REPORT W4D4

Ese Traccio

Nell'esercizio di oggi metteremo insieme le competenze acquisite finora. Lo studente verrà valutato sulla base della risoluzione al problema seguente.

Requisiti e servizi:

- Kali Linux □ IP 192.168.32.100
- Windows 7

 IP 192.168.32.101
- HTTPS server: attivo
- Servizio DNS per risoluzione nomi di dominio: attivo

Traccia:

Simulare, in ambiente di laboratorio virtuale, un'architettura client server in cui un client con indirizzo 192.168.32.101 (Windows 7) richiede tramite web browser una risorsa all'hostname epicode.internal che risponde all'indirizzo 192.168.32.100 (Kali).

Si intercetti poi la comunicazione con Wireshark, evidenziando i MAC address di sorgente e destinazione ed il contenuto della richiesta HTTPS.

Ripetere l'esercizio, sostituendo il server HTTPS, con un server HTTP. Si intercetti nuovamente il traffico, evidenziando le eventuali differenze tra il traffico appena catturato in HTTP ed il traffico precedente in HTTPS. Spiegare, motivandole, le principali differenze se presenti.

• Iniziamo con l'impostazione degli IP Address di Kali e Windows 7, impostando il DNS di quest'ultimo come l' IP di Kali.


```
GNU nano 7.2 /etc/network/interfaces

This file describes the network interfaces availabl

and how to activate them. For more information, see

source /etc/network/interfaces.d/*

The loopback network interface
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
address 192.168.32.100/24

#gateway 192.168.50.1
```

• Proseguiamo con la configurazione di HTTPS e DNS su Inetsim su Kali Linux come illustrato in figura .


```
<u>-</u>
                           kali@kali: ~
File Actions Edit View Help
                       /etc/inetsim/inetsim.conf *
GNU nano 7.2
# start_service dummy_udp
# service_bind_address
# IP address to bind services to
service_bind_address 192.168.32.100
#
# Syntax: service_run_as_user <username>
# Default: inetsim
                         W Where Is
  Help
            ^O Write Out
                                                     Execute
                                        Cut
              Read File
                           Replace
                                        Paste
                                                     Justify
^X Exit
```


• A questo punto procediamo con la verifica su Windows 7 del domain epicode.internal

Effettuiamo quindi la cattura dei pacchetti su Wireshark dei pacchetti inviati su HTTPS

					•
ı	1 0.000000000	PcsCompu_8f:32:82	Broadcast	ARP	60 Who has 192.168.32.100? Tell 192.168.32.101
	2 0.000030869	PcsCompu_cb:7e:f5	PcsCompu_8f:32:82	ARP	42 192.168.32.100 is at 08:00:27:cb:7e:f5
ı	3 0.000550317	192.168.32.101	192.168.32.100	TCP	66 49168 → 443 [SYN] Seq=0 Win=8192 Len=0 MSS=1460
ı	4 0.000570281	192.168.32.100	192.168.32.101	TCP	66 443 → 49168 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len
ı	5 0.001216401	192.168.32.101	192.168.32.100	TCP	60 49168 → 443 [ACK] Seq=1 Ack=1 Win=65700 Len=0
ı	6 0.002197631	192.168.32.101	192.168.32.100	TLSv1	215 Client Hello
ı	7 0.002206252	192.168.32.100	192.168.32.101	TCP	54 443 → 49168 [ACK] Seq=1 Ack=162 Win=64128 Len=0
ı	8 0.024151244	192.168.32.100	192.168.32.101	TLSv1	1373 Server Hello, Certificate, Server Key Exchange,
ı	9 0.027831258	192.168.32.101	192.168.32.100	TLSv1	188 Client Key Exchange, Change Cipher Spec, Encrypt
ı	10 0.028211174	192.168.32.100	192.168.32.101	TLSv1	113 Change Cipher Spec, Encrypted Handshake Message
ı	11 0.035107603	fe80::c9d9:ced3:94c	ff02::1:3	LLMNR	84 Standard query 0x01c5 A wpad
ı	12 0.035107713	192.168.32.101	224.0.0.252	LLMNR	64 Standard query 0x01c5 A wpad
ı	13 0.137254170	fe80::c9d9:ced3:94c	ff02::1:3	LLMNR	84 Standard query 0x01c5 A wpad
ı	14 0.137293147	192.168.32.101	224.0.0.252	LLMNR	64 Standard query 0x01c5 A wpad
ı	15 0.230986903	192.168.32.101	192.168.32.100	TCP	60 49168 → 443 [ACK] Seq=296 Ack=1379 Win=64320 Len
I	16 0.341236859	192.168.32.101	192.168.32.255	NBNS	92 Name query NB WPAD<00>
ı	17 1.090767666	192.168.32.101	192.168.32.255	NBNS	92 Name query NB WPAD<00>
ı	18 1.842018558	192.168.32.101	192.168.32.255	NBNS	92 Name query NB WPAD<00>
ı	19 2.593896367	fe80::c9d9:ced3:94c	ff02::1:3	LLMNR	84 Standard query Oxfae8 A wpad
	20 2.593896722	192.168.32.101	224.0.0.252	LLMNR	64 Standard query Oxfae8 A wpad
1	21 2.700698788	fe80::c9d9:ced3:94c	ff02::1:3	LLMNR	84 Standard query Oxfae8 A wpad
Į.	22 2.700699181	192.168.32.101	224.0.0.252	LLMNR	64 Standard guery Oxfae8 A wnad

