

Probabilidade e Estatística

Cayan Portela

UniCEUB

March 22, 2023

Probabilidade e Estatística

Cayan Portela

UniCEUB

March 22, 2023

- 1 Conjuntos e espaço amostral
- 2 Operações com conjuntos
- 3 Probabilidade: axiomas e operações
- 4 Regra da probabilidade total
- 5 Teorema de Bayes
- 6 Principais distribuições de probabilidade

Campos de conhecimento

UniCEUB

UniCEUR

Modelo é uma aproximação da realidade para ajudar no processo decisório

UniCEUR

Modelo é uma aproximação da realidade para ajudar no processo decisório

■ Porém, a realidade é repleta de <u>incertezas</u>

UniCEUR

Modelo é uma aproximação da realidade para ajudar no processo decisório

- Porém, a realidade é repleta de <u>incertezas</u>
 - O futuro é uma variável aleatória

UniCEUB

Modelo é uma aproximação da realidade para ajudar no processo decisório

- Porém, a realidade é repleta de <u>incertezas</u>
 - O futuro é uma variável aleatória

Assim, as distribuições de probabilidades das variáveis de decisão e/ou das restrições também podem ser levadas em consideração

Campos distintos: ambos sobre processos aleatórios.

- Probabilidade
 - Lógica contida.
 - Algumas regras para o cálculo de probabilidades.
 - Única resposta correta
- Estatística
 - Estotástico/aleatório.
 - Conclusões probabilísticas a partir de dados experimentais.
 - Não possue uma única resposta correta

Exemplo

UniCEUB

Qual a probabilidade de obtermos exatamente 1 "cara" em 3 lançamentos de uma moeda justa?

Conjuntos em Palavras.

- Meses do ano:
 - \blacksquare S = Todos os meses.
 - L = mês com 31 dias.
 - \blacksquare R = mês com 'r' no nome.

 $S = \{\mathsf{Jan},\,\mathsf{Fev},\,\mathsf{Mar},\,\mathsf{Abr},\,\mathsf{Mai},\,\mathsf{Jun},\,\mathsf{Jul},\,\mathsf{Ago},\,\mathsf{Set},\,\mathsf{Out},\,\mathsf{Nov},\,\mathsf{Dez}\}$

 $L = {Jan, Mar, Mai, Jul, Ago, Dez}$

 $\mathsf{R} = \{\mathsf{Jan},\,\mathsf{Fev},\,\mathsf{Mar},\,\mathsf{Abr},\,\mathsf{Set},\,\mathsf{Out},\,\mathsf{Nov},\,\mathsf{Dez}\,\,\}$

Conjuntos em Palavras.

- Meses do ano:
 - \blacksquare S = Todos os meses.
 - \blacksquare L = mês com 31 dias.
 - \blacksquare R = mês com 'r' no nome.

```
S = \{\mathsf{Jan},\,\mathsf{Fev},\,\mathsf{Mar},\,\mathsf{Abr},\,\mathsf{Mai},\,\mathsf{Jun},\,\mathsf{Jul},\,\mathsf{Ago},\,\mathsf{Set},\,\mathsf{Out},\,\mathsf{Nov},\,\mathsf{Dez}\}
```

$$L = {Jan, Mar, Mai, Jul, Ago, Dez}$$

$$\mathsf{R} = \{\mathsf{Jan},\,\mathsf{Fev},\,\mathsf{Mar},\,\mathsf{Abr},\,\mathsf{Set},\,\mathsf{Out},\,\mathsf{Nov},\,\mathsf{Dez}\,\,\}$$

$$L \cap R = \{ Jan, Mar, Out, Dez \}$$

Conjuntos

Conjuntos e espaço amostral

UniCEUB

Conjunto

"Conjunto" é uma coleção de objetos (numéricos ou não)

Conjuntos e espaço amostral UniCEUB

Conjunto

"Conjunto" é uma coleção de objetos (numéricos ou não)

■ Os membros contidos num conjunto são chamados de "elementos"

Conjunto

"Conjunto" é uma coleção de objetos (numéricos ou não)

- Os membros contidos num conjunto são chamados de "elementos"
 - Se **todos** os elementos de um conjunto A também forem elementos de outro conjunto B, diz-se que A <u>está contido</u> em B $(A \subset B)$

UniCEUB

Conjunto

"Conjunto" é uma coleção de objetos (numéricos ou não)

- Os membros contidos num conjunto são chamados de <u>"elementos"</u>
 - Se **todos** os elementos de um conjunto A também forem elementos de outro conjunto B, diz-se que A <u>está contido</u> em B $(A \subset B)$
- O conjunto que n\u00e3o cont\u00e9m sem nenhum elemento \u00e9 chamado de "conjunto vazio" (\u00b3)

UniCEUR

Uma banda possui vocalistas e guitarristas.

- 7 cantam.
- 4 tocam guitarra.
- 2 fazem ambos.

Quantas pessoas existem na banda?

Caminhos possíveis

UniCEUB

Conjuntos e espaço amostral

Tenho 3 calças e 4 camisas. Quantos trajes distintos posso usar?

UniCEUB

DNA é feito por sequências de nucleotídeos: A, C, G, T.

Quantas sequências de tamanho 3 podemos ter?

DNA é feito por sequências de nucleotídeos: A, C, G, T.

- Quantas sequências de tamanho 3 podemos ter?

- (i) 12 (ii) 24 (iii) 64 (iv) 128

DNA é feito por sequências de nucleotídeos: A, C, G, T.

Quantas sequências de tamanho 3 podemos ter?

- (i) 12 (ii) 24 (iii) 64 (iv) 128

DNA é feito por sequências de nucleotídeos: A, C, G, T.

Quantas sequências de tamanho 3 podemos ter?

Quantas sequências de tamanho 3, sem repetição, podemos ter?

UniCEUB

Conjuntos e espaço amostral

 \blacksquare Permutações de k escolhidos de n

UniCEUR

Conjuntos e espaço amostral

■ Permutações de *k* escolhidos de *n*

Quais permutações de k = 3 podemos ter de $n = \{a, b, c, d\}$?

■ Permutações de *k* escolhidos de *n*

Quais permutações de k = 3 podemos ter de $n = \{a, b, c, d\}$?

abc abd acb acd adb adc bac bad bca bcd bda bdc cab cad cba cbd cda cdb dab dac dba dbc dca dcb

Subconjuntos:

Ordem não importa

Quantas combinações de 3 elementos podemos ter de {a, b, c, d} ?

$${a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}$$

UniCEUR

Conjuntos e espaço amostral

abc abd acb acd adb adc bac bad bca bcd bda bdc cab cad cba cbd cda cdb dab dac dba dbc dca dcb

$$P_{(n,k)} = P_{(4,3)} = 4!$$

[(4) × (3) × (2)]

$$C_{(3,4)} = \frac{P_{(4,3)}}{3!} = \frac{4!}{3!}$$

Ordem não importa

UniCEUB

abc abd acb acd adb adc
bac bad bca bcd bda bdc
cab cad cba cbd cda cdb
dab dac dba dbc dca dcb

$$P_{(n,k)} = P_{(4,3)} = 4!$$

 $\lceil (4) \times (3) \times (2) \rceil$

$$C_{(3,4)} = \frac{P_{(4,3)}}{3!} = \frac{4!}{3!}$$

Ordem não importa

UniCEUB

abc	abd	acb	acd adb adc
bac	bad	bca	bcd bda bdc
cab	cad	cba	cbd cda cdb
dab dac dba dbc dca dcb			

o dac dba dbc dca dcb
$$P_{(n,k)} = P_{(4,3)} = 4!$$

$$[(4) \times (3) \times (2)]$$

$$C_{(3,4)} = \frac{P_{(4,3)}}{3!} = \frac{4!}{3!}$$

Ordem não importa

$$C_{(n,k)} = \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

n elementos tomados k a k

UniCEUB

Considere uma moeda justa.

