Introduction aux probabilités

1 – Analyse combinatoire

Analyse combinatoire

Branche des mathématiques : Comment compter les objets

Probabilités combinatoires : utilisent les formules d'analyse combinatoire

Arrangements

Etant donné un ensemble E de n objets, on appelle arrangements de p objets toutes suites ordonnées de p objets pris parmi les n objets.

Le nombre d'arrangements de p objets pris parmi n est noté : A_n^p

$$1 \le p \le n$$

$$n, p \in \mathbb{N}^*$$

$$1 \le p \le n$$
 et $n, p \in \mathbb{N}^*$ Si $n < p$, alors $A_n^p = 0$

Deux arrangements de p objets sont donc **distincts** s'ils diffèrent par la **nature** des objets qui les composent ou par leur **ordre** dans la suite.

Exemples

- Le nombre de mots de 5 lettres (avec ou sans signification) formés avec les 26 lettres de l'alphabet correspond au nombre d'arrangements possibles avec p=5et n=26. Répétition possible
- Le tiercé dans l'ordre lors d'une course de 20 chevaux constitue un des arrangements possibles avec p=3 et n=20Pas de répétition

Arrangements

Exemples

Une séquence d'ADN est constituée d'un enchaînement de 4 nucléotides : [A (Adénine), C (Cytosine), G (Guanine) et T (Thymine)].

Il existe différents arrangements possibles de deux nucléotides (dinucléotides) avec p=2 et n=4. Répétition possible

Arrangements avec répétition

Arrangements sans répétition

Arrangements avec répétitions

Lorsqu'un objet peut être observé **plusieurs fois** dans un arrangement, le nombre d'**arrangement avec répétition de** p objets pris parmi n, est alors :

$$A_n^p = n^p$$
 avec $1 \le p \le n$

Le nombre de dinucléotides attendus sous l'hypothèse qu'une base peut être observée plusieurs fois dans la séquence (Ce qui est vrai en réalité) est donc : $A_4^2 = 4^2 = 16$ dinucléotides possibles

Les 16 dinucléotides identifiables dans une séquence d'ADN sont :

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

Arrangements sans répétitions

Lorsque chaque objet ne peut être observé qu'une seule fois dans un arrangement, le nombre d'arrangements sans répétition de p objets pris parmi n est alors :

$$A_n^p = \frac{n!}{(n-p)!} \quad \text{avec } 1 \le p \le n$$

Pour le premier objet tiré, il y a *n* manières de ranger l'objet parmi *n*.

Pour le second objet tiré, il n'existe plus que *n-1* manières de ranger l'objet parmi n

$$A_n^p = n(n-1)(n-2)\dots(n-p+1) = \frac{n!}{(n-p)!}$$

le nombre de dinucléotides attendu dans une séquence sans répétition est donc :

$$A_n^p = \frac{4!}{(4-2)!} = 12$$

AA-AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

Permutations sans répétitions

Etant donné un ensemble E de n objets, on appelle permutations de n objets distincts toutes suites ordonnées de n objets ou tout arrangement n à n de ces objets.

Le nombre de permutations de n objets est noté :

$$P_n = n!$$

La permutation de n objets constitue un cas particulier d'arrangement sans répétition de p objets pris parmi n lorsque p = n

$$P_n = A_n^n = \frac{n!}{(n-n)!} = n!$$

Exemple

Le nombre de manières de disposer 8 invités autour d'une table :

$$P_8 = 8! = 40320$$

Permutations avec répétitions

Dans le cas où **on répète k fois un même objet** parmi les n objets, le nombre de permutations possibles des n objets doit être rapporté aux nombres de permutations des k objets identiques.

Le nombre de permutations de *n* objets :

$$P_n = \frac{n!}{k!}$$

Exemple

Soit le mot « CELLULE ».

Le nombre de mots possibles que l'on peut écrire en permutant ces 7 lettres est :

$$P_7 = \frac{7!}{3! \, 2!}$$

Combinaisons

Les combinaisons correspondent à des arrangements où la notion d'ordre des objets n'est plus prise en compte.

