

COMISSÃO DE EXAMES DE ADMISSÃO

EXAME DE ADMISSÃO (2017)

PROVA DE MATEMÁTICA

INSTRUÇÕES

- 1. A prova tem a duração de 120 minutos e contempla um total de 35 perguntas.
- 2. Leia atentamente a prova e responda na Folha de Respostas a todas as perguntas.
- 3. Para cada pergunta existem quatro alternativas de resposta. Só **uma** é que está correcta. Assinale **apenas** a alternativa correcta.
- 4. Para responder correctamente, basta marcar na alternativa escolhida como se indica na Folha de Respostas. Exemplo:
- 5. Para marcar use **primeiro** lápis de carvão do tipo **HB**. Apague **completamente** os erros usando uma borracha. Depois passe por cima esferográfica **preta** ou azul.
- 6. No fim da prova, entregue **apenas** a Folha de Respostas. **Não será aceite** qualquer folha adicional.
- 7. Não é permitido o uso de máquina de calcular ou telemóvel.

Lembre-se! Assinale correctamente o seu Código

PROVA DE MATEMÁTICA

Álgebra

1.	No parque de estacionamento em frente	duma escola	estão 17	veículos,	entre bicicletas e
	automóveis. Contaram-se ao todo 56 rodo	s. Quantas b	icicletas e	quantos	automóveis há no
	parque?				
	A. 7 Bicicletas e 10 automóveis;		C) 11 B	icicletas e	6 automóveis;
	B. 10 Bicicletas e 7 automóveis:		D) 11 A	ntomóveis	e 6 bicicletas

2. Quatro planos de telefonia celular são apresentados na tabela abaixo:

Plano	Custo fixo mensal (USD)	Custo adicional/minuto (USD)
У	35,00	0,50
X	20,00	0,90
W	0,00	1,80
Z	15,00	1,50

mensal de energia eléctrica por residência, considerando os dois bairros, A e B, é

O melhor plano para alguém que fale 100 minutos por mês é:

B. *Y*;

3.	Sejam, A e B, dois bairros de uma cidade. O bairro A tem 1000 residências, sendo o consumo
	médio mensal de energia eléctrica por residência 250 kwh. Já o bairro B possui 1500
	residências, sendo o consumo médio mensal por residência igual a 300 kwh. O consumo médio

C. *Z* :

A) 292,5 kwh;

B) 287,5 kwh;

C)280 kwh; D). 275 kwh

D. W.

4. Para se apurar o vencedor de um campeonato, o regulamento estipula que cada um deles enfrente todos os outros uma única vez. Sendo 10 o número de equipas, o número total dos jogos é:

A. 45;

 $\mathbf{A}. X$;

B. 90:

C. 100;

D. 105.

5. Um número inteiro é escolhido aleatoriamente dentre os números 1, 2, 3, ..., 50. A probabilidade de ser primo é:

C. $\frac{6}{25}$;

D. $\frac{3}{10}$.

6. Dois indivíduos formaram uma empresa. O primeiro entrou com 1000 milhões de meticais e o segundo com 600 milhões. Para dividir o lucro de 112 milhões em proporção das entradas cada um teve respectivamente direito a.

A. 75 milhões e 42 milhões:

C. 82 milhões e 40 milhões;

B. 70 milhões e 42 milhões:

D. 80 milhões e 40 milhões.

- 7. Racionalizando o denominador da fracção $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$, obtêm-se:
 - **A.** $\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{5}$;

C. $\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}$;

B. $\frac{\sqrt{5}+\sqrt{2}+4\sqrt{3}}{7}$;

D. Não é possível.

- 8. O polinómio $x^2 ax + 1$
 - A) tem exactamente uma raiz real para $a = \pm$;
 - **B)** tem sempre uma raiz real, qualquer que seja o valor de a;
 - C) 2tem sempre duas raízes reais, qualquer que seja o valor de a;
 - **D)** tem exactamente uma raiz real para a = 0.
- 9. O valor de n que torna a sequência 2+3n, -5n, 1-4n uma Progressão Aritmética pertence ao intervalo:
 - **A.** [-2;-1];
- **B.** [-1;0];
- **C.** [0;1];
- **D.** [2:3].
- 10. Os valores de x que dão sentido à expressão $\frac{\sqrt{1-x}}{2-|x+2|} > x \in R$, são:
 - A. $[1; +\infty[$;

