XCPC 数学基础

ljh

2025年4月29日

目录

第一章 组合数学

1.1 基本排列组合公式

- 1. 线性排列:n 个数的 r 排列 $P(n,r) = \frac{n!}{(n-r)!}$
- 2. 圆排列:n 个数的 r 排列 $\frac{P(n,r)}{r}$
- 3. 项链数:n 个不同的珠子串成一串项链, 则得到不同的项链数为

$$p = \begin{cases} 1, & (n \le 2) \\ \frac{(n-1)!}{2}, & (otherwise) \end{cases}$$

4. 多重集合的排列: 有 k 种元素, 每种 $n_1, n_2, \ldots n_k$ 个, 的排列公式为

$$\frac{n!}{\prod_{i=1}^{k} (n_i!)}$$

或记为

$$\binom{n}{n1, n2, \cdots, n_k}$$

5. 组合:

$$\binom{n}{r} = \frac{P(n,r)}{r!}$$

6. 多重集的组合设 S 是有 k 种元素的集合, 每种元素无限个 ($\geq r$), 则其 r 组合的个数为:

$$\binom{r+k-1}{r}$$

或者说有

结论 1.1.1. $x_1 + x_2 + \cdots + x_k = r(x_i \ge 0)$ 的整数解有

$$\binom{r+k-1}{r}$$

种.

1.2 重要组合恒等式

1. Pascal 公式

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

2.

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

3.

$$m \cdot \binom{n}{m} = n \cdot \binom{n-1}{m-1}$$

4.

$$\sum_{k=1}^{n} k \cdot \binom{n}{k} = n \cdot \sum_{k=1}^{n} \binom{n-1}{k-1} = n \cdot 2^{n-1}$$

5. 朱世杰恒等式

$$\binom{m+n+1}{n+1} = \sum_{i=0}^{m} \binom{n+i}{n}$$

6. 范德蒙德恒等式

$$\binom{a+b}{n} = \sum_{i=0}^{k} \binom{a}{i} \binom{b}{n-i}$$

特别地:

$$\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i}$$

第一章 组合数学

3

结论 1.2.1. $m \land a$, 和最多 $n \land b$ 的排列数等于

$$\binom{m+n+1}{m+1}$$

结论 1.2.2. 最多 $m \land a$, 和最多 $n \land b$ 的排列数等于

$$\binom{n+m+2}{m+1}-1$$

7.

$$\sum_{1 \le k \le n} k \binom{n}{k} = n2^{n-1} \qquad (n \ge 1)$$

8. 利用导数可以得到

$$\sum_{1 \le k \le n} k^2 \binom{n}{k} = n(n+1)2^{n-2} \qquad (n \ge 1)$$

1.3 二项式系数

结论 1.3.1. 在杨辉三角中规定只能向下或者右下移动, 从 (0,0) 到 (n,k) 的 路径数为 $\binom{n}{k}$

定理 1.3.2. 二项式定理

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

定理 1.3.3. Sperner 定理:

设 S 是 n 元素集合. 那么 S 上的一个反链至多包含 $\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$ 个集合.

其中,这里的反链指的是以集合包含为偏序关系的反链,即S的一个子集的集合,任何两个集合没有关系.

第一章 组合数学 4

结论 1.3.4. 多项式系数的帕斯卡公式

$$\binom{n}{n_1, n_2, \cdots, n_t} = \binom{n-1}{n_1 - 1, n_2, \cdots, n_t} + \binom{n-1}{n_1, n_2 - 1, \cdots, n_t} + \cdots + \binom{n-1}{n_1, n_2, \cdots, n_t - 1}$$

定理 1.3.5. 多项式定理

$$(x_1 + s_2 + \dots + x_t)^n = \sum \binom{n}{n_1, n_2, \dots, n_t} x_1^{n_1} x_x^{n_2} \cdots x_t^{n_t}$$

定理 1.3.6. 牛顿多项式定理

$$(1+z)^a = \sum_{k=0}^{\infty} {a \choose n} z^k \qquad (a \in R, |z| < 1)$$

定理 1.3.7. Dilworth 定理

设 (X, \leq) 是有限偏序集合, 而 m 是反链的最大大小, 则 X 可以被划分为 m 个链, 但不能被划分成小于 m 个链.

设 (X, \leq) 是有限偏序集合, 而 r 是链的最大大小, 则 X 可以被划分为 r 个 反链, 但不能被划分成小于 r 个反链.

1.4 抽屉原理

简单形式

结论 1.4.1. 如果要把 n+1 个物体放进 n 个盒子, 那么至少有一个盒子有 至少 2 个物体

加强形式

结论 1.4.2. 设 $q_1, q_2, \dots q_n$ 是正整数. 如果将 $q_1 + q_2 + \dots + q_n - n + 1$ 个 物体放进 n 个盒子. 那么要么要么第一个盒子含有 q_1 个物体, . . . , 要么第 n 个物体含有 q_n 个物体.

定理 1.4.3. Ramsey 定理

在6个人(或者更多),要么有3个人互相认识,要么有3个人互相都不认识.

或者说

对于 $K_n(n \ge 6)$ 我们给他的所有边染红色或蓝色,总存在一个红 K_3 或蓝 K_3 ,记为 $K_6 \to K_3, K_3$

推广

定理 1.4.4. 若 $m,n \geq 2$, 存在正整数 p, 使得 $K_p \to K_m, K_n$ 事实上, 注意 到若 p 成立, 则对于 $q \geq p$ 都成立, 取一个子图即可. 我们记 Ramsey 数 r(m,n) 为使之成立的最小的数. Ramsey 定理保证这样的数一定存在. 注意 到

$$r(m,n) = r(n,m)$$

以及

$$r(2,m) = m$$

当 $m \ge 2$ 时,r(2,m) 称为平凡的 Ramsey 数 (交换同理).

性质

1.

$$r(m,n) \le r(m-1,n) + r(m,n-1)(m,n \ge 3)$$

2.

$$r(m,n) \le \binom{m+n-2}{n-1}$$

(数学归纳法证明)

1.5 容斥原理

1.5.1 容斥原理

定理 1.5.1. 容斥原理

$$|\overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n}| = |S| - \sum |A_i| + \sum |A_i \cap A_j| + \dots + (-1)^n |A_1 \cap A_2 \cap \dots \cap A_n|$$
可根据贡献法证明.

应用: 不定方程整数解个数问题

例 1.5.2. 求下列方程整数解个数

$$x_1 + x_2 + x_3 + x_4 = 18$$

满足

$$1 \le x_1 \le 5$$
, $-2 \le x_2 \le 4$, $0 \le x_3 \le 5$, $3 \le x_4 \le 9$

解:

等价于

$$a_1 + a_2 + a_3 + a_4 = 16$$

满足

$$0 \le a_1 \le 4$$
, $0 \le a_2 \le 6$, $0 \le a_3 \le 5$, $0 \le a_4 \le 6$

不加范围的解的个数为

$$|S| = \binom{16+4-1}{16} = 969$$

其中设 A_1 为 a_1 大于 4 的解的集合 A_2 为 a_2 大于 6 的解的集合 ...

$$|A_1| = {11 + 4 - 1 \choose 11} = 364$$

$$|A_2| = {9 + 4 - 1 \choose 9} = 220$$

$$|A_3| = {13 \choose 10} = 286$$

$$|A_4| = {12 \choose 9} = 220$$

第一章 组合数学

7

同理算交集, 然后根据容斥原理可得出答案为 55

结论 1.5.3. 错位排列

$$D_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} \right)$$

有性质

1.

$$\frac{D_n}{n!} \approx e^{-1}$$

2. $D_1 = 0, D_2 = 1$

$$D_n = (n-1)(D_{n-1} + D_{n-2})$$

3.

$$D_{n} = (n-1)(D_{n-1} + D_{n-2})$$

$$\iff D_{n} - nD_{n-1} = -(D_{n-1} - (n-1)D_{n-2})$$

$$\iff D_{n} = nD_{n-1} + (-1)^{n}$$

结论 1.5.4.

$$Q_n = n! - \binom{n-1}{1}(n-1)! + \binom{n-1}{2}(n-2)! - \binom{n-1}{3}(n-3)! + \dots + (-1)^{n-1}\binom{n-1}{n-1}1!$$

为不出现 i(i+1) 的排列数并且有

$$Q_n = D_n + D_{n-1}$$

1.5.2 莫比乌斯反演

容斥原理是莫比乌斯反演在有限偏序集上的一个实例.

偏序集形式的容斥原理

对于一个偏序集 ($\mathcal{P}(X_n)$, \subseteq), (X_n 为 n 元集), 若

$$F, G: \mathcal{P}(X_n) \to R$$

且

$$G(K) = \sum_{L \subseteq K} F(L)$$
 $(K \subseteq X_n)$

考虑反解,有:

$$F(K) = \sum_{L \subseteq K} (-1)^{|K| - |L|} G(L)$$

证明.

$$\begin{split} \sum_{L \subseteq K} (-1)^{|K| - |L|} G(L) &= \sum_{L \subseteq K} (-1)^{|K| - |L|} \sum_{T \subseteq L} F(T) \\ &= \sum_{T \subseteq K} F(T) \sum_{T \subseteq L \subseteq K} (-1)^{|K| - |L|} \\ &= F(K) \end{split}$$

这就是莫比乌斯反演.

