1) Download o R: https://cran.r-project.org/mirrors.html

2) **Ler os Dados** de Chuva (mm), local: Quixeramobim-CE, Período: 1896-2012, Fonte: Fundação Cearense de Meteorologia e Recursos Hídricos:

Comando no R: > data<-read.table("Q|)Jser(Alexandre Costa/Boogle Drive) JNILAE()EDE/Jurso_AStemporaie/Jula 1 () huva_anual.txt",TRUE)

3) Verificar os Dados Lidos na Tela e Aplicar a Transformação LOG:

Comando no R: > data

> Idata<-log(data)

4) Transformar os Dados em um Série Temporal:

Comando no R: > ts.ldata<-ts(ldata, start=1896) freq=1)

5) Verificar a Série Temporal em Tela e Aplicar a Diferenciação (remoção de tendência):

Comando no R: > ts.ldata

> ts.dld<-diff(ts.ldata)
6) Fazer o Gráfico da Série Temporal Transformada e Diferenciada:
Comando no R: > plot(ts.dld, ylab="Diff_Log_Chuva", main="Aplicação ARIMA
7) Fazer o "Q-Q plot":
Comando no R: > qqnorm(ts.dld)
8) Calcular e Fazer o Gráfico da Função de Autocorrelação:
Comando no R: > acf(ts.dld)
9) Calcular e Fazer o Gráfico da Função de Autocorrelação Parcial:
Comando no R: > pacf(ts.dld)
10) Ajustar o Modelo ARIMA: AR () MA
Comando no R: > arima(ts.ldata, order=c(1,1,1))
La atenção!: dados não diferenciados.
11) Analisar os Resíduos (ou as Pertubações E _t):
Comando no R:
> aj <- arima(ts.ldata, order=c(1,1,1)) > par(mfrow=c(2,2))
> plot(resid(aj)) > qqnorm(resid(aj))
> qqline(resid(aj))
> acf(resid(aj)) > pacf(resid(aj))
12) Analisar Visualmente o Ajuste:
Comando no R:
> par(mfrow=c(1,1)) > plot(<u>ts.dld,</u> ylab="Diff_Log_Chuva", main="Aplicação ARIMA")
Ines(ts.dld-aj\$resid, col="red")

