微算機原理及應用

單元八:8051的中斷

授課老師: 林淵翔 老師

大綱

- 中斷與輪詢(Interrupt vs. Polling)
- 中斷服務程式和中斷向量(Interrupt Service Routine and Interrupt Vector)
- 8051 有哪些中斷源(8051 Interrupts)
- 8051 中斷之程式設計(Programming for Interrupt)
- 8051 中斷之C程式設計(Programming Interrupt in C)

大綱

• 範例一:外部中斷

• 範例二:計時器中斷

• 範例三:串列傳輸(傳送)中斷

• 範例四:串列傳輸(接收)中斷

• 參考文獻

單元八:8051的中斷

PART A

8.1中斷與輪詢

- 一個微控制器服務周邊裝置的方法有中斷與輪詢(Interrupt and Polling)兩種。
- 輪詢方法:微控制器連續監控裝置的狀態,當狀態條件成立,就去執行這個服務。
- 中斷方法:當周邊裝置需要服務時,會送一個中斷信號通知微控制器。
 - 當微控制器收到中斷信號,無論他正在做甚麼,會馬上去服務這個裝置。
 - 執行和中斷相關的程式就稱為中斷服務程式(Interrupt Service Routine (ISR))。

8.2 中斷服務程式與中斷向量

- 每一個中斷源,必須有一個對應的 Interrupt Service Routine (ISR), or Interrupt Handler。
- 每一個中斷源,會有一個記憶體位址(中斷向量)用來指到不同的中斷服務程式位置,這一群記憶體位址稱為中斷向量表 (Interrupt Vector Table)。

- 8051 有 6 種中斷源
 - 系統重置 (RESET)
 - 2 個計時器中斷 (TF0 and TF1)
 - 2 個外部硬體中斷 (INTO and INT1)
 - 1 個串列通訊中斷 (Tl and RI)

• 中斷向量表 (Interrupt Vector Table)

Interrupt Vector Table for the 8051					
Interrupt ROM Location (Hex) Pin Flag Clear					
Reset	0000	9	Auto		
External hardware interrupt 0 (INT0)	0003	P3.2 (12)	Auto		
Timer 0 interrupt (TF0)	000B		Auto		
External hardware interrupt 1 (INT1)	0013	P3.3 (13)	Auto		
Timer 1 interrupt (TF1)	001B		Auto		
Serial COM interrupt (RI and TI)	0023		Programmer clear it.		

- 中斷的致能與除能(Enabling and Disabling)
 - 在RESET後,所有的中斷是disabled (masked)的。
 - 可以使用軟體去致能或除能中斷。
 - IE (Interrupt Enable) 暫存器就是用來 enabling (unmasking) and disabling (masking) 這些中斷的。

• IE (Interrupt Enable) 暫存器

D7	_						D 0	_
EA		ET2	ES	ET1	EX1	ET0	EX0	
EA	IE.7	If EA = 1	Disable all interrupts. If EA = 0, no interrupt is acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.					
	IE.6	Not imp	lemented,	reserved f	or future u	se.*		
ET2	IE.5	Enables	or disable	es Timer 2	overflow o	r capture	interrupt (80	52 only).
ES	IE.4	Enables	Enables or disables the serial interrupt.					
ET1	IE.3	Enables	Enables or disables Timer 1 overflow interrupt.					
EX1	IE.2	Enables or disables external interrupt 1.						
ET0	IE.1	Enables or disables Timer 0 overflow interrupt.						
EX0	IE.0	Enables	or disable	es external	interrupt ().		

單元八:8051的中斷

PART B

D7	_	_					D0
EA		ET2	ES	ET1	EX1	ET0	EX0

Example:

➤ MOV IE,#10010110B ;enable Serial, Timer 0, EX1

> CLR IE.1 ;mask(disable) Timer 0 interrupt only

> CLR IE.7 ;disable all interrupts

> SETB IE.7 ;EA = 1, Global enable

> SETB IE.4 ;enable Serial interrupt

> SETB IE.1 ;enable Timer 0 interrupt

> SETB IE.2 ;enable EX1

• 8051 有兩個 Timer 中斷: TF0 and TF1

- 計時中斷範例:
- a. 寫一程式將 8 位元 的資料連續從 P0 送到 P1。
- b. 同時輸出一週期為 200μs 的方波到 P2.2。 __□□□
- c. 請用 Timer 0 去產 生此方波。
- d. 假設 XTAL = 11.0592 MHz。

