University of Toronto
Faculty of Arts and Science
Final Examinations, April-May 2015
MAT247HS – Algebra II
Instructor: Stephen S. Kudla

Duration – 3 hours

No aids allowed or needed

Please write clearly and show all of your work. The point value of each problem is indicated.

1. (40 points) Let V, <, > be an inner product space over \mathbb{C} . State and prove the Cauchy-Schwarz inequality.

2. (40 points) (i) Suppose that S and T are linear transformations of a vector space V such that ST = TS. Prove that T preserves the eigenspaces E_{λ} and the generalized eigenspaces K_{λ} of S.

(ii) Now suppose that V is a real vector space of dimension 4 and that the minimal polynomial of S is $(t-1)^2(t-2)^2$. What is the JCF of S?

(iii) Prove that the characteristic polynomial $P_T(t)$ of T splits completely and has at most two distinct roots.

3. (40 points) Consider the linear transformation $T = L_A$ of \mathbb{C}^2 defined by the matrix

 $A = \begin{pmatrix} 4 & 5i \\ -5i & 4 \end{pmatrix}.$

Use the standard inner product on \mathbb{C}^2 .

- (i) Show that T is normal.
- (ii) Find the eigenvalues λ_1 and λ_2 of T.
- (iii) Find the eigenprojections T_i , i = 1, 2 onto the two eigenspaces of T.
- (iv) Write T^{-1} as a linear combination of these eigenprojections.

University of Toronto
Faculty of Arts and Science
Final Examinations, April-May 2015
MAT247HS – Algebra II
Instructor: Stephen S. Kudla
Duration – 3 hours

No aids allowed or needed

4. (40 points) (i) Find the Jordan Canonical Form (JCF) of the matrix

$$A = \begin{pmatrix} 2 & 0 & -1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 2 \end{pmatrix}.$$

- (ii) Find a matrix Q such that $Q^{-1}AQ$ is in JCF.
- **5.** (60 points) Suppose that $T:V\longrightarrow V$ is a linear transformation of a finite dimensional vector space V and that $W\subset V$ is a T-invariant subspace.
- (i) Suppose that some vector $w \in W$ can be written as

$$w=v_1+\cdots+v_k,$$

where $T(v_i) = \lambda_i v_i$ with $\lambda_i \neq \lambda_j$ for $i \neq j$. Show, by induction on k, that $v_i \in W$ for all i.

- (ii) Suppose that T is diagonalizable. Prove that the restriction T_W of T to W is diagonalizable.
- **6.** (50 points) Suppose that V, \langle, \rangle is an inner product space and that $T: V \longrightarrow V$ is a linear transformation.
- (i) Define what it means for T to be a projection.
- (ii) Prove that if $T = T^2$, then T is a projection.
- (iii) Define what it means for T to be an orthogonal projection.
- (iv) Assume that V is finite dimensional. Prove that if $T^2 = T = T^*$, then T is an orthogonal projection.
- 7. (30 points) Suppose that a linear transformation $T: \mathbb{R}^6 \longrightarrow \mathbb{R}^6$ has characteristic polynomial $P_T(t) = (t^2 + 5)^2 (t 1)^2$.
- (i) What are the possibilities for the minimal polynomial $M_T(t)$ of T?
- (ii) What are the possibilities for the rational canonical form for T?

UNIVERSITY OF TORONTO

The Faculty of Arts and Science

APRIL 2015 EXAMINATIONS

MAT257Y1Y Analysis II

Duration - 3 hours

NO AIDS ALLOWED

Last Name:	
First Name:	
Student Number:	
Section:	

Note: there are 11 pages, excluding this cover page

Note 2: There are nine questions, all of equal value; do any seven.

Total Marks Possible = 70

Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

There are nine questions, all of equal value; do any seven. Show all your work.

