A Gödel modal logic over witnessed crisp models

Mauro Ferrari

Camillo Fiorentini

Ricardo Oscar Rodriguez

Università degli Studi dell'Insubria Italy

Università degli Studi di Milano Italy Universidad de Buenos Aires Argentina

TABLEAUX 2025

27-29 September 2025 - Reykjavik, Iceland

Fuzzy modal logics

In approximate reasoning it is usual to deal simultaneously with both fuzziness of propositions and modalities, e.g., to assign a degree of truth to propositions like "John is possibly tall" or "John is necessarily tall"

where "John is tall" is a fuzzy proposition or address features like certainty, belief or similarity, which have natural interpretations in terms of modalities.

A natural semantics for fuzzy modal operators

Combine the Kripke semantics for modal operators and one of the possible algebraic semantics for many-valued logics.

A preeminent choice for algebraic semantics is Gödel algebra, interpreting $x \wedge y$ with the continuous t-norm $\min\{x,y\}$ and \rightarrow as its residuum, since...

... this is the only fuzzy logic whose modal analogue admits the normality axiom $\Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta)$ [Buo et al., 2011].

Gödel-Kripke semantics

Language: $V = \{p_1, p_2, \dots\}, \land, \lor, \rightarrow (\neg \varphi = \varphi \rightarrow \bot), \Box, \diamondsuit$.

Gödel-Kripke model (GK-model): $\mathfrak{M} = \langle W, R, e \rangle$ where:

$$W \neq \emptyset$$

$$R: W \times W \rightarrow [0,1]$$

$$e:W imes\mathcal{V} o [0,1]$$

worlds accessibility relation

evaluation

$$\begin{split} e(w,\bot) &= 0 \\ e(w,\alpha\star\beta) &= e(w,\alpha)\star e(w,\beta), \text{ for } \star \in \{\land,\lor,\to,\lnot\} \\ a \land b &= \min(a,b) \quad a \lor b = \max(a,b) \quad a \to b = \begin{cases} 1 & \text{if } a \leq b \\ b & \text{if } a > b \end{cases} \quad \lnot a = \begin{cases} 1 & \text{if } a = 0 \\ 0 & \text{if } a > 0 \end{cases} \\ e(w,\Box\alpha) &= \inf_{x \in W} \left\{ R(w,x) \to e(x,\alpha) \right\} \quad e(w,\Diamond\alpha) = \sup_{x \in W} \left\{ R(w,x) \land e(x,\alpha) \right\} \end{split}$$

$$\varphi$$
 is valid in $\mathcal{M} = \langle W, R, e \rangle$ iff $\forall w \in W$, $e(w, \varphi) = 1$ $(\mathcal{M} \models \varphi)$

Gödel modal logics

Gödel Modal Logic - no restriction on R

 $\mathbf{GK} = \{ \varphi \mid \varphi \text{ valid in all G\"{o}del-Kripke models } \}$

Crisp Gödel Modal Logic - R crisp

$$R: W \times W \to \{0,1\} \qquad (R \subseteq W \times W)$$

$$e(w, \Box \alpha) = \inf \left(\left\{ e(x, \alpha) \mid wRx \right\} \cup \{1\} \right) \qquad (= 1 \text{ if } R(w) = \emptyset)$$

$$e(w, \Diamond \alpha) = \sup \left(\left\{ e(x, \alpha) \mid wRx \right\} \cup \{0\} \right) \qquad (= 0 \text{ if } R(w) = \emptyset)$$

$$\mathbf{G}^{\mathrm{c}} = \{ \ \varphi \mid \varphi \ \text{valid in all} \ \underbrace{\mathbf{crisp}}_{\mathbf{G}^{\mathrm{c}}\text{-models}} \}$$

GK and **G**^c

Gödel Modal Logic GK - no restriction

- [1] Axiomatizations for GK_{\square} and GK_{\lozenge} , finite model property (FMP) for GK_{\lozenge} , no FMP for GK_{\square}
- [2] Analytic calculi for \mathbf{GK}_{\square} and \mathbf{GK}_{\lozenge} , decidability, PSPACE-completeness
- [3] Axiomatization for **GK**
 - [1] Caicedo, Rodríguez: Standard Gödel modal logics. Studia Logica (2010)
 - [2] Metcalfe, Olivetti: Towards a proof theory of Gödel modal logics. LMCS (2011)
 - [3] Caicedo, Rodríguez: Bi-modal Gödel logic over [0,1]-valued Kripke frames. JLC (2015)

