Tratamiento Digital de Señales Financieras

Pablo Marchesi Selma

2 de Julio de 2024

Tutor:

Alberto Albiol Colomer

Pablo Marchesi Selma 2 de Julio de 2024 1 / 36

Introducción

Objetivo del Trabajo

Aplicar técnicas propias del Tratamiento Digital de Señales (TDS) a los mercados financieros con el objetivo de comprobar si pueden predecir los precios futuros de los activos financieros y, por tanto, generar una rentabilidad a través de la compra y venta de estos.

Nos centraremos en el uso de **filtros paso-bajo**, que aplicaremos a señales financieras que serán acciones cotizadas.

Pablo Marchesi Selma 2 de Julio de 2024 2 / 36

Introducción

Crearemos un sistema de **trading algorítmico** en el que implementaremos el filtrado paso-bajo para estimar los momentos óptimos de compra y venta de las acciones.

Trading Algorítmico

Desarrollo y ejecución de sistemas de compra y venta en los mercados financieros, mediante el uso de algoritmos informáticos. Permite una ejecución de las operaciones de forma totalmente automatizada.

Emplearemos el lenguaje de programación Python.

Pablo Marchesi Selma 2 de Julio de 2024 3 / 36

Introducción

Motivación para aplicar el TDS a los mercados financieros:

- Las señales financieras son digitales por naturaleza.
- Similitudes con las señales típicas de las telecomunicaciones.
- Necesidad de eliminar el ruido del mercado.
- Búsqueda de ineficiencias del mercado desde otra perspectiva.

Motivación personal.

Pablo Marchesi Selma 2 de Julio de 2024 4 / 36

Filtros Digitales

Filtro Digital

Sistema que procesa señales digitales para modificar ciertas características de una señal de entrada x[n] y obtener una señal de salida y[n].

Figura: Relación entre la señal de entrada x[n] y la señal de salida y[n] a través de un filtro digital.

Pablo Marchesi Selma 2 de Julio de 2024 5 / 30

Filtros Digitales

Podemos caracterizar a un filtro digital de las siguientes maneras:

- Respuesta al Impulso: h[n]
- Ecuación en Diferencias:

$$y[n] = \sum_{i=0}^{M} b_i x[n-i] - \sum_{j=1}^{N} a_j y[n-j]$$

- Repuesta en Frecuencia: $H(e^{j\omega})$
- Función de Transferencia:

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}} = \frac{B(z)}{A(z)}$$

Pablo Marchesi Selma 2 de Julio de 2024 6 / 30

Filtros Digitales

Los filtros se diseñarán a partir de la **frecuencia de corte** ω_c y este será el único parámetro de los sistemas de trading.

Frecuencia de Corte

La frecuencia de corte, ω_c de un filtro es la frecuencia a la cual la respuesta del filtro se encuentra en un valor de atenuación igual a - 3dB respecto a la ganancia máxima del filtro.

Pablo Marchesi Selma 2 de Julio de 2024 7 / 36

Filtros Digitales: SMA

Filtro 1: Simple Moving Average (SMA)

- Promediado temporal de las últimas N muestras.
- Respuesta al impulso: $h[n] = \frac{1}{N} \sum_{k=0}^{N-1} \delta[n-k]$
- Respuesta en frecuencia: $|H(e^{j\omega})| = \left| \frac{\sin\left(\frac{\omega N}{2}\right)}{N\sin\left(\frac{\omega}{2}\right)} \right|$

Diseñaremos el filtro a partir de ω_c en lugar de N, para ello haremos $|H(e^{j\omega})|^2=\frac{1}{2}$ y haciendo algunas manipulaciones algebraicas obtenemos:

$$\sin\left(\frac{N\omega_c}{2}\right) - \frac{N}{\sqrt{2}}\sin\left(\frac{\omega_c}{2}\right) = 0 \tag{1}$$

Que resolveremos con el método de Newton para obtener N a partir de ω_c .

