

EECI Course on

Nonlinear and Data-based Model Predictive Control

Matthias Müller¹⁾ and Frank Allgöwer²⁾

- 1) Institute of Automatic Control Leibniz University Hannover, Germany
- ²⁾ Institute for Systems Theory and Automatic Control University of Stuttgart, Germany

Structure of Course

MONDAY:

introduction, background, nominal stability (Part 1)

TUESDAY:

exercise nominally stable MPC (Part 2), exercise, nominally stable MPC (Part 3)

WEDNESDAY:

robust MPC, exercise, economic MPC

THURSDAY:

tracking MPC, data-based MPC; selected advanced topics

Nominal Stability of the Closed Loop

QUASI-INFINITE HORIZON NMPC

Expanding the Horizon Quasi to Infinity

Can the computational demand of ZTC NMPC and infinite horizon NMPC be avoided without jeopardizing stability?

Idea:

- Approximate infinite horizon cost inside of terminal region X^f via terminal penalty term F(x(t+T)) that correponds to virtual control law that
 - stabilizes system in X^f
 - renders X^f invariant
 - achieves certain decrease
- **Enforce** last predicted state to lie in terminal region

Expanding the Horizon Quasi to Infinity – Setup

Modify setup via suitably computed

- terminal region constraint $x(t+T) \in X^f$
- terminal penalty term F(x(t+T))

$$\min_{u} J(x(t), u)$$

$$J(\cdot) = \int_{t}^{t+T} L(x(\tau), u(\tau)) d\tau + F(x(t+T))$$

subject to: $\dot{x}=f(x,u),$ system dynamics x(t) given "state feedback" $u(\tau)\in\mathcal{U}$ input constraints $x(\tau)\in\mathcal{X}$ state constraints $x(t+T)\in X^f$ terminal constraint

Additional terms computed such that F(x(t+T)) approximates **infinite h orizon cost** in terminal region

ist♀

Generalized Guaranteed Stability Result

[Chen&Allgöwer '96], [Mayne et al. '00], [Fontes '00]

$$\min_{u} J(x(t),u)$$
 with: $J(\cdot) = \int_{t}^{t+T} L\left(x(\tau),u(\tau)\right)d\tau + F(x(t+T))$ and: $x(t+T) \in X^f$

Theorem (Nominal Stability): If

a) $F(\cdot)$ and X^f are determined s.t.:

$$\forall x \in X^f \exists u \in \mathcal{U} \text{ with } \frac{\partial F}{\partial x} f(x, u) + L(x, u) < 0$$

b) optimization feasible for t=0

Asymptotic Stability
Guaranteed Region of Attraction:

Set R of states satisfying b)

Comments

- Many schemes fit into this setup:
 - Quasi-infinite horizon NMPC [Chen&Allgöwer '97]
 - Simulation-approximated infinite horizon NMPC [De Nicolao et.al.'97]
 - CLF approaches [Jadbabaie et. al. '99, Primbs et.al. '00]
 - Zero terminal constraint NMPC

[Keerthi&Gilbert'88], [Mayne&Michalska '90]

– . . .

- Possible to use short horizon length without loss of performance and stability
 - Good performance can be expected if F approximates infinite horizon cost in X^f sufficiently well
 - Size of terminal region and prediction horizon length influence size of region of attraction
- Main differences between schemes:
 - Feasibility
 - Computational burden
 - Performance

<u>ist</u>

Determining X^f , F - Quasi-infinite Horizon Approach

How does one determine X^f , F?

- Based on locally stabilizing controller
- Based on CLF
- Semidefinite programming + PLDI
- . . .

Exemplary: Quasi-infinite horizon NMPC

- Jacobian linearization stabilizable
- quadratic cost functional $L(x, u) = x^T Q x + u^T R u$

$$\Rightarrow F(x) = x^T P x$$

- based on local controller u = Kx that renders X^f invariant
- invariance property in $X^f \Rightarrow$ feasibility
- suitable upper bound of the infinite horizon cost
 - ⇒ decrease of value function

Procedure to Determine *X^f*, *F* **Quasi-infinite H orizon Approach**

- 1. Choose Q and R for desired performance
- 2. Based on Jacobian linearization, obtain a linear feedback u = Kx such that $A_K := A + BK$ is asymptotically stable.
- 3. Choose $\kappa < -\lambda_{max}(A_K)$ and solve Lyapunov eq.

