Megoldások

A feladatsor létrejöttében közreműködtek: Bakonyi Viktória, Busa Máté, Csertán András, Deák Bence, Gáspár Attila, Horváth Gyula, Németh Zsolt, Noszály Áron, Sárközi Gergely, Szente Péter, Zsakó László

17

Ötlet: Zsakó László

Kidolgozó: Zsakó László

Témák: implementáció (elágazás, ciklus, tömb)

A feladat erősen implementációs jellegű, a megoldáshoz elegendő a feladatszövegben definiált algoritmus lekódolása. Gyakori buktatók voltak a második üres sor hiánya vagy az algoritmus nem pontos megvalósítása (pl. N>17-ig ismételni N>0 helyett). Érdekeségképpen meggondolhatjuk, hogy az algoritmus O (log (N)) futási idejű, mivel lépésenként legalább 1-el csökken az N tízes számrendszerbeli hossza.

Zene

Ötlet: Nikházy László

Kidolgozó: Deák Bence

Témák: prefix összegek, bináris keresés

Világos, hogy az $[1, T_1]$ időpontokban az első, $[T_1+1,T_1+T_2]$ -ben a második, $[T_1+T_2+1, T_1+T_2+T_3]$ -ban a harmadik zene szól, és így tovább.

Általánosan: $[T_1+\ldots+T_{i-1}+1,T_1+\ldots+T_i]$ -re a válasz i.

Állítsuk elő T prefix összegeit: $S_i=T_1+\ldots+T_i$! Ezek szerint az $[S_{i-1}+1,S_i]$ időpontokban az i-edik zeneszám szól. A feladat szerint a lejátszás periódusa S_N , vagyis bármely $p>S_N$ időpontban ugyanaz a dal szól, mint a $p-S_N$ időpontban.

Először egy adott P_i időponthoz határozzuk meg azt a $1 \le p \le S_N$ értéket, amire $P_i \equiv p \pmod{S_N}$! Ekkor a válasz az a legnagyobb j index lesz, amire $p \le S_j$. Megkereséséhez használhatunk bináris keresést. A bináris keresés komplexitása $O(\log(N))$, tehát a teljes algoritmus aszimptotikus futási ideje $O(N+K*\log(N))$ lesz.

Kérjük a tisztelt kollégákat, hogy a dolgozatokat az egységes értékelés érdekében szigorúan az alábbi útmutató szerint pontozzák, a megadott részpontszámokat ne bontsák tovább! Vagyis ha egy részmegoldásra pl. 3 pontot javasolunk, akkor arra vagy 0, vagy 3 pont adható. (Természetesen az útmutatótól eltérő megoldások is lehetnek jók.)

1. feladat: Sípálya (25 pont)

Egy hójelentés N sípályán mért hóréteget tartalmazza.

Készíts programot (sipalya.pas,...), amely beolvassa a sípályák számát ($1 \le N \le 20$) és az egyes pályákon a hóréteg vastagságát ($0 \le V(i) \le 100$), majd

- A. megadja, hogy melyik sípályán a legnagyobb a hóréteg;
- B. megad egy sípályát, ahol a hóréteg legalább 100 cm vastag;
- C. megadja azokat a sípályákat, ahol nem lehet síelni (azaz a hóréteg vastagsága 0)!

Példa

Bemenet: Kimenet: Pályák száma: 7 Legnagyobb: 3 1. pálya: 0 Van 100 cm hó: 2 2. pálya: 150 Nem lehet síelni 3 pályán: 1 4 6 3. pálya: 200 4. pálya: 0 5. pálya: 57 6. pálya: 30

Értékelés:

Sehol sincs hó $(3,0,0,0 \rightarrow \text{bármi}, -, 3 \text{ db } 1 \text{ 2 } 3)$	0+0+1 pont
Utolsó pálya a leghavasabb, a második hónélküli (3,10,0,100 → 3, 3, 1 db: 2)	2+2+2 pont
Mindenhol lehet síelni $(3,110,120,100 \rightarrow 2, 1 \text{ vagy } 2 \text{ vagy } 3, 0 \text{ db})$	2+2+2 pont
Általános eset (6,0,110,0,0,120,100 → 5, 2 vagy 5 vagy 6, 3 db: 1 3 4)	2+2+2 pont
Általános eset $(6,0,50,0,110,120,50 \rightarrow 5, 4 \text{ vagy } 5, 2 \text{ db: } 1 \text{ 3})$	2+2+2 pont

2. feladat: Pénz (30 pont)

Bergengóciában N-féle pénzérmét használnak: P(1), P(2), ..., P(N) forintost.

Írj programot (penz.pas, ...), amely megadja, hogy mely 1 és M forint közötti összegek fizethetők ki egyetlen pénzérmével, melyek legfeljebb 2 pénzérmével és melyek legfeljebb 3 pénzérmével!

A program olvassa be a pénzérmék számát ($1 \le N \le 10$), és a kifizetendő összeget ($1 \le M \le 1000$)! Ezután olvassa be a pénzérmék értékét ($1 \le P_i \le M$)!

A program írja ki a legfeljebb 1, 2, majd a 3 pénzérmével kifizethető összegeket!

