WO 2005/100395

SEQUENCE LISTING

<110>	F. Hoffmann-La Roche AG	
<120>	Expression system for preparing IL-15/Fc fusion proteins and it	s use
<130>	C62387PC	
<150> <151>	04008881.7 2004-04-14	
<160>	5	
<170>	PatentIn version 3.1	
<210>	1	
<211>	6458	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Plasmid pcDNA3.1hCD5.6Ala7	
<400> gacggat	l tcgg gagatetece gatecectat ggtgeaetet cagtacaate tgetetgatg	60
ccgcata	agtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 1	20
cgagca	aaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 1	80
ttaggg	ttag gegttttgeg etgettegeg atgtaeggge eagatataeg egttgaeatt 2	40
gattati	tgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 3	00
tggagti	tccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 3	60
cccgcc	catt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 4	20
attgac	gtca atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt 4	80
atcata	tgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 5	40
atgccc	agta catgacetta tgggacttte etaettggca gtacatetae gtattagtea 6	00
togota	ttac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 6	60
actcac	gggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 7	20
aaaatc	aacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 7	80 .
gtaggc	gtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 8	40

ctgcttactg gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctagc	900
caccatgccc atggggtctc	tgcaaccgct	ggccaccttg	tacctgctgg	ggatgctggt	960
cgcttcctgc ctcggaaact	gggtgaatgt	aataagtgat	ttgaaaaaaa	ttgaagatct	1020
tattcaatct atgcatattg	atgctacttt	atatacggaa	agtgatgttc	accccagttg	1080
caaagtaaca gcaatgaagt	gctttctctt	ggagttacaa	gttatttcac	ttgagtccgg	1140
agatgcaagt attcatgata	cagtagaaaa	tctgatcatc	ctagcaaaca	acagtttgtc	1200
ttctaatggg aatgtaacag	aatctggatg	caaagaatgt	gaggaactgg	aggaaaaaaa	1260
tattaaagaa tttttggaca	gttttgtaca	tattgtcgac	atgttcatca	acacttcgga	1320
tcccaaatct gctgacaaaa	ctcacacatg	cccaccgtgc	ccagcacctg	aactcctggg	1380
gggaccgtca gtcttcctct	tcccccaaa	acccaaggac	accctcatga	tctcccggac	1440
ccctgaggtc acgtgcgtgg	tggtggacgt	gagccacgaa	gaccctgagg	tcaagttcaa	1500
ctggtacgtg gacggcgtgg	aggtgcataa	tgccaagaca	aagccgcggg	aggagcagta	1560
caacagcacg taccgtgtgg	tcagcgtcct	caccgtcctg	caccaggact	ggctgaatgg	1620
caaggagtac aagtgcaagg	tctccaacaa	agccctccca	gcccccatcg	agaaaaccat	1680
ctccaaagcc aaagggcagc	cccgagaacc	acaggtgtac	accetgeece	catcccggga	1740
tgagctgacc aagaaccagg	tcagcctgac	ctgcctggtc	aaaggcttct	atcccagcga	1800
catcgccgtg gagtgggaga	gcaatgggca	gccggagaac	aactacaaga	ccacgcctcc	1860
cgtgctggac tccgacggct	ccttcttcct	ctacagcaag	ctcaccgtgg	acaagagcag	1920
gtggcagcag gggaacgtct	tctcatgctc	cgtgatgcat	gaggctctgc	acaaccacta	1980
cacgcagaag agcctctccc	tgtctccggg	taaatgatct	agagggcccg	tttaaacccg	2040
ctgatcagcc tcgactgtgc	cttctagttg	ccagccatct	gttgtttgcc	cctcccccgt	2100
geetteettg accetggaag	gtgccactcc	cactgtcctt	tcctaataaa	atgaggaaat	2160
tgcatcgcat tgtctgagta	ggtgtcattc	tattctgggg	ggtggggtgg	ggcaggacag	2220
caagggggag gattgggaag	acaatagcag	gcatgctggg	gatgcggtgg	gctctatggc	2280
ttctgaggcg gaaagaacca	gctggggctc	tagggggtat	ccccacgcgc	cctgtagcgg	2340
cgcattaagc gcggcgggtg	tggtggttac	gcgcagcgtg	accgctacac	ttgccagcgc	2400
cctagcgccc gctcctttcg	ctttcttccc	ttcctttctc	gccacgttcg	ccggctttcc	2460
ccgtcaagct ctaaatcggg	ggctcccttt	agggttccga	tttagtgctt	tacggcacct	2520
cgaccccaaa aaacttgatt	agggtgatgg	ttcacgtagt	gggccatcgc	cctgatagac	2580
ggtttttcgc cctttgacgt	tggagtccac	gttctttaat	agtggactct	tgttccaaac	2640
tggaacaaca ctcaacccta	tctcggtcta	ttcttttgat	ttataaggga	ttttgccgat	2700

