

O tema **Esporte** foi desenvolvido por 3 cursistas (Cristiano Bezerra, Flávia Diniz e William Kfouri) num programa de Especialização para professores realizado na UFABC em 2008. Em sua monografia final apresentaram o seguinte resumo: "Este trabalho teve como objetivo investigar se a Modelagem Matemática seria uma alternativa viável para o ensino e aprendizagem de Matemática na Educação Básica, abordando o tema Esportes, dentre eles a corrida do 100 metros rasos e a maratona.

Abordamos a evolução dos recordes mundiais, masculino e feminino, criando modelos que servem para prever as novas quebras. Também foi considerado o estudo cinemático da velocidade e aceleração dos atletas na corrida dos 100 metros. Durante o desenvolvimento deste curso, surgiram outras idéias e questionamentos em relação às idades dos atletas. Como modelo geométrico, foi muito interessante estudar o posicionamento inicial de cada atleta numa pista de corrida. Aproveitamos a Olimpíada de 2008, realizada na China para

testar nossos modelos.

Apresentamos também alguns caminhos que a Modelagem pode proporcionar para trabalhar com Matemática na sala de aula, baseados nos esportes de corrida, de modo diferente e atraente para os alunos. Procuramos eliminar o estígma de que a Matemática é considerada difícil por muitos, desinteressate por outros e até inacessível para a maioria"[15].

6.1 A corrida dos 100 metros

Modelos

Recorde Masculino A primeira edição da corrida de 100 metros rasos ocorreu em 1896, nos jogos olímpicos de Atenas e, posteriormente, passou a ser a prova mais importante das corridas de velocidade. Dura em torno e 10 segundos e os vencedores são considerados os homens mais rápidos do mundo. No percurso de 100 metros um atleta dá, em média, 50 passos enquanto uma pessoa comum faz o mesmo percurso com o dobro de passos.

De 1908 a 2008 (cem anos) o recorde foi batido 19 vezes. Os anos em se tem quebra de recorde estão cada vez se tornando mais próximos (Veja Tabela 12). Vamos mostrar inicialmente o estudo realizado com os recordes masculinos a partir do ano 1908. A Tabela 12 apresenta os recordes mundiais da corrida de 100 metros rasos com seus vencedores, suas nacionalidades, as datas e as localidades dos eventos.

Atleta	País de origem	Local	Data	Ano	Recorde
Reginald Walker	África do Sul	Londres		1908	10,8
Donald Lippincott	Estados Unidos	Estocolmo	06/junho	1912	10,6
Charles Paddock	Estados Unidos	Redlands	23/abril	1921	10,4
Percy Williams	Canadá	Toronto	09/agosto	1930	10,3
Jesse Owens	Estados Unidos	Chicago	20/junho	1936	10,2
Willie Williams	Estados Unidos	Berlim	03/agosto	1956	10,1
Armin Hary	Alemanha	Zurique	21/junho	1960	10,0
Jim Hines	Estados Unidos	Cidade do México	14/outubro	1968	9,95
Calvin Smith	Estados Unidos	Colorado Springs	03/agosto	1983	9,93
Carl Lewis	Estados Unidos	Seul	24/setembro	1988	9,92
Leroy Burrell	Estados Unidos	New york	14/junho	1991	9,90
Carl Lewis	Estados Unidos	Tóquio	25/agosto	1991	9,86
Leroy Burrell	Estados Unidos	Lausane	06/julho	1994	9,85
Donavan Bailey	Canadá	Atlanta	27/julho	1996	9,84
Maurice Greene	Estados Unidos	Atenas	16/junho	1999	9,79
Tim Montgomery	Estados Unidos	Paris	14/setembro	2002	9,78
Asafa Powel	Jamaica	Atenas	14/junho	2005	9,77
Asafa Powel	Jamaica	Rieti	09/setembro	2007	9,74
Usain Bolt	Jamaica	New York	31/maio	2008	9,72

Tabela 6.1: Dados sôbre os recordes da corrida de 100 metros

Em 2008 tivemos a Olimpíada de Pequim o que motivou também a construção de modelos relacionados com os jogos olímpicos e especialmente com corridas. A Tabela 6.1 é um resumo da tabela 12 onde consideramos uma mudança de variável para relacionar a época da quebra de recorde com um valor real mais simples. Consideramos como ano inicial 1908 e o relacionamos com o número 8, isto é, tomamos n = y - 1900, onde y é a época da quebra de recorde (consideramos simplesmente os valores inteiros dos anos, sem os respectivos mêses e no caso do recorde ser batido no mesmo ano, foi considerado somente o valor menor do tempo). Considerar os valores exatos das épocas de quebra de recorde pode ser um exercício interessante, por exemplo 27/07/1988 seria 88,787 - deixamos isto como um projeto para os interessados melhorarem nossos modelos.

