

## Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.







#### Continúa do



405416 arts esce ues2016juny.pdf

#### Top de tu gi





Rocio



pony



GEOMETRÍA III (Doble Grado en Ingeniería Informática y Matemáticas)

(01/02/2021)Final Convocatoria Ordinaria

- 1. Sean S plano y p,q puntos en  $\mathbb{R}^3$ . Probar que son equivalentes los siguientes enunciados:
  - (a) Existe  $\sigma \colon \mathbb{R}^3 \to \mathbb{R}^3$  simetría ortogonal deslizante respecto del plano S tal que  $\sigma(p) = q$ .
  - (b)  $\overrightarrow{pq} \notin \overrightarrow{S}^{\perp} \ y \xrightarrow{p\pi_{S}^{\perp}(p)} = -\overrightarrow{q\pi_{S}^{\perp}(q)}$ , donde  $\pi_{S}^{\perp} \colon \mathbb{R}^{3} \to \mathbb{R}^{3}$  representa a la proyección ortogonal sobre S.

Razonar si existe una simetría deslizante  $\sigma \colon \mathbb{R}^3 \to \mathbb{R}^3$  con  $\sigma(S) = S$  y  $\sigma(p) = q$  cuando

$$S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - x_2 = 1\}, \ p = (2, -1, 0), \ q = (-1, 0, 0).$$

En caso afirmativo determinarla dando su matriz en la referencia usual de  $\mathbb{R}^3$ .



#### Solución:

a)  $\Rightarrow$  b) Sea  $\sigma \colon \mathbb{R}^3 \to \mathbb{R}^3$  simetría ortogonal deslizante respecto de S tal que  $\sigma(p) = q$ . En principio sabemos que existe un vector  $u \in \overrightarrow{S} \setminus \{\overrightarrow{0}\}$  tal que  $\sigma$  es la composición de la simetría ortogonal respecto del plano S seguida de la traslación de vector u:

$$\sigma = \tau_u \circ \sigma_S^{\perp}$$
.

Veamos que  $\overrightarrow{pq}$  no pertenece a  $\overrightarrow{S}^{\perp}$ . En efecto, la identidad

$$q = \sigma(p) = (\tau_u \circ \sigma_S^{\perp})(p) = \sigma_S^{\perp}(p) + u = p + (p\sigma_S^{\perp}(p) + u)$$

implica que  $\overrightarrow{pq} = \overrightarrow{p\sigma_S^{\perp}(p)} + u$ , y la definición de simetría ortogonal implica que  $\overrightarrow{p\sigma_S^{\perp}(p)} \in \overrightarrow{S}^{\perp}$ . Como la descomposición  $\mathbb{R}^3 = \overrightarrow{S} \oplus \overrightarrow{S}^{\perp}$  es en suma directa, deducimos de lo anterior que  $\overrightarrow{pq} \in \overrightarrow{S}^{\perp}$  si y sólo si el vector  $u \in \overrightarrow{S}$  es el vector nulo  $\overrightarrow{0}$ , lo que contradice que  $\sigma$  es deslizante. Por tanto  $\overrightarrow{pq}$  no pertenece a  $\overrightarrow{S}^{\perp}$ .



Veamos ahora que  $-\overrightarrow{q\pi_S^\perp(q)} = \overrightarrow{p\pi_S^\perp(p)}$ . Para ello, observemos que de la definición de simetría ortogonal  $\overrightarrow{p\sigma_S^\perp(p)} = 2\overrightarrow{p\pi_S^\perp(p)}$ , de donde volviendo a la ecuación de arriba

$$q = p + \left(\overrightarrow{p\sigma_S^{\perp}(p)} + u\right) = p + \left(2\overrightarrow{p\pi_S^{\perp}(p)} + u\right) =$$

$$= (p + \overrightarrow{p\pi_S^{\perp}(p)}) + \left(\overrightarrow{p\pi_S^{\perp}(p)} + u\right) = \pi_S^{\perp}(p) + \left(\overrightarrow{p\pi_S^{\perp}(p)} + u\right) = \left(\pi_S^{\perp}(p) + u\right) + \overrightarrow{p\pi_S^{\perp}(p)}$$

Ahora podemos demostrar que el punto  $z := \pi_S^{\perp}(p) + u$  coincide con la proyección  $\pi_S^{\perp}(q)$ , ya que satisface:

- $z \in S$ : usar que  $\pi_S^{\perp}(p) \in S$  y  $u \in \overrightarrow{S}$ .
- $\overrightarrow{zq} \in \overrightarrow{S}^{\perp}$ : usar que de la expresión  $q = z + \overrightarrow{p\pi_S^{\perp}(p)}$  probada anteriormente  $\overrightarrow{zq} = \overrightarrow{p\pi_S^{\perp}(p)} \in \overrightarrow{S}^{\perp}$ .

