

Designing Efficient Al Model

Chia-Chi Tsai (蔡家齊)
cctsai@gs.ncku.edu.tw
Al System Lab
Department of Electrical Engineering
National Cheng Kung University

Outline

- Basic Concepts
- Manual Designed Neural Networks

Outline

- Basic Concepts
- Manual Designed Neural Networks

Linear Layer

Layer Type	MACs (batch size n=1)	
Linear Layer	$c_o \times c_i$	
Convolution		
Grouped Convolution		
Depthwise Convolution		
1x1 Convolution		

Notation		
n	Batch size	
c_i , c_o	Input/output channel	
W_i, W_o	Input/output width	
h_i , h_o	Input/output height	
k_w, k_h	Kernel width/height	

Groups

Convolution

Layer Type	MACs (batch size n=1)	
Linear Layer	$c_o \times c_i$	
Convolution	$c_i \times k_h \times k_w \times h_o \times w_o \times c_o$	
Grouped Convolution		
Depthwise Convolution		
1x1 Convolution		

Notation		
n	Batch size	
c_i , c_o	Input/output channel	
W_i, W_o	Input/output width	
h_i , h_o	Input/output height	
k_w, k_h	Kernel width/height	
g	Groups	

Grouped Convolution

Layer Type	MACs (batch size n=1)	
Linear Layer	$c_o \times c_i$	
Convolution	$c_i \times k_h \times k_w \times h_o \times w_o \times c_o$	
Grouped Convolution	$\frac{c_i}{g} \times k_h \times k_w \times h_o \times w_o \times c_o$	
Depthwise Convolution		
1x1 Convolution		

Notation		
n	Batch size	
c_i , c_o	Input/output channel	
W_i, W_o	Input/output width	
h_i , h_o	Input/output height	
k_w, k_h	Kernel width/height	
g	Groups	

Depthwise Convolution

Layer Type	MACs (batch size n=1)	
Linear Layer	$c_o \times c_i$	
Convolution	$c_i \times k_h \times k_w \times h_o \times w_o \times c_o$	
Grouped Convolution	$\frac{c_i}{g} \times k_h \times k_w \times h_o \times w_o \times c_o$	
Depthwise Convolution	$k_h \times k_w \times h_o \times w_o \times c_o$	
1x1 Convolution		

$$g = c_i = c_o$$

Notation

n	Batch size	
c_i , c_o	Input/output channel	
W_i, W_o	Input/output width	
h_i , h_o	Input/output height	
k_w, k_h	Kernel width/height	
\overline{g}	Groups	

Convolution

Layer Type	MACs (batch size n=1)	
Linear Layer	$c_o \times c_i$	
Convolution	$c_i \times k_h \times k_w \times h_o \times w_o \times c_o$	
Grouped Convolution	$\frac{c_i}{g} \times k_h \times k_w \times h_o \times w_o \times c_o$	
Depthwise Convolution	$k_h \times k_w \times h_o \times w_o \times c_o$	
1x1 Convolution	$c_o \times c_i \times h_o \times w_o$	

Notation		
n	Batch size	
c_i , c_o	Input/output channel	
W_i, W_o	Input/output width	
h_i , h_o	Input/output height	
k_w, k_h	Kernel width/height	
g	Groups	

Stages of Model

- A neural network architecture typically consists
 - Input stem,
 - Head
 - Several stages
- Early stages have larger feature map sizes, so we need to keep the width small to reduce the cost.
- In contrast, late stages have smaller feature map sizes so that we can increase the width.

Stages of Model

- Downsample
 - Feature map downsampling is usually done at the first block in each stage via stride convolution or pooling
- Residual/Skip connection
 - We can add residual/skip connections for the remaining blocks as their input and output
 - dimensions are the same

Basic Concepts

Residual/Skip connection

Outline

- Basic Concepts
- Manual Designed Neural Networks

AlexNet

Remarkable improvements over previous non-DL methods

Image (3×224×224) 11×11 Conv, channel 96, stride 4, pad 2 3×3 MaxPool, stride 2 5×5 Conv, channel 256, pad 2, groups 2 3×3 MaxPool, stride 2 3×3 Conv, channel 384, pad 1 3×3 Conv, channel 384, pad 1, groups 2 3×3 Conv, channel 256, pad 1, groups 2 3×3 MaxPool, stride 2 Linear, channel 4096 Linear, channel 4096 Linear, channel 1000

