Elettronica

Ingegneria Informatica ed Automatica A.A. 2015-2016

Introduzione all'elettronica

Docente: Prof. Giampiero de Cesare giampiero.decesare@uniroma1.it

Informazioni generali sul corso:

http://giampierodecesare.site.uniroma1.it/

PROGRAMMA ELETTRONICA

- Richiami di base sulle reti lineari.
- **Ø** Amplificatori:
- **O** Controreazione
- **Ø** Amplificatore Operazionale
- **Orango Cenni di fisica dei semiconduttori.**
- Circuiti con Diodi
- **Overage Series of the Contract of the Contrac**
- Circuiti digitali MOS
- **⊘** Convertitori A/D e D/A

Testo consigliato:

SEDRA/SMITH

"CIRCUITI PER LA MICROELETTRONICA"

ELETTRONICA MODERNA

MICROELETTRONICA:

CIRCUITI DISCRETI

CIRCUITI INTEGRATI (IC)

TECNOLOGIA PLANARE PER FILM SOTTILI:

SSI-MSI-LSI-VSI

MICROPROCESSORE

L'inizio dell'era moderna dell'elettronica

Bardeen, Shockley e Brattain inventori del transistore bipolare nel 1947

Il primo transistore bipolare al germanio

Storia dell'elettronica

1904	Fleming inventa il diodo a vuoto
1906	Pickard crea il diodo a stato solido con
	contatto a punta
1906	Deforest inventa il triodo a vuoto
1907-1927	Sviluppo dei primi circuiti radio con diodi e triodi
1925	Primo prototipo di televisione
1925	Lilienfeld brevetta il dispositivo ad effetto di campo
1947	Bardeen, Brattain e Shockley dei Bell Laboratories inventano il transistore bipolare (BJT)
1950	Prima dimostrazione della TV a colori
1952	Shockley descrive il transistore unipolare a effetto di campo
1952	Inizia la commmercializzazione di transistori bipolari al silicio dalla Texas Instruments
1955	Primo computer interamente a transistor sperimentato dalla Bell (TRADIC)
1956	Bardeen, Brattain e Shockley ricevono il premio Nobel per l'invenzione del BJT

1958	Texas Instruments e da Noyce e Moore alla Fairchild Semiconductor
1961	Primo circuito integrato digitale commerciale dalla Fairchild Semiconductor
1967	Presentazione della prima memoria RAM a semiconduttori (64 bit)
1968	Primo amplificatore operazionale integrato (mA709) dalla Fairchild Semiconductor
1970	Invenzione della cella di memoria dinamica (DRAM) da Dennard alla IBM
1971	Intel presenta il primo microprocessore 4004
1972	Intel presenta il primo microprocessore a 8 bit (8008)
1974	Sviluppato il primo chip di memoria commerciale da 1-kilobit
1975	Presentato il microprocessore 8080
1978	Sviluppato il primo microprocessore a 16 bit
1984	Presentato il chip di memoria a 1 megabit
1987	Presentato l'amplificatore a pompaggio ottico in fibra ottica drogata con erbio
1995	Presentato il chip di memoria da 1 gigabit
2000	Alferov, Kilby e Kroemer ricevono il premio Nobel

Storia dell'elettronica

Tra gli eventi fondamentali della storia dell'elettronica:

1

Invenzione del transistor bipolare a giunzione nel 1947 (Bardeen, Brattain e Shockley) Invenzione del circuito integrato (IC) nel 1958. (Faggin / Kilby)

La tecnologia dei circuiti integrati ha reso possibile la miniaturizzazione dei circuiti elettronici permettendo di ottenere i numerosi vantaggi: migliori prestazioni, maggiore affidabilità e minori costi di produzione.

Evoluzione dei dispositivi elettronici

Tubi a vuoto

Transistori discreti

Circuiti integrati ad alta densità di integrazione in package dual -in line (SSI e MSI)

Circuiti integrati in package surface mount (VLSI)

Aumento della densità di un chip di memoria in funzione del tempo

Aumento della complessità del microprocessore in funzione del tempo

Chip	Anno di introduzione	Transistors
4004	1971	2.250
8008	1972	2.500
8080	1974	5.000
8086	1978	29.000
286	1982	120.000
386™ processor	1985	275.000
486™ DX processor	1989	1.180.000
Pentium® processor	1993	3.100.000
Pentium II processor	1997	7.500.000
Pentium III processor	1999	24.000.000
Pentium 4 processor	2000	42.000.000
Pentium 4 – 13 nm	2002	55.000.000

Dimensione caratteristica nei chip di memoria dinamica in funzione del tempo

Livelli di integrazione

Data	Livello di integrazione	Componenti/chip
1950	Componenti discreti	1÷2
1960	SSI - Bassa scala di integrazione	< 10 ²
1966	MSI – Media scala di integrazione	$10^2 \div 10^3$
1969	LSI – Larga scala di integrazione	$10^3 \div 10^4$
1975	VLSI – Larghissima scala di integrazione	$10^4 \div 10^9$
1990	ULSI – Ultra larga scala di integrazione	> 109

Sensori: esempi

- Termistori e termocoppie per la misura della temperatura.
- Fototransistori e fotodiodi per la misura della luce.
- Estensimetro e materiali piezoelettrici per la misura di forza.
- Potenziometri, sensori induttivi, codificatori di posizione per la misura di spostamenti.
- Generatori tachimetrici, accelerometri e sensori a effetto Doppler per misure di movimenti.
- Microfoni per la misura del suono.

