

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

According to the quark model, the Ξ_c^0 (quark content dsc) and Ξ_c^+ form an isospin doublet, and the spin-parity ought to be $J^P=1/2^+$. None of I, J, or P has actually been measured.

\equiv_c^0 MASS

The fit uses the Ξ_c^0 and Ξ_c^+ mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT			
2470.87 ^{+0.28} _{-0.31} OUR FIT								
2470.99 ^{+0.30} _{-0.50} OUR AVERAGE								
$2470.85\!\pm\!0.24\!\pm\!0.55$	3.4k	AALTONEN	14 B	CDF	$p\overline{p}$ at 1.96 TeV			
2471.0 $\pm 0.3 ^{+0.2}_{-1.4}$	8.6k	¹ LESIAK	05	BELL	e^+e^- , $\Upsilon(4S)$			
$2470.0 \pm 2.8 \pm 2.6$	85	FRABETTI	98 B	E687	γ Be, $\overline{\it E}_{\gamma}=$ 220 GeV			
2469 ± 2 ± 3	9	HENDERSON	92 B	CLEO	$\Omega^{-}K^{+}$			
$2472.1 \pm 2.7 \pm 1.6$	54	ALBRECHT	90F	ARG	e^+e^- at $\varUpsilon(4S)$			
$2473.3 \pm 1.9 \pm 1.2$	4	BARLAG	90	ACCM	π^- (K^-) Cu 230 GeV			
2472 ± 3 ± 4	19	ALAM	89	CLEO	$e^{+}e^{-}$ 10.6 GeV			
• • We do not use the following data for averages, fits, limits, etc. • •								
$2462.1 \pm 3.1 \pm 1.4$	42	² FRABETTI	93 C	E687	See FRABETTI 98B			
2471 ± 3 ± 4	14	AVERY	89	CLEO	See ALAM 89			
¹ The systematic error	was (wr	ongly) given the oth	ner wa	ay round	in LESIAK 05.			

² The FRABETTI 93C mass is well below the other measurements.

$\Xi_c^0 - \Xi_c^+$ MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
3.00 ± 0.24 OUR FIT					
2.91±0.26 OUR AVER	AGE				
$2.85\!\pm\!0.30\!\pm\!0.04$	5.1/3.4k	AALTONEN	14 B	CDF	$p\overline{p}$ at 1.96 TeV
$2.9\ \pm0.5$		LESIAK	05	BELL	e^+e^- , $\Upsilon(4S)$
$7.0 \pm 4.5 \pm 2.2$		ALBRECHT	90F	ARG	e^+e^- at $\varUpsilon(4S)$
$6.8 \pm 3.3 \pm 0.5$		BARLAG			π^- (K^-) Cu 230 GeV
5 ± 4 ± 1		ALAM	89	CLEO	$\Xi_c^0 \rightarrow \Xi^- \pi^+, \Xi_c^+ \rightarrow$
					$\equiv -\pi + \pi +$

Created: 5/30/2017 17:23

\equiv_{c}^{0} MEAN LIFE

$VALUE (10^{-15} \text{ s})$	EVTS	DOCUMENT ID		TECN	COMMENT
112^{+13}_{-10} Our Average	GE .				
$118^{igoplus 14}_{-12} \pm 5$	110	LINK	02н	FOCS	γ nucleus, $pprox$ 180 GeV
$101^{+25}_{-17}\pm 5$	42	FRABETTI	93 C	E687	$\gamma\mathrm{Be}$, $\overline{E}_{\gamma} =$ 220 GeV
$82 + 59 \\ -30$	4	BARLAG	90	ACCM	π^- (K^-) Cu 230 GeV

Ξ_c^0 DECAY MODES

No absolute branching fractions have been measured. Several measurements of ratios of fractions may be found in the Listings that follow.

Mode Fraction (Γ_i/Γ)

No absolute branching fractions have been measured. The following are branching ratios relative to $\Xi^-\pi^+$.

Cabibbo-favored (S =-2) decays — relative to $\Xi^-\pi^+$

	$ ho K^- K^- \pi^+$	0.34 ± 0.04
	$pK^{-}\overline{K}^{*}(892)^{0}$	0.21 ± 0.05
	$ ho_{ar{K}}^{K^-}K^-\pi^+$ (no \overline{K}^{*0})	0.21 ± 0.04
Γ_4	ΛK_S^0	0.210 ± 0.028
Γ_5	$\Lambda K^- \pi^+$	1.07 ± 0.14
Γ_6	$\Lambda \overline{K}{}^0 \pi^+ \pi^-$	seen
_	$A \times C = + + + -$	
	$\Lambda K^- \pi^+ \pi^+ \pi^-$	seen
Γ ₈	$\Xi^-\pi^+$	seen DEFINED AS 1
Γ ₈ Γ ₉		
Γ ₈ Γ ₉	$\Xi^-\pi^+$	DEFINED AS 1
Γ ₈ Γ ₉ Γ ₁₀ Γ ₁₁	$\Xi^{-}\pi^{+}$ $\Xi^{-}\pi^{+}\pi^{+}\pi^{-}$ $\Omega^{-}K^{+}$ $\Xi^{-}e^{+}\nu_{e}$	DEFINED AS 1 3.3 ± 1.4
Γ ₈ Γ ₉ Γ ₁₀ Γ ₁₁	$ \Xi^{-}\pi^{+} $ $ \Xi^{-}\pi^{+}\pi^{+}\pi^{-} $ $ \Omega^{-}K^{+} $	DEFINED AS 1 3.3 ± 1.4 0.297 ± 0.024

