

PROPOSAL PROGRAM KREATIVITAS MAHASISWA

SISTEM RECEIVER CITRA SATELIT NOAA-AVHRR MENGGUNAKAN RASPBERRY DAN RTL-SDR UNTUK MENGETAHUI POTENSI IKAN DI LAUT

BIDANG KEGIATAN:

PKM KARSA CIPTA

DIUSULKAN OLEH:

Ketua Kelompok:

Ita Marlianti Dewi (171331019) Angkatan 2017

Anggota:

Dania Farahiyah (161331010) Angkatan 2016

Muhammad Reza Saifulloh Mubarok (161331020) Angkatan 2016

POLITEKNIK NEGERI BANDUNG

2018

PENGESAHAN PKM-KARSA CIPTA

1. Judul Kegiatan : SISTEM RECEIVER CITRA SATELIT

NOAA-AVHRR MENGGUNAKAN RASPBERRY DAN RTL-SDR UNTUK MENGETAHUI POTENSI IKAN DI

LAUT

2. Bidang Kegiatan : PKM-KC

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap : Ita Marlianti Dewi

b. NIM : 171331019c. Jurusan : Teknik Elektro

d. Politeknik Negeri Bandung

e. Alamat Rumah dan No Tel./ HP: Villa Asri Selatan, Bumi Asri 3, Blok

18E, Kel. Sukapada, Kec. Cibeunying

Kidul, Bandung, 081563524837

f. Email : <u>itamarlianti7@gmail.com</u>

4. Anggota Pelaksana Kegiatan : 2 orang

5. Dosen Pendamping

a. Nama Lengkap : Teddi Hariyantob. NIDN : 195803311985031001

c. Alamat Rumah dan No Tel/HP: Jl. Teknik No. 5 Perumahan Polban,

Bandung, 08122116324

6. Biaya Kegiatan Total

a. DIPA Polban : Rp7.710.000,-

b. Sumber Lain : -

7. Jangka Waktu Pelaksanaan : 5 bulan

Bandung, 26 Mei 2018

Menyetujui,

Ketua Jurusan Teknik Elektro Ketua Pelaksana Kegiatan

 Malayusfi,BSEE., M.Eng.
 Ita Marlianti Dewi

 NIP. 195401011984031001
 NIM. 171331019

Mengetahui,

Ketua UPPM, Dosen Pendamping,

<u>DR. Ir. Ediana Sutjiredjeki, M.Sc.,</u> <u>Teddi Hariyanto, ST., MT.</u> NIP. 195502281984032001 NIDN. 195803311985031001

DAFTAR ISI

DAFTAR ISI	i
BAB I PENDAHULUAN	1
BAB II TINJAUAN PUSTAKA	2
BAB III METODA PELAKSANAAN	4
3.1 Perancangan	4
3.2 Realisasi	4
3.3 Pengujian	4
3.4 Analisis	5
3.5 Evaluasi	5
BAB IV BIAYA DAN JADWAL KEGIATAN	6
4.1 Anggaran Biaya	6
4.2 Jadwal Kegiatan	6
DAFTAR PUSTAKA	7
LAMPIRAN-LAMPIRAN	9
Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping	9
Lampiran 2. Justifikasi Anggaran Kegiatan	17
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	19
Lampiran 4. Surat Pernyataan Ketua Pelaksana	20
Lampiran 5 Ilustrasi Diagram Blok dan Flowchart	21

BAB I PENDAHULUAN

Penurunan tangkapan ikan di laut menyebabkan para nelayan harus berusaha keras untuk mendapatkan ikan, seperti beberapa nelayan ada yang harus melaut sampai 8 hari (Lera, 2018) dan bahkan beberapa nelayan ada pula yang melaut hingga ke perbatasan laut Vietnam (M.C., 2013). Oleh karena itu, maka dibuatlah suatu aplikasi ataupun alat untuk dapat mengetahui potensi ikan dilaut.