	ORG	0000H	
	LJMP	MAIN	;bypass interrupt vector table
;ISR for	Timer 0 to g	enerate square wav	re
	ORG	000BH	;Timer 0 interrupt vector table
	CPL	P2.2	toggle P2.2 pin
	RETI		return from ISR
;The mai	in program		
	ORG	0030H	;after vector table space
MAIN:	MOV	TMOD,#02H	;Timer 0, mode 2 (auto-reload)
	MOV	P0,#0FFH	;make P0 an input port
	MOV	TH0,#-92	;TH0=A4H for -92 (100/1.085 = 92)
	MOV	IE,#82H	;IE=10000010(Bin) enable Timer 0
	SETB	TR0	;Start Timer 0
BACK:	MOV	A,P0	get data from P0;
	MOV	P1,A	;issue it to P1
	SJMP BA	CK	;keep doing it
			;loop unless interrupted by TF0
	END		-

- 8051 有兩個
 外部硬體中斷
 - INTO
 - **INT1**

• TCON 暫存器

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

Bit Number	Bit Mnemonic	Description
7	TF1	Timer 1 Overflow Flag Cleared by hardware when processor vectors to interrupt routine. Set by hardware on timer/counter overflow, when the timer 1 register overflows.
6	TR1	Timer 1 Control Bit Clear to turn off timer/counter 1. Set to turn on timer/counter 1.
5	TF0	Timer 0 Overflow Flag Cleared by hardware when processor vectors to interrupt routine. Set by hardware on timer/counter overflow, when the timer 0 register overflows.
4	TR0	Timer 0 Run Control Bit Clear to turn off timer/counter 0. Set to turn on timer/counter 0.
Reset Value	e = 0000 0000b	•

• TCON 暫存器

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

Bit Number	Bit Mnemonic	Description		
3	IE1	Interrupt 1 Edge Flag Cleared by hardware when interrupt is processed if edge-triggered (see IT1). Set by hardware when external interrupt is detected on INT1# pin.		
2	IT1	Interrupt 1 Type Control Bit Clear to select low level active (level triggered) for external interrupt 1 (INT1#). Set to select falling edge active (edge triggered) for external interrupt 1.		
1	IE0	Interrupt 0 Edge Flag Cleared by hardware when interrupt is processed if edge-triggered (see IT0). Set by hardware when external interrupt is detected on INT0# pin.		
0	IT0	Interrupt 0 Type Control Bit Clear to select low level active (level triggered) for external interrupt 0 (INT0#). Set to select falling edge active (edge triggered) for external interrupt 0.		
Reset Value = 0000 0000b				

- 準位觸發中斷(Level-triggered Interrupt)
 - 一般狀態的 INTO 和 INT1 pins 是 High,如果有低準位(Low)信號就會觸發產生中斷。
 - 在 INT pin 的低準位信號必須在ISR的最後一個指令 RETI前被移除; 否則會產生另一個中斷。

- 外部硬體中斷範例:
- a. 假設 INT1 接到一個開關並且一般狀態為 High。每當 INT1 變 0 時就會打開一 LED。
- b. LED 接到 P1.5,且一般狀態為 off 。當被打開時,會亮一段時間後自 動關閉。只要開關一直按著,LED 就會一直亮著。

ORG 0000H

LJMP MAIN ;bypass interrupt vector table

;--ISR for hardware interrupt INT1 to turn on the LED

ORG 0013H ;INT1 ISR

SETB P1.5 ;turn on LED MOV R3,#255 ;load counter

BACK: DJNZ R3,BACK ;keep LED on for a while

CLR P1.5 ;turn off the LED RETI ;return from ISR

;--The main program

ORG 0030H

MAIN: MOV IE,#10000100B ;enable external INT1

HERE: SJMP HERE ;stay here until interrupted

END

- 邊緣觸發中斷(Edge-triggered Interrupt)
 - 在 TCON 暫存器的 IT0 (bit 0) 和 IT1(bit 2) 用來決定
 是 Level- or Edge-triggered 模式。
 - 例如: "SETB TCON.2" 可以使 設為 Edge-triggered Interrupt,因此當有一個 High-to-Low 信號加入P3.3 時,微控制器會被中斷並被強制跳到中斷向量表中 0013H 的位置去執行中斷服務程式(ISR)。 (假設IE暫存器的EX1有致能)

