Разработка механической руки и программного обеспечения для ее функционирования с использованием платы Arduino

Выполнил:

Михайлов Юрий Александрович, гр. 7383

Руководитель:

к.т.н., доцент каф. МОЭВМ

Консультант:

ст. преподаватель каф. МОЭВМ

Романцев В.В.

Герасимова Т.В.

Санкт-Петербург, 2021

Цель и задачи

Актуальность: автоматизация процессов производства

- непрерывная работа 24 часа в сутки
- Уменьшение затрат производства

Цель: спроектировать и разработать руку-робот на основе платы Arduino

Задачи:

- 1. Рассмотреть классификация манипуляционных устройств
- 2. Определить целевую плату разработки
- з. Собрать конструкцию робота-манипулятора
- 4. Написать программу для работы робота
- 5. Провести проверка работоспособности разработанного проекта

Классификация манипуляционных устройств

- По назначению
- По техническим показателям

Рисунок 1 – Пример промышленного робота

Рисунок 2 — Стационарный роботманипулятор

Классификация манипуляционных устройств

- По способу управления
- По быстродействию и точности движений

Рисунок 3 — Пример установки по изучению промышленного робота

Рисунок 4 — Пример роботаманипулятора в действии

Определение целевой платы разработки

Таблица 1. Сравнение программируемых платформ

Параметр	Arduino	BeagleboneBlack	RaspberryPi
Цена микроконтроллера	Доступная	Относительно высокая	Средняя
Производительность	Небольшая относительно аналогов		Достаточная для запуска приложений настольных компьютеров
Энергопотребление	Минимальное из рассмотренных аналогов	Среднее из рассмотренных аналогов	Максимальное из рассмотренных аналогов
Πορτ Ethernet	Отсутствует, но есть возможность подключения через платы расширения (Shield)		Есть
Надежность	Можно включать и отключать в любой момент	Работает на операционной системе, поэтому его нужно правильно выключать	Работает на операционной системе, поэтому его нужно правильно выключать
Простота		Придется установить множество библиотек и выполнять различные настройки для того, чтобы управлять датчиками	Придется установить множество библиотек и выполнять различные настройки для того, чтобы управлять датчиками

Сборка конструкции робота-манипулятора

Была собрана конструкция робота-манипулятора с уникальными возможностями

- Возможность разборки и последующей сборки
- Быстрая замена комплектующих в случае поломки комплектующих в процессе эксплуатации

Рисунок 5 — Готовая конструкция проекта

Рисунок 6 — Подключение компонентов к плате

Сборка конструкции робота-манипулятора

Для реализации основной функции манипулятора был собран механизм захвата

Рисунок 7 - Задняя сторона кисти манипулятора

Рисунок 8 - Передняя сторона кисти манипулятора

Сборка устройства для управления конструкцией робота-манипулятора

Для управления конструкцией манипуляционного робота был сделан проводной джойстик при помощи 2-х модулей джойстиков

Рисунок 9 - Самодельный джойстик для управления конструкцией

Написание программы для робота

Рисунок 10 – Блок-схема программы

Проверка работоспособности разработанного проекта

Была проведена проверка работы разработанного робота

Рисунок 11 – Захват объекты клешнями

Рисунок 12 — Состояние робота до вращения

Рисунок 12 — Состояние робота после вращения

Заключение

- Рассмотренная классификация роботов-манипуляторов демонстрирует широкий спектр наличия роботов такого типа на рынке промышленных роботов.
- Проделанный обзор программируемых платформ показал преимущества выбора платы Arduino Uno для реализации данного проекта.
- Была собрана конструкция манипуляционного устройства и написана программа для его управления.
- Была проверена работоспособность готового проекта на примере перемещения легкого объекта.

Дальнейшие направления исследований включают в себя улучшение конструкции робота-манипулятора путем добавления большего количества степеней подвижности и улучшения способа управления.

Апробация работы

• Репозиторий проекта https://github.com/YuraMihailov123/diploma.