Воспроизведение результатов статьи в py_graphs.

Владимир Ивашкин

17 июля 2018 г.

2 Logarithmic vs. plain measures

Здесь RI, а не ARI

Рис. 1: Logarithmic vs. plain measures for G(100, (2)0.2, 0.05)

Рис. 2: Logarithmic vs. plain measures for G(100,(3)0.3,0.1)

Рис. 3: Logarithmic vs. plain measures for G(200, (2)0.3, 0.1)

3 Competition by Copeland's score

 $\quad \text{For} \quad$

-390

-564

Nodes	100	100	100	100	200	200	200	200	Sum
Classes	2	2	4	4	2	2	4	4	\mathbf{of}
$p_{ m out}$	0.1	0.15	0.1	0.15	0.1	0.15	0.1	0.15	scores
logComm	383	547	476	-66	301	565	592		2798
Comm	249	150	308	418	291	212	325		1953
SCCT	316	299	166	44	293	392	412		$\boldsymbol{1922}$
logHeat	308	314	180	-264	301	321	343		1503
pWalk	-81	26	56	418	-105	-155	6		165
SCT	-74	36	78	44	47	-24	44		151
Heat	221	-342	-456	418	295	205	-478		-137
RSP	-96	4	62	-272	-32	-85	-30		-449
Walk	-90	-26	78	-222	-149	-125	-26		-560
logFor	-92	-44	-24	-264	-63	-92	-32		-611
FE	-202	-64	-44	-224	-135	-169	-134		-972
For	-387	-566	-456	418	-525	-574	-478		-2568
SP-CT	-455	-334	-424	-448	-519	-471	-544		-3195
		()							
(a) optimal parameters									
\mathbf{Nodes}	100	100	100	100	200	200	200	200	\mathbf{Sum}
Classes	2	2	4	4	2	2	4	4	of
$p_{ m out}$	0.1	0.15	0.1	0.15	0.1	0.15	0.1	0.15	scores
logComm	413	568	448	356	332	568	598	598	3881
SCCT	269	274	136	78	340	391	423	360	2271
logHeat	318	183	290	142	340	273	202	98	1846
Comm	168	151	222	172	286	258	333	178	1768
SCT	58	92	46	90	26	45	38	104	499
logFor	-114	60	56	110	-55	-115	4	88	34
Walk	-84	-10	132	86	-140	-85	30	66	-5
pWalk	-125	-40	54	74	-163	-79	-2	-14	-295
FE	-198	-27	-27	120	-120	-186	-66	32	-472
RSP	-151	-1	-8	78	-138	-179	-106	-16	-521
	200	0.41		400	0.40	1 1 4	417	E1E	1 479
Heat	299	-341	-502	-490	340	154	-417	-515	-1472
Heat SP-CT	299 -463	-341 -345	-502 -320	-490 -228	-558	-462	-417 -446	-315 -396	$-1472 \\ -3218$

(b) 90th percentiles

-588

-490

-583

-591

-583

-4377

-588

Таблица 1: Copeland's scores of the measure families on random graphs

4 Reject curves

Пересчитал параметры с новым усреднением (по 100 графов вместо 50):

Measure (kernel)	G(100, (2)0.3, 0.05) old \rightarrow new param	G(100, (2)0.3, 0.1) old \rightarrow new param	G(100, (2)0.3, 0.15) old \rightarrow new param
pWalk	$0.93 \to 0.94$	$0.87 \to 0.88$	$0.73 \to 0.84$
Walk	$0.93 \to 0.92$	$0.67 \to 0.70$	$0.70 \to 0.70$
For	$0.60 \to 0.90$	$0.97 \rightarrow 0.98$	$0.40 \to 0.66$
$\log For$	$0.70 \to 0.62$	$0.40 \rightarrow 0.54$	$0.10 \rightarrow 0.32$
Comm	$0.33 \to 0.40$	$0.33 \to 0.34$	$0.30 \to 0.28$
logComm	$0.33 \to 0.36$	$0.47 \rightarrow 0.48$	$0.57 \to 0.78$
Heat	$0.37 \to 0.36$	$0.60 \to 0.82$	$0.73 \to 0.74$
logHeat	$0.37 \to 0.48$	$0.53 \rightarrow 0.48$	$0.37 \to 0.34$
SCT	$0.40 \to 0.44$	$0.57 \rightarrow 0.42$	$0.43 \to 0.48$
SCCT	$0.03 \to 0.02$	$0.57 \rightarrow 0.58$	$0.63 \to 0.46$
RSP	$0.97 \to 0.98$	$0.97 \rightarrow 0.96$	$0.97 \to 0.94$
FE	$0.90 \rightarrow 0.96$	$0.90 \rightarrow 0.86$	$0.87 \rightarrow 0.74$
SP-CT	$0.00 \rightarrow 0.04$	$0.03 \rightarrow 0.02$	$0.07 \to 0.04$

