东南大学

电力电子技术

第11讲

主讲教师: 五念春

380419124@qq. com

交流—直流 (AC-DC) 变换 (一)

讨论: (1) 主电路形式

- (2) 结构特点
- (3) 工作原理
- (4) 工作特性
- (5) 电压电流波形
- (6) 数量关系

负载: 电阻性, 电感性, 电容性, 反电势

分类: 电路形式(桥式、零式)

相数(单相、三相、多相)

控制方式(相控、斩控)

器件(半控式、全控式)

工作范围(单象限、多象限)

- 一、单相可控整流电路
 - 1、单相半波可控整流电路

(1) 电阻性负载

 α 和 θ 的定义

 $\theta = \pi - \alpha$

移相与同步的概念

基本概念:控制角 α ,导通角 θ ,移相,移相范围,同步,换相或换流

注意符号表示:交流侧,直流侧;大写,小写,有效值,平均值,瞬时值。

直流平均电压 U_d

$$U_d = \frac{1}{2p} \stackrel{\mathbf{p}}{\mathbf{Q}} \sqrt{2} U_2 \sin \mathbf{w} t d\mathbf{w} t$$
$$= \frac{\sqrt{2}U_2}{2p} (1 + \cos \mathbf{a})$$
$$= 0.45U_2 \frac{1 + \cos \mathbf{a}}{2}$$

$$U_{\rm d}$$
= $f(\alpha)$ α = 0 θ = π $U_{\rm d}$ = $0.45U_2$ α = π θ = 0 $U_{\rm d}$ = 0 移相范围 $180^{\rm o}$

直流电流有效值

$$I_{T} = I_{2} = \sqrt{\frac{1}{2p}} \hat{\mathbf{Q}}^{p} (\frac{U_{d}}{R_{d}})^{2} dWt$$
$$= \frac{U_{2}}{R_{d}} \sqrt{\frac{1}{4p} \sin 2a + \frac{p - a}{2p}}$$

直流电流的平均值为

$$I_{\rm d} = U_{\rm d}/R_{\rm d} = 0.45U_2/R_d \frac{1+\cos a}{2}$$

$$\frac{I_2}{I_d} = \frac{\sqrt{p \sin 2a + 2p(p - a)}}{\sqrt{2}(1 + \cos a)}$$

功率因数

$$\cos \mathbf{j} = \frac{p}{s} = \frac{UI_2}{U_2I_2}$$

$$U = \sqrt{\frac{1}{2p}} \mathbf{\hat{\hat{Q}}} (\sqrt{2}U_2 \sin wt)^2 dwt$$

$$= U_2 \sqrt{\frac{1}{4p}} \sin 2a + \frac{p - a}{2p}$$

$$\cos \mathbf{j} = \sqrt{\frac{1}{4p}} \sin 2a + \frac{p - a}{2p}$$

$$\alpha = 0$$
, $\cos \varphi = 0.707$ 纯电阻负载,功率因数为什么不等于1?

注意功率因数概念的扩展。电感、电容影响功率因数,波形缺失也影响功率因数。

东南大学

电力电子技术

第12讲

主讲教师: 王念春

380419124@qq. com

(2) 电感性负载

 $\omega t = 0 \sim \alpha$: 阻断 $u_d = 0$, $u_T = u_2$

 $\omega t_1 \sim \omega t_2$: 导通 $u_d = u_2$, $u_T = 0$

 $I_{\rm d}$ 在 ωt_2 时 $i_{\rm d}$ 最大, $e_{\rm L}$ 上(+)下(-),但 $(u_2$ + $e_{\rm L})>0$ 导通

 $\omega t_2 \sim \omega t_3$: 导通= u_2 , u_T =0

 $I_{\rm d}$ 达 $i_{
m dmax}$ 时, $e_{
m L}$ 上(-)下(+),维持导通(u_2 + $e_{
m L}$)>0

 $\omega t_3 \sim \omega t_4$: $u_2 < 0$, 但 $e_L \perp (-) \uparrow (+)$, 仍导通 $(u_2 + e_L) > 0$

结论:

 L_{d} 存在,使 $\theta \uparrow \to U_{d} \downarrow$ (有负面积) $\alpha \uparrow \rightarrow$ 导通延迟 \rightarrow 正半周储能 $\downarrow \rightarrow$ 导通能力差 $\theta \downarrow$

$$\mathbf{j} = tg^{-1} \frac{\mathbf{W} L_d}{R_d} \uparrow \to L_d \uparrow \to 储能 \uparrow \to 导 通能 力 \theta \uparrow$$

