Reverse engineering of biological models

Dennis Keil

Hamburg University of Technology

dennis.keil@tuhh.de

May 13, 2015

Contents

- Biological systems and models
- Computer algebra
- Workflow with example
- Demo
- Future Work & Conclusions

- Measurement of inner cell processes
- Collection of experimental data
- Function / Interaction can be described in biological models

- Measurement of inner cell processes
- Collection of experimental data
- Function / Interaction can be described in biological models

- Measurement of inner cell processes
- Collection of experimental data
- Function / Interaction can be described in biological models

Computer Algebra

Computer Algebra

- Symbols instead of floating points
- Polynomials and e.g. solve polynomial equations

Computer Algebra

- Symbols instead of floating points
- Polynomials and e.g. solve polynomial equations

Workflow with example

Reverse engineer biological models using computer algebra

- Experimental data
- Discretize data
- Interpolate particular solution
- Determine vanishing ideal
- Reduce particular solution to general solution
- General solution

Reverse engineer biological models using computer algebra

- Experimental data
- Discretize data
- Interpolate particular solution
- Determine vanishing ideal
- Reduce particular solution to general solution
- General solution

Reverse engineer biological models using computer algebra

- Experimental data
- Discretize data
- Interpolate particular solution
- Determine vanishing ideal
- Reduce particular solution to general solution
- General solution

Reverse engineer biological models using computer algebra

- Experimental data
- Discretize data
- Interpolate particular solution
- Determine vanishing ideal
- Reduce particular solution to general solution
- General solution

Reverse engineer biological models using computer algebra

- Experimental data
- Discretize data
- Interpolate particular solution
- Determine vanishing ideal
- Reduce particular solution to general solution
- General solution

Reverse engineer biological models using computer algebra

- Experimental data
- Discretize data
- Interpolate particular solution
- Determine vanishing ideal
- Reduce particular solution to general solution
- General solution

Modeling in Systems Biology

Experimental data

Time		g_1	g ₂	• • •	gn			
1	($s_{1,1}$	<i>s</i> _{1,2}		$s_{1,n}$)	=	s_1
2	($s_{2,1}$	<i>s</i> _{2,2}		$s_{2,n}$)	=	<i>s</i> ₂
3	(<i>s</i> _{3,1}	<i>s</i> _{3,2}	• • •	s _{3,n})	=	<i>s</i> ₃
÷	(:		:)	=	÷
m	($s_{m,1}$	$s_{m,2}$	• • •	$s_{m,n}$)	=	Sm

Experimental data (example)

Time	g ₁	g 2	g 3
1	1.6104	1.2042	1.0072
2	1.7073	1.3252	1.0185
3	1.7254	1.4118	1.0336
4	1.7011	1.4616	1.0508
5	1.6601	1.4814	1.0685

Discretization

- Map real numbers into a finite number p of possible states
- Often used: Boolean networks with two states (gene on/off)

Discretization

- Map real numbers into a finite number p of possible states
- Often used: Boolean networks with two states (gene on/off)

Discretization (example)

3 states
$$(-1, 0, 1)$$

Value	g_1	g 2	g 3
-1	_	_	_
0	1.650	1.250	1.02
1	1.702	1.420	1.05

Time	g ₁	g 2	g 3
1	1.6104	1.2042	1.0072
2	1.7073	1.3252	1.0185
3	1.7254	1.4118	1.0336
4	1.7011	1.4616	1.0508
5	1.6601	1.4814	1.0685

Discretization (example)

