BLG 527E Machine Learning

FALL 2021-2022

Assoc. Prof. Yusuf Yaslan & Assist. Prof. Ayşe Tosun

Parametric Methods

Parametric Estimation

- $\mathcal{X} = \{x^t\}_t$ where $x^t \sim p(x)$
- Parametric estimation:

Assume a form for $p(x|\theta)$ and estimate θ , its sufficient statistics, using X

e.g., N (μ , σ^2) where $\theta = \{ \mu$, $\sigma^2 \}$

Maximum Likelihood Estimation

• Likelihood of θ given the sample X

$$l(\theta|\mathbf{X}) = p(\mathbf{X}|\theta) = \prod_{t} p(\mathbf{x}^{t}|\theta)$$

Log likelihood

$$L(\theta|X) = \log l(\theta|X) = \sum_{t} \log p(x^{t}|\theta)$$

Maximum likelihood estimator (MLE)

$$\theta^* = \operatorname{argmax}_{\theta} L(\theta|X)$$

Examples: Bernoulli/Multinomial

• Bernoulli: Two states, failure/success, x in {0,1}

$$P(x) = p_o^x (1 - p_o)^{(1-x)}$$

$$\mathcal{L}(p_o|\mathcal{X}) = \log \prod_t p_o^{x^t} (1 - p_o)^{(1 - x^t)}$$

MLE:
$$p_o = \sum_t x^t / N$$

• Multinomial: K>2 states, x_i in $\{0,1\}$

$$P(x_1, x_2, ..., x_K) = \prod_i p_i^{x_i}$$

$$\mathcal{L}(p_1, p_2, ..., p_K | \mathcal{X}) = \log \prod_t \prod_i p_i^{x_i^t}$$

MLE:
$$p_i = \sum_t x_i^t / N$$

Examples: Bernoulli (Derivation)

• Bernoulli: Two states, failure/success, x in $\{0,1\}$

$$P(x) = p_o^{x} (1 - p_o)^{(1-x)}$$

$$L(p_o|X) = \log \prod_{t} p_o^{x^t} (1 - p_o)^{(1-x^t)}$$

$$\frac{dL(p_0 \mid X)}{dp_0} = \sum_{t=1}^{N} x^t \frac{d}{dp_0} \log(p_0) + \sum_{t=1}^{N} (1 - x^t) \frac{d}{dp_0} \log(1 - p_0)$$

$$= \frac{1}{p_0} \sum_{t=1}^{N} x^t - \sum_{t=1}^{N} (1 - x^t) \frac{1}{1 - p_0} = 0$$

Bernoulli (Derivation)

$$= (1 - p_0) \sum_{t=1}^{N} x^t - p_0 \sum_{t=1}^{N} 1 + p_0 \sum_{t=1}^{N} x^t = 0$$

$$= \sum_{t=1}^{N} x^t - p_0 N = 0 \Rightarrow p_0 = \frac{1}{N} \sum_{t=1}^{N} x^t$$

MLE:
$$p_o = \sum_t x^t / N$$

Gaussian (Normal) Distribution

•
$$p(x) = \mathcal{N}(\mu, \sigma^2)$$

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Gaussian (Normal) Distribution

• Given that $X = \{x^t\}_t$ with $x^t \sim \mathcal{N}(\mu, \sigma^2)$

$$L(\mu, \sigma | X) = -\frac{N}{2} \log(2\pi) - N \log(\sigma) - \frac{\sum_{n=1}^{N} (x^t - \mu)^2}{2\sigma^2}$$

MLE for μ and σ^2 :

$$m = \frac{\sum_{t} X^{t}}{N}$$

$$S^{2} = \frac{\sum_{t} (x^{t} - m)^{2}}{N}$$

Bias and Variance

Let X be a sample from a population specified up to a parameter θ

To evaluate the quality of this estimator we can measure how much it is different from θ That is $(d(X)-\theta)^2$

But since it is random variable (it depends on the sample) we need to average over all possible X and consider meas square error of the estimator

