Seetapun's Theorem revisited

Yang Yue

Department of Mathematics National University of Singapore

January 28, 2016

Definition

For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey, 1930)

Suppose $f: [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$. Then there is an infinite set $H \subseteq \mathbb{N}$ such that f is a constant on $[H]^n$.

This version is denoted by RT_k^n .

Definition

For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey, 1930)

Suppose $f : [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$. Then there is an infinite set $H \subseteq \mathbb{N}$ such that f is a constant on $[H]^n$.

This version is denoted by RT_k^n .

Definition

For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey, 1930)

Suppose $f : [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$. Then there is an infinite set $H \subseteq \mathbb{N}$ such that f is a constant on $[H]^n$.

This version is denoted by RT_k^n .

Definition

For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey, 1930)

Suppose $f: [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$. Then there is an infinite set $H \subseteq \mathbb{N}$ such that f is a constant on $[H]^n$.

This version is denoted by RT_k^n .

Goal(s) of Reverse Mathematics

- Goal: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?
- Other motivations: Analyze the relative strength of mathematical theorems; and
- discover new proofs and insights.

Goal(s) of Reverse Mathematics

- Goal: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?
- Other motivations: Analyze the relative strength of mathematical theorems; and
- discover new proofs and insights.

Goal(s) of Reverse Mathematics

- Goal: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?
- Other motivations: Analyze the relative strength of mathematical theorems; and
- discover new proofs and insights.

- ▶ We use subsystems of second order arithmetic \mathbb{Z}_2 .
- ▶ Today we only look at
 - ▶ RCA₀: $PA^- + \Sigma_1$ -induction and Δ_0 -comprehension;
 - WKL₀: RCA₀ and every infinite binary tree has an infinite path;
 - ▶ ACA₀: RCA₀ and arithmetical comprehension: for φ arithmetic, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- (Subsystems in first order arithmetic has also been used, $I\Sigma_1 < B\Sigma_2 < I\Sigma_2 < \cdots$.)

- ▶ We use subsystems of second order arithmetic \mathbb{Z}_2 .
- Today we only look at
 - ► RCA₀: $PA^- + \Sigma_1$ -induction and Δ_0 -comprehension;
 - WKL₀: RCA₀ and every infinite binary tree has an infinite path;
 - ▶ ACA₀: RCA₀ and arithmetical comprehension: for φ arithmetic, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- (Subsystems in first order arithmetic has also been used, $I\Sigma_1 < B\Sigma_2 < I\Sigma_2 < \cdots$.)

- ▶ We use subsystems of second order arithmetic \mathbb{Z}_2 .
- Today we only look at
 - ▶ RCA₀: $PA^- + \Sigma_1$ -induction and Δ_0 -comprehension;
 - WKL₀: RCA₀ and every infinite binary tree has an infinite path;
 - ▶ ACA₀: RCA₀ and arithmetical comprehension: for φ arithmetic, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- (Subsystems in first order arithmetic has also been used, $I\Sigma_1 < B\Sigma_2 < I\Sigma_2 < \cdots$.)

- ▶ We use subsystems of second order arithmetic \mathbb{Z}_2 .
- Today we only look at
 - ▶ RCA₀: $PA^- + \Sigma_1$ -induction and Δ_0 -comprehension;
 - WKL₀: RCA₀ and every infinite binary tree has an infinite path;
 - ACA₀: RCA₀ and arithmetical comprehension: for φ arithmetic, ∃X∀n(n ∈ X ↔ φ(n)).
- (Subsystems in first order arithmetic has also been used, $I\Sigma_1 < B\Sigma_2 < I\Sigma_2 < \cdots$.)

- ▶ We use subsystems of second order arithmetic \mathbb{Z}_2 .
- Today we only look at
 - ▶ RCA₀: $PA^- + \Sigma_1$ -induction and Δ_0 -comprehension;
 - WKL₀: RCA₀ and every infinite binary tree has an infinite path;
 - ACA₀: RCA₀ and arithmetical comprehension: for φ arithmetic, ∃X∀n(n ∈ X ↔ φ(n)).
- (Subsystems in first order arithmetic has also been used, $I\Sigma_1 < B\Sigma_2 < I\Sigma_2 < \cdots$.)

