## Equações e problemas

Exercícios de Provas Nacionais e Testes Intermédios



1. Em  $\mathbb{C}$ , conjunto dos números complexos, sejam  $z_1 = \frac{1}{2}e^{i\frac{\pi}{4}}$  e  $z_2 = 2i$ 

Determine, sem recorrer à calculadora, os números complexos z que são solução da equação

$$iz^2 + z_1^2 \times (\overline{z_2})^3 - 2 = 0$$

Apresente esses números na forma trigonométrica.

Exame – 2021, Ép. especial

2. Resolva este item sem recorrer à calculadora.

Em  $\mathbb{C}$ , conjunto dos números complexos, a condição  $(1+2i)z+(1-2i)\bar{z}+10=0$  define, no plano complexo, uma reta.

Considere todos os números complexos cujos afixos pertencem a esta reta.

Determine qual deles tem menor módulo.

Apresente esse número complexo na forma a + bi, com  $a, b \in \mathbb{R}$ 

Exame - 2021, 2.ª Fase

3. Em  $\mathbb{C}$ , conjunto dos números complexos, considere o número complexo  $z_1 = -1 - i$ 

Na figura ao lado está representado, no plano complexo, o triângulo equilátero [OFG]

Sabe-se que o ponto F é a imagem geométrica do número complexo  $z_1$  e que o ponto G é a imagem geométrica do número complexo  $z_1 \times z_2$  e pertence ao quarto quadrante.



A que é igual o número complexo  $z_2$ ?

(A) 
$$\frac{1}{2} + \frac{\sqrt{2}}{2}i$$
 (B)  $\frac{1}{2} + \frac{\sqrt{3}}{2}i$  (C)  $1 + \sqrt{2}i$ 

**(B)** 
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

(C) 
$$1 + \sqrt{2}$$

**(D)** 
$$1 + \sqrt{3}$$

Exame – 2020, Ép. especial

4. Seja  $\mathbb{C}$  o conjunto dos números complexos.

Resolva este item sem recorrer à calculadora.

Seja 
$$z_1 = \frac{2}{1-i} + \frac{4}{i^5}$$
 e seja  $z_2$  um número complexo tal que  $|z_2| = \sqrt{5}$ 

Sabe-se que, no plano complexo, o afixo de  $z_1 \times z_2$  tem coordenadas positivas e iguais.

Determine  $z_2$  Apresente a resposta na forma a+bi, com  $a,b\in\mathbb{R}$ 

Exame – 2020, 2.<sup>a</sup> Fase

5. Seja  $\mathbb C$  o conjunto dos números complexos.

Resolva este item sem recorrer à calculadora. Considere, em  $\mathbb{C}$ , a equação  $z^2 = \overline{z}$ 

Sabe-se que, no plano complexo, os afixos dos números complexos não nulos que são soluções desta equação são os vértices de um polígono regular.

Determine o perímetro desse polígono.

Exame – 2020, 1.<sup>a</sup> Fase

6. Para um certo número real x, pertencente ao intervalo  $\left]0,\frac{\pi}{12}\right[$ , o número complexo  $z=(\cos x+i\sin x)^{10}$  verifica a condição  $\mathrm{Im}(z)=\frac{1}{3}\,\mathrm{Re}(z)$ 

Qual é o valor de x arredondado às centésimas?

- **(A)** 0,02
- **(B)** 0,03
- **(C)** 0,12
- **(D)** 0,13

Exame – 2018, 1.a Fase

7. Em C, conjunto dos números complexos, sejam

$$z_1 = \frac{1 - 3i^{19}}{1 + i}$$
 e  $z_2 = -3ke^{i\left(\frac{3\pi}{2}\right)}$ , com  $k \in \mathbb{R}^+$ 

Sabe-se que, no plano complexo, a distância entre a imagem geométrica de  $z_1$  e a imagem geométrica de  $z_2$  é igual a  $\sqrt{5}$ 

Qual é o valor de k?

Resolva este item sem recorrer à calculadora.

