Mathematical formulae

Algebra

A quadratic equation is an equation of the form $ax^2 + bx + c = 0$, $a \ne 0$, a, b, c are real numbers.

 $y=ax^2 + bx + c$ represents a parabola.

- ➤ If a > then the parbola is concave upwards.
- ➤ If a < 0 then the parabola is concave downwards.

Roots of the quadratic equation are given by $x = (-b \pm \sqrt{(b^2 - 4ac)})/2a$.

 $D = b^2 - 4ac$ is called **discriminant.**

The roots are (i) real and distinct if D > 0 (ii) real and equal if D = 0 and (iii) imaginary if D < 0.

Logarithm:

Let a and x be real numbers such that $a \ne 1$, a > 0.

Let $y = a^x$. Then x is called the logarithm of y to the base a and we write $x = \log_a y$. $\therefore x = \log_a y \iff a^x = y$

Since $a^x > 0$, for every real x, logarithm of negative real numbers and logarithm of zero are not defined.

Arithmetic Progression with first term a and common difference d is a sequence of the form

- $ightharpoonup n^{th}$ term, $t_n = a + (n-1) d$.
- $\textbf{Sum of the first n terms, } \ S_n = \frac{n}{2} \left[2a + (n-1) \, d \right] = \frac{n}{2} \left[a + \ell \right] \ \text{where I is the last term.}$

Geometric Progression with first term a & constant ratio r is a sequence of the form a, ar, ar², ..., arⁿ, ...

$$\rightarrow$$
 nth term = t_n = a rⁿ⁻¹

- ightharpoonup The sum of the first n terms, $S_n = \frac{a(1-r^n)}{1-r}$, r < 1 or $\frac{a(r^n-1)}{r-1}$, r > 1 or na if r = 1
- > If |r| < 1, then the sum to infinity of the G.P. = $\frac{a}{1-r}$

Harmonic Progression is a sequence in which the reciprocals of the terms are in arithmetic progression.

Given n numbers a₁, a₂, a₃, ..., a_n, we define

- ightharpoonup Arithmetic Mean: AM = $\frac{a_1 + a_2 + \dots + a_n}{n}$
- ightharpoonup Geometric Meam: GM= $(a_1 a_2 \dots a_n)^{1/n}$
- > Harmonic Mean: HM = $\frac{(a_1^{-1} + a_2^{-1} + \dots + a_n^{-1})^{-1}}{n}$

Matrix: A system of mn numbers arranged in a rectangular array of m rows & n columns is called a matrix of order m x n. If a_{ij} denotes the element in the i^{th} row and j^{th} column, then the matrix is denoted by $A = (a_{ij})$.

The matrix is said to be a

- ✓ row matrix, if number of rows is 1.
- ✓ **column matrix**, if number of columns is 1.
- ✓ **square matrix**, if number of rows = number of columns.
- ✓ diagonal matrix, if it is square and all its elements are zero except the principal diagonal elements.
- ✓ scalar matrix, if it is diagonal and the diagonal entries are equal.
- ✓ unit matrix, if it is diagonal and each diagonal entry is unity.
- ✓ null matrix, if all the elements are zero.
- ✓ upper triangular, if it is square and $a_{ij} = 0$, i > j.
- ✓ **lower triangular**, if it is square and $a_{ij} = 0$, i < j.

Transpose: Let A be an $m \times n$ matrix. The matrix of order $n \times m$ obtained by interchanging the rows and columns of A is called the **transpose of A** and is denoted by A'.

A matrix A is said to be (i) **symmetric** if A' = A (ii) **skew symmetric** if A' = -A. $\Rightarrow A + A'$ and AA' are symmetric (ii) A - A' is skew symmetric.

Every square matrix can be uniquely expressed as sum of two square matrices of which one is symmetric and the other is skew symmetric. i.e. A = (A + A')/2 + (A - A')/2

A matrix A is

(i) orthogonal if AA' = I i.e., $A^{-1} = A'$, (ii) an involutory matrix if $A^2 = I$ i.e. $A^{-1} = A$, (iii) an idempotent matrix if $A^2 = A$, (iv) a nilpotent if there is a positive integer m such that $A^m = 0$.

Determinant:

Let $A = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$, then the determinant of A id defined as $|A| = a_1b_2 - b_1 a_2$.

If
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
, then $|A| = a_1(b_2 c_3 - c_2 b_3) - a_2(b_1 c_3 - c_1 b_3) + a_3(b_1 c_2 - c_1 b_2)$.

A matrix is said to be **singular** if |A| = 0. It is **non-singular** if $|A| \neq 0$.

A matrix A is said to be invertible if there exists a matrix B such that AB = BA = I.

B is denoted by A⁻¹. Inverse of a matrix A exists iff A is non-singular.

Eigen Values: Let A be a square matrix and I be the identity matrix of the sane order then,

- 1) A λI is called the characteristic matrix of A.
- 2) |A λI| is called the characteristic polynomial of A.
- 3) $|A \lambda I| = 0$ is called the characteristic equation of A.
- 4) The roots of $|A \lambda I| = 0$, are called the characteristic roots or eigen values or latent roots of A. If A is of order n, then it has n eigen values.

Properties of eigen values::

Let A be an $n \times n$ matrix. Assume that A has n distinct eigen values say, $\lambda_1, \lambda_2, ..., \lambda_n$ then

- the eigen values of A^T are $\lambda_1, \lambda_2, ..., \lambda_n$
- the eigen values of A^{-1} (if it exists) are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, ..., \frac{1}{\lambda_n}$ the eigen values of the matrix $A \alpha I$ are $\lambda_1 \alpha, \lambda_2 \alpha, ..., \lambda_n \alpha$
- for any non negative integer k, the eigen values of A^k are $\lambda_1^k, \lambda_2^k, ..., \lambda_n^k$
- Property 2.2. • For any square matrix A, the sum of the eigen values of A is equal to the sum of the diagonal elements of A. The sum of the eigen values of A is called the **trace** of A, denoted by trace(A).
 - For any square matrix A, the product of the eigen values of A is equal to the **determinant** A, denoted by det(A).
 - If X is an eigen vector of a matrix A corresponding to an eigen value λ then kX is also an eigen vector of A for λ where k is any non-zero number.

