Rev. Saúde públ., S. Paulo 14:265-99. 1980

BICGEOGRAFIA, ORIGEM E DISTRIBUIÇÃO DA DOMICILIAÇÃO DE TRIATOMÍNEOS NO BRASIL *

Oswaldo Paulo Forattini **

RSPUB9/509

FORATTINI, O. P. Biogeografia, origem e distribuição da domiciliação de triatomineos no Brasil. Nev. Saúde públ., S. Paulo, 14:265-99, 1980.

RESUMO: Considerando a distribuição a'ual da domiciliação triatomínea no Brasil, pôde-se verificar sua associação com a referente aos espaços abertos. Estes podem ser considerados como naturais e artificiais. Os primeiros esião essencialmente situados nos dominios paisagisticos das caatingas, dos cerrados, totalmente incluidos em território brasileiro, e das pradarias mistas subtropicais pertencentes a paisa em que se estende além desses limites. Os outros são os originados da ação antrópica resultando em expansão da paisagem aberta principalmente em virtude da devastação da cobertura florestal do dominio tropical ailântico. Embora tentativamenie, procurou-se aplicar o modelo de refúgios paleoecológicos e da existência de centros de endemismo às quatro espécies de domiciliação epidemiologicamen.e significante. O Triatoma sordida, Triatoma brasiliensis e Triatoma pseudomaculata parece ter seus centios de endemismo nos espaços abertos dos cerrados e das caatingas, enquanto o Panstrongylus megistus teria tido sua origem nas florestas do ambiente tropical atlântico. Quan.o ao Triatoma infestans, sua área endêmica estaria localizada em território boliviano, de onde se dispersou e continua se dispersando pela ação do homem. A invasão domiciliar, ao que tudo indica, obedece a mecanismo oportunisla propiciado por vários estímulos de abrigo e alimentação. Uma vez instalada, a domiciliação permite não apenas a sorrevivência, mas também a dispersao da espécie. Esses conceitos devem ser tevados em conta nas campanhas de controle, uma vez que a probabilidade de sucesso aumenia com essa especialização do triaiomíneo. A continuidade da ação antrópica sobre o ambiente, atualmente intensificada na região do domínio equalorial amazônico, resultará na expansão dos espaços abertos. Assim sendo, seja a custa de espécies locais seja a custa de espécies introduzidas, poderá ocorrer a domiciliação triatominea, como problema de saúde pública, em região onde ainda não foi assinalada.

UNITERMOS: Tripanossomiase americana. Triatomineos, domiciliação. Triatoma infestans. Triatoma sordida. Triatoma brasiliensis. Triatoma pseudomaculata. Panstrongylus megistus. Triatomineos, dispersão. Triatomineos, controle e vigilância.

^{*} Realizado com auxílio financeiro do Centro Brasileiro de Estudos Entomológicos em Epilemiologia — CENTEP, e do Conselho Nacional de Desenvolvimento Científico e Tecnológico — CNPq (Processo PDE 10-1 C1).

^{**} Do Departamento de Epidemiologia da Faculdade de Saúle Pública da USP — Av. Dr. Arnaldo, 715 — 01255 — São Paulo, SP — Brasil.

INTRODUÇÃO

Constitui ponto pacífico que os estudos biogeográficos atuais devam, como essencial, ser orientados para o aspecto dinâmico. Não traria grande utilidade, o descrever qualquer quadro de distribuição como se o ambiente fosse totalmente estático e os dados obtidos imutáveis. Na verdade, torna-se imprescindível que sejam levadas na devida conta as mudanças naturais e artificiais, tanto no tempo como no espaço. Aquelas obedecendo a leis, ainda não totalmente conhecidas mas cuja complexidade se revela à medida que vão sendo desvendadas, e estas devidas à ação cada vez mais intensa do homem sobre a Natureza. Assim sendo, no presente trabalho adotouse, como fundamental, fornecer idéia dinâmica da distribuição do fenômeno da domiciliação triatomínea no Brasil. Nesse sentido procurou-se, de início, considerar as regiões ecológicas brasileiras, descrevendo suas características fundamentais. Tal conduta permitirá interpretar a distribuição observada, analisando-a à luz desses elementos. Com essas informações será possível estimar a influência das modificações ambientais de origem antrópica, objetivando melhor compreensão da situação atual e da eficácia das medidas de controle.

DOMICILIAÇÃO TRIATOMINEA ATUAL NO BRASIL

De maneira geral, no estado atual dos conhecimentos, a infestação de domicílios por triatomíneos distribui-se por todo o território brasileiro, exceção feita da parte amazônica. Assim sendo, e se for seguido o critério da divisão regional do Brasil, a grosso modo e, pelo menos no presente estágio de seu desenvolvimento populacional, exclui-se a região norte na distribuição da transmissão domiciliada da tripanossomíase americana. Todavia, em relação às outras quatro, embora possa ser observada genericamente, a presença dessa veiculação deixa de ser registrada em certas áreas. E isso como decorrência, seja de fatores

naturais próprios, seja da atuação de outros, artificiais, que ali se desenvolveram. Situa-se no primeiro caso a área ocupada pelo denominado Sistema da Serra do Mar. na parte em que percorre as regiões sudeste e sul. Inclui-se, no segundo, a extensão do planalto paulista onde, após campanha sistemática de controle, foi eliminada a domiciliação triatomínea encontrando-se, na atualidade, em plena fase de vigilância epidemiológica. Pode-se também incluir apreciável região que engloba a parte nordeste do Rio Grande do Sul, todo o território de Santa Catarina e o sudeste do Paraná. Além dessas, é possível acrescentar a parte norte de São Paulo, correspondente ao vale do Paraíba, e faixa hipotética que, em direção setentrional, inclui o leste de Minas Gerais, os territórios do Rio de Janeiro e Espírito Santo, e a porção sudeste Em tal região, a domiciliação da Bahia. de triatomíneos, por razões ainda não bem definidas, tem sido assinalada de maneira esporádica. Essa feição, aliada ao fato de ser zona de população bastante antiga, não permite que se possa encará-la como área de atual ocorrência endêmica do fenômeno. Contudo, esse aspecto poderá vir a sofrer sensíveis modificações, na dependência da realização de estudos mais detalhados.

Diante desse quadro geral, delineia-se geograficamente ampla faixa que percorre o território brasileiro de nordeste a sudeste e oeste, onde potencialmente pode ser encontrada a infestação domiciliar por triatomíneos. E isso, seja com o aspecto continuado e frequente, seja com a feição restrita a focos isolados. A linha de demarcação ocidental dessa região corresponde à da amazônica, representada pela sua vegetação florestal, ou seja, a hiléia, cuja delimitação foi estudada em várias oportunidades (Soares 65 1953; Ducke e Black 25 1953; Hueck 45 1972; Hueck e Seibert 46 1972). A nordeste e a leste, os limites são formados, respectivamente, pelo contorno do litoral atlântico e pelo do Sistema da Serra do Mar, em sua parte meridional, além do referente ao território paulista e à área meridional e oriental supradescritas (Fig. 1).

Fig. 1 — Delimitação geral da área atual e potencial de domiciliação de Triatominae no Brasil.

- LA Limite aproximado da região amazônica (hiléia).
- LM Limite aproximado da porção meridional do Sistema da Serra do Mar (floresta perenifólia higrófila costeira).
- ${
 m LN}$ Limite da área onde a domiciliação não ocorre ou foi observada de maneira ocasional.
- LP Limite do território do Estado de São Paulo.

Dessa maneira, pode-se descrever o limite ocidental da região como sendo o correspondente ao percurso de linha imaginária estendendo-se de norte a sudeste. alguns, inicia-se no Estado do Maranhão a partir de São Luis e percorrendo o rio Mearim a montante. Para outros, a partir do limite com o território paraense representado pelo rio Gurupi, dirigindo-se para o rio Turiacu, alcançando o curso médio do Pindaré e chegando ao vale Mearim até a altura aproximada correspondente ao paralelo de 5º de sul (Fialho 28 1953; 1953; Galvão 42 1955; Rizzini e Pinto 60 Inflete-se a seguir em direção ao rio Tocantins, atingindo-o na altura da cidade de Imperatriz. Entrando pelo território do Estado de Goiás, estende-se unindo os núcleos de Itaguatins e Araguatins e continua seguindo, a montante, o vale do rio Araguaia até aproximadamente o paralelo de 7º. Daí, com direção meridional, pode-se considerar que tal linha limítrofe segue o curso desse rio, afastando-se sensivelmente em direção oeste após ultrapassar a cidade de Conceição do Araguaia, de maneira irregular, e infletindo-se para oeste a partir da ilha do Bananal, quando irregularidade da presença hileana torna-se ainda mais acentuada. Dessa forma, pode-se considerar toda a área sudeste do Estado do Pará como de franca transição entre as vegetações, amazônica, nordestina e centrobrasileira, incluindo a zona dos divisores das bacias dos rios Xingu e Araguaja. Entrando em território do Estado de Mato Grosso, a mencionada delimitação percorre a porção setentrional, avançando para o sul e englobando os vales dos numerosos rios afluentes do Amazonas que se originam do Planalto Central. Nesta região, o percurso dessa demarcação torna-se bastante irregular pois a floresta amazônica prolonga-se em direção meridional, de maneira "digitiforme", ou seja, restringindo-se a acompanhar esses cursos de água. Consequentemente, pode-se encontrar vegetação de campos cerrados nas áreas que separam esses

rios. Essa alternância de matas galerias e de campos cerrados constitui assim feição paisagistica típica dessa região limítrofe, de maneira que se pode, a grosso modo, estabelecer o paralelo de 12º de latitude sul, como sendo o margem meridional da penetração hileana no norte matogrossense. Finalmente, prosseguindo em direção oeste, a linha demarcatória contorna o conjunto formado pela Chapada dos Parecís e Serra dos Pacaás Novos, adentrando pelo Território de Rondônia, Após contornar essas formações elevadas, passa a acompanhar o vale do rio Guaporé de onde, ainda em direção oeste atravessa a fronteira do Brasil e penetra em território boliviano. Claro está que essa delimitação teórica, como foi dito, não corresponde a demarcação rígida, mas sim a faixa, de extensão variável, ao longo do qual se dá a interpenetração do sistema amazônico com os do nordeste e do centro-brasileiro. Aspecto esse aliás, desde há muito assinalado, mormente na região norte do Estado de Mato Grosso (Hoehne 44, 1923; Hueck e Seibert 46, 1972).

Quanto à delimitação oriental, já se mencionou que é representada pela porção meridional do Sistema da Serra do Mar, pelo contorno do território do Estado de São Paulo e por linha hipotética que desde o sudeste da Bahia percorre o leste de Minas Gerais e, ultrapassando São Paulo, delimita a ocidente, a porção sudoeste paranaense, o território catarinense e o nordeste sul-rio-grandense. Em relação à primeira, o aspecto que mais a caracteriza é constituído pela presença da floresta perenifólia higrófila costeira. Esta estendese desde a região situada entre Campos e proximidades de Cabo Frio, no Estado do Rio de Janeiro, até as vizinhanças de Osório no Estado do Rio Grande do Sul, onde a Serra Geral, próxima a Torres, parece constituir-se em barreira à sua expansão. Em outras palavras, iniciando-se ao sul da área de menor pluviosidade que a separa da parte setentrional do Sistema, essa floresta percorre a faixa oriental do mencionado Estado e dos de São Paulo. Paraná e Santa Catarina, incluindo as

vertentes dos cursos de água que desaguam diretamente no Oceano Atlântico (Hueck 45 1972; Alonso 6 1977). Ao longo desse percurso, a linha limítrofe acompanha as condições bastante variáveis de relevo, representadas pelo conjunto montanhoso da Serra do Mar e de outros a ele associados. Como se considerou em relação aos limites da região amazônica, esta demarcação não é rígida mas sim sujeita a aspectos de transição. Contudo, a feição montanhosa do relevo empresta-lhe individualidade paisagística bastante marcada.

