WEEKLY TEST-02

DS AND AI

CALCULUS AND OPTIMIZATION

Q1

The least value of the funtion $f(x) = 2\cos x + x$ in the closed interval is $\left[0,\frac{\pi}{2}\right]$

(A) 2

- (B) $\frac{\pi}{6} + \sqrt{3}$
- (C) $\frac{\pi}{2}$

- (D) None of these
- Q2 Find the interval in which of the following function is decreasing
 - $f(x) = 10 6x 2x^2$
 - (A)(0,1)
 - (B) $\left(-\frac{3}{2},\infty\right)$
 - (C) $(1,\infty)$
 - (D) $\left(-\frac{3}{2}, \frac{3}{2}\right)$
- Let $f(x)=\int\limits_{\sin x}^{\cos x}e^{-t^2}dt,$ Then $f'(\pi/4)$ equals (A) $\sqrt{\frac{1}{e}}$ (B) $-\sqrt{\frac{2}{e}}$ (C) $\sqrt{\frac{2}{e}}$ (D) $-\sqrt{\frac{1}{e}}$

- Q4 Let a be non-zero real number. $\lim_{x \to a} rac{1}{x^2 - a^2} \int_a^x \sin\left(t^2\right) dt$ equals

 - (A) $\frac{1}{2a} \sin\left(a^2\right)$ (B) $\frac{1}{2a} \cos\left(a^2\right)$

 - (C) $-\frac{1}{2a}\sin\left(a^2\right)$ (D) $-\frac{1}{2a}\cos\left(a^2\right)$
- **Q5** If $I=\int\limits_{-\pi}^{\pi} rac{\cos^2 x}{1+a^x} dx$ then (A) $rac{\pi}{4}$

- Definite integration of $\int\limits_2^3 rac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} dx$ is-

- **Q7** The minimum value of $u=xy+rac{a^3}{x}+rac{a^3}{y}{
 m is\ ka}^2,$ where k is_
 - (A)3
- (B) 1

(C)2

- (D) 5
- **Q8** Four small square of side x are cut out of a square of side 12 cm to make a tray by folding the edges. What is the value of x so that the tray has the maximum volume?
 - (A) 1

(B) 2

(C)3

- (D) 4
- **Q9** Find $\frac{\partial z}{\partial x}$ for the following function. $x^2\sin\left(y^3\right)+xe^{3z}-\cos\left(z^2\right)=3y-6z+8$

 - $\begin{array}{c} \text{(A)} \ \ \frac{2x\sin\left(y^{3}\right) + e^{3x}}{-6 3xe^{3z} 2z\sin\left(z^{2}\right)} \\ \text{(B)} \ \ \frac{\sin\left(y^{3}\right) + e^{3x}}{-6 3xe^{3z} 2z\sin\left(z^{2}\right)} \\ \text{(C)} \ \ \frac{e^{3x}}{-6 3xe^{3z} 2z\sin\left(z^{2}\right)} \end{array}$
 - (D) none of them
- **Q10** If $u = \tan^{-1}{(x+y)}$, then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} =$
 - (A) $\sin 2u$
- (B) $\frac{1}{3}\sin 2u$
- (C) $\frac{1}{2}\sin 2u$
- (D) none of them
- **Q11** If $u\left(x,y
 ight)=rac{x^2+y^2}{\sqrt{x+y}},$ then value of $xrac{\partial u}{\partial x}+yrac{\partial u}{\partial y}$
 - (A) 3u/4
- (B) 3u/2
- (C) 3u/8
- (D) 3u/9
- Q12 Find the 1st order partial derivatives of the following function wrt to s.
 - $g\left(s,t,v
 ight) =t^{2}\ln \left(s+2t
 ight)$
 - $-\ln{(3v)}(s^3+t^2-4v)$
 - $ext{(A)} rac{\partial g}{\partial s} = rac{t^2}{s+2t} 3s^2 \ln{(3v)} \ ext{(B)} rac{\partial g}{\partial s} = rac{t^2}{s+2t} 3s \ln{(3v)} \ ext{}$

