Sparse Variational Learning with Matrix Normal Distributions

Viktor Rudnev ^{1,2} Dmitry Kropotov ^{1,2}

 $^1 \mathsf{Samsung}\text{-}\mathsf{HSE} \; \mathsf{Lab}$

²Lomonosov Moscow State University

March 2019

Weight distribution inference

▶ Posterior distribution $p(\theta, \mathcal{D})$ over DNN weights

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}$$

► Training = fitting tractable posterior approximation

$$q(\theta) \approx p(\theta \mid \mathcal{D}_{\text{train}})$$

► Inference = Bayesian model averaging

$$p(\mathcal{D}_{ ext{test}} \mid \mathcal{D}_{ ext{train}}) = \mathbb{E}_{p(\theta \mid \mathcal{D}_{ ext{train}})}[p(\mathcal{D}_{ ext{test}} \mid \theta)] pprox rac{1}{K} \sum_{k=1}^{K} p(\mathcal{D}_{ ext{test}} \mid \theta)$$

Posterior approximation families

- $q(\theta) = \mathcal{N}(\mu, \operatorname{diag}(\sigma))$ too simple,
- Normalizing flows don't scale well (although FFJORD [3] is nice),
- Implicit don't scale well,
- ▶ Hierarchical models ok, but still slow to train

Matrix Normal distributions

$$p(W) = \frac{W \in \mathbb{R}^{n \times m} \sim \mathcal{MN}(M, U, V) \Leftrightarrow}{\exp\left(-\frac{1}{2} \operatorname{Tr}\left[U^{-1}(W - M)^{T} V^{-1}(W - M)\right]\right)}{(2\pi)^{nm/2} |U|^{n/2} |V|^{m/2}},$$

where $M \in \mathbb{R}^{n \times m}$ is the mean matrix, $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ are covariance matrices, i.e., symmetric and positive definite ones

$$X \sim \mathcal{MN}(M, U, V) \Leftrightarrow$$

vec $(X) \sim \mathcal{N} (\text{vec}(M), U \otimes V)$

If M = 0, rows and columns of W follow two full normal distributions, that are independent of each other

In other papers

- ► K-FAC [6]
- Scalable Laplace Approximation [9]
- Second Order SGLD [7]
- Overcoming Catastrophic Forgetting [8]

Motivation

Multivariate regression problem:

$$\mathcal{D} = (x_i, y_i)_{i=1}^N, \ x_i \in \mathbb{R}^{\text{in}}, \ y_i \in \mathbb{R}^{\text{out}}$$

$$p(y_i \mid x_i, W, \beta) = \mathcal{N}\left(y_i \mid Wx_i, \beta^{-1}I\right)$$

$$p(W \mid \alpha) = \mathcal{M}\mathcal{N}\left(W \mid 0, I, \text{diag}(\alpha)^{-1}\right)$$

$$p(Y \mid X, W, \alpha, \beta) = P(W \mid \alpha) \prod_{i=1}^{N} p(y_i \mid x_i, W, \beta)$$

Motivation

Exact posterior:

$$p(W \mid Y, X, \alpha, \beta) = \mathcal{MN}(W \mid M, U, V),$$

$$U = I, \ V = \left(\beta X^T X + \operatorname{diag}(\alpha)\right)^{-1},$$

$$M^T = V \beta X^T Y$$

Using variational learning with independent normal distributions would have ignored many correlations between the components of $\ensuremath{\mathcal{W}}$

Parameterization

lacktriangle Most papers use low-rank approximation for U and V, e.g.,

$$U = \operatorname{diag}(a) + uv^T$$
; $V = \operatorname{diag}(b) + pq^T$

We opt to using Cholesky factorization without sacrificing the time complexity:

$$U = AA^T, V = BB^T,$$

where A, B are lower-triangular matrices.

- Also, we optimize log of their diagonal values instead to enforce positive-definiteness
- Benefits: unrestricted, "free" logdet computation, quick reparameterization tricks, Riemannian optimization (WIP)

Variational Learning Checklist

To perform VL one needs to learn how to compute

- Reparameterization trick,
- Local reparameterization trick [4],
- ► KL $(\mathcal{MN}(M, U, V) || N(0, \operatorname{diag}(\sigma^2)))$,

Reparameterization trick

$$\operatorname{vec}(X) \sim \mathcal{N}(0, I),$$
 $W = M + AXB^T \Rightarrow$
 $W \sim \mathcal{M}\mathcal{N}\left(M, AA^T, BB^T\right)$

Local reparameterization trick

$$W \sim \mathcal{MN}\left(M, AA^T, BB^T\right), \ x \in \mathbb{R}^m \Rightarrow W^T x \sim \mathcal{N}\left(W^T x \mid \mu, ZZ^T\right)$$

