

Fachbereich VI,
Studiengang
Technische Informatik

Morse-Code Erkennung und Interpretation aus Handgesten-Videos

Maschinelles Sehen Sommersemester 2025 Prof. Dr. Hildebrand

Khaled Rafei, 930677

EINLEITUNG & MOTIVATION

- Morsecode: robustes Kommunikationssystem
- Idee: Erkennung mit Handgesten (offen = 1, geschlossen = 0)
- Ziel: Video einlesen und die Bitfolgen Dekodierung

Stand der Technik:

- MediaPipe Hands für Landmark-Erkennung
- Heuristik statt ML ressourcenschonend
- Einschränkung: nur in kontrollierten Szenarien zuverlässig

2 METHODIK & PIPELINE

Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Video \rightarrow Frame-Extraktion \rightarrow Handpose \rightarrow State Estimation \rightarrow Postprocessing \rightarrow Bitfolge \rightarrow Decoder \rightarrow Text Implementierung:

- Python, OpenCV, MediaPipe, Numpy
- Module:

video_io.py, state_estimator.py, decoder.py

- Parameter:

STABLE_MIN_FRAMES=31, GAP_TOLERANCE=20

3 EVALUATION & ERGEBNISSE

- Testvideos: 'HELLO. mp4', 'HALLO. mp4', 'HELP. mp4', 'HILFE. mp4', 'LOVE. mp4', 'MOVE. mp4', Namen (Wie: 'ARSHIA. mp4', 'ELHAM.mp4' usw.)
- Testwörter: 'MEINNAME', 'MEINNAMEIST', 'ICHBRAUCHEHILFE' usw.
- Metrik: Hamming-Distanz
- Ergebnis: 100 % Genauigkeit bei Lexikon-Wörtern
- Fehler bei unbekannten Wörtern (z.B. 'INFORMATIK')

Testwörter1: 'INFORMATIK'

erwartete = [0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1]

Ausgabe = [0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1]

Beste Wort-Dekodierung: 'ELHAM WELT' oder 'elham welt'

Distanz: 7 | Genauigkeit: 70.83%

Test1: 'HELLO.mp4'

erwartete = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1]
Ausgabe = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1]
Beste Wort-Dekodierung: 'HELLO' oder 'hello'
Distanz: 0 | Genauigkeit: 100.0%

Test2: 'HALLO.mp4'

erwartete = [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1]
Ausgabe = [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1]
Beste Wort-Dekodierung: 'HALLO' oder 'hallo'
Distanz: 0 | Genauigkeit: 100.0%

Abstand	Bis 110	110-	150-
(Cm)		150	200
Weiß-hell	perfekt	gut	gut
Weiß-	perfekt	gut	×
halb hell			
Schwarz-	perfekt	gut	×
hell			
Schwarz-	perfekt	×	×
halb hell			

4 DISCUSSION

- Stärken: hohe Genauigkeit, einfache Pipeline
- Schwächen: Lexikonabhängig, sensibel für Beleuchtung
- Verbesserungen: ML-Modelle, größeres Lexikon

CONCLUSION

- Gesten→Morse→Text funktioniert stabil
- Praxistauglich in einfachen Szenarien
- Zukunft: robustere Erkennung, freie Vokabulare

REFERENCEN

- Example scenario, M. Shamsi, Le Mans University, 2024
- https://github.com/google-ai-edge/mediapipe/tree/master/mediapipe
- https://www.geeksforgeeks.org/python/morse-code-translator-python

 Eigene GitHub-Implementierung: https://github.com/Arshia-R13/Morse_Code