Escola de Enxeñaría de Telecomunicación

Barco Solar

CARLOS FERNÁNDEZ DEUS y FRAN AGUETE TRIÑANES

- **Organización del equipo:** Labores de scrum master y establecimiento de tareas.
- **Sensores y webcam:** Simulación (sensores), obtención y envío de datos (ambos).
- **Servidor:** Implementación inicial y evoluciones posteriores.
- **SQL:** Almacenamiento persistente de los datos recolectados por sensores del barco.
- **Wi-Fi**: Conectividad (barco servidor) y mediciones.
- **MQTT**: Configuración inicial, vídeo streaming, sensores, mediciones y plataformado*.
- Zenoh: Configuración inicial, vídeo streaming, sensores y mediciones.
- LTE: Configuración de la comunicación (barco servidor) y mediciones.
- **NB-IoT**: Configuración de la comunicación (barco servidor) y mediciones.
- **BLE:** Configuración de la comunicación (barco servidor) y mediciones.
- Acciones de control: Umbrales, alarma y acciones de control (automáticas y manuales).
- **Documentación** apropiada para cada una de la tareas abordadas.
- Presentación

^{*} Implementación del bróker mqtt en una raspberry externa.

- LTE Privado: Montaje y configuración de la infraestructura para la comunicación (barco - servidor) y mediciones.
- Webcam: desarrollo de script inicial para captura de video e imagen
- Comparativa Zenoh vs MQTT: comparación para sensores y video a distintas resoluciones
- Decisión de criterios relevantes en la elección de tecnologías
- Ayuda en la documentación apropiada para las tecnologías abordadas.
- Otras mediciones varias (BW/alcance).

MANU

- LTE Privado: Montaje y configuración de la infraestructura para la comunicación (barco - servidor) y mediciones.
- Webcam: desarrollo de script inicial para captura de video e imagen
- Comparativa Zenoh vs MQTT: comparación para sensores y video a distintas resoluciones
- Decisión de criterios relevantes en la elección de tecnologías
- Ayuda en la documentación apropiada para las tecnologías abordadas.
- Otras mediciones varias (BW/alcance).

BORJA CHARLÍN MILLÁN

Labores realizadas:

- LoRaWAN: Configuración de la comunicación (barco - servidor) y mediciones.
- Wi-Fi HaLow: Configuración de la comunicación (barco servidor) y mediciones.
- **NB-IoT**: Configuración inicial de la comunicación.
- Ayuda en la documentación apropiada para las tecnologías abordadas.
- Otras mediciones varias (BW/alcance).

MARTÍN

- MQTT vs Zenoh: mediciones.
- **NB-IoT**: Configuración de la comunicación (barco servidor) y mediciones.
- LoRaWAN: Configuración de la comunicación (barco - servidor) y mediciones.
- Wi-Fi HaLow: Configuración de la comunicación (barco - servidor) y mediciones.
- **NB-IoT**: Configuración inicial de la comunicación.
- Comparativa de tecnologías: redacción del documento.
- **Documentación** apropiada para cada una de las tareas abordadas.
- Otras mediciones varias.

AARÓN RIVEIRO VILAR

- MQTT vs Zenoh: mediciones.
- **NB-loT**: Configuración de la comunicación (barco servidor) y mediciones.
- LoRaWAN: Configuración de la comunicación (barco - servidor) y mediciones.
- Wi-Fi HaLow: Configuración de la comunicación (barco - servidor) y mediciones.
- Comparativa de tecnologías: redacción del documento.
- **Documentación** apropiada para cada una de las tareas abordadas.
- Otras **mediciones** varias.
- Presentación: herramientas utilizadas.

Herramientas utilizadas

Diagrama del proyecto

Funcionalidades implementadas

Conclusiones

Herramientas utilizadas

Diagrama del proyecto

Funcionalidades implementadas

Conclusiones

Diagrama del proyecto

Las funcionalidades de los componentes del diagrama del proyecto son:

ORDENADOR PORTATIL

El usuario puede comunicarse con el servidor a través de cualquier tecnología que proporcione conectividad a internet.

SERVIDOR DE TIERRA

Accesible a través de http://francasa.dyndns.org:8080, funciona como Broker MQTT para la comunicación con el barco y base de datos para la información de los sensores. Tiene conectividad con internet a través de WI-Fi.

BARCO SOLAR

Obtiene datos de sus sensores y los publica a través del protocolo MQTT. Tiene conectividad a través de un pincho LTE.

Arquitectura Hardware (1/2)

Servidor de tierra

Raspberry Pi 4

Router

Fuente de alimentación

Arquitectura Hardware (2/2)

Diagrama extendido de los componentes hardware utilizados en las comunicaciones:

Usuario - servidor - barco

Arquitectura Software (1/3)

SERVIDOR DE TIERRA

Python

Utilizado para la creación del servidor flask y para scripts de comunicación para la comunicación MQTT.

Docker

Utilizado para establecer un Broker MQTT de forma aislada en el propio servidor.

Mosquitto MQTT

Utilizado para establecer un protocolo de comunicación (servidor – barco) para el envío de datos de sensores.

SQL

Utilizado para el almacenamiento de los datos de enviados por el barco.

Arquitectura Software (2/3)

BARCO

Mediante Arduino Sketches, se envían los datos de los sensores y webcam a la raspberry, a través de una conexión física. Un script en Python gestiona el envío de datos de los sensores, comunicándose con Arduino mediante conexión física y con el servidor terrestre vía MQTT.

El protocolo de comunicación MQTT, publica los datos de los sensores y webcam en el Broker MQTT.

Arquitectura Software (3/3)

Diagrama extendido (software) de las comunicaciones:

Usuario - servidor - barco

Herramientas utilizadas

Diagrama del proyecto

Funcionalidades implementadas

Conclusiones

Introducción

Comunicación bidireccional

Permite al barco comunicarse con la estación de tierra

Monitorización de medidas

Un ordenador conectado a la estación de tierra puede ver los datos y como evolucionan con el tiempo

Comunicación bidireccional

- **Barco -> Estación de tierra:** mediciones de sensores y video de webcam

Comunicación bidireccional

- Estación de tierra -> Barco: alertas

Monitorización de medidas

Prestaciones

Ancho de banda: ~4 Mbit/s

Latencia: ~70ms

Alcance: 1-2km

Posibles problemas

Herramientas utilizadas

Diagrama del proyecto

Funcionalidades implementadas

Conclusiones

Conclusiones

Respecto al proyecto

El proyecto ha permitido analizar **tecnologías y protocolos inalámbricos**, destacando su integración y beneficios en conectividad y eficiencia. A continuación, compartimos los aspectos que más nos han gustado y de los que más hemos aprendido.

Trabajo con Arduino

Nunca habíamos trabajado con **Arduino** ni con **Arduino Sketches**, pero este proyecto nos ha permitido familiarizarnos con ellos. Nos han parecido **herramientas sencillas y prácticas**, con un gran potencial para su aplicación en futuros proyectos.

Metodología Agile

Gracias al empleo de **metodologia agile**, utilizando herramientas como **Jira** o **Confluence**, hemos mejorado nuestra planificación y orgranicación respecto a un trabajo en grupo.

Siendo fundamental para **mejorar** nuestra forma de **trabajar**.

Tecnologías de comunicación

De manera similar a los **protocolos de comunicación**, este proyecto nos ha permitido profundizar en el conocimiento y manejo de diversas **tecnologías de comunicación** (LTE, NB-IoT, BLE, etc.) ampliando nuestras habilidades en su aplicación práctica.

Distribución de los sprints

Los **sprints** funcionaron como una guía efectiva para estructurar y organizar las tareas del grupo. Permitieron **establecer objetivos** claros y **plazos definidos.**

Protocolos de comunicación

Inicialmente, desconocíamos protocolos de comunicación como MQTT y Zenoh, pero a lo largo del proyecto hemos adquirido un conocimiento profundo sobre ellos. Estos protocolos se han revelado herramientas esenciales para una transmisión eficiente y estructurada de datos.

Conclusiones

Respecto al equipo (Carlos y Fran)

El proyecto se logra completar gracias a la sobrecarga de trabajo asumida por determinados miembros del equipo.

Encuestas combinadas **con actualizaciones** periódicas de tareas.

Conclusiones

Respecto al equipo (Samu, Manu, Martín, Borja y Aarón)

- Organización
- Comunicación
- Trabajo irregular a lo largo de los sprints

Herramientas utilizadas

Diagrama del proyecto

Funcionalidades implementadas

Conclusiones

Demo

Tecnología LTE

¿Navegamos?

Redes Sen Fíos e Móbiles

