

PCT

WELTOORGANISATION FÜR
INTERNATIONALE ANMELDUNG VERÖFFE

Internationale Anmeldung

INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

WO 9603410A1

AB2

(51) Internationale Patentklassifikation 6:

C07F 15/00, C12Q 1/68, G01N 33/58,
C07F 19/00

A1

(11) Internationale Veröffentlichungsnummer: WO 96/03410

(43) Internationales
Veröffentlichungsdatum:

8. Februar 1996 (08.02.96)

(21) Internationales Aktenzeichen:

PCT/EP95/02923

(22) Internationales Anmeldedatum:

24. Juli 1995 (24.07.95)

(81) Bestimmungsstaaten: CN, JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Prioritätsdaten:

P 44 26 276.0	25. Juli 1994 (25.07.94)	DE
P 44 30 998.8	31. August 1994 (31.08.94)	DE
P 44 39 346.6	4. November 1994 (04.11.94)	DE

Veröffentlicht

Mit internationalem Recherchenbericht.

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
BOEHRINGER MANNHEIM GMBH [DE/DE]; Sandhofer
Strasse 112-132, D-68305 Mannheim (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HERRMANN, Rupert
[DE/DE]; In der Au 23, D-82362 Weilheim (DE). JOSEL,
Hans-Peter [DE/DE]; Prälatenweg 7, D-82362 Weilheim
(DE). PAPPERT, Gunter [DE/DE]; Fliederweg 12, D-82319
Stamberg (DE). VÖGTLER, Fritz [DE/DE]; In der Asbach
10, D-53347 Alfter-Impekoven (DE). FROMMBERGER,
Bruno [DE/DE]; Bahnhofstrasse 169, D-53123 Bonn (DE).
ISSBERNER, Jörg [DE/DE]; Breslauer Strasse 10, D-53913
Swisttal (DE).

(74) Anwälte: WEICKMANN, H. usw.; Kopernikusstrasse 9, D-
81679 München (DE).

(54) Title: HYDROPHILIC METAL COMPLEXES

(54) Bezeichnung: HYDROPHILE METALLKOMPLEXE

(57) Abstract

The present invention concerns novel hydrophilic metal complexes and the use thereof as luminescent marker groups in immunoassays.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft neue hydrophile Metallkomplexe und deren Verwendung als lumineszierende Markierungsgruppen in Immunoassays.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LJ	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Moangolei	VN	Vietnam

- 1 -

Hydrophile Metallkomplexe

B e s c h r e i b u n g

Die vorliegende Erfindung betrifft neue hydrophile Metallkomplexe und deren Verwendung als lumineszierende Markierungsgruppen im Immunoassays.

Lumineszierende Metallkomplexe sind aus dem Stand der Technik bekannt. EP-A-0 178 450 offenbart Rutheniumkomplexe, die an ein immunologisch aktives Material gekoppelt sind, wobei die Rutheniumkomplexe drei gleiche oder verschiedene bi- oder polycyclische Liganden mit mindestens zwei stickstoffhaltigen Heterocyclen enthalten, wobei mindestens einer dieser Liganden mit mindestens einer wasserlöslich machenden Gruppe, wie $-\text{SO}_3\text{H}$ oder $-\text{COOH}$ substituiert ist, und wobei mindestens einer dieser Liganden mit mindestens einer reaktiven Gruppe wie $-\text{COOH}$ direkt oder über eine Spacergruppe substituiert ist und wobei die Liganden über Stickstoffatome an das Ruthenium gebunden sind.

EP-A-0 580 979 offenbart die Verwendung von Osmium- oder Rutheniumkomplexen als Markierungsgruppen für die Elektrochemilumineszenz. Als Liganden für diese Komplexe werden stickstoffhaltige Heterocyclen, beispielsweise Bipyridine, genannt. WO 87/06706 offenbart weitere Metallkomplexe, die sich als Markierungsgruppen für Elektrochemilumineszenzmessungen eignen.

Die Nachteile der aus dem Stand der Technik bekannten Metallkomplexe bestehen in einer schlechten Quantenausbeute bei Elektrochemilumineszenzmessungen durch Sauerstoff-Quenching und Photodisssoziation oder/und in einer hohen unspezifischen Bindung an Proteine.

- 2 -

Die der vorliegenden Erfindung zugrundeliegende Aufgabe bestand somit darin, die Nachteile des Standes der Technik mindestens teilweise zu beseitigen.

Überraschenderweise wurde festgestellt, daß die Einführung von C₂-C₃-Alkylenoxy-, C₂-C₃-Alkylenthio- oder/und C₂-C₃-Alkylenamino-Einheiten und insbesondere von Ethylenglycol- oder/und Propylenglycol-Einheiten in lumineszierende Metallkomplexe die Adsorption von Konjugaten dieser Komplexe mit einer immunologisch reaktiven Substanz verringert und damit auch die Stabilität und Wiederfindung der Konjugate in Immunoassays verbessert. Überdies kann eine erhöhte Quantenausbeute erzielt werden.

Weiterhin wurde festgestellt, daß die Eigenschaften von Metallkomplexen auch durch Einführung von Polyhydroxy-Einheiten verbessert werden können. Diese Polyhydroxy-Einheiten können zu dendrimerartigen Strukturen mit mehreren Generationen ausgebaut werden. Außerdem kann durch Einbau von Polyamin-Strukturen der für Elektrochemilumineszenzmessungen benötigte Elektronendonator direkt in die Ligandensphäre des Komplexes integriert werden.

Eine weitere erfindungsgemäße Verbesserung betrifft Metallkomplexe in Form eines Käfigs oder Halbkäfigs, in dem die Liganden einfach oder mehrfach, vorzugsweise über hydrophile Spacer, miteinander verknüpft sind. Auch dies führt zu einer wesentlichen Verbesserung der Photostabilität und zu einer Verringerung des Sauerstoff-Quenchings.

Ein Gegenstand der vorliegenden Erfindung ist somit ein Metallkomplex mit der allgemeinen Formel (I) :

worin M ein zwei- oder dreiwertiges Metallkation ausgewählt aus Seltenerde- oder Übergangmetallionen ist, L₁, L₂ und L₃

- 3 -

gleich oder verschieden sind und Liganden mit mindestens zwei stickstoffhaltigen Heterocyclen bedeuten, wobei L₁, L₂ und L₃ über Stickstoffatome an das Metallkation gebunden sind, X eine reaktive oder aktivierbare funktionelle Gruppe ist, die an mindestens einen der Liganden L₁, L₂, L₃ kovalent gebunden ist, n eine ganze Zahl von 1 bis 10 ist, m eine ganze Zahl von 1 bis 6 und vorzugsweise von 1 bis 3 ist und A eine oder mehrere zum Ladungsausgleich erforderliche, negativ geladene Gruppen bedeutet, wobei der Komplex mindestens eine hydrophile Gruppe ausgewählt aus C₂-C₃-Alkylenoxy-Einheiten, C₂-C₃-Alkylenthio-Einheiten, C₂-C₃-Alkylenamino-Einheiten und Polyhydroxy-Einheiten enthält.

Der Metallkomplex ist vorzugsweise ein lumineszierender Metallkomplex, d.h. ein Metallkomplex, der eine nachweisbare Lumineszenzreaktion erzeugen kann. Der Nachweis dieser Lumineszenzreaktion kann beispielsweise durch Fluoreszenz- oder durch Elektrochemilumineszenzmessung erfolgen. Das Metallkation in diesem Komplex ist beispielsweise ein Übergangsmetall oder ein Seltenerdenmetall. Vorzugsweise ist das Metall Ruthenium, Osmium, Rhenium, Iridium, Rhodium, Platin, Indium, Palladium, Molybdän, Techneticum, Kupfer, Chrom oder Wolfram. Besonders bevorzugt sind Ruthenium, Iridium, Rhenium, Chrom und Osmium. Am meisten bevorzugt ist Ruthenium.

Die Liganden L₁, L₂ und L₃ sind Liganden mit mindestens zwei stickstoffhaltigen Heterocyclen. Bevorzugt sind aromatische Heterocyclen wie z.B. Bipyridyl, Bipyrazyl, Terpyridyl und Phenanthrolyl. Besonders bevorzugt werden die Liganden L₁, L₂ und L₃ aus Bipyridin- und Phenanthrolin-Ringsystemen ausgewählt.

Die reaktive oder aktivierbare funktionelle Gruppe X des Komplexes ist eine reaktive Gruppe, die mit einer immunologisch aktiven Substanz gekoppelt werden kann, oder eine aktivierbare Gruppe, die auf einfache Weise in eine solche

- 4 -

reaktive Gruppe überführt werden kann. Vorzugsweise ist die Gruppe X eine aktivierte Carbonsäuregruppe wie etwa ein Carbonsäurehalogenid, ein Carbonsäureanhydrid oder ein Aktivester, z.B. ein N-Hydroxysuccinimid-, ein p-Nitrophenyl-Pentafluorphenyl-, Imidazolyl- oder N-Hydroxybenzotriazolylester, ein Maleimid, ein Amin, eine Carbonsäure, ein Thiol, ein Halogenid, ein Hydroxyl oder eine photoaktivierbare Gruppe.

Weiterhin enthält der Komplex eine oder mehrere zum Ladungsausgleich erforderliche, negativ geladene Gruppen A. Beispiele für geeignete negativ geladene Gruppen sind Halogenide, OH⁻, Carbonat, Alkylcarboxylat, z.B. Trifluoracetat, Sulfat, Hexafluorophosphat- und Tetrafluoroborat-Gruppen. Hexafluorophosphat-, Trifluoracetat und Tetrafluoroborat-Gruppen sind besonders bevorzugt.

Der erfindungsgemäße Metallkomplex unterscheidet sich von den aus dem Stand der Technik bekannten Metallkomplexen dadurch, daß er mindestens eine hydrophile Gruppe ausgewählt aus C₂-C₃-Alkylenoxy-Einheiten, C₂-C₃-Alkylenthio-Einheiten, C₂-C₃-Alkylenamino-Einheiten und Polyhydroxy-Einheiten enthält.