因此我们可以对 F,G 下定义, 令 A_1,A_2,\cdots,A_n 是有限集 S 的子集, 且 $K \subseteq X_n,F(K)$ 为恰好属于所有 A_i that $i \notin K$ 的元素个数, 即

$$F(K) = \left| \bigcap_{i \notin K} A_i - \bigcup_{i \in K} A_i \right|$$

显然有

$$F(X_n) = n - \left| \bigcup_{i \in X_n} A_i \right|$$

然后令

$$G(K) = \sum_{L \subseteq K} F(L) = \left| \bigcap_{i \notin K} A_i \right|$$

由莫比乌斯反演有

$$F(K) = \sum_{L \subset K} (-1)^{|K| - |L|} G(L)$$

有

$$|\overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n}| = \sum_{J \subset K} (-1)^{|J|} \left| \bigcap_{i \in J} A_i \right|$$

等价于上面的容斥原理.

偏序集里的莫比乌斯反演

建议先看看代数系统. 下面将莫比乌斯反演推广到偏序集 (X, \leq) 里. 以下介绍的函数满足

$$f: X \times X \to \mathcal{R}$$

且 f(x,y) = 0 if $x \nleq y$. 下面考察代数系统 $\langle \mathcal{F}, * \rangle$, 设其为 A

定义 1.5.5. 令 h = f * g 为 f 和 g 的卷积, 如果满足:

$$h(x,y) = \begin{cases} \sum_{z:x \le z \le y} f(x,z)g(z,y) & ,x \le y \\ 0 & ,other \end{cases}$$

显然卷积运算在该偏序集上是封闭的, 故这是一个广群. 并且显然其是满足结合律, 故其是一个半群.

定义 1.5.6. 科罗内尔 delta 函数:

$$\delta(x,y) = \begin{cases} 1 & , x = y \\ 0 & , other \end{cases}$$

显然有 $f * \delta = \delta * f = f$, 显然其为**卷积运算的幺元**. 故这个一个独异点.

定义 1.5.7. (函数:

$$\zeta(x,y) = \begin{cases} 1 & , x \le y \\ 0 & , other \end{cases}$$

定义 1.5.8. 逆函数:

对于 X 中所有的 y 满足 $f(y,y) \neq 0$, 有其逆元.

$$g(x,y) = \begin{cases} \frac{1}{f(y,y)}, & x = y\\ -\frac{1}{f(y,y)} \sum_{x \le z < y} g(x,z) f(z,y), & x < y\\ 0, & other \end{cases}$$

证明. 若 $x \neq y$

$$(g * f)(x,y) = g(x,y)f(y,y) + \sum_{x \le z < y} g(x,z)f(z,y)$$

$$= -\sum_{x \le z < y} g(x,z)f(z,y) + \sum_{x \le z < y} g(x,z)f(z,y)$$

$$= 0$$

故 g 是其左逆元, 类似地可以证明其是右逆元. 故其是 f 的逆元.

定义 1.5.9. 莫比乌斯函数:

莫比乌斯函数为(函数的逆函数.

具体地:

$$\mu(x,y) = \begin{cases} 1 & , x = y \\ -\sum_{x \le z < y} \mu(x,z) & , x < y \end{cases}$$

下面给出一些常见偏序集的莫比乌斯函数:

 $1.(\mathcal{P}(X_n),\subseteq)$

$$\mu(A, B) = (-1)^{|B| - |A|}$$

 $2.(X_n, \leq)$ 即正整数集合上的全序关系

$$\mu(k,l) = \begin{cases} 1 & ,l = k \\ -1 & ,l = k+1 \\ 0 & ,other \end{cases}$$

 $3.(X_n, |)$,即正整数集合上的整除关系

有 $\mu(a,b) = \mu\left(1,\frac{b}{a}\right)$

$$\mu(1,n) = \begin{cases} 1 & ,n=1 \\ (-1)^k & ,n 是互不相同的素数乘积 \\ 0, & ,other \end{cases}$$

4. 直积的莫比乌斯函数

线性有限偏序集 $(X, \leq_1), (Y, \leq_2)$,且 μ_1, μ_2 分别为其莫比乌斯函数,定义其笛卡尔积的偏序为

$$(x,y) \le (x',y') \iff x \le x' \text{and} y \le y'$$

那么新偏序集 $(X \times Y, \leq_3)$ 的莫比乌斯函数为

$$\mu((x,y),(x',y')) = \mu_1(x,x')\mu_2(y,y')$$

定理 1.5.10. 莫比乌斯反演:

设 (X, \leq) 是一个具有最小元的线性偏序集. 令 μ 是其莫比乌斯函数, 定义在 X 上的实值函数 $F, G: X \to \mathcal{R}$ 满足

$$G(x) = \sum_{z \le x} F(z), \qquad (x \in X)$$

那么有

$$F(x) = \sum_{y \le x} \mu(y, x) G(y), \qquad (x \in X)$$

证明.

$$\begin{split} \sum_{y \leq x} \mu(y,x) G(y) &= \sum_{y \leq x} \mu(y,x) \sum_{z \leq y} F(z) \\ &= \sum_{z \leq x} F(z) \sum_{z \leq y \leq x} \zeta(z,y) \mu(y,x) \\ &= \sum_{z \leq x} F(z) \delta(z,x) \\ &= F(x) \end{split}$$

第一章 组合数学

12

这里最小元保证了和式有限, 因此不用判断敛散性.(这里对和式的一些变换 在无穷和式有的有时不成立)

事实上, 莫比乌斯反演是卷积结合律的一个推论.

证明. 不妨设最小元为 0, 定义 $f,g \in \mathcal{F}(X)$

$$f(x,y) = \begin{cases} F(y) & , x = 0 \\ 0 & , other \end{cases}$$
$$\begin{cases} G(y) & x = 0 \end{cases}$$

$$g(x,y) = \begin{cases} G(y) & , x = 0 \\ 0 & , other \end{cases}$$

从而有 $g = f * \zeta$, 从而有 $g * \mu = f$,

递推关系和生成函数 1.6

一些斐波拉契数列的性质:

1.

$$(F_n ext{ } F_{n+1}) = (F_0 ext{ } F_1) \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n$$

2.
$$F_{2k} = F_k(2F_{k+1} - F_k); F_{2k+1} = F_{k+1}^2 + F_k^2$$

3.

$$\sum_{i=0}^{n} f_i = f_{n+2} - 1$$

4.

$$2|f_n \iff 3|n$$

1.6.1 生成函数

这里只做简单介绍

牛顿二项式定理

定理 1.6.1. 设 α 是一个实数. 对于任意 x, y with $0 \le |x| < |y|$, 有性质

$$(x+y)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^{k} y^{\alpha-k}$$

where

$$\binom{\alpha}{k} = \frac{\alpha(\alpha - 1) \cdots (\alpha - k + 1)}{k!}$$

设 |z| < 1, 特别地有

$$(1+z)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} z^k$$

结论 1.6.2. 若 α 是一个负整数, 且 $\alpha = -n$ then

$$\binom{\alpha}{k} = \binom{-n}{k}$$

$$= \frac{-n(-n-1)\cdots(-n-k+1)}{k!}$$

$$= (-1)^k \binom{n+k-1}{k}$$

thus: for |z| < 1

$$(1+z)^{-n} = \frac{1}{(1+z)^n} = \sum_{k=0}^{\infty} (-1)^k \binom{n+k-1}{k} z^k$$

一般生成函数

无穷数列 h_0, h_1, \cdots 的生成函数为 $g(x) = h_0 + h_1 x + h_2 x^2 + \cdots$

生成函数的一些性质

设H为数列,F为其对应的生成函数

1. $cH \rightarrow cF$

2.
$$H_1 + H_2 \rightarrow F_1 + F_2$$

$$3.0, 0, 0, \dots + H \rightarrow x^k F$$

4.
$$iH(H_1, 2H_2, \cdots) \to F'$$

5.
$$\Leftrightarrow G_n = \sum_{i+j=n} H_{1i} \cdot H_{2j} \text{ m/s. } G \to F_1 \cdot F_2$$

一面介绍两种重要的生成函数即: 多重集合的 n 组合级数的生成函数

根据泰勒级数

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

我们可以解 h_n 表示

$$e_1 + e_2 + \dots + e_k = n$$

的非负整数解的个数。

其生成函数为

$$g(x) = \sum_{n=0}^{\infty} \binom{n+k-1}{n} x^n = \frac{1}{(1-x)^k}$$

例 1.6.3. 设 $x_1 + x_2 + x_3 + x_4 = n$ 的整数解个数, 其中 x_1 是偶数, x_2 是 5 的倍数, $x_3 \le 4, x_4 \le 1$

解:

$$g(x) = (1 + x^{2} + x^{4} + \cdots)(1 + x^{5} + \cdots)(1 + x + x^{2} + x^{3} + x^{4})(1 + x)$$

$$= \frac{1}{1 - x^{2}} \frac{1}{1 - x^{5}} \frac{1 - x^{5}}{1 - x} (1 + x)$$

$$= \frac{1}{(1 - x)^{2}}$$

$$= \sum_{n=0}^{\infty} {n+1 \choose n} x^{n}$$

故为 n+1.

