ANEXO PRACTICO DISEÑO DE UN CANAL DE RIEGO

1) Se considera régimen permanente y uniforme donde:

$$Q_1 = Q_2 \qquad \quad \mathbf{A}_1 V_1 = \mathbf{A}_2 V_2$$

 Q_i : caudal del canal en i A_i : sección del canal en i V_i : velocidad del agua en i

2) Se calculará un canal trapezoidal

3) Se utiliza la fórmula de Chezy para resolver la velocidad del canal $V = C\sqrt{R\ i}$ donde:

V: velocidad del canal

C: Parámetro que se obtiene de la ecuación de Manning o de Bazin

R: radio hidráulico i: pendiente del canal

4) El radio hidráulico (R) se obtiene como: $\frac{A}{P} = \frac{\text{sección del canal}}{\text{perímetro mojado}}$

5) Para determinar el parámetro \mathcal{C} , se utilizan las fórmulas de Manning o de Bazin, y las Tablas 5 o 6 según corresponda:

Formula de Manning

$$C = \frac{1}{n} R^{1/6}$$

Formula de Bazin

$$C = \frac{87}{1 + \frac{\gamma}{\sqrt{R}}}$$

donde:

R: radio hidráulico

 γ : Parámetro que se obtiene de la Tabla 5, y depende del material de las paredes del canal

n: Parámetro que se obtiene de la Tabla 6, y depende del material de las paredes del canal

TABLA 1. PERDIDAS POR FILTRACION (según Fortier)

Tabla de pérdidas porcentuales de caudal por kilómetro de itinerario.

Gastos	Pérdida
[l/s]	Kilométrica
0	
	16.0%
30	
	12.5%
140	
	9.3%
280	
	7.5%
710	
	3.4%
1420	

Gastos	Pérdida
[m ³ /s]	Kilométrica
1.4	
	2.7%
2.0	
	1.7%
2.8	
	1.1%
5.7	
	0.8%
22.6	
	0.6%
> 22.6	

TABLA 2. VELOCIDAD MÁXIMA ADMISIBLE (según Fortier y Scobey)

Tabla de velocidad máxima admisible en m/s

Paredes del canal	[1]	[2]	[3]
Arena fina	0.45	0.75	0.45
Marga arenosa	0.52	0.75	0.60
Marga limosa	0.60	0.90	0.60
Limos aluvionales sin coloides	0.60	1.05	0.60
Marga firme común	0.75	1.05	0.67
Cenizas volcánicas	0.75	1.05	0.60
Gravilla	0.75	1.50	1.12
Arcilla tenaz (muy coloidal)	1.12	1.50	0.90
Conglomerados bien graduados sin coloides	1.12	1.50	1.50
Conglomerados con coloides	1.25	1.65	1.50
Grava gruesa cuarzosa	1.20	1.80	1.95
Tosca	1.80	1.80	1.50
Roca dura	3.0	0 a 4	1.50
Hormigón	12.00	6.00	3.00

- [1] Aguas claras sin detritos
- [2] Aguas limosas con partículas coloidales
- [3] Aguas con detritos no coloidales: limos, arenas, gravillas, fragmentos de piedras, esquistos pizarrosos, etc.

TABLA 3a. VELOCIDAD MÍNIMA ADMISIBLE (Fórmula de Kennedy)

Tabla de velocidad mínima en m/s, de acuerdo a la ecuación: $V_{min} = C h^{0.64}$

Tipo de arena en el agua	
Arenas muy finas	C = 0.54
Arenas finas	C =0.59
Barro arenoso y arenas medianas	C =0.65
Arena gruesa	<i>C</i> =0.70

TABLA 3b. VELOCIDAD MÍNIMA ADMISIBLE (Fórmula de Ballester)

Tabla de velocidad mínima en m/s (experiencias de Río Negro Superior), de acuerdo a la ecuación: $V_{min}=C\ h^{\alpha}$

	Aguas muy limosas	Agua poco limosa
Tipo de limo en el agua	$\alpha = 0.64$	$\alpha = 0.50$
	$V_{min} = C h^{0.64}$	$V_{min} = C h^{0.50}$
Limo muy fino, liviano, arenoso	C =0.54	<i>C</i> =0.46
Limo mediano, liviano, arenoso	C =0.60	<i>C</i> =0.51
Limo arenoso aluvional	C =0.65	<i>C</i> =0.56
Limo grueso y terrenos duros	C =0.71	C =0.60

TABLA 4. ANGULO DE INCLINACION DE LAS PAREDES DEL CANAL

Tabla de ángulos de inclinación de las paredes del canal en función del material con el que se encuentra construido.