GATE

(C)
$$rac{\partial g}{\partial s}=rac{t^2}{s+2t}-3s^2$$
 (D) none of them

Q13 Find the length of the curve-

$$y=rac{x^5}{6}+rac{1}{10x^3} {
m between} \ 1 \leq x \leq 2?$$
 (A) 1264/240 (B) 1263/240 (C) 1262/240 (D) 1261/240

- (C) 1262/240
- (D) 1261/240

GATE

Q1 (C)	Q8	(B)
G1 (C)		(2)
Q2 (B)	Q8 Q9 Q10	(A)
Q3 (B)	Q10	(C)
Q4 (A)	Q11	(B)
Q5 (D)	Q12	(A)
Q6 (C)	Q13	(D)
Q7 (A)		

Hints & Solutions

Q1 Text Solution:

$$f(x) = 2\cos x + x$$

$$f'(x) = -2 \sin x + 1$$

$$f'(x) = 0$$

$$-2\sin x + 1 = 0$$

$$\sin x = \frac{1}{2}$$

$$\chi = \frac{\pi}{6}$$

Now
$$f''(x) = -2 \cos x$$

$$\mathsf{f}''\left(\frac{\pi}{6}\right) = -2 \times \frac{\sqrt{3}}{2} < 0$$

Thus at $\frac{\pi}{6}$ it's a maxima.

Now let's check for extremities

$$f(0) = 2$$
 and $f\left(\frac{\pi}{6}\right) = \frac{\pi}{6} + \sqrt{3}$

$$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$$

Thus, least value at $\left(\frac{\pi}{2}\right)$.

Q2 Text Solution:

$$f(x) = f(x) = \frac{d(10-6x-2x^2)}{dx}$$

$$= -6 - 4x$$

$$-6 - 4x < 0$$

$$4x + 6 > 0$$

$$x > \frac{-3}{2}$$

Q3 Text Solution:

Applying leibnitz rule

$$rac{d}{dx}\int\limits_{\mathrm{u}\left(x
ight)}^{v\left(x
ight)}f\left(t
ight)dt=f\left(v\left(x
ight)
ight)rac{dv}{dx}-f\left(u\left(x
ight)
ight)rac{du}{dx} \ f\left(x
ight)=\int_{\sin x}^{\cos x}e^{-t^{2}}dt$$

$$egin{aligned} f'(x) &= e^{-\cos^2 x} \left(-\sin x
ight) - e^{-\sin^2 x} \left(\cos x
ight) \ f'\left(rac{\pi}{4}
ight) &= e^{-1/2} \cdot \left(-rac{1}{\sqrt{2}}
ight) - e^{-1/2} \left(rac{1}{\sqrt{2}}
ight) \ &= -\sqrt{rac{2}{e}} \end{aligned}$$

Q4 Text Solution:

$$\lim_{x \to a} \frac{1}{x^2 - a^2} \int_a^x \sin(t^2) dt \qquad \therefore \left(\frac{0}{0} form\right)$$

$$\lim_{x \to a} \frac{\frac{d}{dx} \int_a^x \sin t^2 dt}{\frac{d}{dx} (x^2 - a^2)}$$

$$= \lim_{x \to a} \frac{\sin x^2}{2x}$$

$$= \frac{1}{2a} \sin a^2$$

Q5 Text Solution:

$$I=\int\limits_{-\pi}^{\pi}rac{\cos^2(-x)}{1+a^{-x}}dx\,:\,I=\int\limits_{-\pi}^{\pi}rac{a^x\cos^2x}{1+a^x}dx$$
 adding $2I=\int\limits_{-\pi}^{\pi}\cos^2xdx=2$ $\int\limits_{0}^{\pi}\cos^2xdx\left[\because f\left(x
ight)=\cos^2x=f\left(-x
ight)
ight]$ $=2\int\limits_{0}^{\pi}\cos^2\cdot xdx\Rightarrow\left[x+rac{\sin2x}{2}
ight]_{0}^{\pi}=\pi$ 2 I = π $I=rac{\pi}{2}$