- 外部硬體中斷範例:
- a. 假設 INT1 接到一個脈波產生器,每當脈波的負緣時就會 送一個 High 到 P1.5。
- b. P1.5 接一個 LED 或蜂鳴器。

ORG 0000H

LJMP MAIN ;bypass interrupt vector table

;--ISR for hardware interrupt INT1 to turn on the LED

ORG 0013H ;INT1 ISR

SETB P1.5 ;turn on the LED

MOV R3,#255

BACK: DJNZ R3,BACK ;keep the LED on for a while

CLR P1.5 ;turn off the LED RETI ;return from ISR

;--The main program

ORG 0030H

MAIN: SETB TCON.2 ;make INT1 edge-trigger interrupt

MOV IE,#10000100B ;enable External INT1

HERE: SJMP HERE ;stay here until interrupted

END

單元八:8051的中斷

PART C

- 串列通訊中斷
 - TI (Transfer Interrupt) 變成 1 表 示資料傳完, SBUF 暫存器可以再 傳另一個 byte 資料。
 - RI (Received Interrupt) 變成 1
 表示收到一個 byte 資料。
 - 8051 只有一個中斷給串列通訊。
 - 所以 ISR 必須自己判斷是 TI 或 RI 造成中斷。

Serial interrupt is invoked by TI or RI flags

- 串列通訊中斷範例:
- a. 寫一程式將 8 位元的資料連續從 P1 送到 P2。
- b. 並複製一份資料送到 COM port。
- c. 假設XTAL = 11.0592 MHz。Baud rate 設為 9600。

```
ORG
                   0
          LJMP
                    MAIN
; Serial interrupt vector
         ORG
                   23H
          LJMP
                   SERIAL
                                  ;jump to serial interrupt ISR
; The main program
         ORG
                   30H
MAIN:
         MOV
                   P1, #0FFH
                                  ;make P1 an input port
                                  ;timer1, mode 2(auto-reload)
         MOV
                   TMOD, #20H
         MOV
                   TH1, #0FDH
                                  :9600 baud rate
         MOV
                   SCON, #50H
                                  ;8-bit, 1 stop, REN enabled
         MOV
                   IE, #10010000B ;enable serial interrupt
         SETB
                                  :start timer 1
                   TR1
```

LOOP:	MOV MOV MOV SJMP	A, P1 SBUF, A P2, A LOOP	;read data from port 1 ;give a copy to SBUF ;send it to P2 ;stay in loop indefinitely
;Serial p	ort ISR ORG	200H	
SERIAL:	JB MOV CLR RETI	TI, TRANS A, SBUF RI	;jump if TI is high ;otherwise due to receive ;clear RI since CPU does not ;return from ISR
TRANS:	CLR RETI END	TI	;clear TI since CPU does not ;return from ISR

- 在 RETI 指令前清除 RI 和 TI 旗標
 - 這是需要的,因為 8051 只有一個中斷給傳送和接收, 所以 8051 不知道是誰產生的中斷,因此,需要在 ISR 中去清除旗標。

8051/52 的中斷旗標位元				
Interrupt	Flag	SFR Register Bit		
External 0	IE0	TCON.1		
External 1	IE1	TCON.3		
Timer 0	TF0	TCON.5		
Timer 1	TF1	TCON.7		
Serial port	TI, RI	SCON.1, SCON.0		
Timer 2	TF2	T2CON.7 (AT89C52)		
Timer 2	EXF2	T2CON.6 (AT89C52)		

- 串列通訊和計時中斷範例:
- a. 接收串列資料並送到 P0。
- b. 讀 P1 資料並傳送到串列埠。
- c. 使用 Timer 0 產生一 5 kHz 的方波在 P2.1。
- d. 假設XTAL = 11.0592 MHz。Baud rate 設為 4800。

	ORG LJMP ORG CPL RETI	0 MAIN 000BH P2.1	;ISR for Timer 0 ;toggle P2.1
	ORG LJMP	23H SERIAL	;ISR for UART ;jump to serial int. ISR
MAIN:	ORG MOV MOV MOV MOV MOV SETB SETB	30H P1,#0FFH TMOD,#22H TH1,#0F6H SCON,#50H TH0,#-92 IE,#10010010B TR1 TR0	;make P1 an input port ;timer 0&1, mode 2, auto-reload ;4800 baud rate ;8-bit, 1 stop, REN enabled ;for 5 kHz wave ;enable serial, timer 0 int. ;start timer 1 ;start timer 0

