

Tri-Directional Tasks Complementary Learning for Unsupervised Domain Adaptation of Cross-modality Medical Image Semantic Segmentation

Chen Li[†], Wei Chen^{† ⊠}, Mingfei Wu,Xin Luo , Yulin He, Yusong Tan

College of Computer, National University of Defense Technology, Changsha, China † These authors contributed equally to this work

⊠ chenwei@nudt.edu.edu

Medical Images Segmentation (MIS)

Medical image segmentation means classifying <u>pixel-wise</u> segments into different components from biomedical data (CT, MRI, Ultrasound, cells scan)

- Medical image segmentation is an essential step and plays a crucial role in many clinical applications, such as disease diagnosis and treatment planning.
- Segmentation from medical images is more challenging than natural image.

^[1] Zhuang, Xiahai, et al. "Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge." Medical image analysis 58 (2019): 101537.

Limitations in supervised MIS methods

- ➤ Supervised methods have shown promising performances in various medical image segmentation tasks.
- ➤ Well-trained models often fail when deployed to real-world clinical scenarios, as medical images acquired with different acquisition parameters or modalities have very different characteristics.

➤ Such cross-modality domain shift would lead to severe performance degradation of deep networks.

Unsupervised Domain Adaptation (UDA)

The main idea of UDA is to extract domain-invariable representations and transfer them from source domain to target domain, where source samples are annotated and the the labels of target samples are absent.

Motivation

- ➤ Previous UDA methods achieve this goal by aligning domains, including image-level alignment^[1], feature-level alignment^[2] and model-level alignment^[3].
 - Try to align domains in a single direction or two directions, failing to take advantage of the complementary relationship between different directions and alignment tasks. Ignoring the complement relationship between above alignment.

Single-directional Learning^[1,2]

Bio-directional Learning^[4]

- [1] Hoffman, Judy, et al. "Cycada: Cycle-consistent adversarial domain adaptation." International conference on machine learning (ICML). PMLR, 2018.
- [2] Chen, Cheng, et al. "Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation." IEEE transactions on medical imaging (TMI) 39.7 (2020): 2494-2505.
- [3] Li, Rui, et al. "Model adaptation: Unsupervised domain adaptation without source data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.
- [4] Li, Yunsheng, Lu Yuan, and Nuno Vasconcelos. "Bidirectional learning for domain adaptation of semantic segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

Motivation

- We proposed to solve unsupervised bio-medical cross-modality domain adaptation and carry out collaborative learning among three components (image translator G, mask segmentor M and edge segmentor E).
- The above three components perform three tasks respectively, cross-modality style transformation, mask segmentation and edge segmentation.

- > The first task is the *cross-modality style transformation*.
- \triangleright There are two generators (G_{T2S} and G_{S2T}) and discriminators (D_S and D_T) to adversarially generate image with new style.
- The goal of generators is to make synthetic images look similar to real images while discriminators aim to classify all images correctly.

$$\mathcal{L}_{Adv_img}^{S} = \sum_{x_s \in \mathbb{X}_S} \left[\log D_S(x_s) \right] +$$

$$\sum_{x_t \in \mathbb{X}_T} \left[\log \left(1 - D_S(G_{T2S}(x_t)) \right) \right]$$

$$\mathcal{L}_{Adv_img}^{T} = \sum_{x_t \in \mathbb{X}_T} \left[\log D_T(x_t) \right] +$$

$$\sum_{x_s \in \mathbb{X}_S} \left[\log \left(1 - D_T(G_{S2T}(x_s)) \right) \right]$$

Conclusions

- > The first task is the *cross-modality style transformation*.
- Besides, our work refer the CycleGAN [1] and design cycle x0002 consistent loss function to avoid contradiction between cross-modality generators when adversarial training.

$$\mathcal{L}_{Cycle} = \sum_{x_s \in \mathbb{X}_S} \left[\|G_{T2S}(G_{S2T}(x_s)) - x_s\|_1 \right] + \sum_{x_t \in \mathbb{X}_T} \left[\|G_{S2T}(G_{T2S}(x_t)) - x_t\|_1 \right].$$

- The second task is *mask segmentation with cross-domain adaptation*.
- Based on DeepLab V2 [1], the mask segmentor mainly consists of two components, i.e., feature extractor and mask generator.

$$\mathcal{L}_{Seg_Mask} = \sum_{x_s \in \mathbb{X}_S, y_s \in \mathbb{Y}_S} [-y_s \log M(x_s)]$$

