딥러닝 세미나 Season #12

Visual Word2Vec(vis-w2v): Learning Visually Grounded Word Embeddings Using Abstract Scenes

2016, CVPR, S. Kottur et al.

한양대학교 컴퓨터 소프트웨어 학과 인공지능 연구실 조건희

Introduction

Introduction

• 이 논문에서 태클하는 문제

- "eat" 과 "stare at" 은 텍스트 상으로만 보면 관련이 없을 것 같지만,
- 이미지에서는 서로 연관이 있을 가능성이 있다.

Introduction

- 이 논문에서 태클하는 문제
 - 그래서 클립아트 이미지 데이터를 활용하여 visual grounding 을 해보겠다!
 - (= 텍스트만으로는 학습할 수 없지만, 이미지에서는 학습할 수 있을 법한 단어 간 연관성을 찾아 보겠다!)
 - 그리고 워드 임베딩이 잘 되었는지 확인하기 위해 3가지 태스크를 준비했다!
 - Common sense assersion classification
 - (boy, eats, cake) 형태로 주어지는 문장이 타당한지(상식적인지) 판별하는 태스크 → SOTA를 찍었다!
 - Visual paraphrasing
 - 주어진 2개의 문장이 같은 장면을 묘사하는지 아닌지(서로에 대한 paraphrase 인지 아닌지) 판별하는 태스크
 - Text-based image retrieval
 - 문장이 주어지면 그에 해당하는 이미지를 찾는 태스크

Related work

Related work

Word embedding

- 대량의 텍스트 데이터에서 단어들의 co-occurrence 를 학습하여 서로 연관있는 단어들끼리는 가깝도록, 연관없는 단어들끼리는 멀도록 임베딩하는 것
- 임베딩된 단어 벡터들간의 유사도(코사인유사도 등)은 그 단어들 간의 의미적 유사도로 사용가능!

Related work

Surrogate classification

- unsupervised learning 에서 주로 사용.
- 인풋 이미지에 대한 라벨이 없을 때, 일단 그 이미지의 feature 를 뽑아 라벨이 있는 feature와의 clustering을 통해 surrogate label (대리 라벨) 을 할당해줌.

- Input
 - 이미지 visual feature
 - 이미지와 연관된 word set
- Model
 - word2vec 기본 모델 중 CBOW 와 동일한 구조
 - output layer 만 다름
- Output Classes
 - Grounding function G(.)
 - $G: v \to \{1, 2, ..., N_K\}$
 - 이미지에 포함된 단어를 N_K 개의 클러스터로 분류한 결과를 사용 (원핫벡터)

- Output Classes
 - K-means clustering 으로 이 모델을 학습하기 전에 클러스터링을 미리 해둠.
 - 클러스터 내 다른 단어들과 함께 등장하는 빈도가 높을 수록 큰 글씨로 표현

Initialization

- W_I : 기존 w2v의 임베딩을 초기값으로 사용
- *W_o*: 랜덤값
- 초기값 자체가 이미 대량의 텍스트로부터 학습한 임베딩이기 때문에 non-visual 한 정보 반영

- Common Sense Assertion Classification 태스크
 - 데이터셋 수집
 - 이미지를 묘사하는 문장 데이터셋을 AMT(Amazon Mechanical Turk) 이용하여 수집
 - 각 문장을 (주어, 동사, 목적어) 형태

baby sleep next to lady

Original Tuple:

woman hold onto cat

- Common Sense Assertion Classification 태스크
 - 이미지를 묘사하는 문장이 타당한지 아닌지 구분하는 태스크
 - 이미지에 대한 Ground truth tuple이 존재함.
 - 입력으로 tuple이 하나 주어짐. (t_p, t_r, t_s)
 - 예를 들어 (boy, eats, cake)
 - 테스트 방법: plausible 하다고 알려져 있는 tuple과의 유사도를 워드임베딩을 사용해 측정
 - plausibility score 계산 : $h(t',t_i) = W_P(t_P')^T W_P(t_P^i) + W_R(t_R')^T W_R(t_R^i) + W_S(t_S')^T W_S(t_S^i)$
 - separate model / shared model
 - shared model $\stackrel{\triangle}{\leftarrow} W_P = W_R = W_S$

