O'REILLY®

Bill Chambers & Matei Zaharia

Spark: The Definitive Guide

Big Data Processing Made Simple

Bill Chambers and Matei Zaharia

Beijing • Boston • Farnham • Sebastopol • Tokyo

Who This Book Is For

We designed this book mainly for data scientists and data engineers looking to use Apache Spark. The two roles have slightly different needs, but in reality, most application development covers a bit of both, so we think the material will be useful in both cases. Specifically, in our minds, the data scientist workload focuses more on interactively querying data to answer questions and build statistical models, while the data engineer job focuses on writing maintainable, repeatable production applications—either to use the data scientist's models in practice, or just to prepare data for further analysis (e.g., building a data ingest pipeline). However, we often see with Spark that these roles blur. For instance, data scientists are able to package production applications without too much hassle and data engineers use interactive analysis to understand and inspect their data to build and maintain pipelines.

While we tried to provide everything data scientists and engineers need to get started, there are some things we didn't have space to focus on in this book. First, this book does not include indepth introductions to some of the analytics techniques you can use in Apache Spark, such as machine learning. Instead, we show you how to invoke these techniques using libraries in Spark, assuming you already have a basic background in machine learning. Many full, standalone books exist to cover these techniques in formal detail, so we recommend starting with those if you want to learn about these areas. Second, this book focuses more on application development than on operations and administration (e.g., how to manage an Apache Spark cluster with dozens of users). Nonetheless, we have tried to include comprehensive material on monitoring, debugging, and configuration in Parts V and VI of the book to help engineers get their application running efficiently and tackle day-to-day maintenance. Finally, this book places less emphasis on the older, lower-level APIs in Spark—specifically RDDs and DStreams—to introduce most of the concepts using the newer, higher-level structured APIs. Thus, the book may not be the best fit if you need to maintain an old RDD or DStream application, but should be a great introduction to writing new applications.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE

WARNING

This element indicates a warning or caution.

This element signifies a general note.

Using Code Examples

We're very excited to have designed this book so that all of the code content is runnable on real data. We wrote the whole book using Databricks notebooks and have posted the data and related material on GitHub. This means that you can run and edit all the code as you follow along, or copy it into working code in your own applications.

We tried to use real data wherever possible to illustrate the challenges you'll run into while building large-scale data applications. Finally, we also include several larger standalone applications in the book's GitHub repository for examples that it does not make sense to show inline in the text.

The GitHub repository will remain a living document as we update based on Spark's progress. Be sure to follow updates there.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: "*Spark: The Definitive Guide* by Bill Chambers and Matei Zaharia (O'Reilly). Copyright 2018 Databricks, Inc., 978-1-491-91221-8."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at *permissions@oreilly.com*.

O'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based training and reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interactive tutorials, and curated playlists from over 250 publishers, including O'Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

There were a huge number of people that made this book possible.

First, we would like to thank our employer, Databricks, for allocating time for us to work on this book. Without the support of the company, this book would not have been possible. In particular, we would like to thank Ali Ghodsi, Ion Stoica, and Patrick Wendell for their support.

Additionally, there are numerous people that read drafts of the book and individual chapters. Our reviewers were best-in-class, and provided invaluable feedback.

These reviewers, in alphabetical order by last name, are:

- Lynn Armstrong
- Mikio Braun
- Jules Damji
- Denny Lee
- Alex Thomas

In addition to the formal book reviewers, there were numerous other Spark users, contributors, and committers who read over specific chapters or helped formulate how topics should be discussed. In alphabetical order by last name, the people who helped are:

- Sameer Agarwal
- Bagrat Amirbekian
- Michael Armbrust
- Joseph Bradley
- Tathagata Das
- Hossein Falaki
- Wenchen Fan
- Sue Ann Hong
- Yin Huai
- Tim Hunter
- Xiao Li
- Cheng Lian

- Xiangrui Meng
- Kris Mok
- Josh Rosen
- Srinath Shankar
- Takuya Ueshin
- Herman van Hövell
- Reynold Xin
- Philip Yang
- Burak Yavuz
- Shixiong Zhu

Lastly, we would like to thank friends, family, and loved ones. Without their support, patience, and encouragement, we would not have been able to write the definitive guide to Spark.