Models

Models are often specified by their second order part:

- ▶ RCA₀: A Turing ideal.
- WKL₀: Scott sets, models can be subcollections of low sets.
- ► ACA₀: Jump idea.

Models

Models are often specified by their second order part:

- ▶ RCA₀: A Turing ideal.
- WKL₀: Scott sets, models can be subcollections of low sets.
- ► ACA₀: Jump idea.

Models

Models are often specified by their second order part:

- ▶ RCA₀: A Turing ideal.
- WKL₀: Scott sets, models can be subcollections of low sets.
- ▶ ACA₀: Jump idea.

Back to Ramsey Theorem

- Since 1972, recursion theorists have been studying the "effective" content of Ramsey's Theorem.
- ▶ Basic Question: Suppose $f : [\mathbb{N}]^n \to \{0, ..., k-1\}$ is recursive. What can we say about the complexity of infinite f-homogeneous sets H?
- Effective studies and reverse mathematics are related.

Back to Ramsey Theorem

- Since 1972, recursion theorists have been studying the "effective" content of Ramsey's Theorem.
- ▶ Basic Question: Suppose $f : [\mathbb{N}]^n \to \{0, ..., k-1\}$ is recursive. What can we say about the complexity of infinite f-homogeneous sets H?
- Effective studies and reverse mathematics are related.

Back to Ramsey Theorem

- Since 1972, recursion theorists have been studying the "effective" content of Ramsey's Theorem.
- ▶ Basic Question: Suppose $f : [\mathbb{N}]^n \to \{0, ..., k-1\}$ is recursive. What can we say about the complexity of infinite f-homogeneous sets H?
- Effective studies and reverse mathematics are related.

Jockusch's results (phrased in reverse math)

Theorem (1972)

- 1. $ACA_0 \vdash RT_k^n$.
- 2. $RCA_0 + RT_2^3$ implies ACA_0 .
- 3. WKL₀ does not imply RT_2^2 .

Jockusch's results (phrased in reverse math)

Theorem (1972)

- 1. $ACA_0 \vdash RT_k^n$.
- 2. $RCA_0 + RT_2^3$ implies ACA_0 .
- 3. WKL₀ does not imply RT_2^2 .

Jockusch's results (phrased in reverse math)

Theorem (1972)

- 1. $ACA_0 \vdash RT_k^n$.
- 2. $RCA_0 + RT_2^3$ implies ACA_0 .
- 3. WKL₀ does not imply RT₂².

Theorem (Seetapun and Slaman, 1995) RT₂² is strictly weaker than ACA₀.

It revived the area after more than 20 years silence.

Basic idea: (1) avoiding the upper cone; and (2) iterate.

Theorem (Seetapun and Slaman, 1995) RT₂ is strictly weaker than ACA₀.

It revived the area after more than 20 years silence.

Basic idea: (1) avoiding the upper cone; and (2) iterate.

Theorem (Seetapun and Slaman, 1995)

 RT_2^2 is strictly weaker than ACA_0 .

It revived the area after more than 20 years silence.

Basic idea: (1) avoiding the upper cone; and (2) iterate.

Theorem (Seetapun and Slaman, 1995)

 RT_2^2 is strictly weaker than ACA_0 .

It revived the area after more than 20 years silence.

Basic idea: (1) avoiding the upper cone; and (2) iterate.

Proposition

Given C nonrecursive, there is a nonrecursive set $A \geq_T C$.

Proof (Sketch)

It is easy to make A nonrecursive.

We use Cohen forcing to satisfy requirements $\Phi_e^A \neq C$ for all $e \in \omega$.

Given an initial segment p, ask if there are extensions q_1 and q_2 of p such that for some x,

$$\Phi_e^{q_1}(x) \downarrow \neq \Phi_e^{q_2}(x) \downarrow$$
.

(I will loosely call such q_1 and q_2 an e-split or simply a split.)

Proposition

Given C nonrecursive, there is a nonrecursive set $A \geq_T C$.

Proof (Sketch) It is easy to make *A* nonrecursive.

We use Cohen forcing to satisfy requirements $\Phi_e^A \neq C$ for all $e \in \omega$.

