

MULTIMEDIA

UNIVERSITY

STUDENT ID NO

<input type="text"/>											
----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2018/2019

BFN2094 – CORPORATE RISK MANAGEMENT

(All sections / Groups)

01th MARCH 2019

9.00 a.m – 11.00 a.m

(2 Hours)

INSTRUCTIONS TO STUDENTS

1. This question paper consists of SIX (6) printed pages with four (4) questions and financial tables only.
2. Attempt **ALL** questions.
3. Please write all your answer in the **Answer Booklet** provided.
4. Marks are shown at the end of each question.

There are FOUR (4) questions in this section. Answer ALL questions.

Question 1 (25 Marks)

- (a) Enak Enterprise is a restaurant which serve authentic Malay cuisine. Enak is concerned about the risk of employees cutting themselves on the job. Assuming that Enak has no plans in expanding its operation, which of the major risk management methods are likely to be most important to Enak? Which will not be appropriate for Enak? Explain.

(6 marks)

- (b) What is the difference between *loss financing* and *internal risk reduction* method?

(4 marks)

- (c) Andrew and Ahmad enter into a pooling arrangement for accidental losses. Assume that their losses are independent of each other and have the following distribution:

Possible outcomes (x_i)	Probability (p_i)
RM 0	0.945
RM 500	0.05
RM 1,000	0.0045
RM 5,000	0.0005

- i. Calculate the expected loss *before* risk pooling.

(5 marks)

- ii. What happens to the *expected loss* and *standard deviation* of the distribution of losses to each individual subsequent to the pooling arrangement? Briefly explain.

(4 marks)

- (d) Suppose that each participant in a pooling arrangement has potential losses ranging from RM0 to RM4,000 and that each participant's expected loss is RM1,000. In one graph, sketch the probability distribution of average losses if the losses across participants are independent and if:

- i. there is 1 participant (i.e., no pooling)
- ii. there are 100 participants
- iii. there are 1,000 participants

(6 marks)

Continued...

Question 2 (25 Marks)

- (a) Pintar Company owns real estate valued at RM 1,000,000. They estimate that their property losses have the following distribution:

Losses (RM)	Probability
1,000,000	0.001
500,000	0.010
250,000	0.050
10,000	0.100
0	0.839

- i. What is the expected value of Pintar Company's losses? (7 marks)
- ii. If insurance for this loss were available for a price of RM10,000 per year, do you think that Pintar Company would want to buy it? Why or why not? (2 marks)
- (b) Impian Sdn. Bhd has the following distribution for its annual medical costs:
- | | | |
|--------|-------------|-------------------------|
| Loss = | RM2,000,000 | with probability 0.0001 |
| | RM100,000 | with probability 0.001 |
| | RM5,000 | with probability 0.1 |
| | RM0 | with probability 0.8989 |
- i. What are the expected claim costs for Impian Sdn. Bhd? (4 marks)
- ii. If an insurer offered Impian Sdn. Bhd a policy with a RM5000 annual deductible, what are the expected claim costs on this policy? (4 marks)
- iii. If an insurer offered Impian Sdn. Bhd a policy with a RM500,000 limit, what are the expected claim costs on this policy? (4 marks)
- iv. Explain why these contractual provisions such as *limits* and *deductibles* are important from the insurance company's point of view. (4 marks)

Continued...

Question 3 (25 Marks)

- (a) Lagenda Sdn. Bhd. plans to enhance its workers' safety by enrolling them for training courses. The company will enjoy rebates in premium by the insurance company if the workers completed the training course (assuming that the only benefits of the training is the insurance premium rebates). The firm has a total of 200 workers and the cost of the training course for each is RM800. If all of the workers enrol in the course immediately, the company will enjoy a rebate of RM55,000 in the company's insurance premium this year and rebate of RM38,000 in each of the subsequent 3 years. The cost of capital is 8%. Should you recommend Lagenda Sdn Bhd to proceed with the plan? Why?

