Homework 4

ECE 269: Linear Algebra and Applications Homework #4-Solution Instructor: Behrouz Touri

1. Parallelogram identity. For any Hilbert space \mathcal{H} show that

$$2(||x||^2 + ||y||^2) = ||x - y||^2 + ||x + y||^2,$$

holds for any $x, y \in \mathcal{H}$.

Solution: By direct calculations, we have

$$||x - y||^{2} + ||x + y||^{2}$$

$$= \langle x - y, x - y \rangle + \langle x + y, x + y \rangle$$

$$= ||x||^{2} - \langle x, y \rangle - \langle y, x \rangle + ||y^{2}|| + ||x||^{2} + \langle x, y \rangle + \langle y, x \rangle + ||y^{2}||$$

$$= 2(||x||^{2} + ||y||^{2}).$$

2. LU Decomposition. Find the solution $x \in \mathbb{R}^3$ for Ax = b by obtaining the LPA = U decomposition for the following matrix

$$A = \begin{bmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8 \end{bmatrix}, \tag{1}$$

where
$$b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
.

Solution: We perform Gauss elimination to this process. The first step is to eliminate $a_{3,1}$. We let row 3 subtract 3 row 1. Then we obtain an upper triangular matrix

$$U = \begin{bmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & -1 \end{bmatrix}.$$

Hence we have P = I,

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}.$$

and LPA = U.

Then we solve LPb = Ux, i.e.,

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Using backward substitution, we obtain $x = (-0.1 \ 0.4 \ 0)^T$.

Solution: We assume $U = (u_1 \ u_2 \ u_3)^T$. Then $u_1 = (2\ 3\ 3)^T$ and $l_{1,1} = 1$. Now we let

$$(0\ 5\ 7) = l_{2,1}(2\ 3\ 3) + u_2^T = (2l_{2,1}\ 3l_{2,1} + U_{2,2}\ 3l_{2,1} + u_{2,3}).$$

Then we obtain $l_{2,1} = 0$ and $u_2^T = (0.5.7)$. Finally, we take

(6 9 8) =
$$l_{3,1}(2 \ 3 \ 3) + l_{3,2}(0 \ 5 \ 7) + u_3^T$$

= $(2l_{3,1} \ 3l_{3,1} + 5l_{3,2} \ 3l_{3,1} + 7l_{3,2} + u_{3,3}).$

This gives $l_{3,1} = 3$, $l_{3,2} = 0$ and $u_3 = (0 \ 0 \ -1)^T$. Hence we conclude

$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & -1 \end{bmatrix}.$$

To calculate Ax = b, we solve Ly = b, i.e.,

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

This gives $y = (1 \ 2 \ 0)^T$. Then we solve Ux = y, i.e.,

$$\begin{bmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$

We obtain $x = (-0.1 \ 0.4 \ 0)^T$.

- 3. A numerical problem. Let $A = \begin{bmatrix} -1 & 0 \\ 1 & 3 \\ 1 & 2 \\ 0 & 2 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$, and $\bar{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
 - (a) Find the least-square solution for Ax = b.
 - (b) Find the least-norm solution for $A'x = \bar{b}$.

Solution: Note that
$$A'A = \begin{bmatrix} 3 & 5 \\ 5 & 17 \end{bmatrix}$$
 and $(A'A)^{-1} = \frac{1}{26} \begin{bmatrix} 17 & -5 \\ -5 & 3 \end{bmatrix}$.

- (a) The least-squares solution is given by: $x = (A'A)^{-1}A'b = \frac{1}{26}\begin{bmatrix} 17\\ -5 \end{bmatrix}$.
- (b) The least-norm solution is given by: $x = A(A'A)^{-1}\bar{b} = \frac{1}{26}\begin{bmatrix} 5\\4\\1\\6 \end{bmatrix}$.
- 4. Almost orthonormal basis. Let u_1, u_2, \ldots, u_n form an orthonormal basis for an inner product space \mathcal{V} and let v_1, v_2, \ldots, v_n be a set of vectors in \mathcal{V} such that

$$||u_j - v_j|| < \frac{1}{\sqrt{n}}, \quad j = 1, 2, \dots, n.$$

Show that v_1, v_2, \ldots, v_n form a basis for \mathcal{V} .