Given an initial segment p, ask if there are extensions q_1 and q_2 of p such that for some x,

$$\Phi_e^{q_1}(x) \downarrow \neq \Phi_e^{q_2}(x) \downarrow$$
.

(I will loosely call such q_1 and q_2 an e-split or simply a split.)

Proposition

Given C nonrecursive, there is a nonrecursive set $A \geq_T C$.

Proof (Sketch) It is easy to make *A* nonrecursive.

We use Cohen forcing to satisfy requirements $\Phi_e^A \neq C$ for all $e \in \omega$.

Given an initial segment p, ask if there are extensions q_1 and q_2 of p such that for some x,

$$\Phi_e^{q_1}(x)\downarrow \neq \Phi_e^{q_2}(x)\downarrow$$
.

(I will loosely call such q_1 and q_2 an e-split or simply a split.)

Proposition

Given C nonrecursive, there is a nonrecursive set $A \not\geq_T C$.

Proof (Sketch)

It is easy to make A nonrecursive.

We use Cohen forcing to satisfy requirements $\Phi_e^A \neq C$ for all $e \in \omega$.

Given an initial segment p, ask if there are extensions q_1 and q_2 of p such that for some x,

$$\Phi_e^{q_1}(x)\downarrow\neq\Phi_e^{q_2}(x)\downarrow$$
.

(I will loosely call such q_1 and q_2 an *e-split* or simply a split.)

Proposition

Given C nonrecursive, there is a nonrecursive set $A \geq_T C$.

Proof (Sketch)

It is easy to make A nonrecursive.

We use Cohen forcing to satisfy requirements $\Phi_e^A \neq C$ for all $e \in \omega$.

Given an initial segment p, ask if there are extensions q_1 and q_2 of p such that for some x,

$$\Phi_e^{q_1}(x)\downarrow\neq\Phi_e^{q_2}(x)\downarrow$$
.

(I will loosely call such q_1 and q_2 an *e-split* or simply a split.)

Proposition

Given C nonrecursive, there is a nonrecursive set $A \geq_T C$.

Proof (Sketch)

It is easy to make A nonrecursive.

We use Cohen forcing to satisfy requirements $\Phi_e^A \neq C$ for all $e \in \omega$.

Given an initial segment p, ask if there are extensions q_1 and q_2 of p such that for some x,

$$\Phi_e^{q_1}(x)\downarrow\neq\Phi_e^{q_2}(x)\downarrow$$
.

(I will loosely call such q_1 and q_2 an e-split or simply a split.)

Proof (conti.)

Case 1: There is a split.

Then one of the values $\Phi_e^{q_1}(x)$ and $\Phi_e^{q_2}(x)$ must disagree with C(x), choose the extension which give the disagreement.

Case 2: There is no split.

Then if Φ_e^A is total and $p \subset A$ then Φ_e^A is recursive. Φ_e^A cannot compute the nonrecursive set C.

Proof (conti.)

Case 1: There is a split.

Then one of the values $\Phi_e^{q_1}(x)$ and $\Phi_e^{q_2}(x)$ must disagree with C(x), choose the extension which give the disagreement.

Case 2: There is no split.

Then if Φ_e^A is total and $p \subset A$ then Φ_e^A is recursive. Φ_e^A cannot compute the nonrecursive set C.

A Useful Decomposition

Theorem (Cholak, Jockusch and Slaman, 2001)

$$\mathsf{RT}_2^2 = \mathsf{COH} + \mathsf{SRT}_2^2.$$

- This decomposition turns out to be extremely useful.
- ► Thus, we can (iteratively) add a solution to COH and then a solution to SRT₂, instead of adding a solution to RT₂.
- ► (Other combinatorial principles weaker than RT₂² can often be decomposed in a similar fashion.)

A Useful Decomposition

Theorem (Cholak, Jockusch and Slaman, 2001)

$$\mathsf{RT}_2^2 = \mathsf{COH} + \mathsf{SRT}_2^2.$$

- This decomposition turns out to be extremely useful.
- ► Thus, we can (iteratively) add a solution to COH and then a solution to SRT₂, instead of adding a solution to RT₂.
- ► (Other combinatorial principles weaker than RT₂ can often be decomposed in a similar fashion.)

