PROBLEMAS DE CARGAS PUNTUALES

Ejemplos de resolución con la hoja de cálculo: «ElectroEs.ods».

	\sim	•		
•	\cdot	mı	Δn	70
•	vu		CII	20

El documento debería mostrar la página «Introd», que contiene una advertencia de empleo de macros, ciertas instrucciones elementales, un enlace a la página de ayuda, algunas aclaraciones y el repertorio de funciones que se emplean.

Si desea comenzar con un problema, mantenga pulsada la tecla «Ctrl» mientras hace clic en la celda Enunciado arriba a la derecha de la hoja «Introd», o haga clic en la pestaña Enunciado en la parte inferior entre «Coords» y «Campo».

Si precisa una ayuda más detallada, mantenga pulsada la tecla «Ctrl» mientras hace clic en la celda Ayuda arriba a la derecha de la hoja «Introd», o haga clic en la pestaña Ayuda en la parte inferior entre «Introd» y «Enunciado».

Borrado de datos anteriores

Si la hoja «Enunciado» contiene datos que no le interesan, haga clic con ratón en la celda Borrar datos y haga clic en el botón Aceptar del cuadro de diálogo que aparecerá. Borrará todos el datos y aparecerán las opciones por defecto.

Datos

Escriba los datos en las celdas de color blanco y borde azul. 3,00·10⁻⁹

Puede escribir valores en notación científica con el formato habitual de la hoja de cálculo «0,00E+00» o en formato de texto. En el primero caso, el valor 3,00·10⁻⁹ se escribiría: 3,00E-9.

En el segundo caso, para escribir superíndices, presiona la tecla «^» antes de cada cifra o signo. El punto de multiplicación «·» se obtiene con la combinación de teclas «↑»3 (mayúsculas 3). Así, para obtener 3,00·10⁻⁹, escriba 3,00 «↑»3 10^- ^9 y borre los espacios. También puede seleccionar con el ratón el dato 3,00·10⁻⁹, presionar juntas las teclas «Ctrl» C, para copiarlo, hacer clic en la celda da hoja de cálculo, presionar juntas las teclas «Ctrl» «↑» V, (pegado especial) y elegir «Texto sin formato».

Elija las magnitudes y unidades en las celdas de color salmón y borde rojo.

Haga clic con el ratón en la celda, haga clic en la flecha de la derecha

y elija la magnitud o unidad idónea.

y elija la magnitud o unidad idónea.

Resultados

En la página del «Enunciado» aparecen las respuestas. Si quiere consultar un resultado más detallado, mantenga pulsada la tecla «Ctrl» mientras hace clic en una de las opciones Campo Equilibrio Potencial o Energía potencial que se encuentran en la parte superior del centro de la página, o haga clic en la pestaña inferior correspondiente.

♦ PROBLEMAS

- 1. Tres cargas de -2,00, -2,00 y +3,00 pC se encuentran en los vértices de un triángulo equilátero de 1,00 nm de lado en un medio (papel) en el que la permitividad eléctrica vale 1,50. Calcula:
 - a) El campo eléctrico en el punto medio del lado que está situado entre las cargas negativas.
 - **b)** La fuerza sobre una partícula α situada en ese punto.
 - c) La aceleración de la partícula alfa.
 - d) El trabajo necesario para llevar esa partícula alfa desde ese punto hasta el infinito.
 - e) La velocidad con la que la partícula alfa pasará por el punto medio del triángulo equilátero si, cuando se encontraba en el medio del lado se movía hacia la carga positiva con una velocidad de 43.6·10⁶ m/s.
 - f) La energía potencial eléctrica de las cargas fijas en el triángulo equilátero.

Datos: $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$; $m(\alpha) = 4,00 \text{ u}$; $q(\alpha) = 2,00 \text{ e}$

(*Problema modelo*)

Cálculo de coordenadas. (Pestaña «Coords»)

Se eligen las coordenadas del centro del triángulo y se hace girar 30° para que el lado AB sea horizontal.

Se seleccionan las coordenadas y se copian (Ctrl + C)

Introducción de datos. (Pestaña «Enunciado»)

Se hace clic a la derecha de Q_1 y se pegan los valores de las coordenadas (Ctrl+Mayúsc+V y, en Selección, quitar todas las marcas excepto la de Números) o clic en el menú:

Editar → Sólo pegar → Pegar sólo números

El punto medio del lado opuesto entre las cargas negativas es el punto medio entre A y B, (0, 0,288675134) Como la coordenada y es la misma que la de la carga Q_1 , puede poner la fórmula «=I3».

= 9,00·10 ⁹		ε' =	1,5			
de cargas, (en	рC)		Coord X (nm)	Coord Y (nm)	Carga (pC)
ordenadas en	nm)	Q_1	0,5	0,288675 134 595	-2
			Q_2	-0,5	0,288675 134 595	-2
a) El vector campo eléctrico en el punto			Q_3	0	-0,577350269190	3
b) El vector fuerza sobre			Q_4			
2	e					
4	u			Coord X (nm)	Coord Y (nm)	
	de cargas, (en ordenadas en el punto	de cargas, (en pC nm ordenadas en A A e 2 e	de cargas, (en pC) ordenadas en nm) el punto A 2 e	de cargas, (en pC) ordenadas en nm) Q_1 Q_2 el punto Q_3 Q_4	de cargas, (en pC) Coord X (nm) ordenadas en nm) $Q_1 \qquad 0,5$ $Q_2 \qquad -0,5$ o el punto $Q_3 \qquad 0$ $Q_4 \qquad = \qquad 2 \text{ e}$	de cargas, (en pC)

Las cantidades en formato científico pueden escribirse en el formato de hoja de cálculo (43,6E6) o en el habitual (43,6·10⁶. El «punto» anterior al 10 es el punto centrado «·», que se consigue manteniendo pulsada la tecla Mayúsculas mientras pulsa la tecla 3 (\uparrow 3), no el punto final «.». También puede usarse el aspa «×», pero no «x»).

Las respuestas pueden verse en las unidades «ajustadas» para non ter que usar potencias de 10

F	Respuestas		Cifras significativas:	3
	Componente x	Componente y	Módulo Unidades	Ajustadas
E →(A) =	0	24,0	24,0 PN/C	
F → =	0	7,69	7,69 mN	
a → =	0	1,16	$1,16 \text{ Ym/s}^2$	
<i>V</i> (A) =	-27,2	<i>V</i> (B) =	-10,4 MV	
		$W(\text{ext. A} \rightarrow \infty) =$	8,72 pJ	
		$W(\text{campo }A \rightarrow B) =$	-5,39 pJ	
$E_{c}(A) =$	6,31	$E_{c}(B) =$	0,923 pJ	
		<i>v</i> (B) =	16,7 Mm/s	
		$E_{p} =$	-48,0 μJ	

o bien en las unidades del S. I.

	Componente x	Componente y	Módulo Unidades	S.I.
E →(A) =	0	2,40·1016	2,40·10 ¹⁶ N/C	
F → =	0	0,00769	0,00769 N	
a → =	0	1,16·10²⁴	$1,16 \cdot 10^{24} \text{ m/s}^2$	
<i>V</i> (A) =	$-2,72\cdot10^{7}$	<i>V</i> (B) =	$-1,04\cdot10^{7} \text{ V}$	
		$W(\text{ext. A} \rightarrow \infty) =$	8,72·10 ⁻¹² J	
		$W(\text{campo }A \rightarrow B) =$	-5,39·10 ⁻¹² J	
$E_{c}(A) =$	6,31.10-12	$E_{c}(B) =$	9,23·10 ⁻¹³ J	
		ν(B) =	1,67·10 ⁷ m/s	

Cálculo de la intensidad del campo electrostático. (Pestaña «Campo»)

