

Wyższa Szkoła Oficerska Sił Powietrznych Katedra Nauk Ogólnokształcących

Sprawozdanie

z ćwiczenia przeprowadzonego w zintegrowanym laboratorium fizyki, mechaniki i termodynamiki.

Temat ćwiczenia: Badanie interferencji fal akustycznych.

Słuchacz: **Igor Buhaj**, **Łukasz Kusek**, **Patryk Łudzik**Grupa: **C9D**Ćwiczenie zaliczono:

Spis rysunków

1	Interferencja fali przepuszczonej przez przesłonę z dwoma szczelinami	4
2	Obraz interferencyjny dla częstotliwości $f = 5000 Hz$	6
3	Obraz interferencyjny dla częstotliwości $f = 6000 Hz$	6
4	Obraz interferencyjny dla częstotliwości $f = 7000 Hz \ldots \ldots \ldots$	7

1 Opis ćwiczenia

Rozchodzenie się fal w trójwymiarowej przestrzeni można często przewidzieć, stosując za-sadę Huygensa, z której wiemy, że wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal wtórnych. Po czasie t nowe położenie czoła fali jest wyznaczone przez powierzchnię styczną do powierzchni fal wtórnych.

Fala przepuszczona przez przesłonę z dwiema szczelinami rozprzestrzenia się w całym obszarze za przesłoną (w wyniku dyfrakcji) i zachodzi jego interferencja. Interferencja należy do zjawisk superpozycji, prowadzi do wzmocnienia fal lub ich wygaszenia.

Warunkiem dostrzegalnej interferencji dwóch fal spotykających się w jednym jest utrzymanie między nimi stałej w czasie różnicy faz, co oznacza, że fala muszą być spójne.

Interferencja fal w dowolnym punkcie ekranu zależy od różnicy dróg od obu szczelin do tego punktu. Jeżeli różnica ta jest całkowitą wielokrotnością długości fali, to interferencja jest konstruktywna i w punkcie tym występuje maksimum natężenia.

$$\Delta r = n \lambda \qquad n \in \mathbb{N} \cup \{0\} \tag{1}$$

Jeżeli jest ona równa nieparzystej wielokrotności połowy długości fali, to interferencja jest destruktywna i w tym punkcie występuje minimum natężenia.

$$\Delta r = \left(n + \frac{1}{2}\right) \lambda \qquad n \in \mathbb{N} \cup \{0\}$$
 (2)

Warunki występowania maksimum [1] i minimum [2] można uzależnić od odległości między szczelinami d oraz od kąta α , który tworzy kierunek światła z osią układu:

$$d\sin\alpha = n\lambda \qquad n \in \mathbb{N} \cup \{0\} \tag{3}$$

$$d \sin \alpha \ = \ \left(n + \frac{1}{2}\right) \, \lambda \qquad n \in \mathbb{N} \cup \{0\} \tag{4}$$

Kąt α , który tworzy kierunek światła z osią układu można związać z odległością l przesłony od ekranu oraz odległością a punktu, w którym występuje wzmocnienie lub wygaszenie od osi układu.

$$a = l \tan \alpha \tag{5}$$

Korzystając z [3], [4] oraz [5] wyprowadzamy wzór na odległość wzmocnienia, wygaszenia od osi układu

$$a_{max} = l \tan \left(\arcsin \frac{n \lambda}{d} \right) \qquad n \in \mathbb{N} \cup \{0\}$$
 (6)

$$a_{min} = l \tan \left[\arcsin \frac{\left(n + \frac{1}{2}\right) \lambda}{d} \right] \qquad n \in \mathbb{N} \cup \{0\}$$
 (7)

Korzystając z tego, że

$$\lambda = \frac{v}{f} \tag{8}$$

otrzymujemy wzór na odległości minimum a_{min} oraz maksimum a_{max} w zależności od odległości przesłony (źródeł fali spójnych) l, odległości pomiędzy szczelinami (źródłami) d, częstotliwości drgań fali f, prędkości fali v oraz numeru kolejnego wzmocnienia (wygaszenia) n

$$a_{max} = l \tan \left(\arcsin \frac{n \upsilon}{d f} \right) \qquad n \in \mathbb{N} \cup \{0\}$$
 (9)

$$a_{min} = l \tan \left[\arcsin \frac{\left(n + \frac{1}{2}\right) \upsilon}{d f} \right] \qquad n \in \mathbb{N} \cup \{0\}$$
 (10)

2 Tabela odczytów i pomiarów

f[Hz]	Obliczone $a_{max} [m]$	Zmierzone (wykres) $a_{max} [cm]$
$(5,0 \pm 0,1) \cdot 10^3$	$0,216 \pm 0,014$	21, 2; 19, 2
$(6,0 \pm 0,1) \cdot 10^3$	0.18 ± 0.01	14,0; 13,0
$(7,0 \pm 0,1) \cdot 10^3$	$0,148 \pm 0,008$	14, 6; 15, 0

