Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа *Р3112* Студент *Сенина Мария Михайловна* Преподаватель *Сорокина Е К*

К работе допущен Работа выполнена

Рабочий протокол и отчёт по лабораторной работе 2-04 Определение вязкости жидкости

1 Цель работы

Определить коэффициент вязкости масла.

2 Задачи, решаемые при выполнении работы

- Определить коэффициент внутреннего трения касторового масла методом Стокса.
- 2. Проверка справедливости формулы Стокса для шариков разного диаметра.

3 Объект исслевдования

Масло в сосуде.

4 Метод экспериментального исследования

В жидкостях и некоторых газах величина силы внутреннего трения между слоями, возникающего при движении одних слоёв относительно других пропорциональна площади слоёв ΔS и градиенту их скорости $\frac{dv}{dx}$. Коэффициент этой пропорциональности - η . Т.е. $F = \eta \frac{dv}{dx} \Delta S$. η - коэффициент вязксти жидкости и зависит от физических свойств данной жидкости и её температуры.

Этот коэффициент можно определить исходя из закона Стокса - если шарик движется в жидкости с постоянной скоростью сила трения в жидкости будет ровна $F=6\pi\eta vr$. Сделав поправку на то, что мы будем ронять дробинки не в бесконечной жидкости, а в целиндрическом сосуде можно получить следующую зависимость: $F=\frac{6\pi\eta vr}{k}$, где k - та сама поправка, $k=\frac{1}{1+\frac{2Ar}{R}}$, где r радиус шарика, а R - радиус сосуда.

Т.к. скорость шарика постоянна на него действует нулевое ускорение. Значит $F_{mp}+F_a=mg$, откуда можно выразить коэффициент вязкости $\eta=\frac{9}{2}\frac{r^2(\rho_{uu}-\rho_{osc})}{v}kg$.

Таким образом мы можем посчитать значение η , измерив раадиус шарика на микроскопе, радиус целиндра, расстояние, которое шарик проходит с неизменной скоростью и засекая время, за которое он это сделает.

5 Рабочие формулы

- 1. Среднее значение $\frac{\sum_{i=1}^{n} x_i}{n}$
- 2. Закон Стокса: зависимость силы трения от скорости $F = \frac{6\pi \eta v r}{k}$
- 3. $k=\frac{1}{1+\frac{2\cdot 4r}{R}}$ поправка для закона Стокса, для шарика движущегося в целиндрическом сосуде
- 4. Коэффициент вязкости $\eta = \frac{9}{2} \frac{r^2(\rho_w \rho_{orc})}{v} kg$.
- 5. Погрешность коэффициента вязкости $\Delta \eta = \eta \sqrt{(2\frac{\Delta r}{r})^2 + (\frac{\Delta v}{v})^2 + (\frac{\Delta g}{g})^2 + \frac{(\Delta \rho_w)^2 (\Delta \rho_{osc})^2}{(\rho_w \rho_{osc})^2}}$
- 6. Диаметр дробинки $d = \overline{d} = \frac{\sum_{i=1}^{N} (x_{2i} x_{1i})}{N}$
- 7. Радиус дробинки $r=\frac{d\alpha}{2},$ где α погрешность микроскопа
- 8. Погрешность радиуса дробинки $\Delta r = (\frac{\Delta d}{d} + \frac{\Delta \alpha}{\alpha})r$
- 9. Скорость $v = \frac{l}{t}$
- 10. Погрешность скорости $\Delta v = \sqrt{(\frac{\Delta l}{l})^2(\frac{\Delta t}{t})^2}$
- 11. Погрешность измерений через коэффицент Стьюденса $\Delta x = t_{a_{\partial os,N}} \sqrt{\frac{\sum\limits_{i=1}^{N} (x-\bar{x})^2}{N(N-1)}}$ где $t_{a_{\partial os,N}}$ коэффицент Стьюдентса для доверительной вероятности $a_{\partial os}$ и количества измерений N.

