平成20年度院試解答例

- 1. アルゴリズムとプログラミング
- (1) マージソート: 平均時間計算量、および、最悪時間計算量はともに $O(n \cdot logn)$ クイックソート: 平均時間計算量は $O(n \cdot logn)$ だが、最悪時間計算量は $O(n^2)$

(2-2)

 (\mathcal{T}) C[i+iC] = A[iA++]

 $({\mathcal I}) \ \mathrm{C[i+iC]} = \mathrm{B[iB++]}$

(2-3)

0: 2, 4.5

1:2,6.5

2:3,9.0

3:3,7.5

4:4,8.0

5:5, 2.0

6:7,5.0

7:8,3.5

(2-4)

31,33 行目より、元の配列を 2 つの配列(A,B)に分割する際には、配列の順序の変更はない。15 行目より、マージする際に、別の配列(A,B)の先頭の要素が等しいとき、前の配列(A)の要素が先にマージされるため、元の配列と順序の変更はない。15,16 行目より,同じ配列(A または B)に要素が等しいものが含まれている時、インデックスの小さい要素が先にマージされるため、元の配列と順序の変更はない。以上より、図 1 の関数 msort は安定である。

2. 論理回路

(1)

(1-1)

X 3	X2	\mathbf{x}_1	\mathbf{x}_0	a	b	c	d	e	f	g
0	0	0	0	1	1	1	0	1	1	1
0	0	0	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	1	1	0	1
0	0	1	1	1	0	1	1	0	1	1
0	1	0	0	0	1	1	1	0	1	0
0	1	0	1	1	1	0	1	0	1	1
0	1	1	0	1	1	0	1	1	1	1
0	1	1	1	1	1	1	0	0	1	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

(1-2)

b

**	45	-	
х	•	×	c

	00	01	11	10
00	1	1	d	1
01	0	1	d	1
11	0	1	d	d
10	0	1	d	d

$$b = x_3 + x_2 + \overline{x_1 x_0}$$

$$c = \overline{x_2} + \overline{x_1} \overline{x_0} + x_1 x_0$$

$$g = x_2 + x_1 \overline{x_0} + x_3 x_1 + \overline{x_2 x_0} + x_2 \overline{x_1} x_0$$

$$\uparrow_3 ? \qquad \overline{\uparrow_1} \downarrow_1 ?$$

 \mathbf{c}

 x_3x_2

	00	01	11	10
00	1	1	d	1
01	1	0	d	1
11	1	1	d	d
10	1	0	d	d

g

	00	01	11	10
00	1	0	d	1
01	0	1	d	1
11	1	0	d	d
10	1	1	d	d

c

	X32	X2		
	00	01	11	10
00	1	1	d	1
01	1	0	d	1
11	1	1	d	d
10	1	0	d	d

$$c = \overline{x_2} + \overline{x_1} \overline{x_0} + x_1 x_0$$

(1-4)

b

		, -		
	00	01	11	10
00	1	1	d	1
01	0	1	d	1
11	0	1	d	d
10	0	1	d	d

$$b=f\cdot\overline{\overline{x_3}\overline{x_2}x_0}=f\cdot(x_3+x_2+\overline{x_0})$$

f

	00	01	11	10
00	1	1	d	1
01	1	1	d	1
11	1	1	d	d
10	0	1	d	d

 x_3x_2

(2-1)

$$(0,0,0) \to (1,0,0) \to (1,1,0) \to (1,1,1) \to (0,1,1) \to (1,0,1) \to (0,1,0) \to$$

(2-2)

q_2	\mathbf{q}_1	\mathbf{q}_0	x	q2 '	qı'	q ₀ '	\mathbf{q}_2	q_1	\mathbf{q}_{0}	x	q ₂ '	q_1	qoʻ
0	0	0	0	1	0	0	1	0	0	0	1	1	0
0	0	0	1	0	0	1	1	0	0	1	1	0	1
0	0	1	0	0	0	0	1	0	1	0	0	1	0
0	0	1	1	0	1	0	1	0	1	1	1	1	0
0	1	0	0	0	0	1	1	1	0	0	1	1	1
0	1	0	1	0	1	1	1	1	0	1	1	1	1
0	1	1	0	1	0	1	1	1	1	0	0	1	1
0	1	1	1	1	0	0	1	1	1	1	0	0	0

