

Ù&@^œ^¦ÊÁQ}&È		H€»Á/ã¦oÁ, Đị ÁÙ^ã; {ã&ÁÖ^•ã;}
PÔX	Ùœ), 忦åÁÚXT ∄, ãÁÜæ&\∄, *ÁÛ^• ৫^{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s =$$
 1.00
$$C_s =$$
 0.73

 $C_e =$

0.90

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Heiaht ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.15	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.15 (<i>Pressure</i>) 1.85	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.3 -1.1 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

$S_S =$	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T ₀ =	0.00	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
Тор	M3	Outer	N7	Outer
Bottom	M7	Inner	N15	Inner
	M11	Outer	N23	Outer
<u>Location</u>	Rear Struts	Location	Rear Reactions	Location
Outer	M2	Outer	N8	Outer
Inner	M6	Inner	N16	Inner
Outer	M10	Outer	N24	Outer
<u>Location</u>	Bracing	<u>9</u>		
Outer	M15	5		
Inner	M16A	A		
Outer				
	Top Bottom Location Outer Inner Outer Location Outer Inner	Top M3 Bottom M7 M11 M11 Location Rear Struts Outer M2 Inner M6 Outer M10 Location Bracing Outer M15 Inner M16/	Top M3 Outer Bottom M7 Inner M11 Outer M11 Outer Location M2 Outer Inner M6 Inner Outer M10 Outer Location Bracing Outer M15 Inner M16A	Top Bottom M3 M7 Inner Outer N15 M11 N7 N15 Outer Location Outer Rear Struts M2 Outer Location M6 Inner Rear Reactions N8 Inner Outer M6 Inner Inner N16 N24 Location Outer Bracing Outer M15 Inner M15 Inner

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>63</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.20	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
I _y =	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	0.468	k-ft
$M_z =$	0.113	k-ft
$M_{y \text{ allowable}} =$	1.243	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>51%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

$\begin{array}{c} \text{Brace Type =} \\ \text{Aluminum Type =} \\ \text{F}_{\text{ty}} = \end{array}$	1.5x0.25 6061-T6 35	ksi
Φ =	0.90 0.02	. 3
S _y = E =	10100	
$I_y =$	33.25	
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.003	k-ft
$P_n =$	0.077	k
M _{y allowable} =	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>7%</u>	

A cross brace kit is required every 27 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	28.47	<u>1723.35</u> k	
Compressive Load =	<u>1162.78</u>	<u>1203.19</u> k	
Lateral Load =	<u>2.26</u>	<u>1047.71</u> k	
Moment (Weak Axis) =	0.00	0.00 k	

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 24789.7 in-lbs Resisting Force Required = 826.32 lbs A minimum 60in long x 20in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1377.21 lbs to resist overturning. Minimum Width = <u>20 in</u> in Weight Provided = Sliding Force = 241.65 lbs Use a 60in long x 20in wide x 18in tall Friction = 0.4 Weight Required = 604.12 lbs ballast foundation to resist sliding. Resisting Weight = 1812.50 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 241.65 lbs Cohesion = 130 psf Use a 60in long x 20in wide x 18in tall 8.33 ft² Area = ballast foundation. Cohesion is OK. Resisting = 906.25 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast Width					
	<u>20 in</u>	21 in	22 in	23 in			
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.67 \text{ ft}) =$	1813 lbs	1903 lbs	1994 lbs	2084 lbs			

ASD LC	1.0D + 1.0S 1.0D + 0.6W				1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W											
Width	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in
FA	418 lbs	418 lbs	418 lbs	418 lbs	383 lbs	383 lbs	383 lbs	383 lbs	563 lbs	563 lbs	563 lbs	563 lbs	-10 lbs	-10 lbs	-10 lbs	-10 lbs
F _B	289 lbs	289 lbs	289 lbs	289 lbs	500 lbs	500 lbs	500 lbs	500 lbs	564 lbs	564 lbs	564 lbs	564 lbs	-794 lbs	-794 lbs	-794 lbs	-794 lbs
F_V	45 lbs	45 lbs	45 lbs	45 lbs	437 lbs	437 lbs	437 lbs	437 lbs	358 lbs	358 lbs	358 lbs	358 lbs	-483 lbs	-483 lbs	-483 lbs	-483 lbs
P _{total}	2520 lbs	2610 lbs	2701 lbs	2792 lbs	2696 lbs	2786 lbs	2877 lbs	2968 lbs	2940 lbs	3031 lbs	3121 lbs	3212 lbs	284 lbs	338 lbs	393 lbs	447 lbs
M	324 lbs-ft	324 lbs-ft	324 lbs-ft	324 lbs-ft	469 lbs-ft	469 lbs-ft	469 lbs-ft	469 lbs-ft	568 lbs-ft	568 lbs-ft	568 lbs-ft	568 lbs-ft	673 lbs-ft	673 lbs-ft	673 lbs-ft	673 lbs-ft
е	0.13 ft	0.12 ft	0.12 ft	0.12 ft	0.17 ft	0.17 ft	0.16 ft	0.16 ft	0.19 ft	0.19 ft	0.18 ft	0.18 ft	2.37 ft	1.99 ft	1.71 ft	1.50 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	255.7 psf	253.9 psf	252.3 psf	250.7 psf	255.9 psf	254.1 psf	252.4 psf	250.9 psf	271.1 psf	268.5 psf	266.2 psf	264.1 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	349.0 psf	342.7 psf	337.0 psf	331.8 psf	391.1 psf	382.8 psf	375.3 psf	368.4 psf	434.5 psf	424.2 psf	414.8 psf	406.2 psf	870.5 psf	252.0 psf	181.4 psf	156.2 psf

Maximum Bearing Pressure = 870 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 167.5 \text{ ft-lbs}$

Resisting Force Required = 200.97 lbs S.F. = 1.67 Weight Required = 334.96 lbs

Minimum Width = 20 in in Weight Provided = 1812.50 lbs

A minimum 60in long x 20in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E				
Width		20 in			20 in			20 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	65 lbs	162 lbs	61 lbs	208 lbs	586 lbs	204 lbs	19 lbs	47 lbs	18 lbs		
F _V	0 lbs	0 lbs	0 lbs	2 lbs	2 lbs	0 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	2309 lbs	2406 lbs	2305 lbs	2344 lbs	2722 lbs	2340 lbs	675 lbs	703 lbs	674 lbs		
М	0 lbs-ft	0 lbs-ft	0 lbs-ft	6 lbs-ft	3 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.28 ft	1.67 ft	1.67 ft	1.66 ft	1.66 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft		
f _{min}	276.8 sqft	288.5 sqft	276.5 sqft	278.8 sqft	325.4 sqft	280.5 sqft	80.9 sqft	84.4 sqft	80.9 sqft		
f _{max}	277.2 psf	288.8 psf	276.7 psf	283.7 psf	328.0 psf	281.1 psf	81.1 psf 84.4 psf 80.9 psf				

Maximum Bearing Pressure = 328 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 20in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

	Rear Strut		Front Strut
1.114 k	Maximum Axial Load =	0.894 k	Maximum Axial Load =
5.692 k	M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =
7.952 k	Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =
<u>20%</u>	Utilization =	<u>16%</u>	Utilization =
	<u>Bracing</u>		Diagonal Strut
0.077 k	Maximum Axial Load =	0.603 k	Maximum Axial Load =
8.894 k	M10 Bolt Capacity =	5.692 k	M8 Bolt Shear Capacity =
7.952 k	Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =
	1 14:10	11%	Utilization =
<u>1%</u>	Utilization =	1170	Guilzadori –

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 32.32 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.646 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.016 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 63.00 \text{ in}$$

$$J = 0.255$$

$$164.048$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{\theta_{b}}\right)$$

$$S1 = \left(\frac{\theta_b}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$51 = 0.5140$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_L &= 29.2 \text{ ksi} \end{split}$$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$
S1 = 1.1

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

3.14

$$L_{b} = 63.00 \text{ in}$$

$$J = 0.255$$

$$170.354$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_1 = 29.1$$

3.4.16

$$b/t = 23.9$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F_C \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.2 \text{ ksi}$$

$$Ix = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.243 \text{ k-ft}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

3.4.9

b/t = 7.4

S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi y F c y$ $\phi F_L = 33.3 \text{ ksi}$

b/t = 23.9 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L = 28.5 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

 $\begin{array}{lll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.10 \\ & 23.4092 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.4 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b &=& 33.78 \text{ in} \\ ry &=& 1.374 \\ Cb &=& 1.10 \\ &=& 24.5845 \\ S1 &=& \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 &=& 1.37733 \\ S2 &=& 1.2C_c \\ S2 &=& 79.2 \\ \phi F_L &=& \phi b [Bc - Dc^*Lb/(1.2^*ry^*\sqrt(Cb))] \\ \phi F_1 &=& 29.4 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$\theta_{\rm th} = \frac{1}{2}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 29.4 \text{ ksi} \\ \text{lx} = & 364470 \text{ mm}^4 \\ & 0.876 \text{ in}^4 \\ \text{y} = & 37.77 \text{ mm} \\ \text{Sx} = & 0.589 \text{ in}^3 \\ \\ M_{\text{max}} St = & 1.443 \text{ k-ft} \end{array}$$

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$\begin{aligned} & \text{ly} = & 217168 \text{ mm}^4 \\ & & 0.522 \text{ in}^4 \\ & \text{x} = & 29 \text{ mm} \\ & \text{Sy} = & 0.457 \text{ in}^3 \\ & \text{M}_{\text{max}} \text{Wk} = & 0.513 \text{ k-ft} \end{aligned}$$

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi y F c y$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\varphi F_L = \varphi y Fcy$
 $\varphi F_L = 33.25 \text{ ksi}$

$$\begin{array}{ll} \phi F_{L} = & 14.29 \text{ ksi} \\ A = & 576.21 \text{ mm}^2 \\ & 0.89 \text{ in}^2 \\ P_{max} = & 12.76 \text{ kips} \end{array}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc} \right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6} \right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 18.00 \text{ in} \\ \mathsf{J} = & 0.16 \\ & 47.2194 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \varphi \mathsf{F_L} = & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc} * \sqrt{(\mathsf{LbSc})/(\mathsf{Cb} * \sqrt{(\mathsf{lyJ})/2})}] \\ \varphi \mathsf{F_L} = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2 \text{ ksi}$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.423 \text{ k-ft}$

3.4.18

h/t =

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 15 \\ S2 = & 15 \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L W k = & 31.2 \text{ ksi} \\ y = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max}W k = & 0.423 \text{ k-ft} \\ \end{array}$$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

33.3 ksi

 $\phi F_L =$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16.1 Not Used Not Use

 $\phi F_L = 33.3 \text{ ksi}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

0.404 k-ft

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

29.8

$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

$\phi F_L =$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ l y = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ S y = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

 $M_{max}St =$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L {= \phi y F c y}$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 39.29 \text{ in}$$
 $J = 0.16$
 103.073

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.1 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$Bp - \frac{\theta_y}{\theta_b} Fcy$$

$$S1 = 1.6Dp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_1 = \phi y F c y$$

$$\phi F_1 = 33.3 \text{ ksi}$$

3.4.16.1

Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.18

$$h/t = 7.75$$

 $\phi F_L = 38.9 \text{ ksi}$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$Cc = 15$$

$$c_2 - k_1 Bbr$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F_C y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.1 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$

$$0.096 \text{ in}^4$$

 $y = 15 \text{ mm}$
 $Sx = 0.163 \text{ in}^3$

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.408 \text{ k-ft}$

Weak Axis:

3.4.14

$$L_b = 39.29 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.1$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.68476$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$
 $\phi cc = 0.81587$
 $\phi F_L = (\phi cc Fcy)/(\lambda^2)$
 $\phi F_L = 10.0603$ ksi
3.4.9
 $b/t = 7.75$
 $S1 = 12.21$ (See 3.4.16 above for

$$D/t = 7.75$$

 $S1 = 12.21$ (See 3.4.16 above for formula)
 $S2 = 32.70$ (See 3.4.16 above for formula)
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$
 $D/t = 7.75$
 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.06 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 5.05 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-45.999	-45.999	0	0
2	M16	Υ	-45.999	-45.999	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-85.097	-85.097	0	0
2	M16	V	-136,895	-136.895	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	170.194	170.194	0	0
2	M16	V	81.397	81.397	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	6.					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875				·								