(3) 续流二极管的作用 如 $\omega L_{\rm d}>>R_{\rm d}$, $\varphi=\pi/2$

正负面积近似相等, $U_{d}\approx 0$

加 VD_F 改进

直流平均电压Ud

$$U_d = \frac{\sqrt{2}U_2}{2p}(1 + \cos a) = 0.45U_2 \frac{1 + \cos a}{2}$$

晶闸管电流 $\theta=\pi-\alpha$

$$I_{dT} = \frac{\mathsf{p} - \mathsf{a}}{2\mathsf{p}} I_d$$

$$I_T = \sqrt{\frac{\mathsf{p} - \mathsf{a}}{2\mathsf{p}}} I_d$$

续流二极管电流 $\theta=\pi+\alpha$

$$I_{dDF} = \frac{\mathsf{p} + \mathsf{a}}{2\mathsf{p}} I_d$$

$$I_{DF} = \sqrt{\frac{p + a}{2p}} I_d$$

晶闸管及续流二极管承受的最大正、反向峰值电压均为 交流电压的最大值 $\sqrt{2}U_2$

特点: 简单,成本低,调整方便 波形差,脉动、 I_2/I_d 大

直流分量 \rightarrow 直流磁化 \rightarrow 饱和 \rightarrow B \downarrow \rightarrow S_{fe} \uparrow \rightarrow 变压器体积 \uparrow \rightarrow Cu、Fe \uparrow

2、 单相桥式全控整流电路

(1) 电阻性负载

正半周: $0 \sim a$, $a \sim p$

负半周: p ~ p + a , p + a ~ 2p

变压器副边绕组有正反电流,平均值为零,没有直流磁化现象

基本数量关系

直流平均电压 $U_{\mathbf{d}}$

$$U_d = \frac{1}{p} \sum_{n=0}^{p} \sqrt{2}U_2 \sin wt dwt = 0.9U_2 \frac{1 + \cos a}{2}$$

直流电流平均值 I_d 、有效值 I_2

$$I_d = U_d / R_d = 0.9 \frac{U_2}{R_d} \frac{1 + \cos a}{2}$$

$$I_2 = \sqrt{\frac{1}{p}} \dot{\mathbf{p}} (\frac{\sqrt{2}U_2}{R_d} \sin wt)^2 dwt = \frac{U_2}{R_d} \sqrt{\frac{1}{2p} \sin 2a + \frac{p - a}{p}}$$

晶闸管电流平均值、有效值

$$I_{dT} = \frac{1}{2}I_{d} = 0.45 \frac{U_{2}}{R_{d}} \frac{1 + \cos a}{2}$$

$$I_{T} = \sqrt{\frac{1}{2p} \sum_{k=0}^{p} (\frac{\sqrt{2}U_{2}}{R_{d}} \sin wt)^{2} dwt} = \frac{1}{\sqrt{2}}I_{2}$$

晶闸管承受的最大反向峰值电压为相电压峰值

$$U_{TM} = \sqrt{2}U_2$$

东南大学

电力电子技术

第13讲

主讲教师: 五念春

380419124@qq. com

(2) 电感性负载P99页

工作原理

$\omega L_{\rm d}$ 很大, $i_{\rm d}$ 连续、平直

在 $\omega t = 0 \sim \pi$: u_2 正半周内,a点电位为(+)、b点(-)

在 $\omega t = \pi \sim 2\pi$: u_2 负半周,b点为(+)、a点为(-)

直流平均电压

$$U_d = \frac{1}{p} \mathbf{\mathring{Q}}^{\text{p+a}} \sqrt{2} U_2 \sin \mathbf{W} t d\mathbf{W} t = 0.9 U_2 \cos \mathbf{a}$$

直流电流平均值、有效值

$$I_d = \frac{1}{p} \mathbf{\hat{Q}}^{a+q} i_d dWt$$

回路电压方程
$$L_d \frac{di_d}{dt} + R_d i_d = \sqrt{2}U_2 \sin Wt$$

$$\mathbf{\hat{Q}}^{\mathsf{a}+\mathsf{q}} L_d \frac{di_d}{dt} d\mathsf{W}t + \mathbf{\hat{Q}}^{\mathsf{a}+\mathsf{q}} R_d i_d d\mathsf{W}t = \mathbf{\hat{Q}}^{\mathsf{a}+\mathsf{q}} \sqrt{2} U_2 \sin \mathsf{W}t d\mathsf{W}t$$

