

planetmath.org

Math for the people, by the people.

Fubini's theorem

Canonical name FubinisTheorem

Date of creation 2013-03-22 13:39:13

Last modified on 2013-03-22 13:39:13

Owner mathcam (2727)

Last modified by mathcam (2727)

Numerical id 11

Author mathcam (2727)

Entry type Theorem
Classification msc 26B12
Related topic TonellisTheorem

 $Related\ topic \qquad Fubinis Theorem For The Lebesgue Integral$

 $Related\ topic \qquad Integration Under Integral Sign$

Fubini's theorem Let $I \subset \mathbb{R}^N$ and $J \subset \mathbb{R}^M$ be compact intervals, and let $f: I \times J \to \mathbb{R}^K$ be a Riemann integrable function such that, for each $x \in I$ the integral

$$F(x) := \int_{J} f(x, y) \, d\mu_{J}(y)$$

exists. Then $F:I \to \mathbb{R}^K$ is Riemann integrable, and

$$\int_{I} F = \int_{I \times J} f.$$

This theorem effectively states that, given a function of N variables, you may integrate it one variable at a time, and that the order of integration does not affect the result.

Example Let $I := [0, \pi/2] \times [0, \pi/2]$, and let $f : I \to \mathbb{R}, x \mapsto \sin(x) \cos(y)$ be a function. Then

$$\int_{I} f = \iint_{[0,\pi/2]\times[0,\pi/2]} \sin(x)\cos(y)$$

$$= \int_{0}^{\pi/2} \left(\int_{0}^{\pi/2} \sin(x)\cos(y) \, dy \right) \, dx$$

$$= \int_{0}^{\pi/2} \sin(x) (1-0) \, dx = (0-1) = 1.$$

Note that it is often simpler (and no less correct) to write $\int \cdots \int_I f$ as $\int_I f$.