A Useful Decomposition

Theorem (Cholak, Jockusch and Slaman, 2001)

$$\mathsf{RT}_2^2 = \mathsf{COH} + \mathsf{SRT}_2^2.$$

- This decomposition turns out to be extremely useful.
- ► Thus, we can (iteratively) add a solution to COH and then a solution to SRT₂, instead of adding a solution to RT₂.
- ► (Other combinatorial principles weaker than RT₂ can often be decomposed in a similar fashion.)

A Useful Decomposition

Theorem (Cholak, Jockusch and Slaman, 2001)

$$\mathsf{RT}_2^2 = \mathsf{COH} + \mathsf{SRT}_2^2.$$

- This decomposition turns out to be extremely useful.
- ► Thus, we can (iteratively) add a solution to COH and then a solution to SRT₂, instead of adding a solution to RT₂.
- ► (Other combinatorial principles weaker than RT₂ can often be decomposed in a similar fashion.)

- ▶ Let R be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set G is said to be R-cohesive if for all s, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.
- ► The cohesive principle COH states that for every *R*, there is an infinite *G* that is *R*-cohesive.
- We say that a coloring f for pairs is stable, if for all x,

$$\lim_{y\to\infty}f(x,y)$$

exists

► SRT² states that every *stable* coloring of pairs has a solution.

- ▶ Let R be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set G is said to be R-cohesive if for all s, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.
- ► The cohesive principle COH states that for every *R*, there is an infinite *G* that is *R*-cohesive.
- We say that a coloring f for pairs is stable, if for all x,

$$\lim_{y\to\infty}f(x,y)$$

exists

SRT² states that every *stable* coloring of pairs has a solution.

- ▶ Let R be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set G is said to be R-cohesive if for all s, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.
- ► The cohesive principle COH states that for every *R*, there is an infinite *G* that is *R*-cohesive.
- We say that a coloring f for pairs is stable, if for all x,

$$\lim_{y\to\infty}f(x,y)$$

exists.

SRT² states that every *stable* coloring of pairs has a solution.

- ▶ Let R be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set G is said to be R-cohesive if for all s, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.
- ► The cohesive principle COH states that for every *R*, there is an infinite *G* that is *R*-cohesive.
- We say that a coloring f for pairs is stable, if for all x,

$$\lim_{y\to\infty}f(x,y)$$

exists.

SRT² states that every *stable* coloring of pairs has a solution.

An Equivalent Decomposition

- ▶ A stable coloring naturally induces a partition of ω into two Δ_2^0 sets.
- Let D_2^2 be the statement: Every Δ_2^0 set contains an infinite subsets either as a subset or as a subset of its complement.
- ► $RT_2^2 = D_2^2 + COH$.

An Equivalent Decomposition

- ▶ A stable coloring naturally induces a partition of ω into two Δ_2^0 sets.
- Let D_2^2 be the statement: Every Δ_2^0 set contains an infinite subsets either as a subset or as a subset of its complement.
- ► $RT_2^2 = D_2^2 + COH$.

An Equivalent Decomposition

- ▶ A stable coloring naturally induces a partition of ω into two Δ_2^0 sets.
- Let D_2^2 be the statement: Every Δ_2^0 set contains an infinite subsets either as a subset or as a subset of its complement.
- ▶ $RT_2^2 = D_2^2 + COH$.

COH and cone avoiding

The following is a weaker version of Jockusch and Stephan (1993)

Theorem

Let R be a recursive set and C nonrecursive. Then there is an R-cohesive set G with $C \not\leq_T G$.

We use (effective) Mathias forcing.

- ▶ The conditions are pairs (σ, X) where σ is a finite set, X is an infinite set and max $\sigma < \min X$.
- ▶ $(\tau, Y) \le (\sigma, X)$ if $\tau \supseteq \sigma$, $Y \subseteq X$ and $\tau \setminus \sigma \subset X$.

We say the forcing is recursive if the sets *X* in the definition are recursive.

COH and cone avoiding

The following is a weaker version of Jockusch and Stephan (1993)

Theorem

Let R be a recursive set and C nonrecursive. Then there is an R-cohesive set G with $C \leq_T G$.

We use (effective) Mathias forcing.

