

Numerical Linear Algebra

Yuji Nakatsukasa

Mathematical Institute, Oxford **Computational Techniques** InFoMM Centre for Doctoral Training Michaelmas Term 2019, Week 5

Plan

- ▶ Day 1: SVD and optimality
- ▶ Day 2: LU, QR and linear systems, least-squares
- ▶ Day 3: QR alg, SVD alg (and Krylov)
- ▶ Day 4: Krylov and RandSVD

References

- Golub-Van Loan (12): Matrix Computations
 - classic, encyclopedic
- Trefethen-Bau (97): Numerical Linear Algebra
 - covers essentials, beautiful exposition
- J. Demmel Applied (97): Numerical Linear Algebra
 - impressive content, some niche
- ▶ N. J. Higham (02), Accuracy and Stability of Algorithms
 - bible for stability, conditioning
- ▶ Horn and Johnson (12), Matrix Analysis (& topics (86))
 - amazing theoretical treatise, little numerical treatment

Linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference) The following are equivalent (how many can you name?):

1. A is nonsingular.

Linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference)

The following are equivalent (how many can you name?):

- 1. A is nonsingular.
- 2. A is invertible: A^{-1} exists.
- 3. The map $A: \mathbb{R}^n \to \mathbb{R}^n$ is a bijection.
- 4. all n eigenvalues of A are nonzero.
- 5. all n singular values of A are positive.
- 6. $\operatorname{rank}(A) = n$.
- 7. the rows of A are linearly independent.
- 8. the columns of A are linearly independent.
- 9. Ax = b has a solution for every $b \in \mathbb{C}^n$.
- 10. A has no nonzero null vector. Neither does A^T .
- 11. A^*A is positive definite (not just semidefinite).
- **12**. $\det(A) \neq 0$.
- 13. A^{-1} exists such that $A^{-1}A = AA^{-1} = I_n$.
- 14. ...

Important matrices

For square matrices,

- Symmetric: $A_{ij}=A_{ji}$ (Hermitian: $A_{ij}=\bar{A_{ji}}$)
 - ▶ symmetric positive (semi)definite $A \succ (\succeq)0$: symmetric and positive eigenvalues
- ▶ Orthogonal: $AA^T = A^TA = I$ (Unitary: $AA^* = A^*A = I$) → note $A^TA = I$ implies $AA^T = I$
- lacktriangle Skew-symmetric: $A_{ij}=-A_{ji}$ (skew-Hermitian: $A_{ij}=-ar{A_{ji}}$)
- Normal: $A^TA = AA^T$
- ▶ Tridiagonal: $A_{ij} = 0$ if |i j| > 1
- ▶ Triangular: $A_{ij} = 0$ if i > j

For (possibly nonsquare) matrices $A \in \mathbb{C}^{m \times n}$, $m \geq n$

- ▶ Hessenberg: $A_{ij} = 0$ if i > j + 1
- "orthonormal": $A*A = I_n$,
- > sparse: most elements are zero

other structures: Hankel, Toeplitz, circulant, symplectic, ...

SVD: the most important result in NLA

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.
- ► Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^T U = V^T V = I_n$, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \sigma_n$.

SVD proof:

SVD: the most important result in NLA

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.
- ► Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^T U = V^T V = I_n$, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \sigma_n$.

SVD proof: Take Gram matrix A^TA and its eigendecomposition $A^TA = V\Lambda V^T$. Λ is nonnegative, and $(AV)^T(AV)$ is diagonal, so $AV = U\Sigma$ for some orthonormal U. Right-multiply V^T .

SVD: the most important result in NLA

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.
- ► Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^T U = V^T V = I_n$, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \sigma_n$.

SVD proof: Take Gram matrix A^TA and its eigendecomposition $A^TA = V\Lambda V^T$. Λ is nonnegative, and $(AV)^T(AV)$ is diagonal, so $AV = U\Sigma$ for some orthonormal U. Right-multiply V^T .

SVD and eigendecomposition

- ightharpoonup V eigvecs of A^TA
- lacktriangledown U eigvecs (for nonzero eigvals) of AA^T (up to sign)
- ▶ Jordan-Wieldant matrix $\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$: eigvals $\pm \sigma_i(A)$, and m-n copies of 0. Eigvec matrix is $\begin{bmatrix} U & U & U_0 \\ V & -V & 0 \end{bmatrix}$, $A^TU_0 = 0$

Vector norms

For vectors $x = [x_1, \dots, x_n]^T \in \mathbb{C}^n$

- ▶ p-norm $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$
 - ▶ Euclidean norm=2-norm $||x||_2 = \sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2}$
 - ▶ 1-norm $||x||_1 = |x_1| + |x_2| + \cdots + |x_n|$
 - ightharpoonup -norm $||x||_{\infty} = \max_i |x_i|$

Inequalities: For $x \in \mathbb{C}^n$,

- $| \mathbf{x} | \frac{1}{\sqrt{n}} \| x \|_1 \le \| x \|_2 \le \| x \|_1$

 $\|\cdot\|_2$ is unitarily invariant as $\|Ux\|_2 = \|x\|_2$ for any unitary U and any $x \in \mathbb{C}^n$.

