Additional material for:

Role-Usage Role Mining Heuristics for Permission-Role-Usage Cardinality Constraints

Carlo Blundo DISA-MIS Università di Salerno, Italy Stelvio Cimato Dipartimento di Informatica Università di Milano, Italy

Luisa Siniscalchi Department of Computer Science Aarhus University, Denmark

May 28, 2020

Contents

1	Fixe	$\operatorname{ed}\ mru$
	1.1	Americas Large
	1.2	Americas Small
	1.3	Apj 6
	1.4	Emea 8
	1.5	Healthcare
	1.6	Domino
	1.7	Customer
	1.8	Firewall 1
	1.9	Firewall 2
2	Fixe	ed mpr
	2.1	Americas Large
	2.2	Americas Small
	2.3	Apj
	2.4	Emea
	2.5	Healthcare
	2.6	Domino
	2.7	Customer
	2.8	Firewall 1
	2.9	Firewall 2
3	Syn	thetic Datasets 38
	3.1	Constant nu/nr , varying permissions, and $mpr = np \cdot nr/nu$
	3.2	Constant nu/nr and np/nr , $mru = nr/10$, $mpr = 5$, and $mru \cdot mpr = np/4 \dots \dots$
	3.3	Constant nu/nr and np/nr , $mru = nr/10$, $mru = 5$, and $mru \cdot mpr = np/4 \cdot \dots \cdot \dots \cdot 42$
	3.4	Constant number of ratio users/roles and varying permissions
	3.5	Constant number of the ratio permissions/roles and varying users
	3.6	Constant number of permissions and varying ratio users/roles

1 Fixed mru

1.1 Americas Large

				PRU	CC ₁			PRU	CC ₂	
mru	mpr		OF	OR	UF	UR	OF	OR	UF	UR
2	367	R	548	549	544	547	564	562	566	564
2	367	WSC	99166	97229	97194	97519	101079	99134	100925	97834
2	458	R	471	477	475	477	483	486	491	493
4	458	WSC	97881	98309	98237	98454	100123	100391	100450	99324
2	549	R	447	444	447	448	448	453	457	462
2	349	WSC	97721	97035	97446	98001	98824	98506	98733	98916
2	640	R	431	426	427	427	428	430	437	437
4	040	WSC	101530	101212	101026	101039	101848	101979	101811	101811
2	732	R	423	423	423	423	425	425	432	432
2	132	WSC	101246	101244	101028	101028	101976	101957	101788	101793
3	245	R	598	616	596	613	586	626	610	619
3	245	WSC	88891	93304	90754	93503	85016	94868	89596	93686
3	367	R	545	542	537	546	554	555	555	554
3	367	WSC	97440	94817	95375	96133	99390	96191	98936	95236
3	489	R	451	454	455	457	465	459	463	461
3	489	WSC	95197	95609	95107	96516	98901	96005	98427	96431
3	611	R	425	424	427	427	426	425	428	428
3	611	WSC	98027	97958	96205	96183	97990	97959	96208	96189
3	732	R	417	420	420	420	419	417	420	420
	132	WSC	98032	98208	96151	96156	98125	97990	96151	96156

Table 1: Role-set size and WSC value - Dataset Americas large $\,$

		7	2		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
PRUCC ₁	4	4	4	1	2	2	5	2	
$PRUCC_2$	6	5	0	1	1	2	3	5	

	$ \mathcal{R} $	WSC
better	8	8
equal	1	1
worse	1	1

Table 2: Minumum values - Dataset Americas large

$\mathcal R$		PF	RUC	C_1	$PRUCC_2$					
κ	0	1	2	3	4	0	1	2	3	4
OF	6	3	0	0	1	4	4	2	0	0
OR	6	3	0	0	1	5	4	1	0	0
UF	6	3	0	0	1	10	0	0	0	0
UR	9	0	0	0	1	9	0	1	0	0

Table 3: Number of times variants reached minumum value for ${\mathcal R}$ - Dataset Americas large

WSC		PR	RUC	C_1		$PRUCC_2$					
WBC	0	1	2	3	4	0	1	2	3	4	
OF	8	2	0	0	0	9	1	0	0	0	
OR	8	2	0	0	0	8	2	0	0	0	
UF	5	4	1	0	0	7	2	1	0	0	
UR	8	1	1	0	0	5	4	1	0	0	

Table 4: Number of times variants reached minumum value for WSC - Dataset Americas large

		ľ	R		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	2.6	2.9	2.8	3.95	4.2	3.4	2.0	3.5	
$PRUCC_2$	4.7	5.2	6.9	6.95	6.7	6.0	5.4	4.8	

Table 5: Heuristics ranking - Dataset Americas large

\mathcal{D}		PRU	JCC_1		$PRUCC_2$			
κ	OF	OR	UF	UR	OF	OR	UF	UR
Americas large	2.6	2.9	2.8	3.95	4.7	5.2	6.9	6.95

Table 6: Heuristics ranking on $\mathcal R$ - Dataset Americas large

WSC		PRU	$\overline{\text{CC}_1}$		$PRUCC_2$			
WBC	OF	OR	UF	UR	OF	OR	UF	UR
Americas large	4.2	3.4	2.0	3.5	6.7	6.0	5.4	4.8

Table 7: Heuristics ranking on WSC - Dataset Americas large

1.2 Americas Small

				PRU	ICC_1			PRU	CC_2	
mru	mpr		OF	OR	UF	UR	OF	OR	UF	UR
2	155	R	287	289	287	289	299	302	310	314
1 2	155	WSC	22662	22692	22924	22980	24297	24286	24435	24508
2	193	R	267	268	267	268	271	271	282	283
	193	WSC	24688	24716	24971	24978	24941	24847	25092	25099
2	231	R	263	263	263	263	266	266	278	278
	201	WSC	24896	24862	25121	25121	24971	24948	25242	25242
2	269	R	262	262	262	262	265	264	277	277
		WSC	25084	25107	25348	25348	25152	25136	25469	25469
2	309	R	260	260	260	260	263	262	275	275
		WSC	25143	25166	25344	25344	25120	25066	25465	25465
4	78	R	325	340	338	350	346	376	361	386
		WSC	17129	18102	17694	18414	18753	20727	19098	20704
4	136	R	294	300	304	306	302	311	317	325
		WSC	20749	21360	21274	21340	21627	22435	22379	23048
4	194	R WSC	261 23011	262 23004	270 23526	271 23532	264 23031	265 23043	277 23513	278 23490
-										
4	252	R	256 23377	256	265 23904	265 23875	259 23228	259 23215	271 23667	271
		WSC R	254	23383 254	23904	23875	23228	23215	23667	23667 269
4	309	WSC	23369	234 23372	23900	23900	23211	23211	23663	23663
		R	330	374	354	398	359	423	371	439
6	52	WSC	13834	15763	$\frac{354}{14367}$	398 16292	15336	18213	15446	18727
		R	302	308	312	317	311	317	302	321
6	116	WSC	19378	19750	20283	20536	20174	20582	19163	21064
		R	258	259	269	269	262	263	265	265
6	180	WSC	21862	21883	22879	22902	22058	22078	22534	22345
		R	253	253	263	263	256	256	258	258
6	244	WSC	22217	22221	23248	23249	22243	22246	22714	22715
		R	251	251	261	261	254	254	256	256
6	309	WSC	22223	22215	23244	23236	22233	22239	22710	22711
		R	363	408	389	432	383	478	407	485
8	39	WSC	13521	15212	14225	15804	14348	17928	14982	17952
		R	296	310	310	319	303	327	314	343
8	106	WSC	17247	18028	18058	18517	18082	19850	18828	21116
	4 50	R	262	263	273	275	266	269	271	274
8	173	WSC	20387	20242	21544	21528	20964	20991	21626	21639
8	240	R	252	252	262	262	253	253	258	258
1 8	240	WSC	21398	21394	22511	22509	21293	21275	21947	21927
8	309	R	250	250	262	260	251	251	256	256
L	309	WSC	21393	21392	22635	22506	21278	21278	21922	21944
11	29	R	390	430	413	477	394	499	401	509
	23	WSC	12979	14177	13116	14878	13059	16200	13112	16202
11	99	R	282	294	316	333	297	302	300	310
		WSC	16162	17217	16698	17872	17614	18102	17108	17712
11	169	R	253	255	282	284	257	260	261	263
		WSC	18622	18669	20114	20150	18766	18875	18239	18177
11	239	R	242	243	272	273	243	241	245	252
	- "	WSC	19792	19834	21274	21380	19432	19244	18653	19303
11	309	R	241	240	272	271	242	242	244	244
		WSC	19825	19778	21430	21375	19421	19423	18712	18755

Table 8: Role-set size and WSC value - Dataset Americas small

		7	2		WSC			
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	24	10	5	3	18	7	0	0
$PRUCC_2$	21	12	1	0	13	9	4	1

	$ \mathcal{R} $	WSC
better	23	16
equal	1	0
worse	1	9

Table 9: Minumum values - Dataset Americas small

$\mathcal R$		PRU	$PRUCC_2$							
70	0	1	2	3	4	0	1	2	3	4
OF	1	13	8	0	3	4	12	9	0	0
OR	15	1	6	0	3	13	3	9	0	0
UF	20	0	2	0	3	24	1	0	0	0
UR	22	0	0	0	3	25	0	0	0	0

Table 10: Number of times variants reached minumum value for $\mathcal R$ - Dataset Americas small

WSC		PRI		$PRUCC_2$						
WBC	0	1	2	3	4	0	1	2	3	4
OF	7	18	0	0	0	12	11	2	0	0
OR	18	7	0	0	0	16	7	2	0	0
UF	25	0	0	0	0	21	4	0	0	0
UR	25	0	0	0	0	24	1	0	0	0

Table 11: Number of times variants reached minumum value for WSC - Dataset Americas small

		<i>T</i>	2		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	1.44	2.58	4.92	5.92	2.12	3.12	5.4	6.28	
$PRUCC_2$	3.64	4.84	5.64	7.02	3.4	4.4	4.98	6.3	

Table 12: Heuristics ranking - Dataset Americas small

\mathcal{D}		PRU	CC_1		PRUCC ₂				
κ	OF	OR	UF	UR	OF	OR	UF	UR	
Americas small	1.44	2.58	4.92	5.92	3.64	4.84	5.64	7.02	

Table 13: Heuristics ranking on $\mathcal R$ - Dataset Americas small

WSC			$PRUCC_2$					
WBC	OF	OR	UF	UR	OF	OR	UF	UR
Americas small	2.12	3.12	5.4	6.28	3.4	4.4	4.98	6.3

Table 14: Heuristics ranking on WSC - Dataset Americas small

1.3 Apj

				PRU	CC_1			PRU	${ m CC}_2$	
mru	mpr		OF	OR	UF	UR	0F	OR	UF	UR
2		R	509	509	510	510	511	510	512	512
2	29	WSC	5919	5919	5919	5919	5925	5923	5925	5925
_	0.0	R	506	506	507	507	508	508	509	509
2	36	WSC	5913	5913	5913	5913	5919	5919	5919	5919
_		R	503	503	504	504	504	505	506	506
2	43	WSC	5907	5907	5907	5907	5911	5913	5913	5913
_		R	501	501	502	502	502	503	504	504
2	50	WSC	5903	5903	5903	5903	5907	5909	5909	5909
_		R	501	501	502	502	503	502	504	504
2	57	WSC	5903	5903	5903	5903	5909	5907	5909	5909
_		R	521	524	522	528	520	525	523	526
3	20	WSC	5860	5869	5850	5922	5801	5852	5799	5844
		R	501	499	502	502	503	503	504	504
3	29	WSC	5888	5882	5878	5878	5892	5892	5884	5884
_		R	496	496	499	499	498	500	501	501
3	38	WSC	5876	5876	5872	5872	5880	5886	5878	5878
		R	493	493	496	496	495	495	498	498
3	47	WSC	5870	5870	5866	5866	5874	5874	5872	5872
		R	494	492	495	495	494	494	497	497
3	57	WSC	5874	5868	5864	5866	5872	5872	5870	5870
		R	526	539	530	542	534	537	533	547
4	15	WSC	5579	5763	5638	5858	5652	5797	5658	5868
-		R	491	493	494	496	499	493	496	498
4	25	WSC	5724	5754	5789	5819	5785	5778	5793	5815
-		R	489	483	486	486	483	483	488	488
4	35	WSC	5804	5757	5798	5798	5733	5757	5794	5802
-		R	482	481	484	484	488	481	486	486
4	45	WSC	5741	5753	5794	5794	5778	5729	5798	5798
		R	479	479	482	482	479	479	484	484
4	57	WSC	5725	5725	5790	5790	5749	5749	5786	5794
		R	505	516	505	549	507	539	505	549
5	12	WSC	5177	5321	5179	5751	5193	5591	5189	5768
		R	494	495	493	494	496	496	492	493
5	23	WSC	5799	5818	5671	5718	5804	5821	5678	5717
—		R	479	479	478	478	480	481	477	477
5	34	WSC	5786	5785	5675	5670	5786	5794	5677	5665
-		R	477	477	476	476	478	478	475	475
5	45	WSC	5787	5780	5666	5657	5781	5782	5655	5665
-		R	475	475	474	474	477	476	473	473
5	57	WSC	5776	5778	5653	5653	5785	5779	5651	5675
-		1721	509	532	507	525	515	522	514	528
7	9	WSC	5316	5517	5260	5413	5338	5422	5305	5439
—		R	478	479	478	479	479	482	480	479
7	21	WSC	5421	5452	5362	5380	5442	5450	5378	5383
—		1721	465	465	463	463	466	465	466	466
7	33	WSC	5389	5389	5325	5325	5390	5402	5363	5363
—		R	464	463	463	462	465	465	464	464
7	45	WSC	5384	5382	5332	5313	5376	5376	5333	5336
		R	462	463	463	461	464	464	463	463
7	57	WSC	5389	5384	5392	5312	5376	5374	5333	5333
			0000	0002	0002	0012	00.0	50.2	0000	0000

