Równoliczność zbiorów

Definicja. Zbiory *A* i *B* nazywamy równolicznymi lub tej samej mocy, jeżeli pomiędzy ich elementami istnieje bijekcja.

Często zbiory równoliczne będziemy nazywać równoważnymi.

Fakt, że dwa zbiory A i B są równoliczne, zapisujemy w postaci $A \sim B$, |A| = |B| lub $A \leftrightarrow B$.

Przyklad 1.

Funkcja ustalająca równoliczność zbioru kółeczek i zbioru kwadracików.

м

Teoria mnogości

Przyklad 2.

$$P = \{0 \ 2 \ 4 \ 6 \ 8 \ 10 \ 12 \dots \}$$
 $N = \{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \dots \}$

Zbiory P i N są nieskończone. Zbiór liczb parzystych jest podzbiorem zbioru liczb naturalnych. Funkcja $f(x) = x \ div \ 2$ jest bijektywnym odwzorowaniem zbioru P na zbiór N.

M

Teoria mnogości

Funkcja y = tg x jest bijektywnym odwzorowaniem zbioru liczb rzeczywistych na przedział otwarty $(-\pi/2, \pi/2)$.

Jeśli liczba elementów w zbiorze wynosi *n*, gdzie *n* jest liczba naturalną, to mówimy, że jest to zbiór *skończony*.

O dwóch zbiorach skończonych powiemy, że są równoliczne, gdy mają tyle samo elementów.

Zbior równoliczny ze zbiorem N liczb naturalnych nazywamy zbiorem przeliczalnym.

Zbior równoliczny ze zbiorem *R* liczb rzeczywistych nazywamy *zbiorem kontinualnym*.

Zbiory przeliczalne

- 1. Zbior liczb parzystych P jest przeliczalny, bo funkcja $f(x) = x \ div \ 2$ jest bijekcja pomiędzy zbiorami P i N.
- 2. Zbior liczb nieparzystych NP jest przeliczalny, bo funkcja f(x) = 2x+1 jest bijekcja pomiędzy zbiorami N i NP.
- 3. Zbiór liczb całkowitych Z jest przeliczalny, bo funkcja f(x) = 2x-1 dla x > 0 i f(x) = -2x dla $x \le 0$ jest bijekcja pomiędzy zbiorami Z i N.

Definicja. Mówimy, że zbiór A jest mocy $n \in N$ (lub skończonym) jeśli istnieje bijekcja $f: A \rightarrow \{0, ..., n-1\}$.

Najmniejszą nieskończonością jest ta którą posiadają liczby naturalne.

Definicja. Mówimy, że zbiór A jest mocy \Re_0 jeśli $A \sim N$ (|A|=|N|).

Definicja. Mówimy, że zbiór A jest mocy continuum (|A| = c), jeśli jest równoliczny ze zbiorem liczb rzeczywistych.

Definicja. Mówimy, że moc zbioru A jest mniejszej lub równej od mocy zbioru B (co zapisujemy jako $|A| \le |B|$) w. i t. w., gdy istnieje injekcja $f: A \rightarrow B$.

Oczywiście, jeśli A podzbiór zbioru B ($A \subseteq B$) to $|A| \le |B|$ ponieważ istnieje injekcja $f: A \rightarrow B$ taka że f(x) = x dla każdego $x \in A$.

Definicja. Mówimy, że zbiór A jest nieskończony, jeśli istnieje przeliczalny go podzbiór B.

м

Teoria mnogości

Twierdzenie (Cantor-Bernstein). Jeśli

$$|A| \le |B| \text{ oraz } |B| \le |A| \text{ to } |A| = |B|.$$

Dowód. Nie przedstawiamy dowodu tego stwierdzenia ze względu na jego złożoność ale będziemy go dalej używać.

Lemat. Nieskończony podzbiór *A* zbioru przeliczalnego *C* jest zbiorem przeliczalnym.

 $Dow \acute{o}d$. Niech B jest przeliczalny podzbiór zbioru A. Z tego mamy że $|B| \leq |A|$ i $|A| \leq |C|$.

Ale |B| = |N| i |C| = |N|. Z tego wynika, że $|N| \le |A|$ oraz $|A| \le |N|$, a więc na podstawie twierdzenia Cantora-Bernsteina otrzymujemy |A| = |N|.

v

Teoria mnogości

Twierdzenie. Zalóżmy, że |A| = |C|, |B| = |D|, $A \cap B = \emptyset$, $C \cap D = \emptyset$. Wtedy $|A \cup B| = |C \cup D|$. Dowód. Niech $f: A \rightarrow C$ oraz $g: B \rightarrow D$ będą bijekcjami.