$$(A_K + \kappa I)^T P + P(A_K + \kappa I) = -(Q + K^T R K)$$

to get a positive definite, symmetric P

- 4. Finde the largest possible $\alpha_1 \in (0, \infty)$ such that u = Kx satisfies constraints in $\mathcal{E}_1 := \{x \in \mathbb{R}^n | x^T Px \leq \alpha_1\}$
- 5: Find the largest possible $\alpha \in (0, \alpha_1]$ such that

$$L_{\phi} \leq \frac{\kappa \cdot \lambda_{min}(P)}{\|P\|} \text{ in } X^{f} := \left\{ x \in \mathbb{R}^{n} | x^{T} P x \leq \text{ } \lambda \right\}$$
$$L_{\phi} := \sup \left\{ \frac{\|f(x, Kx) - A_{K}x\|}{\|x\|} \middle| x \in X^{f} x \neq 0 \right\}$$

<u> ist</u>

Clarification Upper Bounding of Infinite Cost

see also: [Chen&Allgöwer '97]

Goal: minimize
$$J^{\infty}(x(t),u) = \int_{t}^{\infty} (x^{T}(\tau)Qx(\tau) + u^{T}(\tau)Ru(\tau)) d\tau$$

Idea:

$$\min_{u} J^{\infty}(x(t), u) = \min_{u} \left\{ \int_{t}^{t+T} (x^{T}Qx + u^{T}Ru) d\tau + \int_{t+T}^{\infty} (x^{T}Qx + u^{T}Ru) d\tau \right\}$$

if $x \in X^f \quad \forall \tau \in [t+T,\infty)$, then

$$\min_{u} J^{\infty}(x(t), u) \leq \min_{u} \left\{ \int_{t}^{t+T} (x^{T}Qx + u^{T}Ru) d\tau + \int_{t+T}^{\infty} (x^{T}Qx + x^{T}K^{T}RKx) d\tau \right\}$$

if F, X^f are chosen according to procedure, then

$$\int_{t+T}^{\infty} (x^T Q x + x^T K^T R K x) d\tau \le F(x(t+T_P)), \forall x \in X^f$$

$$\Rightarrow \min_{u} J^{\infty}(x(t), u) \stackrel{\approx}{\leq} \min_{u} J(x(t), u; T)$$

QIH/NPC for Four Tank System

Four tank system of the IST laboratory

Four tank system:

- Nonlinear system
- Input constraints
- State constraints
- "Slow" dynamics

Four tank system is suited for an experimental stability study of NMPC

ist

Simulation and Experiment (4)

- Sim. —, Exp. —
- Setpoint:

$$-x_{1,2s} = 14cm$$

$$- \gamma_{1,2} = 0.4$$

• Prediction horizon:

$$- T = 60s$$

- Stability constraints:
 - QIH constraints
- Input constraints
- State constraints

Closed-loop is asymptotically stable with quasi infinite horizon NMPC

Performance/Feasibility of QIH NMPC is better than of ZTSC NMPC

Discussion Nominal Stability

- Many NMPC schemes that achieve guaranteed stability exist
- Often employ terminal penalty term + terminal region constraint
- Possible to consider small horizon lengths without loss of stability/performance
- Value function is not necessarily continuous
 - ⇒ Possibly no inherent robustness to small disturbances

ist

Discussion Nominal Stability

- Many NMPC schemes that achieve guaranteed stability exist
- Often employ terminal penalty term + terminal region constraint
- Possible to consider small horizon lengths without loss of stability/performance
- Value function is not necessarily continuous
 - ⇒ Possibly no inherent robustness to small disturbances
- Optimality not necessary for stability, sufficient if cost function decreases

Suboptimal NMPC: feasibility implies stability [Scokaert et al. '99]

- Can break optimization once feasible decreasing solution found
- For many approaches remaining input guarantees decrease
 - ⇒ fallback strategy

Discussion Nominal Stability II

- Only minor modifications necessary for stabilization of systems that require discontinuous feedbacks, e.g. nonholonomic systems [Fontes '03]
- Possible to consider special input parameterizations/quantizations
 Stability results applicable, however conditions difficult to check
 ⇒ Question of feasibility/controllability under quantized control

ist