Table 15: Role-set size and WSC value - Dataset Apj

		7	2		WSC					
	OF	OR	UF	UR	OF	OR	UF	UR		
$PRUCC_1$	13	12	8	6	10	7	15	14		
$PRUCC_2$	11	11	9	6	6	6	15	8		

	$ \mathcal{R} $	WSC
better	16	19
equal	4	0
worse	5	6

Table 16: Minumum values - Dataset Apj

$\mathcal R$		PF	RUCC	PRUCC ₂						
π	0	1	2	3	4	0	1	2	3	4
OF	12	3	10	0	0	14	4	7	0	0
OR	13	4	8	0	0	14	5	6	0	0
UF	17	2	6	0	0	16	4	5	0	0
UR	19	2	4	0	0	19	0	6	0	0

Table 17: Number of times variants reached minumum value for \mathcal{R} - Dataset Apj

WSC		PR	UC	C_1		PRUCC ₂					
	0	1	2	3	4	0	1	2	3	4	
OF	15	4	1	0	5	19	4	1	0	1	
OR	18	1	1	0	5	19	4	1	0	1	
UF	10	5	5	0	5	10	8	6	0	1	
UR	11	4	5	0	5	17	1	6	0	1	

Table 18: Number of times variants reached minumum value for WSC - Dataset Apj

		$ \mathcal{R} $	<u>: </u>		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	2.82	3.32	3.52	4.4	4.28	4.36	2.9	3.54	
$PRUCC_2$	5.22	5.24	5.38	6.1	5.38	5.9	4.24	5.4	

Table 19: Heuristics ranking - Dataset Apj

${\cal R}$		PRU	CC_1		$ PRUCC_2 $				
κ	OF	OR	UF	UR	OF	OR	UF	UR	
Apj	2.82	3.32	3.52	4.4	5.22	5.24	5.38	6.1	

Table 20: Heuristics ranking on ${\mathcal R}$ - Dataset Apj

WSC		PRU	CC_1		$PRUCC_2$			
WBC	OF	OR	UF	UR	OF	OR	UF	UR
Apj	4.28	4.36	2.9	3.54	5.38	5.9	4.24	5.4

Table 21: Heuristics ranking on WSC - Dataset Apj

1.4 Emea

				PRU	CC_1		PRUCC ₂				
mru	mpr		0F	OR	UF	UR	0F	OR	UF	UR	
2	277	R	47	47	47	47	48	47	48	47	
1 2	211	WSC	7306	7306	7306	7306	7319	7306	7319	7306	
2	346	R	44	44	44	44	44	44	44	45	
1 2	340	WSC	7300	7300	7300	7300	7300	7300	7300	7305	
2	415	R	39	39	39	39	39	39	39	39	
	413	WSC	7290	7290	7290	7290	7290	7290	7290	7290	
2	484	R	37	37	37	37	37	37	37	37	
1 -	404	WSC	7286	7286	7286	7286	7286	7286	7286	7286	
2	553	R	35	35	35	35	35	35	35	35	
	333	WSC	7282	7282	7282	7282	7282	7282	7282	7282	

Table 22: Role-set size and WSC value - Dataset Emea

		17	2		WSC			
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	5	5	5	5	5	5	5	5
$PRUCC_2$	4	5	4	4	4	5	4	4

	$ \mathcal{R} $	WSC
better	0	0
equal	5	5
worse	0	0

Table 23: Minumum values - Dataset Emea

$\mathcal R$		PF	RUC	C_1		$PRUCC_2$				
κ	0	1	2	3	4	0	1	2	3	4
OF	0	0	0	0	5	1	0	0	1	3
OR	0	0	0	0	5	0	0	1	1	3
UF	0	0	0	0	5	1	0	0	1	3
UR	0	0	0	0	5	1	0	1	0	3

Table 24: Number of times variants reached minumum value for ${\mathcal R}$ - Dataset Emea

WSC		PR	RUC	C_1		PRUCC ₂				
WBC	0	1	2	3	4	0	1	2	3	4
OF	0	0	0	0	5	1	0	0	1	3
OR	0	0	0	0	5	0	0	1	1	3
UF	0	0	0	0	5	1	0	0	1	3
UR	0	0	0	0	5	1	0	1	0	3

Table 25: Number of times variants reached minumum value for WSC - Dataset Emea

		17	2		WSC			
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
$PRUCC_2$	5.0	4.2	5.0	5.0	5.0	4.2	5.0	5.0

Table 26: Heuristics ranking - Dataset Emea

$\mathcal R$		PRU	CC_1		$PRUCC_2$			
<i>/</i> C	OF	OR	UF	UR	OF	OR	UF	UR
Emea	4.2	4.2	4.2	4.2	5.0	4.2	5.0	5.0

Table 27: Heuristics ranking on $\mathcal R$ - Dataset Emea

WSC		PRU	CC_1		$PRUCC_2$			
WBC	OF	OR	UF	UR	OF	OR	UF	UR
Emea	4.2	4.2	4.2	4.2	5.0	4.2	5.0	5.0

Table 28: Heuristics ranking on WSC - Dataset Emea

1.5 Healthcare

				PRU	CC ₁			PRU	CC_2	
mru	mpr		OF	OR	UF	UR	OF	OR	UF	UR
2	23	R	21	24	21	24	20	27	23	29
2	23	WSC	356	386	356	386	354	480	383	485
2	28	R	21	21	21	20	21	22	22	23
	20	WSC	401	401	401	372	401	430	404	459
2	33	R	21	21	21	21	21	21	22	22
	00	WSC	475	475	475	475	475	475	478	478
2	38	R	20	20	20	20	20	20	21	20
	00	WSC	468	468	468	468	468	468	471	468
2	45	R	18	18	18	18	18	18	19	19
		WSC	443	443	443	443	443	443	446	446
3	16	R	21	21	21	21	21	22	22	22
		WSC	329	329	329	329	329	346	332	332
3	23	R	17	18	17	18	17	21	17	20
		WSC	292	316	292	316	292	388	292	364
3	30	R	17	17	17	17	18	19	18	20
		WSC	286	286	286	286	317	348	317	379
3	37	R	17	17	17	17	17	17	17	17
		WSC	364	364	364	364	364	364	364	364
3	45	R WSC	15	15	15	15	15 338	15	15	15
			338	338	338	338		338	338	338
4	12	R WSC	21 330	20		21 330	20 317	23	20	23
			17	317	330 17	17	17	356 17	317	356 17
4	20	R WSC	285	285	285	285	285	285	285	285
		WSC	18	18	18	18	18	283	18	283
4	28	WSC	296	296	296	296	296	383	296	383
		W3C	17	17	17	17	17	17	17	17
4	36	WSC	365	365	365	365	365	365	365	365
		W3C	15	15	15	15	15	15	15	15
4	45	WSC	338	338	338	338	338	338	338	338
		R	20	20	20	20	22	22	22	23
5	10	WSC	326	326	326	326	348	348	348	359
		R	18	18	18	18	18	18	18	18
5	19	WSC	295	295	295	295	295	295	295	295
		R	18	18	18	18	18	20	19	20
5	28	WSC	307	307	307	307	307	365	336	365
		R	17	17	17	17	17	17	17	17
5	37	WSC	350	350	350	350	350	350	350	350
		R	15	15	15	15	15	15	15	15
5	45	WSC	324	324	324	324	324	324	324	324

Table 29: Role-set size and WSC value - Dataset Healthcare

	$ \mathcal{R} $				WSC			
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	18	17	18	17	18	17	18	17
$PRUCC_2$	20	12	13	9	20	12	13	9

	$ \mathcal{R} $	WSC
better	3	3
equal	16	16
worse	1	1

Table 30: Minumum values - Dataset Healthcare

$\mathcal R$		PΙ	RUC	CC_1		$PRUCC_2$					
π	0	1	2	3	4	0	1	2	3	4	
OF	2	0	2	0	16	0	4	6	2	8	
OR	3	1	0	0	16	8	0	2	2	8	
UF	2	0	2	0	16	7	0	4	1	8	
UR	3	1	0	0	16	11	0	0	1	8	

Table 31: Number of times variants reached minumum value for ${\mathcal R}$ - Dataset Healthcare

WSC		PΙ	RUC	CC_1		$PRUCC_2$					
	0	1	2	3	4	0	1	2	3	4	
OF	2	0	2	0	16	0	4	6	2	8	
OR	3	1	0	0	16	8	0	2	2	8	
UF	2	0	2	0	16	7	0	4	1	8	
UR	3	1	0	0	16	11	0	0	1	8	

Table 32: Number of times variants reached minumum value for WSC - Dataset Healthcare

		ľ	R		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	3.75	3.9	3.75	3.925	3.75	3.9	3.75	3.925	
$PRUCC_2$	3.85	5.55	5.1	6.175	3.85	5.625	5.05	6.15	

Table 33: Heuristics ranking - Dataset Healthcare

\mathcal{D}		PR	UCC_1		$PRUCC_2$				
κ	OF	OR	UF	UR	OF	OR	UF	UR	
Healthcare	3.75	3.9	3.75	3.925	3.85	5.55	5.1	6.175	

Table 34: Heuristics ranking on ${\mathcal R}$ - Dataset Health care

WSC		PR	UCC_1		$PRUCC_2$				
	OF	OR	UF	UR	OF	OR	UF	UR	
Healthcare	3.75	3.9	3.75	3.925	3.85	5.625	5.05	6.15	

Table 35: Heuristics ranking on WSC - Dataset Health care

1.6 Domino

				PRU	${ m CC_1}$			PRU	${ m CC_2}$	
mru	mpr		OF	OR	UF	UR	0F	OR	UF	UR
_	105	R	24	24	25	25	25	25	25	25
2	105	WSC	758	758	767	767	760	760	767	767
2	131	R	22	22	23	23	23	23	23	23
2	131	WSC	754	754	763	763	756	763	763	763
2	157	R	23	22	23	23	22	23	24	23
	137	WSC	763	754	763	763	758	763	765	763
2	183	R	22	22	23	23	23	22	23	23
	100	WSC	754	754	763	763	756	758	763	763
2	208	R	22	22	23	23	23	22	23	23
		WSC	754	754	763	763	756	758	763	763
4	53	R	26	25	26	25	25	27	25	27
		WSC	709	660	722	668	655	763	668	776
4	92	R	25	24	25	25	24	25	24	25
		WSC	772	666	772	772	679	759	679	772
4	131	R WSC	21 751	21	21 764	21 764	21	21	21	21 764
-			21	756 21	21	21	751 21	751 21	764	21
4	170	R WSC	751	764	764	764	751	764	764	764
-		WSC	21	21	21	21	21	21	21	21
4	208	WSC	751	751	764	764	764	751	764	764
		R	30	30	30	28	30	33	30	32
6	35	WSC	680	665	680	642	680	773	680	752
		R	25	23	25	24	26	25	26	26
6	78	WSC	757	604	772	693	778	772	793	793
-		R	21	21	21	21	21	21	21	21
6	121	WSC	749	749	764	764	749	749	764	764
		R	21	21	21	21	21	21	21	21
6	164	WSC	749	764	764	764	764	749	764	764
_	200	R	21	21	21	21	21	21	21	21
6	208	WSC	749	764	764	764	749	749	764	764
	07	R	32	32	32	32	34	32	34	34
8	27	WSC	655	655	655	655	687	641	701	701
8	72	R	25	24	25	24	25	25	25	25
8	12	WSC	732	689	746	698	732	746	746	746
8	117	R	21	21	21	21	21	21	21	21
L °	117	WSC	749	749	763	763	749	749	763	763
8	162	R	21	21	21	21	21	21	21	21
,	102	WSC	749	749	763	763	749	749	763	763
8	208	R	21	21	21	21	21	21	21	21
	200	WSC	749	749	763	763	754	754	763	763

