

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Physics (WPH15)

Paper 01: Thermodynamics, Radiation,

Oscillations and Cosmology

| Question<br>Number | Answer                                                                                    | Mark |
|--------------------|-------------------------------------------------------------------------------------------|------|
| 1                  | A is the only correct answer                                                              | (1)  |
|                    | B is not the correct answer, as temperature must be high for fusion                       |      |
|                    | C is not the correct answer, as density must be high for fusion                           |      |
|                    | D is not the correct answer, as temperature and density must be high for fusion           |      |
| 2                  | A is the only correct answer                                                              | (1)  |
|                    | B is not the correct answer, as parallax measurements do not involve intensity            |      |
|                    | C is not the correct answer, as parallax measurements do not involve luminosity           |      |
|                    | D is not the correct answer, as parallax measurements do not involve the Hubble           |      |
|                    | constant                                                                                  |      |
| 3                  | D is the only correct answer                                                              | (1)  |
|                    | A is not the correct answer, as B.E./nucleon has a maximum for <sup>56</sup> Fe           |      |
|                    | B is not the correct answer, as B.E./nucleon has a maximum for <sup>56</sup> Fe           |      |
|                    | C is not the correct answer, as B.E./nucleon has a maximum for <sup>56</sup> Fe           |      |
| 4                  | B is the only correct answer                                                              | (1)  |
|                    | A is not the correct answer, as acceleration is always towards the equilibrium point      |      |
|                    | C is not the correct answer, as acceleration is always towards the equilibrium point      |      |
|                    | D is not the correct answer, as this would increase the energy of oscillation             |      |
| 5                  | D is the only correct answer                                                              | (1)  |
|                    | A is not the correct answer, as motion does not change the wavelength of emission         |      |
|                    | B is not the correct answer, as motion does not change the wavelength of emission         |      |
|                    | C is not the correct answer, as the wavelength increases when the source is receding      |      |
| 6                  | B is the only correct answer                                                              | (1)  |
|                    | A is not the correct answer, as gravitational potential increases                         |      |
|                    | C is not the correct answer, as gravitational force decreases and gravitational potential |      |
|                    | increases                                                                                 |      |
|                    | D is not the correct answer, as gravitational force decreases                             |      |
| 7                  | <b>B</b> is the only correct answer, as $F = mg$ and $g = (9.81 \text{ m s}^{-2})/4$      | (1)  |
| 8                  | B is the only correct answer                                                              | (1)  |
|                    | A is not the correct answer, as penetration is high                                       |      |
|                    | C is not the correct answer, as ionising power is low and penetration is high             |      |
|                    | D is not the correct answer, as ionising power is low                                     |      |
| 9                  | B is the only correct answer                                                              | (1)  |
|                    | A is not the correct answer, as main sequence stars to not go direct to white dwarfs      |      |
|                    | C is not the correct answer, as stars do not move down the main sequence                  |      |
|                    | D is not the correct answer, as red giants do not return to the main sequence             |      |
| 10                 | A is the only correct answer, as $T = 2\pi \sqrt{\frac{\ell}{g}}$                         | (1)  |

| Question<br>Number | Answer                                                                                                                                                            | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 11                 | Use of $pV = NkT$ to calculate $T$ or $kT$ (1)                                                                                                                    |      |
|                    | Use of $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$ (1)                                                                                                       |      |
|                    | [use of $\frac{1}{2}m\langle c^2\rangle = \frac{3pV}{2N}$ gets MP1 and MP2]                                                                                       |      |
|                    | $\frac{1}{2}m\langle c^2\rangle = 5.9 \times 10^{-21} \text{J} \tag{1}$                                                                                           | 3    |
|                    | Example of calculation                                                                                                                                            |      |
|                    | $T = \frac{1.15 \times 10^5 \text{ Pa} \times 1.77 \times 10^{-3} \text{ m}^3}{5.15 \times 10^{22} \times 1.38 \times 10^{-23} \text{ J K}^{-1}} = 286 \text{ K}$ |      |
|                    | $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2} \times 1.38 \times 10^{-23} \text{J K}^{-1} \times 286 \text{K} = 5.93 \times 10^{-21} \text{J}$                    |      |
|                    | Total for question 11                                                                                                                                             | 3    |

| Question<br>Number | Answer                                                                                                                                                   | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 12                 | Two pairs of $p$ , $V$ readings from graph (1)                                                                                                           | )    |
|                    | Additional pair(s) of $p$ , $V$ readings from graph (1)                                                                                                  | )    |
|                    | $pV = 0.66 \ (\times \ 10^3 \ Pa \ m^3)$ [calculated for at least one pair of $p$ , $V$ readings]                                                        |      |
|                    | Comment that value of $pV$ is constant and so the student's claim is valid [dependent upon $pV$ calculated for at least two pairs of $p$ , $V$ readings] | 4    |
|                    | Example of calculation                                                                                                                                   |      |
|                    | p = 110  kPa, V = 0.006  m<br>$pV = 110 \times 10^3 \text{ Pa} \times 0.006 \text{ m}^3 = 660 \text{ Pa m}^3$                                            |      |
|                    | $p = 60 \text{ kPa}, V = 0.011 \text{ m}^3$<br>$pV = 60 \times 10^3 \text{ Pa} \times 0.011 \text{ m}^3 = 660 \text{ Pa m}^3$                            |      |
