Задачи по Методам оптимизации и Теории игр

Артамонов Н.В.

27 сентября 2023 г.

Содержание

Зад	ачи оптимизации
1.1	Безусловная оптимизация
1.2	Выпуклость
	Оптимизации с ограничениями равенства
При	иложение
A.1	Симметричные матрицы
A.2	Выпуклые функции
	1.1 1.2 1.3

1 Задачи оптимизации

Внимание: Во всех расчетных задачах обязательно проверять достаточные условия экстремума!

1.1 Безусловная оптимизация

№1. Найдите локальные экстремумы функций

$$f(x,y) = 10 - 6x - 4y + 2x^{2} + y^{2} - 2xy$$

$$f(x,y) = 8 + 8x + 4y - 5x^{2} - 2y^{2} + 6xy$$

$$f(x,y) = 5 + 2x + 6y + 5x^{2} + 3y^{2} + 8xy$$

№2. Найдите локальные экстремумы функций

$$f(x,y,z) = 6 + 4x + 2y + 6z + 2x^{2} + 2y^{2} + z^{2} + 2xy + 2yz$$

$$f(x,y,z) = 3 + 4x + 8y + 4z - 3x^{2} - 2y^{2} - 4z^{2} + 2xy + 2xz + 4yz$$

$$f(x,y,z) = 8 + 2x + 4y + 2z + 2x^{2} + y^{2} + 3z^{2} + 2xy + 4xz + 4yz$$

№3. Найдите локальные экстремумы функций

$$f(x,y) = 5 + x^3 - y^3 + 3xy$$

$$f(x,y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 2$$

$$f(x,y) = x^3 + x^2y - 2y^3 + 6y$$

№4. Завод производит три вида товаров и продает их по ценам $P_1=2,$ $P_2=4$ и $P_3=6.$ Издержки производства равны

$$C(Q_1, Q_2, Q_3) = 2Q_1^2 + Q_2^2 + 2Q_3^2 - 2Q_2Q_3$$

 $(Q_1,Q_2,Q_3$ — объемы производства товаров). Найдите оптимальные объемы производства.

№5. Завод производит три вида товаров и продает их по ценам $P_1=2,$ $P_2=2$ и $P_3=3.$ Издержки производства равны

$$C(Q_1, Q_2, Q_3) = 2Q_1^2 + Q_2^2 + 2Q_3^2 - 2Q_2Q_3 - 2Q_1Q_3$$

 $(Q_1, Q_2, Q_3$ — объемы производства товаров). Найдите оптимальные объемы производства.

№6. Завод производит два вида товаров, (обратные) функции спроса на которые имеют вид $P_1=21-5Q_1+2Q_2$ и $P_2=35-Q_2+2Q_1$. Функция издержек равна

$$C(Q_1, Q_2) = Q_1 + 3Q_2$$

 $(Q_1,Q_2$ — объемы производства товаров). Найдите оптимальные объемы производства.

№7. Завод производит два вида товаров, (обратные) функции спроса на которые имеют вид $P_1=51-2Q_1+3Q_2$ и $P_2=47-5Q_2+3Q_1$. Функция издержек равна

$$C(Q_1, Q_2) = 3Q_1 + 5Q_2$$

 $(Q_1, Q_2$ — объемы производства товаров). Найдите оптимальные объемы производства.

№8. Найдите локальные экстремумы функций

$$f(x,y) = 6 \ln x + 8 \ln y - 3x - 2y$$

$$f(x,y) = 4 \ln x + 6 \ln y + 2x - 3xy$$

$$f(x,y) = 5 \ln x + 4 \ln y - x - 4xy$$

1.2 Выпуклость

№1. Исследуйте на выпуклость/вогнутость функции на \mathbb{R}^2

$$f(x,y) = 10 - 6x - 4y + 2x^{2} + y^{2} - 2xy$$

$$f(x,y) = 8 + 8x + 4y - 5x^{2} - 2y^{2} + 6xy$$

$$f(x,y) = 5 + 2x + 6y + 5x^{2} + 3y^{2} + 8xy$$

$$f(x,y) = 10 + x^{2} + y^{2} + 2xy$$

$$f(x,y) = 5 + 4xy - 2x^{2} - 2y^{2}$$

№2. Исследуйте на выпуклость/вогнутость функции на \mathbb{R}^3

$$f(x,y,z) = 6 + 4x + 2y + 6z + 2x^{2} + 2y^{2} + z^{2} + 2xy + 2yz$$

$$f(x,y,z) = 3 + 4x + 8y + 4z - 3x^{2} - 2y^{2} - 4z^{2} + 2xy + 2xz + 4yz$$

$$f(x,y,z) = 8 + 2x + 4y + 2z + 2x^{2} + y^{2} + 3z^{2} + 2xy + 4xz + 4yz$$

№3. При каких значениях параметра β функция

$$f(x_1, x_2, x_3) = 2x_1^2 + 4x_2^2 + x_3^2 - \beta x_1 x_3$$

будет строго/нестрого выпуклой? Строго/нестрого вогнутой?