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	211.714	2	279.876	2	0	15	0	15	0	1	0	1
2		min	-257.294	3	-408.359	3	121	3	0	3	0	1	0	1
3	N7	max	.002	3	333.204	1	035	15	0	15	0	1	0	1
4		min	139	2	4.114	12	812	1	001	1	0	1	0	1
5	N15	max	0	15	894.444	1	.409	1	0	1	0	1	0	1
6		min	-1.414	2	-21.897	3	544	3	0	3	0	1	0	1
7	N16	max	743.646	2	925.531	2	0	10	0	1	0	1	0	1
8		min	-805.932	3	-1325.653	3	-64.496	3	0	3	0	1	0	1
9	N23	max	.002	3	333.054	1	1.74	1	.003	1	0	1	0	1
10		min	139	2	4.472	12	.078	15	0	15	0	1	0	1
11	N24	max	211.79	2	282.823	2	65.004	3	0	1	0	1	0	1
12		min	-257.598	3	-406.781	3	.005	10	0	3	0	1	0	1
13	Totals:	max	1165.458	2	2833.583	1	0	1	·				·	
14		min	-1320.853	3	-2152.771	3	0	15						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1	M2	1	max	231.703	1	.655	4	.271	1	0	15	0	15	0	1
2			min	-351.391	3	.154	15	056	3	0	1	0	1	0	1
3		2	max	231.829	1_	.604	4	.271	1	0	15	0	15	0	15
4			min	-351.297	3	.142	15	056	3	0	1	0	1	0	4
5		3	max	231.955	1	.553	4	.271	1	0	15	0	15	0	15
6			min	-351.202	3	.13	15	056	3	0	1	0	3	0	4
7		4	max	232.08	1	.501	4	.271	1	0	15	0	1	0	15
8			min	-351.108	3	.118	15	056	3	0	1	0	3	0	4
9		5	max	232.206	1	.45	4	.271	1	0	15	0	1	0	15
10			min	-351.014	3	.106	15	056	3	0	1	0	3	0	4
11		6	max	232.332	1	.399	4	.271	1	0	15	0	1	0	15
12			min	-350.919	3	.094	15	056	3	0	1	0	3	0	4
13		7	max	232.458	1	.348	4	.271	1	0	15	0	1	0	15
14			min	-350.825	3	.082	15	056	3	0	1	0	3	0	4
15		8	max	232.584	1	.297	4	.271	1	0	15	0	1	0	15
16			min	-350.73	3	.07	15	056	3	0	1	0	3	0	4
17		9	max	232.71	1	.246	4	.271	1	0	15	0	1	0	15
18			min	-350.636	3	.058	15	056	3	0	1	0	3	0	4
19		10	max	232.836	1	.195	4	.271	1	0	15	0	1	0	15
20			min	-350.542	3	.046	15	056	3	0	1	0	3	0	4
21		11	max	232.961	1	.144	4	.271	1	0	15	0	1	0	15
22			min	-350.447	3	.034	15	056	3	0	1	0	3	0	4
23		12	max	233.087	1	.101	2	.271	1	0	15	0	1	0	15
24			min	-350.353	3	.014	12	056	3	0	1	0	3	0	4
25		13	max	233.213	1	.061	2	.271	1	0	15	0	1	0	15
26			min	-350.258	3	012	3	056	3	0	1	0	3	0	4
27		14	max	233.339	1	.021	2	.271	1	0	15	0	1	0	15
28			min	-350.164	3	042	3	056	3	0	1	0	3	0	4
29		15	max	233.465	1	014	15	.271	1	0	15	0	1	0	15
30			min	-350.07	3	072	3	056	3	0	1	0	3	0	4
31		16	max	233.591	1	026	15	.271	1	0	15	0	1	0	15
32			min	-349.975	3	112	4	056	3	0	1	0	3	0	4
33		17	max		1	038	15	.271	1	0	15	0	1	0	15
34			min	-349.881	3	163	4	056	3	0	1	0	3	0	4
35		18	max	233.843	1	05	15	.271	1	0	15	0	1	0	15
36			min	-349.786	3	214	4	056	3	0	1	0	3	0	4
37		19		233.968	1	062	15	.271	1	0	15	0	1	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
38			min	-349.692	3	266	4	056	3	0	1	0	3	0	4
39	M3	1	max	165.618	2	1.758	4	012	15	0	15	0	1	0	4
40			min	-169.057	3	.413	15	286	1	0	1	0	15	0	15
41		2	max	165.549	2	1.581	4	012	15	0	15	0	1	0	2
42			min	-169.109	3	.372	15	286	1	0	1	0	15	0	12
43		3	max		2	1.404	4	012	15	0	15	0	1	0	2
44			min	-169.161	3	.33	15	286	1	0	1	0	15	0	3
45		4	max	165.41	2	1.228	4	012	15	0	15	0	1	0	15
46			min	-169.213	3	.289	15	286	1	0	1	0	15	0	4
47		5	max	165.341	2	1.051	4	012	15		15	0	1	-	15
48		5					15	286		0	1	0	15	0	
			min	-169.265	3	.247			1_	0				0	4
49		6	max		2	.874	4	012	15	0	15	0	1_	0	15
50		_	min	-169.317	3	.206	15	286	1_	0	1	0	15	0	4
51		7	max	165.202	2	.697	4	012	15	0	15	0	_1_	0	15
52			min	-169.369	3	.164	15	286	1	0	1	0	15	0	4
53		8	max		2	.52	4	012	15	0	15	0	_1_	0	15
54			min	-169.421	3	.122	15	286	1	0	1	0	15	001	4
55		9	max	165.063	2	.343	4	012	15	0	15	0	1	0	15
56			min	-169.473	3	.081	15	286	1	0	1	0	15	001	4
57		10	max	164.994	2	.167	4	012	15	0	15	0	1	0	15
58			min	-169.525	3	.039	15	286	1	0	1	0	15	001	4
59		11	max		2	.017	2	012	15	0	15	0	1	0	15
60			min		3	037	3	286	1	0	1	0	15	001	4
61		12	max	164.855	2	044	15	012	15	0	15	0	1	0	15
62		12	min	-169.629	3	187	4	286	1	0	1	0	15	001	4
63		13	max		2	085	15	012	15	0	15	0	1	0	15
		13													
64		4.4	min	-169.681	3	364	4	286	1_	0	1	0	<u>15</u>	001	4
65		14	max		2	127	15	012	15	0	15	0	1_	0	15
66		4.5	min	-169.733	3	541	4	286	1_	0	1	0	15	001	4
67		15	max	164.647	2	168	15	012	15	0	15	0	1_	0	15
68			min	-169.785	3	718	4	286	1	0	1	0	10	0	4
69		16	max		2	21	15	012	15	0	15	0	_1_	0	15
70			min	-169.837	3	894	4	286	1	0	1	0	2	0	4
71		17	max	164.509	2	252	15	012	15	0	15	0	15	0	15
72			min	-169.889	3	-1.071	4	286	1	0	1	0	1_	0	4
73		18	max	164.439	2	293	15	012	15	0	15	0	15	0	15
74			min	-169.941	3	-1.248	4	286	1	0	1	0	1	0	4
75		19	max	164.37	2	335	15	012	15	0	15	0	15	0	1
76			min	-169.993	3	-1.425	4	286	1	0	1	0	1	0	1
77	M4	1	max	332.039	1	0	1	036	15	0	1	0	3	0	1
78				3.531	12	0	1	86	1	0	1	0	2	0	1
79		2		332.104	1	0	1	036	15	0	1	0	15	0	1
80			min	3.564	12	0	1	86	1	0	1	0	1	0	1
81		3	max	332.168	1	0	1	036	15	0	1	0	15	0	1
82		3	1		12	0	1		1	0	1	-	1	0	1
		1	min	3.596			-	86	_			0			-
83		4	max		1	0	1	036	15	0	1	0	15	0	1
84		_	min	3.628	12	0	1	86	1_	0	1	0	1_	0	1
85		5	max		1	0	1	036	15	0	1	0	15	0	1
86			min	3.661	12	0	1	86	1	0	1	0	1_	0	1
87		6	max	332.362	1	0	1_	036	15	0	1	0	15	0	1
88			min	3.693	12	0	1	86	1	0	1	0	1	0	1
89		7	max	332.427	1	0	1	036	15	0	1	0	15	0	1
90			min	3.725	12	0	1	86	1	0	1	0	1	0	1
91		8	max	332.492	1	0	1	036	15	0	1	0	15	0	1
92			min	3.758	12	0	1	86	1	0	1	0	1	0	1
93		9	max		1	0	1	036	15	0	1	0	15	0	1
94			min	3.79	12	0	1	86	1	0	1	0	1	0	1
34			11/01/1	5.13	14	U		00		U		U		U	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec	1	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	332.621	1	0	1	036	15	0	1	0	15	0	1
96			min	3.822	12	0	1	86	1	0	1	0	1	0	1
97		11	max	332.686	1	0	1	036	15	0	1	0	15	0	1
98			min	3.855	12	0	1	86	1	0	1	0	1	0	1
99		12	max	332.751	1	0	1	036	15	0	1	0	15	0	1
100			min	3.887	12	0	1	86	1	0	1	0	1	0	1
101		13	max		1	0	1	036	15	0	1	0	15	0	1
102			min	3.919	12	0	1	86	1	0	1	0	1	0	1
103		14	max	332.88	1	0	1	036	15	0	1	0	15	0	1
104		17		3.952	12	0	1	86	1	0	1	001	1	0	1
		15	min				_			_			_		
105		15	max	332.945	1	0	1	036	15	0	1	0	15	0	1
106		1.0	min	3.984	12	0	1	86	1_	0	1	<u>001</u>	1	0	1
107		16	max		1_	0	1	036	15	0	1	0	15	0	1
108			min	4.017	12	0	1	86	1	0	1	001	1	0	1
109		17	max	333.074	_1_	0	1	036	15	0	1_	0	15	0	1
110			min	4.049	12	0	1	86	1	0	1	001	1	0	1
111		18	max	333.139	1	0	1	036	15	0	1	0	15	0	1
112			min	4.081	12	0	1	86	1	0	1	001	1	0	1
113		19	max	333.204	1	0	1	036	15	0	1	0	15	0	1
114			min	4.114	12	0	1	86	1	0	1	001	1	0	1
115	M6	1	max	738.701	1	.656	4	.075	9	0	3	0	3	0	1
116			min	-1113.918	3	.154	15	202	3	0	10	0	9	0	1
117		2		738.827	1	.605	4	.075	9	0	3	0	3	0	15
118				-1113.823	3	.142	15	202	3	0	10	0	9	0	4
		3							_	-		0	3		
119		3	max	738.953	1	.554	4	.075	9	0	3			0	15
120		4	min	-1113.729	3	.13	15	202	3	0	10	0	9	0	4
121		4		739.079	1	.503	4	.075	9	0	3	0	3	0	15
122			min	-1113.635	3	.118	15	202	3	0	10	0	10	0	4
123		5		739.205	1	.452	4	.075	9	0	3	0	1	0	15
124			min	-1113.54	3	.106	15	202	3	0	10	0	10	0	4
125		6	max	739.331	1	.406	2	.075	9	0	3	0	1	0	15
126			min	-1113.446	3	.088	12	202	3	0	10	0	10	0	4
127		7	max	739.456	1	.366	2	.075	9	0	3	0	1	0	15
128			min	-1113.351	3	.068	12	202	3	0	10	0	3	0	4
129		8	max	739.582	1	.326	2	.075	9	0	3	0	1	0	15
130			min	-1113.257	3	.048	12	202	3	Ö	10	0	3	0	4
131		9		739.708	1	.286	2	.075	9	0	3	0	1	0	15
132			min	-1113.163	3	.028	12	202	3	0	10	0	3	0	4
133		10	max		1	.246	2	.075	9	0	3	0	1	0	12
		10		-1113.068						_				-	
134		4.4	111111	720.00	3	.001	2	202	9	0	<u>10</u>	0	3	0	12
135		11		739.96		.207		.075		0		0		0	
136		40		-1112.974	3	029	3	202	3	0	10	0	3	0	2
137		12		740.086	1	.167	2	.075	9	0	3	0	1	0	12
138				-1112.879	3	059	3	202	3	0	10	0	3	0	2
139		13		740.212	1_	.127	2	.075	9	0	3	0	1	0	12
140				-1112.785	3	089	3	202	3	0	10	0	3	0	2
141		14		740.338	1	.087	2	.075	9	0	3	0	1	0	12
142			min	-1112.691	3	118	3	202	3	0	10	0	3	0	2
143		15	max	740.463	1	.047	2	.075	9	0	3	0	1	0	12
144				-1112.596	3	148	3	202	3	0	10	0	3	0	2
145		16	max		1	.007	2	.075	9	0	3	0	1	0	12
146		1	min	-1112.502	3	178	3	202	3	0	10	0	3	0	2
147		17		740.715	1	033	2	.075	9	0	3	0	1	0	12
148		1/		-1112.407	3	208	3	202	3	0	10	0	3	0	2
		10								-		0	1		
149		18		740.841	1	05	15	.075	9	0	3			0	3
150		40	min	-1112.313	3	238	3	202	3	0	10	0	3	0	2
151		19	max	740.967	1	062	15	.075	9	0	3	0	1	0	3

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC					Torque[k-ft]	LC	y-y Mome		z-z Mome	
152			min	-1112.219	3	268	3	202	3	0	10	0	3	0	2
153	M7	1	max	603.439	2	1.761	4	.026	3	0	1	0	2	0	2
154			min	-511.085	3	.414	15	015	2	0	3	0	3	0	3
155		2	max	603.369	2	1.584	4	.026	3	0	1	0	1	0	2
156			min	-511.137	3	.372	15	015	2	0	3	0	3	0	3
157		3	max	603.3	2	1.407	4	.026	3	0	1	0	1	0	2
158			min		3	.331	15	015	2	0	3	0	3	0	3
159		4	max		2	1.231	4	.026	3	0	1	0	1	0	2
160			min	-511.241	3	.289	15	015	2	0	3	0	3	0	3
161		5				1.054	4	.026	3	0	1	0	1	-	15
162		3	max		2		15	015	2		3	0	3	0	3
			min	-511.293	3	.248				0				0	
163		6	max		2	.877	4	.026	3	0	1	0	1_	0	15
164		_	min		3	.206	15	015	2	0	3	0	3	0	4
165		7	max		2	.7	4	.026	3	0	1	0	1_	0	15
166			min	-511.397	3	.165	15	015	2	0	3	0	3	0	4
167		8	max	602.953	2	.523	4	.026	3	0	1	0	_1_	0	15
168			min	-511.449	3	.123	15	015	2	0	3	0	3	001	4
169		9	max	602.884	2	.353	2	.026	3	0	1	0	1	0	15
170			min	-511.501	3	.075	12	015	2	0	3	0	3	001	4
171		10	max	602.815	2	.215	2	.026	3	0	1	0	1	0	15
172			min	-511.553	3	001	3	015	2	0	3	0	3	001	4
173		11	max		2	.078	2	.026	3	0	1	0	1	0	15
174			min		3	105	3	015	2	0	3	0	3	001	4
175		12	max		2	043	15	.026	3	0	1	0	1	0	15
176		12	min	-511.657	3	208	3	015	2	0	3	0	3	001	4
177		13			2	085	15	.026	3	0	1	0	1	0	15
		13	max						2		3				
178		4.4	min		3	361	4	015		0		0	3	001	4
179		14	max		2	126	15	.026	3	0	1	0	1_	0	15
180		4.5	min	-511.761	3	538	4	015	2	0	3	0	3	001	4
181		15	max		2	168	15	.026	3	0	1	0	1_	0	15
182			min	-511.813	3	715	4	015	2	0	3	0	3	0	4
183		16	max		2	21	15	.026	3	0	1	0	1_	0	15
184			min		3	891	4	015	2	0	3	0	3	0	4
185		17	max	602.33	2	251	15	.026	3	0	1	0	_1_	0	15
186			min	-511.917	3	-1.068	4	015	2	0	3	0	3	0	4
187		18	max	602.26	2	293	15	.026	3	0	1	0	1	0	15
188			min	-511.969	3	-1.245	4	015	2	0	3	0	3	0	4
189		19	max	602.191	2	334	15	.026	3	0	1	0	1	0	1
190			min	-512.021	3	-1.422	4	015	2	0	3	0	3	0	1
191	M8	1	max		1	0	1	.479	1	0	1	0	10	0	1
192				-22.77	3	0	1	542	3	0	1	0	1	0	1
193		2		893.344	1	0	1	.479	1	0	1	0	1	0	1
194		_	min		3	0	1	542	3	0	1	0	3	0	1
195		3	max		1	0	1	.479	1	0	1	0	1	0	1
196			min	-22.673	3	0	1	542	3	0	1	0	3	0	1
197		4	max		1	0	1	.479	1	0	1	0	1	0	1
		4							3						
198		_	min		3	0	1	542		0	1	0	3	0	1
199		5	max		1	0	1	.479	1	0	1	0	1_	0	1
200			min	-22.576	3	0	1	542	3	0	1	0	3	0	1
201		6_	max		1	0	1	.479	1	0	1	0	1_	0	1
202			min	-22.527	3	0	1	542	3	0	1	0	3	0	1
203		7		893.668	1	0	1	.479	1	0	1	0	_1_	0	1
204			min	-22.479	3	0	1	542	3	0	1	0	3	0	1
205		8	max		1	0	1	.479	1	0	1	0	1	0	1
206			min	-22.43	3	0	1	542	3	0	1	0	3	0	1
207		9	max		1	0	1	.479	1	0	1	0	1	0	1
208			min	-22.382	3	0	1	542	3	0	1	0	3	0	1
									_			_	_	•	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	893.862	1	0	1	.479	1	0	1	0	1	0	1
210			min	-22.333	3	0	1	542	3	0	1	0	3	0	1
211		11	max	893.926	1	0	1	.479	1	0	1	0	1	0	1
212			min	-22.285	3	0	1	542	3	0	1	0	3	0	1
213		12	max	893.991	1	0	1	.479	1	0	1	0	1	0	1
214			min	-22.236	3	0	1	542	3	0	1	0	3	0	1
215		13	max	894.056	1	0	1	.479	1	0	1	0	1	0	1
216			min	-22.188	3	0	1	542	3	0	1	0	3	0	1
217		14	max	894.121	1	0	1	.479	1	0	1	0	1	0	1
218			min	-22.139	3	0	1	542	3	0	1	0	3	0	1
219		15	max	894.185	1	0	1	.479	1	0	1	0	1	0	1
220			min	-22.091	3	0	1	542	3	0	1	0	3	0	1
221		16	max	894.25	1	0	1	.479	1	0	1	0	1	0	1
222			min	-22.042	3	0	1	542	3	0	1	0	3	0	1
223		17	max	894.315	1	0	1	.479	1	0	1	0	1	0	1
224			min	-21.994	3	0	1	542	3	0	1	0	3	0	1
225		18	max	894.379	1	0	1	.479	1	0	1	0	1	0	1
226			min	-21.945	3	0	1	542	3	0	1	0	3	0	1
227		19	max		1	0	1	.479	1	0	1	0	1	0	1
228			min	-21.897	3	0	1	542	3	0	1	0	3	0	1
229	M10	1	max	234.08	1	.651	4	004	15	0	1	0	1	0	1
230			min	-310.009	3	.153	15	131	1	0	3	0	3	0	1
231		2	max	234.205	1	.599	4	004	15	0	1	0	1	0	15
232			min	-309.914	3	.141	15	131	1	0	3	0	3	0	4
233		3	max	234.331	1	.548	4	004	15	0	1	0	1	0	15
234			min	-309.82	3	.129	15	131	1	0	3	Ö	3	0	4
235		4	max		1	.497	4	004	15	0	1	0	1	0	15
236			min	-309.725	3	.117	15	131	1	0	3	0	3	0	4
237		5	max	234.583	1	.446	4	004	15	0	1	0	1	0	15
238			min	-309.631	3	.105	15	131	1	0	3	0	3	0	4
239		6	max	234.709	1	.395	4	004	15	0	1	0	1	0	15
240			min	-309.537	3	.093	15	131	1	0	3	0	3	0	4
241		7	max	234.835	1	.344	4	004	15	0	1	0	1	0	15
242			min	-309.442	3	.081	15	131	1	0	3	0	3	0	4
243		8	max	234.961	1	.293	4	004	15	0	1	0	1	0	15
244			min	-309.348	3	.069	15	131	1	0	3	0	3	0	4
245		9	max		1	.241	4	004	15	0	1	0	9	0	15
246			min	-309.253	3	.057	15	131	1	0	3	0	3	0	4
247		10	max	235.212	1	.19	4	004	15	0	1	0	9	0	15
248		10	min	-309.159	3	.045	15	131	1	0	3	0	3	0	4
249		11	max	235.338	1	.14	2	004	15	0	1	0	9	0	15
250			min		3	.033	15	131	1	0	3	0	3	0	4
251		12	1		1	.101	2	004	15	0	1	0	15	0	15
252		12	min	-308.97	3	.021	15	131	1	0	3	0	3	0	4
253		13	max	235.59	1	.061	2	004	15	0	1	0	15	0	15
254		13	min	-308.876	3	.008	12	131	1	0	3	0	3	0	4
255		1/		235.716	1	.021	2	004	15	0	1	0	15	0	15
256		14	min		3	019	3	131	1	0	3	0	3	0	4
		15							1				15		
257		15		235.842	1	015	15	004	15	0	3	0	3	0	15
258		16	min	-308.687	3	065	15	131	_	0	1	0	15	0	15
259		16			1	027	15	004	15	0	<u> </u>	0		0	
260		47	min	-308.593	3	117	4	131	1	0	3	0	3	0	4
261		17		236.093	1	039	15	004	15	0	1	0	15	0	15
262		40		-308.498	3	168	4	131	1	0	3	0	3	0	4
263		18	max		1	051	15	004	15	0	1	0	15	0	15
264		40	min	-308.404	3	219	4	131	1	0	3	0	1_	0	4
265		<u> 19</u>	max	236.345	1	063	15	004	15	0	1	0	15	0	15