Quantas possíveis maneiras podemos obter exatamente 3 caras em 10 jogadas?

UniCEUB

Considere uma moeda justa.

Quantas possíveis maneiras podemos obter exatamente 3 caras em 10 jogadas?

Qual a probabilidade de termos exatamente 3 caras em 10 jogadas?

Espaço amostral

Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um determinada variável aleatória

UniCEUR

Espaço amostral

Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um determinada <u>variável aleatória</u>

- Os elementos e subconjuntos do espaço amostral representam os possíveis eventos associados à variável aleatória
 - Os eventos podem ser combinados de acordo com as operações de conjuntos para formar novos eventos

Variável aleatória

Conjuntos e espaço amostral

UniCEUB

Variável aleatória

Etimologicamente, Variável aleatória é uma:

UniCEUB

Variável aleatória

Etimologicamente, Variável aleatória é uma:

■ Variável: Possui um valor desconhecido

UniCEUB

Variável aleatória

Etimologicamente, Variável aleatória é uma:

- Variável: Possui um valor desconhecido
- Aleatória: Pode possuir valores diferentes, com diferentes probabilidades

UniCEUB

Variável aleatória

Etimologicamente, Variável aleatória é uma:

- Variável: Possui um valor desconhecido
- Aleatória: Pode possuir valores diferentes, com diferentes probabilidades

Exemplo 6.01

Exemplo 6.01

Defina o espaço amostral das seguintes variáveis:

■ Resultado da conta 1 + 1

- Resultado da conta 1 + 1
- Capital do Brasil

Exemplo 6.01

- Resultado da conta 1 + 1
- Capital do Brasil
- Número de SSs em Probabilide e Estatística

- Resultado da conta 1 + 1
- Capital do Brasil
- Número de SSs em Probabilide e Estatística
- Número de pessoas na nova turma do curso.

Exemplo 6.01

- Resultado da conta 1 + 1
- Capital do Brasil
- Número de SSs em Probabilide e Estatística
- Número de pessoas na nova turma do curso.
- Tempo até o lançamento de um novo filme, em uma sequencia.

Complementar de um conjunto

Operações com conjuntos

UniCEUB

O complementar (ou complementar absoluto) funciona como o operador negação

UniCEUB

O complementar (ou complementar absoluto) funciona como o operador negação

■ Dado um conjunto $A \in \Omega$, seu complementar (A^c) constitui nos elementos presentes no espaço amostral, mas não em A

$$A^c = \{ x \in \Omega \mid x \notin A \}$$

UniCEUB

O complementar (ou complementar absoluto) funciona como o operador negação

■ Dado um conjunto $A \in \Omega$, seu complementar (A^c) constitui nos elementos presentes no espaço amostral, mas não em A

$$A^c = \{ x \in \Omega \mid x \notin A \}$$

■ Veja *A^c* como <u>"**NÃO**" A</u>

Complementar de um conjunto

Operações com conjuntos

UniCEUB

Exemplo 6.02 (a)

Seja X = Nota final em Probabilidade e Estatística:

lacktriangle Defina o espaço amostral de X

Exemplo 6.02 (a)

Seja X = Nota final em Probabilidade e Estatística:

■ Defina o espaço amostral de X

Seja o evento $A = \text{Men} \tilde{\varphi}$ SS

■ Descreva os eventos $A \in A^c$

Interseção de dois conjuntos

Operações com conjuntos

UniCEUB

A **interseção** (ou conjunção) entre os conjuntos A e B $(A \cap B)$ constitui nos elementos pertencentes tanto a A quanto a B

$$A \cap B = \{x \in \Omega \mid x \in A; x \in B\}$$

UniCEUB

A **interseção** (ou conjunção) entre os conjuntos A e B $(A \cap B)$ constitui nos elementos pertencentes tanto a A quanto a B

$$A \cap B = \{x \in \Omega \mid x \in A; x \in B\}$$

■ Veja $A \cap B$ como A "E" B

UniCEUB

Exemplo 6.02 (b)

Sejam os eventos B = Aprovação; C = Menção MS

■ Descreva os eventos $B \cap C$, C^c e $B^c \cap C$

Eventos mutuamente excludentes

Operações com conjuntos

UniCEUB

Dois eventos A e B são ditos mutuamente excludentes quando $A \cap B = \emptyset$

Eventos mutuamente excludentes

Operações com conjuntos

UniCEUB

Dois eventos A e B são ditos mutuamente excludentes quando $A \cap B = \emptyset$

■ Se quando um acontece, o outro não acontece, é natural que A e B não possam acontecer ao mesmo tempo.

União de dois conjuntos

Operações com conjuntos

UniCEUB

A **união** (ou disjunção) entre os conjuntos A e B $(A \cup B)$ constitui nos elementos pertencentes a A, a B, ou a ambos

$$A \cup B = \{x \in \Omega \mid x \notin (A^c \cap B^c)\}\$$

UniCEUB

A **união** (ou disjunção) entre os conjuntos A e B $(A \cup B)$ constitui nos elementos pertencentes a A, a B, ou a ambos

$$A \cup B = \{x \in \Omega \mid x \notin (A^c \cap B^c)\}$$

■ Veja $A \cup B$ como A "OU" B

UniCEUB

Exemplo 6.02 (c)

Sejam os eventos B = Aprovação; C = Menção MS

■ Descreva os eventos $B \cup C$, $B \cup C^c$ e $(B^c \cap C^c)^c$

União exclusiva de dois conjuntos

Operações com conjuntos

UniCEUB

A **união exclusiva** (ou disjunção exclusiva) entre os conjuntos A e B $(A \cup B)$ constitui nos elementos pertencentes a A ou a B, mas **não** a ambos

$$A \cup B = (A \cap B^c) \cup (A^c \cap B)$$

UniCEUB

A união exclusiva (ou disjunção exclusiva) entre os conjuntos A e B $(A \cup B)$ constitui nos elementos pertencentes a A ou a B, mas **não** a ambos

$$A \cup B = (A \cap B^c) \cup (A^c \cap B)$$

■ Veja $A \cup B$ como <u>"OU"</u> A, "OU" B

UniCEUB

Exemplo 6.02 (d)