|                    | $p = 51 \text{ kPa}, V = 0.013 \text{ m}^3$<br>$pV = 51 \times 10^3 \text{ Pa} \times 0.013 \text{ m}^3 = 663 \text{ Pa m}^3$                            |      |
|                    | Total for question 12                                                                                                                                    | 4    |

| Question<br>Number | Answer                                                                                                                                     |     | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 13(a)              | Calculation of mass difference                                                                                                             | (1) |      |
|                    | Use of $\Delta E = c^2 \Delta m$                                                                                                           | (1) |      |
|                    | Conversion of energy from J to eV                                                                                                          | (1) |      |
|                    | E = 1.2  (MeV)                                                                                                                             | (1) | 4    |
|                    | Example of calculation                                                                                                                     |     |      |
|                    | $(2.82185 \times 10^{-26} + 1.67299 \times 10^{-27}) - (2.32451 \times 10^{-26} + 6.64432 \times 10^{-27})$                                |     |      |
|                    | $= (2.98915 - 2.98894) \times 10^{-26} = 2.07 \times 10^{-30} \text{ kg}$                                                                  |     |      |
|                    | $\Delta E = (3.0 \times 10^8 \text{ m s}^{-1})^2 \times 2.07 \times 10^{-30} \text{ kg} = 1.863 \times 10^{-13} \text{ J}$                 |     |      |
|                    | $\Delta E = \frac{1.89 \times 10^{-13} \text{ J}}{1.6 \times 10^{-19} \text{ J eV}^{-1}} = 1.16 \times 10^6 \text{ eV} = 1.16 \text{ MeV}$ |     |      |
| 13(b)              | Momentum (and energy) is conserved                                                                                                         | (1) |      |
|                    | (So) products must have $E_k$ / momentum after the reaction (as the alpha particle has momentum before the reaction)                       |     |      |
|                    |                                                                                                                                            | (1) | 2    |
|                    | Total for question 13                                                                                                                      |     | 6    |

| Question<br>Number | Answer                                                                                                                                                  |     | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 14(a)              | The light/radiation (received) from the galaxies is red shifted  Or Wavelength of light/radiation (received) from the galaxies was longer than expected | (1) | 1    |
| 14(b)              | EITHER A straight line through the origin would be consistent with Hubble's expression                                                                  | (1) |      |
|                    | There is scatter about the line but the points are distributed evenly                                                                                   | (1) |      |
|                    | So the expression may be valid (dependent upon MP2)                                                                                                     | (1) |      |
|                    | OR                                                                                                                                                      |     |      |
|                    | A straight line through the origin would be consistent with Hubble's expression                                                                         | (1) |      |
|                    | (But) there are outliers and these are far from the line <b>Or</b> (But) only some of the points are close to the line                                  | (1) |      |
|                    | So the expression may not be valid (dependent upon MP2)                                                                                                 | (1) |      |
|                    | OR                                                                                                                                                      |     |      |
|                    | The gradient of the line is equal to $H_0$                                                                                                              | (1) |      |
|                    | There is scatter about the line, so the value of $H_0$ is uncertain                                                                                     | (1) |      |
|                    | So the expression may not be valid (dependent upon MP2)                                                                                                 | (1) | 3    |
| _                  | Total for question 14                                                                                                                                   |     | 4    |

| Question<br>Number |                                                            |                                                                      | Answer                                                                                                   |                         |                                                                     |                    | Mark |
|--------------------|------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------|--------------------|------|
| *15                | structured ans<br>Marks are awa<br>and shows lin           | wer with link<br>arded for indi-<br>es of reasoning<br>table shows l | dent's ability to show<br>ages and fully-sustair<br>cative content and for<br>g.<br>how the marks should | ed reasoning how the an | ng.<br>Iswer is stru                                                | actured            |      |
|                    |                                                            |                                                                      | and logical structure                                                                                    |                         | Number of<br>awarded fo<br>of answer a<br>sustained li<br>reasoning | r structure<br>and |      |
|                    | linkages and<br>throughout<br>Answer is pa<br>of reasoning | fully sustaine                                                       | ed lines of reasoning of red with some linkag                                                            | demonstrates and line   | 1                                                                   |                    |      |
|                    |                                                            | warded is the                                                        | etween points and is u<br>sum of marks for ind<br>asoning                                                |                         | eent and the                                                        | marks              |      |
|                    | IC points                                                  | IC mark                                                              | Max linkage mark                                                                                         | Max final               | mark                                                                |                    |      |
