Tipy a triky pre matematickú analýzu 1

Filip Rosa 2025

Obsah

Obsah			1
1	Abs	strakt	2
	Reálná čísla. Věta o supremu.		3
	2.1	Číselné množiny	3
	2.2	Horní odhad a maximum množiny	4
	2.3	Dolní odhad a minimum množiny	4
	2.4	Supremum a infimum	4

1 Abstrakt

Filip

2 Reálná čísla. Věta o supremu.

2.1 Číselné množiny

 $\mathbb{N} = \{1, 2, 3, 4, 5, \dots\}$ - množina všech přirozených čísel $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ - množina všech celých čísel $\mathbb{Q} = \left\{\frac{p}{q}: p, q \in \mathbb{Z} \land q \neq 0\right\}$ - množina všech racionálních čísel $\mathbb{R} = \{\dots\}$ - množina všech reálných čísel $\mathbb{R}^+ = \{x \in \mathbb{R}: x > 0\}$ - množina všech kladných raálných čísel

 $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ - množina všech kladných reálných čísel

 $\mathbb{R}^- = \{x \in \mathbb{R} : x < 0\}$ - množina všech záporných reálných čísel

 $\mathbb{R} \setminus \mathbb{Q}$ - množina všech iracionálních čísel

 $\mathbb{R}^* = \mathbb{R} \cup \{+\infty, -\infty\}$ - rozšířená číselná osa

Princip matematické indukce:

Buď $M \subset \mathbb{N}$ taková množina, že platí:

- $1 \in M$
- $\forall n \in M : n+1 \in M$

Pak $M = \mathbb{N}$

Definované operace s nekonečnem:

- $\forall x \in \mathbb{R} : -\infty < x \land x < +\infty$
- $-\infty < +\infty$
- $\forall x > -\infty : x + (+\infty) = x + \infty = +\infty + x = +\infty$
- $\forall x < +\infty : x + (-\infty) = x \infty = -\infty + x = -\infty$
- $\forall x \in \mathbb{R}^+ \cup \{+\infty\} : x.(+\infty) = +\infty.x = +\infty$
- $\forall x \in \mathbb{R}^+ \cup \{+\infty\} : x.(-\infty) = -\infty.x = -\infty$
- $\forall x \in \mathbb{R}^- \cup \{-\infty\} : x.(+\infty) = +\infty.x = -\infty$
- $\forall x \in \mathbb{R}^- \cup \{-\infty\} : x.(-\infty) = -\infty.x = +\infty$
- $\forall x \in \mathbb{R} : \frac{x}{+\infty} = \frac{x}{-\infty} = 0$
- $\bullet \ |-\infty| = |+\infty| = +\infty$

2.2 Horní odhad a maximum množiny

Buď $M \subset \mathbb{R}^*$. Každé číslo $k \in \mathbb{R}^*$ takové, že $\forall x \in M : x \leq k$, nazýváme **horním odhadem** množiny M.

Existuje-li horní odhad množiny M, ktorý je prvkem množiny M, nazýváme jej **maximem** množiny M a značíme maxM.

2.3 Dolní odhad a minimum množiny

Buď $M \subset \mathbb{R}^*$. Každé číslo $l \in \mathbb{R}^*$ takové, že $\forall x \in M: x \geq l$, nazýváme **dolním** odhadem množiny M.

Existuje-li dolní odhad množiny M, ktorý je prvkem množiny M, nazýváme jej **minimem** množiny M a značíme minM.

2.4 Supremum a infimum

Buď $M \subset \mathbb{R}^*$. Číslo $s \in \mathbb{R}^*$, pro něž platí:

- $\forall x \in M : x \leq s \text{ (tzn. } že \ s \text{ je horním odhadem } M)$
- $(\forall k \in \mathbb{R}^*, k < s)(\exists x \in M) : x > k$ (tzn. že žádné číslo menší než s není horním odhadem M)

nazýváme **supremem** množiny M-s=supM. Jinak řečeno supM je nejmenším horním odhadem množiny M.

Buď $M \subset \mathbb{R}^*$. Číslo $i \in \mathbb{R}^*$, pro něž platí:

- $\forall x \in M : x > i$ (tzn. že i je dolním odhadem M)
- $(\forall l \in \mathbb{R}^*, l > i)(\exists x \in M) : x < l$ (tzn. že žádné číslo větší než i není dolním odhadem M)

nazýváme **infimem** množiny M-i=infM. Jinak řečeno infM je největším dolním odhadem množiny M.

Omezené množiny:

Množinu $M \subset \mathbb{R}^*$ nazveme:

- shora omezenou, je-li $supM < +\infty$
- zdola omezenou, je-li $inf M > -\infty$
- omezenou, je-li současně shora i zdola omezená
- neomezenou, není-li omezená

Věta o supremu:

Každá podmnožina \mathbb{R}^* má právě jedno supremum. Důsledkem má každá podmnožina \mathbb{R}^* má právě jedno infimum.