- If $X_1 \& X_2$ are non zero-eigen vectors of a matrix A corresponding to an eigen value λ then $k_1X_1 + k_2X_2$ is also an eigen vector of A for λ where k_1, k_2 are non-zero numbers.
- The eigen vectors corresponding to distinct eigen values of a matrix A are linearly independent.

Eigen values of some special matrices

- Diagonal matrix: The eigen values of a diagonal matrix A are the diagonal entries.
- Triangular matrix (upper or lower): The eigen values of a triangular matrix A are the diagonal entries.
- Symmetric matrix: The eigen values of a symmetric matrix A are real numbers.
- Non-symmetric matrix: The eigen values of a non-symmetric matrix A are either real number or complex conjugate pairs.

Definition 3.1. • Orthogonal matrix: A matrix A is said to be an orthogonal if $AA^T = A^TA = I$.

- Orthogonal vectors: The set of n-component vectors $\{v_1, v_2, ..., v_n\}$ is said to be orthogonal if the dot product $v_i \cdot v_j = 0$ if $i \neq j$..
- Orthonormal vectors: The set of n-component vectors $\{v_1, v_2, ..., v_n\}$ is said to be orthonormal if $v_i \cdot v_j = 0$ if $i \neq j$, and $v_i \cdot v_i = 1$.

Theorem 4.1. The Diagonalization Theorem: An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigen vectors.

Theorem 4.2. An $n \times n$ matrix with n distinct eigen values are diagonalizable.

Linear Transformation: Let V and W be two vector spaces over a field F. A mapping $T: V \to W$ is said to be a Linear Transformation (L.T.) if T preserves addition and scalar multiplication.

That is T satisfies the following conditions: For every $u,v\in V$ and $\alpha\in F$

- 1. T(u+v) = T(u) + T(v)
- 2. $T(\alpha u) = \alpha T(u)$.

Remark 1.1. The above definition is equivalent to the following:

T is a linear transformation from V to W if and only if $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$ for every $u, v \in V$ and $\alpha, \beta \in F$.

Linear Operator: Let V be a vector space over F. Then a linear transformation from V to V is called a **linear operator** on V.

Remark 1.2. Linear transformations are also known as vector space homomorphisms.

∧ c+i

Linear transformation associated with a matrix: Let A be an $n \times n$ matrix. The linear transformation associated with A is the function $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by T(v) = Av for all $v \in \mathbb{R}^n$.

1. Range space of a linear transformation: The range of T is a subspace of W, defined as

$$\mathcal{R}_T = \{ w \in W \mid T(v) = w \text{ for some } v \in V \}.$$

2. Null space of a linear transformation: The null space of T is defined as the set of all vectors in V such that T(v) = 0 where 0 is the zero vector in W. That is,

$$\mathcal{N}_T = \{ v \in V \mid T(v) = 0 \}.$$

Remark 3.1. 1. The range space \mathcal{R}_T and the null space \mathcal{N}_T are subspaces of the vector spaces W and V respectively.

- 2. The null space of T is also known as the **kernel** of T.
- 3. If $A_{n\times n}$ is the matrix corresponding to a linear transformation $T\colon\mathbb{R}^n\to\mathbb{R}^n$ then
 - (a) the null space of A is $\mathcal{N}_A = \{x \in \mathbb{R}^n \mid Ax = 0\}.$
 - (b) the range space of A is $\mathcal{R}_A = \{b \in \mathbb{R}^n \mid Ax = b \text{ for some } x \in \mathbb{R}^n\}.$

Matrix representation of a linear transformation: Let V and W be two vector spaces over the field F and $T: V \to W$ be a linear transformation. Let $B = \{e_1, e_2, \ldots, e_n\}$ and $B' = \{f_1, f_2, \ldots, f_m\}$ be the standard bases of V and W respectively.

Suppose that

$$T(e_{1}) = \lambda_{11}f_{1} + \lambda_{12}f_{2} + \dots + \lambda_{1m}f_{m}$$

$$T(e_{2}) = \lambda_{21}f_{1} + \lambda_{22}f_{2} + \dots + \lambda_{2m}f_{m}$$

$$T(e_{3}) = \lambda_{31}f_{1} + \lambda_{32}f_{2} + \dots + \lambda_{3m}f_{m}$$

$$\vdots$$

$$T(e_{n}) = \lambda_{n1}f_{1} + \lambda_{n2}f_{2} + \dots + \lambda_{nm}f_{m}.$$

Then the matrix representation of
$$T$$
 w.r.t. the bases B and B' is $[T] = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1m} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{n1} & \lambda_{n2} & \dots & \lambda_{nm} \end{pmatrix}^{T}$.

Calculus

Graph of a function y = f(x) is the set given by $g = \{(x, y) | y = f(x)\}.$

A function f is said to be differentiable at a point a, if $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ exists. The value of the limit is then called derivative of f at a and is denoted by f '(a).

Geometrically f'(a) represents the slope of the tangent to the curve y = f(x) at x = a.

- ightharpoonup Linearity Property: $\frac{d(af(x)+bg(x))}{dx}=a\frac{d(f(x))}{dx}+b\frac{d(g(x))}{dx}$, a and b are constants.
- $\textbf{ Chain Rule for Composite Functions:} \ \, \text{If y = f (z) and z = g (x), then} \ \, \frac{dy}{dx} = \frac{dy}{dz} \ \, . \ \, \frac{dz}{dx}$

Derivatives of some standard functions

у	$\frac{dy}{dx}$	у	$\frac{dy}{dx}$	у	$\frac{dy}{dx}$
x ⁿ	nx ⁿ⁻¹	sin x	cos x	sin ⁻¹ x	$\frac{1}{\sqrt{1-x^2}}$, x < 1
√x	$\frac{1}{2\sqrt{x}}$	cos x	- sin x	cos ⁻¹ x	$\frac{-1}{\sqrt{1-x^2}}$, x < 1
a ^x	$a^x \log a$ (a > 0,a \neq 1)	tan x	sec ² x	tan ⁻¹ x	$\frac{1}{1+x^2}$
e ^x	e ^x	sec x	sec x tan x	cot -1 x	$\frac{-1}{1+x^2}$

logx	1/x	cosec x	- cosec x cot x	sec ⁻¹ x	$\frac{1}{\mid x \mid \sqrt{x^2 - 1}}, \mid x \mid > 1$
		cot x	- cosec ² x	cosec ⁻¹ x	$\frac{-1}{ x \sqrt{x^2-1}}$, x > 1

Mean Value Theorems:

Rolle's Theorem: If f(x) is continuous in closed interval [a, b], differential in open interval (a, b) and if f(a)=f(b) then, there exists at least one value c of x in (a, b) such that f'(c) = 0.

