NATIONAL UNIVERSITY OF SINGAPORE

MA1301 Introductory Mathematics

Tutorial 1

- 1. It is given that the third and seventh terms of an arithmetic sequence are 175 and 105 respectively.
 - i) Find the first term and common difference of this sequence.
 - ii) Find the number n so that the sum of the first n terms of the sequence is zero.
- 2. The sum of three consecutive terms of a geometric sequence is 28 and their product is 512. Find these numbers.
- **3.** The sum of the first four terms of a geometric sequence is 3.75, and the sum to infinity is 4. Find the first term and common ratio of the sequence.
- 4. The common difference of an arithmetic sequence is 1, and the common ratio of a geometric sequence is 3. A new sequence is formed by adding the corresponding terms of these two sequences. Suppose that the second and fourth terms of the new sequence are 12 and 86 respectively.
 - i) Find the n^{th} term of the new sequence.
 - ii) Find the sum of the first n terms of the new sequence.
- **5.** Find the value of x for which

$$3x + 6$$
, $x + 2$ and $34 - x$

are successive terms of a geometric sequence.

- **6.** An arithmetic sequence with first term a and common difference $d \neq 0$ is given such that its third, sixth and tenth terms are successive terms of a geometric sequence.
 - i) Show that a = 7d.
 - ii) Find the ratio of the sum of the first 30 terms to the sum of the first 10 terms of the arithmetic sequence.
- 7. Express the recurring decimal $0.345345345\cdots$ as a rational number.
- 8. The first two terms of a geometric sequence are x + 2 and $x^2 2x 8$.

- i) Find the range of x for which the sum of the sequence to infinity exists.
- ii) Find the sum of the sequence to infinity, in terms of x, when it exists.
- 9. Express the following in \sum notations and evaluate them.
 - (a) $\ln 2 + \ln 4 + \ln 8 + \ln 16 + \dots + \ln 2048$,
 - (b) $3+5+\frac{25}{3}+\frac{125}{9}+\frac{625}{27}+\cdots$ up to 2n terms.

SOLUTIONS AND HINTS

- **1.** i) First term: 210; common difference: $-\frac{35}{2}$; ii) 25.
- **2.** 4, 8, 16 (or 16, 8, 4). *Hint*: Let a be the first term and r the common ratio. Then the three numbers are a, ar and ar^2 .
- **3.** i) First term: 2; common ratio: 0.5; or ii) First term: 6; common ratio: -0.5.
- 4. i) $n+1+3^n$. ii) $\frac{1}{2}n(n+3)+\frac{3}{2}(3^n-1)$. Hint: The sum of the first n terms of the new sequence is the sum of that of the arithmetic sequence and that of the geometric sequence.
- **5.** 25. *Hint*: If r is the common ratio, then $r = \frac{x+2}{3x+6}$ and $r = \frac{34-x}{x+2}$.
- **6.** i) *Hint*: If a, b, c are successive terms of a geometric sequence, then $\frac{a}{b} = \frac{b}{c}$; ii) $\frac{129}{23}$.
- 7. $\frac{115}{333}$.
- **8.** i) 3 < x < 5. *Hint*: First find the common ratio r and then use the fact that the sum to infinity exists if and only if |r| < 1; ii) $\frac{x+2}{5-x}$.
- **9.** (a) $\sum_{i=1}^{11} \ln(2^i) = 66 \cdot \ln 2$. *Hint*: $\ln(a^b) = b \cdot \ln a$ for a > 0.
 - (b) $\sum_{i=1}^{2n} 3\left(\frac{5}{3}\right)^{i-1} = \frac{9}{2} \left[\left(\frac{5}{3}\right)^{2n} 1 \right].$