Calculus

Lecture 1: Functions and continuity

Otti D'Huys, Gijs Schoenmakers

Calculus: Practicalities

- This class has 9 lectures, 7 tutorials, and a Q&A/revision lecture
 - In the tutorials you work on exercises and you have the opportunity to ask questions
- Lecturers: Otti D'Huys (also coordinator), Gijs Schoenmakers
- Teaching Assistants: Juliette Maes, Bregje Derks, Yulin Zhou, Adee Sella, Tommaso Siligardi, Bochen Qiao, Vita Stefanija, Joseph el Khazen, Spyridon Giagtzoglou

Calculus: Practicalities

- Lecture materials (on Canvas):
 - (sometimes) a scan of our handwritten preparation or lecture material
 - the lecture slides
- Tutorial materials (on Canvas):
 - a list of tutorial exercises
 - pdf with their solutions
 - a checklist per course module, with all relevant concepts and an exhaustive list of useful exercises (no need to try them all...)
- Books: mainly Adams (9th ed) and Thomas (13th ed)

Calculus: Practicalities

- Evaluation = 100% final exam + 10% bonus quizzes Exam:
 - Closed book
 - Formula sheet will be provided
 - Calculators are not allowed

Quizzes

- 2 Canvas quizzes, worth 5 % each (bonus)
- Multiple choice and numerical questions
- The quiz remains open for 5 days, but once you start it, you have limited time to complete it.
- In weeks 3-4 and 4-5
- How to get help?
 - Discussion Boards on Canvas
 - Ask us during tutorials
 - No emails

Calculus: Course Contents

- Limits and continuity
- Differentiation
- Integration
- Basics of sequences and series
- Basics of multivariate calculus

Why Calculus?

- Calculus was developed to describe motion (mainly by Isaac Newton and Gottfried Leibniz in the 17th century)
- It is a language to describe the world in a numerical way, in terms of functions and their rate of change.
 - Mathematical modelling, control theory, robotics,... all describe systems with differential equations.
 - Probability and statistics: a mathematical description of chance
 - Optimization: finding optimal (extreme) values
 - ...

Functions and continuity - Book chapters

Adams:

- P.1 Real numbers, intervals, absolute value
- P.2 Equation of a line
- P.3 Functions
- P.5 Combining functions
- P.6 Polynomials and Rational functions
- 1.4 Continuity

Real functions

- A function $f: D \to S$ on a set D into a set S is a mapping that assigns a **unique** element $f(x) \in S$ to **each** element $x \in D$.
- · Domain D: R or a sub set of R
 - Domain convention:
 domain = {x ∈ R | f(x) ∈ R}
 - Open interval: (a,b) {x &R: a < x < b9 & g
 - Closed interval: [a,b] $\{x \in \mathbb{R} : a \leq x \leq b\}$
- Co-domain S: R
- Range: $\{f(x) \mid x \in D\}$
- We can add, subtract, multiply, divide functions
- Composite functions: $f \circ g(x) = f(g(x))$ (only if range $(g) \subseteq \text{domain}(f)$)

you need to remember 3 rules to determine the domain of a function 1. no division by 0 $f(x) = \frac{1}{x}, \text{ domain } (f) = RYof$

- 2. no square roots of negative numbers $g(x) = [x, domain if] = [0, \infty) = \{x \in \mathbb{R} \mid x > 0 \}$
- 3. no logarithms of zero or negative numbers $f(x) = \ln(x)$, domain $(f) = (0, \infty) = \{x \in \mathbb{R} \mid x > 0\}$

Equation of a line

· 2 lines are parallel of they have the name olopes, a,= a2

Perpendicular lines

$$a_1 = \frac{y_1}{x_2}$$

$$a_2 = \frac{x_2}{y_1}$$

$$a_1 \cdot a_2 = \frac{y_2}{x_3} \cdot \frac{x_2}{y_2} = -1$$

6 2 lines are perpendicular if the product of the slopes an az =-1

(this is not a function
$$y = J(x)$$
)

Absolute value

$$\chi(x) = |x| = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}$$

absolute value = distance of a number to

Polynomials

$$f(x) = P(x) = a_n x^n + a_{n,1} x^{n-1} + ... + a_1 x + a_0$$

$$ba_n \neq 0$$

hand: coefficients Ly these are real numbers

Degree of a polynomial: n (highest power of x)

domain: R

- Root of a polynomial: r is a coot of P(x) if P(r) = 0
 ∠ y r is a coot, P(x) = (x-r) Q(x)
- Number of (complex) roots of a polynomial: n

