Import all tools needed

```
In [1]: import numpy as np
         from sklearn.linear model import LinearRegression
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         import numpy as np
         from numpy import asarray
         %matplotlib inline
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LinearRegression
         from sklearn.preprocessing import LabelEncoder
         from sklearn.preprocessing import OneHotEncoder
         from sklearn.preprocessing import OrdinalEncoder
         from sklearn.metrics import mean_squared_error as mse
         from scipy.stats import zscore
         from scipy.stats import stats
```

Read in data frame ks_house_data

```
In [2]: df = pd.read_csv('../data/kc_house_data.csv')
    df
```

Out[2]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wa
	0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	
	•••	•••						•••		
	21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	
	21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	
	21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	
	21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	
	21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	

21597 rows × 21 columns

Copy and paste the list of columns given for future reference

Column Names and descriptions for Kings County Data Set

- id unique identified for a house
- dateDate house was sold
- **pricePrice** is prediction target

- bedroomsNumber of Bedrooms/House
- bathroomsNumber of bathrooms/bedrooms
- sqft_livingsquare footage of the home
- sqft_lotsquare footage of the lot
- floorsTotal floors (levels) in house
- waterfront House which has a view to a waterfront
- view Has been viewed
- condition How good the condition is (Overall)
- grade overall grade given to the housing unit, based on King County grading system
- sqft_above square footage of house apart from basement
- sqft_basement square footage of the basement
- yr_built Built Year
- yr_renovated Year when house was renovated
- **zipcode** zip
- lat Latitude coordinate
- long Longitude coordinate
- **sqft_living15** The square footage of interior housing living space for the nearest 15 neighbors
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbors

Create new dataframe with specific column names given above name it new_df

In [3]:	<pre>new_df = df[['id','price',</pre>	'sqft_living',	'grade',	'sqft_above',	'sqft_living15'
	new_df				

Out[3]:		id	price	sqft_living	grade	sqft_above	sqft_living15	bathrooms	view	be
	0	7129300520	221900.0	1180	7	1180	1340	1.00	0.0	
	1	6414100192	538000.0	2570	7	2170	1690	2.25	0.0	
	2	5631500400	180000.0	770	6	770	2720	1.00	0.0	
	3	2487200875	604000.0	1960	7	1050	1360	3.00	0.0	
	4	1954400510	510000.0	1680	8	1680	1800	2.00	0.0	
	•••									
	21592	263000018	360000.0	1530	8	1530	1530	2.50	0.0	
	21593	6600060120	400000.0	2310	8	2310	1830	2.50	0.0	
	21594	1523300141	402101.0	1020	7	1020	1020	0.75	0.0	
	21595	291310100	400000.0	1600	8	1600	1410	2.50	0.0	
	21596	1523300157	325000.0	1020	7	1020	1020	0.75	0.0	

21597 rows × 12 columns

Look up all the correlations of each column to each other and print to investigate

```
In [4]: corr = new_df.corr()
corr
```

Out[4]:	
OULITI.	1.4

	id	price	sqft_living	grade	sqft_above	sqft_living15	bathrooms	
id	1.000000	-0.016772	-0.012241	0.008188	-0.010799	-0.002701	0.005162	0
price	-0.016772	1.000000	0.701917	0.667951	0.605368	0.585241	0.525906	0.
sqft_living	-0.012241	0.701917	1.000000	0.762779	0.876448	0.756402	0.755758	0.
grade	0.008188	0.667951	0.762779	1.000000	0.756073	0.713867	0.665838	0.
sqft_above	-0.010799	0.605368	0.876448	0.756073	1.000000	0.731767	0.686668	Ο.
sqft_living15	-0.002701	0.585241	0.756402	0.713867	0.731767	1.000000	0.569884	0
bathrooms	0.005162	0.525906	0.755758	0.665838	0.686668	0.569884	1.000000	0
view	0.011592	0.395734	0.282532	0.249727	0.166299	0.279561	0.186451	1.
bedrooms	0.001150	0.308787	0.578212	0.356563	0.479386	0.393406	0.514508	0.
lat	-0.001798	0.306692	0.052155	0.113575	-0.001199	0.048679	0.024280	0
waterfront	-0.004176	0.276295	0.110230	0.087383	0.075463	0.088860	0.067282	0.
floors	0.018608	0.256804	0.353953	0.458794	0.523989	0.280102	0.502582	0.