(9 marks)

- (b) Jaguh Sdn. Bhd has a factory which manufacture industrial hand gloves. The probability of an explosion at the factory depends on how much the firm spends on safety as given by the table.

Expenditure (in RM millions)	Probability of Loss
0.0	0.030
0.5	0.020
1.0	0.016
1.5	0.013
2.0	0.011
2.5	0.010

- i. If an explosion occurs, the loss to society (e.g. damaged equipment, death of employees, etc) is expected to be at RM250 million. Find the optimal level of safety from a societal perspective.

(8 marks)

- ii. Suppose that Jaguh Sdn. Bhd. has to pay only 50% of the losses that occur. Ignore the time value of money, what is the maximum loss control expenditure that Jaguh Sdn. Bhd. should spend on safety?

(8 marks)

Continued...

Question 4 (25 Marks)

- (a) List the advantages and disadvantages of purchasing an insurance policy on aggregate property and liability losses versus purchasing a separate property insurance policy and a separate liability insurance policy. (7 marks)
- (b) Risk retention refers to the decision to accept the uncertainty associated with a particular risk exposure. The development and selection of alternative risk management methods involve a fundamental trade-off between the benefits of retention and the increased costs from greater risk. List and discuss three (3) advantages of increased risk retention. (9 marks)
- (c) Kasturi Bhd. has historically purchased separate policies for property insurance and liability insurance. Each of the policies had RM4 million retention. The company is now considering the purchase of a bundled policy which covers both property and liability exposures. The retention of the bundled policy is to be RM8 million. Sketch a graph illustrating the areas of unnecessary coverage that will exist if Kasturi Bhd. continues with separate policies. (4 marks)
- (d) Consider two firms: Firm A has 2,000 workers in twenty different states. Firm B has 500 workers at a single plant. All else equal, which firm would be more likely to retain their workers compensation losses? Explain. (5 marks)

Present Value and Future Value Tables

Table A-1 Future Value Interest Factors for One Dollar Compounded at k Percent for n Periods: $FVIF_{k,n} = (1 + k)^n$

