Garbled Circuits

Louis Goubin Université de Versailles-St-Quentin-en-Yvelines

Université Paris-Saclay

M1 informatique – Site de Versailles

UE « Calcul Sécurisé »

3ème partie

Yao's Protocol

OCompute any function securely

- ... in the semi-honest model

OFirst, convert the function into a boolean circuit

Truth table:

X	У	Z
0	0	0
0	1	0
1	0	0
1	1	1

Truth table:

Х	У	Z
0	0	0
0	1	1
1	0	1
1	1	1

1: Pick Random Keys For Each Wire

ONext, evaluate one gate securely

Later, generalize to the entire circuit

OAlice picks two random keys for each wire

- One key corresponds to "0", the other to "1"
- 6 keys in total for a gate with 2 input wires

2: Encrypt Truth Table

OAlice encrypts each row of the truth table by encrypting the output-wire key with the corresponding pair of input-wire keys

Original truth table:

X	У	Z
0	0	0
0	1	0
1	0	0
1	1	1

Encrypted truth table:

$E_{k_{OX}}($	E _{koy}	(k_{0z})	
$E_{k_{0x}}$	$E_{k_{1y}}$	(k_{0z})	
$E_{k_{1x}}$	$E_{k_{Oy}}$	(k_{0z})	
	$(E_{k_{1y}})$	/ .	

3: Send Garbled Truth Table

OAlice randomly permutes ("garbles") encrypted truth table and sends it to Bob

4: Send Keys For Alice's Inputs

OAlice sends the key corresponding to her input bit

- Keys are random, so Bob does not learn what this bit is

5: Use OT on Keys for Bob's Input

OAlice and Bob run oblivious transfer protocol

- Alice's input is the two keys corresponding to Bob's wire
- Bob's input into OT is simply his 1-bit input on that wire

6: Evaluate Garbled Gate

OUsing the two keys that he learned, Bob decrypts exactly one of the output-wire keys

- Bob does not learn if this key corresponds to 0 or 1
 - Why is this important?

7: Evaluate Entire Circuit

OIn this way, Bob evaluates entire garbled circuit

- For each wire in the circuit, Bob learns only one key
- It corresponds to 0 or 1 (Bob does not know which)
 - Therefore, Bob does not learn intermediate values (why?)

- OBob tells Alice the key for the final output wire and she tells him if it corresponds to 0 or 1
 - Bob does <u>not</u> tell her intermediate wire keys (why?)

Brief Discussion of Yao's Protocol

- OFunction must be converted into a circuit
 - For many functions, circuit will be huge
- Olf m gates in the circuit and n inputs, then need 4m encryptions and n oblivious transfers
 - Oblivious transfers for all inputs can be done in parallel
- OYao's construction gives a <u>constant-round</u> protocol for secure computation of <u>any</u> function in the semi-honest model
 - Number of rounds does not depend on the number of inputs or the size of the circuit!

