2024-02-01

typo devoir 1

2.1

$$\Lambda^n = \{ \alpha \in V^{\otimes n} | \sigma \bullet \alpha = ?(\sigma)\alpha \}$$

Exemples:

$$\mathbb{R}^2 = \langle e_1 e_2 \rangle$$

$$\operatorname{Sym}(\mathbb{R}^2) \ni e_i \otimes e_2 + e_2 \otimes e_1$$

$$\sigma(e_1 \otimes e_2 + e_2 \otimes e_1) = \sigma(e_1 \otimes e_2 + \sigma(e_2 \otimes e_1)) = e_1 \otimes e_2 - e_2 \otimes e_1$$

$$\Lambda^2(\mathbb{R}^2) \ni e_1 \otimes e_2 - e_2 \otimes e_1$$

Rappels

 ρ_1,ρ_2 reps indestructibles de Galors

 $\langle \chi_{\rho} \rangle$

. . .

 $\underline{\text{Corollaire 5}}: \text{si } g \neq e$

$$\sum_{\rho_i \mathrm{irred}} \dim(\rho_i) \chi_{\rho_i}(g) = 0$$

 $\underline{\text{D\'emonstration}}$:

$$0 = \chi_R(g) = \sum_{\rho_i \text{irred}} \dim(\rho_i) \chi_{\rho_i}(g) \quad (g \neq e)$$

Permet de trouver une caractère manquant dnas le table si on connaît tout les autres

Plus d'algèbre linéaire

 $e_1,\, \cdots e_n$ base de V $f_1,\, \cdots f_m$ base de W $e_i\otimes f_j$ base de $V\otimes W$

$$M \in GL(V)$$
 $N \in GL(W)$
 $M \otimes N \in GL(V \otimes W)$

Proposition:

$$\operatorname{tr}(M \otimes N) = (\operatorname{tr} M)(\operatorname{tr} N)$$
$$\chi_{\rho_1 \otimes \rho_2} = \chi_{\rho_1} \cdot \chi_{\rho_2}$$

<u>Démonstration</u>

$$\operatorname{tr}(M\otimes N) = \sum_{ij} \left[(M\otimes N)(e_i\otimes f_j) \right]_{i,j} = \sum_{i,j} M_{i,i} M_{j,j} = \left(\sum_i M_{ii} \right) \sum_j (M_{jj}) = \operatorname{tr} M \operatorname{tr} N$$

Définition

L'espace dual de V est $\operatorname{Hom}(\mathbf{V},\mathbb{C})$ noté V^*

Si $M \in GL(V)$

 $M^* \in \operatorname{GL}(V^*)$

 $M^* \cdot \alpha = \alpha \circ M^{-1}$

De même, si $\rho_i G \to \operatorname{GL}(\mathbf{V})$ est une repr. La repr
 <u>dual</u> est $\rho^*: G \to \operatorname{GL}(\mathbf{V}^*)$

$$g \mapsto \rho(g)^*$$

Proposition:

$$\chi \rho^* = \bar{\chi}_{\rho}$$

<u>Démonstration</u>: $g \in G$, $\rho(g) \in GL(V)$ est une matrice d'ordre <u>finie</u>

$$(\exists n | \rho(g)^n = I)$$

 $\implies \rho(g)$ est diagonalisable est ses valeurs propres sont des racines de 1

$$\chi_{\rho}(g) = \operatorname{tr}(\rho(g)) = \lambda_1 + \cdots + \lambda_d$$

$$\rho^*(g) = (\rho(g)^{-1})^t$$

$$\operatorname{tr}(\rho^*(g)) = \lambda_1^{-1} + \dots + \lambda_d^{-1} = \bar{\lambda}_1 + \dots + \bar{\lambda}_d = \bar{\chi}_{\rho}(g)$$

Corrolaire ρ est irréductible $\iff \rho^*$ est irréductible

$$1 = \langle \chi_{\rho}, \chi_{\rho} \rangle = \frac{1}{|G|} \sum_{g \in G} \bar{\chi}_{\rho}(g) \chi_{\rho}(g)$$

$$\iff \langle \bar{\chi}_{\rho}, \bar{\chi}_{\rho} \rangle = \sum_{g \in G} \chi_{\rho}(g) \bar{\chi}_{\rho}(g) = 1$$

$$tr(A \otimes B) = tr(A) + tr(B)$$

 ${\bf Proposition}:$

$$\chi_{\rho_1 \oplus \rho_2} = \chi_{\rho_1} + \chi_{\rho_2}$$

 ${\bf Proposition}:$

$$\operatorname{Hom}(V, W) \cong V^*W$$

<u>Démonstration</u>:

$$f: V^* \otimes W \to \operatorname{Hom}(V, W)$$

 $\alpha \otimes w \mapsto (v \mapsto \alpha(v)w)$

est linéaire

$$e_1^*, \cdots, e_n^*$$
 base de V
$$w_1, \cdots, w_m$$
 base de W

$$f(e_i^* \otimes w_i) = (v \mapsto e_i^*(v)w_i) = (v)$$

confus

Exemples : S_4 et A_4

Les classes de conjugaisons dans \mathcal{S}_4 sont

(Toutes les traspotitions sont coujugés)

	1	6	8	6	3
	e	(12)	(123)	(1234)	(12)(34)
χ_0	1	1	1	1	1
$\chi_{\rm sym}$	1	-1	1	-1	1
$\chi_{\rm std}$	3	1	0	-1	-1
$\chi_{\text{sym}\otimes\text{std}}$	3	-1	0	1	-1
χ4	2	0	-1	0	2

Table 1 – char de S_4

Regardons la representation $\rho_?$ de dim 4

$$\rho_?: S_4 \to \mathrm{GL}(\mathbb{C}^4)$$

on sait que $\rho_?$ se décompose en $\rho_{\rm triv} \oplus \rho_{\rm std}$

$$\chi_{\rho?} = \chi_{\rho?} - \chi_0$$

$$= (42100) - (1111111)$$
$$= (310 - 1 - 1)$$

$$\langle \chi_{\rm std} \chi_{\rm std} \rangle = \frac{1}{24} \left(3^2 + 6^2 + \cdots \right) = 1$$

Pour trouver $di(\rho_4)$

on utilise $|G| = \sum_{\rho \text{irred}} \dim(\rho_i)^2$

$$23 = 1^2 + 1^2 + 3^2 + 3^2 + d^2$$

d = 2

On trouve les autres coeffs avec

$$0 = \sum_{g \text{irred}} \dim(\rho_i) \chi_{\rho_i}(g)$$

Calculons ρ_4

On a $\rho((12)(34)) = I$

$$tr(\rho((12)(34))) = 2$$

Mest conjugé à

$$\begin{pmatrix} x & 0 \\ 0 & 2-x \end{pmatrix}$$

mais

$$\begin{pmatrix} x^2 & 0\\ 0 & (2-x)^2 \end{pmatrix} = 1$$

$$\implies M = 1$$

Quand une representation

a une noyeau