我们得到几个小结论:

- 1. 限制 $\geq k$, 可以乘 x^k
- 2. 限制 < k, 少写几项

3. 是 k 的倍数, 整体代换

指数生成函数

无穷数列 h_0, h_1, \cdots 的指数生成函数为 $g(x) = h_0 + h_1 \frac{x}{1!} + h_2 \frac{x^2}{2!} + \cdots$ 下面给出一类常用的指数生成函数, 即多重集合的 n 排列数的生成函数.

定理 1.6.4. 设 S 是多重集合 $\{n_1a_1\cdots n_ka_k\}$, 其中 $n_i\geq 0$, 那么数列的指数生成函数为

$$g(x) = f_{n_1}(x) f_{n_2}(x) \cdots f_{n_k}(x)$$

其中

$$f_{n_i}(x) = \sum_{k=0}^{n_i} \frac{x^k}{k!}$$

例 1.6.5. 用红, 白, 蓝, 绿色给 $1 \times n$ 棋盘染色, 其中要求红色为偶数, 白色是奇数, 求方案数

解:

$$g(x) = \left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right)^2 \left(1 + \frac{x^2}{2!} + \cdots\right) \left(x + \frac{x^3}{3!} + \cdots\right)$$

$$= e^{2x} \left(\frac{e^x + e^{-x}}{2}\right) \left(\frac{e^x - e^{-x}}{2}\right)$$

$$= \frac{e^{4x} - 1}{4}$$

$$= \frac{1}{4} \sum_{n=0}^{\infty} 4^n \frac{x^n}{n!} - \frac{1}{4}$$

$$= \sum_{n=1}^{\infty} 4^{n-1} \frac{x^n}{n!}$$

故为 4ⁿ⁻¹

1. 对于偶数限制此项为

$$\frac{e^x - e^{-x}}{2}$$

2. 奇数限制

$$\frac{e^x + e^{-x}}{2}$$

对于求解线性齐次递推关系这里不做介绍

1.7 卡特兰数和第二类斯特林数

1.7.1 卡特兰数

折线图

只有两类线段 (a,b)-(a+1,b+1) 或 (a,b)-(a+1,b-1)

结论 1.7.1. $A_0(a_0,b_0),A_n(a_n,b_n)$ 能用折线连接的充要条件是 $|b_n-b_0|\leq a_n-a_0=n$ 且 $2|(|b_n-b_0|+n)$ 连接这两点的折线有

$$\binom{n}{\frac{n+b_n-b_0}{2}}$$

条.

卡特兰数:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n-1}$$

递推式

$$C_n = \sum_{k=1}^{n} C_{k-1} C_{n-k} = \frac{1}{n+1} (4n-2) C_{n-1}$$

第一章 组合数学 17

Catalan 数列 C_n 可以应用于以下问题:

1.7.2 第二类斯特林数

2.1 整除

结论 2.1.1. 令 a,b,c 为整数, 那么有:

$$\gcd(a+cb,b) = \gcd(a,b)$$

定义 2.1.2. $a, b, m, n \in \mathcal{Z}$, 称 ma + nb 为 a, b 的线性组合

定理 2.1.3. 装蜀定理:

如果 a,b 均为整数,则有整数 m 和 n, 使得

$$ma + nb = \gcd(a, b)$$

其中该等式又被称为裴蜀等式,m,n 被称为裴蜀数.

可以用扩展欧几里得算法求出 $ma + nb = \gcd(a, b)$ 的特解, 然后有通解

$$\begin{cases} m = m_0 + k \frac{b}{\gcd(a,b)} \\ n = n_0 - k \frac{a}{\gcd(a,b)} \end{cases}$$

注意到

$$a(m + bu) + b(n - au) = \gcd(a, b)$$

故满足等式的 m, n 有无穷多对.

引理 2.1.4. 两个不全为 0 的整数 a,b 的最大公因数是其线性组合中最小的正整数.

证明. 不妨设 d 是 a, b 线性组合中最小的正整数. 考虑带余除法: a = dq + r 从而有 r = a - dq = a - q(ma + nb) = (1 - qm)a - qnb 因此 d|a, 同理 d|b, 故 d 为公因数.

不妨设
$$e = \gcd(a, b)$$
, 那么 $d|e$, 又 $e|(ma + nb)$, 即 $e|d$ 故 $e = d$

定理 2.1.5. 如果 a,b 是整数,那么所有 a,b 的线性组合所构成的集合与所有 gcd(a,b) 的倍数所构成的集合相同.换言之,所有 a,b 的线性组合,都是 gcd(a,b) 的倍数.

定理 2.1.6. 如果 a,b 是不全为 0 的整数, 那么正整数 d 是 a,b 的最大公因数, 当且仅当 1.d|a,d|b 2. 若 c|a,c|b, 那么 c|d

定义 2.1.7. 令 a_1, a_2, \dots, a_n 为不全为 0 的整数, 如果 d 为他们公因子中最大的一个, 则称 d 为 a_1, a_2, \dots, a_n 的最大公因数. 记为 $\gcd(a_1, a_2, \dots, a_n) = d$

定理 2.1.8.

$$\gcd(a_1, a_2, \cdots, a_n) = \gcd(a_1, a_2, \cdots, \gcd(a_{k-1}, a_k), \cdots a_n)$$

定义 2.1.9. 我们称 a_1, a_2, \dots, a_n 互素如果 $gcd(a_1, a_2, \dots, a_n) = 1$

定义 2.1.10. 我们称 a_1, a_2, \dots, a_n 两两互素, 如果任意两个数互素

定理 2.1.11. 若 gcd(a, m) = 1, gcd(b, m) = 1, 则 gcd(ab, m) = 1 若 gcd(a, b) = 1, 则 $gcd(a^k, b^l) = 1$

定理 2.1.12. 设正整数 a,b 之积是一个整数的 $k(k \ge 2)$ 次幂. 若 $\gcd(a,b) = 1$. 则 a,b 都是整数的 k 次幂. 一般地: 设正整数 a_1,a_2,\cdots,a_n 之积是一个正整数的 k 次幂. 若 a_1,a_2,\cdots,a_n 两两互素,则 a_1,a_2,\cdots,a_n 都是整数的 k 次幂.

引理 2.1.13.

$$\gcd(a_1^k, a_2^k, \cdots, a_n^k) = \gcd^k(a_1, a_2, \cdots, a_n)$$

推论 2.1.14. 裴蜀定理可以推广到 n 个整数的情形: 设 a_1, a_2, \ldots, a_n 是不全为零的整数,则存在整数 x_1, x_2, \ldots, x_n ,使得 $a_1x_1 + a_2x_2 + \cdots + a_nx_n = \gcd(a_1, a_2, \ldots, a_n)$ 。 其逆定理也成立: 设 a_1, a_2, \ldots, a_n 是不全为零的整数,d > 0 是 a_1, a_2, \ldots, a_n 的公因数,若存在整数 x_1, x_2, \ldots, x_n ,使得 $a_1x_1 + a_2x_2 + \cdots + a_nx_n = d$,则 $d = \gcd(a_1, a_2, \ldots, a_n)$ 。

推论 2.1.15. 对自然数 ab 和整数 na 与 b 互素, 考察不定方程: ax+by=n 其中 x 和 y 为自然数。如果方程有解, 称 n 可以被 ab 表示。记 C=ab-a-b。由 a 与 b 互素, C 必然为奇数。则有结论:对任意的整数 n, n 与 C-n 中有且仅有一个可以被表示。即:可表示的数与不可表示的数在区间 [0,C] 对称 (关于 C 的一半对称)。0 可被表示,C 不可被表示;负数不可被表示,大于 C 的数可被表示。

推论 2.1.16. 二元一次不定方程有非负整数解的条件 a,b>0,若 ax+by=n,(a,b)=1,则 n>ab-a-b 时有解,解的个数为 $\left\lfloor \frac{n}{ab} \right\rfloor \left\lfloor \frac{n}{ab} \right\rfloor +1$

一些小结论

- 1. 在 [1e18] 的范围下, 一个数最多与连续 7 个数不互质.
- 2. 一个数能被 4 整除, 当且仅当末尾两位能被 4 整除
- 3. 一个数能被 25 整除, 当且仅当末尾两位能被 25 整除
- 4. 一个数能被8整除, 当且仅当末尾三位能被8整除
- 5. 一个数能被 125 整除, 当且仅当末尾三位能被 125 整除

- 6. 一个数能被 3 整除, 当且仅当各位数之和能被 3 整除
- 7. 一个数能被 9 整除, 当且仅当各位数之和能被 9 整除
- 8. 能被 7 整除的数的特征: a. 抹去个位数 b. 减去原个位数的 2 倍 c. 其差能被 7 整除。
- 9. 能被 11 整除的数的特征: a. 抹去个位数 b. 减去原个位数 c. 其差能被 11 整除。或: 奇数位上的数字和与偶数位上的数和相减, 其差能被 11 整除