Drop all null values We had to drop the index 15856 because the encoder could not work with differnet a number of values in the test and training data, and since it was only a single entry, it wont affect us badly when dropped. Dropping this allowed the encoder to run and improve our model by a ton

```
In [5]: new_df = new_df.dropna()
   new_df = new_df.drop(labels=15856, axis=0)
```

After investigating the correlations, we wanted to look at how the number of bedrooms effect the home prices. For better visualization, we created a pair plot.

```
In [6]: import seaborn as sns

g = sns.pairplot(new_df, vars=["bedrooms", "price"])

import matplotlib.pyplot as plt
plt.show()
```


Becuase the pairplots above are not very interpretive, we created a more visually appealing scatter plot. As the plot shows, if a house has over 6 bedrooms, the price is no longer majorly affected.

```
In [7]: plt.scatter(new_df.bedrooms, new_df.price, color='red')
    plt.xlabel('Room Number')
    plt.ylabel('Home Price (in millions)')
    plt.title('Home Price per Room Number')
    plt.xticks(np.arange(0, 12, 1))
    plt.yticks(np.arange(0, 8000000, 500000))
    plt.show()
    plt.savefig('homepriceperroom.png')
    #Create scatter plot to analyaze the price differences between number of bedroom
```


<Figure size 432x288 with 0 Axes>

Call on first dataframe. Make sure to drop null values and index 15856 to ensure the encoder works correctly

Out[8]:	id		date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	Wŧ
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	
	5	7237550310	5/12/2014	1230000.0	4	4.50	5420	101930	1.0	
	6	1321400060	6/27/2014	257500.0	3	2.25	1715	6819	2.0	
	•••							•••		
	21591	2997800021	2/19/2015	475000.0	3	2.50	1310	1294	2.0	
	21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	
	21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	
	21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	
	21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	

15761 rows × 21 columns

Turn 'date' column from a string to an int to make future manipulations easier

```
In [9]: df["date"] = df.date.apply(lambda x: x[-4:])
  type(df['date'])
```

Out[9]: pandas.core.series.Series

Turn all '?' into NaN values. Then drop all NaN values because null values decrease the models accuracy

```
In [10]: df = df.replace('?',np.nan)
    df = df.dropna()
```

Drop index 3220 because it caused issues while running train test split

```
In [11]: df = df.drop(labels=3220, axis=0)
```

Make a linear regression model with price compared to everything else within the dataframe df (without id or price)

```
In [12]: reg = LinearRegression()
    y = df['price']
    X = df.drop(['id', 'price'], axis = 1)
```

Split the data into a test and train group in order to compare how well our model functions compared to the test

```
In [13]: X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42)
```

OneHotEncode view, grade, zipcode because they are categorical values that are easier

for the model to interpret.

```
encoder = OneHotEncoder(sparse=False)
encoder.fit(X_train[['view', 'grade', 'zipcode']])
transformed_train = encoder.transform(X_train[['view', 'grade', 'zipcode']])
transformed_train = pd.DataFrame(transformed_train, columns = encoder.get_featur
X_train_encoded = pd.concat([X_train.drop(['view', 'grade', 'zipcode'], axis = 1
test_condition = encoder.transform(X_test[['view', 'grade', 'zipcode']])
test_condition = pd.DataFrame(test_condition, columns=encoder.get_feature_names(
test_condition = pd.concat([X_test.drop(['view', 'grade', 'zipcode'], axis = 1),
```

Fitting and scoring the training data to see how the model works on data it has been trained for

```
In [15]: reg.fit(X_train_encoded, y_train)
    reg.score(X_train_encoded, y_train)
```

Out[15]: 0.840624332728187

Fitting and scoring the testing data to see how the model works on data its being tested against

```
In [16]: reg.score(test_condition, y_test)
Out[16]: 0.8145009320259429
```

Getting score predictions for the training and testing data

```
In [17]: train_preds = reg.predict(X_train_encoded)
  test_preds = reg.predict(test_condition)
```

Getting the RMSE for the training data

```
In [18]: np.sqrt(mse(y_train, train_preds))
Out[18]: 143663.9785123915
```

Getting RMSE for the testing data

```
In [19]: mse(y_test, test_preds, squared=False)
Out[19]: 176476.39588833158
```

Box and whiskers made for price before outliers removed

```
fig, ax = plt.subplots(figsize=(15,8))
  plt.ticklabel_format(style="plain")
  sns.boxplot(x=df['price'], width = .45, color = 'lightblue');
  plt.suptitle("Before Outliers Taken Out", fontsize=20)
  plt.xlabel("Price in U.S. Dollars", fontsize=14)
  plt.savefig('beforeoutliers.png')
```

