INCLUDE 2025 Fall Graph Based Al

그래프 기반 AI 세미나

그래프 분류를 위한 표현력 정의

초민재 minjaechoi@kaist.ac.kr

표현력

GNN의 목표: 비슷한 노드에는 비슷한 임베딩을, 다른 노드에는 다른 임베딩 생성

표현력: GNN이 서로 다른 그래프 구조를 얼마나 잘 구별할 수 있는지 나타내는 지표

동형성 문제: 두 그래프가 같은 연결 구조를 가질 때, Isomorphic을 가진다고 판단하는 문제

두 그래프가 같은 연결 구조를 가질 때, Isomorphic을 가진다고 판단하는 그래프 동형성 문제를 해결하는 알고리즘 (복잡도는 알려지지 않음)

작동방식

(1) 각 노드는 처음에는 동일한 색 받음

- **Sum Aggregator**
- (2) 각 노드는 자신의 색과 이웃의 색상을 집계함
- (3) (2)의 결과를 새로운 색상을 생성하는 해시 함수에 넣음
- (4) 노드의 색상이 더 이상 변하지 않을 때 까지 반복

결과로 얻은 색상들은 그래프의 정규 형태를 제공함 두 그래프가 동일한 색상을 공유하지 않는다면, 동형이 아님

- → 해시 함수를 통해 완벽하게 노드 구별함
- → 타 방식보다 더 많은 그래프 구조 구별 가능

Step1. 그래프 각 노드는 동일한 색으로 색칠

Step2. 각 노드는 본인 색상과 이웃의 색상을 집계

Step3. 그 결과를 새로운 색상을 생성하는 해시 함수에 넣음

Assume Hash Function = Identity Function

Step4. Step1 ~ 3를 색상 변경이 없을 때 까지 반복

Assume Hash Function = Identity Function

Graph Isomorphism Network (GIN)

WL 테스트기와 동일한 표현력을 가지도록 설계된 GNN 아키텍처

집계 과정

집계: 함수 f는 GNN이 다루는 이웃 노드 선택

결합: 함수 ϕ 는 선택된 노드로부터 임베딩을 결합하여 타겟노드에 대한 새로운 임베딩 생성

i 번째 노드 임베딩

$$h'_{i} = \phi \left(h_{i}, f\left(\left\{h_{i}: j \in \mathcal{N}_{i}\right\}\right)\right)$$

8

Graph Isomorphism Network (GIN)

i 번째 노드 임베딩

$$h_i' = \Phi(h_i, f(\{h_i: j \in \mathcal{N}_i\}))$$
ਲੂਟ ਹੁੰਗ i ਖੁਆ ਮੁੰਦੀ ਸੁਰੂ ਹੁਣ ਹੁੰਗ

i 번째 노드 임베딩

$$h_i' = \mathrm{MLP}((1+\epsilon) \cdot h_i + \sum_{j \in \mathcal{N}_i} h_j)$$

Graph Isomorphism Network (GIN)

k-WL 테스트와 k-GNN

개별 노드만 고려하는 것 대신 k-tuple을 이용해 먼 거리의 노드들 고려 (더 많은 그래프 구조를 구분)

→ Graph Classification 문제에서 유용한 신경망 구조

그래프 분류(Graph Classification): 노드 임베딩을 하나의 그래프 임베딩으로 변환하여 그래프 전체의 특성을 예측

GNN을 이용한 그래프 분류

그래프 분류: GNN이 만들어내는 노드 임베딩에 기반함 전역풀링 / 그래프 수준의 리드아웃(Readout)

평균 그래프 풀링

$$h_G = \frac{1}{N} \sum_{i=0}^{N} h_i$$

최댓값 그래프 풀링

$$h_G = \max_{i=0}^N (h_i)$$

$$h_G = \sum_{i=0}^N h_i^0 || ... || \sum_{i=0}^N h_i^k$$

합산 그래프 풀링

$$h_G = \sum_{i=0}^N h_i$$

표현력 가장 강함

GNN의 각 k-layer에서의 노드 임베딩을 합한 후 연결

INCLUDE 2025 Fall Graph Based Al

그래프 기반 AI 세미나

그래프 신경망을 이용한 링크 예측

최민재 minjaechoi@kaist.ac.kr

전통적 링크 예측 방법

링크 예측: 두 노드 사이에 링크(Edge) 가 존재할지 여부를 예측하는 문제

휴리스틱 기법: (1) 지역 휴리스틱 (1hop or 2hop)