Sejam os eventos A = Menção SS; D = Reprovação

■ Descreva os eventos $A \cup D$ e $A \cup D^c$

Diferença de dois conjuntos

Operações com conjuntos

UniCEUB

A diferença (ou complementar relativo) entre os conjuntos A e B $(A \setminus B)$ constitui nos elementos pertencentes a A, mas não a B

$$A \setminus B = \{x \in \Omega \mid x \in A; x \notin B\}$$

UniCEUB

A diferença (ou complementar relativo) entre os conjuntos A e B $(A \setminus B)$ constitui nos elementos pertencentes a A, mas não a B

$$A \setminus B = \{x \in \Omega \mid x \in A; x \notin B\}$$

- Note que $A^c = \Omega \setminus A$
- $\blacksquare A \setminus B \neq B \setminus A!$

UniCEUB

Exemplo 6.02 (e)

Sejam os eventos D = Reprovação; E = Menção MI

■ Descreva os eventos $(D \setminus E)^c$ e $E \setminus D$

UniCEUB

Exemplo 6.03

Seja
$$\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
. $A = \{2, 4, 7, 10\}$; $B = \{2, 3, 5, 7\}$; $C = \{1, 3, 5, 7, 9\}$; $D = \{0, 2, 4, 6, 8, 10\}$. Forneça:

UniCEUB

Operações com conjuntos

Exemplo 6.03

UniCEUB

Operações com conjuntos

Exemplo 6.03

- $\blacksquare A \cap B^c$
- $\blacksquare B \cup C^c$

- $\blacksquare A \cap B^c$
- \blacksquare $B \cup C^c$
- $\blacksquare A^c \cup C$

- $\blacksquare A \cap B^c$
- $\blacksquare B \cup C^c$
- $\blacksquare A^c \cup C$
- $\blacksquare (\Omega \setminus C)^c$

- $\blacksquare A \cap B^c$
- \blacksquare $B \cup C^c$
- $\blacksquare A^c \cup C$
- $\blacksquare (\Omega \setminus C)^c$
- $\square D^c$

UniCEUB

Exemplo 6.04

Sejam X = curso de um estudante do UniCEUB, e os eventos A = Ciência de Dados/Diurno; B = Ciência de dados/Noturno. Forneça a expressão do conjunto no qual se encaixam os seguintes casos:

UniCEUR

Operações com conjuntos

Exemplo 6.04

Sejam X = curso de um estudante do UniCEUB, e os eventos A = Ciência de Dados/Diurno; B = Ciência de dados/Noturno. Forneça a expressão do conjunto no qual se encaixam os seguintes casos:

■ Estudante de ciência de dados

Exemplo 6.04

Sejam X = curso de um estudante do UniCEUB, e os eventos A = Ciência de Dados/Diurno; B = Ciência de dados/Noturno. Forneça a expressão do conjunto no qual se encaixam os seguintes casos:

- Estudante de ciência de dados
- Não é estudante de ciência de dados.

Exemplo 6.04

Sejam X = curso de um estudante do UniCEUB, e os eventos A = Ciência de Dados/Diurno; B = Ciência de dados/Noturno. Forneça a expressão do conjunto no qual se encaixam os seguintes casos:

- Estudante de ciência de dados
- Não é estudante de ciência de dados.
- Estudante de outro curso

Exemplo 6.04

Sejam X = curso de um estudante do UniCEUB, e os eventos A = Ciência de Dados/Diurno; B = Ciência de dados/Noturno. Forneça a expressão do conjunto no qual se encaixam os seguintes casos:

- Estudante de ciência de dados
- Não é estudante de ciência de dados.
- Estudante de outro curso

Definição "clássica" de probabilidade

Probabilidade: axiomas e operações

UniCEUB

$$P(X) = \frac{N^{\circ} \text{ de casos favoráveis}}{N^{\circ} \text{ de casos possíveis}}$$

Definição "clássica" de probabilidade

Probabilidade: axiomas e operações

UniCEUB

$$P(X) = \frac{N^{\circ} \text{ de casos favoráveis}}{N^{\circ} \text{ de casos possíveis}}$$

UniCEUR

Probabilidade: axiomas e operações

É o resultado numérico de uma **função** que associa cada elemento do espaço amostral de uma variável aleatória X a um número real entre 0 e 1

$$P:\Omega\longrightarrow [0,1]$$

$$P(\omega)=P(X=\omega), \omega\in\Omega$$

UniCEUR

Probabilidade: axiomas e operações

É o resultado numérico de uma $\overline{\text{função}}$ que associa cada elemento do espaço amostral de uma variável aleatória X a um número real entre 0 e 1

$$P:\Omega\longrightarrow [0,1]$$

$$P(\omega)=P(X=\omega), \omega\in\Omega$$

■ Para cada **resultado possível** de uma variável aleatória, a função de probabilidade diz o quão provável é a ocorrência daquele **evento**

Axiomas de Kolmogorov

Probabilidade: axiomas e operações

UniCEUB

Axiomas de Kolmogorov

A probabilidade de ocorrência de eventos $A_1,A_2,...\in\Omega$ segue três propriedades básicas:

UniCEUR

Probabilidade: axiomas e operações

Axiomas de Kolmogorov

A probabilidade de ocorrência de eventos $A_1,A_2,...\in\Omega$ segue três propriedades básicas:

$$0 \le P(A) \le 1$$

Probabilidade: axiomas e operações

UniCEUB

Axiomas de Kolmogorov

A probabilidade de ocorrência de eventos $A_1, A_2, ... \in \Omega$ segue três propriedades básicas:

$$0 \le P(A) \le 1$$

$$P(\Omega) = 1$$

Axiomas de Kolmogorov

A probabilidade de ocorrência de eventos $A_1, A_2, ... \in \Omega$ segue três propriedades básicas:

- $0 \le P(A) \le 1$
- $P(\Omega) = 1$
- Se $A_1, A_2, ...$ forem dois a dois disjuntos

(i.e.,
$$P(A_i \cap A_j) = 0$$
, $\forall i \neq j$), $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

$$P(\emptyset) = 0$$

$$P(\emptyset) = 0$$

$$P(A^c) = 1 - P(A)$$

$$P(\emptyset) = 0$$

$$P(A^c) = 1 - P(A)$$

■ Se
$$A \subseteq B$$
, então $P(A) \le P(B)$

UniCEUR

$$P(\emptyset) = 0$$

$$P(A^c) = 1 - P(A)$$

■ Se
$$A \subseteq B$$
, então $P(A) \le P(B)$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

UniCEUR

Probabilidade: axiomas e operações

$$P(\emptyset) = 0$$

$$P(A^c) = 1 - P(A)$$

■ Se
$$A \subseteq B$$
, então $P(A) \le P(B)$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Exercício

UniCEUR

Probabilidade: axiomas e operações

Dez alunos escolhem arbitrariamente um número natural entre 1 e 10. Qual é a probabilidade de um número qualquer ser escolhido mais de uma vez?

