# Teoremi di rigidità per funzioni olomorfe nel disco

Candidato: Marco Vergamini Relatore: Prof. Marco Abate

### Il lemma di Schwarz-Pick

#### Lemma di Schwarz-Pick

Sia  $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ . Allora per ogni  $z, w \in \mathbb{D}$  si ha

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| e \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre, se vale l'uguaglianza nella prima per  $z_0, w_0$  con  $z_0 \neq w_0$  o nella seconda per  $z_0$  allora  $f \in Aut(\mathbb{D})$  e vale sempre l'uguaglianza.

### Il lemma di Schwarz-Pick

#### Lemma di Schwarz-Pick

Sia  $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ . Allora per ogni  $z, w \in \mathbb{D}$  si ha

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| e \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre, se vale l'uguaglianza nella prima per  $z_0, w_0$  con  $z_0 \neq w_0$  o nella seconda per  $z_0$  allora  $f \in \operatorname{Aut}(\mathbb{D})$  e vale sempre l'uguaglianza.

### Osservazione

Se  $f \in Aut(\mathbb{D})$ , allora  $f(z) = e^{i\theta} \frac{z - a}{1 - \bar{a}z}$  con  $\theta \in \mathbb{R}$  e  $a \in \mathbb{D}$ .

### Il lemma di Schwarz-Pick

#### Lemma di Schwarz-Pick

Sia  $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ . Allora per ogni  $z, w \in \mathbb{D}$  si ha

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| e \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre, se vale l'uguaglianza nella prima per  $z_0, w_0$  con  $z_0 \neq w_0$  o nella seconda per  $z_0$  allora  $f \in \operatorname{Aut}(\mathbb{D})$  e vale sempre l'uguaglianza.

### Osservazione

Se 
$$f \in Aut(\mathbb{D})$$
, allora  $f(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}$  con  $\theta \in \mathbb{R}$  e  $a \in \mathbb{D}$ .

Dal lemma, si ha che la quantità  $\left| \frac{z-w}{1-\bar{w}z} \right|$  è contratta dalle funzioni in

 $\operatorname{Hol}(\mathbb{D},\mathbb{D})$ . A partire da essa è possibile definire una distanza sul disco.

### La distanza di Poincaré

Scriviamo 
$$[z,w]:=rac{z-w}{1-\bar{w}z}$$
 e  $p(z,w):=|[z,w]|.$ 

### La distanza di Poincaré

Scriviamo 
$$[z, w] := \frac{z - w}{1 - \bar{w}z} e \ p(z, w) := |[z, w]|.$$

#### Definizione

La distanza di Poincaré (o iperbolica) sul disco è la funzione  $\omega: \mathbb{D} \times \mathbb{D} \longrightarrow [0, +\infty)$  data da

$$\omega(z, w) := \operatorname{arctanh}(p(z, w)) = \frac{1}{2} \log \left( \frac{1 + p(z, w)}{1 - p(z, w)} \right).$$

### La distanza di Poincaré

Scriviamo 
$$[z, w] := \frac{z - w}{1 - \bar{w}z} e \ p(z, w) := |[z, w]|.$$

#### Definizione

La distanza di Poincaré (o iperbolica) sul disco è la funzione  $\omega: \mathbb{D} \times \mathbb{D} \longrightarrow [0, +\infty)$  data da

$$\omega(z, w) := \operatorname{arctanh}(p(z, w)) = \frac{1}{2} \log \left( \frac{1 + p(z, w)}{1 - p(z, w)} \right).$$

Per stretta crescenza della tangente iperbolica, in termini di  $\omega$  il lemma di Schwarz-Pick si riscrive come

$$\omega(f(z), f(w)) \le \omega(z, w).$$

Vale l'uguaglianza in qualche caso se e solo se  $f \in Aut(\mathbb{D})$ ; in tal caso c'è sempre l'uguaglianza.

