

LABORATORIO DI PROBABILITA' E STATISTICA

Docente: Bruno Gobbi

5 - ESERCIZI RIEPILOGATIVI PRIME 3 LEZIONI

ESERCIZIO 5: La tabella presenta la distribuzione di alcuni laureati in diverse facoltà e la loro condizione occupazionale dopo un anno dalla laurea.

	FACOLTA'		
CONDIZIONE OCCUPAZIONALE	Informatica	Lettere	Giurisprudenza
Occupati	70	40	30
In cerca di occupazione	20	15	30

	alpha		
	(significatività)		
g.d.l.	1%	5%	
1	6,64	3,84	
2	9,21	5,99	
3	11,35	7,82	
4	13,28	9,49	
5	15,09	11,07	
6	16,81	12,59	
7	18,48	14,07	
8	20,09	15,51	
9	21,67	16,92	
10	23,21	18,31	

- > laureati=matrix(c(70, 40, 30, 20, 15, 30), nrow=2, byrow=TRUE)
- > condizione=c("Occupati", "In cerca di occupazione")
- > facoltà=c("Informatica", "Lettere", "Giurisprudenza")
- > dimnames(laureati)=list(condizione, facoltà)
- > laureati

Informatica Lettere Giurisprudenza

Occupati 70 40 30 In cerca di occupazione 20 15 30

> mosaicplot(laureati)

- > testchiq=chisq.test(laureati)
- > testchiq

Pearson's Chi-squared test

data: laureati

X-squared = 13.5108, df = 2, p-value = 0.001165

POICHE' IL VALORE CALCOLATO DEL CHI-QUADRATO E' 13.5108, SUPERIORE ALLA SOGLIA CRITICA DI 9,21 VALIDO ALL'1% PER 2 G.D.L., SI RIFIUTA L'IPOTESI NULLA DI INDIPENDENZA E SI CONFERMA LA CONNESSIONE FRA I FENOMENI I GRADI DI LIBERTA' SONO 2 PERCHE' DATI DA (r-1)*(c*1)=(2)

I GRADI DI LIBERTA' SONO 2 PERCHE' DATI DA (r-1)*(c*1)=(2-1)*(3-1)

\	0.11		
	(significatività)		
g.d.l.	1%	5%	
1	6,64	3,84	
2	9,21	5,99	
3	11,35	7,82	
4	13,28	9,49	
5	15,09	11,07	
6	16,81	12,59	
7	18,48	14,07	
8	20.09	15.51	

21,67

23,21

10

16,92

18,31

alpha

DUE FENOMENI

```
# CALCOLIAMO IL VALORE DELLA STATISTICA V DI CRAMER
> chiquadrato= testchiq$statistic
> chiquadrato
X-squared
13.51079
# IL TOTALE DI ELEMENTI PRESENTI SI OTTIENE IN QUESTO MODO:
> N = sum(laureati)
> N
[1] 205
# SI SCEGLIE IL MINORE FRA IL NUMERO DI RIGHE E DI COLONNE E SI SOTTRAE 1
> V=sqrt( chiquadrato / (N*(2-1)) )
> V
X-squared
0.2567223
# IL RISULTATO PORTA AD AFFERMARE CHE C'È UNA DISCRETA CONNESSIONE FRA I
```

ESERCIZIO 7 A: Si vuole verificare se esiste una relazione fra il fatto di svolgere uno stage presso un importante istituto di credito e la successiva eventuale assunzione. Sono stati così presi in considerazione 200 ragazzi così distribuiti:

		ASSUNZIONE?		Ξ?
		SI'	NO	Totale
	SI'	80	20	100
STAGE?	NO	25	75	100
	Totale	105	95	200

	alpha		
	(significatività)		
g.d.l.	1%	5%	
1	6,64	3,84	
2	9,21	5,99	
3	11,35	7,82	
4	13,28	9,49	
5	15,09	11,07	
6	16,81	12,59	
7	18,48	14,07	
8	20,09	15,51	
9	21,67	16,92	
10	23,21	18,31	

```
> stage_lavoro=matrix(c(80, 20, 25, 75), nrow=2,
byrow=TRUE)
> stage=c("si stage", "no stage")
> lavoro=c("Si assunzione", "No assunzione")
> dimnames(stage_lavoro)=list(stage, lavoro)
> stage_lavoro
     Sì assunzione No assunzione
sì stage
               80
                         20
                          75
                25
no stage
> mosaicplot(stage_lavoro)
```

