Devoir Surveillé no 2 - 22/10/2021

Exercice 1 - monotonie d'une suite

3 points

 (u_n) une suite définie sur par : $\forall n \geq 0$, $u_n = 2n^2 - 3n - 4$

- 1. calculer $u_{n+1} u_n$ en fonction de n
- 2. conclure, en justifiant, sur la monotonie de la suite

$\mathbf{Exercice} \ \mathbf{2} \ \textit{-} \ \textit{suite} \ \textit{arithm\'etique} \ \textit{et g\'eom\'etrique}$

7 points

- (u_n) une suite arithmétique tel que : $u_{11} = 89$ et $u_{34} = 250$
 - 1. calculer (en justifiant) la raison r et le premier terme u_0
 - 2. calculer u_{90} par la méthode de votre choix (mais en l'indiquant)
- (v_n) une suite géométrique tel que : $v_2 = 225$ et $v_4 = 506.25$
 - 1. calculer (en justifiant) la raison q et le premier terme v_0
 - 2. calculer la somme des 10 premiers termes de la suite (v_n)
- calculer la somme des multiples de 3 jusqu'à 1000 (rappel : un nombre est un multiple de 3 s'il s'écrit sous la forme $3 \times k$ où k est un entier)

Exercice 3 - limite de suite

4 points

- on considère (u_n) , (v_n) et (w_n) définies par : $u_n=3\times(-\frac{1}{2})^n$, $v_n=-7\times(\frac{4}{3})^n$ et $w_n=20\times0.7^n+2$
- calculer, si elles existent et en justifiant, les limites des suites (u_n) , (v_n) et (w_n)

Exercice 4 - géométrie - équation du second degré

5 points

- ullet on considère 1 carré ABCD de 5 cm de côté
- un point I appartient à la diagonale [AC] (voir figure supra)
- ullet on forme alors 2 carrés APIQ et ISCR

• déterminer la valeur de x pour laquelle la somme des aires des 2 carrés vaut les $\frac{3}{4}$ du carré ABCD

Exercice 5 - preuve - bonus

2 points

- $(u_n)_{n\geq 0}$ une suite géométrique de raison q
- montrer que : $\sum_{k=0}^{n} u_k = u_0 \times \frac{1 q^{n+1}}{1 q}$

That's All Folks!