Στην αρχή έχω τα απαραίτητα imports για numpy, scipy και matplotlib:

```
from numpy import *
import numpy

from scipy import *
import scipy
import matplotlib.pyplot as plt
```

Η συνάρτηση και οι 2 πρώτες παράγωγοι ορίζονται και γίνεται το plot της f(x):

```
t = arange(0,3.001,step=.001)

def f(t):
    return (14*t)*(e**(t-2)) - 12*(e**(t-2)) - 7*(t**3) + 20*(t**2) - 26*t + 12

def f_der(t):
    return (14*t)*(e**(t-2)) + 2*(e**(t-2)) - 21*(t**2) + 40*t - 26

def f_der_2(t):
    return (14*t)*(e**(t-2)) - 16*(e**(t-2)) - 42*t + 40

plt.xlabel("x")
    plt.ylabel("f(x)")
    plt.plot(t, f(t))
    plt.grid(True)
    plt.show()
```


Καθώς η άσκηση δεν το απαιτεί δεν υπάρχουν έλεγχοι για σφάλματα ούτε συνθήκες τερματισμού σε περίπτωση που δεν υπάρχουν ρίζες.

Ακολουθεί η συνάρτηση για διχοτόμηση:

```
def bisect(a, b):
    a_1, b_1 = a, b
    root = (a + b) / 2

# number of times to repeat to achieve 6 points accuracy
N = int(ceil((log(b - a) - log(0.0000005)) / log(2)))

for i in range(0, N):
    if (f(a) < 0 and f(root) > 0) or (f(a) > 0 and f(root) < 0):
        b = root
    elif (f(b) < 0 and f(root) > 0) or (f(b) > 0 and f(root) < 0):
        a = root
    root = (a + b) / 2

return root, N, a_1, b_1</pre>
```

Απλά γίνετε η εγαρμογή του θεωρήματος για $N=\frac{\ln b-a-\ln error}{\ln 2}$ φορές Στην συνέχεια έχω τη συνάρτηση για την μέθοδο Newton-Raphson:

```
def new_raph(start):
    temp_l = [start, start - (f(start)/f_der(start))]

N = 1
while 0.0000005*abs(temp_l[N]) < abs(temp_l[N-1] - temp_l[N]):
    temp = temp_l[N] - (f(temp_l[N])/f_der(temp_l[N]))
    temp_l.append(temp)
    N = N + 1

root = temp_l[N]

#N-1 because the N=N+1 happens at the very end of the while loop
return root, N - 1, start</pre>
```

Εδώ αρχικοποιώ τον πίνακα temp_l με την τιμή εισόδου της συνάρτησης και το αποτέλεσμα μιας πρώτης εφαρμογής της αναδρομικής συνάρτησης

$$f(x_n) = f(x_{n-1}) - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

Στην συνέχεια με τον έλεγχο στο while η συνάρτηση θα τρέχει μέχρι να επιτευχθεί η επιθυμιτή ακρίβεια (6 δεκαδικά ψηδία)

Επιστρέφω την ρίζα, τον αριθμό επαναλήψεων και το σημείο εκκίνησης. Ο αριθμός επαναλήψεων είναι Ν-1 γιατί η αύξηση του δείκτη γίνεται στο τέλος του while ενώ ξεκινάει με τον δείκτη στο 1 αντι του 0 για να μπορεί να γίνει ο έλεγχος

Ακολουθέι η συνάρτηση της μεθόδου της τέμνουσας:

```
$ python ex1.py $ f(0.952374) = 0.000000 $
```