Limites de fonctions

► Exercice n°1

Déterminer la limite en $+\infty$ de la fonction f dans les cas suivants : (on précisera si la courbe de f admet une asymptote horizontale en $+\infty$)

1.
$$f(x) = x + \sqrt{x}$$

$$2. \ f(x) = \frac{1}{x} - \sqrt{x}$$

3.
$$f(x) = \frac{1}{x^2} + 1$$

4.
$$f(x) = \frac{1}{x+1} - 2$$

► Exercice n°2

Déterminer la limite en $-\infty$ de la fonction f dans les cas suivants : (on précisera si la courbe de f admet une asymptote horizontale en $-\infty$)

1.
$$f(x) = \frac{1}{x^3} - x$$

2.
$$f(x) = x^2 + \frac{1}{x^2}$$

3.
$$f(x) = \frac{1}{x+3} - 2$$

4.
$$f(x) = \frac{x+1}{\frac{1}{x}-2}$$

► Exercice n°3

- 1. Déterminer la limite en 0 (pour x < 0 et pour x > 0) de la fonction f définie par $f(x) = x + \frac{1}{x}$. La courbe de f admet-elle une asymptote verticale?
- 2. Déterminer la limite en -2 (pour x < -2 et pour x > -2) de la fonction fdéfinie par $f(x) = \frac{3x-2}{x+2}$. La courbe de f admet-elle une asymptote verticale?
- 3. Déterminer la limite en 1 (pour x < 1 et pour x > 1) de la fonction f définie par $f(x) = \frac{x^2 + x - 3}{1 - x^2}$. La courbe de f admet-elle une asymptote verticale?

▶ Exercice n°4

Déterminer les limites en $-\infty$ et en $+\infty$ de la fonction polynôme f dans les cas suivants:

1.
$$f(x) = 2x^2 - x + 1$$

2.
$$f(x) = 3x^3 + 2x - 1$$

► Exercice n°5

Déterminer les limites en $-\infty$ et en $+\infty$ de la fonction rationnelle f dans les cas suivants : (on précisera si la courbe de f admet une asymptote horizontale en $-\infty$ ou en $+\infty$)

1.
$$f(x) = \frac{4x-1}{2x+3}$$

$$\frac{2x+3}{x^2+2x-1}$$
2. $f(x) = \frac{x^2+2x-1}{2x+3}$
3. $f(x) = \frac{-4x+1}{x^2+1}$
2. $f(x) = \frac{-2x^3}{x^3+5x^2-1}$
3. $f(x) = \frac{-2x^3}{x^3+5x^2-1}$
3. $f(x) = \frac{-2x^3}{x^3+5x^2-1}$
3. $f(x) = \frac{-2x^3}{x^3+5x^2-1}$
5. Exercise \mathbf{n} °6. Compléter les phrases su

3.
$$f(x) = \frac{-4x+1}{x^2+1}$$

4.
$$f(x) = \frac{-2x^3}{x^3 + 5x^2 - 1}$$

Compléter les phrases suivantes par « $\lim_{x\to \cdots} \cdots = \cdots$ », « $x=\cdots$ », « $y=\cdots$ », « verticale », « horizontale » ou « oblique ».

- 1. Si $\lim_{x \to \infty} f(x) = -\infty$ alors la droite d'équation est une asymptote \ldots à C_f .
- 2. Si alors la droite d'équation y = 5 est une asymptote horizontale à C_f en $-\infty$.

► Exercice n°7

L'affirmation suivante est-elle vraie ou fausse? (justifier sa réponse) « Si f est une fonction strictement décroissante sur $]0; +\infty[$ alors on a nécessairement $\lim_{x \to +\infty} f(x) = -\infty$ »

▶ Exercice n°8

Dans chacun des cas suivants, déterminer d'après la courbe les limites de la fonction f aux bornes et une équation de chacune des asymptotes.

a)

b)

► Exercice n°9

Lors d'une certaine réaction chimique, la vitesse initiale v de la réaction chimique (exprimée en $\operatorname{mol} \cdot \mathbf{L}^{-1} \cdot \mathbf{s}^{-1}$) en fonction de la concentration x (exprimée en $\operatorname{mol} \cdot \mathbf{L}^{-1}$) d'un certain ion est donnée par $v(x) = \frac{0,0013 \times x}{0,000004 + x}$ pour $x \in [0\,;\, +\infty[$.

- 1. Quelle est la vitesse initiale de la réaction si la concentration de l'ion est nulle?
- 2. Quelle est la vitesse initiale de la réaction si la concentration de l'ion est égale à 9×10^{-6} mol·L⁻¹?
- 3. Déterminer la limite de v quand x tend vers $+\infty$. Interpréter le résultat.
- 4. Donner la nature et l'équation de l'asymptote de la courbe représentative de la fonction v.

www.xm1math.net - Licence CC BY NC SA - Utilisation commerciale interdite