- > The third task is <u>edge segmentationwith cross-domain adaptation</u>.
- ➤ Similiar to the mask segmentation, the edge segmentor consists of two components, i.e., feature extractor and edge generator.

$$\mathcal{L}_{Seg_Edge} = \sum_{x_s \in \mathbb{X}_S, y_s \in \mathbb{Y}_S} [-\xi(y_s) \log E(x_s)]$$

- The third task is *edge segmentationwith cross-domain adaptation*.
- Discriminators D_M and D_E are used to distinguish the mask and edge respectively

$$\mathcal{L}_{Dis_Mask} = \sum_{x_s \in \mathbb{X}_S} \mathcal{L}_{bce} \{ D_M[M(x_s)], M \} +$$

$$\sum_{x_t \in \mathbb{X}_T} \mathcal{L}_{bce} \{ D_M[M(G_{T2S}(x_t))], M \},$$

$$\mathcal{L}_{Dis_Edge} = \sum_{x_s \in \mathbb{X}_S} \mathcal{L}_{bce} \{ D_E[E(x_s)], E \} +$$

$$\sum_{x_t \in \mathbb{X}_T} \mathcal{L}_{bce} \{ D_E[E(G_{T2S}(x_t))], E \}.$$

Tri-directional Collaborative Learning

- The first direction is the *translator boosts the mask segmentor and edge segmentor*.
- After image style transformation, we utilize the labeled source samples and unlabeled translated target samples to train the segmentors M and E.

$$\mathcal{L}_{Adv_Mask} = \sum_{x_t \in \mathbb{X}_T} \mathcal{L}_{bce} \{ D_M[M(G_{T2S}(x_t))], S \}$$

$$\mathcal{L}_{Adv_Edge} = \sum_{x_t \in \mathbb{X}_T} \mathcal{L}_{bce} \{ D_E[E(G_{T2S}(x_t))], S \}.$$

In summary, we can derive the optimization problem to boost M and E with the help of transformation G:

$$\min_{\theta_{M}} \max_{\theta_{D_{M}}} \left[\mathcal{L}_{Seg_Mask} + \lambda_{Adv} \mathcal{L}_{Adv_Mask} \right],$$

$$\min_{\theta_{E}} \max_{\theta_{D_{E}}} \left[\mathcal{L}_{Seg_Edge} + \lambda_{Adv} \mathcal{L}_{Adv_Edge} \right].$$

Tri-directional Collaborative Learning

- ➤ The second direction is the mask segmentor and edge segmentor work collaboratively with each other.
- ➤ In order to obey the fact that the prediction of edge and the boundary of mask should keep consistent, we propose to align masks and edges in the self-supervised manner.

$$\mathcal{L}_{Con} = \sum_{x_t \in X_T} \mathcal{L}_{bce} \{ \xi(M[G_{T2S}(x_t)]), E[G_{T2S}(x_t)] \}$$

In summary, we can achieve optimization through self-supervised collaboration between M and E:

$$\min_{\theta_{M,E}} \max_{\theta_{D_{M},D_{E}}} \left[\mathcal{L}_{Dis_Mask} + \mathcal{L}_{Dis_Edge} + \lambda_{Con} \mathcal{L}_{Con} \right]$$

Tri-directional Collaborative Learning

- The third direction is the well-trained mask segmentor and edge segmentor promote the translator in return.
- we reconstruct the translated image again to optimize style transformation and maintain the semantic consistency between original sample and translated sample at the same time.

$$\mathcal{L}_{Back}^{S} = \sum_{x_s \in \mathbb{X}_S} [\|M(G_{S2T}(x_s)) - M(x_s)\|_1 \\ + \|M(G_{T2S}(G_{S2T}(x_s))) - M(x_s)\|_1 \\ + \|E(G_{S2T}(x_s)) - E(x_s)\|_1 \\ + \|E(G_{T2S}(G_{S2T}(x_s))) - E(x_s)\|_1 \\ + \|E(G_{T2S}(G_{S2T}(x_s))) - E(x_s)\|_1.$$

$$\mathcal{L}_{Back}^{T} = \sum_{x_t \in \mathbb{X}_T} [\|M(G_{T2S}(x_t)) - M(x_t)\|_1 \\ + \|M(G_{S2T}(G_{T2S}(x_t))) - E(x_t)\|_1 \\ + \|E(G_{T2S}(x_t)) - E(x_t)\|_1.$$