6 Измерительные приборы

Погрешности измерительных приборов

or pominour nomephrousing inproopes						
	№	Наименование	Используемый диапазон	Погрешность прибора		
	1	Микроскоп	$(0.9 - 1.9)10^{-3}$ MM	110^{-3} MM		
	2	Секундомер	6.32 - 26.5 с	0,01 с		

б) вид шкалы в микроскопе

Рис. 1: Стенд

7 Схема установки

Параметры стенда

параметры стенда						
Nº	Наименование	Значение	Погрешность			
1	Pадиус колбы R	2.95 см	0.05 см			
2	Плотность шарика ρ_{u}	$7.8 \frac{e}{c_{M}^{3}}$	$0.1 \frac{z}{c_{M}^{3}}$			
3	Плотность масла $\rho_{\scriptscriptstyle \mathcal{M}}$	$0.96 \frac{z}{c_{\mathcal{M}^3}}$	$0.04 \frac{z}{c_M^3}$			
4	Цена деления микроскопа α	$0.266 \frac{MM}{\partial e_A}$	$0.001 \frac{MM}{\partial e_A}$			
5	Расстояние, которое проходит шарик l	10 см	0.5 см			

8 Результаты прямых измерений

См. в приожении 1

9 Расчёт результатов косвенных измерений

Для каждой таблицы по формулам $d=\overline{d}=\frac{\sum_{i=1}^{N}(x_{2i}-x_{1i})}{N}$ (6) и $\Delta r=(\frac{\Delta d}{d}+\frac{\Delta\alpha}{\alpha})r$ (11) я вычислила диаметр каждой дробинки. Оказалось, что две из трёх дробинок, которые мне дали оказались одного размера с точностью до погрешности, а третья дробинка была в два раза меньше первых двух:

- 1. $d_1 = 3.57 \ дел$ и $\Delta d_1 = 0.04 \ дел$
- 2. $d_2 = 7.43 \ \partial e$ л и $\Delta d_2 = 0.06 \ \partial e$ л
- 3. $d_3 = 7.47 \ \partial e$ л и $\Delta d_3 = 0.05 \ \partial e$ л

Далее по формулам $r=\frac{d\alpha}{2}$ и $\Delta r=(\frac{\Delta d}{d}+\frac{\Delta\alpha}{\alpha})r$ я посчитала значения радиусов дробинок:

$$1. \ \, r_1 = \frac{3.57 \ \text{дел} \ 266 \cdot 10^{-3} \ \text{м/дел}}{2} = 475 \cdot 10^{-6} \ \text{м и } \Delta r_1 = (\frac{0.04 \ \text{дел}}{3.57 \ \text{дел}} + \frac{1 \cdot 10^{-3} \ \text{м/дел}}{266 \cdot 10^{-3} \ \text{м/дел}}) \cdot 475 \cdot 10^{-6} = 5 \cdot 10^{-6} \ \text{м}$$

2.
$$r_1=\frac{7.43\ \text{дел}\ 266\cdot 10^{-3}\ \text{м/дел}}{2}=988\cdot 10^{-6}\ \text{м}$$
 и $\Delta r_1=(\frac{0.06\ \text{дел}}{7.43\ \text{дел}}+\frac{1\cdot 10^{-3}\ \text{м/дел}}{266\cdot 10^{-3}\ \text{м/дел}})\cdot 988\cdot 10^{-6}=9\cdot 10^{-6}\ \text{м}$

3.
$$r_1 = \frac{7.47 \ \partial e \land \ 266 \cdot 10^{-3} \ \textit{м/de} \land}{2} = 994 \cdot 10^{-6} \ \textit{м}$$
 и $\Delta r_1 = (\frac{0.05 \ \partial e \land}{7.47 \ \partial e \land} + \frac{1 \cdot 10^{-3} \ \textit{м/de} \land}{266 \cdot 10^{-3} \ \textit{м/de} \land}) \cdot 994 \cdot 10^{-6} = 7 \cdot 10^{-6} \ \textit{м}$

Зная, время, за которое каждый шарик прошёл расстояние l=10 см, по формулам $v=\frac{l}{t}$ и $\Delta v=\sqrt{(\frac{\Delta l}{l})^2(\frac{\Delta t}{t})^2}$ я посчитала скорости шариков:

1.
$$v_1 = \frac{0.1 \text{ M}}{26.5 \text{ c}} = 38 \cdot 10^{-4} \frac{\text{M}}{c}, \, \Delta v = \sqrt{(\frac{0.005 \text{ M}}{0.1 \text{ M}})^2 (\frac{\Delta 0.01 \text{ c}}{26.5 \text{ c}})^2} = 2 \cdot 10^{-4} \frac{\text{M}}{c}$$

