Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

 $4~{\rm paths}$ found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 176.35

Figure 1: Outline of path 1

2.1.1 Jones Oxidation

1. (e)-a,b-diiodoallyl alcohol - available at Sigma-Aldrich

Products:

Substrates:

1. 2,3-diiodo-acrylic acid

 $\textbf{Typical conditions:} \ \operatorname{cromate.sulfate.H2O.acetone}$

Protections: none

Reference: 10.1002/9780470638859.conrr349 and 10.1021/jm00270a004

2.1.2 Steglich Esterification

Substrates:

- 1. 2,3-diiodo-acrylic acid
- 2. Sorbic alcohol available at Sigma-Aldrich

Products:

1. $C/C=C/C=C/COC(=O)/C(I)=C\setminus I$

 $\textbf{Typical conditions:} \ \, \text{alcohol.DCC.DMAP.DCM} \ \, \text{or thiol.DCC.DMAP.DCM}$

Protections: none

Reference: 10.1002/anie.197805221

Retrosynthesis ID: 10171

2.1.3 Reformatsky Reaction

Substrates:

- 1. Ethanal available at Sigma-Aldrich
- $2. \ C/C = C/C = C/COC(=O)/C(I) = C \setminus I$

Products:

1. $C/C=C/C=C/COC(=O)/C(=C\setminus I)C(C)O$

Typical conditions: Zn.THF

Protections: none

Reference: 10.1016/j.bmc.2016.07.052 p. 4521, 4520 and

10.1016/j.ejmech.2013.07.047 p. 214, 218

Retrosynthesis ID: 11539

2.1.4 Palladium catalysed alkylation of vinyl iodides

Substrates:

1. p-methoxybenzyl iodide

 $2. \ C/C=C/C=C/COC(=O)/C(=C\backslash I)C(C)O$

Products:

1. $C/C=C/C=C/COC(=O)/C(=C\setminus Cc1ccc(OC)cc1)C(C)O$

Typical conditions: [Pd].catalyst

Protections: none

Reference: 10.1016/j.bmcl.2005.12.066 and 10.1021/ol052070m and 10.1021/ol5023195 and 10.1002/anie.200703134 and 10.1016/j.bmcl.2005.09.084 and 10.1021/ol0344873

2.1.5 Allylic Oxidation of Alkenes

Substrates:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus Cc1ccc(OC)cc1)C(C)O$$

Products:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C)O$$

 $\textbf{Typical conditions:} \ tBuOOH.Pd(OH)2/C \ or \ PhI(OAc)2 \ or \ SeO2$

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.1.6 Diels-Alder

Substrates:

 $1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C)O$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

 $ANIE1668{>}3.0.CO; 2\text{-}Z\ AND 10.1021/ja062508t$

2.1.7 Swern Oxidation

Substrates:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)O)cc1$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)=O)cc1$

Typical conditions: oxalyl chloride.DMSO.DCM.NMe3.-40C

Protections: none

Reference: 10.1055/s-1990-27036

Retrosynthesis ID: 11163

2.2 Path 2

Score: 181.37

Figure 2: Outline of path 2

2.2.1 Synthesis of cyclic N,S,O/N,O -acetals

Substrates:

- 1. 1-(3-Furyl)-1-ethanone available at Sigma-Aldrich
- 2. 1 available at Sigma-Aldrich

Products:

1. 2-furan-3-yl-2-methyl-[1,3]dioxolane

Typical conditions: heat or pTsOH

Protections: none

Retrosynthesis ID: 9530

2.2.2 Oxidation furans to 2-(5H)-furanones

Substrates:

1. 2-furan-3-yl-2-methyl-[1,3]dioxolane

Products:

 $1. \ \mathrm{CC1}(\mathrm{C2}{=}\mathrm{CC}(=\mathrm{O})\mathrm{OC2})\mathrm{OCCO1}$

Typical conditions: 1. NBS.CHCl3.EtOH.rt 2. HCl.acetone.H2O.rt

Protections: none

Reference: DOI: 10.1055/s-2005-869865

Retrosynthesis ID: 50716

2.2.3 Ring opening of lactones with organometallic reagents

Substrates:

- $\begin{array}{lll} \hbox{1. 4-Methoxyphenylmagnesium bromide solution -} & \textit{available at Sigma-Aldrich} \end{array}$
- 2. CC1(C2=CC(=O)OC2)OCCO1

Products:

1. $COc1ccc(C(=O)/C=C(\setminus CO)C2(C)OCCO2)cc1$

Typical conditions: ether.-78C

Protections: none

Reference: 10.1002/jhet.233 and 10.1002/ejoc.200801000 and

10.1271/bbb.67.1744

Retrosynthesis ID: 9990232

2.2.4 Jones Oxidation

Substrates:

1. $COc1ccc(C(=O)/C=C(\setminus CO)C2(C)OCCO2)cc1$

Products:

 $1. \ COc1ccc(C(=O)/C=C(\setminus C(=O)O)C2(C)OCCO2)cc1 \\$

Typical conditions: cromate.sulfate.H2O.acetone

Protections: none

Reference: 10.1002/9780470638859.conrr349 and 10.1021/jm00270a004

Retrosynthesis ID: 11160

2.2.5 Steglich Esterification

Substrates:

- 1. $COc1ccc(C(=O)/C=C(\setminus C(=O)O)C2(C)OCCO2)cc1$
- 2. Sorbic alcohol available at Sigma-Aldrich

Products:

 $1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C1(C)OCCO1$

Typical conditions: alcohol.DCC.DMAP.DCM or thiol.DCC.DMAP.DCM

Protections: none

Reference: 10.1002/anie.197805221

2.2.6 Diels-Alder

Substrates:

 $1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C1(C)OCCO1$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C2(C)OCCO2)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

Retrosynthesis ID: 18116

2.2.7 Hydrolysis of ketals

Substrates:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C2(C)OCCO2)cc1$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)=O)cc1$

Typical conditions: H2O.HCl

Protections: none

Reference: 10.1021/jo0159035 and 10.1021/jo00194a003 and

Retrosynthesis ID: 31013139

2.3 Path 3

Score: 181.72

Figure 3: Outline of path 3

2.3.1 Aerobic oxyphosphorylation of terminal alkynes

Substrates:

1. Diethyl phosphite - available at Sigma-Aldrich

2. 4-Ethynylanisole - available at Sigma-Aldrich

Products:

 $1. \ \, 4\text{-methoxy-phenacylphosphonsa} eure\text{-diaethylester}$

Typical conditions: Cu(acac)2.FeCl3.TEA.DMSO.O2.80C

Protections: none

Reference: DOI: 10.1021/acs.joc.5b00408

Retrosynthesis ID: 9600

2.3.2 Acylation of amides

Substrates:

1. 1,3-oxazolidine-2-thione - available at Sigma-Aldrich

2. a-keto-buttersaeurechlorid

Products:

1. CCC(=O)C(=O)N1CCOC1=S

Typical conditions: LiHMDS.THF

Protections: none

10.1016/j.ejmech.2014.09.065 AND 10.1016/j.ejmech.2014.09.065

2.3.3 HWE olefination

Substrates:

- 1. CCC(=O)C(=O)N1CCOC1=S
- $2.\ \, 4\hbox{-methoxy-phenacylphosphonsaeure-diaethylester}$

Products:

 $1. \ CC/C(=C/C(=O)c1ccc(OC)cc1)C(=O)N1CCOC1=S$

Typical conditions: 1.Base 2.RCHO

Protections: none

Reference: 10.1002/jlcr.464 and 10.1016/S0968-0896(03)00373-0 and 10.1016/j.bmcl.2011.04.076 and 10.1016/j.tetlet.2012.04.044 and 10.1021/ja0581604

2.3.4 Allylic Oxidation of Alkenes

Substrates:

 $1. \ \ CC/C(=C/C(=O)c1ccc(OC)cc1)C(=O)N1CCOC1=S$

Products:

 $1. \ COc1ccc(C(=O)/C=C(/C(C)=O)C(=O)N2CCOC2=S)cc1 \\$

 $\textbf{Typical conditions:} \ tBuOOH.Pd(OH)2/C \ or \ PhI(OAc)2 \ or \ SeO2$

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

${\bf 2.3.5}\quad {\bf Deprotection\ of\ N-Acyloxazolidinethiones\ in\ Esters}$

Substrates:

1. Sorbic alcohol - available at Sigma-Aldrich

 $2. \ COc1ccc(C(=O)/C=C(/C(C)=O)C(=O)N2CCOC2=S)cc1 \\$

Products:

 $1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C) = O$

 $\textbf{Typical conditions:} \ \ \textbf{MeOH.imidazole.0C}$

Protections: none

Reference: DOI: 10.1021/jo001387r

2.3.6 Diels-Alder

Substrates:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C) = O$$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.4 Path 4

Score: 186.11

Figure 4: Outline of path 4

2.4.1 Carboxylation of terminal alkynes

${\bf Substrates:}$

1. 3-(4-methoxyphenyl)-1-propyne

Products:

1. 1-p-anisyl-but-2-in-saeure

Typical conditions: 1.nBuLi or LDA.2.CO2

Protections: none

Reference: 10.1002/anie.201412468 AND 10.1016/j.tet.2008.10.107 AND 10.1002/anie.200902760 AND 10.1021/ol800583r AND 10.1002/hlca.200800446

2.4.2 Steglich Esterification

Substrates:

- $1. \ 1\hbox{-p-anisyl-but-}2\hbox{-in-saeure}$
- 2. Sorbic alcohol available at Sigma-Aldrich

Products:

 $1. \ C/C = C/C = C/COC(=O)C\#CCc1ccc(OC)cc1$

 $\textbf{Typical conditions:} \ \, \text{alcohol.DCC.DMAP.DCM} \ \, \text{or thiol.DCC.DMAP.DCM}$

Protections: none

Reference: 10.1002/anie.197805221

${\bf 2.4.3}\quad {\bf Stereospecific\ synthesis\ of\ Baylis-Hillman\ adducts}$

Substrates:

- $1. \ C/C = C/C = C/COC(=O)C\#CCc1ccc(OC)cc1$
- 2. Ethanal available at Sigma-Aldrich

Products:

1. $C/C=C/C=C/COC(=O)/C(=C\setminus Cc1ccc(OC)cc1)C(C)O$

Typical conditions: 1)DIBAH/HMPA.THF.25C 2)n-Bu2BOTf(cat.).-78C

Protections: none

Reference: DOI: 10.1016/S0040-4039(98)00850-8

2.4.4 Allylic Oxidation of Alkenes

Substrates:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus Cc1ccc(OC)cc1)C(C)O$$

Products:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C)O$$

 $\textbf{Typical conditions:} \ tBuOOH.Pd(OH)2/C \ or \ PhI(OAc)2 \ or \ SeO2$

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.4.5 Swern Oxidation

Substrates:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C)O$$

Products:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C) = O$$

Typical conditions: oxalyl chloride.DMSO.DCM.NMe3.-40C

Protections: none

Reference: 10.1055/s-1990-27036

2.4.6 Diels-Alder

Substrates:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C) = O$$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t