Part I. Gentle Overview of Big Data and Spark

Chapter 1. What Is Apache Spark?

Apache Spark is a unified computing engine and a set of libraries for parallel data processing on computer clusters. As of this writing, Spark is the most actively developed open source engine for this task, making it a standard tool for any developer or data scientist interested in big data. Spark supports multiple widely used programming languages (Python, Java, Scala, and R), includes libraries for diverse tasks ranging from SQL to streaming and machine learning, and runs anywhere from a laptop to a cluster of thousands of servers. This makes it an easy system to start with and scale-up to big data processing or incredibly large scale.

Figure 1-1 illustrates all the components and libraries Spark offers to end-users.

Figure 1-1. Spark's toolkit

You'll notice the categories roughly correspond to the different parts of this book. That should really come as no surprise; our goal here is to educate you on all aspects of Spark, and Spark is composed of a number of different components.

Given that you're reading this book, you might already know a little bit about Apache Spark and what it can do. Nonetheless, in this chapter, we want to briefly cover the overriding philosophy behind Spark as well as the context it was developed in (why is everyone suddenly excited about parallel data processing?) and its history. We will also outline the first few steps to running

Apache Spark's Philosophy

Let's break down our description of Apache Spark—a unified computing engine and set of libraries for big data—into its key components:

Unified

Spark's key driving goal is to offer a unified platform for writing big data applications. What do we mean by unified? Spark is designed to support a wide range of data analytics tasks, ranging from simple data loading and SQL queries to machine learning and streaming computation, over the same computing engine and with a consistent set of APIs. The main insight behind this goal is that real-world data analytics tasks—whether they are interactive analytics in a tool such as a Jupyter notebook, or traditional software development for production applications—tend to combine many different processing types and libraries.

Spark's unified nature makes these tasks both easier and more efficient to write. First, Spark provides consistent, composable APIs that you can use to build an application out of smaller pieces or out of existing libraries. It also makes it easy for you to write your own analytics libraries on top. However, composable APIs are not enough: Spark's APIs are also designed to enable high performance by optimizing across the different libraries and functions composed together in a user program. For example, if you load data using a SQL query and then evaluate a machine learning model over it using Spark's ML library, the engine can combine these steps into one scan over the data. The combination of general APIs and high-performance execution, no matter how you combine them, makes Spark a powerful platform for interactive and production applications.

Spark's focus on defining a unified platform is the same idea behind unified platforms in other areas of software. For example, data scientists benefit from a unified set of libraries (e.g., Python or R) when doing modeling, and web developers benefit from unified frameworks such as Node.js or Django. Before Spark, no open source systems tried to provide this type of unified engine for parallel data processing, meaning that users had to stitch together an application out of multiple APIs and systems. Thus, Spark quickly became the standard for this type of development. Over time, Spark has continued to expand its built-in APIs to cover more workloads. At the same time, the project's developers have continued to refine its theme of a unified engine. In particular, one major focus of this book will be the "structured APIs" (DataFrames, Datasets, and SQL) that were finalized in Spark 2.0 to enable more powerful optimization under user applications.

Computing engine

At the same time that Spark strives for unification, it carefully limits its scope to a computing engine. By this, we mean that Spark handles loading data from storage systems and performing computation on it, not permanent storage as the end itself. You can use Spark with a wide variety of persistent storage systems, including cloud storage systems such as

Azure Storage and Amazon S3, distributed file systems such as Apache Hadoop, key-value stores such as Apache Cassandra, and message buses such as Apache Kafka. However, Spark neither stores data long term itself, nor favors one over another. The key motivation here is that most data already resides in a mix of storage systems. Data is expensive to move so Spark focuses on performing computations over the data, no matter where it resides. In userfacing APIs, Spark works hard to make these storage systems look largely similar so that applications do not need to worry about where their data is.

