Algèbre linéaire et bilinéaire

Table des matières

1.	Rappels d'algèbre linéaire.	1
	1.1. Sous-espaces vctoriels. · · · · · · · · · · · · · · · · · · ·	1
	1.2. Familles de vecteurs et bases.	1
	1.3. Applications linéaires. · · · · · · · · · · · · · · · · · · ·	2
2.	Sous-espaces stables par un endomorphisme.	3
3.	Trigonalisation	3
4.	Polynômes d'endomorphismes.	4
	4.1. Théorème de Cayley-Hamilton. · · · · · · · · · · · · · · · · · · ·	5
	4.2. Décomposition de Dunford. · · · · · · · · · · · · · · · · · · ·	5
	4.3. Réduction de Jordan.	6

1. Rappels d'algèbre linéaire.

1.1. Sous-espaces vctoriels.

Définition 1.1. Soit E un espace vectoriel sur \mathbb{K} . On dit que $F \subseteq E$ est un sous-espace vectoriel si

- (1) $\forall (x, y) \in F^2, \forall \lambda \in \mathbb{K}, \lambda x + y \in F$,
- (2) $0 \in F$.

Proposition 1.2. Soit F, G des sous-espaces vectoriels de E. Alors $F \cap G$ et F + G sont des sousespaces vectoriels de E.

Définition 1.3. Soit $A \subseteq E$ un sous-ensemble, on peut definir le plus petit sous-espace vectoriel contenant A par : Vect(A) = $\left\{ \sum_{i=1}^{n} \lambda_i a_i, a_i \in A, \lambda_i \in \mathbb{K} \right\}$.

Remarque 1.4. Si $A = \{v\}, v \in E, v \neq 0, \text{Vect}(A) = \text{Vect}(v) = kv.$

Définition 1.5. Soit $F, G \subseteq E$ des sous-espaces vectoriels. On dit que F et G sont en somme directe si $F \cap G = \{0\}$.

1.2. Familles de vecteurs et bases.

Définition 1.6. Soit $(x_1,...,x_n) \in E^n, (\lambda_1,...,\lambda_n)$. On dit que $(x_1,...,x_n)$ est une famille libre si $\lambda_1 x_1 + ... + \lambda_n x_n = 0 \Rightarrow \lambda_1 = ... = \lambda_n = 0$

Définition 1.7. Une famille infinie est libre si toute sous-famille finie est libre.

Définition 1.8. Soit $\mathcal{F} = (x_1, ..., x_n) \in E^n$. On dit que \mathcal{F} est génératrice de E si $\text{Vect}(\mathcal{F}) = E$.

Définition 1.9. On appelle base de *E* toute famille libre et génératrice de *E*.

Définition 1.10. On appelle dimension de E le cardinal d'une base de E.

Proposition 1.11 (changement de base). Soit $\mathcal{E} = e_1, ..., e_n$ et $\mathcal{F} = f_1, ..., f_n$ deux bases de E.

Soit
$$x \in E$$
. Il existe d'unique $(x_1, ..., x_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n x_i e_i$.
On note $[x]_{\mathcal{E}} := \begin{pmatrix} x_1 \\ ... \\ x_n \end{pmatrix} \in M_{nx1}(\mathbb{K})$, et $\operatorname{Pass}_{\mathcal{E}}^{\mathcal{F}} = ([f_1]_{\mathcal{E}} \ ... \ [f_n]_{\mathcal{E}}) \in M_{nxn}(\mathbb{K})$ On a :

$$[x]_{\mathcal{E}} = \operatorname{Pass}_{\mathcal{E}}^{\mathcal{F}}[x]_{\mathcal{F}}.$$

1.3. Applications linéaires.

Définition 1.12. Soit $u: E \to F$ une application. On dit que u est linéaire si $\forall x, y \in E^2, \forall \lambda \in \mathbb{K}$, $u(\lambda x + y) = \lambda u(x) + u(y)$.

Notation 1.13. On note $\mathcal{L}(E,F)$ l'espace vectoriel des applications linéaires de E dans F et $\mathcal{L}(E)$ l'espace vectoriel des endomorphismes.

Définition 1.14. Soit E un espace vectoriel, $u \in \mathcal{L}(E)$ On appelle noyau de u l'ensemble $\ker(u) = \{x \in E \mid u(x) = 0\}.$

Définition 1.15. Soit E un espace vectoriel, $u \in \mathcal{L}(E)$. On appelle image de u l'ensemble $\text{Im}(u) = \{y \in F | \exists x \in E, y = u(x)\}.$

Théorème 1.16 (théorème du rang). Soit E un espace vectoriel de dimension finie, $u: E \to E$. $\dim(E) = \dim(\ker(u)) + \dim(\dim(u))$.

