Computing Diverse Optimal Stable Models

Javier Romero, Torsten Schaub, and Philipp Wanko

Institute for Computer Science University of Potsdam, Germany

TC-ICLP 2016 New York

- Introduction and Motivation
- 2 ASP Solving Schemes
- 3 Diversification Techniques
- 4 Conclusion

Computing Diverse Optimal Stable Models

- Answer Set Programming (ASP) is a paradigm for solving combinatorial problems
 - \Rightarrow in worst-case exponential number of solutions

- Answer Set Programming (ASP) is a paradigm for solving combinatorial problems
 - ⇒ in worst-case exponential number of solutions
- Impose preference relations among solutions to filter out optimal ones

- Answer Set Programming (ASP) is a paradigm for solving combinatorial problems
 - ⇒ in worst-case exponential number of solutions
- Impose preference relations among solutions to filter out optimal ones
- Certain preference relations and applications exhibit vast numbers of optimal solutions
 eg multi-objective optimization problems in system synthesis, timetabling, configuration, planning

- Answer Set Programming (ASP) is a paradigm for solving combinatorial problems
 - ⇒ in worst-case exponential number of solutions
- Impose preference relations among solutions to filter out optimal ones
- Certain preference relations and applications exhibit vast numbers of optimal solutions
 eg multi-objective optimization problems in system synthesis, timetabling, configuration, planning
 - ⇒ Further filtering necessary, eg diverse optimal stable models

Course timetabling

- Courses a, b with two lessons each
- One room
- Two days with four periods

Course timetabling

- Courses a, b with two lessons each
- One room
- Two days with four periods
- Assign courses to days and periods

Course timetabling

- Courses a, b with two lessons each
- One room
- Two days with four periods
- Assign courses to days and periods

Period	Day 1	Day 2
1	а	
2		а
3	b	b
4		

Preferences

• Compactness: Avoid empty periods after a scheduled lesson

Preferences

- Compactness: Avoid empty periods after a scheduled lesson
- Spread: Avoid placing lessons of same course on same day

Preferences

- Compactness: Avoid empty periods after a scheduled lesson
- Spread: Avoid placing lessons of same course on same day
- Combine both preferences in a Pareto preference relation

Pareto preference

- Multi-objective optimization
- Aggregation of several preference relations
- Generally no single optimal solution
- Set of Pareto optimal solutions (Pareto frontier)
- eg "better" means < for objectives in \mathbb{Z} :
 - (2, 3, 1) dominates (3, 3, 1)
 - (2,3,1) is incomparable to (2,1,3)
- x is Pareto optimal \iff there is no y that dominates x

Computing Diverse Optimal Stable Models

Dominated solution

Period	Day 1	Day 2
1	а	
2		а
3	b	b
4		

Compactness violations: 3 Spread violations: 0

Optimal solution

Period	Day 1	Day 2
1		
2	а	а
3	b	b
4		

Compactness violations: 2 Spread violations: 0

Optimal solution

Period	Day 1	Day 2
1		
2	a	b
3	b	а
4		

Compactness violations: 2 Spread violations: 0

Optimal solution

Period	Day 1	Day 2
1	b	
2	а	
3	b	
4	а	

Compactness violations: 1 Spread violations: 2

Computing Diverse Optimal Stable Models

Diverse optimal solution

- Many optimal solutions
- Select subset to present to user

Period	Day 1	Day 2
1		
2	а	а
3	b	b
4		

Period	Day 1	Day 2
1		
2	а	b
3	b	а
4		

Period	Day 1	Day 2
1	b	
2	а	
3	b	
4	а	

Diverse optimal solution

- Many optimal solutions
- Select subset to present to user

Period	Day 1	Day 2
1		
2	а	a
3	b	b
4		

Period	Day 1	Day 2
1		
2	a	b
3	b	а
4		

Period	Day 1	Day 2
1	b	
2	а	
3	b	
4	а	

Diverse optimal solution

- Many optimal solutions
- Select diverse subset to present to user

Period	Day 1	Day 2
1		
2	а	а
3	b	b
4		

Period	Day 1	Day 2
1		а
2		b
3		а
4		b

Period	Day 1	Day 2
1	а	
2	b	
3	a	
4	b	

- Existing work:
 - T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer set programming. 2013.
 - Y. Zhu and M. Truszczyński. On optimal solutions of answer set optimization problems. 2013.

