Petriho sítě

PES 2007/2008

Prof. RNDr. Milan Češka, CSc.

ceska@fit.vutbr.cz

Doc. Ing. Tomáš Vojnar, Ph.D.

vojnar@fit.vutbr.cz

Sazba: Ing. Petr Novosad, Doc. Ing. Tomáš Vojnar, Ph.D.

(verze 27.2.2008)

FIT, VUT v Brně, Božetěchova 2, CZ-612 66 Brno

Analýza Petriho sítí

1. Základní pojmy

- Základní problémy analýzy
 - bezpečnost (safeness)
 - omezenost (boundness)
 - konzervativnost (conservation)
 - živost (liveness)
- ❖ **Definice 1**: Místo $p \in P$ Petriho sítě $N = (P, T, F, W, K, M_0)$ s počátečním značení M_0 je *bezpečné* (safe), jestliže pro všechna značení $M \in [M_0)$ je $M(p) \le 1$. Petriho síť je *bezpečná*, je-li každé její místo bezpečné.

Příklad 1:

síť, která není bezpečná

odpovídající bezpečná síť

Postup:

- 1. K místu p, které má bý bezpečné přidej komplementární místo p'.
- Modifikuj incidující přechody podle algoritmu komplementace sítě.

❖ **Definice 2**: Místo $p \in P$ Petriho sítě $N = (P, T, F, W, K, M_0)$ se nazývá k-bezpečné, jestliže pro všechna značení $M \in [M_0]$ je $M(p) \le k$. Je-li místo p' k-bezpečné pro nějaké k, nazývá se *omezené* (bounded). Petriho síť, jejíž všechna místa jsou omezená se nazývá *omezená Petriho síť*.

Omezenost sítě ⇒ konečný stavový prostor sítě ⇒ ekvivalenci sítě s konečnými automaty

Definice 3: Petriho síť $N = (P, T, F, W, K, M_0)$ je striktně konzervativní, jestliže platí:

$$\forall M \in [M_0\rangle : \sum_{p \in P} M(p) = \sum_{p \in P} M_0(p)$$

Konzervativnost vzhledem k váhovému vektoru $\underline{w} = (w_1, \dots, w_n), w_i \geq 0$

$$\forall M \in [M_0\rangle : \sum_{i=1}^n w_i . M(p_i) = \sum_{i=1}^n w_i . M_0(p_i)$$

- **Definice 4**: Nechť $N = (P, T, F, W, K, M_0)$ je Petriho síť a $t \in T$.
 - 1. t se nazývá živý přechod, jestliže pro každé značení $M \in [M_0]$ existuje značení $M' \in [M]$ takové, že t je proveditelný při značení M'.
 - 2. Síť N se nazývá $\check{z}ivou$, je-li každý její přechod živý.

Aplikace: živost x deadlock

Příklad 2:

Proveditelné posloupnosti přechodů:

 $t_1t_2t_3t_4t_5t_6...$ $t_4t_5t_6t_1t_2t_3...$

Uvažujme však posloupnost přechodů, která začíná $t_1t_4\dots$

- ❖ **Definice 5**: Značení M Petriho sítě $N = (P, T, F, W, K, M_0)$ je *živé*, jestliže pro všechna $t \in T$ existuje $M' \in [M]$ takové, že přechod t je proveditelný při značení M'.
- **Věta 1**: Petriho síť je *živá*, právě když všechna značení z $|M_0\rangle$ jsou živá.
- **Definice 6**: (Problém dosažitelnosti Reachability problem) Je dána Petriho síť N s počátečním značením M_0 a značení M. Je $M \in [M_0]$?
- ❖ **Definice 7**: (Problém pokrytí Coverability problem) Je dána Petriho síť N s počátečním značením M_0 a značení M. Existuje $M' \in [M_0\rangle$ takové, že $M' \geq M$?

Další problémy analýzy:

- posloupnosti přechodů (firing sequences)
- ekvivalence sítí
- inkluse sítí

2. Techniky analýzy Petriho sítí

Strom dosažitelných značení (The Reachability Tree):

Strom dosažitelných značení je konečnou reprezentací množiny dosažitelných značení $[M_0\rangle$. Strom dosažitelných značení je kořenový orientovaný strom, jehož kořenem je počáteční značení M_0 a vrcholy tvoří vektory z $(\mathbb{N} \cup \{\omega\})^n, n = |P|$. Kde ω značí supremum množiny \mathbb{N} s vlastnostmi:

- 1. $\forall n \in \mathbb{N} : n < \omega$
- 2. $\forall m \in \mathbb{N} \cup \{\omega\} : m + \omega = \omega + m = \omega m = \omega$

Algoritmus konstrukce stromu dosažitelných značení:

Nechť x je vrchol (uzel) stromu. $M_x\colon P\to\mathbb{N}\cup\{\omega\}$ bude ohodnocení vrcholu x; $M_{\mathsf{kořen}}=M_0$

Rozlišíme 4 typy vrcholů: čelní, koncový, duplikovaný, vnitřní

Nechť x je právě zpracovávaný čelní vrchol.