Démonstration. Notons $p := \dim(\ker(u)), n := \dim(E)$. Soit $(e_1, ..., e_p)$ une base de $\ker(u)$. Par le théorème de la base incomplète, on note $(e_1, ..., e_p, (e_{p+1}, ..., e_n))$.

Une base de $\mathcal{I}m(u)$ est $\mathrm{Vect}(u(e_1),...,u(e_p),u(e_{p+1}),...,u(e_n))=\mathrm{Vect}(u(e_{p+1}),...,u(e_n))$. Verifions que $(u(e_{p+1}),...,u(e_n))$ est une famille libre. Soit $(\lambda_{p+1},...,\lambda_n)\in\mathbb{R}$

$$\begin{split} \lambda_{p+1}u(e_{p+1})+\ldots+\lambda_nu(e_n)&=0 \Leftrightarrow u\big(\lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n\big)=0\\ &\Leftrightarrow \lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n\in\ker(u)\\ &\Leftrightarrow \exists \big(\lambda_1,\lambda_p\big)\in\mathbb{R}, \lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n=\lambda_1e_1+\ldots\lambda_pe_p \end{split}$$

Or $\lambda_1 e_1 + ... \lambda_p e_p \neq 0$ car c'est une famille libre. D'où, $\operatorname{Vect}(u(e_{p+1}), ..., u(e_n))$ libre. Ainsi, on a $\dim(\operatorname{Vect}(u(e_{p+1}), ..., u(e_n))) = \dim(\mathcal{I}m(u)) = n - p = \dim(E) - \dim(\ker(u))$. On a bien montré, $\dim(\ker(u)) + \operatorname{rg}(u) = \dim(E)$.

Corollaire 1.17. Soit $u: E \to E$ un endomorphisme, $\ker(u) = 0 \Leftrightarrow u$ injective $\Leftrightarrow u$ surjective.

Démonstration.

- (1) ⇒ Soit f une application linéaire injective. On a nécessairement 0_E ∈ ker(f) or f est injective, donc ∀x ∈ E, x ≠ 0_E ⇒ f(x) ≠ 0 d'où ker(f) = {0_E}.
 ← Soit f une application linéaire tel que ker(f) = {0_E}. Supposons par absurde f non injective. Alors ∃u ≠ v ∈ E, f(u) = f(v). Donc f(u v) = f(u) f(v) = 0 impossible car u ≠ v.
- (2) \Rightarrow Supposons f injective. Alors $\ker(f) = \{0\} \Rightarrow \dim(\ker(f)) = 0 \Rightarrow \dim(\mathcal{I}m) = \dim(E) = \dim(F)$ d'où f surjective.

 \Leftarrow Supposons f surjective. Alors $\dim(\mathcal{I}m) = \dim(F) \Rightarrow \dim(\ker(f)) = 0$ d'où f injective.

Théorème 1.18. Soit $f \in \mathcal{L}(E, F), g \in \mathcal{L}(F, G)$.

$$[g\circ f]_{\mathcal{E}}^{\mathcal{F}}=[g]_{\mathcal{F}}^{\mathcal{G}}[f]_{\mathcal{E}}^{\mathcal{F}}.$$

Corollaire 1.19. Soit $E, \mathcal{E}, \mathcal{F}$ deux bases de E, et $u \in \mathcal{L}(E)$. On note $P = \mathcal{P}ass_{\mathcal{E}}^{\mathcal{F}} = [id_E]_{\mathcal{F}}^{\mathcal{E}}$ $[u]_{\mathcal{F}} = [id_E]_{\mathcal{F}}^{\mathcal{F}} [u]_{\mathcal{F}} [id_E]_{\mathcal{F}}^{\mathcal{E}} = P^{-1} [u]_{\mathcal{F}} P.$

Proposition 1.20. Soit A une matrice carrée de la forme $A = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix}$ avec B, C deux matrices carrées. Alors det $A = \det B \det C$.

2. Sous-espaces stables par un endomorphisme.

Définition 2.1. Soit E un espace vectoriel de degré n, $u \in \mathcal{L}(E)$. Un sous-espace vectoriel F de E est dit stable par u si $u(F) \subseteq F$.

