CH01 人工智慧、機器學習、 深度學習介紹

2 ANN

- 近年來人工智慧 Al (Artificial Intelligence) 吸引大眾與媒體的目光,尤其 AlphaGo 的成功更加吸引了大量的關注。
- 其實 AI 早已進入你我的生活中,你的手機的語音助理、人 臉識別、自動篩選有興趣的新聞、影音平台的每日推薦等。
- 人工智慧才剛起步而已,未來人工智慧的應用,將會深入 生活的每一個層面,也就是說未來是一個AI的時代。

1.1人工智慧、機器學習、深度學習的關係

人工智慧(Artificial Intelligence)

(電腦模擬人類思維過程,以模仿人類能力或行為的能力)

機器學習(Machine Learning)

(能從資料中學習並建立模型,可用於預測)

Strong Al Weak Al 監督式學習

非監督式學習

增強式學習

深度學習(Deep Learning)

(基於人工神經網絡的表徵學習)

DNN CNN

17

大數據Big Data分散式儲存

GPU、TPU平行運算

RNN

4 ANN

人工智慧(Artificial Intelligence)

○「人工智慧」(AI)名詞最早開始於1950年代

以電腦科學、生物學、心理學、語言學、數學、工程學為基礎的科學,將人類智能加以電腦化,使電腦具有思考、學習及解決問題的能力

- ○目標
 - 將人類的自然智慧實現於電腦上
 - 讓電腦像人類一樣思考與學習

5 ANN

人工智慧(Artificial Intelligence)

- 1980年代,約翰瑟爾(John Searle)提出人工智慧二分類
 - 強人工智慧(Strong AI):機器具有與人類相同完整的認知與智慧能力
 - 弱人工智慧(Weak AI):機器不具有與人類相同完整的認知能力, 只要設計得看起來像具有智慧即可
 - 目前大多數都是針對已模型化、數學化的特定問題建立的AI
 - o AlphaGo(圍棋)、Deep Blue(西洋棋)
 - ∘Watson使用自然語言來回答問題(危險邊緣)

http://www-07.ibm.com/tw/blueview/2011apr/watson.html

6 ANN

人工智慧(Artificial Intelligence)

○ 圖靈(Alan M. Turing):電腦科學與人工智慧之父

- ○「圖靈測試」(Turing Test)
- 人類與機器透過電傳設備對話
- 如果人類無法根據對話過程,判斷對方是機器或是人,就算 通過圖靈測試
- ○可認定這台機器具有人工智慧

● Google語音助理

7 ANN

機器學習(Machine Learning)

- o ML是AI的分支
- ML透過演算法,使用大量資料進行訓練,藉此產生特定模型
- 未來當有新的資料,便可以使用特定模型進行預測
- ML學習策略包括「監督式」、「非監督式」與「增強式」學習
 - 監督式學習(Supervised Learning):訓練時要給正確答案
 - 非監督式學習(Unsupervised Learning):沒有正確答案
 - 增強式學習(Reinforcement Learning): 做對給予獎勵

8 ANN

機器學習與傳統程式設計的比較

● 輸入資料與規則,就能得出答案:

優點:不需要大量資料與運算

缺點:程式設計必須加入所有規則,但是規則太多很難完全列舉。

輸入資料與答案,經過機器學習演算法訓練後,就能夠得出規則並且建立模型。後續可使用此模型輸入資料進行預測:

優點:能夠自動由資料中學習並且建立模型

缺點:需有大量資料並且需要大量運算

9 ANN

機器學習(ML)應用相當廣泛

- ○當前熱門應用
 - 推薦引擎、搜索引擎、定向廣告、垃圾郵件過濾、詐騙偵測
 - 自然語言處理、視覺辨識、語音識別、手寫識別
 - 醫學診斷、證卷分析、需求預測

10 ANN

深度學習(Deep Learning)

- ML的再分支,是目前AI應用中成長最快的領域
- 模擬人類神經網路的運作方式,常稱「類神經網路」(Artificial Neural Network, ANN)
- DL廣泛應用於自然語言處理、視覺辨識、語音識別、手寫識別等領域
- 常見的深度學習架構
 - 多層感知器(Multi-layer Perceptron, MLP)
 - 深度神經網路(Deep Neural Network, DNN)
 - ◆ 養積神經網路(Convolutional Neural Network, CNN)
 - 迴遞神經網路(Recurrent Neural Network, RNN)

11 ANN

為何近年來AI發展加速?

