Università degli Studi di Trento

Laboratorio di Fisica II

Corrente continua: prima legge di Ohm, circuiti con diodi e resistori

Autori - Gruppo L02 Appoloni Alberto Malvezzi Alberto

26 ottobre 2020

1 Introduzione

L'esperienza riguarda la verifica sperimentale del valore nominale di una resistenza, attraverso la prima legge di Ohm: V = RI, dove V è la differenza di potenziale, R la resistenza e I la corrente che attraversa il conduttore. Costruiremo due circuiti differenti e misureremo la resistenza attraverso coppie di misure i-V.Confronteremo i valori ottenuti con quello misurato attraverso il DMM.

In seguito faremo uso di diodo raddrizzatore e di diodo a polarizzazione inversa per ricavare nuove curve i-V.

Verificheremo poi il funzionamento del partitore resistivo, componente circuitale che permette di creare una sorgente FEM variabile in un certo intervallo $[0, \epsilon]$, dove ϵ è la differenza di potenziale erogata dal generatore. Realizzeremo un circuito partitore anche facendo uso di un diodo zener ed una resistenza.

2 Materiali e acquisizione dati

2.1 Materiali disponibili

I materiali da utilizzare sono: breadboard, elementi di circuito, 2 Supertester ICE, 1 resistenza con valore nominale 820 $\Omega\pm5\%$, 1 multimetro digitale (DMM), 1 diodo raddrizzatore a polarizzazione diretta e inversa; 1 diodo Zener a polarizzazione inversa; 1 resistenza variabile in scatola decade; 1 partitore resistivo da 10 k Ω ;1 partitore resistivo da 1 k Ω ; 1 resistenza da 100 Ω .

2.2 Procedura operativa

2.2.1 Misure i-V per un resistore R_X in due configurazioni di circuito

Si annota il valore della resistenza attraverso l'utilizzo del codice a colori. Si calcola poi la massima corrente erogabile i_{MAX} in modo da avere una potenza dissipata massima di 0.25 W, sfruttando la relazione $P=RI^2$. Per ottimizzare l'accuratezza della misura si scelgono opportunamente i fondo scala in modo da diminuire l'errore relativo. Scegliamo: voltmetro - 2 V e amperometro - 5 mA. L'incertezza dei dati ottenuti sarà l'incertezza di risoluzione, ovvero: per le misure di differenza di potenziale $\sigma_{\Delta V} = \frac{0.04 \text{ V}}{\sqrt{12}} = 0.01 \text{ V}$; per le misure di intensità di corrente $\sigma_I = \frac{0.1 \text{ mA}}{\sqrt{12}} = 3 \times 10^{-5} \text{ mA}$.

Figura 1 Figura 2 Costruiamo un circuito come indicato in Figura 1, e misuriamo 11 coppie di valori *i-V* variando la differenza di potenziale erogata dal generatore in modo casuale.

Analogamente, costruiamo un nuovo circuito con configurazione amperometro a valle, come riportato nella Figura 2. Usando la stessa configurazione, misuriamo 11 coppie di misure i-V variando la differenza di potenziale erogata in modo casuale.

2.2.2 Curve i-V per diodo raddrizzatore e diodo Zener

Costruire il circuito con diodo raddrizzatore come indicato in Figura 3: basta aggiungere la resistenza variabile R_{LIM} all'inizio del circuito e sostituire ad R_X il diodo (fare attenzione alla polarità del diodo). Come voltmetro utilizziamo il DMM, i cui morsetti sono posti direttamente sul reoforo del diodo.

Si imposta il generatore a ddp erogata $V_{GEN}=2$ V con corrente massima erogabile $i_{MAX}=200$ mA. Inizialmente impostiamo $R_{LIM}=2$ k Ω , poi scaliamo R_{LIM} per valori minori in modo da prendere 10 coppie di misure i-V.

Invertire poi la polarità del diodo e ripetere le misurazioni per gli stessi valori di R_{LIM} . Ripetiamo le misure di 10 coppie di valori i-V per il diodo Zener (Figura 4), impostando un limite di corrente erogata di $i_{MAX}=100$ mA e una ddp di $V_{GEN}=10$ V. Impostiamo la resistenza iniziale a $R_{LIM}=10$ k Ω e andiamo scalando come fatto precedentemente.

