MSBA 7004 Operations Analytics

Class 5-2: Process Analysis (V)
Multiple Flow Units, Project Management and
Critical Path

2023

Outline

- Process flow analysis when multiple types of flow units exist
- Basic project management concepts
- Introduce tools available to manage projects including the critical path method (CPM)

Process Analysis: Multiple Flow Units

Resource	Unit Load (minutes/unit)			
	Product A	Product B	Product C	
1	2.5	2.5	2.5	
2	1.5	2	2.5	
3	12	0	0	
4	0	3	3	
5	3	3	3	

- If you produce only Product A, what is the capacity rate of the process (per hour)? Which resource is the bottleneck?
- If your product mix is 1 unit of A, 2 units of B and 2 units of C, what is your capacity rate? Bottleneck?

Process Analysis: Multiple Flow Units

Resource	Unit Load (minutes/unit)			
	Product A	Product B	Product C	1A+2B+2C
1	2.5	2.5	2.5	12.5
2	1.5	2	2.5	10.5
3	12	0	0	12
4	0	3	3	12
5	3	3	3	15

- When multiple flow units go through a process, the "product mix" needs to be considered while determining the unit load and the capacity
- The bottleneck depends on the product mix

Process Analysis: Multiple Flow Units

- How to identify the bottleneck when there are multiple flow units
 - Unit load = total amount of time required to finish the combination of flow units
 - $Capacity \ rate = \frac{Number \ of \ resources}{Unit \ load}$
 - Bottleneck is the resource with the lowest capacity rate, and the bottleneck changes when the "product mix" changes

Outline

- Process flow analysis when multiple types of flow units exist
- Basic project management concepts
- Introduce tools available to manage projects including the critical path method (CPM)

What is a *Project*?

A set of related tasks or activities, directed towards some major output and requiring a significant period of time to perform

Often thought of as a onetime occurrence, but projects are often repeated with slight modifications Examples

Example: Airbus 380

Example: Airbus 380

A380: 850 passengers.

Boeing 737: 180 passengers.

Example: Airbus 380

- 1999: After years of research, Airbus decided to proceed with the "Airbus 3XX Project"
- Scheduled budget: 9.5
 Billion Euros
- January 18, 2005: Unveiled
- April 27, 2005: Maiden flight (first flight)
- Early 2006: Promised to deliver the first A380

A Series of Delays

- Delay #1 (June 2005): Delivery slips by 6 months
- Delay #2 (June 2006): Another 6 months
 - Announcement caused a 26% drop in the share price
 - Led to the departure of top management
- Delay #3 (October 2006)
- Final delays 19-24 months: Inaugural commercial flight (October 25, 2007, Singapore Airline)
- Development cost 18 Billion Euros
- Airbus suffered huge losses as a result

Why did Airbus 380 fail?

- The development of the aircraft was a collaboration between 16 sites spread across 4 different countries (France, Germany, Britain and Spain).
 - Different design groups working on the project had used different software (computer-aided design (CAD) programs) to create the engineering drawings.
 - During installation, they discovered the parts designed by different teams didn't fit together. This cost the company \$6 billion to put right and set the project back two years.

Why did Airbus 380 fail?

- Air France announced it will phase out its ten Airbus A380s by 2022.
- Singapore airlines which received the first A380 back in October 2007
 has also started to replace these aircrafts with A350s.
- Major Airlines canceled orders of A380 (2013 - 2019).
- Airbus stopped production of the A380 in 2021.

Why study project management?

- Projects are everywhere!
- Consider course projects
 - Are team projects complicated and difficult? Why?
 - Do projects seem difficult to get done on time? Do you miss deadlines?
 - Would you like to finish your project as quickly as you can, and get it completed on time?
- Projects are often mismanaged
- 44% of developers have had their game delayed by COVID-19

 In a recent study of IT systems project, the success rate of projects was only 16.2%

(What do you think are the characteristics of a successful project?)

What does Project Management involve?

1. DEFINITION	2. PLANNING	3. EXECUTION	4. RETROSPECTIVE
Objectives	Work breakdown	Actual work	Review project success
Team	Activity list and	Changes to	
Constraints	sequences	objectives, activities, schedules,	What went well/ not so well
Completion criteria	Project schedule	resources, etc.	
Completion criteria	Budget (time and cost) for each task and resources	Prepare presentations Finish documentation	
Project proposal (Well-structured)	Gantt chart Critical path	Final deliverables	

Network Representations of Projects

 Diagrams that represent activities, precedence relations, and durations

- Two common representations
 - Gantt chart
 - Critical path diagram

Example: Starting McDonald's Franchise

ACTIVITIES	TIMES	PRECEDENCE
A. Obtain franchise	30 days	None
B. Rent facility	10 days	Α
C. Equip facility	15 days	В
D. Recruit staff	10 days	В
E. Train staff	15 days	D
F. Pass safety inspection	5 days	C, E

Project Management Softwares

50+ offerings in the market

- Jira, Microsoft Project, Smartsheet, etc.