Crisp Gödel Modal Logic G^c - R crisp

- [1] Axiomatization of G^c , $GK \subseteq G^c$, no FMP
- [2] Analytic calculi for \textbf{G}^{c}_{\square} and $\textbf{G}^{c}_{\lozenge},$ decidability, PSPACE-completeness
 - [1] Rodríguez, Vidal: Axiomatization of crisp Gödel modal logic. Studia Logica (2021)
 - [2] Metcalfe, Olivetti: Towards a proof theory of Gödel modal logics. LMCS (2011)

Our proposal

Witnessed crisp Gödel Modal Logic - R crisp and witnessed

$$R: W \times W \to \{0,1\} \qquad (R \subseteq W \times W)$$

$$\forall w: R(w) \neq \emptyset \qquad e(w, \circ \varphi) = r \qquad \Rightarrow \exists x: wRx \text{ and } e(x, \varphi) = r \qquad \circ \in \{\Box, \Diamond\}$$

$$e(w, \Box \alpha) = \min \left(\{ e(x, \alpha) \mid wRx \} \cup \{1\} \right)$$

$$e(w, \Diamond \alpha) = \max \left(\{ e(x, \alpha) \mid wRx \} \cup \{0\} \right)$$

 $\mathbf{GW}^{c} = \{ \varphi \mid \varphi \text{ valid in all witnessed crisp G\"{o}del-Kripke models } \}$ **GW**^c-models

Remarks on **GW**^c-models (1)

Witnessed crisp Gödel Modal Logic - R crisp and witnessed

$$\forall w : R(w) \neq \emptyset \quad e(w, \circ \varphi) = r \quad \Rightarrow \quad \exists w' : wRw' \text{ and } e(w', \varphi) = r \quad \circ \in \{\Box, \Diamond\}$$

Example of a NON witnessed G^c-model

$$W = \{ w_j \mid j \ge 0 \}$$
 $R = \{ (w_0, w_k) \mid k \ge 1 \}$ $e(w_k, p) = \frac{1}{k+1} \quad k \ge 1$

Not witnessed: $e(w_0, \Box p) = \inf\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\} = 0 \text{ but } \forall k \ge 1, \ e(w_k, p) > 0$

Remarks on **GW**^c-models (2)

Witnessed crisp Gödel Modal Logic - R crisp and witnessed

$$\forall w: R(w) \neq \emptyset \quad e(w, \circ \varphi) = r \quad \Rightarrow \quad \exists w': wRw' \text{ and } e(w', \varphi) = r \quad \circ \in \{\Box, \Diamond\}$$

G^c-countermodel for $\varphi = \Box \neg \neg p \rightarrow \neg \neg \Box p$

$$W = \{ w_j \mid j \ge 0 \} \qquad R = \{ (w_0, w_k) \mid k \ge 1 \} \qquad e(w_k, p) = \frac{1}{k+1} \quad k \ge 1$$

$$p = 1/2 \qquad p = 1/3 \qquad p = 1/4$$

$$\neg p = 1 \qquad \neg p = 1 \qquad \neg p = 1$$

$$w_1 \quad \bullet \qquad w_2 \quad \bullet \qquad w_3 \quad \bullet \qquad \cdots$$

$$\square \neg p = 1$$

$$w_0 \quad \square p = 0 \qquad \Rightarrow \neg \square p = 0$$

$$\forall k \ e(w_k, p) > 0 \Rightarrow \forall k \ e(w_k, \neg \neg p) = 1 \Rightarrow e(w_0, \Box \neg \neg p) = 1$$

$$e(w_0, \Box p) = 0 \Rightarrow e(w_0, \neg \neg \Box p) = 0$$

$$\Rightarrow e(w_0, \varphi) = 0$$

Accordingly $\varphi \notin \mathbf{G}^{c}$. Note that the above model is infinite.

