Announcements

Midterm 2

- Mon, 11/9, during lecture
- See Piazza for details

Schedule change

- Lecture on Friday instead of recitation
- Pre-recorded
- Suggested that you watch during your recitation timeslot
- TAs will be available during the Zoom session
- Any polls will be open all day

Plan

Last Time

- Generative models $\operatorname{argmax}_{\theta} p(x \mid y, \theta) p(y \mid \theta)$
- Naïve Bayes $\operatorname{argmax}_{\theta} \prod_{m=1}^{M} p(x_m \mid y, \theta) p(y \mid \theta)$

Today

- Wrap up generative models and naïve Bayes
- Probability primer
- Bayes nets
- Markov chains.

Wrap Up Generative Models and Naïve Bayes

Generative models and naïve Bayes slides...

Plan

Last Time

- Generative models p(x, y) = p(x | y) p(y)
- Naïve Bayes $p(x,y) = \prod_{m=1}^{M} p(x_m \mid y) p(y)$

Today

- Bayes nets $p(z_1, z_2, z_3, z_4, z_5) = \prod_i p(z_i \mid parents(z_i))$
- Markov chains $p(y_1, y_2, y_3, ...) = p(y_1) p(y_2 | y_1) p(y_3 | y_2) ...$

Next Time

Hidden Markov models

Introduction to Machine Learning

Bayes Nets & Markov Chains

Instructor: Pat Virtue

Outline

- 1. Probability primer
- 2. Generative stories and Bayes nets
 - Bayes nets definition
 - Naïve Bayes
 - Markov chains

Our toolbox

- Definition of conditional probability
- Product Rule

Bayes' theorem

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

$$P(A,B) = P(A \mid B)P(B)$$

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

Discrete Probability Tables

Random variables, outcomes, and discrete distributions

- Capital letters/words are random variables and represent all possible discrete outcome
- Lowercase letters/words are specific outcomes of a random variable
- Example: Random variable Weather(W) with three outcomes, sun, rain, snow

Discrete probability tables

 The probability distribution for discrete random variables can be represented as a table of parameters for each outcome, i.e. a Categorial distribution

W	P(W)
sun	0.5
rain	0.4
snow	0.1

Discrete Probability Tables

Joint distribution tables

- Tables contain entries of all possible combinations of outcomes for the multiple random variables
- Joint tables should sum to one
- Example: Random variables
 Weather (W) and
 Traffic (T)

W	T	P(W,T)
sun	light	0.40
rain	light	0.12
snow	light	0.01
sun	heavy	0.10
rain	heavy	0.28
snow	heavy	0.09

Discrete Probability Tables

Conditional probability tables (CPT)

- Tables can contain entries of all possible combinations of outcomes for the multiple random variables
- Joint tables won't necessarily sum to one. Why not?
- Example: Random variables
 Weather (W) and
 Traffic (T)

W	T	$P(T \mid W)$
sun	light	8.0
rain	light	0.3
snow	light	0.1
sun	heavy	0.2
rain	heavy	0.7
snow	heavy	0.9

Piazza Poll 2

Variables, all binary

■ B: Burglary

■ A: Alarm goes off

■ M: Mary calls

■ J: John calls

■ E: Earthquake!

How many parameters are in the table P(B, A, M, J, E)?

A. 1

B. 5

C. 10

D. 25

 E_{*} 2⁵

F. 5!

Image: http://ai.berkeley.edu/

Our toolbox

Product Rule

$$P(X_1, X_2) = P(X_1 | X_2)P(X_2)$$

Chain Rule

$$P(X_1, X_2, X_3) = P(X_1 \mid X_2, X_3) P(X_2, X_3)$$

$$= P(X_1 \mid X_2, X_3) P(X_2 \mid X_3) P(X_3)$$

$$P(X_1, ..., X_N) = \prod_{n=1}^{N} P(X_n \mid X_1, ..., X_{n-1})$$

Piazza Poll 3

Variables

■ B: Burglary

■ A: Alarm goes off

■ M: Mary calls

■ J: John calls

■ E: Earthquake!

How many different ways can we write the chain rule for P(B, A, M, J, E)?

A. 1

B. 5

C. 5 *choose* 5

D. 5!

 $E. 5^5$

Image: http://ai.berkeley.edu/

Marginalization

$$P(A) = \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} P(A, b, c)$$

Normalization

$$P(B \mid a) = \frac{P(a, B)}{P(a)}$$

$$P(B \mid a) \propto P(a, B)$$

$$P(B \mid a) = \frac{1}{z}P(a, B)$$

$$z = P(a) = \sum_{b} P(a, b)$$

Independence

If A and B are independent, then:

$$P(A,B) = P(A)P(B)$$

$$P(A \mid B) = P(A)$$

$$P(B \mid A) = P(B)$$

Conditional independence

If A and B are conditionally independent given C, then:

$$P(A,B \mid C) = P(A \mid C)P(B \mid C)$$

$$P(A \mid B,C) = P(A \mid C)$$

$$P(B \mid A,C) = P(B \mid C)$$

Generative Stories and Bayes Nets

Fire, Smoke, Alarm

Generative story and Bayes net

Assumptions

Joint distribution

Image: http://ai.berkeley.edu/

Bayesian Networks

Bayes net

One node per random variable

Directed-Acyclic-Graph

One CPT per node: P(node | Parents(node))

$$P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B,C)$$

Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$

Bayesian Networks

Bayes net

One node per random variable

Directed-Acyclic-Graph

One CPT per node: P(node | Parents(node))

$$P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|C)$$

Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$