PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 25. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 26. do 33. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

JOPERON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi jedna poprawna odpowiedź.

Zadanie 1. (*1 pkt*)

Przed podwyżką cena czekolady i batonika była jednakowa. Cenę czekolady podniesiono o 5%, a za batonik trzeba zapłacić o $\frac{1}{4}$ więcej. Zatem za dwa batoniki i dwie czekolady trzeba teraz zapłacić wiecej o:

A.30%

B. 60%

C.15%

D. 45%

Zadanie 2. (1 pkt)

Ile liczb naturalnych należy do zbioru rozwiązań nierówności $|2x - 5| \le 3$?

 $\mathbf{A} \cdot \mathbf{0}$

B. 2

D. 3

Zadanie 3. (*1 pkt*)

Funkcja f określona jest wzorem $f(x) = \begin{cases} x^3 & \text{dla } -4 \le x < 2 \\ -x^2 + 4 & \text{dla } 2 \le x \le 6 \end{cases}$.

Prawdziwa iest nierówność:

A. f(-2) - f(2) > 0

B. f(2) - f(1) < 0 **C.** f(-1) + f(0) > 0 **D.** f(3) - f(-2) < 0

Zadanie 4. (*1 pkt*)

Wykres funkcji f określonej wzorem $f(x) = x^2 + 6$ przesuwamy o 4 jednostki w dół wzdłuż osi OYi o 2 jednostki w prawo wzdłuż osi OX. Otrzymujemy w ten sposób wykres funkcji g określonej wzorem:

A. $g(x) = (x+2)^2 - 4$

B. $g(x) = (x-2)^2 - 2$ **C.** $g(x) = (x-2)^2 + 2$ **D.** $g(x) = (x-4)^2 + 2$

Zadanie 5. (*1 pkt*)

Wskaż parę równań równoważnych.

A. $x^3 = 1 \text{ i } x^2 = 1$ **B.** $x^2 - 2x + 1 = 0 \text{ i } (x + 1)(x + 1) = 0$ **C.** $\frac{(x-5)(x-4)}{x-5} = 0 \text{ i } (x-5)(x-4) = 0$ **D.** $x^2 - 6 = -3 \text{ i } (x-\sqrt{3})(x+\sqrt{3}) = 0$

Zadanie 6. (*1 pkt*)

Wiadomo, że liczba a jest liczbą naturalną dodatnią i liczby $3^a, 3^{a+1}, 3^{a+2}$ są trzema początkowymi wyrazami ciągu geometrycznego (b_n) . Wyraz ogólny tego ciągu to: **A.** $b_n = 3^{a+1}$ **B.** $b_n = 3^{a-1}$ **C.** $b_n = 3^{n+a-1}$

 $\mathbf{C} \cdot b_n = 3^{n+a-1}$

D. $b_n = 3^{an-1}$

Zadanie 7. (*1 pkt*)

Drewniany element ma kształt trójkąta równoramiennego, którego ramię jest nachylone do podstawy długości 12 cm pod kątem α . Powierzchnia elementu jest równa:

A. $36 \text{tg} \alpha \text{ cm}^2$

B. $36 \sin \alpha \text{ cm}^2$

C. $72 \text{tg} \alpha \text{ cm}^2$

D. $72\cos\alpha$ cm²

Zadanie 8. (*1 pkt*)

Prosta l jest styczna do okręgu danego wzorem $(x-3)^2 + (y+2)^2 = 16$ i równoległa do prostej y=1. Wskaż równanie prostej *l*:

A. y = -1

B. y = 2

C. y = 6

D. x = -1

Zadanie 9. (1 *pkt*)

W konkursie piękności bierze udział 15 modelek. Prawdopodobieństwo, że zwycięży Emilia, jest równe 0,20. Prawdopodobieństwo, że zwycięży Aldona, jest równe $\frac{1}{10}$. Prawdopodobieństwo, że zwycięży Emilia lub Aldona jest równe:

$$\mathbf{C} \cdot \frac{3}{150}$$

D.
$$\frac{3}{15}$$

Zadanie 10. (1 pkt)

Wiadomo, że a > 0. Wyrażenie $\frac{(a^{-2} \cdot a^5)^{\frac{1}{6}}}{\sqrt{a}}$ po sprowadzeniu do najprostszej postaci jest równe:

R /

C. 0

D. $a^{\frac{1}{2}}$

Zadanie 11. (1 pkt)

W jednej z klas licealnych przeprowadzono ankietę, w której odpowiadano na pytanie: "Ile godzin dziennie przeznaczasz na odrabianie lekcji?". Wyniki ankiety przedstawiono w tabeli.

Liczba osób	6	10	4
Czas w godzinach	2	3	4

Średnia liczba godzin przeznaczonych na odrabianie lekcji w tej klasie jest równa około:

A. 5

R 4

C. 2

D. 3

Zadanie 12. (1 pkt)

Szklanka ma kształt walca o wysokości 10 cm i promieniu podstawy 4 cm. Do szklanki wypełnionej całkowicie wodą wpadła kulka o promieniu 3 cm. Ile centymetrów sześciennych wody wylało się ze szklanki?