Q6 Text Solution:

Using property $\int\limits_a^b f(x)dx=\int\limits_a^b f(a+b-x)dx$

$$I = \int\limits_{2}^{3} rac{\sqrt{2+3-x}}{\sqrt{5-(2+3-x)}+\sqrt{5-x}} dx = \int\limits_{2}^{3} rac{\sqrt{5-x}}{\sqrt{x}+\sqrt{5-x}} dx \ I = \int\limits_{2}^{3} rac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} dx$$

Adding both we get

$$egin{aligned} 2I &= \int\limits_2^3 \Big(rac{\sqrt{5-x}}{\sqrt{x}+\sqrt{5-x}} + rac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}}\Big) dx = \int\limits_2^3 1\cdot dx \ &= 3-2 = 1 \end{aligned}$$

Q7 Text Solution:

$$u = xy + rac{a^3}{x} + rac{a^3}{y}$$
is ka 2

Evaluating the partial derivatives - and equating to 0

$$\mathbf{u}_{r} = 0$$

$$y-rac{a^3}{r^2}=0$$

$$x^2u=a^3$$

$$\mathbf{u}_{v} = 0$$

$$x-rac{a^3}{u^2}=0$$

$$u^2x = a^3$$

Equating
$$u_x = u_y$$

$$we get x = y$$

Now putting x = y in u_x

$$x-rac{a^3}{x^2}=0$$

$$x = a = y$$

$$u_{xx} = rac{2a^3}{x^3}, u_{yy} = rac{2a^3}{y^3}$$

$$u_{xy}=1$$

Now checking for -

$$u_{xx}$$
. $u_{yy} - (u_{xy})^2 = 4 - 1 = 3 > 0$

$$Now\ cheeking\ for, u_{xx}\Big(a,a\Big)=2>0$$

Thus at (a, a) the function u(x, y) has minima.

$$u\Bigl(x,y\Bigr)=a^2+a^2+a^2=ka^2$$

Thus
$$k = 3$$

Q8 Text Solution:

Given side of the square = 12 cm.

Four small square of side x are cut out of a square.

Dimension of the tray is:-

Side length of bar of the tray = 12 - 2x cm

Height of the tray is x cm

Volume of the tray is V = $(12-2x)^2 \times \text{cm}^3$

$$\forall = (144 + 4x^2 - 48x) \times$$

$$V = 4x^3 - 48x^2 + 144x$$

$$\frac{dv}{dx} = 12x^2 - 96x + 144$$

for max volume put $\frac{\mathrm{d} v}{\mathrm{d} \mathbf{x}} = 0$

$$12x^2 - 96x + 144 = 0$$

$$x^2 - 8x + 12 = 0$$

$$(x - 2)(x - 6) = 0$$

$$x = 2, x = 6$$

$$\frac{d^2v}{dx^2} = 24x - 96$$

at x = 2
$$\rightarrow \frac{\mathrm{d}^2 \mathrm{v}}{\mathrm{dx}^2} = -48$$

Thus, x = 2 is maxima.

Volume is maximum when length of x is 2 cm.

Q9 Text Solution:

Okay, we are basically being asked to do implicit differentiation here and recall that we are assuming that z is in fact z(x, y) when we do our derivative work.

Let's $\det \frac{\partial z}{\partial x}$ first and that requires us to differentiate with respect to x.