Matrix norms

For matrices $A \in \mathbb{C}^{m \times n}$,

- - ▶ 2-norm=spectral norm(=Euclidean norm) $\|A\|_2 = \sigma_{\max}(A)$ (largest singular value)
 - ▶ 1-norm $||A||_1 = \max_i \sum_{j=1}^n |A_{ji}|$
 - ightharpoonup -norm $||A||_{\infty} = \max_i \sum_{j=1}^n |A_{ij}|$
- Frobenius norm $||A||_F = \sqrt{\sum_i \sum_j |A_{ij}|^2}$ (2-norm of vectorization)
- ▶ trace norm=nuclear norm $||A||_* = \sum_{i=1}^{\min(m,n)} \sigma_i(A)$

Red: unitarily invariant norms $||A||_* = ||UA||_*$

Inequalities: For $A \in \mathbb{C}^{m \times n}$,

- $| \frac{1}{\sqrt{n}} ||A||_{\infty} \le ||A||_2 \le \sqrt{m} ||A||_{\infty}$
- $|A| = \frac{1}{\sqrt{m}} ||A||_1 \le ||A||_2 \le \sqrt{n} ||A||_1$
- $||A||_2 \le ||A||_F \le \sqrt{\min(m,n)} ||A||_2$

Optimal low-rank approximation by SVD

Truncated SVD:
$$A_r = U_r \Sigma_r V_r^T$$
, $\Sigma_r = \text{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2$$

▶ Storage savings: if $\sigma_{r+1} \ll \sigma_1$, $A \approx A_r$ with

$$A$$
 $pprox A_r = egin{bmatrix} U & \Sigma & V^T \end{bmatrix}$

Optimality holds for any unitarily invariant norm

Truncated SVD:
$$A_r = U_r \Sigma_r V_r^T$$
, $\Sigma_r = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B)=r} ||A - B||_2$$

Truncated SVD:
$$A_r = U_r \Sigma_r V_r^T$$
, $\Sigma_r = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2$$

▶ Since $rank(B) \le r$, we can write $B = B_1B_2^T$ where B_1, B_2 have r columns.

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2$$

- Since $\operatorname{rank}(B) \leq r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have r columns.
- ► There exists orthogonal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. BW = 0. Then $\|A B\|_2 \ge \|(A B)W\|_2 = \|AW\|_2 = \|U\Sigma(V^*W)\|_2$.

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2$$

- ▶ Since $rank(B) \le r$, we can write $B = B_1B_2^T$ where B_1, B_2 have r columns.
- ► There exists orthogonal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. BW = 0. Then $\|A B\|_2 \ge \|(A B)W\|_2 = \|AW\|_2 = \|U\Sigma(V^*W)\|_2$.
- Now since W is (n-r)-dimensional, there is is an interesection between W and $[v_1,\ldots,v_{r+1}]$, the (r+1)-dimensional subspace spanned by the leading r+1 left singular vectors $([W,v_1,\ldots,v_{r+1}]\begin{bmatrix}x_1\\x_2\end{bmatrix}=0$ has a solution; then Wx_1 is such a vector).

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2$$

- Since $\operatorname{rank}(B) \leq r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have r columns.
- ► There exists orthogonal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. BW = 0. Then $\|A B\|_2 \ge \|(A B)W\|_2 = \|AW\|_2 = \|U\Sigma(V^*W)\|_2$.
- Now since W is (n-r)-dimensional, there is is an interesection between W and $[v_1,\ldots,v_{r+1}]$, the (r+1)-dimensional subspace spanned by the leading r+1 left singular vectors $([W,v_1,\ldots,v_{r+1}]\begin{bmatrix}x_1\\x_2\end{bmatrix}=0$ has a solution; then Wx_1 is such a vector).
- Then scale x_1 to have unit norm, and $\|U\Sigma V^*Wx_1\|_2 = \|U\Sigma_{r+1}y_1\|_2$, where $\|y_1\|_2 = 1$ and Σ_{r+1} is the leading r+1 part of Σ . Then $\|U\Sigma_{r+1}y_1\|_2 \geq \sigma_{r+1}$ can be verified directly.

