

Integrating PhET with Undergraduate Physics

http://phet.colorado.edu

Introductory Physics Activities

Mechanics

Unit 1: **Introduction to Motion**

Activity: Moving Man Game: Estimation

Unit 2: More on motion

Activity: Vector Addition Activity: Projectile Motion

Unit 3: Forces and the Laws of Motion

Activities: Forces in 1 Dimension

1 Predicting speed and directions changes

2 Relating graphs and free body diagrams

Activities: The Ramp

1 Using Free Body Diagrams

2 Quantitative Activity

Activity: Maze Game

1 Using Vector Representations to Move through a Maze

Activity: Curve Fitting: How well does the

curve describe the data?

Demo: Friction

Unit 4: Work, Energy, Momentum and Collisions

Activities: Masses & Springs:

1 Homework activity

2 Conservation of Energy

Activities: Energy Skate Park

1 Intro to Conservation of Mechanical Energy *

2 Relating Graphs, Position and Speed (no time graphs)*

3 Calculating Speed and Height (no time graphs) *

4 Calculations with Conservation of Mechanical Energy Using Time Graphs

Unit 5: Circular Motion

Activity: Ladybug Revolution

Activity: Maze Game

2 Vector Controls for Circular Motion

Electricity & Magnetism

Unit 1: Heat and Thermodynamics

Demo: Friction

Activity: Microwaves and Gas Properties

for understanding KMT Activity: States of Matter Activity: The Greenhouse Effect

Unit 2: Waves: Introduction to light and sound

Activity: Waves on a String

Activity: Sound

Activities: Fourier: Making Waves 1 Wave Representation 2 Superposition of Waves

Activity: Geometric Optics Games: Fourier has a game tab

Unit 3: Electric and Magnetic Forces and Fields

Activity: Introduction to Electric Fields: uses

both Electric Field Hockey Charges and Fields

Activity: Faraday's Electromagnet Lab 1 Introduction to Magnets

Games: Electric Field Hockey

Demo: Balloons & Static Electricity and John

Travoltage

Unit 4: Current, Resistance, Circuits, and Circuit Elements

Demo: Introduction to Electric Fields:

Charges and Fields

Activity: Circuit Construction CCK and

equipment set:

1 Some Properties of electric

circuits using equipment and CCK

2 Series and Parallel Circuits using

equipment and CCK

3 Combo Circuits using equipment and CCK

Unit 5: Induction, Alternating Current, Modern **Electronics**

Activity: Faraday's Electromagnet Lab

2 Induction

Demos: Conductivity, Semiconductors,

Photoelectric effect

^{*} Scroll to *Teaching Ideas* section of individual simulation page to find activities designed specifically for that simulation. Or browse all the activities here: http://phet.colorado.edu/teacher_ideas/browse.php

Sample Use of PhET Simulations

http://phet.colorado.edu

Physics of Everyday Life: 1st Semester

1. Motion

Moving Man

Maze Game

Force 1D

Lunar Lander

Projectile Motion

2. Spring Scales

Masses and Springs

3. Work and Energy

Energy Skate Park

Friction

The Ramp

- 4. Water Distribution
- 5. Sound: Speakers and Violins

Gas Properties

Sound

Wave on a string

6. Lightbulbs, the Sun, and EM Radiation

Blackbody Spectrum

7. Greenhouse Effect

Greenhouse

8. Static Electricity

Balloons and Static Electricity

Electric Field Hockey

Charges and Fields

John Travoltage

9. Flashlights, circuits, batteries, and power

Signal Circuit

Circuit Construction Kit

Battery Voltage

Battery-Resistor Circuit

Ohm's Law

10. EM Wave Generation and Radio waves

Radio Waves and Electromagnetic Fields

11. Microwaves

Microwaves

12. Discharge Lamps and Fluorescent Lights

Discharge Lamps

Physics of Everyday Life: 2nd Semester

13. Photocopiers and semiconductors

Conductivity

Semiconductors

14. Transformers and Power Distribution

Circuit Construction Kit

Faraday's Lab

15. Sound, Speakers, and Amplifiers

Gas Properties

Sound

Faraday's Lab

Semiconductors

16. Light Emitting Diodes

Semiconductors

17. TV and light/color

Discharge lamps

Blackbody Spectrum

Color vision

18. Sunlight & Vision

Color vision

Blackbody Spectrum

19. Lasers

Lasers

20. Cameras

Geometric Optics

21. Hot air balloons and buoyancy

Gas Properties

Balloons and Buoyancy

22. Nuclear Weapons and Power

Nuclear Physics

23. Medical Imaging (Ultrasound and MRI)

MRI

24. Cosmology

^{*} Scroll to *Teaching Ideas* section of individual simulation page to find activities designed specifically for that simulation. Or browse all the activities here: http://phet.colorado.edu/teacher_ideas/browse.php

Sample Use of PhET Simulations

http://phet.colorado.edu

Modern Physics for Engineers

1. Review of EM Waves

Radio Waves and Electromagnetic Fields

2. Photoelectric Effect:

Photoelectric Effect

3. Probability and Randomness and Wave particle duality

Quantum Wave Interference

4. Rutherford Scattering

Rutherford Scattering

5. Atomic Spectra and Discharge Lamps

Discharge Lamps

6. Lasers

Lasers

- 7. Balmer Series
- 8. Bohr and deBroglie Models of the atom

The Hydrogen Atom

9. Double slit and Davisson Germer experiment

Quantum Wave Interference, Davisson Germer: Electron Diffraction

- 10. Wave functions and probability
- 11. Wave packets and uncertainty principle

Quantum Wave Interference, Quantum Tunneling, Fourier: Making Waves

- 12. Wave equations and Differential equations
- 13. Schrodinger equation for free particle

Quantum Tunneling

- 14. Potential Energy
- 15. Infinite and Finite Square Wells

Quantum Bound States

16. Quantum Tunneling, Alpha decay and other applications of Tunneling

Quantum Tunneling

17. Reflection and Transmission

Quantum Tunneling

18. Superposition, measurement, and expectation values

Quantum Bound States

19. Hydrogen atom

The Hydrogen Atom, Rutherford Scattering

- 20. Multielectron atoms
- 21. Molecular bonding and solids

Quantum Bound States/Double Wells and Covalent Bonds/Band Structure

22. Conductivity

Conductivity

23. Diodes and LEDs

Semiconductors

- 24. CCDs
- 25. Lasers Cooling and BEC

Physics 2000

(http://www.colorado.edu/physics/2000/)

26. Spin and MRI

Stern Gerlach Experiment, Simplified MRI

27. EPR paradox

^{*} Scroll to *Teaching Ideas* section of individual simulation page to find activities designed specifically for that simulation. Or browse all the activities here: http://phet.colorado.edu/teacher_ideas/browse.php