Matrix Properties

Yashas.N

Symbols used:

if and only if Capital letters Matrices $A_{m \times n} = [a_{ij}]_{m \times n}$ A^{T} or A'Transpose of Matrix Conjugate of Matrix ABMatrix product |A| or $det(A) \rightarrow Determinant of Matrix$ trace of Matrix tr(A) or trace(A)Conjugate transpose of Matrix A^{-1} Inverse of Matrix Identity $I \rightarrow$ $im(A) \rightarrow Image or range space of A$ rank(A) or $r(A) \rightarrow$ Dimension of Range space of A

 $\ker(A) \to \text{Null space of } A$ $\operatorname{null}(A) \to \text{Dimension off Null space of } A$

 $\mathbb{F} \rightarrow \text{Field}$

1 Basic properties

- $\bullet \ A(BC) = (AB)C$
- tr(AB) = tr(BA)
- $\bullet (AB)' = B'A'$
- $\bullet (AB)^* = B^*A^*$
- if **A** is Hermitian then **iA** is skew-Hermitian and vise-versa.
- if A, B are symmetric, AB is symmetric iff AB = BA.
- AA', A'A are always symmetric.
- For any Square Matrix **A**:
- For any Square Matrix A• A + A' is symmetric.
- A A' is skew-symmetric.
- $A + A^*$ is Hermitian.
- $A A^*$ is skew-Hermitian.

- By preceding point any Square matrix can be decomposed (by +) into symmetric skew-symmetric or Hermitian- skew-Hermitian pair.
- B'AB is symmetric or skew as is A
- B*AB is hermitian or skew as is A
- Determinant is a Multiliear (row), Alternating and Normalized Function on Matrices.
- Determinant of upper or lower triangle or diagonal matrix is equal to product of diagonal elements.
- |AB| = |A||B| = |BA|
- $\bullet |A'| = |A|$
- $|A^*| = |\bar{A}|$
- A is invertible iff $|A| \neq 0$.
- $A^{-1} = \frac{\alpha dj(A)}{|A|}$ where $\alpha dj(A)$ is the transpose of co-factor matrix.
- $B^{-1} A^{-1} = B^{-1}(A B)A^{-1}$
- Cramer's rule for a system of linear equations Ax = b where A is square and for $x = [x_1, x_2, ..., x_n]^T$ we have $x_i = \frac{|A \leftarrow_i b|}{|A|}$ where $A \leftarrow_i b$ is obtained by replacing i^{th} column of A by b.
- $[A \leftarrow_i b]_{i=1..n} = adj(A)b$
- $|adj(A)| = |A|^{n-1}$ where A is an $n \times n$ matrix
- $adj(A^*) = Adj(A)^*$
- $adj(A^{-1}) = adj(A)^{-1} = A/|A|$
- $adj(adj(A)) = |A|^{n-2}A$
- adj(AB) = adj(B)adj(A) for non-singular matrices A, B.
- A is orthogonal if A'A = I

- A is orthogonal $\implies |A| = \pm 1 \implies$ invertible.
- A is unitary if A*A = I
- if **A**, **B** are orthogonal the so are **AB**, **BA** similar in hermitian case also.
- rank(A) = r iff all the r + 1 order minors are zero i.e. if any one of r order minor is non zero then $rank(A) \ge r$.
- $rank(A) = rank(A') = rank(A^*)$
- Elementary transformation: exchange of rows, multiplication of row by non zero constant, addition of k multiple of a row to another row.
- Elementary transformations doesn't change the rank of a matrix.
- Every elementary transformation has a corresponding non singular matrix which when multiplied gives the operation.
- Normal form of a matrix: (row reduced Echelon form) A matrix which can be partitioned into identity and null matrices and the identity is present in upper-left part.
- $\exists P, Q$ non-singular square matrices such that N = PAQ where A is any matrix and N is its normal or row-reduced Echelon form.
- $rank(AB) < min(\{rank(A), rank(B)\}).$
- $\bullet \ \text{rank}(A+B) \leq \text{rank}(A) + \text{rank}(B).$
- Sylvester inequality : for any matrices $A_{m \times k}$, $B_{k \times n}$

$$\begin{split} \operatorname{rank}(AB) &= \operatorname{rank}(B) - \operatorname{dim}(\operatorname{Im}(B) \cap \ker(A)) \\ & \operatorname{so} \operatorname{rank}(A) + \operatorname{Rank}(B) - \operatorname{k} \leq \operatorname{rank}(AB) \\ &\leq \min(\{\operatorname{rank}(A), \operatorname{Rank}(B)\}). \end{split}$$

(use ABx = A(Bx) = 0 iff $x \in Im(B) \cap ker(A)$ and that $dim(Im(B) \cap ker(A)) \leq null(A) = k - r(A)$ so $-dim(Im(B) \cap ker(A)) \geq r(A) - k$.)