Period	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	16%	20%	24%	25%	30%
1	1.0100	1.0200	1.0300	1.0400	1.0500	1.0600	1.0700	1.0800	1.0900	1.1000	1.1100	1.1200	1.1300	1.1400	1.1500	1.1600	1.2000	1.2400	1.2500	1.3000
2	1.0201	1.0404	1.0609	1.0816	1.1025	1.1236	1.1449	1.1664	1.1881	1.2100	1.2321	1.2544	1.2769	1.2996	1.3225	1.3456	1.4400	1.5376	1.5625	1.6900
3	1.0303	1.0612	1.0927	1.1249	1.1576	1.1910	1.2250	1.2597	1.2950	1.3310	1.3676	1.4049	1.4429	1.4815	1.5209	1.5608	1.7280	1.9066	1.9531	2.1970
4	1.0406	1.0824	1.1255	1.1699	1.2155	1.2625	1.3108	1.3605	1.4116	1.4641	1.5181	1.5735	1.6305	1.6890	1.7490	1.8106	2.0736	2.3642	2.4414	2.8561
5	1.0510	1.1041	1.1593	1.2167	1.2763	1.3382	1.4026	1.4693	1.5386	1.6105	1.6851	1.7623	1.8424	1.9254	2.0114	2.1003	2.4883	2.9316	3.0518	3.7129
6	1.0615	1.1262	1.1941	1.2653	1.3401	1.4185	1.5007	1.5869	1.6771	1.7716	1.8704	1.9738	2.0820	2.1950	2.3131	2.4364	2.9860	3.6352	3.8147	4.8268
7	1.0721	1.1487	1.2299	1.3159	1.4071	1.5036	1.6058	1.7138	1.8280	1.9487	2.0762	2.2107	2.3528	2.5023	2.6600	2.8262	3.5832	4.5077	4.7684	6.2749
8	1.0829	1.1717	1.2668	1.3686	1.4775	1.5938	1.7182	1.8509	1.9926	2.1436	2.3045	2.4760	2.6584	2.8526	3.0590	3.2784	4.2998	5.5895	5.9605	8.1573
9	1.0937	1.1951	1.3048	1.4233	1.5513	1.6895	1.8385	1.9990	2.1719	2.3579	2.5580	2.7731	3.0040	3.2519	3.5179	3.8030	5.1598	6.9310	7.4506	10.5054
10	1.1046	1.2190	1.3439	1.4802	1.6289	1.7908	1.9672	2.1588	2.3674	2.5937	2.8394	3.1058	3.3946	3.7072	4.0456	4.4114	6.1917	8.5944	9.3132	13.786
11	1.1157	1.2344	1.3842	1.5395	1.7103	1.8983	2.1049	2.3316	2.5804	2.9531	3.1518	3.4785	3.8359	4.2262	4.6554	5.1173	7.4301	10.657	11.642	17.922
12	1.1268	1.2682	1.4258	1.6010	1.7959	2.0122	2.2522	2.5182	2.8127	3.1384	3.4985	3.8960	4.3345	4.8179	5.3503	5.9360	8.3161	13.215	14.552	23.298
13	1.1381	1.2935	1.4685	1.6551	1.8856	2.1329	2.4098	2.7195	3.0568	3.4523	3.8833	4.3635	4.8980	5.4924	6.1528	6.8858	10.699	16.386	18.190	39.288
14	1.1495	1.3195	1.5126	1.7317	1.9799	2.2609	2.5785	2.9372	3.3417	3.7975	4.3104	4.8871	5.5348	6.2613	7.0757	7.9875	12.839	20.319	22.737	39.374
15	1.1610	1.3459	1.5580	1.8009	2.0789	2.3966	2.7590	3.1722	3.6425	4.1772	4.7846	5.4736	6.2543	7.1379	8.1371	9.2655	15.407	25.196	28.422	51.186
16	1.1726	1.3728	1.6047	1.8730	2.1829	2.5404	2.9522	3.4259	3.9703	4.5950	5.3109	6.1304	7.0673	8.1372	9.3576	10.748	18.488	31.243	35.527	66.542
17	1.1843	1.4002	1.6528	1.9479	2.2920	2.6928	3.1588	3.7000	4.3276	5.0545	5.8951	6.8660	7.9881	9.2765	10.761	12.468	22.186	38.741	44.409	86.504
18	1.1961	1.4282	1.7024	2.0258	2.4066	2.8543	3.3759	3.9960	4.7171	5.5599	6.5436	7.6900	9.6243	10.575	12.375	14.463	26.523	48.039	55.511	112.455
19	1.2081	1.4568	1.7535	2.1068	2.5270	3.0256	3.6165	4.3157	5.1417	6.1159	7.2633	8.6128	10.197	12.056	14.232	16.777	31.948	59.558	69.389	146.192
20	1.2202	1.4859	1.8061	2.1911	2.6533	3.2071	3.8697	4.6810	5.6044	6.7275	8.0623	9.6463	11.523	13.743	16.367	19.461	38.338	73.864	86.736	190.050
21	1.2324	1.5157	1.8603	2.2788	2.7860	3.3996	4.1406	5.0338	6.1088	7.4002	8.9492	10.804	13.021	15.668	18.822	22.574	46.005	91.592	108.420	247.065
22	1.2447	1.5460	1.9181	2.3699	2.9253	3.6035	4.4304	5.4365	6.6586	8.1403	9.9336	12.100	14.714	17.861	21.645	26.186	55.205	113.574	135.525	321.184
23	1.2572	1.5769	1.9736	2.4547	3.0715	3.8197	4.7405	5.8715	7.2579	8.5943	11.026	13.552	16.827	20.362	24.891	30.376	66.247	140.831	169.407	417.539
24	1.2697	1.6084	2.0328	2.5633	3.2251	4.0489	5.0724	6.3412	7.9111	9.6497	12.239	15.179	18.788	23.212	26.625	35.236	79.497	174.631	211.758	542.801
25	1.2824	1.6406	2.0938	2.6658	3.3864	4.2919	5.4274	6.8485	8.6231	10.835	13.585	17.000	21.231	25.452	32.919	40.874	95.396	216.542	264.698	705.641
30	1.3478	1.8114	2.4273	3.2434	4.3219	5.7435	7.6123	10.063	13.258	17.449	22.892	29.950	39.116	50.950	66.212	85.850	237.376	634.820	807.794	*
35	1.4166	1.8999	2.8139	3.9461	5.1560	7.6861	10.677	14.785	20.414	28.102	38.575	52.800	72.069	98.100	133.176	180.314	590.668	*	*	*
36	1.4308	2.0399	2.8983	4.1039	5.7918	8.1473	11.424	15.968	22.251	30.913	42.818	59.136	81.437	111.834	153.152	209.164	708.802	*	*	*
40	1.4889	2.2080	3.2620	4.8010	7.0400	10.286	14.974	21.726	31.409	45.259	65.001	93.051	132.782	188.884	267.864	378.721	*	*	*	*
50	1.6446	2.6915	4.3839	7.1057	11.467	18.420	29.457	46.902	74.358	117.391	184.565	289.002	450.736	700.233	*	*	*	*	*	*