Matrix decompositions

- ightharpoonup SVD $A = U\Sigma V^T$
- ▶ Eigenvalue decomposition $A = X\Lambda X^{-1}$
 - Normal: X unitary $X^*X = I$
 - ightharpoonup Symmetric: X unitary and Λ real
- ▶ Jordan decomposition: $A = XJX^{-1}$,

$$J = \mathsf{diag}(egin{bmatrix} \lambda_i & 1 & & & & \\ & \lambda_i & \ddots & & & \\ & & \ddots & 1 & & \\ & & & \lambda_i & & \end{pmatrix})$$

- Schur decomposition $A = QTQ^*$: T upper triangular
- ightharpoonup QR: orthonormal, U: upper triangular
- ightharpoonup LU: L: lower triangular, U: upper triangular

Red: Orthogonal decompositions, stable computation available

Numerical stability

For computational task Y=f(X) and computed approximant \hat{Y} ,

- ldeally, error $\|Y \hat{Y}\|/\|Y\| = O(u)$: seldom true (u: unit roundoff, $\approx 10^{-16}$ in standard double precision)
- ▶ Good alg. has Backward stability $\hat{Y} = f(X + \Delta X)$, $\frac{\|X \hat{X}\|}{\|X\|} = O(u) \text{ "exact solution of slightly wrong input"}$
- Forward stability $\|Y \hat{Y}\|/\|Y\| = O(\kappa(f)u)$ "error is as small as backward stable alg." (sometimes used to mean small error; we follow Higham's book [2002])
- ► Most important condition number:

$$\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)} (\geq 1)$$

e.g. for linear systems. A backward stable soln for Ax=b, i.e., $(A+\Delta A)\hat{x}=(b+\Delta b)$ satisfies

$$\frac{\|\hat{x} - x\|}{\|x\|} \lesssim u\kappa_2(A)$$

LU decomposition

$$A = LU \in \mathbb{R}^{n \times n}$$

L: lower triangular, U: upper triangular

- ► Cost $\frac{2}{3}n^3$ flops
- $\blacktriangleright \text{ For } Ax = b,$
 - first solve Ly = b, then Ux = y.
 - triangular solve is always backward stable: e.g. $(L+\Delta L)\hat{y}=b$ (see Higham's book)
- Pivoting crucial for numerical stability: PA = LU, where P: permutation matrix. Then stability means $\hat{L}\hat{U} = PA + \Delta A$
 - Even with pivoting, unstable examples exist, but still always stable in practice and used everywhere!
- ▶ Special case where $A \succ 0$ positive definite: $A = R^T R$, Cholesky factorization, ALWAYS stable, $\frac{1}{3}n^3$ flops

QR decomposition

$$A = QR \in \mathbb{R}^{m \times n}$$

 $Q \in \mathbb{R}^{m \times n}$: orthonormal, $R \in \mathbb{R}^{n \times n}$: upper triangular

- Many algorithms available: Gram-Schmidt, Householder, CholeskyQR, ...
- $\blacktriangleright \text{ For } Ax = b,$
 - ▶ solve $Rx = Q^Tb$: always stable! But LU used for speed, as QR needs $\frac{4}{3}n^3$ flops
- Pivoting A = QRP not needed for numerical stability
 - but pivoting gives rank-revealing QR

Householder QR factorization

Householder reflectors:

$$Q = I - 2vv^T$$
, $v = \frac{x - ||x||_2 e}{||x - ||x||_2 e||_2}$

satisfies Qv=e \Rightarrow find Q_1 s.t. $Q_1A(:,1)=e=[1,0,\ldots,]^T\|A(:,1)\|_2$, repeat to get $Q_n\cdots Q_2Q_1A=R$ upper triangular, then $A=(Q_1^T\cdots Q_{n-1}^TQ_n^T)R=QR$

Properties

- ▶ Cost $\frac{4}{3}n^3$ flops with Householder-QR (twice that of LU)
- ▶ Unconditionally backward stable: $\hat{Q}\hat{R} = A + \Delta A$, $\|\hat{Q}^T\hat{Q} I\|_2 = O(u)$
- $ightharpoonup Q_i$ orthogonal+symmetric, eigvals $1\ (n-1\ {
 m copies})$ and -1