Spark's focus on computation makes it different from earlier big data software platforms such as Apache Hadoop. Hadoop included both a storage system (the Hadoop file system, designed for low-cost storage over clusters of commodity servers) and a computing system (MapReduce), which were closely integrated together. However, this choice makes it difficult to run one of the systems without the other. More important, this choice also makes it a challenge to write applications that access data stored anywhere else. Although Spark runs well on Hadoop storage, today it is also used broadly in environments for which the Hadoop architecture does not make sense, such as the public cloud (where storage can be purchased separately from computing) or streaming applications.

Libraries

Spark's final component is its libraries, which build on its design as a unified engine to provide a unified API for common data analysis tasks. Spark supports both standard libraries that ship with the engine as well as a wide array of external libraries published as third-party packages by the open source communities. Today, Spark's standard libraries are actually the bulk of the open source project: the Spark core engine itself has changed little since it was first released, but the libraries have grown to provide more and more types of functionality. Spark includes libraries for SQL and structured data (Spark SQL), machine learning (MLlib), stream processing (Spark Streaming and the newer Structured Streaming), and graph analytics (GraphX). Beyond these libraries, there are hundreds of open source external libraries ranging from connectors for various storage systems to machine learning algorithms. One index of external libraries is available at spark-packages.org.

Context: The Big Data Problem

Why do we need a new engine and programming model for data analytics in the first place? As with many trends in computing, this is due to changes in the economic factors that underlie computer applications and hardware.

For most of their history, computers became faster every year through processor speed increases: the new processors each year could run more instructions per second than the previous year's. As a result, applications also automatically became faster every year, without any changes needed to their code. This trend led to a large and established ecosystem of applications building up over time, most of which were designed to run only on a single processor. These applications rode the trend of improved processor speeds to scale up to larger computations and larger volumes of data over time.

Unfortunately, this trend in hardware stopped around 2005: due to hard limits in heat dissipation, hardware developers stopped making individual processors faster, and switched toward adding more parallel CPU cores all running at the same speed. This change meant that suddenly applications needed to be modified to add parallelism in order to run faster, which set the stage for new programming models such as Apache Spark.

On top of that, the technologies for storing and collecting data did not slow down appreciably in 2005, when processor speeds did. The cost to store 1 TB of data continues to drop by roughly two times every 14 months, meaning that it is very inexpensive for organizations of all sizes to store large amounts of data. Moreover, many of the technologies for collecting data (sensors, cameras, public datasets, etc.) continue to drop in cost and improve in resolution. For example, camera technology continues to improve in resolution and drop in cost per pixel every year, to the point where a 12-megapixel webcam costs only \$3 to \$4; this has made it inexpensive to collect a wide range of visual data, whether from people filming video or automated sensors in an industrial setting. Moreover, cameras are themselves the key sensors in other data collection devices, such as telescopes and even gene-sequencing machines, driving the cost of these technologies down as well.

The end result is a world in which collecting data is extremely inexpensive—many organizations today even consider it negligent *not* to log data of possible relevance to the business—but processing it requires large, parallel computations, often on clusters of machines. Moreover, in this new world, the software developed in the past 50 years cannot automatically scale up, and neither can the traditional programming models for data processing applications, creating the need for new programming models. It is this world that Apache Spark was built for.

History of Spark

Apache Spark began at UC Berkeley in 2009 as the Spark research project, which was first published the following year in a paper entitled "Spark: Cluster Computing with Working Sets" by Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, and Ion Stoica of the UC Berkeley AMPlab. At the time, Hadoop MapReduce was the dominant parallel programming engine for clusters, being the first open source system to tackle data-parallel processing on clusters of thousands of nodes. The AMPlab had worked with multiple early MapReduce users to understand the benefits and drawbacks of this new programming model, and was therefore able to synthesize a list of problems across several use cases and begin designing more general computing platforms. In addition, Zaharia had also worked with Hadoop users at UC Berkeley to understand their needs for the platform—specifically, teams that were doing large-scale machine learning using iterative algorithms that need to make multiple passes over the data.

