UNIVERSITÀ DEGLI STUDI DEL SANNIO DIPARTIMENTO DI INGEGNERIA

CORSO di LAUREA in INGEGNERIA INFORMATICA

Prova scritta del 5 novembre 2021

Tempo a disposizione 2.30 ore

Riportare i calcoli e commentare lo svolgimento degli esercizi.

L'ordine e la chiarezza espositiva concorrono alla formulazione del voto (\pm 2 punti). È possibile consultare il solo testo di teoria.

EX. 1

Si considerino due variabile aleatorie gaussiane standard indipendenti X_1 e X_2 e la trasformazione $Y_1 = 2X_1 + X_2$ e $Y_2 = 3X_1 + 2X_2$. Calcolare

- 1. la covarianza tra Y_1 e Y_2
- 2. la $Pr(Y_1 > Y_2)$.

EX. 2

Dato il segnale

$$x(t) = 2 \Pi\left(\frac{t-3}{6}\right) e^{-t/3}$$

calcolarne la trasformata di Fourier e la banda che ricomprende il 95% dell'energia.

EX. 3

Calcolare l'autocorrelazione del segnale in uscita al sistema definito dalla relazione ingresso-uscita y(n) = 2x(n) + x(n-1), sapendo che l'autocorrelazione del segnale in ingresso è $r_x(m) = 3^{-|m|}$.

EX. 1

Si considerino due variabile aleatorie gaussiane standard indipendenti X_1 e X_2 e la trasformazione $Y_1 = 2X_1 + X_2$ e $Y_2 = 3X_1 + 2X_2$. Calcolare

- 1. la covarianza tra Y_1 e Y_2
- 2. la $Pr(Y_1 > Y_2)$.

$$X, \mathcal{N}_{o}(0,1), X_{2} \sim \mathcal{N}(0,1)$$

$$Y_1 = 2x_1 + x_2 e Y_2 = 3x_1 + 2x_2$$

Q Covarianza tra Y1 e Y2

Sappiamo che
$$Cov(X,Y) = \#[(X-\mu_X)(Y-\mu_Y)] - o Sostituiamo$$

$$Cov(Y_1, Y_2) = \# [(Y_1 - \mu_{Y_2})(Y_2 - \mu_{Y_2})] = \# [Y_1Y_2] - \mu_{Y_1}\mu_{Y_2} - \mu_{Y_1}\mu_{Y_2} + \mu_{Y_1}\mu_{Y_2}$$

Calcoliamo le medie di Y, eY2

$$\mathbb{E}\left[Y_{i}\right] = \mathbb{E}\left[2X_{i} + X_{2}\right] = 2\mathbb{E}\left[X_{i}\right] + \mathbb{E}\left[X_{L}\right] = 2\cdot0 + 0 = 0$$

$$\mathbb{E}[Y_2] = 3 \mu_{x_1} + \mu_{x_2} = \emptyset \mu_{Y_2}$$

$$\mathbb{E}[Y_1Y_2] = \mathbb{E}[(2X_1+X_2)(3X_1+2X_2)] = 6X_1^2 + 4\mathbb{E}[X_1X_2] + 3\mathbb{E}[X_1X_2] + 2X_2^2$$

$$=0 \ E[Y_1Y_2] = 6X_1 + 2X_2$$

Sappia mo che
$$X^2 = \sigma_X^2 + \mu_X^2 = 0$$
 $X_1^2 = X_2^2 = 0 + 1 = 1$

$$=D \notin [Y_1Y_2] = 61+21=8$$
 $\#[Y_1Y_2]$

- D Mettiamo Tutto in sieme

$$Cov(Y, Y_2) = \#[Y, Y_2] - \mu_{Y_1} \mu_{Y_2} = 8 - 0 = 8 C_{Y,Y_2}$$

Time 13

$$Q_2$$
 Probabilita che $Y_1 > Y_2$ -> $P(Y_1 > Y_2)$

$$O_{Y_{1}}^{2} = \mathbb{E}\left[\left(Y_{1}, \mathcal{M}_{Y_{1}}\right)^{2}\right] = \overline{Y}^{2} - 2\mathcal{M}_{Y_{1}}^{2} + \mathcal{M}_{Y_{1}}^{2} = \overline{Y}^{2} + \mathcal{M}_{Y_{1}}^{2} = \overline{Y}^{2} = \mathbb{E}\left[\left(2X_{1} + X_{2}\right)^{2}\right] = 2\overline{X}_{1}^{2} + 2\mathcal{M}_{X_{1}}\mathcal{M}_{X_{2}} + \overline{X}_{2}^{2}$$

Lp
$$\bar{X}_{1}^{2} = \sigma_{X_{1}}^{2} + \mu_{X_{1}^{2}} = 1 = \bar{X}_{2}^{2} = p Y_{1}^{2} = 2 = \sigma_{Y_{1}} = \sigma_{Y_{2}}$$

EX. 2

Dato il segnale

$$x(t)=2\;\Pi\left(\frac{t-3}{6}\right)\;e^{-t/3}$$

L'esercizio sostanzialmente ci chiede:

$$\frac{\mathcal{E}(B)}{\mathcal{E}(0)} = 0.95 \mathcal{E}_{x}$$

Calcoliano la Trasformata:
$$\chi(t) = 2\pi \left(\frac{t-3}{6}\right) e^{\frac{t}{3}}$$

