Osnove programiranja v diskretni matematiki Zapiski predavanj

2023/24

Povzetek

Dokument vsebuje zapiske predavanj predmeta Osnove programiranja v diskretni matematiki profesorja Taranenka v okviru študija prvega letnika magistrskega študija matematike na FNM.

Kazalo

1	Relacije	3
2	Delna in linearna urejenost	4

1 Relacije

Definicija 1: Relacija R iz množice A v množico B je podmnožica kartezičnega produkta $A \times B$: $R \subseteq A \times B$. Če je $(a,b) \in R$ pišemo aRb, sicer pa $\neg (aRb)$ ali aRb. Relaciji $R \subseteq A \times A$ pravimo relacija na množici A.

Zgled 1: $\forall i \in \{1, 2, 3, 4, 5\} : R_i \subseteq \mathbb{Z} \times \mathbb{Z}$

- i) $R_1 = \{(a, b); a \leq b\}$
- ii) $R_2 = \{(a, b); a > b\}$
- iii) $R_3 = \{(a, b); a = b \lor a = -b\}$
- iv) $R_4 = \{(a, b); a = b\}$
- v) $R_5 = \{(a,b); a+b \le 3\}$

Zgled 2: Koliko je možnih relacij na množici z $n \in \mathbb{N}$ elementi? Odgovor: 2^{n^2} .

Definicija 2: Naj bo A poljubna množica in R relacija na njej. Relacija R je:

- a) Refleksivna, če velja: $\forall a \in A : aRa$.
- b) Irefleksivna, če velja: $\forall a \in A : a \cancel{R} a$.
- c) Simetrična, če velja: $\forall a, b \in A : aRb \Rightarrow bRa$.
- d) Asimetrična, če velja: $\forall a, b \in A : aRb \Rightarrow b \not R a$.
- e) Antisimetrična, če velja: $\forall a,b \in A: aRb \land bRa \Rightarrow a=b.$
- f) Tranzitivna, če velja: $\forall a, b, c \in A : aRb \land bRc \Rightarrow aRc$.
- g) Intranzitivna, če velja: $\forall a, b, c \in A : aRb \land bRc \Rightarrow a\cancel{R}c$.
- h) Sovisna, če velja: $\forall a, b \in A; a \neq b : aRb \vee bRa$.
- i) Strogo sovisna, če velja: $\forall a,b \in A: aRb \vee bRa.$

Zgled 3: Oglejmo si relacije $R_i \subseteq \mathbb{Z} \times \mathbb{Z}$ iz zgleda 1 in jim določimo lastnosti, ki smo jih ravnokar definirali.

 $Re \check{s}itev:$

- i) R_1 je refleksivna, antisimetrična, tranzitivna ter strogo sovisna.
- ii) R_2 je irefleksivna, asimetrična, tranzitivna ter sovisna.
- iii) R_3 je refleksivna, simetrična ter tranzitivna.
- iv) R_4 je refleksivna, simetrična ter tranzitivna.
- v) R_5 je simetrična.

Zgled 4: Navedimo primer relacije, ki je hkrati simetrična in antisimetrična: $R = \{(x, x); x \in \mathbb{R}\}.$

2 Delna in linearna urejenost

Definicija 3: Relacija $R \subseteq A \times A$ je <u>delna urejenost</u>, če je refleksivna, antisimetrična in tranzitivna. Paru (A, R) pravimo delno urejena množica.

Zgled 5: Naštejmo nekaj primerov delno urejenih množic:

- (Družina podmnožic,⊆)
- (\mathbb{R}, \leq)
- (N, |)

Definicija 4: Naj bo (A, \leq) delno urejena množica. Elementa $a, b \in A$ sta primerljiva, če velja $a \leq b$ ali $b \leq a$, sicer sta pa neprimerljiva.

Definicija 5: Relacija $R \subseteq A \times A$ je <u>linearna urejenost</u>, če je delna urejenost in strogo sovisna. Paru (A, R) pravimo linearno urejena množica oz. veriga.

Opomba 1: Zgornjo definicijo lahko prebesedimo: Relacija (A, R) je linearno urejena množica $\iff (A, \leq)$ je delno urejena množica in poljubni par elementov $a, b \in A$ je primerljiv.

Izrek 1. Naj bo (A, \leq) delno oz. linearno urejena množica in $B \subseteq A$. Potem je zožitev relacije \leq na B tudi delna oz. linearna urejenost. Oznaka: $\leq_B = \{(a,b); \ a,b \in B \land a \leq b\}$

Dokaz. 1. Naj bodo $a, b, c \in B$ poljubni elementi. Ker je $a \in B$, je tudi $a \in A$ in velja $a \le a$. Sledi, da je $a \le a$.

