

Department of Information Technology and Electrical Engineering

Mixed Radix FFT Core Generator

Lorenz Koestler < lorenz@koestler.ch>

Winter Term 2012

Abstract

The Discrete Fourier Transform (DFT) processor is a key component in Orthogonal Frequency-Division Multiplexing (OFDM) communication systems and often needs to support different input sample sizes. To reduce the development effort when experimenting with new mobile standards, a Fast Fourier Transform (FFT) Core Generator was implemented which can generate a FFT Core for a specific application. Even tough our core generator is focused on OFDM, it can also be used for many different applications. It was designed to achieve a reasonable throughput and latency on the smallest area possible while being configurable in terms of FFT point sizes and word widths.

Acknowledgments

My special thank goes to my supervisors Harald Kröll and Sandro Belfanti for their support. They helped me finding a very interesting topic, pointed me to the right direction during the thesis and most importantly helped me when I was stuck. I would also like to thank Frank Gürkaynak and Christian Benkeser for the very helpful discussions. I am very grateful to the Integrated Systems Laboratory (IIS) at Swiss Federal Institute of Technology (ETH) Zurich giving me the opportunity to write this thesis and for their IT support.

Contents

viii Contents

Introduction

1.1 Motivation

1.2 60 GHz

- ullet huge bandwidth possible
- Big delay spread
- Phase noise
- ullet Big free space attenuation
- \bullet almost no interferer at the moment (and later)

Theory

The proposed 60 GHz receiver in theory

2.1 Frequencies

- RX and TX-LO offset to make sure LSB part is out of band
- Frequency space pictures of Baseband, TX-IF, 60G, RX-IF, Baseband
- Sub-nyquist sampling because of component restrictions

2.2 Frame strucutre

- ZEROS FES CES FIRST_PES DATA PES DATA PES ... ZEROS
- Explain reason of all fields
- Explain cyclic properties

2.3 Frequency offset estimation and correction

2.4 Phase noise estimation and correction

4

Simulation

- $\bullet\,$ general simulation flow
- $\bullet \;$ simulated effects
- replace more and more by hardware

Implementation

4.1 Experiment setup

Overview picture

- 4.2 Arbitrary waveform generator: Tektronix AWG 7122C
- 4.3 58-63 GHz V-band Converter: Sivers IMA FC1005V/00
- 4.4 Mini-Circuits: High-Pass Filter, Amplifiers
- 4.5 Texas-Instruments Balun: ADC-WB-BB
- 4.6 Texes-Instruments ADC 12d1800
- 4.7 Xilinix Virtex 7: VC707
- 4.7.1 Acquisition

Interface to ADC

4.7.2 Storage

DDR3 Ram

4.7.3 Download

Usb2 download

Results

- 5.1 Narrow Band Transmission
- 5.1.1 Phase Noise measueremnts
- 5.1.2 High Modulation
- 5.2 Full Bandwidth Transmission
- 5.2.1 Transmitter Channel Imbalance
- 5.2.2 90deg Coupler Error Measurement and Correction

List of Figures

14 List of Figures

List of Tables

16 List of Tables