quiz

convex optimization

sp1

A function f is continuous differentiable, that is $f \in C^1$, if Vælg en eller flere:

- f is differentiable
- igsep f is differentiable and its derivative is continuous igoreals
- $oxedsymbol{f}$ has first order partial derivatives
- f is continuous and its partial derivatives exists

The gradient abla f of a differentiable function $f:\mathbb{R}^n o\mathbb{R}$ is

Vælg en eller flere:

V	a scalar if $n=1$ $lacktriangledown$
	a vector with coordinates equal to the second order partial derivatives of \boldsymbol{f}
	a scalar
	a square $n imes n$ matrix
~	a vector with coordinates equal to the first order partial derivatives of f
\bigvee	the derivative of f
V	a n-vector ♥

Let $x\in\mathbb{R}^n$. The Hessian H(x) of a C^2 function $f:\mathbb{R}^n o\mathbb{R}$ is Vælg en eller flere:

V	a square $n imes n$ matrix $oldsymbol{arphi}$
V	a scalar if $n=1$
	a vector with coordinates equal to the second order partial derivatives of \boldsymbol{f}
	a n -vector
	a scalar
V	the Jacobian matrix of $ abla f$ 📀
	a vector with coordinates equal to the first order partial derivatives of $oldsymbol{f}$
	the Jacobian matrix of $oldsymbol{f}$
V	a symmetric matrix 🕑
~	the second derivative of $f igoldsymbol{\circ}$
	the derivative of $oldsymbol{f}$

A linear approximation of the function f involve Vælg en eller flere:

- the Hessian of f
- lacksquare the gradinet of f lacksquare

sp5

A quadratic approximation of the function f involve Vælg en eller flere:

- ${igcup}$ the gradinet of f
- lacksquare the Hessian of f igorims

Here's why:

The quadratic (second-order Taylor) approximation of a scalar function $f:\mathbb{R}^n o\mathbb{R}$ around a point \mathbf{x}_0 is:

$$f(\mathbf{x}) pprox f(\mathbf{x}_0) +
abla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + rac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T H_f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)$$

Where:

- $\nabla f(\mathbf{x}_0)$: the gradient of f at \mathbf{x}_0 this gives the linear (first-order) behavior.
- $H_f(\mathbf{x}_0)$: the **Hessian** of f at \mathbf{x}_0 this gives the **curvature** (second-order) information.

So:

- Gradient is needed tells us the slope (first-order).
- \square **Hessian** is needed tells us how the slope changes (second-order).

In summary:

To build a **quadratic approximation**, you need:

- The function value at the point,
- The gradient (first derivatives),
- The **Hessian** (second derivatives).

sp6

A point $x'\in\mathbb{R}^n$ is a weak local minimizer of $f:\mathbb{R}^n o\mathbb{R}$ if Vælg en eller flere:

- $f(x) \geq f(x')$ for all x
- $f(x) \leq f(x')$ for all x sufficiently close to x'
- $f(x) \leq f(x')$ for all x
- $f(x) \geq f(x')$ for all x sufficiently close to x' 🗸

A point $x' \in \mathbb{R}^n$ is a weak global minimizer of $f: \mathbb{R}^n o \mathbb{R}$ if Vælg en eller flere:

 $igspace f(x) \geq f(x')$ for all x igo g

 $f(x) \leq f(x')$ for all x

 $f(x) \leq f(x')$ for all x sufficiently close to x'

 $f(x) \geq f(x')$ for all x sufficiently close to x'

sp8

If x' is a local minimizer of $f:\mathbb{R}^n o\mathbb{R}$, with $f\in C^1$, then Vælg en eller flere:

 \checkmark the gradient of f at x' is zero \checkmark

the gradient of f at x^\prime is smaller than or equal to zero

the gradient of f is zero

the gradient of f at x^\prime is bigger than or equal to zero

Intuition:

- The gradient $\nabla f(x')$ points in the direction of steepest increase.
- If you're at a **local minimum**, there's **no direction** to go that would decrease the function further (at least locally).
- Therefore, the slope in **every direction** is zero and this is exactly what the gradient being zero means.

sp9

If x' is a local minimizer of $\,f:\mathbb{R}^n o\mathbb{R}$, with $f\in C^2$, then Vælg en eller flere:

- the gradient of f at x^\prime is zero or the hessian of f at x^\prime is positive semi definite
- igwedge the gradient of f at x' is zero and the hessian of f at x' is positive semi definite igotimes
- the gradient of f at x^\prime is zero or the hessian of f at x^\prime is positive definite
- the gradient of f at x^\prime is zero and the hessian of f at x^\prime is positive definite

sp10

A set $S\subseteq \mathbb{R}^n$ is convex if

Vælg en eller flere:

- $S=\left\{ x\in\mathbb{R}^{n}\mid\left|\left|x
 ight|
 ight|_{1}\leq5
 ight\}$ lacksquare
- lacksquare a curve between any two points in S is contained in S
- $oxed{\hspace{0.5cm}} S=\{x\in \mathbb{R}^n \ | \ ||x||_2=1\}$ is a circle
- the straight line between any two points in S is contained in S
- n=1 and S is the union of two disjoint intervals
- $S=\{x\in\mathbb{R}^n\ |\ ||x||_2\leq 1\}$ is a disk lacksquare

lacksquare 1. $S=\{x\in\mathbb{R}^n\mid \|x\|_1\leq 5\}$

- Yes this set is convex.
- It's the **unit ball** in ℓ^1 -norm (scaled by 5).
- In 2D, this looks like a diamond shape (not a box), with corners at (5,0), (0,5), (-5,0), (0,-5).
- In higher dimensions, it's a cross-polytope, not a box.
- A So, it's not a box, but it is convex.

sp11

A function $f:R o\mathbb{R}$, with $R\subseteq\mathbb{R}^n$ and $f\in C^2$, is convex if Vælg en eller flere:

- igwedge f is a quadratic function $oldsymbol{arphi}$
- lacksquare R is convex and the hessian H(x) of f is positive semi definite for some $x\in R$
- ${f extstyle V}$ R is convex and the hessian H(x) of f is positive semi definite for all $x\in R$ $oldsymbol{arphi}$
- the hessian H(x) of f is positive semi definite for all $x \in R$
- $oxed{R}$ is convex
- $\int f$ is a linear function

Correct answer 2:

"f is a linear function"

- Linear functions are of the form $f(x) = a^T x + b$.
- Linear functions are both convex and concave, because:

$$f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$$

• This is **stronger** than the convexity inequality, so linear functions are always convex.

sp12

Let $R\subseteq \mathbb{R}^n$. The optimization problem $\min_{x\in R}f(x)$ is convex if Vælg en eller flere:

- igwedge R is convex and $f:R o \mathbb{R}$ is convex $oldsymbol{\circ}$
- $f:S o\mathbb{R}$ is convex for some (convex) set S with $R\subset S$
- R is convex
- R is convex and $f:S o\mathbb{R}$ is convex for some (convex) set S with $S\subset R$
- $f:R o\mathbb{R}$ is convex
- ${\Bbb Z}$ R is convex and $f:S o {\Bbb R}$ is convex for some (convex) set S with $R\subset S$ lacktriangle

Correct Answer 2:

" $f:R o\mathbb{R}$ is convex"

- This is **necessary**, but not **sufficient** on its own.
- However, it is still considered part of what makes a problem convex.
- If this option was presented alone, it might not be enough but in the context of multiple correct answers, it's valid as a partial requirement.
- ✓ This is correct, assuming R is convex too.

Correct Answer 3:

"R is convex and $f:S o\mathbb{R}$ is convex for some (convex) set S with $R\subset S$ "

- This is also valid. If f is convex on a **larger convex set** S that contains R, and R is convex, then:
 - f is convex on R as well.
- Convexity is preserved when you restrict a convex function to a convex subset of its domain.
- So this also guarantees a convex optimization problem.

In plain language:

 $f:R o\mathbb{R}$ means:

- There is a function f,
- It takes inputs from the set R_i
- And it outputs real numbers (i.e., values in \mathbb{R}).

sp13

Mark the statements which are true:

Vælg en eller flere:

✓ The software tool CVX is a numerical solver for optimization problems
 ✓ Any optimization problem can be approximated arbitrary well with a convex optimization problem
 ✓ The solution set of a convex optimization problem is convex
 ✓ Local minimizers are global minimizers in general
 ✓ For convex optimization problems local minimizers are global minimizers
 ✓ Optimization problems are in general numerically solvable
 ✓ The software tool CVX is a numerical solver for convex optimization problems
 ✓ Convex optimization problems are in general numerically solvable

gradient methods

sp1

The steepest-descent method can be applied to Vælg en eller flere:

- ✓ least squares problems
- constrained optimization problems
- unconstrained convex optimization problems
- unconstrained optimization problems

1. Unconstrained optimization problems

- Steepest descent is a method for minimizing a function without any constraints on the variables.
- It uses the **negative gradient direction** (steepest decrease) to iteratively update the variable x.
- So, any optimization problem without constraints is a valid candidate.
- Correct

2. Unconstrained convex optimization problems

- If the function is convex and differentiable, the steepest descent method is guaranteed to converge to a global minimum, assuming proper step sizes.
- Convexity makes the method more reliable and efficient.
- ★ Correct and even better than the general case

The steepest-descent method is a

Vælg en eller flere:

~	first order method 🕗
	third order method
	fourth order method
	second order method
sp3	