Cabibbo-suppressed decays — relative to $\Xi^-\pi^+$

Γ ₁₃	$\Xi^- K^+$	0.028 ± 0.006
Γ_{14}	$\Lambda K^+ K^-$ (no ϕ)	$0.029\!\pm\!0.007$
Γ_{15}	$\Lambda\phi$	0.034 ± 0.007

\varXi_c^0 branching ratios

Cabibbo-favored (S = -2) decays

$\Gamma(ho K^- K^- \pi^+)/\Gamma$	$\Xi^-\pi^+$					Γ_1/Γ_8
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
0.34 ± 0.04 OUR AVE	RAGE					
$0.33\!\pm\!0.03\!\pm\!0.03$	1908 ± 62	LESIAK	05		e^+e^- , $\Upsilon(4S)$	
$0.35\!\pm\!0.06\!\pm\!0.03$	148 ± 18	DANKO	04	CLEO	e^+e^-	
HTTP://PDG.LB	L.GOV	Page 2		Creat	ed: 5/30/2017	7 17:23

Γ(ρΚ ⁻ Κ̄*(892) ⁰) Unseen decay n		*(892) ⁰ are incl	uded.		Γ_2/Γ_1
VALUE		DOCUMENT ID			COMMENT
$0.210\pm0.045\pm0.015$		DANKO		CLEO	
• • • We do not use	the following o	lata for averages	s, fits,	limits, e	etc. • • •
seen		BARLAG	90	ACCM	π^- (K^-) Cu 230 GeV
$\Gamma(\rho K^-K^-\pi^+)$	· K *0))/Γ(Ξ			TECN	Γ ₃ /Γ ₆
<i>VALUE</i> 0.21±0.04±0.02		DANKO	04		e^+e^-
$\Gamma(\Lambda K_S^0)/\Gamma(\Xi^-\pi^+)$	-)				Γ_4/Γ_1
VALUE	•	DOCUMENT ID		TECN	COMMENT
$0.21 \pm 0.02 \pm 0.02$	465 ± 37	LESIAK	05	BELL	e^+e^- , $\Upsilon(4S)$
ullet $ullet$ We do not use	the following o	lata for averages	s, fits,	limits, e	etc. • •
seen	7	ALBRECHT	95 B	ARG	e^+e^-pprox 10.4 GeV
$\Gamma(\Lambda K^-\pi^+)/\Gamma(\Xi^-$	$^{-}\pi^{+})$				Γ ₅ /Γ ₁
VALUE	•	DOCUMENT ID		TECN	COMMENT
$1.07 \pm 0.12 \pm 0.07$	2979 ± 211	LESIAK	05	BELL	e^+e^- , $\Upsilon(4S)$
$\Gamma(\Lambda \overline{K}{}^0\pi^+\pi^-)/\Gamma_{ m t}$	otal				Γ ₆ /Ι
VALUE		DOCUMENT ID			<u>COMMENT</u>
seen		FRABETTI	98 B	E687	γ Be, $\overline{\it E}_{\gamma}=$ 220 GeV
$\Gamma(\Lambda K^-\pi^+\pi^+\pi^-)$	$)/\Gamma_{total}$	DOCUMENT ID		TECN	Γ ₇ /Ι
VALUE		DOCUMENT ID			COMMENT
seen		FRABETTI	906	E001	γ Be, $\overline{\it E}_{\gamma}=$ 220 GeV
$\Gamma(\Xi^-\pi^+)/\Gamma(\Xi^-\pi^+)$	$\pi^{+}\pi^{+}\pi^{-})$	DOCUMENT ID		TECN	Γ ₈ /Γ ₉
<u>VALUE</u>		DOCUMENT ID	005		$\frac{COMMENT}{e^+e^-}$ at $\Upsilon(4S)$
0.30±0.12±0.05		ALBRECHT	90F	ARG	$e \cdot e$ at $I(45)$
$\Gamma(\Omega^-K^+)/\Gamma(\Xi^-$	·	DOCUMENT ID		TECN	Γ_{10}/Γ_{0}
<u>VALUE</u> 0.297±0.024 OUR A \	<u> </u>	DOCUMENT ID		TECN	COMMENT
$0.294 \pm 0.018 \pm 0.016$	650	AUBERT.B	05м	BABR	$e^+e^-pprox \ \varUpsilon(4S)$
$0.50 \pm 0.21 \pm 0.05$	9				$e^+e^- \approx 10.6 \text{ GeV}$
$\Gamma(\Xi^-e^+ u_e)/\Gamma(\Xi^-e^+ u_e)$	$^{-}\pi^{+})$				Γ_{11}/Γ_{i}
VALUE	•	DOCUMENT ID		TECN	COMMENT
$3.1 \pm 1.0 ^{+0.3}_{-0.5}$	54	ALEXANDER	95 B	CLE2	$e^+e^- \approx \Upsilon(4S)$
$\Gamma(\Xi^-\ell^+$ anything)	/Γ(<i>Ξ</i> ⁻ π ⁺)				Γ_{12}/Γ_{i}
The ratio is for		ot the sum) of the	е <i>Ξ</i> -	e^+ anyt	hing and $\Xi^-\mu^+$ anythin
modes. <i>VALUE</i>	EVTS	DOCUMENT ID		TECN	COMMENT
0.96±0.43±0.18	18				$e^+e^-pprox 10.4 \text{ GeV}$
HTTP://PDG.LBI	L.GOV	Page 3		Creat	ed: 5/30/2017 17:23

