Mass Transfer: Diffusion

Introduction to mass transfer

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning goals

Learning goals:

- Understand the basics of mass diffusion
- Understand diffusion in gaseous binary mixture
- Learn about Fick's law
- Learn to draw the concentration profile of one-dimensional equimolar diffusion in binary gas mixtures at rest

Random and undirected physical process of concentration equalization

[1] https://mrgranato.files.wordpress.com/2018/09/tea-diffusion.jpg

Diffusion – Example: semi-permeable membrane in dialysis machines

Mass transfer – fundamentals of binary mixtures

Introduction:

- Enclosed volume
- Two different gases
- Constant pressure at temperature

Mass transfer – concentration curve

Mass transfer – concentration curve

Molecular/Statistical concept of diffusion

- Probability of a red molecule crossing the control plane from left to right
 - Probability that a red molecule crosses the control plane from right to left
 - → Effective flow of red molecules from left to right

Equilibrium

- Probability of a red molecule crossing the control plane from left to right
 - Probability that a red molecule crosses the control plane from right to left
 - → No more effective flow of red molecules from left to right

One-dimensional equimolar diffusion in resting binary mixtures

Diffusive molar flux (quantity of molecules moving):

Molar flux = Diffusion coefficient \cdot negative gradient of molar concentration

Diffusive molar flux:

1. Fick's law:

$$\dot{n}_{1}^{"} = D_{12} \left(-\frac{dC_{1}}{dx} \right)$$

$$\dot{n}_{2}^{"} = D_{21} \left(-\frac{dC_{2}}{dx} \right)$$

$$\left[\frac{\text{mol}}{\text{s m}^{2}} \right] = \left[\frac{\text{m}^{2}}{\text{s}} \right] \left[\frac{\text{mol}}{\text{m}^{3} \text{ m}} \right]$$

Equivalent to Fourier's Law

Diffusive molar flux:

1.
$$C_1 + C_2 = C = \text{const.} \qquad \frac{dC_1}{dx} + \frac{dC_2}{dx} = 0$$

2.
$$n_1 + n_2 = n = \text{const.}$$
 $\dot{n}_1'' + \dot{n}_2'' = 0$ $\rightarrow \dot{n}_1'' = -\dot{n}_2''$

3.
$$\frac{\dot{n}_{1}''}{D_{12}} + \frac{\dot{n}_{2}''}{D_{21}} = -\left(\frac{dC_1}{dx} + \frac{dC_2}{dx}\right)$$
 $D_{12} = D_{21} = D$

Molecular/Statistical concept of diffusion

Mechanical equilibrium:

- pressure is constant everywhere
- → Substance concentration is identical everywhere

Molecular movement over boundaries of the control volume: Molecule A leaves the control volume

- → is replaced by molecule A (macroscopically no visible change)
- → is replaced by molecule B (visible diffusion process)
- ➤ To maintain mechanical equilibrium, for every "visible/active" molecule A that goes outside, a molecule B must enter the control volume

Relationship between substance flow and mass flow

Diffusive mass flow:

▶ Description of substance flow by Fick's Law: \dot{n}_i'

$$\dot{n}_i^{\prime\prime} = -D_i \cdot \frac{dC_i}{dx}$$

ightharpoonup Multiplication with the molar mass M_i :

$$M_i \cdot \dot{n}_i^{"} = -M_i \cdot D_i \cdot \frac{dC_i}{dx}$$

ightharpoonup Results in diffusive mass flow j_i'' :

$$j_i^{"} = \dot{m}_i^{"} = -D \cdot \frac{d\rho_i}{dx} = -\rho \cdot D \cdot \frac{d\xi_i}{dx}$$

Comprehension questions

What is the meaning of Fick's Law?

What does equimolar diffusion mean?

What is the relationship between molar flux and diffusive mass flux?

