MATEMATIKOS

2006 m. valstybinio brandos egzamino užduotis

Pagrindinė sesija

2006 m. gegužės 17 d.

Trukmė - 3 val.

Valstybinio brandos egzamino formulės

Trikampis. $S = \sqrt{p(p-a)(p-b)(p-c)} = rp = \frac{abc}{4R}$; čia a, b, c – trikampio kraštinės, p – pusperimetris,

r ir R – įbrėžtinio ir apibrėžtinio apskritimų spinduliai, S – trikampio plotas.

Iškilojo daugiakampio kampų suma. $S_n = 180^{\circ} (n-2)$.

Skritulio išpjova. $S = \frac{\pi R^2}{360^{\circ}} \cdot \alpha$, $l = \frac{2\pi R}{360^{\circ}} \cdot \alpha$; čia α – centrinio kampo didumas laipsniais,

S – išpjovos plotas, l – išpjovos lanko ilgis, R – apskritimo spindulys.

Nupjautinis kūgis. $S=\pi(R+r)\cdot l$, $V=\frac{1}{3}\pi H(R^2+Rr+r^2)$; čia R ir r – kūgio pagrindų spinduliai,

S – šoninio paviršiaus plotas, V – tūris, H – aukštinė, l – sudaromoji.

Nupjautinės piramidės tūris. $V = \frac{1}{3}H(S_1 + \sqrt{S_1S_2} + S_2)$; čia S_1 , S_2 – pagrindų plotai, H – aukštinė.

Rutulys. $S = 4\pi R^2$, $V = \frac{4}{3}\pi R^3$; čia S – rutulio paviršiaus plotas, V – tūris, R – spindulys.

Rutulio nuopjovos tūris. $V = \frac{1}{3}\pi H^2(3R - H)$; čia R – spindulys, H – nuopjovos aukštinė.

Vektorių skaliarinė sandauga. $\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2 = |\vec{a}| \cdot |\vec{b}| \cos \alpha$;

čia α – kampas tarp vektorių $\vec{a}\{x_1, y_1, z_1\}$ ir $\vec{b}\{x_2, y_2, z_2\}$.

Geometrinė progresija. $b_n = b_1 q^{n-1}$, $S_n = \frac{b_1 (1 - q^n)}{1 - q}$.

Begalinė nykstamoji geometrinė progresija. $S = \frac{b_1}{1-q}$

Trigonometrinės funkcijos. $1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$, $1 + ctg^2 \alpha = \frac{1}{\sin^2 \alpha}$, $2\sin^2 \alpha = 1 - \cos 2\alpha$,

 $2\cos^2\alpha = 1 + \cos 2\alpha \,, \ \sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta \,, \ \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta \,,$

$$\sin \alpha \pm \sin \beta = 2\sin \frac{\alpha \pm \beta}{2}\cos \frac{\alpha \mp \beta}{2}, \cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2},$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}, \ tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta}$$

Niutono binomo formulė. $(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b + ... + C_n^k a^{n-k} b^k + ... + C_n^n b^n$.

$$C_n^k = C_n^{n-k} = \frac{n!}{k!(n-k)!}, \ C_n^k + C_n^{k+1} = C_{n+1}^{k+1}.$$

Tikimybių teorija. Atsitiktinio dydžio X matematinė viltis yra $EX = x_1p_1 + x_2p_2 + ... + x_np_n$

dispersija DX=
$$(x_1-EX)^2p_1+(x_2-EX)^2p_2+...+(x_n-EX)^2p_n$$
.

Išvestinių skaičiavimo taisyklės. (Cu)' = Cu'; $(u \pm v)' = u' \pm v'$; (uv)' = u'v + uv'; $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$;

čia *u* ir *v* – taške diferencijuojamos funkcijos, *C* – konstanta. $(a^x)' = a^x \ln a$, $(\log_a x)' = \frac{1}{x \cdot \ln a}$.

Sudėtinės funkcijos h(x) = g(f(x)) išvestinė h'(x) = g'(f(x)) f'(x).

Funkcijos grafiko liestinės taške $(x_0; f(x_0))$ lygtis. $y = f(x_0) + f'(x_0)(x - x_0)$.

Logaritmo pagrindo keitimo formulė. $\log_a b = \frac{\log_c b}{\log_c a}$.

Kiekvienas teisingai išspręstas uždavinys (1–6) vertinamas 1 tašku.

- 1. Kuriam intervalui priklauso skaičius¹ log₃ 10?
 - A (-3; -2)
- ${\bf B}$ (0; 1)
- C (1; 2)
- \mathbf{D} (3; 4)
- E(2;3)
- 2. Knygas dedant į krūveles po 3, lieka 2 knygos, taip pat 2 knygos lieka ir dedant jas į krūveles po 10. Knygu buvo:
 - \mathbf{A} 12
- **B** 8
- \mathbf{C} 32
- **D** 16
- \mathbf{E} 24

- **3.** Kuri pora lygčių² yra ekvivalenčios lygtys?
 - **A** $\frac{x^2-4}{x-2}=4$ ir x+2=4
- **B** x-1=3 ir $(x-1)^2=9$
- **C** x = 3 ir $x + \frac{1}{x 3} = 3 + \frac{1}{x 3}$ **D** x + 1 = 1 ir $x + 1 + \frac{1}{x 1} = 1 + \frac{1}{x 1}$
- **E** $\sqrt{x^2} = 1$ ir x = 1
- 4. $\sqrt{(\sqrt{5}-3)^2} \sqrt{(\sqrt{5}-2)^2} =$
 - \mathbf{A} -1
- **B** $5-2\sqrt{5}$ **C** $2\sqrt{5}-5$ **D** 1
- \mathbf{E} 5

- **5.** Kurios parabolės viršūnė yra II ketvirtyje?
 - **A** $y = (x-1)^2 1$
- **B** $y = (x+2)^2 + 1$
- **C** $y = (x+2)^2 3$

- **D** $v = (x-4)^2$
- **E** $v = x^2 1$
- **6.** Kiek sprendinių intervale $\left[-\frac{5\pi}{2}; 2\pi \right]$ turi lygtis $\cos x = \frac{1}{2}$?
 - \mathbf{A} 3
- **B** 4
- \mathbf{C} 7
- \mathbf{D} 5
- \mathbf{E} 6

skaičius – число – liczba

lygtis – уравнение – równanie

7. Palyginkite $\log_{\frac{1}{a}} a$ ir $\log_a \frac{1}{a}$, kai a > 1.

8. Priekinio dviračio rato apskritimo¹ ilgis 120 cm, galinio rato – 122 cm. Kokį atstumą² (metrais) nuvažiavus dviračiu, jo priekinis ratas apsisuks vienu apsisukimu daugiau negu galinis?

Cia raso vertintojai						
I	II	III				
	ł	1				

(2 taškai)

funkcijų $y = ax^2 + 6x + 3$ ir **9.** Su kuriomis a $(a \neq 0)$ reikšmėmis³ y = 2x - a grafikai neturi bendrų taškų? (3 taškai)

¹ apskritimas – окружность – okrąg ² atstumas – расстояние – odległość

³ reikšmė – значение – wartość

10.	Draudžiant būstą metams 80 000 Lt draudimo suma nuo stichinės
	nelaimės, reikia mokėti 64 Lt, o draudžiant ta pačia suma nuo vagystės –
	160 Lt. Draudžiant būstą 80 000 Lt suma nuo stichinės nelaimės ir nuo
	vagystės kartu, taikoma 25 procentų nuolaida. Kiek procentų draudimo
	sumos reikia mokėti draudžiant nuo abiejų rizikų kartu?

stichinės	Cia rašo vertintojai		
	1	<i>II</i>	111
vagystės –			
nės ir nuo			
draudimo			
(3 taškai)			

11. Paveiksle pavaizduotos šachmatų lentos viename iš langelių padėta šachmatų figūra – bokštas¹ ir parodytos šios figūros galimos judėjimo kryptys (bokštas gali judėti nurodytomis kryptimis ir užimti bet kurį langelį kiekviena nurodyta kryptimi). Keliais skirtingais būdais šachmatų lentoje galima taip padėti du bokštus, kad jie vienas kitą galėtų nukirsti (du bokštai kerta vienas kitą, kai jie gali užimti vienas kito langelį).

