IIC2133 – Estructuras de Datos y Algoritmos Interrogación 2

Hora	inicio: 1	L4:00	del 6 d	le mayo	o del 2	202	0		
Hora	máxima	de e	ntrega	: 23:59	del 7	de	mayo	del	2020

Rellena lo siguiente si no lo haces:	e inclúyelo al p	orincipio de tu entrega. No	os reservamos el derec	cho a no corregir tu prueba
Yo, <u>Nombre</u> elaboradas por mí, s			•	nidas en esta prueba fueron al cuerpo docente del curso. <u>Firma</u>

- 1. La propiedad fundamental de un ABB es que las claves almacenadas en el subárbol izquierdo son todas menores que la clave almacenada en la raíz, la que a su vez es menor que cualquiera de las claves almacenadas en el subárbol derecho. Teniendo presente esta propiedad, responde:
 - a. Considera que tienes un ABB vacío T sin autobalance y una lista desordenada L de n números. ¿Cómo puedes utilizar T para ordenar L? ¿Cuál sería la complejidad de este algoritmo en notación Ω ? ¿Qué características tiene L cuando se da este caso? Da un ejemplo con n=11.
 - b. Definimos B_x como los nodos en la ruta de búsqueda de una hoja x en un árbol T. Definimos A_x como todos los nodos a la izquierda de B_x , y C_x como todos los nodos a la derecha de B_x . ¿Es posible que haya un nodo en C_x de clave menor a la clave de un nodo en A_x ? Si la respuesta es sí, da un ejemplo. En caso contrario, demuestra que no es posible.
- 2. La propiedad fundamental de un AVL, además de ser un ABB, es que las alturas del subárbol izquierdo y del subárbol derecho difieren a lo más en 1. Teniendo presente esta propiedad, responde:
 - a. Considera que tienes un AVL vacío T y una lista desordenada L de n números. ¿Cómo puedes utilizar T para ordenar L? ¿Cuál sería la complejidad de este algoritmo en notación Ω ? ¿Qué características tiene L cuando se da este caso? Ejecuta tu algoritmo con L = [17, 29, 53, 61, 73, 37, 43].
 - b. Demuestra que basta con hacer una sola rotación (simple o doble) para corregir el desbalance producto de una inserción en un árbol AVL.

- 3. Los árboles 2-3 son árboles de búsqueda en que los nodos tienen ya sea una clave y dos hijos, o bien dos claves y tres hijos; y todas las hojas del árbol (que se exceptúan de la regla anterior porque no tienen hijos) están a la misma profundidad. Teniendo presente estas propiedades, responde:
 - a. ¿Cuál es la altura máxima que puede tener un árbol 2-3 con n elementos? ¿Y la mínima? ¿Cómo es la estructura del árbol cuando ocurre cada uno de estos casos?
 - b. Queremos insertar una clave x en un árbol 2-3 T de altura h, que tiene n claves. ¿Qué debe cumplirse para que esta inserción aumente la altura de T? ¿Para qué valores de n está garantizado que $\mathbf{s}\mathbf{i}$ aumentará la altura? ¿Para qué valores de n está garantizado que $\mathbf{n}\mathbf{o}$ aumentará la altura?