Példa:

```
Bemenet: Kimenet:

Érmék száma: 2 1 érmével: 1 5

Maximális összeg: 100 2 érmével: 1 2 5 6 10

1. érme: 1 3 érmével: 1 2 3 5 6 7 10 11 15

2. érme: 5

Értékelés:
```

$N=1, P(1)=1, M=100 \rightarrow 1, 1 2, 1 2 3$	1+2+3 pont
N=2, P(1)=5, P(2)=10, M=100 \rightarrow 5 10, 5 10 15 20, 5 10 15 20 25 30	1+2+3 pont
$N=2$, $P(1)=2$, $P(2)=5$, $M=100 \rightarrow 2$ 5, 2 4 5 7 10, 2 4 5 6 7 9 10 12 15	1+2+3 pont
$N=2$, $P(1)=2$, $P(2)=3$, $M=100 \rightarrow 2$ 3, 2 3 4 5 6, 2 3 4 5 6 7 8 9	1+2+3 pont
N=3, P(1) =2, P(2)=5, P(3)=10, M=100 \rightarrow 2 5 10, 2 4 5 7 10 12 15 20,	1 2 2
2 4 5 6 7 9 10 12 14 15 17 20 22 25 30	1+2+3 pont

3. feladat: Nyelv (20 pont)

Egy programozási nyelven az elágazások az IF szóval kezdődnek és a FI szóval végződnek. Minden program legalább egy, legfeljebb 100 szóból áll

Készíts programot (nyelv.pas, ...), amely beolvas szavanként egy szöveget, majd megadja, hogy az elágazások egymásba ágyazása helyes-e! Ha nem helyes, akkor megadja az első hiba okát is. (Pl. hibás egymásba ágyazás az alábbi: ... IF ... FI ... FI ... IF ...)

Megjegyzés: a többi szó bármi lehet, ellenőrzésükkel nem kell foglalkozni.

	_				
Bemenet:	Kimenet:				
Szavak száma: 7 1. szó: IF 2. szó: ALMA 3. szó: IF 4. szó: FI 5. szó: FI 6. szó: IF 7. szó: BARACK	Hibás: FI utasítás hiányzik				
Értékelés:					
Helyes program (nincs IF, FI)		2 pont			
Helyes program (egyetlen IF FI pá	r)	2 pont			
Helyes program (több IF FI pár eg	ymás után)	2 pont			
Helyes program (több IF FI pár eg	ymás belsejében)	2 pont			
FI előtt nincs IF (FI)					
FI előtt nincs IF, de utána van – darabszámuk jó (FI IF)					
FI előtt kevés IF van (IF FI)					
IF-nek nincs FI párja (IF)					
Több IF, mint FI (IF IF FI)					

Elérhető összpontszám: 75 pont + 25 pont az 1. fordulóból2

Kérjük a tisztelt kollégákat, hogy az egységes értékelés érdekében az alábbi eljárást alkalmazzák:

- Az értékelő gépen hozzák létre a \NT2 könyvtárat.
 Másolják be a \NT2 könyvtárba az NT2.EXE állományt, amely jelszóval védett önkibontós ARJ állomány (a tesztadatokat és az értékelő programot tartalmazza), és indítsák el az NT2.EXE -q<jelszó> paranccsal (a jelszót a ⇔ jelek nélkül kell beírni). A NT2.EXE állományt és a jelszót mindenkihez időben eljuttatjuk.
- 3. Minden versenyző számára hozzanak létre egy külön könyvtárat, és ezekbe másolják be, majd fordítsák le a versenyzők programjait (a feladatleírásban szereplő néven).
- 4. Egy versenyző értékelése:
- A. Az aktuális könyvtár legyen a versenyző könyvtára.
- B. Adják ki az \NT2\T3 parancsot, amely lefuttatja a versenyző programjait minden tesztesetre. Ha a végrehajtás megszakad, vagy meg kell szakítani, mert letelt a 60 másodperc, akkor ismét a \NT2\T3 parancsot kell kiadni, mindaddig, amíg az "ÉRTÉKELÉS BEFEJEZŐDŐTT" üzenet meg nem jelenik a képernyőn. (A futtató tudja, hogy honnan kell folytatnia.). Ezt követően automatikusan elindul a megoldásokat értékelő program, amely összesítést készít a versenyző könyvtárában EREDMENY.TXT néven, és az eredményt a képernyőre is kiírja.

1. feladat: Falu (18 pont)

Ismerjük egy megye települései (falvak, városok) közötti utak hosszát. Zsákfalunak nevezzük azt a falut, ahova csak egyetlen út vezet (és onnan tovább már nem lehet menni, csak visszafelé). A településeket sorszámmal azonosítjuk.

Készíts programot (falu.pas, ...), amely megadja:

A. a zsákfalvak számát;

B. azt a települést, ahova a legtöbb út vezet szomszédos településről;

C. az egymáshoz legközelebbi 2, nem szomszédos települést (ha több ilyen van, akkor bármelyik megadható)

A falu.be szöveges állomány első sorában a települések (2≤N≤1000) és az utak száma van (1≤M≤100000), egy szóközzel elválasztva. A következő M sor mindegyikében három egész szám van, egy-egy szóközzel elválasztva: egy-egy út két végpontjának sorszáma és a köztük levő út hossza.

A falu.ki szöveges állomány első sorába a zsákfalvak számát; a második sorba a legtöbb utas település sorszámát (ha több van, bármelyik megadható), a harmadikba pedig a két legközelebbi település sorszámát (szóközzel elválasztva, ha több egyforma távolság is van, bármelyik településpár megadható) kell írni!

Példa:

falu.be	falu.ki	
6 7 1 2 10 2 3 15 2 4 10 2 5 5 3 5 5	2 2 3 6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
4 5 15		$\left(4\right)$
5 6 5		_

Értékelés:

Két falu	1+1+1 pont
Nincs zsákfalu, egy legtöbb utas, egy legközelebbi	1+1+1 pont
Egy zsákfalu, több legtöbb utas, minden távolság egyforma	1+1+1 pont
Több zsákfalu, a többiek útszáma egyforma, több legközelebbi	1+1+1 pont
Általános eset (közepes teszt)	1+1+1 pont
Általános eset (nagy teszt)	1+1+1 pont

Értékelési útmutató 1. oldal 2011.01.08. 9-14 óra

2. feladat: Fa (18 pont)

Minden fát leírhatunk egy karaktersorozattal. Ebben a leírásban X betűk és zárójelek fognak szerepelni. Az X ágat jelent, az ágak végi elágazásokat pedig zárójelbe tesszük.

Írj programot (fak.pas, ...), amely megadja:

A. a fa magasságát (a földtől milyen messze van a legmesszebb levő ágvég);

B. a fa elágazásai számát (a törzs nem számít elágazásnak);

C. egy helyen a legnagyobb elágazásszámot!

A fak.be szöveges állomány egyetlen sorában a fát leíró szöveg van (hossza legfeljebb 10000 karakter).

A fak.ki szöveges állomány első sorába a fa magasságát, a második sorába a fa elágazásai számát, a harmadik sorába pedig a legnagyobb elágazásszámot kell kiírni!

Példa:

fak.be	fak.ki
X(X)(X)(X(X)(X))	3
	5
	3

Értékelés:

Nincs elágazás	1+1+1 pont
Egyetlen kétfelé ágazás, az egyik ág a hosszabb	1+1+1 pont
Egyetlen sokfelé ágazás	1+1+1 pont
Több elágazás, középső ág a leghosszabb	1+1+1 pont
Több elágazás, szélső ág a leghosszabb (nagy teszt)	1+1+1 pont

3. feladat: Pakolás (18 pont)

Egy raktárban egyetlen hosszú sorban ládák vannak. Minden láda kocka alakú, de méretük különböző lehet. A ládák egymásra rakásával akarnak helyet felszabadítani. A biztonsági előírás szerint több ládát is lehet egymásra rakni, de minden ládát csak nálánál nagyobbra lehet helyezni. Továbbá, az i-edik helyen lévő ládát csak akkor lehet rárakni a j-edik helyen lévő torony tetejére, ha az i-edik és j-edik helyek között már nincs láda (j lehet akár kisebb, akár nagyobb, mint i). Minden ládát legfeljebb egyszer lehet mozgatni.

Készíts programot (pakol.pas, ...), amely kiszámítja, hogy legkevesebb hány toronyba lehet a ládákat összepakolni!

A pakol. be szöveges állomány első sorában a ládák N ($2 \le N \le 30000$) száma van. A második sor pontosan N pozitív egész számot tartalmaz egy-egy szóközzel elválasztva, a ládák méreteit. A második sorban lévő számok mindegyike I és 30000 közötti érték.

A pakol.ki szöveges állomány első és egyetlen sora egy egész számot tartalmazzon, azt a legkisebb M számot, hogy a bementben megadott ládasor összepakolható M számú toronyba!

Értékelési útmutató 2. oldal 2011.01.08. 9-14 óra

Példa:

ра	akc	01.	.be	9							pakol.ki	
1()										2	
1	2	4	6	7	5	3	2	5	3			

Értékelés:

Litercies.	
Növekvő sorozat	2 pont
Csökkenő sorozat	2 pont
Kis méretű ládák	2 pont
Általános eset	2 pont
Véletlen kis teszt	2 pont
Véletlen közepes teszt	2 pont
Véletlen közepes teszt	2 pont
Véletlen nagy teszt	2 pont
Véletlen nagy teszt	2 pont

4. feladat: Játék (21 pont)

Tekintsük azt az egyszemélyes játékot, amelyet N sorból és M oszlopból álló négyzetrácsos táblán játszanak. Minden mező vagy üres, vagy csapda. Egy bábut kell mozgatni a táblán. A bábu kezdetben a tábla bal felső sarkában van, és a jobb alsó sarokba kell eljuttatni az alábbi lépés-szabályt betartva:

- Csak olyan mezőre lehet lépni, ahova még nem lépett a bábu.
- Csapda mezőre nem lehet lépni.
- Csak a négy szomszédos mező valamelyikére lehet lépni.
- Egy lépésben csak jobbra, vagy lefelé lehet lépni.

Készíts programot (jatek.pas, ...), amely kiszámítja, hogy hányféle képen lehet eljuttatni a bábut a bal felső sarokból a jobb alsóba!

A jatek. be szöveges állomány első sorában két egész szám van, a sorok N és oszlopok M száma ($1 \le N \le 10$, $1 \le M \le 0$). A további N sor mindegyike M egész számot tartalmaz egyegy szóközzel elválasztva. Minden szám vagy 0, vagy 1. A sorban az i-edik szám 1, akkor a megfelelő mező csapda, egyébként a mező üres.

A jatek.ki szöveges állomány egyetlen sora egy egész számot tartalmazzon, azt, hogy hány féleképpen lehet eljuttatni a bábut a bal felső sarokból a jobb alsóba!

Példa:

ja	ate	ek.	.be	9		jatek.ki
5	6					7
0	0	0	0	0	0	
0	1	0	0	1	0	
0	0	1	0	0	0	
1	0	1	0	0	0	
0	0	0	0	1	0	

Értékelés:

A megoldás 0	2 pont
Nincs csapda	2 pont
Egy csapda van	2 pont
Sok csapda van	2 pont

Nemes Tihamér OKSzTV	2. korcsoport: 9-10. osztályosok	Második forduló
Kicsi véletlen bemenet		2 pont
Közepes véletlen bemenet		2 pont
Közepes véletlen bemenet		2 pont
Nagy véletlen bemenet		2 pont
Nagy véletlen bemenet		2 pont
Nagy véletlen bemenet		3 pont

Elérhető összpontszám: 75 pont + 25 pont az 1. fordulóból

Értékelési útmutató 4. oldal 2011.01.08. 9-14 óra

1. feladat: Lövészverseny (25 pont)

Az időjárás előrejelzésben ismerjük előre N (2≤N≤100) nap várható minimális és maximális hőmérsékletét. Készíts programot (idojaras.pas, idojaras.c, ...), amely beolvassa N értékét és a 2*N db hőmérsékletet, majd megadja:

A. azt a K napos időtartamot (ha van), amelyben az előrejelzés szerint folyamatosan fagy lesz;

B. azt a két szomszédos napot, ahol a legnagyobbat változik a hőmérséklet;

C. azokat a napokat, ahol a napi minimális hőmérséklet a napi átlaghőmérsékletek átlaga fölötti!

Példa:

```
Bemenet:

Napok száma?5

Fagy hány napon keresztül?2

Legnagyobb változás: 4 5

1. nap minimuma, maximuma: -9 -2
2. nap minimuma, maximuma: -1 4
3. nap minimuma, maximuma: -5 -4
4. nap minimuma, maximuma: -6,-1
5. nap minimuma, maximuma: 5 8
```

Értékelés:

```
Nincs folyamatos fagy, első 2 nap változik felfelé, nincs átlag fölötti (3,2,-5 5,-5 5,-5 3 →nincs,1 2,nincs) 1+1+1 pont
```

Folyamatos fagy az elején, utolsó 2 nap változik lefelé, egy átlag fölötti (3,2,-10 -5,-1 -1, -15 -15 \rightarrow 1 2,2 3,2) 1+1+1 pont

Folyamatos fagy a végén, első 2 nap változik lefelé, több átlag fölötti (3,2,-1 -1,-15 -15,-5 -1 →2 3,1 2,1 3)

Folyamatos fagy középen, utolsó 2 nap változik felfelé, több átlag fölötti $(5,3,-1\ 8,-5\ -5,\ -10\ -10,-5\ -3,5\ 10\ \rightarrow 2\ 4,4\ 5,1\ 5)$

Általános eset $(6,3,-1\ 8,-5\ -5,-10\ -10,-5\ -3,5\ 10,5\ 10\ \rightarrow 2\ 4,4\ 5,5\ 6)$ 2+2+2 pont

Általános eset $(7,3,-18,-5-5,-10-10,-5-3,510,510,-10-5 \rightarrow 24,67,156)$ 2+2+2 pont

2. feladat: Tördelés (25 pont)

Wikipédián található az alábbi leírás a webcímekről (most csak azt engedjük meg, ami ebben a leírásban szerepel):

Egy tipikus, egyszerű webcím így néz ki:

http://hu.wikipedia.org:80/wiki

Fnnek részei

- A http (vagy https) a használandó protokoll. A protokoll neve után kettőspont (:) írandó.
- A hu.wikipedia.org a célgép tartományneve. Ez elé két perjel (//) írandó.
- A 80 a célgép azon hálózati portszáma, amin kérésünket várja; ez elé kettőspont (:) írandó. Ezt a részt gyakran teljesen elhagyhatjuk, például esetünkben a http protokoll alapértelmezett portszáma a 80.
- A /wiki a kért elérési út a célgépen. Ez a rész mindig a perjellel (/) kezdődik.
- A legtöbb böngésző nem is igényli, hogy a "http://" részt begépeljük egy weblap eléréséhez, hiszen az esetek döntő többségében úgyis ezt használjuk. Egyszerűen begépelhetjük a lap címét, például: "hu.wikipedia.org/wiki/Bit". A főlap megtekintéséhez általában elég a tartomány nevét beírni, például "hu.wikipedia.org".

1 nont

A webcím a példákban szereplőtől eltérő jeleket (pl. szóközt, relációkat, ...) nem tartalmazhat. A webcímek egyéb részeket is tartalmazhatnak, http esetében például az elérési út után, egy kérdőjel (?) mögé helyezve keresési kérdés szerepelhet, ami egy get metódusú HTML űrlapból származik.

Példa:

http://hu.wikipedia.org/w/wiki.phtml?title=Bit&action=history

Készíts programot (url.pas, url.c, ...), amely egy beolvasott webcímet (legfeljebb 100 karakteres) a fenti szempontok szerint ellenőriz! Hay valamely szempont szerint hibás, akkor megadja, hogy m a hiba a szövegben.

Példa:

Bemenet: http://www.njszt.hu\tehetseg

Kimenet: Hibás karakter: \

Értékelés:

Jó tesztek

http://valami.hu

http://varann.nu	1 pont
https://valami.hu/valami	1 pont
<u>valami.hu</u>	1 pont
http://valami.hu:80/valami	2 pont
https://valami.hu/valami?a=b	2 pont
http://valami.hu/valami?a=&c=b	2 pont
Hibás tesztek	
http után nincs : (http://valami.hu/)	2 pont
http: után nincs // (http:valami.hu)	2 pont
nincs http, de van : vagy / (://valami.hu)	2 pont
csak egy / van a http: után (https:/valami.hu)	2 pont
két / között nincs semmi (http://valami.hu//	2 pont
hibás karakter (http:valami.hu\valami)	2 pont
a: nem a célgép tartományneve mögött van (https://valami.hu/valami:80)	2 pont
a: után nem port azonosító szám jön (http://valami.hu:valami)	2 pont

3. feladat: Elszigetelt falu (25 pont)

Egy megyében N (1≤N≤100) falu van. A falvakat M (3≤M≤1000) út köti össze, ismerjük minden út hosszát. A legelszigeteltebb falunak azt nevezzük, amelytől a legközelebbi szomszédja a lehető legtávolabb van.

Készíts programot (falu.pas, falu.c, ...), amely megadja a legelszigeteltebb falut! Ha több megoldás van, akkor bármelyik kiírható.

Példa:

Bemenet:

Falvak száma?5

Utak száma?6

- 1. út kezdete, vége, hossza?1 2 5
- 2. út kezdete, vége, hossza?2 3 6


```
3. út kezdete, vége, hossza?3 1 4
4. út kezdete, vége, hossza?3 4 10
5. út kezdete, vége, hossza?4 5 1
6. út kezdete, vége, hossza?3 5 11
Kimenet:
A legelszigeteltebb: 2
Értékelés:
Két falu (2,1,1\ 2\ 5\rightarrow 1\ \text{vagy }2)
                                                                                       1 pont
Van falu, ahova nem vezet út (3,1,1 \ 2 \ 5\rightarrow 3)
                                                                                       2 pont
Minden távolság egyforma (3,3,1\ 2\ 5,2\ 3\ 5,3\ 1\ 5\rightarrow 1\ vagy\ 2\ vagy\ 3)
                                                                                       3 pont
Három falu, egyértelmű megoldás (3,3,1 \ 2 \ 5,2 \ 3 \ 5,3 \ 1 \ 4 \rightarrow 2)
                                                                                       3 pont
Négy falu, két lehetséges megoldás (4,4,1 2 1, 2 3 4, 3 4 2, 4 1 4→3 vagy 4)
                                                                                       4 pont
Négy falu, egyértelmű megoldás (4,4,121,234,344,411\rightarrow 3)
                                                                                       4 pont
Négy falu, egyértelmű megoldás (4,5,1 2 1,2 3 4, 3 4 4, 4 1 1,2 4 1→3)
                                                                                       4 pont
A példa permutálva (5,6,2 3 5,3 4 6,4 2 4,4 5 10,5 1 1,4 1 11→3)
                                                                                       4 pont
```

Elérhető összpontszám: 75 pont + 25 pont a 2. fordulóból

Kérjük a tisztelt kollégákat, hogy a dolgozatokat az egységes értékelés érdekében szigorúan az alábbi útmutató szerint pontozzák, a megadott részpontszámokat ne bontsák tovább! Vagyis ha egy részmegoldásra pl. 3 pontot javasolunk, akkor arra vagy 0, vagy 3 pont adható. (Természetesen az útmutatótól eltérő megoldások is lehetnek jók.)

1. feladat: Kártya (25 pont)

Egy kártyajátékban az egyes lapoknak számértékük van. Minden lapot egy színnel és egy figurával adunk meg. A színek: piros, zöld, tök, makk. A figurák: 7-es, 8-as, 9-es, 10-es, alsó, felső, király, ász. A számot tartalmazó figurák annyit érnek, amennyi a ráírt szám. Az alsó 2-t, a felső 3-at, a király 4-et, az ász 11-et ér. A piros lapoknál az értéket duplán kell számítani.

