Week 13: Multivariate statistics (Part 2)

ANTH 674: Research Design & Analysis in Anthropology

Professor Andrew Du

Andrew.Du2@colostate.edu

1

3

Statistics vignette

- Imagine that you're a gambler w/ \$10 at a casino
- You play a game where:

<u>50%</u>: +\$1

<u>50%</u>: -\$1

 Play until (1) you go broke, (2) casino goes broke, or (3) you leave

2

Gambler's Ruin

• Because of the lower absorbing boundary, all clades (e.g., genera) will eventually go extinct

Lecture outline

- Distance matrices
 - Euclidean distance
- Ordination continued
 - Principal coordinates analysis
 - · Non-metric multidimensional scaling
- Classification

5

- Cluster analysis
- Primer on multivariate regression

Distance matrices
Euclidean distance

6

 Plot MV data in fewer dimensions, while preserving distances between observations

What distance?

- For PCA, Euclidean distance
- In two dimensions:

Pythagorean Theorem $a^{2} + b^{2} = c^{2}$ $c = \sqrt{a^{2} + b^{2}}$

Euclidean distance

 Measures the distance between two points in <u>any</u> number of dimensions (n)

$$d_{i,j} = \sqrt{\sum_{k=1}^{n} (y_{i,k} - y_{j,k})^2}$$

Difference in x-, y-, z-, etc. dimension (k)

$$c(1, 2, 3, 4)$$

 $c(3, 4, 5, 6)$ $c(2^2, 2^2, 2^2, 2^2)$ $\sqrt{16}$ $\sqrt{4}$

9

Distance matrices

• E.g., Euclidean dist. of first four plants in iris

1 2 3 4 1 0.00 0.54 0.51 0.65 2 0.54 0.00 0.30 0.33 3 0.51 0.30 0.00 0.24

4 0.65 0.33 0.24 0.00

- Cell in *i*th row and *j*th column is distance between *i*th and *j*th observations
- Diagonal elements always zero (e.g., comparing observation to itself)
- Upper triangle is identical to lower triangle

Euclidean distance

Sepal.L Sepal.W Petal.L Petal.W

1 5.1 3.5 1.4 0.2 2 4.9 3.0 1.4 0.2

 $\sqrt{(5.1-4.9)^2+(3.5-3.0)^2+(1.4-1.4)^2+(0.2-0.2)^2}$

Euclidean distance = 0.54

10

Euclidean distance

Sepal.L Sepal.W Petal.L Petal.W 1 5.1 3.5 1.4 0.2

2 4.9 3.0 1.4 0.2

Euclidean distance = 0.54

PC1 PC2 PC3 PC4
1 -2.68 -0.32 0.03 0.0
2 -2.71 0.18 0.21 0.1

Shepard diagram Shepard diagram Solution of the property of

Rigid rotation

- PCA simply rotates the cloud of data points, <u>preserving the distances between points</u>, to align with axes of greatest variation (PCs)
- Euclidean distances will be identical only when all PCs are considered
- If data are scaled first, PCA preserves distances between scaled versions of data points

13

Different kinds of distances

- Euclidean distances work best with continuous data
- <u>Categorical data (e.g., comparing species abundances across sites)</u>
 - · Chi-square
 - Bray-Curtis
- Binary outcomes (e.g., stone tool type presence/absence across sites)
 - Jaccard
 - Sørensen
- · Mixed continuous & categorical
 - Gower

Gotelli & Ellison 2018, pg. 404 (there are many more)

Questions?

14

17

Principal coordinates analysis (PCoA)

- AKA metric multidimensional scaling
- Generalized ordination technique done on <u>any</u> distance matrix (e.g., chi-square, Jaccard)
- Specifically, does a <u>singular value</u> <u>decomposition</u> on the distance matrix (so slightly different from PCA)
- Unlike PCA, does not combine variables into super-variables (i.e., PCs); just plots MV data on smaller number of axes using distance matrix (i.e., PCA w/o the loadings)

Goals of ordination (review)

- Distill MV data into fewer variables/dimensions that can be plotted or analyzed
- Maintain (as best as possible) original distances between points
- Create new variables/axes, where the first one is fit through greatest variation, second one is fit through greatest residual variation, etc.
- New variables/axes are perpendicular and independent to each other

18

Comparing PCA & PCoA

- PCoA done on Euclidean distance matrix produces the <u>same exact</u> scatter plot as PCA
- Use PCA instead of PCoA if you have continuous variables (loadings are interesting!)

Another PCoA example

 Hair & eye color of statistics students (HairEyeColor)

E	ye			
Hair	Brown	вlue	Hazel	Green
вlаck	68	20	15	5
Brown	119	84	54	29
Red	26	17	14	14
Blond	7	94	10	16

• Euclidean distance not appropriate for categorical variables, so use chi-square dist.

