

# B.E – ECE, VII Semester Project Seminar (U21PW719EC) Abstract Level Presentation on

## Title: Design and Implementation of Low Noise Amplifier using Cadence Virtuoso

**Batch Number: 2** 

| Roll No.        | Name of the Student    |  |
|-----------------|------------------------|--|
| 1602-21-735-110 | Salma Anjum            |  |
| 1602-21-735-111 | Sanjay B               |  |
| 1602-21-735-115 | Shivakalyan Gupta Pola |  |

**Under the Guidance of** 

Guide Name: Ramakrishna Reddy

**Designation:** Assistant Professor



#### **Outline of our Presentation**

- Introduction
- Literature Survey
- Motivation
- ❖ Aim and Objectives of the Project
- Block Diagram
- Implementation Plan
- Expected Results
- Progress
- Conclusions
- Applications
- References



#### What is LNA?

 A lower noise amplifier is an electronic amplifier that amplifies a very low amplitude signal without significantly degrading its signal to noise ratio.

#### What are the applications of LNA?

- Telecommunications
- Radio Astronomy
- Radar Systems
- GPS Receivers
- Wi-Fi and Wireless Communication
- Medical Devices
- Remote Sensing
- Satellite Communication



#### Why is it important?

- Improve Signal Sensitivity: Amplifies weak signals with minimal noise, crucial in communication systems.
- Enhance Signal-to-Noise Ratio (SNR): Reduces noise addition, preserving signal integrity.
- Enable Long-Distance Communication: Vital for receiving faint signals from satellites, radars, or remote sources.
- Minimize Data Loss: Helps ensure accurate signal transmission and reception, reducing the risk of data corruption.
- Optimize System Performance: Critical in systems where signal quality and reception sensitivity are paramount, like GPS, Wi-Fi, and medical devices.



#### What are the design parameters of LNA?

- Gain: The amplification factor of the input signal. It represents how much the signal is amplified, typically measured in dB.
- Noise Figure (NF): A measure of how much noise the LNA adds to the signal. Lower noise figures are desired, typically measured in dB.
- IIP3 (Input Third-Order Intercept Point): Indicates the linearity of the LNA representing how well it can handle high-power signals without distortion. It is typically measured in dBm.
- Input and Output Impedance: Refers to the impedance matching at the input and output ports, usually standardized at 50 ohms for RF systems, ensuring efficient signal transfer.
- Power Consumption: The amount of power the LNA consumes during operation, important for battery-operated or energy-sensitive applications, usually measured in milliwatts (mW).
- Bandwidth: The range of frequencies over which the LNA operates effectively. It defines
  the usable frequency range for the amplifier.



- What are the typical values of design parameters?
  - Noise Figure: 2dB
  - IIP3: -10dBm
  - Gain: 15dB
  - Input and output impedance: 500hm
  - input and output return loss: -15dB
  - Reverse Isolation: 20dB
  - Stability Factor: > 1



- What are the different configurations of LNA?
  - Common Source (CS) Configuration
  - Common Gate (CG) Configuration
  - Common Drain (CD) or Source Follower Configuration
  - Cascode Configuration
  - Differential LNA
  - Inductive Degeneration
  - Feedback Amplifier Configuration
  - Current Reuse Configuration
  - Distributed LNA



### **Literature Survey**

| S No | Paper Title: Year of publication                                                       | Implementation<br>Techniques                       | Specifications                                                                                                                                                                                                     |
|------|----------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | A Sub-mW, Ultra-Low-Voltage, Wideband Low-Noise Amplifier Design Technique.            | resistive-shunt feedback low-noise amplifier (LNA) | Voltage Gain: 12.6 dB Bandwidth: 0.1-7 GHz Noise Figure (NF): 5.5 dB IIP3: -9 dBm P1dB: -18 dBm Power Consumption: 0.75 mw Technology: 90-nm CMOS                                                                  |
| 2    | A 180-GHz Low-Noise Amplifier With<br>Recursive Z-Embedding Technique in<br>40-nm CMOS | Z-Embedding Technique                              | Gain: 14.8 dB at 180 GHz 3-dB Bandwidth: 11 GHz Noise Figure (NF): 11.0 dB Power Consumption: 23.9 mw Technology: 40-nm CMOS                                                                                       |
| 3    | Ultralow-Power W-Band Low-Noise<br>Amplifier Design in 130-nm SiGe<br>BiCMOS           | Common-source (CS)                                 | Frequency Band: Ku-band (13 GHz) Noise Figure (NF): 1.94 dB Peak Gain: 19.98 dB Input 1-dB Compression Point (IP1dB): - 7.8 dBm Output I-dB Compression Point (OP1dB): Not specified Power Consumption: 10 mA @ 1V |