Differentiating the equation with respect to x gives,

$$2x\sin\left(y^3\right) + e^{3z} + 3\frac{\partial z}{\partial x}xe^{3z} + 2z\frac{\partial z}{\partial x}\sin\left(z^2\right)$$

$$=-6\frac{\partial z}{\partial x}$$

Solving for
$$\frac{\partial z}{\partial x}$$
 gives

$$2x\sin\left(y^3
ight) + e^{3x}$$

$$= \left(-6 - 3xe^{3z} - 2z\sin\left(z^2\right)\right)\frac{\partial z}{\partial x}$$

$$\frac{\partial z}{\partial x} = \frac{2x\sin(y^3) + e^{3z}}{-6 - 3xe^{3z} - 2z\sin(z^2)}$$

$$\frac{\partial z}{\partial x} = \frac{2x\sin(y^3) + e^{3z}}{-6 - 3xe^{3z} - 2z\sin(z^2)}$$

Q10 Text Solution:

Given that

tan u = x + y is a homogeneous of degree = 1

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \cos^2 u, \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = \cos^2 u$$

$$x \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + y \frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \Big(x + y \Big)$$

$$\cos^2 u \cdot \left(x+y\right)$$

$$\cos^2 u \cdot \tan u = \frac{1}{2} \sin 2u$$

$$\Rightarrow x rac{\partial \mathrm{u}}{\partial \mathrm{v}} + y rac{\partial \mathrm{u}}{\partial \mathrm{v}} = rac{1}{2} \mathrm{sin} \, 2u$$

Q11 Text Solution:

Given u (x, y) =
$$\frac{x^2 + y^2}{\sqrt{x + y}}$$

We can say that

$$\Rightarrow u\left(\lambda x,\lambda y
ight)=rac{\lambda^2 x^2+\lambda^2 y^2}{\sqrt{\lambda x+\lambda y}}$$

$$ightarrow u\left(\lambda x,\lambda y
ight)=rac{\lambda^{2}\left(x^{2}+y^{2}
ight)}{\lambda^{1/2}\sqrt{x+y}}$$

$$\Rightarrow u\left(\lambda x,\lambda y
ight)=rac{\lambda^{3/2}\left(x^2+y^2
ight)}{\sqrt{x+y}}u$$

is a homogeneous function of degree $\frac{3}{2}$.

By Euler's Theorem,

$$x rac{\partial u}{\partial x} + y rac{\partial u}{\partial y} = rac{3}{2} u$$

Q12 Text Solution:

For this problem It looks like we'll have three 1st order partial derivatives to compute.

Here are the three 1st order partial denvatives for this problem.

$$egin{aligned} rac{\partial g}{\partial s} &= gs = rac{t^2}{s+2t} - 3s^2 \ln{(3u)} \ rac{\partial g}{\partial s} &= gt = 2t \ln{(s+2t)} + rac{2t^2}{s+2t} - 2s^2 \ln{(3u)} \ rac{\partial g}{\partial s} &= gv = 4 \ln{(3u)} - rac{s^3 + t^2 - 4u}{u} \end{aligned}$$

so wrt to s it will be

$$\frac{\partial g}{\partial s} = \frac{t^2}{s+2t} - 3s^2 \ln{(3v)}$$

Q13 Text Solution:

We can find the arc length to be $\frac{1261}{240}$ by the integral

$$L=\int\limits_{1}^{2}\sqrt{1+\left(rac{dy}{dx}
ight)^{2}dx}$$

Let us look at some details.

By taking the derivative,

$$\frac{dy}{dx} = \frac{5x^4}{6} - \frac{3}{10x^4}$$

So, the integrand looks like:

$$\sqrt{1+\left(rac{dy}{dx}
ight)^2}=\sqrt{\left(rac{5x^4}{6}
ight)+rac{1}{2}+\left(rac{3}{10x^4}
ight)^2}$$

by completing the square

$$=\sqrt{\left(\frac{5x^4}{6}+\frac{3}{10x^4}\right)^2}=\frac{5x^4}{6}+\frac{3}{10x^4}$$

Now, we can evaluate the integral.

$$egin{align} L = \int\limits_{1}^{2} \Big(rac{5x^4}{6} + rac{3}{10x^4}\Big) dx = \Big[rac{x^5}{6} - rac{1}{10x^3}\Big]_{1}^{2} \ = rac{1261}{240} \end{split}$$

