IDS PROJECT REPORT

Applying ML Classification Algorithm - Predicting Quality of Wine based on physicochemical tests of Wine.

GitHub Repository

https://github.com/Durvesh021/Predicting-Quality-of-Wine-using-ML-Classification-Algorithms

Course Instructors

Dr. Subrat K. Dash Dr. Sakthi Balan Dr. Aloke Datta

Department of Computer Science Engineering The LNM Institute of Information Technology

Problem Set:

You have been provided with a CSV dataset that has 12 columns and 1599 rows.

Our task is to analyze the dataset and The goal is to model wine quality based on physicochemical tests by developing a supervised machine learning model.

We need to collect a dataset from the given website and perform the following steps:

- 1. Data pre-processing and its visualization
- 2. Explain all the inferences we got from our data.
- 3. Explain what ML Classification Algorithms are being used.
- **4.** Reason for implementing those algorithms and their implementation.
- **5.** Output the result of the testing set and its visualization.

All of the tasks are performed with the help of pre-existing Python Libraries such as:

- sklearn_metrics
- matplotlib
- train_test_split
- numpy
- pandas

Attributes:

- fixed acidity
- volatile acidity
- citric acid
- residual sugar
- Chlorides
- free sulfur dioxide
- total sulfur dioxide
- density
- pH
- sulphates
- alcohol

Implementation:

1. Importing Libraries and Loading Dataset:

1) **Importing Libraries**:

Basically we have to first import the library

• pandas: for manipulation and analysis of data.

- **numpy**: contains a large collection of high-level mathematical functions to operate on large arrays and matrices with multiple dimensions.
- matplotlib: for embedding plots into applications using general-purpose GUI toolkits.
- **sklearn.metrics:** implements several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values.
- train_test_split: used to split our data into train and test sets.

 First, we need to divide our data into features (X) and labels (y).

 The dataframe gets divided into X_train, X_test, y_train, and y_test.

 X_train and y_train sets are used for training and fitting the model.

2) Reading Data Set:

<u>a)</u>

```
7  df = pandas.read_csv("winequality-red.csv",delimiter=';')
8  df.head()
```

```
PS E:\LNMIIT Courses\Sem 5\IDS\IDS Project> & C:/Python310/python.exe "e:/LNMIIT Courses/Sem 5/IDS/IDS Project/ids.py"
   fixed acidity volatile acidity citric acid residual sugar chlorides ... density pH sulphates alcohol quality
            7.4
                           0.70
                                                      1.9
                                                                                                     9.4
                                       0.00
                                                               0.076 ... 0.9978 3.51
                                                                                            0.56
            7.8
                           0.88
                                       0.00
                                                       2.6
                                                               0.098 ... 0.9968 3.20
                                                                                            0.68
                                                                                                     9.8
           7.8
                           0.76
                                       0.04
                                                       2.3
                                                               0.092 ... 0.9970 3.26
                                                                                            0.65
                                                                                                     9.8
                                                                                                               5
           11.2
                           0.28
                                       0.56
                                                       1.9
                                                               0.075 ... 0.9980 3.16
                                                                                            0.58
                                                                                                     9.8
                                                                                                               6
           7.4
                           0.70
                                       0.00
                                                               0.076 ... 0.9978 3.51
                                                                                            0.56
                                                                                                     9.4
                                                                                                               5
```

b) Overall Description of the dataset

PS E:\	PS E:\LNMIIT Courses\Sem 5\IDS\IDS Project> & C:/Python310/python.exe "e:/LNMIIT Courses/Sem 5/IDS/IDS Project/ids.py"										
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides		density	pН	sulphates	alcohol	quality
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000		1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467		0.996747	3.311113	0.658149	10.422983	5.636023
std	1.741096	0.179060	0.194801	1.409928	0.047065		0.001887	0.154386	0.169507	1.065668	0.807569
min	4.600000	0.120000	0.000000	0.900000	0.012000		0.990070	2.740000	0.330000	8.400000	3.000000
25%	7.100000	0.390000	0.090000	1.900000	0.070000		0.995600	3.210000	0.550000	9.500000	5.000000
50%	7.900000	0.520000	0.260000	2.200000	0.079000		0.996750	3.310000	0.620000	10.200000	6.000000
75%	9.200000	0.640000	0.420000	2.600000	0.090000		0.997835	3.400000	0.730000	11.100000	6.000000
max	15.900000	1.580000	1.000000	15.500000	0.611000		1.003690	4.010000	2.000000	14.900000	8.000000