Table 36: Role-set size and WSC value - Dataset Domino

		17	2		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	14	19	10	13	14	15	1	2	
$PRUCC_2$	16	16	15	12	16	11	2	0	

	$ \mathcal{R} $	WSC
better	5	10
equal	15	8
worse	0	2

Table 37: Minumum values - Dataset Domino

$\mathcal R$		PRUCC ₁						PRUCC ₂					
π	0	1	2	3	4	0	1	2	3	4			
OF	6	0	4	0	10	4	1	3	0	12			
OR	1	3	6	0	10	4	4	0	0	12			
UF	10	0	0	0	10	5	0	3	0	12			
UR	7	1	2	0	10	8	0	0	0	12			

Table 38: Number of times variants reached minumum value for $\mathcal R$ - Dataset Domino

WSC		PR	UC	C_1		$PRUCC_2$				
	0	1	2	3	4	0	1	2	3	4
OF	6	4	9	0	1	4	7	9	0	0
OR	5	5	9	0	1	9	4	7	0	0
UF	19	0	0	0	1	18	0	2	0	0
UR	18	1	0	0	1	20	0	0	0	0

Table 39: Number of times variants reached minumum value for WSC - Dataset Domino

		1	2		WSC					
	OF	OR	UF	UR	OF	OR	UF	UR		
$PRUCC_1$	4.025	3.15	4.825	4.225	2.75	2.475	5.875	5.225		
$PRUCC_2$	4.65	4.725	4.975	5.425	3.3	3.875	6.05	6.45		

Table 40: Heuristics ranking - Dataset Domino

$\mathcal {P}$		PRU	JCC_1		$PRUCC_2$				
K	OF	OR	UF	UR	OF	OR	UF	UR	
Domino	4.025	3.15	4.825	4.225	4.65	4.725	4.975	5.425	

Table 41: Heuristics ranking on ${\mathcal R}$ - Dataset Domino

WSC		PRU	JCC_1	PRUCC ₂				
WSC	OF	OR	UF	UR	OF	OR	UF	UR
Domino	2.75	2.475	5.875	5.225	3.3	3.875	6.05	6.45

Table 42: Heuristics ranking on WSC - Dataset Domino

1.7 Customer

				PRU	CC ₁			PRU	CC_2	
mru	mpr		OF	OR	UF	UR	OF	OR	UF	UR
_		R	5394	5401	5394	5402	5397	5406	5403	5409
2	13	WSC	50466	50517	50466	50520	50513	50542	50520	50548
_	4.0	R	5351	5351	5351	5352	5354	5355	5354	5357
2	16	WSC	50420	50425	50420	50413	50453	50434	50441	50438
_	4.0	R	5331	5333	5331	5333	5333	5335	5338	5341
2	19	WSC	50376	50384	50376	50382	50380	50405	50408	50418
2	22	R	5325	5323	5325	5324	5327	5327	5332	5329
2	22	WSC	50404	50406	50404	50402	50408	50408	50418	50412
2	24	R	5323	5323	5324	5324	5326	5323	5331	5328
2	24	WSC	50406	50400	50402	50402	50406	50406	50416	50410
8	4	R	1891	1951	1891	1996	1937	2012	1949	2008
8	4	WSC	45471	45639	45481	45888	45721	45950	45775	45959
8	9	R	1527	1577	1532	1588	1593	1660	1591	1670
· ·	9	WSC	47031	47204	47069	47338	47811	48008	47773	48149
8	14	R	1312	1316	1317	1319	1318	1318	1317	1319
· ·	14	WSC	47728	47739	47768	47773	47780	47780	47790	47808
8	19	R	1275	1278	1278	1281	1275	1278	1280	1282
0	19	WSC	47647	47677	47703	47713	47687	47669	47741	47733
8	24	R	1269	1267	1272	1272	1268	1269	1272	1270
0	24	WSC	47707	47644	47731	47731	47695	47697	47729	47723
14	2	R	517	525	522	521	527	529	523	531
14	4	WSC	46040	45996	46076	46073	46065	46073	46079	46104
14	7	R	458	454	455	460	463	458	462	463
14	l '	WSC	46103	46153	46211	46238	46231	46172	46273	46273
14	12	R	420	425	420	419	424	424	422	422
14	12	WSC	46177	46152	46211	46198	46215	46223	46248	46248
14	17	R	369	370	367	368	372	371	367	367
14	11	WSC	46102	46098	46124	46130	46052	46092	46154	46128
14	24	R	348	350	348	348	350	349	347	347
14	24	WSC	46098	46074	46122	46122	46088	46086	46120	46120
20	2	R	339	340	338	336	339	339	337	335
20		WSC	46029	46025	46047	46041	46021	46024	46045	46039
20	7	R	309	312	310	308	310	308	310	309
20	'	WSC	46004	46007	46034	46018	46000	45971	46040	46032
20	12	R	300	299	298	298	298	297	297	297
	12	WSC	45988	45988	46022	46022	45962	45981	46020	46020
20	17	R	300	297	297	298	300	301	296	297
	1,	WSC	45970	45981	46017	46022	45972	45939	46015	46020
20	24	R	286	288	287	287	290	289	286	286
		WSC	45972	45973	46000	46000	45957	45924	45998	45998
24	2	R	291	293	288	288	290	290	288	288
		WSC	45926	45928	46002	46002	45976	45988	46002	46002
24	7	R	283	283	280	280	282	284	280	280
		WSC	45962	45966	45986	45986	45962	45903	45986	45986
24	12	R	279	279	278	278	282	281	278	278
		WSC	45960	45961	45982	45982	45939	45948	45982	45982
24	17	R	282	282	278	278	280	281	278	278
		WSC	45908	45940	45982	45982	45951	45937	45982	45982
24	24	R	279	281	277	277	280	280	277	277
		WSC	45948	45953	45980	45980	45934	45934	45980	45980

Table 43: Role-set size and WSC value - Dataset Customer

		17	۲		WSC			
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	11	6	13	10	16	8	2	2
$PRUCC_2$	7	5	15	11	15	13	1	0

	$ \mathcal{R} $	WSC
better	11	16
equal	10	0
worse	4	9

Table 44: Minumum values - Dataset Customer

$\mathcal R$		PF	RUCC	\mathbb{C}_1		$PRUCC_2$				
κ	0	1	2	3	4	0	1	2	3	4
OF	14	5	4	2	0	18	5	2	0	0
OR	19	3	2	1	0	20	3	1	1	0
UF	12	1	10	2	0	10	4	10	1	0
UR	15	3	6	1	0	14	1	9	1	0

Table 45: Number of times variants reached minumum value for $\mathcal R$ - Dataset Customer

WSC	$PRUCC_1$						$PRUCC_2$				
WBC	0	1	2	3	4	0	1	2	3	4	
OF	9	13	3	0	0	10	11	4	0	0	
OR	17	7	1	0	0	12	9	4	0	0	
UF	23	0	2	0	0	24	1	0	0	0	
UR	23	2	0	0	0	25	0	0	0	0	

Table 46: Number of times variants reached minumum value for WSC - Dataset Customer

		<i>T</i>	2		WSC			
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	3.7	4.92	3.18	3.9	2.4	2.94	5.0	5.44
$PRUCC_2$	5.56	5.72	4.18	4.84	3.36	3.52	6.62	6.72

Table 47: Heuristics ranking - Dataset Customer

${\cal R}$		PRU	CC_1		PRUCC ₂			
λ	OF	OR	UF	UR	OF	OR	UF	UR
Customer	3.7	4.92	3.18	3.9	5.56	5.72	4.18	4.84

Table 48: Heuristics ranking on ${\mathcal R}$ - Dataset Customer

WSC		PRU	CC_1		$PRUCC_2$			
WBC	OF	OR	UF	UR	OF	OR	UF	UR
Customer	2.4	2.94	5.0	5.44	3.36	3.52	6.62	6.72

Table 49: Heuristics ranking on WSC - Dataset Customer

1.8 Firewall 1

				PRU	CC_1			PRU	CC_2	
mru	mpr		OF	OR	UF	UR	0F	OR	UF	UR
2	309	R	90	90	92	92	90	90	92	92
2	309	WSC	7116	7116	7122	7122	7117	7116	7122	7122
2	386	R	90	90	92	92	90	90	92	92
2	300	WSC	7116	7117	7122	7122	7117	7116	7122	7122
2	463	R	90	90	92	93	90	90	92	91
	403	WSC	7117	7117	7122	7124	7117	7117	7122	7120
2	540	R	90	90	93	93	90	90	91	91
	040	WSC	7117	7116	7124	7129	7117	7117	7120	7120
2	616	R	90	90	92	92	90	90	91	92
	010	WSC	7116	7117	7122	7122	7117	7116	7120	7122
4	155	R	93	95	94	96	97	100	99	102
•	100	WSC	5636	5811	5641	5816	6492	6586	6501	6602
4	270	R	87	87	88	88	87	87	89	89
•	2.0	WSC	6990	6990	6995	7003	6990	6990	6999	6999
4	385	R	86	86	87	87	86	86	88	88
•	000	WSC	6988	6983	6996	6996	6988	6988	6997	6997
4	500	R	86	86	87	87	86	86	88	88
		WSC	6988	6983	6996	6996	6988	6988	6994	6994
4	616	R	86	86	87	87	86	86	88	88
		WSC	6988	6988	6993	7001	6988	6988	6994	6997
6	103	R	98	99	99	99	105	114	106	114
		WSC	3903	3921	3916	3825	4762	5612	4635	5386
6	231	R	86	86	87	87	86	86	87	87
		WSC	6863	6863	6873	6871	6917	6912	6870	6870
6	359	R	84	84	85	85	84	84	85	85
		WSC	6859	6859	6864	6869	6913	6913	6863	6871
6	487	R WSC	84	84	85	85	84	84	85	85
			6859	6859 84	6869	6867	6913	6913	6866	6866
6	616	R WSC	84		85	85	84	84	85	85
			6859	6859	6869	6867	6913	6908	6863	6866
8	78	R WSC	92 4210	97 4544	98 4385	$\frac{107}{5040}$	102 4995	$\frac{111}{5496}$	$\frac{106}{5246}$	109 5270
		WSC	83	83			4995 86			
8	212	WSC	83 5404	83 5399	86 5396	86 5393	6033	87 6040	87 6018	88 6033
		WSC	78	78	81	81	79	79	80	80
8	346	WSC	6228	6223	6220	6220	6230	6230	6218	6215
		R	78	78	81	81	79	79	80	80
8	480	WSC	6223	6228	6217	6220	6230	6230	6215	6215
		R	78	78	81	81	79	79	80	80
8	616	WSC	6228	6228	6217	6222	6230	6230	6218	6218
	L	WSC	0220	0220	0217	0222	0230	0230	0210	0218

Table 50: Role-set size and WSC value - Dataset Firewall 1 $\,$

		17	2		WSC			
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	20	17	0	0	12	11	3	3
$PRUCC_2$	20	16	0	0	8	9	8	5

	$ \mathcal{R} $	WSC
better	7	12
equal	13	6
worse	0	2

Table 51: Minumum values - Dataset Firewall 1

$\mathcal R$		PF	RUCC	$PRUCC_2$						
κ	0	1	2	3	4	0	1	2	3	4
OF	0	3	17	0	0	0	4	16	0	0
OR	3	0	17	0	0	4	0	16	0	0
UF	20	0	0	0	0	20	0	0	0	0
UR	20	0	0	0	0	20	0	0	0	0

Table 52: Number of times variants reached minumum value for ${\mathcal R}$ - Dataset Firewall 1

WSC		PR	UC	C_1		$PRUCC_2$				
WBC	0	1	2	3	4	0	1	2	3	4
OF	8	4	8	0	0	12	2	6	0	0
OR	9	3	8	0	0	11	3	6	0	0
UF	17	2	1	0	0	12	4	4	0	0
UR	17	2	1	0	0	15	1	4	0	0

Table 53: Number of times variants reached minumum value for WSC - Dataset Firewall 1

			7	2		WSC					
		OF	OR	UF	UR	OF	OR	UF	UR		
PRUCC	\overline{z}_1	2.075	2.325	5.825	6.15	2.6	2.75	4.75	5.375		
PRUCC	\mathbb{I}_2	3.05	3.6	6.3	6.675	5.125	5.2	4.825	5.375		

Table 54: Heuristics ranking - Dataset Firewall 1

${\cal R}$		$PRUCC_2$						
λ	OF	OR	UF	UR	OF	OR	UF	UR
Firewall 1	2.075	2.325	5.825	6.15	3.05	3.6	6.3	6.675

