A Tutorial of the EM-algorithm and its Application to Outlier Detection

Jaehyeong Ahn

Konkuk University jayahn0104@gmail.com

September 9, 2020

Table of Contents

- EM-algorithm: An Overview
- Proof for EM-algorithm
 - Non-decreasing (Ascent Property)
 - Convergence
 - Local Maximum
- 3 An Example: Gaussian Mixture Model (GMM)
- Application to Outlier Detection
 - Directly Used
 - Indirectly Used
- Summary
- **6** References

EM-algorithm: An Overview

Introduction

- The EM-algorithm (Expectation-Maximization algorithm) is an iterative procedure for computing the maximum likelihood estimator (MLE) when only a subset of the data is available (When the model depends on the unobserved latent variable)
- The first proper theoretical study of the algorithm was done by Dempster, Laird, and Rubin (1977) [1]
- The EM-algorithm is widely used in various research areas when unobserved latent variables are included in the model

Data

• $Y = (y_1, \cdots, y_N)^T$: Observed data

Model

- Assume that Y is dependent on some unobserved latent variable Z where $Z=(z_1,\cdots,z_N)^T$
 - ullet When Z is assumed as discrete random variable

•
$$r_{ik} = P(z_i = k|Y, \theta), \quad k = 1, \cdots, K$$

•
$$z_i^* = \underset{k}{\operatorname{argmax}} r_{ik}$$

- ullet When Z is assumed as continuous random variable
 - $r_i = f_{Z|Y:\Theta}(z_i|Y,\theta)$

Log-likelihood

• $\ell_{obs}(\theta; Y) = \log f_{Y|\Theta}(Y|\theta) = \log \int f_{Y,Z|\Theta}(Y, Z|\theta) dz$

Goal

- By maximizing $\ell_{obs}(\theta; Y)$ w.r.t. θ
 - Find $\hat{\theta}$ which satisfies $\partial_{\theta_j} \ell_{obs}(\theta; Y)|_{\theta = \hat{\theta}} = 0$, for $j = 1, \dots, J$
 - ullet Compute the estimated value $\hat{r}_{ik} = f_{Z|Y}, \Theta(z_i|Y,\hat{ heta})$

Problem

- The latent variable Z is not observable
 - It is difficult to compute the integral in $\ell_{obs}(\theta; Y)$
 - Thus the parameters can not be estimated separately

Solution

- Assume the latent variable Z is observed
 - Define the complete Data
 - Maximize the complete log likelihood

Data

- $Y = (y_1, \cdots, y_N)^T$: Observed data
- $Z = (z_1, \dots, z_N)^T$: Unobserved (latent) variable
 - It is assumed as observed
- X = (Y, Z): Complete Data

Model

•
$$r_i = f_{Z|Y,\Theta}(z_i|Y,\theta)$$

Complete log-likelihood

•
$$\ell_C(\theta; X) = \log f_{X|\Theta}(X|\theta) = \log f_{X|\Theta}(Y, Z|\theta)$$

Log-likelihood for observed data

•
$$\ell_{obs}(\theta; Y) = \log f_{Y|\Theta}(Y|\theta) = \log \int f_{X|\Theta}(Y, Z|\theta) dz$$

Estimation Idea

- Maximize $\ell_C(\theta; X)$ instead of maximizing $\ell_{obs}(\theta; Y)$
 - ullet Since the parameters in $\ell_C(heta;X)$ can be decoupled
- E-step
 - Compute the Expected Complete Log Likelihood (ECLL)
 - Taking conditional expectation on $\ell_C(\theta;X)$ given Y and current value of parameters $\theta^{(s)}$
 - ullet This step estimates the realizations of z (since the value of z is not identified)
- M-step
 - ullet Maximize the computed ECLL w.r.t. heta
 - \bullet Update the estimates of \varTheta by $\theta^{(s+1)}$ which maximize the current ECLL
- Iterate this procedure until it converges

