

Apache Spark

Alessandro Margara alessandro.margara@polimi.it https://margara.faculty.polimi.it

Spark Streaming

Stream processing

- Batch processing focuses on static datasets
 - Do not change over time

- Stream processing focuses on dynamic datasets
 - Continuously change over time
 - Model: new data is continuously appended to the stream
 - Example: stream of readings from a sensor

Stream processing

• Goal: continuously update the results of a computation as new data becomes available

- Requirements
 - Handle high rates of data generation
 - Produce new results with low latency
 - To enable timely reactions

Spark Streaming

• Extension of the original batch API to process streaming data

- Adopts a "micro-batch" approach
 - It splits the input streams into small batches
 - Batches are processed (almost) independently by the Spark engine
 - It produces a new result for each batch

Spark Streaming

- Other approaches use continuous processing
 - Operators are statically deployed rather than scheduled on demand
 - Data flows through the operators
 - It is processed as soon it becomes available
- Pro of micro-batching: dynamic adaptation is easier
 - Scheduling decisions can change over time
 - Elasticity: increase or decrease the number of resources
- Cons of micro-batching: higher processing delay

Spark Streaming API

• Spark Streaming's main abstraction is the discretized stream (DStream)

• Internally, a DStream is represented as a sequence of RDDs

- DStreams provide operations to transform the RDDs in the sequence
 - Also provides stateful operations that preserve internal state across invocations

Spark Streaming example

• As an example, consider again the word count application

- Assume we read streaming data from some source
 - E.g., TCP channel, Apache Kafka topic, ...

• When applied in a streaming context, the count is performed separately on each RDD

Spark Streaming API

 Any operation applied on a DStream translates to operations on the underlying RDDs

- DStreams support most of the transformations available on normal RDDs
 - map, flatMap, filter, union, reduce, ...

- These transformations are applied separately on each RDD of the DStream
 - See the streaming word count example

- Another class of interesting transformations are *stateful* operations
 - When processing an element, they preserve some state that can be subsequently accessed while processing further elements
- We will see three examples of stateful operations
 - updateStateByKey
 - mapWithState
 - windows

- updateStateByKey creates a state DStream
 - This is used to maintain a key-value store
 - The value is updated by applying a given function on the previous state of the key and the new state of the key

- Spark also enables state to be updated and used as part of a transformation
 - Example: mapWithState

- We can use this to change the semantics of the streaming word count application
 - The count is preserved and updated across RDDs

Windows

- Spark Streaming provides windowed computations, to apply transformations over a sliding window of data
- A window is defined in terms of two parameters
 - Window length: the duration of the window
 - Sliding interval: the interval (rate) at which the window operation is performed
- Note: these two parameters must be multiples of the batch interval of the source DStream

Windows

Windows

- Spark Streaming offers several operations to define windows and perform computations over windows
 - countByWindow
 - reduceByWindow
 - countByKeyAndWindow
 - reduceByKeyAndWindow

— ...

Fault tolerance semantics

- We already mentioned how Spark provides fault tolerance for RDDs
 - Spark Streaming also replicates the input streaming data
- In the case of failure, the system needs to recover
 - 1. Data received and stored (replicated): it survives the failure of a node as a copy exists in other nodes
 - 2. Data received but not yet replicated: the only way to recover this data is to get it again from the source, if possible
 - E.g., if the source is a Kafka topic

Structured Streaming

Structured Streaming

- Builds on the Spark SQL engine
- Core ideas
 - Express streaming computations in the same way as batch computations on static data
 - The engine takes care of continuous and incremental execution to update the results as new data arrives
- Different programming abstraction ...
- ... same execution model
 - Internally it builds on the same micro-batch approach
 - But does not expose it to the end user

Programming model

- Key ideas
 - Consider a stream as a table that is being continuously appended
 - Express streaming computations as standard batchlike queries on static tables
 - Spark automatically updates the output tables

Programming model

Data stream as an unbounded table

Programming model

- A result / output table can be defined in different modes
- 1. Complete mode: returns the entire result table
- 2. Append mode: returns only the new rows appended to the result table since the last trigger
- 3. Update mode: returns only the rows that were updated in the result table since the last trigger
- The most suitable mode depends on the consumer of the data
 - Update mode can be used to update the results stored in a database
 - Complete mode can be used to periodically write the entire result on a file

• Let us consider again the classic word count example

• To interact with the Spark SQL engine, we first need a SparkSession

```
SparkSession spark = SparkSession
    .builder()
    .master(master)
    .appName("StructuredStreamingWordCount")
    .getOrCreate();
```

```
Dataset<Row> lines = spark
    .readStream()
    .format("socket")
    .option("host", socketHost)
    .option("port", socketPort)
    .load();

Dataset<String> words = lines
    .as(Encoders.STRING())
    .flatMap( ... );

DataSet<Row> wordCounts = words
    .groupBy("value")
    .count();
```

- Variable lines represents an unbounded table containing streaming text data
 - One "value" column
 - Each line becomes a row in the table
- We convert the DataFrame into a Dataset of String
- Variable wordCounts is again a DataFrame containing the count for each word

- We can output the results using a query
 - We show the incremental computation model and the results with different modes

```
StreamingQuery query = wordCounts
    .writeStream()
    .outputMode("update")
    .format("console")
    .start();

query.awaitTermination()
```


Model of the Quick Example

Incremental execution

• The engine does not materialize the entire table

- Instead, it *incrementally* updates the results upon receiving a new element from the input source
 - It only keeps the minimum intermediate state required to update the result

Time in stream processing

Time in stream processing

• Some operators rely on time (e.g., windows)

- But what is the meaning of time when running Spark in a distributed environment?
 - Different nodes in the cluster have different clocks
 - Sources and sinks have yet other internal clocks

Time in stream processing

- We can identify two "definitions" of time in stream processing
 - 1. Processing time: is the wall clock time of the processing node
 - 2. Event time: is the time attached to a data element by its source

Event time

- In most applications, event time is the most significant for the users
 - It is deterministic: in the case of replay, event time does not change and leads to the same results
 - It is set by the application
 - Does not depend on runtime concerns (e.g., the specific node where data is processed)

Event time

• However, event time is also the most complex to deal with

- In theory, we never know when we have all data up until some point in time
 - Data from multiple sources may arrive out of order
 - Data with an earlier event time may always arrive from some sources
 - We should wait forever for new data!

Event time and late data

- Structured streaming adopts an approach called retraction
 - It outputs data when new data is received
 - It changes the results in the case of late data
 - Retracts old results
 - It simply discards input data that is "too" old
 - To reduce the amount of old state to preserve

Event time and late data

• Window-based grouping is a good example to illustrate how Spark handles late data

• Spark maintains the intermediate state for partial aggregates for a long period of time, such that late data can update aggregates of old windows correctly

- After a threshold, late data is simply discarded
 - Garbage collection of old intermediate state

Windows and late data

Windowed Grouped Aggregation with 10 min windows, sliding every 5 mins

counts incremented for windows 12:05 - 12:15 and 12:10 - 12:20

Windows and late data

Late data handling in Windowed Grouped Aggregation

window 12:00 - 12:10