

10/525942

DT06 Rec'd PCT/PTO 28 FEB 2005

DOCKET NO.: 266378US0PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Markus SCHERER, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/EP03/09465

INTERNATIONAL FILING DATE: August 27, 2003

FOR: STABLE POLYMER DISPERSIONS AND PROCESSES FOR THE PREPARATION

**REQUEST FOR PRIORITY UNDER 35 U.S.C. 119
AND THE INTERNATIONAL CONVENTION**

Commissioner for Patents
Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

<u>COUNTRY</u>	<u>APPLICATION NO</u>	<u>DAY/MONTH/YEAR</u>
Germany	102 49 294.8	22 October 2002

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/EP03/09465. Receipt of the certified copy(s) by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

Respectfully submitted,
OBLON, SPIVAK, McCLELLAND,
MAIER & NEUSTADT, P.C.

Norman F. Oblon
Attorney of Record
Registration No. 24,618
Surinder Sachar
Registration No. 34,423

Customer Number

22850

(703) 413-3000
Fax No. (703) 413-2220
(OSMMN 08/03)

BUNDESREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

REC'D 27 OCT 2003
WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 102 49 294.8

Anmeldetag: 22. Oktober 2002

Anmelder/Inhaber: RohMax Additives GmbH, Darmstadt/DE

Bezeichnung: Stabile Polymerdispersion und Verfahren
zur Herstellung

IPC: C 08 F, C 10 M

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der
ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 28. April 2003
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

W. H. Schäfer

Stabile Polymerdispersionen und Verfahren zur Herstellung

Die vorliegende Erfindung betrifft Polymerdispersionen mit hoher Stabilität, Verfahren zur Herstellung sowie die Verwendung dieser Polymerdispersionen.

Viskositätsindexverbesserer für Motorenöle sind zumeist im wesentlichen auf Kohlenwasserstoff basierende Polymere. Typische Zusatzraten in Motorenölen betragen je nach Verdickungswirkung der Polymere etwa 0,5 – 6 Gew.%. Besonders preisgünstige Viskositätsindexverbesserer stellen Olefincopolymere (OCP), die vorwiegend aus Ethylen- und Propylen aufgebaut sind, oder hydrierte Copolymere (HSD) aus Dienen und Styrol dar.

Der ausgezeichneten Verdickungswirkung dieser Polymertypen steht eine mühsame Verarbeitbarkeit bei der Herstellung von Schmierölformulierungen gegenüber. Insbesondere die schlechte Löslichkeit in den Ölen, die den Formulierungen zugrunde liegen, bereitet Schwierigkeiten. Im Falle der Benutzung fester, nicht vorgelöster Polymere kommt es somit zu langen Einrührperioden, wobei man auf die Benutzung spezieller Rühr- und/oder Vormahlwerke angewiesen ist.

Setzt man konzentrierte, in Öl bereits vorgelöste Polymere als übliche Handelsformen ein, so ist lediglich eine 10-15%-ige Lieferform der OCP's bzw. HSD's realisierbar. Höhere Konzentrationen gehen mit zu hohen aktuellen Viskositäten der Lösungen einher ($> 15,000 \text{ mm}^2/\text{s}$ bei Raumtemperatur) und sind daher kaum noch handhabbar. Insbesondere mit diesem Hintergrund wurden hochkonzentrierte Dispersionen von Olefincopolymeren und hydrierten Dien/Styrol-Copolymeren entwickelt.

Die beschriebene Dispersionstechnologie erlaubt die Herstellung von Polymerlösungen mit mehr als 20% OCP- bzw. HSD-Gehalt unter Erhalt kinematischer Viskositäten, die eine bequeme Einarbeitung in Schmierölformulierungen erlauben. Grundsätzlich beinhaltet die Synthese solcher Systeme den Einsatz eines sog. Emulgators bzw. einer Dispergierkomponente. Gebräuchliche Dispergierkomponenten sind unter anderem OCP- bzw. HSD-Polymeren, auf die zumeist Alkylmethacrylate bzw. Alkylmethacrylat/Styrol-Gemische gepropft wurden. Darüber hinaus sind Dispersionen bekannt, bei denen ein Lösemittel eingesetzt wird, welches den Methacrylatbestandteil der Dispersion besser und den OCP- bzw. HSD-Anteil schlechter löst. Ein solches Lösemittel zusammen mit dem Methacrylatanteil des Produktes bildet den Hauptbestandteil der kontinuierlichen Phase der Dispersion. Der OCP- bzw. HSD-Anteil stellt formell gesehen den Hauptbestandteil der diskontinuierlichen oder dispersen Phase dar.

Als Stand der Technik werden unter anderem die folgenden Dokumente angesehen:

US 4,149,984

EP-A-0 008 327

DE 32 07 291

DE 32 07 292

US 4,149,984 beschreibt ein Verfahren zur Herstellung von Schmierölzusätzen durch Verbesserung der Kompatibilität zwischen Polyalkylmethacrylaten, im folgenden PAMA genannt, und Polyolefinen. Der Gewichtsanteil des PAMA's beträgt 50-80 Gew.%, der des Polyolefins 20-50%. Gesamtpolymergehalt der Dispersion ist 20-55%. Die Verwendung dispergierender Monomere wie N-Vinylpyrrolidon zur Propfung ist ebenso erwähnt. Vor dieser Anmeldung war bekannt, dass Methacrylate durch Propfung auf ein Polyolefin aufpolymerisiert werden können (DT-AS 1 235 491).

EP-A-0 008 327 schützt ein Verfahren zur Herstellung von Schmieröladditiven auf Basis eines hydrierten Blockcopolymerisats aus konjugierten Dienen und Styrol, wobei in erster Stufe Styrol und Alkylmethacrylate oder ausschließlich Alkylmethacrylate auf das hydrierte Blockcopolymer aufgepropft werden und in zweiter Stufe eine zusätzliche Ppropfstufe (z.B. N-Vinylpyrrolidon) aufgebaut wird. Der Anteil des hydrierten Blockcopolymerisats am Gesamtpolymergehalt beträgt 5-55 Gew.%, der der ersten aus PAMA/Styrol bestehenden Ppropfstufe 49,5-85 % sowie der zweiten Ppropfstufe 0,5-10%.

Das Dokument DE 32 07 291 beschreibt Verfahren, welche einen erhöhten Olefincopolymereintrag ermöglichen. Der Olefincopolymergehalt soll 20-65% in Relation zum Gesamtgewicht der Dispersion betragen. Gegenstand der Erfindung ist, dass durch Einsatz geeigneter Lösemittel, welche Olefincopolymere schlecht und PAMA-haltige Komponenten gut lösen, höher konzentrierte Dispersionen erhalten werden. DE 32 07 291 ist als Verfahrenspatent zu verstehen, welches insbesondere die Herstellung der Dispersionen beschreibt.

DE 32 07 292 entspricht im wesentlichen DE 32 07 291, ist aber eher als Schutz bestimmter Copolymerzusammensetzungen zu verstehen. Diese Zusammensetzungen werden nach analogem Verfahren hergestellt wie in DE 32 07 291 beschrieben.

Die im Stand der Technik beschriebenen Polymerdispersionen zeigen bereits ein gutes Eigenschaftsprofil. Verbesserungswürdig ist jedoch insbesondere deren Stabilität. Hierbei ist zu bedenken, dass Polymerdispersionen über lange Zeiträume gelagert werden müssen, ohne dass im allgemeinen Kühlvorrichtungen eingesetzt werden. Die Lagerzeit schließt insbesondere den Transport usw. mit ein, wobei Temperaturen über 40°C oder gar 50°C auftreten.