2.2.3 Circuiti equivalenti con partitore resistivo

Costruire il circuito come indicato in figura 5 e impostare il generatore a $V_{GEN} = 10 \text{ V}$. Regolare il partitore resistivo con un potenziometro trimmer da 10 k Ω in modo da raggiungere un $V_{OUT} = 5.6 \text{ V}$ a circuito aperto, misurato per mezzo del voltmetro con carico R_L scollegato.

Completare la maglia di carico collegando R_L e l'amperometro come in figura. Successivamente, misurare ΔV in funzione della corrente di carico per 6 valori di corrente (compresi tra 0 e la corrente massima possibile). Infine trovare i valori di R_1 e R_2 con il DMM. Ripetere le medesime misure utilizzando un trimmer da 1 k Ω realizzando il partitore da 5.6 V.

2.2.4 Circuito partitore con resistenza e diodo Zener

Realizzare il circuito come indicato in figura 6 utilizzando una resistenza R=100 Ω e un diodo Zener in polarizzazione inversa. Usare il DMM come voltmetro e misurare ΔV variando la resistenza di carico R_L per ottenere 8 valori di i_L fra 1 mA e 50mA.

3 Risultati e discussione

3.1 Configurazione amperometro a monte

Si graficano le misure della corrente e della differenza di potenziale. Attraverso una regressione lineare otteniamo la retta $I=\frac{V}{R_0}$ che approssima in modo migliore i dati sperimentali: $R_0=799\pm36~\Omega$. Si esegue il test del chi quadrato a due

code con speranza matematica per il chi quadro di 9 e con una confidenza del 70%. L'intervallo di accettazione è: [6.3; 11.7]; il valore sperimentale calcolato è $\chi^2 = 7.2$. Quindi il modello è compatibile con i dati raccolti con una confidenza del 70%. Per ricavare la resistenza R_X usiamo la legge per le resistenze in parallelo, ottenendo $R_X = \frac{R_V R_0}{R_V - R_0} = 813 \pm 36~\Omega$, dove l'incertezza su R_X , è data dalle leggi di propagazione dell'errore. Tale valore risulta compatibile a meno di un sigma sia con la resistenza tabulata di 820 sia con la resistenza trovata utilizzando il DMM ($R_{DMM} = 816.5\Omega$).

3.2 Amperometro a valle

Dal grafico si nota un andamento lineare tra la corrente e la differenza di potenziale. Attraverso la regressione lineare si trova il valore di R_0 che meglio approssima i nostri dati e si calcola il χ^2 avendo a disposizione 9 gradi di libertà (11 misure e 2 parametri): $R_0 = 854 \pm 45\Omega$ $\chi^2_{rid} = 1.1$

Con una confidenza del 70% l'intervallo di accettazione è [6.3; 11.7], pertanto il test del χ^2 ha avuto esito positivo avendo un valore di 9.9. Per trovare il valore di R_x devo sottrarre il valore della resistenza non nulla dell'Amperometro $R_A = 64\Omega$: $R_x = R_0 - R_A = 790 \pm 45\Omega$. La resistenza trovata, in entrambe le configurazioni, risulta compatibile a meno di un sigma sia con il valore nominale della resistenza, sia con R_{DMM} . In appendice si riporta la tabella con i dati raccolti.

La differenza tra le due rette è imputabile al fatto che la corrente misurata dall'amperometro nella configurazione "Amperometro a monte" non risente della resistenza interna del voltmetro e così misura una corrente superiore rispetto alla configurazione "Amperometro a valle", nella quale una piccola parte della corrente viene deviata verso il voltmetro.

3.3 Diodo raddrizzatore e diodo Zener

Si riportano di seguito i grafici ottenuti per le coppie i-V di diodo raddrizzatore e diodo Zener. Qualitativamente, si nota una curva esponenziale.