Probabilidade: axiomas e operações

UniCEUB

Sejam A e B dois eventos em um dado espaço amostral, tais que P(A) = 0, 2, P(B) = p, $P(A \cup B) = 0, 5$ e $P(A \cap B) = 0, 1$. Determine o valor de p.

Distribuição de probabilidade

Probabilidade: axiomas e operações

UniCEUB

A atribuição da probabilidade de ocorrência a cada elemento do espaço amostral define uma **distribuição de probabilidade**

Distribuição de probabilidade

Probabilidade: axiomas e operações

UniCEUB

A atribuição da probabilidade de ocorrência a cada elemento do espaço amostral define uma **distribuição de probabilidade**

■ A distribuição de probabilidade fornece $P(X = \omega)$, para todo $\omega \in \Omega$

UniCEUB

distri.png

Função de probabilidade

Probabilidade: axiomas e operações

UniCEUB

Caso a distribuição de probabilidade de uma variável aleatória X seja conhecida, é fácil construir sua função de probabilidade

$$f(\omega) = P(X = \omega), \forall \ \omega \in \Omega$$

UniCFUR

Probabilidade: axiomas e operações

Caso a distribuição de probabilidade de uma variável aleatória X seja conhecida, é fácil construir sua função de probabilidade

$$f(\omega) = P(X = \omega), \forall \ \omega \in \Omega$$

- $f(\omega) \geq 0, \forall \ \omega \in \Omega$

Exemplos

Probabilidade: axiomas e operações

UniCEUB

Exemplo 6.05

Forneça a distribuição de probabilidade e a função de probabilidade dos seguintes casos:

Probabilidade: axiomas e operações

UniCEUB

Exemplo 6.05

Forneça a distribuição de probabilidade e a função de probabilidade dos seguintes casos:

Arremesso de um dado não viciado

Probabilidade: axiomas e operações

UniCEUB

Exemplo 6.05

Forneça a distribuição de probabilidade e a função de probabilidade dos seguintes casos:

- Arremesso de um dado não viciado
- Arremesso de um dado viciado no qual os números primos saem com probabilidade três vezes maior

Função de distribuição acumulada

Probabilidade: axiomas e operações

UniCEUB

A função de distribuição acumulada fornece a probabilidade acumulada de \boldsymbol{X} até um ponto específico

$$F(\omega) = P(X \le \omega), \forall \ \omega \in \Omega$$

Probabilidade: axiomas e operações

UniCEUB

A função de distribuição acumulada fornece a probabilidade acumulada de \boldsymbol{X} até um ponto específico

$$F(\omega) = P(X \leq \omega), \forall \ \omega \in \Omega$$

$$P(k_1 < \omega \le k_2) = F(k_2) - F(k_1)$$

Exemplos

Probabilidade: axiomas e operações

UniCEUB

Exemplo 6.06

Forneça a função de distribuição acumulada dos seguintes casos:

Probabilidade: axiomas e operações

UniCEUB

Exemplo 6.06

Forneça a função de distribuição acumulada dos seguintes casos:

Arremesso de um dado não viciado

Probabilidade: axiomas e operações

Exemplo 6.06

Forneça a função de distribuição acumulada dos seguintes casos:

- Arremesso de um dado não viciado
- Arremesso de um dado viciado no qual os números primos saem com probabilidade três vezes maior

Probabilidade Condicional

UniCEUB

Probabilidade: axiomas e operações

Probabilidade é um conceito que modela a incerteza

Probabilidade Condicional

Probabilidade: axiomas e operações

UniCEUB

Probabilidade é um conceito que modela a **incerteza**

A incerteza é consequência da falta de informações

Probabilidade Condicional

Probabilidade: axiomas e operações

UniCEUB

Probabilidade é um conceito que modela a incerteza

A incerteza é consequência da falta de informações

Assim, à medida que mais informações estão disponíveis, a probabilidade de ocorrência de um evento pode mudar

Intuição da probabilidade condicional

Probabilidade: axiomas e operações

UniCEUB

48

Exemplo 7.01

Forneça uma estimativa da probabilidade de uma pessoa escolhida ao acaso ter uma altura superior a 2 metros, dadas as seguintes informações:

Intuição da probabilidade condicional

Probabilidade: axiomas e operações

UniCEUB

Exemplo 7.01

Forneça uma estimativa da probabilidade de uma pessoa escolhida ao acaso ter uma altura superior a 2 metros, dadas as seguintes informações:

A pessoa escolhida é um homem

Intuição da probabilidade condicional

Probabilidade: axiomas e operações

UniCEUB

Exemplo 7.01

Forneça uma estimativa da probabilidade de uma pessoa escolhida ao acaso ter uma altura superior a 2 metros, dadas as seguintes informações:

- A pessoa escolhida é um homem
- A pessoa escolhida tem altura maior que 1.70 metro

Probabilidade: axiomas e operações

UniCEUB

Exemplo 7.01

- A pessoa escolhida é um homem
- A pessoa escolhida tem altura maior que 1.70 metro
- A pessoa escolhida é um jogador de basquete

Probabilidade: axiomas e operações

UniCEUB

Exemplo 7.01

- A pessoa escolhida é um homem
- A pessoa escolhida tem altura maior que 1.70 metro
- A pessoa escolhida é um jogador de basquete
- A pessoa escolhida joga como pivô

Probabilidade: axiomas e operações

UniCEUB

Exemplo 7.01

- A pessoa escolhida é um homem
- A pessoa escolhida tem altura maior que 1.70 metro
- A pessoa escolhida é um jogador de basquete
- A pessoa escolhida joga como pivô
- A pessoa escolhida é a mais alta do seu time

Probabilidade: axiomas e operações

UniCEUB

Exemplo 7.01

- A pessoa escolhida é um homem
- A pessoa escolhida tem altura maior que 1.70 metro
- A pessoa escolhida é um jogador de basquete
- A pessoa escolhida joga como pivô
- A pessoa escolhida é a mais alta do seu time Acréscimos informacionais implicam em diminuição do espaço amostral associado!

Probabilidade: axiomas e operações

UniCEUB

Caso seja sabido que um evento A ocorreu, o espaço amostral original (em que A era uma incerteza) reduzir-se-à aos casos em que A passa a ser uma certeza

Probabilidade: axiomas e operações

UniCEUB

Caso seja sabido que um evento A ocorreu, o espaço amostral original (em que A era uma incerteza) reduzir-se-à aos casos em que A passa a ser uma certeza

A probabilidade de ocorrência de B, dado que aconteceu A (P(B|A)), equivale a calcular P(B) em relação ao espaço amostral reduzido onde A é uma certeza

Probabilidade: axiomas e operações

UniCEUB

Linda tem 31 anos de idade, é solteira, franca e muito inteligente. E formada em filosofia. Quando era estudante, preocupava-se profundamente com questões de discriminação e justiça social, e também participava de manifestações antinucleares

Probabilidade: axiomas e operações

UniCEUB

UniCEUB

Probabilidade: axiomas e operações

■ Linda é professora numa escola primária.