6 Esporte

Fig 6.1 - Vitória de Usain Bolt na Olimpíada de Pequim (2008)

A proposta inicial é procurar um modelo matemático que possa fornecer informações sôbre a evolução dos tempos registrados nos recordes de uma corrida de 100 metros. Os dados da *Tabela* 4 podem ser visualizados numa curva de tendência (Fig. 6.2)

6 Esporte

Ano	ano*:n	Recorde: $R(n)$
1908	8	10,8
1912	12	10,6
1921	21	10,4
1930	30	10,3
1936	36	10,2
1956	56	10,1
1960	60	10,0
1968	68	9,95
1983	83	9,93
1988	88	9,92
1991	91	9,86
1994	94	9,85
1996	96	9,84
1999	99	9,79
2002	102	9,78
2005	105	9,77
2007	107	9,74
2008	108	9,72
16/08/08	108,85	9,69

Tabela 6.2 -

Valores dos recordes mundiais da corrida de 100 metros rasos e o record de Usain Bolt em 16/08/2

A proposta inicial é procurar um modelo matemático que possa fornecer informações sôbre a evolução dos tempos registrados nos recordes de uma corrida de 100 metros. Os dados da *Tabela* 4 podem ser visualizados numa curva de tendência (Fig. 12)

Fig.6.2- Valores observados dos recordes da corrida de 100 metros rasos

Temos que a sequência de valores dos tempos de recordes é decrescente e, por outro lado, sabemos também que as limitações do ser humano não permitem que tal sequência tenda a zero. Logo, deve existir um limiar inferior para o tempo gasto em tal modalidade de corrida. Em outras palavras, se $\{R(n)\}_{n\in\mathbb{N}}$ é a sequência de tempos de recordes então $\{R(n)\}_{n\in\mathbb{N}}\to R^*>0$. Usando o método de Ford-Walford (Fig 6.3), obtemos

Fig.6.3- Método de Ford-Walford para determinar o valor limiar de um recorde

$$\begin{cases}
R_{n+1} = 0.8111R_n + 1.8342 \\
R_{n+1} = R_n
\end{cases} \implies R_{n+1} = R_n = R^* = 9.7099 \tag{6.1.1}$$

Observamos que este estudo foi realizado em julho de 2008 e em agosto tivemos a Olimpíada de Pequim. Esta proximidade dos jogos olímpicos deu uma motivação

maior ainda para o processo de modelagem que estava acontecendo no curso de Especialização e serviu para testar nossos modelos.

Consideramos a sequência formada pelos elementos $x_n = R_n - R^* = R_n - 9,7099 \Longrightarrow \lim_{n\to\infty} x_n = 0.$

As características da sequência $\{R(n)\}_{n\in\mathbb{N}}$ nos leva a buscar um ajuste para a sequência $\{R(n)-9,7099\}_{n\in\mathbb{N}}$ na forma exponencial, pelo menos como uma primeira aproximação e também por ser tal função um elemento de estudo importante no Ensino Médio.

Fig. 6.4-Curva exponencial auxiliar para ajustar $\{R(n) - 9,7099\}_{n \in \mathbb{N}}$

Desta forma, obtemos um modelo do tipo exponencial assintótico para previsão de recordes

$$R(t) = 1,3295e^{-0,021t} + 9,7099$$
 (6.1.2)
com $t = a - 1900, a : ano$

Fig.6.5-Modelo de previsão e valores observados dos recordes dos 100m rasos.