ASPECTOS BIOGEOGRÁFICOS

Estabelecidas, a grosso modo, as delimitações ocidental e oriental, pode-se considerar apreciável extensão do território brasileiro, como é representada na Fig. 1. grande região, onde tem-se ou pode-se verificar a ocorrência de domiciliação triatomínea, observa-se a existência de características de relevo, de clima e de vegetação que permitem subdividi-la em áreas diversas as quais, por sua vez estão incluídas na divisão biogeográfica global do Continente Sul-americano. Para tanto, têm-se levado em conta vários aspectos, tanto de natureza biológica como física. Dentre os primeiros ressaltam os tipos de vegetação, traduzindo a influência de fatores edáficos e climáticos. Têm sido também consideradas características geomorfológicas e paleogeográficas, como tentativa de explicação causal dos aspectos passados e presentes da distribuição. Finalmente, em relação a estes fez-se sentir, e cada vez mais, a necessidade de ser dado destaque à ação antrópica, responsável por acentuadas alterações ambientais, especialmente no que concerne à destruição e substituição da cobertura vegetal primitiva.

A demarcação biogeográfica da América do Sul, baseada em características de vegetação, foi proposta por vários autores que, com essa orientação, reconheceram diversas regiões, para algumas classificadas como

domínios e provincias (Weber 77 1969; Hueck 45 1972: Hueck e Seibert 46 1972: Cabrera e Willink 23 1973). De maneira geral, em tais sistemas procurou-se associar o tipo de cobertura vegetal com as condicões dominantes do clima. Nesse particular, o mapa de Hueck e Seibert 46 (1972) apresenta-se bastante detalhado, mostrando não apenas os grandes domínios de vegetação como as características dos enclaves e das zonas de transição. A Fig. 2 fornece idéia simplificada dessa distribuição. simplificação obedeceu a objetivo de representar, essencialmente, dois tipos fundamentais de ambientes, ou seja, o umbroso e o aberto que poderiam propiciar, respectivamente, o desenvolvimento de populações esciófilas e heliófilas. No primeiro tipo incluiram-se as formações vegetais florestais, englobando as perenifólias higrófilas, as subcaducifólias (incluindo as de pinheirais Araucaria) e as matas sulinas chilenopatagônicas (Araucaria e Nothofagus). Assim sendo, em tais áreas predomina o aspecto de terreno coberto por indivíduos arbóreos, mantendo o solo sombreado. Em contraposição, no segundo tipo ocorre, como feição principal, a correspondente à de extensões abertas. Nelas a vegetação predominante é formada por indivíduos de pequeno ou médio porte, de caráter xerofítico ou não, e também aquela onde os elementos herbáceos constituem o estrato contínuo que reveste a superfície do ter-Nestes aspectos o solo encontra-se portanto mais exposto à radiação solar. Desse modo, incluem-se aqui as formações savanoides ou campestres, os cerrados, as caatingas e matas secas, os palmeirais (incluindo os de Orbignya), além dos ambientes desérticos ou semidesérticos. Esse critério de divisão geográfica em tipos gerais de ambiente, segue a proposição de De Lattin (apud Udvardy 68 1969) utilizada na separação da fauna holártica em três grandes grupos, e posteriormente modificada por Müller 55,56 (1972, 1973) para a região neotropical. Este último autor considerou o que ele denomina de ambientes arbóreo,

Fig. 2 — Distribuição geral dos ambientes umbrosos (UB) e abertos (AB) na América do Sul, de acordo com a predominância das coberturas florestais. Adaptação simplificada dos dados de Hueck 45 (1972) e do mapa de Hueck e Seibert 46 (1972). Não estão representados os enclaves menores e as características das zonas de transição, Ambientes umbrosos (UB):

- A florestas higrófilas do Pacífico e da região das Caraíbas, juntamente com as da Corlilheira dos Andes setentrional;
 B floresta perenifólia higrófila hileana amazônica (hiléia);
 C floresta subcaducifólia tropical, incluindo os pinheirais (Araucaria) e as florestas perenifólias higrófilas costeiras da vertente atlântica (Sistema da Serra do Mar);
 D florestas sulinas chileno-patagônicas, incluindo formação higrófila valdiviana e as de Araucaria e Nothofagus.
 Ambientes abertos (AB).
- 1 matas secas da região das Caraíbas; 2 pradarias da região dos "lhanos" colombianos e venezuelanos; 3 regiões andinas da "puna" e das altas montanhas incluindo as áreas desérticas e subdesérticas da vertente pacífica; 4 caatingas; 5 cerrados; 6 complexo do pantanal; 7 chaco; 8 pampas; 9 pradarias e semidesertos patagônicos.

não florestal e oreal no primeiro incluindo exclusivamente as florestas pluviais, no segundo as demais coberturas vegetais, e destinando o terceiro às regiões andinas altas, ou seja, as que se estendem acima dos limites arbóreos. Embora existam evidências que possam sugerir relacionamentos faunísticos justificativos dessa classificação, é de se considerar a divisão geral em ambientes, umbrosos e abertos, descrita linhas atrás, como a melhor atendendo ao objetivo de focalizar a influência da ação antrópica.

Diante desse quadro amplo, têm sido feitas tentativas de delimitação dos espaços naturais sul-americanos. Nesse sentido, Ab'Sáber 1 (1977) procurou, como primeira aproximação, situar os grandes domínios morfoclimáticos. Para tanto, aliou aos elementos climático-geomorfológicos, critérios fitogeográficos e ecológicos. Sem preocupar-se com o detalhamento dos enclaves e das faixas de transição, esse autor concentrou sua atenção em fixar e delimitar áreas nucleares, assim entendidas como as correspondendo a regiões onde aquelas condições fisio e biogeográficas se apresentam com extensão e homogeneidade. Dessa maneira, discriminou conjuntos espaciais distribuídos, em termos de modelos paisagísticos regionais, de acordo com três esquemas fundamentais. Um deles correspondendo às paisagens dispostas nas grandes áreas nucleares dos planaltos intertropicais do Brasil, Guianas e parte da Venezuela, e constituindo a área Guianense--Brasileira. Quanto aos demais, um inclui os vários aspectos transicionais e os domínios meridionais, a partir dos limites das planícies pampianas, e formando assim a área Chaco-Monte-Patagônica. Finalmente, o terceiro engloba a multiplicidade paisagística das montanhas e altiplanos andinos, distribuída de norte a sul e submetida às influências da complexidade climatológica devida seja a fatores latitudinais seja a altitúdicos, e representando o área Andina (Figura 3). Claro está que, para as finalidades do presente trabalho, interessou a

focalização dos participantes do primeiro desses três esquemas. Alguns contidos, total ou parcialmente, no território brasileiro, outros a ele adjacentes. Assim sendo, são oito os domínios morfoclimáticos e paisagísticos da área Guianense-Brasileira e denominados, respectivamente, equatorial amazônico, tropical atlântico, dos cerrados, Roraima-Guianense, das caatingas, do Chaco Central, dos planaltos sul-brasileiros com araucárias, e das pradarias mistas sub-tropicais (Figura 4).

Na organização paisagistica brasileira, reconhecem-se atualmente seis desses grandes domínios, assim distribuídos (Ab'Sáber 1.5 1971):

- terras baixas florestadas da Amazônia, no domínio equatorial amazônico.
- 2 "mares de morros" florestados da fachada atlântica, no domínio tropical atlântico.
- 3 chapadões recobertos por cerrados e penetrados por florestas-galerias, no domínio dos cerrados.
- 4 depressões interplanálticas semi-áridas do nordeste, no domínio das caatingas.
- 5 planaltos de araucárias sul-brasileiros.
- 6 pradarias do sudeste do Rio Grande do Sul, no domínio das pradarias mistas sub-tropicais.

Os cinco primeiros encerram áreas nucleares, ou seja, áreas típicas e contínuas, enquanto o último pode ser considerado como parte marginal de outra, englobando terras uruguaias e argentinas.

Diante desse contexto geral, pode-se considerar a subdivisão ambiental em termos de terrenos cobertos e descobertos, ou seja, correspondentes a meios umbrosos e abertos. No Brasil isso implica incluir dentre aqueles, o primeiro, o segundo e o quinto dos domínios paisagísticos supramencionados, e dentre os outros, os três restantes. Apreciando-se pois, a área geral de ocorrência da domiciliação triatomínea brasileira, representada na Fig. 1, pode-se notar

Fig. 3 — Agrupamentos de modelos paisagísticos regionais da América do Sul (segundo Ab'Sáber 1, 1977, simplificado).

A — Area Guianense-Brasileira.

B — Area Chaco-Monte-Patagônica.

C — Area Andina.

Fig. 4 — Domínios morfoclimáticos e paisagísticos da área Guianense-Brasileira (segundo Ab'Sáber 1, 1977 simplificado).

- 1 equatorial amazônica.
- 2 tropical atlântico.
- 3 dos cerrados.
- 4 Roraima-Guianense.
- 5 das caatingas.
- 6 do Chaco Central.
- 7 dos planaltos sul-brasileiros com araucárias.
- 8 das pradarias mistas subtropicais.

concordância com a dos domínios paisagísticos correspondentes a ambientes abertos, na Fig. 4. Todavia, ao se pretender abordar a hipótese dessa possível associação, torna-se imprescindível considerar os aspectos conseqüentes à influência de fatores naturais e artificiais ou antrópicos. Em outras palavras, trata-se de caracterizar as áreas abertas na tentativa de destacar as situações resultantes de dois sistemas diferentes de atuação, o da Natureza e o do homem.

Aspectos naturais — Como já foi mencionado, a identificação e a interpretação dos grandes espaços abertos sul-americanos, a exemplo dos outros, têm sido levadas a efeito mediante o relacionamento dessas paisagens com fatores climáticos, associados ou não a edáficos, além de paleogeográficos. Assim sendo, em linhas gerais, podem ser considerados três grandes aspectos (Figs. 2 e 5).

Na região setentrional destacam-se as áreas correspondentes aos domínios, Roraima-Guianense e intermontano subequatorial dos lhanos da Colômbia e Venezuela. Tais formações encontram interpretação nas influências de origem pedológica embora, no caso do primeiro, se atribua a ocorrência de florestas em algumas situações topográficas, às condições de clima (Beard 16, 1952).

Iniciando-se na face pacífica do Continente e percorrendo-o, aproximadamente. dos 3º aos 45º de latitude, identifica-se complexa faixa de terrenos áridos ou semi--áridos, estendendo-se diagonalmente para a porção meridional da América do Sul. Essa travessia, englobando a Cordilheira dos Andes, faz-se com maior amplitude entre os 20 e 30º. Forma-se assim, verdadeira ponte árida que estabelece ligação entre as regiões desérticas do pacífico e as meridionais argentinas (Martonne 52, 1935). A essa região correspondem associações de domínios morfoclimáticos e fitogeográficos resultantes da atuação convergente de fatores climáticos predominantemente geográficos, subordinados tanto à latitude como à altitude (Ab'Sáber ¹, 1977). Conhecida como diagonal árida ou arréica sul-americana, essa formação é assim constituída por complexo de paisagens semi-áridas, áridas e desérticas onde o arreismo e o endarreismo são feições características. Além disso, no que concerne ao aspecto de espaço aberto, continua-se com a região pampiana atingindo a das pradarias mistas subtropicais e as terras meridionais sul-rio-grandenses (Fig. 2).

