Acoustics I project: rotating and resonant waves in a cylindrical cavity

Mathieu Maréchal, Supervisor: Guillaume Penelet M1 Wave Physics & Acoustics
Le Mans Université
(Dated: December 5, 2020)

This is an article describing a project done during the Winter semester of the Master 1 in Wave Physics. This article deals with rotating waves in a cylindrical cavity: a cylinder with a point source was studied and the way to generate rotating wave inside the resonator was studied analytically and numerically.

I. INTRODUCTION

II. INVESTIGATING THE NODAL LINES OF THE CYLINDRICAL CAVITY

The considered system is a cylinder having a loud-speaker at (r_0, θ_0) on its upper wall. This point source imposes a driving force q_0 oscillating at a ω frequency. The wave equation to solve in the cavity is inhomogenenous.

$$\frac{\partial \tilde{p}^2}{\partial r^2} + \frac{1}{r} \frac{\partial \tilde{p}}{\partial r} + \frac{1}{r^2} \frac{\partial \tilde{p}^2}{\partial \theta^2} + k^2 \tilde{p} = -i\omega q_0 \delta(r - r_0), \quad (1)$$

with $k = \omega/c_0$ and δ is the Dirac-Delta distribution.

$$\tilde{p}(r,\theta) = \sum_{m,n} \tilde{A}_{mn} \Psi_{mn} \tag{2}$$

Plugging the solution of the pressure field The pressure field form is the following

$$\tilde{p}(r,\theta) = \sum_{m,n} \tilde{A}_{mn} J_m(k_{mn}r) \cos(m\theta)$$
 (3)

We have

$$\sum_{n} \left[k^2 - k_{mn}^2 \right] \frac{\tilde{A}_{mn}}{2 - \delta_m^0} J_m(k_{mn}r) = -i\omega q_0 \delta(r - r_0)$$
 (4)

The inner product to imply orthogonality on the Bessel function $J_m(k_{mn}r)$

$$\int_{0}^{R} r J_{m}(k_{mn}r) J_{m}(k_{mn'}r) dr = \begin{cases} \frac{k_{mn}^{2}R^{2} - m^{2}}{2k_{mn}^{2}} J_{m}^{2}(k_{mn}R), & n = n'\\ 0, & n \neq n' \end{cases}$$
(5)

$$\tilde{A}_{mn} = \begin{cases} \frac{2 - \delta_m^0}{k_{mn}^2 - k^2} i \omega q_0 \Psi_{m'}(r_0), & m \neq m' \end{cases}$$
 (6)

of rotating sound waves in free space and the transfer of their angular momentum to matter, (2009).

^[1] P. H. Ceperley, Rotating waves, (1992).

^[2] A. O. Santillán and K. Volke-Sepúlveda, A demonstration