# Introduction to Sequential Parameter Optimization

### spot as an Optimizer

The spot loop consists of the following steps:

- 1. Init: Build initial design X
- 2. Evaluate initial design on real objective f: y = f(X)
- 3. Build surrogate: S = S(X, y)
- 4. Optimize on surrogate:  $X_0 = \text{optimize}(S)$
- 5. Evaluate on real objective:  $y_0 = f(X_0)$
- 6. Impute (Infill) new points:  $X = X \cup X_0$ ,  $y = y \cup y_0$ .
- 7. Got 3.
- Central Idea:
  - Evaluation of the surrogate model S is much cheaper (or / and much faster) than running the real-world experiment f.

We start with a small example.

## 1 Example: Spot and the Sphere Function

```
import numpy as np
from math import inf
from spotPython.fun.objectivefunctions import analytical
from spotPython.spot import spot
from scipy.optimize import shgo
from scipy.optimize import direct
from scipy.optimize import differential_evolution
import matplotlib.pyplot as plt
```

#### The Objective Function: Sphere

- The spotPython package provides several classes of objective functions.
- We will use an analytical objective function, i.e., a function that can be described by a (closed) formula:

$$f(x) = x^2$$

```
fun = analytical().fun_sphere
```

• We can apply the function fun to input values and plot the result:

```
x = np.linspace(-1,1,100).reshape(-1,1)
y = fun(x)
plt.figure()
plt.plot(x, y, "k")
plt.show()
```



<spotPython.spot.spot.Spot at 0x16dc7fd90>

```
spot_0.print_results()
```

min y: 3.696886711914087e-10 x0: 1.922728975158508e-05

[['x0', 1.922728975158508e-05]]

spot\_0.plot\_progress(log\_y=True)



spot\_0.plot\_model()



Spot Parameters: fun\_evals, init\_size and show\_models

• We will modify three parameters:

- 1. The number of function evaluations (fun\_evals)
- 2. The size of the initial design (init\_size)
- 3. The parameter show\_models, which visualizes the search process for 1-dim functions.
- The full list of the Spot parameters is shown in the Help System and in the notebook spot\_doc.ipynb.





<spotPython.spot.spot.Spot at 0x17fbeb6d0>

## **Print the Results**

```
spot_1.print_results()
min y: 3.6779240309761575e-07
x0: -0.0006064589047063418
[['x0', -0.0006064589047063418]]
```

# **Show the Progress**

```
spot_1.plot_progress()
```