- 1. Jestliže $\exists y, y \neq x$, y není čelní a $M_x = M_y$, pak x se stává duplikovaným vrcholem
- 2. Jestliže $\delta(M_x,t)$ není definováno pro žádné $t\in T$, pak x se stává koncovým vrcholem
- 3. Je-li jistý přechod $t \in T$ M_x -proveditelný, vytvoříme nový vrchol z s ohodnocením M_z :

 $\forall p \in P$:

- (a) Je-li $M_x(p) = \omega$, pak $M_z(p) = \omega$
- (b) Existuje-li na cestě z kořene do vrcholu x vrchol y takový, že $M_y \leq \delta(M_x,t)$ a jestliže $M_y(p) < \delta(M_x,t)(p)$, pak $M_z(p) = \omega$
- (c) Jinak $M_z(p) = \delta(M_x, t)(p)$

Hrana $\langle x, z \rangle$ je označena přechodem t a vrchol z se stává čelním vrcholem.

Příklad 3: Konstrukce stromu dosažitelných značení

Příklad 3: (pokračování)

Příklad 3: (pokračování)

Příklad 3: (pokračování)

Výsledný strom

❖ Využití stromu dosažitelných značení pro analýzu Petriho sítí:

- bezpečnost
- omezenost
- konzervativnost
- pokrytí
- živost
- dosažitelnost

Poznámka:

Alternativní reprezentace stavového prostoru Petriho sítí: Graf pokrytí.

3. Invarianty

Nyní se budeme zabývat metodami analýzy, které jsou založeny na lineární algebraické reprezentaci Petriho sítě. Budou nás zajímat množiny míst, které nemění svoje značky v průběhu provádění přechodů. Množiny takových míst se nazývají P-invarianty. T-invarianty udávají kolikrát je třeba, počínaje určitým značením, provést každý přechod sítě, abychom získali nazpět toto značení (reprodukovali dané značení sítě).

Příklad aplikace P-invariantů Petriho sítě:

Uvažujme model kooperace procesů nazývaný termínem *Readers-Writers*: n procesů (například v operačním systému) má přístup ke společné vyrovnávací paměti (bufferu), aby do ní určitá data zapsal nebo z ní data přečetl.

Předpokládejme, že se tyto procesy mají chovat podle následujících pravidel:

- 1. Jestliže žádný z procesů nezapisuje do vyrovnávací paměti, pak nejvýše k procesů, $k \le n$, může simultánně číst z vyrovnávací paměti.
- 2. Přístup libovolného procesu, který chce zapisovat do vyrovnávací paměti lze povolit pouze tehdy, jestliže žádný z procesů ani nečte, ani nezapisuje.

Příklad 4: Readers-Writers

		t_0	t_1	t_2	t_3	t_4	t_5	i_1	i_2	M_0
<u>N</u> =	p_0	-1		1	-1		1	1	0	\overline{n}
	p_1	1	-1					1	0	
	p_2		1	-1				1	1	
	p_3				1	-1		1	0	
	p_4					1	-1	1	k	
	p_5		-1	1		-k	k	0	1	k

 $\underline{N}^T.i = \mathbf{0}$

Interpretace invariantů:

 $\underline{i_1}$:

$$\forall M \in [M_0\rangle : \sum_{i=0}^4 M(p_i) = \sum_{i=0}^4 M_0(p_i) = n$$

tj. počet procesů je konstantní (žádné procesy se neztrácejí, ani nepřibývají) a každý proces je v jednom ze stavů p_0, \ldots, p_4

 $\underline{i_2}$:

$$\forall M \in [M_0\rangle: M(p_2) + k.M(p_4) + M(p_5) = M_0(p_2) + k.M_0(p_4) + M_0(p_5) = k$$

- p_4 obsahuje nejvýše jednu značku (existuje nejvýše jeden zapisující proces)
- obsahuje-li p_4 značku, pak $M(p_2)=M(p_5)=0$ (jakmile některý proces zapisuje, pak žádný nečte)
- p_2 může obsahovat maximálně k značek (maximálně k procesů může číst simultánně z vyrovnávací paměti)
- jestliže $M(p_4)=0$ (žádný z procesů nezapisuje), pak p_2 může obsahovat k značek a pak je synchronizační místo p_5 prázdné

\clubsuit S využitím invariantů i_1 a i_2 lze dokázat následující tvrzení:

Petriho síť modelu Readers-Writers s uvedeným počátečním značením a s kapacitami míst

$$K(p_i) = n \ \text{pro} \ i \in \{0, 1, 3\}$$
 $K(p_4) = 1 \ \text{a} \ K(p_2) = K(p_5) = k$

je živá.

