Chapter-14 पादप में श्वसन

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

प्रश्न 1.

इनमें अन्तर करिए

- (अ) साँस (श्वसन) और दहन
- (ब) ग्लाइकोलिसिस तथा क्रेब्स चक्र
- (स) ऑक्सी श्वसन तथा किण्वन

उत्तर :

(अ) साँस (श्वसन) तथा दहन में अन्तर

क्र॰ सं॰	श्वसन (Respiration)	दहन (Combustion)	
and the second live of	यह एक जैविक क्रिया है।	यह एक रासायनिक क्रिया है।	
	इस क्रिया में ऊर्जा विभिन्न चरणों में निकलती है।	ऊर्जा एक-साथ निकलती है।	
	शरीर का तापमान सामान्य बना रहता है।	तापमान में अत्यधिक वृद्धि होती है।	
4.	ऊर्जा ATP के रूप में संचित होती है।	ऊर्जा ऊष्मा एवं प्रकाश के रूप में निकलती है।	
5.	सम्पूर्ण क्रिया विभिन्न विकरों द्वारा नियन्त्रित होती है।	सम्पूर्ण क्रिया उच्च ताप पर सम्पन्न होती है।	(ৱ)

ग्लाइकोलिसिस तथा क्रेब्स चक्र में अन्तर

क्र॰ सं॰	ग्लाइकोलिसिस (Glycolysis)	क्रेब्स चक्र (Krebs Cycle)
1.	यह 9 चरणों का रेखीय पथ है।	यह 8 चरणों का चक्रीय पथ होता है।
2.	ग्लाइकोलिसिस कोशिकाद्रव्य में होता है। इसमें श्वसनी क्रियाधार ग्लूकोस होता है।	क्रेब्स चक्र माइटोकॉन्ड्रिया में होता है। इसमें श्वसनी क्रियाधार ऐसीटिल कोएन्जाइम 'A' होता है।
3.	ग्लाइकोलिसिस में CO ₂ मुक्त नहीं होती।	क्रेब्स चक्र में CO ₂ मुक्त होती है।
4.	ग्लाइकोलिसिस में 2 ATP अणुओं का प्रयोग होता है। यह क्रिया ऑक्सी तथा अनॉक्सी दोनों परिस्थितियों में होती है।	क्रेब्स चक्र में ATP का प्रयोग नहीं होता। यह क्रिया ऑक्सीजन की उपस्थिति में ही होती है।
5.	ग्लाइकोलिसिस के अन्त में पाइरुविक अम्ल के 2 अणु बनते हैं।	क्रेब्स चक्र के अन्त में CO ₂ , जल तथा ऊर्जा मुक्त होती है।
6.	ग्रुलाइकोलिसिस [*] में ग्लूकोस अणु से 8 ATP अणु प्राप्त होते हैं।	क्रेब्स चक्र में ग्लूकोस अणु से 24 ATP अणु प्राप्त होते हैं।

(स) ऑक्सीश्वसन तथा किण्वन में अन्तर

क्र° सं°	ऑक्सीश्वसन (Aerobic Respiration)	किण्वन (Fermentation)
1.	ऑक्सीजन की उपस्थिति में ऑक्सीश्वसन तथ ऑक्सीजन की अनुपस्थिति में अनॉक्सी श्वसन होता है	इसके लिए ऑक्सीजन आवश्यक नहीं होती।
2.	यह क्रिया जीवित कोशिकाओं में होती है।	यह क्रिया क्रियाधार तथा एन्जाइम की उपस्थिति में होती है, जीवित कोशिकाओं क्री उपस्थिति आवश्यक नहीं है। यह क्रिया सामान्यतया जीवाणु तथा कवकों; जैसे—यीस्ट में होती है।
3.	इसमें शर्करा के ऑक्सीकरण से CO तथा जल बनता है।	इसमें क्रियाधार तथा सूक्ष्म जीव के आधार पर विभिन्न कार्बनिक अम्ल या ऐल्कोहॉल बनता है।
4.		इसमें अपूर्ण ऑक्सीकरण के फलस्वरूप कम ऊर्जा (2 ATP) मुक्त होती है।
5.		इस क्रिया में कुछ एन्जाइम्स ही काम आते हैं। प्रश्न

2. श्वसनीय क्रियाधार क्या है? सर्वाधिक साधारण क्रियाधार का नाम बताइए।

उत्तर:

वे कार्बनिक पदार्थ जो एनाबोलिक विधि से संश्लेषित हों अथवा संचित भोजन के रूप में संग्रह किए जाएँ और ऊर्जा के विमोचन के लिए उनका विघटन हो उन्हें श्वसनीय क्रियाधार कहते हैं। सर्वाधिक साधारण क्रियाधार है ग्लूकोज (मोनोसैकेराइड कार्बोहाइड्रेट)।

प्रश्न 3.

ग्लाइकोलिसिस को रेखा द्वारा बनाइए।

उत्तर:

ग्लाइकोलिसिस ग्लाइकोलिसिस को EMP मार्ग (Embden Meyerhoff Parnas Pathway) भी कहते हैं। यह कोशिकाद्रव्य में सम्पन्न होता है। इसमें ऑक्सीजन का प्रयोग नहीं होता; अतः ऑक्सी तथा अनॉक्सीश्वसन दोनों में यह क्रिया होती है। इस क्रिया के अन्त में ग्लूकोस के एक अणु से पाइरुविक अम्ल (pyruvic acid) के 2 अणु बनते हैं। ग्लाइकोलिसिस में 4 ATP बनते हैं, 2 ATP खर्च होते हैं; अतः 2 ATP अणु का लाभ होता है। इन अभिक्रियाओं में मुक्त 2H⁺ आयन्स हाइड्रोजनग्राही NAD से अनुबन्धित होकर NAD.2H बनाते हैं। ये क्रियाएँ विभिन्न चरणों में पूर्ण होती हैं। ग्लाइकोलिसिस से कुल 8 ATP अणु ऊर्जा प्राप्त होती है।

ऑक्सीश्वसन के मुख्य चरण कौन-कौन से हैं ? यह कहाँ सम्पन्न होती है? उत्तर:

ऑक्सीश्वसन के मुख्य चरण

जीवित कोशिका में ऑक्सीजन की उपस्थिति में ग्लूकोस (कार्बनिक पदार्थ) के जैव-रासायनिक ऑक्सीकरण को ऑक्सीश्वसन कहते हैं। इस क्रिया के अन्तर्गत रासायनिक ऊर्जा गतिज ऊर्जा के रूप में ATP में संचित हो जाती है।

