Aux # 12

	51858 51 000 001 (4)
lī	22 n enteros 6 30 167
C.	P2 n enteros \in 30,, k? \rightarrow \uparrow (a,b) \rightarrow $\#$ en t . c t e .
	Tiempo O(n+k) de proproc.
	TOWN OCH TO COMPANY
	Sol: Si constriyo: la tabla de conteos y lugo hago sumas
	parciales ly ma table T
	T[i] = E xj # elementos & i
	j=0 1 # de apariciones de j, suma de frecuenças
($O(k) \begin{cases} \text{for } i = 0k \\ \text{C(i)} \leftarrow 0 \end{cases} \qquad A(i) = j \rightarrow C(j) + j$
O(n+k)	
,	O(n) { for i = 1n: C[A[i]]++ // Agui ([i] = xi, uso Counting Sort.
1	
	9(K) for i = 0 k C[i] = C[i] + C[i-1] // considerando [C[-1] = 0)
	(Cliss Cers + cer 11 11 constraints
	A = A + A + A + A + A + A + A + A + A +
	trego n(a,b) = C[b] - C[a-1]
	Esta respuesta es la gie toma tiempo de.
	P3 m procs.
	lista de tareas trtn
	con tiempor de precesamiento 7pn > 0
	· Algoritmo on ine conoce pi solo cuanto ti llega:
	· Carga Epi
	ti e proc

Algoritmo: enviar la tarea al proc. con menor carga 1. - Dem que es (2-1) - competitivo. · "Hint" Si-s es el procesador con mayor carga, caré ocurre con el tiempo de ació de las demás: · Si no soy s, mitiempo de ocio es & a la cítima tarea asignada a s. in pres de lo contrario esa tarca me habita sido asignada = togo & max qi Por ono lado m.c(I) = Ecargas + Etoco 2 costo total del alg. =) m c (I). < Epc + (m-1) max pi Por otro lado, Pi E pi (no predo demorar menor que un caso ideal con tocis = 0 Cou tocis = 0 Ademais, OPT(I) > max pi (no predo dimorar menos que la tarea + larga) =) $C(I) \in OPT(I) + (m-1) \cdot OPT(I) = (2-1) OPT(I)$ =) el algoritmo es (2-1) - competitivo.

2. Demostrar que la cota es optima para el algonitmo. O sea goe 7 un caso I* en gre C(I*) = (2-1) OPT(I*) Consideraremos m. (m-1) tareas de costo 1 y luego otra de costo por determinar. El algoritmo online va a dejar los mi procs con carga (m-1) Ahora llega ma tarea de costo X =) costo = (m-1+x) (uno de ellos kudrá carga máx m-1+x) ¿ Qué hana OPT! OPT conoce todas, las tareas. · For ejemplo, Sabiendo que x piede ser grande, reservoir un proc para X. =) Uso (m-1) pros para las de tamaño 1 -> m-1 procs con Carga m =) costo = max (m-1,x) \rightarrow) $C(I) = m-1+x \stackrel{2-m}{=} x = m = 2m-1 = 2-\frac{1}{m}$ OPT(I) max(m-1,x) $X, |X| = n, 0, x \circ y \dots$ 4x, y, 2 EX, (xoy) 02 = X 0 (y 0 2) · Naive : chequear todes las tuplas (x, y, 2) =) tiemps O(n2) · Como con otros casos (mult. de matrices, etc) podría buscar in testigo (x*, y*, z*) o similar. El problema esque los les tigos preden no ser deusos. Existe ma familia de ops binara top el número de testigos es cte.

Escogemos ciencionitos de tiplas como testigos Sea P= P(x) Cada REP prede verse como un vector binario de largo n, donde el i-ésimo bit denota si el i-ésimo exemento de X está o no en P (R= E vi i) Definimos: R+S = 5 (rilsi).i $R \circ S = \sum_{i,j \in X} (r_i s_j)(i \circ j) \in P$ dR = E(xri) i para a cte. · Algoritmo. - elegir R,S,T de P (uniforme, indep) - Si (ROS) OT + RO(S.+) 3 O(n2) responder no < seguro responder si = Avede equivocarse · o es asociativa en X => o es asociativa en P (fácil de mortrar (7)Prop: Si o No es associatio, al memos 1 de las tuplas RST sou testigos. 0 sea, P[(R . S) . T = R . (S . T)] 5 7 · Vamos a particionar P3 en grupos de 8, +9 cada grupo tome al menos 1 testigo. Si "o" no es asociativa, 3 (i,j,k) +9 (i o j) o le 7 1'o j'o E) · Sea Ro to in & Ro, So to j & So, To to kt To

3

3

1			1.0							6)			0	1	1 5	5.	2											
L	R	90		a	m	2001	M	21		4	1	=	f	(Ø	V		1	n											
										2	1	-	2	D	1	, ,	1	*											
-										-	1	-	7	0	l	/)	}	< 4											
-			^	,				,		-	٥				1							4							
Se	a		(, (R,	S;	T) =	2	0	+	(4	3	1)	(201	1	t	i,	ji	K					-		
Sei									j€	3																			
									,ce																				
																						ł	. 0						
																							12						
																										18		,	
																			Ų.					()		-		on i	
																							536						
										1													1904	1			44.		
																									09		0.7		
																								rit.					
																											0	112	
																		7.											