111 下數位科技專案實作 期末報告

109033132 動機系 李臻茵 2023.07.13

Contents

1	Idea generation & Product definition	3
2	Hardware Structure	3
3	Software technology	4
	3.1 Version 1	. 4
	3.1.1 Architecture	4
	3.1.2 Key Details	5
	3.2 Version 2	
	3.2.1 Key Details	6
	3.2.2 Incomplete Verification	
4	Future Work	7
5	References	

^{*}Github link: https://github.com/teresasa0731/Home system HOST esp32

1 Idea generation & Product definition

透過這次修課的機會,希望可以網路傳輸協定與物聯網技術有基本的了解,故選擇學習開發一套居家系統,而這次的子專案則從建立整個系統的控制中心 System Host 開始,配合基本的三個功能來架設,分別為:

- a. Control:以LED 燈呈現對開關的控制訊號輸出。
- b. Monitor:分別以 Switch Button+LED 燈呈現靜態訪問的訊號輸入;以 HC-SR501 來呈現及時狀態的偵測。

c. Live Streaming

為了將問題模型化,並將焦點放在網路的連線溝通上,以上三個功能都以最基本的元件模擬;同時為了將來能夠對系統有完整的控制,包括記憶體分配與特殊硬體模式等的設計,因此選擇直接使用 ESP-IDF (Espressif IoT Development Framework) 做為此次 ESP32 硬件開發的軟體環境。

2 Hardware Structure

▲ Fig 1. Hardware circuit wiring diagram¹

▲ Fig 2-1. HC-SR501 with mask²

▲ Fig 2-2. Hardware circuit wiring diagram

¹ 修課同學提及之感測模組仍在測試中,尚未能展示。

² 透過增加錐狀遮罩(暫時以紙捲代替)來提高人體感測模組的指向性。

3 Software technology

前提及此次專題的重點是在學習網路傳輸的理論背景與應用,故在研究過由 esp32 的開發商 espressif 所提供的編譯環境 ESP-IDF 與範例後,先由單向訪問的 web server 技術開始建立 (ver.1),完成對周邊元件訊號的邏輯判斷後,加上 HTML 文本來將其架設成網站形式,開始透過網站做訪問。此版本中遇到的幾個瓶頸:

- a. HTML 文本難以維護,因此階段的按鈕指令發送給伺服器是透過連接至不同位址做發送,但因網域時常更動而需更改文本內容,而此文本為內嵌於主程式中,故每次更新都須重新編譯(build)及燒錄(flash),故在下一版加入 SPIFFS 檔案系統技術。
- b. 感測模組的訊號有即時性問題,這裡的做法是每 100ms 做輪詢,其過度消耗 CPU 的資源,故二版使用 web socket 的方式架構雙向溝通的伺服器。

3.1 version 1

將硬體端 esp32 當 static web server,由 web(client 端)對伺服器發起 HTTP request 進行單向訪問,伺服器經由網路接受 HTTP 請求後,透過 HTTP 協定傳送回復給客戶端。

3.1.1 Architecture

▲ Fig 3-1. Program Flow chart³

▼ Fig 3-2. Server-Client connection

4

³ 主程式碼請參照資料夾 systemHost Ver1/main.c

3.1.2 Key Details

(a) Multitasking

因當 CPU 進入 server 狀態後可視為在主程式架設好參數後,到 function 中服務,故為了同時能接受人體感測模組的訊號,對其做 multitasking 來分割事件。

```
xTaskCreate(Demo_Task, "Demo_Task", 4096, NULL, 10, &myTaskHandle);
server = start_webserver();
```

(b) HTML 文本

網站的部分希望能對前提及的三個功能提供資訊參考:

- a. 人體感測模組狀態 在硬體上以綠燈做為訊號顯示
- b. 透過網站按鈕控制硬體狀態 此處為控制紅燈做訊號顯示
- C. 來自 esp32eye 的影像資訊⁴ 目前先以照片的形式取代,因其易過熱

Fig 4. Website

◆ Fig 4. Ver1.html⁵

⁴ esp32 eye 程式來源為官方提供之範本(<u>https://github.com/espressif/esp-iot-solution</u>),可見資料來 pc server/

⁵ 可見資料夾 systemHost Ver1/ver1.html

3.2 version 2

改成使用 web socket + SPIFFS 的模式,除了將發送文檔打包而非內嵌於程式碼,在對 HTML 文本進行優化時能獨立處理,也實現 client 與 server 的雙向溝通機制,可以即時的 交換資訊,不用等待 client 端發出請求,或使用佔用資源的輪詢方式來實現,同時因 Handshake 後會保持連線狀態,所以每次通訊時所發出的請求就可省略掉一些關於連線狀態的資訊,提高連線效率。

3.2.1 Key Details

(a) SPIFFS

可以看到在 partition table 中,相較於舊版多要了一塊 flash 的空間作為 SPIFFS 的儲存位置(紅框處),就可將推送資訊放於額外的空間,在實作時也不需重新編譯,只需 燒錄更動的檔案即可(以此次專案而言即可以單獨優化 HTML 文本)。

(b) web socket vs web server

在功能 2(monitor)中,舊版的觸發方式來自於 client 端頻繁的發送請求,同時因監測的功能是分割在 task2(前所提及的 multitasking),故當 client 發送請求時,其實並非感測器當下的狀態,加上此次選擇的感測器訊號並非非常穩定,故在此部份是第一版比較缺失的地方;但透過 web socket 的方式,可以透過訊號觸發來讓伺服器端向用戶端推送資訊,且舊版若是在不同平台上操作,儘管接收同一伺服器的資訊,在未更新網頁前是不會收到最新的狀態的,改成用 web socket 後就可以同步刷新網站資訊。

3.2.2 Incomplete Verification⁶

因功能 2 的推送觸發仍在修正,故舊第二版預期能達到的目標而言,剩伺服器端在某些條件下(此專案即為當感測器觸發時要改變網頁端綠燈的狀態)主動發送資訊此功能未完善,其他諸如獨立 HTML 文本、建立 web socket 連線等皆已完成。

⁶ 此版本因 web socket 的程式推送仍在修正,目前 1.5 版本較為完善(可見資料夾 systemHost Ver1.5/)

4 Future work

(a) 完善網頁架構

考量到未來欲監控的電器,須對網頁做動態調整。

目前還無法將 esp32 eye 的影像同步在 web socket 的網頁上更新,僅 ver.1 能以 polling 詢問 esp32 eye 伺服器的影像,故仍需再研究。

(b) 硬件方面修正與設計

完成 Ver.2 後即可開始時做硬體的部分,大致如如何將市電控制與開發板結合、設計相應應用場景的模式等。

(c) 影像處理

學習影像辨識,設計並取得所需資訊(ex.人體偵測/環境辨識等),與居家系統的應用情境結合