 $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 \uparrow + 6H_2O + 673 \text{ k. cal }_{3114}$ श्वसन निम्नलिखित चरणों में पूर्ण होता है

(क)

ग्लाइकोलिसिस अथवा ई॰ एम॰ पी॰ मार्ग (Glycolysis or E.M.P. Pathway) :

यह क्रिया कोशिकाद्रव्य में सम्पन्न होती है। इसमें ग्लूकोस के आंशिक ऑक्सीकरण के फलस्वरूप पाइरुविक अम्ल के दो अण् प्राप्त होते हैं। ग्लाइकोलिसिस प्रक्रिया में कुल 8 ATP अण् प्राप्त होते हैं।

(ख)

ऐसीटिल कोएन्जाइम-A का निर्माण (Formation of Acetyl CoA)

यह माइटोकॉन्ड्रिया के मैट्रिक्स में सम्पन्न होती है। कोशिकाद्रव्य (सायटोसोल) में उत्पन्न पाइरुविक अम्ल माइटोकॉन्ड्रिया में प्रवेश करके NAD $^+$ और कोएन्जाइम-A से संयुक्त होकर पाइरुविक अम्ल का ऑक्सीकीय CO $_2$ वियोजन (Oxidative decarboxylation) होता है। इस क्रिया में CO $_2$ का एक अणु मुक्त होता है और NAD.2H बनता है और अन्त में ऐसीटिल कोएन्जाइम-A बनता है। पाइरुविक अम्ल $^+$ CoA $^+$ NAD

$$\stackrel{\mathrm{Pyruvic\ dehydrogenase}}{\longrightarrow}$$
 ऐसीटिल कोएन्जाइम $-\mathrm{A}+\mathrm{CO}_2+\mathrm{NAD.2H}$ (ग) क्रेब्स चक्र या

ट्राइकार्बोक्सिलिक अम्ल चक्र (Krebs Cycle or Tricarboxylic Acid Cycle):

यह पूर्ण क्रिया माइटोकॉन्ड्रिया के मैट्रिक्स में सम्पन्न होती है। क्रेब्स चक्र के एन्जाइम्स मैट्रिक्स में पाए जाते हैं। ऐसीटिल कोएन्जाइम-A माइटोकॉन्ड्रिया के मैट्रिक्स में उपस्थित ऑक्सेलोऐसीटिक अम्ल से क्रिया करके 6-कार्बन यौगिक सिट्रिक अम्ल बनाता है। सिट्रिक अम्ल का क्रमिक निम्नीकरण होता है और अन्त: में पुनः ऑक्सेलोऐसीटिक अम्ल प्राप्त हो जाता है। क्रेब्स चक्र में 2 अणु CO2 के मुक्त होते हैं। चार स्थानों पर 2H⁺ मुक्त होते हैं जिन्हें हाइड्रोजनग्राही NAD यो FAD ग्रहण करते हैं। क्रेब्स चक्र में 24ATP अणु ETS द्वारा प्राप्त होते है। ऐसीटिल कोएन्जाइम

$$A + H_2O + 3NAD + FAD + ADP + iP \longrightarrow$$
 $\longrightarrow 2CO_2 + 3NAD.2H + FAD.2H + ATP + कोएन्जाइम-A (घ) इलेक्ट्रॉन$

परिवहन तन्त्र (Electron Transport System) :

यह माइटोकॉण्ड्रिया की भीतरी सतह पर स्थित F कण या ऑक्सीसोम्स पर सम्पन्न होता है। क्रेब्स चक्र की ऑक्सीकरण क्रिया में डिहाइड्रोजिनेस (dehydrogenase) एन्जाइम विभिन्न पदार्थों से हाइड्रोजन तथा इलेक्ट्रॉन के जोड़े मुक्त कराते हैं। हाइड्रोजन तथा इलेक्ट्रॉन कुछ मध्यस्थ संवाहकों के द्वारा होते हुए ऑक्सीजन से मिलकर जल का निर्माण करते हैं। हाइड्रोजन परमाणुओं के एक इलेक्ट्रॉनग्राही से दूसरे इलेक्ट्रॉनग्राही पर स्थानान्तरित होते समय ऊर्जा मुक्त होती है। यह ऊर्जा ATP में संचित हो जाती है। प्रश्न 5.

क्रेब्स चक्र का समग्र रेखाचित्र बनाइए।

उत्तर:

क्रेब्स चक्र या ट्राइकार्बोक्सिलिक अम्ल चक्र

चित्र-क्रेब्स चक्र माइटोकॉन्ड्रिया में घटित होने वाली प्रक्रिया है। इनमें अनेक एन्जाइम तथा इलेक्ट्रॉन अभिगमन तन्त्र (ETS) की आवश्यकता होती है। प्रश्न 6.

इलेक्ट्रॉन परिवहन तन्त्र का वर्णन कीजिए।

उत्तर:

इलेक्ट्रॉन परिवहन तन्त्र ग्लाइकोलिसिस तथा क्रेब्स चक्र के विभिन्न पदों में अपघटन के फलस्वरूप उत्पन्न हुई ऊर्जा के अधिकांश भाग का परिवहन हाइड्रोजनग्राही करते हैं; जैसे-NAD, NADP, FAD आदि। ये 2H+ (हाइड्रोजन आयन) के साथ मिलकर अपचयित (reduce) हो जाते हैं। इन्हें वापसे ऑक्सीकृत (oxidise) करने के लिए विशेष तन्त्र, इलेक्ट्रॉन स्थानान्तरण तन्त्र (ETS = Electron Transport System) की आवश्यकता होती है। यह तन्त्र इलेक्ट्रॉन्स (e-) को एक के बाद एक ग्रहण करते हैं। तथा उन पर उपस्थित ऊर्जा स्तर (energy level) को कम करते हैं। इस कार्य का मुख्य उद्देश्य कुछ ऊर्जा को निर्मुक्त करना है। यही निर्मुक्त ऊर्जा ATP (adenosine triphosphate) में संगृहीत हो जाती है। इलेक्ट्रॉन परिवहन तन्त्र एक शृंखलाबद्ध क्रम के रूप में होता है जिसमें कई सायटोक्रोम एन्जाइम्स (cytochrome enzymes) होते हैं। इलेक्ट्रॉन परिवहन तन्त्र के एन्जाइम माइटोकॉन्ड्रिया की अन्त:कला (inner membrane) में शृंखलाबद्ध क्रम से लगे रहते हैं। सायटोक्रोम्स लौह तत्त्व के परमाणु वाले वर्णक हैं, जो इलेक्ट्रॉन मुक्त कर ऑक्सीकृत (oxidised) हो जाते हैं

