Shashank Aital 19114076 - Batch 04 Date: 7th October, 2020 Branch: CSE

0.1.

$$a_0 = \frac{271}{7}$$
 $a_k = \frac{\sin(k\omega_0 \tau_1)}{ktt}$

For required signal, T=6 Consider Ti=1/2

=> y(H) becomes 5

Consider
$$g(t) = y(t+1.5) - y(t-1.5)$$

Now given, $a(t) = \int_{0}^{2} g(t) dt$

Now $a(t) = \int_{0}^{2} g(t) dt$
 $a(t) = \int_{0}^{2} g(t) dt$

Finding a_{k} where $a(t) = \int_{0}^{2} c_{k} dt$

Using properties,

 $a_{k} = e^{\int_{0}^{2} \frac{dt}{dt}} a_{k} - e^{\int_{0}^{2} \frac{dt}{dt}} a_{k}$
 $a_{k} = 2 \int_{0}^{2} \sin(\frac{k\pi}{2}) \cdot \sin(\frac{k\pi}{6})$, $k \neq 0$

$$c_0 = \frac{i \sqrt{3} \sqrt{3}}{6} = \frac{i \sqrt{3} \sqrt{3}}{6}$$

$$c_0 = \sqrt{3} \sqrt{3} \sqrt{3} = 0$$

$$c_0 = \sqrt{3} \sqrt{3} \sqrt{3} = 0$$

$$c_0 = \sqrt{3} \sqrt{3} \sqrt{3} = 0$$

$$\Rightarrow For finding 2(t) = \frac{1}{3}bk$$

$$b_0 = \frac{1}{4}y(t)dT$$

$$= \frac{1}{6}\int_{-2}^{3}y(t)dT$$

$$= \frac{1}{6}(3) = \frac{1}{2}$$

6.2.(a)
$$a(t) = \cos(\ln t)$$
, $y(t) = \sin(6\pi t)$

Let $a(t) = \frac{1}{2} a_k$

Let $a(t) = \frac{1}{2} b_k$

Now, $\cos a(t) = \frac{1}{2} \left(e^{j(ant)} + e^{-j(ant)} \right)$

Let us consider $T = \frac{1}{2} \left(e^{j(ant)} + e^{-j(ant)} \right)$
 $a(s) = \frac{1}{2} \left(e^{j(ant)} + e^{-j(ant)} \right)$

Now $a(t) = \frac{1}{2} \left(e^{j(ant)} + e^{-j(ant)} \right)$

Now $a(t) = \frac{1}{2} \left(e^{j(ant)} + e^{-j(ant)} \right)$
 $a(a) = \frac{1}{2} \left(e^{j(ant)} + e^{-j(ant)} \right)$

where $a(a) = 2\pi i$
 $a(a) = \frac{1}{2} \left(e^{j(ant)} + e^{-j(ant)} \right)$
 $a(a) = \frac{1}{2} \left(e^{j(ant)} + e^{-j(a$

sin(6nt) =
$$\frac{1}{2}$$
 (e) $\frac{1}{2}$ (ant) = $\frac{1}{2}$ (c) $\frac{1}{2}$ (c)

B-3. Given that
$$T=6$$

Now exc(t) is real \Rightarrow $a_k = a_{-k}$
Also, $x(t) = a_{-1} e^{-j - \frac{\pi}{2}t} + a_0 + a_1 e^{j - \frac{\pi}{2}t}$

Also,
$$1 = |a_0|^2 + |a_{-1}|^2 + |a_1|^2$$

 $1 = |a_0|^2 + 2|a_1|^2$

$$\Rightarrow \propto (t+\frac{3}{2})$$
 is odd

$$\Rightarrow a_1 = \frac{1}{\sqrt{2}} = a_{-1}$$
 (: a_k 's are real ℓ the given)

$$\Rightarrow xlt = \frac{1}{\sqrt{2}} \left[e^{-j\frac{\pi}{2}t} + e^{j\frac{\pi}{2}t} \right]$$

$$= \frac{1}{\sqrt{2}} \times 2\cos(\frac{\pi}{3}t)$$

$$\Rightarrow$$
 $z(t) = \sqrt{z} \cos(\frac{\pi}{3}t)$