Lagrange Mean value Theorem: If f(x) is continuous in a closed interval [a, b] and differentiable in the open interval (a, b), then there exists at least one value c of x in (a, b) such that $f'(x) = \frac{f(b) - f(a)}{b - a}$

Cauchy's Mean Value Theorem : Suppose that two functions f(x) and g(x) are such that

- 1. f(x) and g(x) are continuous in a closed interval [a, b]
- 2. f(x) and g(x) are differential in the open interval (a, b)
- 3. $g'(x) \neq 0$, for all $x \in (a, b)$.

Then there exists at least one value $c \in (a, b)$ such that $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$

Indeterminate forms:

Suppose that $\lim_{x \to a} f(x) = 0$, $\lim_{x \to a} g(x) = 0$. Then $\lim_{x \to a} \frac{f(x)}{g(x)}$ is said to be an indeterminate form of the type 0/0.

L' Hospital's Rule:

Suppose that $\lim_{x \to a} f(x) = 0$, $\lim_{x \to a} g(x) = 0$. In this case,

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = I \quad \Rightarrow \quad \lim_{x \to a} \frac{f(x)}{g(x)} = I.$$

$$\text{If} \ \lim_{x \, \to \, a} \ f \ ' \ (x) = 0, \quad \lim_{x \, \to \, a} \ g' \ (x) = 0, \ \text{then} \ \lim_{x \, \to \, a} \ \frac{f \ ''(x)}{g'' \left(x\right)} = I \\ \Rightarrow \ \lim_{x \, \to \, a} \ \frac{f \ (x)}{g \ (x)} = I \ \text{and so on.}$$

The other indeterminate forms are $\frac{\infty}{\infty}$, $0 \times \infty$, $\infty - \infty$, 0^0 , ∞^0 and 1^∞ . Each such form can be reduced to 0/0 form.

Taylor's series for a function of one variable: If f(x) has derivatives of all orders in an interval containing a, then f(x) can be expressed as series in powers of (x-a) as

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \frac{(x - a)^3}{3!}f'''(a) + \cdots$$

Maclaurin's series is a particular case of Taylor's series with a = 0 and is given by .

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

Some standard series

i)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

ii)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

iii)
$$\tan x = x + \frac{x^3}{3!} + \frac{2}{15}x^5 + \cdots$$

iv)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$

Maxima and Minima of a function of single variable:

A necessary condition for f(c) to be an extreme value of f(x) is that f'(c) = 0.

- (i) If f'(c) = 0 and f''(c) > 0, then f(c) is a minimum value of f(x).
- (ii) If f'(c) = 0 and f''(c) < 0, then f(c) is a maximum value of f(x).

Taylor's theorem for function of two variables: f(a + h, b + k) = f(a, b) + k

$$\left(h\frac{\partial f}{\partial x} + k\frac{\partial f}{\partial y}\right) + \frac{1}{2!}\left(h^2\frac{\partial^2 f}{\partial x^2} + 2hk\frac{\partial^2 f}{\partial x\partial y} + k^2\frac{\partial^2 f}{\partial y^2}\right) + \cdots$$

Maclaurin's series for a function of two variables:

$$f(x,y) = f(0,0) + \left(x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}\right) + \frac{1}{2!}\left(x^2\frac{\partial^2 f}{\partial x^2} + 2xy\frac{\partial^2 f}{\partial x \partial y} + y^2\frac{\partial^2 f}{\partial y^2}\right) + \cdots$$

Maxima and Minima of a function of two variables:

Let f(x,y) be a function of two variables x,y such that it is continuous and finite for all values of x and y in the neighbourhood of a point (a, b). Then the value of f(a, b) is called maximum or minimum value of f(x,y) according as f(a+h,b+k), < or > f(a,b) for all finite and sufficiently small values of h and k.

Necessary and sufficient conditions for the existence of Maximum and Minimum value of a function f(x,y):

The necessary condition for an extremum is $\frac{\partial f(a,b)}{\partial x} = 0$, $\frac{\partial f(a,b)}{\partial y} = 0$

Sufficient Conditions: Let $A = f_{xx}(a, b)$, $B = f_{xy}(a, b)$, $C = f_{yy}(a, b)$.

(i) If
$$AC - B^2 > 0$$
 and $A > 0$, then f (a, b) is minimum

- (ii) If $AC B^2 > 0$ and A < 0, then f (a, b) is maximum
- (iii) If $AC B^2 < 0$, there is neither maximum nor minimum at (a, b)
- (iv) If $AC B^2 = 0$, then the analysis depends on third degree terms.
- 1. <u>Homogeneous function</u>: $x^n \varphi\left(\frac{y}{x}\right)$ or $y^n \varphi\left(\frac{x}{y}\right)$
- 2. Euler theorem for a homogeneous function with degree n:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nu$$

3.
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = n(n-1)u.$$

Errors and Approximations

Let f(x,y) be a continuous function of x and y. Then $\delta f = \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y$. If f is a function of several variables x, y, z, t ..., then $\delta f = \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial z} \delta z + \frac{\partial f}{\partial t} \delta t + ...$

