RECOMENDACIÓN UIT-R P.838-3

Modelo de la atenuación específica debida a la lluvia para los métodos de predicción

(Cuestión UIT-R 201/3)

(1992-1999-2003-2005)

La Asamblea de Radiocomunicaciones,

considerando

a) que es necesario calcular la atenuación producida por la lluvia a partir de valores de intensidad de lluvia conocidos,

recomienda

1 que se utilice el procedimiento siguiente.

La atenuación específica γ_R (dB/km) se obtiene a partir de la intensidad de la lluvia R (mm/h) mediante la ley potencial:

$$\gamma_R = kR^{\alpha} \tag{1}$$

Los valores de los coeficientes k y α se determinan en función de la frecuencia, f (GHz), en la gama de 1 a 1 000 GHz, a partir de las ecuaciones siguientes, que se han obtenido mediante el ajuste de curvas a los coeficientes de la ley potencial derivados de cálculos de dispersión:

$$\log_{10} k = \sum_{j=1}^{4} \left(a_j \exp \left[-\left(\frac{\log_{10} f - b_j}{c_j} \right)^2 \right] + m_k \log_{10} f + c_k \right]$$
 (2)

$$\alpha = \sum_{j=1}^{5} \left(a_{j} \exp \left[-\left(\frac{\log_{10} f - b_{j}}{c_{j}} \right)^{2} \right] + m_{\alpha} \log_{10} f + c_{\alpha} \right]$$
 (3)

donde:

f: frecuencia (GHz)

k: puede ser k_H o k_V

 α : puede ser α_H o α_V .

En el Cuadro 1 se indican los valores de las constantes para el coeficiente k_H de polarización horizontal, y en el Cuadro 2 para el coeficiente k_V de polarización vertical. En el Cuadro 3 se indican los valores de las constantes para el coeficiente α_H de polarización horizontal, y en el Cuadro 4 para el coeficiente α_V de polarización vertical.

CUADRO 1 Coeficientes para k_H

j	a_j	b_{j}	c_{j}	m_k	c_k
1	-5,33980	-0,10008	1,13098		
2	-0,35351	1,26970	0,45400	-0,18961	0,71147
3	-0,23789	0,86036	0,15354	-0,18901	0,/114/
4	-0,94158	0,64552	0,16817		

CUADRO 2 Coeficientes para k_V

j	a_j	b_{j}	c_{j}	m_k	c_k
1	-3,80595	0,56934	0,81061		
2	-3,44965	-0,22911	0,51059	0 16209	0.62207
3	-0,39902	0,73042	0,11899	-0,16398	0,63297
4	0,50167	1,07319	0,27195		

CUADRO 3 Coeficientes para α_H

j	a_j	b_{j}	c_{j}	m_{α}	c_{α}
1	-0,14318	1,82442	-0,55187		
2	0,29591	0,77564	0,19822		
3	0,32177	0,63773	0,13164	0,67849	-1,95537
4	-5,37610	-0,96230	1,47828		
5	16,1721	-3,29980	3,43990		

CUADRO 4 Coeficientes para α_V

j	a_{j}	$oldsymbol{b}_{j}$	c_{j}	m_{α}	c_{α}
1	-0,07771	2,33840	-0,76284		
2	0,56727	0,95545	0,54039		
3	-0,20238	1,14520	0,26809	-0,053739	0,83433
4	-48,2991	0,791669	0,116226		
5	48,5833	0,791459	0,116479		

Para la polarización lineal y circular, y para cualquier geometría del trayecto, los coeficientes de la ecuación (1) pueden calcularse mediante los valores de las ecuaciones (2) y (3) utilizando las ecuaciones siguientes:

$$k = [k_H + k_V + (k_H - k_V)\cos^2\theta\cos 2\tau]/2$$
 (4)

$$\alpha = [k_H \alpha_H + k_V \alpha_V + (k_H \alpha_H - k_V \alpha_V) \cos^2 \theta \cos 2\tau]/2k$$
 (5)

donde θ es el ángulo de elevación del trayecto y τ es el ángulo de inclinación de la polarización con respecto a la horizontal ($\tau = 45^{\circ}$ para la polarización circular).

Para facilitar su consulta, los coeficientes k y α se muestran gráficamente en las Figs. 1 a 4, y en el Cuadro 5 se indican los valores numéricos de los coeficientes en determinadas frecuencias.

FIGURA 2

Coeficiente α de polarización horizontal

FIGURA 3

Coeficiente k de polarización vertical

FIGURA 4
Coeficiente α de polarización vertical

CUADRO 5

Coeficientes que dependen de la frecuencia para estimar la atenuación específica debida a la lluvia utilizando las ecuaciones (4), (5) y (1)

Frecuencia (GHz)	k_H	$lpha_H$	k_V	α_V
1	0,0000259	0,9691	0,0000308	0,8592
1,5	0,0000443	1,0185	0,0000574	0,8957
2	0,0000847	1,0664	0,0000998	0,9490
2,5	0,0001321	1,1209	0,0001464	1,0085
3	0,0001390	1,2322	0,0001942	1,0688
3,5	0,0001155	1,4189	0,0002346	1,1387
4	0,0001071	1,6009	0,0002461	1,2476
4,5	0,0001340	1,6948	0,0002347	1,3987
5	0,0002162	1,6969	0,0002428	1,5317
5,5	0,0003909	1,6499	0,0003115	1,5882
6	0,0007056	1,5900	0,0004878	1,5728
7	0,001915	1,4810	0,001425	1,4745
8	0,004115	1,3905	0,003450	1,3797
9	0,007535	1,3155	0,006691	1,2895

CUADRO 5 (Continuación)

Frecuencia (GHz)	k_H	$lpha_H$	k_V	$oldsymbol{lpha}_V$
10	0,01217	1,2571	0,01129	1,2156
11	0,01772	1,2140	0,01731	1,1617
12	0,02386	1,1825	0,02455	1,1216
13	0,03041	1,1586	0,03266	1,0901
14	0,03738	1,1396	0,04126	1,0646
15	0,04481	1,1233	0,05008	1,0440
16	0,05282	1,1086	0,05899	1,0273
17	0,06146	1,0949	0,06797	1,0137
18	0,07078	1,0818	0,07708	1,0025
19	0,08084	1,0691	0,08642	0,9930
20	0,09164	1,0568	0,09611	0,9847
21	0,1032	1,0447	0,1063	0,9771
22	0,1155	1,0329	0,1170	0,9700
23	0,1286	1,0214	0,1284	0,9630
24	0,1425	1,0101	0,1404	0,9561
25	0,1571	0,9991	0,1533	0,9491
26	0,1724	0,9884	0,1669	0,9421
27	0,1884	0,9780	0,1813	0,9349
28	0,2051	0,9679	0,1964	0,9277
29	0,2224	0,9580	0,2124	0,9203
30	0,2403	0,9485	0,2291	0,9129
31	0,2588	0,9392	0,2465	0,9055
32	0,2778	0,9302	0,2646	0,8981
33	0,2972	0,9214	0,2833	0,8907
34	0,3171	0,9129	0,3026	0,8834
35	0,3374	0,9047	0,3224	0,8761
36	0,3580	0,8967	0,3427	0,8690
37	0,3789	0,8890	0,3633	0,8621
38	0,4001	0,8816	0,3844	0,8552
39	0,4215	0,8743	0,4058	0,8486
40	0,4431	0,8673	0,4274	0,8421
41	0,4647	0,8605	0,4492	0,8357
42	0,4865	0,8539	0,4712	0,8296
43	0,5084	0,8476	0,4932	0,8236
44	0,5302	0,8414	0,5153	0,8179
45	0,5521	0,8355	0,5375	0,8123
46	0,5738	0,8297	0,5596	0,8069
47	0,5956	0,8241	0,5817	0,8017