Sampai saat ini sudah ada beberapa solusi yang telah diusulkan untuk mengetahui daerah potensi tangkapan ikan. Misalnya dengan menggunakan perangkat lunak Er Mapper yang memanfaatkan Citra Satelit NOAA-AVHRR (Raissa, 2013), Fish Finder (Abdulloh, 2016), Echo Sounder (A., 2017), dan Sonar (A., 2017).

Namun terdapat kelemahan pada solusi tersebut, seperti pada perangkat lunak Er Mapper, yaitu analisis daerah potensi tangkapan ikan nya dilakukan secara manual. Sehingga proses Analisa yang dilakukan cukup rumit (Sambah, 2004). Sedangkan untuk solusi kedua sampai dengan solusi keempat, beberapa kelemahannya berupa langkanya ketersediaan suku cadang, semakin dalam laut maka gambar yang dihasilkan semakin tidak jelas, dan juga untuk Echo Sounder, hanya dapat digunakan bagi yang sudah berpengalaman (Abdulloh, 2016) (Naldhywakatobi, 2015).

Oleh karena itu, maka diusulkan suatu alat yang lebih efektif dari yang sebelumnya. Dengan memanfaatkan Citra Satelit NOAA-AVHRR dan dengan menggunakan Raspberry Pi 3 serta RTL-SDR.

Pada alat ini, Raspberry Pi 3 akan dihubungkan dengan Monitor LCD yang digunakan sebagai *display* dan RTL-SDR sebagai *receiver* dan *transmitter* dari satelit NOAA.

Target yang ingin dicapai yaitu dapat menentukan zona potensi ikan di laut dengan proses analisa yang tidak manual, tetapi dengan menggunakan Raspberry Pi 3.

BAB II TINJAUAN PUSTAKA

Penurunan tangkapan ikan di laut menyebabkan para nelayan harus berusaha keras untuk mendapatkan ikan, seperti beberapa nelayan ada yang harus melaut sampai 8 hari (Lera, 2018) dan bahkan beberapa nelayan ada pula yang melaut hingga ke perbatasan laut Vietnam (M.C., 2013). Oleh karena itu, maka dibuatlah suatu aplikasi ataupun alat untuk dapat mengetahui potensi ikan dilaut.

Sampai saat ini sudah ada beberapa solusi yang telah diusulkan untuk mengetahui daerah potensi tangkapan ikan. Misalnya seperti:

- 1. Perangkat lunak Er Mapper yang memanfaatkan Citra Satelit NOAA-AVHRR (Raissa, 2013)
- 2. Fish Finder (Abdulloh, 2016)
- 3. Echo Sounder (A., 2017)
- 4. Sonar (A., 2017)

Untuk solusi pertama, diperlukan perangkat lunak Er Mapper untuk bisa mengakses data dari Citra Satelit NOAA-AVHRR. Metode pengolahan yang digunakan adalah pengolahan secara digital dengan menggunakan model algoritma McClain & Crosby (1984) (Raissa, 2013). Namun terdapat kekurangan pada perangkat lunak ini, yaitu analisis daerah potensi tangkapan ikan nya dilakukan secara manual. Sehingga proses Analisa yang dilakukan cukup rumit (Sambah, 2004).

Sedangkan untuk solusi kedua sampai dengan solusi keempat, ketiga nya memanfaatkan gelombang, baik itu gelompang listrik ataupun gelombang suara. Gelombang tersebut akan dipantulkan jika membentur suatu objek tertentu. Namun terdapat beberapa kelemahan pada ketiga alat tersebut, seperti masih langkanya ketersediaan suku cadang, semakin dalam laut maka gambar yang dihasilkan semakin tidak jelas, dan juga untuk Echo Sounder, hanya dapat digunakan bagi yang sudah berpengalaman (Abdulloh, 2016) (Naldhywakatobi, 2015).

Karena permasalahan tersebut di atas, maka diusulkan suatu alat yang lebih efektif dari yang sebelumnya. Dengan memanfaatkan Citra Satelit NOAA-AVHRR dan dengan menggunakan Raspberry Pi 3 serta RTL-SDR.

