Question (1) LHR= 250W/cm Ve = 0.45 cm

Shehab Shousha

a) Max stress is hoop stress of at 1=1

Stress due to Themal Expassion:

where 1 = Tr OF = OFE (To-Ts) 4(1-0)

$$A = 8.2 \times 10^{-6} \text{ K}^{-1}$$
, $N = 0.3$
 $E = 290 \times 10^{3} \text{ MPa}$

:0 *- 8.2 +10 x 290 +103 x 199 4 (1-0.3) = 169 MPa

= - 169 MPa [1-3] = [338 MPa]

b)

Ofrechne - 120 Mpa - Of the OU 120 = -0x (1-3/2)

120 = -169[1-18/2]

= 0.3875 cm

quema (1) (b)

Cladens (a) Assuming thin-walled sybider 0 = PK, P= pressure, R: average radhy S: makers, $O_0 = \frac{50 \times 5.4}{1.2} = 1225 \text{ MPa}$ 0 = PR = 100 : 0 = (112.5 MP) 0= -1P= -0.5 x 50 = (-25MPa) (b) Assuming thock-walled astinder where Ro: outer raday & 6 mm Ri: inner raday = 4.8 mm $O_r(r) = -P\left(\frac{R_o}{r}\right)^{-1}$ (Po) 1 - 1 $O_{r}(r=5.6mm) = -50(\frac{6}{50})-1$.. Or (r=5.6 mm)=-13.2 MPa (4.8)2-1 \$\(\d=5.\6mm\f 00 (r=5.6 mm) - 50 (4.8)2+1 ". (00 (r=5.6mm) =/190.9 MPa) Go * - 1 Ox(v=5.6mm) = P* (R.)2-1 : 02 (r=5.6mm) - 88.9 MPa

Question (2) Err= = (Orr - v (000 + 077)) 200 = [(00 - D(00 + 022)) 1- [190.9 - 0.28(-13.2+88.9)] = 9.4 x16-7

Err= 1-13.2 -0.28(190.9+88.9))

- 5.09 415 7

Question (3) Change in gap thrown, Inches, Inches to Remail expansion / (Le Dogap = Re QC (Tc-Ten) - Reg Qp (Tp-Ten) $R_c = 0.92 cm + 0.005 cm + 0.008 cm = 0.605 cm$ R_c :/ X8gap: 0.605 x 4.5x10 x (Te-300) - 0.52 x 15x10 (Tp-300) ΔTC = {HP = 225 = 20.08 = 36.7 K \
2πRq = 2π+0.52 + 0.15 = 36.7 K \ ". Too = 550 K .: Tot = 550 + 36.7 = 586.7K · Tc = 588.4K) STP = CHR = 225 = 358.1K 4TIMP = 4TT x 0.05 ATSap = LHR = 225 * 0.005 = 114,8K :. To = 586.3K + 114.8 + 358.1 = 1059.6K : Tg = 880.6K) switched the DT $= 2.42 \times 10^{-6} (880.6 - 300) - 4.8 \times 10^{-6} (568.4 - 300)$ $= 1.58 \times 10^{-3} - 2.09 \times 10^{-3} - [-5.1 \times 10^{-9} \text{ cm}]$

Question (4) = 2 × 10 3 from , D = 2 × 10 cm²/s y=0.30/7 aher t=2yeors 12/2 A= 8x10 m= 8x/0 cm Applying Booth Model (In pile release) Calculate $V = Dt = 2 \times 10^{-15} \times 2 \times 365 \times 24 \times 60^{2}$ $= \frac{2 \times 10^{-15} \times 2 \times 365 \times 24 \times 60^{2}}{(8 \times 10^{-4})^{2}} = \frac{-0.1971}{7\pi^{-2}}$ in Exercise of $V = \frac{1}{2}$ in fraction of gas atoms released

(f) = 1-0.0662 / 1-0.93 e] = 10.9% at gas alons
on veleaged + total us of gas along produced is (4 FE) $= 0.3017 * 2 * 10^{13} * 2 * 365 * 24 * 60^{\circ} = 3.806 * 16^{20} \text{ atomy}$ $= 0.3017 * 2 * 10^{13} * 2 * 365 * 24 * 60^{\circ} = 3.806 * 16^{20} \text{ atomy}$ # # of gas atoms released = @ 200 0.709 * 3.806 * 10° atoms = 2.7 * 10° atoms = 500 \$ 500 \$ A for each grain (assuming spherical grains) 2.7×10× 4 TT × (8×164)3 grains) = 5.8 x 10" (atoms) were released from each grain (on average)

 \mathbf{y}_{i}

Question (5) Strain Hardening: increase in yield stress due to plastice deformation. Causes: Dislocation motion is transported because of gran boundaries Properties Rat vary with Stoichmetry : KHelting temperature * Thermal Guductionity * creep rafe # Fission gas release rate & Grain Growth vake Question (7) Fuel performance code must be * predict Centerline temperature of hel pellet * Calculate stresses on clad walls + temperature A predict swelling le fission gas release behows ion Jap Closure and thermal transport

Question (8) Stages of Rission gas release:
9 (1) Diffusion of gos atoms within grains until reaching grand boundaries to form bubbles
(2) Growth and interconnection of intergranular gas bubble
(3) Transport of gas bubbles to bee surface
Question (9) High Burnup structure results in:
* Dep sely porous structure - Legade tion in thermal
+ reduction of graph size - tission gas retained
In periprens of half perior
-leads to His s + could be peller.
0-1) delects: vacancies (interstitions
30 défects : precipitates, voids, bubbles /4
Question (12) valence State of 1): 110 . Its
lowering surface free knergy by decreasing surface area of pores
Grain growth?
- 1 VO2 . 141 V
other valence states 5+, 6+ also 3+
Shehab Shougha

en graft en syn i de le kante eksperieren en eksperieren bestelle er eksperieren eksperieren er eksperieren ek En graft en syn i de le kante eksperieren eksperieren eksperieren eksperieren eksperieren eksperieren eksperie

n de la companya de la co