☐ Activité 2 : Codage hexadécimal

Comme vu en cours, il faut jusqu'à 8 chiffres en base 2 (8 bits) pour écrire les entiers de 0 à 255, le codage hexadécimal est bien plus utilisé car plus compact. En effet, deux caractères suffisent à écrire un nombre compris entre 0 et 255.

Etape 1 : séparer les 8 bits en deux groupes de 4, par exemple $11001111 \rightarrow 1100\ 1111$

Etape 2 : consulter le tableau suivant et remplacer chaque groupe de 4 par le caractère correspondant, par exemple $110011111 \rightarrow CF$

Groupe	Caractère	Groupe	Caractère	Groupe	Caractère	Groupe	Caractère
0000	0	0001	1	0010	2	0011	3
0100	4	0101	5	0110	6	0111	7
1000	8	1001	9	1010	A	1011	В
1100	С	1101	D	1110	Е	1111	F

Le codage hexadécimal CF est bien plus facile à retenir que le codage binaire 11001111.

- 1. Appliquer la méthode
 - a) Ecrire le codage hexadécimal de 10111001.
 - b) Ecrire 100_{10} en base 2 puis donner son codage hexadécimal.
- 2. Compter en base 16
 - a) Dans le tableau de correspondance entre le groupe et le caractère, calculer la valeur décimale de chacun des groupes de 4 bits, que remarquez-vous?
 - b) Quelles devraient être les valeurs associées aux lettres A, B, C, D, E et F?
 - c) Si on considère chaque caractère du tableau comme un chiffre, dans quelle base travaille-t-on? Justifier.
 - d) Compléter :

$$187 = 12 \times 16 + \dots$$
, or $12 \to \dots$ et $11 \to \dots$ donc $187_{10} = \dots \dots _{16}$

- e) Ecrire 162_{10} en base 16
 - $\ \, \ \, \ \, \ \, \ \, \ \,$ Effectuer la $\it division~euclidienne$ de 162 par 16 de façon à écrire 162 sous la forme : $162=q\times 16+r$
- f) Même question pour 218_{10}
- 3. de la base 16 vers la base 10
 - a) Ecrire $6C_{16}$ en base 10
 - b) Même question pour 17_{16}
- 4. Le codage des couleurs

En informatique, une couleur est représentée par trois valeurs pouvant aller de 0 à 255. Ces valeurs représentent les niveaux des trois couleurs primaires rouge, vert et bleu. Une couleur est donc représentée sous la forme (r, v, b) où r, v et b sont des entiers entre 0 et 255. Le codage hexadécimal (utilisé notamment en langage HTML) représente une couleur sous la forme de six chiffres en base 16.

- a) Quelles sont les valeurs de rouge, vert et bleu dans le code A1C077?
- b) Expliquer pourquoi le code FF0000 représente le rouge pur.
- c) Expliquer pourquoi le code 808080 représente le gris.
- d) Donner le code couleur HTML de la couleur représentée en code (r, v, b) par (28,140,212).
- e) Donner le code (r,v,b) de la couleur 18E54E