

KANDIDAT

645

PRØVE

MAT101 0 Brukerkurs i matematikk

Emnekode	MAT101
Vurderingsform	Skriftlig eksamen
Starttid	06.12.2023 09:00
Sluttid	06.12.2023 13:00
Sensurfrist	
PDF opprettet	31.05.2024 13:16

Informasjonstekst

Oppgave	Oppgavetype
i	Informasjon eller ressurser

Del 1. Refleksjonsoppgåver

Oppgave	Oppgavetype
1.1	Flervalg
1.2	Flervalg
1.3	Flervalg
1.4	Flervalg
1.5	Flervalg
1.6	Flervalg
1.7	Flervalg

Del 2. Berekningsorienterte oppgåver

Oppgave	Oppgavetype
2.1	Flervalg
2.2	Flervalg
2.3	Flervalg
2.4	Flervalg
2.5	Flervalg
2.6	Flervalg

2.7 Flervalg

Del 3. Langsvarsoppgåver

Oppgave	Oppgavetype
3.1	Langsvar
3.2	Langsvar

1.1

La definisjonsmengden til f være $D_f=(0,2)$. Grafen til f er vist i figuren. Hvilken av påstandene om funksjonen f beskriver best ekstremalverdiene til f? **Velg ett alternativ:**

- igcup f har verken global minimumsverdi eller global maksimumsverdi.
- igcup f har global maksimumsverdi, men ikke global minimumsverdi.
- \bigcirc f har global minimumsverdi, men ikke global maksimumsverdi.
- lacktriangledown f har både global maksimumsverdi og global minimumsverdi.
- Vi kan ikke avgjøre dette uten å vite funksjonsuttrykket.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

1.2 Ole og Kari lager oppgaver til eksamen og må beregne en normalvektor til planet 3x - 4y = 29 i \mathbb{R}^3 .

Ole har kommet fram til vektoren [3, -4, 0] og Kari har kommet fram til vektoren $[-\frac{3}{5}, \frac{4}{5}, 0]$. Hvilket alternativ beskriver vektorenes forhold til planet?

Velg ett alternativ:

- ullet Ingen av vektorene er en normalvektor til planet. En normalvektor til planet er [3,-4].
- Bare Kari sin normalvektor er riktig, da dette er en vektor med enhetslengde som er normal til planet.
- Begge vektorene er normalvektorer til planet da en normalvektor til et plan bare er bestemt opp til skalering med et tall $a \neq 0$.
- Kryssproduktet til vektorene er null, dermed kan ikke begge være normal til planet.
- Bare Ole sin normalvektor er riktig, da dette er vektoren vi får ved å bruke planligningen i kompendiet.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

- 1.3 Funksjonen f er definert som $f(x) = \frac{x^2-1}{x-1}$. Hvilket av følgende utsagn beskriver best f i et omegn av x=1? Velg ett alternativ:
 - lacksquare Definisjonsmengden til f er $D_f=\mathbb{R}\setminus\{1\}.$
 - Definisjonsmengden til f er $D_f=\mathbb{R}\setminus\{1\}$, men vi kan ikke beregne grenseverdien i x=1 fordi uttrykket gir $\left[rac{0}{0}
 ight]$.
 - Oefinisjonsmengden til f er $D_f=\mathbb{R}\setminus\{1\}$ og f(x) har en vertikal asymptote i x=1 siden nevneren er 0 i x=1.
 - Oefinisjonsmengden til f er $D_f=\mathbb{R}\setminus\{1\}$, men $\lim_{x o 1^-}f(x)=2=\lim_{x o 1^+}f(x)$.
 - $\mathbf{x} = \mathbf{1}$ er et av de to nullpunktene til f, det andre er x = -1.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

