Chapter 2: Context-Free Languages

Cardinality

- Def: A set is countable if it is
 - (i) finite or
 - (ii) countably infinite.
- Def: A set S is countable infinite if there is a bijection from N to S.
 - Note: Instead of N to S we can also say S to N. $N = \{0, 1, 2, 3, ...\}$ -- the set of natural numbers.
- Def: A set that is not countable is uncountable.
 - Or, any infinite set with no bijection from N to itself.

Are all languages regular?

- Ans: No.
- How do we know this?
 - Ans: Cardinality arguments.
- Let C(DFA) = {M | M is a DFA}.
 - C(DFA) is a countable set. Why?
- Let $AL = \{ L \mid L \text{ is a subset of } \Sigma^* \}.$
 - AL is uncountable.

Examples

- 1. The set of chairs in this classroom is finite.
- 2. The set of even numbers is countably infinite.
- 3. The set of all subsets of N is uncountable.
 - Notation: 2^N

Exercises

- What is the cardinality of?
 - 1. Z the set of integers.
 - 2. N X N = $\{(a,b) \mid a, b \text{ in N}\}.$
 - 3. R the set of real numbers.

Pumping Lemma

- First technique to show that specific given languages are not regular.
- Cardinality arguments show existence of languages that are not regular.
- There is a big difference between the two!

Statement of Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \ge 0$, $xy^iz \in A$,
- 2. |y| > 0, and
- 3. $|xy| \le p$.

Proof of pumping lemma

- Idea: If a string w of length m is accepted by a DFA with n states, and n < m, then there is a cycle (repeated state) on the directed path from s to a final state labeled w.
 - Recall: directed path is denoted by $\delta^*(s,w)$.
 - Uses: Pigeon-hole principle.

Pigeon-hole principle

Pigeon-hole principle (cont'd)

A pigeonhole must have two pigeons

Pigeon-hole principle (contd.)

Details of Proof of Pumping Lemma

Consider L - any infinite regular language.

- 1. L is regular \rightarrow there is a DFA M with L(M) = L.
- 2. Let DFA have p states (say).
- 3. Let w in L be of length more than p.
 - Why does w exist?
 - Ans: because L is infinite.
- 4. $\delta^*(s,w) = f$ (some final state) must be $\delta^*(s,w=xyz) = \delta^*(q,yz) = \delta^*(q,z) = f$
- 5. So xy^nz in L for n = 0, 1, 2, 3, ...

since
$$\delta^*(s, xy^nz) = \delta^*(q, y^nz) = \delta^*(q, y^{n-1}z) = ... = \delta^*(q, z)$$

= f.

Describing the pumping lemma

Take an infinite regular language L

DFA that accepts L

Take string W

with $w \in L$

There is a walk with label: W

If string w has length $|w| \ge m$ number of states,

Then, from the pigeonhole principle:

A state $\, q \,$ is repeated in the walk $w \,$

Observations : length $|x|y| \leq m$ number of states length $|y| \geq 1$

 \mathcal{X}

Observation: The string χ_{Z} is accepted

Observation: The string xyyz is accepted.

Observation: The string x y y y z is accepted .

In General: The string $x\ y^i\ z \quad i=0,1,2,...$ is accepted

Some Applications of Pumping Lemma

The following languages are not regular.

- 1. $\{a^nb^n \mid n \ge 0 \}$.
- 2. $\{w = w^R \mid w \text{ in } \{a,b\}^* \}$ (language of palindromes).
- 3. $\{ww^R \mid w \text{ in } \{a,b\}^*\}.$
- 4. $\{a^{n^2} \mid n \ge 0\}$.

Tips of the trade -- Do not forget!

Closure properties can be used effectively for:

- (1) shortening cumbersome Pumping lemma arguments.
 - Example: {w in {a, b}* | w has equal a's and b's}.
- (2) showing that certain languages are regular.
 - Example: {w in {a, b}* | w begins with a and w contains a b}.

Pumping lemma applications

• Proving L = $\{a^nb^n \mid n \ge 0\}$ is not regular.

Proof:

Assume L is regular. Certainly L is infinite and therefore the pumping lemma applies to L.

Let p be the constant for L (of the pumping lemma).

Pumping lemma applications (cont'd.)

To show there exist a string $w \in L$ of length at least p such that $\neg Q$ where Q is the rest of the statement of pumping lemma.

