# Übungen Formale Grundlagen der Informatik II Blatt 8

## Übungsaufgabe 8.3:

#### 8.3.1:



Beschränktheit: Da der Erreichbarkeitsgraph endlich ist, ist das Netz beschränkt.

Reversibiltät: Da durch eine Schaltfolge wie z.B.  $\sigma = t_5 \cdot t_5$  in  $\mathbf{m_0}$  eine Verklemmung

entstehen kann, ist das Netz nicht reversibel.

Lebendigkeit: Da das Netz nicht verklemmungsfrei ist, ist es auch nicht lebendig.

#### 8.3.2:



#### 8.3.3:



Wir betrachten die folgenden drei Schnitte:

 $c_1 := \{b_1, b_2\}$  ist ein P-Schnitt.

 $c_2 := \{e_1, e_2\}$  ist ein T-Schnitt.

 $c_3 := \{b_5, e_5\}$  ist ein allgemeiner Schnitt.

Wir können keinen Schnitt angeben, der  $t_1$  enthält, da es kein Element  $x \in P \cup T$  gibt, für das nicht entweder  $x < t_1$  oder  $t_1 < x$  gilt.

### 8.3.4:



### Übungsaufgabe 8.4:

Wie man anhand des unten stehenden Graphen  $\mathbf{R}(\mathbf{m_0})$  sieht kommt man von allen aus  $\mathbf{m_0}$  erreichbaren Markierungen  $\mathbf{m}$  in den untersten Zyklus des Graphen. Dort existiert nun zu jeder Markierung  $\mathbf{m}$  eine erreichbare Markierung  $\mathbf{m}'$  in der die Transition a, c oder d aktivierbar ist. Die Transitionen a, c und d sind also lebendig. Von den drei Markierungen  $p_1, p_3(2), p_2, p_3$  des eben verwendeten Zykluses kann man jedoch in keine Markierung  $\mathbf{m}'$  gelangen in der b aktivierbar ist, also ist b nicht lebendig.



## Übungsaufgabe 8.6:

Wir betrachten folgende Platz-Invarianten-Gleichungen für Maschine A:

$$\mathbf{m}(Roboter) < 4$$
 Es gibt genau 3 Roboter  $\mathbf{m}(Start \to Stop) < 7$  Jeder Roboter kann 2 Materialien aufnehmen  $\mathbf{m}(in) > 0 \to sp\"{a}ter \ \mathbf{m}(out) > 0$  Nach der Produktion entsteht ein Produkt

Modell von der Integration von Maschine A in eine Produktion:



Modell mit 3 solcher Maschinen für neben-läufige Produktion:



Modell mit der Möglichkeit, ausgefallene Roboter auszuwechseln:



Modell mit einem Reservevorrat an Robotern:



Modell mit sychronen Kanälen:



Schaltfolge, die zur Verklemmung von Maschine B führt:  $t_1 \cdot t_2 \cdot t_5$ 

Es kommt zur Verklemmung, da beide Arbeitsbänder ihren Arbeitsprozess starten, aber nicht beenden können, falls das Werkzeug für den nächsten Schritt schon benutzt wird. Durch Hinzufügen eines Werkzeugs in  $p_{10}$  löst man dieses Problem, da nun in jeder erreichbaren Markierung mindestens ein Arbeitsband weiter schalten kann.