Le nombre de **combinaisons** de p objets pris parmi n et **sans remise** est :

$$C_n^p = \frac{n!}{p! (n-p)!}$$

Notation moderne

$$C_n^p = \binom{n}{p}$$

Avec $1 \le p \le n$

Si
$$n < p$$
, alors $C_n^p = 0$

Exemple

- Le tirage au hasard de 5 cartes dans un jeu de 32 cartes est une combinaison avec p=5 et n=32.
- La formation d'une délégation de 5 personnes parmi un groupe de 50 constitue une combinaison avec p=5 et n=50.

Propriétés des combinaisons

$$C_n^p = \frac{n!}{p! (n-p)!}$$

Symétrie
$$C_n^0 = C_n^n = 1$$

$$C_n^1 = C_n^{n-1} = n \qquad n \ge 1$$

$$n \ge 1$$

$$C_n^2 = C_n^{n-2} = \frac{n(n-1)}{2}$$
 $n \ge 2$

$$n \ge 2$$

$$C_n^p = C_n^{n-p}$$

si $0 \le p \le n$

Formule de Pascal

$$C_{n-1}^{p-1} + C_{n-1}^{p} = C_{n}^{p}$$

si
$$0 \le p \le n-1$$

Binôme de Newton

La formule du binôme de Newton correspond à la décomposition des différents termes de la puissance $n^{\text{ième}}$ du binôme (a+b)

$$\forall (a,b) \in \mathbb{R}, n \in \mathbb{N}, (a+b)^n = \sum_{p=0}^n C_n^p a^{n-p} b^p = \sum_{p=0}^n \binom{n}{p} a^{n-p} b^p$$

Exemple

$$(a+b)^6 = \sum_{p=0}^{6} {6 \choose p} a^{6-p} b^p$$

$$(a+b)^6 = \binom{6}{0}a^6 + \binom{6}{1}a^5b + \binom{6}{2}a^4b^2 + \binom{6}{3}a^3b^3 + \binom{6}{4}a^2b^4 + \binom{6}{5}ab^5 + \binom{6}{6}b^6$$

$$(a+b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6$$

Remarque : si a=b=1
$$(2)^n = \sum_{p=0}^n C_n^p$$

2 – Le modèle probabiliste

Introduction

Le calcul des probabilités fournit une modélisation efficace des situations aléatoires ou stochastiques (non déterministes)

Phénomène déterministe : le résultat d'une expérience suit une loi rigoureuse connue (on peut prévoir le résultat pour un événement Donné).

phénomène aléatoire: le résultat de l'expérience n'est pas connu avec certitude mais fluctue autour d'un résultat moyen qui est régit par une loi

probabilité a priori d'un événement est un nombre qui caractérise la croyance que l'on a que cet événement est réalisé avec plus ou moins de certitude avant l'exécution de l'expérience.

probabilité empirique, assimilée à une fréquence est définie à partir d'expériences indéfiniment renouvelables (fréquence d'apparition d'un événement).

Espace fondamental et évènement

Une **expérience** (ou une épreuve) **est aléatoire** si on ne peut pas prévoir son résultat et si, répétée dans des conditions identiques, elle peut donner des résultats différents

Le résultat d'une expérience noté ω constitue une éventualité ou un **événement élémentaire**.

L'espace des possibles noté Ω est appelé univers. C'est l'ensemble des événements élémentaires. C'est l'espace fondamental.

Exemples

- 1. Groupe sanguin : $\Omega = \{ A+, A-, B+, B-, AB+, AB-, O+, O- \}$
- 2. Nombre de globules blancs dans le sang : $\Omega = N^* = \{1,2,....n,.....\}$
- 3. Taux de glycémie : $\Omega = [0; 15]$
- 4. Lancer de dé : $\Omega = \{1, 2, ..., 6\}$
- 5. Match de Football : $\Omega = \{A \text{ gange, B gagne, match nul}\}$

Espace fondamental et évènement

L'univers Ω peut être

Fini (toutes les éventualités sont connues : ex 1)

Infini (toutes les éventualités ne sont pas connues : ex 2 et 3).

