GEBZE TECHNICAL UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING

2023-2024 FALL CSE341 PROGRAMMING LANGUAGES HOMEWORK-4 REPORT

AHMET YIGIT 200104004066

• *Part-1*

- Question Explanation
 - In this part of the homework, you are asked to write a simple expert system in Prolog for scheduling pickup and deliveries in a small college campus
- Solving Approach
 - First of all, system control is object status on deliver or not
 - If object status on deliver
 - o Return Person Id and Total Time to deliver
 - If object status not on deliver
 - Gets personals information's:
 - Weight Capacity
 - Load Carrying Hours
 - Is On Job
 - Location
 - O Checking personals working on the current hour
 - If True control of User is on Job
 - If Not in Job, check personal can handle heavy.
 - If Personal can print PersonX: TotalTime
 - Otherwise print PersonX is not available or PersonX Cannot Handle It. It Is Too Heavy.
 - After evaluating all persons system says OBJECT TRANSFER by and gives his/her information. This person has already defined in the beginning of code.
 - For finding best path system uses dijikstra algorithm.

- Code Explanation
 - First 55 lines are used for definitions which is defined in homework pdf.

available_person_for_object(ObjectId, PersonId, TotalTime)

- This function declared twice.
 - First Declaration
 - Tries to find object is on transit.
 - Return Person Id and Total Time.
 - Second Declaration
 - Tries to find best path for each personal.
 - It uses dijikstra algorithm.
 - Control of:
 - Weight Capacity
 - Working Hours (in list each number is a load carrying times)
 - Is working
 - Location
 - Print all person time or excuses.
 - Returns Person Id and Total Time for object defined personal.

split_location_distance

- o It gets, Location and returns (update) distance.
- First declaration is base case.
- Second declaration is recursive function.

find distance

• This function helps to find the distance between two places it uses dijkstra algorithm.

neighbourhood

 Dijkstra algo Computes the shortest path from the Start node to the End node.

min dist

Finds the minimum distance between two nodes.

dijkstra

- First declaration is base case.
- o Second declaration is regular dijikstra algorithm.

choose_v

o choice of next vertex to expand.

diff

Removes vertices already in Closed from NB.

merge

- First declaration is a base case.
- Overall, this merge/4 function iterates through the first list of vertices and distances, updating the open list (NewOpen) based on certain conditions for each vertex-distance pair encountered in the list.

remove

- First declaration is a base case.
- o Removes X element to NT.

Output

o Test Personel:

```
    delivery_personnel(1, 10, [4, 8, 12, 16, 20], none, adminOffice).
    id, capacity, working hours, currentDeliveryJob, location
```

- delivery_personnel(2, 10, [5, 9, 13, 17, 21], none, cafeteria).
- delivery_personnel(3, 10, [4, 8, 12, 16, 20], none, instituteY).

Test Object

```
% objects to be delivered
```

 object(obj1, 8, adminOffice, instituteX, low, 1). % id, weight, source, destination, priority, delivery_personnel

```
• object(obj2, 5, cafeteria, instituteX, medium, 1).
```

- object(obj3, 5, socialSciencesBuilding, instituteY, low, in_transit(2)).
- object(obj4, 5, library, instituteX, high, 1).
- object(obj5, 5, engineeringBuilding, instituteY, high, 1).

```
?- available_person_for_object(obj1, PersonId, TotalTime).
Person1 : +11
Person2 is not available at this time.
Person3 : +15
OBJECT TRANSFER by :
PersonId = 1,
TotalTime = 11 []
```

o Time = 8

 \circ

o Person2 is working on 5,9,13,17,21 so it cannot available.

```
?- available_person_for_object(obj2, PersonId, TotalTime).
Person1 is not available at this time.
Person3 is not available at this time.
OBJECT TRANSFER by :
PersonId = 1,
TotalTime = 14 ■
```

- o Time = 9
- o Person1-3 are working 4,8,12,16,2

```
?- available_person_for_object(obj4, PersonId, TotalTime).
Person1 : +11
Person2 is not available at this time.
Person3 : +13
OBJECT TRANSFER by :
PersonId = 1,
TotalTime = 11 []
```

o Time = 8

0

- Person1-3 are working 4,8,12,16,2
- Part 2
 - Solving approach
 - Data loading:
 - Load the Iris dataset using pandas.
 - Data preparation:
 - Separate features X and target y and split the data info training and testing sets.
 - Model Creation and Training:
 - Create a decision tree classifier, train it using the training data.
 - Generate Decision Rule:
 - Print the rules and copy to txt.
 - Export this rules to Prolog:
 - Using printed rules, defined all information about the iris data and test it.

Output:

This output can be change because of random statement.

?- classify(4.9,2.4,3.3,1.0).
Iris-versicolor
true.
?-