Elektronički sklopovi – Frekvencijska karakteristika elektroničkih sklopova

Elektronika – 10. predavanje

S obzirom na frekvenciju priključenog signala rad elektroničkih sklopova može se podijeliti u tri frekvencijska područja:

1) područje niskih frekvencija

- 2) područje srednjih frekvencija
- 3) područje visokih frekvencija

1) Područje niskih frekvencija

- U području niskih frekvencija potrebno je uzeti u obzir pad napona na kondenzatorima koji su serijski vezani u sklopu.
- Na slici je prikazano pojačalo s veznim kondenzatorima C_{S1} i C_{S2} koji u statičkim uvjetima odjeljuju izvor signala i trošilo od sklopa pojačala.

2) Područje srednjih frekvencija

- Mogu se zanemariti utjecaji kapacitivnih komponenata sklopa.
- U dinamičkim uvjetima vezni se kondenzatori u ulaznom i izlaznom krugu pojačala kratko spajaju:

3) Područje visokih frekvencija

 Pojave na visokim frekvencijama moguće je analizirati primjenom Giacolettovog modela tranzistora:

 Giacolettov model (hibridni π-model) uključuje barijernu i difuzijsku kapacitivnost tranzistora koje su ključne za ponašanje tranzistora na visokim frekvencijama.

Millerov teorem

- Neka je u proizvoljnoj mreži N različitih točaka (1,2,3,...,N) s naponima U₁, U₂, U₃,..., U_N gdje je N referentna točka (U_N=0).
- Točke 1 i 2 spojene su preko impedancije Z'.

- Pretpostavka: poznat je omjer U₂/U₁=K.
- Struja I₁ jednaka je:

$$I_{1} = \frac{U_{1} - U_{2}}{Z'} = \frac{U_{1} \cdot (1 - K)}{Z'} = \frac{U_{1}}{\frac{Z'}{1 - K}} = \frac{U_{1}}{Z_{1}}$$

- Dakle, struja I₁ iz točke 1 ostala bi ista kad bi se točka 1 spojila s točkom N preko impedancije $Z_1=Z'/(1-K)$.
- Na isti način određuje se struja I₂ koja teče iz točke 2:

način određuje se struja I₂ koja teče iz točka
$$I_2 = \frac{U_2 - U_1}{Z'} = \frac{U_2 \cdot \left(1 - \frac{1}{K}\right)}{Z'} = \frac{U_2}{Z' \cdot \frac{K}{K - 1}} = \frac{U_2}{Z_2}$$

- Struja I₂ iz točke 2 ostala bi ista ako se točka 2 spoji s točkom N preko impedancije $Z_2=Z'K/(K-1)$.
- Ekvivalentna mreža:

Primjena Millerovog teorema na Giacolettov model

Giacolettov model:

Primjena Millerovog teorema na Giacolettov model

Giacolettov model:

Millerov teorem

Primjena Millerovog teorema na Giacolettov model

Giacolettov model:

Millerov teorem

$$K = \frac{U_{ce}}{U_{b'e}}$$

Definicija parametara Giacolettovog modela

 Otpor r_{bb}, je raspodijeljeni serijski otpor između vanjskog priključka baze B i aktivnog područja baze ispod emitera (tzv. interna baza B'), prema slici:

Tipična vrijednost otpora r_{bb} , iznosi od 10 do 100 Ω.

- Otpor $r_{b'e}$ je dinamički otpor pn-spoja između interne baze i emitera. Tipična vrijednost ovog otpora iznosi 1 k Ω .
- Kapacitet C_e je ukupni kapacitet između interne baze i emitera. Taj kapacitet jednak je sumi difuzijskog i barijernog kapaciteta, a tipična mu je vrijednost od 10-100 pF.
- Otpor r_{b'c} nastaje kao posljedica Earlyjeva efekta, a tipična vrijednost mu je reda veličine 1 MΩ.
- Kapacitet C_c je tranzitni (barijerni) kapacitet pn spoja kolektor-baza koji je u normalnim aktivnim uvjetima rada tranzistora nepropusno polariziran. Tipičan iznos je reda veličine 1 pF.

