

NATURAL SELECTION AND ADAPTATION

Tábita Hünemeier

tabita.hunemeier@ibe.upf-csic.es hunemeier@usp.br

Charles Darwin

- i) populations have a phenotypic variation.
- ii) the environment presents challenges.
- iii) those better able to cope tend to leave more offspring.
- iv) individuals tend to produce more offspring than the environment can support.

Ernst Mayr

- i) Variation.
- ii) Variation must contribute to survival and differential reproduction.
- iii) Variation must be inherited.

Natural Selection

- Heritable traits that increase fitness become more common.
- Sites targeted by natural selection are likely to harbor functionality.
- Mutations arise (almost) randomly and evolve according to their effect on the carrier's fitness.

Effect of Selection on Alleles:

- Neutral/Weak: removed, polymorphic or fixed;
- Strong Negative: Removed or polymorphic;
- Strong Positive: removed, polymorphic or fixed.
- Balancing: removed, polymorphic or fixed.

Effect of Selection on Alleles:

- Neutral/Weak: removed, polymorphic or fixed;
- Strong Negative: Removed or polymorphic;
- Strong Positive: removed, polymorphic or fixed.
- Balancing: removed, polymorphic or fixed.

What is strong? It depends on the effective population size.

Allele Frequency is (frequently) not enough to determine selection.

If the simple observation of allele frequencies is not enough, what else can we do to detect signals of natural selection?

If the simple observation of allele frequencies is not enough, what else can we do to detect signals of natural selection?

- perform selection experiments;
- use external information: candidate genes/biological knowledge, functional categories, association to phenotypes;
- use information from the surrounding genomic region;
- use information from multiple species/populations;

If the simple observation of allele frequencies is not enough, what else can we do to detect signals of natural selection?

Common Methods to Detect Selection

Tajima's D

ACTAGAGGAT ACTTGACGAT ACTTGACGAT ACTTGAGGTT

$$\hat{\theta}_T = \frac{\sum\limits_{i < j} d_{ij}}{n(n-1)/2} \qquad \qquad \hat{\theta}_W = \frac{S}{\sum\limits_{i=1}^{n-1} 1/i}$$

$$D = \frac{\hat{\theta}_T - \hat{\theta}_W}{\sqrt{\hat{V}(\hat{\theta}_T - \hat{\theta}_W)}}$$

Tajima's D

ACTAGAGGAT ACTTGACGAT ACTTGACGAT ACTTGAGGTT

$$\hat{\theta}_T = \frac{\sum\limits_{i < j} d_{ij}}{n(n-1)/2} \qquad \qquad \hat{\theta}_W = \frac{S}{\sum\limits_{i=1}^{n-1} 1/i}$$

$$D = \frac{\hat{\theta}_T - \hat{\theta}_W}{\sqrt{\hat{V}(\hat{\theta}_T - \hat{\theta}_W)}}$$

$\Theta_T = \pi$ = average number of differences between pairs of sequences

$$\Theta_T = 1+2+2+2+1+1+1+0+2/10 = 1.2$$

$\Theta_W = \pi$ expected number under neutrality

$$\Theta_W = 4/(1/1+1/2+1/3+1/4)=1.92$$

Tajima's D

D ≈ observed genetic variation – expected genetic variation for a given number of individuals

Tajima's D = 0 Observed and expected genetic variation given the pop size are the same Population at equilibrium A main haplotype and several derived ones (normal distribution) Tajima's D < 0 Lower genetic variation than expected given the population size One haplotype dominates with rare nearly identical ones (rare alleles overrepresented) Tajima's D > 0 Higher genetic variation than expected given the population size No main haplotypes, rather several unrelated haplotypes with similar frequency coexists (no rare alleles)

Site Frequency Spectrum (SFS)

Even if we have millions of SNPs we can summarize the genomic data to 10 numbers with the SFS!

