Software Requirements Specification for Mechatronics Engineering: subtitle describing software

Team 25, Formulate
Ahmed Nazir, nazira1
Stephen Oh, ohs9
Muhanad Sada, sadam
Tioluwalayomi Babayeju, babayejt

October 3, 2022

Contents

1	\mathbf{Ref}	ference Material	iv	
	1.1	Table of Units	iv	
	1.2	Table of Symbols	iv	
	1.3	Abbreviations and Acronyms	V	
	1.4	Mathematical Notation	V	
2	Intr	roduction	1	
	2.1	Purpose of Document	1	
	2.2	Scope of Requirements	1	
	2.3	Characteristics of Intended Reader	2	
	2.4	Organization of Document	2	
3	Ger	neral System Description	2	
	3.1	System Context	2	
	3.2	User Characteristics	3	
	3.3	System Constraints	3	
4	Spe	ecific System Description	3	
	4.1	Problem Description	3	
		4.1.1 Terminology and Definitions	3	
		4.1.2 Physical System Description	3	
		4.1.3 Goal Statements	3	
	4.2	Solution Characteristics Specification	4	
		4.2.1 Assumptions	4	
		4.2.2 Theoretical Models	4	
		4.2.3 General Definitions	5	
		4.2.4 Data Definitions	6	
		4.2.5 Data Types	7	
		4.2.6 Instance Models	7	
		4.2.7 Input Data Constraints	8	
		4.2.8 Properties of a Correct Solution	9	
5	Rec	quirements	9	
	5.1	Functional Requirements	9	
	5.2	Nonfunctional Requirements	10	
6	Like	ely Changes	10	
7	Unl	Unlikely Changes		
8	Tra	ceability Matrices and Graphs	10	

9	Development Plan	11
10	Values of Auxiliary Constants	11

Revision History

Date	Version	Notes
Date 1	1.0	Notes
Date 2	1.1	Notes

1 Reference Material

This section records information for easy reference.

1.1 Table of Units

Throughout this document SI (Système International d'Unités) is employed as the unit system. In addition to the basic units, several derived units are used as described below. For each unit, the symbol is given followed by a description of the unit and the SI name.

symbol	unit	SI
m	length	metre
kg	mass	kilogram
S	$_{ m time}$	second
$^{\circ}\mathrm{C}$	temperature	centigrade
J	energy	joule
W	power	watt $(W = J s^{-1})$

1.2 Table of Symbols

The table that follows summarizes the symbols used in this document along with their units. The choice of symbols was made to be consistent with the heat transfer literature and with existing documentation for solar water heating systems. The symbols are listed in alphabetical order.

symbol	unit	description
A_C	m^2	coil surface area
$A_{ m in}$	m^2	surface area over which heat is transferred in

1.3 Abbreviations and Acronyms

symbol	description
A	Assumption
DD	Data Definition
GD	General Definition
GS	Goal Statement
IM	Instance Model
LC	Likely Change
PS	Physical System Description
R	Requirement
SRS	Software Requirements Specification
Mechatronics Engineering	
T	Theoretical Model
DBTL	Design Build Test Learning
KPI	Key Performance Indicators

1.4 Mathematical Notation

2 Introduction

Effective test data collection and storage is a common challenge extra-curricular teams face in the technical domain. In teams who do not invest in streamlining data collection and storage, teams cannot fully utilize test data to validate designs. As a result, teams encounter difficulty proving design validity during competition, experience reduced competitiveness when presenting an under-validated system, and fail to generate trends on aggregated test data to efficiently find areas of improvement in design.

2.1 Purpose of Document

This document provides the set of Software Requirements Specifications (SRS) used to describe the system developed to assist testing efforts in technical teams. Both hardware and software system requirements were included to fully specify all system requirements.

The user can expect to understand the system behavior under expected use cases, the functional and non-functional requirements the system must adhere to, supporting technical information used in the design of the system, and a development plan.

