1 Claims 2 1. A file server system including 3 a first file server including a file server change memory; a second file server including a file server change memory; 5 6 a mass storage element; said first file server and said second file server being coupled to said mass 7 8 storage element; means for copying a descriptor of a file system change to both said first and second file servers, whereby said first file server processes said file system change while said second file server maintains its copy of said descriptor in its file server change mem-12 ory; and means for said second file server to perform a file system change in its file server change memory in response to a service interruption by said first file server. 15=± A system as in claim 1, including at least one said mass storage ele-2. 16 ment for each said file server. 17 18 19 3. A system as in claim 1, wherein a first said file server is disposed for processing said file system changes atomically, whereby a second said file server can on 20 failover process exactly those file system changes not already processed by said first file 21 22 server.

3

4

5

6

7 8

16 17

18

19

20 21 request.

A system as in claim 1, wherein a first said file server is disposed to 4. respond identically to service interruptions for itself and for a second said file server.

A system as in claim 1, wherein at least one said file server is dis-5. posed to delay output to said mass storage element without delaying a response to file

system changes.

A system as in claim 1, wherein at least one said file server responds 6. to a file system change before committing a result of said file system change to mass storage.

> A system as in claim 1, wherein 7.

each one of said file servers is coupled to at least a portion of said file server change memory using local memory access; and

each one of said file servers is coupled to at least a portion of said file server change memory using remote memory access

> A system as in claim 1, wherein said descriptor includes a file server 8.

. 1	9. A system as in claim 1, wherein said file server change memory in-
2	cludes a disk block.
. 3	
4	10. A system as in claim 1, wherein said file server change memory in-
5	cludes a file server request.
6	
7	11. A system as in claim 1, wherein said file server change memory is
8	disposed to delay output to said mass storage element without delaying a response to file
	server requests.
	12. A system as in claim 1, wherein
12	said mass storage element includes a file storage system;
13	each said file server is disposed for leaving said file storage system in an
14	internally consistent state after processing file system changes;
15-1	said internally consistent state is associated with a set of completed file
16	system changes;
17	said set of completed file system changes is identifiable by each said file
18	server.
19	
20	13. A system as in claim 1, wherein said mass storage element includes
21	a file storage system and each said file server is disposed for leaving said file storage
22	system in an internally consistent state after processing each said file system change.

1	

A file server system as in claim 1, wherein 14. 2 said mass storage element includes a primary mass storage element and a 3 mirror mass storage element; and 4 said first file server processes said file system change for both said primary 5 mass storage element and said mirror mass storage element. 6 7 15. A system as in claim 1, wherein said means for copying includes ac-8 cess to at least one of said first and second file server change memories using a NUMA network. 16. A system as in claim 1, wherein said means for copying includes 13 14 14 remote memory access to at least one of said first and second file server change memories. £. 157 17. 16 A system as in claim 1, wherein said means for said second file

19

20

21

18

17

18. A file server system including

response to a service interruption by said second file server.

- a first file server coupled to a first set of mass storage devices;
- 22 a second file server coupled to a second set of mass storage devices;

server to perform a file server request in its file server change memory is also operative in

1	a server change memory;
2	said first file server disposed for receiving a file server request and in re-
3	sponse thereto copying a descriptor of a file system change into said server change mem-
4	ory; and

said first file server disposed for processing said file system change for both said first set of mass storage devices and for at least one said mass storage device in said second set.

8

5

6

7

19. A system as in claim 18, wherein

said second file server is disposed for receiving a file server request and in response thereto copying a descriptor of a file system change into said server change memory; and

said second file server is disposed for processing said file system change for both said second set of mass storage devices and for at least one said mass storage device in said first set.

16

17

20. A system as in claim 18, wherein said server change memory includes a disk block.

19

18

21. A system as in claim 18, wherein said server change memory in-21 cludes a file server request.

	22. A system as in claim 18, wherein said server change memory in-
l	
2	cludes a first portion disposed at said first file server and a second portion disposed at
3	said second file server.
4	
5	23. A system as in claim 18, wherein
6	said server change memory includes a first portion disposed at said first file
7	server and a second portion disposed at said second file server; and
8	said first file server is disposed for copying said descriptor into both said
	first portion and said second portion.
	24. A system as in claim 18, wherein
l Ž	said server change memory includes a first portion disposed at said first file
13	server and a second portion disposed at said second file server; and
4) [4]	said first file server and said second file server are each disposed for copy-
F.	ing said descriptor into both said first portion and said second portion.
16	
17	25. A system as in claim 18, wherein said server change memory is dis
18	posed to delay output to said mass storage element without delaying a response to file
19	server requests.
20	
21	26. A file server system including

