Instituto Federal de Educação, Ciência e Tecnologia do Piauí-IFPI

Curso de Tecnologia em Análise e Desenvolvimento de Sistemas

Disciplina: Introdução à Computação

Professor: Ricardo Martins Ramos

Aluno: Vinícius Gomes Araújo Costa

ARMAZENAMENTO DE DADOS

Teresina, 10 de Março, 2020.

Contexto:

Nesta disciplina, o **armazenamento de dados** é feito, inicialmente, por **Sistemas de Numeração** que envolvem a comunicação do **homem** com a **máquina**. A linguagem do mundo digital/computacional é frequente para recorrer-se a diferentes **Sistemas de Numeração** como representação da **informação digital**.

Eles são importantes pois **o computador** se comunica de maneira diferente do uso convencional, que nós usamos no dia a dia. Isto é: **os dígitos binários**, popularmente chamados de **0 e 1**. São eles que irão caracterizar **quatro** (4) diferentes tipos de sistemas em **Linguagens de Máquina**: **Binário** (base 2), **Decimal** (base 10), **Octal** (base 08) e **Hexadecimal** (base 16).

Deste modo, o computador utiliza, por convenção, valores baseados em níveis de voltagem ou pulsos elétricos. O zero significaria desligado e o um ligado. Quando os primeiros computadores foram criados, enormes válvulas de circulação de ar interligavam os comandos principais, registradores e os sistemas de memória. Eram denominados "mainframs", usados para pesquisa militar e acadêmica das universidades no mundo todo. Porém, ainda eram lentos em velocidade de processamento, visualizador de imagens e disco rígido (com pouca capacidade de espaço).

Com isso, para aprimorar essa interação homem máquina, foram criados mais de **dez** (10) **tipos de representação** para armazenamento de dados. Será exposto mais adiante a pesquisa sobre esse assunto. O método é simples: o programador digita um algarismo (bit) no periférico de entrada, manda a resposta para a ALU (central), o computador calcula automaticamente os dados pela Tabela ASCII e decodifica a mensagem; exibindo-a na tela.

Representação de Dados:

bit: Deriva do inglês *binary digit* (*dígito binário*), é a menor unidade de um dado. Pode representar dois valores quaisquer e é representado pela letra minúscula b. A sua importância em **Introdução à Computação** e matérias afins seria como o observador geraria valores desconhecidos para uma variável. Valor falso, verdade, desligado e ligado, assim por diante.

Unidade	Símbolo	Valor Equivalente	Múltiplo			
Bit	b*					
Byte	B*	8 bits	10°			
Kilobyte	KB	1024 B	10 ³			
Megabyte	MB	1024 KB	10 ⁶			
Gigabyte	GB	1024 MB	10 ⁹			
Terabyte	ТВ	1024 GB	1012			
Petabyte	PB	1024 TB	10 ¹⁵			
Exabyte	EB	1024 PB	10 ¹⁸			
Zettabyte	ZB	1024 EB	1021			
Yottabyte	YB	1024 ZB	10 ²⁴			

Na imagem acima, têm-se a classificação de bits na computação e a ideia de **Banco de Dados na computação**.

Nibble:

- São 4 dígitos binários;
- Pode representar até 16 valores;
- 1 nibble equivale a 1 dígito hexadecimal.

Byte:

- Representado pela letra B maiúscula;
- O menor item de dados que pode ser acessado;
- São 8 bits, logo permite 256 combinações $(2^8 = 256)$
 - 1 **Byte** = 1 caractere de 8 bits
 - -1 **kiloByte** (KB) = 1024 Bytes ou 2^{10}
 - 1 MegaByte (MB) = 1024 kiloBytes ou 2^{20}
 - -1 **GibaByte** (GB) = 1024 MegaBytes ou 2^{30}
 - -1 **TeraByte** (TB) = 1024 GigaBytes ou 2^{40}

Tabela ASCII:

Assim como **o observador** precisou olhar uma **tabela** para estabelecer parâmetros de medida, esta tabela mostra **o espelho** do nosso **alfabeto** e traduz uma determinada quantidade de bits em **caracteres** do nosso alfabeto.

A **Tabela ASCII** (do inglês "Standard Code of Informaton Interchange", significa **Código Padrão Americano para Intercâmbio de Informação**) é usada pela maioria da indústria de computadores para a troca de informações. Cada caractere é representado por **um código de 8 bits** que inclui os caracteres acentuados.

Representa 128 sinais, 95 sinais gráficos (letras do alfabeto latino, sinais de pontuação e sinais matemáticos) e 33 sinais de controle, utilizando portanto apenas 7 bits para representar todos os seus símbolos. A codificação ASCII é usada para representar textos em computadores, equipamentos de comunicação, entre outros dispositivos que trabalham com texto. Desenvolvida a partir de 1960, grande parte das codificações de caracteres modernas a herdaram como base.

Trata-se de uma **tabela-base de conversão** de **números/caracteres binários** em letras do alfabeto maiúsculas e minúsculas, armazenando a quantidade de bits por arquivos de demonstração.