注意: 电感电压一个导通周期内的平均值等于零

$$\mathbf{\hat{Q}}^{I_{a+q}} \mathbf{W} L_d di_d + \mathbf{\hat{Q}}^{a+q} R_d i_d d\mathbf{W} t = \mathbf{\hat{Q}}^{a+q} \sqrt{2} U_2 \sin \mathbf{W} t d\mathbf{W} t$$

$$0+R_{\mathrm{d}}I_{\mathrm{d}}=\frac{\sqrt{2}U_{2}}{\mathsf{p}}\mathbf{\hat{Q}}^{\mathsf{a}+\mathsf{q}}\sin\mathsf{w}td\mathsf{w}t=U_{\mathrm{d}}$$

$$\mathbb{P} I_d = \frac{U_d}{R_d}$$

晶闸管电流平均值、有效值

$$I_{dT} = \frac{1}{2}I_{d}$$

$$I_{T} = \sqrt{\frac{1}{2p} \mathbf{\hat{Q}}^{a+p} I_{d}^{2} dwt} = \sqrt{\frac{1}{2p} pI_{d}^{2}} = \frac{1}{\sqrt{2}}I_{d}$$

晶闸管承受的最大正、反向电压均为相电压峰值

$$U_{TM} = \sqrt{2}U_2$$

大电感负载加续流二极管

加续流二极管后的变化?

$$U_d = \frac{1}{p} \sum_{q}^{p} \sqrt{2}U_2 \sin wt dwt = 0.9U_2 \frac{1 + \cos a}{2}$$

24

大电感负载加续流二极管

负载电流由晶闸管与二极管提供,确定晶闸管一个周期内的导通时间,二极管一个周期内的导通时间后确定。

注意电流平直近似为直线,计算得到简化。

- (3) 反电势负载
 - 1) 电阻—反电势负载

①
$$U_2>E$$
 导通 $U_d=U_2=E+i_dR_d$ $U_2=E$ 关断 $i_d=0$

② 停止导电角δ

$$d = \sin^{-1}(E/\sqrt{2}U_2)$$

 $\alpha \geq \delta$ 时

 θ : α ~ π - δ

 $\theta=\pi-\delta-\alpha<\pi$ 断续

 α < δ 时

 θ : $\delta \sim \pi - \delta$, $\theta = \pi - 2\delta < \pi$

断续 (要正常导通,脉宽应> δ - α)

2) 电感-反电势负载

$$u_2 = \sqrt{2}U_2 \sin(\mathbf{w}t + \mathbf{a})$$

$$u_2 = L_d \frac{di_d}{dt} + R_d i_d + E$$

$$i_{d} = \frac{\sqrt{2}U_{2}}{R_{d}} \dot{\hat{\mathbf{f}}} \stackrel{\text{\'e}}{=} \frac{E}{\sqrt{2}U_{2}} - \cos \mathbf{j} \sin(\mathbf{a} - \mathbf{j}) \dot{\mathbf{u}}^{-\frac{\mathbf{w}t}{tg\mathbf{j}}} + \cos \mathbf{j} \sin(\mathbf{w}t + \mathbf{a} - \mathbf{j}) - \frac{E}{\sqrt{2}U_{2}} \dot{\hat{\mathbf{p}}}^{\mathbf{u}}$$

$$j = tg^{-1}(\frac{WL_d}{R_d})$$

反电势的影响:

- (1) 机械特性变软
- (2) 换向困难
- (3) 电流容量上升

P142页第7题。加入大电感使电流连续,平直近似一条直线。

东南大学

电力电子技术

第14讲

主讲教师: 王念春

380419124@qq. com

(4) 单相桥式半控整流电路

注意阻力最小路径!

4、单相双半波可控整流电路

P142页第5题

建议作业:

P.142 习题 4、6、8

东南大学

电力电子技术

第 15 讲

主讲教师: 王念春

380419124@qq. com

第1题:可控整流电路纯电阻负载下,电阻上的平均电流与平均电压的乘积 U_dI_d 是否等于负载功率?为什么?大电感负载下, U_dI_d 是否又等于负载功率,为什么?

思考要点:

负载功率是负载上电流有效值与电压有效值乘积。电阻性负载时波形的特点,平均值与有效值相等吗?

大电感负载时,电流平直近似为一条直线,电感上电压的平均值为零,负载电压的平均值与电阻电压的平均值相等,这样,负载上的电压与电流均可近似看成方波,方波的平均值与有效值是什么关系?

第2题:某单相可控整流电路,给电阻性负载供电和给蓄电池充电时,流过负载电流的平均值相等,试问哪种情况下晶闸管的发热厉害些?

思考要点:

- (1) 晶闸管的发热由流过晶闸管电流的平均值决定,还是有效值决定?
- (2) 蓄电池是反电势负载,在电流平均值相等的情况下,那种情况下晶闸管导通时间要短些?
- (3) 有效值表达式的特点,瞬时值的平方,瞬时值大,有效值也会大!
 - (4) 得出合理的结论。

第6题:单相桥式可控整流电路,大感负载, $R_d=4\Omega$, $U_2=220V$,计算当控制角 $\alpha=60$ °时,直流电压、电流平均值。如果负载两端并接一个续流二极管,直流电压、电流平均值为多少?