Before Outliers Taken Out

Making a copy of the dataframe so we have something to freely change

Out[21]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfr
	1	6414100192	2014	538000.0	3	2.25	2570	7242	2.0	
	3	2487200875	2014	604000.0	4	3.00	1960	5000	1.0	
	4	1954400510	2015	510000.0	3	2.00	1680	8080	1.0	
	5	7237550310	2014	1230000.0	4	4.50	5420	101930	1.0	
	8	2414600126	2015	229500.0	3	1.00	1780	7470	1.0	
	•••									
	21591	2997800021	2015	475000.0	3	2.50	1310	1294	2.0	
	21592	263000018	2014	360000.0	3	2.50	1530	1131	3.0	
	21593	6600060120	2015	400000.0	4	2.50	2310	5813	2.0	
	21594	1523300141	2014	402101.0	2	0.75	1020	1350	2.0	
	21596	1523300157	2014	325000.0	2	0.75	1020	1076	2.0	

15427 rows × 21 columns

Removing outleirs

```
In [23]: df_filtered = df_filtered.drop(labels=5446, axis=0)
```

Second linear regression following the same exact steps as above with slightly different data

**The filtered price column is the new data here"

```
In [24]: reg_2 = LinearRegression()
          y = df filtered['price']
          X = df_filtered.drop(['id', 'price'], axis = 1)
In [25]:
         X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42)
In [26]:
          encoder = OneHotEncoder(sparse=False)
          encoder.fit(X_train[['view', 'grade', 'zipcode']])
          transformed_train = encoder.transform(X_train[['view', 'grade', 'zipcode']])
          transformed_train = pd.DataFrame(transformed_train, columns = encoder.get_featur
          X_train_encoded = pd.concat([X_train.drop(['view', 'grade', 'zipcode'], axis = 1
          test_condition = encoder.transform(X_test[['view', 'grade', 'zipcode']])
          test_condition = pd.DataFrame(test_condition, columns=encoder.get_feature_names(
          test_condition = pd.concat([X_test.drop(['view', 'grade', 'zipcode'], axis = 1),
In [27]: | reg.fit(X_train_encoded, y_train)
          reg.score(X_train_encoded, y_train)
Out[27]: 0.8492893553644953
In [28]: reg.score(test_condition, y_test)
Out[28]: 0.8556678891117264
In [29]:
          train_preds = reg.predict(X_train_encoded)
          test preds = reg.predict(test condition)
In [30]: | np.sqrt(mse(y_train, train_preds))
Out[30]: 109665.08353490481
In [31]: mse(y_test, test_preds, squared=False)
Out[31]: 109613.52076837461
        Making a new copy again to freely change
In [32]: df_3 = df_filtered.copy()
In [33]: reg_3 = LinearRegression()
          y = df 3['price']
          X = df_3.drop(['id', 'price',], axis = 1)
In [34]:
          X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42)
        encoder = OneHotEncoder(sparse=False)
In [35]:
```

```
encoder.fit(X train[['view', 'grade', 'zipcode']])
          transformed_train = encoder.transform(X_train[['view', 'grade', 'zipcode']])
          transformed_train = pd.DataFrame(transformed_train, columns = encoder.get_featur
          X_train_encoded = pd.concat([X_train.drop(['view', 'grade', 'zipcode'], axis = 1
          test_condition = encoder.transform(X_test[['view', 'grade', 'zipcode']])
          test_condition = pd.DataFrame(test_condition, columns=encoder.get_feature_names(
          test_condition = pd.concat([X_test.drop(['view', 'grade', 'zipcode'], axis = 1),
In [36]:
         reg.fit(X_train_encoded, y_train)
          reg.score(X_train_encoded, y_train)
Out[36]: 0.8492893553644953
In [37]:
          reg.score(test_condition, y_test)
Out[37]: 0.8556678891117264
          train_preds = reg.predict(X_train_encoded)
In [38]:
          test_preds = reg.predict(test_condition)
In [39]:
         np.sqrt(mse(y_train, train_preds))
Out[39]: 109665.08353490481
In [40]: | mse(y_test, test_preds, squared=False)
Out[40]: 109613.52076837461
        Making an new graph to visulize the difference after outliers removed
In [41]:
         fig, ax = plt.subplots(figsize=(15,8))
          plt.ticklabel format(style="plain")
          sns.boxplot(x=df 3['price'], width = .3, color = '#34eb95');
          plt.suptitle("After Outliers Taken Out", fontsize=25)
          plt.xlabel("Price in U.S. Dollars", fontsize=14)
```

plt.savefig('afteroutliers.png')