Remember the properties of expectation

Bias and Variance

Unknown parameter θ

Estimator $d_i = d(X_i)$ on sample X_i

Bias: $b_{\theta}(d) = E[d] - \theta$

Variance: $E[(d-E[d])^2]$

variance

Mean square error:

$$r(d,\theta) = E[(d-\theta)^2] = E[(d-E[d]+E[d]-\theta)^2]$$

= $(E[d]-\theta)^2 + E[(d-E[d])^2 + 2(d-E[d])(E[d]-\theta)]$

Remember the properties of expectation

=
$$E[(E[d]-\theta)^2]+E[(d-E[d])^2]+2E[(d-E[d])(E[d]-\theta)]$$

=
$$E[(E[d]-\theta)^2]+E[(d-E[d])^2]+2(E[d]-E[d])(E[d]-\theta)$$

=
$$(E [d] - \theta)^2 + E [(d-E [d])^2]$$

$$= (E [d] - \theta)^2 + E [(d-E [d])^2]$$

Bayes' Estimator

- Sometimes before looking at a sample we may have some prior information on the possible value range that a parameter, θ , may take.
- This information is quite useful especially when the sample is small.
- Treat θ as a random variable with prior $p(\theta)$
- Bayes' rule: $p(\theta|X) = p(X|\theta) p(\theta) / p(X)$
- Density at x: $p(x|X) = \int p(x|\theta, X) p(\theta|X) d\theta = \int p(x|\theta) p(\theta|X) d\theta$

Bayes' Estimator

- Evaluating the p(x|X) integrals may be quite difficult except in cases where the posterior has a nice form
- Maximum a Posteriori (MAP): $\theta_{MAP} = \operatorname{argmax}_{\theta} p(\theta|X)$
- Maximum Likelihood (ML): $\theta_{ML} = \operatorname{argmax}_{\theta} p(X|\theta)$
- Bayes': $\theta_{\text{Bayes}} = E[\theta|X] = \int \theta \, p(\theta|X) \, d\theta$
- If we have no prior reason to favor some values of θ then the prior density is flat and the posterior will have the same form as the likelihood $p(X|\theta)$

Bayes' Estimator: Example

- $x^t \sim N(\theta, \sigma_0^2)$ and $\theta \sim N(\mu, \sigma^2)$ where are $\mu, \sigma^2, \sigma_0^2$ known
- $\theta_{\rm ML} = m$
- $p(\theta|X) \propto p(X|\theta)p(\theta)$
- Take the derivative with respect to θ

$$P(X \mid \theta) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{(x-\theta)^2}{2\sigma_0^2}\right]$$

$$P(\theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{(\theta - \mu)^2}{2\sigma^2} \right]$$

Likelihood:

$$l(\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(\theta - \mu)^2}{2\sigma^2}\right] \prod_{t=1}^{N} \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{(x^t - \theta)^2}{2\sigma_0^2}\right]$$

Loglikelihood:

$$L(\theta) = \log\left(\frac{1}{\sqrt{2\pi}\sigma}\right) + \left[-\frac{(\theta - \mu)^2}{2\sigma^2}\right] \sum_{t=1}^{N} \log\left(\frac{1}{\sqrt{2\pi}\sigma_0}\right) + \left[-\frac{(x^t - \theta)^2}{2\sigma_0^2}\right]$$

$$L(\theta) = \log\left(\frac{1}{\sqrt{2\pi}\sigma}\right) + \left[-\frac{(\theta - \mu)^2}{2\sigma^2}\right] + \sum_{t=1}^N \left[\log\left(\frac{1}{\sqrt{2\pi}\sigma_0}\right) + \left[-\frac{(x^t - \theta)^2}{2\sigma_0^2}\right]\right]$$

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{(\theta - \mu)}{\sigma^2} + \sum_{t=1}^N \frac{(x^t - \theta)}{\sigma_0^2} = 0$$

$$\sum_{t=1}^N \frac{x^t}{\sigma_0^2} - \sum_{t=1}^N \frac{\theta}{\sigma_0^2} - \frac{(\theta - \mu)}{\sigma^2} = \frac{N}{\sigma_0^2} \sum_{t=1}^N \frac{x^t}{N} - \sum_{t=1}^N \frac{\theta}{\sigma_0^2} - \frac{\theta}{\sigma^2} + \frac{\mu}{\sigma^2} = \frac{N\theta}{\sigma_0^2} + \frac{\theta}{\sigma^2}$$

$$\frac{N}{\sigma_0^2} m + \frac{\mu}{\sigma^2} = \frac{N\theta}{\sigma_0^2} + \frac{\theta}{\sigma^2}$$

$$E[\theta | X] = \frac{N/\sigma_0^2}{N/\sigma_0^2 + 1/\sigma^2} m + \frac{1/\sigma^2}{N/\sigma_0^2 + 1/\sigma^2} \mu$$

Bayes' Estimator: Example

- $x^t \sim N(\theta, \sigma_0^2)$ and $\theta \sim N(\mu, \sigma^2)$
- $\theta_{\rm ML} = m$
- $\theta_{\text{MAP}} = \theta_{\text{Bayes}}$, =

$$E[\theta \mid X] = \frac{N/\sigma_0^2}{N/\sigma_0^2 + 1/\sigma^2} m + \frac{1/\sigma^2}{N/\sigma_0^2 + 1/\sigma^2} \mu$$

Bayesian Learning for Coin Model

- Bayesian Learning procedure:
- Given data x^1 , x^2 , ..., x^N write down expression for likelihood $p(X|\theta)$

Specify a prior $P(\theta)$

Compute posterior $p(\theta | X) = p(X | \theta)p(\theta)/p(X)$

$$p(\theta | \mathbf{X}) \propto p(\mathbf{X} | \theta) p(\theta)$$

This example is obtained from Nando Freitas lecture notes

Bayesian Learning for Coin Model

• For coin model likelihood of data (i.i.d. in our case)

$$P(x^{l}, x^{2}, ..., x^{N} | \theta) = \prod_{t} \theta^{x^{t}} (1 - \theta)^{(1 - x^{t})} = \theta^{m} (1 - \theta)^{(N - m)}$$

Where $x^t \in \{0,1\}$ and m is the number of 1's

• Specify a prior on θ . For this we need to introduce Beta distribution

Beta Distribution

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$\Gamma(z) = \int_{0}^{\infty} e^{x} x^{z-1} dx$$

$$\int p(\theta)d\theta = 1$$

$$\int \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta = 1$$

$$\int \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

 α, β are hyperparameters

$$E[\theta] = \frac{\alpha}{\alpha + \beta}$$

• The figure is obtained from wikipedia

Bayesian Learning for Coin Model

Compute Posterior: $p(\theta | X) \propto p(X | \theta)p(\theta)$

$$P(x^{l}, x^{2}, ..., x^{N} | \theta) = \prod_{t} \theta^{x^{t}} (1 - \theta)^{(1 - x^{t})} = \theta^{m} (1 - \theta)^{(N - m)}$$

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} = \frac{1}{const} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$p(\theta \mid X) = \frac{1}{const} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \theta^{m} (1 - \theta)^{N - m} = p(\theta \mid X) = \frac{\Gamma(\alpha' + \beta')}{\Gamma(\alpha') \Gamma(\beta')} \theta^{\alpha' - 1} (1 - \theta)^{\beta' - 1}$$

$$\alpha'=m+\alpha, \beta'=N-m+\beta$$

Conjugate Prior

- Conjugate priors: A likelihood-prior pair is said to be conjugate if they result in a posterior which is of the same form as the prior.
- This enables us to compute the posterior density analytically without having to worry about computing the denominator in Bayes' rule, the marginal likelihood.

Prior	Likelihood
Gaussian	Gaussian
Beta	Binomial
Dirichlet	Multinomial
Gamma	Gaussian

Example

- Suppose that we observe X= $\{1,1,1,1,1,1,1\}$ where each x^t comes from Bernoulli distribution $\theta_{ML}=1$
- We can compute posterior and use its mean as the estimate

$$p(\theta \mid X) = \frac{1}{const} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \theta^{m} (1 - \theta)^{N - m} = p(\theta \mid X) = \frac{\Gamma(\alpha' + \beta')}{\Gamma(\alpha') \Gamma(\beta')} \theta^{\alpha' - 1} (1 - \theta)^{\beta' - 1} \qquad E[\theta] = \frac{\alpha'}{\alpha' + \beta'}$$

$$\alpha' = m + \alpha, \beta' = N - m + \beta$$

• Using Beta(2,2) prior $\theta_B = \frac{8}{10}$

Parametric Classification

$$g_{i}(x) = p(x | C_{i})P(C_{i})$$
or
$$g_{i}(x) = \log p(x | C_{i}) + \log P(C_{i})$$

$$p(x \mid C_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right]$$

$$g_i(x) = -\frac{1}{2}\log 2\pi - \log \sigma_i - \frac{(x - \mu_i)^2}{2\sigma_i^2} + \log P(C_i)$$