Across these conversations, two things were clear. First, cluster computing held tremendous potential: at every organization that used MapReduce, brand new applications could be built using the existing data, and many new groups began using the system after its initial use cases. Second, however, the MapReduce engine made it both challenging and inefficient to build large applications. For example, the typical machine learning algorithm might need to make 10 or 20

passes over the data, and in MapReduce, each pass had to be written as a separate MapReduce job, which had to be launched separately on the cluster and load the data from scratch.

To address this problem, the Spark team first designed an API based on functional programming that could succinctly express multistep applications. The team then implemented this API over a new engine that could perform efficient, in-memory data sharing across computation steps. The team also began testing this system with both Berkeley and external users.

The first version of Spark supported only batch applications, but soon enough another compelling use case became clear: interactive data science and ad hoc queries. By simply plugging the Scala interpreter into Spark, the project could provide a highly usable interactive system for running queries on hundreds of machines. The AMPlab also quickly built on this idea to develop Shark, an engine that could run SQL queries over Spark and enable interactive use by analysts as well as data scientists. Shark was first released in 2011.

After these initial releases, it quickly became clear that the most powerful additions to Spark would be new libraries, and so the project began to follow the "standard library" approach it has today. In particular, different AMPlab groups started MLlib, Spark Streaming, and GraphX. They also ensured that these APIs would be highly interoperable, enabling writing end-to-end big data applications in the same engine for the first time.

In 2013, the project had grown to widespread use, with more than 100 contributors from more than 30 organizations outside UC Berkeley. The AMPlab contributed Spark to the Apache Software Foundation as a long-term, vendor-independent home for the project. The early AMPlab team also launched a company, Databricks, to harden the project, joining the community of other companies and organizations contributing to Spark. Since that time, the Apache Spark community released Spark 1.0 in 2014 and Spark 2.0 in 2016, and continues to make regular releases, bringing new features into the project.

Finally, Spark's core idea of composable APIs has also been refined over time. Early versions of Spark (before 1.0) largely defined this API in terms of *functional operations*—parallel operations such as maps and reduces over collections of Java objects. Beginning with 1.0, the project added Spark SQL, a new API for working with *structured data*—tables with a fixed data format that is not tied to Java's in-memory representation. Spark SQL enabled powerful new optimizations across libraries and APIs by understanding both the data format and the user code that runs on it in more detail. Over time, the project added a plethora of new APIs that build on this more powerful structured foundation, including DataFrames, machine learning pipelines, and Structured Streaming, a high-level, automatically optimized streaming API. In this book, we will spend a signficant amount of time explaining these next-generation APIs, most of which are marked as production-ready.

The Present and Future of Spark

Spark has been around for a number of years but continues to gain in popularity and use cases. Many new projects within the Spark ecosystem continue to push the boundaries of what's

possible with the system. For example, a new high-level streaming engine, Structured Streaming, was introduced in 2016. This technology is a huge part of companies solving massive-scale data challenges, from technology companies like Uber and Netflix using Spark's streaming and machine learning tools, to institutions like NASA, CERN, and the Broad Institute of MIT and Harvard applying Spark to scientific data analysis.

Spark will continue to be a cornerstone of companies doing big data analysis for the foreseeable future, especially given that the project is still developing quickly. Any data scientist or engineer who needs to solve big data problems probably needs a copy of Spark on their machine—and hopefully, a copy of this book on their bookshelf!

Running Spark

This book contains an abundance of Spark-related code, and it's essential that you're prepared to run it as you learn. For the most part, you'll want to run the code interactively so that you can experiment with it. Let's go over some of your options before we begin working with the coding parts of the book.

You can use Spark from Python, Java, Scala, R, or SQL. Spark itself is written in Scala, and runs on the Java Virtual Machine (JVM), so therefore to run Spark either on your laptop or a cluster, all you need is an installation of Java. If you want to use the Python API, you will also need a Python interpreter (version 2.7 or later). If you want to use R, you will need a version of R on your machine.

