Problem (Problem 1): Let $U \subseteq \mathbb{C}$ be a bounded region, $f \colon \overline{U} \to \mathbb{C}$ continuous such that $f|_U$ is holomorphic. Suppose f is nonvanishing in U, and that there exists c > 0 such that |f(z)| = c for all $z \in \partial U$. Prove that there exists some $\theta \in \mathbb{R}$ such that $f(z) = ce^{i\theta}$ for all $z \in \overline{U}$.

Solution: Since f is holomorphic on the connected, bounded, open set U, it follows from the maximum modulus principle that for all $z \in U$, we have $|f(z)| \le |f(w)|$ for all $w \in \partial U$. In particular, we must have $|f(z)| \le c$ for all $z \in U$. Since $|f(z)| \ne 0$ for all $z \in U$, it follows that $\frac{1}{|f(z)|} \ge \frac{1}{c}$ for all $z \in U$. Yet, at the same time, since $\frac{1}{|f(z)|}$ is holomorphic, we must have $\frac{1}{|f(z)|} \le \frac{1}{|f(w)|}$ for all $w \in \partial U$, meaning that $\frac{1}{|f(z)|} \le \frac{1}{c}$, so that |f(z)| = c for all $z \in U$.

In particular, for all $z \in U$, we have $|f(z)| \ge |f(w)|$ for all $z \in U$, the maximum modulus principle gives that f is constant. Since |f(z)| = c, we thus have $f(z) = ce^{i\theta}$ for some $\theta \in \mathbb{R}$.

Problem (Problem 2): For 0 < r < R, let $A(z_0, r, R) = \{z \in \mathbb{C} \mid r < |z - z_0| < R\}$. Suppose that there exists a continuous $f \colon \overline{A(z_0, r, R)} \to \mathbb{C}$ such that $f|_{A(z_0, r, R)}$ is holomorphic, and that there exist constants C_r and C_R in \mathbb{R} such that $\text{Re}(f(z)) = C_r$ on $S(z_0, r)$, and $\text{Re}(f(z)) = C_R$ on $S(z_0, R)$. Show that $C_r = C_R$, and that f is constant for all f is all f is constant for

Solution: Without loss of generality, since we may take $g(z) = f(z - z_0)$, we may assume that $z_0 = 0$, so that we let $u(x,y) : \overline{A(0,r,R)} \to \mathbb{R}$ be given by $u(x,y) = \operatorname{Re}(f(x - x_0 + i(y - y_0)))$. Since u is the real part of a holomorphic function, u is necessarily harmonic, so by the extended maximum modulus principle, u takes on its maximum modulus on either S(0,r) or S(0,R). In other words, it is the case that the maximum modulus for u is either $|C_r|$ or $|C_R|$.

Now, consider the function

$$w(x,y) = u(x,y) - C_r - (C_R - C_r) \frac{\ln(x^2 + y^2) - \ln(r^2)}{\ln(R^2) - \ln(r^2)}.$$

We start by verifying that *w* is harmonic. Towards this end, since Laplace's equation is linear, we only need to evaluate the expression in the fraction free of the constants.

$$\begin{split} \frac{\partial w}{\partial x} &= \frac{C_R - C_r}{\ln(R^2) - \ln(r^2)} \frac{2x}{x^2 + y^2} \\ \frac{\partial^2 w}{\partial x^2} &= \frac{C_R - C_r}{\ln(R^2) - \ln(r^2)} \left(\frac{2}{x^2 + y^2} - 2x \left(\frac{2x}{(x^2 + y^2)^2} \right) \right) \\ &= \frac{C_R - C_r}{\ln(R^2) - \ln(r^2)} \frac{2y^2 - 2x^2}{x^2 + y^2} \\ \frac{\partial^2 w}{\partial y^2} &= \frac{C_R - C_r}{\ln(R^2) - \ln(r^2)} \frac{2x^2 - 2y^2}{x^2 + y^2} \end{split}$$

which means that the sum is zero, and thus w is harmonic. In particular, it also satisfies the extended maximum modulus principle, meaning that w attains its maxima on the boundary of the annulus. Since, for $x + iy \in S(0, r)$, we have $u(x, y) = C_r$ and $x^2 + y^2 = r^2$, we thus get that w = 0, and similarly, w = 0 on S(0, R), meaning that w is identically zero on $\overline{A(0, r, R)}$.

Thus, we find that

$$u(x,y) = C_r + (C_R - C_r) \frac{\ln(x^2 + y^2) - \ln(r^2)}{\ln(R^2) - \ln(r^2)}.$$