### **Literature Survey**

| S No | Paper Title: Year of publication                                                               | Implementation Techniques           | Specifications                                                                                                                                                                                                                      |
|------|------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4    | CMOS RF Low-Noise Amplifier Design for<br>Variability and Reliability                          | adaptive substrate bias             | Operating frequency: 24GHz Technology: 65nm CMOS                                                                                                                                                                                    |
| 5    | A 180-GHz Low-Noise Amplifier With Recursive Z-Embedding Technique in 40-nm CMOS               | Low-imbalance active balun topology | Frequency Band: 0.2 to 3.3 GHz Gain Tuning Range: 45 dB Noise Figure (NF): 3.4 dB Power Consumption: 19 mw Supply Voltage: 1.2 V Technology: 130-nm CMOS                                                                            |
| 6    | A 20 MHz–2 GHz Inductor less Two-Fold<br>Noise-Canceling Low-Noise Amplifier in 28-<br>nm CMOS | Common Gate and Common Source       | Frequency Band: 0.02-2 GHz Minimum Noise Figure (NF): 2.5 dB Input Return Loss (SII): < -15 dB Power Gain (-3dB, S21): 18.5 dB Input Third-Order Intercept Point (IIP3): +4.25 dBm Power Consumption: 4.1 mw Technology: 28-nm CMOS |
| 7    | Ultra-Low Noise Amplifier Design for Magnetic Resonance Imaging systems                        | Cascode amplifier topology          | Operation Frequency: 32 MHz Noise Figure (NF): 0.45 dB (at 50 Q) Gain: 11.6 dB Output Return Loss: 21.1 dB Input Return Loss: 0.12 dB Stability: Unconditionally stable up to 6 GHz                                                 |



#### **Motivation**

Low-noise amplifiers (LNAs) are essential components in modern electronics.

Their importance in various applications, including wireless communication, radar, and satellite systems, motivated us to take on an LNA project.

The challenges associated with designing efficient and integrated LNAs, combined with the potential for skill development, and publication opportunities, made it a compelling choice.



#### **Aim and Objectives**

Aim: It is proposed to design and develop a Low noise amplifier for the given specifications.

#### **Objectives:**

- 1. Select a Topology
- 2. Design using selected Topology
- 3. Performing initial transient analysis and frequency analysis on the designed circuit
- 4. DC Simulation and adjusting DC Bias to meet the necessary frequency characteristics of 2.4Ghz
- 5. Making circuital changes and resimulating the design until the desired noise factor of <6db is reached.
- 6. Re- design and resimulate until the necessary IIP3 values are fulfilled, and change the input and output sections to meet impedance requirements.



### **Block Diagram**





#### Plan for the implementation of Project

- •Input Matching Network: This circuit is used to match the impedance of the antenna to the input impedance of the amplifier, ensuring maximum power transfer.
- •Gain: This is the core component of the amplifier, responsible for amplifying the input signal.
- •Output Matching Network: This circuit is used to match the output impedance of the amplifier to the impedance of the subsequent stages, ensuring maximum power transfer.
- •To subsequent stages: This indicates that the amplified signal is then passed on to the next stages in the RF system, such as a mixer or filter.



### **Expected Results**

| Parameter              | Value   |
|------------------------|---------|
| Noise Figure           | <6dB    |
| Gain                   | >15dB   |
| IIP3                   | >-10dBm |
| Input Impedance        | 50ohm   |
| Output Impedance       | 50ohm   |
| Frequency of operation | 2.4Ghz  |



### **Progress so far**

### What we have done?

- Researched about different available LNA topologies.
- Performed Noise factor calculations for all the existing topologies.
- Decided upon inductive degenerated LNA for optimal noise performance.