Schletter, Inc. HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
266			min	-308.309	3	27	4	131	1	0	3	0	1	0	4
267	M11	1	max	165.183	2	1.761	4	.312	1	0	1	0	3	0	4
268			min	-169.723	3	.414	15	033	3	0	15	0	1	0	12
269		2	max	165.113	2	1.585	4	.312	1	0	1	0	3	0	2
270			min	-169.775	3	.372	15	033	3	0	15	0	1	0	3
271		3	max	165.044	2	1.408	4	.312	1	0	1	0	3	0	2
272			min	-169.827	3	.331	15	033	3	0	15	0	1	0	3
273		4	max	164.975	2	1.231	4	.312	1	0	1	0	3	0	15
274			min	-169.879	3	.289	15	033	3	0	15	0	1	0	3
275		5	max	164.905	2	1.054	4	.312	1	0	1	0	3	0	15
276			min	-169.931	3	.248	15	033	3	0	15	0	1	0	4
277		6	max	164.836	2	.877	4	.312	1	0	1	0	3	0	15
278			min	-169.983	3	.206	15	033	3	0	15	0	1	0	4
279		7	max	164.767	2	.7	4	.312	1	0	1	0	3	0	15
280			min	-170.035	3	.165	15	033	3	0	15	0	1	0	4
281		8	max	164.697	2	.524	4	.312	1	0	1	0	3	0	15
282			min	-170.087	3	.123	15	033	3	0	15	0	1	001	4
283		9	max	164.628	2	.347	4	.312	1	0	1	0	3	0	15
284			min	-170.139	3	.081	15	033	3	0	15	0	1	001	4
285		10	max	164.559	2	.17	4	.312	1	0	1	0	3	0	15
286			min	-170.191	3	.038	12	033	3	0	15	0	1	001	4
287		11	max	164.489	2	.017	2	.312	1	0	1	0	3	0	15
288			min	-170.243	3	051	3	033	3	0	15	0	1	001	4
289		12	max	164.42	2	043	15	.312	1	0	1	0	3	0	15
290			min	-170.295	3	184	4	033	3	0	15	0	1	001	4
291		13	max	164.351	2	085	15	.312	1	0	1	0	3	0	15
292			min	-170.347	3	361	4	033	3	0	15	0	1	001	4
293		14	max	164.282	2	126	15	.312	1	0	1	0	3	0	15
294			min	-170.399	3	537	4	033	3	0	15	0	1	001	4
295		15	max	164.212	2	168	15	.312	1	0	1	0	3	0	15
296		'	min	-170.451	3	714	4	033	3	0	15	Ö	2	0	4
297		16	max	164.143	2	209	15	.312	1	0	1	0	3	0	15
298		1.0	min	-170.503	3	891	4	033	3	0	15	0	10	0	4
299		17	max	164.074	2	251	15	.312	1	0	1	0	3	0	15
300			min	-170.555	3	-1.068	4	033	3	0	15	0	15	0	4
301		18	max	164.004	2	293	15	.312	1	0	1	0	3	0	15
302			min	-170.607	3	-1.245	4	033	3	0	15	0	15	0	4
303		19	max	163.935	2	334	15	.312	1	0	1	0	1	0	1
304			min	-170.659	3	-1.422	4	033	3	0	15	0	15	0	1
305	M12	1	max		1	0	1	1.841	1	0	1	0	2	0	1
306	WITE		min	3.89	12	0	1	.078	15	0	1	0	3	0	1
307		2	max		1	0	1	1.841	1	0	1	0	1	0	1
308		_	min	3.922	12	0	1	.078	15	0	1	0	15	0	1
309		3		332.019	1	0	1	1.841	1	0	1	0	1	0	1
310			min	3.955	12	0	1	.078	15	0	1	0	15	0	1
311		4	max		1	0	1	1.841	1	0	1	0	1	0	1
312		7	min	3.987	12	0	1	.078	15	0	1	0	15	0	1
313		5	max		1	0	1	1.841	1	0	1	0	1	0	1
314			min	4.019	12	0	1	.078	15	0	1	0	15	0	1
315		6	max		1	0	1	1.841	1	0	1	0	1	0	1
316		U	min	4.052	12	0	1	.078	15	0	1	0	15	0	1
317		7	max		1	0	1	1.841	1	0	1	.001	1	0	1
318			min	4.084	12	0	1	.078	15	0	1	.001	15	0	1
319		8			1	0	1	1.841	1	0	1	.001	1	0	1
320		0	max min	4.116	12	0	1	.078	15	0	1	.001	15	0	1
321		9			1		1	1.841	1		1	.001	1		1
		9	max			0	1			0	1		15	0	1
322			min	4.149	12	0		.078	15	0		0	10	0	

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]						Torque[k-ft]				z-z Mome	
323		10	max	332.472	1	0	1	1.841	1	0	1	.002	1_	0	1
324			min	4.181	12	0	1	.078	15	0	1	0	15	0	1
325		11	max	332.536	1	0	1	1.841	1	0	1	.002	1	0	1
326			min	4.213	12	0	1	.078	15	0	1	0	15	0	1
327		12	max	332.601	1	0	1	1.841	1	0	1	.002	1	0	1
328			min	4.246	12	0	1	.078	15	0	1	0	15	0	1
329		13	max	332.666	1	0	1_	1.841	1_	0	1	.002	1	0	1
330			min	4.278	12	0	1	.078	15	0	1	0	15	0	1
331		14	max	332.73	1	0	1	1.841	1	0	1	.002	1	0	1
332			min	4.31	12	0	1	.078	15	0	1	0	15	0	1
333		15	max	332.795	1	0	1	1.841	1	0	1	.002	1	0	1
334			min	4.343	12	0	1	.078	15	0	1	0	15	0	1
335		16	max	332.86	_1_	0	1	1.841	1_	0	1	.002	1	0	1
336			min	4.375	12	0	1	.078	15	0	1	0	15	0	1
337		17	max	332.925	1	0	1	1.841	1	0	1	.003	1	0	1
338			min	4.407	12	0	1	.078	15	0	1	0	15	0	1
339		18	max	332.989	1	0	1	1.841	1	0	1	.003	1	0	1
340			min	4.44	12	0	1	.078	15	0	1	0	15	0	1
341		19	max	333.054	1	0	1	1.841	1	0	1	.003	1	0	1
342			min	4.472	12	0	1	.078	15	0	1	0	15	0	1
343	M1	1	max	103.91	1	330.672	3	-1.551	15	0	1	.073	1	0	2
344			min	4.228	15	-232.168	1	-36.982	1	0	3	.003	15	0	3
345		2	max	104.05	1	330.49	3	-1.551	15	0	1	.065	1	.051	1
346			min	4.27	15	-232.41	1	-36.982	1	0	3	.003	15	072	3
347		3	max	85.587	3	5.349	9	-1.539	15	0	12	.056	1	.1	1
348			min	-12.036	10	-23.195	2	-36.863	1	0	1	.002	15	142	3
349		4	max	85.692	3	5.147	9	-1.539	15	0	12	.048	1	.104	2
350			min	-11.92	10	-23.437	2	-36.863	1	0	1	.002	15	139	3
351		5	max	85.797	3	4.946	9	-1.539	15	0	12	.04	1	.109	2
352			min	-11.803	10	-23.679	2	-36.863	1	0	1	.002	15		3
353		6	max	85.902	3	4.744	9	-1.539	15	0	12	.032	1	.115	2
354			min	-11.687	10	-23.921	2	-36.863	1	0	1	.001	15	134	3
355		7	max	86.006	3	4.543	9	-1.539	15	0	12	.024	1	.12	2
356			min	-11.571	10	-24.163	2	-36.863	1	0	1	.001	15	131	3
357		8	max	86.111	3	4.341	9	-1.539	15	0	12	.016	1	.125	2
358			min	-11.454	10	-24.404	2	-36.863	1	0	1	0	15	128	3
359		9	max	86.216	3	4.14	9	-1.539	15	0	12	.008	1	.13	2
360			min	-11.338	10	-24.646	2	-36.863	1	0	1	0	15	125	3
361		10	max	86.32	3	3.938	9	-1.539	15	0	12	.001	3	.136	2
362			min	-11.221	10	-24.888	2	-36.863	1	0	1	0	10	122	3
363		11	max	00 105	3	3.737	9	-1.539	15	0	12	0	3	.141	2
364			min	-11.105	10	-25.13	2	-36.863	1	0	1	008	1	119	3
365		12	max		3	3.535	9	-1.539	15	0	12	0	12	.147	2
366		12	min		10	-25.372	2	-36.863	1	0	1	016	1	116	3
367		13	max		3	3.334	9	-1.539	15	0	12	0	15		2
368		10	min	-10.872	10	-25.613	2	-36.863	1	0	1	024	1	113	3
369		14	max		3	3.132	9	-1.539	15	0	12	001	15		2
370			min	-10.756	10	-25.855	2	-36.863	1	0	1	032	1	109	3
371		15	max		3	2.931	9	-1.539	15	0	12	002	15		2
372		13	min	-10.64	10	-26.097	2	-36.863	1	0	1	04	1	106	3
373		16	max	88.314	2	110.777	2	-1.551	15	0	1	002	15	.168	2
374		10	min	-5.67	3	-157.712	3	-37.11	1	0	12	048	1	102	3
375		17			2	110.535	2	-1.551	15	0	1	046	15		2
375		17	max		3	-157.893	3	-37.11	1	0	12	002 056	1	067	3
377		10	min	-5.565 -4.269				-1.587	15		3	003	15		
377		18	max		<u>15</u>	332.945	3		1	0	2	064	1	034	3
		10	min	-104.035 -4.227	1_	-154.77		-38.033 1.597			3		15		2
379		19	max	-4.221	15	332.703	2	-1.587	15	0	<u>ა</u>	003	10	0	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

