II.4 Data Fusion in IoT WSN

Assoc. Prof. Tham Chen Khong Dept of ECE, NUS

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Collaborative Signal Processing (CSP)

- In principle, more information about a phenomenon can be gathered from multiple measurements
 - Multiple sensing modalities (acoustic, seismic, etc.)
 - Multiple nodes
- Limited local information gathered by a single node necessitates CSP
 - Inconsistencies between measurements, such as due to malfunctioning nodes, can be resolved
- Variability in signal characteristics and environmental conditions necessitates CSP
 - Complementary information from multiple measurements can improve performance

Reference

[Brooks03] R. Brooks, P Ramanathan and A.K. Sayeed, "Distributed Target Classification and Tracking in Sensor Networks", Proceedings of IEEE, vol. 91, no. 8, Aug 2003.

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

3

Categorization of CSP Algorithms Based on **Communication Burden**

- Intra-node collaboration
 - Multiple sensing modalities
 - E.g., combining acoustic and seismic measurements
 - No communication burden since collaboration is at a particular node
 - · Higher computational burden at the node

- Combining measurements at different nodes
- Higher communication burden since data is exchanged between nodes
- Higher computational burden at manager node

Categorization of CSP Algorithms Based on Computational Burden

 $X_{1,2}$

- Data fusion
 - Time series for different measurements are combined
 - Higher computational burden since higher dimensional data is jointly processed
 - Higher communication burden if different measurements from different nodes

- Decisions (hard or soft) based on different measurements are combined
- Lower computational burden since lower dimensional data (decisions) is jointly processed
- Higher communication burden if the component decisions are made at different nodes

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

 ${\bf X}_{2,1}$

Various Forms of CSP

- Single Node, Multiple Modality (SN, MM)
 - Simplest form of CSP: no communication burden
 - Decision fusion
 - Data fusion (higher computational burden)
- Multiple Node, Single Modality (MN, SM)
 - Higher communication burden
 - · Decision fusion
 - Data fusion (higher computational burden)
- Multiple Node, Multiple Modality (MN, MM)
 - Highest communication and computational burden
 - · Decision fusion across modalities and nodes
 - Data fusion across modalities, decision fusion across nodes
 - Data fusion across modalities and nodes

Single Target Classification: Overview

- Single measurement classifiers
 - MAP/ML Gaussian classifiers
 - NN classifiers (benchmark)
 - Training and Performance Evaluation
 - Confusion matrices
- Multiple measurement classifiers
 - Data fusion (dependent measurements) (in depth)
 - Decision fusion (independent measurements) (not in depth)
- Different possibilities for CSP-based classification
 - Single node, multiple sensing modalities (SN, MM)
 - Multiples nodes, single sensing modality (MN, SM)
 - Multiple nodes, multiple sensing modalities (MN, MM)

The basic ideas illustrate general CSP principles in distributed decision making

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

7

Single Measurement Classifier

- M possible target classes: $\omega_{m} \in \Omega = \{m = 1, \dots, M\}$
- x : N-dim. (complex-valued) event feature vector
 - ${\bf x}$ belongs to m-th class with probability $P(\omega_m)$
- C: classifier assigns one of the classes to x

MAP:
$$C(\mathbf{x}) = m$$
 if $P(\omega_m \mid \mathbf{x}) = \max_{j=1,\dots,M} P(\omega_j \mid \mathbf{x})$

Bayes rule:
$$C(\mathbf{x}) = \arg \max_{j=1,\dots,M} P(\mathbf{x} \mid \omega_j) P(\omega_j)$$

Equal priors (ML):
$$C(\mathbf{x}) = \arg \max_{j=1,\dots,M} P(\mathbf{x} \mid \omega_j)$$

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Single Measurement Classifier - Pictorially

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

9

Gaussian Classifiers

• Assume that for class j, ${\bf x}$ has a Gaussian distribution with mean vector ${\bf \mu}_i = E_i[{\bf x}]$ and covariance matrix

$$\mathbf{\Sigma}_j = E_j[(\mathbf{x} - \mathbf{\mu}_j)(\mathbf{x} - \mathbf{\mu}_j)^T]$$

- E_i[●] denotes ensemble average over class j
- Superscript T denotes transpose
- · Likelihood function for class j

$$P(\mathbf{x}|\omega_j) = \frac{1}{\pi^N |\mathbf{\Sigma}_j|} \exp[-(\mathbf{x} - \mathbf{\mu}_j)^T \mathbf{\Sigma}_j^{-1} (\mathbf{x} - \mathbf{\mu}_j)]$$

$$-\log P(\mathbf{x}|\omega_j) = \log |\mathbf{\Sigma}_j| + (\mathbf{x} - \mathbf{\mu}_j)^T \mathbf{\Sigma}_j^{-1} (\mathbf{x} - \mathbf{\mu}_j)$$