Die Polyhydroxy-Einheiten werden vorzugsweise aus Gruppen der Formeln (IIa) oder (IIb) ausgewählt:

-NR-W

(IIa)

-O-W

(IIb)

worin W einen organischen Rest mit mindestens zwei Hydroxygruppen und R Wasserstoff oder C₁-C₅-Alkyl, vorzugsweise Wasserstoff oder C₁-C₃-Alkyl bedeutet. Der organische Rest W enthält vorzugsweise 2 bis 6 und besonders bevorzugt 2 bis 4 Hydroxygruppen. Weiterhin sollte W günstigerweise 2 bis 10 und insbesondere 3-6 Kohlenstoffatome enthalten. Spezifische Beispiele für geeignete Polyhydroxy-Einheiten sind Reste von Polyalkoholen wie etwa Glycerin oder Aminopolyalkoholen. Ein bevorzugter Aminopolyalkohol ist Tris (2-Amino-2-(hydroxy-

- 5 -

methyl)-1,3-propantriol). In diesem Fall weist die Polyhydroxy-Einheit die Formel NR-C(CH₂OH)_n auf. Die Polyalkohole bzw. Aminopolyalkohole sind an dem Metallkomplex vorzugsweise in Form von Estern bzw. Amiden gekoppelt.

Die C₂-C₃-Alkylenoxy-, C₂-C₃-Alkylenthio- und C₂-C₃-Alkylenamino-Einheiten des erfindungsgemäßen Metallkomplexes sind vorzugsweise C₂-Einheiten und insbesondere Ethylenoxy-Einheiten. Der Komplex enthält pro Metallkation vorzugsweise 1 bis 30 und besonders bevorzugt 2 bis 20 C₂-C₃-Alkylenoxy-, C₂-C₃-Alkylenthio- bzw. C₂-C₃-Alkylenamino-Einheiten. Diese Einheiten sind Bestandteile von Substituenten der heterocyclischen Liganden des Metallkomplexes. Sie können in einem Linker zwischen einem der Liganden und der reaktiven oder aktivierbaren funktionellen Gruppe X oder/und in einfachen Substituenten vorliegen. Die Alkylenoxy-, Alkylenthio- bzw. Alkylenamino-Einheiten können auch über einen Brückenkopf miteinander verknüpft sein, der gegebenenfalls eine funktionelle Gruppe X tragen kann. Andererseits können über den Brückenkopf auch mehrere Komplex-Einheiten miteinander verknüpft sein. Beispiele für bevorzugte Ausführungsformen der erfindungsgemäßen Metallkomplexe sind im folgenden angegeben.

In einer ersten bevorzugten Ausführungsform der vorliegenden Erfindung besitzt der erfindungsgemäße Metallkomplex die allgemeine Formel (III):

- 6 -

worin M, X und A wie vorstehend definiert sind, R₁, R₂, R₃, R₄, R₅ und R₆ gleich oder verschieden sind und jeweils einen oder mehrere Substituenten bedeuten, unter der Voraussetzung, daß X über einen der Substituenten R₁, R₂, R₃, R₄, R₅ oder R₆ an einen der Liganden gebunden ist und daß mindestens einer der Substituenten R₁, R₂, R₃, R₄, R₅ oder R₆ mindestens eine hydrophile Gruppe, ausgewählt aus C₂-C₃-Alkylenoxy-, C₂-C₃-Alkylenthio- und C₂-C₃-Alkylenamino-Einheiten enthält.

Die Liganden des Komplexes sind je nach Anwesenheit bzw. Abwesenheit der durch gebrochene Linien bezeichneten Gruppen, gegebenenfalls substituierte Phenanthrolin- bzw. Bipyridinsysteme.

Die Substituenten R₁, R₂, R₃, R₄, R₅ und R₆ an den Liganden sind - sofern sie keine hydrophile Gruppe enthalten - vorzugsweise Wasserstoff, C₁-C₅-Alkyl, insbesondere C₁-C₃-Alkyl. Insgesamt enthalten die hydrophilen Gruppen vorzugsweise 1 bis 30 und besonders bevorzugt 2 bis 20 Alkylenoxy-, Alkylenthio- oder/und Alkylenamino-Einheiten, insbesondere Ethylenoxy-Einheiten.

Die hydrophile Gruppe kann Bestandteil eines Linkers zwischen der funktionellen, kopplungsfähigen Gruppe X und einem der Liganden sein. In diesem Fall besitzen die Metallkomplexe vorzugsweise die allgemeine Formel (IIIa):

worin M, X und A wie vorstehend definiert sind, R₁, R₂, R₃, R₄ und R₅ wie vorstehend definiert sind, s eine ganze Zahl von 0 bis 6 vorzugsweise von 1 bis 4 ist und Y eine hydrophile

- 7 -

Linkergruppe mit 1 bis 10, vorzugsweise mit 2 bis 6 hydrophile Einheiten bedeutet, ausgewählt aus C₂-C₃-Alkylenoxy-, C₂-C₃-Alkylenthio und C₂-C₃-Alkylenamino-Einheiten, insbesondere Ethylenoxy-Einheiten.

Die funktionelle Gruppe X muß jedoch nicht über einen hydrophilen Linker mit dem Liganden verknüpft sein. In diesem Fall besitzt der erfindungsgemäße Metallkomplex vorzugsweise die allgemeine Formel (IIIB) :

worin M, X und A wie vorstehend definiert sind, R₁, R₂, R₃, R₄ und R₅ wie vorstehend definiert sind, unter der Voraussetzung, daß R₁, R₂, R₃, R₄ oder/und R₅ eine hydrophile Substituentengruppe enthält, die jeweils 1 bis 10 vorzugsweise 2 bis 6 C₂-C₃-Alkylenoxy-, C₂-C₃-Alkylenthio oder/und C₂-C₃-Alkylenamino-Einheiten, insbesondere Ethylenoxy-Einheiten umfaßt.

Ein Beispiel für eine Verbindung der Formel (IIIA) ist in Abb. 1a und 1b gezeigt. Diese Verbindungen enthalten die Hydrophilie nur im Linker zwischen der Gruppe X - einem Maleimid (Abb. 1a) bzw. einem N-Hydroxysuccinimidester (Abb. 1b) - und einem Liganden. Ebenso können aber auch die anderen Liganden hydrophile Substituenten aufweisen. Ein Beispiel für eine Verbindung der Formel (IIIB) ist in Abb. 1b gezeigt. Hier ist die Gruppe X ein N-Hydroxysuccinimidester.

Die Liganden des erfindungsgemäßen Metallkomplexes können auch miteinander verknüpft sein, so daß der Metallkomplex in Form eines Halbkäfigs bzw. Käfigs vorliegt. Eine bevorzugte

- 8 -

Ausführungsform eines erfindungsgemäßen Metallkomplexes in Form eines Halbkäfigs oder Käfigs besitzt die allgemeine Formel (IV) :

worin M, X, n und A wie vorstehend definiert sind, R₁, R₂ und R₃ gleich oder verschieden sind und jeweils einen oder mehrere Substituenten - wie vorstehend definiert - an dem Bi-pyridin- oder Phenanthrolin-Liganden bedeuten und Y jeweils eine hydrophile Linkergruppe bedeutet, die 1 bis 10 hydrophile Einheiten, ausgewählt aus C₂-C₃-Alkylenoxy-, C₂-C₃-Alkylenthio- und C₂-C₃-Alkylenamino-Einheiten, insbesondere Ethylenoxy-Einheiten umfaßt.

Wenn die Substituenten R₁, R₂ und R₃ in Formel (IV) und gegebenenfalls über hydrophile Linkergruppen kovalent miteinander verknüpft sind, dann besitzt der Komplex der Formel (IV) die Form eines Käfigs.

Beispiele für halbkäfigförmige Komplexe der Formel (IV) sind in Abb. 2 und 3a gezeigt. Ein Beispiel für einen käfigförmigen Komplex ist in Abb. 3b gezeigt. Die Gruppe X in Abb. 2 ist ein Carboxylrest. Das Metallkation und die Anionen sind in Abb. 3a und 3b nicht dargestellt.

Der Komplex der Formel (IV) kann nicht nur als Monomer, sondern als Oligomer aus vorzugsweise bis zu 5 einzelnen Metallkomplexen vorliegen. Hierzu kann die funktionelle

- 9 -

kopplungsfähige Gruppe X beispielsweise ein Substituent an einem aromatischen Kern, z.B. einem Phenylkern sein, wobei zwei oder mehr der restlichen Substituentenpositionen des aromatischen Kerns durch einen halbkäfig- bzw. käfigförmigen Metallkomplex substituiert sein können.

Beispiele für oligomere Metallkomplexe der Formel (IV) sind in Abb. 4 und 5 gezeigt. Die Metallionen und die Anionen sind in diesen Abbildungen nicht dargestellt.

In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist der Metallkomplex mit Polyhydroxy-Einheiten substituiert und besitzt die allgemeine Formel (V) :

worin M, X und A wie vorstehend definiert sind, Z eine Linkergruppe bedeutet, R'_1, R'_2, R'_3, R'_4 und R'_5 gleich oder verschieden sind und jeweils einen oder mehrere Substituenten, z.B. Wasserstoff oder C₁-C₅-, insbesondere C₁-C₃-Alkyl, bedeuten und s eine ganze Zahl von 0 bis 6, vorzugsweise von 1 bis 4 ist, unter der Voraussetzung, daß R'_1, R'_2, R'_3, oder/und R'_4 eine hydrophile Substituentengruppe enthält, die eine Polyhydroxy-Einheit umfaßt.

Der Ligand X des Metallkomplexes (V) kann mit dem Liganden über einen hydrophilen Linker, z.B. einen Linker gemäß Formel (IIIa), aber auch über einen Linker gemäß Formel (IIIb) gekoppelt sein. Der Substituent R'_5 ist vorzugsweise Wasserstoff oder eine C₁-C₅-, insbesondere eine C₁-C₃-Alkylgruppe.

- 10 -

Ein Beispiel für eine Verbindung der Formel (V) ist in Abb. 6 gezeigt. Die Gruppe X ist ein Carboxylrest.

Die OH-Gruppen der Polyhydroxy-Einheiten von Metallkomplexen der allgemeinen Formel (V) sind gegebenenfalls durch hydrophile Gruppen substituiert, z.B. durch C₂-C₃-Alkylenoxy; C₂-C₃-Alkylenthio- oder/und C₂-C₃-Alkylenamino-Einheiten.