Cálculo del campo electrostático, de la fuerza y de la aceleración Ir a... **DATOS ECUACIONES** Introducción 6.00·10⁹ N·m²·C⁻² $K' \cdot Q$ \uparrow Ayuda K = $9.00 \cdot 10^9 / 1.50$ Coordena-Coord X (m) Coord Y (m) Carga (C) das $5.00 \cdot 10^{-10}$ $2.89 \cdot 10^{-10}$ $-2.00 \cdot 10^{-12}$ Q_1 Enunciado $-5.00 \cdot 10^{-10}$ $\mathbf{F}^{\rightarrow} = \mathbf{q} \cdot \mathbf{E}^{\rightarrow}$ $2,89 \cdot 10^{-10}$ $-2,00\cdot10^{-12}$ $-5,77\cdot10^{-10}$ $3,00 \cdot 10^{-12}$ Equilibrio Potencial Punto Coord X (m) Coord Y (m) q partícula (C) Energía potencial masa (kg 800 - $2.89 \cdot 10^{-10}$ $3.20 \cdot 10^{-19} m =$ $6,64 \cdot 10^{-27}$ Α 600 -Cálculos Distancia de cada carga al punto A 400 $(0 - 5,00.10^{-10})^2 + (2,89.10^{-10} - 2,89.10^{-10})^2 =$ $r_1 = \sqrt{}$ $5,00 \cdot 10^{-10} \text{ m}$ 200 $(0 - \frac{(-)^{2}}{5,00\cdot 10^{-10}})^{2} + (\frac{(-)^{2}}{5,00\cdot 10^{-10}})^{2} = \frac{(-)^{2}}{5,00\cdot 10^{-10}}$ $5,00 \cdot 10^{-10} \text{ m}$ 0 $(0)^2 + (2,89 \cdot 10^{-10} - (-5,77 \cdot 10^{-10}))^2 =$ (0 - $8.66 \cdot 10^{-10} \text{ m}$ -200 Vector intensidad de campo electrostático creado por cada una de las cargas en el punto A $\vec{E}_{3} = \frac{6,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-12})}{(-5,00 \cdot 10^{-10})} \quad (-5,00 \cdot 10^{-10}) \quad i +$ $0 \mathbf{j}$ = 4,80·10¹⁶ \mathbf{i} -400 N/C $5,00\cdot 10^{-10}$ -600 $(5,00\cdot10^{-10} i +$ $0 \mathbf{j}) = -4.80 \cdot 10^{16} \mathbf{i}$ $6,00\cdot10^9\cdot(-2,00\cdot10^{-12})$ N/C $5.00 \cdot 10^{-10}$ -800 -600 -400 -200 0 200 400 600 800 0 **i** + $6,00\cdot10^9\cdot3,00\cdot10^{-12}$ $8,66\cdot10^{-10}$ **j**) 2,40·10¹⁶ **j** N/C $8,66 \cdot 10^{-10}$ Módulo Vector intensidad de campo electrostático resultante en el punto A 2,40·10¹⁶ i N/C $(2,40\cdot10^{16})^2 = 2,40\cdot10^{16} \text{ N/C}$ $\mathbf{E}^{\rightarrow}(A) =$ 0 i + $|\mathbf{E}| = \sqrt{2}$ Fuerza resultante sobre la carga en el punto A **F**→ = $3,20\cdot10^{-19}$ $2,40\cdot10^{16}$ **i)** = 0 i +0,00769 **j** N $|\mathbf{F}| = \sqrt{|\mathbf{F}|}$ $(0.00769)^2$ 0i += 0.00769 NAceleración de la partícula situada en el punto A $= 0 \mathbf{i} + 1,16 \cdot 10^{24} \mathbf{j} \text{ m/s}^2 \qquad |\mathbf{a}| = \sqrt{(1,16 \cdot 10^{24})^2} = 1,16 \cdot 10^{24} \text{ m/s}^2$ 0i +0,00769 **j)** *a*→ = $6.64 \cdot 10^{-27}$

Ir a...

Cálculo de los potenciales, del trabajo y de la velocidad de la carga. (Pestaña «Potencial»)

Cálculo del potencial electrostático, del trabajo y de la velocidad

DATOS ECUACIONES Introd. $6,00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$ K = Axuda Coord X(m) Coord Y(m) $r = \sqrt{\Delta x^2 + \Delta y^2}$ Coord. Carga (C) 2,89.10-10 $V_i = \frac{K' \cdot Q_i}{r_i}$ $-2,00\cdot10^{-12}$ $5,00 \cdot 10^{-10}$ Q_1 Enunc. $-2.00 \cdot 10^{-12}$ $-5.00 \cdot 10^{-10}$ $2.89 \cdot 10^{-10}$ Q_2 Campo Q_3 $-5,77\cdot10^{-10}$ $3.00 \cdot 10^{-12}$ $V = \sum V_i$ Equilibr. $W = q \cdot (V(A) - V(B)) = \Delta E_c$ Punto Coord X(m) Coord Y(m) $E_c = \frac{1}{2} m \cdot v^2$ E. Poten q partícula masa (kg) $6,64 \cdot 10^{-27}$ Α 0 0,289 $3,20\cdot10^{-19}$ m В 0 0 $4,36 \cdot 10^7$

Cálculos

Distancia de cada carga al punto B

$r_1 = \sqrt{}$	(0 -	$5,00\cdot 10^{-10})^2 + (0$	_	$2,89 \cdot 10^{-10})^2 = 5,77 \cdot 10^{-10} \text{ m}$
$r_2 = \sqrt{}$	(0 -	$(-5,00\cdot10^{-10}))^2+(0$	-	$(2,89 \cdot 10^{-10})^2 = 5,77 \cdot 10^{-10} \text{ m}$
$r_3 = \sqrt{}$	(0 -	$(0)^2 + (0)^2$	_	$(-5,77\cdot10^{-10}))^2 = 5,77\cdot10^{-10} \text{ m}$

Potencial eléctrico creado por cada carga en A Potencial eléctrico creado por cada carga en B

$$V_{1}(A) = \frac{\hline 6,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-12})}{5,00 \cdot 10^{-10}} = -2,40 \cdot 10^{7} \text{ V} \qquad V_{1}(B) = \frac{\hline 6,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-12})}{5,77 \cdot 10^{-10}} = -2,08 \cdot 10^{7} \text{ V}$$

$$V_{2}(A) = \frac{6,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-12})}{5,00 \cdot 10^{-10}} = -2,40 \cdot 10^{7} \text{ V} \qquad V_{2}(B) = \frac{6,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-12})}{5,77 \cdot 10^{-10}} = -2,08 \cdot 10^{7} \text{ V}$$

$$V_{3}(A) = \frac{6,00 \cdot 10^{9} \cdot 3,00 \cdot 10^{-12}}{8,66 \cdot 10^{-10}} = 2,08 \cdot 10^{7} \text{ V} \qquad V_{3}(B) = \frac{6,00 \cdot 10^{9} \cdot 3,00 \cdot 10^{-12}}{5,77 \cdot 10^{-10}} = 3,12 \cdot 10^{7} \text{ V}$$
Potencial en A
$$V(A) = -2,72 \cdot 10^{7} \text{ V} \qquad \text{Potencial en B} \qquad V(B) = -1,04 \cdot 10^{7} \text{ V}$$

Trabajo realizado por la fuerza del campo al desplazar la partícula desde el punto A hasta el infinito

$$W = q \cdot (V(A) - V(\infty)) = 3,20 \cdot 10^{-19} \cdot (-2,72 \cdot 10^{7} - 0) = -8,72 \cdot 10^{-12}$$

Trabajo de la fuerza exterior sin variación de energía cinética

$$W \text{ (ext.)} = -W = 8,72 \cdot 10^{-12} \text{ J}$$

Energía cinética en el punto A

$$E_c(A) = m \cdot v^2 / 2 = 6.64 \cdot 10^{-27} \cdot (4.36 \cdot 10^7)^2 / 2 = 6.31 \cdot 10^{-12} J$$

Trabajo realizado por la fuerza del campo al desplazar la partícula desde el punto A hasta el punto B

$$W = q \cdot (V(A) - V(B)) = 3,20 \cdot 10^{-19} \cdot (-2,72 \cdot 10^7 - (-1,04 \cdot 10^7)) = -5,39 \cdot 10^{-12} \text{ J}$$

Energía cinética en el punto B

$$E_{c}(B) = E_{c}(A) + W = 6.31 \cdot 10^{-12} + (-5.39 \cdot 10^{-12}) = 9.23 \cdot 10^{-13} \text{ J}$$

Velocidad en el punto B

$$v(B) = \sqrt{\frac{2 \cdot 9,23 \cdot 10^{-13}}{6,64 \cdot 10^{-27}}} = 1,67 \cdot 10^7 \text{ m/s}$$

Cálculo de la energía electrostática. (Pestaña «Energía Potencial»)

Cálculo de la energía potencial electrostática

DATOS

)	0
	Coord Y (m)
	2,89·10 ⁻¹⁰
	2,89·10 ⁻¹⁰
	$-5,77\cdot10^{-10}$

6,00·10°	$N{\cdot}m^2{\cdot}C^{\scriptscriptstyle -2}$
Carga (C)	
$-2,00\cdot10^{-12}$	
$-2,00\cdot10^{-12}$	
3,00.10-12	

ECUACIONES

$$E_{\text{p ij}} = \frac{K' \cdot Q_{\text{i}} \cdot Q_{\text{j}}}{r_{\text{ij}}}$$

$$E_{\rm p} = \sum E_{\rm p \ ij}$$

$$r_{ii} = \sqrt{\Delta x^2 + \Delta y^2}$$

Cálculos

Distancias entre cada par de cargas fijas

$$r_{12} = \sqrt{ \frac{(-5,00 \cdot 10^{-10} - 5,00 \cdot 10^{-10})^2 + ((2,89 \cdot 10^{-10} - 2,89 \cdot 10^{-10})^2}{(0 - 5,00 \cdot 10^{-10})^2 + ((-5,77 \cdot 10^{-10} - 2,89 \cdot 10^{-10})^2}} = 1,00 \cdot 10^{-9} \text{ m}$$

$$r_{13} = \sqrt{ \frac{(0 - (-5,00 \cdot 10^{-10})^2 + ((-5,77 \cdot 10^{-10} - 2,89 \cdot 10^{-10})^2)}{(0 - (-5,00 \cdot 10^{-10}))^2 + ((-5,77 \cdot 10^{-10} - 2,89 \cdot 10^{-10})^2}} = 1,00 \cdot 10^{-9} \text{ m}$$

Energía potencial electrostática de cada par de cargas fijas

$$E_{\text{p }12} = \frac{6,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-12}) \cdot (-2,00 \cdot 10^{-12})}{1,00 \cdot 10^{-9}} = 2,40 \cdot 10^{-5} \text{ J}$$

$$E_{\text{p }13} = \frac{6,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-12}) \cdot 3,00 \cdot 10^{-12}}{1,00 \cdot 10^{-9}} = -3,60 \cdot 10^{-5} \text{ J}$$

$$E_{\text{p }23} = \frac{6,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-12}) \cdot 3,00 \cdot 10^{-12}}{1,00 \cdot 10^{-9}} = -3,60 \cdot 10^{-5} \text{ J}$$
Energía potencial de la distribución de cargas fijas
$$E_{\text{p}} = \frac{-4,80 \cdot 10^{-5}}{-4,80 \cdot 10^{-5}} \text{ J}$$

- 2. Tres cargas puntuales iguales de 5 μ C cada una están situadas en los vértices de un triángulo equilátero de 1,5 m de lado.
 - a) ¿Dónde debe colocarse una cuarta carga y cuál debe ser su valor para que el sistema formado por las cuatro cargas esté en equilibrio?
 - **b)** Calcula el trabajo necesario para llevar esa carga *Q* desde lo centro del triángulo hasta el centro de un lado.

