الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة : التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (05 نقاط)

I - لديك سلسلة التفاعلات الكيميائية التالية:

(1)
$$+ \text{Cl}_2 \xrightarrow{\text{AlCl}_3} \text{A + HCl}$$

(4)
$$C + H_2O \longrightarrow D + MgClOH$$

(5)
$$D = \frac{KMnO_4}{H_2SO_4} \rightarrow E$$

(6)
$$E + SOCl_2 \longrightarrow F + SO_2 + HCl$$

$$(7) F + \bigcirc \longrightarrow \bigcirc \bigcirc + HCI$$

F ، E ، D ، C ، B ، A المفصلة للمركبات -1

2- ما هي الشروط اللازمة لحدوث التفاعل (2)؟

-3 هو الوسيط المستخدم في التفاعل (7)?

II- يمكن الحصول على البولي إستر (polyester) من التفاعلات الكيميائية التالية:

(1)
$$CH_2=CH_2 + \frac{1}{2}O_2 \xrightarrow{Ag} G$$

(2)
$$G + H_2O \longrightarrow H^+ \rightarrow H$$

(3)
$$n \leftarrow Polyester + m H_2O$$

-1 ما نوع البلمرة في التفاعل -1

2- اكتب الصيغة نصف المفصلة لكل من المركبين G و H.

3- استنتج الصيغة العامة للبولي إستر (polyester).

التمرين الثاني: (05 نقاط)

لديك الجدول التالي:

ليزين Lys	لوسين Leu	سیستئین Cys	حمض أسبار تيك Asp	تیروزین Tyr	فنيل ألانين Phe	الحمض الأميني
H ₂ N - (CH ₂) ₄ -	H ₃ C CH-CH ₂ -	HS-CH ₂ -	HOOC-CH ₂ -	HO-CH ₂ -	CH ₂	الجذر R

1- اكتب الصيغة نصف المفصلة للحمضين الأمينيين Leu و Phe.

2- صنف الأحماض الأمينية التالية: Lys ، Leu ، Cys ، Asp ، Tyr.

3- مثّل المماكبات الضوئية للحمض الأميني Phe حسب إسقاط فيشر.

4- أ) احسب pHi لحمض الأسبار تيك Asp.

يعطى:

 $pKa_2 = 9.6$, $pKa_R = 3.66$, $pKa_1 = 1.88$

pH = 12 و pH = 2,77 ، pH = 1 عند: Asp عند الأسبار تيك و pH = 12 و pH = 12

5- اكتب الصيغة نصف المفصلة لرباعي الببتيد: Lys - Leu - Tyr - Asp

التمرين الثالث: (05 نقاط)

يحترق الإيثانول عند C°25 وفق المعادلة التالية:

$$C_2H_5OH_{(l)} + O_{2(g)} \longrightarrow CO_{2(g)} + H_2O_{(l)}$$

 $\Delta H_{comb} = -1368 kJ.mol^{-1}$:حيث أنطالبي احتراق الإيثانول السائل

1- وازن معادلة تفاعل احتراق الإيثانول السائل.

 $\Delta H_f^{\circ}(C_2H_5OH_{(l)})$ الإيثانول السائل الإيثانول المعياري لتشكل الإيثانول المعياري ال

بعطي:

$$\Delta H_f^{\circ}(CO_{2(g)}) = -393kJ. \ mol^{-1}$$

$$\Delta H_f^{\circ}(H_2O_{(l)}) = -286kJ. \ mol^{-1}$$

 $\Delta H_{Vap}^{\circ} = 42,63 kJ. \, mol^{-1}$: إذا علمت أن أنطالبي تبخر الإيثانول

 $\Delta H_f^{\circ}(C_2H_5OH_{(g)})$ الإيثانول الغازي المعياري لتشكل الإيثانول الغازي – احسب الأنطالبي المعياري المعيا

 ΔU عند ΔU المائل عند ΔU المائل عند ΔU يعطى:

 $R = 8,314 \text{ J.mol}^{-1}.\text{K}^{-1}$

5- احسب طاقة الرابطة (C-C) في الإيثانول الغازي.

