2 FLIP-FLOP

TUJUAN:

Setelah mempelajari bab ini mahasiswa diharapkan mampu:

- ➤ Menjelaskan rangkaian dasar SR-FF dan SR-FF dengan gate
- ➤ Membandingkan operasi dari rangkaian D Latch dan D-FF menggunakan timing diagram
- ➤ Menguraikan perbedaan antara *pulse-triggered* dan *edge-triggered flip-flop*
- ➤ Menjelaskan operasi rangkaian *Master Slave* JK-FF
- ➤ Membuat Toggle FF dan D-FF dari JK-FF dan SR-FF
- ➤ Menjelaskan operasi *sinkron* dan *asinkron* dari JK-FF dan D-FF menggunakan timing diagram
- ➤ Menganalisa dan mendisain rangkaian dengan Flip-flop

ed2

SR-FLIP-FLOP

- ■merupakan singkatan dari <u>Set & Reset Flip-flop</u>
- Dibentuk dari dua buah NAND gate atau NOR gate
- Operasinya disebut transparent latch, karena bagian outputnya akan merespon input dengan cara mengunci nilai input yang diberikan (latch) atau mengingat input tersebut.

		SENT PUT	PRESENT OUTPUT	NEXT OUTPUT	COMMENT
	S	R	Q	Qn	
I	0	0	0	0	Hold
	0	0	1	1	Condition
	0	1	0	0	Flip-Flop
	0	1	1	0	Set
	1	0	0	1	Flip-Flop
	1	0	1	1	Reset
	1	1	0	*	Not Used
ĺ	1	1	1	*	Not Osed

Cross-NOR SR Flip-Flop

ed2

Cross-NAND SR Flip-Flop

	SENT PUT	PRESENT OUTPUT	NEXT OUTPUT	COMMENT
S	R	Q	Qn	
0	0	0	0	Hold
0	0	1	1	Condition
0	1	0	0	Flip-Flop
0	1	1	0	Reset
1	0	0	1	Flip-Flop
1	0	1	1	Set
1	1	0	*	Not Used
1	1	1	*	INOLUSEU

Persamaan Next State SR-FF

$$Q(t + \Delta) = S(t) + \overline{R}(t)Q(t)$$

State Table dari SR-FF

PRESENT OUTPUT	NEXT OUTPUT	NILAI EKSITAS	
Q (t)	Q (t+∆)	S (t)	R (t)
0	0	0	d
0	1	1	0
1	0	0	1
1	1	d	0

Tabel Eksitasi dari SR-FF

Simbol dari SR-FF

ed2

Timing Diagram sebuah SR-FF

Diketahui:

timing diagram dari input S dan R pada sebuah SR-FF adalah seperti di bawah. Gambarkan timing diagram outputnya.

Gated SR-FF

- ❖ Rangkaian SR-FF yang diberi input tambahan : Gate
- Gate berfungsi mengontrol output dari SR-FF
- ❖Gate/Clock merupakan rangkaian sinyal kontinyu
- Merupakan SR-FF sinkron (karena nilai output berubah sesuai dengan peng-aktifan input gate-nya).

Gated SR-FF

G	S	R	Q	Q'	COMMENT	
0	0	0	Q	Q'	Hold)
0	0	1	Q	Q'	Hold	
0	1	0	Q	Q'	Hold	├ Gate disable
0	1	1	Q	Q'	Hold	J
1	0	0	Q	Q'	Hold)
1	0	1	0	1	Reset	Cata anabla
1	1	0	1	0	Set	├ Gate enable
1	1	1	0	0	Unused	J

Tabel Fungsi dari Gated SR-FF

Timing Diagram Gated SR-FF

Sinyal Clock

Positive-edge transition: saat clock berpindah dari 0 ke 1

Negative-edge transition: saat clock berpindah dari 1 ke 0

Flip-Flop ber clock

Clocked SR-FF S R OUT R 0 Hold 0 unused Q Positive-edge triggered SR-FF OUT R CLK S 0 Hold 0 R 0 CLK unused CLK Negative-edge triggered SR-FF

ed2

JK-FLIP-FLOP

RANGKAIAN DASAR JK-FF

Tabel State dari JK-FF

DDECEN	IT INDI IT	PRESENT	NEXT	
FRESEN	PRESENT INPUT		OUTPUT	Comment
J (t)	K (t)	Q (t)	Q (t+∆)	Comment
0	0	0	0	Hold
0	0	1	1	Hold
0	1	0	0	Set
0	1	1	0	Set
1	0	0	1	Reset
1	0	1	1	116361
1	1	0	1	Toggle
1	1	1	0	roggie