Estimation

E-step

- \bullet Taking conditional expectation on $\ell_C(\theta;X)$ given Y and $\theta=\theta^{(s)}$
 - For $\theta^{(o)}$, set initial guess
- Compute $Q(\theta|\theta^{(s)}) = E_{\theta^{(s)}} [\ell_C(\theta;X)|Y]$

M-step

- Maximize $Q(\theta|\theta^{(s)})$ w.r.t. θ
- Put $\theta^{(s+1)} = \underset{\theta}{\operatorname{argmax}} Q(\theta|\theta^{(s)})$
- Iterate until it satisfies following inequality
 - ullet $|| heta^{(s+1)} heta^{(s)}|| < \epsilon$, where ϵ denotes the sufficiently small value

Immediate Question

• Does maximizing the sequence $Q(\theta|\theta^{(s)})$ leads to maximizing $\ell_{obs}(\theta;Y)$?

This question will be answered in following slides (Proof for EM-algorithm) with 3 parts:

Non-decreasing / Convergence / Local maximum

Proof for EM-algorithm

Proof for EM-algorithm

Non-decreasing (Ascent Property)

Proposition 1.

The Sequence $\ell_{obs}(\theta^{(s)}; Y)$ in the EM-algorithm is non-decreasing

- Proof
 - We write X = (Y, Z) for the complete data
 - Then

$$f_{Z|Y,\Theta}(Z|Y,\theta) = \frac{f_{X|\Theta}(Y,Z|\theta)}{f_{Y|\Theta}(Y|\theta)}$$

• Hence,

$$\ell_{obs}(\theta;Y) = \log f_{Y|\Theta}(Y|\theta) = \log f_{X|\Theta}((Y,Z)|\theta) - \log f_{Z|Y,\Theta}(Z|Y,\theta)$$

 \bullet Taking conditional expectation given Y and $\varTheta=\theta^{(s)}$ on both sides yields

$$\begin{split} \ell_{obs}(\theta;Y) &= E_{\theta^{(s)}}[\ell_{obs}(\theta;Y)|Y] \\ &= E_{\theta^{(s)}}[\log f_{X|\Theta}((Y,Z)|\theta)|Y] - E_{\theta^{(s)}}[\log f_{Z|Y,\Theta}(Z|Y,\theta)|Y] \\ &= Q(\theta|\theta^{(s)}) - H(\theta|\theta^{(s)}) \end{split}$$

Where

$$\begin{split} Q(\theta|\theta^{(s)}) &= E_{\theta^{(s)}}[\log f_{X|\Theta}((Y,Z)|\theta)|Y] \\ H(\theta|\theta^{(s)}) &= E_{\theta^{(s)}}[\log f_{Z|Y,\Theta}(Z|Y,\theta)|Y] \end{split}$$

Then we have

$$\ell_{obs}(\theta^{(s+1)}; Y) - \ell_{obs}(\theta^{(s)}; Y) = Q(\theta^{(s+1)}|\theta^{(s)}) - Q(\theta^{(s)}|\theta^{(s)}) - \left[H(\theta^{(s+1)}|\theta^{(s)}) - H(\theta^{(s)}|\theta^{(s)})\right]$$

Recall that

$$\ell_{obs}(\theta^{(s+1)}; Y) - \ell_{obs}(\theta^{(s)}; Y) = \underbrace{Q(\theta^{(s+1)} | \theta^{(s)}) - Q(\theta^{(s)} | \theta^{(s)})}_{(I)} - \underbrace{\left[H(\theta^{(s+1)} | \theta^{(s)}) - H(\theta^{(s)} | \theta^{(s)})\right]}_{(II)}$$

- (I) is non-negative
 - $\theta^{(s+1)} = \underset{\theta}{\operatorname{argmax}} Q(\theta|\theta^{(s)})$
 - Hence $Q(\theta^{(s+1)}|\theta^{(s)}) \ge Q(\theta^{(s)}|\theta^{(s)})$
 - Thus $(I) \ge 0$