There are two options we recommend for getting started with Spark: downloading and installing Apache Spark on your laptop, or running a web-based version in Databricks Community Edition, a free cloud environment for learning Spark that includes the code in this book. We explain both of those options next.

Downloading Spark Locally

If you want to download and run Spark locally, the first step is to make sure that you have Java installed on your machine (available as <code>java</code>), as well as a Python version if you would like to use Python. Next, visit the project's official download page, select the package type of "Pre-built for Hadoop 2.7 and later," and click "Direct Download." This downloads a compressed TAR file, or tarball, that you will then need to extract. The majority of this book was written using Spark 2.2, so downloading version 2.2 or later should be a good starting point.

Downloading Spark for a Hadoop cluster

Spark can run locally without any distributed storage system, such as Apache Hadoop. However, if you would like to connect the Spark version on your laptop to a Hadoop cluster, make sure you download the right Spark version for that Hadoop version, which can be chosen at http://spark.apache.org/downloads.html by selecting a different package type. We discuss how Spark runs on clusters and the Hadoop file system in later chapters, but at this point we

recommend just running Spark on your laptop to start out.

NOTE

In Spark 2.2, the developers also added the ability to install Spark for Python via pip install pyspark. This functionality came out as this book was being written, so we weren't able to include all of the relevant instructions.

Building Spark from source

We won't cover this in the book, but you can also build and configure Spark from source. You can select a source package on the Apache download page to get just the source and follow the instructions in the README file for building.

After you've downloaded Spark, you'll want to open a command-line prompt and extract the package. In our case, we're installing Spark 2.2. The following is a code snippet that you can run on any Unix-style command line to unzip the file you downloaded from Spark and move into the directory:

```
cd ~/Downloads
tar -xf spark-2.2.0-bin-hadoop2.7.tgz
cd spark-2.2.0-bin-hadoop2.7.tgz
```

Note that Spark has a large number of directories and files within the project. Don't be intimidated! Most of these directories are relevant only if you're reading source code. The next section will cover the most important directories—the ones that let us launch Spark's different consoles for interactive use.

Launching Spark's Interactive Consoles

You can start an interactive shell in Spark for several different programming languages. The majority of this book is written with Python, Scala, and SQL in mind; thus, those are our recommended starting points.

Launching the Python console

You'll need Python 2 or 3 installed in order to launch the Python console. From Spark's home directory, run the following code:

```
./bin/pyspark
```

After you've done that, type "spark" and press Enter. You'll see the SparkSession object printed, which we cover in Chapter 2.

Launching the Scala console

To launch the Scala console, you will need to run the following command:

./bin/spark-shell

After you've done that, type "spark" and press Enter. As in Python, you'll see the SparkSession object, which we cover in Chapter 2.

Launching the SQL console

Parts of this book will cover a large amount of Spark SQL. For those, you might want to start the SQL console. We'll revisit some of the more relevant details after we actually cover these topics in the book.

./bin/spark-sql

Running Spark in the Cloud

If you would like to have a simple, interactive notebook experience for learning Spark, you might prefer using Databricks Community Edition. Databricks, as we mentioned earlier, is a company founded by the Berkeley team that started Spark, and offers a free community edition of its cloud service as a learning environment. The Databricks Community Edition includes a copy of all the data and code examples for this book, making it easy to quickly run any of them. To use the Databricks Community Edition, follow the instructions at https://github.com/databricks/Spark-The-Definitive-Guide. You will be able to use Scala, Python, SQL, or R from a web browser–based interface to run and visualize results.

Data Used in This Book

We'll use a number of data sources in this book for our examples. If you want to run the code locally, you can download them from the official code repository in this book as desribed at https://github.com/databricks/Spark-The-Definitive-Guide. In short, you will download the data, put it in a folder, and then run the code snippets in this book!

Chapter 2. A Gentle Introduction to Spark

Now that our history lesson on Apache Spark is completed, it's time to begin using and applying it! This chapter presents a gentle introduction to Spark, in which we will walk through the core architecture of a cluster, Spark Application, and Spark's structured APIs using DataFrames and SQL. Along the way we will touch on Spark's core terminology and concepts so that you can begin using Spark right away. Let's get started with some basic background information.

