

# Adsorption using AiiDA Lab

CH-315 Assignment 2

# **EPFL** CO<sub>2</sub> concentration

Monthly mean CO<sub>2</sub> concentration

Mauna Loa 1958 - 2022



Data : Dr. Pieter Tans, NOAA/ESRL (https://gml.noaa.gov/cogg/trends) and Dr. Ralph Keeling, Scripps Institution of Oceanography (https://scrippsco2.ucsd.edu/). Accessed 2022-12-19 https://wwiki/4ZWn



## **EPFL** Typical composition of biogas



#### **Challenges:**

- CO<sub>2</sub>/CH<sub>4</sub> separation
- Methane storage

In hand\_on.pdf, you need to evaluate IRMOF-1 for these two applications

# **Flue gas**

| Flue gas conditions | NGCC  |
|---------------------|-------|
| Flowrate (tonne/hr) | 2268  |
| Temperature (°C)    | 100   |
| Composition (mol %) | -     |
| $CO_2$              | 4.97  |
| $N_2$               | 74.28 |
| $O_2$               | 9.73  |
| $H_2O$              | 11.02 |

#### Challenges:

- CO<sub>2</sub>/N<sub>2</sub> separation
- CO<sub>2</sub>/H<sub>2</sub>O separation

In project.pdf, you need to screen 8 structures for CO<sub>2</sub>/N<sub>2</sub> separation

## **EPFL** Key Performance Indicator (KPI)

KPI: standard to evaluate MOFs Important and direct property:

- Working Capacity
- Selectivity

Indirect property:

- -Henry coefficient
- -Pore volume



# **EPFL** Working Capacity: important for storage and separation



Figure 1: Flow diagram of the PSA/VSA process

**Industry Process** 

Working Capacity obtained from Isotherm



## Selectivity: important for storage



The ideal selectivity gives an indication on the competitiveness of adsorption between the different components of a gas mixture:

$$S_{CO_2/N_2} = \frac{q_{CO_2}}{q_{N_2}} \frac{y_{N_2}}{y_{CO_2}}$$

Where q is the binary loading, obtained from IAST calculations, at the adsorption conditions in mmol. $g^{-1}$ , and y is the molar fraction of the component in the flue gas.



## **Indirect properties: Pore Volume and Henry** Coefficient

- -Henry coefficient
- -Pore volume:
  - -Done by zeo++
- -Insert a ball to detect (probe radius = 1.525)





## **EPFL** Requirements for MOFs



Geometry? Chemistry?

How to measure?

















| & AiiD          | Alab                                                  |            |                                                     |                      |                | Edit App    | Logout Control Pan |
|-----------------|-------------------------------------------------------|------------|-----------------------------------------------------|----------------------|----------------|-------------|--------------------|
| Past days: 7    |                                                       | ✓ All days |                                                     |                      |                |             |                    |
| Process State:  | created<br>running<br>waiting<br>finished<br>excepted |            | Incoming node: Outgoing node: Description contains: |                      |                |             |                    |
| 8 processes she | own Upd                                               | ate now    |                                                     |                      |                |             |                    |
| PK              |                                                       | Created    | Process label                                       | <b>Process State</b> | Process status | Description |                    |
| 282             |                                                       | 2h ago     | NetworkCalculation                                  | ■ Finished [0]       | None           |             |                    |
| 243             |                                                       | 2h ago     | NetworkCalculation                                  | ■ Finished [0]       | None           |             |                    |
| 222             |                                                       | 2h ago     | NetworkCalculation                                  | ■ Finished [0]       | None           |             |                    |
| 218             |                                                       | 2h ago     | NetworkCalculation                                  | ■ Finished [0]       | None           |             |                    |
| 214             |                                                       | 2h ago     | NetworkCalculation                                  | ■ Finished [0]       | None           |             |                    |
| 40              |                                                       | 26D ago    | NetworkCalculation                                  | ■ Finished [0]       | None           |             |                    |
| 23              |                                                       | 26D ago    | NetworkCalculation                                  | ■ Finished [0]       | None           |             |                    |
| 18              |                                                       | 28D ago    | NetworkCalculation                                  | ■ Finished [101]     | None           |             |                    |









For more info on AiiDA look at: https://www.aiida.net/

#### **EPFL**

#### **Ideal Adsorption Solution Theory (IAST)**



**Goal:** predict a mixed gas adsorption isotherm

Example: methane/ethane in IRMOF-1





phase composition

 $\frac{1}{n_{CH_4} + n_{C_2H_6}} = \frac{x_{CH_4}}{n_{CH_4}^{\circ}(p_{CH_4}^{\circ})} + \frac{x_{C_2H_6}}{n_{C_2H_6}^{\circ}(p_{C_2H_6}^{\circ})}$ 

Solve for total

gas adsorbed



https://doi.org/10.1016/j.cpc.2015.11.016

## **EPFL** Evaluation of IRMOF-1

