Olympiades Groupes Partie 2

17 Septembre, 2023

Lucas Duchet-Annez

Exercices académique n°2

Généalogie des fractions.

Dans cet exercice, on considère des fractions écrites sous la forme $\frac{a}{b}$ où a et b sont des entiers naturels non nuls. On construit un arbre généalogique de fractions en partant de la fraction $\frac{1}{1}$. Chaque fraction $\frac{a}{b}$, qu'on écrit à droite.

$$\frac{a}{b} \vdash \frac{a}{a+b} \vdash \frac{a+b}{b}$$

$$\frac{1}{1} \vdash \frac{1}{3} \mid \vdash \frac{1}{3} \mid \vdash \frac{1}{4} \mid \downarrow \vdash \dots \mid \vdash \frac{4}{3} \mid \vdash \frac{5}{3} \mid \vdash \dots \mid \frac{3}{1} \mid \frac{3}{5} \mid \downarrow \vdash \dots \dots \mid \vdash \frac{3}{4} \mid \vdash \dots \dots \mid \vdash \dots \mid \vdash \frac{3}{4} \mid \vdash \dots \dots \mid \vdash \dots$$

En poursuivant le processus, on obtient un arbre généalogique infini.

Partie I: La famille proche.

- Quelles sont les deux filles de la fraction ²²/₇?
 Quelle est la mère de la fraction ¹⁷/₃₁? Et sa grand-mère?
 Quelle est la mère de la fraction ⁻/_j si i < j? Et si i > j?
 Quelle est la petite sœur de la fraction ³⁵⁵/_j?
 Démontrer que les fractions ¹³/₃₁ et ²³/₅ sont cousines.
 Que peut-on dire de la succession des filles aînées de ¹/₁?

Partie II: Des fractions irrédutibles.

On considère une fraction strictement positive irrédutible $\frac{a}{1}$.

Cela signifie que le seul diviseur commun des entiers naturels non nuls a et b est égal à 1.

- 1. Soit d un diviseur commun de a et a + b. Montrer que d est forcément égal à 1. Que peut-on en déduire pour la fille benjamine de $\frac{a}{r}$?
- 2. Expliquer pourquoi toutes les fractions qui apparaissent dans l'arbre généalogique sont irréductibles.

Partie III: À chacun sa place.

Dans la partie II, on a établi que l'arbre étudié comporte uniquement des fractions irrédutibles strictement positives. On admet que toutes les fractions irréductibles strictement positives sont dans cet arbre généalogique, sans aucune répétition.

1

On peut ainsi numéroter toutes les fractions irrédutibles strictement positives en considérant les lignes successives de l'arbre généalogique parcourues de haut en bas et de gauche à droite.

On peut représenter les chosees comme sur l'arbre ci-dessous. F_1
$$\longmapsto$$
 F_2 \mid \longmapsto F_4 \mid \mid F_8 \mid \mid F_9 \mid F_5 \mid F_10 \mid F_11 \mid F_3 \mid F_6 \mid F_12 \mid F_13 \mid F_7 \mid F_14 \mid F_15

On admet que dans cette situation, chaque fraction F_n a pour fille benjamine F_2n et pour fille aînée F_{2n+1} où n est un entier naturel non nul.

- 1. Calculer le produit de deux fractions soeurs. En déduire la valeur du produit de toutes les fractions d'une même génération.
- 2. Combien vaut F_{2023} ?
- 3. Déterminer l'entier n tel que F_n = 31/43
 4. Ecris un programme qui calcule F_n pour un entier n donné.
- 5. Ecris un programme qui calcule n pour une fraction donnée.