(2-3) と (1-2)コピペしてかけり かはないはないと思う

do

t	2		

		q ₂ q ₁		
	00	01	11	10
00	1	10	\ d	1
01	0	$I \circ$	'd	1
11	0	1	/ d 0	d (
10	0	1	d 0	'd 0

d

 q_2q_1

	00	01	11	10
00	1 0	1 0	d	1
01	0 F	10	d 1	10
11	1	1 0	ø ø	d
10	A 0	0	d 1	d I

 d_0

 $q_{2}q_{1}$

	00	01	11	10
00	10	0//	d 0	1
01	Ø /	1	d /	1
11	10	0	d a	ď º
10	10	1	d 0	d /
			1	1

$$d_2 = q_2 + q_1 + \overline{q_0 x} \quad \text{for } \overline{q_0 + \overline{q_0}}, \overline$$

$$d_1 = \overline{q_1} + \overline{q_0 x} + q_0 x \quad q_1 + \overline{q_0 x} + \overline{q_1 q_0 x} + \overline{q_2 q_0 x} + \overline{q_1 q_0 x}$$

$$d_0 = q_2 + q_1 \overline{x} + \overline{q_1} q_0 + \overline{q_1} \overline{x} + q_1 \overline{q_0} x \qquad \overline{q_0} + \overline{q_2} \overline{q_1} \overline{x} + \overline{q_2} \overline{q_1} \overline{x} + \overline{q_2} \overline{q_1} \overline{x}$$

(1) 80×8281	1			
20X/	00	01	()	10
00	0	0	(1	1)
0	0	1	1	0
1 (0	0	Ĩ
(0)	0	0 ((1

3. 計算機システムとシステムプログラム

(1)

(1-1)

R_Aの内容: 0110

処理	P ₄	P_3	P_2	P_1	P ₀	B_3	B_2	B_1	B_0
(b)	0	0	1	1	0	0	1	1	1
(a)	0	0	0	1	1	0	0	1	1
(b)	0	1	0	0	1	0	0	1	1
(a)	0	0	1	0	0	1	0	0	1
(b)	0	1	0	1	0	1	0	0	1
(a)	0	0	1	0	1	0	1	0	0
(a)	0	0	0	1	0	1	0	1	0

(1-2)

R_Aの内容:11010

処理	P_4	P_3	P_2	P_1	P_0	B_3	B_2	B_1	B_0	B-1
(c)	0	0	1	1	0	0	1	1	1	0
(a)	0	0	0	1	1	0	0	1	1	1
(a)	0	0	0	0	1	1	0	0	1	1
(a)	0	0	0	0	0	1	1	0	0	1
(b)	1	1	0	1	0	1	1	0	0	1
(a)	1	1	1	0	1	0	1	1	0	0

(1-3)

最小:B=0000 最大:B=0101 (0,0,1) → (0,0,0)と遷移する。よって、8周期

(2-2)

q_2	q_1	q ₀	x	q2 '	qı'	q ₀ '	q_2	q_1	q_0	x	q2 '	q ₁ '	\mathbf{q}_0
0	0	0	0	1	0	0	1	0	0	0	1	1	0
0	0	0	1	0	0	1	1	0	0	1	1	0	1
0	0	1	0	0	0	0	1	0	1	0	0	1	0
0	0	1	1	0	1	0	1	0	1	1	1	1	0
0	1	0	0	0	0	1	1	1	0	0	1	1	1
0	1	0	1	0	1	1	1	1	0	1	1	1	1
0	1	1	0	1	0	1	1	1	1	0	0	1	1
0	1	1	1	1	0	0	1	1	1	1	0	0	0

(2-3)

 d_2

 q_2q_1

	00	01	11	10
00	1	0	1	1
01	0	.0	1	1
11	0	1	0	1
10	0	1	0	0

 d_1

 q_2q_1

	00	01	11	10
00	0	0	1	1
01	0	1	1	0
11	1	0	0	1
10	0	0	1	1

 d_0

 q_2q_1

	00	01	11	10
00	0	1	0	1
01	1	1	1	1
11	0	0	0	0
10	0	1	0	1

 $d_2 = q_2 \overline{q_0} + \overline{q_1 q_0 x} + q_2 \overline{q_1 x} + \overline{q_2} q_1 q_0$

 $d_1 = q_2 q_0 x + \overline{q_1} q_0 x + q_1 \overline{q_0} x + q_2 \overline{q_0} x$

 $d_0 = \overline{q_0}x + q_2\overline{q_1x} + \overline{q_2}q_1\overline{x}$

3. 計算機システムとシステムプログラム

2. 論理回路

(1)

(1-1)

X 3	X2	x ₁	X ₀	a	b	c	d	e	f	g
0	0	0	0	1	1	1	0	1	1	1
0	0	0	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	1	1	0	1
0	0	1	1	1	0	1	1	0	1	1
0	1	0	0	0	1	1	1	0	1	0
0	1	0	1	1	1	0	1	0	1	1
0	1	1	0	1	1	0	1	1	1	1
0	1	1	1	1	1	1	0	0	1	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

