Variations et extremums

Hypothèse. Soit f une fonction définie sur un intervalle I et à valeurs dans \mathbb{R} .

Définition. f est **croissante sur** I ssi : Pour tous $x_1, x_2 \in I$, si $x_1 \le x_2$ alors $f(x_1) \le f(x_2)$

Autrement dit f(x) augmente lorsque x augmente sur I.

Définition. f est décroissante sur I ssi : Pour tous $x_1, x_2 \in I$, si $x_1 \le x_2$ alors $f(x_1) \ge f(x_2)$

Autrement dit f(x) diminue lorsque x augmente sur I.

Définition. On définit de manière analogue « **strictement croissante** » et « **strictement décroissante** » en remplaçant les inégalités larges ≤ par des inégalités strictes <.

Définition. f est **monotone** sur I ssi : f est croissante sur I ou f est décroissante sur I.

Définition. Un tableau de variations regroupe les informations concernant les variations d'une fonction sur son ensemble de définition.

Exemple. Soit la fonction f définie sur [-3; 4] par le graphe ci-dessous :

Son tableau de variations est :

On peut lire que f est décroissante sur [-3; -1], croissante sur [-1; 2] et décroissante sur [2; 4].

Propriétés. Sens de variation des fonctions usuelles.

Fonction carré

 $x \mapsto x^2$

La fonction carré est décroissante sur \mathbb{R} – et croissante sur $\mathbb{R}+$.

Fonction inverse

 $x\mapsto \frac{1}{x}$

La fonction inverse est décroissante sur \mathbb{R}^* – et décroissante sur \mathbb{R}^* +.

Fonction racine carrée

 $x \mapsto \sqrt{x}$

La fonction racine carrée est croissante sur $\mathbb{R}+$.

Fonction cube

 $x \mapsto x^3$

La fonction cube est croissante sur \mathbb{R} .

Propriété. Soit une fonction affine définie par $f: \mathbb{R} \to \mathbb{R}: x \mapsto ax + b$. (a et b sont des constantes réelles).

Si a > 0 alors f est croissante sur \mathbb{R} .

Si a < 0 alors f est décroissante sur \mathbb{R} .

Si a = 0 alors f est constante sur \mathbb{R} .

a>0

Exemple. $x \mapsto 4x - 3$ est croissante sur \mathbb{R} car a = 4 > 0. $x \mapsto -2x + 8$ est décroissante car a = -2 < 0.

Définition. f a pour **maximum** M sur I ssi pour tout $x \in I$, $f(x) \le M$ <u>et</u> il existe $a \in I$ tel que f(a) = M.

Autrement dit, M (s'il existe) est <u>l'ordonnée</u> du point le plus haut de la courbe de f sur I. **Définition.** f a pour **minimum** m sur I ssi pour tout $x \in I$, $m \le f(x)$ <u>et</u> il existe $a \in I$ tel que f(a) = M. m (s'il existe) est <u>l'ordonnée</u> du point le plus bas de la courbe de f sur I.

Définition. Un **extremum** est un minimum <u>ou</u> un maximum.

Remarque. Une fonction peut n'avoir ni maximum, ni minimum. (Par ex. $x \mapsto x^3$ sur \mathbb{R})