|                    | 6<br>5                                                     | 3                                                                    | 2 2                                                                                                      | 5                       |                                                                     |                    |      |
|                    | 3                                                          | 3 2                                                                  | 1                                                                                                        | 3                       |                                                                     |                    |      |
|                    | 1 0                                                        | 2<br>1<br>0                                                          | 0 0 0                                                                                                    | 2<br>1<br>0             |                                                                     |                    |      |
|                    | Indicative co                                              | ontent                                                               | stor to a suitable cir                                                                                   | ·                       | oltmatar an                                                         | d ammatar          |      |
|                    | Or Co                                                      | onnect the the                                                       | ermistor to an ohmm<br>or in a water bath                                                                |                         | ommeter an                                                          | u ammeter          |      |
|                    | Or pla<br>IC3 Add i                                        | ace the therm                                                        | istor in a beaker of v<br>he water temperatur                                                            | e to 0°C                | 41 4                                                                |                    |      |
|                    | Or He                                                      |                                                                      | use a thermometer t<br>and use a temperatur<br>rature                                                    |                         | •                                                                   |                    |      |
|                    |                                                            | easure the res                                                       | stance $R$ (for each tensistance (for each tensistance)                                                  |                         | -                                                                   |                    |      |
|                    | IC6 Stir th                                                | ne water (to enured by the th                                        | · ·                                                                                                      |                         |                                                                     |                    |      |
|                    | therm<br><b>Or</b> St                                      | istor is at the op heating an                                        | nometer near to the the temperature measured wait before taking                                          | ed by the the readings  | nermomete                                                           | r)                 |      |
|                    | Or Sv                                                      | vitch current                                                        | ent/p.d. (to prevent it<br>off between reading<br>eter at eye level                                      | _                       | e thermisto                                                         | r)                 |      |
|                    | Total for que                                              |                                                                      | y • •                                                                                                    |                         |                                                                     |                    | 6    |

| Question<br>Number | Answer                                                                                                                              | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| 16(a)              | Use of $\rho = \frac{m}{V}$ (1)                                                                                                     |      |
|                    | Use of $\Delta E = mc\Delta\theta$ (1)                                                                                              |      |
|                    | Use of $P = \frac{\Delta E}{\Delta t}$ (1)                                                                                          |      |
|                    | P = 1630  (W) (1)                                                                                                                   | 4    |
|                    | Example of calculation                                                                                                              |      |
|                    | $m = 4.25 \times 10^{-4} \text{ m}^3 \times 998 \text{ kg m}^{-3} = 0.424 \text{ kg}$                                               |      |
|                    | $\Delta E = 0.424 \text{ kg} \times 4190 \text{ J kg}^{-1} \text{K}^{-1} \times (100 - 22) \text{ K} = 1.386 \times 10^5 \text{ J}$ |      |
|                    | $P = \frac{1.386 \times 10^5 \mathrm{J}}{85 \mathrm{s}} = 1631 \mathrm{W}$                                                          |      |
| 16(b)              | Use of $\Delta E = L\Delta m$ (1)                                                                                                   |      |
|                    | Use of $P = \frac{\Delta E}{\Delta t}$ (1)                                                                                          |      |
|                    | $t = 440 \text{ s (ecf from (a))} \tag{1}$                                                                                          | 3    |
|                    | Example of calculation                                                                                                              |      |
|                    | $\Delta E = 0.75 \times 0.424 \text{ kg} \times 2.26 \times 10^6 \text{ J kg}^{-1} = 7.19 \times 10^5 \text{ J}$                    |      |
|                    | $t = \frac{7.19 \times 10^5 \mathrm{J}}{1630 \mathrm{W}} = 441 \mathrm{s}$                                                          |      |
|                    | Total for question 16                                                                                                               | 7    |

| Question<br>Number | Answer                                                                                                                                                                                                                   |            | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| 17(a)              | Use of $g = \frac{GM}{r^2}$                                                                                                                                                                                              | (1)        |      |
|                    | $g = 0.40 \text{ N kg}^{-1}$ Example of calculation                                                                                                                                                                      | (1)        | 2    |