Table A-2 Future Value Interest Factors for a One-Dollar Annuity Compounded at k Percent for n Periods: $FVIFA_{k,n} = [(1 + k)^n - 1] / k$

Period	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	16%	20%	24%	25%	30%
1	1.0000	1.0200	1.0300	1.0400	1.0500	1.0600	1.0700	1.0800	1.0900	1.1000	1.1100	1.1200	1.1300	1.1400	1.1500	1.1600	1.2000	1.2400	1.2500	1.3000
2	2.0100	2.0200	2.0300	2.0400	2.0500	2.0600	2.0700	2.0800	2.0900	2.1000	2.1100	2.1200	2.1300	2.1400	2.1500	2.1600	2.2000	2.2400	2.2500	2.3000
3	3.0301	3.0504	3.0909	3.1216	3.1525	3.1836	3.2143	3.2464	3.2781	3.3100	3.3421	3.3744	3.4069	3.4396	3.4725	3.5056	3.6400	3.7776	3.8125	3.9900
4	4.0504	4.1216	4.1836	4.2465	4.3101	4.3746	4.4399	4.5061	4.5731	4.6410	4.7097	4.7793	4.8498	4.9211	4.9934	5.0665	5.3680	5.7682	6.1870	
5	5.1010	5.2040	5.3091	5.4163	5.5256	5.6371	5.7507	5.8666	5.9847	6.1051	6.2278	6.3528	6.4803	6.6101	6.7424	6.8771	7.4416	8.0484	8.2070	9.0431
6	6.1520	6.3081	6.4684	6.6330	6.8019	6.9753	7.1533	7.3359	7.5233	7.7155	7.9129	8.1152	8.3227	8.5355	8.7537	8.9775	9.9295	10.980	11.269	12.756
7	7.2135	7.4343	7.6625	7.8983	8.1420	8.3938	8.6540	8.9228	9.2004	9.4872	9.7833	10.089	10.405	10.730	11.067	11.414	12.916	14.615	15.073	17.583
8	8.2857	8.5830	8.8923	9.2142	9.5491	9.8975	10.260	10.637	11.028	11.435	11.859	12.300	12.757	13.233	13.727	14.240	16.499	19.123	19.842	23.858
9	9.3685	9.7548	10.159	10.583	11.027	11.491	11.978	12.488	13.021	13.579	14.164	14.776	15.416	16.085	16.786	17.519	20.799	24.712	25.802	32.015
10	10.462	10.950	11.464	12.006	12.578	13.191	13.816	14.487	15.193	15.937	16.722	17.549	18.420	19.337	20.304	21.321	25.959	31.643	33.253	42.619
11	11.567	12.169	12.808	13.486	14.207	14.972	15.784	16.645	17.560	18.531	19.561	20.655	21.814	23.045	24.349	26.733	32.150	40.238	42.566	56.405
12	12.683	13.412	15.026	15.917	16.870	17.888	18.977	20.141	21.364	22.713	24.133	25.650	27.271	29.002	30.850	39.581	50.895	54.208	74.327	
13	13.809	14.680	15.618	16.527	17.713	18.882	20.141	21.495	22.953	24.523	26.212	28.029	29.985	32.089	34.352	36.786	48.497	64.110	68.760	97.625
14	14.947	15.974	17.086	18.292	19.599	21.015	22.550	24.215	26.01											

