Cel i zakres pracy Wprowadzenie Opracowaine zbioru uczącego Opracowany algorytm Wyniki badań

Rozpoznawanie tablic rejestracyjnych pojazdów na obrazach z kamery samochodowej

Marcin Łykowski

19 października 2022

Promotor: dr hab. inż. Przemysław Klęsk, prof. ZUT

Cel i zakres pracy

Celem niniejszej pracy jest przedstawienie tematyki rozpoznawania tablic rejestracyjnych. W zakres pracy wchodzą:

- omówienie wybranych algorytmów z zakresu przetwarzania obrazów i uczenia maszynowego, potrzebnych do realizacji postawionego zadania,
- przygotowania odpowiedniego materiału (sekwencje wideo) na potrzeby uczenia maszynowego i testowania,
- przedstawienie ostatecznego schematu algorytmicznego dla całego procesu,
- przeprowadzenie eksperymentów, pomiary dokładności i czasów wykonania, wnioski końcowe.

Rozpoznawanie tablic rejestracyjnych

- Detekcja określenie położenia tablicy rejestracyjnej w analizowanym obrazie.
- Segmentacja wyodrębnienie pojedynczych znaków na fragmencie obrazu ze zlokalizowaną tablicą.
- Identyfikacja rozpoznanie każdego ze znaków
 i przedstawienie ich w formie tekstowej, którą można później
 wykorzystać do dalszych działań w zależności od przeznaczenia
 systemu.

Rozpoznawanie tablic rejestracyjnych

Potencjalne trudności

- zajmowanie niewielkiego obszaru na zdjęciu przez tablicę rejestracyjną
- istnienie ogromnej liczby formatów tablic rejestracyjnych (w zależności od kraju rejestracji lub rodzaju pojazdu)
- słabe oświetlenie, rozmazany obraz, refleksy świetlne
- ruch pojazdu, zabrudzone tablice

Przykładowe klatki wideo z kamery samochodowej

Marcin Łykowski

Szczegóły zbioru uczącego

Parametr	Wartość
Liczba zdjęć	10985
Format zdjęć	JPG
Liczba zdjęć zawierających tablice	5248
Ogółem liczba tablic	10301
Zakres liczby tablic na jednym zdjęciu	0–6
Średnia wysokość próbki	38px
Średnia szerokość próbki	91px
Maksymalne rozmiary próbki	378×136px
Minimalne rozmiary próbki	15×11px
Rozdzielczości zdjęć	1920×1080, 2560×1440, 3840×2160
Liczba klatek na sekundę	30 kl/s, 60 kl/s

- detekcja uzyskana poprzez zastosowanie skanowania obrazu oknem przesuwnym i klasyfikowanie na podstawie cech Haara za pomocą algorytmu RealBoost
- słaby klasyfikator realizowany poprzez algorytm koszykowania wartości funkcji logit
- przetwarzanie rozpoznanych fragmentów obrazu zawierających tablice za pomocą operacji morfologicznych w celu segmentacji znaków
- rozpoznanie znaków osiągnięte poprzez zastosowanie biblioteki
 Tesseract opartej o rekurencyjne sieci neuronowe LSTM

${\bf Algorytm} \ {\bf 1} \ {\bf Algorytm} \ {\bf rozpoznawania} \ {\bf tablic} \ {\bf rejestracyjnych}.$

- 1: **procedure** LicencePlateRecognition((image))
- 2: Przeskaluj obraz.
- 3: Przejdź do skali szarości.
- 4: Oblicz obraz całkowy.
- Wybierz z indeksów współrzędne cech wybranych przez klasyfikator.
- 6: Znajdź tablice rejestracyjne na obrazie.
- 7: Połącz wykryte prostokąty.
- 8: Pobierz z oryginalnego obrazu znalezione fragmenty.
- 9: Rozpoznaj znaki na przekazanych fragmentach obrazu.
- 10: Oznacz na obrazie rozpoznane tablice.
- 11: end procedure

Algorytm 2 Algorytm detekcji tablic rejestracyjnych.

```
1: procedure DetectLicencePlates((image, feature indexes))
       for t := 1, ..., N do
 2:
          Obliczenie wielkości okna dla aktualnej skali.
3:
          Obliczenie skoku okna w poziomie i w pionie.
4:
 5.
          Obliczenie wartości cech wykorzystywanych
                                                             przez
   klasyfikator dla przetwarzanego okna.
          if Odpowiedź klasyfikatora > próg decyzyjny then
6:
              Oznacz okno jako pozytywne.
 7:
          end if
8.
g.
       end for
       Zwróć wszystkie okna pozytywne.
10:
11: end procedure
```

Cel i zakres pracy Wprowadzenie Opracowaine zbioru uczącego **Opracowany algorytm** Wyniki badań

Wynik detekcji

Algorytm 3 Algorytm segmentacji i rozpoznawania znaków.

- 1: **procedure** CharactersSegmentation((plate_image))
- Przeskaluj obraz.
- 3: Przejdź do skali szarości.
- 4: Binaryzacja obrazu, nałożenie maski HSV, transformacje morfologiczne.
- 5: Wykrycie konturów.
- 6: Obliczenie średniej wysokości konturów.
- 7: Odrzucenie konturów nie spełniających wymagań.
- 8: Segmentacja wyznaczonych konturów.
- 9: Rozpoznanie tekstu z przetworzonego obrazu.
- 10: Zwróć rozpoznany tekst.
- 11: end procedure

Wynik segmentacji

Liczba cech	Liczba słabych klasyfikatorów	Liczba koszyków	Dokładność klasyfikatora	Dokładność klasyfikatora dla próbek pozytywnych	Dokładność klasyfikatora dla próbek negatywnych
2205	32	8	99.70%	75.15%	99.94%
2205	64	8	99.77%	82.24%	99.94%
2205	256	8	99.87%	91.12%	99.96%

FZ 2942) FZ 5055K

FZ 5055K

ZS 750LM

FZ 0150

Wydajność czasowa systemu

Liczba cech	Liczba unikalnych cech użytych przez klasyfikator	Liczba okien	Czas detekcji	Czas rozpoznawania jednej tablicy	Czas przetwarzania jednego okna
2205	32	39188	0.68s	0.11s	0.4ms
2205	64	39188	0.91s	0.12s	0.9ms
2205	256	39188	2.24s	0.11s	1.1ms

Propozycje udoskonalenia algorytmu

- dołożenie do zbioru uczącego negatywnych okien, które obecnie klasyfikator wykrywa błędnie, jako pozytywne
- użycie więcej niż jednego klasyfikatora do detekcji obiektów
- użycie kompilowanego języka w celu zwiększenia wydajności
- nauczenie sieci neuronowej zbiorem znaków pochodzących z tablic rejestracyjnych

Cel i zakres pracy Wprowadzenie Opracowaine zbioru uczącego Opracowany algorytm Wyniki badań

Dziękuję za uwagę