GATE
DS & AI
CS & IT

Linear Algebra

Lecture No. 0

Recap of previous lecture

Topic

Algebra of Matrices

Topics to be Covered

Topic

TYPES of MATRICES

(4) In Matrin Algebra, Concellation Law Molds only when Matrin is Hon Singular. of if A is a Hon bing Mat & t AB = A=> B=I(T) Pros): AB=A A (AB) = A.A (AA)B=I

(B=I)

3 if AB=A then B=I (false) : we have No idea about the Non singularity of A

Doubt. Il (ABC=AC) + (B=I)

CAMÉ (EX 47 and Soingular) x7=7-0 4 /x=x-0 NEW X+7= X.X+7.7 $=\chi(\gamma\chi)+\gamma(\chi\gamma)$ = (XY)X+(YX)Y= (7)x+(x)y= /t / (a)

(d)
$$2(X + Y)$$

$$\lambda^{2} + \gamma^{2} = \chi \chi + \gamma \gamma$$

$$= \chi (\gamma \chi) + \gamma (\chi \gamma)$$

$$= (\chi \gamma) \chi + (\gamma \chi) \gamma$$

$$= (\gamma) \chi + (\chi) \gamma$$

$$= \chi + \gamma (\alpha)$$

$$f = \int_{2-3i}^{2} 4+x - \frac{1}{2}$$

$$A^{T} = \begin{cases} 2 & 2-3i \\ 44i & 0 \\ -7i & 4 \end{cases}$$

$$A = \begin{bmatrix} 2 & 4/1 & 71 \\ 2+3i & 0 & 4 \end{bmatrix} \begin{pmatrix} m-11 \\ 2\times3 & A = (A) \end{bmatrix}$$

Some Confusions:

- (1) (A+B+C) T= AT+BT+CT
- (a) $(A+B+C)^{\Theta} = A^{\Theta} + B^{\Theta} + C^{\Theta}$
- 3) Tr(A+B+C)=Tr(A)+Tr(B)+Tr(C)
- (9) |A+B+c| < |A|+|B|+|C|
- (3) (A+B+c) = alg(A+B+c)
 (A+B+c) = [A+B+c]
- (6) AB+BA Post Tr(AB)=Tr(BA)

 (7) |ABC|=|A|-|B|-|C|

(i)
$$(ABC)^T = C^T B^T A^T$$

(ii) $(ABC)^T = C^T B^T A^T$
(iii) $(ABC)^T = C^T B^T A^T$
(iii) $(ABC)^T = C^T B^T A^T$

De IJ A, B, C, Darre Non Singular Matrices of same order 8.4

Note: ACDIX ADICI

(ABCD=I)
$$A^{\dagger}(ABCD)D^{\dagger}=A^{\dagger}.I.D^{\dagger}$$

$$(A^{\dagger}A)B(D^{\dagger})=A^{\dagger}.D^{\dagger}$$

$$B C = A^{\dagger}.D^{\dagger}$$
(BC) $C^{\dagger}=A^{\dagger}.D^{\dagger}.C^{\dagger}$

$$B = (A^{\dagger}.D^{\dagger}.C^{\dagger})^{-1}$$

$$= (C^{\dagger})^{\dagger}(D^{\dagger})^{\dagger}.(A^{\dagger})^{\dagger}.(B^{\dagger}.R.Law)$$

$$= CDAAL$$

Some Special Types of Matrices -s

De Ib A= [aij] norm 8+ aij = (i-j2) + i & g Han for no,3, n=odd Possible Values of $n = 3, 5, 7, 9, \dots$ Possible Values of $M = 3, 5, 1, 9, \dots$ Let G=3, $A = \{a_{ij}\}_{3\times3} = \{a_{11}, a_{12}, a_{13}, a_{23}, a_{2$ 1. A5 of odd order Skew symm Mat to |A1=0 (ii) Sundfall the elements in skew tymin Mat Anim = ?=0

(5) Every 89 Mat Can be enpressed as the sum of symm & skewsymm Mat. $A = \left(\frac{A + A^{T}}{2}\right) + \left(\frac{A - A^{T}}{2}\right) = P = \left(\frac{A + A^{T}}{2}\right) = symm \cdot Mat$ Sq. Met= bymm + Skew Symm 2 = skew symm Sq. Met=Toymin + Star July = $A^T + A^T = P$ 1.8 fin forming

where $P^T = \left(\frac{A+A^T}{2}\right)^T = \frac{A^T + A^T}{2} = \frac{A^T + A}{2} = P$ 1.8 fin forming $A = \left(\frac{A-A^T}{2}\right)^T = \frac{A^T + A^T}{2} = \frac{A^T + A}{2} = -\left(\frac{A-A^T}{2}\right) = -Q$ i.e. Q is Alcew tyming (5) Every sq Mat Can be enpressed as the sum of Hermitian & skew Herm Mat.
as follows; Consider sq Mat Anxy Then by Common sense we can write.

(A+A) (A-A)

Sor, $R^{\theta} = \left(\frac{A+A}{2}\right)^{\theta} = - - - = R$ Hence Broved

 $S^{\theta} = \left(\frac{A - A^{\theta}}{2}\right)^{\theta} = \dots = -S \qquad ($

If A and B are two symmetric matrices. Then consider the following staements.

(i)
$$A + B$$
 is symmetric $(A+B)^T = A^T + B^T - (A+B)$

(iii)
$$\times$$
 AB is symmetric (AB) $=$ BTAT= BA \neq AB (iiii) AB + BA is symmetric

De Il A & B are two (Murmits an) Matrices Hen (AB-BA) will be?

- (a) fymm.
- (b) Skew Symm.
- @ Hermitsan
- (d) Skew Mermitian

Involutary Mat _ it (A=I) then A is called Involvetory Mat. 4 for Involutary Mat, A=I, A=I, A=I.

ie if (A is an involutary Mat) then (IAI=Ior-I) Nelpotent Mat - if A = 0 then A is Called Nelpotent Mat of Power K. where K is least tree integer. g 4 A is st A2+0, A3+0, Pout A4=0 then A5=A6=A6=A7====0 soo A is Nillpotent Meet of Power 4

 $\begin{array}{ll}
A^{2} = A & \text{Hem} \\
|A^{2}| = |A| \\
|A|^{2} = |A| \\
|A| = 0 \\
|A|$

 $A^{2} = I$ Han $|A^{2}| = |I|$ $|A|^{2} = |I|$ $|A|^{2} = |I|$ |A| = |I|

@ AK=0 |AK|=10| |AK=0 |A|=0 $\mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \mathcal{L} = \begin{bmatrix} ab & b^2 \\ -a^2 &$ $A = A = \begin{pmatrix} ab & b^2 \\ -a^2 - ab \end{pmatrix} \begin{pmatrix} ab & b^2 \\ -a^2 - ab \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ - A=0 so A is Nilpotent Mat of power 2. 9 A= [6 9] then A is ? Nilpotent of index 2 (: A=0) (: A=0) De If A is an (Follow potent) mat then (E-A) will be?

- (a) Hull Mat
- (b) Identity
- 1 Involutary
- Dempotent