After Outliers Taken Out

Finding percentage null values dropped

```
percent_yearrevn_dropped = 3824/21597
In [42]:
          percent yearrevn dropped
Out[42]: 0.17706162892994398
          percent_wat_dropped = 2376/21597
In [43]:
          percent_wat_dropped
Out[43]: 0.11001527989998611
          percent_view_dropped = 63/21597
In [44]:
          percent_view_dropped
Out[44]: 0.0029170718155299346
          df.condition.sort values(ascending=False)
In [45]:
          #checking the values on condition
Out[45]: 2363
                  5
                  5
         12533
         6390
                  5
         6397
                  5
         2374
                  5
         3199
         1440
                  1
         16879
                  1
         2221
         Name: condition, Length: 15427, dtype: int64
```

Baseline encoder

```
In [46]: encoder = OneHotEncoder(sparse=False)
    encoder.fit(X_train[['view', 'grade']])
    transformed_train = encoder.transform(X_train[['view', 'grade']])
    transformed_train = pd.DataFrame(transformed_train, columns = encoder.get_featur
    X_train_encoded = pd.concat([X_train.drop(['view', 'grade'], axis = 1), transfor
    test_condition = encoder.transform(X_test[['view', 'grade']])
    test_condition = pd.DataFrame(test_condition, columns=encoder.get_feature_names(
    test_condition = pd.concat([X_test.drop(['view', 'grade',], axis = 1), test_cond
```

In [47]: X_train_encoded

Out[47]:		date	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	condition	sqft_abov
	19551	2014	4	1.50	1200	10890	1.0	0.0	5	120
	5967	2015	4	2.50	1700	6675	2.0	0.0	3	170
	10100	2014	3	2.50	2090	6000	1.5	0.0	4	209
	18819	2015	4	2.50	2130	9013	2.0	0.0	3	213
	17635	2014	4	3.25	2420	4000	1.5	0.0	5	187
	•••		•••			•••	•••			
	7423	2014	4	2.50	1840	4011	2.0	0.0	3	184
	19158	2015	3	1.00	970	11963	1.0	0.0	4	97
	7701	2014	2	2.00	1340	5350	1.5	0.0	3	134
	1206	2014	4	1.75	2490	7834	1.0	0.0	4	124
	10368	2014	4	2.50	2030	4080	1.5	0.0	4	173

11336 rows × 31 columns

Repeating the same linear regression steps from above

```
reg.fit(X_train_encoded, y_train)
In [48]:
Out[48]: LinearRegression()
In [49]:
         reg.score(X_train_encoded, y_train)
Out[49]: 0.7215520260287462
In [50]:
          reg.score(test_condition, y_test)
Out[50]: 0.7230463137082672
          train_preds = reg.predict(X_train_encoded)
In [51]:
          test_preds = reg.predict(test_condition)
In [52]:
         np.sqrt(mse(y_train, train_preds))
Out[52]: 149062.51388400592
In [53]:
         mse(y_test, test_preds, squared=False)
```

Making a model to show our baseline model prediction

```
In [54]: # plot test_preds against y_test
    # plot x=y line to show "perfect prediction"
    x = y_test
    y = test_preds
    plt.scatter(x,y)
    plt.title('Baseline Model Prediction')
    plt.plot(y_test,y_test, color= 'red')
    plt.savefig('baselinemodelprediction.png');
```


Checking list of coefs

```
In [55]:
          list(zip(df.columns, reg.coef_))
Out[55]: [('id', 24030.86830464815),
          ('date', -14774.944947733886),
           ('price', 34415.09035869146),
           ('bedrooms', 66.7154081988128),
           ('bathrooms', 0.21618126139765367),
           ('sqft_living', 28312.09396977034),
           ('sqft_lot', 260139.2322417686),
           ('floors', 31161.99417888569),
           ('waterfront', 32.8710627160088),
           ('view', 33.844317375236244),
           ('condition', -1935.1438105689351),
           ('grade', 24.4783770101934),
           ('sqft above', -470.9203008998771),
           ('sqft basement', 597024.3327785113),
           ('yr_built', -162826.57471104764),
           ('yr_renovated', 36.46840175574007),
           ('zipcode', -0.20544624317594387),
           ('lat', -98548.97068235012),
           ('long', -4873.421737259261),
           ('sqft living15', -19846.9817484334),
           ('sqft lot15', 48623.88902972086)]
```