4. P-invarianty

P-invarianty získáme řešením soustavy algebraických rovnic tvaru $\underline{N}^T.x = \mathbf{0}$ (\underline{N}^T je transponovaná matice Petriho sítě N).

- ❖ **Definice 8**: Nechť $N = (P, T, F, W, K, M_0)$ je Petriho síť. Vektor míst $i: P \to \mathbb{Z}$ nazýváme P-invariantem Petriho sítě N, jestliže platí $\underline{N}^T.i = \mathbf{0}$. Jestliže $i(p) \in \{0, 1\}$ pro všechna $p \in P$, pak i nazýváme binárním P-invariantem sítě N.
- **Lemma 1**: Nechť i_1 a i_2 jsou P-invarianty sítě N a nechť $z \in \mathbb{Z}$. Pak $i_1 + i_2$ a $z.i_1$ jsou také P-invarianty sítě N.

Věta 2: Nechť N je Petriho síť s počátečním značením M_0 . Pak pro každý P-invariant i sítě N a pro každé dosažitelné značení $M \in [M_0]$ platí $M.i = M_0.i$.

Důkaz:

Nechť $M_1, M_2 \in [M_0]$ a nechť $t \in T$ tak, že $M_1[t]M_2$. Pak platí $M_2 = M_1 + \underline{t}$ a $\underline{t}.i = \mathbf{0}$ (protože i je invariant). Proto $M_2.i = (M_1 + \underline{t}).i = M_1.i + \underline{t}.i = M_1.i$.

Věta 3: Nechť N je živá Petriho síť a nechť $i: P \to \mathbb{Z}$ je vektor míst, pro který platí $\forall M \in [M_0\rangle : M.i = M_0.i$. Pak i je P-invariant.

Důkaz:

Stačí dokázat, že pro každý přechod $t\in T$ platí $\underline{t}.i=\mathbf{0}$. Nechť tedy $t\in T$ a $M\in [M_0\rangle$ a nechť t je M-proveditelný. Pak $M[t\rangle M',\, M.i=M'.i=(M+\underline{t}).i=M.i+\underline{t}.i.$ Tudíž $\underline{t}.i=\mathbf{0}$.

- **Definice 9**: Petriho síť N je *pokryta P-invarianty*, jestliže pro každé místo $p \in P$ existuje kladný P-invariant i sítě N takový, že jeho složka i(p) > 0.
- **Věta 4**: Je-li Petriho síť N pokryta P-invarianty, pak existuje P-invariant i sítě N, pro který i(p) > 0 pro všechna $p \in P$.

Důkaz:

Podle předpokladu, pro každé $p \in P$ existuje invariant i_p sítě N, pro který i(p) > 0. Podle Lemmy 1 je invariant

$$i = \sum_{p \in P} i_p$$

Tento invariant splňuje podmínku i(p) > 0 pro všechna $p \in P$.

Věta 5: Nechť N je Petriho síť s konečným počátečním značením M_0 . Je-li N pokryta P-invarianty, pak je *omezená*.

Důkaz:

Nechť $q \in P$ je libovolné místo sítě N a i je P-invariant, pro který i(q) > 0 a nechť $M \in [M_0)$. Poněvadž (podle Věty 2)

$$M(q).i(q) \le \sum_{p \in P} M(p).i(p) = M.i = M_0.i$$

dostáváme

$$M(q) \le M_0 \frac{i}{i(q)}$$

Poznámka:

Opačné tvrzení k Větě 5, tj. je-li síť omezená, pak je pokryta P-invarianty, obecně neplatí.

5. T-invarianty

Nyní se budeme zabývat řešením soustavy rovnic tvaru $\underline{N}.x = \mathbf{0}$. Předpokládejme, že vektor $u: T \to \mathbb{N}$ je takovým řešením. Jestliže je možné, počínaje určitým značením M, provést každý přechod t přesně u(t)-krát, pak opět získáme značení M.

ullet Věta 6: Nechť $N=(P,T,F,W,K,M_0)$ je Petriho síť a nechť $M_0,M_1,\ldots,M_k\in[M_0\rangle$ a $t_1,t_2,\ldots,t_k\in T$, přičemž

$$M_0[t_1\rangle M_1[t_2\rangle \dots [t_k\rangle M_k$$

Nechť vektor $u \colon T \to \mathbb{N}$ je definován takto:

$$u(t) = |\{i : t_i = t \land 1 \le i \le k\}|$$

Pak $M_0 + \underline{N}.u = M_k$.