Basic Integrals

∫a dx	ax + C	
Variable	∫x dx	$x^2/2 + C$
Square	∫x² dx	$x^3/3 + C$
Reciprocal	∫(1/x) dx	ln x + C
Exponential	∫e ^x dx	e ^x + C
	∫a ^x dx	a ^x /ln(a) + C
	∫ln(x) dx	$x \ln(x) - x + C$
Trigonometry (x in radians)	∫cos(x) dx	sin(x) + C
	∫sin(x) dx	$-\cos(x) + C$
	$\int \sec^2(x) dx$	tan(x) + C

Rules	Function	Integral
Multiplication by constant	∫cf(x) dx	c∫f(x) dx
Power Rule (n≠-1)	∫x ⁿ dx	x^{n+1} n+1 + C
Sum Rule	∫(f + g) dx	∫f dx + ∫g dx
Difference Rule	∫(f - g) dx	∫f dx - ∫g dx
Integration by Parts	$\int u v dx = u \int v dx$	dx −∫u' (∫v dx) dx

Multiple Integrals:

- 1. Area of the region in the Cartesian form $= \iint_R^{\square} dx \ dy$
- 2. Area of the region in the Polar form $= \iint_R^{\square} r \, dr \, d\theta$
- 3. Volume = $\iiint_V \Box dx \ dy \ dz = \iint_R \Box z \ dx \ dy$.

- 4. Volume of a solid obtained by the revolution of a curve enclosing on area A about the intial line is given by the formula $V=\iint_A^{\square} 2\pi r^2 \sin\theta \ dr d\theta$
- 5. The change of Cartesian coordinate to cylindrical polar coordinates

$$\iiint_{R_{xyz}} f(x,y,z)dx dy dz = \iiint_{RI_{r\emptyset z}} f(r\cos\emptyset,r\sin\emptyset,z)r drd\emptyset dz$$

6. The change of Cartesian coordinate to Spherical polar coordinates

$$\iiint\limits_{R_{xyz}} f(x,y,z)dx\ dy\ dz = \iiint\limits_{RI_{r\theta\phi}} f(r\sin\theta\cos\phi,r\sin\theta\sin\phi,r\cos\theta)r^2\sin\theta\ drd\theta d\phi$$

Beta, gamma functions and Jacobians:

1)
$$\beta(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx = 2 \int_{0}^{\pi/2} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta$$

$$2) \quad \Gamma(n) = \int_{0}^{\infty} e^{-x} x^{n-1} dx$$

3)
$$\Gamma(n) = (n-1)\Gamma(n-1)$$

4)
$$\Gamma(n) = (n-1)!$$
, if n is a positive integer

5) Legendre's duplication formula
$$\Gamma(n)\Gamma(n+1/2) = \frac{\sqrt{\pi}}{2^{2n-1}}\Gamma(2n)$$

6)
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
.

7)
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$

8) Jacobian J =
$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$

9) If
$$J = \frac{\partial(u,v)}{\partial(x,y)}$$
 and $J^1 = \frac{\partial(x,y)}{\partial(u,v)}$ then $JJ^1 = 1$

10) If
$$J_1 = \frac{\partial(u,v)}{\partial(x,y)}$$
 and $J_2 = \frac{\partial(x,y)}{\partial(z,w)}$ then $J_1J_2 = \frac{\partial(u,v)}{\partial(z,w)}$

<u>Interpolation</u>

Interpolation formulae:

Let (x_0, y_0) , (x_1, y_1) ,..., (x_n, y_n) be a set of tabulated points satisfying y = f(x), where explicit nature of y is not known and values of x are equally spaced,

Newton-Gregory Forward Difference Interpolation Formula

$$y_n(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + ... + \frac{p(p-1)...(p-n+1)}{n!}\Delta^n y_0$$

where $x = x_0 + ph$.

 Δ is the forward difference operator and the rth order forward differences are obtained using the relation $\Delta^r y_k = \Delta^{r-1} y_{k+1} - \Delta^{r-1} y_k$, r = 1, 2, ...

Newton-Gregory Backward Difference Interpolation Formula

$$y_n(x) = y_n + p\nabla y_n + \frac{p(p+1)}{2!}\nabla^2 y_n + ... + \frac{p(p+1)...(p+n-1)}{n!}\nabla^n y_n$$

where $x = x_n + ph$

The operator ∇ is called the backward difference operator and the r^{th} order backward differences are obtained using the relation

$$\nabla^r y_k = \nabla^{r-1} y_k - \nabla^{r-1} y_{k-1}, r = 1, 2, ...$$

Interpolation for unevenly spaced values of x:

Lagrange's formula

$$y_{n}(x) = \frac{(x - x_{0})(x - x_{2})...(x - x_{n})}{(x_{0} - x_{1})(x_{0} - x_{2})...(x_{0} - x_{n})} y_{0} + \frac{(x - x_{0})(x - x_{2})...(x - x_{n})}{(x_{1} - x_{0})(x_{1} - x_{2})...(x_{1} - x_{n})} y_{1} + ...$$

$$+ \frac{(x - x_{0})(x - x_{1})...(x - x_{n-1})}{(x_{n} - x_{0})(x_{n} - x_{1})...(x_{n} - x_{n-1})} y_{n}.$$

Newton's divided difference formula

$$y = y_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2]$$

$$+ (x - x_0)(x - x_1)(x - x_2)[x, x_0, x_1, x_2] + \dots$$

$$+ (x - x_0)(x - x_1)(x - x_2) \dots (x - x_{n-1})[x_0, x_1, \dots, x_n]$$

$$+ (x - x_0)(x - x_1)(x - x_2) \dots (x - x_n)[x, x_0, x_1, \dots, x_n]$$

where $[x_0, x_1] = \frac{y_1 - y_0}{x_1 - x_0}$, $[x_1, x_2] = \frac{y_2 - y_1}{x_2 - x_1}$, etc., are the first order divided

differences,
$$\begin{bmatrix} x_0, x_1, x_2 \end{bmatrix} = \frac{\begin{bmatrix} x_1, & x_2 \end{bmatrix} - \begin{bmatrix} x_0, & x_1 \end{bmatrix}}{x_2 - x_0}$$
, $\begin{bmatrix} x_1, x_2, x_3 \end{bmatrix} = \frac{\begin{bmatrix} x_2, & x_3 \end{bmatrix} - \begin{bmatrix} x_1, & x_2 \end{bmatrix}}{x_3 - x_1}$, ...

are the second order divided differences and so on.

