

Algorithmic State Machine

Practice Questions

Design the control unit of the given ASM chart and give its circuit diagram using all methods. Use JK FFs for the classical sequential circuit design.

Design the Datapath with a counter R, Registers A, B, C and a D-FF F.

Question 1 Solution with Multiplexer (modified D-FF)

Present State		Next State		Inputs			Outputs			
Name	G ₁ G ₀	Name	G ₁ G ₀	х	у	w	Р	Q	R	S
Р	00	S	11	0	0	-	1	0	0	0
	00	S	11	1	1	-	1	0	0	0
	00	Q	01	1	0	-	1	0	0	0
	00	R	10	0	1	-	1	0	0	0
Q	01	Р	00	-	-	0	0	1	0	0
	01	S	11	-	-	1	0	1	0	0
R	10	S	11	-	-	-	0	0	1	0
S	11	S	11	-	-	1	0	0	0	1
	11	Р	00	_	_	0	0	0	0	1

 $DG_1=G_1'G_0'(x'y'+xy+x'y)+G_1'G_0(w)+G_1G_0'(1)+G_1G_0(w)$

$$DG_0=G_1'G_0'(x'y'+xy+xy')+G_1'G_0(w)+G_1G_0'(1)+G_1G_0(w)$$

$$DG_1=G_1'G_0'(x'y'+xy+x'y)+G_1'G_0(w)+G_1G_0'(1)+G_1G_0(w)$$

$$DG_0 = G_1'G_0'(x'y'+xy+xy') + G_1'G_0(w) + G_1G_0'(1) + G_1G_0(w)$$

Question 2

- Registers A and B and a JK FF that is called F will function as follows:
- A start signal S initiates the operation by loading an n-bit number to register
 A.
- Register A has Comp_A input which loads the complement of the register value in the next clock cycle
- Then an external signal P directs the operation as follows:
- If P=1:
 - If the content of A is an even number, F is cleared and the content of A is transferred to register B
 - If the content of A is an odd number, F is set and the complement of the content of A is transferred to register B
- If P=0:
 - If the content of A is an even number, F is cleared and the complement of the content of A is transferred to register B
 - If the content of A is an odd number, F is set and the content of A is transferred to register B

Question 2

- Draw an ASM chart using a minimum number of state boxes.
- Draw the Data path circuit diagram
- Design the control unit using all methods. Use JK FFs for the classical sequential circuit design.

- A start signal S initiates the operation by loading an n-bit number to register A.
- Then
- If P=1:
 - If the content of A is an even number, F is cleared and the content of A is transferred to register B
 - If the content of A is an odd number, F is set and the complement of the content of A is transferred to register B
- If P=0:
 - If the content of A is an even number, F is cleared and the complement of the content of A is transferred to register B
 - If the content of A is an odd number, F is set and the content of A is transferred to register B

Present State		Next State		Inputs			Outputs		
Name	G ₁ G ₀	Name	G ₁ G ₀	S	Р	A ₀	ТО	T1	T2
T0	00	T ₀	00	0	-	-	1	0	0
	00	T ₁	01	1	-	-	1	0	0
T1	01	T ₀	00	-	1	0	0	1	0
	01	T ₀	00	-	0	1	0	1	0
	01	T ₂	11	-	1	1	0	1	0
	01	T ₂	11	-	0	0	0	1	0
T2	11	T ₀	00	_	-	-	0	0	1

 $DG_0=G_1'G_0'S+G_1'G_0PA_0+G_1'G_0P'A_0'$ $DG_1=G_1'G_0PA_0+G_1'G_0P'A_0'$

$$DG_0=G_1'G_0'S+G_1'G_0PA_0+G_1'G_0P'A_0'$$

 $DG_1=G_1'G_0PA_0+G_1'G_0P'A_0'$

Load_A: S.T₀

Comp_A: $P.A_0.T_1+P'.A_0'.T_1$ Load_B: $P'A_0T_1+PA_0'T_1+T_2$

Clr_F: A₀'T₁ Set_F: A₀T₁

$$J=A_0T_1Q_t', K=A_0'.T_1.Q_t$$

A_0	T ₁	Q _t	Q _{t+1}	J	K
0	0	0	0	0	х
0	0	1	1	X	0
0	1	0	0	0	х
0	1	1	0	X	1
1	0	0	0	0	x
1	0	1	1	X	0
1	1	0	1	1	х
1	1	1	1	X	0

Question 3

 Design and draw the typical cell Ai of register A as specified below using formal design method with a JK FF.

- P1: A←B

- P2: A←A.B

- The combinational circuit should be minimum.
- Show all steps of the design.
- Assume that P1.P2=0 is always satisfied.

PLP2 AIBI	Ãi	JAE KAE
OOXX	Ai	0 0.
010.0	·O	O X
0 1 0 1	0	XX
	Ĭ	x o
1000 1001 1010	0 1 ×	0 X 1 X X O X X

Bτ

Algorithmic State Machine

Practice Questions