2.2 同余

以下所有参数未特殊说明, 均为默认整数, 模数默认正整数

2.2.1 同余

定义 2.2.1. 设 m 是正整数, 若 m|(a-b), 则称 a 和 b 模 m 同余. 记作 $a \equiv b \pmod{m}$

性质

- 1. $a \equiv b \pmod{m} \iff \exists k(k \in Z), a = b + kz$
- 2. $a \equiv a \pmod{m}$
- 3. $a \equiv b \pmod{m} \rightarrow b \equiv a \pmod{m}$
- 4. $a \equiv b \pmod{m}, b \equiv c \pmod{m} \rightarrow a \equiv c \pmod{m}$
- 5. $a \equiv b \pmod{m}, c \equiv d \pmod{m} \rightarrow a + c \equiv b + d \pmod{m}, a c \equiv b d \pmod{m}, ac \equiv bd \pmod{m}$
- 6. $a^n \equiv b^n \pmod{m}$
- 7. $ac \equiv bc \pmod{m}, d = \gcd(c, m) \rightarrow a \equiv b \pmod{m/d}$
- 8. $a \equiv b \pmod{m}, n \mid m \to a \equiv b \pmod{n}$
- 9. $a \equiv b \pmod{m}, a \equiv b \pmod{n} \rightarrow a \equiv b \pmod{lcm(m,n)}$

定义 2.2.2. 设模为 n,则根据余数可将所有的整数分为 n 类,把所有与整数 a 模 n 同余的整数构成的集合叫做模 n 的一个剩余类,记作 [a]。并把 a 叫作剩余类 [a] 的一个代表元。

定义 2.2.3. 从模 n 的每个剩余类中各取一个数, 得到一个由 n 个数组成的集合, 叫做模 n 的一个完全剩余系。

结论 2.2.4. 若 r_1, r_2, \ldots, r_m 是模 m 的一个完全剩余系,且正整数 a 满足 $\gcd(a, m) = 1$,则对任何整数 $b, ar_i + b$ 也为一个完全剩余类.

证明. 若不然,则存在 $ar_i + b \equiv ar_j + b \pmod{m} \iff ar_i \equiv ar_j \pmod{m} \iff m|a(r_i - r_j) \iff m|a_i - a_j \iff r_i \equiv r_j \pmod{m}$ 与条件矛盾. 故得证

结论 2.2.5. a_1, a_2, \ldots, a_m 是模 m 的一个完全剩余系, $b_1, b_2, \ldots b_n$ 是模 n 的一个完全剩余系,且 $\gcd(n,m)=1$ 那么 na_i+mb_j 是模 mn 的一个完全剩余系

证明. 首先由乘法原理知道有 mn 个数, 那么只需证两两不同余即可若不然则对于 $(a,b) \neq (a',b')$ $na+mb \equiv na'+mb' \pmod{mn} \iff mn|n(a-a')+m(b-b') \iff m|(a-a'),n|(b-b') \iff a \equiv a' \pmod{m}, b \equiv b' \pmod{n}$ 与条件矛盾. 故得证.

定义 2.2.6. 简化剩余系也称既约剩余系或缩系,是 m 的完全剩余系中与 m 互素的数构成的子集,如果模 m 的一个剩余类里所有数都与 m 互素,就 把它叫做与模 m 互素的剩余类。在与模 m 互素的全体剩余类中,从每一个类中各任取一个数作为代表组成的集合,叫做模 m 的一个简化剩余系。

结论 2.2.7. 若 r_1, r_2, \ldots, r_m 是模 m 的一个缩系, 且正整数 a 满足 gcd(a, m) = 1, 则 ar_i 也为一个缩系.

证明. 由完系性质 1 可知其两两不同余, 故只需证明其与均 m 互质即可. 因为 $qcd(r_i, m) = 1$, $qcd(a, m) = 1 \Rightarrow qcd(ar_i, m) = 1$ 得证

结论 2.2.8. a_1, a_2, \ldots, a_m 是模 m 的一个缩系, $b_1, b_2, \ldots b_n$ 是模 n 的一个缩系, 且 gcd(n, m) = 1 那么 $na_i + mb_i$ 是模 mn 的一个缩系

证明. 只需证明其是所有与 mn 互质的剩余类.

$$\gcd(a_i, m) = 1, \gcd(b_j, n) = 1, \gcd(n, m) = 1$$

$$\Rightarrow \gcd(na_i, m) = 1, \gcd(mb_j, n) = 1$$

$$\Rightarrow \gcd(na_i + mb_j, n) = 1, \gcd(na_i + mb_j, m) = 1$$

$$\Rightarrow \gcd(na_i + mb_j, mn) = 1$$

若将 a_i, b_j 扩展成完系, 若 $gcd(na_i + mb_j, mn) = 1 \Rightarrow gcd(na_i + mb_j, m) = 1, gcd(na_i + mb_j, n) = 1 \Rightarrow \dots$ 逆着证回去即可.

2.2.2 线性同余方程

定义 2.2.9. 形如 $ax \equiv b \pmod{m}$ 的同余式称为一元线性同余方程

定理 2.2.10. $gcd(a, m) = d, d \nmid b, 则 无解, 否则恰好有 <math>d$ 个模 m 不同余的解.

证明. 若 $d \nmid b$, 则 $ax \equiv b \pmod{m} \iff ax - ym = b$, 根据贝祖定理显然无解.

若 $d \mid b$, 则显然有无穷多组解, 我们设其中一组特解为 x_0, y_0

其通解为 $x = x_0 + (m/d)t$, $y = y_0 + (a/d)t$

设 $x_1 = x_0 + (m/d)t_1, x_2 = x_0 + (m/d)t_2$

 $x_1 \equiv x_2 \pmod{m} \iff t_1 \equiv t_2 \pmod{d}$

所以有 d 个不同于的解.

定义 2.2.11. $gcd(a, m) = 1, ax \equiv 1 \pmod{m}$ 则称该同余方程的一个解为 $a \not\in m$ 的逆, 记为 a^{-1} . 显然 $gcd(a^{-1}, m) = 1$

定理 2.2.12. 设 p 为素数, 正整数 $a=a^{-1}$, 当且仅当 $a\equiv \pm 1 \pmod{p}$.

证明.
$$a \equiv \pm 1 \pmod{p} \iff a^2 \equiv 1 \pmod{p}$$
 反过来. 有
$$a^2 \equiv 1 \pmod{p} \Rightarrow p | (a^2 - 1) \Rightarrow p | (a + 1) p | (a - 1) \Rightarrow a \equiv \pm 1 \pmod{p} \quad \Box$$

定理 2.2.13. 威尔逊定理

若 p 是素数,则 $(p-1)! \equiv -1 \pmod{p}$

证明. p=2 显然成立.

否则对于 $1 \le a \le p-1$, 可以找到其逆元与之配对, 且除 1 和 p-1 都能两两配对.

故
$$(p-1)! \equiv p-1 \equiv -1 \pmod{p}$$

定理 2.2.14. 威尔逊定理逆定理

若 $n \ge 2$ 是正整数,且 $(n-1)! \equiv -1 \pmod{n}$ 则 n 为质数

证明. 若不然, 设 n 为合数, 则其必存在小于 n 的素因子 p 所以有 $(n-1)! \equiv -1 \pmod{n}, p|n \Rightarrow (n-1)! \equiv -1 \pmod{p},$ 但是 $(n-1)! \equiv 0 \pmod{p}$ 而 n > 1 矛盾. 故得证.

定理 2.2.15. 费马小定理

如果 p 是一个素数, a 是正整数且 a 不是 p 的倍数, 则 $a^{p-1} \equiv 1 \pmod{p}$ 。

证明. 因为 gcd(a, p) = 1

所以
$$\prod_{i=1}^{p-1} ia \equiv \prod_{i=1}^{p-1} i \pmod{p} \Rightarrow a^{p-1} \equiv 1 \pmod{p}$$
 得证.

定义 2.2.16. 欧拉函数

对于正整数 n, 小于等于 n 且与 n 互质的正整数的个数, 称为欧拉函数, 记作 $\phi(n)$

定理 2.2.17. 设 m 是一个正整数,a 是一个正整数且 $\gcd(a,m)=1,\ a^{\phi(m)}\equiv 1\pmod{m}$

证明. 设 $r_1, r_2, \dots r_{\phi(m)}$, 是不超过 m 的模 m 的一个缩系. 那么 $ar_1, ar_2, \dots ar_{\phi(m)}$ 也是一个缩系 故 $ar_1ar_2\dots ar_n\equiv r_1r_2\dots r_n\pmod m \iff a^{\phi(m)}\equiv 1\pmod m$ 得证.

定义 2.2.18. 同余方程组是指一组形如下面的方程的集合:

$$\begin{cases} a_1 & \equiv b_1 \pmod{m_1} \\ a_2 & \equiv b_2 \pmod{m_2} \\ \vdots \\ a_n & \equiv b_n \pmod{m_n} \end{cases}$$

其中, a_i 和 b_i 是整数, m_i 是正整数。这组方程要求对于每个 i, a_i 除以 m_i 的余数等于 b_i 除以 m_i 的余数, 即 a_i 与 b_i 在模 m_i 下同余。解同余方程组就是要找到满足所有这些条件的整数解。

例 2.2.19.

$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 2 \pmod{5} \\ \vdots \\ x \equiv 3 \pmod{7} \end{cases}$$

我们可以使用迭代法 (逐级满足法) 解决. 由第一个式子得 x = 3t + 1 然后带入 $3t + 1 \equiv 2 \pmod{5} \iff t \equiv 4 \pmod{5}$ 以此类推. 但是这只能解决一些简单的问题, 下面我们给出一般地解法.