Wtedy $h: A \cup B \to C \cup D$ określone wzorem h(x) = f(x) dla $x \in A$ i h(x) = g(x) dla $x \in B$ jest bijekcją pomiędzy $A \cup B$ i $C \cup D$.

Wniosek. Suma $A \cup B$ zbiorów przeliczalnych jest zbiorem przeliczalnym $(A \cap B = \emptyset)$.

Winika z tego, że |A| = |N|, |B| = |N|, |N| = |P|,

 $|N| = |NP|, P \cap NP = \emptyset i P \cup NP = N.$

Lemat. Jeśli A nieskończony zbiór, B zbiór przeliczalny (skończony) i $A \cap B = \emptyset$, to $|A \cup B| = |A|$.

Dowód. Niech *C* jest przeliczalny podzbiór zbioru *A*. Wtedy $|C \cup B| = |C|$. Z tego mamy, że $|A \cup B| = |A|$, ponieważ $A = (A \setminus C) \cup C$, $A \cup B = (A \setminus C) \cup (C \cup B)$ i $(A \setminus C) \cap (C \cup B) = \emptyset$, $(A \setminus C) \cap C = \emptyset$ ($|A \setminus C| = |A \setminus C|$, $|C \cup B| = |C|$ i twierdzenie).

Wniosek. Zbiory [0,1] i (0,1) są równolicznymi. Wynika z tego, że $[0,1] = (0,1) \cup \{0,1\}$.

Twierdzenie. $|N \times N| = \aleph_0$.

Dowód. Niech $f: N \times N \to N$ będzie funkcją określoną wzorem $f(n,m) = 2^n(2m+1)$ -1. Zauważmy, że funkcja f jest injektywna (różnowartościowa).

Rozważmy dowolną liczbę naturalna a. Istnieją wtedy takie liczby naturalne n i m, że $a + 1 = 2^n(2m+1)$. Więc funkcja f jest surjektywna (zadanie do domu).

Zatem f jest bijekcją pomiędzy zbiorami $N \times N$ oraz N.

м

Teoria mnogości

Twierdzenie. Załóżmy, że |A| = |C|, |B| = |D|. $Wtedy |A \times B|$ = $|C \times D|$.

Dowód. Niech $f: A \rightarrow C$ oraz $g: B \rightarrow D$ będą bijekcjami. Dla $(x,y) ∈ A \times B$ określamy h(x,y) = (f(x), g(y)). Wtedy h jest bijekcją pomędzy zbiorami $A \times B$ i $C \times D$.

Wniosek. Zbiór *Q* wszystkich liczb wymiernych jest zbiorem przeliczalnym.

Wynika to z tego, że |Z| = |N|. Zatem $|Z \times N| = |N \times N| = |N|$.

7

Teoria mnogości

Twierdzenie (Kantora). $|X| < |2^X|$, gdzie 2^X zbiór wszystkich podzbiorów zbioru X.

Dowód. Jeśli X jest zbiorem pustym, to twierdzenie jest prawdziwe, bo |X| = 0, $|2^X| = 1$.

Oczywiście $|X| \le |2^X|$ bo istnieje injekcja $f: X \to \{\{x\}, x \in X\}.$

Pokażemy że takie odwzorowanie nie może być surjektywnym. Przypuśćmy przeciwne. Wtedy dla każdego $A \subseteq 2^X$ istnieje $a \in X$ takie że f(a) = A. Rozważmy zbiór $Z = \{x \in X, x \notin f(x)\}.$

Oczywiście $Z \subseteq 2^X$. Więc istnieje a_0 takie że $f(a_0) = Z$.

v

Teoria mnogości

Rozważymy dwa możliwe przypadki:

- $1. a_0 \subseteq Z$
- 2. $a_0 \notin Z$.

W pierwszym przypadku z zalożenia $a_0 \in Z$ i na mocy definicji zbioru Z mamy $a_0 \notin f(a_0) = Z$. Sprzeczność.

W drugim przypadku jeżeli $a_0 \notin Z$ to ponieważ $f(a_0) = Z$, więc $a_0 \in f(a_0) = Z$. Sprzeczność.

Więc funkcja f nie noże być surjektywnej.

Twierdzenie. Zbiór A wszystkich funkcji $f: N \rightarrow \{0,1\}$ jest nieprzeliczalny.

Dowód. Niech taki zbiór jest przeliczalny. Więc, istnieje bijekcja g ze zbioru A w zbiór N. To oznacza że dla każdej funkcję f prawdziwe są równości g(f) = n i $g^{-1}(n) = f$.