2.
$$v_1 = \frac{0.1 \text{ M}}{6.72 \text{ c}} = 149 \cdot 10^{-4} \frac{\text{M}}{c}, \ \Delta v = \sqrt{(\frac{0.005 \text{ M}}{0.1 \text{ M}})^2 (\frac{\Delta 0.01 \text{ c}}{6.72 \text{ c}})^2} = 7 \cdot 10^{-4} \frac{\text{M}}{c}$$

3.
$$v_1 = \frac{0.1 \text{ M}}{6.32 \text{ c}} = 158 \cdot 10^{-4} \frac{\text{M}}{c}, \ \Delta v = \sqrt{(\frac{0.005 \text{ M}}{0.1 \text{ M}})^2 (\frac{\Delta 0.01 \text{ c}}{6.32 \text{ c}})^2} = 7 \cdot 10^{-4} \frac{\text{M}}{c}$$

А по формулам $\eta = \frac{9}{2} \frac{r^2(\rho_w - \rho_{\text{osc}})}{v} kg$, где $k = \frac{1}{1 + \frac{2.4r}{R}}$ и $\Delta \eta = \eta \sqrt{(2\frac{\Delta r}{r})^2 + (\frac{\Delta v}{v})^2 + (\frac{\Delta g}{g})^2 + \frac{(\Delta \rho_w)^2 - (\Delta \rho_{\text{osc}})^2}{(\rho_w - \rho_{\text{osc}})^2}}$ я посчитала η и его погрешность:

$$1. \ \eta_1 = \frac{9}{2} \frac{(475 \cdot 10^{-6} \ \text{m})^2 (7800 \ \text{kg/m}^3 - 960 \ \text{kg/m}^3)}{38 \cdot 10^{-4} \ \text{m/c}} \cdot \frac{1}{1 + \frac{2 \cdot 4 \cdot 47510^{-6} \ \text{m}}{29 \cdot 5 \cdot 10^{-3} \ \text{m}}} \cdot 9.82 \ \text{m/c}^2 = 858 \cdot 10^{-3} \ \text{Ha} \cdot c$$

$$\Delta \eta_1 = 858 \cdot 10^{-3} \ \text{Ha} \cdot c \sqrt{\left(2 \frac{5 \cdot 10^{-6} \ \text{m}}{475 \cdot 10^{-6} \ \text{m}}\right)^2 + \left(\frac{2 \cdot 10^{-4} \ \text{m/c}}{38 \cdot 10^{-4} \ \text{m/c}}\right)^2 + \frac{(100 \ \text{kg/m}^3)^2 - (40 \ \text{kg/m}^3)^2}{(7800 \ \text{kg/m}^3 - 960 \ \text{kg/m}^3)^2} = 48 \cdot 10^{-3} \ \text{Ha} \cdot c$$

2.
$$\eta_2 = \frac{9}{2} \frac{(988 \cdot 10^{-6} \text{ m})^2 (7800 \text{ kg/m}^3 - 960 \text{ kg/m}^3)}{149 \cdot 10^{-4} \text{ m/c}} \cdot \frac{1}{1 + \frac{2.4 \cdot 988 \cdot 10^{-6} \text{ m}}{29 \cdot 5 \cdot 10^{-3} \text{ m}}} \cdot 9.82 \text{ m/c}^2 = 907 \text{ } \Pi a \cdot c$$

$$\Delta \eta_1 = 907 \cdot 10^{-3} \text{ } \Pi a \cdot c \sqrt{(2 \frac{9 \cdot 10^{-6} \text{ m}}{988 \cdot 10^{-6} \text{ m}})^2 + (\frac{7 \cdot 10^{-4} \text{ m/c}}{149 \cdot 10^{-4} \text{ m/c}})^2 + \frac{(100 \text{ kg/m}^3)^2 - (40 \text{ kg/m}^3)^2}{(7800 \text{ kg/m}^3 - 960 \text{ kg/m}^3)^2}} = 50 \cdot 10^{-3} \Pi a \cdot c$$

