Homework: Calculus review

1. Let
$$f'(x) = 6x^2 - 5$$
. Given that $f(2) = -3$, find $f(x)$. [6 marks]

2a. The velocity $v \, \mathrm{ms}^{-1}$ of a particle after t seconds is given by

$$v(t) = (0.3t + 0.1)^t - 4_{ ext{, for }} 0 \le t \le 5$$

The following diagram shows the graph of v.

Find the value of t when the particle is at rest.

[3 marks]

2b. Find the value of t when the acceleration of the particle is 0.

[3 marks]

$$_{ extbf{3. Let}} f(x) = rac{\ln(4x)}{x} ext{ for } 0 < x \leq 5.$$

Points $P(0.25,\ 0)$ and Q are on the curve of f. The tangent to the curve of f at P is perpendicular to the tangent at Q. Find the coordinates of Q.

4a. Let
$$f(x) = -x^4 + 2x^3 - 1$$
, for $0 \le x \le 2$.

Sketch the graph of f on the following grid.

[3 marks]

4b. Solve
$$f(x) = 0$$
.

4c. The region enclosed by the graph of f and the x-axis is rotated 360° about the x-axis.

Find the volume of the solid formed.

[3 marks]

BECA / Huson / 12.1 IB Math SL 25-27 April 2018

Name:

5a. Let $f(x) = \sqrt[3]{x^4} - \frac{1}{2}$.

Find f'(x).

[2 marks]

5b. Find $\int f(x) dx$

[4 marks]

6a. [4 marks]

Consider $f(x) = x^2 \sin x$

Find f'(x).

6b. [3 marks]

Find the gradient of the curve of f at $x=rac{\pi}{2}$.

7. [7 marks]

A rocket moving in a straight line has velocity v km s $^{-1}$ and displacement s km at time t seconds. The velocity v is given by $v(t)=6\mathrm{e}^{2t}+t$. When t=0 , s=10 .

Find an expression for the displacement of the rocket in terms of t .

8a. A particle's displacement, in metres, is given by $s(t)=2t\cos t$, for $0\leq t\leq 6$, where t is the time in seconds.

On the grid below, sketch the graph of \boldsymbol{s} .

[4 marks]

8b. [3 marks]

Find the maximum velocity of the particle.

BECA / Huson / 12.1 IB Math SL

25-27 April 2018

9a. [3 marks]

Let
$$f(x)=rac{20x}{\mathrm{e}^{0.3x}}$$
 , for $0\leq x\leq 20$.

Sketch the graph of f.

9b. [3 marks]

- (i) Write down the x-coordinate of the maximum point on the graph of f.
- (ii) Write down the interval where *f* is increasing.

9c. [5 marks]

Show that
$$f'(x)=rac{20-6x}{\mathrm{e}^{0.3x}}$$
 .

9d. [4 marks]

Find the interval where the rate of change of *f* is increasing.

10a. [1 mark]

The velocity v ms $^{ ext{-}1}$ of a particle at time t seconds, is given by $v=2t+\cos 2t$, for $0\leq t\leq 2$.

Name:

Write down the velocity of the particle when t=0 .

10b. [8 marks]

When t=k , the acceleration is zero.

- (i) Show that $k=rac{\pi}{4}$.
- (ii) Find the exact velocity when $t=rac{\pi}{4}$.

10c. [4 marks]

When
$$t < rac{\pi}{4}$$
 , $rac{\mathrm{d}v}{\mathrm{d}t} > 0$ and when $t > rac{\pi}{4}$, $rac{\mathrm{d}v}{\mathrm{d}t} > 0$.

Sketch a graph of v against t.

10d. [3 marks]

Let d be the distance travelled by the particle for $0 \leq t \leq 1$.

- (i) Write down an expression for \boldsymbol{d} .
- (ii) Represent \boldsymbol{d} on your sketch.

11a. [2 marks]

The following diagram shows a waterwheel with a bucket. The wheel rotates at a constant rate in an anticlockwise (counter-clockwise) direction.

The diameter of the wheel is 8 metres. The centre of the wheel, A, is 2 metres above the water level. After t seconds, the height of the bucket above the water level is given by $h=a\sin bt+2$.

Show that a=4.

11b. [2 marks]

The wheel turns at a rate of one rotation every 30 seconds.

Show that
$$b = \frac{\pi}{15}$$
 .

