CSE 402 Offline 3 (A1 & B1)

Local Search

- Technique used for difficult optimization problem or constraint satisfaction problem.
- For some problem, we don't need the path to the solution

Traveling Salesperson Problem(TSP)

- Given n points/cities and distance between any two pair of cities.
- Can you find a tour with minimum distance visiting each city?

N queens Problem

 How can n queens be placed on an NxN chessboard so that no two of them attack each other?

Key Idea

- A local search algorithm usually looks like following
 - Pick an initial state (Randomly or using some heuristics)
 - Make local modification to improve current state
 - Repeat step 2 until goal state found (or out of time)

Some Issues

- What is a state?
- How you define local?
- How to measure improvement?

What is a state?

- State can be partial or complete solution
- Usually a complete solution

Solution in TSP

Solution in TSP may be a tour.

We can represent it using a vector of integers.

Solution in n-queens

 Solution in TSP may be an assignment of queens in the chessboard.

		Q	
	Q		
			Q
Q			

We can represent it using a 2d array or 1d array

How you define local?

- Small change in current state/solution.
- Usually we define one or more neighborhood function(s).

Neighborhood in TSP

• 2-opt operator:

Neighborhood in n-queens

Swap two rows:

Q			
	ď		
			Q
		Q	

How to measure improvement?

- For optimization problem we have a objective function to optimize.
- For CSP, we can use a heuristic function.

How to measure improvement?

In TSP:

 Cost of current tour. (Improvement means reduction of cost)

• In *n*-queens:

 - # of conflicts. (Improvement means less number of conflicts)

Hill Climbing

- At each step, move to a neighbor of higher value in hopes of getting to a solution having the highest possible value
- Can easily modified for minimization problem

Hill Climbing

Can stuck into local optima

Variations

- Steepest ascent hill climbing:
 - Take best neighbor
- Stochastic hill climbing:
 - Select random better neighbor
- First choice hill climbing:
 - Take first better randomly generated neighbor
- Random restart hill climbing:
 - Restart again from random state if you stuck in local optima

Simulated Annealing

Basic Idea:

- Like hill climbing identify the quality of local improvements
- Assume that change in objective function is δ
- If δ is positive, move to that state
- Otherwise move to that state with a probability proportional to δ and T(?)
- Over time make it less likely to accept bad moves.

Simulated Annealing

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
             schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next, a node
                        T, a "temperature" controlling prob. of downward steps
   current \leftarrow Make-Node(Initial-State[problem])
   for i \leftarrow 1 to \infty do
        T \leftarrow schedule[i]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else with probability e^{\Delta E/T}, set current \leftarrow next
```

Scheduling function

- T should be large at beginning and gradually decrease
- If T is lowered slow enough, then we can reach global optima
- What do you mean by slow enough?
- In literature different function can be found:
 - Linear Cooling: $schedule(T) = T_0 \mu t$
 - Exponential Cooling: schedule(T)= $T_0 \alpha^t$, 0 < t < 1
 - Logarithmic Cooling: schedule(T) = c / log(1 + t)

Offline-3

Offline

 You have to implement local search algorithms for permutation flow-shop scheduling problem.

Algorithms:

- First Choice Hill Climbing
- Simulated Annealing

Permutation Flow-shop Scheduling

- A set $J=\{1,2,3,...,n\}$ of n independent jobs
- A set *M*={1,2,3,...,m} of *m* machines
- Each job has exactly m tasks, where ith task is performed by the ith machine
- Processing time of i^{th} job in j^{th} machine is $P_{i,j}$
- Every job goes through a predefined route Machine 1->2->3->4->....->m
- All jobs arrive at time o

Permutation Flow-shop Scheduling

j	$P_{1,j}$	$P_{2,j}$	$P_{3,j}$
1	4	2	1
2	3	6	2
3	7	2	3
4	1	5	8

For a permutation schedule 1, 2, 3, 4

Permutation Flow-shop Scheduling

- There are different Objective functions in literature
- We will use makespan
- Formally,
 - Let C_i be the completion time of ith job
 - Makespan: $\max(C_i \mid i \in \{1,2,3,...,n\})$
- Find a permutation that minimizes makespan

Representation

A solution is a permutation.

$$\pi = \langle \pi_1, \pi_2, \pi_3, ..., \pi_n \rangle$$

Can be represented by a vector of length n.

Evaluation Function

- Each solution is evaluated by its makespan
- Let $C_{\pi(i),j}$ be the completion time of j^{th} task of $\pi(i)$ job. So makespan= $C_{\pi(n),m}$

$$C_{\pi(i),j} = \begin{cases} P_{\pi(i),j} & \text{if } \pi(i) = j = 1 \\ C_{\pi(i-1),j} + P_{i,j} & \text{if } j = 1 \text{ and } \pi(i) > 1 \\ C_{\pi(i),j-1} + P_{i,j} & \text{if } j > 1 \text{ and } \pi(i) = 1 \end{cases}$$

$$\max(C_{\pi(i-1),j}, C_{\pi(i),j-1}) + P_{i,j} \quad \text{otheriwse}$$

Neighborhood Function

- Insertion Operator:
 - An element of a random position is removed and put into another position

- Exchange Operator:
 - Two randomly selected elements are swapped.

i) First Choice Hill Climbing

Algorithm:

```
current ← randomly generated state
max_step ← maximum number of iteration
count \leftarrow 1
for(i \leftarrow 0; i < max step; i++, count++) {
   for(i \leftarrow 0; i < t; i++){
     if( a random number between [0,1] < 0.5)
               neighbor← a successor of current state by insertion operator
     else
                neighbor← a successor of current state by exchange operator
     if( makespan(neighbor) < makespan(current) )
                current← neighbor; break;
   if( j= t) return current
return current
```

ii)Simulated Annealing

- You have to implement Simulated Annealing algorithm shown previously.
- You will use linear cooling scheme as scheduling function.
- Neighborhood and Evaluation function is same as shown in Hill climbing approach.

Main function

 You will have to run hill climbing and simulated annealing for same initial state.

```
for(i=1 to 10)
    Solution x = GenerateRandomState()
    HillClimb(x)
    SimulatedAnnealing(x)
```

Output

- You have to run your code for given data sets.
- For each data set run your program ten times.
- Generate following table for and submit it along with source code.
- Also discuss the result.

Data Set	t	Average No of Iteration (HC)	Average Makespan (HC)	Minimum makespan (HC)	Average No of Iteration (SA)	Average Makespan (SA)	Average Makespan (SA)

Submission Deadline

- Deadline is 15 November 2016, 2:00 AM
- And Please Do not Copy

 During evaluation you have to show both makespan value and corresponding schedule. For a data set we will run hill climbing and simulated annealing with same initial state