定理 2.2.20. 中国剩余定理 (CRT)

设 m_1, m_2, \ldots, m_r 是两两互素的正整数, 则同余方程

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \vdots \\ x \equiv a_r \pmod{m_r} \end{cases}$$

有模 $m_1 m_2 \dots m_r$ 的唯一解

$$x = \sum_{i=1}^{r} a_i M_i M_i^{-1}$$

其中

$$M_i = \frac{1}{m_i} \prod_{j=1}^r m_j, \qquad M_i M_i^{-1} \equiv 1 \pmod{m_i}$$

证明. 先证明 x 是方程组的解.

对于任意一个方程有,

 $x \equiv a_k M_k M_k^{-1} \equiv a_k \pmod{m_k}$, 显然成立.

下证唯一性.

若 x_1, x_2 为方程组的 2 个解, 则有 $x_1 \equiv x_2 \pmod{m_k} \iff m_k | (x_1 - x_2) \iff M | (x_1 - x_2) \iff x1 \equiv x2 \pmod{M}$

定理 2.2.21. 拉格朗日定理

p 为素数, $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 (p \nmid a_n)$ 是模 p 意义下的整系数多项式方程,则同余方程 $f(x) \equiv 0 \pmod{p}$ 在模 p 意义下至多有 n 个不同的解.

推论 2.2.22. 若超过 n 个解, 则 $p \mid a_i (i=0,1,\ldots n)$, 即 f(x)是模 p 意义下的零多项式

推论 2.2.23. 若 $n \le p$ 则同余式 $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \equiv 0$ (mod p) 有 n 个解的充要条件是 $x^p - x$ 除以 f(x) 所得的余式的一切系数 都是 p 的倍数

这里介绍一个比较重要的多项式,常用于构造

$$f(x) = \prod_{i=1}^{p-1} (x-i) - (x^{p-1} - 1)$$

定理 2.2.24. wolstenholme 定理

若 p 为大于 3 的素数,则

$$\sum_{k=1}^{p-1} \frac{(p-1)!}{k} \equiv 0 \pmod{p^2}$$

2.3 乘性函数

定义 2.3.1. 算术函数

定义在所有正整数上的函数称为算数函数,

定义 2.3.2. 乘性函数

若 gcd(m,n) = 1, 均有 f(mn) = f(m)f(n), 则称 f 为乘性函数.

结论 2.3.3. 若 f 为乘性函数, $n = \prod_{i=1}^k p_i^{a_i}$ 为一个素因数分解. 则 $f(n) = \prod_{i=1}^k f(p_i^{a_i})$ 由定义显然成立.

定义 2.3.4. 和函数

f 为一个算术函数, $F(n) = \sum_{d|n} f(d)$ 称为 f 的和函数

定义 2.3.5. 欧拉函数

 $\phi(n) = \sum_{i=1}^{n} [gcd(i,n) = 1]$, 称为欧拉函数.

结论 2.3.6. 设 p 是素数, $\phi(p^a) = p^a - p^{a-1}$

证明. 由定义, $\phi(p^a) = \sum_{i=1}^{p^a} [gcd(i,p^a) = 1] = \sum_{i=1}^{p^a} 1 - [gcd(i,p^a) \neq 1] = p^a - \sum_{i=1}^{p^a} [gcd(i,p^a) \neq 1]$, 这样的 i 显然只有 p 的倍数, 有 p^{a-1} 个, 证毕. \square

结论 2.3.7. 欧拉函数是乘性函数

证明. 若 gcd(m,n) = 1 由缩系的定义知道, 显然模 m 的缩系有 $\phi(m)$ 个数, 模 n 的缩系有 $\phi(n)$ 个数, 由缩系的一个性质知模 mn 的缩系有 $\phi(m)\phi(n)$ 个数. 故 $\phi(mn) = \phi(m)\phi(n)$

结论 2.3.8. $n > 2, \phi(n)$ 为偶数

结论 2.3.9.

$$\phi(n) = n \prod_{i=1}^{k} (1 - \frac{1}{p_i})$$

证明. 容斥原理可证明这里用乘性函数的性质证明

$$\begin{split} \phi(n) &= \prod_{i=1}^k \phi(p_i^{a_i}) \\ &= \prod_{i=1}^k (p^{a_i} - p^{a_i-1}) \\ &= \prod_{i=1}^k p_i^{a_i} \prod_{i=1}^k (1 - \frac{1}{p_i}) \\ &= n \prod_{i=1}^k (1 - \frac{1}{p_i}) \end{split}$$

结论 2.3.10. 欧拉函数的和函数

$$F(n) = \sum_{d|n} \phi(d) = n$$

结论 2.3.11. 定义 C_d 为 1 到 n 中与 n 最大公因数为 d 的集合容易证明其是 1 到 n 构成的正整数集合的一个划分. 而 C_d 中有 $\phi(n/d)$ 个元素,(若 $a \in C_d$ 则 gcd(a/d, n/d) = 1),故 $n = \sum_{d|n} C_d = \sum_{d|n} \phi(n/d) = \sum_{d|n} \phi(d)$ 得证.

定义 2.3.12. 狄利克雷卷积

f,g 为算数函数, 定义狄利克雷积为

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

实际上这整数上一章的卷积在整除关系上的定义

性质

1.
$$f * g = g * f$$

2.
$$(f * q) * h = f * (q * h)$$

3.
$$f * (g + h) = f * g + f * h$$

这里的算数函数就是 $f(1,x) \in \mathcal{F}$ 故有逆元的条件是 $f(1) \neq 0$

定理 2.3.13. 如果 f,g 是乘性函数, 则 f*g 也是乘性函数

定理 2.3.14. 若 F = f * g,h 是 g 的逆函数, 那么 f = F * h

定理 2.3.15. 乘性函数的和函数也是乘性函数

定义 2.3.16. 因子和与因子个数函数

$$\sigma(n) = \sum_{d|n} d$$

$$\tau(n) = \sum_{d|n} 1$$

结论 2.3.17. 因子和与因子个数函数均为乘性函数

结论 2.3.18. 设 $n = \prod_{i=1}^k p_i^{a_i}$

$$\sigma(n) = \prod_{j=1}^{k} \frac{p_j^{a_j+1} - 1}{p_j - 1}$$

$$\tau(n) = \prod_{j=1}^{k} (a_j + 1)$$

定义 2.3.19. 莫比乌斯函数

$$\mu(n) = \begin{cases} 1, & (n=1) \\ (-1)^r, & (n = \prod_{i=1}^r p_i) \\ 0, & (other) \end{cases}$$

定理 2.3.20. $f = F * \mu$

第三章 求和

一些记号

调和数(harmonic numbe)

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

基本公式

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

$$a^{n} - b^{n} = (a - b) \sum_{1 \le k \le n} a^{n-k} b^{k-1}$$

3.1 递归问题 RECURRENT PROBLEMS

3.1.1 repertoire method

例

$$f(1) = \alpha$$

$$f(2n) = 2f(n) + \beta$$

$$f(2n+1) = 2f(n) + \gamma$$

知

$$f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$$

第三章 求和 32

通过对 f(n) 赋值或 (α, β, γ) 赋值,求解。

在参数较少的情况下,可以将一些相同参数,分别设为独立参数,更容易找到有解的情况。

3.1.2 约瑟夫问题

形如

$$f(j) = \alpha_j, \qquad 1 \le j < d$$

$$f(dn+j) = cf(n) + \beta_j, \qquad 0 \le j < d, n \ge 1$$

有

$$f((b_m b_{m-1}...b_0)_d) = (\alpha_{b_m} \beta_{b_{m-1}}...\beta_{b_0})_c$$

3.2 和式 SUMS

用

$$\sum_{P(k)} a_k$$

表示。

3.2.1 和式和递归式 SUMS AND RECURRENCES

和式可以表示为递归形式:

$$S_0 = a_0$$

$$S_{n+1} = S_n + a_{n+1}$$

用 repertoire method 解。

例 3.2.1. 计算

$$\sum_{k=0}^{n} (a+bn)$$

写成递归式

$$S_0 = \alpha$$

$$S_n = S_{n-1} + \beta n + \gamma$$

其中

$$\alpha = \gamma = a, \beta = b$$

设

$$S_n = A(n)\alpha + B(n)\beta + C(n)\gamma$$

带入 $1, n, n^2$

解出

$$\begin{cases}
A(n) = 1 \\
B(n) = \frac{n(n+1)}{2} \\
C(n) = n
\end{cases}$$

故

$$S_n = a + na + \frac{n(n+1)}{2}b$$

递归式可以转化为和式

对于形如

$$a_n T_n = b_n T_{n-1} + c_n$$

的递归式,可以设求和因子(summation factor)

$$s_n = \frac{\prod_{i=1}^n a_i}{\prod_{i=1}^n b_i} \cdot \frac{b_1}{a_n}$$

第三章 求和 34

然后同时乘上求和因子即可得出

$$T_n = \frac{1}{s_n a_n} \left(s_1 b_1 T_0 + \sum_{k=1}^n c_k s_k \right)$$

注意: 求和因子不能为 0

3.2.2 和式的处理 MANIPULATION OF SUMS

和式的变换

$$\begin{split} &\sum_{k \in K} ca_k = c \sum_{k \in K} a_k \\ &\sum_{k \in K} (a_k + b_k) = \sum_{k \in K} a_k + \sum_{k \in K} b_k \\ &\sum_{k \in K} a_k = \sum_{p(k) \in K} a_{p(k)} \\ &\sum_{k \in K} a_k + \sum_{k \in K'} a_k = \sum_{k \in K \cap K'} a_k + \sum_{k \in K \cup K'} a_k \end{split}$$