जो पदार्थ से NAD या NADP के द्वारा लाए गए थे। बाद में ये FAD को दे दिए गए थे और यहाँ से स्वतन्त्र कर दिए गए। इलेक्ट्रॉन्स के Cyt 'b' Fe⁺⁺⁺ पर स्थानान्तरण में सम्भवत: सह-एन्जाइम 'क्यू' (Co-enzyme 'Q' = Co 'Q' = ubiquinone) सहयोग करता है। इस प्रारम्भिक सायटोक्रोम के बाद शृंखला में कईऔर सायटोक्रोम रहते हैं। ये क्रमश: इलेक्ट्रॉन को अपने से पहले वाले सायटोक्रोम से ग्रहण करते हैं तथा अपने से अगले सायटोक्रोम को स्थानान्तरित कर देते है।

शृंखला के अन्तिम सायटोक्रोम से दो इलेक्ट्रॉन्स, ऑक्सीजन के एक परमाणु से मिलकर उसे सिक्रय कर देते हैं। अब यह ऑक्सीजन परमाणु उपलब्ध दो हाइड्रोजन आयन्स के साथ जुड़कर जेल का एक अणु (H₂O) बना लेता है। श्वसन से सम्बन्धित यह सायटोक्रोम तन्त्र माइटोकॉन्ड्रिया की अन्त:कला (inner membrane) में स्थित होता है।

ए॰टी॰पी॰ का संश्लेषण

श्वसन क्रिया दो क्रियाओं ग्लाकोलिसिस (glycolysis) तथा क्रेब्स चक्र (Krebs Cycle) में पूर्ण होती है। इन क्रियाओं के अन्त में कार्बन डाइऑक्साइड तथा जल बनते हैं। जबिक दो अणु काम में आ जाते हैं। अतः केवल दो ATP अणुओं को लाभ होता है। ग्लाइकोलिसिस तथा क्रेब्स चक्र में मुक्त 2H⁺ (हाइड्रोजन आयन) को NAD, NADP या FAD ग्रहण करते हैं। इनसे मुक्त परमाणु हाइड्रोजन अणु हाइड्रोजन में बदलकर ऑक्सीजन के साथ मिलकर जल बनाते हैं। इस क्रिया में मुक्त 2e⁻ (इलेक्ट्रॉन) इलेक्ट्रॉन स्थानान्तरण तन्त्र (ETS) में पहुंचकर धीरे-धीरे अपना ऊर्जा स्तर (energy level) कम करते हैं। इस प्रकार निष्कासित ऊर्जा ADP को ATP में बदलने के काम आती है। इस प्रकार प्रत्येक जोड़े 2H⁺ से तीन ATP अणु बनते हैं। FAD पर स्थित 2H⁺ से केवल दो ATP अणु ही बनते हैं। इस प्रकार ग्लाइकोलिसिस से लेकर पूर्ण ऑक्सीकरण होने तक कुल ATP अणुओं की संख्य निम्नलिखित हो जाती है

चित्र-वे अभिक्रियाएँ जिनमें H ⁺ निकलते हैं तथा इनके इलेक्ट्रॉन स्थानान्तरण तन्त्र (ETS) में जाने के कारण ATP अणु बनते हैं। क्रेब्स चक्र तथा उससे पूर्व की क्रियाओं में कुल 38 ATP अणु बनते हैं।

(a) ग्लाइकोलिसिस की अभिक्रियाओं में

(कुल चार अणु बनते हैं तथा दो प्रयुक्त हो जाते हैं)। = 2 ATP

(b) ग्लाइकोलिसिस में ही बने दो NAD.H,

(ETS में जाने के बाद) = 6 ATP

(c) क्रेब्स चक्र के पूर्व पाइरुविक अम्ल से ऐसीटिल को-एन्जाइम 'ए' बनते समय NAD.H₂ बनने तथा ETS में जाने के बाद

(दो अण् पाइरुविक अम्ल से दो NAD.H2) बनते हैं। = 6ATP

(d) क्रेब्स चक्र में बने 3NADH₂ के ETS में जाने पर [दो बार यही चक्र पूरा होने पर ध्यान रहे, दो ऐसीटिल को-एन्जाइम 'ए'

(acetyl Co 'A') अर्थात् एक ग्लूकोस के अणु से दो क्रेब्स चक्र में 6NADH₂ की प्राप्ति होती है। ATP के 9 अणु बनाते हैं।]

9x 2 = 18 ATP

(e) क्रेब्स चक्र में ही FAD.H₂ से (ETS में जाने पर) दो अणु ATP बनते हैं

(इस प्रकार, एक पूरे ग्लूकोस अणु से चार अणु ATP बनते हैं।) = 2 x 2 = 4 ATP

(f) क्रेब्स चक्र में ही सक्सीनिक अम्ल (succinic acid) बनते समय जी॰ टी॰ पी॰

(GTP = (guanosine triphosphate)) का निर्माण होता है जो बाद में एक ADP को ATP में बदल देता है।

 $=1\times2=2-ATP$

= 38 ATP

इस प्रकार कुल योग

ग्लिसरॉल फॉस्फेट शटल (Glycerol Phosphate Shuttle)

की कार्य क्षमता कम होती है। इसमें दो अणु NADH,, जो ग्लाइकोलिसिस में बनते हैं, उनसे कभी-कभी 6 ATP के स्थान पर 4 ATP की ही प्राप्ति होती है। ये NADH, माइटोकॉन्ड्रिया के बाहर जीवद्रव्य में बनते हैं। NADH $_2$ का अणु माइटोकॉन्ड्रिया के भीतर प्रवेश नहीं कर पाता, यह अपने H $^+$ माइटोकॉन्ड्रिया के भीतर भेजता है। मस्तिष्क तथा पेशियों की कोशिकाओं में प्रत्येक NADH $_2$ के H $^+$ के भीतर प्रवेश में 1 ATP अणु खर्च हो जाता है; अतः अन्त में कुल 36 ATP अणुओं की प्राप्ति होती है।

प्रश्न 7.