2.2 Scope of Requirements

Project Formulate aims to provide the McMaster Formula Electric team with a well-documented and complete system. To accomplish the project goals within an 8 month timeline, the following scope of requirements were developed to set clear boundaries on deliverables.

In scope Items:

- 1. Documentation for tool integration into testing workflows for common tests.
- 2. Hardware capable of collecting data from test equipment.
- 3. User interface to interact with raw data and submit the data to a database.
- 4. Record of organized, historical data.
- 5. Visualization of test data stored in a database with auto-generated KPI metrics.
- 6. Short setup time to integrate device into testing workflow, regardless of technical background.

Out of Scope Items:

- 1. Custom website to visualize test data results stored in a database.
- 2. Security through data encryption.
- 3. Predictive intelligence to estimate if rate of test data collected is on track to produce a fully validated product.

2.3 Characteristics of Intended Reader

The intended reader possesses a multidisciplinary technical background in device electronics, embedded hardware and communication, database design, and front end development.

The reader should understand how common testing devices convert physical phenomena into equivalent and measurable electrical signals. This level of understanding can be achieved at an undergraduate level from an Embedded Systems 1 course.

The reader should understand how data collected by an embedded device can be distributed to a computing device via communication protocols. This level of understanding can be achieved at an undergraduate level from an Embedded Systems 2 course.

The reader should understand the underlying database model and methods to interact with the data stored in the database. This level of understanding can be achieved at an undergraduate level from a Database 1 course.

The reader should understand how front end applications interact with the data stored in a database. This level of understanding can be achieved at an undergraduate level from a Computer Science 1 course.

2.4 Organization of Document

3 General System Description

This section provides general information about the system. It identifies the interfaces between the system and its environment, describes the user characteristics and lists the system constraints.

Project "Formulate" enables engineering teams to streamline data collection and storage, resulting in testing overhead reduction and increased control of raw test data gathered by automating aspects of the testing procedure.

3.1 System Context

- User Responsibilities:
- Mechatronics Engineering Responsibilities:
 - Detect data type mismatch, such as a string of characters instead of a floating point number

_

Figure 1: System Context

3.2 User Characteristics

3.3 System Constraints

4 Specific System Description

This section first presents the problem description, which gives a high-level view of the problem to be solved. This is followed by the solution characteristics specification, which presents the assumptions, theories, definitions and finally the instance models.

4.1 Problem Description

Mechatronics Engineering is intended to solve ...

4.1.1 Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their meaning, with the purpose of reducing ambiguity and making it easier to correctly understand the requirements:

•

4.1.2 Physical System Description

The physical system of Mechatronics Engineering, as shown in Figure ?, includes the following elements:

PS1:

PS2: ...

4.1.3 Goal Statements

Given the , the goal statements are:

GS1:

4.2 Solution Characteristics Specification

The instance models that govern Mechatronics Engineering are presented in Subsection 4.2.6. The information to understand the meaning of the instance models and their derivation is also presented, so that the instance models can be verified.

4.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical model by filling in the missing information for the physical system. The numbers given in the square brackets refer to the theoretical model [T], general definition [GD], data definition [DD], instance model [IM], or likely change [LC], in which the respective assumption is used.

A1:

4.2.2 Theoretical Models

This section focuses on the general equations and laws that Mechatronics Engineering is based on.

RefName: T:COE

Label: Conservation of thermal energy

Equation: $-\nabla \cdot \mathbf{q} + g = \rho C \frac{\partial T}{\partial t}$

Description: The above equation gives the conservation of energy for transient heat transfer in a material of specific heat capacity C (J kg⁻¹ °C⁻¹) and density ρ (kg m⁻³), where \mathbf{q} is the thermal flux vector (W m⁻²), g is the volumetric heat generation (W m⁻³), T is the temperature (°C), t is time (s), and ∇ is the gradient operator. For this equation to apply, other forms of energy, such as mechanical energy, are assumed to be negligible in the system (A??). In general, the material properties (ρ and C) depend on temperature.

