Practical aspects of deep learning

9/10 points (90%)

Quiz, 10 questions

~	Congra	atulations! You passed!	Next Ito
	1.	1 / 1 points	
	If you	have 10,000,000 examples, how would you split the train/o	lev/test set?
	0	98% train . 1% dev . 1% test	
Correct			
		33% train . 33% dev . 33% test	
		60% train . 20% dev . 20% test	
	~	1 / 1 points	

2.

The dev and test set should:

Come from the same distribution

Correct

		Come from different distributions				
Practical aspects of ideap learning (same (x,y) pairs) 9/10 points (90%)						
Quiz, 10 questions		Have the same number of examples				
	×	0 / 1 points				
	-	Neural Network model seems to have high bias, what of the following be promising things to try? (Check all that apply.)				
		Get more test data				
	Un-se	elected is correct				
		Make the Neural Network deeper				
	This	should be selected				
		Get more training data				
	This	should not be selected				
		Increase the number of units in each hidden layer				

Increase the number of units in each hidden layer

This should be selected

Add regularization

This should not be selected

1/1 points

2/12/2018 Coursera | Online Courses From Top Universities. Join for Free | Coursera 4. You are working on an automated check-out kiosk for a supermarket, and Practical aspects of deapidearnings, bananas and oranges. Suppose your 9/10 points (90%) classifier obtains a training set error of 0.5%, and a dev set error of 7%. Quiz, 10 questions Which of the following are promising things to try to improve your classifier? (Check all that apply.) Increase the regularization parameter lambda Correct Decrease the regularization parameter lambda **Un-selected** is correct Get more training data **Correct** Use a bigger neural network **Un-selected** is correct 1/1 points 5. What is weight decay? Gradual corruption of the weights in the neural network if it is trained on noisy data.

A technique to avoid vanishing gradient by imposing a ceiling on the values of the weights.

A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.

Correct

/12/2018	Coursera Online Courses From Top Universities. Join for Free Courser			
		The process of gradually decreasing the learning rate during		
Practical as	spects	of deep learning		
Quiz, 10 questions				
	~	1 / 1 points		
	6. What h lambda	appens when you increase the regularization hyperparameter		
	0	Weights are pushed toward becoming smaller (closer to 0)		
	Corre	ect		
		Weights are pushed toward becoming bigger (further from 0)		
		Doubling lambda should roughly result in doubling the weights		
		Gradient descent taking bigger steps with each iteration (proportional to lambda)		
	~	1 / 1 points		
	7.			
		e inverted dropout technique, at test time:		
		You do not apply dropout (do not randomly eliminate units), but keep the 1/keep_prob factor in the calculations used in training.		
		You apply dropout (randomly eliminating units) but keep the 1/keep_prob factor in the calculations used in training.		
		You apply dropout (randomly eliminating units) and do not keep the 1/keep_prob factor in the calculations used in training		
	0	You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep prob factor in the calculations used in		

Correct

training

9/10 points (90%)

Practical aspects of deep learning

9/10 points (90%)

Quiz, 10 questions

1/1 points

8.

Increasing the parameter keep_prob from (say) 0.5 to 0.6 will likely cause the following: (Check the two that apply)

Increasing the regularization effect

Un-selected is correct

Reducing the regularization effect

Correct

Causing the neural network to end up with a higher training set error

Un-selected is correct

Causing the neural network to end up with a lower training set error

Correct

1/1 points

9.

Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.)

Vanishing gradient

Un-selected is correct

/12/2018	Coursera Online Courses From Top Universities. Join for Free Coursera		
	Xavier initialization		
Practical aspects Un-se Quiz, 10 questions	of deep learning elected is correct		
	Exploding gradient		
Un-s	elected is correct		
	Gradient Checking		
Un-selected is correct			
	Dropout		
Corre	ect		
	L2 regularization		
Corre	ect		
	Data augmentation		
Corre	ect		
~	1/1 points		
10. Why do	o we normalize the inputs \$\$x\$\$?		
0	It makes the cost function faster to optimize		
Corre	ect		

It makes the parameter initialization faster

9/10 points (90%)