RTL-SDR (*Register Transfer Level- Software Defined Radio*) (Aja, 2016) merupakan USB dongle yang dapat digunakan sebagai pemindai radio berbasis komputer untuk menerima sinyal radio langsung tanpa memerlukan internet (Anonymous, -). Sedangkan Raspberry Pi adalah modul micro computer yang juga mempunyai input output digital port (Pccontrol, 2017).

Pada alat ini, Raspberry Pi 3 akan dihubungkan dengan Monitor LCD yang digunakan sebagai *display* serta koneksi USB untuk Keyboard serta Mouse. Sedangkan RTL-SDR sebagai *receiver* dan *transmitter* dari satelit NOAA (Elektronik, 2016) yang akan dikontrol atau dikendalikan dengan menggunakan Raspberry Pi 3 dan kemudian data akan di tampilkan ke dalam monitor. Keuntungan dari alat ini yaitu proses analisis data yang dilakukan tidak secara manual, tetapi dengan menggunakan Raspberry Pi 3.

BAB III METODA PELAKSANAAN

3.1 Perancangan

Sumber informasi yang akan diakses yaitu berada pada satelit NOAA yang merupakan penyedia data yang akan diakses. Sinyal informasi yang dikirimkan oleh satelit NOAA akan diterima oleh *receiver*. *Receiver* yang digunakan yaitu RTL-SDR. Setelah informasi yang dikirimkan oleh satelit NOAA diakses oleh RTL-SDR, selanjutnya data tersebut akan diolah oleh pusat kontrol yang menggunakan mikrokontroler Raspberry Pi 3. Setelah diolah maka data akan ditampilkan pada layar monitor LCD.

Pada mikrokontroler Raspberry Pi 3, pertama-tama ada pendeklarasian data terlebih dahulu. Setelah itu, inputkan garis bujur dan garis lintang untuk menentukan lokasi laut yang diinginkan. Lalu akan ditampilkan peta permukaan lautnya. Setelah itu terdapat decision, jika memilih ya, maka akan masuk ke subproses compare data. dimana pada subproses ini akan akan proses untuk membandingkan data acuan dengan data yang di dapat. Setelah dibandingkan, data akan kembali ke proses utama. Kemudian pada proses utama, akan ada proses pemberian tanda dari data yang sudah di compare atau dibandingkan. Setelah itu data akan ditampilkan berupa peta permukaan laut dengan sudah adanya tanda daerah potensi ikan. Tetapi jika memilih tidak pada decision, maka data akan ditampilkan tanpa adanya tanda daerah potensi ikan. Setelah itu program selesai.

3.2 Realisasi

Setelah perangkat melewati proses perencanaan seperti yang telah dijelaskan sebelumnya. Perangkat perlu pengujian pada ketiga tahap yang telah dijelaskan. Setelah sesuai dengan rencana awal yang terealisasi, lakukan pengujian dan optimalisasi proses pengolahan data dan pencarian satelit NOAA sehingga mendapat kekuatan sinyal yang optimal.

3.3 Pengujian

Parameter yang akan di uji yaitu penerimaan data dari RTL-SDR ke satelit NOAA dan data yang diterima bagian system yang akan di uji:

a. Penerimaan Data dari Satelit NOAA ke RTL-SDR

Penerimaan data satelit NOAA ke RTL-SDR memerlukan pengjujian berupa kecepatan akses data dan cara menghubungkan RTL-SDR ke satelit NOAA.

b. Pengolahan Data dari RTL-SDR pada Raspberry Pi 3

Setelah data diterima oleh RTL-SDR menggunakan antena, selanjutnya data akan diolah dan di analisis oleh pusat kontrol yang berupa mikrokontroler Raspberry Pi 3.

c. Menampilkan Data Menggunakan Monitor LCD

Setelah data diolah dan di analisis pada Raspberry Pi 3, data tersebut akan ditampilkan pada monitor LCD. Data yang ditampilkan berupa peta daerah perairan yang sudah diberi tanda secara otomatis pada mikrokontroler Raspberry Pi 3.