Probabilidade: axiomas e operações

UniCEUB

- Linda é professora numa escola primária.
- Linda trabalha numa livraria e faz aula de ioga.

Probabilidade: axiomas e operações

UniCEUB

- Linda é professora numa escola primária.
- Linda trabalha numa livraria e faz aula de ioga.
- Linda é ativa no movimento feminista.

- Linda é professora numa escola primária.
- Linda trabalha numa livraria e faz aula de ioga.
- Linda é ativa no movimento feminista.
- Linda é assistente social de psiquiatria.

- Linda é professora numa escola primária.
- Linda trabalha numa livraria e faz aula de ioga.
- Linda é ativa no movimento feminista.
- Linda é assistente social de psiquiatria.
- Linda é caixa de banco.

UniCEUR

- Linda é professora numa escola primária.
- Linda trabalha numa livraria e faz aula de ioga.
- Linda é ativa no movimento feminista.
- Linda é assistente social de psiquiatria.
- Linda é caixa de banco.
- Linda é vendedora de seguros.

UniCEUR

- Linda é professora numa escola primária.
- Linda trabalha numa livraria e faz aula de ioga.
- Linda é ativa no movimento feminista.
- Linda é assistente social de psiquiatria.
- Linda é caixa de banco.
- Linda é vendedora de seguros.
- Linda é caixa de banco e ativa no movimento feminista.

- Qual alternativa é mais provavel?
 - → Linda é uma caixa de banco.
 - → Linda é uma caixa de banco e é ativa no movimento feminista.

Probabilidade: axiomas e operações

UniCEUB

ATENÇÃO!

Probabilidade: axiomas e operações

UniCEUB

ATENÇÃO!

■ P(B|A) **NÃO** precisa ser maior que P(B)!!!

Probabilidade: axiomas e operações

UniCEUB

ATENÇÃO!

- P(B|A) **NÃO** precisa ser maior que P(B)!!!
 - O espaço amostral está associado à diminuição da incerteza; dada a ocorrência de A, a probabilidade de B ocorrer pode aumentar ou diminuir

UniCEUB

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Probabilidade: axiomas e operações

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$0 \le P(B|A) \le 1$$

Probabilidade: axiomas e operações

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$0 \le P(B|A) \le 1$$

$$P(\Omega|A) = 1$$

Probabilidade: axiomas e operações

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$0 \le P(B|A) \le 1$$

$$P(\Omega|A) = 1$$

$$P(A|A) = 1$$

Probabilidade: axiomas e operações

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(\varnothing|A) = 0$$

Probabilidade: axiomas e operações

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(\emptyset|A) = 0$$

$$P(A|\varnothing) = P(A)$$

UniCEUR

Probabilidade: axiomas e operações

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(\emptyset|A) = 0$$

$$P(A|\varnothing) = P(A)$$

■ Se
$$B_1 \cap B_2 = \emptyset$$
, $P(B_1 \cup B_2 | A) = P(B_1 | A) + P(B_2 | A)$

Probabilidade: axiomas e operações

UniCEUE

Exemplo 7.02

100 alunos se inscreveram em um programa de intercâmbio, dentre os quais 60 falam inglês, 70 falam espanhol e 40 falam as duas línguas. Calcule:

- A probabilidade de se selecionar ao acaso um aluno que não fale nem inglês, nem espanhol
- Sabendo que se selecionou um aluno que não fala espanhol, qual a probabilidade de ele falar inglês?

Probabilidade: axiomas e operações

UniCEUB

Exemplo 7.03

Um cofre possui 50 moedas, 40 de 10 centavos e 10 de 5 centavos. Retirando aleatoriamente três moedas **sem reposição** e assumindo que todas as moedas possuem a mesma probabilidade de serem selecionados, calcule a probabilidade de:

A soma do valor das três moedas ser igual a 20 centavos

Probabilidade: axiomas e operações

UniCEUB

Exemplo 7.03

Um cofre possui 50 moedas, 40 de 10 centavos e 10 de 5 centavos. Retirando aleatoriamente três moedas **sem reposição** e assumindo que todas as moedas possuem a mesma probabilidade de serem selecionados, calcule a probabilidade de:

- A soma do valor das três moedas ser igual a 20 centavos
- A soma do valor das três moedas ser igual a 20 centavos, sabendo que a primeira moeda retirada foi de 10 centavos

Probabilidade: axiomas e operações

UniCEUB

Exemplo 7.03

Um cofre possui 50 moedas, 40 de 10 centavos e 10 de 5 centavos. Retirando aleatoriamente três moedas **sem reposição** e assumindo que todas as moedas possuem a mesma probabilidade de serem selecionados, calcule a probabilidade de:

- A soma do valor das três moedas ser igual a 20 centavos
- A soma do valor das três moedas ser igual a 20 centavos, sabendo que a primeira moeda retirada foi de 10 centavos
- A soma do valor das três moedas ser igual a 15 centavos, sabendo que a primeira moeda retirada foi de 10 centavos

Probabilidade: axiomas e operações

UniCEUB

Exemplo 7.03

Um cofre possui 50 moedas, 40 de 10 centavos e 10 de 5 centavos. Retirando aleatoriamente três moedas **sem reposição** e assumindo que todas as moedas possuem a mesma probabilidade de serem selecionados, calcule a probabilidade de:

- A soma do valor das três moedas ser igual a 20 centavos
- A soma do valor das três moedas ser igual a 20 centavos, sabendo que a primeira moeda retirada foi de 10 centavos
- A soma do valor das três moedas ser igual a 15 centavos, sabendo que a primeira moeda retirada foi de 10 centavos

Eventos independentes

Probabilidade: axiomas e operações

UniCEUB

Eventos independentes

Dois eventos A e B são ditos **independentes** quando a probabilidade de ocorrência de um não influencia na probabilidade de ocorrência do outro.

Probabilidade: axiomas e operações

UniCEUB

Eventos independentes

Dois eventos A e B são ditos **independentes** quando a probabilidade de ocorrência de um não influencia na probabilidade de ocorrência do outro.

■ A e B são independentes $\leftrightarrow P(A|B) = P(A)$ $\leftrightarrow P(A \cap B) = P(A) \cdot P(B)$ Probabilidade: axiomas e operações

Eventos independentes

Dois eventos A e B são ditos **independentes** quando a probabilidade de ocorrência de um não influencia na probabilidade de ocorrência do outro.

■ A e B são independentes
$$\leftrightarrow P(A|B) = P(A)$$

 $\leftrightarrow P(A \cap B) = P(A) \cdot P(B)$

Eventos independentes e eventos mutuamente excludentes são duas coisas diferentes!

Eventos independentes

Probabilidade: axiomas e operações

UniCEUB

Exemplo 7.04

Ao lançar uma moeda não viciada 10 vezes, você tira 10 caras em sequência. Qual é a probabilidade de se obter mais uma cara no próximo lançamento?