EE5132/EE5024 IoT Sensor Networks CK Tham. ECE NUS

Training and Performance Assessment

- ullet N^{Tr} training events available for each class
- 3-way cross validation partition data into 3 sets (S₁,S₂,S₃) with equal number of events for each class
- Three sets of experiments:

Train	Test
S_1, S_2	S_3

Train	Test
S_1, S_3	S_2

Train	Test
S_2, S_3	S_1

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

11

Training and Testing

- In each experiment we have:
 - Training phase: estimate mean and covariance for each class from the two training data sets

For
$$\mathbf{x}_{n} \in \omega_{j}$$
 $j = 1, ..., M$

$$\hat{\boldsymbol{\mu}}_{j} = \frac{1}{N_{0}} \sum_{n=1}^{N_{0}} \mathbf{x}_{n} \qquad \widehat{\boldsymbol{\Sigma}}_{j} = \frac{1}{N_{0}} \sum_{n=1}^{N_{0}} (\mathbf{x}_{n} - \boldsymbol{\mu}_{j}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{j})^{T}$$

– <u>Testing phase</u>: Using $(\hat{\mu}_j, \hat{\Sigma}_j)$ estimated from the two training data sets, test the performance of the classifier on the third testing set

$$C(\mathbf{x}) = \arg \max_{j=1,\dots,M} P(\mathbf{x} \mid \omega_j)$$

Confusion Matrix (multi-class)

C(x)	1	2	 М
$\omega_{\rm m}$			
1	n ₁₁	n ₁₂	n _{1M}
2	n ₂₁	n_{22}	n _{2M}
:			
М	n _{M1}	n _{M2}	n _{MM}

 $[\mathbf{CM}]_{ij} = \mathbf{n}_{ij} = \text{number of events from } \omega_i \text{ classified as } \omega_j$

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

13

Probability of Detection, Probability of False Alarm, Belief

Probability of detection for class m

$$PD_{m} = \frac{n_{mm}}{\sum_{j=1}^{M} n_{mj}}$$
 (m-th row)

Probability of false alarm for class m

$$PFA_{m} = \frac{\sum_{k=1, k \neq m}^{M} n_{km}}{\sum_{k=1, k \neq m}^{M} \sum_{j=1}^{M} n_{kj}}$$

Prior belief in the classifier decisions (via training)

Pelief in the classifier decisions (via training
$$P(\mathbf{x} \in \omega_{_{m}} \mid C(\mathbf{x}) = j) = \frac{n_{_{mj}}}{\sum\limits_{_{i=1}^{M}}^{M} n_{_{ij}}}$$
 (j-th column)

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

14

Binary Classification

Confusion Matrix for Binary Classification

	$\widehat{\mathbf{P}}$ (predicted)	$\widehat{\mathbf{N}}$ (predicted)	Sopoitivity/
P (actual)	TP	FN	Sensitivity/ Recall TP/(TP+FN)
N (actual)	FP	TN	Specificity TN/(TN+FP)
	Precision TP/(TP+FP)	(TP+TN	Accuracy N)/(TP+TN+FP+FN)

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

15

Benchmark: Nearest Neighbor (NN) Classifier

- S^{Tr} -- the set of all training event feature vectors \mathbf{X}^{Tr} (containing all classes)
- X -- test event feature vector to be classified

$$C_{NN}(\mathbf{x}) = \operatorname{class}\left(\arg\min_{\mathbf{x}^{\operatorname{Tr}} \in S^{\operatorname{Tr}}} \left\| \mathbf{x} - \mathbf{x}^{\operatorname{Tr}} \right\|\right)$$

That is, find the *training feature vector* that is closest to the *test feature vector*. Assign the label of the closest training feature vector to the test event

Multiple Measurements

- K measurements (from a detected event)
 - Different nodes or sensing modalities
- x_k -- event feature vector for k-th measurement
- Classifier C assigns one of the M classes to the K event measurements $\{\mathbf x_1, \cdots, \mathbf x_K\}$

$$C(\mathbf{x}_1, \dots, \mathbf{x}_K) = \arg \max_{j=1,\dots,M} P(\omega_j \mid \mathbf{x}_1, \dots, \mathbf{x}_K)$$

Equal priors (ML):
$$C(\mathbf{x}_1, \dots, \mathbf{x}_K) = \arg \max_{j=1,\dots,M} P(\mathbf{x}_1, \dots, \mathbf{x}_K \mid \omega_j)$$

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

17

Data Fusion – Gaussian Classifier

• Assume that different measurements $(\{x_1, \dots, x_K\})$ are jointly Gaussian and *correlated*