3.4 Analisis

Pada tahap ini akan di analisis dari segi tampat disimpannya antena. Dilakukan analisis untuk memastikan bahwa antena dapat terhubung dengan satelit NOAA. Selanjutnya koordinat yang diinginkan disesuaikan dengan koordinat yang didapat. Setelah itu akan dilakukan proses analisis lebih lanjut pada Raspberry Pi 3 untuk selanjutnya ditampilakn pada layer monitor LCD.

3.5 Evaluasi

Perangkat ini diharapkan mampu menampilkan data berupa gambar permukaan laut yang sudah terdapat tanda daerah potensi ikan dengan proses analisis secara otomatis. Kendala yang didapatkan dalam proses pembuatan adalah pemrograman pada mikrokontroler untuk menganalisa data agar dapat menampilkan data seperti yang diharapkan. Pemrograman yang salah bisa menyebabkan data yang ditampilkan tidak sesuai.

BAB IV BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

No	Jenis Biaya	Biaya (Rp)
1	Biaya Penunjang	1.000.000
2	Biaya Bahan Habis Pakai (Komponen utama dan pengujian)	6.310.000
4	Biaya Perjalanan	200.000
5	Lain-lain	200.000
	JUMLAH	7.710.000

4.2 Jadwal Kegiatan

		Minggu Ke-																			
No	Jenis Kegiatan	Ві	ılan	Ke	:-1	Вι	ılan	Ke	-2	Вι	ılan	Ke	:-3	Вι	ılan	Ke	:-4	Вι	ılan	Ke	>-5
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1.	Pengumpulan Informasi																				
2,	Survei Komponen di pasaran																				
3.	Sistem Design																				
4.	Pengujian RTL-SDR																				
5.	Pengujian RTL-SDR dengan Raspberry Pi 3																				
6.	Pengujian RTL-SDR dengan Raspberry Pi 3 menggunakan monitor LCD																				
7.	Analisis dan pemecahan masalah																				
8.	Penulisan laporan akhir																				

DAFTAR PUSTAKA

A., G. A. Y. B., 2017. *Ini Dia 5 Teknologi Canggih Nelayan Untuk Mencari Hasil Laut.* [Online]

Available at: https://inspiratorfreak.com/5-teknologi-canggih-nelayan

[Diakses 21 March 2018].

Abdulloh, R., 2016. Mendeteksi lokasi keberadaan ikan. [Online]

Available at: http://www.mediapancing.com/2016/08/mendeteksi-lokasi-keberadaan-ikan.html

[Diakses 1 March 2018].

Aja, L. O., 2016. *Orangkomputer*. [Online]

Available at: http://orangkomputer.blogspot.com/2016/12/rtl-sdr_17

[Diakses 31 May 2018].

Anonymous, -. RTL-SDR.COM. [Online]

Available at: https://www.rtl-sdr.com/about-rtl-sdr/

[Diakses 1 March 2018].

Elektronik, A., 2016. Aha Elektronik. [Online]

Available at: http://aha-elektronik.blogspot.com/2016/09/apakah-rtl-sdr-itu/

[Diakses 31 May 2018].

Lera, V., 2018. Sulit Mencari Ikan Nelayan Pilih Parkir, Ros: Suami Delapan Hari Masih Di Laut. [Online]

Available at: http://manado.tribunnews.com/2018/01/08/sulit-mencari-ikan-nelayan-pilih-parkir-ros-suami-delapan-hari-masih-di-laut

[Diakses 21 March 2018].

M.C., S., 2013. Nelayan Sulit Dapat Ikan di Musim Bulan Terang. [Online]

Available at: http://www.isukepri.com/2013/10/nelayan-sulit-dapat-ikan-di-musim-bulan-terang

[Diakses 21 March 2018].

Naldhywakatobi, 2015. ECHO SOUNDER (Alat Akustic perikanan & Kelautan). [Online]

Available at: https://naldhywakatobi.wordpress.com/2015/01/27/echo-sounder-alat-akustic-perikanan-kelautan

[Diakses 21 March 2018].