Numerical Differentiation:

Derivatives using Newton's forward interpolation formula

$$\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_0 + \frac{2p-1}{2!} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{3!} \Delta^3 y_0 + \frac{4p^3 - 18p^2 + 22p - 6}{4!} \Delta^4 y_0 + \cdots \right]$$

$$\frac{d^2y}{dx^2} = \frac{1}{h^2} \left[\Delta^2 y_0 + \frac{6p - 6}{3!} \Delta^3 y_0 + \frac{12p^2 - 36p + 22}{4!} \Delta^4 y_0 + \cdots \right]$$

where
$$p = \frac{x - x_0}{h}$$
.

At
$$x = x_0, p = 0$$

$$\left(\frac{dy}{dx}\right)_{x=x_0} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \frac{1}{5} \Delta^5 y_0 - \cdots \right]$$

$$\left(\frac{d^2 y}{dx^2}\right)_{x=x_0} = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 - \frac{5}{6} \Delta^5 y_0 \ldots \right]_{y=0}$$

Derivatives using Newton's backward interpolation formula

$$\frac{dy}{dx} = \frac{1}{h} \left[\nabla y_n + \frac{2p+1}{2!} \nabla^2 y_n + \frac{3p^2 + 6p + 2}{3!} \nabla^3 y_n + \frac{4p^3 + 18p^2 + 22p + 6}{4!} \nabla^4 y_n + \cdots \right]$$

$$\frac{d^2y}{dx^2} = \frac{1}{h^2} \left[\nabla^2 y_n + \frac{6p+6}{3!} \nabla^3 y_n + \frac{12p^2 + 36p + 22}{4!} \nabla^4 y_n + \cdots \right]$$

where $p = \frac{x - x_n}{h}$.

At
$$x = x_0$$
, $p = 0$

$$\left(\frac{dy}{dx}\right)_{x=x_n} = \frac{1}{h} \left[\nabla y_n + \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^3 y_n + \frac{1}{4} \nabla^4 y_n + \frac{1}{5} \nabla^5 y_n + \cdots \right]$$

$$\left(\frac{d^2 y}{dx^2}\right)_{x=x_n} = \frac{1}{h^2} \left[\nabla^2 y_n + \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n + \frac{5}{6} \nabla^5 y_n \dots \right]_{x=x_n}$$

Numerical Integration:

Newton-Cotes quadrature formula

$$\int_{x_0}^{x_0+nh} f(x)dx = nh\left[y_0 + \frac{n}{2}\Delta y_0 + \frac{n(2n-3)}{12}\Delta^2 y_0 + \frac{n(n-2)^2}{24}\Delta^3 y_0 + \cdots \right]$$

Trapezoidal rule

$$\int_{x_0}^{x_0+nh} f(x)dx = \frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 + y_3 + \dots + y_{n-1})]$$

Simson's one-third rule

$$\int_{x_0}^{x_0+nh} f(x)dx = \frac{h}{3} [(y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2})]$$

Simson's three-eigth rule

$$\int_{x_0}^{x_0+nh} f(x)dx = \frac{3h}{8} \left[(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 \dots + y_{n-1}) + 2(y_3 + y_6 + \dots + y_{n-3}) \right]$$

Techniques for finding roots of Algebraic and Transcendental Equations

Bisection Method: Let f(a) be negative and f(b) be positive. Then the root lies between a and b and its approximate value be given by $x_0 = \frac{a+b}{2}$.

Regula Falsi method / Method of false position: Let f(a) be negative and f(b) be positive. Then the root lies between a and b and its approximate value be given by

$$x_1 = \frac{a f(b) - b f(a)}{f(b) - f(a)}$$

Newton- Raphson Method: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, n = 0, 1, 2, 3, ...

Non-linear simultaneous equations by Newton-Raphson (or Newton's) method:

$$f_0 + h \frac{\partial f}{\partial x_0} + k \frac{\partial f}{\partial y_0} = 0, \quad g_0 + h \frac{\partial g}{\partial x_0} + k \frac{\partial g}{\partial y_0} = 0$$

Taylor Series Method: $y = y_0 + (x - x_0)y_0' + \frac{(x - x_0)^2}{2!}y_0'' + \frac{(x - x_0)^3}{3!}y_0''' + \dots$

Euler's Method: $y_{n+1} = y_n + hf(x_n, y_n)$

Modified Euler's method: $y_1^{(0)} = y_0 + hf(x_0, y_0)$

$$y_1^{(n+1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})], \quad n = 0, 1, 2, ...$$

Runge-Kutta Method of Second Order: $y_1 = y_0 + \frac{1}{2}(k_1 + k_2)$,

where $k_1 = hf(x_0, y_0)$ and $k_2 = hf(x_0 + h, y_0 + k_1)$.

Runge-Kutta Method of Fourth Order:

$$y_1 = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
, where $k_1 = hf(x_0, y_0)$,

$$k_2 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}), \quad k_3 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}), \quad k_4 = hf(x_0 + h, y_0 + k_3).$$

Analytical Geometry

For two dimension:

- Consider two points P(x₁, y₁) and Q(x₂, y₂) then: 1. The distance formula: $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- 2. The midpoint formula: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
- 3. The point R(x, y) dividing PQ in the ratio $\frac{k_1}{k_2}$ is: $x = \frac{k_1 x_2 + k_2 x_1}{k_1 + k_2}$, $y = \frac{k_1 y_2 + k_2 y_1}{k_2 + k_2}$