4 D > 4 B > 4 B > B = 990

# Derivata e rapporto iperbolici

#### Definizione

Data  $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ , la derivata iperbolica è definita come

$$f^h(w) := \lim_{z \to w} \frac{[f(z), f(w)]}{[z, w]} = \frac{f'(w)(1 - |w|^2)}{1 - |f(w)|^2}.$$

# Derivata e rapporto iperbolici

#### Definizione

Data  $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ , la derivata iperbolica è definita come

$$f^h(w) := \lim_{z \to w} \frac{[f(z), f(w)]}{[z, w]} = \frac{f'(w)(1 - |w|^2)}{1 - |f(w)|^2}.$$

### Definizione

Il rapporto iperbolico è definito come

$$f^*(z, w) := \begin{cases} \frac{[f(z), f(w)]}{[z, w]} & \text{per } z \neq w \\ f^h(w) & \text{per } z = w \end{cases}$$

# Derivata e rapporto iperbolici

#### Definizione

Data  $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ , la derivata iperbolica è definita come

$$f^h(w) := \lim_{z \to w} \frac{[f(z), f(w)]}{[z, w]} = \frac{f'(w)(1 - |w|^2)}{1 - |f(w)|^2}.$$

#### Definizione

Il rapporto iperbolico è definito come

$$f^*(z, w) := \begin{cases} \frac{[f(z), f(w)]}{[z, w]} & \text{per } z \neq w \\ f^h(w) & \text{per } z = w \end{cases}$$

Fissato  $w \in \mathbb{D}$ , la funzione  $z \longmapsto f^*(z, w)$  è olomorfa sul disco unitario. Se  $f \notin \operatorname{Aut}(\mathbb{D})$ , allora  $f^*(\cdot, w) \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ .

# Regioni di Stolz e settori

### Definizione

Dati  $\alpha \in (0, \pi/2)$  e  $\sigma \in \partial \mathbb{D}$ , chiamiamo settore di vertice  $\sigma$  e angolo  $2\alpha$  l'insieme  $S(\sigma, \alpha) \subset \mathbb{D}$  tale che per ogni  $z \in S(\sigma, \alpha)$  l'angolo compreso tra la retta congiungente  $\sigma$  e 0 e la retta congiungente  $\sigma$  e z ha modulo minore di  $\alpha$ .

# Regioni di Stolz e settori

### Definizione

Dati  $\alpha \in (0, \pi/2)$  e  $\sigma \in \partial \mathbb{D}$ , chiamiamo settore di vertice  $\sigma$  e angolo  $2\alpha$  l'insieme  $S(\sigma, \alpha) \subset \mathbb{D}$  tale che per ogni  $z \in S(\sigma, \alpha)$  l'angolo compreso tra la retta congiungente  $\sigma$  e 0 e la retta congiungente  $\sigma$  e z ha modulo minore di  $\alpha$ .

#### Definizione

Dati  $\sigma \in \partial \mathbb{D}$  e M > 1, chiamiamo regione di Stolz  $K(\sigma, M)$  l'insieme  $\left\{z \in \mathbb{D} \mid \frac{|\sigma - z|}{1 - |z|} < M\right\}$ .

# regioni di Stolz e settori



A sinistra, il settore  $S(1, 2\pi/3)$ ; a destra, la regione di Stolz K(1, 2).

### Proposizione

Dato M > 1, sia  $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$ . Per ogni  $\alpha' < \alpha$  esiste  $\varepsilon > 0$  tale che, detto  $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$ , si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

### Proposizione

Dato M > 1, sia  $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$ . Per ogni  $\alpha' < \alpha$  esiste  $\varepsilon > 0$  tale che, detto  $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$ , si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione: senza perdita di generalità  $\sigma = 1$ .

### Proposizione

Dato M > 1, sia  $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$ . Per ogni  $\alpha' < \alpha$  esiste  $\varepsilon > 0$  tale che, detto  $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$ , si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione: senza perdita di generalità  $\sigma = 1$ .

Possiamo scrivere  $S(1,\alpha) = \{z \in \mathbb{D} \mid |\mathfrak{Im}(z)| < (\tan \alpha) (1 - \mathfrak{Re}(z)) \}.$ 

### Proposizione

Dato M > 1, sia  $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$ . Per ogni  $\alpha' < \alpha$  esiste  $\varepsilon > 0$  tale che, detto  $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$ , si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione: senza perdita di generalità  $\sigma = 1$ .