- 1.4 Du har laget kylling til middag og stekt den til en temperatur på 75°C. Du venter på at kyllingen skal kjøle seg ned før du spiser den. Temperaturen i rommet er 25°C og du vet at temperaturen i kyllingen avtar med en rate som er proporsjonal med temperaturforskjellen. Hvilken differensiallikning beskriver best temperaturen y(t) av kyllingen som funksjon av tid? Velg ett alternativ:
 - $\bigcirc rac{dy}{dt} = ay(y-25), y(0) = 75$, der a er en konstant.
 - igcirc $rac{dy}{dt}=a(y-25)$, y(0)=75, der a er en konstant.
 - $\bigcirc rac{dy}{dt} = 25(y-75)$, y(0) = a, der a er en konstant.
 - $\frac{dy}{dt} = a(y-75)$, y(0) = 25, der a er en konstant.
 - $igcup rac{dy}{dt}=75(y-25)$, y(0)=a, der a er en konstant.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

1.5

Figuren viser eksperimentelle data tilpasset med en rett linje. Den vertikale aksen bruker logaritmisk skala og den horisontale aksen bruker lineær skala.

Hvilken av følgende funksjoner beskriver best dataen i figuren?

Velg ett alternativ:

$$\bigcirc y(x) = \ln(ax+b)$$

$$\bigcirc y(x) = x^a + b$$

 \bigcirc Det gir ikke mening å beskrive med y(x) fordi vi har kun dataverdier.

$$extstyle y(x) = e^{ax+b}$$

$$\bigcirc y(x) = ax + b$$

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

- 1.6 Betrakt det ubestemte integralet $\int x \sin(x) dx$. Hvilken integrasjonsteknikk må du bruke for å løse integralet? Velg ett alternativ:
 - Integralet kan ikke løses med vanlige integrasjonsteknikker.
 - igcup Substitusjon med $u(x)=\sin(x)$.
 - igcup Antiderivasjon av sinus slik at $\int x \sin(x) \, dx = -x \cos(x)$.
 - lacksquare Delvis integrasjon med f(x)=x og $g'(x)=\sin(x)$.
 - igcup Fundamentalteoremet i kalkulus slik at $\int_a^b x \sin(x) \, dx = F(b) F(a)$.

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

1755690

- 1.7 La f være en kontinuerlig funksjon på [a,b]. Hvordan kan vi finne gjennomsnittverdien til funksjonen f over intervallet [a,b]? Velg ett alternativ:
 - Ved å velge 5 punkter x_1, x_2, x_3, x_4, x_5 i intervallet [a, b] og finne gjennomsnittsverdien $\frac{f(x_1) + f(x_2) + f(x_3) + f(x_4) + f(x_5)}{5}.$
 - \bigcirc Ved å beregne kvotienten $\frac{f(b)-f(a)}{b-a}$.
 - igcup Ved å beregne gjennomsnittet av funksjonsverdiene i endepunktene: $rac{f(a)+f(b)}{2}$.
 - O Det finnes ingen generell måte å beregne gjennomsnittsverdien av en funksjon.
 - Oved å beregne integralet av f over intervallet, delt på intervallbredden: $\frac{1}{b-a}\int_a^b f(x)\,dx$.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

2.1 Beregn alle punkter hvor f'(x)=0 til funksjonen $f(x)=x\ln(x)$ Velg ett alternativ:

-

- x = 0 og x = 1
- $lee x = e^{-1}$
- $\bigcirc \ x = 0 \text{ og } x = e^{-1}$
- x = 1
- Funksjonen har ingen punkter hvor f'(x) = 0.

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

4221836

2.2 Beregn grenseverdien $\lim_{t \to 0} \frac{\cos(t) - e^{2t}}{\sin(2t)}$.

Velg ett alternativ:

- \bigcirc -1.
- \bigcirc $-\infty$
- $\odot \infty$
- **0.**
- **2.**

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

- 2.3 Hva er vinkelen mellom vektorene $\mathbf{a} = [1,0,2,4]$ og $\mathbf{b} = [2,3,1,-1]$? Velg ett alternativ:
 - $\theta = 0$
 - $\theta = \pi$
 - $\theta = \pi/4$
 - $lacktriangledown heta = \pi/2$
 - $\theta = \pi/3$