निम्नलिखित के मध्य अन्तर कीजिए

- (अ) ऑक्सीश्वसन तथा अनॉक्सीश्वसन
- (ब) ग्लाइकोलिसिस तथा किण्वन
- (स) ग्लाइकोलिसिस तथा सिट्रिक अम्ल चक्र

उत्तर :

(अ)

ऑक्सीश्वसन तथा अनॉक्सीश्वसन में अन्तर

क्र॰ सं॰	ऑक्सीश्वसन (वायु श्वसन)	अनॉक्सीश्वसन (अवायु श्वसन)
1.	ऑक्सीजन की उपस्थिति में होता है।	ऑक्सीजन की आवश्यकता नहीं होती है।
2.	ग्लूकोस के पूर्ण ऑक्सीकरण से CO_2 व जल बनता है। $^{\circ}$	पूर्ण ऑक्सीकरण नहीं होता, ऐल्कोहॉल तथा ${ m CO}_2$ आदि बनते हैं।
3.	सभी जीवों में सामान्य रूप से पाया जाता है।	केवल कुछ पौधों, जन्तुओं या उनके विशेष ऊतकों में होता है।
4.	ग्लाइकोलिसिस को छोड़कर सभी क्रियाएँ माइटोकॉन्ड्रिया में होती हैं।	सभी क्रियाएँ कोशिकाद्रव्य में होती हैं।
5.	ऊर्जा अधिक मात्रा में मुक्त (673 k.cal) होती है।	ऊर्जा बहुत कम मात्रा में (सामान्यतः 21-24 k.cal) मुक्त होती है।
6.	एक अणु ग्लूकोस से 38 ATP अणु प्राप्त होते हैं।	एक अणु ग्लूकोस से केवल दो अणु ATP प्राप्त होते हैं।

ग्लाइकोलिसिस तथा किण्वन में अन्तर

क्र० सं०	ग्लाइकोलिसिस	किण्वन
a trade i manage	(Glycolysis)	(Fermentation)
1.	यह क्रिया O2 की अनुपस्थिति में होती है।	यह क्रिया ऑक्सीजन की उपस्थिति या अनुपर्स्थित
		में होती है।
2.	यह ऑक्सी तथा अनॉक्सीश्वसन का प्रथम चरण	यह सूक्ष्म जीवों जैसे कवक तथा जीवाणुओं में होती
	होता है।	है।
3.	यह क्रिया जीवित कोशिकाओं के कोशाद्रव्य	यह क्रिया कोशिका में या कोशिका के बाहर तरल
	(सायटोसोल) में होती है।	माध्यम में होती है।
4.	इसमें अनेक एन्जाइम्स की आवश्यकता होती है।	इसमें कुछ एन्जाइम्स कीं आवश्यकता होती है।
5.	अन्तिम उत्पाद पाइरुविक अम्ल होता है।	अन्तिम उत्पाद ऐल्कोहॉल, अन्य कार्बनिक अम्ल
		तथा CO_2 होते हैं।
6.	कुल 8 ATP अणु प्राप्त होते हैं।	सामान्यतया 2 ATP अणु ही प्राप्त होते हैं।

ग्लाइकोलिसिस तथा सिट्रिक अम्ल चक्र में अन्तर

क्रेब्स चक्र या ट्राइकार्बोक्सिलिक अम्ल चक्र को सिट्रिक अम्ल चक्र (Citric Acid Cycle) भी कहते हैं। अन्तर के लिए प्रश्न 1 (ब) का उत्तर देखिए।

प्रश्न 8.

शुद्ध ए॰टी॰पी॰ के अणुओं की प्राप्ति की गणना के दौरान आप क्या कल्पनाएँ करते हैं? उत्तर :

ए॰टी॰पी॰ अणुओं की प्राप्ति की कल्पनाएँ।

- यह एक क्रमिक, सुव्यवस्थित क्रियात्मक मार्ग है जिसमें एक क्रियाधार से दूसरे क्रियाधार का निर्माण होता है जिसमें ग्लाइकोलिसिस से शुरू होकर क्रेब्स चक्र तथा इलेक्ट्रॉन परिवहन तन्त्र (ETS) एक के बाद एक आती है।
- 2. ग्लाइकोलिसिस में संश्लेषित NAD माइटोकॉन्ड्रिया में आता है, जहाँ उसका फॉस्फोरिलीकरण होता है।
- 3. श्वसन मार्ग के कोई भी मध्यवर्ती दूसरे यौगिक के निर्माण के उपयोग में नहीं आते हैं।
- १वसन में केवल ग्लूकोस का उपयोग होता है। कोई दूसरा वैकल्पिक क्रियाधार श्वसन मार्ग के किसी भी मध्यवर्ती चरण में प्रवेश नहीं करता है।

वास्तव में सभी मार्ग (पथ) एकसाथ कार्य करते हैं। पथ में क्रियाधार आवश्यकतानुसार अन्दर- बाहर आते-जाते रहते हैं। आवश्यकतानुसार ATP का उपयोग हो सकता है। एन्जाइम की क्रिया की दर विभिन्न कारकों द्वारा नियन्त्रित होती है। श्वसन जीवन के लिए एक उपयोगी क्रिया है। सजीव तन्त्र में ऊर्जा का संग्रहण तथा निष्कर्षण होता रहता है।

प्रश्न 9.

"श्वसनीय पथ एक ऐम्फीबोलिक पथ होता है।" इसकी चर्चा कीजिए।

उत्तर:

श्वसनीय पथ एक ऐम्फीबोलिक पथ

श्वसन क्रिया के लिए ग्लूकोस एक सामान्य क्रियाधार (substrate) है। इसे कोशिकीय ईंधन (cellular fuel) भी कहते हैं। कार्बोहाइड्रेट्स श्वसन क्रिया में प्रयोग किए जाने से पूर्व ग्लूकोस में बदल दिए जाते हैं। अन्य क्रियाधार श्वसन पथ में प्रयुक्त होने से पूर्व विघटित होकर ऐसे पदार्थों में बदले जाते हैं, जिनका उपयोग किया जा सके; जैसे—वसा पहले ग्लिसरॉल तथा वसीय अम्ल में विघटित होती है। वसीय अम्ल ऐसीटाइल कोएन्जाइम बनकर श्वसन मार्ग में प्रवेश करता है। ग्लिसरॉल फॉस्फोग्लिसरेल्डिहाइड (PGAL) में बदलकर श्वसन मार्ग में प्रवेश करता है। प्रोटीन्स विघटित होकर ऐमीनो अम्ल बनाती है। ऐमीनो अम्ल विऐमीनीकरण (deamination) के पश्चात् क्रेब्स चक्र के विभिन्न चरणों में प्रवेश करता है।

