# Math 20250 Abstract Linear Algebra

Cong Hung Le Tran April 3, 2023 Course: MATH 20250: Abstract Linear Algebra

Section: 44

**Professor**: Zijian Yao

At: The University of Chicago

Quarter: Spring 2023

Course materials: Linear Algebra by Hoffman and Kunze (2nd Edition), Linear Algebra Done

Wrong by Treil

**Disclaimer**: This document will inevitably contain some mistakes, both simple typos and serious logical and mathematical errors. Take what you read with a grain of salt as it is made by an undergraduate student going through the learning process himself. If you do find any error, I would really appreciate it if you can let me know by email at conghungletran@gmail.com.

# Contents

| Lectur       | re 1: Abelian Group, Field, Equivalence                   |
|--------------|-----------------------------------------------------------|
| 1.1          | Abelian Group                                             |
| 1.2          | Finite Fields                                             |
| 1.3          | Vector Spaces in brief                                    |
|              | re 2: Matrices                                            |
| ${f Lectur}$ | re 3: Vector Spaces                                       |
| 3.1          | Elementary Row Operations and Systems of Linear Equations |
| 3.2          | Vector Spaces                                             |

21 Mar 2023

## Lecture 1: Abelian Group, Field, Equivalence

**Goal.** Vector spaces and maps between vector spaces (linear transformations)

### 1.1 Abelian Group

**Definition 1.1** (Abelian Group). A pair (A, \*) is an **Abelian group** if A is a set and \* is a map:  $A \times A \mapsto A$  (closure is implied) with the following properties:

1. (Additive Associativity)

$$(x*y)*z = x*(y*z), \forall x, y, z \in A$$

2. (Additive Commutativity)

$$x * y = y * x, \ \forall \ x, y \in A$$

3. (Additive Identity)

$$\exists \ 0 \in A : 0 * x = x * 0 = x, \ \forall \ x \in A$$

4. (Additive Inverse)

$$\forall x \in A, \exists (-x) \in A : x * (-x) = (-x) * x = 0$$

**Remark.** (\* is just a symbol, soon to be +). Typically write as (A, +) or simply A

#### Example.

- 1.  $(\mathbb{Z}, +)$  is an Abelian group
- 2.  $(\mathbb{Q}, +)$  is an Abelian group
- 3.  $(\mathbb{Z}, \times)$  is **NOT** an Abelian group (because identity = 1, and 0 does not have a multiplicative inverse)
- 4.  $(\mathbb{Q}, \times)$  is also not an Abelian group (0 does not have a multiplicative inverse)
- 5.  $(\mathbb{Q}\setminus\{0\},\times)$  is an Abelian group (identity is 1)
- 6.  $(\mathbb{N}, \times)$  is NOT a group

**Remark.** A crucial difference between  $\mathbb{Z}$  and  $\mathbb{Q}\setminus\{0\}$  is that  $\mathbb{Q}\setminus\{0\}$  has both + and  $\times$  while  $\mathbb{Z}$  only has +. This gives us inspiration for the definition of a field!

**Definition 1.2** (Field). A field is a triple  $(F, +, \cdot)$  such that

- 1. (F, +) is an Abelian group with identity 0
- 2. (Multiplicative Associativity)

$$(x \cdot y) \cdot z = x \cdot (y \cdot z), \ \forall \ x, y, z \in F$$

3. (Multiplicative Commutativity)

$$x \cdot y = y \cdot x, \ \forall \ x, y \in F$$

4. (Distributivity) (+ and  $\cdot$  talking in the following way)

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z), \ \forall \ x, y, z \in F$$

5. (Multiplicative Identity)

$$\exists 1 \in F : 1 \cdot x = x, \ \forall \ x \in F$$

6. (Multiplicative Inverse)

$$\forall \ x \in F \setminus \{0\}, \ \exists \ y \in F : x \cdot y = 1$$

**Remark.** In a field  $(F, +, \cdot)$ , assume that  $1 \neq 0$ 

#### Example.

- 1.  $(\mathbb{Z},+,\cdot)$  is not a field (because property 6 failed) 2.  $(\mathbb{Q},+,\cdot)$  is a field 3.  $(\mathbb{R},+,\cdot)$  and  $(\mathbb{C},+,\cdot)$  are fields.

#### 1.2 Finite Fields

**Recall.**  $p \in \mathbb{Z}$  is a prime if  $\forall m \in \mathbb{N} : m \mid p \Rightarrow m = 1 \text{ or } m = p$ 

## **Definition 1.3** ( $\mathbb{F}_p$ for p prime).

$$\mathbb{F}_p = \{[0], [1], \dots, [p-1]\}$$

Then define the operations for  $[a], [b] \in \mathbb{F}_p$ 

$$[a] + [b] = [a + b \mod p]; [a] \cdot [b] = [a \cdot b \mod p]$$

Then  $\mathbb{F}_p$  is a field, but this is not trivial.

