6 时序逻辑电路

- 6.1、概述
- 6.2、时序逻辑电路的分析
- 6.3、同步时序电路的设计
- 6.4、寄存器和移位寄存器
- 6.5、计数器

同步时序逻辑电路的设计是分析的逆过程,其任务是根据实际逻辑问题的要求,设计出能实现给定逻辑功能的电路。

设计同步时序逻辑电路的一般步骤

- 1、逻辑抽象:建立原始状态图和原始状态表
 - (1)确定电路的输入变量、输出变量和电路的状态,并定义各变量和状态的含义;
 - (2)确定所有状态在不同输入条件下的转换关系,建立原始状态图;
 - (3)根据原始状态图建立原始状态表。
- 2、状态化简:合并等价状态,得到最简状态转换图

等价状态:如果两个状态,在相同的输入下有相同的输出,并 转换到相同的次态,则它们为等价状态。(可以引申)

- 3、状态分配:也称为状态编码,给每个状态赋以二进制码。
- (1) Highly Encoded: $2^{n-1} < M \le 2^n$, (状态数M,触发器数n)
- (2) One Hot Encoded:每个状态对应一个触发器为1, M = n
- Note:(1) 以降低电路实现复杂度和提高时钟频率为目标;
- (2) 触发器的数量少并不一定代表电路复杂度低;
- (3) 组合电路的复杂度决定了时钟频率;
- (4) 状态分配影响电路复杂度和是种速率,但不影响电路功能。
- 4、触发器选型:JK触发器、D触发器,影响电路结构
- 5、求电路激励方程和输出方程
- 6、自启动检查,画出逻辑电路图

例 设计一个串行数据检测器。电路的输入信号A是与时钟脉冲同步的串行数据,其时序关系如下图所示。

输出信号为Y:要求电路在A信号输入出现"110"序列时, 输出信号Y为1,否则为0。

- 1、逻辑抽象建立原始状态图或状态表.
 - (1)确定输入、输出变量及电路的状态数:

输入变量: A 输出变量: Y 状态数: 4个

(2) 定义输入输出逻辑状态和每个电路状态的含义

a —— 初始状态; b —— A输入1后;

c —— A输入11后; d —— A输入110后。

(3)按题意画出状态转换图。

原始状态图

现态	次态/输出						
现心	A=0	A=1					
a	a/0	b /0					
b	a/0	c/0					
c	d /1	c /0					
d	a/ 0	b /0					

2. 状态化简

现态	次态 / 输出				
	A=0	A=1			
a	a/0	b/0			
b	a/0	c/0			
С	a/1	c/0			

3、状态分配

$$\Rightarrow a = 00$$
, $b = 01$, $c = 11$,

4、选择触发器的类型

触发器个数: 2

触发器类型:采用对 CP 下降沿

敏感的JK 触发器

现态	$Q_1^{n+1}Q$	$_{0}^{n+1}$ / Y
Q_1Q_0	A=0	A=1
00	00/0	01/0
01	00/0	11 /0
11	00 / 1	11 /0

5. 求激励方程和输出方程

现态	$Q_1^{n+1} Q_0^{n+1} / Y$				
Q_1Q_0	A=0	A=1			
00	00/0	01/0			
01	00/0	11 /0			
11	00 / 1	11 /0			

状态转换真值表及激励信号

Q_1^n	O^n		O_1^{n+1}	\bigcap^{n+1}	O_0^{n+1} V		激励	信号	
\mathcal{L}_1	Q_0^n	A	\mathcal{Q}_1	\mathcal{L}_0	I	J_1	K_1	J_0	K_0
0	0	0	0	0	0	0	×	0	×
0	0	1	0	1	0	0	×	1	×
0	1	0	0	0	0	0	×	×	1
0	1	1	1	1	0	1	×	0	×
1	1	0	0	0	1	×	1	×	1
1	1	1	1	1	0	×	0	×	0 9