- (II) is non-positive
 - Using Jensen's inequality for concave functions (log is concave)

Theroem 1. Jensen's inequality

Let f be a concave function, and let ${\cal X}$ be a random variable. Then

$$E[f(X)] \le f(EX)$$

$$\begin{split} H(\theta^{(s+1)}|\theta^{(s)}) - H(\theta^{(s)}|\theta^{(s)}) &= E_{\theta^{(s)}} \left[\log \left(\frac{f_{Z|Y,\Theta}(Z|Y,\theta^{(s+1)})}{f_{Z|Y,\Theta}(Z|Y,\theta^{(s)})} \right) | Y \right] \\ &\leq \log E_{\theta^{(s)}} \left[\left(\frac{f_{Z|Y,\Theta}(Z|Y,\theta^{(s+1)})}{f_{Z|Y,\Theta}(Z|Y,\theta^{(s)})} \right) | Y \right] \\ &= \log \int \frac{f_{Z|Y,\Theta}(z|Y,\theta^{(s+1)})}{f_{Z|Y,\Theta}(z|Y,\theta^{(s)})} f_{Z|Y,\Theta}(z|Y,\theta^{(s)}) dz \\ &= \log 1 = 0 \end{split}$$

Theroem 1. Jensen's inequality

Let f be a concave function, and let X be a random variable. Then

$$E[f(X)] \le f(EX)$$

Figure: Jensen's inequality for concave function[3]

Recall that

$$\ell_{obs}(\theta^{(s+1)}; Y) - \ell_{obs}(\theta^{(s)}; Y) = \underbrace{Q(\theta^{(s+1)}|\theta^{(s)}) - Q(\theta^{(s)}|\theta^{(s)})}_{(I)} - \underbrace{\left[H(\theta^{(s+1)}|\theta^{(s)}) - H(\theta^{(s)}|\theta^{(s)})\right]}_{(II)}$$

- We've proven that (I) ≥ 0 and (II) ≤ 0
- This shows $\ell_{obs}(\theta^{(s+1)};Y) \ell_{obs}(\theta^{(s)};Y) \ge 0$
- Thus the sequence $\ell_{obs}(\theta^{(s)};Y)$ in the EM-algorithm is non-decreasing

Proof for EM-algorithm: Convergence

Convergence

• We will show that the sequence $\theta^{(s)}$ converges to some θ^* with $\ell(\theta^*;y)=\ell^*$, the limit of $\ell(\theta^{(s)})$

Assumption

- $oldsymbol{\Omega}$ is a subset of \mathbb{R}^k
- $\Omega_{\theta_0} = \{\theta \in \Omega : \ell(\theta; y) \ge \ell(\theta_0; y)\}$ is compact for any $\ell(\theta_0; y) > -\infty$
- ullet $\ell(heta_{\scriptscriptstyle 0};x)$ is continuous and differentiable in the interior of arOmega

Proof for EM-algorithm: Convergence

Theorem 2

Suppose that $Q(\theta|\phi)$ is continuous in both θ and ϕ . Then all $limit\ points$ of any instance $\{\theta^{(s)}\}$ of the EM algorithm are $stationary\ points$, i.e. $\theta^* = \mathop{\rm argmax}_{\theta} Q(\theta|\theta^*)$, and $\ell(\theta^{(s)};y)$ converges monotonically to some value $\ell^* = \ell(\theta^*;y)$ for some $stationary\ point\ \theta^*$

Theorem 3

Assume the hypothesis of Theorem 2. Suppose in addition that $\partial_{\theta}Q(\theta|\phi)$ is continuous in θ and ϕ . Then $\theta^{(s)}$ converges to a stationary point θ^* with $\ell(\theta^*;y)=\ell^*$, the limit of $\ell(\theta^{(s)})$, if either

- $\{\theta : \ell(\theta; y) = \ell^*\} = \{\theta^*\}$ or
- $|\theta^{(s+1)} \theta^{(s)}| \to 0$ and $\{\theta : \ell(\theta; y) = \ell^*\}$ is discrete

