Entropy stable schemes for the compressible Navier-Stokes equations: boundary conditions and positivity preserving schemes

Yimin Lin, Jesse Chan, Tim Warburton USNCCM 16, July 2021

Department of Computational and Applied Mathematics, Rice University Department of Mathematics, Virginia Tech

Compressible Navier-Stokes equations

· Compressible Navier-Stokes equations

$$\frac{\partial U}{\partial t} + \sum_{i=1}^{3} \frac{\partial f_i(U)}{\partial x_i} = \sum_{i=1}^{3} \frac{\partial g_i(U)}{\partial x_i}$$
inviscid flux
iscous flux

Entropy variables symmetrizes the viscous fluxes:

$$\sum_{i=1}^{d} \frac{\partial \mathbf{g}_{i}}{\partial \mathbf{x}_{i}} = \sum_{i,j=1}^{d} \frac{\partial}{\partial \mathbf{x}_{i}} \left(\mathbf{K}_{ij} \frac{\partial \mathbf{v}}{\partial \mathbf{x}_{j}} \right),$$

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{11} & \dots & \mathbf{K}_{1d} \\ \vdots & \ddots & \vdots \\ \mathbf{K}_{d1} & \dots & \mathbf{K}_{dd} \end{bmatrix} = \mathbf{K}^{\mathsf{T}}, \qquad \mathbf{K} \succeq 0$$

ı

• With convex entropy η , entropy variable $\mathbf{v} = \frac{\partial \eta(u)}{\partial u}$ and entropy potential ψ_i . We can derive an entropy balance

• With convex entropy η , entropy variable $\mathbf{v} = \frac{\partial \eta(u)}{\partial u}$ and entropy potential ψ_i . We can derive an entropy balance

$$\int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{u}}{\partial \mathbf{t}} + \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{f}_{i}(\mathbf{u})}{\partial \mathbf{x}_{i}} = \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{g}_{i}(\mathbf{u})}{\partial \mathbf{x}_{i}}$$
 Test by \mathbf{v}

• With convex entropy η , entropy variable $\mathbf{v} = \frac{\partial \eta(u)}{\partial u}$ and entropy potential ψ_i . We can derive an entropy balance

$$\begin{split} &\int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{u}}{\partial t} + \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial f_{i}(\mathbf{u})}{\partial x_{i}} = \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial g_{i}(\mathbf{u})}{\partial x_{i}} & \text{Test by } \mathbf{v} \\ &\int_{\Omega} \frac{\partial \eta(\mathbf{u})}{\partial t} + \sum_{i=1}^{d} \int_{\partial \Omega} n_{i} \left(F_{i}(\mathbf{u}) - \frac{1}{c_{\mathsf{v}}\mathsf{T}} \kappa \frac{\partial \mathsf{T}}{\partial x_{i}} \right) = - \int_{\Omega} \sum_{i,j=1}^{d} \left(\frac{\partial \mathbf{v}}{\partial x_{i}} \right)^{\mathsf{T}} \left(K_{ij} \frac{\partial \mathbf{v}}{\partial x_{j}} \right) \end{split}$$

Integration by parts and chain rule

• With convex entropy η , entropy variable $\mathbf{v} = \frac{\partial \eta(u)}{\partial u}$ and entropy potential ψ_i . We can derive an entropy balance

$$\int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{u}}{\partial t} + \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial f_{i}(\mathbf{u})}{\partial x_{i}} = \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial g_{i}(\mathbf{u})}{\partial x_{i}}$$
 Test by \mathbf{v}

$$\int_{\Omega} \frac{\partial \eta(\mathbf{u})}{\partial t} + \sum_{i=1}^{d} \int_{\partial \Omega} n_{i} \left(F_{i}(\mathbf{u}) - \frac{1}{c_{\mathsf{V}}\mathsf{T}} \kappa \frac{\partial \mathsf{T}}{\partial x_{i}} \right) = - \int_{\Omega} \sum_{i,j=1}^{d} \left(\frac{\partial \mathbf{v}}{\partial x_{i}} \right)^{\mathsf{T}} \left(\mathbf{K}_{ij} \frac{\partial \mathbf{v}}{\partial x_{j}} \right)$$

