Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

Review: Diagonalizable Linear Function

Theorem

Let $T: V \to V$ be a linear function on a finite dimensional linear space V, and T has different eigenvalues $\lambda_1, \ldots, \lambda_k$. Suppose that W_i is the null space of $T - \lambda_i I$ for each $1 \le i \le k$. Then the following statements are equivalent:

- i. T is diagonalizable.
- ii. The characteristic polynomial of T is $f(x) = (x \lambda_1)^{n_1} \cdots (x \lambda_k)^{n_k}$, where $n_i = \dim W_i$.
- iii. $\sum_{i=1}^k \dim W_i = \dim V$.

Primary Decomposition Theorem

Theorem

Let T be a linear function over a finite dimensional linear space V whose minimal polynomial factorizes as

$$p(x) = p_1^{r_1}(x) \cdots p_k^{r_k}(x),$$

where the p_i 's are monic and mutually coprime (i.e. have no nontrivial common factors). Let $W_i = N(p_i^{r_i}(T))$ for each $1 \le i \le k$. Then

- **2** $For each <math>1 \leq i \leq k, T(W_i) \subseteq W_i.$
- **3** The minimal polynomial of $T_i = T \upharpoonright_{W_i}$ is $p_i(x)$.

Minimal Polynomials for Vectors

Definition

Let $A \in M_n(\mathbb{F})$, $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and $v \in \mathbb{F}^n$. We say that a monic polynomial p(x) with coefficients in \mathbb{F} is a minimal polynomial for v with respect to A if

- ② $\deg p \leqslant \deg m$ for any non-zero polynomial m(x) with m(A)v = 0.

Minimal Polynomials for Vectors

Similarly, minimal polynomial may be defined for a vector with respect to a linear function.

Definition

Let T be a linear function on linear space V on \mathbb{F} where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and $v \in V$. We say that a monic polynomial p(x) with coefficients in \mathbb{F} is a minimal polynomial for v with respect to T if

- p(T)v = 0,
- ② deg $p \leq \deg m$ for any non-zero polynomial m(x) with m(T)v = 0.

Lemma

Suppose that T is a linear function on linear space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Then

- Each vector $v \in V$ has a minimal polynomial with respect to T.
- The minimal polynomial for v with respect to T is unique.
- **③** Take a vector v ∈ V and assume that f(x) is a polynomial with coefficients in \mathbb{F} such that f(T)v = 0, then p(x) | f(x) where p(x) is the minimal polynomial for v with respect to T.
- **1** Let f(x) and g(x) be two coprime polynomials. Then

$$N(f(T)) \cap N(g(T)) = \{0\}.$$

Lemma

Let T, S be two linear functions on linear space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} such that $T \circ S = S \circ T$ and $N(T) \cap N(S) = \{0\}$. Then

- ② If V is finite dimensional, then $\dim N(T \circ S) \leq \dim N(T) + \dim N(S)$ and consequently, $N(T \circ S) = N(T) \oplus N(S)$.

Lemma

Let T_1, \ldots, T_k be linear functions on a finite dimensional linear space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} such that

- $\bullet \ T_i \circ T_j = T_j \circ T_i,$
- $N(T_i) \cap N(T_j) = \{0\}$

for each $1 \le i < j \le k$. Then $N(T_1 \circ \cdots \circ T_k) = N(T_1) \oplus \cdots \oplus N(T_k)$.

Lemma

Let T be a linear functions on a finite dimensional linear space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

• Let f(x) be a polynomial with coefficient in \mathbb{F} and $f(x) = f_1(x)^{n_1} \cdots f_k(x)^{n_k}$ such that f_1, \ldots, f_k mutually coprime. Then

$$N(f(A)) = N(f_1(A)^{n_1}) \oplus \cdots \oplus N(f_k(A)^{n_k}).$$

② If the minimal polynomial T is factorized as $p(x) = p_1(x)^{n_1} \cdots p_k(x)^{n_k}$ where p_1, \dots, p_k are mutually coprime, then

$$V = N(p_1(A)^{n_1}) \oplus \cdots \oplus N(p_k(A)^{n_k}).$$

Primary Decomposition Theorem

Theorem

Let T be a linear function over a finite dimensional linear space V whose minimal polynomial factorizes as

$$p(x) = p_1^{r_1}(x) \cdots p_k^{r_k}(x),$$

where the p_i 's are monic and mutually coprime (i.e. have no nontrivial common factors). Let $W_i = N(p_i^{r_i}(T))$ for each $1 \le i \le k$. Then

- $\bullet V = W_1 \oplus \cdots \oplus W_k.$
- **3** The minimal polynomial of $T_i = T \upharpoonright_{W_i}$ is $p_i(x)$.

Thank You!