يعطى:

$$\Delta H_{sub}^{0}(C_{(s)}) = 717kJ. \ mol^{-1}$$
 $\Delta H_{dis}^{0}(H-H) = 436 \ kJ. \ mol^{-1}$
 $\Delta H_{dis}^{0}(O=O) = 498 \ kJ. \ mol^{-1}$
 $E_{C-H} = -413 \ kJ. \ mol^{-1}$
 $E_{C-O} = -351 \ kJ. \ mol^{-1}$
 $E_{C-H} = -463 \ kJ. \ mol^{-1}$

التمرين الرابع: (05 نقاط)

يتم تحضير البار اسيتامول خلال مرحلتين هما:

مرحلة التحضير: استخدمنا في هذه المرحلة

- 3,5mL من حمض الإيثانويك المركز

- حمام مائي

مرحلة الفصل والتنقية: استعملنا فيها:

- جهاز الترشيح تحت الفراغ

- ماء جليدي

- ماء بارد

المطلوب:

1- اكتب معادلة التفاعل الحادث.

2- ما دور حمض الإيثانويك المركز؟

3 المرحلة الثانية (الفصل والتنقية) -3

4- احسب عدد المولات لكل من بلاماء الإيثانويك وبارا أمينو فينول.

5- احسب كتلة البار اسيتامول المتحصل عليها في نهاية التجربة إذا كان مردود التفاعل %52,5. يعطى:

$$C = 12 \text{ g/mol}$$
 , $H = 1 \text{ g/mol}$, $O = 16 \text{ g/mol}$, $N = 14 \text{ g/mol}$

ρ(بلاماء الإيثانويك) =1,08g/mL

الموضوع الثاني

التمرين الأول: (07 نقاط)

I- أكسدة المركب A بالأوزون O3 تعطى مركبا B.

- إماهة 1 مول من المركب B ينتج عنها 2 مول من المركب C.

- هدرجة المركب C بوجود النيكل تعطى المركب D.

- نزع الماء من المركب D في وسط حمضي (H_2SO_4) عند $D^{\circ}C$ يعطي المركب -

$$-$$
 CH $_2$ - CH $_2$ البوليمير P بلمرة المركب E بلمرة المركب البوليمير P بلمرة المركب البوليمير E

1- استنتج الصيغ نصف المفصلة للمركبات E ، D ، C ، B ، A - استنتج

2- ما نوع البلمرة ؟ ما اسم البوليمير P ؟

II- انطلاقا من المركب D نجري سلسلة التفاعلات التالية:

(1) D +
$$PCl_5$$
 \longrightarrow F + $POCl_3$ + HCl

(3)
$$G + CO_2 \longrightarrow H$$

(4) H +
$$H_2O$$
 \longrightarrow I + MgClOH

(5) I + D
$$\longrightarrow$$
 CH₃-CH₂-C-O-CH₂-CH₃ + H₂O

1- اكتب الصيغ نصف المفصلة للمركبات I ، H ، G ، F - اكتب

2-1) ما هو الوسيط المستخدم في التفاعل (2)?

- ب) ما هي خصائص التفاعل (5)؟
- ج) ما هو مردود التفاعل (5) إذا كان المزيج التفاعلي متساوي المولات؟
- F اكتب التفاعلات التي تسمح بالحصول على حمض البنزويك والطلاقا من المركب F والبنزن ومواد كيميائية أخرى.

ليزين Lys

التمرين الثاني: (07 نقاط)

لديك الأحماض الأمينية التالية:

$$H_2N-CH-COOH$$
 $H_2N-CH-COOH$ CH_3 CH_4 CH_2 CH_4 CH_4 CH_5 CH_5

- 1- صنّف هذه الأحماض الأمينية.
- 2- مثِّل المماكبات الضوئية للحمض الأميني Val حسب إسقاط فيشر.

