Accelerating Deep Neural Networks

Aumit Leon '19.5

Advised by Prof. Andrea Vaccari

Overview

- Deep Learning and the State of the Art in Image Recognition
- The Need for Acceleration Through Parallelism
- Machine Learning Overview
- Parallelism within Deep Learning
- Image Classification with AlexNet
- Parallelizing AlexNet
- Conclusions

Deep Learning and the State-of-the-Art

The Need for Parallelism Within Deep Learning

Background – Machine Learning Overview

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y - \hat{Y})^2$$

Background – Deep Neural Networks

Background – Deep Neural Networks

Backward Pass: Compute gradients

Convolutional Neural Networks

$$2(1) + 3(0) + 1(0) + 5(1) = 7$$

$$2(1) + 2(0) + 3(0) + 7(1) = 9$$

$$4(1) + 5(0) + 2(0) + 5(1) = 9$$

$$2(1) + 1(0) + 9(0) + 4(1) = 6$$

Convolutional Neural Networks – Max Pooling

Data Parallelism

Equal sized subsets passed through each device

Each GPU has a replica of the model

Aggregate results from each subset

Model Parallelism

Frameworks for Parallelism - FlexFlow

Approach	Dimensions	Hybrid	DNN Support
Data Parallelism	S		all
Model Parallelism	O, P		all
OWT	S, O, P	✓	AlexNet*
FlexFlow	S, O, A, P	√	all

FlexFlow

AlexNet Architecture

Parallelizing AlexNet - Datasets

Tiny ImageNet (Stanford)

Dogs vs. Cats (Kaggle)

Parallelizing AlexNet – Tiny ImageNet

Tiny ImageNet (Stanford)

- Based on the original ImageNet dataset
- Developed for an image classification competition at Stanford
- 200 distinct classes based on Synsets
- 120,000 images (Each class has 500 training images,
 50 validation images, and 50 test images)
- All images are 64 x 64 x 3

Parallelizing AlexNet – Dogs vs. Cats

- Subset of data from Asirra (Animal Species Image Recognition for Restricting Access)
- Microsoft Research + Asirra provide a subset from 3 million labelled images
- Kaggle competition in 2014
- 25,000 training images (2000 training, 800 validation)
- Images vary in size

Dogs vs. Cats (Kaggle)

AlexNet – Tiny ImageNet

AlexNet – Dogs vs. Cats

Parallelization Experiments

- Train over 20 epochs on the same system (uniform resources)
- Training time as proxy for device efficiency
- Baseline (no parallelization configuration)
- Data Parallelism
- Model Parallelism
- One Weird Trick expert designed method
- Compare with FlexFlow

Parallelization Experiments – Technical Specifications

- Debian Image from Google Cloud Platform
- 2 vCPUs, 13 GB
- 2 Titan P100 Tesla GPUs
- CuDNN v10.0
- TensorFlow-gpu v.1.13.0
- Keras v2.2.4

11, 12, 13, 14

Parallelizing AlexNet – Data Parallelism

Parallelizing AlexNet – Model Parallelism

One Weird Trick for Parallelizing AlexNet

Batch size	Cross-entropy	Top-1 error	Time	Speedup
(128, 128)	2.611	42.33%	98.05h	1x
(256, 256)	2.624	42.63%	50.24h	1.95x
(256, 128)	2.614	42.27%	50.90h	1.93x
(512, 512)	2.637	42.59%	26.20h	3.74x
(512, 128)	2.625	42.44%	26.78h	3.66x
(1024, 1024)	2.678	43.28%	15.68h	6.25x
(1024, 128)	2.651	42.86%	15.91h	6.16x
	$\begin{array}{c} (128,128) \\ (256,256) \\ (256,128) \\ \hline (512,512) \\ (512,128) \\ \hline (1024,1024) \\ \end{array}$	$\begin{array}{c cccc} (128,128) & 2.611 \\ \hline (256,256) & 2.624 \\ (256,128) & 2.614 \\ \hline (512,512) & 2.637 \\ (512,128) & 2.625 \\ \hline (1024,1024) & 2.678 \\ \end{array}$	$\begin{array}{c ccccc} (128,128) & 2.611 & 42.33\% \\ \hline (256,256) & 2.624 & 42.63\% \\ (256,128) & 2.614 & 42.27\% \\ \hline (512,512) & 2.637 & 42.59\% \\ (512,128) & 2.625 & 42.44\% \\ \hline (1024,1024) & 2.678 & 43.28\% \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Parallelization Results – Tiny ImageNet

