End Joining Signatures - dev

Charlie Soeder 2/15/2019

25 February 2019

Rebuilding, starting with summary stats for the materials/methods section. Reference genomes

Table 1: Size and Consolidation of Reference Genomes

Reference Genome:	dm6
number_bases	144 M
number_contigs	1.87 k

Sequenced reads

Table 2: Number of Sequenced Samples by Treatment

experimental	sample_count
control	30

Table 3: Sequenced Experimental Samples

name	paired	experimental	source
Mcm5-A7	TRUE	control	dannyMiller
mcm5-28	TRUE	control	$\operatorname{dannyMiller}$
mcm5-27	TRUE	control	$\operatorname{dannyMiller}$
mcm5-26	TRUE	control	$\operatorname{dannyMiller}$
mcm5-25	TRUE	control	$\operatorname{dannyMiller}$
mcm5-24	TRUE	control	$\operatorname{dannyMiller}$
mcm5-23	TRUE	control	$\operatorname{dannyMiller}$
mcm5-22	TRUE	control	$\operatorname{dannyMiller}$
mcm5-21	TRUE	control	$\operatorname{dannyMiller}$
mcm5-20	TRUE	control	$\operatorname{dannyMiller}$
mcm5-19	TRUE	control	$\operatorname{dannyMiller}$
mcm5-18	TRUE	control	$\operatorname{dannyMiller}$
mcm5-17	TRUE	control	$\operatorname{dannyMiller}$
mcm5-16	TRUE	control	$\operatorname{dannyMiller}$
mcm5-15	TRUE	control	$\operatorname{dannyMiller}$
mcm5-14	TRUE	control	$\operatorname{dannyMiller}$
mcm5-13	TRUE	control	$\operatorname{dannyMiller}$
mcm5-12	TRUE	control	$\operatorname{dannyMiller}$
mcm5-11	TRUE	control	$\operatorname{dannyMiller}$
mcm5-10	TRUE	control	$\operatorname{dannyMiller}$
mcm5-09	TRUE	control	$\operatorname{dannyMiller}$
mcm5-08	TRUE	control	$\operatorname{dannyMiller}$

name	paired	experimental	source
mcm5-07	TRUE	control	dannyMiller
mcm5-06	TRUE	control	dannyMiller
mcm5-05	TRUE	control	dannyMiller
mcm5-04	TRUE	control	dannyMiller
mcm5-03	TRUE	control	dannyMiller
mcm5-02	TRUE	control	dannyMiller
mcm5-01	TRUE	control	dannyMiller
DfMcm5	TRUE	control	$\operatorname{dannyMiller}$

Total Starting Reads: 3.88G Post-QC Reads: 3.64G.

Table 4: Read Count and Percent Retention

type	minimum	average	maximum
prefiltered	42.3 M	64.7 M	75.7 M
postfiltered	39.4 M	60.6 M	71.1 M
percent retention	92.4	93.7	95.5

This framework is general-purpose enough that it might be a good template.............

Dupes:

Table 5: Percentage Duplication

minimum	average	median	maximum
4.1	7.6	5.8	43.5

27 February 2019

 $\label{lem:bioinformatics} Bioinformatics\ tips\ on\ INDEL\ calling\ \&\ normalization\ with\ DSB\ background: $$https://genome.sph.umich.edu/w/images/b/b4/Variant_Calling_and_Filtering_for_INDELs.pdf$

5 March 2019

Going to go ahead and recycle BWA-Uniq but may want to change the algorithm later. . . .