Table 55: Heuristics ranking on ${\mathcal R}$ - Dataset Firewall 1

WSC		PR	UCC_1		$PRUCC_2$				
	OF	OR	UF	UR	OF	OR	UF	UR	
Firewall 1	2.6	2.75	4.75	5.375	5.125	5.2	4.825	5.375	

Table 56: Heuristics ranking on WSC - Dataset Firewall $1\,$

1.9 Firewall 2

				PRU	CC_1		PRUCC ₂					
mru	mpr		0F	OR	UF	UR	0F	OR	UF	UR		
2	295	R	12	12	12	12	12	12	12	12		
1 2	293	WSC	1541	1541	1541	1541	1552	1552	1552	1552		
2	368	R	12	12	12	12	12	12	12	12		
1 2	308	WSC	1541	1541	1541	1541	1552	1552	1552	1552		
2	441	R	12	12	12	12	12	12	12	12		
2	441	WSC	1541	1541	1541	1541	1552	1552	1552	1552		
2	514	R	12	12	12	12	12	12	12	12		
1 2	314	WSC	1541	1541	1541	1541	1552	1552	1552	1552		
2	589	R	12	12	12	12	12	12	12	12		
1 2	369	WSC	1541	1541	1541	1541	1552	1552	1552	1552		

Table 57: Role-set size and WSC value - Dataset Firewall 2 $\,$

		J	2		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	5	5	5	5	5	5	5	5	
$PRUCC_2$	5	5	5	5	5	5	5	5	

	$ \mathcal{R} $	WSC
better	0	5
equal	5	0
worse	0	0

Table 58: Minumum values - Dataset Firewall 2

$\mathcal R$		PF	RUC	C_1		$PRUCC_2$					
κ	0	1	2	3	4	0	1	2	3	4	
OF	0	0	0	0	5	0	0	0	0	5	
OR	0	0	0	0	5	0	0	0	0	5	
UF	0	0	0	0	5	0	0	0	0	5	
UR	0	0	0	0	5	0	0	0	0	5	

Table 59: Number of times variants reached minumum value for ${\mathcal R}$ - Dataset Firewall 2

WSC		PR	RUC	C_1		$PRUCC_2$					
WBC	0	1	2	3	4	0	1	2	3	4	
OF	0	0	0	0	5	0	0	0	0	5	
OR	0	0	0	0	5	0	0	0	0	5	
UF	0	0	0	0	5	0	0	0	0	5	
UR	0	0	0	0	5	0	0	0	0	5	

Table 60: Number of times variants reached minumum value for WSC - Dataset Firewall 2

		17	2		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	4.5	4.5	4.5	4.5	2.5	2.5	2.5	2.5	
$PRUCC_2$	4.5	4.5	4.5	4.5	6.5	6.5	6.5	6.5	

Table 61: Heuristics ranking - Dataset Firewall 2 $\,$

\mathcal{D}		PRU	CC_1		$PRUCC_2$				
κ	OF	OR	UF	UR	OF	OR	UF	UR	
Firewall 2	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	

Table 62: Heuristics ranking on $\mathcal R$ - Dataset Firewall 2

WSC		$PRUCC_1$				$PRUCC_2$			
WBC	OF	OR	UF	UR	OF	OR	UF	UR	
Firewall 2	2.5	2.5	2.5	2.5	6.5	6.5	6.5	6.5	

Table 63: Heuristics ranking on WSC - Dataset Firewall 2

$\mathbf{2}$ Fixed mpr

2.1 Americas Large

				PRU	CC ₁			PRU	CC ₂	
mpr	mru		OF	OR	UF	UR	OF	OR	UF	UR
2	367	R	6182	8789	6189	8256	6209	9092	6199	8342
	307	WSC	115395	126872	114292	122640	115165	127860	114263	123359
2	458	R	6141	8539	6140	8014	6157	8507	6131	8149
	456	WSC	115503	128449	114412	122538	115323	127771	114399	123455
2	549	R	6122	8415	6149	7997	6134	8416	6131	7976
	043	WSC	115092	128098	114304	123268	115149	128259	114469	122761
2	640	R	6128	8443	6132	7957	6153	8387	6106	8010
_	010	WSC	115432	128432	114465	122849	115440	128384	114378	123120
2	732	R	6154	8482	6103	7985	6142	8435	6129	7983
_	.02	WSC	115387	128880	114422	122635	115304	128506	114338	123173
185	4	R	684	728	699	738	689	742	698	752
	_	WSC	82795	90431	85277	92034	81953	91458	82013	92314
185	186	R	620	728	626	728	618	725	630	726
		WSC	71146	88587	70987	87986	71105	89100	71332	88154
185	368	R	620	720	630	732	616	725	628	724
		WSC	71217	87765	71814	88450	70922	88129	70995	87855
185	550	R	614	720	631	727	620	725	631	726
		WSC	69814	87484	71420	87930	70964	88656	72149	87476
185	732	R	621	727	632	728	616	721	629	727
		WSC	70807	88547	71975	87996	70292	87515	70991	87989
368	2	R	548	550	542	546	562	560	567	568
		WSC	99219	97206	97066	96697	101087	98947	100947	98258
368	184	R	492	536	525	541	492	542	526	539
		WSC R	82826	90604	83634	90960	82779	91420	83631	90020
368	366	WSC	490 82614	539 90551	525 83603	541 91461	493 82354	541 91260	529 84064	539 90057
		WSC	492	535	525	540	82354 490	542	526	539
368	548	WSC	82715	90603	83605	90529	82601	90920	83938	91049
		R	492	538	527	540	494	541	528	541
368	732	WSC	82799	90751	83650	90119	82920	90888	83965	90319
		R	451	447	447	448	448	452	458	459
551	2	WSC	99860	97159	97433	97985	98805	97982	98732	98275
		R	434	438	440	441	435	437	440	441
551	184	WSC	92188	92518	92155	92969	92128	92405	92155	92960
		R	436	443	440	441	437	439	440	441
551	366	WSC	92249	93288	92150	92926	92251	93029	92137	93000
	F 40	R	445	441	440	441	436	439	440	441
551	548	WSC	92855	93163	92137	92825	92248	92976	92150	93020
F F 1	700	R	439	438	440	441	441	437	440	441
551	732	WSC	92383	92460	92150	92852	92438	92763	92137	92920
700	2	R	421	422	423	423	425	425	432	432
732	2	WSC	101164	101201	101023	101010	101975	101987	101788	101793
732	184	R	417	416	415	415	414	416	415	415
132	104	WSC	93439	93317	93143	93143	93205	93317	93125	93138
732	366	R	414	413	415	415	415	417	415	415
132	300	WSC	93204	93211	93143	93143	93255	93362	93143	93143
732	548	R	413	413	415	415	416	417	415	415
132	340	WSC	93194	93144	93143	93125	93303	93374	93143	93143
732	732	R	414	414	415	415	415	414	415	415
102	132	WSC	93263	93203	93143	93143	93323	93204	93138	93143

Table 64: Role-set size and WSC value - Dataset Americas large

		$ \mathcal{R} $				WSC			
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	17	5	6	1	8	1	13	6	
$PRUCC_2$	16	4	7	2	10	1	13	3	

	$ \mathcal{R} $	WSC
better	14	9
equal	2	1
worse	9	15

Table 65: Minumum values - Dataset Americas large

${\cal R}$		PRU	UC(\mathbb{C}_1		PRUCC ₂					
70	0	1	2	3	4	0	1	2	3	4	
OF	8	15	2	0	0	9	14	1	1	0	
OR	20	2	3	0	0	21	3	1	0	0	
UF	19	4	2	0	0	18	5	1	1	0	
UR	24	0	1	0	0	23	0	1	1	0	

Table 66: Number of times variants reached minumum value for \mathcal{R} - Dataset Americas large

WSC		PRU	JC(\mathbb{C}_1		$PRUCC_2$				
WBC	0	1	2	3	4	0	1	2	3	4
OF	17	8	0	0	0	15	10	0	0	0
OR	24	1	0	0	0	24	1	0	0	0
UF	12	10	3	0	0	12	11	2	0	0
UR	19	3	3	0	0	22	1	2	0	0

Table 67: Number of times variants reached minumum value for WSC - Dataset Americas large

				$\mathcal{R} $		WSC			
		OF	OR	UF	UR	OF	OR	UF	UR
	$PRUCC_1$	2.4	5.04	3.42	5.88	3.8	6.06	2.54	5.0
Ì	$PRUCC_2$	3.1	5.92	4.0	6.24	3.6	6.78	2.72	5.5

Table 68: Heuristics ranking - Dataset Americas large

$\mathcal P$	$PRUCC_1$				$PRUCC_2$			
<i>/</i> C	OF	OR	UF	UR	OF	OR	UF	UR
Americas large	2.4	5.04	3.42	5.88	3.1	5.92	4.0	6.24

Table 69: Heuristics ranking on $\mathcal R$ - Dataset Americas large

WSC		PRU	CC_1		PRUCC ₂			
WBC	OF	OR	UF	UR	OF	OR	UF	UR
Americas large	3.8	6.06	2.54	5.0	3.6	6.78	2.72	5.5

Table 70: Heuristics ranking on WSC - Dataset Americas large

2.2 Americas Small

mpr mru 2 155		PRUCC ₁				PRUCC ₂				
2 155	1	0F	OR	UF	UR	OF	OR	UF	UR	
	R	1008	1100	1002	1058	1008	1096	998	1059	
2 155	WSC	58208	59619	58773	59413	58113	59324	58452	59287	
2 193	R	987	1064	982	1037	988	1075	982	1039	
2 193	WSC	58354	59673	58764	59412	58367	59610	58632	59273	
2 231	R	987	1067	981	1037	989	1065	981	1050	
2 231	WSC	58256	59162	58649	59264	58459	59344	58617	59291	
2 269	R	986	1055	981	1038	987	1069	981	1048	
2 203	WSC	58293	59135	58744	59152	58326	59415	58607	59184	
2 309	R	983	1080	981	1024	984	1066	978	1030	
2 303	WSC	58189	59418	58522	59069	58219	59396	58423	59362	
67 5	R	325	346	344	368	335	382	356	398	
0.	WSC	15985	17255	16721	18000	16738	19706	17428	20015	
67 81	R	205	206	213	216	205	207	214	216	
0. 01	WSC	11350	11336	11540	11683	11396	11353	11602	11637	
67 157	R	205	207	214	215	205	207	214	216	
0. 10.	WSC	11399	11393	11595	11618	11346	11348	11594	11673	
67 233	R	205	206	214	215	205	207	213	216	
	WSC	11331	11259	11602	11619	11398	11467	11545	11671	
67 309	R	205	206	213	215	205	207	214	216	
	WSC	11339	11335	11544	11698	11412	11417	11594	11637	
132 3	R	299	304	307	312	315	320	318	322	
	WSC	21686	22196	21919	22392	23287	23548	22899	23132	
132 79	R	196	196	207	208	196	196	207	208	
	WSC	11125	11209	11613	11652	11125	11193	11613	11666	
132 155	R	196	196	207	206	196	196	207	207	
	WSC	11105	11115 196	11613 208	11633 207	11112	11113	11614	11621	
132 231	R	196				196	196	207	208	
	WSC	11211 196	11124	11665 207	11619 206	11194	11143 196	11620 207	11652	
132 309	R WSC	11223	196 11211	11619	11620	196 11112	11196	11673	$\frac{207}{11672}$	
	1RI	267	268	267	268	269	271	282	283	
197 2	WSC	24724	24703	24967	24970	24713	24799	25088	25091	
	R	196	196	24907	206	196	196	2008	20091	
197 79	WSC	11217	11128	11613	11633	11116	11114	11609	11684	
	R	196	196	208	208	196	196	208	207	
197 156	WSC	11191	11126	11664	11664	11117	11140	11654	11602	
$\overline{}$	R	196	196	207	207	196	196	207	207	
197 233	WSC	11123	11112	11602	11614	11104	11124	11682	11620	
	R	196	196	207	207	196	196	207	206	
197 309	WSC	11135	11125	11613	11672	11200	11120	11613	11640	
	R	262	262	262	262	265	265	277	277	
262 2	WSC	25152	25088	25348	25348	25124	25084	25469	25469	
	R	196	196	207	207	196	196	208	207	
262 79	WSC	11207	11105	11684	11610	11112	11136	11653	11614	
262 156	R	196	196	207	206	196	196	206	206	
262 156	WSC	11107	11129	11618	11640	11111	11117	11632	11632	
262 233	R	196	196	208	206	196	196	207	207	
202 233	WSC	11203	11125	11653	11628	11187	11199	11601	11600	
262 309	R	196	196	207	207	196	196	207	208	
202 309	WSC	11194	11111	11610	11612	11126	11127	11603	11663	