سيرين Ser

- $pKa_2 = 9,67$ ، $pKa_1 = 2,33$: حيث ، Ala للحمض الأميني pH_i للحمض الأميني
 - pH=6 و pH=12 ، pH=12 ، pH=12 عند: pH=12 و pH=12
- 5- نضع مزيجا من الأحماض الأمينية (Lys ، Ser ، Ala) في جهاز الهجرة الكهربائية عند 6-PH.
 - حدّد بالرسم مواقع هذه الأحماض الأمينية بعد الهجرة.

يعطى:

$$pH_i(Lys)=9,74$$
 $pH_i(Ser)=5,68$

- أ) اكتب الصيغة نصف المفصلة لهذا الببتيد، واذكر اسمه.
 - ب) استنتج صيغة هذا الببتيد عند pH=1
- ج) هل يعطي هذا الببتيد نتيجة إيجابية مع كاشف كزانتوبروتييك؟ علَّل إجابتك.

التمرين الثالث: (06 نقاط)

 $\Delta H_{comb} = -3268~kJ.~mol^{-1}$ هو: $25^{\circ}\mathrm{C}$ هو: البنزن السائل عند $^{\circ}\mathrm{C}$ هو: أ) اكتب معادلة احتراق البنزن السائل.

 $\Delta H_f^{\circ}(C_6H_{6(l)})$ البنزن السائل المعياري لتشكل البنزن السائل الأنطالبي المعياري المعياري المعياري

 $\Delta H_f^{\circ}(H_2O_{(l)}) = -286 \; kJ. \; mol^{-1}$ ، $\Delta H_f^{\circ}(CO_{2(g)}) = -393 \; kJ. \; mol^{-1}$ علما أن:

2- احسب أنطالبي احتراق البنزن السائل عند 60°C.

يعطى:

$$C_p(C_6H_{6(l)}) = 135,17 J. mol^{-1}. K^{-1}$$

$$C_p(O_{2(g)}) = 29,50 \text{ J. mol}^{-1}. K^{-1}$$

$$C_p(CO_{2(g)}) = 37,20 \text{ J. mol}^{-1}.K^{-1}$$

$$C_p(H_2O_{(l)}) = 75,30 \text{ J. mol}^{-1}.K^{-1}$$

 ΔH_{vap}° أحسب أنطالبي تبخر البنزن السائل أ-3

ب) استنتج الحرارة اللازمة لتبخر g 7,8 من البنزن السائل.

يعطى:

 $C = 12g.mol^{-1}$, $H = 1g.mol^{-1}$, $\Delta H_f^{\circ}(C_6H_{6(g)}) = 83 \text{ kJ. mol}^{-1}$

الإجابة النموذجية وسلم التنقيط لموضوع امتحان البكالوريا دورة: جوان 2012 المحتبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة:تقني رياضي المدة: 4 سا و 30 د

03 6×0,5 A: B: MgCl 0,5 0,5 CH2 OH E: COOH 0,5 0,5 CH2 OH E: COOH 0,5 0,5 0,25 COOH	
الله الكلي الكلي الكلي الله الكلي الكل	عناصر الإ
0,5 0,5 0,5 الإيثر الجاف و الغياب الكلي للماء. (2) 0,25 0,25 (3) AICl3 AICl3 AICl3 AICl3 AICl3 B C <th>التمرين الأول: (05 نقاط) 1 - I) الصيغ نصف المفصلة للمركبات: CH₂-OMgCl</th>	التمرين الأول: (05 نقاط) 1 - I) الصيغ نصف المفصلة للمركبات: CH ₂ -OMgCl
0,25 0,25 0,25 0,25 0,25 0,25 0,5	O
0,25 0,25 0,25 0,25 0,25 0,25 0,5	2) الشروط اللازمة لحدوث التفاعل (
0,25 $0,25$ $0,5$ 0	3) الوسيط المستخدم في التفاعل (7)
0,5 $0,5$	1-II) نوع البلمرة في التفاعل (3): بلمر 2) الصيغة نصف المفصلة للمركبين
0,5 $0,5$	HO-CH ₂ -CH ₂ -OH
	3) الصيغة العامة للبولي إستر:
01 2×0,5 CH ₂ CH ₃ CH ₃ Leu	التمرين الثاني: (05 نقاط) 1- الصيغ نصف المفصلة للحمضين الأميا 12N-CH - COOH CH ₂

