LifLF – Théorie des langages formels Sylvain Brandel 2016 – 2017 sylvain.brandel@univ-lyon1.fr

CM 6

RATIONALITÉ NON RATIONALITÉ

Rationalité

- On peut monter qu'un langage est rationnel avec un des théorèmes:
 - (1) Stabilité

(rappel : la classe des langages acceptés par un automate est stable par union, concaténation, Kleene star, complément, intersection)

(2) Caractérisation

(<u>rappel</u> : un langage est rationnel ssi il est accepté par un automate)

- (3) Un langage est rationnel ssi il peut être décrit par une expression rationnelle.
- (2) et (3) \rightarrow équivalence entre automate et ER → il existe des algorithmes

automate → ER

ER → automate

Rationalité

- Pour montrer qu'un langage est rationnel :
 - A partir de (1) : utiliser les propriétés de stabilité
 - → décomposer le langage en sous ensembles par union, intersection, concaténation, et montrer que ces sous ensembles sont rationnels.
 - A partir de (2) : construire un automate acceptant ce langage
 (on peut éventuellement déterminiser / minimiser cet automate)
 - A partir de (3) : construire une expression rationnelle décrivant ce langage.

Non rationalité

- Il existe des langages non rationnels :
 - L'ensemble des expressions rationnelles est dénombrable
 - L'ensemble des langages est non dénombrable
- Tout langage <u>fini</u> est rationnel (il peut être décrit par une ER composée de l'union de tous les mots du langage).
 - → La question de non rationalité ne se pose que pour les langages infinis.
- Montrer la non rationalité :
 - Stabilité et raisonnement par l'absurde
 - Lemme de l'étoile

Non rationalité Propriétés de stabilité

- Pour montrer que L est non rationnel,
 on pose l'hypothèse que L est rationnel,
 et on détermine L₀ non rationnel et L₁ rationnel tels que L₀ = L θ L₁ (θ ∈ {∩, ∪, .}
- L supposé rationnel
- L₁ rationnel
 - L θ L₁ rationnel par stabilité de la classe des langages rationnels par θ
- Or L θ L₁ = L₀ avec L₀ connu (démontré) non rationnel
 - → Contradiction
 - → l'hypothèse (L rationnel) est fausse

Non rationalité Lemme de l'étoile

• Théorème Lemme de l'étoile

Soit L un langage rationnel infini accepté par un automate <u>déterministe</u> M à k états.

Soit z un mot quelconque de L tel que $|z| \ge k$.

Alors z peut être décomposé en uvw

avec $|uv| \le k$, $|v| \ne 0$ et $uv^i w \in L$, $\forall i \ge 0$.

Non rationalité Lemme de l'étoile

Preuve

Lemme 1

Soit G le graphe d'un automate déterministe à k états.

Tout chemin de longueur k dans G contient un cycle.

– Lemme 2

Soit G le graphe d'un automate déterministe à k états.

Soit p un chemin de longueur k ou plus.

p peut être décomposé en sous chemins q, r et s tels que p = qrs, $|qr| \le k$, r est un cycle.

Non rationalité Lemme de l'étoile

• Exemple : Montrons que L = $\{a^nb^n \mid n \ge 0\}$ est non rationnel.

Supposons que L est rationnel. L est reconnu par un automate M à k états. D'après le lemme de l'étoile, \forall $z \in L$, $|z| \ge k$, \exists u, v, $w \in \Sigma^*$ tels que z = uvw, $|uv| \le k$, |v| > 0 et \forall $i \ge 0$, $uv^iw \in L$

Soit $z_0 = a^k b^k$.

On a bien $z_0 \in L$ et $|z_0| = 2k \ge k$.

Toutes les décompositions possibles z_0 = uvw telles que $|uv| \le k$, |v| > 0 sont de la forme $u = a^p$, $v = a^q$, $w = a^r b^k$ avec q > 0 et p+q+r = k.

Or $uv^iw = a^p a^{qi} a^r b^k = a^{p+qi+r} b^k$

On a $\forall i \neq 1, p + qi + r \neq k$

Donc $\forall i \neq 1, uv^i w \notin L$

Donc contradiction dans la propriété

Donc l'hypothèse (L rationnel) est fausse

Donc L non rationnel

Théorèmes (sans démonstrations précises)

(i) Il existe un algorithme exponentiel (en le nombre d'états)

Entrée : un automate fini non déterministe

Sortie : un automate fini déterministe équivalent

(ii) Il existe un algorithme <u>polynomial</u> (en fonction de la taille de l'expression ou du nombre d'opérateurs)

Entrée : une expression rationnelle

Sortie : un automate <u>non</u> déterministe équivalent

(iii) Il existe un algorithme <u>exponentiel</u> (en fonction du nombre d'états)

Entrée : un automate non déterministe

Sortie : une expression rationnelle équivalente

(la taille des R(i, j, k) est multipliée par 3 à chaque

incrément de k)

 $R(i, j, k) = R(i, j, k-1) \cup R(i, k, k-1) R(k, k, k-1)^* R(k, j, k-1)$

(iv) Il existe un algorithme <u>polynomial</u> (en fonction du nombre d'états)

Entrée : un automate déterministe

Sortie : l'automate déterministe minimal (standard) équivalent

- (v) il existe un algorithme <u>polynomial</u> pour décider si deux automates déterministes sont équivalents (Passe par l'automate standard)
- (vi) Il existe un algorithme <u>exponentiel</u> pour déterminer si deux automates <u>non</u> déterministes son équivalents

Théorème

L = langage rationnel (donné par un automate ou une expression rationnelle) et $w \in \Sigma^*$

Il existe un algorithme qui teste si $w \in L$ avec une complexité en temps de O(|w|)

Théorème

 $M = (K, \Sigma, \Delta, s, F)$ non déterministe et $w \in \Sigma^*$

Il existe un algorithme qui teste si $w \in L(M)$ avec une complexité en temps de $O(|K|^2 |w|)$