## - Signal & system

#### Signal

- -continuous
  - · analog signal
  - · 到的: t > x(t)
- discrete
  - · digital signal
  - ·왥昳: n → 지미





#### system

#### - connection

• 공속 연결 : 각 부시스템 직접 연절

· 병열 연결 : 각 뷔스템 병혈 연결

· 村北 972: NASI 호역이 CM 입역으2(feed back)

### - Energy 6 power

tiststill ay, trummel total energy



- · energy: 是河川 空音 跳 叫 些物性 影時(刚们先)
- . 일. 多则加了到:일의 吃饱 则加加 曲站
- · energy off: [i] = [N·m]
- ·일: 물체 이동 방향으로의 힘 × 물체 이동 거리 수 F. COSO
- · 인물 (Power) : 일의 이분 [J/sec] =[W]

continuous time Energy
$$E = \int_{t_1}^{t_1} |\chi(t)|^2 dt \quad E_{\infty} = \lim_{t \to \infty} \int_{-T}^{T} |\chi(t)|^2 dt = \int_{-\infty}^{\infty} |\chi(t)|^2 dt$$
discrete time Energy

$$E = \sum_{n=1}^{\infty} |x [n]|^2$$
,  $E_n = \lim_{n\to\infty} \sum_{n=1}^{\infty} |x [n]|^2 = \sum_{n=1}^{\infty} |x [n]|^2$ 

- P En ( P = 0 ( Pn = Rim En ( ( N ) = 0 )
  - · Pa (00 =) En=00 (Pa = Rim Eno(=10) (00)

# U 1927 34

2 叶坡势四 第23 四四 新疆 野桃 叶部四

$$\cos\theta = 1 - \frac{1}{2!}\theta^2 + \frac{1}{4!}\theta^4 + \cdots$$

#### 1일러 공식 21任 표地



$$ex2$$
)  $z_1 = 0. + bij = A_1e^{i\theta_1}$   
 $z_2 = 0.2 + baj = A_3e^{i\theta_2}$   $\Rightarrow z_1z_2z_3 = A_1A_2A_3e^{i(\theta_1 + \theta_2 + \theta_3)}$ . From  $z_1z_2z_3 = A_1A_2A_3e^{i(\theta_1 + \theta_2 + \theta_3)}$ . From  $z_1z_2z_3 = A_1A_2A_3e^{i(\theta_1 + \theta_2 + \theta_3)}$ .

#### - signals

임의의 toll CHAH (X(t)=X(t+T) 을 안했는 양수 Tor NOI 전자(사은 정수)
X[n]=X[n+N]

-fundamental period: T/N 쥐 중 앤다큰 가상 약 값

#### even a odd signal

- · even: x(-t) = x(t), x[-n] = x[n]
- · odd : x(-t) = -x(t), x[-n] = -x[n]
- · even-odd decomposition: 임의의 從 X(t)는 even 라 od의 함을 晒 洁 4 x(t) = Xeven(t) + Xad (t)

#### exponential Signal (in CT)

- O, C가 空





$$-\alpha.c7+\frac{4}{2}\frac{1}{7}$$

$$\cdot c=|c|e^{i\theta}.\alpha=r+j\omega.$$

$$\Rightarrow ce^{\alpha t}=|c|e^{i\theta}e^{(r+j\omega_0)t}=\frac{|c|e^{rt}e^{i(\omega_0t+\theta)}}{|c|e^{rt}\sin(\omega_0t+\theta)}$$

$$=|c|e^{rt}.\cos(\omega_0t+\theta)+j|c|e^{rt}\sin(\omega_0t+\theta)$$

\* Eperiod, Pperiod

Eperiod = 
$$\int_0^{T_0} |e^{i\omega_0 t}|^2 dt = \int_0^{T_0} dt = 1$$

Pperiod =  $\frac{1}{T}$  Eperiod = 1



2[1] = C x (C·eom そのは、動型し)



一 구기라 구파수 간데

(a) 
$$\frac{2\pi}{12}$$
N =  $2\pi M$ , N =  $12M$  =  $10$ . =  $12$ 

주파수: Q < b , 국기: a < b ( CT는 btcm )

#### - DT의 위적 팀질



( TE 7년으로 신화 반퇴으로 O ~ TTH N만 물리적 의명 개정

### \_system properties(LTI 知山)

- · memoryless : 왶이 됐(현재 시간이만 과기)
  - 1 y[n] = (2x[n] x\*[n])2
  - @ y(t) = Bx(t)
- · Invertible: 출력이 다시 입력으로 돌아올 수 있는 시스템

$$\chi(t) \rightarrow \underbrace{y(t)=2\chi(t)} \rightarrow y(t) \rightarrow \underbrace{w(t)=\frac{1}{2}y(t)} \rightarrow w(t)=\chi(t)$$

