Kompresija slik

Vsebina

- Kompresija
- Dekompresija
- Poročilo
- Anketa
- Vrednost naloge

- Preberete sliko BMP
 - Priložene na sistemu za vaje
- Napoved vrednosti
 - JPEG LS
- Procesiranje napovedanih vrednosti (prepletanje)
- Binarni zapis (interpolativno kodiranje)
 - binarno kodiranje, prisekana binarna koda in kodiranje FELICS

- Vhodni podatki:
 - P = vhodna slika
 - X = višina slike
 - Y = širina slike

- Izhod:
 - B = binarni zapis

```
1: function COMPRESS(\mathcal{P}, X, Y)
           \mathcal{E} \leftarrow \operatorname{Predict}(\mathcal{P}, X, Y)
       n \leftarrow X \times Y
       \mathcal{N}_0 \leftarrow \mathcal{E}_0
       for i \leftarrow 1, n-1 do
                  if \epsilon_i \geq 0 then
                       \mathcal{N}_i \leftarrow 2 \times \epsilon_i
                  else
                       \mathcal{N}_i \leftarrow 2 \times abs(\epsilon_i) - 1
                  end if
10:
            end for
11:
      C_0 \leftarrow \mathcal{N}_0
       for i \leftarrow 1, n-1 do
13:
               C_i \leftarrow C_{i-1} + N_i
14:
15:
            end for
            \mathcal{B} \leftarrow \text{SetHeader}(X, c_0, c_{n-1}, n)
            \mathcal{B} \leftarrow IC(\mathcal{B}, \mathcal{C}, 0, n-1)
17:
            return B
18:
19: end function
```

• Sivinska BMP slika

23	21	21	23	23
24	22	22	20	24
23	22	22	19	23
26	25	21	19	22

- Napoved vrednosti (JPEG LS)
 - Prva vrednost

•
$$E[y*X + x] = P[0, 0]$$

Prva vrstica

•
$$E[y*X + x] = P[x - 1, 0] - P[x, 0]$$

- Levi stolpec
 - E[y*X + x] = P[0, y 1] P[0, y]
- Ostale vrednosti

•
$$\mathsf{E}[\mathsf{y}^*\mathsf{X} + \mathsf{x}] = \left\{ \begin{aligned} &\min(p_{x-1,y}, p_{x,y-1}); & \text{when } p_{x-1,y-1} \geq \max(p_{x-1,y}, p_{x,y-1}) \\ &\max(p_{x-1,y}, p_{x,y-1}); & \text{when } p_{x-1,y-1} \leq \min(p_{x-1,y}, p_{x,y-1}) \\ &p_{x-1,y} + p_{x,y-1} - p_{x-1,y-1}; & \text{otherwise.} \end{aligned} \right\} - \mathsf{P}[\mathsf{x}, \mathsf{y}]$$

Rezultat JPEG LS

$$\mathcal{E} = \langle 23, -1, 1, -3, 2, 0, 0, 0, 0, 0, 4, -2, 3, 1, 0, 0, -4, 0, 1 \rangle$$

Vrstice 3 do 11 iz psevdokoda

$$\mathcal{N} = \langle 23, 1, 2, 5, 4, 0, 0, 0, 0, 0, 0, 8, 3, 6, 2, 0, 0, 7, 0, 2 \rangle$$

Vrstice 12 do 15 iz psevdokoda

$$C = \langle 23, 24, 26, 31, 35, 35, 35, 35, 35, 35, 35, 43, 46, 52, 54, 54, 54, 61, 61, 63 \rangle$$

Zapis glave datoteke in binarni zapis

Zapis glave datoteke (vrstica 16 iz psevdokoda)

- Zapišemo
 - Višino slike (12 bitov)
 - Prvi element iz C (8 bitov)
 - Zadnji element iz C (32 bitov)
 - Število vseh elementov (24 bitov)

Vrstica 17 v psevdokodu

Kodiranje vrednosti v polju C

- Vrstica 6 v funkciji IC
 - binarno kodiranje
 - prisekana binarna koda
 - 1% naloge
 - kodiranje FELICS
 - 2% naloge

```
1: function IC(\mathcal{B}, \mathcal{C}, L, H)
          if H-L>1 then
               if c_H \neq c_L then
 3:
                    m \leftarrow |0.5 \times (H+L)|
 4:
                    g \leftarrow \lceil \log_2(c_H - c_L + 1) \rceil
 5:
                    \mathcal{B} \leftarrow \text{Encode}(\mathcal{B}, g, c_m - c_L)
 6:
                    if L < m then
 7:
                          IC(\mathcal{B}, \mathcal{C}, L, m)
 8:
                    end if
 9:
                    if m < H then
10:
                          IC(\mathcal{B},\mathcal{C},m,H)
11:
                     end if
12:
               end if
13:
          end if
14:
15: end function
```

