UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR

Fourieranalys

Rami Abou Zahra

Contents

1.	TODO	2
2.	Bakgrund	3
2.1.	Komplexa exponentialer	3
2.2.	Lebesgue integralen	4

1. TODO

- Next lecture is laplace transform (integral transform)
 Review ODE notes
 Lebesgue-integral
 Över-undertrappor bevis envariabelanalys

2. Bakgrund

Låt oss betrakta $f:[0,\pi]\to\mathbb{R}$ så att $f(0)=f(\pi)=0$

När kan vi skriva denna funktion f(x) som en analytisk funktion (potensserie), det vill säga:

(1)
$$f(x) = \sum_{n=1}^{\infty} a_n \cdot \sin(n \cdot x)$$

Där $a_n \in \mathbb{R}$ är konstanter.

Inte alla funktioner tillfredställer att intervallet $[0, \pi]$ ger en konvergerande potensserie för f, frågan man kan ställa sig är när kan vi skriva f som en serie av trigonometriska funktioner?

Vi kommer inse att $om\ f$ går att skriva som en potensserie av trigonometriska funktioner, så behöver vi hitta våra koefficienter. I fallet med MacLaurin serier så kom de (a_n) från derivatan. I detta fall kommer det från:

$$a_n = \frac{1}{n} \int_0^{\pi} f(x) \sin(nx) dx$$

I någon mening kommer analys-delen av denna kurs från att vi studerar funktioner utifrån integraler, såsom den ovan.

Integralen ovan är integral-transform.

Vi kan även skriva:

$$f(x) = \sum_{n=0}^{\infty} a_n \sin(nx) + b_n \cos(nx)$$

Något mer vi kommer undersöka, är om vår fourierserie konvergerar, och om den konvergerar mot vår funktion (detta är inte alltid uppenbart)

2.1. Komplexa exponentialer.

Det finns en viktig eulerformel. Vi alla känner till e^x , men vad händer om x = a + bi?

Definition/Sats 2.1: Eulers formel

Vi får då
$$e^{a+bi}=\underbrace{e^a}_{\in \mathbb{R}}e^{ib}=e^a\left(\cos(b)+i\sin(b)\right)$$
 för varje $a,b\in \mathbb{R}$

Kom ihåg att vi kan representera komplexa tal med polära koordinater.

Vi har då att varje komplext tal a+bi kan representeras som $r=\sqrt{a^2+b^2}$. Vi får då $a+bi=re^{i\theta}=e^{\log(r)+i\theta}$

Övning:

Använd Eulers formel för att visa att $\cos(2x) = (\cos^2(x) - \sin^2(x))$ och $\sin(2x) = 2\sin(x)\cos(x)$

Anmärkning:

Komplexa exponentialer är inte injektiva, alltså fungerar inte logaritmen.

Exempelvis kan vi betrakta $e^{i2\pi} = e^{i0} = 1$

Definition/Sats 2.2: Fourierpolynomial

Är på formen:

$$\sum_{k=-N}^{N} c_k \cdot e^{ikx}$$

Kallas för polynom för att vi har $e^{ikx}=(e^{ix})^k$ som är ett monom i e^{ix}

Vi kan uttrycka Fourierpolynom m.h.a sinus och cosinus enligt följande:

$$\sum_{k=-N}^{N} c_k \cdot e^{ikx} = \sum_{k=-N}^{N} c_k \left(\cos(kx) + i \sin(kx) \right)$$
$$= c_0 + \sum_{k=1}^{N} (c_k + c_{-k}) \cos(kx) + i(c_k - c_{-k}) \sin(kx)$$

Anmärkning:

Detta är samma fourierpolynom som var på exponential form i trigonometrisk form

2.2. Lebesgue integralen.

Den vanliga definitionen av integralen som vi alla är vana vid är Riemann-integralen.