Now, if we want to sample $o \sim W^T x$, this is it:

$$\varepsilon \sim \mathcal{N}(0, I)$$

$$o = \mu + Z\varepsilon = M^T x + \varepsilon \sqrt{x^T A A^T x} B^T$$

$$\mathrm{KL}\left(\mathcal{MN}(M,U,V)\|N\left(0,\mathrm{diag}\left(\sigma^{2}\right)\right)\right)=$$

$$\mathrm{KL}\left(\mathcal{MN}(M,U,V)||N\left(0,\mathrm{diag}\left(\sigma^{2}\right)\right)\right)=$$

$$\frac{1}{2} \left(\log \frac{|\mathrm{diag}(\sigma^2)|}{|U \otimes V|} - nm + \mathrm{Tr} \left(\mathrm{diag}(\sigma^2)^{-1} (U \otimes V) \right) + M^T \mathrm{diag}(\sigma^2)^{-1} M \right) =$$

$$\mathrm{KL}\left(\mathcal{MN}(M,U,V)\|N\left(0,\mathrm{diag}\left(\sigma^{2}\right)\right)\right)=$$

$$\frac{1}{2} \left(\log \frac{|\mathrm{diag}(\sigma^2)|}{|U \otimes V|} - nm + \mathrm{Tr} \left(\mathrm{diag}(\sigma^2)^{-1} (U \otimes V) \right) + M^T \mathrm{diag}(\sigma^2)^{-1} M \right) =$$

$$\frac{1}{2} \left(\sum_{k=1}^{nm} 2 \log \sigma_k - \log |U|^m |V|^n - nm + \sum_{k,l=1}^{n,m} \sigma_{km+l}^{-2} U_{kk} V_{ll} + \sum_{k=1}^{nm} \frac{M_{kl}^2}{\sigma_{km+l}^2} \right)$$

$$\mathrm{KL}\left(\mathcal{MN}(M,U,V)\|N\left(0,\mathrm{diag}\left(\sigma^{2}\right)\right)\right)=$$

$$\frac{1}{2} \left(\log \frac{|\operatorname{diag}(\sigma^2)|}{|U \otimes V|} - nm + \operatorname{Tr} \left(\operatorname{diag}(\sigma^2)^{-1} (U \otimes V) \right) + M^T \operatorname{diag}(\sigma^2)^{-1} M \right) =$$

$$\frac{1}{2} \left(\sum_{k=1}^{nm} 2 \log \sigma_k - \log |U|^m |V|^n - nm + \sum_{k,l=1}^{n,m} \sigma_{km+l}^{-2} U_{kk} V_{ll} + \sum_{k=1}^{nm} \frac{M_{kl}^2}{\sigma_{km+l}^2} \right)$$

If $X = AA^T$, where A is lower triangular, then

$$\log |X| = 2\log |A| = 2\sum_{k=1}^{n} \log A_{kk}$$

$$\mathcal{D} = (x_i, y_i)_{i=1}^N$$

$$p(\mathcal{D} \mid \theta) = \prod_{i=1}^N p(y_i \mid x_i, \theta), \theta \in \mathbb{R}^D$$

$$p(\theta \mid \alpha) - \text{prior parametrized by } \alpha$$

$$\mathcal{D} = (x_i, y_i)_{i=1}^N$$

$$p(\mathcal{D} \mid \theta) = \prod_{i=1}^N p(y_i \mid x_i, \theta), \theta \in \mathbb{R}^D$$

$$p(\theta \mid \alpha) - \text{prior parametrized by } \alpha$$

We want to find the posterior and optimal α :

$$p(\theta \mid \mathcal{D}, \alpha) = \frac{p(\mathcal{D} \mid \theta)p(\theta \mid \alpha)}{p(\mathcal{D} \mid \alpha)}$$
$$\alpha^* = \arg\max_{\alpha} p(\mathcal{D} \mid \alpha) = \arg\max_{\alpha} \int p(\mathcal{D} \mid \theta)p(\theta \mid \alpha) \, \mathrm{d}\theta$$

When $p(\theta \mid \alpha) = \prod_{i=1}^{D} \mathcal{N}(\theta_i \mid 0, \alpha_i^{-1})$, this is called ARD

ELBO:
$$\log p(\mathcal{D} \mid \alpha) \ge \mathcal{L}(\phi, \alpha) = \mathbb{E}_{q(\theta \mid \phi)}[\log p(\mathcal{D} \mid \theta)] - D_{\mathrm{KL}}(q(\theta \mid \phi) || p(\theta \mid \alpha)) \to \max_{\phi, \alpha}$$