其中对于 $n \in K$, 有且仅有一个整数满足 p(k) = n

3.2.3 扰动法(perturbation method)

对一个和式记其为 S_n ,将其第一项和最后一项分离出来,用两种方法改写 S_{n+1} 。

类似于**算两次**法

例 3.2.2. 如求和式

$$S_n = \sum_{0 \le k \le n} k 2^k$$

有

$$S_n + (n+1)2^{n+1} = S_{n+1}$$

$$= \sum_{0 \le k \le n} (k+1)2^{k+1}$$

$$= 2S_n + \sum_{0 \le k \le n} 2^{k+1}$$

有

$$S_n = (n+1)2^{n+1} - \sum_{0 \le k \le n} 2^{k+1}$$
$$= (n+1)2^{n+1} - \frac{2(1-2^{n+1})}{1-2}$$
$$= (n-1)2^{n+1} + 2$$

3.2.4 多重和式 MULTIPLE SUMS

基本性质

$$\sum_{j} \sum_{k} a_{j,k} [P(j,k)] = \sum_{P(j,k)} a_{j,k} = \sum_{k} \sum_{j} a_{j,k} [P(j,k)]$$

$$\sum_{j \in J} \sum_{k \in K(j)} a_{j,k} = \sum_{k \in K'} \sum_{j \in J'(k)} a_{j,k}$$

$$\sum_{j \in J} a_{f(j)} = \sum_{j \in J, k \in K} a_k [f(j) = k] = \sum_{k \in K} a_k \sum_{j \in J} [f(j) = k]$$

其中 $f: J \to K$

例 3.2.3. 求

$$S_n = \sum_{1 \le j < k \le n} \frac{1}{k - j}$$

有

$$S_n = \sum_{1 \le k \le n} \sum_{1 \le j < k} \frac{1}{k - j}$$
$$= \sum_{1 \le k \le n} \sum_{0 < j \le k - 1} \frac{1}{j}$$
$$= \sum_{1 \le k \le n} H_{k - 1}$$

不太好做,(可以交换求和次序解) 考虑直接把 k-j 当成一个整体。

$$S_n = \sum_{1 \le j < k+j \le n} \frac{1}{k}$$

$$= \sum_{1 \le k \le n} \sum_{1 \le j \le n-k} \frac{1}{k}$$

$$= \sum_{1 \le k \le n} \frac{n-k}{k}$$

$$= nH_n - n$$

有

$$\sum_{0 \le k < n} H_k = nH_n - n$$

思考:

对含 k+f(j) 的二重和式,可以考虑用 k-f(j) 替换 k,并先对 j 求和比较好。

几何观点:按对角线求和。

3.2.5 一般性的方法 GENERAL METHODS

以

$$S_n = \sum_{0 \le k \le n} k^2$$

为例

归纳法

如果注意到

$$S_n = \frac{n(n + \frac{1}{2})(n+1)}{3}$$

就可以使用数学归纳法

扰动法

观察

$$\sum_{0 \le k \le n} k^2 + (n+1)^2 = S_{n+1}$$

$$= \sum_{1 \le k \le n+1} k^2$$

$$= \sum_{0 \le k \le n} (k+1)^2$$

$$= \sum_{0 \le k \le n} k^2 + 2 \sum_{0 \le k \le n} k + n + 1$$

虽然没有成功,但注意到我们,成功地解出了

$$\sum_{0 \le k \le n} k$$

考虑对

$$T_n = \sum_{0 \le k \le n} k^3$$

操作,有

$$T_n + (n+1)^3 = T_{n+1}$$

$$= \sum_{1 \le k \le n+1} k^3$$

$$= \sum_{0 \le k \le n} (k+1)^3$$

$$= T_n + 3S_n + 3\sum_{0 \le k \le n} k + n + 1$$

得到

$$3S_n = (n+1)^3 - 3\frac{n(n+1)}{2} - (n+1)$$
$$= (n+1)\left(n^2 + \frac{1}{2}n\right)$$
$$= n(n+\frac{1}{2})(n+1)$$

成套方法

有

$$R_0 = d$$

$$R_n = R_{n-1} + an^2 + bn + c$$

其解的一般形式为

$$R_n = aA(n) + bB(n) + cC(n) + dD(n)$$

设 $R_n = 1, n, n^2, n^3$

解得

$$\begin{cases} A(n) = \frac{n(n + \frac{1}{2})(n+1)}{3} \\ B(n) = \frac{1}{2}(n^2 + n) \\ C(n) = n \\ D(n) = 1 \end{cases}$$

故

$$R_n = A(n)$$

39

事实上对 (a,b,c,d) 赋值更简单。

微积分法

求

$$S_n - \int_0^n x^2 dx = \sum_{1 \le k \le n} \left(k^2 - \int_{k-1}^k x^2 dx \right)$$
$$= \sum_{1 \le k \le n} (k - \frac{1}{3})$$
$$= \frac{n(n+1)}{2} + \frac{n}{3}$$

展开和收缩

转化为二重和式,以简化通项。

$$S_n = \sum_{1 \le k \le n} k^2$$

$$= \sum_{1 \le k \le n} k \sum_{1 \le j \le k} 1$$

$$= \sum_{1 \le j \le n} \sum_{j \le k \le n} k$$

$$= \sum_{1 \le j \le n} \frac{(j+n)(n-j+1)}{2}$$

$$= \frac{n^3 + n^2}{2} + \frac{1}{2} \frac{n(n+1)}{2} - \frac{1}{2} S_n$$

有限微积分

有
$$k^2 = k^2 + k^1$$

40

故

$$\sum_{0 \le k \le n} k^2 = \sum_{0 \le k < n+1} k^2 + k^{\frac{1}{2}}$$

$$= \left(\frac{k^{\frac{3}{3}} + \frac{k^2}{2}}{3}\right) \Big|_0^{n+1}$$

$$= \left(\frac{(n+1)^{\frac{3}{2}} + \frac{(n+1)^2}{2}}{3}\right)$$

$$= \frac{(n+1)(n+\frac{1}{2})n}{3}.$$

3.2.6 有限微积分

类似微分算子 D

$$Df(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

定义差分算子 Δ

$$\Delta f(x) = f(x+1) - f(x)$$

定义下降阶乘幂(falling factorial power)

$$x^{\underline{m}} = x(x-1)\cdots(x-m+1) \qquad (m \ge 0 \in Z)$$

和上升阶乘幂(rising factorial power)

$$x^{\overline{m}} = x(x+1)\cdots(x+m-1) \qquad (m \ge 0 \in Z)$$

注意到: $n! = n^{\underline{n}} = 1^{\overline{n}}$

有

$$\Delta(x^{\underline{m}}) = mx^{\underline{m-1}}$$

类比积分,我们定义不定和式(indefinite sum)

$$\sum g(x)\delta x$$

满足

$$g(x) = \Delta f(x) \iff \sum g(x)\delta x = f(x) + C$$

41

其中 C 为满足 p(x+1) = p(x) 的任意一个函数 p(x)。

有限微积分有确定的和式 (sum)

$$\sum_{a}^{b} g(x)\delta x = f(x)|_{a}^{b} = f(b) - f(a)$$

有以下性质

$$\sum_{a}^{b} g(x)\delta x = \sum_{a \le k < b} g(x) \qquad a \le b$$

$$\sum_{a}^{b} g(x)\delta x = -\sum_{b}^{a} g(x)\delta x$$

$$\sum_{a}^{b} + \sum_{b}^{c} = \sum_{a}^{c}$$

并且阶乘幂满足二项式定理

负指数的下降阶乘幂定义如下

$$x^{-m} = \frac{1}{(x+1)(x+2)\cdots(x+m)} \qquad m > 0$$

从而有以下性质

$$x^{\underline{m+n}} = x^{\underline{m}}(x-m)^{\underline{n}}$$

$$\sum_{a}^{b} x^{\underline{m}} \delta x = \left. \frac{x^{\underline{m+1}}}{m+1} \right|_{a}^{b}, \qquad (m \neq -1)$$

若 m=-1 则为 H_b-H_a

$f = \sum g$	$\Delta f = g$	$f = \sum g$	$\Delta f = g$
$x^{0} = 1$	0	2^x	2^x
$x^{\underline{1}} = x$	1	c^x	$(c-1)c^x$
$x^2 = x(x-1)$	2x	$\frac{c^x}{c-1}$	c^x
$x^{\underline{m}}$	mx^{m-1}	cu	$c\Delta u$
$\frac{x^{m+1}}{m+1}$	x^m	u+v	$\Delta u + \Delta v$
H_x	$x^{-1} = \frac{1}{x+1}$	uv	$u\Delta v + Ev\Delta u$

分部求和(summation by parts)

有

$$\Delta(u(x)v(x)) = u(x)\Delta v(x) + Ev(x)\Delta u(x)$$

其中,E 为移位算子(shift operator)Ef(x) = f(x+1) 简记为

$$\Delta(uv) = u\Delta v + Ev\Delta u$$

从而有

$$\sum u\Delta v = uv - \sum Ev\Delta u$$

如

例 3.2.4.