5、求激励方程和输出方程

Q_1^n	Q_0^n	A	Q_1^{n+1}	Q_0^{n+1}	Y	J_1	激励 <i>K</i> ₁	信号 J_0	K_0
0	0	0	0	0	0	0	×	0	×
0	0	1	0	1	0	0	×	1	×
0	1	0	0	0	0	0	×	×	1
0	1	1	1	1	0	1	×	0	×
1	1	0	0	0	1	×	1	×	1
1	1	1	1	1	0	×	0	×	0

Q_1^n X X X Q_0 X Χį X X

卡诺图化简得

输出方程

$$Y = Q_{1}A$$

激励方程

$$J_{1} = Q_{0}A \quad K_{1} = \overline{A}$$

$$J_{0} = A \qquad K_{0} = \overline{A}$$

6. 画出逻辑电路图,并检查自启动能力

激励方程

$$\boldsymbol{J}_{\scriptscriptstyle 1} = \boldsymbol{Q}_{\scriptscriptstyle 0} \boldsymbol{A} \qquad \boldsymbol{K}_{\scriptscriptstyle 1} = \boldsymbol{A}$$

$$J_{\scriptscriptstyle 0}=A$$

$$K = \overline{A}$$

$$K_{\scriptscriptstyle 0} = \overline{A}$$

输出方程

$$Y = Q_1 \overline{A}$$

6. 画出逻辑电路图,并检查自启动能力

$$J_{1} = Q_{0}A \qquad K_{1} = A$$

$$J_{0} = A \qquad K_{0} = \overline{A}$$

当
$$Q_{\scriptscriptstyle 1}$$
 $Q_{\scriptscriptstyle 0}$ = 10时

$$A=0$$
 $Y=1$

$$J_{1} = 0 \quad K_{1} = 1 \quad Q_{1}^{n+1} = 0$$

$$J_{0} = 0$$
 $K_{0} = 1$ $Q_{0}^{n+1} = 0$

$$A=1 \qquad Y=0$$

$$J_{1} = 0 \quad K_{1} = 0 \quad Q_{1}^{n+1} = 1$$

$$J_{0} = 1 \quad K_{0} = 0 \quad Q_{0}^{n+1} = 1$$

能自启动

输出方程 $Y = Q_1 \overline{A}$ $Y = Q_1 Q_0 \overline{A}$

$$Y = Q_{\scriptscriptstyle 1}Q_{\scriptscriptstyle 0}$$

7. 几点讨论

6.3 时序逻辑电路的设计(Verilog描述1)

Highly Encoded

```
reg[1:0] state; parameter
```

S0=2'b00, S1=2'b01,

S2=2'b11;

1、摩尔或米里?

2、如果要设计米

里型电路,该如何

修改?

```
always@(negedge CP or negedge rst) begin
If (!rst) begin state = S0; Y=0; end
else
  case(state)
  S0: if(!A) begin
                    state = S0; Y = 0; end
      else begin
                    state = S1; Y = 0; end
  S1: if(!A) begin
                    state = S0; Y = 0; end
      else begin
                     state = S2; Y = 0; end
  S2: if(!A) begin
                     state = S0; Y = 1; end
      else begin
                     state = S2; Y = 0; end
  default: begin
                     state = S0; Y = 0; end
  endcase
end
```

6.3 时序逻辑电路的设计(Verilog描述2)

One Hot Encoded

```
reg[2:0] state;

parameter

S0=3'b001,

S1=3'b010,

S2=3'b100;
```

```
always@(negedge CP or negedge rst) begin
If (!rst) begin state = S0; Y=0; end
else
  case(state)
  S0: if(!A) begin
                    state = S0; Y = 0; end
      else begin
                    state = S1; Y = 0; end
  S1: if(!A) begin
                    state = S0; Y = 0; end
      else begin
                     state = S2; Y = 0; end
  S2: if(!A) begin
                     state = S0; Y = 1; end
      else begin
                     state = S2; Y = 0; end
  default: begin
                     state = S0; Y = 0; end
  endcase
end
```

