

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

ANNÉE 2022 - 2023

C3 : MODÉLISATION CINÉMATIQUE DES SYSTÈMES COMPOSÉS DE CHAINES DE SOLIDES

TD 8 - Cinématique du solide (C3-4)

29 Novembre 2022

Compétences

- Analyser
 - o Décrire le besoin et les exigences.
- Modéliser
 - o Déterminer les caractéristiques d'un solide ou d'un ensemble de solides indéformables.
 - o Modéliser la cinématique d'un ensemble de solides.
 - Vérifier la cohérence du modèle choisi en confrontant les résultats analytiques et/ou numériques aux résultats expérimentaux.

Exercice 1 : Mécanisme d'ouverture de porte en accordéon

Source: Emilien DURIF

1 Présentation et paramétrage

L'étude porte sur le dimensionnement d'un système de porte "accordéon" motorisée utilisé dans un bus. Le cahier des charges est résumé sur le diagramme d'exigence ci-dessous :

La figure 2 ci-dessous représente une porte "accordéon" motorisée.

- Le battant 1
 - o est articulé par rapport à la paroi du bus 0 en A;
 - son repère associé est : $R_1 = (A, \vec{x}_1, \vec{y}_1, \vec{z}_{0,1})$;
 - son paramètre de mouvement est $\theta = (\vec{x}_0, \vec{x}_1) = (\vec{y}_0, \vec{y}_1)$;
 - $\circ \overrightarrow{BA} = a \cdot \overrightarrow{y}_1$
- Le battant 2
 - est articulé par rapport à la chaine **3** en C et par rapport au battant **1** en B;
 - ∘ son repère associé est : $R_2 = (A, \overrightarrow{x}_2, \overrightarrow{y}_2, \overrightarrow{z}_{0,2});$
 - son paramètre de mouvement est $\beta = (\vec{x}_0, \vec{x}_2) = (\vec{y}_0, \vec{y}_2)$;
 - $\circ \overrightarrow{BC} = a \cdot \overrightarrow{y}_2.$
- La chaîne 3 qui est mise en mouvement par un moto-réducteur 4. Le maillon C se déplace à vitesse notée v(t).
- On considère la phase de fermeture de la porte, (à l'instant initial les points A et C sont confondus).
- Q 1 : Représenter les figures planes de projection permettant de paramétrer le problème
- Q 2 : Représenter sur la figure et la configuration ci-dessus les différents repères et les paramètres angulaires associés.

FIGURE 1 – Présentation de la problématique de l'étude.

FIGURE 2 - Système d'ouverture de porte en accordéon

2 Résolution : détermination de la relation entrée-sortie du problème.

- Q 3 : Quelle est la nature du mouvement du maillon de chaine 3 par rapport à la paroi du bus 0?
- Q 4 : Caractériser ce mouvement par son torseur cinématique en fonction de $v: \left\{ \mathscr{V}_{(3/0)} \right\}$ au point C puis au point B.
 - Q 5 : Quelle est la nature du mouvement du battant 1 par rapport à la paroi du bus 0?
 - **Q** 6 : Donner l'expression du torseur cinématique $\left\{\mathscr{V}_{(1/0)}\right\}$ au point A.
 - **Q** 7 : Déduire le torseur cinématique $\left\{ \mathscr{V}_{(1/0)} \right\}$ au point B.
 - **Q 8 : Calculer** $\overrightarrow{V}(B \in 1/0)$ par la mécanique du point (dérivation vectorielle).
 - **Q 9 : Déterminer** le torseur cinématique $\{\mathscr{V}_{(2/1)}\}$ au point B en fonction de $\dot{\beta}$ et $\dot{\theta}$.
 - **Q 10 :** Déterminer le torseur cinématique $\left\{\mathscr{V}_{(2/3)}\right\}$ au point C puis au point B en fonction de a et $\dot{\beta}$.
 - Q 11 : Traduire la relation de Chasles au Point $B: \left\{\mathcal{V}_{(1/0)}\right\} = \left\{\mathcal{V}_{(1/2)}\right\} + \left\{\mathcal{V}_{(2/3)}\right\} + \left\{\mathcal{V}_{(3/0)}\right\}$. Q 12 : En projetant la relation en vitesse issue de la question précédente en déduire deux équations scalaires.
- Q 13 : A l'aide des conditions initiales lorsque la porte est ouverte ($\beta = \theta = 0$) et en intégrant par rapport au temps une des deux équations précédentes, en déduire une relation entre β et $\theta \forall t$ et l'expression de v(t) en fonc-

tion de θ .

Q 14 : Déterminer numériquement l'expression de v(t) pour respecter le cahier des charges (On prendra a=1m).