	00 5 0	احببار ماده. التحلولوجيا (مندسة طرابق) - السعبة السنت (). تقي رياطي - المده. 4 سا و 0
01,25	5×0,25	- تصنيف الأحماض الأمينية: Tyr : حمض أميني عطري Asp : حمض أميني حامضي Cys : حمض أميني كبريتي Leu : حمض أميني ذو سلسلة كربونية بسيطة Lys : حمض أميني فاعدي
0,50	2×0,25	: تمثیل المماکبات الضوئیة لـ Phe حسب إسقاط فیشر: COOH H₂N
01,25	2×0,25	Asp \rightarrow pHi \rightarrow الصيغة الأيونية لـ Asp \rightarrow asp \rightarrow 2 \rightarrow 1,88 \rightarrow 3,66 \rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow 4 \rightarrow 2 \rightarrow 4 \rightarrow 2 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 6 \rightarrow 6 \rightarrow 7 \rightarrow 9 \rightarrow 9 \rightarrow 9 \rightarrow 1 \rightarrow 9 \rightarrow 9 \rightarrow 1 \rightarrow 9 \rightarrow 1 \rightarrow 9 \rightarrow 1 \rightarrow 9 \rightarrow 1
	3×0,25	pH=1 (pH=pHi=2,77) pH=12 $H_3N - CH - COOH$ $H_3N - CH - COO$ CH_2 CH_2 CH_2 CH_2 $COOH$ $COOH$
01	4×0,25	Lys – Leu – Tyr – Asp : كتابة صيغة رباعي الببتيد -5 $H_2N - CH - C - NH - CH - C - NH - CH - COOH$ $(CH_2)_4$ CH_2 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 $COOH$
		196

تابع الإجابة النموذجية وسلم التنقيط لموضوع مقترح لامتحان / مسابقة: بكالوريا دورة: جوان 2012 اختبار مادة: التكنولوجيا (هندسة طرائق) الشعبة/السلك (*): تقني رياضي المدة: 4 سا و 30 د