Darüber hinaus war es eine Aufgabe der vorliegenden Erfindung Polymerdispersionen mit einer geringen Viskosität bei hohem Polyolefingehalt zur Verfügung zu stellen. Je höher der Gehalt an OCP oder HSD, desto höher im allgemeinen die Viskosität der Dispersion. Andererseits ist ein hoher Gehalt an diesen Polymeren wünschenswert, um die Transportkosten zu senken. Hierbei ist zu bedenken, dass eine geringere Viskosität eine einfachere und schnellere Zumischung der Viskositätsindexverbesserer in das Grundöl erlaubt. Daher sollten Polymerdispersionen zur Verfügung gestellt werden, die eine besonders geringe Viskosität aufweisen.

Darüber hinaus sind die Verfahren zur Herstellung der zuvor genannten Polymerdispersionen relativ schwierig zu beherrschen, so dass bestimmte Spezifikationen nur sehr schwer eingehalten werden können. Dementsprechend sollten Polymerdispersionen geschaffen werden, deren Viskosität leicht auf vorgegebene Werte eingestellt werden können.

Eine weitere Aufgabe bestand darin, Polymerdispersionen anzugeben, welche einen hohen Gehalt an Polyolefinen, insbesondere an Olefincopolymeren und/oder an hydrierten Blockcopolymeren aufweisen.

Des weiteren sollten die Polymerdispersionen einfach und kostengünstig hergestellt werden können, wobei insbesondere kommerziell erhältliche Komponenten eingesetzt werden sollten. Hierbei sollte die Produktion großtechnisch erfolgen können, ohne dass hierzu neue oder konstruktiv aufwendige Anlagen benötigt werden.

Gelöst werden diese sowie weitere nicht explizit genannten Aufgaben, die jedoch aus den hierin einleitend diskutierten Zusammenhängen ohne weiteres ableitbar oder erschließbar sind, durch Polymerdispersionen mit allen Merkmalen des Patentanspruchs 1. Zweckmäßige Abwandlungen der erfindungsgemäßen Polymerdispersionen werden in den auf Anspruch 1 rückbezogenen Unteransprüchen unter Schutz gestellt.

Hinsichtlich des Verfahrens zur Herstellung von Polymerdispersionen liefert Anspruch 17 eine Lösung der zugrunde liegenden Aufgabe, während Anspruch 18 eine bevorzugte Verwendung einer Polymerdispersionen der vorliegenden Erfindung schützt.

Dadurch, dass Polymer-Dispersionen

- A) mindestens ein dispergiertes Polyolefin,
- B) mindestens eine Dispergierkomponente,
- C) mindestens einen Ester und
- D) mindestens einen (Oligo)oxyalkyl-Gruppen umfassenden Ether,
wobei das Gewichtsverhältnis von Ester C) zu Ether D) im Bereich von 30:1 bis 1:30 liegt,
umfassen, gelingt es auf nicht ohne weiteres vorhersehbare Weise Polymerdispersionen zur Verfügung zu stellen, die eine besonders hohe Stabilität aufweisen.

Zugleich lassen sich durch die erfindungsgemäßen Polymerdispersionen eine Reihe weiterer Vorteile erzielen. Hierzu gehören unter anderem:

- Die erfindungsgemäßen Polymerdispersionen können besonders hohe Anteile an Polyolefinen umfassen, die eine viskositätsindexverbessernde bzw. in Schmierölen eine verdickende Wirkung aufweisen.
- Die Polymerdispersionen der vorliegenden Erfindung können auf besonders einfache Weise auf eine vorgegebene Viskosität eingestellt werden.
- Polymerdispersionen gemäß dem Gegenstand der vorliegenden Erfindung zeigen eine geringe Viskosität.

- Die Herstellung der Polymerdispersionen der vorliegenden Erfindung können besonders leicht und einfach hergestellt werden. Hierbei können übliche, großtechnische Anlagen eingesetzt werden.

Die Komponente A)

Als erfindungswesentliche Komponente umfasst die Polymerdispersion Polyolefine, die vorzugsweise eine Viskositätsindexverbessernde bzw. verdickende Wirkung aufweisen. Derartige Polyolefine sind seit längerem bekannt und in den im Stand der Technik genannten Dokumenten beschrieben.

Zu diesen Polyolefinen gehören insbesondere Polyolefincopolymere (OCP) und hydrierte Styrol-Dien-Copolymere (HSD).

Die erfindungsgemäß zur verwendenden Polyolefincopolymere (OCP) sind an sich bekannt. Es handelt sich in erster Linie um aus Ethylen-, Propylen-, Isopren-, Butylen- und/oder weiteren -Olefinen mit 5 bis 20 C-Atomen aufgebaute Polymerisate, wie sie bereits als VI-Verbesserer empfohlen worden sind. Ebenso sind Systeme, welche mit geringen Mengen sauerstoff- oder stickstoffhaltiger Monomere (z.B. 0,05 bis 5 Gew.-% Maleinsäureanhydrid) bepfropft sind, einsetzbar. Die Copolymere, die Dienkomponenten enthalten, werden im allgemeinen hydriert, um die Oxidationsempfindlichkeit sowie die Vernetzungsneigung der Viskositätsindexverbesserer zu vermindern.

Das Molekulargewicht Mw liegt im allgemeinen bei 10 000 bis 300 000, vorzugsweise zwischen 50 000 und 150 000. Derartige Olefincopolymerisate sind beispielsweise in den deutschen Offenlegungsschriften DE-A 16 44 941, DE-A 17 69 834, DE-A 19 39 037, DE-A 19 63 039 und DE-A 20 59 981 beschrieben.

Besonders gut brauchbar sind Ethylen-Propylen-Copolymere, ebenfalls sind Terpolymere mit den bekannten Terkomponenten, wie Ethyliden-Norbornen (vgl. Macromolecular Reviews, Vol. 10 (1975)) möglich, es ist jedoch deren Neigung zur Vernetzung beim Alterungsprozeß mit einzukalkulieren. Die Verteilung kann dabei weitgehend statistisch sein, es können aber auch mit Vorteil-Sequenzpolymere mit Ethylenblöcken angewendet werden. Das Verhältnis der Monomeren Ethylen-Propylen ist dabei innerhalb gewisser Grenzen variabel, die bei etwa 75 % für Ethylen und etwa 80 % für Propylen als obere Grenze angesetzt werden können. Infolge seiner verminderten Löslichkeitstendenz in Öl ist bereits Polypropylen weniger geeignet als Ethylen-Propylen-Copolymere. Neben Polymeren mit vorwiegend ataktischem Propyleneinbau sind auch solche mit ausgeprägterem iso- oder syndiotaktischen Propyleneinbau einsetzbar.

Derartige Produkte sind kommerziell beispielsweise unter den Handelsnamen Dutral® CO 034, Dutral® CO 038, Dutral® CO 043, Dutral® CO 058, Buna® EPG 2050 oder Buna® EPG 5050 erhältlich.

Die hydrierten Styrol-Dien-Copolymere (HSD) sind ebenfalls bekannt, wobei diese Polymere beispielsweise in DE 21 56 122 beschrieben sind. Es handelt sich im allgemeinen um hydrierte Isopren- oder Butadien-Styrol-Copolymere. Das Verhältnis von Dien zu Styrol liegt bevorzugt im Bereich von 2:1 bis 1:2, besonders bevorzugt bei ca. 55:45. Das Molekulargewicht Mw liegt im allgemeinen bei 10 000 bis 300 000, vorzugsweise zwischen 50 000 und 150 000. Der Anteil der Doppelbindungen nach der Hydrierung beträgt gemäß einem besonderen Aspekt der vorliegenden Erfindung höchstens 15%, besonders bevorzugt höchstens 5%, bezogen auf die Zahl der Doppelbindungen vor der Hydrierung.

