

VISIÓN ARTIFICIAL

2022 - 25

https://drive.google.com/drive/folders/11ytPmqjUTWVC4-zBKqN8hUL-G5HxLCVx?usp=sharing

JOHN W. BRANCH

Profesor Titular

Departamento de Ciencias de la Computación y de la Decisión

Director del Grupo de I+D en Inteligencia Artificial – GIDIA

jwbranch@unal.edu.co

DIOSELIN ESTEBAN BRITO

Monitor dbrito@unal.edu.co

LOS MATERIALES DE ESTA ASIGNATURA, SE BASAN EN LA EVOLUCIÓN Y ELABORACIÓN DE ANTERIORES SEMESTRES, EN LOS CUALES HAN CONTRIBUIDO Y COLABORADO, DIEGO PATIÑO, CARLOS MERA, PEDRO ATENCIO, ALBERTO CEBALLOS, JAIRO RODRÍGUEZ, DIOSELIN BRITO A LOS CUALES DAMOS CRÉDITO.

METODOLOGÍA ENSEÑANZA – APRENDIZAJE

Sesiones Híbridas: Presenciales y Remotas

El <u>aprendizaje sincrónico</u> involucra estudios online a través de una plataforma. Este tipo de aprendizaje sólo ocurre en línea. Al estar en línea, el estudiante se mantiene en contacto con el docente y con sus compañeros. Se llama aprendizaje sincrónico porque la plataforma los estudiantes permite que pregunten al docente o compañeros de manera instantánea a través de herramientas como el chat o el video chat.

El <u>aprendizaje asincrónico</u> puede ser llevado a cabo online u offline. El aprendizaje asincrónico implica un trabajo de curso proporcionado a través de la plataforma o el correo electrónico para que el estudiante desarrolle. de acuerdo a las orientaciones del docente, de forma independiente. Un beneficio que tiene el aprendizaje asincrónico es que el estudiante puede ir a su propio ritmo.

EVALUACIÓN

Trabajo Final ((Póster + Presentación)	50%
Entrega: 21 de noviembre de 2022	
Certificación Coursera (Computer Vision Basics)	25%
Entrega: 28 de noviembre de 2022	
https://www.coursera.org/programs/coursera-para-la-universidad-nacional-de-colombia-ji3sj/browse?currentTab=MY_COURSES&productId=5YCz7-zMEeeMzQrhp6Bs1g&productType=course&query=digital+image+processing++&showMiniModal=true	
Parcial (Adquisición + Procesamiento + Segmentación) Entrega: 17 de octubre de 2022	25%

CRITERIOS DE EVALUACIÓN

CRITERIO	VALOR
Descripción del dataset: Detalla el origen de los datos, describe su contexto, su composición, cantidad, distribución, limitantes.	10%
Metodología: Describe los métodos usados, argumentan la selección de los mismos. La estructura del código fuente es coherente con los métodos, hay orden lógico y comentarios que permiten tener una idea clara de la función de los bloques de código.	35%
Presentación de resultados y uso de métricas: Hay un cuadro comparativo de las diferentes métricas empleadas, en los métodos elegidos. Hay un orden lógico en la presentación de las métricas, y se explican sus resultados, se eligieron métricas coherentes con los métodos empleados, hay gráficos explicativos de las métricas.	20%
Análisis y conclusiones: Hay una explicación del proceso llevado a cabo, se analizan los resultados obtenidos en las métricas y el porqué de sus diferencias, se concluye de manera clara, cuales son las mejoras posibles y los inconvenientes presentados durante el proceso.	35%

EN LA CLASE DE HOY ...

- PROCESAMIENTO DE IMÁGENES DIGITALES
 - Operaciones Pixel a Pixel Unarias
 - Operaciones Pixel a Pixel Binarias
 - Operaciones de Vecindad
 - Transformaciones Geométricas

ETAPAS DE UN SISTEMA DE VISIÓN ARTIFICIAL

EL PREPROCESAMIENTO

El objetivo del preprocesamiento es mejorar la calidad y/o la apariencia de la imagen original para su análisis e interpretación.

- Se resaltan ciertas características de la imagen (bordes, contraste, ...) y se ocultan o eliminan otras (por ejemplo, el ruido)
- El preprocesamiento es una etapa previa que es necesaria para otras fases posteriores del proceso de visión artificial (segmentación, extracción de características, reconocimiento e interpretación).

EL PREPROCESAMIENTO

Alteración píxel a píxel de la imagen (Operaciones Puntuales)

Imagen B

Operaciones Binarias

Operaciones Unarias

Operaciones basadas en múltiples puntos u Operaciones de Vecindad

EL PREPROCESAMIENTO

El objetivo del Preprocesamiento es mejorar la calidad y/o la apariencia de la imagen original para su análisis e interpretación.