En conclusión

$$-\overrightarrow{q\pi_S^{\perp}(q)} = \overrightarrow{\pi_S^{\perp}(q)} \overrightarrow{q} = \overrightarrow{(\pi_S^{\perp}(p) + u)} \overrightarrow{q} = \overrightarrow{p\pi_S^{\perp}(p)},$$

lo que concluye la prueba

$$b) \Rightarrow a)$$

Sea  $S \subset \mathbb{R}^3$  plano y  $p,q \in \mathbb{R}^3$  puntos tales que  $\overrightarrow{pq} \notin \overrightarrow{S}^{\perp}$  y  $\overrightarrow{p\pi_S^{\perp}(p)} = -\overrightarrow{q\pi_S^{\perp}(q)}$ . Consideremos los puntos  $\pi_S^{\perp}(p), \pi_S^{\perp}(q) \in S$  y llamemos

$$u = \overrightarrow{\pi_S^{\perp}(p)\pi_S^{\perp}(q)} \in \overrightarrow{S}$$
.

Veamos que  $u \neq \overrightarrow{0}$ . Para ello basta con observar que

$$\overrightarrow{pq} = \overrightarrow{p\pi_S^\perp(p)} + \overrightarrow{\pi_S^\perp(p)\pi_S^\perp(q)} + \overrightarrow{\pi_S^\perp(q)q} = \left(\overrightarrow{p\pi_S^\perp(p)} + \overrightarrow{\pi_S^\perp(q)q}\right) + u,$$

y tener en cuenta que  $\overrightarrow{p\pi_S^{\perp}(p)} + \overrightarrow{\pi_S^{\perp}(q)q} \in \overrightarrow{S}^{\perp}$  y  $\overrightarrow{pq} \notin \overrightarrow{S}^{\perp}$ .

Comprobemos finalmente que la simetría deslizante  $\sigma = \tau_u \circ \sigma_S^{\perp}$  resuelve el ejercicio; para ello bastará con demostrar que  $\sigma(p) = q$ . En efecto,

$$\begin{split} \sigma(p) &= \sigma_S^{\perp}(p) + u = p + \left(\overrightarrow{p\sigma_S^{\perp}(p)} + u\right) = p + \left(2\overrightarrow{p\pi_S^{\perp}(p)} + u\right) = \pi_S^{\perp}(p) + \left(\overrightarrow{p\pi_S^{\perp}(p)} + u\right) = \\ &= \left(\pi_S^{\perp}(p) + u\right) + \overrightarrow{p\pi_S^{\perp}(p)} = \left(\pi_S^{\perp}(p) + \overrightarrow{\pi_S^{\perp}(p)} + \overrightarrow{\pi_S^{\perp}(p)} + \overrightarrow{p\pi_S^{\perp}(p)} + \overrightarrow{p\pi_S^{\perp}($$

Parte práctica: Hemos de justificar si existe una simetría deslizante  $\sigma \colon \mathbb{R}^3 \to \mathbb{R}^3$  con  $\sigma(S) = S$ y  $\sigma(p) = q$  cuando

$$S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - x_2 = 1\}, \ p = (2, -1, 0), \ q = (-1, 0, 0).$$

Para una respuesta afirmativa, y usando lo demostrado, será suficiente con ver que

$$\overrightarrow{pq} \notin \overrightarrow{S}^{\perp} \quad y \quad \overrightarrow{p\pi_S^{\perp}(p)} = -\overrightarrow{q\pi_S^{\perp}(q)},$$

donde  $\pi_S^{\perp} \colon \mathbb{R}^3 \to \mathbb{R}^3$  representa a la proyección ortogonal sobre S. Determinemos por tanto la expresión analítica de  $\pi_S^{\perp}$ . Tomemos  $(x,y,z) \in \mathbb{R}^3$  genérico y escribamos  $\pi_S^{\perp}(x,y,z) = (a,b,c)$ . Sabemos que



