Galois Theory

IKHAN CHOI

1. Elementary field theory

1.1. Finite extensions.

Theorem 1.1. Let E/F be a field extension. Then, E is a vector space over F.

Definition 1.1. A degree of a field extension E/F is the dimension of the vector space E over F and denoted by [E:F].

Definition 1.2. A field extension is called *finite* if its degree is finite.

Theorem 1.2 (Multiplicity of degree). If K is an intermediate field in a field extension E/F, then

$$[E:F] = [E:K][K:F].$$

Proof. Boring basis counting.

Corollary 1.3. Finite extension of finite extension is finite.

Theorem 1.4. Let E/F be a finite extension. There is a finite tower of simple extensions.

Proposition 1.5. A nontrivial field homomorphism is injective.

Definition 1.3. A nontrivial field homomorphism is called *embedding* of *isomorphism* onto a subfield of codomain.

2. Algebraic extension

2.1. Finite simple extensions. We will discuss minimal polynomial and conjugates

Definition 2.1. A field extension E/F is called *simple* if there is an element $\alpha \in E$ such that E is the smallest field containing α and F. In this case, we write $E = F(\alpha)$.

Definition 2.2. Let E/F be a field extension. An element $\alpha \in E$ is algebraic over F if $F(\alpha)/F$ is finite.

Proposition 2.1. Let α be algebraic over F. Then, $F(\alpha) = F[\alpha]$.

Theorem 2.2. Let E/F be a field extension and $\alpha \in E$. Then, α is algebraic over F iff there is a polynomial $f \in F[x]$ such that $f(\alpha) = 0$.

Proof. Since $d = [F(\alpha) : F] < \infty$, we can find linearly dependent finite subset of $\{1, \alpha, \alpha^2, \cdots\}$. The coefficients construct the polynomial.

Conversely, if there is such f, every element of $F(\alpha)$ is represented as a linear combination of $\{1, \alpha, \dots, \alpha^{\deg f - 1}\}$.

Theorem 2.3. Let E/F be a field extension and $\alpha \in E$ is algebraic over F. Then there is a unique monic irreducible polynomial $\mu_{\alpha,F} \in F[x]$ such that $\mu_{\alpha,F}(\alpha) = 0$.

Proof. The polynomials satisfying α form an ideal of F[x]. Since F[x] is a PID, there is a generator which can be taken to be monic. Since the ideal is prime, the generator is prime(=irreducible), and it is the only irreducible in the ideal.

Definition 2.3. Let E/F be a field extension and $\alpha \in E$ is algebraic. A monic irreducible polynomial $\mu_{\alpha,F} \in F[x]$ satisfying $\mu_{\alpha,F}(\alpha) = 0$ is called the *minimal polynomial* of α over F.

Theorem 2.4. Let E/F be a field extension and $\alpha \in E$ is algebraic. Then, $F(\alpha) \cong F[x]/\mu_{\alpha,F}$, and $[F(\alpha):F] = \deg \mu_{\alpha,F}$.

Proof. Consider $\operatorname{eval}_{\alpha}: F[x] \to F(\alpha)$. The kernel is characterized as the principal ideal generated by $\mu_{\alpha,F}$. Since $\mu_{\alpha,F}$ is irreducible, $F[x]/(\mu_{\alpha,F})$ is a field, which implies the isomorphism $F[x]/(\mu_{\alpha,F}) \cong F(\alpha)$.

Now we claim the dimension of F[x]/(f) is the degree of f.

Definition 2.4. Let E/F be a field extension and $\alpha, \beta \in E$ be algebraic over F They are said to be *conjugate over* F if they have a common minimal polynomial over F.

Theorem 2.5. Let ϕ be a nontrivial field homomorphism. Then, α and $\phi(\alpha)$ are conjugates.

2.2. Algebraic extensions and isomorphism extension.

Definition 2.5. A field extension E/F is called *algebraic* if all elements $\alpha \in E$ is algebraic over F.