Pablo Marchesi Selma 2 de Julio de 2024 8 / 3

Filtros Digitales: SMA

Los filtros paso-bajo suavizan la señal de bolsa al eliminar las altas frecuencias (el ruido de mercado):

Figura: Suavizado con una SMA de 20 periodos

Pablo Marchesi Selma 2 de Julio de 2024 9 / 36

Filtros Digitales: EMA

Filtro 2: Exponential Moving Average (EMA)

- Pondera con mayor intensidad las muestras más recientes.
- Filtro recursivo, se usan los cálculos previos como entrada (IIR)
- Ecuación en diferencias: $y[n] = \alpha x[n] + (1 \alpha)y[n 1]$
- ullet El parámetro lpha es el factor de suavizamiento, un número entre 0 y 1.
- Respuesta en frecuencia: $|H(e^{j\omega})| = \frac{\alpha}{\sqrt{1-2(1-\alpha)\cos(\omega)+(1-\alpha)^2}}$

Diseñaremos el filtro a partir de ω_c en lugar de α , para ello, procederemos de la misma forma que con la SMA (más información en la página 11 de la memoria).

Pablo Marchesi Selma 2 de Julio de 2024 10 / 36

Filtros Digitales: EMA

La EMA reacciona más rápido a los cambios en el precio que la SMA:

Figura: Filtrado con una EMA donde $\alpha = 0.13$

Pablo Marchesi Selma 2 de Julio de 2024 11 / 36

Filtros Digitales: DMA

Filtro 3: Double Moving Average (DMA)

- Convolución de dos SMAs, mayor suavizado.
- Mayor peso en los coeficientes centrales de la ventana.
- Respuesta al impulso: $h_{dma}[n] = (h_{sma} * h_{sma})[n]$
- Respuesta en frecuencia: $|H(e^{j\omega})| = \left|\frac{\sin(\frac{\omega N}{2})}{N\sin(\frac{\omega}{2})}\right|^2$

De nuevo, diseñaremos el filtro a partir de ω_c en lugar de N (detallado en la memoria, página 14).

Pablo Marchesi Selma 2 de Julio de 2024 12 / 36

Filtros Digitales: Butterworth

Filtro 4: Butterworth

- La versión digital del clásico filtro analógico.
- Usaremos filtros de orden uno por simplicidad.
- Respuesta en frecuencia plana a bajas frecuencias.
- Decaimiento suave a partir de la frecuencia de corte.
- Ecuación en diferencias: $y[n] = -a_1y[n-1] + b_0x[n] + b_1x[n-1]$
- Respuesta en frecuencia: $|H(e^{j\omega})| = \left| \frac{\omega_c(1+e^{-j\omega})}{2+\omega_c+(2-\omega_c)e^{-j\omega}} \right|$

El filtro Butterworth viene dado por la frecuencia de corte, luego no hay que hacer ninguna manipulación algebraica adicional. En el caso de orden uno tenemos que $b_1 = b_0$.

Pablo Marchesi Selma 2 de Julio de 2024 13 / 36

Filtros Digitales: Butterworth

Figura: Filtro Butterworth con $\omega_c = 0.044$

Pablo Marchesi Selma 2 de Julio de 2024 14 / 36

Filtros Digitales: SuperSmoother

Filtro 5: SuperSmoother

- Versión modificada de un filtro Butterworth de orden 2.
- Optimizado para aplicaciones de trading.
- Elimina algunos coeficientes del filtro Butterworth.
- Decaimiento abrupto a partir de la frecuencia de corte.
- Añade un cero a la frecuencia de Nyquist (la máxima posible).
- Ecuación en diferencias:

$$y[n] = -a_1y[n-1] - a_2y[n-2] + \frac{b_0}{2}(x[n] + x[n-1])$$

Se puede encontrar más información sobre este filtro en la memoria (pág.16 - pág.18).

Pablo Marchesi Selma 2 de Julio de 2024 15 / 36

Filtros Digitales: Comparativa

Para una misma ω_c , se observan las siguientes respuestas en frecuencia:

Figura: Comparativa respuestas en frecuencia de los filtros

Pablo Marchesi Selma 2 de Julio de 2024 16 / 36

Trading Algorítmico

Nuestro sistema podrá operar tanto en corto como en largo:

- **Operar en largo**: invertir esperando que la acción suba, compramos para después vender a un precio mayor.
- Operar en corto: invertir esperando que la acción baje, pedimos prestada la acción, la vendemos y la compramos a un precio menor para devolver el préstamo.