 A questo punto ripetiamo il tutto ma usando HTTP anzichè HTTPS.

```
# Available service names are:
# dns, http, smtp, pop3, tftp, ftp, ntp, time_tcp,
# time_udp, daytime_tcp, daytime_udp, echo_tcp,
# echo_udp, discard_tcp, discard_udp, quotd_tcp,
# quotd_udp, chargen_tcp, chargen_udp, finger,
# ident, syslog, dummy_tcp, dummy_udp, smtps, pop3s,
# ftps, irc, https
start_service dns
start_service http
#start_service https
```


• Ripetiamo la cattura dei pacchetti tramite Wireshark e notiamo le differenze .

1 0.000000000	fe80::c9d9:ced3:94	c ff02::1:2	DHCPv6	157 Solicit XID: 0x9d8853 CID: 000100012cfc3df8080027
2 0.960572437	192.168.32.101	192.168.32.100	TCP	66 49160 → 80 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS
3 0.960604921	192.168.32.100	192.168.32.101	TCP	66 80 → 49160 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0
4 0.961067139	192.168.32.101	192.168.32.100	TCP	60 49160 → 80 [ACK] Seq=1 Ack=1 Win=65700 Len=0
5 0.961067322	192.168.32.101	192.168.32.100	HTTP	327 GET /favicon.ico HTTP/1.1
6 0.961099661	192.168.32.100	192.168.32.101	TCP	54 80 → 49160 [ACK] Seq=1 Ack=274 Win=64128 Len=0
7 0.971110844	192.168.32.100	192.168.32.101	TCP	207 80 → 49160 [PSH, ACK] Seq=1 Ack=274 Win=64128 Len
8 0.972331519	192.168.32.100	192.168.32.101	HTTP	252 HTTP/1.1 200 OK (image/x-icon)
9 0.972535749	192.168.32.101	192.168.32.100	TCP	60 49160 → 80 [ACK] Seq=274 Ack=353 Win=65348 Len=0
10 0.972615944	192.168.32.101	192.168.32.100	TCP	60 49160 → 80 [FIN, ACK] Seq=274 Ack=353 Win=65348 L
11 0.972624512	192.168.32.100	192.168.32.101	TCP	54 80 → 49160 [ACK] Seq=353 Ack=275 Win=64128 Len=0

• Come possiamo vedere in HTTPS c'è la presenza dei pacchetti TLSv1, NBNS e LLMNR che aiutano con la cifratura dei dati. Il tutto non è presente nel protocollo HTTP che mostra chiaramente tutti i pacchetti senza cifrarli.