Lección 3. ÁRBOLES

- 1. <u>Definiciones</u>. <u>Propiedades y ejemplos</u>.
- 2. Árboles con raíz o enraizados.
- 3. <u>Algoritmos de búsqueda de primera</u> <u>profundidad.</u>

Lección 3. ÁRBOLES

Sea *G* un grafo no dirigido.

DEFINICIONES:

1. Diremos que G es un **árbol** si G es conexo y acíclico.

EJEMPLO:

Es un árbol porque es conexo y no tiene ciclos.

Contiene un ciclo $x_1x_2x_3x_1$ y por tanto no es un árbol.

Lección 3. ÁRBOLES

2. Diremos que T es un **árbol generador** de un grafo G si T es árbol y subgrafo generador de G.

EJEMPLO:

Consideremos el grafo G:

Los siguientes árboles, son árboles generadores de G:

Lección 3. ÁRBOLES

TEOREMA

- 1. En un árbol dos vértices cualesquiera están unidos por un único camino.
- 2. Un grafo G es conexo si y sólo si tiene un árbol generador.
- 3. Si G es un árbol, entonces el número de aristas es igual al número de vértices menos uno.
- 4. Todo árbol T no trivial (más de 1 vértice) tiene al menos dos vértices de grado 1.

Lección 3. ÁRBOLES

EJEMPLO: Vamos a ver que si un hidrocarburo tiene n átomos de carbono (C), entonces tiene 2n+2 de hidrógeno (H). La siguiente figura muestra un hidrocarburo con dos átomos de carbono y seis de hidrógeno:

Sea k el número de vértices de grado uno o átomos de hidrógeno del árbol. Entonces tenemos un total de n+k vértices y los n átomos de carbono tienen grado 4. Por tanto:

$$4n + k = \sum_{v \in V} d(v) = 2\operatorname{card}(A) = 2(\operatorname{card}(V) - 1) = 2(n + k - 1).$$

Entonces k=2n+2.

Lección 3. ÁRBOLES

DEFINICIÓN: Sea T un árbol.

Eligiendo un vértice $\mathbf{r_0}$ de T que llamamos raíz, al ser el árbol conexo, todo otro vértice estará conectado con $\mathbf{r_0}$. Podemos entonces definir un grafo dirigido $T(\mathbf{r_0})$ donde todos los arcos sean extremos finales de un camino que se inicia en $\mathbf{r_0}$. A este árbol lo llamaremos **árbol enraizado en \mathbf{r_0}**.

EJEMPLO: Consideremos el árbol.

Eligiendo el vértice r como raíz, obtenemos:

Lección 3. ÁRBOLES

DEFINICIÓN

Sea T un árbol enraizado y u un vértice de T. Llamamos **nivel** del vértice u a la longitud del camino que va de la raíz a dicho vértice. La **altura** de un árbol es el valor del nivel máximo.

Altura (nivel máximo): 3

Lección 3. ÁRBOLES

DEFINICIÓN:

Sea T un árbol con raíz $\mathbf{r_0}$. Supongamos que $\mathbf{x_0}$, $\mathbf{z_0}$ son vértices de T y que $\mathbf{v_0}\mathbf{v_1} \dots \mathbf{v_{n-1}}\mathbf{v_n}$ es un camino en T. Entonces:

- $\mathbf{v_{n-1}}$ es el **padre** de $\mathbf{v_n}$.
- v_0, \ldots, v_{n-1} son los **antepasados** de v_n .
- $\mathbf{v_n}$ es el **hijo** de $\mathbf{v_{n-1}}$.
- Si x es un antepasado de y, entonces y es un **descendiente** de x.

