Federated Learning Algorithm

Yida Lyu

2024年11月24日

SGD vs SVRG(convex) **ξ 1**

1.1SGD

1.1.1

We consider

$$x^* = \arg\min_{x \in \mathbb{R}^d} [f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x)]$$
 (1)

 $f_i:\mathbb{R}^d\to\mathbb{R}$ is smooth. Further, we assume that f has a unique global minimizer x^* and is μ -strongly quasi-convex:

$$f(x^*) \ge f(x) + \langle \nabla f(x), x^* - x \rangle + \frac{\mu}{2} ||x^* - x||^2$$
 (2)

1.1.2

Introduce a sampling vector $v:\mathbb{E}_{\mathcal{D}}[v_i] = 1, \forall \in [n]$. So (1) is equivalent of:

$$\min_{x \in \mathbb{R}^d} \mathbb{E}_{\mathcal{D}}[f_v(x) := \frac{1}{n} \sum_{i=1}^n v_i f_i(x)]$$
(3)

 $f_v(x)$ and $\nabla f_v(x)$ are unbiased estimators of f(x) and $\nabla f(x)$, so (3) is equal to (1).

(3) can be solved using SGD:

$$x^{k+1} = x^k - \gamma^k \nabla f_{v^k}(x^k) \tag{4}$$

where v^k is sampled i.i.d. at each iteration and $\gamma^k > 0$ is a stepsize.

Algorithm 1 SGD

Input: initial point x^0 , stepsize γ/γ^k , sampling vector v

1: **for**
$$k = 0, 1, 2, \cdots$$
 do

2:
$$g^k = \frac{1}{n} \sum_{i=1}^n v_i \nabla f_i(x^k)$$

3:
$$x^{k+1} = x^k - \gamma^k g^k$$

3:
$$x^{k+1} = x^k - \gamma^k q^k$$

4: end for

1.1.3

Assumption 1: f is \mathcal{L} -smooth in expectation w.r.t \mathcal{D} :

$$\mathbb{E}_D[\|\nabla f_v(x) - \nabla f_v(x^*)\|^2] \le 2\mathcal{L}(f(x) - f(x^*)), \forall x \in \mathbb{R}^d$$
(5)

we will write $(f, \mathcal{D}) \sim ES(\mathcal{L})$

(Convexity and \mathcal{L}_i -smoothness of f_i implies expected smoothness, but the opposite implication does not hold.)

Assumption 2(Finite Gradient Noise):

$$\sigma^2 := \mathbb{E}_{\mathcal{D}}[\|\nabla f_v(x^*)\|^2] \tag{6}$$

is finite.

Lemma. If $(f, \mathcal{D}) \sim ES(\mathcal{L})$, then

$$\mathbb{E}_{D}[\|\nabla f_{v}(x)\|^{2}] \le 4\mathcal{L}(f(x) - f(x^{*})) + 2\sigma^{2}$$
(7)

Proof.

$$\mathbb{E}_{\mathcal{D}} \|\nabla f_v(x)\|^2 = \mathbb{E}_{\mathcal{D}} \|\nabla f_v(x) - \nabla f_v(x^*) + \nabla f_v(x^*)\|^2$$

$$\leq 2\mathbb{E}_{\mathcal{D}} \|\nabla f_v(x) - \nabla f_v(x^*)\|^2 + 2\mathbb{E}_{\mathcal{D}} \|\nabla f_v(x^*)\|^2$$

$$\leq 4\mathcal{L}[f(x) - f(x^*)] + 2\mathbb{E}_{\mathcal{D}} \|\nabla f_v(x^*)\|^2.$$

When $\sigma = 0,(7)$ is known as the week growth condition.

1.1.4 Analysis

Thm. Assume f is μ -quasi-strongly convex and that $(f, \mathcal{D}) \sim ES(\mathcal{L})$. Choose $\gamma^k = \gamma \in (0, \frac{1}{2\mathcal{L}}) \forall k$. Then iterates of SGD given by (4) satisfy:

$$E\|x^k - x^*\|^2 \le (1 - \gamma\mu)^k \|x^0 - x^*\|^2 + \frac{2\gamma\sigma^2}{\mu}.$$
 (8)

Hence, $\forall \epsilon > 0$, choosing

$$\gamma = \min\{\frac{1}{2\mathcal{L}}, \frac{\epsilon\mu}{4\sigma^2}\}\tag{9}$$

and

$$k \ge \max\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\}\log(\frac{2\|x^0 - x^*\|^2}{\epsilon})$$
 (10)

implies $\mathbb{E}||x^k - x^*|| \le \epsilon$.

Proof. Let $r^k = x^k - x^*$. From (4), we have

$$||r^{k+1}||^2 = ||x^k - x^* - \gamma \nabla f_v(x^k)||^2$$
$$= ||r^k||^2 - 2\gamma \langle r^k, \nabla f_{v^k}(x^k) \rangle + \gamma^2 ||\nabla f_{v^k}(x^k)||^2$$

Then

$$\mathbb{E}_{\mathcal{D}} \|r^{k+1}\|^{2} = \|r^{k}\|^{2} - 2\gamma \langle r^{k}, \nabla f(x^{k}) \rangle + \gamma^{2} \mathbb{E}_{\mathcal{D}} \|\nabla f_{v^{k}}(x^{k})\|^{2}$$

$$\leq (1 - \gamma \mu) \|r^{k}\|^{2} - 2\gamma [f(x^{k}) - f(x^{*})] + \gamma^{2} \mathbb{E}_{\mathcal{D}} \|\nabla f_{v^{k}}(x^{k})\|^{2}$$

$$(\langle \nabla f(x^{k}), r^{k} \rangle \geq f(x^{k}) - f(x^{*}) + \frac{\mu}{2} \|r^{k}\|^{2})$$

Taking expectations again and using Lemma:

$$\mathbb{E}\|r^{k+1}\|^{2} \leq (1 - \gamma\mu)\mathbb{E}\|r^{k}\|^{2} + 2\gamma^{2}\sigma^{2} + 2\gamma(2\gamma\mathcal{L} - 1)\mathbb{E}[f(x^{k}) - f(x^{*})]$$
$$\leq (1 - \gamma\mu)\mathbb{E}\|r^{k}\|^{2} + 2\gamma^{2}\sigma^{2}$$

At last,

$$\mathbb{E}\|r^k\|^2 \le (1 - \gamma\mu)^k \|r^0\|^2 + 2\sum_{j=0}^{k-1} (1 - \gamma\mu)^j \gamma^2 \sigma^2$$

$$\le (1 - \gamma\mu)^k \|r^0\|^2 + \frac{2\gamma\sigma^2}{\mu}$$
(11)

Furthermore, we can control this additive constant by carefully choosing the stepsize.

1.2 SVRG

1.2.1

One practical issue for SGD is that in order to ensure convergence the learning rate that to decay to zero. This leads to slower convergence.

At each time, we keep a version of estimated x as \tilde{x} that is close to the optimal x.

We can keep a snapshot of \tilde{w} after every m SGD iterations.

Moreover, we maintain the average gradient

$$\tilde{\mu} = \nabla f(\tilde{x}) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\tilde{x})$$

Algorithm 2 SVRG

Input: initial point \tilde{x}^0 , stepsize γ , update frequency m

1: **for**
$$s = 0, 1, 2, \cdots$$
 do

2:
$$\tilde{x} = \tilde{x}^s$$

3:
$$\tilde{\mu} = \nabla f(\tilde{x}) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\tilde{x})$$

4:
$$x^0 = \tilde{x}$$

5: **for**
$$k = 0, 1, 2, \dots, m-1$$
 do

6: Randomly pick
$$i_k \in [n]$$

7:
$$g^k = \nabla f_{i_k}(x_k) - \nabla f_{i_k}(\tilde{x}) + \tilde{\mu}$$

$$8: x^{k+1} = x^k - \gamma g^k$$

9: end for

10: Randomly pick $t \in \{0, 1, \dots, m-1\}$

11:
$$\tilde{x}^{s+1} = x^t$$

12: end for

1.2.2 Analysis

Thm. f_i are smooth:

$$f_i(x^*) \le f_i(x) + \langle \nabla f_i(x), x^* - x \rangle + \frac{L}{2} ||x^* - x||^2$$
 (12)

and convex, f is quasi-convex;

$$f(x^*) \ge f(x) + \langle \nabla f(x), x^* - x \rangle + \frac{\mu}{2} ||x^* - x||^2$$
 (13)

 $L \ge \mu \ge 0, \gamma > 0, m$ is sufficiently large s.t.

$$\alpha = \frac{1}{\mu\gamma(1 - 2L\gamma)m} + \frac{2L\gamma}{1 - 2L\gamma} < 1$$

then we have geometric convergence in expectation for SVRG:

$$\mathbb{E}[f(\tilde{x}^s) - f(x^*)] \le \alpha^s [f(\tilde{x}^0) - f(x^*)]$$

Proof. By (12)

$$\|\nabla f_i(x) - \nabla f_i(x^*)\|^2 \le 2L[f_i(x) - f_i(x^*) - \nabla f_i(x^*)^\top (x - x^*)]$$

By suming,

$$\frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(x) - \nabla f_i(x^*)\|^2 \le 2L(f(x) - f(x^*)), \forall x \in \mathbb{R}^d$$
(14)

$$\mathbb{E}\|g^{k}\|^{2}$$

$$\leq 2\mathbb{E}\|\nabla f_{i_{k}}(x^{k}) - \nabla f_{i_{k}}(x^{*})\|^{2} + 2\mathbb{E}\|[\nabla f_{i_{k}}(\tilde{x}) - \nabla f_{i_{k}}(x^{*})] - \nabla f(\tilde{x})\|^{2}$$

$$= 2\mathbb{E}\|\nabla f_{i_{k}}(x^{k}) - \nabla f_{i_{k}}(x^{*})\|^{2} + 2\mathbb{E}\|[\nabla f_{i_{k}}(\tilde{x}) - \nabla f_{i_{k}}(x^{*})] - \mathbb{E}[\nabla f_{i_{k}}(\tilde{x}) - \nabla f_{i_{k}}(x^{*})]\|^{2}$$

$$\leq 2\mathbb{E}\|\nabla f_{i_{k}}(x^{k}) - \nabla f_{i_{k}}(x^{*})\|^{2} + 2\mathbb{E}\|\nabla f_{i_{k}}(\tilde{x}) - \nabla f_{i_{k}}(x^{*})\|^{2}$$

$$\leq 4L[f(x^{k}) - f(x^{*}) + f(\tilde{x}) - f(x^{*})]$$
 (14)

Let $r^k = x^k - x^*$, we have

$$\begin{split} \|r^{k+1}\|^2 &= \|x^k - x^* - \gamma g^k\|^2 \\ &= \|r^k\|^2 - 2\gamma \langle r^k, g^k \rangle + \gamma^2 \|g^k\|^2 \end{split}$$

Then,

$$\mathbb{E}\|r^{k+1}\|^{2} = \|r^{k}\|^{2} - 2\gamma\langle r^{k}, \nabla f(x^{k})\rangle + \gamma^{2}\mathbb{E}\|g^{k}\|^{2}$$

$$\leq \|r^{k}\|^{2} - 2\gamma[f(x^{k}) - f(x^{*})] + 4L\gamma^{2}[f(x^{k}) - f(x^{*}) + f(\tilde{x}) - f(x^{*})]$$

$$= \|r^{k}\|^{2} - 2\gamma(1 - 2L\gamma)[f(x^{k}) - f(x^{*})] + 4L\gamma^{2}[f(\tilde{x}) - f(x^{*})]$$
(13)