2. Data Exploration:

Distribution of Data on the basis of different Categorical Attributes:

A) For Volatile Acidity

<u>Range</u>	<u>Count</u>	<u>Percentage</u>
[0,0.2)	17	1.06%
[0.2,0.4)	391	24.45%
[0.4,0.6)	640	40.03%
[0.6,0.8)	444	27.77%
[0.8,1)	83	5.19%
[1,1.2)	20	1.25%
[1.2,1.4)	3	0.19%
[1.4,1.6]	1	0.06%

B) For Fixed Acidity

<u>Range</u>	<u>Count</u>	<u>Percentage</u>
[4, 5)	3	0.19%
[5, 6)	55	3.44%
[6, 7)	254	15.88%
[7, 8)	504	31.52%
[8,9)	316	19.76%
[9, 10)	191	11.94%
[10, 11)	138	8.63%
[11, 12)	72	4.50%
[12, 13)	43	2.69%
[13, 14)	14	0.88%
[14, 15)	2	0.13%
[15, 16)	7	0.44%

C) For Residual Sugar

<u>Range</u>	<u>Count</u>	<u>Percentage</u>
[0,4)	1463	91.49%
[4,8)	115	7.19%
[8,12)	13	0.81%
[12,16]	8	0.50%

D) For Citric Acid

<u>Range</u>	<u>Count</u>	<u>Percentage</u>
[0,0.2)	606	37.90%
[0.2,0.4)	521	32.58%
[0.4,0.6)	385	24.08%
[0.6,0.8)	86	5.38%
[0.8,1)	1	0.06%

E) For Chlorides

<u>Range</u>	<u>Count</u>	<u>Percentage</u>
[0,0.1)	1363	85.24%
[0.1,0.2)	194	12.13%
[0.2,0.3)	20	1.25%
[0.3,0.4)	9	0.56%
[0.4,0.5)	11	0.69%
[0.5,0.6)	0	0.00%
[0.6,0.7]	2	0.13%

F) For Free Sulfur Dioxide

<u>Range</u>	<u>Count</u>	<u>Percentage</u>
(0,10]	605	34.78%
(10,20]	555	34.71%
(20,30]	276	17.26%
(30,40]	122	7.63%
(40,50]	25	1.56%
(50,60]	12	0.75%
(60,70]	3	0.19%
(70,80]	1	0.06%

G) For Total Sulfur Dioxide

<u>Range</u>	<u>Count</u>	<u>Percentage</u>
[0,25)	510	31.89%
[25,50)	543	33.96%
[50,75)	272	17.01%
[75,100)	147	9.19%
[100,125)	77	4.82%
[125,150)	41	2.56%
[150,300)	9	0.56%

H) For Density

<u>Range</u>	<u>Count</u>	<u>Percentage</u>
(0,1.0]	1528	95.56%
(1.0,2.0)	71	4.44%

I) For pH

<u>Range</u>	<u>Count</u>	<u>Percentage</u>
[0,3)	35	2.19%
[3,3.25)	515	32.21%
[3.25,3.5)	881	55.10%
[3.5,3.75)	161	10.07%
[3.75,4)	5	0.31%
[4,4.25)	2	0.13%

J) For Sulphate

<u>Range</u>	<u>Count</u>	<u>Percentage</u>
(0,0.5)	151	9.44%
[0.5,1)	1389	86.87%
[1,1.5)	51	3.19%
[1.5,2)	8	0.50%

K) For Alcohol

<u>Range</u>	<u>Count</u>	<u>Percentage</u>
[8,9)	7	0.44%
[9,10)	673	42.09%
[10,11)	452	28.27%
[11,12)	305	19.07%
[12,13)	133	8.32%
[13,14)	21	1.31%
[14,15)	8	0.50%

L) For Quality

<u>Value</u>	<u>Count</u>	<u>Percentage</u>
3	10	0.63%
4	53	3.31%
5	681	42.59%
6	638	39.90%
7	199	12.45%
8	18	1.13%

3. Data Visualization:

Here we would try to find out a relation between each column of the final numerical dataset and the target attribute.