- ▶ The conditions are pairs (σ, X) where σ is a finite set, X is an infinite set and $\max \sigma < \min X$.
- ▶ $(\tau, Y) \le (\sigma, X)$ if $\tau \supseteq \sigma$, $Y \subseteq X$ and $\tau \setminus \sigma \subset X$.

We say the forcing is recursive if the sets X in the definition are recursive.

Fix R and C. The set $D_s = \{(\sigma, X) : X \subset R^s \lor X \subset (\overline{R}^s)\}$ is dense. That settles R-cohesiveness.

Use the same split finding trick to do cone avoiding (just extend σ as in the classical case).

Fix R and C. The set $D_s = \{(\sigma, X) : X \subset R^s \lor X \subset (\overline{R}^s)\}$ is dense. That settles R-cohesiveness.

Use the same split finding trick to do cone avoiding (just extend σ as in the classical case).

D_2^2 and cone avoiding

The following is a weaker version of Seetapun and Slaman (1995)

Theorem

Let D be a Δ_2^0 set and C be a nonrecursive set. Then there is an infinite set H such that either $H \subset D$ or $H \subset \overline{D}$ with $C \not\leq_T H$.

Main difficulty: When we find a split, it may involve both element in D and \overline{D} .

Q: Is there a way to find "D-safe" splits?

D_2^2 and cone avoiding

The following is a weaker version of Seetapun and Slaman (1995)

Theorem

Let D be a Δ_2^0 set and C be a nonrecursive set. Then there is an infinite set H such that either $H \subset D$ or $H \subset \overline{D}$ with $C \not\leq_T H$.

Main difficulty: When we find a split, it may involve both element in D and \overline{D} .

Q: Is there a way to find "D-safe" splits?

D_2^2 and cone avoiding

The following is a weaker version of Seetapun and Slaman (1995)

Theorem

Let D be a Δ_2^0 set and C be a nonrecursive set. Then there is an infinite set H such that either $H \subset D$ or $H \subset \overline{D}$ with $C \not\leq_T H$.

Main difficulty: When we find a split, it may involve both element in D and \overline{D} .

Q: Is there a way to find "D-safe" splits?

- ▶ A sequence of *blobs* is just a recursive sequence of finite sets \vec{o} such that for each s less than the length of the sequence, max $o_s < \min o_{s+1}$.
- Let \vec{o} be a finite sequence of blobs, say of length h. Consider the set T of all choice functions σ with domain h such that $\sigma(s) \in o_s$. T can be viewed naturally as a tree, called the *Seetapun tree* associated with \vec{o} .
- ► For a Σ_1^0 -formula $\psi(G)$, we will search for blobs o such that $\psi(o)$ holds.
- ► For example, for cone avoiding, we are looking for a finite set o having a split $q_1, q_2 \subset o$.

- ▶ A sequence of *blobs* is just a recursive sequence of finite sets \vec{o} such that for each s less than the length of the sequence, max $o_s < \min o_{s+1}$.
- Let \vec{o} be a finite sequence of blobs, say of length h. Consider the set T of all choice functions σ with domain h such that $\sigma(s) \in o_s$. T can be viewed naturally as a tree, called the *Seetapun tree* associated with \vec{o} .
- ► For a Σ_1^0 -formula $\psi(G)$, we will search for blobs o such that $\psi(o)$ holds.
- ► For example, for cone avoiding, we are looking for a finite set o having a split $q_1, q_2 \subset o$.

- ▶ A sequence of *blobs* is just a recursive sequence of finite sets \vec{o} such that for each s less than the length of the sequence, max $o_s < \min o_{s+1}$.
- Let \vec{o} be a finite sequence of blobs, say of length h. Consider the set T of all choice functions σ with domain h such that $\sigma(s) \in o_s$. T can be viewed naturally as a tree, called the *Seetapun tree* associated with \vec{o} .
- ► For a Σ_1^0 -formula $\psi(G)$, we will search for blobs o such that $\psi(o)$ holds.
- ► For example, for cone avoiding, we are looking for a finite set o having a split $q_1, q_2 \subset o$.