Let $w = a^p b^p$ such that $|w| \ge p$ write

$$a^pb^p = xyz$$

But according to pumping lemma,

Pumping lemma (PL) applications (cont'd.)

PL statement (i) \rightarrow |xy| \leq p Therefore,

$$x = a^k$$
, $y = a^m$ $m > 0$, $z=a^{p-k-m}b^p$
 $xyz = a^pb^p$

Pumping lemma applications (cont'd.)

```
PL statement (ii) \rightarrow xy^iz \in L  i = 0,1,2,3,... Therefore,
```

$$xy^2z \in L$$

 $xy^2z = xyyz = a^ka^{2m}a^{p-k-m}b^p$
 $= a^{p+m}b^p \in L$

But,

$$L = \{a^nb^n \mid n \ge 0 \}$$

which means $a^{p+m}b^p \notin L$ since m > 0.

CONTRADICTION!!

Pumping lemma applications (cont'd.)

Therefore our assumption that

 $L = \{a^nb^n \mid n \ge 0\}$ is a regular language cannot be true.

Using Pumping Lemma -- Very Important points

- Above example is a typical application of pumping lemma, to show that a language is not regular.
- You must choose string w so that w in L and |w| is at least the pumping length.
 - Example: choosing w = aaabbb is wrong since we do not know the exact value of p.
- You must consider all possibilities for x, y and z such that w = xyz and |xy| ≤ p.
- The pumping lemma CANNOT be used to show that a language is regular, since it assumes that L is regular.

Context Free Languages

 Strictly bigger class than regular languages

A simple grammar for some sentences

```
<Sentence> → <noun> <verb> <object> <noun> → Alice | John <verb> → eats | eat | ate <object> → apple | orange | mango
```

 The goal is to generate sentences in English over the English alphabet. Example:

```
<Sentence> ⇒ <noun><verb><object> ⇒ Alice <verb><object> ⇒ Alice eats apple
```

Context-free grammars (CFGs)

- Informally, a CFG is a finite set of rules.
- Each rule is of the form:
 <nonterminal symbol> → string over terminals and nonterminals.
- **Terminals**:- symbols that the desired strings should contain.

```
– Example: {a...z, ' ',...}
```

- Nonterminals:- symbols to which rules can be applied.
 - Example: {<noun>, <verb>, ...}
- A special nonterminal is called start symbol.
 - Example: <Sentence>

A grammar for arithmetic expressions

- E → E + E | E * E | (E) | x | y
- Start symbol E.
- Terminals?

```
- Ans: {x, y, *, +, (, )}
```

Nonterminals?

```
– Ans: {E}
```

A derivation:

$$E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow x + E * E \Rightarrow x + x * E$$
$$\Rightarrow x + x * y$$

Another grammar for arithmetic expr's

$$E \rightarrow E + T | T$$

 $T \rightarrow T * F | F$
 $F \rightarrow (E) | x | y$
A derivation for $x + x * y$?
 $E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow x + T \Rightarrow x + T * F$
 $\Rightarrow x + F * F \Rightarrow x + x * F \Rightarrow x + x * y$

Why two different grammars for arithmetic expressions?

Context Free Grammar Definition

- A CFG G = (V, T, P, S) where $V \cap T = \emptyset$,
 - V -- A finite set of symbols called nonterminals
 - T -- A finite set of symbols called terminals.
 - P is a finite subset of V X (V ∪ T)* called productions or rules.
 - We write $A \rightarrow w$ whenever $(A, w) \in P$.
 - $-S \in V$ -- start symbol.

Derivations and L(G)

- One step derivation:
 - \triangleright u \Rightarrow v if u = xAy, v = xwy and A \rightarrow w in P
- 0 or more steps derivation:

$$\triangleright u \Rightarrow^* v \text{ if } u = u_0 \Rightarrow u_1 \Rightarrow \Rightarrow u_n = v (n \ge 0)$$

- $L(G) = \{ w \text{ in } T^* \mid S \Rightarrow^* w \}.$
- A language L is context-free if there is a CFG G with L(G) = L.

Example:

 $S \rightarrow aSb \mid \epsilon$

Derivation:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$.

$$L(G) = ?$$

• Ans: $\{a^nb^n \mid n \ge 0 \}$

Parse trees

- All derivations can be shown in the form of trees.
- Order of rule application is lost.

Parse trees [cont'd.]

In general, if we apply rule $A \rightarrow w_0 w_1 ... w_n$, then we add nodes for w_i as children of node labeled A.