De outro lado, destaca-se o conjunto conhecido como diagonal de formação aberta ou corredor de savanas sul-americanas (Schmidt e Inger 61 1951; Vanzolini 71 1974; Ab'Sáber 1 1977). Esta região, já esboçada por Azevedo 13 (1950) em sua regionalização climato-botânica brasileira, estende-se desde a caatinga nordestina e, em direção sudoeste, passando pelo cerrado, centro-brasileiro, prolonga-se no Chaco, agora já em territórios paraguaio e argentino. Sob o ponto de vista biogeográfico pode-se considerar o conjunto dessas áreas como associação climática intertropical e subtropical, com aspectos bastante convergentes (Ab'Sáber 1 1977).

Como se poderá deduzir pelas descrições feitas acima, as duas diagonais apresentam ponto de entroncamento que corresponde à região do Chaco. Dessa maneira, e juntamente com as demais áreas abertas, constituem-se em vias para a dispersão de populações (Webb 76, 1978). Tal fato reveste-se da maior importância na interpretação dos atuais quadros de distribuição, mormente ao se considerarem eventos históricos responsáveis pela gênese desses aspectos na evolução das espécies. Assim pois, em estudos como o que é objeto deste trabalho, importará levar em conta, para as duas mencionadas formações diagonais, a continuidade de seus espaços ecológicos. Nesse sentido e relativamente à situação atual, Ab'Sáber1 (1977) apontou a existência de três áreas de barreiras biogeográficas. A primeira é a representada pela região dos pantanais, na planície do Alto Paraguai, fronteiriça

Fig. 5 — Os grandes espaços abertos da América do Sul e possíveis barreiras à dispersão das espécies.

- 1 domínio Roraima-Guianense
- 2 domínio intermontano subequatorial dos lhanos da Venezuela e Colômbia.
- 3 diagonal árila ou arreica sul-americana (segundo Martonne 52, 1935).
- 4 diagonal de formações abertas ou corredor de savanas sul-americanas.
- 5 barreira dos pantanais.
- 6 barreira transicional entre os montes estépicos e subestépicos. 7 barreira da cordilheira andina.

brasileiro-boliviana, caracterizada por paisagem complexa constituída por grandes áreas alagáveis, de campos e palmeiras, que pode interromper a continuidade ecológica daqueles espaços abertos. Quanto às outras duas, uma é formada pela área de transição entre os domínios, do monte semiestépico e estépico, dotada de condições climáticas rígidas que propiciam a descontinuidade ecológica e a tendência à compartimentação dos quadros de distribuição (Darlington 24, 1965). Α terceira constituída pela própria cordilheira andina ao nível que corresponde à ponte de ligação entre as zonas áridas atlânticas e pacíficas. As feições do clima sofrem ali acentuadas diferenciações resultantes da influência altitúdica, transformando-se em grande barreira à dispersão em ambos os sentidos.

No que concerne ao Brasil, a diagonal de formações abertas abriga, de maneira geral, a maior parte dos terrenos descobertos. Fazem exceção, nesse quadro genérico, as áreas meridionais do Rio Grande do Sul as quais participam de domínio, por sua vez contíguo à parte argentina da diagonal árida sul-americana. Aqueles, como se referiu, repartem-se em dois grandes domínios morfoclimáticos, o das caatingas e o dos cerrados (Fig. 4). O primeiro é representado pela paisagem das depressões interplanálticas semi-áridas do nordeste e o segundo pela dos chapadões recobertos por cerrados e penetrados por florestas-galerias (Ab'Sáber 4,5 1971, 1977). Enquanto nas caatingas as condições climáticas são desfavoráveis, caracterizando-se pela sua irregularidade, nos cerrados são bastante favoráveis embora os solos sejam, em geral, Tais circunstâncias influem no aspecto das coberturas vegetais, que permitem maior exposição dos terrenos à atuação dos fatores naturais. Em consequência, a morfogênese e a pedogênese tendem a se realizar simultaneamente, com frequente desequilíbrio em favor da primeira, caracterizando os meios fortemente instáveis, como é o caso do nordeste brasileiro (Tricart 67, 1977). Contudo, e em que

pesem tais aspectos gerais, essas regiões descobertas permitem a ocorrência de enclaves florestados, como traduções da presença de manchas de solos naturalmente férteis, ou de condições locais propiciadas por fatores climáticos ligados a feições topográficas. De qualquer maneira, tais formações são conhecidas pelas denominações genéricas de "brejos", no caso das caatingas, e de "capões" e "mato-grossos", para os cerrados.

Sob o ponto de vista histórico, a gênese desses espaços abertos prende-se às oscilações paleoclimáticas ocorridas no Pleistoceno, e caracterizadas pela sucessão de épocas glaciais e interglaciais, respectivamente secas e úmidas. Admite-se pois que as atuais condições ecológicas se desenvolveram à partir do fim da última glaciação, de Würm-Wisconsin, a grosso modo, há cerca de 10.000 anos e correspondendo ao que se conhece como Holoceno. Durante aquele período frio as condições climáticas deram origem a sensíveis alterações da vegetação as quais, por sua vez, influiram na morfogênese e pedogênese. Da consideração desses fatos, nasceu a noção da biostasia ou fitostasia, baseada na importância da cobertura vegetal como fator de estabilização dos solos (Erhart 26,27 1966; Tricart 67, 1977). Nesse sentido, entendese que as florestas exercem papel protetor do solo contra a radiação, as precipitações atmosféricas e a atuação do vento. Em tais condições de biostasia, processa-se a pedogênese com tendência à estabilização. Ocorrendo o desequilíbrio climato-biológico, essa cobertura tende ao desaparecimento, sobrevindo a situação denominada de resistasia, com a agressão e consequente instabilidade dos solos. Dessa maneira, admitese que, como consequência do predomínio de paleoclimas quaternários secos, houve acentuada redução de áreas cobertas a custa da expansão dos espaços abertos áridos. Com base em observações geomorfológicas sobre a presença de resquícios desse processo histórico, tem sido possível o mapeamento e a descrição dos domínios

naturais pleistocênicos que teriam se formado na época seca, correspondente à última glaciação (Würm-Wisconsin), há cerca de 13.000 a 18.000 anos. Para o Continente Sul-americano em geral, e para o Brasil em particular, tais aspectos de maneira global foram propostos por Ab' Sáber ^{2,3} (1977, 1979) e Brown e Ab'Sáber²⁰ (1979), após os esquemas apresentados por Damuth e Fairbridge (apud Ab'Sáber ², 1977).

Assim sendo, parece fora de dúvida que, no Brasil, às glaciações quaternárias corresponderam períodos de semi-aridês, e que, no caso da Würm-Wisconsin, houve variações de intensidade com alternância de fases climáticas mais amenas e mais rigorosas (Bigarella 17, 1971). De qualquer maneira, nessas épocas predominaram condições para a fragmentação da cobertura de matas a qual, com o evoluir do processo, terminou por reduzir-se a áreas isoladas que se constituiram em refúgios paleoecológicos florestados onde a biostasia persistiu. Por sua vez, a tais aspectos correspondeu o máximo de expansão ambientes abertos os quais, relacionados a climas secos ou subúmidos, propiciaram a instabilidade edáfica que caracteriza os períodos de resistasia. Dessa maneira, os mencionados refúgios, juntamente comoutras matas esparsas e em galeria, constituiram o que se denominou de domínios paleobiogeográficos tropicais úmidos, nos modelos propostos para as feições sul-americanas correspondentes à última glaciação (Figura 6). Tais aspectos passaram a se transformar com o advento do fim do período glacial e a sobrevinda de condições climáticas favoráveis, caracterizadas pelo aumento da umidade. Dessa maneira, a partir daqueles refúgios de matas, deu-se a expansão holocênica das florestas a qual, no decurso dos, aproximadamente, últimos 10.000 anos, chegou ao aspecto encontrado no século XVI pelos primeiros colonizadores europeus e representado na Figura 2.

Essas conceituações históricas de aventos morfoclimáticos, que parecem ter ocorrido de maneira sincrônica em ambos os hemisférios (Williams 81, 1975), propiciaram a realização de estudos, objetivando melhor compreender a distribuição e a grande diversificação das populações neotropicais. Claro está que o conhecimento das mencionadas mudanças levou a considerar a influência que estas poderiam ter tido nos processos de especiação da flora e da fauna (Fittkau 29 1969; Vuilleumier 75 1971; Vanzolini 72 1973; Van Der Hammen 70 1974; Simpson e Haffer 64 1978). Eis que a fragmentação da biota, ocorrida em épocas passadas, teria resultado no estabelecimento de comunidades isoladas. Em conseqüência, espécies delas participantes, ou se estinguiram ou evoluiram, obedecendo a pressões seletivas locais de natureza diversa e de acordo com a respectiva plasticidade genética. Daí a multiplicidade de diferenciações que atingiu a maioria dessas popu-É bem verdade que têm sido sugeridas várias teorias para explicar a grande diversidade de espécies encontrada dentro do meio florestal neotrópico, atualmente apresentando-se com poucas barreiras (Brown 19, 1979). ecológicas marcantes Para alguns, o supracitado mecanismo do estabelecimento de refúgios ecológicos no Pleistoceno, sobre não explicar totalmente o aspecto atual, não deveria ser o único a ser aventado (MacArthur 50, 1972; White 79, 1978). No entanto, não há como, no presente estado dos conhecimentos, negar que já é considerável a série de seres vivos, focalizados em várias taxas como espécies, famílias, ordens e filos, para os quais temse aplicado esse conceito. Nesse particular, as evidências sobre essa evolução em regiões isoladas desse passado recente, têm sido obtidas a partir de estudos de aves, lagartos, vertebrados em geral, vegetais, insetos (dípteros e lepidópteros) e do próprio homem, habitantes do ambiente florestal sul-americano (Haffer 43 1969; Vanzolini Williams 74 1970; Vanzolini 78 1970; Spassky e col.66 1971; Winge 82 1973;

Fig. 6 — Distribuição, no Brasil, de componentes tropicais úmidos no período glacial de Würm-Wisconsin (13000 — 18000 anos), representados por refúgios paleoecológicos florestados e matas esparsas e em galeria (segundo Brown e Ab'Sáber 20, 1979 e Brow 19, 1979, simplificado).

A - refúgios florestados.

B — possíveis regiões incluídas.

C — contorno da costa durante a regressão glacial marinha.

 ${\bf D}$ — outras formações florestais e matas em galerias.

Müller ^{55,56} 1972, 1973; Prance ^{58,59} 1973, 1978; Brown e col.²¹ 1974; Meggers ⁵³ 1975; Jackson ⁴⁷ 1978; Brown ^{18,19} 1977 e 1979).

Em vista disso, o modelo dos refúgios ecológicos quaternários, vem tendo cada vez maior aceitação. Seu interesse prende-se não apenas à interpretação do aspecto atual, mas também à obtenção de dados que permitam identificar áreas geográficas onde a biota se apresente com maior riqueza em patrimônio gênico. Assim pois, têm sido identificadas regiões de relativa estabilidade ecológica e onde os processos biológicos se mantém ao abrigo de influências acentuadas decorrentes das variações ambientais que se sucedem no tempo. É de se compreender a importânc a que adquire o conhecimento dos mecanismos ecológicos atuantes, nessas condições, sobre tais biotas. Face a isso, a identificação dessas áreas tem sido feita mediante o estudo comparativo dos aspectos das chamadas zonas de endemismo biótico. como, os resultantes dos contatos de espécies politípicas ou de superespécies, os das comunidades locais características, e os geomorfológicos, pedológicos, paleoclimáticos e palinológicos. Considera-se assim o conceito de centro de endemismo, também denominado de dispersão ou de evolução, como sendo o aplicável à região onde se verifica a existência de comunidades acentuadamente diferenciadas, e as espécies ou raças que as constituem são geralmente monomórficas. É de extensão apreciável e delimitada por faixas de largura var ável onde essas mesmas populações se apresentam com um máximo de polimorfismo ou com um mínimo de adaptação ecológico, ou ainda, onde ocorrem outras espécies com outros aspectos ecológicos. Por sua vez, dentro do centro de endemismo, reconhece--se a existência de refúgio ecológico, estabelecido em qualquer tempo, passado ou presente. Caracteriza-se fundamentalmente como região onde existe suficiente continuidade de condições favoráveis de clima, solo, topografia e vegetação para permitir a

manutenção integrada de biotas que anteriormente se distribuissem de maneira mais ampla (Brown 18,19 1977, 1979; Brown e Ab Sáber 20 1979). Assim sendo, enquanto os centros de endemismo são identificados pelos seus aspectos florísticos e faunísticos, os refúgios o são pelas características morfoclimáticas e fitogeográficas.