Dato: $K = 9 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$ (Propuesta por el Grupo de trabajo) **Rta.**: a) centro. $Q = -2.9 \times 10^{-6} \text{ C}$; b) $W(\text{ext}) = -W(\text{campo}) = 3.6 \times 10^{-3} \text{ J}$

Cálculo de coordenadas. (Pestaña «Coords»)

Se eligen las coordenadas del centro del triángulo y se hace girar 90° para que el lado BC sea horizontal.

Se seleccionan las coordenadas y se copian (Ctrl + C)

Introducción de datos. (Pestaña «Enunciado»)

Se hace clic a la derecha de Q_1 y se pegan los valores de las coordenadas (Ctrl+Mayúsc+V y, en Selección, quitar todas las marcas excepto la de Números) o clic en el menú:

Editar → Sólo pegar → Pegar solo números

Para el punto medio de un lado se elige el punto medio entre B y C, (0, -0,4330127)

Enunciado	Datos: K =	9,00·10°		ε' =	1	·	,	
Dada la s	iguiente distril	bución de cargas, (en	μС)		Coord X (m)	Coord Y (m)	Carga (μC)
		(coordenadas en	m)	$Q_{\scriptscriptstyle 1}$	0	0,8660254	5
y los puntos A	y B, calcula:				Q_2	-0,75	-0,4330127	5
a) El vector camp	oo eléctrico en	el punto	В		Q_3	0,75	-0,4330127	5
					Q_4			
una partícula	de carga q =							
	y masa <i>m</i> =					Coord X (m)	Coord Y (m)	
situada en ese punto.								
					g)		colocarse una	
	ga y cual debe ser su valor para que						•	
el sistema formado por todas las car- gas esté en equilibrio.							uas ias cai-	
f) La energía pot	f) La energía potencial del conjunto de cargas fijas							
, 3 1								

Cálculo de la carga que consigue el equilibrio. (Pestaña «Equilibrio»)

Cálculo de la carga que equilibra al conjunto de cargas

DATOS

<i>K</i> ′	=	9,00000 · 109	$N \cdot m^2 \cdot C^{-2}$
Coord Y (m)		Carga (C)	
0,866025		5,00000 · 10-6	
-0,433013		5,00000 · 10-6	
-0,433013		5,00000 · 10-6	

ECUACIONES

$$\vec{E} = \frac{K' \cdot Q}{r^2} \vec{r}$$

$$r_{ij} = \sqrt{\Delta x^2 + \Delta y^2}$$

Ir a...

Introducción

Ayuda

Coordenadas

Enunciado

Campo

Potencial

Energía potencial

Cálculos

 Q_1

 Q_2

 Q_3

Las cargas son iguales

Coord X (m)

-0.750000

0,750000

Cálculo de las coordenadas del centro geométrico

$$x_{m} = \sum x_{i} / n =$$

$$0/3 =$$

$$y_{\rm m} = \sum y_{\rm i} / n =$$

Cálculo de las distancias de cada punto al centro geométrico

$$r_{1 \text{ m}} = \sqrt{ }$$
 $(0 - 0)^2 + (0 - 0,866025)^2 = 0,866025 \text{ m}$
 $r_{2 \text{ m}} = \sqrt{ }$ $(0 - (-0,750000))^2 + (0 - (-0,433013))^2 = 0,866025 \text{ m}$
 $r_{3 \text{ m}} = \sqrt{ }$ $(0 - 0,750000)^2 + (0 - (-0,433013))^2 = 0,866025 \text{ m}$

Las distancias son iguales

Vector intensidad de campo electrostático creado por cada una de las cargas en el centro geométrico

$$\mathbf{\vec{F}}_{1 \text{ m}} = \frac{9,00000 \cdot 10^9 \cdot 5,00000 \cdot 10^{-6}}{0,866025^2} \quad \begin{pmatrix} 0 \text{ i} - 0,866025 \text{ j} \end{pmatrix} = -6,00000 \cdot 10^4 \text{ j} \text{ N/C} \\
\mathbf{\vec{F}}_{2 \text{ m}} = \frac{9,00000 \cdot 10^9 \cdot 5,00000 \cdot 10^{-6}}{0,866025^2} \quad \begin{pmatrix} 0,750000 \text{ i} + 0,433013 \text{ j} \end{pmatrix} = 5,19615 \cdot 10^4 \text{ i} + 3,00000 \cdot 10^4 \text{ j} \text{ N/C} \\
\mathbf{\vec{F}}_{3 \text{ m}} = \frac{9,00000 \cdot 10^9 \cdot 5,00000 \cdot 10^{-6}}{0,866025^2} \quad \begin{pmatrix} -0,750000 \text{ i} + 0,433013 \text{ j} \end{pmatrix} = -5,19615 \cdot 10^4 \text{ i} + 3,00000 \cdot 10^4 \text{ j} \text{ N/C}$$

Vector intensidad de campo electrostático resultante en el centro geométrico

$$\vec{E}(M) = 0 \quad \mathbf{i} + 0 \quad \mathbf{j} \quad N/C$$

Cualquier carga ubicada en el centro geométrico se encontrará en equilibrio

Cálculo de las distancias de cada punto al punto 1

$$r_{2} = \sqrt{ (0 - (-0.750000))^2 + (0.866025 - (-0.433013))^2 } = 1.50000 \text{ m}$$

 $r_{3} = \sqrt{ (0 - 0.750000)^2 + (0.866025 - (-0.433013))^2 } = 1.50000 \text{ m}$

Vector intensidad de campo electrostático creado por cada una de las cargas en el punto 1

$$\mathbf{E}_{3}^{1} = \frac{9,00000 \cdot 10^{9} \cdot 5,00000 \cdot 10^{-6}}{1,50000^{2}} \frac{(0,750000 \mathbf{i} + 1,29904 \mathbf{j})}{1,50000} = 1,00000 \cdot 10^{4} \mathbf{i} + 1,73205 \cdot 10^{4} \mathbf{j} \text{ N/C}$$

$$\mathbf{E}_{3}^{1} = \frac{9,00000 \cdot 10^{9} \cdot 5,00000 \cdot 10^{-6}}{1,50000^{2}} \frac{(-0,750000 \mathbf{i} + 1,29904 \mathbf{j})}{1,50000} = -1,00000 \cdot 10^{4} \mathbf{i} + 1,73205 \cdot 10^{4} \mathbf{j} \text{ N/C}$$

Vector intensidad de campo electrostático resultante en el punto 1

$$\vec{E}(1) = 0 \quad \mathbf{i} + 3,46410 \cdot 10^4 \quad \mathbf{j} \quad \text{N/C}$$

Módulo del campo electrostático en el punto 1

$$|\mathbf{E}^{+}|(1) = \sqrt{ (0^{2} + (3,46410 \cdot 10^{4})^{2}) } = 3,46410 \cdot 10^{4} \text{ N/C}$$

Carga (de signo opuesto al de las cargas fijas) situada en el centro geométrico que equilibra el campo

$$Q_{\rm m} = \frac{-|\vec{E}|(1) \cdot r^2}{K'} = \frac{-3,46410 \cdot 10^4 \cdot 0,866025^2}{9,00000 \cdot 10^9} = -2,88675 \cdot 10^{-6} \text{ C}$$

ESQUEMA (mm)

Respu	estas		Cifras signif	cativas:	3		
Cor	mponente x	Componente y	Módulo Ur	nidades	Aju	stadas	
E →(B) =	0	-26,7	26,7 kN	I/C			
<i>V</i> (A) =	156	<i>V</i> (B) =	155 kV	′			
		$E_{p} =$	450 m	l			
Carga que equili	bra	Q =	-2,89 μC	;			
en Coorde	enada x Co	ordenada y					
M	0	0	m				
0		1	1 1 1		-1-1		
Se ponen 6 en cif							
Respu			ras significat	ıvas: 6			
Carga que equili		Q = -2,88	36/5 μC				
	enada x Coord	•					
M	0	0	m				
Se ponen el valor	de la carga y l	as coordenadas d	e los puntos i	nicial y f	final		
b) El vector fuerz			•	Q_4			
una partícula	de carga $q = -$	-2,88675	μC				
•	y masa <i>m</i> =			Coe	ord X (m)	Coord Y (m)	
situada en ese	_			A		0	
Situada en esc	punto.			В	0	-0,4330127	
d) El trabajo nec	esario nara des	nlazar la nartícul	2		٥	0,4330127	
anterior desde	-	•	a	a) Dái	nda daba d	colocarse una	nuova car-
anterior desde	ei punto A	hasta el punto B		<i>O</i> ,		e ser su valoi	
	Г					mado por to	
	L			gas	esté en ec	quilibrio.	
f) La energía por	tencial del conj	unto de cargas fi	jas				
·							
Las respuestas al		Cifua	s significativa	NG1 6			
Respue			· ·	is: 6	۸ :		
•		ponente y Módu			Ajustada	15	
E →(B) =	0	-26,6667 26,666					
F → =	0	76,9800 76,980					
<i>V</i> (A) =	155,885	V(B) = 154,64					
	W (ex	$(A \rightarrow B) = 3,5911$	I2 mJ				

Cálculo de los potenciales y del trabajo. (Pestaña «Potencial»)

Cálculo del potencial electrostático y del trabajo

Coord X (m) Coord Y (m)

DATOS

 Q_1

9,00000·109	$N \cdot m^2 \cdot C^-$
Carga (C)	

9,00000·10 ⁹
Carga (C)
5,00000 · 10-6
5,00000 · 10-6
5,00000 · 10-6

K′ =

0,866025

ECUACIONES

 $\Delta x^2 + \Delta y^2$

 $K' \cdot Q_i$

 $r_{\rm i}$

 $V = \sum V_i$

Introducción

Ayuda

Ir a...

