The Complexity of Transducer Synthesis from Multi-Sequential Specifications

Léo Exibard¹² Emmanuel Filiot¹³

Ismaël lecker¹

Wednesday, December 5th, 2018

¹Université libre de Bruxelles

 ^{2}IIS

Aix-Marseille Université

³FNRS

From verification to synthesis

Reactive systems

Interaction
$$\rightsquigarrow i_1o_1i_2o_2i_3o_3\cdots \in (IO)^{\omega}$$
 or $(IO)^*$

Verification

Check that a system satisfies a specification

System || Env |= Specification

Synthesis

Generate a system from a specification

? \parallel Env \models Specification

From verification to synthesis

Reactive systems

Interaction
$$\rightsquigarrow i_1o_1i_2o_2i_3o_3\cdots \in (IO)^{\omega} \text{ or } (IO)^*$$

Verification

Check that a system satisfies a specification

System | Env | Specification

Synthesis

Generate a system from a specification

? \parallel Env \models Specification

Synthesis

? \parallel Environment \models Specification

→ Generate a system from a specification

Implementing a specification

Input words I*

Output words O*

Implementation $M: I^* \to O^*$

Specification $S \subseteq I^* \times O^*$

M fulfils S, written $M \models S$, if for all $in \in dom(S), (in, M(in)) \in S$

The realisability and synthesis problem

$$\mathcal{S}=$$
 Class of specifications $\mathcal{M}=$ Class of target implementations

$$S \subseteq I^* \times O^*$$
 $M: I^* \to O^*$

Synthesis problem from S to M

Input: Specification $S \in S$

Output: • Implementation $M \in \mathcal{M}$

s.t. $M \models S$ if it exists

No otherwise

Realisability problem from S to M

→ Corresponding decision problem

Finite transducers: automata with outputs

Replace every letter with an a when there are at least two ${\color{blue} a}$'s

Finite transducers: automata with outputs

Replace every letter with an a when there are at least two a's

Replace every letter with a b when there is at least one b

Finite transducers: automata with outputs

Replace every letter with an a when there are at least two a's

Replace every letter with a b when there is at least one b

Sequential transducer

The transition and output letter are determined by the input letter

Multi-sequential transducers

Multi-sequential transducer

Union of sequential transducers

$$\mathcal{T} = \biguplus_{i=1}^{\kappa} \mathcal{D}_i$$

Running example

Multi-sequentiality

A relation is *multi-sequential* if it can be defined by a multi-sequential transducer

- Decidable for functions [Choffrut and Schützenberger, 1986]
- Membership in PTime [Jecker and Filiot, 2015]

Transducer realisability problem Known results

 $\mathcal{M} = \text{sequential transducers}$

${\mathcal S}$	Complexity
MSO	Nonelementary [Büchi and Landweber, 1969]
LTL	2-ExpTime-c [Pnueli and Rosner, 1989]
Finite Transducers	ExpTime-c

Transducer realisability problem Known results

 $\mathcal{M} = \text{sequential transducers}$

${\mathcal S}$	Complexity
MSO	Nonelementary [Büchi and Landweber, 1969]
LTL	2-ExpTime-c [Pnueli and Rosner, 1989]
Finite Transducers	ExpTime-c

Question: Class of transducers with better complexity?

 $\mathcal{S} = \mathsf{Multi}\text{-seq. transducers}$ Unions of sequential transducers $\mathcal{T} = \uplus_{i=1}^k \mathcal{D}_i$

 $\mathcal{M} = \mathsf{Seq.}$ transducers

Output letter and transition is determined by input letter

Theorem

Sequential transducer synthesis from multi-sequential specifications is **PSpace**-complete.

→ On input a, need to *drop* one transducer

→ On input a, need to *drop* one transducer

Critical prefix u

At least two runs on \boldsymbol{u} disagree on their output

→ On input a, need to *drop* one transducer

Critical prefix u

At least two runs on u disagree on their output

Residual property

For all critical prefix \underline{u} , there exists $P \subsetneq \{\mathcal{D}_1, \dots, \mathcal{D}_k\}$ s.t.:

- 1. All transducers in P produce the same output on u
- 2. The domain is still covered: $\mathbf{u}^{-1} dom(\mathcal{T}) = \bigcup_{i \in P} \mathbf{u}^{-1} dom(\mathcal{D}_i)$
- 3. The residual specification $\mathbf{u}^{-1} \left[\left[\biguplus_{i \in P} \mathcal{D}_i \right] \right]$ is realisable

Theorem

Sequential transducer realisability from multi-sequential specifications is **PSpace**-complete.

Easiness

The *residual property* can be checked in **PSpace**.

Theorem

Sequential transducer realisability from multi-sequential specifications is **PSpace**-complete.

Easiness

The residual property can be checked in PSpace.

Hardness

 \rightsquigarrow Emptiness problem of the intersection of *n* DFAs

$$S: w\#\sigma \mapsto w\sigma\# \text{ if } \exists i, w \in L(A_i) \qquad (\sigma \in \{a, b\})$$
$$w\#\sigma \mapsto w\#\sigma \text{ if } \exists i, w \notin L(A_i)$$

2-sequential transducer for one A_i

Our running example

Our running example

Waiting two steps allows to determine whether:

- There is at least one b
- There are at least two a's

Our running example

Asynchronous transducer

At every transition, reads a letter, outputs a (possibly empty) word.

Waiting two steps allows to determine whether:

- There is at least one b
- There are at least two a's

Our running example

Asynchronous transducer

At every transition, reads a letter, outputs a (possibly empty) word.

