Please amend the claims as follows:

[c1] (Original) A method for determining a property of a flowing fluid by nuclear magnetic resonance, comprising:

applying a static magnetic field to the flowing fluid;

acquiring a suite of nuclear magnetic resonance measurements on the flowing fluid using a pulse sequence comprising a spoiling pulse, a wait time, and an acquisition pulse sequence, wherein the suite of nuclear magnetic measurements have different values for the wait time; and

fitting the suite of nuclear magnetic resonance measurements to a forward model for responses of the flowing fluid to derive a parameter selected from a flow speed, longitudinal relaxation times of the flowing fluid, and a combination thereof.

- [c2] (Original) The method of claim 1, wherein the acquisition pulse sequence comprises one selected from a spin-echo pulse sequence and a single pulse.
- [c3] (Original) The method of claim 1, wherein the fitting is performed by inversion of the forward model.
- [c4] (Original) The method of claim 1, further comprising estimating a viscosity of the flowing fluid based on the derived flow speed and a pressure drop across a selected length of a pipe in which the flowing fluid travels.
- [c5] (Original) The method of claim 4, wherein the estimating is according to one selected from

 $\eta = \frac{\Delta P \cdot r_o^2}{8 \cdot \nu \cdot L}$ and $\eta = K \frac{\Delta P}{\nu},$

where η is the viscosity, ν is an average speed of the flowing fluid. L is the selected length of the pipe, ΔP is the pressure drop over the selected length of the pipe, and K is an experimentally determined constant.

- [c6] (Original) The method of claim 1, further comprising estimating a viscosity of the flowing fluid based on the derived longitudinal relaxation times and a gas-oil ratio of the flowing fluid.
- [c7] (Original) The method of claim 6, wherein the estimating is according to:

$$\eta_{o} = \frac{k T}{T_{1,LM} f(GOR)}$$

where η_0 is the viscosity, k is an empirically determined constant for the flowing fluid, T is a temperature in Kelvin, $T_{1,LM}$ is a logarithmic mean of the longitudinal relaxation times of the flowing fluid, and f(GOR) is an empirically determined function of the gasoil ratio.

[c8] (Original) A method for determining a property of a flowing fluid by nuclear magnetic resonance, comprising:

applying a static magnetic field to the flowing fluid;

- acquiring a suite of nuclear magnetic resonance measurements on the flowing fluid using a pulse sequence comprising a longitudinal relaxation investigation pulse sequence and an acquisition pulse sequence, wherein the suite of nuclear magnetic measurements have different values for a delay time within the longitudinal relaxation investigation pulse; and
- fitting the suite of nuclear magnetic resonance measurements to a forward model for responses of the flowing fluid to derive a parameter selected from a flow speed, longitudinal relaxation times of the flowing fluid, and a combination thereof.
- [c9] (Original) The method of claim 8, wherein the longitudinal-relaxation-investigation pulse comprises one selected from a inversion-recovery pulse sequence and a saturation-recovery pulse sequence.
- [c10] (Original) The method of claim 8, wherein the acquisition pulse sequence comprises one selected from a spin-echo pulse sequence and a single pulse.

- [c11] (Original) The method of claim 8, wherein the fitting is performed by inversion of the forward model.
- [c12] (Original) The method of claim 8, further comprising estimating a viscosity of the flowing fluid based on the derived flow speed and a pressure drop across a selected length of appe in which the flowing fluid travels.
- [c13] (Original) The method of claim 12, wherein the estimating is according to one selected from $\eta = \frac{\Delta P \cdot r_0^2}{8 \cdot v \cdot L} \quad \text{and} \quad \eta = K \frac{\Delta P}{v},$

where η is the viscosity, ν is an average speed of the flowing fluid, L is the selected length of the pipe, ΔP is the pressure drop over the selected length of the pipe, and r_o is a radius of the pipe, and K is an experimentally determined constant.

- [c14] (Original) The method of claim 8, further comprising estimating a viscosity of the flowing fluid based on the derived longitudinal relaxation times and a gas-oil ratio of the flowing fluid.
- [c15] (Original) he method of claim 14, wherein the estimating is according to:

$$\eta_{o} = \frac{k T}{T_{1,LM} | f(GOR)}$$

where η_0 is the viscosity, k is an empirically determined constant for the flowing fluid, T is a temperature in Kelvin, $T_{1,LM}$ is a logarithmic mean of the longitudinal relaxation times of the flowing fluid, and f(GOR) is an empirically determined function of the gasoil ratio.