In einer spezifischen Ausführungsform der vorliegenden Erfindung sind die hydrophilen Substituentengruppen der OH-Gruppen der Polyhydroxy-Einheiten Dendrimere der allgemeinen Formel (VIa) oder (VIb):

worin

- A₁ und A₂ gleich oder verschieden sind und Linkergruppen bedeuten,
- W₁ und W₂ gleich oder verschieden sind und einen organischen Rest mit mindestens 2 Hydroxygruppen bedeuten,
- R Wasserstoff oder C₁-C₅-Alkyl und vorzugsweise Wasserstoff oder C₁-C₃-Alkyl bedeutet und
- n' 0 ist oder der Zahl der Hydroxygruppen von W₁ entspricht.

Die Linkergruppen A₁ und A₂ sind vorzugsweise Gruppen der Formel (CH₂)_{m'}C (=O)-, worin m' 1 bis 5 und insbesondere 1 bis 3 ist.

Die Gruppen W₁ und W₂ sind vorzugsweise Polyhydroxy-Einheiten, die entsprechend den Gruppen der Formeln (IIa), (IIb) definiert sind. Wenn n' 0 ist, liegt ein Dendrimer der ersten Generation vor. Wenn n' der Zahl der Hydroxygruppen von W₁ entspricht, liegt ein Dendrimer der zweiten Generation vor. Die Hydroxy-Endgruppen der Dendrimere können gegebenenfalls substituiert sein, z.B. durch eine Linkergruppe mit der

- 11 -

Formel A₃-R', wobei A₃ wie die Linkergruppen A₁ und A₂ definiert ist, und R' C₁-C₅, vorzugsweise C₁-C₃-Alkyl bedeutet.

Die Herstellung der erfindungsgemäßen Metallkomplexe erfolgt durch Reaktion eines Metallsalzes, z.B. eines Metallhalogenids mit den entsprechenden Liganden und ggf. anschließenden Austausch des Halogenidions durch Hexafluorophosphat- oder Tetrafluoroborat-Anionen. Derartige Verfahren sind im Stand der Technik, z.B. in EP-B-0 178 450 und EP-B-0 255 534 beschrieben. Auf diese Offenbarung wird hiermit Bezug genommen.

Die Herstellung hydrophiler N-heterocyclischer Liganden kann auf einfache Weise durch Substitution am aromatischen Liganden, z.B. über ein Tosylat erfolgen. Auf entsprechende Weise kann auch eine Kopplung des hydrophilen Linkers, der die funktionelle Gruppe X trägt, erfolgen.

Die Herstellung von Metallkomplexen der Formel (IV) mit Halbkäfig- oder Käfigstruktur kann beispielsweise erfolgen durch Anfügen von Alkylenoxy-, Alkylenthio- oder/und Alkylenamino-Einheiten an die Bipyridin- oder Phenanthrolin-Liganden und Knüpfung dieser Einheiten an einen Brückenkopf über Ether oder Amidbindung. Bei Verwendung von zwei Brückenköpfen können Käfigstrukturen erhalten werden. Bevorzugt ist die Knüpfung von 3 Liganden an einen trivalenten Brückenkopf, z.B. Tris. Der Komplex selbst wird durch Umsetzung mit Metallsalzen, wie zuvor beschrieben, hergestellt.

Die Herstellung von halbkäfig- und käfigförmigen Metallkomplexen kann gemäß Reaktionsschema III (Abb. 9a und 9b) erfolgen.

Die Herstellung von Metallkomplexen mit der allgemeinen Formel (V) erfolgt beispielsweise durch eine Reaktion gemäß Schema I (Abb. 7), indem ein entsprechend substituierter Ligand mit einem Aminopolyalkohol oder einem partiell geschützten Polyalkohol umgesetzt wird, wobei hydrophile Grup-

- 12 -

pen der Formeln (IIa) oder (IIb) an den Liganden angelagert werden.

Die Herstellung von dendritischen Metallkomplexen kann entsprechend dem Reaktionsschema II (Abb. 8) erfolgen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Konjugat, umfassend eine biologische Substanz, an die mindestens ein erfindungsgemäßer Metallkomplex gekoppelt ist. Beispiele für geeignete biologische Substanzen sind Zellen, Viren, subzelluläre Teilchen, Proteine, Lipoproteine, Glycoproteine, Peptide, Polypeptide, Nukleinsäuren, Oligosaccharide, Polysaccharide, Lipopolysaccharide, zelluläre Metaboliten, Haptene, Hormone, pharmakologische Wirkstoffe, Alkalioide, Steroide, Vitamine, Aminosäuren und Zucker.

Die Kopplung des Metallkomplexes mit der biologisch aktiven Substanz erfolgt vorzugsweise über die reaktive oder aktivierbare funktionelle Gruppe des Metallkomplexes, die mit einer funktionellen Gruppe der biologischen Substanz kovalent kuppeln kann. Wenn die funktionelle Gruppe ein Aktivester ist, kann beispielsweise eine Kopplung mit freien Aminogruppen der biologischen Substanz erfolgen. Wenn die funktionelle Gruppe ein Maleimidrest ist, kann eine Kopplung mit freien SH-Gruppen der biologischen Substanz erfolgen. Auf analoge Weise kann auch eine Aktivierung von funktionellen Gruppen der biologischen Substanz erfolgen, die anschließend beispielsweise mit einer freien Carbonsäure-, Amino- oder Thiolfunktion des Metallkomplexes reagieren können.

Bei einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden die Metallkomplexe an ein Peptid gekoppelt, das vorzugsweise eine Länge von maximal 50 Aminosäuren und besonders bevorzugt von maximal 30 Aminosäuren aufweist. Die Herstellung dieser Metallkomplex-markierten Peptide erfolgt vorzugsweise dadurch, daß man ein Peptid mit der gewünschten Aminosäuresequenz an einer Festphase syn-

- 13 -

thetisiert, wobei man a) nach der Synthese einen aktivierten Metallkomplex, vorzugsweise ein Metallkomplex-Aktivesterderivat an die N-terminale Aminogruppe des Peptids koppelt oder/und b) während der Synthese an mindestens einer Position des Peptids ein Aminosäurederivat einführt, das kovalent mit einem Metallkomplex gekoppelt ist. Die Kopplung des Metallkomplexes an die N-terminale Aminosäure des Peptids erfolgt vorzugsweise vor Abspaltung des Peptids von der Festphase und vor einer Abspaltung von Schutzgruppen an reaktiven Seitengruppen der zur Peptidsynthese verwendeten Aminosäurederivate.

Die Peptide enthalten vorzugsweise einen immunologisch reaktiven Epitopbereich und einen Spacerbereich, wobei mindesens eine Metallkomplex-Markierungsgruppe an den Spacerbereich gekoppelt wird. Der Spacerbereich weist vorzugsweise eine Länge von 1 bis 10 Aminosäuren auf und ist am Amino- oder/und Carboxyterminus des Peptids angeordnet.

Der Spacerbereich enthält vorzugsweise Aminosäuren, die Ladungen aufweisen oder/und Wasserstoffbrücken ausbilden können. Die Aminosäuren des Spacerbereichs werden vorzugsweise gebildet aus der Gruppe bestehend aus Glycin, β -Alanin, γ -Aminobuttersäure, ϵ -Aminocapronsäure, Lysin und Verbindungen der Strukturformel $\text{NH}_2\text{-}[(\text{CH}_2)_y\text{O}]_x\text{-CH}_2\text{-CH}_2\text{-COOH}$, worin $y \geq 2$ oder 3 ist und $x \geq 1$ bis 10 ist.

Die Epitopbereiche der Peptide stammen vorzugsweise aus pathogenen Organismen, z.B. Bakterien, Viren, und Protozoen, oder aus Autoimmun-Antigenen. Besonders bevorzugt stammt der Epitopbereich aus viralen Antigenen, z.B. den Aminosäuresequenzen von HIVI, HIVII oder Hepatitis C-Virus (HCV).

Weitere bevorzugte Beispiele für biologische Substanzen sind Biotin, Nukleinsäuren, Antikörper oder Antikörperfragmente, Polypeptidantigene, d.h. immunologisch reaktive Polypeptide, oder Haptene, d.h. organische Moleküle mit einem Molekulargewicht

- 14 -

wicht von 150 bis 2000, insbesondere Moleküle mit einem Steroidgrundgerüst, wie etwa Cardenolide, Cardenolid-Glycoside (z.B. Digoxin, Digoxigenin), Steroid-Alkaloide, Sexualhormone (z.B. Progesteron), Glucocorticoide etc. Weitere Beispiele für Haptene sind Prostaglandine, Leuco-En-diine, Thromboxane, pharmakologische Wirkstoffe etc.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Metallkomplexe, bzw. der erfindungsgemäßen Konjugate in einem immunologischen Nachweisverfahren.

Dabei wird der Metallkomplex als Markierungsgruppe verwendet, mit deren Hilfe die qualitative oder/und quantitative Bestimmung eines Analyten in einer Probelösung möglich ist. Der Nachweis des Metallkomplexes erfolgt vorzugsweise durch Elektrochemilumineszenz, wobei lumineszierende Spezies elektrochemisch an der Oberfläche einer Elektrode erzeugt werden. Beispiele zur Durchführung von Lumineszenz-Assays mit Metallkomplexen des Standes der Technik finden sich in EP-A-0 580 979, WO 90/05301, WO 90/11511 und WO 92/14138. Auf die dort offenbarten Verfahren und Vorrichtungen für Lumineszenz-Assays wird hiermit Bezug genommen. Die Elektrochemilumineszenz-Assays werden in Gegenwart einer Festphase durchgeführt, die vorzugsweise aus Mikropartikeln, insbesondere aus magnetischen Mikropartikeln besteht, die mit einer reaktiven Beschichtung versehen sind, z.B. mit Streptavidin. Auf diese Weise können Immunkomplexe, die einen Metallkomplex als Markierungsgruppe enthalten, an die Festphase gebunden nachgewiesen werden.

