Exercise 5.1- Boolean functions Simplify the following Boolean functions given by their values O (use Quine's method)

$$f_1(0,1,0) = f_1(0,1,1) = f_1(1,0,1) = 0$$

$$f_1(0,1,0) = f_1(0,1,1) = f_1(1,0,1) = 0 \Rightarrow$$

=)	Se=}(0,0,0),	(0,0,1),	(1,0,0),	(1,1,0),	(1,1,1)	1
	+	1-1-1	(-1.7)				1

(this is the ascending order) of the momoms

	f,(x1,x2,x3)	x3	X2	X
mo	A	0	0	0
m			0	0
mz	0	0	1	0
cm ₃	0		1	0
cm 4	1	0	0	1
m 5	0	1	0	1
me	1	0	1	1
my	12	10	1	1

				그 그 그는 그 이렇게 되었는데 얼마를 하면 되었다. 그는 그리고 얼마를 하는 것이 되었다면 하는데 그를 들어 있다. 그렇게 되었다.
Group	XI	×2	X3	
I	0	0	0	mor the simple factorization
Ī	0	0	0	my om, and me commot be factorize
<u>iii</u>	A	1	0	m & because they are not neighbour
TV	1	A	Å	my/ • we commot apply double factor
<u>V=T+II</u>	0	0	0	movmy= x2x3 because there are mo truo me movm = x1x2 momoms (from groups \(\vec{1} \) \(\vec{1} \)
亚=正+亚	A		-	my Vm6 = x1x3 that have a " on the som
$\overline{VII} = \overline{III} + \overline{IV}$	1	1		m_{e} $\sqrt{mt} = x1x5$

- imple factorization m, and me commot be factorized because they are not neighbours
 - rue commet apply double factorization because there are no truo neighbouring momoms (from groups \(\frac{1}{2} \) \(\text{vi} \) or \(\text{vi} \) \(\text{vii} \) that have a "-" on the same column

$$\Rightarrow \begin{cases} m_0 \vee m_1 = \overline{x_1} \overline{x_2} = m_0 x_1 \\ m_0 \vee m_1 = \overline{x_1} \overline{x_2} = m_0 x_2 \\ m_0 \vee m_1 = \overline{x_1} \overline{x_2} = m_0 x_1 \end{cases}$$

=> M(f)={ max, max, max3, max4} I the maximal momens

	max,	mak 2	max 3	maky	-mo conversed by max, & max2
mo	/* ///	/ X //		1///	-m, converted by maxe
my	*		*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-my converted by max, I max 3
me	11/1	1///	1/4/	1/ */1	-me converted by max & max4
wt			171	(¥)/	-my conversed by max4

because m, and my are convered by only one maximal momenn each, these true maximal moments will be the central moments

M(f) = C(f) =0 => 2^{md} simplification method

g convers
$$\underline{m_0}, \underline{m_1}, \underline{m_6} \text{ and } \underline{m_4} \Rightarrow \begin{cases} f_1^S = g \vee \underline{m_0} x_1 = \overline{x_1} \overline{x_2} \vee x_1 x_2 \vee \overline{x_2} \overline{x_3} \\ f_2^S = g \vee \underline{m_0} x_3 = \overline{x_1} \overline{x_2} \vee x_1 x_2 \vee \overline{x_1} \overline{x_3} \end{cases}$$

my is not convered by g, so our final function (5) comsists of g and a maximal moment that convers my (in this case, either max, or max)