- $(a, b, c) \in S$ , esto es, a b = 1.
- $(x,y,z)(a,b,c) = (a-x,b-y,c-z) \in \overrightarrow{S}^{\perp}$ ; como  $\overrightarrow{S} = \{(x_1,x_2,x_3) \in \mathbb{R}^3 : x_1-x_2=0\}$  entonces  $\overrightarrow{S}^{\perp} = L(\{(1,-1,0)\}) = \{(x_1,x_2,x_3) \in \mathbb{R}^3 : x_3 = x_1+x_2=0\}$ , y por tanto c-z=a-x+b-y=0.

Resolviendo  $a = \frac{1}{2}(x+y+1), b = \frac{1}{2}(x+y-1), c = z,$  y por tanto

$$\pi_S^{\perp} : \mathbb{R}^3 \to \mathbb{R}^3, \ \pi_S^{\perp}(x, y, z) = \left(\frac{1}{2}(x + y + 1), \frac{1}{2}(x + y - 1), z\right).$$

Ahora queda claro que

$$\overrightarrow{pq} = \overrightarrow{(2,-1,0)(-1,0,0)} = (-3,1,0) \notin \overrightarrow{S}^{\perp} = L(\{(1,-1,0)\}) = \{(x_1,x_2,x_3) \in \mathbb{R}^3 \colon x_3 = x_1 + x_2 = 0\}$$

v

$$\overrightarrow{p\pi_S^{\perp}(p)} = \overrightarrow{(2,-1,0)} \overrightarrow{\pi_S^{\perp}(2,-1,0)} = \overrightarrow{(2,-1,0)} (1,0,0) = (-1,1,0) = -\overrightarrow{(-1,0,0)} (0,-1,0) = -\overrightarrow{(-1,0,0)} \overrightarrow{\pi_S^{\perp}(-1,0,0)} = -\overrightarrow{q\pi_S^{\perp}(q)}.$$

De lo ya demostrado en la anterior implicación deducimos que existe una simetría deslizante  $\sigma \colon \mathbb{R}^3 \to \mathbb{R}^3$  con  $\sigma(S) = S$  y  $\sigma(p) = q$ . Para determinar la expresión matricial de  $\sigma$  en  $\mathcal{R}_0$ , recordemos que  $\sigma = \tau_u \circ \sigma_S^{\perp}$  para cierto vector  $u \in \overrightarrow{S}$ . Como probamos en el anterior razonamiento, el vector u puede calcularse mediante la expresión

$$u = \overrightarrow{\pi_S^{\perp}(p)\pi_S^{\perp}(\sigma(p))} = \overrightarrow{\pi_S^{\perp}(p)\pi_S^{\perp}(q)} = \overrightarrow{(1,0,0)(0,-1,0)} = (-1,-1,0).$$

La expresión analítica de  $\sigma_S^{\perp}$  se puede determinar usando la fórmula  $\overrightarrow{p\sigma_S^{\perp}(p)} = 2\overrightarrow{p\pi_S^{\perp}(p)}$ , esto es,  $\sigma_S^{\perp}(p) = 2\pi_S^{\perp}(p) - p$ , que nos da

$$\sigma_S^{\perp}(x,y,z) = 2\pi_S^{\perp}(x,y,z) - (x,y,z) = 2\left(\frac{1}{2}(x+y+1), \frac{1}{2}(x+y-1), z\right) - (x,y,z) = (y+1,x-1,z).$$

De aquí que

$$\sigma(x, y, z) = (\tau_u \circ \sigma_S^{\perp})(x, y, z) = (y + 1, x - 1, z) + (-1, -1, 0) = (y, x - 2, z),$$

esto es,

$$M(\sigma, \mathcal{R}_0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Nota: La respuesta correcta a la anterior pregunta ha de ser lógica, formal y matemática, y no contener circunloquios retóricos apoyados en figuras o percepciones intuitivas no demostradas.

2. Clasifica afínmente la cuádrica

$$H = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 - 2x_1x_2 - 2x_1x_3 - 2x_1 + x_2^2 - 2x_2x_3 + x_3^2 + 2x_3 + 1 = 0\},\$$

encontrando un sistema de referencia afín en el que venga representada por su matriz canónica.