Ly we can have roots with multiplicity in $P(x) = (x-r)^n Q(x)$ ex. $x^2 - 2x + 1 = (x-1)^2$, so 1 is a coot with multiplicity 2 in this case, the sure of the multiplicities of each cost add up to n.

o polynomial of degree 1: $ax + a_0 \rightarrow binear$ function $a: ax^2 + ax + a_0 \rightarrow qvadratic function$ (parabola) $0: f(x) = a_0 \rightarrow constant function$

Rational functions

Example:
$$\frac{2x+3}{x^2-7x+12}$$

poles: 3, 4

Trigonometric functions

Exponential and logarithmic functions

Even and odd functions

• Even functions f(x) = f(-x) 1×1 , $\cos(x)$, x^2 , constant functions, $x^4 + x^2$ mirror around y-axis

• Odd functions
$$\chi(x) = -\chi(-x)$$

 $\chi(x) = -\chi(-x)$

$$g(x) = \frac{1}{x-1}$$

not even, since $g(-x) = \frac{1}{-x-1} \neq \frac{1}{x-1} = f(x)$
not odd, since $g(-x) = \frac{1}{-x-1} \neq \frac{1}{x-1} = -f(x)$

Continuity

A function f(x) is **continuous** at a point x_0 of its domain if, for all points x in the domain,

$$\forall \epsilon > 0, \ \exists \delta > 0 : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

- * no fumps
- * you do not need to lift you pen

Continuity

- A function f(x) is **discontinuous** at c if
- Examples:

Note: (in this course) f can only be discontinuous at c if c is in the domain of f, i.e. if f(c) exists (in this course). So $f(x) = \frac{1}{x}$ is not discontinuous at x = 0, it is undefined.

Left and right continuity

A function f(x) is

(Monnoght)

- right continuous at c if f(x) approaches $f(x_0)$ if x approaches x_0 , $x > x_0$
- left continuous at c if \$(x) approaches \$(x_0) if x approaches \$x_0, x < x_0
 from left.
- continuous at c if it is both right and left continuous at c.
- · right continuous: 46>0 38>0:04x-x048=> 15(x)-1(x)/46
- · left continuous: YE>O 36>0: 0< x0-x < S => 1/(x)-f(x0) / LE

Continuous functions on an interval

A function f(x) is

- continuous on an interval [a, b] if
 - · it is continuous on all interior points (a,b)
 - · it is left continuous a a
 - · it is right continuous at b
- piecewise continuous on [a, b] if there are a finite number of disportinuities on [a,b]
 -> i.e. continuous pieces

L1: functions and continuity

Save and Exit

Align Quiz to Standard

Share

圃

1. Which of the following graphs show a function y=f(x)? Multiple answers can be correct.

for a graph to be a (well defined)

function, every $x \in domain$ has $E \times ACT Ly \mid y = f(x) - value.$ Un graphs (a), (c) and (d), several

values of x have $2 \cdot y - values$ associated with it.

- A graph (a)
- (B) graph (b)
 - c graph (c)
- D graph (d)
- 2. For f(x)=x+5 and $g(x)=x^2-3$, which combination of f(x) and g(x) is the function $h(x)=x^2+2$?

۲

- $A \quad h(x) = g(x) + f(x)$
- **B**h(x)=f(g(x))

C
$$h(x)=g(f(x))$$

$$D h(x) = f(x)g(x)$$

$$f(g(x)) = f(x^2-3) = (x^2-3) + 5 = x^2-2$$

- \bigcirc **3.** What is the equation of the line going through (2,3) and (1,1)?

 - **A** y = -2x + 3
 - **B** y=x/2+2
 - (c) y = 2x 1
 - **D** y=x/2+1/2
- y = ax + b $a = \frac{y_2 \cdot y_1}{x_2 x_1} = \frac{3 1}{2 1} = 2$
 - b = y,-a.x, = 1-2.1 =-1

- 圃

- ſĖ
- 4. Which of the following functions is continuous on its domain? Check all that applies

个

圃

ſĤ

- $\textbf{B} \quad f(x) = round(x)$
- $f(x) = \frac{x-1}{x^2-1}$
- $f(x) = \frac{1}{x^2 1}$
- A.C and D are continuous on their domain, since ON THE DOMAIN, there are no jumps (the "problem zones" are not in the domain)
- B is not continuous at $x = \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \dots$
- **5.** Check all that applies

- 圃

- ۲⊕

- (A) f(x) is discontinuous at x=c
- **B** f(x) is piecewise continuous (on its domain)
- **C** f(x) is left continuous at x=c
- **D** f(x) is right continuous at x=c