強化学習を用いた ボース・アインシュタイン凝縮体の制御

電気通信大学 斎藤弘樹

(自己紹介、この研究を始めた動機など)

もともとの専門は冷却原子気体、量子流体

最近、機械学習の量子多体問題への応用に興味を持つ

Carleo&Troyer, Science **355**, 602 (2017)

へ 本セミナー第6回 吉岡信行さん 第8回 野村悠祐さん

HS, JPSJ **86**, 093001 (2017) HS and M. Kato, JPSJ **87**, 014001 (2018) HS, JPSJ **87**, 074002 (2018) N. Irikura and HS, Phys. Rev. Res. **2**, 013284 (2020)

強化学習にも興味 (AlphaGo,...)

冷却原子気体の分野に応用できないか?

HS, JPSJ **89**, 074006 (2020)

"Creation and manipulation of quantized vortices in Bose-Einstein condensates using reinforcement learning"

内容

● 強化学習とは

● ボース・アインシュタイン凝縮体と量子渦

● 強化学習を用いた量子渦生成

強化学習の応用

ARTICLE

doi:10.1038/nature16961

Mastering the game of Go with deep neural networks and tree search

David Silver^{1*}, Aja Huang^{1*}, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

Nature **529**, 484 (2016)

ARTICLE

doi:10.1038/nature24270

Mastering the game of Go without human knowledge

David Silver^{1*}, Julian Schrittwieser^{1*}, Karen Simonyan^{1*}, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹

Nature **550**, 354 (2017)

強化学習の応用

LETTER

doi:10.1038/nature14236

Human-level control through deep reinforcement learning

Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹

Nature **518**, 529 (2015)

49 games of Atari 2600

強化学習とは

経験を通じて最適な行動を学習していく

最適な行動

直近の報酬を最大にすることが最適とは限らない。 将来の報酬も含めて最適化したい。

Q(s,a) 状態 s のとき行動 a を取ることの「価値」 これが最大となるような行動 a を取ればよい

$$Q(s,a) = \sum_{n=0}^{\infty} \gamma^n \times (n \ \hbox{${\cal X}${\it F}} {\it y} {\it J}$$
後の報酬) 割引本 γ は 0 から 1 の実数

Bellman方程式の解は将来の(割引付き)合計報酬を最大化する

Deep-Q Learning

深層ニューラルネットワーク

入力はゲーム画面

出力は
$$Q(s,a)$$
ゲーム画面 どのボタンを押すか

 $Q(s,a) \longrightarrow R_{s,a} + \gamma \max_{a'} Q(s_{\text{next}}, a')$ となるようにネットワークを学習

量子系への応用

スピン系の制御

$$H[h_x(t)] = -S^z - h_x(t)S^x,$$

$$H[h_x(t)] = -\sum_{j=1}^{L} \left[S_{j+1}^z S_j^z + g S_j^z + h_x(t) S_j^x \right].$$

M. Bukov et al., PRX **8**, 031086 (2018)

量子カートポールの制御

Z. T. Wang, Y. Ashida, M. Ueda, arXiv:1910.09200 (to be published in PRL)

内容

● 強化学習とは

● ボース・アインシュタイン凝縮体と量子渦

● 強化学習を用いた量子渦生成

原子気体のボース・アインシュタイン凝縮(BEC)

M. H. Anderson et al., Science **269**, 198 (1995)

The Nobel Prize in Physics 2001

"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates"

Eric A. Cornell

Wolfgang Ketterle

Carl E. Wieman

Tc \sim 100 nK # of atoms $10^{4\sim6}$

平均場近似

多体ハミルトニアン

$$\hat{H} = \int \hat{\psi}^{\dagger} \left(-\frac{\hbar^2}{2m} \nabla^2 + V \right) \hat{\psi} d\mathbf{r} + g \int \hat{\psi}^{\dagger} \hat{\psi}^{\dagger} \hat{\psi} \hat{\psi} d\mathbf{r}$$

すべての原子が同じ波動関数を占有していると近似する

Gross-Pitaevskii (GP) 方程式

$$i\hbar\frac{\partial\psi}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V + g|\psi|^2\right)\psi$$

原子間相互作用を表す非線形項

回転するBEC

渦の量子化

$$\mathbf{v} = \frac{\hbar}{2mi|\psi|^2} (\psi^* \nabla \psi - \psi \nabla \psi^*) \qquad \psi(\mathbf{r}) = A(\mathbf{r})e^{i\phi(\mathbf{r})}$$
$$= \frac{\hbar}{m} \nabla \phi$$

循環の量子化

$$\oint_C \mathbf{v} \cdot d\mathbf{r} = \frac{\hbar}{m} \oint_C \nabla \phi \cdot d\mathbf{r} = \frac{h}{m} \ell \qquad \ell = \mathbf{E}$$

循環は h / m の整数倍でなければならない (Onsager, Feynman)

$${
m v}=rac{\hbar}{m}rac{1}{r}$$
 遠心力で渦周辺の原子密度が下がる

量子渦の生成

GP方程式の数値計算

ポテンシャル (左へ動いている)

生成された量子渦対

臨界速度を超えると 量子渦対が生成される

T. Frisch et al., PRL 69, 1644 (1992)

量子渦の生成(実験)

レーザーによるポテンシャル

S. Inouye et al., PRL 87, 080402 (2001)

渦対生成の観測

(ポテンシャルは渦生成後消されている)