Solution: Since $\dim(\mathcal{V}) = n$, we are done if we can show that (v_1, v_2, \dots, v_n) is independent. Assume to the contrary that they are not. Then, $\mathcal{W} := \operatorname{span}(v_1, \dots, v_n)$ has dimension < n. Therefore, there exists $w \in \mathcal{W}^{\perp}$ such that $w \neq 0$, and without loss of generality, we can assume ||w|| = 1. We have

$$\sum_{i=1}^{n} \|u_{i} - v_{i}\|^{2} = \sum_{i=1}^{n} \|u_{i} - v_{i}\|^{2} \|w\|^{2}$$

$$\stackrel{(a)}{\geq} \sum_{i=1}^{n} \langle u_{i} - v_{i}, w \rangle^{2}$$

$$= \sum_{i=1}^{n} (\langle u_{i}, w \rangle - \langle v_{i}, w \rangle)^{2}$$

$$\stackrel{(b)}{=} \sum_{i=1}^{n} (\langle u_{i}, w \rangle)^{2}$$

$$\stackrel{(c)}{=} \left\| \sum_{i=1}^{n} \langle u_{i}, w \rangle u_{i} \right\|^{2}$$

$$\stackrel{(d)}{=} \|w\|^{2}$$

$$= 1, \qquad (2)$$

where (a) follows by the Cauchy–Schwarz inequality (positive-definiteness of the inner product), (b) follows since $\langle v_i, w \rangle = 0$ for every i, (c) follows by the orthonormality of (u_1, \ldots, u_n) , and (d) follows by the basis expansion of w with respect to (u_1, \ldots, u_n) . Since $||u_1 - v_1||^2, \ldots, ||u_n - v_n||^2$ are non-negative, (2) implies that $||u_i - v_i||^2 \geq 1/n$ for at least one $i \in [n]$, contradicting the assumption.

5. Projection onto a halfspace. Let a be a nonzero vector in \mathbb{R}^n , $b \in \mathbb{R}$, and

$$\mathcal{S} = \{ x \in \mathbb{R}^n : a'x > b \}$$

be a halfspace. Find the projection of $x \in \mathbb{R}^n$ onto \mathcal{S} .

Solution: If $x \in \mathcal{S}$, or equivalently, $a'x \geq b$, then the point closest to x in \mathcal{S} is simply x, and hence $p_{\mathcal{S}}(x) = x$. If $x \notin \mathcal{S}$, then we first note that the point in \mathcal{S} that is closest to x will lie on the boundary on \mathcal{S} , i.e. on a'x = b (this is because otherwise a point p_{boundary} in \mathcal{S} lies on the line segment joining $p_{\mathcal{S}}(x)$ and x, making $||p_{\mathcal{S}}(x) - p_{\text{boundary}}|| \leq ||p_{\mathcal{S}}(x) - x||$, contradicting the minimality of $p_{\mathcal{S}}(x)$). Our problem now reduces to finding the projection of x on the affine hyperplane a'x = b, which from Problem 8(c) in HW 3 we know to be

$$p_{\mathcal{S}}(x) = x + \frac{b - a'x}{a'a}a.$$

6. Inverse. Let $A \in \mathbb{F}^{m \times n}$. Show that if A has a unique left inverse, then A is square and non-singular.

Solution: If A has a left inverse L, Ax = 0 implies LAx = x = L0 = 0. So nullity(A) = 0 and hence, by the rank-nullity theorem, A is full rank and tall, i.e.,

$$rank(A) = n \le m. (3)$$

Now, let B be the unique left inverse of A and let $y \in \mathbb{F}^m$ be such that A'y = 0. Defining

$$\tilde{Y} := \begin{bmatrix} y' \\ \vdots \\ y' \end{bmatrix} \in \mathbb{F}^{n \times m},$$

we have $\tilde{Y}A=0$, i.e., $(B+\tilde{Y})A=I$. By the uniqueness of B, we therefore must have $\tilde{Y}=0$, i.e., y=0. Thus, y=0 whenever A'y=0 and thus, A' is full-rank and tall. In other words, A is full-rank and fat, therefore $\mathrm{rank}(A)=m\leq n$. Combining this with (3) shows that A is square and nonsingular.

