Mesures positives

Exercice 6. Vérifions les trois points de la définition.

- 1. $\emptyset \in \mathcal{T}$ puisque $\emptyset \in \mathcal{A}$ et $\mu(\emptyset) = 0$.
- 2. Si $A \in \mathcal{T}$, alors $A^c \in \mathcal{A}$ et comme $\mu(E) = 1$, $\mu(A^c) = \mu(E \setminus A) = \mu(E) \mu(A) = 1 \mu(A)$ qui vaut 0 ou 1 suivant que $\mu(A) = 1$ ou $\mu(A) = 0$.
- 3. Soit $(A_n)_{n\in\mathbb{N}}\subset\mathcal{T}\subset\mathcal{A}$. Puisque \mathcal{A} est une tribu, $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$. Deux cas de figure se présentent :
 - (a) Pour tout n, $\mu(A_n) = 0$. Dans ce cas,

$$0 \le \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) \le \sum_{n > 0} \mu(A_n) = 0 ;$$

(b) Il existe $p \in \mathbb{N}$, $\mu(A_p) \neq 0$. Comme $A_p \in \mathcal{T}$, $\mu(A_p) = 1$. On a alors, puisque $A_p \subset \bigcup A_n$,

$$1 = \mu(A_p) \le \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) \le \mu(E) = 1.$$

Par conséquent, $\mu(\bigcup A_n) = 1$ et $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{T}$.

Exercice 7. On considère les mesures $\mu = \sum_{k>1} \delta_{1/k}$ et $\nu = \sum_{k>1} 2^{-k} \delta_{1/k}$.

1. D'après le cours, on sait que ν est une mesure (cf. exercice 2). Il suffit de vérifier que $\nu(\mathbb{R}) = 1$. On a

$$\nu(\mathbb{R}) = \sum_{k \ge 1} 2^{-k} \, \delta_{1/k}(\mathbb{R}) = \sum_{k \ge 1} 2^{-k} = \frac{1/2}{1 - 1/2} = 1.$$

Soit t un réel. On a

$$F_{\nu}(t) = \nu(]-\infty,t]) = \sum_{k>1} 2^{-k} \, \delta_{1/k}(]-\infty,t]) = \sum_{k>1} 2^{-k} \, \mathbf{1}_{]-\infty,t]}(1/k).$$

De manière évidente, si $t \le 0$, $F_{\nu}(t) = 0$ et, si $t \ge 1$, $F_{\nu}(t) = \nu(\mathbb{R}) = 1$. Si 0 < t < 1, il existe un unique $p \in \mathbb{N}^*$ tel que $1/(p+1) \le t < 1/p$ $(p < 1/t \le p+1)$ et

$$F_{\nu}(t) = \sum_{k \geq 1} 2^{-k} \, \mathbf{1}_{]-\infty,t]}(1/k) = \sum_{k \geq 1} 2^{-k} \, \mathbf{1}_{k \geq 1/t} = \sum_{k \geq 1} 2^{-k} \, \mathbf{1}_{k \geq p+1} = \sum_{k > p} 2^{-k} = 2^{-p} = 2^{-[(1/t)-]}.$$

 $F_{\nu}(t)=1/2$ sur [1/2,1[, $F_{\nu}(t)=1/4$ sur [1/3,1/2[, $F_{\nu}(t)=1/8$ sur [1/4,1/3[, etc.

2. Notons $A = \{1/k : k \ge 1\}$, $A_0 = A^c$ et, pour $n \ge 1$, $A_n = \{1/n\}$. On a $\mathbb{R} = \bigcup_{n \ge 0} A_n$ et

$$\mu(A_0) = 0, \qquad \mu(A_n) = 1, \quad n > 1.$$

Donc μ est σ -finie. Pour tout $\varepsilon > 0$, il existe une infinité d'entiers k tels que $1/k < \varepsilon$ et donc

$$\mu(]0,\varepsilon[) = \sum_{k\geq 1} \delta_{1/k}(]0,\varepsilon[) = \sum_{k\geq 1} \mathbf{1}_{]0,\varepsilon[}(1/k) = +\infty.$$

Exercice 14. Soient a < b deux réels. Calculons $\mu(|a,b|)$. On a

$$\mu(]a,b]) = \lambda \left(f^{-1}(]a,b])\right) = \lambda \left(\left\{x \in \mathbb{R} : a < |x| \leq b\right\}\right).$$

Si b < 0, $\mu(|a, b|) = \lambda(\emptyset) = 0$. Pour $b \ge 0$, si a < 0,

$$\mu(|a,b|) = \lambda(\{x \in \mathbb{R} : |x| \le b\}) = \lambda([-b,b]) = 2b,$$

et si a > 0,

$$\mu([a,b]) = \lambda(\{x \in \mathbb{R} : a < |x| < b\}) = \lambda([-b, -a[\cup]a, b]) = 2(b-a).$$

Finalement, pour tous a < b, $\mu(]a,b]) = G(b) - G(a)$ avec $G(x) = 2x^+ = 2\max(x,0)$. La mesure μ est égale à la mesure de Lebesque-Stieltjes associée à $G(x) = 2\max(x,0)$ sur tous les intervalles]a,b]. D'après le théorème d'égalité de deux mesures, μ est la mesure de Lebesque-Stieltjes associée à $G(x) = 2\max(x,0)$.

Exercice 17. Soit (E, \mathcal{A}, μ) un espace mesuré. On considère

$$\mathcal{A}_{\mu} = \{B \cup N : B \in \mathcal{A}, N \in \mathcal{N}_{\mu}\}, \quad \text{ où } \mathcal{N}_{\mu} = \{N \subset E : \exists A \in \mathcal{A}, \ N \subset A, \mu(A) = 0\}.$$

- 1. Vérifions les trois points de la définition.
 - 1. $\emptyset \in \mathcal{A}_{\mu}$ puisque $\emptyset = \emptyset \cup \emptyset$ et $\emptyset \in \mathcal{A} \cap \mathcal{N}_{\mu}$.
 - 2. Soit $A \in \mathcal{A}_{\mu}$: $A = B \cup N$ avec $B \in \mathcal{A}$ et $N \in \mathcal{N}_{\mu}$. Puisque $N \in \mathcal{N}_{\mu}$, il existe $X \in \mathcal{A}$ tel que $N \subset X$ et $\mu(X) = 0$. On a alors, puisque $X^c \subset N^c$,

$$A^c = B^c \cap N^c = (B^c \cap N^c \cap X^c) \bigcup (B^c \cap N^c \cap X) = (B^c \cap X^c) \bigcup (B^c \cap N^c \cap X) \,.$$

Ceci montre que $A^c \in \mathcal{A}_{\mu}$ puisque $B^c \cap X^c \in \mathcal{A}$ (une tribu est stable par passage au complémentaire et par intersection finie) et $B^c \cap N^c \cap X \in \mathcal{N}_{\mu}$ car $B^c \cap N^c \cap X \subset X$ et $X \in \mathcal{A}$ avec $\mu(X) = 0$.

3. Soit $(A_n)_{n\geq 0}\subset \mathcal{A}_{\mu}$. Pour tout $n\geq 0,$ $A_n=B_n\cup N_n$ avec $B_n\in \mathcal{A}$ et $N_n\in \mathcal{N}_{\mu}$. Par définition de \mathcal{N}_{μ} , pour tout entier n, il existe $X_n\in \mathcal{A}$ tel que $N_n\subset X_n$ et $\mu(X_n)=0$. On a alors

$$\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} (B_n \cup N_n) = \left(\bigcup_{n\in\mathbb{N}} B_n\right) \bigcup \left(\bigcup_{n\in\mathbb{N}} N_n\right).$$

Une tribu étant stable par union dénombrable $\bigcup_{n\in\mathbb{N}}B_n\in\mathcal{A}$. Montrons que $\bigcup_{n\in\mathbb{N}}N_n\in\mathcal{N}_{\mu}$. En effet, $\bigcup_{n\in\mathbb{N}}N_n\subset\bigcup_{n\in\mathbb{N}}X_n\in\mathcal{A}$ car \mathcal{A} est stable par union dénombrable et $\mu(\bigcup_{n\in\mathbb{N}}X_n)\leq\sum_{n\in\mathbb{N}}\mu(X_n)=0$. Par conséquent, $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}_{\mu}$.

On a $\mathcal{A} \subset \mathcal{A}_{\mu}$ car, si $A \in \mathcal{A}$, on peut écrire $A = A \cup \emptyset$ $(B = A \in \mathcal{A}, N = \emptyset \in \mathcal{N}_{\mu})$. De même, $\mathcal{N}_{\mu} \subset \mathcal{A}_{\mu}$ puisque si $Y \in \mathcal{N}_{\mu}$, $Y = \emptyset \cup Y$ $(B = \emptyset \in \mathcal{A}, N = Y \in \mathcal{N}_{\mu})$.

 \mathcal{A}_{μ} est une tribu qui contient \mathcal{A} et \mathcal{N}_{μ} . Par conséquent, elle contient la plus petite des tribus contenant ces deux classes de parties : $\sigma(\mathcal{A}, \mathcal{N}_{\mu}) \subset \mathcal{A}_{\mu}$. Réciproquement, une tribu étant stable par union finie, si $B \in \mathcal{A} \subset \sigma(\mathcal{A}, \mathcal{N}_{\mu})$ et $N \in \mathcal{N}_{\mu} \subset \sigma(\mathcal{A}, \mathcal{N}_{\mu})$, alors $B \cup N \in \sigma(\mathcal{A}, \mathcal{N}_{\mu})$. Finalement, $\mathcal{A}_{\mu} = \sigma(\mathcal{A}, \mathcal{N}_{\mu})$.

2. Pour $A \in \mathcal{A}_{\mu}$, on pose $\nu(A) = \mu(B)$ lorsque $A = B \cup N$ avec $B \in \mathcal{A}$ et $N \in \mathcal{N}_{\mu}$. Montrons que l'application ν est bien définie. Soit $A \in \mathcal{A}_{\mu}$. Supposons que $A = B \cup N$ et $A = B' \cup N'$ avec B et B' dans \mathcal{A} , N et N' dans \mathcal{N}_{μ} . Montrons que nécessairement $\mu(B) = \mu(B')$. Comme N et N' appartiennent à \mathcal{N}_{μ} , il existe X et X' dans \mathcal{A} tels que $N \subset X$, $N' \subset X'$ et $\mu(X) = \mu(X') = 0$. On a alors,

$$B \subset A = B \cup N = B' \cup N' \subset B' \cup X', \quad \mu(B) \le \mu(B' \cup X') \le \mu(B') + \mu(X') = \mu(B'),$$

$$B' \subset A = B' \cup N' = B \cup N \subset B \cup X, \quad \mu(B') \le \mu(B \cup X) \le \mu(B) + \mu(X) = \mu(B).$$

L'application ν est donc bien définie. Pour tout $A \in \mathcal{A}$, puisque $\emptyset \in \mathcal{N}_{\mu}$, écrivant $A = A \cup \emptyset$ ($B = A, N = \emptyset$), on a par construction, $\nu(A) = \mu(A)$. En particulier, $\nu(\emptyset) = 0$. Soit $(A_n)_{n \in \mathbb{N}}$ une suite de parties de \mathcal{A}_{μ} deux à deux disjointes. Pour tout $n \in \mathbb{N}$, $A_n = B_n \cup N_n$ avec $B_n \in \mathcal{A}$ et $N_n \in \mathcal{N}_{\mu}$. Comme déjà remarqué, $\bigcup_{n \in \mathbb{N}} A_n = (\bigcup_{n \in \mathbb{N}} B_n) \bigcup (\bigcup_{n \in \mathbb{N}} N_n)$ avec $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{A}$ et $\bigcup_{n \in \mathbb{N}} N_n \in \mathcal{N}_{\nu}$. Comme $B_k \cap B_l \subset A_k \cap A_l$, les parties $(B_n)_{n \in \mathbb{N}}$ sont deux à deux disjointes et, par définition de ν ,

$$\nu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\mu\left(\bigcup_{n\in\mathbb{N}}B_n\right)=\sum_{n\in\mathbb{N}}\mu(B_n)=\sum_{n\in\mathbb{N}}\nu(A_n).$$

 ν est donc une mesure positive sur \mathcal{A}_{μ} qui coïncide avec μ sur \mathcal{A} .

3. Soient $A \in \mathcal{A}_{\mu}$ tel que $\nu(A) = 0$ et $X \subset A$. Montrons que $X \in \mathcal{N}_{\mu} \subset \mathcal{A}_{\mu}$. En effet, $A = B \cup N$ avec $B \in \mathcal{A}$ et $N \in \mathcal{N}_{\mu}$. Puisque $\nu(A) = 0$, on a $\mu(B) = 0$. Par ailleurs, comme $N \in \mathcal{N}_{\mu}$, il existe $Y \in \mathcal{A}$ tel que $N \subset Y$ et $\mu(Y) = 0$. On a donc $X \subset B \cup Y \in \mathcal{A}$ avec $\mu(B \cup Y) \leq \mu(B) + \mu(Y) = 0$. Donc $X \in \mathcal{N}_{\mu} \subset \mathcal{A}_{\mu}$.