1	a plurality of file servers, said plurality of file servers coupled to a mass
2	storage element and at least one file server change memory;
3	each said file server disposed for receiving a file server request and in re-
4	sponse thereto copying a descriptor of a file system change into said file server change
5	memory; and
6	each said file server disposed for responding to a service interruption by
7	performing a file system change in said file server change memory.
8	
9 C	27. A system as in claim 26, including at least one said mass storage
	element for each said file server.
1123	
1047 1127 1247	28. A system as in claim 26, including at least one said server change
13	memory for each said file server.
13 5 5 5 14 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
15 []	29. A system as in claim 26, wherein a first said file server is disposed
16	for processing said file system changes atomically, whereby a second said file server can
17	on failover process exactly those file system changes not already processed by said first
18	file server.
19	

21

20

30.

respond identically to service interruptions for itself and for a second said file server.

A system as in claim 26, wherein a first said file server is disposed to

1		31.	A system as in claim 26, wherein at least one said file server delays
2	output to said	d mass	storage element without delaying a response to file server requests.
3			
4		32.	A system as in claim 26, wherein at least one said file server re-
5	sponds to a	file sys	tem change before committing a result of said file system change to
6	mass storage	: .	
7			
8		33.	A system as in claim 26, wherein
9		each	one of said file servers is coupled to at least a portion of said file
9C 1011 1011 1111	server chang	ge mem	ory using local memory access; and
		each	one of said file servers is coupled to at least a portion of said file
12点	server chang	ge mem	ory using remote memory access.
14 W La		34.	A system as in claim 26, wherein each said file server is disposed for
	copying said	i descri	ptors using a NUMA network.
16		2.5	
17		35. 	A system as in claim 26, wherein each said file server is disposed for
18	copying said	d descri	ptors using remote memory access.
19			
20		36.	A system as in claim 26, wherein said file server change memory
21	includes a d	isk blo	ck.

	I	37. A system as in claim 26, wherein said file server change memory
	2	includes a file server request.
	3	
	4	38. A system as in claim 26, wherein said file server change memory is
	5	disposed to delay output to said mass storage element without delaying a response to file
	6	server requests.
	7	
	8	39. A system as in claim 26, wherein said mass storage element includes
	9	a file storage system and each said file server is disposed for leaving said file storage
٠	104]	system in an internally consistent state after processing each said file system change.
	1045 1165 1245	
	12	40. A system as in claim 26, wherein
	T.↓ 13≡ ~~1	said mass storage element includes a file storage system;
	13= 14 m	each said file server is disposed for leaving said file storage system in an
		internally consistent state after processing file system changes;
	16	said internally consistent state is associated with a set of completed file
	17	system changes;
	18	said set of completed file system changes is identifiable by each said file
	19	server.
	20	
	21	41. A file server system as in claim 26, wherein

1	said mass storage element includes a primary mass storage element and a
2	mirror mass storage element; and
3	said first file server processes said file system change for both said primary
4	mass storage element and said mirror mass storage element.
5	
6	42. A method of operating a file server system, said method including
7	steps for
8	responding to an incoming file server request by copying a descriptor of a
9	file system change to both a first file server and a second file server;
	processing said file system change at said first file server while maintaining
1 =	said descriptor copy at said second file server; and
12	performing, at said second file server, a file system change in response to a
	copied descriptor and a service interruption by said first file server.
15	43. A method as in claim 42, including steps for associating a first file
16	server and a second file server with a mass storage element.
17	
18	44. A method as in claim 42, including steps for delaying output by at
19	least one said file server to said mass storage system without delaying a response to file
20	system changes.

1	45. A method as in claim 42, wherein a first said file server is disposed
2	for processing said file system changes atomically, whereby a second said file server can
3	on failover process exactly those file system changes not already processed by said first
4	file server.
5	
6	46. A method as in claim 42, wherein a first said file server is disposed
7	to respond identically to service interruptions for itself and for a second said file server.
8	
2]	47. A method as in claim 42, wherein at least one said file server re-
101	sponds to a file system change before committing a result of said file system change to
	mass storage.
	48. A method as in claim 42, wherein
14:	each said file server includes a file server change memory;
15	each one of said file servers is coupled to at least a portion of said file
16	server change memory using local memory access; and
17	each one of said file servers is coupled to at least a portion of said file
18	server request memory using remote memory access.
19	
20	49. A method as in claim 42, wherein said file server change memory
21	includes a disk block.