- 4. The Slope of PQ is: $m = \frac{y_2 y_1}{x_2 x_1}$
- 5. The Slope of the X-axis and a line parallel to X-axis = 0
- 6. The Slope of the Y-axis and a line parallel to Y-axis is not defined, i.e ∞ . The equation of the X-axis is y = 0 and the equation of Y-axis is x = 0.
- 7. The equation of the line parallel to the Y-axis and is at a distance 'a' is x = a.
- 8. The equation of the line parallel to the X-axis and is at a distance 'a' is y = a.
- 9. The equation of the line with slope **m** and Y-intercept **c** is **y = mx + c**, which is called the slope intercept form.
- 10. The equation of the line passing through (x_1,y_1) and having slope m is $y y_1 = m(x x_1)$, which is called the slope-point form.
- 11. The equation of the line passing through two points (x_1, y_1) and (x_2, y_2) is $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$
- 12. The equation of the line having a and b as the x-intercept and y-intercept is $\frac{x}{a} + \frac{y}{b} = 1$ and is called the equation of the line intercept form.
- 13. The normal form of the straight line is $x \cos \alpha + y \sin \alpha = p$, where p is the length of the perpendicular from O (0,0) to the line, α is the inclination of the perpendicular.
- 14. The general form of the equation of a straight line is ax + by + c = 0.
- 15. The distance of the point (x_1, y_1) from the line ax + by + c = 0 is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$
- 16. If ax + by + c = 0 with b > 0, is the equation of the line l, then $P(x_1, y_1)$ lies:
 - i. Above the line l if $ax_1 + by_1 + c > 0$
 - ii. Below the line l if $ax_1 + by_1 + c < 0$
 - iii. On the line l if $ax_1 + by_1 + c = 0$
- 17. Consider two lines l_1 and l_2 having the slopes m_1 and m_2 respectively.

If two lines l_1 and l_2 are parallel, then $m_1 = m_2$.

If two lines l_1 and l_2 are perpendicular, then m_1 x m_2 = -1.

The angle θ from I_1 to I_2 is $\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2}$

For three dimension:

Direction Cosines of a line:

- 1. If α , β , γ be the angles which a given line makes with the positive directions of coordinate axes, then $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$ are called the direction cosines (d.c.'s) of the given line.
- 2. If l, m, n are the direction cosines of a line PQ then the d.c's of QP are -l, -m, -n.
- 3. If l, m, n be the d.c.'s of a line OP and OP=r then the co-ordinates of P are (lr, mr, nr).

4. If l, m, n be the d.c.'s of a line, then $l^2 + m^2 + n^2 = 1$.

Direction Ratios of a line:

- 1. Three numbers a, b, c which are propotional to the directional cosines l, m, n respectively of a line are called direction ratios (d.r's)of a line.
- 2. If a, b, c are the d.r.'s of a line then the direction cosines are

$$l=\pm\frac{a}{\sqrt{a^2+b^2=c^2}},\,m=\pm\frac{b}{\sqrt{a^2+b^2=c^2}}$$
 , $n=\pm\frac{c}{\sqrt{a^2+b^2=c^2}}$

- 3. Let $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ be two given points then the direction ratios of PQ are, $x_2 x_1, y_2 y_1, z_2 z_1$.
- 4. The angle between the lines whose d.c.'s are l_1, m_1, n_1 and l_2, m_2, n_2 is $\theta = \cos^{-1}(l_1l_2 + m_1m_2 + n_1n_2)$
- 5. If the d.c.'s of a line are l_1, m_1, n_1 and l_2, m_2, n_2 then
- 6. Condition for perpendicularity; $l_1l_2 + m_1m_2 + n_1n_2 = 0$
- 7. Condition for parallelism
- 8. The angle between the lines whose d.r.'s are a_1, b_1, c_1 and a_2, b_2, c_2 is $\cos\theta = \frac{(a_1a_2+b_1b_2+c_1c_2)}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}}$.
- 9. If the d.r.'s are a_1,b_1,c_1 and a_2,b_2,c_2 then the lines are perpendicular if $(a_1a_2+b_1b_2+c_1c_2)=0$. and parallel if $\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$.
- 10. The projection of the join of two points (x_1, y_1, z_1) , (x_2, y_2, z_2) on a line whose d.c.'s are l, m, n is $l(x_2 x_1) + m(y_2 y_1) + n(z_2 z_1)$.
- 11. **General Form**: The two linear equations in x, y and z together represent a straight line ax + by + cz + d = 0 and a'x + b'y + c'z + d' = 0.
- 12. **Symmetrical Form**: Equations of the line through the point $A(x_1, y_1, z_1)$ and having direction cosines l, m, n are $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$.
- 13. Any point on the symmetrical form of a line is $(x_1 + kl, y_1 + km, z_1 + kn)$.
- 14. The equations of the line joining the points (x_1, y_1, z_1) and (x_2, y_2, z_2) are $\frac{x x_1}{x_2 x_1} = \frac{y y_1}{y_2 y_1} = \frac{z z_1}{z_2 z_1}$ for the direction ratios of the line joining the given points are $x_2 x_1, y_2 y_1, z_2 z_1$.
- 15. The condition that the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ may lie in the plane ax + by + cz + d = 0 are (i) the line should be parallel to the plane and (ii) a point of line should lie in the plane.
- 16. The equation of any plane through the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ is $a(x-x_1) + b(y-y_1) + c(z-z_1) = 0$ where al + bm + cn = 0.
- 17. The equation of any plane through the line of intersection of the planes ax + by + cz + d = 0 and a'x + b'y + c'z + d' = 0 is ax + by + cz + d + k(a'x + b'y + c'z + d') = 0.
- 18. Conditions for the two lines $\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$ and $\frac{x-x_1}{l_2} = \frac{y-y_1}{m_2} = \frac{z-z_1}{n_2}$ to intersect is $\begin{vmatrix} x_2 x_1 & y_2 y_1 & z_2 z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0.$

19. The equation of the plane containing the lines
$$\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$$
 and $\frac{x-x_1}{l_2} = \frac{y-y_1}{m_2} = \frac{z-z_1}{n_2}$ is $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0$.

20. The length of the shortest distance between two lines
$$\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$$
 and $\frac{x-x_1}{l_2} = \frac{y-y_1}{m_2} = \frac{z-z_1}{n_2}$ is $l(x_2 - x_1) + m(y_2 - y_1) + n(z_2 - z_1)$.