Creating a visual to show price before outliers taken out

```
In [56]: fig, ax = plt.subplots(figsize=(12,6))
    plt.ticklabel_format(style="plain")
    sns.boxplot(x=df_2.price, width = .3, color = '#34eb95');
```

```
plt.suptitle("Price Column Before Outliers Taken Out", fontsize=20)
plt.xlabel("Prices", fontsize=14)
```

Out[56]: Text(0.5, 0, 'Prices')

Price Column Before Outliers Taken Out

Removing outleirs

```
3 604000.0

4 510000.0

5 1230000.0

8 229500.0

...

21591 475000.0

21592 360000.0

21593 400000.0

21594 402101.0

21596 325000.0

Name: price, Length: 15151, dtype: float64
```

Making boxplot to visulize price after outleirs dropped

```
In [58]: fig, ax = plt.subplots(figsize=(15,8))
    plt.ticklabel_format(style="plain")
    sns.boxplot(x=new_df2_price, width = .3, color = '#34eb95');
    plt.suptitle("After Outliers Taken Out", fontsize=20)
    plt.xlabel("Prices", fontsize=14)
    plt.savefig('afteroutlierstakenout.png')
```

After Outliers Taken Out

Katies model prediction

```
In [59]: x = y_test
y = test_preds
plt.scatter(x,y)
plt.title("Katie's Model Prediction")
plt.plot(y_test,y_test, color= 'red');
plt.savefig('katiesmodelprediction.png')
```


Making a copy of the data frame and repeating the same steps from above on the linear regression

Price outliers dropped in this model

```
In [60]: df2_copy = df_2[filtered_entries].copy()
```

```
In [61]: | reg_without_outliers = LinearRegression()
          y = new_df2_price
          X = df2_copy.drop(['id', 'price'], axis = 1)
In [62]:
         X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42)
In [63]:
          encoder = OneHotEncoder(sparse=False)
          encoder.fit(X_train[['view', 'grade', 'zipcode']])
          transformed_train = encoder.transform(X_train[['view', 'grade', 'zipcode']])
          transformed_train = pd.DataFrame(transformed_train, columns = encoder.get_featur
          X_train_encoded = pd.concat([X_train.drop(['view', 'grade', 'zipcode'], axis = 1
          test_condition = encoder.transform(X_test[['view', 'grade', 'zipcode']])
          test_condition = pd.DataFrame(test_condition, columns=encoder.get_feature_names(
          test_condition = pd.concat([X_test.drop(['view', 'grade', 'zipcode'], axis = 1),
In [64]:
         reg_without_outliers.fit(X_train,y_train)
Out[64]: LinearRegression()
In [65]:
          reg_without_outliers.fit(X_train_encoded, y_train)
Out[65]: LinearRegression()
In [66]:
          reg_without_outliers.score(X_train_encoded, y_train)
Out[66]: 0.8477290572835575
In [67]:
          reg_without_outliers.score(test_condition, y_test)
Out[67]: 0.8473790368289617
In [68]:
          train preds = reg without outliers.predict(X train encoded)
          test_preds = reg_without_outliers.predict(test_condition)
        np.sqrt(mse(y_train, train_preds))
In [69]:
Out[69]: 101155.68187067893
         mse(y_test, test_preds, squared=False)
In [70]:
Out[70]: 105763.01912913867
        Joe's model prediction
In [71]:
          x = y_test
          y = test_preds
          plt.scatter(x,y)
          plt.title("Joe's Model Prediction")
          plt.plot(y_test,y_test, color= 'red')
          plt.savefig('joesmodelprediction.png');
```


