Deep Feature
Learning and
Visualization for
EEG Recording
Using Autoencoders

Saba Fakharnasab

Computer Engineering – Introduction to medical data Analysis

What is EEG?

- EEG is a signal containing information about the *electrical activity* of the brain.
- Electrodes placed on the scalp are used to detect electrical information from the brain under the scalp, bone and other tissues.
- Since it is an <u>overall measurement</u> of human brain electrical activity, it may contain a wealth of information.

Challenges Analyzing EEG

- Using EEG signals faces many difficulties
- being full of information also here means <u>full of noise</u> and <u>interference</u> making it very hard <u>to extract reliable feature</u>
- 2) Depending on the <u>collection device</u>, EEG will have a <u>different format</u>, hence it becomes difficult to construct standard algorithms to extract features from EEG.

Example: different electrode numbers (10-20 system, 64 electrode system etc.)

Challenges Analyzing EEG

Challenges Analyzing EEG

3) EEG signals have large <u>individual differences</u>, making it hard for <u>cross-subject</u> tests to achieve high accuracy.

Examples are <u>age</u>, <u>gender</u> and <u>educational background</u> differences.

 These three difficulties make EEG feature engineering still a work in progress.

Deep learning vs traditional machine learning

- The good performance of conventional machine learning algorithms relies heavily on <u>features extracted</u>
- Extracted features are not always good and informative.
- Models are not robust and not designed to encounter noise.
- Deep learning and neural network-based techniques can provide automatic feature learning.

Article's deep learning modality

- To address these difficulties, deep learning approaches are utilized in this paper to achieve both *feature learning* and *visualization*
- Two autoencoder based models are used for feature learning and dimensionality reduction:
 - Channel-wise autoencoders
 - Image-wise autoencoders

Typical Autoencoders

- Autoencoder is a sort of compression algorithm, or dimension reduction algorithm.
- Has similar properties to Principal Components Analysis (PCA). But compared with PCA, the autoencoder has no linear constraints.

Dataset

- UCI, the EEG dataset
- It has a total of 122 subjects
 - 77 diagnosed with alcoholism
 - 45 control subjects
 - Unbalanced Dataset
- Each subject has 120 separate trials.
- If a subject is labeled with alcoholism, all 120 trails belonging to that subject will be labeled as alcoholism.

Dataset

- Short time EEG = One trial is one second
- Sampling rate = 256 Hz
- Each trial has 256 data points
- 64 electrode system
- Stimuli: pictures

Dataset

- is a two-task classification but alcoholism trials account for more than 70% of the data
- Models are first evaluated using data <u>within subjects</u>
 (<u>alcoholism only or control only</u>), where 120 trial data is
 randomly split as 7:1:2 for training, validation and testing for one
 person
- We further test them using data across subjects

Channel-wise autoencoders

- The key idea: separate the feature extraction procedure into two parts.
- 1) Each channel has its own autoencoder
- 2) Finally, a fully connected layer combines flattened features across channels to make the final prediction.

Channel-wise autoencoders - Architecture

- Each autoencoder has <u>2 fully connected</u> layers, each having <u>16 hidden units</u>.
 - Dimension of data reduced from 256 to 16 in latent space
- The input of autoencoders will be normalized to [−1, 1]
- we use a <u>tanh activation</u> function for the output layer to match the output to [−1, 1] as well.
- The <u>shared weight</u> technique: decoder will use transpose of encoder weight vectors
 - Using the shared weight technique helps the autoencoder better understand how to compress the input data and then reconstruct it accurately, resulting in improved performance and reduced training time.

Channel-wise autoencoders

Each channel is passed through its own autoencoder

Fig. 4. Structure of channel-wise autoencoders

Image-wise autoencoders

The key idea:
 CNN based
 autoencoder
 takes images as
 input while using
 convolution to
 extract features.

• A method that combines the <u>time-series information</u> and <u>spatial channel locations</u> information over the scalp in a trial of EEG signals.

- FFT is performed on the time series to estimate the power spectrum of the signal for each trial (64 x 256).
- Three frequency bands information are extracted:
 - theta (4–7 Hz)
 - alpha (8–13 Hz)
 - beta (13–30 Hz)
- The sum of squared absolute values in these frequency bands are used, forming a 64 x 3 map

- To form an RGB EEG image:
 - theta = red channel
 - alpha = green channel
 - beta = blue channel

- For each frequency band (64 x1), shown in Fig. 7, <u>topology</u> <u>preserving</u> Azimuthal Equidistant Projection (AEP) also known as Polar Projection is used to map 3D channel position into 2D space.
- "Topology preserving" = preservation of the neighborhood relation
- Location of the electrodes also preserved in relation to the center of the head (reference point)

- Each 64 x 1 frequency band can be mapped to a 32 x 32 mesh, forming 32 x 32 x 3 data.
- One trial of 64 x 256 EEG signals is transformed to color pictures.
 - RGB picture (3 channels)
 - Size = 32×32

Autoencoder design

- The design of this CNN-based autoencoder is inspired by the CNN for CIFAR-10.
- The input dimension of our generated EEG pictures is the same as the CIFAR-10 dataset.

