MAE 158 2022

Recommended Homework 5

From Shevell, Fundamentals of Flight Problems 11.1, 11.2, 12.1 (b, d, f only)

From Anderson, Aircraft Performance and Design, Example 2.4

11.1. A twin turbofan transport airplane is cruising at 31,000 ft pressure altitude at a Mach number of 0.78. Outside air temperature is -60° F. The airplane gross weight is 98,000 lb. The airplane has unsealed aerodynamically balanced control surfaces. Following are the airplane dimensional data:

Wing		Fuselage	
Span	= 93.2 ft	Length	= 107 ft
Planform area	$= 1000 \text{ ft}^2$	Diameter	= 11.5 ft
Average t/c	= 0.106	Wetted area	$= 3280 \text{ ft}^2$
Sweepback angle	$= 24.5 \deg$		
Taper ratio	= 0.2		
Root chord	= 17.8 ft		
Wing area covered		Vertical Tail	
by fuselage	= 17%	Exposed planform area	$= 161 \text{ ft}^2$
		t/c	= 0.09
Horizontal Tail		Sweepback	$= 43.5 \deg$
Exposed planform area	$t = 261 \text{ ft}^2$	Taper ratio	= 0.80
t/c	= 0.09	Root chord	= 15.5 ft
Sweepback	$= 31.6 \deg$		
Taper ratio	= 0.35	Nacelles	_
Root chord	= 11.1 ft	Total wetted area	$= 455 \text{ ft}^2$
		Effective fineness	
Pylons		ratio	= 5.0
Total wetted area	$= 117 \text{ ft}^2$	Length	= 16.8 ft
t/c	= 0.06		
Sweepback	$= 0 \deg$		
Taper ratio	= 1.0	Flap Hinge Fa	_
Chord	= 16.2 ft	Δf	$= 0.15 \text{ ft}^2$

Determine

- (a) Incompressible parasite drag coefficient and equivalent flat-plate area.
- (b) Induced drag coefficient.
- (c) Total incompressible drag coefficient.
- (d) Total incompressible drag in pounds.
- (e) Ratio of lift to drag, neglecting compressibility.
- 11.2. At speeds where compressibility may be ignored,

$$C_D = C_{D_P} + \frac{C_L^2}{\pi A R e}$$

- (a) Determine the C_L for best C_L/C_D . (Try for minimum C_D/C_L).
- **(b)** What is the maximum ratio of lift to drag $(C_L \text{ to } C_D)$ in terms of C_{D_P} , AR, and e?

Let's finish problem 12.1:

- 12.1. An airplane with an unswept, 12% thick wing, a wing planform area of 450 ft², a span of 60 ft, and a mean aerodynamic chord (m.a.c.) of 8 ft is flying at a density altitude of 28,000 ft at a speed of 400 mph. The ambient temperature is 430°R. The gross weight is 30,000 lb. The exposed wing area is 80% of the total wing area. The wing parasite drag is 35% of the total parasite drag. The airfoil is a conventional peaky type. Determine
 - (b) Total parasite drag in pounds.
 - (d) Induced drag in pounds.
 - (f) Compressibility drag and total drag in pounds and the ratio of lift to drag.

You can use μ_0 = 3.25x10⁻⁷ lb-s/ft² from Fig 10.14 (homework 2)

2.4 For the NACA 2412 airfoil, with the measured data in Fig. 2.6 calculate the location of the aerodynamic center.

For Problem 11.1, 12.1:

Figure 11.2 Flat-plate skin friction coefficient; turbulent boundary layer; M = 0.50.

$$\begin{aligned} M_0 &= 0.5 \\ K &= [1 + Z(t/c) + 100(t/c)^4] \\ \text{where} \\ Z &= \frac{(2 - M_0^2)\cos\Lambda_{C/4}}{\sqrt{1 - M_0^2\cos^2\Lambda_{C/4}}} \end{aligned}$$

Figure 11.3 Aerodynamic surface form factor.

Figure 11.4 Effect of fineness ratio on body form factor.

Figure 11.8 Airplane efficiency factor, e.

For Example 2.4:

(a)

Figure 2.6 Data for the NACA 2412 airfail. (a) Lift coefficient and moment coefficient about the quarter-chord versus angle of attack.