Experiment	Date: 28 61 20					
Problem definition	People using water mith this water by conductivity method					
Methodology	dehydration and diarrhea. Kids are more sensitive to sulfate than adults. Conductivity of the soluble sulphate solution will change when it is precipitated by BaCla. Conductivity will reach minima when all sulphate					
Solution	present in the water can be determined.					
	Amount of BaCl ₂ required to remove the dissolved sulphate can be estimated.					
Student learning outcomes	Students will learn to a) perform conductometric method b) remove sulphate ion from irrigate water					

Principle:

Electrolyte solutions conduct electricity due to the presence of ions in solution. In case of precipitation titration between BaCl2 and Na2SO4, the conductance decreases slowly due to the replacement of Cl ion by SO₄² ion upto the equivalence point. After the equivalence point, the conductance increases rapidly due to the excess addition of BaCl₂ which remains in solution as Ba2+ and CI. This makes detection of neutralization point easy from the conductance trend plotted as a graph. This is the principle used in the estimation of SO₄² from contaminated water sample.

Requirements:

Reagents and solutions: BaCl₂ (0.1 N), Na₂SO₄ (0.02 N), unknown sulphate solution and distilled water.

Apparatus: Conductivity Bridge, Conductivity cell, Burette, Pipette, Volumetric flasks, Glass rod, Beaker (100 mL).

Procedure:

Calibration of Conductivity meter: Place a freshly prepared 0.1 N KCl solution (given in bottle) in a 100 mL beaker. Dip the conductivity cell in this solution and connect to the Conductivity meter. Press "CAL" button and complete the internal calibration of the instrument.

Standardization of BaCl₂ (Titration - 1):

Pipette out 20 mL of 0.02 N Na₂SO₄ solution (from Bottle A) in a 100 mL beaker and add 10 mL of distilled water to it to make the conductivity cell dip completely in the solution. Addition of water will not affect the conductivity since the number of ions in the solution remains unaltered. Dip the conductivity cell into the solution in the beaker and connect to the conductivity meter. Fill the burette with ~0.1 N BaCl₂ solution (from Bottle B). Record the conductivity of the sulphate solution without adding any BaCl₂ from the burette (0th reading). Add 1 mL BaCl₂ of known concentration into the beaker, stir with glass rod and note down the conductance. Continue the addition of BaCl₂ (1 mL each time) and note the conductance after each addition. Continue the titration beyond the equivalence point for about 5 mL. The conductance will either decrease slightly or remain constant until complete precipitation of BaSO₄, and then starts increasing on continuing the addition of BaCl₂. A graph is now drawn by plotting conductance ws volume of BaCl₂ added. Intersection point from the plot gives the volume of BaCl₂ required for precipitating the sulphate present in the known sample.

Estimation of unknown sulphate in the given solution (Titration -2):

Make up the unknown sulphate solution given in a 100 mL standard flask upto the mark using distilled water resulting in a solution containing 0.96 mg/mL of sulphate ions (Eq. wt. of SO_4^{2-} = 48.03). Pipette out 20 mL of this solution into a 100 mL beaker and add 10 mL distilled water to it. Dip the conductivity cell and repeat the above procedure with the unknown sulphate solution to determine the amount of BaCl₂ required for precipitating the unknown sulphate in the sample. From the two titrations carried out, calculate the amount of sulphate present in the effluent sample.

Table 1: Conductometric Titrations

Titration-1: Standar	rdization of n			
Titration-1: Standardization of BaCl ₂ Burette: BaCl ₂ solution (~0.1 N) Beaker: 20 mL of Na ₂ SO ₄ (0.02 N) + 10 mL of distilled water Conductivity cell, Conductivity meter		Titration-2: Estimation of sulphate content Burette: std. BaCl ₂ solution Beaker: 20 mL of unknown sulphate solution 10 mL of distilled water Conductivity cell, Conductivity meter		
0.0	2.6	0.0	2.4	
1.0	2.5	1.0		
2.0	2.5	2.0	2.3	
3.0	2.4	3.0	2.2	
4.0	2.3	4.0	2.2	
5.0	2.5	5.0	2.3	
6.0	2.9	6.0	2.6	
7.0	3.2	7.0	2.1	
8.0	36	8.0	3/2	
9.0	8.8	9.0	3.4	
10.0	401	10.0	3.8	
11.0	4.4	11.0	2023.9	
12.0	4.7	12.0 281	4.3	

Fig 1: Model graphs - 1 and 2 for Conductometric estimation of known and unknown sulphate sample solutions, respectively.

Calculations:

A). Standardization of 0.1 N BaCl₂:

 $(N \times V)$ of BaCl₂ solution = $(N \times V)$ of sodium sulphate

N of BaCl₂ solution = $0.02 \text{ N} \times 20 \text{ mL}$

$$V_1 = 4.2$$

$$N = 0.02 \times 20 = 4.2$$

$$4.2$$

$$0.0452$$

B). Estimation of unknown sulphate:

(N x V) of irrigation water sample = (N x V) of BaCl₂ solution

N of irrigation water sample = $N ext{ of } BaCl_2 \times Volume$ measured from Plot-2 (V_2) 20 mL

Amount of sulphate present in $1L = Normality of irrigation water sample x Eq. wt. of <math>SO_4^2$ (48.03)

D. 025 448.3x Amount of sulphate present in given sample solution = Strength of irrigation water sample x 48.03×100

Result: Amount of sulphate in given irrigation water sample = 0 1/ grams.

Evaluation of Result:

Sample number	Experimental value	Actual Value	Percentage of error	Marks awarded
				10/0.

19BCE2074

