

AUTHOR: Zagorets, P. A. SOV/156-58-4-17/49

TITLE: Investigation of the Complex Compound of Uranium With Miricitrine
(Issledovaniye kompleksnykh soyedineniy urana s miritsirinom)

PERIODICAL: Nauchnyye doklady vysshey shkoly. Khimiya i khimicheskaya tekhnologiya, 1958, Nr 4, pp 680-684 (USSR)

ABSTRACT: In the present paper the absorption spectra of uranium complexes with miricitrine are taken and the composition of these complexes is determined. Miricitrine is a derivative of 3,5,7,3',4',5'-hexa-
oxy flavone with the following formula:

Card 1/4

SOV/156-58-4-17/49

Investigation of the Complex Compound of Uranium With Miricitrine

The absorption spectra of miricitrine and the complex compound of uranium with miricitrine were taken within the visible range by means of a UM-2 monochromator and within the ultraviolet range by means of the ISP-22 spectrograph. The dependence of the optical density of uranium-miricitrine complex solution on the pH value of the solution at 550 μm was investigated; it is given in figure 2. Optimum conditions are obtained at pH 5-6. The maximum intensity of the coloring of the complex is obtained after 15 minutes and remains stable up to 12 hours. The intensity of the coloring remains the same within the temperature range of 15 to 25°. Only on heating above 35° a change of the absorption curve of the complex is observed. Uranium with miricitrine forms complex compounds at a ratio between uranium and miricitrine of 1:1, 2:1, and 3:1. Two methods of synthesizing the complex compounds of uranium with miricitrine are described. According to the first method a small quantity of alcoholic solution of miricitrine is added to the $\text{UO}_2(\text{NO}_3)_2$ solution excess. According to the second method a solution with an insufficient quantity of $\text{UO}_2(\text{NO}_3)_2$ is added to the excess of alcoholic miricitrine solution. The products formed were analyzed

Card 2/4

SOV/156-58-4-17/49

Investigation of the Complex Compound of Uranium With Miricitrine

and they showed that in the case of a uranium excess complexes are formed of a ratio of 3:1 of uranium and miricitrine. In the case of an excess of miricitrine the complexes formed with a ratio of 1:1 between uranium and miricitrine. The chemical analyses prove the results of the spectrophotometric determinations. On the basis of the results obtained the following stoichiometric formulae were suggested for uranium complexes with miricitrine:

Card 3/4

SOV/156-58-4-17/49

Investigation of the Complex Compound of Uranium With Mixicitrine

There are 4 figures, 1 table, and 25 references, 2 of which are Soviet.

ASSOCIATION: Kafedra khimicheskoy fiziki Moskovskogo khimiko-tehnologicheskogo instituta im. D. I. Mendeleyeva (Chair of Physical Chemistry at the Moscow Chemo-Technological Institute imeni D. I. Mendeleyev)

SUBMITTED: April 22, 1958

Card 4/4

5(4)

AUTHORS:

Fomin, V. V., Zagorets, P. A.,
Morgunov, A. F.

SOV/78-4-3-33/34

TITLE:

The Extraction of Sulfuric Acid With Benzene Solution of
Trioctyl Amine (Ekstraktsiya sernoy kisloty rastvorom
trioktilamina v benzole)

PERIODICAL:

Zhurnal neorganicheskoy khimii, 1959, Vol 4, Nr 3,
pp 700-701 (USSR)

ABSTRACT:

The extraction of sulfuric acid by benzene solutions of trioctyl amine (TOA-R) was investigated at different acidity. For the investigation of polymerization the cryoscopic method was used. It was found that in the case of low acidity of the solution $(RH_2SO_4)_2$ is formed which, with increasing concentration, polymerizes in the organic phase. In the case of excessive sulfuric acid the normal sulfate passes over into acid sulfate $[RHHSO_4]_3$ which forms polymers from 3.3 - 3.4 molecules. The polymerization constants calculated hold only in the case of the polymers $[(RH_2SO_4)_2]$ or $[(RH_2SO_4)_3]$. There are 2 tables and 3 references, 2 of which are Soviet.

Card 1/2

The Extraction of Sulfuric Acid With Benzene
Solution of Trioctyl Amine

SOV/78-4-3-33/34

ASSOCIATION: Moskovskiy ordena Lenina khimiko-tehnologicheskiy institut
im. D. I. Mendeleyeva (Moscow Lenin Order Chemical-techno-
logical Institute imeni D. I. Mendeleyev)

SUBMITTED: October 12, 1958

Card 2/2

ZAGORETS, P.A.; MIKHAYLOV, O.G.

Attachment for automatic measurement of absorption spectra on the
SF-4 nonrecording spectrophotometer. Prib. i tekhn. eksp. 6 no.2:
146-148 Mr-Ap '61. (MIRA 14:9)

1. Moskovskiy khimiko-tehnologicheskiy institut.
(Spectrophotometer--Attachments)

YERMAKOV, V.I.; ZAGORETS, P.A.

High-frequency studies of electrolyte solutions. Part 9: Role
of ionic atmosphere in forming the structure of electrolyte
solutions. Effect of temperature on the structure of electro-
lyte solutions. Zhur. fiz. khim. 38 no.12:2968-2971 D '64.

(MIFI 18:2)

1. Moskovskiy khimiko-tehnologicheskiy institut imeni D.I.
Mendele'yeva.

HORST, A.; ROZYKOWA, D.; ZAGORSKA, I.

Changes in the aorta of the rat after the injection of allylamines
and egg-yolk. Acta medica polona 1 no.1/2:1-9 '60.

1. Department of General and Experimental Pathology, Poznan Academy
of Medicine, Director: Professor A. Horst, M.D.

(ADRENAL pathology)
(EGG YOLK pharmacology)
(AMINES pharmacology)

HORST, A.; ROZYNIKOWA, D.; ZAGORSKA, I.

The influence of emotion on cholesterol metabolism in the white rat. Acta medica polona 1 no.1/2:11-18 '60.

1. Department of General and Experimental Pathology, Poznan Academy of Medicine, Director: Professor A.Horst, M.D.
(BEHAVIOR)
(CHOLESTEROL metabolism)

HORST, A.; ROZYKOWA, D.; ZAGORSKA, I.

The influence of protamine sulphate on experimental lipaemia.
Acta medica polona 1 no.1/2:19-25 '60.

1. Department of General and Experimental Pathology, Poznan
Academy of Medicine, Director: Professor A.Horst M.D.
(PROTAMINES pharmacology)
(LIPIDS blood)

TERENT'YEV, A.P.; ZAGOREVSKIY, V.A.

Effect of aromatic diazo compounds on unsaturated compounds.
Part 5. Azo compounding with vinyl ethers. Zhur. ob. khim. 26
no.1:200-202 Ja '56. (MURA 9:5)

1. Moskovskiy gosudarstvennyy universitet.
(Ethers) (Azo compounds)

79-11-31/56

AUTHOR:

Zagorevskiy, V. A.

