浙江大学 2015-2016 学年 秋冬 学期

研究生《计算理论》课程期终考试试卷

考试形式: 闭卷, 考试时间: 2016 年 1 月 15 日, 所需时间: 120 分钟

学号:			姓名:			专业:			任课教师: 金小刚		
	题序	1	2	3	4	5	6	7	总分		
	得分										
	评卷人										

Zhejiang University Theory of Computation, Fall-Winter 2015 Final Exam

- 1. (20%) Determine whether the following statements are true or false. If it is true write a \bigcirc otherwise a \times in the bracket before the statement.
 - (a) () Let L be any regular language. Then the number of equivalence classes respect to language L (i.e. $x \approx_L y$, if for all $z \in \Sigma^*$, $xz \in L$ iff $yz \in L$) is finite.
 - (b) () The language $\{a^nb^nw|w\in\{a,b\}^*,n\in\mathbb{N},\text{ and }|w|=2n\}$ is context-free.
 - (c) () The language $\{"M""w"|M \text{ accepts } w \text{ in less than } 2016 \text{ steps } \}$ is not recursive.
 - (d) () The language $\{ M'' \mid M \text{ is a TM and } L(M) \text{ is Context-free but } L(M) \text{ is not regular}$ is not recursive.
 - (e) () The language $\{ M_1 M_2 M_2 | M_1 \text{ and } M_2 \text{ are TMs, and } M_1 \text{ halts on } e \text{ but } M_2 \text{ doesn't halt on } e \}$ is recursively enumerable, but not recursive.
 - (f) () The set of all primitive recursive functions is a proper subset of the set of all μ -recursive functions.
 - (g) () Let A and B be two disjoint recursively enumerable languages. If $\overline{A \cup B}$ is also be recursively enumerable, then it is possible that neither A nor B is decidable.
 - (h) () Let $H_{10} = \{ \text{"}M\text{"}|M \text{ is a TM and } 10 \in L(M) \}$ and τ_1 and τ_2 are recursive functions. If $H_{10} \leq_{\tau_1} L$ and $\overline{H_{10}} \leq_{\tau_2} L$, then L is recursive enumerable but not recursive.
 - (i) () Suppose **SAT** $\leq_P L$ and $L \in \mathbb{P}$. Then $\mathbb{P} = \mathbb{NP}$.
 - (j) () Let $H = \{ M'''w'' \mid TM M \text{ halts on input string } w \}$, then $H \text{ is } \mathbb{NP}\text{-complete}$.

2. (18%) On FA and Regular Languages

Say whether each of the following languages is regular or not regular? Prove your answers.

- (a) $L_1 = \{w | w \in \{0, 1\}^* \text{ and } w \text{ has an equal number of 0s and 1s}\}.$
- (b) $L_2 = \{w | w \in \{0, 1\}^* \text{ and } w \text{ has an equal number of 01s and 10s} \}.$

3. (20%) On PDA and Context-Free Languages

Let $L_3 = \{wca^mb^n | w \in \{a,b\}^*, \text{ where } w = w^R, \text{ and } m,n \in \mathbb{N}, n \leq m \leq 2n\}.$

- (a) Give a context-free grammar for the language L_3 .
- (b) Design a PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ accepting the language L_3 .

Solution: (a)

(b) The PDA $M=(K,\Sigma,\Gamma,\Delta,s,F)$ is defined below:

	$ \begin{array}{c c} & (q,\sigma,\beta) & (p,\gamma) \\ \hline \end{array}$
K = {} }	
$\Sigma = \{a, b, c\}$	
$\Gamma = \{$	
s =	
F ={}}	

4. (18%) On Undecidability

Classify whether each of the following languages are recursive, recursively enumerable but-not-recursive, or non-recursively-enumerable. Prove your answers, but you may not simply appeal to Rice's theorem.

- (a) $L_4 = \{ M'' | M \text{ is a Turing Machine, and } |L(M)| > 2 \}.$
- (b) $L_5 = \{ M'' | M \text{ is a Turing Machine, and } |L(M)| \leq 2 \}.$

5. (15%) On \mathbb{P} and \mathbb{NP} Problems

In an undirected graph G = (V, E), a **Sovereign set** is a vertex subset $S \subseteq V$ such every edge in E has at most one endpoint in S. Let **Sovereign Set** = $\{(G, k) : G \text{ is an undirected graph that contains a sovereign set of at least <math>k \text{ vertices}\}$.

- (a) Give the definition of the class \mathbb{P} and \mathbb{NP} .
- (b) Show that **Sovereign Set** is a \mathbb{NP} problem.
- (c) Prove that **Sovereign Set** is NP-complete. You may reduce from **Clique** problem.

6. (9%) On Computability and Computational Complexity

- (a) Draw a diagram illustrating the relations between \mathbb{P} , \mathbb{NP} , recursive, recursively enumerable(**r.e.**), co-r.e. on the hypothesis that $\mathbb{P} \neq \mathbb{NP}$, where co-r.e. is the set of languages that its complement is recursively enumerable;
- (b) Try to mark the languages H, \overline{H} , H_1 and $\overline{H_1}$ in the given diagram in part(a), where $H = \{ \text{``}M\text{'''}w\text{''} | \text{Turing Machine } M \text{ halts on } w \}$ and $H_1 = \{ \text{``}M\text{''} | \text{Turing Machine } M \text{ halts on ``}M\text{''} \}$, respectively.