The size of the SFS depends on the number of sampled individuals.

frequency derived allele

Observed SFS is a vector (1 dimensional SFS):

Frequency	0	1	2	3	4	5	6	7	8	9	10
SNP count	0	250,032	152,300	76,504	45,362	30,210	15,329	5,642	3,524	2,123	0

- For a pair of populations 2D SFS
 - Count the SNPs have a frequency of the derived allele of i in population 1, and of j in population 2
- We can extend this to 3D SFS, 4D SFS, etc.

Common Methods to Detect Selection

FONTE: Sabeti PC, et al. Positive natural selection in the human lineage. Science. 2006 Jun 16;312(5780):1614-20. Review.

Common Methods to Detect Selection

FONTE: Sabeti PC, et al. Positive natural selection in the human lineage. Science. 2006 Jun 16;312(5780):1614-20. Review.

Allele Frequency Differentiation

Time Present time

From standing variation

With migration

With recent divergence

Heterozigosity:

$$H_{I} = \frac{1}{n} \sum_{i=1}^{n} \hat{H}_{i}$$

$$H_{S} = \frac{1}{n} \sum_{i=1}^{n} 2p_{i}q_{i}$$

$$H_{T} = 2\bar{p}\bar{q}$$

(\hat{H}_i : observed heterozygosity in ith subpopulation, $2p_iq_i$: average heterozygosity in ith subpopulation, $2\bar{p}\bar{q}$: average heterozygosity of total population)

Heterozigose:

$$H_{I} = \frac{1}{n} \sum_{i=1}^{n} \hat{H}_{i}$$

$$H_{S} = \frac{1}{n} \sum_{i=1}^{n} 2p_{i}q_{i}$$

$$H_{T} = 2\bar{p}\bar{q}$$

 $(\hat{H}_i: \text{ observed heterozygosity in } i \text{th subpopulation, } 2p_iq_i: \text{ average heterozygosity in } i \text{th subpopulation, } 2\bar{p}\bar{q}: \text{ average heterozygosity of total population})$

Estatística F (Wright)

$$F_{IS} = \frac{H_S - H_I}{H_S}$$

$$F_{ST} = \frac{H_T - H_S}{H_T}$$

$$F_{IT} = \frac{H_T - H_I}{H_T}$$

Heterozigose:

$$H_{I} = \frac{1}{n} \sum_{i=1}^{n} \hat{H}_{i}$$

$$H_{S} = \frac{1}{n} \sum_{i=1}^{n} 2p_{i}q_{i}$$

$$H_{T} = 2\bar{p}\bar{q}$$

 $(\hat{H}_i: \text{ observed heterozygosity in } i \text{th subpopulation, } 2p_iq_i: \text{ average heterozygosity in } i \text{th subpopulation, } 2\bar{p}\bar{q}: \text{ average heterozygosity of total population})$

Estatística F (Wright)

$$F_{IS} = \frac{H_S - H_I}{H_S}$$

$$F_{ST} = \frac{H_T - H_S}{H_T}$$

$$F_{IT} = \frac{H_T - H_I}{H_T}$$

F_{ST}

Common measure for quantifying population subdivision.

$$F_{ST} = H_B / (H_W + H_B)$$

H_B: between populations

H_w: average within populations

- \rightarrow if H_W << H_B0 then F_{ST}~1
- \rightarrow if H_B=0 then F_{ST}=0

F_{ST} based on haplotype differentiation between populations

DEF

What is the variation within populations?

e.g. A vs B

The differ by 1 site

Hudson et al. 1992.

 $H_{\mbox{\scriptsize W}}$ is the average within-populations: ?

 H_W is the average within-populations: (4/3+0/3)/2=2/3

What is the variation between populations?