ELBO:
$$\log p(\mathcal{D} \mid \alpha) \ge \mathcal{L}(\phi, \alpha) = \mathbb{E}_{q(\theta \mid \phi)}[\log p(\mathcal{D} \mid \theta)] - D_{\mathrm{KL}}(q(\theta \mid \phi) || p(\theta \mid \alpha)) \to \max_{\phi, \alpha}$$

Now suppose that:

$$p(\theta \mid \alpha) = \prod_{i=1}^{D} \mathcal{N}(\theta_i \mid 0, \alpha_i^{-1}); \ \ q(\theta \mid \mu, \sigma) = \prod_{i=1}^{D} \mathcal{N}\left(\theta_i \mid \mu_i, \sigma_i^2\right)$$

ELBO:
$$\log p(\mathcal{D} \mid \alpha) \ge \mathcal{L}(\phi, \alpha) = \mathbb{E}_{q(\theta \mid \phi)}[\log p(\mathcal{D} \mid \theta)] - D_{\mathrm{KL}}(q(\theta \mid \phi) || p(\theta \mid \alpha)) \to \max_{\phi, \alpha}$$

Now suppose that:

$$p(\theta \mid \alpha) = \prod_{i=1}^{D} \mathcal{N}(\theta_i \mid 0, \alpha_i^{-1}); \ \ q(\theta \mid \mu, \sigma) = \prod_{i=1}^{D} \mathcal{N}\left(\theta_i \mid \mu_i, \sigma_i^2\right)$$

Then
$$\alpha_{i}^{*} = (\mu_{i}^{2} + \sigma_{i}^{2})^{-1}$$

ELBO:
$$\log p(\mathcal{D} \mid \alpha) \ge \mathcal{L}(\phi, \alpha) = \mathbb{E}_{q(\theta \mid \phi)}[\log p(\mathcal{D} \mid \theta)] - D_{\mathrm{KL}}(q(\theta \mid \phi) || p(\theta \mid \alpha)) \to \max_{\phi, \alpha}$$

Now suppose that:

$$p(\theta \mid \alpha) = \prod_{i=1}^{D} \mathcal{N}(\theta_i \mid 0, \alpha_i^{-1}); \ q(\theta \mid \mu, \sigma) = \prod_{i=1}^{D} \mathcal{N}\left(\theta_i \mid \mu_i, \sigma_i^2\right)$$

Then $\alpha_i^* = (\mu_i^2 + \sigma_i^2)^{-1}$. Let's it substitute back:

$$\begin{split} \mathcal{L}_{\mathrm{ARD}}(\mu,\sigma) &= \sum_{i=1}^{N} \mathbb{E}_{q(\theta|\mu,\sigma)} \left[\log p(y_i \mid x_i, \theta) \right] - \frac{1}{2} \sum_{j=1}^{D} \log \left(1 + \frac{\mu_j^2}{\sigma_j^2} \right) = \\ &= \mathcal{L}_{\mathcal{D}}(\mu,\sigma) + \mathbb{R}_{\mathrm{ARD}} \to \max_{\mu,\sigma} \end{split}$$

Group ARD sparsification

ARD prior:

$$p(\theta \mid \alpha) = \prod_{i=1}^{D} \mathcal{N}\left(\theta_i \mid 0, \alpha_i^{-1}\right)$$

Group ARD prior [5]:

$$p(W \mid \tau, \gamma) = \prod_{i=1}^{n} \prod_{j=1}^{m} \mathcal{N}\left(W_{ij} \mid 0, \tau_{i}^{-1} \gamma_{j}^{-1}\right)$$
$$= \mathcal{M}\mathcal{N}\left(W, \operatorname{diag}(\tau), \operatorname{diag}(\gamma)\right)$$

Equivalent to a regular ARD with a particular structure:

$$\alpha_{im+j} = \tau_i \gamma_j$$

But one can't obtain τ_i^* and γ_j^* in closed form [2], so we optimize τ_i and γ_j with other parameters

MNIST

Figure: Learning a sparse fully-connected neural network on MNIST

Fashion MNIST

Figure: Learning a sparse convolutional neural network on Fashion MNIST

Fashion MNIST

Figure: Learning a sparse convolutional neural network on Fashion MNIST. Weight matrices after learning

CIFAR10 Bayesian Learning

Figure: Learning a bayesian VGG-like network on CIFAR-10

CIFAR10 group sparsification

Figure: Test accuracy on CIFAR-10 with the VGG-like network and different posterior approximation families in the group-sparse learning task

CIFAR10 group sparsification

DIA	Diag (18610 weights left of 62270)											
A W %	0.3 0.2 30	0.9 0.4 61	0.5		1.8			14.4 4.4 69				3.6 0.4 90
MN	MN (27764 weights left of 62270)											
A W %	0.3 0.2 31	0.9 0.5 41	0.9 0.6 29		1.4	2.4	–	14.4 6.7 54		–	3.6 0.2 94	3.6 2.5 29
MN	MN+Diagonal (19936 weights left of 62270)											
A W %	0.3 0.2 37	0.9 0.3 65	0.9 0.6 32	1.5	1.7	2	3.7	14.4 3.8 74		–	3.6 0.7 80	3.6 0.4 88

