

Državni izpitni center

JESENSKI IZPITNI ROK

NAVODILA ZA OCENJEVANJE

Sobota, 27. avgust 2022

Odgovor ∀ * O ◆

IZPITNA POLA 1

Naloga	Odgovor
1	○
7	◆ B
က	• □
4	○
9	□
9	• □
2	♦ B
8	◆B
6	O ◆

Odgovor	Q •	□ •	• B	0	□ •	• B	O •	0	∢.
Naloga	10	11	12	13	14	15	16	17	18

Naloga	Odgovor
19	• B
20	○ •
21	◆ B
22	O •
23	• D
24	• C
25	• B
26	• C
27	⊕

Odgovor	₽	O •	◆ B	□ •	□ ◆	O •	◆ B	O •	◆ B

O •

Naloga 28 29 30 31 32 33 34 35

∢

∵ Ф • ပ • **□**

Za vsak pravilen odgovor 1 točka.

Skupno število točk IP 1: 35

1. Merjenje

Vpr.	Točke	Rešitev	Dodatna navodila
7.	ო	♦ graf t _n [s] A	Pravilno označene osi 1 točka. Pravilno vnesene točke 1 točka.
		5.0	Premica, ki se točkam najbolj prilega 1 točka.
		4.0	
		*	
		2,0	
		•	
		0,1	
		0 5 10 15 20 x [cm]	
1.2	7	◆ smerni koeficient: 0,024 s/cm	Postopek 1 točka.
		$k=rac{\Delta^{t_0}}{\Delta x}=$ 0,024 s/cm	Izracun 1 tocka.
1.3	7	◆ sprememba _{t0} : 0,096 s	Vrednost spremembe $t_0 \dots $ 1 točka.
		$\Delta t_0 = k \cdot \Delta x = 0,024 ext{ s/cm} \cdot 4,0 ext{ cm} = 0,096 ext{ s}$	Smer spremembe $t_0\ldots$ 1 točka.
		 Nihajni čas se poveča. 	
4.1	_	$lacktriangle$ absolutna napaka $B \colon 0.01\mathrm{mT}$	
		$\Delta B = \delta_B B = 0$,05 \cdot 0,20 mT $=$ 0,01 mT	

2

1.5	7	$lacktriangle$ povprečna vrednost t_0 : 0,35 s $lacktriangle$ absolutna napaka t_0 : 0,03 s	Povprečje 1 točka. Absolutna napaka 1 točka. Enak rezultat dobimo, če uporabimo 2/3-pravilo ali če za absolutno napako izberemo največje odstopanje.
1.6	-	\bullet gostota magnetnega polja B : 0,22 mT $B=\frac{a}{t_0^2}=\frac{2,80\cdot 10^{-5}}{0,35^2}~\rm T=0,22~mT$	
1.7	က	• absolutna napaka B : 0,04 mT $\delta_{l_0} = \frac{\Delta t_0}{t_0} = \frac{0,03 \text{ s}}{0,35 \text{ s}} = 0,09$ $\delta_B = 2\delta_{l_0} = 0,18$ $\Delta B = \delta_B B = 0,18 \cdot 0,22 \text{ mT} = 0,04 \text{ mT}$	Relativna napaka $t_0 \dots 1$ točka. Relativna napaka $B \dots 1$ točka. Absolutna napaka $B \dots 1$ točka.
1.8	_	$^{\bullet}$ Se ujemata, saj primerjamo izračunano vrednost $(0,22\pm0,04)$ mT in izmerjeno vrednost $(0,20\pm0,01)$ mT.	

2. Mehanika

Dodatna navodila	ıaka	Sile na drugo telo 1 točka.		
Rešitev	 Prvi Newtonov zakon: Če je vsota vseh zunanjih sil na telo enaka nič, telo miruje ali se giblje premo enakomerno. 	$\stackrel{\bullet}{F_{I}}$ narisane sile: $\stackrel{F_{I}}{F_{I}}$	• koeficient lepenja: 0,25 $k_{\rm l} = \frac{F_{\rm l}}{F_{\rm n}} = \frac{0,98~{\rm N}}{3,92~{\rm N}} = 0,25$	$\stackrel{\bullet}{F}$ narisane sile: $\stackrel{\tilde{F}_{r}}{F_{r}}$
Točke	1	8	1	~
Vpr.	2.1	2.2	2.3	4.2