8 / 28

Remarks on **GW**^c-models (3)

Witnessed crisp Gödel Modal Logic - R crisp and witnessed

$$\forall w: R(w) \neq \emptyset \quad e(w, \circ \varphi) = r \quad \Rightarrow \quad \exists w': wRw' \text{ and } e(w', \varphi) = r \quad \circ \in \{\Box, \Diamond\}$$

$$\varphi = \Box \neg \neg p \rightarrow \neg \neg \Box p \in \mathsf{GW}^{\mathrm{c}}$$

Since $\varphi \in GW^{c} \setminus G^{c}$ and every GW^{c} -model is a G^{c} -model $\Rightarrow GW^{c} \supseteq G^{c} \supseteq GK$

Since, every *finite crisp model* is *witnessed*, every $\varphi \in \mathbf{GW}^c \setminus \mathbf{G}^c$ has an infinite \mathbf{G}^c -countermodel.

The calculus $\mathcal{C}_{\mathrm{GW}^{\mathrm{c}}}$

 $\mathcal{C}_{\mathrm{GW^c}}$ is inspired to the calculus $\mathcal{T}(\mathbf{KG}_{\mathrm{fb}}^2)$ for $\mathbf{KG}_{\mathrm{fb}}^2$ presented in [Bílková et al.,2022].

 $\mathbf{KG}_{\mathrm{fb}}^2$ is an extension of \mathbf{GW}^{c} over a more expressive language, including an involutive negation and a co-implication.

 $\mathcal{C}_{\mathrm{GW^c}}$ is refutation calculus acting on constraints over labelled formulas (labels representing worlds of Gödel-Kripke models).

Results overview

- termination
- completeness
- countermodel-construction and finite model property
- proof-search procedure (no-backtracking)
- PSPACE-decidability
- JTabWb implementation

The calculus $\mathcal{C}_{\mathrm{GW}^{\mathrm{c}}}$: constraints

Examples

ConstraintIntuitive semantical reading $c_1 > 0$ (atomic)The value of constant c_1 is > 0 $w_0: p \ge w_0: q$ (atomic)The value of propositional var. p at at world w_0 is \ge than the value of propositional var. q at w_0 $w_2: \Box p \to \Box \Box p < 1$ The value of wff $\Box p \to \Box \Box p$ at world w_2 is < 1

Constraints semantics

Given a set of constraints Γ and a **GW**^c-model $\mathfrak{M} = \langle W, R, e \rangle$, \mathcal{M} satisfies Γ $(\mathcal{M} \models \Gamma)$ if there exists a mapping ι associating:

- a value in [0,1] to every rational constant in Γ
- a world label in Γ to W

such $\iota(u) \nabla \iota(t)$ for every constraint $u \nabla t \in \Gamma$, where $\iota(w : \alpha) = e(\iota(w), \alpha)$ (all constraints are simultaneously satisfied in model \mathfrak{M}).

Example

$$\iota(\Gamma) = \{\iota(c_1) < 0.5, | e(\iota(w'), p) > \iota(c_1), | e(\iota(w'), \square p) \ge 0.25, | e(\iota(w'') : p \land q) \le 0.3\}
= \{0.4 < 0.5, | e(w_0, p) > 0.4, | e(w_0, \square p) \ge 0.25, | e(w_2 : p \land q) \le 0.3\}
= \{0.4 < 0.5, | 0.5 > 0.4, | 0.25 > 0.25, | 0.3 < 0.3\}$$

The calculus $\mathcal{C}_{\mathrm{GW}^{\circ}}$

 $\mathcal{C}_{\mathrm{GW}^{\mathrm{c}}}$ is a refutation calculus for constraint sets Γ in the sense that:

Soundness

 $\vdash_{\mathrm{GW}^{\mathrm{c}}} \Gamma \implies \text{there is no } \mathbf{GW}^{\mathrm{c}}\text{-model }\mathfrak{M} \text{ s.t. } \mathfrak{M} \models \Gamma$

Application

If we can build a derivation for the constraint $w: \varphi < 1$ there is no \mathfrak{M} s.t. $\mathfrak{M} \models w : \varphi < 1$ $\nexists (\mathfrak{M}, w)$ s.t. $e(w, \varphi) < 1$ $\forall \mathfrak{M}, \forall w \ e(w, \varphi) = 1$ $\varphi \in \mathsf{GW}^{\mathrm{c}}$