Die Elektrochemilumineszenz-Messung wird vorzugsweise in Gegenwart eines Reduktionsmittels für den Metallkomplex durchgeführt, z.B. einem Amin. Bevorzugt sind aliphatische Amine, insbesondere primäre, sekundäre und tertiäre Alkylamine, deren Alkylgruppen jeweils 1 bis 3 Kohlenstoffatome aufweisen. Besonders bevorzugt ist Tripropylamin. Das Amin

- 15 -

kann jedoch auch ein aromatisches Amin, wie Anilin oder ein heterocyclisches Amin sein. Das Reduktionsmittel kann bereits in der Ligandensphäre des Komplexes integriert sein. Derartige Systeme sind insbesondere zur Bestimmung von Analyten geeignet, die in hochkonzentrierter Form vorliegen.

Weiterhin kann ggf. Verstärker ein nichtionisches oberflächenaktives Mittel, z.B. ein ethoxyliertes Phenol vorhanden sein. Derartige Substanzen sind beispielsweise kommerziell unter den Bezeichnungen Triton X100 oder Triton N401 erhältlich.

Andererseits kann der Nachweis des lumineszierenden Metallkomplexes auch durch Fluoreszenz erfolgen, wobei das Metallchelat durch Bestrahlung mit einem Licht der geeigneten Wellenlänge angeregt und die daraus resultierende Fluoreszenzstrahlung gemessen wird. Beispiele zur Durchführung von Fluoreszenz-Assays finden sich in EP-A-0 178 450 und EP-A-0 255 534. Auf diese Offenbarung wird hiermit Bezug genommen.

Weiterhin wird die vorliegende Erfindung durch nachfolgende Beispiele und Abbildungen erläutert. Es zeigen:

- Abb. 1a einen Metallkomplex der Formel (IIIa),
- Abb. 1b einen Metallkomplex der Formel (IIIa),
- Abb. 1c einen Metallkomplex der Formel (IIIb),
- Abb. 2 einen Metallkomplex der Formel (IV),
- Abb. 3a einen Metallkomplex der Formel (IV),
- Abb. 3b einen Metallkomplex der Formel (IV),
- Abb. 4 einen Metallkomplex der Formel (IV),
- Abb. 5 einen Metallkomplex der Formel (IV),
- Abb. 6 einen Metallkomplex der Formel (V),
- Abb. 7 ein Reaktionsschema zur Herstellung von Metallkomplexen der Formel (V),
- Abb. 8 ein weiteres Reaktionsschema zur Herstellung von Metallkomplexen der Formel (V),

- 16 -

Abb. 9a

und 9b ein Reaktionschema zur Herstellung von Metallkomplexen der Formel (IV) und

Abb. 10 ein Metallkomplex-Progesteron-Konjugat.

Beispiel 1

Herstellung eines hydrophilen Bipyridin-Liganden (4,4'-Bis(methoxy-ethoxy-ethoxy)-bipyridin)

50 ml einer Lösung von Lithiumdiisopropylamid in einem Gemisch aus Cyclohexan, Ethylbenzol und THF werden auf -78°C abgekühlt. Es werden 350 ml einer Lösung von 50 mmol Bipyridin in THF zugetropft. Man läßt zwei Stunden röhren und tropft dann eine Lösung von 100 mmol Methoxy-ethoxy-ethoxytosylat in THF hinzu. Nach einer Stunde bei -78°C läßt man das Reaktionsgemisch über Nacht bei Raumtemperatur stehen. Dann wird eine wäßrige Natriumchloridlösung zugegeben. Anschließend wird das THF mit einem Rotationsverdampfer entfernt und der Rückstand mit Essigester extrahiert.

Das Produkt wird chromatographisch über Kieselgel gereinigt. Eluens: Essigester-Methanol-Ammoniak 95/4/1 bzw. Amino-Kieselgel mit Essigester-Petrolether als Eluens.

H-NMR (CDCl₃): 3,6 ppm (m.CH₂CH₂) = 16 H
7,12-8,5 ppm (bpy) = 6 H

Beispiel 2

Herstellung eines Bis(bisethylenglycol-bipyridin)-dichloro-Ruthenium-Komplexes

Rutheniumtrichlorid wird mit einem doppelten molaren Überschuß des in Beispiel 1 hergestellten Liganden und einem 7 bis 8 fachen Überschuß an Lithiumchlorid in DMF gelöst und sechs Stunden unter Rückfluß gekocht. Man entfernt das Lösungsmittel, löst den Rückstand in Wasser und extrahiert mit Essigester und anschließend mit Chloroform. Die Chloroform-

- 17 -

phasen wurden vereinigt, getrocknet, filtriert und am Rotationsverdampfer eingeengt.

Das Produkt wird dünnenschichtchromatographisch über Amino-Kieselgel mit Acetonitril/H₂O 10/1 gereinigt (R_f = 0,58).

Beispiel 3

Synthese von Bis(bisethylenglycol-bipyridin)-4(4(4'-methyl-2,2'bipyridyl))-butansäure

3,0 g des in Beispiel 2 hergestellten Ruthenium-Komplexes wurden in 240 ml eines Ethanol-Wasser-Gemisches unter Argon gelöst. Es werden 0,82 g Bipyridyl-butansäure-Derivat hinzugefügt und drei Stunden unter Rückfluß erhitzt. Die Lösung wird eingeengt, mit Essigester gewaschen und mit Chloroform extrahiert. Man rotiert ein und reinigt den Rückstand über SP-Sephadex (Eluens: NaCl/HCl in Wasser).

Ausbeute: 500 mg, Reinheit (HPLC): 93 %

MS (PosLIMS): 1455,5 = Ru²⁺Komplex PF₆⁻

Beispiel 4

Herstellung eines hydrophilen Metallkomplex-Aktivesterderivats

260 mg des in Beispiel 3 hergestellten Komplexes wurden in Methylenechlorid gelöst und mit equimolaren Mengen an Dicyclohexylcarbodiimid/N-Hydroxysuccinimidester versetzt. Man läßt zwölf Stunden röhren, filtriert DCH ab und rotiert ein. Das Rohprodukt wird über präparative HPLC gereinigt. Die Ausbeute ist 85 %.

- 18 -

Beispiel 5

Herstellung eines hydrophilen Metallkomplex-Maleimid-Derivats

150 mg des Metallkomplexes Ru(bipyridin)₂(bipyridin-CO-N-hydroxysuccinimidester) gemäß EP-A-0 580 979 werden zusammen mit 100 mg Maleimido-Amino-Dioxaoctan (MADOO) und Triethylamin in Methylenchlorid ca. 12 h umgesetzt. Das Reaktionsgemisch wird 3 mal mit Wasser ausgeschüttelt und der Rückstand aus der organischen Phase über eine Sephadex-LH20-Säule mit Methylenchlorid/Methanol gereinigt. Man erhält die in Abb. 1a dargestellte Verbindung Ru(bpy)₂(bpy-CO-MADOO).

MS: M[•] = 1025,3 (entspricht Ru²⁺ PF₆⁻-Komplex)

Beispiel 6

Herstellung eines hydrophilen Metallkomplex-Aktivester-Derivats

0,5 mmol des in Beispiel 5 als Ausgangsmaterial verwendeten Rutheniumkomplexes in 20 ml Dichlormethan werden mit 0,5 mmol Mono-Boc-Diaminodioxaoctan in 20 ml Dichlormethan und einem Äquivalent an Triethylamin umgesetzt. Die Aufreinigung erfolgt wie in Beispiel 5 beschrieben. Die Boc-Schutzgruppe wird nach Standardmethoden (Trifluoressigsäure/Methylenchlorid) abgespalten.

Das resultierende Produkt wird mit einer äquimolaren Menge an Korksäure-bis-N-hydroxysuccinimidester in Dimethylformamid für 2 h bei Raumtemperatur umgesetzt. Das Lösungsmittel wird entfernt, der Rückstand in Wasser aufgenommen und lyophilisiert. Das resultierende Produkt ist in Abb. 1b dargestellt.

H-NMR: 7,2 - 8,9 ppm : Bipyridin (22H);
2,8 ppm NHS-Ester (4H).

- 19 -

Beispiel 7

Synthese eines Metallkomplex-Hapten-Konjugates

10 mg des N-Hydroxysuccinimidesters aus Beispiel 4 werden mit 3,2 mg Progesteron-3-carboxymethyl-oxim-diamondioxyoctan in 2 ml Methylenechlorid gelöst, 1,2 μ l Triethylamin hinzugefügt und zwölf Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird entfernt und der Rückstand über Sephadex gereinigt. Das resultierende Konjugat ist in Abb. 10 dargestellt.

MS (posLIMS): $M+ = 1923,0$ (Ruthenium-Komplex-Progesteron-Konjugat $^{2+}$ Trifluoracetat)

Beispiel 8

Herstellung von Metallchelat-markierten Peptiden

Die Metallchelat-markierten Peptide wurden mittels Fluorenylmethyloxycarbonyl-(Fmoc)-Festphasenpeptidsynthese an einem Batch-Peptidsynthesizer, z.B. von Applied Biosystems A431 oder A433, hergestellt. Dazu wurden jeweils 4.0 Äquivalente der in Tabelle 1 dargestellten Aminosäurederivate verwendet:

- 20 -

Tabelle 1:

A	Fmoc-Ala-OH
C	Fmoc-Cys(Trt)-OH
D	Fmoc-Asp(OtBu)-OH
E	Fmoc-Glu(OtBu)-OH
F	Fmoc-Phe-OH
G	Fmoc-Gly-OH
H	Fmoc-His(Trt)-OH
I	Fmoc-Ile-OH
K1	Fmoc-Lys(Boc)-OH
K2	Boc-Lys(Fmoc)-OH
K3	Fmoc-Lys(BPRu)-OH
L	Fmoc-Leu-OH
M	Fmoc-Met-OH
N	Fmoc-Asn(Trt)-OH
P	Fmoc-Pro-OH
Q	Fmoc-Gln(Trt)-OH
R	Fmoc-Arg(Pmc)-OH
S	Fmoc-Ser(tBu)-OH
T	Fmoc-Thr(tBu)-OH
U	Fmoc-βAlanin-OH
V	Fmoc-Val-OH
W	Fmoc-Trp-OH
Y	Fmoc-Tyr(tBu)-OH
Z	Fmoc- ϵ -Aminocapronsäure-OH
Nle	Fmoc- ϵ -Norleucin-OH
Abu	Fmoc- γ -Aminobuttersäure-OH

Bei der Variante (a) - Einführung der Markierung nach Beendigung der Festphasensynthese - wurde ein aktivierter hydrophiler Ruthenium(bipyridyl)₃-Komplex (BPRu) an die N-terminale Aminosäure des Peptids gekoppelt. Das Lysin-Derivat K1 wurde

- 21 -

für den Spacerbereich und das Lysin-Derivat K2 für den Epi-topbereich verwendet.

Gemäß Variante (b) erfolgte die Einführung von Metallchelatgruppen in die Peptidsequenz durch direkten Einbau von Metallchelat-gekoppelten Aminosäurederivaten, z.B. innerhalb der Sequenz über einen mit Metallchelat-Aktivester ϵ -derivatisierten Lysinrest, z.B. das Lysin-Derivat K3 oder N-terminal durch Verwendung eines α -derivatisierten Aminosäurerests.

Die Aminosäuren oder Aminosäurederivate wurden in N-Methylpyrrolidon gelöst. Das Peptid wurde an 400-500 mg 4-(2',4'-Dimethoxyphenyl-Fmoc-Aminomethyl)-Phenoxy-Harz (Tetrahedron Letters 28 (1987), 2107) mit einer Beladung von 0,4-0,7 mmol/g aufgebaut (JACS 95 (1973), 1328). Die Kupplungsreaktionen wurden bezüglich des Fmoc-Aminosäurederivats mit 4 Äquivalenten Dicyclohexylcarbodiimid und 4 Äquivalenten N-Hydroxybenzotriazol in Dimethylformamid als Reaktionsmedium während 20 min durchgeführt. Nach jedem Syntheseschritt wurde die Fmoc-Gruppe mit 20%igem Piperidin in Dimethylformamid in 20 min abgespalten.

Bei Anwesenheit von Cysteinresten in der Peptidsequenz erfolgte unmittelbar nach Beendigung der Synthese eine Oxidation an der Festphase mit Jod in Hexafluorisopropanol/Dichlormethan.

Die Freisetzung des Peptids vom Träger und die Abspaltung der säurelabilen Schutzgruppen erfolgte mit 20 ml Trifluoressigsäure, 0,5 ml Ethandithiol, 1 ml Thioanisol, 1,5 g Phenol und 1 ml Wasser in 40 min bei Raumtemperatur. Die Reaktionslösung wurde anschließend mit 300 ml gekühltem Diisopropylether versetzt und zur vollständigen Fällung des Peptids 40 min bei 0°C gehalten. Der Niederschlag wurde abfiltriert, mit Diisopropylether nachgewaschen, mit wenig 50 %-iger Essigsäure gelöst und lyophilisiert. Das erhaltene Rohmaterial wurde mittels präparativer HPLC an Delta-PAK RP C18-Material (Säule

- 22 -

50 x 300 mm, 100 Å, 15 µ) über einen entsprechenden Gradienten (Eluent A: Wasser, 0,1% Trifluoressigsäure, Eluent B: Acetonitril, 0,1% Trifluoressigsäure) in ca. 120 min. aufgereinigt. Die Identität des eluierten Materials wurde mittels Ionenspray-Massenspektrometrie geprüft.

Die Einführung der Metallchelat-Markierung erfolgte gemäß Variante (a) über entsprechende Aktivester-Derivate an die freie N-terminale Aminogruppe des trägergebundenen Peptids. Hierzu wurden 4 Äquivalente hydrophiler Ruthenium(bipyridyl)₃-Komplexe (BPRu) pro freie primäre Aminofunktion, aktiviert mit N-Hydroxybenzotriazol/Dicyclohexylcarbodiimid und in wenig DMSO gelöst, zugetropft und bei Raumtemperatur gerührt. Der Umsatz wurde über analytische HPLC verfolgt. Nach Abspaltung vom Träger wurde das Produkt mittels präparativer HPLC aufgereinigt. Die Identität des eluierten Materials wurde mittels Ionenspray-Massenspektrometrie geprüft.

Die Herstellung der Peptide erfolgte auch durch eine Kombination von Variante (a) und (b), d.h. Einbau von Metallchelat-gekoppelten Aminosäurederivaten innerhalb der Sequenz, Abspaltung der N-terminalen Fmoc-Gruppe und Reaktion der freien N-terminalen Aminogruppe mit einem Metallchelat-Aktivesterderivat.

Bei einem ausschließlich direkten Einbau der Metallchelat-gekoppelten Aminosäurederivate während der Festphasensynthese gemäß Variante (b) war eine nachträgliche Einführung von Metallchelat-Aktivestern nicht mehr erforderlich.

Aus den Bereichen gp120, gp41 und gp32 von HIVI bzw. HIVII wurden die in Tabelle 2 dargestellten Peptid-Metallkomplex-Konjugate hergestellt.

- 23 -

Tabelle 2: Ruthenylierte lineare Peptide

gp120	BPRu-UZU-NNTRKSISIGPGRAFY BPRu-UZ-NTTRSISIGPGRAFY BPRu-UZ-NTTRSISIGPGRAFY NNTRKSISIGPGRAFY-T-K (BPRu) BPRu-UZU-IDIQEERRMRIGPGMAWYS
gp41/1	BPRu-UZU-AVERYLKDQQLLGIW BPRu-UGGG-QARILAVERYLKDQQLLGIWGASG BPRu-GGGG-QARILAVERYLKDQQLLGIWGASG BPRu-UZU-WGIRQLRARLLAETLLQN
gp41/2	BPRu-UZU-LGIWGCSGKLICTTAV BPRu-UGGG-GCSGKLICTTAVPWNASWS (GCSGKLICTTAVPWNASWS) K- (BPRu)
gp41/3	BPRu-UZU-KDQQQLLGIWGSSGKL
gp41/4	BPRu-UZU-ALETLLQNQLLSLW
gp32	BPRu-UZU-NSWGCAFQVCHTT BPRu-GGG-QAQLNSWGCAFQVCHTTVPWPNDST

Aus dem NS5-Bereich, dem NS4-Bereich und dem Core-Bereich von HCV wurden die in der folgenden Tabelle 3 dargestellten Peptide synthetisiert.

- 24 -

Tabelle 3: Ruthenylierte lineare Peptide

Core1	BPRu-GGGG-KNKRNTNRR
Core1+2	BPRu-UZU-KNKRNTNRRPQDVKFPGGQIVGGV
NS4/1+2	BPRu-UZ-SQHLPYIEQG-NleNle-LAEQFKQQALGLLQT
NS4/3m	BPRu-UZ-SRGNHVSPTHYVPESDAA
NS5/1	BPRu-UZ-SRRFAQALPVWARPD
Core1+2+3	BPRu-UZ-KNKRNTNRRPQDVKFPGGQIVGGVLLPRR
Core1m	BPRu-UZ-NPKPQKKNKRNTNRR
Core3m	BPRu-UZ-GQIVGGVYLLPRRGPRLG
Core2m	BPRu-UZ-PQDVKFPGGQIVGGV
NS4/3m-I	BPRu-UZU-SRGNHVSPTHYVPESDAA
NS4/1	BPRu-UZU-SQHLPYIEQ

Die Herstellung Biotin-markierter Peptide erfolgte entweder N-terminal durch eine Derivatisierung am Harz (Biotin-Aktivester) oder in die Sequenz über einen mit Biotinaktivester-ε-derivatisierten Lysinrest (Fmoc-Lys (Biotin)-OH).

Beispiel 9

Herstellung von Diethyl-α,α,α',α'-tetrakis(ethoxycarbonyl)-2,2'-bipyridin-4,4'-diyl-dipropionat (entsprechend Verbindung (1) in Abb. 7)

Zu einer Mischung aus 6,85 g (29,5 mmol) Triethyl-methan-tricarboxylat und 4,1 g (29,7 mmol) Kaliumcarbonat in 50 ml Toluol/DMF (3/2) tropft man 2,00 g (5,8 mmol) 4,4'-Bis(brommethyl)-2,2'-bipyridin in 40 ml Toluol/DMF (3/2) bei 50°C unter gutem Rühren zu. Man röhrt weitere 4 Tage bei 65°C filtriert und entfernt anschließend das Lösungsmittel im

- 25 -

Vakuum. Der ölige Rückstand wird in 100 ml Toluol aufgenommen und nacheinander 3 mal mit Wasser, 3 mal mit 7 % Natronlauge und 3 mal mit Wasser ausgeschüttelt. Die organische Phase wird gesammelt und über Natriumsulfat getrocknet. Nach Entfernen der flüchtigen Bestandteile im Vakuum wird der Rückstand aus Cyclohexan umkristallisiert. Zur vollständigen Entfernung von Verunreinigungen wird säulenchromatographisch getrennt (SiO_2 , $\text{CHCl}_3/\text{MeOH}$ (10:1) erste Bande).
Farblose Kristalle (Cyclohexan)

Ausbeute: 2,95 g (79 %)

Schmp.: 116 °C

$^1\text{H-NMR}$ (250 MHz, CDCl_3 , 25 °C): $\delta=1,21$ (t, 18H, $^3J=7,2$ Hz), 3,57 (s, 4H), 4,22 (q, 12H, $^3J=7,2$ Hz), 7,25 (dd, 2H, $^3J=5,1$ Hz, $^4J=1,2$ Hz), 8,29 (d, 2H, $^4J=1,2$ Hz), 8,51 (dd, 2H, $^3J=5,1$ Hz, $^4J=1,2$ Hz)

$^{13}\text{C-NMR}$ (75 MHz, CDCl_3 , 25 °C): $\delta=13,96$ (CH_3), 38,1 (CH_2), 62,6 (H_2CO), 66,5 (CCO), 123,4, 123,6, 145,9, 149,0, 155 (Pyridin-C, CH), 166,5 (C=O).