### **Important Formulae and equations**

- Amplifier S matrix:  $[S] = \begin{pmatrix} s_{11} & s_{21} \\ s_{12} & s_{22} \end{pmatrix}$
- Source reflection coefficient:  $\Gamma_s$
- Load reflection coefficient:  $\Gamma_L$
- Input reflection coefficient:  $\Gamma_{in} = s_{11} + \frac{s_{12}s_{21}\Gamma_L}{1 s_{22}\Gamma_L}$
- Output reflection coefficient:  $\Gamma_{out} = s_{22} + \frac{s_{12}s_{21}\Gamma_S}{1 s_{11}\Gamma_S}$

$$F_{\text{tot}} = F_{\text{LNA}} + \frac{F_{\text{afterLNA}} - 1}{G_{\text{LNA}}}$$



### **Important Formulae and equations**

Mosfet high frequency model with noise sources



$$F = 1 + \frac{R_g}{R_s} + \frac{\left(\frac{\gamma}{\alpha}\right)g_m}{R_s} \left(\frac{\omega}{\omega_T}\right)^2 \left(R_s + R_g\right)^2$$

$$\approx 1 + \frac{R_g}{R_s} + \left(\frac{\gamma}{\alpha}\right)\left(\frac{\omega}{\omega_T}\right)^2 g_m R_s$$

$$R_{s,opt} = R_s = \frac{\omega_T}{\omega} \sqrt{\frac{R_g}{\alpha}g_m}$$



### **Important Formulae and equations**

Thermal noise for resister and mosfet are:

Resistor: 
$$\overline{v_g^2} = 4kTR_g$$

Mosfet: 
$$\overline{i_d^2} = 4kT \frac{\gamma}{\alpha} g_m$$



### Different Topologies and their noise factors

$$Noise\ Factor = rac{Signal\ to\ noise\ ratio\ at\ input}{Signal\ to\ noise\ ratio\ at\ output}$$



**Resistive Termination LNA** 

$$F = 1 + \frac{R_m^2}{R_s^2} + \frac{4\gamma}{\alpha g_{m1} R_s} = 2 + \frac{4\gamma}{\alpha g_{m1} R_s}$$



#### Resistive Shunt Feedback LNA

$$F = 1 + \frac{R_m^2}{R_s^2} + \frac{4\gamma}{\alpha g_{m1} R_s} = 2 + \frac{4\gamma}{\alpha g_{m1} R_s}$$

$$F = 1 + \frac{R_f}{R_s} \left( \frac{1 + g_{m1} R_s}{1 - g_{m1} R_f} \right)^2 + \frac{1}{R_s R_L} \left( \frac{R_f + R_s}{1 - g_{m1} R_f} \right)^2 + \frac{\gamma g_{m1}}{\alpha R_s} \left( \frac{R_f + R_s}{1 - g_{m1} R_f} \right)^2$$



### Different Topologies and their noise factors

$$Noise\ Factor = rac{Signal\ to\ noise\ ratio\ at\ input}{Signal\ to\ noise\ ratio\ at\ output}$$



#### **Common Gate LNA**

$$F = 1 + \frac{\overline{i_{nd}^{2}} \left(\frac{1}{1 + g_{m}R_{s}}\right)^{2}}{e_{ns}^{2} \left(\frac{g_{m}}{1 + g_{m}R_{s}}\right)^{2}} = 1 + \frac{\gamma g_{d0}}{g_{m}^{2}R_{s}}$$

Under the input matching condition: Rs=1/gm we have:

$$F = 1 + \frac{\gamma g_{d0}}{g_m} = 1 + \frac{\gamma}{\alpha} = \begin{cases} \frac{5}{3} = 2.2dB & \text{Long channel} \\ \geq 3 = 4.8dB & \text{Short channel} \end{cases}$$



### **Different Topologies and their noise factors**

$$Noise\ Factor = rac{Signal\ to\ noise\ ratio\ at\ input}{Signal\ to\ noise\ ratio\ at\ output}$$



#### Inductive Degenerated LNA

$$F = \frac{\overline{i_{no}^2}}{G_m^2 \overline{v_{R_s}^2}} = 1 + \frac{R_g}{R_s} + \frac{\gamma}{\alpha} g_m R_s \left(\frac{\omega_o}{\omega_T}\right)^2$$



