Applied Epidemiology I: Data Management

Enoch Yi-Tung Chen

Department of Medical Epidemiology and Biostatistics, Karolinska Insitutet

January 28, 2021

- First came to Sweden as an exchange at Lund University, Spring 2018
- MSc in Public Health Sciences, Epi, KI (2018-2020)

- First came to Sweden as an exchange at Lund University, Spring 2018
- MSc in Public Health Sciences, Epi, KI (2018-2020)
- Joined MEB as a thesis student in Jan 2020 and then Covid came
- Continued as a research assistant from June 2020 till now

- First came to Sweden as an exchange at Lund University, Spring 2018
- MSc in Public Health Sciences, Epi, KI (2018-2020)
- Joined MEB as a thesis student in Jan 2020 and then Covid came
- Continued as a research assistant from June 2020 till now
- Fascinated by population-based epi studies
- Interested in stat methods in survival analysis and health economics

- First came to Sweden as an exchange at Lund University, Spring 2018
- MSc in Public Health Sciences, Epi, KI (2018-2020)
- Joined MEB as a thesis student in Jan 2020 and then Covid came
- Continued as a research assistant from June 2020 till now
- Fascinated by population-based epi studies
- Interested in stat methods in survival analysis and health economics
- I love animals, so don't be surprised to see them in some example.

Something to know about Stata session

- It is my FIRST time to run a course.
- Will teach all the labs in Stata along with exercises and Q&A (see the schedule)
- Other softwares are welcome to use, but I may not be able to answer your questions on them. (I mainly use Stata or R.)

Something to know about Stata session

- It is my FIRST time to run a course.
- Will teach all the labs in Stata along with exercises and Q&A (see the schedule)
- Other softwares are welcome to use, but I may not be able to answer your questions on them. (I mainly use Stata or R.)
- Previous materials, including teaching videos, can be found at https://enochytchen.com/courses/biostatbasics/.
- But please refer to Canvas for the latest materials for this year's course.

Something to know about Stata session

- It is my FIRST time to run a course.
- Will teach all the labs in Stata along with exercises and Q&A (see the schedule)
- Other softwares are welcome to use, but I may not be able to answer your questions on them. (I mainly use Stata or R.)
- Previous materials, including teaching videos, can be found at https://enochytchen.com/courses/biostatbasics/.
- But please refer to Canvas for the latest materials for this year's course.
- Questions are welcome. But please give me codes (and log files) and 2-3 working days. enoch.yitung.chen@ki.se

Acknowledgements

This course material in data management is based on my learning from Anna Johansson's workshop at KI library 1 , teachings in Good Data Management Practice in Epidemiological Research, and MEB Guidelines for Documentation and Archiving Version 6 2 . I personally want to thank for their effort on education in data management.

I especially want to thank Marlene Stratmann for reviewing the slides and Prof. Paul Dickman for providing me with suggestions to improving the teaching.

¹This workshop is currently available on KI Play as well.

²The Department of Medical Epidemiology and Biostatistics, Karolinska Institutet. MEB Guidelines for Documentation and Archiving Version 6. 2018.

Outline

- What if no data management?
- 2 Aims of data management (also learning outcomes)
- 3 Good folder structure
- 4 Good documents
- 6 Good Readme.txt
- 6 Good master.do
- Good habits on coding
- Other do's and don'ts
- Wrap it up

In the beginning,

On the half-way of the research,

At the end, or saying you cannot even walk till the end?

Imagine now

• if you want to correct Table I, where is the do file for descriptive analysis?

Imagine now

- if you want to correct Table I, where is the do file for descriptive analysis?
- if your supervisor says, "Please summarise how far you've gone in this project." You probably cannot just drop him/her your syntax.

Imagine now

- if you want to correct Table I, where is the do file for descriptive analysis?
- if your supervisor says, "Please summarise how far you've gone in this project." You probably cannot just drop him/her your syntax.
- if your classmate asks you to teach her how to write a certain Stata code, you remember you've done it before, but where did you put it?

Imagine now

- if you want to correct Table I, where is the do file for descriptive analysis?
- if your supervisor says, "Please summarise how far you've gone in this project." You probably cannot just drop him/her your syntax.
- if your classmate asks you to teach her how to write a certain Stata code, you remember you've done it before, but where did you put it?
- if your collaborator needs to take over your analysis, can he/she understand what you've completed?

So I would say you need to have a friend called

Data Management

• To ensure the analysis is reproducible

- To ensure the analysis is reproducible
- To work coherently and efficiently with yourself

- To ensure the analysis is reproducible
- To work coherently and efficiently with yourself
- To ensure the project can be understood by others (supervisors, collaborators, and future readers)

- To ensure the analysis is reproducible
- To work coherently and efficiently with yourself
- To ensure the project can be understood by others (supervisors, collaborators, and future readers)
- To create a good work flow and enhance accuracy of work

Good folder structure

The core elements of folders are listed below:

- Data
- Documents
- Log
- Output
- Program

Figure: Good project folder structure. (Please bear with me that I am Mac user!)

Good documents

Besides good folder structure, you should also consider keeping good documents

- Analysis plan
- Codebook³
- Dummy table
- Logbook³
- Manuscript

Figure: Good project folder structure.

³can be included in analysis plan as well

Good Readme.txt

- You should illustrate how to use these documents/folders in the Readme.txt.
- A good Readme.txt is a good tourist guide in this project folder.

Figure: Good project folder structure.

Good master.do

- master.do file tells the order of executing the do files.
- Do not do all the analyses in the same do file.
- Separate them and use master.do to organise them.

Figure: Once you execute master.do, it will run all the specified do-files.

Good habit on coding

- log on
- Filename
- Study
- Created
- Updated
- Purpose
- Note
- Program
- log close

```
// End of Stata code
```

// Start of Stata code

```
log close
```

Good habit on coding

- Talk to yourself what you are doing.
- You've got a friend in me! (Parallel analysis)
- Rubber duck debugging

 Use a shared drive/project server. (Required to do that because of data privacy.)

- Use a shared drive/project server.
 (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.

- Use a shared drive/project server.
 (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)
 - For binomial variables, = 1 implies yes, and = 0 implies no.

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)
 - For binomial variables, = 1 implies yes, and = 0 implies no.
 - Label your variables, please!

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)
 - For binomial variables, = 1 implies yes, and = 0 implies no.
 - Label your variables, please!
- 3. Same names for linking files (.do .r .sas \rightarrow .log \rightarrow .doc)

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)
 - For binomial variables, = 1 implies yes, and = 0 implies no.
 - Label your variables, please!
- 3. Same names for linking files (.do .r .sas \rightarrow .log \rightarrow .doc)
- 4. Don't replace the original files or variables.

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)
 - For binomial variables, = 1 implies yes, and = 0 implies no.
 - Label your variables, please!
- 3. Same names for linking files (.do .r .sas \rightarrow .log \rightarrow .doc)
- 4. Don't replace the original files or variables.
- 5. Don't edit the data directly. Please write syntax.

Wrap it up

- In summary, a good data management contains GOOD
 - 1. folder structure
 - 2. documents
 - 3. readme
 - 4. habits

Wrap it up

- In summary, a good data management contains GOOD
 - 1. folder structure
 - 2. documents
 - 3. readme
 - 4. habits
- How can this lecture help you?
- The templates you can use for DM your current and future projects.