The calculus: axioms

$$\overline{\Gamma}^{Ax}$$
 if $At^+(\Gamma)$ is not consistent

$$\operatorname{At}^+(\Gamma) = \operatorname{At}(\Gamma) \cup \underbrace{\{1 > t \, | \, \underline{w : \Box \alpha} > t \in \Gamma\} \cup \{0 < t \, | \, \underline{w : \Diamond \alpha} < t \in \Gamma\}}_{\text{needed to guarantee the coherence}}$$

A set of atomic constraint $\Gamma_{\rm at}$ is consistent if we can define a function σ mapping:

$$c \mapsto q \in [0,1]_{\mathbf{Q}} \quad \boxed{w:p} \mapsto q \in [0,1]_{\mathbf{Q}} \quad w:\bot \mapsto 0$$

so that all constraints in $\sigma(\Gamma_{\rm at})$ are simultaneously satisfied.

The calculus: axioms (2)

A set of atomic constraint $\Gamma_{\rm at}$ is consistent if we can define a function σ mapping:

$$c\mapsto q\in [0,1]_{\mathrm{Q}}$$
 $w:p\mapsto q\in [0,1]_{\mathrm{Q}}$ $w:\bot\mapsto 0$

so that all constraints in $\sigma(\Gamma_{\rm at})$ are simultaneously satisfied.

Examples

• $\Gamma = \{ w_1 : p > c_0, w_2 : p \le c_0, c_0 < 1, w_1 : \bot \le 0 \}$ is consistent. Indeed, let:

$$\sigma: c_0 \mapsto 0.5$$
, $w_1: p \mapsto 0.7$, $w_2: p \mapsto 0$, $w_1: \bot \mapsto 0$

then
$$\sigma(\Gamma) = \{\begin{array}{c|c} 0.7 > 0.5 \,, & \textbf{0} \leq 0.5 \,, & 0.5 < 1 \,, & \textbf{0} \leq 0 \} \text{ is satisfied.} \end{array}$$

• $\Gamma = \{w : \Box \alpha > c, c \le 1, c \ge 1\}$ is not consistent, Indeed $\operatorname{At}^+(\Gamma) = \{1 > c, c \le 1, c \ge 1\}$ cannot be satisfied. Note that with $\sigma: c \mapsto 1$ $\sigma(At(\Gamma))$ is satisfied, but there is no model satisfying $w: \Box \alpha > 1$ (and hence no model satisfying Γ).

Consistency of $\Gamma_{\rm at}$ can be checked by a Constraint Solver over **Q**.

An atomic labelled formula w:p can be considered as a constant name.

Rules for \land , \lor , \rightarrow -constraints

$$(\dagger) \ \mathbf{b} = \begin{cases} w : \beta & \text{if } \beta \text{ atomic} \\ \text{new const.} & \text{otherwise} \end{cases}$$

Semantical intuition: rule $\rightarrow \leq$

Lemma (Soundness of the rules)

If $\mathfrak{M}\models \Gamma$, where Γ is the conclusion of a rule ρ , then \exists a premise Γ' of ρ s.t. $\mathfrak{M}\models \Gamma'$.

$$a \to b = \begin{cases} 1 & \text{if } a \le b \\ b & \text{if } a > b \end{cases}$$

The calculus: rules for \square and \lozenge

$$\frac{1 \lhd t, \, \Phi^{0,1}(\Gamma) \qquad \qquad w_1 : \alpha \lhd t \,, \, \Phi^{\square,\Diamond}(\Gamma, w, w_1), \, \Gamma}{w : \square \alpha \lhd t \,, \, \Gamma} \, \square \lhd \qquad \lhd \in \{<, \le\}$$

$$\frac{0 \rhd t, \, \Phi^{0,1}(\Gamma) \qquad \qquad w_1 : \alpha \rhd t \,, \, \Phi^{\square,\Diamond}(\Gamma, w, w_1), \, \Gamma}{w : \Diamond \alpha \rhd t \,, \, \Gamma} \, \Diamond \rhd \qquad \rhd \in \{>, \ge\}$$

 w_1 is a new label (reading the rule \uparrow) ldea: w_1 represents an R-successor of w - we say that w generates w_1