Possiamo scrivere  $S(1, \alpha) = \{z \in \mathbb{D} \mid |\mathfrak{Im}(z)| < (\tan \alpha) (1 - \mathfrak{Re}(z)) \}$ . Se  $z \in K(1, M)$ , da

$$M > \frac{|1-z|}{1-|z|} \ge \frac{|1-z|}{1-\mathfrak{Re}(z)}$$

### Proposizione

Dato M > 1, sia  $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$ . Per ogni  $\alpha' < \alpha$  esiste  $\varepsilon > 0$  tale che, detto  $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$ , si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione: senza perdita di generalità  $\sigma = 1$ .

Possiamo scrivere  $S(1, \alpha) = \{z \in \mathbb{D} \mid |\mathfrak{Im}(z)| < (\tan \alpha) (1 - \mathfrak{Re}(z)) \}$ . Se  $z \in K(1, M)$ , da

$$M > \frac{|1-z|}{1-|z|} \ge \frac{|1-z|}{1-\Re(z)}$$

troviamo

$$\frac{|\mathfrak{Im}(z)|}{1-\mathfrak{Re}(z)} < \sqrt{M^2 - 1} = \tan \alpha;$$

questo mostra la seconda inclusione.



### Proposizione

Dato M > 1, sia  $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$ . Per ogni  $\alpha' < \alpha$  esiste  $\varepsilon > 0$  tale che, detto  $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$ , si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione: sia  $\alpha' < \alpha$  e supponiamo per assurdo che per ogni  $\varepsilon > 0$  esista  $z \in S(1, \alpha') \cap B(1, \varepsilon)$  tale che  $z \notin K(1, M)$ .

### Proposizione

Dato M > 1, sia  $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$ . Per ogni  $\alpha' < \alpha$  esiste  $\varepsilon > 0$  tale che, detto  $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$ , si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione: sia  $\alpha' < \alpha$  e supponiamo per assurdo che per ogni  $\varepsilon > 0$  esista  $z \in S(1, \alpha') \cap B(1, \varepsilon)$  tale che  $z \notin K(1, M)$ . Si ha allora

$$\frac{1-|z|}{|1-z|} \le \frac{1}{M} e^{\frac{|\mathfrak{Im}(z)|}{1-\mathfrak{Re}(z)}} < \tan \alpha'. \tag{1}$$

### Proposizione

Dato M > 1, sia  $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$ . Per ogni  $\alpha' < \alpha$  esiste  $\varepsilon > 0$  tale che, detto  $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$ , si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione: sia  $\alpha' < \alpha$  e supponiamo per assurdo che per ogni  $\varepsilon > 0$  esista  $z \in S(1, \alpha') \cap B(1, \varepsilon)$  tale che  $z \notin K(1, M)$ . Si ha allora

$$\frac{1-|z|}{|1-z|} \le \frac{1}{M} e^{-\frac{|\mathfrak{Im}(z)|}{1-\mathfrak{Re}(z)}} < \tan \alpha'. \tag{1}$$

Dalla seconda disuguaglianza in (1) si ottiene

$$\frac{|1-z|}{1-\Re(z)} < \sqrt{\tan^2 \alpha' + 1} =: M' < M; \tag{2}$$

moltiplicando la (2) per la prima disuguaglianza della (1) troviamo

### Proposizione

Dato M > 1, sia  $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$ . Per ogni  $\alpha' < \alpha$  esiste  $\varepsilon > 0$  tale che, detto  $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$ , si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione:  $\frac{1-|z|}{1-\Re(z)} < \frac{M'}{M} < 1$ .