$E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow x + E * E \Rightarrow x + x * E \Rightarrow x + x * y$

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow x + T$$

$$\Rightarrow x + T * F \Rightarrow x + F * F \Rightarrow x + x * F$$

$$\Rightarrow x + x * y$$

Leftmost and Rightmost Derivations

- Derivation is leftmost if the nonterminal replaced in every step is the leftmost nonterminal.
- Consider $E \Rightarrow E + E \Rightarrow E + x$.
 - Is it leftmost derivation?
- Derivation is rightmost if the nonterminal replaced in every step is the rightmost nonterminal.
- Consider $E \Rightarrow E + E \Rightarrow x + E$.
 - Is it rightmost derivation?

Ambiguity

- A CFG is ambiguous if there is a string with at least two leftmost derivations.
 - Example:

```
E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \text{ is ambiguous.}
```

- A CFL is inherently ambiguous if every CFG that generates it is ambiguous.
 - Example:

```
\{a^nb^nc^m \mid n, m \ge 0\} \cup \{a^mb^nc^n \mid n, m \ge 0\}
```

Chomsky Normal Form (CNF)

- Rules of CFG G are in one of two forms:
 - (i) $A \rightarrow a$
 - (ii) $A \rightarrow BC$, $B \neq S$ and $C \neq S$ (S is the start symbol)
 - + Only one rule of the form $S \to \varepsilon$ is allowed if ε in L(G).
- Easier to reason with proofs.
- Leads to more efficient algorithms.
- Credited to Prof. Noam Chomsky at MIT.

Reading Assignment: Converting a CFG to CNF.

Exercises

Are the following CFG's in CNF?

```
(i) S \rightarrow aSb \mid \varepsilon
(ii) S \rightarrow aS \mid Sb \mid \epsilon
(iii) S \rightarrow AS \mid SB \mid \varepsilon
        A \rightarrow a
        B \rightarrow b
(iv) S \rightarrow AS \mid SB
        A \rightarrow a \mid \epsilon
        B \rightarrow b
```

Closure properties of CFL's

- CFL's are closed under:
 - (i) Union
 - (ii) Concatenation
 - (iii) Kleene Star
- What about intersection and complement?

The setting

- $L_1 = L(G_1)$ where $G_1 = (V_1, T, P_1, S_1)$
- $L_2 = L(G_2)$ where $G_2 = (V_2, T, P_2, S_2)$
- Assume wlog that $V_1 \cap V_2 = \emptyset$

Closure under Union -- Example

- $L_1 = \{ a^n b^n \mid n \ge 0 \}$
- $L_2 = \{ b^n a^n \mid n \ge 0 \}$
- G₁?
 - Ans: $S_1 \rightarrow aS_1b \mid \varepsilon$
- G₂?
 - Ans: S_2 → b S_2 a | ε
- How to make grammar for L₁ ∪ L₂?
 - Ans: Idea: Add new start symbol S and rules
 S → S₁ | S₂

Closure under Union General construction

• Let G = (V, T, P, S) where $-V = V_1 \cup V_2 \cup \{S\}, (S \text{ is a new start symbol})$ $-S \notin V_1 \cup V_2$ $-P = P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}$

Closure under concatenation Example

- $L_1 = \{ a^n b^n \mid n \ge 0 \}$
- $L_2 = \{ b^n a^n \mid n \ge 0 \}$
- Is $L_1L_2 = \{a^nb^{\{2n\}}a^n \mid n >= 0\}$?
 - Ans: No! It is { $a^nb^{n+m}a^m \mid n, m \ge 0$ }
- How to make grammar for L₁L₂?
 - Idea: Add new start symbol and rule S →
 S₁S₂

Closure under concatenation General construction

• Let G = (V, T, P, S) where

$$-V = V_1 \cup V_2 \cup \{S\},\$$

$$-S \notin V_1 \cup V_2$$

$$-P = P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\}$$

S is a new start symbol and $S \rightarrow S_1S_2$ is a new rule.

Closure under kleene star Examples

- $L_1 = \{a^nb^n \mid n \ge 0\}$
- What is (L₁)*?
 - Ans: { $a^{\{n1\}}b^{\{n1\}}$... $a^{\{nk\}}b^{\{nk\}}$ | $k \ge 0$ and $n^i \ge 0$ for all i }
- $L_2 = \{ a^{\{n^2\}} \mid n \ge 1 \}$
- What is (L₂)*?
 - Ans: a*. Why?
- How to make grammar for (L₁)*?
 - Idea: Add new start symbol S and rules S → SS₁ | ε.