6.3 时序逻辑电路的设计(Verilog描述3)

```
reg[2:0] state;
reg[2:0] new_state;
reg new_Y;
parameter S0=3'b001, S1=3'b010, S2=3'b100;
```

```
always@(A) begin
  case(state)
  S0: if(!A) begin
       new state = S0; new Y= 0; end
     else begin
       new state = S1; new Y = 0; end
  default: begin
       new state = S0; new Y= 0; end
  endcase
end
```

6.3 时序逻辑电路的设计(Verilog描述3)

```
always@(negedge CP or negedge rst)
if(!rst) begin
  state = S0;
  Y = 0; end
else begin
  state = new_state;
  Y = new_Y; end
```

如何理解此Verilog 描述状态机的方式?

例 设计一个串行数据检测器。电路的输入信号X是与时钟脉冲同步的串行数据,输出信号为Z;要求电路在X信号输入出现101序列时,输出信号Z为1,否则为0。要求以下列3种方式画出状态转换图。

- 1、可重叠
- 2、不可重叠
- 3、以3个数据为一组

6.3 时序逻辑电路的设计(状态化简)

原始状态表

现态(Sn) a b c d e f	次态/输出 (S ⁿ⁺¹ /Y)				
(S^n)	A=0	A=1			
a	a / 0	b / 0			
b	c / 0	d / 0			
C	a / 0	d / 0			
d	e / 0	f/1			
e	a / 0	f/1			
f	g/0	f/1			
g	a / 0	f/1			

6.3 时序逻辑电路的设计(状态化简)

现态	次态/输出 (S ⁿ⁺¹ /Y)				
(S^n)	A=0	A=1			
а	a / 0	b / 0			
b	c/0	d / 0			
c	a / 0	d / 0			
d	e / 0	f/1			
e	a / 0	f/1			
f	<i>g</i> / 0	f/1			

现态	次态/输出	(S^{n+1}/Y)
(S^n)	A=0	A=1
a	a / 0	b / 0
b	c / 0	d / 0
c	a / 0	d / 0
d	e / 0	f/1
e	a / 0	f/1
f	e / 0	f/1

6.3 时序逻辑电路的设计(状态化简)

现态	次态/输出 (S ⁿ⁺¹ /Y)				
(S^n)	A=0	A=1			
a	a / 0	b / 0			
b	c / 0	d / 0			
c	a / 0	d / 0			
d	e / 0	f/1			
e	a / 0	f/1			
		•			

最简的化简状态表

现态	次态/输出	(S^{n+1}/Y)
(S^n)	A=0	A=1
a	a / 0	b / 0
b	c / 0	d / 0
c	a / 0	d / 0
d	e / 0	d / 1
e	a / 0	d / 1

例 试设计一个同步时序电路,要求电路中触发器Qo、Q1、Q2及输 出Y端的信号与CP时钟脉冲信号波形满足下图所示的时序关系。

解:1、可直接由波形图画出电路状态图

2、确定触发器的类型和个数

触发器个数: 3个

触发器类型:上升沿触发的JK触发器

求出电路的激励方程和输出方程

						II.						
Q_2'	\mathbf{Q}_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y	J_2	K	\mathbf{J}_1	K	J_0	K
0	0	0	0	0	1	0	0	X	0	X	1	X
0	0	1	0	1	0	0	0	X	1	X	X	1
0	1	0	0	1	1	0	0	X	X	0	1	X
0	1	1	1	0	0	0	1	X	X	1	X	1
1	0	0	0	0	0	1	X	1	0	X	0	X