Making another dataframe copy and repeating the same steps from above with new data Dropped bedrooms in this linear regression

```
In [72]:
        df3 = df2\_copy
In [73]:
          linreg = LinearRegression()
In [74]:
          y = new_df2_price
          X = df3.drop(['id', 'price', 'bedrooms'], axis = 1)
In [75]:
          X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42)
In [76]:
          encoder = OneHotEncoder(sparse=False)
          encoder.fit(X_train[['view', 'grade', 'zipcode']])
          transformed_train = encoder.transform(X_train[['view', 'grade', 'zipcode']])
          transformed_train = pd.DataFrame(transformed_train, columns = encoder.get_featur
          X_train_encoded = pd.concat([X_train.drop(['view', 'grade', 'zipcode'], axis = 1
          test_condition = encoder.transform(X_test[['view', 'grade', 'zipcode']])
          test_condition = pd.DataFrame(test_condition, columns=encoder.get_feature_names(
          test condition = pd.concat([X test.drop(['view', 'grade', 'zipcode'], axis = 1),
In [77]:
          linreg.fit(X_train,y_train)
Out[77]: LinearRegression()
          linreg.fit(X_train_encoded, y_train)
In [78]:
Out[78]: LinearRegression()
In [79]:
          linreg.score(X_train_encoded, y_train)
Out[79]: 0.8475885629639406
          linreg.score(test_condition, y_test)
In [80]:
Out[80]: 0.8470426150969363
```

```
In [81]: | train_preds = linreg.predict(X_train_encoded)
          test_preds = linreg.predict(test_condition)
In [82]: | np.sqrt(mse(y_train, train_preds))
Out[82]: 101202.3372659663
In [83]: | mse(y_test, test_preds, squared=False)
Out[83]: 105879.5214469478
         Making another dataframe copy and repeating the same steps from above with new data
         Year renovated was dropped this time
In [84]: df4 = df3.copy()
In [85]:
         lrm = LinearRegression()
In [86]:
          y = new_df2_price
          X = df4.drop(['id', 'price', 'yr_renovated'], axis = 1)
In [87]:
          X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42)
In [88]:
          encoder = OneHotEncoder(sparse=False)
          encoder.fit(X_train[['view', 'grade', 'zipcode']])
          transformed_train = encoder.transform(X_train[['view', 'grade', 'zipcode']])
          transformed_train = pd.DataFrame(transformed_train, columns = encoder.get_featur
          X_train_encoded = pd.concat([X_train.drop(['view', 'grade', 'zipcode'], axis = 1
test_condition = encoder.transform(X_test[['view', 'grade', 'zipcode']])
          test_condition = pd.DataFrame(test_condition, columns=encoder.get_feature_names(
          test_condition = pd.concat([X_test.drop(['view', 'grade', 'zipcode'], axis = 1),
In [89]:
         lrm.fit(X_train,y_train)
Out[89]: LinearRegression()
          lrm.fit(X train encoded, y train)
In [90]:
Out[90]: LinearRegression()
          lrm.score(test_condition, y_test)
In [91]:
Out[91]: 0.8453564587473171
In [92]:
          train_preds = lrm.predict(X_train_encoded)
          test preds = lrm.predict(test condition)
In [93]: | np.sqrt(mse(y_train, train_preds))
Out[93]: 101437.39012471554
In [94]:
         mse(y_test, test_preds, squared=False)
Out[94]: 106461.51396447132
```

Making another dataframe copy and repeating the same steps from above with new data Bathrooms was endcoded this time

```
In [95]: df5 = df4.copy()
In [96]: df5 = df5.drop(labels=8537)
In [97]:
          lrm = LinearRegression()
In [98]: |
          y = df5['price']
          X = df5.drop(['id', 'price'], axis = 1)
         X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42)
In [99]:
In [100...
          encoding_list = ['view', 'grade', 'zipcode', 'bathrooms']
In [101...
          encoder = OneHotEncoder(sparse=False)
          encoder.fit(X_train[encoding_list])
          transformed_train = encoder.transform(X_train[encoding_list])
          transformed_train = pd.DataFrame(transformed_train, columns = encoder.get_featur
          X_train_encoded = pd.concat([X_train.drop(encoding_list, axis = 1), transformed_
          test_condition = encoder.transform(X_test[encoding_list])
          test_condition = pd.DataFrame(test_condition, columns=encoder.get_feature_names(
          test condition = pd.concat([X test.drop(encoding list, axis = 1), test condition
In [102... | lrm.fit(X_train,y_train)
Out[102... LinearRegression()
In [103... | lrm.fit(X_train_encoded, y_train)
Out[103... LinearRegression()
         lrm.score(X_train_encoded, y_train)
In [104...
Out[104... 0.8503445737189369
         lrm.score(test condition, y test)
In [105...
Out[105... 0.846709308151527
In [106... | train preds = lrm.predict(X train encoded)
          test preds = lrm.predict(test condition)
In [107... | np.sqrt(mse(y_train, train_preds))
Out[107... 101415.64357808855
In [108... | mse(y test, test preds, squared=False)
Out[108... 102664.71233046142
```

Visulizing our advanced model prediction

```
In [109... x = y_test
    y = test_preds
    plt.scatter(x,y)
    plt.title('Advanced Model Prediction')
    plt.plot(y_test,y_test, color= 'red')
    plt.savefig('advancedmodelprediction.png');
```