Coordenadas Enunciado

Campo

Equilibrio

Q_2	-0,750000	-0,433013
Q_3	0,750000	-0,433013
Punto	Coord X (m)	Coord Y (m)
А	0	0
Б.		
В	0	-0,433013

9,00000·10°
Carga (C)
5,00000 · 10-6
5,00000 · 10-6
5,00000 · 10-6
q partícula (C)

partícula (C)		masa (kg)
$-2,88675 \cdot 10^{-6}$	<i>m</i> =	

 $V_0 =$

W = q	(V(A) - V(B))	=	ΔE_{c}

$E_{\rm c} = \frac{1}{2} \, m \cdot v^2$ Energía potencial

Cálculos

Distancia de cada carga al punto A

$r_1 = \sqrt{}$	(0	-	$(0)^2 + ($	0	-	0,866025)2	² = 0,866025 m
$r_2 = \sqrt{}$	(0	-	(-0,750000)) ² + (0	-	$(-0,433013))^2$	o,866025 m
$r_3 = \sqrt{}$	(0	_	0,750000)2 + (0	_	$(-0,433013))^2$	= 0,866025 m

Potencial eléctrico creado por cada carga en el punto A

Potencial eléctrico creado por cada carga en el punto B

$$V_{1}(A) = \frac{9,00000 \cdot 10^{9} \cdot 5,00000 \cdot 10^{-6}}{0,866025} = 5,19615 \cdot 10^{4} \text{ V} \qquad V_{1}(B) = \frac{9,00000 \cdot 10^{9} \cdot 5,00000 \cdot 10^{-6}}{1,29904} = 3,46410 \cdot 10^{4} \text{ V}$$

$$V_{2}(A) = \frac{9,00000 \cdot 10^{9} \cdot 5,00000 \cdot 10^{-6}}{0,866025} = 5,19615 \cdot 10^{4} \text{ V} \qquad V_{2}(B) = \frac{9,00000 \cdot 10^{9} \cdot 5,00000 \cdot 10^{-6}}{0,750000} = 6,00000 \cdot 10^{4} \text{ V}$$

$$V_{3}(A) = \frac{9,00000 \cdot 10^{9} \cdot 5,00000 \cdot 10^{-6}}{0,866025} = 5,19615 \cdot 10^{4} \text{ V} \qquad V_{3}(B) = \frac{9,00000 \cdot 10^{9} \cdot 5,00000 \cdot 10^{-6}}{0,750000} = 6,00000 \cdot 10^{4} \text{ V}$$
Potencial en el punto A
$$V(A) = \frac{1,55885 \cdot 10^{5} \text{ V}}{1,55885 \cdot 10^{5} \text{ V}} \qquad \text{Potencial en el punto B} \qquad V(B) = \frac{1,54641 \cdot 10^{5} \text{ V}}{1,54641 \cdot 10^{5}} \text{ V}$$

Trabajo realizado por la fuerza del campo al desplazar la partícula desde el punto A hasta el punto B

$$W = q \cdot (V(A) - V(B)) = -2,88675 \cdot 10^{-6} \cdot (1,55885 \cdot 10^{5} - 1,54641 \cdot 10^{5}) = -0,00359112 J$$

Trabajo de la fuerza exterior sin variación de energía cinética

$$W(\text{ext.}) = -W = 0.00359112 \text{ J}$$

	Dos cargas eléctricas puntuales Calcula: a) Campo eléctrico en $(0, 0)$ y e b) Trabajo para transportar una Dato: $K = 9 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$ Rta.: a) $\overline{E}_0 = -9 \cdot 10^3 \overline{\textbf{i}} \text{ N/C}; \overline{\textbf{E}}' = -9 \cdot 10^3 \overline{\textbf{i}} \overline{\textbf{i}}$	en (0, 10) a carga <i>q</i> ' de –1	μC des	sde (1,	0) a (-1, 0)		·) (en metros). P.A.U. Jun. 01)	
Intr	Introducción de datos. (Pestaña «Enunciado»)								
	Dada la siguiente distribución	<u> </u>	•)	Coord X	(m)	Coord Y (m)	Carga (μC)	
	(C)	oordenadas en	m) [21	2	0	2	
	y los puntos A y B, calcula:			Q	2	-2	0	-2	
a) El vector campo eléctrico en el	punto	A	Ç	3				
b) El vector fuerza sobre			Q	4				
	una partícula de carga q =	-1	μС		Coord X	(m)	Coord Y (m)		
	y masa <i>m</i> =			A	A	0	0		
	situada en ese punto.			E	3	0	10		
E(A Para	Componente x Componer $-9,00.10^3$ calcular el campo en $(0, 10)$ se c	9,00	·10³ N/		or campo el	éctrio	co en el punto	» por «B».	
	a) El vector campo eléctrico en	el punto	В	Q	3				
E(E	Componente x Component	•	lulo 67,9 N/	С					
Para	calcular el «b) Trabajo para trancarga q = y masa m = situada en ese punto. d) El trabajo necesario para des anterior desde el punto A ha	–1 splazar la partíc	μĈ	ambia:	Coord X			os «A» y «B»	
	Respuestas	Cif	ras sigr	nificat	ivas:	3			
V(A	-		·10 ⁴ V						

0,0240 J

 $W(\text{ext. A} \rightarrow \text{B}) =$

Cálculo de la intensidad del campo electrostático. (Pestaña «Campo»)

Para el punto «A»

Distancia de cada carga al punto A

$$r_1 = \sqrt{\frac{(0 - 2,00)^2 + (0 - 0)^2}{(0 - (-2,00))^2 + (0 - 0)^2}} = 2,00 \text{ m}$$

 $r_2 = \sqrt{\frac{(0 - (-2,00))^2 + (0 - 0)^2}{(0 - (-2,00))^2 + (0 - 0)^2}} = 2,00 \text{ m}$

Vector intensidad de campo electrostático creado por cada una de las cargas en el punto A

$$\mathbf{E}_{1}^{+} = \frac{9,00 \cdot 10^{9} \cdot 2,00 \cdot 10^{-6} \quad (-2,00 \mathbf{i} + 0 \mathbf{j})}{2,00^{2}} = -4,50 \cdot 10^{3} \mathbf{i} \qquad N/C$$

$$\mathbf{E}_{2}^{+} = \frac{9,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-6}) \quad (2,00 \mathbf{i} + 0 \mathbf{j})}{2,00^{2}} = -4,50 \cdot 10^{3} \mathbf{i} \qquad N/C$$

Vector intensidad de campo electrostático resultante en el punto A

$$\mathbf{E}^{\uparrow}(A) = -9,00 \cdot 10^3 \text{ i} \text{ N/C}$$

Módulo

$$|\mathbf{E}| = \sqrt{(-9,00 \cdot 10^3)^2}$$
 = 9,00·10³ N/C

Para el punto «B»

Para calcular el campo en (0, 10) se cambia la «A» de «a) El vector campo eléctrico en el punto» por «B».

Distancia de cada carga al punto B

$$r_1 = \sqrt{ (0 - 2,00)^2 + (10,0 - 0)^2 } = 10,2 \text{ m}$$

 $r_2 = \sqrt{ (0 - (-2,00))^2 + (10,0 - 0)^2 } = 10,2 \text{ m}$

Vector intensidad de campo electrostático creado por cada una de las cargas en el punto B

$$\mathbf{E}_{1}^{2} = \frac{9,00 \cdot 10^{9} \cdot 2,00 \cdot 10^{-6} \quad (-2,00 \mathbf{i} + 10,0 \mathbf{j})}{10,2^{2}} = -33,9 \mathbf{i} + 170 \mathbf{j} \text{ N/C}$$

$$\mathbf{E}_{2}^{2} = \frac{9,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-6}) \quad (2,00 \mathbf{i} + 10,0 \mathbf{j})}{10,2^{2}} = -33,9 \mathbf{i} -170 \mathbf{j} \text{ N/C}$$

Vector intensidad de campo electrostático resultante en el punto B

$$\vec{E}$$
 (B) = -67,9 i N/C

Módulo

$$|\mathbf{E}| = \sqrt{(-67.9)^2}$$
 = 67.9 N/C

Cálculo del trabajo necesario para transportar una carga. (Pestañas «Campo», «Potencial»)

Para calcular el «b) Trabajo para transportar ... » hay que cambiar las coordenadas de los puntos «A» y «B» El cálculo de la distancia de las cargas al punto «A» se encuentra en la pestaña «Campo»

