Ministry of Higher Education

El-Shorouk Academy

Higher Institute for Computer &

Information Technology

Department: Computer Science

Instructor : Dr. Ahmed elabbassy
Reviewer1 : Dr. Khaled Menshawy

Reviewer2 : Dr. M. El-Hennawy

Acad. Year : 2017 / 2018 Term : Second

Year : 4th

No. Questions : 4

Date : 24/05/2018

Time Allowed : 2 Hours
Max. Marks : 80 Marks

No. of pages : 2

4203 Compiler Theory (Final Exam)

Answer all of the following questions:

Question 1 (20 Marks)

1.1 Consider the following grammar for Boolean expressions (where id stands for the terminal identifier"):

 $Bexp \rightarrow Bexp$ or $Bterm \mid Bterm$ $Bterm \rightarrow Bterm$ and $Bfact \mid Bfact$ Bfact \rightarrow not $Bfact \mid (Bexp) \mid id$

- a) What is the start symbol in the above grammar?
- b) What are the terminal and the non-terminal symbols in the above grammar?
- c) Construct a leftmost derivation for the following sentence: not id and id
- d) Eliminate the Left-Recursion from the above grammar.
- 1.2 What do we mean when we say that a grammar is "ambiguous"? Mention two techniques for eliminating ambiguity from a grammar
- 1.3 Explain why Top Down parsers cannot handle Left Recursive Grammars.

Question 2 (20 Marks)

2.1 Given the following BNF grammar and associated semantic rules:

Grammar Rule	Semantic Rules
$number_1 \rightarrow$	$number_1 .val =$
number2 digit	number2 .val * 10 + digit.val
number → digit	number.val = digit.val
digit → 0	digit.val = 0
digit → 1	digit.val = 1
digit → 2	digit.val = 2
digit → 3	digit.val = 3
digit → 4	digit.val = 4
digit → 5	digit.val = 5
digit → 6	digit.val = 6
digit → 7	digit.val = 7
digit → 8	digit.val = 8
digit → 9	digit.val = 9

- a) Draw the dependency graph for the semantic rules
- b) Draw the parse tree and dependency graph for the string 785
- 2.2 Draw DFA's that accept the following:
 - a) All strings that represent numeric constants in scientific notation
 - b) All strings that contain exactly one b over the alphabet {a, b, c}
 - c) The regular expression a(ab)*aa, given the alphabet { a, b }.

- 2.3 What is the role of the following sections in a procedure activation record?
 - a) Space for bookkeeping information
 - b) Space for local temporaries

Question 3 (20 Marks)

3.1 Given the grammar rule for an if-statement:

If-stmt → **if** (
$$exp$$
) $statement$ | **if** (exp) $statement$ else $statement$

- a) Translate this rule into EBNF
- b) Draw the syntax diagram of EBNF of part (a).
- c) Write pseudo-code to parse this grammar by recursive descent
- 3.2 Mention a situation where the First set computation is required.
- 3.3 Given the following arithmetic Expression:

$$a * b + a * b * c$$

- a) Write down the corresponding three-address code.
- b) Show the triple representation for this code.

Question 4 (20 Marks)

4.1 Consider the following grammar

Stmt-sequence
$$\rightarrow$$
 stmt; stmt-sequence | stmt \rightarrow s

- a) Left factor this grammar
- b) Construct First and Follow sets for the non terminal of the resulting grammar. You are asked to show the computation process.
- c) Construct the LL(1) parsing table for the resulting grammar
- d) Show the action of corresponding LL(1) parser given the input string s; s; s
- 4.2 What is meant by regular expression?
- 4.3 Write regular expressions for the following:
 - a) All strings of digits such that all 2's occur before all 9's
 - b) Strings of a's and b's that contain an even number of a's and an even number of b's
 - c) All strings that contain at most one b over the alphabet {a, b, c}

(End of Questions-Good Luck)