Em 16 de agosto de 2008 Usain Bolt bateu o recorde com um tempo de 9,69 segundos, o que contrariou nosso valor limite de 9s7099. Isto nos motiva a procurar melhorar o modelo de previsão considerado inicialmente. O leitor interessado pode ajustar melhor nosso modelo 6.1.2, usando também o recorde de Bolt. Em 16/08/2009 no Campeonato Mundial de Atletismo realizado no Estádio Olímpico de Berlim, Bolt bateu seu próprio record fazendo a corrida em 9s58 e prognosticou que o record nunca seria inferior a 9s4. Os demais tempos e atletas desta competição estão listados a seguir:

1. Usain Bolt- Jamaica: 9s58

2. Tyson Gay- Estados Unidos: 9s71

3. Asafa Powell-Jamaica: 9s84

4. Daniel Bailey- Antigua e Barbuda: 9s93

5. Richard Thompson-Trinidad e Tobago: 9s93

6. Dwain Chambers- Grã-Bretanha: 10s00

7. Marc Burns-Trinidad e Tobago: 10s00

8. Darvis Patton- Estados Unidos: 10s34

Projeto 2.1: Corrida dos 100 metros rasos - feminino A primeira corrida de 100 metros rasos em jogos olímpicos para mulheres aconteceu em Amsterdã em 1928 e a partir de então os recordes foram se sucedendo - Os valores observados estão na Tabela 14:

Atleta	País de origem	Local	Ano	Recorde
Elisabeth Robinson	Estados Unidos	Amsterdã	1928	12,20
Stanislava Alasiewicz	Polônia	Los Ângeles	1932	11,90
Stanislava Alasiewicz	Polônia	Varsóvia	1934	11,70
Stanislava Alasiewicz	Polônia	Berlim	1937	11,60
Fanny Blankers-Koen	Holanda	Amsterdã	1948	11,50
Marjorie Jackson	Austrália	Helsinki	1952	11,40
Shirley Strickland	Austrália	Varsóvia	1955	11,30
Wilmar G. Rudolph	Estados Unidos	Stuttgart	1961	11,25
Wimia Tyus	Estados Unidos	Tókio	1964	11,20
Irena K. Szewinska	Polônia	Praga	1965	11,10
Wimia Tyus	Estados Unidos	Colorado Springs	1968	11,08
Chi Cheng	China	Wenen	1970	11,00
Renate Stecher	Alemanha	Munique	1972	10,95
Renate Stecher	Alemanha	Ostrava	1973	10,90
Renate Stecher	Alemanha	Dresden	1973	11,80
Evelyn Ashford	Estados Unidos	Colorado Springs	1983	10,79
Evelyn Ashford	Estados Unidos	Zurique	1984	10,76
Florence Griffith	Estados Unidos	Indianápolis	1988	10,49

Tabela 6.3: Recordes femininos mundiais na corrida de 100 metros

Exercício: Encontre modelos para previsões de recordes na corrida de 100 metros para mulheres.

(a) Faça inicialmente um modelo exponencial assintótico, seguindo os mesmos passos do modelo para homens e compare as curvas de previsões de ambos.

Resposta:

$$R(n) = 10,29 + 3,37e^{-0.0221a}$$

(b) Faça um modelo exponencial assintótico e, no ajuste dos parâmetros, não utilize o recorde de Florence Griffith (10, 49seg) e verifique qual modelo está mais coerente com os resultados de Pequim.

Modelos da dinâmica da corrida A corrida de 100 metros rasos apresenta quatro fases características da prova (veja [?]):

(1) *Período de reação* que corresponde ao tempo de reação inicial do atleta - É o intervalo de tempo entre o tiro de partida e o momento em que o atleta deixa o bloco

de partida. Um atleta leva, em média, 0,18 segundos para iniciar a corrida após o disparo enquanto que uma pessoa normal levaria cerca de 0,27 segundos; O atleta tem também um treino especial para a respiração - Inspiram na largada, expiram e inspiram novamente na metade da corrida e só voltam a expirar outra vez no fim da corrida;

- (2) Fase de aceleração positiva Após a saída o corredor aumenta sua velocidade com o aumento da frequência e da amplitude das passadas, atingindo a velocidade máxima entre 43 e 60 metros, cerca de 6 *segundos* após a largada [[17]];
- (3) Fase da velocidade constante O corredor tenta manter a velocidade bem próxima da máxima e chega a correr de 20*m* a 30*m* nesta fase;
- (4) Fase de aceleração negativa Devido às próprias restrições do organismo, o atleta não consegue manter a velocidade máxima e começa a desaceleração. Isto ocorre nos 20*m* a 10*m* do final.

A grosso modo, uma corrida de 100m segue o seguinte esquema (Fig. 3.5)

Fig.6.6-Modelo de previsão e valores observados dos recordes dos 100m rasos.