Distancia de cada carga al punto A

$$r_1 = \sqrt{ (1,00 - 2,00)^2 + (0 - 0)^2 } = 1,00 \text{ m}$$

 $r_2 = \sqrt{ (1,00 - (-2,00))^2 + (0 - 0)^2 } = 3,00 \text{ m}$

El resto de los cálculos se encuentra en la pestaña «Potencial»

Distancia de cada carga al punto B:

$$r_1 = \sqrt{ (-1,00 - 2,00)^2 + (0 - 0)^2} = 3,00 \text{ m}$$

 $r_2 = \sqrt{ (-1,00 - (-2,00))^2 + (0 - 0)^2} = 1,00 \text{ m}$

Potencial eléctrico creado por cada carga en A

Potencial eléctrico creado por cada carga en B

$$V_{1}(A) = \frac{9,00 \cdot 10^{9} \cdot 2,00 \cdot 10^{-6}}{1,00} = 1,80 \cdot 10^{4} \text{ V} \qquad V_{1}(B) = \frac{9,00 \cdot 10^{9} \cdot 2,00 \cdot 10^{-6}}{3,00} = 6,00 \cdot 10^{3} \text{ V}$$

$$V_{2}(A) = \frac{9,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-6})}{3,00} = -6,00 \cdot 10^{3} \text{ V} \qquad V_{2}(B) = \frac{9,00 \cdot 10^{9} \cdot (-2,00 \cdot 10^{-6})}{1,00} = -1,80 \cdot 10^{4} \text{ V}$$

Potencial en el punto A

$$V(A) = 1,20 \cdot 10^4 \text{ V}$$

 $V(A) = 1,20 \cdot 10^4 \text{ V}$ Potencial en el punto B $V(B) = -1,20 \cdot 10^4 \text{ V}$

Trabajo realizado por la fuerza del campo al desplazar la partícula desde el punto A hasta el punto B

$$W = q \cdot (V(A) - V(B)) = -1,00 \cdot 10^{-6} \cdot (1,20 \cdot 10^{4} - (-1,20 \cdot 10^{4})) = -0,0240 \text{ J}$$

Trabajo de la fuerza exterior sin variación de energía cinética

$$W(ext.) = -W = 0.0240 J$$

- 4. Tres cargas puntuales de 2 μ C se sitúan respectivamente en A(0, 0), B(1, 0) y C(1/2, $\sqrt{3}$ /2). Calcula:
 - a) El campo eléctrico en los puntos D (1/2, 0) y F (1/2, $1/(2\sqrt{3})$)
 - **b)** El trabajo para trasladar una carga $q'=1 \mu C$ de D a F.
 - c) Con este trabajo, ¿aumenta o disminuye la energía electrostática del sistema?

(Las coordenadas en metros, $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$; $1 \, \mu\text{C} = 10^{-6} \, \text{C}$)

(P.A.U. Jun. 07)

Rta.: a) $\overline{E}_D = -2.40 \cdot 10^4 \, \overline{j} \, \text{N/C}; \overline{E}_F = \overline{0}; \text{ b) } W_{D \to F} \, (\text{exterior}) = -W_{D \to F} \, (\text{campo}) = 7.46 \cdot 10^{-4} \, \text{J}$

Introducción de datos. (Pestaña «Enunciado»)

Dada la siguiente distribución de cargas, (en		μС)		Coord X (m)	Coord Y (m)	Carga (μC)	
	(co	ordenadas en	m)	Q_1	0	0	2
y los puntos A y B, calcula:					Q_2	1	0	2
a) El vector campo eléctrico en el punto			D		Q_3	=1/2	=RAIZ(3)/2	2
b) El vector fuerza sobre					Q_4			
una partícula de ca	arga q =	1	μС			Coord X (m)	Coord Y (m)	
y ma	asa m =				D	=1/2	0	
situada en ese punto.					F	=1/2	=1/(2*RAIZ(3))	
d) El trabajo necesario para desplazar la partícula								
anterior desde el	l punto D	hasta el punto	o F					

I	Respuestas		Cifras significativas:	
(Componente x	Componente y	Módulo	
E →(D) =	0	$-2,40\cdot10^{4}$	2,40·10 ⁴ N/C	
V(D) =	9,28·10⁴ V	V(F) =	9,35·10⁴ <i>V</i>	
		$W(\text{ext. D} \rightarrow \text{F}) =$	7,46·10⁻⁴ J	

Para calcular el campo en F (1/2, $1/(2\sqrt{3})$) se cambia la «D» de «a) El vector campo eléctrico...» por «F».

a) El vector campo eléctrico en el punto

C	omponente x	Componente y	Módulo
E →(F) =	0	0	0 N/C

Cálculo de la intensidad del campo electrostático. (Pestaña «Campo»)

Para el punto «D»

Distancia de cada carga al punto D

$r_1 = \sqrt{}$	(0,500 -	0)2+(0 -	$(0)^2 =$	0,500 m
$r_2 = \sqrt{}$	(0,500 -	$1,00)^2 + ($	0 -	0)2 =	0,500 m
$r_3 = \sqrt{}$	(0,500 -	$0,500)^2 + ($	0 -	$0.866)^2 =$	0,866 m

Vector intensidad de campo electrostático creado por cada una de las cargas en el punto D

$$\vec{E}_{1} = \frac{9,00 \cdot 10^{9} \cdot 2,00 \cdot 10^{-6} \quad (0,500 \, \mathbf{i} + 0 \, \mathbf{j})}{0,500^{2}} = 7,20 \cdot 10^{4} \, \mathbf{i} \qquad N/C$$

$$\vec{E}_{2} = \frac{9,00 \cdot 10^{9} \cdot 2,00 \cdot 10^{-6} \quad (-0,500 \, \mathbf{i} + 0 \, \mathbf{j})}{0,500^{2}} = -7,20 \cdot 10^{4} \, \mathbf{i} \qquad N/C$$

$$\vec{E}_{3} = \frac{9,00 \cdot 10^{9} \cdot 2,00 \cdot 10^{-6} \quad (0 \, \mathbf{i} - 0,866 \, \mathbf{j})}{0,866^{2}} = -2,40 \cdot 10^{4} \, \mathbf{j} \quad N/C$$

Vector intensidad de campo electrostático resultante en el punto D

$$\vec{E}(D) = 0 \quad i \quad -2,40 \cdot 10^4 \quad j \quad N/C$$

Módulo

$$|\mathbf{E}| = \sqrt{(-2,40 \cdot 10^4)^2}$$
 = 2,40·10⁴ N/C

Para el punto «F», que en la hoja de cálculo es el punto «F»

Distancia de cada carga al punto F

$$r_1 = \sqrt{ (0,500 - 0)^2 + (0,500 - 0)^2 + (0,500 - 0)^2 } = 0,577 \text{ m}$$

 $r_2 = \sqrt{ (0,500 - 1,00)^2 + (0,289 - 0)^2 } = 0,577 \text{ m}$
 $r_3 = \sqrt{ (0,500 - 0,500)^2 + (0,289 - 0,866)^2 } = 0,577 \text{ m}$

Vector intensidad de campo electrostático creado por cada una de las cargas en el punto F

$$\mathbf{E}_{1}^{1} = \frac{9,00 \cdot 10^{9} \cdot 2,00 \cdot 10^{-6}}{0,577^{2}} \frac{\left(\begin{array}{c} 0,500 \ \mathbf{i} + 0,289 \ \mathbf{j} \right)}{0,577} = 4,68 \cdot 10^{4} \ \mathbf{i} + 2,70 \cdot 10^{4} \ \mathbf{j} \ \text{N/C} \\
\mathbf{E}_{2}^{1} = \frac{9,00 \cdot 10^{9} \cdot 2,00 \cdot 10^{-6}}{0,577^{2}} \frac{\left(\begin{array}{c} -0,500 \ \mathbf{i} + 0,289 \ \mathbf{j} \right)}{0,577} = -4,68 \cdot 10^{4} \ \mathbf{i} + 2,70 \cdot 10^{4} \ \mathbf{j} \ \text{N/C} \\
\mathbf{E}_{3}^{2} = \frac{9,00 \cdot 10^{9} \cdot 2,00 \cdot 10^{-6}}{0,577^{2}} \frac{\left(\begin{array}{c} 0 \ \mathbf{i} - 0,577 \ \mathbf{j} \right)}{0,577} = -5,40 \cdot 10^{4} \ \mathbf{j} \ \text{N/C} \\
\end{array}$$

Vector intensidad de campo electrostático resultante en el punto F

$$\mathbf{E}(\mathbf{F}) = 0 \mathbf{i} + 0 \mathbf{j} \mathbf{N}/\mathbf{C}$$

Cálculo del trabajo necesario para traer una carga. (Pestaña «Potencial»)

Potencial eléctrico creado por cada carga en D Potencial eléctrico creado por cada carga en F 9,00.109 . $2.00 \cdot 10^{-6}$ $9.00 \cdot 10^9$ · $V_1(D) =$ 3,60·10⁴ V 3,12·10⁴ V 0,500 0,577 9,00.109 . 9,00.109. $V_2(D) =$ 3,60·10⁴ V 3,12·10⁴ V 0,577 0,500 $9,00\cdot 10^9$ · $V_3(D) =$ $= 2.08 \cdot 10^4 \text{ V}$ 3,12·10⁴ V 0,866 9,35·10⁴ V Potencial eléctrico en D $V(D) = 9.28 \cdot 10^4 \text{ V}$ Potencial eléctrico en F V(F) =Trabajo realizado por la fuerza del campo al desplazar la partícula desde el punto D hasta el punto F

$$W = q \cdot (V(D) - V(F)) = 1,00 \cdot 10^{-6} \cdot (9,28 \cdot 10^4 - 9,35 \cdot 10^4) = -7,46 \cdot 10^{-4} \text{ J}$$

Trabajo de la fuerza exterior sin variación de energía cinética

$$W(\text{ext.}) = -W = 7,46 \cdot 10^{-4} \text{ J}$$

- 5. Dadas tres cargas puntuales $q_1 = 10^{-3} \, \mu\text{C}$ en (-8, 0) m, $q_2 = -10^{-3} \, \mu\text{C}$ en (8, 0) m y $q_3 = 2 \cdot 10^{-3} \, \mu\text{C}$ en (0,
 - 8) m. Calcula:
 - a) El campo y el potencial eléctricos en (0, 0)
 - **b)** La energía electrostática.
 - c) Justifica que el campo electrostático es conservativo.