¹ bokštas – ладья – wieża

12.	Išspreskite	nelvovbe ¹
14.	19901697116	HCIYEYUÇ

$$\frac{x^2+x-6}{4-x} \leq 0.$$
 (3 taškai) Čia rašo vertintojai I II III

 $^{^{1}}$ nelygybė — неравенство — nierówność

12	Išspręskite lygtį ¹		Čia r	Čia rašo vertintojai	
10.			I	II	III
		$\frac{1}{8}(3^{x+1}-3^{x-1})=0,(3).$			
		(3 taškai)			

¹ lygtis – уравнение – równanie

14. Į žaidimo urną mestas rutuliukas su vienodomis tikimybėmis¹ gali įkristi į bet kurią iš dviejų urnos sekcijų – į pirmąją arba į antrąją (žr. pav.). Į šią urną įmesti trys rutuliukai. Sakykime, X – rutuliukų skaičius pirmojoje sekcijoje. Parašykite atsitiktinio dydžio X skirstinį².

(3 taškai)

¹ tikimybė – вероятность – prawdopodobieństwo ² atsitiktinio dydžio skirstinys – распределение случайной величины – rozkład zmiennej losowej

- **15.** Į trikampi¹ ABC, kurio pagrindo kraštinės² AC ilgis 10 cm, o aukštinės BD ilgis 8 cm, įbrėžtas stačiakampis³ EFGH (žr. pav.). Šio stačiakampio dvi viršūnės yra trikampio pagrindo kraštinėje, o kitos dvi – kitose trikampio kraštinėse.
 - 1. Sakykime, EF ilgis x cm. Įrodykite, kad stačiakampio EFGH plotas $S = \frac{5}{4}(8x - x^2).$

Taškų suma

¹ trikampis – треугольник – trójkąt ² kraštinė – сторона – bok, ramię

³ stačiakampis – прямоугольник – prostokąt ⁴ plotas – площадь – pole

16. Du lygūs kvadratai *ABCD* ir AB_1C_1D turi bendrą kraštinę AD, o jų plokštumos¹ sudaro 60° didumo dvisienį kampą². bendros viršūnės D kiekviename kvadrate nubrėžtos įstrižainės³ DB ir DB_1 (žr. pav.). Raskite kampo tarp šių įstrižainių kosinusą.

¹ plokštuma – плоскость – płaszczyzna ² dvisienis kampas – двугранный угол – kąt dwuścienny

³ įstrižainė – диагональ – przekątna

- 17. Paveiksle pavaizduoti funkcijų $y = -x^2 + 1$ ir $y = -2x^2 + 2$ grafikai.
 - **1.** Raskite taškų A ir C koordinates.

(1 taškas)

2. Įrodykite, kad kreivinės figūros *ACBOA* plotas lygus $\frac{4}{3}$.

(2 taškai)

3. Apskaičiuokite kreivinės figūros *ADBCA* plotą. (2 taškai)

Čia rašo vertintojai

18. Per trikampio *ABC* kraštinės *AC* tašką *M* išvesta atkarpa¹ *MN*, lygiagreti su *BC*, ir atkarpa *MP*, lygiagreti su *AB*. Taškai *N* ir *P* sujungti atkarpa *NP* (žr. pav.).

- **2.** Trikampių *ANM* ir *MPC* plotai yra S_1 ir S_2 .
 - a) Įrodykite, kad trikampio *ABC* plotas *S* gali būti išreikštas plotais S_1 ir S_2 šitaip: $S = (\sqrt{S_1} + \sqrt{S_2})^2$

(2 taškai)

(2 taškai)

b) Apskaičiuokite trikampio *NBP* plotą, kai $S_1 = 4$ cm², $S_2 = 9$ cm².

(2 taškai)

Taškų suma		

¹ atkarpa – отрезок – odcinek

19.	Ar skaičiai 1, 7 ir 18 gali būti kurios nors didėjančios geometrinės	Čia rašo vertintojai I II III		ntojai III
	progresijos ¹ nariai (nebūtinai gretimi). Atsakymą pagrįskite. (4 taškai)			
	(Tushar)			

 $^{^{\}rm 1}$ geometrinė progresija – геометрическая прогрессия – postęp geometryczny