### Current LNA design we are working on:





## Consolidated report of available topologies and their noise factors

| Topology                        | Noise factor                                                                                                                                                                                                                            | Input matching |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Mos amplifier                   | $1 + \frac{R_g}{R_s} + \left(\frac{\gamma}{\alpha}\right) \left(\frac{\omega}{\omega_T}\right)^2 g_m R_s$                                                                                                                               | No             |
| Resistive<br>Termination LNA    | $1 + \frac{R_m^2}{R_s^2} + \frac{4\gamma}{\alpha g_{m1} R_s} = 2 + \frac{4\gamma}{\alpha g_{m1} R_s}$                                                                                                                                   | No             |
| Resistive Shunt<br>Feedback LNA | $1 + \frac{R_f}{R_s} \left( \frac{1 + g_{ml} R_s}{1 - g_{ml} R_f} \right)^2 + \frac{1}{R_s R_L} \left( \frac{R_f + R_s}{1 - g_{ml} R_f} \right)^2 + \frac{\gamma g_{ml}}{\alpha R_s} \left( \frac{R_f + R_s}{1 - g_{ml} R_f} \right)^2$ | No             |
| Common Gate<br>LNA              | $1 + \frac{\overline{i_{nd}^2} \left(\frac{1}{1 + g_m R_s}\right)^2}{e_{ns}^2 \left(\frac{g_m}{1 + g_m R_s}\right)^2} = 1 + \frac{\gamma g_{d0}}{g_m^2 R_s}$                                                                            | No             |
| Inductive<br>Degenerated LNA    | $\frac{\overline{i_{no}^2}}{G_m^2 \overline{v_{R_s}^2}} = 1 + \frac{R_g}{R_s} + \frac{\gamma}{\alpha} g_m R_s \left(\frac{\omega_o}{\omega_T}\right)^2$                                                                                 | matched        |



### **Consolidated report of available topologies**

|                             | Resistive<br>Termination  | Common<br>Gate      | Shunt<br>Feedback            | Inductive<br>Degeneration                   |
|-----------------------------|---------------------------|---------------------|------------------------------|---------------------------------------------|
| Noise Figure                | >6dB                      | 3~5dB               | 2.8~5dB                      | ~2dB                                        |
| Gain                        | 10~20dB                   | 10~20dB             | 10~20dB                      | 15~25dB                                     |
| Sensitivity to<br>Parasitic | Less                      | Less                | Less                         | Large                                       |
| Input Matching              | Easy                      | Easy                | Easy                         | Complex                                     |
| Linearity                   | -10~10dBm                 | -5~5dBm             | -5~5dBm                      | -10~0dBm                                    |
| Power                       | 1~50mW                    | ~5mW                | >15mW                        | >10mW                                       |
| Highlight                   | Effortless input matching | Easy input matching | Broadband input/out matching | Good<br>narrowband<br>Matching,<br>small NF |
| Drawback                    | Large NF                  | Large NF            | Stability                    | Large area                                  |



#### **Conclusions**

The LNA developed for long-distance communication successfully addresses the challenges of noise reduction and bandwidth limitations. By effectively amplifying weak signals while minimizing noise, this LNA enhances the sensitivity and reliability of communication systems over vast distances. The optimized design and implementation of the LNA contribute to improved data transmission and reception, enabling more efficient and reliable long-distance communication services.



### **Applications**

- Telecommunications
- Radio Astronomy
- Radar Systems
- GPS Receivers
- Wi-Fi and Wireless Communication
- Medical Devices
- Remote Sensing
- Satellite Communication



#### References

- A Sub-mW, Ultra-Low-Voltage, Wideband Low-Noise Amplifier Design Technique.
- RF Circuits and Systems: Low Noise Amplifiers Prepared by: Heng Zhang
- A 180-GHz Low-Noise Amplifier With Recursive Z-Embedding Technique in 40-nm CMOS
- Ultralow-Power W-Band Low-Noise Amplifier Design in 130-nm SiGe BiCMOS
- CMOS RF Low-Noise Amplifier Design for Variability and Reliability
- A 180-GHz Low-Noise Amplifier With Recursive Z-Embedding Technique in 40-nm CMOS
- A 20 MHz–2 GHz Inductor less Two-Fold Noise-Canceling Low-Noise Amplifier in 28-nm CMOS
- Ultra-Low Noise Amplifier Design for Magnetic Resonance Imaging systems Mustafa A. Kabel Lyngby –
   Denmark
- Foundations for Microwave Engineering SECOND EDITION Robert E. Collin
- RF Microelectronics by Behzad Razavi
- CMOS Analog Circuit Design by Phillip E. Allen, Douglas R. Holber



### **Thank You**