Table 71: Role-set size and WSC value - Dataset Americas small

	$ \mathcal{R} $			WSC				
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	20	13	7	1	10	15	0	0
$PRUCC_2$	20	13	5	0	19	5	1	0

	$ \mathcal{R} $	WSC
better	4	16
equal	19	1
worse	2	8

Table 72: Minumum values - Dataset Americas small

$\mathcal R$		$PRUCC_1$						$PRUCC_2$					
κ	0	1	2	3	4	0	1	2	3	4			
OF	5	6	13	0	1	5	7	13	0	0			
OR	12	0	12	0	1	12	0	13	0	0			
UF	18	5	1	0	1	20	5	0	0	0			
UR	24	0	0	0	1	25	0	0	0	0			

Table 73: Number of times variants reached minumum value for $\mathcal R$ - Dataset Americas small

WSC		PRU	UCC	\mathbb{C}_1		$PRUCC_2$					
WSC	0	1	2	3	4	0	1	2	3	4	
OF	15	10	0	0	0	6	19	0	0	0	
OR	10	15	0	0	0	20	5	0	0	0	
UF	25	0	0	0	0	24	1	0	0	0	
UR	25	0	0	0	0	25	0	0	0	0	

Table 74: Number of times variants reached minumum value for WSC - Dataset Americas small

		7	2		WSC					
	OF	OR	UF	UR	OF	OR	UF	UR		
$PRUCC_1$	2.3	3.7	4.9	5.64	2.5	3.12	5.24	6.52		
$PRUCC_2$	2.92	4.32	5.34	6.88	2.34	4.0	5.44	6.84		

Table 75: Heuristics ranking - Dataset Americas small

\mathcal{D}		PRU	${\rm JCC_1}$		$PRUCC_2$				
<i>/</i> C	OF	OR	UF	UR	OF	OR	UF	UR	
Americas small	2.3	3.7	4.9	5.64	2.92	4.32	5.34	6.88	

Table 76: Heuristics ranking on $\mathcal R$ - Dataset Americas small

WSC		PRU	JCC_1		$PRUCC_2$				
WBC	OF	OR	UF	UR	OF	OR	UF	UR	
Americas small	2.5	3.12	5.24	6.52	2.34	4.0	5.44	6.84	

Table 77: Heuristics ranking on WSC - Dataset Americas small

2.3 Apj

				PRU	CC ₁			PRU	CC_2	
mpr	mru		0F	OR	UF	UR	OF	OR	UF	UR
2	29	R	792	811	796	800	794	803	795	804
2	29	WSC	6729	6737	6694	6707	6738	6736	6689	6709
2	36	R	792	801	793	802	790	805	795	800
2	30	WSC	6731	6709	6691	6713	6733	6748	6697	6717
2	43	R	790	803	792	795	793	802	793	801
	43	WSC	6732	6722	6687	6694	6730	6712	6693	6717
2	50	R	789	807	790	794	793	800	792	799
	30	WSC	6739	6740	6687	6695	6728	6708	6691	6707
2	57	R	792	806	793	799	791	805	794	803
	0,	WSC	6743	6716	6689	6714	6740	6743	6696	6711
14	5	R	525	546	520	536	531	543	521	538
1-1		WSC	5574	5865	5466	5677	5643	5840	5501	5738
14	18	R	469	469	470	470	470	470	470	470
		WSC	5204	5202	5152	5147	5184	5191	5196	5153
14	31	R	469	469	470	470	470	470	470	470
		WSC	5204	5211	5148	5144	5182	5195	5142	5153
14	44	R	470	469	470	470	470	469	470	470
		WSC	5193	5193	5142	5197	5191	5195	5143	5145
14	57	R	469	470	470	470	469	470	470	470
		WSC	5204	5191	5144	5153	5193	5193	5142	5142
26	3	R	507	509	508	510	509	511	510	512
		WSC	5881	5911	5871	5901	5885	5915	5877	5907
26	16	R WSC	459	458	459	459	458	459	459	459
		WSC	5158 458	5180 459	5129 459	5124 459	5171 458	5167 459	5120 459	5122 459
26	29	WSC	5176	5167	5123	5119	5178	459 5167	$\frac{459}{5126}$	5127
		WSC	458	458	459	459	458	459	459	459
26	42	WSC	5178	5169	5124	5120	5171	5167	5124	5118
		W3C	458	459	459	459	458	459	459	459
26	57	WSC	5169	5167	5122	5119	5178	5169	5121	5129
		R	505	505	506	506	506	507	508	508
38	2	WSC	5911	5911	5911	5911	5915	5917	5917	5917
		R	454	454	455	455	454	454	455	455
38	16	WSC	5169	5160	5110	5113	5169	5169	5112	5163
		1R	454	455	455	455	455	455	455	455
38	30	WSC	5171	5160	5109	5118	5149	5158	5110	5120
	h	R	455	454	455	455	454	455	455	455
38	44	WSC	5158	5160	5109	5110	5160	5158	5120	5111
9.0		R	454	455	455	455	455	454	455	455
38	57	WSC	5160	5149	5113	5109	5158	5169	5112	5110
F 1	2	R	501	501	502	502	503	502	504	504
51	2	WSC	5903	5903	5903	5903	5909	5907	5909	5909
51	16	R	454	454	455	455	454	454	455	455
31	10	WSC	5176	5171	5111	5120	5169	5169	5109	5116
51	30	R	455	454	455	455	454	455	455	455
31	30	WSC	5149	5169	5119	5111	5169	5151	5110	5113
51	44	R	454	454	455	455	454	454	455	455
01	-44	WSC	5160	5162	5115	5109	5169	5169	5111	5117
51	57	R	455	454	455	455	455	455	455	455
	L	WSC	5158	5160	5109	5112	5158	5149	5114	5113

Table 78: Role-set size and WSC value - Dataset Apj

		7	2		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	19	13	1	0	2	2	16	11	
$PRUCC_2$	20	10	7	4	1	1	18	6	

	$ \mathcal{R} $	WSC
better	11	18
equal	12	0
worse	2	7

Table 79: Minumum values - Dataset Apj

$\mathcal R$		PRU	UC(\mathbb{C}_1		$PRUCC_2$					
κ	0	1	2	3	4	0	1	2	3	4	
OF	6	11	8	0	0	5	12	4	0	4	
OR	12	5	8	0	0	15	3	3	0	4	
UF	24	1	0	0	0	18	2	1	0	4	
UR	25	0	0	0	0	21	0	0	0	4	

Table 80: Number of times variants reached minumum value for \mathcal{R} - Dataset Apj

WSC		PRU	UCC	C_1		$PRUCC_2$					
WBC	0	1	2	3	4	0	1	2	3	4	
OF	23	0	0	0	2	24	1	0	0	0	
OR	23	0	0	0	2	24	1	0	0	0	
UF	9	14	0	0	2	7	17	1	0	0	
UR	14	9	0	0	2	19	5	1	0	0	

Table 81: Number of times variants reached minumum value for WSC - Dataset Apj

		<i>T</i>	2		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	2.42	3.96	4.62	5.44	6.06	6.04	2.06	2.88	
$PRUCC_2$	3.18	5.18	5.22	5.98	6.24	6.22	2.64	3.86	

Table 82: Heuristics ranking - Dataset Apj

$\mathcal R$		PRU	CC_1		$PRUCC_2$					
λ	OF	OR	UF	UR	OF	OR	UF	UR		
Apj	2.42	3.96	4.62	5.44	3.18	5.18	5.22	5.98		

Table 83: Heuristics ranking on ${\mathcal R}$ - Dataset Apj

WSC		PRU	CC_1			PRU	CC_2	
WBC	OF	OR	UF	UR	OF	OR	UF	UR
Apj	6.06	6.04	2.06	2.88	6.24	6.22	2.64	3.86

Table 84: Heuristics ranking on WSC - Dataset Apj

2.4 Emea

				PRU	CC_1			PRU	CC_2	
mpr	mru		OF	OR	UF	UR	OF	OR	UF	UR
		R	1754	2152	1763	2131	1754	2126	1767	2166
2	277	WSC	8945	10146	8942	10098	8945	10065	8951	10189
	0.40	R	1731	2071	1739	2092	1731	2072	1739	2088
2	346	WSC	8922	10004	8918	10061	8922	10020	8918	10006
		R	1731	2083	1739	2105	1731	2080	1739	2078
2	415	WSC	8922	10080	8918	10095	8922	10075	8918	10004
	404	R	1731	2079	1739	2079	1731	2073	1739	2068
2	484	WSC	8922	10054	8918	10003	8922	10079	8918	9989
2	***	R	1731	2092	1739	2072	1731	2065	1739	2100
2	553	WSC	8922	10100	8918	9976	8922	9995	8918	10062
4.40		R	68	69	68	69	69	69	69	69
140	4	WSC	7041	7143	7041	7207	7081	7204	7081	7206
		R	67	70	67	69	67	70	67	70
140	141	WSC	6779	7222	6779	7091	6779	7227	6779	7275
		R	67	70	67	70	67	70	67	70
140	278	WSC	6779	7226	6779	7231	6779	7277	6779	7223
H		R	67	68	67	70	67	69	67	70
140	415	WSC	6779	6947	6779	7243	6779	7235	6779	7221
-		R	67	70	67	69	67	70	67	68
140	553	WSC	6779	7229	6779	7210	6779	7221	6779	6991
		R	47	47	47	47	48	48	48	48
278	2	WSC	7306	7306	7306	7306	7319	7319	7319	7311
-		IRI	47	47	47	47	47	47	47	47
278	140	WSC	7180	7183	7180	7183	7180	7306	7180	7194
		R	47	47	47	47	47	46	47	47
278	278	WSC	7180	7183	7180	7183	7180	7193	7180	7306
-		R	47	47	47	47	47	47	47	47
278	416	WSC	7180	7183	7180	7306	7180	7183	7180	7177
-		1R	47	47	47	47	47	47	47	47
278	553	WSC	7180	7238	7180	7306	7180	7238	7180	7183
-		R	39	39	39	39	39	39	39	39
416	2	WSC	7290	7290	7290	7290	7290	7290	7290	7290
-		IRI	39	39	39	39	39	39	39	39
416	140	WSC	7272	7290	7272	7290	7272	7290	7272	7290
	-	R	39	39	39	39	39	39	39	39
416	278	WSC	7272	7290	7272	7290	7272	7290	7272	7290
	-	R	39	39	39	39	39	39	39	39
416	416	WSC	7272	7290	7272	7290	7272	7290	7272	7290
	-	R	39	39	39	39	39	39	39	39
416	553	WSC	7272	7290	7272	7290	7272	7290	7272	7290
	-	1R	35	35	35	35	35	35	35	35
553	2	WSC	7282	7282	7282	7282	7282	7282	7282	7282
	-	1R	35	35	35	35	35	35	35	35
553	140	WSC	7282	7282	7282	7282	7282	7282	7282	7282
		R	35	35	35	35	35	35	35	35
553	278	WSC	7282	7282	7282	7282	7282	7282	7282	7282
		1R	35	35	35	35	35	35	35	35
553	416	WSC	7282	7282	7282	7282	7282	7282	7282	7282
		1R	35	35	35	35	35	35	35	35
553	553	WSC	7282	7282	7282	7282	7282	7282	7282	7282
	i	*****	1202	1202	1202	1202	1202	1202	1202	1202

Table 85: Role-set size and WSC value - Dataset Emea

	$ \mathcal{R} $				WSC			
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	25	15	20	15	20	7	25	7
$PRUCC_2$	24	16	19	15	19	6	22	8

	$ \mathcal{R} $	WSC
better	2	3
equal	22	21
worse	1	1

Table 86: Minumum values - Dataset Emea

${\cal R}$		PF	RUC	C_1		PRUCC ₂				
70	0	1	2	3	4	0	1	2	3	4
OF	0	5	5	0	15	1	5	4	0	15
OR	10	0	0	0	15	9	1	0	0	15
UF	5	0	5	0	15	6	0	4	0	15
UR	10	0	0	0	15	10	0	0	0	15

Table 87: Number of times variants reached minumum value for ${\mathcal R}$ - Dataset Emea

WSC		PR	RUCC	C_1		PRUCC ₂				
WBC	0	1	2	3	4	0	1	2	3	4
OF	5	0	13	0	7	6	1	12	0	6
OR	18	0	0	0	7	19	0	0	0	6
UF	0	5	13	0	7	3	4	12	0	6
UR	18	0	0	0	7	17	2	0	0	6

Table 88: Number of times variants reached minumum value for WSC - Dataset Emea

		7	2		WSC			
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	3.4	5.24	3.78	5.28	3.14	5.74	2.76	5.98
$PRUCC_2$	3.72	5.06	4.14	5.38	3.4	6.2	3.14	5.64