Таблица 2: Optimal family parameters and the corresponding ARI's

Ниже разместил картинку со всеми метриками, по горизонтали меняются параметры графов (G(100,(2)0.3,0.05),G(100,(2)0.3,0.1),G(100,(2)0.3,0.15)), по вертикали – меры. Картинка не очень удобная, но ее можно приблизить. Она позволяет посмотреть еще на то, как меняются графики в зависимости от p_{out} . Ниже повторю центральную колонку крупнее.

Рис. 4: Reject curves for the graph measures under study

Все графики вместе, без SP и CT:

Рис. 5: Average reject curves

На рисунке 4 мы видим, что SP выглядит совсем странно. Но наверное это можно объяснить как: для невзвешенных графов слишком много расстояний между вершинами будут иметь одно и то же расстояние. Хорошо, а похож ли pWalk на SP? Сравним:

Рис. 6: pWalk vs SP

В целом похоже, по крайней мере два из трех проседаний pWalk соответствуют таковым для SP. Забавно, что такие странности не видны на графике SP-CT. Правда, для SP-CT параметр 0 обозначает CT, а оптимальные параметры здесь порядка 0.04

Старые комментарии:

- 1. Ошибка была в том, что подобранные параметры из таблицы выше принадлежат к диапазону [0,1], а значит их нужно преобразовывать к диапазону, специфичному для конкретной метрики. Я же этого не делал.
 - Вторая ошибка состояла в том, что я использовал тут близости вместо расстояний. Еще тогда, когда я строил их в прошлый раз, я заметил, что по близостям logComm совсем не обгоняет остальные меры, но по расстояниям эффект выраженный.
- 2. Здесь была проблема со взятием корня из Comm/logComm. А проблема была такая: если некоторые значения матрицы D при взятии корня превращаются в nan, то стандартная сортировка оставляет их на тех же позициях и отдельно сортирует массив слева и справа от них. Получается кусочно-возрастающая функция, из которой потом получаются несколько маленьких reject curve вместо одной большой. Решение фильтровать эти nan и сортировать без них. Раз такой эффект вообще возник, значит в матрице D иногда появляются отрицательные значения.

Можно подозревать внешний вид графика pWalk. Может быть, это связано с тем, как мы фиксируем параметр. Параметром считаем отскалированое в [0, 1] число, для каждого графа преобразуем его в зависимости от спектрального радиуса матрицы A ($param = t/\rho(A)$), $t \in [0, 1]$).

5 Graphs with classes of different sizes

Рис. 7: Graphs with two classes of different sizes: clustering with optimal parameter values

Рис. 8: Graphs with two classes of different sizes: random parameter values

$$P = \begin{pmatrix} 0.30 & 0.20 & 0.10 & 0.15 & 0.07 & 0.25 \\ 0.20 & 0.24 & 0.08 & 0.13 & 0.05 & 0.17 \\ 0.10 & 0.08 & 0.16 & 0.09 & 0.04 & 0.12 \\ 0.15 & 0.13 & 0.09 & 0.20 & 0.02 & 0.14 \\ 0.07 & 0.05 & 0.04 & 0.02 & 0.12 & 0.04 \\ 0.25 & 0.17 & 0.12 & 0.14 & 0.04 & 0.40 \end{pmatrix}.$$

7

6 Cluster analysis on several classical datasets

3десь ошибка была в том, что я зафиксировал число классов – 2, хотя в датасете football их 12. Теперь все похоже на статью:

 ${\it Puc.}$ 9: ARI of various measure families on classical datasets