Do que foi explanado nos parágrafos anteriores pode-se concluir que, quanto aos aspectos naturais biogeográficos, a domiciliação triatomínea no Brasil constitui fenômeno ocorrente em vários domínios morfoclimáticos e paisagisticos, englobando diversos centros de endemismo. Em relação àqueles pode-se considerar, não apenas os diferenciados, com suas áreas nucleares, mas também as faixas indiferenciadas de transição e os complexos localizados em situação intermedária. Assim pois, a presença da referida sinantropia tem sido observada como endêmica em regiões naturais do Brasil pertencei tes aos domínios com áreas nucleares, da caatinga, do cerrado. tropical atlântico e das pradarias mistas subtropicais. Acrescenta-se ainda sua presença em áreas incluídas nas faixas indiferenciadas de transição, a saber. Maranhão-Piaui, agreste, Bahia, Pantanal e pequena parte do Chaco oriental no sudoeste matogrossense (Figura 7).

Quanto aos centros de endemismo, a extensa série de observações levada a efeito por Brown 19 (1979) com lepidópteros aposemáticos permitiu a identificação, para as florestas neotropicais, de 44 dessas regiões e 62 de refúgios paleoecológicos. Em 36 daquelas pôde-se verificar coincidência com áreas correspondentes a estes. A comparação desses dados com os obtidos para outros grupos de seres vivos, representados por aves, lagartos e vegetais (árvores), possibilitou verificar a ocorrência de apreciável correlação geográfica para a maioria desses conjuntos. No território brasileiro, excluída a área do domínio equatorial amazônico, pode-se considerar assim a existência de quatro centros endêmicos geograficamente concordantes para os su-

Fig. 7 — Aspectos morfoclimáticos e paisagísticos associados à área atual e potencial de domiciliação de Triatominae no Brasil.

Domínios com áreas nucleares:

CA - caatinga

CR - cerrado

PR — pradarias mistas subtropicais

TA — tropical atlântico.

Áreas de transição não diferenciadas:

1 - Agreste

2 — Bahia

3 — Chaco oriental

4 — Maranhão-Piauí

5 — Pantanal.

L — Limite aproximado da área de domiciliação triatominea (Fig. 1).

pracitados seres vivos, além de outros quatro que, embora não correspondendo às populações de borboletas mencionadas, demonstram endemismo para outros organismos (Brown 19, 1979). Os primeiros, de acordo com a nomenclatura do mencionado autor, são conhecidos como centros de Guaporé, Araguaia, Pernambuco, Bahia e Rio de Janeiro, este compreendendo os subcentros de Itabapoana e de Paranaguá. A eles pode-se acrescentar, para a finalidade deste trabalho, a identificação do centro de Yungas, na Bolívia, com os subcentros de La Paz e de Cochabamba. No segundo grupo, os possíveis centros de endemismo identificam-se aos refúgios paleoecológicos ali determinados com, pelo menos, 60% de probabilidade e que são os de Ibiapaba e Cariris-Araripe no domínio das caatingas, de Agreste na faixa transicional entre os domínios dos cerrados e tropical atlântico, e o de Iguaçu na faixa de transição do chaco oriental e o domínio dos planaltos sul-brasileiros com araucárias (Figura 8). No Araguaia, observa-se o englobamento de múltiplos refúgios, alguns com deslocamento geográfico em relação ao centro. Nos outros do primeiro grupo supracitado, ocorreu coincidência entre áreas de refúgio e endemismo, motivo pelo qual ambos receberam idêntica denominação. Nos demais, não se tendo verificado endemismo para os lepidópteros aposemáticos estudados por Brown 19 (1979), as denominações referemse aos refúgios ali identificados, como se pode verificar pela análise da Figura 6.

Esses conceitos, de certa forma, apresentam alguns pontos de semelhanças com os propostos por Müller 55,56 (1972, 1973) para vertebrados, muito embora este autor considere como centros de dispersão, áreas que mais corresponderiam às de domínios morfoclimáticos e paisagísticos. Eis que, não se limitando a considerá-los como ocorrentes em meios florestados, inclui-os também em ambientes abertos. Por outro lado, não filiando necessariamente os centros de dispersão a refúgios ecológicos pleistocênicos, considera-os como áreas que, na

atualidade, podem encontrar-se totalmente separadas dos centros de origem. esses entendimentos considerou, na supra--referida região do território brasileiro, o que denomina de centros de dispersão de Serra do Mar, Paraná, Uruguai, Caatinga e Campo Cerrado. No entanto, no estado atual a que chegaram os conhecimentos, melhor será seguir a orientação resultante dos extensos trabalhos de Brown 19 (1979), para as florestas neotropicais e relacionar os centros de Müller 55,56 (1972, 1973), pelo menos para a região em foco, à classificação morfoclimática e paisagística de Ab'-Sáber 4,5 (1971, 1977). Mesmo considerando-se o centro de endemismo do Araguaia que, a primeira vista, corresponderia ao do Campo Cerrado, na verdade a sua existência refletiria mais a influência dos refúgios florestados paleoecológicos ali existentes que pressumivelmente originaram, tanto o enclave representado pela zona de mata primitiva do sul goiano, conhecida como "Mato Grosso de Goiás", bem como do centro-leste desse mesmo Estado (Vanzolini 78 1970; Jackson 47 1978).

Em resumo, no que concerne aos aspectos naturais biogeográficos da domiciliação triatomínea no Brasil, verifica-se que sua dispersão atual se dá no âmbito de nove regiões ecológicas. Quatro correspondem a outros tantos domínios paisagísticos e cinco a áreas de transição indiferenciadas. Nessa dispersão, deverá ser considerada a influência de doze possíveis centros de endemismo, descritos para vários seres vivos. Alguns deles, e pelo menos para algumas espécies de triatomíneos, é de se levantar a hipótese que tenham sido centros de origem. De qualquer maneira, na distribuição geográfica desses heterópteros, em seu comportamento domiciliado, poderão ser consideradas as seguintes regiões ecológicas:

- 1 da Caatinga
- 2 do Cerrado
- 3 tropical atlântica
- 4 Das pradarias mistas subtropicais.

Fig. 8 — Centros de endemismo para aves, lagartos, vegetais (árvores) e lepidópteros e possíveis centros relacionados a refúgios paleoecológicos, não confirmados para os últimos desses seres vivos mas passíveis de demonstrar endemismo para outros organismos. Áreas localizadas em territórios brasileiro e boliviano, excluindo-se daquele a parte ocupada pelo domínio equatorial amazônico (segundo Brown e Ab'Sáber 20 1979 e Brown 19).

Centros de endemismo identificados para os vários grupos de seres vivos:

- 1 Guaporé; 2 Araguaia; 3 Pernambuco; 4 Bahia; 5 Rio de Janeiro 1 Itabapoana; 6 Rio de Janeiro 2 Paranaguá; 7 Yungas 1 La Paz;
- 8 Yungas 2 Cochabamba

Refúgios paleoecológicos com possível endemismo (Fig. 6):

- 9 Ibiapaba; 10 Cariris-Araripe; 11 Agreste; 12 Iguaçu;
- L Limite aproximado da área de domiciliação triatomínea (Fig. 1).

As áreas de transição deverão ser focalizadas à luz da influência simultânea dessas regiões e dos prováveis centros de endemismo.

Pode-se observar que, com exceção da terceira, as demais dessas regiões correspondem a áreas de ambiente aberto. Em relação àquela, o aspecto umbroso que lhe dá a cobertura florestal predominante, resultou em fitoestabilidade propiciada pela mata ombrófila, a qual cobriu primitivamente o relevo, em que pese este apresentar-se bastante acidentado.

Aspectos antrópicos — Sendo a domiciliação ou sinantropia, comportamento populacional por definição associado ao homem, compreende-se que a sua dispersão e ocorrência deva necessariamente estar sujeita à atuação deste. Em relação ao Brasil, admite-se como ponto pacífico, que o homem pré-histórico pouco tenha influído como elemento modificador das paisagens naturais. Tal efeito parece ter-se iniciado a partir da colonização européia, intensificando-se nos últimos cem anos e atingindo o máximo de intensidade nos dias que correm. O processo pode ser descrito como alteração profunda da paisagem pela destruição descontrolada da primitiva cobertura vegetal. Em consequência, à estabilidade da biostasia pré-existente tende a suceder estado de instabilidade edáfica, nestes casos decorrente de ações do homem e que pode ser definida como de resistasia antrópica. O resultado final traduz-se pela expansão das áreas abertas, destinadas inicialmente à exploração agropecuária e, posteriormente, na dependência da intensificação dos estados resistásicos, abandonadas e sujeitas à sucessão degradada. Em linhas gerais, esse processo tem atingido preferentemente as áreas florestadas. Entre estas as do domínio tropical atlântico, foi a que sofreu mais antiga e, até agora, maior devastação. Nos dias atuais, a parte mais preservada dessa floresta higrófila encontra-se na porção meridional desse domínio, que se conhece como a parte sulina do Sistema da Serra do Mar.

Assim pois, em se considerando a possível associação entre as distribuições da domiciliação triatomínea e dos espaços abertos brasileiros, pode-se admitir que estes tenham se expandido a custa da ação antrópica que se fez sentir principalmente nas matas da paisagem tropical atlântica, e nos enclaves florestados ("brejos", "capões" e "mato-grossos") das paisagens abertas. Tal situação provocou pois, alterações profundas das biotas locais, com a possibilidade de extinção de várias popu-Por sua vez, a permanência de vegetação residual, a maneira de ilhas do habitat primitivo nos terrenos abertos, ensejou o isolamento geográfico. Este, ao que parece, constitui-se em poderoso determinante de diversificação biológica que pode levar à especiação ou à diferenciação morfológica acentuada de maneira rápida, ou seja, no decurso de poucas gerações (Wiens 80 1976; Brown 18 1977; Brown e Ab'Sáber 20 1979).

Dessa forma, encarando-se os aspectos biogeográficos gerais do território brasileiro, em termos de ambientes naturais umbrosos e abertos, deve-se acrescentar a estes os artificiais de origem antrópica. Na atualidade, eles praticamente englobam toda a área primitivamente revestida pela floresta subcaducifólia tropical e a parte norte das florestas perenifólias higrófilas costeiras do Sistema da Serra do Mar. Assim, apreciando-se o mapa representado na Figura 2, deve-se retirar do ambiente umbroso ampla faixa do conjunto C, compreendendo o sul de Mato Grosso do Sul, noroeste e norte do Paraná, todo o planalto ocidental de São Paulo, o sudeste e leste de Minas Gerais e a porção setentrional da vertente atlântica a partir de Espírito Santo e sudeste da Bahia. Assim, o limite oriental do ambiente aberto foi deslocado ainda mais nessa direção, em virtude da atuação antrópica, ficando praticamente restrito à porção meridional do Sistema da Serra do Mar (Figura 9). Compreende-se que nas regiões artificialmente abertas, ao aspecto uniformemente umbroso sucedeu, nos dias

Fig. 9 — Aspecto geral aproximado da situação atual do ambiente aberto no território do Brasil.

