

Bidirectional Consistency Models

Liangchen Li^{*, 1} Jiajun He^{*, 2}
*equal contribution ¹Independent Researcher ²University of Cambridge

TL;DR: We extend consistency models to Bidirectional Consistency Models for fast sampling and its inversion.

Motivation

- Diffusion models requires hundreds of NFEs for high-quality samples; consistency models (CMs) only requires 1-2 NFE;
- (ODE-based) diffusion models can map noise ←→ image
- Consistency models only support noise → image

Backgrounds

Diffusion Models estimate **scores** along the PF ODE:

Consistency Models estimates **starting points** of the PF ODE:

Bidirectional Consistency Models estimates the points on the entire PF ODE towards both denoising and noising directions:

Methods

- We train a network $f_{\theta}(x, t_1, t_2)$ mapping x from time step t_1 to t_2 ;
- Given training image x, Gaussian noise z, and random time steps t, t', we calculate:
 - 1. Target image:

$$x_0 \leftarrow f_{\mathrm{sg}(\theta)}(x+tz,t,0)$$

2. Estimator of x_0 : $x_0' \leftarrow f_\theta(x + (t + \delta)z, t + \delta, 0)$

3. Estimator of $x_{t'}$: $x_{t'} \leftarrow f_{\theta}(x + tz, t, t')$

- 4. New estimator of x_0 : $x_0'' \leftarrow f_{sg(\theta)}(x_{t'}, t', 0)$
- We minimize $d(x_0, x_0')$ and $d(x_0, x_0'')$ together:

$$\ell = \frac{1}{\delta} d(x_0, x'_0) + \frac{1}{|t - t'|} d(x_0, x''_0)$$
Consistency 'soft' trajectory training loss constraint

Results

• In terms of sampling, BCM achieves competitive FID compared to CMs:

Methods	NFE	FID
iCT	1	2.83
	2	2.46
iCT-deep	1	2.51
	2	2.24
BCM	1	3.10
	2	2.39
	3	2.50
	4	2.29
BCM-deep	1	2.64
	2	2.36
	3	2.19
	4	2.07

• In terms of inversion, BCM achieves lower reconstruction error with fewer NFE:

Interpolate between two real images:

