AMENDMENTS TO THE DRAWINGS

The attached drawing sheets includes changes to Figure 8. This sheet replaces the

original sheet.

In Figure 8, the element "0.935" has been changed to "0.395", the element "8.06" has been

changed to "8.60" and "SAMPLE B" has been changed to "SAMPLE I".

Attachment: Replacement Sheet

Annotated Sheet Showing Changes

-4-

REMARKS

The above amendments are made to correct minor typographical errors throughout the specification and drawings.

No new matter has been introduced. Entry of this amendment is respectfully solicited.

Respectfully submitted,

McDERMOTT WILL & EMERY LLP

Arthur J. Steiner

Registration No. 26,106

600 13th Street, N.W. Washington, DC 20005-3096 Phone: 202.756.8000 AJS:ete

Facsimile: 202.756.8087

Date: December 27, 2004

Please recognize our Customer No. 20277 as our correspondence address.

Title: OPTICAL FIBERS Atty. Docket No.: 50212-631 Inventors: Eisuke SASAOKA, et al.

8/10

			•						
FIBER STRUC- TURE (CORE MATERIAL (CLADDING			GeDOPED GLASS /PURE SILICA- GLASS						
RANS- MISSION OSS AT VAVE- ENGTH OF 1550nm		≤0.10 ≤0.176							0.19
		≦0.10							0.31
TRANS- MISSION LOSS AT 1380 nm (dB/km)			0.62						
CHRO- DISPE- ZERO TRANS- TRANS- SPE- MATIC RSION DISPE- MISSION MISSION LOSS LOSS					≤0.32				0.33
ZERO TR DISPE- MIS RSION LO SLOPE 131 (pshm²km) (di	0.0793	0.0806	0.0801	0.0789	0.0816	0.0800	0.0819	0.0790	0.0850
DISPE- RSION SLOPE AT 1550 nm (pshm²/km)	0.0540	0.0544	0.0537	0.0531	0.0536	0.0547	0.0548	0.0544	0.0584
CHRO- MATIC DISPE- RSION AT 1550 nm (ps/nm/km)	14.97	15.46	15.39	14.86	15.75	15.90	16.66	15.39	16.50
ZERO CHRO- DISPE- DISPE- RSION RSION WAVE- AT LENGTH 1550 nm (nm) (pshm/km	1318	1313	1313	1318	1307	1312	1304	1317	1316
CABLE CUTOFF MFD AT RSION WAVE-LENGTH (nm) (μ m) (nm)	8.53	90.8	8.57	8.37	8.33	8.72	8.92	8.92	9.13
	1166	1230	1200	1135	1260	1184	1226	1133	1158
2a (µ m)	7.80	8.16	8.02	7.56	7.60	8.14	8.52	8.10	,
Δn (%)	0.38	0.935	0.39	0.395	0.42	0.385	0.38	0.36	
	SAMPLE B	SAMPLE C	SAMPLE D	SAMPLE E	SAMPLE F	SAMPLE G	SAMPLE H	SAMPLE	COMPARATIVE EXAMPLE

% 大

Fig.8