21

Or eye color

- Because PCoA doesn't use correlated variables for collapsing, can plot either rows (hair color) or columns (eye color)
- i.e., distance matrix can be calculated using either rows or columns

Hair color			Eye color				
	вТаск	Brown	Red		Brown	вlue	Hazel
Brown	0.4			вlue	1.0		
Red	0.7	0.3		Hazel	0.4	0.8	
Blond	1.3	1.0	1.0	Green	0.8	0.6	0.5

22

Shepard diagram

• Chi-square distances can be 100% preserved in Euclidean space

Hair color PCoA

Specific and Reserved distance of original variables

Eye color PCoA

Specific and Reserved distance of original variables

Eye color PCoA

Chi-square distance of original variables

26

25

What ordination does

• Projects MV data cloud onto 2D plane
• Only ever see a few dimensions of the MV data

Non-metric multidimensional scaling (NMDS)

- Instead of plotting a few out of many dimensions, NMDS forces MV data cloud into only a few axes (i.e., 2 or 3)
- Computer iteratively finds the solution (explained on next slide)
- NO singular value decomposition, so axes cannot be interpreted as % variance explained and are not fit through greatest variation
- Works with any distance matrix (like w/ PCoA)

29

NMDS plots

- Done using chi-square distance matrix
- Points that are closer are more similar.
- Orientation relative to axes is arbitrary (why it's difficult to plot hair & eye color on same plot)

How NMDS works

- 1. Generate a distance matrix of your data
- 2. Pick number of dimensions to plot (e.g., 2)
- 3. Place observations' points on plot, using some starting configuration (can choose this)
- 4. Quantify how well Euclidean distances between NMDS points correspond w/ distance matrix (cf. Shepard plot)
- 5. Adjust points to increase correspondence
- 6. Repeat Steps 4 & 5 until correspondence is maximized

30

Compare NMDS & PCoA Eye color NMDS Hair color NMDS NMDS 2 0.0 0.5 NMDS 2 0.0 0.5 0.5 0.5 Eye color PCoA Hair color PCoA dinate 2 (13%) 0.0 0.5 Rlue 0.0 Coordinate 1 (81%)

Shepard diagram • Rank order, not exact distances, is preserved • <u>Stress</u> is a measure of how much distances don't correspond (general rule: below 0.2 is OK) Hair color Stress ≈ 0 O O O Chi-square distance of original variables

33

What is classification?

 Placing objects w/ more similar measurements into the same group

• Most popular method is a hierarchical one, called **cluster analysis**

Dendrogram

"A" is most similar to which data point?
(interpret like a phylogenetic tree)

Two main kinds

1. Agglomerative clustering ("bottom-up")

• Starts w/ separate observations and successively groups them into larger clusters

2. Divisive clustering ("top-down")

 Starts w/ one cluster and splits data into smaller clusters until each observation is its own cluster

37

Agglomerative • Most popular algorithm in anthropology is UPGMA (unweighted pair group method with arithmetic mean) Hair color Hair color yage by Bue Haze Green Perconstruction Results Results

Two main kinds

- 1. Agglomerative clustering ("bottom-up")
- 2. Divisive clustering ("top-down")
- Done using **any** distance matrix
- Different algorithms use different rules for how clusters should be made
- Cluster analysis creates a tree-diagram known as a dendrogram
- This is an exploratory/visualization method

38

Divisive

- · Not as common as agglomerative clustering
- Dendrograms are like a mobile: you can rotate clusters around stems w/o changing results

Non-hierarchical clustering

1. K-means clustering

- Groups observations into *k* clusters (*k* is determined *a priori*)
- Observations within a cluster are more similar than between clusters

2. <u>Discriminant analysis</u>

- Classifies observations into pre-defined groups
- Like PCA, axes are linear combination of variables, where estimated coefficients (eigenvectors) maximize differences btw groups
- · Need to cross-validate model
- Superseded by other methods (i.e., machine learning)

41

Questions?

42

Multivariate regression

 Regression of two or more DVs as a function of one or more IVs

1. Redundancy analysis (RDA)

- Uses a PCA to analyze variables
- Continuous DVs

2. Canonical correspondence analysis (CCA)

- Uses correspondence analysis to analyze variables
- Frequencies of categorical DVs
- Won't go over this

Redundancy analysis

- In essence, calculates a PCA of DVs & estimates coefficients for each IV for each PC
- Uses Monte Carlo methods to test if there's a significant relationship between IVs and DVs
- I have never seen this used in anthropology

45

Questions?

RDA example (from textbook)

- <u>DV</u>: three variables of snail shell shape from nine countries
- IV: four environmental variables

46

Summary

- Distance matrices quantify how (dis)similar variables are
 - There are many distance metrics out there
- PCoA ordinates data using any distance matrix
 - Euclidean distance matrix → PCA
 - Chi-square distance matrix → correspondence analysis
- Cluster analysis uses <u>any</u> distance matrix to group similar variables together in dendrogram
- RDA is a regression with multiple continuous DVs