Parallelization Results – Tiny ImageNet

Parallelization Results – Tiny ImageNet

Tiny ImageNet

Benchmark	Average Epoch Time
Baseline	281.7
Data Parallel	304.7
Model Parallel	287.0*
OWT	296.7

Parallelization Results – Dogs vs. Cats

Parallelization Results – Dogs vs. Cats

Parallelization Results – Dogs vs. Cats

Dogs vs. Cats

Benchmark	Average Epoch Time
Baseline	266.6
Data Parallel	314.5
Model Parallel	320.4
OWT	210.5*

AlexNet and FlexFlow

Num.	AlexNet		
GPUs	Full	Delta	Speedup
4	0.11	0.04	2.9 ×
8	0.40	0.13	3.0 ×
16	1.4	0.48	2.9 ×
32	5.3	1.8	3.0 ×
64	18	5.9	3.0 ×

Conclusions

- Deep neural networks can be accelerated through parallelism
- Expert designed methods are useful, but don't scale
- Efficient device usage makes deep learning more accessible
- Frameworks are the future
- Parallelism as abstraction!

Acknowledgements

- Professor Andrea Vaccari
- Professor Michael Linderman
- Jonathan Kemp
- Friends, Family

Sources

- 1. Deng, et al. ImageNet: A Large-Scale Hierarchical Image Database
- 2. Redmon, et al. You Only Look Once: Unified, Real-Time Object Detection
- 3. Ben-Nun, Hoefler, You Only Look Once: Unified, Real-Time Object Detection
- 4. Deepmind, https://deepmind.com/research/alphago/
- 5. Backpropogation, https://en.wikipedia.org/wiki/Backpropagation
- 6. Goodfellow, et al. Deep Learning
- 7. Convolution animations, https://github.com/vdumoulin/conv_arithmetic
- 8. Krizhevsky, One weird trick for parallelizing convolutional neural networks
- 9. Jia, et al. Beyond Data and Model Parallelism for Deep Neural Networks
- 10. Krizhevsky, et al. ImageNet Classification with Deep Convolutional Neural Networks
- 11. Google Cloud Platform, https://cloud.google.com/
- 12. TensorFlow, https://www.tensorflow.org/
- 13. Keras, https://keras.io/
- 14. Nvidia, https://www.nvidia.com/en-us/

Thank you! Questions?

Appendix A – ML Overview

Machine Learning Overview

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y - \hat{Y})^2$$

Hypothsis function: $h_{ heta}$

Training example: x_i

Prediction on example x_i : $h_{\theta}(x_i) = y_i$

$$Cost(h_{\theta}(x_i), y_i) = \begin{cases} -\log(h_{\theta}(x_i)) & \text{if } y_i = 1\\ -\log(1 - h_{\theta}(x_i)) & \text{if } y_i = 0 \end{cases}$$

Convolutional Neural Networks – Padding & Stride

No Padding, 1 stride

Arbitrary Padding, 1 stride

No Padding, 2 stride

1 Padding,2 stride

Appendix B – Results

AlexNet Baseline with Tiny ImageNet

Epochs	1	2	3	4	5	6	7	8	9	10
Times	285.1	296.5	301.8	276.4	275.9	276.6	276.1	277.1	275.3	276.2
Epochs	11	12	13	14	15	16	17	18	19	20
Times	276.0	277.4	277.2	306.8	299.7	277.4	277.5	277.3	274.5	274.0

Minimum	1 st Quartile	Median	Mean	3 rd Quartile	Maximum
274.0	276.1	277.2	281.7	279.3	306.8