7. A Matrix inversion lemmas. Let $A \in \mathbb{F}^{n \times n}$, $B \in \mathbb{F}^{n \times k}$, $C \in \mathbb{F}^{k \times n}$, and $D \in \mathbb{F}^{k \times k}$. Suppose that A, D, and $D - CA^{-1}B$ are invertible. Show that

$$A^{-1}B(D - CA^{-1}B)^{-1} = (A - BD^{-1}C)^{-1}BD^{-1}.$$

(Hint: Consider the block matrix

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

and its inverse.)

Solution: The idea of this problem is to assume that

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}.$$

Then we have AE + BG = I, i.e., $E = A^{-1}(I - BG)$ and CE + DG = 0, i.e., CE = -DG. Solving the equation

$$CA^{-1}(I - BG) = -DG,$$

we have

$$G = -(D - CA^{-1}B)CA^{-1}.$$

Using similar techniques, we can obtain that

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{bmatrix}.$$

Notice that

$$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} = \begin{bmatrix} D & C \\ B & A \end{bmatrix}.$$

Therefore, this matrix is also invertible and

$$\begin{bmatrix} D & C \\ B & A \end{bmatrix}^{-1} = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}^{-1} \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}^{-1} = \begin{bmatrix} (D - CA^{-1}B)^{-1} & -(D - CA^{-1}B)^{-1}CA^{-1} \\ -A^{-1}B(D - CA^{-1}B)^{-1} & A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} \end{bmatrix}$$

On the other hand, we guess

$$\begin{bmatrix} D & C \\ B & A \end{bmatrix}^{-1} = \begin{bmatrix} D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} & -D^{-1}C(A - BD^{-1}C)^{-1} \\ -(A - BD^{-1}C)^{-1}BD^{-1} & (A - BD^{-1}C)^{-1} \end{bmatrix}.$$

To show this, it suffices to show $A - BD^{-1}C$ is invertible. Comparing the above two matrix, we test

$$(A - BD^{-1}C) (A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1})$$

= $(A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1}) (A - BD^{-1}C) = I_n.$

This shows that $A - BD^{-1}C$ is invertible and both formulas are true. Comparing the (2,1) entry of both formulas, we obtain our result.

8. Moore-Penrose pseudoinverse. A pseudoinverse of $A \in \mathbb{R}^{m \times n}$ is defined as a matrix $A^+ \in \mathbb{R}^{n \times m}$ that satisfies

$$AA^+A = A,$$
$$A^+AA^+ = A^+.$$

and AA^+ and A^+A are symmetric.

- (a) Find (with proof) the pseudoinverse of AA' in terms of A^+ . hint: Show that $(AA')^+ = (A^+)'A^+$ and $(A'A)^+ = A^+(A^+)'$.
- (b) Suppose that A has a rank decomposition A = BC, for example, $B = Q \in \mathbb{R}^{m \times r}$ and $C = R \in \mathbb{R}^{r \times n}$ as in the QR decomposition. Find A^+ in terms of B and C. hint: Show that $(BC)^+ := C'(CC')^{-1}(B'B)^{-1}B'$.
- (c) Show that $\mathcal{R}(A^+) = \mathcal{R}(A')$ and $\mathcal{N}(A^+) = \mathcal{N}(A')$.
- (d) Show that $y = AA^+x$ and $z = A^+Ax$ are the orthogonal projections of x onto $\mathcal{R}(A)$ and $\mathcal{R}(A')$, respectively.
- (e) Show that

$$A^{+} = \lim_{\delta \to 0} (A'A + \delta I)^{-1}A' = \lim_{\delta \to 0} A'(AA' + \delta I)^{-1}.$$

- (f) Show that $x^* = A^+b$ is a least-squares solution to the linear equation Ax = b, i.e., $||Ax^* b|| \le ||Ax b||$ for every other x.
- (g) Show that $x^* = A^+b$ is the least-norm solution to the linear equation Ax = b, i.e., $||x^*|| \le ||x||$ for every other solution x, provided that a solution exists.