CUADRO 5 (Continuación)

Frecuencia (GHz)	k_H	α_H	k_V	α_V
48	0,6172	0,8187	0,6037	0,7967
49	0,6386	0,8134	0,6255	0,7918
50	0,6600	0,8084	0,6472	0,7871
51	0,6811	0,8034	0,6687	0,7826
52	0,7020	0,7987	0,6901	0,7783
53	0,7228	0,7941	0,7112	0,7741
54	0,7433	0,7896	0,7321	0,7700
55	0,7635	0,7853	0,7527	0,7661
56	0,7835	0,7811	0,7730	0,7623
57	0,8032	0,7771	0,7931	0,7587
58	0,8226	0,7731	0,8129	0,7552
59	0,8418	0,7693	0,8324	0,7518
60	0,8606	0,7656	0,8515	0,7486
61	0,8791	0,7621	0,8704	0,7454
62	0,8974	0,7586	0,8889	0,7424
63	0,9153	0,7552	0,9071	0,7395
64	0,9328	0,7520	0,9250	0,7366
65	0,9501	0,7488	0,9425	0,7339
66	0,9670	0,7458	0,9598	0,7313
67	0,9836	0,7428	0,9767	0,7287
68	0,9999	0,7400	0,9932	0,7262
69	1,0159	0,7372	1,0094	0,7238
70	1,0315	0,7345	1,0253	0,7215
71	1,0468	0,7318	1,0409	0,7193
72	1,0618	0,7293	1,0561	0,7171
73	1,0764	0,7268	1,0711	0,7150
74	1,0908	0,7244	1,0857	0,7130
75	1,1048	0,7221	1,1000	0,7110
76	1,1185	0,7199	1,1139	0,7091
77	1,1320	0,7177	1,1276	0,7073
78	1,1451	0,7156	1,1410	0,7055
79	1,1579	0,7135	1,1541	0,7038
80	1,1704	0,7115	1,1668	0,7021
81	1,1827	0,7096	1,1793	0,7004
82	1,1946	0,7077	1,1915	0,6988
83	1,2063	0,7058	1,2034	0,6973
84	1,2177	0,7040	1,2151	0,6958
85	1,2289	0,7023	1,2265	0,6943

CUADRO 5 (Fin)

Frecuencia (GHz)	k_H	$lpha_H$	k_V	α_V
86	1,2398	0,7006	1,2376	0,6929
87	1,2504	0,6990	1,2484	0,6915
88	1,2607	0,6974	1,2590	0,6902
89	1,2708	0,6959	1,2694	0,6889
90	1,2807	0,6944	1,2795	0,6876
91	1,2903	0,6929	1,2893	0,6864
92	1,2997	0,6915	1,2989	0,6852
93	1,3089	0,6901	1,3083	0,6840
94	1,3179	0,6888	1,3175	0,6828
95	1,3266	0,6875	1,3265	0,6817
96	1,3351	0,6862	1,3352	0,6806
97	1,3434	0,6850	1,3437	0,6796
98	1,3515	0,6838	1,3520	0,6785
99	1,3594	0,6826	1,3601	0,6775
100	1,3671	0,6815	1,3680	0,6765
120	1,4866	0,6640	1,4911	0,6609
150	1,5823	0,6494	1,5896	0,6466
200	1,6378	0,6382	1,6443	0,6343
300	1,6286	0,6296	1,6286	0,6262
400	1,5860	0,6262	1,5820	0,6256
500	1,5418	0,6253	1,5366	0,6272
600	1,5013	0,6262	1,4967	0,6293
700	1,4654	0,6284	1,4622	0,6315
800	1,4335	0,6315	1,4321	0,6334
900	1,4050	0,6353	1,4056	0,6351
1 000	1,3795	0,6396	1,3822	0,6365