#### Lemma 1.1.

- 1.  $(\mathbb{F}_p, +)$  is an Abelian group 2.  $(\mathbb{F}_p, +, \cdot)$  is a field

**Example.**  $\mathbb{F}_5 = \{[0], [1], [2], [3], [4]\}$ 

$$[1] + [2] = [3], [2] + [4] = [1], [4] + [4] = [3], [2] + [3] = [0]$$

Then it is trivial that [0] is additive identity, and every element has additive inverse. [1] is multiplicative identity, and every element except [0] has multiplicative inverse. Therefore  $\mathbb{F}_5$  is indeed a field.

#### Vector Spaces in brief 1.3

**Intuition.** The motivation for vector spaces and maps between them (linear transformations) is essentially to solve linear equations. Let  $(\mathbb{K},+,\cdot)$  be a field. We are then interested in systems of linear equations  $/ \mathbb{K}$ ; if there are solutions, and if there are how many.

We then inspect a system of linear equations of n unknowns, m relations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots = \dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

where  $a_{ij}, b_k \in \mathbb{K}$ .

#### Example.

$$2x_1 - x_2 + x_3 = 0 (1)$$

$$x_1 + 3x_2 + 4x_3 = 0 (2)$$

over some field  $\mathbb{K}$ .

**Explanation.** Then,  $3 \times (1) + (2)$  (carrying out the operations in  $\mathbb{K}$ ) yields

$$7x_1 + 7x_3 = 0$$

$$7 \cdot (x_1 + x_3) = 0$$
(3)

Then, we have 2 cases.

Case 1:  $7 \neq 0$  in  $\mathbb{K}$ , then  $\exists 7^{-1} \in \mathbb{K} : 7^{-1} \cdot 7 = 1$ .

Then (3)  $\Rightarrow 7^{-1} \cdot (7 \cdot (x_1 + x_3)) = 0$ 

$$((7^{-1}) \cdot 7) \cdot (x_1 + x_3) = 0$$
$$1 \cdot (x_1 + x_3) = 0$$
$$\Rightarrow x_1 + x_3 = 0$$
$$\Rightarrow x_1 = -x_3$$

Let  $x_3 = a \Rightarrow x_1 = -a \Rightarrow x_2 = 2x_1 + x_3 = -a$ .  $\Rightarrow \{(-a, -a, a) \mid a \in \mathbb{K}\}$  are solutions.

Case 2: 7 = 0 in  $\mathbb{K}$  (e.g. in  $\mathbb{F}_7$ ) then (3) is automatically true. Let  $x_1 = a, x_3 = b \Rightarrow x_2 = 2x_1 + x_3 = 2a + b \Rightarrow \{(a, 2a + b, b) \mid a, b \in \mathbb{K}\}$  are solutions.

**Remark.** When doing  $3 \times (1) + (2)$ , how do we know if we're gaining or losing information? e.g in  $\mathbb{F}_7$  we can just multiply by 7 and get nothing new! Therefore some kind of "equivalence" concept must be introduced!

**Definition 1.4** (Linear combination). Suppose  $S = \{\sum a_{ij}x_j = b_i\}_{1 \leq i \leq m, 1 \leq j \leq n}$  is a system of linear equations over  $\mathbb{K}$ .  $S' = \{\sum a'_{ij}x_j = b_i\}_{1 \leq i \leq m, 1 \leq j \leq n}$  is another system of linear equations (not too important how many equations there are in S'). Then, S' is a **linear combination** of S if every linear equations  $\sum a'_{ij}x_j = b_i$  in S' can be obtained as linear combinations of equations in S, i.e.  $\sum a'_{ij}x_j = b'_i$  is obtained through

$$\sum c_i \left(\sum a_{ij} x_j\right) = \sum c_i b_i, 1 \le i \le m, \text{ for some } c_i \in \mathbb{K}$$

**Definition 1.5** (Equivalence). 2 systems S, S' are equivalent if S' is a linear combination of S and vice versa. Denote  $S \sim S'$ 

Cong Hung Le Tran Lecture 2: Matrices

**Example.** In previous example,  $S = \{(1), (2)\}, S' = \{(1), (3)\}, S'' = \{(2), (3)\}, S''' = \{(3)\}.$  Then,  $S \not\sim S'', S \sim S'$  always,  $S \sim S''$  only if 3 is invertible

#### **Explanation.**

From S', (1) = (1),  $(2) = (3) - 3 \cdot (1)$ . Therefore S is a linear combination of S'.  $\Rightarrow S \sim S'$ . From S'', (2) = (2),  $3 \cdot (1) = (3) - (2)$ . If  $3^{-1} \in \mathbb{K}$  (i.e.  $3 \neq 0$ ) then  $(1) = 3^{-1}((3) - (2))$  is thus recoverable from S'', then  $S \sim S''$ . Otherwise, no.

