Package 'ahnr'

October 12, 2022

000000112, 2022
Type Package
Title An Implementation of the Artificial Hydrocarbon Networks
Version 0.3.1
Description Implementation of the Artificial Hydrocarbon Networks for data modeling.
Depends R (>= $3.3.0$)
License GPL-3 file LICENSE
Encoding UTF-8
LazyData true
Suggests knitr, rmarkdown
<pre>URL https://github.com/jroberayalas/ahnr</pre>
<pre>BugReports https://github.com/jroberayalas/ahnr/issues</pre>
VignetteBuilder knitr
Imports matrixcalc, pracma, purrr, pdist, ggplot2, visNetwork, magrittr
RoxygenNote 6.0.1
NeedsCompilation no
Author Jose Roberto Ayala Solares [aut, cre]
Maintainer Jose Roberto Ayala Solares <ichbinjras@gmail.com></ichbinjras@gmail.com>
Repository CRAN
Date/Publication 2018-06-18 21:57:16 UTC
R topics documented:
fit is.ahn predict.ahn summary.ahn visualize
Index

fit fit

fit fit

Description

Function to train an Artificial Hydrocarbon Network (AHN).

Usage

```
fit(Sigma, n, eta, maxIter = 2000)
```

Arguments

a list with two data frames. One for the inputs X, and one for the outputs Y.

n number of particles to use.

eta learning rate of the algorithm. Default is 0.01.

maxIter maximum number of iterations.

Value

an object of class "ahn" with the following components:

- network: structure of the AHN trained.
- Yo: original output variable.
- Ym: predicted output variable.
- eta: learning rate.
- minOverallError: minimum error achieved.
- variableNames: names of the input variables.

is.ahn 3

is.ahn

Checks if argument is a ahn object

Description

Checks if argument is a ahn object

Usage

```
is.ahn(x)
```

Arguments

Х

An R object

predict.ahn

predict

Description

Function to simulate a trained Artificial Hydrocarbon Network.

Usage

```
## S3 method for class 'ahn'
predict(object, ...)
```

Arguments

object an object of class "ahn" produced from the fit function.
... further arguments passed to or from other methods.

Value

predicted output values for inputs in newdata.

4 summary.ahn

```
# Create Sigma list
Sigma <- list(X = data.frame(x = x), Y = data.frame(y = y))
# Train AHN
ahn <- fit(Sigma, 5, 0.01, 500)
# Test AHN
X <- data.frame(x = x)
ysim <- predict(ahn, X)
## End(Not run)</pre>
```

summary.ahn

Summary Artificial Hydrocarbon Network

Description

Summary method for objects of class ahn.

Usage

```
## S3 method for class 'ahn'
summary(object, ...)
```

Arguments

object an object of class "ahn" produced from the fit function.
... further arguments passed to or from other methods.

Value

summary description of the AHN.

visualize 5

```
# Train AHN
ahn <- fit(Sigma, 5, 0.01, 500)
# Summary AHN
summary(ahn)
## End(Not run)</pre>
```

visualize

Visualize Artificial Hydrocarbon Network

Description

Visualize method for objects of class ahn.

Usage

```
visualize(x, ...)
```

Arguments

x an object of class "ahn" produced from the fit function.

... further arguments passed to visNetwork functions.

Value

dynamic visualization of the AHN.

Index

```
fit, 2, 3-5
is.ahn, 3
predict.ahn, 3
summary.ahn, 4
visualize, 5
```