Eventos independentes

UniCEUR

Probabilidade: axiomas e operações

Se A é independente de B, qualquer informação a respeito de B (incluindo

o fato de B não ter acontecido) não deve alterar a probabilidade de A.

Eventos independentes

UniCEUR

Probabilidade: axiomas e operações

Se A é independente de B, qualquer informação a respeito de B (incluindo o fato de B **não** ter acontecido) não deve alterar a probabilidade de A.

Se A e B são eventos independentes, A e B^c, A^c e B, e A^c e B^c também o são.

Eventos independentes

UniCEUR

Probabilidade: axiomas e operações

Se A é independente de B, qualquer informação a respeito de B (incluindo o fato de B **não** ter acontecido) não deve alterar a probabilidade de A.

Se A e B são eventos independentes, A e B^c, A^c e B, e A^c e B^c também o são.

Partição do espaço amostral

Regra da probabilidade total

UniCEUB

Partição

UniCEUB

Partição

■
$$P(E_i) > 0, \forall i \in \{1, 2, ..., n\}$$

Partição

■
$$P(E_i) > 0, \forall i \in \{1, 2, ..., n\}$$

Partição

■
$$P(E_i) > 0, \forall i \in \{1, 2, ..., n\}$$

$$P(E_i \cap E_j) = \emptyset, \ \forall \ i \neq j, \ i, j \in \{1, 2, ..., n\}$$

UniCEUB

Regra da probabilidade total

Dado um espaço amostral Ω particionado em $E_1, E_2, ..., E_n$ e um evento $A \in \Omega$, a probabilidade de ocorrência de A pode ser expressa por:

$$P(A) = P(A|E_1) \cdot P(E_1) + P(A|E_2) \cdot P(E_2) + \dots + P(A|E_n) \cdot P(E_n)$$
$$= \sum_{i=1}^{n} P(A|E_i) \cdot P(E_i)$$

Regra da probabilidade total

UniCEUE

Exemplo 7.06

Três carteiros dividiram entre si a tarefa de entregar 100 correspondências. O carteiro A ficou com 30, o carteiro B com 45, e o carteiro C com o restante. Para cada um dos carteiros A, B e C, a probabilidade de entregar uma correspondência para o endereço errado é de 1%, 5% e 3%, respectivamente. Qual é a probabilidade de uma correspondência qualquer ser entregue para o endereço errado?

Teorema de Bayes

UniCEUB

Com a regra da probabilidade total, podemos enunciar $P(E_j|A)$ em termos de $P(A|E_j)$ e $P(E_j)$

■ Lembre-se que
$$P(E_j|A) = \frac{P(E_j \cap A)}{P(A)}$$

Teorema de Bayes

Dado um espaço amostral Ω particionado em $E_1, E_2, ..., E_n$ e um evento $A \in \Omega$, a probabilidade condicional de E_j dado A, para todo $j \in \{1, 2, ..., n\}$, é dada por:

$$P(E_j|A) = \frac{P(A|E_j) \cdot P(E_j)}{\sum_{i=1}^{n} P(A|E_i) \cdot P(E_i)}$$

Teorema de Bayes

Teorema de Bayes UniCEUB

Exemplo 7.07

Uma das 100 correspondências do exemplo 7.06 foi entregue ao endereço errado. Qual é a probabilidade de ela ter sido entregue pelo carteiro C?

Exemplo 7.08

Três moedas são sorteadas e uma delas é escolhida aleatoriamente. A primeira moeda tem duas caras, a segunda tem duas coroas e a terceira tem uma cara e uma coroa. Sabendo que a moeda escolhida possui uma coroa, qual a probabilidade de a outra face também ser coroa?

Teorema de Bayes UniCFUR

Exemplo 7.09

Um laboratório de exame de DNA acerta o resultado em 95% das vezes. Um segundo laboratório é especializado em checar o resultado do primeiro exame, e identifica um exame equivocado corretamente em 99% das vezes; porém, tem 2% de chance de classificar um exame correto como equivocado:

- Qual a probabilidade de um exame do primeiro laboratório escolhido ao acaso ser identificado como equivocado pelo lab2?
- Se um exame do primeiro laboratório é identificado como correto pelo lab2, qual a probabilidade de que de fato esteja correto?

Exemplo

Em uma cidade em que os carros são testados para emissão de poluentes, 25% deles emitem quantidade considerada excessiva. O teste falha para 99% dos carros que emitem excesso de poluentes, mas resulta positivo para 17% dos carros que não emitem quantidade excessiva.

Qual é a probabilidade de um carro que falha no teste realmente emitir quantidade excessiva de poluentes?

Variável aleatória discreta

Teorema de Bayes UniCEUB

Variável aleatória discreta

É uma variável aleatória X cujo espaço amostral é um conjunto enumerável

Variável aleatória discreta

Teorema de Bayes UniCEUB

Variável aleatória discreta

É uma variável aleatória X cujo espaço amostral é um conjunto enumerável

Exemplo 8.01

Exemplo 8.01

Espaços amostrais finitos:

■ Número observado após o arremesso de um dado

Exemplo 8.01

- Número observado após o arremesso de um dado
- Combinaçõees de um sanduíche do Subway

Exemplo 8.01

- Número observado após o arremesso de um dado
- Combinaçõees de um sanduíche do Subway
- Identificação de uma placa de carro

Exemplo 8.01

- Número observado após o arremesso de um dado
- Combinaçõees de um sanduíche do Subway
- Identificação de uma placa de carro
- Placar final de uma partida de truco

Exemplo 8.02

Exemplo 8.02

Espaços amostrais infinitos e enumeráveis:

■ Número de carros que passam por um pedágio

Exemplo 8.02

- Número de carros que passam por um pedágio
- Número de páginas de um livro escolhido aleatoriamente

Exemplo 8.02

- Número de carros que passam por um pedágio
- Número de páginas de um livro escolhido aleatoriamente
- Habilitações a serem emitidas pelo DETRAN

Exemplo 8.02

- Número de carros que passam por um pedágio
- Número de páginas de um livro escolhido aleatoriamente
- Habilitações a serem emitidas pelo DETRAN
- Placar final de uma partida de futebol

Distribuição de probabilidade

Teorema de Bayes UniCEUE

É o conjunto de pares ordenados $(\omega, P(X = \omega))$

■ Para cada resultado possível que X pode assumir, associa-se uma probabilidade para que aquele resultado aconteça.

