Metodi Numerici A.A. 2021-2022

Esercitazione N. 10 Formule di Quadratura di Newton-Cotes

Obiettivo

sviluppo dei codici relativi alle formule di quadratura di Newton-Cotes nella versione composita ed automatica

Sperimentazione numerica relativa alle formule di quadratura implementate.

Codici

1. Scrivere le function per calcolare una approssimazione di

$$\int_{a}^{b} f(x)dx$$

con la formula dei trapezi composita e la formula di Simpson composita assegnando in input la funzione integranda fname, gli estremi di integrazione a e b, il numero di sottointervalli N in cui suddividere l'intervallo [a, b].

function I=trapcomp(fname,a,b,N)
function I=simpcomp(fname,a,b,N)

Trapezi composita:

$$\int_{a}^{b} f(x)dx \simeq \frac{H}{2} \left(f(x_1) + 2f(x_2) + 2f(x_3) + \dots + 2f(x_N) \right) + f(x_{N+1}), =: I_{N,T}(f)$$

con
$$H = \frac{b-a}{N}$$
 e $x_j = a + hj$, $j = 1, ..., N + 1$.

Simpson composita:

$$\int_{a}^{b} f(x)dx \simeq \frac{H}{3} (f(x_1) + 4f(x_2) + 2f(x_3) + 4f(x_4) + 2f(x_5) + \dots \dots + 4f(x_{2N-1}) + f(x_{2N}) =: I_{N,S}(f)$$

con
$$H = \frac{b-a}{2N}$$
 e $x_j = a + hj, j = 1, ..., 2N + 1$.

2. Scrivere due function

function [INt,Nt]=traptoll(a,b,fname,tol)
function [INs,Ns]=simptoll(a,b,fname,tol)

che, utilizzando rispettivamente le formule composite dei trapezi e di Simpson (con raddoppio degli intervalli), forniscano in output

- una approssimazione di $\int_a^b f(x)dx$ entro una tolleranza tol fissata in input,
- il numero di sottointervalli necessario per raggiungere la tolleranza fissata sull'errore

Sperimentazione numerica

- 1. Si approssimi con la formula dei trapezi e la formula di Simpson composite, per valori di $N=2^k,\ k=1:8,$ l'integrale $\int_0^1 f(x)dx$ per le funzioni
 - (a) $f(x) = x^{10}$,
 - (b) f(x) = log(x+1),
 - (c) f(x) = arcsin(x).

Si confrontino i valori ottenuti con l'integrale esatto e si illustri con una tabella e un grafico (in scala semilogaritmica) l'andamento dell'errore relativo.

- 2. Quadratura automatica : Si utilizzino le function relative alle formule di quadratura automatica dei trapezi e di Simpson per fornire una approssimazione dei seguenti integrali con tol = 1.e 6:
 - (a) $\int_{-2}^{3} (2x+1) dx$
 - (b) $\int_{-2}^{3} (3x^3 + 4x^2 + 3x + 1) dx$,
 - (c) $\int_1^2 log(x) dx$,
 - (d) $\int_0^1 \sqrt{x} \, dx$,
 - (e) $\int_{-1}^{1} |x| dx$.
- 3. Calcolare con la formula dei trapezi e di Simpson composite un'approssimazione dei seguenti integrali utilizzando valori di tolleranza tol = 1.e k con k = 4:10.
 - (a) $\int_0^2 \cos(x) \, dx,$
 - (b) $\int_{-2\pi}^{0} x \exp(x) \cos(x^2) dx$,
 - (c) $\int_0^{\pi/2} (\sin(x))^{\alpha} \cos(x) dx$, $\alpha = 13/2, 5/2, 1/2$,

Rappresentare su due grafici distinti e su due tabelle, l'errore relativo (in scala logaritmica), il numero di sottointervalli N utilizzati e il numero di valutazioni della funzione integranda al variare di k.