Hydrierte Styrol-Dien-Copolymere können kommerziell unter dem Handelsnamen ®SHELLVIS 50, 150, 200, 250 oder 260 erhalten werden.

Im allgemeinen beträgt der Anteil der Komponenten A) mindestens 20 Gew.-%, vorzugsweise mindestens 30 Gew.-% und besonders bevorzugt mindestens 40 Gew.-%, ohne dass hierdurch eine Beschränkung erfolgen soll.

Die Komponente B)

Die Komponente B) wird von mindestens einer Dispergierkomponente gebildet, wobei diese Komponente häufig als Blockcopolymere angesehen werden kann. Vorzugsweise zeigt mindestens einer dieser Blöcke eine hohe Verträglichkeit mit den zuvor beschriebenen Polyolefinen der Komponenten A), wobei mindestens ein weiterer der in der Dispergierkomponenten enthaltenen Blöcke mit den zuvor beschriebenen Polyolefinen nur eine geringe Verträglichkeit aufweist. Derartige Dispergierkomponenten sind an sich bekannt, wobei bevorzugte Verbindungen im zuvor genannten Stand der Technik beschrieben sind.

Der mit der Komponenten A) kompatible Rest zeigt im allgemeinen einen unpolaren Charakter, wohingegen der inkompatible Rest polarer Natur ist. Gemäß einem besonderen Aspekt der vorliegenden Erfindung lassen sich bevorzugte Dispergierkomponenten als Blockcopolymere auffassen, welches ein oder mehrere Blöcke A und ein oder mehrere Blöcke X umfassen, wobei der Block A Olefincopolymerisat-Sequenzen, hydrierte Polysopren-Sequenzen, hydrierte Copolymeren aus Butadien/Isopren oder hydrierte Copolymeren aus Butadien/Isopren und Styrol darstellt und der Block X Polyacrylat-, Polymethacrylat-, Styrol-, α -Methylstyrol oder N-Vinyl-heterocyclische Sequenzen bzw. Sequenzen aus Gemischen von Polyacrylat-, Polymethacrylat-, Styrol-, α -Methylstyrol oder N-Vinyl-Heterocyclen darstellt.

Bevorzugte Dispergierkomponenten lassen sich durch Ppropfpolymerisation herstellen, wobei auf die zuvor beschriebenen Polyolefine, insbesondere auf die OCP und HSD, polare Monomere aufgepropft werden. Hierzu können die Polyolefine durch mechanischen oder/und thermischen Abbau vorbehandelt werden.

Zu den polaren Monomeren gehören insbesondere (Meth)acrylate und Styrol-Verbindungen.

Der Ausdruck (Meth)acrylate umfaßt Methacrylate und Acrylate sowie Mischungen aus beiden.

Gemäß einem besonderen Aspekt der vorliegenden Erfindung wird bei der Ppropfreaktion eine Monomerzusammensetzung eingesetzt aufweisend ein oder mehrere (Meth)acrylate der Formel (I)

worin R Wasserstoff oder Methyl und R¹ Wasserstoff, einen linearen oder verzweigten Alkylrest mit 1 bis 40 Kohlenstoffatomen bedeuten.

Zu den bevorzugten Monomeren gemäß Formel (I) gehören unter anderem (Meth)acrylate, die sich von gesättigten Alkoholen ableiten, wie Methyl(meth)acrylat, Ethyl(meth)acrylat, n-Propyl(meth)acrylat, iso-Propyl(meth)acrylat, n-Butyl(meth)acrylat, tert-Butyl(meth)acrylat, Pentyl(meth)acrylat, Hexyl(meth)acrylat, 2-Ethylhexyl(meth)acrylat, Heptyl(meth)acrylat, 2-tert.-Butylheptyl(meth)acrylat, Octyl(meth)acrylat, 3-iso-Propylheptyl(meth)acrylat, Nonyl(meth)acrylat, Decyl(meth)acrylat, Undecyl(meth)acrylat, 5-Methylundecyl(meth)acrylat, Dodecyl(meth)acrylat, 2-Methyldodecyl(meth)acrylat, Tridecyl(meth)acrylat, 5-Methyltridecyl(meth)acrylat,

Tetradecyl(meth)acrylat, Pentadecyl(meth)acrylat, Hexadecyl(meth)acrylat, 2-Methylhexadecyl(meth)acrylat, Heptadecyl(meth)acrylat, 5-iso-Propylheptadecyl(meth)acrylat, 4-tert.-Butyloctadecyl(meth)acrylat, 5-Ethyloctadecyl(meth)acrylat, 3-iso-Propyloctadecyl(meth)acrylat, Octadecyl(meth)acrylat, Nonadecyl(meth)acrylat, Eicosyl(meth)acrylat, Cetyleicosyl(meth)acrylat, Stearyleicosyl(meth)acrylat, Docosyl(meth)acrylat und/oder Eicosyltetracontyl(meth)acrylat; (Meth)acrylate, die sich von ungesättigten Alkoholen ableiten, wie z. B. 2-Propinyl(meth)acrylat, Allyl(meth)acrylat, Vinyl(meth)acrylat, Oleyl(meth)acrylat; Cycloalkyl(meth)acrylate, wie Cyclopentyl(meth)acrylat, 3-Vinylcyclohexyl(meth)acrylat, Cyclohexyl(meth)acrylat, Bornyl(meth)acrylat.

Des weiteren kann die Monomerzusammensetzung ein oder mehrere (Meth)acrylate der Formel (II) aufweisen

(II),

worin R Wasserstoff oder Methyl und R² einen mit einer OH-Gruppe substituierten Alkylrest mit 2 bis 20 Kohlenstoffatomen oder einen alkoxylierten Rest der Formel (III)

worin R³ und R⁴ unabhängig für Wasserstoff oder Methyl, R⁵ Wasserstoff oder einen Alkylrest mit 1 bis 40 Kohlenstoffatomen und n eine ganze Zahl von 1 bis 90 steht, bedeuten.

(Meth)acrylate gemäß Formel (III) sind dem Fachmann bekannt. Zu diesen zählen unter anderem Hydroxylalkyl(meth)acrylate, wie
3-Hydroxypropylmethacrylat,
3,4-Dihydroxybutylmethacrylat,
2-Hydroxyethylmethacrylat,
2-Hydroxypropylmethacrylat, 2,5-Dimethyl-1,6-hexandiol(meth)acrylat,
1,10-Decandiol(meth)acrylat,
1,2-Propandiol(meth)acrylat;
Polyoxyethylen- und Polyoxypropylen-Derivate der (Meth)acrylsäure, wie
Triethylenglycol(meth)acrylat,
Tetraethylenglycol(meth)acrylat und
Tetrapropylenglycol(meth)acrylat.

