Limbaje formale, automate şi compilatoare

Curs 10

- Analiza sintactică descendentă
 - Parser descendent general
- Gramatici LL(1)
 - Definiție
 - Caracterizare
 - FIRST, FOLLOW
 - Tabela de parsare
 - Algoritmul de analiză sintactică LL(1)

Analizor sintactic descendent. Configurații

- O configurație (u#, γ #, π) este interpretată în felul următor:
 - –γ# este conţinutul stivei cu simbolul # la bază.
 - –u# este conţinutul intrării.
 - $-\pi$ este conținutul ieșirii.

Analizor sintactic descendent. Tranziții

- Dacă C este mulțimea configurațiilor atunci ⊢⊆CxC este relația de tranziție definită astfel:
 - $(u\#, A\gamma\#,\pi) \vdash (u\#, \beta\gamma\#,\pi r)$, unde $r = A \rightarrow \beta \in P$. (aplicare regulă, expandare)
 - $(uv\#, u\gamma\#, \pi) \vdash (v\#, \gamma\#, \pi)$. (potrivire)
 - $-(\#, \#, \pi)$ este configurație de acceptare dacă $\pi \neq \epsilon$.
 - O configurație c pentru care nu există c' astfel ca c⊢c' produce eroare.
 - Configurații inițiale: (w#, S#, ε) unde w∈T*

Exemplu

• 1.E \rightarrow E+T, 2.E \rightarrow T, 3.T \rightarrow T*F, 4.T \rightarrow F, 5.F \rightarrow (E), 6.F \rightarrow a

Intrare	Stivă	Ieşire
a+a*a#	E#	
a+a*a#	E+T#	1
a+a*a#	T+T#	12
a+a*a#	F+T#	124
a+a*a#	a+T#	1246
a*a#	T#	1246
a*a#	T*F#	12463
a*a#	F*F#	124634
a*a#	a*F#	1246346
a#	F#	1246346
a#	a#	12463466
#	#	12463466

Corectitudinea analizorului sintactic

- **Teorema** (de corectitudine a analizorului)
 - Fie gramatica redusă G=(N,T,S,P) şi w∈T*. Atunci, are loc (w#,S#,ε)⊢+(#,#,π) (acceptare) dacă şi numai dacă w∈L(G) şi π este o derivare exrem stângă a cuvântului w.

Lema 1

• Dacă în analizorul sintactic descendent atașat gramaticii G=(N,T,S,P) are loc calculul $(uv\#,u\gamma\#,\epsilon)\vdash^+(v\#,\psi\#,\pi)$, atunci în gramatica G are loc derivarea $\gamma^\pi \Rightarrow_{st} u\psi$, oricare ar fi $u,v\in T^*$, γ , $\psi\in \Sigma^*$, $\pi\in P^*$.

• Lema 2

- Dacă în gramatica G are loc derivarea $\gamma^{\pi} \Rightarrow_{st} u\psi$ și $1:\psi \in \mathbb{N} \cup \{\epsilon\}$ atunci în parserul descendent are loc calculul: $(uv\#, u\gamma\#, \epsilon) \vdash^+ (v\#, \psi\#, \pi), \forall v \in T^*.$
- Demonstrații: inducție după lungimea lui π

Observații

- Parserul este nedeterminist
- Există tipuri de gramatici pentru care este determinist?
- Construirea unei tabele de parsare

Gramatici LL(k)

- LL(k): Parsing from Left to right using Leftmost derivation and k symbols lookahead.
- Informal, o gramatică este LL(k) dacă tranziția de tip "aplicare producție" din parser se face cu o unică regulă A→β, determinată prin următoarele k simboluri de la intrare.
- Definiţie
 - k: α reprezintă primele k simboluri din α (sau α dacă $|\alpha| < k$)
 - α :k reprezintă ultimele k simboluri din α (sau α dacă $|\alpha| < k$)

Gramatici LL(k)

Defininiție

- O gramatică independentă de context redusă este gramatică LL(k), k≥1, dacă pentru orice două derivări de forma:
 - $S \Rightarrow *_{st} u A \gamma \Rightarrow_{st} u \beta_1 \gamma \Rightarrow *_{st} u x$
 - $S \Rightarrow *_{st} uA\gamma \Rightarrow_{st} u\beta_2 \gamma \Rightarrow *_{st} uy$
- unde u, x, y \in T*, pentru care k:x = k:y, are loc $\beta_1 = \beta_2$.