3 • pospešek: $1, 1 \text{ m s}^{-2}$ $F_{t} = k_{t} \cdot F_{g2} = 0.20 \cdot 3.9 \text{ N} = 0.78 \text{ N}$ $F_{r} - F_{v} - F_{t} = m_{2} \cdot a$ $F_{v} - F_{g4} = m_{1} \cdot a$ $A = \frac{F_{r} - F_{t} - F_{g4}}{m_{1} + m_{2}} = \frac{(2.3 - 0.78 - 0.98) \text{ N}}{0.50 \text{ kg}} = 1.08 \text{ ms}^{-2}$ • čas: 0.75 s • hitrost: 0.81 ms^{-1} • hitrost: $0.81 \text$	Sila trenja 1 točka. Postopek 1 točka. Izračun 1 točka.	Čas 1 točka. Hitrost 1 točka.		Potencialna energija 1 točka. Delo trenja 1 točka.	Izračun 1 točka.
	$ \begin{array}{c} \bullet \text{ pospešek: 1,1 ms}^{-2} \\ F_t = k_{\rm t} \cdot F_{g2} = 0,20 \cdot 3,9 \; {\rm N} = 0,78 \; {\rm N} \\ F_r - F_{\rm v} - F_t = m_2 \cdot a \\ F_{\rm v} - F_{g1} = m_1 \cdot a \\ a = \frac{F_r - F_t - F_t}{m_1 + m_2} = \frac{(2,3 - 0,78 - 0,98) \; {\rm N}}{0,50 \; {\rm kg}} \\ \end{array} $	•	kg·0,81² m² s	• •	•

3. Termodinamika

Vpr.	Točke	Vpr. Točke Rešitev	Dodatna navodila
3.1	-	• masa atoma: $6,6\cdot 10^{-26}$ kg $m_1=\frac{M_{\rm Ar}}{N_{\rm A}}=\frac{39,9~{\rm kg/kmol}}{6,02\cdot 10^{26}~{\rm kmol}^{-1}}=6,63\cdot 10^{-26}~{\rm kg}$	Pravilen tudi rezultat 40 u.
3.2	7	• število atomov: $2,10 \cdot 10^{21}$ $N = \frac{p_1 V_1 N_{\rm A}}{RT_1} = \frac{59,0 \cdot 10^3 \; {\rm Pa} \cdot 146,5 \cdot 10^{-6} \; {\rm m}^3 \cdot 6,02 \cdot 10^{23} \; {\rm mol}^{-1}}{8,314 \; {\rm Jmol}^{-1} {\rm K}^{-1} \cdot 298 \; {\rm K}}$ $N = 2,10 \cdot 10^{21}$	Postopek 1 točka. Izračun 1 točka.
3.3 3.3	က	• prostornina bučke: 147,0 cm³ $\Delta V = V_1 3 \alpha \Delta T = 146,5 \text{ cm}^3 \cdot 3 \cdot 9,1 \cdot 10^{-6} \text{ K}^{-1} \cdot 125 \text{ K} = 0,50 \text{ cm}^3$ $V_2 = V_1 + \Delta V = (146,5+0,5) \text{ cm}^3 = 147,0 \text{ cm}^3$	Postopek 1 točka. Sprememba prostornine 1 točka. Prostornina V_2 1 točka.
3.4	7	• tlak: 83,4 kPa $p_2 = \frac{Nk_{\rm B}T_2}{V_2} = \frac{2,10\cdot 10^{21}\cdot 1,38\cdot 10^{-23}\ \rm JK^{-1}\cdot 423\ K}{147,0\cdot 10^{-6}\ m^3} = 83,4\ \rm kPa$ • Tlak v bučki žarnice je nižji od normalnega zračnega tlaka tudi, ko žarnica sveti.	Tlak 1 točka. Primerjava tlaka s $_{p_0}$ 1 točka.
3.5	7	• povprečna kinetična energija: $8,76\cdot10^{-21}\mathrm{J}$ $\overline{W}_k = \frac{3}{2}k_\mathrm{B}T_2 = \frac{3}{2}\cdot1,38\cdot10^{-23}\mathrm{JK^{-1}}\cdot423\mathrm{K} = 8,76\cdot10^{-21}\mathrm{J}$	Postopek 1 točka. Izračun 1 točka.
9 9	~	• hitrost: 514 $\frac{m}{s}$ $\overline{v} = \sqrt{\frac{2\overline{W}_k}{m_1}} = \sqrt{\frac{2 \cdot 8.76 \cdot 10^{-21} \text{ J}}{6.63 \cdot 10^{-26} \text{ kg}}} = 514 \frac{m}{s}$	
3.7	7	• površina: $3,0\cdot10^{-5}$ m² $P = \frac{\Delta W}{\Delta t} = 90 \text{ W}$ $S = \frac{P}{\sigma T^4} = \frac{90 \text{ W}}{5,67\cdot10^{-8} \text{ W m}^{-2} \text{ K}^{-4} \cdot (2700 \text{ K})^4} = 3,0\cdot10^{-5} \text{ m}^2$	Moč 1 točka. Površina 1 točka.

