

RAS: Continuously Optimized Region-Wide Datacenter Resource Allocation

主讲人: 伊丹翔

2021年11月23日

目录 Contents

- TAS 是什么
- RAS 的工作原理
- RAS Evaluation
- Discussion

RAS 是什么

RAS —— 资源分配系统

Facebook 的 datacenter 拓扑图

RAS 工作原理

Random Failure:

Random Failure:

Correlated Failure:

Random Failure: Shared buffer

Correlated Failure:

Random Failure: Shared buffer —> Online Mover

Correlated Failure:

Random Failure: Shared buffer —> Online Mover

Correlated Failure: Embedded buffer

Random Failure: Shared buffer —> Online Mover

Correlated Failure: Embedded buffer —> Twine Allocator

Async Solver

Two-phase solving:

- 1. Solve without any rack-related goals
- 2. Solve with all goals in phase 1 plus rack goals

Async Solver

Constraints:

- 1. Capacity
- 2. Server availability
- 3. Network
- 4. Correlated failure

Objectives:

- 1. move unused servers
- spreads reservations across MSBs
- reduce hotspots that may overload rack switch uplinks

Async Solver

Minimize:

$$\sum_{s \in S, r \in R} M_s * \max(0, X_{s,r} - x_{s,r})$$

(1)

$$+\beta*\sum_{r\in R,G\in\Psi^K}\max\left(0,\sum_{s\in G}(V_{s,r}*x_{s,r})-\alpha^K*C_r\right)$$

$$+\beta * \sum_{r \in R, G \in \Psi^F} \max \left(0, \sum_{s \in G} (V_{s,r} * x_{s,r}) - \alpha^F * C_r \right)$$

$$+\tau * \sum_{r \in R} \max_{G \in \Psi^F} \left(\sum_{s \in G} V_{s,r} * x_{s,r} \right)$$

Subject to:

$$\sum_{r \in R} x_{s,r} \le 1, \qquad \forall s \in S$$

$$\sum_{s \in S} (V_{s,r} * x_{s,r}) - \max_{G \in \Psi^F} \left(\sum_{s \in G} V_{s,r} * x_{s,r} \right) \ge C_r, \qquad \forall r \in R$$
 (6)

$$\left| \frac{\sum_{s \in G} (V_{s,r} * x_{s,r})}{C_r} - A_{r,G} \right| \le \theta, \quad \forall r \in R, G \in \Psi^D \quad (7)$$

(2)	Notation	Description
(-)	S	Set of all servers
	R	Set of all reservations
(3)	$x_{s,r}$	Assignment variable which is 1 if server s is assigned to
		reservation r and 0 otherwise
	$X_{s,r}$	Constant initial assignment value
(4)	M_s	Movement cost of server s
	τ	Cost of each correlated-failure-buffer server
	β	Cost of each server outside spread goals
	$\alpha^{K,F}$	Proportional limit of reservation for spread in K (rack)
		or F (MSB fault domain)
	$V_{s,r}$	RRU value of server s for reservation r
(5)	C_r	Capacity desired for reservation r
	$\Psi^{K,F,D}$	Partition of servers based on K (rack), D (datacenter), or
		F (MSB fault domain)
	$A_{r,G}$	Affinity of reservation r to a partition group G

RAS Performance

RAS regional allocation time distribution

RAS Performance

RAS allocation time breakdown

RAS Performance

Allocation Quality: Phase 1 MIP quality gap

RAS Evaluation

RAS helps reduce cross-datacenter network traffic over a period of two months.

RAS Evaluation

RAS helps reduce correlated-failure buffers over a period of two months

Discussion

相信RAS的一些关键想法可以被其他系统考虑:

- 1. 给user介绍动态reservation而不是静态集群
- 2. 把服务器分配和容器放置解耦
- 3. 把服务器分配到reservation看成一个优化问题
- **4**. ...

Challenges

- 1. Capacity-request delays
- 2. Extra service preemption
- 3. ...

谢谢!