Gramatici LL(k)

Teorema

• Orice gramatică LL(k) este neambiguă.

Teorema

• Dacă G este o gramatică stâng recursivă, atunci nu există nici un număr k astfel încât G să fie LL(k).

Teorema

- Clasele de limbaje LL(k)formează o ierarhie infinită:
 - $\mathscr{L}\mathscr{L}(0) \subset \mathscr{L}\mathscr{L}(1) \subset \mathscr{L}\mathscr{L}(2) \subset \ldots \subset \mathscr{L}\mathscr{L}(k) \subset \mathscr{L}\mathscr{L}(k+1) \subset \ldots$

Lema

 Există limbaje care nu sunt LL(k) pentru nici o valoare k∈N.

Gramatici LL(1). Caracterizare

Teoremă

- O gramatică G = (N, T, S, P) este gramatică LL(1) dacă și numai dacă pentru orice $A \in N$ și pentru orice două producții $A \rightarrow \beta_1 | \beta_2$ are loc:
- FIRST $(\beta_1 \text{ FOLLOW } (A)) \cap \text{FIRST} (\beta_2 \text{ FOLLOW } (A)) = \emptyset$

Tabela de parsare LL(1)

```
1.\text{for}(A \in N)
 • 2.\text{for}(a \in T \cup \{\#\})
         3.M(A,a) = \emptyset;
4.\text{for}(p=A \rightarrow \beta \in P)
 • 5.for(a \in FIRST(\beta)-\{\epsilon\})
         6.M(A,a)=M(A,a)\cup {(\beta,p)};
 • 7.if(\varepsilon \in FIRST(\beta))
         8.\text{for}(b \in FOLLOW(A))
           • 9.if(b== \varepsilon) M(A,#)=M(A,#)U{(\beta,p)};
           • 10.else M(A,b)=M(A,b)\cup\{(\beta,p)\};
      }//endfor
 • }//endif
```

- }//endfor
- 11.for(A∈N)
 - 12.for(aETU{#})
 - $13.if(M(A,a)=\emptyset) M(A,a)=\{eroare\};$

Exemplu

• $S \rightarrow aSa \mid bSb \mid c$

M	a	b	C	#
S	(aSa, 1)	(bSb, 2)	(c, 3)	eroare

 $ightharpoonup S
ightharpoonup aSa \mid bSb \mid a \mid b \mid c \mid \varepsilon$

M	a	b	C	#
S	(aSa, 1)	(bSb, 2)	(c, 5)	$(\epsilon, 6)$
	(a, 3)	(b, 4)		
	$(\epsilon, 6)$	$(\epsilon, 6)$		

Parser LL(1)

- Configurația inițială: (w#, S#, ε)
- Tranziţii
 - $(u\#, A\gamma\#, \pi) \vdash (u\#, \beta\gamma\#, \pi r), \text{ dacă } M(A, 1:u\#) = (\beta, r),$ (expandare)
 - $(uv\#, u\gamma\#, \pi) \vdash (v\#, \gamma\#, \pi)$ (potrivire)
 - $(\#, \#, \pi) \vdash \text{acceptare}, \text{dacă } \pi \neq \epsilon \text{ (acceptare)}$
 - (au#, by#, π) \vdash eroare dacă a \neq b
 - $(u\#, A\gamma\#, \pi) \vdash \text{eroare dacă } M(A, 1:u\#) = \text{eroare}$

Exemplu

• 1. S \rightarrow E, 2. S \rightarrow B, 3. E \rightarrow ϵ , 4. B \rightarrow a, 5. B \rightarrow begin SC end, 6. C \rightarrow ϵ , 7. C \rightarrow ;SC

	FIRST	FOLLOW
S	a, begin, ε	end, ;, ε
E	3	end, ;, ε
В	a, begin	end, ;, ε
C	;, ε	end

	a	begin	end	;	#
S	(B,2)	(B, 2)	(E, 1)	(E, 1)	(E, 1)
E	error	error	(ε, 3)	$(\epsilon, 3)$	$(\epsilon, 3)$
В	(a, 4)	(begin SC end, 5)	error	error	error
С	error	error	(ε, 6)	(;SC, 7)	error