Dénombrable si on peut numéroter les éventualités connues (ex 2)

Continu (ex 3).

Un **événement** quelconque A est un ensemble d'évènements élémentaires et constitue **un sous-ensemble de** Ω dont on sait dire à l'issue de l'épreuve s'il est réalisé ou non.

Si un évènement A est réalisé, l'évènement contraire \bar{A} n'est pas réalisé.

Exemples

```
Rhésus positif: {A+, B+, AB+, O+}
Jet de dé, on obtient un chiffre pair", A = {2, 4, 6}.
```

Evènement, vocabulaire ensembliste et probabiliste

notations	vocabulaire ensembliste	vocabulaire probabiliste		
Ω	ensemble plein	événement certain		
Ø	ensemble vide	événement impossible		
ω	élément de Ω	événement élémentaire		
A	sous-ensemble de Ω	événement		
$\omega \in A$	ω appartient à A	ω réalise A		
$A \subset B$	A inclus dans B	A implique B		
$A \cup B$	réunion de A et B	A ou B		
$A \cap B$	intersection de A et B	A et B		
A^c ou \overline{A}	complémentaire de A	événement contraire de A		
$A \cap B = \emptyset$	$A ext{ et } B ext{ disjoints}$	A et B incompatibles		

Quelques propriétés de l'intersection

$$A \cap \overline{A} = \emptyset$$
 évènements incompatibles $\Omega \cap A = A$ élément neutre (Ω) élément absorbant (\emptyset) $A \cap B = B \cap A$ commutativité $A \cap (B \cap C) = (A \cap B) \cap C$ associativité $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ distributivité avec la réunion (\cup)

Quelques propriétés de la réunion

$$A \cup \overline{A} = \Omega$$
 évènements complémentaires $\emptyset \cup A = A$ élément neutre (\emptyset) $\Omega \cup A = \Omega$ élément absorbant (Ω) commutativité $A \cup (B \cup C) = (A \cup B) \cup C$ associativité $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ distributivité avec l'intersection (\cap)

Loi de Morgan

$$\overline{\underline{A} \cap B} = \overline{\underline{A}} \cup \overline{\underline{B}}$$

$$\overline{A} \cup \overline{B} = \overline{A} \cap \overline{B}$$

Système complet d'évènements

 $A_1,A_2,....,A_n$ forment un système complet d'évènements si les <u>parties</u> $A_1,A_2,....,A_n$ de Ω constituent une <u>partition</u> de Ω telle que : $\forall i$ $A_i \neq \emptyset$ $\forall i \neq j$ $A_i \cap A_j = \emptyset$

Un système complet d'évènements est formé de toutes les parties de Ω , ie des familles d'évènements 2 à 2 incompatibles dont la réunion constitue l'événement certain Ω .

Probabilité

Définition

On appelle probabilité **P** toute application de l'ensemble des évènements Ω dans l'intervalle [0,1], tel que

$$P: \mathcal{P}(\Omega) \to [0,1]$$

 $A \to P(A)$

ayant les propriétés suivantes :

(P1)
$$\forall A \in \mathcal{P}(\Omega) \quad 0 \leq P(A) \leq 1$$

(P2)
$$P(\Omega) = 1$$

(P3)
$$P(A) = \sum_{\omega \in \Omega} P(\omega)$$

Proposition

- 1) Si A et B sont incompatibles, $P(A \cup B) = P(A) + P(B)$.
- 2) $P(A^c) = 1 P(A)$.
- 3) $P(\emptyset) = 0$.
- 5) $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Probabilité

Probabilité uniforme

Soit Ω un espace fondamental fini constitué de N évènements élémentaires avec l'hypothèse d'équiprobabilité de réalisation des N évènements élémentaires.