2760 ttcggcctat tggttaaaaa atgagctgat ttaacaaaaa tttaacgcga attaattctg 2820 tggaatgtgt gtcagttagg gtgtggaaag tccccaggct ccccagcagg cagaagtatg 2880 caaaqcatqc atctcaatta qtcaqcaacc aggtgtggaa agtccccagg ctccccagca ggcagaagta tgcaaagcat gcatctcaat tagtcagcaa ccatagtccc gcccctaact 2940 3000 cogoccatco egeocctaac teegeocagt teegeocatt eteegeocca tggetgacta atttttttta tttatgcaga ggccgaggcc gcctctgcct ctgagctatt ccagaagtag 3060 tgaggaggct tttttggagg cctaggcttt tgcaaaaagc tcccgggagc ttgtatatcc 3120 attttcggat ctgatcaaga gacaggatga ggatcgtttc gcatgattga acaagatgga 3180 ttgcacgcag gttctccggc cgcttgggtg gagaggctat tcggctatga ctgggcacaa 3240 3300 cagacaatcg gctgctctga tgccgccgtg ttccggctgt cagcgcaggg gcgcccggtt 3360 ctttttgtca agaccgacct gtccggtgcc ctgaatgaac tgcaggacga ggcagcgcgg 3420 ctatcgtggc tggccacgac gggcgttcct tgcgcagctg tgctcgacgt tgtcactgaa gcgggaaggg actggctgct attgggcgaa gtgccggggc aggatctcct gtcatctcac 3480 3540 cttgctcctg ccgagaaagt atccatcatg gctgatgcaa tgcggcggct gcatacgctt 3600 gatocggota cotgoccatt ogaccaccaa gogaaacato goatogagog agcacgtact cqqatqqaaq ccqqtcttqt cqatcaqqat qatctqqacq aagagcatca ggggctcgcg 3660 3720 ccaqccgaac tgttcgccag gctcaaggcg cgcatgcccg acggcgagga tctcgtcgtg accoatggcg atgcctgctt gccgaatatc atggtggaaa atggccgctt ttctggattc 3780 3840 ategactgtg geeggetggg tgtggeggae egetateagg acatagegtt ggetaeeegt gatattgctg aagagcttgg cggcgaatgg gctgaccgct tcctcgtgct ttacggtatc 3900 gccgctcccg attcgcagcg catcgccttc tatcgccttc ttgacgagtt cttctgagcg 3960 ggactctggg gttcgaaatg accgaccaag cgacgcccaa cctgccatca cgagatttcg 4020 4080 attccaccgc cqccttctat gaaaggttgg gcttcggaat cgttttccgg gacgccggct 4140 ggatgatect ecagegeggg gateteatge tggagttett egeceaeeee aacttgttta 4200 ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca aataaagcat 4260 ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatct tatcatgtct 4320 gtataccgtc gacctctagc tagagcttgg cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca attccacaca acatacgagc cggaagcata aagtgtaaag 4380 4440 cctggggtgc ctaatgagtg agctaactca cattaattgc gttgcgctca ctgcccgctt tccaqtcqqq aaacctqtcq tqccaqctqc attaatqaat cqqccaacqc gcggggagag 4500

