Subnet Addressing

- Subnet addressing introduces another hierarchical level
 - Part of original "Host ID" becomes "Subnet ID"

Subnet Addressing

Cpr E 489 -- D.Q.

Cpr E 489 -- D.Q.

- Subnet addressing introduces another hierarchical level
 - subnet address = IP address AND subnet mask

Subnet Addressing

- 1) Subneti are specified by subnet address and subnetimesk
- 3 Subnets shall not overlap, if assigned to diff parties

Cpr E 489 -- D.Q.

Subnet Addressing

Subnet Addressing

Cpr E 489 -- D.Q.

Supernet Addressing

Supernet Addressing

Cpr E 489 -- D.Q.

Supernet Example

- Example:
 - → A supernet contains 16 Class C blocks:

• From 11001101 01100100 00000000 00000000

(205.100.0.0)

• Up to 11001101 01100100 00001111 00000000 \

(205.100.15.0)

▶ The common network prefix is

11001101 01100100 0000

supernet address = 11001101 01100100 00000000 00000000

supernetia

network mask = 11111111 1111111 11110000 000000000

⇒ supernet address = IP address AND network mask = ≥05.100.0

▶ Slash notation for this supernet is 205.100.0.0/20

Cpr E 489 -- D.Q.

Supernet Example

Dest Mask Next-hop Int

$$205.100.0.0$$
 120
 11
 11
 12
 12
 12
 12

205,100.0.

Effect of Supernet Addressing on Routing

- With supernet addressing, routing is according to the supernet address (or, the network prefix) of an IP address, not its class
 - This is known as CIDR (Classless Inter-Domain Routing)
 - CIDR collapses a block of contiguous Class C address blocks into a single entry in the routing table
 - Example: 205.100.0.0/20
 - Pre-CIDR: destination network with 16 contiguous Class C address blocks requires 16 entries in the routing table
 - Post-CIDR: destination network with 16 contiguous Class C address blocks only requires 1 entry in the routing table

Cpr E 489 -- D.Q.

Longest Prefix Match

- With CIDR, multiple routing table entries may match a given IP destination address
- Example: routing table may contain
 - ▶ 205.100.0.0/20 corresponds to a given supernet
 - 205.100.0.0/22 corresponds to another supernet resulted from aggregation of a smaller number of addresses
 - Longest Prefix Match
 - Packet must be routed using the most specific route
 - → routing table entry corresponding to the smallest supernet
 - → longest prefix match
 - Several fast longest-prefix matching algorithms are available

Supernet Addressing

- Supernet Addressing allows the addresses assigned to a single organization to span multiple classed address blocks
 - Classless Addressing
- Why was classless addressing adopted?
 - Class B is too large for most organizations
 - At the rate Class B numbers were being assigned, Class B prefixes would be exhausted quickly
 - Class C is too small
 - Supernet Addressing is short-term solution
 - ▶ Long-term solution: IPv6 with much bigger address space

Cpr E 489 -- D.Q.