Attuatori: esempi

- Riscaldatori a resistenza ohmica per produrre calore.
- Diodi emettitori di luce e laser per controllare la luminosità.
- Solenoidi per produrre forze.
- Strumenti indicatori per mostrare spostamenti.
- Motori elettrici per produrre movimenti.
- Altoparlanti e trasduttori ultrasonici per produrre suoni.

Segnali e generatori di segnale

$$v_{s}(t) = R_{s}i_{s}(t)$$

(a)

segnale rappresentato da un generatore di tensione: rappresentazione di Thevenin (b)

segnale rappresentato da un generatore di corrente: rappresentazione di Norton

segnale elettrico arbitrario rappresentato da una tensione $v_s(t)$

Forma d'onda sinusoidale

$$v_a(t) = V_a \sin \omega t$$

u v u

 V_a valore di picco di $v_a(t)$

$$V_{rms} = \frac{V_a}{\sqrt{2}}$$
 valore efficace di $v_a(t)$

$$w=2pf=2p/T$$
 [rad/s]
 $f=1/T$ [Hz=1/s]

Segnale ad onda quadra e suo spettro di frequenza

Segnale arbitrario e suo spettro di frequenza

Legame Tempo-Frequenza

 Variazioni rapide del segnale corrispondono a componenti a frequenza elevata

SEGNALI ANALOGICI

- Il segnale analogico è continuo
 - in tempo: è definito per qualsiasi istante di tempo entro un certo intervallo
 - in ampiezza: può assumere qualsiasi valore entro un certo intervallo
- I parametri che definiscono un segnale analogico sono:
 - intervallo di ampiezza
 - » valore max e min (dinamica),
 - » eventuale DC
 - contenuto spettrale
 - » limiti di banda, forma dello spettro

SEGNALI DIGITALI

- Il segnale digitale è una sequenza di numeri
 - segnale discreto in tempo:
 è definito solo per alcuni istanti di tempo entro un certo intervallo
 - segnale discreto in ampiezza: può assumere solo alcuni valori entro un certo intervallo

Segnali analogici e segnali digitali

segnale analogico

campionamento di un segnale analogico (c)

segnale digitale (b)

segnale analogico campionato o segnale tempo-discreto (d)

Conversione analogica /digitale

segnale analogico (a)

campionamento di un segnale analogico (b)

segnale analogico campionato o segnale tempo-discreto

segnale analogico campionato errore di quantizzazione

(c)

(d)

Errore con rappresentazione digitale

- Il numero di valori rappresentabili determina l'errore della rappresentazione numerica:
- Errore di quantizzazione ϵ_Q

```
» N bit: 2N valori, quindi
```

» errore
$$\varepsilon_0 = 100/2^N$$
 % = $1M/2^N$ PPM

$$-4 \text{ bit}$$
 $2^4 = 16$ $\epsilon_Q = 6,25 \%$

$$-8 \text{ bit}, \quad 2^8 = 256 \qquad \epsilon_Q = 0.4 \%$$

$$-16$$
 bit, $2^{16} = 65.000$ $\epsilon_Q = 0,0015\%$ 15 PPM

$$-24 \text{ bit}$$
 $2^{24} = 16 \text{ M}$ $\epsilon_Q = 6 \cdot 10^{-6} \%$ 0,06 PPM

$$-32 \text{ bit}$$
 $2^{32} = 4,3 \text{ G}$

Convertitore analogico-digitale

Rumore e disturbi

A ogni segnale è sempre sovrapposto un rumore

il rumore NON trasporta informazione utile

Degradazione del segnale analogico

- Ogni passo di amplificazione o elaborazione aggiunge rumore.
- Per il segnale analogico il rumore determina una degradazione non recuperabile dell'informazione.

Degradazione segnale digitale

 Per il segnale digitale la degradazione del segnale digitale dovuta al rumore è recuperabile (se contenuta entro certi limiti).

Ripristino del segnale digitale

- · La maggior parte dei sistemi elettronici comprende:
 - interfacce verso il mondo esterno (front-end) analogico
 - conversione A/D
 - trattamento del segnale numerico
 - conversione D/A
 - interfacce verso il mondo esterno (back-end) analogico