gcggtttgcg	tattgggcgc	tcttccgctt	cctcgctcac	tgactcgctg	cgctcggtcg	4560
ttcggctgcg	gcgagcggta	tcagctcact	caaaggcggt	aatacggtta	tccacagaat	4620
caggggataa	cgcaggaaag	aacatgtgag	caaaaggcca	gcaaaaggcc	aggaaccgta	4680
aaaaggccgc	gttgctggcg	tttttccata	ggctccgccc	ccctgacgag	catcacaaaa	4740
atcgacgctc	aagtcagagg	tggcgaaacc	cgacaggact	ataaagatac	caggcgtttc	4800
cccctggaag	ctccctcgtg	cgctctcctg	ttccgaccct	gccgcttacc	ggatacctgt	4860
ccgcctttct	cccttcggga	agcgtggcgc	tttctcatag	ctcacgctgt	aggtatctca	4920
gttcggtgta	ggtcgttcgc	tccaagctgg	gctgtgtgca	cgaacccccc	gttcagcccg	4980
accgctgcgc	cttatccggt	aactatcgtc	ttgagtccaa	cccggtaaga	cacgacttat	5040
cgccactggc	agcagccact	ggtaacagga	ttagcagagc	gaggtatgta	ggcggtgcta	5100
cagagttctt	gaagtggt g g	cctaactacg	gctacactag	aagaacagta	tttggtatct	5160
gcgctctgct	gaagccagtt	accttcggaa	aaagagttgg	tagctcttga	tccggcaaac	5220
aaaccaccgc	tggtagcggt	ggttttttg	tttgcaagca	gcagattacg	cgcagaaaaa	5280
aaggatctca	agaagatcct	ttgatctttt	ctacggggtc	tgacgctcag	tggaacgaaa	5340
actcacgtta	agggattttg	gtcatgagat	tatcaaaaag	gatcttcacc	tagatccttt	5400
taaattaaaa	atgaagtttt	aaatcaatct	aaagtatata	tgagtaaact	tggtctgaca	5460
gttaccaatg	cttaatcagt	gaggcaccta	tctcagcgat	ctgtctattt	cgttcatcca	5520
tagttgcctg	actccccgtc	gtgtagataa	ctacgatacg	ggagggctta	ccatctggcc	5580
ccagtgctgc	aatgataccg	cgagacccac	gctcaccggc	tccagattta	tcagcaataa	5640
accagccagc	cggaagggcc	gagcgcagaa	gtggtcctgc	aactttatcc	gcctccatcc	5700
agtctattaa	ttgttgccgg	gaagctagag	taagtagttc	gccagttaat	agtttgcgca	5760
acgttgttgc	cattgctaca	ggcatcgtgg	tgtcacgctc	gtcgtttggt	atggcttcat	5820
tcagctccgg	ttcccaacga	tcaaggcgag	ttacatgatc	ccccatgttg	tgcaaaaaag	5880
cggttagctc	cttcggtcct	ccgatcgttg	tcagaagtaa	gttggccgca	gtgttatcac	5940
tcatggttat	ggcagcactg	cataattctc	ttactgtcat	gccatccgta	agatgctttt	6000
ctgtgactgg	tgagtactca	accaagtcat	tctgagaata	gtgtatgcgg	cgaccgagtt	6060
gctcttgccc	ggcgtcaata	cgggataata	ccgcgccaca	tagcagaact	ttaaaagtgc	6120
tcatcattgg	aaaacgttct	tcggggcgaa	aactctcaag	gatcttaccg	ctgttgagat	6180
ccagttcgat	gtaacccact	cgtgcaccca	actgatcttc	agcatcttt	actttcacca	6240
gcgtttctgg	gtgagcaaaa	acaggaaggc	aaaatgccgc	aaaaaaggga	ataagggcga	6300
cacggaaatg	ttgaatactc	atactcttcc	tttttcaata	ttattgaagc	atttatcagg	6360

•

gttattgtct catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg 6420 ttccgcgcac atttccccga aaagtgccac ctgacgtc 6458

<210> 2

<211> 7464

<212> DNA

<213> Artificial sequence

<220>

<223> Plasmid pMG10Ala7

<400> 2 gacggatcgg gagatctccc gatcccctat ggtgcactct cagtacaatc tgctctgatg 60 ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120 180 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc ttagggttag gcgttttgcg ctgcttcgta agctgcaata aacaatcatt attttcattg 240 300 gatctgtgtg ttggtttttt gtgtgggctt gggggagggg gaggccagaa tgactccaag 360 aqctacaqqa aqqcaqqtca qaqaccccac tggacaaaca gtggctggac tctgcaccat aacacacaat caacagggga gtgagctgga tcgagctaga gtccgttaca taacttacgg 420 taaatggccc gcctggctga ccgcccaacg acccccgccc attgacgtca ataatgacgt 480 atgttcccat agtaacgcca atagggactt tccattgacg tcaatgggtg gagtatttac 540 ggtaaactgc ccacttggca gtacatcaag tgtatcatat gccaagtacg ccccctattg 600 acgtcaatga cggtaaatgg cccgcctggc attatgccca gtacatgacc ttatgggact 660 ttcctacttg gcagtacatc tacgtattag tcatcgctat taccatggtg atgcggtttt 720 ggcagtacat caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc 780 ccattgacgt caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc 840 gtaacaactc cgccccattg acgcaaatgg gcggtaggcg tgtacggtgg gaggtctata 900 taagcagagc tcgtttagtg aaccgtcaga tcgcctggag acgccatcca cgctgttttg 1020 acctccatag aagacaccgg gaccgatcca gcctccgcgg ccgggaacgg tgcattggaa cgcggattcc ccgtgccaag agtgacgtaa gtaccgccta tagagtctat aggcccaccc 1080 ccttggcttc ttatgcatgc tatactgttt ttggcttggg gtctatacac ccccgcttcc 1140

