IE411: Operating Systems Swapping and Page Replacement

Swapping

- When main memory fills up, allocating more pages requires some other pages to be evicted from memory
- Evicted pages go to disk (page out)
- swap space (swap file): a reserved space on hard disk for moving pages back and forth

Present bit

- a present bit in the PTE is used to indicate whether a page is present in memory (1) or on disk (0)
- if the present bit is 0, then the other bits in the PTE actually store the disk address of the page
- after paging in a page, the present bit is set to 1 and the content of PTE is updated accordingly

Page fault

- Page faults occur when the CPU sees a present bit set to zero when doing a virtual address translation
- While the OS works to retrieve the page from disk, the process is blocked
- This will take quite a bit of time, so it's best to overlap this request with execution of another processes

If every physical page on a machine with 4GB of RAM is in use and we need to evict a page to make room for another, how many pages do we have to choose from? (assume pages are 4kB)

- (A) \sim 10k
- (B) \sim 100k
- (C) \sim 1M
- (D) \sim 10M

If every physical page on a machine with 4GB of RAM is in use and we need to evict a page to make room for another, how many pages do we have to choose from? (assume pages are 4kB)

- (A) \sim 10k
- (B) \sim 100k
- (C) ∼1M
- (D) ∼10M

4GB memory = $2^{32}/2^{12} = 2^{20}$ pages of physical memory!

Page replacement policy

• In the previous example, there are a lot of pages to choose from

Page replacement policy

- In the previous example, there are a lot of pages to choose from
- The choice of which page to evict is called the page replacement policy
- Different policies
 - FIFO
 - Random
 - LRU

Optimal

- The optimal policy is to evict the page that will be needed the furthest in the future
- Provably results in the maximum achievable hit rate

Optimal

- The optimal policy is to evict the page that will be needed the furthest in the future
- Provably results in the maximum achievable hit rate
- Unfortunately it isn't possible to implement
 - as we cannot look into the future!

Example

- Use a cache of size 3
- And accesses of the following pages:
 - 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1

Example

			Resulting
Access	Hit/Miss?	Evict	Cache State
0	Miss		0
1	Miss		0, 1
2	Miss		0, 1, 2
0	Hit		0, 1, 2
1	Hit		0, 1, 2
3	Miss	2	0, 1, 3
0	Hit		0, 1, 3
3	Hit		0, 1, 3
1	Hit		0, 1, 3
2	Miss	3	0, 1, 2
1	Hit		0, 1, 2

Access	Hit/Miss?
0	Miss
1	Miss
2	Miss
0	Hit
1	Hit
3	Miss
0	Hit
3	Hit
1	Hit
2	Miss
1	Hit

• Hits / (Hits + Misses)

Access	Hit/Miss?
0	Miss
1	Miss
2	Miss
0	Hit
1	Hit
3	Miss
0	Hit
3	Hit
1	Hit
2	Miss
1	Hit

```
Hits / (Hits + Misses)
6/(6+5) = 54.5%
```

Access	Hit/Miss?
0	Miss
1	Miss
2	Miss
0	Hit
1	Hit
3	Miss
0	Hit
3	Hit
1	Hit
2	Miss
1	Hit

- Hits / (Hits + Misses)6/(6+5) = 54.5%
- But some of the misses are compulsory!

Access	Hit/Miss?
0	Miss
1	Miss
2	Miss
0	Hit
1	Hit
3	Miss
0	Hit
3	Hit
1	Hit
2	Miss
1	Hit

- Hits / (Hits + Misses)
 - 6/(6+5) = 54.5%
- But some of the misses are compulsory!
- Better measure excludes them

•
$$6/(6+1) = 85.7\%$$

FIFO

- ullet Since we can't implement OPT, let's do something really simple (and O(1))
- Whatever was first into the cache gets evicted

Example

			Resulting	
Access	Hit/Miss?	Evict	Cache State	
0	Miss		First-in→	0
1	Miss		First-in \rightarrow	0, 1
2	Miss		First-in \rightarrow	0, 1, 2
0	Hit		First-in \rightarrow	0, 1, 2
1	Hit		First-in \rightarrow	0, 1, 2
3	Miss	0	First-in \rightarrow	1, 2, 3
0	Miss	1	First-in \rightarrow	2, 3, 0
3	Hit		First-in \rightarrow	2, 3, 0
1	Miss	2	First-in \rightarrow	3, 0, 1
2	Miss	3	First-in \rightarrow	0, 1, 2
1	Hit		First-in \rightarrow	0, 1, 2

Quiz

Access	Hit/Miss?
0	Miss
1	Miss
2	Miss
0	Hit
1	Hit
3	Miss
0	Miss
3	Hit
1	Miss
2	Miss
1	Hit

What is the hit rate (excluding compulsory misses) of FIFO in this example?