21. The equation of the line of shortest distance between two lines
$$\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$$
 and $\frac{x-x_1}{l_2} = \frac{y-y_1}{m_2} = \frac{z-z_1}{n_2}$ is $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ l_1 & m_1 & n_1 \\ l & m & n \end{vmatrix} = 0$ and $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ l_2 & m_2 & n_2 \\ l & m & n \end{vmatrix} = 0$.

22. The length of the perpendicular from
$$(x_1, y_1)$$
 to the line $ax + by + c = 0$ is $\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$.

- 23. The conditions that the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ may lie in the plane ax + by + cz + d = 0 are al + bm + cn = 0 and $ax_1 + by_1 + cz_1 + d = 0$.
- d=0 are al+bm+cn=0 and $ax_1+by_1+cz_1+d=0$. 24. The condition that the line $\frac{x-x_1}{l}=\frac{y-y_1}{m}=\frac{z-z_1}{n}$ is perpendicular to the plane ax+by+cz+d=0 is $\frac{l}{a}=\frac{m}{b}=\frac{n}{c}$.
- 25. The angle between the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ and the plane ax + by + cz + d = 0 is $\theta = \sin^{-1}\left(\frac{la+mb+nc}{\sqrt{l^2+m^2+n^2}\sqrt{a^2+b^2+c^2}}\right)$.
- 26. The equation of any plane through the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ is $A(x_2-x_1) + B(y_2-y_1) + C(z_2-z_1) = 0$ where Al + Bm + Cn = 0.

Figure	Area	Perimeter
Equilateral triangle with side a	$\sqrt{3} \ a^{2}/4$	3a
Triangle with sides a, b, c	(base ×height)/2	a+b+c
Rectangle with sides I and b	l×b	2(l + b)
Parelleogram	base × height	2(l + b)
Trapezoid	(sum of parallel sides)xh/2	
Circle with radius r	πr^2	2πr

	Volume	Surface Area
sphere with radius r	$\frac{4}{3}\pi r^3$	4 πr ²
Cube with side a	a ³	6a²
Right circular cylinder	πr² h	2 πr (r +h)

Cuboid	l ×b×h	2(lxb + bxh + hxl)
Right circular cone	$\frac{1}{3}*\pi r^2 h$	$S = \pi r / + \pi r^2$

- 1. For a spherical shell, if R and r are the outer and inner radii respectively, then the volume of the shell is $=\frac{4}{3}\pi(R^3-r^3)$
- 2. The equation of a sphere of radius R centred at the point (x_0, y_0, z_0) is given by: $(x x_0)^2 + (y y_0)^2 + (z z_0)^2 = R^2$

Measurements of Cone

A cone is a solid figure generated by a line, one end of which is fixed, and the other end describes a closed curve in a plane.

A right circular cone is a cone whose base is a circle and whose axis is perpendicular to the base. Such a cone can also be described as a solid formed by a right triangle rotated about one of its sides as an axis.

- 1. A right cone of height h and base radius r oriented along the z axis, with vertex pointing up, and with the base located at z = 0 can be described with parametric equations: $x = \frac{h-u}{h} r \cos \theta$, $y = \frac{h-u}{h} r \sin \theta$, z = u, for u ϵ [0, h] and θ ϵ [0, 2 π)
- 2. The opening angle of a right cone is the vertex angle made by a cross section through the apex and centre of the base. For a cone of height h and radius r, it is given by $\vartheta = 2 \tan^{-1} \frac{r}{h}$

Measurements of Cylinders

A cylinder is a solid figure generated by a straight line moving to its original position, while its end describes a closed figure in a plane.

- 1. Volume of a Cylinder $V=\pi r^2 h$ (r being the radius) or $V=\frac{\pi}{4}d^2h$ (d being the diameter)
- 2. For a Hollow Cylinder, if R is the outer radius and r is the inner radius, then $V = \pi R^2 h \pi r^2 h = \pi (R^2 r^2) h$
- 3. Curved surface area $S = 2\pi rh$
- 4. The Total surface area = $2\pi rh + 2\pi r^2 = 2\pi r(r+h)$
- 5. The equation of a cylinder centred at (a, b) having radius r and its axis parallel to z axis is given by: $(x a)^2 + (y b)^2 = r^2$

6. The lateral surface of a cylinder of height h and radius r can be described parametrically by: $x = r \cos \theta$, $y = r \sin \theta$, z = z

Infinite Series

- 1. **Geometric series test:** The series $\sum_{r=0}^{\infty} r^n$
 - Converges if |r| < 1(i)
 - (ii) Diverges if $r \ge 1$
 - Oscillates finitely, if r = -1 and oscillates infinitely if r < -1.
- 2. Comparison Test:

Let $\sum u_n$ and $\sum v_n$ be two positive term series

- If $\sum v_n$ is convergent and $u_n \leq v_n$, for all n, then $\sum u_n$ is also convergent.
- If $\sum v_n$ is divergent and $u_n \geq v_n$, for all n, then $\sum u_n$ is also divergent. (ii)
- 3. Quotient test:

Suppose $\sum u_n$ and $\sum v_n$ be two positive term series. If $\lim_{n\to\infty}\frac{u_n}{v_n}=k(\neq 0 \text{ a})$ constant), then $\sum u_n$ and $\sum v_n$ converge or diverge together.

4. Integral Test:

A positive term series $f(1) + \cdots + f(n) + \dots$ where f(n) decreases as n increases, converges or diverges according as the integral $\int_{1}^{\infty} f(x) dx$ is finite or infinite.

5. p-series (harmonic series) test:

A positive term series $\sum u_n = \sum \frac{1}{n^p}$ is (i) convergent if p > 1 (ii) divergent if $p \le 1$.