As informações anteriores fornecem as características básicas de uma corrida de 100 metros. Devemos procurar um modelo matemático que traga embutidos estes dados.

Modelo 1

Começamos com um modelo mais simples e vamos usar as unidades *metro* para distância e *segundo* para o tempo. Os dados iniciais são:

Velocidade inicial $v_0 = v(0) = 0$ m/s e espaço inicial $s_0 = s(0) = 0$ m;

Consideramos as variáveis básicas da cinemática (espaço s, velocidade v e acelera-

ção *a*) como funções do tempo:

$$v=rac{ds}{dt}$$
: velocidade é a variação do espaço por unidade de tempo $\Longrightarrow s(t)=\int v(t)dt$ $a=rac{dv}{dt}$: aceleração é a variação da velocidade por unidade de tempo $\Longrightarrow v(t)=\int a(t)dt$

Com os dados de cada fase (V. Fig. 16) podemos pensar numa função para modelar a velocidade, do tipo

$$v(t) = \alpha t e^{-\beta t} \tag{6.1.3}$$

Podemos observar que tal função 6.1.3 satisfaz: v(0) = 0 e v(t) > 0 se t > 0. Ainda,

$$a(t) = \frac{dv}{dt} = -\beta \alpha t e^{-\beta t} + \alpha e^{-\beta t} = \alpha e^{-\beta t} (-\beta t + 1)$$
(6.1.4)

Logo, v(t) tem um ponto de máximo para $t = \frac{1}{\beta}$ pois $a(t) > 0 \Leftrightarrow 0 \leqslant t < \frac{1}{\beta}$. O espaço percorrido num instante t é dado por:

$$s(t) = \int v(t)dt \int_0^t \alpha \tau e^{-\beta \tau} d\tau = \alpha \left[-\frac{1}{\beta} \tau e^{-\beta t} \Big|_0^t - \left(\int_0^t -\frac{1}{\beta} e^{-\beta \tau} d\tau \right) \right]$$

$$= \alpha \left[-\frac{1}{\beta} t e^{-\beta t} - \left(\frac{1}{\beta^2} e^{-\beta \tau} d \right)_0^t \right] = -\frac{\alpha}{\beta} e^{-\beta t} \left(t + \frac{1}{\beta} \right) + \frac{\alpha}{\beta^2} = \frac{\alpha}{\beta^2} \left[-(\beta t + 1) e^{-\beta t} + 1 \right]$$

$$(6.1.5)$$

Para o cálculo dos parâmetros α e β , vamos considerar as seguintes hipóteses:

 H_1 : A velocidade é maxima (aceleração é nula) quando o atleta percorreu metade da prova, isto é, s(t) = 50.

De 6.1.4 temos

$$a(t) = 0 \Leftrightarrow t = \frac{1}{\beta} \Rightarrow s(\frac{1}{\beta}) = 50 = -\frac{\alpha}{\beta}e^{-1}\frac{2}{\beta} + \frac{\alpha}{\beta^2} = \frac{\alpha}{\beta^2}\left(-\frac{2}{e} + 1\right)$$

Logo,

$$\alpha = \frac{50}{1 - \frac{2}{3}}\beta^2 \Longrightarrow \alpha = \frac{50}{1 - \frac{2}{3}}\beta^2 = 189,237\beta^2$$
 (6.1.6)

 H_2 : O tempo gasto na corrida é de 10 segundos, isto é, s(10) = 100.

De 6.1.5, obtemos

$$100 = -\frac{50}{1 - \frac{2}{e}} e^{-10\beta} (10\beta + 1) + \frac{50}{1 - \frac{2}{e}} \Longrightarrow$$

$$-e^{-10\beta} (10\beta + 1) + 1 = \frac{100}{189,237} \Longrightarrow$$

$$e^{-10\beta} (10\beta + 1) = 0,4716 \Longrightarrow \beta = 0,1771 \ (verifique)$$

Substituindo o valor de β = 0,1771 em 6.1.6, obtemos α = 5,9286 e com estes valores temos os modelos de s(t), v(t) e a(t)

Fig.6.7-Velocidade do atleta numa corrida de 100 metros

Salientamos que a área da figura limitada pela curva v=v(t) e pela reta $t=\mathbf{t}$ é o espaço percorrido $s(\mathbf{t})$ (Veja Fig. 3.6). Neste modelo a velocidade máxima v_M é atingida quando $t=\frac{1}{\beta}=5,646$, ou seja, $v_M=12,315m/s$ ou 44,334Km/h.

