ArbeitsblattMessunsicherheiten Teil 1

1- Runden Sie folgende Messunsicherheiten auf zwei signifikante Stellen:

Messunsicherheit	Gerundet auf 2 signifikante Stellen
5,36 <i>g</i>	5,4 3
958 mm	960 mm
0,077 <i>l</i>	0,0776
$0,73954*10^{-19}C$	0,74.10-19
$0,19792458*10^8 m/s$	0,20.10825
$3 m^2$	3,0 m2
$0.2 \ m/s^2$	0,20 %2

2- Korrigieren Sie die folgenden (falschen) Angaben bezüglich der Messunsicherheiten:

Falsche Angabe	Korrekte Angabe
$(358,2 \pm 52)mm$	(358 ± 52)mm
$(0.087 \pm 0.23)l$	(0,09±025) (
$(1,602176 \pm 0,353) * 10^{-19}C$	(1.60 ± 0.35).107°C
$(2,99792458 \pm 0,00050)$	12, 997 25 10,000 20). 10 8 m
$*10^8 m/s$, , , , , , ,
$(67,5 \pm 0,34)ml$	(67,50± 034) ml
$(9,9917 \pm 0,4552)m/s^2$	(9,99 = 0,46) =
$(0,008 \pm 0,12)m$	(601 ± 0, 12)m
$(730,891 \pm 24,33)$ mbar	(731 +24) mber

3- Typ-A-Messunsicherheit

	Gruppe 1	Gruppe 2
n	d (mm)	d (mm)
1	436,6	422,9
2	426,1	430,4
3	438,3	425,6
4	426,1	419,7
5	434,0	427,2
6	438,8	417,8

Abb. 1: Experimenteller Aufbau – horizontaler Wurf. (Quelle: Introduction to Measurement in the Physics Laboratory- A Probabilistic Approach' A. Buffler and S. Allie, F. Lubben and B. Campbell.)

Berechnen Sie folgenden statistischen Größen:

Statistische Auswertung - Gruppe 1

$\bar{x}_1 = 433 / 3167$ $\sigma_1 = \pm 5 / 836237$

$$\sigma_{\bar{x}_1} = \pm 2,33$$

$$t_1 = \gamma_1 0 \gamma$$

$$\varepsilon_{\bar{x}_1} = \pm 2,597$$

Statistische Auswertung - Gruppe 2

$$\bar{x}_2 = 425,933$$

$$\sigma_2 = \pm 4,7302$$

$$\sigma_{\bar{x}_2} = \pm 1, 931$$

$$t_2 = 1,09$$

$$\varepsilon_{\bar{x}_2} = \pm 2,104g$$

Ergebnisse Bestwert: Gruppe 1

433,3

Gruppe 2

423, 9

Messunsicherheit:

216

2,1

4- Typ-B-Messunsicherheiten

Berechnung der Messunsicherheit:

Formel für die MU der Ableseskala:

$$u = 2 \sqrt{6}$$

$$0 = 1 MC$$

Anzeigetyp:

Messunsicherheit:
$$u = \pm 0,20 \, \mu$$

Ergebnis:

$$V = 43.50 \pm 0.20 \text{ n/}$$

Berechnung der Messunsicherheit:

Formel für die MU der Ableseskala:

$$u_{Skala} = 2.131$$

$$u_{Skala} = \pm 0,00299$$

MU der Ableseskala:

Gerätegenauigkeit:
$$u_{Genauigkeit} = \pm \frac{\sqrt{62q}}{\sqrt{62q}}$$

Anzeigetyp:

Formel für die gesamte Messunsicherheit:

Gesamtunsicherheit:

Ergebnis:

$$u_{Gesamt} = \pm 0,023$$
 g

$$m = 124330 \pm 0.028c$$