$\Gamma(\Xi^-\ell^+ \text{ anything})/\Gamma(\Xi^-\pi^+\pi^+\pi^-)$

 Γ_{12}/Γ_{9}

The ratio is for the average (not the sum) of the Ξ^-e^+ anything and $\Xi^-\mu^+$ anything modes.

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID	TECN	<u>COMMENT</u>
$0.29\pm0.12\pm0.04$	18	ALBRECHT 9	3B ARG	$e^+e^-pprox 10.4~{\rm GeV}$

Cabibbo-suppressed decays

$\Gamma(\Xi^-K^+)/\Gamma(\Xi^-K^+)$	$\pi^+)$					Γ_{13}/Γ_{8}
$VALUE$ (units 10^{-2})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
$2.75 \pm 0.51 \pm 0.25$	314 ± 58	CHISTOV	13	BELL	$e^+e^-\approx$	$\Upsilon(4S)$
$\Gamma(\Lambda K^+ K^- (\text{no } \phi))$	$)/\Gamma(\Xi^{-}\pi^{+})$					Γ_{14}/Γ_{8}
$VALUE$ (units 10^{-2})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
$2.86 \pm 0.61 \pm 0.37$	510 ± 110	CHISTOV	13	BELL	$e^+e^-\approx$	$\Upsilon(4S)$
$\Gamma(\Lambda\phi)/\Gamma(\Xi^-\pi^+)$						Γ_{15}/Γ_{8}
<i>VALUE</i> (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
$3.43 \pm 0.58 \pm 0.32$	316 ± 54	CHISTOV	13	BELL	$e^+e^-\approx$	$\Upsilon(4S)$

Ξ_c^0 DECAY PARAMETERS

See the note on "Baryon Decay Parameters" in the neutron Listings.

$\alpha \text{ FOR } \Xi_c^0 \to \Xi^- \pi^+$

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$-0.56\pm0.39^{igoplus 0.10}_{igoplus 0.09}$	138	CHAN	01	CLE2	$e^+e^- \approx \Upsilon(4S)$

\equiv_c^0 REFERENCES

AALTONEN	14B	PR D89 072014	T. Aaltonen <i>et al.</i>	(CDF Collab.)
CHISTOV	13	PR D88 071103	R. Chistov <i>et al.</i>	(BELLE Collab.)
AUBERT.B	05M	PRL 95 142003	B. Aubert <i>et al.</i>	(BABAR Collab.)
LESIAK	05	PL B605 237	T. Lesiak et al.	(BELLE Collab.)
Also		PL B617 198 (errat.)	T. Lesiak et al.	(BELLE Collab.)
DANKO	04	PR D69 052004	I. Danko <i>et al.</i>	(CLEO Collab.)
LINK	02H	PL B541 211	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
CHAN	01	PR D63 111102	S. Chan <i>et al.</i>	(CLEO Collab.)
FRABETTI	98B	PL B426 403	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
ALBRECHT	95B	PL B342 397	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALEXANDER	95B	PRL 74 3113	J. Alexander <i>et al.</i>	(CLEO Collab.)
Also		PRL 75 4155 (erratum)	J. Alexander <i>et al.</i>	(CLEO Collab.)
ALBRECHT	93B	PL B303 368	H. Albrecht et al.	(ARGUS Collab.)
FRABETTI	93C	PRL 70 2058	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
HENDERSON	92B	PL B283 161	S. Henderson <i>et al.</i>	(CLEO Collab.)
ALBRECHT	90F	PL B247 121	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BARLAG	90	PL B236 495	S. Barlag <i>et al.</i>	(ACCMOR Collab.)
ALAM	89	PL B226 401	M.S. Alam et al.	(CLEO Collab.)
AVERY	89	PRL 62 863	P. Avery et al.	(CLEO Collab.)

Created: 5/30/2017 17:23