Department of Computer Science University of Bristol

COMS30030 - Image Processing and Computer Vision

Lecture 06

Object Detection

Majid Mirmehdi | majid@cs.bris.ac.uk

What is 'Object Detection'?'

- Object detection aims at bridging the 'semantic gap' between...
 - given pixel values, and
 - meaningful objects (grouping of pixels + classification of groups)

Image regions need to be found and assigned with **semantic labels** from a space of object classes

What is 'Object Detection'?

Why do classical shape detection and segmentation on their own rarely work for real-world object detection?

- high intra-class variance
- low inter-class variance
- classes are rarely well defined

 change of illumination, scale, pose, deformation, occlusion...

Terminology

Classification → butterfly

Multiple object detection

object detection = Classification + localisation

Semantic Segmentation

Panoptic Segmentation

Object Detection Techniques

- Line and circle detection: Techniques like the Hough Transform can be used to detect lines and circles in an image, which can indirectly help locate objects with specific geometric shapes.
- Colour-based detection: In some cases, objects can be detected based on their colour properties. This is especially useful when objects have distinct and consistent colors.
- Template matching: Sliding a template over the input image and finding regions where the template best matches the local image content.
- Classifiers with sliding window detectors: Applying image classification on overlapped patches in the image.
- Deep learning-based object detectors: Object detector automatically learns image features required for detection tasks, and instance segmentation.

(out of scope in this unit)

Colour-based Detection

Morphological operations

What are they used for?

- Binary images (although version for greylevel images also exists)
- Can be used for **post-processing** segmentation results, e.g. noise filtering, enhancing object structure, ...
- Quantitative description of objects (area, perimeter, etc.)

Core techniques

Erosion

Dilation

Opening

Closing

Morphological operations

Two sets:

- -Image
- –Morphological kernel (or structuring element)
- Dilation (D)
 - -Union of the **kernel** with the **image** set.
 - Increases resulting area.
- Erosion (E)
 - -Intersection of the kernel with the image set.
 - Decreases resulting area.

Dilation

Morphological dilation '⊕' combines two sets using vector of set elements

$$X \oplus B = \{ p \in Z^2 \mid p = x + b, x \in X, b \in B \}$$

The dilation X + B is the point set of all possible vector additions of pairs of elements, one from each of the sets X and B

Commutative:
$$X \oplus B = B \oplus X$$

Associative: $X \oplus (B \oplus D) = (X \oplus B) \oplus D$

Invariant of translation: $X_h \oplus B = (X \oplus B)_h$

Is an increasing transformation: If $X \subseteq Y$ then $X \oplus B \subseteq Y \oplus B$

Erosion

Morphological erosion '⊖' combines two sets using vector subtraction of set elements and is a dual operator of dilation

$$X \ominus B = \{ p \in Z^2 \mid \forall b \in B, p + b \in X \}$$

Not Commutative: $X \ominus B \neq B \ominus X$

Not associative: $X \ominus (B \ominus D) \neq (X \ominus B) \ominus D$

Every point p from the image is tested; the result of the erosion is given by those points p for which all possible p + b are in X.

Invariant to translation: $X_h \ominus B = (X \ominus B)_h$ and $X \ominus B_h = (X \ominus B)_{-h}$

Is an increasing transformation: If $X \subseteq Y$ then $X \ominus B \subseteq Y \ominus B$

Dilation and Erosion examples

Dilation

A=binary image

	1	1	1
B =	1	1	1
	1	1	1

Erosion

Examples

ABCDEFG ABCDEFG ABCDEFG HIJKLMN OPQRST UVWXYZ

Revolutional image

ABCDEFG ABCDEFG ABCDEFG HIJKLMN OPQRST OPQRST UVWXYZ

Opening: Erosion followed by Dilation

Opening: Erosion followed by Dilation

Closing: Dilation followed by Erosion

Closing: Dilation followed by Erosion

Examples

erosion

dilation

closing image dilation then erosion

(a) Dilation operator $A \oplus B_1 = A'$

(b) Erosion operator $A\Theta B_2 = A''$

Example of Opening

Example of Closing

(a) Image of peppercorns

(b) Thresholded

(c) 3x3 dilation...

(d) ...then 3x3 erosion

Example of Edge Detection!

Erosion as isotopic shrink.

Contours obtained by subtraction of an eroded image from the original.

Sliding Window Detectors

- Image is tested for object presence window-by-window
- The window is `slided' and `scaled' throughout the image

 Each resulting window is judged w.r.t. an object model giving a response indicating object presence or absence

Template Matching

 Find the best similarity (or the lowest difference) or within the defined threshold

pixel i in box y in the image, y has the same size as \widehat{y} Maximum $\begin{array}{c}
\text{pixel } i \text{ in template } \widehat{y} \\
\text{pixel } i \text{ in template } \widehat{y} \\
\text{correlation: } \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \mu_y}{\sigma_y} \right) \left(\frac{\widehat{y}_i - \mu_{\widehat{y}}}{\sigma_{\widehat{y}}} \right) \\
\text{mean}
\end{array}$

Minimum

mean absolute error:
$$\frac{1}{n}\sum_{i=1}^n |y_i - \hat{y}_i|$$
 mean square error : $\frac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$

total number of pixels in the template box

/dccs.openov.org/4.x/d4/dc6/tubrial_py_template_matching.html

Template Matching

 Find the best similarity (or the lowest difference) or within the defined threshold

• correlation: $\frac{1}{n}\sum_{i=1}^{n} \left(\frac{y_i - \mu_y}{\sigma_y}\right) \left(\frac{\hat{y}_i - \mu_{\hat{y}}}{\sigma_{\hat{y}}}\right)$

Similarity map

- mean absolute error: $\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$
- mean square error : $\frac{1}{n}\sum_{i=1}^{n}(y_i \hat{y}_i)^2$

error map

Template Matching can be expensive...

- Template image size: 53 x 48
- Source image size: 177 x 236
- Assumption: template image is inside the source image.
- Correlation (search) matrix size: 124 x 188

• Computation count: $124 \times 188 \times 53 \times 48 = 59,305,728$

Template Matching examples

template

Template Matching examples

Same object (IoU closer to 1) or distinct objects that are close to each other (IoU closer to 0).

Viola-Jones: Another Sliding Window Approach

Hand-crafted weak features, but computationally efficient, calculated in sliding windows...

Construct a cascade of classifiers, which can reject most of the negative examples at early stages of processing, thereby significantly reducing computation time.

Viola-Jones: Another Sliding Window Approach

Point Feature Matching

Point Feature Matching

- Harris corner detector
- Scale-Invariant Feature Transform (SIFT)
- Speeded Up Robust Features (SURF)

Point Feature Matching

Rank feature similarities

Random sample consensus (RANSAC) algorithm

Next year: Deep learning-based object detectors

Next year: Deep learning-based object detectors

https://yolov8.com/

Next Lecture

Object Detection:
Viola-Jones Detector