Curso de Docker

Comunidad de Castilla la Mancha

Guía del Curso

- Introducción a Docker
- Arquitecturas de Microservicios
- Construcción de Imágenes
- Desarrollo con Contenedores
- Integración Continua
- Introducción a Kubernetes

Componentes Docker

Docker Build y Dockerfile

Dockerfile FROM ubuntu MAINTAINER Florian Lopes #Layer 1 RUN mkdir -p /some/dir RUN apt-get install -y curl #Layer 3

docker-compose.yml (docker run)

```
version: "3"
services:
  db:
     image: mysql:5.7
     restart: always
     environment:
       MYSQL ROOT PASSWORD: password
  wordpress:
     image: wordpress:latest
     depends on:
       - db
     ports:
       - "8000:80"
```

Comandos Comunes para Compose

- docker-compose up
- docker-compose pull
- docker-compose build
- docker-compose push
- docker-compose run
- docker-compose rm

Local Environment Sample

https://github.com/dockersamples/example-voting-app

Guía del Curso

- Introducción a Docker
- Arquitecturas de Microservicios
- Construcción de Imágenes
- Desarrollo con Contenedores
- Integración Continua
- Introducción a Kubernetes

Antes de Empezar

Liberar espacio en disco!

Integración Contínua

Docker Cloud

Optimización de Docker Build

- Test de Integración con Docker
- Otras Herramientas de Integración Continua

Integración Contínua

- Martin Fowler
- Integraciones automáticas los más a menudo posible.
- Build, test e integración.
- Detectar fallos cuanto antes.
- Última versión siempre disponible.

Integración Contínua y Docker

- Estandariza ejecución de componentes y tests.
- Firmar imágenes.
- Simplifica tests de integración.
- Security Scanning.
- Eschema de tags.

Optimización de Docker Build

- Servidores de Integración Continua suelen ser efímeros
- Solución: docker build —cache-from
- docker-castilla-la-mancha/auto-build

Test de Integración con Docker

- Dockeriza tus tests!
- Docker compose puede simular entornos complejos
- docker-castilla-la-mancha/auto-test

Docker en Producción

- Retos que introduce Docker
- Docker Clusters:
 - Kubernetes
 - Docker Swarm
 - Google Container Engine
 - Elastic Container Service

Retos que introduce Docker

- Service Discovery
- Balanceo de Carga
- Configuración de Red
- Persistencia
- Escalabilidad
- Personalización
- Logging y Monitoreo
- Respuesta a fallo

Docker Clusters

Kubernetes

Docker Swarm

• GCE

• ECS (y AWS Fargate)

Introducción a Kubernetes

- Orquestador de Contenedores
- Permite lanzar contenedores contra un clúster.
- Puede correr muchos contenedores en cada máquina.
- Autogestiona el estado de los contenedores:
 - Decide en qué nodo lanzar cada contenedor.
 - Puede relanzar contenedores que fallan.
 - Puede mover contenedores entre nodos.

Introducción a Kubernetes

- Corre en cloud publico o privado.
- Modular y configurable.
- Open Source
- Desarrollado por Google (Borg).
- · Gran comunidad.

Default Registry

https://stackoverflow.com/questions/35186385/change-default-registry-for-openshift-origin

Docker meets Java

https://drive.google.com/file/d/1gutLbEyZKM7Z2rc4hg9DvDewlwxivX7W/view

Java y Docker: Problemas

- Default heap es 1/4 de memoria física (-XX:MaxRAM or -Xmx)
- Java 8 ignora límites de CPU
- No se puede hacer attach de una JVM a otra JVM

Java y Docker: Problemas

- Parcialmente arreglado en Java 9 y 8u131
 - -XX:+UseCGroupMemoryLimitForHeap and
 - -XX:+UnlockExperimentalVMOptions
- Java 10 promete arreglarlo del todo, incluyendo cpushares (además de cpusets)

Java y Docker: Problemas

• Java 8:

docker run -it --cpus="2" -m 200M openjdk:8u131 java -XX:ParallelGCThreads=2 - XX:ConcGCThreads=2 -Djava.util.concurrent.ForkJoinPool.common.parallelism=2 - XX:MaxRAM=200m

Java 9 y 8u131:

docker run -m 100MB openjdk:8u121 java -XshowSettings:vm -version docker run -m 100MB openjdk:8u131 java -XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap -XshowSettings:vm -version

Ejercicio

Instalar kubectl

Instalar minikube

Worker Nodes

Master Nodes