3 Opracowanie pomiarów i wyniki. Ocena błędów

Badana fala, to fala akustyczna, której prędkość rozchodzenia opisuje wzór

$$v(t) = 333, 1\sqrt{1 + \frac{t}{273}} \frac{m}{s} \tag{11}$$

Temperaturę przyjmujemy jako $t=(21\pm3)^{\circ}C$

$$v = (345, 7 \pm 1, 8) \, \frac{m}{s} \tag{12}$$

Odległość między źródłami (membrany dwóch głośników) wynosiła

$$d = (0, 180 \pm 0, 005) m \tag{13}$$

Odległość między źródłami a ekranem (mikrofonem) wynosiła

$$l = (0, 52 \pm 0, 005) m \tag{14}$$

Rysunek 1: Interferencja fali przepuszczonej przez przesłonę z dwoma szczelinami

Korzystając ze wzoru [9] oraz metody różniczki zupełnej

$$\Delta a_{max} = \left| \frac{\partial a_{max}}{\partial l} \right| \Delta l + \left| \frac{\partial a_{max}}{\partial d} \right| \Delta d + \left| \frac{\partial a_{max}}{\partial f} \right| \Delta f + \left| \frac{\partial a_{max}}{\partial v} \right| \Delta v \tag{15}$$

$$\frac{\partial a_{max}}{\partial l} = \tan \left(\arcsin \frac{n v}{d f} \right)$$

$$\frac{\partial a_{max}}{\partial d} = l \cdot \frac{1}{\cos^2 \left(\frac{n v}{d f} \right)} \frac{1}{\sqrt{1 - \left(\frac{n v}{d f} \right)^2}} \frac{n v}{f} \left(-\frac{1}{d^2} \right)$$

$$\frac{\partial a_{max}}{\partial f} = l \cdot \frac{1}{\cos^2 \left(\frac{n v}{d f} \right)} \frac{1}{\sqrt{1 - \left(\frac{n v}{d f} \right)^2}} \frac{n v}{d} \left(-\frac{1}{f^2} \right)$$

$$\frac{\partial a_{max}}{\partial v} = l \cdot \frac{1}{\cos^2 \left(\frac{n v}{d f} \right)} \frac{1}{\sqrt{1 - \left(\frac{n v}{d f} \right)^2}} \frac{n}{d f}$$

dla pierwszego wzmocnienia n=1 obliczamy a_{max} przy częstotliwościach

• $f = (5, 0 \pm 0, 1) \cdot 10^3 Hz$

$$a_{max} = (0, 216 \pm 0, 014) m$$

• $f = (6, 0 \pm 0, 1) \cdot 10^3 Hz$

$$a_{max} = (0, 18 \pm 0, 01) m$$

• $f = (7,0 \pm 0,1) \cdot 10^3 Hz$

$$a_{max} = (0, 148 \pm 0, 008) m$$

Korzystając z danych pomiarowych z obrazowanych na wykresach otrzymaliśmy następujące odległości

- dla $f = (5, 0 \pm 0, 1) \cdot 10^3 Hz$, wykres [2]
 - -n = 1: $a_{max} = 21, 2 cm$
 - -n = -1: $a_{max} = 19, 2 cm$
- dla $f = (6, 0 \pm 0, 1) \cdot 10^3 Hz$, wykres [3]
 - -n = 1: $a_{max} = 14,0 cm$
 - -n = -1: $a_{max} = 13,0 \text{ cm}$
- dla $f = (7,0 \pm 0,1) \cdot 10^3 Hz$, wykres [4]
 - -n = 1: $a_{max} = 14,6 cm$
 - -n = -1: $a_{max} = 15,0 cm$

Rysunek 2: Obraz interferencyjny dla częstotliwości $f=5000\,Hz$

Rysunek 3: Obraz interferencyjny dla częstotliwości $f=6000\,Hz$

Rysunek 4: Obraz interferencyjny dla częstotliwości $f=7000\,Hz$

4 Wnioski i spostrzeżenia

Przeprowadzone doświadczenie wykazało słuszność wzoru [9]. Pomiary dla $f = 5000 \, Hz$ oraz $f = 7000 \, Hz$ potwierdziły wyniki obliczone ze wzorów. Za wyjątkiem n = -1 dla $f = 5000 \, Hz$ wyniki pomiarowe zmieściły się w granicach błędów.

Pomiar dla $f=6000\ Hz$ należy uznać za nieprawidłowy, gdyż różni się znacząco od wyników obliczeń i jednocześnie jest bardzo zbliżony do wyników dla $f=7000\ Hz$ co nie powinno mieć miejsca w prawidłowym pomiarze.

Pomiar fal akustycznych jest utrudniony, gdyż fale odbijają się od przedmiotów znajdujących się w laboratorium i zakłócają wyniki pomiarów, stąd kilka wyników doświadczenia odrzuciliśmy już na etapie pomiarów.