 $A.36\pi$

 $\mathbf{B.12}\pi$

C. $\frac{256\pi}{3}$

D. $160\pi \text{ cm}^3$

Zadanie 13. (1 pkt)

Krawędź podstawy ostrosłupa prawidłowego czworokątnego jest równa 6, a objętość ostrosłupa wynosi 96. Stosunek wysokości ostrosłupa do długości krawędzi podstawy jest równy:

A.
$$\frac{3}{4}$$

B. $\frac{4}{3}$

 $\mathbf{C} \cdot \frac{1}{3}$

D. $\frac{2}{9}$

Zadanie 14. (1 pkt)

Długości boków prostokąta są równe (5-x) i (x-1). Pole prostokąta jest największe, gdy liczba x jest równa:

A. 2

B.1

C. 4

D. 3

Zadanie 15. (1 pkt)

Długość, szerokość i wysokość prostopadłościanu są w stosunku 2:1:2. Przekątna prostopadłościanu jest równa 6. Pole podstawy prostopadłościanu jest równe:

A. 4

B.8

 $\mathbf{C}.\sqrt{2}$

D. 2

Zadanie 16. (1 pkt)

W zamkowych podziemiach stoją dwie skrzynie otwierane różnymi kluczami. Masz pęk złożony z 6 kluczy, wśród których są dwa właściwe. Ile co najwyżej prób musisz wykonać, aby dobrać właściwe klucze do skrzyń?

A. 720

B. 360

C. 30

D. 180

Zadanie 17. (1 pkt)

Liczba a to najmniejsza liczba pierwsza. Liczba b jest równa $(\sqrt{7} - 1)^2 + 2\sqrt{7}$. Jakim procentem liczby a jest liczba b?

A. 250%

B. 800%

C. 200%

D. 400%

Zadanie 18. (1 pkt)

Pierwsza współrzędna punktu przecięcia prostych x - y - m = 0 i -2x - y + 4 = 0 jest dodatnia, gdy:

A. m > -4

B. m > 4

C. m < -4

D. m < 4

Zadanie 19. (1 pkt)

Do zbioru rozwiązań nierówności -(x+5)(x-3) > 0 nie należy liczba:

A. 2

B. -3

 $\mathbf{C}.0$

D. 3

Zadanie 20. (1 pkt)

Wiadomo, że x > 0 i mediana liczb x, x + 2, x + 4, x + 6, x + 10, x + 20 jest równa 9. Zatem największa i najmniejsza z tych liczb różnią się o:

A. 5

B. 15

C. 20

D. 24

Zadanie 21. (1 pkt)

Na ile sposobów można włożyć dwie rękawiczki do czterech różnych szuflad?

A.16

B. 8

C. 256

D. 32

Zadanie 22. (1 pkt)

Trójkąt prostokątny o przyprostokątnych długości 12 i 5 obrócono wokół krótszego boku. Pole powierzchni bocznej tak otrzymanej bryły jest równe:

 $\mathbf{A.60}\pi$

 $\mathbf{B.156}\pi$

 $C.240\pi$

D. 144π

Zadanie 23. (1 pkt)

Liczby dodatnie a, b, c spełniają warunek: $\log_5 a = \log_4 a = 2$ i $\log_8 c = 1$. Wtedy $\sqrt{a+b+c}$ równa się:

A. 7

B.17

 $\mathbf{C}.\sqrt{7}$

D.1

Zadanie 24. (1 pkt)

Symetralna odcinka \overline{AB} , gdzie A = (-3, 4), B = (2, 1), przecina oś OY w punkcie o współrzędnych:

 $\mathbf{A} \cdot \left(\frac{10}{3}, 0\right)$

 $\mathbf{B}.(0,-2)$

 $\mathbf{C} \cdot \left(0, \frac{10}{3}\right)$

 $\mathbf{D}_{\bullet}(-2,0)$

Zadanie 25. (1 pkt)

Pole powierzchni jednej ściany miedzianej kostki do gry jest równe 4 cm². Gęstość miedzi jest równa ok. 9 g/cm³. Masa kostki jest równa około:

A.144 g

B. 72 g

C. 36 g

D. 216 g

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 33. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 pkt)

Drzewo wysokości 10 m rosnące na placu rzuca cień długości $10\sqrt{3}$ m. Oblicz miarę kąta, pod jakim promienie słoneczne padają do poziomu.

Zadanie 27. (2 *pkt*)

Trzeci wyraz ciągu arytmetycznego jest równy 4. Suma czterech pierwszych wyrazów tego ciągu jest równa 14. Oblicz a_{10} .

Zadanie 28. (2 *pkt*)

Rozwiąż równanie $(\cos x + \sin x)^2 - 2\sin x \cos x = 2\sin x$, wiedząc, że x jest kątem ostrym.

Zadanie 29. (4 pkt)

Pociąg osobowy mija obserwatora w ciągu 5 s, a obok peronu długości 300 m przejeżdża w ciągu 25 s. Oblicz długość pociągu i jego prędkość. Określ, jak długo pociąg będzie mijał stojący na równoległym torze pociąg towarowy długości 150 m.

Zadanie 30. (*4 pkt*)

Wykaż, że $\sin \alpha > \cos \alpha$, gdy 0° < α < 90° i tg² α – 3 = 0.

Zadanie 31. (5 *pkt*)

Wartość użytkowa krosna maleje co roku o tę samą kwotę. Po ilu latach krosno straci wartość użytkową, jeżeli jego wartość po dziesięciu latach będzie cztery razy mniejsza niż po dwóch latach?

Zadanie 32. (6 pkt)

W jadalni znajduje się okrągły stół, przy którym może usiąść 6 osób. Pod ścianą stoi ława, na której również może usiąść 6 osób. Do jadalni wchodzi 6 osób, które najpierw w sposób losowy usiądą przy stole, a następnie na ławie.

Które z prawdopodobieństw jest większe: prawdopodobieństwo tego, że M i R będą sąsiadami, siadając przy stole, czy prawdopodobieństwo tego, że M i R będą sąsiadami, siadając na ławie?