• Frobenius Inequality : for $A_{m \times k}$, $B_{k \times p}$, $C_{p \times n}$

 $rank(AB) + rank(BC) \le rank(B) + rank(ABC)$.

- rank(A) = rank(A*A)
- if **A** is n-squared then:
- $= \operatorname{rank}(A) = n \implies \operatorname{rank}(\operatorname{adj}(A)) = n.$
- $= \operatorname{rank}(A) = n 1 \implies \operatorname{rank}(\operatorname{adj}(A)) = 1.$

- $rank(A) < n 1 \implies rank(adj(A)) = 0$ i.e. $adj(A) \equiv 0$. (use minors and cofactor definition of Adj(A).)
- $rank(A) \ge rank(A^2) \ge ... \ge rank(A^n) \ge ...$
- $null(A) \le null(A^2) \le ... \le null(A^n) \le ...$
- if $rank(A^m) = rank(A^{m+1})$ then
- \blacksquare rank $(A^k) = \operatorname{rank}(A^m) \quad \forall k \geq m$
- $\operatorname{null}(A^k) = \operatorname{null}(A^m) \quad \forall k \ge m$
- Eigenvalues of Hermitian matrices are real. (if λ is eigenvalue then $(Ax)^* = x^*A^* = x^*A = (\lambda x)^* = \overline{\lambda}x^*$ so $x^*A^*x = \lambda x^*x = \overline{\lambda}x^*x \implies \overline{\lambda} = \lambda$)
- Eigenvalues of Skew-Hermitian are purely imaginary or zero.
- If λ is Eigenvalue of Unitary matrix **A** then $|\lambda| = \mathbf{1}$

(if $Ux = \lambda x$ then $x^*U^*Ux = x^*Ix = x^*x$ but $(x^*U^*)(Ux) = \overline{\lambda}\lambda x^*x$.)

- Real Eigenvalues of Orthogonal Matrices are
 1,—1 only.
- Eigenvalues of **A** and **A'** are same.
- Eigenvalues of triangular, diagonal matrices are its diagonal elements.
- if λ is a eigenvalue of non-singular matrix A then
- $\lambda \neq 0$
- \blacksquare $\frac{1}{\lambda}$ is the eigenvalue of A^{-1} .
- \bullet λ^k is the eigenvalue of A^k .
- $\blacksquare \frac{|A|}{\lambda}$ is the eigenvalue of adj(A).
- if $\{\lambda_i\}$ are eigenvalues of **A** then eigenvalues of **B** = p(A) are of form $p(\lambda_i)$ only.
- $\begin{array}{l} \bullet \mbox{ For } A_n \mbox{ with eigenvalues } \lambda_{\text{1}}, \lambda_{2}, \ldots, \lambda_n \\ trace(A) = \sum_{i=\text{1}}^n \lambda_i \mbox{ , } det(A) = \prod_{i=\text{1}}^n \lambda_i \mbox{ and } \\ trace(adj(A)) = \sum_{i=\text{1}}^n \prod_{j\neq i}^n \lambda_i. \end{array}$
- If $A = P^{-1}BP$ the A and B have same eigenvalues
- for square Matrices A, B eigenvalues of AB and BA are same.

(use if $ABx = \lambda x$ then $BA(Bx) = B(ABx) = \lambda Bx$ so λ is eigenvalue of BA also and vis-a-viz.)

• Geometric multiplicity (no of eigenvectors for an eigenvalue) ≤ Algebraic multiplicity(order of eigenvalue in characteristic polynomial).

- $A = P^{-1}BP$ this Relation ARB (similarity) is equivalence, determinant invariant, eigenvalue invariant, trace invariant.
- A matrix is diagonalizable if it is similar to a diagonal matrix
- A matric is diagonalizable iff for each of its eigenvalue Geometric multiplicity = Algebraic multiplicity.
- square matix **A** is diagonalizable iff minimal polynomial of **A** splits into distinct linear factors in the given field i.e. minimal polynomial of **A** is separable and has only linear irreducible factors.
- A non-zero Nil-potent ($A^m = 0$) matrix has eigenvalues as zero only.
- A non-zero Nil-potent is never Diagonalizable.

(if A is diagonalizable then $P^{-1}AP=D$ so $(P^{-1}AP)^m=P^{-1}A^mP=o=D^m$)

• Schurs theorems:

- Every Square matrix **A** is Unitarily similar to Upper triangular matrix whose diagonals are eigenvalues of **A** (complex values included).
- If $A \in M_n(\mathbb{R})$ and has only real eigenvalues then it is real orthogonally similar to real upper triangular matrix.

