5. Počítačové cvičení

Restrikční mapování

Double Digest Problem

(Kniha 3, kapitola 4.1 až 4.4)

Molekula DNA je kompletně štěpena enzymem A, enzymem B a kombinací obou enzymů. Vstupem problému jsou tři vektory vzestupně setříděných fragmentů štěpení:

 $\Delta X_A = \{a_1, a_2, ..., a_m\}$ - vektor fragmentů po štěpení enzymem A,

 $\Delta X_B = \{b_1,\,b_2,\,...,\,b_n\} \qquad \qquad \text{- vektor fragment u po $te*pen in enzymem B,}$

 $\Delta X_{AB} = \{c_1, c_2, ..., c_{m+n-1}\}$ - vektor fragmentů po současném štěpení enzymy A+B.

Úkolem je nalézt pozice štěpení pro oba enzymy.

Triviální příklad: $\Delta X_A = \{2,4\}$, $\Delta X_B = \{1,5\}$ a $\Delta X_{AB} = \{1,1,4\}$.

Štěpení enzymem A i B produkuje pouze dva fragmenty, což znamená, že DNA obsahuje jedno restrikční místo pro každý z enzymů a délka molekuly je 6 (suma délek fragmentů).

Štěpení oběma enzymy současně produkuje tři fragmenty. Je potřeba určit, kde na molekule DNA se nachází restrikční místa.

Počet fragmentů m pro enzym A a n pro B určuje počet kombinací pozic restrikčních míst. Konkrétně pro příklad: (m!)*(n!) = (2!)*(2!) = 4 kombinace pozic fragmentů:

24 42 24 42 15 15 51 51

Která z těchto kombinací generuje vektor XAB?

Správné řešení:

(reverze jednoho řešení je dalším řešením)

Enzym A štěpí DNA na pozici 2 a enzym B na pozici 1, nebo na pozici 4 a 5.

Další příklad:

$$\Delta X_A = \{2, 3, 5, 10\}$$

$$\Delta X_B = \{3, 7, 10\}$$

$$\Delta X_{AB} = \{1, 2, 2, 5, 5, 5\}$$

Enzym A má na DNA 3 restrikční místa, enzym B 2 místa, DNA je dlouhá 20. Je potřeba prověřit (4!)*(3!) = 144 kombinací pozic.

Exhaustive search (brute-force) algoritmus prověří všechny možnosti pozic, např. tímto způsobem:

uspořádání fragmentů	mapa pozic	sloučené pozice			
3 5 2 10	0 3 8 10 20	0 3 7 8 10 20			
7 3 10	0 7 10 20				
postupné diference					
3-0, 7-3, 8-7, 10-8, 20-10=3, 4, 1, 2, 10					

setřídit na 1, 2, 3, 4, 10 toto ale není správné řešení, neboť se to nerovná X_{AB}.

0 0, 0, 0, 0 1, 10 0, 10 10 0, 1, 1, 1, 1, 1

Mapa pozic se tvoří postupným sčítáním fragmentů a sloučené pozice neobsahují duplikace.

Pro jinou kombinaci:

uspořádání fragmentů	mapa pozic	sloučené pozice
2 3 10 5	0 2 5 15 20	0 2 3 5 10 15 20
3 7 10	0 3 10 20	
postupné diference		

$$2-0$$
, $3-2$, $5-3$, $10-5$, $15-10$, $20-15=2$, 1 , 2 , 5 , 5 , 5

setřídit na 1, 2, 2, 5, 5, 5 a toto se rovná X_{AB} a tudíž restrikční místa pro enzym A jsou {2, 5, 15} a enzym B {3, 10} a dalším řešením je jejich reverze {5, 15, 18} a {10, 17}. Reverze se tvoří obrácením pořadí uspořádání fragmentů a vytvořením mapy pozic.