- Existing work:
 - T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer set programming. 2013.
 - Y. Zhu and M. Truszczyński. On optimal solutions of answer set optimization problems. 2013.
- Contributions:
 - Automate existing ASP solving schemes

- Existing work:
 - T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer set programming. 2013.
 - Y. Zhu and M. Truszczyński. On optimal solutions of answer set optimization problems. 2013.
- Contributions:
 - Automate existing ASP solving schemes
 - Generalize existing diversification techniques to logic programs with preferences

- Existing work:
 - T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer set programming. 2013.
 - Y. Zhu and M. Truszczyński. On optimal solutions of answer set optimization problems. 2013.
- Contributions:
 - Automate existing ASP solving schemes
 - Generalize existing diversification techniques to logic programs with preferences
 - Introduce new diversification techniques for logic programs with preferences

- Existing work:
 - T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer set programming. 2013.
 - Y. Zhu and M. Truszczyński. On optimal solutions of answer set optimization problems. 2013.
- Contributions:
 - Automate existing ASP solving schemes
 - Generalize existing diversification techniques to logic programs with preferences
 - Introduce new diversification techniques for logic programs with preferences
 - ⇒ Provide comprehensive framework for computing diverse (or similar) optimal solutions

Outline

- Introduction and Motivation
- 2 ASP Solving Schemes
- 3 Diversification Techniques
- 4 Conclusion

ASP Solving Schemes

- Schemes are employed to implement diversification techniques but are readily available for independent usage
- Maxmin
- Quess and check
- Querying
- Preferences²

Outline

- Introduction and Motivation
- 2 ASP Solving Schemes
- 3 Diversification Techniques
- 4 Conclusion

Diversification Techniques

- Enumeration
- 2 Replication
- Approximation

Computing Diverse Optimal Stable Models

Diversification Techniques

- Enumeration
- 2 Replication
- Approximation
 - Iterate optimal solutions distant to a previous set of optimal solutions
 - Uses maxmin, querying and preferences²

Approximation

Input: Logic program with preferences P, set size $n \in \mathbb{N}$ **Output**: Set \mathcal{X} approximating n most diverse optimal solutions

Approximation

Input: Logic program with preferences P, set size $n \in \mathbb{N}$ **Output**: Set \mathcal{X} approximating n most diverse optimal solutions

$$\mathcal{X}=\emptyset$$
 while $|\mathcal{X}| < n$ and $P \cup \mathcal{X}$ is satisfiable
$$\mathcal{X}:=\mathcal{X} \cup solve(P,\mathcal{X})$$
 return \mathcal{X}

Computing Diverse Optimal Stable Models

Approximation

Input: Logic program with preferences P, set size $n \in \mathbb{N}$ **Output**: Set \mathcal{X} approximating n most diverse optimal solutions

$$\mathcal{X} = \emptyset$$
 while $|\mathcal{X}| < n$ and $P \cup \mathcal{X}$ is satisfiable
$$\mathcal{X} := \mathcal{X} \cup solve(P, \mathcal{X})$$
 return \mathcal{X}

- All variants implement different versions of solve(P, X)
- With increasing variant number: less exact, more performance

Algorithm I

• $solve(P, \mathcal{X})$ returns optimal model of P most dissimilar to \mathcal{X}

Algorithm I

- $solve(P, \mathcal{X})$ returns optimal model of P most dissimilar to \mathcal{X}
- Ensures next optimal solution is most distant to whole previous set $\mathcal X$
 - by using maxmin and preference²

Algorithm I example

Enumerate three most diverse optimal solutions for timetabling.

$$\mathcal{X} =$$

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		
2	а	a
3	b	b
4		

Enumerate three most diverse optimal solutions for timetabling.

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3		а
4		b

Computing Diverse Optimal Stable Models

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3		а
4		b

Period	Day 1	Day 2
1		a
2	а	a,b
3	b	a,b
4		a

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3		а
4		b

Period	Day 1	Day 2
1	а	
2	b	
3	а	
4	b	

ullet solve (P,\mathcal{X}) computes partial interpretation I distant to \mathcal{X}

- $solve(P, \mathcal{X})$ computes partial interpretation I distant to \mathcal{X}
- Then returns optimal model of P closest to I

- $solve(P, \mathcal{X})$ computes partial interpretation I distant to \mathcal{X}
- Then returns optimal model of P closest to I
- Ensures next optimal solution is as close as possible to I
 by using maxmin and preference²

- $solve(P, \mathcal{X})$ computes partial interpretation I distant to \mathcal{X}
- Then returns optimal model of P closest to I
- Ensures next optimal solution is as close as possible to I
 by using maxmin and preference²
- Less accuracy but more performance since there is no direct comparison to earlier optimal solutions

Algorithm II: Distant partial interpretation I

Given set of previous optimal models \mathcal{X} , select I

- randomly
- heuristically chosen
- lacktriangle most diverse wrt \mathcal{X}
- complementary to last optimal solution

Algorithm II: Distant partial interpretation I

Given set of previous optimal models \mathcal{X} , select I

- randomly
- heuristically chosen
- lacktriangle most diverse wrt \mathcal{X}
- complementary to last optimal solution

$$\mathcal{X} =$$

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	a	а
	3	b	b
	4		

Period	Day 1	Day 2
1	a,b	a,b
2	b	b
3	a	a
4	a,b	a,b

Enumerate three most diverse optimal solutions for timetabling.

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3	а	
4	b	

Computing Diverse Optimal Stable Models

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3	а	
4	b	

Period	Day 1	Day 2
1	a,b	b
2	a,b	a
3	b	a,b
4	a	a,b

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3	а	
4	b	

Period	Day 1	Day 2
1	а	
2	b	
3	b	
4	а	

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3	а	
4	b	

Period	Day 1	Day 2
1	а	
2	b	
3	b	
4	а	

ullet solve (P,\mathcal{X}) computes partial interpretation I distant to \mathcal{X}

- $solve(P, \mathcal{X})$ computes partial interpretation I distant to \mathcal{X}
- Tries to find optimal model of P closest to I by changing sign heuristic to same values as in I

Computing Diverse Optimal Stable Models

- $solve(P, \mathcal{X})$ computes partial interpretation I distant to \mathcal{X}
- Tries to find optimal model of P closest to I by changing sign heuristic to same values as in I
- Approximation of Algorithm II

- $solve(P, \mathcal{X})$ computes partial interpretation I distant to \mathcal{X}
- Tries to find optimal model of P closest to I by changing sign heuristic to same values as in I
- Approximation of Algorithm II
- Purely heuristic, no guaranteed diversity; no optimization, less complex calculation

Algorithm III: Distant partial interpretation I

Given set of previous optimal models \mathcal{X} , select I

- randomly
- 4 heuristically chosen
- lacktriangle most diverse wrt \mathcal{X}
- complementary to last optimal solution

Outline

- Introduction and Motivation
- 2 ASP Solving Schemes
- 3 Diversification Techniques
- 4 Conclusion

Experiments

	III	1	*
T/TO	165s/70	482s/672	317s/351
Rank	16	1	4

- 816 instances enumerating four Pareto optimal diverse models with 16 Approximation configurations
- Timeout of 600s

Summary

- Provide comprehensive framework for computing diverse optimal stable models
- Five ASP solving schemes: maxmin, guess and check, querying, preference²
- Three diversification techniques: enumeration, replication, approximation
- Replication and enumeration inefficient
- Approximation techniques display tradeoff between diversification and performance

Thank You!