(say $\lambda_1, \lambda_2, ..., \lambda_n$ are eigenvalues of $A_{n \times n}$ (with repeats) let x be normalised eigenvector of A to eigenvalue λ_1 then x * x = 1 $Ax = \lambda_1 x$ now from an orthonormal basis with x and let this matrix be $\mathbf{U}_1 = [x \ \mathbf{u}_2..\mathbf{u}_n]$ thus we have $\mathbf{U}_1^*A\mathbf{U}_1 = [\lambda_1, \star; \mathbf{o}, A_1]$ for $A_{1_{n-1}\times n-1}$ and as \mathbf{U}_1 is unitary we have eigenvalues of A_1 are $\lambda_2, ..., \lambda_n$ only so lets commence the same procedure for $A_{1_{n-1}\times n-1}$ we get \mathbf{U}_2 join this to form $\mathbf{V}_2 = [\mathbf{1}, \mathbf{0}; \ \mathbf{o}, \mathbf{U}_2]$ then we get $(\mathbf{U}_1\mathbf{V}_2)^*A\mathbf{U}_1\mathbf{V}_2 = [\lambda_1, \star, \star; \ \mathbf{o}, \lambda_2, \star; \ \mathbf{o}, \mathbf{o}, A_2]$ clearly $\mathbf{U}_1\mathbf{V}_2$ was unitary so proceeding similarly we get the theorem)

■ If $A \in M_n(\mathbb{R})$ has complex eigenvalues then it is similar to a matrix with diagonal blocks of 1-by-1 and 2-by-2 only (has upper triangular entries). Where 1-by-1 blocks are real eigenvalue of A and 2-by-2 blocks are $[a \ b; -b \ a]$ for a+ib eigenvalue.

(for $A_{n \times n}$ let $\lambda = a + ib$ and its eigenvector is x = u + iv then prove $\overline{\lambda}$, \overline{x} are eigenpairs so x, \overline{x} are linearly independent

dent so are u,v and as $Au = \alpha u - bv$, $Av = bu + \alpha v$ and if $S = [u,v,S_1]_{n\times n}$ be made non singular thus $S^{-1}AS = [B,\star; oA_1]$ for $B = [a \ b; -b \ a]$)

- Every Symmetric matrix $(A \in M_n(\mathbb{R}))$ is orthogonally similar to diagonal matrix (D) i.e. $D = P^TAP$, $P^TP = I$.
- Every Hermitian matrix (A) is unitarily similar to diagonal matrix (D) i.e. $D = P^*AP$, $P^*P = I$.
- A matrix A is normal iff A*A = AA*
- A matrix is Unitarily similar to diagonal matrix iff it is Normal.
- A triangular normal matrix is Diagonal also a block diagonal normal matrix has off diagonal blocks = **o**.
- if A is normal then p(A) (specially $A + \alpha I$, $\alpha \in \mathbb{C}$) is normal.

2 Quadratic Form

$$\bullet \ Q : \mathbb{F}^n \times \mathbb{F}^n \, \to \, \mathbb{F} \ \text{given by} \ \sum_{i=o}^n \sum_{j=o}^n \alpha_{ij} x_i x_j$$

where $a_{ii} \in \mathbb{F}$ a field.

- It can be represented as X'AX for $X = [x_1, x_2, ..., x_n]^T$ and **Symmetric** matrix $A = [A]_{ij} = \frac{1}{2}(\alpha_{ij} + \alpha_{ji})$
- Congruence relation (ARB) : if $A = P^TBP$ for some non-singular P, A, B square.
- Matrices congruent to Symmetric matrices are Symmetric.
- Quadratic forms are equivalent if the corresponding matrices are congruent.
- Congruent matrices or equivalent Forms have same Range.
- Every Symmetric matrix is congruent to a diagonal matrix. (same as orthogonally diagonalizable)
- Every n-rowed real Symmetric matrix with rank r is congruent to a Diagonal matrix with diagonal [1, ...1, -1, ... -1, 0, ...0] with 1 appearing p times -1 appearing r-p times and o n-r times.