tcatgttata ggtgatggta tagcttagcc tataggtgtg ggttattgac cattattgac

1200

cactececta ttggtgacga tactttecat tactaateca taacatgget etttgecaca 1260 actotottta tiggotatat gocaatacac igtoottoag agactgacac ggactotgta 1320 tttttacagg atggggtctc atttattatt tacaaattca catatacaac accaccgtcc 1380 ccagtgcccg cagtttttat taaacataac gtgggatctc cacgcgaatc tcgggtacgt 1440 gttccggaca tgggctcttc tccggtagcg gcggagcttc tacatccgag ccctgctccc 1500 atgcctccag cgactcatgg tcgctcggca gctccttgct cctaacagtg gaggccagac 1560 ttaggcacag cacgatgccc accaccacca gtgtgccgca caaggccgtg gcggtagggt 1620 atgtgtctga aaatgagctc ggggagcggg cttgcaccgc tgacgcattt ggaagactta 1680 aggcagcggc agaagaagat gcaggcagct gagttgttgt gttctgataa gagtcagagg 1740 taactcccgt tgcggtgctg ttaacggtgg agggcagtgt agtctgagca gtactcgttg 1800 ctgccgcgcg cgccaccaga cataatagct gacagactaa cagactgttc ctttccatgg 1860 gtettttetg cagteacecg ggggateett egaaegtage tetageeace atgeecatgg 1920 ggtctctgca accgctggcc accttgtacc tgctggggat gctggtcgct tcctgcctcg 1980 gaaactgggt gaatgtaata agtgatttga aaaaaattga agatcttatt caatctatgc 2040 atattgatgc tactttatat acggaaagtg atgttcaccc cagttgcaaa gtaacagcaa 2100 tgaagtgctt tctcttggag ttacaagtta tttcacttga gtccggagat gcaagtattc 2160 atgatacagt agaaaatctg atcatcctag caaacaacag tttgtcttct aatgggaatg 2220 taacagaatc tggatgcaaa gaatgtgagg aactggagga aaaaaatatt aaagaatttt 2280 tggacagttt tgtacatatt gtcgacatgt tcatcaacac ttcggatccc aaatctgctg 2340 acaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggga ccgtcagtct 2400 tectettece eccaaaacce aaggacacce teatgatete eeggaceeet gaggteaegt 2460 gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg tacgtggacg 2520 gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacaac agcacgtacc 2580 gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag gagtacaagt 2640 gcaaggtctc caacaaagcc ctcccagccc ccatcgagaa aaccatctcc aaagccaaag 2700 ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggatgag ctgaccaaga 2760 accaggicag cetgacetge etggicaaag gettetatee eagegacate geegiggagt 2820 gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg ctggactccg 2880 acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg cagcagggga 2940 acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg cagaagagcc 3000 tetecetgte teegggtaaa tgatetagag ggeeegttta aaceegetga teageetega 3060