Tabel Eksitasi dari JK-FF

PRESENT OUTPUT	NEXT OUTPUT	NILAI E	KSITASI
Q (t)	Q (t+∆)	J (t)	K (t)
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

Dlketahui → Persamaan Next State SR-FF

$$Q(t + \Delta) = S(t) + \overline{R}(t)Q(t)$$

Jika : $S(t) = J(t)\overline{Q}(t)$ dan R(t) = K(t)Q(t) maka

Persamaan Next State JK-FF

$$Q(t+\Delta) = J(t)\overline{Q}(t) + \overline{K}(t)Q(t)$$

MASTER-SLAVE JK-FF

Rangkaian Ekivalen MS JK-FF

Positive-pulse triggered JK-FF

Timing diagram

Edge-triggered JK-FF

Simbol dari:

- a) Positive-edge triggered JK-FF
- b) Negative-edge triggered JK-FF

JK-FF dengan input-input ASINKRON

OPERATING MODE		OUTPUT				
OPERATING WODE	S' _D	R' _D	CLK'	J	K	Q
Asynchronous Set	L	Η	X	X	X	Н
Asynchronous Reset	Н	L	Χ	X	Х	L
Synchronous Hold	Н	Ι	\		I	q
Synchronous Set	Н	Н	\	h	I	Н
Synchronous Reset	Н	Н	\		h	L
Synchronous Toggle	Н	Н	*	h	h	q'

Timing diagram dari 74L\$76 negative-edge triggered JK-FF

D-FLIP-FLOP

D-FF * = Data / delay Flip-flop

D-Latch (7475)

EN	D	Q	Comment
0	X	Q	Hold
1	0	0	Data '0'
1	1	1	Data '1'

Timing Diagram dari
D latch 7475

D-FF dengan INPUT ASINKRON

D,CLK = input *sinkron* (data,clock)

 R'_{D} , S'_{D} = input asinkron (set, reset)

		Output			
Operating Mode	SD	R_D	аĸ	D	Q
Asinkron Set	١	Ι	X	Χ	Ι
Asinkron Reset	Ι	┙	X	X	L
Not used	١	┙	X	X	Τ
Sinkron Set	Ι	Ι		h	Η
Sinkron Reset	Н	Н		I	L

Timing Diagram

Tabel Eksitasi dari D-FF

PRESENT	NEXT	NILAI	
OUTPUT	OUTPUT	EKSITASI	
Q(t)	$Q(t+\Delta)$	D(t)	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

Persamaan Next State D-FF

$$Q(t + \Delta) = D(t)$$

D-FF dari SR-FF

D-FF dari JK-FF

Timing diagram dari D-FF

T-FLIP-FLOP

T-FF * = Toggle Flip-flop

T-FF dari SR-FF

T-FF dari JK-FF

T	Q	Comment
0	Ż	Toggle
1	Q	Hold

Tabel Eksitasi dari T-FF

PRESENT	NEXT	NILAI
OUTPUT	OUTPUT	EKSITASI
Q(t)	$Q(t+\Delta)$	T(t)
0	0	1
0	1	0
1	0	0
1	1	1

Persamaan Next State T-FF

$$Q(t+\Delta) = \overline{Q}(t)$$

<u>Timing Diagram dari T-FF:</u>

Analisa rangkaian

Prosedur meng-analisa rangkaian dengan Flip-flop

- a. Tentukan persamaan logika kombinasional untuk input-input Flip-flopnya :
 - input S dan R untuk SR-FF, input J dan K untuk JK-FF, input D untuk D-FF dan input T untuk T-FF
- b. Untuk SR-FF → Tentukan apakah S.R = 0 Catatan : Jika S.R ≠ 0, prosedur harus dihentikan.
- c. Cari persamaan Next State dari Flip-flop yang dicari :

$$\begin{array}{ll} \mathsf{SR-FF} & \mathcal{Q}(t+\Delta) = S(t) + R(t) \underline{\mathcal{Q}}(t) \\ \mathsf{JK-FF} & \rightarrow \mathcal{Q}(t+\Delta) = J(t) \mathcal{Q}(t) + K(t) \mathcal{Q}(t) \\ \mathsf{D-FF} & \rightarrow \mathcal{Q}(t+\Delta) = D(t) \\ \mathsf{T-FF} & \rightarrow \mathcal{Q}(t+\Delta) = \overline{\mathcal{Q}}(t) \end{array}$$

- d. Buat Tabel PS/NS nya
- e. Buat State Diagram-nya (jika perlu)

Contoh:

Carilah Tabel PS/NS dan State Diagram untuk rangkaian berikut ini:

Jawab:

Persamaan next state:

$$\underline{JK-FF}
J(t) = X(t)Z(t)
K(t) = A(t)
X(t+\Delta) = J(t)X(t) + K(t)X(t)
= X(t)Z(t)X(t) + A(t)X(t) = A(t)X(t)$$

SR-FF

$$S(t) = A(t) \qquad R(t) = \overline{A}(t)$$

$$S(t).R(t) = A(t).\overline{A}(t) = 0$$

$$Z(t + \Delta) = S(t) + \overline{R}(t)Z(t)$$

$$= A(t) + \overline{A}(t)Z(t)$$

$$= A(t)[1 + Z(t)] = A(t)$$

State Diagram

Tabel PS/NS

A(t)	X(t)	Y(t)	Z(t)	X(t+ ∆)	Y(t+ ∆)	Z(t+∆)
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	1	0	0
0	1	0	1	1	0	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	0	1
1	0	1	1	0	0	1
1	1	0	0	0	1	1
1	1	0	1	0	1	1
1	1	1	0	0	1	1
1	1	1	1	0	1	1

Disain/Sintesa rangkaian

Prosedur mendisain rangkaian dengan Flip-flop

- 1. Dengan menggunakan persamaan next state atau State Diagram yang diketahui, buatlah tabel present state/next state untuk rangkaian yang akan dibangun.
- 2. Tambahkan kolom pasangan eksitasi dari masing-masing Flip-flop yang akan digunakan.
- 3. Dengan menggunakan K-Map, carilah persamaan logika dari nilai eksitasi yang didapat
- 4. Buat rangkaian sesuai dengan persamaan yang didapat.

Contoh:

Diketahui sebuah State Diagram dari rangkaian sekuensial dengan D-FF seperti dibawah ini. Gambarkan bentuk rangkaiannya.

Jawab : Tabel PS/NS

Α	X	Υ	Z	Xn	Yn	Zn
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	0	0
0	0	1	1	1	0	1
0	1	0	0	0	1	1
0	1	0	1	1	0	1
0	1	1	0	1	1	0
0	1	1	1	1	1	0
1	0	0	0	0	1	0
1	0	0	1	1	0	0
1	0	1	0	0	1	1
1	0	1	1	1	1	0
1	1	0	0	1	0	1
1	1	0	1	1	0	0
1	1	1	0	1	1	1
1	1	1	1	0	1	1

Tabel PS/NS dan Nilai Eksitasi dari D-FF

PI	PO			NO			Eksitasi		
Α	Χ	Υ	Z	Xn	Yn	Zn	Dx	Dy	Dz
0	0	0	0	0	0	1	0	0	1
0	0	0	1	0	1	0	0	1	0
0	0	1	0	0	0	0	0	0	0
0	0	1	1	1	0	1	1	0	1
0	1	0	0	0	1	1	0	1	1
0	1	0	1	1	0	1	1	0	1
0	1	1	0	1	1	0	1	1	0
0	1	1	1	1	1	0	1	1	0
1	0	0	0	0	1	0	0	1	0
1	0	0	1	1	0	0	1	0	0
1	0	1	0	0	1	1	0	1	1
1	0	1	1	1	1	0	1	1	0
1	1	0	0	1	0	1	1	0	1
1	1	0	1	1	0	0	1	0	0
1	1	1	0	1	1	1	1	1	1
1	1	1	1	0	1	1	0	1	1

\overrightarrow{AX}^{YZ}	00	01	11	10
00	(1)	0	(1)	0
01	$\sqrt{1}$	\bigwedge	0	0
11	1)	0	\bigcirc 1	\bigcap
10	0	0	0	(1)

$$Dz = \overline{AYZ} + X\overline{YZ} + \overline{AXY} + AXY + AXY + AYZ + \overline{AXY}Z$$

AX	00	01	11	10
00	0	0	(1)	0
01	0			
11	\bigcap	(1)	0	
10	0	1	\bigcirc	0

$$Dx = AX\overline{Z} + A\overline{X}Z + AYZ + \overline{A}YZ + \overline{A}XZ + \overline{A}XY$$

AX YZ	00	01	11	10	
00	0	1	0	0	
01	1)	0	1	(1)	
11 _	1)	0	1	1	
10	0	0	1	1	

$$Dy = AY + XY + X\overline{Z}$$

Gambar rangkaian

Soal Latihan

1. Gambarkan bentuk gelombang output untuk beberapa jenis Flip-flop di bawah ini, jika diketahui bentuk gelombang inputnya adalah sebagai berikut :