K=X

J=0 K=**X**

$$J_2 = Q_0^n Q_1^n$$

$$J=X$$

$$K=1$$

$$K=0$$

$$J=1$$

$$J_1 = Q_0^n K_1 = Q_0^n$$

 $J_0 = \overline{Q_2^n} K_0 = 1_{23}$

 $K_2 = 1$

$$J_0 = Q_2^n \quad K_0 = 1_{23}$$

求激励方程的第二种方法

\mathbb{Q}_2^n	Q_1^n	\mathbf{Q}_0^n	Q_2^{n+1}	Q_1^{n+1}	\mathbf{Q}_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

$$\mathbf{Q}_2^{n+1} = \mathbf{Q}_1^n \mathbf{Q}_0^n \overline{\mathbf{Q}_2^n}$$

$Q_2^{n'}$	$Q_0^n = 0$	01	11	10		
0	0	1	0	1		
1	0	×	×	×		
•		$\mathbf{Q_1}^{n+1}$				

$$\mathbf{Q}_1^{n+1} = \overline{\mathbf{Q}_1^n} \mathbf{Q}_0^n + \mathbf{Q}_1^n \overline{\mathbf{Q}_0^n}$$

$$Q_{2}^{n}$$
 Q_{0}^{n}
 Q_{0}^{n}
 Q_{0}^{n}
 Q_{0}^{n}
 Q_{0}^{n}
 Q_{0}^{n}
 Q_{0}^{n}
 Q_{0}^{n+1}

$$\mathbf{Q}_0^{n+1} = \overline{\mathbf{Q}_2^n} \bullet \overline{\mathbf{Q}_0^n}$$

$$\begin{cases}
Q_0^{n+1} = J_0 \overline{Q_0}^n + \overline{K_0} Q_0^n \\
Q_0^{n+1} = \overline{Q_2}^n \cdot \overline{Q_0}^n + 0.Q_0^n
\end{cases}
J_0 = \overline{Q_2}^n K_0 = 1$$

$$\begin{cases}
Q_1^{n+1} = J_1 \overline{Q_1}^n + \overline{K_1} Q_1^n \\
Q_1^{n+1} = Q_0^n \overline{Q_1}^n + \overline{Q_0}^n Q_1^n
\end{cases}
J_1 = Q_0^n K_1 = Q_0^n$$

$$\begin{cases}
Q_2^{n+1} = Q_0^n Q_1^n \overline{Q_2}^n = Q_0^n Q_1^n \overline{Q_2}^n + 0 \cdot Q_2^n
\end{cases}$$

$$\begin{cases}
Q_2^{n+1} = J_2 \overline{Q_2}^n + \overline{K_2} Q_2^n
\end{cases}$$

$$J_2 = Q_0^n Q_1^n K_2 = 1$$

输出方程: $Y = \mathbb{Q}_2^n$

4、检查自启动能力

$$Q_0^{n+1} = \overline{Q_2^n} \cdot \overline{Q_0^n}$$

$$Q_1^{n+1} = Q_0^n \overline{Q_1^n} + \overline{Q_0^n} Q_1^n$$

$$Q_2^{n+1} = Q_0^n \overline{Q_1^n} \overline{Q_2^n}$$

\mathbf{Q}_2^n	\mathbf{Q}_1^n	\mathbf{Q}_0^n	\mathbf{Q}_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1
1	0	1	0	1	0	1
1	1	0	0	1	0	1
1	1	1	0	0	0	1

4、检查自启动能力

\mathbb{Q}_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1
1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	0	0	0	0

输出方程:
$$Y = \mathbb{Q}_2^n$$
 \longrightarrow $Y = \mathbb{Q}_2^n \cdot \mathbb{Q}_1^n \cdot \mathbb{Q}_0^n$

4、Verilog设计

```
reg[2:0] state;
parameter
S0=3'b000,
S1=3'b001,
S2=3'b010,
S3=3'b011,
S4=3'b100;
```

如果计数器的模很大 该怎么办?

```
always@(posedge CP) begin
  case(state)
  S0: begin
      state = S1; Y = 0; end
  S1: begin
      state = S2; Y = 0; end
  S2: begin
      state = S3; Y = 0; end
  S3: begin
      state = S4; Y = 0; end
  S4: begin
      state = S0; Y = 1; end
  default: begin
      state = S0; Y = 0; end
  endcase
end
```