

Instituto Federal de Brasília

Campus Taguatinga

Superior em Computação

Henrique Tavares Aguiar

João Vitor Souza Rezende

Mínimos quadrados e Integração numérica

Taguatinga

Henrique Tavares Aguiar

João Vitor Souza Rezende

Mínimos quadrados e Integração numérica

Trabalho apresentado à disciplina de Cálculo Numérico, do curso de Ciência da Computação, referente à parte da nota do

terceiro módulo de avaliações.

Professor: Dhiego Loiola de Araújo

Taguatinga

2019

Sumário

1 Mínimos Quadrados	4
1.1 Definição	
1.2 Aplicação	
2 Integração Numérica	
2.1 Definição	7
2.2 Aplicação	8
3 Integração Numérica com Distribuição Normal	25
3.1 Definição	25
3.2 Aplicação	25
4 Conclusão	31

1 Mínimos Quadrados

1.1 Definição

O método de mínimos quadrados consiste em aproximar dados do tipo: $\{(x_i, y_i)\}_{i=0}^n$, através de funções determinadas previamente, cujo objetivo é minimizar o erro entre a função de aproximação e os dados.

Para este trabalho utilizaremos funções do tipo: $a_i * g_i(x)$, para compor a função $p(x) = \sum_{i=0}^{n} a_i * g_i(x)$, onde $g_k(x) = x^k$.

E o erro será dado por: $\sum_{i=0}^{n} |y_i - p(x_i)|$

Portanto precisamos determinar os coeficientes a_i , que minimizem o erro. Para isso, utilizando a notação de produto interno: $\langle g_j, g_k \rangle = \sum_{i=0}^n g_j(x_i) * g_k(x_i)$, determinase os coeficientes a partir desse sistema linear, com n parâmetros:

$$\begin{bmatrix} < g_0, g_0 > & \cdots & < g_0, g_n > \\ \vdots & \ddots & \vdots \\ < g_n, g_0 > & \dots & < g_n, g_n > \end{bmatrix} \begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} < g_0, y > \\ \vdots \\ < g_n, y > \end{bmatrix}$$

1.2 Aplicação

Foram aproximados os seguintes dados:

$$\{(1.0, 1.84), (1.1, 1.96), (1.3, 2.21), (1.5, 2.45), (1.9, 2.94), (2.1, 3.18)\}$$

Com polinômios p(x), que apresentam graus 1, 2 e 3.

No caso de grau 1:

Compreende-se os seguintes coeficientes:

$$a = [0.620895, 1.219621].$$

E, como resultado, o seguinte polinômio:

$$p_1(x) = 0.620895 + 1.219621 * x$$

Já o erro se apresenta como: 2.719449225⁻⁵

• No caso de grau 2:

Compreende-se os seguintes coeficientes:

$$a = [0.596581, 1.253293, -0.010853]$$

E, como resultado, o seguinte polinômio:

$$p_2(x) = 0.596581 + 1.253293 * x - 0.010853 * x^2$$

Já o erro se apresenta como: 1.801484230⁻⁵

• No caso de grau 3:

Compreende-se os seguintes coeficientes:

$$a = [0.629019, 1.185010, 0.035333, -0.010047]$$

E, como resultado, o seguinte polinômio:

$$p_3(x) = 0.629019 + 1.185010 * x + 0.035333 * x^2 - 0.010047 * x^3$$

Já o erro se apresenta como: 1.740731095⁻⁵

Para melhor visualização, fizemos os gráficos desses polinômios:

Aplicando um zoom na parte em que aparecem os dados, temos o gráfico:

Gráfico 2 – zoom no gráfico 1

2 Integração Numérica

2.1 Definição

Neste trabalho foram utilizadas as regras dos Trapézios e de Simpson repetidas.

A regra dos Trapézios repetida, consiste em aproximar o valor de uma integral definida calculando áreas de trapézios em um determinado intervalo de integração, e a precisão deste método se dá pela quantidade de trapézios, ao dividir o intervalo de integração em n pontos igualmente espaçados (o espaçamento entre um ponto e outro é chamado de h) é obtido n-1 trapézios.

De forma geral:

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} \frac{h}{2} * (f(x_{i-1}) + f(x_{i}))$$

E uma aproximação do erro dessa aproximação pode ser calculado da forma:

$$|E| = \left|\frac{n*h^3}{12} * f''(\xi)\right|$$
, onde $|f''(\xi)|$ é o ponto máximo de $|f''(x)|$ no intervalo [a, b].