Solución:





## Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.







### Continúa do



405416 arts esce ues2016juny.pdf

#### Top de tu gi





Rocio



pony



La cuádrica viene representada por la siguiente matriz en la referencia usual  $\mathcal{R}_0$  de  $\mathbb{R}^3$ 

$$\hat{C} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ -1 & 1 & -1 & -1 \\ 0 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix}$$

con núcleo cuadrático

$$C = \left(\begin{array}{rrr} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{array}\right).$$

Un cálculo elemental del rango de ambas matrices nos dice que

$$R_H = \text{rang}(\hat{C}) = 3, \ r_H = \text{rang}(C) = 3.$$

Por otra parte, los polinomios característicos de  $\hat{C}$  y C son respectivamente

$$p_{\hat{C}}(t) = 6t + t^2 - 4t^3 + t^4 = (-3 + t)(-2 + t)t(1 + t), \quad p_{C}(t) = -4 + 3t^2 - t^3 = -(-2 + t)^2(1 + t).$$

Por tanto la regla de Descartes (o una observación directa) nos dice que

$$S_H = s_h = 1.$$

De la tabla de clasificación de las cuádricas concluimos que H tiene por matriz canónica

$$\hat{C}_0 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

se trata de un cono.

Para encontrar la referencia en la que adopta su matriz canónica procedemos como sigue. Primero calculamos los subespacios propios asociados a los valores propios -1,2 del núcleo cuadrático C.

Para el valor propio 1 queda

$$V_{-1} = \{(x, y, z) \in \mathbb{R}^3 : (C + I_3) . (x, y, z)^{\mathfrak{t}} = (0, 0, 0)^{\mathfrak{t}}\} = L(\{(1, 1, 1)\},$$

que admite a  $\{\frac{1}{3}(1,1,1)\}$  como base ortonormal. A esta base la multiplicamos por  $1/\sqrt{|-1|}=1$ (quedará invariante), generando la base de  $V_{-1}$ :

$$B_{-1} = \{\frac{1}{3}(1,1,1)\}$$

Para el valor propio 2 hacemos un cálculo similar.

$$V_2 = \{(x, y, z) \in \mathbb{R}^3 : (C - 2I_3) \cdot (x, y, z)^{\mathsf{t}} = (0, 0, 0)^{\mathsf{t}}\} = L(\{(1, -1, 0), (1, 0, -1)\}, (1, 0, 0)^{\mathsf{t}}\})$$

que tiene a  $\{(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0), (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\sqrt{\frac{2}{3}})\}$  como base ortonormal. A esta base la multiplicamos por  $1/\sqrt{|2|} = 1/\sqrt{2}$  generando la base de  $V_2$ :

$$B_2 = \left\{ \left(\frac{1}{2}, -\frac{1}{2}, 0\right), \left(\frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \right\}.$$



En el sistema de referencia centrado en el origen con direcciones  $B_{-1} \cup B_2$ , a saber,

$$\mathcal{R}_1 = \left\{ (0,0,0), \left\{ \frac{1}{3}(1,1,1), \left( \frac{1}{2}, -\frac{1}{2}, 0 \right), \left( \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) \right\} \right\},\,$$

la matriz que representa a H es la siguiente

$$\hat{C}_1 = M(\mathrm{Id}_3, \mathcal{R}_1, \mathcal{R}_0)^t \cdot \hat{C} \cdot M(\mathrm{Id}_3, \mathcal{R}_1, \mathcal{R}_0) =$$

$$= \begin{pmatrix} \frac{1}{0} & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{0} & -1 & 0 & 1 \\ -1 & 1 & -1 & -1 \\ 0 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{0} & \frac{1}{\sqrt{3}} & \frac{1}{2} & \frac{1}{2\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{1}{2} & \frac{1}{2\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} \frac{1}{0} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & -1 & 0 & 0 \\ -\frac{1}{2} & 0 & 1 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & 0 & 1 \end{pmatrix}$$