6. D'Alemberts;s Ratio test: A positive term series $\sum u_n$

Converges if $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}<1$, Diverges if $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}>1$, Test fails if $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=1$ 7. Raabe's Test: A positive term series $\sum u_n$

Converges if $\lim_{n\to\infty} n(\frac{u_n}{u_{n+1}}-1) > 1$, Diverges if $\lim_{n\to\infty} n(\frac{u_n}{u_{n+1}}-1) < 1$, fails if the limit = 1

8. CAUCHY'S ROOT TEST: In a positive series $\sum u_n$, if $\lim_{n\to\infty} (u_n)^{1/n} = \lambda$, the series

converges for $\lambda < 1$, diverges for $\lambda > 1$, test fails for $\lambda = 1$.

Leibnitz's rule: An alternating series $u_1 - u_2 + u_3 - u_4 + \cdots$

- each term is numerically less than its preceding term, and (i)
- (ii) $\lim u_n=0.$

 $\lim_{n\to\infty} u_n \neq 0$, the given series is oscillatory.

Absolutely convergent

If the series of arbitrary terms $u_1 + u_2 + u_3 + \cdots + u_n + \cdots$ be such that the series $|u_1|+|u_2|+|u_3|+\dots+|u_n|+\dots$ is convergent, then the series $\sum u_n$ is said to be absolutely convergent.

Conditionally convergent

If $\sum |u_n|$ is divergent but $\sum u_n$ is convergent, then $\sum u_n$ is said to be conditionally convergent.

Note: An absolutely convergent series is necessarily convergent but not conversely.

Laplace Transform

$$\mathcal{L}\{f(t)\} \equiv f(s) = \int_0^\infty f(t) e^{-st} dt$$

Properties of Laplace transform

1.
$$L\{af(t)+bg(t)-ch(t)\}=aL\{f(t)\}+bL\{g(t)\}-cL\{h(t)\}$$
 (Linearity Property)

2. If
$$L\{f(t)\} = F(s)$$
 then $L\{e^{at}f(t)\} = F(s-a)$. (First Shifting property)

3. If
$$L\{f(t)\} = F(s)$$
 then $L\left\{\int_{0}^{t} f(u)du\right\} = \frac{1}{s}F(s)$

If
$$L\{f(t)\}=F(s)$$

4. then
$$L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} F(s), n=1,2,3,...$$

5. If
$$L\{f(t)\} = F(s)$$
 then $L\{\frac{1}{t}f(t)\} = \int_{s}^{\infty} F(s)ds$

6. If F(t) has a Laplace Transform and if

$$F(t+\omega) = F(t), L\{F(t)\} = \frac{\int_{0}^{\omega} e^{-s\beta} F(\beta) d\beta}{1 - e^{-sw}}.$$

Laplace transforms of standard function

f(t)	L (f(t))
1	1
	$\frac{1}{s}$
t	1
	$\frac{1}{s^2}$
t ⁿ	n!
	\overline{s}^{n+1}
e ^{at}	1
	<u></u>
sin k t	k
	$\overline{s^2 + k^2}$
cos k t	S
	$\overline{s^2 + k^2}$
sinh k t	k
	$\overline{s^2 - k^2}$

	_
cosh kt	S
	$\overline{s^2 - k^2}$
e ^{at} sin kt	k
	$\overline{(s-a)^2+k^2}$
eat cos kt	s-a
	$\overline{(s-a)^2+k^2}$
e ^{at} sinh kt	k
	$(s-a)^2-k^2$
e ^{at} cosh kt	s-a
	$\overline{(s-a)^2-k^2}$
t ⁿ e ^{at}	n!
	$\frac{n!}{(s-a)^{n+1}}, \text{ n a positive integer}$ $\frac{e^{-as}}{s}, s > 0$ 1
H (t-a)=u _a (t)	e ^{-as}
	 ,s>0 s
δ (t)	1
δ (t-t _o)	e^{-st_0}
eat f(t)	F(s-a)
f(t-a) H(t-a)	e ^{-as} F(s)
t ⁿ f(t)	(1)n d ⁿ E(a)
	$(-1)^n \frac{d^n}{ds^n} F(s)$
f ⁽ⁿ⁾ (t)	$s^{n} F(s)-s^{n-1}f(0)$ $f^{(n-1)}(0)$ F(s) G(s)
t (1) (1) (1)	F(s) G(s)
$\int_{0}^{\infty} f(u) g(t-u) du$	
0	

Inverse Laplace transforms:

Let $L\{f(t)\} = F(s)$. Then f(t) is defined as the inverse Laplace transform of F(s) and is denoted by $L^{-1}\{F(s)\}$. **Thus** $L^{-1}F(s) = f(t)$

Linearity Property

Let L^{-1} {F(s)} = f(t) and L^{-1} {G(s)} = g(t) and a and b be any two constants.

Then L⁻¹ [a F(s)
$$\Box$$
 b G(s)] = a L⁻¹ {F(s)} \Box b L⁻¹ { G(s)}

Shifting Property

If L⁻¹
$$\{F(s)\}=f(t)$$
 then L⁻¹ $[F(s-a)]=e^{at}L^{-1}\{F(s)\}$

Inverse transform of derivative

$$L^{-1}\{F^n(s)\}=(\Box 1)^n t^n L^{\Box 1}\{F(s)\}$$

$$L^{-1}[e^{-as} F(s)] = f(t-a) H(t-a)$$

$$L^{-1}[F(s)G(s)] = \int_0^t f(t-u)g(u)du = f(t) * g(t)$$

Inverse Laplace Transforms of some standard functions

F(s)	$f(t) = L^{-1}F(s)$
$\frac{1}{s}$, $s > 0$	1
$\frac{1}{s-a}$, $s > a$	e^{at}
$\frac{s}{s^2 + a^2}, s > 0$	Cos at
$\frac{1}{s^2 + a^2}, s > 0$	$\frac{\text{Sin at}}{a}$
$\frac{1}{s^2 - a^2}, s > a $	Sin h at a
$\frac{s}{s^2 - a^2}, s > a $	Coshat
$\frac{1}{s^{n+1}}, s > 0$	$\frac{t^n}{n!}$
$n = 0, 1, 2, 3,$ $\frac{1}{s^{n+1}}, s > 0$ $n > -1$	$\frac{t^n}{\Gamma(n+1)}$