思考要点:

大电感负载,用什么公式计算的问题。

$$U_d = \frac{1}{p} \overset{\mathsf{p}}{\mathbf{Q}}^{\mathsf{p+a}} \sqrt{2} U_2 \sin \mathsf{w} t d \mathsf{w} t = 0.9 U_2 \cos \mathsf{a}$$

直流电压

$$U_d = \frac{1}{p} \mathbf{\hat{Q}}^{p+a} \sqrt{2} U_2 \sin wt dwt = 0.9 U_2 \cos a = 0.9 * 220 * \cos 60^\circ = 99(V)$$

$$I_d = \frac{U_d}{R} = 99 / 4 = 24.75(A)$$

第6题:单相桥式可控整流电路,大感负载, $R_d=4\Omega$, $U_2=220V$,计算当控制角 $\alpha=60$ °时,直流电压、电流平均值。如果负载两端并接一个续流二极管,直流电压、电流平均值为多少?

加入续流二极管后,用什么公式计算?

$$U_d = \frac{1}{p} \mathbf{\hat{Q}}^{\text{p+a}} \sqrt{2} U_2 \sin wt dwt = 0.9 U_2 \cos a$$

$$U_d = \frac{1}{p} \sum_{a}^{p} \sqrt{2}U_2 \sin wt dwt = 0.9U_2 \frac{1 + \cos a}{2}$$

第6题:单相桥式可控整流电路,大感负载, $R_d=4\Omega$, $U_2=220V$,计算当控制角 $\alpha=60$ °时,直流电压、电流平均值。如果负载两端并接一个续流二极管,直流电压、电流平均值为多少?

加入续流二极管后,用什么公式计算?

$$U_d = \frac{1}{p} \sum_{q}^{p} \sqrt{2}U_2 \sin wt dwt = 0.9U_2 \frac{1 + \cos a}{2}$$

$$U_d = 0.9 * 220 \frac{1 + \cos 60^{\circ}}{2} = 148.5(V)$$

$$I_d = 148.5 / 4 = 37.125(A)$$

第6题:单相桥式可控整流电路,大感负载, R_d =4 Ω , U_2 =220V,计算当控制角 α =60°时,直流电压、电流平均值。如果负载两端并接一个续流二极管,直流电压、电流平均值为多少?晶闸管与流过续流二极管电流的平均值,有效值。

一个周期内晶闸管导通时间是多少?

180° -60° =120°
$$I_{TAV} = \frac{120}{360}I_d = 37.125/3 = 12.375(A)$$

一个周期内二极管导通时间是多少?

$$I_{DAV} = \frac{120}{360}I_d = 37.125/3 = 12.375(A)$$

第6题:单相桥式可控整流电路,大感负载, R_d =4 Ω , U_2 =220V,计算当控制角 α =60°时,直流电压、电流平均值。如果负载两端并接一个续流二极管,直流电压、电流平均值为多少?晶闸管与流过续流二极管电流的平均值,有效值。

有效值:

$$I_T = \sqrt{\frac{120}{360}}I_d = 37.125 / \sqrt{3} = 21.43(A)$$

$$I_D = \sqrt{\frac{120}{360}}I_d = 37.125 / \sqrt{3} = 21.43(A)$$

第6题:单相桥式可控整流电路,大感负载, R_d =4 Ω , U_2 =220V,计算当控制角 α =60°时,直流电压、电流平均值。如果负载两端并接一个续流二极管,直流电压、电流平均值为多少?输出电压与电流的波形(无续流二极管)

第6题:单相桥式可控整流电路,大感负载, R_d =4 Ω , U_2 =220V,计算当控制角 α =60°时,直流电压、电流平均值。如果负载两端并接一个续流二极管,直流电压、电流平均值为多少?输出电压与电流的波形(无续流二极管)

AC-DC

第6题:单相桥式可控整流电路,大感负载, R_d =4 Ω , U_2 =220V,计算当控制角 α =60°时,直流电压、电流平均值。如果负载两端并接一个续流二极管,直流电压、电流平均值为多少?输出电压与电流的波形(有续流二极管)

第6题: 单相桥式可控整流电路,大感负载, R_d =4 Ω , U_2 =220V,计算当控制角 α =60° 时,直流电压、电流平均值。如果负载两端并接一个续流二极管,直流电压、电流平均值为多少?输出电压与电流的波形(有续流二极管)