- Otpor r_{ce} je dinamički otpor između kolektora i emitera tranzistora. Tipičan iznos tog otpora je nekoliko desetaka kΩ.
- Strujni izvor g_mU_{b'e} određen je strminom tranzistora u odgovarajućoj radnoj točki i naponom između interne baze i emitera.

Nadomjesni sklop unipolarnog tranzistora u području visokih frekvencija

Model unipolarnog tranzistora u području visokih frekvencija prikazan je na slici:

Definicija parametara prikazanog modela

- Kapacitet C_{as} je parazitni kapacitet između vrata i uvoda.
- Kapacitet C_{gd} je parazitni kapacitet između vrata i odvoda.
- Kapacitet C_{ds} je parazitni kapacitet odvoda prema uvodu.
- Parametar r_d je dinamički otpor u odabranoj radnoj točki tranzistora. Strujni izvor g_mU_{gs} određen je strminom tranzistora u odabranoj radnoj točki i naponom između vrata i uvoda, U_{gs}.

Određivanje parametara Giacolettovog modela

Na temelju definirane statičke radne točke tranzistora i zadanih vrijednosti hibridnih parametara moguće je odrediti parametre Giacolettovog modela putem jednadžbi:

$$g_m = \frac{I_{CQ}}{U_T}$$
 (struja I_C u statičkoj radnoj točki) (naponski temperaturni ekvivalent)

$$r_{b'e} = \frac{h_{fe}}{g_m}$$
 $r_{b'b} = h_{ie} - r_{b'e}$

$$r_{b'c} = \frac{r_{b'e}}{h_{re}}$$
 $\frac{1}{r_{ce}} = h_{oe} - \frac{1 + h_{fe}}{r_{b'c}}$

\blacksquare π -model na niskim (srednjim) frekvencijama:

$$g_m = \frac{I_{CQ}}{U_T}$$

$$U_T = \frac{T}{11605}$$

h-model:

$$U_{b'e} \approx I_b \cdot r_{b'e}$$
 (jer je $r_{b'c} >> r_{b'e}$)

$$I_c = g_m \cdot U_{b'e} \approx g_m \cdot I_b \cdot r_{b'e}$$

(kolektorska struja kratkog spoja)

$$r_{b'e} = \frac{h_{fe}}{g_m}$$

Ulazni otpor pri U_{ce}=0 je h_{ie} u h-modelu, a u π-modelu je r_{bb′}+(r_{b′e}||r_{b′c}≈r_{b′e}) pa je:

$$h_{ie} = r_{bb'} + r_{b'e}$$

odnosno:

$$r_{bb'} = h_{ie} - r_{b'e}$$

Strujno pojačanje uz kratkospojeni izlaz:

$$\begin{split} I_{p} &= -g_{m}U_{b'e} \\ U_{b'e} &= \frac{I_{ul}}{g_{b'e} + j\omega \cdot (C_{e} + C_{c})} \\ g_{b'e} &= \frac{1}{r_{b'e}} \end{split}$$

Strujno pojačanje:
$$A_{i} = \frac{I_{p}}{I_{ul}} = \frac{-g_{m}}{g_{b'e} + j\omega \cdot (C_{e} + C_{c})} \qquad |A_{i}| = \frac{h_{fe}}{\left[1 + \left(f/f_{g}\right)^{2}\right]^{\frac{1}{2}}}$$

$$f_{g} = \frac{g_{b'e}}{2\pi \cdot (C_{e} + C_{c})} = \frac{1}{h_{fe}} \cdot \frac{g_{m}}{2\pi \cdot (C_{e} + C_{c})}$$

Parametar f_T:

Definiran je kao frekvencija na kojoj strujno pojačanje za kratkospojeni izlaz spoja zajedničkog emitera ima jediničnu vrijednost: $f_T = h_{fe} \cdot f_g = \frac{g_m}{2\pi \cdot (C_s + C_s)} \approx \frac{g_m}{2\pi \cdot C_s}$

vrijednost:
$$f_T = h_{fe} \cdot f_g = \frac{g_m}{2\pi \cdot (C_e + C_c)} \approx \frac{g_m}{2\pi \cdot C_e}$$

