

Worst-Case Offline Reinforcement Learning with Arbitrary Data Support

Kohei Miyaguchi (IBM Research – Tokyo/LY Corporation), NeurIPS2024

TLDR; weakest known sufficient condition for offline RL is updated, specifically in terms of <u>data coverage</u> and <u>sample size</u>.

Background

Q. What is weakest practical condition for successful offline RL?

Our contribution

Previous weakest condition [Zhan et al. 2022]

- model-free realizability
- concentrability (data coverage) → removed
- sample size of $O(\epsilon^{-6}) \rightarrow \text{reduced to } O(\epsilon^{-2})$

Why removing concentrability (CC)?

Requirement:

nent: test-time occupancy of
$$\hat{\pi}$$

$$\sup_{s,a} \frac{d^{\hat{\pi}}(s,a)}{p_{\text{data}}(s,a)} < \infty$$
 offline state-action distribution

Issue1: concentrable $\hat{\pi}$ may NOT exist due to

- data fragmentation/censorship
- initial-state distribution shift
- unknown constraints on behavior actions

Issue2: Coefficient of CC is hard to estimate

→ CC is easily violated and difficult to verify in practice

Proposal: Worst-case offline RL

New performance metric w/ built-in pessimism:

$$\tilde{J}(\pi) \coloneqq \min_{\mathcal{M} \in \mathbb{I}} \overline{J(\pi|\mathcal{M})} \quad \text{policy value under MDP } \mathcal{M}$$

uncertainty set under distribution oracle $\mathfrak{U}\coloneqq \big\{\mathcal{M}=(T,r): (T,r)=(T^\star,r^\star)|_{\mathrm{supp}(p_{\mathrm{data}})}, 0\leq r\leq 1\big\}$

Justifications:

- 1. tractability: can be estimated w/o CC
- 2. generality: recovers standard metric if CC holds:

$$J(\pi) := J(\pi | \mathcal{M}^*) = \tilde{J}(\pi), \quad \forall \pi \in \Pi_{CC}$$

3. sufficiency: generalized suboptimality dominates standard one:

$$\max_{\pi^* \in \Pi_{CC}} J(\pi^*) - J(\pi) \le \max_{\widetilde{\pi}^* \in \Pi_{all}} \widetilde{J}(\widetilde{\pi}^*) - \widetilde{J}(\pi)$$

Result 1: Worst-case offline RL is still RL

Def: Worst-case MDP $\widetilde{\mathcal{M}} = (\widetilde{T}, \widetilde{r})$ is given by

$$\tilde{T}(s,a) = \mathbf{1}_{\{p_{\text{data}}(s,a)>0\}} T^*(s,a) + \mathbf{1}_{\{p_{\text{data}}(s,a)=0\}} \delta_{\perp}$$

$$\tilde{r}(s,a) = \mathbf{1}_{\{p_{\text{data}}(s,a)>0\}} r^*(s,a)$$

where \bot is terminal state.

Thm:
$$\widetilde{J}(\pi) = J(\pi | \widetilde{\mathcal{M}})$$
 for all π

→ Standard RL methods are still applicable

- 1. solve Bellman equation of $\widetilde{\mathcal{M}}$
- 2. extract optimal policies from Bellman eq.'s solution

Result 2: Saddle-point characterization

Consider "Lagrangian of offline RL":

$$L(v, f) := \langle (1 - \gamma)v + f \cdot (r + Tv - v) \rangle_{\text{data}}$$

Known: Saddle point under $f \ge 0$ is

- 1. well-defined only if optimal policy π^* is concentrable and
- 2. solution of standard Bellman eq., i.e., gives optimal value function $v^*(s)$ and optimal occupancy density $f^*(s,a)$.

New: Saddle point under $v \ge 0$ and $f \ge 0$ is

- 1. well-defined <u>unconditionally</u> and
- 2. solution of Bellman eq. of $\widetilde{\mathcal{M}}$

Result 3: Algorithm & sample complexity

We propose to minimize

$$\mathcal{L}(f; w, \pi) = \mathcal{L}_{\mathrm{SP}}(f) + \mathcal{L}_{\mathrm{PX}}(f; w, \pi)$$
 saddle-point loss policy-extraction loss

where

$$\mathcal{L}_{SP}(f) \coloneqq \max_{v \ge 0} \left\{ -L(v, f) - \frac{1 - \gamma}{2} ||v||^2 \right\}$$

$$\mathcal{L}_{\mathrm{PX}}(f; w, \pi) \coloneqq \max_{\xi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}} \langle f \xi - w \xi (\cdot, \pi) \rangle_{\mathrm{data}}$$

... achieving SOTA sample complexity bound!

Method	Assumptions		Sample complexity bound
	Concentrability	Realizability	Sample Complexity bound
Zhan et al. (2022)	π^*	π_n	$\epsilon^{-6}(1-\gamma)^{-4}\ln(\mathcal{N}/\delta)$
Chen and Jiang (2022)	π^*	π^*	$\epsilon^{-2}H^5C_{\mathrm{gap}}^{-2}\ln(\mathcal{N}/\delta)$
Ozdaglar et al. (2023)	π^*	π^*	$\epsilon^{-2}(1-\gamma)^{-6}C_{\rm gap}^{-2}\ln(\mathcal{N}/\delta)$
Uehara et al. (2023)	π^*	π^*	$\epsilon^{-2}(1-\gamma)^{-6}C_{\mathrm{gap}}^{-2}\ln(\mathcal{N}/\delta)$ $\epsilon^{-2-4/\beta_{\mathrm{gap}}}(1-\gamma)^{-6-4/\beta_{\mathrm{gap}}}\ln(\mathcal{N}/\delta)$
Ours (Corollary 6.3)		$ ilde{\pi}^*$	$\epsilon^{-2}(1-\gamma)^{-4}\ln(\mathcal{N}/\delta)$

 ϵ : policy subopt; δ : confidence; γ : discount factor; \mathcal{N} : hypothesis size; C_{gap} : min action value gap