Read in data again for Colette's stuff

```
In [110... kcdf = pd.read_csv("../data/kc_house_data.csv")
   kcdf
```

Out[110	id		date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wa
	0	7129300520	10/13/2014	/13/2014 221900.0		1.00	1180	5650	1.0	
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	
	•••									
	21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	
	21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	
	21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	
	21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	
	21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	

21597 rows × 21 columns

We found out what the correlation is between each of the feature variables and price, then sorted the correlations from lowest to highest value

```
In [111... corr = kcdf.corr()
```

```
Out[111... zipcode -0.053402
                         -0.016772
         id
                         0.022036
0.036056
         long
         condition yr_built
                          0.053953
         yr_built
sqft_lot15
                          0.082845
          sqft_lot
                          0.089876
          yr_renovated 0.129599
          floors
                          0.256804
         waterfront 0.276295
                          0.306692
          lat
                         0.308787
          bedrooms
          view
                          0.395734
         view bathrooms 0.525906 sqft_living15 0.585241 sqft_above 0.667951
          grade
                           0.667951
          sqft_living 0.701917
                          1.000000
          price
          Name: price, dtype: float64
```

corr["price"].sort_values()

We decided to drop the columns that do not have a notable correlation with price. Below, we redefine the dataframe to only include the columns we want to keep.

In [112	new_df new_df	= kcdf[['id	', 'pri	ce', 's	qft_livi	ng', 'grade	e', 'sqf	t_above',	'sqft	_livi	lng
Out[112		id	price	saft livir	na arade	saft above	saft livin	g15 bathro	oms v	view	be

2		id	price	sqft_living	grade	sqft_above	sqft_living15	bathrooms	view	be
	0	7129300520	221900.0	1180	7	1180	1340	1.00	0.0	
	1	6414100192	538000.0	2570	7	2170	1690	2.25	0.0	
	2	5631500400	180000.0	770	6	770	2720	1.00	0.0	
	3	2487200875	604000.0	1960	7	1050	1360	3.00	0.0	
	4	1954400510	510000.0	1680	8	1680	1800	2.00	0.0	
	•••		•••	•••			•••			
	21592	263000018	360000.0	1530	8	1530	1530	2.50	0.0	
	21593	6600060120	400000.0	2310	8	2310	1830	2.50	0.0	
	21594	1523300141	402101.0	1020	7	1020	1020	0.75	0.0	
	21595	291310100	400000.0	1600	8	1600	1410	2.50	0.0	
	21596	1523300157	325000.0	1020	7	1020	1020	0.75	0.0	

21597 rows × 11 columns

We made sure all nulls were dropped from the dataframe

```
In [113... new_df = new_df.dropna()
```

By subtracting squarefeet above ground from squarefeet of each house in general, we created a new column that would tell us the square footage of the basement of each house.

In [114	<pre>new_df = new_df.assign(sqft_basement = new_df['sqft_living'] - new_df['sqft_abov new_df</pre>											
Out[114		id	price	sqft_living	grade	sqft_above	sqft_living15	bathrooms	view be			
	1	6414100192	538000.0	2570	7	2170	1690	2.25	0.0			
	2	5631500400	180000.0	770	6	770	2720	1.00	0.0			
	3	2487200875	604000.0	1960	7	1050	1360	3.00	0.0			
	4	1954400510	510000.0	1680	8	1680	1800	2.00	0.0			
	5	7237550310	1230000.0	5420	11	3890	4760	4.50	0.0			
	•••	•••	•••	•••				•••	•••			
	21591	2997800021	475000.0	1310	8	1180	1330	2.50	0.0			
	21592	263000018	360000.0	1530	8	1530	1530	2.50	0.0			
	21593	6600060120	400000.0	2310	8	2310	1830	2.50	0.0			
	21594	1523300141	402101.0	1020	7	1020	1020	0.75	0.0			
	21596	1523300157	325000.0	1020	7	1020	1020	0.75	0.0			

19164 rows × 12 columns

However, we were more interested in determining whether or not each house had a basement at all. To figure this out, we turned each basement squarefootage into a boolean value and then created a new column out of these values. True means a house has a basement and False means a house has no basement.

```
In [115... basement = []
    for value in new_df["sqft_basement"]:
        if value == 0:
            basement.append("False")
        else:
            basement.append("True")

        new_df["basement_bool"] = basement
        new_df
```