Table 6: Read Counts During Alignment & Filtration

measure	minimum	average	median	maximum
filtered_mapped_count		-0.0	42.1 M	
total_mapped_count total_read_count	38.1 M 39.4 M	00.0	60.3 M 62.7 M	0010

Table 7: Percentage of Reads Retained at Each Step

measure	minimum	average	median	maximum
filter_retention	39.7	68.8	70.1	73.8
$mapping_retention$	95.8	96.6	96.7	97.3

Depth of coverage:

Table 8: Depth of Coverage Statistics for Raw and Filtered Alignments

step	minimum	average	median	maximum
pre-filtration depth	37.1	57.2	58.6	66.4
post-filtration depth	17.6	40.7	42.1	48.5
depth retention percent	40.9	70.9	72.3	75.5

Breadth of coverage:

Will run the VCF caller on both BWA and BWA-Uniq; reporting will be reworked since we're interested in indels.

5 March 2019

Doing things a little differently, calling variants from both BWA and BWA-Uniq, then compare the two. (whereas before we used reference genome as a variable)

6 March 2019

Warning: Removed 4 rows containing missing values (geom_path).

Jointly Called SNPs Callable per Sample, by Breadth and Depth of Covera

7 March 2019

```
Might also be good to do a comparison between the two VCFs using vcftools -diff.
```

```
vcftools --vcf variants/all_samples.vs_dm6.bwa.vcf --diff variants/all_samples.vs_dm6.bwaUniq.vcf --dif
```

This complains: Error: Cannot determine chromosomal ordering of files, both files must contain the same chromosomes to use the diff functions. Found chrUn_DS483679v1 in file 1 and chrUn_DS483680v1 in file 2.

Let's try using the -chr command to limit to main-line chromosomes....

```
\verb|vcftools --vcf variants/all_samples.vs_dm6.bwa.vcf --diff variants/all_samples.vs_dm6.bwaUniq.vcf --diff variants/a
```

There is also the -diff-site-discordance flag:

"The MATCHING_ALLELES column tells you if the alleles called in file match exactly at that site (i.e the REF and ALT columns are identical in the two files). The N_COMMON_CALLED column tells you the number of individuals at that site that were called in both files (i.e. the individuals in the intersection of the two datasets that don't have missing data ./.). The N_DISCORD column tells you the number of individuals in the intersection that are discordant at that site." -Adam Auton

https://sourceforge.net/p/vcftools/mailman/message/27128665/

also maybe use -diff-indv-discordance then compare individual discordance to e.g. breadth reduction upon BAM filtration

Locii variable in A only:

```
cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == 1)print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == 1)print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == 2)print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == 2)print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == 2)print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | awk '{if($3 == "B")print;}' | cut -f 1 | uniq cat dev/meta/VCFs/comparisonTest.diff.sites | tail -n +2 | aw
```

```
## cols(
##
    X1 = col_double(),
##
    X2 = col_character()
## )
## Parsed with column specification:
## cols(
    X1 = col_double(),
##
    X2 = col_character()
##
## )
## Parsed with column specification:
## cols(
    X1 = col_double(),
##
##
    X2 = col_character()
## )
```

 $https://rstudio-pubs-static.s3.amazonaws.com/13301_6641d73cfac741a59c0a851feb99e98b.html$

```
## Loading required package: grid
## Loading required package: futile.logger
```


(polygon[GRID.polygon.1256], polygon[GRID.polygon.1257], polygon[GRID.polygon.1258], polygon[GRID.po of the ones in the intersection:

Locii variable in A and B but with at least one discordant individual:

```
## Parsed with column specification:
## cols(
##
     X1 = col_double(),
     X2 = col_character()
## )
a total of 7.6637 \times 10^4 sites with at least one discordant individual.
## Parsed with column specification:
## cols(
##
     X1 = col_character(),
##
     X2 = col_double(),
##
     X3 = col_character(),
     X4 = col_double(),
##
##
     X5 = col_double(),
##
     X6 = col_double(),
     X7 = col_double()
## )
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


OK so that's some VCF comparison infrastructure; how to implement? Here we are comparing VCFs from two different alignment/calling strategies but ultimately we'll probably want to compare subgroups of all_samples. Do I use the same rule for both? It's possible that down the line when an alignment/calling strategy is decided upon, I won't want something so general...

8 March 2019

Looking at INDELs within the control subset...

```
vcftools --vcf variants/all_samples.vs_dm6.bwaUniq.vcf --keep-only-indels --freq --out test vcftools --vcf variants/all_samples.vs_dm6.bwaUniq.vcf --keep-only-indels --counts --out test
```

hmmm, we're presumably looking for individual-specific alleles; there could potentially be more than one such allele at a given site! (these show up in the VCF as eg 0/2)

The INDELs will they be het or hom??? Presumably Het, since the break repair only happens on one strand....

Finding all the variants from the above count tallies with only one chromosome in the population carrying; awk + grep for more filtration.

```
cat test.frq.count | grep -P ':1[$,\t]'
```

10 March 2019

Background: Figure 1 of (McVey and Lee 2008) and https://en.wikipedia.org/wiki/Non-homologous_end_joining

It looks like NHEJ and MMEJ are prone to forming heterozygous indels near the DSB site. (am i right that MMEJ at least will form flanking indels?)

Are the DSBs random across the genome? What are the odds that the same site would be struck by DSB and repair error twice in the population (ie, 30 flies)? if it's very low, we need to look for indels which are heterozygous for an indel in one individual but homozygous in everyone else.

One data subtelty here is that the called variants are vs the ref genome so the ancestral genotype is presumably the one with the higher (f~1.0 in approx isogenic pop) allele frequency. Thus a reversion to het dm6 reference (0/1) from a population of hom variants (1/1) would be a candidate site. Also, since a site which is different from the reference may later be altered via DSB repair (ie, in a 1/1 population a 1/2 genotype with low AF on 2 is a candidate.)

figs to make: * histogram of minor allele frequency for indel variants. Many will have a MinAF of 0 (ie, fixed differences); filter these? others will have a small minAF corresponding to e.g. 1 chromosome in the population.

if there is a flanking behavior this should be easy to pick out: do a histogram of intrachromsomal distance among variants and then to a freq_poly plot binned by genotype (ie, hom vs het). Look for heterozygotes which are neighbors.

From (Miller et al. 2016): "Drosophila oocytes experience ~11–17 DSBs per meiosis that are restricted to the euchromatin . . . How the position of these DSBs is determined and their fate (whether they become COs or NCOs) is poorly understood." also discusses recombinational hotspots; evidence is against them??

Table S2 for crossover sites identified in (Miller et al. 2016); Table S3 for noncrossover sites.

From Danny Miller 11 Jan 2019:

*First, I called SNPs using GATK. From this output I isolated novel deletions for both chromosome X and 2. I re-wrote this script tonight and re-ran it and found four likely novel deletions that I hadn't seen before:

mcm5-12, chrX:12825436, GAAA deletion mcm5-21, chr2R:12737873, A deletion mcm5-22, chr2R:8597548, T deletion mcm5-24, chr2L:21664793, TATATA deletion *

his main finding:

I really expected to find lots of deletions suggesting repair of DSBs via NHEJ, but I didn't. This finding is consistent with the 95-ish single genomes I sequenced from homozygous c3g females where I also failed to find any deletions.

So, maybe another figure would be deletions vs. the major allele? eg, histogram of indel change in nucleotides.

Bibliography

McVey, Mitch, and Sang Eun Lee. 2008. "MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings." *Trends in Genetics* 24 (11): 529–38. doi:10.1016/j.tig.2008.08.007.

Miller, Danny E., Clarissa B. Smith, Nazanin Yeganeh Kazemi, Alexandria J. Cockrell, Alexandra V. Arvanitakis, Justin P. Blumenstiel, Sue L. Jaspersen, and R. Scott Hawley. 2016. "Whole-genome analysis of individual meiotic events in Drosophila melanogaster reveals that noncrossover gene conversions are insensitive to interference and the centromere effect." *Genetics* 203 (1): 159–71. doi:10.1534/genetics.115.186486.