• Si x e y son hijos de z, entonces x e y son hermanos. r = a e s el padre de d, e, f

c es el padre de a, e, r

c es el padre de h, i

Los antepasados de k son d, a, r

g es hijo de b

a, b, c son hijos de r

h, **i** son hermanos

g no tiene hermanos

Descendientes de **a**: **d**, **e**, **f**, **j**, **k**

Descendientes de r: todos

<u>Índice</u>

Lección 3. ÁRBOLES

DEFINICIÓN:

Sea T un árbol con raíz $\mathbf{r_0}$. Supongamos que $\mathbf{x_0}$, $\mathbf{z_0}$ son vértices de T y que $\mathbf{v_0}\mathbf{v_1}$. $\mathbf{v_{n-1}}\mathbf{v_n}$ es un camino en T. Entonces:

- Si x no tiene hijos diremos que es un vértice terminal.
- Si x no es un vértice terminal diremos que es interno.
- El subgrafo de T que consiste en x y todos sus descendientes, con
 x como raíz se llama subárbol de T que tiene a x como raíz.

Vértices terminales: j, k, e, f, g, h, i

Vértices internos: d, a, b, c, r

Subárbol de T que tiene al vértice **a** como raíz

Lección 3. ÁRBOLES

DEFINICIONES:

- 1. Un **árbol binario** es un árbol enraizado en el cual cada vértice tiene un hijo a la derecha, o un hijo a la izquierda, o un hijo a la derecha y un hijo a la izquierda, o bien ningún hijo.
- 2. Un **árbol binario completo** es un árbol binario en el que cada vértice tiene un hijo a la derecha y otro a la izquierda o bien ningún hijo.

Árbol enraizado NO binario

Árbol binario NO completo

Lección 3. ÁRBOLES

DEFINICIONES:

- 1. Un **árbol binario** es un árbol enraizado en el cual cada vértice tiene un hijo a la derecha, o un hijo a la izquierda, o un hijo a la derecha y un hijo a la izquierda, o bien ningún hijo.
- 2. Un **árbol binario completo** es un árbol binario en el que cada vértice tiene un hijo a la derecha y otro a la izquierda o bien ningún hijo.

Árbol enraizado NO binario

Árbol binario completo

Lección 3. ÁRBOLES

TEOREMA

Si T es un árbol binario completo con i vértices internos, entonces T tiene i+1 vértices terminales y 2i+1 vértices en total.

EJEMPLO:

En un torneo de eliminación simple con 60 concursantes

¿cuántos partidos se tienen que jugar?

El grafo que representa los partidos del torneo es un árbol binario de la forma:

Raíz

Ganador

Lección 3. ÁRBOLES

TEOREMA

Si T es un árbol binario completo con i vértices internos, entonces T tiene i+1 vértices terminales y 2i+1 vértices en total.

EJEMPLO:

nº de participantes = nº de vértices terminales.

nº de partidos = nº de vértices internos.

El nº de vértices terminales es i+1=60, de modo que i=59 es el número de vértices internos. Es decir, se han de jugar 59 partidos.

Lección 3. ÁRBOLES

TEOREMA

Sea T un árbol binario de altura h y con t vértices terminales, entonces $t \le 2^h$.

DEFINICIÓN:

Un **árbol binario de búsqueda** es un árbol binario T en donde se han asociado datos a los vértices. Los datos se disponen de manera que para cualquier vértice **v** en T, cada dato en el subárbol a la izquierda (derecha, respectivamente) de **v** es menor que (mayor que, respectivamente) el dato correspondiente a **v**.

Lección 3. ÁRBOLES

EJEMPLO: Las palabras de la frase "La matemática discreta es una agrupación de distintas disciplinas", se pueden colocar en un árbol binario de búsqueda de múltiples formas:

Lección 3. ÁRBOLES

ALGORITMO DE BÚSQUEDA - NOTACIÓN

Sea T un árbol binario de búsqueda con raíz **RAIZ**. Si **v** es un vértice, se define:

- IZQUIERDA(v) es el hijo a la izquierda de v.
- DERECHA(v) es el hijo a la derecha de v.
- Si \mathbf{v} no tiene hijos a la izquierda haremos IZQUIERDA(\mathbf{v}) = λ .
- Si \mathbf{v} no tiene hijos a la derecha haremos DERECHA(\mathbf{v}) = λ .
- VALOR(v) proporciona el dato asociado al vértice v.

Lección 3. ÁRBOLES

ALGORITMO DE BÚSQUEDA

Para un dato W, este algoritmo proporciona el vértice que contiene a W o λ si el dato no está en el árbol.