Spark's Basic Architecture

Typically, when you think of a "computer," you think about one machine sitting on your desk at home or at work. This machine works perfectly well for watching movies or working with spreadsheet software. However, as many users likely experience at some point, there are some things that your computer is not powerful enough to perform. One particularly challenging area is data processing. Single machines do not have enough power and resources to perform computations on huge amounts of information (or the user probably does not have the time to wait for the computation to finish). A *cluster*, or group, of computers, pools the resources of many machines together, giving us the ability to use all the cumulative resources as if they were a single computer. Now, a group of machines alone is not powerful, you need a framework to coordinate work across them. Spark does just that, managing and coordinating the execution of tasks on data across a cluster of computers.

The cluster of machines that Spark will use to execute tasks is managed by a cluster manager like Spark's standalone cluster manager, YARN, or Mesos. We then submit Spark Applications to these cluster managers, which will grant resources to our application so that we can complete our work.

Spark Applications

Spark Applications consist of a *driver* process and a set of *executor* processes. The driver process runs your main() function, sits on a node in the cluster, and is responsible for three things: maintaining information about the Spark Application; responding to a user's program or input; and analyzing, distributing, and scheduling work across the executors (discussed momentarily). The driver process is absolutely essential—it's the heart of a Spark Application and maintains all relevant information during the lifetime of the application.

The *executors* are responsible for actually carrying out the work that the driver assigns them. This means that each executor is responsible for only two things: executing code assigned to it by the driver, and reporting the state of the computation on that executor back to the driver node.

Figure 2-1 demonstrates how the cluster manager controls physical machines and allocates resources to Spark Applications. This can be one of three core cluster managers: Spark's standalone cluster manager, YARN, or Mesos. This means that there can be multiple Spark Applications running on a cluster at the same time. We will discuss cluster managers more in Part IV.

Figure 2-1. The architecture of a Spark Application

In Figure 2-1, we can see the driver on the left and four executors on the right. In this diagram, we removed the concept of cluster nodes. The user can specify how many executors should fall on each node through configurations.

NOTE

Spark, in addition to its cluster mode, also has a *local mode*. The driver and executors are simply processes, which means that they can live on the same machine or different machines. In local mode, the driver and executurs run (as threads) on your individual computer instead of a cluster. We wrote this book with local mode in mind, so you should be able to run everything on a single machine.

Here are the key points to understand about Spark Applications at this point:

• Spark employs a cluster manager that keeps track of the resources available.

• The driver process is responsible for executing the driver program's commands across the executors to complete a given task.

The executors, for the most part, will always be running Spark code. However, the driver can be "driven" from a number of different languages through Spark's language APIs. Let's take a look at those in the next section.

Spark's Language APIs

Spark's language APIs make it possible for you to run Spark code using various programming languages. For the most part, Spark presents some core "concepts" in every language; these concepts are then translated into Spark code that runs on the cluster of machines. If you use just the Structured APIs, you can expect all languages to have similar performance characteristics. Here's a brief rundown:

Scala

Spark is primarily written in Scala, making it Spark's "default" language. This book will include Scala code examples wherever relevant.

Java

Even though Spark is written in Scala, Spark's authors have been careful to ensure that you can write Spark code in Java. This book will focus primarily on Scala but will provide Java examples where relevant.

Python

Python supports nearly all constructs that Scala supports. This book will include Python code examples whenever we include Scala code examples and a Python API exists.

SQL

Spark supports a subset of the ANSI SQL 2003 standard. This makes it easy for analysts and non-programmers to take advantage of the big data powers of Spark. This book includes SQL code examples wherever relevant.

R

Spark has two commonly used R libraries: one as a part of Spark core (SparkR) and another as an R community-driven package (sparklyr). We cover both of these integrations in Chapter 32.

Figure 2-2 presents a simple illustration of this relationship.