Least-squares problem

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Least-squares problem

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Let $A = [Q \ Q_{\perp}] \left[\begin{smallmatrix} R \\ 0 \end{smallmatrix} \right]$ be 'full' QR factorization (useful for theory, seldom used in computation). Then

$$||Ax - b||_2 = ||Q^T (Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} Q^T b \\ Q_{\perp}^T b \end{bmatrix} \right\|_2$$

so $x = R^{-1}Q^Tb$ is solution. This also gives algorithm:

Least-squares problem

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Let $A=[Q\ Q_{\perp}]{[\ R \]}$ be 'full' QR factorization (useful for theory, seldom used in computation). Then

$$||Ax - b||_2 = ||Q^T (Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} Q^T b \\ Q_{\perp}^T b \end{bmatrix} \right\|_2$$

so $x = R^{-1}Q^Tb$ is solution. This also gives algorithm:

- 1. Compute (thin) QR factorization A = QR
- 2. Solve linear system $Rx = Q^T b$.
- ▶ This is backward stable: computed \hat{x} solution for $\min_x \|(A + \Delta A)x + (b + \Delta b)\|_2$ (see Higham's book Ch.20)
- Mathematically, x satisfies normal equation $(A^TA)x = A^Tb$, but this is NOT backward stable

Power method for eigenproblems

$$x:=$$
random vector, $x=Ax$, $x=\frac{x}{\|x\|}$, $\lambda=x^TAx$, repeat

- Basis for QR algorithm, Krylov methods (Lanczos, Arnoldi,...)
- Convergence analysis: let $x_0 = \sum_{i=1}^n c_i v_i$, $Av_i = \lambda_i v_i$ with $|\lambda_1| > |\lambda_2| > \cdots$. Then after k iterations,

$$x = C \sum_{i=1}^{n} \left(\frac{\lambda_i}{\lambda_1}\right)^k c_i v_i \to C c_1 v_1$$
 as $k \to \infty$

- ► Converges geometrically $(\lambda, x) \to (\lambda_1, x_1)$ with linear rate $\frac{|\lambda_2|}{|\lambda_1|}$
- ▶ What does this imply about $A^n = QR$ as $n \to \infty$?

Power method for eigenproblems

$$x:=$$
random vector, $x=Ax$, $x=\frac{x}{\|x\|}$, $\lambda=x^TAx$, repeat

- ▶ Basis for QR algorithm, Krylov methods (Lanczos, Arnoldi,...)
- Convergence analysis: let $x_0 = \sum_{i=1}^n c_i v_i$, $Av_i = \lambda_i v_i$ with $|\lambda_1| > |\lambda_2| > \cdots$. Then after k iterations,

$$x = C \sum_{i=1}^{n} \left(\frac{\lambda_i}{\lambda_1}\right)^k c_i v_i \to C c_1 v_1 \quad \text{as } k \to \infty$$

- Converges geometrically $(\lambda, x) \to (\lambda_1, x_1)$ with linear rate $\frac{|\lambda_2|}{|\lambda_1|}$
- ▶ What does this imply about $A^n = QR$ as $n \to \infty$? First vector of $Q \to v_1$

Power method for eigenproblems

$$x:=$$
random vector, $x=Ax$, $x=\frac{x}{\|x\|}$, $\lambda=x^TAx$, repeat

- ▶ Basis for QR algorithm, Krylov methods (Lanczos, Arnoldi,...)
- Convergence analysis: let $x_0 = \sum_{i=1}^n c_i v_i$, $Av_i = \lambda_i v_i$ with $|\lambda_1| > |\lambda_2| > \cdots$. Then after k iterations,

$$x = C \sum_{i=1}^{n} \left(\frac{\lambda_i}{\lambda_1}\right)^k c_i v_i \to C c_1 v_1$$
 as $k \to \infty$

- Converges geometrically $(\lambda, x) \to (\lambda_1, x_1)$ with linear rate $\frac{|\lambda_2|}{|\lambda_1|}$
- ▶ What does this imply about $A^n = QR$ as $n \to \infty$?

Inverse power method: $x := (A - \mu I)x$, x = x/||x||

- ► Converges with improved **linear rate** $\frac{|\lambda_{\sigma(2)} \mu|}{|\lambda_{\sigma(1)} \mu|}$ to eigval closest to μ (σ : permutation)
- μ can change adaptively with the iterations. The choice $\mu := x^T A x$ gives Rayleigh quotient iteration, with **quadratic** convergence (cubic if A symmetric)

QR algorithm for eigenproblems

$$A_1 = Q_1 R_1, A_2 = R_1 Q_1, A_2 = Q_2 R_2, A_3 = R_2 Q_2, \dots$$

- ▶ Basically: $QR \to RQ \to QR \to RQ \to \cdots$ triangular
- ► Fundamental work by Francis (61,62) and Kublanovskaya (63)
- ► Truely Magical algorithm!
 - backward stable, as based on orthogonal transforms
 - always converges, but global proof unavailable(!)
 - uses 'inverse power method' (rational funcs) without inversions