Closure under kleene star General construction

Let G = (V, T, P, S) where
 - V = V₁ ∪ { S },
 - S ∉ V₁
 - P = P₁ ∪ { S → SS₁ | ε}

Tips for Designing CFG's

- Use closure properties -- divide and conquer
- Analyze strings Is order important?
 Number? Do we need recursion?
- Flat vs. hierarchical?
- Are any possibilities (strings) missing?
- Is the grammar generating too many strings?

Push Down Automaton (PDA)

- Language Acceptor Model for CFLs.
- It is an NFA with a stack.

PDA (contd.)

- In one move the PDA can :
 - change state,
 - consume a symbol from the input tape or ignore it,
 - pop a symbol from the stack or ignore it,
 - push a symbol onto the stack or not.
- A string is accepted provided the machine when started in the start state consumes the string and reaches a final state.

PDA (contd.)

 If PDA in state q can consume u, pop x from stack, change state to p, and push w on stack, we show it as

Example of a PDA

• PDA L = $\{a^nb^n | n \ge 0\}$

Push S to the stack in the beginning and then pop it at the end before accepting.

Definition of PDA

- Formally, a PDA M = $(K, \Sigma, \Gamma, \Delta, s, F)$, where
 - K -- finite set of states
 - $-\sum$ -- is the input alphabet
 - $-\Gamma$ -- is the tape alphabet
 - $-s \in K$ -- is the start state
 - F ⊂ K -- is the set of final states
 - $-\Delta \subseteq (K \times \sum_{\varepsilon} \times \Gamma_{\varepsilon}) \times (K \times \Gamma_{\varepsilon})$

Definition of L(M)

Define ∧* as:

$$(1) \Delta^*(q, \varepsilon, \varepsilon) = \{(q, \varepsilon, \varepsilon)\} \cup \{(p, \varepsilon, \varepsilon) \mid ((q, \varepsilon, \varepsilon), (p, \varepsilon)) \in \Delta\}$$

(2)
$$\Delta^*(q, uv, xy) = U \{\Delta^*(p, v, wy) \mid ((q, u, x), (p, w)) \in \Delta\}$$

- i.e., first compute Δ^* for all successor configurations and then take the union of all those sets.
- M accepts w if (f, ϵ, x) in $\Delta^*(s, w, \epsilon)$
- Alternative: if (f, ϵ , ϵ) in Δ^* (s, w, ϵ) [we use]
- $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$

Example

What is L(M)?

Push S to the stack in the beginning and then pop it at the end before accepting.

PDA's and CFG's

- For every CFG G there is a PDA M such that L(G) = L(M)
- For every PDA M there is a CFG G such that L(M) = L(G)

CFG -> PDA

- Given CFG G = (V, ∑, R, S)
- Let PDA M = (Q, Σ , $\Sigma \cup V \cup \{\$\}$, Δ , q_{start} , $\{q_{accept}\}$)
 - $Q = \{q_{start}, q_{loop}, q_{accept}\}$
- Δ contains transitions for the form
 - 1. $((q_{start}, \epsilon, \epsilon), (q_{loop}, S\$)) \in \Delta$
 - 2. For each rule $A \to w \in R(G)$ there is a transition $((q_{loop}, \varepsilon, A), (q_{loop}, w)) \in \Delta^{***}$
 - 3. For each symbol $\sigma \in \Sigma$ $((q_{loop}, \sigma, \sigma), (q_{loop}, \epsilon)) \in \Delta$
 - 4. $((q_{loop}, \epsilon, \$), (q_{accept}, \epsilon)) \in \Delta$

ε, ε→**S**\$

CFG → PDA

- The PDA simulates a leftmost derivation of the string.
- 1. Place the marker symbol \$ and the start variable on the stack.
- 2. Repeat the following steps forever
 - (a) If the top of stack is a variable symbol A, nondeterministically select one of the rules for A and substitute A by the string on the right-hand side of the rule.
 - (b) If the top of stack is terminal symbol σ , read the next symbol from the input and compare it to σ . If they match, repeat. If they do not match, reject on this branch of the nondeterminism.
 - (c) If the top of stack is the symbol \$, enter the accept state. Doing so accepts the input if it has all been read.

