XGBoost Presentation

•••

By: Your Boy

Matchup	Spread	Home Winner
LAC vs. CIN	-7	1
SF vs. SEA	3	0
PIT vs. BAL	-2	1
NE vs. LAR	6	0
NO vs. CLE	-21	1

Initial Prediction

$$\frac{3}{5} = 60\%$$

Building the Trees

0.4, 0.4, 0.4, -0.6, -0.6

Similarity score: (Sum of the residuals)^2 / (Sum of the prev prob * 1 - of prev prob) + lambda

Similarity Score = 0 / (0.4 * 0.6) + (0.4

Building Trees Cont.

Note: If I set lambda to 1, the similarity scores decrease to 0.837 and 0.973 respectively.

Building Trees Cont.

0.4, 0.4

Gain = 1.333 + 0.667 - 2 = 0

0.4

Note: Gamma is another parameter. If Gain - Gamma is < 0, you prune the tree. Another way to prune is via Cover.

Final Tree

Making Predictions

Log(odds): log(p/1-p) + learning rate * observed residual

Where p = 0.6 and learning rate = 0.3 (default).

Ex) Spread = -21: 0.405 + 0.3 * -21 = -5.895

To convert log of odds to logistic function: e^log(odds) / 1 + e^log(odds)

Ex) Spread = -21: $e^5.895 / 1 + e^5.895 = 0.997$

Matchup	Spread	Home Winner	Initial Prediction	Predictions
LAC vs. CIN	-7	1	0.6	0.845 = 84.5%
SF vs. SEA	3	0	0.6	0.213 = 21.3%
PIT vs. BAL	-2	1	0.6	0.587 = 58.7%
NE vs. LAR	6	0	0.6	0.100 = 10%
NO vs. CLE	-21	1	0.6	0.997 = 99.7%

XGBoost Parameters

Objective: "Binary:logistic"

N_estimators: Maximum # Of trees to make

Math Depth

Learning Rate: alias eta

Gamma

Min Child Weight: alias cover

Reg Lambda

Reg Alpha: mainly for regression

XGBoost Benefits

- Fast
- Handles NA Values
- Really good with tabular data
- Very accurate

Note: Only use with complex datasets. Can overfit to simple ones.