Remarque 2.2. Si je complète une base \mathcal{F} de F en une base de \mathcal{E} de E alors $[u]_{\mathcal{E}}$ est du type $[u]_{\mathcal{E}} = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix}$ car si $\mathcal{F} = (f_1, ..., f_n)$, $\forall i \in \{1, ..., n\}$, $u(f_i) \in F$ et $B \in M_{dxd}(\mathbb{K})$

Définition 2.3. Soit $u \in \mathcal{L}(E)$, $\lambda \in \mathbb{K}$. On note $E_{\lambda}(u) = \ker(u - \lambda \operatorname{id}_{E})$. λ est appelée valeur propre se $E_{\lambda}(u) \neq \{0\}$ auquel cas $E_{\lambda}(u)$ est l'espace propre associé. Les $u \in \ker(u - \lambda \operatorname{id}_{E})$ sont les vecteurs propres.

Proposition 2.4. Soit $u \in \mathcal{L}(E)$. Ses espaces propres sont en somme directe.

Démonstration. Par récurrence sur $n \in \mathbb{N}$, on montre que $x_1 + ... + x_n = 0 \Rightarrow x_i = 0 \forall i \in [1, n]$ où $x_i \in E_{\lambda_i(u)}$

Corollaire 2.5. Si $n = \dim E$, u a au plus n valeurs propres et s'il y en a n, dim $E_{\lambda_i} = 1$.

Définition 2.6. Soit $u \in \mathcal{L}(E)$. On dit que u est diagonalisable si E est la somme directe de ses sousespaces propres.

Proposition 2.7. Soit P, Q dans $\mathbb{K}[X]$ et D leur PGCD. Alors il existe $(U, V) \in \mathbb{K}[X]^2$ tels que UP + VQ = D.

Corollaire 2.8. P, Q sont premiers entre eux ssi $\exists (U, V) \in \mathbb{K}[X]^2$ tels que UP + VQ = 1.

Définition 2.9. Soit $f \in \mathcal{L}(E)$. On dit que f est muilplotent si $\exists r \in \mathbb{N}$ tq $f^{(r)} = 0$.

Proposition 2.10. Si $n = \dim E$, $f \in \mathcal{L}(E)$ milpotent $\Rightarrow \mathcal{X}_f = (-1)^n X^n$

Proposition 2.11. Soit
$$P = \sum_{k=0}^{n} a_k X^k$$
 de degré unitaire $a_n = 1$. Soit $A = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_0 \\ 1 & 0 & \dots & \dots & -a_1 \\ 0 & 1 & \dots & \dots & -a_1 \\ 0 & \dots & \dots & 1 & -a_{n-1} \end{pmatrix}$. Alors $\mathcal{X}_A = (-1)^n P$.

Théorème 2.12. Soit $u \in \mathcal{L}(E)$, dim $E = n < +\infty$, (λ_i) ses valeurs propres. u est diagonalisable ssi $\forall \lambda$, dim $E_{\lambda}(u) =$ multiplicité de λ dans X_u

$$\mathcal{X}_u \Pi_{\lambda_i} (X - \lambda_i)^{\dim E_{\lambda}(u)}$$

3. Trigonalisation

Définition 3.1. Soit $u \in \mathcal{L}$, E. dim E = n. On dit que u est trigonalisable si il existe une base \mathcal{E} telle que $[u]_{\mathcal{E}}$ est triangulaire supérieure : $i > j \Rightarrow ([u]_{\mathcal{E}}) := 0$.

Définition 3.2. Soit $M \in M_{nxn}(\mathbb{K})$. On dit que M est trigonalisable si elle est semblable a une matrice triangulaire supérieure.

Théorème 3.3. Soit $u \in \mathcal{L}(E)$. u est trigonalisable si et seulement si \mathcal{X}_u est scindé.

Démonstration. Si u trigonalisable, il existe une base \mathcal{E} telle que $[u]_{\mathcal{E}} = (\lambda_1) => \mathcal{X} = (-1)^n \prod_{i=1}^n (X - \lambda_i)$ scindé.

Réciproque par récurrence Soit $u \in \mathcal{L}(E)$, dim (E) = n avec \mathcal{X}_u scindé. Soit λ une racine de \mathcal{X}_u et $e_1 \in E_{\lambda_1}(u \setminus 0)$ que je complète en une base de \mathcal{E} . Alors $[u]_{\mathcal{E}} = \begin{pmatrix} \lambda_1 & \star \\ 0 & C \end{pmatrix}$ et $\mathcal{X}_u = (\lambda_1 - X)\mathcal{X}_T$ donc \mathcal{X}_T scindé aussi. Par hypothèse de récurrence, $\exists Q \in GL_{n-1}(\mathbb{K})$ telle que $QTQ^{-1} = \delta$. Soit $P = \begin{pmatrix} 1 & \dots & 0 \\ 0 & C \end{pmatrix} \in GL_n$

4. Polynômes d'endomorphismes.

Définition 4.1. Soit $u \in \text{End}(E)$. Pour tout polynôme $P = \sum_{0 \le k \le d} a_k u^k \in \mathcal{L}(E)$.

Proposition 4.2. Soit $(P,Q) \in \mathbb{K}[X]^2$ et $u \in \mathcal{L}(E)$. Alors (P+Q)(u) = P(u) + Q(u) et $P(u) \circ Q(u) = PQ(u)$. De plus, si A est semblable à B, P(A) est semblable à P(B).

Proposition 4.3. Soit $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$ tel que P(u) = 0. Alors $\forall \lambda$ valeur propre de u, on a $P(\lambda) = 0 \in \mathbb{K}$.

Démonstration. Soit $x \neq 0$ tel que $u(x) = \lambda x$. par récurrence ommédiate, $u^k(x) = \lambda^k x$ par linéarité, $P(u)(x) = P(\lambda)x$.

Théorème 4.4 (Lemme des noyaux). Soit $u \in \mathcal{L}(E)$ et $P_1, ..., P_r$ des polynomes 2 à 2 premiers entres eux. Soit $P = \prod_{k=1}^r P_k$. Alors

$$\ker(P(u)) = \bigoplus_{k=1}^{r} \ker P_k(u).$$

Démonstration. Par récurrence sur r, r = 1 ok

$$r = 2, : P_1, P_2$$
 premiers entre eux $\Leftrightarrow \exists Q_1, Q_2 \in \mathbb{K}[X]^2, Q_1P_1 + Q_2P_2 = 1$
Soit $x \in \ker(P_1(u)) \cap \ker(P_2(x))$. On a $(Q_1P_1)(u)(x) + (Q_2P_2)(u)(x) = x$...

Théorème 4.5. Soit $u \in \mathcal{L}(E)$. u est diagonalisable si et seulement si il existe $P \in \mathbb{K}[X]$ simplement scindé tel que P(u) = 0.

Démonstration.

 \Rightarrow

$$E = \bigoplus_{\lambda \text{ valeur propre}} \ker(u - \lambda \operatorname{id}_{E}) = \bigoplus_{\lambda \text{ valeur propre}} \ker(X - \lambda)(u)$$
$$= \ker\left(\left(\prod_{\lambda \text{ valeur propre}} (X - \lambda)\right)(u)\right).$$

Par le lemme des noyaux car $\operatorname{pgcd}(X-\lambda,X-\mu)=1$ si $\lambda\neq\mu$. Ainsi, $P=\Pi(X-\lambda)$ simplement scindé annule P(u)=0.

 \Leftarrow Si $P = \prod_{k=1}^{r}$ simplement scindé vérifie P(u) = 0 alors $E = \ker(P(u)) = \bigoplus_{k=1}^{r} \ker(u - \lambda_k \operatorname{id}_E)$. Donc u est diagonalisable.

Corollaire 4.6. Soit $u \in \mathcal{L}(E)$ diagonalisable, F stable par u. Alors $u_F \in \mathcal{L}(E)$ est diagonalisable.

Démonstration. il existe P simplement scindé tel que $P(u) = 0 \Rightarrow P(u_F) = P(u)_{|_F} = 0 \Rightarrow u$ diagonalisable.

4.1. Théorème de Cayley-Hamilton.

Notation 4.7. SI $u \in \mathcal{L}(E)$, $I_u = \{P \in \mathbb{K}[X] \mid P(u) = 0\}$.

Proposition 4.8. Soit $u \in \mathcal{L}(E)$.

- (1) $0 \in I_u$
- (2) $\forall P, Q \in I_u, P + Q \in I_u$.
- (3) $\forall P \in I_u, \forall Q \in \mathbb{K}(X), PQ \in I_u$.

Démonstration. En effet, $(PQ)(u) = P(u) \circ Q(u) = 0$.

Remarque 4.9. I_n contient forcément un polynôme non nul car si $n = \dim E$, la famille $(\mathrm{id}_E, u, u^2, ..., u^{n^2})$ est liée car $\dim \mathcal{L}(E) = n^2$.

П

Proposition 4.10. Soit $P \in I_n \setminus \{0\}$ de degré minimal. Alors $\forall S \in I_u, P \mid S$.

Démonstration. La division de S par P nous donne: S = PQ + R deg $R < \deg P \Rightarrow R = 0$ par minimalité.