B. $R \setminus \{-2\}$;

- **D.** $]-\infty;-4[\cup]-4;0[\cup]0;1].$
- 11. O resto da divisão de $x^3 4x + 2$ por x + 2 é:
 - A. 1;

- **B.** 2;
- C. -3;

- $\mathbf{D}_1 2$
- 12. Para que o seguinte sistema seja possível e determinado $\begin{cases} ax y + z = 0 \\ x y = 1 \end{cases}$, então: x ay + z = b

 - **A.** a = b = 1; **B.** $a \ne 1, b \in R$; **C.** $a \in R, b = 1$;

13. Observe esta sequência de figuras ao lado. A figura a seguir será:

- 14. A solução da inequação $x^2 9 \le 0$ é:
 - **A.** $x \le \pm 3$;

- **B.** $x_1 = 3 \lor x_2 = -3$; **C.** $x \in [-3, 3]$; **D.** $x \in [-\infty, -3] \cup [3, +\infty[$.

15. A equação $\sqrt{3\sqrt{3}} = \left(\frac{1}{\sqrt{3}}\right)^x$, tem como solução:

A.
$$x = 7$$

B.
$$x = \sqrt{3}$$
;

A.
$$x = 7$$
; **B.** $x = \sqrt{3}$; **C.** $x = -\frac{3}{2}$; **D.** $x = \frac{1}{3}$.

D.
$$x = \frac{1}{3}$$
.

Análise Matemática

16. A equação da recta tangente à função $f(x) = x + \frac{1}{x}$, no ponto (1, 2) é:

A.
$$y = x^2 + 1$$
;

B.
$$y = 2$$
;

C.
$$y = 4x + 3$$
;

D.
$$y = 2x - 1$$
.

17. Considere o gráfico de f(x) ao lado. A inequação f(x) > -2 tem solução:

A.
$$x < 1$$
; ;

C)
$$x > -1 \land x \neq 2 < 2$$
;

B.
$$x < -2$$

D)
$$-1 < x$$
.

C.
$$k = 6$$
;

B.
$$k = 2$$
;

C.
$$k = 6$$
; **D.** $k = -25$.

19. O domínio da função $f(x) = \begin{cases} x+2 & se & x \le -1 \\ x^2 & se & x > -1 \end{cases}$ é:

A.]
$$-\infty,+\infty$$
[;

B.
$$[-2,0]$$
;

C.
$$[2,+8]$$
;

D.
$$0 \le x < 2$$
.

20. Dada a função $f(x) = \frac{x-3}{x-2}$, o $\lim_{x \to 2^+} f(x)$ é:

$$A_{\cdot} - \infty$$

$$D. -1.$$

21. Considere a função $f: R \to R$, $f(\alpha) = 4\cos(\alpha) + 3\sin(\alpha) - 1$. A derivada da função f tem fórmula:

A.
$$f'(\alpha) = 4\operatorname{sen}(\alpha) - 3\cos(\alpha)$$
;

C.
$$f'(\alpha) = -4\operatorname{sen}(\alpha) + 3\cos(\alpha)$$
;

B.
$$f'(\alpha) = 4\text{sen}(\alpha) - 3\cos(\alpha) - 1$$
;

D.
$$f'(\alpha) = -4\operatorname{sen}(\alpha) + 3\cos(\alpha) - 1$$
.

22. O valor máximo da função $f: R \to R$, $f(\alpha) = 4\cos(\alpha) + 3\sin(\alpha) - 1$, ou seja, o maior valor das imagens $f(\alpha)$ é igual a:

23. O valor de $\lim_{x\to 0^+} x \ln x$ é:

A.
$$e^3$$
;;

24. Na figura abaixo, a recta $y = \frac{1}{4}x + b$ é tangente ao

gráfico $y = \sqrt{x}$. Os valores de a e b são respectivamente.