Proof for EM-algorithm: Local Maximum

Local Maximum

Recall that

$$\ell_C(\theta; X) = \log f_{X|\Theta}(X|\theta) = \log f_{Z|Y,\Theta}(Z|Y,\theta) + \log f_{Y|\Theta}(Y|\theta)$$

Then

$$Q(\theta|\theta^{(s)}) = \int \log f_{Z|Y,\Theta}(z|Y,\theta) f_{Z|Y,\Theta}(z|Y,\theta^{(s)}) dz + \ell_{obs}(\theta;Y)$$

 Differentiating w.r.t. θ_j and putting equal to 0 in order to maximize Q gives

$$0 = \partial_{\theta_j} Q(\theta | \theta^{(s)}) = \int \frac{\partial_{\theta_j} f_{Z|Y,\Theta}(z|Y,\theta)}{f_{Z|Y,\Theta}(z|Y,\theta)} f_{Z|Y,\Theta}(z|Y,\theta^{(s)}) dz + \partial_{\theta_j} \ell_{obs}(\theta,Y)$$

Proof for EM-algorithm: Local Maximum

Recall that

$$0 = \partial_{\theta_j} Q(\theta | \theta^{(s)}) = \int \frac{\partial_{\theta_j} f_{Z|Y,\Theta}(z|Y,\theta)}{f_{Z|Y,\Theta}(z|Y,\theta)} f_{Z|Y,\Theta}(z|Y,\theta^{(s)}) dz + \partial_{\theta_j} \ell_{obs}(\theta,Y)$$

• If $\theta^{(s)} \to \theta^*$ then we have for θ^* that (with $j=1,\cdots,J$)

$$0 = \partial_{\theta_{j}} Q(\theta^{*}|\theta^{*})$$

$$= \int \frac{\partial_{\theta_{j}} f_{Z|Y,\Theta}(z|Y,\theta^{*})}{f_{Z|Y,\Theta}(z|Y,\theta^{*})} f_{Z|Y,\Theta}(z|Y,\theta^{*}) dz + \partial_{\theta_{j}} \ell_{obs}(\theta^{*};Y)$$

$$= \partial_{\theta_{j}} \int f_{Z|Y,\Theta}(z|Y,\theta^{*}) dz + \partial_{\theta_{j}} \ell_{obs}(\theta^{*};Y)$$

$$= \partial_{\theta_{j}} \ell_{obs}(\theta^{*};Y)$$

An Example: Gaussian Mixture Model (GMM)

Introduction

- Mixture models make use of latent variables to model different parameters for different groups (or clusters) of data points
- ullet For a point y_i , let the cluster to which that point belongs be labeled z_i ; where z_i is latent, or unobserved
- ullet In this example, we will assume our observable features $m{y}_i$ to be distributed as a Gaussian, chosen based on the cluster that point $m{y}_i$ is associated with

Figure: Gaussian Mixture Model Example[5]

Data

- ullet $Y=(oldsymbol{y}_{\scriptscriptstyle 1},\cdots,oldsymbol{y}_{\scriptscriptstyle N})^T$: Observed data
 - $\forall i \ \mathbf{y}_i \in \mathbb{R}^p$
- $Z=(z_1,\cdots,z_N)^T$: Unobserved (latent) variable
 - ullet Assume that Z is observed
 - $\forall i \ z_i \in \{1, 2, \cdots, K\}$
- X = (Y, Z): Complete data