VGG

Image (3×224×224)		
3×3 Conv, channel 64, pad 1		
3×3 Conv, channel 64, pad 1		
2×2 MaxPool, stride 2		
3×3 Conv, channel 128, pad 1		
3×3 Conv, channel 128, pad 1		
2×2 MaxPool, stride 2		
3×3 Conv, channel 256, pad 1		
3×3 Conv, channel 256, pad 1		
3×3 Conv, channel 256, pad 1		
2×2 MaxPool, stride 2		
3×3 Conv, channel 512, pad 1		
3×3 Conv, channel 512, pad 1		
3×3 Conv, channel 512, pad 1		
2×2 MaxPool, stride 2		
3×3 Conv, channel 512, pad 1		
3×3 Conv, channel 512, pad 1		
3×3 Conv, channel 512, pad 1		
2×2 MaxPool, stride 2		
Linear, channel 4096		
Linear, channel 4096		
Linear, channel 1000		

- Stacking multiple 3x3 convolution layers
- Different from AlexNet, VGG only uses 3x3 convolution. Meanwhile, VGG
- Stacks more layers to maintain a large receptive field.
 - The computational cost of two 3x3 convolutions is smaller than one 5x5 convolution: 3x3 + 3x3 = 18 < 5x5

VGG

VGG: performance and cost breakdown

Layer	Weights	FLOP
Conv1_1	2K	0.2B
Conv1_2	37K	3.7B
Conv2_1	74K	1.8B
Conv2_2	148K	3.7B
Conv3_1	295K	1.8B
Conv3_2	590K	3.7B
Conv3_3	590K	3.7B
Conv4_1	1M	1.8B
Conv4_2	2M	3.7B
Conv4_3	2M	3.7B
Conv5_1	2M	925M
Conv5_2	2M	925M
Conv5_3	2M	925M
Fc6	103M	206M
Fc7	17M	34M
Fc8	4M	8M
Total	138M	30.9B

3x3 convolution layers are the key computational bottleneck

SqueezeNet

- Replace 3x3 convolution with fire modules
- Use global average pooling in the head to reduce the cost of the head

Fire Module

- Reduce the cost by using 1x1 convolution
 - Replace some 3x3 filters with 1x1 filters
 - Decrease the number of input channels to 3x3 fiters.

SqueezeNet

AlexNet-level accuracy with 50x-510x smaller model size

CNN architecture	Compression Approach	Data	Original $ ightarrow$	Reduction in	Top-1	Top-5
		Type	Compressed Model	Model Size	ImageNet	ImageNet
			Size	vs. AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	SVD (Denton et al., 2014)	32 bit	$240\text{MB} \rightarrow 48\text{MB}$	5x	56.0%	79.4%
AlexNet	Network Pruning (Han et al., 2015b)	32 bit	$240\text{MB} \rightarrow 27\text{MB}$	9x	57.2%	80.3%
AlexNet	Deep Compression (Han et al., 2015a)	5-8 bit	$240\text{MB} \rightarrow 6.9\text{MB}$	35x	57.2%	80.3%
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	8 bit	$4.8MB \rightarrow 0.66MB$	363x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8 \mathrm{MB} \rightarrow 0.47 \mathrm{MB}$	510x	57.5%	80.3%

ResNet50: Bottleneck Block

ResNet Bottleneck

ResNet50: Bottleneck Block

ResNet Bottleneck

ResNeXt: Grouped Convolution

- Replace 3x3 convolution with 3x3 grouped convolution
- Equivalent to a multi-path block

MobileNet: Depthwise-Separable Block

- Depthwise convolution An extreme case of group convolution
 - Where the group number equals the number of input channels

MobileNetV2: Inverted Bottleneck Block

- Depthwise convolution has a much lower capacity compared to normal convolution
 - Increase the depthwise convolution's input and output channels to improve its capacity

• Depthwise convolution's cost only grows linearly. Therefore, the cost is still

affordable.

ShuffleNet

- 1x1 Group Convolution
 - Further reduce the cost by replacing 1x1 convolution with 1x1 group convolution
- Channel Shuffle
 - Exchange information across different groups via channel shuffle

Accuracy-Efficiency Trade-off

Huge design space, manual design is unscalable

From Manual Design to Automatic Design

Automatic Architecture Search