TITLE:

Effect of the Nature of Metal in Ketone System
Metal Derivatives Upon the Course
of Reaction of the O- and S-Substitution (Vliyaniya
prirody metalla metallicheskikh proizvodnykh ketocencl'noy
sistemy na napravleniya reaktsii O- i S- zameshcheniya).

PERIODICAL:

Zhurnal Obshchey Khimii, 1957, Vol. 27, Nr 11,
pp. 3055-3064 (USSR)

ABSTRACT:

It was the object of the present paper to add further experimental material to the results of investigations referring to the problem of the influence exerted by the metallic nature of the metal derivatives in tautomeric systems upon the course of reaction of the substitution. The author investigated the reactions of the β -naphtholates of Li, Na, K, Tl (I), BrMg and $(\text{CH}_3)_4\text{N}^+$ to bromobenzyl, as well as those of Na- and Ag-phenolates to triphenylchloromethane. Besides the "acylation" of $(\text{CH}_3)_4\text{N}^+$, Ag-, Tl(I)⁻, Li- and Mg-acetoacetic ester was also performed (see table). In tests 1-4 and 6-7 the benzylester of β -naphthol (O-derivative), an H-benzylnaphtho-2 (S-

Card 1/2

Effect of the Nature of Metal in Keto-enol System Metal
Derivatives Upon the Course of Reaction of the O- and S-Substitution

79-11-31/56

derivative) and the β -naphthol nonparticipating in the reaction were separated from the reaction mixture. The crude benzylester contained a considerable quantity, difficult to separate, of what supposedly was dibenzyl-naphthol, wherefore the total yields of O- and S-derivatives of β -naphthol are not high. $\text{BrMg}-\beta$ -naphtholate has a marked inclination toward S-benzylation in contrast to those of the alkali metals. The Mg-acetoacetic ester with chloracetyl also only forms an S-derivative, of Na-acetoacetic ester. There are 1 table, and 26 references, 4 of which are Slavic.

ASSOCIATION: Moscow State University (Moskovskiy gosudarstvennyy universitet).

SUBMITTED: November 26, 1956

AVAILABLE: Library of Congress

Card 2/2 1. Metal derivatives - Chemical reactions
 2. Keto-enol systems - Chemical reactions

ZAGOREVSKIY, V. A.

79-2-46/64

AUTHOR:

Zagorevskiy, V. A.

TITLE:

The Investigation of the Influence of the Character of the Reagent on the Direction of Reaction of the O- and C-Substitution of Metal Derivatives of the Ketonol System
(Izuchenie vliyaniya kharaktera deystvuyushchego reagenta na napravleniye reaktsii O- i C-zameshcheniya metallicheskikh proizvodnykh ketoenol'noy sistemy).

PERIODICAL: Zhurnal Obschey Khimii, 1958, Vol. 28, Nr 2, pp. 438-494
(USSR)

ABSTRACT:

The influence of a series of halogen derivatives on metal phenolates and β -naphtholates was investigated under the direction of A. N. Nesmeyanov and a reaction was carried out between a sulfuric anhydride (dioxanesulfotrioxide), complexly bound with dioxane, and sodium phenolate. The results are given in a table. It appears from the obtained data that: the introduction of a nitro group to the para-position of benzylbromide reduces somewhat the corresponding yield of C-derivatized β -naphthol or at least does not increase it, whereas p-methoxybenzalbromide shows a considerably greater inclination toward C-substitution. It remains unexplained whether the C-p-methoxybenzylnaphthol-2 is formed

Card 1/3

The Investigation of the Influence of the Character of the Reagent on the Direction of Reaction of the O- and C- Substitution of Metal Derivatives of the Ketoenol System 79-2-46/64

first or by the isomerization of O-p-methoxybenzylnaphthal-2. 4-bromo-1,3-dinitrobenzene and benzoylchloride (in boiling dioxane) react with Na- β -naphtholate only over the oxygen atom. The increased inclination of acylhalides to yield O-derivatives with metal phenolates, is also shown in the reaction with dialuminium chloride phenolate (in boiling CS₂), the solvent being pointed out in this. Tri-p-nitro-phenylbromomethane, a reagent which is to a great extent electrophile, reacts with Na-phenolate only over the oxygen atom, without a transfer of the reaction center. The dioxanesulfotrioxide turned out to be a reagent to a very great extent electrophile, compared to the halogen derivatives, and can sulfinate (in CCl₄) anisole, naphthalene, and benzene. Phenylsulfuric acid sodium was obtained with Na-phenolate. A detailed preparation report with specific data is given on the above mentioned as well as on some analogous reactions.

Card 2/3

The Investigation of the Influence of the Character of the 79-2-46/64
Reagent on the Direction of Reaction of the O- and C-
Substitution of Metal Derivatives of the Ketoenol System.

There are 1 table, and 17 references, 6 of which are Slavic.

ASSOCIATION: Moscow State University (Moskovskiy gosudarstvennyy universitet).

SUBMITTED: January 28, 1957

AVAILABLE: Library of Congress

Card 3/3

KUDRYASHOV, B.A.; PASTOROVA, V.Ye.; ZAGOREVSKIY, V.A.

Effects of synkavite (tetrasodium salt of 2-methyl-1,4-naphthoquinone diphosphate) on concentrations of prothrombin and convertin and on the thromboplastic activity of the blood in experimental vitamin K deficiency. Vop.med.khim. 5 no.4:279-284 Jl-Ag '59. (MIRA 12:12)

1. Laboratoriya fiziologii i biokhimii svertyvaniya krovi, kafedra biokhimii zhivotnykh Moskovskogo gosudarstvennogo universiteta.
(VITAMIN K DEFICIENCY exper.)
(BLOOD COAGULATION pharmacol.)

AUTEORS:

Zagorevskiy, V. A., Akhrem, I. S.

SOV/79-29-2-56/71

TITLE:

On the Acylation of the Copper Acetoacetic Ester (Ob atsilirovanii med'atsetoeksusnogo efira)

PERIODICAL:

Zhurnal obshchey khimii, 1959, Vol 29, Nr 2, pp 619-624 (USSR)

ABSTRACT:

Proceeding from the acylation of the copper acetoacetic ester the authors continued their investigation concerning the influence of the character of the acting reagent upon the direction of the substitution reaction at O or C. Acetyl fluoride, acetic acid anhydride and trichloro acetyl chloride were used as alkylating agents. The ever present marked inclination of silver derivatives of the keto enol system, as compared with the corresponding derivatives of alkali metals, to form O-substituted reaction products with alkyl halides and acyla (Refs 1, 2-4), is even more complicated in the case of copper enolates. Thus, the copper acetoacetic ester is acylated to the O-atom (Refs 5, 6) with acetyl chloride and benzoyl chloride, whereas the sodium acetoacetic ester chiefly forms C-derivatives. Apart from these examples no other indications concerning the acylation of copper derivatives of acetoacetic ester are available in publications. The authors found that acetyl fluoride, acetic