Per quanto riguarda il diodo in polarizzazione inversa, osserviamo che non scorre corrente anche al cambiare della resistenza e a potenziale fisso $V_{GEN} =$ 2.001V con lievi variazioni. Concludiamo che il diodo raddrizzatore per valori compresi tra 0.55 V e 0.65 V blocca la corrente dopo di che la corrente inizia ad aumentare molto velocemente. Il diodo zener in polarizzazione inversa riesce a bloccare la corrente fino a una tensione di 5.6 V dopo di che la corrente inizia a crescere in valore assoluto rapidamente ma la tensione ai capi del voltmetro rimane costante.

3.4 Circuito equivalente per sorgente 5.6 V con partitore resistivo

Partitore da 10 k Ω : i punti sperimentali stanno su una retta a pendenza negativa: aumentando la resistenza R_L la tensione ai capi del voltmetro cresce mentre la corrente misurata dall'amperometro diminuisce. Le resistenze misurate nel resistore sono $R_1 = 4.5 \times 10^3~\Omega$ e $R_2 = 5.7 \times 10^3~\Omega$. Attraverso il modello di Thevenin otteniamo: $R_{EQ_1} = \frac{R_1 R_2}{R_1 + R_2} = 2515~\Omega, I_{EQ_1} = \frac{V_{GEN}}{R_1 + R_2} = 9.80 \times 10^{-4}~A, V_{EQ_1} = I_{EQ_1} R_2 = 5.59~V$. I valori di R_{EQ_1} risultano compatibili con $R_{REG_1} = 2624 \pm 29$ a meno di 4 sigma, mentre V_{EQ_1} risulta compatibile a meno di un sigma con $V_{REG_1} = 5.59 \pm 0.01$. Con una confidenza del 95% il $\chi^2/3 = 0.87$ risulta compatibile, quindi possiamo assumere che il modello si accorda con i dati sperimentali.

Partitore da 1 k Ω : come nel punto precedente i punti sperimentali stanno sempre su una retta a pendenza negativa ma maggiore. Le resistenze misurate nel resistore sono $R_1 = 400~\Omega$ e $R_2 = 527~\Omega$. Attraverso formule analoghe al caso precedente otteniamo $R_{EQ_2} = 227.5~\Omega$, $I_{EQ_2} = 0.011~\mathrm{A}$ e $V_{EQ_2} = 5.67~\mathrm{V}$. I valori di R_{EQ_2} risultano compatibili con $R_{REG_2} = 231.3 \pm 2.5~\mathrm{a}$ meno di 2 sigma, mentre V_{EQ_2} risulta compatibile a 2 sigma con $V_{REG_1} = 5.65 \pm 0.01$. Il $\chi^2/4=1.1$ conferma la buona compatibilità tra i nostri dati e il modello.

Partitore con Zener: Dal grafico si nota un andamento lineare: y = mx + q per correnti sufficientemente basse. Attraverso regressione lineare troviamo la retta che si adatta meglio ai nostri punti sperimentali: $m = -10.97 \pm 0.21$, $q = 5.336 \pm 0.006$, $\chi^2/6 = 39.75$. Si nota che il χ^2 ridotto risulta superiore al valore atteso. Questo fatto è da attribuire al comportamento non lineare del diodo Zener per correnti elevate(vicine a 50mA). Si può concludere che il modello non è compatibile con i nostri dati.

In tabella 1 si riportano i valori di R, V e χ^2 ridotto per le tre configurazioni descritte, mentre in figura si riportano le curve i-v.

Tabella 1

Tipo partitore	$R_{equivalente}$	$R_{regressione}$	$V_{equivalente}$	$V_{regressione}$	$\chi^2/\mathrm{D.O.F.}$
Trimmer $10k\Omega$	2515	2624 ± 29	5.59	5.59 ± 0.01	0.87
Trimmer $1k\Omega$	227.5	231.3 ± 2.5	5.67	5.65 ± 0.01	1.1
Zener	/	10.97 ± 0.21		5.37 ± 0.01	39.7

4 Conclusione

Le resistenze ottenute $R_{monte} = 813 \pm 36~\Omega$ e $R_{valle} = 799 \pm 45~\Omega$, confrontate con il valore nominale di 820 Ω e quello ottenuto attraverso il DMM di 816.50 Ω con un'incertezza del 5% risultano compatibili nei limiti degli intervalli sperimentali. Dal grafico del diodo Zener e del diodo raddrizzatore riusciamo a notare un andamento esponenziale della curva i-V.