Figure 2-2. The relationship between the SparkSession and Spark's Language API

Each language API maintains the same core concepts that we described earlier. There is a SparkSession object available to the user, which is the entrance point to running Spark code. When using Spark from Python or R, you don't write explicit JVM instructions; instead, you write Python and R code that Spark translates into code that it then can run on the executor JVMs.

Spark's APIs

Although you can drive Spark from a variety of languages, what it makes available in those languages is worth mentioning. Spark has two fundamental sets of APIs: the low-level "unstructured" APIs, and the higher-level structured APIs. We discuss both in this book, but these introductory chapters will focus primarily on the higher-level structured APIs.

Starting Spark

Thus far, we covered the basic concepts of Spark Applications. This has all been conceptual in nature. When we actually go about writing our Spark Application, we are going to need a way to send user commands and data to it. We do that by first creating a SparkSession.

NOTE

To do this, we will start Spark's local mode, just like we did in Chapter 1. This means running ./bin/spark-shell to access the Scala console to start an interactive session. You can also start the Python console by using ./bin/pyspark. This starts an interactive Spark Application. There is also a process for submitting standalone applications to Spark called spark-submit, whereby you can submit a precompiled application to Spark. We'll show you how to do that in Chapter 3.

When you start Spark in this interactive mode, you implicitly create a SparkSession that manages the Spark Application. When you start it through a standalone application, you must create the SparkSession object yourself in your application code.

The SparkSession

As discussed in the beginning of this chapter, you control your Spark Application through a driver process called the SparkSession. The SparkSession instance is the way Spark executes user-defined manipulations across the cluster. There is a one-to-one correspondence between a SparkSession and a Spark Application. In Scala and Python, the variable is available as spark when you start the console. Let's go ahead and look at the SparkSession in both Scala and/or Python:

```
spark
```

In Scala, you should see something like the following:

```
res0: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@...
```

In Python you'll see something like this:

```
<pyspark.sql.session.SparkSession at 0x7efda4c1ccd0>
```

Let's now perform the simple task of creating a range of numbers. This range of numbers is just like a named column in a spreadsheet:

```
// in Scala
val myRange = spark.range(1000).toDF("number")
# in Python
myRange = spark.range(1000).toDF("number")
```

You just ran your first Spark code! We created a *DataFrame* with one column containing 1,000 rows with values from 0 to 999. This range of numbers represents a *distributed collection*. When run on a cluster, each part of this range of numbers exists on a different executor. This is a Spark DataFrame.

DataFrames

A DataFrame is the most common Structured API and simply represents a table of data with rows and columns. The list that defines the columns and the types within those columns is called the *schema*. You can think of a DataFrame as a spreadsheet with named columns. Figure 2-3 illustrates the fundamental difference: a spreadsheet sits on one computer in one specific location, whereas a Spark DataFrame can span thousands of computers. The reason for putting the data on more than one computer should be intuitive: either the data is too large to fit on one machine or it would simply take too long to perform that computation on one machine.

Spreadsheet on a single machine

Figure 2-3. Distributed versus single-machine analysis

The DataFrame concept is not unique to Spark. R and Python both have similar concepts. However, Python/R DataFrames (with some exceptions) exist on one machine rather than multiple machines. This limits what you can do with a given DataFrame to the resources that exist on that specific machine. However, because Spark has language interfaces for both Python and R, it's quite easy to convert Pandas (Python) DataFrames to Spark DataFrames, and R DataFrames to Spark DataFrames.

NOTE

Spark has several core abstractions: Datasets, DataFrames, SQL Tables, and Resilient Distributed Datasets (RDDs). These different abstractions all represent distributed collections of data. The easiest and most efficient are DataFrames, which are available in all languages. We cover Datasets at the end of Part II, and RDDs in Part III.

Partitions

To allow every executor to perform work in parallel, Spark breaks up the data into chunks called *partitions*. A partition is a collection of rows that sit on one physical machine in your cluster. A DataFrame's partitions represent how the data is physically distributed across the cluster of machines during execution. If you have one partition, Spark will have a parallelism of only one, even if you have thousands of executors. If you have many partitions but only one executor, Spark will still have a parallelism of only one because there is only one computation resource.