Exame – 2017, 1.ª Fase

8. Seja  $\rho$  um número real positivo, e seja  $\theta$  um número real pertencente ao intervalo  $]0,\pi[$  Em  $\mathbb{C}$ , conjunto dos números complexos, considere  $z=\frac{-1+i}{\left(\rho e^{i\theta}\right)^2}$  e  $w=-\sqrt{2}i$  Sabe-se que z=w

Determine o valor de  $\rho$  e o valor de  $\theta$ 

Exame – 2016, 2.<sup>a</sup> Fase



9. Em  $\mathbb{C},$  conjunto dos números complexos, considere

$$z_1 = \frac{8e^{i\theta}}{-1 + \sqrt{3}i} e z_2 = e^{i(2\theta)}$$

Determine o valor de  $\theta$  pertencente ao intervalo ]0, $\pi$ [ de modo que  $\overline{z_1} \times z_2$  seja um número real.

Exame – 2016,  $1.^a$  Fase

10. Em 
$$\mathbb{C}$$
, conjunto dos números complexos, considere  $z=\frac{-2+2i^{19}}{\sqrt{2}e^{i\theta}}$ 

Determine os valores de  $\theta$  pertencentes ao intervalo  $]0,2\pi[$ , para os quais z é um número imaginário puro. Na resolução deste item, não utilize a calculadora.

Exame – 2015, 1.ª Fase

11. Seja C o conjunto dos números complexos.

Resolva os dois itens seguintes sem utilizar a calculadora.

11.1. Considere  $z_1 = \frac{1-i}{2i} - i^{-1}$  e  $z_2 = e^{i(-\frac{\pi}{4})}$ 

Averigue se a imagem geométrica do complexo  $(z_1)^4 \times \overline{z_2}$  pertence à bissetriz dos quadrantes ímpares.

11.2. Considere o número complexo  $w = \operatorname{sen}(2\alpha) + 2i \cos^2 \alpha \operatorname{com} \alpha \in \left[0, \frac{\pi}{2}\right]$ Escreva w na forma trigonométrica.

Exame - 2014, Ép. especial

12. Seja  $\mathbb C$  o conjunto dos números complexos.

12.1. Considere 
$$z=2e^{i\left(\frac{\pi}{6}\right)}$$
 e  $w=\frac{(z-i)^4}{1+zi}$ 

No plano complexo, seja O a origem do referencial.

Seja A a imagem geométrica do número complexo  $\overline{z}$  e seja B a imagem geométrica do número complexo w

Determine a área do triângulo [AOB], sem utilizar a calculadora.

12.2. Seja  $\alpha \in ]0,\pi[$ 

Resolva, em  $\mathbb{C}$ , a equação  $z^2 - 2\cos\alpha z + 1 = 0$ 

Apresente as soluções, em função de  $\alpha$ , na forma trigonométrica.

Exame - 2014, 2.ª Fase

13. Seja  $\mathbb C$  o conjunto dos números complexos.

13.1. Considere 
$$z_1 = \frac{\left(-1 + \sqrt{3}i\right)^3}{1-i}$$
 e  $z_2 = e^{i\alpha}$ , com  $\alpha \in [0,\pi[$  Determine os valores de  $\alpha$ , de modo que  $z_1 \times (z_2)^2$  seja um número imaginário puro, sem utilizar a

13.2. Seja z um número complexo tal que  $|1+z|^2+|1-z|^2\leq 10$ Mostre que  $|z| \leq 2$ 

Exame - 2014, 1. Fase

14. Em  $\mathbb{C}$ , conjunto dos números complexos, considere  $z_1 = \frac{1 + \sqrt{3}i}{1 + 2ie^{i(\frac{5\pi}{6})}}$ 

Seja  $z=e^{i\theta},$  com  $\theta$  pertencente a  $[0,2\pi[$ 

Determine  $\theta$  de modo que  $\frac{z}{z_1}$  seja um número real negativo, sem utilizar a calculadora.

Exame – 2013, Ép. especial

15. Seja  $\mathbb{C}$  o conjunto dos números complexos.

Considere 
$$z_1 = \frac{1+\sqrt{3}i}{2} + i^{22}$$
 e  $z_2 = \frac{-2}{iz_1}$ 

Determine, sem utilizar a calculadora, o menor número natural n tal que  $(z_2)^n$  é um número real negativo.

Exame - 2013, 2.ª Fase

16. Em  $\mathbb{C}$ , conjunto dos números complexos, considere  $z_2 = 1 + i$ 

Seja 
$$z_3 = e^{i\alpha}$$

Determine o valor de  $\alpha$  pertencente ao intervalo  $]-2\pi, -\pi[$  sabendo que  $z_3 + \overline{z_2}$  é um número real.