### Proposizione

Dato M > 1, sia  $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$ . Per ogni  $\alpha' < \alpha$  esiste  $\varepsilon > 0$  tale che, detto  $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$ , si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione:  $\frac{1-|z|}{1-\Re \mathfrak{e}(z)} < \frac{M'}{M} < 1$ . Tuttavia, ponendo  $x = \Re \mathfrak{e}(z)$  e  $y = \Im \mathfrak{m}(z)$  e riscrivendo la condizione  $z \in S(1, \alpha')$  come  $y/(1-x) < \tan \alpha'$ ,

### Proposizione

Dato M > 1, sia  $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$ . Per ogni  $\alpha' < \alpha$  esiste  $\varepsilon > 0$  tale che, detto  $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$ , si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione:  $\frac{1-|z|}{1-\Re \mathfrak{e}(z)} < \frac{M'}{M} < 1$ . Tuttavia, ponendo  $x = \Re \mathfrak{e}(z)$  e  $y = \Im \mathfrak{m}(z)$  e riscrivendo la condizione  $z \in S(1, \alpha')$  come  $y/(1-x) < \tan \alpha'$ , vediamo facilmente che

$$\lim_{\substack{z \to 1, \\ z \in S(1, \alpha')}} \frac{1 - |z|}{1 - \Re \mathfrak{e}(z)} - 1 = 0,$$

da cui otteniamo una contraddizione.



### Definizione

Diciamo che una funzione  $f: \mathbb{D} \longrightarrow \mathbb{C}$  ha limite non-tangenziale  $L \in \mathbb{C}$  in  $\sigma \in \partial \mathbb{D}$  e scriviamo

$$\lim_{z \to \sigma} f(z) = L$$

se per ogni
$$M>1$$
si ha $\displaystyle \lim_{\substack{z\longrightarrow \sigma,\\z\in K(\sigma,M)}}f(z)=L.$ 

#### Definizione

Diciamo che una funzione  $f: \mathbb{D} \longrightarrow \mathbb{C}$  ha limite non-tangenziale  $L \in \mathbb{C}$  in  $\sigma \in \partial \mathbb{D}$  e scriviamo

$$\lim_{z \to \sigma} f(z) = L$$

se per ogniM>1si ha  $\lim_{\substack{z\longrightarrow\sigma,\\z\in K(\sigma,M)}}f(z)=L.$ 

### Definizione

Date tre funzioni  $f, g, h : \mathbb{D} \longrightarrow \mathbb{C}$  scriviamo che f(z) = g(z) + o(h(z)) per  $z \longrightarrow \sigma$  non tangenzialmente se

$$\underset{z \to \sigma}{\text{nt-lim}} \frac{f(z) - g(z)}{h(z)} = 0.$$



### Proposizione

Siano  $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$  e  $\sigma \in \partial \mathbb{D}$  tali che

$$f(z) = \sigma + (z - \sigma) + o((z - \sigma)^3) \tag{1}$$

 $per z \longrightarrow \sigma$  non tangenzialmente. Allora

$$|f^{h}(z)| = 1 + o((z - \sigma)^{2})$$
 (2)

 $per z \longrightarrow \sigma \ non \ tangenzialmente.$ 

### Proposizione

Siano  $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$  e  $\sigma \in \partial \mathbb{D}$  tali che

$$f(z) = \sigma + (z - \sigma) + o((z - \sigma)^3) \tag{1}$$

 $per z \longrightarrow \sigma \ non \ tangenzialmente. \ Allora$ 

$$|f^h(z)| = 1 + o\left((z - \sigma)^2\right) \tag{2}$$

 $per z \longrightarrow \sigma \ non \ tangenzialmente.$ 

Traccia della dimostrazione: senza perdita di generalità  $\sigma=1$ .

Consideriamo  $z \in K(1, M) \subset S(1, \alpha)$ , dove  $\alpha = \arctan \sqrt{M^2 - 1}$ .

Fissato  $\beta > \alpha$ , scriviamo  $r(z) = \operatorname{dist} (z, \partial S(1, \beta))$  e  $C(z) = \partial B(1, r(z))$ .

