Obliczenia naukowe

Paweł Kędzierski 272400

Lista 1

Zadanie 1.

 ${\bf 1.}$ Napisać program w języku Julia wyznaczający iteracyjnie epsilony maszynowe dla wszystkich dostępnych typów zmiennopozycyjnych Float
16, Float32, Float64

Gdy while 1 + macheps > 1 jest spełnione, dzielę wartość wartość zmiennej macheps przez dwa, zaczynając od wartości 1 w danym typie zmiennoprzecinkowym,

Typ Float	Wartość macheps	eps()	<float.h></float.h>
16	0.000977	0.000977	brak
32	1.1920929e-7	1.1920929e-7	1.1920929e-07
64	2.220446049250313e-16	2.220446049250313e-16	2.2204460492503131e-16

Wyniki mojego eksperymentu zgadzają się z prawdziwymi wartościami, co oznacza, że wykonana przeze mnie metoda iteracyjna jest dość dokładna.

Epsilon maszynowy jest pomocny w ustaleniu precyzji zapisu liczb zmienno-przecinkowych, gdyż jest odległością od 1 do następnej liczby możliwej do zaprezentowania w danym typie. Im mniejsza będzie ta wartość, tym większa będzie precyzja względna obliczeń.

 ${\bf 2.}\,$ Napisać program w języku Julia wyznaczający iteracyjnie liczbę maszynową eta taką, że eta >0.0dla wszystkich typów zmiennopozycyjnych Float
16, Float
32, Float
64

Gdy while eta > 0 jest spełnione, dzielę wartość zmiennej eta przez dwa począwszy od wartości zmiennej równej 1,

Typ Float	Wartośc eta	nextfloat()
16	6.0e-8	6.0e-8
32	1.0e-45	1.0e-45
64	5.0e-324	5.0e-324

- ${\bf 3.}$ Co zwracają funkcje floatmin
(Float32)i floatmin (Float64)i jaki jest związek zwracanych wartości z liczbą MIN
 - floatmin(Float32) 1.1754944e-38

• floatmin(Float64) - 2.2250738585072014e-308

Wyniki mojego eksperymentu zgadzają się z prawdziwymi wartościami. Liczba eta jest równa najmniejszej zdenormalizowanej liczbie dodatniej reprezentowanej w podanej arytmetyce zmiennopozycyjnej. Jest zdenormalizowana, czyli bity cechy mają wartość 0.

Natomiast wartości zwrócone przez floatmin są odpowiednikiem tej wartości, ale znormalizowanej, dlatego jej wartości są większe.

4. Napisać program w języku Julia wyznaczający iteracyjnie liczbę (MAX) dla wszystkich typów zmiennopozycyjnych Float16, Float32, Float64

Mnożę wartości zmiennej max, aż stanie się ona równa wartości isinf. Następnie, w celu poprawienia dokładności obliczeń, dodaję do poprzedniej wartości max $\frac{x}{k}$, gdzie k = 2, 4, ..., aż max będzie równa isinf.

Typ F	loat	Wartośc max	floatmax()	<float.h></float.h>
16		6.55e4	6.55e4	brak
32		3.4028235e38	3.4028235e38	$3.40282347\mathrm{e}{+38}$
64		1.7976931348623157e308	1.7976931348623157e308	1.7976931348623157e + 308

Wyniki mojego experymentu zgadzają się z wartościami zwróconymi przez floatmax() oraz z headera float.h.

Zadanie 2. Kahan stwierdził, że epsilon maszynowy (macheps) można otrzymać obliczając wyrażenie 3(4/31)1 w arytmetyce zmiennopozycyjnej. Sprawdzić eksperymentalnie w języku Julia słuszność tego stwierdzenia dla wszystkich typów zmiennopozycyjnych Float16, Float32, Float64.

Twierdzenie to mówi, że epsilon maszynowy można uzyskać, obliczając wartość

$$3*(4/3-1)-1$$

w odpowiedniej arytmetyce zmiennoprzecinkowej. Sprawdzenia dokonuję obliczając tę wartość dla wartości rzutowanych na podany typ. Jedynkę otrzymuję funkcją one.