- > testchiq=chisq.test(stage_lavoro)
- > testchiq

Pearson's Chi-squared test with Yates' continuity correction

data: stage_lavoro

X-squared = 58.4662, df = 1, p-value = 2.068e-14

POICHE' IL VALORE CALCOLATO DEL CHI-QUADRATO E' 58.4662, BEN SUPERIORE ALLA SOGLIA CRITICA DI 6.64 VALIDO ALL'1%, SI RIFIUTA L'IPOTESI NULLA DI INDIPENDENZA E SI CONFERMA LA CONNESSIONE FRA I FENOMENI, OVVERO FARE UNO STAGE COMPORTA MAGGIORI PROBABILITA' DI ESSERE ASSUNTI. I GRADI DI LIBERTA' SONO 1 PERCHE' DATI DA (r-1)*(c*1)=(2-1)*(2-1)

	alpha		
	(significatività)		
g.d.l.	1%	5%	
1	6,64	3,84	
2	9,21	5,99	
3	11,35	7,82	
4	13,28	9,49	
5	15,09	11,07	
6	16,81	12,59	
7	18,48	14,07	
8	20,09	15,51	
9	21,67	16,92	
10	23,21	18,31	

```
# CALCOLIAMO IL VALORE DELLA STATISTICA V DI CRAMER
```

- chiquadrato=testchiq\$statisticchiquadratoX-squared58.46617
- # IL TOTALE DI ELEMENTI PRESENTI SI OTTIENE IN QUESTO MODO:
- > N = sum(stage_lavoro)
 > N
- [1] 200

SI SCEGLIE IL MINORE FRA IL NUMERO DI RIGHE E DI COLONNE E SI SOTTRAE 1

- > V=sqrt(chiquadrato / (N*(2-1)))
- > V
- X-squared
- 0.5406763

IL RISULTATO PORTA AD AFFERMARE CHE C'È UNA BUONA CONNESSIONE FRA I DUE FENOMENI

ES. STAGE E ASSUNZIONE (CASO LIMITE 1)

ESERCIZIO 7 B: Si vuole verificare se esiste una relazione fra il fatto di svolgere uno stage presso un importante istituto di credito e la successiva eventuale assunzione. Sono stati così presi in considerazione 200 ragazzi così distribuiti:

		ASSUNZIONE?		E?
		SI'	NO	Totale
	SI'	100	0	100
STAGE?	NO	0	100	100
	Totale	100	100	200

	alpha		
	(signific	cativita)	
g.d.l.	1%	5%	
1	6,64	3,84	
2	9,21	5,99	
3	11,35	7,82	
4	13,28	9,49	
5	15,09	11,07	
6	16,81	12,59	
7	18,48	14,07	
8	20,09	15,51	
9	21,67	16,92	
10	23,21	18,31	

ES. STAGE E ASSUNZIONE (CASO LIMITE 1)

> stage_lavoro=matrix(c(100, 0, 0, 100), nrow=2, byrow=TRUE) > dimnames(stage_lavoro)=list(stage, lavoro) > testchiq=chisq.test(stage_lavoro) > testchiq data: stage_lavoro X-squared = 196.02, df = 1, p-value < 2.2e-16 > chiquadrato=testchiq\$statistic > V=sqrt(chiquadrato / (N*(2-1))) > V 0.99 # QUI C'E' LA MASSIMA CONNESSIONE, NEL SENSO CHE QUANDO UNO STUDENTE FA LO STAGE, VIENE SEMPRE ASSUNTO E VICEVERSA. IL CHI-QUADRATO E' MOLTO ALTO (196.02) E DI CONSEGUENZA IL V DI CRAMER E' VICINISSIMO A 1 (0.99)

ES. STAGE E ASSUNZIONE (CASO LIMITE 2)

ESERCIZIO 7 C: Si vuole verificare se esiste una relazione fra il fatto di svolgere uno stage presso un importante istituto di credito e la successiva eventuale assunzione. Sono stati così presi in considerazione 200 ragazzi così distribuiti:

		ASSUNZIONE?		E?
		SI'	NO	Totale
	SI'	50	50	100
STAGE?	NO	50	50	100
	Totale	100	100	200

	alpha		
	(signific	catività)	
g.d.l.	1%	5%	
1	6,64	3,84	
2	9,21	5,99	
3	11,35	7,82	
4	13,28	9,49	
5	15,09	11,07	
6	16,81	12,59	
7	18,48	14,07	
8	20,09	15,51	
9	21,67	16,92	
10	23,21	18,31	

ES. STAGE E ASSUNZIONE (CASO LIMITE 2)

> stage_lavoro=matrix(c(50, 50, 50, 50), nrow=2, byrow=TRUE) > dimnames(stage_lavoro)=list(stage, lavoro) > testchiq=chisq.test(stage_lavoro) > testchiq data: stage_lavoro X-squared = 0, df = 1, p-value = 1 > chiquadrato=testchiq\$statistic > V=sqrt(chiquadrato / (N*(2-1))) > V # NEL CASO DI EQUIDISTRIBUZIONE, NON C'E' NESSUNA CONNESSIONE, NEL SENSO CHE I DUE FENOMENI NON SEMBRANO AVERE ALCUN EFFETTO L'UNO SULL'ALTRO. CHE UNO STUDENTE FACCIA O MENO LO STAGE, NON SEMBRA CAMBIARE LE SUE POSSIBILITA' DI ESSERE ASSUNTO. IL CHI-QUADRATO E' PARI A ZERO E DI CONSEGUENZA LO E' ANCHE IL V DI CRAMER.