№4. Исследуйте на выпуклость/вогнутость функции, определённые на \mathbb{R}^2_+ (a,b>0)

$$f(x,y) = a \ln x + b \ln y - 2x^2 - y^2 - 2xy$$

$$f(x,y) = x^2 + 5y^2 - 4xy - a \ln x - b \ln y$$

$$f(x,y) = a \ln x + b \ln y - 3x^2 - 5y^2 - 8xy$$

1.3 Оптимизации с ограничениями равенства

№1. Решите задачи оптимизации

$$\max(2x + 3y) \qquad \min(2x + 3y)$$

$$s.t. 2x^{2} + y^{2} = 11$$

$$\max(5x - 3y) \qquad \min(5x - 3y)$$

$$s.t. x^{2} + 3y^{2} = 28$$

$$s.t. x^{2} + 3y^{2} = 28$$

№2. Решите задачи оптимизации

$$\min(x^{2} + 2y^{2}) \qquad \max(10 - 2x^{2} - 18y^{2})$$

$$s.t. 3x + 2y = 22 \qquad s.t. 4x + 6y = 30$$

$$\max(y^{2} - 2x^{2}) \qquad \min(2y^{2} - x^{2})$$

$$s.t. 4x + 3y = 5 \qquad s.t. 5x + 4y = 17$$

№3. Решите задачи оптимизации

$$\max(x^2y^2)$$
 $\min(x^2y^2)$
 $s.t. 3x + 2y = 24$ $s.t. 3x + 2y = 24$

№4. Решите задачи оптимизации

$$\max(xy)$$
 $\min(xy)$
s.t. $x^2 + 2y^2 = 36$ s.t. $x^2 + 2y^2 = 36$

№5. Найти экстремум функции полезности $u = x^2y$ при бюджетном ограничении 2x + 3y = 90.

№6. Для производства предприятие закупает два вида ресурсов по ценам $P_1 = 10$ и $P_2 = 20$, бюджет составляет \$1200. Производственная функция предприятия равна $f(x,y) = \sqrt{xy}$. Найдите количество ресурсов с целью обеспечения оптимальной производственной программы.

№7. Для производства предприятие закупает два вида ресурсов по ценам $P_x = 5$ и $P_y = 2$, бюджет составляет \$200. Производственная функция предприятия равна $f(x,y) = 2\sqrt{xy}$. Найдите количество ресурсов с целью обеспечения оптимальной производственной программы.

№8. Производственная функция предприятия равна $f(x,y) = \sqrt{xy}$. Ресурсы закупаются по ценам P_1 и P_2 . Рассмотрим задачу оптимизации

$$\min(P_1 x + P_2 y)$$
$$f(x, y) = Q_0$$

Дайте интерпретацию оптимальной задачи и найдите её решение.

№9. Потребительская корзина состоит их трех товаров, цена на которые равны P_1 , P_2 , P_3 . Доход равен I. Функция полезности потребителя равна

$$U(q_1, q_2, q_3) = \ln q_1 + \ln q_2 + \ln q_3.$$

Найдите оптимальную потребительскую корзину.

№10. В условиях предыдущей задачи рассмотрите функцию полезности

$$U(q_1, q_2, q_3) = a \ln q_1 + b \ln q_2 + c \ln q_3$$
 $a, b, c > 0$

№11. Фирма для производства использует два фактора производства: капитал и труд. Производственная функция имеет вид $F=3KL^2$. Фирма решает следующую задачу

$$\min(5K + 4L)$$
$$F(K, L) = 9600$$

Дайте интерпретацию оптимальной задачи и найдите её решение.

