Exercícios Práticos de Python: Decomposição SVD e Compressão de Imagens

1. Desenvolva um programa que:

- (a) Carregue uma imagem em escala de cinza usando matplotlib.pyplot.imread() ou PIL.Image.open
- (b) Converta para escala de cinza se necessário.
- (c) Exiba informações sobre a imagem:
 - Dimensões (altura × largura).
 - Tipo de dados (dtype).
 - Valores mínimo e máximo dos pixels.
 - Posto da matriz da imagem.
- (d) Plote a imagem original usando plt.imshow().

2. Crie uma função aproximacao_posto_r(imagem, r) que:

- (a) Calcule a decomposição SVD da imagem.
- (b) Construa a aproximação de posto r usando apenas os primeiros r valores singulares.
- (c) Calcule o erro de Frobenius de duas formas:
 - Método direto: $||A A_r||_F$ (norma da diferença das matrizes).
 - Método teórico: $\sqrt{\sigma_{r+1}^2 + \sigma_{r+2}^2 + \cdots + \sigma_n^2}$ (usando valores singulares).
- (d) Verifique se os dois métodos produzem o mesmo resultado.
- (e) Retorne a imagem aproximada e o erro calculado.

Teste com diferentes valores de r: 1, 5, 10, 20, 50, 100 e compare os erros.

3. Desenvolva um programa que:

- (a) Carregue uma imagem de sua escolha.
- (b) Calcule aproximações de posto r para r = [1, 5, 10, 25, 50, 100].
- (c) Crie um subplot com 2×3 imagens mostrando:
 - A imagem original no primeiro subplot.
 - As 5 aproximações nos demais subplots.
- (d) Para cada aproximação, inclua no título:
 - O valor de r.
 - O erro de reconstrução.
 - A porcentagem de compressão: $\left(1 \frac{r(m+n+1)}{mn}\right) \times 100.$
- (e) Salve a figura como comparacao_aproximacoes.png.

Desafio adicional: Adicione uma curva mostrando como o erro decresce com o aumento de r.

4. Implemente uma função analisar_compressao(imagem) que:

- (a) Calcule aproximações para r variando de 1 até o posto máximo da imagem.
- (b) Para cada r, calcule:
 - Taxa de compressão: razao_compressao = $\frac{r(m+n+1)}{mn}$.
 - Erro relativo: erro_relativo = $\frac{\|A A_r\|_F}{\|A\|_F}$.
 - PSNR (Peak Signal-to-Noise Ratio): PSNR = $20 \log_{10} \left(\frac{255}{\text{RMSE}} \right)$.
- (c) Plote três gráficos:
 - Erro relativo vs. r.
 - Taxa de compressão vs. r.
 - PSNR vs. Taxa de compressão.
- (d) Identifique o "ponto ótimo" onde se obtém boa qualidade com alta compressão.

Fórmula do RMSE: $\sqrt{\text{mean}((A-A_r)^2)}$.

- 5. Desenvolva um sistema de compressão para imagens coloridas:
 - (a) Carregue uma imagem colorida (RGB).
 - (b) Separe os canais R, G e B.
 - (c) Para cada canal, aplique SVD e mantenha apenas os primeiros r componentes.
 - (d) Reconstrua a imagem colorida combinando os canais comprimidos.
 - (e) Implemente uma função comprimir_imagem_colorida(imagem, r_red, r_green, r_blue) que permita diferentes níveis de compressão para cada canal.
 - (f) Compare visualmente:
 - Imagem original.
 - \bullet Compressão uniforme (mesmo r para todos os canais).
 - Compressão adaptativa (r diferente por canal, baseado na variância de cada canal).

Dica: O canal verde geralmente contém mais informação visual importante.

- 6. Crie três métodos para determinar automaticamente o rank ótimo:
 - (a) Método 1 Critério de Energia:
 - Mantenha componentes até que 99% da "energia" (soma dos quadrados dos valores singulares) seja preservada.
 - (b) Método 2 Critério do Cotovelo:
 - Encontre o ponto de inflexão na curva dos valores singulares usando a segunda derivada.
 - (c) Método 3 Critério de Qualidade Visual:
 - Pare quando o PSNR atingir um limiar (ex: 30 dB).

Implemente uma função rank_otimo(imagem, metodo='energia', limiar=0.99) e compare os resultados dos três métodos em diferentes tipos de imagem (fotos, desenhos, texturas).

- 7. Conduza um estudo comparativo:
 - (a) Colete 4 tipos diferentes de imagem:
 - Foto com muitos detalhes (paisagem).
 - Imagem com poucas cores (logo, desenho).
 - Textura repetitiva (padrão).
 - Imagem com gradientes suaves (céu, pôr do sol).
 - (b) Para cada imagem, analise:

- Distribuição dos valores singulares (plot dos σ_i).
- Taxa de decaimento dos valores singulares.
- Rank efetivo (número de valores singulares ; 1% do máximo).
- Qualidade de reconstrução para diferentes valores de r.
- (c) Crie um relatório automatizado que:
 - Gere gráficos comparativos.
 - Identifique qual tipo de imagem comprime melhor.
 - Explique os resultados baseado nas características visuais.
- 8. (Opcional) Implemente um sistema de benchmark que:
 - (a) Teste a decomposição SVD em imagens de diferentes tamanhos $(64\times64,\ 128\times128,\ 256\times256,\ 512\times512,\ 1024\times1024).$
 - (b) Meça e compare:
 - Tempo de decomposição SVD.
 - \bullet Tempo de reconstrução para diferentes valores de r.
 - Uso de memória para armazenar U, Σ, V^T vs. imagem original.
 - Tempo de I/O para salvar/carregar dados comprimidos.
 - (c) Investigue o impacto do tipo de dados (float32 vs float64).
 - (d) Compare com outros métodos de compressão (JPEG) em termos de:
 - Taxa de compressão.
 - Qualidade visual (PSNR, SSIM).
 - Tempo de processamento.
 - (e) Gere gráficos mostrando como a performance escala com o tamanho da imagem.