Poznámka:

Opak Věty 6 obecně neplatí, protože pro provedení výpočetní posloupnosti odpovídající vektoru u je třeba dostatečného počtu značek a dostatečné volné kapacity míst.

- ❖ Věta 7: Nechť N je Petriho síť $N=(P,T,F,W,K,M_0)$, pro kterou $K(p)=\omega$ pro všechna $p\in P$. Nechť $M,M':P\to \mathbb{Z}$ jsou dvě značení a nechť $u\colon T\to \mathbb{N}$ je vektor. Pak $M+\underline{N}.u=M'$ tehdy a jen tehdy, jestliže existuje $M''\colon P\to \mathbb{N}$ a přechody $t_1,\ldots,t_k\in T$ takové, že $(M+M'')[t_1\rangle\ldots[t_k\rangle(M'+M'')$ a pro všechna $t\in T$ je $u(t)=|\{i\colon t_i=t\ \land\ 1\le i\le k\}|.$
- **Definice 10**: Značení M Petriho sítě N se nazývá *reprodukovatelné*, jestliže existuje $M' \neq M$ tak, že $M' \in [M]$ a zároveň $M \in [M']$.

- **Lemma 2**: Nechť $N=(P,T,F,W,K,M_0)$ je Petriho síť, pro kterou $\forall p \in P \colon K(p)=\omega$. Je-li značení M sítě N reprodukovatelné, pak je rovněž reprodukovatelné značení M+M' pro libovolné značení M' sítě N.
- ❖ **Definice 11**: Nechť $N = (P, T, F, W, K, M_0)$ je Petriho síť. Vektor $i: T \to \mathbb{Z}$ se nazývá T-invariant sítě N, jestliže $\underline{N}.i = \mathbf{0}$.
- **Lemma 3**: Jestliže i_1 a i_2 jsou T-invarianty Petriho sítě N a $z \in \mathbb{Z}$, pak $i_1 + i_2$ a $z.i_1$ jsou také T-invarianty sítě N.

Věta 8: Nechť N je Petriho síť s neomezenými kapacitami všech míst. Síti N přísluší nenulový T-invariant i právě tehdy, má-li reprodukovatelné značení.

Důkaz:

$$\underline{N}.i = \mathbf{0} \Leftrightarrow \mathbf{0} + \underline{N}.i = \mathbf{0} \Leftrightarrow \exists t_1, t_2, \dots, t_k \in T \text{ a } M'' \text{ takov\'e, \'e}$$

 $(\mathbf{0} + M'')[t_1\rangle \dots [t_k\rangle(\mathbf{0} + M'') \text{ a } \forall t \in T : i(t) = |\{i : t_i = t \land 1 \leq i \leq k\}| \text{ (V\'eta 7)}$

❖ **Definice 12**: T-invariant i Petriho sítě N se nazývá realizovatelný, jestliže existuje $M \in [M_0)$ a výpočetní posloupnost $M[t_1) \dots [t_k) M_k$ taková, že $\forall t \in T : i(t) = |\{i : t_i = t \land 1 \le i \le k\}|.$

Příklad 5: Petriho síť s nerealizovatelným invariantem

Ne každý kladný T-invariant i je realizovatelný. Dokonce ani nepostačuje, aby N byla živá a omezená a každé značení bylo reprodukovatelné a invariant i nebyl součtem jiných kladných T-invariantů.

T-invariant i definovaný zobrazením $i(t_1)=i(t_2)=i(t_5)=i(t_6)=1$ a $i(t_3)=i(t_4)=0$ není realizovatelný.

- **Definice 13**: Petriho síť N je pokryta T-invarianty, jestliže pro každý přechod t sítě N existuje kladný T-invariant i sítě N takový, že i(t) > 0.
- **Věta 9**: Je-li Petriho síť N pokryta T-invarianty, pak existuje invariant i sítě N takový, že i(t) > 0 pro všechny přechody $t \in T$.
- ❖ Věta 10: Každá živá a omezená Petriho síť je pokryta T-invarianty.

Poznámka:

Věta 10 představuje pouze nutnou podmínku pro živost omezené Petriho sítě. Není-li daná Petriho síť pokryta T-invarianty, pak není živá nebo není omezená.