- Common Sense Assertion Classification 태스크
 - 이미지를 묘사하는 문장이 타당한지 아닌지 구분하는 태스크
 - 이미지에 대한 Ground truth tuple이 존재함.
 - 입력으로 tuple이 하나 주어짐. (t_p, t_r, t_s) (예를 들면, (boy, eats, cake))
 - 테스트 방법: plausible 하다고 알려져 있는 tuple과의 유사도를 워드임베딩을 사용해 측정
 - plausibility score 계산 : $h(t',t_i) = W_P(t_P')^T W_P(t_P^i) + W_R(t_R')^T W_R(t_R^i) + W_S(t_S')^T W_S(t_S^i)$
 - separate model / shared model
 - shared model $\stackrel{\triangle}{=} W_P = W_R = W_S$

- Common Sense Assertion Classification 태스크
 - w2v-wiki: 위키피디아 텍스트로부터 학습한 워드임베딩
 - w2v-coco: MS-COCO 데이터셋의 이미지 caption 으로부터 학습한 워드임베딩
 - vis-w2v-wiki : 초기값이 wiki 워드임베딩
 - vis-w2v-coco : 초기값이 MS-COCO 워드임베딩
 - AP : Average precision

Approach	common sense AP (%)	
vis-w2v-wiki(shared)	72.2	
vis-w2v-wiki (separate)	74.2	
vis-w2v-coco (shared) + vision	74.2	
vis-w2v-coco (shared)	74.5	
vis-w2v-coco (separate)	74.8	
vis-w2v-coco (separate) + vision	75.2	
w2v-wiki(from [35])	68.4	
w2v-coco (from [35])	72.2	
w2v-coco + vision (from 35)	73.6	

- Visual paraphrasing 태스크
 - 이미지를 묘사하는 두 텍스트가 같은 장면을 묘사하고 있는지 아닌지 판별하는 태스크
 - 텍스트에 포함된 모든 단어 벡터의 평균으로 text-based scoring function에 넣어 paraphrasing score를 판별
 - text-based scoring function: term freq, word co-occurrence 등을 결합한 함수

- Visual paraphrasing 태스크
 - 이미지를 묘사하는 두 텍스트가 같은 장면을 묘사하고 있는지 아닌지 판별하는 태스크
 - 텍스트에 포함된 모든 단어 벡터의 평균으로 text-based scoring function에 넣어 paraphrasing score를 판별
 - text-based scoring function: term freq, word co-occurrence 등을 결합한 함수

Approach	Visual Paraphrasing AP (%)			
w2v-wiki (from [24])	94.1			
w2v-wiki	94.4			
w2v-coco	94.6			
vis-w2v-wiki	95.1			
vis-w2v-coco	95.3			

- Text-based Image Retrieval 태스크
 - query tuple 이 주어지면 그 query tuple 과 일치하는 ground truth tuple을 찾는 태스크
 - 사실상 이미지랑은 크게 연관이 없는 태스크로 보임

■ Text-based Image Retrieval 태스크

■ query tuple 의 임베딩 벡터의 평균값과 ground truth tuple 의 평균과의 코사인 유사도로 판별.

■ R@1 : Recall@1 (높은수록 좋음)

■ med R: Median Rank (낮을수록 좋음)

Approach	R@1(%)	R@5(%)	R@10(%)	med R
w2v-wiki w2v-coco	14.6 15.3	34.4 35.2	45.4 47.6	13 11
vis-w2v-wiki(shared)	15.5	37.2	49.3	10
vis-w2v-coco (shared) vis-w2v-wiki (separate)	15.7 14.0	37.7 32.7	47.6 43.5	10 15
vis-w2v-coco(separate)	15.4	37.6	49.5	10

Conclusion

- Contribution
 - 워드임베딩을 이미지 관련 태스크에 적용할 때 생길 수 있는 문제에 대한 문제제시
 - visual information 을 워드임베딩과 콜라보하려 시도
 - 3가지 태스크에서 기존 워드 임베딩보다 좋은 성능

감사합니다