- **Paso 1.** P := RAIZ
- Paso 2. Si P = λ, STOP.
 En otro caso si VALOR(P) = W, STOP
 (P es el vértice que contiene el dato W.)
- Paso 3. Si W > VALOR(P), tómese P := DERECHA(P), e ir a 2.
 En otro caso, tómese P := IZQUIERDA(P), e ir a 2.

Lección 3. ÁRBOLES

EJEMPLO: Presentamos el siguiente árbol binario de búsqueda en el que se indican, para cada vértice, su nombre y el dato que contiene:

Árbol binario de búsqueda T_1

Supongamos que queremos buscar el dato W="es" en dicho árbol. El algoritmo realizaría los siguientes pasos:

Lección 3. ÁRBOLES

Árbol binario de búsqueda T₁

- \bullet P= r_1 .
- Como es > VALOR (r_1) =distintas, tomamos P=DERECHA (r_1) = r_2 .
- Como es < VALOR (r_2) =la, tomamos P=IZQUIERDA (r_2) = r_6 .
- Como VALOR(r₆)=es, entonces PARAR

 $P=r_6$ es el vértice que contiene el dato "es".

Lección 3. ÁRBOLES

DEFINICIÓN:

Un **árbol enraizado ordenado** es un árbol enraizado tal que el conjunto de hijos de cada padre está ordenado linealmente de izquierda a derecha.

EJEMPLO:

Todo árbol binario es un árbol enraizado ordenado.

Un algoritmo de recorrido de un árbol es un algoritmo para listar, visitar o buscar todos los vértices de un árbol enraizado ordenado finito. Los tres algoritmos más usuales son los que dan los recorridos preorden, postorden e inorden (este último únicamente para árboles binarios).

Lección 3. ÁRBOLES

ALGORITMO PREORDEN(v)

Paso1. Listar los subárboles con los hijos de **v** como raíz [Utilizar PREORDEN(**w**) para listar T para cada hijo **w** de **v**].

Paso2. Listar $T_{\mathbf{v}}$ poniendo en sucesión \mathbf{v} seguido por las listas del paso 1 en el orden de izquierda a derecha. Si \mathbf{v} no tiene hijos, la lista de $T_{\mathbf{v}}$ es solamente \mathbf{v} .

$$T_{r} \equiv r T_{a} T_{b}$$

$$\equiv r a T_{c} T_{d} T_{e} b T_{f} T_{g}$$

$$\equiv r a c d T_{h} T_{i} e b f g T_{j} T_{k}$$

$$\equiv r a c d h i e b f g j k$$

Lección 3. ÁRBOLES

ALGORITMO POSTORDEN(v)

Paso1. Listar los subárboles con los hijos de v como raíz [Utilizar POSTORDEN(w) para listar T para cada hijo w de v].

Paso2. Listar $T_{\mathbf{v}}$ poniendo en sucesión las listas del paso 1 en el orden de izquierda a derecha seguidas por \mathbf{v} . Si \mathbf{v} no tiene hijos, la lista de $T_{\mathbf{v}}$ es sólamente \mathbf{v} .

$$T_r \equiv T_a T_b r$$

$$\equiv T_c T_d T_e a T_f T_g b r$$

$$\equiv c T_h T_i d e a f T_j T_k g b r$$

$$\equiv c h i d e a f j k g b r$$

Lección 3. ÁRBOLES

ALGORITMO INORDEN(v)

Paso1. Listar el subárbol de la izquierda [Utilizar INORDEN(w) para el hijo w a la izquierda de v].

Paso2. Listar el subárbol de la derecha [Utilizar INORDEN(w) para el hijo w a la derecha de v].

Paso3. Listar $T_{\mathbf{v}}$ poniendo en una sucesión las listas del paso 1, después \mathbf{v} y luego el resultado del paso 2. Si \mathbf{v} no tiene hijos, la lista de $T_{\mathbf{v}}$ es solamente \mathbf{v} .

$$T_{r} \equiv T_{a} r T_{b}$$

$$\equiv T_{c} a T_{d} r T_{e} b T_{f}$$

$$\equiv c a T_{g} d T_{h} r e b T_{i} f T_{j}$$

$$\equiv c a g d h r e b i f j$$

