```
Jupyter Notebook
Assignment 2 and 3 Last Checkpoint: 2 minutes ago (autosaved) Current Kernel Logo Logout
Python 3
Not Trusted
  • File
          New NotebookDropdown
             Python 3
       o Open...
       0
       • Make a Copy...
       Save as...
       • Rename...

    Save and CheckpointCtrl-S

       0
          Revert to CheckpointDropdown

    Wednesday, 25 August 2021 19:16

       0
          Print Preview
          Download asDropdown

    AsciiDoc (.asciidoc)

             HTML (.html)
             LaTeX (.tex)

    Markdown (.md)

    Notebook (.ipynb)

    PDF via LaTeX (.pdf)

    <u>reST (.rst)</u>

             Python (.py)

    Reveal.js slides (.slides.html)

    PDF via pyppeteer (.html)

       • Deploy as
       • Trust Notebook

    Close and Halt

    Edit

    <u>Cut Cellsx</u>

    Copy Cellsc

       • Paste Cells AboveShift-V
       • Paste Cells Belowy

    Paste Cells & Replace

    Delete CellsD,D

    Undo Delete Cellsz

          Split CellCtrl-Shift-Minus
       0
          Merge Cell Above
       0
          Merge Cell Below
       0
          Move Cell Up
          Move Cell Down
       0
        0
          Edit Notebook Metadata

    Find and Replace

       • Cut Cell Attachments

    Copy Cell Attachments

    Paste Cell Attachments

    Insert Image

    View

    <u>Toggle Header</u>

       • Toggle Toolbar
          Toggle Line NumbersShift-L
       • Cell Toolbar
             None
               Edit Metadata
               Raw Cell Format
               Slideshow
               <u>Attachments</u>
               <u>Tags</u>

    Insert

    Insert Cell Abovea

    Insert Cell BelowB

    Cell
       • Run CellsCtrl-Enter
       • Run Cells and Select BelowShift-Enter
       • Run Cells and Insert BelowAlt-Enter

    Run All

       • Run All Above
```

```
Cell Type
             Codey
             Markdownm

    Raw NBConvertR

          Current Outputs

    <u>Toggle0</u>

    <u>Toggle ScrollingShift-0</u>

             Clear

    All Output

             ■ <u>Toggle</u>

    <u>Toggle Scrolling</u>

             Clear
     Kernel
        • InterruptI,I
        o Restarto,o

    Restart & Clear Output

    Restart & Run All

    Reconnect

        • <u>Shutdown</u>

    Change kernel

             Python 3
    <u>Widgets</u>

    Save Notebook Widget State

          Clear Notebook Widget State

    <u>Download Widget State</u>

        • Embed Widgets
   • Help

    User Interface Tour

        • Keyboard Shortcutsн

    Edit Keyboard Shortcuts

    Notebook Help

    Markdown

    Python Reference

          IPython Reference

    NumPy Reference

        • SciPy Reference

    Matplotlib Reference

    SymPy Reference

        o pandas Reference
        0
        • About
Run ___
Code
In [35]:
#import the libralies
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
%reload_ext autoreload
%autoreload
In [8]:
#load the the data files
#display the data in a table format
{\tt df=pd.read\_csv("WA\_Fn-UseC\_-HR-Employee-Attrition.csv")}
pd.set_option("display.max_columns", None)
df.head(5)
Out[8]:
 Age Attrition BusinessTravel DailyRate Department DistanceFromHome Education EducationField EmployeeCount EmployeeNumber
```

0

Run All Below

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumbe
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1
1	49	No	Travel_Frequently	1779	Research & Development	8	1	Life Sciences	1	2
2	37	Yes	Travel_Rarely	113/3	Research & Development	2	2	Other	1	4
3	33	No	Travel_Frequently	11347	Research & Development	3	4	Life Sciences	1	5
4	27	No	Travel_Rarely	1591	Research & Development	2	1	Medical	1	7

In [4]:

df.describe()
Out[4]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRat
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.00000
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.891156
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.000000
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.000000
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.750000
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.000000

In [5]:

xxxxxxxxx

df.shape Out[5]:

(1470, 35)

In [6]:

df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 1470 entries, 0 to 1469 Data columns (total 35 columns):

Non-Null Count Dtype # Column 0 1470 non-null int64 Age Attrition 1470 non-null object ${\tt BusinessTravel}$ 1470 non-null object 3 4 5 DailyRate 1470 non-null int64 Department 1470 non-null object ${\tt DistanceFromHome}$ 1470 non-null int64 6 1470 non-null int64 Education EducationField 1470 non-null object 8 9 EmployeeCount 1470 non-null int64 1470 non-null EmployeeNumber int64 10 ${\tt EnvironmentSatisfaction}$ 1470 non-null int64 1470 non-null 11 Gender object HourlyRate 1470 non-null 12 int64 13 JobInvolvement 1470 non-null int64 JobLevel 1470 non-null 14 int64 JobRole 1470 non-null object 16 ${\tt JobSatisfaction}$ 1470 non-null int64 17 MaritalStatus 1470 non-null object 1470 non-null 18 MonthlyIncome int64 19 MonthlyRate 1470 non-null int64 20 NumCompaniesWorked 1470 non-null int64 21 1470 non-null object 22 OverTime 1470 non-null object 23 24 ${\tt PercentSalaryHike}$ 1470 non-null int64 PerformanceRating 1470 non-null int64 25 RelationshipSatisfaction 1470 non-null int64 26 StandardHours 1470 non-null int64 StockOptionLevel 1470 non-null int64 28 TotalWorkingYears 1470 non-null int64 29 ${\sf Training Times Last Year}$ 1470 non-null int64 int64 30 1470 non-null WorkLifeBalance 31 YearsAtCompany 1470 non-null int64 32 YearsInCurrentRole 1470 non-null int64 YearsSinceLastPromotion1470 non-null int64 34 YearsWithCurrManager 1470 non-null int64

dtypes: int64(26), object(9) memory usage: 402.1+ KB

In [7]:

df.isnull().values.any()

Out[7]: False

In [27]:

df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")

pd.set_option("display.max_columns", None)

df.head(5) Out[27]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumbe
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7

In [42]:

categorical_df = df.drop(['Age','DailyRate','Department','WorkLifeBalance','JobInvolvement','DistanceFromHome','Education','EmployeeCount','EmployeeNumber'
categorical_df.head()

Out[42]:

	Attrition	BusinessTravel	EducationField	Gender	JobRole	MaritalStatus	OverTime
		Travel_Rarely	Life Sciences	Female	Sales Executive	Single	Yes
1	No	Travel_Frequently	Life Sciences	Male	Research Scientist	Married	No
2	Yes	Travel_Rarely	Other	Male	Laboratory Technician	Single	Yes
3	No	Travel_Frequently	Life Sciences	Female	Research Scientist	Married	Yes
4	No	Travel_Rarely	Medical	Male	Laboratory Technician	Married	No

In [57]:

```
df["Attrition"] = df["Attrition"].astype('category')
df["BusinessTravel"] = df["BusinessTravel"].astype('category')
df["Gender"] = df["Gender"].astype('category')
df["EducationField"] = df["EducationField"].astype('category')
df["JobRole"] = df["JobRole"].astype('category')
df["MaritalStatus"] = df["MaritalStatus"].astype('category')
df["OverTime"]=df["OverTime"].astype("category")
df["Department"]=df["Department"].astype("category")
df.dtypes
Out[57]:
Age int64
```

Attrition category ${\tt BusinessTravel}$ category DailyRate int64 Department category DistanceFromHome int64 Education int64 EducationField category EmployeeCount int64 EmployeeNumber int64 ${\tt EnvironmentSatisfaction}$ int64 Gender category HourlyRate int64 JobInvolvement int64 JobLevel int64 JobRole category JobSatisfaction int64 MaritalStatus category MonthlyIncome int64 MonthlyRate int64 ${\tt NumCompaniesWorked}$ int64 0ver18 object OverTime category PercentSalaryHike int64 PerformanceRating int64 RelationshipSatisfaction int64 StandardHours int64 StockOptionLevel int64 TotalWorkingYears int64 TrainingTimesLastYear int64 WorkLifeBalance int64 YearsAtCompany int64 YearsInCurrentRole int64 ${\tt YearsSinceLastPromotion}$ int64 ${\it YearsWithCurrManager}$ int64 dtype: object

In [58]:

categorical_df = df.drop(['Age','DailyRate','WorkLifeBalance','JobInvolvement','DistanceFromHome','Education','EmployeeCount','EmployeeNumber','Environment

categorical_df.head()

Out[58]:

-								
	Attrition	BusinessTravel	Department	EducationField	Gender	JobRole	MaritalStatus	OverTime
0	Yes	Travel_Rarely	Sales	Life Sciences	Female	Sales Executive	Single	Yes
1	No	Travel_Frequently	Research & Development	Life Sciences	Male	Research Scientist	Married	No
2	Yes	Travel_Rarely	Research & Development	Other	Male	Laboratory Technician	Single	Yes
3	No	Travel_Frequently	Research & Development	Life Sciences	Female	Research Scientist	Married	Yes
4	No	Travel_Rarely	Research & Development	Medical	Male	Laboratory Technician	Married	No

In [132]:

#label encoding

categorical_df["Attrition_cat"]= categorical_df["Attrition"].cat.codes

categorical_df["BusinessTravel_cat"]=categorical_df["BusinessTravel"].cat.codes

categorical_df["OverTime_cat"]=categorical_df["OverTime"].cat.codes

categorical_df["MaritalStatus_cat"]= categorical_df["MaritalStatus"].cat.codes

categorical_df["JobRole_cat"]=categorical_df["JobRole"].cat.codes

categorical_df["Gender_cat"] = categorical_df["Gender"].cat.codes

categorical_df["Department_cat"] = categorical_df["Department"].cat.codes

categorical_df["EducationField_cat"] = categorical_df["EducationField"].cat.codes

categorical_df.head() Out[132]:

	Attrition	BusinessTravel	Department	EducationField	Gender	JobRole	MaritalStatus	OverTime	Attrition_cat	BusinessTravel_cat	Ov
0	Yes	Travel_Rarely	Sales	Life Sciences	IFEMAIE	Sales Executive	Single	Yes	1	2	1
1	No	Travel_Frequently	Research & Development	Life Sciences	וועובועו	Research Scientist	Married	No	0	1	0
2	Yes	Hravel Karely	Research & Development	Other	Male	Laboratory Technician	Single	Yes	1	2	1
3	No	Travel_Frequently	Research & Development	Life Sciences	remaie	Research Scientist	Married	Yes	0	1	1
4		Travel Rarely	Posoarch &	Medical	Male	Laboratory Technician	Married	No	0	2	0

In [77]:

plt.subplots(figsize=(20,15))

sns.set(font_scale=0.8)

sns.heatmap(df.corr(),annot=True,cmap="viridis")
Out[77]:

<AxesSubplot:>

xxxxxxxxx

There is a good correlation between the variables, joblevel and monthly Income.

There is a strong correlation betweeen the variables; Monthly income and Total working years, Years with current manager and Years in current role, Years with

Type Markdown and LaTeX: 2 In []:

factors that lead to employee attrition

Uncover the factors that lead to employee attrition ¶

In [203]:

sns.set_palette("colorblind")
sns.displot(x="Attrition",data=df,)

```
Attrition Total count

1200
1000
800
400
200

Yes No Attrition
```

plt.title("Attrition Total count")

In [201]:

х

sns.displot(data=df, x="Attrition", hue="MaritalStatus", col="MaritalStatus")
plt.title("A comparison between Marital Status and Attrition")
sns.set_palette("Spectral")

xxxxxxxxx

g = sns.displot(data=df, x="Attrition", y="RelationshipSatisfaction", col="RelationshipSatisfaction",height=(5))
g.set_axis_labels("Attrition", "RelationshipSatisfaction")

In [190]:

df =df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
g=sns.catplot(x="Attrition", y="Education", data=df,kind="box")
plt.title("A comparison between Education and Attrition")
sns.set_palette("coolwarm")

A comparison between Education and Attrition

In [188]:

```
df =df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
sns.catplot(x="Attrition", y="TrainingTimesLastYear", data=df,kind="box")
plt.title("A comparison between Training times last yearand Attrition")
sns.set_palette("coolwarm")
```

A comparison between Training times last yearand Attrition

In [181]:

х

df =df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
sns.catplot(x="Attrition", y="TotalWorkingYears", data=df,kind="bar")
plt.title("A comparison between Total working Years and Attrition")
sns.set_palette("coolwarm")

A comparison between Total working Years and Attrition

In [183]:

```
A comparison between Age and Attrition

A comparison between Age and Attrition
```

df =df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
sns.catplot(x="Attrition", y="Age", data=df,kind="box")
plt.title("A comparison between Age and Attrition")

In [170]:

df =df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
sns.catplot(x="Attrition", y="JobInvolvement",hue="JobInvolvement",data=df,kind="bar",height=6)
plt.title("A comparison between Job Involvement and Attrition")
sns.set_palette("dark")

In [172]:

```
df =df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
sns.catplot(x="Attrition", y="EnvironmentSatisfaction",hue="EnvironmentSatisfaction",data=df,kind="bar",height=6)
plt.title("A comparison between Environmental Satisfaction and Attrition")
sns.set_palette("bright")
```

A comparison between Environmental Satisfaction and Attrition

In []:

In [168]:

```
sns.catplot(x="Attrition", y="WorkLifeBalance",hue="WorkLifeBalance",data=df,kind="bar")
plt.title("A comparison between Work life balance and Attrition")
sns.set_palette("bright")
A comparison between Work life balance and Attrition

4

WorkLifeBalance

1
2
```


df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")

xxxxxxxx

Distance from home by job role and attrition Type Markdown and LaTeX: 2

In [158]:

```
#A breakdown of distance from home by job role and attrition
import matplotlib.pyplot as plt
df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
sns.catplot(x="JobRole", y="DistanceFromHome", hue="Attrition", data=df, kind='box', height=10)\\
sns.set_palette("bright")
plt.title(" A breakdown of distance from home by job role and attrition")
plt.xticks(rotation=45)
Out[158]:
(array([0, 1, 2, 3, 4, 5, 6, 7, 8]),
[Text(0, 0, 'Sales Executive'),
   Text(1, 0, 'Research Scientist'),
  Text(2, 0,
Text(3, 0,
Text(4, 0,
                'Laboratory Technician'),
'Manufacturing Director'),
                'Healthcare Representative'),
  Text(5, 0,
                'Manager'),
  Text(6, 0,
                'Sales Representative'),
                'Research Director'),
  Text(8, 0, 'Human Resources')])
```


In [144]:

new_df=categorical_df

new_df.head() Out[144]:

	Attrition	BusinessTravel	Department	EducationField	Gender	JobRole	MaritalStatus	OverTime	Attrition_cat	BusinessTravel_cat	tΟν
0	Yes	Travel_Rarely	Sales	Life Sciences	IFAMAIA I	Sales Executive	Single	Yes	1	2	1
1	No	iravel Fredilentivi	Research & Development	Life Sciences	маіе	Research Scientist		No	0	1	0
2	Yes	Ifavel Rafeiv	Research & Development	Other	Male	Laboratory Technician	Single	Yes	1	2	1
3	No	Iravel Fredilentiv	Research & Development	Life Sciences	remaie	Research Scientist	Married	Yes	0	1	1
4	No	Travel_Rarely	Research & Development	Medical	Male	Laboratory Technician	Married	No	0	2	0

In [148]:

#Question 3

sns.pairplot(new df, hue="Attrition")
C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:306: UserWarning: Dataset has 0 variance; skipping density estimate.
warnings.warn(msg, UserWarning)
C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:306: UserWarning: Dataset has 0 variance; skipping density estimate.
warnings.warn(msg, UserWarning)

Out[148]:

<seaborn.axisgrid.PairGrid at 0x1be6a40bfd0>