Inverzni postopek

- Vhodni podatki
 - B = Binarno zaporedje
- Izhod
 - P = Slika

```
1: function DECOMPRESS(\mathcal{B})
         DecodeHeader(\mathcal{B}, X, n, c_0, c_{n-1})
 3: Y \leftarrow n/X
 4: \mathcal{C} \leftarrow \text{InitialiseC}(n, c_0, c_{n-1})
 5: C \leftarrow DeIC(\mathcal{B}, \mathcal{C}, 0, n-1)
 6: \mathcal{N}_0 \leftarrow \mathcal{C}_0
 7: for i \leftarrow 1, n-1 do
 8: \mathcal{N}_i \leftarrow \mathcal{C}_i - \mathcal{C}_{i-1}
 9: end for
10: \mathcal{E}_0 \leftarrow \mathcal{N}_0
11: for i \leftarrow 1, n - 1 do
              if Even(\mathcal{N}_i) then
                 \mathcal{E}_i \leftarrow \mathcal{N}_i/2
13:
14: else
                   \mathcal{E}_i \leftarrow -(\mathcal{N}_i + 1)/2
15:
              end if
16:
         end for
17:
        \mathcal{P} = \text{PredictInverse}(\mathcal{E}, X, Y)
         return \mathcal{P}
19:
20: end function
```

- Vrstice 2-4 iz psevdokoda
 - Preberemo podatke iz glave datoteke
 - Višina slike, prvi in zadnji element iz C ter število vseh elementov
 - Izračunamo širino slike
 - Inicializiramo C

Vrstica 5 iz psevdokoda

Dekodiranje vrednosti v polje C

- Vrstica 11 v funkciji DEIC
 - binarno kodiranje
 - prisekana binarna koda
 - kodiranje FELICS

```
1: function DEIC(\mathcal{B}, \mathcal{C}, L, H)
      if H-L>1 then
            if c_L = c_H then
 3:
                  for i \leftarrow L+1, H-1 do
                      C_i \leftarrow c_L
                  end for
 6:
            else
                 m \leftarrow |0.5 \times (H+L)|
 8:
                  g \leftarrow \lceil \log_2(c_H - c_L + 1) \rceil
                  B \leftarrow \text{GetBits}(\mathcal{B}, g)
10:
                 \mathcal{C}_m \leftarrow \text{Decode}(\mathcal{B})
11:
                 if L < m then
12:
                       DeIC(\mathcal{B},\mathcal{C},L,m)
13:
                  end if
14:
                  if m < H then
15:
                       DeIC(\mathcal{B},\mathcal{C},m,H)
16:
                  end if
17:
            end if
18:
        end if
19:
20: end function
```

- Vrstice 6 do 17 iz psevdokoda
 - Sledite psevdokodu

- Inverzna napoved vrednosti
 - JPEG LS

- Inverzna napoved vrednosti (JPEG LS)
 - Prva vrednost

•
$$P[0, 0] = E[0]$$

- Prva vrstica
 - P[x, 0] = P[x 1, 0] E[y*X + x]
- Levi stolpec
 - P[0, y] = P[0, y 1] E[y*X + x]
- Ostale vrednosti

•
$$P[x, y] = \begin{cases} \min(p_{x-1,y}, p_{x,y-1}); & \text{when } p_{x-1,y-1} \geq \max(p_{x-1,y}, p_{x,y-1}) \\ \max(p_{x-1,y}, p_{x,y-1}); & \text{when } p_{x-1,y-1} \leq \min(p_{x-1,y}, p_{x,y-1}) \\ p_{x-1,y} + p_{x,y-1} - p_{x-1,y-1}; & \text{otherwise.} \end{cases}$$
 -
$$E[y*X + x]$$

Poročilo

 Naredite kompresijo in dekompresijo nad poljubnimi 10 BMP slikami, ki so priložene na sistemu za vaje

• V poročilo dodatje tabelo v smislu:

#	Datoteka	Velikost original	Velikost stisnjena	Razmerje (orig./stisn.)	Čas kompresije	Čas dekompresije
1	Man.bmp					
10	Barb.bmp					

Anketa

- Vabljeni ste k sodelovanju v raziskavi »Implementacija algoritma za stiskanje slik«. Namen raziskave je ugotoviti primernost obravnavanega algoritma stiskanja slik za pedagoške in praktične namene. Raziskava poteka na Fakulteti za elektrotehniko, računalništvo in informatiko Univerze v Mariboru pod vodstvom prof. dr. Boruta Žalika, doc. dr. Štefana Koheka in dr. Davida Jesenka.
- Anketa je anonimna, ne zbirajo oziroma beležijo se osebni podatki.
- Zbirajo se predvsem izkušnje med implementacijo algoritma stiskanja slik. Prosimo, da sproti spremljate čas implementacije algoritma, torej preučevanje algoritma, pisanje kode, iskanja napak in podobno. Spremljajte tudi zahtevnost glede odprave napak (npr. število zagonov aplikacije potrebnih za testiranje ter iskanje in odpravo napak).
- Anketa boste rešili pred zagovorom naloge.

Vrednost naloge

- Implementacija max. 10%
 - Kompresija
 - 4%
 - Dekompresija
 - 3%
 - Poročilo
 - 1%
 - Implementacija prisekane binarne kode ali kodiranja FELICS
 - 1% ali 2%
- Anketa 4%