000	Member	Sec		Axial[lb]	LC			z Shear[lb]		_			LC	z-z Mome	LC.
380	NAC.	1	min	-103.896	1	-154.952	3	-38.033	1	0	2	073	1	0	3
381	M5	1	max	238.413	1	1080.667	3	0	10	0	1	.007	3	0	3
382		2	min	5.54	12	-757.675	1	-58.2	3	0	3	0	10	0	2
383		-	max	238.552	1	1080.485	3	0	10	0	1	0	1	.164	1
384		2	min	5.61	12	-757.917	1	-58.2	3	0	3	005	3	234	3
385		3	max	256.634	3	5.379	9	6.518	3	0	3	0	1	.325	1
386		1	min	-45.508	2	-83.75	2	526	1	0	1	017	3	463	3
387		4	max	256.739	3	5.178	9	6.518	3	0	3	0	1	.339	2
388		-	min	-45.369	2	-83.992	2	526	1	0	1	016	3	453	3
389		5	max	256.843	3	4.976	9	6.518	3	0	3	0	1	.358	2
390			min	-45.229	2	-84.234	2	526	1	0	1	014	3	442	3
391		6	max	256.948	3	4.775	9	6.518	3	0	3	0	1	.376	2
392		-	min	-45.09	2	-84.476	2	526	1	0	1	013	3	432	3
393		7	max	257.053	3	4.573	9	6.518	3	0	3	0	1	.394	2
394			min	-44.95	2	-84.718	2	526	1	0	1	012	3	421	3
395		8	max	257.158	3	4.372	9	6.518	3	0	3	0	1	.413	2
396			min	-44.81	2	-84.959	2	526	1	0	1	01	3	41	3
397		9	max	257.262	3	4.17	9	6.518	3	0	3	0	1	.431	2
398		4.0	min	-44.671	2	-85.201	2	526	1	0	1	009	3	4	3
399		10	max	257.367	3	3.969	9	6.518	3	0	3	0	2	.45	2
400		4.4	min	-44.531	2	-85.443	2	526	1	0	1	007	3	389	3
401		11	max	257.472	3	3.767	9	6.518	3	0	3	0	10	.468	2
402		10	min	-44.391	2	-85.685	2	526	1	0	1	006	3	378	3
403		12	max	257.576	3	3.565	9	6.518	3	0	3	0	10	.487	2
404		10	min	-44.252	2	-85.927	2	526	1	0	1	005	3	367	3
405		13	max	257.681	3	3.364	9	6.518	3	0	3	0	10	.505	2
406			min	-44.112	2	-86.168	2	526	1	0	1	003	3	357	3
407		14	max	257.786	3	3.162	9	6.518	3	0	3	0	10	.524	2
408			min	-43.973	2	-86.41	2	526	1	0	1	002	3	346	3
409		15	max	257.891	3	2.961	9	6.518	3	0	3	0	10	.543	2
410		4.0	min	-43.833	2	-86.652	2	526	1	0	1	0	1	335	3
411		16	max	287.402	2	419.363	2	6.491	3	0	3	0	3	.557	2
412		4-	min	-22.528	3	-479.019	3	54	1	0	10	0	1	32	3
413		17	max	287.542	2	419.121	2	6.491	3	0	3	.002	3	.466	2
414		4.0	min	-22.424	3	-479.2	3	54	1	0	10	0	1	216	3
415		18	max	-7.506	12	1082.726	2	5.95	3	0	3	.003	3	.234	2
416		10	min	-238.575	1	-499.203	3	12	1	0	1	0	1	108	3
417		19	max	-7.436	12	1082.484	2	5.95	3	0	3	.005	3	0	3
418	140		min	-238.435	1	-499.385	3	12	1	0	1	0	1_	0	2
419	<u>M9</u>	1	max	103.563	1	330.62	3	62.807	3	0	3	003	15	0	2
420			mın	4.21	15			1.585	15	0	1	072	1	0	3
421		2	max		1	330.439	3	62.807	3	0	3	001	12	.051	1
422			min	4.252	15	-232.408		1.585	15	0	1	064	1	072	3
423		3	max		3	5.326	9	36.031	1	0	1	.011	3	.1	1
424		1	min	-11.611	10	-23.202	2	-1.351	3	0	15	055	1	142	3
425		4	max		3	5.125	9	36.031	1	0	1	.011	3	.104	2
426		_	min	-11.495	10	-23.444	2	-1.351	3	0	15	047	1	139	3
427		5	max		3	4.923	9	36.031	1	0	1_	.011	3	.109	2
428			min	-11.379	10	-23.686	2	-1.351	3	0	15	039	1	137	3
429		6	max		3	4.722	9	36.031	1	0	1_	.01	3	.114	2
430		-	min	-11.262	10	-23.928	2	-1.351	3	0	15	031	1	134	3
431		7	max		3	4.52	9	36.031	1	0	1	.01	3	.12	2
432		_	min	-11.146	10	-24.17	2	-1.351	3	0	15	023	1	131	3
433		8	max		3	4.319	9	36.031	1	0	1	.01	3	.125	2
434			min	-11.03	10	-24.412	2	-1.351	3	0	15	016	1	128	3
435		9	max		3	4.117	9	36.031	1	0	1_	.009	3	.13	2
436			min	-10.913	10	-24.653	2	-1.351	3	0	15	008	1	125	3

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
437		10	max	86.206	3	3.916	9	36.031	1	0	1	.009	3	.136	2
438			min	-10.797	10	-24.895	2	-1.351	3	0	15	0	1	122	3
439		11	max	86.31	3	3.714	9	36.031	1	0	1	.009	3	.141	2
440			min	-10.681	10	-25.137	2	-1.351	3	0	15	0	15	119	3
441		12	max	86.415	3	3.513	9	36.031	1	0	1	.016	1_	.147	2
442			min	-10.564	10	-25.379	2	-1.351	3	0	15	0	15	116	3
443		13	max	86.52	3	3.311	9	36.031	1	0	1	.023	1	.152	2
444			min	-10.448	10	-25.621	2	-1.351	3	0	15	0	15	113	3
445		14	max	86.625	3	3.109	9	36.031	1	0	1	.031	1	.158	2
446			min	-10.332	10	-25.862	2	-1.351	3	0	15	.001	15	109	3
447		15	max	86.729	3	2.908	9	36.031	1	0	1	.039	1	.163	2
448			min	-10.215	10	-26.104	2	-1.351	3	0	15	.002	15	106	3
449		16	max	88.55	2	110.406	2	36.303	1	0	15	.047	1	.168	2
450			min	-6.138	3	-158.19	3	-1.38	3	0	1	.002	15	102	3
451		17	max	88.689	2	110.165	2	36.303	1	0	15	.055	1	.144	2
452			min	-6.033	3	-158.371	3	-1.38	3	0	1	.002	15	067	3
453		18	max	-4.252	15	332.945	2	38.163	1	0	2	.063	1	.072	2
454			min	-103.694	1	-154.764	3	918	3	0	3	.003	15	034	3
455		19	max	-4.21	15	332.703	2	38.163	1	0	2	.072	1	0	2
456			min	-103.554	1	-154.945	3	918	3	0	3	.003	15	0	3
457	M13	1	max	62.803	3	231.89	1	-4.21	15	0	2	.072	1	0	1
458			min	1.585	15	-330.641	3	-103.554	1	0	3	.003	15	0	3
459		2	max	62.803	3	164.165	1	-3.213	15	0	2	.019	1	.165	3
460			min	1.585	15	-233.874	3	-78.783	1	0	3	0	10	116	1
461		3	max	62.803	3	96.439	1	-2.216	15	0	2	.007	3	.273	3
462			min	1.585	15	-137.107	3	-54.011	1	Ö	3	02	1	192	1
463		4	max	62.803	3	28.733	2	-1.219	15	0	2	.003	3	.325	3
464			min	1.585	15	-40.341	3	-29.24	1	0	3	044	1	228	1
465		5	max	62.803	3	56.426	3	.648	10	0	2	.001	3	.32	3
466			min	1.585	15	-39.012	1	-4.468	1	0	3	054	1	225	1
467		6	max	62.803	3	153.192	3	20.303	1	0	2	0	3	.259	3
468			min	1.585	15	-106.737	1	-1.705	3	0	3	05	1	183	1
469		7	max	62.803	3	249.959	3	45.075	1	0	2	0	12	.141	3
470		<u> </u>	min	1.585	15	-174.462	1	254	3	0	3	031	1	101	2
471		8	max	62.803	3	346.726	3	69.846	1	0	2	.004	2	.021	1
472			min	1.585	15	-242.188	1	.987	12	0	3	0	3	033	3
473		9	max	62.803	3	443.492	3	94.618	1	0	2	.051	1	.182	1
474		_ <u> </u>	min	1.585	15	-309.913	1	1.954	12	0	3	0	12	263	3
475		10	max	62.803	3	540.259	3	119.389	1	0	2	.113	1	.383	1
476		10	min	1.585	15	-377.639	1	2.922	12	0	3	005	3	55	3
477		11	max		1	309.913	1	-1.644	12	0	3	.05	1	.182	1
478			min	1.551	15	-443.492	3	-94.27	1	0	2	006	3	263	3
479		12	max	37.073	1	242.188	1	676	12	0	3	.004	2	.021	1
480		14	min	1.551	15	-346.726	3	-69.498	1	0	2	007	3	033	3
481		13		37.073	1	174.462	1	.766	3	0	3	007	15	.141	3
482		13	min	1.551	15	-249.959	3	-44.727	1	0	2	031	1	101	2
483		14	max	37.073	1	106.737	1	2.217	3	0	3	002	15	.259	3
484		14	min	1.551	15	-153.192	3	-19.955	1	0	2	002	1	183	1
485		15	max	37.073	1	39.012	1	4.816	1	0	3	002	15	.32	3
		15											15 1		1
486		16	min	1.551	15	-56.426	3	647	10	0	2	054		225	_
487		16	max	37.073	1	40.341	3	29.588	1	0	3	001	12	.325	3
488		17	min	1.551	15	-28.733	2	1.236	15	0	2	044	1	228	1
489		17	max	37.073	1	137.107	3	54.359	1	0	3	.001	3	.273	3
490		40	min	1.551	15	-96.439	1	2.233	15	0	2	02	1_	192	1
491		18		37.073	1	233.874	3	79.13	1_	0	3	.019	1	.165	3
492		40	min	1.551	15	-164.165	1	3.231	15	0	2	0	10	116	1
493		19	max	37.073	_ 1	330.641	3	103.902	1	0	3	.073	_1_	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	
494			min	1.551	15	-231.89	1	4.228	15	0	2	.003	15	0	3
495	M16	1_	max	.921	3	332.856	2	-4.21	15	0	3	.072	1_	0	2
496			min	-38.068	1	-154.97	3	-103.563	1	0	2	.003	15	0	3
497		2	max	.921	3	235.657	2	-3.213	15	0	3	.019	1	.077	3
498			min	-38.068	1	-110.002	3	-78.792	1	0	2	0	10	166	2
499		3	max	.921	3	138.458	2	-2.216	15	0	3	0	12	.128	3
500			min	-38.068	1	-65.033	3	-54.021	1	0	2	02	1	275	2
501		4	max	.921	3	41.259	2	-1.219	15	0	3	002	15	.153	3
502			min	-38.068	1	-20.065	3	-29.249	1	0	2	044	1	327	2
503		5	max	.921	3	24.903	3	.636	10	0	3	002	15	.152	3
504			min	-38.068	1	-55.941	2	-4.478	1	0	2	054	1	323	2
505		6	max	.921	3	69.872	3	20.294	1	0	3	002	15	.124	3
506			min	-38.068	1	-153.14	2	749	3	0	2	05	1	262	2
507		7	max	.921	3	114.84	3	45.065	1	0	3	001	15	.07	3
508		_	min	-38.068	1	-250.339	2	.593	12	0	2	031	1	144	2
509		8	max	.921	3	159.809	3	69.837	1	0	3	.004	2	.03	2
510			min	-38.068	1	-347.538	2	1.56	12	0	2	005	3	01	3
511		9	max	.921	3	204.777	3	94.608	1	0	3	.051	1	.261	2
512			min	-38.068	1	-444.738	2	2.528	12	0	2	003	3	116	3
513		10	max	-1.591	15	-9.636	15	119.38	1	0	15	.113	1	.549	2
514			min	-38.068	1	-541.937	2	-5.803	3	0	2	.003	12	249	3
515		11	max	-1.587	15	444.738	2	-2.974	12	0	2	.05	1	.261	2
516			min	-37.943	1	-204.777	3	-94.267	1	0	3	0	12	116	3
517		12	max	-1.587	15	347.538	2	-2.007	12	0	2	.004	2	.03	2
518			min	-37.943	1	-159.809	3	-69.496	1	0	3	0	3	01	3
519		13	max	-1.587	15	250.339	2	-1.039	12	0	2	001	15	.07	3
520			min	-37.943	1	-114.84	3	-44.724	1	0	3	031	1	144	2
521		14	max	-1.587	15	153.14	2	0	3	0	2	002	12	.124	3
522			min	-37.943	1_	-69.872	3	-19.953	1	0	3	05	1	262	2
523		15	max	-1.587	15	55.941	2	4.819	1	0	2	002	12	.152	3
524		40	min	-37.943	1_	-24.903	3	636	10	0	3	054	1	323	2
525		16	max	-1.587	15	20.065	3	29.59	1	0	2	0	12	.153	3
526		4-7	min	-37.943	1_	-41.259	2	1.235	15	0	3	044	1	327	2
527		17	max	-1.587	15	65.033	3	54.362	1	0	2	.001	3	.128	3
528		40	min	-37.943	1_	-138.458	2	2.232	15	0	3	02	1	275	2
529		18	max	-1.587	15	110.002	3	79.133	1	0	2	.019	1	.077	3
530		10	min	-37.943	1_	-235.657	2	3.229	15	0	3	0	10	166	2
531		19	max	-1.587	15	154.97	3	103.905	1	0	2	.073	1	0	2
532	NA E	4	min	-37.943	1	-332.856	2	4.227	15	0	3	.003	15	0	3
533	M15	1_	max	.851	13	1.851	4	.08	3	0	9	0	9	0	1
534		2	min	-76.083	3	0	1_1	023	9	0	3	0	3	0	1
535		2	max	.754	13	1.646	4	.08	3	0	9	0	9	0	1
536		2	min	-76.153	3	0	1_4	023	9	0	3	0	3	0	4
537		3	max	.657 -76.224	13	1.44	4	.08	3	0	9	0	9	0	1
538		4	min		3		4	023	9			0		001 0	1
539		4	max	.56 -76.294	13	1.234		.08		0	9	0	9	_	_
540		E	min		3	1 020	1_4	023	9	0		0	3	002	4
541		5	max	.463	13	1.029	4	.08	3	0	9	0	9	0	1
542		6	min	-76.365	3	0	1_1	023	9	0	3	_	3	002	4
543		6	max	.366	13 3	.823	4	.08 023	3	0	9	0	9	002	4
544		7	min	<u>-76.435</u>						_					
545		7	max	.269	13	.617	4	.08	3	0	9	0	3	0	1
546		0	min	<u>-76.506</u>	3	0		023	9	0	3	0	9	003	4
547		8	max	.172	13	.411	4	.08	3	0	9	0	3	0	1
548		9	min	-76.576	3	206	4	023	9	0	3	0	9	003 0	4
549		9	max	.075	13	.206		.08	3	0	9	0	3		1
550			min	-76.647	3	0	1	023	9	0	3	0	9	003	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]] LC	y-y Mome	LC	z-z Mome	<u>LC</u>
551		10	max	0	1	0	1	.08	3	0	9	0	3	0	1
552			min	-76.717	3	0	1	023	9	0	3	0	9	003	4
553		11	max	0	1	0	1	.08	3	0	9	0	3	0	1
554			min	-76.788	3	206	4	023	9	0	3	0	9	003	4
555		12	max	0	1	0	1	.08	3	0	9	0	3	0	1
556		10	min	-76.858	3	411	4	023	9	0	3	0	9	003	4
557		13	max	0	1	0	1	.08	3	0	9	0	3	0	1
558		4.	min	<u>-76.929</u>	3	<u>617</u>	4	023	9	0	3	0	9	003	4
559		14	max	0	1	0	1	.08	3	0	9	0	3	0	1
560		4.5	min	-76.999	3	823	4	023	9	0	3	0	9	002	4
561		15	max	0	1	0	1	.08	3	0	9	0	3	0	1
562		4.0	min	-77.07	3	-1.029	4	023	9	0	3	0	9	002	4
563		16	max	0 -77.14	3	0 -1.234	1	.08 023	3	0	9	0	9	0	1
564 565		17	min		1	-1.234 0	1	.08	3	0	9	0	3	002 0	1
566		17	max min	0 -77.211	3	-1.44	4	023	9	0	3	0	9	001	4
567		18	max	0	1	0	1	.08	3	0	9	0	3	0	1
568		10	min	-77.281	3	-1.646	4	023	9	0	3	0	9	0	4
569		19	max	0	1	0	1	.08	3	0	9	0	3	0	1
570		13	min	-77.352	3	-1.851	4	023	9	0	3	0	9	0	1
571	M16A	1	max	0	10	1.851	4	.03	1	0	3	0	3	0	1
572	1011071		min	-76.311	3	0	10	033	3	0	2	0	1	0	1
573		2	max	0	10	1.646	4	.03	1	0	3	0	3	0	10
574			min	-76.24	3	0	10	033	3	0	2	0	1	0	4
575		3	max	0	10	1.44	4	.03	1	0	3	0	3	0	10
576			min	-76.17	3	0	10	033	3	0	2	0	1	001	4
577		4	max	0	10	1.234	4	.03	1	0	3	0	3	0	10
578			min	-76.099	3	0	10	033	3	0	2	0	1	002	4
579		5	max	0	10	1.029	4	.03	1	0	3	0	3	0	10
580			min	-76.029	3	0	10	033	3	0	2	0	1	002	4
581		6	max	0	10	.823	4	.03	1	0	3	0	3	0	10
582			min	-75.958	3	0	10	033	3	0	2	0	1	002	4
583		7	max	0	10	.617	4	.03	1	0	3	0	3	0	10
584			min	-75.888	3	0	10	033	3	0	2	0	1	003	4
585		8	max	0	10	.411	4	.03	1	0	3	0	3	0	10
586			min	-75.817	3	0	10	033	3	0	2	0	1_	003	4
587		9	max	0	10	.206	4	.03	1	0	3	0	3	0	10
588		40	min	<u>-75.747</u>	3	0	10	033	3	0	2	0	1	003	4
589		10	max	0	10	0	1	.03	1	0	3	0	3	0	10
590		4.4	min	<u>-75.676</u>	3	0	1	033	3	0	2	0	1	003	4
591		11	max		10	0	10	.03	1	0	3	0	3	0	10
592		12	min	-75.606	3	206	4	033	3	0	2	0	1	003	4
593		12		.089 -75.536	3	0 411	10 4	.03 033	3	0	2	0	3	003	10
594 595		13	min	.183	2	411 0	10	.03	1	0	3		2	003 0	10
596		13	max min	-75.465	3	617	4	033	3	0	2	0	4	003	4
597		11	max		2	0	10	.03	1	0	3	0	2	0	10
598		14	min	-75.395	3	823	4	033	3	0	2	0	3	002	4
599		15	max	.371	2	0	10	.03	1	0	3	0	2	0	10
600		13	min	-75.324	3	-1.029	4	033	3	0	2	0	3	002	4
601		16		.465	2	0	10	.03	1	0	3	0	2	0	10
602		10	min	-75.254	3	-1.234	4	033	3	0	2	0	3	002	4
603		17	max	.559	2	0	10	.03	1	0	3	0	2	0	10
604			min	-75.183	3	-1.44	4	033	3	0	2	0	3	001	4
605		18	max	.653	2	0	10	.03	1	0	3	0	2	0	10
606		10	min	-75.113	3	-1.646	4	033	3	0	2	0	3	0	4
607		19	max	.747	2	0	10	.03	1	0	3	0	2	0	1
			mun						<u> </u>						

