On Faster Model Checking of First-Order Graph

2 Properties and Tarski's Calculus of Relations

Yo: Tentative

Yo: コメントテスト2

- 3 Yoshiki Nakamura ⊠ [0]
- ⁴ Science Tokyo, Japan
- 5 Yuya Uezato ⊠ ©
- 6 CyberAgent, Inc., Japan
- 7 Abstract
- 8 This is a SUPER-STRONG-PAPER and brings a NEW ERA to the field of FO.
- ⁹ **2012 ACM Subject Classification** Theory of computation \rightarrow Logic
- 10 Keywords and phrases First-order Logic, Fine-grained Complexity
- Digital Object Identifier 10.4230/LIPIcs...

Notation

13 (メモ: LIPICSとpLaTeXは異常に組み合わせが悪いので、 コメントなどで日本語を書く 14 時はこのようにします。)

Cute round-corner box

コメントを付ける時には、screenで囲うとこういう感じになります

Yo: コメントテスト

15

18

We write \mathbb{FO}^k to denote the set of formulas of First-order predicate logic with k-variables.

Important Remark (Unary and Binary Predicates)

- We allow unary and binary predicates in our \mathbb{FO}^3 . Therefore, we do not allow terms involving ternary predicates such as $\forall x. \exists y. \forall z. P(x, y, z).^1$
- On this remark, we can identify each model \mathcal{M} as color graphs as follows:
- Each element corresponds a node (vertex).
- Each unary predicate U_i means "color-i" node.
- Each binary predicate P_j is "color-j" edge.
- For example, on two nodes x, y, a term $(U_i(x) \wedge U_j(y) \wedge P_k(x, y))$ means that x has the color i, y has the color j, and there is a color k edge from x to y.

¹ For each unary predicate U, we can simulate it by a diagonal binary predicate $B_U(x,y) := x = y \wedge U(x)$. However, in our later construction, we use some unary predicates; thus, we also allow unary predicates explicitly.

32

28 Quantifier width

Quantifier widthという謎の指標を導入します。 与えられた式の部分項 $\forall/\exists x.(\cdots)$ について \cdots 部分に「直接」出てくるquantifier の個数を、この部分項のquantifier widthと呼ぶことにします。 たとえば、次の部分項

$$\forall x. \bigg(\Big(\underline{ \veebar} y. P(y) \Big) \vee \Big(\underline{ \blacktriangledown} z. (\underline{ \veebar} x. P(z,x)) \wedge Q(z) \Big) \bigg)$$

については、内部に3つのquantifierの出現(下線)があるのですが、直接の出現は赤くした2つだけなので、この部分項のquantifier widthは「2」です。 そして、式のquantifier widthというのは、最大のquantifier widthを持つ部分項における、その数として定義します。

2 Introduction

The *model checking problem* is the following problem:

given both a sentence φ and a structure \mathfrak{A} , does $\mathfrak{A} \models \varphi$ hold?

The model checking problem for \mathbb{FO} is complete in PSPACE, unfortunately. Nevertheless, the model checking problem for \mathbb{FO}^k can be decided in $\mathcal{O}(\|\varphi\| \cdot n^k)$ time [4, Proposition 3.1] by a naive bottom-up evaluation algorithm, where $\|\varphi\|$ is the length of φ and n is the number of vertices in \mathfrak{A} .

A natural question is, whether the complexity $\mathcal{O}(\|\varphi\| \cdot n^k)$ time can be improved. Williams [5] gave a positive answer to the question. He showed that the complexity can be improved to $\mathcal{O}(n^{\omega})$ time for \mathbb{FO}^3 , where ω is the exponent of matrix multiplication.

Namely, the problem

```
Yo: On data complexity (formula is fixed and structure is given) [5]

For \mathbb{FO}^3, \mathcal{O}(n^\omega) time,

For \mathbb{FO}^k (where k \geq 3), \mathcal{O}(n^{\omega+k-3}) time,

For \mathbb{FO}^k (where k \geq 9), \mathcal{O}(n^{k-4}) time.

On combined complexity ()

Parameterized complexity
```

We shed a light the

Related work:

 \blacksquare [1]: Space complexity for \mathbb{FO}^k .

45

3 Preliminaries

We write ⊨

² More precisely, [2, Theorem 7]

- 48 4 from
- 49 [5]

61

- 5 Conclusion
- 51 6 FPT on FO3
- We write $\mathbb{FO}_{k,w}^3$ to denote the set of formulas of \mathbb{FO}^3 with k-predicates and w-quantifier-width.
- **Theorem 1** ($\mathbb{FO}_{k,w}^3$ model checkig is FPT).
- Let $\varphi: \mathbb{FO}^3_{k,w}$.
- For a given model (graph) \mathcal{G} , we can decide if $\mathcal{G} \models \varphi$ in $O(2^{k+w} \cdot |\varphi| \cdot N^{\omega})$ where
- \blacksquare N is the number of vertices in \mathcal{G} ; and
- ω is a complexity constant for the boolean matrix multiplication (BMM): i.e., $O(N^{\omega})$ -time is the time complexity for BMM of two (N,N) matrices.³
- **Corollary 2.** If we fix the number of predicates k and width w, the model checking problem $\mathcal{G} \models \varphi \text{ in } O(|\varphi| \cdot N^{\omega}) \text{ time-complexity where } N \text{ is the number of nodes in } \mathcal{G}.$

kをfixしない、素朴な $\{(x,y,z)\}$ 構築アルゴリズムだと $O(|\varphi|\cdot N^3)$ になって、 その設定だと Theorem 1 は 係数 が大きくなりすぎて遅いということを、 意味のある形で言及した方が良い。

52 以降、Theorem 1 の証明をやっていきます。

6.1 Proof of Theorem 1

- Here we use P, Q, R... to denote binary predicates and U,... for unary predicates.
- For a given graph (model) \mathcal{G} , we write $N_{\mathcal{G}}$ or simply N to denote the number of vertices of \mathcal{G} .
- Our idea: Quantifier elimination (Simple case)
- Our query evaluation strategy is evaluating the innermost (quantifier-free formula) to the outermost along with quantifier eliminating.
 - Let us consider the following situation:

$$Qx.\cdots(Qy.\cdots(Qx.\cdots(Qy.\cdots(\exists x.(P(y,x)\wedge R(x,z)))))))$$

To eliminate $\exists z. P(y,x) \land R(x,z)$, we introduce a new predicate defined as follows:

$$S(x,y) := \exists z. P(x,z) \land Q(z,y).$$

It is worth noting that S is just the composed predicate of P and Q. So, we write $P \odot Q$ instead of S.

Using this predicate, we can rewrite the above one to the following one:

$$Qx \cdots (Qy \cdots (Qz \cdots (Qx. (Qy. (P \odot R)(y, z)))))$$

³ 何らかの論文をciteして、今の記録がどれくらいか書いておくと分かりやすい

- Continuing this process, if we eventually enter $\forall x. \exists y. T(x,y)$:
- 1. building a unary predicate $T_y(x) := \exists y. T(x,y)$ in $O(N^2)$ -time, we rewrite it to $\forall x. T_y(x)$.
- 2. we then simply evaluate $\forall x.T_y(x)$ as $\bigwedge_{1 \le i \le N} T_y(i)$ in O(N)-time.

76 Time-complexity of basic operations

- 77 Here we enumerate the time-complexity of our basic operations, which will be used later:
- Building a new predicate $Q(x,y) := P(x,y) \bowtie R(x,y) \ (\bowtie \in \{\land,\lor\})$ needs $O(N^2)$ -time.
- Transposing a predicate $P^T(x,y) := P(y,x)$ needs $O(N^2)$ -time.
- Evaluating unary predicates Qx.P(x) ($Q \in \{\forall, \exists\}$) needs O(N)-time.
- Building a new predicate $Q(x) := \mathcal{Q}y.P(x,y) \ (\mathcal{Q} \in \{\exists,\forall\})$ needs $O(N^2)$ -time.
- So, the remaining operator is predicate composing $(P\odot Q)(x,y):=\exists z.P(x,z)\wedge Q(z,y)$
- from predicates P and Q. Although a very simple matrix multiplication requires $O(N^3)$ -time,
- we can build such $P\odot Q$ using fast matrix multiplication algorithms.
- Proposition 3 (Fact). From two predicates P and Q, we can build the composited predicate $P \odot Q$ in $O(N^{\omega})$ -time.

6.2 Quantifier elimination: General case

- If we encounter terms of the very restricted form like $\exists z. P(x, z) \land Q(z, y)$, we can replace it by $(P \odot Q)(x, y)$ with eliminating the quantifier occurrence $\exists z$.
 - In other words, if we encounter more general form of $\exists z.\dots$, we need to translate it to some adequate form for quantifier elimination. Let us consider the following term:

$$\exists z. \bigg(\big(P(x,z) \vee P(y,z) \vee P(x,y) \big) \wedge \big(Q(x,z) \vee Q(x,y) \big) \wedge \big(R(y,z) \vee R(x,y) \big) \bigg).$$

- We cannot directly apply our quantifier elimination strategy because \exists -quantifiers do not distribute on \land : i.e., $(\exists z.\varphi_1 \land \varphi_2) \neq (\exists z.\varphi_1) \land (\exists z.\varphi_2)$.
 - To apply our quantifier elimination procedure, DNF is an adequate form. However, as well-known, converting-to-DNF translation generates an exponential-large expression in the worst case. For our example, we first translate the first $(\cdots) \wedge (\cdots)$ subterm as follows:

$$\begin{split} & \left(P(x,z) \vee P(y,z) \vee P(x,y) \right) \wedge \left(Q(x,z) \vee Q(x,y) \right) \\ \Rightarrow \\ & \left(P(x,z) \wedge Q(x,z) \right) \vee \left(P(y,z) \wedge Q(x,z) \right) \vee \left(P(x,y) \wedge Q(x,z) \right) \\ \vee \left(P(x,z) \wedge Q(x,y) \right) \vee \left(P(y,z) \wedge Q(x,y) \right) \vee \left(P(x,y) \wedge Q(x,y) \right). \end{split}$$

- We continue to normalize this term with $R(y,z) \vee R(x,y)$ and it generates DNF with 12 bases of the form $P(_,_) \wedge Q(_,_)$.
- Since our goal is to design an $O(F(k, w) \cdot |\varphi| \cdot N^{\omega})$ -time algorithm, we cannot adopt converting-to-DNF transformations.

6.3 Tseytin-like (?) transformation for General Cases

- As we have seen above, explicit translations to DNF does not work well since it may explode
- $_{98}$ given expression to an exponential size.

99

100

101

102

103

105

We here develop a translation inspired by Tseytin's transformation.⁴

実際はインスパイアされたという程でもないんですが、 とはいえよく知られた構成 な気もするので、何かciteできるものがあればしたいという感じ。

Let us revisit the above example:

$$\exists z. \bigg(\big(P(x,z) \vee P(y,z) \vee P(x,y) \big) \wedge \big(Q(x,z) \vee Q(x,y) \big) \wedge \big(R(y,z) \vee R(x,y) \big) \bigg).$$

First, we generate all possible assignments to predicates. For our example, we have the following assignments:

	P(x,z)	P(y,z)	P(x, y)	Q(x,z)	Q(x, y)	R(y,z)	R(x, y)
α_1	0	0	0	0	0	0	0
α_2	0	0	0	0	0	0	1
α_3	0	0	0	0	0	1	0
:							
α	1	0	1	0	1	0	0
÷							
α_{\star}	1	1	1	1	1	1	1

Let \mathcal{A} be the set of all assignments.

Let $\llbracket \Psi \rrbracket_{\alpha}$ be a boolean value obtained by evaluation Ψ under an assignment α .

For our example expression ψ , $[\![\psi]\!]_{\alpha} = 0$ using α appearing in the above table.

If we change α as $\alpha(R(y,z)) \leftarrow 1$, then $[\![\psi]\!]_{\alpha} = 1$.

Introducing assignment leads to the following useful proposition.

▶ Proposition 4.

$$\Psi(x,y,z) \iff \bigvee_{\alpha \in \mathcal{A}} \Bigl(\alpha \wedge \llbracket \Psi \rrbracket_{\alpha} \Bigr).$$

Especially, let $\mathcal{V} = \{\alpha \in \mathcal{A} : \llbracket \Psi \rrbracket_{\alpha} \}$, then we have:

$$\Psi(x,y,z) \iff \bigvee_{\alpha \in \mathcal{V}} \alpha(x,y,z). \quad (\star)$$

By the definition of assignments, α takes the following form:

$$\alpha(x, y, z) \equiv P_1(x, y) \wedge P_1(x, z) \wedge P_2(y, z) \wedge \cdots \wedge P_k(x, z).$$

It means that the right-hand side of (\star) takes DNF. Therefore,

$$\exists z. \Psi(x,y,z) \iff (\exists z. \alpha_1(x,y,z)) \lor (\exists z. \alpha_2(x,y,z)) \lor \cdots \lor (\exists z. \alpha_{|\mathcal{V}|}(x,y,z)).$$

It suffices to eliminating an \exists -quantifier from $\exists z.\alpha(x,y,z)$ for an assignment α . We first divide $\alpha(x,y,z)$ into two parts α_z and α_{-z} as follows:

$$\alpha(x,y,z) \equiv \underbrace{(P_1(x,z) \land P_2(z,x) \land P_1(y,z) \land \cdots)}_{\alpha_z:z-\text{involving-terms}} \land \underbrace{(P_1(x,y) \land P_1(y,x) \land P_2 \land \cdots)}_{\alpha_{-z}:z-\text{non-involving-terms}}$$

⁴ https://en.wikipedia.org/wiki/Tseytin_transformation

We now have the following:

$$\Big(\exists z.\alpha(x,y,z)\Big) \iff \Big(\alpha_{-z}(x,y) \wedge (\exists z.\alpha_z(x,y,z))\Big)$$

Finally, we transform α_z in the following steps (order):

- 1. If α_z has a term P(z,x), we replace it with $\widetilde{P}(x,z)$ where $\widetilde{P}(a,b)=P(b,a)$.
- 2. Similarly, we change terms of the form P(y,z) to $\widetilde{P}(z,y)$.
 - 3. At this point,

$$\alpha_z(x,y,z) \equiv \underbrace{(P_1(x,z) \land P_3(x,z) \land P_4(x,z) \land \cdots)}_{\Psi_x} \land \underbrace{(P_2(z,y) \land P_3(z,y) \land P_5(z,y) \land \cdots)}_{\Psi_y}.$$

- 4. Let Ψ_x (resp. Ψ_y) be the set of predicates appearing in the above former (resp. latter) part.
 - **5.** Let us introduce two new predicates:

$$\pi(x,z) := \bigwedge_{P \in \Psi_x} P(x,z), \qquad \lambda(z,y) := \bigwedge_{Q \in \Psi_y} Q(z,y).$$

6. We reach our goal:

$$\alpha_z(x, y, z) = \pi(x, z) \wedge \lambda(z, y).$$

Using the final form, we obtain the following:

$$\left(\exists z. \alpha(x, y, z) \right) \iff \left(\alpha_{-z}(x, y) \wedge (\exists z. \pi(x, z) \wedge \lambda(z, y)) \right) \\ \iff \left(\alpha_{-z}(x, y) \wedge (\pi \odot \lambda)(x, y) \right) \\ \iff (\alpha_{-z} \wedge (\pi \odot \lambda))(x, y)$$

6.4 Considering Complexity

To eliminate an \exists -quantifier from an assignment α , we introduce a new single predicate $\alpha_{-z} \wedge (\pi \odot \lambda)$.

Now we have a question: To eliminate the \exists -quantifier from $\exists z.\Psi(x,y,z)$, from the following characterization

$$\left(\exists z. \Psi(x,y,z)\right) \iff \left(\exists z. \bigvee_{\alpha \in \mathcal{V}} \alpha(x,y,z)\right) \iff \bigvee_{\alpha \in \mathcal{V}} \left(\exists z. \alpha(x,y,z)\right) \iff \bigvee_{\alpha \in \mathcal{V}} (\alpha_{-z} \wedge (\pi \odot \lambda))(x,y)$$

can we avoid to introduce $O(2^k)$ predicates if we have k-predicates?? Please recall that each assignment is a choice from 9k-literals from \mathcal{L} where

$$\mathcal{L} = \{Q(a,b) : a,b \in \{x,y,z\}, Q \in \{P_1, P_2, \dots, P_k\}\}.$$

Yes. We can avoid introducing a large number of predicates because we just need to introduce the following single (but large) predicate:

$$(\alpha_{-z}^1 \wedge (\pi^1 \odot \lambda^1)) \vee (\alpha_{-z}^2 \wedge (\pi^2 \odot \lambda^2)) \vee \cdots \vee (\alpha_{-z}^n \wedge (\pi^n \odot \lambda^n))$$

115 for
$$\mathcal{V} = \{\alpha^1, \alpha^2, \dots, \alpha^n\}.$$

Let us consider what happens when repeatedly eliminating quantifiers from the innermost to the outermost:

$$\exists y. \Big((\exists z. \cdots) \bowtie (\exists z. \cdots) \bowtie \cdots \bowtie (\exists z. \cdots) \Big)$$

$$\Rightarrow$$

$$\exists y. \Big(\begin{array}{c} Q. \text{ how many predicates appear in this scope?} \\ A. k + w \text{ where } w \text{ is the quantifier width of } \psi \end{array} \Big)$$

Eliminating $(\exists y.)$ introduces a single new predicate.

Since the required number of quantifier elimination (= the quantifier depth) is bounded 116 by the size of a given expression $|\psi|$, we obtain the following our theorem in the end. 117

▶ **Theorem 1** (Restatement). Let $\varphi : \mathbb{FO}_{k,w}^3$. 118 For a given model (graph) \mathcal{G} , we can decide if $\mathcal{G} \models \varphi$ in $O(2^{k+w} \cdot |\varphi| \cdot N^{\omega})$. 119

FO2 model checking

 \mathbb{FO}^2 の論理式 ψ と、グラフ \mathcal{G} について $\mathcal{G} \models \psi$ のモデル検査問題は $O(|\psi|\cdot|\mathcal{G}|)$ で解 ける気がします。 ただし、|g|は頂点数ではなく、述語(つまり辺)の定義の記述長 も合わせたものです。 面白そうなら書いても良いかと思うのですが、FO3の話だけ にしたほうが、話がぼやけないならなくても良いかなという気がします。

Dense graphについては (x,y) の値の集合を構築する方法で $O(|\psi| \cdot N^2)$ になります。 この N は \mathcal{G} の頂点数の方です。 ただ、sparse graphの時には N^2 は $|\mathcal{G}|$ について線形 ではないので、そこを改良したいという感じです。

アイディアは、 \mathbb{FO}^3 の時と比べると、 $\exists y. P(x,y) \land Q(y,x) \simeq (P \odot Q)$ の計算について $(P \odot Q)(x,x)$ の diagonal な形しか要求しないので、行列積を全部やる必要が多分な さそうとかそういう感じです。

Sparse graphの話なので、もしかすると Impagliazzo たちがやっているかもしれませ ん。

Yo: [3] Lemma 9.1 Base Case $\exists C(|\psi| \cdot |\mathcal{G}|)$??

122

123

128

121

References

- 1 Yijia Chen, Michael Elberfeld, and Moritz Müller. The parameterized space complexity of 124 model-checking bounded variable first-order logic. Logical Methods in Computer Science, 125 Volume 15, Issue 3, 2019. doi:10.23638/LMCS-15(3:31)2019. 126
- 2 Jiawei Gao and Russell Impagliazzo. The fine-grained complexity of strengthenings of first-order 127 logic, 2019. URL: https://eccc.weizmann.ac.il/report/2019/009/.
- 3 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness 129 for first-order properties on sparse structures with algorithmic applications. ACM Trans. 130 Algorithms, 15(2):23:1-23:35, 2018. doi:10.1145/3196275. 131
- Moshe Y. Vardi. On the complexity of bounded-variable queries (extended abstract). In 132 PODS, PODS, page 266-276. ACM, 1995. doi:10.1145/212433.212474. 133
- Ryan Williams. Faster decision of first-order graph properties. In CSL-LICS, page 1–6. ACM, 134 2014. doi:10.1145/2603088.2603121. 135