Monte Carlo Control with Exploring Starts

Input:

- Environment with states S, actions A, transition probabilities P, rewards R, and discount factor γ .
- Number of episodes N.

Initialization:

- Initialize action-value function Q(s, a) arbitrarily for all s and a.
- Initialize state-action visit count N(s, a) = 0 for all s and a.
- Initialize policy π with random actions for each state-action pair.

Algorithm:

- 1. **For** each episode i = 1, 2, ..., N **do**:
 - Choose a state s_0 and action a_0 arbitrarily, using exploring starts.
 - Generate an episode following policy π : $(s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_T)$.
 - $G \leftarrow 0$
 - **For** each step t = T 1, T 2, ..., 0 **do**:
 - $-G \leftarrow \gamma G + r_{t+1}$
 - **If** (s_t, a_t) is not in the episode history from time step 0 to t-1 **then**:
 - * Increment $N(s_t, a_t)$ by 1
 - * Update action-value function $Q(s_t, a_t)$ based on G and $N(s_t, a_t)$:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \frac{1}{N(s_t, a_t)} (G - Q(s_t, a_t))$$

* Update policy π to be greedy with respect to Q:

$$\pi(s_t) \leftarrow \operatorname{argmax}_a Q(s_t, a)$$

Output: Optimized policy π based on the estimated action-value function Q.