Notes: None.

Source: http://www.efunda.com/formulae/heat_transfer/conduction/overview_cond.cfm

Ref. By: GD??

Preconditions for T:COE: None

Derivation for T:COE: Not Applicable

4.2.3 General Definitions

This section collects the laws and equations that will be used in building the instance models.

Number	GD1
Label	Newton's law of cooling
SI Units	$ m Wm^{-2}$
Equation	$q(t) = h\Delta T(t)$
Description	Newton's law of cooling describes convective cooling from a surface. The law is stated as: the rate of heat loss from a body is proportional to the difference in temperatures between the body and its surroundings.
	q(t) is the thermal flux (W m ⁻²).
	h is the heat transfer coefficient, assumed independent of T (A??) $(W m^{-2} {}^{\circ}C^{-1})$.
	$\Delta T(t) = T(t) - T_{\text{env}}(t)$ is the time-dependent thermal gradient between the environment and the object (°C).
Source	Citation here
Ref. By	DD1, DD??

Detailed derivation of simplified rate of change of temperature

4.2.4 Data Definitions

This section collects and defines all the data needed to build the instance models. The dimension of each quantity is also given.

Number	DD1
Label	Heat flux out of coil
Symbol	q_C
SI Units	$ m Wm^{-2}$
Equation	$q_C(t) = h_C(T_C - T_W(t))$, over area A_C
Description	T_C is the temperature of the coil (°C). T_W is the temperature of the water (°C). The heat flux out of the coil, q_C (W m ⁻²), is found by assuming that Newton's Law of Cooling applies (A??). This law (GD1) is used on the surface of the coil, which has area A_C (m ²) and heat transfer coefficient h_C (W m ⁻² °C ⁻¹). This equation assumes that the temperature of the coil is constant over time (A??) and that it does not vary along the length of the coil (A??).
Sources	Citation here
Ref. By	IM1

4.2.5 Data Types

This section collects and defines all the data types needed to document the models.

Type Name Name for Type	
Type Def mathematical definition of the type	
Description	description here
Sources	Citation here, if the type is borrowed from another source

4.2.6 Instance Models

This section transforms the problem defined in Section 4.1 into one which is expressed in mathematical terms. It uses concrete symbols defined in Section 4.2.4 to replace the abstract symbols in the models identified in Sections 4.2.2 and 4.2.3.

The goals are solved by .

Number	IM1		
Label	Energy balance on water to find T_W		
Input	m_W , C_W , h_C , A_C , h_P , A_P , t_{final} , T_C , T_{init} , $T_P(t)$ from IM??		
	The input is constrained so that $T_{\text{init}} \leq T_C$ (A??)		
Output	$T_W(t), 0 \le t \le t_{\text{final}}, \text{ such that}$		
	$\frac{dT_W}{dt} = \frac{1}{\tau_W} [(T_C - T_W(t)) + \eta (T_P(t) - T_W(t))],$		
	$T_W(0) = T_P(0) = T_{\text{init}}$ (A??) and $T_P(t)$ from IM??		
Description	T_W is the water temperature (°C).		
	T_P is the PCM temperature (°C).		
	T_C is the coil temperature (°C).		
	$\tau_W = \frac{m_W C_W}{h_C A_C}$ is a constant (s).		
	$\eta = \frac{h_P A_P}{h_C A_C}$ is a constant (dimensionless).		
	The above equation applies as long as the water is in liquid form, $0 < T_W < 100^{\circ}\text{C}$, where 0°C and 100°C are the melting and boiling points of water, respectively (A??, A??).		
Sources	Citation here		
Ref. By	IM??		

Derivation of ...