11c. [6 marks]

In the first rotation, there are two values of t when the bucket is **descending** at a rate of $0.5~{\rm ms}^{-1}$. Find these values of t .

11d. [4 marks]

In the first rotation, there are two values of t when the bucket is ${\bf descending}$ at a rate of ${\bf 0.5~ms^{-1}}$. Determine whether the bucket is underwater at the second value of t .

BECA / Huson / 12.1 IB Math SL 25-27 April 2018

Name:

12a. [2 marks]

The following diagram shows the graph of $f(x)=\mathrm{e}^{-x^2}$

The points A, B, C, D and E lie on the graph of f. Two of these are points of inflexion. Identify the **two** points of inflexion.

12b. (i) Find f'(x).

(ii) Show that
$$f''(x)=(4x^2-2)\mathrm{e}^{-x^2}$$
 .

[5 marks]

12c. Find the *x*-coordinate of each point of inflexion.

[4 marks]

12d. [4 marks]

Use the second derivative to show that one of these points is a point of inflexion.

13a. The diagram below shows a plan for a window in the shape of a trapezium.

Three sides of the window are 2~m long. The angle between the sloping sides of the window and the base is θ , where $0<\theta<\frac{\pi}{2}$.

Show that the area of the window is given by $y=4\sin\theta+2\sin2 heta$ [5 marks]

13b. [4 marks]

Zoe wants a window to have an area of $5~\mathrm{m}^2$. Find the two possible values of θ .

13c. [7 marks]

John wants two windows which have the same area A but different values of heta . Find all possible values for A .

BECA / Huson / 12.1 IB Math SL 25-27 April 2018

Name:

14a. [2 marks]

A particle moves in a straight line. Its velocity, $v~{
m ms}^{-1}$, at time t seconds, is given by

$$v=\left(t^2-4
ight)^3, ext{ for } 0\leqslant t\leqslant 3.$$

Find the velocity of the particle when t=1.

14b. [3 marks]

Find the value of t for which the particle is at rest.

14c. [3 marks]

Find the total distance the particle travels during the first three seconds.

14d. [3 marks]

Show that the acceleration of the particle is given by $a=6t(t^2-4)^2$.

14e. [4 marks]

Find all possible values of t for which the velocity and acceleration are both positive or both negative.

15a. [2 marks]

The first three terms of a infinite geometric sequence are $m-1,\ 6,\ m+4$, where $m\in\mathbb{Z}$.

Write down an expression for the common ratio, r.

15b. [2 marks]

Hence, show that m satisfies the equation $m^2+3m-40=0$

15c. [3 marks]

Find the two possible values of m.

15d. [3 marks]

Find the possible values of r.

15e. [3 marks]

The sequence has a finite sum.

State which value of r leads to this sum ${\bf and}$ justify your answer.

15f. [3 marks]

The sequence has a finite sum.

Calculate the sum of the sequence.

Name:

$$m{r} = egin{pmatrix} 11 \ 8 \ 2 \end{pmatrix} + s egin{pmatrix} 4 \ 3 \ -1 \end{pmatrix}_{egin{pmatrix} ext{and} \ L_2 \ dots \end{pmatrix}}$$

16a. Consider the lines L_1 and L_2 with equations L_1 :

$$m{r} = egin{pmatrix} 1 \ 1 \ -7 \end{pmatrix} + t egin{pmatrix} 2 \ 1 \ 11 \end{pmatrix}$$

The lines intersect at point P. Find the coordinates of P.

[6 marks]

16b. Show that the lines are perpendicular.

[5 marks]

16c. The point Q(7,5,3) lies on L_1 . The point R is the reflection of Q in the line L_2 .

Find the coordinates of R.

[6 marks]

17a. Consider the functions f(x), g(x) and h(x). The following table gives some values associated with these functions.

x	2	3
f(x)	2	3
g(x)	-14	-18
f'(x)	1	1
g'(x)	-5	-3
h"(x)	-6	0

Write down the value of g(3) , of $f^{\prime}(3)$, and of $h^{\prime\prime}(2)$.

[3 marks]

17b. The following diagram shows parts of the graphs of h and $h^{\prime\prime}$.

There is a point of inflexion on the graph of h at P, when x=3 .

Explain why P is a point of inflexion.

[2 marks]

17c. Given that $h(x) = f(x) \times g(x)$,

find the y-coordinate of P.

[2 marks]

17d. find the equation of the normal to the graph of h at P.

[7 marks]