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-75.042	3	-1.851	4	033	3	0	2	0	3	0	1

Envelope Member Section Deflections

	STOPE INCITIL		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ni Dene											
	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
1	M2	1	max	.002	1	.009	2	.007	1_	-2.422e-5	<u>15</u>	NC	3_	NC	2
2			min	003	3	009	3	002	3	-5.833e-4	<u>1</u>	4374.501	2	5441.972	1
3		2	max	.002	1	.008	2	.007	1	-2.318e-5	<u>15</u>	NC	3	NC	2
4			min	003	3	009	3	001	3	-5.581e-4	1	4779.331	2	5862.31	1
5		3	max	.002	1	.007	2	.006	1	-2.214e-5	15	NC	1	NC	2
6			min	003	3	008	3	001	3	-5.33e-4	1	5261.805	2	6359.016	1
7		4	max	.002	1	.007	2	.006	1	-2.11e-5	15	NC	1	NC	2
8			min	003	3	008	3	001	3	-5.079e-4	1	5840.906	2	6950.346	1
9		5	max	.002	1	.006	2	.005	1	-2.006e-5	15	NC	1	NC	2
10			min	003	3	008	3	001	3	-4.827e-4	1	6542.014	2	7660.691	1
11		6	max	.002	1	.005	2	.005	1	-1.903e-5	15	NC	1	NC	2
12			min	002	3	007	3	0	3	-4.576e-4	1	7399.625	2	8523.206	1
13		7	max	.002	1	.005	2	.004	1	-1.799e-5	15	NC	1	NC	2
14		•	min	002	3	007	3	0	3	-4.324e-4	1	8461.538	2	9583.901	1
15		8	max	.001	1	.004	2	.004	1	-1.695e-5	15	NC	1	NC	1
16			min	002	3	006	3	0	3	-4.073e-4	1	9795.482	2	NC	1
17		9	max	.001	1	.003	2	.003	1	-1.591e-5	15	NC	1	NC	1
18			min	002	3	006	3	0	3	-3.821e-4	1	NC	1	NC	1
19		10	max	.002	1	.003	2	.003	1	-1.487e-5	15	NC	1	NC	1
20		10	min	002	3	005	3	0	3	-3.57e-4	1	NC	1	NC	1
21		11		.002	1	.002	2	.002	1	-3.57e-4 -1.384e-5	15	NC	1	NC	1
22		11	max	002	3	005	3	<u>.002</u>	3	-3.318e-4	1	NC NC	1	NC NC	1
		10	min								_		•		•
23		12	max	0	1	.002	2	.002	1	-1.28e-5	<u>15</u>	NC NC	1	NC NC	1
24		40	min	001	3	004	3	0	3	-3.067e-4	1_	NC	1_	NC	1
25		13	max	0	1	.001	2	.001	1	-1.176e-5	15	NC	1	NC	1
26		4.4	min	001	3	004	3	0	3	-2.815e-4	1_	NC	1_	NC	1
27		14	max	0	1	.001	2	.001	1	-1.072e-5	<u>15</u>	NC	1	NC	1
28			min	0	3	003	3	0	3	-2.564e-4	<u>1</u>	NC	1_	NC	1
29		15	max	0	1	0	2	0	1	-9.683e-6	<u>15</u>	NC	1	NC	1
30			min	0	3	003	3	0	3	-2.312e-4	1_	NC	1_	NC	1
31		16	max	0	1	0	2	0	1	-8.645e-6	15	NC	1	NC	1
32			min	0	3	002	3	0	3	-2.061e-4	<u>1</u>	NC	1	NC	1
33		17	max	0	1	0	2	0	1	-7.607e-6	15	NC	_1_	NC	1
34			min	0	3	001	3	0	3	-1.809e-4	1_	NC	1_	NC	1
35		18	max	0	1	0	2	0	1	-6.569e-6	<u>15</u>	NC	_1_	NC	1
36			min	0	3	0	3	0	3	-1.558e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-5.531e-6	15	NC	1	NC	1
38			min	0	1	0	1	0	1	-1.306e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	6.163e-5	1	NC	1	NC	1
40			min	0	1	0	1	0	1	2.608e-6	15	NC	1	NC	1
41		2	max	0	3	0	2	0	12		1	NC	1	NC	1
42			min	0	2	0	3	0	1	3.192e-6	15	NC	1	NC	1
43		3	max	0	3	0	2	0	12		1	NC	1	NC	1
44			min	0	2	002	3	0	1	3.775e-6	15	NC	1	NC	1
45		4	max	0	3	0	2	0	12	1.048e-4	1	NC	1	NC	1
46		T	min	0	2	003	3	0	1	4.358e-6	15	NC	1	NC	1
47		5	max	0	3	0	2	0	3	1.191e-4	1	NC	1	NC	1
48			min	0	2	003	3	0	1	4.942e-6	15	NC	1	NC	1
49		6	max	0	3	0	2	0	3	1.335e-4	1	NC	1	NC	1
50		U	min	0	2	004	3	0	1	5.525e-6	15	NC NC	1	NC NC	1
51		7		0	3		2	0	•						
21		/	max	U	3	0		U	3	1.479e-4	1_	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
52			min	0	2	005	3	0	1	6.108e-6	15	NC	1	NC	1
53		8	max	0	3	00	2	0	3	1.622e-4	_1_	NC	_1_	NC	1
54			min	0	2	005	3	0	1	6.692e-6	15	NC	1_	NC	1
55		9	max	0	3	.001	2	0	2	1.766e-4	_1_	NC	1_	NC	1
56		40	min	0	2	<u>006</u>	3	0	9	7.275e-6	<u>15</u>	NC	1_	NC	1
57		10	max	0	3	.002	2	0	2	1.91e-4	1_	NC	1	NC NC	1
58		44	min	0	2	007	3	0	15	7.858e-6	15	NC NC	1_	NC NC	1
59		11	max	.001	3	.002	2	0	1	2.054e-4	1_	NC NC	1_	NC	1
60		40	min	001	2	007	3	0	15	8.442e-6	<u>15</u>	NC NC	1_	NC NC	1
61 62		12	max	.001	3	.003	3	<u>0</u> 	15	2.197e-4	1_	NC NC	<u>1</u> 1	NC NC	1
63		13	min	001		007	2	.001		9.025e-6 2.341e-4	<u>15</u>	NC NC	1	NC NC	1
64		13	max	.001 001	3	.003 008	3	0	15	9.608e-6	<u>1</u> 15	NC NC	1	NC NC	1
65		14	min max	.001	3	008 .004	2	.002	1	2.485e-4	1	NC NC	1	NC NC	1
66		14	min	001	2	008	3	0	15	1.019e-5	15	NC NC	1	NC	1
67		15	max	.001	3	.005	2	.002	1	2.629e-4	1	NC	1	NC	1
68		10	min	001	2	008	3	0	15	1.078e-5		9507.345	2	NC	1
69		16	max	.002	3	.006	2	.002	1	2.772e-4	1	NC	1	NC	1
70		10	min	002	2	008	3	0	15			8007.085	2	NC	1
71		17	max	.002	3	.007	2	.003	1	2.916e-4	1	NC	1	NC	1
72		<u> </u>	min	002	2	008	3	0	15	1.194e-5		6857.193	2	NC	1
73		18	max	.002	3	.008	2	.003	1	3.06e-4	1	NC	1	NC	1
74			min	002	2	008	3	0	15	1.252e-5		5964.391	2	NC	1
75		19	max	.002	3	.009	2	.004	1	3.204e-4	1	NC	3	NC	1
76			min	002	2	008	3	0	15	1.311e-5	15	5264.152	2	NC	1
77	M4	1	max	.002	1	.01	2	0	15		12	NC	1	NC	2
78			min	0	12	009	3	003	1	-4.665e-4	1	NC	1	6959.554	1
79		2	max	.001	1	.01	2	0	15	-1.891e-5	12	NC	1	NC	2
80			min	0	12	008	3	003	1	-4.665e-4	1	NC	1	7592.463	1
81		3	max	.001	1	.009	2	0	15	-1.891e-5	12	NC	1_	NC	2
82			min	0	12	008	3	002	1	-4.665e-4	1_	NC	1_	8345.715	
83		4	max	.001	1	.009	2	0	15		12	NC	1_	NC	2
84			min	0	12	007	3	002	1	-4.665e-4	1_	NC	1_	9251.055	1
85		5	max	.001	1	.008	2	0		-1.891e-5	12	NC	_1_	NC	1
86			min	0	12	007	3	002	1	-4.665e-4	_1_	NC	_1_	NC	1
87		6	max	.001	1	.007	2	0		-1.891e-5	12	NC	_1_	NC	1
88		<u> </u>	min	0	12	006	3	002	1_	-4.665e-4	1_	NC	1_	NC	1
89		7	max	.001	1	.007	2	0	15			NC	1_	NC NC	1
90			min	0	12	006	3	001	1	-4.665e-4	1_	NC	1_	NC NC	1
91		8	max	0	1	.006	2	0	15	-1.891e-5	12	NC NC	1_	NC NC	1
92			min	0	12	005	3	001		-4.665e-4		NC NC	1	NC NC	1
93		9	max	0	1	.006	2	0		-1.891e-5		NC NC	1	NC NC	1
94		10	min	0	12	005	2	001	1 1 1 5	-4.665e-4 -1.891e-5	1	NC NC	<u>1</u> 1	NC NC	1
95		10	max	<u> </u>	12	.005	3	0	1	-1.691e-5	-	NC NC	1	NC NC	1
96		11	min max	0	1	004 .005	2	<u> </u>		-4.665e-4 -1.891e-5	12	NC NC	1	NC NC	1
98			min	0	12	004	3	0	1	-4.665e-4	1	NC	1	NC	1
99		12	max	0	1	.004	2	0	_	-1.891e-5		NC	1	NC	1
100		12	min	0	12	003	3	0	1	-4.665e-4	1	NC	1	NC	1
101		13	max	0	1	.003	2	0	15		12	NC	1	NC NC	1
102		13	min	0	12	003	3	0	1	-4.665e-4	1	NC NC	1	NC	1
103		14	max	0	1	.003	2	0	_	-1.891e-5		NC	1	NC	1
104			min	0	12	002	3	0	1	-4.665e-4	1	NC	1	NC	1
105		15	max	0	1	.002	2	0		-1.891e-5		NC	1	NC	1
106		10	min	0	12	002	3	0	1	-4.665e-4	1	NC	1	NC	1
107		16	max	0	1	.002	2	0		-1.891e-5	•	NC	1	NC	1
108		1.0	min	0	12	001	3	0	1	-4.665e-4	1	NC	1	NC	1
100			1111111		12	.001				1.0000 +		110			

