Python勉強会@HACHINONE 第1章

さあ、始めよう!

コンピュータとは?

- ・コンピュータ
 - 「計算」する
 - その結果を覚えておく
- 人間の計算速度がボトルネックになっていた、さまざまなものごと を変えた

知識とは

- 宣言的知識
 - 事実の記述
 - xの平方根とは、y×y=xを満たすyである
- 命令的知識
 - 方法の記述
 - バビロニア数学の平方根の近似的な求め方など
 - それがアルゴリズム

「王の財宝」より平方根の算法

Python勉強会@HACHINOHE

考え方

• 図のような長方形を考える(面積sは固定で、pとqは可変)。このとき $s = p \times q$

q 面積s

• これが正方形、つまり「p = q」になったとき、辺の長さが平方根になる

• 計算方法

- とりあえず適当な値をpとし、そんでq(= s / p)を求めて、pとqが近いか検討する
- もっといいp、つまり「qにもっと近いp」を見つけたいとする
- ならば新たにp'として「pとqの平均」、つまりp' = (p + q) / 2を採用すれば、前よりよくなるはず
- これを繰り返していくと、だんだん平方根に近づく

コンピュータとは?

- プログラム固定コンピュータ
 - 何かの計算をする専用ハード
- プログラム内蔵コンピュータ
 - プログラムを保存し(入れ替え可能)、実行できる
 - 簡単な命令を組み合わせて高度なことを実行する
 - プログラムもデータもメモリに置かれ、現在実行している部分が カウンタに入っている

コンピュータの限界を考える

- チャーチとチューリングの提唱
 - 「計算できる」=「チューリング・マシンで実行できる」ってことに しよう
- チューリング・マシン: コンピュータの本質的な概念
 - 無限に長いテープと、テープを読み書き移動でき、内部状態をもった ヘッドから構成される
 - 参考: J.G.ブルックシャー『入門コンピュータ科学』ドワンゴ、2017 年など
 - チューリング・マシンと同等の計算ができるプログラミング言語を 「チューリング完全」という

チューリング・マシンの停止問題

- 停まらないプログラムというものが存在する
 - いわゆる無限ループのような
- では「チューリング・マシンが停まるか停まらないか」を 判定できるだろうか?
 - つまり「あるプログラムが停まるか?」を判定できるか
- 実は、ありとあらゆるプログラムが停まるか否かを判定できる プログラムは作ることはできないことが証明できる
 - 一部のプログラムが停まるか否かは判定できるが、 ありとあらゆるプログラムを判定するのは無理
- それがコンピュータの限界

プログラムの構成要素

- 基本構成要素
 - リテラル(0, 1, 2,...、'a', 'A', 'abc', ...)と演算子(+, -, ...)
- ・ 文法: 何が妥当な形式なのか
 - ○「リテラル 演算子 リテラル」
 - ×「リテラル リテラル」
- 静的意味論: 何が意味を持つ文なのか
 - · o [1/3]
 - x [2 / 'abc']
- 意味論: アルゴリズムのレベル