etgtgeette tagttgeeag ceatetgttg tttgeeette eeeegtgeet teettgaeee 3120 tggaaggtgc cactcccact gtcctttcct aataaaatga ggaaattgca tcgcattgtc 3180 tgagtaggtg tcattctatt ctggggggtg gggtggggca ggacagcaag ggggaggatt 3240 gggaagacaa tagcaggcat gctggggatg cggtgggctc tatggcttct gaggcggaaa 3300 gaaccagctg gggctctagg gggtatcccc acgcgccctg tagcggcgca ttaagcgcgg 3360 cgggtgtggt ggttacgcgc agcgtgaccg ctacacttgc cagcgcccta gcgcccgctc 3420 ctttcgcttt cttcccttcc tttctcgcca cgttcgccgg ctttccccgt caagctctaa 3480 atcgggggct ccctttaggg ttccgattta gtgctttacg gcacctcgac cccaaaaaac 3540 ttgattaggg tgatggttca cgtagtgggc catcgccctg atagacggtt tttcgccctt 3600 tgacgttgga gtccacgttc tttaatagtg gactcttgtt ccaaactgga acaacactca 3660. accetatete ggtetattet titgatttat aagggattit geegattteg geetattggt 3720taaaaaatga gctgatttaa caaaaattta acgcgaatta attctgtgga atgtgtgtca 378Ò. gttagggtgt ggaaagtccc caggctcccc agcaggcaga agtatgcaaa gcatgcatct 3840 caattagtca gcaaccaggt gtggaaagtc cccaggctcc ccagcaggca gaagtatqca 3900 aagcatgcat ctcaattagt cagcaaccat agtcccgccc ctaactccgc ccatcccgcc 3960 cctaactccg cccagttccg cccattctcc gccccatggc tgactaattt tttttattta 4020. tgcagaggcc gaggccgcct ctgcctctga gctattccag aagtagtgag gaggcttttt 4080 tggaggccta ggcttttgca aaaagctccc gggagcttgt atatccattt tcggatctga 4140 tcaagagaca ggatgaggat cgtttcgcat gattgaacaa gatggattgc acgcaggttc 4200 teeggeeget tgggtggaga ggetattegg etatgaetgg geacaacaga caateggetg 4260 ctctgatgcc gccgtgttcc ggctgtcagc gcaggggcgc ccggttcttt ttgtcaagac 4320 cgacctgtcc ggtgccctga atgaactgca ggacgaggca gcgcggctat cgtggctqqc 4380 cacgacgggc gttccttgcg cagctgtgct cgacgttgtc actgaagcgg gaagqqactq 4440 gctgctattg ggcgaagtgc cggggcagga tctcctgtca tctcaccttg ctcctgccga 4500 gaaagtatcc atcatggctg atgcaatgcg gcggctgcat acgcttgatc cggctacctg 4560 cccattcgac caccaagcga aacatcgcat cgagcgagca cgtactcgga tggaagccgg 4620 tcttgtcgat caggatgatc tggacgaaga gcatcagggg ctcgcgccag ccgaactgtt 4680 egecaggete aaggegegea tgeeegaegg egaggatete gtegtgaeee atggegatge 4740 ctgcttgccg aatatcatgg tggaaaatgg ccgcttttct ggattcatcg actgtggccg 4800 gctgggtgtg gcggaccgct atcaggacat agcgttggct acccgtgata ttgctgaaga 4860

gcttggcggc gaatgggctg accgcttcct cgtgctttac ggtatcgccg ctcccgattc 4920 gcagcgcatc gccttctatc gccttcttga cgagttcttc tgagcgggac tctggggttc 4980 gaaatgaccg accaagcgac gcccaacctg ccatcacgag atttcgattc caccgccgcc 5040 ttctatgaaa ggttgggctt cggaatcgtt ttccgggacg ccggctggat gatcctccag 5100 cgcggggatc tcatgctgga gttcttcgcc caccccaact tgtttattgc agcttataat 5160 ggttacaaat aaagcaatag catcacaaat ttcacaaata aagcattttt ttcactgcat 5220 -5280 tctagttgtg gtttgtccaa actcatcaat gtatcttatc atgtctgtat accgtcgacc tctagctaga gcttggcgta atcatggtca tagctgtttc ctgtgtgaaa ttgttatccg 5340 ctcacaattc cacacaacat acgageegga ageataaagt gtaaageetg gggtgeetaa 5400 tgagtgaget aacteacatt aattgegttg egeteactge eegettteea gtegggaaae 5460 ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt 5520 gggcgctctt ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg gctgcggcga 5580 gcggtatcag ctcactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca 5640 ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg 5700 5760 ctggcgtttt tccataggct ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg cgtttccccc tggaagctcc 5820 ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct 5880 tegggaageg tggegettte teatagetea egetgtaggt ateteagtte ggtgtaggte 5940 gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta 6000 tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca 6060 gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgaag 6120 6180 tggtggccta actacggcta cactagaaga acagtatttg gtatctgcgc tctgctgaag 6240 -ccagttacct tcggaaaaag agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa 6300 gatcetttga tettttetae ggggtetgae geteagtgga acgaaaaete aegttaaggg 6360 attttggtca tgagattatc aaaaaggatc ttcacctaga tccttttaaa ttaaaaatga 6420 agttttaaat caatctaaag tatatatgag taaacttggt ctgacagtta ccaatgctta 6480 atcagtgagg cacctatctc agcgatctgt ctatttcgtt catccatagt tgcctgactc 6540 6600 cccgtcgtgt agataactac gatacgggag ggcttaccat ctggccccag tgctgcaatg 6660 ataccgcgag acccacgctc accggctcca gatttatcag caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc tattaattgt 6720