- ▶ A sequence of *blobs* is just a recursive sequence of finite sets \vec{o} such that for each s less than the length of the sequence, max $o_s < \min o_{s+1}$.
- Let \vec{o} be a finite sequence of blobs, say of length h. Consider the set T of all choice functions σ with domain h such that $\sigma(s) \in o_s$. T can be viewed naturally as a tree, called the *Seetapun tree* associated with \vec{o} .
- ► For a Σ_1^0 -formula $\psi(G)$, we will search for blobs o such that $\psi(o)$ holds.
- ► For example, for cone avoiding, we are looking for a finite set o having a split $q_1, q_2 \subset o$.

Seetapun Disjunctions

Definition

Given a Σ^0_1 -formula $\psi(G)$, an Seetapun disjunction for ψ is a pair (\vec{o}, S) , where \vec{o} is a sequence of blobs of length h > 0 and S is the Seetapun tree associated with \vec{o} , such that:

- (i) For each s < h, $\psi(o_s)$ holds "independently".
- (ii) For each maximal branch τ of S, there exists a finite subset $\iota \subseteq \tau$ such that $\psi(\iota)$ holds. We refer to the set ι as a *thread* (in τ).

Key observation: For an Seetapun disjunction, either there is a blob $o \subseteq D$ or there is a thread $\iota \subseteq \overline{D}$. Seetapun disjunction is D-save!

Seetapun Disjunctions

Definition

Given a Σ_1^0 -formula $\psi(G)$, an Seetapun disjunction for ψ is a pair (\vec{o}, S) , where \vec{o} is a sequence of blobs of length h > 0 and S is the Seetapun tree associated with \vec{o} , such that:

- (i) For each s < h, $\psi(o_s)$ holds "independently".
- (ii) For each maximal branch τ of S, there exists a finite subset $\iota \subseteq \tau$ such that $\psi(\iota)$ holds. We refer to the set ι as a *thread* (in τ).

Key observation: For an Seetapun disjunction, either there is a blob $o \subseteq D$ or there is a thread $\iota \subseteq \overline{D}$. Seetapun disjunction is D-save!

Fix Δ_2^0 set D and nonrecursive set C. We want to find and infinite $H \subset D$ or $\subset \overline{D}$ satisfying

$$R_{e,i}: \Phi_e^H \neq C \lor \Phi_i^H \neq C.$$

We recursively enumerate blobs containing an e-split.

Case 1. This sequence of blobs is finite, i.e., after $\langle o_i : i \leq s \rangle$ there is no more *e*-splits.

Then we simply move the construction "above the last blob". We refer this as *skipping*.

Fix Δ_2^0 set D and nonrecursive set C. We want to find and infinite $H \subset D$ or $\subset \overline{D}$ satisfying

$$R_{e,i}: \Phi_e^H \neq C \vee \Phi_i^H \neq C.$$

We recursively enumerate blobs containing an e-split.

Case 1. This sequence of blobs is finite, i.e., after $\langle o_i : i \leq s \rangle$ there is no more *e*-splits.

Then we simply move the construction "above the last blob". We refer this as *skipping*.

Fix Δ_2^0 set D and nonrecursive set C. We want to find and infinite $H \subset D$ or $\subset \overline{D}$ satisfying

$$R_{e,i}: \Phi_e^H \neq C \vee \Phi_i^H \neq C.$$

We recursively enumerate blobs containing an e-split.

Case 1. This sequence of blobs is finite, i.e., after $\langle o_i : i \leq s \rangle$ there is no more *e*-splits.

Then we simply move the construction "above the last blob". We refer this as *skipping*.

Case 2. The sequence of blobs is infinite. Then we form Seetapun tree along the way and check if every branch τ contains an *i*-split.

Subcase 2.1. Every branch τ contains an *i*-split, i.e., we found an Seetapun disjunction.

Then either D contains a blob o or \overline{D} contains a thread ι . Say $D \supset o$. We choose the subset of o which gives us the value $\neq C$.

Subcase 2.2. No Seetapun disjunction occurs.

Case 2. The sequence of blobs is infinite. Then we form Seetapun tree along the way and check if every branch τ contains an *i*-split.

Subcase 2.1. Every branch τ contains an *i*-split, i.e., we found an Seetapun disjunction.

Then either D contains a blob o or \overline{D} contains a thread ι . Say $D \supset o$. We choose the subset of o which gives us the value $\neq C$.

Subcase 2.2. No Seetapun disjunction occurs.