Die (Meth)acrylate mit langkettigem Alkoholrest lassen sich beispielsweise durch Umsetzen von den entsprechenden Säuren und/oder kurzkettigen (Meth)acrylaten, insbesondere Methyl(meth)acrylat oder Ethyl(meth)acrylat, mit langkettigen Fettalkoholen erhalten, wobei im allgemeinen eine Mischung von Estern, wie beispielsweise (Meth)acrylaten mit verschiedenen langkettigen Alkoholresten entsteht. Zu diesen Fettalkoholen gehören unter anderem Oxo AlcoholÒ 7911 und Oxo AlcoholÒ 7900, Oxo AlcoholÒ 1100 von Monsanto; AlphanolÒ 79 von ICI; NafolÒ 1620, AlfolÒ 610 und AlfolÒ 810 von Condea; EpalÒ 610 und EpalÒ 810 von Ethyl Corporation; LinevolÒ 79, LinevolÒ 911 und DobanolÒ 25L von Shell AG; Lial 125 von AugustaÒ Mailand; DehydadÒ und LorolÒ von Henkel KGaA sowie LinopolÒ 7 – 11 und AcropolÒ 91 Ugine Kuhlmann.

und/oder ein oder mehrere (Meth)acrylate der Formel (IV)

(IV),

worin R Wasserstoff oder Methyl, X Sauerstoff oder eine Aminogruppe der Formel -NH- oder -NR⁷-, worin R⁷ für einen Alkylrest mit 1 bis 40 Kohlenstoffatomen steht, und R⁶ einen mit mindestens einer -NR⁸R⁹- Gruppe substituierten linearen oder verzweigten Alkylrest mit 2 bis 20, vorzugsweise 2 bis 6 Kohlenstoffatomen bedeuten, wobei R⁸ und R⁹ unabhängig von einander für Wasserstoff, einen Alkylrest mit 1 bis 20, vorzugsweise 1 bis 6 stehen oder worin R⁸ und R⁹ unter Einbeziehung des Stickstoffatoms und gegebenenfalls eines weiteren Stickstoff oder Sauerstoffatoms einen 5- oder 6-gliederigen Ring bilden, der gegebenenfalls mit C₁-C₆-Alkyl substituiert sein kann.

Zu den (Meth)acrylaten bzw. (Meth)acrylamiden gemäß Formel (IV) gehören unter anderem

Amide der (Meth)acrylsäure, wie

N-(3-Dimethylaminopropyl)methacrylamid,

N-(Diethylphosphono)methacrylamid,

1-Methacryloylamido-2-methyl-2-propanol,

N-(3-Dibutylaminopropyl)methacrylamid,

N-t-Butyl-N-(diethylphosphono)methacrylamid,

N,N-bis(2-Diethylaminoethyl)methacrylamid,

4-Methacryloylamido-4-methyl-2-pentanol,

N-(Methoxymethyl)methacrylamid,

N-(2-Hydroxyethyl)methacrylamid,

N-Acetyl methacrylamid,

N-(Dimethylaminoethyl)methacrylamid,

N-Methyl-N-phenylmethacrylamid,

N,N-Diethylmethacrylamid,

N-Methylmethacrylamid,
N,N-Dimethylmethacrylamid,
N-Isopropylmethacrylamid;
Aminoalkylmethacrylate, wie
tris(2-Methacryloxyethyl)amin,
N-Methylformamidoethylmethacrylat,
2-Ureidoethylmethacrylat;
heterocyclische (Meth)acrylate, wie 2-(1-Imidazolyl)ethyl(meth)acrylat,
2-(4-Morpholinyl)ethyl(meth)acrylat und 1-(2-Methacryloyloxyethyl)-2-pyrrolidon.

Des weiteren kann die Monomerzusammensetzung Styrol-Verbindungen aufweisen. Zu diesen gehören unter anderem Styrol, substituierte Styrole mit einem Alkylsubstituenten in der Seitenkette, wie z. B. α -Methylstyrol und α -Ethylstyrol, substituierte Styrole mit einem Alkylsubstituenten am Ring, wie Vinyltoluol und p-Methylstyrol, halogenierte Styrole, wie beispielsweise Monochlorstyrole, Dichlorstyrole, Tribromstyrole und Tetrabromstyrole.

Darüber hinaus können die Monomerzusammensetzungen heterocyclische Vinylverbindungen, wie 2-Vinylpyridin, 3-Vinylpyridin, 2-Methyl-5-vinylpyridin, 3-Ethyl-4-vinylpyridin, 2,3-Dimethyl-5-vinylpyridin, Vinylpyrimidin, Vinylpiperidin, 9-Vinylcarbazol, 3-Vinylcarbazol, 4-Vinylcarbazol, 1-Vinylimidazol, 2-Methyl-1-vinylimidazol, N-Vinylpyrrolidon, 2-Vinylpyrrolidon, N-Vinylpyrrolidin, 3-Vinylpyrrolidin, N-Vinylcaprolactam, N-Vinylbutyrolactam, Vinyloxolan, Vinylfuran, Vinylthiophen, Vinylthiolan, Vinylthiazole und hydrierte Vinylthiazole, Vinyloxazole und hydrierte Vinyloxazole umfassen.

Neben Styrol-Verbindungen und (Meth)acrylaten sind als Monomere insbesondere Monomere bevorzugt, die dispergierende Wirkungen haben, wie beispielsweise die zuvor genannten heterocyclischen Vinylverbindungen. Diese Monomere werden des weiteren als dispergierende Monomere bezeichnet.

Die zuvor genannten ethylenisch ungesättigten Monomere können einzeln oder als Mischungen eingesetzt werden. Es ist des weiteren möglich, die Monomerzusammensetzung während der Polymerisation zu variieren.

Das Gewichtsverhältnis der mit den Polyolefinen kompatiblen Teile der Dispergierkomponente, insbesondere der Blöcke A, zu den mit den Polyolefinen inkompatiblen Teile der Dispergierkomponente, insbesondere den Blöcken X, kann in weiten Bereichen liegen. Im allgemeinen liegt dieses Verhältnis im Bereich von 50:1 bis 1:50, insbesondere 20:1 bis 1:20 und besonders bevorzugt 10:1 bis 1:10.

Die Herstellung der zuvor dargestellten Dispergierkomponenten ist in der Fachwelt bekannt. Beispielsweise kann die Herstellung über eine Polymerisation in Lösung erfolgen. Derartige Verfahren sind unter anderem in DE-A 12 35 491, BE-A 592 880, US-A 4 281 081, US-A 4 338 418 und US-A-4,290,025 beschrieben.

Dabei kann in einem geeigneten Reaktionsgefäß, zweckmäßig ausgestattet mit Rührer, Thermometer, Rückflußkühler und Dosierleitung, ein Gemisch aus dem OCP und einem oder mehreren der zuvor dargelegten Monomere vorgelegt werden.

Nach erfolgtem Lösen unter Inertatmosphäre, wie z. B. Stickstoff, unter Erhitzen, beispielsweise auf 110 °C, wird ein Anteil eines an sich üblichen Radikalinitiators, beispielsweise aus der Gruppe der Perester, angesetzt, zunächst beispielsweise ca. 0,7 Gew.-% bezogen auf die Monomeren.

Demnach dosiert man über einige Stunden, beispielsweise 3,5 Stunden hinweg ein Gemisch aus den restlichen Monomeren unter Zusatz weiteren Initiators, beispielsweise ca. 1,3 Gew.-% bezogen auf die Monomeren zu. Man füttert zweckmäßig einige Zeit nach Zulaufende noch etwas Initiator nach, beispielsweise nach zwei Stunden. Die Gesamtpolymerisationsdauer kann als Richtwert beispielsweise mit ca. 8 Stunden angenommen werden. Nach Polymerisationsende verdünnt man zweckmäßig mit einem geeigneten Lösungsmittel, wie z. B. einem Phthalsäureester wie Dibutylphthalat. Man erhält in der Regel eine nahezu klare, viskose Lösung.

Des weiteren kann die Herstellung der Polymerdispersionen in einem Kneter, einem Extruder oder in einem statischen Mischer erfolgen. Durch die Behandlung im Gerät erfolgt unter dem Einfluß der Scherkräfte, der Temperatur und der Initiator-Konzentration ein Abbau des Molgewichts des Polyolefins, insbesondere des OCPs bzw. HSDs.

Beispiele für bei der Ppropf-Copolymerisation geeignete Initiatoren sind Cumolhydroperoxyd, Diiumylperoxyd, Benzoylperoxyd, Azodiisobuttersäure-dinitril, 2,2-Bis(t-Butylperoxy)butan, Diäthylperoxydicarbonat und tert.-Butylperoxyd. Die Verarbeitungstemperatur beträgt zwischen 80 °C und 350 °C. Die Verweilzeit im Kneter oder Extruder beträgt zwischen 1 Minute und 10 Stunden.

