FORSCHUNG FÜR EINE MOBILE ZUKUNFT

Einführungskonzeptionen für Batteriebusse / Trolleybusse mit Energiespeicher

Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI

Dr.-Ing. Thoralf Knote

Zeunerstraße 38

01069 Dresden

www.ivi.fraunhofer.de

Fraunhofer IVI Zahlen und Fakten

Institutsleiter **Prof. Dr. Matthias Klingner**

- 95 Mitarbeiterinnen und Mitarbeiter
- 50 studentische Hilfskräfte
- Budget ~ 8,2 Mio. Euro (2013)
- vier Abteilungen
- gemeinsame Forschungsgruppen
 - TU Dresden
 - TU Bergakademie Freiberg

Ausgangssituation

- Preisanstieg bei fossilen Brennstoffen
- zunehmende Vorgaben hinsichtlich Umweltschutz
- deutliche Fortschritte in den Batterietechnologien im letzten Jahrzehnt
- Batteriebusse auf dem Markt verfügbar

z. T. unrealistische Angaben zur Technik

■ limitierte Reichweite

Elektroenergiespeicher

Evolution statt Revolution

Elektroenergiespeicher

Sinkende Kosten

- derzeitige Kosten: 800 1500 €/kWh (Systemebene)
- Angaben zu Kostensenkung: um 30 65 %
- Prognosen zur Kostensenkung zumeist für Pkw-Batterien bzw. Zellen
- Batterien für Busse in deutlich geringeren Stückzahlen!

Elektroenergiespeicher

Neue Abhängigkeiten?

■ Länder mit nennenswerten Lithium-Vorkommen

Begriffsbestimmung

Hybridtrolleybus

- Trolleybus mit einem ausreichend großen Elektroenergiespeicher der
 - als Ersatz für das Hilfsfahraggregat für Notfälle
 - für den fahrleitungsfreien Normalbetrieb auf ausgesuchten Streckenabschnitten

Elektroenergie und -leistung zur Verfügung stellt

■ Im Idealfall nur etwa 40 % einer Linie mit Fahrleitung auszustatten

Einführungskonzeptionen für Elektrobusse Randbedingungen

- Linienbusse im Stadtverkehr
 - legen pro Tag bis zu 300 350 km zurück,
 - kehren häufig nicht zwischendurch in den Betriebshof zurück und
 - haben i. d. R. nur sehr kurze Haltestellenaufenthalts- und Wendezeiten.
- Setzt man z. B. für einen 12 m-Bus einen Verbrauch von 1,5 kWh/km an
 - benötigt man pro Einsatztag bis zu 525 kWh,
 - > die sich baulich nicht integrieren lassen und
 - die bzgl. der Speicherkosten finanziell nicht darstellbar sind.
- Aber ...

Machbares erkennen

- Kurse mit bis zu 150 200 km bereits heute ohne Nachladung realistisch
 - abhängig von Liniencharakteristik => kWh/km
 - abhängig von Heizung / Klimatisierung.
- Bei Nachladung sind ca. 75 % aller Kurse schon heute bedienbar
 - abhängig von Liniencharakteristik => kWh/km
 - abhängig von Wendezeiten => Nachladung
 - abhängig von Tagesfahrweite
 - abhängig von Heizung / Klimatisierung.
- Ob und wann eignet sich welche Linie?

Fragestellungen

- Tatsächliches Potenzial von Batteriebussen / Hybridtrolleybussen?
- Eignung einer vorgeschlagenen Linie?
- Einführungskonzeption für ein gesamtes Liniennetz / Teilnetz

Einführungskonzeptionen für Elektrobusse Tatsächliches Potenzial von Batteriebussen / HTB

- Oft fragwürdige Angaben zu Energieverbräuchen
 - stammen zumeist von Testfahrten
 - Heizung / Klimatisierung oft vernachlässigt.
- Wecken nicht selten völlig falsche Erwartungen
- Tests nur dann aussagekräftig, wenn
 - über einen längeren Zeitraum (Sommer / Winter) und
 - > im realen Fahrgastdienst durchgeführt.

Eignung einer vorgeschlagenen Linie

- Eignet sich eine Linie für den Einsatz von Batteriebussen / Hybridtrolleybussen
 - unter welchen technischen Bedingungen (Fahrzeug, Nachladung)
 - > mit welchem zeitlichen Horizont.

Einführungskonzeptionen für Elektrobusse Eignung einer vorgeschlagenen Linie – Vorgehensweise

- Datenerfassung / -zusammenstellung
 - Umlauf- bzw. Kurspläne, Fahrgastzahlen, Höhenprofil
 - > repräsentative Geschwindigkeits-Weg-Profile.

Eignung einer vorgeschlagenen Linie – Vorgehensweise

- Fahrzeugkonfiguration
 - realistische Konfiguration
 - Orientierung an am Markt verfügbaren Fahrzeugen / Technologien.

Eignung einer vorgeschlagenen Linie – Vorgehensweise

- Festlegung von Nachladekonzept
 - Wo wird nachgeladen?
 - Wann wird nachgeladen?

Wie hoch ist die Ladeleistung?

Eignung einer vorgeschlagenen Linie – Vorgehensweise

- Simulation von Fahrtverläufen -> Energieverbrauch vs. Nachladung
 - > entsprechend Umlauf- / Kursplänen
 - mit realistischen Geschwindigkeits-Weg-Profilen
 - für unterschiedliche Jahreszeiten.

Liniennetz- / Teilnetzbetrachtung

- Umstellung welcher Linie / welches Kurses
 - unter welchen technischen Bedingungen (Fahrzeug, Nachladung)
 - > mit welchem zeitlichen Horizont.

Liniennetz- / Teilnetzbetrachtung – Vorgehensweise

- Schritt 1: Grobrasterung
 - > entsprechend Umlauf- / Kursplänen
 - feste Verbrauchswerte entsprechend Höhenprofil
 - Abschätzung des Energieverbrauchs
 - Auswahl erfolgversprechender Linien.
- Schritt 2: Detaillierte Untersuchung
 - wie bei Einzellinienbetrachtung
 - Durchführung nur bei erfolgversprechenden Linien (Begrenzung von Aufwand und Kosten)
 - Gesamtbild über das Einsatzpotenzial in einem Liniennetz / Teilnetz

Einführungskonzeptionen für Elektrobusse Ergebnisse

- Überblick über Einsatzpotenzial auf (allen) Linien einer Stadt
 - Versachlichung der Diskussion über Batteriebusse / HTB
 - > sinnvolle Zeitschritte für die Einführung von Batteriebussen / HTB.
- Objektivierung der Einführungsstrategie
 - durch fachliche fundierte Untersuchungen
 - durch unparteiische Begutachtung.
- Verringerung des Risikos beim Kauf von Bussen

FORSCHUNG FÜR EINE MOBILE ZUKUNFT

Vielen Dank für Ihre Aufmerksamkeit!

Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI

Dr.-Ing. Thoralf Knote Zeunerstraße 38 01069 Dresden

Tel.: 0351/4640628

thoralf.knote@ivi.fraunhofer.de

www.ivi.fraunhofer.de