Card 1/3

SOV/79-29-2-56/71

On the Acylation of the Copper Acetoacetic Ester

acid anhydride and trichloro acetyl chloride react with the copper acetoacetic ester at the carbon atom (Table). On acylating with acetyl fluoride and acetic acid anhydride; the enolacetate of acetoacetic ester introduced on purpose into the reaction mixture is observed to reoccur unchanged with 78-90% (Table, Experiments 2,4,7). Consequently, it must be assumed that α -acetyl acetoacetic ester is a product of the primary substitution reaction and not of the secondary isomerization process of enolacetate. Since the reaction of sodium acetoacetic ester with acetyl fluoride or trichloroacetyl chloride is not described in publications, these reactions were carried out. Acetylfluoride yielded α -acetyl acetacetic ester with sodium enolate (Table, Experiment 1). Acylation of sodium enolate with trichloro acetyl chloride led to ditrichloro acetyl acetoacetic ester (I) (40% yield), besides α -trichloro acetyl acetoacetic ester (II), which was identified on the basis of its copper derivative (III). The results obtained showed that the above three reagents behave towards copper acetoacetic ester in the same way as chlorocarbon and chlorine-methyl ester and sharply differ from acetyl chloride. There are 1 table and 19 references, 4 of which are Soviet.

Card 2/3

On the Acylation of the Copper Acetoacetic Ester

SOV/79-29-2-56/7:

ASSOCIATION: Institut farmakologii i khimioterapii Akademii meditsinskikh nauk SSSR (Institute of Pharmacology and Chemotherapy of the Academy of Medical Sciences, USSR)

SUBMITTED: August 12, 1957

Card 3/3

5 (3)
AUTHORS: Zagorevskiy, V. A., Zykov, D. A., Pronina, L. P. SOV/79-29-3-58/61
TITLE: Syntheses in the Series of the Chromone-carboxylic Acid-2 Derivatives (Sintezy v ryadu proizvodnykh khromonkarbonovoy-2-kisloty)
PERIODICAL: Zhurnal obshchey khimii, 1959, Vol 29, Nr 5, pp 1026-1030 (USSR)
ABSTRACT: It is known that several chromone derivatives are physiologically active compounds. Recently it was found that chromones substituted more simply than the kellin (2-methyl-5,8-dimethoxy-6,7-furanochromone), like e.g. the chromone-carboxylic acid-2 and its esters are active as well (Refs 1-4). This acid has a distinctly marked antispasmodic activity (Ref 5). The authors synthesized some new chromone-carboxylic acid-2 derivatives in order to find new pharmacologically active chromone preparations and in order to clarify the problem of the dependence of the activity on their structure. In publications (Ref 3) only the phenyl-ester is mentioned of the aryl esters of this acid (yield only 18%). In the present paper the aryl esters of the acid (I-VIII) given in the table were synthesized proceeding from its acid chloride and the corresponding phenols. The acid
Card 1/3

SOV/79-29-3-58/61

Syntheses in the Series of the Chromone-carboxylic Acid-2 Derivatives

chloride was used in the form of its pyridine solution which was produced by the treatment of the chromone-carboxylic acid-2 solved in pyridine with thietyl chloride. In order to obtain a higher yield of acid chloride thietyl chloride has to be in excess in the reactions with the chromone-carboxylic acid-2. The synthesis with the o-oxyacetophenone as initial product was found to be the best of the syntheses of the chromone-carboxylic acid-2 worked out by the authors. The o-oxyacetophenone was condensed with diethyl oxalate in the presence of sodium ethylate (Ref 3). The mixture of 2 molecules o-oxyacetophenone and diethyl oxalate was added to the solution of sodium ethylate in alcohol. The derivative of the ethyl-ester of the o-oxybenzoyl piroracemic acid ($\text{CH}_3\text{CO.CO}_2\text{H}$) produced in the case of heating was transformed into the chromone-carboxylic acid-2, first by boiling with concentrated, then with diluted hydrochloric acid (yield 72-80%). Thus a series of aryl esters of the chromone-carboxylic acid-2 is synthesized. The suggested improved synthesis of the chromone-carboxylic acid-2 can be used preparatively in the laboratory for greater quantities as well. The results of the pharmacological investigations of some synthesized preparations are published later on. There are 1table and 17 references,

Card 2/3

SOV/79-29-3-58/61

Syntheses in the Series of the Chromone-carboxylic Acid-2 Derivatives

2 of which are Soviet.

ASSOCIATION: Institut farmakologii i khimioterapii Akademii meditsinskikh nauk SSSR (Institute of Pharmacology and Chemotherapy of the Academy of Medical Sciences, USSR)

SUBMITTED: February 16, 1958

Card 3/3

5 (3)

AUTHORS: Zagorevskiy, V. A., Zykov, D. A.,
Vinokurov, V. G. SOV/79-29-7-43/83

TITLE: Derivatives of Chromonecarboxylic-2-acid (Proizvodnyye khromon-
karbonovoy-2-kisloty)

PERIODICAL: Zhurnal obshchey khimii, 1959, Vol 29, Nr 7, pp 2302 - 2306
(USSR)

ABSTRACT: In the preceding paper (Ref 1) the synthesis of a number of aryl esters of the chromonecarboxylic-2-acid by means of the acid chloride of this acid was described. The acid chloride was prepared by reaction of thionyl chloride in a pyridine solution of the acid and the crude mixture used without purification. In the present investigation 15 new and different N-substituted amides as well as some other derivatives of the chromonecarboxylic-2-acid were synthesized in search of pharmacologically active compounds (Table). All the substances (I)-(XV) were synthesized by reaction of the acid chloride on the above acid with the corresponding amino, oxy, and mercapto derivatives. The crude acid chloride, obtained by the previously proposed method, was used for reaction in dichloro ethane solution. In every case, excepting (XIII)-(XV), sodium bicarbon-

Card 1/2

Derivatives of Chromonecarboxylic-2-acid

SOV/79-29-7-43/83

ate was used to bind the HCl formed in the reaction. By synthesizing the aryl esters (XIII)-(XIV) it was demonstrated that the acylation of phenols with this acid chloride by the Schotten-Baumann method is possible. The compounds (VIII)-(XII) form water-soluble salts when treated with sodium carbonate or sodium bicarbonate (carboxyanilide (IX)). The relation between the color of the chromonecarboxylic-2-acid amides and the kind of substituent in the benzene ring of the aromatic amino group is of interest. Thus, for instance, the amide of the chromonecarboxylic-2-acid is colorless, the p-toluidide (II) is light greenish-yellow. The p-methoxy-(III) and p-oxy-anilide (IV) are yellowish-green, whereas the amides (VI) and (VII) are yellowish-orange or red. The aryl esters of the chromonecarboxylic-2-acid show similar effects. An explanation of this phenomenon will be the subject of further investigations. There are 1 table and 5 references, 4 of which are Soviet.

ASSOCIATION: Institut farmakologii i khimioterapii Akademii meditsinskikh nauk SSSR (Institute of Pharmacology and Chemotherapy of the Academy of Medical Sciences, USSR)

SUBMITTED: June 5, 1958
Card 2/2

ZAGOREVSKIY, V.A.; ZYKOV, D.A.

