Using Big Data to Improve Product Quality

Thomas Debeauvais

tdebeauv@uci.edu

License: CC-BY

Outline

- Netflix recommendations
- What is big data?
- Industry examples
- A technical example: singular value decomposition for recommender systems
- Thought exercises

"Connecting people to the movies they love"

Critically-acclaimed Fight-the-System Documentaries

Based on your interest in...

Teen TV Dramas Featuring a Strong Female Lead

Your taste preferences created this row.

TV Dramas Strong Women.

As well as your interest in...

Movies Featuring an Epic Nicolas Cage Meltdown

Movie Received

Browse

Contempt

Rate this title: ☆☆☆☆☆

Click one of the stars above to rate this movie. Rate movies you've seen to get personalized recommendations based on your ratings.

Intuitions

1- People rate movies high

They generally don't bother rating bad movies

People rate movies high

http://www.netflixprize.com/community/viewtopic.php?pid=5941#p5941

Intuitions

2- Older movies are rated higher *Nostalgia*

Netflix keeps only the best of old movies

Older movies are rated higher

Intuitions

3- Movies have genres

Take-away

Confirm or reject intuitions with data

WHAT IS BIG DATA?

Machine learning

http://n-chandra.blogspot.com/2013/01/picking-machine-learning-algorithm.html

Visualization

Data engineering

Take-aways

- Many tools and processes
- Some old, some recent
- Pick the right one for the problem at hand

INDUSTRY EXAMPLES

Google

TURNSTYLE

amazon.com°

Take-aways

- Useful
- Everywhere
- Creepy?

SINGULAR VALUE DECOMPOSITION

Ratings data

	The Longest Yard	Citizen Kane	Fast & Furious	Kill Bill	Sound of Music
Alice	1	4	1		5
Bob	5		4	4	
Claire		4	2		4
Dan	4	1		3	
Eve		3			5
Frank	3	3	5	2	

(usually 99% sparse)

Singular Value Decomposition

M = global average = 3.3

Densifying sparse matrices

Number of ratings x100

- Storage x100
- SVD is O(N³), CPU x1M

Minimize square error on known ratings using stochastic gradient descent

$$\min_{q^*, p^*} \sum_{(u,i) \in \kappa} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$

	Armageddon	Citizen Kane	Fast & Furious	Kill Bill	Sound of Music
Alice	1	4	1	M	5
Bob	5	M	4	4	M
Claire	M	4	2	M	4
Dan	4	1	M	3	M
Eve	M	3	M	M	5
Frank	3	3	5	2	M

Similar techniques

- Latent Semantic Analysis
 - Movies -> documents, ratings -> tf-idf
- Latent Dirichlet Allocation
 - Cf "A theory of aspects as latent topics"
- Principal Component Analysis
 - Eigen value decomposition
 - Of the covariance matrix

Take-aways

- Matrices
- Need practical methods
- The math escalates quickly
 - But you may need it ...

HOW WOULD YOU DO ...

Amazon

- "Frequently bought together"
 - Association rule mining
- Customer clustering
 - SVD

- (Stock management)
 - Poisson process?)

Questions

Tags

Users

Badges

Unanswered

draft saved

still do the job?

"This module provides the basic infrastructure for writing asynchronous socket service clients and servers." http://docs.python.org/2/library/asyncore.html#module-asyncore

If I want a non- client-server architecture, such as peer to peer, can asynchat/asyncore still do the job?

Tags

python (x) asyncore (x)

Similar Questions

- Detecting socket close with Python's asyncore and smtpd
- asyncore python hangs
- Sending data using asyncore doesn't work
- python asyncore not keeping up with high data rates
- asyncore server: Request resulting in "socket.error'>: [Errno 32] Broken pipe)"
- Asyncore not working properly with Tkinter GUI
- Python, Asyncore and forks
- Which Python async library would be best suited for my code? Asyncore? Twisted?
- python asyncore keep track of clients
- How do I connect to IRC through a SOCKS proxy using asyncore/asynchat?
- How to re-establish asyncore connection with server (solved)
- Redirect a method call to something with a file descriptor - asyncore
- Python asyncore multiple SMPP PDU's in one TCP packet

Dating website

- Match %
 - SVD on weighted questions
 - "Would you rather be weird or normal?" = 99% weird
 - "Sex before marriage?"
 - SVD on tf-idf from profile essays
 - Cosine distance in SVD space
- Actual information in a profile
 - Everybody loves travelling, but they say it differently
 - "I love travelling!" = "travel" = low tf-idf
 - "Have a passport!" = "passport" = high tf-idf
 - Tf-idf is not always appropriate!

Thomas Debeauvais, tdebeauv@uci.edu

THANKS

References

- Padhraic Smyth's slides on Netflix recsys
 http://www.ics.uci.edu/~smyth/courses/cs277/p
 ublic slides/recommender systems part2.pdf
- Koren et al. 2009: Matrix factorization techniques for recommender systems
- http://www.theatlantic.com/technology/archive/ 2014/01/how-netflix-reverse-engineeredhollywood/282679/
- http://online.wsj.com/news/articles/SB10001424
 052702303453004579290632128929194