- 早在1960-70年代,科學家已提出各種機器學習演算法,但受限於電腦計算能力,以及大量資料取得不易,機器學習一直沒有很成功
- 近年來,隨著全球網路、設備與系統的連接,再加上分散式雲端儲存,例如:Hadoop、NoSQL等發展,大數據(Big Data)時代來臨
- ○加上大量伺服器的平行運算功能,例如:Spark,提供了龐大的運算 能量
- 大數據+高運算能力,推動機器與深度學習加速發展

12 ANN

GPU平行運算

- CPU (Central Processing Unit) 中央處理器 : 電腦的核心裝置,主要用 以解讀電腦指令以及處理資料運算
- GPU (Graphics Processing Unit) 圖形處理器:原本用來處理畫面像素的 運算,例如:電玩畫面需要大量圖形運算
- CPU 與 GPU 架構上不同: CPU 只有數顆核心,為循序處理進行最佳化;
 GPU 有數千個小型核心,可以發揮平行運算的強大功能

GPU具有數千顆核心

13 ANN

GPU平行運算

- 深度學習以大量矩陣運算模擬人類神經元運作,矩陣運算的特性是,單一運算都很簡單,但是需要大量運算,因此適合使用 GPU 進行平行運算。
- GPU透過大量核心進行平行運算,可讓深度學習的訓練速度比 CPU 快 10~75 倍,讓訓練時間縮短。

Tesla V100 16GB \$299,000 A100 Price ?

14 ANN

Reasons for adopting Al

Why is your organization interested in AI?

Percentage of respondents who somewhat or strongly agree with each statement

Where Is

ARTIFICIAL INTELLIGENCE

At Right Now?

111

2 out of 3

consumers are already using AI without even knowing they are interacting with chatbots.

Al will grow into a

\$190B

industry by 2025.

By the year 2020,

60%

of companies will be using artificial intelligence for driving digital revenue.

97%

of mobile users are already using Al-powered voice assistants.

· 71%

B2B marketers are interested in using AI for personalization.

16 ANN

1.2 機器學習介紹

- ML透過演算法,使用歷史資料進行訓練,藉此產生特定模型
- 未來有新的資料,便可以使用特定模型進行預測
 - ML的訓練資料是由Features、Label組成
 - ○資料特徵(Features):輸入變數,例如風向、風速、氣壓、溫度
 - ●資料標籤(Label):希望預測的目標,例如天氣(1:晴天、2:雨天、3:陰天、4:下雪)

17 ANN

機器學習模型之建立兩階段

監督式學習 - 以分類照片為例

1.為了能進行監督式學習訓練,我們必須每一張照片加註Label(標籤)為Dog或Cat。

2.進行訓練,訓練完成後產 生機器學習模型

3.訓練後,當有一張新照片, 我們就可以用此模型進行預測

19 ANN

1.3 機器學習分類

分類	細分類	Features (特徵)	Label (預測目標)
監督式學習	Binary Classification	濕度、風向、風速、	選項只有 0 與 1 (是非題)
	二元分類	季節、氣壓	0:不會下雨、1:會下雨
監督式學習	Multi-Class Classification 多元分類	濕度、風向、風速、 季節、氣壓	有多個選項(選擇題) 1:晴天、2:兩天、3:陰天、 4:下雪
監督式學習	Regression	濕度、風向、風速、	值是數值(計算題)
	回歸分析	季節、氣壓	溫度可能是 -50 ~ 50 度的範圍

20 ANN

機器學習分類

非監督式學習	Clustering 群集	濕度、風向、風速、 季節、氣壓···	沒有label (Cluster 集群分析);目的是將資料依照特徵,分成幾個相異性最大的群組,而群組內的相似程度最高
強化學習	Q-learning \ TD (Temporal Difference)		強化學習的原理,藉由定義:動作(Actions)、狀態(States)、 獎勵(Rewards)的方式,不 斷訓練機器循序漸進,學會執 行某項任務的演算法,常用於 動態系統及機器人控制等。

21 ANN

非監督式學習

Clustering 演算法 clustering集群演算法,將資料依照 特徵,分成幾個群組,群組內的相似 程度最高,群組之間的相異性最大。 ↑特徵3(風速) 特徵1(濕度) 特徵2(氣壓)

22 ANN

強化學習

Environment

強化學習(reinforcement learning)的原理,藉由定義:動作(Actions)、狀態(States) 獎勵(Rewards)的方式,不斷訓練機器循序漸進,學會執行某項任務的演算法。例如訓練機器玩小精靈:

- 動作:左/右/上/下
- 狀態:目前遊戲的畫面
- 獎勵:得分/被抓到

23 ANN

機器學習分類

機器學習Machine Learning

監督式學習Supervised Learning

分類Classification

二元分類Binary

多元分類 Multi Class

回歸分析Regression

線性回歸Linear

DNN Regression

非監督式學習

Unsupervised Learning

Clustering AutoEncoder

強化學習

Reinforcement Learning

Q-learning Deep Q-learning

1.4 深度學習簡介

人腦的重量大約一公斤多,結構非常複雜,預估具有860億個神經元,以及超過100兆條的神經相連,形成的網路比最先進的超級電腦還要強大。

但是因為人類神經網路太過複雜,為了方便以電腦模擬,將神經元分為多層次,來模擬神經網路通常會有1個輸入層、1個輸出層、隱藏層可以非常多層,所以稱為深度學習。

隱藏層可以非常多層, 所以稱為深度學習

25 ANN

深度學習的特性

深度學習模型能自動提取特徵

26 ANN

深度學習的特性

○ 資料量越大,深度學習表現越好

27 ANN

為什麼使用類神經建立DL網路

- 類神經網路在處理複雜的工作時
 - 不需要針對問題定義複雜的數學模式
 - 不用去解任何微分方程、積分方程或其他的數學方程式
 - 藉由學習來面對複雜的問題與不確定性的環境
- 使用ANN的原因
 - 聯想速度快(資料輸出比對或預測)
 - 網路架構容易維持
 - 具平行處理能力
 - 解決最佳化、非線性系統問題
 - 具容錯特性 (減少雜訊干擾)