Je länger die Dispersion im Kneter oder Extruder behandelt wird, desto geringer wird das Molekulargewicht. Die Temperatur und die Konzentration an radikalbildenden Initiatoren können entsprechend dem gewünschten Molekulargewicht eingestellt werden. Die lösungsmittel-freie Polymer-in-Polymer-Dispersion kann durch Einarbeitung in geeignete Trägermedien in eine gut handhabbare, flüssige Polymer-/Polymer-Emulsion überführt werden.

Der Anteil der Komponenten B) beträgt im allgemeinen bis zu 30 Gew.-%, insbesondere liegt dieser Anteil im Bereich von 5 bis 15 Gew.-%, ohne dass hierdurch eine Beschränkung erfolgen soll. Der Einsatz von größeren Mengen an Komponente B) ist häufig unwirtschaftlich. Geringere Mengen führen vielfach zu einer geringeren Stabilität der Polymerdispersion.

Die Komponente C)

Die Komponente C) ist für den Erfolg der vorliegenden Erfindung wesentlich. Die in den Polymerdispersionen einzusetzenden Ester sind in der Fachwelt bekannt.

Zu diesen gehören insbesondere Phosphorsäureester, Ester von Dicarbonsäuren, Ester von Monocarbonsäuren mit Diolen oder Polyalkylen-glykolen, Ester von Neopentylpolyolen mit Monocarbonsäuren. (Vgl. Ullmanns Encyclopädie der Technischen Chemie, 3. Aufl., Bd. 15, S. 287 -292, Urban & Schwarzenber (1964)). Als Ester von Dicarbonsäuren kommen einmal die Ester der Phthalsäure in Frage, insbesondere die Phthalsäureester mit C₄ bis C₈-Alkoholen, wobei Dibutylphthalat und Dioctylphthalat besonders genannt seien, sodann die Ester aliphatischer Dicarbonsäuren, insbesondere die Ester geradkettiger Dicarbonsäuren mit verzweigtkettigen primären Alkoholen. Besonders hervorgehoben werden die Ester der Sebazin-, der Adipin- und der Azelainsäure, wobei insbesondere die 2-Ethylhexyl-, Isooctyl-3,5,5-Trimethylester, sowie die Ester mit den C₈-, C₉- bzw. C₁₀-Oxoalkoholen genannt werden sollen.

Besondere Bedeutung besitzen die Ester geradkettiger primärer Alkohole mit verzweigten Dicarbonsäuren. Als Beispiele seien die alkylsubstituierte Adipinsäure, beispielsweise die 2,2,4-Trimethyladipinsäure genannt.

Bevorzugte Ester weisen im Alkoholrest (Oligo)oxyalkyl-Gruppen auf. Zu diesen gehören insbesondere Ethylenglykol- sowie Propylenglykolgruppen.

Als Ester von Monocarbonsäuren mit Diolen oder Polyalkylen glykolen seien die Di-Ester mit Diethylenglykol, Triethylenglykol, Tetraethylenglykol bis zum Decamethylenglykol, ferner mit Dipropylenglykol als Alkoholkomponenten hervorgehoben. Als Monocarbonsäuren seien die Propionsäure, die (Iso)buttersäure sowie die Pelargonsäure spezifisch erwähnt - genannt sei beispielsweise das Dipropylenglykoldipelargonat, das Diäthylenglykoldipropionat - und Diisobutyrat sowie die entsprechenden Ester des Triethylenglykols, sowie der Tetraethylenglykoldi-2-ethylhexansäureester.

Diese Ester können einzeln oder als Mischung eingesetzt werden.

Gemäß einem besonderen Aspekt der vorliegenden Erfindung enthält die Polymerdispersion vorzugsweise 2 bis 40 Gew.-%, insbesondere 5 bis 30 Gew.-% und besonders bevorzugt 10 bis 20 Gew.-% mindestens eines Esters.

Die Komponente D)

Die Komponente D) ist für die vorliegende Polymerdispersion obligatorisch, wobei diese Komponente ein oder mehrere mindestens einen (Oligo)oxyalkyl-Gruppen umfassenden Ether enthält. Im allgemeinen umfassen die Verbindungen gemäß Komponente D) vorzugsweise 1 bis 40, insbesondere 1 bis 20 und besonders bevorzugt 2 bis 8 Oxyalkylgruppen.

Die Oxyalkylgruppen weisen im allgemeinen die Formel (V) auf

worin R⁶ und R⁷ unabhängig Wasserstoff oder einen Alkylrest mit 1 bis 10 Kohlenstoff darstellen, wobei die Gruppen R⁶ und R⁷ vorzugsweise für Wasserstoff stehen.

Zu den Oxyalkylgruppen gehören insbesondere die Ethoxy-, die Propoxy-, und die Butoxygruppen, wobei die Ethoxygruppen bevorzugt sind.

Der hydrophobe Rest der ethoxylierten Alkohole umfasst vorzugsweise 1 bis 40, vorzugsweise 4 bis 22 Kohlenstoffatome, wobei sowohl lineare als auch verzweigte Alkoholreste eingesetzt werden können. Ebenso sind Oxoalkoholethoxylate einsetzbar.

Zu den bevorzugten hydrophoben Resten dieser Ether gehören unter anderem die Methyl-, Ethyl-, Propyl-, Butyl-, Pentyl-, 2-Methylbutyl-, Pentenyl-, Cyclohexyl-, Heptyl-, 2-Methylheptenyl-, 3-Methylheptyl-, Octyl-, Nonyl-, 3-Ethylnonyl-, Decyl-, Undecyl-, 4-Propenylundecyl-, Dodecyl-, Tridecyl-, Tetradecyl-, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl-, Eicosyl-, Cetyleicosyl-, Docosyl- und/oder Eicosyltetracontyl-Gruppe.

Beispiele für käufliche Ethoxylate, welche zur Herstellung der erfindungsgemäßen Konzentrate herangezogen werden können, sind Ether der Lutensol® A-Marken, insbesondere Lutensol® A 3 N, Lutensol® A 4 N, Lutensol® A 7 N und Lutensol® A 8 N, Ether der Lutensol® TO-Marken, insbesondere Lutensol® TO 2, Lutensol® TO 3, Lutensol® TO 5, Lutensol® TO 6, Lutensol® TO 65, Lutensol® TO 69, Lutensol® TO 7, Lutensol® TO 79, Lutensol® 8 und Lutensol® 89, Ether der Lutensol® AO-Marken, insbesondere Lutensol® AO 3, Lutensol® AO 4, Lutensol® AO 5, Lutensol® AO 6, Lutensol® AO 7, Lutensol® AO 79, Lutensol® AO 8 und

Lutensol® AO 89, Ether der Lutensol® ON-Marken, insbesondere Lutensol® ON 30, Lutensol® ON 50, Lutensol® ON 60, Lutensol® ON 65, Lutensol® ON 66, Lutensol® ON 70, Lutensol® ON 79 und Lutensol® ON 80, Ether der Lutensol® XL-Marken, insbesondere Lutensol® XL 300, Lutensol® XL 400, Lutensol® XL 500, Lutensol® XL 600, Lutensol® XL 700, Lutensol® XL 800, Lutensol® XL 900 und Lutensol® XL 1000, Ether der Lutensol® AP-Marken, insbesondere Lutensol® AP 6, Lutensol® AP 7, Lutensol® AP 8, Lutensol® AP 9, Lutensol® AP 10, Lutensol® AP 14 und Lutensol® AP 20, Ether der IMBENTIN®-Marken, insbesondere der IMBENTIN®-AG-Marken, der IMBENTIN®-U-Marken, der IMBENTIN®-C-Marken, der IMBENTIN®-T-Marken, der IMBENTIN®-OA-Marken, der IMBENTIN®-POA-Marken, der IMBENTIN®-N-Marken sowie der IMBENTIN®-O-Marken sowie Ether der Marlipal®-Marken, insbesondere Marlipal® 1/7, Marlipal® 1012/6, Marlipal® 1618/1, Marlipal® 24/20, Marlipal® 24/30, Marlipal® 24/40, Marlipal® O13/20, Marlipal® O13/30, Marlipal® O13/40, Marlipal® O25/30, Marlipal® O25/70, Marlipal® O45/30, Marlipal® O45/40, Marlipal® O45/50, Marlipal® O45/70 und Marlipal® O45/80.