UNIVERSIDAD

DE COLOMBIA

OPERACIONES PUNTUALES - BINARIAS

Las operaciones píxel a píxel binarias son aquellas que toman como entrada dos o más imágenes y producen una nueva imagen que es la combinación de las primeras:

¿Cuáles son los problemas que se pueden presentar al combinar una o más imágenes?

OPERACIONES PUNTUALES - BINARIAS

Las Operaciones Aritméticas entre imágenes son operaciones se llevan a cabo entre pares de pixeles correspondientes. Las cuatro operaciones básicas son:

$$O(x, y) := A(x,y) + B(x,y)$$

$$\bigcirc$$
 C(x, y):= A(x,y) - B(x,y)

$$O(x, y) := A(x,y) * B(x,y)$$

$$O$$
 C(x, y):= A(x,y) \div B(x,y)

OPERACIONES PUNTUALES - BINARIAS

Para el caso de la suma (por ejemplo) tenemos:

A(x,y)							В(х	(,y)			C(x,y)			
	10	10	109	80		1	49	48	47					
	11	102	89	76	+	2	50	51	49	_				
	10	87	241	78		75	145	200	158					
	90	67	68	39		11	23	150	169					

OPERACIONES PUNTUALES – BINARIAS

A + B

4 - B

Δ * R

OPERACIONES PUNTUALES - BINARIAS

La Suma de Imágenes es usada, por ejemplo, para resaltar los bordes de los objetos:

OPERACIONES PUNTUALES - BINARIAS

En la Suma (y otras operaciones aritméticas) algunas veces es necesario hacer mapeos que nos permitan llevar los valores resultantes a valores en el rango [0, 255], por ejemplo, en la suma: [0, 255] + [0, 255] = [0, 510] se soluciona dividiendo el resultado entre dos:

El resultado es una transparencia de las imágenes originales al 50%

OPERACIONES PUNTUALES - BINARIAS

• Una aplicación de la suma es para reducir el contenido de ruido en un conjunto de imágenes ruidosas. Esta es una técnica comúnmente utilizada para mejorar imágenes:

$$ar{g}(x,y) = rac{1}{K} \sum_{i=1}^K g_i(x,y)$$

¿Bajo qué condiciones esto funciona bien?

OPERACIONES PUNTUALES - BINARIAS

OPERACIONES PUNTUALES - BINARIAS

La resta pixel a pixel ...

OPERACIONES PUNTUALES - BINARIAS

Una aplicación de la resta es en la detección de movimiento entre dos imágenes, útil en la compresión de video y en el seguimiento de objetos.

OPERACIONES PUNTUALES - BINARIAS

La resta de imágenes también se usa mucho en medicina de manera:

Imagen original de rayos X del paciente, llamada máscara

Imagen obtenida inyectando un medio yodado al flujo sanguíneo del paciente para aumentar el contraste.

Imagen diferencia entre las anteriores

OPERACIONES PUNTUALES - BINARIAS

La resta de imágenes tiene uno de sus mayores usos en la segmentación para eliminar (o corregir) el background de una escena:

OPERACIONES PUNTUALES - BINARIAS

La multiplicación de imágenes puede ser usada para extraer regiones de interés usando una mascara (aunque esto se hace con operaciones booleanas):

OPERACIONES PUNTUALES - BINARIAS

La multiplicación de imágenes

Ø OPERACIONES PUNTUALES – BINARIAS: DIVISIÓN

Imágenes Originales

Resta

División

OPERACIONES PUNTUALES - BINARIAS

- Las Operaciones Booleanas en la mayoría de los casos solo tienen sentido cuando una de las imágenes es binaria. A esta imagen binaria se le suele denominar máscara:
- \bigcirc C(x, y):= A(x,y) AND B(x,y)
- \bigcirc C(x, y):= A(x,y) OR B(x,y)
- \bigcirc C(x, y):= A(x,y) XOR B(x,y)
- \oslash C(x, y):= NOT A(x,y) AND B(x,y)

Negro (0) = FALSE Blanco (1 ó 255) = TRUE

OPERACIONES PUNTUALES - BINARIAS

Negro (0) = FALSE Blanco (1 ó 255) = TRUE **OJO:** en algunos libros esta notación puede cambiar.

OPERACIONES PUNTUALES - BINARIAS

Operaciones Booleanas

A AND B

A OR B

A XOR B

EL PREPROCESAMIENTO

El objetivo del Preprocesamiento es mejorar la calidad y/o la apariencia de la imagen original para su análisis e interpretación.

UNIVERSIDAD

DE COLOMBIA

Operaciones basadas en Vecindad

Se cambia el nivel de gris de un píxel teniendo en cuenta su nivel de gris y el de sus vecinos

Preguntas

