電子システム工学基礎実験 報告書

	グループ			プ:				A							
実験題目							変位	電流							
報告者	第1	班_		学生	番号	21	12100	1	氏名	, 		浅	井 雅史	<u> </u>	
	メールフ	アドレ	⁄ス				b1	12100)1@ed	u.ki	t.ac.jp				
	共同実験者			学生	番号	21121002			氏名	浅岡 駿介					
				学生	- 番号	21	121007	_	氏名		伊	藤 大	智		
				学生	番号	21	121008		氏名		井.	上	腸		
				学生	番号 _				氏名						
実験実施日	2022	年	12	月	01	日	天候	曇り	温月	度	10	C	湿度	55	%
報告書提出	(第1回	回目)	2	022	年	12	月	07	日	\Rightarrow	受理	/	要再	提出	_
	(第2回	11目)			年		_ 月		日	\Rightarrow	受理	/	要再	提出	
報告書受理日	(最終)				年		月		日						
報告書提出者		11			ぱ口に	チェック									
☑実験結果は示されているか?☑考察は十分になされているか?☑ルポートとしての体裁は適切か?							☑図表の書き方・まとめ方は適切か? ☑演習問題はできているか?								

- [注意]
- ・自己チェック欄が未記入のレポートは内容を見ずに返却する・自己チェック欄と内容に相違があるものは、その程度に応じて減点する

[報告書に対する教員の所見]	[所見に対する報告者の回答]
□図表の体裁に不備がある	
()
口実験結果のまとめ方が適切でない	
()
□結果に対する考察が不足している	
()
□演習問題が解答されていない	
()
ロレポートとしての体裁が整っていない	
()
裏面に	に続く

1 目的

アンペア・マクスウェルの法則に関する実験を行い、変位電流 (密度) の理解を深める.

2 原理

変位電流密度 $\vec{i_d}$ とは電東 \vec{D} の時間変化であり、以下の式で与えられる.

$$\vec{i_d} = \frac{\partial \vec{D}}{\partial t}$$

また,平行平板への電圧限として交流を与え場合について考える.微小区間 Δx 離れた二点での電位を測定すると電場は, $|\vec{E}|=\frac{\Delta V}{\Delta x}$ で計算でき,電束密度を $\vec{E}=\epsilon\vec{D}$ と仮定できる.したがって,変位電流密度 $\vec{i_d}$ は以下の式で与えられる.

$$|\vec{i_d}| = |\frac{\partial \vec{D}}{\partial t}| = \epsilon |\frac{\partial}{\partial t}(\frac{\Delta V}{\Delta x})| = \frac{\epsilon}{\Delta x} |\frac{\partial}{\partial t}(\Delta V)|$$

ここで,平行平板に印加する V の角周波数を ω とすると, $V \propto \sin \omega t$ と書けるので,平行平板電極の面積を S. 二点での電位をそれぞれ $V_1 = A \sin \omega t$, $V_2 = B \sin \omega t$ とすると変位電流の大きさ I_{dmax} は以下の式で求められる.

$$|I_{dmax}| = \frac{\epsilon}{\Delta x} |(A - B)\omega|$$

また,ロゴスキーコイルにおいてロゴスキーコイルの両端に現れる誘導電圧を $V_e(t) = C \sin \omega t$ とすると,変位電流の大きさ I_d は以下の式で求められる.

$$|I_{dmax}| = -\left|\frac{l}{\mu_0 NS} \int_{\frac{\pi}{2}}^{\pi} V_e(t) dt\right| = \frac{l}{\mu_0 NS} \cdot \frac{C}{\omega}$$

3 実験

3.1 実験装置及び器具

木製台,プローブ支持台,ガラス製水槽,平行平板電極,静電プローブ,METRONIX MTR18-1 交流定電圧定電流電源、TEKTRONIX TBS1022 オシロスコープ,ロゴスキーコイル,抵抗 (220k Ω),セメント抵抗 (1Ω)

3.2 セットアップ

図1のように平行平板電極を水に入れた水槽の外側に配置し、電極板に交流を印加する.

3.3 二本のプローブによる測定

1. 図 2 のように水槽に二本のプローブを差し込む.一つはプローブ支持台を用いて固定し,もう一つはテープで固定する.その間隔 Δx は~ $1 \mathrm{cm}$ 程度に保ち, Δx の値を測定しておく.

2. 発振周波数は最も高い周波数 (1 MHz) からスタートし、徐々に $(50 \text{k} \sim 100 \text{kHz})$ が $(50 \text{k} \sim 100 \text{kHz})$ の 周波数を下げながら実施し、それぞれの周波数における波形を記録する.

3.4 ロゴスキーコイルによる測定

- 1. 図 3 に示すように、水槽と電極板の間にロゴスキーコイルが入る程度のスペースを作り、そこにロゴスキーコイルを挿入する.
- 2. 実験課題 1 と同様に発振器の周波数 ω を変化させながら,セメント抵抗の両端とロゴスキーコイルからの出力波形を記録する.

参考文献

[1] 電子システム工学基礎実験テキスト