Diese Ether können einzeln oder als Mischung eingesetzt werden.

Gemäß einem besonderen Aspekt der vorliegenden Erfindung enthält die Polymerdispersion vorzugsweise 2 bis 40 Gew.-%, insbesondere 5 bis 30 Gew.-% und besonders bevorzugt 10 bis 20 Gew.-% Ether, die (Oligo)oxyalkyl-Gruppen umfassen.

Das Gewichtsverhältnis von Ester zu Ether mit(Oligo)oxyalkyl-Gruppen liegt im Bereich von 30:1 bis 1:30, bevorzugt im Bereich von 15:1 bis 1:15, insbesondere in Bereich 5:1 bis 1:5.

Der Anteil der Komponenten C) und D) an der konzentrierten Polymerdispersion kann in weiten Bereichen liegen, wobei dieser Anteil insbesondere von den eingesetzten Polyolefinen und Dispergierkomponenten abhängig ist. Im allgemeinen beträgt der Anteil der Komponenten C) und D) zusammen 79 bis 25 Gew.-%, vorzugsweise unter 70, speziell 60 bis 40 Gew.-%, bezogen auf die gesamte Polymerdispersion.

Neben den zuvor genannten Komponenten kann die erfindungsgemäße Polymerdispersion weitere Additive und Zusatzstoffe enthalten.

So können insbesondere weitere Trägermedien in der Polymerdispersion eingesetzt werden. Diese umfassen insbesondere Mineralöle, wobei überraschend festgestellt wurde, dass durch den Zusatz von Mineralölen die Stabilität der Polymerdispersionen erhöht werden kann.

Mineralöle sind an sich bekannt und kommerziell erhältlich. Sie werden im allgemeinen aus Erdöl oder Rohöl durch Destillation und/oder Raffination und gegebenenfalls weitere Reinigungs- und Veredelungsverfahren gewonnen, wobei unter den Begriff Mineralöl insbesondere die höhersiedenden Anteile des Roh- oder Erdöls fallen. Im allgemeinen liegt der Siedepunkt von Mineralöl höher als 200 °C, vorzugsweise höher als 300 °C, bei 5000 Pa. Die Herstellung durch Schwelen von Schieferöl, Verkoken von Steinkohle, Destillation unter Luftabschluß von Braunkohle sowie Hydrieren von Stein- oder Braunkohle ist ebenfalls möglich. Zu einem geringen Anteil werden Mineralöle auch aus Rohstoffen pflanzlichen (z. B. aus Jojoba, Raps) od. tierischen (z. B. Klauenöl) Ursprungs hergestellt. Dementsprechend weisen Mineralöle, je nach Herkunft unterschiedliche Anteile an aromatischen, cyclischen, verzweigten und linearen Kohlenwasserstoffen auf.

Im allgemeinen unterscheidet man paraffinbasierte, naphthenische und aromatische Anteile in Rohölen bzw. Mineralölen, wobei die Begriffe paraffinbasischer Anteil für längerkettig bzw. stark verzweigte iso-Alkane und naphtenischer Anteil für Cycloalkane stehen. Darüber hinaus weisen Mineralöle, je nach Herkunft und Veredelung unterschiedliche Anteile an n-Alkanen, iso-Alkanen mit einem geringen Verzweigungsgrad, sogenannte monomethylverzweigten Paraffine, und Verbindungen mit Heteroatomen, insbesondere O, N und/oder S auf, denen bedingt polare Eigenschaften zugesprochen werden. Die Zuordnung ist jedoch schwierig, da einzelne Alkanmoleküle sowohl langkettig verzweigte Gruppen als auch Cycloalkanreste und aromatische Anteile aufweisen können. Für die Zwecke der vorliegenden Erfindung kann die Zuordnung beispielsweise gemäß DIN 51 378 erfolgen. Polare Anteile können auch gemäß ASTM D 2007 bestimmt werden.

Der Anteil der n-Alkane beträgt in bevorzugten Mineralölen weniger als 3 Gew.-%, der Anteil der O, N und/oder S-haltigen Verbindungen weniger als 6 Gew.-%. Der Anteil der Aromaten und der monomethylverzweigten Paraffine liegt im allgemeinen jeweils im Bereich von 0 bis 40 Gew.-%. Gemäß einem interessanten Aspekt umfaßt Mineralöl hauptsächlich naphtenische und paraffinbasierte Alkane, die im allgemeinen mehr als 13, bevorzugt mehr als 18 und ganz besonders bevorzugt mehr als 20 Kohlenstoffatome aufweisen. Der Anteil dieser Verbindungen ist im allgemeinen \geq 60 Gew.-%, vorzugsweise \geq 80 Gew.-%, ohne daß hierdurch eine Beschränkung erfolgen soll. Ein bevorzugtes Mineralöl enthält 0,5 bis 30 Gew.-% aromatische Anteile, 15 bis 40 Gew.-% naphtenische Anteile, 35 bis 80 Gew.-% paraffinbasierte Anteile, bis zu 3 Gew.-% n-Alkane und 0,05 bis 5 Gew.-% polare Verbindungen, jeweils bezogen auf das Gesamtgewicht des Mineralöls.

Eine Analyse von besonders bevorzugten Mineralölen, die mittels herkömmlicher Verfahren, wie Harnstofftrennung und Flüssigkeitschromatographie an Kieselgel, erfolgte, zeigt beispielsweise

folgende Bestandteile, wobei sich die Prozentangaben auf das Gesamtgewicht des jeweils eingesetzten Mineralöls beziehen:

n-Alkane mit ca. 18 bis 31 C-Atome:

0,7 - 1,0 %,

gering verzweigte Alkane mit 18 bis 31 C-Atome:

1,0 - 8,0 %,

Aromaten mit 14 bis 32 C-Atomen:

0,4 - 10,7 %,

Iso- und Cyclo-Alkane mit 20 bis 32 C-Atomen:

60,7- 82,4 %,

polare Verbindungen:

0,1 - 0,8 %,

Verlust:

6,9 - 19,4 %.

Wertvolle Hinweise hinsichtlich der Analyse von Mineralölen sowie eine Aufzählung von Mineralölen, die eine abweichende Zusammensetzung aufweisen, findet sich beispielsweise in Ullmanns Encyclopedia of Industrial Chemistry, 5th Edition on CD-ROM, 1997, Stichwort "lubricants and related products".

Die Polymerdispersion kann bis zu 50 Gew.-%, vorzugsweise bis zu 30 Gew.-% Mineralöl umfassen.

Bevorzugte Zusatzstoffe stellen weitere nichtionische Tenside dar. Hierzu zählen unter anderem Fettsäurepolyglykolester, Fettaminpolyglykolether, Alkylpolyglykoside, Fettamin-N-oxide sowie langkettige Alkylsulfoxide.