|                    | $g = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 3.1 \times 10^{21} \text{ kg}}{(7.15 \times 10^5 \text{ m})^2} = 0.404 \text{ N kg}^{-1}$ Equates $F = \frac{GMm}{r^2}$ with $F = m\omega^2 r$      |            |      |
| 17(b)              | Equates $F = \frac{GMm}{r^2}$ with $F = m\omega^2 r$                                                                                                                                                                     | (1)        |      |
|                    | Use of $\omega = \frac{2\pi}{T}$                                                                                                                                                                                         | (1)        |      |
|                    | $T_{\rm M} = 9.7 \times 10^9  {\rm s}$                                                                                                                                                                                   | (1)        |      |
|                    | Conversion between seconds and years [Must see a unit for <i>T</i> , either in MP3 or MP4]                                                                                                                               | (1)        |      |
|                    | Calculates ratio of orbital time of Makemake with orbital time of Pluto [Ratio includes a percentage calculation]                                                                                                        | (1)        |      |
|                    | Comparison of values and consistent conclusion                                                                                                                                                                           | (1)        |      |
|                    | OR                                                                                                                                                                                                                       | (4)        |      |
|                    | Equates $F = \frac{GMm}{r^2}$ with $F = \frac{mv^2}{r}$                                                                                                                                                                  | (1)        |      |
|                    | Use of $v = \frac{2\pi r}{T}$                                                                                                                                                                                            | (1)<br>(1) |      |
|                    | $T_{\rm M} = 9.7 \times 10^9 { m s}$                                                                                                                                                                                     | (1)        |      |
|                    | Conversion between seconds and years                                                                                                                                                                                     | (1)        |      |
|                    | Calculates ratio of orbital time of Makemake with orbital time of Pluto [Ratio includes a percentage calculation]                                                                                                        | (1)        |      |
|                    | Comparison of values and consistent conclusion                                                                                                                                                                           | (1)        | 6    |
|                    | Example of calculation                                                                                                                                                                                                   |            |      |
|                    | $\frac{GMm}{r^2} = m\omega^2 r$                                                                                                                                                                                          |            |      |
|                    | $\omega = \sqrt{\frac{GM}{r^3}} = \sqrt{\frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-1} \times 1.99 \times 10^{30} \text{ kg}}{(6.80 \times 10^{12} \text{ m})^3}}$                                             |            |      |
|                    | $\omega = 6.50 \times 10^{-10} \text{ rad } s^{-1}$                                                                                                                                                                      |            |      |
|                    | $T = \frac{2\pi}{\omega} = \frac{2\pi \text{ rad}}{6.50 \times 10^{-10} \text{ rad s}^{-1}} = 9.67 \times 10^9 \text{ s} = \frac{9.67 \times 10^9 \text{ s}}{3.15 \times 10^7 \text{ s year}^{-1}}$ $= 307 \text{ year}$ |            |      |
|                    | orbital time ratio = $\frac{307 \text{ year}}{248 \text{ year}} = 1.24$                                                                                                                                                  |            |      |
|                    | The orbital time of Makemake is 24% greater than that of Pluto, so website statement is not quite accurate                                                                                                               |            |      |
|                    | Total for question 17                                                                                                                                                                                                    |            | 8    |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 18(a)              | Use of $V = \frac{4}{3}\pi r^3$                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1) |      |
|                    | Use of $\rho = \frac{m}{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1) |      |
|                    | Use of $F = \frac{Gm_1m_2}{r^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1) |      |
|                    | $F = 7.4 \times 10^5 \mathrm{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1) | 4    |
|                    | $\frac{\text{Example of calculation}}{V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi \left(\frac{5.65 \text{ m}}{2}\right)^3 = 94.437 \text{ m}^3}$ $m = \rho V = 1950 \text{ kg m}^{-3} \times 94.437 \text{ m}^3 = 1.842 \times 10^5 \text{ kg}$ $F = \frac{Gm_1m_2}{r^2}$ $= \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-3} \times 5.98 \times 10^{24} \text{ kg} \times 1.842 \times 10^5 \text{ kg}}{(6.38 \times 10^6 \text{ m} + 3.59 \times 10^6 \text{ m})^2}$ |     |      |
|                    | $\therefore F = 7.39 \times 10^5 \text{ N}$                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| 18(b)              | $\therefore F = 7.39 \times 10^5 \text{ N}$ Use of $V_{\text{grav}} = (-) \frac{GM}{r}$                                                                                                                                                                                                                                                                                                                                                                                    | (1) |      |
|                    | Use of $E_{\text{grav}} = m \times V_{\text{grav}}$                                                                                                                                                                                                                                                                                                                                                                                                                        | (1) |      |
|                    | $\therefore \Delta E_{\text{grav}} = (-) \text{ 4.1} \times 10^{12} \text{ J (Allow ecf for mass from (a))}$                                                                                                                                                                                                                                                                                                                                                               | (1) | 3    |