Data in $\mathbb{Z}/3$

Time	g ₁	g ₂	g 3
1	-1	-1	-1
2	1	0	-1
3	1	0	0
4	0	1	1
5	0	1	1

Interpolation

Transition function for each gene i that fits all time steps s_j

$$f_i(s_j) = s_{j+1,i}$$

Lagrange interpolation, Chinese Remainder Theorem

Time	g_1	g_2	g 3
1	-1	-1	-1
2	1	0	-1
3	1	0	0
4	0	1	1
5	0	1	1

Time	g_1	g_2	g 3
1	-1	-1	-1
2	1	0	-1
3	1	0	0
4	0	1	1
5	0	1	1

Time	g ₁	g_2	g 3
1	-1	-1	-1
2	1	0	-1
3	1	0	0
4	0	1	1
5	0	1	1

Time	g_1	g_2	g 3
1	-1	-1	-1
2	1	0	-1
3	1	0	0
4	0	1	1
5	0	1	1

Polynomials in $\mathbb{Z}/3[x_1, x_2, x_3]$

$$f_1^0 = x_1^2 x_3 - x_1^2 + x_1 x_3 + x_1$$

$$f_2^0 = -x_1^2 x_3 + x_1^2 - x_1 x_3 - x_1 + 1$$

$$f_3^0 = -x_1^2 x_3 - x_1^2 - x_1 x_3 + x_1 + 1$$

Vanishing ideal

Find all polynomials that vanish (equal zero) on the input data

$$g(s_j) = 0$$
 for all s_j

Vanishing ideal (example)

$$I_j = \langle x_1 - s_{j,1} , \cdots , x_n - s_{j,n} \rangle$$

Time	g_1	g ₂	g 3
1	-1	-1	-1
2	1	0	-1
3	1	0	0
4	0	1	1
5	0	1	1

$$I_2 = \langle x_1 - 1, x_2, x_3 + 1 \rangle$$

Vanishing ideal

Find all polynomials that vanish (equal zero) on the input data

$$g(s_j)=0$$
 for all s_j $I_j=< x_1-s_{j,1}\ ,\ \cdots, x_n-s_{j,n}>$ $I=igcap_{j=1}^m I_j$

Vanishing ideal (example)

$$I_1 = \langle x_1 + 1, x_2 + 1, x_3 + 1 \rangle$$

 $I_2 = \langle x_1 - 1, x_2, x_3 + 1 \rangle$
 $I_3 = \langle x_1 - 1, x_2, x_3 \rangle$
 $I_4 = \langle x_1, x_2 - 1, x_3 - 1 \rangle$
 $I_5 = \langle x_1, x_2 - 1, x_3 - 1 \rangle$

$$I = \langle x_1 + x_2 - 1, x_2x_3 - x_3^2 + x_2 - x_3, x_2^2 - x_3^2 + x_2 - x_3 \rangle$$

Reduction

Suppose there are two Polynomials f_i , h_i that interpolate for gene i

$$f_i(s_j) = s_{j+1,i} = h_i(s_j)$$

$$f_i(s_j) - h_i(s_j) = 0$$
 for all s_j

All possible solutions

$$f_i^0 + I = \{f_i^0 + g : g \in I\}$$

Reduction

Divide our solution
$$f_i^0$$
 by $I=< b_1, \cdots, b_n>$
$$f_i^0 = h_1 b_1 + \cdots + h_n b_n + f_i$$

 f_i

Reduction (example)

Particular solution

$$f_1^0 = x_1^2 x_3 - x_1^2 + x_1 x_3 + x_1$$

$$f_2^0 = -x_1^2 x_3 + x_1^2 - x_1 x_3 - x_1 + 1$$

$$f_3^0 = -x_1^2 x_3 - x_1^2 - x_1 x_3 + x_1 + 1$$

Reduced by vanishing ideal I

$$f_1 = -x_3^2 + x_3$$

$$f_2 = x_3^2 - x_3 + 1$$

$$f_3 = -x_3^2 + x_2 + 1$$

Demo

http://sedk1661.github.io/reverse-engineering-of-biological-models

Future Work & Conclusions

Future Work

- Use different monomial orders for the algorithm (see gröbner fan)
- 2 Enhance implementation and parallelism of algorithms

Future Work

- Use different monomial orders for the algorithm (see gröbner fan)
- 2 Enhance implementation and parallelism of algorithms

Conclusions

- Software for reverse engineering discrete biological models
- Study biological systems more easily

Conclusions

- Software for reverse engineering discrete biological models
- Study biological systems more easily

Thank you for listening!