Let $f\in C^2$ be a cost function, H its hessian, and $\{x_k\}$ denote the sequence generated by the steepest-descent algorithm. For x_k close to a minimizer x^st the algorithm converge fast to x^st if

Vælg en eller flere:

the eigenvalues of $H(x_k)$ are almost the same the eigenvalues of $H(x_k)$ are small

all eigenvalues of $H(x_k)$ are real

the largest and smallest eigenvalue of $H(x_k)$ are almost the same lacktriangle

(condition Number)

sp4

The Steepest-Descent Algorithm (SDA) and the Newton-Raphson Algorithm (NRA) can be used in combination by Vælg en eller flere:

using the NRA fare from the minimizer and the SDA close to the minimizer

using the SDA fare from the minimizer and the NRA close to the minimizer ②

iterating between the SDA and the NRA

The Newton-Raphson method is a

Vælg en eller flere:

sp6

When attempting to solve 0 =
abla f(x) for x, one can apply

Vælg en eller flere:

a first order method

the steepest-descent method

the Newton-Raphson method

You're looking for a point x where the **gradient of** f is zero — in other words, a **stationary point**, which could be a minimum, maximum, or saddle point.

Final Summary:

Reason Gauss-Newton is good	Explanation
Designed for least squares	Solves problems like $\min \ r(x)\ ^2$
Solves $ abla f(x)=0$	Because $ abla f(x) = J^T r$
Uses Jacobians only	No need for second derivatives (Hessian)
Faster than Newton	Approximates Hessian with ${\cal J}^T{\cal J}$
Converges well	Especially when residuals are small

constrained optimization

PLEASE WRITE WHY?!?!?!?!?!?

 $oxed{a}_i(x') = 0$ for some i and J(x) has full row rank

sp1

Consider the constrained optimization problem $\min f(x) = s.t = a(x) = (a_1(x), \dots, a_p(x)) = 0$, and let $J(x) = J_{\mathbf{a}}(x)$ denote the Jacobian of \mathbf{a} at x. The point x' is regular if v_{tage} and eller fibres: $\mathbf{a}(x') = 0 \text{ and the gradients } \nabla a_1(x'), \dots, \nabla a_p(x') \text{ are linear independent } \bullet \\
 \mathbf{a}(x') = 0 \text{ for } i = 1, \dots, p \text{ and } J(x) \text{ has full row rank} \\
 \mathbf{a}(x') = 0 \text{ and some of the gradients } \nabla a_1(x'), \dots, \nabla a_p(x') \text{ are linear independent} \\
 \mathbf{a}(x') = 0 \text{ and } J(x') \text{ has full row rank } \bullet \\
 \mathbf{J}(x') \text{ has full row rank } \bullet \\
 \mathbf{J}(x') \text{ has full row rank } \bullet \\
 \mathbf{A}(x') = b \text{ and } Rank(A) = p. \text{ in the case where } \mathbf{a}(x) = Ax - b, A \in \mathbb{R}^{p \times n}$

Consider the constrained optimization problem $\min f(x) \quad s.t \quad \mathbf{a}(x) = (a_1(x), \dots, a_p(x)) = 0, \ \mathbf{c}(x) = (c_1(x), \dots, c_q(x)) \geq_e 0,$ and let $J_\mathbf{a}(x), \ J_\mathbf{c}(x)$ denote the Jacobian of $\mathbf{a}, \ \mathbf{c}$ at x. The point x' is regular if $\mathbf{c}(x) = (a_1(x), \dots, a_p(x)) = 0$.

- $\mathbf{a}(x') = 0, \ \mathbf{c}(x') \geq_e 0$ and the gradients $\nabla a_1(x'), \ldots, \nabla a_p(x'), \ \nabla c_{j_1}(x'), \ldots, \nabla c_{j_k}(x')$ are linearly independent, with $c_{j_l}(x') = 0$ for $l = 1, \ldots k$
- $\boxed{ \quad } \mathbf{a}(x') = 0, \ \mathbf{c}(x') \geq_{e} 0 \ \text{and the gradients} \ \nabla a_{1}(x'), \dots, \nabla a_{p}(x'), \ \nabla c_{j_{1}}(x'), \dots, \nabla c_{j_{k}}(x') \ \text{ore linearly independent, with} \ c_{j_{l}}(x') > 0 \ \text{for} \ l = 1, \dots k \ \text{ore} \ c_{j_{k}}(x') \ \text{ore linearly independent, with} \ c_{j_{l}}(x') > 0 \ \text{for} \ l = 1, \dots k \ \text{ore} \ c_{j_{k}}(x') \ \text{o$
- $\mathbf{a}(x')=0,\ \mathbf{c}(x')\geq_e 0$ and the gradients $abla a_1(x'),\dots,
 abla a_p(x')$ are linearly independent \mathbf{c}
- $\boxed{ \quad \textbf{a}(x') = 0, \ \textbf{c}(x') \geq_e 0 \ \text{and the gradients} \ \nabla a_1(x'), \dots, \nabla a_p(x'), \ \nabla c_{j_1}(x'), \dots, \nabla c_{j_k}(x') \ \text{are linearly independent, with} \ c_{j_l}(x') \geq 0 \ \text{for} \ l = 1, \dots k }$
- $\mathbf{a}(x')=0,\ \mathbf{c}(x')\geq_e 0$ and $J_{\mathbf{a}}(x')$ has full row rank $oldsymbol{\circ}$
- $a_i(x')=0$ for $i=1,\ldots,p$, $c_i(x')\geq 0$ for $i=1,\ldots,q$ and $J_{\mathbf{a}}(x)$ has full row rank