|                    | [Either mass can be used for $M$ in the potential equation, but to award MP2 the multiplier $m$ . must not be the mass used in the potential equation.]                                                                                                                                                                                                                                                                                                                    |     |      |
|                    | $\frac{\text{Example of calculation}}{\Delta E_{\text{grav}} = -6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 1.842 \times 10^5 \text{ kg} \times 5.98 \times 10^{-24} \text{ kg}}{\times \left(\frac{1}{6.38 \times 10^6 \text{ m}} - \frac{1}{(6.38 \times 10^6 + 3.59 \times 10^6) \text{ m}}\right)}$                                                                                                                                                      |     |      |
|                    | $\therefore \Delta E_{\rm grav} = -4.14 \times 10^{12} \mathrm{J}$                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |
| 18(c)              | Work would be done on the asteroid by frictional forces  Or Drag/friction causes heating (of the asteroid)                                                                                                                                                                                                                                                                                                                                                                 | (1) |      |
|                    | Asteroid burns up                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1) | 2    |
|                    | Total for question 18                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 9    |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                  |     | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 19(a)(i)           | Use of $\lambda = \frac{\ln 2}{t_{1/4}}$                                                                                                                                                                                                                                                | (1) |      |
|                    | $\lambda = 7.31 \times 10^{-10}  (s^{-1})$                                                                                                                                                                                                                                              | (1) | 2    |
|                    | $\lambda = \frac{\ln 2}{30.1 \times 3.15 \times 10^7 \text{ s}} = 7.31 \times 10^{-10} \text{ s}^{-1}$                                                                                                                                                                                  |     |      |
| 19(a)(ii)          | Use of $\frac{dN}{dt} = -\lambda N$                                                                                                                                                                                                                                                     | (1) |      |
|                    | Use of $u = 1.66 \times 10^{-27}$ kg with 137                                                                                                                                                                                                                                           | (1) |      |
|                    | $m = 5.9 \times 10^{-6} \text{ (kg) (Allow ecf from (a)(i))}$                                                                                                                                                                                                                           | (1) | 3    |
|                    | $N = \frac{19 \times 10^9 \text{ s}^{-1}}{7.31 \times 10^{-10} \text{ s}^{-1}} = 2.60 \times 10^{19}$                                                                                                                                                                                   |     |      |
|                    | $m = 2.60 \times 10^{19} \times 137 \times 1.66 \times 10^{-27} \text{kg} = 5.91 \times 10^{-6} \text{kg}$                                                                                                                                                                              |     |      |
| 19(a)(iii)         | Use of $A = A_0 e^{-\lambda t}$                                                                                                                                                                                                                                                         | (1) |      |
|                    | A = 18.1  GBq (Allow ecf from (a)(i))                                                                                                                                                                                                                                                   | (1) | 2    |
|                    | Example of calculation                                                                                                                                                                                                                                                                  |     |      |
|                    | $A = 19 \times 10^{9} \text{Bq} \times \text{e}^{-7.31 \times 10^{-10} \text{s}^{-1} \times 2 \times 3.15 \times 10^{7} \text{s}}$                                                                                                                                                      |     |      |
|                    | $A = 1.81 \times 10^{10} \text{ Bq}$                                                                                                                                                                                                                                                    |     |      |
| 19(b)              | Use of total energy released = $\left(\frac{\Delta N}{\Delta t}\right) \times \Delta t \times E$                                                                                                                                                                                        |     |      |
|                    | <b>Or</b> Use of total energy released $\stackrel{\triangle L}{=} \Delta N \times E$                                                                                                                                                                                                    | (1) |      |
|                    | Use of 1 eV = $1.6 \times 10^{-19}$ J                                                                                                                                                                                                                                                   | (1) |      |
|                    | Total energy released = $4.3 \times 10^3$ (J)                                                                                                                                                                                                                                           | (1) | 3    |
|                    | [If $\left(\frac{\Delta N}{\Delta t}\right) \times \Delta t$ determined by using exponential decay equation to calculate number of undecayed nuclei after 14 days; final answer should round to 4300 (J)]                                                                               |     |      |
|                    | Example of calculation<br>$E = 19 \times 10^9 \text{ s}^{-1} \times 14 \times 86400 \text{ s} \times 1.17 \text{ MeV} = 2.69 \times 10^{16} \text{ MeV}$<br>$E = 2.69 \times 10^{16} \text{ MeV} \times 10^6 \times 1.6 \times 10^{-19} \text{ J eV}^{-1} = 4.30 \times 10^3 \text{ J}$ |     |      |