- (A) 4/11
- (B) 4/7
- (C) 11/4
- (D) 7/11

What about implementation?

- In FIFO items are evicted in the order they are inserted
- Key idea: use a queue of page numbers
 - We replace the page at the head of the queue
 - When a page is brought into memory, it is inserted at the tail of the queue

Belady's Anomaly

- In general you would expect cache hit rate to increase when cache gets larger
- Does this always happen?

Belady's Anomaly

- In general you would expect cache hit rate to increase when cache gets larger
- Does this always happen?
- Not necessarily for FIFO!
 - You can sometimes get a worse hit rate with a larger cache size

Example

• Accesses: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
(a) size 3

Access	Hit	State (after)
1	no	1
2	no	1,2
3	no	1,2,3
4	no	2,3,4
1	no	3,4,1
2	no	4,1,2
5	no	1,2,5
1	yes	1,2,5
2	yes	1,2,5
3	no	2,5,3
4	no	5,3,4
5	yes	5,3,4

(b) size 4

Access	Hit	State (after)
1		
2		
3		
4		
1		
2		
5		
1		
2		
3		
4		
5		

Example

• Accesses: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

(a) size 3

(b) size 4

		0
Access	Hit	State (after)
1	no	1
2	no	1,2
3	no	1,2,3
4	no	2,3,4
1	no	3,4,1
2	no	4,1,2
5	no	1,2,5
1	yes	1,2,5
2	yes	1,2,5
3	no	2,5,3
4	no	5,3,4
5	ves	534

Access	Hit	State (after)
1	no	1
2	no	1,2
3	no	1,2,3
4	no	1,2,3,4
1	yes	1,2,3,4
2	yes	1,2,3,4
5	no	2,3,4,5
1	no	3,4,5,1
2	no	4,5,1,2
3	no	5,1,2,3
4	no	1,2,3,4
5	no	2,3,4,5

Random

- Oh, when things get hard, just roll the dice!
- Simply pick a random victim to evict, not even trying to be intelligent

• Replace page that hasn't been used for the longest time

- Replace page that hasn't been used for the longest time
- Programs have locality, so if something not used for a while, unlikely to be used in the near future.
- Seems like LRU should be a good approximation to OPT.

	****		Resulting	
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0, 1
2	Miss		$LRU \rightarrow$	0, 1, 2
0				
1				
3				
0				
3				
1				
2				
1				

			Resul	-
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0, 1
2	Miss		$LRU \rightarrow$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1				
3				
0				
3				
1				
2				
1				

			Resul	ting
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0, 1
2	Miss		$LRU{\rightarrow}$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1	Hit		$LRU \rightarrow$	2, 0, 1
3				
0				
3				
1				
2				
1				

			Resul	lting
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0, 1
2	Miss		$LRU{\rightarrow}$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1	Hit		$LRU \rightarrow$	2, 0, 1
3	Miss	2	$LRU \rightarrow$	0, 1, 3
0				
3				
1				
2				
1				

			Resul	ting
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0, 1
2	Miss		$LRU \rightarrow$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1	Hit		$LRU \rightarrow$	2, 0, 1
3	Miss	2	$LRU \rightarrow$	0, 1, 3
0	Hit		$LRU{\rightarrow}$	1, 3, 0
3				
1				
2				
1				

			Resul	lting
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0, 1
2	Miss		$LRU \rightarrow$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1	Hit		$LRU \rightarrow$	2, 0, 1
3	Miss	2	$LRU \rightarrow$	0, 1, 3
0	Hit		$LRU \rightarrow$	1, 3, 0
3	Hit		$LRU \rightarrow$	1, 0, 3
1				
2				
1				