Tous les évènements élémentaires ont « la même chance » de se réaliser (avec une probabilité p).

$$1 = P(\Omega) = \sum_{\omega \in \Omega} P(\omega) = p \ Card(\Omega)$$

D'où p= P(
$$\omega$$
)= $\frac{1}{card(\Omega)}$

La probabilité définie sur Ω s'appelle **probabilité uniforme**

Et la probabilité d'un évènement A est :
$$P(A) = \sum_{\omega \in A} P(\omega) = \frac{card(A)}{card(\Omega)}$$

Probabilité

Probabilités combinatoires

Soit A un événement quelconque constitué de **k évènements élémentaires** de Ω , on en déduit :

$$P(A) = \frac{k}{N}$$

$$P(A) = \frac{card \ A}{card \ \Omega} = \frac{nombre \ de \ cas \ favorables}{nombre \ de \ cas \ possibles}$$

Attention : cette formule n'est valable que si les évènements élémentaires sont équiprobables

Exemple

Probabilité d'obtenir le mot « lutte » en tapant 5 lettre au hasard sur un clavier : 1/11 881 376

Probabilité d'obtenir un multiple de trois lors du lancé d'un dé : 1/3

Loi des grands nombres

Probabilités combinatoires

Si l'on répète N fois une expérience où la probabilité d'apparition d'un événement A est P, la fréquence de cet événement au cours des N expériences ($\frac{k}{N}$) tend vers P lorsque N tend vers l'infini.

$$\frac{k}{N} \to p$$

$$N \to \infty$$

Lorsque le nombre d'épreuves augmente indéfiniment, les fréquences **observées** tendent vers les **probabilités** et **les distributions observées vers les lois de probabilité**

Exemple

Lancer une pièce plusieurs fois:

Nombre de tirages	10	100	1000	Proba attendue
Pile	3	40	460	0,5
Face	7	60	540	0,5

Définition

On dit que deux évènements A et B sont **indépendants** si l'on a :

$$P(A \cap B) = P(A) P(B)$$

Remarque

Supposons A et B à la fois indépendants et incompatibles. On a alors :

$$P(A \cap B) = P(A)P(B)$$
 indépendants
 $P(A \cap B) = P(\emptyset) = 0$ incompatibles
d'où nécessairement $P(A) = 0$ ou $P(B) = 0$

Exemples

(1) Dans l'exemple du lancer d'un dé à 6 faces, non pipé, les deux évènements : A « le résultat est pair » et B « le résultat est un multiple de trois » sont **statistiquement indépendants.**

```
En effet, soit A = \{2,4,6\} B = \{3,6\} A \cap B = \{6\}
ainsi P(A) = 3/6 P(B) = 2/6 P(A \cap B) = 1/6
on vérifie alors que : P(A \cap B) = P(A) P(B) = 3/6 X 2/6 = 6/36 = 1/6
```

- (2) Si l'on considère une famille de deux enfants, les deux évènements : A « enfants de sexe différent » et B « au plus une fille » ne sont pas statistiquement indépendants.
- En effet, l'espace probabilisé Ω , contient 4 évènements élémentaires (si l'on considère une famille ordonnée),

$$\Omega = A \cup B = \{GG, GF, FG, FF\}$$

avec $A = \{GF, FG\}$, $B = \{GG, GF, FG\}$ et $A \cap B = \{GF, FG\}$
d'où sous l'hypothèse d'équiprobabilité : $P(A) = 1/2$, $P(B) = 3/4$ et $P(A \cap B) = 1/2$
On vérifie alors que : $P(A \cap B) \neq P(A)$ $P(B) = 1/2$ X $3/4 = 3/8 \neq 1/2$

Propriétés

Les propriétés associées à l'indépendance sont :

(1) si A est un évènement quelconque,

A et Ω sont indépendants : $A \cap \Omega = A$ <u>élément neutre</u>

$$P(A \cap \Omega) = P(A)P(\Omega) = P(A)$$
 car $P(\Omega) = 1$

A et \emptyset sont indépendants : $A \cap \emptyset = \emptyset$ <u>élément absorbant</u>

$$P(A \cap \emptyset) = P(A)P(\emptyset) = P(\emptyset)$$
 car $P(\emptyset) = 0$

(2) si A et B sont deux évènements quelconques,

A et B sont indépendants si et seulement si A et \overline{B} (\overline{A} et B) ou sont indépendants (<u>démonstration</u>).

