Universidad de Sonora Lic. Ciencias de la Computación

Tarea 1: Introducción

- Análisis de Algorítmos -

Codificar el algoritmo de ordenamiento por inserción (INSERTION-SORT), y calcular el tiempo de ejecución para diez valores distintos de n. Realizar lo anterior para un arreglo ordenado en orden creciente (mejor caso), orde- nado en forma decreciente (peor caso) y un arreglo aleatorio (caso promedio). Para cada caso calcular los tiempos y graficarlos.

 $N = k \times 1000$

Time in ms.						
k	Best	Average	Worst			
1	3.9e-05	0.004437	0.0089			
2	4.9e-05	0.018812	0.033794			
3	9.4e-05	0.038454	0.071148			
4	0.000121	0.068145	0.136728			
5	0.000167	0.104135	0.230272			
6	0.00015	0.161154	0.355639			
7	0.00021	0.250216	0.500821			
8	0.000226	0.326638	0.631154			
9	0.000241	0.416636	0.836822			
10	0.000354	0.531528	1.027353			

Observamos un comportamiento $O(n^2)$ para el caso promedio y peor. O(n) para el mejor caso.

Codificar el algoritmo de ordenamiento por selección (SELECTION-SORT) y calcular los tiempo de cómputo para diez valores distintos de n. Realizar lo anterior para un arreglo ordenado en orden creciente (mejor caso), orde- nado en forma decreciente (peor caso) y un arreglo aleatorio (caso promedio). Para cada caso calcular los tiempos y graficarlos.

$$N=k\times 1000$$

Time in ms.					
k	Best	Average	Worst		
1	0.007824	0.008779	0.007881		
2	0.025799	0.026779	0.028041		
3	0.051939	0.057631	0.05977		
4	0.09482	0.09638	0.114162		
5	0.170602	0.159569	0.163073		
6	0.27077	0.21724	0.264626		
7	0.284462	0.351367	0.320712		
8	0.522975	0.4731	0.446152		
9	0.67342	0.637975	0.560119		
10	0.830803	0.811207	0.743811		

Selection Sort best 1.0 average worst 0.8 Time taken in ms 0.6 0.4 0.2 0.0 2000 4000 6000 8000 10000 Ν

Observamos un comportamiento $O(n^2)$ para todos los casos.

Codifique el algoritmo de ordenamiento por confluen- cia (MERGE-SORT) y calcular el tiempo de ejecución para diez valores distintos de n. Realizar lo anterior para un arreglo ordenado en orden creciente (mejor caso), orde- nado en forma decreciente (peor caso) y un arreglo aleatorio (caso promedio). Para cada caso calcular los tiempos y graficarlos.

$$N = k \times 1000$$

Time in ms.					
k	Best	Average	Worst		
1	0.002496	0.002659	0.002419		
2	0.00493	0.005136	0.004925		
3	0.007453	0.007878	0.008016		
4	0.010541	0.013392	0.010229		
5	0.012291	0.014277	0.012893		
6	0.016619	0.015182	0.015237		
7	0.019261	0.0198	0.019167		
8	0.021358	0.021905	0.020427		
9	0.022903	0.026572	0.022608		
10	0.02625	0.027609	0.024473		

Observamos un comportamiento $O(n \log n)$ mayor a O(n) pero menor que $O(n^2)$

Determinar la función T(n), en el mejor y el peor de los casos, del algoritmo de ordenamiento por selección.

Algorithm 1 Selection-Sort (Mejor Caso: Lista Ordenada) 1: **for** i = 1 **to** n - 1t = n c_1 $\min j = i$ t = n - 12: c_2 $\min x = A[i]$ t = n - 13: c_3 $t = (n-1)^2$ for j = i + 1 to n4: c_4 $t = (n-1)^2 - 1$ if $A[j] < \min x$ then 5: c_5 6: $\min j = j$ t = 0 c_6 $\min x = A[j]$ t = 07: c_7 8: end if 9: end for $A[\min j] = A[i]$ t = n - 110: c_8 $A[i] = \min x$ t = n - 1 c_{9} 12: end for

$$T(n) = c_1(n) + c_2(n-1) + c_3(n-1) + c_4(n-1)^2 + c_5((n-1)^2 - 1) + c_8(n-1) + c_9(n-1)$$

$$T(n) = (c_4 + c_5)n^2 + (c_1 + c_2 + c_3 - 2c_4 - 2c_5 + c_8 + c_9)n - (c_2 + c_3 + c_4 + c_8 + c_9)$$

$$T(n) = An^2 + Bn + C$$

$$T(n) = O(n^2)$$

Algorithm 2 Selection-Sort (Peor Caso: Lista Ordenada al reves)

```
1: for i = 1 to n - 1
                                                                               t = n
                                                                     c_1
       \min j = i
                                                                               t = n - 1
 2:
                                                                     c_2
                                                                               t = n - 1
 3:
       \min x = A[i]
                                                                     c_3
                                                                               t = (n-1)^2
 4:
       for j = i + 1 to n
                                                                     c_4
                                                                               t = (n-1)^2 + n
          if A[j] < \min x then
 5:
                                                                     c_5
                                                                               t = (n-1)^2 + n - 1
 6:
              \min j = j
                                                                     c_6
                                                                               t = (n-1)^2 + n - 1
              \min x = A[j]
 7:
                                                                     c_7
          end if
 8:
       end for
 9:
       A[\min j] = A[i]
                                                                               t = n - 1
10:
                                                                     c_8
       A[i] = \min x
                                                                               t = n - 1
                                                                     c_9
12: end for
```

$$T(n) = c_1(n) + c_2(n-1) + c_3(n-1) + c_4(n-1)^2 + c_5((n-1)^2 + n)$$

$$+ c_6((n-1)^2 + n - 1) + c_7((n-1)^2 + n - 1) + c_8(n-1) + c_9(n-1)$$

$$T(n) = (c_4 + c_5 + c_6 + c_7)n^2 + (c_1 + c_2 + c_3 - 2c_4 - c_5 - c_6 + c_7 + c_8 + c_9)n - (c_2 + c_3 + c_4 + c_8 + c_9)$$

$$T(n) = An^2 + Bn + C$$

$$T(n) = O(n^2)$$

Realizar la graficación de las siguientes funciones: $f(n) = \log(n), f(n) = n, f(n) = n \log(n), f(n) = n^2, f(n) = n^3$. Todas las curvas deben ser colocadas en la misma gráfica.

Se observa que para ciertos N se cumpla que algún algorítmo sea mejor que otro, pero cuando $N \to \infty$ esta condición cambia.