tgccgggaag	ctagagtaag	tagttcgcca	gttaatagtt	tgcgcaacgt	tgttgccatt	6780
gctacaggca	tcgtggtgtc	acgctcgtcg	tttggtatgg	cttcattcag	ctccggttcc	6840
caacgatcaa	ggcgagttac	atgatecece	atgttgtgca	aaaaagcggt	tagctccttc	6900
ggtcctccga	tcgttgtcag	aagtaagttg	gccgcagtgt	tatcactcat	ggttatggca	6960
gcactgcata	attctcttac	tgtcatgcca	tccgtaagat	gcttttctgt	gactggtgag	7020
tactcaacca	agtcattctg	agaatagtgt	atgcggcgac	cgagttgctc	ttgcccggcg	7080
tcaatacggg	ataataccgc	gccacatagc	agaactttaa	aagtgctcat	cattggaaaa	7140
cgttcttcgg	ggcgaaaact	ctcaaggatc	ttaccgctgt	tgagatccag	ttcgåtgtaa	7200
cccactcgtg	cacccaactg	atcttcagca	tcttttactt	tcaccagcgt	ttctgggtga	7260
gcaaaaacag	gaaggcaaaa	tgccgcaaaa	aagggaataa	gggcgacacg	gaaatgttga	7320
atactcatac	tcttcctttt	tcaatattat	tgaagcattt	atcagggtta	ttgtctcatg	7380
agcggataca	tatttgaatg	tatttagaaa	aataaacaaa	taggggttcc	gcgcacattt	7440
ccccgaaaag	tgccacctga	cgtc				7464

<210> 3

<211> 1113

<212> DNA

<213> Artificial sequence

<220>

<223> DNA for mutated IL-15/Fc with CD5 leader

<400> 3 atgcccatgg ggtctctgca accgctggcc accttgtacc tgctggggat gctggtcgct 60 tcctgcctcg gaaactgggt gaatgtaata agtgatttga aaaaaattga agatcttatt caatctatgc atattgatgc tactttatat acggaaagtg atgttcaccc cagttgcaaa 180 gtaacagcaa tgaagtgctt tetettggag ttacaagtta tttcaettga gteeggagat 240 gcaagtattc atgatacagt agaaaatctg atcatcctag caaacaacag tttgtcttct 300 aatgggaatg taacagaatc tggatgcaaa gaatgtgagg aactggagga aaaaaatatt 360 aaagaatttt tggacagttt tgtacatatt gtcgacatgt tcatcaacac ttcggatccc 420 aaatctgetg acaaaactca cacatgeeca cegtgeecag cacetgaact eetgggggga 480 ccgtcagtct tectettecc cecaaaaccc aaggacaccc teatgatete eeggacecet

gaggtcacgt gcgtg	gtggt ggacgtgagc	cacgaagacc	ctgaggtcaa	gttcaactgg	600
tacgtggacg gcgtg	gaggt gcataatgcc	aagacaaagc	cgcgggagga	gcagtacaac	660
agcacgtacc gtgtg	gtcag cgtcctcacc	gtcctgcacc	aggactggct	gaatggcaag	720
gagtacaagt gcaag	gtctc caacaaagcc	ctcccagccc	ccatcgagaa	aaccatctcc	780
aaagccaaag ggcag	scccg agaaccacag	gtgtacaccc	tgcccccatc	ccgggatgag	840
ctgaccaaga accag	gtcag cctgacctgc	ctggtcaaag	gcttctatcc	cagcgacatc	900
gccgtggagt gggag	gagcaa tgggcagccg	gagaacaact	acaagaccac	gcctcccgtg	960
ctggactccg acggo	cteett etteetetae	agcaagctca	ccgtggacaa	gagcaggtgg	1020
cagcagggga acgto	ttete atgeteegtg	atgcatgagg	ctctgcacaa	ccactacacg	1080
cagaagagcc tctcc	cctgtc tccgggtaaa	tga			1113

