Problem 7 Asymmetrical Conductor with a Hole

1. General Description

The model is shown in Fig.1. A thick aluminum plate with a hole, which is placed eccentrically, is set unsymmetrically in a non-uniform magnetic field. The field is produced by the exciting current which varies sinusoidally with time.

The problem is to calculate magnetic fields and eddy currents at various positions.

2. Mesh Description

As the model has no symmetry, the whole region should be discretized. The mesh shown in Fig.2 is recommended. If the discretization of the exciting coil is needed, the mesh shown in Fig.2 should be modified adequately. Though any kind of element is available, an attempt to keep the positions of the nodes and the elements shown in Fig.2 is encouraged.

3. Boundary Conditions

If the boundary conditions are needed, the outermost boundary which is away from the conductor is to be set on the positions shown in Fig.2. On the outermost boundary, the normal component of the flux density is to be equal to zero in order that the flux is parallel to the boundary. Please denote the imposed boundary conditions in Fig.3. In paticular, the boundary conditions of corners and edges of the conductor are to be denoted clearly.

4. Input Parameters

Input parameters are denoted in Table 1.

5. Quantities and Distributions to be Presented

To compare results, please complete Tables 2 and 3. Bz at f=0(Hz) in Table 2 means the field produced only by the exciting current. At $\omega t=0(deg)$, the exciting current becomes the maximum.

The following distributions are to be presented at $\omega t=0$ and 90(deg).

- (1) Distributions of flux density vectors on the x-z plane at y=72(mm).
- (2) Distributions of eddy current vectors on the surfaces of the conductor at z=19 and 0 (mm).
- (3) Distributions of eddy current vectors in the x-z plane between 131<y<136(mm).

6. Description of Computer Program

To compare formulations, variables, etc., please complete Table 4. The used memory in the item No.15 is defined as the sum of dimensions declared in the program.

7. References

- [1] D.Rodger & J.F.Eastham: "Multiply Connected Regions in the A-\psi Three-Dimensional Eddy-Current Formulation", IEE Proc. 134, Pt.A, 1, 58 (1987)
- [2] T.Nakata, N.Takahashi, K.Fujiwara & Y.Okada: "Improvements of Tr-Ω Method for 3-D Eddy Current Analysis", IEEE Trans. Magnetics, MAG-24, 1 (1988)
- [3] C.R.I.Emson: "Methods for the Solution of Open-Boundary Electromagnetic-Field Problems", IEE Proc. 135, Pt.A, 3, 151 (1988)
- [4] P.Tong & J.N.Rossetos: "Finite-Element Method (Basic Technique and Implementation)", MIT Press (1977)

Fig.1 Asymmetrical conductor with a hole.

Fig.2(b) Recommended mesh on the x-z plane.

(a) outermost boundary

(b) surface of conductor

Fig. 3 Boundary conditions.

Fig.4 Measured points of the flux density and the eddy current density.

(b) cross-section

Table 1 Input parameters.

Parameter	Value	
Conductivity o (S/m)	3.526×10	
Exciting current I ₀ (AT)	2742	
Frequency f (Hz)	50, 200	

Table 2 Z-component Bz(Gauss) of the flux density along the lines A1-B1(y=72,z=34(mm)) and A2-B2(y=144,z=34(mm)) at the instances of $\omega t=0$ and 90(deg).

(a) Bz along the line A1-B1(y=72,z=34(mm))

			f	(Hz)		
No.	x(mm)	27 3,570 9		50 .	200	
¥		0	ωt=0	ωt=90	ωt=0`	ωt=90
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.0 18.0 36.0 54.0 90.0 108.0 144.0 162.0 180.0 198.0 216.0 234.0 252.0 270.0 288.0					

(b) Bz along the line A2-B2(y=144,z=34(mm))

No.		f (Hz)					
	x(mm)		50	200			
		ωt=0	ωt=90	ωt=0	ωt=90		
1	0.0			2.5			
2	18.0			**			
3	36.0			**			
4	54.0			9			
5	72.0						
6	90.0		8 7				
7	108.0						
8	126.0			- 100			
9	144.0			88			
10	162.0		1				
11	180.0						
12	198.0			*			
13	216.0			¥.			
14	234.0						
15	252.0	45					
16	270.0	(6)]		1		
17	288.0						

Table 3 Y-component Jey(x10⁶(A/m²)) of the eddy current density along the lines A3-B3(y=72,z=19(mm)) and A4-B4(y=72,z=0(mm)) on the surfaces of the conductor at the instances of $\omega t=0$ and 90(deg).

