Chapter 28 Even Answers

2. (a) 1.79 A

(b) 10.4 V

4. (a) 12.4 V

(b) 9.65 V

6. (a) 17.1Ω

(b) 1.99 A for 4.00 Ω and 9.00 Ω , 1.17 A for 7.00 Ω , 0.818 A for 10.0 Ω

8. 73.8 W,

10. 29.5 V

12. 7 series combinations:

 $2.00~\Omega,~3.00~\Omega,~4.00~\Omega,~5.00~\Omega,~6.00~\Omega,~7.00~\Omega,~and~9.00~\Omega$

4 parallel combinations: 0.923Ω , 1.20Ω , 1.33Ω , 1.71Ω

6 mixed combinations:

 1.56Ω , 2.00Ω , 2.22Ω , 3.71Ω , 4.33Ω , and 5.20Ω

14. 1.41Ω

16. $470 \Omega, 220 \Omega$

18. 0.714 A, 1.29 A, 12.6 V

22. (a) 0.385 mA, 3.08 mA, 2.69 mA

(b) c is higher by 69.2 V

24. 1.00 A upward in 200 Ω , 4.00 A upward in 70.0 Ω , 3.00 A upward in 80.0 Ω , 8.00 A downward in 20.0 Ω , 200 V across 200 Ω .

28. 800 W, 450 W, 25.0 W, 25.0 W

30. (a) -61.6 mA

(b) $0.235 \mu C$

(c) 1.96 A

32. (a) 1.50 s

(b) 1.00 s

(c) $\left(200 + 100e^{-t/1.00 \text{ s}}\right) \mu A$

34. (a) 12.0 s

(b) $I(t) = (3.00 \ \mu\text{A})e^{-t/12.0 \ \text{s}}$,

 $q(t) = (36.0 \ \mu\text{C})[1 - e^{-t/12.0 \ \text{s}}]$

 $R = \frac{t}{C \ln 2}$

38. 0.113Ω

40. 49.9 kΩ

- **42**. 400 Ω
- 30.000 mA, 5.4000 V **46**. (a)
- (b) 30.167 mA, 5.3816 V
- 29.898 mA, 5.3966 V (c)

48. (a) 0.101 W

10.1 W (b)

~10⁻¹⁴ A **50**. (a)

- (b) $\sim \frac{1}{2}V_h + 10^{-10} \text{ V}$ and $\frac{1}{2}V_h 10^{-10} \text{ V}$ where V_h is the potential of the "hot" wire.
- **52**. 3.84 Ω and 0.375 Ω
- Impossible, no load resistance can extract 21.2 W (b) from this battery.

- $587~k\,\Omega$ **54**.
- $\frac{\mathbf{P}_s + \sqrt{\mathbf{P}_s^2 4\mathbf{P}_s\mathbf{P}_p}}{2I^2}$ **56**.

and

 $\frac{P_s - \sqrt{P_s^2 - 4P_sP_p}}{2I^2}$

(a) 4.40Ω **58.**

- (b) 32.0 W, 9.60 W, 70.4 W
- (c) 48.0 W

- $(R_A + 2R_B)C \ln 2$ **62.**
- Place the galvanometer in series with **64**. three resistances as shown:

- 145 Ω , 0.756 mA 66.
- (a) $\ln\left(\frac{E}{\Delta V}\right) = 0.0118 t + 0.0882$ (b) 84.7 s, 8.47 μ F 68.
- (a) $R_X = R_2 \frac{1}{4}R_1$ **70**.
- (b) The antenna is inadequately grounded; $R_x = 2.75 \Omega$
- $q_1 = (240 \ \mu\text{C})(1 e^{-1000t/6}), \quad q_2 = (360 \ \mu\text{C})(1 e^{-1000t/6})$ **72**.