- A Espaços de ambiente predominantemente aberto.
- AN Área primitivamente umbrosa, e. na atualidade, com predomínio de espaços abertos, devido à ação antrópica, resultando em feição paisagística pontilhada de ilhas de vegetação residual (arquipélago terrestre).
- - D Limite oriental aproximado da domiciliação triatominea.
 - L Limites aproximados do ambiente aberto.

que correm, feição paisagística caracterizada por ambiente acentuadamente retalhado ou pontilhado de ilhas de vegetação residual. Por outro lado, as populações sobreviventes assim distribuídas por verdadeiro arquipélago terrestre, sobre tenderem ao isolamente, como se referiu acima, tendem também, na dependência das condições locais, a correr menor risco e, desse modo, à persistência e à recuperação (Wiens ⁸⁰, 1976).

A DOMICILIAÇÃO TRIATOMÍNEA

Os vários estudos sobre a distribuição de triatomíneos no Brasil têm levado em conta a capacidade de domiciliação, critério pelo qual as espécies são classificadas em três grupos essenciais, as domiciliadas, as semidomiciliadas e as silvestres (Zeledón 83, 1976). Considerando-se aquelas pertencentes às duas primeiras dessas categorias, alguns autores procuraram estudar a sua distribuição e dispersão, associando-as a condições climáticas e a aspectos biogeográficos, estes relacionados principalmente à natureza da cobertura vegetal (Aragão e Dias 12 1956; Bustamante 22 1957; Serebrenick 62 1958; Lucena 49 1959; Aragão 8 1961; Sherlock e Serafim 63 1972). As populações triatomíneas focalizadas com maiores detalhes foram as que, por se apresentarem com hábitos domiciliados, ou seja, com capacidade de colonização no domicílio e no peridomicílio, se revestem de maior importância epidemiológica. São as representadas pelas espécies Panstrongylus megistus, Triatoma brasiliensis, Triatoma infestans, Triatoma pseudomaculata e Triatoma sordida. De maneira geral, as observações levaram a supor que o primeiro desses insetos prefere os meios florestados e úmidos. Quanto aos demais, teriam suas preferências dirigidas a ambientes mais áridos ou semi-úmidos. Em tais condições, o T. infestans seria mesotérmico, enquanto o T. sordida e, em ainda maior grau, os outros dois suportariam temperaturas médias anuais mais elevadas. Assim pois a influência desses fatores do ambien-

te, na distribuição geográfica mereceu especial atenção para P. megistus e T. infestans. No caso deste, Aragão e Dias 12 (1956) chamaram a atenção para a distribuição do inseto que parece se fazer ao abrigo da influência de ventos marítimos e da umidade que os acompanha. De certa forma, tal hipótese poderia corroborar na explicação de sua ausência nos planaltos paranaense e catarinense. Quanto ao P. megistus, pelo contrário, as observações de Aragão 8 (1961) indicam que a aridez se constitui em fator limitante na distribuição desse inseto, habitante que é do clima de mata e sendo encontrado nas florestas brasileiras extra-amazônicas.

Diante desse quadro geral, o fenômeno da domiciliação triatomínea tem sido interpretado de várias maneiras. Para alguns trata-se de processo gradual de adaptação e, portanto, sujeito à seleção natural (Lucena 49 1959; Barretto 15 1976). Para outros, uma vez que os triatomíneos são hematófagos estritos, ficam dependentes da ocorrência de locais de abrigo e criação de vertebrados. Em outras palavras, seriam oportunistas e a invasão domiciliar tenderia a ocorrer quando da escassez de fontes naturais de alimentação (Martins 51 1968; Aragão 9,11 1975, 1978). Para algumas espécies, há também os que admitem a atual existência de politipia, como determinante de diferenças de comportamento, no caso, os hábitos domiciliado e silvestre (Pessoa 57, 1962).

O conjunto de informações e conceitos apresentados nos parágrafos precedentes permite tecer considerações sobre a distribuição desses insetos e o papel que a domiciliação desempenha na sua dispersão, como mecanismo de sobrevivência. Já se referiu que, em linhas gerais, essa sinantropia coincide, geograficamente, com os espaços abertos, nestes incluídos os de origem humana. Assim, comparando-se os mapas das Figuras 1, 7 e 9 pode-se facilmente perceber essa associação. A partir dessa relação, torna-se possível interpretar o fenômeno dessa domiciliação à luz dos

aspectos biogeográficos, tanto naturais como antrópicos. Dessa maneira, deve-se levar em conta as variações morfoclimáticas e paisagísticas conseqüentes às que as condições ecológicas apresentaram no decorrer do tempo. Assim sendo, pode-se iniciar considerando-se o quadro pleistocênico, com o estabelecimento dos refúgios paleoecológicos florestados durante o último período glacial de Würm-Wisconsin e representado na Figura 6. A seguir, e no decurso

do período holocênico, durante aproximadamente 10.000 anos, as feições biogeográficas evoluiram até a formação do quadro contemporâneo ao início da colonização européia do território brasileiro e apresentado na Figura 4. Finalmente, com a intensificação da atividade humana, ocorrida no decurso dessa colonização e, particularmente, neste século, chegou-se a quadro essencialmente caracterizado pela expansão dos espaços abertos, à custa principalmente

Fig. 10 — Dispersão da domiciliação de Triatoma infestans.
L — Limite aproximado da área de domiciliação triatomínea (Fig. 1).

da destruição do ambiente umbroso representado pelas florestas, como se pode ver na Figura 9. No entanto, na atualidade, é ainda possível delinear as potencialidades paisagísticas que se mantém apesar dessas modificações, como se verifica na Figura 7. Além disso, pôde-se identificar a presença de centros de endemismo, alguns mais preservados do que outros, e de refúgios atuais, passíveis de existência graças a condições favoráveis locais, como se observa na Figura 8.

Diante dessa sucessão de quadros, a domiciliação triatomínea pode ser interpretada como tentativa de sobrevivência e de dispersão a partir do estabelecimento de novas feições morfoclimáticas de origem antrópica, ou seja, que se instalaram progressivamente desde o início da colonização européia. Em seu estudo sobre a área de ocorrência de Panstrongylus megistus e fatores climáticos, Aragão 8 (1961) levanta a hipótese de que sob certas condições de clima a espécie poderia encontrar, nas edificações, ambiente propício à sua proli-Em sendo assim, o domicílio feração. humano passaria a representar para esse triatomíneo, não apenas meio utilizado para sobreviver à destruição do seu habitat natural, representado pela floresta primi-Seria também mecanismo através o qual o inseto se dispersaria vencendo a aridez, natural ou provocada pelo homem, a custa de domiciliação cada vez mais eficiente. Em estudo sobre Triatoma infestans, o mesmo autor analisa, separadamente, as áreas de dispersão e as que apresentam focos isolados (Aragão 10, 1971), chamando a atenção que naquelas, mesmo as de colonização recente, a eliminação do inseto é mais difícil do que nestas, o que permite supor que o domicílio represente também para esse triatomíneo, meio dispersivo eficiente. Face a tais considerações, impõe-se encarar essa sinantropia na sua origem e dispersão, para poder interpretar adequadamente o estado atual de sua distribuição.

Origem da domiciliação - O mecanismo que provavelmente desencadeia o processo de domiciliação desses insetos deve ser procurado no oportunismo. De acordo com a opinião de alguns autores, já mencionada, o problema dos triatomíneos colonizarem ou não em habitações prende-se essencialmente à disponibilidade de alimento e de abrigo (Aragão 11, 1978). Assim pois, a oportunidade não apenas determinou mas é passível de continuar determinando o estimulo necessário para essa colon zação. Nesse sentido atuam, como fatores relevantes, as condições microclimáticas das edificações quando semelhantes às dos ecótopos naturais, a escassez de fontes silvestres para a alimentação sanguínea, e as modificações acentuadas do ambiente. A persistência desses estímulos, uma vez iniciado o processo colonizador, possibilitará a adaptação cada vez maior da população triatomínea a esse hábito.

Por sua vez, considera-se que a área de diversificação dos Triatominae é constituída pelas regiões tropicais e subtropicais sul-americanas (Lent e Wygodzinsky 48, Dessa maneira, é admissível a hipótese de que o modelo dos refúgios paleoecológicos possa explicar a diferenciação populacional a partir de estoques ancestrais. É bem verdade que o conhecimento da biogeografia histórica desses insetos esbarra na falta de estudos que elaborassem adequados sistemas cladísticos. Além do mais, não se têm levado a efeito pesquisas sistemáticas no sentido de definir padrões regionalmente diferenciados e que poderiam identificar áreas de endemismo. Por outro lado, deve-se considerar que, em se tratando de populações domiciliadas, a influência do homem não poderia ser ignorada em tais estudos. De qualquer forma, a concordância observada com número razoável de seres vivos extremamente diversos entre si encoraja a admitir aprioristicamente algum paralelismo com as popula-Claro está que essas ções triatomíneas. hipóteses terão de ser comprovadas no futuro mas, até lá, é lícito considerar para

esses hemípteros os mesmos centros de endemismo e refúgios descritos para aqueles (Brown 19, 1979).

Dessa maneira, tendo ocorrido a diferenciação específica ao longo do período pleistocênico, a oportunidade que ensejaria a domiciliação poderia ter tido lugar em época anterior ou posterior ao descobrimento. Ja se mencionou que, em relação à primeira, os primitivos habitantes sul-americanos pouco ou nada teriam contribuído para a alteração paisagística. alguns admitem que já em tempos précolombianos deu-se o início da domiciliação do Triatoma infestans. Isso teria ocorrido na região dos vales interandinos de Cochabamba, Bolívia, onde o triatomíneo, habitando tocas de roedores, teria se transferido para as então habitações humanas locais não muito diferentes, em termos de microclima, dos abrigos daqueles animais (Usinger e col.69, 1966). Essa teoria coincide com a identificação do já mencionado centro de endemismo de Yungas, do qual Cochabamba representa um de seus subcentros (Figura 8). Contudo, admite-se que corresponda à fase do pós-descobrimento a evolução da sinantropia triatomínea a níveis epidemiologicamente significantes. E isso face à acentuada alteração do ambiente, em virtude da atividade colonizadora européia e que, além desse estímulo representado pela destruição dos ecótopos naturais, gerou a escassez de fontes alimentares para esses insetos. A época mais recente pois, se atribui a evolução do fenômeno para outras populações. Assim, tudo indica que o Panstrongylus megistus tem o seu mecanismo de domiciliação ligado à destruição florestal ocorrida no domínio tropical atlântico, onde se situam os centros

de endemismo de Pernambuco, Bahia e Rio de Janeiro (Figura 8), todos eles no âmbito das coberturas de matas, representadas pela floresta perenifólia higrófila costeira do Sistema da Serra do Mar, e as subcaducifólias tropicais. Essa região foi a mais atingida pela devastação contínua que ocorreu desde o descobrimento do Brasil. Esse fato, juntamente com a adoção de tipo de construções precárias representadas principalmente pelas casas de barro, estimulou a transferência desses hemípteros para esses ecótopos artificiais. Tal fenômeno pode ser observado na atualidade, como foi demonstrado por Forattini e col.35,37,38,39,40 (1977, 1978, 1979) com o emprego de ecótopos artificiais representados por galinheiros experimentais. relação ao Triatoma sordida, pôde-se detectar processo análogo, consequente à alteração ambiente, aqui representada pela vegetação do cerrado (Forattini e col.33, A partir do desenvolvimento da domiciliação e do progredir das alterações do meio, instala-se o isolamento domiciliar que tenderá, cada vez mais, à diferenciação desse comportamento. Compreende-se assim a possibilidade de evolução no sentido de populações acentuada ou mesmo estritamente sinantrópicas.