|--|

10

4. Elektrika in magnetizem

Vpr.	Točke	Rešitev	Dodatna navodila
4.1	-	• izraz: $R=\frac{\zeta l}{S} \to \zeta = \frac{RS}{l}$ • količine: ζ – specifičen upor, R – električni upor žice, S – presek žice, l – dolžina žice	
4.2	7	• dolžina žice: 120 m $R = \frac{\zeta l}{S} \rightarrow l = \frac{RS}{\zeta} = \frac{1,0~\Omega \cdot 2,0~\text{mm}^2}{1,7 \cdot 10^{-8}~\Omega~\text{m}} = 118~\text{m}$	Postopek 1 točka. Izračun 1 točka.
4.3	2	$lack $ napetost: 2,0 V $U=RI=1,0~\Omega\cdot 2,0~{\sf A}=2,0~{\sf V}$	Postopek 1 točka. Izračun 1 točka.
4.4	7	lack e električno delo: 40 J $A=Pt=UIt=$ 2,0 V · 2,0 A · 10 s = 40 J	Postopek 1 točka. Izračun 1 točka.
4.5	-	• število ovojev na jedru: 630 $N = \frac{l}{\pi d} = \frac{118 \text{ m}}{\pi \cdot 0.06 \text{ m}} = 626$	
4.6	8	• induktivnost tuljave: 7,0 mH $L = \mu_0 \frac{N^2 S}{l} = \mu_0 \frac{N^2 \pi r^2}{l} = \\ = 4 \pi \cdot 10^{-7} \text{ VsA}^{-1} \text{ m}^{-1} \frac{626^2 \cdot \pi \cdot (0,03 \text{ m})^2}{0,20 \text{ m}} = 7,0 \cdot 10^{-3} \text{ H}$	Postopek 1 točka. Izračun 1 točka.
4.7	7	• energija magnetnega polja v notranjosti tuljave: 1,4 J $W_{\rm m} = \frac{LI^2}{2} = \frac{LU^2}{2R^2} = \frac{7,0\cdot 10^{-3}~{\rm H}\cdot (20~{\rm V})^2}{2\cdot (1,0~\Omega)^2} = 1,4~{\rm J}$	Postopek 1 točka. Izračun 1 točka.

zpeljava induktivnosti 1 točka.	Izpeljava upora 1 tocka. Izračun 1 točka.		
◆ energija tuljave: 1,4 J	$L_{l} = L \Big(rac{N_1}{N} \Big)^2 = rac{L}{4} ; R_{l} = R \Big(rac{N_1}{N} \Big) = rac{R}{2}$	$W_{\rm m1} = \frac{L_1 U^2}{2.5^2} = \frac{L_2 U^2}{4.5^2} = \frac{L_2 U^2}{2.5^2} = W_{\rm m} = 1,4$ J	
3			
4.8			

12

5. Nihanje, valovanje in optika

Vpr.	Točke	Rešitev	Dodatna navodila
5.1	-	 razlika: Pri longitudinalnem valovanju nihajo delci sredstva v smeri potovanja valovanja, pri transverzalnem pa pravokotno na smer potovanja valovanja. ALI Pri longitudinalnem valovanju potujejo po sredstvu zgoščine in razredčine, pri transverzalnem valovanju pa hribi in doline. 	
5.2	1	◆ valovna dolžina: 0,8 m	
5.3	7	♦ hitrost valovanja: 2,5 m/s $c = \frac{\Delta x}{t'} = \frac{0,30 \text{ m}}{0,12 \text{ s}} = 2,5 \text{ m/s}$	Postopek in odčitane ustrezne vrednosti 1 točka. Rezultat 1 točka.
5.4	7	• frekvenca: 3,1 Hz $ \nu = \frac{c}{\lambda} = \frac{2,5 \text{ m/s}}{0.8 \text{ m}} = 3,13 \text{ Hz} $	Izraz 1 točka. Rezultat 1 točka.
5.5	1	primerjava: Amplitudi sta enaki.	
5.6	2	\bullet hitrost v ravnovesni legi: 5,8 cm/s $y_0=3,0\text{ mm}\;,\;v_0=2\pi\nu y_0=2\pi\cdot 3,13\text{ Hz}\cdot 0,003\text{ m}=5,8\text{ cm/s}$	Izraz 1 točka. Rezultat 1 točka.
5.7	7	 smer: V levo. utemeljitev: Delec se premika od pozitivnih y proti negativnim, torej Utemeljitev 1 točka. v negativni smeri. 	Odgovor 1 točka. Utemeljitev 1 točka.
5.8	7	• povprečna hitrost: -43 mm/s $\Delta y = -5.1$ mm, $v = \frac{\Delta y}{\Delta t} = \frac{-5.1 \text{ mm}}{0.12 \text{ s}} = -42.5 \text{ mm/s}$	Postopek in odčitane ustrezne vrednosti 1 točka. Rezultat 1 točka.
5.9	7	• pospešek: -0,81 m/s² $a = -(2\pi\nu)^2 \cdot y = -(2\pi \cdot 3,13 \; {\rm Hz})^2 \cdot 0,0021 \; {\rm m} = -0,81 \; {\rm m/s}^2$	Postopek 1 točka. Rezultat 1 točka.