Datos: $1 \mu C = 10^{-6} C$; $K = 9 \cdot 10^{9} \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$

(P.A.U. Set. 07)

Rta.: a) $\vec{E}_O = 0.281 \ \vec{i} - 0.281 \ \vec{j} \ \text{N/C}; \ V_O = 2.25 \ \text{V}; \ \text{b}) \ E = -5.63 \cdot 10^{-10} \ \text{J}$

Introducción de datos. (Pestaña «Enunciado»)

Dada la siguiente distribución de car	gas, (en	пC)		Coord X (m)	Coord Y (m)	Carga (nC)
(cc	oordenadas en	m)	$Q_{\scriptscriptstyle 1}$	-8	0	1
y los puntos A y B, calcula:				Q_2	8	0	-1
a) El vector campo eléctrico en el punto		A		Q_3	0	8	2
b) El vector fuerza sobre				Q_4			
una partícula de carga q =					Coord X (m)	Coord Y (m)	
y masa <i>m</i> =				Α	0	0	

Res	spuestas		Cifras significativas:	
Co	mponente x Con	nponente y	Módulo	
E →(A) =	0,281	-0,281	0,398 N/C	
<i>V</i> (A) =	2,25 V			
$E_p =$	$-5,63\cdot10^{-10} \text{ J}$			

Cálculo de la intensidad del campo electrostático. (Pestaña «Campo»)

Distanc	cia de cada	carga al punto A					
	$r_1 = \sqrt{}$	(0 -	(-8,00)) ² + (0 -	0) ²	=	8,00 m
	$r_2 = \sqrt{}$	(0 -	$8,00)^2 + ($	0 -	0) ²	=	8,00 m
	$r_3 = \sqrt{}$	(0 -	$(0)^2 + ($	0 -	8,00)2	=	8,00 m
Vector	intensidad	de campo electros	tático creado por c	ada una de las ca	argas en el	l punto A	
E →	$9,00\cdot10^9\cdot1$	1,00·10 ⁻⁹ (8,00 i +	0 j)	= 0,141	:	
L 1 -	8,00) ²	8.00		- 0,141	•	

		1 .	and the second	1 , ,		
L 3 -	$8,00^{2}$		8,00		_	-0,281 j 1 v /C
F → _	$9,00\cdot10^9\cdot2,00\cdot10^{-9}$	(0 i –	8,00 j)	_	−0,281 j N/C
L ₂ =	8,00°		8,00		= 0,141 1	N/C
F → _	$9,00\cdot10^9\cdot(-1,00\cdot10^{-9})$	(−8,00 i +	0 j)	= 0,141 i	N/C
L 1 =	8,00°		8,00		= 0,141 1	N/C
					= 0.141 •	N1/1

Vector intensidad de campo electrostático resultante en el punto A

$$\vec{E}(A) = 0.281 i -0.281 j N/C$$

Módulo

$$|\mathbf{E}| = \sqrt{(0.281)^2 + (-0.281)^2} = 0.398 \text{ N/C}$$

Cálculo del potencial. (Pestaña «Potencial»)

Potencial eléctrico creado por cada carga en el punto A $9,00\cdot10^9\cdot1,00\cdot10^{-9}$ $V_1(A) =$ 1,13 ٧ 8,00 $9,00\cdot10^9\cdot(-1,00\cdot10^{-9})$ $V_2(A) =$ -1,138,00 $9,00\cdot10^9\cdot2,00\cdot10^{-9}$ $V_3(A) =$ 2,25 8,00 Potencial en el punto A V(A) =2,25

Cálculo de la energía electrostática. (Pestaña «Energía Potencial»)

D		1			c
Distancias	entre	cada	nar de	cargas	tuas
Distaileias	C	cuuu	pa. ac	ca. Sas	, α

$r_{12} = \sqrt{}$	(8,00 -	$(-8,00))^2 + ($	(0 -	0) ²	= 16,0 m
$r_{13} = \sqrt{}$	(0 -	$(-8,00)^{2} + ($	(8,00 -	0) ²	= 11,3 m
$r_{23} = \sqrt{}$	(0 -	$8,00)^2 + ($	(8,00 -	0)2	= 11,3 m

Energía potencial electrostática de cada par de cargas fijas

$$E_{p 12} = \frac{9,00 \cdot 10^9 \cdot 1,00 \cdot 10^{-9} \cdot (-1,00 \cdot 10^{-9})}{16,0} = -5,63 \cdot 10^{-10} \text{ J}$$

$$E_{p 13} = \frac{9,00 \cdot 10^9 \cdot 1,00 \cdot 10^{-9} \cdot 2,00 \cdot 10^{-9}}{11,3} = 1,59 \cdot 10^{-9} \text{ J}$$

$$E_{p 23} = \frac{9,00 \cdot 10^9 \cdot (-1,00 \cdot 10^{-9}) \cdot 2,00 \cdot 10^{-9}}{11,3} = -1,59 \cdot 10^{-9} \text{ J}$$
Energía potencial de la distribución de cargas fijas
$$E_{p} = -5,63 \cdot 10^{-10} \text{ J}$$

- 6. En dos de los vértices de un triángulo equilátero de 2 cm de lado se sitúan dos cargas puntuales de $+10~\mu C$ cada una. Calcula:
 - a) El campo eléctrico en el tercer vértice.
 - **b)** El trabajo para llevar una carga de 5 μ C desde el tercer vértice hasta el punto medio del lado opuesto.
 - c) Justifica por qué no necesitas conocer la trayectoria en el apartado anterior.

Datos: $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$; $1 \, \mu\text{C} = 10^{-6} \text{ C}$

(P.A.U. Jun. 08)

Rta.: a) $\overline{E}_C = 3.90 \cdot 10^8$ N/C, en la bisectriz hacia el exterior; b) W(ext.) = 45.0 J

Cálculo de coordenadas. (Pestaña «Coords»)

Se hace clic en la coordenada y del punto C y se copia (Ctrl + C)

Introducción de datos. (Pestaña «Enunciado»)

Se elige «µC» como unidad de carga y «cm» como unidad de coordenadas.

Se escriben las coordenadas de los puntos A y B a la derecha de Q_1 y Q_2 seguidas de los valores de las cargas.

Se hace clic en la celda bajo Coord Y (cm) a la derecha de A y se pega el valor de la coordenada (Ctrl+Ma-yúsc+V y en Selección quitar todas las marcas excepto la de Números) o clic en el menú

Editar → Sólo pegar → Pegar solo números

Se hace clic en la celda a su izquierda que contiene «A» y se elige «C»

Se hace clic en la celda de abajo que contiene «B» y se elige «D»

Se hace clic en la celda a ña derecha de «El vector campo eléctrico en el punto» que contiene «A» y se elige «C»

El punto medio «D» del lado opuesto es el punto medio entre A y B, (0, 0)

Dada la siguiente distribución de cargas,	(en μ((C))	Coord X (cm)	Coord Y (cm)	Carga (μC)
(coorden	adas en <mark>cr</mark>	m)	Q_1	1	0	10
y los puntos A y B, calcula:			Q_2	-1	0	10
a) El vector campo eléctrico en el punto	C		Q_3			
b) El vector fuerza sobre			Q_4			
una partícula de carga $q =$				Coord X (cm)	Coord Y (cm)	
y masa <i>m</i> =			С	0	-1,73205 081	
situada en ese punto.			D	0	0	
d) El trabajo necesario para desplazar la partícula						
anterior desde el punto C hasta el p	punto D					

Re	espuestas		Cifras significativas:
C	omponente x	Componente y	Módulo
E →(C) =	0	$-3,90 \cdot 10^{8}$	3,90·10 ⁸ N/C
<i>V</i> (C) =	9,00·10 ⁶ V	<i>V</i> (D) =	$1,80 \cdot 10^7 V$
		$W(\text{ext. C} \rightarrow \text{D}) =$	45,0 J

Cálculo de la intensidad del campo electrostático. (Pestaña «Campo»)