Dalla formula integrale di Cauchy applicata alla funzione f(z) - z otteniamo

$$f'(z) = 1 + \frac{1}{2\pi i} \int_{C(z)} \frac{f(w) - w}{(w - z)^2} dw =: 1 + I(z).$$

Traccia della dimostrazione:

$$f'(z) = 1 + \frac{1}{2\pi i} \int_{C(z)} \frac{f(w) - w}{(w - z)^2} dw =: 1 + I(z).$$

Fissato  $\varepsilon > 0$ , esiste  $\delta > 0$  tale che  $|f(w) - w| \le \varepsilon |1 - w|^3$  per  $w \in C(z)$ , con  $z \in K(1, M) \cap B(1, \delta/2)$ . Si ottiene

$$|I(z)| \leq \frac{\varepsilon}{r(z)} \max_{w \in C(z)} |1 - w|^3.$$

Traccia della dimostrazione:

$$f'(z) = 1 + \frac{1}{2\pi i} \int_{C(z)} \frac{f(w) - w}{(w - z)^2} dw =: 1 + I(z).$$

Fissato  $\varepsilon > 0$ , esiste  $\delta > 0$  tale che  $|f(w) - w| \le \varepsilon |1 - w|^3$  per  $w \in C(z)$ , con  $z \in K(1, M) \cap B(1, \delta/2)$ . Si ottiene

$$|I(z)| \le \frac{\varepsilon}{r(z)} \max_{w \in C(z)} |1 - w|^3.$$

Da considerazioni geometriche si ha  $|I(z)| \le \varepsilon |z-1|^2 (1+\csc(\beta-\alpha))^3$ , da cui  $f'(z) = 1 + o((z-1)^2)$ . Inoltre, dalle ipotesi

$$\frac{1 - |f(z)|}{1 - |z|} = \frac{1 - |z| + o((z - 1)^3)}{1 - |z|} = 1 + o((z - 1)^2).$$



### Prodotti di Blaschke

#### Definizione

Dati  $a_1, \ldots, a_n \in \mathbb{D}$  e  $\theta \in \mathbb{R}$ , chiamiamo prodotto di Blaschke di grado n la funzione

$$e^{i\theta} \prod_{j=1}^{n} \frac{z - a_j}{1 - \bar{a}_j z}.$$

Indichiamo con  $\mathcal{B}_n$  i prodotti di Blaschke di grado n.

### Prodotti di Blaschke

#### Definizione

Dati  $a_1, \ldots, a_n \in \mathbb{D}$  e  $\theta \in \mathbb{R}$ , chiamiamo prodotto di Blaschke di grado n la funzione

$$e^{i\theta} \prod_{j=1}^{n} \frac{z - a_j}{1 - \bar{a}_j z}.$$

Indichiamo con  $\mathcal{B}_n$  i prodotti di Blaschke di grado n.

Notiamo che  $\mathcal{B}_1 = \operatorname{Aut}(\mathbb{D})$ .

### Prodotti di Blaschke

### Definizione

Dati  $a_1, \ldots, a_n \in \mathbb{D}$  e  $\theta \in \mathbb{R}$ , chiamiamo prodotto di Blaschke di grado n la funzione

$$e^{i\theta} \prod_{j=1}^{n} \frac{z - a_j}{1 - \bar{a}_j z}.$$

Indichiamo con  $\mathcal{B}_n$  i prodotti di Blaschke di grado n.

Notiamo che  $\mathcal{B}_1 = \operatorname{Aut}(\mathbb{D})$ .

### Proposizione

Valgono le sequenti:

- (i) si ha che  $f \in \mathcal{B}_{n+1}$  se e solo se  $f^*(\cdot, w) \in \mathcal{B}_n$ , con  $w \in \mathbb{D}$  fissato;
- (ii) se  $f \in \mathcal{B}_2$  allora  $f^*(R_f(w), w)$ , dove  $R_f$  è la rotazione attorno al punto in cui f ha molteplicità doppia.

#### Teorema

(Beardon-Minda, 2004) Sia  $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$ . Allora per ogni  $z, w, v \in \mathbb{D}$  vale

$$\omega(f^*(z,v), f^*(w,v)) \le \omega(z,w). \tag{1}$$

Si ha l'uguaglianza se e solo se  $f \in \mathcal{B}_2$ .