Solution:

We have the following relations that define A^+ , which we summarize here for easy reference.

$$AA^{+}A = A. (4)$$

$$A^+AA^+ = A^+. (5)$$

$$A'(A^{+})' = A^{+}A. (6)$$

$$(A^{+})'A' = AA^{+}. (7)$$

(a) Consider the matrix $B := (A^+)'A^+$. Then we have

$$(AA')B(AA') = AA'(A^+)'A^+AA' \stackrel{(6)}{=} AA^+AA^+AA' \stackrel{(4)}{=} AA^+AA' \stackrel{(4)}{=} AA',$$

and

$$B(AA')B = (A^+)'A^+AA'(A^+)'A^+ \stackrel{(6)}{=} (A^+)'A^+AA^+AA^+ \stackrel{(5)}{=} (A^+)'A^+AA^+ \stackrel{(5)}{=} (A^+)'A^+ = B.$$

Now, since B and AA' are both symmetric, their products will be symmetric if and only if they commute. We have

$$BAA' = (A^+)'A^+AA' \stackrel{(6)}{=} (A^+)'A'(A^+)'A' = (A^+AA^+)'A' \stackrel{(5)}{=} (A^+)'A' \stackrel{(7)}{=} AA^+,$$

and

$$AA'B = AA'(A^{+})'A^{+} \stackrel{(6)}{=} AA^{+}AA^{+} \stackrel{(5)}{=} AA^{+}.$$

Thus, $(AA')^+ = (A^+)'A^+$.

(b) Since B and C are respectively tall, full-rank and fat, full-rank, B'B and CC' are both square and non-singular.

Let us define $D := C'(CC')^{-1}(B'B)^{-1}B'$. Then, $D \in \mathbb{R}^{n \times m}$, and

$$ADA = BCC'(CC')^{-1}(B'B)^{-1}B'BC = BC = A,$$

$$DAD = C'(CC')^{-1}(B'B)^{-1}B'BCC'(CC')^{-1}(B'B)^{-1}B' = D,$$

$$D'A' = B(B'B)^{-1}(CC')^{-1}CC'B' = B(B'B)^{-1}B' = BCC'(CC')^{-1}(B'B)^{-1}B' = AD,$$

and

$$A'D' = C'B'B(B'B)^{-1}(CC')^{-1}C = C'(CC')^{-1}C = C'(CC')^{-1}(B'B)^{-1}B'BC = DA.$$

Therefore,
$$A^+ = C'(CC')^{-1}(B'B)^{-1}B' = C'(B'AC')^{-1}B'$$
.

Remark: Note that this can also be written as $A^+ = C^+B^+$. In parts (a) and (b), we have seen two situations where $(BC)^+ = C^+B^+$. This is in general not true, however. Consider, for example,

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Then, $(AB)^+ = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$, but $B^+A^+ = \begin{bmatrix} 1/4 & 1/4 \end{bmatrix}$.

(c) We will show that $\mathcal{R}(A^+) \subseteq \mathcal{R}(A')$ and $\mathcal{R}(A^+) \supseteq \mathcal{R}(A')$. For showing the first part, let $y \in \mathcal{R}(A^+)$, and let $y = A^+x$. Then, we have

$$A'(A^+)'y \stackrel{(6)}{=} A^+Ay = A^+AA^+x \stackrel{(5)}{=} A^+x = y,$$

so defining $\tilde{x} := (A^+)'y$, we see that y can be written as $A'\tilde{x}$, which shows that $y \in \mathcal{R}(A')$. For the opposite direction, if $y \in \mathcal{R}(A')$ is written as y = A'x, then we can similarly show that $y = A^+\tilde{x}$, where $\tilde{x} := Ay$. Thus, $y \in \mathcal{R}(A^+)$. Therefore, we have shown that $\mathcal{R}(A^+) = \mathcal{R}(A')$.