1	50.	A method as in claim 42, wherein said file server change memory
2	includes a file serve	er request.
3		ព
4	5 152.	A method as in claim 42, wherein said file server change memory is
5	disposed to delay o	output to said mass storage element without delaying a response to file
6	server requests.	
7		
8	√ √ 58.	A method as in claim 42, wherein said mass storage element in-
9	cludes a file storage	e system and each said file server is disposed for leaving said file stor-
	age system in an in	ternally consistent state after processing each said file system change.
1243 174	63 54.	A method as in claim 42, wherein said steps for performing a file
13	system change in re	esponse to a copied descriptor are also operative in response to a serv-
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ice interruption by	said second file server.
16	y 358.	A method as in claim 42, wherein said steps for processing includes
17	steps for processing	g said file system change at both a primary mass storage element and a
18	mirror mass storage	e element.
19	4	
20	√9 5 6.	A method of operating a file server system, said method including

steps for

1	receiving a file server request at one of a plurality of file servers and in re-
2	sponse thereto copying a descriptor of a file system change into a server change memory;
3	processing said file system change for both a first set of mass storage de-
4	vices coupled to a first one said file server and for at least one said mass storage device in
5	a second set of mass storage devices coupled to a second one said file server.
6 7	59. A method as in claim 56, wherein said descriptor includes a file
8	server request.
	A method as in claim 56, wherein said server change memory includes a disk block.
	Cludes a disk block.
12	6) 59. A method as in claim 56, wherein said server change memory in-
14	cludes a file server request.

A method as in claim 56, wherein said server change memory includes a first portion disposed at said first file server and a second portion disposed at said second file server.

16

17

18

19

20 61. A method as in claim 56, wherein said server change memory in-21 cludes a first portion disposed at said first file server and a second portion disposed at said second file server; and wherein said steps for copying include steps for copying said descriptor into both said first portion and said second portion.

3

4

5

6

7

8

cludes a first portion disposed at said first file server and a second portion disposed at said second file server; and said steps for copying include steps for copying said descriptor into both said first portion and said second portion by either of said first file server or said second file server.

2: 10:

posed to delay output to said mass storage element without delaying a response to file server requests.

64. A method as in claim 56, wherein

C)

16

17

said steps for receiving include receiving a file server request at either said first file server or said second file server, and said steps for copying said descriptor include copying by either said first file server or said second file server; and including steps

18 for

processing said file system change for both said second set of mass storage devices and for at least one said mass storage device in said first set.

1	A method of operating a file server system, said method including
2	steps for
3	receiving a file server request at one of a plurality of file servers and in re-
4	sponse thereto copying a descriptor of a file system change into a file server change
5	memory; and
6	responding to a service interruption by performing a file system change in
7	response to a descriptor in said file server change memory.
8	
9	65 66. A method as in claim 65, including steps for associating a plurality
1013	of file servers with at least one mass storage element and at least one file server change
	memory.
12.	. 1
13	A method as in claim 65, including steps for delaying output to a
13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	mass storage element without delaying a response to file server requests.
15 <u>5</u> 5	. 1
16	A method as in claim 65, including steps for leaving a file storage
17	system on said mass storage element in an internally consistent state after processing
18	each said file system change.
19	
20	A method as in claim 65, including steps for
21	leaving a file storage system on said mass storage element in an internally
22	consistent state after processing file system changes;

1	associating said internally consistent state with a set of completed file sys-
2	tem changes; and
3	identifying said set of completed file system changes by at least one said
4	file server.
5	69
6	20. A method as in claim 65, including steps for performing said re-
7	ceived file server request at both a primary mass storage element and a mirror mass stor-
8	age element.
	10 M. A method as in claim 65, including steps for processing said file system changes atomically at a first said file server; and on failover processing exactly those file system changes not already processing
	essed by said first file server.
14	A method as in claim 65, including steps for responding identically at a first said file server to service interruptions for itself and for a second said file server.
17	
18	A method as in claim 65, wherein said file server change memory
19	includes a disk block.
20	h
21	A method as in claim 65, wherein said file server change memory
22	includes a file server request.

1 2 79.

A method as in claim 65, wherein said file server change memory is

disposed to delay output to said mass storage element without delaying a response to file

server requests.

5

6

7

3

4

A method as in claim 65, including steps for responding to a file

system change before committing a result of said file system change to mass storage at

one said file server.