IR (KBr/fest) [cm^{-1}]: 556, 610, 863, 1026, 1186, 1258, 1305, 1594, 1737 vs. 2988

MS-50: (180 °C, 70 eV, 300 μA , m/e): gef.: 644, 2585

$\text{C}_{32}\text{H}_{40}\text{N}_2\text{O}_{12}$ (644,682)

Beispiel 10

Herstellung von N,N'-Bis(2-hydroxy-1,1-bis(hydroxymethyl)-ethyl)- α,α -bishydroxy-2,2'-bipyridin-4,4'-diyl dipropionamid (entsprechend Verbindung (2) in Abb. 7)

Zu einer Lösung aus 752,7 mg (1,17 mmol) des Hexaesters (1) aus Beispiel 7 und 848,6 mg (7,00 mmol) α,α,α -Tris-(hydroxy-

- 26 -

methyl)-methylamin in 10 ml über CaH_2 getrocknetem DMSO gibt man unter Rühren 967,5 mg (7,00 mmol) Kaliumcarbonat. Nach Zugabe der Base wird die Mischung leicht gelblich. Nach weiterem 10 stündigen Rühren bei 25°C wird die Suspension zentrifugiert und die Lösung vom festen Kaliumcarbonat ab-dekantiert. Das Lösungsmittel wird im Vakuum (0,001 mbar) bei 30 °C entfernt. Der gelbliche, ölige Rückstand wird in wenig Wasser suspendiert und das Produkt durch langsame Zugabe von trockenem Aceton (über P_4O_{10} destilliert) ausgefällt. In der Kälte erfolgt die vollständige Ausfällung. Man dekantiert die Lösung ab und trocknet den Rückstand mehrere Tage über P_4O_{10} . Zurück bleibt ein hygroskopischer farbloser Feststoff, der ohne weitere Reinigung eingesetzt wird.

Ausbeute: 0,652 g (67 %)

$^1\text{H-NMR}$ (250 MHz, DMSO- d_6 , 25 °C): $\delta=3,08$ (d, 4H), 3,22 (s, 8H), 3,47 (d, 8H, $^2J=10,8$ Hz), 3,55 (d, 8H, $^2J=11,1$ Hz), 3,69 (t, 2H), 4,6-5,1 (bs, OH), 7,27 (d, 2H, Pyridyl-H, $^3J=4,8$ Hz), 7,4-7,7 (s, NH), 8,23 (s, 2H, Pyridyl-H), 8,51 (d, 2H, Pyridyl-H, $^3J=4,8$ Hz)

$^{13}\text{C-NMR}$ (75 MHz, DMSO- d_6 , 25 °C): $\delta=30,7$ (CH_2), 59,7 (CH_2OH), 61,7 (CR_4), 63,34 (CR_4), 78,5 (CCO), 122,8, 126,0, 146,0, 148,7, 155,0 (Pyridin-C, CH_2), 170,2 (CONH)

IR: (Kbr/fest) [cm^{-1}]: 3336, 2936, 2880, 1675, 1597, 1559, 1533, 1465, 1363, 1051 (vs)

FAB*-MS (m-NBA, m/e): 833,3, 855,3, 871,3, 965,2 ($\text{M}+\text{H})^+$, ($\text{M}+\text{Na})^*$, ($\text{M}+\text{K})^*$, ($\text{M}+\text{Cs})^*$

$\text{C}_{34}\text{H}_{52}\text{N}_6\text{O}_{18}$ (832,3)

- 27 -

Beispiel 11

Herstellung von halbkäfig- bzw. käfigförmigen hydrophilen Liganden gemäß Reaktionsschema III (Abb. 9a und b)

A:

Ansatz: 2,6 g (10 mmol) Bipyridin-methylbromid
80 ml 2-Methoxyethylamin
10 g Kaliumcarbonat

Durchführung:

Das Bromid wurde unter Rühren zu einer Suspension von gepulvertem Kaliumcarbonat in 2-Methoxyethylamin gegeben. Die Suspension wurde dann 12 h bei Raumtemperatur gerührt. Anschließend filtrierte man ab, destillierte das überschüssige 2-Methoxyethylamin ab und trocknete den Rückstand im Vakuum. Der Rückstand wurde chromatographiert (SiO₂; CH₂Cl₂/CH₃OH/NH₃, 100:10:1). Man erhielt ein hellgelbes Öl.

Ausbeute: 1,06 g (3,85 mmol) 38 %

¹H-NMR (250 MHz, CDCl₃): 1,95 (s, 1H, NH); 2,26 (s, 3H, Pyridyl-CH₃), 2,7 (t, ³J = 5,28 Hz, 2H, OCH₂); 3,24 (s, 3H, OCH₃); 3,41 (t, ³J = 5,28 Hz, 2H, NCH₂); 3,76 (s, 2H, Pyridyl-CH₂), 7,5 (dd, ³J = 8,35 Hz, ⁴J = 2,17 Hz, 1H, Pyridyl H); 7,69 (dd, ³J = 8,19 Hz, ⁴J = 2,24 Hz, 1 H, Pyridyl H); 8,17 (d, ³J = 8,02 Hz, 1H, Pyridyl-H); 8,22 (d, ³J = 8,24 Hz, 1 H, Pyridyl-H); 8,39 (d⁴J = 1,84 Hz, 1H, Pyridyl H); 8,85 (d, ⁴J = 1,85 Hz, 1 H, Pyridyl H) ppm.

- 28 -

Ansatz: 2,26 (10 mmol) Tri-alkohol
6,67 (35 mmol) Tosylchlorid

Durchführung:

Eine Lösung des Tri-alkohols in 20 ml Pyridin wurde langsam mit einer Lösung von Tosylchlorid in 20 ml Pyridin unter Kühlen, Schutzgas und Röhren versetzt, so daß die Temperatur der Reaktionsmischung 10 °C nicht überschritt. Dann wurde noch 24 h bei Raumtemperatur gerührt. Anschließend gab man vorsichtig auf eine Mischung von 10 ml Wasser, 20 ml Methanol und 8 ml konz. Salzsäure. Das ausgefallene Produkt bzw. abgeschiedene Öl wurde abfiltriert bzw. abgetrennt und chromatographisch gereinigt (SiO_2 ; $\text{CH}_2\text{Cl}_2/\text{CH}_3\text{OH}/\text{NH}_3$, 100:10:1). Man erhielt farblose Kristalle.

Smp.: 57 - 59 °C

$^1\text{H-NMR}$ (250 MHz, CD_2Cl_2): 2,4 (s, 9H, Ar- CH_3); 3,25 (s, 2H, CH_2); 3,88 (s, 6H, CH_2); 4,22 (s, 2H, CH_2); 7,02-7,1 (m, 2H, Ar-H); 7,25-7,3 (m, 3H, Ar-H); 7,31 (d, $^3\text{J} = 6,46$ Hz, 6H, Ar-H); 7,31 (d, $^3\text{J} = 6,46$ Hz, 6H, Ar-H); 7,67 (d, $^3\text{J} = 6,46$ Hz, Ar-H) ppm

$^{13}\text{C-NMR}$ u. DEPT-135 (62,8 MHz, CDCl_3): 145,36; 137,20; 131,75; 43,82 (C_q); 130,05; 128,39; 128,33; 127,92; 127,75; 127,23 (CH); 73,28, 66,71; 66,31 (CH_2); 21,67 (CH_3) ppm

- 29 -

Beispiel 13

Anwendung hydrophiler Metallkomplexe in immunologischen Tests

Es wurde ein Doppel-Antigen-Brückentest zum Nachweis spezifischer Antikörper gegen Hepatitis C-Virus (HCV) durchgeführt. Hierbei wurde die Probeflüssigkeit mit einem Ruthenium-markierten Antigen und einem biotinylierten Antigen gegen den zu bestimmenden Antikörper in Gegenwart einer Streptavidin-be schichteten Festphase inkubiert. Das Vorhandensein von Anti-HCV-Antikörpern in der Probeflüssigkeit wurde durch Bestimmung der Markierung in der Festphase durch Elektrochemilumineszenz nach dem Flash-System bestimmt.

Als Antigen wurde ein HCV-Polypeptid, welches die Aminosäuren 1207-1488 von HCV enthält, verwendet. Die Aminosäuresequenz und Herstellung eines derartigen Polypeptids ist in DE-A-44 28 705.4 beschrieben.

Zur Derivatisierung des HCV-Polypeptids mit Succinimidester-aktivierten Rutheniumkomplexen wurde das lyophilisierte Polypeptid in einem 100 mM Natriumphosphatpuffer pH 6,5, 0,1 % SDS in einer Proteinkonzentration von 10 mg/ml gelöst. Durch Zusatz von 5 M wurde der pH-Wert auf 8,5 eingestellt und die Lösung mit Dithiothreitol auf eine Endkonzentration von 2 mM abgestoppt. Zu dieser Lösung wurde die gewünschten Angebotsstöchiometrie entsprechende Menge eines Succinimidester-aktivierten Rutheniumkomplexes in DMSO zugegeben und anschließend für 60 min bei 65 °C unter Rühren inkubiert. Die Reaktion wurde durch Aufstocken des Reaktionsgemisches mit Lysin auf eine Endkonzentration von 10 mM und eine weitere Inkubation für 30 min abgestoppt. Anschließend wurde der Ansatz gegen 100 mM Natriumphosphatpuffer pH 6,5, 0,1 % SDS dialysiert. Die resultierende Proteinlösung wurde mit Saccharose (Endkonzentration 6,5 % (w/v)) versetzt und in Portionen lyophilisiert.

- 30 -

Zur Herstellung eines mit einem Maleinimid-aktivierten Rutheniumkomplex derivatisierten HCV-Polypeptids wurde das lyophilisierte Protein in 100 mM Natriumphosphatpuffer pH 6,5, 0,1 % SDS (Proteinkonzentration 10 mg/ml) aufgenommen. Zu dieser Lösung wurde eine der gewünschten Angebotsstöchiometrie entsprechende Menge des Maleinimid-aktivierten Rutheniumkomplexes in DMSO zugegeben und 60 min bei 25°C unter Rühren inkubiert. Die Reaktion wurde durch Aufstocken des Reaktionsgemisches mit Cystein auf eine Endkonzentration von 10 mM und weitere Inkubation für 30 min abgestoppt. Das Reaktionsgemisch wurde daraufhin wie oben beschrieben dialysiert, mit Saccharose versetzt und in Portionen lyophilisiert.

Es wurden 3 Experimente durchgeführt, in denen jeweils unterschiedliche ruthenylierte Antigene eingesetzt wurden. Für Experiment A (Vergleich) wurde der in den Beispielen 5 und 6 als Ausgangsmaterial verwendete Ruthenium-Komplex gemäß EP-A-0 580 979 in einem stöchiometrischen Verhältnis von 1:3 an das Polypeptid gekoppelt. Für Experiment B wurde das Polypeptid mit dem in Beispiel 5 hergestellten erfindungsgemäßen hydrophilen Ruthenium-Komplex in einem stöchiometrischen Verhältnis von 1:3 gekoppelt. Für Experiment C wurde das Polypeptid mit dem in Beispiel 6 hergestellten hydrophilen Ruthenium-Komplex im stöchiometrischen Verhältnis von 1:1 gekoppelt. Als biotinyliertes Antigen wurde in allen 3 Experimenten ein Polypeptid verwendet, das im stöchiometrischen Verhältnis von 1:6 an ein Maleimid-aktiviertes Biotin gekoppelt worden war. Das ruthenylierte und das biotinylierte Antigen wurden jeweils in einer Konzentration von 400 ng/ml Testflüssigkeit eingesetzt.

In Tabelle 4 ist das Ergebnis der Experimente A, B und C in ECL-Counts dargestellt. Es ist ersichtlich, daß erst die Verwendung der erfindungsgemäßen hydrophilen Metallkomplexe als Markierungsgruppen eine zuverlässige Unterscheidung zwischen einer negativen Serumprobe und einer kritischen

- 31 -

positiven Serumprobe erlaubt. Dies zeigt sich in einem höheren Verhältnis positiv/negativ.

Tabelle 4

Experiment	A (Ver-gleich)	B	C
negative Probe	323317	84584	44274
positive Probe	465769	346734	313185
Verhältnis positiv/ne-gativ	1,4	4	7

P a t e n t a n s p r ü c h e

1. Metallkomplexe mit der allgemeinen Formel (I) :

worin

- M ein zwei- oder dreiwertiges Metallkation ausgewählt aus Seltenerde- oder Übergangmetallionen ist,
- L₁, L₂ und L₃ gleich oder verschieden sind und Liganden mit mindestens zwei stickstoffhaltigen Heterocyclen bedeuten, wobei L₁, L₂ und L₃ über Stickstoffatome an das Metallkation gebunden sind,
- X eine reaktive oder aktivierbare funktionelle Gruppe ist, die an mindestens einen der Liganden L₁, L₂, L₃ kovalent gebunden ist,
- n eine ganze Zahl von 1 bis 10 ist,
- m eine ganze Zahl von 1 bis 6 ist und
- A eine oder mehrere zum Ladungsausgleich erforderliche, negativ geladene Gruppen bedeutet, dadurch gekennzeichnet,
daß der Komplex mindestens eine hydrophile Gruppe ausgewählt aus C₂-C₃-Alkylenoxy-Einheiten, C₂-C₃-Alkylenthio-Einheiten, C₂-C₃-Alkylenamino-Einheiten oder/und Polyhydroxy-Einheiten enthält.

2. Komplex nach Anspruch 1, dadurch gekennzeichnet, daß das Metallkation M ein Ruthenium-, Rhenium-, Osmium-, Chrom- oder Iridiumion ist.
3. Komplex nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Metallkation M ein Rutheniumion ist.
4. Komplex nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Liganden L₁, L₂, L₃ Bipyridin- oder/und Phenanthrolin-Ringsysteme enthalten.

- 33 -

5. Komplex nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die reaktive oder aktivierbare funktionelle Gruppe X ein Carbonsäurehalogenid, ein Carbonsäureanhydrid, ein Aktivester, ein Maleimid, ein Amin, eine Carbonsäure, ein Thiol, ein Halogenid, eine Hydroxylgruppe oder eine photoaktivierbare Gruppe ist.
6. Komplex nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die negativ geladenen Gruppen A Hexafluorophosphat-, Trifluoracetat-, Tetrafluoroborat-Gruppen oder Halogenidionen sind.
7. Komplex nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Polyhydroxy-Einheiten aus Gruppen der Formeln (IIa) oder (IIb) ausgewählt sind:

-NR-W

(IIa)

-O-W

(IIb)

worin W einen organischen Rest mit mindestens 2 Hydroxygruppen und R Wasserstoff oder C₁-C₅-Alkyl bedeutet.

8. Komplex nach Anspruch 7, dadurch gekennzeichnet, daß die Polyhydroxy-Einheiten die Formel -NR-C(CH₂OH)₃ aufweisen.
9. Komplex nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die C₂-C₃-Alkylenoxy-, C₂-C₃-Alkylenthio bzw. C₂-C₃-Alkylenamino-Einheiten Ethylenoxy-, Ethylenthio-, bzw. Ethylenamino-Einheiten sind.
10. Komplex nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß 1 bis 30 C₂-C₃-Alkylenoxy-C₂-C₃-Alkylenthio- bzw. C₂-C₃-Alkylenamino-Einheiten pro Metallkation vorhanden sind.
11. Komplex nach einem der Ansprüche 1 bis 10 mit der allgemeinen Formel (III):

- 34 -

worin M, X und A wie in Anspruch 1 definiert sind, R₁, R₂, R₃, R₄, R₅ und R₆ gleich oder verschieden sind und jeweils einen oder mehrere Substituenten bedeuten, unter der Voraussetzung, daß X über einen der Substituenten R₁, R₂, R₃, R₄, R₅ oder R₆ an einen der Liganden gebunden ist und daß mindestens einer der Substituenten R₁, R₂, R₃, R₄, R₅ oder R₆ mindestens eine hydrophile Gruppe, ausgewählt aus C₂-C₃-Alkylenoxy-, C₂-C₃-Alkylenthio- und C₂-C₃-Alkylenamino-Einheiten enthält.

12. Komplex nach Anspruch 11 mit der allgemeinen Formel (IIIA):

worin M, X und A wie in Anspruch 1 definiert sind, R₁, R₂, R₃, R₄ und R₅ wie in Anspruch 11 definiert sind, s eine ganze Zahl von 0 bis 6 ist und Y eine hydrophile Gruppe mit 1 bis 10 hydrophilen Einheiten bedeutet, ausgewählt aus C₂-C₃-Alkylenoxy-, C₂-C₃-Alkylenthio und C₂-C₃-Alkylenamino-Einheiten.

- 35 -

13. Komplex nach Anspruch 11 mit der allgemeinen Formel (IIIB):

worin M, X und A wie in Anspruch 1 definiert sind, R₁, R₂, R₃, R₄ und R₅ wie in Anspruch 11 definiert sind und s eine ganze Zahl von 0 bis 6 ist, unter der Voraussetzung, daß R₁, R₂, R₃, R₄ oder/und R₅ eine hydrophile Substituentengruppe enthalten, die jeweils 1 bis 10 C₂-C₃-Alkylenoxy-, C₂-C₃-Alkylenthio oder/und C₂-C₃-Alkylenamino-Einheiten umfaßt.

14. Komplex nach einem der Ansprüche 1 bis 10 mit der allgemeinen Formel (IV):

worin M, X, n und A wie in Anspruch 1 definiert sind, R₁, R₂ und R₃ gleich oder verschieden sind und jeweils einen oder mehrere Substituenten bedeuten und Y jeweils eine hydrophile Linkergruppe bedeutet, die 1 bis 10 hydrophile Einheiten, ausgewählt aus C₂-C₃-Alkylenoxy-,

- 36 -

C_2-C_3 -Alkylenthio- und C_2-C_3 -Alkylenamino-Einheiten umfaßt.

15. Komplex nach einem der Ansprüche 1 bis 10 mit der allgemeinen Formel (V):

worin M, X und A wie in Anspruch 1 definiert sind, Z eine Linkergruppe bedeutet, R'₁, R'₂, R'₃, R'₄ oder/und R'₅, gleich oder verschieden sind und jeweils einen oder mehrere Substituenten bedeuten, unter der Voraussetzung, daß R'₁, R'₂, R'₃, oder/und R'₄ mindestens eine hydrophile Substituentengruppe enthält, die eine Polyhydroxy-Einheit umfaßt.

16. Komplex nach Anspruch 15, dadurch gekennzeichnet, daß die OH-Gruppen der Polyhydroxy-Einheiten durch weitere hydrophile Gruppen substituiert sind.
 17. Komplex nach Anspruch 16, dadurch gekennzeichnet, daß die weiteren hydrophilen Gruppen ein Dendrimer bzw. ein dendrimeres Bauelement der Formel (VIa) oder (VIb) umfassen:

worin

- 37 -

- A_1 und A_2 gleich oder verschieden sind und Linkergruppen bedeuten,
 - W_1 und W_2 gleich oder verschieden sind und einen organischen Rest mit mindestens 2 Hydroxygruppen bedeuten,
 - R Wasserstoff oder einen C_1 - C_5 -Alkylrest bedeutet und
 - $n' \neq 0$ ist oder der Zahl der Hydroxygruppen von W_1 entspricht.
18. Konjugat, umfassend eine biologische Substanz, an die mindestens ein Metallkomplex nach einem der Ansprüche 1 bis 17 gekoppelt ist.
19. Konjugat nach Anspruch 18, dadurch gekennzeichnet, daß die biologische Substanz Biotin, ein Antikörper oder Antikörperfragment, eine Nukleinsäure, ein Polypeptidantigen, ein immunologisch reaktives Peptid oder ein Hapten ist.
20. Verwendung von Metallkomplexen nach einem der Ansprüche 1 bis 17 oder Konjugaten nach Anspruch 18 oder 19 in einem immunologischen Nachweisverfahren.
21. Verwendung nach Anspruch 20 in einem Elektrochemilumineszenzverfahren.
22. Verwendung nach Anspruch 21,
dadurch gekennzeichnet,
daß man die Elektrochemilumineszenz-Messung in Gegenwart eines Reduktionsmittels für den Metallkomplex durchführt.
23. Verwendung nach Anspruch 22,
dadurch gekennzeichnet,
daß das Reduktionsmittel in die Ligandensphäre des Komplexes integriert ist.

