UNIVERSITE DE DSCHANG IUT-FV DE BANDJOUN DÉPARTEMENT DES ENSEIGNEMENTS GENERAUX ET SCIENTIFIQUES

UNIVERSITY OF DSCHANG
UIT-FV OF BANDJOUN
DEPARTMENT OF GENERAL AND
SCIENTIFIC STUDIES

Examen de la normale : Analyse II PARCOURS : DUT GC 1.

SESSION DE: Décembre 2019 Durée : 2h00

1. Un signal sinusoïdal a comme spectre :

- 2. Dans le spectre d'un signal quelconque, la raie de la fréquence en zéro représente :
- a) La valeur efficace du signal b) la valeur moyenne du signal c) la valeur maximale du signal
- 3. Dans la série de Fourrier, on calcule le module A_n et la phase φ_n par :

a)
$$A_n = \sqrt{a_n^2 - b_n^2}$$
 et $\varphi_n = -\tan^{-1}\left(\frac{b_n}{a_n}\right)$ b) $A_n = \sqrt{a_n^2 + b_n^2}$ et $\varphi_n = -\tan^{-1}\left(\frac{a_n}{b_n}\right)$ c) $A_n = \sqrt{a_n^2 + b_n^2}$ et $\varphi_n = -\tan^{-1}\left(\frac{b_n}{a_n}\right)$

4. la série de Fourier d'un signal donne : $v(t) = 4\sin(\omega_0 t) + 3\cos(2\omega_0 t)$ donc :

a)
$$a_n=4$$
, $b_n=3$, $a_0=0$ b) $a_n=4$, $b_n=3$, $a_0=4$ c) $a_n=3$, $b_n=4$, $a_0=0$

- 5. La fréquence du signal: $v(t) = 4 \sin(4000\pi t) + 3 \cos(6000\pi t)$
 - a) 1000Hz

b) 2000Hz

c) 3000Hz

- 6. Energie d'un signal v(t) quelconque est :
 - a) la somme des énergies de la composante continue et des harmoniques
 - b) égale l'énergie uniquement des harmoniques
 - c) égale l'énergie de la composante continue
- 7. Soit p(t) un peigne de Dirac, son spectre en fréquence est de la forme :

8. Pour un signal périodique v(t) de période T_0 , la série de Fourier (complexe) est écrite sous la forme :

a)
$$v(t) = \sum_{n=0}^{\infty} c_n e^{jn\omega_0 t}$$
 b) $v(t) = \sum_{n=-\infty}^{\infty} c_n e^{-jn\omega_0 t}$ c) $v(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$

9. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de complexes. Soit r un réel strictement positif

a)	Si $\sum a_n r^n$ converge, alors $\sum a_n z^n$ converge, pour tout z tel que $ z = r$
b)) Si $\sum a_n r^n$ converge, alors $\sum a_n z^n$ converge, pour tout z tel que $ z < r$
c)	Si $\sum a_n r^n$ bornée, alors $\sum a_n z^n$ diverge, pour tout z tel que $ z \ge r$
10	0. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de complexes. On note R le rayon de convergence de la
	série $\sum a_n z^n$
	a) Si $\sum a_n z^n$ converge, alors $R \ge z $
	b) Si $R > z $, alors $\sum a_n z^n$ converge absolument
	c) Si $\sum a_n z^n$ converge et $\sum a_n z^n $ diverge alors $R < z $
1	1. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de complexes. On note R le rayon de convergence de la
	série $\sum a_n z^n$
	a) Le rayon de convergence de la série $\sum n^2 a_n z^n$ est $\frac{R}{2}$
	b) Le rayon de convergence de la série $\sum 2^n a_n z^n$ est $\frac{R}{2}$
	c) Le rayon de convergence de la série $\sum a_n^2 z^n$ est $\frac{R}{2}$
12	2. Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites de complexes. On note R_a et R_b leurs de
	rayon de convergence respectifs.
	a) Le rayon de convergence de $\sum (a_n + b_n)z^n$ est $R_a + R_b$
	b) Le rayon de convergence de $\sum (a_n + b_n)z^n$ est au moins égal au $min(R_a, R_b)$
	c) Le rayon de convergence de $\sum (a_n b_n) z^n$ est au plus égal au $min(R_a, R_b)$
13.	
	a) Le rayon de convergence de la série $\sum \frac{2n}{3^n} z^n$ est $\frac{3}{2}$
	b) Le rayon de convergence de la série $\sum \frac{2^n}{3n} z^n$ est $\frac{1}{2}$
	c) Le rayon de convergence de la série $\sum (2^{-n} - 3^n)z^n$ est 2
14.	
	a) Le rayon de convergence de la série $\sum (2n)^n z^n$ est $\frac{1}{2}$
	b) Le rayon de convergence de la série $\sum \frac{n!}{(2n)!} z^n$ est 2
	c) Le rayon de convergence de la série $\sum \frac{(n!)^2}{(2n)!} z^n$ est 4
15. O	On considère la série de fonctions $\sum_{n=0}^{+\infty} x^{2n}$
	a) la convergence simple de cette série est vérifié sur]0,1[
	b) la convergence simple de cette série est vérifié sur [0,1]
	c) la convergence simple de cette série est vérifié sur [0,1[
16.	
	a) La série est uniformément convergente sur $[0,a]$ où $a \in [0,1]$
	b) La série est uniformément convergente sur $[0,a]$ où $a \in]0,1[$
	c) La série est uniformément convergente sur $[0,a]$ où $a \in [0,1[$

- a) La série $\sum_{n=1}^{\infty} a_n$ converge dès que $\lim_{n \to \infty} a_n = 0$
- b) La série $\sum_{n=1}^{\infty} a_n$ converge alors $\lim_{n \to \infty} a_n = 0$
- c) on ne peut pas conclure de la convergence

18.

- a) Si $\sum_{n=1}^{\infty} a_n$ converge alors la série $\sum_{n=1}^{\infty} \frac{1}{a_n + n^2}$ converge
- b) Si $\sum_{n=1}^{\infty} a_n$ converge alors la série $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{a_n + n^2}$ diverge
- c) Si $\sum_{n=1}^{\infty} a_n$ converge alors la série $\sum_{n=1}^{\infty} \frac{n}{a_n + n^2}$ diverge
- 19. Le calcul de l'original de donne : $L^{-1}\left(\frac{p+2}{(p+3)(p+4)}\right)$
- a) $2e^{4t} e^{-3t}$
- b) a) $2e^{-4t} + e^{-3t}$ c) $2e^{-4t} e^{-3t}$
- 20. le Calcul de la transformée de Laplace suivante : $L(t^2 + t e^{-3T})$

- a) $\frac{1}{p^{\$}} + \frac{1}{p^{2}} \frac{1}{p-3}$ b) $\frac{1}{p^{\$}} + \frac{1}{p^{2}} \frac{1}{p+3}$ c) $\frac{1}{p^{\$}} \frac{1}{p^{2}} + \frac{1}{p-3}$