An important thing to note is that with DataFrames you do not (for the most part) manipulate partitions manually or individually. You simply specify high-level transformations of data in the physical partitions, and Spark determines how this work will actually execute on the cluster. Lower-level APIs do exist (via the RDD interface), and we cover those in Part III.

Transformations

In Spark, the core data structures are *immutable*, meaning they cannot be changed after they're created. This might seem like a strange concept at first: if you cannot change it, how are you supposed to use it? To "change" a DataFrame, you need to instruct Spark how you would like to modify it to do what you want. These instructions are called *transformations*. Let's perform a simple transformation to find all even numbers in our current DataFrame:

```
// in Scala
val divisBy2 = myRange.where("number % 2 = 0")
# in Python
divisBy2 = myRange.where("number % 2 = 0")
```

Notice that these return no output. This is because we specified only an abstract transformation, and Spark will not act on transformations until we call an action (we discuss this shortly). Transformations are the core of how you express your business logic using Spark. There are two types of transformations: those that specify *narrow dependencies*, and those that specify *wide dependencies*.

Transformations consisting of narrow dependencies (we'll call them narrow transformations) are those for which each input partition will contribute to only one output partition. In the preceding code snippet, the where statement specifies a narrow dependency, where only one partition contributes to at most one output partition, as you can see in Figure 2-4.

Figure 2-4. A narrow dependency

A wide dependency (or wide transformation) style transformation will have input partitions contributing to many output partitions. You will often hear this referred to as a *shuffle* whereby Spark will exchange partitions across the cluster. With narrow transformations, Spark will automatically perform an operation called *pipelining*, meaning that if we specify multiple filters on DataFrames, they'll all be performed in-memory. The same cannot be said for shuffles. When we perform a shuffle, Spark writes the results to disk. Wide transformations are illustrated in Figure 2-5.

Figure 2-5. A wide dependency

You'll see a lot of discussion about shuffle optimization across the web because it's an important topic, but for now, all you need to understand is that there are two kinds of transformations. You now can see how transformations are simply ways of specifying different series of data manipulation. This leads us to a topic called *lazy evaluation*.

Lazy Evaluation

Lazy evaulation means that Spark will wait until the very last moment to execute the graph of computation instructions. In Spark, instead of modifying the data immediately when you express some operation, you build up a *plan* of transformations that you would like to apply to your source data. By waiting until the last minute to execute the code, Spark compiles this plan from your raw DataFrame transformations to a streamlined physical plan that will run as efficiently as possible across the cluster. This provides immense benefits because Spark can optimize the

entire data flow from end to end. An example of this is something called *predicate pushdown* on DataFrames. If we build a large Spark job but specify a filter at the end that only requires us to fetch one row from our source data, the most efficient way to execute this is to access the single record that we need. Spark will actually optimize this for us by pushing the filter down automatically.

Actions

Transformations allow us to build up our logical transformation plan. To trigger the computation, we run an *action*. An action instructs Spark to compute a result from a series of transformations. The simplest action is count, which gives us the total number of records in the DataFrame:

```
divisBy2.count()
```

The output of the preceding code should be 500. Of course, **count** is not the only action. There are three kinds of actions:

- Actions to view data in the console
- Actions to collect data to native objects in the respective language
- Actions to write to output data sources

In specifying this action, we started a Spark job that runs our filter transformation (a narrow transformation), then an aggregation (a wide transformation) that performs the counts on a per partition basis, and then a collect, which brings our result to a native object in the respective language. You can see all of this by inspecting the Spark UI, a tool included in Spark with which you can monitor the Spark jobs running on a cluster.

Spark UI

You can monitor the progress of a job through the Spark web UI. The Spark UI is available on port 4040 of the driver node. If you are running in local mode, this will be http://localhost:4040. The Spark UI displays information on the state of your Spark jobs, its environment, and cluster state. It's very useful, especially for tuning and debugging. Figure 2-6 shows an example UI for a Spark job where two stages containing nine tasks were executed.