- Canonical Form of real Quadratic Form: for Q has matrix A and if $P'AP = diag[\mathbf{1},..\mathbf{1},-\mathbf{1},..-\mathbf{1},\mathbf{0},..\mathbf{0}]$ then X = PY which transforms Q to $y_1^2 + ... + y_p^2 y_{p+1}^2 ... y_r^2$ for Real non singular matrix P.
- Number of positive terms in canonical form is **Index**, difference of positive and negative terms is **Signature**.
- Index and Signature are congruence invariant
- Two real Quadratic forms (symmetric matrices) are orthogonally equivalent iff their matrices have same eigenvalues and multiplicities.
- A Quadratic Form **Q** is:
- positive definite if $Q(X) \ge o$ and

$$\mathbf{Q}(\mathbf{X}) = \mathbf{o} \iff \mathbf{X} = \mathbf{o}$$

• negative definite if $Q(X) \le 0$ and

$$\mathbf{Q}(\mathbf{X}) = \mathbf{o} \iff \mathbf{X} = \mathbf{o}$$

- positive semi-definite if $Q(X) \ge 0$
- negative semi-definite if $Q(X) \le o$
- or is indefinite
- if for a **n** dimensional Quadratic form Rank=**r** and Signature=**s** then it is:
- \blacksquare positive definite iff $\mathbf{s} = \mathbf{r} = \mathbf{n}$.
- negative definite iff -s = r = n.
- positive semi-definite iff s = r < n.
- negative semi-definite iff -s = r < n.
- indefinite iff $|s| \neq r$
- Now as real Symmetric matrices are diagionizable and have a canonical form we have:
- Index = number of positive eigenvalues.
- Rank = number of non zero eigenvalues.
- Signature = no of +ve no of -ve eigenvalues.
- from above we have for a real Quadratic form
 Q with matrix A then Q is:
- positive definite iff all eigenvalues are positive or > 0.
- negative definite iff all eigenvalues are positive or $\langle \mathbf{o} \rangle$.
- positive semi-definite iff at-least one eigenvalues is \mathbf{o} and others > \mathbf{o} .
- negative semi-definite iff at-least one eigenvalues is \mathbf{o} and others $\langle \mathbf{o} \rangle$.

- indefinite iff eigenvalues are -ve as well as +ve
- every real non-singular matrix A = PS for P orthogonal S positive definite

$$(S = Q'D_1Q, D_1 = \sqrt{diagonalization(A'A)}, P = AS')$$

- lacktriangleq Q with matrix A is positive definite iff all leading principal minors of A are positive.
- A matrix **A** is positive definite $\implies |A| > 0$
- A complex Quadratic form is hermitian if its corresponding matrix is hermitian.
- A Hermitian Form assumes only real values.
- if $norm(A) = \sum_{i,j} |[A]_{ij}|^2$ then norm(A) = trace(A*A).

3 Jordan Form

- Canonical Form: Given a equivalence relation on set of matrices, the main problem is to find whether A and B belong to same equivalence class. One classical way of doing this is choosing a set of representative matrices such that each matrix belong to only one class and distinct members are of different classes. Such a set of representatives is the Canonical Form of such relation.
- Jordan form is the canonical form for relation of Similarity.
- A matrix in Jordan form Consist of Jordan blocks $J_k(\lambda)$ which is a upper triangular matrix of size k-by-k with diagonal entries λ and super diagonal 1 and others 0 i.e.

$$J_k(\lambda) = \begin{bmatrix} \lambda & \mathbf{1} & & & \\ & \lambda & \mathbf{1} & & \\ & & \ddots & \ddots & \\ & & & \lambda & \mathbf{1} \\ & & & & \lambda \end{bmatrix}_{k \times k}$$

- $J_k(o)^{k+n} = o$ for $n \ge o$ i.e. $J_k(o)$ is nilpotent matrix such that $J_k(o)^{\overline{k}} = o$.
- $rank(J_k(o)^l) = max(k-l,o)$
- Convention: $rank(J_k(o)^o) = k$
- if $r_k(A,\lambda) = rank(A \lambda I)^k$ and

 $w_k(A,\lambda) = r_{k-1}(A,\lambda) - r_k(A,\lambda)$ then in Jordan Form of A:

- $w_k(A, \lambda)$ = number of blocks with eigenvalue λ that has size at least k (use the fact for every Jordan block of λ , $A \lambda I$ is Similar to Jordan form consisting of $J_k(o)$ Jordan block instead of λ so as we measure ranks each power decreases the rank of the block by one if the block size is greater than the power.)
- so $w_1(A, \lambda) = n r_1(A, \lambda) =$ number of Jordan Blocks with eigenvalue $\lambda =$ Geometric multiplicity of of λ as eigenvalue of A
- $w_k(A, \lambda) w_{k+1}(A, \lambda)$ = number of blocks of Size k
- $m{q}$: index of λ in A = smallest integer such that $rank(A \lambda I)^{q+1} = rank(A \lambda I)^q = r_{q+1}(A,\lambda) = r_q(A,\lambda)$
- $w_1(A, \lambda) + w_2(A, \lambda)... + w_q(A, \lambda)$ = Sum of dimensions (with repeat) all Jordan blocks in λ = Algebraic Multiplicity of λ as eigenvalue of A
- Weyr characteristic of $A \in M_n$ associated with $\lambda \in \mathbb{C}$ is

