

SYLLABUS MAGÍSTER EN INTELIGENCIA ARTIFICIAL 2022

<u>Asignatura</u>: SISTEMAS BIO-INSPIRADOS

Nombre Profesor : Ricardo Contreras <u>E-mail</u> : rcontrer@udec.cl

1. INTRODUCCIÓN

El estudio de sistemas con comportamiento emergente es una de las características centrales de este curso. Basado en la metáfora de fenómenos emergentes naturales, la inteligencia artificial presenta alternativas a la clásica resolución algorítmica de problemas. En este curso se analizan algunas de esas técnicas, y se establecen las conexiones existentes entre los sistemas emergentes artificiales, la evolución biológica y la evolución social.

2. OBJETIVOS DE LA ASIGNATURA

Al finalizar el curso el alumno debería:

- 1. Reflexionar y discutir sobre el estado del arte en áreas específicas de la inteligencia artificial: algoritmos genéticos, sistemas de colonias de hormigas, autómatas celulares y otras.
- 2. Desarrollar sus propias ideas en torno a las aplicaciones potenciales de los mecanismos estudiados.
- 3. Desarrollar proyectos grupales que acompañen a los contenidos conceptuales cubiertos en el curso
- 4. Elaborar una aplicación dentro de la temática de su elección, para exhibir su capacidad de aplicación de las temáticas del curso. La aplicación será grupal, con un máximo de 4 alumnos por grupo.

3. METODOLOGÍA

El curso contará con clases teóricas y tendrá una cobertura de aspecto práctico a través del desarrollo de proyectos grupales. El alumno deberá tener una participación activa dentro del curso a través del desarrollo de ejercicios durante las horas prácticas.

4. EVALUACIÓN

- 30 % Trabajo final
- 70 % Desarrollo de proyectos grupales

5. BIBLIOGRAFÍA

- Dorigo, M. and Stützle, T. Ant Colony Optimization. A Bradford Book, 2004.
- Eiben, A.E. Smith, J.E.: Introduction to Evolutionary Computing. Springer 2010.

- Floreano, D. and Mattiussi, C. Bio-inspired Artificial Intelligence. Theories, Methods and Technologies. MIT Press, 2008.
- **Górriz et al.** Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications. Neurocomputing 410: 237-270 (2020).
- Karaboga, D. An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineerind Department, 2005.

6. CURRICULUM RESUMIDO DEL PROFESOR

Ricardo Contreras es Ingeniero Electrónico (Universidad de Concepción, 1975) y Magister en Informática (Pontificia Universidad Católica de Rio de Janeiro, Brasil, 1983).

Ha sido Director del Departamento de Informática (1999 – 2003), Subdirector de la Dirección de Postgrado de la Universidad de Concepción (UdeC, 2010 - 2014), Director de la Dirección de Tecnologías de Información de la (UdeC, 2014 – 2016), vicedecano de la Facultad de Ingeniería (UdeC, 2016 – 2019) y Director del Proyecto Ingeniería 2030 (UdeC, 2019 – a la fecha).

Actualmente se desempeña como profesor del Departamento de Ingeniería Informática, en la jerarquía de Profesor Asociado.

Ha participado en diversos proyectos de investigación y ha guiado más de 40 memorias de título y 9 tesis de magíster. Tiene un registro de más de 50 publicaciones tanto nacionales como internacionales.

7. PROGRAMA

SESIÓN 1: Algoritmos Evolutivos

Tema: Algoritmos Genéticos Simples

Objetivos: Comprender, analizar y discutir la estructura de los algoritmos genéticos simples, como una metáfora de la evolución. Los operadores de selección, cruzamiento y mutación forman parte de este tópico.

Contenidos:

- ¿Por qué Sistemas Bioinspirados?
- Evolución. Aspectos generales
- Algoritmos genéticos. Bases
- Operadores fundamentales

Caso Base. Los operadores

SESIÓN 2: Algoritmos Evolutivos

Tema: Algoritmos Genéticos Avanzados

Objetivos: Estudiar la potencialidad de los algoritmos genéticos como herramienta de solución de problemas

Contenidos:

- Algoritmos genéticos especializados
- Otros operadores
- Aplicaciones en ambientes reales

Caso: Aplicación sobre estructuras con ordenamiento (operador OX)

SESIÓN 3: Swarm Intelligence

Tema: Colonias de hormigas (Ant Colony)

Objetivos: Analizar y comprender cómo se pueden utilizar hormigas artificiales para resolver problemas de optimización

Contenidos:

- Inteligencia de enjambre
- Hormigas reales y hormigas artificiales
- Conceptos fundamentales (trayectorias, feromonas)
- Aplicaciones en ambientes reales

Caso: Aplicación a un problema de minimización de rutas.

SESIÓN 4: Swarm Intelligence

Tema: Abejas artificiales

Objetivos: Analizar y comprender cómo se pueden utilizar abejas artificiales para resolver problemas de optimización

Contenidos:

- Abejas reales y abejas artificiales
- Diferencias con ACO (Ant Colony)
- Aplicaciones en ambientes reales

Caso: Aplicación a un problema real

SESIÓN 5: Sistemas Dinámicos

Tema: Autómatas celulares

Objetivos: Analizar y comprender los conceptos más relevantes asociados a esta temática

Contenidos:

- La vida con reglas simples
- Conceptos de vecindad
- Aplicaciones en ambientes reales

Caso: Aplicación a un problema real

SESIÓN 6: Nuevas Miradas Evolutivas

Tema: Algoritmos basados en bacterias

Objetivos: Analizar y comprender cómo el análisis del comportamiento de bacterias lleva una propuesta de algoritmo de optimización

Contenidos:

- Bacterias, conceptos básicos
- Diferencias con los modelos algorítmicos anteriores
- Aplicaciones en ambientes reales

Caso: Aplicación a un problema real

