Experiment #3– Function Generator

Ava Mirmohammadmahdi 810199501 Nesa Abbasi 810199457

1.Digital to Analog conversion using PWM

Fig. 1 Dac verilog

Fig. 2 Dac waveform

Fig. 3 Dac waveform

As we see when input < counter, the output is 0 else is 1.

2. Waveform Generator

Fig. 4 Waveform generator

Fig. 5 Waveform generator

Fig. 6 Square output

Fig. 7 Triangle output

Fig. 8 Reciprocal output

Fig. 9 Waveform generator output

Flow Summary <<Filter>> Successful - Sat May 28 14:33:51 2022 Flow Status Quartus Prime Version 20.1.0 Build 711 06/05/2020 SJ Lite Edition Revision Name WaveformGen Top-level Entity Name WaveformGen Cyclone IV E Family EP4CE6E22A7 Device Timing Models Final Total logic elements 107 / 6,272 (2%) Total registers Total pins 12/92(13%) Total virtual pins Total memory bits 0 / 276,480 (0%) Embedded Multiplier 9-bit elements 0/30(0%) Total PLLs 0/2(0%)

Fig. 10 Synthesis summary

Fig. 11 Square waveform

Fig. 12 Triangle waveform

Fig. 13 Reciprocal waveform

Fig. 14 Sin waveform

3. Frequency Selector

Fig. 15 Frequency Selector

Fig. 16 input = 9

The 8bit Counter loads 256 – input when Co(wired to load) becomes 1. 2 least significant bits of input are 2'b00 so input = $\{in, 2'b00\}$.

Output =
$$256 - \{9, 2'b00\} = 256 - 9 * 4 = 220$$
.

Fig. 17 input = 56

Output =
$$256 - \{56, 2'b00\} = 256 - 56 * 4 = 32$$
.

5.

Fig. 18 DDS

Fig. 19 Phase_cntrl = 1

Fig. 19 Phase_cntrl = 15

Fig. 20 Phase_cntrl = 25

When the value of Phase_cntrl is 1, every block of the rom will be shown but when the value of Phase_cntrl increases, some of the rom blocks will be skipped.

4.Amplitude Selector

Fig. 21 amplitude selector

Fig. 22 Shifted Square

Fig. 23 Shifted Triangle

Fig. 24 Shifted Reciprocal

Fig. 25 Shifted Sin

5. The total design

Fig. 26 Total design

Fig. 27 Waveforms

Fig. 28 Circuit

Fig. 29 Square Waveform without shift

Fig. 30 Square Waveform with one shift

Fig. 31 Square Waveform with two shifts

Fig. 32 Triangle Waveform without shift

Fig. 33 Triangle Waveform with one shift

Fig. 34 Triangle Waveform with two shifts

Fig. 35 Reciprocal Waveform without shift

Fig. 36 Reciprocal Waveform with one shift

Fig. 37 Reciprocal Waveform with two shifts

Fig. 38 Sin Waveform without shift

Fig. 39 Sin Waveform with one shift

Fig. 40 Sin Waveform with two shifts