Aufgabe 2: Relationale Algebra

Gegeben sei das folgende relationale Schema mitsamt Beispieldaten für eine Datenbank von Mitfahrgelegenheiten. Die Primärschlüssel-Attribute sind jeweils unterstrichen, Fremdschlüssel sind überstrichen.

"Kunde":

KID	Name	Vorname	Stadt
K1	Meier	Stefan	S3
K2	Müller	Peta	S3
K3	Schmidt	Christine	S2
K4	Schulz	Michael	S4

"Stadt"

SID	SName	Bundesland
S1	Berlin	Berlin
S2	Nürn	Bayern
S3	Köln	Nordrhein-Wesffalen
S4	Stuttgart	Baden-Württemberg
S5	München	Bayer

"Angebot":

,,, m.gc.				
KID	Start	Ziel	Datum	Plätze
K4	S4	S5	08.07.2011	3
K4	S5	S4	10.07.2011	3
K1	S1	S5	08.07.2011	3
K3	S2	S3	15.07.2011	1
K4	S4	S1	15.07.2011	3
K1	S5	S5	09.07.2011	2

"Anfrage":

KID	Start	Ziel	Datum
K2	S4	S5	08.07.2011
K2	S5	S4	10.07.2011
КЗ	S2	S3	08.07.2011
КЗ	S3	S2	10.07.2011
K2	S4	S5	05.07.2011
K2	S5	S4	17.07.2011

- 1. Formulieren Sie die folgenden Anfragen auf das gegebene Schema in relationaler Algebra:
 - Finden Sie die Namen aller Städte in Bayern!

$$\pi_{\mathsf{SName}}(\sigma_{\mathsf{Bundesland}=\mathsf{Bayern}}(\mathsf{Stadt}))$$

- Finden Sie die SIDs aller Städte, für die weder als Start noch als Ziel eine Anfrage vorliegt!

$$\pi_{SID}(Stadt) - \pi_{Start}(Anfage) - \pi_{Ziel}(Anfrage)$$

- Finden Sie alle IDs von Kunden, welche eine Fahrt in ihrer Heimatstadt starten.

$$\pi_{\text{KID}}(\\ \text{Kunde} \bowtie_{\text{Kunde.KID}=\text{Anfrage.KID} \land \text{Kunde.Stadt}=\text{Anfrage.Stadt}} \text{ Anfrage}) \\ \land \\ \pi_{\text{KID}}(\\ \text{Kunde} \bowtie_{\text{Kunde.KID}=\text{Angebot.KID} \land \text{Kunde.Stadt}=\text{Angebot.Stadt}} \text{ Angebot})$$

- Geben Sie das Datum aller angebotenen Fahrten von München nach Stuttgart aus!

```
π<sub>Datum</sub>(
(Angebot ⋈<sub>Start=SID</sub>∧SName='München'</sub> Stadt)

⋈<sub>Ziel=SID</sub>∧SName='Stuttgart'

Stadt
)
```

Variante 2:

```
\pi_{Datum}(
\sigma_{Sname='München'\land Zname='Stuttgart'}(
\rho_{Zname\leftarrow Sname,SID1\leftarrow SID}(Stadt)
\bowtie_{Ziel=SID1}
Angebot
\bowtie_{Start=SID}
Stadt))
```

- 2. Geben Sie das Ergebnis (bezüglich der Beispieldaten) der folgenden Ausdrücke der relationalen Algebra als Tabellen an:
 - $\pi_{\text{KID}}(\text{Angebot}) \bowtie \text{Kunde}$

Zeile mit der Petra Müller fällt weg. Name Vorname Stadt Meier K1 S3 Stefan K3 Schmidt Christine S2 K4 Schulz Michael S4

- $\pi_{(KID,Stadt)}(Kunde) \bowtie_{Kunde.Stadt=Angebot.Ziel} \pi_{Plaetze}(Angebot)$

KID	Stadt	Plätze
K1	S3	1
K2	S3	1
K4	S4	1
K4	S4	2