In summary, with the collaboration of segmentors M and E, the optimization of translator is updated:

$$\min_{\theta_{G_{S2T},G_{T2S}}} \max_{\theta_{D_{S},D_{T}}} [\mathcal{L}_{Adv_img}^{S} + \mathcal{L}_{Adv_img}^{T} + \mathcal{L}_{Cycle} + \lambda_{Back} (\mathcal{L}_{Back}^{S} + \mathcal{L}_{Back}^{T})].$$

Dataset & Metric

- Multi-modality Whole Heart Segmentation Challenge (MM-WHS 2017)
 - 20 CT volumes and 20 MRI volumes
 - seven cardiac structures with pixel-level annotation.
 - supported by MICCAI 2017
 - http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/

- > Evaluation Metrics:
 - Dice coefficient and Average symmetric surface distance (ASSD)

Ablation study

- Firstly, we trained the mask segmentor without any domain adaptation technique and regarded the results as the baseline.
- ➤ Secondly, we delved into the key components of TriDL and divided them step by step for further proof.
- In the end, we merged all components to get the best TriDL model for final validation.

Methods	AVG. Dice	AVG. ASSD
(Mean \pm Std.)	(%)	(voxel)
Without Adapation	25.70 ± 0.78	26.23 ± 6.47
Only Style Transformation $G_{(0)}$	62.91 ± 10.81	4.97 ± 1.57
$G_{(0)}$ + Mask Segmentation $M_{(0)}$	64.15 ± 6.49	4.97 ± 1.69
$G_{(0)}+M_{(0)}+$ Edge Segmentation $E_{(0)}$	69.77 ± 7.08	4.23 ± 1.32
Updated $G_{(1)} + M_{(0)} + E_{(0)}$	72.00 ± 7.46	3.28 ± 0.81
$G_{(1)}$ + Updated $M_{(1)}$ + $E_{(0)}$	74.52 ± 6.47	3.23 ± 0.44
$G_{(1)} + M_{(1)} + \text{Updated } E_{(1)}$	77.16 ± 6.70	2.80 ± 0.64

Quantitatively measure the domain shift

➤ In addition to quantitative representation, we also conducted significance tests for some key components pair.

Methods (Dice)	Ascending Aorta (AA)	Left Atrium blood Cavity (LAC)	Left Ventricle blood Cavity (LVC)	Myocardium of left ventricle (MYO)	Average
Without adapation	27.57±16.37	27.63 ± 14.29	33.79 ± 8.81	13.81 ± 9.44	25.70±0.78

Supervised learning	92.43+2.31	83 84+8 87	91.09 ± 4.72	85 39+6 75	88 18+4 47

Quantitatively measure the domain shift

➤ In addition to quantitative representation, we also conducted significance tests for some key components pair.

Methods (ASSD)	Ascending Aorta (AA)	Left Atrium blood Cavity (LAC)	Left Ventricle blood Cavity (LVC)	Myocardium of left ventricle (MYO)	Average
Without Adaptation	43.00±23.27	21.14 ± 10.24	14.22 ± 4.15	26.54 ± 9.63	26.23 ± 6.47

Supervised learning 1.10 ± 0.26 1.80 ± 0.69 0.96 ± 0.48 1.14 ± 0.60 1.25 ± 0.45

Comparison with the State-of-the-art Methods

The quantitative results of six SOTA UDA methods and proposed method demostate the superior of our work in domain-adaptive segmentation of cardiac organs.

