Eine Woche, ein Beispiel 5.14. modular representation of Z/pZ

Let
$$C = rep_{\Lambda}(\mathbb{Z}/p\mathbb{Z}) = mod(\Lambda[\mathbb{Z}/p\mathbb{Z}])$$
, where $\Lambda = \overline{\Lambda}$ is a field with char $\Lambda = p$. Good: understand C in detail.

- 1. indecomposable representations
- 2 tensor category structure
 3 semisimplification

1. indecomposable representations We have

AR-quiver of
$$9T/_{TP=0} = \Lambda [T]/_{TP}$$

https://math.stackexchange.com/questions/368722/what-does-the-group-ring-mathbbzg-of-a-finite-group-know-about-g

2 tensor category structure.

For general ring A/A, there is no tensor structure on mod (A). However, for a Hopf algebra A/A, we can construct a natural tensor structure on mod (A).

Construction. $c^{\#}: A \longrightarrow A \otimes_{A} A \longrightarrow \otimes : mod(A) \times mod(A) \longrightarrow mod(A \otimes_{A} A) \longrightarrow mod(A)$ $(M, N) \longmapsto M \otimes_{A} N \longmapsto M \otimes_{A} N$ where A acts on $M \otimes_{A} N$ by $A \times M \otimes_{A} N \longrightarrow M \otimes_{A} N$ $e^{\#}: A \longrightarrow A \longrightarrow A \longrightarrow A^{\circ P} \longrightarrow (-)^{V}: mod(A) \xrightarrow{Hom_{\Lambda}(-, \Lambda)} mod(A^{\circ P}) \xrightarrow{i^{\#}, *} mod(A)$ $A \times M^{V} \longrightarrow M^{V} \longrightarrow M^{V}$ $(a, f) \longmapsto f(i^{\#}(a) -)$

Q. Let A be a Δ -alg. Given a tensor category structure on mod(A), can we recover the Hopf algebra on A? I.e., is the map

 $\begin{cases} \text{Hopf algebra structures } \end{cases} \longrightarrow \begin{cases} \text{tensor category structures} \end{cases}$ on on mod(A) inj or surj?

```
E.g. (tensor category structure of mod (\Lambda[G])
```

a: finite gp

```
rep_{\Lambda}(G) is naturally endowed with \otimes-structure:
                                                                      G C M SN
                                                                                                                                                                                                                         g · (mon) = gm o gn
                                   ~> A[G] C M ⊗N
                                                                                                                                                                               (\sum_{i} t_{i} q_{i}) (m \otimes n) = \sum_{i} t_{i} q_{i}(m \otimes n)
                                                                                                                                                                                                                                                                           = \subseteq ti (gim⊗gin)
                                                                                                                                                                                                                                                                             = (\sum_ti(gi \otingsgi) (m\otingsn)
 so the Hopf algebra structure on \Lambda[G] should be
                                                      c^{\sharp} \Lambda[a] \longrightarrow \Lambda[a] \otimes_{\Lambda} \Lambda[a] \qquad \Sigma \text{ tig.} \longrightarrow \Sigma \text{ tig.} \otimes g.
                                                        e^{\#}: \Lambda[G] \longrightarrow \Lambda
                                                                                                                                                                               i^*. \Lambda[G] \longrightarrow \Lambda[G]^{\bullet p}
                  Verify:

G \ C \Lambda

\longrightarrow \Lambda[G] \ C \Lambda
                                                                                                                                                                                                                  (\sum_{i} t_{i} g_{i}) t = \sum_{i} t_{i} (g_{i} \cdot t)
                                                                                                                                                                                                                    ~→ Δ[G]¢M<sup>v</sup>
                                                                                                                                                                                                                                                                               = \sum_{i} t_{i} f(g_{i}^{-1} \cdot -)
                                                                                                                                                                                                                                                                                     = f (\sum_{tigi^{-1}} -) -
                           e.p. Spec \Lambda[\mathbb{Z}/n\mathbb{Z}] \cong \mu_{n,\Lambda} as a finite gp scheme.
  E.g. (tensor category structure of mod (U(g))) g. f.d. Lie alg over C
 rep. (g) is naturally endowed with \otimes-structure:

g \in M \otimes N \times (m \otimes n) = X \cdot m \otimes n + m \otimes X \cdot n

\times U(g) \in M \otimes N \times (x \cdot X_n(m \otimes n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (X_1 m) \otimes (X_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (X_1 m) \otimes (X_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_1 m) \otimes (x_2 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_2 n) \otimes (x_3 n) = \sum_{\substack{P, \dots k_3 = 1 \cup J \\ N}} (x_2 n)
                              (For I= ?i, ..., il) fix an order i, <iz < ... < il, XI = Xi, Xiz ... Xin)
 so the Hopf algebra structure on \mathcal{U}(g) should be C^{\sharp}. \mathcal{U}(g) \longrightarrow \mathcal{U}(g) \otimes_{\mathbb{C}} \mathcal{U}(g) X_{f_1,\cdots,k_1} \longmapsto \sum_{f_1,\cdots,k_r=1 \sqcup J} X_1 \otimes X_J e^{\sharp}. \mathcal{U}(g) \longrightarrow \mathbb{C} \Sigma_{g} t_{g_1} X_{g_2} \longmapsto t_{g_3} t_{g_4} X_{g_4} \longmapsto \Sigma_{g_4} (-1)^{|g_4|} t_{g_4} X_{g_4}
                                                                                                                                                                                                              X.t := 0
                                                                                                                                                                                                           (\sum t_a X_a)_t = t_{\emptyset} t

\begin{array}{ll}
X \cdot f := - f(X \cdot -) \\
(\sum_{a} t_{a} X_{a}) \cdot t &= \sum_{a} t_{a} (-1)^{|a|} f(X_{a} \cdot -) \\
&= f(\sum_{a} (-1)^{|a|} t_{a} X_{a} \cdot -)
\end{array}

                                    g eM<sup>v</sup>
→ U(g) c'M<sup>v</sup>
```