We fixed s, so that $\tilde{x} = \tilde{x}^s$ and \tilde{x}^{s+1} is selected after all of the updates have completed. By suming $k \in \{0, 1, \dots, m-1\}$ we can get:

$$\mathbb{E}||r^{m}||^{2} + 2\gamma(1 - 2L\gamma)m\mathbb{E}[f(\tilde{x}^{s+1}) - f(x^{*})]$$

$$\leq \mathbb{E}||r^{0}||^{2} + 4Lm\gamma^{2}\mathbb{E}[f(\tilde{x}) - f(x^{*})]$$

$$= \mathbb{E}||\tilde{x} - x^{*}||^{2} + 4Lm\gamma^{2}\mathbb{E}[f(\tilde{x}) - f(x^{*})]$$

$$\leq \frac{2}{\mu}\mathbb{E}[f(\tilde{x}) - f(x^{*})] + 4Lm\gamma^{2}\mathbb{E}[f(\tilde{x}) - f(x^{*})]$$

$$= 2(\frac{1}{\mu} + 2Lm\gamma^{2})\mathbb{E}[f(\tilde{x}) - f(x^{*})].$$

By $\mathbb{E}||r^m||^2 \ge 0$ and let $0 < \gamma < \frac{1}{4L}, m > \frac{1}{\mu\gamma(1 - 4L\gamma)},$

$$\mathbb{E}\left[f(\tilde{x}^{s+1}) - f(x^*)\right] \le \left[\frac{1}{\mu\gamma(1 - 2L\gamma)m} + \frac{2L\gamma}{1 - 2L\gamma}\right] \mathbb{E}[f(\tilde{x}^s) - f(w_*)]$$

Then $\alpha < 1$ and

$$\mathbb{E}\left[f(\tilde{x}^s) - f(x^*)\right] \leq \alpha^s \mathbb{E}\left[f(\tilde{x}^0) - f(x^*)\right]$$

Let $C = \mathbb{E}[f(\tilde{x}^0) - f(x^*)]$. Next we choose s s.t.

$$\alpha^s C \le \epsilon$$

i.e.

$$\log(\frac{C}{\epsilon}) \le s \log(\frac{1}{\alpha})$$

By $\log(\frac{1}{\alpha}) \ge 1 - \alpha$, $0 < \alpha < 1$, we only need to have

$$s \ge \frac{1}{1 - \alpha} \log \left(\frac{C}{\epsilon} \right) = \frac{1}{\frac{1 - 4L\gamma}{1 - 2L\gamma} - \frac{1}{\mu\gamma(1 - 2L\gamma)m}} \log \left(\frac{C}{\epsilon} \right)$$

Let
$$\gamma = \frac{1}{(k+4)L}$$
, $m = \frac{\rho+1}{\mu\gamma(1-4L\gamma)} = \frac{(k+4)^2L(\rho+1)}{\mu k}$, $k > 0, \rho > 0$,

Then

$$s \ge \frac{\mu(k+2)m}{\mu mk - (k+4)^2 L} \log\left(\frac{C}{\epsilon}\right) = \frac{(\rho+1)(k+2)}{\rho k} \log\left(\frac{C}{\epsilon}\right)$$
$$sm \ge \frac{(\rho+1)^2}{\rho} \frac{(k+2)(k+4)^2}{k^2} \frac{L}{\mu} \log\left(\frac{C}{\epsilon}\right)$$

Let $\rho = 1, k = 2 + 2\sqrt{5}$,

$$sm \ge \frac{(4+2\sqrt{5})(6+2\sqrt{5})^2}{(1+\sqrt{5})^2} \frac{L}{\mu} \log \left(\frac{\mathbb{E}\left[f(\tilde{x}^0) - f(x^*)\right]}{\epsilon} \right)$$
$$(\gamma = \frac{1}{(6+2\sqrt{5})L}, m = \frac{(6+2\sqrt{5})^2 L}{(1+\sqrt{5})\mu}, s \ge \frac{4+2\sqrt{5}}{1+\sqrt{5}} \log \left(\frac{\mathbb{E}\left[f(\tilde{x}^0) - f(x^*)\right]}{\epsilon} \right))$$

Finally,

$$s(m+n) \ge (C_1 \frac{L}{\mu} + C_2 n) \log(\frac{C}{\epsilon})$$

§ 2 Direct Compression vs Shift Compression (nonconvex)

2.1 Problem

We consider the more general nonconvex distributed/federated problem with online form or finite-sum form, i.e.

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x) \right\}$$

where

$$f_i(x) := \mathbb{E}_{\zeta \sim \mathcal{D}_i}[f_i(x,\zeta)], \quad \text{or} \quad f_i(x) := \frac{1}{n} \sum_{j=1}^n f_{i,j}(x).$$

Def. (Compression operator) A randomized map $\mathcal{C}: \mathbb{R}^d \mapsto \mathbb{R}^d$ is an ω -compression operator if

$$\mathbb{E}[\mathcal{C}(x)] = x, \quad \mathbb{E}[\|\mathcal{C}(x) - x\|^2] \le \omega \|x\|^2, \quad \forall x \in \mathbb{R}^d.$$

In particular, no compression $(C(x) \equiv x)$ implies $\omega = 0$.

Assumption 1 (Gradient estionator) $\mathbb{E}_k[g^k] = \nabla f(x^k)$, and \exists non-negative constants $A_1, A_2, B_1, B_2, C_1, C_2, D_1, \rho$ and a random sequence $\{\sigma_k^2\}$ s.t.

$$\mathbb{E}_{k}[\|g^{k}\|^{2}] \leq 2A_{1}(f(x^{k}) - f^{*}) + B_{1}\|\nabla f(x^{k})\|^{2} + D_{1}\sigma_{k}^{2} + C_{1}$$

$$\mathbb{E}_k[\sigma_{k+1}^2] \le (1 - \rho)\sigma_k^2 + 2A_2(f(x^k) - f^*) + B_2 \|\nabla f(x^k)\|^2 + C_2$$

Assumption 2 (L-smoothness) For each work $i \in [m]$, the function $f_i(x)$ is L_i -smooth if

$$\|\nabla f_i(x) - \nabla f_i(y)\| \le L_i \|x - y\|, \quad \forall x, y \in \mathbb{R}^d.$$

2.2 DC framework

2.2.1 Algorithm

Algorithm 3 DC

Input: initial point x^0 , stepsize η

- 1: **for** $k = 0, 1, 2, \cdots$ **do**
- 2: **for** all machines $i = 0, 1, 2, \dots, m$ in parallel **do**

Compute local stochastic gradient \tilde{g}_{i}^{k}

4:
$$\widehat{\Delta}_i^k = \mathcal{C}_i^k(\widetilde{g}_i^k)$$

end for

6:
$$g^k = \frac{1}{m} \sum_{i=1}^m \widehat{\Delta}_i^k$$

7: $x^{k+1} = x^k - \eta g^k$

7:
$$x^{k+1} = x^k - \eta g^k$$

8: end for

2.2.2 Analysis

Theorem. (DC framework) If the local stochastic gradient \tilde{g}_i^k satisfies the recursions:

$$\mathbb{E}_{k}[\|\widetilde{g}_{i}^{k}\|^{2}] \leq 2A_{1,i}(f_{i}(x^{k}) - f_{i}^{*}) + B_{1,i}\|\nabla f_{i}(x^{k})\|^{2} + D_{1,i}\sigma_{k,i}^{2} + C_{1,i},$$

$$\mathbb{E}_{k}[\sigma_{k+1,i}^{2}] \leq (1 - \rho_{i})\sigma_{k,i}^{2} + 2A_{2,i}(f(x^{k}) - f^{*}) + B_{2,i}\|\nabla f(x^{k})\|^{2} + D_{2,i}\mathbb{E}_{k}[\|g^{k}\|^{2}] + C_{2,i},$$

then g^k satisfes the unified Assumption with

$$A_{1} = \frac{(1+\omega)A}{m}, \quad B_{1} = 1, \quad D_{1} = \frac{1+\omega}{m}, \quad \sigma_{k}^{2} = \frac{1}{m} \sum_{i=1}^{m} D_{1,i} \sigma_{k,i}^{2}, \quad C_{1} = \frac{(1+\omega)C}{m}$$

$$\rho = \min_{i} \rho_{i} - \tau, \quad A_{2} = D_{A} + \tau A, \quad B_{2} = D_{B} + D_{D}, \quad C_{2} = D_{C} + \tau C$$

where

$$A := \max_{i} (A_{1,i} + B_{1,i}L_{i} - L_{i}/(1+\omega)), \quad C := \frac{1}{m} \sum_{i=1}^{m} C_{1,i} + 2A\Delta_{f}^{*},$$

$$\Delta_{f}^{*} := f^{*} - \frac{1}{m} \sum_{i=1}^{m} f_{i}^{*}, \quad \tau := \frac{(1+\omega)D_{D}}{m},$$

$$D_{A} := \frac{1}{m} \sum_{i=1}^{m} D_{1,i}A_{2,i}, \quad D_{B} := \frac{1}{m} \sum_{i=1}^{m} D_{1,i}B_{2,i},$$

$$D_{C} := \frac{1}{m} \sum_{i=1}^{m} D_{1,i}C_{2,i}, \quad D_{D} := \frac{1}{m} \sum_{i=1}^{m} D_{1,i}D_{2,i}.$$

2.2.3 DC-GD

Assume that

Assume that
$$\|\nabla f_i(x) - \nabla f(x)\|^2 \le \zeta^2, \quad \forall x \in \mathbb{R}^d$$

$$\widetilde{g}_i^k = \nabla f_i(x^k). \text{ Let } \Delta_f^* := f^* - \frac{1}{m} \sum_{i=1}^m f_i^*, \text{ then,}$$

$$\mathbb{E}_k[g^k] = \mathbb{E}_k \left[\frac{1}{m} \sum_{i=1}^m \mathcal{C}_i^k(\widetilde{g}_i^k) \right] = \frac{1}{m} \sum_{i=1}^m \nabla f_i(x^k) = \nabla f(x^k)$$

$$\mathbb{E}_k[\|g^k\|^2] = \mathbb{E}_k \left[\left\| \frac{1}{m} \sum_{i=1}^m \mathcal{C}_i^k(\widetilde{g}_i^k) - \frac{1}{m} \sum_{i=1}^m \widetilde{g}_i^k + \frac{1}{m} \sum_{i=1}^m \widetilde{g}_i^k \right\|^2 \right]$$

$$= \mathbb{E}_k \left[\left\| \frac{1}{m} \sum_{i=1}^m \left(\mathcal{C}_i^k(\widetilde{g}_i^k) - \widetilde{g}_i^k \right) \right\|^2 \right] + \left\| \frac{1}{m} \sum_{i=1}^m \widetilde{g}_i^k \right\|^2$$

$$\le \frac{\omega}{m^2} \sum_{i=1}^m \|\widetilde{g}_i^k\|^2 + \|\nabla f(x^k)\|^2$$

$$= \frac{\omega}{m^2} \sum_{i=1}^m \|\nabla f_i(x^k)\|^2 + \|\nabla f(x^k)\|^2$$

$$\le \frac{\omega \zeta^2}{m} + (\frac{\omega}{m} + 1) \|\nabla f(x^k)\|^2$$

$$\mathbb{E}_{k}[\langle \nabla f(x^{k}), x^{k+1} - x^{k} \rangle] = -\eta \|\nabla f(x^{k})\|^{2}$$

$$\mathbb{E}_{k} \|x^{k+1} - x^{k}\|^{2} \le \eta^{2} \left[\frac{\omega \zeta^{2}}{m} + (\frac{\omega}{m} + 1) \|\nabla f(x^{k})\|^{2} \right]$$