O gráfico da curva s = s(t) é dado pela Fig. 6.8,

Fig.6.8-Espaço percorrido pelo atleta em cada instante

Pelo gráfico da curva da aceleração pode-se ver bem suas propriedades.

Fig.6.9-Aceleração do atleta na corrida de 100 metros

Exercício:- Considere os seguintes dados, numa corrida de 100 metros:

- s(t) = 0 e v(t) = 0 para $0 \le t \le 0, 18$;
- s(9,72) = 100 e velocidade máxima $v_M(5,3) = 12,6m/s$;
- $a(t) \ge 0$ para $0 \le t \le 5, 3$ e $a(t) \le 0$ para $5, 3 \le t \le 9, 72$.

Faça um modelo satisfazendo estas condições. Observe que, neste caso, estamos considerando a fase de reação inicial do atleta.

Performance numa corrida de 100 metros e a idade dos atletas Em um curso

de Especialização, quando se escolhe um determinado tema para trabalhar com modelagem, procura-se verificar todas as possibilidades de relacionamento entre as variáveis. No caso específico das corridas os cursistas, motivados com os resultados obtidos com a corrida de 100 metros rasos, procuraram verificar a existência de uma relação significativa entre a performance dos corredores e suas idades. A questão que se colocou foi : "existe uma idade ideal para superar o recorde mundial numa corrida de 100 metros"?

A hipótese de que em cada faixa etária o desenvolvimento do atleta é diferenciado surgiu do fato que existem várias categorias e normas para as competições:

·Categoria Pré-Mirim: atletas com 11 ou 12 anos, no ano da competição;

6 Esporte

- ·Categoria Mirim: atletas com 13 e 14 anos, no ano da competição;
- ·Categoria Menor ou Youth: atletas com 15,16 ou17 anos, no ano da competição;
- ·Categoria Juvenil ou Junior: atletas com idades compreendidas entre 16 e 22 anos, no ano da competição;
 - ·Categoria Adulto ou Senior: atletas com 16 anos ou mais, no ano da competição;
- ·Categoria Veterano ou Master: atletas com mais de 36 anos, no ano da competição. Esta categoria é ainda subdividida: M40 (36 a 40 anos), M45 (41 a 45 anos), M50 (46 a 50 anos) etc. Não há competições oficiais com menores de 10 anos.

Idade	Tempo T ₁	Tempo T ₂	Tempo T ₃	Tempo T ₄	Média	Média móvel
13 a 14	12,01	12,42	12,50	11,20	12,03	12,03
15	11,02	11,18	11,28	12,75	11,56	11,80
16	10,23	10,06	11,05	11,71	10,90	11,50
17	10,52	10,96	11,06	11,27	10,95	11,40
18	9,97	10,01	10,71	11,51	10,55	10,80
19	10,07	10,39	10,59	11,00	10,51	10,67
20	9,92	10,03	10,10	10,82	10,22	10,43
21	9,85	10,03	10,42	10,53	10,21	10,31
22	9,69	9,85	9,92	10,22	9,92	10,12
23	9,69	9,85	9,92	10,22	9,92	10,02
24	9,79	9,99	10,04	10,60	10,11	9,98
25	9,72	9,77	10,01	10,55	10,01	10,01
26	9,88	9,96	10,02	10,50	10,09	10,07
27	9,95	10,01	10,57	11,15	10,42	10,17
28	9,84	9,92	10,00	10,48	10,06	10,19
29	10,02	10,45	10,60	10,76	10,46	10,31
30	9,86	10,02	10,14	10,41	10,11	10,21
31	10,06	10,08	10,19	10,54	10,22	10,26
32	10,02	10,07	10,57	11,01	10,42	10,25
33	10,32	10,40	10,55	11,05	10,58	10,41
34	10,40	11,02	10,33	10,36	10,53	10,51
35	11,20	10,80	11,80	10,33	11,03	10,71
36 a 40	11,20	11,50	10,09	10,60	10,85	10,80
41 a 45	12,04	11,50	10,90	12,00	11,61	11,16
46 a 50	12,40	13,00	14,00	15,00	13,60	12,02
51 a 55	12,40	12,90	14,00	13,20	13,13	12,78
56 a 60	16,00	16,00	17,00	16,00	16,25	14,33
61 a 65	15,40	14,30	17,00	18,00	16,18	15,19
66 a 70	17,50	18,20	18,90	20,00	18,65	17,03