|                    | Total for question 19                                                                                                                                                                                                                                                                   |     | 10   |

| There is a (resultant) force that is proportional to the displacement from the equilibrium position (I) and (always) acting towards the equilibrium position (I) [Allow references to acceleration; an equation with symbols defined correctly is a valid response for both marks.]  20(b) ETHIER Use of $F = mg$ (I) Use of $\Delta F = (-)k\Delta x$ (II) Use of                                                                                                                                                                                                                                                                                                             | Question<br>Number | Answer                                                                                                  |     | Mark |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------|-----|------|
| and (always) acting towards the equilibrium position  [Allow references to acceleration; an equation with symbols defined correctly is a valid response for both marks.]  20(b) ETHER  Use of $F = mg$ (1)  Use of $\Delta F = (-)k\Delta x$ (1)  Use of $\Delta F = 2\pi \sqrt{\frac{m}{k}}$ (1)  Use of $\omega = \frac{2\pi}{T}$ (1)  Use of $\omega = \frac{2\pi}{T}$ (1)  Use of $\omega = \frac{2\pi}{T}$ (1)  Use of $\omega = 0.34 \text{ m s}^{-1}$ (1)  OR  Use of $F = mg$ (1)  Use of $F = mg$ (1) $F = 0.150 \text{ kg} = \frac{1}{2}F\Delta x$ (1)  Use of energy conservation (1) $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 1.47 \text{ N}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 1.47 \text{ N}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 1.47 \text{ N}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 1.47 \text{ N}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 1.47 \text{ N}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 1.47 \text{ N}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549 \text{ s}$ $F = 0.150 \text{ kg} \times 9.81 \text{ Ng}^{-1} = 0.549  s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20(a)              |                                                                                                         | (1) |      |
| [Allow references to acceleration; an equation with symbols defined correctly is a valid response for both marks.]  20(b) ETHER  Use of $F = mg$ (1)  Use of $\Delta F = (-)k\Delta x$ (1)  Use of $\Delta F = 2\pi \sqrt{\frac{m}{k}}$ (1)  Use of $\omega = \frac{2\pi}{T}$ (1)  Use of $\omega = \frac{2\pi}{T}$ (1)  Use of $\omega = \frac{2\pi}{T}$ (1)  Use of $\omega = 0.34 \text{ m s}^{-1}$ (1)  OR  Use of $F = mg$ (1)  Use of $F = mg$ (1) $F = 0.350 \text{ kg} \times 9.81 \text{ m}^{-1}$ (1) $F = 0.350 \text{ kg} \times 9.81 \text{ m}^{-1}$ (1) $V_{max} = 0.34 \text{ m}^{-1}$ (2) $V_{max} = 0.34 \text{ m}^{-1}$ (3) $V_{max} = 0.34 \text{ m}^{-1}$ (4) $V_{max} = 0.34 \text{ m}^{-1}$ (1) $V_{max} = 0.34 \text{ m}^{-1}$ (2) $V_{max} = 0.34 \text{ m}^{-1}$ (3) $V_{max} = 0.34 \text{ m}^{-1}$ (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                         | , , | 2    |
| 20(b) EITHER  Use of $F = mg$ (1)  Use of $\Delta F = (-)k\Delta x$ (1)  Use of $\Delta F = 2\pi \sqrt{\frac{m}{k}}$ (1)  Use of $\omega = \frac{2\pi}{T}$ (1)  Use of $\omega = \frac{2\pi}{T}$ (1)  Use of $\omega = 0.34 \text{ m s}^{-1}$ (1)  Use of $\Delta F = mg$ (1)  Use of $\Delta F = \frac{1}{2}F\Delta x$ (1)  Use of $\Delta E_{el} = \frac{1}{2}F\Delta x$ (1)  Use of $\Delta E_{el} = \frac{1}{2}mv^2$ (1)  Use of energy conservation $\omega_{max} = 0.34 \text{ m s}^{-1}$ (1)  Example of calculation $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $\Delta F = 0.150 $                                                                                                                                                                                                                                     |                    | [Allow references to acceleration; an equation with symbols defined correctly                           | ( ) |      |
| Use of $\Gamma = mg$ Use of $\Delta F = (-)k\Delta x$ (1)  Use of $T = 2\pi \sqrt{\frac{m}{k}}$ (1)  Use of $\omega = \frac{2\pi}{T}$ (1)  Use of $v = \omega x_0 \sin \omega t$ (1)  Use of $F = mg$ Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20(b)              |                                                                                                         |     |      |
| Use of $T=2\pi\sqrt{\frac{m}{k}}$ (1)  Use of $\omega=\frac{2\pi}{T}$ (1)  Use of $v=\omega x_0 \sin \omega t$ (1) $v_{\max}=0.34 \text{ m s}^{-1}$ (1)  OR  Use of $F=mg$ (1)  Use of $\Delta F=(-)k\Delta x$ (1) |                    | Use of $F = mg$                                                                                         | (1) |      |
| Use of $\omega = \frac{2\pi}{T}$ (1)  Use of $v = \omega x_0 \sin \omega t$ (1) $v_{\text{max}} = 0.34  \text{m s}^{-1}$ (1)  OR  Use of $F = mg$ (1)  Use of $\Delta E = (-)k\Delta x$ (1)  Use of $\Delta E_{el} = \frac{1}{2}F\Delta x$ (1)  Use of $E_{el} = \frac{1}{2}mv^2$ (1)  Use of energy conservation (1) $v_{\text{max}} = 0.34  \text{m s}^{-1}$ (1) $Example of calculation$ $F = 0.150  \text{kg} \times 9.81  \text{N kg}^{-1} = 1.47  \text{N}$ $k = \frac{1.47  \text{N}}{7.5 \times 10^{-2}  \text{m}} = 19.6  \text{N m}^{-1}$ $T = 2\pi \sqrt{\frac{0.150  \text{kg}}{19.6  \text{N m}^{-1}}} = 0.549  \text{s}$ $\omega = \frac{2\pi  \text{rad}}{0.549  \text{s}} = 11.4  \text{rad s}^{-1}$ $v_{\text{max}} = 11.4  \text{rad s}^{-1} \times 3.0 \times 10^{-2}  \text{m} = 0.343  \text{m s}^{-1}$ 20(c)  Energy is transferred out of the oscillating system  Or energy is dissipated (to surroundings) (1)  Because work is done by/against resistive forces [Allow MAX 1 for reference to damping]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Use of $\Delta F = (-)k\Delta x$                                                                        | (1) |      |
| Use of $v = \omega x_0 \sin \omega t$ (1) $v_{\text{max}} = 0.34 \text{ m s}^{-1}$ (1) OR Use of $F = mg$ (1) Use of $\Delta E_{el} = \frac{1}{2}F\Delta x$ (1) Use of $E_{el} = \frac{1}{2}mv^2$ (1) Use of energy conservation (1) $v_{\text{max}} = 0.34 \text{ m s}^{-1}$ (1) $E_{\text{xample of calculation}} = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1}$ $T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$ $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$ $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ $E_{\text{nergy is transferred out of the oscillating system}$ Or energy is dissipated (to surroundings) (1) Because work is done by/against resistive forces [Allow MAX 1 for reference to damping]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Use of $T = 2\pi \sqrt{\frac{m}{k}}$                                                                    | (1) |      |
| $v_{\max} = 0.34 \text{ m s}^{-1} \tag{1}$ $OR$ $Use of F = mg Use of \Delta F = (-)k\Delta x Use of \Delta E_{el} = \frac{1}{2}F\Delta x Use of E_k = \frac{1}{2}mv^2 Use of energy conservation v_{\max} = 0.34 \text{ m s}^{-1} Example of calculation F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N} k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1} T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s} \omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1} v_{\max} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1} Energy is transferred out of the oscillating system Or energy is dissipated (to surroundings) Or energy is dissipated (to surroundings) (1) Because work is done by/against resistive forces [Allow MAX 1 for reference to damping]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Use of $\omega = \frac{2\pi}{T}$                                                                        | (1) |      |
| Use of $F = mg$ (1) Use of $\Delta F = (-)k\Delta x$ (1) Use of $\Delta E_{el} = \frac{1}{2}F\Delta x$ (1) Use of $E_{k} = \frac{1}{2}mv^{2}$ (1) Use of energy conservation (1) $v_{\text{max}} = 0.34 \text{ m s}^{-1}$ (1) $\frac{E_{\text{xample of calculation}}}{F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}}$ $k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1}$ $T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$ $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$ $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ 20(c) Energy is transferred out of the oscillating system Or energy is dissipated (to surroundings) (1) Because work is done by/against resistive forces [Allow MAX 1 for reference to damping]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Use of $v = \omega x_0 \sin \omega t$                                                                   | (1) |      |
| Use of $F = mg$ (1) Use of $\Delta F = (-)k\Delta x$ (1) Use of $\Delta E_{el} = \frac{1}{2}F\Delta x$ (1) Use of $E_{k} = \frac{1}{2}mv^{2}$ (1) Use of energy conservation (1) $v_{\text{max}} = 0.34 \text{ m s}^{-1}$ (1) $\frac{E_{\text{xample of calculation}}}{F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}}$ $k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1}$ $T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$ $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$ $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ 20(c) Energy is transferred out of the oscillating system Or energy is dissipated (to surroundings) (1) Because work is done by/against resistive forces [Allow MAX 1 for reference to damping]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | $v_{\rm max} = 0.34 \mathrm{ms^{-1}}$                                                                   | (1) |      |
| Use of $\Delta F = (-)k\Delta x$ (1)  Use of $\Delta E_{et} = \frac{1}{2}F\Delta x$ (1)  Use of $E_k = \frac{1}{2}mv^2$ (1)  Use of energy conservation (1) $v_{\text{max}} = 0.34 \text{ m s}^{-1}$ (1) $\frac{\text{Example of calculation}}{F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}}$ $k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1}$ $T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$ $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$ $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ 20(c)  Energy is transferred out of the oscillating system  Or energy is dissipated (to surroundings) (1)  Because work is done by/against resistive forces [Allow MAX 1 for reference to damping]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | OR                                                                                                      |     |      |
| Use of $\Delta F = (-)k\Delta x$ (1)  Use of $\Delta E_{el} = \frac{1}{2}F\Delta x$ (1)  Use of $E_{el} = \frac{1}{2}mv^2$ (1)  Use of energy conservation (1) $v_{max} = 0.34 \text{ m s}^{-1}$ (1) $Example of calculation$ $F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1}$ $T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$ $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$ $v_{max} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ 20(c)  Energy is transferred out of the oscillating system  Or energy is dissipated (to surroundings) (1)  Because work is done by/against resistive forces [Allow MAX 1 for reference to damping]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Use of $F = mg$                                                                                         | (1) |      |
| Use of $\Delta E_{el} = \frac{1}{2}F\Delta x$ (1)  Use of $E_k = \frac{1}{2}mv^2$ (1)  Use of energy conservation (1) $v_{\text{max}} = 0.34 \text{ m s}^{-1}$ (1) $\frac{E_{\text{xample of calculation}}}{F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}}$ $k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1}$ $T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$ $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$ $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ 20(c)  Energy is transferred out of the oscillating system  Or energy is dissipated (to surroundings) (1)  Because work is done by/against resistive forces [Allow MAX 1 for reference to damping]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Use of $\Delta F = (-)k\Delta x$                                                                        |     |      |
| Use of energy conservation $v_{\text{max}} = 0.34 \text{ m s}^{-1}$ $\frac{\text{Example of calculation}}{F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}}$ $k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1}$ $T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$ $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$ $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ $\text{Energy is transferred out of the oscillating system}$ $\text{Or energy is dissipated (to surroundings)}$ $\text{Or energy is dissipated to damping}$ $\text{Old Decay to the obstacle of the oscillating system}$ $\text{Or energy is dissipated to surroundings}}$ $\text{Old Decay transferred out of the oscillating system}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | Use of $\Delta E_{el} = \frac{1}{2} F \Delta x$                                                         | (1) |      |
| $v_{\text{max}} = 0.34 \text{ m s}^{-1}$ $\frac{\text{Example of calculation}}{F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}}$ $k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1}$ $T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$ $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$ $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ $\text{Energy is transferred out of the oscillating system}$ $\text{Or energy is dissipated (to surroundings)}$ $\text{Because work is done by/against resistive forces}$ $[Allow MAX 1 \text{ for reference to damping}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Use of $E_k = \frac{1}{2}mv^2$                                                                          | (1) |      |
| Example of calculation $F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1}$ $T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$ $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$ $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ 20(c) Energy is transferred out of the oscillating system Or energy is dissipated (to surroundings) (1) Because work is done by/against resistive forces [Allow MAX 1 for reference to damping]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Use of energy conservation                                                                              | (1) |      |
| $F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$ $k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1}$ $T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$ $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$ $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ $\text{Energy is transferred out of the oscillating system}$ $\text{Or energy is dissipated (to surroundings)}$ $\text{Because work is done by/against resistive forces}$ $\text{[Allow MAX 1 for reference to damping]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | $v_{\rm max} = 0.34 \; {\rm m  s^{-1}}$                                                                 | (1) | 6    |
| $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$ $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ $\text{Energy is transferred out of the oscillating system}$ $\text{Or energy is dissipated (to surroundings)}$ $\text{Because work is done by/against resistive forces}$ $\text{Allow MAX 1 for reference to damping}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | $F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$                                   |     |      |