№12. Решите задачи оптимизации

$$\min(2x^{2} + 2y^{2} + 4z^{2} + 2xy + 2xz + 2yz - 10x - 50y - 10z)$$

$$s.t. \ x + 2y + 3z = 20$$

$$\max(10 - 9x - 3y + 3z - 4x^{2} - 2y^{2} - 2z^{2} + 4xy + 2xz + 2yz)$$

$$s.t. \ 2x + 2y - 4z = 7$$

№13. Решите **численно**¹ задачи оптимизации

$$\max(x+y+z) \qquad \min(x^{2}+y^{2}+z^{2})$$
s.t.
$$\begin{cases} 2x^{2}+y^{2}+z^{2}=9 \\ x-y+z=0 \end{cases}$$

$$\min(x+y+z) \qquad \text{s.t. } \begin{cases} 2x+y+2z=10 \\ 3x-2y+z=6 \end{cases}$$

$$\min(x^{2}+y^{2}+z^{2})$$
s.t.
$$\begin{cases} 2x+y+2z=10 \\ 3x-2y+z=6 \end{cases}$$

$$\min(x^{2}+y^{2}+z^{2})$$
s.t.
$$\begin{cases} 2x^{2}+2y^{2}+z^{2} \end{cases}$$

А Приложение

А.1 Симметричные матрицы

Пусть $\boldsymbol{A} - (n \times n)$ симметричная матрица.

Теорема 1 (Критерий Сильвестра). Пусть A – симметричная матрица и $\Delta_1, \ldots, \Delta_n$ последовательность ее угловых миноров:

$$\Delta_1 = a_{11}$$
 $\Delta_2 = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$... $\Delta_n = \det \boldsymbol{A}$

Tог ∂a

- 1. $A > 0 \iff \Delta_i > 0, i = 1, ..., n$.
- 2. $\mathbf{A} < 0 \iff (-1)^i \Delta_i > 0, i = 1, \dots, n.$
- 3. если знаки миноров не удовлетворяют предыдущим пунктам, то матрица не знакоопределена

Предложение 1. Пусть A – симметричная 2×2 Тогда

$$m{A} \ge 0 \iff rac{a_{11}}{a_{22}} \ge 0, \ \det m{A} \ge 0$$
 $m{A} \le 0 \iff rac{a_{11}}{a_{22}} \le 0, \ \det m{A} \ge 0.$

Для 3×3 матрицы обозначим центральные миноры

$$\mathcal{M}_{(12)} = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$\mathcal{M}_{(13)} = \det \begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix}$$

$$\mathcal{M}_{(23)} = \det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$$

Предложение 2. Пусть A – симметричная 3×3 . Тогда

$$\mathbf{A} \geq 0 \iff \begin{aligned} a_{11} & \mathcal{M}_{(12)} \\ a_{22} \geq 0, & \mathcal{M}_{(13)} \geq 0, \ \det \mathbf{A} \geq 0 \\ a_{33} & \mathcal{M}_{(23)} \end{aligned}$$
$$\mathbf{A} \leq 0 \iff \begin{aligned} a_{11} & \mathcal{M}_{(12)} \\ a_{22} \leq 0, & \mathcal{M}_{(13)} \geq 0, \ \det \mathbf{A} \leq 0. \\ a_{33} & \mathcal{M}_{(23)} \end{aligned}$$

А.2 Выпуклые функции

Пусть числовая функция f определена на $\mathrm{dom}(f) \subset \mathbb{R}^n$

Теорема 2. Дважды непрерывно дифференцируемая функция f выпукла \iff Hess $f(x) \ge 0$ для всех $x \in \text{dom}(f)$.

 $Ecnu \; \mathsf{Hess}_f(\boldsymbol{x}) > 0 \; \partial n s \; scex \; \boldsymbol{x} \in \mathrm{dom}(f), \; mo \; функция \; cmрого \; выпукла \ нa \; \mathrm{dom}(f).$

Следствие. Дважды непрерывно дифференцируемая функция f вогну- $ma \iff \mathsf{Hess}_f(x) \leq 0$ для всех $x \in \mathsf{dom}(f)$.

 $Ecnu \operatorname{Hess}_f(\boldsymbol{x}) < 0$ для $вcex \boldsymbol{x} \in \operatorname{dom}(f)$, то функция строго вогнута на $\operatorname{dom}(f)$.