Intrare	Stivă	Acţiune	Ieşire
begin a;;a end#	S#	expandare	2
begin a;;a end#	В#	expandare	5
begin a;;a end#	begin SC end#	potrivire	
a;;a end#	SC end#	expandare	2
a;;a end#	BC end#	expandare	4
a;;a end#	aC end#	potrivire	
;;a end#	C end#	expandare	7
;;a end#	;SC end#	potrivire	
;a end#	SC end#	expandare	1
;a end#	EC end#	expandare	3
;a end#	C end#	expandare	7
;a end#	;SC end#	potrivire	
a end#	SC end#	expandare	2
a end#	BC end#	expandare	4
a end#	aC end#	potrivire	
end#	C end#	expandare	6
end#	end#	potrivire	
#	#	acceptare	

Eliminarea recursiei stângi

- Fie G = (N, T, S, P) o gramatică în formă redusă
- Fie A∈N imediat recursiv
- Fie $A \rightarrow A\alpha_1 |A\alpha_2| \dots A\alpha_k |\beta_1|\beta_1| \dots$ toate regulile care încep cu A. Fie P_A mulțimea acestor reguli.
- Gramatica G' unde A nu este recursiv imediat
 - $G'=(N\cup\{A'\}, T, S, P')$
 - P'=P-P_A \cup {A' $\rightarrow \alpha_1$ A' $|\alpha_2$ A' $|\ldots \alpha_k$ A' $|\epsilon$, A $\rightarrow \beta_1$ A' $|\beta_2$ A' $|\ldots$ }

Eliminarea recursiei stângi

- $E \rightarrow E+T \mid E-T \mid -T \mid T$
- $T \rightarrow T*F \mid T/F \mid F$
- $F \rightarrow (E) \mid a$
- $E \rightarrow TE' \mid -TE'$
- E' \rightarrow +T E'|-TE'| ϵ
- $T \rightarrow FT$
- T' \rightarrow *FT' | /FT' | ϵ
- $F \rightarrow (E) \mid a$

Eliminarea recursiei stângi

	FIRST	FOLLOW
E	(a -	ε)
Ε'	3 - +	ε)
Т	(a	3 - +
T'	* / E	+ - ε)
F	(a	*/+-&)

	a	+	-	*	/	()	#
E	(TE',1)	error	(-TE',2)	error	error	(TE',1)	error	error
Ε'	error	(+TE',3)	(-TE',4)	error	error	error	(ε, 5)	(ε, 5)
Т	(FT', 6)	error	error	error	error	(FT', 6)	error	error
T'	error	(E , 9)	(ε, 9)	(*FT',7)	(/FT',8)	error	(ε, 9)	(ε, 9)
F	(a, 11)	error	error	error	error	((E),10)	Error	error

Factorizare la stânga

- Factorizarea este o transformare aplicată asupra unei gramatici pentru a obține o gramatică echivalentă, eventual LL(1)
- Dacă există producțiile
 - $A \rightarrow \alpha \beta_1$, $A \rightarrow \alpha \beta_2$ cu $|\alpha| > 1$
- (deci gramatica nu este LL(1)), acestea se înlocuiesc cu
 A→αA', A' un nou neterminal, şi producţiile A'→β₁ şi
 A'→β₂. Metoda de transformare se numeşte factorizare la
 stânga

Factorizare la stânga: Exemplu

- Fie gramatica
 - $S \rightarrow if E then S | if E then S else S | a$
 - $E \rightarrow b$
- factorizarea la stânga: $\alpha = if E$ then S
- Gramatica echivalentă va fi
 - $S \rightarrow if E then S S' \mid a$
 - S' \rightarrow else S | ϵ
 - $E \rightarrow b$

Factorizare la stânga: Exemplu

	a	b	if	then	else	#
S	(a,2)	error	(If E then S S',1)	error	error	error
S'	error	error	error	error	(else S,3)	(8,4)
					(£,4)	
E	error	(b,5)	error	error	error	error

- Prin factorizare nu este sigur că obținem o gramatică LL(1).
- Putem rezolva ambiguitatea alegând regula S'→else S în M(S', else). Această alegere ar corespunde asocierii lui else pentru acel if precedent cel mai apropiat de el, soluție adoptată de majoritatea limbajelor de programare.

Corectitudinea parserului LL(1)

- Este dovedită pe baza
 - Teoremei de corectitudine a parserului descendent general,
 - Teoremei de caracterizare a gramaticilor LL(1)
 - Modului în care a fost construită tabela de parsare

Bibliografie

- A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools, Second Edition. Addison-Wesley, 2007
- G. Grigoraș, *Construcția compilatoarelor. Algoritmi fundamentali*, Editura Universității "Alexandru Ioan Cuza", Iași, 2005