Função de probabilidade

Teorema de Bayes UniCEUB

A função $f(\omega)$ que associa cada $\omega \in \Omega$ à sua respectiva probabilidade $P(X = \omega)$ é chamada função de probabilidade

UniCEUR

Teorema de Bayes

A função $f(\omega)$ que associa cada $\omega \in \Omega$ à sua respectiva probabilidade $P(X = \omega)$ é chamada função de probabilidade

- $f(\omega) \ge 0, \forall \omega \in \Omega$
- $\sum_{\Omega} f(\omega) = 1$

Função de distribuição acumulada

Teorema de Bayes UniCEUB

$$F(\omega) = P(X \le \omega) = \sum_{t \le \omega} f(t), \forall \ \omega \in \Omega$$

Função de distribuição acumulada

Teorema de Bayes UniCEUB

$$F(\omega) = P(X \le \omega) = \sum_{t \le \omega} f(t), \forall \ \omega \in \Omega$$

UniCEUR

Teorema de Bayes

$$F(\omega) = P(X \leq \omega) = \sum_{t \leq \omega} f(t), \forall \ \omega \in \Omega$$

- $\lim_{\omega\to-\infty}F(\omega)=0$

Teorema de Bayes

UniCEUB

$$F(\omega) = P(X \leq \omega) = \sum_{t \leq \omega} f(t), \forall \ \omega \in \Omega$$

- $\lim_{\omega \to -\infty} F(\omega) = 0$
- $P(\omega_1 < X \le \omega_2) = F(\omega_2) F(\omega_1)$

Valor Esperado

Teorema de Bayes UniCEUB

O valor esperado (ou esperança) de uma variável aleatória X é um operador que fornece a **média** dos possíveis eventos de X **ponderada** pela sua respectiva **probabilidade de ocorrência**

Valor Esperado

Teorema de Bayes UniCEUE

O valor esperado (ou esperança) de uma variável aleatória X é um operador que fornece a **média** dos possíveis eventos de X **ponderada** pela sua respectiva **probabilidade de ocorrência**

$$E(X) = \sum_{\Omega} \omega \cdot f(\omega) = \sum_{\Omega} \omega \cdot P(X = \omega)$$

O valor esperado (ou esperança) de uma variável aleatória X é um operador que fornece a **média** dos possíveis eventos de X **ponderada** pela sua respectiva **probabilidade de ocorrência**

$$E(X) = \sum_{\Omega} \omega \cdot f(\omega) = \sum_{\Omega} \omega \cdot P(X = \omega)$$

A esperança de uma variável aleatória é um <u>número!</u>

Exemplo

■ A função massa de probabilidade de X é dada por:

$$p(1) = \frac{1}{2} = p(2)$$

Exemplo

■ A função massa de probabilidade de X é dada por:

$$p(1) = \frac{1}{2} = p(2)$$

então

$$E[X] = 1 \times (\frac{1}{2}) + 2 \times (\frac{1}{2}) = \frac{3}{2}$$

Teorema de Bayes

UniCEUB

Exemplo

■ A função massa de probabilidade de X é dada por:

$$p(1) = \frac{1}{3}$$
 $p(2) = \frac{2}{3}$

Exemplo

■ A função massa de probabilidade de X é dada por:

$$p(1) = \frac{1}{3}$$
 $p(2) = \frac{2}{3}$

então

$$E[X] = 1 \times (\frac{1}{3}) + 2 \times (\frac{2}{3}) = \frac{5}{3}$$

Valor Esperado

Teorema de Bayes UniCEUB

Calcule E(X) em que X representa o resultado de uma jogada de um dado justo.

Distribuição Uniforme Discreta (k)

Principais distribuições de probabilidade

UniCEUB

É o caso da definição "clássica" de probabilidade

Espaço amostral finito e equiprovável

É o caso da definição "clássica" de probabilidade

Espaço amostral finito e eqüiprovável

$$f(\omega) = P(X = \omega) = \frac{1}{k}$$

Onde k = número de resultados possíveis

UniCEUB

Exemplo 8.03

Um dado nao viciado é arremessado uma vez. Calcule a probabilidade de:

- Sair o número 5
- Sair um número par
- Sair um número ímpar ou primo

Distribuição de Bernoulli (p)

Principais distribuições de probabilidade

UniCEUB

É a distribuição associada a **um** experimento aleatório com apenas dois resultados possíveis: 0, caso se observe A; e 1, caso se observe A^c

UniCEUB

É a distribuição associada a **um** experimento aleatório com apenas dois resultados possíveis: 0, caso se observe A; e 1, caso se observe A^c

X = Número de sucessos (espaço amostral finito)

UniCEUB

É a distribuição associada a **um** experimento aleatório com apenas dois resultados possíveis: 0, caso se observe A; e 1, caso se observe A^c

X = Número de sucessos (espaço amostral finito)

$$f(\omega) = P(X = \omega) =$$

$$\begin{cases}
1 - p, & \omega = 0, \\
p, & \omega = 1.
\end{cases}$$

Distribuição Bernoulli (p)

UniCEUB

Principais distribuições de probabilidade

Calcule a esperança da distrbiuição Bernoulli com parâmetro p.

UniCEUB

Principais distribuições de probabilidade

Calcule a esperança da distrbiuição Bernoulli com parâmetro p.

então

UniCEUR

Principais distribuições de probabilidade

Calcule a esperança da distrbiuição Bernoulli com parâmetro p.

então

O número de sucessos esperados in um único experimento é a probabilidade que um único experimento seja um sucesso.

UniCEUB

84

Exemplo 8.04

Uma moeda viciada com probabilidade de sair cara de 0.4 é arremessada uma vez. Você paga uma quantia X para arremessar a moeda, e ganha R\$ 1.00 caso consiga uma cara. Qual é o preço justo para a entrada nesse jogo?

Um "jogo justo" é aquele em que o ganho esperado é igual ao preço pago para a participação

Distribuição Binomial (n, p)

Principais distribuições de probabilidade

UniCEUB

É a distribuição associada a n experimentos aleatórios **independentes** de Bernoulli

UniCEUB

É a distribuição associada a n experimentos aleatórios **independentes** de Bernoulli

■ Em cada um das n vezes em que o experimento ocorre, a probabilidade de sucesso p (e, consequentemente, a probabilidade de fracasso 1-p) é sempre a mesma

UniCEUB

É a distribuição associada a *n* experimentos aleatórios **independentes** de Bernoulli

- Em cada um das n vezes em que o experimento ocorre, a probabilidade de sucesso p (e, consequentemente, a probabilidade de fracasso 1-p) é sempre a mesma
- X = Número de sucessos

UniCEUB

É a distribuição associada a n experimentos aleatórios **independentes** de Bernoulli

- Em cada um das n vezes em que o experimento ocorre, a probabilidade de sucesso p (e, consequentemente, a probabilidade de fracasso 1-p) é sempre a mesma
- X = Número de sucessos

Função massa de probabilidade é dada por:

$$f(\omega) = P(X = \omega) = \binom{n}{\omega} \cdot p^{\omega} \cdot (1-p)^{n-\omega}, \omega = 0, 1, ..., n$$

[Função de probabilidade da distribuição binomial]

Number of Heads in 100 Coin Flips

UniCEUB

Exemplo 8.05

Uma moeda viciada com probabilidade de sair cara de 0.4 é arremessada três vezes:

UniCEUB

Exemplo 8.05

Uma moeda viciada com probabilidade de sair cara de 0.4 é arremessada três vezes:

Qual a probabilidade de se tirar três caras?

UniCEUB

Exemplo 8.05

Uma moeda viciada com probabilidade de sair cara de 0.4 é arremessada três vezes:

- Qual a probabilidade de se tirar três caras?
- Qual a probabilidade de se tirar exatamente uma cara?