Typ Float	Wyznaczona wartość	eps()
16	-0.000977	0.000977
32	1.1920929e-7	1.1920929e-7
64	-2.220446049250313e-1	2.220446049250313e-16

Wyniki otrzymane przez wykonane przeze mnie doświadczenie w dużej mierze pokrywają się z prawdziwymi wartościami Zmiana znaku widoczna dla typów Float16 oraz Float64 wynika z ilości bitów znaczących w tych typach (odpowiednio, 10 oraz 52). Możemy też zauważyć, że rozwijając ułamek 4/3 binarnie, otrzymamy 1.1. To powoduje, że ostatnią cyfrą mantysy w tych typach będzie równa 0, co zmienia znak na przeciwny. Biorąc moduł z obliczonych wartości, otrzymamy poprawne wyniki. Podsumowując, twierdzenie Kahana jest jest poprawne.

Zadanie 3. Sprawdź eksperymentalnie w języku Julia, że w arytmetyce Float64 (arytmetyce double w standarcie IEEE 754) liczby zmiennopozycyjne są równomiernie rozmieszczone

Moglibyśmy rozwiązać ten problem poprzez iteracje przez wszystkie liczby z danego przedziału w celu porównania z wartościami nextfloat. Jest to jednak nieefektywne i długie rozwiązanie.

Alternatywnie możemy porównać cechy pierwszej oraz ostatniej liczby z przedziału. W przypadku, gdy byłyby one inne, wykluczyłoby to równomierny rozkład liczb w tym przedziale.

Cechy są takie same, funkcja to potwierdza.

Wypisałem również kilka początkowych liczb, co dalej potwierdza równomierne rozmieszczenie:

Używając wzoru $2^{\text{cecha}-1023}*2^{-52}$, możemy również wyliczyć jak rozmieszcznone są liczby w danym przedziale. 1023 to przesunięcie cechy dla Float64 wynosi 1023. 52, bo mantysa ma tyle bitów znaczących Wyliczone z tego wzoru kroki prezentują się następująco:

$$[0.5, 1] - 1.1102230246251565e - 16$$
$$[1, 2] - 2.220446049250313e - 16$$
$$[2, 4] - 4.440892098500626e - 16$$

Możemy zauważyć, że odległości pomiędzy kolejnymi liczbami rosną wraz ze zwiększaniem się cechy, co zgadza się ze standardem IEEE754, ponieważ liczby są tam reprezentowane z dokładnością różną w zależności od przedziału. Dokładność zwiększa się wraz z tym jak bliskie zeru są liczby.

Zadanie 4.

- (a) Znajdź eksperymentalnie w arytmetyce Float64 zgodnej ze standardem IEEE 754 (double) liczbę zmiennopozycyjną x w przedziale 1 < x < 2, taką, że x (1/x) 6!= 1; tj. fl(xfl(1/x)) 6!= 1 (napisz program w języku Julia znajdujący te liczbę).
- (b) Znajdź najmniejszą taką liczbę.

Sprawdzam kolejne wyniki działania $x*(1/x) \neq 1$, iterując po x przy użyciu funkcji nextfloat. W momencie gdy wynik zacznie będzie różny od 1, zwracam go, tym samym otrzymując najmniejszą wartość w zadanym przedziale. Najmniejsza znaleziona przeze mnie liczba w przedziale (1, 2) t:

1.00000057228997

Niepoprawny wynik działania jest spowodowany niedokładnością, jaką są obarczone działania na liczbach zmiennoprzecinkowych. Trzeba zachować więc ostrożność podczas wykonywania obliczeń i brać pod uwagę, że mogą być one nieidealne, bądź tak je przekształcać, aby obliczenie ich nie stanowiło problemu.

Zadanie 5. Napisz program w języku Julia realizujący eksperyment obliczania iloczynu skalarnego dwóch wektorów na cztery różne sposoby: Sposoby:

- 1. "w przód"
- 2. "w tył"
- 3. od najmniejszego do największego
- 4. od największego do najmniejszego

Sposób	Float32	Float64	Wartość prawidłowa
1	-0.3472038161853561	1.0251881368296672e-10	-1.00657107000000e-11
2	-0.3472038162872195	-1.5643308870494366e-10	-1.00657107000000e-11
3	-0.3472038162872195	0.0	-1.00657107000000e-11
4	-0.3472038162872195	0.0	-1.00657107000000e-11

Patrząc na wyniki w tabeli można zauważyć że żaden ze sposób nie dał dokładnego, poprawnego wyniku. Podwójna dokładność dała jednak wyniki bliższe prawdzie.

Zadanie 6. Policz w języku Julia w arytmetyce Float64 wartości następujących funkcji:

$$f(x) = \sqrt{x^2 + 1} - 1$$

$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

Można zauważyć że, funkcja ${\tt f}$ już przy ${\tt 8^{-9}}$ jest równa 0. Do tego momentu, obie funkcje mają zbliżone wartości. Funkcja ${\tt f}$ traci dokładność przez operowanie na małych liczbach - odejmowanie od pierwiastka, który w pewnym momencie zostaje przybliżony do 1, wartości 1.

Możnaby temu zapobiec poprzez odpowiednie przekształcenie równania - np z f(x) do g(x), co pozwoliłoby na zachowanie większej prezycji obliczeń.

Wartość x	f(x)	g(x)
8-1	0.0077822185373186414	0.0077822185373187065
8^{-2}	0.00012206286282867573	0.00012206286282875901
8-3	1.9073468138230965e-6	1.907346813826566e-6
8^{-4}	2.9802321943606103e-8	2.9802321943606116e-8
8^{-5}	4.656612873077393e-10	4.6566128719931904e-10
8^{-6}	7.275957614183426e-12	7.275957614156956e-12
8^{-7}	1.1368683772161603e-13	1.1368683772160957e-13
8-8	1.7763568394002505e-15	1.7763568394002489e-15
8-9	0.0	2.7755575615628914e-17
8^{-10}	0.0	4.336808689942018e-19

Zadanie 7. Przybliżoną wartość pochodnej f(x) w punkcie x można obliczyć za pomocą następującego wzoru

$$f'(x_0) \approx \tilde{f}'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$$

Funkcja, której pochodną należało obliczyć, to

$$f(x) = \sin x + \cos 3x$$

w punkcie $\mathtt{x} = \mathtt{1}$ oraz błędów przybliżeń. Pochodna jest obliczana ze wzoru:

$$f'(x) = \cos x - 3\sin 3x$$

Obliczona dokłada wartość pochodnej w $x_0=1\ {\rm to}$

0.11694228168853815

Zaimplementowałem funkcję, która oblicza wartość funkcji f(x) dla zadanej wartości x, a także taką liczącą przybliżoną wartość pochodnej oraz błąd. Dokładna wartość pochodnej jest przechowywana w zmiennej globalnej.

Wartość h	Wartość $1+h$	pochodna	błąd
2^{-0}	2.0	2.0179892252685967	1.9010469435800585
2^{-1}	1.5	1.8704413979316472	1.753499116243109
2^{-2}	1.25	1.1077870952342974	0.9908448135457593
2^{-3}	1.125	0.6232412792975817	0.5062989976090435
2^{-4}	1.0625	0.3704000662035192	0.253457784514981
2^{-5}	1.03125	0.24344307439754687	0.1265007927090087
2^{-6}	1.015625	0.18009756330732785	0.0631552816187897
2^{-7}	1.0078125	0.1484913953710958	0.03154911368255764
2^{-8}	1.00390625	0.1327091142805159	0.015766832591977753
2^{-9}	1.001953125	0.1248236929407085	0.007881411252170345
2^{-10}	1.0009765625	0.12088247681106168	0.0039401951225235265
2^{-11}	1.00048828125	0.11891225046883847	0.001969968780300313