28 ANN

類神經網路的特性

類神經網路擁有許多與人類大腦相同功能的特性,其中最重要的三項:(1) 學習(2)回想(3)歸納推演

(1) 學習 (Learning)

- 學習方法建立神經元間的連結模式、修正連結神經元間的權重、調整神經元活化函數中的門檻值、或是結合運用上述幾種方式
- 演算法可分成
 - 即時線上學習 (on-line learning) 依據新增或即時的資訊,不斷地修正調整網路的連結權重值
 - 批次學習(batch learning or off-line learning)先將網路訓練好才能開始使用網路,所有的訓練資料是一次一整批的用於修正網路的連結權重

29 ANN

- (2) 回想 (Recall)
- 當類神經網路接受到一個輸入刺激,進而依據網路架構產生一個輸出值,稱之為回想過程
- 像看到一個人的影像或聽到一個人聲音的同時,即可判斷認不認識這個人、這個人是誰、叫什麼名字等
- 回想的過程是否快速有效,影響著一個類神經網路的效能及強健性

30 ANN

- (2) 回想 (Recall)
- 前饋式類神經網路只反映出目前輸入資料,直接從網路儲存的案例找到一對應的輸出, 屬於瞬間表現的回想過程
- 回饋式類神經網路 輸入項與輸出項之間具互相連結的作用 時刻(†) 的輸出結果會回饋到下一時刻(†+1)成為輸入條件 因為映射關係不斷被修正與調整,故此一系統可視為動態系統 常用於描述非線性動態系統的行為

31 ANN

- (3) 歸納推演 (Generalization) 在哲學和邏輯學中
 - 演繹推理(deductive reasoning) 「從已知為事實的前提,『必然的』得出結論的推理」 如果前提為真,則結論必然為真
 - 歸納推理(inductive reasoning)
 「論證的前提支持結論,但『不確保』結論的推理」
 基於對特殊代表的有限觀察,把性質或關係歸結到類型
 或基於對反覆再現的現象的模式(pattern)的有限觀察,以公式表達
 規律

32 ANN

- (3) 歸納推演 (Generalization)
 - 從一個系統中局部觀察描述出其整體特性的過程
 - 不論是從特殊例子推演到整體的事件,或是從範例的認知去定義出物件的種類,稱為歸納推演過程
 - 讓我們找出所有可以適用於全部類別物件的重要因子
 - ○而非僅將記憶中的特殊事件運用於個別物件
 - 提供一個有效率的記憶與儲存模式
 - 若是沒有歸納推演過程,我們便可能需要以記憶與回想組合出無限個特殊事件、因子與關係

33 ANN

- (3) 歸納推演 (Generalization)
 - 類神經網路對輸入資料,具有特徵萃取的能力
 - 例如,可以訓練ANN辨識一組扭曲的字母 "A",然後網路能夠辨識 出另一組扭曲的字母 "A"
 - 也就是可以對過去訓練範例中沒見過的輸入作出正確的回應
 - 經過訓練的ANN,可以對曾見過但有些微差異的輸入訊號作出正確的輸出
 - 是網路模式中不可或缺的部分

34 ANN

適合使用類神經網路解決的問題

- 適合使用類神經網路解決的問題通常有以下的特徵
 - ○問題及相關條件難以完整定義
 - 需要快速得到問題解答且解答不用完全精確
 - ○問題非常複雜或是「非線性」的問題,無法由一連串已知的 數學方程式來描述並求得解答者

- 這些問題可歸納為下面幾類:
 - 1. 最佳化 (optimization)

2. 辨識/分類 (recognition /classification)

3. 預測 (prediction)

4. 評估、診斷/決策 (diagnosis /decision)

○ 這些問題可歸納為下面幾類:

5. 聯想 (association)

7. 歸納推演 (generalization)

6. 近似 (approximation)

37 ANN

機器學習與深度學習的關係

如上圖,深度學習的應用很廣泛,你可以將深度學習技術,應用在監督式學習、非監督式學習、強化學習等領域。

#38 ANN

Computer Science Data Science

Domain Knowledge

Ssas

企業級AI特色

43 ANN

結論

- 本章介紹AI、ML、DL、ANN的關係以及基本概念
- DL不同於傳統數學難以建立函式關係的困境,可藉由學習與記憶的 方式來處理複雜且具不確定性的問題
- 以大量平行分布的計算單位(神經元)所連結組成多層級的網路架構
- 具有從輸入的環境訊息中獲取並累積經驗、儲存知識,進而能加以 利用的智慧型演算程序
- ANN在處理樣本比對、分類、函數近似、最佳化(optimization)及 資料聚類等,都有很好的效果