

Network Layer: IPv4 Functions

Lecture 7 | CSE421 – Computer Networks

Department of Computer Science and Engineering School of Data & Science

Objectives

- Short overview of the Network Layer
- Packet Switching: Virtual Circuits & Datagram Networks
- IP Fragmentation & Reassembly
- ICMP
 - Ping
 - Traceroute

The Network Layer

- Transport segment from sending to receiving host
- On sending side encapsulates segments into packets
- Network layer protocols in every host, router
- Router examines header fields in all IP packets passing through it
- On receiving side, delivers segments to transport layer

Functions of Network Layer

BRAC UNIVERSITY

- Forwarding: move packets from router's input to appropriate router output
 - Analogy: process of getting through a single interchange
- Routing: determine route taken by packets from source to destination
 - The algorithms that calculate the paths are referred to as routing algorithms.

• Analogy: process of planning trip from packet's header source to destination

Has various routing algorithms

Packet Switching:

Virtual Circuits
Datagram Network

Connection and Connection-less service

- Datagram network => network-layer connectionless service
- VC network => network-layer connection service
 - analogous to the transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core

Datagram networks

- No call setup at network layer
- Routers: no state about end-to-end connections
 - no network-level concept of "connection"
- Packets forwarded using destination host address

Virtual Circuits: Signaling Protocols

- Used to setup, maintain teardown VC
- Used in ATM, frame-relay, X.25
- Not used in today's Internet

Functions of a Router

- Run routing algorithms/protocol (RIP, OSPF, BGP)
- Forwarding datagrams from incoming to outgoing link

- Decentralized switching:
 - Given datagram dest., lookup output port using forwarding table in input port memory
 - Goal: complete input port processing at 'line speed' Physical layer:

Internet Protocol

Internet Network Layer

BRAC UNIVERSITY

Inspiring Excellence

• Host, router network layer functions:

IPv4 Datagram Format

The size of an IP datagram:

- The minimum size is 20 bytes (if you have no data)
- The maximum size is 65,535 bytes

IP Fragmentation & Reassembly

- Network links have MTU (max. transmission unit - max. transfer size) largest possible link-level frame.
 - different link types, different MTUs
- Large IP datagram divided ("fragmented")
 within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

- 4000 Bytes of datagram
- MTU = 1500 Bytes
 - Header + Data
 - Header size is usually 20 bytes
 - It can differ
- Offset:
 - The value of the offset is measured in units of 8 bytes.
 - This is done because the length of the offset field is only 13 bits long and cannot represent a sequence of bytes greater than 8191.
 - This forces hosts or routers that fragment datagrams to choose the size of each fragment so that the first byte number is divisible by 8.

length	ID	fragflag	offset	
=4000	=x	=0	=0	

IP Fragmentation & Reassembly

Original IP Datagram

Sequence	Identifier	Total Length	DF May / Don't	MF Last / More	Fragment Offset
0	345	5140	0	0	0

MTU=20(H)+1480(D)

5140=20(H)+5120(D)

5120-1480=3640 (1st)

3640-1480=2160 (2nd)

2160-1480=680 (3rd)

680+20=700

IP Fragments (Ethernet)

Sequence	Identifier	Total Length	DF May / Don't	MF Last / More	Fragment Offset	Data Bytes	Fragment Offset
0-0	345	1500	0	1	0	0 -1479	0/8=0
0-1	345	1500	0	1	185	1480-2959	1480/8=185
0-2	345	1500	0	1	370	2960-4439	2960/8=370
0-3	345	700	0	0	555	4440-5119	4440/8=555

IP Fragmentation Example

ICMP

ICMP

- Also known as Internet Control Message Protocol
- It is mainly used by the **operating systems** in **IP** network management and administration.
- Used for
 - errors in the underlying communications of network applications
 - availability of remote hosts
 - network congestion
- It does not carry application data, but rather information about the status of the network itself.
- Example of ICMP in practice

Ping

- Utility used to test the reachability of a host.
- Sends Internet Control Message Protocol (ICMP) echo request packets to the target host and waiting for an ICMP response.
- In the process it measures the time from transmission to reception

ICMP Message

• ICMP message: type, code plus first 8 bytes of IP datagram causing error

Type	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Ping Attacks

- ICMP PING flood attack /DOS Attack :
 - It uses the ICMP echo command to flood large amounts of data packets to the victim's computer in an attempt to overload it.
 - Another type of DOS Attack : Deny to give service by replying with false message.