Mechanism of formation of 4-chlorocoumarin from 2-chromonecarboxylic acid chloride. Zhur. ob. khim. 30 no.9:3100-3103 S '60.
(MIRA 13:9)

1. Institut farmakologii i khimioterapii Akademii meditsinskikh nauk SSSR.
(Coumarin)

ZAGOREVSKIY, V.A.; ZYKOV, D.A.; ORLOVA, E.K.

Some derivatives of gallic acid. Zhur. ob. khim. 30 no.9:3103-3104
S '60. (MIRA 13:9)

I. Institut farmakologii khimioterapii Akademii meditsinskikh nauk
SSSR.
(Gallic acid)

ZAGOREVSKIY, V.A.; ZIKOV, D.A.

Reactions of 2-chromonecarboxylic acids and their esters with diamines. Zhur. ob. khim. 30 no.11:3579-3584 N'60.(MIRA 13:21)

1. Institut farmakalogii i khimioterapii Akademii meditsinskikh nauk SSSR.
(Chromonecarboxylic acid) (Amines)

ZAGOREVSKIY, V.A.; ZIKOV, D.A.; ORLOVA, E.K.

Synthesis of substituted 2-chromonecarboxylic acids and their
esters. Zhur. ob. khim. 30 no.12;3894-3898 D '60. (MRA 13:12)

1. Institut farmakologii i khimioterapii Akademii meditsinskikh
nauk SSSR.

(Chromonecarboxylic acid)

ZAGOREVSKIY, V.A.; ZYKOV, D.A.; ORLOVA, E.K.

Conversion of 2-chromonecarboxylic acids to 4-chlorocumarins.
Zhur. ob. khim. 31 no. 2:568-574 F '61. (MIRA 14:2)

1. Institut farmakologii i khimioteranii AMN.
(Chromonecarboxylic acid) '(Coumarin)

VINOKUROV, V.G.; TROITSKAYA, V.S.; ZAGOREVSKIY, V.A.

Absorption spectra of derivatives of 2-chromonecarboxylic acid
in the ultraviolet and visible. Zhur. ob. khim. 31 no.4: 1079-
1082 Ap '61. (MJRA 14:4)

1. Institut farmakologii i khimioterapii Akademii meditsinskikh
nauk SSSR.
(Benzopyrancarboxylic acid--Spectra)

VINOKUROV, V.G.; TROITSKAYA, V.S.; ZAGOREVSKIY, V.A.

Spectral colors in the series of derivatives of 2-chromonecarboxylic acid. Zhur.ob.khim. 31 no.9:2901-2995 S '61. (MIRA 14:9)

1. Institut farmakologii i khimioterapii Akademii meditsinskikh nauk SSSR.
(Chromonecarboxylic acid--Spectra)

ZAGOREVSKIY, V.A.; DUDYKINA, N.V.

New type of conversion of 4-chlorocoumarin. Zhur. ob. khim. 32
no. 7:2383-2384 Jl '62. (MIRA 15:7)

1. Institut farmakologii i khimioterapii Akademii meditsinskikh
nauk SSSR.
(Coumarin)

ZAGOREVSKIY, V.A.; DUDYKINA, N.V.

Action of amines on 4-chlorocoumarin. Zmir,ob.khim. 32
no.7:2384-2385 Jl '62. (MIR 15:7)

1. Institut farmakologii i khimioterapii Akademii meditsinskikh
nauk SSSR.
(Amines) (Coumarin)

SHARKOVA, N.M.; KUCHEROVA, N.F.; ZAGOREVSKIY, V.A.

Derivatives of indole. Part 9: Synthesis of derivatives
of pyrano (4,3-b)-3,4-dihydroindoles and chromeno (4,3-b)indoles.
Zhur. ob. khim. 32 no.11:3640-3645 N '62. (MIRA 15:11)

1. Institut farmakologii i khimioterapii AMN SSSR.
(Pyranoindoles) (Benzopyranoindole)

KUCHEROVA, N.F.; PETRUCHENKO, M.I.; ZAGOREVSKIY, V.A.

Derivatives of indole. Part 10: Synthesis of some
derivatives of 3,4-dihydrothiopyrano (4,3-b) indole.
Zhur.ob.khim. 32 no.11:3645-3649 N '62. (MIRA 15:11)

1. Institut farmakologii i khimioterapii AMN SSSR.
(Pyranoindole)

ZAGOREVSKIY, V.A.

Further study of the properties of
4,4-dichlorobenzopyran-2-carboxyl chloride. Zhur. ob. khim.
32 no.11:3770-3775 N '62. (MIRA 15:11)

1. Institut farmakologii i khimioterapii AMN SSSR.
(Benzopyrancarboxylic acid)

ZAGOREVSKIY, V. A.; DUDYKINA, N. V.

Pyran, its analogs and related compounds. Part 1: Derivatives
of 4-aminochroman. Zhur. ob. khim. 32 no.12:3930-3934 D '62.
(MIRA 16:1)

1. Institut farmakologii i khimioterapii AMN SSSR.

(Chroman)

AKSANOVА, L. A.; KUCHEROVА, N. F.; ZAGOREVSKИY, V. A.

Derivatives of indole. Part 11: Synthesis of derivatives of
thiechromene[4,3-b]indole. Zhur. ob. khim. 33 no.1:220-223
'63. (MIRA 16:1)

1. Institut farmakologii i khimioterapii AMN SSSR.

(Indole) - (Thiechromone)

ZAGOREVSKIY, V.A.; DUDYKINA, N.V.; SAVEL'YEV, V.L.

Opening the coumarin ring with amines. Zbir. ob. khim. 33
no. 5:1695-1696 My '63. (MIRA 16:6)

1. Institut farmakologii i khimioterapii AMN SSSR.
(Coumarin) (Amines)

ZAGOREVSKIY, V.A.; SOVZENKO, Z.D.

Methylation of esculetin and 4-methylesculetin, Zhur. qb, khim.
33 no. 5:1699-1700 My '63. (MIRA 16:6)

1. Institut farmakologii i khimioterapii AMN SSSR,
(Esculetin) (Coumarin) (Methylation)

ZAGOREVSKIY, V.A.; ORLOVA, E.K.

Effect of additions on the rate of conversion of
chromone-2-carboxylic acids to 4,4-dichlorochromone-2-carboxyl
chlorides. Zhur.ob.khim. 33 no.6:1857-1859 Je '63. (MIRA 16:7)

1. Institut farmakologii i khimioterapii AMN SSSR.
(Benzopyranone) (Benzopyrancarboxylic acid)

ZACOREVSKIY, V.A.; ZYKOV, D.A.

Problem of the condensation of α -hydroxyacetophenone with
diethyl oxalate. Zhur. ob. khim. 33 no.8:2469-2471 Ag '63.
(MIRA 16:11)

1. Institut farmakologii i khimioterapii AMN SSSR.

ZAGOREVSKIY, V.A.; LOPATINA, K.I.

