Universidad Autónoma Metropolitana, Cuajimalpa. DMAS

UEA: Métodos Numéricos I,

Práctica 1. Bisección y Punto Fijo TRIMESTRE 19-I

El reporte debe ser entregado en computadora, es necesario incluir las gráficas que se piden. Los programas deben de funcionar correctamente y se deben enviar en una carpeta zip al correo dleon@correo.cua.uam.mx, favor de añadir un bloc de notas con el nombre de todos los integrantes del equipo.

Fecha de entrega Lunes 4 de Febrero de 2019

- 1. La ecuación $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$. Determine a que raíz de f converge el método de la bisección y el método de falsa posición en cada intervalo. (use una tolerancia $de 10^{-4}$)
 - (i) [-3, 2.5]

(iii) [-2.5, 3]

(ii) [-1.75, 1.5]

- (iv) [-1.5, 1.75]
- 2. Gráficar la función $f(x) = x^3 0.9x 1.52$. Luego, por medio de los siguientes métodos
 - (i) Método de la bisección

(ii) Método de punto fijo

Encontrar una raíz positiva de f(x), considerando las tolerancias de $\epsilon_1 = 10^{-2}$ y $\epsilon_2 = 10^{-15}$; y un número máximo de 100 iteraciones. Reportar los resultados en una tabla de la siguiente manera:

Tabla 1: Resultados Numéricos con $\epsilon_1 = 10^{-2}$.

Método Numérico	No. Iters	p	error
Bisección			
Punto Fijo			
Falsa posición			

Tabla 2: Resultados Numéricos con $\epsilon_2 = 10^{-15}$.

Método Numérico	No. Iters	p	error
Bisección			
Punto Fijo			
Falsa Posición			

¿Qué puede concluir acerca de cada método?

3. El polinomio de grado 4, $f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$ tiene dos ceros reales. Encuentre las raíces usando el método de bisección y de la falsa posición.