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC		LC			(n) L/z Ratio LC	
109		17	max	0	1	.001	2	0	15	-1.891e-5	12	NC	1	NC	1
110			min	0	12	0	3	0	1	-4.665e-4	1_	NC	1	NC	1
111		18	max	0	1	0	2	0	15	-1.891e-5	12	NC	1	NC	1
112			min	0	12	0	3	0	1	-4.665e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-1.891e-5	12	NC	1	NC	1
114			min	0	1	0	1	0	1	-4.665e-4	1	NC	1	NC	1
115	M6	1	max	.007	1	.031	2	.003	1	3.929e-4	3	NC	3	NC	1
116	1110		min	011	3	028	3	005	3	-6.264e-8		1271.928	2	7895.299	
117		2	max	.007	1	.029	2	.003	1	3.806e-4	3	NC	3	NC	1
118			min	01	3	027	3	005	3	-9.945e-7	2	1361.211	2	8387.571	3
119		3	max	.006	1	.027	2	.002	1	3.683e-4	3	NC	3	NC	1
120		- 3	min	01	3	025	3	004	3	-2.106e-6	2	1463.546	2	8971.34	3
		1													3
121		4	max	.006	1	.025	2	.002	1	3.561e-4	3_	NC	3_	NC 0000 404	1
122		_	min	009	3	024	3	004	3	-4.196e-6	1_	1581.547	2	9666.194	
123		5	max	.006	1	.023	2	.002	1	3.438e-4	3	NC	3	NC	1
124			min	008	3	022	3	004	3	-7.78e-6	1_	1718.58	2	NC	1
125		6	max	.005	1	.021	2	.002	1	3.316e-4	3	NC	3	NC	1
126			min	008	3	021	3	003	3	-1.136e-5	1_	1879.056	2	NC	1
127		7	max	.005	1	.019	2	.002	1	3.193e-4	3	NC	3	NC	1
128			min	007	3	019	3	003	3	-1.495e-5	1_	2068.858	2	NC	1
129		8	max	.004	1	.017	2	.001	1	3.07e-4	3	NC	3	NC	1
130			min	007	3	018	3	003	3	-1.853e-5	1	2296.012	2	NC	1
131		9	max	.004	1	.015	2	.001	1	2.948e-4	3	NC	3	NC	1
132			min	006	3	016	3	002	3	-2.212e-5	1	2571.755	2	NC	1
133		10	max	.004	1	.014	2	.001	1	2.825e-4	3	NC	3	NC	1
134		10	min	005	3	015	3	002	3	-2.57e-5	1	2912.32	2	NC	1
135		11	max	.003	1	.012	2	0	1	2.703e-4	3	NC	3	NC	1
136			min	005	3	013	3	002	3	-2.928e-5	1	3342.046	2	NC	1
137		12	max	.003	1	.01	2	<u>.002</u>	1	2.58e-4	3	NC	3	NC	1
138		12	min	004	3	012	3	002	3	-3.287e-5	1	3899.175	2	NC	1
139		13	max	.002	1	.008	2	<u>002</u> 0	1	2.457e-4	3	NC	3	NC	1
		13			3		3		3		-	4647.419			1
140		4.4	min	004		01		001		-3.645e-5	1_		2	NC NC	
141		14	max	.002	1	.007	2	0	1	2.335e-4	3_	NC	3_	NC NC	1
142			min	003	3	008	3	0	3	-4.004e-5	1_	5701.433	2	NC	1
143		15	max	.002	1	.005	2	0	1	2.212e-4	3	NC	1_	NC	1
144			min	002	3	007	3	0	3	-4.362e-5	1_	7290.474	2	NC	1
145		16	max	.001	1	004	2	0	1	2.09e-4	3_	NC	_1_	NC	1
146			min	002	3	005	3	0	3	-4.721e-5	1_	9949.387	2	NC	1
147		17	max	0	1	.003	2	0	1	1.967e-4	3	NC	1	NC	1
148			min	001	3	003	3	0	3	-5.079e-5	1_	NC	1_	NC	1
149		18	max	0	1	.001	2	0	1	1.844e-4	3	NC	1	NC	1
150			min	0	3	002	3	0	3	-5.437e-5	1	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.722e-4	3	NC	1	NC	1
152			min	0	1	0	1	0	1	-5.796e-5	1	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	2.712e-5	1	NC	1	NC	1
154			min	0	1	0	1	0	1	-8.08e-5	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	2.31e-5	1	NC	1	NC	1
156			min	0	2	002	3	0	1	-6.013e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	1.909e-5	<u> </u>	NC	1	NC	1
158				0	2	004	3	0	1	-3.945e-5		NC NC	1	NC	1
		4	min		3		2		_		3	NC NC	1		
159		4	max	0		.004		.001	3	1.507e-5	1		4	NC NC	1
160		-	min	001	2	006	3	0	1	-1.878e-5	3	NC NC		NC NC	1
161		5	max	.001	3	.005	2	.001	3	1.106e-5	1	NC 0574 004	1_	NC NC	1
162			min	002	2	008	3	0	1	0	10	8574.094	2	NC	1
163		6	max	.002	3	.007	2	.002	3	2.257e-5	3	NC	1_	NC	1
164			min	002	2	009	3	0	1	0	10	6870.991	2	NC	1
165		7	max	.002	3	.008	2	.002	3	4.325e-5	3	NC	3	NC	_1_