- · Causal: खेमारे उसेमेल रामा शुवा रामा से सेवार ग्र
  - ① y(t)=x(3t) 32mm의 양각은 12의 출작에 명하는 至介能. 나 y(1)=x(3) : non-causa(
  - 2 y(t) = x(t) cos(t+1) cos(2) t 24 " Tio)
  - (3) y(t) = x(-t)  $\downarrow_{t=1} y(1) = x(-1) \sim_{t=1} \text{causal gi7h?}$   $\downarrow_{t=1} y(-1) = x(1) :_{t=1} \text{non causal}$
- · BIBO (Bounded Input Bounded Output) Stable

#### - LTI (Linear Time Invarient)

- Linear = Scaling + additivity
   superposition
- · Scale: inputo ANHOLD outputs ANHOL System
- · additivity:  $\chi_1(t) \rightarrow \underbrace{\text{System}}_{y_2(t)} \rightarrow y_1(t)$  g and,  $\chi_1(t) \rightarrow \underbrace{\text{System}}_{y_2(t)} \rightarrow y_1(t)$  g and  $\chi_2(t)$   $\chi_2(t)$
- · Time Invarient: inputol time-shift 되면, outputs time-shift되는 시스트감 니:inputol 13,22,32일 四 图和 Outputol 같더는 이야기 × (2(t-to) + 3(t)) 니x(t-to) + 3(t-to)
  - ex) y(t) = x(-2t+2) = TIOH?

먼저,  $\chi(t)$  변화 작가되었기  $\chi(t) \xrightarrow{\text{CH-I}} \chi(-t) \to \chi(-2t) \to \chi(-2(t-1)) = \chi(-2t+2)$ 

$$\chi_{i}(t) \longrightarrow \chi_{i}(-2t+2) \stackrel{\circ}{=} J_{i}(t)$$

$$\chi_{i}(t-t_{0}) \rightarrow \chi_{i}(-t-t_{0}) \rightarrow \chi_{i}(-2t-t_{0}) \rightarrow \chi_{i}(-2(t-1)-t_{0})$$

$$= \chi_{i}(-2t-2-t_{0})$$

$$y_{i}(t-t_{0}) = \chi_{i}(-2(t-t_{0})+2) = \chi_{i}(-2t+2t_{0}+2)$$

:. TI OTY

결로: LTI는 메육 가능함을 다는 것이다.

#### 田子八(convolution)



- · Impulse function
  - discrete domain on M

- Continuous domain only

$$\int_{t}^{\infty} s(n) = \begin{cases} \infty & t=0 \\ 0 & t=0. \omega, \end{cases} \qquad 2^{n} \left( \int_{0}^{\infty} \delta(t) = 1 \right) = \frac{2^{n}}{5} \int_{0}^{\infty} f(t) \delta(t) = f(0)$$

· unit Step

$$S[n] = U[n] - U[n-1]$$

$$U[n] = \begin{cases} 0, n < 0 \\ 1, n \ge 0 \end{cases} \quad U[n] = S[n] + S[n-1] + S[n-2] + \cdots$$

$$u(t) = \begin{cases} 0, t < 0 \end{cases}$$

$$u(t) = \begin{cases} 0, t < 0 \end{cases}$$

$$u(t) = \begin{cases} 0, t < 0 \end{cases}$$

$$u(t) = \begin{cases} \infty \\ 0, t \neq 0 \end{cases}$$

· Impulse response

$$\chi_i(t) = \delta(t) \rightarrow \underbrace{\text{system}} \rightarrow y_i(t) = h(t) \rightarrow h(t) 7 + 0.00,$$

임의의 X(t)에 대한 Output Y(t)를 알수 있다

· Convolution



· discrete time convolution

$$x[n]: \frac{1}{2} \times [n] = 38[n] + 28[n-1] + 3[n] \text{ (like targler)}$$

$$S[n]: \frac{1}{2} \times [n] = 3k[n] + 2k[n-1] + k[n]$$

$$\therefore y[n] = \frac{n}{2} \times [n] + \frac{n}{2} \times [n] + \frac{n}{2} \times [n] + \frac{n}{2} \times [n] = \frac{$$