Distancia de cada carga al punto C

$$r_1 = \sqrt{ (0 - 0.0100)^2 + (-0.0173 - 0)^2 } = 0.0200 \text{ m}$$

 $r_2 = \sqrt{ (0 - -0.0100)^2 + (-0.0173 - 0)^2 } = 0.0200 \text{ m}$

Vector intensidad de campo electrostático creado por cada una de las cargas en el punto C

$$\vec{E}_{1} = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-5} \quad (-0,0100 \, \mathbf{i} - 0,0173 \, \mathbf{j})}{0,0200^{2}} = -1,12 \cdot 10^{8} \, \mathbf{i} \quad -1,95 \cdot 10^{8} \, \mathbf{j} \quad \text{N/C}$$

$$\vec{E}_{2} = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-5} \quad (0,0100 \, \mathbf{i} - 0,0173 \, \mathbf{j})}{0,0200^{2}} = 1,12 \cdot 10^{8} \, \mathbf{i} \quad -1,95 \cdot 10^{8} \, \mathbf{j} \quad \text{N/C}$$

Vector intensidad de campo electrostático resultante en el punto C

$$\vec{E}(C) = 0 \quad i \quad -3.90 \cdot 10^8 \quad j \quad N/C$$

Módulo

$$|\mathbf{E}| = \sqrt{(-3.90 \cdot 10^8)^2}$$
 = 3.90·10⁸ N/C

Cálculo del trabajo necesario para traer una carga. (Pestaña «Potencial»)

Distancia de cada carga al punto D

$$r_1 = \sqrt{\frac{0 - (0 - 0.0100)^2 + (0 - 0.0100)^2}{(0 - 0.0100)^2 + (0 - 0.0100)^2}} = 0.0100 \text{ m}$$

 $r_2 = \sqrt{\frac{0 - 0.0100}{(0 - 0.0100)^2 + (0 - 0.0100)^2}} = 0.0100 \text{ m}$

Potencial eléctrico creado por cada carga en C Potencial eléctrico creado por cada carga en D

Potencial eléctrico creado por cada carga en C
$$V_{1}(C) = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-5}}{0,0200} = 4,50 \cdot 10^{6} \text{ V}$$

$$V_{2}(C) = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-5}}{0,0200} = 4,50 \cdot 10^{6} \text{ V}$$

$$V_{2}(C) = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-5}}{0,0200} = 4,50 \cdot 10^{6} \text{ V}$$

$$V_{2}(D) = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-5}}{0,0100} = 9,00 \cdot 10^{6} \text{ V}$$

$$V_{2}(D) = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-5}}{0,0100} = 9,00 \cdot 10^{6} \text{ V}$$

$$V(D) = 1,80 \cdot 10^{7} \text{ V}$$

Trabajo realizado por la fuerza del campo al desplazar la partícula desde el punto C hasta el punto D

$$W = q \cdot (V(C) - V(D)) = 5,00 \cdot 10^{-6} \cdot (9,00 \cdot 10^{6} - 1,80 \cdot 10^{7}) = -45,0 \text{ J}$$

Trabajo de la fuerza exterior sin variación de energía cinética

$$W(ext.) = -W = 45.0 \text{ J}$$

- 7. Dos cargas eléctricas de +8 μ C están situadas en A(0, 0,5) y B(0, -0,5) (en metros). Calcula:
 - a) El campo eléctrico en C(1, 0) y en D(0, 0)
 - b) El potencial eléctrico en C y en D.
 - c) Si una partícula de masa m = 0.5 g y carga $q = -1 \mu C$ se sitúa en C con una velocidad inicial de 10^3 m/s, calcula la velocidad en D.

 $K = 9 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$, 1 μC = 10^{-6} C. Nota: sólo intervienen fuerzas eléctricas. (*P.A.U. Set. 12*) **Rta.:** a) $\overline{E}_C = 1,03 \cdot 10^5 \, \overline{\mathbf{i}} \, \text{N/C}$; $\overline{E}_D = \overline{\mathbf{0}}$; b) $V_C = 1,29 \cdot 10^5 \, \text{V}$; $V_D = 2,88 \cdot 10^5 \, \text{V}$; c) $\overline{\mathbf{v}}_D = -1,00 \cdot 10^3 \, \overline{\mathbf{i}} \, \text{m/s}$

Introducción de datos. (Pestaña «Enunciado»)

Dada la siguiente distribución	de cargas, (en	μС)		Coord X (m)	Coord Y (m)	Carga (μC)
(c	oordenadas en	m)	$Q_{\scriptscriptstyle 1}$	0	0,5	8
y los puntos A y B, calcula:				Q_2	0	-0,5	8
a) El vector campo eléctrico en el punto				Q_3			
b) El vector fuerza sobre				Q_4			
una partícula de carga $q = -1$					Coord X (m)	Coord Y (m)	
y masa <i>m</i> = 0,5				С	1	0	
situada en ese punto.				D	0	0	
c)							
d) El trabajo necesario para despl	azar la partícul	a					
anterior desde el punto C hasta el punto D							
e) La velocidad con la que pasa por el punto							
si la velocidad en A es v(A) =	1000	m/s					

	Respuestas		Cifras significativas:
	Componente x	Componente y	Módulo
E →(C) =	1,03·105	0	1,03·10⁵ N/C
<i>V</i> (C) =	1,29·10⁵ V	<i>V</i> (D) =	2,88·10 ⁵ V
		$W(\text{campo }C \rightarrow D) =$	0,159 J
$E_{c}(C) =$	250	$E_{c}(D) =$	250 J
		<i>v</i> (D) =	1,00⋅10³ m/s

Para calcular el campo en (0, 0) se cambia la «C» junto a: «a) El vector campo eléctrico ...» por «D»

a) El vector campo eléctrico en el punto

	Componente x	Componente y	Módulo
E →(D) =	0	0	0 N/C

Cálculo de la intensidad del campo electrostático. (Pestaña «Campo»)

Para el punto C(1, 0)

Distancia de cada carga al punto C

$$r_1 = \sqrt{ (1,00 - 0)^2 + (0 - 0,500)^2 } = 1,12 \text{ m}$$

 $r_2 = \sqrt{ (1,00 - 0)^2 + (0 - 0,500)^2 } = 1,12 \text{ m}$

Vector intensidad de campo electrostático creado por cada una de las cargas en el punto C

$$\mathbf{E}_{1}^{1} = \frac{9,00 \cdot 10^{9} \cdot 8,00 \cdot 10^{-6} \quad (1,00 \mathbf{i} - 0,500 \mathbf{j})}{1,12^{2}} = 5,15 \cdot 10^{4} \mathbf{i} -2,58 \cdot 10^{4} \mathbf{j} \text{ N/C}$$

$$\mathbf{E}_{2}^{1} = \frac{9,00 \cdot 10^{9} \cdot 8,00 \cdot 10^{-6} \quad (1,00 \mathbf{i} + 0,500 \mathbf{j})}{1,12^{2}} = 5,15 \cdot 10^{4} \mathbf{i} + 2,58 \cdot 10^{4} \mathbf{j} \text{ N/C}$$

Vector intensidad de campo electrostático resultante en el punto A

$$\vec{E}(C) = 1.03 \cdot 10^5 i + 0 j N/C$$

Módulo

$$|\mathbf{E}| = \sqrt{(1.03 \cdot 10^5)^2}$$
 = 1.03·10⁵ N/C

Para el punto D(0, 0))

Distancia de cada carga al punto D

$$r_1 = \sqrt{ (0 - 0)^2 + (0 - 0,500)^2 } = 0,500 \text{ m}$$

 $r_2 = \sqrt{ (0 - 0)^2 + (0 - -0,500)^2 } = 0,500 \text{ m}$

Vector intensidad de campo electrostático creado por cada una de las cargas en el punto D

$$\mathbf{E}_{1}^{+} = \frac{9,00 \cdot 10^{9} \cdot 8,00 \cdot 10^{-6} \quad (0 \text{ i - } 0,500 \text{ j})}{0,500^{2}} = -2,88 \cdot 10^{5} \text{ j N/C}$$

$$\mathbf{E}_{2}^{+} = \frac{9,00 \cdot 10^{9} \cdot 8,00 \cdot 10^{-6} \quad (0 \text{ i + } 0,500 \text{ j})}{0,500^{2}} = 2,88 \cdot 10^{5} \text{ j N/C}$$

Vector intensidad de campo electrostático resultante en el punto D

$$\vec{E}(D) = 0 \quad j \quad N/C$$

Cálculo de la velocidad. (Pestaña «Potencial»)

Potencial eléctrico creado por cada carga en C Potencial eléctrico creado por cada carga en D

$$V_{1}(C) = \frac{9,00 \cdot 10^{9} \cdot 8,00 \cdot 10^{-6}}{1,12} = 6,44 \cdot 10^{4} \text{ V} \quad V_{1}(D) = \frac{9,00 \cdot 10^{9} \cdot 8,00 \cdot 10^{-6}}{0,500} = 1,44 \cdot 10^{5} \text{ V}$$

$$V_{2}(C) = \frac{9,00 \cdot 10^{9} \cdot 8,00 \cdot 10^{-6}}{0,500} = 6,44 \cdot 10^{4} \text{ V} \quad V_{2}(D) = \frac{9,00 \cdot 10^{9} \cdot 8,00 \cdot 10^{-6}}{0,500} = 1,44 \cdot 10^{5} \text{ V}$$

 $V_2(C) = 0.500$ 1,12 0,500 $V(C) = 1.29 \cdot 10^5 \text{ V}$ Potencial en el punto D $V(D) = 2.88 \cdot 10^5 \text{ V}$

Energía cinética no punto C

$$E_c(C) = m \cdot v^2 / 2 = 5,00 \cdot 10^{-4} \cdot (1,00 \cdot 10^3)^2 / 2 = 250 \text{ J}$$

Trabajo realizado por la fuerza del campo al desplazar la partícula desde en punto A hasta el punto B

$$W = q \cdot (V(C) - V(D)) = -1,00 \cdot 10^{-6} \cdot (1,29 \cdot 10^{5} - 2,88 \cdot 10^{5}) = 0,159 \text{ J}$$

Energía cinética en el punto D

$$E_c(D) = E_c(C) + W = 250 + 0.159 = 250 J$$

Velocidad en el punto D

$$v(D) = \sqrt{\frac{2 \cdot E_c}{m}} = \sqrt{\frac{2 \cdot 250}{5,00 \cdot 10^{-4}}} = 1,00 \cdot 10^3 \text{ m/s}$$

- **8.** Tres cargas eléctricas puntuales de 10⁻⁶ C se encuentran situadas en los vértices de un cuadrado de 1 m de lado. Calcula:
 - a) La intensidad del campo y el potencial electrostático en el vértice libre.
 - **b)** Módulo, dirección y sentido de la fuerza del campo electrostático sobre una carga de -2·10⁻⁶ C situada en dicho vértice.
 - c) El trabajo realizado por la fuerza del campo para trasladar dicha caga desde el vértice al centro del cuadrado. Interpretar el signo del resultado.