| $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ $20(c) \qquad \text{Energy is transferred out of the oscillating system}$ $Or \text{ energy is dissipated (to surroundings)} \qquad \qquad (1)$ $\text{Because work is done by/against resistive forces}$ $[Allow MAX 1 \text{ for reference to damping}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | $T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$                      |     |      |
| 20(c) Energy is transferred out of the oscillating system Or energy is dissipated (to surroundings)  Because work is done by/against resistive forces [Allow MAX 1 for reference to damping]  (1)  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | $\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$                           |     |      |
| Or energy is dissipated (to surroundings)  Because work is done by/against resistive forces [Allow MAX 1 for reference to damping]  (1)  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | $v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$ |     |      |
| [Allow MAX 1 for reference to damping]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20(c)              |                                                                                                         | (1) |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | · ·                                                                                                     | (1) | 2    |
| TOTAL IN THE STATE OF THE STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | [Allow MAX 1 for reference to damping]  Total for question 20                                           |     | 10   |

| Use of $\lambda_{max}T = 2.898 \times 10^{-3}$ (I)  Use of $L = \sigma A T^4$ and $A = 4\pi r^2$ Or Use of $L = \sigma A T^4$ to calculate $A$ and $A \propto r^2$ (I) $\frac{r_B}{r_S} = 990$ (I) $\frac{r_B}{r_S} = 990$ (I) $\frac{r_B}{r_S} = 990$ (I) $\frac{r_B}{r_S} = 8 \text{ is approximately equal to } 1000, \text{ so claim is accurate} \\ \text{Or } \frac{r_B}{r_S} = 8 \text{ is not equal to } 1000, \text{ so claim is inaccurate} \\ \text{Or } \frac{r_B}{r_S} = 8 \text{ in ot equal to } 1000, \text{ so claim is inaccurate} \\ \text{(Allow use of calculated ratio with consistent conclusion)}$ $T = \frac{2.898 \times 10^{-3} \text{ m K}}{850 \times 10^{-9} \text{ m}} = 3410 \text{ K}$ $\frac{L_B}{L_S} = \frac{4\pi \sigma r_B^2 T_B^4}{4\pi \sigma r_S^2 T_S^4}$ $\frac{r_B}{r_S} = \sqrt{\frac{L_B}{L_S} \times \frac{r_S^4}{T_B^4}} = \sqrt{\frac{4.49 \times 10^{31} \text{ W}}{3.83 \times 10^{26} \text{ W}}} \times \left(\frac{5800 \text{ K}}{3410 \text{ K}}\right)^4} = 991$ 21(a)(ii)  Sun in correct position  Betelgeuse in correct position  (1) $L/L_{Sun} = \frac{10^6}{10^2}$ $1$ $10^2$ $1$ $10^2$ $1$ $10^2$ $1$ $10^2$ $1$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $10^2$ $1$                                                                                                                                                                                                                                                                                                                    | Mark |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Or Use of $L = \sigma A T^4$ to calculate $A$ and $A \propto r^2$ (1) $\frac{r_B}{r_S} = 990$ (1) $\frac{r_B}{r_S} \text{ is approximately equal to 1000, so claim is accurate}$ Or $\frac{r_B}{r_S}$ is less than 1000, so claim is inaccurate Or $\frac{r_B}{r_S}$ is not equal to 1000, so claim is inaccurate (Allow use of calculated ratio with consistent conclusion) $T = \frac{2.898 \times 10^{-3} \text{ m K}}{850 \times 10^{-9} \text{ m}} = 3410 \text{ K}$ $\frac{L_B}{L_S} = \frac{4\pi \sigma r_B^2 T_B^4}{4\pi \sigma r_S^2 T_S^4}$ $\frac{r_B}{r_S} = \sqrt{\frac{L_B}{L_S} \times \frac{T_S^4}{T_B^4}} = \sqrt{\frac{4.49 \times 10^{31} \text{ W}}{3.83 \times 10^{26} \text{ W}} \times \left(\frac{5800 \text{ K}}{3410 \text{ K}}\right)^4} = 991$ 21(a)(ii)  Sun in correct position Betelgeuse in correct position (1) $\frac{10^6}{10^2} = \frac{10^6}{10^2} = \frac$                  |      |
| $\frac{r_S}{r_S} = 990$ $\frac{r_B}{r_S} \text{ is approximately equal to } 1000, \text{ so claim is accurate}$ $\text{Or } \frac{r_B}{r_S} \text{ is less than } 1000, \text{ so claim is inaccurate}$ $\text{Or } \frac{r_B}{r_S} \text{ is not equal to } 1000, \text{ so claim is inaccurate}$ $\text{(Allow use of calculated ratio with consistent conclusion)}$ $\frac{\text{Example of calculation}}{T = \frac{2.898 \times 10^{-3} \text{ m K}}{850 \times 10^{-9} \text{ m}}} = 3410 \text{ K}$ $\frac{L_B}{L_S} = \frac{4\pi\sigma r_B^2 T_B^4}{4\pi\sigma r_S^2 T_S^4}$ $\frac{r_B}{r_S} = \sqrt{\frac{L_B}{L_S} \times \frac{T_S^4}{T_B^4}} = \sqrt{\frac{4.49 \times 10^{31} \text{ W}}{3.83 \times 10^{26} \text{ W}}} \times \left(\frac{5800 \text{ K}}{3410 \text{ K}}\right)^4} = 991$ $21(a)(ii)  \text{Sun in correct position}$ $\text{Betelgeuse in correct position}$ $\text{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| Or $\frac{r_B}{r_S}$ is less than 1000, so claim is inaccurate Or $\frac{r_B}{r_S}$ is not equal to 1000, so claim is inaccurate (Allow use of calculated ratio with consistent conclusion) $\frac{\text{Example of calculation}}{T = \frac{2.898 \times 10^{-3} \text{ m K}}{850 \times 10^{-9} \text{ m}}} = 3410 \text{ K}$ $\frac{L_B}{L_S} = \frac{4\pi\sigma r_B^2 T_B^4}{4\pi\sigma r_S^2 T_S^4}$ $\frac{r_B}{r_S} = \sqrt{\frac{L_B}{L_S} \times \frac{T_S^4}{T_B^4}} = \sqrt{\frac{4.49 \times 10^{31} \text{ W}}{3.83 \times 10^{26} \text{ W}} \times \left(\frac{5800 \text{ K}}{3410 \text{ K}}\right)^4} = 991$ 21(a)(ii) Sun in correct position Betelgeuse in correct position (1) $\frac{10^6}{L/L_{\text{Sum}}} = \frac{10^6}{10^2} = \frac{10^6}{$ |      |
| $T = \frac{2.898 \times 10^{-3} \text{ m K}}{850 \times 10^{-9} \text{ m}} = 3410 \text{ K}$ $\frac{L_B}{L_S} = \frac{4\pi\sigma r_B^2 T_B^4}{4\pi\sigma r_S^2 T_S^4}$ $\frac{r_B}{r_S} = \sqrt{\frac{L_B}{L_S}} \times \frac{T_S^4}{T_B^4} = \sqrt{\frac{4.49 \times 10^{31} \text{ W}}{3.83 \times 10^{26} \text{ W}}} \times \left(\frac{5800 \text{ K}}{3410 \text{ K}}\right)^4} = 991$ 21(a)(ii) Sun in correct position Betelgeuse in correct position (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4    |
| $\frac{r_B}{r_S} = \sqrt{\frac{L_B}{L_S}} \times \frac{T_S^4}{T_B^4} = \sqrt{\frac{4.49 \times 10^{31} \text{ W}}{3.83 \times 10^{26} \text{ W}}} \times \left(\frac{5800 \text{ K}}{3410 \text{ K}}\right)^4} = 991$ 21(a)(ii) Sun in correct position (1) Betelgeuse in correct position (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 21(a)(ii) Sun in correct position  Betelgeuse in correct position $L/L_{Sun} = 10^6$ $10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = 10^2$ $1 = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Betelgeuse in correct position (1) $L/L_{Sun} = 10^{6}$ $10^{2}$ $1$ $1$ $SUN$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 10 <sup>2</sup> SUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2    |
| 1 SUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 10-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| 10 <sup>-6</sup> 40 000 20 000 10 000 5000 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| T/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 21(a)(iii) A main sequence star is a star that is fusing <u>hydrogen</u> in its <u>core</u> (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1    |

| 21(b) | Use of $\omega = \frac{2\pi}{T}$ (1)  Use of $v = r\omega$ (1)  Use of $\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$ (1)  Determines range by taking 91.2 nm ± $\Delta\lambda$ (1)  Maximum wavelength = 91.8 (nm)  Minimum wavelength = 90.6 (nm) (1) $\frac{\text{Example of calculation}}{\omega = \frac{2\pi}{T} = \frac{2\pi \text{ rad}}{33.5 \times 10^{-3} \text{s}} = 187.6 \text{ rad s}^{-1}}$ $v = 10.25 \times 10^{3} \text{ m} \times 187.6 \text{ rad s}^{-1} = 1.922 \times 10^{6} \text{ m s}^{-1}$ $\frac{\Delta\lambda}{91.2 \times 10^{-9} \text{ m}} = \frac{1.922 \times 10^{6} \text{ m s}^{-1}}{3.00 \times 10^{3} \text{ m s}^{-1}}$ $\therefore \Delta\lambda = 6.408 \times 10^{-3} \times 91.2 \times 10^{-9} \text{ m} = 5.84 \times 10^{-10} \text{ m}$ | 6  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13 |