AN ADAPTIVE DECISION BASED KRIGING INTERPOLATION ALGORITHM FOR THE REMOVAL OF HIGH DENSITY SALT AND PEPPER NOISE IN IMAGES

Kriging

Kriging is the most powerful statistical interpolation method. This interpolation is linear, since the interpolated values are weighted linear combinations of available uncorrupted pixels in a closed neighborhood

$$\begin{split} v\left(\mathbf{h}\right) &= v\left(\mathbf{K}\left(\mathrm{i}1\right), \mathbf{K}\left(\mathrm{i}2\right)\right) = v\left(\mathbf{K}\left(\mathrm{i}\mathbf{x}\right), \mathbf{K}\left(\mathrm{i}\mathbf{x} + \mathbf{h}\right)\right) \\ &\mathbf{h}\left(\mathrm{i}1, \mathrm{i}2\right) = \left(\mathrm{i}\mathbf{x}, \mathrm{i}\mathbf{x} + \mathbf{h}\right) \\ &v\left(\mathbf{h}\right) = \frac{1}{2^*\mathrm{L}} \sum_{x=1}^\mathrm{L} \left(\mathbf{K}\left(\mathrm{i}\mathbf{x}\right) - \mathbf{K}\left(\mathrm{i}\mathbf{x} + \mathbf{h}\right)\right)^2 \end{split}$$

Interpolation

$$\check{\mathbf{D}} = \sum_{j=1}^{L} \mathbf{W} \mathbf{j} * \mathbf{D}$$

- Ď is the interpolated value
- D is the set of original samples observed
- W is the weights obtained using Semi variance
- "L" refers to total number of samples observed.

Semivariogram

Y/X	-1	0	1
-1	0	255	255
0	0	0	40
1	39	255	51

Non Noisy Pixel	Z	40	39	51
Y coordinat e	m	0	1	1
X Coordina te	n	1	-1	1

H-matrix

$$h(u, v) = (m(u) - m(v))^{\wedge} 2 + (n(u) + n(v))^{\wedge} 2$$
 $h(1, 2) \text{ or } h(2, 1) = (m(2) - m(1))^{2} + (n(2) - -n(1))^{2}$
 $h(1, 2) \text{ or } h(2, 1) = (1 - (0))^{2} + ((-1) - 1)^{2}$
 $h(1, 2) \text{ or } h(2, 1) = 5$

h - Matrix	Non Noisy Pixel	40	39	51
	40	0	5	1
	39	5	0	4
	51	1	4	0
Sum (S)		6	9	5
Divide by 2*I (wts)		1	1.5	0.833
Sum:				3.33

Calculation of interpolation

The formulae used for estimating the pixel at (0,0)
 using Kriging interpolation is given by the equation

$$O\left(x,y
ight) = rac{\sum_{u=1}^{L}\left(W_{u}^{*}z_{u}
ight)}{\sum_{\mathrm{u=1}}^{\mathrm{L}}\mathrm{sum}}$$

$$O(x,y) = (40x1+1.5x39+0.833x51)/(3.33)$$

= 42

References

https://
www.sciencedirect.com/science/article/pii/S00457
90617315409#bib0003