Equivalently,

Definition 2.6. A field extension is called *algebraic* if it is a direct limit of finite extensions.

Theorem 2.6. Let K be an intermediate field of a field extension E/F. Then, E/F is algebraic iff E/K and K/F are algebraic.

Proof. One direction is clear. Suppose E/K and K/F are algebraic. Take $\alpha \in E$ and $\mu_{\alpha,K}$ be the minimal polynomial of α over K. Let L be a field generated by F and the coefficients of $\mu_{\alpha,K}$. Then, $F(\alpha)/L$ and L/F are finite.

Proposition 2.7. A simple extension is finite iff it is algebraic.

Proof. Trivial. \Box

Theorem 2.8 (Isomorphism extension theorem). Let E/F be an algebraic extension. Let $\phi: F \cong F'$ be a field isomorphism. Let \overline{F}' be an algebraic closure of F'. Then, there is an embedding $\widetilde{\phi}: E \to \overline{F}'$ which extends ϕ .

Proof.

Galois Theory 3

2.3. Algebraic closure.

Theorem 2.9. Let E/F be a field extension. The set of all algebraic elements in E over F forms a field.

Proof.

Definition 2.7. A field F is called *algebraically closed* if it has no proper algebraic extension.

Definition 2.8. A field \overline{F} is called an *algebraic closure* if \overline{F} is algebraically closed field and \overline{F}/F is algebraic.

Theorem 2.10. Every field has an algebraic closure.

 \square

Theorem 2.11. Algebraic closure is unique up to isomorphism.

Proof.

Proposition 2.12. Let E/F be a field extension with algebraically closed field E. Then the set of all algebraic elements in E over F is the only algebraic closure of F contained in E.

Proof. The set of algebraic elements is algebraically closed.

3. Separable extension

4. NORMAL EXTENSION

5. Computation of Galois groups

* reducible case, irreducible;=¿transitivity * resolvent polynomial1: discriminant * resolvent polynomial2: cubic resolvent * , * =2n: composition of n transpositions * x- Jacobson-Velez * reduction modulo p (over F)

- 5.1. Quartic. In this section, we assume the following setting:
 - F is a perfect field,
 - f is an irreducible quartic over F,
 - E is the splitting of f over F,
 - $G = \operatorname{Gal}(E/F)$,
 - $H = G \cap V_4$.

Theorem 5.1. There are only five isomorphic types of transitive subgroups of the symmetric group S_4 .

Corollary 5.2. $G \cong S_4, A_4, D_4, V_4, or C_4$.

Proposition 5.3. Two groups A_4 and V_4 are only transitive normal subgroups of S_4 .

Now we define our resolvent polynomial.

Proposition 5.4. Let K be the fixed field of H. Then,

$$K = F(\alpha_1\alpha_2 + \alpha_3\alpha_4, \ \alpha_1\alpha_3 + \alpha_2\alpha_4, \ \alpha_1\alpha_4 + \alpha_2\alpha_3).$$

Definition 5.1. Let K be the fixed field of H. A resolvent cubic is a cubic R_3 that has K as the splitting field over F.

Theorem 5.5. We have

- (1) $G \cong S_4$ if R_3 is irreducible and,
- (2) $G \cong A_4$ if R_3 is irreducible and,
- (3) $G \cong D_4$ if R_3 has only one root in K and f is irreducible over K,
- (4) $G \cong C_4$ if R_3 has only one root in K and f is reducible over K,
- (5) $G \cong V_4$ if R_3 splits in K.

Proof. There are five possible cases:

$$(G, H) = (S_4, V_4), (A_4, V_4), (D_4, V_4), (V_4, V_4), (C_4, C_2).$$

We have

$$[K:F] = |G/H|, \qquad [E:K] = |H|.$$

If f is reducible over K, then $\operatorname{Gal}(E/K)$ is no more a transitive subgroup of S_4 so that $H \neq V_4$ and $G \cong C_4$.