Table: Group-sparse learning of the VGG-like network with different posterior approximation families. A – #weights in layers (in thousands), W – #weights left after deleting zeroed weights (in thousands), % – fraction of weights dropped (in percents)

CIFAR10 group sparsification x4

FRI	Free Zeroing (120884 weights left of 246940)											
A W %	$0.5 \\ 0.4 \\ 22$	3.6 1.8 50	2.0	7.2 4.8 32	14.4 9.7 33		28.8 21.8 24					14.4 1.4 90
Ro	Row-only (3120 rows left of 4527)											
A W %	$0.3 \\ 0.3 \\ 0$				3.6 3.4 4	3.6 3.6 1	3.6 3.6 1	7.2 7.0 4	7.2 4.9 32	7.2 2.9 59	3.6 0.3 91	3.6 0.5 85
Co	Column-only (413 columns left of 540)											
A W %	20 20 0	20 16 20	20 20 0	40 37 7	40 37 7	40 40 0	80 74 7	80 61 24	80 48 40	40 14 65	40 6 85	40 40 0

Table: Group-sparse learning of the 4x version of the VGG-like network with MN posterior. Free zeroing: A - #weights in layers (in thousands), W - #weights left after pruning (in thousands), % - fraction of weights dropped (in percents). Row-only: same, but A and W is in hundreds of rows. Column-only: same, but A and W are just #columns

Introduction to Riemannian Optimization

Taskynov Anuar

Moscow State University taskynov.anuar@mail.ru

March 29, 2019

Overview

- Manifolds
 - Definition
 - Tangent space
 - Riemannian Manifold
 - Riemannian gradient
- Riemannian Optimization
 - Geodesic, exponential map
 - Retraction
 - Vector transport
- 3 Conclusion

Manifold

Definition (manifold)

Manifold \mathcal{M} is a set which looks like Euclidean space around every point. Let \mathcal{U}_x — neighborhood at the point $x \in \mathcal{M}$. Formally \mathcal{M} is a d-dimensional manifold if $\forall x$, \exists bijective function $\phi_x \colon \mathcal{U}_x \to \mathbb{R}^d$, such that for neighborhoods at x and y ($\mathcal{U}_x \cap \mathcal{U}_y \neq \emptyset$) the change of coordinates is smooth: $\phi_x \circ \phi_y^{-1}, \phi_y \circ \phi_x^{-1} \in C^\infty(\mathbb{R}^d)$.

- $\phi_x(x) \in \mathbb{R}^d$ is called the local (intrinsic) coordinates of point x.
- If $\mathcal{M} \subset \mathbb{R}^n$, then the point x has global (extrinsic) coordinates $(\in \mathbb{R}^n)$ ang local (intrinsic) coordinates $(\in \mathbb{R}^d)$. For example, $\mathcal{M} = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}, x \in \mathbb{R}^2$ extrinsic coordinates, $t \in [0, 2\pi)$ intrinsic coordinates.

Manifold (Examples)

Examples:

- $\bullet \mathbb{R}^d$.
- Circle.
- Real projective \mathbb{RP}^{n-1} is the set of all directions in \mathbb{R}^n .
- Grassman Manifold Grass(p, n) is the set, which parametrizes all p-dimensional linear subspaces of the n-dimensional vector space \mathbb{R}^n .
- Stiefel Manifold St $(p, n) = \{X \in \mathbb{R}^{n \times p} : X^T X = I_p\}.$
- r-rank matrices $\mathcal{M}_r = \{X \in \mathbb{R}^{m \times p} : \operatorname{rank}(X) = r\}.$

Tangent space

Let

$$\textit{C}_{\textit{x}} := \left\{ \gamma : \mathcal{I} \rightarrow \mathcal{M} : \gamma \in \textit{C}^{1}(\mathcal{I}), 0 \in \mathcal{I} \text{ an open interval in } \mathbb{R}, \gamma(0) = x \right\}$$

– set of smooth curves γ on manifold \mathcal{M} .