La lógica de nuestra estrategia de trading será la siguiente:

- Elegir un filtro: SMA, EMA, DMA, Butterworth o SuperSmoother.
- ② Elegir arbitrariamente ω_{c1} y ω_{c2} (con $\omega_{c1} > \omega_{c2}$).
- **3** Filtrar la acción x[n] con el filtro elegido obteniendo $y_1[n]$ e $y_2[n]$.
- Si $y_1[n-1] > y_2[n-1]$ y $y_1[n] \le y_2[n]$, cerramos corto, abrimos largo.
- **3** Si $y_1[n-1] < y_2[n-1]$ y $y_1[n] \ge y_2[n]$, cerramos largo, abrimos corto.

Pablo Marchesi Selma 2 de Julio de 2024 17 / 36

Trading Algorítmico

Ejemplo: en la siguiente figura se representan x[n], $y_1[n]$ e $y_2[n]$. Se observan dos cruces de los filtros, el primero indica **venta** (o corto) y el segundo **compra** (o largo).

Figura: Cruce de dos filtros SMA con $\omega_{c1}=0.015$ y $\omega_{c2}=0.005$

Pablo Marchesi Selma 2 de Julio de 2024 18 / 36

Backtesting

Una vez diseñada la lógica, probaremos la estrategia en datos históricos a través de un **backtesting**. Tendremos en cuenta lo siguiente:

- Usaremos como señal los datos de cotizaciones de la empresa Microsoft (MSFT), desde el año 2010 hasta el presente.
- Supondremos que las comisiones de compra y venta son del 0 %.
- Tomaremos como frecuencias de corte iniciales $\omega_{c1}=0.044$ y $\omega_{c2}=0.0088$.
- Comenzaremos con un capital inicial V_i , de \$10.000.
- Usaremos datos de cotizaciones diarias (el cierre de mercado).

Pablo Marchesi Selma 2 de Julio de 2024 19 / 36

Backtesting

Figura: Cotización de MSFT en el periodo de backtesting

Pablo Marchesi Selma 2 de Julio de 2024 20 / 36

Backtesting: Métricas Clave

A la hora de evaluar un backtesting, nos fijaremos en las siguientes métricas clave:

- Retornos (%): $R = \frac{V_f}{V_i} 1$
- Retornos Anualizados (%): $\mu = \left(\frac{V_f}{V_i}\right)^{\frac{1}{n}} 1$
- Volatilidad Anualizada (%): $\sigma = \sigma_{\text{periodo}} \times \sqrt{n}$
- Ratio de Sharpe: $S = \frac{\mu r}{\sigma}$

El Ratio de Sharpe nos indica la rentabilidad ajustada al riesgo de la estrategia, teniendo en cuenta la tasa libre de riesgo del mercado, r. Idealmente buscamos que S>1 y como mínimo S>0.

Pablo Marchesi Selma 2 de Julio de 2024 21 / 36

Backtesting: Métricas Clave

¿Qué podemos esperar de la rentabilidad anualizada de nuestra estrategia?

Inversor	Rentabilidad Anualizada	Periodo de Estudio	Riesgo
Jim Simons	39 %	1988 - 2018	Muy Alto
George Soros	32 %	1969 - 2000	Muy Alto
Warren Buffett	20 %	1965 - 2018	Alto
S&P 500	10 %	1990 - 2023	Bajo
US10Y	2.5 %	2013 - 2023	Sin Riesgo
US01Y	5 %	2023 - 2024	Sin Riesgo

Cuadro: Comparativa de Rentabilidades Anualizadas

Por tanto, nuestro objetivo será, como mínimo, superar a la tasa libre de riesgo (5%) e idealmente el retorno del mercado (10%).