Now, let $x \in \mathcal{N}(A^+)$. We then have

$$A^{+}x = 0 \implies AA^{+}x = 0 \stackrel{(7)}{\Longrightarrow} (A^{+})'A'x = 0 \implies A'(A^{+})'A'x = 0 \implies (AA^{+}A)'x = 0$$

$$\stackrel{(4)}{\Longrightarrow} A'x = 0.$$

Thus, $x \in \mathcal{N}(A')$.

Similarly, if $x \in \mathcal{N}(A')$, we have

$$A'x = 0 \implies (A^+)'A'x = 0 \stackrel{(7)}{\Longrightarrow} AA^+x = 0 \implies = A^+AA^+x = 0 \stackrel{(5)}{\Longrightarrow} A^+x = 0.$$

Thus, $x \in \mathcal{N}(A^+)$.

We have therefore shown that $\mathcal{N}(A^+) = \mathcal{N}(A')$.

(d) Clearly, for every $x \in \mathbb{R}^m$, $y = AA^+x \in \mathcal{R}(A)$. Thus, we are done if we can show that $x - AA^+x \in \mathcal{R}(A)^{\perp} = \mathcal{N}(A')$. We have

$$A'(x - AA^{+}x) = A'x - A'AA^{+}x \stackrel{(7)}{=} A'x - A'(A^{+})'A'x = A'x - (AA^{+}A)'x \stackrel{(4)}{=} A'x - A'x = 0,$$

therefore AA^+ is indeed the projection onto $\mathcal{R}(A)$.

Similarly, for every $x \in \mathbb{R}^n$, $z = A^+Ax \in \mathcal{R}(A^+) = \mathcal{R}(A')$, where the last equality follows from part (c). Thus, we are done if we can show that $x - A^+Ax \in \mathcal{N}(A)$. We have

$$A(x - A^{+}Ax) = Ax - AA^{+}Ax \stackrel{(4)}{=} Ax - Ax = 0,$$

therefore A^+A is indeed the projection onto $\mathcal{R}(A')$.

(e) It suffices to show that

$$A^{+}x = \lim_{\delta \to 0} (A'A + \delta I)^{-1}A'x = \lim_{\delta \to 0} A'(AA' + \delta I)^{-1}x,$$

for any $x \in \mathbb{R}^m$ since we can take $x = e_i$ for each $i \in [m]$ and deduce the convergence of the *i*-th column. If $x \in \mathcal{N}(A^+) = \mathcal{N}(A')$, this is clearly true. If $x \in \mathcal{N}(A^+)^{\perp} = \mathcal{R}(A)$, we have x = Az for some $z \in \mathcal{N}(A)^{\perp} = \mathcal{R}(A')$. Now, we have

$$(A'A + \delta I)^{-1}A'Az = z - (A'A + \delta I)^{-1}\delta A'Az.$$

Since each entry of $A'A + \delta I$ is bounded as $\delta \to 0$, each entry of $(A'A + \delta I)^{-1}$ is also bounded (this can be seen from the matrix inversion formula or the continuity of matrix inversion). Therefore,

$$\lim_{\delta \to 0} (A'A + \delta I)^{-1} A'Az = z = A^+ Az$$

since A^+A is the orthogonal projection onto $\mathcal{R}(A')$ and $z \in \mathcal{R}(A')$. Combining this with the case $x \in \mathcal{R}(A^+)$, we obtain

$$A^+x = \lim_{\delta \to 0} (A'A + \delta I)^{-1}A'x$$

for any $x \in \mathbb{R}^m$. Now, observe that

$$(A'A + \delta I)^{-1}A'(AA' + \delta I) = (A'A + \delta I)^{-1}(A'A + \delta I)A' = A'.$$

So, we have

$$(A'A + \delta I)^{-1}A' = A'(AA' + \delta I)^{-1}$$

and our assertion follows.