T. W. Neely et al., PRL 104, 160401 (2010)

内容

● 強化学習とは

● ボース・アインシュタイン凝縮体と量子渦

● 強化学習を用いた量子渦生成

強化学習によるBECの制御

「環境」はBEC+外部ポテンシャル(レーザー)

「環境」はGP方程式に従い時間発展し、エージェントは密度分布や速度分布などの情報を得られる

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + V_{\text{trap}}(\mathbf{r})\psi + V_G(\mathbf{r}, t)\psi + g|\psi|^2 \psi,$$

外部ポテンシャルの位置や形を制御してBECを望みの状態にすることが目的

方法

畳み込みニューラルネットワーク(CNN)

Algorithm 1
Initialize deep-Q network Q
Initialize target network as $\hat{Q} = Q$
for episode = 1, N_{episode} do
Initialize environment and get initial observation s ₀
for $t = 0$, T_{end} do
Select action $a_t = \operatorname{argmax}_a Q(s_t, a)$ with ϵ -greedy exploration
Execute action a_t on environment and get reward r_t and next stat
$S_{t+\Delta t}$
Store $(s_t, a_t, r_t, s_{t+\Delta t})$ in replay memory
Sample minibatch of $(s_t, a_t, r_t, s_{t+\Delta t})$ from replay memory
Set $y_t = r_t$ if $t = T_{end}$, otherwise $y_t = r_t + \gamma \hat{Q}(s_{t+\Delta t}, a')$, where $a' = r_t + \gamma \hat{Q}(s_{t+\Delta t}, a')$
$\operatorname{argmax}_{a} Q(s_{t+\Delta t}, a)$
Train network using gradient of $L(y_t - Q(s_t, a_t))$
Copy $\hat{Q} = Q$ every C steps
end for
end for

入力は

- ·密度分布 $|\psi|^2$
- 流東分布 ħ(ψ*∇ψ ψ∇ψ*)/(2mi)
- ・ポテンシャル分布 V_G

出力は6つ 6種類の行動(後述)に ついてのQ値 リプレイメモリ (50000) ε-greedy方策 double-Q learning Huber loss

擬二次元系

z方向に強く閉じ込められ 二次元的に振る舞う系

トラップポテンシャル

$$V_{\text{trap}} = m[\omega_{\perp}^2(x^2 + y^2) + \omega_z^2 z^2]/2$$

ガウシアンポテンシャル

$$V_G(x, y, t) = A_{\perp}(t) \exp\left\{ \frac{[x - \xi(t)]^2}{d^2} + \frac{[y - \eta(t)]^2}{d^2} \right\},\,$$

6種類の行動

- 1. ξを少し増加
- 2. ξを少し減少
- 3. η を少し増加
- 4. η を少し減少
- 5. A を少し増加
- 6. A を少し減少

結果:擬二次元系

初期状態

目指す状態

中央に量子渦

報酬 r_t

$$F(t) = \left| \int \psi_{\text{target}}^*(\mathbf{r}) \psi(\mathbf{r}, t) \, d\mathbf{r} \right|^2$$

$$r_t = F(t) + 8[F(t)]^{16}$$

学習の過程

ベストな結果

結果: 擬二次元系

BECの縁に行き、時計回り量子渦だけ外に逃がす (b), (c)

量子渦を中心まで運んだあとポテンシャル消滅 (d), (e)

報酬 =
$$F(t) = \left| \int \psi_{\text{target}}^*(\mathbf{r}) \psi(\mathbf{r}, t) d\mathbf{r} \right|^2$$
 のとき

相互作用係数gがずれた場合

実験条件がずれた場合、例えば原子数 $N \propto g$ が想定と違った場合

三次元系

6種類の行動

1. *ζ*を少し増加 2. *ζ*を少し減少

3. d_vを少し増加 4. d_vを少し減少

5. A を少し増加 6. A を少し減少

等方的調和振動子ポテンシャル + ガウシアンポテンシャル

$$V_G(\mathbf{r}, t) = A(t) \exp \left\{ \frac{y^2}{d_y^2(t)} + \frac{[z - \zeta(t)]^2}{d_z^2} \right\},\,$$

x方向に沿ったレーザービームに対応

報酬は先ほどと同じ

$$F(t) = \left| \int \psi_{\text{target}}^*(\mathbf{r}) \psi(\mathbf{r}, t) \, d\mathbf{r} \right|^2$$

$$r_t = F(t) + 8[F(t)]^{16}$$

結果:三次元系

最適なポテンシャル の動き

学習の過程

ポテンシャルを -z方向に動かして量子渦対を作る (b),(c)

ポテンシャルを平たくして微調整すると2本の渦線が閉じて (d) 定常的な渦輪の状態になる (e)

相互作用係数gがずれた場合

黄色以外

g = 6000 で最適化した ポテンシャルの動きを 別の g に適用

⇒ g = 5850-6050 なら ある程度良い結果 g = 6100 はだめ

黄色

g = 6000 で最適化した エージェントを g = 6100 に適用

まとめ

強化学習(Deep-Q learning)をボース・アインシュタイン凝縮体の制御に応用

障害物ポテンシャルを制御してかき回すことで、単一量子渦状態や

量子渦輪状態を生成できることがわかった。

展望

- ・実際の実験系の制御(測定ベースで)
- ・より面白い状態の生成(多成分BECにおけるSkyrmionなど)