Waiting two steps allows to determine whether:

- There is at least one b
- There are at least two a's

An asynchronous implementation

Asynchronous transducer realisability problem Known results

$\mathcal{M} =$ Unambiguous functional transducers

Feasible for any asynchronous specification [Kobayashi, 1969]

$\mathcal{M} =$ Sequential transducers

${\cal S}$ (async. transducers)	Complexity
Nondeterministic	Undecidable [Carayol and Löding, 2014]
Finite-valued	3-ExpTime [Filiot et al., 2016]
Multi-sequential	PSpace-c

Asynchronous transducer realisability problem Known results

$\mathcal{M} =$ Unambiguous functional transducers

Feasible for any asynchronous specification [Kobayashi, 1969]

$\mathcal{M} =$ Sequential transducers

${\cal S}$ (async. transducers)	Complexity
Nondeterministic	Undecidable [Carayol and Löding, 2014]
Finite-valued	3-ExpTime [Filiot et al., 2016]
Multi-sequential	PSpace-c

$$\mathsf{del}(u_1, u_2) = (\ell^{-1}u_1, \ell^{-1}u_2)$$

$$\ell = u_1 \wedge u_2$$

$$del(u_1, u_2) = (\ell^{-1}u_1, \ell^{-1}u_2)$$
$$del(a, \varepsilon) = (a, \varepsilon)$$

$$\operatorname{del}(u_1, u_2) = (\ell^{-1}u_1, \ell^{-1}u_2)$$
 $\operatorname{del}(a, \varepsilon) = (a, \varepsilon)$
 ll
 $\operatorname{del}(aa, a) = (a, \varepsilon)$

$$\operatorname{del}(u_1,u_2) = (\ell^{-1}u_1,\ell^{-1}u_2)$$
 $\operatorname{del}(a,b) = (a,b)$
 $\operatorname{del}(aa,ba) = (aa,ba)$

Delay

 $\mathbf{v}|\beta_i$

$$\mathsf{del}(u_1, u_2) = (\ell^{-1}u_1, \ell^{-1}u_2)$$
 $\mathsf{del}(a, b) = (a, b)$
 \Leftrightarrow
 $\mathsf{del}(aa, ba) = (aa, ba)$

Critical loop

Triple $(\mathbf{u}, \mathbf{v}, X)$ s.t.:

- 2. For all $\mathcal{D}_i \notin X$, no run on \boldsymbol{u}
- 3. For two transducers $\mathcal{D}_i, \mathcal{D}_j \in X$, delays accumulate: $del(\alpha_i, \alpha_j) \neq del(\alpha_i \beta_i, \alpha_j \beta_j)$

Recursive characterisation

 $\mathcal{T}=\uplus_{i=1}^k\mathcal{D}_i$ is realisable iff for all critical loops (u,v,X), there exists $Y\subsetneq X$ s.t.:

1. Delays do not accumulate:

$$\forall \mathcal{D}_i, \mathcal{D}_j \in Y, \mathsf{del}(\alpha_i, \alpha_j) = \mathsf{del}(\alpha_i \beta_i, \alpha_j \beta_j)$$

- 2. The domain is still covered: $\mathbf{u}^{-1} dom(\mathcal{T}) = \bigcup_{i \in P} \mathbf{u}^{-1} dom(\mathcal{D}_i)$
- 3. The residual specification $(u,\ell)^{-1}$ \downarrow \mathcal{D}_i is realisable

 ℓ longest common prefix of the α_i 's

→ Can be easily checked in ExpTime

Theorem

Asynchronous sequential transducer synthesis from multi-sequential specifications is **PSpace**-complete.

PSpace-easiness: a non-recursive characterisation

Witness of non-satisfaction

- Unfolding of the recursive characterisation
- Reformulation of delay difference
- → Can be found in PSpace

PSpace-hardness

→ Similar to the synchronous case

Conclusion

Multi-sequential specifications

- Membership decidable in PTime
- Sequential realisability is PSpace-c both in synchronous and asynchronous cases
- → Improvement of the general case:
 - synchronous = **ExpTime-c**
 - asynchronous = **undecidable**

Synthesis game

- → Practical synthesis algorithm
- Suitable for any type of specification defined by transducers (might not terminate)

The synthesis game

Bibliography i

- Büchi, J. R. and Landweber, L. H. (1969).

 Solving Sequential Conditions by Finite-State Strategies.

 Transactions of the American Mathematical Society,
 138:295–311.
- Carayol, A. and Löding, C. (2014).

 Uniformization in Automata Theory.

 In Proceedings of the 14th Congress of Logic, Methodology

and Philosophy of Science Nancy, July 19-26, 2011, pages 153–178, London. College Publications.

Bibliography ii

Choffrut, C. and Schützenberger, M. P. (1986).

Décomposition de fonctions rationnelles.

In 2nd Annual Symposium on Theoretical Aspects of Computer Science, STACS, pages 213–226.

Filiot, E., Jecker, I., Löding, C., and Winter, S. (2016).

On equivalence and uniformisation problems for finite transducers.

In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, Rome, Italy, pages 125:1–125:14.

Bibliography iii

Jecker, I. and Filiot, E. (2015).

Multi-sequential word relations.

In Proceedings of the 19th International Conference on Developments in Language Theory, DLT 2015, Liverpool, UK, July 27-30, pages 288–299.

Kobayashi, K. (1969).

Classification of formal languages by functional binary transductions.

Information and Control, 15(1):95-109.

Bibliography iv

Pnueli, A. and Rosner, R. (1989).

On the synthesis of a reactive module.

In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '89, pages 179–190, New York, NY, USA. ACM.