- 2. Če sta $a,b \in B$, sta tudi $a,b \in A$. Denimo, da velja $a \leq_B b$ in $b \leq_B a$. Potem je tudi $a \leq b$ in $b \leq a$, torej je a = b.
- 3. Naj bo $a\leq_B b$ in $b\leq_B c$. Potem je $a\leq b$ in $b\leq c,$ torej je $a\leq c$ in posledično je $a\leq_B c$

4. Ker za poljubna $a, b \in B$ velja $a \leq b \lor b \leq a$, sledi $a \leq_B b \lor b \leq_B a$.

Zgled 6: Naj bo $\mathcal{D} = \mathcal{P}(\mathbb{Z})$ in vzemimo za relacijo \subseteq . Hitro vidimo, da je (\mathcal{D}, \subseteq) veriga. Naj bo $\mathcal{A} = \{\{1, 2, \dots, n\}; n \in \mathbb{N}\}$. Potem je $(\mathcal{A}, \subseteq_{\mathcal{A}})$ veriga v \mathcal{D} .

Definicija 6: Naj bo (A, \leq) delno urejena množica. Element $a \in A$ je:

- minimalni element, če velja: $\forall b \in A : b \leq a \Rightarrow b = a$
- najmanjši element oz. prvi element, če velja: $\forall b \in A: a \leq b$
- maksimalni element, če velja: $\forall b \in A : a \leq b \Rightarrow b = a$
- največji element oz. zadnji element, če velja: $\forall b \in A : b \leq a$

Zgled 7:

- $(\mathbb{N},|)$: 1 je hkrati minimalni in prvi element, ni minimalnega in ni zadnjega elementa.
- (\mathbb{R},\leq) : Nima niti minimalnega, niti maksimalnega, niti prvega niti zadnjega elementa.
- $(\mathbb{N}\setminus\{1\},|)$: minimalni elementi so vsa praštevila. Nima niti prvega element niti minimalnega niti zadnjega elementa.

Izrek 2. Naj bo (A, \leq) delno urejena množica.

- 1. Če obstaja prvi ali zadnji element, je enoličen.
- 2. Če je $a \in A$ prvi (oz. zadnji) element, je tudi edini minimalni (oz. maksimalni) element.
- 3. Če je A končna, potem vedno obstaja vsaj en minimalni oz. vsaj en maksimalni element.
- Dokaz. 1. Denimo, da imamo dva različna prva elementa: $a, b \in A; a \neq b$. Ker je a prvi element je $a \leq b$ in ker je b prvi element je $b \leq a$. Posledično, ker je b antisimetrična, je b0, kar pa nas privede v protislovje.
 - 2. Denimo, da je $a \in A$ prvi element. Naj bo $b \in A$ minimalni element. Ker je a prvi element velja $a \le b$ in ker je b minimalni element posledično velja b = a.
 - 3. To točko bomo pokazali z indukcijo na |A|.
 - |A|=1: Ta primer je trivialen trditev očitno velja v tem primeru.
 - |A|=n: Denimo, da trditev velja za množice moči n-1. BŠS denimo, da ima vsaka množica moči n-1 vsaj en minimalni element. Naj bo $a\in A$ poljuben element in označimo $\acute{A}=A\setminus\{a\}$. Po indukcijski predpostavki, ima \acute{A} minimalni element $b\in \acute{A}$. Obravnavamo primere:
 - Če je $a \leq b$, je a minimalni element v A.
 - Če je $b \leq a$, je b minimalni tudi v A.
 - Čea in bnista primerljiva je bminimalni element v A.

Izrek 3. Naj bo (A, \leq) linearno urejena množica.

- i) $a \in A$ je prvi element \iff a je minimalni element
- ii) $a \in A$ je zadnji element \iff a je maksimalni element
- Dokaz. i) Denimo, da je $a \in A$ prvi element. Potem je, po prejšnjem izreku, a edini minimalni element. Obratno, denimo da je a minimalni element. Ker je \leq strogo sovisna, velja $\forall b \in A: b \leq a \lor a \leq b$. Denimo, da je $b \leq a$. Ker je a minimalni element, sledi b = a. Torej $\forall b \in A: a \leq b$ oz. a je prvi element.

ii) Naj bo $a\in A$ zadnji element. Potem po prejšnjem izreku velja, da jeaedini maksimalni element. Denimo sedaj, da jeamaksimalni element. Zaradi stroge sovisnosti \leq je $\forall b\in A: a\leq b\vee b\leq a.$ Denimo, da za nek $b\in A$ velja $a\leq b.$ Ker je amaksimalni element je potem b=a. Sledi torej, da $\forall b\in A$ velja $b\leq a$, torej je azadnji element.

Posledica 1. Naj bo (A, \leq) linearno urejena množica. Če obstaja prvi (ali zadnji) element, je enoličen.

Posledica 2. Vsaka končna linearno urejena množica vsebuje natanko en prvi in natanko en zadnji element.