Una introducción "amigable" al uso de **ggplot2**

Fernanda Miron

Material de:

https://github.com/gadenbuie/gentleggplot2/tree/main

Why ggplot2?

My personal reasons

- Functional data visualization
 - 1. Wrange data
 - 2. Map data to visual elements
 - 3. Tweak scales, guides, axis, labels, theme
- Easy to reason about how data drives visualization
- Easy to iterate
- Easy to be consistent

What are we getting into?

ggplot2 is a huge package: philosophy + functions ...but it's very well organized

Lots of examples of not-so-great plots in these slides ...but that's okay

Going to throw a lot at you ...but you'll know where and what to look for

G is for getting started

```
Easy: install the tidyverse
install.packages('tid\subsection{y\text{verse'}}

Medium: install just ggplot2

install.pacakages('ggplot2')
```

Expert: install from GitHub

```
devtools :install_github('tid\formuverse/ggplot2')
```

G is for getting started

Load the tidyverse

```
library(tidyverse)
# — Attaching packages
                √ purrr 0.2.5
# ✓ ggplot2 3.1.0
# √ tibble 1.4.2

√ dplyr 0.7.7

√ stringr 1.3.1

# √ tidyr 0.8.1
# √ readr 1.1.1 √ forcats 0.3.0
# - Conflicts
# X dplyr :filter() masks stats :filter()
# X dplyr :lag() masks stats :lag()
```

G is for getting started

Other packages you'll need for this adventure

We'll use an excerpt of the gapminder dataset provided by the gapminder package by Jenny Bryan.

https://github.com/jennybc/gapminder

```
# install.packages("gapminder")
library(gapminder)
```

Data to be visualized

Data to be visualized

- Data to be visualized
- Geometric objects that appear on the plot

- Data to be visualized
- Geometric objects that appear on the plot
- Aesthetic mappings from data to visual component

- Data to be visualized
- Geometric objects that appear on the plot
- Aesthetic mappings from data to visual component
- Statistics transform data on the way to visualization

- Data to be visualized
- Geometric objects that appear on the plot
- Aesthetic mappings from data to visual component
- Statistics transform data on the way to visualization
- Coordinates organize location of geometric objects

- Data to be visualized
- Geometric objects that appear on the plot
- Aesthetic mappings from data to visual component
- Statistics transform data on the way to visualization
- Coordinates organize location of geometric objects
- Scales define the range of values for aesthetics

- Data to be visualized
- Geometric objects that appear on the plot
- Aesthetic mappings from data to visual component
- Statistics transform data on the way to visualization
- Coordinates organize location of geometric objects
- Scales define the range of values for aesthetics
- Facets group into subplots

Data

ggplot (data)

Tidy Data

- 1. Each variable forms a column
- 2. Each observation forms a row
- 3. Each observational unit forms a table

Data

ggplot (data)

Tidy Data

- 1. Each variable forms a column
- 2. Each observation forms a row
- 3. Each observational unit forms a table

Start by asking

- 1. What information do I want to use in my visualization?
- 2. Is that data contained in one column/row for a given data point?

Data

ggplot (data)

country	1997	2002	2007
Canada	30.30584	31.90227	33.39014
China	1230.07500	1280.40000	1318.68310
United States	272.91176	287.67553	301.13995

Data

ggplot (data)

country	1997	2002	2007
Canada	30.30584	31.90227	33.39014
China	1230.07500	1280.40000	1318.68310
United States	272.91176	287.67553	301.13995

tidy_pop
$$f$$
- gather (messy_pop, 'year', 'pop', -country)

country	year	рор
Canada	1997	30.306
China	1997	1230.075
United States	1997	272.912
Canada	2002	31.902

Data

Aesthetics

Map data to visual elements or parameters

- year
- pop
- country

Data

Aesthetics

Map data to visual elements or parameters

- year → x
- pop → y
- country → *shape*, *color*, etc.

Data

Aesthetics

```
+ aes()
```

Map data to visual elements or parameters

```
aes(
    x = Year,
    y = pop,
    color = countrY
)
```

Data

Aesthetics

Geoms

Geometric objects displayed on the plot

Data

Here are the some of the most widely used geoms

Aesthetics

Geoms

Туре	Function	
Point	geom_point()	
Line	<pre>geom_line()</pre>	
Bar	geom_bar(), geom_col()	
Histogram	<pre>geom_histogram()</pre>	
Regression	geom_smooth()	
Boxplot	<pre>geom_boxplot()</pre>	
Text	geom_text()	
Vert./Horiz. Line	<pre>geom_{vh}line()</pre>	
Count	geom_count()	
Density	geom_density()	

Data

Aesthetics

Geoms

```
+ geom_*()
```

See http://ggplot2.tidyverse.org/reference/ for many more options

```
# [1] "geom abline"
                       "geom area"
                                       "geom bar"
                                                        "geom bin2d"
 [5] "geom blank"
                      "geom boxplot"
                                       "geom col"
                                                        "geom contour"
# [9] "geom count"
                      "geom crossbar"
                                       "geom curve"
                                                        "geom densitV"
# [13] "geom density 2d" "geom density2d"
                                       "geom dotplot"
                                                        "geom errorbar"
# [17] "geom errorbarh" "geom freqpoly"
                                                        "geom histogram"
                                       "geom hex"
                       "geom jitter"
# [21] "geom hline"
                                       "geom label"
                                                        "geom line"
# [25] "geom linerange" "geom map"
                                                        "geom point"
                                       "geom path"
# [29] "geom pointrange" "geom polygon"
                                       "geom qq"
                                                        "geom qq line"
# [33] "geom quantile" "geom raster"
                                       "geom rect"
                                                        "geom ribbon"
                                                        "geom sf label"
# [37] "geom rug"
                      "geom segment"
                                       "geom sf"
# [41] "geom sf text"
                      "geom smooth"
                                       "geom spoke"
                                                        "geom step"
                      "geom tile"
                                       "geom violin"
                                                        "geom vline"
# [45] "geom text"
```