A et B sont indépendants si et seulement si \overline{A} et B le sont.

Généralisation

n évènements $(n \ge 2)$, $A_1,A_2,...,A_i,...,A_n$ sont dit **indépendants** dans leur ensemble (ou mutuellement indépendants) si on a :

$$P(A_1 \cap A_2 \cap ... \cap A_i \cap ... \cap A_n) = P(A_1) \times P(A_2) \times ... \times P(A_i) \times ... \times P(A_n)$$

$$P(\bigcap_i A_i) = \prod_{i=1}^n A_i$$

26

Exemple

On jette deux dés. Soit

A1 « le premier dé donne un nombre pair »

A2 « le deuxième dé donne un nombre pair »

A3 « la somme des deux lancers est paire »

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

En bleu : la somme est paire

En grisé:

$$A_1 \cap A_2$$
 ou $A_1 \cap A_3$

ou
$$A_2 \cap A_3$$
 ou $A_1 \cap A_2 \cap A_3$.

Exemple

Les 3 évènements A1, A2 et A3 sont 2 à 2 indépendants mais ne sont pas indépendants dans leur ensemble

$$P(A_1) = 1/2$$
; $P(A_2) = 1/2$; $P(A_3) = 1/2$
 $P(A_1 \cap A_2) = 9/36 = 1/4 = P(A_1)P(A_2)$
 $P(A_1 \cap A_3) = 9/36 = 1/4 = P(A_1)P(A_3)$
 $P(A_2 \cap A_3) = 9/36 = 1/4 = P(A_2)P(A_3)$
 $P(A_1 \cap A_2 \cap A_3) = 9/36 = 1/4$
 $\neq P(A_1)P(A_2)P(A_3) = 1/8$

Probabilités conditionnelles

Définition

Soit deux évènements A et B d'un espace probabilisé Ω avec $P(B) \neq 0$, on appelle **probabilité conditionnelle** de l'évènement A sachant B, la probabilité :

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

Notation : $P(A/B)=P_B(A)$

Théorème

Soit B un évènement de probabilité non nulle, alors l'application :

 $PB: \varepsilon (\Omega) \rightarrow [0,1]$

 $\mathbf{A} \to \mathbf{P}(\mathbf{A}/\mathbf{B})$ est une probabilité sur Ω

Probabilités conditionnelles

Démonstration

$$(P_1) \ \forall A \in \mathcal{E}(\Omega)$$
 $P(A / B) \ge 0$ (quotient de deux réels positifs)

(P₂)
$$P(\Omega / B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$
 car $\Omega \cap B = B$ car Ω élément neutre

(P₃) si
$$(A_1 \cap A_2) = \emptyset$$
), $P_B(A_1 \cup A_2) = \frac{P[(A_1 \cup A_2) \cap B]}{P(B)} = \frac{P[(A_1 \cap B) \cup (A_2 \cap B)]}{P(B)} = \frac{P[(A_1 \cap B) \cup (A_2 \cap$

$$\frac{P[(A_1 \cap B) + (A_2 \cap B)]}{P(B)} = P_B(A_1) + P_B(A_2)$$
 additivité

Remarques

- P(A) : probabilité a priori
- P(B) : probabilité a posteriori
- P(A/A)=1
- Si B \subset A, alors A \cap B = B \Rightarrow P(B/A) = P(A) / P(B)

Probabilités composées

Théorème

Soit deux évènements A et B d'un espace probabilisé Ω .

 $P(A \cap B) = P(B \mid A) P(A) = P(A \mid B) P(B)$ (Formule des probabilités composées)

Si A et B sont indépendants et que $P(B) \neq 0 \iff P_B(A) = P(A / B) = P(A)$.