Distribution Assumption

$$z_i \sim Mult(\boldsymbol{\pi}), \ \boldsymbol{\pi} \in \mathbb{R}^K$$

$$\mathbf{y}_i|z_i=k \sim \mathcal{N}_P(\mu_k, \Sigma_k)$$

Model

$$r_{ik} \stackrel{\text{def}}{=} p(z_i = k | \mathbf{y}_i, \theta) = \frac{p(\mathbf{y}_i | z_i = k, \theta) p(z_i = k | \theta)}{\sum_{k=1}^{K} (p(\mathbf{y}_i | z_i = k, \theta) p(z_i = k | \theta))}$$

$$z_i^* = \operatorname*{argmax}_k r_{ik}$$

 \bullet θ denotes the general parameter; $\theta = \{\pi, \mu, \varSigma\}$

Notation Simplification

• Write $z_i = k$ as

$$\mathbf{z}_i = (z_{i1}, \cdots, z_{ik}, \cdots, z_{iK})^T$$

= $(0, \cdots, 1, \cdots, 0)^T$

- Where $z_{ij} = I(j = k) \in \{0, 1\}$ for $j = 1, \dots, K$
- Using this:

$$p(\mathbf{z}_i|\pi) = \prod_{k=1}^K \pi_k^{\mathbf{z}_i^k}$$

$$p(\mathbf{y}_i|\mathbf{z}_i, \theta) = \prod_{k=1}^K \mathcal{N}(\mu_k, \Sigma_k)^{\mathbf{z}_i^k} = \prod_{k=1}^K \phi(\mathbf{y}_i|\mu_{k,k})^{\mathbf{z}_i^k}$$

Log-likelihood for observed data

$$\begin{split} \ell_{obs}(\theta;Y) &= \log \, f_{Y|\Theta}(Y|\theta) \\ &= \sum_{i=1}^N \log \, p(\mathbf{y}_i|\theta) \\ &= \sum_{i=1}^N \log \, \left[\sum_{\mathbf{z}_i}^K p(\mathbf{y}_i,\mathbf{z}_i|\theta) \right] \\ &= \sum_{i=1}^N \log \, \left[\sum_{\mathbf{z}_i \in Z} \prod_{k=1}^K \pi_k^{\mathbf{z}_i^k} \mathcal{N}(\mu_k,\Sigma_k)^{\mathbf{z}_i^k} \right] \end{split}$$

► This does not decouple the likelihood because the log cannot be 'pushed' inside the summation

Complete log-likelihood

$$\begin{split} \ell_C(\theta; X) &= \log \, f_{X|\Theta}(Y, Z|\theta) \\ &= \log \, f_{Y|Z,\Theta}(Y|Z,\theta) + \log \, f_{Z|\Theta}(Z|\theta) \\ &= \sum_{i=1}^N \left[\log \, \prod_{k=1}^K \phi(\mathbf{y}_i|\mu_k, \Sigma_k)^{\mathbf{z}_i^k} + \log \, \prod_{k=1} \pi_k^{\mathbf{z}_i^k} \right] \\ &= \sum_{i=1}^N \sum_{k=1}^K \left[\mathbf{z}_i^k \log \, \phi(\mathbf{y}_i|\mu_k, \Sigma_k) + \mathbf{z}_i^k \log \, \pi_k \right] \end{split}$$

Parameters are now decoupled since we can estimate π_k and μ_k , Σ_k separately

Estimation

E-step

$$\begin{split} Q(\theta|\theta^{(s)}) &= E_{\theta^{(s)}} \left[\sum_{i=1}^{N} \sum_{k=1}^{K} \boldsymbol{z}_{i}^{k} \log \phi(\boldsymbol{y}_{i}|\mu_{k}, \boldsymbol{\Sigma}_{k}) + \boldsymbol{z}_{i}^{k} \log \pi_{k}|Y \right] \\ &= \sum_{i=1}^{N} \sum_{k=1}^{K} \left[E_{\theta^{(s)}} \left[\boldsymbol{z}_{i}^{k}|Y \right] \log \phi(\boldsymbol{y}_{i}|\mu_{k}, \boldsymbol{\Sigma}_{k}) + E_{\theta^{(s)}} \left[\boldsymbol{z}_{i}^{k}|Y \right] \log \pi_{k} \right] \end{split}$$