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
166			min	002	2	011	3	0	1	-2.968e-7	13	5706.709	2	NC	1
167		8	max	.002	3	.009	2	.002	3	6.393e-5	3	NC	3	NC	1
168			min	003	2	013	3	0	1	-1.402e-6	9	4853.487	2	NC	1
169		9	max	.003	3	.011	2	.002	3	8.46e-5	3	NC	3	NC	1
170			min	003	2	014	3	0	1	-4.998e-6	1	4197.835	2	NC	1
171		10	max	.003	3	.013	2	.002	3	1.053e-4	3	NC	3	NC	1
172			min	003	2	016	3	001	1	-9.012e-6	1	3676.838	2	NC	1
173		11	max	.003	3	.014	2	.003	3	1.26e-4	3	NC	3	NC	1
174			min	004	2	017	3	001	1	-1.303e-5	1	3252.715	2	NC	1
175		12	max	.004	3	.016	2	.003	3	1.466e-4	3	NC	3	NC	1
176			min	004	2	018	3	001	1	-1.704e-5	1	2901.285	2	NC	1
177		13	max	.004	3	.018	2	.003	3	1.673e-4	3	NC	3	NC	1
178		1	min	005	2	02	3	001	1	-2.106e-5	1	2606.235	2	NC	1
179		14	max	.004	3	.02	2	.003	3	1.88e-4	3	NC	3	NC	1
180			min	005	2	021	3	001	1	-2.507e-5	1	2356.068	2	NC	1
181		15	max	.005	3	.022	2	.003	3	2.087e-4	3	NC	3	NC	1
182		10	min	005	2	022	3	001	1	-2.908e-5	1	2142.377	2	NC	1
183		16	max	.005	3	.024	2	.003	3	2.293e-4	3	NC	3	NC	1
184		10	min	006	2	023	3	001	1	-3.31e-5	1	1958.823	2	NC	1
185		17		.005	3	.026	2	.003	3	2.5e-4	3	NC	3	NC	1
186		17	max	006	2	024	3	003	1	-3.711e-5	1	1800.506	2	NC NC	1
		10	min		3		2			2.707e-4		NC			_
187		18	max	.005		.028		.003	3		3		3	NC NC	1
188		40	min	006	2	024	3	002	1	-4.113e-5	1_	1663.569	2	NC NC	1
189		19	max	.006	3	.03	2	.002	3	2.914e-4	3	NC 4544.000	3_	NC	1
190	140	1	min	007	2	025	3	002	1	-4.514e-5	1_	1544.928	2	NC NC	1
191	<u>M8</u>	1	max	.004	1	.035	2	.002	1	-9.802e-8	10	NC	1	NC	1
192		_	min	0	3	028	3	002	3	-2.227e-4	3_	NC	_1_	NC	1
193		2	max	.004	1	.033	2	.001	1	-9.802e-8	<u>10</u>	NC	1_	NC	1
194			min	0	3	027	3	002	3	-2.227e-4	3	NC	1_	NC	1
195		3	max	.004	1	.031	2	.001	1	-9.802e-8	10	NC	1	NC	1
196			min	0	3	025	3	001	3	-2.227e-4	3	NC	1	NC	1
197		4	max	.004	1	.029	2	.001	1	-9.802e-8	10	NC	_1_	NC	1
198			min	0	3	023	3	001	3	-2.227e-4	3	NC	1_	NC	1
199		5	max	.003	1	.027	2	.001	1	-9.802e-8	10	NC	1_	NC	1
200			min	0	3	022	3	001	3	-2.227e-4	3	NC	1	NC	1
201		6	max	.003	1	.026	2	0	1	-9.802e-8	10	NC	1	NC	1
202			min	0	3	02	3	001	3	-2.227e-4	3	NC	1	NC	1
203		7	max	.003	1	.024	2	0	1	-9.802e-8	10	NC	1	NC	1
204			min	0	3	019	3	0	3	-2.227e-4	3	NC	1	NC	1
205		8	max	.003	1	.022	2	0	1	-9.802e-8	10	NC	1	NC	1
206			min	0	3	017	3	0	3	-2.227e-4		NC	1	NC	1
207		9	max	.002	1	.02	2	0	1	-9.802e-8		NC	1	NC	1
208			min	0	3	016	3	0	3		3	NC	1	NC	1
209		10	max	.002	1	.018	2	0	1	-9.802e-8		NC	1	NC	1
210		T .	min	0	3	014	3	0	3	-2.227e-4	3	NC	1	NC	1
211		11	max	.002	1	.016	2	0	1	-9.802e-8	10	NC	1	NC	1
212			min	0	3	013	3	0	3	-2.227e-4	3	NC	1	NC	1
213		12	max	.002	1	.014	2	0	1	-9.802e-8	10	NC	1	NC	1
214		12	min	0	3	011	3	0	3	-2.227e-4	3	NC	1	NC	1
215		13	max	.001	1	.012	2	0	1	-2.227e-4 -9.802e-8		NC	1	NC	1
216		13	min	.001	3	009	3	0	3	-9.602e-6 -2.227e-4	3	NC NC	1	NC NC	1
		11													_
217		14	max	.001	1	.01	2	0	1	-9.802e-8		NC NC	1	NC NC	1
218		4.5	min	0	3	008	3	0	3	-2.227e-4	3	NC NC	1_	NC NC	1
219		15	max	0	1	.008	2	0	1	-9.802e-8		NC	1	NC	1
220		40	min	0	3	006	3	0	3	-2.227e-4	3	NC NC	1_	NC NC	1
221		16	max	0	1	.006	2	0	1	-9.802e-8		NC	1	NC	1
222			min	0	3	005	3	0	3	-2.227e-4	3	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	1	.004	2	0	1	-9.802e-8	10	NC	1	NC	1
224			min	0	3	003	3	0	3	-2.227e-4	3	NC	1	NC	1
225		18	max	0	1	.002	2	0	1	-9.802e-8	10	NC	1	NC	1
226			min	0	3	002	3	0	3	-2.227e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1	-9.802e-8	10	NC	1	NC	1
228			min	0	1	0	1	0	1	-2.227e-4	3	NC	1	NC	1
229	M10	1	max	.002	1	.009	2	0	3	5.893e-4	1	NC	3	NC	1
230	IVITO	<u> </u>	min	003	3	009	3	001	1	-4.475e-4	3	4380.024	2	NC	1
231		2		.002	1	.008	2	<u></u> 0	3	5.59e-4	1	NC	3	NC	1
232		-	max		3		3	001	1			4785.548		NC NC	1
		-	min	003		009			_	-4.324e-4	3		2		
233		3	max	.002	1	.007	2	0	3	5.287e-4	1	NC	1_	NC	1
234			min	003	3	008	3	001	1	-4.173e-4	3	5268.885	2	NC	1
235		4	max	.002	1	.007	2	0	3	4.984e-4	_1_	NC	_1_	NC	1
236			min	003	3	008	3	001	1	-4.022e-4	3	5849.07	2	NC	1
237		5	max	.002	1	.006	2	0	3	4.681e-4	1	NC	1	NC	1
238			min	002	3	008	3	001	1	-3.872e-4	3	6551.554	2	NC	1
239		6	max	.002	1	.005	2	0	3	4.378e-4	1	NC	1	NC	1
240			min	002	3	007	3	001	1	-3.721e-4	3	7410.935	2	NC	1
241		7	max	.002	1	.005	2	0	3	4.076e-4	1	NC	1	NC	1
242			min	002	3	007	3	001	1	-3.57e-4	3	8475.158	2	NC	1
243		8		.002	1	.004	2	<u>001</u> 0	3	3.773e-4	1	NC	1	NC NC	1
		-	max												
244			min	002	3	006	3	0	1	-3.42e-4	3_	9812.172	2	NC NC	1
245		9	max	.001	1	.003	2	0	3	3.47e-4	1	NC	_1_	NC	1
246			min	002	3	006	3	0	1	-3.269e-4	3	NC	1_	NC	1
247		10	max	.001	1	.003	2	0	3	3.167e-4	_1_	NC	_1_	NC	1
248			min	002	3	006	3	0	1	-3.118e-4	3	NC	1	NC	1
249		11	max	.001	1	.002	2	0	3	2.864e-4	1	NC	1	NC	1
250			min	001	3	005	3	0	1	-2.967e-4	3	NC	1	NC	1
251		12	max	0	1	.002	2	0	3	2.561e-4	1	NC	1	NC	1
252			min	001	3	005	3	0	1	-2.817e-4	3	NC	1	NC	1
253		13	max	0	1	.001	2	0	3	2.258e-4	1	NC	1	NC	1
254			min	001	3	004	3	0	1	-2.666e-4	3	NC	1	NC	1
255		14		0	1	.001	2	0	3	1.956e-4	1	NC	1	NC	1
256		14	max	0	3	003	3	0	1		3	NC NC	1	NC NC	1
		4.5	min							-2.515e-4			•		-
257		15	max	0	1	0	2	0	3	1.653e-4	1_	NC	1_	NC NC	1
258		1.0	min	0	3	003	3	0	1	-2.364e-4	3	NC	1_	NC	1
259		16	max	00	1	0	2	0	3	1.35e-4	1_	NC	_1_	NC	1
260			min	0	3	002	3	0	1	-2.214e-4	3	NC	_1_	NC	1
261		17	max	0	1	0	2	0	3	1.047e-4	1	NC	1	NC	1
262			min	0	3	001	3	0	1	-2.063e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	7.442e-5	1	NC	1	NC	1
264			min	0	3	0	3	0	1	-1.912e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	4.413e-5	1	NC	1	NC	1
266		1.0	min	0	1	0	1	0	1	-1.761e-4	3	NC	1	NC	1
267	M11	1		0	1	0	1	0	1	8.312e-5	3	NC	1	NC	1
	IVI I I	-	max	0	1	0	1	0	1		1	NC NC	1	NC NC	1
268			min						-	-2.131e-5	•				
269		2	max	0	3	0	2	0	1	6.232e-5	3	NC	1_	NC NC	1
270			min	0	2	0	3	0	3	-4.403e-5	1_	NC	_1_	NC	1
271		3	max	0	3	0	2	0	2	4.152e-5	3	NC	_1_	NC	1
272			min	0	2	002	3	0	3	-6.675e-5	1	NC	1	NC	1
273		4	max	0	3	0	2	0	2	2.072e-5	3	NC	1	NC	1
274			min	0	2	003	3	001	3	-8.946e-5	1	NC	1	NC	1
275		5	max	0	3	0	2	0	2	-7.703e-8	3	NC	1	NC	1
276			min	0	2	003	3	001	3	-1.122e-4	1	NC	1	NC	1
277		6	max	0	3	0	2	0	10		15	NC	1	NC	1
278			min	0	2	004	3	002	3	-1.349e-4	1	NC	1	NC	1
279		7			3		2				•		1		_
2/9		7	max	0	<u> </u> 3	0		0	10	-6.952e-6	<u>15</u>	NC		NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
280			min	0	2	005	3	002	3 -1.576e-4	1	NC	1	NC	1
281		8	max	0	3	0	2	0	10 -7.913e-6	15	NC	1_	NC	1
282			min	0	2	006	3	002	3 -1.803e-4	1_	NC	1_	NC	1
283		9	max	0	3	.001	2	0	10 -8.874e-6	15	NC	1_	NC	1
284		4.0	min	0	2	006	3	002	3 -2.03e-4	<u>1</u>	NC	1_	NC	1
285		10	max	0	3	.002	2	0	15 -9.835e-6	<u>15</u>	NC	1	NC NC	1
286		44	min	0	2	007	3	002	3 -2.258e-4	1_	NC	1_	NC NC	1
287		11	max	.001	3	.002	2	0	15 -1.08e-5	<u>15</u>	NC	1_	NC	1
288		40	min	001	2	007	3	003	1 -2.485e-4	1_	NC NC	1_1	NC NC	1
289		12	max	.001	3	.003	3	003	15 -1.176e-5 1 -2.712e-4	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
290 291		13	min	001	3	007	2	003 0	1 -2.712e-4 15 -1.272e-5	1_	NC NC	1	NC NC	1
292		13	max	.001 001	2	.003 008	3	004	1 -2.939e-4	<u>15</u> 1	NC NC	1	NC NC	1
293		14	max	.001	3	008 .004	2	004 0	15 -1.368e-5	15	NC NC	1	NC NC	1
294		14	min	001	2	008	3	004	1 -3.166e-4	1	NC	1	NC	1
295		15	max	.002	3	.005	2	- <u>004</u> 0	15 -1.464e-5	15	NC	1	NC	2
296		10	min	001	2	008	3	005	1 -3.394e-4	1	9525.505	2	9653.768	1
297		16	max	.002	3	.006	2	0	15 -1.56e-5	15	NC	1	NC	2
298		10	min	002	2	008	3	005	1 -3.621e-4	1	8020.847	2	8633.802	1
299		17	max	.002	3	.007	2	0	15 -1.656e-5	15	NC	1	NC	2
300		<u> </u>	min	002	2	008	3	006	1 -3.848e-4	1	6867.931	2	7817.154	1
301		18	max	.002	3	.008	2	0	15 -1.752e-5	15	NC	1	NC	2
302			min	002	2	008	3	006	1 -4.075e-4	1	5973.003	2	7156.164	1
303		19	max	.002	3	.009	2	0	15 -1.849e-5	15	NC	3	NC	2
304			min	002	2	008	3	007	1 -4.302e-4	1	5271.239	2	6617.05	1
305	M12	1	max	.002	1	.01	2	.006	1 3.976e-4	1	NC	1	NC	2
306			min	0	12	009	3	0	15 1.677e-5	15	NC	1	3290.756	1
307		2	max	.001	1	.01	2	.005	1 3.976e-4	1	NC	1	NC	2
308			min	0	12	009	3	0	15 1.677e-5	15	NC	1	3588.874	1
309		3	max	.001	1	.009	2	.005	1 3.976e-4	1_	NC	1_	NC	2
310			min	0	12	008	3	0	15 1.677e-5	15	NC	1_	3943.732	1
311		4	max	.001	1	.009	2	.004	1 3.976e-4	1	NC	1_	NC	2
312			min	0	12	008	3	0	15 1.677e-5	15	NC	1_	4370.285	1
313		5	max	.001	1	.008	2	.004	1 3.976e-4	_1_	NC	_1_	NC	2
314			min	0	12	007	3	0	15 1.677e-5	15	NC	1_	4888.91	1
315		6	max	.001	1	.007	2	.003	1 3.976e-4	_1_	NC	_1_	NC	2
316		<u> </u>	min	0	12	007	3	0	15 1.677e-5	<u>15</u>	NC	1_	5527.946	1
317		7	max	.001	1	.007	2	.003	1 3.976e-4	_1_	NC	1_	NC	2
318			min	0	12	006	3	0	15 1.677e-5	15	NC	1_	6327.761	1
319		8	max	0	1	.006	2	.003	1 3.976e-4	1_	NC	1_	NC 70.47.400	2
320			min		12	006	3	0	15 1.677e-5				7347.468	
321		9	max	0	1	.006	2	.002	1 3.976e-4	1 1 5	NC NC	1_1	NC	2
322		10	min	0	12	005	2	0	15 1.677e-5 1 3.976e-4	<u>15</u>	NC NC	<u>1</u> 1	8676.488	1
323		10	max	0	12	.005	3	.002		1_	NC NC	1	NC NC	1
324		11	min max	0	1	005 .005	2	<u> </u>	15 1.677e-5 1 3.976e-4	<u>15</u> 1	NC NC	1	NC NC	1
326			min	0	12	004	3	0	15 1.677e-5	15	NC	1	NC	1
327		12	max	0	1	.004	2	.001	1 3.976e-4	1 <u>1</u>	NC	1	NC	1
328		12	min	0	12	004	3	0	15 1.677e-5	15	NC	1	NC	1
329		13	max	0	1	.003	2	0	1 3.976e-4	1 <u>5</u>	NC	1	NC	1
330		13	min	0	12	003	3	0	15 1.677e-5	15	NC	1	NC	1
331		14	max	0	1	.003	2	0	1 3.976e-4	1	NC	1	NC	1
332		1,7	min	0	12	003	3	0	15 1.677e-5	15	NC	1	NC	1
333		15	max	0	1	.002	2	0	1 3.976e-4	1	NC	1	NC	1
334		'	min	0	12	002	3	0	15 1.677e-5	15	NC	1	NC	1
335		16	max	0	1	.002	2	0	1 3.976e-4	1	NC	1	NC	1
336			min	0	12	002	3	0	15 1.677e-5	15	NC	1	NC	1
000												_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	1	3.976e-4	_1_	NC	_1_	NC	1
338			min	0	12	001	3	0	15	1.677e-5	15	NC	1_	NC	1
339		18	max	0	1	00	2	00	1	3.976e-4	_1_	NC	_1_	NC	1
340			min	0	12	0	3	0	15	1.677e-5	15	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	3.976e-4	1_	NC	1_	NC	1
342	N 4 4		min	0	1	0	1	0	1	1.677e-5	<u>15</u>	NC NC	1_	NC NC	1
343	<u>M1</u>	1_	max	.008	3	.024	3	.003	3	9.345e-3	2	NC	1	NC NC	1
344			min	008	2	021	2	003	1	-1.312e-2	3	NC NC	1_	NC NC	1
345		2	max	.008	3	.014	3	.002	3	4.582e-3	2	NC	4	NC NC	1
346		2	min	008	2	012	3	006 .002	1	-6.483e-3	3	4897.869 NC	3	NC NC	1
347		3	max	.008	3	.005			3	2.839e-5 -3.541e-4	<u>3</u>	2537.459	4	NC NC	1
349		4	min	008 .008	3	004 .004	2	007 .001	3		3	NC	<u>3</u>	NC NC	2
350		4	max	008	2	003	3		1	3.06e-5 -3.035e-4	1	1808.585	3	8371.444	1
351		5		.008	3	003 .01	2	008 0	3	3.281e-5	3	NC	4	NC	2
352		<u> </u>	max	008	2	009	3	008	1	-2.528e-4	1	1451.551	2	8064.196	
353		6	max	.008	3	.015	2	<u>.000</u>	3	3.502e-5	3	NC	4	NC	2
354			min	008	2	014	3	008	1	-2.022e-4	1	1232.757	2	8669.671	1
355		7	max	.008	3	.02	2	0	3	3.723e-5	3	NC	5	NC	1
356			min	008	2	018	3	007	1	-1.515e-4	1	1097.694	2	NC	1
357		8	max	.008	3	.023	2	0	3	3.944e-5	3	NC	5	NC	1
358			min	008	2	021	3	006	1	-1.009e-4	1	1012.833	2	NC	1
359		9	max	.008	3	.025	2	0	3	4.165e-5	3	NC	5	NC	1
360			min	008	2	022	3	004	1	-5.021e-5	1	962.332	2	NC	1
361		10	max	.008	3	.026	2	0	3	4.386e-5	3	NC	5	NC	1
362			min	008	2	023	3	002	1	-4.715e-6	9	938.618	2	NC	1
363		11	max	.008	3	.025	2	0	3	5.109e-5	1	NC	5	NC	1
364			min	008	2	022	3	0	1	1.881e-6	15	938.933	2	NC	1
365		12	max	.008	3	.024	2	.001	1	1.017e-4	1_	NC	5	NC	1
366			min	008	2	02	3	0	15	4.013e-6	15	964.315	2	NC	1
367		13	max	.008	3	.021	2	.002	1	1.524e-4	_1_	NC	4_	NC	1
368			min	008	2	017	3	0	15	6.145e-6		1020.175	2	NC	1
369		14	max	.008	3	.016	2	.003	1	2.03e-4	_1_	NC	4	NC	2
370			min	008	2	013	3	0	15	8.277e-6		1119.059	2	8841.282	1
371		15	max	.008	3	01	2	.004	1	2.537e-4	_1_	NC	4_	NC	2
372		40	min	008	2	008	3	0	15	1.041e-5		1288.552	2	8190.299	1
373		16	max	.008	3	.003	2	.004	1	2.89e-4	1_	NC 4500.040	4_	NC 0.474.505	2
374		4-	min	008	2	003	3	0	15	1.19e-5		1596.249	2	8474.505	
375		17	max	.008	3	.004	3	.003	1	4.652e-5	3_	NC 0050.040	4	NC NC	1
376		10	min max	008	3	006	3	0	1 <u>5</u>	-4.088e-5	2	2259.343	2	NC NC	1
377		18		.008	2	.012		.001		6.655e-3 -3.21e-3	2	NC	2	NC NC	1
378 379		19	min	008 .008	3	016 .02	3	<u> </u>	1 <u>5</u>	1.342e-2	2	4377.435 NC	1	NC NC	1
380		19	max min	008	2	028	2	002	1	-6.527e-3	3	NC NC	1	NC NC	1
381	M5	1	max	.025	3	.077	3	.003	3	3.733e-6	3	NC	1	NC	1
382	IVIO		min	029	2	069	2	003	1	0	2	NC NC	1	NC	1
383		2	max	.025	3	.046	3	.004	3	1.087e-4	3	NC	4	NC	1
384			min	029	2	04	2	003	1	-4.975e-5	1	1521.403	3	NC	1
385		3	max	.025	3	.016	3	.005	3	2.117e-4	3	NC	5	NC	1
386			min	029	2	013	2	003	1	-9.865e-5	1	788.479	3	NC	1
387		4	max	.025	3	.011	2	.006	3	2.048e-4	3	NC	5	NC	1
388			min	029	2	009	3	003	1	-9.4e-5	1	557.036	2	NC	1
389		5	max	.025	3	.032	2	.006	3	1.98e-4	3	NC	5	NC	1
390		Ť	min	029	2	029	3	003	1	-8.934e-5	1	440.466	2	NC	1
391		6	max	.025	3	.05	2	.007	3	1.912e-4	3	NC	5	NC	1
392			min	029	2	046	3	003	1	-8.469e-5	1	373.805	2	NC	1
393		7	max	.025	3	.064	2	.007	3	1.844e-4	3	NC	5	NC	1
		<u> </u>									_		<u> </u>		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		
394			min	029	2	058	3	003	1	-8.004e-5	1_	332.631	2	9831.097	3
395		8	max	.025	3	.075	2	.007	3	1.776e-4	3	NC	5_	NC	1
396			min	029	2	067	3	002	1	-7.538e-5	1_	306.734	2	9689.752	3
397		9	max	.025	3	.082	2	.007	3	1.708e-4	3	NC	5	NC	1_
398			min	029	2	071	3	002	1	-7.073e-5	1	291.288	2	9868.283	3
399		10	max	.025	3	.085	2	.006	3	1.64e-4	3	NC	5	NC	1
400			min	029	2	073	3	002	1	-6.607e-5	1	283.982	2	NC	1
401		11	max	.025	3	.084	2	.006	3	1.572e-4	3	NC	5	NC	1
402			min	029	2	07	3	002	1	-6.142e-5	1	283.97	2	NC	1
403		12	max	.025	3	.078	2	.005	3	1.504e-4	3	NC	5	NC	1
404			min	029	2	064	3	002	1	-5.676e-5	1	291.561	2	NC	1
405		13	max	.025	3	.068	2	.005	3	1.436e-4	3	NC	5	NC	1
406			min	029	2	055	3	002	1	-5.211e-5	1_	308.389	2	NC	1
407		14	max	.024	3	.053	2	.004	3	1.368e-4	3	NC	5	NC	1
408			min	029	2	043	3	002	1	-4.745e-5	1	338.252	2	NC	1
409		15	max	.024	3	.034	2	.003	3	1.3e-4	3	NC	5	NC	1
410			min	029	2	027	3	002	1	-4.28e-5	1	389.515	2	NC	1
411		16	max	.024	3	.01	2	.002	3	1.189e-4	3	NC	5	NC	1
412			min	029	2	008	3	002	1	-4.145e-5	1	482.713	2	NC	1
413		17	max	.024	3	.014	3	.002	3	4.917e-6	3	NC	5	NC	1
414			min	029	2	02	2	002	1	-1.187e-4	1	684.175	2	NC	1
415		18	max	.024	3	.038	3	.001	3	1.094e-6	3	NC	4	NC	1
416			min	029	2	055	2	001	1	-6.067e-5	1	1326.479	2	NC	1
417		19	max	.024	3	.063	3	0	3	0	15	NC	1	NC	1
418			min	029	2	091	2	001	1	-6.541e-7	3	NC	1	NC	1
419	M9	1	max	.008	3	.024	3	.002	3	1.312e-2	3	NC	1	NC	1
420	1110		min	008	2	021	2	003	1	-9.345e-3	2	NC	1	NC	1
421		2	max	.008	3	.014	3	.001	3	6.475e-3	3	NC	4	NC	1
422			min	008	2	012	2	0	9	-4.593e-3	2	4899.21	3	NC	1
423		3	max	.008	3	.005	3	.001	1	1.428e-4	1	NC	4	NC	1
424			min	008	2	004	2	0	3	-5.156e-5	3	2538.164	3	NC	1
425		4	max	.008	3	.003	2	.003	1	1.007e-4	1	NC	4	NC	1
426			min	008	2	003	3	001	3	-5.656e-5	3	1809.065	3	NC	1
427		5	max	.008	3	.01	2	.003	1	5.854e-5	1	NC	4	NC	1
428			min	008	2	009	3	002	3	-6.155e-5	3	1452.583	2	NC	1
429		6	max	.008	3	.015	2	.002	1	2.501e-5	2	NC	4	NC	1
430			min	008	2	014	3	003	3	-6.654e-5	3	1233.626	2	9986.386	
431		7	max	.008	3	.02	2	.002	1	9.773e-6	2	NC	5	NC	1
432			min	008	2	018	3	003	3	-7.154e-5	3	1098.458	2	9069.658	3
433		8	max	.008	3	.023	2	0	2	7.691e-7	10	NC	5	NC	1
434			min		2	021	3	004		-7.653e-5		1013.528		8542.368	
435		9	max	.008	3	.025	2	0	2	-2.527e-6		NC	5	NC	1
436		3	min	008	2	023	3	004	3	-1.1e-4	1	962.981	2	8288.424	_
437		10		.008	3	.025 .026	2	004 0	10	-1.1e-4 -5.824e-6		NC	5	NC	1
437		10	max min	008	2	023	3	004	3	-3.624e-6 -1.521e-4	1	939.239	2	8256.678	_
439		11		.008	3	.025	2	004 0		-8.562e-6	•	NC	5	NC	1
			max						10		<u>15</u>				
440		40	min	008	2	022	3	004	3	-1.942e-4	1.	939.543	2	8435.141	3
441		12	max	.008	3	.024	2	0	15		<u>15</u>	NC	5	NC	1
442		40	min	008	2	02	3	005	1	-2.364e-4	1_	964.928	2	8844.91	3
443		13	max	.008	3	.021	2	0		-1.213e-5		NC 4000 04	4_	NC 0000 040	2
444		1	min	008	2	017	3	006	1_	-2.785e-4	1_	1020.81	2	9300.943	1
445		14	max	.008	3	.016	2	0	15		<u>15</u>	NC	4_	NC	2
446			min	008	2	<u>013</u>	3	007	1	-3.206e-4	_1_	1119.738	2	8064.802	
447		15	max	.008	3	.01	2	0	15	-1.57e-5	<u>15</u>	NC	4_	NC	2
448			min	008	2	008	3	007	1	-3.628e-4	_1_	1289.313	2	7680.239	
449		16	max	.008	3	.003	2	0		-1.706e-5	15	NC	4	NC	2
450			min	008	2	003	3	007	1	-3.952e-4	1_	1597.158	2	8090.433	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
451		17	max	.008	3	.004	3	0	15	5.639e-5	3	NC	4_	NC	2
452			min	008	2	006	2	006	1	-1.972e-4	1_	2260.545	2	9855.07	1
453		18	max	.008	3	.012	3	0	15	3.262e-3	3	NC	4_	NC	1
454			min	008	2	016	2	004	1	-6.666e-3	2	4379.691	2	NC	1
455		19	max	.008	3	.02	3	0	3	6.525e-3	3	NC	1_	NC	1
456		-	min	008	2	028	2	001	1	-1.342e-2	2	NC	1_	NC	1
457	M13	1_	max	.003	1	.024	3	.008	3	3.701e-3	3	NC	1_	NC NC	1
458		_	min	002	3	021	2	008	2	-3.337e-3	2	NC	1_	NC NC	1
459		2	max	.003	1	.112	3	.01	1	4.619e-3	3_	NC	4_	NC	2
460			min	002	3	084	2	004	10	-4.185e-3	2	1419.585	3	8667.75	1
461		3	max	.003	1	.186	3	.029	1	5.537e-3	3	NC	5	NC	2
462		-	min	002	3	<u>137</u>	2	003	10	-5.032e-3	2	777.29	3_	3812.011	1
463		4	max	.003	1	.233	3	.044	1	6.455e-3	3_	NC	5	NC	3
464		_	min	002	3	171	2	003	10	-5.88e-3	2	601.142	3	2638.853	
465		5_	max	.003	1	.25	3	.049	1	7.373e-3	3	NC	5_	NC 2015 100	3
466			min	003	3	184	2	004	10	-6.728e-3	2	556.864	3_	2345.102	1
467		6	max	.003	1	.236	3	.045	1	8.29e-3	3	NC 500 700	5_	NC 0570 505	2
468		-	min	003	3	176	2	006	10	-7.576e-3	2	592.793	3_	2570.595	
469		7	max	.003	1	.198	3	.03	1	9.208e-3	3_	NC 700.00	5_	NC	2
470			min	003	3	1 <u>51</u>	2	009	10	-8.424e-3	2	722.68	3_	3648.046	
471		8	max	.003	1	.147	3	.02	3	1.013e-2	3	NC	5_	NC 0700 404	2
472		-	min	003	3	<u>116</u>	2	016	2	-9.272e-3	2	1024.431	3	8768.464	
473		9	max	.003	1	.099	3	.023	3	1.104e-2	3	NC 4074 407	4_	NC 7704.050	1
474		10	min	003	3	084	2	025	2	-1.012e-2	2	1674.197	3	7724.052	2
475		10	max	.003	1	.077	3	.025	3	1.196e-2	3	NC	4_	NC 0450,000	4
476		4.4	min	003	3	069	2	029	2	-1.097e-2	2	2361.285	3	6156.608	
477		11	max	.003	1	.099	3	.028	3	1.105e-2	3	NC 4074.405	4_	NC 0400 045	1
478		10	min	003	3	084	2	025	2	-1.012e-2	2	1674.195	3_	6460.015	
479		12	max	.003	1	.147	3	.029	3	1.013e-2	3	NC	5_	NC 0447.000	2
480		40	min	003	3	116	2	015	2	-9.272e-3	2	1024.43	3	6117.822	3
481		13	max	.003	1	.198	3	.03	1	9.212e-3	3	NC 700 C70	5	NC	2
482		4.4	min	003	3	1 <u>51</u>	2	009	10	-8.424e-3	2	722.679	3_	3630.248	
483		14	max	.003	1	.236	3	.045	1	8.296e-3	3	NC FOO 700	5	NC OFCZ OZE	2
484		4.5	min	003	3	176	2	006	10	-7.577e-3	2	592.793	3	2567.875	
485		15	max	.003	1	.25	3	.049	1	7.38e-3	3	NC FFC 9C2	5	NC	5
486		10	min	003	3	184	2	004	10	-6.729e-3	2	556.863	3	2348.787	
487		16	max	.003	3	.234	3	.043	1	6.463e-3	3	NC CO4 442	5	NC 2040,000	3
488		47	min	003		<u>171</u>	2	003	10	-5.882e-3	2	601.142	3_	2649.868	
489		17	max	.003	3	.186	3	.029	1	5.547e-3 -5.034e-3	3	NC 777 200	5	NC 3841.031	2
490 491		10	min max	003 .003	1	137 .113	3	003 .011	10		3	777.289 NC	<u>3</u> 4	NC	2
492		10		003	3	084	2	004		-4.186e-3	2	1419.585			
493		19	min	.003	1	.024	3	.008	10	3.714e-3	3	NC	<u> </u>	8786.945 NC	
494		19	max min	003	3	024 021	2	008	2	-3.339e-3	2	NC NC	1	NC NC	1
494	M16	1		.003	1	.021	3	.008	3	4.195e-3		NC NC	1	NC NC	1
496	IVITO	-	max min	0	3	028	2	008	2	-2.991e-3	3	NC NC	1	NC NC	1
497		2	max	.001	1	.064	3	.011	3	5.269e-3	2	NC	4	NC	2
498		 	min	0	3	118	2	004	10	-3.713e-3	3	1387.222	2	8676.481	1
499		3	max	.001	1	.101	3	.029	1	6.344e-3	2	NC	5	NC	2
500		3	min	0	3	194	2	003	10	-4.434e-3	3	758.429	2	3815.125	
501		4	max	.001	1	.1 <u>94</u> .126	3	.043	1	7.418e-3	2	NC	5	NC	3
502		-	min	0	3	243	2	003	10	-5.155e-3	3	584.975	2	2640.963	
503		5	max	.001	1	.136	3	003 .049	1	8.492e-3	2	NC	5	NC	5
504			min	0	3	261	2	004		-5.876e-3	3	539.476	2	2347.253	
505		6	max	.001	1	.132	3	.044	1	9.566e-3	2	NC	5	NC	2
506			min	0	3	249	2	006	-		3	570.024	2	2573.814	
507		7	max	.001	1	.116	3	.03	1	1.064e-2	2	NC	5	NC	2
501			πιαλ	.001		.110	J	.00		1.0046-2		INC	J	INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
508			min	0	3	211	2	009	10	-7.319e-3	3	685.816	2	3656.036	
509		8	max	.001	1	.094	3	.026	3	1.171e-2	2	NC	5_	NC	2
510			min	0	3	16	2	015	2	-8.04e-3	3	947.793	2	6757.46	3
511		9	max	.001	1	.072	3	.026	3	1.279e-2	2	NC	4	NC	1
512			min	0	3	113	2	025	2	-8.761e-3	3	1473.604	2	7047.264	3
513		10	max	.001	1	.063	3	.024	3	1.386e-2	2	NC	4	NC	4
514			min	0	3	091	2	029	2	-9.483e-3	3	1978.372	2	6184.787	2
515		11	max	.001	1	.072	3	.023	3	1.279e-2	2	NC	4	NC	1
516			min	0	3	113	2	025	2	-8.76e-3	3	1473.604	2	7770.614	
517		12	max	.001	1	.094	3	.022	3	1.172e-2	2	NC	5	NC	2
518			min	0	3	16	2	015	2	-8.037e-3	3	947.793	2	8716.968	9
519		13	max	.001	1	.116	3	.03	1	1.064e-2	2	NC	5	NC	2
520			min	0	3	211	2	009	10	-7.315e-3	3	685.816	2	3650.115	1
521		14	max	.002	1	.132	3	.044	1	9.567e-3	2	NC	5	NC	2
522			min	0	3	249	2	006	10	-6.592e-3	3	570.024	2	2577.583	
523		15	max	.002	1	.136	3	.049	1	8.493e-3	2	NC	5	NC	3
524			min	0	3	261	2	004	10	-5.87e-3	3	539.476	2	2356.263	1
525		16	max	.002	1	.126	3	.043	1	7.419e-3	2	NC	5	NC	3
526			min	0	3	243	2	003	10	-5.147e-3	3	584.975	2	2657.96	1
527		17	max	.002	1	.101	3	.028	1	6.346e-3	2	NC	5	NC	2
528			min	0	3	194	2	003	10	-4.424e-3	3	758.43	2	3853.733	1
529		18	max	.002	1	.064	3	.01	1	5.272e-3	2	NC	4	NC	2
530			min	0	3	118	2	004	10	-3.702e-3	3	1387.222	2	8823.856	1
531		19	max	.002	1	.02	3	.008	3	4.198e-3	2	NC	1_	NC	1
532			min	0	3	028	2	008	2	-2.979e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	3.825e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-5.472e-5	2	NC	1	NC	1
535		2	max	0	3	001	15	0	1	8.366e-4	3	NC	1	NC	1
536			min	0	2	006	4	0	3	-5.154e-4	2	NC	1	NC	1
537		3	max	0	3	003	15	.003	1	1.291e-3	3	NC	3	NC	1
538			min	0	2	012	4	003	3	-9.76e-4	2	6143.049	4	NC	1
539		4	max	0	3	004	15	.006	1	1.745e-3	3	NC	5	NC	4
540			min	0	2	018	4	007	3	-1.437e-3	2	4214.49	4	6089.567	3
541		5	max	0	3	005	15	.01	1	2.199e-3	3	NC	15	NC	4
542			min	0	2	023	4	012	3	-1.897e-3	2	3288.61	4	4010.748	3
543		6	max	0	3	006	15	.015	1	2.653e-3	3	NC	15	NC	4
544			min	0	2	027	4	017	3	-2.358e-3	2	2767.713	4	2927.382	3
545		7	max	0	3	007	15	.019	1	3.107e-3	3	NC	15	NC	4
546			min	001	2	031	4	022	3	-2.819e-3	2	2454.462	4	2292.459	3
547		8	max	0	3	008	15	.024	1	3.561e-3	3	9641.864	15	NC	4
548			min	001	2	033	4	027	3	-3.279e-3	2	2266.464	4	1892.708	3
549		9	max	0	3	008	15	.027	1	4.016e-3	3	9211.381	15	NC	4
550			min	001	2	035	4	032	3	-3.74e-3	2	2165.273	4	1630.853	3
551		10	max	0	3	008	15	.031	1	4.47e-3	3	9075.197	15	NC	4
552			min	002	2	035	4	036	3	-4.201e-3	2	2133.261	4	1457.957	3
553		11	max	0	3	008	15	.033	1	4.924e-3	3	9211.381	15	NC	5
554			min	002	2	035	4	038	3	-4.661e-3	2	2165.273	4	1348.307	3
555		12	max	0	3	008	15	.033	1	5.378e-3	3	9641.864	15	NC	5
556			min	002	2	033	4	039	3	-5.122e-3	2	2266.464	4	1289.164	
557		13	max	.001	3	007	15	.033	1	5.832e-3	3	NC	15	NC	5
558			min	002	2	031	4	038	3	-5.583e-3	2	2454.462	4	1276.895	
559		14	max	.001	3	006	15	.03	1	6.286e-3	3	NC	15	NC	5
560			min	002	2	028	4	034	3	-6.043e-3	2	2767.713	4	1317.157	
561		15	max	.001	3	005	15	.025	1	6.74e-3	3	NC	15	NC	4
562		T.	min	003	2	023	4	028	3	-6.504e-3	2	3288.61	4	1430.486	
563		16	max	.001	3	004	15	.018	1	7.195e-3	3	NC	5	NC	4
564		T	min	003	2	018	4	019	3	-6.965e-3	2	4214.49	4	1672.559	
			11.001	.000	_	.0.10		10 10		3.00000	_	12 1 11 10		. 0. 2.000	

