I Questions de cours

1 - Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 dont la loi est donnée par :

$$\forall (j,k) \in \mathbb{N}^2, \ \mathbb{P}((X,Y) = (j,k)) = \frac{(j+k)(\frac{1}{2})^{j+k}}{ej!k!}$$

- a) Déterminer les lois marginales de X et de Y.
- b) Les variables aléatoires réelles X et Y sont-elles indépendantes?
- 2 Soient $N \in \mathbb{N}^*$, $p \in]0;1[$ et q = 1 p.

On considère N variables aléatoires $X_1, X_2, ..., X_N$ définies sur un même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$, indépendantes et de même loi géométrique de paramètre p.

a) Soient $i \in [1; N]$ et $n \in \mathbb{N}^*$.

Déterminer $\mathbb{P}(X_i \leq N)$, puis $\mathbb{P}(X_i > N)$.

- b) On considère $n \in \mathbb{N}^*$ ainsi que la variable aléatoire Y définie par $Y = \min_{i \in [1;N]} X_i$. Calculer $\mathbb{P}(Y > n)$ puis en déduire $\mathbb{P}(Y < n)$ et $\mathbb{P}(Y = n)$. Reconnaître la loi de Y.
- 3 Soient X et Y deux variables aléatoires définies sur un même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ et à valeurs dans \mathbb{N} .

On suppose que la loi du couple (X, Y) est donnée par :

$$\forall (i,j) \in \mathbb{N}^2, \ \mathbb{P}((X=i) \cap (Y=j)) = \frac{1}{e^{2^{i+1}j!}}$$

- a) Déterminer les lois de X et de Y.
- b) Prouver que 1+X suit une loi géométrique.
- c) Les variables X et Y sont-elles indépendantes?
- d) Calculer $\mathbb{P}(X = Y)$.

II Exercices

Exercice 1:

Soient $n \in \mathbb{N}^*$ et X et Y deux variables aléatoires réelles indépendantes suivant la loi binomiale de paramètres n et $p = \frac{1}{2}$.

- 1 Rappeler la loi de X+Y.
- 2 En exprimant $\mathbb{P}(X+Y=n)$ sous la forme d'une somme, déterminer la valeur de la somme $S_n = \sum_{k=0}^n \binom{n}{k}^2$.
- 3 Deux joueurs tirent chacun n fois une pièce équilibrée. Le gagnant est celui qui obtient le plus pile. Déterminer la probabilité p_n qu'il y ait un gagnant.
- 4 Trouver la limite de la suite $(p_n)_{n\in\mathbb{N}^*}$ lorsque n tend vers $+\infty$.

Exercice 2:

Soit $T \in \mathbb{N}^*$.

Un élément chimique émet des électrons toutes les T secondes. On pose N la variable aléatoire réelle donnant le nombre d'électrons émis et on suppose que N suit une loi de Poisson de paramètre $\lambda>0$.

Certains des électrons ont une propriété voulue, on dira dans ce cas qu'ils sont efficaces. Chaque électron a une probabilité $p \in]0;1[$ d'être efficace. On note X le nombre d'électrons efficaces et Y celui des électrons qui ne le sont pas.

1 - Soit $n \in \mathbb{N}^*$.

Déterminer la loi de X conditionnée par (N = n).

- 2 Déterminer la loi du couple (N, X).
- 3 Déterminer la loi de X.
- 4 Montrer que X et Y sont indépendantes.
- 5 Bonus : Calculer Cov(N, X).

Exercice 3:

Soient $p \in]0;1[$ et X une variable aléatoire réelle à valeurs dans $\mathbb N$ telle que :

$$\forall n \in \mathbb{N}, \ \mathbb{P}(X=n) = (n+1)p^2(1-p)^n$$

1 - Vérifier que
$$\sum_{n=0}^{+\infty} \mathbb{P}(X=n) = 1$$
.

Indication: On admettra que l'on peut dériver la série terme à terme.

On procède à l'expérience suivante : si X prend la valeur n, on place n+1 boules numérotées de 0 à n dans une urne et on tire ensuite une boule de cette urne. On note alors Y le numéro obtenu et Z = X - Y.

- 2 Déterminer la loi de ${\cal Y}.$
- 3 Déterminer la loi de Z et vérifier que Z et Y sont indépendantes

$Exercice\ 4$:

Soit X une variable aléatoire prenant ses valeurs dans \mathbb{N}^* .

On suppose qu'il existe $p \in]0;1[$ tel que, pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(X=n)=p\mathbb{P}(X \geq n)$. Déterminer la loi de X.

$\underline{Exercice\ 5}$:

On suppose que le nombre N d'enfants dans une famille suit une loi de Poisson de paramètre $\lambda > 0$. On suppose qu'à chaque naissance, la probabilité que l'enfant soit une fille est $p \in]0;1[$ et celle que ce soit un garçon est q=1-p. On suppose aussi que les sexes des naissances successives sont indépendants.

On note X la variable aléatoire correspondant au nombre de filles par familles, et Y celle du nombre de garçons.

- 1 Déterminer la loi conjointe du couple (N, X).
- 2 En déduire la loi de X et celle de Y.

Exercice 6:

Une urne contient initialement une boule blanche et une boule noire. On opère des tirages successifs avec remise et à chaque tirage on ajoute une boule de la même couleur que celle obtenue.

Pour $n \in \mathbb{N}^*$, on note X_n la variable aléatoire qui prend comme valeur le nombre de boules blanches obtenues au cours des n premiers tirages.

- 1 Déterminer la loi de X_2 .
- 2 Déterminer la loi de X_n pour n > 0.