공통 이웃 (Common Neighbors) 1-hop

$$f(u,v) = |\mathcal{N}(u) \cap \mathcal{N}(v)|$$
 두 노드 사이 공통인 이웃 수 측정

자카드 계수 (Jaccard's Coefficient) 1-hop

$$f(u,v) = \frac{|\mathcal{N}(u) \cap \mathcal{N}(v)|}{|\mathcal{N}(u) \cup \mathcal{N}(v)|}$$
 공통 이웃 비율 측정

아다믹-아다르 인덱스 (Adamic-Adar index) ^{2-hop}

$$f(u,v) = \sum_{x \in \mathcal{N}(u) \cap \mathcal{N}(v)} \frac{1}{\log|\mathcal{N}(x)|}$$

공통 이웃 노드의 차수의 로그값의 역수 합

Idea: 공통 이웃이 큰 이웃을 가지고 있다면 그들은 작은 이웃을 가진 이웃보다 중요성이 적어짐

전통적 링크 예측 방법

링크 예측: 두 노드 사이에 링크(Edge) 가 존재할지 여부를 예측하는 문제

휴리스틱 기법: (2) 전역 휴리스틱

카츠 인덱스 (Katz index)

가중치: 더 긴 경로에 패널티 부여 (보통 $0.8 \sim 0.9$) $f(u,v) = \sum_{i=1}^{\infty} \beta^i A^i$ 모든 길이 경로는 인접행렬의 거듭제곱으로 계산

두 노드 사이 모든 가능한 경로의 가중 합 계산 Idea: 짧은 경로가 있으면 연결될 가능성이 높음

재시작 랜덤 워크 (Random walk with restart)

특정 시작노드(s)에서 출발한 Random Walker가 그래프 간선에 따라 이동. 보행자는 이웃노드로 이동할 확률 외에도 매 단계마다 정해진 재시작 확률(α)로 시작 노드(s)로 돌아갈 수 있음. 일정 횟수 이후 대상 노드와 가장 방문 횟수 높은 노드 사이 링크 제안

→ S로부터 경로가 짧거나 연결성이 강한 노드에 높은 값 부여

전통적 링크 예측 방법

링크 예측: 두 노드 사이에 링크(Edge) 가 존재할지 여부를 예측하는 문제

행렬 분해 (Matrix Factorization)

노드 임베딩(Z) 학습하여 인접행렬(A) 전체를 근사

$$A \approx Z^T Z$$
 노드들이 유사할 경우 내적 값 최대 노드들이 상이할 경우 내적 값 최소

목표: minimize
$$\sum_{i \in V, j \in V} (A_{uv} - z_v^T z_u)^2$$

노드 임베딩 학습하여 실측값과 예측 값 사이 Norm을 최소화

노드 임베딩 활용한 링크 예측 : Graph Autoencoder

Encoder

$$Z = GCN(X, A)$$

클래식한 두 개 계층으로 구성된 GCN

Decoder

$$\hat{A} = \sigma(Z^T Z)$$

행렬 분해와 Sigmoid 함수 사용하여 인접행렬 근사

→ 인접 행렬 각 요소에 대한 확률 예측

두 인접 행렬의 요소 사이의 이진 교차 엔트로피 손실함수 사용하여 훈련됨

$$\mathcal{L}_{BCE} = \sum_{i \in V, j \in V} -A_{ij} \log(\hat{A}_{ij}) - (1 - A_{ij}) \log(1 - \hat{A}_{ij})$$

Cf) 인접행렬은 종종 희소하여, 이전 손실함수에서 $A_{ij}=1$ 을 선호하는 가중치 추가 또는 훈련 중 0 값을 더 적게 샘플링 하여 레이블을 균형있게 만들 수 있음

노드 임베딩 활용한 링크 예측: VGAE(Variational Graph Autoencoder)

→ 노드 임베딩을 직접 학습하는 대신, VGAE를 샘플링 하여 임베딩을 생성하는 정규 분포 학습 (GAE의 확률적 변형)

Encoder

임베딩 Z 자체 대신, Z가 따르는 잠재 정규 분포의 평균 μ 및 분산 σ^2 의 매개변수 학습 첫 번째 계층을 공유하는 두 GCN으로 구성

Decoder

학습된 분포 $\mathcal{N}(\mu, \sigma^2)$ 에서 재매개변수화 기법을 사용하여 임베딩 Z_i 샘플링.