(1-2)

b

 x_3x_2

	00	01	11	10						
00	1	1	d	1						
01	0	1	d	1						
11	0	1	d	d						
10	0	1	d	d						

$$b = x_3 + x_2 + \overline{x_1 x_0}$$

$$c = \overline{x_2} + \overline{x_1 x_0} + x_1 x_0$$

 $g=x_3+x_1\overline{x_0}+\overline{x_2}x_1+\overline{x_2}x_0+x_2\overline{x_1}x_0$

 \mathbf{c}

 x_3x_2

	00	01	11	10
00	1	1	d	1
01	1	0	d	1
11	1	1	d	d
10	1	0	d	d

g

v	-	v	
^	-	^	

	00	01	11	10
00	1	0	d	1
01	0	1	d	1
11	1	0	d	d
10	1	1	d	d

(1-3)

 \mathbf{c}

 x_3x_2

(2-1)

(a) ⑩:磁性体 (b) ⑬:トラック (c) ③:セクタ (d) ⑮:シリンダ

(e) ⑥: ヘッド (f) ⑭: シーク時間 (g) ⑦: サーチ時間あるいは回転遅延時間

(h) ④: 転送時間

(2-2)

平均アクセス時間=平均シーク時間+平均回転遅延時間+キャッシュ時間より、 平均シーク時間

10(ms)

平均回転遅延時間

回転速度=4800(回転/分)より、

=60*1000/4800=25/2(ms/回転)

よって、平均回転遅延時間=25/2×1/2=25/4(ms)

キャッシュ時間

回転速度=25/2(ms)より、

 $25/2 \times 512/10240 = 5/8$ (ms)

よって、平均アクセス時間=10+25/4+5/8

=135/8(ms)

(2-3)

処理中に多くの要求が到着し続けた時、(ア)ではシリンダの両端付近の要求は長時間処理されないが、(イ)ではシリンダが1往復する間に必ずアクセスされるので、特定のシリンダが待たされない意味で優れている。

8. 情報論理学

(2)

(2-1)

- (a) ⑩:磁性体 (b) ⑬:トラック (c) ③:セクタ (d) ⑮:シリンダ
- (e) ⑥: ヘッド (f) ⑭: シーク時間 (g) ⑦: サーチ時間あるいは回転遅延時間
- (h) ⑪:キャッシュ時間

事及盖路同?

(2-2)

平均アクセス時間=平均シーク時間+平均回転遅延時間+キャッシュ時間より、 平均シーク時間

10(ms)

平均回転遅延時間

回転速度=4800(回転/分)より、

=60*1000/4800=25/2(ms/回転)

よって、平均回転遅延時間=25/2×1/2=25/4(ms)

キャッシュ時間

回転速度=25/2(ms)より、

 $25/2 \times 512/10240 = 5/8 \text{(ms)}$

よって、平均アクセス時間=10+25/4+5/8

=135/8(ms)

(2-3)

処理中に多くの要求が到着し続けた時、(ア)ではシリンダの両端付近の要求は長時間処理されないが、(イ)ではシリンダが1往復する間に必ずアクセスされるので、特定のシリンダが待たされない意味で優れている。

```
8. 情報論理学
(1)
A: \forall x \forall y \forall v [T(x, y, v) \rightarrow T(y, x, v)]
B: \forall x \forall y \forall w \forall z \forall v \big[ (T(x, y, w) \land T(y, z, v)) \rightarrow T(x, z, \underline{\min(s(w, v), f(x, z))}) \big]
                                                                                                        m(s(w,v). f(x,z))
(2)
(2-1)
C: T(n_1, n_2, f(n_1, n_2))
 D: T(n_3, n_2, f(n_3, n_2))
(2-2)
(2-2-1)
 E = (A \land B \land C \land D) \rightarrow (\exists z T(n_1, n_3, z))
 \neg E = (A \land B \land C \land D) \land \forall z \neg T(n_1, n_3, z)
 = \forall x \forall y \forall v \big[ T(x, y, v) \to T(y, x, v) \big]
 \wedge \forall x \forall y \forall w \forall z \forall v \big[ (T(x, y, w) \wedge T(y, z, v)) \rightarrow T(x, z, \min(s(w, v), f(x, z))) \big]
 \wedge T(n_1, n_2, f(n_1, n_2))
 \wedge T(n_3, n_2, f(n_3, n_2))
  \wedge \forall z \neg T(n_1, n_3, z)
  = \forall x \forall y \forall w \forall z \forall v \begin{cases} \left( \neg T(x, y, v) \lor T(y, x, v) \right) \\ \land \left( \neg T(x, y, w) \lor \neg T(y, z, v) \right) \lor T(x, z, \min(s(w, v), f(x, z))) \right) \\ \land T(n_1, n_2, f(n_1, n_2)) \\ \land T(n_3, n_2, f(n_3, n_2)) \\ \land \neg T(n_1, n_3, z) \end{cases} 
 (2-2-2)
  \neg T(x, y, v) \lor T(y, x, v) \cdots (1)
  \neg T(x, y, w) \lor \neg T(y, z, v)) \lor T(x, z, \min(s(w, v), f(x, z))) \cdots (2)
  T(n_1, n_2, f(n_1, n_2))\cdots(3)
```