AlexNet Baseline with Tiny ImageNet

Data Parallel AlexNet with Tiny ImageNet

Epochs	1	2	3	4	5	6	7	8	9	10
Times	315.4	304.2	305.5	303.9	304.1	302.6	303.6	304.6	308.3	304.5
Epochs	11	12	13	14	15	16	17	18	19	20
Times	303.5	304.1	304.2	302.1	303.8	303.7	304.4	305.3	303.8	302.8

Minimum	1 st Quartile	Median	Mean	3 rd Quartile	Maximum
302.1	303.6	304.1	304.7	304.5	315.4

Data Parallel AlexNet with Tiny ImageNet

Model Parallel AlexNet with Tiny ImageNet

Epochs	1	2	3	4	5	6	7	8	9	10
Times	292.9	288.6	288.1	286.9	287.0	284.4	286.9	285.4	286.6	287.1
Epochs	11	12	13	14	15	16	17	18	19	20
Times	287.8	287.6	286.2	287.2	285.9	287.6	286.2	287.2	285.4	286.0

Minimum	1 st Quartile	Median	Mean	3 rd Quartile	Maximum
284.4	286.1	286.9	287.0	287.6	292.9

Model Parallel AlexNet with Tiny ImageNet

OWT AlexNet with Tiny ImageNet

Epochs	1	2	3	4	5	6	7	8	9	10
Times	311.9	297.3	295.8	297.4	306.8	299.0	302.2	301.7	300.5	292.8
Epochs	11	12	13	14	15	16	17	18	19	20
Times	293.4	293.6	292.5	293.3	290.2	294.0	294.8	290.2	293.5	293.7

Minimum	1 st Quartile	Median	Mean	3 rd Quartile	Maximum
290.2	293.4	294.4	296.7	299.4	311.9

OWT AlexNet with Tiny ImageNet

AlexNet Baseline with Dogs vs. Cats

Epochs	1	2	3	4	5	6	7	8	9	10
Times	273.1	265.6	266.7	267.6	265.8	266.0	266.7	265.6	272.2	271.4
Epochs	11	12	13	14	15	16	17	18	19	20
Times	263.9	265.2	269.3	263.3	264.0	265.0	266.8	262.9	267.0	263.5

Minimum	1 st Quartile	Median	Mean	3 rd Quartile	Maximum
262.9	264.8	265.9	266.6	267.2	273.1

AlexNet Baseline with Dogs vs. Cats

Data Parallel AlexNet with Dogs vs. Cats

Epochs	1	2	3	4	5	6	7	8	9	10
Times	323.4	314.3	320.3	322.5	314.9	314.8	311.8	312.3	313.6	312.0
Epochs										
Еросп	11	12	13	14	15	16	17	18	19	20

Minimum	1 st Quartile	Median	Mean	3 rd Quartile	Maximum
309.1	312.3	313.6	314.5	314.8	323.4

Data Parallel AlexNet with Dogs vs. Cats

Model Parallel AlexNet with Dogs vs. Cats

Epochs	1	2	3	4	5	6	7	8	9	10
Times	322.7	317.8	317.0	316.5	317.9	318.3	321.6	325.7	327.1	323.0
Epochs	11	12	13	14	15	16	17	18	19	20
Times	325.6	319.9	318.9	320.0	319.6	319.9	318.6	317.8	320.4	320.7

Minimum	1 st Quartile	Median	Mean	3 rd Quartile	Maximum
316.5	318.2	319.7	320.4	321.9	327.1

Model Parallel AlexNet with Dogs vs. Cats

OWT AlexNet with Dogs vs. Cats

Epochs	1	2	3	4	5	6	7	8	9	10
Times	215.4	209.6	208.6	210.1	209.4	211.3	211.9	211.3	214.3	211.4
Epochs	11	12	13	14	15	16	17	18	19	20
Times	212.8	211.6	209.4	208.5	209.0	209.7	209.4	208.3	209.3	209.2

Minimum	1 st Quartile	Median	Mean	3 rd Quartile	Maximum
208.3	209.2	209.6	210.5	211.5	215.4

OWT AlexNet with Dogs vs. Cats