Case 2. The sequence of blobs is infinite. Then we form Seetapun tree along the way and check if every branch τ contains an *i*-split.

Subcase 2.1. Every branch τ contains an *i*-split, i.e., we found an Seetapun disjunction.

Then either D contains a blob o or \overline{D} contains a thread ι . Say $D \supset o$. We choose the subset of o which gives us the value $\neq C$.

Subcase 2.2. No Seetapun disjunction occurs.

Case 2. The sequence of blobs is infinite. Then we form Seetapun tree along the way and check if every branch τ contains an *i*-split.

Subcase 2.1. Every branch τ contains an *i*-split, i.e., we found an Seetapun disjunction.

Then either D contains a blob o or \overline{D} contains a thread ι . Say $D \supset o$. We choose the subset of o which gives us the value $\neq C$.

Subcase 2.2. No Seetapun disjunction occurs.

Case 2. The sequence of blobs is infinite. Then we form Seetapun tree along the way and check if every branch τ contains an *i*-split.

Subcase 2.1. Every branch τ contains an *i*-split, i.e., we found an Seetapun disjunction.

Then either D contains a blob o or \overline{D} contains a thread ι . Say $D \supset o$. We choose the subset of o which gives us the value $\neq C$.

Subcase 2.2. No Seetapun disjunction occurs.

This is only a sketch

The above sketch overlooked the interaction between requirements; and selection of the infinite set.

For a complete proof (not mentioning Seetapun disjunctions), reader can refer to Hirschfeldt *Slicing the Truth*, World Scientific, 2015.

This is only a sketch

The above sketch overlooked the interaction between requirements; and selection of the infinite set.

For a complete proof (not mentioning Seetapun disjunctions), reader can refer to Hirschfeldt *Slicing the Truth*, World Scientific, 2015.

An application

- (Chong, Slaman and Yang 2012) Stable Ramsey's Theorem for pairs does not imply Ramsey's Theorem for Pairs.
- ► The idea of Seetapun disjunction is important in the proof.
- ▶ To distinguish Case 1 and Case 2, one needs 0".

An application

- (Chong, Slaman and Yang 2012) Stable Ramsey's Theorem for pairs does not imply Ramsey's Theorem for Pairs.
- ► The idea of Seetapun disjunction is important in the proof.
- ▶ To distinguish Case 1 and Case 2, one needs 0".

An application

- (Chong, Slaman and Yang 2012) Stable Ramsey's Theorem for pairs does not imply Ramsey's Theorem for Pairs.
- ► The idea of Seetapun disjunction is important in the proof.
- ▶ To distinguish Case 1 and Case 2, one needs 0".

- Nonstandard models are crucial in the proof.
 - We divide M many requirements into ω many blocks.
 - The case 1/case 2 switch for each block needs one bit information.
 - In some nonstandard model, we can code ω many bits by a single number a.
 - ▶ Using *a*, 0' is sufficient to carry out the construction, not 0".
- ▶ It is known that the method does not apply to ω .
- ▶ Question: What happens in ω -models?

- Nonstandard models are crucial in the proof.
 - We divide M many requirements into ω many blocks.
 - The case 1/case 2 switch for each block needs one bit information.
 - In some nonstandard model, we can code ω many bits by a single number a.
 - ▶ Using *a*, 0' is sufficient to carry out the construction, not 0".
- It is known that the method does not apply to ω .
- ▶ Question: What happens in ω -models?

- Nonstandard models are crucial in the proof.
 - We divide M many requirements into ω many blocks.
 - The case 1/case 2 switch for each block needs one bit information.
 - In some nonstandard model, we can code ω many bits by a single number a.
 - ▶ Using *a*, 0′ is sufficient to carry out the construction, not 0″.
- It is known that the method does not apply to ω .
- ▶ Question: What happens in ω -models?

- Nonstandard models are crucial in the proof.
 - We divide M many requirements into ω many blocks.
 - The case 1/case 2 switch for each block needs one bit information.
 - In some nonstandard model, we can code ω many bits by a single number a.
 - ▶ Using *a*, 0′ is sufficient to carry out the construction, not 0″.
- It is known that the method does not apply to ω .
- ▶ Question: What happens in ω -models?