Find the solution of the problem:

Max Z =
$$-4x_1 - 6x_2 - 18 x_3$$

Subject to
 $x_1 + 3 x_3 \ge 3$
 $x_2 + 2 x_3 \ge 5$,
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

Ans.

Problem write as Max Z = $-4x_1 - 6x_2 - 18 x_3$ subject to

$$-x_1 - 3 x_3 \le -3$$

 $-x_2 - 2 x_3 \le -5$, with $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

Also, above problem can be written as

Max Z =
$$-4x_1 - 6x_2 - 18 x_3$$
 subject to

$$-x_1 - 3x_3 + s_1 = -3$$

 $-x_2 - 2x_3 + s_2 = -5$, with $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

For solution, write as-

	c_j		-4	-6	-18	0	0	
Basic Variables	c_B	X_B	x_1	x_2	x_3	s_{I}	s_2	
s_1	0	- 3	-1	0	-3	1	0	
s_2	0	-5	0	-1	-2	0	1	
	Z =	0	4	6_	18	0	0	
10, 10, 103								

Si	6	-3	-1		-3	1	0
χ_2	-6	5	0	1	2	0	
			Ч	O	6	0	6
x_3	-18	ı	1/3	ð	1	1	0
χ_2	-6	3	_2/	31		-1/3	
				0		2	6

For outgoing

ved ~

in {XB}

= min {-3,-5}

= -5 => 2^M

out going

vetter

entering vedos

max $\left\{ \frac{\Delta j}{\alpha_{rj}}, \alpha_{rj} < 0 \right\}$ x=2 $max \left\{ \frac{\Delta j}{\alpha_{rj}}, \alpha_{2j} < 0 \right\}$ $max \left\{ \frac{\Delta j}{\alpha_{2j}}, \alpha_{2j} < 0 \right\}$ $max \left\{ \frac{4}{3}, \frac{6}{3}, \frac{18}{3} \right\}$

max
$$\left\{ \begin{array}{c} \frac{4}{-1}, \frac{6}{-3} \right\}$$

$$= \max \left\{ -4, -2 \right\} = -2$$

$$\Rightarrow x_3 \text{ is entering vedoo in the bans}$$

$$x_{3} = 1$$
, $x_{2} = 3$, $x_{1} = 0$,

 $x_{3} = 1$, $x_{2} = 3$, $x_{1} = 0$,

 $x_{3} = -18 \times 1 + (-6) \times 3$
 $x_{4} = -36$

$$= \max \left\{ \frac{4}{-6}, \frac{18}{-2} \right\}$$

$$= \max \left\{ -6, -9 \right\}$$

$$= -6 = \frac{\Delta z}{a_{2}z}$$

$$\Rightarrow z_{2} \text{ is endering }$$
Vedus in the basis.

Find the soln by dual simplex method.

Minz =
$$2x_1 + x_2$$
 3 to $| \text{Maxz}' = -2x_1 - x_2 |$, $| z' = -2 |$ 3/to $| 3x_1 + x_2 |$ 3 $| -3x_1 - x_2 | \le -3$ $| -4x_1 - 3x_2 | \le -6$ $| x_1 + 2x_2 | \ge 3$ $| -x_1 - 2x_2 | \le -3$, $| x_1 > 0 |$ $| x_1 > 0 |$ $| x_2 > 0$ $| x_1 > 0 |$ $| x_2 > 0$ $| x_1 > 0 |$ $| x_2 > 0$ $| x_1 > 0 |$ $| x_2 > 0$ $| x_1 > 0 |$ $| x_2 > 0$ $| x_1 > 0 |$ $| x_2 > 0$ $| x_1 > 0 |$ $| x_2 > 0$ $| x_2 > 0$ $| x_1 > 0 |$ $| x_2 > 0$ $| x_2 > 0$ $| x_3 > 0$ $| x_4 > 0$ $| x_4$

x_2	-1 :	2 413	<i>}</i>	o - O	13 -213 1	3, 3 0 w golf vetrs
	2'=	213	0	O	1130	
x, x ₂	•	6 5 0	0 1 0	3/1/2/1/2/1/2/1/2/1/2/1/2/1/2/1/2/1/2/1/	-15 -1 1 -15 0	$max \begin{cases} \frac{21}{5} & \frac{11}{5} \\ -\frac{51}{3} & \frac{11}{5} \\ \frac{11}{5} \\ \frac{11}{5} & \frac{11}{5} \\ \frac{11}{5} & \frac{11}{5} \\ $
$x_1 = \frac{1}{2}$	3 2	= 65, m		-2X = -6 = 12	5 = -	5 vedos.

Welcome Page 3