Jira Software

Microsoft Project

Basic Questions that We Face

- What activities are critical to ensure the timely completion of the project?
- Which activities can be delayed, if necessary, without delaying the project completion, and by how much?
- Is it worthwhile to incur extra costs in order to accelerate some of the activities?

Critical Path Diagram

ACTIVITIES	TIMES	PRECEDENCE
A. Obtain franchise	30 days	None
B. Rent facility	10 days	Α
C. Equip facility	15 days	В
D. Recruit staff	10 days	В
E. Train staff	15 days	D
F. Pass safety inspection	5 days	C, E

The Critical Path

- Identify all paths between the start node and the end node (Enumeration Method)
- For each path, add the activity times for all activities on that path
- Find the maximum path time
 - This path is called the critical path
 - This is the time required to finish the project

Critical Path Diagram

- Path 1:
- Path 2:

Why is the critical path important?

- Determines the project duration
- All activities on the critical path are critical activities
 Any delay in critical activities will delay the whole project

 This information allows us to allocate resources among activities to find appropriate tradeoffs between project

duration and project cost

Comparison: Critical Path and Bottleneck

CRITICAL PATH	BOTTLENECK
Determines the project duration	Determines the process capacity
To <i>shorten</i> the project duration, focus on the critical path	To <i>increase</i> the process capacity, focus on the bottleneck
Critical path may <i>change</i> when adding resources to critical activities	Bottleneck may <i>shift</i> when adding resources to bottleneck

Analyzing Process Performance: Mortgage Application

- Who is the bottleneck?
- What is the critical path?

Another Example

Designing and building a playground

Code	Activity	Time (days)	Immediate Predecessors
Α	Planning	20	None
В	Purchasing	60	Α
С	Excavation	100	Α
D	Sawing	30	В
Е	Placement	20	C, D
F	Assembly	10	E
G	Infill	20	F
Н	Outfill	10	F
I	Decoration	30	G, H

Example: Critical Path Diagram

How long will it take to complete the project?

Path	# Days
A-B-D-E-F-G-I	
A-B-D-E-F-H-I	
A-C-E-F-G-I	
A-C-E-F-H-I	

Adding Cost Information

- Activity times are not independent of costs
 - Can be reduced at a cost (by adding resources)
- "Crashing" an activity refers to reducing the time it takes to complete the activity
 - "Crash time" is the minimum possible time to complete an activity
 - "Crash cost" is the cost associated with the crash time
 - We allow partial crashing with proportional cost

Time-Cost Trade-off

Code	Activity	Time (days)	Immediate Predecessors	Cost	Crash Time (days)	Crash Cost	Co
Α	Planning	20	None	\$300	15	\$450	
В	Purchasing	60	Α	\$2100	50	\$2140	
С	Excavation	100	А	\$4000	75	\$4500	
D	Sawing	30	В	\$2850	20	\$3000	
Е	Placement	20	C, D	\$500			
F	Assembly	10	Е	\$200			
G	Infill	20	F	\$400	Cannot be crashed		
Н	Outfill	10	F	\$600			
1	Decoration	30	G, H	\$1350			

Crash Cost/day

 Determine a cost effective way to reduce the project completion to 175 days

Keep a Score Card While Crashing Activities

Crash Limit: 5 Days

Cost	# Days	Critical Paths	Crashable Tasks	Best Option
				22

Other Project Management Tools?

Estimating New Completion Time and Budget

Activity	Budget	Scheduled	% Completed	Cost (Actual)
Α	\$3,000	50%	30%	\$1,100
В	\$10,000	20%	40%	\$4,700
С	\$2,000	100%	100%	\$1,700
Total	\$15,000			\$7,500

In terms of progress, you can see if you are behind schedule or ahead of schedule.

In terms of the cost, you can see if you are over budget or under budget.

Elements of Time and Cost Analysis

BCWS	Budgeted cost ("value") of work scheduled (planned) to date
BCWC	Budgeted cost ("value") of work completed (accomplished) to date
ACWC (or just "Actual")	Actual cost ("value") of work completed to date

Example 1.

BCWS = \$100 BCWC=\$105 ACWC=\$95

Project is \$5 worth of work ahead of schedule (BCWC-BCWS=\$5), and \$10 under budget (ACWC-BCWC=-\$10)

Example 2.

BCWS = \$100 BCWC=\$80 ACWC=\$95

Project is \$20 worth of work behind schedule, and \$15 over budget

Time-Cost Analysis: Example

Activity	Budget	Scheduled	% Completed	ACWC (Actual)	BCWS	BCWC
А	\$3,000	50%	30%	\$1,100		
В	\$10,000	20%	40%	\$4,700		
С	\$2,000	100%	100%	\$1,700		
Total				\$7,500		

Is the project ahead of or behind schedule?

Is the project over or under budget?