第二章 导数与微分

— ,	选择题	(每题3	分	, 共	15	分)
------------	-----	------	---	-----	----	---	---

1、	已知 $y = \sin x$,则高阶导数;	$y^{(10)} = 0$	()	
----	-----------------	---------	----------------	-----	--

- A . $\sin x$
- B. $\cos x$ C. $-\sin x$ D. $-\cos x$

2、设函数
$$y = f(x)$$
 在 $x = a$ 处可导, $\Delta y = f(a+h) - f(a)$,则当 $h \to 0$ 时有

- A . dy 是 h 的等价无穷小量
- B. $\Delta v dv$ 是 h 的同阶无穷小量
- C. dv 是 h 的高阶无穷小量
- D. $\Delta y dy = h$ 的高阶无穷小量
- 3、函数 $f(x) = (x^2 x 2) |x^3 x|$ 的不可导点的个数 (
- A . 3

- B.2 C. 1 D. 0

4、设
$$f(x) = \begin{cases} \frac{1}{(x-1)^{\alpha}} \cos \frac{1}{x-1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$$
 在 $x = 1$ 处可导,则实数 α 满足()

- A. $\alpha < -1$ B. $-1 \le \alpha < 0$ C. $0 \le \alpha < 1$ D. $\alpha \ge 1$

5、设函数
$$f(x)$$
 在 $x = 0$ 处连续,且 $\lim_{h \to 0} \frac{f(h^2)}{h^2} = 1$,则(

A. f(0) = 0且 f'(0) 存在

B. f(0) = 0且 f'(0)存在

C. f(0) = 1且 f'(0) 存在

D. f(0) = 1且 f'(0) 存在

二、填空题 (每题 3 分 , 共 12 分)

6、设
$$y = e^{\tan \frac{1}{x}} \sin \frac{1}{x}$$
 , 则 $y' =$

7、设
$$x + y = \sec y$$
,则 $dy =$

8、设
$$f(x) = \lim_{t \to 0} x(1+3t)^{\frac{x}{t}}$$
,则 $f'(x) =$

9、设
$$x > 0$$
 , $d(\frac{\tan x}{\sqrt{x}}) = \underline{\qquad} d\sqrt{x}$

三、求导数和微分(每题 6 分, 共 30 分)

10、设
$$y = \arctan(2^x) + \ln \sqrt{\frac{x-1}{x+1}}$$
 , 求 dy .

11、设
$$y = (1 + \frac{1}{x})^{\frac{1}{x}}$$
 , 求 y' .

12、设
$$f''(x)$$
 存在, $y = f(xe^{-x})$,求 $\frac{d^2y}{dx^2}$.

13、设函数
$$y = y(x)$$
 由方程 $(\arcsin x) \ln y - e^{2x} + y = 0$ 所确定,求 $\frac{d^2 y}{dx^2}\Big|_{x=0}$.

14、设
$$\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}$$
,求 $\frac{dy}{dx}$ 和 $\frac{d^2y}{dx^2}$.

四、讨论连续性和可导性(每题7分,共21分)

15、设
$$f(x) = \begin{cases} x \arctan \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 (1) 求 $f'(x)$ (2) 讨论 $f'(x)$ 的连续性.

16、设
$$f(x) = \begin{cases} \frac{g(x) - \cos x}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
, 其中 $g(x)$ 可导且 $g(0) = 1$, 试确定 a 的

值,使得f(x)在点x=0处连续

17、设
$$f(x) = \lim_{n \to +\infty} \frac{x^2 e^{n(x-1)} + ax + b}{e^{n(x-1)} + 1}$$
,问 a ,b 取何值时, $f(x)$ 连续且可导.

五、应用(每题11分,共22分)

- 18、证明:双曲线 $xy = a^2$ 上任一点处切线与两坐标轴构成的三角形的面积都等于 $2a^2$.
- 19、设周期函数 f(x) 在 $(-\infty, +\infty)$ 内可导,周期为 4,且它在 x = 0 的某个邻域内满足 f(1) 2f(1-x) = -2x + o(x),求曲线 y = f(x) 在点 (5, f(5)) 处的切线方程.