BACK:	MOV MOV SJMP	A,P1 SBUF,A BACK	;read data from port 1 ;give a copy to SBUF ;stay in loop indefinitely
;	Serial	port ISR	
	ORG	100H	
SERIAL:	JB	TI,TRANS	;jump if TI is high
	MOV	A,SBUF	otherwise due to receive
	MOV	P0,A	;send serial data to P0
	CLR	RI	;clear RI since CPU doesn't
	RETI		return from ISR
TRANS:	CLR	TI	;clear TI since CPU doesn't
	RETI		return from ISR
	END		·

單元八:8051的中斷

PART D

8051/52 Interrupt Number in C		
Interrupt	Name	Numbers used by 8051 C
External Interrupt 0	(INTO)	0
Timer Interrupt 0	(TF0)	1
External Interrupt 1	(INT1)	2
Timer Interrupt 1	(TF1)	3
Serial Communication	(RI + TI)	4
Timer 2 (8052 only)	TF2	5

- C程式中斷範例 1:
- b. 同時輸出一週期為 200μs 的 方波到 P2.2。
- c. 請用 Timer 0 去產生此方波。
- d. 假設 XTAL = 11.0592 MHz。

```
Switch P0.7 8051 5 kHz P2.2
```

```
#include < REGX51.H >
sbit SW
          = P0^7:
sbit IND
          = P0^0:
sbit WAVE = P2^2:
void timer0(void) interrupt 1 {
          WAVE = ~WAVE;
                               //toggle pin
void main(){
          SW = 1;
          TMOD = 0x02;
          TH0 = 0xA4;
                               //TH0 = -92;
          TR0 = 1:
          IE = 0x82; //enable interrupts for timer 0
          while(1){
          IND = SW; //send switch to LED
          } }
```

8.5 8051 中斷之C程式設計

- C程式中斷範例 2:
- a. 寫一程式將 1 位元的資料連續從 P0.7 送到 P0.0。
- b. 同時輸出一週期為 200μs 的方波到 P2.2。
- c. 請用 Timer 0 去產生此方波。
- d. 送一次字元 'A' 到串列埠。Baud rate 設為 9600。
- e. 假設 XTAL = 11.0592 MHz。

8.5 8051 中斷之C程式設計

8.5 8051 中斷之C程式設計

8051/52 Interrupt Priority Upon Reset (中斷優先權)			
Highest to Lowest Priority			
External Interrupt 0	(INTO)		
Timer Interrupt 0	(TF0)		
External Interrupt 1	(INT1)		
Timer Interrupt 1	(TF1)		
Serial Communication	(RI + TI)		
Timer 2 (8052 only)	TF2		

單元八:8051的中斷

PART E

微算機原理及應用實習

範例一:外部中斷

範例說明

• 實驗目的:

瞭解 8051 之外部中斷控制方法,並練習使用外部中斷來執行中斷功能。

• 功能說明:

由 AT89S51 的 Port 0 輸出控制 LED 燈,平時 LED 每 1 秒全部亮滅一次,當外部中斷 INT1 發生時,LED 由 D9 開始向左旋轉直到 D16 後回到全部亮滅狀態。

IO應用電路板(Task board 1)

電路圖

外部中斷設定方式

		組合語言	C語言		
(的事 SETB IT1 CLR IE1 SETB EX SETB EA	;清除INT1旗標 1 ;打開INT1中斷	//初始化要做的事 IT1 = 1; //設定負緣觸發 IE1 = 0; //清除INT1旗標 EX1 = 1; //打開INT1中斷 EA = 1; //打開全部中斷		
	PUSH PSY PUSH AC	f	//中斷服務要做的事 void EX1(void) interrupt 2 {		
F	POP AC POP PSI RETI	·	//中斷服務程式 }		

程式流程圖

程式碼(組合語言)