Table 89: Heuristics ranking - Dataset Emea

${\cal R}$		PRU	JCC_1		$PRUCC_2$			
κ	OF	OR	UF	UR	OF	OR	UF	UR
Emea	3.4	5.24	3.78	5.28	3.72	5.06	4.14	5.38

Table 90: Heuristics ranking on ${\mathcal R}$ - Dataset Emea

WSC		PRU	CC_1		$PRUCC_2$			
WBC	OF	OR	UF	UR	OF	OR	UF	UR
Emea	3.14	5.74	2.76	5.98	3.4	6.2	3.14	5.64

Table 91: Heuristics ranking on WSC - Dataset Emea

2.5 Healthcare

				PRU	CC_1			PRU	${ m CC_2}$	
mpr	mru		0F	OR	UF	UR	0F	OR	UF	UR
2	23	R	35	33	34	33	36	36	35	36
2	23	WSC	877	875	877	872	880	884	880	884
_		R	34	33	31	31	34	28	31	30
2	28	WSC	953	951	937	943	953	929	937	940
_		R	29	29	31	30	29	28	31	29
2	33	WSC	950	951	937	939	950	928	937	953
	0.0	R	29	27	31	30	29	29	31	31
2	38	WSC	950	908	937	941	950	954	937	963
		R	29	29	31	29	29	29	31	30
2	45	WSC	950	955	937	958	950	955	937	940
		R	22	21	22	21	24	25	24	24
9	6	WSC	342	332	342	332	362	372	362	362
		R	16	16	16	16	16	16	16	16
9	16	WSC	477	477	447	447	477	477	447	447
		R	16	16	16	16	16	16	16	16
9	26	WSC	477	477	447	447	477	477	447	447
		R	16	16	16	16	16	16	16	16
9	36	WSC	477	477	461	461	477	477	447	447
		R	16	16	16	16	16	16	16	16
9	45	WSC	477	477	461	447	477	477	461	447
		R	21	21	21	21	21	22	22	23
16	3	WSC	329	329	329	329	329	346	332	349
		W3C	17	17	15	15	17	17	15	15
16	13	WSC	285	285	401	401	285	285	401	401
		R	15	15	15	15	15	15	15	15
16	23	WSC	431	431	401	401	431	431	401	401
		WSC	15	15	15	15	15	15	15	15
16	33	WSC	431	431	401	401	431	431	401	401
			15	15	15		15	15	15	15
16	45	WSC	431	431	401	15 415	431	431	401	401
23	2	R	21	23	21	24	20	27	20	29
		WSC	356	384	356	386	354	458	354	485
23	13	R	16	16	14	14	16	16	14	14
		WSC	409	409	369	355	409	409	355	355
23	24	R	14	14	14	14	14	14	14	14
		WSC	385	385	355	369	385	385	355	355
23	35	R	14	14	14	14	14	14	14	14
		WSC	385	385	355	355	385	385	355	355
23	45	R	14	14	14	14	14	14	14	14
		WSC	385	385	355	355	385	385	369	355
31	2	R	21	21	21	21	21	22	22	23
		WSC	449	449	449	449	449	481	452	484
31	13	R	16	16	14	14	16	16	14	14
		WSC	409	409	355	355	409	409	355	355
31	24	R	14	14	14	14	14	14	14	14
		WSC	385	385	355	355	385	385	355	355
31	35	R	14	14	14	14	14	14	14	14
		WSC	385	385	369	355	385	385	369	355
31	45	R	14	14	14	14	14	14	14	14
-		WSC	385	385	355	355	385	385	355	355

Table 92: Role-set size and WSC value - Dataset Healthcare

	$ \mathcal{R} $				WSC			
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	18	20	20	22	4	5	18	17
$PRUCC_2$	19	17	19	17	6	3	17	16

	$ \mathcal{R} $	WSC
better	3	3
equal	19	18
worse	3	4

Table 93: Minumum values - Dataset Healthcare

${\cal R}$		PRUCC ₁						$PRUCC_2$					
κ	0	1	2	3	4	0	1	2	3	4			
OF	7	0	2	1	15	6	2	3	1	13			
OR	5	1	3	1	15	8	2	2	0	13			
UF	5	0	5	0	15	6	1	4	1	13			
UR	3	0	6	1	15	8	0	3	1	13			

Table 94: Number of times variants reached minumum value for $\mathcal R$ - Dataset Healthcare

WSC		PR	RUCC	C_1		$PRUCC_2$				
WBC	0	1	2	3	4	0	1	2	3	4
OF	21	0	2	0	2	19	2	3	1	0
OR	20	1	2	0	2	22	2	1	0	0
UF	7	5	11	0	2	8	2	14	1	0
UR	8	4	11	0	2	9	3	12	1	0

Table 95: Number of times variants reached minumum value for WSC - Dataset Healthcare

			<i>T</i>	2		WSC				
		OF OR UF UR			UR	OF OR UF			UR	
	$PRUCC_1$	4.5	4.22	4.32	3.96	5.58	5.4	2.9	3.22	
Ì	$PRUCC_2$	4.62	4.84	4.68	4.86	5.68	6.08	3.16	3.98	

Table 96: Heuristics ranking - Dataset Healthcare

${\cal R}$		PRU	JCC_1		$PRUCC_2$				
κ	OF	OR	UF	UR	OF	OR	UF	UR	
Healthcare	4.5	4.22	4.32	3.96	4.62	4.84	4.68	4.86	

Table 97: Heuristics ranking on ${\mathcal R}$ - Dataset Health care

WSC		PRU	CC_1		$PRUCC_2$				
WBC	OF	OR	UF	UR	OF	OR	UF	UR	
Healthcare	5.58	5.4	2.9	3.22	5.68	6.08	3.16	3.98	

Table 98: Heuristics ranking on WSC - Dataset Health care

2.6 Domino

				PRU	CC_1		PRUCC ₂				
mpr	mru		0F	OR	UF	UR	OF	OR	UF	UR	
	405	R	142	144	142	143	141	144	143	143	
2	105	WSC	857	856	857	861	847	859	859	861	
		R	133	136	133	133	133	132	133	136	
2	131	WSC	834	846	840	836	840	835	840	851	
		R	134	136	133	135	133	137	133	136	
2	157	WSC	843	850	840	845	834	846	840	846	
2	183	R	133	136	133	135	133	134	133	136	
2	183	WSC	834	838	840	847	834	841	840	848	
2	208	R	133	138	133	135	133	136	133	136	
1 -	208	WSC	834	847	840	847	840	843	840	845	
52	5	R	28	28	28	28	27	29	27	28	
32	"	WSC	714	714	727	727	674	767	674	727	
52	56	R	24	24	24	25	24	24	24	25	
32	30	WSC	629	607	629	669	615	607	629	629	
52	107	R	24	24	24	25	24	25	24	25	
32	107	WSC	629	621	629	628	629	675	629	629	
52	158	R	24	25	24	25	24	25	24	24	
32	138	WSC	615	667	629	636	615	661	629	622	
52	208	R	24	25	24	25	24	25	24	25	
32	208	WSC	629	620	629	629	615	661	629	662	
102	3	R	25	25	26	26	25	25	26	26	
102		WSC	759	759	774	774	759	759	774	774	
102	54	R	22	22	22	22	22	22	22	22	
102	34	WSC	765	756	765	765	751	742	765	756	
102	105	R	22	22	22	22	22	22	22	22	
102	103	WSC	751	751	765	756	751	742	765	756	
102	156	R	22	22	22	22	22	22	22	22	
102	100	WSC	751	756	765	756	751	742	765	756	
102	208	R	22	22	22	22	22	22	22	22	
102	200	WSC	765	751	765	765	765	756	765	765	
152	2	R	22	22	23	23	23	23	23	23	
102		WSC	754	754	763	763	756	756	763	763	
152	53	R	21	21	21	21	21	21	21	21	
102		WSC	763	749	763	763	749	749	763	763	
152	104	R	21	21	21	21	21	21	21	21	
L		WSC	749	749	763	763	749	749	763	763	
152	155	R	21	21	21	21	21	21	21	21	
L		WSC	749	749	763	763	749	749	763	763	
152	208	R	21	21	21	21	21	21	21	21	
		WSC	749	749	763	763	749	754	763	763	
200	2	R	22	22	23	23	22	23	23	23	
		WSC	754	754	763	763	758	756	763	763	
200	53	R	20	20	20	20	20	20	20	20	
		WSC	747	761	761	761	747	747	761	761	
200	104	R	20	20	20	20	20	20	20	20	
		WSC	747	747	761	761	747	747	761	761	
200	155	R	20	20	20	20	20	20	20	20	
		WSC	761	747	761	761	761	747	761	761	
200	208	R	20	20	20	20	20	20	20	20	
		WSC	761	747	761	761	747	747	761	761	

Table 99: Role-set size and WSC value - Dataset Domino

		1	2		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	24	18	22	14	15	18	1	0	
PRUCC ₂	24	16	21	14	17	16	3	1	

	$ \mathcal{R} $	WSC
better	1	6
equal	21	12
worse	3	7

Table 100: Minumum values - Dataset Domino

$\mathcal R$		PRUCC ₁					$PRUCC_2$					
π	0	1	2	3	4	0	1	2	3	4		
OF	1	0	8	3	13	1	2	7	2	13		
OR	7	0	3	2	13	9	1	1	1	13		
UF	3	1	5	3	13	4	0	6	2	13		
UR	11	0	0	1	13	11	0	0	1	13		

Table 101: Number of times variants reached minumum value for $\mathcal R$ - Dataset Domino

WSC		PR	UC	C_1		PRUCC ₂				
	0	1	2	3	4	0	1	2	3	4
OF	10	6	9	0	0	8	6	10	1	0
OR	7	9	9	0	0	9	8	8	0	0
UF	24	1	0	0	0	22	0	2	1	0
UR	25	0	0	0	0	24	0	0	1	0

Table 102: Number of times variants reached minumum value for WSC - Dataset Domino

		7	2		WSC				
	OF	OF OR UF UR			OF	OR	UF	UR	
$PRUCC_1$	3.7	4.88	4.1	5.2	3.32	3.3	5.6	5.92	
$PRUCC_2$	3.58	5.12	4.06	5.36	2.7	3.58	5.5	6.08	

Table 103: Heuristics ranking - Dataset Domino

$\mathcal R$		PRU	CC_1		$PRUCC_2$				
κ	OF	OR	UF	UR	OF	OR	UF	UR	
Domino	3.7	4.88	4.1	5.2	3.58	5.12	4.06	5.36	

Table 104: Heuristics ranking on ${\mathcal R}$ - Dataset Domino

WSC		PRU	CC_1		PRUCC ₂				
WBC	OF	OR	UF	UR	OF	OR	UF	UR	
Domino	3.32	3.3	5.6	5.92	2.7	3.58	5.5	6.08	

Table 105: Heuristics ranking on WSC - Dataset Domino

2.7 Customer

				PRU	CC_1			PRU	CC_2	
mpr	mru		0F	OR	UF	UR	0F	OR	UF	UR
2	4.0	R	608	598	612	607	622	625	615	638
2	13	WSC	46038	46008	46066	46052	46017	46082	46077	46146
2	16	R	430	421	427	420	430	430	426	420
2	10	WSC	46018	46037	46083	46061	46065	46067	46081	46063
2	19	R	357	358	355	351	360	354	353	355
2	19	WSC	46017	46030	46039	46027	46019	46018	46034	46040
2	22	R	300	300	297	299	301	299	298	299
1 -	22	WSC	45988	45995	46007	46013	45990	45985	46010	46013
2	24	R	290	289	288	288	292	291	288	288
1 2	24	WSC	45979	45982	46002	46002	45982	45984	46002	46002
8	4	R	4305	4362	4305	4373	4377	4476	4382	4479
"	-1	WSC	49793	49958	49791	50040	50627	50970	50655	51059
8	9	R	1401	1495	1410	1503	1452	1562	1464	1575
0	9	WSC	46998	47274	47050	47350	47494	47939	47578	47934
8	14	R	446	441	445	442	447	445	444	443
0	14	WSC	46221	46150	46245	46212	46225	46205	46243	46228
8	19	R	324	326	322	319	325	320	321	320
0	19	WSC	45998	45955	46046	46015	46000	45981	46044	46031
8	24	R	282	284	279	279	282	280	279	279
0	24	WSC	45962	45903	45984	45984	45965	45958	45984	45984
14	2	R	5371	5371	5371	5371	5374	5375	5378	5380
14		WSC	50443	50450	50443	50455	50462	50465	50496	50500
14	7	R	1801	1805	1805	1807	1801	1803	1806	1808
14	'	WSC	48517	48532	48548	48566	48550	48555	48582	48592
14	12	R	501	504	502	505	504	507	504	506
1-4	12	WSC	46340	46376	46378	46398	46328	46376	46421	46426
14	17	R	339	335	334	334	337	340	334	334
14	11	WSC	45987	46033	46068	46068	46052	46024	46089	46081
14	24	R	281	282	278	278	282	281	278	278
1-4	24	WSC	45945	45911	45982	45982	45886	45929	45982	45982
20	2	R	5330	5330	5330	5330	5332	5331	5336	5336
20	_	WSC	50413	50414	50413	50414	50417	50416	50425	50407
20	7	R	1758	1760	1765	1768	1760	1761	1764	1766
20	'	WSC	48490	48495	48520	48527	48502	48505	48516	48521
20	12	R	461	462	462	463	461	462	461	462
		WSC	46258	46325	46350	46353	46312	46310	46348	46351
20	17	R	313	317	310	311	312	314	309	310
		WSC	45962	46006	46045	46048	46012	45958	46043	46046
20	24	R	283	279	278	278	281	281	278	278
		WSC	45878	45958	45982	45982	45953	45952	45982	45982
24	2	R	5324	5324	5324	5323	5326	5324	5331	5328
	_	WSC	50402	50402	50402	50400	50406	50402	50416	50410
24	7	R	1750	1755	1760	1760	1754	1755	1759	1760
		WSC	48435	48470	48511	48511	48458	48470	48507	48509
24	12	R	456	458	457	457	456	456	456	456
		WSC	46304	46306	46341	46341	46315	46249	46339	46339
24	17	R	306	307	305	305	305	306	304	304
		WSC	46003	45989	46036	46036	46013	46013	46034	46034
24	24	R	280	281	277	277	282	283	277	277
		WSC	45948	45936	45980	45980	45952	45956	45980	45980