Two techniques to speed up from $> O(n^4)$ to $O(n^3)$

► Initial reduction to Hessenberg form via Unitary transform

▶ shift $A_k - s_k I = Q_k R_k$, $A_{k+1} = R_k Q_k + s_k I$, repeat (effective choice: $s_k = A_k(n,n)$)

QR algorithm for eigenproblems

$$A_1 = Q_1 R_1, A_2 = R_1 Q_1, A_2 = Q_2 R_2, A_3 = R_2 Q_2, \dots$$

- ▶ Basically: $QR \to RQ \to QR \to RQ \to \cdots$ triangular
- ► Fundamental work by Francis (61,62) and Kublanovskaya (63)
- ► Truely Magical algorithm!
 - backward stable, as based on orthogonal transforms
 - always converges, but global proof unavailable(!)
 - uses 'inverse power method' (rational funcs) without inversions

Two techniques to speed up from $> O(n^4)$ to $O(n^3)$

► Initial reduction to Hessenberg form via Unitary transform

▶ shift $A_k - s_k I = Q_k R_k$, $A_{k+1} = R_k Q_k + s_k I$, repeat (effective choice: $s_k = A_k(n,n)$)

QR algorithm and power method

QR algorithm:
$$A_k=Q_kR_k$$
, $A_{k+1}=R_kQ_k$
$$A^k=(Q_1\cdots Q_k)(R_k\cdots R_1)=Q^{(k)}R^{(k)}.$$

Proof by induction: Suppose $A^{k-1} = Q^{(k-1)}R^{(k-1)}$. Then $A_k = R_{k-1}Q_{k-1} = (Q^{(k-1)})^*AQ^{(k-1)}$, and $(Q^{(k-1)})^*AQ^{(k-1)} = Q_kR_k.$

Then $AQ^{(k-1)} = Q^{(k-1)}Q_kR_k$, and so

$$A^{k} = AQ^{(k-1)}R^{(k-1)} = Q^{(k-1)}Q_{k}R_{k}R^{(k-1)} = Q^{(k)}R^{(k)}\square$$

Now take inverse: $A^{-k} = (R^{(k)})^{-1}(Q^{(k)})^*$, Conjugate transpose: $(A^{-k})^* = Q^{(k)}(R^{(k)})^{-*}$

- \Rightarrow QR factorization of matrix with eigenstates $r(\lambda_i) = \frac{\lambda_i^{-k}}{\lambda_i}$
- ⇒ Connection also with (unshifted) inverse power method NB no matrix inverse performed

QR algorithm with shifts and shifted inverse power method

- 1. $A_k s_k I = Q_k R_k$ (QR factorization)
- 2. $A_{k+1} = R_k Q_k + s_k I$, $k \leftarrow k+1$, repeat.

QR algorithm with shifts and shifted inverse power method

- 1. $A_k s_k I = Q_k R_k$ (QR factorization)
- 2. $A_{k+1} = R_k Q_k + s_k I$, $k \leftarrow k+1$, repeat.

$$\prod_{i=1}^{k} (A - s_i I) = Q^{(k)} R^{(k)} (= (Q_1 \cdots Q_k) (R_k \cdots R_1))$$

Proof: Suppose true for k-1. Then QR alg. computes $(Q^{(k-1)})^*(A-s_kI)Q^{(k-1)}=Q_kR_k$, so

$$(A - s_k I)Q^{(k-1)} = Q^{(k-1)}Q_k R_k$$
, hence

$$\prod_{i=1}^{k} (A - s_i I) = (A - s_k I) Q^{(k-1)} R^{(k-1)} = Q^{(k-1)} Q_k R_k R^{(k-1)} = Q^{(k)} R^{(k)}.$$

Inverse conjugate transpose: $\prod_{i=1}^k (A-s_iI)^{-*} = Q^{(k)}(R^{(k)})^{-*}$

- \Rightarrow QR factorization of matrix with eigends $r(\lambda_j) = \prod_{i=1}^k \frac{1}{\lambda_j s_i}$
- ⇒ Connection with shifted inverse power method, hence rational approximation