2^{-12}	1.000244140625	0.11792723373901026	0.0009849520504721099
2^{-13}	1.0001220703125	0.11743474961076572	0.0004924679222275685
2^{-14}	1.00006103515625	0.11718851362093119	0.0002462319323930373
2^{-15}	1.000030517578125	0.11706539714577957	0.00012311545724141837
2^{-16}	1.0000152587890625	0.11700383928837255	6.155759983439424e-5
2^{-17}	1.0000076293945312	0.11697306045971345	3.077877117529937e-5
2^{-18}	1.0000038146972656	0.11695767106721178	1.5389378673624776e-5
2^{-19}	1.0000019073486328	0.11694997636368498	7.694675146829866e-6
2^{-20}	1.0000009536743164	0.11694612901192158	3.8473233834324105e-6
2^{-21}	1.0000004768371582	0.1169442052487284	1.9235601902423127e-6
2^{-22}	1.000000238418579	0.11694324295967817	9.612711400208696e-7
2^{-23}	1.0000001192092896	0.11694276239722967	4.807086915192826e-7
2^{-24}	1.0000000596046448	0.11694252118468285	2.394961446938737e-7
2^{-25}	1.0000000298023224	0.116942398250103	1.1656156484463054e-7
2^{-26}	1.0000000149011612	0.11694233864545822	5.6956920069239914e-8
2^{-27}	1.0000000074505806	0.11694231629371643	3.460517827846843e-8
2^{-28}	1.0000000037252903	0.11694228649139404	4.802855890773117e-9
2^{-29}	1.0000000018626451	0.11694222688674927	5.480178888461751e-8
2^{-30}	1.0000000009313226	0.11694216728210449	1.1440643366000813e-7
2^{-31}	1.0000000004656613	0.11694216728210449	1.1440643366000813e-7
2^{-32}	1.0000000002328306	0.11694192886352539	3.5282501276157063e-7
2^{-33}	1.0000000001164153	0.11694145202636719	8.296621709646956e-7
2^{-34}	1.0000000000582077	0.11694145202636719	8.296621709646956e-7
2^{-35}	1.0000000000291038	0.11693954467773438	2.7370108037771956e-6
2^{-36}	1.000000000014552	0.116943359375	1.0776864618478044e-6
2^{-37}	1.000000000007276	0.1169281005859375	1.4181102600652196e-5
2^{-38}	1.000000000003638	0.116943359375	1.0776864618478044e-6
2^{-39}	1.000000000001819	0.11688232421875	5.9957469788152196e-5
2^{-40}	1.00000000000009095	0.1168212890625	0.0001209926260381522
2^{-41}	1.0000000000004547	0.116943359375	1.0776864618478044e-6
2^{-42}	1.0000000000002274	0.11669921875	0.0002430629385381522
2^{-43}	1.00000000000001137	0.1162109375	0.0007313441885381522
2^{-44}	1.0000000000000568	0.1171875	0.0002452183114618478
2^{-45}	1.00000000000000284	0.11328125	0.003661031688538152
2^{-46}	1.0000000000000142	0.109375	0.007567281688538152
2^{-47}	1.0000000000000007	0.109375	0.007567281688538152
2^{-48}	1.00000000000000036	0.09375	0.023192281688538152
2^{-49}	1.00000000000000018	0.125	0.008057718311461848
2^{-50}	1.00000000000000000	0.0	0.11694228168853815
2^{-51}	1.000000000000000004	0.0	0.11694228168853815
2^{-52}	1.0000000000000000000000000000000000000	-0.5	0.6169422816885382
2^{-53}	1.0	0.0	0.11694228168853815
2^{-54}	1.0	0.0	0.11694228168853815

Najlepsza dokładność jest dla h = 2^{-28}. Następnie, możemy zauważyć, że błąd zaczyna rosnąć, aż do momentu gdy będzie on równy wartości pochodnej

przy ostatniej potędze. Bardzo małe liczby w formacie zmiennoprzecinkowym mają niewystarczającą liczbę cyfr znaczących, co powoduje utratę dokładności podczas obliczeń, zwłaszcza podczas odejmowania liczb o niewielkiej różnicy w wartości.

Wnioski ogólne

Moim podstawowym wnioskiem po wykonaniu tej listy zadań jest to że przy wykonywaniu operacji na liczbach zmiennopozycyjnych należy zachować szczególną ostrożność, ponieważ łatwo o błędy. Przy tego typu operacjach może dojść do zaokrągleń. Warto się zastanowić nad przekształcaniem równań lub zmianą typu zmiennej.