Supervised Learning: Linear Models

Mahesh Mohan M R
Centre of Excellence in Al
Indian Institute of Technology Kharagpur

Recap

Summary of "Intro to Machine Learning"

Non-parametric Method: K Nearest Neighb

Multiplication: **Dot product (inner product)**

$$\vec{x} \cdot \vec{y} =$$

$$(x_1 \quad x_2 \quad \cdots \quad x_N) \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} = x_1 y_1 + x_2 y_2 + \cdots + x_N y_N$$

Outer dimensions give size of resulting matrix

- Insight: for a given input (L2) magnitude, the response is maximized when the input is parallel to the weight vector
- Receptive fields also can be thought of this way

Synapses refer to the points of contact between neurons where information is passed from one neuron to the next.

Linear Models

Parametric Method: Linear Models for \vec{r} . Classification

Parametric Method: Linear Models for \vec{r} Classification

Parametric Method: Linear Models for Classification

Parametric Method: Linear Models for $\overrightarrow{r}_{\bullet}$. Regression

Parametric Method: Linear Models for Regression

Linear Models with Bias

Simple Regression

Recap: AI: How to Solve it?

- 1. Collect Labelled Dataset
- 2. Design ANN Architecture
- 3. Define Loss Function
- 4. Optimize weights

Collect Labelled dataset

2. Design Artificial Neural Network

Recap: Closed Form Expression

	Maximum	Minimum
Necessary condition	$\frac{dy}{dx} = 0$	$\frac{dy}{dx} = 0$
Sufficient condition	$\frac{dy}{dx} = 0 \; ; \; \frac{d^2y}{dx^2} < 0$	$\frac{dy}{dx} = 0; \frac{d^2y}{dx^2} > 0$

Recap: Gradient Descent

Definition 1 Suppose f is a real valued function and a is a point in its domain of definition. The derivative of f at a is defined by

$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$

provided this limit exists. Derivative of f(x) at a is denoted by f'(a).

iter= 0 • iter= 1 • iter= 2 • iter= 3 • iter= 4 • iter= 5

ANN weight: denoted by a

What happens to Loss f(a+h) - f(a) if the weight update h is $-\lambda$ f'(a)?

Note: $\lambda > 0$

Answer: f(a+h) - f(a) is negative, which means $f(a+h) \le f(a)$.

Optimizing ANN: Update each ANN weight a as $\frac{1}{a} - \lambda f'(a)$, where λ is the learning rate.

Linear Regression

Labelled Data
$$\begin{bmatrix} x_{k1} \\ x_{k2} \\ \dots \\ x_{kn} \end{bmatrix}$$
 \Longrightarrow y_k

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1n} \\ 1 & x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{d1} & x_{d2} & \dots & x_{dn} \end{bmatrix}$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_d \end{bmatrix}$$

$$w = (X^T X)^{-1} X^T y \qquad \nabla w = (X^T X) w - X^T y$$