QR algorithm for symmetric A

lacktriangle Initial reduction to Hessenberg form ightarrow tridiagonal

- ▶ QR steps for tridiagonal: O(n) instead of $O(n^2)$
- powerful alternatives available for tridiagonal eigenproblem (QR, divide-conquer ([Gu-Eisenstat 95]), HODLR ([Kressner-Susnjara 19], exploit low-rank structure),...)
- ► Cost: $\frac{4}{3}n^3$ flops for eigvals, $\approx 10n^3$ for eigvecs
- Since I am speaking, also mention spectral divide-and-conquer (w/ Freund, Higham): all about rational approximation

Golub-Kahan for SVD

Apply Householder reflectors from left and right (different ones) to **bidiagonalize**

- Once bidiagonalized,
 - ightharpoonup Mathematically, QR on B^TB
 - ► More elegant: dqds algorithm [Fernando-Parlett 1994]
- ▶ Cost: $\approx 4mn^2$ flops for singvals $\Sigma_1 \approx 20mn^2$ flops for singvecs U, V

Polynomial rootfinding p(x) = 0 via eigenvalues

$$p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$$
$$p(\lambda) = 0 \Leftrightarrow \lambda \text{ eigenvalue of}$$

$$C = \begin{bmatrix} -a_{n-1} & -a_{n-2} & \dots & -a_1 & -a_0 \\ 1 & & & & & \\ & & 1 & & & \\ & & & \ddots & & \\ & & & 1 & 0 \end{bmatrix} \in \mathbb{C}^{n \times n}$$

 $ilde{p}(x) = T_n(x) + a_{n-1}T_{n-1}(x) + \cdots + a_1T_1(x) + a_0T_0(x),$ $T_i(x)$: Chebyshev polynomial. $\tilde{p}(\lambda) = 0 \Leftrightarrow \lambda$ eigenvalue of

$$\tilde{C} = \frac{1}{2} \begin{bmatrix} -a_{n-1} & 1 - a_{n-2} & -a_{n-3} & \cdots & -a_0 \\ 1 & 0 & 1 & & & \\ & \ddots & \ddots & \ddots & & \\ & & 1 & 0 & 1 \\ & & 2 & 0 \end{bmatrix} \in \mathbb{C}^{n \times n}$$

Powerful approach for nonlinear problems: approximate with polynomial, and solve eigenproblem

Exotic but tractable eigenvalue problems

- Standard eigenvalue problem $Ax = \lambda x$
 - ► A symmetric: tridiagonal QR algorithm
 - nonsymmetric: Hessenberg QR algorithm
 - ▶ QZ algorithm: QR applied to $B^{-1}A$ implicitly
- Polynomial eigenvalue problem $P(\lambda)x = 0$, e.g. $P(\lambda) = \lambda^2 A + \lambda B + C$
 - usually linearization + QZ $\begin{bmatrix}
 -B & -C \\
 I & 0
 \end{bmatrix}
 \begin{bmatrix}
 \lambda x \\
 x
 \end{bmatrix} = \lambda
 \begin{bmatrix}
 A & 0 \\
 0 & I
 \end{bmatrix}
 \begin{bmatrix}
 \lambda x \\
 x
 \end{bmatrix}$

All these are tractable! $O(n^3)$ cost (or $O((nd)^3)$, d: degree) or less

- Nonlinear eigenvalue problem: $F(\lambda)x = 0$, e.g. $F(\lambda) = \exp(\lambda)A + \log(\lambda)B + C$
 - usually: local approximation $F(\lambda) \approx P(\lambda)$ +linearization+QZ

Krylov subspace methods

Idea: find solution \hat{x} in subspace

$$\mathcal{K}_k(A,b) := \mathsf{span}([b,Ab,A^2b,\ldots,A^{k-1}b]).$$

equivalent to $\hat{x} = p_{k-1}(A)b$, p_{k-1} : polynomial of degree k-1

Why should it work?

- For eigenproblems $Ax = \lambda x$, when looking for dominant eigvals
 - or better yet, work with $(A \mu I)^{-1}$: shift-invert Arnoldi
- For linear systems Ax = b, fast convergence roughly when $\kappa_2(A) = O(1)$
- Very useful to understand from polynomial(/rational) approximation viewpoint: $x \approx \hat{x} = p_{k-1}(A)b$

Arnoldi process

Denote by $Q \in \mathbb{C}^{n \times k}$ orthonormal that spans (k = 1, 2, ...)

$$\mathcal{K}_k(A,b) := \mathsf{span}([b,Ab,A^2b,\ldots,A^{k-1}b])$$

(note $Q(:,1) = b/\|b\|_2$). Then consider matrix AQ. Careful consideration reveals identity

$$AQ = QH + q_{k+1}[0, \dots, 0, h_{k+1,k}],$$

where H is upper Hessenberg

- ▶ ith column yields $Aq_i = \sum_{j=1}^i H_{ji}q_j + H_{i+1,i}q_{j+1}$: obtain H_{ji} by orthogonalization (Householder or Gram-Schmidt)
- far superior (in stability) to forming matrix $[b,Ab,A^2b,\ldots,A^{k-1}b]$ then computing QR