이후 인접행렬 근사: $\hat{A} = \sigma(Z^T Z)$

→ 인코더의 출력값이 정규분포를 따라야 하기에, 손실함수에 새로운 항(쿨백 라이블러 발산) 추가 :두 분포간 차이 측정

$$\mathcal{L}_{ELBO} = \mathcal{L}_{BCE} - \text{KL} [q(Z|X,A)] [|p(Z)]$$

SEAL: Subgraphs, Embeddings, and Attributes for Link prediction

전체 그래프 대신 입력으로 사용 (= 지역 휴리스틱을 자동으로 학습)

둘러싼 서브그래프 추출

둘러싼 서브 그래프 추출

실제 링크 세트와 가짜링크 세트를 통해 훈련 데이터 형성을 포함함

노드 레이블링

노드 정보 행렬 구축

노드 레이블, 노드 임베딩, 노드 특성의 세 가지 구성 요소 포함

그래프 인공신경망

GNN 학습

노드 정보 행렬을 입력받아 링크 가능성 출력

SEAL: Subgraphs, Embeddings, and Attributes for Link prediction

둘러싼 서브 그래프 추출

→ 대상 노드와 그들의 k-hop 이웃을 나열하여 그들의 간선과 특성 추출

높은 hop 수 = 휴리스틱 품질 향상하나, 계산 비용 높음

SEAL: Subgraphs, Embeddings, and Attributes for Link prediction

노드 레이블링

이중 반경

(d(i,x),d(i,y))

GNN이 단순히 이웃이라는 사실을 아는 것 외에, 각 노드가 대상 x, y로 부터 얼마나 멀리 떨어져 있는지를 알 수 있게 하여 구조적 중요성 설명 가능

DRNL(Double-Radius Node Labeling) Algorithm

이중 반경 정보를 하나의 정수형 레이블로 변환하는 알고리즘

SEAL: Subgraphs, Embeddings, and Attributes for Link prediction

DRNL Algorithm

이중 반경 정보를 **하나의 정수형 레이블로** 변환하는 알고리즘

목표: 이중 반경 쌍을 계산한 후, 이를 원핫 인코딩 하여 GNN의 입력 특성으로 사용하기 위한 레이블 생성

두 거리를 결합하여 거리가 가까울수록 더 작은 레이블 부여

- (1) x, y에 레이블 1 할당
- (2) 반경 (1,1) 가진 노드에 레이블 1 할당
- (3) 반경 (1,2) or (2,1) 가진 노드에 레이블 3 할당
- (4) 반경 (1,3) or (3,1) 가진 노드에 레이블 4 할당

$$f(i) = 1 + \min(d(i,x), d(i,y)) + (d/2)[(d/2) + (d\%2) - 1]1$$

SEAL: Subgraphs, Embeddings, and Attributes for Link prediction

GNN 훈련 (Deep Graph Convolutional Neural Network, DGCNN)

- (1) 여러 GCN 레이어가 노드 임베딩 계산후 연결됨
- (2) 글로벌 정렬 풀링 레이어(Global Sort Pooling)은 임베딩을 일관된 순서로 정렬 후 순열 불변이 아닌 컨볼루션 레이어에 입력
- (3) 전통적인 컨볼루션 및 밀집 레이어가 정렬된 그래프 표현에 적용되어 링크 황률 출력

INCLUDE 2025 Fall Graph Based Al

그래프 기반 AI 세미나

그래프 신경망을 이용한 그래프 생성

최민재 minjaechoi@kaist.ac.kr

그래프 생성의 중요성

활용 분야

데이터 증강 / 이상치 감지 / 신약 개발...