Pablo Marchesi Selma 2 de Julio de 2024 22 / 36

Backtesting: Métricas Clave

Hay otras métricas que son también relevantes:

- Número de Trades: el total de operaciones que ha arrojado la estrategia al final del backtesting.
- Máximo Drawdown (%): la máxima pérdida acumulada durante el periodo de backtesting.
- Retornos/Máximo Drawdown: retorno total ajustado a la pérdida máxima acumulada.
- Trades/Años: número de operaciones anuales (de media).

Pablo Marchesi Selma 2 de Julio de 2024 23 / 36

Backtesting: Resultados

Resultados del backtesting:

Estrategia	Retornos	μ	σ	Trades	Trades Años	S	Drawdown	Retornos Drawdown
SMA	123.21	5.72	26.93	33	3.31	0.01	-50.70	0.24
EMA	55.00	3.08	26.16	60	6.02	-0.09	-58.94	0.09
Butterworth	90.76	4.58	26.62	60	6.02	-0.03	-59.09	0.15
SuperSmoother	9.95	0.66	26.28	40	4.01	-0.18	-54.78	0.02
DMA	136.51	6.14	26.98	31	3.11	0.02	-55.99	0.24

Cuadro: Comparación de estrategias de trading

Donde Retornos, μ , σ y Drawdown están expresados en porcentaje. Recordemos que hemos definido ω_c de forma **arbitraria**.

Pablo Marchesi Selma 2 de Julio de 2024 24 / 36

Optimización

A continuación buscaremos los parámetros ω_c óptimos para cada estrategia, que maximicen la rentabilidad ajustada al riesgo, S. Usaremos dos métodos que se detallan en la memoria (pág. 26 - pág 29):

- Método Exhaustivo: método por fuerza bruta
- Método Bayesiano: método más sofisticado y eficiente

Nuestro principal objetivo será evitar la sobreoptimización.

Pablo Marchesi Selma 2 de Julio de 2024 25 / 36

Optimización

El método Bayesiano arroja mejores resultados en cuanto a validez estadística, ya que el exhaustivo muestra síntomas claros de sobreoptimización:

Estrategia	Retornos	μ	σ	Trades	Trades Años	S	Drawdown	Retornos Drawdown
SMA	498.56	13.19	28.35	15	1.50	0.27	-29.53	1.69
EMA	212.21	8.20	27.32	28	2.81	0.10	-63.84	0.33
Butterworth	324.29	10.53	27.92	30	3.01	0.18	-58.87	0.55
SuperSmoother	390.74	11.65	28.32	24	2.41	0.22	-52.40	0.75
DMA	454.25	12.59	28.22	21	2.11	0.25	-44.06	1.03

Cuadro: Comparación de estrategias optimizadas (método Bayesiano)

El mejor sistema es el **SuperSmoother** por tener un número aceptable de operaciones y tener una rentabilidad ajustada al riesgo, S, adecuada. Además, supera la rentabilidad del mercado.

Pablo Marchesi Selma 2 de Julio de 2024 26 / 36

El último paso será comprobar la validez estadística del sistema **SuperSmoother**, para ello, realizaremos las siguientes pruebas:

- Análisis en otros mercados
- Análisis con comisiones
- Análisis de sensibilidad
- Análisis de slippage extremo
- Análisis de dependencia
- Análisis del drawdown máximo
- Análisis IS/OOS

Someteremos al sistema a datos nuevos, escenarios más realistas y extremos, comprobaremos el nivel de sobreoptimización y evaluaremos si es apto para implementarse en el **mercado real**.

Pablo Marchesi Selma 2 de Julio de 2024 27 / 36

Análisis en otros mercados: comprobaremos el desempeño de la estrategia en otras acciones, mercados y clases de activos.