$$w(A,\lambda) = (w_1(A,\lambda), w_2(A,\lambda)..., w_q(A,\lambda))$$

- \blacksquare Segre characteristic of $A\in M_n$ associated with $\lambda\in\mathbb{C}$ is
- $s(A, \lambda) = s_1(A, \lambda) \ge s_2(A, \lambda), ... \ge s_{w_1}(A, \lambda) > 0$ where s is sizes of Jordan Blocks in λ as they occur in Jordan form (non-increasing order)
- for a given A, λ eigenvalue, If we arrange $w(A, \lambda)$ in dot form as rows (partitions: Ferrers diagram) then its columns are $s(A, \lambda)$ and Vise-versa.
- for A_n upper diagonal with $[A]_{ii} = 1$, $[A]_{i,i+1} \neq 0$ then A is similar to $J_n(1)$
- if $\lambda = 1$ is the only eigenvalue of A then A is similar to A^k
- in J Jordan form of **A**:
- Total No of Jordan blocks = Total no of independent eigenvectors.
- No of Jordan blocks in λ = Dimension of eigenspace of λ
- Sum of sizes of Jordan blocks in λ = Algebraic Multiplicity.
- If A_n is non singular then A is similar to A^T . (use : for Jordon block $J_n = J_n(\lambda)$ and $B_n = B_{n \times n}$ rever-

sal matrix (upside down identity) we have $J_n = B_n J'_n B_n$ as $B_n^{-1} = B_n$ we have $J_n R J'_n$)

• If minimal polynomial of $A = \prod_{i=1}^{k} (t - \lambda_i)^{r_i}$ then largest Jordan block of λ_i in JCF of A is of size r_i .

4 Rational Form

- Jordan form of A_n is possible iff The characteristics polynomial of A splits completely to linear factors over \mathbb{F} (i.e. $(x-a_i)^{n_i}$, $a_i \in \mathbb{F}$), which may not be possible if there are irreducible polynomials of degree more than 1 in $\mathbb{F}[x]$, so to make canonical form under consideration of these Matrices we arrive at Rational form which uses the concept of Invariant subspaces, Cyclic subspaces and Primary Decomposition theorem.
- For given monic polynomial (characteristic/minimal) $p(x) = x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$ $a_1's \in \mathbb{F}$ of linear transform $T: V \to V$ if there exist x such that $T_x = \{x, T(x), T^2(x), ..., T^{n-1}(x)\}$ is a linear independent set then The matrix of T with respect to T—cyclic basis T_x is Companion matrix which has same characteristic and minimal polynomial = p(x) and is given by

$$C_{A} = \begin{bmatrix} 0 & \dots & \dots & 0 & -\alpha_{0} \\ 1 & 0 & \dots & 0 & -\alpha_{1} \\ 0 & 1 & \dots & 0 & -\alpha_{2} \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & -\alpha_{n-1} \end{bmatrix}$$

- If $p(x) = (p_1(x))^{n_1}(p_2(x))^{n_2}..(p_k(x))^{n_k}$ and $m(x) = (p_1(x))^{m_1}(p_2(x))^{m_2}..(p_k(x))^{m_k}$ are characteristics and minimal polynomial of linear transform $T: V \to V$ where $p_i's$ are irreducible in \mathbb{F} of degree d_i respectively then :
- $K_{p_i} = \{x : (p_i(T))^k(x) = 0\}$ is T invariant Subspace of V
- $K_{p_i} = ker((p_i(T))^{m_i})$ (Null space) , $K_{p_i} \cap K_{p_i} = \{o\}$ for $i \neq j$
- Every K_{pi} has a union T—cyclic basis as a basis

ullet From above and Primary decomposition theorem we have: for a linear transformation $T:V\to V$ with matrix A has a basis in which A is similar to

$$\begin{bmatrix} C_1 & \dots & 0 \\ 0 & C_2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & C_k \end{bmatrix}$$

where $C_i s$ are companion matrices related to minimal polynomial's irreducible terms.

- Dimension of $K_{p_i} = d_i n_i$ ($di = degree of p_i$, $n_i = power of p_i$ in characteristic polynomial)
- $Dim(K_{p_i})$ = dimension of total blocks associated with p_i
- number of blocks associated with $p_i = r_1 = \frac{1}{d_i}[dim(V) rank(p_i(A))]$
- number of blocks of size atleast $i by i = r_i = \frac{1}{d_i}[rank(p_i(A)^{i-1}) rank(p_i(A)^i)]$