Table 106: Role-set size and WSC value - Dataset Customer

		$ \mathcal{R} $				WSC			
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	10	4	12	13	16	7	3	1	
$PRUCC_2$	9	4	14	11	12	12	0	2	

	$ \mathcal{R} $	WSC
better	13	19
equal	10	0
worse	2	6

Table 107: Minumum values - Dataset Customer

$\mathcal R$		PR	UC	C_1		$PRUCC_2$				
70	0	1	2	3	4	0	1	2	3	4
OF	15	7	1	0	2	16	6	2	0	1
OR	21	2	0	0	2	21	2	1	0	1
UF	13	2	8	0	2	11	4	9	0	1
UR	12	4	7	0	2	14	2	8	0	1

Table 108: Number of times variants reached minumum value for ${\mathcal R}$ - Dataset Customer

WSC		PRU	UC(C_1		$PRUCC_2$				
WBC	0	1	2	3	4	0	1	2	3	4
OF	9	14	2	0	0	13	11	1	0	0
OR	18	7	0	0	0	13	11	1	0	0
UF	22	1	2	0	0	25	0	0	0	0
UR	24	1	0	0	0	23	2	0	0	0

Table 109: Number of times variants reached minumum value for WSC - Dataset Customer

		<i>T</i>	2		WSC			
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	4.26	4.94	3.6	3.72	1.94	2.66	5.52	5.62
$PRUCC_2$	5.38	5.52	3.84	4.74	3.68	3.64	6.38	6.56

Table 110: Heuristics ranking - Dataset Customer

$\mathcal R$		PRU	CC_1		$PRUCC_2$			
λ	OF	OR	UF	UR	OF	OR	UF	UR
Customer	4.26	4.94	3.6	3.72	5.38	5.52	3.84	4.74

Table 111: Heuristics ranking on ${\mathcal R}$ - Dataset Customer

WSC		PRU	CC_1		PRUCC ₂			
WBC	OF	OR	UF	UR	OF	OR	UF	UR
Customer	1.94	2.66	5.52	5.62	3.68	3.64	6.38	6.56

Table 112: Heuristics ranking on WSC - Dataset Customer

2.8 Firewall 1

				PRU	CC_1			PRU	CC_2	
mpr	mru		0F	OR	UF	UR	OF	OR	UF	UR
2	000	R	417	425	419	418	416	418	419	423
2	309	WSC	18175	18055	18144	18113	18144	18042	18147	18207
2	000	R	401	400	400	398	399	399	399	405
2	386	WSC	18149	17947	18108	18332	18115	18127	18109	18181
2	463	R	399	406	399	397	399	409	399	399
2	463	WSC	18115	18016	18109	17865	18115	18200	18109	17905
2	540	R	401	402	400	401	399	404	399	404
2	340	WSC	18149	17949	18129	18132	18115	18465	18109	18178
2	616	R	399	402	399	403	401	401	400	400
	010	WSC	18115	18197	18106	18399	18152	17909	18108	18142
100	7	R	96	98	101	114	105	119	106	124
100	'	WSC	4440	4642	4455	5768	5382	6719	5236	6974
100	159	R	68	68	71	71	68	68	71	71
100	109	WSC	3305	3305	3279	3279	3305	3305	3282	3279
100	311	R	68	68	71	71	68	68	71	71
100	311	WSC	3305	3300	3279	3287	3305	3305	3282	3287
100	463	R	68	68	71	71	68	68	71	71
100	403	WSC	3305	3305	3287	3282	3300	3305	3279	3279
100	616	R	68	68	71	71	68	68	71	71
100	010	WSC	3305	3305	3282	3282	3300	3305	3279	3279
198	4	R	92	92	93	93	94	95	96	97
150	-4	WSC	6222	6222	6230	6227	6793	6819	6799	6825
198	157	R	66	66	69	69	66	66	69	69
196	137	WSC	3296	3296	3275	3278	3301	3301	3278	3278
198	310	R	66	66	69	69	66	66	69	69
196	310	WSC	3301	3301	3275	3283	3301	3301	3283	3278
198	463	R	66	66	69	69	66	66	69	69
150	403	WSC	3296	3301	3278	3275	3301	3301	3278	3278
198	616	R	66	66	69	69	66	66	69	69
130	010	WSC	3296	3301	3278	3278	3301	3296	3278	3275
296	3	R	88	88	89	89	89	89	90	90
230		WSC	6953	6953	6958	6958	6955	6955	6959	6959
296	156	R	66	66	69	69	66	66	69	69
230	100	WSC	3301	3301	3275	3275	3301	3301	3275	3278
296	309	R	66	66	69	69	66	66	69	69
200		WSC	3296	3301	3275	3275	3301	3301	3275	3275
296	462	R	66	66	69	69	66	66	69	69
200		WSC	3301	3301	3278	3280	3301	3301	3283	3278
296	616	R	66	66	69	69	66	66	69	69
200	010	WSC	3301	3301	3278	3278	3301	3301	3278	3280
394	2	R	90	90	92	93	90	90	91	91
		WSC	7117	7116	7122	7129	7117	7117	7120	7120
394	155	R	65	65	68	68	65	65	68	68
		WSC	3299	3299	3276	3278	3299	3299	3276	3276
394	308	R	65	65	68	68	65	65	68	68
		WSC	3299	3299	3273	3273	3299	3299	3273	3276
394	461	R	65	65	68	68	65	65	68	68
	-71	WSC	3299	3299	3276	3273	3299	3299	3273	3273
394	616	R	65	65	68	68	65	65	68	68
		WSC	3299	3299	3273	3273	3294	3299	3273	3276

Table 113: Role-set size and WSC value - Dataset Firewall 1 $\,$

		$ \mathcal{R} $				WSC			
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	22	19	2	2	3	6	14	12	
$PRUCC_2$	24	19	4	2	3	4	15	12	

	$ \mathcal{R} $	WSC
better	6	11
equal	17	9
worse	2	5

Table 114: Minumum values - Dataset Firewall 1

$\mathcal R$		PF	RUCC	\mathbb{C}_1		PRUCC ₂				
π	0	1	2	3	4	0	1	2	3	4
OF	3	2	20	0	0	1	3	19	2	0
OR	6	0	19	0	0	6	0	18	1	0
UF	23	1	1	0	0	21	0	2	2	0
UR	23	2	0	0	0	23	0	1	1	0

Table 115: Number of times variants reached minumum value for $\mathcal R$ - Dataset Firewall 1

WSC		PR	UC	C_1		PRUCC ₂				
WBC	0	1	2	3	4	0	1	2	3	4
OF	22	1	2	0	0	22	1	2	0	0
OR	19	4	2	0	0	21	2	2	0	0
UF	11	6	8	0	0	10	8	7	0	0
UR	13	4	8	0	0	13	5	7	0	0

Table 116: Number of times variants reached minumum value for WSC - Dataset Firewall 1

		7	2		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	2.62	3.24	5.66	5.76	5.5	5.04	2.88	3.58	
$PRUCC_2$	2.84	3.5	5.86	6.52	5.74	6.02	3.26	3.98	

Table 117: Heuristics ranking - Dataset Firewall 1 $\,$

\mathcal{D}		PRU	CC_1		PRUCC ₂				
κ	OF	OR	UF	UR	OF	OR	UF	UR	
Firewall 1	2.62	3.24	5.66	5.76	2.84	3.5	5.86	6.52	

Table 118: Heuristics ranking on ${\mathcal R}$ - Dataset Firewall 1

WSC		PRU	JCC_1		$PRUCC_2$				
WBC	OF	OR	UF	UR	OF	OR	UF	UR	
Firewall 1	5.5	5.04	2.88	3.58	5.74	6.02	3.26	3.98	

Table 119: Heuristics ranking on WSC - Dataset Firewall 1

2.9 Firewall 2

				PRU	CC ₁			PRU	CC ₂	
mpr	mru		0F	OR	UF	UR	OF	OR	UF	UR
2	295	R	298	307	298	298	298	310	298	298
2	295	WSC	19233	19266	19233	19233	19233	19277	19233	19233
2	368	R	297	305	297	297	297	307	297	297
4	308	WSC	19321	19721	19321	19321	19321	19821	19321	19321
2	441	R	297	303	297	297	297	307	297	297
	441	WSC	19321	19621	19321	19321	19321	19821	19321	19321
2	514	R	297	305	297	297	297	305	297	297
	011	WSC	19321	19721	19321	19321	19321	19721	19321	19321
2	589	R	297	303	297	297	297	305	297	297
	000	WSC	19321	19621	19321	19321	19321	19721	19321	19321
78	8	R	17	17	17	17	19	19	19	19
	_	WSC	1589	1589	1611	1611	1747	1747	1769	1769
78	153	R	16	16	16	16	16	16	16	16
		WSC	1863	1863	1885	1885	1863	1863	1885	1885
78	298	R	16	16	16	16	16	16	16	16
		WSC	1863	1863	1885	1885	1863	1863	1885	1885
78	443	R	16	16	16	16	16	16	16	16
		WSC	1863	1863	1885	1885	1863	1863	1885	1885
78	589	R	16 1863	16 1863	16 1885	16	16	16 1863	16 1885	16 1885
		WSC				1885	1863			
154	4	R	15 1522	15 1522	14	$\frac{14}{1450}$	15	15	16 1630	16
		WSC R	1522	1522	1450 12	1450	1663 12	1663	1630	1630 12
154	150	WSC	1649	1649	1671	1671	1649	1649	1671	1671
		R	1049	1049	1071	1071	1049	1049	1071	1071
154	296	WSC	1649	1649	1671	1671	1649	1649	1671	1671
		R	1049	1049	12	12	1049	1049	12	12
154	442	WSC	1649	1649	1671	1671	1649	1649	1671	1671
		R	12	12	12	12	12	12	12	12
154	589	WSC	1649	1649	1671	1671	1649	1649	1671	1671
		R	13	13	13	13	15	15	15	15
230	3	WSC	1371	1371	1371	1371	1616	1616	1616	1616
		R	12	12	12	12	12	12	12	12
230	149	WSC	1649	1649	1671	1671	1649	1649	1671	1671
230	005	R	12	12	12	12	12	12	12	12
230	295	WSC	1649	1649	1671	1671	1649	1649	1671	1671
230	441	R	12	12	12	12	12	12	12	12
230	441	WSC	1649	1649	1671	1671	1649	1649	1671	1671
230	589	R	12	12	12	12	12	12	12	12
230	369	WSC	1649	1649	1671	1671	1649	1649	1671	1671
306	2	R	12	12	12	12	12	12	12	12
		WSC	1541	1541	1541	1541	1552	1552	1552	1552
306	149	R	10	10	10	10	10	10	10	10
		WSC	1542	1542	1564	1564	1542	1542	1564	1564
306	296	R	10	10	10	10	10	10	10	10
		WSC	1542	1542	1564	1564	1542	1542	1564	1564
306	443	R	10	10	10	10	10	10	10	10
		WSC	1542	1542	1564	1564	1542	1542	1564	1564
306	589	R	10 1542	10 1542	10	10 1564	10 1542	10 1542	10 1564	10 1564
		WSC	1542	1542	1564	1504	1542	1542	1504	1004

