

LØSNINGSFORSLAG EKSAMEN TMA4245 2008-08-07

Oppgave 1

a) La Y være høyden til en tilfeldig valgt ung mann.

$$P(Y > 185) = P(\frac{Y - 179}{6} > \frac{185 - 179}{6}) = P(Z > 1) = 0.1587$$

$$P(Y > 185|Y > 179) = \frac{P(Y > 185 \cap Y > 179)}{P(Y > 179)} = \frac{P(Y > 185)}{P(Y > 179)} = \frac{P(Z > 1)}{P(Z > 0)} = 0.3173$$

b)

$$E(\hat{\beta}) = E\left(\frac{\sum_{i=1}^{n} X_i}{n\mu_M}\right) = \frac{\sum_{i=1}^{n} E(X_i)}{n\mu_m}$$
$$= \frac{\sum_{i=1}^{n} \beta \mu_M}{n\mu_M} = \beta$$

så $\hat{\beta}$ er forventningsrett.

$$\begin{split} Var(\hat{\beta}) &= Var\left(\frac{\sum_{i=1}^{n} X_i}{n\mu_M}\right) = \frac{\sum_{i=1}^{n} Var(X_i)}{n^2\mu_M^2} \\ &= \frac{\sigma_K^2}{n\mu_M^2} \end{split}$$

Dermed er

$$T_{n-1} = \frac{Z}{\sqrt{\frac{\chi_{n-1}^2}{n-1}}} = \frac{\frac{\hat{\beta} - \beta}{\sigma_K / \sqrt{n\mu_M^2}}}{\sqrt{\frac{\frac{(n-1)S^2}{\sigma_K^2}}{n-1}}} = \frac{\hat{\beta} - \beta}{S / \sqrt{n\mu_M^2}}$$

t-fordelt med n-1=4 frihetsgrader.

$$P(-t_{4,\alpha/2} < \frac{\hat{\beta} - \beta}{S/\sqrt{n\mu_M^2}} < t_{4,\alpha/2}) = 1 - \alpha$$

og

$$\hat{\beta} \pm t_{4,\alpha/2} S / \sqrt{n\mu_M^2}$$

er et $1 - \alpha$ konfidensintervall for β .

Realisert verdi blir

$$167.5/179 \pm 2.78 \cdot 5.1/\sqrt{5 \cdot 179^2} = \% = (0.90, 0.97)$$

Alternativt kan en ta utgangspunkt i

$$P(-t_{4,\alpha/2} < \frac{\bar{X} - \mu_K}{S/\sqrt{n}} < t_{4,\alpha/2}) = 1 - \alpha$$

$$P(-t_{4,\alpha/2} < \frac{\bar{X}/\mu_M - \mu_K/\mu_M}{S/\sqrt{n\mu_M^2}} < t_{4,\alpha/2}) = 1 - \alpha$$

$$P(-t_{4,\alpha/2} < \frac{\hat{\beta} - \beta}{S/\sqrt{n\mu_M^2}} < t_{4,\alpha/2}) = 1 - \alpha.$$

Oppgave 2

b)

a)
$$E(\hat{M}) = E(\frac{1}{2}(\bar{X} + \bar{Y})) = \frac{1}{2}(\mu + \mu) = \mu$$

$$Var(\hat{M}) = Var(\frac{1}{2}(\bar{X} + \bar{Y})) = \frac{1}{4}(Var(\bar{X}) + Var(\bar{Y})) = \frac{1}{4}(Var(\bar{X}) + Var(\bar{Y}))$$

$$= \frac{1}{4}(\sigma^2/n + 4\sigma^2/(2n)) = \frac{3}{4}\sigma^2/n$$

$$f_{\bar{X},\bar{Y}}(\bar{x},\bar{y}) = f_{\bar{X}}(\bar{x})f_{\bar{Y}}(\bar{y}) \propto \exp\left(-0.5\frac{(\bar{x}-\mu)^2}{\sigma^2/n} - 0.5\frac{(\bar{y}-\mu)^2}{4\sigma^2/2n}\right)$$
$$l(\mu;\bar{x},\bar{y}) \propto -0.5\frac{(\bar{x}-\mu)^2}{\sigma^2/n} - 0.5\frac{(\bar{y}-\mu)^2}{4\sigma^2/2n}$$

$$\frac{\partial l}{\partial \mu} = \frac{\bar{x} - \mu}{\sigma^2/n} + \frac{\bar{y} - \mu}{4\sigma^2/2n} = 0$$
$$2(\bar{x} - \mu) + \bar{y} - \mu = 0$$
$$\mu = \frac{1}{3}(2\bar{x} + \bar{y})$$

At dette er et maksimum følger av at $\frac{\partial^2 l}{\partial \mu^2} < 0$.

Dermed er

$$M^* = \frac{1}{3} \left(2\bar{X} + \bar{Y} \right)$$

Forventingen:

$$E(M^*) = E(\frac{1}{3}(2\bar{X} + \bar{Y})) = \frac{1}{3}(2\mu + \mu) = \mu$$

Varians:

$$Var(M^*) = Var(\frac{1}{3}(2\bar{X} + \bar{Y})) = \frac{1}{9}(4\sigma^2/n + 4\sigma^2/(2n)) = \frac{2}{3}\sigma^2/n$$

Begge estimatorene er forventningsrette men M^* har mindre varians. Derfor foretrekkes denne estimatoren.

c)
$$H_0: \mu = 100 \text{ mot } H_1: \mu < 100$$

$$\frac{M^* - 100}{\sqrt{2/(3\cdot 4)}}$$

er standard normalfordelt under H_0 . Kritisk område blir $C = (-\infty, -z_{0.05}) = (-\infty, -1.65)$. Realisert verdi for testobservator blir $1.06 \notin C$ og H_0 beholdes.

d)

$$V_1 = \frac{(n-1)S_1^2}{\sigma^2}$$

er χ^2 -fordelt med n-1 frihetsgrader og

$$V_2 = \frac{(2n-1)S_2^2}{4\sigma^2}$$

er χ^2 -fordelt med 2n-1 frihetsgrader. Siden V_1 og V_2 dessuten er uavhengige blir summen χ^2 -fordelt med n-1+2n-1=3n-2 frihetsgrader.

$$T_{3n-2} = \frac{\frac{M^* - \mu}{\sqrt{\frac{2}{3n}}\sigma}}{\sqrt{\frac{V}{3n-2}}} = \frac{\frac{M^* - \mu}{\sqrt{\frac{2}{3n}}\sigma}}{\sqrt{\frac{\frac{(n-1)S_1^2}{\sigma^2} + \frac{(2n-1)S_2^2}{4\sigma^2}}{3n-2}}}$$
$$= \frac{M^* - \mu}{\sqrt{\frac{4(n-1)S_1^2 + (2n-1)S_2^2}{6n(3n-2)}}}$$

er t-fordelt med 3n-2 frihetsgrader.

Oppgave 3

a) La X_1 være antall må for Tyskland og X_2 være antall mål for Frankrike.

$$P(X_1 = 5, X_2 = 5) = p_T^5 p_F^5 = 0.0551$$

$$P(X_1 = 3, X_2 = 3) = {5 \choose 3} p_T^3 (1 - p_T)^2 {5 \choose 3} p_F^3 (1 - p_F)^2 = 0.06322$$

Sannsynligheten for uavgjort etter del 1 blir

$$p_u = P(X_1 = X_2) = \sum_{i=0}^{5} {5 \choose i} p_T^i (1 - p_T)^{5-i} {5 \choose i} p_F^i (1 - p_F)^{5-i} = 0.2728$$

b) La X være antall runder i del 2 gitt at stillingen er uavgjort etter del 1.

$$p(X = 1) = p_T(1 - p_F) + p_F(1 - p_T) = 0.38$$

La A være hendelsen at Tyskland vinner.

$$P(A|X=1) = \frac{P(A \cap X=1)}{P(X=1)} = \frac{p_T(1-p_F)}{p_T(1-p_F) + p_F(1-p_T)} = 0.6316$$

$$P(A|X=i) = \frac{P(A \cap X=i)}{P(X=i)} = \frac{p_T(1-p_F)P(X>i-1)}{(p_T(1-p_F)+p_F(1-p_T))P(X>i-1)}$$
$$= \frac{p_T(1-p_F)}{p_T(1-p_F)+p_F(1-p_T)} = 0.6316$$

$$P(A) = \sum_{i=1}^{\infty} P(A|X=i)P(X=i)$$

$$= \frac{p_T(1-p_F)}{p_T(1-p_F) + p_F(1-p_T)} \sum_{i=1}^{\infty} P(X=i)$$

$$= \frac{p_T(1-p_F)}{p_T(1-p_F) + p_F(1-p_T)} = 0.6316$$

c) Hver runde er et bernulliforsøk, dvs vi har to utfall, suksess eller fiasko. Runder i en sekvens av forsøk er uavhengige med samme suksess-sannsynlighet. Antall runder til første suksess X er da geometrisk fordelt med suksess-sannsynlighet

$$p = p_T(1 - p_F) + p_F(1 - p_T) = 0.38$$

Forventning blir

$$E(X) = 1/p = 2.63$$

og varians blir

$$Var(X) = (1-p)/p^2 = 4.29$$

d) La p_u være sannsynligheten for uavgjort etter del 1 og V være antall runder som spilles i del 2. V har fordeling

$$p(v) = \begin{cases} 1 - p_u & v = 0\\ p_u (1 - p)^v \cdot p & v > 0 \end{cases}$$
$$E(5 + V) = 5 + E(V) = 5 + \sum_{v=0}^{\infty} v \cdot p(v) = 5 + p_u E(X) = 5.71$$

$$Var(5+V) = Var(V) = E(V^2) - E(V)^2 = \sum_{v=0}^{\infty} v^2 \cdot p(v) - E(V)^2$$

$$= \sum_{v=1}^{\infty} v^2 \cdot p(v) - E(V)^2 = p_u \sum_{v=1}^{\infty} v^2 \cdot (1-p)^v \cdot p - E(V)^2$$
$$= p_u E(X^2) - E(V)^2 = p_u (Var(X) + E(X)^2) - E(V)^2 = 2.54$$