photobiologyFilters Version 0.2.1 Catalogue of filters

Pedro J. Aphalo

January 23, 2015

Contents

1	Intr	roduction	1
2	Dummy filters		
	2.1	Perfectly clear filter	2
3	Plastic films		
	3.1	Cellulose diacetate	2
	3.2	Polyester	6
	3.3	Polythene	7
	3.4	Rosco theatrical filters	7
	3.5	Commercial greenhouse films from BPI Agri Visqueen	10
4	Plastic sheets		
	4.1	Plexiglas	12
	4.2	Polycarbonate	14
	4.3	Polyestyrene	15
	4.4	Polyester	16
	4.5	Polyvinilchloride	16
5	Optical glass filters		
	$5.\overline{1}$	Schott long-pass filters	18
	5.2	Schott band-pass filters	28
1	Iı	ntroduction	

1 Introduction

library(ggplot2)
library(photobiologyFilters)
library(photobiologygg)

```
filter.plotter <- function(filter_name, w.low=280, w.high=1100) {
  obj.name <- paste(filter_name, ".spct", sep="")
  spct <- get(obj.name)
  trim_spct(spct, waveband(c(w.low, w.high)), fill=NULL)
  print(plot(spct) + labs(title=obj.name) + theme_bw(10))
}</pre>
```

2 Dummy filters

2.1 Perfectly clear filter

3 Plastic films

3.1 Cellulose diacetate

```
plot(acetate.115um.new.spct)
plot(acetate.250um.new.spct)
plot(acetate.480um.new.spct)
```



```
plot(acetate.ageing0.spct)
plot(acetate.ageing20.spct)
plot(acetate.ageing30.spct)
plot(acetate.ageing60.spct)
plot(acetate.ageing100.spct)
plot(acetate.ageing180.spct)
plot(acetate.ageing300.spct)
```


Wavelength (nm)

3.2 Polyester

3.3 Polythene

```
plot(polythene.new.spct)
plot(polythene.used.spct)
```


3.4 Rosco theatrical filters

```
plot(clear.00.new.spct)
plot(uv.226.new.spct)
plot(uv.226.used.spct)
plot(canary.yellow.new.spct)
plot(canary.yellow.used.spct)
plot(moss.green.new.spct)
plot(moss.green.used.spct)
plot(rose.pink.new.spct)
plot(neon.pink.used.spct)
```


 $3.5 \quad \hbox{Commercial greenhouse films from BPI Agri Visqueen}$

4 Plastic sheets

4.1 Plexiglas

```
plot(PLX0A000_XT.spct)
plot(PLX0A570_GT.spct)
plot(PLX0F00_GT.spct)
plot(PLX0Z023_GT.spct)
```



```
plot(PLX1C33_GT.spct)
plot(PLX2C04_GT.spct)
plot(PLX3C01_GT.spct)
plot(PLX5C01_GT.spct)
```


4.2 Polycarbonate

```
plot(PC.spct)
plot(PC_UV.spct)
```


4.3 Polyestyrene

plot(PS.spct)

4.4 Polyester

plot(Pet_G.spct)

4.5 Polyvinilchloride

plot(PVC.spct)

5 Optical glass filters

5.1 Schott long-pass filters

plot(bg25.spct)
plot(bg3.spct)
plot(bg7.spct)

plot(kg2.spct)
plot(kg3.spct)
plot(kg5.spct)


```
plot(n_wg280.spct)
plot(n_wg295.spct)
plot(n_wg305.spct)
plot(n_wg320.spct)
```


2000 3000 Wavelength (nm)


```
plot(rg715.spct)
plot(rg780.spct)
plot(rg830.spct)
plot(rg850.spct)
plot(rg9.spct)
```


5.2 Schott band-pass filters