· Continuous time Convolution

$$Z(t) = \lim_{\Delta \to 0} \sum_{n=0}^{\infty} \chi(t) = \chi(t)$$

$$= \lim_{\Delta \to 0} \sum_{n=0}^{\infty} \chi(t) \delta_n(t) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \dots$$

$$= \lim_{\Delta \to 0} \sum_{n=0}^{\infty} \chi(t) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \dots$$

$$= \lim_{\Delta \to 0} \sum_{n=0}^{\infty} \chi(t) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \dots$$

$$= \lim_{\Delta \to 0} \sum_{n=0}^{\infty} \chi(t) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \dots$$

$$= \lim_{\Delta \to 0} \sum_{n=0}^{\infty} \chi(t) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \dots$$

$$= \lim_{\Delta \to 0} \sum_{n=0}^{\infty} \chi(t) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \chi(\Delta) \delta_n(t-\Delta) \Delta + \dots$$

$$\frac{1}{2} \qquad y(t) = \int_{\tau=0}^{\infty} x(\tau) h(t-\tau) d\tau$$

· I-domain





. system determination



- causal : (1), (2)

### - Signal a frequency

• 그로파 : 기본 주파수라 그 정수배 주파수의 합크로 표현



- 신화 개 생들로 나는 수 있다.

· 정현파 : 진돌, 구파수 위상에 대한 정보 표현

$$-\chi(t) = A\cos(\omega_0 t + \varphi) = A\cos(2\pi f_0 t + \varphi)$$



• 스펙트럼: 정현화를 구화수로 취상 → 구화수 축 상에 진독과 위상은 나타범

$$-\chi(t) = A\cos(\omega_{o}t + \varphi) = A\cos(2\pi f_{o}t + \varphi)$$

$$\chi(t) = \frac{A}{2}e^{j\varrho_{o}\omega_{o}t} + \frac{A}{2}e^{-j\varrho_{o}\omega_{o}t} = \frac{A}{2}e^{j\varrho_{o}\omega_{o}t} + \frac{A}{2}e^{-j\varrho_{o}\omega_{o}t} + \frac{A}{2}e^{-j\varrho_{o}\omega_{o}t}$$





#### - fourier series

- · 뛰에 라 : 고조되를 basic으로 하는 생의 선형 말합된
- ·  $\chi(t) = e^{st}$ ,  $e^{s\omega t} / Impulse response : <math>h(t)$

$$y(t) = \int_{-\infty}^{\infty} h(t) \chi(t-t) dt = \int_{-\infty}^{\infty} h(t) e^{j\omega(t-\tau)} d\tau$$

- .. fourier transform: Y(t) = H(jw)ejwt
- · composite input

$$\chi(t) = a_1 e^{31\omega t} + a_2 e^{32\omega t} + \cdots$$

KE-OND,001图DC, CSUTE 初处叫风是形出

### - representation of CT FS

与型可好可用X(t)가公→Coefficient의型學科学

Integral 
$$\chi(t) = \chi^*(t)$$

$$\chi(t) = \sum_{k=0}^{\infty} \alpha_k e^{j\omega_0 t}$$

$$\chi(t) = \sum_{k=0}^{\infty} \alpha_k^* e^{-j\omega_0 t}$$

$$\chi(t) = \sum_{k=0}^{\infty} \alpha_k^* e^{-j\omega_0 t}$$

$$\chi(t) = \sum_{k=0}^{\infty} \alpha_k e^{-j\omega_0 t}$$

亚姆①

班的 ① 미 의해,

$$\chi(t) = a_0 + \sum_{k=1}^{\infty} [a_k e^{i\omega \cdot t} + a_k^* e^{-s\omega \cdot t}]$$

$$= a_0 + \sum_{k=1}^{\infty} 2 \operatorname{Re} [a_k e^{i\omega \cdot t}]$$

亚纳 ③

$$C(3)$$
 $C(3)$ 
 $C(3)$ 

班物图

## Convergence of FS

• truncation 
$$\chi_{N}(t) = \sum_{k=N}^{N} \alpha_{k} e^{3k\omega \cdot t} \rightarrow N_{2} = \infty 2 \text{ Yurst}$$

error approximation
$$e_{N}(t) = \chi(t) - \prod_{k=N}^{N} c_{k} e^{jkw - t} \neq 0$$

- minimize Energy of approximation error En = \[ \len(t)\rangle dt\]