Estrategia	Retornos	μ	σ	Trades	Trades Años	S	Drawdown	Retornos Drawdown
QQQ	170.58	7.13	21.52	19	1.90	0.08	-40.10	0.43
SPY	6.67	0.45	17.55	16	1.60	-0.29	-57.39	0.01
SAN	62.52	3.42	30.53	20	2.00	-0.07	-71.14	0.09
GLD	12.74	0.83	14.92	33	3.31	-0.31	-53.38	0.02
BP	-48.61	-4.50	23.81	34	3.41	-0.42	-70.03	-0.07
AMZN	211.86	8.19	35.10	20	2.00	0.08	-55.15	0.39

Cuadro: Resultados de la estrategia en diferentes activos

La estrategia funciona bien para acciones tecnológicas americanas. Redimiento pobre en otros mercados/activos. Posible sobreoptimización.

Pablo Marchesi Selma 2 de Julio de 2024 28 / 36

Análisis con Comisiones: supondremos una comisión del 1 % (más realista):

Estrategia	Retornos	μ	σ	Trades	Trades Años	S	Drawdown	Retornos Drawdown
Sin Comisión	388.20	11.60	28.30	24	2.41	0.22	-52.40	0.74
Con Comisión	277.06	9.62	27.90	24	2.41	0.15	-60.51	0.46

Cuadro: Comparación de estrategias de trading con y sin comisión

Tras aplicar comisiones, la estrategia baja del objetivo del 10 %.

Pablo Marchesi Selma 2 de Julio de 2024 29 / 36

Análisis de sensibilidad: variaremos los parámetros del sistema para comprobar si sigue siendo efectivo.

Figura: Análisis tras variar parámetros

Pablo Marchesi Selma 2 de Julio de 2024 30 / 36

Análisis de dependencia: estudiaremos los retornos de cada operación e identificaremos si hay algún *trade* que aporte unas ganancias muy por encima de la media.

Figura: Distribución retornos operaciones

Pablo Marchesi Selma 2 de Julio de 2024 31 / 36

Análisis IS/OOS: probaremos el sistema en otro marco temporal (OOS) diferente al que hemos usado para optimizar sistema (IS). Usaremos los datos de la cotización de MSFT desde el 01-01-2000 hasta el 01-01-2010:

Figura: Cotización de MSFT para el periodo OOS

Pablo Marchesi Selma 2 de Julio de 2024 32 / 36

Los resultados en el periodo OOS son los siguientes:

Estrategia	Retornos	μ	σ	Trades	Trades Años	S	Drawdown	Retornos Drawdown
IS	388.20	11.60	28.30	24	3.48	0.22	-52.40	1.08
oos	-90.94	-21.39	21.24	25	3.63	-1.27	-95.49	-0.14

Cuadro: Comparativa IS vs OOS

Los resultados son considerablemente peores en este periodo. Inidica sobreoptimización o que la estrategia no es apta para mercados laterales.

Pablo Marchesi Selma 2 de Julio de 2024 33 / 36

Conclusiones

Tras poner a prueba el sistema SuperSmoother podemos afirmar que:

- Hay indicios de escasa sobreoptimización en los test de sensibilidad y otros mercados.
- Los retornos con comisiones bajan por el objetivo del 10 %.
- El test en periodo OOS indica que el sistema se comporta mucho peor en periodos laterales.
- Los resultados en el periodo IS dependen demasiado de un único trade muy lucrativo.

Por tanto, la estrategia **no supera** la validación estadística y no es apta para operar en mercado real, aunque puntualmente y en un regimen de mercado tendencial puede llegar a batir al mercado.

Pablo Marchesi Selma 2 de Julio de 2024 34 / 36

Conclusiones

Conclusión del trabajo: no hemos encontrado evidencias significativas de que el uso de filtros digitales (paso-bajo) pueda generar rentabilidades por encima de las del mercado de forma sostenida en el tiempo.

Posibles mejoras: no descartamos que otras técnicas del TDS como el análisis espectral, el filtrado adaptativo, el uso de transformadas... pueda generar rentabilidades por encima de la media del mercado.

El mercado recompensa a aquellos que saben detectar y explotar las ineficiencias que hay en él

Pablo Marchesi Selma 2 de Julio de 2024 35 / 36

Tratamiento Digital de Señales Financieras

Pablo Marchesi Selma

2 de Julio de 2024

Tutor:

Alberto Albiol Colomer

Pablo Marchesi Selma 2 de Julio de 2024 36 / 36