ASAPP Hackathon

Team Speed 'Speed Airbot'

23 October 2025

Team Members: Kathir Kaarthik S Keertanapriya D Sarmitha VD Srinidhi CR

Agenda

01 Problem Landscape	Slide 05
02 Opportunity & Vision	Slide 08
Technical Roadmap : From Vision to Value	Slide 09
04 Target: Use Case Identification	Slide 10
05 Setup: System Architecture	Slide 11
06 Test: Conversation Flow Simulation	Slide 12

Agenda

Supervise: Monitoring & Quality
Control

Slide 13

Scalability Beyond Airlines

Slide 14

Problem landscape - current scenario

The Airline Support
Challenge: High Volume
and Low Efficiency in a
\$4.8 Billion market

- Airlines handle millions of customer interactions daily across chat, calls, and emails.
- Up to 65–70% of these are repetitive, rule-based requests (e.g., flight status, refunds, cancellations).
- Despite existing self-service tools, >60% of passengers still prefer talking to human agents, citing lack of clarity and robotic responses.
- This creates high operational costs, agent fatigue, and longer wait times.

The pain points

X Inefficient manual resolution

Repetitive queries handled by agents

X Fragmented user experience

Bots fail to retain context or sound human

X Poor scalability

Customer spikes (flight delays, weather events) overwhelm systems

The Need

With global air travel back to pre-pandemic levels and digital-first engagement becoming standard, airlines face pressure to deliver instant, intelligent, and human-like support. Our solution bridges this gap with Al-native, policy-compliant conversational systems that blend automation and empathy.

To bridge this gap, our solution leverages ASAPP's data-driven roadmap to engineer an airline-grade conversational agent - one that's as intuitive as a human, yet as efficient as AI.

Vision & Opportunity

Our Vision

- Create a context-aware, policy-compliant Al agent that feels as natural as a human.
- Shift airlines from reactive query handling to proactive, personalized engagement.
- Blend empathy with automation to elevate customer experience.

Opportunity

- Airline contact-center market: $$4.8 \text{ B} \rightarrow $12.6 \text{ B} \text{ by } 2033.$
- 70 % of interactions are repetitive and fit for automation.
- Huge gap in multi-turn, context retaining AI support solutions.

Technical Roadmap: From Vision to Value

Using ASAPP's 'Vision to Value' roadmap as our foundation, we've structured our solution to mirror its data-driven, scalable, and customer-centric approach

- 1. Target: Identify automation-heavy airline use cases
- 2. **Setup**: Integrate easily into airline systems
- 3. **Test**: Scale & simulate conversations safely
- 4. **Supervise**: Ensure compliance & consistency
- 5. Run & Optimize: Continuous learning and refinement

Target: Intelligent Use Case Prioritization

- Booking Changes / Cancellations → structured data retrieval + transaction.
- Refund & Policy Queries → repetitive and rule-based.
- Baggage Tracking / Complaints → moderate complexity with high query volume.
- Loyalty Program Enquiries → low urgency, consistent data flow.

Setup: System Design and Integration

Agents (Core Intelligence):

- Transactional Agent : Executes API-based tasks (booking, refund, status).
- Informational Agent: Handles FAQ, policy lookups, and document retrieval via a vector database.
- Both use Relevance Scoring to pick the best response path.

Policy Module:

- Ensures airline-specific tone, compliance, and wording.
- Filters off-topic or unsafe responses.

LLM Interface:

- Generates natural, human-like replies within airline domain boundaries.
- Integrated via secure API with response.

• Frontend Layer:

- Customer chat interface (web).
- Handles message input and session start.

• Backend (Core Engine):

- Session Manager: tracks user context, multi-turn conversation state.
- Redis Cache: enables fast retrieval of previous turns and context memory.
- Intent Classifier + Context Manager:
 processes incoming messages, predicts intent,
 and maintains continuity across queries.

Test: Validation,
Simulation & Quality
Control

Key Testing Dimensions:

- 1. Intent Accuracy
- 2. Context Retention
- 3. Policy Adherence
- 4. Response Naturalness
- 5. Latency

Supervise: Monitoring & Quality Control

Goals we aim to achieve:

- Maintain consistent response quality across thousands of sessions.
- Detect and flag policy violations or off-topic responses in real time.
- Provide human oversight for continuous improvement and trust.

Scalability Beyond Airlines

Our modular architecture enables rapid adaptation across industries, transforming our airline support bot into a cross-sector conversational AI platform.

- Built with domain-agnostic core modules (session manager, NLU, policy engine).
- Industry-specific logic added via plug-in intent models and policy templates.
- Vector-based knowledge retrieval allows easy retraining with new datasets.
- API-first design supports integration with any enterprise CRM or database.

Industry	Example Use Case
Airlines	Flight rebooking, baggage queries, refund policy assistance
Telecom	Plan upgrades, outage reports, SIM activations
Banking	Card blocking, transaction queries, KYC assistance
Retail / e-commerce	Order tracking, returns, product availability
Logistics	Shipment tracking, delay updates, delivery rescheduling

Thank you!

<u>github</u>