		المرابع ويامي المعلوق بي (المسلم الرابي) المسلم ويامي ويامي المسلم ويامي
		التمرين الثالث: (05 نقاط)
0,5	0.5	1- موازنة المعادلة: 2 H OH + 3O > 2CO + 3H O
0,5	0,5	$C_2H_5OH_{(l)} + 3O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(l)}$
		: $\Delta H_f^{\circ}(C_2H_5OH_{(1)})$ = -2
		$\Delta H = \sum \Delta H_f^{\circ} (Produits) - \sum \Delta H_f^{\circ} (Reactifs)$:Hess بتطبیق قانون
	0,5	$\Delta H = \left(2\Delta H_{f}^{\circ}(CO_{2(g)}) + 3\Delta H_{f}^{\circ}(H_{2}O_{(f)})\right) - \left(\Delta H_{f}^{\circ}(C_{2}H_{5}OH_{(f)}) + 3\Delta H_{f}^{\circ}(O_{2(g)})\right)$
0,75		$-1368 = 2(-393) + 3(-286) - \Delta H_f^{\circ} (C_2 H_5 OH_{(1)}) - 3(0)$
	0,25	$\Delta H_f^{\circ} (C_2 H_5 OH_{(l)}) = -1644 + 1368 = -276 \text{kJ.mol}^{-1}$
		: $\Delta H_f^{\circ}(C_2H_5OH_{(g)})$ حساب = -3
	0,25	$C_2H_5OH_{(1)} \xrightarrow{\Delta H_{vap}} C_2H_5OH_{(g)}$
01	0,5	$\Delta H_{\text{vap}}^{\circ} = \Delta H_{\text{f}}^{\circ} \left(C_2 H_5 O H_{(g)} \right) - \Delta H_{\text{f}}^{\circ} \left(C_2 H_5 O H_{(l)} \right)$
01		$\Delta H_f^{\circ} \left(C_2 H_5 O H_{(g)} \right) = \Delta H_f^{\circ} \left(C_2 H_5 O H_{(l)} \right) + \Delta H_{vap}^{\circ}$
	0,25	$\Delta H_f^{\circ} (C_2 H_5 O H_{(g)}) = -276 + 42,63 = -233,37 \text{kJ.mol}^{-1}$
		4- حساب التغير في الطاقة الداخلية ΔU عند 25°C:
	0,5	$\Delta H = \Delta U + \Delta nRT$
	0,25	$\Delta n = 2 - 3 = -1 \text{ mol}$
01,25	0,25	T= 25+273=298K
		$\Delta U = \Delta H - \Delta nRT$
		$\Delta U = -1368.10^3 - (-1) \times 8,314 \times 298$
		$\Delta U = -1365522,42 \text{J.mol}^{-1}$
	0.25	$\Delta U = -1365,52 \text{kJ.mol}^{-1}$
	1	97
	. 1	97

01,5	W 12 A	5- طاقة الرابطة C - C في الإيثانول الغازي:
	0.5	$2C_{(s)} + 3H_{2(g)} + \frac{1}{2}O_{2(g)}^{\Delta H_{r}^{\circ}(C_{2}H_{s}OH_{(g)})} C_{2}H_{5}OH_{(g)}$ $2\Delta H_{sub}^{\circ}(C_{(s)}) 3\Delta H_{dis}^{\circ}(H-H) \frac{1}{2}\Delta H_{dis}^{\circ}(O=O) + \frac{E_{C-O}^{+}E_{C-H}^{+}}{E_{C-H}^{+}E_{C-H}^{-}$
	0,5	$\Delta H_{f}^{\circ} (C_{2}H_{5}OH_{(g)}) = 2\Delta H_{sub}^{\circ} (C_{(s)}) + 3\Delta H_{dis}^{\circ} (H-H) + \frac{1}{2}\Delta H_{dis}^{\circ} (O=O)$
		$+E_{C-C} + 5E_{C-H} + E_{C-O} + E_{O-H}$
		$-233,37 = 2(717) + 3(436) + \frac{1}{2}(498) + E_{C-C} + 5(-413) - 351 - 463$
	0,5	$E_{C-C} = -345,37 \text{kJ.mol}^{-1}$
01	01	التمرين الرابع: (05 نقاط) 1- معادلة التفاعل: HO—NH ₂ + CO-C + C-OH CH ₃ CH ₃ CH ₃
0,25 0,25	0,25 0,25	2- دور حمض الإيتانويك المركز: مذيب يساعد على انحلال البار المينوفينول. 3- يساعد الماء الجليدي على إعادة بلورة البار اسيتامول.
	0,25×2	-4 حساب عدد المو لات: -9 ساب عدد المو المو المعناء -1 -1 -1 النسبة لبلاماء الإيثانويك: -1 -1 -1 -1 -1 -1 -1 -1
02	0,25	$M(C_4H_6O_3) = 4 \times 12 + 6 \times 1 + 3 \times 16 = 102g / mol$
02	0,25×2	$n(C_4H_6O_3) = \frac{m}{M} = \frac{7,56}{102} = 7,41 \times 10^{-2} mol$ $= -\frac{m}{M} = \frac{7,56}{102} = 7,41 \times 10^{-2} mol$
	0,25	$M(C_6H_7NO) = 6 \times 12 + 7 \times 1 + 14 + 16 = 109g / mol$
	0,25×2	$n(C_6H_7NO) = \frac{m}{M} = \frac{5,5}{109} = 5,05 \times 10^{-2} mol$
		(m_p) عليها المتحصل المتحص
01,5	0,25	$M(C_8H_9NO_2) = 8 \times 12 + 9 \times 1 + 14 + 2 \times 16 = 151g / mol$
		(100)

- 30	احتبار ماده: التكنولوجيا (مندسه طرائق) الشعبة/السلك (١): تفني رياضي المده: 4 سا و
	- حساب الكتلة النظرية (m_T) : يتم ذلك بالنسبة للمُتفاعِل المُحِد الذي هو بار المينوفينول O NH_2 \longrightarrow $NH-C$ NH_2 \longrightarrow $NH-C$ CH_3
0,5	$109g \longrightarrow 151g$ $5,5g \longrightarrow m_T$ $m_T = \frac{5,5 \times 151}{109} = 7,62g$ ملحظة: يُقبِل الإجابة التالية:
	$HO \longrightarrow NH_2 \longrightarrow HO \longrightarrow NH - C \bigcirc CH_3$
	$1mol \longrightarrow 151g$ $5,05.10^{-2}mol \longrightarrow m_{T}$ $m_{T} = \frac{5,05.10^{-2} \times 151}{1} = 7,62g$
	- مردود التفاعل:
0,5	$rend = \frac{m_p}{m_T} \times 100$ $m_p = \frac{rend \times m_T}{100}$
0,25	$m_{p} = \frac{52, 5 \times 7, 62}{100}$ $m_{p} = 4g$
19	
17	7

نمة	العلا	/ min _ min
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
2,5	5×0,5	التمرين الأول: (70 نقاط) التمرين الأول: (70 نقاط)
0,5	0,25 0,25	2- نوع البلمرة: بلمرة بالضم اسم البوليمير: بولي إيثلين PE اسم البوليميز: بولي ايثلين PE الصيغ نصف المفصلة للمركبات: O
02	4×0,5	F: CH ₃ -CH ₂ -CI G: CH ₃ -CH ₂ -MgCl H: CH ₃ -CH ₂ -C-OMgCl I: CH ₃ -CH ₂ -C-OH
01	0,25	2- أ) الوسيط المستخدم في التفاعل (2) هو: الإيثر الجاف. ب) خصائص التفاعل (5):
	0,5 0,25	أ بطيء، عكوس و مُحدُود ، لا حراري. ج) مردود التفاعل (5) هو 67 % لأن الكحول المستعمل أولي. 3-
01	0,5	+ CH ₃ -CH ₂ -CI AICI ₃ + HCI
	0,5	$\begin{array}{c c} CH_2-CH_3 \\ \hline \\ H_2SO_4 \end{array} \begin{array}{c} COOH \\ + CO_2 + 2 H_2O \end{array}$
01	4×0,25	التمرين الثاني: (07 نقاط) 1- تصنيف الأحماض الأمينية: Ala : حمض أميني ذو سلسلة كربونية بسيطة Val : حمض أميني ذو سلسلة كربونية بسيطة Lys : حمض أميني قاعدي Ser : حمض أميني هيدروكسيلي

صفحة 6 من 9 : خاص بالامتحانات المهنية

		التمرين الثالث: (06 نقاط)
02		1-أ) معادلة احتراق البنزن: 15
	0,75	$C_6H_{6(1)} + \frac{15}{2}O_{2(g)} \longrightarrow 6CO_{2(g)} + 3H_2O_{(1)}$
		$:\Delta \operatorname{H}_{\mathrm{f}}^{\circ}\left(\operatorname{C}_{6}\operatorname{H}_{6(I)} ight)$ جساب (ب
		$\Delta H_{comb} = \sum \Delta H_f^{\circ} (produits) - \sum \Delta H_f^{\circ} (reactifs)$: Hess بتطبیق قانون
	0,75	$\Delta H_{\text{comb}} = \left(6\Delta H_{\text{f}}^{\circ}\left(\text{CO}_{2(g)}\right) + 3\Delta H_{\text{f}}^{\circ}\left(\text{H}_{2}\text{O}_{(I)}\right)\right) - \left(\Delta H_{\text{f}}^{\circ}\left(\text{C}_{6}\text{H}_{6(I)}\right) + \frac{15}{2}\Delta H_{\text{f}}^{\circ}\left(\text{O}_{2(g)}\right)\right)$
		$-3268 = 6(-393) + 3(-286) - \Delta H_f^{\circ} (C_6 H_{6(I)}) - \frac{15}{2} (0)$
		$-3268 = -3216 - \Delta H_f^{\circ} \left(C_6 H_{6(I)} \right)$
	0,5	$\Rightarrow \Delta H_f^{\circ} (C_6 H_{6(I)}) = 52 \text{kJ.mol}^{-1}$
		\sim البنزن السائل عند ΔH_{comb} حساب ΔH_{comb}
		$\Delta H_{\rm T} = \Delta H_{\rm T_0} + \int\limits_{\rm T_0}^{\rm T} \Delta C_{\rm p}.{ m dT}$:Kirchhoff بتطبیق علاقهٔ
	0,5	$\Delta H_{T} = \Delta H_{T_0} + \Delta C_{p} (T - T_0)$
02,5		$\Delta C_p = \sum C_p \text{(produits)} - \sum C_p \text{(reactifs)}$
	0,5	$\Delta C_{p} = 6C_{p}(CO_{2(g)}) + 3C_{p}(H_{2}O_{(l)}) - C_{p}(C_{6}H_{6(l)}) - \frac{15}{2}C_{p}(O_{2(g)})$
		$\Delta C_p = 6(37,20) + 3(75,3) - 135,17 - \frac{15}{2}(29,5)$
	0,5	$\Delta C_p = 92,68 \text{J.mol}^{-1}.\text{K}^{-1}$
	0,25	T = 60 + 273 = 333K
	0,25	$T_0 = 25 + 273 = 298K$
		$\Delta H_{333} = -3268 + 92,68.10^{-3}(333 - 298)$
	0,5	$\Delta H_{333} = -3264,75 \text{ kJ.mol}^{-1}$
		البنزن السائل: ΔH_{vap}° للبنزن السائل:
	0,25	$C_6H_{6(l)} \xrightarrow{\Delta H_{vap}} C_6H_{6(g)}$
01,5	2×0,25	$\Delta H_{\text{vap}}^{\circ} = \Delta H_{\text{f}}^{\circ} (C_6 H_{6(g)}) - \Delta H_{\text{f}}^{\circ} (C_6 H_{6(l)}) = 83 - 52 = 31 \text{ kJ.mol}^{-1}$

г	
	ب) استنتاج الحرارة اللازمة لتبخر 7,8g من البنزن السائل:
0,25	$M_{C_6H_6} = (6 \times 12) + 6(1) = 78g \cdot \text{mol}^{-1}$
0,25	$n = \frac{m}{M} = \frac{7.8}{78} = 0,1 \text{mol}$
	31kJ
	$x \longrightarrow 0,1$ mol
0,25	$x = \frac{0.1 \times 31}{1} = 3.1 \text{kJ}$
	ملاحظة: تُقبل الإجابة التالية:
	$31kJ \longrightarrow 78g$ من C_6H_6
	$x \longrightarrow 7.8g$
	$x = \frac{7.8 \times 31}{78} = 3.1 \text{kJ}$
_ 20	5
	<u> </u>