

integrity characterized by places

Canonical name IntegrityCharacterizedByPlaces

Date of creation 2013-03-22 14:56:57 Last modified on 2013-03-22 14:56:57

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 11

Author pahio (2872)
Entry type Theorem
Classification msc 12E99
Classification msc 13B21
Related topic Integral
Related topic PlaceOfField

Theorem. Let R be a subring of the field K, $1 \in R$. An element α of the field is integral over R if and only if all http://planetmath.org/PlaceOfFieldplaces φ of K satisfy the implication

 φ is finite in $R \Rightarrow \varphi(\alpha)$ is finite.

- 1. Let R be a subring of the field K, $1 \in R$. The integral closure of R in K is the intersection of all valuation domains in K which contain the ring R. The integral closure is integrally closed in the field K.
 - 2. Every valuation domain is integrally closed in its field of fractions.