SO

$$\mathbb{E}_{k}[f(x^{k+1})] \leq f(x^{k}) + \mathbb{E}_{k}[\langle \nabla f(x^{k}), x^{k+1} - x^{k} \rangle] + \frac{L}{2} \mathbb{E}_{k} \|x^{k+1} - x^{k}\|^{2}$$

$$\leq f(x^{k}) - \eta \|\nabla f(x^{k})\|^{2} + \frac{L\eta^{2}}{2} \left[\frac{\omega \zeta^{2}}{m} + (\frac{\omega}{m} + 1) \|\nabla f(x^{k})\|^{2} \right]$$

$$\leq f(x^{k}) - (\eta - \frac{L\eta^{2}}{2} (\frac{\omega}{m} + 1)) \|\nabla f(x^{k})\|^{2} + \frac{L\eta^{2}\omega \zeta^{2}}{2m}$$

$$\mathbb{E}_{k}[f(x^{k+1}) - f^{*}] \leq (f(x^{k}) - f^{*}) - (\eta - \frac{L\eta^{2}}{2} (\frac{\omega}{m} + 1)) \|\nabla f(x^{k})\|^{2} + \frac{L\eta^{2}\omega \zeta^{2}}{2m}$$
Let $C = \frac{L\eta^{2}\omega \zeta^{2}}{2m}, \ \eta' = \eta - \frac{L\eta^{2}}{2} (\frac{\omega}{m} + 1), \quad \Delta^{k} = f(x^{k}) - f^{*},$

$$\mathbb{E}[\Delta^{k+1}] \leq \mathbb{E}[\Delta^{k}] - \eta' \mathbb{E} \|\nabla f(x^{k})\|^{2} + C$$

$$i.e. \quad \eta' \mathbb{E}[\|\nabla f(x^{k})\|^{2}] \leq \mathbb{E}[\Delta^{k}] - \mathbb{E}[\Delta^{k+1}] + C, \quad \forall 0 < k < K - 1$$

By suming up,

$$\sum_{k=0}^{K-1} \eta'[\|\nabla f(x^k)\|^2] \le \mathbb{E}[\Delta^0] - \mathbb{E}[\Delta^K] + KC \le \mathbb{E}[\Delta^0] + KC$$
$$\eta' \mathbb{E}[\|\nabla f(\widehat{x})\|^2] \le \frac{\Delta^0}{K} + C$$

where \hat{x} randomly chosen from $\{x^k\}_{k=0}^{K-1}$ with probability $p_k = \frac{1}{K}$ for x^k .

$$\eta' = \eta - \frac{L\eta^2}{2} \left(\frac{\omega}{m} + 1\right)$$
$$\geq \frac{\eta}{2} \quad (c)$$

we need $\eta \leq \frac{1}{L(1+\frac{\omega}{L})}$, then (c) holds.

$$\mathbb{E}[\|\nabla f(\widehat{x})\|^2] \le \frac{2\Delta^0}{\eta K} + \frac{L\eta\omega\zeta^2}{m}$$
$$\le \mathcal{O}\left(\frac{\Delta_0 L}{K}(1 + \frac{\omega}{m}) + \frac{\omega\zeta^2}{m + \omega}\right)$$

DIANA framework

2.3.1 Algorithm

Considering any stationary point \hat{x} such that $\nabla f(\hat{x}) = \sum_{i=1}^{m} \nabla f_i(\hat{x}) = 0$, the aggregated compressed gradient (even if the full gradient is used locally, i.e., $\widetilde{g}_i^k = \nabla f_i(x^k)$), is not equal to zero 0, i.e., $g(\hat{x}) = \frac{1}{m} \sum_{i=1}^{m} C_i(\nabla f_i(\hat{x})) \neq 0$. This effect slows down convergence of the methods in DC framework. To address this issue, we use the DIANA framework to compress the gradient differences instead.

Algorithm 4 DIANA

Input: initial point x^0 , $\{h_i^0\}_{i=1}^m$, $h^0 = \frac{1}{m} \sum_{i=1}^m h_i^0$, stepsize η , α 1: **for** $k = 0, 1, 2, \cdots$ **do**

- 2: **for** all machines $i = 0, 1, 2, \dots, m$ in parallel **do**
- 3: Compute local stochastic gradient \tilde{g}_i^k
- 4: $\widehat{\Delta}_i^k = \mathcal{C}_i^k (\widetilde{g}_i^k h_i^k)$
- 5: $h_i^{k+1} = h_i^k + \alpha \widehat{\Delta}_i^k$
- 6: end for
- 7: $g^k = h^k + \frac{1}{m} \sum_{i=1}^m \widehat{\Delta}_i^k$
- 8: $x^{k+1} = x^k \eta q^k$
- 9: $h^{k+1} = h^k + \alpha \frac{1}{m} \sum_{i=1}^m \widehat{\Delta}_i^k$
- 10: end for

2.3.2 Analysis

Theorem. (DIANA framework) If the local stochastic gradient \tilde{g}_i^k satisfies the recursions:

$$\mathbb{E}_{k}[\|\widetilde{g}_{i}^{k}\|^{2}] \leq 2A_{1,i}(f_{i}(x^{k}) - f_{i}^{*}) + B_{1,i}\|\nabla f_{i}(x^{k})\|^{2} + D_{1,i}\sigma_{k,i}^{2} + C_{1,i},$$

$$\mathbb{E}_{k}[\sigma_{k+1,i}^{2}] \leq (1 - \rho_{i})\sigma_{k,i}^{2} + 2A_{2,i}(f(x^{k}) - f^{*}) + B_{2,i}\|\nabla f(x^{k})\|^{2} + D_{2,i}\mathbb{E}_{k}[\|g^{k}\|^{2}] + C_{2,i},$$

then g^k satisfes the unified Assumption with

$$A_{1} = \frac{(1+\omega)A}{m}, \quad B_{1} = 1, \quad D_{1} = \frac{1+\omega}{m}, \quad \sigma_{k}^{2} = \frac{1}{m} \sum_{i=1}^{m} D_{1,i} \sigma_{k,i}^{2} + \frac{\omega}{(1+\omega)m} \sum_{i=1}^{m} \|\nabla f_{i}(x^{k}) - h_{i}^{k}\|^{2},$$

$$C_{1} = \frac{(1+\omega)C}{m}, \quad \rho = \min\left\{\min_{i} \rho_{i} - \tau, \ 2\alpha - (1-\alpha)\beta^{-1} - \alpha^{2} - \tau\right\},$$

$$A_{2} = D_{A} + \tau A, \quad B_{2} = D_{B} + B, \quad C_{2} = D_{C} + \tau C$$

where

$$A := \max_{i} (A_{1,i} + (B_{1,i} - 1)L_{i}), \quad B := \frac{\omega(1+\beta)L^{2}\eta^{2}}{1+\omega} + D_{D}, \quad C := \frac{1}{m} \sum_{i=1}^{m} C_{1,i} + 2A\Delta_{f}^{*},$$

$$\Delta_{f}^{*} := f^{*} - \frac{1}{m} \sum_{i=1}^{m} f_{i}^{*}, \quad \tau := \alpha^{2}\omega + \frac{(1+\omega)B}{m}, \quad \forall \beta > 0$$

$$D_{A} := \frac{1}{m} \sum_{i=1}^{m} D_{1,i}A_{2,i}, \quad D_{B} := \frac{1}{m} \sum_{i=1}^{m} D_{1,i}B_{2,i},$$

$$D_{C} := \frac{1}{m} \sum_{i=1}^{m} D_{1,i}C_{2,i}, \quad D_{D} := \frac{1}{m} \sum_{i=1}^{m} D_{1,i}D_{2,i}.$$

2.3.3 **DIANA-GD**

$$\widetilde{g}_i^k = \nabla f_i(x^k)$$
, so
$$\mathbb{E}_k[\widetilde{g}_i^k] = \nabla f_i(x^k),$$

$$\mathbb{E}_k[\|\widetilde{g}_i^k\|^2] \le \|\nabla f_i(x^k)\|^2$$

Then,

$$\mathbb{E}_{k}[g^{k}] = \mathbb{E}_{k} \left[h^{k} + \frac{1}{m} \sum_{i=1}^{m} \widehat{\Delta}_{i}^{k} \right]$$

$$= \mathbb{E}_{k} \left[\frac{1}{m} \sum_{i=1}^{m} h_{i}^{k} + \frac{1}{m} \sum_{i=1}^{m} C_{i}^{k} (\widetilde{g}_{i}^{k} - h_{i}^{k}) \right]$$

$$= \mathbb{E}_{k} \left[\frac{1}{m} \sum_{i=1}^{m} h_{i}^{k} + \frac{1}{m} \sum_{i=1}^{m} (\widetilde{g}_{i}^{k} - h_{i}^{k}) \right]$$

$$= \mathbb{E}_{k} \left[\frac{1}{m} \sum_{i=1}^{m} \widetilde{g}_{i}^{k} \right]$$

$$= \nabla f(x^{k})$$

$$\begin{split} \mathbb{E}_{k}[\|g^{k}\|^{2}] &= \mathbb{E}_{k} \left[\left\| \frac{1}{m} \sum_{i=1}^{m} h_{i}^{k} + \frac{1}{m} \sum_{i=1}^{m} C_{i}^{k} (\widetilde{g}_{i}^{k} - h_{i}^{k}) \right\|^{2} \right] \\ &= \mathbb{E}_{k} \left[\left\| \frac{1}{m} \sum_{i=1}^{m} h_{i}^{k} + \frac{1}{m} \sum_{i=1}^{m} C_{i}^{k} (\widetilde{g}_{i}^{k} - h_{i}^{k}) - \frac{1}{m} \sum_{i=1}^{m} \widetilde{g}_{i}^{k} + \frac{1}{m} \sum_{i=1}^{m} \widetilde{g}_{i}^{k} \right\|^{2} \right] \\ &= \mathbb{E}_{k} \left[\left\| \frac{1}{m} \sum_{i=1}^{m} \left(C_{i}^{k} (\widetilde{g}_{i}^{k} - h_{i}^{k}) - (\widetilde{g}_{i}^{k} - h_{i}^{k}) \right) \right\|^{2} \right] + \mathbb{E}_{k} \left[\left\| \frac{1}{m} \sum_{i=1}^{m} \widetilde{g}_{i}^{k} \right\|^{2} \right] \\ &\leq \frac{\omega}{m^{2}} \mathbb{E}_{k} \left[\sum_{i=1}^{m} \|\widetilde{g}_{i}^{k} - h_{i}^{k}\|^{2} \right] + \mathbb{E}_{k} \left[\left\| \frac{1}{m} \sum_{i=1}^{m} (\widetilde{g}_{i}^{k} - \nabla f_{i}(x^{k})) + \nabla f(x^{k}) \right\|^{2} \right] \\ &= \frac{\omega}{m^{2}} \mathbb{E}_{k} \left[\sum_{i=1}^{m} \|\widetilde{g}_{i}^{k} - h_{i}^{k}\|^{2} \right] + \|\nabla f(x^{k})\|^{2} \\ &= \frac{\omega}{m^{2}} \left(\sum_{i=1}^{m} \|\widetilde{g}_{i}^{k} - \nabla f_{i}(x^{k}) + \nabla f_{i}(x^{k}) - h_{i}^{k}\|^{2} \right] + \|\nabla f(x^{k})\|^{2} \\ &= \frac{\omega}{m^{2}} \left(\sum_{i=1}^{m} \|\nabla f_{i}(x^{k}) - h_{i}^{k}\|^{2} \right) + \|\nabla f(x^{k})\|^{2} (*) \end{split}$$