<210> 4

<211> 370

<212> PR3

<213> Artificial sequence

<220>

<223> Amino acid sequence of human CRB-15 with CD5 leader

<400> 4

Met Pro Met Gly Ser Leu Gln Pro Leu Ala Thr Leu Tyr Leu Leu Gly 1 5 10 15

Met Leu Val Ala Ser Cys Leu Gly Asn Trp Val Asn Val Ile Ser Asp 20 25 30

Leu Lys Lys Ile Glu Asp Leu Ile Gln Ser Met His Ile Asp Ala Thr 35 40 45

Leu Tyr Thr Glu Ser Asp Val His Pro Ser Cys Lys Val Thr Ala Met 50 60

Lys Cys Phe Leu Leu Glu Leu Gln Val Ile Ser Leu Glu Ser Gly Asp 65 70 75 80

Ala Ser Ile His Asp Thr Val Glu Asn Leu Ile Ile Leu Ala Asn Asn 85 90 95

Ser Leu Ser Ser Asn Gly Asn Val Thr Glu Ser Gly Cys Lys Glu Cys 105 Glu Glu Leu Glu Glu Lys Asn Ile Lys Glu Phe Leu Asp Ser Phe Val 120 His Ile Val Asp Met Phe Ile Asn Thr Ser Asp Pro Lys Ser Ala Asp 130 135 140 Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 170 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 185 190 Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 195 200 205 Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 245 250 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 280 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 295 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 325 330

Page 11

Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His

340 345 350

Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 355 360 365

Gly Lys 370

<210> 5

<211> 371

<212> PRT

<213> Artificial sequence

<220>

<223> Amino acid sequence of murine IL-15/Fc (human mutated IL-15,
 murine IgG2A) with CD5 leader

<400> 5

Met Pro Met Gly Ser Leu Gln Pro Leu Ala Thr Leu Tyr Leu Leu Gly 1 5 10 15

Met Leu Val Ala Ser Cys Leu Gly Asn Trp Val Asn Val Ile Ser Asp 20 25 30

Leu Lys Lys Ile Glu Asp Leu Ile Gln Ser Met His Ile Asp Ala Thr
35 40 45

Leu Tyr Thr Glu Ser Asp Val His Pro Ser Cys Lys Val Thr Ala Met 50 60

Lys Cys Phe Leu Leu Glu Leu Gln Val Ile Ser Leu Glu Ser Gly Asp 65 70 75 80

Ala Ser Ile His Asp Thr Val Glu Asn Leu Ile Ile Leu Ala Asn Asn
85 90 95

Ser Leu Ser Ser Asn Gly Asn Val Thr Glu Ser Gly Cys Lys Glu Cys 100 105 110

Glu Glu Leu Glu Glu Lys Asn Ile Lys Glu Phe Leu Asp Ser Phe Val 115 120 125

His Ile Val Asp Met Phe Ile Asn Thr Ser Asp Pro Arg Gly Pro Thr

130 135 140

Ile Lys Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro Asn Leu Leu Gly
145 150 155 160

Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val Leu Met 165 170 175

Ile Ser Leu Ser Pro Ile Val Thr Cys Val Val Val Asp Val Ser Glu
180 185 190

Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val 195 200 205

His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Leu 210 215 220

Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly 225 230 235 240

Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu Pro Ala Pro Ile 245 250 255

Glu Arg Thr Ile Ser Lys Pro Lys Gly Ser Val Arg Ala Pro Gln Val 260 265 270

Tyr Val Leu Pro Pro Pro Glu Glu Glu Met Thr Lys Lys Gln Val Thr 275 280 285

Leu Thr Cys Met Val Thr Asp Phe Met Pro Glu Asp Ile Tyr Val Glu 290 295 300

Trp Thr Asn Asn Gly Lys Thr Glu Leu Asn Tyr Lys Asn Thr Glu Pro 305 310 315 320

Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser Lys Leu Arg Val 325 330 335

Glu Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser Cys Ser Val Val 340 345 350

His Glu Gly Leu His Asn His His Thr Thr Lys Ser Phe Ser Arg Thr 355 360 365

Pro Gly Lys