Le fait que l'un des 2 évènements soit réalisé, n'apporte aucune information sur la réalisation de l'autre

⇒ Probabilité a postériori = probabilité a priori

Probabilités composées

Théorème

Soit deux évènements A et B d'un espace probabilisé Ω .

 $P(A \cap B) = P(B / A) P(A) = P(A / B) P(B)$ (Formule des probabilités composées)

Si A et B sont indépendants et que $P(B) \neq 0 \Leftrightarrow P_B(A) = P(A / B) = P(A)$.

Le fait que l'un des 2 évènements soit réalisé, n'apporte aucune information sur la réalisation de l'autre

⇒ Probabilité a postériori = probabilité a priori

Théorème

Si A et B sont deux évènements indépendants alors $P(A/B) = P(A/\overline{B}) = P(A)$

Exemple

Jet de dé.

A : « le résultat est pair » et B « le résultat est un multiple de trois » sont indépendants

$$\begin{array}{ccc}
A = \{2,4,6\} & B = \{3,6\} & A \cap B = \{6\} \\
P(A) = 3/6 & P(B) = 2/6 & P(A \cap B) = 1/6
\end{array}$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{1/6}{1/3} = \frac{1/2}{1/3} = \frac{P(A)}{1/3} = \frac{1}{1/3} = \frac{1}{$$

Probabilités totales

Théorème

Si $\{A_1, A_2,...,A_1,....,A_n\}$ est un système complet d'évènements (partition de Ω), $\forall B$, alors : $P(B) = P(B \mid A_1) P(A_1) + P(B \mid A_2) P(A_2) + + P(B \mid A_n) P(A_n)$

$$P(B) = \sum_{i=1}^{n} P(B/A_i)P(A_i)$$

Formules des probabilités totales

Démonstration

$$P(B) = P(B \cap \Omega) = P\left(B \cap \left(\bigcup_{i=1}^{n} A_i\right)\right) = P\left(\bigcup_{i=1}^{n} (B \cap A_i)\right) = \sum_{i=1}^{n} P(B \cap A_i)$$

$$P(B) = \sum_{i=1}^{n} P(B/A_i)P(A_i)$$

Probabilités totales

Exemple

Une population comporte 1/3 d'hommes et 2/3 de femmes. Une maladie X frappe 6 % des hommes et 0,36 % des femmes.

La probabilité pour qu'un individu pris au hasard soit malade :

A = {Homme} et
$$\bar{A}$$
 = {Femme}
B = {Malade} et \bar{B} = {Non Malade}
 $P(B) = P(B/A)P(A) + P(B/\overline{A})P(\overline{A})$
 $P(B) = (0.06 \times 1/3) + (0.0036 \times 2/3) = 0.0224$

Théorème

Si $\{A_1, A_2,....,A_i,.....,A_n\}$ est un système complet d'évènements (partition de Ω), $\forall B$, alors : $P(B) = P(B \mid A_1) P(A_1) + P(B \mid A_2) P(A_2) + + P(B \mid A_n) P(A_n)$

$$P(A_{i}/B) = \frac{P(B/A_{i})P(A_{i})}{P(B/A_{1})P(A_{1}) + ... + P(B/A_{i})P(A_{i}) + ... + P(B/A_{n})P(A_{n})}$$

$$P(A_{i}/B) = \frac{P(B/A_{i})P(A_{i})}{\sum_{i=1}^{n} P(B/A_{i})P(A_{i})}$$
Formule de Bayes

Probabilités totales

Démonstration

tration
$$P(A_i \mid B) = \frac{P(A_i \cap B)}{P(B)}$$
 probabilités composées
$$P(A_i \mid B) = \frac{P(B \mid A_i)P(A_i)}{\sum_{i=1}^{n} P(B \mid A_i)P(A_i)}$$
 probabilités totales

Remarque

Formule de Bayes : utilisée pour calculer des probabilités de causes dans les diagnostics (maladies, pannes, etc.)

Statistique bayésienne : branche de la statistique basée sur ce théorème