Pccontrol, 2017. *Pengetahuan Dasar dan Pemrograman Raspberry Pi.* [Online] Available at: https://pccontrol.wordpress.com/2014/06/17/pengetahuan-dasar-dan-

pemrograman-raspberry-pi/

[Diakses 1 March 2018].

Raissa, 2013. *PEMETAAN SUHU PERMUKAAN LAUT MENGGUNAKAN CITRA NOAA/AVHRR DAN AQUA/TERRA MODIS DI PERAIRAN SELATAN JAWA TIMUR*, Surabaya: Universitas Hang Tuah.

Sambah, A. B., 2004. *Analisis data citra NOAA/AVHRR dan Catch Efort Srvey Sebagai Dasar Studi Pemetaan Daerah Penangkapan Ikan Pelagis di Selat Madura dan Perairan Utara Jawa Timur*, Surabaya: Institut Teknologi Sepuluh November.

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping

Biodata ketua

A. Identitas Diri

1	Nama Lengkap	Ita Marlianti Dewi
2	Jenis Kelamin	Perempuan
3	Program Studi	D3 - Teknik Telekomunikasi
4	NIM	171331019
5	Tempat dan Tanggal Lahir	Bandung, 7 Maret 1999
6	E-mail	itamarlianti7@gmail.com
7	Nomor Telepon/HP	081563524837

B. Riwayat Pendidikan

	SD	SMP	SMK
Nama Institusi	SDN Cicadas 1	SMPN 1 Babelan	SMAN 5
	Bandung	Bekasi Utara	Tasikmalaya
Jurusan	-	-	-
Tahun Masuk-Lulus	2005-2011	2011-2014	2014-2017

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "SISTEM RECEIVER CITRA SATELIT NOAA-AVHRR MENGGUNAKAN RASPBERRY DAN RTL-SDR UNTUK MENGETAHUI POTENSI IKAN DI LAUT".

Bandung, 26 Mei 2018 Pengusul,

Ita Marlianti Dewi

Biodata anggota

A. Identitas Diri

1	Nama Lengkap	Dania Farahiyah
2	Jenis Kelamin	Perempuan
3	Program Studi	D3-Teknik telekomunikasi
4	NIM	161331010
5	Tempat dan Tanggal Lahir	Bekasi, 8 Juni 1998
6	E-mail	dania86farahiyah@gmail.com
7	Nomor Telepon/HP	089631600908

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN Aren Jaya XI Bekasi	SMP Mandalahayu Bekasi	SMAN 1 Cilimus Kuningan
Jurusan	-	-	-
Tahun Masuk-Lulus	2004-2010	2010-2013	2013-2016

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi	Tahun
		Penghargaan	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "SISTEM RECEIVER CITRA SATELIT NOAA-AVHRR MENGGUNAKAN RASPBERRY DAN RTL-SDR UNTUK MENGETAHUI POTENSI IKAN DI LAUT".

Bandung, 26 Mei 2018 Pengusul,

Dania Farahiyah

Biodata Anggota

A. Identitas Diri

1	Nama Lengkap	Muhammad Reza Saifulloh Mubarok
2	Jenis Kelamin	Laki-Laki
3	Program Studi	D3-Teknik Telekomunikasi
4	NIM	161331020
5	Tempat dan Tanggal Lahir	Sumedang, 27 September 1998
6	E-mail	ququruyuk12345@gmail.com
7	Nomor Telepon/HP	082117096055

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN Cangkuang 1	SMP PGRI 314	SMKN 1 Sumedang
	Bandung	Parakanmuncang	
		Sumedang	
Jurusan	-	- Teknik Kompu	
			Jaringan
Tahun Masuk-Lulus	2004-2010	2010-2013	2013-2016

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "SISTEM RECEIVER CITRA SATELIT NOAA-AVHRR MENGGUNAKAN RASPBERRY DAN RTL-SDR UNTUK MENGETAHUI POTENSI IKAN DI LAUT".