A regra de Simpson repetida é similar a dos Trapézios, porém utiliza parábolas ao invés de trapézios para aproximar a integral, e nesse método é necessário que aproxime com n pontos, sendo n um número ímpar, pois teremos (n-1)/2 parábolas.

De forma geral:

$$\int_{a}^{b} f(x) dx = \sum_{i=2}^{n} \frac{h}{3} * (f(x_{i-2}) + 4 * f(x_{i-1}) + f(x_{i}))$$

E uma aproximação do erro dessa aproximação pode ser calculado da forma:

 $|E| = |\frac{n*h^5}{180} * f^{(4)}(\xi)|$, onde $|f^{(4)}(\xi)|$ é o ponto máximo de $|f^{(4)}(x)|$ no intervalo [a, b].

2.2 Aplicação

Agora aproximaremos os valores das seguintes integrais:

$$\int\limits_0^1 e^{cos(\pi x)}\; dx$$

$$\int\limits_0^1 sen(\pi x^2) dx$$

$$\int_{0}^{1} \frac{1}{(1+x^{5})} dx$$

$$\int_{0}^{1} \cos(e^{\cos(\pi x)}) dx$$

utilizando as regras dos Trapézios e de Simpson com as seguintes quantidades de pontos: 11, 101, 1001, 10^4+1 , 10^5+1 , 10^6+1

$$\int_{0}^{1} e^{\cos(\pi x)} dx:$$

Gráfico 3 – regra dos Trapézios com 11 pontos no intervalo [0,1]

Gráfico 4 – regra de Simpson com 11 pontos no intervalo [0,1]

Gráfico 5 – zoom no gráfico 3

Gráfico 6 – zoom no gráfico 4

Gráfico 7 – regra dos Trapézios com 101 pontos no intervalo [0,1]

Gráfico 8 – regra de Simpson com 101 pontos no intervalo [0,1]

n	Dados	Regra dos Trapézios	Regra de Simpson
11	Resultado:	1,2660658777520084	1,2660658775684783
	Erro:	0.024592669	0.000647253
	Tempo:	0.000929594	0.000895739
	Resultado:	1,2660658777520089	1,2660658777520084
101	Erro:	0.000225805	5,942960349e-08
	Tempo:	0.001624823	0.001378298
	Resultado:	1,266065877752007	1,266065877752008
1001	Erro:	2,237932888e-06	5,890003276e-12
	Tempo:	0.008147955	0.014915228
	Resultado:	1,2660658777520153	1,266065877752003
10^4 + 1	Erro:	2,235920761e-08	5,884707569e-16
	Tempo:	0.087945223	0.08406949
	Resultado:	1,2660658777520224	1,2660658777520009
10^5 + 1	Erro:	2,235719548e-10	5,884177998e-20
	Tempo:	1.047491789	0.777320385
10^6 + 1	Resultado:	1,266065877751955	1.2660658777520404
	Erro:	2,235699427e-12	5,884125041e-24
	Tempo:	7.572060585	6.677750826

Tabela 1 – resultados das integrais numéricas

$$\int_{0}^{1} \operatorname{sen}(\pi x^{2}) dx:$$

Gráfico 9 – regra dos Trapézios com 11 pontos no intervalo [0,1]

Gráfico 10 – regra de Simpson com 11 pontos no intervalo [0,1]

Gráfico 11 – zoom no gráfico 9

Gráfico 12 – zoom no gráfico 10

Gráfico 13 – regra dos Trapézios com 101 pontos no intervalo [0,1]

Gráfico 14 – regra de Simpson com 101 pontos no intervalo [0,1]

n	Dados	Regra dos Trapézios	Regra de Simpson
11	Resultado:	0,4995839597119826	0,5049958787761062
	Erro:	0.023890525	0.000994819
	Tempo:	0.000821352	0.000682354
	Resultado:	0,504802230790784	0,5048546078982653
101	Erro:	0.000219358	9,134244504e-08
	Tempo:	0.001463413	0.001204967
	Resultado:	0,5048540705145663	0,5048545941150646
1001	Erro:	2,174037807e-06	9,052850246e-12
	Tempo:	0.0081954	0.009857655
	Resultado:	0.5048545888776994	0,5048545941136874
10^4 + 1	Erro:	2,172083128e-08	9,044710820e-16
	Tempo:	0.090553284	0.085067749
	Resultado:	0,5048545940613293	0,5048545941136835
10^5 + 1	Erro:	2,171887660e-10	9,043896877e-20
	Tempo:	0.932977676	0.740762472
10^6 + 1	Resultado:	0,5048545941131658	0,5048545941136833
	Erro:	2,171868113e-12	9,043815483e-24
	Tempo:	8.947746038	6.744877815

Tabela 2 – resultados das integrais numéricas

$$\int_{0}^{1} \frac{1}{(1+x^{5})} \, \mathrm{d}x :$$

Gráfico 15 – regra dos Trapézios com 11 pontos no intervalo [0,1]

Gráfico 16 – regra de Simpson com 11 pontos no intervalo [0,1]

Gráfico 17 – zoom no gráfico 15

Gráfico 18 – zoom no gráfico 16

Gráfico 19 – regra dos Trapézios com 101 pontos no intervalo [0,1]

Gráfico 20 – regra de Simpson com 101 pontos no intervalo [0,1]

n	Dados	Regra dos Trapézios	Regra de Simpson
11	Resultado:	0,8872700785689527	0,8883209184908823
	Erro:	0.003007632	7,695707427e-05
	Tempo:	0.001006603	0.001112223
	Resultado:	0,888303155802825	0,8883135733810509
101	Erro:	2,761552960e-05	7,066058638e-09
	Tempo:	0.001388788	0.001629114
	Resultado:	0,8883134684851033	0,8883135726518614
1001	Erro:	2,736945062e-07	7,003093759e-13
	Tempo:	0.004774809	0.004742861
	Resultado:	0,8883135716101188	0,8883135726517876
10^4 + 1	Erro:	2,734484272e-09	6,996797271e-17
	Tempo:	0.054700375	0.059584141
	Resultado:	0,8883135726413935	0,8883135726517918
10^5 + 1	Erro:	2,734238193e-11	6,996167622e-21
	Tempo:	0.490274429	0.402683735
	Resultado:	0,8883135726517138	0,8883135726517933
10^6 + 1	Erro:	2,734213585e-13	6,996104657e-25
	Tempo:	3.263896227	3.372125864

Tabela 3 – resultados das integrais numéricas

$$\int_{0}^{1} \cos(e^{\cos(\pi x)}) dx :$$

Gráfico 21 – regra dos Trapézios com 11 pontos no intervalo [0,1]

Gráfico 22 – regra de Simpson com 11 pontos no intervalo [0,1]

Gráfico 23 – zoom no gráfico 21

Gráfico 24 – zoom no gráfico 22

Gráfico 25 – regra dos Trapézios com 101 pontos no intervalo [0,1]

Gráfico 20 – regra de Simpson com 101 pontos no intervalo [0,1]

n	Dados	Regra dos Trapézios	Regra de Simpson
11	Resultado:	0,2476060918580033	0,2476129262990534
	Erro:	0.018402473	0.001299266
	Tempo:	0.001569033	0.003973246
	Resultado:	0,24760609185898977	0,24760609185898977
101	Erro:	0.000168968	1,192962398e-07
	Tempo:	0.002422333	0.004809618
	Resultado:	0,2476060918589894	0,24760609185899
1001	Erro:	1,674625082e-06	1,182332040e-11
	Tempo:	0.011314631	0.036769867
	Resultado:	0,24760609185899074	0,2476060918589899
10^4 + 1	Erro:	1,673119425e-08	1,181269004e-15
	Tempo:	0.128325701	0.146105289
	Resultado:	0,2476060918589903	0.24760609185898902
10^5 + 1	Erro:	1,672968859e-10	1,181162701e-19
	Tempo:	1.27613616	1.046000957
	Resultado:	0,24760609185899415	0,24760609185899032
10^6 + 1	Erro:	1,672953802e-12	1,181152070e-23
	Tempo:	11.1896956	9.225204468

Tabela 4 – resultados das integrais numéricas

OBS: Os tempos observados nas tabelas, são relativos, pois dependem do desempenho da máquina aonde serão executados, porém espera-se que eles sejam proporcionalmente parecidos aos apresentados anteriormente.

3 Integração Numérica com Distribuição Normal

3.1 Definição

A Distribuição Normal é uma função usada em probabilidade, cujo objetivo é calcular a probabilidade de algum evento através do cálculo da integral definida da mesma, com os limites a e b (a forma com que esses limites são definidos depende do evento probabilístico, e não faz parte deste trabalho). Portanto, foram utilizados valores genéricos, pois o propósito é apenas calcular a integral numérica.