इसी प्रकार जब वसा अम्ल का संश्लेषण होता है तो श्वसन मार्ग से ऐसीटाइल कोएन्जाइम अलग हो जाता है। अतः वसा अम्ल के संश्लेषण और विखण्डन के दौरान श्वसनीय मार्ग का उपयोग होता है। इसी प्रकार प्रोटीन के संश्लेषण व विखण्डन के दौरान भी श्वसनीय मार्ग का उपयोग होता है। इस प्रकार श्वसनी पथ में अपचय (catabolic) तथा उपचय (anabolic) दोनों क्रियाएँ होती हैं। इसी कारण श्वसनी मार्ग (पथ) को ऐम्फीबोलिक पथ (amphibolic pathway) कहना अधिक उपयुक्त है न कि अपचय पथ।

चित्र-श्वसन मध्यस्थता के दौरान विभिन्न कार्बनिक अणुओं के विखण्डन को दर्शाने वाला उपापचय मार्ग क्रम एवं परस्पर सम्बन्धों का प्रदर्शन।

प्रश्न

10. साँस (श्वसन) गुणांक को परिभाषित कीजिए, वसा के लिए इसका क्या मान है? उत्तर :

साँस (श्वसन) गुणांक एक दिए गए समय, ताप व दाब पर श्वसन क्रिया में निष्कासित CO2 व अवशोषित O2 के अनुपात को श्वसन (साँस) गुणांक या भागफल (R.Q.) कहते हैं। श्वसन पदार्थों के अनुसार श्वसन गुणांक भिन्न-भिन्न होता है।

श्वसन गुणांक (R.Q.) =
$$\frac{\text{निष्कासित CO}_2 \text{ का आयतन}}{\text{प्रयुक्त O}_2 \text{ का आयतन}}$$
 वसा (fats) :

का श्वसन गुणांक एक से कम होता है। वसीय पदार्थों के उपयोग से निष्कासित CO₂की मात्रा अवशोषित O₂ की मात्रा से कम होती है। वसा का R.Q. लगभग 0.7 होता है।

$$2 C_{51}H_{98}O_{6} + 145O_{2} \longrightarrow 102CO_{2} + 98H_{2}O$$
(Tripalmatin)
$$R.Q. = \frac{102 CO_{2}}{145 O_{2}} = 0 \cdot 7$$
प्रश्न 11.

ऑक्सीकारी फॉस्फोरिलीकरण क्या है?

उत्तर:

ऑक्सीकारी फॉस्फोरिलीकरण ऑक्सीश्वसन क्रिया के विभिन्न चरणों में मुक्त हाइड्रोजन आयन्स (2H⁺) को हाइड्रोजनग्राही NAD या FAD ग्रहण करके अपचयित होकर NAD.2H या FAD.2H बनाता है। प्रत्येक NAD.2H अणु से दो इलेक्ट्रॉन (2e⁻) तथा दो हाइड्रोजन परमाणुओं (2H⁺) के निकलकर ऑक्सीजन तक पहुँचने के क्रम में तीन और FAD.2H से दो ATP अणुओं का संश्लेषण होता है। ETS के अन्तर्गत इलेक्ट्रॉन परिवहन के फलस्वरूप मुक्त ऊर्जा ADP + Pi→ ATP क्रिया द्वारा ATP में संचित हो जाती है। प्रत्येक ATP अणु बनने में प्राणियों में 7:3 kcal और पौधों में 10-12 kcal ऊर्जा संचय होती है। यह क्रिया फॉस्फोरिलीकरण (phosphorylation) कहलाती है, क्योंकि श्वसन क्रिया में यह क्रिया O₂ की उपस्थित में होती है; अतः इसे ऑक्सीकारी फॉस्फोरिलीकरण (oxidative

phosphorylation) कहते हैं।

प्रश्न 12.

सॉस के प्रत्येक चरण में मुक्त होने वाली ऊर्जा का क्या महत्त्व है?

उत्तर:

(ক)

कोशिका में जैव रासायनिक ऑक्सीकरण के दौरान श्वसनी क्रियाधार में संचित सम्पूर्ण रासायनिक ऊर्जा एकसाथ मुक्त नहीं होती, जैसा कि दहन प्रक्रिया में होता है। यह एन्जाइम्स द्वारा नियन्त्रित चरणबद्ध धीमी अभिक्रियाओं के रूप में मुक्त होती है। मुक्त रासायनिक ऊर्जा गतिज ऊर्जा के रूप में ATP में संचित हो जाती है।

(ख)

श्वसन प्रक्रिया में मुक्त ऊर्जा सीधे उपयोग में नहीं आती। श्वसन प्रक्रिया में मुक्त ऊर्जा का उपयोग ATP संश्लेषण में होता है।

(ग)

ATP ऊर्जा मुद्रा का कार्य करता है। कोशिका की समस्त जैविक क्रियाओं के लिए ऊर्जा ATP के टूटने से प्राप्त होती है।

(ঘ)

विभिन्न जटिल कार्बनिक पदार्थों के संश्लेषण में भी ATP से मुक्त ऊर्जा उपयोग में आती है।

(ङ)

कोशिकाओं में खनिज लवणों के आवागमन में प्रयुक्त ऊर्जा ATP से ही प्राप्त होती है।

परीक्षोपयोगी प्रश्नोत्तर

बह्विकल्पीय प्रश्न

प्रश्न 1.

कोशिकीय श्वसन में ग्लूकोज से पाइरुविक अम्ल का बनना कहलाता है।

- (क) ग्लाइकोलिसिस
- (ख) हाइड्रोलिसिस
- (ग) क्रेब्स चक्र
- **(घ)**C₃ चक्र

उत्तर:

(क) ग्लाइकोलिसिस

प्रश्न 2.

निम्नलिखित में से कौन-सी अभिक्रिया शुद्ध रूप में ऑक्सीश्वसन को प्रदर्शित करती है?

- (南) $C_6H_{12}O_6 + O_2 \longrightarrow CO_2 + H_2O$
- (평) $C_6H_{12}O_6 + 6H_2O_2 \longrightarrow 6CO_2 + 6H_2O + 2 \text{ k.cals}$
- (\P) $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O + 673$ k.cals
- (=) C₆H₁₂O₆ + 6H₂O → 6CO + 6H₂O + 3O₂ + 673 k.cals

उत्तर:

(ग)
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 673$$
 k.cals

प्रश्न 3.

