USAJMO 2012

www.artofproblemsolving.com/community/c3975

by BOGTRO, tc1729, rrusczyk

Day 1 April 24th

Given a triangle ABC, let P and Q be points on segments \overline{AB} and \overline{AC} , respectively, such that AP=AQ. Let S and R be distinct points on segment \overline{BC} such that S lies between B and R, $\angle BPS=\angle PRS$, and $\angle CQR=\angle QSR$. Prove that P,Q,R,S are concyclic (in other words, these four points lie on a circle).

Example 210: As shown in Figure 1, given $\triangle ABC$, P and Q are points on sides AB and AC respectively, and AP = AQ; S and R are two different points on side BC, and point S is located between B and R, $\triangle BPS = \triangle PRS$, $\triangle CQR = \triangle QSR$. ___ Proof: The four points P, Q, R, S share a circle. (2012 USA Mathematical Olympiad USAJMO test questions)

$$\frac{\frac{P-S}{P-B}}{\frac{C-B}{R-P}} \frac{\frac{S-Q}{B-C}}{\frac{Q-C}{Q-P}} \frac{\frac{Q-C}{Q-P}}{\frac{P-Q}{P-B}} \left(\frac{P-Q}{P-S} / \frac{R-Q}{B-C}\right) \left(\frac{C-B}{R-P} / \frac{Q-S}{Q-P}\right) = 1$$

This question is a bit confusing to understand. It is easy to understand if it is said another way: As shown in the figure, given $\triangle ABC$, P and Q are points on sides AB and AC respectively, S and R are two different points on side BC, and point S is located between B and R, \angle BPS = $\angle PRS$, \angle CQR = \angle QSR. _ _ If P, Q, R, S share a circle, prove that AP = AQ.