

EVS28 KINTEX, Korea, May 3-6, 2015

Design Optimization of Bulk Capacitor

Kyle Kim

General Motors Korea kyle.kim@gm.com

Introduction

- Fundamental Parts of Power Inverter
 - Visual BOM
- What is Bulk Capacitor?
 - Definition / Function
 - Visual BOM / Types
- Design Requirement of Bulk Capacitor
- Validation Requirement of Bulk Capacitor
- Conclusion

Fundamental Part of Power Inverter

Bulk Capacitor – Definition / Function

Definition

Bulk Capacitor is combination of capacitors which have different design purpose. It is called as DC Link, since basic function is filtering of DC flow. Y-Capacitor, X Capacitor and bus bars are located inside Power Inverter under certain Purpose.

Bulk Capacitor – Definition / Function

Function

Bulk Capacitor, DC Link is used to prevent <u>ripple currents</u> from reaching back to the power source, and to smooth out DC bus voltage variations.

Capacitors are also used to protect semiconductors such as IGBTs.

Visual BOM of Bulk Capacitor

Exploded View

To be added

Bulk Capacitor – Visual BOM / Types

Types of Capacitors

	Size	High Freq.	Thermal Performance	High Voltage	High Capacitance	Life cycle	Cost
AI - Electrolytic Capacitor	Very Good	Bad	Bad	Good	Very Good	Bad	Very Good
Ta - Electrolytic Capacitor	Very Good	Good	Good	Normal	Normal	Good	Normal
Ceramic Capacitor	Good	Very Good	Bad	Normal	Normal	Very Good	Bad
Film Capacitor	Bad	Very Good	Good	Very Good	Good	Very Good	Bad

Power Inverter Design Process

System Interface Requirement

- Voltage, Power Requirement
- Temperature(Ambient, Coolant liquid or air)
- High Voltage Safety
- Security Requirements
- Electro-Magnetic Compatibility

Vehicle Drive Information

- Durability Requirement
- Thermal performance
- Fuel Economy target
- Torque Requirement

Power Electronics Component Sizing

- AC Phase Current Case Scenarios
 - Number of Motors
 - Motoring & Generating
- Define Battery Voltage Range
- AC Phase Current Information
 - Peak & Continuous
 - Total & Max Duration
- Battery Voltage information
 - Peak & Continuous

EVS 28 + Motional Technology for Humans

Mechanical & Electrical Analysis

- PWM Frequency Profile
 - Ripple Requirement
 - PWM Algorithm
- Power Module Selection
 - Loss Parameters
 - Thermal Impedance
 - Number of Motors
 - Motoring & Generating
- Define Battery Voltage Range

- AC Phase Current Information
 - Peak & Continuous
 - Total & Max Duration
- Battery Voltage information
 - Peak & Continuous

Design Bulk Capacitor based on Analysis - 1

- Capacitance with Tolerance
 - Capacitance change over temperature variation
 - End of Life Capacitance
 - ESR/ESL
 - Y-Cap Capacitance
- DC Voltage Rating
- Operating Voltage
- Max Operating Voltage

Design Bulk Capacitor based on Analysis - 2

- Hi-Pot
- Isolation Resistance
- Charge/Discharge Cycle over voltage variation.
- Thermal Resistance
- Cooling Method
- Vibration Profile
- Life-Cycle(Operation hours)
 - Life Curve Prediction as a function of Ripple Current and DC Voltage over Temperature
- Potting material
- Flammability Rating

Validation Requirement

Basic Check-ups

- Electrical: Capacitance with Tolerance, ESR, ESL, Impedance with specific Frequencies. Y-Capacitor's capacitance.
- Mechanical : Dimension, Materials, Thermal Performance.

Criteria Criteria	Requirement			
Capacitance	≥ XX μF & ≤ XXμF			
Tolerance	XX%			
Test Frequency	XX kHz			
Capacitance Change Over Temperature Range (XXC to XXC)	+XX% to XX%			
End of Life Capacitance	≤ XX % degradation of initial capacitance value			
ESR (XX C)	< XX mΩ			
 ESR is measured at the resonant frequency of the capacitor assembly 				
ESL (XX C)	≤XX nH			
 ESL is measured at the resonant frequency of the capacitor assembly 				
DC Voltage Rating	XX V			
Operating Voltage (nominal)	XX V			
Maximum Operating Voltage	XX V			
Test Voltage Between Terminals	XX V			
Test time: XX sec				
Test temperature: XXC				

Validation Requirement

Thermal Prediction of Bulk Capacitor

Validation Requirement

Lifetime Estimation

- High Temperature Durability test
- Capacitor life time estimation method
 - Computational method → Simulation/Analysis
 - Actual Measurement and Analysis need to be correlated.
- Capacitance Deterioration test.
 - Temperature variation with DC voltage variation.

Validation Requirement – Mechanical

<u>Vibration and Stress Analysis - Mechanical performance</u>

Purpose: Verify Mechanical performance under certain situations electrical

excitation of the capacitor (e.g. current ripple) may cause the capacitor

to vibrate relative to their mounting features

causing audible noise or increased

mechanical stress and decreased life.

Criteria: Stack-up tolerance, specific operation scenario

with specific vibration profile.

NVH Performance

Purpose: verify audible noise emission

Criteria : Specific scenario such as pre-charge, active discharge Operating switching frequency

range, etc

Conclusion

- Bulk Capacitor should conduct DC Voltage Filtering, Noise Filtering, and Surge suppression. Capacitance can be varied over temperature, therefore Capacitor needs to be designed and verified with complicated requirements

Thank you