Készíts programot (kartya.pas,...), amely beolvassa egy játékos N (1≤N≤4) kártyáját, majd megadja, hogy a lapok összesen hány pontot érnek!

Példa

Bemenet: Kimenet: Kártyák száma? 3 A kártyák értéke: 22 1. kártya színe? piros 1. kártya figurája? alsó 2. kártya színe? tök 2. kártya figurája? 7-es 3. kártya színe? tök 3. kártya figurája? ász

Értékelés:

Egyetlen lap: tök alsó → 2	2 pont
Egyetlen lap: makk 8-as → 8	2 pont
Egyetlen lap: zöld király → 4	3 pont
Egyetlen lap: piros 10-es \rightarrow 20	3 pont
Két lap: tök felső, makk király → 7	3 pont
Két lap: zöld 7-es, zöld 10-es \rightarrow 17	3 pont
Két lap: piros 7-es, piros ász → 36	3 pont
Két lap: makk 7-es, piros ász → 29	3 pont
Négy lap: piros ász \rightarrow 88	3 pont

2. feladat: Bábu (25 pont)

Egy játéktáblán a 0. időegységben L bábu van. Mindegyiket elindítjuk valamerre. Egy időegység alatt mindegyik a neki megfelelő távolságra mozdul el, a tábla széléről visszafordulnak. Lehetséges, hogy előbb-utóbb két bábu összeütközik: ugyanarra a helyre lépnének vagy átlépnének egymáson.

Írj programot (babu.pas, ...), amely megadja, hogy K időegységen belül mikor ütközik legelőször két bábu!

A program olvassa be a tábla szélességét $(1 \le N \le 100)$, a bábuk számát $(1 \le L \le 10)$ és az időtartamot $(1 \le K \le 100\ 000)$! Ezután olvassa be a bábuk kezdő helyét $(1 \le S_i \le N)$ és mozgás irányát $(X_i, \in \{J,B\} - jobbra, balra)$!

A program írja ki az első ütközés időpontját! Ha K időegységen belül nincs ütközés, akkor -1-et kell kiírni!

Értékelési útmutató 1. oldal 2010.01.09. 9-12 óra

3 pont

Pél	Ы	ล	•
FC	u	a	_

A tábla hossza: 10 \odot \odot A bábuk száma: 2

Az időtartam: 10

1. bábu helye: 3, iránya: B 2. bábu helye: 8, iránya: B

Ütközés időpont: 5

Magyarázat: A bábuk helyzete időegységenként:

- 1: 2, 7
- 2: 1, 6
- 3: 2, 5
- 4: 3, 4
- 5: 4, 3

Az 5. időegységre az 1-es és a 2-es bábu egymáson átlépett volna, azaz az 5. időegységben ütköztek.

Értékelés:

Egyetlen bábu (10,1,10,1 J \Rightarrow NINCS) 1 pont Két bábu, szembe mennek, nem érnek el egymáshoz (10,2,1,1 J,10 B \Rightarrow NINCS) 2 pont Két bábu, szembe mennek, egy helyre lépnének (10,2,10,1 J 5 B \Rightarrow 2) 2 pont Két bábu, egy irányba mennek, egy helyre lépnének (10,2,10,3 B,5 B \Rightarrow 3) 2 pont Két bábu, ellenkező irányba mennek, egy helyre lépnének (10,2,20,2 B,8 J \Rightarrow 6) 3 pont Két bábu, ellenkező irányba mennek, átlépnének egymáson (10,2,20,2 B,9 J \Rightarrow 6) 3 pont Két bábu, szembe mennek, átlépnének egymáson (10,2,10,1 J 6 B ⇒3) 3 pont 4 bábu, 2 ütközés (10,4,10,1 B,7 J,8 J,10 J \Rightarrow 1) 3 pont Véletlen közepes teszt (100,3,100,32 B,45 J,87 B \Rightarrow 21) 3 pont Véletlen nagy teszt (100,5,100,12 J,98 B,45 J,44 B,92 B \Rightarrow 16)

3. feladat: Járdakövezés (25 pont)

Egy N (1\leq N\leq 80) egység hosszú járdát 1 és 2 méretű lapokkal szeretnénk kikövezni. Hányféleképpen lehet ezt megtenni?

Készíts programot (lapok.pas, ...), amely kiszámítja, hogy egy N egység hosszú járdát hányféleképpen lehet kikövezni 1 és 2 méretű lapokkal!

Példa: N=4 egység hosszú járdát 5-féleképpen lehet kikövezni, a kikövezési lehetőségei:

	11	•	Č
Bemenet:	Kimenet:		
A járda hossza? 4	A kikövezése	ek száma: 5	
Értékelés:			
$N=1 \rightarrow 1$			2 pont
$N=2 \rightarrow 2$			2 pont

Nemes Tihamér OKSzTV 2010	Második forduló	I. korcsoport: 5-8. osztályosok
$N=3 \rightarrow 3$		2 pont
$N=5 \rightarrow 8$		3 pont
$N=6 \rightarrow 13$		3 pont
$N=10 \rightarrow 89$		3 pont
$N=20 \rightarrow 10946$		3 pont
$N=50 \rightarrow 20365011074$		3 pont
$N=80 \rightarrow 37889062373143906$		4 pont

Elérhető összpontszám: 75 pont + 25 pont az 1. fordulóból2

Értékelési útmutató 3. oldal 2010.01.09. 9-12 óra

Kérjük a tisztelt kollégákat, hogy az egységes értékelés érdekében az alábbi eljárást alkalmazzák:

- 1. Az értékelő gépen hozzák létre a \NT2 könyvtárat.
- 2. Másolják be a \NT2 könyvtárba az NT2.EXE állományt, amely jelszóval védett önkibontós ARJ állomány (a tesztadatokat és az értékelő programot tartalmazza), és indítsák el az NT2.EXE −g<jelszó> paranccsal (a jelszót a ⇔ jelek nélkül kell beírni). A NT2.EXE állományt és a jelszót mindenkihez időben eljuttatjuk.
- 3. Minden versenyző számára hozzanak létre egy külön könyvtárat, és ezekbe másolják be, majd fordítsák le a versenyzők programjait (a feladatleírásban szereplő néven).
- 4. Egy versenyző értékelése:
- A. Az aktuális könyvtár legyen a versenyző könyvtára.
- B. Adják ki a \NT2\T2 parancsot, amely lefuttatja a versenyző programjait minden tesztesetre. Ha a végrehajtás megszakad, vagy meg kell szakítani, mert letelt a 60 másodperc, akkor ismét a T2 parancsot kell kiadni, mindaddig, amíg az "ÉRTÉKELÉS BEFEJEZŐDÖTT" üzenet meg nem jelenik a képernyőn. (A futtató tudja, hogy honnan kell folytatnia.). Ezt követően automatikusan elindul a megoldásokat értékelő program, amely összesítést készít a versenyző könyvtárában EREDMENY.TXT néven, és az eredményt a képernyőre is kiírja.

1. feladat: Kép (20 pont)

Ugyanarról a területről két időpontban készítettünk fényképet. A fényképek négy széléről le szeretnénk vágni azt a részt, amelyek egyformák.

Készíts programot (kep.pas, ...), amely megadja hogy a kép 4 széléről maximum mekkora téglalapok vághatók le!

A kep.be szöveges állomány első sorában a fényképek sorai és oszlopai száma van (1≤N,M≤1000), egy szóközzel elválasztva. A következő N sorban az első kép, az azt követő N sorban a második kép képpontjai vannak. Minden sor M képpont leírását tartalmazza, egymástól egy-egy szóközzel elválasztva. A képpontokat egy 0 és 255 közötti fényességértékkel adjuk meg.

A kep. ki szöveges állomány első sorába a legnagyobb balról, alulról, jobbról, illetve felülről levágható téglalap szélességét kell írni!

Példa:

k∈	p.	.be	€							k€	ep.	. k	Ĺ
8	10)								1	1	3	2
1	1	1	1	1	1	1	1	1	1				
2	2	2	2	2	3	3	3	3	3				
2	2	2	2	2	2	2	2	2	2				
2	2	2	2	2	2	5	5	5	5				
1	1	1	1	1	1	1	1	1	1				
1	1	1	1	1	1	1	1	1	1				
1	1	1	1	1	1	1	1	1	1				
0	0	0	0	0	0	0	0	0	0				
1	1	1	1	1	1	1	1	1	1				
2	2	2	2	2	3	3	3	3	3				
2	2	9	9	2	2	2	2	2	2				
2	2	2	2	2	2	5	5	5	5				
1	1	1	1	1	1	1	1	1	1				
1	3	1	1	3	1	1	1	1	1				
1	1	1	1	1	1	5	1	1	1				
0	0	0	0	0	0	0	0	0	0				

Értékelés:

Egyetlen pont	1 pont
Egy sorban több pont	2 pont
Egy oszlopban több pont	2 pont
Téglalap bal felső és jobb alsó sarka	3 pont

Értékelési útmutató 1. oldal 2010.01.09. 9-14 óra

Nemes Tihamér OKSzTV 2010	Második forduló	II. korcsoport: 9-10. osztályosok
Téglalap bal alsó és jobb felső sarka	ı	3 pont
Téglalap belsejében is vannak külör	3 pont	
Téglalap szélei, de nem a sarka		3 pont
Véletlen nagy teszt		3 pont

2. feladat: Játék (20 pont)

Egy játéktáblán a 0. időegységben L bábu van. Mindegyiket elindítjuk valamerre. Egy időegység alatt mindegyik a neki megfelelő távolságra mozdul el, a tábla szélére érve megállnak. Lehetséges, hogy előbb-utóbb két bábu összeütközik: ugyanarra a helyre lépnének vagy átlépnének egymáson.

Írj programot (tabla.pas, ...), amely megadja, hogy K időegységen belül mikor ütközik legelőször két bábu!

A tabla.be szöveges állomány első sorában a játéktábla sorai és oszlopai száma ($1 \le N, M \le 100$), a bábuk száma ($1 \le L \le 10$) és az időtartam ($1 \le K \le 100000$) van, egyetlen szóközzel elválasztva. A következő L sor egy-egy bábu leírását tartalmazza: a kezdő helyét ($1 \le S_i \le N$, $1 \le O_i \le M$) és mozgás irányát ($X_i, \in \{F, L, J, B\}$ – fel, le, jobbra, balra), egy-egy szóközzel elválasztva.

A tabla.ki szöveges állomány egyetlen sorába az első ütközés időpontját kell írni! Ha K időegységen belül nincs ütközés, akkor -1-et kell kiírni!

Példa:

tabla.be	tabla.ki
7 10 3 100	3
4 3 J	
2 6 F	
4 8 B	

Magyarázat: A bábuk helyzete időegységenként:

```
1: (4,4), (1,6), (4,7)
2: (4,5), (1,6), (4,6)
3: (4,6), (1,6), (4,5)
```

A 3. időegységre az 1-es és a 3-as bábu egymáson átlépett volna, azaz a 3. időegységben ütköztek.

Értékelés:

Egyetlen bábu	1 pont
Két bábu, nincs ütközés	1 pont
Két bábu, szembe mennek, egy helyre lépnének	2 pont
Két bábu, szembe mennek, átlépnének egymáson	2 pont
Két bábu, egyik ellép a másik elől	2 pont
Két bábu, egyik a szélén áll, mire a másikkal ütközik	3 pont
4 bábu, 2 ütközés	3 pont
Véletlen közepes teszt	3 pont
Véletlen nagy teszt	3 pont

3. feladat: Ütemezés (20 pont)

Egy vállalkozó alkatrészek gyártásával foglalkozik. Minden alkatrészen kétféle műveletet kell elvégeznie, A és B műveletet. Mindkét művelet elvégzésére egy-egy munkagépe van, amelyek egymástól függetlenül tudnak dolgozni, de egy alkatrészen egyszerre csak egyik mű-

Értékelési útmutató 2. oldal 2010.01.09. 9-14 óra

velet végezhető. Az alkatrészen a két műveletet tetszőleges sorrendben el lehet végezni. Minden legyártandó alkatrészre ismert, hogy mennyi időt igényel az A, valamint a B művelet elvégzése.

Készíts programot (utemez.pas, ...), amely kiszámítja, hogy legkevesebb mennyi idő alatt lehet legyártani az összes alkatrészt!

A utemez be szöveges állomány első sorában az alkatrészek N ($2 \le N \le 1000$) száma van. Az alkatrészeket az 1,...N számokkal azonosítjuk. A második és a harmadik sor pontosan N egész számot tartalmaz egy-egy szóközzel elválasztva, a legyártandó alkatrészeken elvégzendő A, illetve B műveletek idejét. A második sorban az i-edik szám az i-edik alkatrészen végzendő A művelet ideje. A harmadik sorban az i-edik szám pedig az i-edik alkatrészen végzendő B művelet ideje. A második és harmadik sorban lévő számok mindegyike I és 5000 közötti érték.

A utemez . ki szöveges állomány első sora egy egész számot tartalmazzon, azt a legkisebb *T* időt, amely alatt a két gép le tudja gyártani az összes alkatrészt!

Példa:

utemez.be	utemez.ki	
3	50	
4 20 15		
11 30 3		
Értékelés:		
A két összeg egyenlő		1 pont
Kis méret		1 pont
Közepes méret, egyszerű eset		2 pont
Közepes méret, nem egyszerű eset		2 pont
Közepes méret, véletlen bemenet		2 pont
Nagy méret, egyszerű eset		3 pont
Nagy méret, nem egyszerű eset		3 pont
Véletlen közepes teszt, egyszerű eset		3 pont
Véletlen nagy teszt, nem egyszerű eset		3 pont
4. feladat: Járdakövezés (15 pont)		
Egy N egység hosszú járdát 1, 2 és 3 pen lehet ezt megtenni?	3 méretű lapokkal szeretnénk kikövezni. Hányf	élekép-
Készíts programot (kovezes.pas járdát hányféleképpen lehet kikövezni 1	s,), amely kiszámítja, hogy egy N egység , 2 és 3 méretű lapokkal!	hosszú
A kovezes.be szöveges állomány	v egyetlen sorában a járda hossza (1≤N≤70) van	
A kovezes.ki szöveges állomán talmazza!	y egyetlen sora a lehetséges kikövezések szár	nát tar-
<u>Példa:</u>		
kovezes.be	kovezes.ki	
4	7	

Értékelési útmutató 3. oldal 2010.01.09. 9-14 óra

Nemes Tihamér OKSzTV 2010	Második forduló	II. korcsoport: 9-10. osztályosok
Értékelés:		
$N=1 \rightarrow 1$		1 pont
$N=2 \rightarrow 2$		1 pont
$N=3 \rightarrow 4$		1 pont
$N=5 \rightarrow 13$		2 pont
$N=6 \rightarrow 24$		2 pont
$N=10 \rightarrow 274$		2 pont
$N=20 \rightarrow 121415$		2 pont
$N=50 \rightarrow 10562230626642$		2 pont
$N=70 \rightarrow 2073693258389777176$		2 pont

Elérhető összpontszám: 75 pont + 25 pont az 1. fordulóból

Értékelési útmutató 4. oldal 2010.01.09. 9-14 óra