(f) We have

$$A'(Ax^* - b) = A'AA^+b - A'b \stackrel{(7)}{=} A'(A^+)'A'b - A'b = (AA^+A)'b - A'b \stackrel{(4)}{=} A'b - A'b = 0.$$

Therefore, for any $x \in \mathbb{R}^m$,

$$||Ax - b||^2 = ||Ax^* - b + A(x - x^*)||^2$$

$$= ||Ax^* - b||^2 + ||A(x - x^*)||^2 + 2(x - x^*)'A'(Ax^* - b)$$

$$= ||Ax^* - b||^2 + ||A(x - x^*)||^2$$

$$\ge ||Ax^* - b||^2,$$

demonstrating that x^* is indeed a least-squares solution to Ax = b.

(g) Suppose that the linear equation b = Ax has a solution. Then, by part (f), $x^* = A^+b$ is a solution to b = Ax. Now, let z be any other solution to b = Ax, i.e., we have Az = b. Then,

$$(x^*)'(z - x^*) = b'(A^+)'(z - A^+b)$$

$$= b'(A^+)'z - b'(A^+)'A^+b$$

$$\stackrel{(5)}{=} b'(A^+AA^+)'z - b'(A^+)'A^+b$$

$$= b'(A^+)'A'(A^+)'z - b'(A^+)'A^+b$$

$$\stackrel{(6)}{=} b'(A^+)'A^+Az - b'(A^+)'A^+b$$

$$\stackrel{(a)}{=} b'(A^+)'A^+b - b'(A^+)'A^+b$$

$$= 0.$$

Here, (a) follows since Az = b. We then have

$$||z||^2 = ||x^* + (z - x^*)||^2 = ||x^*||^2 + ||z - x^*||^2 \ge ||x^*||^2.$$

9. Projection over convex set. Let V be a an inner-product vector space over \mathbb{R} with the inner-product $\langle \cdot, \cdot \rangle$ and let S be a convex set in V, i.e., a set such that for any two $x, y \in S$, any point $\alpha x + (1 - \alpha)y$ in between x, y, where $\alpha \in [0, 1]$, belongs to S. Let $x \notin S$ be an arbitrary vector and suppose that for $\hat{x} \in S$, we have:

$$\langle x - \hat{x}, \hat{x} - v \rangle \ge 0$$
, for all $v \in S$.

Show that $||x - \hat{x}||^2 = \min_{v \in S} ||x - v||^2$. Is such an \hat{x} unique?

Solution: Assume in contradiction $\exists w \in S, w \neq \hat{x}$ such that $\|x - w\|^2 < \|x - \hat{x}\|^2$. So: $\|x - w\|^2 = \|x - \hat{x} + \hat{x} - w\|^2 = \|x - \hat{x}\|^2 + \|\hat{x} - w\|^2 + 2\langle x - \hat{x}, \hat{x} - w\rangle$. We know that $\forall v \in S, \langle x - \hat{x}, \hat{x} - v\rangle \geq 0$, thus: $\|x - w\|^2 = \|x - \hat{x}\|^2 + \|\hat{x} - w\|^2 + 2\langle x - \hat{x}, \hat{x} - w\rangle \geq \|x - \hat{x}\|^2 + \|\hat{x} - w\|^2 \geq \|x - \hat{x}\|^2$, meaning $\|x - w\|^2 \geq \|x - \hat{x}\|^2$, in contradiction to the assumption. Therefore,

$$||x - \hat{x}||^2 = \min_{v \in S} ||x - v||^2$$

Also notice that for any $v \in S$,

$$||x - v||^2 \ge ||x - \hat{x}||^2 + ||\hat{x} - v||^2 \ge ||x - \hat{x}||^2.$$

Therefore, if v is a minimizer, the equality holds in the above equation, and we must have $\|\hat{x} - v\| = 0$. Thus the minimizer has to be unique.