Exame - 2013, 1.a Fase



17. Seja  $\mathbb C$  o conjunto dos números complexos; i designa a unidade imaginária.

Mostre, sem recorrer à calculadora, que o número  $2e^{i(\frac{\pi}{10})}$  é solução da equação  $z^6 \times \overline{z} = 128i$  $\overline{z}$  designa o conjugado de z

Teste Intermédio 12.º ano - 24.05.2013

18. Seja C o conjunto dos números complexos.

Seja w um número complexo não nulo.

Mostre, sem recorrer à calculadora, que, se o conjugado de w é igual a metade do inverso de w, então a imagem geométrica de w pertence à circunferência de centro na origem e de raio  $\frac{\sqrt{2}}{2}$ 

Exame - 2012, Ép. especial

19. Seja  $\mathbb C$  o conjunto dos números complexos.

Seja 
$$\alpha \in \left[ \frac{\pi}{4}, \frac{\pi}{2} \right]$$

Sejam  $z_1$  e  $z_2$  dois números complexos tais que  $z_1=e^{i\alpha}$  e  $z_2=e^{i\left(\alpha+\frac{\pi}{2}\right)}$ 

Mostre, analiticamente, que a imagem geométrica de  $z_1+z_2$ , no plano complexo, pertence ao 2.º quadrante.

Exame - 2012, 2.ª Fase

- 20. Em  $\mathbb{C}$ , conjunto dos números complexos, considere  $z_1 = (-2+i)^3$  e  $z_2 = \frac{1+28i}{2+i}$ 
  - 20.1. Resolva a equação  $z^3 + z_1 = z_2$ , sem recorrer à calculadora. Apresente as soluções da equação na forma trigonométrica.
  - 20.2. Seja w um número complexo não nulo.

Mostre que, se w e  $\frac{1}{w}$  são raízes de índice n de um mesmo número complexo z, então z=1 ou z=-1

Exame - 2012, 1.a Fase

21. Seja  $\mathbb C$  o conjunto dos números complexos; i designa a unidade imaginária. Para um certo número inteiro k, a expressão  $\frac{\left(\sqrt{2}i\right)^3 \times e^{i\left(\frac{\pi}{4}\right)}}{k+i}$  designa um número real.

Determine esse número k

Teste Intermédio  $12.^{\circ}$  ano -24.05.2012

- 22. Em C, conjunto dos números complexos, resolva os dois itens seguintes sem recorrer à calculadora.
  - 22.1. Seja w o número complexo com coeficiente da parte imaginária positivo que é solução da equação  $z^2 + z + 1 = 0$

Determine  $\frac{1}{w}$ 

Apresente o resultado na forma trigonométrica.

22.2. Seja z um número complexo.

Mostre que  $(\overline{z}+i)\times(z-i)=|z-i|^2$ , para qualquer número complexo z $(\overline{z} \text{ designa o conjugado de } z)$ 

Exame – 2011, Prova especial

23. Seja  $\mathbb{C}$  o conjunto dos números complexos.

Resolva os dois itens seguintes sem recorrer à calculadora.

23.1. Considere  $z_1=1+2i$  e  $w=\frac{z_1\times i^{4n+3}-b}{\sqrt{2}e^{i\left(\frac{5\pi}{4}\right)}},$  com  $b\in\mathbb{R}$  e  $n\in\mathbb{N}$  Determine o valor de b para o qual w é um número real.

23.2. Seja z um número complexo tal que |z|=1. Mostre que  $|1+z|^2 + |1-z|^2 = 4$ 

Exame - 2011, 2.a Fase

24. Em C, conjunto dos números complexos, considere

$$z_1 = 1, z_2 = 5i e z_3 = e^{i\left(\frac{n\pi}{40}\right)}, n \in \mathbb{N}$$

Resolva os dois itens seguintes sem recorrer à calculadora.

24.1. O complexo  $z_1$  é raíz do polinómio  $z^3-z^2+16z-16$ 

Determine, em  $\mathbb{C}$ , as restantes raízes do polinómio.

Apresente as raízes obtidas na forma trigonométrica.