Des weiteren kann die Polymerdispersion der vorliegenden Erfindung Verbindungen mit einer Dielektrizitätskonstanten größer oder gleich 9, insbesondere größer oder gleich 20 und besonders bevorzugt größer oder gleich 30 umfassen. Überraschend wurde festgestellt, dass durch den

Zusatz dieser Verbindungen die Viskosität der Polymerdispersion erniedrigt werden kann. Hierdurch ist insbesondere die Einstellung der Viskosität auf einen vorgegebenen Wert möglich.

Die Dielektrizitätskonstante kann gemäß Handbook of Chemistry and Physics, David R. Lide, 79th Edition, CRS Press angegebenen Methoden bestimmt werden, wobei die Dielektrizitätskonstante bei 20°C gemessen wird.

Zu den besonders geeigneten Verbindungen gehören unter anderem Wasser, Glykole, insbesondere Ethylenglykol, 1,2-Propylenglykol, 1,3-Propylenglykol, Polyethylenglykol; Alkohole, insbesondere Methanol, Ethanol, Butanol, Glycerin; ethoxylierte Alkohole, beispielsweise 2-fach ethoxyliertes Butanol, 10-fach ethoxyliertes Methanol; Amine, insbesondere Ethanolamin, 1,2 Ehandiamin und Propanolamin; halogenierte Kohlenwasserstoffe, insbesondere 2-Chlorethanol, 1,2 Dichlorethan, 1,1 Dichloraceton; Ketone, insbesondere Aceton.

Der Anteil der zuvor beschriebenen Verbindungen in der Polymerdispersion kann in weiten Bereichen liegen. Im allgemeinen umfasst die Polymerdispersion bis zu 15 Gew.-%, insbesondere 0,3 bis 5 Gew.-% Verbindungen mit einer Dielektrizitätskonstanten größer oder gleich 9.

Die Polymerdispersionen können durch bekannte Verfahren hergestellt werden, wobei diese Verfahren in den zuvor genannten Dokumenten des Standes der Technik dargelegt sind. So kann man beispielsweise die vorliegenden Polymerdispersionen herstellen, indem man die Komponente A) in einer Lösung der Komponenten B) unter Anwendung von Scherkräften bei einer Temperatur im Bereich von 80 bis 180°C dispergiert. Die Lösung der Komponenten B) umfasst im allgemeinen die Komponenten C) und D). Diese Komponenten können der Dispersion vor,

während oder nach dem Dispergieren der Komponenten A) beigefügt werden.

Nachfolgend wird die Erfindung durch Beispiele und Vergleichsbeispiele eingehender erläutert, ohne dass die Erfindung auf diese Beispiele beschränkt werden soll.

Angewandte Methoden

Im folgenden ist mit KV100 die kinematische Viskosität einer Flüssigkeit gemessen bei 100°C in einem 150N-Öl gemeint. Die Bestimmung der Viskosität wird nach DIN 51 562 (Ubbelohde-Viskosimeter) vorgenommen. Die Konzentration des OCP's in Öl beträgt hierbei jeweils 2,8 Gew.%. Die Angaben BV20, BV40 bzw. BV100 bezeichnen die kinematischen Viskositäten der Dispersionen (BV = "bulk viscosity") ebenfalls gemessen nach DIN 51 562 (Ubbelohde-Viskosimeter) bei 20, 40 bzw. 100°C.

Als Initiatoren zur Herstellung der Dispersionen wurden gängige Vertreter wie beispielsweise die Perinitiatoren Di(tert-butylperoxy)-3,3,5-trimethylcyclohexan und/oder tert-Butylperoctoat benutzt.

Zur Überprüfung der Stabilität einer Dispersion können 670 g des Produktes in einem 2 Liter Witt'schen Topf eingewogen werden. Ein Inter-Mig-Rührer mit drei Flügeln (Messrührer mit Drehmoment und – Drehzahlanzeige MR-D1 der Fa. Ika) und ein NiCrNi-Thermoelement (Temperaturregler 810 der Fa. Eurotherm) werden in den Witt'schen Topf eingebaut. Das Ölbad (Silikonöl PN 200) wird aufgeheizt, wobei die Drehzahl so eingestellt wird, dass der Leistungseintrag 1,3 Watt beträgt. Der Leistungseintrag kann über die Viskosität berechnet werden.

Das Produkt wird bis auf 160°C aufgewärmt und diese Innentemperatur dann 2h lang gehalten. Danach wird die Innentemperatur im Reaktor innerhalb von 15 Minuten um 10°C erhöht und wiederum 2h lang gehalten, wobei dieser Vorgang mehrmals wiederholt wird bis die Innentemperatur 190°C beträgt. Sollte das Produkt vorher einer Phasenseparation unterliegen, was an einem sprunghaften Anstieg der Viskosität und damit an einem schnellen Anstieg des Drehmomentes zu erkennen ist, so ist der Versuch beendet. Zeit und Temperatur bis zu diesem Zeitpunkt werden detektiert.

Beispiel 1

In einem 2 Liter-Vierhalskolben ausgestattet mit Rührer, Thermometer und Rückflusskühler werden 63,8 g eines Styrol-Dien-Copolymerisats (z.B. SHELLVIS® 260) in 271,3 g eines Esters (z.B. Vestinol® OA) und 90,4 g eines ethoxylierten Fettalkoholes (z.B. Marlipal® O13/20) bei 100°C innerhalb von 3-4 Stunden gelöst. Nach dem Lösevorgang werden 47,3 g eines C12-C16-Alkyl-methacrylats zugegeben und es wird mittels Zugabe von Trockeneis inertisiert. Die Temperatur wird wieder auf 100°C eingestellt, wonach 1,14 g tert-Butylperoatoat zugegeben und gleichzeitig ein Zulauf bestehend aus einer Mischung von 527,2 g des C12-C16 Alkyl-methacrylats und 6,33 g tert-Butylperoatoat gestartet wird. Die Zulaufzeit beträgt 3,5 Stunden. Die Zulaufgeschwindigkeit ist gleichbleibend. 2 Stunden nach Zulaufende werden nochmals 1,15 g tert-Butylperoatoat zugegeben. In einem 1 Liter Witt'schen Topf mit Inter-Mig-Rührer (Verhältnis Rührer/Behälterdurchmesser = 0,7; einzustellende Rührerdrehzahl: 200 UpM) werden 134,2 g der hergestellten Lösung zusammen mit 196,8 g des Styrol-Dien-Copolymerisats (z.B. SHELLVIS® 260) und 169,0 g des ethoxylierten Fettalkoholes (z.B. Marlipal® O13/20) eingewogen. Innerhalb von 8-10 Stunden entsteht bei 100°C und 200 UpM Rührerdrehzahl eine Dispersion. Die Aufteilung der 196,8 g des Styrol-Dien-Copolymerisats in 24 Portionen à 8,2 Gramm und die

sequentielle Zugabe dieser Portionen unter Rühren (200 UpM) in einem Zeitabstand von 5 Minuten führt zum gleichen Ergebnis. Die aktuelle Viskosität dieser hochkonzentrierten Shellvis 260-Dispersion beträgt bei 40°C ca. 4000 mm²/s und bei 100°C ca. 5000 mm²/s.

Vergleichsbeispiel 1

In einem 2 Liter-Vierhalskolben ausgestattet mit Rührer, Thermometer und Rückflusskühler werden 63,8 g eines Styrol-Dien-Copolymerisats (z.B. SHELLVIS® 260 der Infineum) in 361,7 g eines Esters (z.B. Vestinol® OA) bei 100°C innerhalb von 3-4 Stunden gelöst. Nach dem Lösevorgang werden 47,3 g eines C12-C16-Alkyl-methacrylats zugegeben und es wird mittels Zugabe von Trockeneis inertisiert. Die Temperatur wird wieder auf 100°C eingestellt, wonach 1,14 g tert-Butylperoatoat zugegeben und gleichzeitig ein Zulauf bestehend aus einer Mischung von 527,2 g des C12-C16 Alkyl-methacrylats und 6,33 g tert-Butylperoatoat gestartet wird. Die Zulaufzeit beträgt 3,5 Stunden. Die Zulaufgeschwindigkeit verläuft gleichmäßig. 2 Stunden nach Zulaufende werden nochmals 1,15 g g tert-Butylperoatoat zugegeben.

