AI商用产品体验-报告

一. 基本信息

- 体验平台:
- 体验时间:
- 体验身份:

拆分需求	(1)目标用户画像和实际用户画像(2)功能的实际使用场景,流程和优化(3)数据报表,下一步的运营策略
个人体验习惯	* 优先评估技术实现难度 * 优先以技术角度思考用户体验的原因 * 优先寻找具有替代性的同类Github开源项 目
体验频率	
体验行为	
体验中的评估和反馈	
可能的认知偏见	

• 体验的产品

名称	版本

二. 体验内容

其他

直播 2020.05.26 - 不需要真实数据的模型窃取方法

主讲人: 旷视成都研究院实习生-周鸣一

• 业务内容

一级类别	二级类别	应用	tricks
对抗样本	基于梯度攻击		因为无法获得目标 模型梯度,所以需 要数据集训练替身

	模型进行梯度计算 并迁移
	一般的防护:通过 保护数据以防止替 身模型被获取
基于查询的攻击	一般的防护:限制 单个输入样本的被 查询次数

攻击方式流程示意

| 基于梯度的攻击

| | 基于查询的攻击

论文中攻击方案的设计

| 不需要真实数据的模型窃取

MEGVII 旷视

the objective of G: generate samples $\widehat{\mathbf{X}} = G(\mathbf{X})$ and let $y_D(\widehat{\mathbf{X}}) \neq y_T(\widehat{\mathbf{X}})$ the objective of D: guarantee $y_D(\widehat{\mathbf{X}}) = y_T(\widehat{\mathbf{X}})$

这样的基本模型结构容易造成GAN的模型塌缩

今子卷1个小电视飞船,点击前往TA的房间去抽奖吧

MEGVII 旷视

The loss for controlling the label of synthetic samples is formulated as:

$$\mathcal{L}_C = \mathsf{CE}(T(G(\mathbf{z}, n)), n). \tag{1}$$

Then we use D to replace the T in Eq. (1):

$$\mathcal{L}_C = \mathsf{CE}(D(G(\mathbf{z}, n)), n). \tag{2}$$

The loss for G is

$$\mathcal{L}_G = e^{-d(T,D)} + \alpha \mathcal{L}_C, \tag{3}$$

The loss for D is

$$\mathcal{L}_D = d(T(\widehat{\mathbf{X}}), D(\widehat{\mathbf{X}})). \tag{4}$$

| 不需要真实数据的模型窃取方法

MEGVII 町岩

 ${\bf Algorithm} \,\, {\sf Mini-batch} \,\, {\sf stochastic} \,\, {\sf gradient} \,\, {\sf descent} \,\, {\sf training}$ of the proposed method DaST.

 $\#\ acc$ denotes the accuracy of D. att denotes the attack success rate for the attacks generated by D.

1 : While iteration $<\delta$ or acc,att do not increace

Generate m examples $\{\widehat{\mathbf{X}}^{(1)},\ldots,\widehat{\mathbf{X}}^{(m)}\}$ by G.

Update the substitute model :

 $\mathcal{L}_D = d(T(\widehat{\mathbf{X}}), D(\widehat{\mathbf{X}})).$

Update the generative model : $\mathcal{L}_G = e^{-d(T,D)} + \alpha \mathcal{L}_C.$ 5:

6: $7: \mathbf{end} \ \mathbf{for}$

Attack Scenario: attackers can probe the output labels of the attacked model (DaST-L). attackers can probe the output probability of the attacked model (DaST-P).

- 遇到的业务难题
- (1) 根据不同目标设计攻击模型输入信息的多少

- (2) 方法中多分枝结构用于帮助提高生成器控制类别的能力,以改善模型坍缩,副作用是对于大规模数据集耗费资源多,训练时间显著增长
- (3) 训练D模型时候需要大量查询目标模型, 虽然可以减少实际部署查询次数
- 其他材料

Github: https://github.com/zhoumingyi/DaST

PPT: 录音: 视频回放:

NLP

直播 2020.04.01 - BERT在美团搜索业务中的应用

主讲人: NLP部算法专家-王金刚

• 业务内容

一级类别	二级类别	应用	tricks
单句分类	情感分析	垃圾评论识别和过滤 细粒度情感分析(比如 每句话点评中的精选评 论,点击评论标签完成 评论召回)	用联合训练(考虑 apect之间的关 系,中间加 attetion学权重) 减轻不同aspect分 布不均匀
	query意图识别	准确的query流量划分	
	推荐理由场景划分	和query、用户相关的个性化推荐理由的推送或 召回理由	
	query改写语义一致性检测	对同意义,一词多义的 query改写后是否和原意 义一致(+人工审核)	
句间关系	query成分分析(NER序列标 注)	对用户的随意搜索(关键词堆砌)做核心成分分析,做个二召	直接softmax看似整体准确率高,但是容易出现标签跳变,整个识别不完整,可用CRF规避

PS:

- (1) 完成分类后,还需要由业务方设计展示策略,从而完成类似"低星好评,高星差评"的问题的解决
- (2) BERT使用性价比综合考虑显卡资源和FineTune后作为Baseline可以节省足够时间
- 遇到的业务难题
 - 。 业务方提供数据-train模型-交付,业务周期长人手少 搭建平台解决
 - 。 希望寻找模型效果好的原因 搭建平台解决
- 其他材料