Tabela 6.4 - Tempos de atletas vencedores dos 100 metros em várias idades Fonte: Caderno Didático da IAAF (Intern. Association Ath. Federations)

A Tabela 6.4 fornece os tempos de atletas e elite vencedores da prova em várias categorias

Na corrida de 100 metros o desempenho atlético depende de vários fatores: força de exprosão, potência, resistência física, habilidade, controle emocional, massa muscular, capacidade respiratória e resistência. Os corredores Mirim e Youth ainda não possuem massa muscular suficiente para uma grande arrancada enquanto que os velocistas veteranos perderam boa parte da resistência física e potência. Estabeleceu-se que que o período que o atleta velocista consegue um melhor desempenho é entre 23 e 30 anos - Uma curva de tendência com valores da Tabela 6.4 mostra que, se considerarmos a idade entre 12 a 70 anos então o tempo médio da prova diminue com a idade até uma região de mínimo e depois aumenta (Fig. 6.10)

Fig.6.10- Curva de tendência do tempo de uma corrida de 100 metros e a idade do atleta

Um ajuste dos pontos por uma função quadrática nos dá

$$T(a) = 0.0052a^2 - 0.2796a + 14.032$$
 (6.1.7)
 $R^2 = 0.9589$

A função 6.1.7 é uma parábola que passa por um mínimo quando

$$\frac{dT}{da} = 0,0104a - 0,2796 = 0 \Longrightarrow a = 26,88$$

Então, podemos dizer que, pelo nosso modelo (neste caso, apenas um ajuste de pontos), a idade ideal para esta corrida está em torno de 26 anos e 11 meses. Salientamos que, neste caso, a precisão matemática do resultado não é coerente com o fenômeno estudado. De fato, podemos melhorar o resultado se considerarmos uma média móvel de tempos de corrida para velocistas com menos de 30 anos. A Fig. 6.11 mostra que a curva de tendência se aproxima bem melhor dos valores observados ($R^2 = 0.9864$).

Fig 6.11- Ajuste da média móvel dos tempos pela idade dos velocistas

Consideramos a média móvel das médias dos tempos (7^a coluna da Tabela 6.4), calculada com 3 elementos, isto é,

$$MT_i = \frac{1}{3} \left(\sum_{i=2}^{i} T_i \right), \ i \ge 3$$

Um ajuste quadrático dos pontos da média móvel dá

$$T(a) = 0.0166a^2 - 0.83a + 20.39$$

Neste caso, o ponto de mínimo é obtido de

$$\frac{dT}{da} = 0,0332a - 0,83 \Longrightarrow a = 26,5.$$

Um modelo real obtido através do desenvolvimento fisiológico de um indivíduo poderia ser mais interessante mas, obviamente, seria muito mais complicado!

A Pista de Atletismo

Fig 6.12- Curva de tendência do tempo de uma corrida de 100 metros e a idade do atleta

A pista de atletismo gerou uma expectativa e um interesse logo no início das investigações realizadas para se conseguir dados que fossem significativos para se trabalhar com a modelagem matemática. A sua estrutura geométrica, suas dimensões, suas marcações técnicas indicavam inicialmente que muito se aproveitaria do estudo [15].

A modelagem estática que poderia ter sido feita no curso com o estudo da geometria da pista, se restringiu às marcas para uma corrida de 400 metros. Isto porque os modelos dinâmicos estavam parecendo mais interessantes no momento e o tema *corrida* estava sobrepondo-se ao *esporte* que fora escolhido inicialmente. A substituição de um tema mais abrangente por um subtema é muito comum no processo de modelagem, quando se trabalha em programas de Especialização. Neste mesmo curso do ABC o tema *doenças* foi substituido por *AIDS*, *qualidade de vida* por *licenças de tratamento de saúde* e *meio ambiente* por *reciclagem*. Estas mudanças são, quase sempre, motivadas pela ausência ou restrições na obtenção de dados.