- E-step
 - Note that $\mathbf{z}_i^k = 1|Y \sim Berrnoulli\left(p(\mathbf{z}_i^k = 1|Y, \theta)\right)$
 - Hence

$$\begin{split} r_{ik}^{(s)} &\stackrel{\text{def}}{=} E_{\theta^{(s)}} \left[\mathbf{z}_{i}^{k} | Y \right] = p(\mathbf{z}_{i}^{k} = 1 | Y, \theta^{(s)}) \\ &= \frac{p(\mathbf{z}_{i}^{k} = 1, \mathbf{y}_{i} | \theta^{(s)})}{\sum_{k=1}^{K} p(\mathbf{z}_{i}^{k} = 1, \mathbf{y}_{i} | \theta^{(s)})} \\ &= \frac{p(\mathbf{y}_{i} | \mathbf{z}_{i}^{k} = 1, \theta^{(s)}) \ p(\mathbf{z}_{i}^{k} = 1 | \theta^{(s)})}{\sum_{k=1}^{K} p(\mathbf{y}_{i} | \mathbf{z}_{i}^{k} = 1, \theta^{(s)}) \ p(\mathbf{z}_{i}^{k} = 1 | \theta^{(s)})} \\ &= \frac{\phi(\mathbf{y}_{i} | \mu_{k}^{(s)}, \Sigma_{k}^{(s)}) \ \pi_{k}^{(s)}}{\sum_{k=1}^{K} \phi(\mathbf{y}_{i} | \mu_{k}^{(s)}, \Sigma_{k}^{(s)}) \ \pi_{k}^{(s)}} \end{split}$$

- M-step
 - Recall that

$$Q(\theta|\theta^{(s)}) = \sum_{i=1}^{N} \sum_{k=1}^{K} \left[r_{ik}^{(s)} \log \phi(\mathbf{y}_{i}|\mu_{k}, \Sigma_{k}) + r_{ik}^{(s)} \log \pi_{k} \right]$$

- Set $\theta^{(s+1)} = \underset{\theta}{\operatorname{argmax}} Q(\theta|\theta^{(s)})$
 - $\bullet \ \pi_k^{(s+1)} = \frac{\sum_{i=1}^N r_{ik}^{(s)}}{N}$
 - $\bullet \ \mu_k^{(s+1)} = \frac{\sum_{i=1}^N r_{ik}^{(s)} \mathbf{y}_i}{\sum_{i=1}^N r_{ik}^{(s)}}$
 - $\Sigma_k^{(s+1)} = \frac{\sum_{i=1}^N r_{ik}^{(s)} \left(\mathbf{y}_i \mu_k^{(s+1)}\right) \left(\mathbf{y}_i \mu_k^{(s+1)}\right)^T}{\sum_{i=1}^N r_{ik}^{(s)}}$

Iterate until it satisfies following inequality

$$\bullet ||\theta^{(s+1)} - \theta^{(s)}|| < \epsilon$$

• Let
$$\hat{\theta} = \theta^{(s)}$$

What we get

- $\hat{\theta} = (\hat{\pi}, \hat{\mu}, \hat{\Sigma})$
- $\hat{r}_{ik} = p(z_i = k|Y, \hat{\theta}) = \frac{\phi(\mathbf{y}_i|\hat{\mu}_k, \hat{\Sigma}_k) \hat{\pi}_k}{\sum_{k=1}^K \phi(\mathbf{y}_i|\hat{\mu}_k, \hat{\Sigma}_k) \hat{\pi}_k}$
- $\hat{z}_i = \underset{k}{\operatorname{argmax}} \hat{r}_{ik}$

Figure: Gaussian Mixture Model Fitting Example[5]

Application to Outlier Detection

Application to Outlier Detection

Basic Idea

- For cases in which the data may have many different clusters with different orientations
- Assume a specific form of the generative model (e.g., a mixture of Gaussians)
- Fit the model to the data (usually for normal behavior)
 - Estimate the parameters with EM-algorithm
- Fit this model to the unseen (test) data and get the estimation of the fit (joint) probabilities
 - Data points that fit the distribution will have high fit (joint) probabilities
 - Whereas anomalies (outliers) will have very low fit (joint) probabilities

