

Spring Technical Review

Content

- Slow Speed Stability System (SSSS)
- Rider Variation Compensation System (RVCS)
- Door (Door)

Slow Speed Stability System

- Requirement
 - Support rider while stopped
- Design Goals
 - Minimize weight
 - Maximize user intuition
 - Minimize fairing cutout size

FALL PROTOTYPE CUF

CURRENT PROTOTYPE

Geometry

A-frame

A-frame

Power Source

Hand crank

Rear wheel

Actuation

Double lever

Single lever

Flaws

- Low actuation distance
- Low power input
- Lots of friction

Seeking Advice On:

- Latch mechanism
- Clutch materials

Part reduction techniques

Linear slide geometry

Self-contained subsystem

Power drawn from rear wheel

Spooled nylon webbing

Concentric transmission

One-way latch

Rider Variation Compensation System

- Requirement
 - Adjust pedal position by 8"
- Design Goals
 - Minimize weight
 - Minimize slop
 - Preserve rigidity

Proven System

Seeking Advice On:

- Mounting bearings in tube
- Strength concerns
- Further weight reduction opportunities
- Design flaws

Parallel linkages

Degree of freedom

Catawampus prevention

PREVIOUS PEDAL MOUNT

CURRENT MOUNT DESIGN

Axle mounting

Weight reduction

Door

- Requirement
 - Allow egress
 - Unlatchable from inside and out
- Design Goals
 - Easy entry
 - Rigidity and durability

Seeking Advice On

Latches

Hinges

Composite lip technique

Door

Thank you.

If you have any questions, please come talk to us.

