CPU _mem_byte_enable= —256'b mem_rdata256 bus_adapter L1 256'b mem_wdata256 **CACHE** 32'b mem_byte_enable256 L1 control (duplicate) L1 control **DESCRIPTION** word aligned/ 3 bits for word in line/ 3 ovalid1_read 1'b valid2_read 1'b dirty1_read 1'b dirty2_read 1'b lru_read 1'b tag_ld1 mem_address 3'b index 1'b valid1_load 1'b dirty1_load 1'b dirty2_load 1'b lru_load index bits/ 24 tag 1'b tag_ld2 3'b index 1'b datast_rd 8 sets with 2 ways 1'b tag_read 1'b dirty1_data 3'b index 1'b way 2'b data_bus_mux_sel Each way holds an 8-word cache line 1'b dirty2_data __256'b line_o_ Write-back with a TAG STORE write allocate policy LRU replacement tag_array1.sv (tag tag_array2.sv (tag data_array1.sv data_array2.sv Read/Write hits (data store) (data store) 26'b 26'b must take exactly two clock cycles to complete DATA STORE Set/index bits must come from the address bits cache/data line directly adjacent to mux 256'b the offset bits (I chose to use the format tag/index/word) ABOUT SIGNALS/ LEGEND L1 - write_en (32 bits each for a byte of each way) DATAPATH -internal signals are black -output wires are the same color as the origin -The thick lines from the metadata stores combine multiple signals - anything wtthout a bit marker (i.e X'b) can be _156'b line_o---1'b .L1_mem_read(mem_read) assumed to be ${f 1}$ memory arrays 1'b resp_i bus_adapter_mu 1b .L1_mem_write(mem_write) - tag_array is of 26 of 1'b write_i array.sv instances 1'b read_i - then you need 5 instances of array.sv for the metadata 32'b mem_address —⊉56' .L1_evicted_cacheline(line_i) cacheline_adapter mem_line Mux __1'b resp_o_ victimcache _256'b .datain_from_mem(line_o) **Main Memory** pmem_resp 64'b 1'b 256'b .datain_from_vc(vc_swap_rdata)

SAMUEL CHEUNG