BabyWeightSmoking

Ray Chen

2025 - 05 - 28

Load Data

```
data <- read.csv("BabyWeightSmoking.csv")
head(data)</pre>
```

##		LowBirthWeight	MothersAge	Race	${\tt MotherSmoke}$	${\tt FTV}$	BirthWeight
##	1	Yes	28	Other	Yes	0	709
##	2	Yes	29	${\tt White}$	No	2	1021
##	3	Yes	34	Black	Yes	0	1135
##	4	Yes	25	Other	No	0	1330
##	5	Yes	25	Other	No	0	1474
##	6	Yes	27	Other	No	0	1588

Boxplot of MotherSmoke and BirthWeight

boxplot_smoke <- boxplot(BirthWeight ~ MotherSmoke, data = data)</pre>

1

Two Sample t-test

null hypothesis: There is no difference in population mean age of mothers who smoke and those who do not smoke

```
t_test_smoking <- t.test(MothersAge ~ MotherSmoke, data = data)</pre>
t_test_smoking
##
##
   Welch Two Sample t-test
##
## data: MothersAge by MotherSmoke
## t = 0.61768, df = 164.72, p-value = 0.5376
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
   -1.054672 2.014954
## sample estimates:
   mean in group No mean in group Yes
##
            23.42609
                              22.94595
```

Since p value is significantly large, we fail to reject the null hypothesis

Scatter graph of MothersAge versus BirthWeight and linear regression model for prediction

Scatter Plot of Mother's Age and Birth Weight

Prediction of BirthWeight given MothersAge 40 years old using linear regression

```
model <- lm(BirthWeight ~ MothersAge, data = data)</pre>
summary(model)
##
## Call:
## lm(formula = BirthWeight ~ MothersAge, data = data)
## Residuals:
##
       Min
                 1Q Median
                                  ЗQ
                                          Max
## -2294.53 -517.71 10.56 530.65 1776.27
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2657.33 238.80 11.128
                                           <2e-16 ***
## MothersAge
               12.36
                          10.02 1.234
                                            0.219
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 728 on 187 degrees of freedom
## Multiple R-squared: 0.008076, Adjusted R-squared: 0.002772
## F-statistic: 1.523 on 1 and 187 DF, p-value: 0.2188
predict(model, data.frame(MothersAge = 40))
## 3151.906
```