sp3

Consider the constrained optimization problem $\min f(x)$ s.t $\mathbf{a}(x)=(a_1(x),\ldots,a_p(x))=0$, and let $J(x')=J_{\mathbf{a}}(x')$ denote the Jacobian of \mathbf{a} at x'. Let the point x' be a regular minimizer (with $\nabla f(x')\neq 0$)

Vælg en eller flere

- ${\color{red} igstar}$ then abla f(x') is in the range of J(x') ${\color{red} oldsymbol{\circ}}$
- then $\nabla f(x')$ is orthogonal to the gradients $\nabla a_1(x'), \ldots, \nabla a_p(x')$
- then abla f(x') is in the range of $J(x')^{ op}$
- then $abla f(x'), \
 abla a_1(x'), \ldots,
 abla a_p(x')$ are linearly independent $oldsymbol{\circ}$
- then abla f(x') can be expressed as a linear combination of the gradients $abla a_1(x'), \dots,
 abla a_p(x')$
- then abla f(x') is in the image of $J(x')^ op$
- then abla f(x') is in the image of J(x')

sp4

Consider the constrained optimization problem $\min f(x)$ s.t $\mathbf{a}(x)=(a_1(x),\ldots,a_p(x))=0, \ \mathbf{c}(x)=(c_1(x),\ldots,c_q(x))\geq_c 0.$ Let the point x' be a regular minimizer (with $\nabla f(x')\neq 0$)

Vælg en eller flere

- $\qquad \text{then } \nabla f(x') \text{ is a linear combination of } \nabla a_1(x'), \dots, \nabla a_p(x'), \ \nabla c_{j_1}(x'), \dots, \nabla c_{j_k}(x') \text{ with } c_{j_l}(x') > 0 \text{ for } l = 1, \dots k$
- then $\nabla f(x')$ is a linear combination of $\nabla a_1(x'),\ldots, \nabla a_p(x'),\ \nabla c_{j_t}(x'),\ldots, \nabla c_{j_k}(x')$ with $c_{j_t}(x')\geq 0$ for $l=1,\ldots k$

Consider the constrained optimization problem $\min f(x)$ s.t $\mathbf{a}(x) = (a_1(x), \dots, a_p(x)) = 0$, $\mathbf{c}(x) = (c_1(x), \dots, c_q(x)) \geq_e 0$. Let the point x' be a regular minimizer and λ' , μ' be the corresponding multipliers voting en eiler flere: $|| \text{ if } \mu_i > 0 \text{ then } c_i(x') > 0$ $|| \text{ if } \mu_i > 0 \text{ then } c_i(x') = 0$ $|| \text{ if } \mu_i > 0 \text{ then } c_i(x') < 0$ $|| \text{ if } c_i(x') > 0 \text{ then } \mu_i = 0$ $|| \text{ if } \nabla f(x') = 0 \text{ then } \lambda' \neq 0, \ \mu' = 0$ $|| \text{ if } c_i(x') > 0 \text{ then } \mu_i \neq 0$

sp6

Consider the constrained optimization problem $\min f(x) \quad s.t \quad \mathbf{a}(x) = (a_1(x), \dots, a_p(x)) = 0, \ \mathbf{c}(x) = (c_1(x), \dots, c_q(x)) \geq_e 0.$ The KKT conditions are necessary and sufficient when

Vælg en eller flere:

will be constrained optimization problem is convex

the constrained optimization problem is convex

-f and $-\mathbf{c}$ are convex and \mathbf{a} is affine linear

f and $-{f c}$ are convex and ${f a}$ is affine linear

If $\nabla f(x')=0$ then $\lambda'=0,\ \mu'>0$ If $\nabla f(x')=0$ then $\lambda'=0,\ \mu'=0$

f, ${f a}$ and $-{f c}$ are convex ${f 0}$

igcap f and ${f c}$ are convex and ${f a}$ is affine linear

the constrained optimization problem is a linear programming problem