Bandung, 26 Mei 2018 Pengusul,

Muhammad Reza Saifulloh Mubarok

Biodata Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap	Teddi Hariyanto
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Telekomunikasi
4	NIP	19580331 198503 1 001
5	Tempat dan Tanggal Lahir	Bandung, 31 Maret 1958
6	E-mail	teddihariyanto@yahoo.com
7	Nomor Telepon/HP	08122116324

B. Riwayat Pendidikan

	S1	S2	
Nama Institusi	ITENAS	ITB	
Jurusan	Teknik Elektro	Teknik Elektro	
Tahun Masuk-Lulus	1990-1995	1999-2002	

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi	Tahun
110.	Joins I onghargaan	Penghargaan	
1	Satya Lencana	Presiden RI	2011

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Program Kreativitas Bidang Karsa Cipta (PKM-KC) 2018.

Bandung, 26 Mei 2018 Dosen Pembimbing,

Teddi Hariyanto, ST., MT. NIP. 195803311985031001

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Bahan Habis Pakai

Motorial	Justifikasi	Volume	Harga Satuan	Jumlah Biaya
Material	Pemakaian	v olullie	(Rp)	(Rp)
Raspberry Pi 3	Pengolahan data	2 buah	1.500.000	3.000.000
Memory Card 32 GB	Menyimpan data	1 buah	150.000	150.000
RTL-SDR	Receiver dari satelit NOAA	1 buah	650.000	650.000
Antena	Penerima sinyal informasi untuk RTL- SDR	1 buah	800.000	800.000
Monitor LCD	Menampilkan gambar dari Raspberry Pi 3	1 buah	1.000.000	1.000.000
Power Supply 12 V	Catu daya	1 buah	80.000	80.000
Konektor UHF SO- 239	Konektor RTL-SDR ke antena	4 buah	30.000	120.000
Kabel HDMI to HDMI	Menghubungkan Raspberry Pi 3 dengan monitor	1 buah	100.000	100.000
Kabel Power	Menghubungkan Raspberry Pi 3 dengan catu daya	1 buah	20.000	20.000
Kabel Coaxial	Menghubungkan antena	10 meter	3000	30.000
Kabel Male/Female	Menghubungkan rangkaian	2 set	15.000	30.000
USB Parallel	Menghubungkan Raspberry Pi 3 dengan perangkat input	1 buah	30.000	30.000
Casing Raspberry Pi 3	Melindungi	2 buah	150.000	300.000
		S	UBTOTAL (Rp)	6.310.000

2. Peralatan Penunjang

Material	Justifikasi Pemakaian	Volume	Harga Satuan (Rp)	Jumlah Biaya (Rp)
Koneksi Internet	Mencari materi terkait	5 bulan	60.000	300.000
Tool Set	Menghubungkan komponen	1 buah	600.000	600.000
Keyboard		1 buah	50.000	50.000
Mouse		1 buah	50.000	50.000
	1.000.000			

3. Lain-lain

Material	Justifikasi Pemakaian	Volume	Harga Satuan (Rp)	Jumlah Biaya (Rp)
Penulisan Proposal		3 eks	200.000	200.000
		S	UBTOTAL (Rp)	200.000

4. Biaya Perjalanan

Material	Justifikasi	Volume	Harga Satuan	Jumlah Biaya
	Perjalanan		(Rp)	(Rp)
Perjalanan Ke Lapan	Mencari informasi tentang pengolahan data satelit NOAA	2	100.000	200.000
		S	UBTOTAL (Rp)	200.000

5. Ringkasan Anggaran Biaya

No	Jenis Biaya	Biaya (Rp)
1	Biaya Penunjang	1.000.000
2	Biaya Bahan Habis Pakai (Komponen utama dan pengujian)	6.310.000
4	Biaya Perjalanan	200.000
5	Lain-lain	200.000
	JUMLAH	7.710.000