Dispersão — Os modelos de refúgios florestados e dos centros de endemismo identificados na atualidade permitem formular hipóteses, não apenas referentes à origem, mas também a possíveis regiões a partir das quais esses insetos se dispersam. Dentro das já mencionadas limitações e como tentativa de aplicação dos conceitos atuais (Brown 19, 1979), pode-se considerar as seguintes áreas, hipoteticamente endêmicas, para as espécies de triatomíneos acima referidas (Figura 8):

FORATTINI, O. P. Biogeografia, origem e distribuição da domiciliação de triatomíneos no Brasil. Rev. Saúde públ., S. Paulo, 14:265-99, 1980.

Espécie	Endemismo

Triatoma infestans Yungas Triatoma sordida Araguaia

Panstrongylus megistus Pernambuco Bahia

Triatoma brasiliensis e Ibiapaba
Triatoma pseudomaculata Cariris-Araripe

Assim sendo é de se admitir que a partir delas se tenha feito e se faça a dispersão, utilizando para isso o concurso de mecanismos diversos. O primeiro destes, e talvez o mais eficiente, é o representado pela domiciliação. Com o progredir desse fenômeno de especialização, em determinada espécie triatomínea, as edificações passam a se constituírem em ecótopos essenciais para essa população. Em tais circunstâncias, as migrações humanas propiciam o fator primordial para a dispersão do inseto. Tudo indica que esse é o caso, histórico e atual, do Triatoma infestans. O seu caráter mesotérmico e as suas preferências por ambientes secos ou semi--úmidos, torna admissível supor que se tenha dispersado a partir da região de Yungas, na Bolívia, percorrendo os espaços abertos representados pela diagonal árida e a das formações abertas sul-americanas (Figura 5). Para tanto, esse processo se realizou, e continua se realizando, mediante o transporte do inseto pelo homem, vencendo assim as barreiras naturais e invadindo também as áreas abertas de origem antrópica (Figura 10). O encontro desse triatomíneo em meio extradomiciliar e ali ocupando ecótopos naturais, tem sido assinalado principalmente para regiões que podem ser consideradas como pertencentes a essa última categoria, a exemplo do interior do território paulista (Barretto 14, 1966). Tais achados contudo devem ser levados a conta de certa reversão de hábitos, ou seja, devidos a exemplares procedentes dos domicílios onde primeiramente se colonizaram (Martins 51 1968; Aragão 11 1978).

A alteração ambiental como fator estimulante da domiciliação age também como propiciador da dispersão. Já foi referida a sinantropia de Panstrongylus megistus relacionada ao desaparecimento de matas úmidas. Sendo espécie de preferência por ambientes com maior teor de umidade, a aridez parece ser o único elemento climático a limitar-lhe a dispersão (Aragão 8, Assim sendo, a domiciliação permite-lhe fugir da ação de fator e dispersarse por regiões mais secas, a partir dos centros de endemismo. Estes, ao que tudo indica, poderiam ser considerados como sendo os de Pernambuco, Bahia e Rio de laneiro, situados no domínio fitogeográfico atlântico brasileiro (Figura 11). A sua presença em regiões onde ocorrem duas estações bem marcadas, ou seja, o inverno seco e o verão chuvoso, tende a mostrar-se com domiciliação mais intensa. manchas florestais residuais, mesmo as de pequenas dimensões e em áreas intensamente modificadas, mostram a presença do triatomíneo com franca tendência invasiva dos ecótopos artificiais. O que não se verifica nas áreas ainda mais preservadas daquele domínio onde o inseto, embora presente, mostra-se incapaz de invadir tais biótopos (Forattini e col.39,40 1978, 1979). Mecanismo semelhante parece ocorrer na dispersão do Triatoma sordida. Para as populações deste triatomíneo, ao que tudo indica, exercem apreciável atração as fontes alimentares representadas por vertebrados, domésticos ou domiciliados, que se abrigam no peridomicílio (Forattini e col.^{30,31} 1971). Por sua vez, parece ser inseto que aprecia

Rio de Janeiro

FORATTINI, O. P. Biogeografia, origem e distribuição da domiciliação de triatomíneos no Brasil. Rev. Saúde públ., S. Paulo, 14:265-99, 1980.

Fig. 11 — Dispersão da domiciliação de Panstrongylus megistus.
L — Limite aproximado da área de domiciliação triatomínea (Fig. 1).

condições de clima seco e de temperaturas mais elevadas. Nas áreas de sua ocorrência, as feições paisagísticas correspondem, em linhas gerais, à da vegetação do cerrado. Assim pois, torna-se admissível supor seja seu centro de endemismo situado no domínio dos cerrados, ou seja, o correspondente ao descrito como Araguaia, a partir do qual tende a se dispersar (Figura 12). O processo destrutivo dessa vegetação

resulta em estímulo dispersivo para essa espécie que encontra, em árvores secas, abrigos apropriados. Assim sendo, a ação antrópica, propiciando o aumento do número desses ecótopos, tende a estimular a dispersão. A domiciliação do hemíptero parece pois fazer-se como consequência desse processo (Forattini e col.³³, 1974). Quanto aos *Triatoma brasiliensis* e *Triatoma pseudomaculata*, os dados conhecidos

FORATTINI, O. P. Biogeografia, origem e distribuição da domiciliação de triatomíneos no Brasil. Rev. Saúde públ., S. Paulo, 14:265-99, 1980.

Fig. 12 — Dispersão de domiciliação de Triatoma sordida.
L — Limite aproximado da área de domiciliação triatomínea (Fig. 1).

até o momento indicam que se trata de populações com preferência por regiões semi-áridas e de clima quente (Serebrenick 62, 1959). Não se dispõe de ma'ores informações sobre os hábitos desses insetos, a não ser a de que têm sido encontrados tanto domiciliados como habitando ecótopos silvestres. Tudo indica que seu processo de domiciliação seja desencadeado de maneira análoga à do *Triatoma sordida*. Por

outro lado, sua distribuição, essencialmente sediada no domínio das caatingas, permite levantar a hipótese de sua autoctonia para essa região. Com a concomitante descrição dos possíveis refúgios de Ibiapaba e Cariris-Araripe, torna-se também possível admitir que tenham ali sua área de endemismo a partir da qual se dispersam para outras regiões (Figura 13).

Fig. 13 — Dispersão da domiciliação de Triatoma brasiliensis e T. pseudomaculata. L — Limite aproximado da área de domiciliação triatomínea (Fig. 1).

Distribuição — Como resultado dos vários mecanismos referidos chega-se ao quadro atual da distribuição da sinantropia triatomínea no Brasil. Ela é pois a conseqüência da atuação de fatores históricos pleistocênicos, do desenvolvimento morfoclimático e biogeográfico holocênicos originando as feições paisagísticas atuais, e da ação antrópica até os dias que correm. O aspecto global é o de que, fundamental-

mente, essa distribuição coincide e acompanha as feições paisagísticas dos espaços abertos, tanto naturais como artificiais. Estes últimos são representados por áreas de exploração agropecuária abertas a custa da derrubada de coberturas florestais primitivas. Assim sendo, nos estudos ecológicos sobre os aspectos geográficos do fenômeno, é aconselhável seguir os critérios que se baseiam nos aspectos paisagísticos

fundamentais atualmente reconhecidos no Brasil (Figura 7). São pois, as seguintes regiões:

- Caatinga, incluindo a área de transição do Agreste.
 - Autoctonia Triatoma brasiliensis e Triatoma pseudomaculata.
- Cerrado, incluindo as áreas de transição de Maranhão-Piauí, da Bahia, do Pantanal e do Chaco Oriental.
 Autoctonia Triatoma sordida.
- 3 Tropical atlântico, subdividida nas áreas, setentrional e meridional do Sistema da Serra do Mar, e da do planalto paulista, mineiro e paranaense.
 - Autoctonia Panstrongylus megistus.
- 4 Pradarias mistas subtropicais, como parte de domínio que se estende além dos limites brasileiros.

Em todas elas, e por influência antrópica, pode, potencial ou efetivamente, distribuir-se a domiciliação por *Triatoma infestans*, cuja autoctonia parece encontrar-se fora do território brasileiro.

CONSIDERAÇÕES GERAIS

Face ao relatado, impõe-se considerar o aspecto global biogeográfico do fenômeno representado pela domiciliação triatomínea no Brasil.

Inicialmente, parece claro que esse hábito é atualmente exercido por quatro populações de Triatominae as quais ao que tudo indica mais prontamente responderam aos estímulos para o desencadeamento do processo. Uma delas, representada pelo *Triatoma infestans*, aparentemente aproveitou essa oportunidade em épocas pré-colombianas, motivo pelo qual encontra-se há mais tempo do que as outras com esse hábito. Como conseqüência, sua adaptação aos ecótopos artificiais acha-se em estádio

mais avançado. E isso se traduz pela maior eficiência competitiva na conquista desses biótopos, em relação a outras populações (Aragão ^{9.10} 1971, 1975). Assim, é de se prever sua dispersão cada vez maior, atingindo regiões onde antes não ocorria, uma vez que ela se realiza na dependência da atividade humana.

As demais espécies aqui focalizadas, embora dependam em grande parte da ação antrópica, não perderam ainda o contato com o meio natural. Em vista disso, embora em seu processo dispersivo possa se fazer sentir a influência do homem, é de se considerar também a persistência dessas populações no ambiente extradomiciliar, ainda que intensamente alterado, bem como a possível capacidade de dispersão ativa de que são dotadas (Forattini e col. 31,32,34,36 1971, 1973, 1975, 1977; Miles 54, 1975).

Tais aspectos são de apreciável importância quando se considera as possibilidades de sucesso no controle dessa domiciliação. É ponto pacífico que, mesmo mantidas as baixas condições habitacionais que propiciam a instalação desse fenômeno, é perfeitamente viável a aliminaãção dà infestação domiciliar, como problema de saúde pública. A aplicação adequada de inseticidas nas casas, e a vigilância subsequente tornará possível esse objetivo. E esse resultado será tanto mais atingível quanto mais sinantrópica se apresentar a população triatomínea. Tal é a perspectiva do controle do Triatoma infestans, em regiões fora de sua zona de endemismo, como é o caso do território brasileiro que representa grande área de invasão por parte desse inseto. A experiência obtida no Estado de São Paulo, serve de bom exemplo para comprovar essa assertiva. Nesses casos, a reinfestação domiciliar estará na dependência do transporte passivo desse inseto por parte dos habitantes. Por outro lado, em relação às demais espécies embora o mesmo sucesso deva ser esperado, a probabilidade de reinfestação será maior. Eis que, para tanto, concorrem não apenas

o transporte passivo, mas também a presença de populações extradomic liares passíveis de responderem aos estímulos que desencadeiam o processo sinantrópico.

Em termos biogeográficos, a presença de populações extradomiciliares de triatomíneos domiciliados, deve ser encarada à luz das suas possíveis áreas de endemismo. Sua existência, em tais condições, leva à inevitável suposição da inviabilidade de interrupção do fenômeno invasivo, a não ser por dois processos fundamentais. Um deles seria a destruição total do ambiente natural, o que é inadmissível. O outro residiria na melhoria substancial das habitações, tornando-as impróprias para a colonização desses hemipteros. Enquanto este objetivo não é alcançado, compreende-se facilmente que a vigilância epidemiológica deva ser persistente e se enriqueça de novos conhecimentos adquiridos mediante pesquisas continuadas sobre os hábitos desses insetos.