Given the sample

$$\mathcal{X} = \{\mathbf{x}^t, \mathbf{r}^t\}_{t=1}^N$$

$$X \in \Re$$

$$r_i^t = \begin{cases} 1 \text{ if } x^t \in C_i \\ 0 \text{ if } x^t \in C_j, j \neq i \end{cases}$$

ML estimates are

$$\hat{P}(C_i) = \frac{t}{N} \qquad m_i = \frac{t}{C_i} \qquad s_i^2 = \frac{t}{C_i} \qquad t$$

Discriminant becomes

$$g_i(x) = -\frac{1}{2}\log 2\pi - \log s_i - \frac{(x - m_i)^2}{2s_i^2} + \log \hat{P}(C_i)$$

Probabilistic Interpretation of Linear Regression

$$r = f(x) + \varepsilon$$
estimator: $g(x \mid \theta)$

$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

$$p(r \mid x) \sim \mathcal{N}(g(x \mid \theta), \sigma^2)$$

$$\mathcal{L}(\theta \mid \mathcal{X}) = \log \prod_{t=1}^{N} p(x^t, r^t)$$

$$= \log \prod_{t=1}^{N} p(r^{t} | x^{t}) + \log \prod_{t=1}^{N} p(x^{t})$$

Regression: From LogL to Error

$$\mathcal{L}(\theta|\mathcal{X}) = \log \left[\frac{N}{\sqrt{2\pi\sigma}} \frac{1}{\sqrt{2\pi\sigma}} \exp \left[\frac{1}{\sqrt{2\sigma\sigma}} \frac{1}{2\sigma^2} \frac{1}{\sqrt{2\sigma\sigma}} \frac{1}{2\sigma^2} \right] \right]$$

$$= -N \log \sqrt{2\pi} \sigma - \frac{1}{2\sigma^2} \prod_{t=1}^{N} |r^t - g(x^t|\theta)|^2$$

$$E(\theta|\mathcal{X}) = \frac{1}{2} \prod_{t=1}^{N} \left[-g(x^{t}|\theta) \right]^{2}$$

Linear Regression

$$g(x^t | w_1, w_0) = w_1 x^t + w_0$$

$$\sum_{t} r^{t} = Nw_{0} + w_{1} \sum_{t} x^{t}$$

$$\sum_{t} r^{t} x^{t} = w_{0} \sum_{t} x^{t} + w_{1} \sum_{t} (x^{t})^{2}$$

$$E(\theta|\mathcal{X}) = \frac{1}{2} \prod_{t=1}^{N} r^{t} - g(x^{t}|\theta)$$

Take derivative of E

...wrto w0

...wrto w1

$$\mathbf{A} = \begin{bmatrix} \mathbf{N} & \sum_{t} \mathbf{x}^{t} \\ \sum_{t} \mathbf{x}^{t} & \sum_{t} (\mathbf{x}^{t})^{2} \end{bmatrix} \mathbf{w} = \begin{bmatrix} \mathbf{w}_{0} \\ \mathbf{w}_{1} \end{bmatrix} \mathbf{y} = \begin{bmatrix} \sum_{t} \mathbf{r}^{t} \\ \sum_{t} \mathbf{r}^{t} \mathbf{x}^{t} \end{bmatrix}$$

$$\mathbf{w} = \mathbf{A}^{-1}\mathbf{y}$$

Polynomial Regression

$$g(x^{t} | w_{k},...,w_{2},w_{1},w_{0}) = w_{k}(x^{t})^{k} + \cdots + w_{2}(x^{t})^{2} + w_{1}x^{t} + w_{0}$$

$$\mathbf{D} = \begin{bmatrix} 1 & x^{1} & (x^{1})^{2} & \cdots & (x^{1})^{k} \\ 1 & x^{2} & (x^{2})^{2} & \cdots & (x^{2})^{k} \\ \vdots & & & & \\ 1 & x^{N} & (x^{N})^{2} & \cdots & (x^{N})^{2} \end{bmatrix} \quad \mathbf{r} = \begin{bmatrix} r^{1} \\ r^{2} \\ \vdots \\ r^{N} \end{bmatrix}$$

$$\mathbf{w} = \left(\mathbf{D}^{\mathsf{T}}\mathbf{D}\right)^{-1}\mathbf{D}^{\mathsf{T}}\mathbf{r}$$