 $T(n_3, n_2, f(n_3, n_2))\cdots(4)$

 $\neg T(n_1, n_3, z) \cdots (5)$

(2-2-3)

- (1)に $x = n_3, y = n_2, v = f(n_3, n_2)$ を代入して、
- $\neg T(n_3, n_2, f(n_3, n_2)) \lor T(n_2, n_3, f(n_3, n_2)) \cdots (1)'$
- (1)',(4)の導出節より、 $T(n_2,n_3,f(n_3,n_2))\cdots(5)$
- (2)に $x = n_1, y = n_2, z = n_3, w = f(n_1, n_2), v = f(n_3, n_2)$ を代入して、
- $\neg T(n_1, n_2, f(n_1, n_2)) \lor \neg T(n_2, n_3, f(n_3, n_2))) \lor T(n_1, n_3, \min(s(f(n_1, n_2), f(n_3, n_2)), f(n_1, n_3))) \cdots (2)'$
- (2)',(3)の導出節より、 $\neg T(n_2,n_3,f(n_3,n_2))) \lor T(n_1,n_3,\min(s(f(n_1,n_2),f(n_3,n_2)),f(n_1,n_3)))\cdots(6)$
- (5),(6)の導出節より、 $T(n_1,n_3,\min(s(f(n_1,n_2),f(n_3,n_2)),f(n_1,n_3)))\cdots$ (7)
- (5)に $z = \min(s(f(n_1, n_2), f(n_3, n_2)), f(n_1, n_3))$ を代入して、
- $\neg T(n_1, n_2, \min(s(f(n_1, n_2), f(n_2, n_2)), f(n_1, n_3))) \cdots (5)'$
- (5)',(7)の導出節より、空節。 よって、 $\neg E$ は導出不能より、Eは恒真。
- このときのコストは, $min(s(f(n_1, n_2), f(n_3, n_2)), f(n_1, n_3))$

(2-2-4)

- (1) 地点 n_1 と地点 n_2 間の直接のコストと、地点 n_2 と地点 n_3 間の直接のコスト の和
- (2) 地点 n₁ と地点 n₃ 間の直接のコスト 上の(1),(2)の内で小さい方。

(2-2-5)

- (1) $s(f(n_1,n_2),f(n_3,n_2)) = 10+10=20$
- (2) $f(n_1, n_3) = 25$

よって、コストの値は20

- 9. 計算理論
- (1)
- (1-1)

0				1			
\mathbf{q}_0	${\bf q}_1$	$\mathbf{q_2}$	\mathbf{q}_3	q 4	\mathbf{q}_{5}		
00	11	00	11	11	11		
0			1		2		
q_0	$\mathbf{q_2}$		\mathbf{q}_1	\mathbf{q}_3	\mathbf{q}_4	q 5	
01	01		22	22	22	$\frac{\mathrm{q}_5}{22}$	

よって、Mbの状態遷移図は下のようになる。

	0	1
q_0q_2	q ₀ q ₂	q_1q_3
$\mathbf{q}_1\mathbf{q}_3$	Q 4 Q 5	q 4 q 5
q 4 q 5	Q 4 Q 5	q4q5

初期状態は qoq2で、受理状態は q4q5

(1-2)(自信なし…)

 $L(M_x): a \longrightarrow \text{ } \mathcal{f}$

 $L(M_y): f \,\to\, {\textstyle \begin{tabular}{c}}$

(1-3)

 $010,\!0110,\!01110,\!00100$

(2-1)

text

(2-2)

最左導出:A→BA→CA→AA→BAA→CAA→AAA

 \rightarrow AA \rightarrow A \rightarrow

最右導出:A→BA→BBA→BB→BC→BA→B→C

 \rightarrow A \rightarrow

(2-3)

>

(2-4)

text