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.001	3	003	15	.007	1	7.649e-3	3	NC	3	NC	4
566			min	003	2	013	4	006	3	-7.425e-3	2	6143.049	4	2217.971	3
567		18	max	.001	3	0	2	.01	3	8.103e-3	3	NC	1	NC	4
568			min	003	2	007	4	013	2	-7.886e-3	2	NC	1	3949.863	3
569		19	max	.002	3	.005	2	.031	3	8.557e-3	3	NC	1	NC	1
570			min	003	2	002	9	031	2	-8.347e-3	2	NC	1	NC	1
571	M16A	1	max	0	10	0	10	.009	3	2.477e-3	3	NC	1	NC	1
572			min	001	3	001	9	009	2	-2.427e-3	2	NC	1	NC	1
573		2	max	0	10	002	15	.002	3	2.381e-3	3	NC	1	NC	1
574			min	001	3	007	4	003	2	-2.319e-3	2	NC	1	NC	1
575		3	max	0	10	003	15	.006	1	2.284e-3	3	NC	3	NC	4
576			min	001	3	013	4	003	3	-2.212e-3	2	6143.049	4	6352.551	3
577		4	max	0	10	004	15	.01	1	2.187e-3	3	NC	5	NC	4
578			min	001	3	018	4	008	3	-2.104e-3	2	4214.49	4	4838.182	3
579		5	max	0	10	005	15	.013	1	2.091e-3	3	NC	15	NC	4
580			min	001	3	023	4	01	3	-1.996e-3	2	3288.61	4	4185.036	3
581		6	max	0	10	006	15	.014	1	1.994e-3	3	NC	15	NC	4
582			min	001	3	027	4	012	3	-1.888e-3	2	2767.713	4	3904.019	3
583		7	max	0	10	007	15	.015	1	1.897e-3	3	NC	15	NC	4
584			min	0	3	031	4	013	3	-1.78e-3	2	2454.462	4	3842.524	3
585		8	max	0	10	008	15	.015	1	1.801e-3	3	9641.864	15	NC	4
586			min	0	3	033	4	013	3	-1.672e-3	2	2266.464	4	3949.423	3
587		9	max	0	10	008	15	.014	1	1.704e-3	3	9211.381	15	NC	4
588			min	0	3	035	4	012	3	-1.564e-3	2	2165.273	4	4219.921	3
589		10	max	0	10	008	15	.013	1	1.607e-3	3	9075.197	15	NC	4
590			min	0	3	035	4	011	3	-1.457e-3	2	2133.261	4	4683.578	3
591		11	max	0	10	008	15	.011	1	1.511e-3	3	9211.381	15	NC	4
592			min	0	3	035	4	01	3	-1.349e-3	2	2165.273	4	5411.817	3
593		12	max	0	10	008	15	.009	1	1.414e-3	3	9641.864	15	NC	4
594			min	0	3	033	4	008	3	-1.241e-3	2	2266.464	4	6547.293	3
595		13	max	0	10	007	15	.007	1	1.318e-3	3	NC	15	NC	2
596			min	0	3	03	4	006	3	-1.133e-3	2	2454.462	4	8333.846	1
597		14	max	0	10	006	15	.005	1	1.221e-3	3	NC	15	NC	1
598			min	0	3	027	4	004	3	-1.025e-3	2	2767.713	4	NC	1
599		15	max	0	10	005	15	.003	1	1.124e-3	3	NC	15	NC	1
600			min	0	3	023	4	002	3	-9.172e-4	2	3288.61	4	NC	1
601		16	max	0	10	004	15	.002	1	1.028e-3	3	NC	5	NC	1
602			min	0	3	018	4	0	3	-8.094e-4	2	4214.49	4	NC	1
603		17	max	0	10	003	15	0	14	9.309e-4	3	NC	3	NC	1
604			min	0	3	012	4	0	2	-7.015e-4	2	6143.049	4	NC	1
605		18	max	0	10	001	15	0	3	8.343e-4	3	NC	1	NC	1
606			min	0	3	006	4	0	2	-5.936e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	7.376e-4	3	NC	1	NC	1
608			min	0	1	0	1	0	1	-4.858e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.