Data Structures

Union/Find – 20 הרצאה

(Disjoint sets) איחוד קבוצות זרות

מבנה נתונים אשר מבצע מעקב אחר איברים המחולקים למספר תתי-קבוצות זרות

קבוצות זרות = קבוצות ללא חפיפה

- אין משמעות לסדר בין האיברים באותה קבוצה ■
- מעניין אותנו רק המעקב אחר תכולת הקבוצות הזרות 2

הפעולות המוגדרות עבור מבנה זה:

- יצירת קבוצה חדשה (makeSet) יצירת קבוצה חדשה (singleton סינגלטון (singleton סינגלטון
- קביעה איזו קבוצה מכילה איבר ספציפי (find) **חיפוש** ■
- עוזרת בקביעה האם שני איברים שייכים לאותה קבוצה 🗆
 - איחוד שתי קבוצות זרות לקבוצה אחת (union) **שיחוד** ■

ישנם דרכים רבות לממש מבנה נתונים זה – כאן נתמקד במימוש ע"י **עצים הפוכים – Up trees**

- כל קבוצה זרה מיוצגת ע"י עץ, כאשר שורש העץ נחשב כנציג הקבוצה
 - (parent node) כל צומת בעץ מחזיק מצביע לאביו
 - שורש העץ נחשב כאבא של עצמו 🔳
 - העצים שמיצגים את הקבוצות הזרות מהווים **יער** ■

כאמור, אין משמעות לסדר בין האיברים

- x יוצרת עץ חדש בגודל 1 עם מזהה makeSet(x) ■
- הולכת מצומת x לשורש לפי מסלול צמתי האב ומחזירה את הנציג בשורש
- עם זו x עם את הקבוצה המכילה את ב union(x,y) − union(x,y) − union(x,y) − עוי חיבור שורשו של אחד כבנו של השני

"ניתן לממש עץ הפוך באמצעות "**מערך אבות**

6

- כל איבר משויך למספר שלם המתאים לאינדקס במערך 🔳
- הערך השמור במערך עבור איבר i הוא **האינדקס של אביו**
 - ערך המערך של **נציג הקבוצה** הוא האינדקס שלו **עצמו** ■

4

9

м

מימוש עצים הפוכים בעזרת מערך

```
void makeSet (int v) //0(1)
                                                  מימוש נאיבי:
       parent[v] = v;
end makeSet
int find (int v) //O(n)
       if (v == parent[v])
               return v
       return find (parent[v])
end find
void union (int a, int b) //O(n)
        a = find(a) //O(n)
        b = find(b) //O(n)
        if (a != b) parent[b] = a
end-union
```

0	1	2	3	4	5	6	7	8	9
0	1	9	4	9	6	6	7	8	9

M

מימוש עצים הפוכים בעזרת מערך

```
void makeSet (int v) //0(1)
                                                     מימוש נאיבי:
       parent[v] = v;
end makeSet
int find (int v) //0(n)
       if (v == parent[v])
               return v
       return find (parent[v])
end find
void union (int a, int b) //O(n)
        a = find(a) //O(n)
        b = find(b) //O(n)
        if (a != b) parent[b] = a
end-union
```

יעילות מימוש זה נמוכה:

- O(n) סיבוכיות של כל קריאה ל find סיבוכיות של כל קריאה ש
- קורה למשל כאשר מחברים רצף איברים יחידים כך שבכל שלב, שורש הקבוצה הנוכחית הופך לבנו של האיבר היחיד

מימוש עצים הפוכים בעזרת מערך

ניתן לשפר משמעותית את הסיבוכיות ע"י שינוי קטן במימוש

- בכל פעם שנבצע פעולת איחוד, נחבר את שורש העץ הקטן יותר כבן של שורש העץ הגדול יותר
 - כאשר **משקל העץ** = כמות הצמתים שהוא מכיל ■

מימוש עצים הפוכים בעזרת מערך

ניתן לשפר משמעותית את הסיבוכיות ע"י שינוי קטן במימוש:

- בכל פעם שנבצע פעולת איחוד, נחבר את שורש העץ הקטן יותר כבן של שורש העץ הגדול יותר כבן של שורש העץ הגדול יותר
 - כאשר **משקל העץ** = כמות הצמתים שהוא מכיל ■
 - אינטואיטיבית, זה יגרום לכך שהעצים הנבנים יהיומאוזנים ולא ייראו כמו מסילה ארוכה
- שורש כך נשמור מערך עזר size שישמור עבור כל שורש (= נציג של קבוצה) את משקל העץ שהוא מייצג


```
void makeSet (int v) //0(1)
                                     נגדיר משקל העץ, size, כמספר
       parent[v] = v
       size[v] = 1
                                                        הצמתים שבו
end-makeSet
                                  באיחוד נחבר את שורש העץ הקטן
int find (int v) //0(\log_2 n)
       if (v == parent[v])
                                           כבן של שורש העץ הגדול
               return v
       return find (parent[v])
end find
void union(int a, int b)
       a = find(a) //O(log_2n)
       b = find(b) //O(log_2n)
       if (a != b)
               if (size[a] ≤ size[b])
                      parent[a] = b
                      size[b] = size[b] + size[a]
               else
                      parent[b] = a
                      size[a] = size[a] + size[b]
              end-if
       end-if
```

