ITP20001/ECE20010 Data Structures Chapter 6

- Adjacency list processing
- Graph API Implementation
 - Cycle
 - Bipartite

Major references:

- 1. Fundamentals of Data Structures by Horowitz, Sahni, Anderson-Freed,
- 2. Algorithms 4th edition Part 1 & Part 2 by Robert Sedgewick and Kevin Wayne
- 3. Wikipedia and many resources available from internet

Prof. Youngsup Kim, idebtor@gmail.com, Data Structures, CSEE Dept., Handong Global University

Adjacency list processing

Challenge: How to process adj[v] and its vertices:

Graph g

Adjacency list processing

Challenge: How to process adj[v] and its vertices:

```
// print the adjacency list of graph
void printAdjList(graph g) {
    for (int v = 0; v < V(g); ++v) {
        gnode curr = g->adj[v].next;
        printf(" V[%d]: ", v);
        while (curr) {
        ~~
        printf("\n");
```

Adjacency lists

Adjacency list processing

Challenge: How to process adj[v] and its vertices:

```
// print the adjacency list of graph
void printAdjList(graph g) {
  for (int v = 0; v < V(g); v++) {
    printf(" V[%d]: ", v);
      for (gnode w = g->adj[v].next;
```

Adjacency lists adj[] 0 1 0 3 6 4 6

Problem: Find a cycle.

Problem: Find a cycle.

How difficult?

Problem: Find a cycle.

How difficult?

- 1. Any programmer could do it.
- 2. Typical diligent algorithms student could do it.
- 3. Hire an expert.
- 4. Intractable.
- 5. No one knows.
- 6. Impossible.

Problem: Find a cycle.

How difficult?

- 1. Any programmer could do it.
- 2. Typical diligent algorithms student could do it.
- 3. Hire an expert.
- 4. Intractable.

simple DFS-based solution

- 5. No one knows.
- 6. Impossible.

Problem: Find a cycle.

- A cycle is a path (with at least one edge) whose first and last vertices are the same.
- A simple cycle is a cycle with no repeated edges or vertices (except the requisite repetition of the first and last vertices).

Challenge - Cycle detection: Is a given graph cyclic?

Implementation: Use depth-first search to determine whether a graph has a cycle, and if so return one. It takes time proportional to V + E in the worst case.

- A cycle is a path (with at least one edge) whose first and last vertices are the same.
- A simple cycle is a cycle with no repeated edges or vertices (except the requisite repetition of the first and last vertices).

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

Graph g:

Challenge: build adjacency lists?

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

yisit o: check 3, check 1

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

yisit o: check 3, check 1

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

4 2 0

visit 3: check 4, check 2, check 0

DFS: 0 3

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

4 done

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

DFS: 0 3 4

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

DFS: 0 3 4

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

DFS: 0 3 4 2

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

DFS: 0 3 4 2

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

DFS: 0 3 4 2

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

visit 1: check 2, check o

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

visit 1: check 2, check 0

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

visit 1: check 2, check 0

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

1 done

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

2 done

Once 1 done, 2 is done; since it was recurred from "visit2: check 3, check 1"

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.
- •

Adjacency lists

3 done

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

o done

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

visit(o) check(3) visit(3) check(4) visit(4) check(3) 4 done check(2) visit(2) check(3) check(1) visit(1) check(2) check(o) 1 done 2 done check(o) 3 done check(1) o done

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

Cycle is found:

, starting at itself

Cycle is found:

push path (1, 2, 3 or retrace back parent[] until you hit 0)

v marked[] parent[v]		
0	Т	-1
1	Т	2
2	Т	3
3	Т	0
4	Т	3

Cycle is found:

- push path (1, 2, 3 or retrace back parent[] until you hit 0)
- push o

	NA TOTAL	2307
v marked[] parent[v]		
0	Т	-1
1	Т	2
2	Т	3
3	Т	0
4	Т	3

Cycle detection using depth-first search

Cycle is found:

- push path (1, 2, 3 or retrace back parent[] until you hit 0)
- push o
- push 1 (to complete the cycle)


```
// finds a cycle in graph and returns a stack that has a list of vertices
// using DFS to find a cycle in the graph.
// The cycle() takes time proportional to V + E(in the worst case),
// where V is the number of vertices and E is the number of edges.
pStack cycle(graph g) {
    g->cycle = NULL;
    if (hasSelfLoop(g)) || (hasParallelEdges(g)) return g->cycle;
    for (int i = 0; i < V(g); i++) {
        g->marked[i] = false;
        g \rightarrow parent[i] = -1;
    for (int v = 0; v < V(g); v++) {
        if ( ! g->marked[v] ) // visit every vertex if not marked.
            cycleDFS(g, -1, v);
```



```
void testGraph() {
    graph g = newGraph(5);
    addEdge(g, 0, 1); addEdge(g, 0, 3);
    addEdge(g, 1, 2); addEdge(g, 2, 3);
    addEdge(g, 3, 4);
    printAdjList(g);
    pStack s = cycle(g);
    if (s) {
        printf("There is a cycle: ");
        while (sizeStack(s))
            printf("%d ", pop(s));
        printf("\n");
    else
        printf("This graph is acyclic.\n");
    // do something more ?
    freeGraph(g);
```



```
void testGraph() {
    graph g = newGraph(5);
    addEdge(g, 0, 1); addEdge(g, 0, 3);
    addEdge(g, 1, 2); addEdge(g, 2, 3);
    addEdge(g, 3, 4);
    printAdjList(g);
    pStack s = cycle(g);
    if (s) {
        printf("There is a cycle: ");
        while (sizeStack(s))
            printf("%d ", pop(s));
        printf("\n");
    else
        printf("This graph is acyclic.\n");
    // do something more ?
    freeGraph(g);
```


(pStack) g->cycle:

```
pop()
```

Output: 1 0 3 2 1

```
Key pop(pStack s) {
    pNode t = s->top;
    if (t == NULL) return NULL;

    Key key = t->key;
    s->top = t->next;
    free(t);

    s->size--;
    return key;
}
```


Problem: Is a graph bipartite (or bigraph)?

a set of graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent.

How difficult?

- Any programmer could do it.
- Typical diligent algorithms student could do it.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

Problem: Is a graph bipartite (or bigraph)?

a set of graph vertices decomposed into **two disjoint sets** such that no two graph vertices within the same set are adjacent.

Problem: Is a graph bipartite (or bigraph)?

a set of graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent.

a bigraph?

How difficult?

- Any programmer could do it.
- Typical diligent algorithms student could do it.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

Problem: Is a graph bipartite (or bigraph)?

a set of graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent.

a bigraph?

simple DFS or BFS-based solution

0 1 2 6 5

How difficult?

- Any programmer could do it.
- Typical diligent algorithms student could do it.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

Problem: Is a graph bipartite (or bigraph)?

3 1

visit o: check 3, check 1

Problem: Is a graph bipartite (or bigraph)?

Solution: Two-colorability

The vertices of a given graph can be assigned one of two colors in such a way that no edge connects vertices of the same color.

Solution: It is called two-colorability. graphBipartite() uses depth-first search to determine whether or not a graph has a bipartition; if so, return one; if not, return an odd-length cycle. It takes time proportional to V + E in the worst case.

Problem: Is a graph bipartite (or bigraph)?

Solution: Two-colorability

The vertices of a given graph can be assigned one of two colors in such a way that no edge connects vertices of the same color.

Solution: It is called two-colorability. graphBipartite() uses depth-first search to determine whether or not a graph has a bipartition; if so, return one; if not, return an odd-length cycle. It takes time proportional to V + E in the worst case.

Problem: Is a graph bipartite (or bigraph)?

Solution: Two-colorability

The vertices of a given graph can be assigned one of two colors in such a way that no edge connects vertices of the same color.

Solution: It is called two-colorability. graphBipartite() uses depth-first search to determine whether or not a graph has a bipartition; if so, return one; if not, return an odd-length cycle. It takes time proportional to V + E in the worst case.

Problem: Is a graph bipartite (or bigraph)?

Solution: Two-colorability

The vertices of a given graph can be assigned one of two colors in such a way that no edge connects vertices of the same color.

Solution: bipartite() uses depth-first search to determine whether a graph has a bipartition or not; if not, return an odd-length cycle.

It takes time proportional to V + E in the worst case.


```
// determines whether an undirected graph is bipartite and
// returns g->stack with cyclic vertices pushed if there is a cycle.
void bipartite(graph g) {
    g->cycle = NULL;
    for (int i = 0; i < V(g); i++) {
        g->marked[i] = false;
        g->color[i] = BLACK; // BLACK=0, WHITE=1
        g->parent[i] = -1;
    }
    for (int v = 0; v < V(g); v++) {
        if (!g->marked[v]) {
            bipartiteBFS(g, v);
            if (g->cycle != NULL) {
                return g->cycle; // found 1st cycle
```



```
// Recursive DFS does the work
void bipartiteBFS(graph g, int v) {
  g->marked[v] = true;
                                             // printf("%d ", v);// visiting node
  for (gnode w = g \rightarrow adj[v].next; w; w = w \rightarrow next)
    if (g->cycle != NULL) return;
                                    // short circuit if odd-length cycle found
    if (!g->marked[w->item]) {
                                             // found uncolored vertex, so recur
                                             // keep this info in Graph(save it edgetToBFS[])
                                             // switch the color and save
                                             // invoke bipartiteBFS()
    // if v-w create an odd-length cycle, find it (push vertices and push them)
    else if (g->color[w->item] == g->color[v]) {
       //bipartite = false;
                                   // 1. instantiate a new stack and set it to g->cycle
                                   // 2. push w->item since first v = last v, duplicated
                                   // 3. retrace g->parent[x] from v to w->item
                                        and push them to stack – need a for loop here.
                                   // 4. push w->item (to form a cycle)
```

verify that a graph is bipartite if it is two-colored.

Solution: for every v, the color of adj[v] is different from those of adj[v]'s

list vertices, if it is bipartite.

Graph g:

verify that a graph is bipartite if it is two-colored.

Solution: for every v, the color of adj[v] is different from those of adj[v]'s

list vertices, if it is bipartite.

Graph g:


```
// verify that adj[v]'s color should be different from its adj[v]'s list vertices
// if it is bipartite.
bool bipartiteVerify(graph g) {
  for (int v = 0; v < V(g); v++) {
  return true;
```