28 Mar 2023

### Lecture 2: Matrices

**Proposition 2.1.** If 2 systems of linear equations are equivalent,  $S \sim S'$  then they have the same set of solutions

**Remark.** Why is this important? This becomes important if we have a complicated system and want to transform into a simpler system to solve.

**Proof** (I). If  $(x_1 = \alpha_1, x_2 = \alpha_2, \dots, x_n = \alpha_n)$  is a solution of S then we claim that it's also a solution of S' and vice versa. This is trivial because  $S \sim S'$ .

**Definition 2.6** (Matrix). Let  $\mathbb{K}$  be a field. Then an  $m \times n$  matrix with coefficients in  $\mathbb{K}$ , is an ordered tuple of elements in  $\mathbb{K}$ , typically written as

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \in \mathbb{M}_{m \times n}(\mathbb{K})$$

**Definition 2.7** (Matrix Multiplication). If  $T_1 \in \mathbb{M}_{m \times n}(\mathbb{K}), T_2 \in \mathbb{M}_{n \times l}(\mathbb{K})$  then  $T_1 \cdot T_2 \in \mathbb{M}_{m \times l}(\mathbb{K})$  (where  $m, n, l \in \mathbb{N}$ ). Specifically,

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1l} \\ b_{21} & b_{22} & \cdots & b_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nl} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1l} \\ c_{21} & c_{22} & \cdots & c_{2l} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ml} \end{bmatrix}$$

where

 $c_{ij}$  = the "inner product" of i-th row of  $T_1$  and j-th row of  $T_2$ 

$$= \sum_{t=1}^{n} a_{it} b_{tj}$$

$$\forall (i,j), 1 \le i \le m, 1 \le j \le l$$

In particular, if  $T_1, T_2 \in \mathbb{M}_n := \mathbb{M}_{n \times n}(\mathbb{K})$  then  $T_1 \cdot T_2$  and  $T_2 \cdot T_1$  are both valid. In general, they're often not equal.

Cong Hung Le Tran Lecture 2: Matrices

**Observe.** We can write system of linear equations as

$$T \cdot \left[ egin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} 
ight] = \left[ egin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_m \end{array} 
ight]$$

where

$$T \in \mathbb{M}_{m \times n}(\mathbb{K}), \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{M}_{n \times 1} \text{(indeterminants)}, \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \in \mathbb{M}_{m \times 1}(\mathbb{K})$$

Then, finding solutions to S is equivalent to finding  $(\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{K}$  such that

$$T \cdot \left[ \begin{array}{c} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{array} \right] = \left[ \begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_m \end{array} \right]$$

**Exercise 2.1.** If  $T_1, T_2, T_3 \in \mathbb{M}_n(\mathbb{K})$  then  $(T_1 \cdot T_2) \cdot T_3 = T_1 \cdot (T_2 \cdot T_3)$ . This is by no means obvious.

**Definition 2.8** (Identity Matrix).

$$I_n = id_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \vdots & \cdots & \ddots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \in \mathbb{M}_n(\mathbb{K})$$

Observe.

$$I_n \cdot T = T \cdot I_n, \ \forall \ T \in \mathbb{M}_n(\mathbb{K})$$

Thus,  $(\mathbb{M}_n(\mathbb{K}), \cdot)$  is "trying" to be a group, but it's not.

**Definition 2.9** (Invertible Matrix). A matrix  $T \in \mathbb{M}_n(\mathbb{K})$  is **invertible** if  $\exists T' \in \mathbb{M}_n(\mathbb{K})$  such that  $T \cdot T' = I_n$ 

**Exercise 2.2.** If  $T \cdot T' = I_n \Rightarrow T' \cdot T = I_n$ 

**Definition 2.10** (General Linear Group  $GL_n(\mathbb{K})$ ).

$$GL_n(\mathbb{K}) = \{ T \in \mathbb{M}_n(\mathbb{K}) \mid T \text{ is invertible} \}$$

**Remark.** Then  $GL_n(\mathbb{K})$  is a group.

**Definition 2.11** (Elementary Row operations). Let S be the system of equations:

$$\sum a_{1j}x_j = b_1 \tag{1}$$

$$\sum a_{1j}x_j = b_1 \tag{1}$$

$$\sum a_{2j}x_j = b_2 \tag{2}$$

$$\sum a_{mj}x_j = b_m \tag{m}$$

then there are 3 **elementary row operations**:

- 1. Switching 2 of the equations
- 2. Replace (i) with  $c \cdot$  (i) where  $c \neq 0$
- 3. Replace (i) by (i) + d(j) where  $i \neq j$

**Proposition 2.2.** If S' can be obtained from S via a finite sequence of elementary row operations then  $S \sim S'$ .

Corollary 2.1. S can also be obtained from S' via a finite sequence of elementary row operations.