 $\Phi^{\square,\lozenge}(\Gamma,w,w_1) = \{ w_1 : \beta \rhd t \mid w : \boxed{\square\beta \rhd t} \in \Gamma \} \cup \{ w_1 : \beta \lhd t \mid w : \boxed{\lozenge\beta \lhd t} \in \Gamma \}$ $Idea: the R-successor w_1 must coherently treat any w : \circ \gamma$

$$\Phi^{0,1}(\Gamma) = \text{in } \Gamma \text{ replace } \begin{cases} w' : \Diamond \alpha \, \forall t \text{ with } 0 \, \forall t \\ w' : \Box \alpha \, \forall t \text{ with } 1 \, \forall t \end{cases}$$

Idea: if $R(w) = \emptyset$, every $w' : \circ \gamma \neq t$ must hold with $w' : \Diamond \gamma = 0$ and $w' : \Box \gamma = 1$

Semantical intuition: rule $\square \triangleleft$

$\mathcal C$ is strongly terminating

Theorem

There exists a well founded relation \prec_c s.t. for every application ρ of a rule of $\mathcal{C}_{\mathrm{GW}^c}$, if Γ is the conclusion of ρ and Γ' is any of its premises, then $\Gamma' \prec_c \Gamma$.

As a consequence: any backward proof search strategy for $\mathcal{C}_{\mathrm{GW}^{\circ}}$ terminates. No backtracking is required and only one proof-tree can be generated.

The well-founded relation \prec_c

Size of multiset of constraints

$$||\Gamma|| = \{ |\Gamma[w]| | w \text{ is a world label in } \Gamma \} \text{ (multiset)}$$

 $|\Gamma[w]| = \text{number of logical connectives in } \Gamma[w] \text{ (wffs labelled with } w \text{ in } \Gamma\text{)}$

Well-founded relation on multiset of natural numbers [Baader-Nipkow 1998]

$$\Theta_1 \prec_{\mathrm{m}} \Theta_2 \quad \text{iff} \quad \Theta_1 \neq \Theta_2 \ \land \ \big(\ \forall k_1 \in \Theta_1 \setminus \Theta_2. \ \exists k_2 \in \Theta_2 \setminus \Theta_1. \ k_1 < k_2 \ \big) \,.$$

Well-founded relation on multiset of constraints

$$\Gamma_1 \prec_{\mathrm{c}} \Gamma_2 \quad \text{iff} \quad ||\Gamma_1|| \prec_{\mathrm{m}} ||\Gamma_2||.$$

Countermodel construction

Let Bs be a backward proof search strategy for \mathcal{C}_{GW^c} where a modal rule is backward applied iff no propositional rule can be applied (plain proof-search strategy).

A branch $\mathcal{B} = \langle \Gamma_0, \dots, \Gamma_n \rangle$ of a proof-tree \mathcal{T} generated by Bs is **reduced** if Γ_0 is the root of \mathcal{T} , no rule can be backward applied to Γ_n , and Γ_n is not an axiom.

From a reduced branch $\mathcal{B} = \langle \Gamma_0, \dots, \Gamma_n \rangle$ we can extract a discrete (e values in Q) \mathbf{GW}^c -model $\mathrm{Mod}(\mathcal{B})$ such that $\mathrm{Mod}(\mathcal{B}) \models \Gamma_0$.

Theorem (Completeness and finite model property)

- If $\nvdash_{\mathrm{GW}^{\mathrm{c}}} \Gamma$, then there exists a discrete model for Γ .
- If $\nvdash_{\mathrm{GW}^{\mathrm{c}}} w : \varphi < 1$, then $\varphi \notin \mathbf{GW}^{\mathrm{c}}$.
- If $\varphi \notin \mathbf{GW}^c$, then $\exists \mathcal{M}, w \text{ s.t. } e(w, \varphi) < 1 \ (\mathcal{M} \text{ is a countermodel for } \varphi)$.