For
$$\ \omega_j, j=1,\cdots,M$$
 the concatenated event feature vector (KN dim.) $\mathbf{x}^c = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_K \end{bmatrix}$ is Gaussian with mean and covariance:

$$\boldsymbol{\mu}_{j}^{c} = \mathbf{E}_{j}[\mathbf{x}^{c}] = \begin{bmatrix} \boldsymbol{\mu}_{j,1} \\ \vdots \\ \boldsymbol{\mu}_{j,K} \end{bmatrix} \quad \boldsymbol{\Sigma}_{j}^{c} = E_{j}[(\mathbf{x}^{c} - \boldsymbol{\mu}_{j}^{c})(\mathbf{x}^{c} - \boldsymbol{\mu}_{j}^{c})^{T}] = \begin{bmatrix} \boldsymbol{\Sigma}_{j,11}, \cdots, \boldsymbol{\Sigma}_{j,1K} \\ \vdots \\ \boldsymbol{\Sigma}_{j,K1}, \cdots, \boldsymbol{\Sigma}_{j,KK} \end{bmatrix}$$

 (μ_j^c, Σ_j^c) characterize the j-th class and can be estimated from training data \rightarrow cross-validation, CM's, PD, PFA, belief

Multiple Measurement Classifier – Data Fusion

M=3 classes

Higher computational burden

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

19

Data Fusion – NN Classifier

• Let S^{Tr} denote the set of all *concatenated* training event feature vectors \mathbf{x}^{cTr} (containing all classes)

$$\mathbf{x}^{\text{cTr}} = \begin{bmatrix} \mathbf{x}_1^{\text{Tr}} \\ \vdots \\ \mathbf{x}_K^{\text{Tr}} \end{bmatrix}$$
 (NK dimensional)

 Let X^c denote the concatenated test event feature vector to be classified

$$C_{NN}(\mathbf{x}_{1}, \dots, \mathbf{x}_{k}) = class \left(arg \min_{\mathbf{x}^{cTr} \in S^{Tr}} \left\| \mathbf{x}^{c} - \mathbf{x}^{cTr} \right\| \right)$$

EE5132/EE5024 IoT Sensor Networks CK Tham. ECE NUS

Forms of Data Fusion in CSP

K modalities, P nodes

- Data fusion of multiple modalities (e.g, acoustic and seismic) at each node (SN, MM)
 - Higher comp. burden (NK dim. data)
 - No additional comm. burden
- Data fusion of a single modality at multiple nodes (MN, SM)
 - Higher computational burden at manager node (PN dim. data)
 - Higher communication burden due to transmission of N dim. data from different nodes to the manager node
- Data fusion of multiple modalities at multiple nodes (MN, MM)
 - Highest computational burden at manager node (NKP dim. data)
 - Highest communication burden due to transmission of KN dim. multi-modality data from different nodes to the manager node

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

Pros and Cons of Data Fusion

- Pros
 - Maximal exploitation of available information in multiple times series
 - Potentially the best performing classification scheme
- Cons
 - High computational burden
 - High communication burden if data fusion across nodes
 - Need larger amount of data for training
 - Inconsistencies between measurements could cause performance degradation (e.g. malfunctioning nodes)
- In contrast, Decision Fusion:
 - has lower computational and communication burden
 - however, different measurements have to be independent or uncorrelated (not covered here)

Experiments: Seismic Feature Characteristics

- Seismic signals
 - Sampling rate reduction from 4960 Hz to 512 Hz
 - 512-pt FFT of 512-sample (256-overlap) segments
 - 1 Hz resolution
 - The first 100 positive frequency FFT samples used (100 Hz)
 - 2-pt averaging of the 100 FFT samples yields the final N=50 dimensional FFT feature vectors
 - 2 Hz resolutions
 - About 10-50 feature vectors in each event depending on the vehicle
 - Event feature vector matrix X is 50x10 to 50x50
 - 50 dimensional mean event feature vectors x
- Complex or absolute value FFT features

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

23

Class Descriptions

- Tracked vehicle class: AAV (Amphibious Assault Vehicle)
- Wheeled vehicle class: DW (Dragon Wagon) and HMWV (Humvee)
- · Locomotion Class and Vehicle Class classification
- Approximately equal number of training and testing events for all classes
- 3-way cross validation for performance assessment

Representative Acoustic FFT Features

AAV - tracked (Amphibious Assault Vehicle)

(Humvee)

HMV - wheeled

DW - wheeled (Dragon Wagon)

25

EE5132/EE5024 IoT Sensor Networks

CK Tham, ECE NUS

SITEX02 Data. DARPA SenseIT Program Lecture II.4

Representative Seismic FFT Features

- a) AAV (tracked)
- b) DW (wheeled)
- HMMWV (wheeled)