Other Error Measures

Square Error:

$$E(\theta \mid \mathcal{X}) = \frac{1}{2} \sum_{t=1}^{N} \left[r^{t} - g(x^{t} \mid \theta) \right]^{2}$$

$$E\left(\theta \mid \mathcal{X}\right) = \frac{\sum_{t=1}^{N} \left[r^{t} - g\left(x^{t} \mid \theta\right)\right]^{2}}{\sum_{t=1}^{N} \left[r^{t} - \overline{r}\right]^{2}}$$

- Relative Square Error:
- Absolute Error: $E(\vartheta | X) = \sum_{t} |r^{t} g(x^{t} | \vartheta)|$
- ε-sensitive Error:

$$E(\vartheta|X) = \sum_{t} 1(|r^{t} - g(x^{t}|\vartheta)| > \varepsilon) (|r^{t} - g(x^{t}|\theta)| - \varepsilon)$$

Bias and Variance

$$E[(r-g(x))^{2} | x] = E[(r-E[r|x])^{2} | x] + (E[r|x]-g(x))^{2}$$
noise squared error

$$E_{\chi} \Big[(E[r \mid x] - g(x))^2 \mid x \Big] = (E[r \mid x] - E_{\chi}[g(x)])^2 + E_{\chi} \Big[(g(x) - E_{\chi}[g(x)])^2 \Big]$$
bias variance

Estimating Bias and Variance

• M samples $X_i = \{x_i^t, r_i^t\}, i = 1,...,M$ are used to fit $g_i(x), i = 1,...,M$ and t = 1,...,N

Bias²(g) =
$$\frac{1}{N} \sum_{t} \left[\overline{g}(x^{t}) - f(x^{t}) \right]^{2}$$

Variance(g) = $\frac{1}{NM} \sum_{t} \sum_{i} \left[g_{i}(x^{t}) - \overline{g}(x^{t}) \right]^{2}$
 $\overline{g}(x) = \frac{1}{M} \sum_{i} g_{i}(x)$

Bias/Variance Dilemma

- Example: $g_i(x)=2$ has no variance and high bias $g_i(x)=\sum_t r^t/N$ has lower bias with variance
- As we increase complexity,
 bias decreases (a better fit to data) and
 variance increases (fit varies more with data)
- Bias/Variance dilemma: (Geman et al., 1992)

Polynomial Regression

Regression example

Coefficients increase in magnitude as order increases:

1: [-0.0769, 0.0016]

2: [0.1682, -0.6657, 0.0080]

3: [0.4238, -2.5778, 3.4675, -0.0002

4: [-0.1093, 1.4356, -5.5007, 6.0454, -0.0019]

Idea: Penalize large coefficients

Regularization

- New Cost Function $E(\mathbf{w} \mid \mathbf{X}) = \frac{1}{2} \sum_{t=1}^{N} \left[y^t g(x^t \mid \mathbf{w}) \right]^2 + \lambda \sum_{i=1}^{N} w_i^2$
- Ridge Regression $R(w) = ||w||^2 = \sum_i w_i^2$
- LASSO: $R(w) = ||w||_1 = \sum_i |w_i|$

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{N} (y - Xw)^2 + \lambda \sum_{i} w_i^2 \implies \frac{1}{2} (y - Xw)^T (y - Xw) + \lambda W^T w$$

•
$$\nabla \mathcal{L} = -\frac{2}{2} X^T (y - Xw) + \lambda w$$

•
$$-\frac{2}{2}X^T(y-Xw) + \lambda w = 0 \rightarrow X^Ty = X^TXw + \lambda w \rightarrow$$

•
$$X^T y = (X^T X + \lambda I) w$$

•
$$\widehat{w} = (X^T X + \lambda I)^{-1} X^T y$$

$$J(\theta) = (\mathbf{y} - \mathbf{X}\theta)^{T}(\mathbf{y} - \mathbf{X}\theta) + \delta^{2}\theta^{T}\theta$$

$$(\mathbf{y}^{1} = \mathbf{y} - \mathbf{X}\theta)^{T}(\mathbf{y} - \mathbf{X}\theta) + \delta^{2}\theta^{T}\theta$$

$$(\mathbf{y}^{1} = \mathbf{y} - \mathbf{y}$$

• Image is obtained from Nando Freitas' lecture notes