- 1. In each of the following, say whether the statement is true or false; if false, give a counterexample; if true, give a *brief* explanation for your answer.
 - a) If $f: \mathbb{R}^k \to \mathbb{R}^n$ is continuous and $C \subset \mathbb{R}^k$ is compact, then f(C) is compact.
 - b) If $f: \mathbb{R}^k \to \mathbb{R}^n$ is continuous and $O \subset \mathbb{R}^k$ is open, then f(O) is open.
 - c) If $f: \mathbb{R}^k \to \mathbb{R}^n$ is continuous and $D \subset \mathbb{R}^n$ is compact, then $f^{-1}(D)$ is compact.
 - d) If $f: \mathbb{R}^n \to \mathbb{R}^n$ is C^1 and one-to-one, then Df(x) is invertible for all x.
 - e) If $f: \mathbb{R}^n \to \mathbb{R}^n$ is C^1 and Df(x) is invertible for all x, then $f(\mathbb{R}^n)$ is open.

2. Define $F = (f, g) : \mathbb{R}^2 \to \mathbb{R}^2$ by f(x) = x and

$$g(x,y) = \begin{cases} y - x^2 & y \ge x^2 \\ \frac{y(y-x^2)}{x^2} & 0 \le y < x^2 \\ -\frac{y(y+x^2)}{x^2} & -x^2 \le y < 0 \\ y + x^2 & y < -x^2 \end{cases}$$

- a) Show that F is differentiable at the origin.
- b) Show that DF(0,0) is nonsingular, but F is not 1:1 in any neighbourhood of the origin.
- c) Why does this not contradict the Inverse Function Theorem?

3. a) Show that the set of solutions to the equations

$$\begin{cases} \cos(x+y)e^z &= e\\ \sin(x-2y) + 2z - z^2 &= 1 \end{cases}$$

can be parametrized near (x,y,z)=(0,0,1) by smooth functions $y=\phi(x),z=\psi(x)$. Compute the derivatives $\phi'(0)$ and $\psi'(0)$.

b) Can you also solve for x, z in terms of y? For x, y in terms of z? Explain your reasons.

4. Evaluate $\int \int \int_R (y-x) dx dy dz$ where R is the tetrahedron with vertices (0,0,0), (0,0,2), (1,1,1), (1,3,1). (Suggestion: find a linear transformation mapping R to the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), (0,0,1).)

- 5. a) Show that M = {(x, y, z, w) : x² + y² + z² + w² = 1; x + y = 1} is a compact 2-manifold in R⁴.
 b) Find the extreme values of f(x, y, z, w) = -x + z on M. (You do not need to find where they occur.)

6. a) Evaluate the line integral

$$\int_C \left(y^2 \sin(xy^2) dx + 2xy \sin(xy^2) dy\right)$$

where ${\cal C}$ is the unit circle, oriented counter-clockwise.

b) Find a function f(x,y) such that $df = y^2 \sin(xy^2) dx + 2xy \sin(xy^2) dy$.

7. a) State the classical Stokes' theorem and divergence theorem.

b) Compute

$$\int_C (2xy^2zdz + 2x^2yzdy + (x^2y^2 - 2z)dz)$$

where C is the curve $x = \cos t$, $y = \sin t$, $z = \sin t$, oriented in the direction of

increasing $t, 0 \le t \le 2\pi$. c) Compute $\int_S \langle F, n \rangle dA$ where $F(x, y, z) = (e^y \cos z, e^x \sin z, e^x \cos y)$ and S is the unit sphere with outward pointing normal n.

- 8. a) Define closed form and exact form on an open set $U \subset \mathbb{R}^n$
 - b) Suppose that α and β are closed forms on the open unit ball $B = \{x \in \mathbb{R}^n : x \in \mathbb{R}^$

 - |x|<1. Prove that $\alpha \wedge \beta$ is exact on B. c) Suppose that $U \subset \mathbb{R}^n$ is an arbitrary open set, and that α is a closed form and β is an exact form on U. Show that $\alpha \wedge \beta$ is exact on U.

9. Suppose that $f: \mathbb{R}^3 \to \mathbb{R}$ is a smooth function such that $M:=\{x\in \mathbb{R}^3: f(x)\geq 0\}$ is a nonempty compact 3-dimensional manifold with boundary. Let $g:=f^2$. Show that

$$\int_{M} \Delta g \ dV = 0$$

where $\Delta g(x) := \sum_{i=1}^{3} D_i(D_i g)$.