			Resu	lting
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0, 1
2	Miss		$LRU \rightarrow$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1	Hit		$LRU \rightarrow$	2, 0, 1
3	Miss	2	$LRU \rightarrow$	0, 1, 3
0	Hit		$LRU \rightarrow$	1, 3, 0
3	Hit		$LRU \rightarrow$	1, 0, 3
1	Hit		$LRU \rightarrow$	0, 3, 1
2				
1				

			Resul	lting
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0, 1
2	Miss		$LRU \rightarrow$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1	Hit		$LRU \rightarrow$	2, 0, 1
3	Miss	2	$LRU \rightarrow$	0, 1, 3
0	Hit		$LRU \rightarrow$	1, 3, 0
3	Hit		$LRU \rightarrow$	1, 0, 3
1	Hit		$LRU \rightarrow$	0, 3, 1
2	Miss	0	$LRU \rightarrow$	3, 1, 2
1	Hit		$LRU \rightarrow$	3, 2, 1

What about implementation?

• We can use a list!

- On each use, remove page from list and place at head
- LRU page is at tail
- List must be updated at every memory reference; in FIFO we only have to update the list when evicting

- Suppose we have 3 page frames, 4 virtual pages (0–3), and following reference stream:
 - 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1
- Consider OPT page replacement:

- Suppose we have 3 page frames, 4 virtual pages (0–3), and following reference stream:
 - 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1
- Consider OPT page replacement:

			Resulting
Access	Hit/Miss?	Evict	Cache State
0	Miss		0
1	Miss		0, 1
2	Miss		0, 1, 2
0	Hit		0, 1, 2
1	Hit		0, 1, 2
3	Miss	2	0, 1, 3
0	Hit		0, 1, 3
3	Hit		0, 1, 3
1	Hit		0, 1, 3
2	Miss	3	0, 1, 2
1	Hit		0, 1, 2

- Suppose we have 3 page frames, 4 virtual pages (0–3), and following reference stream:
 - 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1
- Consider OPT page replacement:

			Resulting
Access	Hit/Miss?	Evict	Cache State
0	Miss		0
1	Miss		0, 1
2	Miss		0, 1, 2
0	Hit		0, 1, 2
1	Hit		0, 1, 2
3	Miss	2	0, 1, 3
0	Hit		0, 1, 3
3	Hit		0, 1, 3
1	Hit		0, 1, 3
2	Miss	3	0, 1, 2
1	Hit		0, 1, 2

Here LRU would work equally well as OPT

- Suppose we have 3 page frames, 4 virtual pages (0–3), and following reference stream:
 - 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1
- Consider OPT page replacement:

			Resulting
Access	Hit/Miss?	Evict	Cache State
0	Miss		0
1	Miss		0, 1
2	Miss		0, 1, 2
0	Hit		0, 1, 2
1	Hit		0, 1, 2
3	Miss	2	0, 1, 3
0	Hit		0, 1, 3
3	Hit		0, 1, 3
1	Hit		0, 1, 3
2	Miss	3	0, 1, 2
1	Hit		0, 1, 2

- Here LRU would work equally well as OPT
 - in general, won't be true!

- As before suppose we have 3 page frames, 4 virtual pages (0-3)
- Consider the following reference stream:
 - 0, 1, 2, 3, 0, 1, 2, 3
- Here LRU performs quite badly (same as FIFO)
 - 8 misses

- As before suppose we have 3 page frames, 4 virtual pages (0-3)
- Consider the following reference stream:
 - 0, 1, 2, 3, 0, 1, 2, 3
- Here LRU performs quite badly (same as FIFO)
 - 8 misses
 - when referencing 3, evicting 0 is a bad choice, since need 0 right away

- As before suppose we have 3 page frames, 4 virtual pages (0-3)
- Consider the following reference stream:
 - 0, 1, 2, 3, 0, 1, 2, 3
- Here LRU performs quite badly (same as FIFO)
 - 8 misses
 - when referencing 3, evicting 0 is a bad choice, since need 0 right away
- OPT does much better!
 - 5 misses

- As before suppose we have 3 page frames, 4 virtual pages (0-3)
- Consider the following reference stream:
 - 0, 1, 2, 3, 0, 1, 2, 3
- Here LRU performs quite badly (same as FIFO)
 - 8 misses
 - when referencing 3, evicting 0 is a bad choice, since need 0 right away
- OPT does much better!
 - 5 misses
 - when referencing 3, evict 2 since it is referenced farthest in future