Si llamamos  $p_{\mathcal{R}_1} = (y_1, y_2, y_3)$  a las coordenadas en  $\mathcal{R}_1$  de los puntos  $p \in \mathbb{R}^3$ , la hipercuádrica se corresponde con los ceros del polinomio

$$1 - y_1^2 - y_2 + y_2^2 - \sqrt{3}y_3 + y_3^2 = 0,$$

o equivalentemente completando cuadrados

$$-y_1^2 + (y_2 - \frac{1}{2})^2 + (y_3 - \frac{\sqrt{3}}{2})^2 = 0.$$

Consideremos el único sistema de referencia  $\mathcal{R}_2$  en  $\mathbb{R}^3$  en el que las coordenadas  $p_{\mathcal{R}_2} = (z_1, z_2, z_3)$  de los puntos de  $p \in \mathbb{R}^3$  vengan determinadas por las ecuaciones analíticas

$$z_1 = y_2 - \frac{1}{2}, \quad z_2 = y_3 - \frac{\sqrt{3}}{2}, \quad z_3 = y_1,$$

esto es, el que satisface

$$M(\mathrm{Id}_{R^3}, \mathcal{R}_1, \mathcal{R}_2) = \begin{pmatrix} \frac{1}{-\frac{1}{2}} & 0 & 0 & 0\\ -\frac{1}{2} & 0 & 1 & 0\\ -\frac{\sqrt{3}}{2} & 0 & 0 & 1\\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

La cuádrica H se corresponde ahora con los puntos de  $\mathbb{R}^3$  cuyas coordenadas en  $\mathcal{R}_2$  son ceros del polinomio

$$z_1^2 + z_2^2 - z_3^2 = 0,$$

y por tanto H viene representada en  $\mathcal{R}_2$  por la matriz canónica  $\hat{C}_0$ . Esto concluye el ejercicio. Si se desea expresar  $\mathcal{R}_2$  respecto a la referencia  $\mathcal{R}_0$  basta con usar la fórmula

 $M(\operatorname{Id}_{R^3}, \mathcal{R}_2, \mathcal{R}_0) = M(\operatorname{Id}_{R^3}, \mathcal{R}_1, \mathcal{R}_0) \cdot M(\operatorname{Id}_{R^3}, \mathcal{R}_2, \mathcal{R}_1) = M(\operatorname{Id}_{R^3}, \mathcal{R}_1, \mathcal{R}_0) \cdot M(\operatorname{Id}_{R^3}, \mathcal{R}_1, \mathcal{R}_2)^{-1} = M(\operatorname{Id}_{R^3}, \mathcal{R}_1, \mathcal{R}_2) \cdot M(\operatorname{Id}_{R^3}, \mathcal{R}_2, \mathcal{R}_2)^{-1} = M(\operatorname{Id}_{R^3}, \mathcal{R}_1, \mathcal{R}_2)^{-1} = M(\operatorname{Id}_{R^3}, \mathcal{R}_2, \mathcal{R}_2)^{-1} = M(\operatorname{Id}_{R^3}, \mathcal{R}_2)^{-1} = M(\operatorname{Id}_{R^3}, \mathcal{R}_2)^{-1} = M(\operatorname{Id}_{R^3}, \mathcal{R}_2)^{-1} = M(\operatorname{Id}_{R^3}, \mathcal{R}_2)^{-1} = M(\operatorname$ 

$$= \begin{pmatrix} \frac{1}{0} & 0 & 0 & 0 \\ \frac{1}{0} & \frac{1}{\sqrt{3}} & \frac{1}{2} & \frac{1}{2\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{1}{2} & \frac{1}{2\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{3}} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{-\frac{1}{2}} & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 1 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{\frac{1}{2}} & \frac{1}{2} & \frac{1}{2\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{2} & \frac{1}{2\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{1}{2} & \frac{1}{2\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{2} & 0 & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$



3. Determina la matriz en la base usual de  $\mathbb{R}^3$  de la única homografía  $f: \mathbb{P}^2 \to \mathbb{P}^2$  que transforma respectivamente las rectas proyectivas  $x_0 - x_1 + x_2 = 0, x_0 + 2x_2 = 0, x_0 + x_1 = 0$  en las rectas proyectivas  $x_0 = 0, x_1 = 0, x_2 = 0, y$  además fija el punto  $(1:1:1) \in \mathbb{P}^2$ .