In einem 1 Liter Witt'schen Topf mit Inter-Mig-Rührer (Verhältnis Rührer / Behälterdurchmesser = 0,7 Rührerdrehzahl 200 UpM) werden 167,5 g des zuvor beschriebenen Ppropfcopolymerisats zusammen mit 168,1 g des Styrol-Dien-Copolymerisats (z.B. SHELLVIS® 260) und 164,4 g des Esters (z.B. Vestinol® OA) eingewogen und bei 100°C mit bei einer Rührerdrehzahl von 200 UpM gerührt. Innerhalb von 8-10 Stunden kommt es zur Abtrennung einer Phase mit hohem Gehalt des Styrol-Dien-Copolymerisats. Die Herstellung einer stabilen Dispersion gelingt nicht.

Patentansprüche

1. Stabile Polymerdispersion umfassend
 - A) mindestens ein dispergiertes Polyolefin,
 - B) mindestens eine Dispergierkomponente,
 - C) mindestens einen Ester und
 - D) mindestens einen (Oligo)oxyalkyl-Gruppen umfassenden Ether, wobei das Gewichtsverhältnis von Ester C) zu Ether D) im Bereich von 30:1 bis 1:30 liegt.
2. Polymerdispersion nach Anspruch 1, dadurch gekennzeichnet, dass die Komponente B) ein Copolymer darstellt, welches ein oder mehrere Blöcke A und ein oder mehrere Blöcke X umfasst, wobei der Block A Olefincopolymerisat-Sequenzen, hydrierte Polyisopren-Sequenzen, hydrierte Copolymere aus Butadien/Isopren oder hydrierte Copolymere aus Butadien/Isopren und Styrol darstellt und der Block X Polyacrylat-, Polymethacrylat-, Styrol-, α -Methylstyrol oder N-Vinyl-heterocyclische Sequenzen und/oder Sequenzen aus Gemischen von Polyacrylat-, Polymethacrylat-, Styrol-, α -Methylstyrol oder N-Vinyl-Heterocyclen darstellt.
3. Polymerdispersion nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Komponente B) durch Ppropfcopolymerisation einer Monomerzusammensetzung umfassend (Meth)acrylate und/oder Styrol-Verbindungen auf Polyolefinen gemäß Komponente A) erhältlich ist.
4. Polymerdispersion nach Anspruch 3, dadurch gekennzeichnet, dass eine Monomerzusammensetzung eingesetzt wird, aufweisend ein oder mehrere (Meth)acrylate der Formel (I)

(I),

worin R Wasserstoff oder Methyl und R¹ Wasserstoff, einen linearen oder verzweigten Alkylrest mit 1 bis 40 Kohlenstoffatomen bedeuten,

und/oder ein oder mehrere (Meth)acrylate der Formel (II)

(II),

worin R Wasserstoff oder Methyl und R² einen mit einer OH-Gruppe substituierten Alkylrest mit 2 bis 20 Kohlenstoffatomen oder einen alkoxylierten Rest der Formel (III)

(III),

worin R³ und R⁴ unabhängig für Wasserstoff oder Methyl, R⁵ Wasserstoff oder einen Alkylrest mit 1 bis 40 Kohlenstoffatomen und n eine ganze Zahl von 1 bis 90 steht, bedeuten,

und/oder ein oder mehrere (Meth)acrylate der Formel (IV)

(IV),

worin R Wasserstoff oder Methyl, X Sauerstoff oder eine Aminogruppe der Formel -NH- oder -NR⁷-, worin R⁷ für einen Alkylrest mit 1 bis 40 Kohlenstoffatomen steht, und R⁶ einen mit mindestens einer -NR⁸R⁹-Gruppe substituierten linearen oder verzweigten Alkylrest mit 2 bis 20, vorzugsweise 2 bis 6 Kohlenstoffatomen bedeuten, wobei R⁸ und R⁹ unabhängig von

einander für Wasserstoff, einen Alkylrest mit 1 bis 20, vorzugsweise 1 bis 6 stehen oder worin R⁸ und R⁹ unter Einbeziehung des Stickstoffatoms und gegebenenfalls eines weiteren Stickstoff oder Sauerstoffatoms einen 5- oder 6-gliederigen Ring bilden, der gegebenenfalls mit C₁-C₆-Alkyl substituiert sein kann.

5. Polymerdispersion nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass bei der Ppropfreaktion eine Monomerzusammensetzung eingesetzt wird, die dispergierende Monomere umfasst.
6. Polymerdispersion nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass das Gewichtsverhältnis der Blöcke A zu den Blöcken X im Bereich von 20:1 bis 1:20 liegt.
7. Polymerdispersion nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Komponente A) ein oder mehrere Olefincopolymeren, hydriertes Polyisopren, hydrierte Copolymeren aus Butadien/Isopren oder hydrierte Copolymeren aus Butadien/Isopren und Styrol umfasst.
8. Polymerdispersion nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Komponente D) mindestens einen ethoxylierten Alkohol umfasst.
9. Polymerdispersion nach Anspruch 8, dadurch gekennzeichnet, dass der ethoxylierte Alkohol 2 bis 8 Ethoxygruppen umfasst, wobei der hydrophobe Rest des Alkohols 4 bis 22 Kohlenstoffatome umfasst.

10. Polymerdispersion nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polymerdispersion 2 bis 40 Gew.-% an Komponente C) umfasst.
11. Polymerdispersion nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gewichtsverhältnis von Komponente C) zu Komponente D) im Bereich von 15:1 bis 1:15 liegt.
12. Polymerdispersion nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polymer-Dispersion mindestens 20 Gew.-% der Komponente A) umfasst.
13. Polymerdispersion nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polymer-Dispersion 2 bis 40 Gew.-% der Komponenten D) umfasst.
14. Polymerdispersion nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polymerdispersion eine Verbindung umfasst, die eine Dielektrizitätskonstante größer oder gleich 9 aufweist.
15. Polymerdispersion nach Anspruch 14, dadurch gekennzeichnet, dass die Verbindung mit einer Dielektrizitätskonstante größer oder gleich 9 ausgewählt ist aus Wasser, Ethylenglykol, Polyethylenglykol und/oder Alkohol.
16. Polymerdispersion nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polymer-Dispersion bis zu 30 Gew.-% Komponente B) umfasst.

17. Verfahren zur Herstellung von Polymerdispersionen gemäß den Ansprüchen 1 bis 16, dadurch gekennzeichnet, dass man in einer Lösung der Komponenten B) unter Anwendung von Scherkräften bei einer Temperatur im Bereich von 80 bis 180°C die Komponente A) dispergiert.
18. Verwendung einer Polymerdispersion gemäß einem der Ansprüche 1 bis 16 als Zusatzstoff für Schmierölformulierungen.

Zusammenfassung

Die vorliegende Erfindung betrifft stabile Polymerdispersion umfassend

- A) mindestens ein dispergiertes Polyolefin,
- B) mindestens eine Dispergierkomponente,
- C) mindestens einen Ester und
- D) mindestens einen (Oligo)oxyalkyl-Gruppen umfassenden Ether,
wobei das Gewichtsverhältnis von Ester C) zu Ether D) im Bereich
von 30:1 bis 1:30 liegt.