Simulation in R

https://rpubs.com/JayAhn/650433

Introduction

- Interestingly, EM-algorithms can also be used as a final step after many such outlier detection algorithms for converting the scores into probabilities [7]
- Converting the outlier scores into well-calibrated probability estimates is more favorable for several reasons
 - The probability estimates allow us to select the appropriate threshold for declaring outliers using a Bayesian risk model
 - The probability estimates obtained from individual models can be aggregated to build an ensemble outlier detection framework

Motivation

- Since the outlier detection problem is mainly about unsupervised learning environment, it is hard to select the appropriate threshold for decalring outliers
- Every outlier detection model outputs different outlier score with different scale which leads to a difficult problem during constructing an outlier ensemble model

Outlier Score Distributions

(a) Outlier Score Distribution for Normal Examples

(b) Outlier Score Distributions for Outliers

Figure: Outlier Score Distributions [7]

Basic Idea

- Treat an outlier score as an univariate random variable
- Assume the label of outlierness as an unobserved latent variable
- Estimate the posterior probabilities for the latent variable with EM-algorithm
 - Model the posterior probability for outlier scores using a sigmoid function
 - Model the score distribution as a mixture model (mixture of exponential and Gaussian) and calculate the posterior probabilities via the Bayes' rule

Bayesian Risk Model

- Bayesian risk model minimizes the overall risk associated with some cost function
- For example, in the case of a two-class problem
 - The Bayes decision rule for a given observation x is to decide ω_1 if:

$$(\lambda_{21} - \lambda_{11})P(\omega_1|x) > (\lambda_{12} - \lambda_{22})P(\omega_2|x)$$

- Where ω_1 , ω_2 are the two classes while λ_{ij} is the cost of misclassifying ω_j as ω_i
- Since $P(\omega_2|x) = 1 P(\omega_1|x)$, the preceding inequality suggests that the appropriate outlier threshold is automatically determined once the cost functions are known
- In the case of a zero-one loss function, the threshold which minimizes the overall risk is 0.5, where

$$\lambda_{ij} = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j \end{cases}$$

Summary

Summary

Summary

- This slide had an overview on EM-algorithm and its application to Outlier detection
- We've checked the basic procedure of the EM-algorithm for estimating the parameters of model which has the unobserved latent variable
- This slide also has shown that the log-likelihood for observed data is maximized by EM-algorithm through 3 parts: Non-decreasing / Convergence / Local Maximum
- Further more, we've seen that the EM-algorithm can be applied for the Outlier detection not only directly but also indirectly

References

- [1] Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. "Maximum likelihood from incomplete data via the EM algorithm." Journal of the Royal Statistical Society: Series B (Methodological) 39, no. 1 (1977): 1-22.
- $\bullet \hspace{0.2cm} \textbf{[2]} \hspace{0.2cm} \hspace{0.2cm} \textbf{https://www.math.kth.se/matstat/gru/Statistical\%20inference/Lecture8.pdf} \\$
- [3] https://www.cs.cmu.edu/~epxing/Class/10708-17/notes-17/10708-scribe-lecture8.pdf
- $\bullet \ [4] \ http://www2.stat.duke.edu/{\sim} sayan/Sta613/2018/lec/emnotes.pdf \\$
- [5] Contributions to collaborative clustering and its potential applications on very high resolution satellite images

References

- [6] Kriegel, Hans-Peter, Peer Kroger, Erich Schubert, and Arthur Zimek.
 "Interpreting and unifying outlier scores." In Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 13-24. Society for Industrial and Applied Mathematics, 2011.
- [7] Gao, Jing, and Pang-Ning Tan. "Converting output scores from outlier detection algorithms into probability estimates." In Sixth International Conference on Data Mining (ICDM'06), pp. 212-221. IEEE, 2006.

Q&A