START:	ORG JMP ORG JMP SETB CLR SETB SETB MOV	0 START 13H INT_1 IT1 IE1 EX1 EA R0,#0	;外部中斷INT1向量 ;跳躍執行中斷副程式 ;外部中斷負緣觸發 ;清除INT1旗標 ;開啟外部中斷開關 ;開啟中斷總開關	LOOP2:	MOV CALL MOV RL MOV CJNE MOV JMP PUSH	P0,R1 DELAY A,R1 A R1,A R1,#01H,LOOP2 R1,#0 LOOP PSW	;LED左旋部分 ;將PSW送入堆疊
LOOP:	MOV MOV CPL MOV MOV	R1,#0 A,R0 A R0,A P0,R0	;全部LED亮滅	IN1_1:	PUSH MOV POP POP RETI	ACC R1,#01H ACC PSW	;將ACC送入堆疊 ;將ACC送入堆疊 ;設定要左旋 ;將ACC取出堆疊 ;將PSW取出堆疊
D500:	MOV CALL DJNZ CJNE	R5,#5 DELAY R5,D500 R1,#01H,LOOP	;判斷是否要左旋	DELAY: DLOOP:	MOV MOV DJNZ DJNZ RET END	R6,#200 R7,#230 R7,\$ R6,DLOOP	

程式碼(C語言)

```
#include <REGX51.H>
unsigned char P0 rl=0x00;
                      //宣告變數與常數
void Delay ms(int);
                       //宣告副程式型態
main(void)
                       //主程式開始
  unsigned char P0 buf=0;
                       //設定INT1負緣觸發
  IT1=1;
  IE1=0;
                       //清除INT1旗標
  EX1=1;
                       //開啟INT1中斷
                       //開啟總中斷
  EA=1;
    while(1)
    P0 buf=~P0 buf;
                       //取反向
    P0=P0 buf;
                       //P0的LED持續閃爍
    Delay ms(500);
    while(P0 rl)
                       //若發生中斷進入此迴圈
       P0=P0 rl;
       Delay ms(100);
       P0 rl<<=1;
```


練習題

• 功能說明:

由 AT89S51 的 Port 3.7 輸出控制蜂鳴器,並修改參考程式快樂頌 ("HappySong.c"),按下 S1 播放後,請使用外部中斷讓音樂播放到一半可以立即按下 S3 停止播放。

單元八:8051的中斷

PART F

微算機原理及應用實習

範例二:計時器中斷

範例說明

• 實驗目的:

瞭解 8051 之計時器中斷控制方法,並練習使用計時器中斷實作時間延遲副程式。

• 功能說明:

使用計時器中斷實作 1 秒的時間延遲副程式,並由 AT89S51 的 Port 0 輸出控制七段顯示器,使其每一秒依序從 0~9 上數並顯示。

IO應用電路板(Task board 1)

電路圖

計時器中斷設定方式

```
組合語言
                                                             C語言
:初始化要做的事
                                           :初始化要做的事
START:
                                                                 :將TIMERO設為模式1
                                           TMOD = 0x01
       TMOD,#01H
                         ;將TIMER0設為模式1
                                           TL0 = (65536-46080)%256
                                                                 :設定計時/計數值
 MOV
       TL0,#LOW(65536-46080);設定計時/計數值
                                           TH0 = (65536-46080)/256
  MOV
 MOV TH0,#HIGH(65536-46080)
                                           ET0 = 1;
                                                                 :打開TIMER0中斷
 SETB ET0
                         :打開TIMER0中斷
                                                                 :打開全部中斷
                                           EA = 1:
                         ;打開全部中斷
 SETB EA
                                           TR0 = 1;
                                                                 ;設定開始計數
  SETB TR0
                         :設定開始計數
                                           :中斷服務要做的事
:中斷服務要做的事
                                           void Timer0(void) interrupt 1
TIMER0_INT:
       TL0,#LOW(65536-46080);設定計時/計數值
                                             TL0 = (65536-46080)%256 ;設定計時/計數值
  MOV
 MOV
       TH0,#HIGH(65536-46080)
                                             TH0 = (65536-46080)/256
:中斷服務程式
                                             ;中斷服務程式
TIMERO INT EXIT:
  RETI
                         :離開中斷
```

程式流程圖

程式碼(組合語言)