Pyran series, its analogs and related compounds. Part 3:
1-Methyl-4-alkyl-4-aminopiperidines. Zhur. ob. khim. 33
no.8:2525-2528 Ag '63. (MIRA 16:11)

1. Institut farmakologii i khimioterapii AMN SSSR.

KUCHEROVA, N.F.; AYSAULVA, L.A.; ZAGORENSKIV, V.A.

Derivatives of indole. Part 12: Synthesis of derivatives of
hydrothiopyrano-[4,3-b]-indole S,S-dioxides. Zhur. ob. khim.
33 no.10:3403-3403 O '63. (MIRA 16:11)

1. Institut farmakologii i khimioterapii AMN SSSR.

ZAGOREVSKIY, V.A.; ZYKOV, D.A.; ORLOVA, E.K.

Interaction of chromone-2-carboxylic acid derivatives with amines.
Zhur. ob. khim. 34 no.2:539-543 F '64. (MIRA 17:3)

Institut farmakologii i khimioterapii AMN SSSR.

ZAGOREVSKIY, V.A.; GLOZMAN, Sh.M.

Pyran series, its analogs and related compounds. Part 6,
Polycyclic pyran systems: 1) 4-methyl-*d*-pyrano [5,6;6',5']
chromone-2-carboxylic and 3'-methylfuran [5,6; 5'4] chromone-
2-carboxylic acid and their derivatives. Zhur. ob.khim. 34
no. 5:1506-1512 My '64. (MIRA 17:7)

1. Institut farmakologii i khimioterapii AMN SSSR.

AKSANOVА, L.A.; KUCHEROVА, N.F.; ZAGOREV'YIY, V.A.

Derivatives of indole. Part 14: Synthesis of 4H-2,3-dihydro-1H-[3,3-b]indoles. Zhur. ob.khim. 34 no. 5:1609-1613 May '64.
(MIRA 17:7)

1. Institut farmakologii i khimioterapii AMN SSSR.

SHARKOVA, N.M.; KUCHEROVA, N.F.; ZAGOREVSKIY, V.A.

Derivatives of indole. Part 15: Syntheses of some condensed
indoline systems. Zhur. ob. khim. 34 no. 5:1614-1618
My '64.
(MIRA 17:7)

1. Institut farmakologii i khimioterapii AMN SSSR.

ZAGOREVSKIY, V.A.; TSVETKOVA, I.D.; ORLOVA, E.K.

Interaction of 4,4-dichlorochromen-2-carboxylic acid derivatives
with cyanoacetic ester. Zhur. ob.khim. 34 no. 5:1685-1686
My '64. (MIRA 17:7)

1. Institut farmakologii i khimioterapii AMN SSSR.

ZAGOREVSKIY, V. A.; TSVETKOVA, I. D.; ORLOVA, E. K.

Series of pyran, its analogs and related compounds. Part 6:
Interaction of the derivatives of 4, 4-dichlorochromene-2...
dicarboxylic acid with aromatic amines. Zhur. ob. Khim. 34,
no. 6:1911-1917 Je '64. (MIRA 17:?)
I. Institut farmakologii i khimioterapii AMN SSSR.

ZAGOREVSKIY, V.A.; DUDYKINA, N.V.

Pyran series, its analogs, and related compounds. Part 7:
Particularities of the reduction of 4-chromanone oximes and
related ketones, with lithium-aluminum hydride. Zhur. ob. khim.
34 no. 7:2282-2286 Jl '64 (MIRA 17:8)

1. Institut farmakologii i khimioterapii AMN SSSR.

ZAGOREVSKIY, V.A.; LOPATINA, K.I.

Pyran series, its analogs, and related compounds. Part 8:
4-Alkyl-4-aminotetrahydropyrans. Zhur. ob. khim. 34 no.7:
2287-2290 Jl '64
(MIRA 17:8)

1. Institut farmakologii i khimioterapii AMN SSSR.

ZAGOREVSKIY, V.A.; SAVEL'YEV, V.L.

Pyran series, its analogs, and related compounds. Part 9:
Reaction of coumarin with amines. Zhur. ob. khim. 34 no. 7;
2290-2293 J1 '64 (MIRA 17:8)

1. Institut farmakologii i khimioterapii AMN SSSR.

KOMZOLOVA, N.N.; KUCHEROVA, N.P.; ZAGOREVSKIY, V.A.

Derivatives of indole. Part 16: 2,2,4,4-Tetramethyl-1,2,3,4-tetrahydro-γ-carbolines and their derivatives. Zhur. ob. khim. 34 no. 7: 2383-2387 Jl. '64 (MIRA 17:8)

1. Institut farmakologii i khimioterapii AMN SSSR.

KAKURINA, L.N.; KUCHEROVA, N.F.; ZAGOREVSKIY, V.A.

Fischer condensation of aryl hydrazines with
3-(β -carbomethoxyethyl) tetrahydro-1-thio-4-pyrono.
Zhur. ob. khim. 34 no.8:2805-2806 Ag '64. (MIRA 17:9)

1. Institut farmakologii i khimioterapii AMN SSSR.

ZAGOREVSKIY, V.A.; SOVZENKO, Z.D.

Study of the pyran series, its analogs and related compounds.
Part 10: Alkylation of esculetin. Zhur. ob khim. 34 no.12:
3987-3991. D 1964
(MIRA 18:1)

1. Institut farmakologii i khimioterapii ANN SSSR.

ZAGOREVSKIY, V.A.; LOPATINA, K.I.

Pyran, its analogs, and related compounds. Part II: Applying
Ritter's reaction to some heterocyclic tertiary alcohols. Zhur.
org.khim. 1 no.2:366-369 F '65. (MIRA 18:4)

1. Institut farmakologii i khimoterapii AMN SSSR.

ZAGOREVSKIY, V.A.; SOVZENKO, Z.D.

Pyran, its analogs, and related compounds. Part 12: Alkylation
of 4-methylesculetin. Zhur.org.khim. 1 no.2:380-383 F 165.
(MIRA 18:4)

1. Institut farmakologii i khimioterapii AMN SSSR.

KAKURINA, L.N.; KUCHEROVA, N.F.; ZAGOREVSKIY, V.A.

Derivatives of Indole. Part 20: Fischer reaction of arylhydrazones of 3-(β -carbamethoxyethyl) tetrahydrothiopyran-4-one. Zhur. org. khim. 1 no.61
1108-1111 Je '65. (MIRA 18:7)

1. Institut farmakologii i khimioterapii AMN SSSR.

KOMZOLOVA, N.N.; KUCHEROVA, N.F.; ZAGOREVSKIY, V.A.

Derivatives of indole. Part I9: Unusual course of reduction of
2,2,4,4-tetramethyl-1,2,3,4-tetrahydro- γ^2 -carboline. Zhur. org.
khim. 1 no.6:1139-1142 Je '65. (MERA 28:7)

1. Institut farmakologii i khimioterapii AMN SSSR.

LOREVSKIY, V.A., LOPATINA, K.I.