- [c16] (Original) A method for monitoring confamination in a flowing fluid being withdrawn into a formation fluid testing tool using nuclear magnetic resonance, comprising: applying a static magnetic field to the flowing fluid;
- acquiring a suite of nuclear magnetic resonance measurements of the flowing fluid using a pulse sequence comprising a spoiling pulse, a wait time, and an acquisition pulse sequence,

wherein the suite of nuclear magnetic measurements have different values for the wait time;

- fitting the suite of nuclear magnetic resonance measurements to a forward model for responses of the flowing fluid to derive a property of the flowing fluid, and
- monitoring a level of contamination in the flowing fluid based on the derived property of the flowing fluid.
- [c17] (Original) The method of claim 16, wherein the property of the flowing fluid comprises one selected from a distribution of longitudinal relaxation times, a logarithmic mean of longitudinal relaxation times, and a combination thereof.
- [c18] (Original) The method of claim 16, wherein the property of the flowing fluid is a viscosity.
- [c19] (Presently Amended, Once) A nuclear magnetic resonance apparatus, comprising:
- a flow pipe including a prepolarization section and an investigation section, wherein the prepolarization section is upstream of the investigation section.
- a magnet disposed around the flow pipe for creating a static magnetic field covering the prepolarization section and the investigation section;
- an antenna disposed around the flow pipe at the investigation section for generating an oscillating magnetic field having a magnetic dipole substantially perpendicular to a magnetic dipole of the static magnetic field, and for receiving a nuclear magnetic resonance signal; and
- a circuitry for controlling generation of the oscillating magnetic field and reception of the nuclear magnetic resonance signal by the antenna, wherein the circuitry includes a program having instructions for acquiring a suite of nuclear magnetic resonance measurements of a flowing luid using a pulse sequence comprising a spoiling pulse, a wait time, and an acquisition pulse sequence.
- [c20] (Presently Cancelled)
- [c21] (Presently Amended, Once) The apparatus of claim 2019, wherein the acquisition pulse sequence comprises one selected from a spin-echo pulse sequence and a single pulse.

- [c22] (Original) The apparatus of claim 20, wherein the program further comprises instructions for fitting the suite of nuclear magnetic resonance measurements to a forward model for responses of a flowing fluid to derive a parameter selected from a flow speed, longitudinal relaxation times of the flowing fluid, and a combination thereof.
- [c23] (Original) The apparatus of claim 22, wherein the fitting is performed by inversion of the forward model.
- [C24] (Original) The apparatus of claim 22, wherein the program further comprising instructions for estimating a viscosity of the flowing fluid based on the derived flow speed or the derived longitudinal relaxation times.
- [c25] (New) A nuclear magnetic resonance apparatus, comprising:

OCT. 28. 2004 3:35PM

- a flow pipe including a prepolarization section and an investigation section, wherein the prepolarization section is upstream of the investigation section;
- a magnet disposed around the flow pipe for creating a static magnetic field covering the prepolarization section and the investigation section;
- an antenna disposed around the flow pipe at the investigation section for generating an oscillating magnetic field having a magnetic dipole substantially perpendicular to a magnetic dipole of the static magnetic field, and for receiving a nuclear magnetic resonance signal; and
- a circuitry for controlling generation of the oscillating magnetic field and reception of the nuclear magnetic resonance signal by the antenna, wherein the circuitry includes a program having instructions for acquiring a suite of nuclear magnetic resonance measurements of a flowing fluid using a pulse sequence comprising a longitudinal relaxation investigation pulse sequence and an acquisition pulse sequence, wherein the suite of nuclear magnetic measurements have different values for a delay time within the longitudinal relaxation investigation pulse.
- [c26] (New) The apparatus of claim 25, wherein the acquisition pulse sequence comprises one selected from a spin-echo pulse sequence and a single pulse.

[c27] (New) The apparatus of claim 25, wherein the program further comprises instructions for fitting the suite of nuclear magnetic resonance measurements to a forward model for responses of a flowing fluid to derive a parameter selected from a flow speed, longitudinal relaxation times of the flowing fluid, and a combination thereof.

OCT. 28. 2004 3:35PM

- [c28] (New) The apparatus of claim 27, wherein the fitting is performed by inversion of the forward model.
- [C29] (New) The apparatus of claim 27, wherein the program further comprising instructions for estimating a viscosity of the flowing fluid based on the derived flow speed or the derived longitudinal relaxation times.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

efects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.