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/ Nim	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1.	Ita Marlianti Dewi (171331019)	D3	T. Telekomunikasi	10 jam	Pembuatan antena untuk menghubungkan RTL-SDR dengan satelit NOAA
2.	Dania Farahiyah (161331010)	D3	T. Telekomunikasi	10 jam	Instalasi antena dengan RTL- SDR untuk mengambil data dari satelit NOAA
3.	Muhammad Reza Saifulloh Mubarok (161331020)	D3	T. Telekomunikasi	10 jam	Instalasi RTL- SDR untuk mengambil data dari satelit NOAA
4.	Ita Marlianti Dewi (171331019)	D3	T. Telekomunikasi	10 jam	Pembuatan algoritma perintah untuk menganalisis data
5.	Muhammad Reza Saifulloh Mubarok (161331020)	D3	T. Telekomunikasi	10 jam	Programing untuk analisa data pada Raspberry Pi 3
6.	Dania Farahiyah (161331010)	D3	T. Telekomunikasi	10 jam	Pembuatan laporan progress dan laporan akhir

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA PENELITI/PELAKSANA

Yang bertanda tangan di bawah ini:

Nama : Ita Marlianti Dewi

NIM : 171331019

Program Studi : D3 - Teknik Telekomunikasi

Fakultas/Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa usulan PKM KC saya dengan judul:

"SISTEM RECEIVER CITRA SATELIT NOAA-AVHRR MENGGUNAKAN RASPBERRY DAN RTL-SDR UNTUK MENGETAHUI POTENSI IKAN DI LAUT"

yang diusulkan untuk tahun anggaran 2018 bersifat original dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, 26 Mei 2018

Mengetahui, Yang menyatakan,

Pembantu Direktur Ketua

Bidang Kemahasiswaan,

Meterai Rp6.000 Tanda tangan

Angki Apriliandi Rachmat, SST., M.T. Ita Marlianti Dewi NIP. 198104252005011002 NIM. 171331019

Lampiran 5. Ilustrasi, Diagram Blok, dan Flowchart

I Ilustrasi Sistem

Gambar 1.1 Ilustrasi sistem keseluruhan

Gambar 1.1 menunjukan sistem keseluruhan. Satelit NOAA merupakan penyedia atau sumber informasi dari data yang akan diakses. Informasi dari Satelit NOAA akan diakses melalui suatu receiver menggunakan antena yang kemudian dihubungkan dengan RTL-SDR. Data tersebut akan diolah oleh pusat kontrol yang menggunakan mikrokontroler Raspberry Pi 3. Kemudian monitor LCD akan menampilkan data yang berupa peta perairan lautan yang sudah terdapat tanda lokasi potensi ikan secara otomatis.

Gambar 1.2 Diagram blok sistem secara keseluruhan

Gambar 1.2 menunjukan diagram blok dari sistem secara keseluruhan diamana sumber informasi yang akan diakses yaitu berada pada satelit NOAA. Sinyal informasi yang dikirim kan oleh satelit NOAA akan diterima oleh *receiver* dan *receiver* akan langsung terhubung dengan pusat kontrol setelah informasi berada pada pusat kontrol maka pusat kontrol akan mengolah data tersebut dan akan menampilkan data tersebut kedalam layer monitor.

Gambar 1.3 Flowchart program pada mikrokontroler

Pada program ini, pertama-tama ada pendeklarasian data terlebih dahulu. Setelah itu, inputkan garis bujur dan garis lintang untuk menentukan lokasi laut yang diinginkan. Lalu akan ditampilkan peta permukaan lautnya. Setelah itu terdapat *decision*, jika memilih ya, maka akan masuk ke subproses *compare* data. dimana pada subproses ini akan akan proses untuk membandingkan data acuan dengan data yang di dapat. Setelah dibandingkan, data akan kembali ke proses utama. Kemudian pada proses utama, akan ada proses pemberian tanda dari data yang sudah di *compare* atau dibandingkan. Setelah itu data akan ditampilkan berupa peta permukaan laut dengan sudah adanya tanda daerah potensi ikan. Tetapi jika memilih tidak pada *decision*, maka data akan ditampilkan tanpa adanya tanda daerah potensi ikan. Setelah itu program selesai.