24.2. Determine o menor valor de n natural para o qual a imagem geométrica de  $z_2 \times z_3$ , no plano complexo, está no terceiro quadrante e pertence à bissetriz dos quadrantes ímpares.

Exame - 2011, 1.a Fase

25. Seja C o conjunto dos números complexos.

Considere a equação  $z^3 - z^2 + 4z - 4 = 0$ 

Esta equação tem três soluções em C, sendo uma delas o número real 1

As imagens geométricas, no plano complexo, dessas três soluções são vértices de um triângulo.

Determine o perímetro desse triângulo.

Resolva este item **sem recorrer à calculadora**.

Teste Intermédio 12.º ano - 26.05.2011

26. Em  $\mathbb{C}$ , conjunto dos números complexos, considere e  $z_1 = e^{i\left(\frac{\pi}{7}\right)}$  e  $z_2 = 2 + i$ Mostre que  $|z_1 + z_2|^2 = 6 + 4\cos\left(\frac{\pi}{7}\right) + 2\sin\left(\frac{\pi}{7}\right)$ , recorrendo a métodos exclusivamente analíticos.

Exame – 2010, 1.ª Fase

27. Determine o valor de  $\theta$ , pertencente ao intervalo  $\left[0,\frac{\pi}{2}\right]$ , de modo que a imagem geométrica do número complexo  $(2e^{i\theta})^2 \times (1+\sqrt{3}i)$  pertença à bissetriz do 3.º quadrante .

Exame – 2009, Ép. especial



- 28. Seja k um número real, e  $z_1 = (k-i)(3-2i)$  um número complexo. Qual é o valor de k, para que  $z_1$  seja um número imaginário puro?
  - (A)  $-\frac{3}{2}$  (B)  $-\frac{2}{3}$  (C)  $\frac{2}{3}$  (D)  $\frac{3}{2}$

Exame – 2009, 2.a Fase

29. Considere, em  $\mathbb{C}$ , um número complexo w, cuja imagem geométrica no plano complexo é um ponto A, situado no 1.º quadrante. Sejam os pontos  $B \in C$ , respectivamente, as imagens geométricas de  $\overline{w}$ (conjugado de w) e de (-w).

Sabe-se que  $\overline{BC} = 8$  e que |w| = 5.

Determine a área do triângulo [ABC].

Exame - 2009, 2.a Fase

30. Em  $\mathbb{C}$ , conjunto dos números complexos, considere  $z_2 = e^{i\left(\frac{5}{6}\pi\right)}$ . Determine o menor valor de  $n \in \mathbb{N}$ , tal que  $(-iz_2)^n = -1$ .

Exame - 2009, 1.a Fase

31. Em  $\mathbb{C}$ , conjunto dos números complexos, sejam os números  $z_2 = 8e^{i\left(-\frac{\pi}{4}\right)}$  (*i* designa a unidade imaginária). Considere o número complexo  $z = \overline{z_2}$ .

No plano complexo, sejam A e B as imagens geométricas de z e de  $z_2$ , respetivamente.

Determine a área do triângulo [AOB], em que O é a origem do referencial.

Exame – 2008, Ép. especial

32. Em  $\mathbb{C}$ , conjunto dos números complexos, considere  $z_1 = 1 - \sqrt{3}i$  (*i* designa a unidade imaginária). No plano complexo, sejam A e B as imagens geométricas de  $z_1$  e de  $z_2 = z_1.i^{46}$ , respetivamente. Determine o comprimento do segmento [AB].

Exame - 2008, 1.ª Fase

33. Em C, conjunto dos números complexos, sejam:

$$z_1 = 3 + yi \quad \text{e} \quad z_2 = 4iz_1$$

 $(i \notin a \text{ unidade imaginária e } y \text{ designa um número real}).$ 

Sabendo que  $\operatorname{Im}(z_1) = \operatorname{Im}(z_2)$ , determine  $z_2$ .

Apresente o resultado na forma algébrica.

Exame -2007, 2.<sup>a</sup> fase



- 34. Em  $\mathbb{C}$ , conjunto dos números complexos, considere  $z = e^{i\alpha} \ \left(\alpha \in \left]0, \frac{\pi}{2}\right[\right)$ 
  - 34.1. Na figura ao lado está representado, no plano complexo, o paralelogramo [AOBC] A e B são as imagens geométricas de z e  $\overline{z}$ , respetivamente.