Integration by parts and chain rule

$$\int_{\Omega} \frac{\partial \eta(\mathbf{u})}{\partial t} = -\int_{\Omega} \sum_{i,j=1}^{d} \left(\frac{\partial \mathbf{v}}{\partial x_{i}} \right)^{\mathsf{T}} \left(\mathbf{K}_{ij} \frac{\partial \mathbf{v}}{\partial x_{j}} \right) \leq 0$$
 Periodic

2

· Entropy conservative numerical flux

$$f_{S}(u, u) = f(u),$$
 $f_{S}(u_{L}, u_{R}) = f_{S}(u_{R}, u_{L})$
 $(v_{L} - v_{R})^{T} f_{S}(u_{L}, u_{R}) = \psi(u_{L}) - \psi(u_{R})$

· Entropy conservative numerical flux

$$f_{S}(u, u) = f(u),$$
 $f_{S}(u_{L}, u_{R}) = f_{S}(u_{R}, u_{L})$
 $(v_{L} - v_{R})^{T} f_{S}(u_{L}, u_{R}) = \psi(u_{L}) - \psi(u_{R})$

· Flux differencing technique

$$\frac{\partial f(u(x))}{\partial x} = 2 \left. \frac{\partial f_{S}(u(x), u(y))}{\partial x} \right|_{y=x}$$

· Entropy conservative numerical flux

$$f_{S}(u, u) = f(u),$$
 $f_{S}(u_{L}, u_{R}) = f_{S}(u_{R}, u_{L})$
 $(\mathbf{v}_{L} - \mathbf{v}_{R})^{\mathsf{T}} f_{S}(u_{L}, u_{R}) = \psi(u_{L}) - \psi(u_{R})$

Flux differencing technique

$$\frac{\partial f(u(x))}{\partial x} = 2 \left. \frac{\partial f_{S}(u(x), u(y))}{\partial x} \right|_{y=x}$$

 Collocation on Lobatto quadrature nodes gives summation-by-parts (SBP) operator

$$Q = MD,$$
 $Q + Q^T = B,$ $Q1 = 0$

3

Entropy conservative numerical flux

$$f_{S}(u, u) = f(u),$$
 $f_{S}(u_{L}, u_{R}) = f_{S}(u_{R}, u_{L})$
 $(v_{L} - v_{R})^{T} f_{S}(u_{L}, u_{R}) = \psi(u_{L}) - \psi(u_{R})$

Flux differencing technique

$$\left. \frac{\partial f(u(x))}{\partial x} = 2 \left. \frac{\partial f_{S}(u(x), u(y))}{\partial x} \right|_{y=x}$$

 Collocation on Lobatto quadrature nodes gives summation-by-parts (SBP) operator

$$Q = MD,$$
 $Q + Q^T = B,$ $Q1 = 0$

· Discretize the variational form

$$\int_{\widehat{D}} \frac{\partial f}{\partial x} \overrightarrow{l} \xrightarrow{\text{Discretize}} 2(\mathbf{Q} \circ \mathbf{F}_{S}) \mathbf{1}, \quad (\mathbf{F}_{S})_{ij} = f_{S} (\mathbf{u}_{i}, \mathbf{u}_{j})$$

 Modal ESDG allows arbitrary choice of approximation basis and quadrature rules

- Modal ESDG allows arbitrary choice of approximation basis and quadrature rules
- Extends nodal ESDG via over-integration