Abb. 1a

Abb. 1b

Abb. 1c

ERSATZBLATT (REGEL 26)

2/11

Abb. 2

3/11

Abb. 3a

Abb. 3b

STATT ETHYLEN - SIND AUCH PROPYLENBRÜCKEN IM SPACER
EINZUSETZEN

$Y' = O, NH, S$

STATT BIPYRIDIN IST AUCH PHENANTHROLIN EINZUSETZEN
(GEBROCHENE LINIEN)

$n' = 1-10$

$R' = H, C_1-C_5$ -ALKYL

X = FUNKTIONELLE REAKTIVE ODER AKTIVIERBARE GRUPPE

4/11

Abb. 4

STATT ETHYLEN - SIND AUCH PROPYLENBRÜCKEN IM SPACER
EINZUSETZEN

Y'= O, NH, S

STATT BIPYRIDIN IST AUCH PHENANTHROLIN EINZUSETZEN
(GEBROCHENE LINIEN)

n'= 1-10

R'= H, C₁-C₅-ALKYL

X= FUNKTIONELLE REAKTIVE ODER AKTIVIERBARE GRUPPE

5/11

Abb. 5

STATT ETHYLEN - SIND AUCH PROPYLENBRÜCKEN IM SPACER
EINZUSETZEN

Y' = O, NH, S

STATT BIPYRIDIN IST AUCH PHENANTHROLIN EINZUSETZEN
(GEBROCHENE LINIEN)

n' = 1-10

R' = H, C₁-C₅-ALKYL

X = FUNKTIONELLE REAKTIVE ODER AKTIVIERBARE GRUPPE

ERSATZBLATT (REGEL 26)

6/11

Abb. 6

7/11

Abb. 7

SCHEMA I

8/11

SCHEMA II

Abb. 8

9/11

Abb. 9a
REAKTIONSSCHEMA III

10/11

Abb. 9b

11/11

Abb. 10

INTERNATIONAL SEARCH REPORT

Int. Appl. No.

PCT/EP 95/02923

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C07F15/00 C12Q1/68 G01N33/58 C07F19/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C07F C12Q G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol.116, no.8, 20 April 1994 pages 3399 - 3404 SEILER, M. ET AL. 'PHOTOINDUCED ELECTRON TRANSFER IN SUPRAMOLECULAR ASSEMBLIES COMPOSED OF DIALKOXYBENZENE-TETHERED RUTHENIUM(II) TRISBIPYRIDINE AND BIPYRIDINIUM SALTS' see the whole document --- -/-	1

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

Date of the actual completion of the international search

23 October 1995

Date of mailing of the international search report

17.11.95

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
 Fax (+ 31-70) 340-3016

Authorized officer

Rinkel, L

INTERNATIONAL SEARCH REPORT

Int. Appl. No.

PCT/EP 95/02923

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CHEMICAL ABSTRACTS, vol. 98, no. 22, 30 May 1983, Columbus, Ohio, US; abstract no. 188896x, MARKOVITSI, D. ET AL. 'ANNELIDES. VI. PHOTOCHEMICAL PROPERTIES OF MICELLAR PHASES OF METAL ION COMPLEXES' page 587 ; see abstract & NOUV. J. CHIM., vol.6, no.11, 1982 pages 531 - 537 ---	1
A	WO,A,92 14139 (IGEN, INC.;EISAI CO., LTD.) 2 August 1992 see the whole document ---	1-23
A	WO,A,87 06706 (IGEN, INC.,;MASSEY, R.J.) 5 November 1987 cited in the application see the whole document ---	1-23
A	WO,A,86 02734 (HYPERION CATALYSIS INTERNATIONAL, INC.) 9 May 1986 see the whole document & EP,A,0 580 979 (HYPERION CATALYSIS INTERNATIONAL, INC.) cited in the application -----	1-23

INTERNATIONAL SEARCH REPORT

Int. Appl. No.

PCT/EP 95/02923

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9214139	20-08-92	AU-B-	1420692	07-09-92
		AU-B-	1530492	07-09-92
		CA-A-	2103674	07-08-92
		CN-A-	1065339	14-10-92
		CN-A-	1064945	30-09-92
		EP-A-	0570518	24-11-93
		JP-T-	6509412	20-10-94
		JP-T-	6508203	14-09-94
		WO-A-	9214138	20-08-92
-----	-----	-----	-----	-----
WO-A-8706706	05-11-87	AT-T-	127923	15-09-95
		AU-B-	5754094	12-05-94
		AU-B-	644150	02-12-93
		AU-B-	7433891	08-08-91
		AU-B-	605158	10-01-91
		AU-B-	7581687	24-11-87
		DE-D-	3751516	19-10-95
		EP-A-	0265519	04-05-88
		EP-A-	0647849	12-04-95
		EP-A-	0658564	21-06-95
		JP-B-	7037464	26-04-95
		JP-T-	1500146	19-01-89
		NO-B-	176071	17-10-94
		NO-A-	943690	23-02-88
-----	-----	-----	-----	-----
WO-A-8602734	09-05-86	US-A-	5238808	24-08-93
		AU-B-	5020085	15-05-86
		DE-D-	3587793	11-05-94
		DE-T-	3587793	18-08-94
		EP-A-	0199804	05-11-86
		EP-A-	0580979	02-02-94
		JP-A-	7173185	11-07-95
		JP-A-	6065271	08-03-94
		JP-T-	62500663	19-03-87
		US-A-	5453356	26-09-95
		US-A-	5221605	22-06-93
		US-A-	5310687	10-05-94
-----	-----	-----	-----	-----
EP-A-0580979	02-02-94	US-A-	5238808	24-08-93
		AU-B-	5020085	15-05-86

INTERNATIONAL SEARCH REPORT

Int. Application No

PCT/EP 95/02923

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-0580979		DE-D- 3587793	11-05-94
		DE-T- 3587793	18-08-94
		EP-A- 0199804	05-11-86
		JP-A- 7173185	11-07-95
		JP-A- 6065271	08-03-94
		JP-T- 62500663	19-03-87
		WO-A- 8602734	09-05-86
		US-A- 5453356	26-09-95
		US-A- 5221605	22-06-93
		US-A- 5310687	10-05-94

INTERNATIONALER RECHERCHENBERICHT

Inz. nationales Aktenzeichen

PCT/EP 95/02923

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 C07F15/00 C12Q1/68 G01N33/58 C07F19/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbol)

IPK 6 C07F C12Q G01N

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Bd.116, Nr.8, 20. April 1994 Seiten 3399 - 3404 SEILER, M. ET AL. 'PHOTOINDUCED ELECTRON TRANSFER IN SUPRAMOLECULAR ASSEMBLIES COMPOSED OF DIALKOXYBENZENE-TETHERED RUTHENIUM(II) TRISBIPYRIDINE AND BIPYRIDINIUM SALTS' siehe das ganze Dokument --- -/-	1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist.

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmelddatum veröffentlicht worden ist.

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmelddatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist.

"T" Spätere Veröffentlichung, die nach dem internationalen Anmelddatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist.

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Anmelddatum des internationalen Recherchenberichts

23. Oktober 1995

17. 11. 95

Name und Postanschrift der Internationale Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+ 31-70) 340-3016

Bevollmächtigter Bediensteter

Rinkel, L

INTERNATIONALER RECHERCHENBERICHT

Ink onales Aktenzeichen
PCT/EP 95/02923

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	CHEMICAL ABSTRACTS, vol. 98, no. 22, 30. Mai 1983, Columbus, Ohio, US; abstract no. 188896x, MARKOVITSI, D. ET AL. 'ANNELIDES. VI. PHOTOCHEMICAL PROPERTIES OF MICELLAR PHASES OF METAL ION COMPLEXES' Seite 587 ; siehe Zusammenfassung & NOUV. J. CHIM., Bd.6, Nr.11, 1982 Seiten 531 - 537 ---	1
A	WO,A,92 14139 (IGEN, INC.;EISAI CO., LTD.) 2. August 1992 siehe das ganze Dokument ---	1-23
A	WO,A,87 06706 (IGEN, INC.,;MASSEY, R.J.) 5. November 1987 in der Anmeldung erwähnt siehe das ganze Dokument ---	1-23
A	WO,A,86 02734 (HYPERION CATALYSIS INTERNATIONAL, INC.) 9. Mai 1986 siehe das ganze Dokument & EP,A,0 580 979 (HYPERION CATALYSIS INTERNATIONAL, INC.) in der Anmeldung erwähnt -----	1-23

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 95/02923

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO-A-9214139	20-08-92	AU-B- 1420692 AU-B- 1530492 CA-A- 2103674 CN-A- 1065339 CN-A- 1064945 EP-A- 0570518 JP-T- 6509412 JP-T- 6508203 WO-A- 9214138	07-09-92 07-09-92 07-08-92 14-10-92 30-09-92 24-11-93 20-10-94 14-09-94 20-08-92
WO-A-8706706	05-11-87	AT-T- 127923 AU-B- 5754094 AU-B- 644150 AU-B- 7433891 AU-B- 605158 AU-B- 7581687 DE-D- 3751516 EP-A- 0265519 EP-A- 0647849 EP-A- 0658564 JP-B- 7037464 JP-T- 1500146 NO-B- 176071 NO-A- 943690	15-09-95 12-05-94 02-12-93 08-08-91 10-01-91 24-11-87 19-10-95 04-05-88 12-04-95 21-06-95 26-04-95 19-01-89 17-10-94 23-02-88
WO-A-8602734	09-05-86	US-A- 5238808 AU-B- 5020085 DE-D- 3587793 DE-T- 3587793 EP-A- 0199804 EP-A- 0580979 JP-A- 7173185 JP-A- 6065271 JP-T- 62500663 US-A- 5453356 US-A- 5221605 US-A- 5310687	24-08-93 15-05-86 11-05-94 18-08-94 05-11-86 02-02-94 11-07-95 08-03-94 19-03-87 26-09-95 22-06-93 10-05-94
EP-A-0580979	02-02-94	US-A- 5238808 AU-B- 5020085	24-08-93 15-05-86

INTERNATIONALER RECHERCHENBERICHT

Inte: nationales Aktenzeichen

PCT/EP 95/02923

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP-A-0580979		DE-D- 3587793	11-05-94
		DE-T- 3587793	18-08-94
		EP-A- 0199804	05-11-86
		JP-A- 7173185	11-07-95
		JP-A- 6065271	08-03-94
		JP-T- 62500663	19-03-87
		WO-A- 8602734	09-05-86
		US-A- 5453356	26-09-95
		US-A- 5221605	22-06-93
		US-A- 5310687	10-05-94