For more examples of Hopf algebras, see wiki: Hopf algebras.

3. semisimplification.

Verp: = T is a fusion category with simple objects. $\overline{N(1)}$, ..., $\overline{N(p-1)}$, denoted as $X_1,...,X_{p-1}$.

 ∇ For $M, N \in Ver_p$, T acts on $M \otimes N$ by $T(m \otimes n) = (x-1)(m \otimes n)$ = xm&xn - m&n = (T+1) m ⊗ (T+1)n -m ⊗n = Tm & Tn + Tm & n + m & Tn

So we don't have $T(m\otimes n) = Tm \otimes Tn$, i.e. T is not a group-like element.

Lemma. In any Verp,

Verp,

$$X_{2} \otimes X_{i} \cong \begin{cases} X_{i} \oplus X_{i} & i = 1 \\ X_{i-1} \oplus X_{i+1} & | < i < p - 1 \\ X_{p-2} \oplus X_{p} & i = p - 1 \end{cases}$$

If we write $X_2 \otimes X_i = X_{i-1} \oplus X_{i+1}$, we need to assume $X_0 = X_p = 0$, $X_{p+1} = -X_{p-1}$, $X_{p+1} = -X_{p-1}$, $X_{p+1} = -X_{p-1}$, we need to find the Jordan normal form of M.

 $\mathcal{M} - I = \begin{pmatrix} N_i & J_i \\ N_i \end{pmatrix} = \begin{pmatrix} N_i & N_i \end{pmatrix} + \begin{pmatrix} J_i \end{pmatrix}$ Since Ni commutes with Ji, (N_i) commutes with (J_i) ,

$$(M-I)^{l} = ((N_{i}N_{i}) + (J_{i}))^{l}$$

$$= \sum_{k=0}^{L} ({}_{k}^{l}) (N_{i}N_{i})^{l-k} (J_{i})^{k}$$

$$= (N_{i}N_{i})^{l} + (N_{i}N_{i})^{l-1} (J_{i})$$

$$= (N_{i}^{l}N_{i}^{l-1}J_{i})$$

$$= (N_{i}^{l}N_{i}^{l-1}J_{i})$$

$$\frac{\otimes X_i}{X_i}$$

p = 3 :

8	X۱	X2
X,	X۱	X,
Χ'n	X,	Χı

p=5:

8	X,	X2	X ₃	Xμ
χ,	χ _ι	Xz		X ₄
X	Xz	$\chi_1 \oplus \chi_3$	X₂⊕X ₄	X_3
X ₃	Χ,	/ ₂⊕X ₄	χ⊕Ҳ₃	Xz
X _γ	Χ4	χ,	X٤	Xı

e.g.
$$X_3 \otimes X_4 = (X_2 \otimes X_2 - X_1) \otimes X_4$$
 virtual minus sign
$$= X_2 \otimes (X_2 \otimes X_4) - X_1 \otimes X_4$$

$$= X_2 \otimes X_3 - X_4$$

$$= X_2 \oplus X_4 - X_4$$

To be rigorous, you can compute $(X_3 \oplus X_1) \otimes X_4 = X_2 \otimes X_2 \otimes X_4 = X_2 \oplus X_4 \Rightarrow X_3 \otimes X_4 = X_2$

Other cases are similar

$$X_{3} \otimes X_{3} = (X_{2} \otimes X_{2} - X_{1}) \otimes X_{3}$$

$$= X_{2} \otimes (X_{2} \otimes X_{3}) - X_{3}$$

$$= X_{1} \oplus 2X_{3} - X_{3}$$

$$= X_{1} \oplus X_{3}$$

$$X_{4} \otimes X_{4} = (X_{3} \otimes X_{2} - X_{2}) \otimes X_{4}$$

$$= X_{3} \otimes (X_{2} \otimes X_{4}) - X_{2} \otimes X_{4}$$

$$= X_{3} \otimes X_{3} - X_{3}$$

$$= X_{1}$$

non-trivial sub \otimes -category: $\langle X_1, X_3 \rangle_{\oplus}$, $\langle X_1, X_4 \rangle_{\oplus}$.