Assim sendo cumpre considerar, em relação aos possíveis centros de endemismo, sua situação atual e as perspectivas futuras, Quanto à primeira, a para o Brasil. maior parte dos refúgios encontra-se ameaçada de destruição total, principalmente devida à ação do homem. Um deles, o de Guaporé, parece irremediavelmente condenado, possivelmente representando a primeira grande biota sul-americana a desaparecer completamente em breve tempo (Brown 18, 1977). Quanto aos demais, os menos danificados parece serem os da Bahia e Rio de Janeiro, embora já se encontrem bastante danificados. Como se pode ver, persistem os estímulos à domiciliação representados pela alteração ambiental. Dessa maneira, é de se prever que o processo invasivo dos domicílios continuará a ser tentado. Evidências nesse sentido são facilmente obtidas, não apenas em relação às espécies até aqui mencionadas, mas também quanto a outras, tidas até agora como essencialmente silvestres. Estas, de maneira esporádica, têm sido observadas colonizando no peridomicílio e mesmo no domicílio. Tal fato indica, de maneira evidente, a continuação do processo que pode vir a ser desencadeado.

Diante dessas evidências, é de se considerar as perspectivas futuras em relação às áreas atualmente cobertas e que venham a sofrer alterações que as transformem em áreas abertas. No Brasil, o maior exemplo desse acontecimento poderá ser representado pelo domínio paisagistico equatorial amazônico (Figura 4). A devastação da cobertura florestal dessa região, atualmente em andamento, levará inevitavelmente à produção de grandes espaços abertos. Tal atividade, e a subsequente instalação de habitações, irá deparar com a presença de vários centros de endemismo e refúgios de origem paleozóica (Figura 6). Nessa região foram identificados, até o momento, doze centros de endemismo (Brown 19, 1979). Por sua vez, essa devastação levará, com grande probabilidade, à expansão da aridez e mesmo a desertificação (Went e Babu 78, Tais mecanismos, pelas razões já expostas, levarão a estimular e a oferecer as oportunidades para que as populações triatomíneas autóctones enveredem pelo caminho da domiciliação. Assim sendo, não se pode afastar a hipótese de que, seja a custa de espécies locais seja a custa de espécies triatomíneas introduzidas, este fenômeno possa vir a se apresentar em futuro próximo como problema de saúde pública de ampla região brasileira onde, até agora, não tem sido assinalado.

CONCLUSÕES

Do que foi exposto, a respeito da domiciliação triatomínea que se observa no Brasil, pode-se concluir o que segue:

- 1 Sob o ponto de vista biogeográfico, a domiciliação triatomínea apresenta distribuição geral que coincide com a dos espaços abertos.
- 2 Tais áreas descobertas têm-se expandido a custa da ação antrópica, levando a conseqüência análoga em relação àquela sinantropia.

- 3 Das espécies envolvidas, o *Triatoma* sordida, *Triatoma brasiliensis* e *Tria.oma* pseudomaculata têm provavelmente suas áreas de endemismo nos domínios paisagísticos naturais representados pelo cerrado, para o primeiro, e pela caatinga para os outros dois.
- 4 Quanto ao Panstrongylus megistus, tal aspecto parece ser encontrado nas florestas do domínio tropical atlântico e a sua domiciliação provavemente é conseqüência da transformação antrópica dessa paisagem, de coberta em aberta.
- 5 As evidências indicam que o *Triatoma infestans* procede de centros de endemismo situados fora do território brasileiro e, levado pelo homem, invad u as áreas abertas, tanto naturais como artificiais.
- 6 As campanhas de controle desse fenômeno têm toda a possibilidade de lograrem sucesso, especialmente no caso de *Triatoma infestans*, dada a sua estrita domiciliação.
- 7 Em relação aos outros mencionados triatomíneos, a vigilância epidemiológica

- deverá levar em conta, não apenas os fatores humanos na reinfestação, como também a persistência de populações desses insetos no meio extradomiciliar.
- 8 As perspectivas futuras indicam que os centros de endemismo, já substancialmente alterados, possam vir a se-los cm grau ainda maior no futuro, persistindo pois os estímulos necessários ao desencadeamento do processo de domiciliação.
- 9 As perspectivas de expansão ainda maior dos espaços abertos, a custa da devastação da grande área florestada do domínio equatorial amazônico, permite prever a possibilidade de ocorrência dessa sinantropia, como problema de saúde pública onde ainda não tem sido assinalada.

AGRADECIMENTO

Ao Prof. Aziz N. Ab'Sáber, do Instituto de Geografia da Universidade de São Paulo, pelas valiosas sugestões na elaboracão deste trabalho.

RSPUB9/509

FORATTINI, O. P. [Biogeography, origin, and distribution of triatominae domiciliarity in Brazil.] Rev. Saúde públ., 14:265-99, 1980.

ABSTRACT: An association is established between the Brazilian geographical pattern of the domiciliarity of the triatominae bugs and open lands characterized by natural savanna vegetation or artificial, man-made landscapes. The Brazilian open lands involved are the "caatingas" and "cerrados", both wholly included in Brazilian territory, while the mixed Southern subtropical prairies belong to systems extending beyond national boundary lines. The other open lands are anthropic-lands opened mainly by the descruction of primitive forests of the tropical Atlantic system. Attempls were made to subject the four synanthropic species of epidemiological importance to model paleoecologic refuges and endemic centers. Triatoma sordida, Triatoma brasiliensis, and Triatoma pseudomaculata seem to have their endemic centers in the "cerrados" and "caa'inga", while the Panstrongylus megistus may have originated in the tropical Atlantic forest system. The Triatoma infestans, however, seem to have originated in Bolivia, then were spread to large dispersal regions by man. Thus it can be assumed that domicliarity is arrived at through an opportunistic mechanism stimulated by shelter and food availability factors. Once established, domiciliarity favors the species survival and dispersal, and this is of particular interest to con rol and surveil-lance programs because it increases the probability of the triatominae's success in synanthropic specialization. The present intense anthropic activities in the Amazonian system will lead to even greater expansion into the open lands; consequently, a triatominae domiciliarity spread can be expected, due to either autochthonous or man-introduced populations. A public health problem will then arise in a region where it has, heretofore, been unknown.

UNITERMS: Trypanosomiasis, South American. Triatominae domiciliation. Triatoma infestans. Triatoma sordida. Triatoma brasiliensis Triatoma pseudomaculata, Panstrongylus megistus. Triatominae, dispersion, Triatominae, control and survillance.

REFERÊNCIAS BIBLIOGRÁFICAS

- AB'SABER, A. N. Os domínios morfoclimáticos na América ao Sul. São Paulo, Instituto de Geografia da USP, 1977. (Série Geomorfologia, 52).
- AB'SÁBER, A. N. Espaços ocupados pela expansão dos climas secos na América do Sul, por ocasião dos periodos glaciais quaternários. São Paulo, Instituto de Geografia da USP, 1977. (Série Paleoclimas, 3).
- AB'SABER, A. N. Os mecanismos de desintegração das paisagens tropicais no Pleistoceno: efeitos paleoclimáticos do período Würm-Wisconsin no Brasil.
 São José do Rio Preto, Instituto de Biociências, Letras e Ciências Exatas da UNESP, 1979. (Série Inter-Facies Escritos e Documentos, 4).
- AB'SABER, A. N. A organização das paisagens inter e subtropicais brasileiras. In: Ferri, M. G., coord. III Simpósio sobre o cerrado. São Paulo, Ed. Edgard Blücher Ed. USP, 1971.
- AB'SÁBER, A. N. Potencialidades paisagísticas brasileiras. São Paulo, Instituto de Geografia da USP, 1977. (Série Geomorfologia, 55).
- ALONSO, M. T. A. Vegetação. In: Fundação IBGE. Geografia do Brasil: região sudeste. Rio de Janeiro, 1977. v. 3, p. 91-118.
- ALONSO, M. T. A. Vegetação. In: Fundadação IBGE. Geografia do Brasil: região sul. Rio de Janeiro, 1977. v. 5. p. 81-109.
- ARAGÃO, M. B. Aspectos climáticos da doença de Chagas. II — Área de ocorrência do Panstrongylus megistus (Burmeister, 1835). Rev. bras. Malar., 13:171-93, 1961.
- ARAGÃO, M. B. Sobre o comportamento de alguns insetos hematófagos. Arq. Biol. Tecnol., 18:3-23, 1975.
- ARAGÃO, M. B. Sobre a dispersão do Triatoma infestans. Rev. Soc. bras. Med. trop., 5:183-91, 1971.
- ARAGÃO, M. B. Sobre a domiciliação dos triatomíneos. Rev. Soc. bras. Med. trop., 1978. [no prelo]

- 12. ARAGÃO, M. B. & DIAS, E. Aspectos climáticos da doença de Chagas. I — Considerações sobre a distribuição geográfica do Triatoma infestans. Rev. bras. Malar., 8:633-41, 1956.
- AZEVEDO, A. de Regiões climato-botânicas do Brasil. Bol. paul. Geogr., (6):32-43, 1950.
- 14. BARRETTO, M. P. Aspectos da epidemiologia da tripanossomose americana, infecção com focos naturais, com especial repericia à região nordeste do Estado de São Paulo. Ribeirão Preto, 1966. [Tese — Faculdade de Farmácia e Odontologia de Ribeirão Preto]
- 15. BARRETTO, M. P. Possible role of wild mammals and triatomines in the transmission of Trypanosoma cruzi to man. In: International Symposium on New Approaches in American Trypanosomiasis Research, Belo Horizonte, 1975. Proceedings. Washington, D.C., Pan American Health Organization, 1976. p. 307-18. (PAHO-Scient, publ., 318).
- BEARD, J. S. The savanna vegetation of Northern tropical America. Ecol. Monogr., 23:149-215, 1952.
- 17. BIGARELLA, J. J. Variações climáticas no Quaternário Superior do Brasil e sua datação radiométrica pelo método do Carbono 14. São Paulo, Instituto de Geografia da USP, 1971. (Série Paleoclimas, 1).
- 18. BROWN JR., K. S. Centros de evolução, refúgios quaternários e conservação de patrimônio genéticos na região neotropical: padrões de diferenciação em Ithomiinae (Lepidoptera: Nymphalidae). Acta amazon., 7:75-137, 1977.
- 19. BROWN JR., K. S. Ecologia geográfica e evolução nas florestas neotropicais. Campinas, 1979. [Tese de Livre Docência — Instituto de Biologia UNI-CAMP]
- BROWN JR., K.S. & AB'SABER, A. N.
 Ice-age forest refuges and evolution
 in the neotropics: correlation of palio climatological, geomorphological and
 pedological data with modern biologi cal endemism. São Paulo, Instituto de
 Geografia da USP, 1979. (Série Paleo climas, 5).