Example: S \rightarrow aSb | ϵ

Editor

Editor

Editor

Editor

Editor

JFLAP: (CFG-PDA S--aSb;e)

JFLAP: (CFG-PDA S-aSb;e)

Step

Reset Freeze

Thaw

Тгасе

Remove

Simulate: abb

Editor

Idea of PDA -> CFG

- First, we simplify our task by modifying P slightly to give it the following three features:
 - 1. It has a single accept state, q_{accept}.
 - 2. It empties its stack before accepting.
 - 3. Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but does not do both at the same time.

PDA → CFG

- Suppose $P = \{Q, \sum, \Gamma, \Delta, q_0, \{q_{accept}\}\}\$ to construct G.
- The variables of G are {A_{pq} | p, q ∈ Q}. A_{pq} generates all the strings that can take P from p with an empty stack to q with an empty stack.
- Two possibilities occur during P's computation on x. Either the symbol popped at the end is the symbol pushed at the beginning or not. First, simulated by Type 1 rules on next slide and the second by Type 2 rules.

PDA -> CFG

- The start variable is A_{q0qaccept}. Now we describe G's rules.
 - [Type 1] For each p, q, r, s ∈ Q, t ∈ Γ, and a, b ∈ Σ_{ϵ} , if ((p, a, ε), (r, t)) is in Δ and ((s, b, t), (q, ε)) is in Δ, put the rule $A_{pq} \rightarrow aA_{rs}b$ in G.
 - In other words, find pairs of transitions in the PDA such that the first transition in the pair pushes a symbol t and the second transition pops the same symbol t. Each such pair of transitions gives a Type 1 rule. The states p, q, r, s, and the symbols a, b are determined by looking at the transitions in the pair.

PDA → CFG

- -[Type 2] For each p, q, $r \in Q$ put the rule $A_{pq} \rightarrow A_{pr} A_{rq}$ in G.
- -[Type 3] Finally, for each $p \in Q$ put the rule $A_{pp} \rightarrow \epsilon$ in G.

Example

- Let M be the PDA for {aⁿbⁿ | n > 0}
 - Note that n cannot be 0, which makes the example a little simpler.

M = {{p, q}, {a, b}, {a},
$$\Delta$$
, p, {q}}, where Δ = {((p, a, ϵ),(p, a)),((p, b, a), (q, ϵ))}

Example: cont'd.

- CFG, G = (V, {a, b}, A_{pq} , R) corresponding to M has V = { A_{pp} , A_{pq} , A_{qp} , A_{qq} }. R contains the following rules:
- Type I:
 - $-A_{pq} \rightarrow aA_{pp}b$
 - $-A_{pq} \rightarrow aA_{pq}b$
- Type II:
 - $-A_{pp} \rightarrow A_{pp} A_{pp} A_{pp} A_{pp}$
 - $-A_{pq} \rightarrow A_{pp} A_{pq} | A_{pq} A_{qq}$
 - $A_{ab} \rightarrow A_{ab} A_{bb} | A_{qq} A_{qp}$
 - $-A_{aa} \rightarrow A_{ab} A_{ba} A_{ba} A_{aa}$
- Type III:
 - $-A_{DD} \rightarrow \varepsilon$
 - $-A_{qq} \rightarrow \epsilon$

We can discard all rules containing the variables A_{qq} and A_{qp} . And we can also simplify the rules containing A_{pp} and get the grammar with just two rules $A_{pq} \rightarrow ab$ and $A_{pq} \rightarrow aA_{pq}b$.

Are all languages context-free?

- Ans: No.
- How do we know this?
 - Ans: Cardinality arguments.
- Let C(CFG) = {G | G is a CFG}, C(CFG) is a countable set. Why?
- Let AL = { L | L is a subset of ∑*}. AL is uncountable.

Pumping Lemma

- First technique to show that specific given languages are not context-free.
- Cardinality arguments show existence of languages that are not context-free.
- There is a big difference between the two!

Statement of Pumping Lemma

If A is an infinite context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions.

- 1. For each $i \ge 0$, $uv^i x y^i z \in A$,
- 2. |vy| > 0, and
- 3. |vxy| <= p.

Statement of Pumping Lemma (contd.)

- When s is divided into uvxyz, condition 2 says -either v or y is not the empty string.
 - Otherwise the theorem would be trivially true.
- Condition 3 say the pieces v, x, and y together have length at most p.
 - This condition is useful in proving that certain languages are not context free.

Proof of pumping lemma

Idea: If a sufficiently long string s is derived by a CFG, then there is a repeated nonterminal on a path in the parse tree.