Methods	Ascending Aorta	Left Atrium blood Cavity	Left Ventricle blood Cavity	Myocardium of left ventricle	Averege
(Dice)	(AA)	(LAC)	(LVC)	(MYO)	Average
Without adapation	27.57±16.37	27.63±14.29	33.79±8.81	13.81±9.44	25.70±0.78
ADDA [6]	47.60	60.90	11.20	29.20	37.20
DANN [7]	39.00	45.10	28.30	25.70	34.50
Pnp-AdaNet [8]	74.00 ± 7.30	68.90 ± 5.20	61.90 ± 10.70	50.80 ± 7.00	63.90±7.50
SynSeg-Net [9]	71.60	69.00	51.60	40.80	58.20
CycleGAN [2]	73.80	75.70	52.30	28.70	57.60
CyCADA [10]	72.90	77.00	62.40	45.30	64.40
BEAL [11]	75.47 ± 9.67	62.77 ± 9.47	68.49 ± 11.23	57.93 ± 7.59	66.17±10.25
Cascaded U-Net [12]	77.36 ± 6.28	65.28 ± 10.16	70.05 ± 9.60	60.66 ± 9.74	68.34±9.31
SIFA-v1 [13]	81.10	76.40	75.70	58.70	73.00
SIFA-v2 [14]	81.30	79.50	73.80	61.60	74.10
DualHierNet [15]	84.70 ± 6.41	74.61 ± 10.01	83.42 ± 7.46	65.19 ± 6.33	76.98 ± 7.84
BDL [16]	84.34±6.76	71.31 ± 18.70	77.04 ± 3.50	60.36 ± 13.73	73.26 ± 10.31
DSFN [17]	84.70	76.90	79.10	62.40	75.80
TriDL (ours)	88.87±6.70	$78.85{\pm}15.64$	78.64 ± 2.70	62.27±9.69	77.16±6.70
Supervised learning	92.43±2.31	83.84 ± 8.87	91.09 ± 4.72	85.39 ± 6.75	88.18±4.47

Comparison with the State-of-the-art Methods

The quantitative results of six SOTA UDA methods and proposed method demostate the superior of our work in domain-adaptive segmentation of cardiac organs.

Methods	Ascending Aorta	Left Atrium blood Cavity	Left Ventricle blood Cavity	Myocardium of left ventricle	Avaraga
(ASSD)	(AA)	(LAC)	(LVC)	(MYO)	Average
Without Adaptation	43.00±23.27	21.14 ± 10.24	14.22 ± 4.15	26.54 ± 9.63	26.23 ± 6.47
ADDA [16]	13.80	10.20	N/A	13.40	N/A
DANN [17]	16.20	9.20	12.10	10.10	11.90
Pnp-AdaNet [26]	12.80 ± 3.20	6.30 ± 2.30	17.40 ± 7.00	14.70 ± 4.80	12.80 ± 4.30
SynSeg-Net [27]	11.70	7.80	7.00	9.20	8.90
CycleGAN [3]	11.50	13.60	9.20	8.80	10.80
CyCADA [4]	9.60	8.00	9.60	10.50	9.40
BEAL [9]	7.70 ± 5.20	7.00 ± 3.40	9.80 ± 5.00	8.90 ± 4.90	8.40 ± 4.90
Cascaded U-Net [28]	7.60 ± 3.40	6.80 ± 4.90	9.20 ± 4.20	8.20 ± 4.90	8.00 ± 4.80
SIFA-v1 [6]	10.60	7.40	6.70	7.80	8.10
SIFA-v2 [18]	7.90	6.20	5.50	8.50	7.00
DualHierNet [19]	4.50 ± 2.80	5.30 ± 2.00	3.60 ± 1.70	4.90 ± 2.20	4.60 ± 2.30
BDL [29]	1.89 ± 0.53	4.01 ± 1.82	3.64 ± 0.73	3.69 ± 1.78	3.31 ± 1.18
TriDL (ours)	$1.55{\pm}0.46$	$3.06{\pm}1.54$	$3.61 {\pm} 0.95$	2.98 ± 0.43	2.80 ± 0.64
Supervised learning	1.10 ± 0.26	1.80 ± 0.69	0.96 ± 0.48	1.14 ± 0.60	1.25 ± 0.45

Comparison with the State-of-the-art Methods

The qualitative segmentation results also showed our method can successfully locate the four organs and generate semantically meaningful mask.

Summary

- ➤ We propose an unsupervised domain-adaptive framework (TriDL) for cross-modality medical image semantic segmentation.
 - Our framework is able to synergize cross-modality style transformation and mask segmentation and edge segmentation.

Conclusions

• These tasks collaborately work to learn the domain-adaptive representations and effectively promote each other.

Summary

- We propose an unsupervised domain-adaptive framework (TriDL) for cross-modality medical image semantic segmentation.
 - Our framework is able to synergize cross-modality style transformation and mask segmentation and edge segmentation.
 - These tasks collaborately work to learn the domain-adaptive representations and effectively promote each other.
- We would like to thank:
 - National Key Research and Development Program of China (No. 2018YFB0204301)
- Related material:
 - https://github.com/lichen14/TriDL
- We are grateful for corrections and discussions!

Tri-Directional Tasks Complementary Learning for Unsupervised Domain Adaptation of Cross-modality Medical Image Semantic Segmentation