Lanczos

When A symmetric, Arnoldi simplifies to

$$AQ = QT + q_{k+1}[0, \dots, 0, h_{k+1,k}],$$

where T is tridiagonal

 \blacktriangleright three-term recurrence, orthogonalize necessary only against past two vecs q_i,q_{i-1}

Lanczos' algorithm for symmetric eigenproblem:

- ▶ Conceptually, find Q and do **Rayleigh-Ritz**: compute eigvals of Q^TAQ : projection method
- ▶ We actually have $Q^TAQ = T$, tridiagonal eigenproblem

GMRES for Ax = b

Conceptually, solve

$$\min_{x \in \mathcal{K}_k(A,b)} \|Ax - b\|_2$$

Given $AQ=QH+q_{k+1}h_{k+1,k}e_{k+1}$ where $e_{k+1}:=[0,\dots,0,h_{k+1,k}]$, equivalent to (same trick as in least-squares)

$$\min_{y} ||AQy - b||_{2} = \min_{y} ||(QH + q_{k+1}h_{k+1,k}e_{k+1})y - b||_{2}$$

$$= \min_{y} \left\| \begin{bmatrix} H \\ h_{k+1,k}e_{k+1} \end{bmatrix} y - \begin{bmatrix} Q^{T} \\ q_{k+1}^{T} \end{bmatrix} b \right\|_{2}$$

Solve final problem via QR (Givens rotations)+triangular solve, ${\cal O}(n^2)$

GMRES convergence

Recall that $x \in \mathcal{K}_k(A, b) \Rightarrow x = p_{k-1}(A)b$. Hence GMRES solution is

$$\min_{x \in \mathcal{K}_k(A,b)} ||Ax - b||_2 = \min_{p_{k-1} \in \mathcal{P}_{k-1}} ||Ap_{k-1}(A)b - b||_2$$

$$= \min_{\tilde{p} \in \mathcal{P}_k, \tilde{p}(0) = 0} ||(\tilde{p}(A) - I)b||_2$$

$$= \min_{p \in \mathcal{P}_k, p(0) = 1} ||p(A)b||_2$$

If A diagonalizable $A = X\Lambda X^{-1}$,

$$||p(A)||_2 = ||Xp(\Lambda)X^{-1}||_2 \le ||X||_2 ||X^{-1}||_2 ||p(\Lambda)||_2$$
$$= \kappa_2(X) \max_{z \in \lambda(A)} |p(z)|$$

Interpretation: find polynomial s.t. p(0) = 1 and $|p(\lambda_i)|$ small (demo)

CG. MINRES

When A symmetric, Lanczos gives $AQ = QT + q_{k+1}[0, \dots, 0, 1]$, T: tridiagonal

- ► CG: when $A \succ 0$, solve $Q^T(AQy b) = 0, x = Qy$ \rightarrow "Galerkin orthogonality": residual orthogonal to Q
 - \blacktriangleright three-term recurrence reduces cost to O(k) A-matmuls
 - \blacktriangleright minimizes A-norm of error $x_k = \operatorname{argmin}_{x \in Q} \|x x_*\|_A$

$$(x - x_*)^T A (x - x_*) = (Qy - x_*)^T A (Qy - x_*)$$

= $y^T (Q^T A Q) y - 2b^T Q y + b^T x_*,$

minimizer is
$$y = (Q^T A Q)^{-1} Q^T b$$
, so $Q^T (A Q y - b) = 0$

- ► MINRES: symmetric (indefinite) version of GMRES
 - ightharpoonup again, three-term recurrence, O(k) A-matmuls

Preconditioning for GMRES, CG etc

$$Ax = b$$

Instead find $M \approx A^{-1}$ and solve

$$MAx = Mb$$

Desiderata of M:

- ▶ M simple enough s.t. lin. systems Mx = b easy
- ► MA has clustered eigenvalues
- Finding effective preconditioners is never-ending research topic Andy Wathen is our Oxford expert!

