Low tech graphite-based strain gauge

1- General features

- Affordable
- Low electric consumption
- Easy to use
- Easily replaceable
- Eco-friendly

Figure 1 : Strain gauge.

2- Description

This graphite-based strain gauge is composed of a thin graphite coating on paper, acting as a flexible surface. The graphite coating's electrical conductivity depends on the paper's deformation. As such, a resistivity measurement gives access to the paper's current deformation. Its main use is to measure a given sample deformation, this may be done by attaching the sensor directly on it.

At the microscopic scale, the graphite coating is composed of a multitude of isolated carbon aggregates. The electrical conductivity of such a structure depends on the average space between those aggregates. Spreading them apart increases the resistance, while bringing them closer together lowers it. Applying a compressive force will decrease its resistivity, while applying a tensile force will increase it.

This device was developed in a low-tech spirit. Its materials are very affordable and widely accessible, and its production is effortless. It may be built in any environment by using a simple piece of paper and a pencil; the most expensive material needed is metal, used for the pins.

This strain gauge's goal is to give access to low-tech and low-price technology to individuals and organizations whose resources are strictly limited. Its fragile nature limits its use to controlled environments, and reduce its "real" usages.

3-Pins description

Pin	Signal	
1	+5V	
2	Analog output	

Figure 2 : Strain gauge with pins.

Both pins are invertible.

4- Dimensions

Figure 3 : Strain gauge pattern. All units are in millimeters.

5- Specifications

Туре	Strain gauge
Sensor type	Passive
Materials	Copper clips
	 Paper
	 Graphite coating
Power supply requirement	+5V
Nature of output signal	Analog
Measurand	Voltage
Typical application	Deformation measurement

6- Standard use condition

	Unit	Typical value
Temperature	°C	20±5
Humidity	%	60±5
Air quality	%N ₂ /O ₂	80/20

7- Electrical characteristics

Tensile deformation electrical characteristics

Graphite	Unit	Value		
coating		Min	Typical	Max
2H	GΩ	1	1.1	1.2
НВ	ΜΩ	6.4	7.2	8
1B	ΜΩ	0.65	0.8	0.95
2B	ΜΩ	0.95	1.1	1.2

8-Typical application

Figure 4: Transimpedance amplifier circuit.

Above is a typical application of the sensor in a transimpedance amplifier circuit with filter stages. The output tension is amplified by a LTC1050 operational amplifier. The tension may then be connected to a 5V ADC reader such as in an Arduino input. At low frequencies, we may convert the voltage value into the resistance of the graphite sensor with the following formula:

$$R_c = (1 + \frac{R_3}{R_2}) \times R_1 \times \frac{V_{cc}}{V_{ADC}} - R_6 - R_{10}$$