Canal construido en	Talud	φ	Tan(φ)	Cos(φ)
Arena	2:1	63° 30'	2	0.45
Terrenos arcillosos	1.5 : 1	56° 20'	1.5	0.55
Tierra vegetal compacta	1:1	45°	1	0.71
Mampostería en seco	1:1.33	37°	3/4	0.80
Idem con mortero	1:2	25° 40'	1/2	0.89
Hormigón	1:4	14°	1/4	0.97

TABLA 5. VALORES DE γ PARA LA FORMULA DE BAZIN

Tabla de valores de γ para utilizar en la fórmula de Bazin: $C=rac{87}{1+rac{\gamma}{\sqrt{R}}}$

(R: radio hidráulico)

Paredes de tierra	γ
Tierra alisada, en perfectas condiciones	0.36
Paredes revestidas con guijarros, canto rodado o piedra partida apisonada	0.85
Tierra con delgados depósitos de lodo que atenúan la aspereza de paredes y fondo	0.85
Tierra en condiciones normales. Depósitos de arena o material fino sobre el fondo y taludes lisos, o bien fondo limpio y hierba en los taludes	1.00
Tierra con hierba baja en el fondo y algún matorral de vida estacional en los taludes	1.30
Tierra en malas condiciones de mantenimiento, matorrales en el fondo y en los taludes	1.75
Tierra con erosión profunda e irregular	1.75
Canales en pleno abandono o con la sección en gran parte obstruida por vegetación	2.30

F	Paredes de hormigón	γ
	Paredes no bien alisadas, irregularidades dejadas por los moldes	0.36
	Paredes parcialmente revocadas, irregularidades en las juntas. Aguas turbias y algunos depósitos sobre la paredes y el fondo. Vegetación de musgos.	0.46

Paredes de mampostería	
Con enlucido de cemento alisado	0.06
Igual, pero canal con curvas más marcadas y agua no perfectamente clara	0.10
Con revoque no perfectamente alisado	0.16
Mampostería en ladrillos de máquina, con las juntas bien tomadas, o de piedra labrada	0.16
Mampostería de ladrillos comunes, bien ejecutada	0.36
Mampostería de piedra de cantera, poco regular	0.46
Mampostería irregular. Fondo del canal alisado por depósito de limo	0.85
Mampostería vieja, en malas condiciones de conservación. Fondo fangoso	1.00

F	Paredes de metálicas	
	Chapas pulidas, con remaches de cabeza perdida. Juntas al tope, sin salientes	0.06
	Chapas pulidas, con remaches ordinarios. Juntas al tope, sin salientes	0.16
	Chapas comunes, remaches ordinarios y juntas sobrepuestas	1.00

Paredes de madera	γ
Tablas cepilladas, sin fisuras, perfectamente colocadas y con su mayor longi dirección de la corriente	tud en la 0.06
Igual que en la categoría anterior, pero canal con curvas mas marcadas y ag perfectamente clara	0.10
Tablas cepilladas, pero con alguna ranura entre tabla y tabla	0.16
Tablas asperas, recortadas con poco cuidado y con ranuras en las juntas	0.36

TABLA 6. VALORES DE n PARA LA FORMULA DE MANNING

Tabla de valores de n para utilizar en la fórmula de Manning: $C=rac{1}{n}R^{1/6}$

(R: radio hidráulico)

Paredes de tierra	
Revestidos con pedregullo bien apisonado	0.020
Tierra alisada en perfectas condiciones	0.020
Tierra natural en condiciones normales	0.023
Tierra con piedras y hierbas	0.025
Tierra en malas condiciones, con derrumbes parciales, escombros o hierbas	0.040

Paredes de hormigón	n
Hormigón moldeado en encofrado metálico	0.012
Hormigón moldeado en encofrado de madera	0.013

Paredes de mampostería	n
Con elucido de cemento alisado	0.010
Con revoque de mortero alisado	0.012
Mampostería de ladrillos de máquina	0.013
Mampostería lisa de piedra labrada	0.013
Mampostería de ladrillos comunes	0.015
Mampostería de piedra de cantera	0.017
Mampostería con juntas poco cuidadas	0.020

F	Paredes metálicas	
	Chapas pulidas	0.010
	Chapas remachadas	0.015
	Chapas remachadas y algo incrustadas	0.020

Davidas de madare	_
Paredes de madera	n
Tablas cepilladas, perfectamente colocadas	0.010
Tablas cepilladas, colocación inferior	0.012
Tablas sin cepillar, perfectamente colocadas	0.012
Tablas sin cepillar, colocación inferior	0.014