Randomized SVD

[Halko, Martinsson, Tropp 2011]

- (i) Generate a random matrix $\Omega \in \mathbb{R}^{n \times (r+\ell)}$, where ℓ is a small integer (say 5).
- (ii) Compute $A\Omega$ and its QR factorization $A\Omega = QR$.
- (iii) Compute $Q^T A$ and its SVD $Q^T A = \tilde{U} \hat{\Sigma} \hat{V}^T$.
- (iv) Take $\hat{U}=Q\tilde{U}$, and let $\hat{U}_r,\hat{\Sigma}_r,\hat{V}_r$ be the leading r parts of $\hat{U},\hat{\Sigma},\hat{V}_r$ respectively. Output $\hat{A}_r=\hat{U}_r\hat{\Sigma}_r\hat{V}_r^T$ as a rank-r approximant to A.

Approximation quality:

$$\mathbb{E}[\|A - \hat{A}_r\|_F] \le \sqrt{1 + \frac{r}{\ell - 1}} \|A - A_r\|_F$$

Optimal up to
$$\sqrt{1+\frac{r}{\ell-1}}=O(1)$$

Understanding randomized SVD

Want $||A - QQ^TA||_F/||A - A_r||_F = O(1)$, where $A\Omega = QR$,

$$A\Omega = U \begin{vmatrix} \Sigma_1 V_1^T \Omega \\ \Sigma_2 V_2^T \Omega \end{vmatrix}, \qquad \Sigma_1 = \mathsf{diag}(\sigma_1, \dots, \sigma_r)$$

- ▶ $V_1^T\Omega$: $r \times (r + \ell)$ rectangular Gaussian, so well-conditioned, so w.h.p. $\|(V_1^T\Omega)^{\dagger}\| = O(1)$ (X^{\dagger} : pseudoinverse)
- ► Hence

$$A\Omega(\Sigma_1 V_1^T \Omega)^{\dagger} = U \begin{vmatrix} I \\ F \end{vmatrix}, \quad F = \Sigma_2 V_2^T \Omega(V_1^T \Omega)^{\dagger} \Sigma_1^{-1}$$

- Note $||(I QQ^T)A||_F^2 = ||A||_F^2 ||Q^TA||_F^2$
- ► Take $\tilde{Q} := A\Omega(\Sigma_1 V_1^T \Omega)^{\dagger} = U \begin{bmatrix} I \\ F \end{bmatrix} (I + F^T F)^{-1/2}$. Then

$$\begin{split} \|Q^TA\|_F^2 &\geq \|\tilde{Q}^TA\|_F^2 \geq \|(I+F^TF)^{-1/2}\Sigma_1\|_F^2 = \mathrm{Tr}(\Sigma_1(I+F^TF)^{-1}\Sigma_1) \\ &\geq \mathrm{Tr}(\Sigma_1(I-F^TF)\Sigma_1) = \|\Sigma_1\|_F^2 - \|\Sigma_2V_2^T\Omega(V_1^T\Omega)^\dagger\|_F^2 \\ &= \|\Sigma_1\|_F^2 - \|\Sigma_2M\|_F^2, \quad \|M\| = O(1) \end{split}$$

► Thus
$$||(I - QQ^T)A||_F^2 \le ||\Sigma_2 M||_F^2 = O(||\Sigma_2||_F^2)$$

Important (N)LA topics not treated

- tensors
- ► FFT (values ⇔ coefficients) for polynomials
- sparse direct solvers
- multigrid
- functions of matrices
- generalized, polynomial eigenvalue problems
- perturbation theory
- compressed sensing
- model order reduction
- communication-avoiding algorithms
- differential equations, optimisation, machine learning,... LA is everywhere in applied maths!

Eigenvalue perturbation theory

▶ first-order eigenvalue perturbation: $Ax = \lambda x$, $y^T A = \lambda y^T$, λ simple then

$$\lambda(A + \epsilon E) = \epsilon \frac{y^T E x}{y^T x} + O(\epsilon^2)$$

 \blacktriangleright Weyl's theorem: A, E symmetric then

$$\lambda_i(A) + \lambda_i(A + E) \le \lambda_i(A) + ||E||_2$$

▶ Davis-Kahan: A symmetric, $Ax_i = \lambda_i x_i$, $(A+E)\hat{x}_i = \hat{\lambda}_i \hat{x}_i$, $gap_i := \min_j |\lambda_i - \lambda_j|$

$$\sin \angle (x_i, \hat{x}_i) \le \frac{\|E\|}{gap_i}$$

Sherman-Morrison(-Woodbury) formula

 $A: n \times n$ invertible, $U, V: n \times k$, $k < (\ll)n$. Then

$$(A + UV^{T})^{-1} = A^{-1} - A^{-1}U(I_k + V^{T}A^{-1}U)^{-1}V^{T}A^{-1}$$

ightharpoonup Low-rank update of A^{-1}

Similar updates possible for QR, (SVD), ...