3.
$$\eta_3 = \frac{9}{2} \frac{(994 \cdot 10^{-6} \text{ m})^2 (7800 \text{ mz/m}^3 - 960 \text{ rz/m}^3)}{158 \cdot 10^{-4} \text{ m/c}} \cdot \frac{1}{1 + \frac{2 \cdot 4 \cdot 994 \cdot 10^{-6} \text{ m}}{29 \cdot 5 \cdot 10^{-3} \text{ m}}} \cdot 9.82 \text{ m/c}^2 = 862 \cdot 10^{-3} \text{ } \Pi a \cdot c$$

$$\Delta \eta_1 = 862 \cdot 10^{-3} \text{ } \Pi a \cdot c \sqrt{(2 \frac{7 \cdot 10^{-6} \text{ m}}{994 \cdot 10^{-6} \text{ m}})^2 + (\frac{7 \cdot 10^{-4} \text{ m/c}}{158 \cdot 10^{-4} \text{ m/c}})^2 + \frac{(100 \text{ rz/m}^3)^2 - (40 \text{ rz/m}^3)^2}{(7800 \text{ rz/m}^3 - 960 \text{ rz/m}^3)^2} = 46 \cdot 10^{-3} \Pi a \cdot c$$

Получается, что:

1.
$$\eta_1 = (858 \pm 48) \cdot 10^{-3} \ \Pi a \cdot c$$

2.
$$\eta_2 = (907 \pm 50) \cdot 10^{-3} \ \Pi a \cdot c$$

3.
$$\eta_3 = (862 \pm 46) \cdot 10^{-3} \ \Pi a \cdot c$$

10 Окончательные результаты

$$\eta = (876 \pm 81)10^{-3} \Pi a \cdot c$$
 $\delta \eta = 0.09$

11 Выводы

Я нашла коэффициент внутреннего трения касторового масла методом Стокса с точностью до 9%. Проведя это эксперимет я выяснила, что размер шарика не влияет на результат эксперимента. Хотя два из трёх моих шариков были одинакового размера, так что результаты можно улучшить, проведя повторное исследование с другим размером шаров.

Приложение 1

Сенина Мария Михайловна Р3112

Таблица 1

$(R \pm \Delta R)$ cm	$(2,95 \pm 0,05)$
$(\rho \pm \Delta \rho)$ ke/ M^3	(7,8 ±0,1) 2/cm3
$(ho_0 \pm \Delta ho_0)$ ке/м 3	(0,96 ±0,04) V(cu3
$(\alpha \pm \Delta \alpha)$ мм/дел	(01266 ± 9,001)
$(l \pm \Delta l)$ см	(10 ± 0,5)cm

purap. Prudu. yena denerius rurp.

Таблица 2 Маленький

Первый шарик					
N опыта	1	2	3	4	5
x_1 дел	1.05	3,04	2,06	115	254
х2 дел	4,67	6,61	5,61/	4,69	6,11
d дел	3,62	3.57	3,55	3.54	3,57
$(\bar{d} \pm \Delta \bar{d}) \partial e n$ 3,57 ± 0.04 8					/
$(r \pm \Delta r) MM$ $(475 \pm 5) 10^{-6}$ $(t \pm \Delta t) c$ $26,50 \pm 0.01$			- A		
$(v \pm \Delta v) \text{M/c}$	$(38 \pm 2)10^{-4}$				
$(\eta \pm \Delta \eta)$ Па *c	(643	±36) 10 ⁻³			-

Таблица 3 федация

Первый шарик						
N опыта	1	2	3	4	5	
х1 дел	1,11	1.11	-1,20	1,10	1.09	
х2 дел	\$ 160	8.59	8,57	8,52	8,49	
d дел	7,49	7,48	7,37	7.42	7.90	
$(ar{d} \pm \Delta ar{d})$ дел	7,43 = 0,06					
$(r \pm \Delta r)$ мм	(988 ±	9)10-6				
$(t \pm \Delta t) c$	6,72 ± 0,01					
$(v \pm \Delta v) \text{M/c}$ $(38 \pm 2) 10^{-4}$						
$(\eta \pm \Delta \eta) \Pi a * c $ (543 \pm 28) (0						

Таблица 4 Томиной

Первый шарик					
N опыта	1	2	3	4	5
x_1 дел	0,18	1,26	1,215	1,20	1.34
х2 дел	7,70	8,69	8.64	8,68	8'.85
d дел	7,52	7,43	1,43	7.48	7,51
$(\bar{d} \pm \Delta \bar{d}) \partial e n$ 7.47 ± 0.05					
$(r \pm \Delta r)$ мм	(994±7) (ō6			
$(t \pm \Delta t) c$ 6,32 ± 0,01					
$(v \pm \Delta v) \text{M/c}$					
$(\eta \pm \Delta \eta) \Pi a^*c$ $(515 \pm 28) 10^{-5}$					

20.11.20 W