Rozważmy ciągi wartości funkcji f_0, f_1, \dots :

$$f_0(0), f_0(1), f_0(2), \dots$$

 $f_1(0), f_1(1), f_1(2), \dots$
 $f_2(0), f_2(1), f_2(2), \dots$

$$\operatorname{gdzie} f_n = g^{-1}(n) .$$

٧

Teoria mnogości

Niech

$$h(i) = \begin{cases} 0, \text{ gdy } f_i(i) = 1\\ 1, \text{ gdy } f_i(i) = 0 \end{cases}$$

Funkcja h należy do zbioru A i różni się od wszystkich funkcji f_i . Jeżeli g(h) = m, to $g^{-1}(m) = h$. Ale $g^{-1}(m) = f_m$. To oznacza że g(h) = m, $g(f_m) = m$. Więc, odwzorowanie $g: A \leftrightarrow N$ nie jest injektywnym.

Lemat. Zbiór liczb rzeczywistych z przedziału (0,1) jest *nieprzeliczalny*.

Wniosek. Zbiór R liczb rzeczywistych jest zbiorem nieprzeliczalnym.

Winika z tego, że funkcja

$$f(x) = 1/\pi \ arctg \ x + 1/2$$

jest bijekcją pomiędzy zbiorami R i (0,1).

M

Teoria mnogości

Lemat. Suma $A \cup B$ zbiorów kontinualnych jest zbiorem kontinualnym.

Dowód. Niech *f*: *A* →(0,1/2) oraz *g*: *B* → [1/2,1) będą bijekcjami i $A \cap B = \emptyset$. Wtedy $|A \cup B| = |(0,1/2) \cup [1/2,1)| = |(0,1)| = \mathbf{c}$.

Jeśli $A \cap B \neq \emptyset$ to rozważmi zbiory $A \setminus (A \cap B)$ i B. Jeśli zbiór $A \setminus (A \cap B)$ jest kontinualnym to $|A \cup B| = |A \setminus (A \cap B) \cup B| = \mathbf{c}$. Jeśli zbiór $A \setminus (A \cap B)$ jest przeliczalny to $|A \cup B| = |A \setminus (A \cap B)$ $\cup B| = |B|$.

Liczby kardynalne

Definicja. Liczba kardynalna zbioru X jest moc zbioru X. Wieć,

- 1. liczbą kardynalną zbioru pustego jest 0.
- 2. liczbą kardynalną dowolnego zbioru skonczonego jest licz jego elementów.
- 3. zbiory równoliczne mają jednakowe liczby kardynalne.

Na moce rozważań na poprzednich slajdach i przyjentych definicji zbiór liczb naturalnych jest przeliczalny, a zbiór liczb rzeczywistych jest nieprzeliczalny. Stąd wniosek

$$c \neq \aleph_0$$
.

м

Teoria mnogości

Porównywanie liczb kardynalnych

Definicja. Nich $|X| = \alpha$, $|Y| = \beta$. Powiemy, że liczba kardynalna α jest mniejsza lub równa liczbie kardynalnej β ($\alpha \le \beta$) wtedy i tylko wtedy gdy istnieje injekcja $f: X \to Y$. Powiemy, że liczba kardynalna α jest mniejsza liczby kardynalnej β ($\alpha < \beta$) wtedy i tylko wtedy gdy istnieje injekcja $f: X \to Y$ i nie istnieje bijekcja $g: X \to Y$.

Wniosek. Ponieważ zbiór liczb naturalnych N jest podzbiorem zbioru liczb rzeczywistych R, zatem

$$\aleph_0 \leq c$$
.

Definicja. Dla dowolnych liczb kardynalnych α , β , γ ,

- 1. $\alpha \leq \alpha$,
- 2. jeśli $\alpha \le \beta$ i $\beta \le \gamma$, to $\alpha \le \gamma$,
- 3. jeśli $\alpha \le \beta$ i $\beta \le \alpha$, to $\alpha = \beta$ (Twierdzenie

Cantora-Bernstejna).

Czy istnieją inne liczby kardynalne niż \aleph_0 i c?.

Odpowiedż na to pytanie i metodę konstrukcji nieskończonego ciągu różnych liczb kardynalnych daje twierdzenie Cantora.

Zbiory M, 2^M , 2^{2^M} ... mają wszystkie różne moce.

W szczególności wynika stąd że $|N| < |2^N|$ i zbiór wszystkich podzbiorów zbioru N jest nieprzeliczalny.