## III этап Всеукраинской ученической олимпиады по физике 2015/2016 учебного года Харьковская область

#### 11 класс

#### (каждая задача – 5 баллов)

- **1.** По двум пересекающимся под углом  $\alpha = 30^{\circ}$  дорогам движутся к перекрёстку два автомобиля: один со скоростью  $v_1 = 10 \text{ м/c}$ , второй с  $v_2 = 10\sqrt{3} \text{ м/c}$ . Когда расстояние между автомобилями было минимальным, первый из них находился на расстоянии  $S_1 = 200 \text{ м}$  от перекрёстка. На каком расстоянии  $S_2$  от перекрёстка в это время находился второй автомобиль?
- **2.** В системе, изображённой на рисунке 1, два одинаковых кубика со стороной  $a=20\,\mathrm{cm}$  и массой  $m=6,8\,\mathrm{kr}$  помещены в воду и керосин соответственно. Кубики отпускают, и система приходит к равновесию. На каком расстоянии от границы раздела керосина и воды будет находиться верхняя грань верхнего бруска после этого? Плотность воды  $\rho=1000\,\mathrm{kr/m}^3$ , плотность керосина  $\rho_\kappa=800\,\mathrm{kr/m}^3$ .
- **3.** В длинной горизонтальной трубке сечением S находятся поршни массой  $M_1$  и  $M_2$ , способные перемещаться практически без трения (см. рисунок 2). Между поршнями находится 1 моль идеального газа, масса которого  $\mu \square M_1, M_2$ . Каким будет установившееся расстояние между поршнями, если к ним приложить силы  $F_1$  и  $F_2$ , направленные вдоль оси трубки противоположно друг другу? Температура газа постоянна и равна T, трубка находится в вакууме.
- **4.** Конструкция, показанная на рисунке 3, сделана из однородной проволоки и состоит из кольца A радиуса R и равностороннего треугольника B. К точкам C и D подключили напряжение. На каком расстоянии x от точки C должна находиться точка D, чтобы общее сопротивление схемы было максимальным?
- **5.** Конденсаторы емкости  $C_1$ ,  $C_2$  и  $C_3$  включены в схему, как показано на рисунке 4. Найти напряжения, установившиеся на каждом конденсаторе.





Рис.2



Рис.3



# III етап Всеукраїнської учнівської олімпіади з фізики 2015/2016 навчального року Харківська область 11 клас

### (кожна задача – 5 балів)

- **1.** По двом дорогам, що перетинаються під кутом  $\alpha = 30^{\circ}$ , рухаються до перехрестя два автомобілі: один зі швидкістю  $v_1 = 10 \text{ м/c}$ , другий з  $v_2 = 10\sqrt{3} \text{ м/c}$ . Коли відстань між автомобілями була мінімальною, перший з них знаходився на відстані  $S_1 = 200 \text{ м}$  від перехрестя. На якій відстані  $S_2$  від перехрестя в цей час знаходився другий автомобіль?
- **2.** У системі, зображеній на рисунку 1, два однакові кубики із стороною  $a=20\,\mathrm{cm}$  і масою  $m=6,8\,\mathrm{kr}$  поміщено у воду і гас відповідно. Кубики відпускають, і система приходить до рівноваги. На якій відстані від межі розділу гасу і води знаходитиметься верхня грань верхнього кубика після цього? Густина води  $\rho=1000\,\mathrm{kr/m}^3$ , густина гасу  $\rho_z=800\,\mathrm{kr/m}^3$ .
- **3.** У довгій горизонтальній трубці з площею перерізу S знаходяться поршні масою  $M_1$  і  $M_2$ , здатні переміщатися практично без тертя (див. рисунок 2). Між поршнями знаходиться 1 моль ідеального газу, маса якого  $\mu \square M_1, M_2$ . Якою буде усталена відстань між поршнями, якщо до них прикласти сили  $F_1$  і  $F_2$ , направлені уздовж осі трубки протилежно один одному? Температура газу постійна і дорівнює T, трубка знаходиться у вакуумі.
- **4.** Конструкція, зображена на рисунку 3, зроблена з однорідного дроту і складається з кільця A радіусу R і рівнобічного трикутника B. До точок C і D підключили напругу. На якій відстані x від точки C має знаходитися точка D, щоб загальний опір схеми був максимальним?
- **5.** Конденсатори ємністю  $C_1$ ,  $C_2$  і  $C_3$  включені до схеми, як наведено на рисунку 4. Знайти напругу, що встановиться на кожному конденсаторі.