Table 120: Role-set size and WSC value - Dataset Firewall 2 $\,$

	$ \mathcal{R} $					W	\overline{SC}	
	OF	OR	UF	UR	OF	OR	UF	UR
$PRUCC_1$	24	19	25	25	24	19	8	8
PRUCC ₂	25	20	24	24	24	19	8	8

	$ \mathcal{R} $	WSC
better	3	4
equal	22	21
worse	0	0

Table 121: Minumum values - Dataset Firewall 2

$\mathcal R$		PΙ	RUC	CC_1		$PRUCC_2$				
κ	0	1	2	3	4	0	1	2	3	4
OF	1	0	0	5	19	0	0	1	5	19
OR	6	0	0	0	19	5	0	1	0	19
UF	0	0	1	5	19	1	0	0	5	19
UR	0	0	1	5	19	1	0	0	5	19

Table 122: Number of times variants reached minumum value for $\mathcal R$ - Dataset Firewall 2

WSC		PR	RUCC	C_1		$PRUCC_2$				
WBC	0	1	2	3	4	0	1	2	3	4
OF	1	0	17	5	2	1	0	17	5	2
OR	6	0	17	0	2	6	0	17	0	2
UF	17	0	1	5	2	17	0	1	5	2
UR	17	0	1	5	2	17	0	1	5	2

Table 123: Number of times variants reached minumum value for WSC - Dataset Firewall 2

		7	2		WSC				
	OF	OR	UF	UR	OF	OR	UF	UR	
$PRUCC_1$	4.14	4.86	4.02	4.02	2.7	3.42	5.26	5.26	
$PRUCC_2$	4.46	5.34	4.58	4.58	3.34	4.22	5.9	5.9	

Table 124: Heuristics ranking - Dataset Firewall 2

${\cal R}$		PRU	CC_1		PRUCC ₂			
<i>/</i> C	OF	OR	UF	UR	OF	OR	UF	UR
Firewall 2	4.14	4.86	4.02	4.02	4.46	5.34	4.58	4.58

Table 125: Heuristics ranking on ${\mathcal R}$ - Dataset Firewall 2

WSC		PRU	JCC_1		$PRUCC_2$			
WBC	OF	OR	UF	UR	OF	OR	UF	UR
Firewall 2	2.7	3.42	5.26	5.26	3.34	4.22	5.9	5.9

Table 126: Heuristics ranking on WSC - Dataset Firewall 2

3 Synthetic Datasets

3.1 Constant nu/nr, varying permissions, and $mpr = np \cdot nr/nu$

Set 1	nr	nu	np	mru	mpr
d1	20	200	40	4	4
d2	40	400	80	4	8
d3	80	800	160	4	16
d4	100	1000	200	4	20

Figure 1: Role-set Size (left) - WSC (right)

Figure 2: Similarity (left) - Accuracy (right)

D	ataset		PRU	CC_1			PRU	CC_2	
Di			OR	UF	UR	OF	OR	UF	UR
	$ \mathcal{R} $	91	82	152	174	96	86	150	167
Data1	WSC	890	837	1123	1210	909	856	1130	1195
Datai	accuracy	77%	81%	73%	56%	76%	82%	66%	56%
	similarity	76%	77%	73%	68%	76%	76%	72%	68%
	$ \mathcal{R} $	229	305	451	452	235	317	474	495
Data2	WSC	2636	3180	3976	3912	2690	3282	4295	4412
Dataz	accuracy	75%	65%	57%	64%	75%	65%	43%	38%
	similarity	75%	69%	71%	69%	74%	69%	68%	64%
	$ \mathcal{R} $	535	480	1082	1074	555	484	1129	1121
Data3	WSC	9085	8198	15399	15015	9376	8287	16421	16113
Datas	accuracy	74%	78%	65%	63%	73%	78%	38%	38%
	similarity	72%	71%	70%	68%	72%	71%	67%	65%
	$ \mathcal{R} $	674	781	1379	1371	683	797	1435	1429
Data4	WSC	13274	15080	23398	23143	13466	15402	24807	24598
Data4	accuracy	75%	69%	65%	66%	75%	69%	40%	41%
	similarity	72%	69%	70%	68%	72%	68%	67%	66%

3.2 Constant nu/nr and np/nr, mru=nr/10, mpr=5, and $mru\cdot mpr=np/4$

Set 2	nr	nu	np	mru	mpr
d1	20	200	40	2	5
d2	40	400	80	4	5
d3	80	800	160	8	5
d4	100	1000	200	10	5

Figure 3: Role-set Size (left) - WSC (right)

Figure 4: Similarity (left) - Accuracy (right)

De	ataset		PRU	CC_1			PRU	CC_2	
Do	ataset	OF	OR	UF	UR	OF	OR	UF	UR
	$ \mathcal{R} $	58	59	86	92	60	64	96	109
Data1	WSC	571	574	695	717	582	596	757	810
Datai	accuracy	90%	86%	86%	82%	87%	83%	73%	65%
	similarity	86%	84%	82%	81%	85%	83%	80%	76%
	$ \mathcal{R} $	209	238	384	479	226	256	366	470
Data2	WSC	2059	2196	2852	3356	2154	2299	2821	3379
Data2	accuracy	80%	74%	62%	55%	78%	74%	57%	49%
	similarity	76%	72%	72%	67%	75%	72%	71%	65%
	$ \mathcal{R} $	729	814	1402	1699	779	863	1342	1595
Data3	WSC	7543	8036	10887	12459	7837	8326	10740	12085
Datas	accuracy	75%	73%	45%	40%	75%	73%	49%	45%
	similarity	70%	66%	62%	56%	69%	65%	63%	57%
	$ \mathcal{R} $	1045	1281	2049	2470	1099	1348	1949	2352
Data4	WSC	11214	12465	16225	18516	11552	12879	15918	18088
Data4	accuracy	77%	74%	48%	40%	77%	73%	52%	45%
	similarity	69%	64%	62%	55%	68%	64%	63%	56%

3.3 Constant nu/nr and np/nr, mru = nr/10, mru = 5, and $mru \cdot mpr = np/4$

Set 3	nr	nu	np	mru	mpr
d1	20	200	40	5	2
d2	40	400	80	5	4
d3	80	800	160	5	8
d4	100	1000	200	5	10

Figure 5: Role-set Size (left) - WSC (right)

Figure 6: Similarity (left) - Accuracy (right)

D	ataset		PRU	JCC ₁			PRU	CC_2	
D.	ataset	OF	OR	UF	UR	OF	OR	UF	UR
	$ \mathcal{R} $	40	48	63	62	43	51	65	67
Data1	WSC	741	773	832	822	749	785	832	834
Datai	accuracy	96%	92%	88%	91%	97%	92%	86%	86%
	similarity	86%	82%	78%	79%	86%	82%	77%	77%
	$ \mathcal{R} $	223	276	365	467	232	293	366	454
Data2	WSC	2180	2428	2744	3209	2226	2510	2788	3174
Data2	accuracy	78%	71%	69%	51%	79%	73%	64%	51%
	similarity	74%	70%	72%	65%	74%	70%	70%	65%
	$ \mathcal{R} $	538	643	1214	1303	555	667	1142	1235
Data3	WSC	6394	7180	11112	11661	6554	7390	10879	11471
Datas	accuracy	78%	73%	44%	41%	78%	72%	46%	41%
	similarity	72%	68%	65%	61%	72%	67%	66%	61%
	$ \mathcal{R} $	762	813	1564	1576	773	840	1525	1551
Data4	WSC	9892	10329	16325	16196	10041	10616	16554	16619
Data4	accuracy	76%	72%	50%	49%	76%	72%	45%	41%
	similarity	71%	67%	66%	63%	71%	67%	66%	61%

3.4 Constant number of ratio users/roles and varying permissions

Set 4	nr	nu	np	mru	mpr
d1	100	2000	100	3	10
d2	100	2000	500	3	50
d3	100	2000	1000	3	100
d4	100	2000	2000	3	200

Figure 7: Role-set Size (left) - WSC (right)

Figure 8: Similarity (left) - Accuracy (right)

Dataset		$PRUCC_1$				$PRUCC_2$				
		OF	OR	UF	UR	OF	OR	UF	UR	
d1	$ \mathcal{R} $	1429	1472	1760	1799	1552	1601	1990	2100	
	WSC	16217	16304	18301	18150	17549	17675	21201	21673	
	accuracy	68%	68%	91%	90%	60%	60%	54%	52%	
	similarity	73%	72%	77%	75%	72%	70%	71%	69%	
	$ \mathcal{R} $	481	516	2134	2206	484	521	2218	2318	
d2	WSC	21505	22865	79968	82357	21684	23100	84233	87679	
uz	accuracy	90%	89%	75%	75%	90%	89%	43%	41%	
	similarity	77%	75%	73%	71%	77%	75%	72%	69%	
	$ \mathcal{R} $	301	323	2157	2197	302	324	2224	2278	
d3	WSC	24521	26448	154306	157379	24592	26478	159685	163975	
us	accuracy	94%	94%	73%	73%	94%	94%	37%	34%	
	similarity	83%	79%	74%	71%	83%	79%	72%	70%	
d4	$ \mathcal{R} $	231	176	2195	2266	231	177	2253	2344	
	WSC	34167	25652	306028	317055	34187	25793	313653	329474	
	accuracy	96%	98%	72%	70%	96%	98%	28%	26%	
	similarity	88%	93%	73%	71%	88%	93%	72%	69%	

3.5 Constant number of the ratio permissions/roles and varying users

Set 5	nr	nu	np	mru	mpr
d1	200	500	1500	3	150
d2	200	1000	1500	3	150
d3	200	3000	1500	3	150
d4	200	5000	1500	3	150

Figure 9: Role-set Size (left) - WSC (right)

Figure 10: Similarity (left) - Accuracy (right)

Dataset		$PRUCC_1$				$PRUCC_2$				
	Dataset		OR	UF	UR	OF	OR	UF	UR	
d1	$ \mathcal{R} $	504	507	680	690	505	506	663	678	
	WSC	49416	49078	64223	65356	48910	48238	61975	63335	
	accuracy	59%	59%	40%	42%	60%	60%	35%	35%	
	similarity	75%	75%	69%	69%	76%	77%	72%	71%	
	$ \mathcal{R} $	747	789	1329	1279	747	776	1347	1282	
d2	WSC	77011	82368	135580	128726	76745	80718	135690	127313	
	accuracy	74%	71%	61%	60%	74%	72%	39%	37%	
	similarity	76%	74%	72%	71%	76%	75%	72%	71%	
	$ \mathcal{R} $	673	861	3515	3501	674	863	3582	3561	
d3	WSC	75310	97433	372589	371760	75510	97689	379924	378051	
us	accuracy	93%	89%	76%	76%	93%	89%	46%	48%	
	similarity	80%	75%	72%	72%	80%	75%	72%	71%	
d4	$ \mathcal{R} $	826	864	5595	5651	827	817	5708	5767	
	WSC	97991	101500	598720	603666	98142	96238	613283	618525	
	accuracy	94%	94%	78%	77%	94%	94%	44%	47%	
	similarity	79%	79%	72%	71%	79%	79%	71%	70%	

3.6 Constant number of permissions and varying ratio users/roles

Set 6	nr	nu	np	mru	mpr
d1	10	100	1500	3	150
d2	50	500	1500	3	150
d3	100	1000	1500	3	150
d4	500	5000	1500	3	150

Figure 11: Role-set Size (left) - WSC (right)

Figure 12: Similarity (left) - Accuracy (right)

Dataset		$PRUCC_1$				$PRUCC_2$				
1	Dataset	OF	OR	UF	UR	OF	OR	UF	UR	
d1	$ \mathcal{R} $	11	13	84	94	11	13	88	100	
	WSC	1097	1458	7627	9158	1097	1458	8285	9863	
	accuracy	90%	90%	50%	50%	90%	90%	30%	20%	
	similarity	99%	95%	78%	72%	99%	95%	77%	69%	
	$ \mathcal{R} $	77	110	585	573	77	110	591	585	
d2	WSC	7948	11519	59503	58094	7965	11550	59585	58783	
	accuracy	98%	94%	57%	62%	98%	94%	26%	30%	
	similarity	92%	88%	75%	71%	92%	88%	74%	70%	
	$ \mathcal{R} $	271	241	1194	1195	267	241	1213	1218	
d3	WSC	28931	26181	123709	124840	28400	26183	124875	126057	
u ₃	accuracy	92%	94%	64%	67%	92%	94%	32%	33%	
	similarity	83%	85%	73%	71%	83%	85%	72%	70%	
d4	$ \mathcal{R} $	2839	3047	5974	6092	2800	3035	6022	6146	
	WSC	312202	338525	626903	646308	308120	337470	633122	652863	
	accuracy	78%	77%	80%	80%	78%	77%	63%	63%	
	similarity	73%	73%	73%	72%	73%	73%	73%	72%	