Present Value and Future Value Tables

Table A-3 Present Value Interest Factors for One Dollar Discounted at k Percent for n Periods: $PVIF_{k,n} = 1 / (1 + k)^n$

Period	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	16%	20%	24%	25%	30%
1	0.9901	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091	0.9009	0.8929	0.8850	0.8772	0.8696	0.8621	0.8333	0.8065	0.8000	0.7692
2	0.9803	0.9612	0.9426	0.9246	0.9070	0.8900	0.8734	0.8573	0.8417	0.8264	0.8116	0.7972	0.7831	0.7695	0.7561	0.7432	0.6944	0.6504	0.6400	0.5917
3	0.9706	0.9423	0.9151	0.8890	0.8638	0.8396	0.8163	0.7938	0.7722	0.7513	0.7312	0.7118	0.6931	0.6750	0.6575	0.6407	0.5787	0.5245	0.5120	0.4552
4	0.9610	0.9238	0.8885	0.8548	0.8227	0.7921	0.7629	0.7350	0.7084	0.6830	0.6587	0.6355	0.6133	0.5921	0.5718	0.5523	0.4823	0.4230	0.4096	0.3501
5	0.9515	0.9057	0.8526	0.8219	0.7835	0.7473	0.7130	0.6806	0.6499	0.6209	0.5935	0.5674	0.5428	0.5194	0.4972	0.4751	0.4019	0.3411	0.3277	0.2693
6	0.9420	0.8880	0.8375	0.7903	0.7462	0.7050	0.6663	0.6302	0.5963	0.5645	0.5346	0.5066	0.4803	0.4556	0.4323	0.4104	0.3349	0.2751	0.2621	0.2072
7	0.9327	0.8705	0.8131	0.7599	0.7107	0.6651	0.6227	0.5835	0.5470	0.5132	0.4817	0.4523	0.4251	0.3996	0.3759	0.3538	0.2791	0.2218	0.2097	0.1594
8	0.9235	0.8535	0.7894	0.7307	0.6758	0.6274	0.5820	0.5403	0.5019	0.4655	0.4339	0.4039	0.3762	0.3506	0.3289	0.3050	0.2326	0.1789	0.1678	0.1226
9	0.9143	0.8358	0.7664	0.7026	0.6446	0.5919	0.5439	0.5002	0.4604	0.4241	0.3909	0.3606	0.3329	0.3075	0.2843	0.2630	0.1938	0.1443	0.1342	0.0943
10	0.9053	0.8203	0.7441	0.6756	0.6139	0.5584	0.5083	0.4632	0.4224	0.3855	0.3522	0.3220	0.2946	0.2697	0.2472	0.2267	0.1615	0.1164	0.1074	0.0725
11	0.8953	0.8043	0.7224	0.6496	0.5847	0.5268	0.4751	0.4289	0.3875	0.3505	0.3173	0.2875	0.2607	0.2366	0.2149	0.1954	0.1346	0.0938	0.0859	0.0558
12	0.8874	0.7885	0.7014	0.6246	0.5568	0.4970	0.4440	0.3971	0.3555	0.3186	0.2858	0.2567	0.2307	0.2076	0.1859	0.1685	0.1122	0.0757	0.0687	0.0429
13	0.8787	0.7730	0.6810	0.6006	0.5303	0.4688	0.4150	0.3677	0.3262	0.2897	0.2575	0.2292	0.2042	0.1821	0.1625	0.1452	0.0935	0.0610	0.0550	0.0330
14	0.8700	0.7579	0.6611	0.5775	0.5051	0.4423	0.3878	0.3405	0.2992	0.2633	0.2320	0.2046	0.1807	0.1597	0.1413	0.1252	0.0779	0.0492	0.0440	0.0254