Per quanto riguarda il modello del partitore resistivo, abbiamo che per il resistore da 1 k Ω e per quello da 10 k Ω vi è buona compatibilità. Il circuito partitore con diodo Zener, invece, sembra non seguire un modello lineare.

5 Appendice

Amperometro a monte				
Tensione	Corrente Tester	Tensione		
generatore	ICE	Tester ICE		
$(V) \pm 0.01 V$	$\left \text{ [mA]} \pm 3 \times 10^{-5} \text{ A} \right $	$[V] \pm 0.01 V$		
1.80	2.0	1.64		
1.57	1.7	1.44		
1.63	1.8	1.48		
1.84	2.0	1.68		
2.03	2.3	1.88		
1.96	2.2	1.80		
1.97	2.2	1.84		
2.15	2.4	2.00		

Tabella 2: Valori misurati: configurazione amperometro a monte

Amperometro a valle				
Tensione Corrente Tester		Tensione		
generatore	ICE	Tester ICE		
$(V) \pm 0.01 V$	$[mA] \pm 3 \times 10^{-5} A$	$[V] \pm 0.01 V$		
1.80	2.0	1.72		
1.73	1.9	1.64		
1.57	1.8	1.52		
1.63	1.8	1.56		
1.84	2.1	1.76		
2.03	2.3	1.96		
1.96	2.2	1.92		
1.95	2.2	1.92		
2.00	2.3	1.96		
1.84	2.1	1.80		
2.00	2.3	1.96		

Tabella 3: Valori misurati: configurazione amperometro a monte $\,$

Tabella 4: Valori misurati: Configurazione con diodo raddrizzatore

Tabella 5: Valori misurati: Configurazione con diodo Zener

$R_{LIM}[\Omega]$	$\Delta V \pm 3 \times 10^{-5} [V]$	I[mA]	$R_{LIM}[\Omega]$	Δ
2000	0.557	1.20 ± 0.03	10000	3.
1500	0.569	1.90 ± 0.03	4000	4
1000	0.587	2.30 ± 0.03	2000	4
500	0.616	2.50 ± 0.03	1000	4
250	0.642	4.30 ± 0.03	500	4
50	0.716	23.0 ± 0.3	200	5.
25	0.742	39.0 ± 0.3	100	5.
10	0.786	100 ± 3	40	5
5	0.808	180±3	90	5
4	0.810	200 ± 3	50	5

$R_{LIM}[\Omega]$	$\Delta V \pm 3 \times 10^{-5} [V]$	I[mA]
10000	3.851	1.10 ± 0.03
4000	4.196	1.40 ± 0.03
2000	4.437	2.70 ± 0.03
1000	4.646	5.00 ± 0.03
500	4.838	10.0 ± 0.3
200	5.010	25.0 ± 0.3
100	5.102	46.0 ± 0.3
40	5.216	100±3
90	5.118	50±3
50	5.200	90±3

Tabella 6: Valori misurati per il partitore di 10 k Ω

Differenza di potenziale (V) $\pm 3 \times 10^{-4}$	Intensità di corrente (mA)
3.710	0.7 ± 0.03
2.521	1.2 ± 0.03
1.169	1.7 ± 0.03
0.270	2.00 ± 0.03
5.155	0.165 ± 0.3

Tabella 7: Valori misurati per il partitore di 1 k Ω

$\Delta V \pm 3 \times 10^{-5} [V]$	I [mA]
4.269	6.0 ± 0.3
1.289	19.0 ± 0.3
1.690	17.0 ± 0.3
2.683	13.0 ± 0.3
5.250	1.7 ± 0.03
5.407	1.1 ± 0.03

Tabella 8: Valori misurati per il partitore diodo Zener

$\Delta V \pm 3 \times 10^{-5} [V]$	I[mA]	R_{LIM}
5.300	2.50 ± 0.03	2500
5.240	10.0 ± 0.3	500
4.860	45.0 ± 0.3	100
5.160	25.0 ± 0.3	200
4.740	49.0 ± 0.3	90
5.200	17.0 ± 0.3	300
5.270	7.0 ± 0.3	700
5.050	37.0 ± 0.3	130