diodo y resistencia. Apoye sus explicaciones con cálculos.