Tento přístup testování všech možných kombinací uspořádání fragmentů nalezne všechny možné pozice restrikčních míst. Algoritmus je však enormně výpočetně náročný.

Úkol: V R naprogramujte funkci pro brute-force algoritmus DDP pro jedno možné uspořádání fragmentů. Následně upravte pro všechny možné uspořádání fragmentů.

Partial Digest Problem

Řešený příklad:

Máme vektor délek $\Delta X=\{2,2,3,3,4,5,6,7,8,10\}$. Najděte vektor X, z kterého byl vektor délek vygenerován. $X=\{x_1=0,x_2,...,x_n\}$, kde $\Delta X=\{x_j-x_i:1\le i< j\le n\}$.

Velikost ΔX = 10 tudíž podle $\frac{n(n-1)}{2}$ = 10 \rightarrow n = 5, tudíž hledáme $X = \{x_1, x_2, x_3, x_4, x_5\}$. Vektor délek ΔX byl vygenerován podle této tabulky:

	X 1	X2	Х3	X 4	X 5
X 1		X2-X1	X3-X1	X4-X1	X 5 -X 1
X ₂			X ₃ -X ₂	x ₄ -x ₂	X 5 -X 2
Х3				X 4 -X 3	X 5 -X 3
X 4					X 5- X 4
X 5					

1) Nalezneme maximum v ΔX . Maximální prvek musí za předpokladu, že vektor X je setříděn vzestupně, odpovídat prvku z tabulky x_5 - x_1 .

max = 10
$$x_5 - x_1 = 10$$
, když $x_1 = 0$, pak $x_5 = 10$

tudíž $X = \{0, x_2, x_3, x_4, 10\}.$

Z ΔX odstraníme prvek x_5 - x_1 a dostáváme nové $\Delta X = \{2,2,3,3,4,5,6,7,8\}$.

2) max = 8 máme možnosti: $x_4 - x_1 = 8$, $x_4 = 8$ nebo $x_5 - x_2 = 8$, $x_2 = 2$ jelikož jde o zrcadlové prvky (od první i poslední hodnoty X mají stejnou vzdálenost) můžeme vybrat jakoukoli z nich. Vezměme, že $x_2 = 2$.

Nové $X = \{0,2,x_3,x_4,10\}.$

Z ΔX odstraníme prvky o hodnotách: $x_2 - x_1 = 2$, $x_5 - x_2 = 8$.

Nové $\Delta X = \{2,3,3,4,5,6,7\}.$

3) max = 7 máme možnosti:
$$x_4 - x_1 = 7$$
, $x_4 = 7$
nebo $x_5 - x_3 = 7$, $x_3 = 3$

avšak kdyby $x_3 = 3$, tak by $x_3-x_2 = 1$, ale 1 není v ΔX , tudíž volíme $x_4 = 7$.

Nové $X = \{0,2,x_3,7,10\}.$

Z ΔX odstraníme prvky o hodnotách: $x_5 - x_4 = 3$, $x_4 - x_1 = 7$ a $x_4 - x_2 = 5$.

Nové $\Delta X = \{2,3,4,6\}.$

4) max = 6 zbyly dvě možnosti
$$x_3 - x_1 = 6$$
, $x_3 = 6$ nebo $x_5 - x_3 = 6$, $x_3 = 4$

kdyby $x_3 = 6$ tak by $x_4-x_3 = 1$, to ale není v ΔX , takže $x_3 = 4$.