Countermodel construction: example

$$\mathcal{B} \quad \begin{cases} \begin{array}{c} c_0 \overset{\sigma}{\mapsto} 0.5 & \boxed{w_2 : \rho \overset{\sigma}{\mapsto} 0.3} & \boxed{w_1 : \rho \overset{\sigma}{\mapsto} 0.7} \\ \hline \\ w_2 : \rho \leq c_0, & \boxed{w_1 : \rho > c_0, \ w_0 : \Box \rho > c_0, \ c_0 < 1} \\ \hline \\ w_1 : \Box \rho \leq c_0, & w_1 : \rho > c_0, \ w_0 : \Box \rho > c_0, \ c_0 < 1} \\ \hline \\ \hline \\ w_0 : \Box \Box \rho \leq c_0, & w_0 : \Box \rho > c_0, \ c_0 < 1} \\ \hline \\ \hline \\ w_0 : \Box \rho \rightarrow \Box \Box \rho < 1 \\ \hline \end{cases} \quad \Box \triangleleft \text{ $(w_0 \text{ generates } w_2)$}$$

$$W=$$
 world labels occurring in \mathcal{B} wRw' if w' is generated by w $e(w,p)=\sigma(w:p)$ if $w:p\in \operatorname{At}(\Delta),\ e(w,p)=0$ oth.
$$e(w_0,\square p)=e(w_1,p)=0.7$$
 $e(w_0,\square p)=e(w_1,\square p)=e(w_2,p)=0.3$ $e(w_0,\square p\to \square p)=e(w_0,\square p)=0.3$

Complexity and implementation

Complexity

The countermodel $\mathfrak M$ for $w_0: \varphi < 1$ has

- $depth \leq |\varphi|$
- ullet every world of ${\mathfrak M}$ has at most |arphi| R-successors

this implies that the size of \mathfrak{M} is $O(|\varphi|^{|\varphi|})$.

By adapting the procedure described in [Bílková et al.,2022] we can prove that the decision problem for \mathbf{GW}^c is in PSPACE.

Implementation: gwcref

Implementation of our proof-search procedure in JTabWb [Ferrari et al., 2017].

- standard backward depth-first proof search and countermodel extraction
- consistency of atomic constraints is checked using the Choco-solver Java library
- LaTeX generation of proof-search trees and countermodels

An "intuitionistic modal logic style" semantics

Intuitionistic modal logics (IML)

IPL extended with modalities.

IML Kripke-style semantics

Bi-relational structures $\mathcal{K} = \langle X, \leq, S, V \rangle$ with two accessibility relations:

- intuitionistic relation ≤: a partial order on X
- the modal relation S: a binary relation on X
- $V: X \to 2^{\mathcal{V}}$ s.t. $x \le y$ implies $V(x) \subseteq V(y)$ (persistence)

where \leq and R meet some connections relation (in the style of Fisher-Servi formalization).

Motivation of an alternative semantics

Extend to the modal case the correspondence holding for Gödel multivalued logic

Semantics on Gödel T-norm

Intuitionisitic semantics on linearly ordered Kripke models

to enable the use of IML methods for Gödel modal logics and their calculi, as in the non-modal case.

GW^c-bimodel: conditions on relations

$$x_1 \leq x_2 \wedge x_1 S y_1 \Rightarrow \exists y_2 : x_2 S y_2 \wedge y_1 \leq y_2$$

$$x_1Sy_1 \wedge y_1 \leq y_2 \Rightarrow \exists x_2 : x_1 \leq x_2 \wedge x_2Sy_2 \qquad x_2Sy_2 \wedge y_1 \leq y_2 \Rightarrow \exists x_1 : x_1 \leq x_2 \wedge x_1Sy_1$$

$$x_1Sy_1 \wedge x_1Sy_2 \wedge y_1 \leq y_2 \Rightarrow y_1 = y_2$$

$$x_1 \leq x_2 \wedge x_2 S y_2 \Rightarrow \exists y_1 : x_1 S y_1 \wedge y_1 \leq y_2$$

$$x_2Sy_2 \wedge y_1 \leq y_2 \Rightarrow \exists x_1 : x_1 \leq x_2 \wedge x_1Sy_1$$

$$x_1Sy_1 \wedge x_2Sy_1 \wedge x_1 \leq x_2 \Rightarrow x_1 = x_2$$

There are more conditions than in IML. Are they all needed? Maybe not.

