Question [tr 01] Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

 \Box $-\frac{Z_2}{Z_1}$

 $\Box \frac{Z_2}{Z_1}$

 \blacksquare $-\frac{Z_1}{Z_2}$

 $\prod rac{Z_1}{Z_2}$

Question [tr 02] Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

 $-\frac{Z_2}{Z_1}$

 $\square \frac{Z_2}{Z_1}$

 \Box $-\frac{Z_1}{Z_2}$

 $\square \frac{Z_2}{Z_1}$

 $-\frac{Z_2}{Z_1}$

 $\blacksquare \frac{Z_1}{Z_2}$

Question [tr 04] Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

 $-\frac{Z_2}{Z_1}$

 $\Box \frac{Z_2}{Z_1}$

 $\prod \frac{Z_1}{Z_2}$

 \Box $-rac{Z_1}{Z_2}$

Question [tr 05] Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

 $\square \frac{D_2}{D_1}$

 \Box $-\frac{D_1}{D_2}$

 $\blacksquare \frac{D_1}{D_2}$

Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$. Question [tr 06]

Question [tr 07] On note v la vitesse de la charge M selon la direction verticale. Exprimer ven fonction de ω_{10} (en valeur absolue).

Catalogue

Question [tr 08] On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question [tr 09] Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$\square \omega_{10} = \frac{Z_2^2}{NZ_1}\omega_{30}$$

Question [tr 10] On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

$$v = \frac{Z_2}{Z_1 n} \omega_{10}$$

$$v = \frac{Z_2 p}{2Z_1 \pi} \omega_1$$

$$v = \frac{2Z_1\pi}{Z_2n}\omega_{10}$$