(a) Jey along the line A3-B3(y=72,z=19(mm))

		f (Hz)				
No.	x(mm)	50		200		
		ωt=0	ωt=90	ωt=0	ωt=90	
1	0.0					
2	18.0					
2 3	36.0					
4	54.0	ស៊				
5 6	72.0	6%				
6	90.0	t ill				
7	108.0					
8	126.0					
9	144.0			1		
10	162.0	£		# #	 	
11	180.0					
12	198.0					
13	216.0					
14	234.0	(t				
15	252.0					
16	270.0		1			
17	288.0	61 62				

(b) Jey along the line A4-B4(y=72,z=0(mm))

No.	x(mm)		50	2	00
		ωt=0	ωt=90	ωt=0	ωt=90
1	0.0			3000 TO 1000 T	· · · · · · · · · · · · · · · · · · ·
2	18.0			av	
2 3	36.0			88	1
4	54.0				
5	72.0	18			
6	90.0	*			
7	108.0				
8 9	126.0	Ì			
	144.0				
10	162.0				
11	180.0				
12	198.0 216.0				
13	234.0				
14 15	252.0				
16	270.0	. .			
17	288.0				į.

Table 4 Description of computer program.

No.	It	em	Specification
1	Code name		
2	Formulation		☐ 1. FEM (Finite Element Method) ☐ 2. BEM (Boundary Element Method) ☐ 3. FECM (Finite Element Circuit Method) ☐ 4. NMM (Network Mesh Method) ☐ 5. IEM (Integral Equation Method) ☐ 6. FDM (Finite Difference Method) ☐ 7. combination (+) ☐ 8. the others (
3	Governing	in conductor	
	equations	in vacuum	
4	Solution	in conductor	
	variables	in vacuum	
5	Gauge cond	ition	<pre>1. not imposed 2. imposed</pre>
6		for treating nductor[1]	<pre>1. no special technique 2. very low conductivity[2]</pre>
	Technique boundary p		<pre>□ 1. truncation □ 2. mapping □ 3. ballooning □ 4. Zienkiewicz's infinite element □ 5. Tong's infinite element[4] □ 6. BEM or IEM □ 7. the others ((Please write references in the item No.16)</pre>

Table 4 Description of computer program (continued).

No.	Item	Specification
8	Magnetic field produced by exciting current	 1. Biot-Savart law (analytical) 2. Biot-Savart law (numerical) 3. taking into account exciting current in governing equations directly
9	Property of coefficient matrix of linear equations	1. symmetric (1a) sparse (1b) full 2. asymmetric (2a) sparse (2b) full (3. combination (
10	Solution method for linear equations	☐ 1. ICCG ☐ 2. ICBCG ☐ 3. ILUBCG ☐ 4. SOR ☐ 5. LDL ^T ☐ 6. LU ☐ 7. Gauss elimination method ☐ 8. the others (
11	Element type	☐ 1. tetrahedron (nodes, edges) ☐ 2. triangular (nodes, edges) ☐ prism ☐ 3. hexahedron (nodes, edges) ☐ 4. triangle (nodes, edges) ☐ 5. rectangle (nodes, edges) ☐ 6. the others (
12	Number of elements	
13	Number of nodes	
14	Number of unknowns	

Table 4 Description of computer program (continued).

No.	• 1	tem		Specificati	on
		name			
		speed		(MIPS),	(MFLOPS)
		main memor	y		
15 Compute	Computer	used memor	.		
		Precision data (bits	of 3)		
			total		
		CPU time (sec)	solving linea equations		
16	Reference Nos.2 to	s on 10, etc.		N ₁	
				™ ₩	
			· · · · · · · · · · · · · · · · · · ·		

Y-components Jey(×10⁶ A/m²) of eddy current densities on surface of conductor

(a) line A3-B3 (y=72mm, z=19mm)