क्रेब्स चक्र के एक बार चलने में NADPH बनते हैं।

(क) दो

(ख) तीन
(ग) चार
(ঘ) ত্তঃ
उत्तर:
(ख) तीन
अतिलघु उत्तरीय प्रश्न
प्रश्न 1.
किण्वन क्रिया को प्रदर्शित करने वाले उपकरण का नाम लिखिए।
उत्तर:
फर्मेन्टर या बायोरिएक्टर।
प्रश्न 2.
उस रासायनिक यौगिक का नाम लिखिए जो ग्लाइकोलिसिस और क्रेब्स चक्र के बीच की कड़ी है।
उत्तर:
ऐसीटिल-कोएन्जाइम-A
प्रश्न 3.
ग्लूकोस के एक अणु के पूर्ण ऑक्सीकरण से ATP व CO₂ के कितने अणु प्राप्त होते हैं?
उत्तर:
ग्लूकोस के एक अणु के पूर्ण ऑक्सीकरण से 38 ATP एवं 6 CO₂ अणु प्राप्त होते हैं।
प्रश्न 4.
पाइरुविक अम्ल का ऑक्सी-ऑक्सीकरण कोशिका के किस भाग में होता है?
उत्तर:
माइटोकॉण्ड्रिया के अन्दर मैट्रिक्स में होता है।
प्रश्न 5.
श्वसन को प्रभावित करने वाले दो कारक लिखिए।
उत्तर:
1. तापक्रम
2. ऑक्सीजन
प्रश्न 6.
बीज भरे भण्डारों को खोलने पर गर्मी निकलती है। कारण स्पष्ट कीजिए।
उत्तर:

बीज भरे भण्डारों को खोलने पर गर्मी निकलती है, क्योंकि बीज श्वसन की क्रिया में 0, को ग्रहण करके CO_2 , H_2O ऊर्जा उत्पन्न करते हैं जिसके कारण भण्डार गृह का तापमान बढ़ जाता है।

प्रश्न 7.

श्वसन गुणांक को प्रदर्शित करने वाले उपकरण का नाम लिखिए।

उत्तर:

गैनांग श्वसनमापी।

लघु उत्तरीय प्रश्न

प्रश्न 1.

किण्वन की परिभाषा लिखिए। यह अनॉक्सी श्वसन से किस प्रकार भिन्न है? समझाइए। या अनॉक्सी श्वसन और किण्वन में अन्तर स्पष्ट कीजिए। या किण्वन पर संक्षिप्त टिप्पणी लिखिए। या अवायवीय श्वसन तथा किण्वन में अन्तर बताइए।

उत्तर:

किण्वन

प्रत्येक प्रकार का श्वसन (अनॉक्सी या ऑक्सी श्वसन) ग्लूकोज से प्रारम्भ होता है और इसमें ग्लाइकोलिसिस (glycolysis) क्रिया के द्वारा पाइरुविक अम्ल (pyruvic acid) का निर्माण होता है। निम्न श्रेणी के अनेक जीवों; जैसे-कुछ जीवाणुओं, यीस्ट (yeast) अन्य कवकों (fungi) आदि अवायव जीवों (anaerobs) में अनॉक्सीश्वसन के द्वारा ही ऊर्जा उत्पन्न होती है। चूंकि इस क्रिया में प्रायः ऐल्कोहॉल (alcohol) उत्पन्न होता है, अतः इस (अनॉक्सीश्वसन) को ऐल्कोहॉलिक किण्वन (alcoholic fermentation) भी कहते हैं। किण्वन का अध्ययन सबसे पहले सन् 1870 में पाश्चर (Pasteur) ने किया था। अधिकतर उन सूक्ष्म पौधों में जिनमें श्वसन होता है इससे सम्बन्धित सभी एन्जाइम एक जटिल समूह के रूप में रहते हैं; जैसे—यीस्ट में यह जाइमेज (ymase) कहलाता है। दूसरे जीवों में अन्य एन्जाइम की उपस्थित के कारण अन्य प्रकार की अभिक्रियाओं के फलस्वरूप एथिल एल्कोहॉल के स्थान पर अन्य यौगिक बनते हैं; जैसे-ऐसीटिक अम्ल, लैक्टिक अम्ल, ब्यूटाइरिक अम्ल, साइट्रिक अम्ल, ऑक्सेलिक अम्ल आदि। ये सम्पूर्ण क्रियाएँ किण्वन (fermentation) कहलाती हैं तथा उत्पाद के नाम पर जानी जाती हैं। उच्च श्रेणी के पौधों तथा जन्तुओं में अनॉक्सीश्वसन केवल थोड़े समय के लिये ही होता है। इसके पश्चात् कम ऊर्जा उत्पन्न होने तथा विषैले पदार्थ इत्यादि एकत्र होने के कारण कोशिकाओं की मृत्यु होने लग जाती है।

किण्वन व अनॉक्सी श्वसन में अन्तर

किण्वन	अनॉक्सी श्वसन
 यह जीवाणु तथा कवकों से प्राप्त एन्जाइम्स के कारण 	 यह सदैव जीवित कोशिकाओं के अन्दर ही होता है।
होता है। अतः यह कोशिका से बाहर भी होता है।	
 यह O₂ की उपस्थिति में भी होता है। 	 यह सदैव O₂ की अनुपस्थिति में ही होता है।
 इसके उत्पाद एथिल ऐल्कोहॉल व CO₂ के अतिरिक्त 	 इसके उत्पाद एथिल ऐल्कोहॉल, लैक्टिक अम्ल व
ब्यूटाइरिक अम्ल, ऐसीटिक अम्ल भी हो सकते हैं।	CO ₂ ही होते हैं।

प्रश्न 2.