15	0.8613	0.7430	0.6419	0.5553	0.4810	0.4173	0.3624	0.3152	0.2745	0.2394	0.2090	0.1827	0.1599	0.1401	0.1229	0.1079	0.0649	0.0397	0.0362	0.0195
16	0.8528	0.7284	0.6232	0.5339	0.4581	0.3936	0.3387	0.2919	0.2519	0.2176	0.1883	0.1631	0.1415	0.1229	0.1089	0.0930	0.0541	0.0320	0.0281	0.0150
17	0.8444	0.7142	0.6050	0.5134	0.4363	0.3714	0.3166	0.2703	0.2311	0.1978	0.1696	0.1456	0.1252	0.1078	0.0929	0.0802	0.0451	0.0258	0.0225	0.0116
18	0.8360	0.7002	0.5874	0.4936	0.4155	0.3503	0.2959	0.2502	0.2120	0.1799	0.1528	0.1300	0.1108	0.0946	0.0808	0.0691	0.0376	0.0208	0.0180	0.0089
19	0.8277	0.6864	0.5703	0.4746	0.3957	0.3305	0.2765	0.2317	0.1945	0.1635	0.1377	0.1161	0.0981	0.0829	0.0703	0.0596	0.0313	0.0168	0.0144	0.0068
20	0.8195	0.6730	0.5537	0.4564	0.3769	0.3118	0.2584	0.2145	0.1784	0.1486	0.1240	0.1037	0.0868	0.0728	0.0611	0.0514	0.0261	0.0135	0.0115	0.0053
21	0.8114	0.6598	0.5375	0.4388	0.3589	0.2942	0.2415	0.1987	0.1637	0.1351	0.1117	0.0926	0.0768	0.0638	0.0531	0.0443	0.0217	0.0109	0.0092	0.0040
22	0.8034	0.6468	0.5219	0.4220	0.3418	0.2775	0.2257	0.1839	0.1502	0.1228	0.1007	0.0826	0.0680	0.0550	0.0482	0.0382	0.0181	0.0088	0.0074	0.0031
23	0.7954	0.6342	0.5067	0.4057	0.3256	0.2618	0.2109	0.1703	0.1378	0.1117	0.0907	0.0738	0.0601	0.0491	0.0402	0.0329	0.0151	0.0071	0.0059	0.0024
24	0.7876	0.6217	0.4919	0.3901	0.3101	0.2470	0.1971	0.1577	0.1264	0.1015	0.0817	0.0659	0.0532	0.0431	0.0349	0.0284	0.0125	0.0057	0.0047	0.0018
25	0.7798	0.6095	0.4776	0.3751	0.2953	0.2330	0.1842	0.1480	0.1160	0.0923	0.0736	0.0588	0.0471	0.0378	0.0304	0.0245	0.0105	0.0046	0.0038	0.0014
30	0.7419	0.5521	0.4120	0.3083	0.2314	0.1741	0.1314	0.0994	0.0754	0.0573	0.0437	0.0334	0.0256	0.0196	0.0151	0.0116	0.0042	0.0016	0.0012	*
35	0.7059	0.5009	0.3554	0.2534	0.1813	0.1301	0.0937	0.0676	0.0490	0.0356	0.0259	0.0189	0.0139	0.0102	0.0075	0.0055	0.0017	0.0005	*	*
36	0.6989	0.4902	0.3450	0.2437	0.1727	0.1227	0.0875	0.0626	0.0449	0.0323	0.0234	0.0169	0.0123	0.0089	0.0065	0.0048	0.0014	*	*	*
40	0.6717	0.4529	0.3066	0.2083	0.1420	0.0972	0.0568	0.0450	0.0318	0.0221	0.0154	0.0107	0.0075	0.0053	0.0037	0.0026	0.0007	*	*	*
50	0.6080	0.3715	0.2281	0.1407	0.0872	0.0543	0.0339	0.0213	0.0134	0.0085	0.0054	0.0035	0.0022	0.0014	0.0009	0.0006	*	*	*	*