Dec Hx Oct Char	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Нх	Oct	Html Ch	hr
0 0 000 NUL (null)	32	20	040	@#32;	Space	64	40	100	a#64;	0	96	60	140	`	8
l 1 001 SOH (start of heading)	33	21	041	۵#33;	!	65	41	101	a#65;	A	97	61	141	a	a
2 2 002 STX (start of text)	34	22	042	@#3 4 ;	rr .	66	42	102	a#66;	В	98	62	142	b	b
3 3 003 ETX (end of text)				# ;		67			a#67;					c	C
4 4 004 EOT (end of transmission)	36			\$		68			4#68;			- 5.54		d	
5 5 005 ENQ (enquiry)	37			%		69			۵#69;					e	
6 6 006 <mark>ACK</mark> (acknowledge)	38			&		70			a#70;					f	
7 7 007 BEL (bell)	39			@#39;		71			a#71;					g	
8 8 010 <mark>BS</mark> (backspace)	40			(72			@#72;					h	
9 9 011 TAB (horizontal tab)	41			@#41;		73			6#73;					i	
10 A 012 LF (NL line feed, new line	1			6#42;		74			a#74;		_			j	
ll B 013 VT (vertical tab)	43			a#43;		75	-		<u>475;</u>					k	
12 C 014 FF (NP form feed, new page	44			a#44;		76			a#76;					l	
13 D 015 CR (carriage return)	45			a#45;	5 V	77			<u>@#77;</u>					m	
14 E 016 <mark>50</mark> (shift out)	46	_		a#46;	$+\cup$	78	_		a#78;					n	
15 F 017 SI (shift in)	47			a#47;		79			a#79;					o	
16 10 020 DLE (data link escape)	1			۵#48;		80			480;					p	_
17 11 021 DC1 (device control 1)	49			a#49;		81			4#81;	-		. –		q	_
18 12 022 DC2 (device control 2)				2		82			482;			. –		r	
19 13 023 DC3 (device control 3)	100			3					4#83;					s	
20 14 024 DC4 (device control 4)	52			۵#52;					a#84;					t	
21 15 025 NAK (negative acknowledge)	1			۵#53;		I			a#85;		1			u	
22 16 026 SYN (synchronous idle)				۵#5 4 ;					4#86;					v	
23 17 027 ETB (end of trans. block)				a#55;		I			W					w	
24 18 030 CAN (cancel)	1			۵#56;		88			4#88;		1			x	
25 19 031 EM (end of medium)	57			a#57;		89			4#89;					y	_
26 1A 032 <mark>SUB</mark> (substitute)	58			۵#58;		90			a#90;		ı			z	
27 1B 033 ESC (escape)	59			۵#59;		91			@#91;	-				{	
28 1C 034 FS (file separator)	60			۵#60;		I			a#92;						
29 1D 035 GS (group separator)	61			=		93			a#93;	-	ı			}	
30 1E 036 RS (record separator)	62			>					a#94;			. —		~	
31 1F 037 <mark>US</mark> (unit separator)	63	3F	077	a#63;	?	95	5F	137	6#95 ;	_	127	7 F	177		DEL

Source: www.LookupTables.com

Processamento de imagens:

Em jogos, imagens são muito utilizadas em formato de sprites, imagens de cenários e na composição da visualização de objetos, sendo utilizadas na forma de texturas (mapeamento de texturas).

A partir de **dados vetoriais**, **as informações** descrevem **primitivas gráficas** para formar **desenhos**, ou seja, **pontos**, **curvas**, **linhas** ou **formas geométricas** quaisquer. Um programa que manipula este tipo de dado deve interpretar esta informação primitiva e transformá-la numa imagem.

Dados tipo bitmap:

- Dado gráfico é descrito como uma array de valores, aonde cada valor representa uma cor;
- Chamamos cada elemento da imagem de **pixel**;
- O pixel é uma estrutura de dados que contém múltiplos bits para representação de cores:
- A quantidade de bits determina a quantidade de cores possível de se representar numa imagem.

E mais um conjunto de formação de códigos processuais que envolvem **Geometria Euclidiana**, **Programação Orientada a Objetos** e **Conjuntos Numéricos**.

Exemplos: raster scan-lines, pixel-depth, gráficos de imagem, entre outros.

Quando se navega na **Internet** e em **redes sociais**, nos deparamos com imagens de diversos formatos e que se apresentam os arquivos. Salvá-las em pastas fica a gosto dos usuários.

Vemos com facilidade o **JPG**, **GIF**, **PNG** (mais comuns atualmente) e **BMP**. Mas além desses, existe uma grande quantidade de formatos para diversos tipos de uso. Cada um possui uma especificação técnica diferente, pois são **compressão de pixels diferentes**.

JPEG:

Joint Pictures Expert Group é o melhor formato para quem deseja enviar imagens por email. Surgiu em 1983 e acabou virando um dos padrões mais populares da Internet. Conhecido também como **JPG**.

• GIF:

Graphics Interchange Format é outro formato muito comum na Internet. É um arquivo leve e famoso pelas fotografias em movimento, os gif's animados. Só trabalha com 256 cores (8 bits), por isso não é muito comum em fotografias. Criado em 1987, o GIF foi projetado pela CompuServe nos primeiros dias de vídeo dos computadores de 8 bits, antes mesmo JPG, para visualização em velocidade de conexão para modem dial-up (discado).

PNG:

Portable Network Graphics, ao contrário do GIF, o PNG suporta mais cores. É um concorrente do **GIF**. Surgiu em 1996 e possui características que tornaram o GIF tão bem aceito: **animação**, **fundo transparente** e **compressão sem perda de qualidade**, mesmo com salvamentos constantes do arquivo. Suporta milhões de cores, uma ótima opção para fotos. E **transparência por 24 imagens de bit RGB**.

Outros formatos:

-TIFF, TIFF LZW, RAW, EXIF, PPM, PGM, PNM, SVG, CDR, WebP, Ilustrator, Photoshop entre outros recursos...

Processamento de vídeos:

Em **fundamentos da edição de um vídeo**, precisamos saber alguns conceitos. Um vídeo nada mais é do que a **sequência de "fotogramas" por segundo**. Ou seja, uma sucessão de imagens estáticas que alteram a percepção de tempo e visão do ser humano. O que engana o cérebro e dar a sensação de movimento.

FPS OU QPS:

Fotogramas, ou quadros, por segundo é a unidade de medida da cadência de um dispositivo audiovisual qualquer, como uma câmera, um projetor, um televisor, etc. Significa o número de imagens que tal dispositivo registra, processa ou exibe por segundo.

• Eadweard Muybridge:

Foi um fotógrafo inglês conhecido por seus experimentos com o uso de **múltiplas câmeras** para **captar o movimento**. Em 1872, convenceu o governador da Califórnia Leland Stanford que o "galope" dos cavalos não deixava terra dos cascos nos mesmos locais durante suas corridas. Através de um esquema de captação de imagens instantâneas demonstrou a teoria "*The Horse in Motion*".

Essa **série de fotos**, tiradas onde hoje é a **Universidade Stanford**, foram chamadas "*The Horse in Motion*", e mostra que todos os cascos ficam fora da terra - embora não com as patas completamente estendidas, como os ilustradores contemporâneos tenderam a imaginar, mas um pouco dobradas sob o cavalo, "**puxando**" as patas dianteiras e "**empurrando**" as traseiras.

Formato de exibição

01 : 00 : 00 : 00

HH: MM: SS: FF

Cadências exibição padrão:

24p é a cadência padrão do cinema desde 1929

25p derivação do sistema de vídeo PAL/SECAM (Europa)

30i (29.97 fps) NTSC sistema de televisão analógico (América)

50i sistema de PAL/SECAM (Europa)

60i (59.94 fps) NTSC sistema de televisão digital (América)

***Youtube**: 24p, 25p, 30p, 48p, 50p, 60p ...

Fields:

De acordo com os "frams" de imagem, a tela de exibição é composta de várias linhas entrelaçadas e de varredura progressiva. Isso gera o movimento, que poder ser do tipo "fast motion" ou "slow motion". Vai depender da quebra de quadros em uma gravação SIC de vídeo. Originando, assim, a distorção de tempo e imagem.

Codec:

CoDec ou Codificador/Decodificador é um hardware ou software que tem como objetivo a compactação de dados para armazenagem e descompactação para visualização. São usados na codificação de arquivos de áudio e vídeo digital.

· Bit Rate:

A taxa de bits, ou *BitRate*, é usada para definir a qualidade e o peso de um arquivo comprimido. A taxa de bits representa a quantidade de dados digitais para cada segundo do arquivo e, normalmente, é apresentada como Mbps (mil bits por segundo).

Processamento de áudio:

Em computação, arquivo de som (ou arquivo sonoro) é um formato de arquivo que permite o armazenamento digital de áudio. Em geral, esse arquivo armazena intervalos regulares de amostras de som, que representam a posição em que a membrana da caixa de som deve estar no momento da gravação.

Há três propriedades destes arquivos que determinam a qualidade do som armazenado e o seu tamanho. São eles: a resolução, ou seja, quantos bits são usados para representar cada amostra, a taxa de amostragem, ou seja, quantas amostras são tomadas do som por segundo e por último, o codec que pode proporcionar formas mais ou menos eficientes para armazenar estas informações.

Observações:

- Em contrapartida, o formato **MIDI** não segue esses princípios;
- Ele não armazena áudio propriamente dito, mas sim uma sequência de notas musicais que podem ser executadas por sintetizadores;

- Não se deve confundir o codec com o formato do arquivo;
- O formato especifica a disposição dos dados dentro do arquivo e o codec a forma como a informação sobre o som é tratada. Há formatos de arquivo que proporcionam a possibilidade de usar vários codec's para codificar o som no arquivo.

Formatos:

WAV (criado pela Microsoft), AIFF (criado pela Apple Inc.), MP3, MP4, compressão Ogg-Vorbis, RA (Real Player), M4P ...

• A **possibilidade de compressão** do formato **MP3** foi responsável por parte da popularização do mesmo, pois possibilitou o armazenamento de uma quantidade muito superior de **músicas** em um mesmo espaço de armazenamento.