Ping Attacks

- ICMP DDOS attack Zombie Attack:
 - Much like the ping flood method, only multiple computers are being used.
 - In this instance, the computers that are being used may or may not be aware of the fact that they are attacking a website or network.

Trojans and viruses commonly give the hacker control of a computer, and thus, the ability to use them fo zombie zombie zombie zombie ters are called zombies.

Ping Attacks

- ICMP DDOS attack Packet magnification (or ICMP Smurf):
 - An attacker sends forged ICMP echo packets to vulnerable networks' broadcast addresses. All the systems on those networks send ICMP echo replies to the victim.

Traceroute

BRAC UNIVERSITY

- Tool used to trace path from source to destination host.
- The IP address and domain name (if there is one) of each router is returned to the client.
- Commands:
 - Unix: traceroute
 - Cisco IOS: traceroute (1
 - DOS: tracert

Hop 1: User LAN router

Hops 2-7: Verizon (ISP) networ

Hops 8-10: the Yahoo LAN

```
C:\Windows\system32\command.com
C:\USERS\LARRYP~1>tracert www.yahoo.com
Tracing route to www-real.wa1.b.yahoo.com [209.131.36.158]
over a maximum of 30 hops:
        1 ms
                 1 ms
                           4 ms 192.168.1.1
  234567
       37 ms
                 36 ms
                          39 ms L100.LSANCA-DSL-14.verizon-gni.net [71.105.96.1]
                                 P15-2.LSANCA-LCR-03.verizon-gni.net [130.81.44.32] so-6-1-2-0.LAX01-BB-RTR1.verizon-gni.net [130.81.28.225
       35 ms
                 35 ms
       39 ms
                 39 ms
                                  so-5-3-0-0.SJC01-BB-RTR1.verizon-gni.net [130.81.19.10]
       47 ms
                 47 ms
                          47 ms
       46 ms
                 47 ms
                          46 ms 130.81.17.229
       54 ms
                 47 ms
                          49 ms 130.81.14.90
               129 ms 50 ms ae0-p170.msr2.sp1.yahoo.com [216.115.107.81]
       48 ms
 9
                48 ms
                                  te-8-1.bas-a1.sp1.yahoo.com [209.131.32.17]
       90 ms
                         112 ms
       48 ms
                 50 ms
                                  fl.www.vip.spl.yahoo.com [209.131.36.158]
Trace complete.
C:\USERS\LARRYP~1>_
```

Traceroute: Another example

BRAC UNIVERSITY

Inspiring Excellence

Hop 1: User LAN router

Hops 2-4: Verizon network (a backbone ISP)

Hops 5-6: Alternet (a backbone ISP)

Hops 7-11: Level 3 (a backbone ISP)

Hops 12-14: the Google LAN

```
C:\Windows\system32\COMMAND.com
C:\USERS\LARRYP~1>tracert www.google.com
Tracing route to www.l.google.com [74.125.19.147]
over a maximum of 30 hops:
                                L100.LSANCA-DSL-14.verizon-gni.net [71.105.96.1]
                                     .LSANCA-LCR-03.verizon-gni.net [130.81.35.8]
                               ae-1-69.edge1.SanJose1.Level3.net [4.68.18.14]
                                G00GLE-INC.edge1.SanJose1.Level3.net [4.79.43.146]
                               nug04s01-in-f147.1e100.net [74.125.19.147]
Trace complete.
```


This message indicates that the router security settings keep it from revealing its identity or the router and connection are slow.

* * * Request timed out.

The End