Optimal scaling for Proximal MALA

Francesca R. Crucinio ¹ Alain Durmus ² Pablo Jiménez ³ and Gareth O. Roberts ⁴

¹CREST, ENSAE Paris

²CMAP, École Polytechnique

³Sorbonne Université and Université Paris Cité

⁴Department of Statistics, University of Warwick

31 October 2023

Outline

- 1 Markov chain Monte Carlo
- 2 Proximal MCMC
- Optimal scaling for Proximal MALA

Markov chain Monte Carlo

Aim: sample from a probability distribution π on \mathbb{R}^d and approximate expectations w.r.t. π

$$\int f(x)\pi(x)\mathrm{d}x$$

Motivation: compute posterior expectations in Bayesian inference

Metropolis-Hastings

Build a Markov chain $(X_k)_{k\geq 0}$ such that, given the current state X_k

- Sample $Y \sim q(X_k, \cdot)$
- with probability

$$\frac{\pi(Y)q(Y,X_k)}{\pi(X_k)q(X_k,Y)}\wedge 1.$$

set
$$X_{k+1} = Y$$
, otherwise, set $X_{k+1} = X_k$.

- ▶ RWM: $q(X_k, \cdot) = \mathcal{N}(\cdot; X_k, \sigma^2 I_d)$
- ▶ MALA: $q(X_k, \cdot) = \mathcal{N}(\cdot; X_k + \frac{\sigma^2}{2} \nabla \log \pi(X_k), \sigma^2 I_d)$

Markov chain Monte Carlo **Proximal MCMC** Optimal scaling for Proximal MALA References

Outline

- 1 Markov chain Monte Carlo
- 2 Proximal MCMC
- Optimal scaling for Proximal MALA

Proximal MCMC: Idea

- ▶ Build a proposal *q* using a **proximity map**.
- ▶ Main idea introduced in (Pereyra, 2016) then refined in (Durmus et al., 2018).
- lacktriangle Can be applied to non-differentiable targets π

Proximity map

Proximity map

For g convex, proper and lower semi-continuous and $\lambda>0$

$$\operatorname{prox}_g^{\lambda}({m x}) := \arg\min_{{m u} \in \mathbb{R}^d} \left[g({m u}) + rac{\|{m u} - {m x}\|^2}{2\lambda}
ight].$$

Moves points in the direction of the minimum of g.

Take $\pi(\mathbf{x}) \propto \exp(-g(\mathbf{x}))$. For each $\lambda > 0$ we can build an approximation π_{λ} of π .

Moreau-Yoshida envelope

Figure: Moreau-Yoshida envelope for the Laplace distribution $\pi(x) \propto \exp(-|x|)$ (Pereyra, 2016).

Moreau-Yoshida envelope

Figure: Moreau-Yoshida envelope for $\pi(x) \propto \exp(-x^4)$ (Pereyra, 2016).

Proximal MCMC

Since π_{λ} is differentiable for any $\lambda>0$, we can build a MALA-like algorithm to sample from π_{λ} :

$$q(X_k, Y) = \mathcal{N}\left(Y; X_k + \frac{\sigma^2}{2} \nabla \log \pi_{\lambda}(X_k), \sigma^2 I_d\right)$$
$$= \mathcal{N}\left(Y; X_k + \frac{\sigma^2}{2\lambda} \left(\operatorname{prox}_g^{\lambda}(X_k) - X_k\right), \sigma^2 I_d\right),$$

and then accept/reject using the usual MH step

$$\frac{\pi(Y)q(Y,X_k)}{\pi(X_k)q(X_k,Y)}\wedge 1.$$

Markov chain Monte Carlo Proximal MCMC Optimal scaling for Proximal MALA References

Outline

- 1 Markov chain Monte Carlo
- 2 Proximal MCMC
- 3 Optimal scaling for Proximal MALA

Our aim

Investigate the optimal scaling properties of proximal MCMC for targets

$$\pi_d(\mathbf{x}) = \prod_{i=1}^d \pi(x_i) \propto \exp\left(-\sum_{i=1}^d g(x_i)\right)$$

when both $\sigma_d \rightarrow 0$ and $\lambda_d \rightarrow 0$ for

- differentiable g
- the Laplace distribution, g(x) = |x|

Notation

We consider

$$\sigma_d^2 = \frac{\ell^2}{d^{\alpha}}, \qquad \lambda_d = \frac{c^2}{2d^{\beta}}$$

for some $\alpha, \beta > 0$.