Remarque 4.11. Si $P_1, P_2 \in I_u \setminus \{0\}$ de degré minimal.

 $P_1 \mid P_2 \text{ et } P_2 \mid P_1 \Rightarrow \exists \alpha \in \mathbb{K} \setminus \{0\} \text{ tel que } P_2 = \alpha P_1.$

Définition 4.12. On appelle polynôme minmal de u l'unique $P \in I_u \setminus \{0\}$ de degré minimal et de coeff dominant 1. On le note μ_u , P_u , π_u

Théorème 4.13 (Théorème de Cayley-Hamilton). Pour tout $u \in \mathcal{L}(E)$, $\chi_u(u) = 0$

Théorème 4.14. Soit $u \in \mathcal{E}$. u diagonalisable $\Leftrightarrow \mu_u$ simplement scindé.

Démonstration.

 \Rightarrow ok.

 $\Leftarrow \exists P \text{ simplement scind\'e tel que } P(u) = 0 \text{ et } \mu_u \mid P \text{ donc } \mu_u \text{ simplement scind\'e}.$

Proposition 4.15. Soit $u \in \mathcal{E}$. λ est valeur propre si et seulement si $\mu_{u(\lambda)} = 0$.

Démonstration.

 \Rightarrow ok.

 $\Leftarrow \chi_u(u) = 0 \Rightarrow \mu_u(u) = 0 \Rightarrow \mu_u \mid \chi_u \Rightarrow \chi_u(\lambda) = 0 \Rightarrow \lambda \text{ valeur propre.}$

4.2. Décomposition de Dunford.

Lemme 4.16. Soit $u, v \in \mathcal{L}(E)^2$ diagonalisables telles que $u \circ v = v \circ u$ Alors il existe une base de \mathcal{E} de E telle que $[u]_{\mathcal{E}}$ et $[v]_{\mathcal{E}}$ sont diagonales.

Démonstration. Soit $F = E_{\lambda}(u)$ un espace-propre. Alors F est stable par v. Soit $x \in F$, alors

$$u(v(x)) = v(u(x)) = v(\lambda x) = \lambda v(x).$$

Donc $v(x) \in E_{\lambda}(u) = F$. On sait alors que $v_F \in \mathcal{L}(\mathcal{F})$ est diagonalisable (car v l'est) $\Rightarrow \exists \mathcal{E}_{\lambda}$ une base de F faite de vecteurs propres pour v (et pour u!) $\Rightarrow \mathcal{E} = \bigcup_{\lambda \in S_{D(u)}} \mathcal{E}_{\lambda}$ convient.

Définition 4.17. Soit $u \in \mathcal{L}(E)$ et $\chi_u = \Pi_{\lambda \in \operatorname{Sp}(u)} (X - \lambda)^{m_{\lambda}}$. On note $N_{\lambda}(u) := \ker((u - \lambda \operatorname{id}_E)^{m_{\lambda}})$ qu'on appelle sous-espace propre généralisé ou sous-espace propre caractéristique par rapport à u et λ .

Remarque 4.18. Par le lemme de décomposition des noyaux et le théorème de Cayley hamilton,

$$E = \bigoplus_{\lambda \in Sp(u)} N_{\lambda}(u).$$

Proposition 4.19. On a $m_{\lambda} = \dim N_{\lambda}(u) \forall \lambda \in Sp(u)$.

Démonstration. On a $n = \dim E = \sum_{\lambda \in Sp(u)} \dim N_{\lambda}(u)$. Il suffit de montrer que $\forall \lambda, m_{\lambda} \geq \dim N_{\lambda}(u)$. $N_{\lambda}(u)$ est stable par u car $\forall P \in \mathbb{K}[x]$, $\ker(P(u))$ est stable par $u \forall x \in \ker(P(u))$, P(u)(u(x)) = XP(u)(x) = u(P(x)(x)) = 0

Théorème 4.20 (Décomposition de Dunford (Jordan-Charalley)). Soit $u \in \mathcal{L}(E)$ telle que χ_u scindé. Alors ilun unique couple $(d, v) \in \mathcal{L}(E)^2$ tel que

- u = d + v,
- *d* est diagonalisable et *v* milpotent,
- $d \circ v = v \circ d$.

4.3. Réduction de Jordan.

Proposition 4.21. Soit $u \in \mathcal{L}(E)$. Il existe $r \in \mathbb{N}$, appelé l'indice de u tel que $\ker(u) \subset \ker(u^2) \nsubseteq \ker(u^r) = \ker(u^{r+k}) \forall k \in \mathbb{N}$

q