Parse Trees II

$$S \rightarrow (S+S) \mid (S*S) \mid \underline{number}$$

 $a+b*c - Invalid expression$
 $((a+b)*c)$ and $(a+(b*c)) - Valid expressions$

Ambiguous Grammar: There exists more than one paths to derive a string/expression.

Total Language Tree

$$S \rightarrow aa \mid bX \mid aXX$$

 $X \rightarrow ab \mid b$

Language = {aa, bab, bb, aabab, aabb, abab, abb}

$$S \rightarrow X \mid b$$

 $X \rightarrow aX$ Language = $\{b\}$

Leftmost Derivation: The derivation of a word, generated by the CFG, such that at each step, a production is applied to the leftmost non-terminal in the working string.

- 1. $S \rightarrow XY$
- 2. $X \rightarrow XX$
- 3. $X \rightarrow a$
- 4. $Y \rightarrow YY$
- 5. $Y \rightarrow b$

String: aaabb

```
S \Rightarrow XY \Rightarrow XXY \Rightarrow aXY \Rightarrow aXXY \Rightarrow aaXY \Rightarrow aaaY \Rightarrow aaaYY \Rightarrow aaabY \Rightarrow aaabb

S \Rightarrow XY \Rightarrow XXY \Rightarrow XXXY \Rightarrow aXXY \Rightarrow aaXY \Rightarrow aaaY \Rightarrow aaaYY \Rightarrow aaabY \Rightarrow aaabb
```

- 1. $S \rightarrow YX$
- 2. $X \rightarrow XX$
- 3. $X \rightarrow b$
- 4. $Y \rightarrow YY$
- 5. $Y \rightarrow a$

String: abbbb

Leftmost Derivation:

- $S \Rightarrow 1 \Rightarrow YX$
 - \Rightarrow 5 \Rightarrow aX
 - $\Rightarrow 2 \Rightarrow aXX$
 - \Rightarrow 3 \Rightarrow abX
 - $\Rightarrow 2 \Rightarrow abXX$
 - \Rightarrow 3 \Rightarrow abbX
 - \Rightarrow 2 \Rightarrow abbXX
 - \Rightarrow 3 \Rightarrow abbbX
 - \Rightarrow 3 \Rightarrow abbbb

Rightmost Derivation:

- $S \Rightarrow 1 \Rightarrow YX$
 - $\Rightarrow 2 \Rightarrow YXX$
 - \Rightarrow 3 \Rightarrow YXb
 - \Rightarrow 2 \Rightarrow YXXb
 - \Rightarrow 3 \Rightarrow YXbb
 - \Rightarrow 2 \Rightarrow YXXbb
 - \Rightarrow 3 \Rightarrow YXbbb
 - \Rightarrow 3 \Rightarrow Ybbbb
 - \Rightarrow 5 \Rightarrow abbbb

Rightmost Derivation: The derivation of a word, generated by the CFG, such that at each step, a production is applied to the rightmost non-terminal in the working string.

Chomsky Normal Form (CNF):

CNF is a CFG that has productions of the following types ONLY

• $NT \rightarrow NT_1NT_2$ String of two Non-Terminals ONLY

• NT \rightarrow T One Terminal ONLY

EXAMPLE 1:

 $S \rightarrow aSa \mid bSb \mid a \mid b \mid aa \mid bb$ Not CNF

Correct:

 $S \rightarrow a$

 $S \rightarrow b$

Introduce new productions:

 $A \rightarrow a$ Correct

 $B \rightarrow b$ Correct

Result:

 $S \rightarrow aa \ becomes S \rightarrow AA$ Correct $S \rightarrow bb \ becomes S \rightarrow BB$ Correct $S \rightarrow aSa \ becomes S \rightarrow ASA$ Incorrect $S \rightarrow bSb \ becomes S \rightarrow BSB$ Incorrect

Introduce new productions:

 $C \rightarrow AS$ Correct $D \rightarrow BS$ Correct

Result:

 $S \rightarrow ASA$ becomes $S \rightarrow CA$ Correct $S \rightarrow BSB$ becomes $S \rightarrow DB$ Correct

Final Grammar (CNF):

- 1. $S \rightarrow a$
- 2. $S \rightarrow b$
- 3. $A \rightarrow a$
- 4. $B \rightarrow b$
- 5. $S \rightarrow AA$
- 6. $S \rightarrow BB$
- 7. $C \rightarrow AS$
- 8. $D \rightarrow BS$
- 9. $S \rightarrow CA$
- 10. S \rightarrow DB

EXAMPLE 2:

- 1. $S \rightarrow ABAB$ Not CNF
- 2. $A \rightarrow a \mid \lambda$
- 3. $B \rightarrow b \mid \lambda$

Nullable Production is $S \rightarrow ABAB$

- S \rightarrow BAB | AAB | ABB | ABA | AA | AB | BA | BB | A | B
- S \rightarrow BAB | AAB | ABB | ABA | AA | AB | BA | BB | a | b

3 / / / COLLECT	S -	→ AA	Correct
-----------------	-----	------	---------

- $S \rightarrow AB$ Correct
- $S \rightarrow BA$ Correct
- $S \rightarrow BB$ Correct
- $S \rightarrow a$ Correct
- $S \rightarrow b$ Correct
- $A \rightarrow a$ Correct
- $B \rightarrow b$ Correct
- $S \rightarrow BAB$ Incorrect
- $S \rightarrow AAB$ Incorrect
- $S \rightarrow ABB$ Incorrect
- $S \rightarrow ABA$ Incorrect

Introduce new production:

 $C \rightarrow AB$ Correct

Result:

- $S \rightarrow BAB$ becomes $S \rightarrow BC$ Correct
- $S \rightarrow AAB$ becomes $S \rightarrow AC$ Correct
- $S \rightarrow ABB$ becomes $S \rightarrow CB$ Correct
- $S \rightarrow ABA$ becomes $S \rightarrow CA$ Correct

Final Grammar (CNF):

- 1. $S \rightarrow a$
- 2. $S \rightarrow b$
- 3. $A \rightarrow a$
- 4. $B \rightarrow b$
- 5. $S \rightarrow AA$
- 6. $S \rightarrow AB$
- 7. $S \rightarrow BA$
- 8. $S \rightarrow BB$
- 9. $C \rightarrow AB$
- 10. S \rightarrow BC
- 10. 5 / 50
- 11. $S \rightarrow AC$
- 12. S \rightarrow CB
- 13. S \rightarrow CA