C é a imagem geométrica de um número complexo w.

Justifique que  $w = 2\cos\alpha$ 



34.2. Determine o valor de  $\alpha \in \left]0, \frac{\pi}{2}\right[$  para o qual  $\frac{z^3}{i}$  é um número real.

Exame – 2007, 1.ª fase

35. Seja  $\mathbb C$  0 conjunto dos números complexos; i designa a unidade imaginária.

Considere a equação  $iz^3 - \sqrt{3} - i = 0$ 

Uma das soluções desta equação tem a sua imagem geométrica no terceiro quadrante do plano complexo. **Sem recorrer à calculadora**, determine essa solução, escrevendo-a na forma trigonométrica.

Exame – 2006, Ép. especial

36. Seja  $\mathbb C$  o conjunto dos números complexos; i designa a unidade imaginária.

Seja z um número complexo cuja imagem geométrica, no plano complexo, é um ponto A situado no primeiro quadrante.

Seja B a imagem geométrica de  $\overline{z}$ , conjugado de z.

Seja O a origem do referencial.

Sabe-se que o triângulo [AOB] é equilátero e tem perímetro 6.

Represente o triângulo  $\left[AOB\right]$ e determine zna forma algébrica.

Exame – 2006, 2.ª fase

37. Seja  $\mathbb C$ o conjunto dos números complexos; i designa a unidade imaginária.

Considere  $z_1 = e^{i\alpha}$  e  $z_2 = e^{i\left(\frac{\pi}{2} - \alpha\right)}$ 

Mostre que a imagem geométrica, no plano complexo, de  $z_1+z_2$  pertence à bissetriz dos quadrantes ímpares.

Exame -2005, 1.<sup>a</sup> fase

38. De dois números complexos,  $z_1$  e  $z_2$ , sabe-se que um argumento de  $z_1$  é  $\frac{\pi}{4}$  e que o módulo de  $z_2$  é  $3\sqrt{2}$ .

Na figura ao lado está representado, no plano complexo, um retângulo . Sabe-se que:

- ullet o ponto O é a origem do referencial
- o ponto P é a imagem geométrica de  $z_1$
- $\bullet$ o ponto R é a imagem geométrica de  $z_2$
- $\bullet$ o retângulo [OPQR]tem área 6

Determine os números complexos  $z_1$  e  $z_2$ . Apresente os resultados na forma algébrica.



Exame - 2004, Ép. especial

39. Seja z um número complexo, cuja imagem geométrica pertence ao primeiro quadrante (eixos não incluídos).

Justifique que a imagem geométrica de  $z^3$  não pode pertencer ao quarto quadrante.

Exame – 2004, 1.ª fase



- 40.  $\mathbb{C}$  é conjunto dos números complexos
  - $\bullet$  i designa a unidade imaginária

Seja z um número complexo cuja imagem geométrica, no plano complexo, é um ponto A situado no segundo quadrante e pertencente à reta definida pela equação  $\operatorname{Re}(z) = -2$ .

Seja B a imagem geométrica de  $\overline{z}$ , conjugado de z.

Seja O a origem do referencial. **Represente**, no plano complexo, um triângulo [AOB], de acordo com as condições enunciadas.

Sabendo que a área do triângulo [AOB] é 8, **determine** z, na forma algébrica.

Exame – 2003, 2.ª Fase

41. Em C, conjunto dos números complexos, seja

$$z_1 = 1 - i$$
 (*i* designa a unidade imaginária).

Determine, na forma trigonométrica, os valores, não nulos, de z para os quais  $z^2 = \overline{z} \times z_1$ 

Exame - 2002, Prova para militares

42. Em C, conjunto dos números complexos, considere

$$z_1 = 1 + i$$
 (*i* designa a unidade imaginária).

- 42.1. Determine os números reais b e c, para os quais  $z_1$  é raíz do polinómio  $x^2 + bx + c$
- 42.2. Seja  $z_2 = e^{i\alpha}$ .

Calcule o valor de  $\alpha$ , pertencente ao intervalo de  $[0,2\pi]$ , para o qual  $z_1 \times \overline{z_2}$  é um número real negativo  $(\overline{z_2}$  designa o conjugado de  $z_2$ ).

