CS211 – Hash Tables

Open Addressing – Methods:

• Linear Probing:

- o Move linearly looking for the next available space
 - Start by modding the key value by the hash table size
 - If that slot is full then move to the next one
 - Repeat until a free slot is found

• Quadratic Probing:

- Systematic jumps to look for a free space, step sizes get bigger and bigger to avoid clustering
 - Start by modding the key value by the hash table size
 - Jump to this slot x
 - If this slot is full, then jump to the slot $(x + step^2)$, where step is the step size $(1, 2, 3, \dots$ etc)
 - Example: First we probe x, then x + 1, then x+4, then x + 9
 - $x, x + 1^2, x + 2^2, x + 3^2$, etc.
 - Do this until a free slot is found

• Double Hashing:

- Using a different hash function to generate a unique jump size for items that generated the same hash index
 - Start by modding the key value by the hash table size –
 primary hash function
 - Then use the secondary hash function to generate the step size
 - The step size is given by: MAX (x % MAX) where x is the given unique key

Load Factor: The ratio between the size of the hash table and the number of items in it:

- Load Factor of 1 = as many items as there are slots
- Load Factor of 0 = hash table is empty
- With *Open Addressing* the max Load Factor is 1 each slot can only hold one item
- With separate chaining the load factor can be higher because each slot holds a linked list