Основы машинного обучения

Лекция 1: Введение в машинное обучение

Полина Полунина Екатерина Кондратьева

Структура курса

Основы МЛ:

- 1. Введение в Методы Машинного Обучения. Практикум по Python
- 2. Обучение с учителем: Линейная и логистическая регрессия. Ядра.
- 3. Обучение с учителем: Регуляризация в линейных моделях. Метод Ближайших Соседей (KNN)
- 4. Обучение с учителем: Метод опорных векторов (SVM) для задач классификации и регрессии.

 Kernel SVM
- 5. Обучение с учителем: Деревья решений (Decision Trees). Случайный лес (Random Forest).
- 6. Оценка качества алгоритмов машинного обучения. Кросс-валидация. Поиск аномалий и артефактов в выборке.
- 7. Обучение без учителя: кластеризация. Снижение размерности данных РСА.

Структура курса

Продвинутые методы МЛ:

- 1. Отбор и генерация признаков (Feature Engineering). Поиск и оптимизация модели (Grid Search).
- 2. Стекинг, вотинг. Градиентный бустинг. Пакеты XGBoost/Catboost/LightGBM
- 3. Соревнования по анализу данных, обзор решений, статей и актуальных методов.
- 4. Соревнования по анализу данных, обзор решений, статей и актуальных методов. Recap курса.

Как будет строиться занятие по курсу?

- < 30 минут: рекап прошлой лекции, проверка домашнего задания
- < 60 минут: лекция
- < 60 минут: практика
- < 30 минут: мини-контест с лидербордом

Что нам понадобится на курсе:

• Python > 3.7, Jupyter Notebook: https://repo.anaconda.com/archive/Anaconda3-2018.12-MacOSX-x86_64.pkg

Репозиторий группы
 https://github.com/kondratevakate/machine-learning-with-love

• Соревновательный дух

Машинное обучение?

ARTIFICIAL INTELLIGENCE program that can sense, reaso

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Как решить задачу с ML?

1. Тип задачи. Обучение с учителем

• Нужно предсказать число - задача регрессии

Например: определение возраста человека по фото https://arxiv.org/ftp/arxiv/papers/1709/1709.01664.pdf

 Нужно предсказать класс - задача классификации

Например: распознавание букв или цифр https://github.com/rois-codh/kmnist

1. Пример специальных задач. Обучение без учителя

Кластеризация

Например: кластеризация аудитории сайта

Обучение с подкреплением

Например: кластеризация аудитории сайта

https://www.youtube.com/watch?v=1wy2jtS5qck

1. Пример специальных задач

Анализ графов

Например: Лев Толстой и сетевой анализ

Компьютерное зрение

Например: Сегментация

Что за задача?

2. Организация данных

Часто текстовые данные приводят к формату таблиц (*.csv)

2. Организация данных. Разметка данных

Если нужна разметка данных вручную

3. Метрика оценивания

Метрики оценивания модели:

Точность %, Ошибки 1 или 2 рода, MSE

Метрики оценивания в бизнесе:

Деньги, отток

4. Предобработка данных

Never mind what the axes mean...

Изучение и визуализация данных.

Поиск артефактов.

4. Предобработка данных

Преобразованием категориальные признаки, заполняем пропуски

5. Выбор модели

Канонические модели

baseline методы: LR, SVC, RFC, KNN

реализованы в sklearn https://scikit-learn.org/

Продвинутые методы:

state of the art: статьи с NIPS https://nips.cc/,

лучшие решения с kaggle https://www.kaggle.com/

5. Оптимизация модели

Оптимизация гипер параметров выбранной модели. Кросс Валидация

5.Оптимизация модели

```
Accuracy is 92.86% for GaussianNB
Accuracy is 92.86% for SVC
Accuracy is 85.71% for KNeighbors
Accuracy is 89.29% for LogisticRegression
Accuracy is 89.29% for MandomForest
Accuracy is 89.29% for MLP
```


Получаем предварительные результаты точности на кросс-валидации

6. Разработка и организация кода. Что такое git?

Система контроля версий: https://en.wikipedia.org/wiki/Git

Floor is software developement best practices

7. Продакшн

Вопспроизводимые результаты python - докер: https://en.wikipedia.org/wiki/Docker_(software)

Компиляция кода в С++

7. Продакшн

Оптимизируем модель: корректируем параметры, добавляем новые данные.

Валидируем модель в реальных условиях, получаем оценку итогового качества.

Пайплайн целиком:

- 1. Формулировка задачи
- 2. Подготовка датасета и разметки в соответствии с задачей
- 3. Определение критериев достижения успеха модели (метрика оценивания)
- 4. Предобработка данных
- 5. Выбор модели и оптимизация
- 6. Организация кода и разработка
- 7. Обертка модели в продакшн

Какие задачи **не нужно** решать с ML?

Какие задачи **не нужно** решать с ML?

- Можно вывести зависимость исходя из знаний об устройстве мира (E=mc^2)
- Зависимость предсказуемой величины имеет простой вид и его можно подобрать вручную, имея экспертное знание
- Нельзя набрать достаточное количество примеров из прошлого

Полезные ссылки:

• Введение в ML:

Express ML kypc: https://github.com/Slinkolgor/express_ml

МЛ кукбук: https://chrisalbon.com/

Машинное обучение ВШЭ: https://github.com/esokolov/ml-course-hse/

Python: https://stepik.org/course/Программирование-на-Python-67

Статистика: https://stepik.org/course/Ochoвы-статистики-76

Подборка ресурсов по машинному обучению: https://github.com/demidovakatya/vvedenie-mashinnoe-obuchenie

• Соревнования:

Самая популярная площадка: https://kaggle.com

Все соревнования здесь: http://mltrainings.ru

Полезные ссылки:

ML Тусовка:

Slack датасайнс комьюнити: http://ods.ai

Группа express_ml в Facebook: https://www.facebook.com/groups/expressml/

• Новые разработки в области машинного обучения:

Топовые конференции: https://icml.cc/

Препринты публикаций: https://arxiv.org/list/stat.ML/recent