Equivalent semantics

The forcing relation \Vdash between worlds of $\mathcal K$ and formulas is defined as follows:

$$\mathcal{K},x \Vdash \mu \text{ iff } p \in V(x), \text{ where } p \in \mathcal{V}$$

$$\mathcal{K},x \Vdash \alpha \wedge \beta \text{ iff } \mathcal{K},x \Vdash \alpha \text{ and } \mathcal{K},x \Vdash \beta$$

$$\mathcal{K},x \Vdash \alpha \vee \beta \text{ iff } \mathcal{K},x \Vdash \alpha \text{ or } \mathcal{K},x \Vdash \beta$$

$$\mathcal{K},x \Vdash \alpha \rightarrow \beta \text{ iff } \forall y \in X \text{ s.t. } y \geq x, \text{ if } \mathcal{K},y \Vdash \alpha \text{ then } \mathcal{K},y \Vdash \beta$$

$$\mathcal{K},x \Vdash \square \alpha \text{ iff } \forall y \in X, \text{ if } x \leq y \text{ then } \mathcal{K},y \Vdash \alpha$$

$$\mathcal{K},x \Vdash \square \alpha \text{ iff } \exists y \in X \text{ s.t. } x \leq y \text{ and } \mathcal{K},y \Vdash \alpha$$

$$\varphi$$
 is valid in $\mathcal{K} = \langle X, \leq, S, V \rangle$ iff $\forall x \in X, \mathcal{K}, x \Vdash \varphi$ $(\mathcal{K} \Vdash \varphi)$

Theorem (Equivalence between $\mathsf{GW}^{\operatorname{c}}$ -models and bimodels)

```
\begin{array}{lll} \mathbf{GW^{c}} & = & \{ \ \varphi \ | \ \varphi \ \text{is valid in all witnessed crisp G\"{o}del-Kripke models} \ \} \\ & = & \{ \ \varphi \ | \ \varphi \ \text{is valid in all bimodels} \ \} \end{array}
```

The proof is based on the construction of a correspondence between $\mathbf{G}\mathbf{W}^{\mathrm{c}}$ -models and birelational models.

Example

$$\begin{array}{l} W \ (\{x,y,z\}) \Rightarrow \text{ clusters of } \mathcal{K} \ (\text{a world} \ \forall \ \text{non null value of e} \ (\{x_{0.4},x_{0.6},x_1\},\dots) \\ w_a \leq w_b \ \text{if } b \leq a \\ & w_a \leq v_a \ \text{if } w R v \\ \end{array} \quad \begin{array}{l} w_a \Vdash q \ \text{if } e(w,q) \geq a \end{array}$$

Future work

Axiomatization for GW^c

We have axiomatizations for **GK** and \mathbf{G}^{c} from [Caicedo et al., 2010 and 2015] and [Metcalfe-Olivetti, 2011] but not for $\mathbf{G}\mathbf{W}^{c}$.

Intuitionistic propositional logic (linearity axiom)
$$(\alpha \to \beta) \lor (\beta \to \alpha)$$
 GL
$$(K_{\square}) \Box (\alpha \to \beta) \to (\Box \alpha \to \Box \beta) \quad (K_{\Diamond}) \Diamond (\alpha \lor \beta) \to (\Diamond \alpha \lor \Diamond \beta) \quad (F_{\Diamond}) \neg \Diamond \bot$$
 $(FS_1) \Diamond (\alpha \to \beta) \to (\Box \alpha \to \Diamond \beta) \quad (FS_2) (\Diamond \alpha \to \Box \beta) \to \Box (\alpha \to \beta)$ $(N_{\square}) \vdash \alpha \text{ implies } \vdash \Box \alpha \quad (N_{\Diamond}) \vdash \alpha \to \beta \text{ implies } \vdash \Diamond \alpha \to \Diamond \beta$
$$\Box (\alpha \lor \beta) \to (\Box \alpha \lor \Diamond \beta)$$

Extension of the witness semantics (and of the calculus) to the fuzzy case

First order extension of GW^c

Refinements of the birelational semantics (IML-style calculi?)