Table A-4 Present Value Interest Factors for a One-Dollar Annuity Discounted at k Percent for n Periods: $PVIFA = [1 - 1/(1 + k)^n] / k$

Period	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	16%	20%	24%	25%	30%
1	0.9901	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091	0.9009	0.8929	0.8850	0.8772	0.8696	0.8621	0.8333	0.8065	0.8000	0.7692
2	1.9704	1.9416	1.9135	1.8861	1.8594	1.8334	1.8080	1.7833	1.7591	1.7355	1.7125	1.6901	1.6681	1.6467	1.6257	1.6052	1.5278	1.4568	1.4400	1.3609
3	2.9410	2.8839	2.8286	2.7751	2.7232	2.6730	2.6243	2.5771	2.5313	2.4869	2.4437	2.4018	2.3612	2.3216	2.2832	2.2459	2.1065	1.9813	1.9520	1.8161
4	3.9020	3.8077	3.7171	3.6299	3.5460	3.4651	3.3872	3.3121	3.2397	3.1699	3.1024	3.0373	2.9745	2.9137	2.8550	2.7982	2.5687	2.4043	2.3616	2.1662
5	4.8534	4.7135	4.5797	4.4518	4.3285	4.2124	4.1002	3.9927	3.8897	3.7908	3.6959	3.6048	3.5172	3.4331	3.3522	3.2743	2.9906	2.7454	2.6893	2.4356
6	5.7955	5.6014	5.4172	5.2421	5.0757	4.9173	4.7665	4.6229	4.4859	4.3553	4.2305	4.1114	3.9975	3.8887	3.7845	3.6847	3.3255	3.0205	2.9514	2.6427
7	5.7282	5.4720	5.2303	5.0021	4.7864	4.5824	5.3893	5.2084	5.0330	4.8684	4.7122	4.5638	4.4226	4.2883	4.1604	4.0385	3.6046	3.2423	3.1611	2.8021
8	7.6517	7.3255	7.0197	6.7327	6.4632	6.2098	5.9713	5.7466	5.5348	5.3349	5.1461	4.9376	4.7988	4.6389	4.4873	4.3436	3.8372	3.4212	3.3289	2.9247
9	8.5660	8.1622	7.7881	7.4353	7.1078	6.8017	6.5162	6.2469	5.9952	5.7690	5.5370	5.3282	5.1317	4.9464	4.7716	4.6056	4.0310	3.5655	3.4631	3.0190
10	9.4713	8.9826	8.5302	8.1109	7.7217	7.3601	7.0236	6.7101	6.4177	6.1446	5.8892	5.6502	5.4262	5.2161	4.8332	4.1925	3.6819	3.5705	3.5915	
11	10.368	9.7868	9.2526	8.7605	8.3064	7.8869	7.4987	7.1390	6.8052	6.4951	6.2065	5.9377	5.6869	5.4527	5.2337	5.0286	4.3271	3.7757	3.6564	3.1473
12	11.255	10.575	9.9540	9.3851	8.8633	8.3838	7.9427	7.5361	7.1607	6.8137	6.4924	6.1944	5.9176	5.6503	5.4206	5.1971	4.4392	3.8514	3.7251	3.1903
13	12.134	11.348	10.635	9.9855	9.3936	8.8527	8.3577	7.9038	7.4869	7.1034	6.7499	6.4235	6.1218	5.8424	5.5831	5.3423	5.1527	3.9124	3.7801	3.2233
14	13.004	12.106	11.296	10.563	9.8986	9.2950	8.7455	8.2442	7.7862											