Zheyuan Xu (Charles Xu)

Introduction

Aspiring computer engineer and inventor looking for summer 2021 internship. My interest includes rob otics, AR/VR, reinforcement learning, autonomous driving and autonomous systems

Education

University of Washington

MS in Computer Science

Fall 2020 Onwards

Georgia Institute of Technology

BS in Electrical Engineering
BS in Computer Science

Fall 2015-Spring 2020 Spring 2016-Spring 2020

<u>Invention (co-inventor)</u>

Ultra-lightweight Low Latency Flight Control System

- A low-power, low-latency, lightweight headless flight control system suite for indoor robotics systems.
 - o Co-inventor, Firmware and System Development
 - o Improved the bi-directional communication, lowered latency by more than 150 times
 - o Potentially the world's lightest gram level autopilot board (0.49 grams)
 - Link: https://licensing.research.gatech.edu/technology/flight-control-system-miniatu re-aerial-robots

Highly Effective Motion Capture Marker for Small Aerial Robots

- A robust, lightweight, low-power marker that eliminates the need for external light sources in indoor m otion capture systems
 - o Co-inventor, electronics design and testing
 - Link: https://industry.gatech.edu/technology/highly-effective-motion-capture-marker-small-aerial-robots

Skills

- Programming: Familiarity with multiple languages including C, C++, Java, Python, C#, Swift, Dart, Matlab
- Platform: Familiarity with mainstream OS (Windows, MacOS and Linux) as well as resource constrained ARM platforms
- Software engineering: Firmware development, mobile app development in MVC/MVVM, desktop app development
- Frameworks: Pytorch, Tensorflow, Flutter
- Toolsets: Github, React, .Net, ARKit, Firebase, MySQL, Azure SQL
- IDE: Visual studio, Keil, Android Studio, Unity, Cadence, Segger Embedded Studio, Xcode, ARkit
- CAD: Eagle CAD, Solidworks

Research Experience

Research Assistant (Georgia Tech System Research Lab)

January 2020-August 2020

- Worked on various autonomous platforms including OSV (omni-directional surface vehicle) as well as GT-MAB (Miniature Aerial Blimp)
- Automated OSV(omni-directional surface vehicle) for underwater fish cage inspection
- Integrated RTK (real-time kinematic) GPS, enabling centimeter-level accuracy in localization and heading measurements

Personal Projects Highlights

AdaEye (winning entry for MakeHarvard)

Feb 2021

- A third eye for visually impaired to see the surroundings and navigate the space
 - o Frontend runs on cell phone, accepts voice input in real time

- o Backend controls camera gimbal, scans surroundings, and sends pictures to Google Clo ud Vision
- o Frontend read back recognized objects, as well as anything in proximity
- o GPT-3 integration for enhanced voice query and answer
- o Winner for Best Use of Google Cloud
- o https://devpost.com/software/adaeye

Neomap (winning entry for MLH New Year Hack)

Jan 2021

- A mixed reality social media application for sharing new year resolution on mobile platform
 - Winner for both Google Cloud track and Radar.io track out of 140 projects submitted
 - o https://devpost.com/software/neomap-lnirzu

VCart (entry for MLH Holiday Hack)

Dec 2020

- A mixed reality remote shopping experience that can run on your cell phone
 - Allows users to add items to cart by using hand pose and dragging in front of the ca mera
 - o https://devpost.com/software/cart-orsh9x

Lunar Olympics (winning entry for Open Innovation University Hackathan)

Dec 2020

- Futuristic olympics game hosted on the moon
 - $\circ\ \$ runs on your cell phone, offering you a mixed reality experience
 - o allows user to control the athlete by using external IMU sensor connected to cell ph one by Bluetooth low energy (BLE)
 - https://devpost.com/software/lunar-olympics

Project Vulture April 2019

- 4G/LTE controlled autonomous photo-reconnaissance drone based on DJI S500 frame
 - Combined Raspberry Pi 3B as a coprocessor with Pixhawk flight controller, and Intel Movidius neural compute stick, enabling real-time image recognition
 - Used transfer learning for image recognition(pre-trained on Caltech101)
 - o Implemented adaptive non-PID control algorithms (still in progress)
 - Test flight: https://www.youtube.com/watch?v=R1bF3rFWhDY

GloveBot November 2018

- Radio controlled car by gesture command
 - o Built, tested a remotely controlled car based on ARM M3 boards and Xbee RF modules
 - \circ Made a glove with flex sensors which are able to sense different gestures and send t he signals to the vehicles
 - o https://youtu.be/_XoIus02eTk

Contact Information

- Academic email: cx1014@uw.edu
- personal email: xuzheyuan961124@gmail.com
- Devpost: https://devpost.com/CharlesXu1014
- personal website: https://charlesxu1124.github.io
- Github: CharlesXul124

Affiliation

- IEEE Regional Ambassador
- MLH Hacker