Definition (tangent space for $\mathcal{M} \subset \mathbb{R}^n$)

The tangent space at $x \in \mathcal{M}$, noted $T_x \mathcal{M}$, is the linear subspace of \mathbb{R}^n defined by:

$$T_{\mathsf{x}}\mathcal{M} = \left\{ v \in \mathbb{R}^n : v = \gamma'(0), \gamma \in C_{\mathsf{x}} \right\}, \dim(T_{\mathsf{x}}\mathcal{M}) = \dim(\mathcal{M}).$$

Example:

$$\begin{aligned} \bullet \ \, T_X \mathsf{St}(p,n) &= \Big\{ Z \in \mathbb{R}^{n \times p} : X^T Z + Z^T X = 0 \Big\} \\ &= \Big\{ \mathsf{X}\Omega + X_\perp \mathsf{K} : \Omega^T = -\Omega, \mathsf{K} \in \mathbb{R}^{(n-p) \times p}, X_\perp \in \mathbb{R}^{n \times (n-p)}, X_\perp^T X = 0 \Big\}. \end{aligned}$$

Tangent Bundle

Definition (tangent bundle)

The tangent bundle, noted $T\mathcal{M}$, is the set $T\mathcal{M} = \bigsqcup_{x \in \mathcal{M}} T_x \mathcal{M}$, where \bigsqcup stands for disjoint union. The projection π extracts the root of a vector, that is, $\pi(\xi) = x$ if and only if $\xi \in T_x \mathcal{M}$.

Definition (vector field on \mathcal{M})

A vector field $\mathbf{X}: \mathcal{M} \to T\mathcal{M}$ — smooth mapping, such that $(\pi \circ \mathbf{X})(x) = x$. The vector at x is written $\mathbf{X}_x = \mathbf{X}(x) \in T_x \mathcal{M}$. $\mathcal{X}(\mathcal{M})$ — set of all vector fields.

Figure: Tangent space.

Riemannian manifold

Definition (riemannian manifold)

A manifold whose tangent spaces are endowed with a smoothly varying inner product $g_{\mathsf{x}}(\cdot,\cdot) = \langle \cdot,\cdot \rangle_{\mathsf{x}}$ is called a **Riemannian manifold**. Smoothly varying can be understood in the following sense: for all vector fields $\mathbf{X}, \mathbf{Y} \in \mathcal{X}(\mathcal{M})$, the function $x \to g_x(\mathbf{X}_x, \mathbf{Y}_x)$ is a smooth function from \mathcal{M} to \mathbb{R} .

• Inner product can be represented as:

$$g_{x}(\xi_{x},\eta_{x})=\hat{\xi}_{\hat{x}}^{T}G_{\hat{x}}\hat{\eta}_{\hat{x}},$$

where $G_{\hat{x}} \in \mathbb{R}^{d \times d}$ — symmetric, positive definite matrix, $\hat{\xi}_{\hat{x}}, \hat{\eta}_{\hat{x}}, \in \mathbb{R}^d$ is coordinate representation of tangent vectors, $\hat{x} \in \mathbb{R}^d$ — local coordinates of x.

 $\|\xi\|_{\mathsf{x}} := \sqrt{\langle \xi, \xi \rangle_{\mathsf{x}}}, \quad \xi \in T_{\mathsf{x}} \mathcal{M}$

Riemannian gradient

• Given a smooth scalar field $f: \mathcal{M} \to \mathbb{R}$ on a Riemannian manifold, **the gradient** of f at x, denoted by $\operatorname{grad} f(x)$, is defined as the unique element of $\mathcal{T}_x \mathcal{M}$ that satisfies:

$$\langle \operatorname{grad} f(x), \xi \rangle_{\mathsf{X}} = Df(x)[\xi] := \frac{d}{dt} f(\gamma(t)) \Big|_{t=0}, \forall \xi = \gamma'(0) \in \mathcal{T}_{\mathsf{X}} \mathcal{M}.$$

Thus grad $f: \mathcal{M} \to T\mathcal{M}$ is a vector field on \mathcal{M} .

• Coordinate expression: $\hat{grad}f(x) = G_{\hat{x}}^{-1} \text{Grad}\hat{f}(\hat{x})$, where $\text{Grad}\hat{f}(\hat{x})$ is a vector of partial derivatives.

•

$$\frac{\operatorname{grad} f(x)}{\|\operatorname{grad} f(x)\|_{x}} = \underset{\xi \in T_{x} \mathcal{M}, \|\xi\|_{x} = 1}{\operatorname{arg max}} Df(x)[\xi].$$

• Riemannian gradient for $\mathcal{M} \subset \mathbb{R}^n$:

$$\operatorname{grad} f(x) = \operatorname{Proj}_{T_x \mathcal{M}} \nabla \overline{f}(x),$$

where $\overline{f}: \mathbb{R}^n \to \mathbb{R}$ such that f is a restriction of \overline{f} .

Riemannian optimization

- Optimization problem: $f(x) \to \min_{x \in \mathcal{M}}$, where \mathcal{M} is a riemannian manifold.
- How can you optimize this function?
- Usual gradient descent step: $x_{k+1} = x_k \alpha_k \nabla f(x_k)$.
- For manifolds:

$$x_{k+1} = x_k - \alpha_k \operatorname{grad} f(x).$$

Figure: Mapping from tangent space $T_x \mathcal{M}$ to \mathcal{M} .