4.2.7 Input Data Constraints

Table 1 shows the data constraints on the input output variables. The column for physical constraints gives the physical limitations on the range of values that can be taken by the variable. The column for software constraints restricts the range of inputs to reasonable values. The software constraints will be helpful in the design stage for picking suitable algorithms. The constraints are conservative, to give the user of the model the flexibility to experiment with unusual situations. The column of typical values is intended to provide a feel for a common scenario. The uncertainty column provides an estimate of the confidence with which the physical quantities can be measured. This information would be part of the input if one were performing an uncertainty quantification exercise.

The specification parameters in Table 1 are listed in Table 2.

(*)

Table 1: Input Variables

Var	Physical Constraints	Software Constraints	Typical Value	Uncertainty
L	L > 0	$L_{\min} \le L \le L_{\max}$	1.5 m	10%

Table 2: Specification Parameter Values

Var	Value
L_{\min}	0.1 m

4.2.8 Properties of a Correct Solution

A correct solution must exhibit.

Table 3: Output Variables

Var	Physical Constraints
T_W	$T_{\text{init}} \leq T_W \leq T_C \text{ (by A??)}$

5 Requirements

This section provides the functional requirements, the business tasks that the software is expected to complete, and the nonfunctional requirements, the qualities that the software is expected to exhibit.

5.1 Functional Requirements

R1:

R2:

R3:

R4:

R5:

5.2 Nonfunctional Requirements

NFR1: Accuracy

NFR2: Usability

NFR3: Maintainability

NFR4: Portability

• Other NFRs that might be discussed include verifiability, understandability and reusability.

6 Likely Changes

LC1:

7 Unlikely Changes

LC2:

8 Traceability Matrices and Graphs

The purpose of the traceability matrices is to provide easy references on what has to be additionally modified if a certain component is changed. Every time a component is changed, the items in the column of that component that are marked with an "X" may have to be modified as well. Table 4 shows the dependencies of theoretical models, general definitions, data definitions, and instance models with each other. Table 5 shows the dependencies of instance models, requirements, and data constraints on each other. Table 6 shows the dependencies of theoretical models, general definitions, data definitions, instance models, and likely changes on the assumptions.

The purpose of the traceability graphs is also to provide easy references on what has to be additionally modified if a certain component is changed. The arrows in the graphs represent dependencies. The component at the tail of an arrow is depended on by the component at the head of that arrow. Therefore, if a component is changed, the components that it points to should also be changed. Figure ?? shows the dependencies of theoretical models, general definitions, data definitions, instance models, likely changes, and assumptions on each other. Figure ?? shows the dependencies of instance models, requirements, and data constraints on each other.

	T??	T??	T??	GD1	GD??	DD1	DD??	DD??	DD??	IM1	IM??	IM??	IM??
T??													
T??			X										
T??													
GD1													
GD??	X												
DD1				X									
DD??				X									
DD??													
DD??								X					
IM1					X	X	X				X		
IM??					X		X		X	X			X
IM??		X											
IM??		X	X				X	X	X		X		

Table 4: Traceability Matrix Showing the Connections Between Items of Different Sections

9 Development Plan

10 Values of Auxiliary Constants

	IM1	IM??	IM??	IM??	4.2.7	R??	R??
IM1		X				X	X
IM??	X			X		X	X
IM??						X	X
IM??		X				X	X
R??							
R??						X	
R??					X		
R2	X	X				X	X
R??	X						
R??		X					
R??			X				
R??				X			
R4			X	X			
R??		X					
R??		X					

Table 5: Traceability Matrix Showing the Connections Between Requirements and Instance Models

_	_
C	
_	\sim

	A??																		
T??	X																		
T??																			
T??																			
GD1		X																	
GD??			X	X	X	X													
DD1							X	X	X										
DD??			X	X						X									
DD??																			
DD??																			
IM1											X	X		X	X	X			X
IM??												X	X			X	X	X	
IM??														X					X
IM??													X					X	
LC??				X															
LC??								X											
LC??									X										
LC??											X								
LC??												X							
LC??															X				

Table 6: Traceability Matrix Showing the Connections Between Assumptions and Other Items

References