#### Teorema

(Beardon-Minda, 2004) Sia  $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$ . Allora per ogni  $z, w, v \in \mathbb{D}$  vale

$$\omega(f^*(z,v), f^*(w,v)) \le \omega(z,w). \tag{1}$$

Si ha l'uguaglianza se e solo se  $f \in \mathcal{B}_2$ .

Traccia della dimostrazione: basta applicare il lemma di Schwarz-Pick alla funzione  $f^*(\cdot, v)$ .

#### Teorema

(Beardon-Minda, 2004) Sia  $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$ . Allora per ogni  $z, w, v \in \mathbb{D}$  vale

$$\omega(f^*(z,v), f^*(w,v)) \le \omega(z,w). \tag{1}$$

Si ha l'uguaglianza se e solo se  $f \in \mathcal{B}_2$ .

Traccia della dimostrazione: basta applicare il lemma di Schwarz-Pick alla funzione  $f^*(\cdot, v)$ .

#### Osservazione

Se f(0) = 0 troviamo  $\omega(f(z)/z, f'(0)) \le \omega(z, 0)$ . Il disco di centro f'(0) e raggio  $\omega(z)$  è, in generale, strettamente contenuto in  $\mathbb{D}$ .

#### Corollario

Sia  $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$ . Allora per ogni  $z, w, v, u \in \mathbb{D}$  vale

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(u, w)) + \omega(z, w) + \omega(v, u). \tag{2}$$

Si ha l'uguaglianza se e solo se  $f \in \mathcal{B}_2$  e  $R_f(v), R_f(u), w$  e z giacciono sulla stessa geodetica, in quest'ordine.

#### Corollario

Sia  $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$ . Allora per ogni  $z, w, v, u \in \mathbb{D}$  vale

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(u, w)) + \omega(z, w) + \omega(v, u). \tag{2}$$

Si ha l'uguaglianza se e solo se  $f \in \mathcal{B}_2$  e  $R_f(v), R_f(u), w$  e z giacciono sulla stessa geodetica, in quest'ordine.

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(w, v)) + \omega(f^*(w, v), f^*(z, v))$$

#### Corollario

Sia  $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$ . Allora per ogni  $z, w, v, u \in \mathbb{D}$  vale

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(u, w)) + \omega(z, w) + \omega(v, u). \tag{2}$$

Si ha l'uguaglianza se e solo se  $f \in \mathcal{B}_2$  e  $R_f(v), R_f(u), w$  e z giacciono sulla stessa geodetica, in quest'ordine.

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(w, v)) + \omega(f^*(w, v), f^*(z, v))$$
  
$$\le \omega(0, f^*(w, v)) + \omega(w, z)$$

#### Corollario

Sia  $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$ . Allora per ogni  $z, w, v, u \in \mathbb{D}$  vale

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(u, w)) + \omega(z, w) + \omega(v, u). \tag{2}$$

Si ha l'uguaglianza se e solo se  $f \in \mathcal{B}_2$  e  $R_f(v), R_f(u), w$  e z giacciono sulla stessa geodetica, in quest'ordine.

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(w, v)) + \omega(f^*(w, v), f^*(z, v))$$
  
$$\le \omega(0, f^*(w, v)) + \omega(w, z)$$
  
$$= \omega(0, f^*(v, w)) + \omega(w, z)$$

#### Corollario

Sia  $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$ . Allora per ogni  $z, w, v, u \in \mathbb{D}$  vale

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(u, w)) + \omega(z, w) + \omega(v, u). \tag{2}$$

Si ha l'uguaglianza se e solo se  $f \in \mathcal{B}_2$  e  $R_f(v), R_f(u), w$  e z giacciono sulla stessa geodetica, in quest'ordine.

$$\omega(0, f^*(z, v)) \leq \omega(0, f^*(w, v)) + \omega(f^*(w, v), f^*(z, v))$$

$$\leq \omega(0, f^*(w, v)) + \omega(w, z)$$

$$= \omega(0, f^*(v, w)) + \omega(w, z)$$

$$\leq \omega(0, f^*(u, w)) + \omega(u, v) + \omega(w, z).$$