Rmk. In this case,

$$X_3 \otimes X_3 = X_1 \oplus X_3$$

 $\Rightarrow (PFdim X_3)^2 = 1 + PFdim X_3$
 $\Rightarrow PFdim X_3 = \frac{\sqrt{5}+1}{2}$

Here, PFdim means the Pervon-Frobenius dimension. Therefore, we find an object with non-integer dimension!

$$p = 7$$

_	8	X,	Χ,	Χ,	Χ ₄	Ϋ́	X ₆
	Χı	Χı	X ₂	<i>X</i> ₃	Xμ	Χ̈́	X6
	Xz	Χz	χ,⊕X ₃	X2@X4	X3@Xz	X4 &X6	X
	X3	X ₃	X\&X*	χ,⊕X ₃ €X <u>,</u>	χ₂⊕Ҳ₄θҲ	Х₃⊕Х₅	Xφ
	Xμ	X ₄	X3@ X5	<i>Ҳ</i> _₂ ⊕Χ _₄ ⊕Ҳၘ	X₁⊕X₃⊕X₅	X ₂ ⊕X ₄	X ₃
	Χr	Xς	X ₄ ⊕X ₆	X3@XF	X ₂ &X ₄	$X_1 \oplus X_2$	X ₂
	X_6	X	Χ²	X _*	X,	X	Χı

$$\begin{array}{lll}
\chi_{3} \otimes \chi_{k} &=& \left(\chi_{2} \otimes \chi_{2} - \chi_{1}\right) \otimes \chi_{k} & \chi_{7} &=& \chi_{0} &= 0, \ \chi_{8} &=& \chi_{6}, \dots \\
&=& \chi_{2} \otimes \left(\chi_{2} \otimes \chi_{k}\right) - \chi_{1} \otimes \chi_{k} \\
&=& \chi_{2} \otimes \left(\chi_{k-1} \oplus \chi_{k+1}\right) - \chi_{k} \\
&=& \chi_{k-2} \oplus \chi_{k} \oplus \chi_{k+2} \\
\chi_{4} \otimes \chi_{k} &=& \left(\chi_{3} \otimes \chi_{2} - \chi_{2}\right) \otimes \chi_{k} \\
&=& \chi_{3} \otimes \left(\chi_{2} \otimes \chi_{k}\right) - \chi_{2} \otimes \chi_{k} \\
&=& \chi_{3} \otimes \left(\chi_{2} \otimes \chi_{k}\right) - \chi_{2} \otimes \chi_{k} \\
&=& \left(\chi_{3} \otimes \chi_{k-1}\right) \oplus \left(\chi_{3} \otimes \chi_{k+1}\right) - \chi_{k-1} - \chi_{k+1} \\
&=& \chi_{k-3} \oplus \chi_{k-1} \oplus \chi_{k+1} \oplus \chi_{k+3}
\end{array}$$

non-trivial sub &-category: $\langle X_1, X_b \rangle_{\oplus}$, $\langle X_1, X_3, X_5 \rangle_{\oplus}$

Ex. Check that

PFdim Xk Xk	Χ.	X٢	χ,	X ₄	X*	X ₆	X,
2	1	1	1	1	ı	1	1
3	1	1	ı	1	1	ſ	-
5	1	2 cos 元	2cos 示	1	1	ı	-
7	1	2 cos ₹	1+ 1-1	1+ 2cos = -1	Z Cos T	1	_
						•	

Rmk. (from course) $\text{Ver}_{p} \cong \overline{\text{Tilt}_{\Delta}(SL_{2})}$, where $\text{Tilt}_{\Delta}(SL_{2}) = \langle V \rangle_{\Phi, \otimes} = \langle V \rangle_{\Phi$

In general, for a split conn red gp G/IFp, let U be the sylow p-subgp of G(IFp), then

 $\overline{\operatorname{rep}_{\Lambda}(\mathcal{U})} \cong \overline{\operatorname{Tilt}_{\Lambda}(G)}$ e.g. for $G = GL_{\Lambda}$, $\mathcal{U} = (::*)$ is the Heisenberg gp. Need reference for this remark.