25. Um projéctil é lançado verticalmente de baixo para cima. Admita que sua altitude h em metros, t segundos após ter sido lançado, é dada pela expressão $h(t) = 100t - 5t^2$. A velocidade (em metros por segundo) do projéctil dois segundos após o lançamento é:

Geometria

26. Tomando $\sqrt{3} = 1,7$ a área do triângulo da figura ao lado é igual a A) 1,15; B) 1,25; C) 1,30; D) 1,35.

27. Considere no plano xy as rectas y=1, y=2x-5 e x-2y+5=0. As coordenadas dos vértices do triângulo formado por essas rectas são:

A.
$$(3;1)$$
, $(-3;1)$, $(5;5)$;

B.
$$(0;-3), (\frac{1}{3};7), (2;\frac{1}{5});$$

C.
$$(5;2), (-1;7), (\frac{1}{2};3);$$

28. Um círculo de raio r está inscrito em um triângulo ABC. Se $\overline{AC} = 6cm$, $\overline{AB} = 10cm$ e \overline{BC} = 12cm Então, a área da região interior ao triângulo e exterior ao círculo é igual a:

A.
$$\frac{32\pi}{7}cm^2$$
;

C.
$$\frac{8(7\sqrt{14}-4\pi)}{7}cm^2$$
;

B.
$$\frac{8(7\sqrt{14}+4\pi)}{7}cm^2$$
;

D.
$$\frac{8(7\sqrt{14}-5\pi)}{7}cm^2$$
.

29. A distância do ponto P(-2;3) à recta de equação y=2x+7 é:

A.
$$-\frac{3}{2}$$

B.
$$\frac{3}{2}$$

B.
$$\frac{3}{2}$$
; **C**. $\frac{6}{\sqrt{13}}$;

30. Um círculo de raio $2\sqrt{2}$ tem o seu centro numa circunferência de raio 2, veja figura: a circunferência grande tem raio $2\sqrt{2}$ e a circunferência menor tem raio 2.

Oual é a área pintada da parte do menor círculo que está

Qual é a área pintada da parte do menor círculo que está fora do grande círculo?

B.
$$\frac{5}{4}\pi$$
;

$$\mathbf{C}.\sqrt{2}\cdot\boldsymbol{\pi};$$

31. Considere o rectângulo ao lado. Uma expressão para a área total deste rectângulo em função de x é:

A.
$$2x^2 + 5x + 6$$
;

C.
$$2x + 3 + x + 2$$
;

B.
$$2x^2 + 6$$
;

D.
$$2x^2 + 7x + 6$$
.

- 32. Os pontos L, M e N são pontos médios de arestas do cubo, como mostra a figura ao lado. Quanto mede o ângulo LMN?
 - **A.** 90°;
- **B.** 105°:
- C. 120°;
- **D.** 135° .

- 33. Na figura ao lado, a recta PQ toca em N o círculo que passa por L, M e N. A recta LM corta a recta PQ em R. Se LM = LN e a medida do ângulo PNL é α , $\alpha > 60^{\circ}$, quanto mede o ângulo LRP?
 - **A.** $3\alpha 180^{\circ}$;
- **C.** $90^{\circ} \alpha/2$.;
- **B.** $180^{\circ} 2\alpha$;
- **D.** $180^{\circ} \alpha$

34. Três quadrados são colados pelos seus vértices entre si e a dois bastões verticais, como mostra a figura ao lado.

Qual a medida do ângulo x?

A. 46°;

C39°;

B. 41°;

D. 44°

- 35. O quadrilátero ABCD é um quadrado de área $4 m^2$. Os pontos M e N estão no meio dos lados a que pertencem. Podemos afirmar que a área do triângulo em destaque é, em m^2 ,
 - **A.** 1,5;
- **B.** 2;
- C. 2,5;
- **D.** 3.

FIM