- FORATTINI, O. P. Biogeografia, origem e distribuição da domiciliação de triatomíneos no Brasil. Rev. Saúde públ., S. Paulo, 14:265-99, 1980.
- BROWN JR., K. S. Quaternary refugia in tropical America: evidence from race formation in *Heliconius* butterflies. *Proc. roy. Soc. London B*, 187:369-78, 1974.
- 22. BUSTAMANTE, F. M. de Distribuição geográfica dos transmissores da doença de Chagas no Brasil e sua relação com certos fatores climáticos. Epidemiologia e profilaxia da enfermidade. Rev. bras. Malar., 9:191-211, 1957.
- CABRERA, A. L. & WILLINK, A. Biogeografia da América Latina. Washington, OEA. Depto de Assuntos Científicos, 1973.
- DARLINGTON JR., P. J. Biogeography of the Southern end of the world. Camdridge, Mass., Harvard University Press, 1965.
- DUCKE, A. & BLACK, G. Phytogeographical notes on the Brazilian Amazon.
 An. Acad. bras. Ciênc., 25:1-46, 1953.
- ERHART, H. Bio-rhexistasie, biostasies évolutives, hétérostasie. Importance de ces notions en gêtologie minière exogène. C. R. Acad. Sci., Paris, 263: 1048-51, 1966.
- ERHART, H. A teoria bio-resistásica e os problemas biogeográficos e paleobiológicos. Not. geomorfol., 6:51-8, 1966.
- FIALHO, D. Aspectos do revestimento florístico do Maranhão. Rev. Geogr. Hist., S. Luiz, 4:115-25, 1953.
- FITTKAU, E. J. The fauna of South America. In: Fittkau, E. S. et al., ed. Biogeography and ecology in South America. The Hague, W. Junk N.V. Publ., 1969. p. 624-58.
- FORATTINI, O. P. et al. Aspectos ecológicos da tripanossomose americana. II

 Distribuição e dispersão local de triatomíneos em ecótopos naturais e artificiais. Rev. Saúde públ., S. Paulo, 5:163-91, 1971.
- FORATTINI, O. P. et al. Aspectos ecológicos da tripanossomose americana. III

 Dispersão local de triatomíneos, com especial referência ao Triatoma sordida. Rev. Saúde públ., S. Paulo, 5: 193-205. 1971.

- 32. FORATTINI, O. P. et al. Aspectos ecológicos da tripanossomose americana. V Observações sobre colonização espontânea de triatomíneos silvestres em ecótopos artificiais, com especial referência ao Triatoma sordida. Rev. Saúde públ., S. Paulo, 7:219-39, 1973.
- 33. FORATTINI, O. P. et al. Aspectos ecológicos da tripanossomíase americana. VI Persistência do Triatoma sordida após alteração ambiental e suas possíveis relações com a dispersão da espécie. Rev. Saúde públ., S. Paulo. 8: 265-82, 1974.
- 34. FORATTINI, O. P. et al. Aspectos ecológicos da tripanossomíase americana. VII Permanência e mobilidade do Triatoma sordida em relação aos ecótopos artificiais. Rev. Saúde públ., S. Paulo, 9:467-76, 1975.
- 35. FORATTINI, O. P. et al. Aspectos ecológicos da tripanossomíase americana. VIII Domiciliação de Panstrongylus megistus e sua presença extradomiciliar. Rev. Saúde públ., S. Paulo, 11: 73-86, 1977.
- 36. FORATTINI, O. P. et al. Aspectos ecológicos da tripanossomíase americana. IX Variação e mobilidade de Panstrongylus megistus em ecótopos artificiais. Rev. Saúde públ., S. Paulo, 11:199-213.
- FORATTINI, O. P. et al. Aspectos ecológicos da tripanossomíase americana. X
 — Dados populacionais das colônias de Panstrongylus megistus e de Triatoma sordida espontaneamente desenvolvidas em ecótopos artificiais. Rev. Saúde públ., S. Paulo, 11:362-74, 1977.
- 38. FORATTINI, O. P. et al. Aspectos ecológicos da tripanossomíase americana. XI Domiciliação de Panstrongylus megistus e potencial enzoótico. Rev. Saúde públ., S. Paulo, 11:527-50, 1977.
- 39. FORATTINI, O. P. et al. Aspectos ecológicos da tripanossomiase americana. XII Variação regional da tendência de Panstrongylus megistus à domiciliação. Rev. Saúde públ., S. Paulo, 12: 209-33, 1978.
- FORATTINI, O. P. et al. Aspectos ecológicos da tripanossomíase americana.
 XIV Persistência e potencial de domiciliação de populações triatomínicas

- FORATTINI, O. P. Biogeografia, origem e d stribuição da domiciliação de triatomíneos no Brasil. Rev. Saúde públ., S. Paulo, 14:265-99, 1980.
 - silvestres em região de intensa atividade agropecuária. Rev. Saúde públ., S. Paulo, 13:123-46, 1979.
- FRÓIS, R. de L. Estudo sobre a Amazônia maranhense e se s limites f.orísticos. Rev. bras. Geogr., 15:96-100, 1953.
- GALVÃO, R. Introdução ao conhecimento da área maranhense abrangida pelo plano de valorização da Amazônia. kev. bras. Geogr., 17:239-96, 1955.
- HAFFER, J. Speciation in Amazonian forest birds. Science, 165:131-7, 1969.
- 44. HOEHNE, F. C. Phytophysionomia do Estalo de Matto-Grosso e liger_s notas a respeito da composição e distribuição de sua flora. São Paulo, Cia. Melhoramentos, 1923.
- HUECK, K. As florestas da América do Sul: ecologia, composição e importância econômica. São Paulo, Ed. Univ. Brasılia/Ed. Poligono, 19/2.
- 46. HUECK, K. & SEIBERT, P. Vegetationskarte von Sülamerika. Stuttgart, Gustav Fischer Verlag, 1972.
- 47. JACKSON, J. F. Differentation in the genera Enyalius and Strobilurus (Iguanidae): implications for Pleistocene Climatic changes in Eastern Brazil. Arq. Zool., 30:1-81, 1978.
- 48. LENT, H. & WYGODZINSKY, P. Revision of the Triatominae (Hemiptera, Reduvidae), and their significance as vectors of Chagas'disease. *Bull. Amer. Mus. nat. Hist.*, 163:125-520, 1979.
- LUCENA, D. T. de Ecologia dos triatomíneos do Brasil. Rev. bras. Malar., 11:577-635, 1959.
- MAC ARTHUR, R. H. Geographical ecology.
 Patterns in the distribution of species.
 New York, Harper & Row P.bl., 1972.
- MARTINS, A. V. Epilemiologia da doença de Chagas. In: Cançado, J. R., ed. Doença de Chagas. Belo Horizonte, 1968. p. 225-37.
- MARTONNE, E. de Problémes des régions arides su l-américaines. Ann. de Géog., 44:1-27, 1935.
- MEGGERS, B. J. Application of the biological model of diversification to cul-

- tural distributions in Tropical lowland South America. *Biotropica*, 7: 141-61, 1975.
- 54. MILES, M. A. Distribution and importance of triatominae as vectors of *T. cruzi*. In: International Symposium on New Approaches in American Trypanosomiasis Research, Belo Horizonte, 1975. Washington, D. C., Pan-American Health Organization, 1976. p. 48-56. (PAHO Scient. publ., 318).
- MULLER, P. Centres of dispersal and evolution in the neotropical region. Stud. neotrop. Fauna, 7:173-85, 1972.
- 56. MULLER, P. The dispersal centres of terrestrial vertebrates in the neotropical realm: a study in the evolution of the neotropical bota and its native landscapes. The Hagle, W. Junk B. V. Publ., 1973.
- PESSOA, S. B. Domiciliação dos triatomíneos e epidemiologia da doença de Chagas. Arq. Hig., S. Paulo, 27:161-71, 1962.
- PRANCE, G. T. The origin and evolution of the amazon flora. Interciência, 3: 207-22, 1978.
- 59. PRANCE, G. T. Phytogeographyc support for the theory of Pleistocene forest refuges in the Amazon Basin, based on evilence from distribution patterns in Caryocaraceae, Chrysobalanaceae, Dichapetalaceae and Lecythidaceae. Acta amazon., 3:5-28, 1978.
- RIZZINI, C. T. & PINTO, M. M. Áreas climático-vegetacionais do Brasil segundo os métodos de Thornthwaite e de Mohr. Rev. bras. Geogr., 26:523-47,
- 61. SCHMIDT, K. P. & INGER, R. F. Amphibians and reptiles of the Hopkins-Branner expedition to Brazil. Fieldiana: Zool., 31:439-65, 1951.
- 62. SEREBRENICK, S. Distribution géographique des triatomidées dans la valée du São Francisco et ses rapports avec les conditions climatiques. An. Inst. Med. trop., 16(Supl. 7):133-49, 1959.
- SHERLOCK, I. A. & SERAFIM, E. M.
 Fauna Triatominae do Estado da Bahia.

- I As espécies e distribuição geográfica. Rev. Soc. bras. Med. trop., 6: 265-300, 1972.
- 64. SIMPSON, B. B. & HAFFER, J. Speciation patterns in the Amazonian forest biota. Ann. Rev. Ecol. System., 9: 497-518. 1978.
- 65. SOARES, L. de C. Limites meridionais e orientais da área de ocorrência da floresta amazônica em território brasileiro. Rev. bras. Geogr., 15:3-122, 1953.
- 66. SPASSKY, B. et al. Geography of the sibling species related to Drosophila willistoni, and of the semispecies of the Drosophila paulistorum complex. Evolution, 25:129-43, 1971.
- 67. TRICART, J. Ecodinâmica. Rio de Janeiro, Superintendência de Recursos Naturais e Meio Ambiente, 1977.
- UDVARDY, M. D. F. Dynamic zoogeography: with special reference to land animals. New York, Van Nostrand Reinhold Co., 1969.
- USINGER, R. L. et al. The biosystematics of Triatominae. Ann. Rev. Ent., 11: 309-30, 1966.
- VAN DER HAMMEN, T. The Pleistocene changes of vegetation and climate in tropical South America. J. Biogeogr., 1:3-26, 1974.
- VANZOLINI, P. E. Ecological and geographical distribution of lizards in Pernambuco, northeastern Brazil (Sauria). Pap. avuls. Zool., S. Paulo. 28: 61-90, 1974.
- 72. VANZOLINI, P. E. Paleoclimates, relief an l species multiplication in equatorial forests. In: Meggers, B. J. et al., eds. Tropical forest ecosystems in Africa and South America: a comparative review. Washington, D. C. Smithsonion Inst. Press, 1973. p. 255-8.
- VANZOLINI, P. E. Zoologia sistemática, geografia e a origem das espécies. São Paulo, Instituto de Geografia da USP, 1970. (Série Teses e Monografias, 3).

- 74. VANZOLINI, P. E. & WILLIAMS, E. E. South American anoles: the geographic differentiation and evolution of the Anolis chrysolepis species group (Sauria, Iguanidae). Arq. Zool., S. Paulo, 19:1-298, 1970.
- VUILLEUMIER, B. S. Pleistocene changes in the fauna and flora of South America. Science, 173:771-80, 1971.
- 76. WEBB, S. D. A history of savanna verte-brates in the new world. Part II: South American and the great interchange. Ann. Rev. Ecol. Syst., 9: 393-426, 1978.
- 77. WEBER, H. Zur natürlichen vegetations gliederung von südamerika. In: Futtkan, E. J. et al., eds. Biogeography and ecology in South America. The Hague, W. Junk N. V. Publ., 1969. v. 2, p. 475-518.
- WENT, F. W. & BABU, V. R. Plant life and desertification. Environ. Conserv., 5:263-72, 1978.
- 79. WHITE, M. J. D. Modes of speciation. San Francisco, W. H. Freeman, 1978.
- WIENS, J. A. Population responses to patchy environments. Ann. Rev. Ecol. Syst., 7:81-120, 1976.
- WILLIAMS, M. A. J. Late Pleistocene tropical aridity synchronous in both hemispheres? *Nature*, 253:617-8, 1975.
- WINGE, H. Races of Drosophila willistoni sibling species: probably origin in quaternary forest refuges of South America. Genetics. 74(suppl.):297-8.
 1973.
- 83. ZELEDÓN, R. Effects of triatomine behavior on trypanosome transmission. In: International Symposium on New Approaches in American Trypanosomiasis Research, Belo Horizonte, 1975. Proceedings. Washington, D. C., Pan American Health Organization, 1976. p. 326-9. (PAHO Scient. publ., 318).
 - Recebido para publicação em 27/6/80 Aprovado para publicação em 12/9/80