5 Mics Properties

- A has a block B_n in its block form iff it has an n dimensional invariant space associated.
- ullet Λ_n is a block matrix in which $[\Lambda]_{i,j}=o$ if $i\neq j$, $\Lambda_{i\,i}=\lambda_i I_{n_i}$ blocks and commutes with B iff B is a block Diagonal conformal with Λ i.e. iff

$$\Lambda = \begin{bmatrix} \lambda_1 I_{n_1} & & & o \\ & \lambda_2 I_{n_2} & & \\ & & \ddots & \\ o & & & \lambda_d I_{n_d} \end{bmatrix},$$

$$B = \begin{bmatrix} B_{n_1} & & o \\ & B_{n_2} & & \\ & & \ddots & \\ o & & B_{n_d} \end{bmatrix}$$

- Extremum of X^TAX for constraint $X^TX = 1$ occurs in eigenvalues of A.
- From above Extremum of real Quadratic Form X^TAX with constraints $X^TX = \mathbf{1}$ is the largest eigenvalue of A vise-versa $Max\{X^TAX|A$ is symmetric, $X^TX = \mathbf{1}\} = largest$ eigenvalue of A.

- μ is a eigenvalue of p(A) iff $\mu = p(\lambda)$ for an eigenvalue λ of A (where p(.) is a polynomial over \mathbb{F}).
- if λ is an eigenvalue of A then corresponding eigenvector are non-zero columns of $adj(A \lambda I)$ (use full only if $rank(A \lambda I) = n 1$).
- Coefficients of Characteristic polynomial of A of degree $n: n \to 1, n-1 \to -trace(A), constant \to (-1)^n det(A)$.
- A, B are simultaneously Diagonalizable iff A, B communicate i.e. if $D_1 = S^{-1}AS$, $D_2 = S^{-1}BS$ for same $S \iff AB = BA$. This even holds for a family of Diagonalizable matrices.
- for $A_{m \times n}$

$$\begin{bmatrix} I_m & A \\ 0 & I_n \end{bmatrix}^{-1} = \begin{bmatrix} I_m & -A \\ 0 & I_n \end{bmatrix}$$

- For $A_{m \times n} B_{n \times m}$ Eigenvalues of AB = Eigenvalues of BA (including zero).
- Cauchy's Determinant Identity : $det(A + xy^T) = det(A) + y^T \alpha dj(A)x$ (so $|I + xy^*| = 1 + y^*x$)
- if S = A + iB and non-singular then $\exists \tau \in \mathbb{R}$ such that $T = A + \tau B$ is non-singular.

(use that p(t) = det(A + tB) has at most $\mathfrak n$ zeroes in complex plane so there is $\tau \in \mathbb R$ such that $p(\tau) \neq 0$)

- Every real Matrix A similar over $\mathbb C$ to real matrix B is similar over $\mathbb R$. i.e. $o \neq A, B \in M_n(R)$ if $S \in M_m(C)$ and $B = S^{-1}AS$ then $\exists T \in M_n(R)$ such that $B = T^{-1}AT$
- If **A** is diagonalizable i.e. $A = S^{-1}DS$ then $p(A) = S^{-1}p(D)S$ which makes evaluation of p(A) easier.
- If A_n has distinct eigenvalues(diagonalizable) and Commutes with B then B is Diagonalizable (more precisely A_n , B are simultaneously diagonalizable) and B = p(A)

(use similarity, partition arguments and Lagrange interpolation poly which provides a polynomial map of n distinct reals to any n reals) for some polynomial p(t) of degree at most n-1

- If B is Diagonalizable then B has a square-root i.e $\exists A | A^2 = B$.
- If A_n , B_n are similar so are adj(A), adj(B).

- All Unitary Matrices Form a group in $GL(n,\mathbb{C})$ and compact in \mathbb{C}^{n^2} .
- Singular Value Decomposition: Every matrix $A_{m,n}$ can be written as $A = U_m S V_n$ where U, V are Unitary and S is the diagonal (with zero) entries that are eigenvalue of A^*A or AA^* .
- Reversal Matrix B is matrix that is up-side-down of Identity and BA reverses row order of A, AB reverses column order of A And $B = B^* = B^{-1}$
- By Jordan Canonical form Every nonsingular matrix is similar to its Transpose
- ullet A is similar to \bar{A} iff A is Similar to a real matrix (Same condition for $A \sim A^*$)
- A is hermitian iff $tr(A^2) = tr(A^*A)$
- if **A** is hermitian then, $\forall x \in \mathbb{C}^n$:
- x^*Ax is positive iff all eigenvalues are positive
- x^*Ax is negative iff all eigenvalues are negative
- if eigenvalues $\operatorname{are} \lambda_1 \leq \lambda_2 \leq ... \lambda_n$ and subspaces $\{S\}$ of \mathbb{C}^n then $\lambda_1 = \min(\frac{x^*Ax}{x^*x}), \lambda_n = \max(\frac{x^*Ax}{x^*x}),$

$$\lambda_{k} = \min_{\{\dim(S) = k\}} \max_{0 \neq x \in S} \frac{x^* A x}{x^* x}$$

$$= \max_{\{\dim(S)=n-(k+1)\}} \min_{0\neq x\in S} \frac{x^*Ax}{x^*x}$$

• In general even if $A \in M_n$ is not hermitian with eigenvalues $\lambda_1, \lambda_2..., \lambda_n$ then

$$\min_{x \neq 0} \left| \frac{x^* A x}{x^* x} \right| \leq |\lambda_i| \leq \max_{x \neq 0} \left| \frac{x^* A x}{x^* x} \right|$$
(can be pure inequality also)

