CSPB 4622 - Truong - Machine Learning

<u>Dashboard</u> / My courses / <u>2247:CSPB 4622</u> / <u>28 October - 3 November</u> / <u>Quiz 10-1. MLP</u>

Started on	Thursday, 7 November 2024, 11:45 PM
State	Finished
Completed on	Thursday, 7 November 2024, 11:47 PM
Time taken	1 min 39 secs
Marks	6.00/6.00
Grade	10.00 out of 10.00 (100 %)

Question 1

Correct

Mark 1.00 out of 1.00

Which of the following logical operations does the following perceptron represent? Note that x_1 and x_2 are binary.

- \bigcirc a. x_1 NAND x_2
- \bigcirc b. x_1 XOR x_2
- \circ c. x_1 AND x_2
- \bigcirc d. x_1 OR x_2

Your answer is correct. The correct answer is x_1 AND x_2 . Consider Logical AND. Logical AND outputs 1 only when both inputs x_1 and x_2 are 1. For every other case, AND should output 0. The weights are the same for both inputs x_1 and x_2 . w * x + b is negative except for when both x_1 and x_2 are 1.

The correct answer is: $(x_1) (\text{AND}) (x_2)$

Question 2

Correct

Mark 1.00 out of 1.00

True or False: The following training set can be classified exactly by a single perceptron.

x_1	0	1	0	1
x_2	0	0	1	1
y	0	0	1	1

a. True

Your answer is correct. A single perceptron is a linear classifier. A linear classifier can properly separate these data points.

The correct answer is: True

Question 3

Correct

Mark 1.00 out of 1.00

True or False: The following training set can be classified exactly by a single perceptron.

x_1	0	1	0	1
x_2	0	0	1	1
y	0	1	1	0

b. False

Your answer is correct. The training set cannot be classified exactly by a single perceptron. A single perceptron is a linear classifier. A linear classifier cannot properly classify XOR.

The correct answer is: False

Question 4

Correct

Mark 1.00 out of 1.00

Which of the following can be guaranteed to behave as Activation functions and are not difficult to train? Select one or more:

✓

aTanh

.

bsine

ßine

✓

&igmoid

~

dcosine

✓

€Step function

~

~

fReLu

~

Step function is guaranteed to behave as an Activation function and is not difficult to train.

The correct answers are: Sigmoid, Tanh, ReLu, Step function

\cap	ıact	ion	5

Correct

Mark 1.00 out of 1.00

Consider your model is being trained using the Perceptron algorithm. Let W be the current Weight and x be a misclassified instance. Which of the following statements are valid?
df *x* is a positive instance classified as negative, then *W = W - x*
bf x is a positive instance classified as negative, then *W = W + x*
✓
df *x* is a negative instance classified as positive, then *W = W - x*
✓
df *x* is a negative instance classified as positive, then *W = W + x*
Your answer is correct. If x is a negative instance misclassified as positive, then adjust the weight with *W = W - x*.

The correct answers are: If x is a positive instance classified as negative, then *W = W + x*, If *x* is a negative instance classified as

Question 6

Correct

Mark 1.00 out of 1.00

positive, then *W = W - x*

What are the possible hyperparameters that can be tuned for a Multi-Layered Perceptron (MLP)? Select one or more:

/

aActivation functions

~

b.Weights

√

d\umber of hidden layers

~

✓

dlumber of nodes in a layer

~

Activation functions are a hyperparameter that can be tuned for MLP.

The correct answers are: Number of hidden layers, Number of nodes in a layer, Activation functions