Pyran, its analogs, and related compounds. Part 15: Synthesis
of some heterocyclic amines with a branched chain. Khim. org.
khim. i no.8:1500-1502 Ag '65. (Khim. 18:11)

1. Institut farmakologii i khimioterapii ANN SSSR.

ZAGOREVSKIY, V.A.; TSVETKOVA, I.D.; ORLOVA, E.K.; ZYKOV, D.A.

Rare case of a direct formation of imines in the chromone series. Zhur. org. khim. 1 no.8;1517-1518 Ag '65.

(MIRA 18:11)

1. Institut farmakologii i khimioterapii AMN SSSR.

AKSANOVA, L.A.; KUCHEROVA, N.F.; ZAGOREVSKIY, V.A.

Derivatives of indole Part 21: Synthesis of some 6H-1,2,3,4,5-tetrahydri thiophen[5,4-b]indoles and their S,S-dioxides. Zhur. org. khim. 1 no. 12:2215-2218 D '65 (MIRA 19:1)

1. Institut farmakologii i khimioterapii AMN SSSR. Submitted January 5, 1965.

ZAGOREVSKIY, V.A.; KIRSANOV, Z.D.

Acylation of esculetins. Zhur. ob. khim. 35 no.7:1310-1311
J1 '65. (KINA 13:8)

1. Institut farmakologii i khimioterapii AMN SSSR.

ZAGORIČEK, S.

Danger of inundation by underground water and the possibility of a surface flood in the coal pits of Velenje, p. 100. (NOVA PREGAZOVINA, Vol. 5, no. 2, July, 1954, Ljubljana, Yugoslavia)

SO: Monthly List of East European Acquisitions, (EAA), LC, Vol. 4, No. 4, Apr 1955, Incl.

VUGO.

2074. PROPOSAL FOR NEW METHOD OF WORKING IN THICK COAL JOINTS.
Zagorichnik, S. "Neva Printved" (Nafta Izdat., Ljubljana), Nov. 1954, vol. 5,
1957-1958(2). The difficulties experienced with a thick seam of brown coal in
the Velenje Field are described, and the adoption of a method of working in thick
seams in three successive layers is proposed. The proposal is based on experience
at Kostobrata in North West Bohemia ascribed by A. Hildner (Prumekhia,
Obzervator, Praha, 1952, vol. 4, 104-115).

"APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963410019-7

ZAGORICHEK

✓ 4753. 6. STEEL PIPE IMPORTS OF HORN (YUGOSLAV) MANUFACTURE: Zager (České
Hory) (New Industry, Lubljana), 1955, (376), 22-3 W. (Hand)

APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963410019-7"

"APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963410019-7

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
444410
444411
444412
444413
444414
444415
444416
444417
444418
444419
444420
444421
444422
444423
444424
444425
444426
444427
444428
444429
444430
444431
444432
444433
444434
444435
444436
444437
444438
444439
444440
444441
444442
444443
444444
444445
444446
444447
444448
444449
4444410
4444411
4444412
4444413
4444414
4444415
4444416
4444417
4444418
4444419
4444420
4444421
4444422
4444423
4444424
4444425
4444426
4444427
4444428
4444429
4444430
4444431
4444432
4444433
4444434
4444435
4444436
4444437
4444438
4444439
4444440
4444441
4444442
4444443
4444444
4444445
4444446
4444447
4444448
4444449
44444410
44444411
44444412
44444413
44444414
44444415
44444416
44444417
44444418
44444419
44444420
44444421
44444422
44444423
44444424
44444425
44444426
44444427
44444428
44444429
44444430
44444431
44444432
44444433
44444434
44444435
44444436
44444437
44444438
44444439
44444440
44444441
44444442
44444443
44444444
44444445
44444446
44444447
44444448
44444449
444444410
444444411
444444412
444444413
444444414
444444415
444444416
444444417
444444418
444444419
444444420
444444421
444444422
444444423
444444424
444444425
444444426
444444427
444444428
444444429
444444430
444444431
444444432
444444433
444444434
444444435
444444436
444444437
444444438
444444439
444444440
444444441
444444442
444444443
444444444
444444445
444444446
444444447
444444448
444444449
4444444410
4444444411
4444444412
4444444413
4444444414
4444444415
4444444416
4444444417
4444444418
4444444419
4444444420
4444444421
4444444422
4444444423
4444444424
4444444425
4444444426
4444444427
4444444428
4444444429
4444444430
4444444431
4444444432
4444444433
4444444434
4444444435
4444444436
4444444437
4444444438
4444444439
4444444440
4444444441
4444444442
4444444443
4444444444
4444444445
4444444446
4444444447
4444444448
4444444449
44444444410
44444444411
44444444412
44444444413
44444444414
44444444415
44444444416
44444444417
44444444418
44444444419
44444444420
44444444421
44444444422
44444444423
44444444424
44444444425
44444444426
44444444427
44444444428
44444444429
44444444430
44444444431
44444444432
44444444433
44444444434
44444444435
44444444436
44444444437
44444444438
44444444439
44444444440
44444444441
44444444442
44444444443
44444444444
44444444445
44444444446
44444444447
44444444448
44444444449
444444444410
444444444411
444444444412
444444444413
444444444414
444444444415
444444444416
444444444417
444444444418
444444444419
444444444420
444444444421
444444444422
444444444423
444444444424
444444444425
444444444426
444444444427
444444444428
444444444429
444444444430
444444444431
444444444432
444444444433
444444444434
444444444435
444444444436
444444444437
444444444438
444444444439
444444444440
444444444441
444444444442
444444444443
444444444444
444444444445
444444444446
444444444447
444444444448
444444444449
4444444444410
4444444444411
4444444444412
4444444444413
4444444444414
4444444444415
4444444444416
4444444444417
4444444444418
4444444444419
4444444444420
4444444444421
4444444444422
4444444444423
4444444444424
4444444444425
4444444444426
4444444444427
4444444444428
4444444444429
4444444444430
4444444444431
4444444444432
4444444444433
4444444444434
4444444444435
4444444444436
4444444444437
4444444444438
4444444444439
4444444444440
4444444444441
4444444444442
4444444444443
4444444444444
4444444444445
4444444444446
4444444444447
4444444444448
4444444444449
44444444444410
44444444444411
44444444444412
44444444444413
44444444444414
44444444444415
44444444444416
44444444444417
44444444444418
44444444444419
44444444444420
44444444444421
44444444444422
44444444444423
44444444444424
44444444444425
44444444444426
44444444444427
44444444444428
44444444444429
44444444444430
44444444444431
44444444444432
44444444444433
44444444444434
44444444444435
44444444444436
44444444444437
44444444444438
44444444444439
44444444444440
44444444444441
44444444444442
44444444444443
44444444444444
44444444444445
44444444444446
44444444444447
44444444444448
44444444444449
444444444444410
444444444444411
444444444444412
444444444444413
444444444444414
444444444444415
444444444444416
444444444444417
444444444444418
444444444444419
444444444444420
444444444444421
444444444444422
444444444444423
444444444444424
444444444444425
444444444444426
444444444444427
444444444444428
444444444444429
444444444444430
444444444444431
444444444444432
444444444444433
444444444444434
444444444444435
444444444444436
444444444444437
444444444444438
444444444444439
444444444444440
444444444444441
444444444444442
444444444444443
444444444444444
444444444444445
444444444444446
444444444444447
444444444444448
444444444444449
4444444444444410
4444444444444411
4444444444444412
4444444444444413
4444444444444414
4444444444444415
4444444444444416
4444444444444417
4444444444444418
4444444444444419
4444444444444420
4444444444444421
4444444444444422
4444444444444423
4444444444444424
4444444444444425
4444444444444426
4444444444444427
4444444444444428
4444444444444429
4444444444444430
4444444444444431
4444444444444432
4444444444444433
4444444444444434
4444444444444435
4444444444444436
4444444444444437
4444444444444438
4444444444444439
4444444444444440
4444444444444441
4444444444444442
4444444444444443
4444444444444444
4444444444444445
4444444444444446
4444444444444447
4444444444444448
4444444444444449
44444444444444410
44444444444444411
44444444444444412
44444444444444413
44444444444444414
44444444444444415
44444444444444416
44444444444444417
44444444444444418
44444444444444419
44444444444444420
44444444444444421
44444444444444422
44444444444444423
44444444444444424
44444444444444425
44444444444444426
44444444444444427
44444444444444428
44444444444444429
44444444444444430
44444444444444431
44444444444444432
44444444444444433
44444444444444434
44444444444444435
44444444444444436
44444444444444437
44444444444444438
44444444444444439
44444444444444440
44444444444444441
44444444444444442
44444444444444443
44444444444444444
44444444444444445
44444444444444446
44444444444444447
44444444444444448
44444444444444449
444444444444444410
444444444444444411
444444444444444412
444444444444444413
444444444444444414
444444444444444415
444444444444444416
444444444444444417
444444444444444418
444444444444444419
444444444444444420
444444444444444421
444444444444444422
444444444444444423
444444444444444424
444444444444444425
444444444444444426
444444444444444427
444444444444444428
444444444444444429
444444444444444430
444444444444444431
444444444444444432
444444444444444433
444444444444444434
444444444444444435
444444444444444436
444444444444444437
444444444444444438
444444444444444439
444444444444444440
444444444444444441
444444444444444442
444444444444444443
444444444444444444
444444444444444445
444444444444444446
444444444444444447
444444444444444448
444444444444444449
4444444444444444410
4444444444444444411
4444444444444444412
4444444444444444413
4444444444444444414
4444444444444444415
4444444444444444416
4444444444444444417
4444444444444444418
4444444444444444419
4444444444444444420
4444444444444444421
4444444444444444422
4444444444444444423
4444444444444444424
4444444444444444425
4444444444444444426
4444444444444444427
4444444444444444428
4444444444444444429
4444444444444444430
4444444444444444431
4444444444444444432
4444444444444444433
4444444444444444434
4444444444444444435
4444444444444444436
4444444444444444437
4444444444444444438
4444444444444444439
4444444444444444440
4444444444444444441
4444444444444444442
4444444444444444443
4444444444444444444
4444444444444444445
4444444444444444446
4444444444444444447
4444444444444444448
4444444444444444449
44444444444444444410
44444444444444444411
44444444444444444412
44444444444444444413
44444444444444444414
44444444444444444415
44444444444444444416
44444444444444444417
44444444444444444418
44444444444444444419
44444444444444444420
44444444444444444421
44444444444444444422
44444444444444444423
44444444444444444424
44444444444444444425
44444444444444444426
44444444444444444427
44444444444444444428
44444444444444444429
44444444444444444430
44444444444444444431
44444444444444444432
444

"APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963410019-7

ZINGURICHNIK, S.

✓ 41. OF DIAST MINING AND ITS TECHNICAL AND ECONOMIC PROBLEMS

APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963410019-7"

ZAGORIČNIK, S.

Domestic steel pit props. p. 325.

NOVA PROIZVODNJA. Ljubljana, Vol. 6, No. 5/6, Dec. 1955

SO: FEAL, Vol. 5, No. 7 July 1956

ZAGORICNIK, S.

Experiences with metallic tracing in brown coal and lignite mines. p. 330

NOVA PROIZVODNJA., Ljubljana, Vol. 6, No. 5/6, Dec. 1955

SO: EEAL, Vol. 5, No. 7, July 1956

ZAGORICNIK, S.

Dangers of the breaking of underground water into the mine and the possibility of surface water penetrating into the Velenje Coal Basin. p. 701.

TRINIKA, Beograd, Vol. 10, no. 5, 1955.

SO: Monthly List of East European Accessions, (EBAL), LC, Vol. 4, no. 10, Oct. 1955,
Uncl.

ZAGORICNIK, Stefan, diplomirani inženir rudarstva

Technical and economic computation of the applicability of
mechanized coal extraction in the Velenje Mine. Rad mat zbir
3:243-255 '64.

1. Velenje Lignite Mine, Velenje.

ZAGORICNIK, Stefan, dipl. ins. (Velenje)

Importance of some rationalizations for raising production
and decreasing production cost in the Velenje Lignite Mine
Nova pravila 3/4. 169-172 '64.

ZAGORICNIK, Stefan

Technical and economic results of the use of steel props in
mines. Rud met zbor no.1:31-47 '63.

ZAGORICNIK, Stefan, inz.

Labor efficiency, economy, and accident prevention. Nova pravovy
13 no.2;155 '62.

ZAGORICNIK, Stefan, inz.

Mechanization and public welfare. Nova proizv 13 no.2:156
'62.

"APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963410019-7

ZAGORICNIK, Stefan, inz.

Let us improve our boring methods. Nova proizv 13 no 2157
'62.

APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963410019-7"

ZAGORICNIK, Stefan, ins.

Contribution to the problem of better economy in our coal mines,
Nova proizv 12 no.4-5-6:254-257 D '61.

ZAGORICNIK, Stefan, inz.

Contribution to the statistical control of operation, maintenance of
mine mechanization, and further introduction of automation in our coal
mines. Nova proizv 12 no.4-5-6:258-265 D '61.

"APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963410019-7

ZAGORIN, L.Ye.

Normal Jordanian form of matrices over a body.
Vestsi AN BSSR. Ser.fiz.-mat.nav. no.2:21-24 '65.

(MIRA 19t1)

APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963410019-7"

"APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963410019-7

ZAGORIY, V.I. [Zahorii, V.I.]; YABLONSKIY, G.S. [IAblons'kiy, H.S.]

Calculating the economical density of the current in the electro-
lysis of the solution of salt. Khim. prom. [Ukr.] no.3:70-72
(MIRA 17:12)

Jl-S '64.

APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963410019-7"

ZAGORNY, J.

