Group 9_Traffic Volume Prediction Using Regression

Predicting traffic volume using weather and time data. Leveraging machine learning for urban planning and resource allocation.

Team Members:

Aditya Kanaujiya (202401100300015)

Aanjneya Nayak(202401100300001)

Anushka Rajput(202401100300059)

Arpit(202401100300065)

Ankit Singh Yadav(202401100300050)

Project Overview

Goal: Predict Hourly Traffic Volume
Focus on a highway for precise hourly predictions.

Data Sources: Weather and Time Includes temperature, rain, snow, hour, day, and month.

Regression Models Utilized
Linear, Random Forest, and Gradient Boosting Regression.

Evaluation Metric: RMSERoot Mean Squared Error measures model accuracy.

Data Collection and Preprocessing

Data Acquisition

- Collected hourly traffic data from Caltrans (2022-2024).
- Integrated weather data from OpenWeatherMap API.

Data Cleaning

- Handled missing values using mean imputation.
- Scaled numerical features with StandardScaler.
- Converted categorical features using OneHotEncoding.

Time	Traffic Volume	Temperatture
Time	120	56
Volume	126	54
Donic	130	36
Ratgole	127	22
Temperrature	136	68
Fanattare	100	24
Samplue	106	46
Sample	190	39
Sample	190	28

Feature Engineering

Time-Based Features

Extracted hour, day of week, month, and year.

Interaction Features

Created combinations like temperature multiplied by hour.

Rolling Average

Calculated the rolling average of traffic volume.

Holiday Indicators

Added holiday flags using the python-holidays library.

Model Selection and Training

Data Split

Divided data into 80% for training and 20% for testing.

Model Training

Trained Linear, Random Forest, and Gradient Boosting models.

Hyperparameter Tuning

Used GridSearchCV with 5-fold cross-validation for optimization.

Model Evaluation RMSE 1250 Model 900 Linear Regression Random Forest 850 Gradient Boosting Baseline (Mean) 1500

Models were evaluated using RMSE on the test set. Performance was compared to a baseline model. The Gradient Boosting model achieved the lowest RMSE.

Results: Random Forest Regression

1

2

Hour

Most influential predictor.

Temperature Second key factor.

3

Day of Week

Significant predictor.

The Random Forest model highlights key predictors. Hour, temperature, and day of week were most influential. This indicates their strong impact on traffic volume.

Results: Gradient Boosting Regression

The line graph demonstrates the Gradient Boosting model's strong fit. Predicted values closely follow actual traffic volume. This model provides the best accuracy for our prediction goals.

Deployment and Use Cases

Real-time API Enable instant traffic predictions.

Navigation Apps Integrate with services like Google Maps.

City Planning
Optimize resource
allocation for urban
development.

Road
Maintenance
Schedule maintenance
efficiently based on
traffic.

Conclusion

Effective Prediction

ML models accurately predict traffic volume.

Top Performer

Gradient Boosting Regression excels.

Future Work

Incorporate more data and advanced models.