Bar chart visualization for attributes: (count[no.of values in that range] VS Range of values)

4. ML CLASSIFICATION ALGORITHMS:

- After getting a cleaned dataset, we can now apply our prediction algorithms, to predict the quality of our wine.
- In our project, instead of applying just one, we use 9 different classification algorithms to predict the results.
- The motivation to apply all these algorithms was that we wanted to compare their accuracy results to see which algorithm works better on our dataset.

We applied the algorithms given below.

- Linear regression
- K-Nearest Neighborhood
- Decision Tree Classifier
- Random Forest Classifier
- Naive Bayes Classifier
 - Gaussian Naive Bayes
 - Multinomial Naive Bayes
- Support Vector Machine
 - Polynomial
 - Radial Basis Function
 - Linear
- For each case, we've visualized the Confusion Matrix along with it.
- We've also displayed the accuracy percentage for each case too.

1. Linear Regression:

Linear Regression is a machine learning algorithm based on supervised learning. It performs a regression task. Regression models a target prediction value based on independent variables. It is mostly used for finding out the relationship between variables and forecasting. Different regression models differ based on – the kind of relationship between dependent and independent variables they are considering, and the number of independent variables getting used. There are many names for a regression's dependent variable. It may be called an outcome variable, criterion variable, endogenous variable, or regressand. The independent variables can be called exogenous variables, predictor variables, or regressors.

2. K-Nearest Neighbor algorithm:

Mainly used for classification problems, K-NN algorithms assume similarities between new cases/data and available cases and assign new cases to the category that is most similar to the available categories.

Instead of learning from the training set immediately, save the data set and perform actions on the data set during classification.

Reasons for choosing K-NN is suppose we have two categories: category A and category B, and we have a new data point x1, so this data point will be in any of those categories. A K-NN algorithm is needed to solve this kind of problem. With the help of K-NN, we can easily identify the category or class of a particular record. Consider the following illustration.

(Example for K-Nearest Neighbor performance)

3. Decision Tree Classifier:

This model builds a decision tree based on the input data set.

Useful for predicting classes for new input datasets. This is like a tree structure, with each node representing a condition for a attribute value. Based on the conditional output, we choose the path (response to the condition) and continue predicting class (output the class variable) until we reach a leaf node. Decision trees were built using the GINI index, entropy calculations, etc., and learned to measure impurities to determine what is considered the best split.

(Example for Decision Tree performance)

4. Random Forest Classifier:

This classifier follows ensemble learning. Instead of one, multiple decision trees act as an **"ensemble"**. Add randomness to the ensemble by randomly creating a forest of decision trees. Each decision tree produces an output and the final

classes of the input data set are created by majority vote.

More accurate than a single decision tree, but takes longer to train.

(Example for Random Forest performance)

5. Naive Bayes Classifier:

The naive Bayes classifier is based on Bayes' theorem, which we study with probabilities. In ML, independence is assumed among the attributes X(i) when class prediction is made. Formula to calculate probability using Bayes' theorem.

(Example for Naive Bayes performance)

6. Support Vector Machine:

The support vector machine uses the supervised learning algorithm. It is used to find the hyperplane separating data classes. Currently, there may be many hyperplanes that can separate the data, but SVM tries to find the best line for this separation. This classifier generally works well when there are clear boundaries between classes and the dataset is not large enough. (Example for Support Vector Machine performance)

5. IMPLEMENTATION OF THE ALGORITHMS AND THEIR CONFUSION MATRIX:

1. Linear Regression: Accuracy: 49%

```
#Creating confusion matrix
cm = confusion_matrix(Y_test, Y_pred1, labels=[0,1,2,3,4,5,6,7,8,9])
disp = ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=[0,1,2,3,4,5,6,7,8,9])

#Plotting the confusion matrix
disp.plot()
plt.title('Confusion Matrix (Regression)')
plt.ylabel('Actal Values')
plt.xlabel('Predicted Values')
plt.show()

print('Accuracy: %.3f' % accuracy_score(Y_test, Y_pred1))
```