Exame – 2002, 2.ª Fase

43. Em  $\mathbb{C}$ , considere os números complexos:  $z_1=1+i$  e  $z_2=\sqrt{2}e^{i\left(\frac{3\pi}{4}\right)}$ 

Considere, no plano complexo, os pontos  $A, B \in O$  em que:

- A é a imagem geométrica de  $z_1$
- B é a imagem geométrica de  $z_2$
- O é a origem do referencial.

Determine o perímetro do triângulo [ABO].

Exame - 2002, 1.ª fase - 1.ª chamada

44. Em  $\mathbb{C}$ , conjunto dos números complexos, considere:

$$z_1 = \rho e^{i\left(\frac{\pi}{3}\right)} \qquad (\rho \in \mathbb{R}^+)$$
$$z_2 = 2i \times z_1$$

Sejam A e B as imagens geométricas, no plano complexo, de  $z_1$  e de  $z_2$ , respetivamente. Seja O a origem do referencial.

Sabendo que a área do triângulo [AOB]é igual a 16, determine, na forma algébrica, o número complexo  $z_1$ 

Exame - 2001, Prova para militares

45. Em C, conjunto dos números complexos, seja

$$z_1 = 1 + i$$
 (*i* designa a unidade imaginária).

Prove que, qualquer que seja o número natural n, a imagem geométrica de  $z_1^{4n+1}$  pertence à bissetriz dos quadrantes ímpares.

Exame - 2001, Ép. especial



46. Em C, conjunto dos números complexos, seja

 $z_1 = 4i$  (*i* designa a unidade imaginária).

- 46.1. No plano complexo, a imagem geométrica de  $z_1$  é um dos quatro vértices de um losango de perímetro 20, centrado na origem do referencial. Determine os números complexos cujas imagens geométricas são os restantes vértices do losango.
- 46.2. Sem recorrer à calculadora, resolva a equação  $\left(\sqrt{2}e^{i\left(\frac{\pi}{4}\right)}\right)^2$ .  $z=2+z_1$  Apresente o resultado na forma algébrica.

Exame - 2001, 1.a fase - 2.a chamada

47. Em C, conjunto dos números complexos, considere

$$z_1 = 7 + 24i$$
 (*i* designa a unidade imaginária).

47.1. Um certo ponto P é a imagem geométrica, no plano complexo, de uma das raízes quadradas de  $z_1$ . Sabendo que o ponto P tem abcissa 4, determine a sua ordenada.

47.2. Seja 
$$z_2 = e^{i\alpha} \text{ com } \alpha \in \left] \frac{3\pi}{4}, \pi \right[$$

Indique, justificando, em que quadrante se situa a imagem geométrica de  $z_1 \times z_2$ 

Exame - 2001, Prova modelo

48. Seja  $\mathbb C$ o conjunto dos números complexos, e sejam  $z_1$  e  $z_2$  dois elementos de  $\mathbb C.$ 

Sabe-se que:

- $z_1$  tem argumento  $\frac{\pi}{6}$
- $z_2 = z_1^4$
- $A_1$  e  $A_2$  são as imagens geométricas de  $z_1$  e  $z_2$ , respetivamente.



- 48.1. Justifique que o ângulo  $A_1OA_2$  é reto (O designa a origem do referencial).
- 48.2. Considere no plano complexo a circunferência C, definida pela condição  $|z| = |z_1|$ . Sabendo que o perímetro de C é  $4\pi$ , represente na **forma algébrica**, o número complexo  $z_1$

Exame -2000, 2.a fase

- 49. Seja  $\mathbb C$  o conjunto dos números complexos; i designa a unidade imaginária.
  - 49.1. Considere o polinómio  $x^3 3x^2 + 6x 4$

Determine analiticamente as suas raízes em  $\mathbb{C}$ , sabendo que uma delas é 1.

Apresente-as na forma algébrica, simplificando-as o mais possível.

49.2. Seja z um número complexo de módulo 2 e  $\overline{z}$  o seu conjugado.

No plano complexo, considere os pontos A e B tais que A é a imagem geométrica de  $\overline{z}$ , e B é a imagem geométrica de  $\overline{z}$ .

Sabe-se que:

- o ponto A está situado no primeiro quadrante
- o ângulo AOB é reto (O designa a origem do referencial)

Determine  $\frac{z}{i}$ , apresentando o resultado na forma algébrica.

Exame – 2000, Prova modelo

