Problem 1: Define a sequence $\{a_n\}_{n=1}^{\infty}$ by $a_1 = \sqrt{2}$ and $a_n = \sqrt{2a_{n-1}}$ for all n > 1. Determine $\lim_{n \to \infty} a_n$.

Let's write out some of the initial terms, so that we can visualize the sequence.

$$a_1 = \sqrt{2}$$

$$a_2 = \sqrt{2\sqrt{2}}$$

$$a_3 = \sqrt{2\sqrt{2\sqrt{2}}}$$

Let $L = \lim_{n \to \infty} a_n$.

We can write the equation $L = \sqrt{2L}$.

Solving for L we get,

$$L^2 = 2L \implies L(L-2) = 0 \implies L = \{0, 2\}$$

There are only two possible solutions to the equation $L = \sqrt{2L}$, so L must be either 0 or 2.

We can rule out 0 as a possibility, since $\frac{a_{n+1}}{a_n} > 1$ for all positive integers n.

Therefore
$$\lim_{n\to\infty} a_n = 2$$
.