ORG 0 TIMERO: **JMP START** MOV TH0,#HIGH(65536-46080) :設定計時數值 ORG MOV TL0, #LOW(65536-46080) 0BH **JMP** TIMER0 INC R1 **CJNE** R1,#20,EXIT :20 * 50ms = 1s START: MOV R1,#0 INC R0 :上數 加1 MOV DPTR,#TABLE ;七段顯示器查表 **CJNE** R0,#10,DISPLAY MOV R0.#0 MOV R0.#0 ;上數超過9 → 歸0 MOV R1.#0 DISPLAY: MOV TMOD.#01H ;設定計時器模式 MOV A.R0 :查表顯示七段 MOV TH0,#HIGH(65536-46080) :設定計時數值 MOVC A,@A+DPTR MOV TL0, #LOW(65536-46080) MOV **P0,A** MOV P0.#3FH **EXIT: SETB** :開啟TO中斷 **RETI** ET0 ;開啟中斷總開關 **SETB** EΑ **TABLE: SETB** TR0 :開始計時 3FH, 06H, 5BH, 4FH, 66H DB **JMP** ;無窮迴圈 DB 6DH, 7CH, 07H, 7FH, 67H **END**

程式碼(C語言)

```
#include < REGX51.H >
// ------宣告變數與常數------
code char SEG table[]={0x3f,0x06,0x5b,0x4f,0x66, //0~4
                  0x6d,0x7c,0x07,0x7f,0x67};//5~9
char xi=0,div t0;
//Tsvs=12/Fosc=12/11.0592MHz=1.085069444us
//計數Timer值 = 50ms/Tsys = 46080
#define T0Val (65536-46080)
void main(void)
  P0=SEG table[xi];
  TMOD=0x01;
                //設定T0計時器模式
  TH0=T0Val/256;
                //設定計時數值
 TL0=T0Val%256;
 ET0=1;
                //開啟T0中斷
 EA=1;
                //開啟中斷總開關
          //開啟中斷
//開始計時
  TR0=1;
  while(1);
                //無窮迴圈
```

練習題

• 功能說明:

倒數計時器,由 AT89S51 的 P2.5 讀取按鈕狀態,當按下按鈕後, Port 0 輸出控制七段顯示器從 5 開始每一秒下數一次,到 0 即停止。請使用計時器中斷來做時間延遲副程式。

單元八:8051的中斷

PART G

微算機原理及應用實習

範例三:串列傳輸(傳送)中斷

範例說明

• 實驗目的:

瞭解 8051 之串列傳輸(傳送)中斷控制方法,並練習使用 串列傳輸(傳送)中斷來傳送字串功能。

• 功能說明:

由電腦 PuTTY 介面顯示資料,AT89S51 傳送 Hello World! 字串顯示在 PuTTY上。

電路圖

主電路板(MCU Board)

UART中斷設定方式

```
組合語言
                                                         C語言
:初始化要做的事
                                         //初始化要做的事
                    ;將TIMER1設為模式2,8bit
                                                     //將TIMER1設為模式2,8bit
 MOV TMOD,#20
                                         TMOD = 20;
 MOV TH1,#253
                    :設定鮑率為9600
                                         TH1 = 253;
                                                     //設定鮑率為9600
                                         SMOD = 0x50:
 MOV SCON,#50H
 SETB TR1
                                         TR1 = 1;
 SETB ES
                                         ES = 1;
                                                     //打開UART中斷
                    :打開UART中斷
 SETB EA
                    ;打開全部中斷
                                         EA = 1;
                                                     //打開全部中斷
                                         //中斷服務要做的事
:中斷服務要做的事
                                         void UART isr(void) interrupt 4
                    ;中斷服務程式
UART INT:
 JB
                    ;判斷發送或接收發生中斷
       TI,TI OK
                                          if(TI){
RI OK:
                                            TI = 0:
                    :清除接收旗標
                                            //串列發送完成後要做的程式碼
 CLR
       RI
 :串列接收完成後要做的程式碼
       UART INT EXIT
                                          if(RI){
 JMP
TI OK:
                                            RI = 0:
                    :清除發送旗標
                                            //串列接收完成後要做的程式碼
 CLR TI
 :串列發送完成後要做的程式碼
UART INT EXIT:
  RETI
```

程式流程圖

程式碼(組合語言)

