

Introduction

SurfelPlus is a real-time dynamic global illumination renderer

What is "surfel"?

Surfel = radius + position + normal

Algorithm Overview

We attach surfels to object surfaces and use it as scene cache

Algorithm Overview

Surfels would shoot rays and gather environment lighting throughout frames

Algorithm Overview

Each pixel can then use nearby surfels to calculate indirect diffuse lighting

Render Passes Overview

Prepare Stage

Gbuffer Pass

Surfel Calculation Stage

Surfel Prepare Pass

Surfel Update Pass

Cell Info Update Pass

Cell to Surfel Update Pass

Surfel Ray Trace Pass

Surfel Integrate Pass

Surfel Generation & Evaluation Pass

Reflection Calculation Stage

Reflection Trace Pass

Spatial-Temporal Filtering Pass

Bilateral Filtering Pass

Integrate Stage

SSAO Pass

Light Integrate Pass

TAA Pass

Tone Mapping Pass

Frame End

Prepare Stage

Visibility

Compressed Normal

Depth

Surfel Calculation Stage

Surfel Prepare Pass

Update Surfel radius based on distance so that surfels sizes stay same on screen

Surfel Calculation Stage

Surfel Update Pass

Cell Info Update Pass

Construct Grid-based

Acceleration Structure

Allocate Surfels in Cell

Surfel Calculation Stage

- Surfel Ray Trace Pass
 - Generate rays to collect scene lighting
 - Use irradiance map to do ray guiding

irradiance map

Ray Trace Optimization

Finalize path using surfels

Use surround surfels to give path a contribution. This step accelerates convergence.

Surfel Integrate Pass

- Gather rays
- Share Irradiance
- Stochastic Sample

Surfel Generation & Evaluation Pass

- Generate surfels based on screen coverage
- Recycle surfels if it's too dense
- Evaluate pixel lighting using surrounding surfels
- Use half resolution map to optimize performance

Reflection Calculation Stage

- Use RIS to generate samples
- Terminate path using surfels

6 Bounces without surfel termination

Half resolution texture

1 Bounce with surfel termination

Filtering & Denoising

- Spatial filtering
- Temporal accumulation
- Bilateral filtering

Temporal Reprojection Anti-Aliasing

- Reprojection:
 - previous frame UV

- Neighbor Clipping:
 - Clip color towards history color.

- <u>Sharpen:</u>
 - Apply Laplace operator to the final color

Temporal Reprojection Anti-Aliasing

PERFORMANCE ANALYSIS

Conclusion

Advantages:

- No precomputation
- GI in real-time
- Can combine with some advanced techniques like Restir & Stochastic light cut

(Possible future work)

Limitation:

- Take some time to converge
- Only low frequency lighting

Platform & Base Code

Platform: Tested on Windows, Nvidia GPU with hardware ray tracing support.

Graphics API: Vulkan 1.3 & GLSL

Base Code: Nvidia VK RAYTRACE Renderer

References

https://www.ea.com/seed/news/siggraph21-global-illumination-surfels

https://advances.realtimerendering.com/s2024/content/EA-GIBS2/Apers Advances-s2024 Shipping-Dynamic-GI.pdf

https://media.contentapi.ea.com/content/dam/ea/seed/presentations/dd18-seed-raytracing-in-hybrid-real-time-rendering.pdf

https://github.com/W298/SurfelG

https://www.ea.com/frostbite/news/stochastic-screen-space-reflections

https://old.reddit.com/r/opengl/comments/96api8/has_anyone_successfully_implemented_groundtruth_ao/e40d2ie/

https://intro-to-restir.cwyman.org/