Geodesic

Let Y, X ∈ X(M) — vector fields on M ⊂ Rⁿ. Covariant derivative ∇_XY of Y with respect to X is a vector field:

$$(\nabla_{\mathbf{X}}\mathbf{Y})_{x} = \lim_{t\to 0} \frac{\mathbf{Y}(x+t\mathbf{X}_{x}) - \mathbf{Y}(x)}{t} = D\mathbf{Y}(x)[\mathbf{X}_{x}].$$

Definition (geodesic)

A curve $\gamma: \mathcal{I} \to \mathcal{M}$ with \mathcal{I} an open interval of \mathbb{R} containing 0 is a **geodesic** if and only if $\nabla_{\gamma'(t)}\gamma'(t) = 0, \forall t \in \mathcal{I}$.

• Another definition of geodesic is a curve $\gamma:[a,b] \to \mathcal{M}$ which minimize:

$$\mathsf{L}(\gamma) := \int_a^b \sqrt{\langle \gamma'(t), \gamma'(t) \rangle_{\gamma(t)}} dt$$

• Riemannian distance of two points $x, y \in \mathcal{M}$, $(\gamma(0) = x, \gamma(1) = y)$:

$$\mathsf{dist}: \mathcal{M} \times \mathcal{M} \to \mathbb{R}^+: (x,y) \to \mathsf{dist}(x,y) := \inf_{\gamma \in C^1([0,1] \to \mathcal{M})} \mathsf{L}(\gamma)$$

Exponential map

Definition (exponential map)

Let $\mathcal{M} \subset \mathbb{R}^n$ — riemannian manifold and $x \in \mathcal{M}$. For every $\xi \in T_x \mathcal{M}$, there exists an open interval \mathcal{I} (which contains 0) and a unique geodesic $\gamma(t;x,\xi):\mathcal{I} \to \mathcal{M}$ such that $\gamma(0)=x$ and $\gamma'(0)=\xi$. The mapping

$$\operatorname{\mathsf{Exp}}_{\mathsf{x}}: T_{\mathsf{x}}\mathcal{M} \to \mathcal{M}: \xi \to \operatorname{\mathsf{Exp}}_{\mathsf{x}}(\xi) = \gamma(1; \mathsf{x}, \xi)$$

is called **exponential map** at x. In particular, $\gamma(0; x, \xi) = x, \forall x \in \mathcal{M}$.

Optimization step: $x_{k+1} = \operatorname{Exp}_{x_k}(-\alpha_k \operatorname{grad} f(x_k))$. Hard to compute! Because you should solve DE:

$$egin{cases}
abla_{\gamma'(t)}\gamma'(t)=0, & t\in(0,1] \ \gamma(0)=x, \ \gamma'(0)=\xi. \end{cases}$$

Retraction

Figure: Retraction

Retraction

Exponential maps can be expensive to compute.

Definition (Retraction)

A **retraction** on a manifold \mathcal{M} is a smooth mapping $R: \mathcal{TM} \to \mathcal{M}$, $\mathcal{M} \subset \mathbb{R}^n$ with the following properties. Let R_X denote the restriction of R to $\mathcal{T}_X \mathcal{M}$.

- $R_{\times}(0) = x$, $0 \in \mathcal{T}_{\times}\mathcal{M}$.
- $DR_x(0) = \mathrm{id}_{\mathcal{T}_x\mathcal{M}} \mathrm{identity}$ mapping, where $DR_x(0) : \mathcal{T}_x\mathcal{M} \to \mathcal{T}\mathcal{M}$. Equivalently $\forall \xi \in \mathcal{T}_x\mathcal{M}$, the curve $\gamma_\xi(t) = R_x(t\xi)$ satisfies $DR_x(0)[\xi] = \gamma'_\xi(t)|_{t=0} = \lim_{\tau \to 0} \frac{\gamma_\xi(\tau) \gamma_\xi}{\tau} = \xi$.

We may do the following step: $x_{k+1} = R_{x_k}(\alpha_k \eta_k)$, $\eta_k \in T_{x_k} \mathcal{M}$. If $\eta_k = -\operatorname{grad} f(x_k)$, then this step is one GD step.

Retraction on St(p, n)

Retractions on St(p, n):

- $R_X(\xi) = \operatorname{Proj}_{\operatorname{St}(p,n)}(X + \xi).$
- $R_X(\xi) = (X + \xi)(I_p + \xi^T \xi)^{-1/2}$.
- $R_X(\xi) = QR(X + \xi)$, where $QR(\cdot)$ return orthogonal matrix from QR decomposition.
- $R_X(\xi) = \operatorname{Exp}_X(\xi)$.