SITEX02 Data. DARPA SenseIT Program

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

26

Single Node Single Modality (SN, SM) – Locomotion Class

Absolute-value FFT acoustic features

Gaussian Classifier

NN Classifier (benchmark)

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	109	11
Tracked	22	98

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	102	18
Tracked	1	119

PD = 0.91, 0.82, Ave = 0.86

PD = 0.85, 0.99, Ave = 0.92

PFA = 0.18, 0.09

PFA = 0.01, 0.15

120 events for each class

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

27

Single Node Single Modality (SN, SM) – Vehicle Class

Absolute-value FFT acoustic features

Gaussian Classifier

NN Classifier (benchmark)

$\omega_{\rm m}^{\rm C(X)}$	AAV	DW	HMV
AAV	53	5	2
DW	12	42	6
HMV	15	14	31

$\omega_{\rm m}^{\rm C(X)}$	AAV	DW	HMV
AAV	43	9	8
DW	0	49	11
HMV	1	13	46

PD = 0.88, 0.70, 0.52, Ave = 0.70

PD = 0.72, 0.82, 0.77, Ave = 0.77

PFA = 0.22, 0.16, 0.07

PFA = 0.01, 0.18, 0.16

60 events for each vehicle

Single Node Multiple Modality (SN, MM) Data Fusion – Locomotion Class

Acoustic and seismic features

Gaussian Classifier

NN Classifier (benchmark)

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	117	3
Tracked	25	95

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	106	14
Tracked	4	116

PD = 0.97, 0.80, Ave = 0.88

PD = 0.88, 0.97, Ave = 0.92

PFA = 0.21, 0.02

PFA = 0.03, 0.12

120 events for each class

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

29

Single Node Multiple Modality (SN, MM) Data Fusion – Vehicle Class

Acoustic and seismic features

Gaussian Classifier

NN Classifier (benchmark)

$\omega_{\rm m}^{\rm C(X)}$	AAV	DW	HMV
AAV	59	0	1
DW	9	46	5
HMV	25	12	23

$\omega_{\rm m}^{\rm C(X)}$	AAV	DW	HMV
AAV	43	6	11
DW	0	47	13
HMV	1	22	37

PD = 0.98, 0.77, 0.38, Ave = 0.71

PD = 0.72, 0.78, 0.62, Ave = 0.71

PFA = 0.28, 0.10, 0.05

PFA = 0.01, 0.23, 0.20

60 events for each vehicle

Comparison of Various Forms of CSP – Locomotion Class

Gaussian Classifier

(SN, SM)

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	109	11
Tracked	22	98

PD = 0.91, 0.82,

Ave = 0.86

PFA = 0.18, 0.09

(SN, MM) - Data Fusion (SN, MM) - Dec. Fusion

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	117	3
Tracked	25	95

PD = 0.97, 0.80,

Ave = 0.88

PFA = 0.21, 0.02

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	110	10
Tracked	32	88

PD = 0.92, 0.73,

Ave = 0.83

PFA = 0.27, 0.08

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

31

Comparison of Various Forms of CSP – Vehicle Class

Gaussian Classifier

(SN, SM)

$C(\mathbf{X})$	AAV	DW	HMV
AAV	53	5	2
DW	12	42	6
HMV	15	14	31

PD = 0.88, 0.70, 0.52,

Ave = 0.70

PFA = 0.22, 0.16, 0.07

(SN, MM) – Data Fusion

$C(\mathbf{X})$	AAV	DW	HMV
AAV	59	0	1
DW	9	46	5
HMV	25	12	23

PD = 0.98, 0.77, 0.38,

Ave = 0.71

PFA = 0.28, 0.10, 0.05

(SN, MM) - Dec. Fusion

$C(\mathbf{X})$ ω_{m}	AAV	DW	HMV
AAV	55	5	0
DW	8	44	8
HMV	20	13	27

PD = 0.92, 0.73, 0.45,

Ave = 0.70

PFA = 0.23, 0.15, 0.07

Inconsistencies between modalities are present

Challenges

- Uncertainty in temporal and spatial measurements critically affects estimation:
 - Uncertainty in node locations
 - Uncertainty in timing and synchronization
- Variability in signal characteristics:
 - Doppler shifts due to motion
 - Gear shifts, acceleration in vehicles
- Variability in environmental/sensor conditions:
 - Most algorithms exploit prior statistical information about sources
 - Observed statistical characteristics can vary markedly depending on environmental conditions, such as terrain, foliage, rain, wind etc.
 - Variability in sensor characteristics (e.g., gain calibration)
- A key challenge is to develop CSP algorithms that are robust to such uncertainty/variability in measurements and conditions

EE5132/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.4

33

Questions?