Distribuição Normal padrão:

$$f(x) = \frac{1}{\sqrt{2\pi}} * e^{(\frac{-x^2}{2})}$$

Portanto, calcularemos a seguinte integral:

$$P(0 \le x \le z) = \frac{1}{\sqrt{2\pi}} * \int_{0}^{z} e^{(\frac{-x^{2}}{2})} dx$$

3.2 Aplicação

Para a aplicação estabelece-se uma tabela com os valores de z e suas integrais numéricas de 0 até 3.9 com uma distância de 0.1, ou seja, calcula-se as integrais para os 40 valores da variável z.

Para esta parte foi utilizada a regra de Simpson para calcular as integrais numéricas.

Começamos a aproximação com 1 ponto, quando z = 0.0, e à medida que o valor de z aumenta um décimo, aumenta-se 2 pontos na aproximação.

Exemplo: z = 0.1, 3 pontos; z = 0.2, 5 pontos.

Antes de mostrarmos os valores obtidos na tabela, é apresentado gráficos para os valores de z = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.9] para melhor visualização.

 $Gráfico\ 21 - z = 0.0,\ 1\ ponto$

Gráfico 22 - z = 0.5, 11 pontos

Gráfico 23 – z = 1.0, 21 pontos

Gráfico 24 - z = 1.5, 31 pontos

Gráfico 27 – z = 3.0, 61 pontos

Gráfico - z = 3.9, 79 pontos

Após demonstrados os gráficos de visualização, segue à tabela completa das integrais numéricas:

pontos	Intervalo inicial	intervalo final	Integral numérica
1	0	0.0	0,0
3	0	0.1	0,03982784140429167
5	0	0.2	0,0792597174890254
7	0	0.3	0,1179114337664817
9	0	0.4	0,15542175615700832
11	0	0.5	0,19146247810557857
13	0	0.6	0,22574690060113917
15	0	0.7	0,25803636684997616
17	0	0.8	0,2881446204291005
19	0	0.9	0,3159398928821709
21	0	1.0	0,34134476288708177
23	0	1.1	0,3643339539585589
25	0	1.3	0,38493034240682006
27	0		,
		1.4	0,40319952554993843
29	0	1.5	0,4331928037855103
31	0	1.6	0,44520071100439845
35	0	1.7	0,455434537842936
37	0	1.8	0,4640696796926665
39	0	1.9	0,4712834375330072
41	0	2.0	0,4772498642923927
43	0	2.1	0,4821355749058985
45	0	2.2	0,4860965474923008
47	0	2.3	0,4892758847911425
49	0	2.4	0,4918024589194296
51	0	2.5	0,4937903297253561
53	0	2.6	0,4953388073631033
55	0	2.7	0,49653302200441213
57	0	2.8	0,4974448659444749
59	0	2.9	0,49813418345722843
61	0	3.0	0,49865009919929393
63	0	3.1	0,49903239446364434
65	0	3.2	0,4993128601455974
67	0	3.3	0,49951657430175933
69	0	3.4	0,49966306949052924
71	0	3.5	0,49976736994129867
73	0	3.6	0,49984089064924003
75	0	3.7	0,4998921996842074
77	0	3.8	0,49992765151630425
79	0	3.9	0,4999519033282724

4 Conclusão

Ao decorrer deste trabalho é possível aprender com o teorema de mínimos quadrados, a partir da aproximação dos dados, funções para o menor erro entre as aplicações dos polinômios para apresentação de graus 1, 2 e 3 que se pode obter uma melhor visualização com os gráficos. Contendo a integração numérica através das regras dos Trapézios e de Simpson, obtêm-se uma melhor aproximação com o valor da integral definida calculada as áreas e obtendo uma precisão melhor pela quantidade de trapézios ao intervalo e de Simpson utiliza-se as parábolas para aproximar a integral dependente dos pontos passados. Ao verificar os erros e compara-los, observa-se que ao decorrer do n, varia o erro e o tempo de execução.

A partir da integração numérica com a função de distribuição normal, se calcula uma aproximação do cálculo da integral com pontos de a e b, tendo uma aplicação cria-se uma tabela com o valor da variável z, com as integrais numéricas correspondentes a cada valor determinado que é utilizado são apresentados com os gráficos, obtendo uma melhor visualização em conjunto com a tabela.