유형

사실적 생성: 주어진 그래프 모방

목표 지향적 생성: 특정 지표 최적화

기존 그래프 생성 방식

에르되시-레니 (Erdos – Renyi Model)

단점: 각 간선이 독립적이라는 가정 때문에 클러스터/커뮤니티가 존재할 경우, 실제 그래프 모방하기 어려움

G(n,p)

n: 노드 개수, p: 가능한 모든 두 노드 쌍 사이에 간선이 연결될 확률

→ 각 간선이 존재할지 여부를 확률 p 로 독립적으로 결정하여 그래프 생성

G(n, M)

n: 노드 개수, M: 간선 개수

노드가 n개, 간선이 M개인 모든 가능한 그래프 중 임의로 한 개 선택

기존 그래프 생성 방식

스몰 월드 (Small-World) 모델

실세계 네트워크 특징인 짧은 경로와 높은 클러스터링 개수를 모방

스몰 월드 모델로 생성된 그래프의 특징

- (1) Short Path Length: 네트워크 내의 임의의 두 노드 사이의 평균거리가 상대적으로 짧음 > 정보가 네트워크 전체에 빠르게 확산되기 쉬움
- (2) High Clustering Coefficient: 네트워크의 노드들이 서로 가깝게 연결되어 촘촘한 클러스터(/커뮤니티)를 형성

기존 그래프 생성 방식

스몰 월드 (Small-World) 모델

실세계 네트워크 특징인 짧은 경로와 높은 클러스터링 개수를 모방

와츠-스트로가츠 모델 (Watts-Strogatz Model)

- (1) **노드 생성**: n개 노드 생성
- (2) 규칙적 연결: 각 노드는 가장 가까운 k개의 이웃과 연결됨 (k가 홀수일 경우 k-1)
- (3) 무작위 재배선(Rewiring): 확률 p로 기존 간선 중 일부를 무작위의 다른 노드와 연결되도록 재배선 → 네트워크 전체 경로 길이를 줄임

한계: 노드 수가 고정되어 있어 네트워크가 커질 수 없고, 실제와 같은 차수 분포 만들기 어려움

Recall: VGAE

→ 노드 임베딩을 직접 학습하는 대신, VGAE를 샘플링 하여 임베딩을 생성하는 정규 분포 학습 (GAE의 확률적 변형)

Encoder

임베딩 Z 자체 대신, Z가 따르는 잠재 정규 분포의 평균 μ 및 분산 σ^2 의 매개변수 학습

→ 원본 그래프의 구조적 정보를 확률적 분포로 저장

Decoder

학습된 분포 $\mathcal{N}(\mu, \sigma^2)$ 에서 재매개변수화 기법을 사용하여 임베딩 Z_i 샘플링.

이후 인접행렬 근사: $\hat{A} = \sigma(Z^T Z)$

새 그래프 확정: 인접행렬: 노드간 연결 확률 나타내므로, 특정 임계값 설정 후 임계값을 넘는 노드 쌍을 연결하여 이진 인접 행렬(그래프) 생성

GVAE (Graph Variational Autoencoder)

인접행렬 뿐만 아니라 엣지 속성 텐서(E)와 노드 특성값 행렬(F)까지 포함하는 더 복잡한 그래프 G = (A, E, F) 학습하여 분자구조 생성

CGVAE(Constrained Graph Variational Autoencoder)

제약 조건 검사하거나 라그랑지안 기반으로 정규화를 추가하여 유효한 분자 구조와

같이 조건을 갖는 그래프 생성 가능

자기회귀 모델

그래프 생성을 데이터와 과거 의사 결정을 고려하는 순차적 의사결정 과적으로 봄 원리 각 단계에서 모델은 새 노드나 새 링크를 만들고, 이렇게 얻은 부분 그래프는 다음 생성 단계의 입력이 됨.

GraphRNN: 두 개의 순환인공신경망(RNN)을 사용하여 과정 구현

- (1) 그래프 레벨 RNN: 새로운 노드를 생성하고 초기 상태 설정
- (2) 간선 레벨 RNN: 새로 생긴 노드가 기존 노드들에 연결될지 여부 예측하여 인접행렬 채워 나감

30

생성적 적대 신경망 (GAN)

Generator와 Discriminator라는 두 신경망이 경쟁하며 학습하는 제로섬 게임 프레임워크

Generator: 훈련 데이터와 유사한 새로운 그래프 데이터 생성

Discriminator: 각 샘플이 진짜인지 또는 생성기가 만든 가짜인지를 구분

WGAN (Wasserstein GAN)

두 확률 분포 사이의 바서슈타인 거리를 최소화하여 학습 안정성 높임.