Let
$$\sigma_k^2 = \frac{\omega}{m^2} \sum_{i=1}^m \|\nabla f_i(x^k) - h_i^k\|^2$$
,

$$\mathbb{E}_{k}[\|g^{k}\|^{2}] \leq \|\nabla f(x^{k})\|^{2} + \sigma_{k}^{2}$$

$$\begin{split} &\mathbb{E}_{k}|\sigma_{k+1}^{2}| \\ &= \frac{\omega}{m^{2}}\mathbb{E}_{k}\left[\sum_{i=1}^{m}\|\nabla f_{i}(x^{k+1}) - h_{i}^{k+1}\|^{2}\right] \\ &= \frac{\omega}{m^{2}}\mathbb{E}_{k}\left[\sum_{i=1}^{m}\|\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k}) + \nabla f_{i}(x^{k}) - h_{i}^{k+1}\|^{2}\right] \\ &= \frac{\omega}{m^{2}}\mathbb{E}_{k}\left[\sum_{i=1}^{m}\|\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k}) + \nabla f_{i}(x^{k}) - h_{i}^{k} - \alpha C_{i}^{k}(\tilde{g}_{i}^{k} - h_{i}^{k})\|^{2}\right] \\ &= \frac{\omega}{m^{2}}\mathbb{E}_{k}\left[\|\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k}) + \nabla f_{i}(x^{k}) - h_{i}^{k} - \alpha C_{i}^{k}(\tilde{g}_{i}^{k} - h_{i}^{k})\|^{2}\right] \\ &= \frac{\omega}{m^{2}}\mathbb{E}_{i}\mathbb{E}_{k}\left[\|\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k}) - h_{i}^{k} - \alpha C_{i}^{k}(\tilde{g}_{i}^{k} - h_{i}^{k})\|^{2} \\ &+ 2(\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k}), \nabla f_{i}(x^{k}) - h_{i}^{k} - \alpha C_{i}^{k}(\tilde{g}_{i}^{k} - h_{i}^{k})\|^{2} \\ &+ 2(\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k}), (1 - \alpha)(\nabla f_{i}(x^{k}) - h_{i}^{k})) \\ &= \frac{\omega}{m^{2}}\sum_{i=1}^{m}\mathbb{E}_{k}\left[\|\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k})\|^{2} + (1 - 2\alpha)\|\nabla f_{i}(x^{k}) - h_{i}^{k}\|^{2} + \alpha^{2}\|C_{i}^{k}(\tilde{g}_{i}^{k} - h_{i}^{k})\|^{2} \\ &+ 2(\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k}), (1 - \alpha)(\nabla f_{i}(x^{k}) - h_{i}^{k})) \\ &= \frac{\omega}{m^{2}}\sum_{i=1}^{m}\mathbb{E}_{k}\left[\|\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k})\|^{2} + (1 - 2\alpha)\|\nabla f_{i}(x^{k}) - h_{i}^{k}\|^{2} + \alpha^{2}\|C_{i}^{k}(\tilde{g}_{i}^{k} - h_{i}^{k})\|^{2} \\ &+ \beta\|\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k})\|^{2} + (1 - 2\alpha)\|\nabla f_{i}(x^{k}) - h_{i}^{k}\|^{2} \right] \quad \forall \beta > 0 \\ &= \frac{\omega}{m^{2}}\sum_{i=1}^{m}\mathbb{E}_{k}\left[(1 + \beta)\|\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k})\|^{2} + (1 - 2\alpha + \frac{(1 - \alpha)^{2}}{\beta})\|\nabla f_{i}(x^{k}) - h_{i}^{k}\|^{2} \right] \\ &+ \alpha^{2}(|C_{i}^{k}(\tilde{g}_{i}^{k} - h_{i}^{k})\|^{2})\right] \\ &\leq \frac{\omega}{m^{2}}\sum_{i=1}^{m}\mathbb{E}_{k}\left[(1 + \beta)\|\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k})\|^{2} + (1 - 2\alpha + \frac{(1 - \alpha)^{2}}{\beta})\|\nabla f_{i}(x^{k}) - h_{i}^{k}\|^{2} \right) \\ &+ \alpha^{2}(1 + \omega)\|\tilde{g}_{i}^{k} - h_{i}^{k}\|^{2}\right] \\ &= \frac{\omega}{m^{2}}\sum_{i=1}^{m}\mathbb{E}_{k}\left[(1 + \beta)\|\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k})\|^{2} + (1 - 2\alpha + \frac{(1 - \alpha)^{2}}{\beta})\|\nabla f_{i}(x^{k}) - h_{i}^{k}\|^{2} \right) \\ &= \frac{\omega}{m^{2}}\sum_{i=1}^{m}\mathbb{E}_{k}\left[(1 + \beta)\|\nabla f_{i}(x^{k+1}) - \nabla f_{i}(x^{k})\|^{2} + (1 - 2\alpha + \frac{(1 - \alpha)^{2}}{\beta})\|\nabla f_{i}(x^{k}) - h_{i}^{k}\|^{2} \right) \\ &=$$

 $\mathbb{E}_k[\|g^k\|] = \nabla f(x^k)$

$$\mathbb{E}_{k}[\|g^{k}\|^{2}] \leq \|\nabla f(x^{k})\|^{2} + \sigma_{k}^{2}$$

$$\mathbb{E}_{k}[\sigma_{k+1}^{2}] \leq (1 - \rho)\sigma_{k}^{2} + B\|\nabla f(x^{k})\|^{2}$$

Then,

$$\mathbb{E}_{k}[\langle \nabla f(x^{k}), x^{k+1} - x^{k} \rangle] = -\eta \|\nabla f(x^{k})\|^{2}$$
$$\mathbb{E}_{k} \|x^{k+1} - x^{k}\|^{2} \le \eta^{2} [\|\nabla f(x^{k})\|^{2} + \sigma_{k}^{2}]$$

so

$$\mathbb{E}_{k}[f(x^{k+1})] \leq f(x^{k}) + \mathbb{E}_{k}[\langle \nabla f(x^{k}), x^{k+1} - x^{k} \rangle] + \frac{L}{2} \mathbb{E}_{k} ||x^{k+1} - x^{k}||^{2}$$

$$\leq f(x^{k}) - (\eta - \frac{L\eta^{2}}{2}) ||\nabla f(x^{k})||^{2} + \frac{L\eta^{2}}{2} \sigma_{k}^{2}$$

$$\mathbb{E}_{k}[f(x^{k+1}) - f^{*} + \alpha \sigma_{k+1}^{2}] \leq (f(x^{k}) - f^{*}) + \left(\frac{L\eta^{2}}{2} + \alpha(1 - \rho)\right) \sigma_{k}^{2} - \left(\eta - \frac{L\eta^{2}}{2} - \alpha B\right) ||\nabla f(x^{k})||^{2}$$

$$\text{Let } \eta' = \eta - \frac{L\eta^{2}}{2} - \alpha B, \quad \Delta^{k} = f(x^{k}) - f^{*} + \alpha \sigma_{k}^{2}, \quad \alpha = \frac{L\eta^{2}}{2\rho}$$

$$\mathbb{E}[\Delta^{k+1}] \leq \mathbb{E}[f(x^{k}) - f^{*} + \left(\frac{L\eta^{2}}{2} + \alpha(1 - \rho)\right) \sigma_{k}^{2}] - \eta' \mathbb{E}||\nabla f(x^{k})||^{2}$$

$$= \mathbb{E}[\Delta^{k}] - \eta' \mathbb{E}||\nabla f(x^{k})||^{2}$$

$$i.e. \quad \eta' \mathbb{E}[||\nabla f(x^{k})||^{2}] < \mathbb{E}[\Delta^{k}] - \mathbb{E}[\Delta^{k+1}], \quad \forall 0 < k < K - 1$$

By suming up,

$$\begin{split} \sum_{k=0}^{K-1} \eta'[\|\nabla f(x^k)\|^2] &\leq \mathbb{E}[\Delta^0] - \mathbb{E}[\Delta^K] \leq \mathbb{E}[\Delta^0] \\ \eta' \mathbb{E}[\|\nabla f(\widehat{x})\|^2] &\leq \frac{\Delta_0}{K} \end{split}$$

where \hat{x} randomly chosen from $\{x^k\}_{k=0}^{K-1}$ with probability $p_k = \frac{1}{K}$ for x^k .

$$\eta' = \eta - \frac{L\eta^2}{2} - \alpha B$$

$$= \eta - \frac{L\eta^2}{2} - \frac{L\eta^2 B}{2\rho}$$

$$= \eta - \frac{\eta}{2} (L\eta + L\eta B\rho^{-1})$$

$$\geq \frac{\eta}{2} \quad (c)$$

we need $\eta \leq \frac{1}{L(1+B\rho^{-1})}$, then (c) holds, and then

When $K \geq \frac{2\Delta^0}{\eta \epsilon^2}$, $\mathbb{E}[\|\nabla f(\widehat{x})\|] \leq \sqrt{\mathbb{E}[\|\nabla f(\widehat{x})\|^2]} \leq \epsilon$.

We need to satisfy:

$$1.\rho \le \alpha \iff \alpha \ge \sqrt{\frac{L}{2}}\eta$$
$$2.\alpha \ge \frac{(1-\alpha)^2}{\beta} - \alpha^2(1+w) - w(1+\beta)A^2\eta^2$$
$$3.\eta \le \frac{1}{L + \frac{2\alpha w(1+\beta)A^2}{m}}$$

Let $\alpha \geq \sqrt{\frac{L}{2}}\eta$, $\beta \geq \max\{\frac{1-\alpha}{\sqrt{2w}A\eta}, \frac{2\alpha}{(1-\alpha)^2}\}$, 1,2 are satisfied.

Let $\alpha = \sqrt{\frac{L}{2}}\eta, 1 + \beta = \frac{1-\alpha}{\sqrt{2w}A\eta} + \frac{1+\alpha^2}{(1-\alpha)^2}, \eta = \min\{\frac{m}{2(mL+\sqrt{wL}A)}, \frac{mL+2\sqrt{wL}A}{4wA^2\sqrt{\frac{L}{2}}}, \frac{1}{\sqrt{8L}}\}, 3$ is satisfied.

$$Km \sim \mathcal{O}\left(\frac{\Delta^0}{\epsilon^2}(mL + \sqrt{wL}A + \frac{mwA^2}{m\sqrt{L} + \sqrt{w}A})\right)$$

FedAvg, SCAFFOLD, SAGA(nonconvex) § **3**

3.1FedAvg

3.1.1Problem

We consider

$$x^* = \arg\min_{x \in \mathbb{R}^d} [f(x) = \frac{1}{N} \sum_{i=1}^N f_i(x)]$$
 (15)

 $f_i(x) = \mathbb{E}_{\zeta_i}[f_i(x;\zeta_i)]: \mathbb{R}^d \to \mathbb{R}$ is $\beta\text{-smooth:}$

$$\|\nabla f_i(x) - \nabla f_i(y)\| \le \beta \|x - y\|, \quad \forall i, x, y$$
(16)

 $g_i(x) = \nabla f_i(x; \zeta_i)$ is unbiased with variance bounded by σ^2 :

$$\mathbb{E}_{\zeta_i}[\|g_i(\boldsymbol{x}) - \nabla f_i(\boldsymbol{x})\|^2] \le \sigma^2 , \text{ for any } i, \boldsymbol{x}$$
(17)

(G,B)-BGD or bounded gradient dissimilarity: there exist constants $G \geq 0$ and $B \geq 1$ such that

$$\frac{1}{N} \sum_{i=1}^{N} \|\nabla f_i(\mathbf{x})\|^2 \le G^2 + B^2 \|\nabla f(\mathbf{x})\|^2, \forall \mathbf{x}$$
 (18)

 \mathbb{E}_r represents the conditional expectation of the information known at the beginning of round r, given that round r-1 has just ended and round r is just starting. Given $y_{i,k-1}^r$ and x^r , $g_i(y_{i,k-1}^r)$ is unknown.

3.1.2 Algorithm

Algorithm 5 FedAvg

```
Input: initial point x^0, stepsize \eta, \gamma
```

- 1: for each round $r = 0, \dots, R-1$ do
- sample clients $S^r \subseteq [N], |S^r| = S$
- for client $i \in \mathcal{S}^r$ in parallel do 3:
- $y_{i,0}^r = x^r$ 4:
- for $k = 1, \dots, K$ do 5:
- Compute local stochastic gradient $g_i(y_{i,k-1}^r)$
- $y_{i,k}^r = y_{i,k-1}^r \eta g_i(y_{i,k-1}^r)$
- end for
- $\Delta y_i^r = y_{i,K}^r x^{r-1}$ 9:
- end for 10:
- $\Delta x^r = \frac{\gamma}{S} \sum_{i \in \mathcal{S}^r} \Delta y_i^r$ $x^{r+1} = x^r + \Delta x^r$
- 13: end for

3.1.3 Analysis

Let
$$\gamma \ge 1$$
, $\tilde{\eta} = K\gamma\eta$,
$$\tilde{\eta} \le \frac{1}{(1+B^2)8\beta}, \ \beta\tilde{\eta} \le \frac{1}{8} \quad (*)$$

$$\mathcal{E}^r = \frac{1}{KN} \sum_{i,k} \mathbb{E}_r \|y_{i,k-1}^r - x^r\|^2$$

When K, S, N > 1.

$$\begin{split} \mathbb{E}_r \|y_{i,k}^r - x^r\|^2 &= \mathbb{E}_r \|y_{i,k-1}^r - x^r - \eta g_i(y_{i,k-1}^r)\|^2 \\ &\leq \mathbb{E}_r \|y_{i,k-1} - x - \eta \nabla f_i(y_{i,k-1})\|^2 + \eta^2 \sigma^2 \\ &\leq (1 + \frac{1}{K-1}) \mathbb{E}_r \|y_{i,k-1} - x\|^2 + K\eta^2 \|\nabla f_i(y_{i,k-1})\|^2 + \eta^2 \sigma^2 \\ &= (1 + \frac{1}{K-1}) \mathbb{E}_r \|y_{i,k-1} - x\|^2 + K\eta^2 \|\nabla f_i(y_{i,k-1})\|^2 + \eta^2 \sigma^2 \\ &\leq (1 + \frac{1}{K-1}) \mathbb{E}_r \|y_{i,k-1} - x\|^2 + 2K\eta^2 \|\nabla f_i(y_{i,k-1}) - \nabla f_i(x)\|^2 + 2K\eta^2 \|\nabla f_i(x)\|^2 + \eta^2 \sigma^2 \\ &\leq (1 + \frac{1}{K-1} + K\eta^2 \beta^2) \mathbb{E}_r \|y_{i,k-1} - x\|^2 + 2K\eta^2 \|\nabla f_i(x)\|^2 + \eta^2 \sigma^2 \end{split}$$

Then,

$$\mathbb{E}_{r} \|y_{i,k}^{r} - x^{r}\|^{2} \leq (2K\eta^{2} \|\nabla f_{i}(x)\|^{2} + \eta^{2}\sigma^{2}) \sum_{\tau=1}^{k-1} (1 + \frac{1}{K-1} + K\eta^{2}\beta^{2})^{\tau}$$

$$\leq (\frac{2\tilde{\eta}^{2}}{K\gamma^{2}} \|\nabla f_{i}(x)\|^{2} + \frac{\tilde{\eta}^{2}\sigma^{2}}{K^{2}\gamma^{2}}) 3K$$

$$= \frac{6\tilde{\eta}^{2}}{\gamma^{2}} \|\nabla f_{i}(x)\|^{2} + \frac{3\tilde{\eta}^{2}\sigma^{2}}{K\gamma^{2}}$$

$$\leq \frac{6\tilde{\eta}^{2}}{\gamma^{2}} \|\nabla f_{i}(x)\|^{2} + \frac{3\tilde{\eta}\sigma^{2}}{8\beta K\gamma^{2}}$$

$$\beta \tilde{\eta} \mathcal{E}_{r} \leq \frac{6\beta\tilde{\eta}^{3}}{\gamma^{2}} \frac{1}{N} \sum_{i} \|\nabla f_{i}(x)\|^{2} + \frac{3\tilde{\eta}^{2}\sigma^{2}}{8K\gamma^{2}}$$

$$\leq \frac{6\beta\tilde{\eta}^{3}}{\gamma^{2}} (G^{2} + B^{2} \|\nabla f(x)\|^{2}) + \frac{3\tilde{\eta}^{2}\sigma^{2}}{8K\gamma^{2}}$$

$$= \frac{6\beta\tilde{\eta}^{3}G^{2}}{\gamma^{2}} + \frac{3\tilde{\eta}^{2}\sigma^{2}}{8K\gamma^{2}} + \frac{6\beta\tilde{\eta}^{3}B^{2}}{\gamma^{2}} \|\nabla f(x)\|^{2}$$

some r not exist above.

Then,

$$\Delta x^r = -\frac{\tilde{\eta}}{KS} \sum_{i \in \mathcal{S}^r} \sum_{k=1}^K g_i(y_{i,k-1}^r)$$

$$\mathbb{E}_r[\Delta x^r] = -\frac{\tilde{\eta}}{KN} \sum_{k,i} \mathbb{E}_r[\nabla f_i(y_{i,k-1}^r)]$$

$$\mathbb{E}_r[\langle \nabla f(x^r), \Delta x^r \rangle] = -\frac{\tilde{\eta}}{2} \left[\|\nabla f(x^r)\|^2 + \mathbb{E}_r \|\Delta x^r\|^2 - \mathbb{E}_r \|\frac{1}{KS} \sum_{i \in \mathcal{S}^r} \sum_{k=1}^K \left(\nabla f_i(y_{i,k-1}^r) - \nabla f(x^r) \right) \|^2 \right]$$

$$\leq -\frac{\tilde{\eta}}{2} \left[\|\nabla f(x^r)\|^2 + \mathbb{E}_r \|\Delta x^r\|^2 \right] + \frac{\tilde{\eta}\beta^2 \mathcal{E}^r}{2}$$

$$\leq -\frac{\tilde{\eta}}{2} \|\nabla f(x^r)\|^2 + \frac{\tilde{\eta}\beta^2 \mathcal{E}^r}{2}$$

$$\begin{split} \mathbb{E}_{r} \| \Delta x' \|^{2} &= \tilde{\eta}^{2} \mathbb{E}_{r} \| \frac{1}{KS} \sum_{i \in S'} \sum_{k = 1}^{K} S_{i} (y_{i,k-1}^{r}) \|^{2} \\ &= \tilde{\eta}^{2} \mathbb{E}_{r} \| \frac{1}{KS} \sum_{i \in S'} \sum_{k = 1}^{K} \nabla f_{i} (y_{i,k-1}^{r}) \|^{2} + \frac{\tilde{\eta}^{2} \sigma^{2}}{KS} \\ &\leq 2\tilde{\eta}^{2} \mathbb{E}_{r} \| \frac{1}{KS} \sum_{k,i} \nabla f_{i} (y_{i,k-1}^{r}) - \nabla f_{i} (x') \|^{2} + 2\tilde{\eta}^{2} \mathbb{E}_{r} \| \frac{1}{S} \sum_{i \in S} \nabla f_{i} (x') \|^{2} + \frac{\tilde{\eta}^{2} \sigma^{2}}{KS} \\ &\leq \frac{2\tilde{\eta}^{2}}{KN} \sum_{i,k} \mathbb{E}_{r} \| \nabla f_{i} (y_{i,k-1}^{r}) - \nabla f_{i} (x') \|^{2} + 2\tilde{\eta}^{2} \mathbb{E}_{r} \| \frac{1}{S} \sum_{i \in S} \nabla f_{i} (x') - \nabla f(x') \|^{2} + \frac{\tilde{\eta}^{2} \sigma^{2}}{KS} \\ &\leq \frac{2\tilde{\eta}^{2}}{KN} \sum_{i,k} \mathbb{E}_{r} \| y_{i,k-1}^{r} - x^{r} \|^{2} + 2\tilde{\eta}^{2} \| \nabla f(x') \|^{2} + (1 - \frac{S}{N})^{4} \tilde{\eta}^{2} \frac{1}{SN} \sum_{i} \| \nabla f_{i} (x') \|^{2} + \frac{\tilde{\eta}^{2} \sigma^{2}}{KS} \\ &\leq 2\tilde{\eta}^{2} \beta^{2} \mathcal{E}^{r} + 2\tilde{\eta}^{2} \| \nabla f(x') \|^{2} + (1 - \frac{S}{N})^{4} \frac{\tilde{\eta}^{2}}{S} (G^{2} + B^{2} \| \nabla f(x') \|^{2}) + \frac{\tilde{\eta}^{2} \sigma^{2}}{KS} \\ &= 2\tilde{\eta}^{2} \beta^{2} \mathcal{E}^{r} + 2\tilde{\eta}^{2} (1 + (\frac{S}{S} - \frac{2}{N})B^{2}) \| \nabla f(x') \|^{2} + (1 - \frac{S}{N})^{4} \frac{\tilde{\eta}^{2}}{S} G^{2} + \frac{\tilde{\eta}^{2} \sigma^{2}}{KS} \\ &\leq 2\tilde{\eta}^{2} \beta^{2} \mathcal{E}^{r} + 2\tilde{\eta}^{2} (1 + B^{2}) \| \nabla f(x') \|^{2} + (1 - \frac{S}{N})^{4} \frac{\tilde{\eta}^{2}}{S} G^{2} + \frac{\tilde{\eta}^{2} \sigma^{2}}{KS} \\ &\leq 2\tilde{\eta}^{2} \beta^{2} \mathcal{E}^{r} + 2\tilde{\eta}^{2} (1 + B^{2}) \| \nabla f(x') \|^{2} + (1 - \frac{S}{N})^{4} \frac{\tilde{\eta}^{2}}{S} G^{2} + \frac{\tilde{\eta}^{2} \sigma^{2}}{KS} \\ &\leq f(x') - \frac{\tilde{\eta}}{2} \| \nabla f(x') \|^{2} + \frac{\tilde{\eta}^{2} \beta^{2} \mathcal{E}^{r}}{2} + \frac{\beta}{2} \mathbb{E}_{r} \| \Delta x' \|^{2} \\ &\leq f(x') - \frac{\tilde{\eta}}{2} \| \nabla f(x') \|^{2} + \frac{\tilde{\eta}^{2} \beta^{2} \mathcal{E}^{r}}{2} \\ &+ \frac{\beta}{2} \left[2\tilde{\eta}^{2} \beta^{2} \mathcal{E}^{r} + 2\tilde{\eta}^{2} (1 + B^{2}) \| \nabla f(x') \|^{2} + (1 - \frac{S}{N})^{4} \frac{\tilde{\eta}^{2}}{S} G^{2} + \frac{\tilde{\eta}^{2} \sigma^{2}}{KS} \right] \\ &\leq f(x') - \tilde{\eta}^{2} \| \nabla f(x') \|^{2} + \tilde{\eta}^{2} \mathcal{E}^{2} \\ &+ \frac{\beta}{2} \left[2\tilde{\eta}^{2} \beta^{2} \mathcal{E}^{r} + 2\tilde{\eta}^{2} (1 + B^{2}) \| \nabla f(x') \|^{2} \right] + (1 - \frac{S}{N})^{4} \frac{\tilde{\eta}^{2}}{S} G^{2} + \frac{\tilde{\eta}^{2} \sigma^{2}}{KS} \right] \\ &= f(x') - \eta' \| \nabla f(x') \|^{2} + \tilde{\eta}^{2} \frac{\tilde{\eta}^{2}}{S} \mathcal{E}^{2} + \frac{\tilde{\eta}^{2} \sigma^{2}}{S} \| \nabla f(x') \|^{2} \right) \\ &+ \frac{2}{2} \left[\frac{1}{2} + \beta\tilde{\eta} \right] \frac{3\tilde{\eta} B^{2}}{32\gamma^{2}} \\ &\geq \frac{3$$

By suming $r \in \{0, 1, \dots, R-1\}$ and let $F = f(x^0) - f^*$,

$$\eta' \mathbb{E}\left[\frac{1}{R} \sum_{r=0}^{R-1} \|\nabla f(x^r)\|^2\right] \le \frac{F}{R} + C$$

i.e.

$$\begin{split} \frac{3}{16} \mathbb{E}[\frac{1}{R} \sum_{r=0}^{R-1} \|\nabla f(x^r)\|^2] \leq & \frac{F}{\tilde{\eta} R} + \beta \left[\frac{1}{2} + \beta \tilde{\eta} \right] (\frac{6\beta \tilde{\eta}^2 G^2}{\gamma^2} + \frac{3\tilde{\eta} \sigma^2}{8K\gamma^2}) + \frac{\beta}{2} \left[(1 - \frac{S}{N}) \frac{4\tilde{\eta}}{S} G^2 + \frac{\tilde{\eta} \sigma^2}{KS} \right] \\ \leq & \frac{F}{\tilde{\eta} R} + \beta \frac{5}{8} (\frac{6\beta \tilde{\eta}^2 G^2}{\gamma^2} + \frac{3\tilde{\eta} \sigma^2}{8K\gamma^2}) + \frac{\beta}{2} \left[(1 - \frac{S}{N}) \frac{4\tilde{\eta}}{S} G^2 + \frac{\tilde{\eta} \sigma^2}{KS} \right] \\ = & \frac{F}{\tilde{\eta} R} + (\frac{15\beta^2 \tilde{\eta}^2 G^2}{4\gamma^2} + \frac{15\beta \tilde{\eta} \sigma^2}{64K\gamma^2}) + \frac{\beta}{2} \left[(1 - \frac{S}{N}) \frac{4\tilde{\eta}}{S} G^2 + \frac{\tilde{\eta} \sigma^2}{KS} \right] \end{split}$$

By

Lemma 2 (sub-linear convergence rate). For every non-negative sequence $\{d_{r-1}\}_{r\geq 1}$ and any parameters $\eta_{\max}\geq 0$, $c\geq 0$, $R\geq 0$, there exists a constant step-size $\eta\leq \eta_{\max}$ and weights $w_r=1$ such that,

$$\Psi_R := \frac{1}{R+1} \sum_{r=1}^{R+1} \left(\frac{d_{r-1}}{\eta} - \frac{d_r}{\eta} + c_1 \eta + c_2 \eta^2 \right) \le \frac{d_0}{\eta_{\max}(R+1)} + \frac{2\sqrt{c_1 d_0}}{\sqrt{R+1}} + 2\left(\frac{d_0}{R+1}\right)^{\frac{2}{3}} c_2^{\frac{1}{3}}.$$

Proof. Unrolling the sum, we can simplify

$$\Psi_R \le \frac{d_0}{n(R+1)} + c_1 \eta + c_2 \eta^2$$
.

Similar to the strongly convex case (Lemma 1), we distinguish the following cases:

• When $R+1 \le \frac{d_0}{c_1\eta_{\max}^2}$, and $R+1 \le \frac{d_0}{c_2\eta_{\max}^3}$ we pick $\eta=\eta_{\max}$ to claim

$$\Psi_R \le \frac{d_0}{\eta_{\max}(R+1)} + c_1 \eta_{\max} + c_2 \eta_{\max}^2 \le \frac{d_0}{\eta_{\max}(R+1)} + \frac{\sqrt{c_1 d_0}}{\sqrt{R+1}} + \left(\frac{d_0}{R+1}\right)^{\frac{2}{3}} c_2^{\frac{1}{3}}.$$

• In the other case, we have $\eta_{\max}^2 \ge \frac{d_0}{c_1(R+1)}$ or $\eta_{\max}^3 \ge \frac{d_0}{c_2(R+1)}$. We choose $\eta = \min\left\{\sqrt{\frac{d_0}{c_1(R+1)}}, \sqrt[3]{\frac{d_0}{c_2(R+1)}}\right\}$ to prove

$$\Psi_R \le \frac{d_0}{\eta(R+1)} + c\eta = \frac{2\sqrt{c_1 d_0}}{\sqrt{R+1}} + 2\sqrt[3]{\frac{d_0^2 c_2}{(R+1)^2}}.$$

Let $d_0 = F$, $c_1 = \frac{\beta}{2} \left[(1 - \frac{S}{N}) \frac{4}{S} G^2 + \frac{\sigma^2}{KS} \right] + \frac{15\beta\sigma^2}{64K\gamma^2}$, $c_2 = \frac{15\beta^2 G^2}{4\gamma^2}$ Finally, we get

$$\mathbb{E}[\|\nabla f(\bar{x}^R)\|^2] \leq \mathcal{O}\left(\frac{M\sqrt{\beta F}}{\sqrt{RKS}} + \frac{F^{2/3}(\beta^2 G^2)^{1/3}}{R^{2/3}} + \frac{(B^2+1)\beta F}{R}\right),$$

where $M^2 = \sigma^2(1 + \frac{S}{\gamma^2}) + K(1 - \frac{S}{N})G^2$.

3.2 SCAFFOLD

3.2.1 Algorithm

Algorithm 6 SCAFFOLD

```
Input: initial point x^0, c_i, i \in [N], c = \frac{1}{N} \sum_{i=1}^N c_i, stepsize \eta_l, \eta_g
  1: for each round r = 1, \dots, R do
          sample clients S^r \subseteq [N]
         for client i \in \mathcal{S}^r in parallel do
             y_{i,0}^r = x^{r-1}
             for k = 1, \dots, K do
                Compute local stochastic gradient g_i(y_{i,k-1}^r)
                y_{i,k}^r = y_{i,k-1}^r - \eta_l(g_i(y_{i,k-1}^r) - c_i^r + c^r)
             end for
            c_i^+ = c_i^r - c^r + \frac{1}{Km}(x^{r-1} - y_{i,K}^r)
           (\Delta y_i^r, \Delta c_i^r) = (y_{i,K}^r - x^{r-1}, c_i^+ - c_i^r)
          c_i^r = c_i^+
 11:
         end for
 12:
         (\Delta x^r, \Delta c^r) = \frac{1}{|S^r|} \sum_{i \in S^r} (\Delta y_i^r, \Delta c_i^r)
         x^r = x^{r-1} + \eta_g \Delta x^r and c^r = c^{r-1} + \frac{|\mathcal{S}^r|}{N} \Delta c^r
 15: end for
```

3.2.2 Analysis

Additional notation.

In round r,

$$\begin{split} c_i^r &= \begin{cases} \frac{1}{K} \sum_{k=1}^K g_i(y_{i,k-1}^r) & \text{if } i \in \mathcal{S}^r, \\ c_i^{r-1} & \text{otherwise.} \end{cases} \\ \alpha_{i,k-1}^0 &:= x^0, \quad \alpha_{i,k-1}^r := \begin{cases} y_{i,k-1}^r & \text{if } i \in \mathcal{S}^r, \\ \alpha_{i,k-1}^{r-1} & \text{otherwise.} \end{cases} \\ \Xi_r &:= \frac{1}{KN} \sum_{k=1}^K \sum_{i=1}^N \mathbb{E} \|\alpha_{i,k-1}^r - x^r\|^2. \\ \mathcal{E}_r &:= \frac{1}{KN} \sum_{k=1}^K \sum_{i=1}^N \mathbb{E} \|y_{i,k}^r - x^{r-1}\|^2. \end{split}$$

Lemma 1. $\forall \tilde{\eta} := \eta_l \eta_g K \in [0, \frac{1}{\beta}],$

$$\mathbb{E}\|\mathbb{E}_{r-1}[x^r] - x^{r-1}\|^2 \le 2\tilde{\eta}^2 \beta^2 \mathcal{E}_r + 2\tilde{\eta}^2 \mathbb{E}\|\nabla f(x^{r-1})\|^2,$$

$$\mathbb{E}\|x^r - x^{r-1}\|^2 \le 4\tilde{\eta}^2 \beta^2 \mathcal{E}_r + 8\tilde{\eta}^2 \beta^2 \Xi_{r-1} + 4\tilde{\eta}^2 \mathbb{E}\|\nabla f(x^{r-1})\|^2 + \frac{9\tilde{\eta}^2 \sigma^2}{KS}.$$

Proof.

$$\mathbb{E}[\Delta x] = -\frac{\tilde{\eta}}{KN} \sum_{k,i} \mathbb{E}[g_i(y_{i,k-1})].$$

$$\Delta x = -\frac{\tilde{\eta}}{KS} \sum_{k,i \in \mathcal{S}} (g_i(y_{i,k-1}) + c - c_i) \text{ where } c_i = \frac{1}{K} \sum_k g_i(\alpha_{i,k-1}).$$

Then,

$$\begin{split} \mathbb{E}\|\Delta x\|^2 &= \mathbb{E}\| - \frac{\eta}{KS} \sum_{k,i \in \mathcal{S}} (g_i(\boldsymbol{y}_{i,k-1}) - g_i(\boldsymbol{\alpha}_{i,k-1}) + \boldsymbol{c} - \boldsymbol{c}_i)\|^2 \\ &\leq \mathbb{E} \left\| - \frac{\tilde{\eta}}{KS} \sum_{k,i \in \mathcal{S}} (\nabla f_i(\boldsymbol{y}_{i,k-1}) + \mathbb{E}[\boldsymbol{c}] - \mathbb{E}[\boldsymbol{c}_i]) \right\|^2 + \frac{9\tilde{\eta}^2 \sigma^2}{KS} \\ &\leq \mathbb{E} \left[\frac{\tilde{\eta}^2}{KS} \sum_{k,i \in \mathcal{S}} \left\| \nabla f_i(\boldsymbol{y}_{i,k-1}) + \mathbb{E}[\boldsymbol{c}] - \mathbb{E}[\boldsymbol{c}_i] \right\|^2 \right] + \frac{9\tilde{\eta}^2 \sigma^2}{KS} \\ &= \frac{\tilde{\eta}^2}{KN} \sum_{k,i} \mathbb{E} \left\| (\nabla f_i(\boldsymbol{y}_{i,k-1}) - \nabla f_i(\boldsymbol{x})) + (\mathbb{E}[\boldsymbol{c}] - \nabla f(\boldsymbol{x})) + \nabla f(\boldsymbol{x}) - (\mathbb{E}[\boldsymbol{c}_i] - \nabla f_i(\boldsymbol{x})) \right\|^2 + \frac{9\tilde{\eta}^2 \sigma^2}{KS} \\ &\leq \frac{4\tilde{\eta}^2}{KN} \sum_{k,i} \mathbb{E} \| \nabla f_i(\boldsymbol{y}_{i,k-1}) - \nabla f_i(\boldsymbol{x}) \|^2 + \frac{8\tilde{\eta}^2}{KN} \sum_{k,i} \mathbb{E} \| \nabla f_i(\boldsymbol{\alpha}_{i,k-1}) - \nabla f_i(\boldsymbol{x}) \|^2 + 4\tilde{\eta}^2 \mathbb{E} \| \nabla f(\boldsymbol{x}) \|^2 + \frac{9\tilde{\eta}^2 \sigma^2}{KS} \\ &\leq 4\tilde{\eta}^2 \beta^2 \mathcal{E}_r + 8\beta^2 \tilde{\eta}^2 \Xi_{r-1} + 4\tilde{\eta}^2 \mathbb{E} \| \nabla f(\boldsymbol{x}) \|^2 + \frac{9\tilde{\eta}^2 \sigma^2}{KS}. \end{split}$$

Lemma 2. the following holds true for any $\tilde{\eta} \leq \frac{1}{24\beta} (\frac{S}{N})^{\alpha}, \forall \alpha \in [\frac{1}{2}, 1], \text{ where } \tilde{\eta} := \eta_l \eta_g \dot{K}$:

$$\Xi_r \leq (1 - \frac{17S}{36N})\Xi_{r-1} + \frac{1}{48\beta^2} (\frac{S}{N})^{2\alpha - 1} \|\nabla f(x^{r-1})\|^2 + \frac{97}{48} (\frac{S}{N})^{2\alpha - 1} \mathcal{E}_r + (\frac{S}{N\beta^2}) \frac{\sigma^2}{32KS}.$$

Proof.

$$\mathbb{E}_{\mathcal{S}^{r}}[\alpha_{i,k-1}^{r}] = (1 - \frac{S}{N})\alpha_{i,k-1}^{r-1} + \frac{S}{N}y_{i,k-1}^{r}.$$

$$\Xi_{r} = \frac{1}{KN} \sum_{i,k} \mathbb{E} \|\alpha_{i,k-1}^{r} - x^{r}\|^{2}$$

$$= \left(1 - \frac{S}{N}\right) \cdot \underbrace{\frac{1}{KN} \sum_{i} \mathbb{E} \|\alpha_{i,k-1}^{r-1} - x^{r}\|^{2}}_{\mathcal{T}_{5}} + \underbrace{\frac{S}{N} \cdot \frac{1}{KN} \sum_{k,i} \mathbb{E} \|y_{i,k-1}^{r} - x^{r}\|^{2}}_{\mathcal{T}_{6}}.$$

$$\mathcal{T}_{5} = \frac{1}{KN} \sum_{i} \mathbb{E}(\|\alpha_{i,k-1}^{r-1} - x^{r-1}\|^{2} + \|\Delta x^{r}\|^{2} + \mathbb{E}_{r-1} \left\langle \Delta x^{r}, \alpha_{i,k-1}^{r-1} - x^{r-1} \right\rangle)$$

$$\leq \frac{1}{KN} \sum_{i} \mathbb{E}(\|\alpha_{i,k-1}^{r-1} - x^{r-1}\|^{2} + \|\Delta x^{r}\|^{2} + \frac{1}{b} \|\mathbb{E}_{r-1}[\Delta x^{r}]\|^{2} + b \|\alpha_{i,k-1}^{r-1} - x^{r-1}\|^{2})$$

$$\mathcal{T}_{6} \leq 2(\mathcal{E}_{r} + \mathbb{E}\|\Delta x^{r}\|^{2})$$

By lemma 1,

$$\begin{split} \Xi_r & \leq \left(1 - \frac{S}{N}\right) (1 + b) \Xi_{r-1} + 2 \frac{S}{N} \mathcal{E}_r + 2 \mathbb{E} \|\Delta x^r\|^2 + \frac{1}{b} \mathbb{E} \|\mathbb{E}_{r-1}[\Delta x^r]\|^2 \\ & \leq \left(\left(1 - \frac{S}{N}\right) (1 + b) + 16 \tilde{\eta}^2 \beta^2\right) \Xi_{r-1} + \left(\frac{2S}{N} + 8 \tilde{\eta}^2 \beta^2 + 2 \frac{1}{b} \tilde{\eta}^2 \beta^2\right) \mathcal{E}_r + (8 + 2 \frac{1}{b}) \tilde{\eta}^2 \mathbb{E} \|\nabla f(x)\|^2\right) + \frac{18 \tilde{\eta}^2 \sigma^2}{KS} \end{split}$$
 Let $b = \frac{S}{2(N-S)}$, we have

$$(1 - \frac{S}{N})(1 + b) \le (1 - \frac{S}{2N}), \quad \frac{1}{b} \le \frac{2N}{S}.$$

Plugging these values along with the bound on the step-size

$$\beta^2 \tilde{\eta}^2 \le \frac{1}{36} \left(\frac{S}{N}\right)^{2\alpha} \le \frac{S}{36N}$$

completes the lemma.

Lemma 3. Suppose our step-sizes satisfy $n_l \leq \frac{1}{24\beta K \eta_g}$. Then, for any global $\eta_g \geq 1$ we can bound the drift as

$$\frac{5}{3}\beta^{2}\tilde{\eta}\mathcal{E}_{r} \leq \frac{5}{3}\beta^{3}\tilde{\eta}^{2}\Xi_{r-1} + \frac{\tilde{\eta}}{24\eta_{a}^{2}}\mathbb{E}\|\nabla f(x^{r-1})\|^{2} + \frac{\tilde{\eta}^{2}\beta}{4K\eta_{a}^{2}}\sigma^{2}.$$

Proof. For $K \geq 2$,

$$\mathbb{E}\|y_{i,k} - x\|^{2} = \mathbb{E}\|y_{i,k-1} - \eta_{l}(g_{i}(y_{i,k-1}) + c - c_{i}) - x\|^{2} \\
\leq \mathbb{E}\|y_{i,k-1} - \eta_{l}(\nabla f_{i}(y_{i,k-1}) + c - c_{i}) - x\|^{2} + \eta_{l}^{2}\sigma^{2} \\
\leq (1 + \frac{1}{K - 1}) \mathbb{E}\|y_{i,k-1} - x\|^{2} + K\eta_{l}^{2} \mathbb{E}\|\nabla f_{i}(y_{i,k-1}) + c - c_{i}\|^{2} + \eta_{l}^{2}\sigma^{2} \\
= (1 + \frac{1}{K - 1}) \mathbb{E}\|y_{i,k-1} - x\|^{2} + \eta_{l}^{2}\sigma^{2} \\
+ K\eta_{l}^{2} \mathbb{E}\|\nabla f_{i}(y_{i,k-1}) - \nabla f_{i}(x) + (c - \nabla f(x)) + \nabla f(x) - (c_{i} - \nabla f_{i}(x))\|^{2} \\
\leq (1 + \frac{1}{K - 1}) \mathbb{E}\|y_{i,k-1} - x\|^{2} + 4K\eta_{l}^{2} \mathbb{E}\|\nabla f_{i}(y_{i,k-1}) - \nabla f_{i}(x)\|^{2} + \eta_{l}^{2}\sigma^{2} \\
+ 4K\eta_{l}^{2} \mathbb{E}\|c - \nabla f(x)\|^{2} + 4K\eta_{l}^{2} \mathbb{E}\|\nabla f(x)\|^{2} + 4K\eta_{l}^{2} \mathbb{E}\|c_{i} - \nabla f_{i}(x)\|^{2} \\
\leq (1 + \frac{1}{K - 1} + 4K\beta^{2}\eta_{l}^{2}) \mathbb{E}\|y_{i,k-1} - x\|^{2} + \eta_{l}^{2}\sigma^{2} + 4K\eta_{l}^{2} \mathbb{E}\|\nabla f(x)\|^{2} \\
+ 4K\eta_{l}^{2} \mathbb{E}\|c - \nabla f(x)\|^{2} + 4K\eta_{l}^{2} \mathbb{E}\|c_{i} - \nabla f_{i}(x)\|^{2}$$

$$\begin{split} \frac{1}{N} \sum_{i} \mathbb{E} \|y_{i,k} - x\|^{2} &\leq \left(1 + \frac{1}{K - 1} + 4K\beta^{2}\eta_{l}^{2}\right) \frac{1}{N} \sum_{i} \mathbb{E} \|y_{i,k-1} - x\|^{2} \\ &+ \eta_{l}^{2}\sigma^{2} + 4K\eta_{l}^{2} \mathbb{E} \|\nabla f(x)\|^{2} + 8K\eta_{l}^{2}\beta^{2}\Xi_{r-1} \\ &\leq \left(\eta_{l}^{2}\sigma^{2} + 4K\eta_{l}^{2}\mathbb{E} \|\nabla f(x)\|^{2} + 8K\eta_{l}^{2}\beta^{2}\Xi_{r-1}\right) \left(\sum_{\tau = 0}^{k - 1} \left(1 + \frac{1}{K - 1} + 4K\beta^{2}\eta_{l}^{2}\right)^{\tau}\right) \\ &= \left(\frac{\tilde{\eta}^{2}\sigma^{2}}{K^{2}\eta_{g}^{2}} + \frac{4\tilde{\eta}^{2}}{K\eta_{g}^{2}}\mathbb{E} \|\nabla f(x)\|^{2} + \frac{8\tilde{\eta}^{2}\beta^{2}}{K\eta_{g}^{2}}\Xi_{r-1}\right) \left(\sum_{\tau = 0}^{k - 1} \left(1 + \frac{1}{K - 1} + \frac{4\beta^{2}\tilde{\eta}^{2}}{K\eta_{g}^{2}}\right)^{\tau}\right) \\ &\leq \left(\frac{\tilde{\eta}\sigma^{2}}{24\beta K^{2}\eta_{g}^{2}} + \frac{1}{144\beta^{2}K\eta_{g}^{2}}\mathbb{E} \|\nabla f(x)\|^{2} + \frac{\tilde{\eta}\beta}{3K\eta_{g}^{2}}\Xi_{r-1}\right) 3K. \end{split}$$

Lemma 4. If $\tilde{\eta} \leq \frac{1}{24\beta} \left(\frac{S}{N}\right)^{\frac{2}{3}}$,

$$\left(\mathbb{E}[f(x^r)] + 12\beta^3 \tilde{\eta}^2 \frac{N}{S} \Xi_r\right) \leq \left(\mathbb{E}[f(x^{r-1})] + 12\beta^3 \tilde{\eta}^2 \frac{N}{S} \Xi_{r-1}\right) + \frac{5\beta \tilde{\eta}^2 \sigma^2}{KS} (1 + \frac{S}{\eta_g^2}) - \frac{\tilde{\eta}}{14} \mathbb{E} \|\nabla f(x^{r-1})\|^2$$

Proof.

$$\begin{split} \mathbb{E}[f(x+\Delta x)] - f(x) &\leq -\frac{\tilde{\eta}}{KN} \sum_{k,i} \langle \nabla f(\boldsymbol{x}), \mathbb{E}[\nabla f_i(\boldsymbol{y}_{i,k-1})] \rangle + \frac{\beta}{2} \, \mathbb{E} \, \|\Delta \boldsymbol{x}\|^2 \\ &\leq -\frac{\tilde{\eta}}{KN} \sum_{k,i} \langle \nabla f(x), \mathbb{E}[\nabla f_i(\boldsymbol{y}_{i,k-1})] \rangle + \\ &2\tilde{\eta}^2 \beta^3 \mathcal{E}_r + 4\tilde{\eta}^2 \beta^3 \Xi_{r-1} + 2\beta \tilde{\eta}^2 \mathbb{E} \|\nabla f(\boldsymbol{x})\|^2 + \frac{9\beta \tilde{\eta}^2 \sigma^2}{2KS} \\ &\leq -\frac{\tilde{\eta}}{2} \|\nabla f(x)\|^2 + \frac{\tilde{\eta}}{2} \mathbb{E} \, \left\| \frac{1}{KN} \sum_{i,k} \nabla f_i(\boldsymbol{y}_{i,k-1}) - \nabla f(\boldsymbol{x}) \right\|^2 + \\ &2\tilde{\eta}^2 \beta^3 \mathcal{E}_r + 4\tilde{\eta}^2 \beta^3 \Xi_{r-1} + 2\beta \tilde{\eta}^2 \mathbb{E} \|\nabla f(\boldsymbol{x})\|^2 + \frac{9\beta \tilde{\eta}^2 \sigma^2}{2KS} \\ &\leq -\frac{\tilde{\eta}}{2} \|\nabla f(x)\|^2 + \frac{\tilde{\eta}}{2KN} \sum_{i,k} \mathbb{E} \left\| \nabla f_i(\boldsymbol{y}_{i,k-1}) - \nabla f_i(\boldsymbol{x}) \right\|^2 + \\ &2\tilde{\eta}^2 \beta^3 \mathcal{E}_r + 4\tilde{\eta}^2 \beta^3 \Xi_{r-1} + 2\beta \tilde{\eta}^2 \mathbb{E} \|\nabla f(x)\|^2 + \frac{9\beta \tilde{\eta}^2 \sigma^2}{2KS} \\ &\leq -(\frac{\tilde{\eta}}{2} - 2\beta \tilde{\eta}^2) \|\nabla f(x)\|^2 + (\frac{\tilde{\eta}}{2} + 2\beta \tilde{\eta}^2) \beta^2 \mathcal{E}_r + 4\beta^3 \tilde{\eta}^2 \Xi_{r-1} + \frac{9\beta \tilde{\eta}^2 \sigma^2}{2KS} \end{split}$$

By Lemma 2,

$$\begin{split} 12\beta^{3}\tilde{\eta}^{2}\frac{N}{S}\Xi_{r} &\leq 12\beta^{3}\tilde{\eta}^{2}\frac{N}{S}\Bigg((1-\frac{17S}{36N})\Xi_{r-1}+\frac{1}{48\beta^{2}}(\frac{S}{N})^{2\alpha-1}\|\nabla f(x^{r-1})\|^{2}+\frac{97}{48}(\frac{S}{N})^{2\alpha-1}\mathcal{E}_{r}+(\frac{S}{N\beta^{2}})\frac{\sigma^{2}}{32KS}\Bigg)\\ &=12\beta^{3}\tilde{\eta}^{2}\frac{N}{S}\Xi_{r-1}-\frac{17}{3}\beta^{3}\tilde{\eta}^{2}\Xi_{r-1}+\frac{1}{4}\beta\tilde{\eta}^{2}(\frac{N}{S})^{2}-2\alpha\|\nabla f(x)\|^{2}+\frac{97}{4}\beta^{3}\tilde{\eta}^{2}(\frac{N}{S})^{2-2\alpha}\mathcal{E}_{r}+\frac{3\beta\tilde{\eta}^{2}\sigma^{2}}{8KS}\Bigg) \end{split}$$

By Lemma 3,

$$\frac{5}{3}\beta^2\tilde{\eta}\mathcal{E}_r \leq \frac{5}{3}\beta^3\tilde{\eta}^2\Xi_{r-1} + \frac{\tilde{\eta}}{24\eta_a^2}\mathbb{E}\|\nabla f(x^{r-1})\|^2 + \frac{\tilde{\eta}^2\beta}{4K\eta_a^2}\sigma^2.$$

At last,

$$\begin{split} \mathbb{E}[f(x+\Delta x)] + 12\beta^3 \tilde{\eta}^2 \frac{N}{S} \Xi_r &\leq (\mathbb{E}[f(x)] + 12\beta^3 \tilde{\eta}^2 \frac{N}{S} \Xi_{r-1}) + (\frac{5}{3} - \frac{17}{3})\beta^3 \tilde{\eta}^2 \Xi_{r-1} \\ &- (\frac{\tilde{\eta}}{2} - 2\beta \tilde{\eta}^2 - \frac{1}{4}\beta \tilde{\eta}^2 (\frac{N}{S})^{2-2\alpha}) \|\nabla f(\boldsymbol{x})\|^2 \\ &+ (\frac{\tilde{\eta}}{2} - \frac{5\tilde{\eta}}{3} + 2\beta \tilde{\eta}^2 + \frac{97}{4}\beta \tilde{\eta}^2 (\frac{N}{S})^{2-2\alpha})\beta^2 \mathcal{E}_r + \frac{39\beta \tilde{\eta}^2 \sigma^2}{8KS} (1 + \frac{S}{\eta_o^2})^2 (1 + \frac{S}{\eta_o^2})^$$

Let $\alpha = \frac{2}{3}$, then $\beta \tilde{\eta}(\frac{N}{S})^{2-2\alpha} \leq \frac{1}{24}$ proves the lemma.

#

Thus, by lemma 4,

$$\left(\mathbb{E}[f(x^R)] + 12\beta^3 \tilde{\eta}^2 \frac{N}{S} \Xi_R\right) \leq \mathbb{E}[f(x^0)] + \sum_{r=1}^R \left(\frac{5\beta \tilde{\eta}^2 \sigma^2}{KS} (1 + \frac{S}{\eta_q^2}) - \frac{\tilde{\eta}}{14} \mathbb{E} \|\nabla f(x^{r-1})\|^2\right)$$

so let $F = f(x^0) - f^*$,

$$0 \leq \frac{F}{R} + \frac{1}{R} \sum_{r=1}^{R} \left(\frac{5\beta \tilde{\eta}^2 \sigma^2}{KS} (1 + \frac{S}{\eta_g^2}) - \frac{\tilde{\eta}}{14} \mathbb{E} \|\nabla f(x^{r-1})\|^2 \right)$$

$$\frac{1}{R} \sum_{r=1}^{R} \mathbb{E} \|\nabla f(x^{r-1})\|^2 \leq \mathcal{O}\left(\frac{F}{\tilde{\eta}R} + \frac{\beta \tilde{\eta} \sigma^2}{KS}(1 + \frac{S}{\eta_g^2})\right)$$

Since $\tilde{\eta} \leq \tilde{\eta}_{\max} = \frac{1}{24\beta} \left(\frac{S}{N}\right)^{\frac{2}{3}}$, we need consider two conditions below:

1)
$$\frac{F}{\tilde{\eta}_{\max}R} \ge \frac{\beta \tilde{\eta}_{\max}\sigma^2}{KS} (1 + \frac{S}{\eta_q^2})$$
, let $\tilde{\eta} = \tilde{\eta}_{\max}$,

$$\frac{F}{\tilde{\eta}R} + \frac{\beta\tilde{\eta}\sigma^2}{KS}(1 + \frac{S}{\eta_g^2}) \leq \frac{F}{\tilde{\eta}_{\max}R} + \sqrt{\frac{F\beta\sigma^2}{RKS}(1 + \frac{S}{\eta_g^2})}$$

2)
$$\frac{F}{\tilde{\eta}_{\max}R} \leq \frac{\beta \tilde{\eta}_{\max} \sigma^2}{KS} (1 + \frac{S}{\eta_g^2})$$
, i.e. $\tilde{\eta}_{\max} \geq \tilde{\eta}_m$, let $\tilde{\eta} = \tilde{\eta}_m$, i.e. $\frac{F}{\tilde{\eta}R} = \frac{\beta \tilde{\eta} \sigma^2}{KS} (1 + \frac{S}{\eta_g^2})$,

$$\frac{F}{\tilde{\eta}R} + \frac{\beta\tilde{\eta}\sigma^2}{KS}(1 + \frac{S}{\eta_g^2}) = \frac{2\beta\tilde{\eta}_m\sigma^2}{KS}(1 + \frac{S}{\eta_g^2}) \le 2\sqrt{\frac{F\beta\sigma^2}{RKS}(1 + \frac{S}{\eta_g^2})}$$

In summary,

$$\mathcal{O}\left(\frac{F}{\tilde{\eta}R} + \frac{\beta\tilde{\eta}\sigma^2}{KS}(1 + \frac{S}{\eta_g^2})\right) \leq \mathcal{O}\left(\frac{F}{\tilde{\eta}_{\max}R} + \sqrt{\frac{F\beta\sigma^2}{RKS}(1 + \frac{S}{\eta_g^2})}\right) = \mathcal{O}\left(\frac{\beta F}{R}\left(\frac{N}{S}\right)^{\frac{2}{3}} + \sqrt{\frac{\beta F\sigma^2}{RKS}(1 + \frac{S}{\eta_g^2})}\right)$$

3.3 SAGA

3.3.1 Algorithm

Algorithm 7 SAGA

Input: initial point x^0 , $w_i^0 = x^0$, $\forall i$, stepsize γ

1: **for**
$$k = 0, 1, 2, \cdots$$
 do

2: Compute
$$f_i'(w_i^k)$$
 for all i

3: Randomly pick
$$j \in [N]$$

4:
$$x^{k+1} = x^k - \gamma \left[f_j'(x^k) - f_j'(w_j^k) + \frac{1}{n} \sum_{i=1}^n f_i'(w_i^k) \right]$$

5:
$$w_i^{k+1} = \begin{cases} x^k, & i = j \\ w_i^k, & i \neq j \end{cases}$$

6: end for

4 APPENDIX 24

§4 Appendix

4.1

Thm. Let $f: \mathbb{E} \to (-\infty, \infty]$ be an L-smooth function $(L \ge 0)$ over a given convex set D. Then for any $x, y \in D$,

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||x - y||^2$$

Proof.

$$\begin{split} |f(y)-f(x)-\langle\nabla f(x),y-x\rangle| &= \left|\int_0^1 \langle\nabla f(x+t(y-x))-\nabla f(x),y-x\rangle dt\right| \\ &\leq \int_0^1 |\langle\nabla f(x+t(y-x))-\nabla f(x),y-x\rangle| dt \\ &\leq \int_0^1 \|\nabla f(x+t(y-x))-\nabla f(x)\|\cdot\|y-x\| dt \\ &\leq \int_0^1 tL\|y-x\|^2 dt \\ &= \frac{L}{2}\|y-x\|^2 \end{split}$$

Remark. We can also get:

$$\begin{split} f\left(x^{*}\right) &= \min_{y \in \mathbb{R}^{n}} f(y) \\ &\leq \min_{y \in \mathbb{R}^{n}} \left\{ f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^{2} \right\} \\ &= \min_{r \geq 0} \left\{ f(x) - r \|\nabla f(x)\| + \frac{L}{2} r^{2} \right\} \\ &= f(x) - \frac{1}{2L} \|\nabla f(x)\|^{2} \end{split}$$

i.e.

$$\|\nabla f(x)\|^2 \le 2L(f(x) - f^*)$$