UniCEUE

Exemplo 8.05

Uma moeda viciada com probabilidade de sair cara de 0.4 é arremessada três vezes:

- Qual a probabilidade de se tirar três caras?
- Qual a probabilidade de se tirar exatamente uma cara?
- Suponha que você paga uma quantia X para realizar os três arremessos, e ganha R\$ 1.00 caso para cada cara que conseguir. Qual é o preço justo para a entrada nesse jogo?

Distribuição Binomial (n,p)

Principais distribuições de probabilidade

UniCEUB

Exemplo 8.06

Retiram-se quatro bolas, **com reposição**, de uma urna com 3 bolas azuis e 7 bolas brancas.

UniCEUB

Exemplo 8.06

Retiram-se quatro bolas, **com reposição**, de uma urna com 3 bolas azuis e 7 bolas brancas.

Qual a probabilidade de se retirar alguma bola azul?

UniCEUB

Exemplo 8.06

Retiram-se quatro bolas, **com reposição**, de uma urna com 3 bolas azuis e 7 bolas brancas.

- Qual a probabilidade de se retirar alguma bola azul?
- Qual a probabilidade de a segunda bola retirada seja branca?

Principais distribuições de probabilidade

UniCEUB

É a distribuição associada à retirada, **sem reposição**, de n elementos de uma população finita de tamanho N, dentro da qual há k elementos pertencentes ao evento de interesse

Principais distribuições de probabilidade

UniCEUB

É a distribuição associada à retirada, **sem reposição**, de n elementos de uma população finita de tamanho N, dentro da qual há k elementos pertencentes ao evento de interesse

X = Número de elementos de interesse retirados (espaço amostral finito)

UniCEUB

É a distribuição associada à retirada, **sem reposição**, de n elementos de uma população finita de tamanho N, dentro da qual há k elementos pertencentes ao evento de interesse

X = Número de elementos de interesse retirados (espaço amostral finito)

$$f(\omega) = P(X = \omega) = \frac{\binom{k}{\omega} \cdot \binom{N - k}{n - \omega}}{\binom{N}{n}}, \omega = 0, 1, ..., n$$

Principais distribuições de probabilidade

UniCEUB

Caso a retirada fosse **com reposição**, seria usada a distribuição binomial, pois:

Principais distribuições de probabilidade

UniCEUB

Caso a retirada fosse **com reposição**, seria usada a distribuição binomial, pois:

■ A cada retirada, a probabilidade de se obter o evento de interesse seria constante

UniCEUB

Caso a retirada fosse **com reposição**, seria usada a distribuição binomial, pois:

- A cada retirada, a probabilidade de se obter o evento de interesse seria constante
- Como o N e k são conhecidos, a probabilidade de se obter o evento de interesse seria simplesmente $\frac{k}{N}$

Principais distribuições de probabilidade

UniCEUB

Exemplo 8.07

Retiram-se quatro bolas, **sem reposição**, de uma urna com 3 bolas azuis e 7 bolas brancas.

- Qual a probabilidade de se retirar alguma bola azul?
- Qual a probabilidade de se retirar no máximo 2 bolas azuis?

Principais distribuições de probabilidade

UniCEUB

Exemplo 8.08

O mecanismo da mega-sena consiste em escolher 6 dos 60 números sorteados aleatoriamente. Assumindo que os números possuem igual probabilidade de serem selecionados, calcule:

Principais distribuições de probabilidade

UniCEUB

Exemplo 8.08

O mecanismo da mega-sena consiste em escolher 6 dos 60 números sorteados aleatoriamente. Assumindo que os números possuem igual probabilidade de serem selecionados, calcule:

A probabilidade de se acertar pelo menos 5 números

Principais distribuições de probabilidade

UniCEUB

Exemplo 8.08

O mecanismo da mega-sena consiste em escolher 6 dos 60 números sorteados aleatoriamente. Assumindo que os números possuem igual probabilidade de serem selecionados, calcule:

- A probabilidade de se acertar pelo menos 5 números
- A probabilidade de não se acertar nenhum número

Principais distribuições de probabilidade

UniCEUB

Exemplo 8.08

O mecanismo da mega-sena consiste em escolher 6 dos 60 números sorteados aleatoriamente. Assumindo que os números possuem igual probabilidade de serem selecionados, calcule:

- A probabilidade de se acertar pelo menos 5 números
- A probabilidade de não se acertar nenhum número
- A probabilidade de se acertar exatamente 2 números

Distribuição de Poisson (λ)

Principais distribuições de probabilidade

UniCEUB

É a distribuição que modela o número de eventos de interesse que ocorrem em um determinado período fixo de tempo, com base em uma taxa média de ocorrência do evento $(\lambda > 0)$, que é **conhecida** e independente do tempo.

UniCEUB

É a distribuição que modela o número de eventos de interesse que ocorrem em um determinado período fixo de tempo, com base em uma taxa média de ocorrência do evento $(\lambda > 0)$, que é **conhecida** e independente do tempo.

X = Número ocorrências do evento de interesse (espaço amostral infinito enumerável)

UniCEUB

É a distribuição que modela o número de eventos de interesse que ocorrem em um determinado período fixo de tempo, com base em uma taxa média de ocorrência do evento $(\lambda > 0)$, que é **conhecida** e independente do tempo.

 X = Número ocorrências do evento de interesse (espaço amostral infinito enumerável)

$$f(\omega) = P(X = \omega) = \frac{e^{-\lambda} \cdot \lambda^{\omega}}{\omega!}, \omega = 0, 1, 2, 3, \dots$$

UniCEUR

Principais distribuições de probabilidade

A taxa média de ocorrência do evento (λ) é proporcional ao intervalo temporal considerado

■ Se λ = 3 ocorrências por hora, a taxa média de ocorrência em 2 horas será $\bf 6$

UniCEUB

Exemplo 8.10

UniCEUB

Exemplo 8.10

Assumindo que a taxa média de buracos nas rodovias do DF é de 2.1 buracos por quilômetro, calcule:

A probabilidade de não se encontrar nenhum buraco num trecho de 5 quilômetros

Exemplo 8.10

- A probabilidade de não se encontrar nenhum buraco num trecho de 5 quilômetros
- A probabilidade de se encontrar 4 buracos ou mais num trecho de 0.85 quilômetro

UniCEUB

Exemplo 8.10

- A probabilidade de não se encontrar nenhum buraco num trecho de 5 quilômetros
- A probabilidade de se encontrar 4 buracos ou mais num trecho de 0.85 quilômetro
- A probabilidade de se encontrar no máximo 1 buraco num trecho de 10 quilômetros

UniCEUB

Exemplo 8.10

- A probabilidade de não se encontrar nenhum buraco num trecho de 5 quilômetros
- A probabilidade de se encontrar 4 buracos ou mais num trecho de 0.85 quilômetro
- A probabilidade de se encontrar no máximo 1 buraco num trecho de 10 quilômetros