생성된 데이터분포와 실제 데이터 분포 사이 차이를 측정하는 행렬

MolGAN(molecular GAN)

그래프 구조의 데이터를 직접 처리하는 그라디언트 패널티를 쓰는 WGAN과 원하는 화학적 성질을 갖는 분자를 생성하기 위한 강화학습 목표 결합.

그래프 간선 & 결합유형에 대한 정보

그래프 노드 유형에 대한 정보

WGAN (Wasserstein GAN)

두 확률 분포 사이의 바서슈타인 거리를 최소화하여 학습 안정성 높임.

생성된 데이터분포와 실제 데이터 분포 사이 차이를 측정하는 행렬

MolGAN(molecular GAN)

그래프 구조의 데이터를 직접 처리하는 그라디언트 패널티를 쓰는 WGAN과 원하는 화학적 성질을 갖는 분자를 생성하기 위한 강화학습 목표 결합.

범주형 샘플링 과정 거쳐 이산적(희소)그래프 객체로 변환

샘플링 하는 이유

원자 유형(O/C/N...)은 연속적 값이 아닌 정해진 범주에 속하는 이산적 값이기 때문, 대부분의 쌍은 분자에서 실제로 연결되어 있지 않기 때문

WGAN (Wasserstein GAN)

두 확률 분포 사이의 바서슈타인 거리를 최소화하여 학습 안정성 높임.

생성된 데이터분포와 실제 데이터 분포 사이 차이를 측정하는 행렬

MolGAN(molecular GAN)

그래프 구조의 데이터를 직접 처리하는 그라디언트 패널티를 쓰는 WGAN과 원하는 화학적 성질을 갖는 분자를 생성하기 위한 강화학습 목표 결합.

범주형 샘플링 과정 거쳐 이산적(희소)그래프 객체로 변환

WGAN (Wasserstein GAN)

두 확률 분포 사이의 바서슈타인 거리를 최소화하여 학습 안정성 높임.

생성된 데이터분포와 실제 데이터 분포 사이 차이를 측정하는 행렬

MolGAN(molecular GAN)

그래프 구조의 데이터를 직접 처리하는 그라디언트 패널티를 쓰는 WGAN과 원하는 화학적 성질을 갖는 분자를 생성하기 위한 강화학습 목표 결합.

그래프 임베딩을 MLP 통해 -inf ~ +inf 사이 스칼라값으로 출력(진짜 데이터셋의 그래프와 얼마나 유사한지 평가)

그래프 임베딩을 mlp를 통해 0과 1 사이 스칼라 값으로 출력 (외부시스템에서 제공하는 점수 근사하여 생성된 분자가 원하는 화학적 특성을 얼마나 잘 충족하는지에 대한 보상 제공)

MolGAN

Generator와 Discriminator라는 두 신경망이 경쟁하며 학습하는 제로섬 게임 프레임워크

Generator: 훈련 데이터와 유사한 새로운 그래프 데이터 생성

WGAN과 강화학습 손실함수의 선형 조합을 사용하여 학습됨.

원자 유형을 포함하는 노드 행렬 X와 간선과 결합 유형을 모두 포함하는 인접 행렬 A를 출력하는 MLP

Discriminator: 각 샘플이 진짜인지 또는 생성기가 만든 가짜인지를 구분

WGAN 손실함수만을 사용하여 학습

Reward Network: 각 그래프에 점수를 매김

외부 시스템(RDKit)에서 제공하는 실제 점수를 기반으로 MSE 손실함수를 사용하여 학습함.

MolGAN

Discriminator: 각 샘플이 진짜인지 또는 생성기가 만든 가짜인지를 구분

Reward Network: 각 그래프에 점수를 매김

Relational-GCN 사용

여러 유형의 간선을 지원하도록 변형됨 (화학 분자 간 다양한 결합 표현 위해 사용)

노드 임베딩 집계

여러 층의 Graph Convolution을 거쳐 노드별 임베딩 계산

노드의 임베딩 집계 함수를 통해 하나의 그래프 레벨 벡터로 변환

감사합니다

최민재

minjaechoi@kaist.ac.kr