Courbes géometriquement intègres propres lisses?

Table des matières

1	Cou	rbes intègres lisses propres et corps de fonctions.
	1.1	Courbe associée à un corps.
	1.2	Étendre des morphismes
		1.2.1 Candidat pour l'extension
		1.2.2 Extension
		1.2.3 Explication résumée
	1.3	L'équivalence de catégorie
		1.3.1 Isomorphismes de courbes intègres propres lisses
		1.3.2 Morphismes de courbes intègres propres lisses
	1.4	Les courbes propres intègres propres lisses sont projectives
2	Rar 2.1	nification

. . .

On prends la convention qu'une courbe est une variété séparée de dimension pure 1 (ses composantes sont de dimension 1).

TABLE DES MATIÈRES

Chapitre 1

Courbes intègres lisses propres et corps de fonctions.

Le but c'est de montrer l'équivalence de catégorie entre

- 1. Corps de fonctions de degré de transcendance 1,
- 2. Courbes intègres lisses propres (munies de morphismes non constants).

1.1 Courbe associée à un corps.

Étant donné un corps K:

- 1. On prends U intègre affine t.q k(U) = K.
- 2. On prends une clôture projective \bar{U} .
- 3. On normalise $\pi \colon X \to \bar{U}$.

Alors X est lisse car normale, birationnelle à U donc K = k(U) = k(X) et propre car π est fini et \bar{U} est propre.

1.2 Étendre des morphismes

Étant donné C une courbe lisse. On peut étendre tout morphisme $C\supset U\to Y$ avec U dense en $C\to Y$ dès que Y est propre! C'est unique puisque Y est séparée.

1.2.1 Candidat pour l'extension

On peut se ramener au cas C affine irréductible et $U = C - \{p\}$. Faut trouver un candidat pour le morphisme étendu :

1. De $f: U \to Y$ on identifie

$$\Gamma_f \subset U \times Y$$

et U.

2. L'idée est que en notant

$$Z = \overline{\Gamma_f} \subset C \times Y$$

alors $Z \to C$ est surjective car $C \times Y$ est fermée (**hypothèse de Y propre**) et $U \subset \operatorname{im}(Z \to C)$.

3. Le candidat est maintenant

$$(p_1|_Z)^{-1} \circ p_2 \colon C \to Z \to Y.$$

Ce qu'on montre c'est que $p_1 \colon C \times Y \supset Z \to C$ est un isomorphisme.

1.2.2 Extension

À noter $p_1|_Z = g$ est un morphisme fermé car Y est propre et l'image contient U donc est surjective. C'est aussi birationnel car un isomorphisme sur U. Et là donc on construit un morphisme autour de $z \in g^{-1}p$.

- 1. On prends $z \in W$ ouvert affine. On obtient $A(C) \hookrightarrow A(W) \hookrightarrow k(C)$.
- 2. À noter A(W) est de type fini sur k.
- 3. Maintenant, C est lisse en p donc on peut réduire C en V avec $p \in V = D(f)$ tel que $\mathfrak{m}_p = (t)$. (Nakayama donne $f \in 1 + \mathfrak{m}_p$.)
- 4. Les générateurs b_i de A(W) vérifient $b_i(z) = t^{n_i}(z)a_i/u_i(z)$ avec $a_i, u_i \in A(C)$. Via

$$u_i(z)b_i(z) = t^{n_i}(z)a_i(z)$$

ça force $n_i \ge 0$ car $v_p(u_i) = v_p(a_i) = 0$ et b_i est régulière. (pas oublier l'identification de A(C) a son image, $u_i(z) = u_i(p)$.)

Courbes intègres lisses propres et corps de fonctions.

5. Maintenant pas finitude on obtient

$$A(C) \hookrightarrow A(W) \hookrightarrow A(C)_{u_0}$$

d'où on obtient

$$g^{-1}D(u_0)\cap W\to D(u_0)$$

est un isomorphisme qui coincide avec $A(C) \to A(W)$ sur les intersections.

6. Enfin, il est définit en p!

1.2.3 Explication résumée

En points clés:

- 1. W et C sont birationnelles : Ça force le sens de b s'écrit $t^n a/u$ localement, car $A(W) \hookrightarrow Frac(A(C))$.
- 2. b est régulière d'où $b \in A(C)_u$.

Je sais pas si l'écrire via l'uniformisante c'est pas overkill? C'est pour sûr pour faire apparaître la régularité en P.

Maintenant

- 1. Ce "localement" est commun à tout les générateurs via $\mathfrak{m}_P=(t)$ sur un ouvert.
- 2. On obtient $A(W)_{u_0} \simeq A(C)_{u_0}$ via le morphisme induit $A(W) \hookrightarrow k(C)$.

Conclusion 1. On sait étendre les morphismes $C - \{p\} \to Y$ si C est lisse et Y est propre.

1.3 L'équivalence de catégorie

1.3.1 Isomorphismes de courbes intègres propres lisses

On sait qu'un morphisme birationnel $X\supset U\to V\subset Y$ s'étend en $X\to Y$ un isomorphisme.

1.3.2 Morphismes de courbes intègres propres lisses

Un tel morphisme est soit constant soit fini surjectif!

- 1. La surjectivité est claire.
- 2. La finitude c'est juste que si

$$\pi\colon X'\to Y$$

est la normalisaiton de Y dans k(X) alors $X \simeq X'$ par l'identité de $k(X) \simeq k(X')$. Alors $X \to Y$ coincide avec $X \to X' \to Y$ est fini.

1.4 Les courbes propres intègres propres lisses sont projectives.

Comme le résultat de la section!

Chapitre 2

Ramification

2.1