Neural Networks

Matt R

June 28, 2022

Contents

Ι	Nε	eural Networks and Deep Learning	2
1	Log	istic Regression	3
	1.1	The Gradient	4
	1.2	Implementation in Python via numpy	7
	1.3	Implementation in Python via sklearn	11
2	Net	ıral Networks: A Single Hidden Layer	13
	2.1	Activation Functions	15
		2.1.1 The Sigmoid Function	15
		2.1.2 The Hyperbolic Tangent Function	16
		2.1.3 The Rectified Linear Unit Function	16
		2.1.4 The Softmax Function	17
	2.2	Backward Propagation	18
3	Deep Neural Networks		25
	3.1	Backward Propagation	25
	3.2	Implementation in Python via numpy	26
	3.3	Implementation in Python via tensorflow	30
References			33

Part I Neural Networks and Deep Learning

1 Logistic Regression

We begin with a review of binary classification and logistic regression. To this end, suppose we have we have training examples $x \in \mathbb{R}^{n \times N}$ with binary labels $y \in \{0,1\}^{1 \times N}$. We desire to train a model which yields an output a which represents

$$a = \mathbb{P}(y = 1|x).$$

To this end, let $\sigma: \mathbb{R} \to (0,1)$ denote the sigmoid function, i.e.,

$$\sigma(z) = \frac{1}{1 + e^{-z}},$$

and let $w \in \mathbb{R}^{1 \times n}$, $b \in \mathbb{R}$, and let

$$a = \sigma(wx + b).$$

To analyze the accuracy of model, we need a way to compare y and a, and ideally this functional comparison can be optimized with respect to (w, b) in such a way to minimize an error. To this end, we note that

$$\mathbb{P}(y|x) = a^y (1-a)^{1-y},$$

or rather

$$\mathbb{P}(y = 1|x) = a, \qquad \mathbb{P}(y = 0|x) = 1 - a,$$

so $\mathbb{P}(y|x)$ represents the corrected probability. Now since we want

$$a \approx 1$$
 when $y = 1$,

and

$$a \approx 0$$
 when $y = 0$.

and $0 \le a \le 1$, any error using differences won't be refined enough to analyze when tuning the model. Moreover, since introducing the sigmoid function, our usual mean-squared-error function won't be convex. This leads us to apply the log function, which when restricted to (0,1) is a bijective mapping of $(0,1) \to (-\infty,0)$. This leads us to define our log-loss function

$$L(a, y) = -\log(\mathbb{P}(y|x))$$

= $-\log(a^{y}(1-a)^{1-y})$
= $-[y\log(a) + (1-y)\log(1-a)],$

and finally, since we wish to analyze how our model performs on the entire training set, we need to average our log-loss functions to obtain our cost function $\mathbb J$ defined by

$$\mathbb{J}(w,b) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{L}(a_j, y_j)
= -\frac{1}{N} \sum_{j=1}^{N} \left[y_j \log(a_j) + (1 - y_j) \log(1 - a_j) \right]
= -\frac{1}{N} \sum_{j=1}^{N} \left[y_j \log(\sigma(wx_j + b)) + (1 - y_j) \log(1 - \sigma(wx_j + b)) \right].$$

1.1 The Gradient

We wish to compute the gradient of our cost function \mathbb{J} with respect to our trainable parameters, $w \in \mathbb{R}^{1 \times n}$ and $b \in \mathbb{R}$. To this end, we define the functions

$$\phi: \mathbb{R}^{1 \times n} \times \mathbb{R}^n \to \mathbb{R}, \qquad \phi(w, x) = wx,$$

and

$$\psi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad \psi(b, u) = u + b.$$

Then our logistic regression model for a single example follows the following network layout:

$$\mathbb{R}^{1 \times n} \qquad \mathbb{R} \qquad \{0, 1\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Let's now analyze our reverse differentials for this type of composition:

$$\mathbb{R}^{1 \times n} \qquad \mathbb{R} \qquad \{0, 1\}$$

$$\downarrow r_1 \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathbb{R}^n \longleftarrow \phi \longleftarrow \psi \longleftarrow \psi \longleftarrow r \longrightarrow \mathbb{L} \longleftarrow \mathbb{R}$$

1.

$$\phi: \mathbb{R}^{1 \times n} \times \mathbb{R}^n \to \mathbb{R}, \qquad u := \phi(w, x) = wx.$$

Then for for any $(w,x) \in \mathbb{R}^{1 \times n} \times \mathbb{R}^n$ and any $\eta \in T_w \mathbb{R}^{1 \times n}$, we have that

$$d_1\phi_{(w,x)}(\eta) = \eta x$$

= $R_x(\eta)$,

where R_x is the right-multiplication operator. It then follows that for any $\zeta \in T_u\mathbb{R}$, that

$$\langle r_1 \phi_{(w,x)}(\zeta), \eta \rangle_{\mathbb{R}^{1 \times n}} = \langle \zeta, d_1 \phi_{(w,x)}(\eta) \rangle_{\mathbb{R}}$$
$$= \langle \zeta, R_x(\eta) \rangle_{\mathbb{R}}$$
$$= \langle R_{x^T}(\zeta), \eta \rangle_{\mathbb{R}^{1 \times n}},$$

and hence that

$$r_1\phi_{(w,x)} = R_{x^T}.$$

2.

$$\psi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad z := \psi(b, u) = u + b.$$

Then for any $(b, u) \in \mathbb{R} \times \mathbb{R}$ and any $\xi \in T_u \mathbb{R}$, we have that

$$d\psi_{(b,u)}(\xi) = \mathbb{1}_{\mathbb{R}}(\xi),$$

and similarly for any $\eta \in T_b\mathbb{R}$, we have that

$$\overline{d}_1\psi_{(b,u)}(\eta) = \mathbb{1}_{\mathbb{R}}(\eta).$$

We then immediately have that

$$r\psi_{(b,u)}=\mathbb{1}_{\mathbb{R}},$$

and

$$\overline{r}_1\psi_{(b,u)}=\mathbb{1}_{\mathbb{R}}.$$

3.

$$\sigma: \mathbb{R} \to \mathbb{R}, \qquad a := \sigma(z) = \frac{1}{1 + e^{-z}}.$$

Then

$$r\sigma_z = \frac{e^{-z}}{(1+e^{-z})^2}$$

$$= \frac{1}{1+e^{-z}} \frac{e^{-z}}{1+e^{-z}}$$

$$= \sigma(z) \frac{1+e^{-z}-1}{1+e^{-z}}$$

$$= \sigma(z)(1-\sigma(z))$$

$$= a(1-a).$$

4.

$$\mathbb{L}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad \mathbb{L}(a, y) = -[y \log(a) + (1 - y) \log(1 - a)].$$

Then

$$r\mathbb{L}_{(a,y)} = -\frac{y}{a} + \frac{1-y}{1-a}$$

We now compute the gradients with respect to w and b. To this end,

$$\frac{\partial \mathbb{J}}{\partial w} = \frac{1}{N} \sum_{j=1}^{N} r_1 \phi_{w,x_j} \circ r \psi_{(b,u_j)} \circ r \sigma_{z_j} \circ r \mathbb{L}_{(a_j,y_j)}$$

$$= \frac{1}{N} \sum_{j=1}^{N} R_{x_j^T} \circ \left[-\frac{y_j}{a_j} + \frac{1 - y_j}{1 - a_j} \right] \cdot (a_j (1 - a_j))$$

$$= \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j) x_j^T$$

$$= \frac{1}{N} (a - y) x^T,$$

and

$$\frac{\partial \mathbb{J}}{\partial b} = \frac{1}{N} \sum_{j=1}^{N} \overline{r}_1 \psi_{b,u_j} \circ r \sigma_{z_j} \circ r \mathbb{L}_{(a_j,y_j)}$$
$$= \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j)$$

1.2 Implementation in Python via numpy

Here we include the general method of coding a logistic regression model with L^2 -regularization via the classical numpy library.

```
1 #! python3
з import numpy as np
5 from mlLib.utils import apply_activation
  class LinearParameters():
      def __init__(self, dims, bias=True, seed=1):
           Parameters:
10
           _____
11
           dims : tuple(int, int)
12
           bias : Boolean
13
               Default : True
14
           seed : int
15
               Default : 1
16
           Returns:
18
           None
20
21
           np.random.seed(seed)
22
           self.dims = dims
           self.bias = bias
24
           self.w = np.random.randn(*dims) * 0.01
25
           if bias:
26
               self.b = np.zeros((dims[0], 1))
27
28
      def forward(self, x):
29
30
           Parameters:
31
32
           x : array_like
33
34
           Returns:
35
           -----
           z : array_like
37
38
           z = np.einsum('ij,jk', self.w, x)
39
           if self.bias:
40
               z += self.b
41
```

```
return z
43
44
      def backward(self, dz, x):
45
46
           Parameters:
47
           _____
48
           dz : array_like
49
           x : array_like
50
51
           Returns:
52
           _____
53
           None
54
55
           if self.bias:
56
               self.db = np.sum(dz, axis=1, keepdims=True)
57
               assert (self.db.shape == self.b.shape)
58
59
           self.dw = np.einsum('ij,kj', dz, x)
60
           assert (self.dw.shape == self.w.shape)
61
62
       def update(self, learning_rate=0.01):
63
64
           Parameters:
65
66
           learning_rate : float
67
               Default: 0.01
69
70
           Returns:
71
           None
72
           11 11 11
73
           w = self.w - learning_rate * self.dw
74
           self.w = w
75
76
           if self.bias:
77
               b = self.b - learning_rate * self.db
78
               self.b = b
79
80
81 class LogisticRegression():
       def __init__(self, lp_reg):
82
83
           Parameters:
84
           lp_reg : int
85
               2 : L_2 Regularization is imposed
86
               1 : L_1 Regularization is imposed
87
               0 : No regulariation is imposed
88
```

```
Returns:
90
            -----
91
            None
92
93
            self.lp\_reg = lp\_reg
94
95
       def predict(self, params, x):
97
98
            Parameters:
            _____
99
            params : class[LinearParameters]
100
            x : array_like
101
102
            Returns:
103
            -----
104
            a : array_like
105
106
            dg : array_like
107
            z = params.forward(x)
108
            a, dg = apply_activation(z, 'sigmoid')
109
            return a, dg
110
111
       def cost_function(self, params, x, y, lambda_=0.01, eps=1e-8):
112
113
            Parameters:
114
            -----
115
            params : class[LinearParameters]
116
117
            x : array_like
            y : array_like
118
            lambda_ : float
119
                Default : 0.01
120
            eps : float
121
                Default : 1e-8
122
123
            Returns:
124
125
            cost : float
126
127
            n = y.shape[1]
128
129
            R = np.sum(np.abs(params.w) ** self.lp_reg)
130
            R *= (lambda_ / (2 * n))
131
132
            a, _ = self.predict(params, x)
133
            a = np.clip(a, eps, 1 - eps)
134
135
            J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
136
```

```
137
            cost = float(np.squeeze(J + R))
138
139
            return cost
140
141
       def fit(self, x, y, learning_rate=0.1, lambda_=0.01, seed=1, num_iters=10000):
142
            11 11 11
            Parameters:
144
            -----
145
            x : array_like
146
            y : array_like
147
            learning_rate : float
148
                Default : 0.1
149
            lambda_ : float
150
                Default : 0.0
151
            num_iters : int
152
                Default : 10000
153
154
            Returns:
155
156
            costs : List[floats]
157
            params : class[Parameters]
            11 11 11
159
            dims = (y.shape[0], x.shape[0])
160
            n = x.shape[1]
161
            params = LinearParameters(dims, True, seed)
162
163
            if self.lp_reg == 0:
164
                lambda_ = 0.0
165
166
            costs = []
167
            for i in range(num_iters):
168
                a, _ = self.predict(params, x)
169
                cost = self.cost_function(params, x, y, lambda_)
170
                costs.append(cost)
171
                dz = (a - y) / n
172
                params.backward(dz, x)
173
                params.update(learning_rate)
174
175
                if i % 1000 == 0:
176
                     print(f'Cost_after_iteration_{i}:_{cost}')
177
178
179
            return params
180
       def evaluate(self, params, x):
181
182
            Parameters:
183
```

```
184
            params : class[Parameters]
185
            x : array_like
186
187
            Returns:
188
189
            y_hat : array_like
191
            a, _ = self.predict(params, x)
192
            y_hat = (\sim(a < 0.5)).astype(int)
193
194
            return y_hat
195
196
       def accuracy(self, params, x, y):
197
198
            Parameters:
199
200
            params : class[Parameters]
201
            x : array_like
202
            y : array_like
203
204
205
            Returns:
            _____
206
            accuracy : float
207
208
            y_hat = self.evaluate(params, x)
209
210
            accuracy = np.sum(y_hat == y) / y.shape[1]
211
212
            return accuracy
213
```

1.3 Implementation in Python via sklearn

Here we include the general method of coding a logistic regression model via scikit-learn's modeling library.

```
#! python3

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

def main(csv):
    df = pd.read_csv(csv)
    dataset = df.values
```

```
x = dataset[:, :10]
11
12
      y = dataset[:, 10]
13
      x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
14
      mu = np.mean(x, axis=0, keepdims=True)
15
      var = np.var(x, axis=0, keepdims=True)
16
      x_train = (x_train - mu) / np.sqrt(var)
      x_{test} = (x_{test} - mu) / np.sqrt(var)
18
19
      log_reg = LogisticRegression()
20
      log_reg.fit(x_train, y_train)
      train_acc = log_reg.score(x_train, y_train)
22
      print(f'The_accuracy_on_the_training_set:_{train_acc}.')
      test_acc = log_reg.score(x_test, y_test)
^{24}
      print(f'The_accuracy_on_the_test_set:_{test_acc}.')
```

2 Neural Networks: A Single Hidden Layer

Suppose we wish to consider the binary classification problem given the training set (x, y) with $x \in \mathbb{R}^{n^{[0]} \times N}$ and $y \in \{0, 1\}^{1 \times N}$. Usually with logistic regression we have the following type of structure:

$$\mathbb{R}^{1 \times n^{[0]}} \qquad \mathbb{R} \qquad \{0, 1\} \\
\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$$

Such a structure will be called a *network*, and the *a* is known as the *activation node*. Logistic regression can be too simplistic of a model for many situations, e.g., if the dataset isn't linearly separable (i.e., there doesn't exist some well-defined decision boundary built from a linear-surface), then logistic regression won't give a high-accuracy model. To modify this model to handle more complex situations, we introduce a new "hidden layer" of nodes with their own (possibly different) activation functions. That is, we consider a network of the following form:

$$\mathbb{R}^{n^{[1]}\times n^{[0]}} \quad \mathbb{R}^{n^{[1]}} \quad \mathbb{R}^{1\times n^{[1]}} \quad \mathbb{R} \quad \{0,1\}$$

$$w^{[1]} \downarrow \quad b^{[1]} \downarrow \quad w^{[2]} \downarrow \quad b^{[2]} \downarrow \quad y \downarrow$$

$$\mathbb{R}^{n^{[0]}} \stackrel{a^{[0]} := x}{\longrightarrow} \phi^{[1]} \stackrel{u^{[1]}}{\longrightarrow} \psi^{[1]} \stackrel{z^{[1]}}{\longrightarrow} G^{[1]} \stackrel{a^{[1]}}{\longrightarrow} \phi^{[2]} \stackrel{u^{[2]}}{\longrightarrow} \psi^{[2]} \stackrel{z^{[2]}}{\longrightarrow} G^{[2]} \stackrel{a^{[2]}}{\longrightarrow} \mathbb{L} \stackrel{\mathbb{L}}{\longrightarrow} \mathbb{R}$$

In the above diagram, we use ·^[0] to denote everything in layer-0, i.e., the input layer; we use ·^[1] to denote everything in layer-1, i.e., the hidden layer; and we use ·^[2] to denote everything in layer-2, i.e., the output layer. Moreover, we have the functions (where we suppress the layer-notation)

$$\phi: \mathbb{R}^{n \times m} \times \mathbb{R}^m \to \mathbb{R}^n, \qquad u := \phi(w, a) = wa,$$

$$\psi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, \qquad z:=\psi(b,u)=u+b,$$

$$G: \mathbb{R}^n \to \mathbb{R}^n, \qquad a := G(z),$$

where G is the broadcasting of something activation function $g: \mathbb{R} \to \mathbb{R}$.

Definition 2.1. Suppose $g : \mathbb{R} \to \mathbb{R}$ is any function. Then we say $G : \mathbb{R}^n \to \mathbb{R}^n$ is the **broadcast** of g from \mathbb{R} to \mathbb{R}^n if

$$G(v) = G(v^i e_i)$$
$$= g(v^i)e_i,$$

where $v \in \mathbb{R}^n$ and $\{e_i : 1 \le i \le n\}$ is the standard basis for \mathbb{R}^n . In practice, we will sometimes write g = G for a broadcasted function, and let the context determine the meaning of g.

castingDifferential

Lemma 2.2. Suppose $g: \mathbb{R} \to \mathbb{R}$ is any smooth function and $G: \mathbb{R}^n \to \mathbb{R}^n$ is the broadcasting of g from \mathbb{R} to \mathbb{R}^n . Then the differential $dG_z: T_z\mathbb{R}^n \to T_{G(z)}\mathbb{R}^n$ is given by

$$dG_z(\xi) = [g'(z^i)] \odot [\xi^i],$$

where \odot is the Hadamard product (also know as component-wise multiplication), and has matrix-representation in $\mathbb{R}^{m \times m}$ given by

$$[dG_z]_j^i = \delta_j^i g'(z^i).$$

We use the notation

$$G'(z) := [g'(z^i)] \in \mathbb{R}^n$$

and thus may write

$$dG_z(v) = G'(z) \odot \xi.$$

Furthermore, we have that for $\zeta \in T_{G(z)}\mathbb{R}^n$,

$$rG_z(\zeta) = G'(z) \odot \zeta.$$

Proof: We calculate

$$dG_z(\xi) = \frac{d}{dt} \Big|_{t=0} G(z + t\xi)$$

$$= \frac{d}{dt} \Big|_{t=0} (g(z^i + t\xi^i))$$

$$= (g'(z^i)\xi^i)$$

$$= [g'(z^i)] \odot [\xi^i],$$

and letting $e_1, ... e_m$ denote the usual basis for $T_z \mathbb{R}^m$ (identified with \mathbb{R}^m), we see that

$$dG_z(e_j) = [g'(z^i)] \odot e_j$$

= $g'(z^j)e_j$,

from which conclude that dG_z is diagonal with (j, j)-th entry $g'(z^j)$ as desired.

Furthermore, for $\zeta \in T_{G(z)}\mathbb{R}^n$, we have that

$$\langle rG_z(\zeta), \xi \rangle_{\mathbb{R}^n} = \langle \zeta, dG_z(\xi) \rangle_{\mathbb{R}^n}$$

$$= \langle \zeta, G'(z) \odot \xi \rangle_{\mathbb{R}^n}$$

$$= \langle G'(z) \odot \zeta, \xi \rangle_{\mathbb{R}^n},$$

and the result follows.

Returning to our network, we see call the full composition of network functions resulting in $a^{[2]}$, the forward propagation. That is, given an example $x \in \mathbb{R}^{n^{[0]}}$, we have that

П

$$a^{[2]} = G^{[2]}(\psi^{[2]}(b^{[2]}, \phi^{[2]}(w^{[2]}, G^{[1]}(\psi^{[1]}(b^{[1]}, \phi^{[1]}(w^{[1]}, x))))).$$

2.1 Activation Functions

There are mainly only a handful of activating functions we consider for our non-linearity conditions (but many more built from these that follow).

2.1.1 The Sigmoid Function

We have the sigmoid function $\sigma(z)$ given by

$$\sigma : \mathbb{R} \to (0,1), \qquad \sigma(z) = \frac{1}{1 + e^{-z}}.$$

We note that since

$$1 - \sigma(z) = 1 - \frac{1}{1 + e^{-z}}$$
$$= \frac{e^{-z}}{1 + e^{-z}}$$

$$\sigma'(z) = \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{1}{1 + e^{-z}} \cdot \frac{e^{-z}}{1 + e^{-z}}$$

$$= \sigma(z)(1 - \sigma(z))$$

2.1.2 The Hyperbolic Tangent Function

We have the hyperbolic tangent function tanh(z) given by

$$\tanh : \mathbb{R} \to (-1, 1), \qquad \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}.$$

We then calculate

$$\tanh'(z) = \frac{(e^z + e^{-z})(e^z + e^{-z}) - (e^z - e^{-z})(e^z - e^{-z})}{(e^z + e^{-z})^2}$$
$$= \frac{(e^z + e^{-z})^2}{(e^z + e^{-z})^2} - \frac{e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$
$$= 1 - \tanh^2(z).$$

Furthermore, we note that

$$\frac{1}{2}\left(\tanh\left(\frac{z}{2}\right) + 1\right) = \sigma(z).$$

Indeed,

$$1 + \tanh \frac{z}{2} = 1 + \frac{e^{\frac{z}{2}} - e^{-\frac{z}{2}}}{e^{\frac{z}{2}} + e^{-\frac{z}{2}}}$$

$$= \frac{e^{\frac{z}{2}} + e^{-\frac{z}{2}} + e^{\frac{z}{2}} - e^{-\frac{z}{2}}}{e^{\frac{z}{2}} + e^{-\frac{z}{2}}}$$

$$= 2\frac{e^{\frac{z}{2}}}{e^{\frac{z}{2}} + e^{-\frac{z}{2}}}$$

$$= 2\frac{1}{1 + e^{-z}}$$

$$= 2\sigma(z),$$

as desired.

2.1.3 The Rectified Linear Unit Function

We have the leaky-ReLU function $ReLU(z;\beta)$ given by

$$ReLU : \mathbb{R} \to \mathbb{R}, \qquad ReLU(z; \beta) = \max\{\beta z, z\},$$

for some $\beta > 0$ (typically chosen very small).

We have the rectified linear unit function ReLU(z) given by setting $\beta=0$ in the leaky-ReLu function, i.e.,

$$ReLU : \mathbb{R} \to [0, \infty), \qquad ReLU(z) = ReLU(z; \beta = 0) = \max\{0, z\}.$$

We then calculate

$$ReLU'(z;\beta) = \begin{cases} \beta & z < 0 \\ 1 & z \ge 0 \end{cases}$$
$$= \beta \chi_{(-\infty,0)}(z) + \chi_{[0,\infty)}(z),$$

where

$$\chi_A(z) = \begin{cases} 1 & z \in A \\ 0 & z \notin A \end{cases},$$

is the indicator function.

2.1.4 The Softmax Function

We finally have the softmax function softmax(z) given by

softmax:
$$\mathbb{R}^m \to \mathbb{R}^m$$
, softmax $(z) = \frac{1}{\sum_{j=1}^m e^{z^j}} \begin{pmatrix} e^{z^1} \\ e^{z^2} \\ \vdots \\ e^{z^m} \end{pmatrix}$,

which we typically use this function on the outer-layer to obtain a probability distribution over our predicted labels when dealing with multi-class regression. Let

$$S^i = x^i \circ \operatorname{softmax}(z),$$

denote the *i*-th component of $\operatorname{softmax}(z)$, and so we calculate

$$\begin{split} \frac{\partial S^i}{\partial z^j} &= \frac{\partial}{\partial z^j} \left[\left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \right] \\ &= -\left(\sum_{k=1}^m e^{z^k} \right)^{-2} \left(\sum_{k=1}^m e^{z^k} \delta^k_j \right) e^{z^i} + \left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \delta^i_j \\ &= -\left(\sum_{k=1}^m e^{z^k} \right)^{-2} e^{z^j} e^{z^i} + S^i \delta^i_j \\ &= -S^j S^i + S^i \delta^i_j \\ &= S^i (\delta^i_j - S^j). \end{split}$$

That is, as a map $dS_z: T_z\mathbb{R}^m \to T_{S(z)}\mathbb{R}^m$, we have that

$$dS_z = [S^i(\delta^i_j - S_j)]^i_j,$$

and we make note that dS_z is symmetric (i.e., it's also the reverse differential).

2.2 Backward Propagation

We consider a neural network of the form

where we have the functions:

1.

$$G^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \to \mathbb{R}^{n^{[\ell]}}$$

is the broadcasting of the activation unit $g^{[\ell]}: \mathbb{R} \to \mathbb{R}$.

2.

$$\phi^{[\ell]}: \mathbb{R}^{n^{[\ell]} \times n^{[\ell-1]}} \times \mathbb{R}^{n^{[\ell-1]}} \to \mathbb{R}^{n^{[\ell]}}$$

is given by

$$\phi^{[\ell]}(w, x) = wx.$$

3.

$$\psi^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \times \mathbb{R}^{n^{[\ell]}} \to \mathbb{R}^{n^{[\ell]}}$$

is given by

$$\psi^{[\ell]}(b, x) = x + b.$$

4.

$$\mathbb{L}: \mathbb{R}^{n^{[2]}} \times \mathbb{R}^{n^{[2]}} \to \mathbb{R}$$

is the given loss-function.

We now consider back-propagating through the neural network via "reverse exterior differentiation". We represent our various reverse derivatives via the following diagram:

First, we need to consider our individual derivatives:

1. Suppose $G: \mathbb{R}^n \to \mathbb{R}^n$ is the broadcasting of $g: \mathbb{R} \to \mathbb{R}$. Then for $(x, \xi) \in T\mathbb{R}^n$, we have that

$$dG_x(\xi) = G'(x) \odot \xi$$

= diag(G'(x)) \cdot \xi\$

and for any $\zeta \in T_{G(x)}\mathbb{R}^n$, the reverse derivative is given by

$$rG_x(\zeta) = G'(x) \odot \zeta$$

= diag $(G'(x)) \cdot \zeta$.

2. Suppose $\phi: \mathbb{R}^{m \times n} \times \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$\phi(w, x) = wx.$$

Then we have two differentials to consider:

(a) For any $(w, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^n$ and any $\xi \in T_x \mathbb{R}^n$, we have that

$$d\phi_{(w,x)}(\xi) = w\xi$$

= $L_w(\xi)$;

and for any $\zeta \in T_{\phi(w,x)}\mathbb{R}^m$, we have the reverse derivative

$$r\phi_{(w,x)}(\zeta) = w^T \zeta$$

= $L_{w^T}(\zeta)$;

where $L_A(B) = AB$, i.e., left-multiplication by A.

(b) For any $(w, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^n$ and any $\eta \in T_w \mathbb{R}^{m \times n}$ we have that

$$d_1\phi_{(w,x)}(\eta) = \eta x$$

= $R_x(\eta)$;

and for any $\zeta \in T_{\phi(w,x)}\mathbb{R}^m$, we have the reverse derivative

$$r_1 \phi_{(w,x)}(\zeta) = \zeta x^T$$

= $R_{rT}(\zeta)$;

where $R_A(B) = BA$, i.e, right-multiplication by A.

3. Suppose $\psi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is given by

$$\psi(b, x) = x + b.$$

Then we again have two (identical) differentials to consider:

(a) For any $(x, b) \in \mathbb{R}^n \times \mathbb{R}^n$ and any $\xi \in T_x \mathbb{R}^n$, we have that

$$d\psi_{(b,x)}(\xi) = \xi;$$

and for any $\zeta \in T_{\psi(b,x)}\mathbb{R}^n$, we have the reverse derivative

$$r\psi_{(b,x)}(\zeta) = \zeta.$$

(b) For any $(x, b) \in \mathbb{R}^n \times \mathbb{R}^n$ and any $\eta \in T_b \mathbb{R}^n$, we have that

$$d_1\psi_{(b,x)}(\eta)=\eta;$$

and for any $\zeta \in T_{(\psi(b,x)}\mathbb{R}^n$, we have the reverse derivative

$$\overline{r}_1 \psi_{(b,x)}(\zeta) = \zeta.$$

Include the following two results in the Reverse Differential appendix once created.

Proposition 2.3. Suppose we have the compositional diagram

$$\mathbb{R}^n \xrightarrow{f} \mathbb{R}^m \xrightarrow{g} \mathbb{R}^k \xrightarrow{h} \mathbb{R}^l$$

and we let $F = h \circ g \circ f : \mathbb{R}^n \to \mathbb{R}^l$. Then for any $x \in \mathbb{R}^n$ and any $\zeta \in T_{F(x)}\mathbb{R}^l$, the reverse derivative satisfies

$$rF_x(\zeta) = rf_x \circ rg_{f(x)} \circ rh_{g(f(x)}(\zeta).$$

Proof: For any $\xi \in T_x \mathbb{R}^n$ and any $\zeta \in T_{F(x)} \mathbb{R}^l$, we have by definition

$$\langle rF_{x}(\zeta), \xi \rangle_{\mathbb{R}^{n}} = \langle \zeta, dF_{x}(\xi) \rangle_{\mathbb{R}^{l}}$$

$$= \langle \zeta, dh_{g(f(x))} \circ dg_{f(x)} \circ df_{x}(\xi) \rangle_{\mathbb{R}^{l}}$$

$$= \langle rh_{g(f(x))}(\zeta), dg_{f(x)} \circ df_{x}(\xi) \rangle_{\mathbb{R}^{k}}$$

$$= \langle rg_{f(x)} \circ rh_{g(f(x))}(\zeta), df_{x}(\xi) \rangle_{\mathbb{R}^{m}}$$

$$= \langle rf_{x} \circ rg_{f(x)} \circ rh_{g(f(x))}(\zeta), \xi \rangle_{\mathbb{R}^{n}}$$

as desired.

Lemma 2.4. Suppose $f: \mathbb{R}^{n \times m} \to \mathbb{R}^k$, and for $P \in \mathbb{R}^{n \times m}$, let $R = rf_P$. Then $R \in \mathbb{R}^k_n{}^m$ is rank (1,2)-tensor written in coordinates as

$$R = R_i^{\mu}{}_{\nu} \frac{\partial}{\partial X_{\nu}^{\mu}} \otimes dx^i,$$

and the components is given by

$$R_i{}^{\mu}{}_{\nu} = \frac{\partial f^i}{\partial X^{\nu}_{\mu}}$$

Proof: Considering the basis vectors $\frac{\partial}{\partial X_{\mu}^{\nu}} \in T_{P}\mathbb{R}^{n \times m}$ and $\frac{\partial}{\partial x^{i}} \in T_{f(P)}\mathbb{R}^{k}$ we have that

$$\begin{split} R_{i}{}^{\mu}{}_{\nu} &= \left\langle R \left(\frac{\partial}{\partial x^{i}} \right), \frac{\partial}{\partial X_{\mu}^{\nu}} \right\rangle_{F} \\ &= \left\langle \frac{\partial}{\partial x^{i}}, df_{P} \left(\frac{\partial}{\partial X_{\mu}^{\nu}} \right) \right\rangle_{\mathbb{R}^{k}} \\ &= \left\langle \frac{\partial}{\partial x^{i}}, \frac{\partial f^{\alpha}}{\partial X_{\mu}^{\nu}} \frac{\partial}{\partial x^{\alpha}} \right\rangle_{\mathbb{R}^{k}} \\ &= \delta_{i\alpha} \frac{\partial f^{\alpha}}{\partial X_{\mu}^{\nu}}, \end{split}$$

as desired.

Returning to our neural network, for each point (x_j, y_j) in our training set, we first let

$$F_i := \mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]} \circ \phi^{[1]},$$

and we have our cost function

$$\mathbb{J} := \frac{1}{N} \sum_{j=1}^{N} F_j.$$

We use the following notation for our inputs and outputs of our respective functions:

 $\phi^{[\ell]}:(w^{[\ell]},a^{[\ell-1]}{}_i)\mapsto u^{[\ell]}{}_i,$

 $\psi^{[\ell]}:(b^{[\ell]},u^{[\ell]}{}_i)\mapsto z^{[\ell]}{}_i,$

 $G^{[\ell]}: z^{[\ell]}{}_{i} \mapsto a^{[\ell]}{}_{i}.$

Let $p = (w^{[1]}, b^{[1]}, w^{[2]}, b^{[2]})$ is a point in our parameter space. Suppose we wish to apply gradient descent with learning rate $\alpha \in T_{\mathbb{J}(p)}\mathbb{R}$, we would define our parameter updates via

$$w^{[1]} := w^{[1]} - r_1 \mathbb{J}_p(\alpha)$$

$$b^{[1]} := b^{[1]} - \overline{r}_1 \mathbb{J}_p(\alpha)$$

$$w^{[2]} := w^{[2]} - r_2 \mathbb{J}_p(\alpha)$$

$$b^{[2]} := b^{[2]} - \overline{r}_2 \mathbb{J}_p(\alpha).$$

Moreover, by linearity (and independence of our training data), we see that

$$r\mathbb{J}_p = \frac{1}{N} \sum_{j=1}^N r(F_j)_p,$$

so we need only calculate the various reverse derivatives of F_i .

To this end, we suppress the index j when we're working with the compositional function F. We calculate the reverse derivatives in the order traversed in our back-propagating path along the network.

1. $\overline{r}_2 \mathbb{J}_p$:

$$\begin{split} \overline{r}_2 F_p &= \overline{r}_2 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]})_p \\ &= \overline{r}_2 \psi_p^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= \mathbb{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\overline{r}_2 \mathbb{J}_p = \frac{1}{N} \sum_{i=1}^N r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}$$

 $2. r_2 \mathbb{J}_p$:

$$\begin{split} r_2 F_p &= r_2 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]})_p \\ &= r_2 \phi_p^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{a^{[1]T}} \circ \mathbb{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{a^{[1]T}} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$r_2 \mathbb{J}_p = \frac{1}{N} \sum_{j=1}^{N} R_{a^{[1]T}_j} \circ rG_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}.$$

Notice that this is not just a sum after matrix multiplication since we have composition with an operator, namely, $R_{a^{[1]T_j}}$. However, since the learning rate $\alpha \in T_{\mathbb{J}(p)}\mathbb{R} \cong \mathbb{R}$, which may pass through the aforementioned linear composition, we conclude that

$$\begin{split} r_2 \mathbb{J}_p &= \frac{1}{N} \sum_{j=1}^N R_{a^{[1]T}_j} \circ r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j} \\ &= \frac{1}{N} \sum_{j=1}^N r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j} a^{[1]T}_j. \end{split}$$

3. $\overline{r}_1 \mathbb{J}_p$:

$$\begin{split} \overline{r}_1 F_p &= \overline{r}_1 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]})_p \\ &= \overline{r}_1 \psi_p^{[1]} \circ r G_{z^{[1]}}^{[1]} \circ r \phi_{a^{[1]}}^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= \mathbbm{1} \circ r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ \mathbbm{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\overline{r}_1 \mathbb{J}_p = \frac{1}{N} \sum_{j=1}^N r G_{z^{[1]}_j}^{[1]} \cdot w^{[2]T} \cdot r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}.$$

4. $r_1 \mathbb{J}_p$:

$$\begin{split} r_1 F_p &= r_1 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]} \circ \phi^{[1]})_p \\ &= r_1 \phi_p^{[1]} \circ r \psi_{u^{[1]}}^{[1]} \circ r G_{z^{[1]}}^{[1]} \circ r \phi_{a^{[1]}}^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{x^T} \circ \mathbb{1} \circ r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ \mathbb{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{x^T} \circ r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\begin{split} r_1 \mathbb{J}_p &= \frac{1}{N} \sum_{j=1}^N R_{x_j^T} \circ r G_{z^{[1]}_j}^{[1]} \cdot w^{[2]T} \cdot r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j} \\ &= \frac{1}{N} \sum_{j=1}^N r G_{z^{[1]}_j}^{[1]} \cdot w^{[2]T} \cdot r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j} \cdot x_j^T \end{split}$$

3 Deep Neural Networks

In this section we discuss a general "deep" neural network, which consist of L layers. That is, we have a network of the form:

3.1 Backward Propagation

As the general derivation for backpropagation can be easily (if not tediously) generalized from ?? using induction, we give the general outline for computational purposes.

Let $\mathbb{L}: \mathbb{R}^{m_L} \times \mathbb{R}^{m_L} \to \mathbb{R}$ be a generic loss function, and suppose our cost function is given by the usual

$$\mathbb{J}(W,b) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{L}(\hat{y}_j, y_j).$$

Then from previous computations, we have the following gradients for any $\ell \in \{1, 2, ..., L\}$, that

$$\frac{\partial \mathbb{J}}{\partial W^{[\ell]}} = \frac{1}{n} \delta^{[\ell]} a^{[\ell-1]T}$$
$$\frac{\partial \mathbb{J}}{\partial b^{[\ell]}} = \frac{1}{n} \sum_{j=1}^{n} \delta^{[\ell]}{}_{j}$$

where we impose the notation of

$$a^{[0]} := x.$$

So we need only give a full characterization of $\delta^{[\ell]}$.. To this end, we define

recursively starting at layer-L by

$$\begin{split} \delta^{[L]T} &:= d(\mathbb{L}_y)_{a^{[L]}} \cdot dg_{z^{[L]}}^{[L]}, \\ \delta^{[L-1]T} &:= \delta^{[L]T} \cdot W^{[L]} \cdot dg_{z^{[L-1]}}^{[L-1]}, \\ & \vdots \\ \delta^{[\ell]T} &:= \delta^{[\ell+1]T} W^{[\ell+1]} dg_{z^{[\ell]}}^{[\ell]}, \\ & \vdots \\ \delta^{[1]T} &:= \delta^{[2]T} W^{[2]} dg_{z^{[1]}}^{[1]}, \end{split}$$

as desired.

3.2 Implementation in Python via numpy

We implement a neural network with an arbitrary number of layers and nodes, with the ReLU function as the activator on all hidden nodes and the sigmoid function on the output layer for binary classification with the log-loss function.

```
1 #! python3
з import numpy as np
5 from mlLib.utils import LinearParameters, apply_activation
  class NeuralNetwork():
      def __init__(self, config):
           Parameters:
10
11
           config : Dict
12
               config['lp\_reg'] = 0,1,2
13
               config['nodes'] = List[int]
14
               config['bias'] = List[Boolean]
15
               config['activators'] = List[str]
16
17
           Returns:
18
           -----
19
           None
20
21
           self.config = config
22
           self.lp_reg = config['lp_reg']
23
           self.nodes = config['nodes']
24
```

```
self.bias = config['bias']
25
           self.activators = config['activators']
26
           self.L = len(config['nodes']) - 1
27
28
      def forward_propagation(self, params, x):
29
30
           Parameters:
32
           params : Dict[class[Parameters]]
33
               params[1].w = Weights
34
               params[1].bias = Boolean
35
               params[1].b = Bias
36
           x : array_like
37
38
           Returns:
39
           -----
40
           cache = Dict[array_like]
41
               cache['a'] = a
42
               cache['dg'] = dg
43
44
45
           # Initialize dictionaries
46
           a = \{\}
47
           dg = \{\}
48
49
           a[0], dg[0] = apply_activation(x, self.activators[0])
51
           for 1 in range(1, self.L + 1):
52
               z = params[1].forward(a[1 - 1])
53
               a[l], dg[l] = apply_activation(z, self.activators[l])
54
55
           cache = \{'a' : a, 'dg' : dg\}
56
           return cache
57
58
      def cost_function(self, params, a, y, lambda_=0.01, eps=1e-8):
59
60
           Parameters:
61
           _____
62
           params: class[Parameters]
63
           a: array_like
64
           y: array_like
           lambda_: float
66
               Default: 0.01
67
           eps: float
68
               Default: 1e-8
69
70
           Returns:
71
```

```
72
            cost: float
73
74
           n = y.shape[1]
75
            if self.lp_reg == 0:
76
                lambda_{-} = 0.0
77
78
            # Compute regularization term
79
           R = 0
80
            for param in params.values():
81
                R += np.sum(np.abs(param.w) ** self.lp_reg)
82
           R *= (lambda_ / (2 * n))
83
84
           # Compute unregularized cost
85
            a = np.clip(a, eps, 1 - eps)
                                               # Bound a for stability
86
            J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
87
88
            cost = float(np.squeeze(J + R))
89
90
            return cost
91
92
       def backward_propagation(self, params, cache, y):
93
94
           Parameters:
95
            -----
96
            params : Dict[class[Parameters]]
                params[1].w = Weights
98
                params[1].bias = Boolean
99
                params[1].b = Bias
100
            cache : Dict[array_like]
101
                cache['a'] : array_like
102
                cache['dg'] : array_like
103
           y : array_like
104
105
           Returns:
106
            -----
107
           None
108
109
110
            # Retrieve cache
111
            a = cache['a']
112
           dg = cache['dg']
113
114
            # Initialize differentials along the network
115
            delta = \{\}
116
            delta[self.L] = (a[self.L] - y) / y.shape[1]
117
118
```

```
for 1 in reversed(range(1, self.L + 1)):
119
                delta[l - 1] = dg[l - 1] * params[l].backward(delta[l], a[l - 1])
120
121
       def update_parameters(self, params, learning_rate=0.1):
122
123
            Parameters:
124
            -----
            params : Dict[class[Parameters]]
126
                params[1].w = Weights
127
                params[1].bias = Boolean
128
                params[1].b = Bias
129
            learning_rate : float
130
                Default: 0.01
131
132
            Returns:
133
            -----
134
135
           None
136
            for param in params.values():
137
                param.update(learning_rate)
138
139
       def fit(self, x, y, learning_rate=0.1, lambda_=0.01, num_iters=10000):
140
            n n n
141
            Parameters:
142
            -----
143
            x : array_like
            y : array_like
145
            learning_rate : float
146
                Default : 0.1
147
            lambda_ : float
148
                Default: 0.0
149
            num_iters : int
150
                Default : 10000
151
152
            Returns:
153
            _____
154
            costs : List[floats]
155
            params : class[Parameters]
156
157
            # Initialize parameters per layer
158
            params = \{\}
159
            for 1 in range(1, self.L + 1):
160
                params[l] = LinearParameters((self.nodes[l], self.nodes[l - 1]), self.b
161
162
            costs = []
163
            for i in range(num_iters):
164
                cache = self.forward_propagation(params, x)
165
```

```
cost = self.cost_function(params, cache['a'][self.L], y, lambda_)
166
                costs.append(cost)
167
                self.backward_propagation(params, cache, y)
168
                self.update_parameters(params, learning_rate)
169
170
                if i % 1000 == 0:
171
                    print(f'Cost_after_iteration_{i}:_{cost}')
173
174
            return params
175
       def evaluate(self, params, x):
176
177
            Parameters:
178
179
            params : class[Parameters]
180
            x : array_like
181
182
            Returns:
183
            _____
184
            y_hat : array_like
185
186
            cache = self.forward_propagation(params, x)
            a = cache['a'][self.L]
188
            y_hat = (\sim(a < 0.5)).astype(int)
189
            return y_hat
190
       def accuracy(self, params, x, y):
192
193
            Parameters:
194
            -----
195
            params : class[Parameters]
196
            x : array_like
197
            y : array_like
198
199
            Returns:
200
201
            accuracy : float
202
203
            y_hat = self.evaluate(params, x)
204
            acc = np.sum(y_hat == y) / y.shape[1]
205
206
            return acc
207
```

3.3 Implementation in Python via tensorflow

We implement a neural network using tensorflow.keras.

```
1 #! python3
з import pandas as pd
4 import numpy as np
5 from sklearn.model_selection import train_test_split
6 from tensorflow import keras
7 from keras import Model, Input
8 from keras.layers import Dense
10 def keras_functional_nn(csv):
      df = pd.read_csv(csv)
11
      dataset = df.values
12
      x, y = dataset[:, :-1], dataset[:, -1].reshape(-1, 1)
13
      x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.15)
14
      train = {'x' : x_train, 'y' : y_train}
15
      test = {'x' : x_test, 'y' : y_test}
16
      mu = np.mean(train['x'], axis=0, keepdims=True)
      var = np.var(train['x'], axis=0, keepdims=True)
18
      train['x'] = (train['x'] - mu) / np.sqrt(var)
19
      test['x'] = (test['x'] - mu) / np.sqrt(var)
20
21
      ## Define network structure
22
      input_layer = Input(shape=(10,))
23
      hidden_layer_1 = Dense(
24
           32,
25
           activation='relu',
           kernel_initializer='he_normal',
27
           bias_initializer='zeros'
      )(input_layer)
29
      hidden_layer_2 = Dense(
30
           8,
31
           activation='relu',
32
           kernel_initializer='he_normal',
33
           bias_initializer='zeros'
      )(hidden_layer_1)
35
      output_layer = Dense(
36
           1,
37
           activation='sigmoid',
38
           kernel_initializer='he_normal',
39
           bias_initializer='zeros'
40
      )(hidden_layer_2)
41
42
      model = Model(inputs=input_layer, outputs=output_layer)
43
      model.summary()
44
      ## Compile desired model
46
      model.compile(
```

```
loss='binary_crossentropy',
48
49
           optimizer='adam',
           metrics=['accuracy']
50
      )
51
52
      ## Train the model
53
      hist = model.fit(
           train['x'],
55
           train['y'],
           batch_size=32,
57
           epochs=150,
58
           validation_split=0.17
59
      )
60
61
      ## Evaluate the model
62
      test_scores = model.evaluate(test['x'], test['y'], verbose=2)
63
      print(f'Test_Loss:_{test_scores[0]}')
64
      print(f'Test_Accuracy:_{test_scores[1]}')
65
```

References