Original CIFAR-10 architecture – input dimensions are the same, output is 10 classes

Encoder-Decoder Structure

Table 1. The detailed encoder and decoder structure

Encoder	Decoder
Input $32 \times 32 \times 3$ Color Image	Input 16 × 8 × 8 Matrix
3×3 conv, 2×2 max-pooling	3×3 deconv, 2×2 max-un-pooling
ReLU, 0.25 dropout	ReLU, 0.25 dropout
3×3 conv, 2×2 max-pooling	3×3 deconv, 2×2 max-un-pooling
ReLU, 0.25 dropout	ReLU, 0.25 dropout
3×3 conv, ReLU	3×3 deconv

Classification

- Features from Image-wise and channel-wise autoencoders are combined, flattened into a long vector.
 - 16 x 64 channels wise
 - 16 x 8 x 8 image wise
- Feedforward network with three hidden layers
- Learning rate for training 4e-5
- Fine tuning <u>Encoders</u> of both channel wise and image wise autoencoder
 - Small learning rate of 1e-7

Classification

- Features from Image-wise and channel-wise autoencoders are combined, flattened into a long vector.
 - 16 x 64 channels wise
 - 16 x 8 x 8 image wise
- Feedforward network with three hidden layers
- Learning rate for training 4e-5
- Fine tuning <u>Encoders</u> of both channel wise and image wise autoencoder
 - Small learning rate of 1e-7

Results: Image-wise autoencoders

Table 2. Comparison between two image-wise autoencoders

Method	Within accuracy	Final loss	Training time (100 epoch)
Shared weight Image-wise Autoencoders	0.897	0.00026	132.99 s
Normal Image-wise Autoencoders	0.917	0.00019	150.68 s

Results: Image-wise autoencoders vs common CNN

- CNN has the same structure of the encoder of the (image wise autoencoder)
- Three fully connected layers used as classifier

Table 3. Comparison between image-wise autoencoders and common CNN

Method	Within accuracy	Cross accuracy
Normal Image-wise Autoencoders	0.917	0.756
Image-wise CNN	0.915	0.712

Results: Image-wise autoencoders vs common CNN

- Image-wise autoencoder
 - can achieve similar within subject accuracy as Image-wise autoencoder,
 - but it performs <u>badly</u> in the <u>cross-subject</u> test.
- That is, an autoencoder structure helps to improve the ability to extract robust features.

Results: Autoencoders vs famous deep learning structures – within subject

Method	Accuracy
Normal Channel-wise Autoencoders	0.864
Shared weight Channel-wise Autoencoders	0.858
Normal Image-wise Autoencoders	0.917
Shared weight Image-wise Autoencoders	0.897
EEGNet (Lawhern et al. 2016)	0.878
SyncNet (Li et al. 2017)	0.923
DE (Zheng and Lu 2015)	0.821
PSD (Zheng and Lu 2015)	0.816
rEED (O'Reilly et al. 2012)	0.702

Results: Autoencoders vs famous deep learning structures – cross subject

 The accuracy of the proposed autoencoder based method is better than most of the past methods except the SyncNet.

Table 5. Classification accuracy – cross-subject tests

Method	Accuracy
Normal Channel-wise Autoencoders	0.731
Shared weight Channel-wise Autoencoders	0.713
Normal Image-wise Autoencoders	0.756
Shared weight Image-wise Autoencoders	0.740
EEGNet (Lawhern et al. 2016)	0.672
SyncNet (Li et al. 2017)	0.723
DE (Zheng and Lu 2015)	0.622
PSD (Zheng and Lu 2015)	0.605
rEED (O'Reilly et al. 2012)	0.614

Results

- All autoencoders proposed in this paper except the shared weight channel-wise autoencoders achieve state-of-art cross-subject test accuracy.
- Reason: Authors believe that their shared weight autoencoder using the shared weights method focuses on common features in alcoholism rather than personal identity features
- This method prevents overfitting, and performs better on new, unseen data.

General conclusions

- Image-wise autoencoders perform better than channel-wise autoencoders
- Normal autoencoders perform slightly better than shared weight autoencoders.
- Normal image-wise autoencoder has better within subject accuracy and lower final test loss than the shared weight imagewise autoencoders.

Fig. 8. Image-wise autoencoders' performance

General conclusions

- The image-wise autoencoders find the best discriminative features among different methods.
- Authors believe this is because frequency-based feature learning methods can obtain more discriminative information
- Both proposed image-wise autoencoders and the SyncNet approach are frequency based and they achieved the best performance.

Limitation and further work

- Verify the method's applicability to other datasets without further fine-tuning, as long as 3-D electrode location information is available.
- Investigate LSTM-based approaches and other RNN feature extractors for EEG data.