#### Solución:

Demos nombre a las rectas proyectivas

$$R_1 = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2 : x_0 - x_1 + x_2 = 0\},$$

$$R_2 = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2 : x_0 + 2x_2 = 0\},$$

$$R_3 = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2 : x_0 + x_1 = 0\},$$

 $S_1 = \{(x_0: x_1: x_2) \in \mathbb{P}^2: x_0 = 0\}, \quad S_2 = \{(x_0: x_1: x_2) \in \mathbb{P}^2: x_1 = 0\}, \quad S_3 = \{(x_0: x_1: x_2) \in \mathbb{P}^2: x_2 = 0\}.$  Sea  $f: \mathbb{P}^2 \to \mathbb{P}^2$  una homografía que lleve  $f(R_j) = S_j, \ j = 1, 2, 3$ . Necesariamente

$$f(R_1 \cap R_2) = S_1 \cap S_2$$
, esto es,  $f(2:1:-1) = (0:0:1)$ ,  
 $f(R_1 \cap R_3) = S_1 \cap S_3$ , esto es,  $f(1:-1:-2) = (0:1:0)$ ,

$$f(R_2 \cap R_3) = S_2 \cap S_3$$
, esto es,  $f(2:2:-1) = (1:0:0)$ ,

Por tanto, si llamamos  $B_1 = \{(2,1,-1),(1,-1,-2),(2,2,-1)\}$  (base de  $\mathbb{R}^3$ ) y  $B_0$  a la base canónica de  $\mathbb{R}^3$ , el isomorfismo lineal  $\hat{f}$  asociado a una tal f ha de satisfacer:

$$M(\hat{f}, B_1, B_0) = \begin{pmatrix} 0 & 0 & \gamma \\ 0 & \mu & 0 \\ \lambda & 0 & 0 \end{pmatrix}$$

para  $\lambda, \mu, \gamma \in \mathbb{R} \setminus \{0\}$ . Por tanto

 $M(\hat{f}, B_0) \equiv M(\hat{f}, B_0, B_0) = M(\hat{f}, B_1, B_0) \cdot M(\mathrm{Id}_{\mathbb{R}^3}, B_0, B_1) = M(\hat{f}, B_1, B_0) \cdot M(\mathrm{Id}_{\mathbb{R}^3}, B_1, B_0)^{-1},$ y como

$$M(\mathrm{Id}_{\mathbb{R}^3}, B_1, B_0) = \begin{pmatrix} 2 & 1 & 2 \\ 1 & -1 & 2 \\ -1 & -2 & -1 \end{pmatrix},$$

queda finalmente

$$M(\hat{f}, B_0) = \begin{pmatrix} 0 & 0 & \gamma \\ 0 & \mu & 0 \\ \lambda & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 2 \\ 1 & -1 & 2 \\ -1 & -2 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} -\gamma & \gamma & -\gamma \\ -\frac{\mu}{3} & 0 & -\frac{2\mu}{3} \\ \frac{5\lambda}{3} & -\lambda & \frac{4\lambda}{3} \end{pmatrix}.$$

Como deseamos que f(1:1:1) = (1:1:1), necesitamos que

$$(\gamma, -\mu, 2\lambda) = \beta(1, 1, 1)$$

para algún  $\beta \in \mathbb{R} \setminus \{0\}$ . Basta con elegir

$$\gamma = \beta$$
,  $-\mu = \beta$ ,  $2\lambda = \beta$ ,

que están determinados unívocamente salvo proporcionalidad. Queda finalmente

$$M(\hat{f}, B_0) = \beta \begin{pmatrix} -1 & 1 & -1 \\ \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{5}{6} & -\frac{1}{2} & \frac{3}{3} \end{pmatrix} = \frac{\beta}{3} \begin{pmatrix} -6 & 6 & -6 \\ 2 & 0 & 4 \\ 5 & -3 & 4 \end{pmatrix},$$





# Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.







## Continúa de

405416\_arts\_esce ues2016juny.pdf

#### Top de tu gi







de donde  $f\colon \mathbb{P}^2 \to \mathbb{P}^2$ es la homografía con matriz

$$M(f, B_0) = \begin{pmatrix} -6 & 6 & -6 \\ 2 & 0 & 4 \\ 5 & -3 & 4 \end{pmatrix}$$

o cualquier múltiplo suya.