Corollary 2.2. If S' can be obtained from S via a finite sequence of elementary row operations then they have the same solutions.

30 Mar 2023

## Lecture 3: Vector Spaces

#### Elementary Row Operations and Systems of Linear Equations 3.1

Question: What are we doing to the matrices A, B(Ax = B) (A of size  $m \times n$ , B of size  $n \times 1$ ) when elementary row operations are carried out?

**Answer:** The row operations operate on the **rows** of A (switching rows, multiplying by scalar, adding other rows)

Example.

$$A_0 = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{(1')=(1)+-2(3)}{\sim} A_1 = \begin{bmatrix} 0 & -1 & -1 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \sim \cdots \sim A_7 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b \dots \\ b \dots \\ b \dots \end{bmatrix}$$

We eventually arrived  $LHS = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$  itself, due to the properties of  $I_3$ . By "simplying" rows this

way, we can therefore solve systems of linear equations.

**Definition 3.12** (Row-reduced Matrix). The **row-reduced** form of a matrix has 1 as the leading non-zero coefficient for each of its rows (0-padded on the left). Furthermore, each column which contains the leading non-zero entry of some row has all its other entries as 0. By convention, the leading coefficient of a row of higher row index also has a higher column index.

**Proof** (Proposition 2.2). We only provide a sketch of the proof. We re-enumerate the types of operations:

- 1.  $(i) \leftrightarrow (j)$
- $2. (i) \rightarrow c(i), c \neq 0$
- 3.  $(i) \to (i) + d(j), j \neq i$

Explanations:

- 1. Trivial
- 2. Clearly S' is obtainable from S, and trivially all other equations except for (i) of S are obtainable from S'. However,  $(i) = c^{-1}(c(i)) = c^{-1}(i')$ . Therefore  $S \sim S'$ .
- 3. Similarly, S' is clearly obtainable from S, while (i) = (i') d(j) = (i') d(j'). Therefore  $S \sim S'$ .

3.2 Vector Spaces

**Definition 3.13** (Vector Space). Let  $\mathbb{K}$  be a field. A **vector space over**  $\mathbb{K}$  (" $\mathbb{K}$ -vector space")("k-vs") is an Abelian group V with a map:  $\mathbb{K} \times V \to V$  ( $\mathbb{K}$ -action on V). An element in V is called a **vector**. They have to satisfy  $\forall a, b \in \mathbb{K}$ ;  $\forall v, v_1, v_2 \in V$ :

- $1. \ 0 \cdot v = 0$
- 2.  $(a+b) \cdot v = (a \cdot v) + (b \cdot v)$  $(a \cdot b) \cdot v = a \cdot (b \cdot v)$
- 3.  $a \cdot (v_1 + v_2) = (a \cdot v_1) + (a \cdot v_2)$

Essentially,  $\mathbb{K}$ , V with operations:

- 1.  $+: \mathbb{K} \times \mathbb{K} \to \mathbb{K}, \cdot: \mathbb{K} \times \mathbb{K} \to \mathbb{K}$  (Field)
- 2.  $+: V \times V \to V$  (Abelian group)
- 3.  $\cdot : \mathbb{K} \times V \to V$  (Action)

**Example.** Field  $\mathbb{K} = \mathbb{R}$ ,  $V = \mathbb{R}^n \doteq \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}\}$ . Indeed,  $\mathbb{R}^n$  is an Abelian group.

**Definition 3.14** (Linear Combination). Let V be a k-vs. If  $v_1, v_2, \ldots, v_r \in V; r \in \mathbb{N}$  then a linear combination of  $\{v_1, v_2, \ldots, v_r\}$  is a vector of the form

$$c_1 \cdot v_1 + c_2 \cdot v_2 + \cdots + c_r \cdot v_r$$
 where  $c_i \in \mathbb{K}$ 

П

**Definition 3.15** (Linear Span). Then the **linear span** of  $v_1, v_2, \ldots, v_r$  in V is the set of all such linear combinations.