Frekvencijska karakteristika pojačala

 Frekvencijska karakteristika pojačala – ovisnost pojačanja o frekvenciji

- U području srednjih frekvencija pojačanje ne ovisi o frekvenciji (referentno pojačanje A_0).
- U točkama u kojima je vrijednost pojačanja $A_0/\sqrt{2}$ definirane su dvije karakteristične frekvencije: gornja i donja granična frekvencija.
- Postojanje donje granične frekvencije uvjetovano je konstrukcijom sklopa (vezni kondenzatori na ulazu i izlazu pojačala).
- Gornja granična frekvencija je rezultat fizikalnih pojava u radu tranzistora.
- Gornja granična frekvencija može se povećati izborom odgovarajućeg tranzistora i konstrukcijom sklopa, ali je njen iznos uvijek konačan.
- Frekvencijska karakteristika idealnog pojačala bila bi horizontalan pravac.

 Realna pojačala uvijek unose određeni fazni pomak između izlaznog i ulaznog signala. Taj pomak je posljedica konačnog vremena nabijanja i pražnjenja barijernih kapaciteta, konačnog vremena proleta nosilaca naboja kroz tranzistor i djelovanja vremenskih konstanti pasivnih

dijelova pojačala.

Bodeov prikaz frekvencijskih karakteristika

- Grafički prikaz: pojačanje (izraženo u dB) i fazni kut kao funkcija frekvencije (logaritamsko mjerilo) – Bodeov prikaz.
- Prikaz pojačanja u ovisnosti o frekvenciji amplitudna karakteristika.
- Prikaz faznog kuta u ovisnosti o frekvenciji fazna karakteristika.
- Primjer: Jednostavna pasivna RC-mreža

Prijenosna funkcija prikazanog RC-člana je:

$$A = \frac{U_{iz}}{U_{ul}} = \frac{R}{R + \frac{1}{j\omega C}} = \frac{R}{R - j\frac{1}{\omega C}} = \frac{1}{1 - j\frac{f_d}{f}},$$
 (1)

gdje je:

$$f_d = \frac{1}{2\pi RC} \tag{2}$$

Prijenosna funkcija može se prikazati u obliku:

$$A = \frac{1}{\sqrt{1 + \left(\frac{f_d}{f}\right)^2}} \exp\left[j \operatorname{arctg}\left(\frac{f_d}{f}\right)\right]$$
 (3)

odnosno:

$$A = |A| \exp[j\phi], \tag{4}$$

gdje je |A| apsolutni iznos ili amplituda određena relacijom:

$$|A| = \frac{1}{\sqrt{1 + \left(\frac{f_d}{f}\right)^2}},\tag{5}$$

a φ fazni kut je:

$$\phi = arctg\left(\frac{f_d}{f}\right) \tag{6}$$

 $|A| = \frac{1}{\sqrt{2}}$

- U skladu s relacijom (5), pri f=f_d, amplituda stoga je f_d donja granična frekvencija.
- Pri frekvenciji f>>f_d, |A|=1.

Za Bodeov prikaz potrebno je relaciju (5) izraziti u decibelima:

$$|A|[dB] = -20\log\sqrt{1 + \left(\frac{f_d}{f}\right)^2} \tag{7}$$

Kada je f<<f_d može se zanemariti jedinica pod korijenom u izrazu (7) te je:

$$|A|[dB] = -20\log\left(\frac{f_d}{f}\right) \tag{8}$$

Kada je f>>f_d može se zanemariti (f_d/f)² pa je:

$$|A|[dB] = 0 \tag{9}$$

Na frekvenciji f=f_d |A|=-3 dB.

- Karakteristiku određenu relacijom (7) možemo aproksimirati s dva segmenta određena relacijama (8) i (9).
- Segmenti se sastaju u točki f=f_d i to je točka loma pa se i sama karakteristika naziva lomljena karakteristika.
- U točki loma odstupanje lomljene od stvarne karakteristike po ordinati iznosi 3 dB, a kod svih ostalih frekvencija odstupanje je manje od 3 dB.

Fazna karakteristika određena je relacijom (6). Lomljena karakteristika dobivena je tako da je za 0 < f < 0,1f_d fazna karakteristika aproksimirana faznim kutom φ=90°, dok je za 0,1f_d ≤ f ≤ 10f_d fazna karakteristika aproksimirana pravcem koji kroz točke s koordinatama f=f_d i φ=45° prolazi pod nagibom -45° po dekadi.

Amplitudna karakteristika

Fazna karakteristika