Замечание. Знак гессиана проверяем по критерию Сильвестра 1 или используем Предложения 1, 2

А.3 Функция Лагранжа для ограничений равенства

Рассмотрим задачи оптимизации с ограничениями равенства

$$\max f(\boldsymbol{x}) \qquad \qquad \min f(\boldsymbol{x})$$

$$s.t. \begin{cases} g_1(\boldsymbol{x}) = c_1 \\ \vdots \\ g_k(\boldsymbol{x}) = c_k \end{cases} \qquad s.t. \begin{cases} g_1(\boldsymbol{x}) = c_1 \\ \vdots \\ g_k(\boldsymbol{x}) = c_k \end{cases}$$

Функция Лагранжа для этих задач

$$\mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) = f(oldsymbol{x}) - \sum_{j=1}^k \lambda_j g_j(oldsymbol{x})$$

Необходимые условия (локального) условного экстремума

$$\begin{cases} \mathcal{L}'_{x_i} = 0 & i = 1, \dots, n \\ g_j(\boldsymbol{x}) = c_j & j = 1, \dots, k \end{cases}$$

Гессиан для функции Лагранжа (симметричная матрица)

$$\text{Hess}_{\mathcal{L}} = \begin{pmatrix} \frac{\partial^2 \mathcal{L}}{\partial x_i \partial x_j} & | & \frac{\partial^2 \mathcal{L}}{\partial x_i \partial \lambda_l} \\ -- & + & -- \\ \frac{\partial^2 \mathcal{L}}{\partial \lambda_s \partial x_j} & | & \frac{\partial^2 \mathcal{L}}{\partial \lambda_s \partial \lambda_l} \end{pmatrix}$$

Из определения функции Лагранжа

$$\bullet \ \frac{\partial^2 \mathcal{L}}{\partial \lambda_s \partial \lambda_l} = 0$$

$$\bullet \ \frac{\partial^2 \mathcal{L}}{\partial \lambda_s \partial x_i} = -\frac{\partial g_s}{\partial x_i}$$

Явный вид гессиана

$$\mathsf{Hess}_{\mathcal{L}} = \begin{pmatrix} \frac{\partial^{2} \mathcal{L}}{\partial x_{1} \partial x_{1}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial x_{1} \partial x_{n}} & -\frac{\partial g_{1}}{\partial x_{1}} & \cdots & -\frac{\partial g_{k}}{\partial x_{1}} \\ \frac{\partial^{2} \mathcal{L}}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial x_{2} \partial x_{n}} & -\frac{\partial g_{1}}{\partial x_{2}} & \cdots & -\frac{\partial g_{k}}{\partial x_{2}} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} \mathcal{L}}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial x_{n} \partial x_{n}} & -\frac{\partial g_{1}}{\partial x_{n}} & \cdots & -\frac{\partial g_{k}}{\partial x_{n}} \\ -\frac{\partial g_{1}}{\partial x_{1}} & \cdots & -\frac{\partial g_{1}}{\partial x_{n}} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -\frac{\partial g_{k}}{\partial x_{1}} & \cdots & -\frac{\partial g_{k}}{\partial x_{n}} & 0 & \cdots & 0 \end{pmatrix}$$

$$(1)$$

Пусть \mathcal{M}_i (i=1,...,n+k) – главный минор матрицы $\mathsf{Hess}_{\mathcal{L}}$, образованный строками и столбцами с индексами i,i+1,...,n+k.

Теорема 3 (Достаточные условия минимума). Пусть в точке \hat{x} ранг матрицы $(\frac{\partial g_j}{\partial x_i})$ максимален и эта точка удовлетворяет необходимым условия экстремума.

Тогда достаточным условием локального минимума является выполнение неравенств

$$(-1)^k \mathcal{M}_1(\hat{x}), \dots, (-1)^k \mathcal{M}_{n-k}(\hat{x}) > 0.$$
 (2)

Замечание. Условие (2) означает, что все миноры $\mathcal{M}_1, \dots, \mathcal{M}_{n-k}$ имеют знак $(-1)^k$.

Теорема 4 (Достаточные условия максимума). Пусть в точке \hat{x} ранг матрицы $(\frac{\partial g_j}{\partial x_i})$ максимален и эта точка удовлетворяет необходимым условия экстремума.

Тогда достаточным условием наличия максимума является выполнение неравенств

$$(-1)^n(-1)^{i-1}\mathcal{M}_i(\hat{\boldsymbol{x}}) > 0$$
 $i = 1, \dots, n-k.$ (3)

Замечание. Условие (3) означает чередование знаков в последовательности миноров $\mathcal{M}_1, \ldots, \mathcal{M}_{n-k}$, начиная со знака $(-1)^n$.