• Every Jordan matrix is similar to a complex symmetric matrix so Every matrix is similar to a complex symmetric matrix

6 Properties based on Matrix Norm

 \bullet A function $|||\cdot|||:M_n\to\mathbb{R}$ is a matrix norm if:

- 1. $|||A||| \ge 0$ Non-negative
- 1a. $|||A||| = 0 \iff A = 0$ Positive
- 2. $|||cA||| = |c| |||A||| \forall c \in \mathbb{C}$ Homogeneous
- 3. $|||A + B||| \le |||A||| + |||B|||$ Triangular Inequality
- 4. $|||AB||| \le |||A||| |||B|||$ Submultiplicativity
- Clearly $|||A^k||| \le |||A|||^k$ now If $A^2 = A \implies |||A||| \ge 1$ in particular $|||I||| \ge 1$
- Some Matrix norms:
- l_2 norm : $||A||_2 = |tr(A^*A)|$

$$=\sqrt{\sigma_{\scriptscriptstyle \rm I}(A)^2+\ldots+\sigma_{\scriptscriptstyle \rm I\!\!I}(A)^2}=\left(\sum_{i,j={\scriptscriptstyle \rm I\!\!I}}^n|\alpha_{ij}|^2\right)^{1/2}$$

- $\blacksquare \ l_{\infty} \ norm : ||A||_{\infty} = \max_{1 \le i,j \le n} |\alpha_{ij}|$
- max Column sum norm

$$|||A|||_{\mathbf{1}} = \max_{\mathbf{1} \le j \le n} \sum_{i=\mathbf{1}}^{n} |\alpha_{ij}|$$

■ max Row sum norm

$$|||A|||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |\alpha_{ij}|$$

- Spectral norm $|||A|||_2 = \sigma_1(A) = \text{Largest Singular Value of } A$
- Matrix norm induced by vector norm : if $\|\cdot\|$ is norm in \mathbb{C}^n then:

$$|||A||| = \max_{||x||=1} ||Ax|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

$$= \max_{||x|| \le 1} ||Ax|| = \max_{||x||_{\alpha} = 1} \frac{||Ax||}{||x||}$$
(for any other norm || || ||

(for any other norm $\|\cdot\|_{\alpha}$ in \mathbb{C}^n) is a Matrix norm with additional properties:

- ||I|| = 1
- $||Ay|| \le |||A||| ||y||$
- For Any Matrix $A \in M_n(\mathbb{C})$ we have $|\lambda| \le \rho(A) = \max(|\lambda_i|) \le |||A|||$ and if A is non-singular then $\rho(A) \ge |\lambda| \ge 1/|||A|||$

- if there is Matrix norm such that |||A||| < 1then $\lim_{k\to\infty} A^k = 0$
- from above we have $\lim_{k\to\infty}A^k=o$ iff $\rho(A)<\mathbf{1}$
- For any given Matrix norm || · || we have $\rho(A) = \lim_{k \to \infty} |||A^k|||^{{\scriptscriptstyle \bf 1}/k}$
- \bullet Matrix power series $\sum\limits_{k=1}^{\infty}\alpha_{k}A^{k}$ converges if $\rho(A) \, \leq \, R$ where R is the radius of convergence of complex power series $\sum_{k=0}^{\infty} a_k z^k$ i.e. if

 $\exists ||| \cdot ||| : ||| A ||| < R$

• Matrix **A** is nonsingular if $\exists ||| \cdot ||| \mid |||\mathbf{I} - \mathbf{A}||| <$

1 and
$$A^{-1} = \sum_{k=0}^{\infty} (I - A)^k$$

• From above we have if $A_n = [a_{ij}]$ and $|a_{ii}| > \sum_{i \neq i} |a_{ij}|$ i.e. absolute value of diagonal elements are greater than sum of absolute values of elements in corresponding rows (or columns) then A is non singular