कार्बोहाइड्रेट्स, प्रोटीन तथा कार्बनिक अम्लों के श्वसन गुणांक ज्ञात कीजिए।

उत्तर:

1. कार्बोहाइड्रेट्स (Carbohydrates) :

मण्ड, सुक्रोज, माल्टोज, ग्लूकोज, फ्रक्टोज आदि अनेक कार्बोहाइड्रेट्स श्वसन आधार की तरह प्रयोग किये जाते हैं। इनमें से ग्लूकोज तथा फ्रक्टोज सीधे ही काम आ जाते हैं जबिक सुक्रोज, माल्टोज आदि डाइसैकेराइड्स (disaccharides), तथा मण्ड जैसे पॉलिसैकेराइड्स (polysaccharides) की पहले हाइड्रोलिसिस होती है तथा ग्लूकोज या फ्रक्टोज अथवा दोनों पदार्थ बनते हैं। कार्बोहाइड्रेट्स के इस प्रकार, ऑक्सी श्वसन में आधार होने से आयतन से जितनी ऑक्सीजन (O_2) काम आती है उतनी ही कार्बन डाइऑक्साइड (CO_2) उत्पन्न होती है।

$$C_6H_{12}O_6+6O_2 \xrightarrow{aerobic} 6CO_2+6H_2O+$$
 ऊर्जा अत: कार्बोहाइड्रेट्स के लिए समीकरण

के अनुसार

RQ =
$$\frac{6 \text{ vol. CO}_2}{6 \text{ vol. O}_2}$$
 = 1 (one) इस प्रकार सामान्यतः कार्बोहाइड्रेट्स (मण्डयुक्त अनाजों; जैसे-गेहूं, चावल आदि) के लिए श्वसन गुणांक इकाई में आता है, किन्तु कुछ कारणों से यह इकाई से भिन्न दिखायी पड़ता है। जब

- 1. श्वसन आधार का ऑक्सीकरण पूर्ण रूप से न हो सके; जैसे—नागफनी (Opuntia) आदि सरस पौधों या पौधे के भागों में उत्पन्न कार्बन डाइऑक्साइड की मात्रा कम हो जाती है अथवा बिल्कुल नहीं होती है; क्योंकि मैलिक अम्ल आदि बन जाते हैं, अतः श्वसन गुणांक इकाई से कम हो जाता है।
- 2. उत्पन्न कार्बन डाइऑक्साइड किसी अन्य कार्य; जैसे—प्रकाश संश्लेषण में प्रयुक्त हो जाए।
- 3. अवशोषित ऑक्सीजन किसी अन्य कार्य में प्रयुक्त हो जाए।
- 4. किसी अन्य अभिक्रिया में कार्बन डाइऑक्साइड उत्पन्न हो जाए।

2. प्रोटीन्स (Proteins) :

इनका ऑक्सीकरण (oxidation) तथा डीएमीनेशन (deamination) होता है। इस प्रकार बने हुए कार्बनिक अम्ल (organic acids) ऑक्सी श्वसन के बाद की क्रियाओं (क्रेब्स चक्र) में सिम्मिलित हो जाते हैं और कार्बन डाइऑक्साइड तथा जल में विघटित हो जाते हैं। वसाओं की तरह प्रोटीन्स के सम्पूर्ण ऑक्सीकरण के लिए बाहर से अधिक ऑक्सीजन की आवश्यकता पड़ने के कारण, इनका श्वसन गुणांक (RQ) भी इकाई से कम (0.8-0.9) होता है।

3. कार्बनिक अम्ल (Organic acids) :

कार्बनिक अम्लों में ऑक्सीजन अधिक मात्रा में होने के कारण इनका श्वसन गुणांक (RQ) इकाई से अधिक होता है। श्वसन गुणांक, अनॉक्सी या अवायव श्वसन (anaerobic respiration) में सदैव ही एक से अधिक (सामान्यतः 2) होता है क्योंकि यहाँ ऑक्सीजन बाहर से उपयोग में नहीं लायी जाती, फिर भी कार्बन डाइऑक्साइड तो निकलती ही है।। श्वसन गुणांक को मापन गैनांग श्वसनमापी (Ganong's respirometer) द्वारा किया जाता है।

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.

ए॰टी॰पी॰ का महत्व समझाइए।

उत्तर:

ए॰टी॰पी॰ का महत्त्व

जीवित कोशिकाओं में ऊर्जा उत्पन्न करने वाली (energy yielding) तथा ऊर्जा का उपभोग करने वाली (energy consuming) क्रियाएँ निरन्तर होती रहती हैं। एक पदार्थ (उदाहरणार्थ-ग्लूकोज) में संचित ऊर्जा के निष्कासन से दूसरे पदार्थों का निर्माण होता है। उदाहरणार्थ-प्रोटीन का। अब इन दूसरे पदार्थों में संचित ऊर्जा के निष्कासन से कोशिका में दूसरे कार्य किए जा सकते हैं। कोशिका में अस्थाई रूप से ऊर्जा संचय का एक साधन होता है। यह पदार्थ एडिनोसीन ट्राइफॉस्फेट (Adenosine Tri-Phosphate = ATP) है। यह पदार्थ जीवित कोशिकाओं के लिए बहुत महत्त्वपूर्ण है। श्वसन क्रिया में कार्बीहाइड्रेट्स, प्रोटीन और वसा के ऑक्सीकरण द्वारा निष्कासित ऊर्जा, तुरन्त ही ADP और अकार्बनिक फॉस्फेट (iP) से ATP के संश्लेषण मेंप्रयोग हो जाती है। इस प्रकार से श्वसन द्वारा ATP में ऊर्जा संचित हो जाती है। इस प्रकार ATP के संश्लेषण की क्रिया को ऑक्सीकीय फॉस्फोरिलीकरण (oxidative phosphorylation) कहते हैं। विभिन्न जैविक क्रियाओं, जैसे-कार्बीहाइड्रेट्स, प्रोटीन तथा वसा पदार्थों का संश्लेषण तथा परासरण (osmosis), सक्रिय अवशोषण (active absorption), खाद्य-पदार्थों के स्थानान्तरण (translocation of food); जीवद्रव्य प्रवाह (streaming of protoplasm), वृद्धि (growth) इत्यादि में ऊर्जा की आवश्यकता होती है, इसके लिए ATP का ADP वे iP में विखण्डन हो जाता है और ऊर्जा मुक्त हो जाती

है, यह ऊर्जा ही जैविक क्रियाओं में प्रयुक्त होती है। इस प्रकार ATP एक पदार्थ से ऊर्जा लेकर तथा दूसे पदार्थ को ऊर्जा देकर एक मध्यस्थ यौगिक (intermediatory compound) के रूप में कार्य करता है। इस कारण से ATP को जैविक संवर्ध ऊर्जा के आदान-प्रदान की मुद्रा (monetary system of energy exchange in living organisms) भी कहा जाता है।

प्रश्न 2.

श्वसन क्रिया को प्रभावित करने वाले बाहय तथा आन्तरिक कारकों का उल्लेख कीजिए। उत्तर :

श्वसन क्रिया को प्रभावित करने वाले कारक-श्वसन की क्रिया को प्रभावित करने वाले कारकों को निम्नलिखित दो वर्गों में वर्गीकृत किया जा सकता है

A. बाह्य कारक

1. तापक्रम (Temperature) :

श्वसन पर प्रभाव डालने वाले कारकों में तापक्रम सबसे महत्त्वपूर्ण कारक है। 0 से 30°C तक तापक्रम बढ़ने पर श्वसन क्रिया की दर लगातार बढ़ती रहती है। वांट हॉफ (Vant Hoffs) के नियमानुसार 0°C से अधिंक 30°C तक प्रत्येक 10°C तापक्रम बढ़ने पर श्वसन की दर 2 से 2.5 गुना बढ़ जाती है, अर्थात् श्वसन का तापक्रम गुणांक (Q 10°C) 2 से 2.5 के बीच होता है। श्वसन क्रिया की सर्वाधिक दर 30°C पर होती है। 30°C से ऊपर तापक्रमों पर आरम्भ में श्वसन दर बढ़ती है, परन्तु शीघ्र ही दर घट जाती है। और जितना अधिक तापक्रम होगा उतनी ही अधिक प्रारम्भ में देर बढ़ेगी और उतनी ही शीघ्र तथा अधिक समय के साथ दर घटेगी। सम्भवतः ऐसा इसलिए होता है कि श्वसन में कार्य करने वाले विकर (enzymes) अधिक तापक्रम पर विकृत (denatured) हो जाते हैं। 0°C से कम तापक्रम पर श्वसन दर बहुत कम हो जाती है इसीलिए फलों एवं बीजों को कम तापक्रम पर संरक्षित किया जाता है। यद्यपि कुछ पौधों में -20°C तापक्रम पर भी श्वसन क्रिया होती रहती है। सुषुप्त बीजों को यदि -50°C तापक्रम पर रखा जाए तो वे जीवित रहते हैं। जिसका अर्थ है कि उनमें इस तापक्रम पर भी श्वसन होता है।

2. ऑक्सीजन (Oxygen) :

ऑक्सीजन (O_2) की उपस्थित तथा अनुपस्थित पर श्वसन को क्रमशः ऑक्सी -श्वसन (aerobic respiration) तथा अनॉक्सी श्वसन (anaerobic respiration) में विभाजित किया जाता है। वायु में 20.8% ऑक्सीजन (0%) होती है। वातावरण में ऑक्सीजन (O_2) की मात्रा को एक निश्चित सीमा में घटाने या बढ़ाने पर भी श्वसन क्रिया की दर पर कोई प्रभाव नहीं पड़ता। वायु में ऑक्सीजन (O_2) की मात्रा को लगभग 2% तक घटाने पर श्वसन क्रिया की दर बहुत कम हो जाती है। ऑक्सीजन की सान्द्रती अत्यधिक कम हो जाने पर अनॉक्सी-श्वसन के कारण एथिल ऐल्कोहॉल (ethyl alcohol) और कार्बन डाइऑक्साइड (CO_2) अधिक मात्रा में निष्कासित होते हैं।

3. जल (Water):

जल की कमी होने पर श्वसन की दर घटती है। सूखे बीजों में (प्रायः 8 से 12% जल होता है। बहुत कम श्वसन होता है और बीज द्वारा जल का अन्तःशोषण (imbibition) करने पर श्वसन की दर बढ़ जाती है। गेहूँ के बीजों में जल की मात्रा 16 से 17% बढ़ने पर श्वसन दर बहुत अधिक बढ़ जाती है। यद्यपि जिन ऊतकों में पहले से ही जल। की मात्रा काफी होती है, जल की मात्रा के घटाने-बढ़ाने से श्वसन दर पर विशेष प्रभाव नहीं पड़ता। बीज को जीवनकाल जल की मात्रा कम रहने से बढ़ता है। श्वसन विकरों (enzymes) के कार्य में जल आवश्यक होता है।

4. प्रकाश (Light) :

श्वसन रात्रि में भी होता रहता है। इसके लिए प्रकाश का होना आवश्यक नहीं है, किन्तु प्रकाश में प्रकाश-संश्लेषण की क्रिया होने के कारण शर्कराओं का संश्लेषण होता है जिससे उनकी सान्द्रता बढ़ती है और श्वसन-प्रयुक्त पदार्थीं (respiratory substrates) की मात्रा अधिक होने से श्वसन दर बढ़ती है। अत: प्रकाश श्वसन को परोक्ष रूप से प्रभावित करता है।

5. कार्बन डाइऑक्साइड (CO2) :

वातावरण में कार्बन डाइऑक्साइड (CO_2) की सान्द्रता सामान्य रूप से अधिक होने पर श्वसन दर कम हो जाती है। बीजों का अंकुरण एवं वृद्धि दर कम हो जाते हैं। हीथ (Heath, 1950) ने सिद्ध किया है कि कार्बन डाइऑक्साइड (CO_2) से पत्ती पर स्थित रन्ध्र (stomata) बन्द हो जाते हैं। इससे ऑक्सीजन (O_2) पत्ती में प्रवेश नहीं करती जिससे श्वसन दरें घट जाती है।

6. क्षति (Injury) :

घायल ऊतक में सामान्यतः श्वसन दर तीव्र हो जाती है। सम्भवतः क्षतिग्रस्त भाग में कुछ कोशिकाएँ विभज्योतकी (meristematic) होकर तेजी से विभाजित होने लगती हैं। वृद्धि कर रही कोशिकाओं में, परिपक्व कोशिकाओं की अपेक्षा श्वसन दर अधिक होती है। हॉपिकन्स (Hopkins) के अनुसार पौधे के क्षतिग्रस्त भागों में स्टार्च का शर्करा में परिवर्तन तेजी से होने लगता है, जिसके कारण भी क्षतिग्रस्त भागों की श्वसन दर बढ़ जाती है।

B. आन्तरिक कारक

1. श्वसन में प्रयुक्त पदार्थों की सन्द्रिता (Concentration of Using Substrates in Respiration) :

श्वसन में प्रयुक्त होने वाले पदार्थों की सान्द्रता बढ़ने पर श्वसन दर बढ़ जाती है।

2. जीवद्रव्य की दशा (Age of Protoplasm) :

पौधों की वृद्धि करने वाले भागों; जैसे—प्ररोहों एवं जड़ के अग्रस्थ स्थित युवा कोशिकाओं का जीवद्रव्य अत्यधिक सिक्रय होता है जिससे इन भागों में, श्वसन दर अधिक होती है जबिक ऊतकों एवं पौधों के विभिन्न भागों की वृद्ध कोशिकाओं में श्वसन दर घट जाती है।