-o osservando il segnale ci conviene applicare la difinizione di F.T.:

$$X(f) = \int_{-\infty}^{+\infty} 2\pi \left(\frac{t-3}{6}\right) e^{\frac{t}{3}} \cdot e^{-\frac{t}{3}} dt = II \text{ segnale } \pi \text{ restringe l'int all'intervallo } (0,6)$$

$$=D \ 2\int_{0}^{6} e^{\frac{t}{3}} e^{-J2\pi f t} dt = z\int_{0}^{6} e^{-t(\frac{t}{3}+J2\pi f)} e^{-t(\frac$$

$$= D \chi(f) = \frac{6}{1 + 16\pi f} \left[1 - e^{-2(1+6)\pi f} \right]$$

Sappia mo, da Parseval che
$$\mathcal{E}_{x} = \int |x(t)|^{2} dt = \int |x(f)|^{2} df$$

$$= Q_4 : \mathcal{E}_{\mathcal{X}}(B) = 0.95 \mathcal{E}_{\mathcal{X}} \iff \mathcal{E}_{\mathcal{X}}(B) = 0.95 \mathcal{E}_{\mathcal{X}} - \int |X(f)|^2 df = 0.95 \int |X(f)|^2 df$$

$$= \sum_{x \in \mathcal{X}} \left| \chi(f) \right|^{2} = \left| \frac{6}{1 + 16\pi f} - \frac{6e e}{1 + 16\pi f} \right|^{2} = \chi(f) \cdot \chi^{*}(f) = \left[\frac{6}{1 + 16\pi f} - \frac{6e e}{1 + 16\pi f} \right] \cdot \left[\frac{6}{1 - 16\pi f} - \frac{6e^{2} e^{2}}{1 - 16\pi f} \right]$$

$$= 0 \frac{36}{(4+\omega)(4-\omega)} - \frac{36e}{(1+\omega)(1-\omega)} - \frac{36e}{(1+\omega)(4-\omega)} + \frac{36e}{(1+\omega)(4-\omega)} = \frac{36e}{(1+\omega)(4-\omega)} - \frac{36e}{(1+\omega)(4-\omega)} + \frac{36e}{1+6\pi f} - \frac{36e}{(1+6\pi f)} + \frac{36e}{1+6\pi f}$$

$$= \frac{36}{1+6\pi f} - \frac{72}{1+6\pi f} + \frac{36e}{1+6\pi f} + \frac{36e}{1+6\pi f} = \frac{36}{1+6\pi f} \left[1 - \frac{2e}{\cos(6\pi f)} + \frac{-4}{e} \right]$$

$$= \int \frac{36}{1+6\pi J} df \quad \text{Sost} \quad 6\pi f = S = 0 \quad 6\pi df = dS = 0 \quad df = \frac{1}{6\pi} dS = 0 \quad \frac{1}{6\pi} \int \frac{36}{1+S} dS = \frac{6}{\pi} \ln(S+1) = 0 \quad \frac{6}{17} \ln(6\pi f)$$

$$\left(\int \frac{72e^{-2}\cos(6\pi f)}{1+6\pi f} df \right)$$

$$\int \frac{72e^{-2}\cos(6\pi f)}{1+6\pi f} df$$
INTEGRALE TROPPO DIFFICILE! "
$$-6 \text{ Sol} \int S_{\chi}(f) df = 0.95 \int S_{\chi}(f) df$$

$$\mathcal{E}_{\chi} = \int |\chi(t)|^2 dt = 0 \quad |\chi(t)|^2 = 4 \pi^2 \left(\frac{t^{-3}}{6}\right) e^{\frac{2}{3}t} \leftarrow REALE$$

$$= \mathcal{E}_{X} = 4 \int_{-\infty}^{+\infty} \pi \left(\frac{t \cdot 3}{6} \right) e^{\frac{2}{3}t} = 0 \quad 4 \int_{0}^{6} e^{\frac{2}{3}t} dt = \frac{4}{-\frac{2}{3}} e^{\frac{2}{3}t} dt = \frac{4}{-\frac{2}{3}} e^{\frac{2}{3}t} dt = -6 \left[e^{-4} - 1 \right] = 0 \quad \mathcal{E}_{X} = -6 e + 6 \quad \sim 5.89 \text{ J}$$

EX. 3

Calcolare l'autocorrelazione del segnale in uscita al sistema definito dalla relazione ingresso-uscita y(n) = 2x(n) + x(n-1), sapendo che l'autocorrelazione del segnale in ingresso è $r_x(m) = 3^{-|m|}$.

$$y(n)=2x(n)+x(n-1)$$
 $\xi_{\mathcal{X}}(m)=3^{-1ml}$

Calcoliamo $h(n)$ applicando la definizione di risposta impulsiva

• $h(n)=2S(n)+S(n-1)$

Sappiamo imoltre che $\xi_{\mathcal{X}}=\xi_{\mathcal{X}}\times\xi_h$

=D Calcoliam $\xi_h(m)$

Sappia mo che
$$y = 7x(m) \times th(m) = 3 \times [2S(m+1) + 5S(m) + 2S(m-1)]$$

$$-|m+1| -|m| -|m-1|$$

$$= 0 \quad \forall y(m) = 3 + 5 \cdot 3 + 2 \cdot 3 \quad \forall m \in \mathbb{N}$$