

Measuring the Combinatorial Coverage of Software in Real Time

Zachary Ratliff

Computer Security
Security Components & Mechanisms

August 4th, 2016

What is Combinatorial Testing?

- Design of Experiments (D.O.E.) for software testing
- Can significantly reduce testing time and costs without sacrificing effectiveness
- Offers a partial solution for showing that a particular program will work for all given inputs

Intractable Nature of Software Testing

- The input domain space of software grows exponentially to the number of input parameters
- 10 binary inputs: $2^{10} = 1,024$ configurations
- 20 binary inputs: $2^{20} = 1,048,576$ configurations

Folding a piece of 0.01cm thick paper 42 times will get you to the moon... $(0.01 \times 2^{42}) = 439,804$ km

*Note: You can only fold paper in half about 7 times...

Covering Arrays

- Mathematical object representing all t-way combinations of n parameters.
- Every combination
 between t parameters
 appears at least once

0	0	0	0	0	0	0	0	0	0
1	1		1	1	1	1	$\langle extstyle angle$	1	1
1	1	1	0	1	0	0	$\left \phi \right $	0	1
1	0		1	0	1	0	ackslash	0	0
1	0	0	0	1	1	1	0	0	0
0	1	1	0	0	1	0	\bigcirc	1	0
0	0	1	0	1	0	1	$\langle \pm /$	1	0
1	1	0	1	0	0	1	0	1	0
0	0	0	1	1	1	0	\bigcirc	1	1
0	0	1	1	0	0	1	0	0	1
0	1	0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	1	1	1	0	1

Efficiency of Covering Arrays

• Total variable value configurations for a given system is given by:

$$v^{t} \binom{n}{t}$$
 $n = \text{number of parameters}$ $t = \text{level of t-way coverage}$

For Mixed Level variable configurations:

$$\sum_{i} v_{i1} \times \cdots \times v_{it}$$
, $\forall i = 1 \dots {n \choose t}$ combinations

• In practice, covering arrays grow exponentially to t and logarithmically to n

Number of tests $\approx v^t \log(n)$

The Interaction Rule

- Most failures are induced by one or two factors with progressively fewer faults induced by more than two factors
- No failure involving more than 6 factors has been reported
 - Covering all 4 to 6-way combinations provides strong testing

The Problem

- Most organizations do not fully understand the benefits of switching to combinatorial testing methods
- Time, money, and other resources may not be available to alter testing practices
- Lack of Combinatorial testing software tools and training available

CCM: Combinatorial Coverage Measurement Tool

- Cross platform tool written in Java
- Measured combinatorial coverage of static .csv files
- Features:
 - Generate missing combinations
 - Constraint support
 - o Display invalid combinations

*Created by Itzel Mendoza while working as a guest researcher at N.I.S.T.

Limitations of CCM

- Could only accept .csv files for test case input
 - No ability to hook other tools in
 - Had to be ran on a local machine
- Limited to static analysis of data
 - Very inefficient for when measuring multiple times as new data is added

Interest was generated in various industries for a new combinatorial measurement tool with capabilities to measure coverage in real time.

Introducing CCM Command Line

Real time combinatorial coverage measurement tool

New Capabilities

- Can read multiple file types
 - csv test case files
 - .txt test case files
 - ACTS .xml configuration files
 - ACTS .txt configuration files
- Added support for equivalence classes and groups within ACTS configuration files
 - o Ranges and boundary values defined by interval notation
 - (*,5],[6,*) creates two range classes: $-\infty$ to 5, 6 to ∞
 - Groups are specified in brackets
 - {"Debian", "Ubuntu", "Red Hat"}, {"Windows XP", "Windows 7"}

- Real time measurement functionality
 - Incrementally measures combinatorial coverage as new test cases are added to the data set
- Accepts input from various sources
 - Files
 - Standard Input
 - External Programs
 - Internet / TCP
- More robust constraint definitions
 - o !employee => !grant_permission

^{*}Older version of CCM had issues processing constraints in this notation

Time Complexity

• The time complexity of initial measurement of static test case files remains the same:

$$\theta(n^t(v^t+m))$$

Incremental measurements while adding test cases:

$$\theta(n^t v^t)$$

In both static and real time measurements, the algorithm is tractable in real world situations

Applications of CCMCL

- Product Readiness
 - o Determining if a pre-release version has been tested enough by Beta users.
- Monitoring IV&V Performance
 - o Is the IV&V company providing quality tests to meet the software assurance standards?
- Measuring current test suite implementations
 - o Do current test suite implementations already provide significant combinatorial coverage?
- Internet of Things Reliability
 - Measuring how reliable a system of interconnected components likely is.

Acknowledgements

- Rick Kuhn, National Institute of Standards & Technology
- Raghu Kacker, National Institute of Standards & Technology
- Dylan Yaga, National Institute of Standards & Technology
- Itzel Mendoza, Centro Nacional de Metrologia
- SURF Undergraduate Research Program, National Institute of Standards & Technology

References

- D.R. Kuhn, R.N. Kacker, Y. Lei, J. Hunter, *Combinatorial Software Testing*, IEEE Computer Society, August 2009.
- D.R. Kuhn, D.R. Wallace, A.M. Gallo, Jr., *Software Fault Interactions and Implications for Software Testing*, IEEE Transactions of Software Engineering, June 2004.
- Kuhn, D. Richard, Raghu N. Kacker, and Yu Lei. *Introduction to combinatorial testing*. CRC press, 2013.