2. K-Nearest Neighbor algorithm: Accuracy: 62.3%

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=7)
knn.fit(X_train.values, Y_train)
Y_pred_knn = knn.predict(X_test.values)
print("-----")
print(Y_pred_knn)
#Creating confusion matrix
cm = confusion_matrix(Y_test, Y_pred_knn, labels=knn.classes_)
disp = ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=knn.classes_)
#Plotting the confusion matrix
disp.plot()
plt.title('Confusion Matrix (KNN)')
plt.ylabel('Actal Values')
plt.xlabel('Predicted Values')
plt.show()
print('Accuracy: %.3f' % accuracy_score(Y_test, Y_pred_knn))
```


3. Decision Tree Classifier: Accuracy: 59.0%

4. Random Forest Classifier: Accuracy: 69.2%

```
from sklearn.ensemble import RandomForestClassifier
     rForest = RandomForestClassifier()
     rForest.fit(X_train.values, Y_train)
     Y_pred_rForest = rForest.predict(X_test.values)
     #Creating confusion matrix
     cm = confusion_matrix(Y_test, Y_pred_rForest, labels=rForest.classes_)
     disp = ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=rForest.classes_)
     #Plotting the confusion matrix
     disp.plot()
     plt.title('Confusion Matrix (Random Forest)')
     plt.ylabel('Actal Values')
     plt.xlabel('Predicted Values')
     plt.show()
     print("-----")
     print(Y_pred_rForest)
120
     print('Accuracy: %.3f' % accuracy_score(Y_test, Y_pred_rForest))
```


5. Naive Bayes Classifier:

------GNB (Gaussian Naive Bayes) Accuracy: 54.8%

```
#Creating confusion matrix
138
      cm = confusion_matrix(Y_test, Y_pred_gnb, labels=gnb.classes_)
139
      disp = ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=gnb.classes_)
141
     #Plotting the confusion matrix
     disp.plot()
     plt.title('Confusion Matrix (GNB)')
     plt.ylabel('Actal Values')
     plt.xlabel('Predicted Values')
     plt.show()
      print("-----")
148
     print(Y pred gnb)
150
     print('Accuracy: %.3f' % accuracy_score(Y_test, Y_pred_gnb))
```


—----- MNB (Multinomial Naive Bayes) Accuracy: 41.5%

6. Support Vector Machine:

```
171
172
     from sklearn import svm
     rbf = svm.SVC(kernel='rbf', gamma=0.7, C=1.0)
174
     rbf.fit(X_train, Y_train)
175
176
     poly = svm.SVC(kernel='poly', degree=3, C=1.0)
     poly.fit(X_train, Y_train)
178
     svc = svm.SVC(kernel='linear', C=1.0)
179
     svc.fit(X_train, Y_train)
     poly_pred = poly.predict(X_test)
     rbf_pred = rbf.predict(X_test)
     svc_pred = svc.predict(X_test)
```

—----- Poly SVM Accuracy: 49.6%

—----- RBF (Radial Basis Function SVM) Accuracy: 53.5%

Confusion Matrix (SVM-RBF)

—----- SVC(Support Vector Classifier) Accuracy: 62.7%

6. CONCLUSION:

To summarize our results from the implementations, we get the following table:

Algorithms	Accuracy
Linear Regression	0.623
K-nearest Neighbor	0.490
Decision Tree	0.590
Random Forest	0.692
Naive Bayes (GBN)	0.548
Naive Bayes (MBN)	0.415
Support Vector Machine (Poly)	0.496
Support Vector Machine (RBF)	0.535
Support Vector Machine (Linear)	0.627

From the results, it's clear that the **Random Forest Algorithm** gives the highest accuracy of **0.692 (69.2%)** on our dataset.

REFERENCES

- 1) https://scikit-learn.org/stable/ (Classification Algorithms)
- 2) https://archive.ics.uci.edu/ml/datasets/Wine+Quality (Wine Dataset)
- 3) Tom Mitchell. Machine Learning. 1st edition, McGraw Hill, 1997.
- 4) https://matplotlib.org/ (To Plot Confusion Matrix)
- 5) https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html Read CSV (Pandas)