end-union

Union by Weight מימוש לפי שיטת

```
void makeSet (int v) //0(1)
                                                           זמן ריצה:
       parent[v] = v
       size[v] = 1
                               h סיבוכיות find היא כגובה העץ ■
end-makeSet
int find (int v) //0(\log_2 n)
                                 גם סיבוכיות union היא כגובה ■
       if (v == parent[v])
              return v
                                  (find -העץ (קוראת פעמיים ל
       return find (parent[v])
end find
                                לכן מספיק להוכיח שגובה כל עץ
void union(int a, int b)
                                          הוא לוגריתמי במשקלו:
       a = find(a) //O(log_2n)
       b = find(b) //O(log_2n)
                                         h = O(log(size))
       if (a != b)
              if (size[a] ≤ size[b])
                     parent[a] = b
                     size[b] = size[b] + size[a]
              else
                     parent[b] = a
                     size[a] = size[a] + size[b]
              end-if
       end-if
```

end-union

log₂s אזי הגובה שלו h טענה: יהי s משקל העץ, אזי הגובה שלו s הוכחה: באינדוקציה על משקל העץ

- מקרה בסיס: עבור s=1 הטענה נכונה
- s > k הנחת האינדוקציה: הטענה נכונה לכל עץ עם משקל ■
- צעד האינדוקציה: עלינו להראות שאם הטענה נכונה עבור 2 עצים, היא תהיה נכונה גם עבור האיחוד שלהם (בשימוש בשיטת האיחוד החדשה)
 - ו- \mathbf{h}_1 בהתאמה \mathbf{h}_1 ו- \mathbf{s}_1 בהתאמה \mathbf{s}_2 נתבונן על שני עצים בעלי \mathbf{s}_2 ו- \mathbf{s}_3
 - $s_1 > s_2$ נסמן $s_1 > s_2$ בלי הגבלת הכלליות נניח . $s_1 = s_1 + s_2$
 - $h_2 \le logs_2$, $h_1 \le logs_1$ לפי הנחת האינדוקציה, \blacksquare
 - לאחר איחוד 2 העצים, גובה העץ החדש הוא ■

$$h = max(logs_1, 1 + logs_2) = max(logs_1, log(2s_2))$$

נשים לב שמתקיים $\mathbf{s}_2 \leq \mathbf{s}$ וגם $\mathbf{s}_1 \leq \mathbf{s}$, לכן

$$h \le max(logs,logs) = logs$$

ראינו שבאמצעות מימוש **איחוד לפי משקל**, הסיבוכיות של חיפוש ואיחוד משתפרת **מלינארית ללוגריתמית**

- מכיוון שכל עץ נשאר מאוזן לאחר פעולת union, פעולת עץ נשאר מאוזן לאחר פעולת find לוקחת רק (logn) אמן
- ם השיפור התבצע בפעולת **union** ע"י חיבור השורשים באופן מושכל

כעת נראה שיפור נוסף - הפעם בפעולת find

- כביכול נראה שמימוש זה לא משנה את סדר הגודל הלוגריתמי שכבר קבלנו
- אך ניתוח מתמטי מעמיק יותר מראה שיפור משמעותי בזמן הריצה **המשוערך** והופך אותו ל"**כמעט קבוע**"

שיטה פשוטה ואפקטיבית להאצת החיפוש המתבצעת ב- find

- שיטה זו גורמת לכל צומת במסלול החיפוש להפוך לבנו של השורש באותו העץ
 - פעולה זו לא משנה את דרגות הצמתים (כלפי מעלה)

path compression – דחיסת מסלול

```
find(x) // O(α(n))
    if parent[x] != x
        parent[x] = find(parent[x])
        return parent[x]
    end-find
```


דחיסת מסלול – Path compression

- האם הועלנו במשהו? לכאורה הסבוכיות נשארה כפי שהיתה,לוגריתמית (בהנחה שהאיחוד מתבצע עדיין לפי שיטת המשקל)
- למעשה, בניתוח סיבוכיות המקרה הגרוע ביותר של פעולת findבודדת, הקבוע הכופל את הלוג אפילו גדל קצת
- אך ניתוח מעמיק יותר של הזמן המשוערך לכל פעולה מראה שהוא **-**קטן מאד
 - (Amortized time) זמן משוערך לכל פעולה
 - = זמן ריצה ממוצע על פני מספר רב של פעולות ברצף
 - הרעיון: על אף שחלק קטן מהפעולות יקח זמן רב, לאורך זמן, רוב הפעולות יתבצעו במהירות
 - "כך שהזמן **הממוצע לכל פעולת find** הוא "כמעט קבוע" ■

union/find יעילות

,path-compression -ו union-by-weight -טענה: עם שימוש ב סדרה של n < m פעולות (find/union) לוקחת n < m

- ספר איברים בסה"כ = **n** ■
- (find או union) מספר הפעולות שמבוצעות $= \mathbf{m}$
- (iterated logarithm) "פונקצית ה-"לוגריתם החוזר = log*n ■
- 1 =מספר הפעמים שיש להפעיל \log על n על מנת לקבל ערך =
 - n < **2**⁶⁵⁵³⁶ עולה **לאט מאד** היא קטנה מ- **5** לכל log*n ■
- בחישובים מעשיים ניתן להתייחס ל- log*n כאל קבוע הערך 5
 מתקבל ע"י n הגדול בהרבה ממה שמחשבים בימינו מסוגלים לחשב...
 - ווא כמעט (1) אוא capien. זמן משוערך לפעולה במבנה union/find בסקנה: זמן משוערך בשולה במבנה □

הוכחה:

ש אולי בשנה הבאה... ■