Bayesian Network

Julyedu: Johnson

Bayesian Network

- What is Bayesian Network?
- Examples:
 - Naive Bayes (朴素贝叶斯)
 - Hidden Markov Model (隐马尔可夫模型)
 - Latent Dirichlet Allocation (LDA,主题模型)
- Main Topic:
 - Probability theory + Graph theory
 - Probabilistic graphical model

Examples

- Use directed graph to represent conditional independency:

Examples

Use directed graph to represent conditional independency:

- Each node corresponds to a random variable.
 - Each edge corresponds to a conditional dependency between variables.

- A **Bayesian network** is specified by a directed acyclic graph:
 - G = (V, E) where:
 - One node i for each random variable V_i
 - One conditional probability distribution (CPD) per node:

- A Bayesian network is specified by a directed acyclic graph:
 - G = (V, E) where:
 - One node i for each random variable V_i
 - One conditional probability distribution (CPD) per node: $Pr(V_i \mid V_{pa(i)})$

Graph structure specifies the factorization of the joint distribution:

$$Pr(V_1, ..., V_n) = \prod_{i \in [n]} Pr(V_i \mid V_{pa(i)})$$

- Graph structure specifies the factorization of the joint distribution:

$$Pr(V_1, ..., V_n) = \prod_{i \in [n]} Pr(V_i \mid V_{pa(i)})$$

- Graph structure specifies the factorization of the joint distribution:

$$\Pr(V_1, ..., V_n) = \prod_{i \in [n]} \Pr(V_i \mid V_{pa(i)})$$

- What's the advantages of Bayesian networks?
 - Compact representation of a probability distribution
 - Clear probabilistic semantics
 - Direct graph can be used to represent causal relationship

- Graph structure specifies the factorization of the joint distribution:

$$\Pr(V_1, ..., V_n) = \prod_{i \in [n]} \Pr(V_i \mid V_{pa(i)})$$

- What's the joint distribution?

Graph structure specifies the factorization of the joint distribution:

$$\Pr(V_1, ..., V_n) = \prod_{i \in [n]} \Pr(V_i \mid V_{pa(i)})$$

- What's the joint distribution?

$$Pr(d, i, g, s, l) = Pr(d) \cdot Pr(i) \cdot Pr(g \mid d, i) \cdot Pr(s \mid i) \cdot Pr(l \mid g)$$

- Graph structure implies conditional independency
- If two variables are conditionally independent, graph has no edge between them:

$$D \perp I$$
 $L \perp S \mid I$ $G \perp S \mid I$ $D \perp S$ $D \perp L \mid G$ $L \perp S \mid G$

Probabilistic Graphical Models

- Naive Bayes as a Bayesian network:

- Shadowed nodes are **observed**
- White nodes are **hidden**

- Naive Bayes as a Bayesian network:

- Problem: given **observed**, infer **hidden**?

- Problem: given **observed**, infer **hidden**?

- Hidden Markov model as a Bayesian network:

$$\Pr(H_1, ..., H_T, O_1, ..., O_T) = \Pr(H_1) \prod_{i \in [T]} \Pr(O_i \mid H_i) \prod_{i \in [T-1]} \Pr(H_{i+1} \mid H_i)$$

- Shadowed nodes are **observed**
- White nodes are **hidden**

- Hidden Markov model as a Bayesian network:

$$\Pr(H_1, ..., H_T, O_1, ..., O_T) = \Pr(H_1) \prod_{i \in [T]} \Pr(O_i \mid H_i) \prod_{i \in [T-1]} \Pr(H_{i+1} \mid H_i)$$

- Applications:
 - POS Tagging (词性标注)
 - Speech recognition (语音识别)
 - Word segmentation (中文分词)

_

- Hidden Markov model as a Bayesian network:

$$\Pr(H_1, ..., H_T, O_1, ..., O_T) = \Pr(H_1) \prod_{i \in [T]} \Pr(O_i \mid H_i) \prod_{i \in [T-1]} \Pr(H_{i+1} \mid H_i)$$

- Algorithms:
 - Forward-Backward algorithm (inference)
 - Expectation maximization algorithm (learning)

- Review:
 - Independence:

$$Pr(A, B) = Pr(A) \cdot Pr(B)$$

$$Pr(A \mid B) = Pr(A)$$

$$Pr(B \mid A) = Pr(B)$$

How to show the above three formulas are equivalent?

- Review:
 - Conditional independence:

$$Pr(A, B \mid C) = Pr(A \mid C) \cdot Pr(B \mid C)$$

$$Pr(A \mid B, C) = Pr(A \mid C)$$

$$Pr(B \mid A, C) = Pr(B \mid C)$$

How to show the above three formulas are equivalent?

- d-separation:

- A method to quickly judge conditional independence given the graph
- 3 difference cases

- Tail-to-Tail:

- Head-to-Tail:

Head-to-Head:

- Examples:

Thanks and Questions