Marcas de partida de uma corrida de 400 metros

Para que todos percorram exatamente 400 metros na pista onde, cada raia tem um perímetro diferente, é necessário que cada atleta largue em posição que compense as tais diferenças dos perímetros. A pista oficial de atletismo está dividida em 8 raias cujas larguras podem variar de 1,22m a 1,27m, delimitadas por faixas brancas de 5cm. A linha de chegada é perpendicular à margem interna da pista. A raia interna, composta de duas retas e dois anéis de semicírculos, tem exatamente 400 metros. Para descobrir os pontos de partida de cada corredor consideramos ainda os seguintes dados:

·São 8 raias, compostas por duas retas de 84,39m de comprimento e dois anéis de semicirculos concêntricos e com raios que aumentam1,22m a partir da raia interna que é a mais próxima do centro - (Veja Fig. 6.13).

Fig 6.13- Curva de tendência do tempo de uma corrida de 100 metros e a idade do atleta

Para a obtenção do modelo fazemos algumas simplificações, isto é, consideramos as divisórias das raias sem a espessura que seria de 5cm. Isto não compromete o modelo pois ao invés de considerarmos a largura de uma raia como sendo 1,22 poderíamos tomar 1,27cm.

Se a primeira raia R_1 tem comprimento 400m e é composta de dois segmentos de retas de 84,39m então o que resta (400-2x84,39)=231,22m é o comprimento da circunferência que completa. Então, o raio das semicircunferências da raia R_1 é dado por: $r_1 = \frac{231,22}{2\pi} = 36,8m$.

O raio r_n da n-ésima raia \mathbf{R}_n ,
1 $\leq n \leq 8$, é dado por

$$r_n = 36, 8 + (n-1)1, 22$$

O comprimento da raia R_n é

$$c_n = 2x84, 39 + 2\pi r_n$$

Portanto, o arco de círculo que deve ser retirado de cada raia R_n para se ter exatamente 400 metros para cada corredor é

$$a_n = c_n - 400 = 2\pi r_n - 231,22$$

O modelo que procuramos é dado pela posição dos pontos n (de partida), considerando a retirada dos arcos a_n .

R_n	r_n	c_n	a_n
1	36,80	400,00	0,00
2	38,02	407,67	7,67
3	39,24	415,33	15,33
4	40,46	423,00	23,00
5	41,68	430,66	30,66
6	42,90	438,33	38,33
7	44,12	445,99	45,99
8	45,34	453,66	53,66

Tabela 6.5- Posições relativas na pista de atletismo

Para obtermos as posições dos pontos de partida necessitamos das coordenadas polares destes pontos (Fig 6.14):

Fig 6.14- Coordenadas polares dos pontos de partida

$$\begin{cases} x_n = r_n \cos \alpha_n \\ y_n = r_n \sin \alpha_n \end{cases}$$

O ângulo α_n depende da raia R_n considerada.

O arco de raio α_n vale

$$a_n = \alpha_n r_n \Rightarrow \alpha_n = \frac{a_n}{r_n}$$

No caso da pista de atletismo os valores dos ângulos e posições cartesianas dos pontos são dados na Tabela 17

$\alpha_n = \frac{a_n}{r_n}$	x_n	y_n
0,00	36,80	0,00
0,20	37,25	7,61
0,39	36,28	14,95
0,57	34,10	21,78
0,74	30,90	27,97
0,89	26,89	33,43
1,04	22,24	38,10
1,18	17,12	41,98

Tabela 6.6- Posições dos pontos de partida

Logo, o modelo matemático dos pontos de partida é dado por

$$\begin{cases} x_n = r_n \cos \alpha_n = [36, 8 + (n-1)1, 22] \cos \alpha_n \\ y_n = r_n \sin \alpha_n = [36, 8 + (n-1)1, 22] \sin \alpha_n \end{cases}$$

Da Tabela 17 podemos ajustar os valores de α_n por uma função quadrática e obtemos a espiral hiperbólica

$$x_n = [36, 8 + (n-1)1, 22] \cos \left[-0,0053n^2 + 0,2159n - 0,2102 \right]$$

$$y_n = [36, 8 + (n-1)1, 22] \sin \left[-0,0053n^2 + 0,2159n - 0,2102 \right]$$

cujo gráfico é dado na Fig. 3.13

6 Esporte

Fig 6.15-Tendência do índice de criminalidade em Diadema

Fig 6.16- Posição dos pontos de partida na corrida de 400 metros rasos

Projeto 2.3 - Faça um estudo completo da corrida de 200 metros rasos (recordes, dinâmica e pontos de partida).

Projeto 2.4 - Faça um estudo completo da Maratona [15].