Report on the Experiment

No. 13

Subject 電解効果トランジスタの基礎実験

Date 2019. 10. 17

Weather 雨 Temp 21.3 °C Wet 54 %

Class E3

Group 2

Chief

Partner 井上 隆治

木下 拓真

重見 達也

DANDAR TUGULDUR

No 15

Name 小畠 一泰

Kure National College of Technology

1 目的

電解効果トランジスタのスイッチング特性実験や CMOS 論理回路実験を行うことで,電解効果トランジスタの使い方や CMOS 論理 IC について理解することを目的とする.

2 実験方法と結果の整理

2.1 使用器具

- 直流電源 E_1 : 直流定電圧電源 (5V, F-1), E_2 : 直流電源 (KENWOOD PR18-3A SERIAL NO.09123474)
- 直流電圧計 Vdd: 直流電圧計 (10V), VG: 直流電圧計 (10V), (14, 15)
- ID: 直流電流計 (10mA, 35)
- VD: デジタルマルチメータ (BH37H21S00000114)
- VR:スライド抵抗器 (4800 Ω, 0.18A)
- 実験キット (2 種類), SW×2
- 供試 FET: 2SJ377(P-ch), 2SK2231(N-ch)

2.2 MOSFET

2.2.1 p チャネル MOSFET のスイッチング特性

図 1: p-MOS スイッチング特性測定回路

- 1. 実験用キットを用いて 図 5 の回路の結線を行った.
- 2. $V_{dd}=5.0$ [V] とし, V_G を 5 [V] から 0 [V] まで順次減少させ V_D,I_D を計測した.FET のしきい値電圧付近は詳しく計測した.
- 3. 計測した結果を 表 1 に記録した.
- 4. ゲート電圧を横軸に、ドレイン電流とドレイン電圧を縦軸にグラフを図2 に描いた.

図 2: p-MOS スイッチング特性グラフ

表 1: 2SJ377 スイッチング特性

V_G [V]	V_D [V]	I_D [mA]	V_{GS} [V]
0.00	5.001300	5.08	5.00
1.00	5.000900	5.08	4.00
2.00	5.000500	5.07	3.00
3.00	4.998400	5.05	2.00
3.10	4.996900	5.04	1.90
3.20	4.995000	5.04	1.80
3.30	4.991300	5.04	1.70
3.40	4.982700	5.03	1.60
3.50	4.956800	5.01	1.50
3.55	4.843000	4.90	1.45
3.58	4.321300	4.38	1.42
3.60	3.098000	3.12	1.40
3.65	1.837000	1.85	1.35
3.70	1.081500	1.10	1.30
3.80	0.232600	0.33	1.20
3.85	0.110657	0.11	1.15
3.90	0.044061	0.04	1.10
4.00	0.001189	0.00	1.00
4.30	0.000124	0.00	0.70
4.50	0.000005	0.00	0.50
5.00	0.000000	0.00	0.00

2.2.2 n チャネル MOSFET のスイッチング特性

図 3: n-MOS スイッチング特性測定回路

- 1. 実験用キットを用いて 図 3 の回路の結線を行った.
- 2. $V_{dd} = 5.0$ [V] とし, V_G を 0 [V] から 5 [V] まで順次増加させ V_D, I_D を計測した. FET のしきい値電圧付近は詳しく計測した.
- 3. 計測した結果を 表 2 に記録した.
- 4. ゲート電圧を横軸に、ドレイン電流とドレイン電圧を縦軸にグラフを図 4 に描いた.

図 4: n-MOS スイッチング特性グラフ

表 2: 2SK2231 スイッチング特性

$\overline{V_G}$ [V]	V_D [V]	$I_D [\mathrm{mA}]$	V_{GS} [V]
0.00	4.975000	0.00	0.00
1.00	4.971800	0.00	1.00
1.10	4.960500	0.00	1.10
1.20	4.901100	0.01	1.20
1.30	4.610100	0.12	1.30
1.35	4.325000	0.33	1.35
1.38	4.000700	0.42	1.38
1.40	3.424300	0.52	1.40
1.45	2.598000	0.81	1.45
1.48	1.820000	1.09	1.48
1.50	0.159000	1.63	1.50
1.55	0.035260	1.69	1.55
1.60	0.018876	1.69	1.60
2.00	0.003404	1.69	2.00
3.00	0.002220	1.69	3.00
4.00	0.002073	1.69	4.00
5.00	0.002013	1.69	5.00

2.3 CMOS 論理回路実験

図 5: CMOS インバータ (反転回路)

各自 図 5 の回路をブレッド・ボード上に作成し, 真理値表を元に動作を確認した.

3 考察及び検討

1. スイッチング特性実験結果のグラフから, しきい値電圧 (threshold voltage) を求めよ.

2SJ377 のしきい値電圧は 図 2 のグラフから約 3.70 [V] であることが分かる. 同様に 2SK2231 のしきい値電圧は図 4 のグラフから約 1.50 [V] であることが分かる.

2. 総合的考察を行え.

 V_{GS} にしきい値電圧より低い電圧をかけると I_D には小さい電流しか流れない. また、しきい値電圧より高い電圧をかけると I_D には十分な電流が流れる.

これらのことより、それぞれしきい値電圧と V_{GS} の電圧を調整することでスイッチの役割を果たすことができる.