<u>Výsledek: X = $\{0,2,4,7,10\}$ </u>

Provedeme kontrolu správnosti řešení. Vypočítáme všechny možnosti vzdáleností mezi prvky a po setřídění musí dát zadaný vektor.

$$\Delta X = \{2,4,7,10,2,5,8,3,6,3\} = \{2,2,3,3,4,5,6,7,8,10\}$$

Příklady k řešení:

1)
$$\Delta X = \{1,2,2,3,4,4,5,6,7,8\}$$

2)
$$\Delta X = \{2,2,2,4,4,4,6,6,8,10\}$$

3)
$$\Delta X = \{1,2,2,2,2,3,4,4,4,5,6,6,7,8,9\}$$

Úkol: V R implementujte rekurzivní algoritmus pro PDP (Partial Digest Problem) podle následujícího pseudokódu:

PartialDigestProblem(L)

- 1 width ← maximální prvek z L
- 2 Delete(width,L)
- 3 $X \leftarrow \{0, width\}$
- 4 Place(L,X)

Place(L,X)

```
1
        if L je prázdné
2
            output X
3
            return
4
        y ← maximální prvek z L
5
        if \Delta(y,X) \supseteq L
6
            přidej y do X a odstraň délky \Delta(y,X) z L
7
            Place(L,X)
8
            odstraň y z X a přidej délky \Delta(y,X) do L
9
        if \Delta(width-y,X) \supseteq L
            přidej width-y do X a odstraň délky \Delta(width-y,X) z L
10
11
            Place(L,X)
12
            odstraň width-y z X a přidej délky \Delta(width-y,X) do L
13
        return
```

Upřesnění: $L = \Delta X$, Delete(y,L) vymaže hodnotu $y \neq L$, $\Delta(y,X)$ je vektor délek mezi hodnotou $y \neq L$ a všemi hodnotami X.

Nápověda: Vytvořte externí funkci *Remove()*, která bude z vektoru L odstraňovat použité délky Δ .

Brute-force Motif Search

Ačkoli některé problémy v biologických systémech lze řešit pomocí velmi jednoduchých vyhledávacích algoritmů, velký prohledávací prostor může způsobit exponenciální nárůst doby běhu s velikostí systému. V boji proti tomuto problému je obvykle možné využít porozumění omezením vyhledávacího prostoru k chytrému návrhu algoritmů, které dávají rozumnou dobu běhu v porovnání s velikostí biologických systémů.

V předchozí části cvičení jsme se zabývali dvěma algoritmy pro řešení částečného rozkladu problému (DDP & PDP). Metoda hrubé síly prohledává všechny možné množiny (n - 2)

restrikčních míst pro původní řetězec složený ze $\binom{n}{2}$ prvků, dokud se nenajde množina L. Toho se dosáhne pomocí funkcí *place* a *select* k vytvoření řetězců o délce (n-2). Doba běhu tohoto algoritmu je však O(W(n-2)), kde W je délka původního řetězce.

Tím, že si uvědomíme, že největší prvek v *L* bude délka původního řetězce, a že dalšími největšími prvky v množině budou vzdálenosti od omezení ke koncům původního řetězce, jsme vytvořili nový algoritmus nazvaný **Branch and Bound**. Tím se doba běhu zkrátila na *O(n2)*.

Naopak hrubou silou (**Brute-force Motif Search**) lze jednoduše iterovat přes všechny $(L_1-n)\times(L_2-n)\times...\times(L_k-n)$ takových výchozích pozic $\{s_1, s_2, ...s_k\}$ a zachovat posloupnost, jejíž profilová matice dává výsledek nejnižší konsenzuální skóre. Protože potřebujeme vyhodnotit na pořadí matic L_k každá s $n\times k$ prvky, roste doba běhu této metody jako $T=O(n_kL_k)$, což je exponenciální v počtu sekvencí DNA, které chceme zkoumat. Proto tato metoda funguje, pokud se porovnává pouze několik sekvencí.

Postup Brute-force Motif Search

- 1. Funkce Score
- 2. Funkce NextLeaf
- 3. Funkce BFMotifSearch
- 4. Funkce NextVertex
- 5. Funkce SimpleMotifSearch

Úkol: V R implementujte Brute-force Motif Search algoritmus. Pseudokódy pro jednotlivé funkce tohoto algoritmu jsou dostupné v Knize 1 – kapitola 4.