Geoffrey Parker - grp352 CS 341 Automata Theory Homework 15

Due: Tuesday, April 30

This assignment covers Chapters 22 and 24.

1) Solve the linear Diophantine farmer problem presented in Section 22.1.

Solution. Let p be the number of pigs bought, c the number of cows and k the number of chickens. Then the question of how many of each was bought can be stated as the linear diophantine equations:

$$10c + 3p + 0.5k = 100$$

$$p + c + k = 100$$

2) Consider the following instance of the Post Correspondence problem. Does it have a solution? If so, show one.

	X	Y
1	a	bab
2	bbb	bb
3	aab	ab
4	Ъ	a

Solution. 2, 1, 4, 3

	X	Y
2	bbb	bb
1	bbba	bbbab
4	bbbab	bbbaba
3	bbbabaab	bbbabaab

3) Prove that, if an instance of the Post Correspondence problem has a solution, it has an infinite number of solutions. (Hint: this is really easy.)

Proof. Assume that a particular Post Correspondende problem has a solution X in n steps x_1, x_2, \ldots, x_n . Then $XX, XXX, XXXX, \ldots$ will also be solutions. Therefore any Post Correspondende problem which has a solution has an infinite number of solutions.

4)) Let $TILES = \{\langle T \rangle : \text{ any finite surface on the plane can be tiled, according to the rules described in the book, with the tile set <math>T\}$. Let s be the string that encodes the following tile set:

Is $s \in TILES$? Prove your answer.

L must not be decidable.

Answer. No.
Proof.
5) Is $L = \{\langle M \rangle : M \text{ is a PDA and } L(M) = \{x : x \in \{a,b\}^* \text{ and } \exists m \ (x = 2^m)\}\}$ decidable? Prove your answer.
Answer. Decidable.
Proof. Let $L' = \{x : x \in \{a,b\}^* \text{ and } \exists m \ (x = 2^m)\}\}$. Let $w = a^{2^k} = uvxyz$ for some u,v,x,y , and z with $ vxy \le k$ and $vy \ne \epsilon$. Let $w' = uv^2xy^2z$. Then $w' = a^{2^k}a^p$ for some p where $1 \le p \le k$. So $2^k < w < 2^{k+1}$. Therefore $w' \notin L'$ and by the pumping theorem for context free languages L' is not context-free. Thus there are no PDAs with the language L' . This means that $L = \emptyset$, which is regular and decideable.
6) A language L is D-complete iff (1) L is in D , and (2) for every language L' in D , $L' \leq_M L$. Consider the following claim: If $L \in D$ and $L \neq \Sigma^*$ and $L \neq \emptyset$, then L is D-complete. Prove or disprove this claim
Proof.
7) Let $\Sigma = \{1\}$. Show that there exists at least one undecidable language with alphabet Σ . (Hint: Use a counting argument.)
<i>Proof.</i> Let M be the Turing Machine $Trouble$ from the proof that $H \not lnD$. Let $L = \{x : x \text{ is } 1 \text{ if } M \text{ halts and } \epsilon \text{ if } M \text{ does not halt.}\}$. Since we have shown that it is impossible to decide if M halts or not

8) The following sequence of figures corresponds to a fractal called a Koch island:

These figures were drawn by interpreting strings as turtle programs, just as we did in Example 24.5 and Example 24.6. The strings were generated by an L-system G, defined with:

$$\Sigma = \{F, +, -\}.$$

$$\omega = F - F - F - F$$

To interpret the strings as turtle programs, attach meanings to the symbols in Σ as follows (assuming that some value for k has been chosen):

- F means move forward, drawing a line of length k.
- + means turn left 90° .
- — means turn right 90° .

Figure (a) was drawn by the first generation string ω . Figure (b) was drawn by the second generation string, and so forth. R_G contains a single rule. What is it?

Answer. \Box