13

6. Moderna fizika in astronomija

Vpr.	Točke	Rešitev	Dodatna navodila
6.1	~	$ \bullet \ \text{izraz:} \ F = G \frac{m_l m_2}{r^2} $ $ \bullet \ \text{imenovanja:} \ \text{gravitacijska sila, gravitacijska konstanta, masa vsakega od teles, razdalja med težiščema teles } $	
6.2	~	• sila: 1,1·10 ³¹ N $F = \frac{Gm^2}{r^2} = \frac{6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \cdot (6.0 \cdot 10^{31} \text{ kg})^2}{(1,5 \cdot 10^{11} \text{ m})^2} = 1,07 \cdot 10^{31} \text{ N}$	
6.3	7	$ ightharpoonup$ pospešek: 0,18 m s ⁻² $a = \frac{F}{m} = \frac{1,1\cdot10^{31} \text{ N}}{6\cdot10^{31} \text{ kg}} = 0,18 \text{ m s}^{-2}$	Izraz 1 točka. Rezultat 1 točka.
6.4	ო	• obodna hitrost: $1,2.10^5 \text{ m s}^{-1}$ $v = \sqrt{\frac{Fr}{2m}} = \sqrt{\frac{1,1.10^{31} \text{ N}.1.5.10^{11} \text{ m}}{2.6.10^{31} \text{ kg}}} = 117 \text{ km s}^{-1}$	Izraz 1 točka. Razdalja do težišča 1 točka. Rezultat 1točka.
6.5	ო	• obhodni čas: 45 dni $t = \frac{\pi r}{v} = \frac{3,14\cdot1,5\cdot10^{11}}{1,2\cdot10^{5}} = 3,9\cdot10^{6} \text{ s} = 45 \text{ dni}$ • pojasnilo: Luknji potrebujeta manj časa, saj Zemlja potrebuje 365 dni.	Rezultat 1 točka. Odgovor 1 točka. Pojasnilo 1 točka.
9.9	7	• energija: $W_{\rm k} = 8.6 \cdot 10^{41} {\rm kJ}$ • masa: $9.6 \cdot 10^{24} {\rm kg}$ • $m' = \frac{mv^2}{c^2} = \frac{6 \cdot 10^{31} {\rm kg} \cdot (1.2 \cdot 10^5 {\rm ms}^{-1})^2}{(3.0 \cdot 10^8 {\rm ms}^{-1})^2} = 9.6 \cdot 10^{24} {\rm kg}$	Postopek 1 točka. Rezultat 1 točka.
6.7	က	• frekvenca: 190 Hz $r_{\rm s} = \frac{2Gm}{c^2} = \frac{2 \cdot 6.67 \cdot 10^{-11} \text{ m}^3 \text{ s}^{-2} \text{ kg}^{-1} \cdot 60 \cdot 10^{30} \text{ kg}}{(3.0 \cdot 10^8 \text{ m s}^{-1})^2} = 89 \text{ km}$ $\nu = \frac{1}{t_0} = \sqrt{\frac{Gm}{16\pi^2 r_{\rm s}^3}} = \sqrt{\frac{6.67 \cdot 10^{-11} \text{ m}^3 \text{ s}^{-2} \text{ kg}^{-1} \cdot 60 \cdot 10^{30} \text{ kg}}{16 \cdot \pi^2 \cdot (8.9 \cdot 10^4 \text{ m})^3}} = 190 \text{ Hz}$	Polmer 1 točka. Izraz za frekvenco 1 točka. Rezultat 1 točka.