A copybook, control, and the supply plans. p. 4

ROLNIK SPOKZIELCA. (Centrala Rolniczej Spolkzielni "Sampopomoc Chlopska")
Warszawa, Poland. Vol. 8, no. 36, Sept. 1955.

Monthly list of East European Accessions (EEAI) LC, Vol. 9, no. 2, Feb. 1960

Uncl.

ZAGORNY, J.

They will not repeat the mistakes of the past year. p. 5.

ROLNIK SPÓŁDZIELCA. (Centrala Rolniczej Spółki Ziemian "Sampopomoc Chłopska")
Warszawa, Poland. Vol. 8, no. 32, Aug. 1955.

Monthly list of East European Accessions (EEAI) LC, Vol. 9, no. 2, Feb. 1960

Uncl.

ZACORNY, Andrei Prokhorovich.

For reducing the expenditure of labor. Moskva. Profizdat, 1952.
34 p. Novator sotsialisticheskogo proizvodstva (54-17696)

TL240.23

ZAGORNYY, A.P.

TJ1160.A34

TREASURE ISLAND BOOK REVIEW

AID 864 - S

ZAGORNYY, A. P. and V. I. BARYKIN

ZA SNIZHENIYE TRUDOYEMKOSTI NA KAZHDOY PROIZVODSTVENNOY OPERATSII (On Reduction of Labor Required in Each Stage of Production). In Akademiya Nauk SSSR, Perekovoy opty novatorov mashinostroyeniya (Progressive Experience of Leading Men in the Machine-Building Industry) 1954. Part II: Perekovaya tekhnologiya litteynogo proizvodstva, obrabotki davleniyem i svarki (Advanced Technique in Foundry Casting, Metal Pressing, and Welding). p. 170-175.

The authors, A. P. Zagornyy, Leading Blacksmith (Stalin Prize Winner) and Engineer V. I. Barykin of the Gor'kiy Automobile Plant im. Molotov describe a movement started there in 1951 for more efficiency in making certain automotive parts, and the results achieved. They describe these more efficient ways of making steering knuckle pivots for the GAZ-63 automobiles, brake pedals for the GAZ-51 and M-20 automobiles, crankshafts for the GAZ-51 automobile engines, spring seats (supports) for the GAZ-51 chassis, and in machining driving gears for the GAZ-51 rear-end. The improved technique in forging rear axle housing for the GAZ-51 chassis by an upsetting machine, and the economies derived from the above changes in shop practice are also given. Over 250 suggestions for various improvement came from the employees of the plant during each 6 months of the past period. Four drawings.

1/1

ZAGORNYY, G. I. (Senior Zootechnician)

"Treatment of complications of dictyocaulosis in calves."

SO: Veterinariia 24 (1), 1947, p. 40

Senior Zootechnician of the sovkhoz "Rebirth," Taskin raion, Leningrad oblast.

ZAGORODNAYA, G.A.; FRIDMAN, V.M.

Elimination of magnetic vibration in turbogenerator stators.
Elektrosila no.19:15-18 '60. (MIRA 15:2)
(Turbogenerators--Vibration)

FRIDMAN, V.M., inzh.; ZAGORODNAYA, G.A., inzh.; KOZHEVNIKOV, I.F.,
inzh.; KURILOVICH, L.V., inzh.

Vibration of the rotors of turbogenerators with flexible
frames. Elektrotehnika 34 no.10:47-51 O '63.
(MIRA 16:11)

KHUTORETSKIY, G.M.; Prinimala uchastiye ZAGORODNAYA, G.A., inzh.;
VOL'DEK, A.I., doktor tekhn. nauk, red.

[Design of modern two-pole turbogenerators; manual for the
preparation of a course and diploma project] Proektirovanie
i raschet sovremennoykh dvukhpoliusnykh turbogeneratorov;
uchebnoe posobie k kursovomu i diplomnomu proektirovaniyu.
Leningrad, Leningr. politekhn. in-t, 1962. 150 p.
(MIRA 17:4)

FRIDMAN, V.M., inzh.; BUDNIKOVA, T.V., inzh.; ZAGORODNAYA, G.A., inzh.

Torque oscillations of the shaft of a turbine unit in the presence
of sudden short-circuits. Vest.elektrprom. 32 no.2:16-17 p. '61.
(MIRA 15:5)

(Turbogenerators--Vibrations)

IL'YENKO, A.I.; ZAGORODNYAYA, G.Yu.

Importance of artificial nesting places as night shelters in winter
for some birds nesting in tree hollows. Zool. zhur. 40 no.11:
1736-1738 N '61. (MIRA 14:11)

1. Biological-Pedological Faculty, State University of Moscow.
(Birds, Protection of)

BOGOLEPOV, I.A.; ZAGORODNAYA, V.O.

Report of the activity of the Kalinin Society of Roentgenologists
and Radiologists for 1953. Vest. rent. i rad. no.6:89 N-D 154.
(KALININ--RADIOGRAPHY--SOCIETIES) (MLR/ 8:1)

ZAGORODNEV, S. F.

Cotton Growing

Model crop rotation projects in the cotton growing areas
recently irrigated. Khlopkovodstvo, No. 3, 1952.

Monthly List of Russian Accessions, Library of Congress,
June, 1952. UNCLASSIFIED.

1. ZAGORODNEV, S. F.

2. USSR (600)

4. Irrigation

7. Saturation irrigation and watering during the growing season in the steppe zone.
Gidr. i mel. 4 no. 11 1952.

9. Monthly List of Russian Acquisitions. Library of Congress, March 1953. Unclassified.

ZAGORODNEVA, A.G.

Interoceptive effect of the stomach on the salivary glands during
muscular activity (movement) in animals. Fiziol.shur. [Ukr.] 2
no.6;34-38 N-D '56.
(MLBA 10:2)

1. Institut fisiologii imeni O.O.Bogomol'tsya Akademii nauk UBSR,
laboratoriya fisiologii travleanya,
(SALIVARY GLANDS) (ANIMAL LOCOMOTION)

ZAGORODNEVA, A.O. [Zahorodnieva, A.H.]

Effect produced on gastric secretion by stimulating mechanoreceptors
of the stomach during muscular activity of the animal. Fiziol. zhurn.
[Ukr.] 5 no.5:595-601 S-0 '59 (MIRA 13:3)

1. Institut fiziologii im. A.A. Bogomol'tsa AN USSR, laboratoriya
fiziologiya pishchevareniya.
(STOMACH--SECRETIONS)

ZAGORODNEVA, A.G. [Zagorodnieva, A.H.]

Interoceptive influences from the stomach on reflex salivation
during locomotion [with summary in English]. Fiziol. zhur. [Ukr.]
4 no.2:216-219 Mr-Ap '58. (MIRA 11:5)

1. Institut fiziologii im. O.O. Bogomol'tsaya AN URSR, laboratoriya
fiziologii travleniya.
(STOMACH--INNERVATION) (SALIVARY GLANDS)
(MOVEMENT (PHYSIOLOGY))