One such repeated nonterminal must have a nonempty yield "on the sides" – v, y.

This nonterminal can be used to build infinitely many longer strings (and one shorter string, *i* = 0 case) derived by the CFG.

Uses: Pigeon-hole principle.

Details of Proof of Pumping Lemma

- Let A be a CFL and let G be a CFG that generates it. We must show how any sufficiently long string s in A can be pumped and remain in A.
- Let s be a very long string in A.
- Since s is in A, it is derivable from G and so has a parse tree. The parse tree for s must be very tall because s is very long.

How long does s have to be?

- Let b be the maximum number of symbols in the right-hand side of a rule.
- Assume $b \ge 2$.
 - A parse tree using this grammar can have no more than b children.
 - At least b leaves are 1 step from the start variable; at most b^2 leaves are at most 2 steps from the start variable; at most b^h leaves are at most h steps from the start variable.

- So, if the height of the parse tree is at most h,
 the length of the string generated is at most bh
- Let /V / = number of nonterminals in G
- Set $p = b^{|V|+2}$
- Because $b \ge 2$, we know that $p > b^{|V|+1}$, so a parse tree for any string in A of length at least p requires height at least |V| + 2.
- Therefore, let s in A be of length at least p.

The parse tree must contain some long path from the start variable at the root of the tree to one of the terminal symbol at a leaf. On this long path some variable symbol
 R must repeat because of the pigeonhole principle.

We start with a smallest parse tree which yield s

 This repetition of R allows us to replace the subtree under the 2nd occurrence of R with the subtree under the 1st occurrence of R and still get a legal parse tree. Therefore we may cut s into 5 pieces uvxyz as the figure indicates and we may repeat the 2nd and pieces and obtain a sting in the language.

In other words, uvixyiz is in A for any i ≥ 0.
 even if i = 0.

Some Applications of Pumping Lemma

- The following languages are not contextfree.
 - 1. $\{a^nb^nc^n \mid n \ge 0 \}$.
 - 2. $\{a^{n^2} \mid n \ge 0\}$.
 - 3. {w in {a,b,c}* | w has equal a's, b's and c's}.

Example: CFL L={aⁿbⁿcⁿ | n ≥ 0 }

- L is not context free.
- To show this, assume L is a CFL. L is infinite.
- Let $w = a^p b^p c^p$, p is the pumping length

$$a \dots a \underbrace{b \dots b}_{p} \underbrace{c \dots c}_{p} \qquad |vy| \ge 0$$
$$|vxy| \le p$$
$$|w| = 3p \ge p$$

Example (contd.)

Case 1:

 Both v and y contain only one type of alphabet symbols, v does not contain both a's and b's or both b's and c's and the same holds for y. Two possibilities are shown below.

$$a \dots a \underbrace{b \dots b}_{\mathsf{v}} \underbrace{c \dots c}_{\mathsf{v}}$$

– In this case the string uv^2xy^2z cannot contain equal number of a's, b's and c's. Therefore, $uv^2xy^2z \notin L$.

Example (contd.)

Case 2:

 Either v or y contain more than one type of alphabet symbols. Two possibilities are shown below.

- In this case the string uv²xy²z may contain equal number of the three alphabet symbols but won't contain them in the correct order.
- Therefore, uv²xy²z ∉ L.

CFL is not closed under intersection and complement

- Let Σ = {a,b,c}. L = {w over Σ | w has equal a's and b's}. L' = {w over Σ | w has equal b's and c's}. L, L' are CFLs.
- L intersect L' = {w over ∑ | w has equal a's, b's and c's}, which is not a CFL.
- Because of closure under Union and DeMorgan's law, CFLs are not closed under complement either.
- CFLs are closed under intersection with regular languages.

Tips of the trade -- Do not forget!

Closure properties can be used effectively for:

(1) Shortening cumbersome Pumping lemma arguments.

Example: {w in {a, b, c}* | w has equal a's, b's, and c's}.

(2) For showing that certain languages are contextfree.

Example: {w in {a, b, c}* | w has equal a's and b's or equal b's and c's }.

Reference

 www.cs.uh.edu/~rmverma by Dr. Rakesh Verma.

Answer of page 80

• L(M)={ww^R}

Homework 3

- Exercise 2.1 on page 128
- Exercise 2.2
- Exercise 2.4 b, c, e, f
- Exercise 2.11
- Exercise 2.14
- Problem 2.30 a, b