PPT: E:\PM之路\日常积累\讲座资料\2020.04.01-BERT在美团搜索业务中的应用.pdf录音: E:\PM之路\日常积累\讲座资料\2020.04.01-BERT在美团搜索业务中的应用.wav视频回放: https://www.bilibili.com/video/BV1vC4y147px?from=search&seid=1973887103969807897

图像处理

直播 2020.04.15 – 行为动作定位的算法流程介绍与分享

大纲: 视界编码, proposal生成, proposal评价, 模型ensemble

• 业务内容(主要针对视频中人的行为)

一级类别	二级类别	应用	tricks
目标检测	视界编码-video represent at ion - 模型 C3D Convolut ion Two-stream		- 模型增加降维层 (卷积)和分类层 (MLP)会work - encoding可以在 attention、local global上挖掘 trick,现在做的最 好用的还是光流+做 two stream(不太 重视速度的话)
	proposal生成 - 模型 spliding windows		- 用snippet windows采集视频 clip,16帧采集效 果比较好
	archor based(SSAD) boundary based(BSN, SSN)		- Archor baxes太 少可能会对小 proposal漏检
	combinations(BMN[confidenc e scroes+archor], DBG[proposal-level probabilities+anchor boxes], CTAP[spliding windows+TAG-temporal actioness grouping+complementary filter]) relative—aware pyramid network(RAM[我们的工作,包括Temporal contex distilling, Mutli-granularity proposal generation, Archor baxes selection])	短视频、游戏平台 - 对用户感兴趣的片段裁剪供用户预览 - QuickView - 视频部分片段和文字联动(搜索,评论,广告) - Focus on a section	- DBG测试action detection任务表现不是很好 - 其中BSN (?不确定)处理速度相对较慢,其他模型一般速度可以达到200ms/次,可以用多clip等方式加速code
	proposal评价 - 模型 confidence score regression(BSN[extend boundary regions, BMN\DBG[pre-defined simple mask]) offset and action regression Reranking&Boundary Adjustment[我们的工作,包括 Proposal Evaluation Module,		- cont ex的加入很有用(比如CT AP模型) - 和其他模型,比如BSN进行Boundary微调会work

Boundary Adjustment Scheme]	
模型ensemble - 根据特征、根据模型	- 模型差异比较 大, ensemble 效果相对较好
confidence score regression	
complementary filters	
Reranking & Boundary Refinement	

- 遇到的业务难题
 - 高质量体验 ?
 - ∘ 准确分类 combination和ensemble
- 其他材料

PPT: E:\PM之路\日常积累\讲座资料\2020.04.15-云从数据-行为动作定位的算法流程

介绍与分享.pdf

视频回放: https://b23.tv/BV1VA411b7G5

公众号文章 2020.04.08 - 整个世界都是你的绿幕:这个视频抠图换背景的方法着

实真假难辨

• 来源: CVPR 2020论文

● 内容

评价 指标	实验数据集	对比的 深度蒙 版算法	数据集上对比结果	已知BUG/ 限制条件	潜在应用场景	是否有 教程
MSE	Adobe Dataset	BM: Bayesi an Mattin g CAM: Contex t- Aware Mattin g IM: Index Mattin g LFM: Late Fusion Mattin g	Our: 1.72(Additional inputs: B) 1.73(Additional inputs: B') BM: 2.53(Additional inputs: Trimap-10, B) 2.86(Additional inputs: Trimap-20, B) 4.02(Additional inputs: Trimap-20, B') CAM: 3.67(Additional inputs: Trimap-10) 4.72(Additional inputs: Trimap-20) IM: 1.92(Additional inputs: Trimap-10) 2.36(Additional inputs: Trimap-10) 2.36(Additional inputs: Trimap-20)	限(原视研求拍人图 B(是拍下拍中平致还一误制)始频究拍一物 G)在摄,摄,面的是些件。图之者摄张的 : 尤摄的但的由背视会蒙许了/,要多带景 其机景持频非导,现错:了/,要多带景	云旅游 视会议	是
SAD			Our:			

		0.97(Additional inputs: B) 0.99(Additional inputs: B')	
		BM: 1.33(Additional inputs: Trimap-10, B) 1.13(Additional inputs: Trimap-20, B) 2.26(Additional inputs: Trimap-20, B')	
		CAM: 4.50(Additional inputs: Trimap-10) 4.49(Additional inputs: Trimap-20)	
		IM: 1.61(Additional inputs: Trimap-10) 1.10(Additional inputs: Trimap-20)	
主观 指 标- 相对 提升		BM: 52.9%muchbetter 41.4 tter 5.7%similar 0%worse 0%much worse	
世界	- 真实 视频	CAM: 30.8%muchbetter 42.5\$tter 22.5%similar 4.2%worse 0%much worse	
(手 机	持相)	AM: 26.7%muchbetter 55.0 tter 15.0%similar 2.5%worse 0.8%much worse	
		LFM: 72%muchbetter 20�tter 4%similar 3%worse 1%much worse	
世界	·真实 视频 定相)	BM: 61%muchbetter 31�tter 3%similar 4%worse 1%much worse	

CAM: 43.3%muchbetter 37.5 tter	
5%similar 4.2%worse 10%much worse	
AM: 33.3%muchbetter 47.5�tter 5.9%similar 7.5%worse 5.8%much worse	
LFM: 65.7%muchbetter 27.1 tter 4.3%similar 0%worse 2.9%much worse	

• 其他材料

Github: https://github.com/senguptaumd/Background-Matting