

Instituto Tecnológico de Costa Rica Área Académica de Ingeniería Mecatrónica

Curso: Laboratorio de electrónica de potencia aplicada

Prof. Johanna Muñoz Pérez

Tarea 5 Variador de frecuencia para el control de motor trifásico

Investigación previa (25 pts.)

- Investigue la función e implementación de los módulos que componen un variador de frecuencia: rectificador, bus DC, inversor y control. No olvide mencionar las ventajas de los IGBT como parte del módulo inversor.
- 2 Investigue las características de los siguientes tipos de control en variadores de frecuencia: control de tensión lineal/frecuencia, control de tensión cuadrática/frecuencia y control vectorial.
- 3. Explique el concepto de operación en cuatro cuadrantes para un variador de frecuencia.
- 4. Explique los siguientes tipos de frenado: paro libre, parada en rampa, frenado por inyección de CD y frenado dinámico.
- 5. Investigue distintos tipos de filtros de entrada y salida utilizados con los variadores de frecuencia, así como su utilidad.

Procedimiento (50 pts.)

Descargue el simulador del variador de frecuencia **Yaskawa V1000** en el enlace https://www.yaskawa.com/products/drives/industrial-ac-drives/industrial-software-tools/programming-simulator.

Figura 1. Variador de frecuencia Yaskawa V1000.

Considere que el simulador se alimenta con una tensión de entrada monofásica de 220V-60Hz y su carga corresponde a un motor trifásico. Indique en cuáles terminales se debe conectar la alimentación y en cuáles se debe conectar el motor.

La simulación de los siguientes puntos debe grabarse en un **video** donde se explique paso a paso cada configuración solicitada. Debe basar su explicación en el manual de usuario del variador. La cantidad de participantes en el video queda a criterio del grupo.

Configuración de parámetros

Para la configuración de parámetros, las pruebas se realizan en el modo local (luz encendida en el botón LO/RE). Revise la tabla de parámetros del variador en su manual de usuario para realizar las siguientes configuraciones.

- 1. Configure el método de control en V/f.
- 2. Configure la tensión de entrada del variador en 220V.
- 3. Configure la frecuencia de salida máxima del variador en 60 Hz.
- 4. Configure la tensión de salida máxima del variador en 220V.
- 5. Configure la corriente nominal del motor en 1.9A.
- 6. Configure el número de polos del motor en 4 polos.
- 7. Configure la potencia nominal del motor en 0.19kW.
- 8. Configure el control de la marcha y el paro para utilizar los botones en el parámetro correspondiente.
- 9. Establezca la corriente y torque de salida del motor en 40% utilizando las perillas ajustables presentes en la interfaz.
- 10. Configure el control de la velocidad para utilizar los botones en el parámetro correspondiente. Compruebe la configuración al establecer una frecuencia de 9 Hz en el variador. Para iniciar la simulación del giro del motor debe presionar el botón RUN.
- 11. Configure el método de parada en modo rampa de desaceleración en el parámetro correspondiente.
- 12. Configure el tiempo de aceleración en 6 segundos.
- 13. Configure el tiempo de desaceleración en 3 segundos.
- 14. Establezca la frecuencia a su valor máximo de 60 Hz. Encienda el variador de frecuencia y compruebe el tiempo de aceleración. Apague el variador y compruebe el tiempo de desaceleración.
- 15. Configure el parámetro D1-01 para conseguir una velocidad de 1400 RPM.
- 16. Compruebe la configuración anterior al iniciar la simulación. Cambie el sentido de giro del motor utilizando los botones del panel frontal.

Operación en modo remoto

El modo remoto del VFD permite utilizar elementos externos para el control de VFD, por ejemplo, botoneras de arranque, paro y reversa. Este es el modo de operación más usual.

- 17. Configure la señal de entrada A2 de 0V a 10V con límite inferior en el parámetro correspondiente.
- 18. Configure el control de la marcha y el paro para utilizar las entradas digitales S1-S7 en el parámetro correspondiente.
- 19. Configure el control de la velocidad para utilizar las perillas A1-A2 en el parámetro correspondiente.
- 20. Cambie el sentido de giro nuevamente. Apague el motor y presione el botón LO/RE para seleccionar el modo remoto.
- 21. Lleve la perilla del A2 al 50% y presione la casilla debajo de S1 para iniciar el motor. Varíe A2 y compruebe que controla la velocidad.

Evaluación (25 pts.)

- 1. Explique los parámetros que deben considerarse en las placas de datos del motor y del variador de frecuencia, para garantizar que son compatibles.
 - 2. Para el variador de frecuencia utilizado, investigue posibles usos de las salidas digitales (P1, P2, PC, MA, MB, MC), entradas digitales (S1-S7, SC), salidas analógicas (AM, AC, MP) y entradas analógicas (A1, A2, +V, AC, RP).
- 3. Mencione dos aplicaciones de los variadores de frecuencia en la industria describiendo con un diagrama de bloques los componentes requeridos para su implementación (por ejemplo, sensores, PLC, HMI, bandas, protecciones).
- A. Realice una comparación entre los arrancadores suaves y los variadores de frecuencia en cuanto a sus características y aplicaciones recomendadas.
- 5. Explique la función de una resistencia de frenado, en qué terminales del V1000 se conecta e indique un modelo que podría utilizar en combinación con este variador.

Debe subir el archivo de respuesta a la sección de entregas del Tec Digital indicando el enlace para observar el video del procedimiento (si el tamaño no permite cargarlo igualmente en la entrega).