START:	ORG JMP ORG JMP MOV MOV MOV	0 START 23H UART_INT DPTR,#TABLE R0,#0 P0,#0	;字串查表
	MOV MOV MOV SETB SETB SETB SETB JMP	TMOD,#20H TH1,#253 SCON,#50H TR1 ES EA TI	;設定計時器模式 ;設定鮑率為9600bps ;設定UART模式 ;啟動Timer1 ;開啟UART中斷開關 ;開啟中斷總開關 ;開始發送字串

UART INT: JB TI,TI OK ;判斷中斷旗標 ;清除接收中斷旗標 RI OK: **CLR** RI **JMP** UART_EXIT TI OK: CLR TI :清除發送中斷旗標 MOV A,R0 ;字串若發送完畢 **CJNE** ;不再傳送 **A,#12,SEND JMP UART EXIT** SEND: INC R0 MOVC A,@A+DPTR ;查表字串 MOV SBUF,A ;發送字串的字元 **UART_EXIT:** RETI TABLE: DB 'H','e','I','I','o',' ' DB 'W','o','r','I','d','!' **END**

程式碼(C語言)

```
#include < REGX51.H >
// ------宣告變數與常數-------
code char String[15]="Hello World!"; //建立字串查表
char i=0;
void main(void)
 P0=0:
 TMOD=0x20:
             //設定計時器T1為模式2
             //設定鮑率為9600bps
 TH1=0xfd;
 SCON = 0x50; //設定UART模式
             //啟動Timer1
 TR1=1;
 ES=1; //開啟Serial中斷
EA=1; //開啟中斷總開關
           //開始發送字串
 TI=1;
 while(1);
```

單元八:8051的中斷

PART H

微算機原理及應用實習

範例四:串列傳輸(接收)中斷

範例說明

• 實驗目的:

瞭解 8051 之串列傳輸(接收)中斷的控制方法,並練習使用串列傳輸(接收)中斷來接收資料的功能。

• 功能說明:

由電腦 PuTTY 介面輸入資料,AT89S51 接收電腦鍵盤 所按下的數字鍵 ASCII Code 顯示在 LED 上。

電路圖

主電路板(MCU Board)與 IO應用電路板(Task board 1)

程式流程圖

程式碼(組合語言)

ORG 0

JMP START

ORG 23H

JMP UART_INT

START:

MOV P0.#0

MOV :設定計時器模式 TMOD,#20H

MOV TH1,#253 ;設定鮑率為9600bps

MOV SCON,#50H :設定UART模式

SETB :啟動Timer1 TR1

;開啟UART中斷開關 **SETB** ES

;開啟中斷總開關 SETB EA

JMP

UART INT:

TI,TI OK JB

RI OK:

CLR RI

;清除接收中斷旗標 MOV P0.SBUF ;電腦鍵盤ASCII Code

:顯示在LED上

JMP UART EXIT

TI OK:

CLR TI :清除發送中斷旗標

UART EXIT: RETI

END

程式碼(C語言)

```
#include < REGX51.H >
                                     // ------中斷副程式開始------
// -----主程式開始-----主程式開始------
                                     void UART isr(void) interrupt 4
void main(void)
                                                 //判斷發送旗標
                                       if(TI)
 P0=0;
 TMOD=0x20; //設定計時器T1模式
                                                 //清除發送旗標
                                        TI=0:
 TH1=0xfd; //設定鮑率為9600bps
SCON = 0x50; //設定UART模式
                                              //判斷接收旗標
                                       if(RI)
 TR1=1; //啟動Timer1
ES=1; //開啟Serial中斷
                                        RI=0: //清除接收旗標
 EA=1; //開啟總中斷
                                        P0=SBUF: //接收資料並顯示在P0的LED上
 while(1);
```

練習題

• 功能說明:

AT89S51接收由電腦 PuTTY 所按下的按鍵, 之後再回傳到 PuTTY 顯示。

RESET 完,PuTTY 先顯示:

"The keyboard you pressed is "

例如:按下電腦鍵盤的 "F" ,則 PuTTY 顯示:

"F",然後再顯示"The keyboard you pressed is"

8.6 參考文獻

- ATMEL AT89S51 datasheet (doc2487.pdf)
- ATMEL 8051 Microcontrollers Hardware Manual (doc4316.pdf)
- ATMEL 8051 Microcontroller Instruction Set (doc0509.pdf)
- The 8051 Microcontroller and Embedded Systems Using Assembly and C, Second Edition, by Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay.