Data

Aesthetics

Geoms

```
+ geom_*()
```

See http://ggplot2.tidyverse.org/reference/ for many more options

```
# [1] "geom abline"
                       "geom area"
                                        "geom bar"
                                                        "geom bin2d"
  [5] "geom blank"
                       "geom boxplot"
                                       "geom col"
                                                        "geom contour"
# [9] "geom count"
                       "geom crossbar"
                                       "geom curve"
                                                        "geom densitV"
# [13] "geom density 2d" "geom density2d"
                                       "geom dotplot"
                                                        "geom errorbar"
                                       "geom hex"
# [17] "geom errorbarh" "geom freqpoly"
                                                        "geom histogram"
# [21] "geom hline"
                       "geom jitter"
                                       "geom label"
                                                        "geom line"
# [25] "geom linerange" "geom map"
                                                        "geom point"
                                       "geom path"
# [29] "geom pointrange" "geom polygon"
                                                        "geom qq line"
                                       "geom qq"
# [33] "geom quantile" "geom raster"
                                       "geom rect"
                                                        "geom ribbon"
# [37] "geom rug"
                                                        "geom sf label"
                       "geom segment"
                                       "geom sf"
# [41] "geom sf text"
                       "geom smooth"
                                       "geom spoke"
                                                        "geom step"
# [45] "geom text"
                       "geom tile"
                                       "geom violin"
                                                        "geom vline"
```

Or just start typing <code>geom_</code> in RStudio

ggplot (tidy_pop)

```
ggplot(tidy_pop) +
  aes(x = Year,
      y = pop)
```


geom_path: Each group consists
of only one observation.
Do You need to adjust the
group aesthetic?

Data

Aesthetics

Geoms

```
+ geom_*()
```

```
geom *(mapping, data, stat, position)
```

- data Geoms can have their own data
 - Has to map onto global coordinates
- map Geoms can have their own aesthetics
 - Inherits global aesthetics
 - Have geom-specific aesthetics
 - geom_point needs x and y, optional shape, color, siZe, etc.
 - geom_ribbon requires x, Ymin and Ymax, optional fill
 - o ?geom_ribbon

Data

Aesthetics

Geoms

```
+ geom_*()
```

```
geom_* (mapping, data, stat, position)
```

• stat Some geoms apply further transformations to the data

```
o All respect stat = 'identity'
```

- o Ex: geom histogram uses stat bin() to group observations
- position Some adjust location of objects

```
o 'dodge', 'stack', 'jitter'
```

Data

Aesthetics

Geoms

Facet

```
+facet_wrap()
+facet_grid()
```


Data

Aesthetics

Geoms

Facet

```
+facet_wrap()
```


Data

Aesthetics

Geoms

Facet

Labels

Data

Aesthetics

Geoms

Facet

Labels

Coords

Data

Aesthetics

Geoms

Facet

Labels

Coords

Data

Aesthetics

Geoms

Facet

Labels

Coords

Scales

```
scale + _ + <aes> + _ + <type> + ()
```

What parameter do you want to adjust? \rightarrow <aes> What type is the parameter? \rightarrow <type>

• I want to change my discrete x-axis

```
scale_x_discrete()
```

• I want to change range of point sizes from continuous variable scale_siZe_continuous()

I want to rescale y-axis as log

• I want to use a different color palette

```
scale_fill_discrete()
scale_color_manual()
```

Data

Aesthetics

Geoms

Facet

Labels

Coords

Scales

Theme

+ theme()

Change the appearance of plot decorations i.e. things that aren't mapped to data

A few "starter" themes ship with the package

- g + theme_bw()
- g + theme_dark()
- \bullet g + theme_graY()
- g + theme_light()
- g + theme_minimal()

Data

Aesthetics

Geoms

Facet

Labels

Coords

Scales

Theme

+ theme()

Huge number of parameters, grouped by plot area:

- Global options: line, rect, text, title
- axis:x-,y- or other axis title, ticks, lines
- legend: Plot legends
- panel: Actual plot area
- plot: Whole image
- strip: Facet labels

Data

Aesthetics

Geoms

Facet

Labels

Coords

Scales

Theme

+ theme()

Theme options are supported by helper functions:

- element blank() removes the element
- element_line()
- element_rect()
- element_text()

Data

Aesthetics

Geoms

Facet

Labels

Coords

Scales

Theme

```
+ theme()
```


Data

Aesthetics

Geoms

Facet

Labels

Coords

Scales

Theme

```
+ theme()
```


Data

Aesthetics

Geoms

Facet

Labels

Coords

Scales

Theme

```
+ theme()
```

You can also set the theme globally with theme_set()

```
my_theme f theme_bw() +
    theme(
    text = element_text(family = "Palatino", siZe = 12),
    panel.border = element_rect(colour = 'grey80'),
    panel.grid.minor = element_blank()
)

theme_set(my_theme)
```

All plots will now use this theme!

Data

Aesthetics

Geoms

Facet

Labels

Coords

Scales

Theme

+ theme()

Data

Aesthetics

Geoms

Facet

Labels

Coords

Scales

Theme

```
+ theme()
```


Save Your Work

To save your plot, use ggsave

```
ggsave(
  filename = "my_plot.png",
  plot = my_plot,
  width = 10,
  height = 8,
  dpi = 100,
  device = "png"
)
```


"Live" Coding

library (gapminder)