· "Hyrbridized" SBP operator

$$\begin{aligned} \mathbf{Q}_h &= \frac{1}{2} \begin{bmatrix} \mathbf{Q} - \mathbf{Q}^\mathsf{T} & \mathbf{E}^\mathsf{T} \mathbf{B} \\ -\mathbf{B} \mathbf{E} & \mathbf{B} \end{bmatrix}, \qquad \mathbf{Q}_h \mathbf{1} = 0, \qquad \mathbf{Q}_h + \mathbf{Q}_h^\mathsf{T} = \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{B} \end{bmatrix} \\ \int_{\widehat{D}} u \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \int_{\widehat{D}} \mathbf{v} \frac{\partial u}{\partial \mathbf{x}} &= \int_{\partial \widehat{D}} u \mathbf{v} \widehat{\mathbf{n}} \xrightarrow{\text{Discretize}} \mathbf{v}^\mathsf{T} \mathbf{Q}_h \mathbf{u} + \mathbf{v}^\mathsf{T} \mathbf{Q}_h^\mathsf{T} \mathbf{u} = \mathbf{v}_f^\mathsf{T} \mathbf{B} \mathbf{u}_f \end{aligned}$$

5

· "Hyrbridized" SBP operator

$$\mathbf{Q}_{h} = \frac{1}{2} \begin{bmatrix} \mathbf{Q} - \mathbf{Q}^{\mathsf{T}} & \mathbf{E}^{\mathsf{T}} \mathbf{B} \\ -\mathbf{B} \mathbf{E} & \mathbf{B} \end{bmatrix}, \qquad \mathbf{Q}_{h} \mathbf{1} = 0, \qquad \mathbf{Q}_{h} + \mathbf{Q}_{h}^{\mathsf{T}} = \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{B} \end{bmatrix}$$
$$\int_{\widehat{D}} u \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \int_{\widehat{D}} \mathbf{v} \frac{\partial u}{\partial \mathbf{x}} = \int_{\partial \widehat{D}} u \mathbf{v} \hat{\mathbf{n}} \xrightarrow{\text{Discretize}} \mathbf{v}^{\mathsf{T}} \mathbf{Q}_{h} \mathbf{u} + \mathbf{v}^{\mathsf{T}} \mathbf{Q}_{h}^{\mathsf{T}} \mathbf{u} = \mathbf{v}_{f}^{\mathsf{T}} \mathbf{B} \mathbf{u}_{f}$$

 Entropy projection ensures consistency with respect to the polynomial basis and the entropy conservative flux

$$\mathbf{v}_{h} = \Pi_{N}\mathbf{v}, \qquad \widetilde{\mathbf{u}} = \mathbf{u} \left(\Pi_{N}\mathbf{v} \right)$$
$$\left(\Pi_{N}\mathbf{v} \left(\mathbf{u}_{L} \right) - \Pi_{N}\mathbf{v} \left(\mathbf{u}_{R} \right) \right)^{\mathsf{T}} f_{S} \left(\widetilde{\mathbf{u}}_{L}, \widetilde{\mathbf{u}}_{R} \right) = \psi \left(\widetilde{\mathbf{u}}_{L} \right) - \psi \left(\widetilde{\mathbf{u}}_{R} \right)$$

"Hyrbridized" SBP operator

$$\begin{aligned} \mathbf{Q}_h &= \frac{1}{2} \begin{bmatrix} \mathbf{Q} - \mathbf{Q}^\mathsf{T} & \mathbf{E}^\mathsf{T} \mathbf{B} \\ -\mathbf{B} \mathbf{E} & \mathbf{B} \end{bmatrix}, \qquad \mathbf{Q}_h \mathbf{1} = 0, \qquad \mathbf{Q}_h + \mathbf{Q}_h^\mathsf{T} = \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{B} \end{bmatrix} \\ \int_{\widehat{D}} u \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \int_{\widehat{D}} \mathbf{v} \frac{\partial u}{\partial \mathbf{x}} &= \int_{\partial \widehat{D}} u \mathbf{v} \widehat{\mathbf{n}} \xrightarrow{\text{Discretize}} \mathbf{v}^\mathsf{T} \mathbf{Q}_h \mathbf{u} + \mathbf{v}^\mathsf{T} \mathbf{Q}_h^\mathsf{T} \mathbf{u} &= \mathbf{v}_f^\mathsf{T} \mathbf{B} \mathbf{u}_f \end{aligned}$$

 Entropy projection ensures consistency with respect to the polynomial basis and the entropy conservative flux

$$\mathbf{v}_{h} = \Pi_{N}\mathbf{v}, \qquad \widetilde{\mathbf{u}} = \mathbf{u} \left(\Pi_{N}\mathbf{v} \right)$$
$$\left(\Pi_{N}\mathbf{v} \left(\mathbf{u}_{L} \right) - \Pi_{N}\mathbf{v} \left(\mathbf{u}_{R} \right) \right)^{\mathsf{T}} \mathbf{f}_{S} \left(\widetilde{\mathbf{u}}_{L}, \widetilde{\mathbf{u}}_{R} \right) = \psi \left(\widetilde{\mathbf{u}}_{L} \right) - \psi \left(\widetilde{\mathbf{u}}_{R} \right)$$

· Discretize the variational form

$$\int_{\widehat{\Omega}} \frac{\partial f}{\partial x} \overrightarrow{\phi} \xrightarrow{\text{Discretize}} 2(\mathbf{Q}_h \circ \mathbf{F}_S) \mathbf{1}, \quad (\mathbf{F}_S)_{ij} = f_S(\widetilde{\mathbf{u}}_i, \widetilde{\mathbf{u}}_j)$$

Discretization of the viscous term

 Usual approach: discretize the viscous term by writing it as a first order system

$$\begin{cases} \mathbf{\Theta} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \\ \mathbf{G}_{\text{visc}} = \frac{\partial \mathbf{K}\mathbf{\Theta}}{\partial \mathbf{x}} \end{cases} \implies \begin{cases} (\mathbf{\Theta}, \varphi)_{\Omega} = \left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}, \varphi\right)_{\Omega} + \langle [\![\mathbf{v}]\!] n_{i}, \varphi\rangle_{\partial\Omega} \\ (\mathbf{G}_{\text{visc}}, \psi)_{\Omega} = -\left(\mathbf{K}\mathbf{\Theta}, \frac{\partial \psi}{\partial \mathbf{x}}\right)_{\Omega} + \langle \{\![\mathbf{K}(\mathbf{v})\mathbf{\Theta}\}\!\} n_{i}, \psi\rangle_{\partial\Omega} \end{cases}$$

Discretization of the viscous term

 Usual approach: discretize the viscous term by writing it as a first order system

$$\begin{cases} \boldsymbol{\Theta} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \\ \mathbf{G}_{\mathsf{visc}} = \frac{\partial \mathbf{K} \boldsymbol{\Theta}}{\partial \mathbf{x}} \end{cases} \implies \begin{cases} (\boldsymbol{\Theta}, \varphi)_{\Omega} = \left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}, \varphi\right)_{\Omega} + \langle \llbracket \mathbf{v} \rrbracket \boldsymbol{n}_{i}, \varphi \rangle_{\partial \Omega} \\ (\mathbf{G}_{\mathsf{visc}}, \psi)_{\Omega} = -\left(\mathbf{K} \boldsymbol{\Theta}, \frac{\partial \psi}{\partial \mathbf{x}}\right)_{\Omega} + \langle \{\{\mathbf{K}(\mathbf{v}) \, \boldsymbol{\Theta}\}\} \, \boldsymbol{n}_{i}, \psi \rangle_{\partial \Omega} \end{cases}$$

- Previous enforcement of wall boundary conditions (Dalcin et al.) involve transformations between primitive and entropy variables.
 - Step 1: Enforce boundary conditions on primitive variables w, define v^+ , K^+ accordingly.
 - · Step 2: Rotate $oldsymbol{\Theta}$ to the gradient of primitive variables $oldsymbol{\Pi}$
 - · Step 3: Enforce Neumann boundary conditions on Π , get Π^+
 - Step 4: Rotate Π^+ back to Θ^+

Viscous term discretization

· We write the system differently:

$$\begin{cases} \boldsymbol{\Theta} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \\ \boldsymbol{\sigma} = \mathbf{K} \boldsymbol{\Theta} = \mathbf{g} \\ \mathbf{G}_{\mathsf{visc}} = \frac{\partial \boldsymbol{\sigma}}{\partial \mathbf{x}} \end{cases} \implies \begin{cases} (\boldsymbol{\Theta}, \varphi)_{\Omega} = \left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}, \varphi\right)_{\Omega} + \left\langle \llbracket \mathbf{v} \rrbracket n_{i}, \varphi \right\rangle_{\partial \Omega} \\ (\boldsymbol{\sigma}, \eta)_{\Omega} = \left(\mathbf{K} \boldsymbol{\Theta}, \eta\right)_{\Omega} \\ (\mathbf{G}_{\mathsf{visc}}, \psi)_{\Omega} = -\left(\boldsymbol{\sigma}, \frac{\partial \psi}{\partial \mathbf{x}}\right)_{\Omega} + \left\langle \{\{\boldsymbol{\sigma}\}\} n_{i}, \psi\right\rangle_{\partial \Omega} \end{cases}$$

7

Viscous term discretization

· We write the system differently:

$$\begin{cases} \boldsymbol{\Theta} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \\ \boldsymbol{\sigma} = \mathbf{K} \boldsymbol{\Theta} = \mathbf{g} \\ \mathbf{G}_{\text{visc}} = \frac{\partial \boldsymbol{\sigma}}{\partial \mathbf{x}} \end{cases} \implies \begin{cases} (\boldsymbol{\Theta}, \varphi)_{\Omega} = \left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}, \varphi\right)_{\Omega} + \left\langle \llbracket \mathbf{v} \rrbracket n_{i}, \varphi \right\rangle_{\partial \Omega} \\ (\boldsymbol{\sigma}, \eta)_{\Omega} = \left(\mathbf{K} \boldsymbol{\Theta}, \eta\right)_{\Omega} \\ (\mathbf{G}_{\text{visc}}, \psi)_{\Omega} = -\left(\boldsymbol{\sigma}, \frac{\partial \psi}{\partial \mathbf{x}}\right)_{\Omega} + \left\langle \{\{\boldsymbol{\sigma}\}\} n_{i}, \psi\right\rangle_{\partial \Omega} \end{cases}$$

· Viscous term dissipates entropy

$$\sum_{k} (\mathbf{G}_{\mathrm{visc}}, \mathbf{v})_{D^{k}} = \sum_{k} \sum_{i,j=1}^{d} - (\mathbf{K}_{ij} \mathbf{\Theta}_{j}, \mathbf{\Theta}_{i})_{D^{k}} \leq 0$$

7

Simpler enforcement of wall boundary conditions

· Adiabatic no-slip wall boundary condition

$$\begin{cases} \mathbf{u}_{n} &= 0 \\ \mathbf{u}_{t} &= \mathbf{u}_{\text{wall}} \\ \kappa \frac{\partial T}{\partial n} \frac{1}{T} &= g(t) \end{cases} \implies \begin{cases} \{\{\mathbf{v}_{1+i}\}\} &= -\mathbf{u}_{i,\text{wall}} \mathbf{v}_{4} \\ \{\{\sigma_{4,i}\}\} &= u_{1,\text{wall}} \sigma_{2,i} + u_{2,\text{wall}} \sigma_{3,i} + \frac{g(t)n_{i}}{c_{v}\mathbf{v}_{4}} \end{cases}$$

Simpler enforcement of wall boundary conditions

· Adiabatic no-slip wall boundary condition

$$\begin{cases} \mathbf{u}_{n} &= 0 \\ \mathbf{u}_{t} &= \mathbf{u}_{\text{wall}} \\ \kappa \frac{\partial T}{\partial n} \frac{1}{t} &= g(t) \end{cases} \implies \begin{cases} \{\{\mathbf{v}_{1+i}\}\} &= -\mathbf{u}_{i,\text{wall}} \mathbf{v}_{4} \\ \{\{\sigma_{4,i}\}\} &= u_{1,\text{wall}} \sigma_{2,i} + u_{2,\text{wall}} \sigma_{3,i} + \frac{g(t)n_{i}}{c_{v}\mathbf{v}_{4}} \end{cases}$$

· Reflective wall boundary condition

$$\begin{cases} u_{n} &= 0 \\ \sum t_{i}\sigma_{ij}n_{j} &= 0 \\ \kappa \frac{\partial T}{\partial n} &= 0 \end{cases} \implies \begin{cases} \{\{v\}\} = v - v_{n}n \\ \left[\{\{\sigma_{2,1}\}\} \quad \{\{\sigma_{2,2}\}\}\right] \\ \left\{\{\sigma_{3,1}\}\} \quad \{\{\sigma_{3,2}\}\}\right] \end{cases} n = nn^{T} \begin{bmatrix} \sigma_{2,1} & \sigma_{2,2} \\ \sigma_{3,1} & \sigma_{3,2} \end{bmatrix} n \\ \left\{\{\{v_{4}\}\} = v_{4}, \quad \{\{\sigma_{4,i}\}\} = 0 \end{cases} \end{cases}$$

Simpler enforcement of wall boundary conditions

Adiabatic no-slip wall boundary condition

$$\begin{cases} \mathbf{u}_{n} &= 0 \\ \mathbf{u}_{t} &= \mathbf{u}_{\text{wall}} \\ \kappa \frac{\partial T}{\partial n} \frac{1}{t} &= g(t) \end{cases} \implies \begin{cases} \{\{\mathbf{v}_{1+i}\}\} &= -\mathbf{u}_{i,\text{wall}} \mathbf{v}_{4} \\ \{\{\sigma_{4,i}\}\} &= u_{1,\text{wall}} \sigma_{2,i} + u_{2,\text{wall}} \sigma_{3,i} + \frac{g(t)n_{i}}{c_{v}\mathbf{v}_{4}} \end{cases}$$

· Reflective wall boundary condition

$$\begin{cases} u_{n} &= 0 \\ \sum t_{i}\sigma_{ij}n_{j} &= 0 \\ \kappa \frac{\partial T}{\partial n} &= 0 \end{cases} \implies \begin{cases} \{\{v\}\} = v - v_{n}n \\ \left\{\{\{\sigma_{2,1}\}\}\right\} & \{\{\sigma_{2,2}\}\}\right\} \\ \left\{\{\sigma_{3,1}\}\}\right\} & \{\{\sigma_{3,2}\}\}\right\} \end{cases} n = nn^{T} \begin{bmatrix} \sigma_{2,1} & \sigma_{2,2} \\ \sigma_{3,1} & \sigma_{3,2} \end{bmatrix} n$$

$$\{\{v_{4}\}\} = v_{4}, \quad \{\{\sigma_{4,i}\}\}\} = 0$$

 Simplifies the proofs of entropy stability under these wall boundary conditions.

Numerical results: Viscous shocktube

h	N	N=2	Rate	N=3	Rate	N=4	Rate
1	/4	0.0318		0.00566		0.0052	
1	/8	0.00306	3.376	0.000462	3.616	0.000185	4.814
1/	/16	0.00033	3.213	5.22e-05	3.146	5.18e-06	5.157
1/	/32	4.5e-05	2.874	3.13e-06	4.060	1.81e-07	4.842
1/	64	5.81e-06	2.952	2.1e-07	3.898	6.24e-09	4.856

(a) L^1 errors

h	N=2	Rate	N=3	Rate	N=4	Rate
1/4	0.0639		0.00916		0.011	
1/8	0.00631	3.339	0.00103	3.156	0.000449	4.618
1/16	0.000853	2.887	0.000162	2.665	1.38e-05	5.020
1/32	0.000132	2.694	9.71e-06	4.062	6.19e-07	4.483
1/64	1.73e-05	2.931	6.87e-07	3.821	2.16e-08	4.839

(b) L^2 errors

Table 1: L^1 and L^2 errors for the viscous shock tube problem.

Numerical results: Lid driven cavity

• Evolution of viscous entropy residual r(t)

$$r(t) = \sum_{k} \left[(\mathbf{G}_{\text{visc}}, \mathbf{v})_{D^{k}} + \sum_{i,j=1}^{d} (\mathbf{K}_{ij} \mathbf{\Theta}_{j}, \mathbf{\Theta}_{i}) \right] = \left\langle \frac{g(t)}{c_{v}}, 1 \right\rangle_{\partial \Omega}$$

• Lid driven cavity with Re=1000, adiabatic wall boundary condition q(t)=0

Numerical results: Flow over cylinder

• Supersonic flow over cylinder with $Re = 10^4$, Ma = 1.5

1.5e+00 0.9 - 0.8 0.7

(b) Zoom of density ρ at $T_{\rm final} = 100$

Current work: Positivity Limiting for nodal ESDG

• The entropy is well-defined only if densities and pressures are well-defined.

Current work: Positivity Limiting for nodal ESDG

· Strong shock forms - Negative densities

Figure 1: Exact solution

Figure 2: Solution in polynomial basis

· Oscillation by Gibbs phenomenon leads to negative density

· Step 1. Compute high order target scheme (nodal ESDG)

- · Step 1. Compute high order target scheme (nodal ESDG)
- $\boldsymbol{\cdot}$ Step 2. Compute low order positivity-preserving scheme

- · Step 1. Compute high order target scheme (nodal ESDG)
- · Step 2. Compute low order positivity-preserving scheme
- Step 3. Blend two schemes together through convex limiting

- Step 1. Compute high order target scheme (nodal ESDG)
- Step 2. Compute low order positivity-preserving scheme
- · Step 3. Blend two schemes together through convex limiting
 - Low order positivity-preserving and ESDG in algebraic flux form:

$$\frac{m_i}{\tau}(u_i^{L,n+1} - u_i^n) + \sum_i F_{ij}^{L,n} = 0$$

$$\frac{m_i}{\tau}(u_i^{H,n+1} - u_i^n) + \sum_i F_{ij}^{H,n} = 0$$

- Step 1. Compute high order target scheme (nodal ESDG)
- Step 2. Compute low order positivity-preserving scheme
- · Step 3. Blend two schemes together through convex limiting
 - Low order positivity-preserving and ESDG in algebraic flux form:

$$\frac{m_i}{\tau}(u_i^{L,n+1} - u_i^n) + \sum_i F_{ij}^{L,n} = 0$$

$$\frac{m_i}{\tau}(u_i^{H,n+1} - u_i^n) + \sum_i F_{ij}^{H,n} = 0$$

• Choose suitable parameter $l_{ij} \in [0,1]$ to satisfy positivity

$$m_i u_i^{n+1} = m_i u_i^{L,n+1} + \sum \tau l_{ij} (F_{ij}^{L,n} - F_{ij}^{H,n})$$

- Step 1. Compute high order target scheme (nodal ESDG)
- Step 2. Compute low order positivity-preserving scheme
- · Step 3. Blend two schemes together through convex limiting
 - Low order positivity-preserving and ESDG in algebraic flux form:

$$\begin{split} \frac{\textit{m}_{i}}{\tau}(\textit{u}_{i}^{\text{L},n+1} - \textit{u}_{i}^{n}) + \sum \textit{F}_{ij}^{\text{L},n} &= 0 \\ \frac{\textit{m}_{i}}{\tau}(\textit{u}_{i}^{\text{H},n+1} - \textit{u}_{i}^{n}) + \sum \textit{F}_{ij}^{\text{H},n} &= 0 \end{split}$$

· Choose suitable parameter $l_{ij} \in [0,1]$ to satisfy positivity

$$m_i u_i^{n+1} = m_i u_i^{L,n+1} + \sum \tau l_{ij} (F_{ij}^{L,n} - F_{ij}^{H,n})$$

• $l_{ij} = 1 \implies$ recovers ESDG. $l_{ij} = 0 \implies$ recovers low order positivity-preserving scheme.

- Step 1. Compute high order target scheme (nodal ESDG)
- Step 2. Compute low order positivity-preserving scheme
- · Step 3. Blend two schemes together through convex limiting
 - Low order positivity-preserving and ESDG in algebraic flux form:

$$\frac{m_i}{\tau}(u_i^{L,n+1} - u_i^n) + \sum_i F_{ij}^{L,n} = 0$$

$$\frac{m_i}{\tau}(u_i^{H,n+1} - u_i^n) + \sum_i F_{ij}^{H,n} = 0$$

- Choose suitable parameter $l_{ij} \in [0,1]$ to satisfy positivity

$$m_i u_i^{n+1} = m_i u_i^{L,n+1} + \sum \tau l_{ij} (F_{ij}^{L,n} - F_{ij}^{H,n})$$

- $m{\cdot}\ l_{ij}=1 \implies$ recovers ESDG. $l_{ij}=0 \implies$ recovers low order positivity-preserving scheme.
- Find largest possible l_{ij} that satisfy positivity.

Low order positivity preserving method could be written as

$$\underbrace{m_i \frac{\partial \mathbf{u}}{\partial t} + \sum Q_{ij} \left(f(\mathbf{u}_j) - \sigma_j \right)}_{\text{low order nodal DG on LGL nodes}} - \underbrace{\sum d_{ij} (\mathbf{u}_j - \mathbf{u}_i)}_{\text{graph viscosity}} = 0$$

Low order positivity preserving method could be written as

$$\underbrace{m_i \frac{\partial \mathbf{u}}{\partial t} + \sum Q_{ij} \left(f(\mathbf{u}_j) - \sigma_j \right)}_{\text{low order nodal DG on LGL nodes}} - \underbrace{\sum d_{ij} (\mathbf{u}_j - \mathbf{u}_i)}_{\text{graph viscosity}} = 0$$

Weighted differentiation matrix Q is a sparse low order (SBP) operator:

$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 & 0 & \dots & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 & \dots & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Low order positivity preserving method could be written as

$$\underbrace{m_i \frac{\partial \mathbf{u}}{\partial t} + \sum Q_{ij} \left(f(\mathbf{u}_j) - \sigma_j \right)}_{\text{low order nodal DG on LGL nodes}} - \underbrace{\sum d_{ij} (\mathbf{u}_j - \mathbf{u}_i)}_{\text{graph viscosity}} = 0$$

Weighted differentiation matrix Q is a sparse low order (SBP) operator:

$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 & 0 & \dots & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 & \dots & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

· Define the graph viscosity coefficients:

$$d_{ij} = \max \left\{ \beta(u_i, u_j, n_{ij}) \| Q_{ij} \|, \beta(u_j, u_i, n_{ji}) \| Q_{ji} \| \right\}, n_{ij} = Q_{ij} / \| Q_{ij} \|$$

Low order positivity preserving method could be written as

$$\underbrace{m_i \frac{\partial \mathbf{u}}{\partial t} + \sum \mathbf{Q}_{ij} \left(f(\mathbf{u}_j) - \boldsymbol{\sigma}_j \right)}_{\text{low order nodal DG on LGL nodes}} - \underbrace{\sum d_{ij} (\mathbf{u}_j - \mathbf{u}_i)}_{\text{graph viscosity}} = 0$$

Weighted differentiation matrix Q is a sparse low order (SBP) operator:

$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 & 0 & \dots & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 & \dots & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

· Define the graph viscosity coefficients:

$$d_{ij} = \max \left\{ \beta(u_i, u_j, n_{ij}) \| Q_{ij} \|, \beta(u_j, u_i, n_{ji}) \| Q_{ji} \| \right\}, n_{ij} = Q_{ij} / \| Q_{ij} \|$$

 Compressible Navier-Stokes - Zhang's positivity preserving flux Compressible Euler - Maximum wavespeed (Lax-Friedrichs flux)

• Interpretation: subcell Lax-Friedriches type dissipation

· Interpretation: subcell Lax-Friedriches type dissipation

Extension to 2D (tensor product and simplex elements)

Numerical results: LeBlanc shocktube

Figure 3: LeBlanc shocktube, N = 3, K = 200

Summary and future works

- We present an entropy stable approach to discretize the viscous term and explicit formulas for entropy stable imposition of no-slip and reflective boundary conditions.
- · We briefly preview a positive limiting strategy for nodal ESDG.
- Future work: curvilinear and moving meshes, positivity limiting for modal ESDG.

Thank you!