Gradient Descent with Momentum

Optimization step on \mathbb{R}^n :

$$\begin{cases} d_k = \beta d_{k-1} + \alpha_k \nabla f(x_k); \\ x_{k+1} = x_k - d_k. \end{cases}$$

Back to the manifold \mathcal{M} :

$$\begin{cases} d_k = \underbrace{\beta d_{k-1}}_{\in T_{x_{k-1}} \mathcal{M}} + \underbrace{\alpha_k \operatorname{grad} f(x_k)}_{\in T_{x_k} \mathcal{M}}; \\ x_{k+1} = R_{x_k} (-d_k); \end{cases}$$

Vector Transport

Definition (vector transport)

A **vector transport** on a manifold M is a smooth mapping:

Transp: $\mathcal{TM} \times \mathcal{TM} \to \mathcal{TM}$, satisfying the following properties for all $x \in \mathcal{M}$:

- $\exists R_{\times}$, called the retraction associated with Transp: Transp_n(ξ) = $\mathcal{T}_{R_{\times}(n)}\mathcal{M}$.
- $Transp_0(\xi) = \xi$, $\forall \xi \in \mathcal{T}_x \mathcal{M}$.
- Transp_{η} $(a\xi + b\zeta) = a$ Transp_{η} $(\xi) + b$ Transp_{η} (ζ) .

Figure: Vector transport

Riemannian GD with Momentum

Optimization step:

$$\begin{cases} d_k = \mathsf{Transp}_{T_{\mathsf{x}_{k-1} \to \mathsf{x}_k} \mathcal{M}} (\beta d_{k-1}) + \alpha_k \mathsf{grad} f(\mathsf{x}_k); \\ \mathsf{x}_{k+1} = R_{\mathsf{x} k} (-d_k) \end{cases}$$

Conclusion

What do you need to optimize f(x) on riemannian manifold \mathcal{M} ?

- if you have intrinsic parametrization:
 - $\hat{\operatorname{grad}} f(x) = G_{\hat{x}}^{-1} \nabla_{\hat{x}} f(\hat{x}).$
- if you have extrinsic parametrization:
 - Define tangent space: $T_x \mathcal{M}$;
 - Riemannian gradient: $\operatorname{grad} f(x) = \operatorname{Proj}_{T_x \mathcal{M}} \nabla \overline{f}(x)$, for $\mathcal{M} \subset \mathbb{R}^n$;
 - Retraction operation: $R_x(\xi), \xi \in T_x \mathcal{M}$.
 - Vector transport operation: Transp $_{T_{x \to y} \mathcal{M}}$.

Riemannian Optimization

Let's have a look at the covariance of MN again:

$$\Sigma = U \otimes V = AA^T \otimes BB^T$$

This is a rank-1 TT tensor, with positive-semidefinite cores (PSD) So there's a large room for applying RO, since both TT and PSD are manifolds even by themselves.

Let's find the tangent space of the PSD manifold:

$$U(t) = A(t)A(t)^{T}$$
$$dU(t) = A(t) dA(t)^{T} + dA(t)A(t)^{T}$$
$$\delta U \in \mathcal{T}_{AA^{T}}^{PSD} \Leftrightarrow \exists \delta A : \delta U = A\delta A^{T} + \delta A A^{T}$$

Let's obtain a retraction:

$$R(U, Z, \varepsilon) = (A + \varepsilon Z)(A + \varepsilon Z)^{T}$$

$$R'_{\varepsilon}(U, Z, 0) = ZA^{T} + AZ^{T}$$

So, if we have

$$\delta U = A\delta A^T + \delta AA^T \in \mathcal{T}_{AA^T}^{PSD},$$

then $R(U, \delta A, \varepsilon)$ is a valid retraction

Suppose we have $U = AA^T$, $Z = \nabla_U f(U)$ for some f(U)We want to project Z onto $\mathcal{T}_U^{\mathrm{PSD}}$, i.e., to solve

$$\|\delta U - Z\|^2 = \|A\delta A^T + \delta AA^T - Z\|^2 \to \min_{\delta A}$$

Solutions for intrinsic and extrinsic parameterizations:

$$\delta A = \frac{1}{4} \left(Z + Z^T \right) A^{-T} = \frac{1}{4} \left(\nabla_A f \right) \left(A^T A \right)^{-1}$$
$$\delta U = \delta A A^T + A \delta A^T = \frac{1}{2} \left(Z + Z^T \right)$$

If we're optimizing U, we need retraction to stay in PSD manifold If we're optimizing A, we need to regularize $(A^TA)^{-1}$ But it works:

Let's find the tangent space of the Kronecker product manifold:

$$\begin{split} U(t) &= X(t) \otimes Y(t) \\ \mathrm{d} U(t) &= \mathrm{d} X(t) \otimes Y(t) + X(t) \otimes \mathrm{d} Y(t) \\ \delta U &\in \mathcal{T}_{X \otimes Y}^{\mathrm{KP}} \Leftrightarrow \exists \delta X, \delta Y : \delta U = \delta X \otimes Y + X \otimes \delta Y \end{split}$$

Let's obtain a retraction:

$$R(U, A, B, \varepsilon) = (X + \varepsilon A) \otimes (Y + \varepsilon B)$$

$$R'_{\varepsilon}(U, A, B, 0) = A \otimes Y + X \otimes B$$

So, if we have

$$\delta U = \delta X \otimes Y + X \otimes \delta Y \in \mathcal{T}_{X \otimes Y}^{\mathrm{KP}},$$

then $R(U, \delta X, \delta Y, \varepsilon)$ is a valid retraction

Suppose we have $U = X \otimes Y$, $Z = \nabla_U f(U)$ for some f(U) We want to project Z onto $\mathcal{T}_U^{\mathrm{KP}}$, i.e., to solve

$$\|\delta U - Z\|^2 = \|\delta X \otimes Y + X \otimes \delta Y - Z\|^2 \to \min_{\delta X, \delta Y}$$

Solution:

$$\delta X = \frac{1}{\langle Y, Y \rangle} (\nabla_X f - X \langle Y, \delta Y \rangle)$$
$$\delta Y = \frac{1}{\langle X, X \rangle} \nabla_Y f$$

It works well when cores have different dimensions:

$$L = \|\delta U - Z\|^2 = \|\delta X \otimes Y + X \otimes \delta Y - Z\|^2 =$$
$$\|(\delta A A^T + A \delta A^T) \otimes B B^T + A A^T \otimes (\delta B B^T + B \delta B^T) - Z\|^2 \to \min_{\delta A, \delta B}$$

$$\|(\delta AA^T + A\delta A^T) \otimes BB^T + AA^T \otimes (\delta BB^T + B\delta B^T) - Z\|^2 \to \min_{\delta A, \delta B}$$

$$L = \langle \delta X, \langle Y, Y \rangle \delta X + X \langle Y, \delta Y \rangle - \nabla_X f \rangle + \operatorname{Const}_{\delta X} =$$

$$/\delta \Delta \Delta^T + \Delta \delta \Delta^T / Y / Y \rangle (\delta \Delta \Delta^T + \Delta \delta \Delta^T) + \Delta \Delta^T / Y / \delta Y \rangle - \nabla_X f \rangle -$$

$$\left\langle \delta A A^T + A \delta A^T, \langle Y, Y \rangle \left(\delta A A^T + A \delta A^T \right) + A A^T \langle Y, \delta Y \rangle - \nabla_X f \right\rangle = \left\langle \delta A A^T, \langle Y, Y \rangle \left(\delta A A^T + A \delta A^T \right) + A A^T \langle Y, \delta Y \rangle - \frac{1}{2} \left(\nabla_X f + \nabla_X f^T \right) \right\rangle$$

$$\delta A = \frac{1}{2\langle Y, Y \rangle} \left(\frac{1}{2} \left(\nabla_A f + \nabla_A f^T \right) A^{-1} - A A^T \langle Y, \delta Y \rangle \right) A^{-T}$$
$$\delta B = \frac{1}{2\langle X, X \rangle} \left(\frac{1}{2} \left(\nabla_B f + \nabla_B f^T \right) B^{-1} \right) B^{-T}$$

After some quality time spent on obtaining the solution to the original problem, it works too:

References I

- [1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. *Optimization algorithms on matrix manifolds*. Princeton University Press, 2009.
- [2] Pierre Dutilleul. The mle algorithm for the matrix normal distribution. *Journal of statistical computation and simulation*, 64(2):105–123, 1999.
- [3] Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Duvenaud. Ffjord: Free-form continuous dynamics for scalable reversible generative models. arXiv preprint arXiv:1810.01367, 2018.
- [4] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization trick. In Advances in Neural Information Processing Systems, pages 2575–2583, 2015.

References II

- [5] Dmitry Kropotov, Dmitry Vetrov, Lior Wolf, and Tal Hassner. Variational relevance vector machine for tabular data. In Proceedings of 2nd Asian Conference on Machine Learning, pages 79–94, 2010.
- [6] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curvature. In *International conference on machine learning*, pages 2408–2417, 2015.
- [7] Zachary Nado, Jasper Snoek, Roger Grosse, David Duvenaud, Bowen Xu, and James Martens. Stochastic gradient langevin dynamics that exploit neural network structure. 2018.
- [8] Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations for overcoming catastrophic forgetting. arXiv preprint arXiv:1805.07810, 2018.
- [9] Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural networks. 2018.