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

2971354

- 2.4 Beregn det bestemte integralet $\int_0^{\pi/2} \cos(x) e^{\sin(x)} \, dx$ Velg ett alternativ:
 - $e^{\pi/2}-1$.
 - $\bigcirc 1-e^{\pi/2}.$
 - 01.
 - \bigcirc e-1.
 - 01-e.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

- 2.5 Beregn taylorpolynomet til $\ln(1+x)$ av polynomgrad 2 om x=0. Velg ett alternativ:
 - $\bigcirc p_2(x)=1+x.$
 - $\bigcirc \ p_2(x) = 1 + x + \tfrac{x^2}{2}.$
 - $\bigcirc p_2(x) = -rac{x^2}{2}.$
 - $\bigcirc p_2(x) = x rac{x^2}{2}.$
 - $\bigcirc p_2(x)=1-\tfrac{x}{2}.$

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

5004196

2.6 Beregn den deriverte til funksjonen $f(x) = \ln(x^2)\cos{(e^x)}$ Velg ett alternativ:

$$\bigcirc f'(x) = rac{\cos(e^x)}{x^2} - \ln(x^2)\sin(e^x).$$

$$\bigcirc f'(x) = 2\cos(e^x) + \ln(x^2)\sin(e^x)$$

$$\bigcirc f'(x) = rac{2\sin(e^x)\cos(e^x)\ln(x^2)e^x}{x}$$
 .

$$\bigcirc f'(x) = rac{2\cos(e^x)}{x} - \ln(x^2)\sin(e^x)e^x.$$

$$\bigcirc f'(x) = -rac{2\sin(e^x)e^x}{x}.$$

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

2.7 Finn løsningen til differensiallikningen

$$\frac{1}{(y+1)}\frac{\ddot{dy}}{dt}=(y-3)$$

hvor y(0) = 0.

Velg ett alternativ:

$$\bigcirc y(t)=4+rac{3}{1+3e^{3t}}.$$

$$\bigcirc y(t)=4+rac{3}{1+4e^{3t}}.$$

$$y(t) = -1 + \frac{4}{1+4e^{4t}}$$
.

$$y(t) = -1 + \frac{4}{1+3e^{4t}}$$
.

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

7588485

- 3.1 Betrakt funksjonen $f(x) = e^{-x^2}$.
 - 1. Identifiser eventuelle asymptoter til funksjonen.
 - 2. Finn ut når f er voksende og når f er avtagende. Finn deretter lokale og globale maksimums og minimumsverdier til f.
 - 3. Undersøk krumningen til funksjonen, når er den konveks og når er den konkav? Har funksjonen vendepunkt?
 - 4. Skisser grafen til funksjonen basert på informasjonen du har funnet.

Skriv på papir som skannes (anbefalt) eller i tekstboksen.

Ord: 0

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

Håndtegning 1 av 2

Håndtegning 2 av 2

- Vann renner inn i fontenen utenfor Realfagbygget med en konstant hastighet 30 liter per minutt og for at vannet ikke skal være stillestående renner vann ut gjennom et hull i bunnen med en hastighet som er proporsjonal med vannmengden i fontenen. La V(t) være vannmengden i fontenen ved tiden t (målt i minutter). Vannmengden V(t) i fontenen kan da beskrives ved differensiallikningen $\frac{dV}{dt}=30-aV$.
 - 1. Forklar leddene ${f 30}$ og -aV i differensiallikningen.
 - 2. Finn først den generelle løsningen av differensiallikningen. Fontenen skal fylles opp etter å ha vært tom i vinter, slik at V(0)=0. Bruk dette til å bestemme integrasjonskonstanten C.
 - 3. Vannmengden i fontenen er stabil når $\frac{dV}{dt} = 0$. Hvor mange liter vann er det i fontenen når vannmengden er stabil? Svaret kommer til å være avhengig av konstanten a.
 - 4. Etter 231 minutter er fontenen halvveis fylt til stabilt nivå. Finn løsningen av differensiallikningen som beskriver vannmengden i fontenen.

Skriv på papir som skannes (anbefalt) eller i tekstboksen.

Ord: 0

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

Håndtegning 1 av 2

Håndtegning 2 av 2