			Hz)		
No.	x (mm)	50		200	
		ωt=0°	ω t=90°	ω t=0°	ω t=90°
1	0.0	0. 249	-0.629	0.427	-0.623
2	18.0	0.685	-0.873	0.794	-0.755
3	126.0	-0.015	-0.593	1.401	-1.304
4	144.0	-0.103	-0.249	-0.035	-0.229
5	162.0	-0.061	-0.101	0.005	-0.041
6	180.0	-0.004	-0.001	-0.011	-0.014
7	198.0	0.051	0.087	0.007	-0.002
8	216.0	0.095	0.182	0.027	-0.000
9	234.0	0.135	0.322	0.042	0.008
10	252.0	0.104	0.555	0.043	0.033
11	270.0	-0.321	0.822	0.050	0.116
12	288.0	-0.687	0.855	-0.321	0.893

(b) line A4-B4 (y=72mm, z=0mm)

			(Hz)		
No.	x(mm)	50		20)0
		ω t=0°	ω t=90°	ωt=0°	ωt=90°
1	0.0	0. 461	-0.662	1.057	-0.915
2	18.0	0.621	-0.644	1.597	-1.036
3	126.0	1.573	-1.027	4.163	-2.328
4	144.0	0.556	-0.757	1.143	-1.193
4 5	162.0	0.237	-0.364	0.672	-0.613
6	<i>≽</i> 180.0	0.097	-0.149	0.307	-0.259
7	198.0	-0.034	0.015	-0.050	0.061
8	216.0	-0.157	0.154	-0.370	0.334
9	234.0	-0.305	0.311	-0.749	0.674
10	252.0	-0.478	0.508	-1.205	1.064
11	270.0	-0.660	0.747	-1.575	1.404
12	288.0	-1.217	1.034	-2.583	2.331

Z-components Bz(G) of flux densities

(a) line A1-B1 (y=72mm, z=34mm)

		f(Hz)				
No.	x (mm)	50		200		
89		ω t=0°	ω t=90°	ω t=0°	ωt=9.0°	
1	0.0	- 4.90	-1.16	- 3.63	-1.38	
2	18.0	-17.88	2.84	-18.46	1.20	
3	36.0	-22.13	4. 15	-23.62	2.15	
4	54.0	-20.19	4.00	-21.59	1.63	
5	72.0	-15.67	3.07	-16.09	1.10	
6	90.0	0.36	2. 31	0. 23	0.27	
7	108.0	43.64	1.89	44. 35	-2.28	
8	126.0	78.11	4.97	75. 53	-1.40	
9	144.0	71.55	12.61	63. 42	4.17	
10	162.0	60.44	14. 15	53. 20	3.94	
11	180.0	53.91	13.04	48.66	4.86	
12	198.0	52.62	12.40	47. 31	4.09	
13	216.0	53. 81	12.05	48. 31	3.69	
14	234.0	56.91	12. 27	51.26	4.6	
15	252.0	59.24	12.66	53. 61	3.48	
16	270.0	52.78	9.96	46. 11	4.10	
17	288.0	27.61	2. 36	24.96	0.98	

(b) line A2-B2 (y=144mm, z=34mm)

		f (Hz)				
No.	x(mm)			200		
		ω t=0°	ω t=90°	ωt=0°	ω t=90°	
1	0.0	- 1.83	-1.63	- 0.86	-1.35	
2	18.0	- 8.50	-0.60	- 7.00	-0.71	
3	36.0	-13.60	-0.43	-11.58	-0.81	
	54.0	-15. 21	0.11	-13.36	-0.67	
4 5	72.0	-14.48	1.26	-13.77	0.15	
6	90.0	-5.62	3.40	-6.74	1.39	
7	108.0	28.77	6. 53	24.63	2.67	
8	126.0	60.34	10. 25	53. 19	3.00	
9	144.0	61.84	11.83	54. 89	4.01	
10	162.0	56.64	11.83	50.72	3.80	
11	180.0	53.40	11.01	48.03	4.00	
12	198.0	52.36	10.58	47.13	3. 02	
13	216.0	53.93	10.80	48. 25	2.20	
14	234.0	56.82	10.54	51.35	2.78	
15	252.0	59.48	10.62	53. 35	1.58	
16	270.0	52.08	9.03	45. 37	1.37	
17	288.0	26.56	1.79	24.01	0.93	