DEF

H_B is the average between-populations: 9/9=1

F_{ST} based on haplotype differentiation between populations

$$F_{ST} = 1 - (H_W / H_B) = 1 - ((2/3)/1) = 1/3 \sim 0.33$$

$$PBS = \frac{Fst(P1;P2) + Fst(P1;P3) - Fst(P2;P3)}{2}$$

Neutral evolution

Positive selection

Neutral evolution

Positive selection

PBS = T1T2 + T1T3 - T2T3

Neutral evolution

Positive selection

PBS = T1T2 + T1T3 - T2T3

Neutral evolution

Positive selection

PBS = **T1T2**+**T1T3**-**T2T3**

Neutral evolution

Positive selection

PBS = T1T2+T1T3-T2T3/2

Neutral evolution

Positive selection

 $PBS = FST_{TIB_CHB} + FST_{TIB_EUR} - FST_{CHB_EUR} / 2$

FONTE: Sabeti PC, et al. Positive natural selection in the human lineage. Science. 2006 Jun 16;312(5780):1614-20. Review.

Extended haplotype homozygosity (EHH): EHH at distance x from the core region is the probability that two randomly chosen chromosomes carry a tested core haplotype are homozygous at all SNPs for the entire interval from the core region to the distance x.

Hard sweep

iv) Haplotype homozygosity between two haplotypes (H1, H2)

iv) Extended haplotype homozygosity (EHH)

Genomic positions around focal variant

Soft sweep

Core allele 1: biallelic loci; 0 is the ancestral allele and 1 is the derived allele.

1	
1	
1	
1	
1	
0	

Core allele 1 : biallelic loci; 0 is the ancestral allele and 1 is the derived allele.

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

1	

Core allele 1 : biallelic loci; 0 is the ancestral allele and 1 is the derived allele.

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

From $x_{0 to} x_{i}$

Core allele 1: biallelic loci; 0 is the ancestral allele and 1 is the derived allele.

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

Sum of all haplotypes containing the allele of interest (core allele)

Core allele 1: biallelic loci; 0 is the ancestral allele and 1 is the derived allele.

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$n_{h} \text{ haplotype Frequency of h}$$

Core allele 1: biallelic loci; 0 is the ancestral allele and 1 is the derived allele.

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$n_{h} \ haplotype \ Frequency \ of \ h$$

$$N_{c} \ haplotype \ Frequency \ with \ core \ SNP$$

What is the EHH to x_0 ?

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}} \qquad EHH_{c}(x_{i} = 0) = \frac{\binom{5}{2}}{\binom{5}{2}} = 1$$

FONTE: Mateus Fumagalli slides modificado

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_c(x_i = +1) = ?$$

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_{c}(x_{i} = +1) = \frac{\binom{4}{2} + \binom{1}{2}}{\binom{5}{2}} = \frac{6+0}{10} = 0.60$$

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_c(x_i = +1) = \frac{\binom{4}{2} + \binom{1}{2}}{\binom{5}{2}} = \frac{6+0}{10} = 0.60$$

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_{c}(x_{i} = +2) = ?$$

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_{c}(x_{i} = +2) = ?$$

How many unique haplotypes carriyng the core SNP?
What is their frequency?

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_c(x_i = +2) = EHH_c(x_i = +1) = 0.60$$

How many unique haplotypes carriyng the core SNP? What is their frequency?

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_{c}(x_{i} = +3) = \frac{\binom{2}{2} + \binom{2}{2} + \binom{1}{2}}{\binom{5}{2}} = \frac{1+1+0}{10} = 0.20$$

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$EHH_c(x_i = -1) = \frac{\binom{3}{2} + \binom{2}{2}}{\binom{5}{2}} = \frac{3+1}{10} = 0.4$$

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

Integrated Haplotype Score (iHS)

Integrated Haplotype Homozigosity (iHH)

$$iHS = In(iHH_1/iHH_0)$$

< -2 = derived allele

> 2 = ancestral allele

Cross Population Extended Homozygosity Haplotype (xpEHH)

Integrated Haplotype Homozygosity (iHH) for A and B

 $xpEHH=In (iHH_A/iHH_B)$

Recent Advances to Detect Selection

1. Composite scores (Grossman et al. 2013)

3. Unsupervised machine learning

(PCA, Duforet-Frebourg et al. 2016)

2. Simulations-based (rejection, ABC)

4. Supervised machine learning

(SVM, Schrider & Kern 2018)

