

Integrating Knowledge Compilation with Reinforcement Learning for Routes

Jiajing Ling, Kushagra Chandak, Akshat Kumar

{jjling.2018, kushagrac, akshatkumar}@smu.edu.sg

Motivation

- We are surrounded by autonomous systems
- Autonomous vehicles need to satisfy some constraints

No loop constraints

Intersection constraints

Patrolling Constraints

Pick-up and drop-off constraints

Training such systems using reinforcement learning is sample inefficient

How to encode domain constraints with decision making algorithms?

Our Contributions

- Domain knowledge compilation using Boolean logic based decision diagrams
- Integration of domain knowledge with deep RL in a modular fashion
 - Fast querying of the compiled decision diagrams

Domain Knowledge

Propositional Rules

Decision Diagrams

Our Framework

RL Algorithms

Problem Setting

- MARL for Multiagent Path Finding
 - Under uncertain travelling time
 - Partial observability
- Agents move from their respective sources to destinations
 - Minimize travelling time and avoid collisions
 - **Satisfy some constraints**
- Challenges
- Sample inefficiency: several simulations to find a feasible path.
- Difficult to encode constraints/domain knowledge with model-free RL
- **Examples**
 - A 5x5 open grid with 5 landmarks (denoted as flags)
 - A screenshot from our simulator (for 6 agents)

Constraints & Boolean Formula

- **Constraints**
 - Simple paths
 - A node that cannot be visited more than once
 - Help avoid deadend and loop Landmarks: visit a set of locations
- Coverage: visit a set of locations every *k* steps
- **Propositional rules for constraints**
- Boolean variable $X_{i,j}$ for edge (i,j)
- **Examples:**
 - Simple path (from n_1 to n_5)
 - $A \land \neg B \land C \land \neg D \land E$
 - Landmarks constraint
 - Disjunction of all incident edge variables on a landmark
 - Final constraint: Simple path AND landmarks

Empirical evaluation

- Number of paths encoded
 - Can encode a large number of paths
 - SDD nodes is still tractable to represent and reason with
- **Baseline heuristics & Simulation speed**
 - Open grid: shortest path based algo. (GH1)
 - Landmark: max-flow based algo. (GH2)

Approach	5x5	10x10	20x20
BU-SAT	979.7	38873.6	730031.1
TD-SAT	153.1	1313.0	26915.3
GH1	6.9	42.9	473.4

- 5 Landmarks Open grid 10x10 1.08E+13 2.25E+12 1.21E+50 4.59E+51 20x20
 - Number of encoded paths
- 20x20 10x10 Approach 1282995.0 BU-SAT 49135.6 4513.6 TD-SAT 201.9 2061.9 43619.2 1461.0 85142.9 494469.9
- Simulation speed on maps with 5 landmarks

Compact representation of BF

- Boolean formula for all simple paths (from n_1 to n_5)
- $(A \land \neg B \land C \land \neg D \land E) \lor (A \land B \land \neg C \land D \land E)$
- Sentential Decision Diagram $(SDD^{[1]})$:
 - Decision nodes $(prime_i, sub_i), i = 1, ... n$
 - E.g the red circle node in Figure (a)
 - 2 elements: $(D, E), (\neg D, \bot)$
 - Boolean formula: $(D \land E) \lor (\neg D \land \bot)$
 - Terminal nodes (literals e.g., A, $\neg A$, \bot , \top)
 - Encoded paths in an SDD

- **Combining constraints**
 - Conjoin the SDDs
 - Modular and fast

[1] SDD: A New Canonical Representation of Knowledge Bases (Darwiche, IJCAI-11)

Inferring feasible actions

- Each step of RL
 - Find feasible actions given evidence (partial path)
 - Feasible action: An action that satisfies all constraints
- Example
 - Given partial path $A \rightarrow C$, is E/D a feasible action?
 - High-level idea
 - E feasible? Given evidence {A,C,E}, check satisfiability of the BF.
 - If satisfiable, then E is a feasible action.
- **Incorporating** feasible actions in **Deep RL**
- PG: Normalize the last layer of NN over feasible actions set • Q-learning: Maximize the Q function only over feasible actions set

Inference algorithms

- Given partial path $A \rightarrow C$, is E a feasible action?
- **Bottom-up satisfiability checking (BU-SAT)**
 - Based on SDD model counting
 - Check each terminal node and decision node from bottom to root

- **Top-down satisfiability checking (TD-SAT)**
 - Stop after finding one model (satisfying assignment)

Sample efficiency & solution quality

Sample efficiency on maps with 5 landmarks

• Combined our framework with different RL algo.

- Results on 5x5 and 10x10 with different number of agents (denoted by N)
 - - DCRL+KCO (N6) (a) 5x5 L5 (DCRL)

(b) 5x5 L5 (MAPQN)

- Animations from our simulator on instance 10x10, 5 landmark, 20 agents
 - We show initial 10 training episodes and last 10 training episodes
 - Agents need a lot of exploration to find a feasible path without our framework.

DCRL DCRL+ KCO