Dato: $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$ (P.A.U. Set. 13)

Rta.: a) $|\overline{E}| = 1.7 \cdot 10^4$ N/C, diagonal hacia fuera; $V = 2.4 \cdot 10^4$ V; b) $|\overline{F}| = 0.034$ N, diagonal hacia el centro; c) $W_E = 0.028$ J

Cálculo de coordenadas. (Pestaña «Coords»)

Se seleccionan las tres primeras coordenadas y se copian (Ctrl + C)

Introducción de datos. (Pestaña «Enunciado»)

Se hace clic a la derecha de Q_1 y se pegan los valores de las coordenadas (Ctrl+Mayúsc+V y en Selección quitar todas as marcas excepto la de Números) o clic en el menú

Editar → Solo pegar → Pegar solo números

Posteriormente copie as coordenadas de D y péguelas en el punto A.

El punto medio del cuadrado ya fue fijado en la pestaña Coords (0, 0)

Dada la siguiente distribución de cargas, (e	nμC)		Coord X (m)	Coord Y (m)	Carga (μC)	
(coordenadas er	m)	$Q_{\scriptscriptstyle 1}$	0,5	0,5	1	
y los puntos A y B, calcula:		_	Q_2	-0,5	0,5	1	
a) El vector campo eléctrico en el punto	Α		Q_3	-0,5	-0,5	1	
b) El vector fuerza sobre			Q_4				
una partícula de carga $q = -2 \mu$				Coord X (m)	Coord Y (m)		
y masa <i>m</i> =			Α	0,5	-0,5		
situada en ese punto.			В	0	0		
d) El trabajo necesario para desplazar la partícula							
anterior desde el punto A hasta el pun	to B						

Respuestas			Cifras significativas:	3
	Componente x	Componente y	Módulo	
E →(A) =	1,22·10 ⁴	-1,22·10 ⁴	1,72·10 ⁴ N/C	
F → =	-0,0244	0,0244	0,0345 N	
<i>V</i> (A) =	2,44·10 ⁴ V	<i>V</i> (B) =	3,82·10 ⁴ V	
		$W(\text{ext. A} \rightarrow \text{B}) =$	-0,0276 J	

Cálculo de la intensidad del campo electrostático. (Pestaña «Campo»)

Distancia de cada carga al punto A

$r_1 = \sqrt{}$	(0,500 -	$0,500)^2 + ($	-0,500 -	$0,500)^2$	=	1,00 m
$r_2 = \sqrt{}$	(0,500 -	(-0,500)) ² + (-0,500 -	0,500) ²	=	1,41 m
$r_3 = \sqrt{}$	(0,500 -	(-0,500)) ² + (-0,500 -	$(-0,500))^2$	=	1,00 m

Vector intensidad de campo electrostático creado por cada una de las cargas en el punto A

$$\mathbf{E}_{1}^{1} = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (0 \mathbf{i} - 1,00 \mathbf{j}) \\
\mathbf{E}_{2}^{1} = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-6}}{1,41^{2}} \quad (1,00 \mathbf{i} - 1,00 \mathbf{j}) \\
\mathbf{E}_{3}^{1} = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{3}^{1} = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{3}^{1} = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{3}^{1} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{3}^{1} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{3}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{3}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{3}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{3}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{3}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{4}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{5}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{5}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{5}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{5}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{5}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{5}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{5}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{5}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{5}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j}) \\
\mathbf{I}_{5}^{2} = \frac{9,00 \cdot 10^{3} \cdot 1,00 \cdot 10^{-6}}{1,00^{2}} \quad (1,00 \mathbf{i} + 0 \mathbf{j})$$

Vector intensidad de campo electrostático resultante en el punto A

$$\vec{E}$$
 (A) = 1,22·10⁴ i -1,22·10⁴ j N/C

0,0244 **j** N

Fuerza resultante sobre la carga en el punto A

$$\mathbf{F}' = -2,00 \cdot 10^{-6} \quad (1,22 \cdot 10^{4} \mathbf{i}) -1,22 \cdot 10^{4} \mathbf{j}) = -0,0244 \mathbf{i}$$
Módulo
$$|\mathbf{E}'| = \sqrt{\frac{(1,22 \cdot 10^{4})^{2} + (-1,22 \cdot 10^{4})^{2}}{(-0,0244)^{2}}} = 1,72 \cdot 10^{4} \text{ N/C}$$

$$|\mathbf{F}'| = \sqrt{(-0,0244)^{2} + (0,0244)^{2}} = 0,0345 \text{ N}$$

Cálculo del potencial y del trabajo realizado por la fuerza del campo para trasladar una carga. (Pestaña «Potencial»)

Distancia de cada carga al punto B

$$r_1 = \sqrt{\frac{(0 - 0,500)^2 + (0 - 0,500)^2}{(0 - (-0,500))^2 + (0 - 0,500)^2}} = 0,707 \text{ m}$$

$$r_2 = \sqrt{\frac{(0 - (-0,500))^2 + (0 - 0,500)^2}{(0 - (-0,500))^2 + (0 - 0,500)^2}} = 0,707 \text{ m}$$

$$r_3 = \sqrt{\frac{(0 - (-0,500))^2 + (0 - 0,500)^2}{(0 - (-0,500))^2 + (0 - 0,500)^2}} = 0,707 \text{ m}$$

Potencial eléctrico creado por cada carga en A

Potencial eléctrico creado por cada carga en B

$$V_{1}(A) = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-6}}{1,00} = 9,00 \cdot 10^{3} \text{ V} \qquad V_{1}(B) = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-6}}{0,707} = 1,27 \cdot 10^{4} \text{ V}$$

$$V_{2}(A) = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-6}}{1,41} = 6,36 \cdot 10^{3} \text{ V} \qquad V_{2}(B) = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-6}}{0,707} = 1,27 \cdot 10^{4} \text{ V}$$

$$V_{3}(A) = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-6}}{1,00} = 9,00 \cdot 10^{3} \text{ V} \qquad V_{3}(B) = \frac{9,00 \cdot 10^{9} \cdot 1,00 \cdot 10^{-6}}{0,707} = 1,27 \cdot 10^{4} \text{ V}$$
Potencial en el punto A $V(A) = 2,44 \cdot 10^{4} \text{ V}$
Potencial en el punto $V(B) = 3,82 \cdot 10^{4} \text{ V}$

Trabajo realizado por la fuerza del campo al desplazar la partícula desde el punto A hasta el punto B $W = q \cdot (V(A) - V(B)) = -2,00 \cdot 10^{-6} \cdot (2,44 \cdot 10^4 - 3,82 \cdot 10^4) =$ 0,0276 J

Trabajo de la fuerza exterior sin variación de energía cinética

$$W(ext.) = -W = -0.0276 J$$

Sumario

PROBLEMAS DE CARGAS PUNTUALES
• Comienzo
● Datos
1. Tres cargas de –2,00, –2,00 y +3,00 pC se encuentran en los vértices de un triángulo equilátero de 1,00 nm de lado en un medio (papel) en el que la permitividad eléctrica vale 1,50. Calcula:2
2. Tres cargas puntuales iguales de 5 μC cada una están situadas en los vértices de un triángulo equi- látero de 1,5 m de lado7
3. Dos cargas eléctricas puntuales de +2 y $-2~\mu C$, están situadas en los puntos (2, 0) y (-2 , 0) (en metros). Calcula:
4. Tres cargas puntuales de 2 μ C se sitúan respectivamente en A(0, 0), B(1, 0) y C(1/2, $\sqrt{3}/2$). Calcula: 16
5. Dadas tres cargas puntuales $q_1 = 10^{-3} \mu\text{C}$ en (-8, 0) m, $q_2 = -10^{-3} \mu\text{C}$ en (8, 0) m y $q_3 = 2 \cdot 10^{-3} \mu\text{C}$ en (0, 8) m. Calcula:
6. En dos de los vértices de un triángulo equilátero de 2 cm de lado se sitúan dos cargas puntuales de +10 μC cada una. Calcula:21
7. Dos cargas eléctricas de +8 μC están situadas en A(0, 0,5) y B(0, −0,5) (en metros). Calcula:24
8. Tres cargas eléctricas puntuales de 10 ⁻⁶ C se encuentran situadas en los vértices de un cuadrado de 1 m de lado. Calcula: