# A Replication Study

## **Bayesian Inference for Agreement Measures**

Lingjuan Qi<sup>1</sup> Matthew Aaron Looney<sup>2</sup>

<sup>1</sup>Department of Mechanical Engineering <sup>2</sup>Department of Applied Economics Texas Tech University

July 3, 2018

#### **Outline**

- Introduction and Background
- Motivating Example Part I
- Accessing Agreement
- Bayesian Model
- Simulation Results
- Motivating Example Part II (Kidney Data Study)
- Conclusion

A Replication Study

Introduction and Background

# Introduction and Background

# Goals of this Research

#### Replicate the results of:

▶ Bayesian Inference for Agreement Measures.<sup>1</sup>
 By: Ignacio Vidal and Mário de Castro.
 Journal of biopharmaceutical statistics, 2016 p. 809-823.

http://doi.org/10.1080/10543406.2016.1226323

<sup>&</sup>lt;sup>1</sup>Vidal, I., & de Castro Journal of biopharmaceutical statistics, M. (2017). Bayesian inference for agreement measures. Taylor & Francis, 27(5), 809–823.

## Goals of this Research

#### The main ideas behind the paper:

- The agreement between a set of paired observations is important.
- Frequentist approach is commonly used.
- Frequentist approach yields point estimates; CI and SE are not easily available.
- A method which is general ,simple, effective, and doesn't require MCMC is presented.

## Goals of this Research

#### **Our Goals**

- Study the method of agreement measures
- Implement different prior distributions
- Replicate simulation
- Real data study

A Replication Study

Motivating Example - Part I

# Motivating Example - Part I

Renal lithiasis (Kidney Stones) can be defined as the consequence of an alteration of the normal crystallization conditions of urine in the urinary tract. In a healthy individual, during the residence time of urine in the urinary tract, crystals either do not form or are so small they are eliminated uneventfully. Clinicians often employ diagnostic imaging techniques to quantify the size, shape, and likelihood the stones will pass through the system without incident.

There are two main imaging tools used by clinicians to assess renal lithiasis:

- ► High-speed or dual energy Computerized Tomography (CT).
- ▶ Intravenous Urography, which involves injecting dye into an arm vein and taking X-rays (intravenous pyelogram).

- ► The imaging costs associated with Computerized Tomography far out weigh the costs of imaging with alternative methods, including Intravenous Urography.
- ► The question is: do these two imaging modalities provide equivalently adequate results in terms of image quality, accuracy and precession.
- We need a way to assess how much agreement there is between measurements taken by Urography and Tomography.

- We have data on the inferior pelvic infundibular angle (IPIA) for 52 kidneys, evaluated by means of computerized tomography and urography.
- ► We will use this data to determine the level of agreement between the two techniques.
- ▶ We will return to this example later. . .

A Replication Study
Accessing Agreement

# **Accessing Agreement**

# **Assessing Agreement Between Measurements:**

A way to assess agreement between two random variables X and Y is the mean squared deviation (MSD).

$$MSD = E[(X - Y)^{2}] = (\mu_{x} - \mu_{y})^{2} + \sigma_{x}^{2} + \sigma_{y}^{2} - 2\sigma_{xy}$$

# **Assessing Agreement Between Measurements:**

► Another measure of agreement between two random variables is the Concordance Correlation Coefficient ( CCC ).

$$ho_{c} = 1 - \frac{MSD}{MSD|_{\sigma_{xy} = 0}} = \frac{2\sigma_{XY}}{(\mu_{X} - \mu_{Y})^{2} + \sigma_{X}^{2} + \sigma_{Y}^{2}}$$

# **Assessing Agreement Between Measurements:**

▶ Two additional methods for assessing agreement that were explored by the authors are called the accuracy coefficient  $(\chi_a)$  and the precision coefficient  $(\rho)$ .

$$\chi_{\mathsf{a}} = \frac{2}{\bar{\omega} + \frac{1}{\bar{\omega}} + v^2}, \bar{\omega} = \frac{\sigma^2 \gamma}{\sigma_X^2}, v^2 = \frac{(\mu_X - \mu_Y)^2}{\sigma_X \sigma_Y}$$
$$\rho = \frac{\rho_c}{\chi_{\mathsf{a}}}$$

where  $\rho$  is simply the Pearson correlation coefficient  $(\rho = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{X}})$ .

A Replication Study

Bayesian Model

# **Bayesian Model**

## Likelihood

$$p(X|\mu,\Sigma) \propto \Sigma^{-\frac{n}{2}} \exp\left\{-\frac{1}{2}\sum_{i=1}^{n}(x_i-\mu)'\Sigma^{-1}(x_i-\mu)\right\}$$
 $p(X|\mu,\Sigma) \propto \Sigma^{-\frac{n}{2}} \exp\left\{-\frac{1}{2}\sum_{i=1}^{n}tr(\Sigma^{-1}S)\right\}$ 

where S is the matrix of sum of squares (sometimes called the scatter matrix).

$$S = \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})'$$

#### The natural conjugate prior is normal-inverse-wishart:

$$\begin{split} \Sigma \sim \mathrm{IW}_{v0}\left(\Lambda_0^{-1}\right) \\ \mu|\Sigma \sim \textit{N}(\mu_0, \Sigma/k_o) \\ p(\mu, \Sigma) = \textit{NIW}(\mu_0, k_0, \Lambda_0, v_0) \\ p(\mu, \Sigma) = \frac{1}{Z} \Sigma^{-\Omega} \exp\left\{-\frac{1}{2} tr(\Lambda_0 \Sigma^{-1}) - \frac{k_0}{2} (\mu - \mu_0)' \Sigma^{-1} (\mu - \mu_0)\right\} \end{split}$$
 where  $z = \frac{2^{v_0 df/2} \Gamma_{df}(v_0/2)(2\pi/k_0)^{df/2}}{\Lambda_0 v_0/2}$ ; and  $\Omega = [(v_0 + df)/2 + 1]$ 

Vidal and de Castro consider five priors in their research; Jeffreys' Prior, Independence Jefferys' Prior, right-Haar prior, and two reference priors, one for  $\rho$  and one for  $\sigma$ . We focus on the following three prior choices:

Jeffreys' Prior

Independence Jefferys' Prior

Reference Prior for  $\rho$ 

## General formula for the objective prior family:

$$\pi_{ab}(\mu,\Sigma) \propto rac{1}{\sigma_{\mathsf{x}}^{3-a}\sigma_{\mathsf{v}}^{2-b}(1-
ho^2)^{2-b/2}}$$

## Jeffreys' Prior

Jeffreys' Prior $\propto \pi_J(\mu, \Sigma) \propto \pi_{10}(\mu, \Sigma)$ 

$$\pi_J(\mu,\Sigma) \propto rac{1}{\sigma_x^2 \sigma_y^2 (1-
ho^2)^2}$$

#### **Independence Jefferys Prior**

Independence Jeffreys' Prior  $\propto \pi_{IJ}(\mu,\Sigma) \propto \pi_{21}(\mu,\Sigma)$ 

$$\pi_{IJ}(\mu,\Sigma) \propto rac{1}{\sigma_{ imes}\sigma_{ imes}(1-
ho^2)^{-3/2}}$$

A Replication Study

Bayesian Model

## **Prior**

Reference Prior for  $\rho$ 

$$\pi_{R
ho}(\mu,\Sigma) \propto rac{1}{\sigma_{ imes}\sigma_{ imes}(1-
ho^2)}$$

## **Posterior**

$$\begin{split} & p(\mu, \Sigma | X, \mu_0, k_0 \Lambda_0, v_0) = \textit{NIW}(\mu, \Sigma | \mu_n, k_n, \Lambda_n, v_n) \\ & \propto \Sigma^{-\{(v_n + df)/2\} + 1} \exp \left\{ -\frac{1}{2} tr(\Phi_n \Sigma^{-1}) - \frac{k_n}{2} (\mu - \mu_n)' \Sigma^{-1} (\mu - \mu_n) \right\} \end{split}$$

The posterior distribution is:

$$p(\mu, \Sigma | X) \sim Normal - InverseWishart(\mu_n, k_n^{-1}, \Phi_n^{-1}, v_n)$$

Or more succinctly,

$$\Sigma | x, y \sim IW_2\left(S^{-1}, n\right)$$

$$\mu|\Sigma, x, y \sim N_2\left[(\bar{x}, \bar{y})', n^{-1}\Sigma\right]$$

## **Posterior**

#### Drawing from the posterior distribution:

Jeffreys' Prior:

$$\mu|\Sigma, x, y \sim N_2[(\bar{x}, \bar{y})', n^{-1}\Sigma]$$
 and  $\Sigma|x, y \sim IW_2(S^{-1}, n)$ 

Independence Jefferys Prior:

$$\mu|\Sigma, x, y \sim N_2[(\bar{x}, \bar{y})', n^{-1}\Sigma]$$
 and  $\Sigma|x, y \sim IW_2(S^{-1}, n-1)$ 

## **Posterior**

#### Drawing from the posterior distribution:

Reference Prior for  $\rho$ 

Must employ acceptance-rejection algorithm:

Simulation step. Generate  $(\sigma_x, \sigma_y, \rho)$  from the  $IW_2$  using  $\pi_{IJ}(\mu, \Sigma)$  and independently generate u from Uniform(0, 1).

Rejection step. If  $u \leq \pi_{R\rho}(\mu, \Sigma)/\pi_{IJ}(\mu, \Sigma)$ , then accept  $(\sigma_x, \sigma_y, \rho)$  else, return to the simulation step. Upon acceptance, generate  $(\mu_x, \mu_y)$  from the  $N_2$  distribution under the independence Jeffreys' prior.

A Replication Study
Simulation Results

# **Simulation Results**

## **Generating Simulation Data**

For each parameter combination given in the below Table, we generate 1000 data sets with sample size n=(30,100) and estimate MSD, CCC, precision  $(\rho)$ , and accuracy  $(\chi_a)$ . Simulation data was drawn from the multivariate normal distribution.

| Combination | $\mu_{x}$ | $\mu_{y}$ | $\sigma_x^2$ | $\sigma_y^2$ | $\rho$ |
|-------------|-----------|-----------|--------------|--------------|--------|
| 1           | 100       | 100       | 100          | 100          | 0.99   |
| 2           |           |           |              |              | 0.90   |
| 3           |           |           |              |              | 0.80   |
| 4           |           |           |              |              | 0.40   |
| 5           | 100       | 100       | 100          | 125          | 0.99   |
| 6           |           |           |              |              | 0.90   |
| 7           |           |           |              |              | 0.80   |
| 8           |           |           |              |              | 0.40   |

## **Simulation Results**

Averages of the posterior mean of some measures from 1000 replications and 5000 samples from the posterior distribution under selected parameter combinations (Comb.) and priors.

Inflyon Drion

|      |           | Jeffreys Prior |        |             |       |  |
|------|-----------|----------------|--------|-------------|-------|--|
|      |           | Origin         | nal    | Replication |       |  |
| Comb | Measure   | n=30           | n=100  | n=30        | n=100 |  |
| 1    | MSD       | 2.197          | 2.043  | 7.334       | 2.041 |  |
|      | CCC       | 0.989          | 0.990  | 0.986       | 0.989 |  |
|      | Precision | 0.990          | 0.990  | 0.986       | 0.989 |  |
|      | Accuracy  | 0.999          | 1.000  | 0.999       | 0.999 |  |
| 6    | MSD       | 26.008         | 24.328 | 8.266       | 2.300 |  |
|      | CCC       | 0.882          | 0.890  | 0.783       | 0.800 |  |
|      | Precision | 0.90           | 0.899  | 0.803       | 0.820 |  |
|      | Accuracy  | 0.983          | 0.991  | 0.999       | 0.975 |  |

## **Simulation Results**

Averages of the posterior mean of some measures from 1000 replications and 5000 samples from the posterior distribution under selected parameter combinations (Comb.) and priors.

I... ala... a... ala... a.a. la.£0.....

|      |           | Independence Jeffreys |        |             |       |  |
|------|-----------|-----------------------|--------|-------------|-------|--|
|      |           | Origin                | nal    | Replication |       |  |
| Comb | Measure   | n=30                  | n=100  | n=30        | n=100 |  |
| 1    | MSD       | 2.275                 | 2.063  | 7.614       | 2.062 |  |
|      | CCC       | 0.989                 | 0.990  | 0.993       | 0.993 |  |
|      | Precision | 0.990                 | 0.990  | 0.993       | 0.993 |  |
|      | Accuracy  | 0.999                 | 1.000  | 0.999       | 0.999 |  |
| 6    | MSD       | 26.930                | 24.572 | 8.584       | 2.324 |  |
|      | CCC       | 0.882                 | 0.890  | 0.805       | 0.810 |  |
|      | Precision | 0.900                 | 0.899  | 0.825       | 0.831 |  |
|      | Accuracy  | 0.983                 | 0.991  | 0.975       | 0.975 |  |

## **Simulation Results**

Averages of the posterior mean of some measures from 1000 replications and 5000 samples from the posterior distribution under selected parameter combinations (Comb.) and priors.

Deference Drier

|      |           | Reference Frior $\rho$ |       |             |       |  |
|------|-----------|------------------------|-------|-------------|-------|--|
|      |           | Origin                 | nal   | Replication |       |  |
| Comb | Measure   | n=30                   | n=100 | n=30        | n=100 |  |
| 1    | MSD       |                        |       | 7.325       | 2.062 |  |
|      | CCC       |                        |       | 0.400       | 0.971 |  |
|      | Precision |                        |       | 0.400       | 0.971 |  |
|      | Accuracy  |                        |       | 0.999       | 0.999 |  |
| 6    | MSD       |                        |       | 8.218       | 2.324 |  |
|      | CCC       |                        |       | 0.276       | 0.790 |  |
|      | Precision |                        |       | 0.283       | 0.810 |  |
|      | Accuracy  |                        |       | 0.975       | 0.975 |  |

A Replication Study

Motivating Example - Part II (Kidney Data Study)

# Motivating Example - Part II (Kidney Data Study)

- Motivating Example - Part II (Kidney Data Study)

# Inferior Pelvic Infundibular Angle Data



# **Data Summary**

Vidal and de Castro reported different values for the range of the data and the means and standard deviations: Urography  $range(40^{\circ}-105^{\circ}); \; \mu=75.8^{\circ}; \; sd=15.3^{\circ} \; \text{and Tomography} \\ range(40^{\circ}-108^{\circ}); \; \mu=79.5^{\circ}; \; sd=17.2^{\circ}. \; \text{The original data} \\ \text{reported values consistent with below table.}$ 

|         | Urography | Tomography |
|---------|-----------|------------|
| N.Valid | 52.00     | 52.00      |
| Mean    | 77.46     | 75.79      |
| Median  | 79.50     | 76.50      |
| Std.Dev | 17.17     | 15.30      |
| Min     | 40.00     | 40.00      |
| Max     | 108.00    | 105.00     |
|         |           |            |

## A visual assessment

 $\triangleright$  Regression line plot versus perfect agreement line (U = T).



# Kidney Data - Bayesian Inference for:

- Mean Squared Deviation (MSD).
- Concordance Correlation Coefficient ( CCC ).
- Accuracy coefficient  $(\chi_a)$ .
- Precision coefficient  $(\rho)$ .

## Kidney Data - Bayesian Inference

Results obtained using the Jeffreys' prior with 5000 posterior draws over 1000 replications. The average values over the Posterior distribution are reported below. Equal-Tail CI are reported in brackets.

| Measure   | Original          | Replication    |
|-----------|-------------------|----------------|
| MSD       | 104.407           | 4.803          |
|           | (69.062, 150.126) | (4.792, 4.814) |
| CCC       | 0.808             | 0.6465         |
|           | (0.704, 0.889)    | (0.644, 0.648) |
| Precision | 0.823             | 0.832          |
|           | (0.723, 0.901)    | (0.831, 0.833) |
| Accuracy  | 0.985             | 0.776          |
|           | (0.954, 1.000)    | (0.775, 0.777) |

## Kidney Data - Bayesian Inference Authors results:



└ Motivating Example - Part II (Kidney Data Study)

# Kidney Data - Bayesian Inference From replication study:









A Replication Study

Conclusion

## **Conclusion**

### **Conclusion**

- We have successfully replicated a large portion of Vidal's and de Castro's results.
- ► There is a sizable discrepancy between several of our results and the authors.
- ► The results from several simulation studies match the authors reported results closely.
- ▶ However, several simulation results did not agree.
- ► The authors reported summary statistics for the real world data study do not agree with the original data source.
- ► The replication results from the real world data study do not agree.
- ► It is difficult to know for sure if we are working on the exact data as the authors.

A Replication Study

Replication Results

# **Replication Results**

### **Generating Simulation Data**

For each parameter combination given in the below Table, we generate 1000 data sets with sample size n=(30,100) and estimate MSD, CCC, precision  $(\rho)$ , and accuracy  $(\chi_a)$ . Simulation data was drawn from the multivariate normal distribution.

| Combination | $\mu_{x}$ | $\mu_{y}$ | $\sigma_x^2$ | $\sigma_y^2$ | ρ    |
|-------------|-----------|-----------|--------------|--------------|------|
| 1           | 100       | 100       | 100          | 100          | 0.99 |
| 2           |           |           |              |              | 0.90 |
| 3           |           |           |              |              | 0.80 |
| 4           |           |           |              |              | 0.40 |
| 5           | 100       | 100       | 100          | 125          | 0.99 |
| 6           |           |           |              |              | 0.90 |
| 7           |           |           |              |              | 0.80 |
| 8           |           |           |              |              | 0.40 |

## **Generating Simulation Data**

| Combination | $\mu_{x}$ | $\mu_{y}$ | $\sigma_x^2$ | $\sigma_y^2$ | $\rho$ |
|-------------|-----------|-----------|--------------|--------------|--------|
| 9           | 100       | 105       | 100          | 125          | 0.99   |
| 10          |           |           |              |              | 0.90   |
| 11          |           |           |              |              | 0.80   |
| 12          |           |           |              |              | 0.40   |
| 13          | 135       | 135       | 88           | 88           | 0.99   |
| 14          |           |           |              |              | 0.90   |
| 15          |           |           |              |              | 0.80   |
| 16          |           |           |              |              | 0.40   |

### **Simulation Results**

Averages of the posterior mean of some measures from 1000 replications and 5000 samples from the posterior distribution under selected parameter combinations (Comb.) and priors.

Laffrance Drian

|      |           | Jenreys Phor |        |             |       |  |
|------|-----------|--------------|--------|-------------|-------|--|
|      |           | Orig         | inal   | Replication |       |  |
| Comb | Measure   | n=30         | n=100  | n=30        | n=100 |  |
| 1    | MSD       | 2.197        | 2.043  | 7.334       | 2.041 |  |
|      | CCC       | 0.989        | 0.990  | 0.986       | 0.989 |  |
|      | Precision | 0.990        | 0.990  | 0.986       | 0.989 |  |
|      | Accuracy  | 0.999        | 1.000  | 0.999       | 0.999 |  |
| 6    | MSD       | 26.008       | 24.328 | 8.2666      | 2.300 |  |
|      | CCC       | 0.882        | 0.890  | 0.783       | 0.800 |  |
|      | Precision | 0.90         | 0.899  | 0.803       | 0.820 |  |
|      | Accuracy  | 0.983        | 0.991  | 0.975       | 0.975 |  |

### **Simulation Results**

Averages of the posterior mean of some measures from 1000 replications and 5000 samples from the posterior distribution under selected parameter combinations (Comb.) and priors.

|      |           | Independence Jeffreys |        |             |       |  |
|------|-----------|-----------------------|--------|-------------|-------|--|
|      |           | Origin                | nal    | Replication |       |  |
| Comb | Measure   | n=30                  | n=100  | n=30        | n=100 |  |
| 1    | MSD       | 2.275                 | 2.063  | 7.614       | 2.062 |  |
|      | CCC       | 0.989                 | 0.990  | 0.993       | 0.993 |  |
|      | Precision | 0.990                 | 0.990  | 0.993       | 0.993 |  |
|      | Accuracy  | 0.999                 | 1.000  | 0.999       | 0.999 |  |
| 6    | MSD       | 26.930                | 24.572 | 8.584       | 2.324 |  |
|      | CCC       | 0.882                 | 0.890  | 0.805       | 0.810 |  |
|      | Precision | 0.900                 | 0.899  | 0.825       | 0.831 |  |
|      | Accuracy  | 0.983                 | 0.991  | 0.975       | 0.975 |  |

#### **Simulation Results**

Accuracy

Averages of the posterior mean of some measures from 1000 replications and 5000 samples from the posterior distribution under selected parameter combinations (Comb.) and priors.

Reference Prior  $\rho$ 

0.975

0.975

|      |           | ,      |       |             |       |  |
|------|-----------|--------|-------|-------------|-------|--|
|      |           | Origin | nal   | Replication |       |  |
| Comb | Measure   | n=30   | n=100 | n=30        | n=100 |  |
| 1    | MSD       |        |       | 7.325       | 2.062 |  |
|      | CCC       |        |       | 0.400       | 0.971 |  |
|      | Precision |        |       | 0.400       | 0.971 |  |
|      | Accuracy  |        |       | 0.999       | 0.999 |  |
| 6    | MSD       |        |       | 8.218       | 2.324 |  |
|      | CCC       |        |       | 0.276       | 0.790 |  |
|      | Precision |        |       | 0.283       | 0.810 |  |
|      |           |        |       |             |       |  |

## Kidney Data - Bayesian Inference

Results obtained using the Jeffreys' prior with 5000 posterior draws over 1000 replications. The average values over the Posterior distribution are reported below. Equal-Tail CI are reported in brackets.

| Measure   | Original          | Replication    |  |  |
|-----------|-------------------|----------------|--|--|
| MSD       | 104.407           | 4.803          |  |  |
|           | (69.062, 150.126) | (4.792, 4.814) |  |  |
| CCC       | 0.808             | 0.6465         |  |  |
|           | (0.704, 0.889)    | (0.644, 0.648) |  |  |
| Precision | 0.823             | 0.832          |  |  |
|           | (0.723, 0.901)    | (0.831, 0.833) |  |  |
| Accuracy  | 0.985             | 0.776          |  |  |
|           | (0.954, 1.000)    | (0.775, 0.777) |  |  |

# Kidney Data - Bayesian Inference Authors results:



# Kidney Data - Bayesian Inference From replication study:







