Optical Wireless Communication

Taylor Groos

California State University, Chico

EECE 598

OWC Topics

- History
- Why LED?
- Definition/Classification
- Transmission Ranges
- OWC vs RF
- Indoor Systems
- Modulation
- QPSK
- Conclusion

History

Why LED?

What is Optical Wireless Communications?

Optical Wireless Communications, or OWC, is a form of optical communication in which unguided visible, infrared or ultraviolet light is used to carry a signal

Optical Wireless Types

History

- Up to late 1990s Infrared Communication
- Early 2000s VLC was implemented
 - Started with 100 Kbps
 - Now over 800 Mbps for short range*

Transmission Ranges

Figure 2. Categorization of OWC applications based on the transmission range.

Ultra-Short Range OWC

- ~milimeters
- Replace copper-based interconnections
- Inter/Intra –chip communication
- High bandwidth
- Low latency
- Guided
- Unguided
 - FSOI
 - More flexible
 - Parallelism
 - Allow multi-dimensional device arrays

Figure 3. Illustration of free space optical interconnect.

Outlook Market Report Prediction \$520 million by 2019 \$1.02 billion by 2021 **Short Range OWC**

- ~centimeters
- WPAN
 - Personal workspaces
 - "Last Meter" connectivity
 - IR LED
 - Up to 10 Gbps
- WBAN
- Current WBANs are RF based
- Problem in RF restricted areas
 - Hospitals
 - EMI

Figure 4. An envisioned cardio-stress test equipment based on VLC. The LEDs attached to sensor units communicate wirelessly with the receiver located on the equipment handle bar.

Medium Range OWC

Figure 5. A VLC-enabled hot spot where the VLC receiver in the form of an USB dongle communicates with the desk lamp acting as a VLC transmitter.

WLAN

Substitute for RF

Wi-Fi

LiFi

VLC

New technologies

Long life

High humidity tolerance

Lower power consumption

Reduced heat dissipation

Long Range OWC

- ~km
- "Last Mile" communications
- WMAN
- FSO

Figure 6. Vehicular VLC network where vehicles communicate with each other and roadside infrastructure through their LED-based front and back lights.

- Links are easy to install and redeployable
- 9/11

Long Range OWC

Figure 8. FSO can be deployed to support aircraft-to-aircraft, aircraft-to-HAP, aircraft/satellite/HAP-to-ground communication.

Pointing-acquisition-tracking algorithms

Ultra-Long Range OWC

- >10,000km
- Ground-satellite
- Satellite-satellite
- Intraplanet!

- 2001: 50 Mbps FSO between ARTEMIS geostationary satellite and SPOT-4 French Earth observation satellite
- Coherent modulation -> Gbps
- October 2013: NASA's Lunar Laser Communication Demonstration –
 Moon to Earth (384600 km) achieved 622 Mbps

OWC vs. Radio

Table 1.1. Comparison of wireless optical and radio channels.

Property	Wireless Optical	Radio	
Cost	s	SS	
RF circuit design	No	Yes	
Bandwidth Regulated	No	Yes 10's Mbps	
Data Rates	100's Mbps		
Security	High	Low	
Passes through walls ?	No	Yes	

OWC vs. Radio

Table 1 Comparison Between Radio and IM/DD Infrared Systems for Indoor Wireless Communication

Property of Medium	Radio	IM/DD Infrared	Implication for IR
Bandwidth Regulated?	Yes	No	Approval not required. Worldwide compatibility.
Passes Through Walls?	Yes	No	Less coverage. More easily secured. Independent links in different rooms.
Multipath Fading?	Yes	No	Simple link design.
Multipath Distortion?	Yes	Yes	13 30 0 30 9200 0
Path Loss	High	High	
Dominant Noise	Other Users	Background Light	Limited range.
Input $X(t)$ Represents	Amplitude	Power	Difficult to operate outdoors.
SNR Proportional to	$\int X(t) ^2 dt$	$\int X(t) ^2 dt$	Hight transmitter power requirement.
Average Power Proportional to	$\int X(t) ^2 dt$	$\int X(t)dt$	Choose waveform $X(t)$ with high peak-to-average ratio.

OWC vs. Radio

Directed - Maximizes power efficiency

- Minimizes path loss

- Minimizes ambient light noise

Nondirected - Wide angle transmitters/receivers

- No pointing needed

- More convenient

Hybrid - Combination

Fig. 2. (a) Transmission and reception in an infrared link with IM/DD. (b) Modeling link as a baseband linear, time-invariant system having impulse response h(t), with signal-independent, additive noise N(t). The photodetector has responsivity R.

- Y(t) = Instantaneous current in the receiving photodetector
- X(t) = Instantaneous optical power

Modulation

- Intensity Modulation (IM)
 - Desired waveform is modulated onto the instantaneous power of the carrier
- Direct Detection (DD)
 - Photo detector producing a current proportional to the received instantaneous power
- IM/DD
 - Does not offer immunity to turbulence-induced fading channels
 - Instead: phase and frequency
- Phase Shift Keying (PSK)
- Quadrature Phase Shift Keying (QPSK)

Quadrature Phase Shift Keying

QPSK

11

-1

0

Fig. 1 Block diagram of coherent optical QPSK transmitter

Gen.

Conclusion

- History
- Why LED?
- Definition/Classification
- Transmission Ranges
- OWC vs RF
- Indoor Systems
- Modulation
- QPSK

Questions?