$$\sum_{k=0}^{n} k 2^k = \sum_{0}^{n+1} x 2^x \delta x$$

$$= \sum_{0}^{n+1} x \delta 2^x$$

$$= (n+1)2^{n+1} - \sum_{0}^{n+1} 2^{x+1} \delta x$$

$$= (n+1)2^{n+1} - 2^{n+2} + 2$$

$$= (n-1)2^{n+1} + 2$$

例 3.2.5.

$$\sum_{0 \le k < n} kH_k = \sum_0^n xH_x \delta x$$

$$= \frac{1}{2} \left(\sum_0^n H_x \delta x^2 \right)$$

$$= \frac{1}{2} \left(x^2 H_n - \sum_0^n x \delta x \right)$$

$$= \frac{1}{2} \left(x^2 H_n - \frac{n^2}{2} \right)$$

$$= \frac{n^2}{2} \left(H_n - \frac{1}{2} \right)$$

43

3.2.7 无限和式 INFINITE SUMS

容易发现

$$\sum_{k \ge 0} x^k = \begin{cases} \frac{1}{1-x}, & 0 \le x < 1\\ \infty, & x \ge 1 \end{cases}$$

交错和

$$\sum_{k \in K} a_k = \sum_{k \in K} a_k^+ - \sum_{k \in K} a_k^-$$

设 $A^+ = \sum_{k \in K} a_k^+$,类似定义 A^-

- a. 若均有限的值,则称为绝对收敛。
- b. 若 $A^+ = \infty$,而后者为有限的值,则称发散于 $+\infty$,反之发散于 $-\infty$
- c. 否则不做定义。

只要我们处理的是刚才所定义的绝对收敛的和式,这一章里的所有操作都完全成立.

对复数分实部和虚部计算即可。

4.1 基本概念和公式

对概率运算规定一些简单的基本法则:

- 1. 设 A 是随机事件,则 $0 \le P(A) \le 1$,
- 2. 设 Ω 为必然事件,则 $P(\Omega)=1$,
- 3. 若事件 A 和 B 不相容,则 $P(A \cup B) = P(A) + P(B)$,可推广至无穷:

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

.

4. 一般情况下, $P(A \cup B) = P(A) + P(B) - P(AB)$, $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$

5.
$$P(\overline{A}) = 1 - P(A)$$

6.
$$P(A - B) = P(A) - P(AB)$$

定理 4.1.1. 全概率公式

设 $B_1, B_2, ...B_n$ 是样本空间 Ω 中的两两不相容的一组事件,即 $B_iB_j = \phi$, $i \neq j$,且满足 $\bigcup_{i=1}^n B_i = \Omega$,则称 $B_1, B_2, ...B_n$ 是样本空间 Ω 的一个分割 (又称为完备事件群,英文为 partition)。设 $\{B_1, B_2, ...B_n\}$ 是样本空间 Ω

的一个分割, A 为 Ω 的一个事件, 则

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

定理 4.1.2. 贝叶斯公式

设 $\{B_1, B_2, ...B_n\}$ 是样本空间的一个分割, A 为 Ω 中的一个事件, $P(B_i) > 0$, i = 1, 2, ..., n, P(A) > 0, 则

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}$$

用于因果转换.

定义 4.1.3. 事件的独立性

设 A, B 是随机试验中的两个事件, 若满足 P(AB) = P(A)P(B), 则称事件 A 和 B 相互独立。

判断事件的独立, 应该是**从实际出发**, 如果能够判断事件 B 的发生与否对事件 A 的发生与否不产生影响,则事件 A, B 即为独立。

设 \widetilde{A} 表示事件 A 发生和不发生之一, \widetilde{B} 表示事件 B 发生和不发生之一。 有独立性的定义可推至 $P(\widetilde{A}\widetilde{B}) = P(\widetilde{A})P(\widetilde{B})$ (一共有四个等式)。可推广至:

$$P(\widetilde{A}_1\widetilde{A}_2...\widetilde{A}_n) = P(\widetilde{A}_1)...P(\widetilde{A}_n)$$

上面有 2ⁿ 个等式。

独立一定相容

重要公式与结论

$$(1) P(\overline{A}) = 1 - P(A)$$

(2)
$$P(A \cup B) = P(A) + P(B) - P(AB)$$

(3)
$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$

(4)
$$P(A - B) = P(A) - P(AB)$$

(5)
$$P(A\overline{B}) = P(A) - P(AB), P(A) = P(AB) + P(A\overline{B}),$$

 $P(A \cup B) = P(A) + P(\overline{A}B) = P(AB) + P(A\overline{B}) + P(\overline{A}B)$

(6)
$$P(\overline{A}_1|B) = 1 - P(A_1|B), P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B) - P(A_1A_2|B)$$

 $P(A_1A_2|B) = P(A_1|B)P(A_2|A_1B)$

(7)
$$A_1, A_2, ...A_n$$
 $P(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n P(A_i), P(\bigcup_{i=1}^n A_i) = \prod_{i=1}^n (1 - P(A_i))$

随机变量(Random variable): 值随机会而定的变量,研究随机试验的一串 事件。可按维数分为一维、二维至多维随机变量。按性质可分为离散型随机 变量以及连续型随机变量。

分布 (Distribution): 事件之间的联系,用来计算概率。

分布(Distribution): $I_A(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \text{反之} \end{cases}$,事件 A 有随机变量 I_A 表示出来, I_A 称为事件 A 的示性函数。

定义 4.1.4. 概率函数:

设 X 为一随机变量,其全部可能值为 $\{a_1, a_2, ...\}$,则 $p_i = P(X = a_i), i = 1, 2, ...$ 称为 X 的概率函数。

定义 4.1.5. 概率分布函数:

定义:设X为一随机变量,则函数

$$F(X) = P(X \le x) \quad (-\infty < x < \infty)$$

称为 X 的分布函数。(注:这里并未限定 X 为离散型的,它对任何随机变量都有定义。)

性质:

F(x)是单调非降的: 当 $x_1 < x_2$ 时,有 $F(x_1) \le F(X_2)$.

当 $x \to \infty$ 时, $F(x) \to 1$; 当 $x \to -\infty$ 时, $F(x) \to 0$.

离散型随机变量分布函数:

对于离散型随机变量, $F(X) = P(X \le x) = \sum_{\{i \mid a_i \le x\}} p_i$, $p_i = P(X = i) = F(i) - F(i-1)$ 。

1. 连续型随机变量:设X为一随机变量,如果X不仅有无限个而且有不可数个值,则称X为一个连续型随机变量。

定义 4.1.6. 概率密度函数:

设连续型随机变量 X 有概率分布函数 F(x), 则 F(x) 的导数 f(x) = F'(x) 称为 X 的概率密度函数。

性质

- 1. 对于所有的 $-\infty < x < +\infty$,有 f(x) > 0;
- $2.\int_{-\infty}^{+\infty} f(x)dx = 1;$
- 3. 对于任意的 $-\infty < a \le b < +\infty$,有 $P(a \le X \le b) = F(b) F(a) = \int_a^b f(x) dx$.

注:

1. 对于任意的 $-\infty < x < +\infty$,有 $P(X = x) = \int_x^x f(u) du = 0$.

2. 假设有总共一个单位的质量连续地分布在 $a \le x \le b$ 上,那么 f(x) 表示在点 x 的质量密度且 $\int_{c}^{d} f(x) dx$ 表示在区间 [c,d] 上的全部质量。

定义 4.1.7. 概率分布函数:

设X为一连续型随机变量,则

$$F(x) = \int_{-\infty}^{x} f(u)du, \quad -\infty < x < +\infty$$

4.2 重要公式与结论

二项分布 $X \sim B(n,p)$ 的期望为 np, 方差为 np(1-p) 均匀分布 $X \sim U(a,b)$ 的期望为 $\frac{a+b}{2}$, 方差为 $\frac{1}{12}(b-a)^2$

定义 4.2.1. 边缘分布:

因为 X 的每个分量 X_i 都是一维随机变量,故它们都有各自的分布 F_i (i=1,...,n),这些都是一维分布,称为随机向量 X 或其分布 F 的边缘分布。 离散随机变量:

$$p_X(x_i) = P(X = x_i)$$

$$= \sum_{j=0}^{m} P(X = x_i, Y = y_j)$$

$$= \sum_{j=0}^{m} p_{ij} = p_{i.}, \quad i = 1, 2, ..., n$$

$$p_Y(y_i) = P(Y = y_i)$$

$$= \sum_{i=1}^{m} P(X = x_i, Y = y_j)$$

$$= \sum_{i=1}^{m} p_{ij} = p_{j\cdot}, \quad j = 1, 2, ..., n$$

连续随机变量:

为求某分量 X_i 的概率密度函数,只需把 $f(x_1,...,x_n)$ 中的 x_i 固定,然后对 $x_1,...,x_{i-1},x_{i+1},...,x_n$ 在 $-\infty$ 到 ∞ 之间做定积分,如

$$(X,Y) \sim f(x,y)f_X(u) = \int_{-\infty}^{+\infty} f(u,v)dv f_Y(u) = \int_{-\infty}^{+\infty} f(u,v)du$$

定义 4.2.2. 离散型随机变量的条件分布: 设 (X,Y) 为二维离散型随机变量,对于给定的事件 $\{Y=y_i\}$,其概率 $P(Y=y_i)>0$,则称

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{\cdot j}}, \quad i = 1, 2, \dots$$