Out[115		id	price	sqft_living	grade	sqft_above	sqft_living15	bathrooms	view	b€
	1	6414100192	538000.0	2570	7	2170	1690	2.25	0.0	
	2	5631500400	180000.0	770	6	770	2720	1.00	0.0	
	3	2487200875	604000.0	1960	7	1050	1360	3.00	0.0	
	4	1954400510	510000.0	1680	8	1680	1800	2.00	0.0	
	5	7237550310	1230000.0	5420	11	3890	4760	4.50	0.0	
	•••	•••		•••					•••	
	21591	2997800021	475000.0	1310	8	1180	1330	2.50	0.0	
	21592	263000018	360000.0	1530	8	1530	1530	2.50	0.0	
	21593	6600060120	400000.0	2310	8	2310	1830	2.50	0.0	

	id	price	sqft_living	grade	sqft_above	sqft_living15	bathrooms	view	b€
21594	1523300141	402101.0	1020	7	1020	1020	0.75	0.0	
21596	1523300157	325000.0	1020	7	1020	1020	0.75	0.0	

19164 rows × 13 columns

Because the relationship between a house having or not having a basement and house price is easier to understand than the relationship between basement squarefootage and house price, we deleted the old column sqft_basement

In [116... del new_df['sqft_basement'] new_df Out[116... id price sqft_living grade sqft_above sqft_living15 bathrooms view be 6414100192 538000.0 2570 7 2170 1690 2.25 0.0 **2** 5631500400 180000.0 770 6 770 0.0 2720 1.00 **3** 2487200875 604000.0 1960 7 1050 1360 3.00 0.0 1954400510 510000.0 1680 8 1680 1800 2.00 0.0 7237550310 1230000.0 5420 11 3890 4760 4.50 0.0 • • • • • • • • • • • • **21591** 2997800021 475000.0 1310 8 1180 1330 2.50 0.0 21592 263000018 360000.0 1530 8 1530 1530 2.50 0.0 **21593** 6600060120 400000.0 2310 8 2310 1830 2.50 0.0 **21594** 1523300141 402101.0 1020 7 1020 1020 0.75 0.0 **21596** 1523300157 325000.0 1020 7 1020 1020 0.75 0.0

19164 rows × 12 columns

Boolean values cannot be included in a heatmap, so we dropped the basement column for our heatmap

In [117	<pre>no_bool_df = new_df.drop('basement_bool', axis='columns') no_bool_df</pre>										
Out[117		id	price	sqft_living	grade	sqft_above	sqft_living15	bathrooms	view	b€	
	1	6414100192	538000.0	2570	7	2170	1690	2.25	0.0		
	2	5631500400	180000.0	770	6	770	2720	1.00	0.0		
	3	2487200875	604000.0	1960	7	1050	1360	3.00	0.0		
	4	1954400510	510000.0	1680	8	1680	1800	2.00	0.0		
	5	7237550310	1230000.0	5420	11	3890	4760	4.50	0.0		
	•••								•••		
	21591	2997800021	475000.0	1310	8	1180	1330	2.50	0.0		

	id	price	sqft_living	grade	sqft_above	sqft_living15	bathrooms	view	b€
21592	263000018	360000.0	1530	8	1530	1530	2.50	0.0	
21593	6600060120	400000.0	2310	8	2310	1830	2.50	0.0	
21594	1523300141	402101.0	1020	7	1020	1020	0.75	0.0	
21596	1523300157	325000.0	1020	7	1020	1020	0.75	0.0	

19164 rows × 11 columns

Then, we made the heatmap

We made a visualization of the correlation between price and sqft_living because sqft_living is the variable most strongly correlated with price

```
In [119...
          pricelow = heatmap_df["price"].quantile(0.01)
          pricehigh = heatmap_df["price"].quantile(0.99)
          pricefiltered = heatmap_df[(heatmap_df["price"] < pricehigh) & (heatmap_df["pric</pre>
          livinglow = pricefiltered["sqft_living"].quantile(0.01)
          livinghigh = pricefiltered["sqft_living"].quantile(0.99)
          livingfiltered = pricefiltered[(pricefiltered["sqft_living"] < livinghigh) & (pr</pre>
In [120...
          s = livingfiltered["sqft_living"]
          p = livingfiltered["price"]
          fig = plt.figure(figsize=(5, 3))
          ax = fig.add_axes([0,0,1,1])
          ax.scatter(s,p, color = "purple")
          ax.set title("How Footage of Home Affects Price")
          ax.set_xlabel("Footage of Home")
          ax.set_ylabel("Price in Millions")
          #plt.tight_layout()
```

plt.savefig('how_footage_of_home_affects_price.png', bbox_inches='tight');

In []: