February 12, 2014

Due: February 14

Name: _____

Linear differential equations

In this workshop, you will see how to solve (remember the technical meaning of this word) linear first-order differential equations, that is, equations of the form

$$\frac{dy}{dt} + p(t)y = g(t).$$

- 1. Consider the equation $dy/dt + y/2 = (1/2)e^{t/3}$.
 - (a) Multiply this equation by a new function $\mu(t)$.

(a) _____

(b) According to the product rule, what is $(\mu(t)y)'$?

(b) _____

(c) Make the left-hand sides of the two previous parts equal, and solve for $\mu(t)$. (You'll need to integrate.)

(c) ____

(d) Use the fundamental theorem of calculus to integrate each side of

$$(\mu(t)y)' = (1/2)\mu(t)e^{t/3}.$$

Choose a convenient *nonzero* value for the arbitrary constant.

(d) _____

(e) Solve for *y*. (Your solution should have a constant of integration in it.)

(e)

- 2. Consider the equation $y' 2y = e^{2t}$.
 - (a) Multiply this equation by a new function $\mu(t)$.

(a) _____

(b) According to the product rule, what is $(\mu(t)y)'$?

(b) _____

(c) Make the previous part equal to the left-hand side of the first part, and solve for $\mu(t)$.

(c) _____

(d) Use the fundamental theorem of calculus to integrate the equation $(\mu(t)y)' = \mu(t)e^{2t}$.

(d) _____

(e) Solve for y. (Your solution should have a constant of integration in it.)