为在给定 $Y = y_j$ 的条件下 X 的条件分布律。类似的,称

$$P(Y = y_i | X = x_j) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{p_{i}}, \quad j = 1, 2, \dots$$

为在给定 $X = x_j$ 的条件下 Y 的条件分布律。

连续型随机变量的条件分布:设(X,Y)为二维连续型随机变量,对于给定条件Y=y下的条件概率密度为

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}, \quad f_Y(y) > 0.$$

类似的, 在X = x下的条件概率密度为

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}, \quad f_X(x) > 0.$$

可推广

定义 4.2.3. 随机变量的独立性

称随机变量 $X_1, ..., X_n$ 相互独立,

1. 离散型随机变量

则联合分布律等于各自的边缘分布律的乘积, 即

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1)...P(X_n = x_n)$$

其中 $(x_1,...x_n)$ 为 $(X_1,...,X_n)$ 的值域中的任意一点。 2. 连续型随机变量则联合密度等于各自的边缘密度的乘积. 即

$$f(x_1,...,x_n) = f_1(x_1)...f_n(x_n), \quad \forall (x_1,...,x_n) \in \mathbb{R}^n$$

3. 一般地

设 $X_1,...,X_n$ 为 n 个随机变量,如果它们的联合分布函数等于各自边缘分布函数的乘积,即

$$F(X_1,...,x_n) = F_1(x_1)...F_n(x_n), \quad \forall (x_1,...,x_n) \in \mathbb{R}^n$$

则称随机变量 $X_1, ..., X_n$ 相互独立。

以下内容才是重点!!!!!

以下内容才是重点!!!!!

以下内容才是重点!!!!!

4.2.1 数学期望(均值)与方差

定义 4.2.4. 数学期望

设随机变量 X 只取有限个可能值 $a_1,...,a_m$, 其概率分布为 $P(X=a_i)=p_i \ (i=1,...,m)$.

则 X 的数学期望记作 EX 或 E(X),定义为 $E(X) = a_1p_1 + a_2p_2 + ... + a_mp_m$. 数学期望也常称为均值,即指以概率为权的加权平均。

1. 离散型变量的数学期望: $E(X)=\sum_{i=1}^{\infty}a_ip_i$.(当级数绝对收敛,即 $\sum_{i=1}^{\infty}|a_i|p_i<\infty$)

- 2. 连续型变量的数学期望: $E(X)=\int_{-\infty}^{\infty}xf(x)dx$. (当 $\int_{-\infty}^{\infty}|x|f(x)dx<\infty$) 性质
- 1. 若干个随机变量之和的期望等于各变量的期望值和,即

$$E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n).$$

2. 若干个独立随机变量之积的期望等于各变量的期望之积,即

$$E(X_1X_2...X_n) = E(X_1)E(X_2)...E(X_n).$$

3. 设随机变量 X 为离散型,有分布 $P(X = a_i) = p_i (i = 1, 2, ...)$; 或者为连续型,有概率密度函数 f(x). 则

$$E(g(x)) = \sum_{i} g(a_i)p_i \quad (\stackrel{\text{def}}{=} \sum_{i} |g(a_i)|p_i < \infty \text{ ft})$$

或

$$E(g(x)) = \int_{-\infty}^{\infty} g(x)f(x)dx \quad (\stackrel{\text{def}}{=} \int_{-\infty}^{\infty} |g(x)|f(x)dx < \infty \text{F})$$

4. 若 c 为常数,则 E(cX) = cE(X).

定义 4.2.5. 条件数学期望

随机变量 Y的条件期望就是它在给定的某种附加条件下的数学期望。

 $E(Y|x) = \int_{-\infty}^{\infty} y f(y|x) dy$. 它反映了随着 X 取值 x 的变化 Y 的平均变化的情况如何。

在统计上,常把条件期望 E(Y|x) 作为 x 的函数,称为 Y 对 X 的回归函数。

性质: $1.E(Y) = \int_{-\infty}^{\infty} E(Y|x) f_X(x) dx$.

2.
$$E(Y) = E[E(Y|X)].$$

定义 4.2.6. 方差与标准差

设 X 为随机变量,分布为 F,则 $Var(X) = E(X - EX)^2$ 称为 X (或分 布 F) 的方差,

其平方根 $\sqrt{Var(X)}$ (取正值) 称为 X (或分布 F) 的标准差。

性质: $1.Var(X) = E(X^2) - (EX)^2$.

- 2. 常数的方差为 0, 即 Var(c) = 0.
- 3. 若 c 为常数,则 Var(X+c) = Var(X).
- 4. 若 c 为常数,则 $Var(cX) = c^2 Var(X)$.
- 5. 独立随机变量和的方差等于各变量方差和,即 $Var(X_1 + ... + X_n) = Var(X_1) + ... + Var(X_n)$.

4.3 期望经典问题入门

https://notes.sshwy.name/Math/Expectation/Classic/#E-%E7%BB%8F%E5%85%B8%E9%A2%98 重要公式与结论 1. 期望具有线性性

2. 独立事件的期望有

$$E(XY) = EXEY$$

3.

$$E(X) = E(E(X|Y))$$

4.3.1 普通

结论 4.3.1. 有 n 个随机变量 $\langle X_n \rangle$, 每个随机变量量都是从 [1,m] 中随机一个整数, $\max \langle X_n \rangle$ 的期望为

$$m - \frac{1}{m^n} \sum_{i=1}^{m-1} i^n$$

证明. 设 $Y = \max \langle X_n \rangle$, 有

$$\begin{split} EY &= \sum_{1 \leq i \leq m} P(Y=i)i \\ &= \sum_{1 \leq i \leq m} i(F_y(i) - F_y(i-1)) \\ &= \frac{1}{m^n} \left(\sum_{1 \leq i \leq m} i^{n+1} - i \cdot (i-1)^n \right) \\ &= \frac{1}{m^n} \left(\sum_{1 \leq i \leq m} i^{n+1} - \sum_{0 \leq i \leq m-1} i^{n+1} + i^n \right) \\ &= \frac{1}{m^n} \left(m^{n+1} - \sum_{0 \leq i \leq m-1} i^n \right) \\ &= m - \frac{1}{m^n} \sum_{i=1}^{m-1} i^n \end{split}$$

结论 4.3.2. 概率为 p 的事件期望 $\frac{1}{p}$ 次发生.

证明. 设随机变量 X 表示其在第 x 次发生.

$$EX = \sum_{i=1}^{\infty} P(X = i)i$$

$$= \sum_{i=1}^{\infty} P(X = i) \sum_{j=1}^{i} 1$$

$$= \sum_{j=1}^{\infty} P(X \ge j)$$

$$= \sum_{j=1}^{\infty} (1 - p)^{j-1}$$

$$= \sum_{j=0}^{\infty} (1 - p)^{j}$$

$$= \frac{1}{1 - (1 - p)}$$

$$= \frac{1}{2}$$

结论 4.3.3. 现在红包发了一个w元的红包,有n个人来抢(均匀分布)。那么请问第k个人期望抢到 $\frac{w}{2k}$.

证明. 设第 k 个人抢到 X, 前面的人抢 Y. 有

$$E(X) = E(E(X|Y)) = E(\frac{w-Y}{2}) = \frac{w}{2} - \frac{1}{2}E(Y)$$

然后容易解出答案.

离散情况这样难以求解, 在取球一节有其他解法

结论 4.3.4. 赠券收集问题

一个n 面的骰子,期望 nH_n 次能使得每一面都被掷到。

证明. t_x 为设已经出现了 x-1 面, 掷出第 x 面的次数.

设 $T = \sum t$. 有

$$E(T) = \sum_{i=1}^{n} E(t_i)$$

由于掷出第 x 面的概率为 $\frac{n-x+1}{n}$, 固

$$E(T) = \sum_{i=1}^{n} E(t_i)$$
$$= \sum_{x=1}^{n} \frac{n - x + 1}{n}$$
$$= n \cdot H_n$$

同时他们也是相互独立的.

56

4.3.2 拿球

结论 4.3.5. 箱子里有 n 个球 1,2,,n, 你要从里面拿 m 次球,拿了后不放回,取出的数字之和的期望为 $\frac{m(n+1)}{2}$ 。

证明. 设随机变量 xi:

$$x_i = \begin{cases} i & \text{, if i is chosen} \\ 0 & \text{, if i isn't chosen} \end{cases}$$

那么有

$$E\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} E(x_i)$$
$$= \sum_{i=1}^{n} \frac{m}{n}i$$
$$= \frac{m(n+1)}{2}$$

发现是否放回不影响期望

结论 4.3.6. 箱子里有 n 个球 1,2, ,n,你要从里面拿 m 次球,拿了后以 p_1 的概率放回, p_2 的概率放回两个和这个相同的球(相当于增加一个球),取出的数字之和的期望为 $\frac{m(n+1)}{2}$ 。

证明. 设 x_i 为第 i 个球的贡献, y_i 为其被拿出来的次数, 那么 $x_i = i \cdot y_i$

$$E\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} E(y_i) \cdot i$$

因为 $E(y_i) = E(y_j)$, $\sum y_i = m$ 得出 $E(y_i) = \frac{m}{n}$ 故上式答案为 $\frac{m(n+1)}{2}$

4.3.3 游走

4.3.4 解题方法

1. 贡献法,

若不行可以尝试更换计算贡献的东西 (如边-> 点)