Properties associated Quadratic forms

- **A**_n if Hermitian iff :
- x^*Ax if real for all $x \in \mathbb{C}^n$
- A is normal and all its eigenvalues are real
- S*AS is Hermitian $\forall S \in M_n$
- from above A is +ve (-ve) semi-definite $(x^*AX > 0 \text{ or } < 0) \implies A \text{ is hermitian}$
- if **A** is +ve definite (-ve) then $A^*, A^{-1}, A^{\mathsf{T}}, \bar{A}$ are all +ve definite (-ve).
- every Diagonal entry of +ve (-ve) definite (semi) Matrix are +ve(non -ve, -ve) only.
- A positive semi-definite matrix is positive definite iff it is non-singular
- for $A_n = [a_{ij}]$ a +ve (-ve) semi-definite matrix if $a_{kk} = 0$ then $a_{ik} = a_{ki} = 0 \ \forall i \in \{1, 2, ..., n\}$ i.e. if diagonal entry is o then that row and column are o.

- A is positive semi definite iff A = B*B for some B
- A_n is positive definite iff $det(p_k) > 0 \ \forall 1 \le$ $k \le n$ where p_k is the $k \times k$ principle matrix partitioned in A (along the diagonal).

Other Important Theorems

- Gersgorin Theorem: for a matrix $A_n = [a_{ij}]$
- A Gersgorin Disk of A =

 $\{z\in\mathbb{C}:|z-\mathfrak{a}_{\mathfrak{i}\mathfrak{i}}|\leq R'_{\mathfrak{i}}(A)=\sum_{\mathfrak{j}\neq\mathfrak{i}}|\mathfrak{a}_{\mathfrak{i}\mathfrak{j}}|\}$ for

■ Eigenvalues of A are all in the union of Gersgorin Discs of **A** i.e.

 $\{\lambda_i\} \in G(A) = \bigcup_{i=1}^n \{z \in \mathbb{C} : |z - a_{ii}| \le R'_i(A)\}$

- if G(A) forms a disjoint set $G_k(A)$ which is union of k discs then $G_k(A)$ contains exactly k eigenvalues (counted according to algebraic multiplicity).
- The above statements remain true even if radius of the discs are $C_j' = \sum_{i \neq j} |\alpha_{ij}|$ as A^T has same eigenvalues.
- from above we have

 $\rho(A) \leq \min \left\{ \max_{i} \sum_{j=1}^{n} |\alpha_{ij}|, \max_{j} \sum_{i=1}^{n} |\alpha_{ij}| \right\}$

• if $p_1, p_2, ..., p_n$ are positive real numbers

 $\{\lambda_i\} \in \textstyle\bigcup_{i=1}^n \{z \in \mathbb{C}: |z-\alpha_{ii}| \leq \frac{1}{p_i} \sum_{j \neq i} p_j |\alpha_{ij}|\}$

 $\{\lambda_i\} \in \bigcup_{i=1}^n \{z \in \mathbb{C} : |z - a_{jj}| \le p_j \sum_{i \ne j} \frac{1}{p_i} |a_{ij}| \}$ as similar matrices have same eigenvalues

- A is Diagonally dominant if $|a_{ii}|$ $\sum_{\mathbf{i} \neq \mathbf{i}} |\mathfrak{a}_{\mathbf{i}\mathbf{j}}|$ and strictly diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$
- if A is strictly diagonally dominant then: A is non-singular, if $a_{ii} > 0 \ \forall i = 1, 2, ..., n$ then every eigenvalue of A has a positive real part, and if **A** is hermitian and $a_{ii} > 0 \ \forall i = 1, 2, ..., n$ then **A** is positive definite.
- A_n has nonzero diagonal entries, is diagonally dominant and $|a_{ii}| > R'_i$ for at least n-1values of i then A is non singular.
- If every entry of A is non zero, A is diagonally dominant and $|a_{kk}| > R'_k$ for any k then A is non singular

- if A_n has the property that $\forall p,q \in \{1,2,..,n\}$ \exists sequence of distinct integers $p=k_1,k_2,..,k_m=q$ such that $a_{k_1k_2},a_{k_2k_3},..a_{k_{m-1}k_m}$ are non zero, A is diagonally dominant and $|a_{kk}| > R'_k$ for any k then A is non singular
- The above property states that if **A** is a probability/stochastic matrix then for each node in directed graph of **A** is strongly connected (for each pair of nodes there is a finite length directed path to them or the stochastic matrix has only one class and all states are communicating)

References

- [1] Vasishtha A.R., Vasishtha A.K.: Matrices, Krishna Educational Publishers, 3, (2018).
- [2] Roger A.H., Charles R.J.: Matrix Analysis, Cambridge University press,2,(2013).
- [3] Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence.: Linear algebra Pearson Education,4,(2003).
- [4] Fuzhen Zhang.:Matrix Theory Basic Results and Techniques, Springer,2,(2011).