Differentiable targets

Given $\pi_d(\mathbf{x}) \propto \exp\left(-\sum_{i=1}^d g(x_i)\right)$, the proposal for proximal MCMC is

$$q(\mathbf{x}, \mathbf{y}) = \prod_{i=1}^{d} \mathcal{N}\left(y_i; x_i + \frac{\sigma_d^2}{2} g'\left(\operatorname{prox}_g^{\lambda_d}(x_i)\right), \sigma_d^2 I_d\right).$$

• c=0 we get $\mathbf{x}+\frac{\sigma_d^2}{2}g'\left(\mathrm{prox}_{\mathbf{g}}^{\lambda_d}(\mathbf{x})\right)=\mathbf{x}+\frac{\sigma_d^2}{2}g'(\mathbf{x})$, i.e. MALA

Differentiable targets -g' Lipschitz

- $\sigma_d^2 = \ell^2 d^{-1/3}$, $\lambda_d = c^2 d^{-\beta}/2$, $\beta > 1/3$
 - lacktriangle acceptance rate $a(\ell)=2\Phi\left(-rac{\ell^3K_1}{2}
 ight)$ and $K_1=K_{MALA}$
 - ▶ speed $h(\ell) = \ell^2 a(\ell)$ maximized at $a(\ell) = 0.574$
- $\sigma_d^2 = \ell^2 d^{-1/3}$, $\lambda_d = c^2 d^{-1/3}/2$
 - ▶ define $r:=c^2/\ell^2>0$, acceptance rate $a(\ell,r)=2\Phi\left(-\frac{\ell^3K_2(r)}{2}\right)$ and $K_2^2(r)\geq K_{MALA}^2$ and increasing
 - ▶ speed $h(\ell, r) = \ell^2 a(\ell, r)$ maximized at $a(\ell, r) = 0.574$

Differentiable targets – g' **not** Lipschitz

•
$$\sigma_d^2 = \ell^2 d^{-1/2}$$
, $\lambda_d = c^2 d^{-1/4}/2$

- ▶ define $r:=c^2/\ell>0$, acceptance rate $a(\ell,r)=2\Phi\left(-\frac{\ell^2K_3(r)}{2}\right)$ and $K_3^2(r)=r^2\mathbb{E}_X\left[\frac{[g''(X)g'(X)]^2}{4}\right]$
- ▶ speed $h(\ell, r) = \ell^2 a(\ell, r)$ maximized at $a(\ell) = 0.452$

Differentiable targets -g' Lipschitz

Figure: Speed of Langevin diffusion as a function of $r=c^2/\ell^2$ for a Gaussian target.

Differentiable targets – g' **not** Lipschitz

Figure: Speed of Langevin diffusion as a function of $r = c^2/\ell^2$ for a light tail target $\pi(x) \propto \exp(-x^6)$.

Laplace target

Given $\pi_d(\mathbf{x}) \propto \exp\left(-\sum_{i=1}^d |x_i|\right)$, the proposal for proximal MCMC is

$$q(\mathbf{x}, \mathbf{y}) = \prod_{i=1}^{d} \mathcal{N}\left(y_i; f(x_i), \sigma_d^2\right),\,$$

where

$$f(x_i) = x_i - \frac{\sigma_d^2}{2} \operatorname{sgn}(x_i) \mathbb{1}_{|x_i| \ge \lambda_d}(x_i) - \frac{\sigma_d^2}{2\lambda_d} x_i \mathbb{1}_{|x_i^d| < \lambda_d}(x_i)$$

Laplace target

•
$$\sigma_d^2 = \ell^2 d^{-2/3}$$
, $\lambda_d = c^2 d^{-\beta}/2$, $\beta > 2/3$

- lacktriangle acceptance rate $a(\ell) = 2\Phi\left(-\frac{\ell^{3/2}}{(72\pi)^{1/4}}\right)$
- ▶ speed $h(\ell) = \ell^2 a(\ell)$ maximized at $a(\ell) = 0.360$

The case c = 0 corresponds to a subgradient version of MALA.

Take home messages

When implementing proximal MALA we need to take into consideration: efficiency, robustness (i.e. when is the Markov chain geometrically ergodic?), cost of obtaining gradients

We have not explored the robustness of proximal MALA, however,

- if MALA is geometrically ergodic and $\nabla \log \pi(x)$ is cheaper than $\operatorname{prox}_{g}^{\lambda}(x) \to \operatorname{use} \operatorname{MALA}$
- in cases in which $\nabla \log \pi(x)$ is more expensive than $\operatorname{prox}_g^{\lambda}(x)$ \rightarrow use proximal MALA with λ as small as possible
- for light tail distributions use proximal MALA

Markov chain Monte Carlo Proximal MCMC Optimal scaling for Proximal MALA References

Thank you!

Markov chain Monte Carlo Proximal MCMC Optimal scaling for Proximal MALA References

Bibliography I

Alain Durmus, Eric Moulines, and Marcelo Pereyra. Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau. SIAM Journal on Imaging Sciences, 11(1):473–506, 2018.

Marcelo Pereyra. Proximal Markov chain Monte Carlo algorithms. Statistics and Computing, 26(4):745-760, 2016.