  . same with Fs wefficient
- an = + Sxcore in woodt

一分的的 包含: 製料 对智州 生物地 emor



## -properties of CT FS

- ① linearity ( $\frac{2}{17}$ )  $\frac{12}{12}$   $\frac{1$
- 2 time shifting  $\chi(t) \stackrel{f}{\leftarrow} \chi(t) e^{-jk\omega t} dt$   $\chi(t-t_0) = \frac{1}{2} \chi(t-t_0) e^{-jk\omega t} dt$   $\tau = t-t_0, \quad b_k = \frac{1}{2} \chi(\tau) e^{-jk\omega (\tau+t_0)} d\tau$   $= e^{-jk\omega t_0} \frac{1}{12} \chi(\tau) e^{-jk\omega (\tau+t_0)} d\tau$   $= e^{-jk\omega t_0} \frac{1}{12} \chi(\tau) e^{-jk\omega (\tau+t_0)} d\tau$   $= e^{-jk\omega t_0} \frac{1}{12} \chi(\tau) e^{-jk\omega (\tau+t_0)} d\tau$
- 3 time reversal bk = Ak
- (4) time scaling  $\chi(xt) = \lim_{n \to \infty} \alpha_n e^{jk(xu)t}$
- (B) multiplication  $\chi(t) \stackrel{f}{\rightleftharpoons} \alpha_{K}, y(t) \stackrel{f}{\rightleftharpoons} b_{K}$   $\chi(t) y(t) \stackrel{f}{\rightleftharpoons} b_{K} = \sum_{n=0}^{\infty} \alpha_{n} k_{n-1} (convolution)$

(b) conjugation  $\chi(t) \stackrel{fs}{\longleftarrow} \alpha_{\kappa}, \chi^{*}(t) \stackrel{fs}{\longleftarrow} \alpha^{*}_{-\kappa}$  if  $\chi(t)$  is real,  $\chi(t) = \chi^{*}(t)$ ,  $\alpha_{\kappa} = \alpha^{*}_{-\kappa}$ ,  $|\alpha_{\kappa}| = |\alpha^{*}_{-\kappa}|$ 

## -representation of DT FS

• 
$$\pi | A \rightarrow b \rightarrow 1$$

$$\chi [n] = \prod_{k \in N} \alpha_k e^{jk} (E)^n$$

$$\times e^{-jr} (E)^n \qquad (in = \prod_{k \in N} \sum_{k \in N} \alpha_k e^{jk} (E)^n)^n$$

$$= \prod_{k \in N} \chi [n] e^{-jr} (E)^n = \prod_{k \in N} \alpha_k e^{jk} (E)^n$$

$$= \sum_{k \in N} (E)^n = \prod_{k \in N} \chi [n] e^{-jk} (E)^n$$

$$\therefore \alpha_k = \prod_{k \in N} \chi [n] e^{-jk} (E)^n$$

$$\therefore \alpha_k = \prod_{k \in N} \chi [n] e^{-jk} (E)^n$$

\* DT는 유한한 샘플 다귀 때문에 수영 3만 X

## -properties of CTFS

나 CT와 다른 정반

multiplication

X[n] y[n] (fs) du = [ aebk-e

① first difference (DToTME One - step shift)

$$a_k = \frac{1}{N_{new}} \sum_{n=1}^{\infty} \sum_{k \in \mathbb{N}} n$$
 $b_k = \frac{1}{N_{new}} \sum_{n=1}^{\infty} \sum_{k \in \mathbb{N}} \sum_{n=1}^{\infty} \sum_{n=1}$ 

3 Pasual's relation  $\frac{1}{N} \sum_{n \in \mathbb{N}} |x[n]|^2 = \sum_{k=0}^{\infty} |a_k|^2$ 

# - frequency response















































기우리 
$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \qquad \forall X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$
4.3.1 Linearity
$$\begin{cases} x(t) \stackrel{F}{\longrightarrow} X(j\omega) \\ y(t) \stackrel{F}{\longrightarrow} Y(j\omega) \\ ax(t) + by(t) \stackrel{F}{\longrightarrow} aX(j\omega) + bY(j\omega) \end{cases}$$
4.3.2 Time shifting Phase만 linear 하게 변한다

4.3.3 Conjugation and conjugate symmetry (
$$\P \otimes A$$
)

$$(x^*(t) \xrightarrow{\mathcal{D}} X^*(-j\omega)) \qquad \qquad (x^*(t) \xrightarrow{\mathcal{D}} X^*(-j\omega)) \qquad \qquad (x^*(t) \xrightarrow{\mathcal{D}} X^*(-j\omega)) \qquad \qquad (x^*(-j\omega) = X^*(-j\omega)) \qquad \qquad (x^*$$















































































































































