

Docket No.: 20046/0201102-US0

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

The Patent Application of: Wieland Fischer et al.

Application No.: 10/825,625

Filed: April 15, 2004

For: METHOD AND APPARATUS FOR

PROTECTING AN EXPONENTIATION CALCULATION BY MEANS OF THE

CHINESE REMAINDER THEOREM (CRT)

Confirmation No.: 7860

Art Unit: 2131

Examiner: Not Yet Assigned

CLAIM FOR PRIORITY AND SUBMISSION OF DOCUMENTS

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Applicant hereby claims priority under 35 U.S.C. 119 based on the following prior foreign applications filed in the following foreign countries on the dates indicated:

Country	Application No.	Date
Germany	101 51 139.6	October 17, 2001
Germany	101 62 584.7	December 19, 2001

In support of this claim, a certified copy of each said original foreign application is filed herewith.

2

Dated: August 24, 2004

Respectfully submitted,

Laura C. Brutman

Registration No.: 38,395 DARBY & DARBY P.C.

P.O. Box 5257

New York, New York 10150-5257

(212) 527-7700

(212) 753-6237 (Fax)

Attorneys/Agents For Applicant

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

101 51 139.6

Anmeldetag:

17. Oktober 2001

Anmelder/Inhaber:

Infineon Technologies AG, 81669 München/DÆ

Bezeichnung:

Verbesserte Gegenmaßnahme gegen eine diffferen-

tielle Fehleranalyse für RSA mit CRT

IPC:

H 04 L 9/30

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 19. April 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Faust

A 9161 03/00

CERTIFIED COPY OF PRIORITY DOCUMENT

SCHOPPE, ZIMMERMANN, STÖCKELER & ZINKLER ---

Patentanwälte · Postfach 710867 · 81458 München Infineon Technologies AG St.-Martin-Str. 53

81669 München

PATENTANWÄLTE

European Patent Attorneys European Trademark Attorneys

Fritz Schoppe, Dipl.-Ing. Tankred Zimmermann, Dipl.-Ing. Ferdinand Stöckeler, Dipl.-Ing. Franz Zinkler, Dipl.-Ing.

Telefon/Telephone 089/790445-0 Telefax/Facsimile 089/7902215 Telefax/Facsimile 089/74996977

e-mail: szsz_iplaw@t-online.de

Verbesserte Gegenmaßnahme gegen eine differentielle Fehleranalyse für RSA mit CRT

- 1. Weiches technische Problem soll durch Ihre Erfindung gelöst werden?
 - * Differential Faults Attacks wie sie von Boneh et alii im Journal of Cryptology auf das RSA (mit/ohne CRT) Verfahren vorgestellt werden, werden in der Praxis meist durch Software Gegenmaßnahmen, wie etwa dem US Patent 5991415 von A. Shamir, abgefangen.

Diese Gegenmaßnahmen sind aber oftmals nicht erfolgreich gegen eine bisher nicht betrachtete Art von häufig vorkommenden Fehlern, und damit ungenügend.

2. Wie wurde dieses Problem bisher gelöst?

94 . •

Gegenrechnen mit dem öffentlichen Exponenten e, womit die Identität (M^d)^e = M mod N festgestellt werden soll.

Allerdings ist dieses e in den üblichen Protokollen (ZKA-lib) nicht explizit vorfügbar, und müßte deshalb aufwendig berchnet werden. Hinzu kommt, daß das Gegenrechnen i.a. sehr aufwendig sein kann.

3. In welcher Weise löst Ihre Erfindung das angegebene technische Problem (geben Sie Vorteile an)?

Die vorgeschlagene Methode erkennt die obigen Fehler und vermeidet aufwendiges Rechnen bzgl. e.

- 4. Worin liegt der erfinderische Schritt?
- Der erfinderische Schritt liegt in der genauen Analyse der möglichen Fehlerquellen, die ein Angreifer induzieren kann und speziellen Überprüfungen hinsichtlich möglicher Fehler.
- 5. Ausführungsbeispiel[e] der Erfindung.

```
Input: Message m,

Primzahlen p und q,

Exponenten dp := d mod (p-1) und dq := d mod (q-1),

qinv := (q mod p)<sup>-1</sup>
```

- Wähle kleine Primzahl t (ca. 16 Bit, nicht F₄)
- p' := p * t, dp' := dp + random * (p-1)
- sp' := m^{dp'} mod p'
- if NOT((p' mod p = 0) AND (dp' mod (p-1) = dp)) return ERROR
- q' := q * t, dq' := dq + random * (q-1)
- sq' := m^{dq'} mod q'
- if NOT((g' mod g = 0) AND (dg' mod (g-1) = dg)) return ERROR
- spt := sp' mod t, dpt := dp' mod (t-1)
- sqt := sq' mod t, dqt := dq' mod (t-1)
 - if NOT(spt^{dqt} = sqt^{dpt} mod t) return ERROR
 - sp := sp' mod p, sq := sq' mod q
 - s := sq + ((sp sq) * qinv mod p) * q
 - if ((s mod p = sp) AND (s mod q = sq))

return s else

return ERROR

Output: m^d mod (p*q) oder error message