Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica

Agrupamento IV

25/02/2022

Exame de recurso

Duração: 2h30min

Justifique detalhadamente as respostas e apresente os cálculos.

- (5.0) 1. Considere a matriz $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -(\alpha+2) & -1 \\ 0 & 0 & \beta(\alpha+2) \end{bmatrix}$ e o vetor $B = \begin{bmatrix} 2 \\ \alpha-2 \\ \beta \end{bmatrix}$, com α e β parâmetros reais.
 - (a) Determine, justificando, para que valores de α e β o sistema AX = B é:
 - (i) possível e determinado, (ii) possível e indeterminado, (iii) impossível.
 - (b) Considere o plano \mathcal{P}_1 com equação geral x+2y+z=2 (primeira equação do sistema AX=B) e o plano \mathcal{P}_2 com equação geral $-(\alpha+2)y-z=\alpha-2$ (segunda equação do sistema AX=B).
 - (i) Determine a posição relativa de \mathcal{P}_1 e \mathcal{P}_2 , quando $\alpha = 2$.
 - (ii) Determine a distância entre o plano \mathcal{P}_1 e o plano \mathcal{P}_3 com equação geral 2x+4y+2z=6.
- (3.0) 2. Considere matriz $A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ -2 & 1 & 1 \end{bmatrix}$.
 - (a) Calcule o determinante de A.
 - (b) Verifique que A é invertível e calcule a matriz inversa de A.
 - (c) Determine uma matriz B tal que det(B) = 2 det(A).
- (4.0) 3. Considere o subespaço S de \mathbb{R}^3 gerado pelos vetores $u_1 = (1, 1, 0), u_2 = (1, -1, 1)$ e $u_3 = (2, 4, -1)$.
 - (a) Determine uma base de S e a dimensão de S.
 - (b) Determine os vetores ortogonais a u_1 e u_2 com norma igual a $\sqrt{6}$.
 - (c) Determine uma base de \mathbb{R}^3 que inclua **dois** vetores do conjunto $\{u_1, u_2, u_3\}$ e, se necessário, outros vetores. Justifique.
- (4.0) 4. Considere matriz $A = \begin{bmatrix} 2 & -2 \\ -2 & -1 \end{bmatrix}$.
 - (a) Calcule os valores próprios e os subespaços próprios de A.
 - (b) Verifique que A é ortogonalmente diagonalizável e determine uma matriz ortogonal diagonalizante de A e a respetiva matriz diagonal semelhante a A.
 - (c) Determine uma equação reduzida e classifique a cónica com a equação geral

$$2x^2 - 4xy - y^2 - 4 = 0$$

- (4.0) 5 Seja C_3 a base canónica de \mathbb{R}^3 e $\mathcal{B} = ((-1,1,0),(1,0,1),(1,1,1))$ uma base de \mathbb{R}^3 . Considere a aplicação linear $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\phi(-1,1,0) = (0,0,-1), \ \phi(1,0,1) = (2,1,1)$ e $\phi(1,1,1) = (2,1,2)$.
 - a) Determine a matriz de ϕ relativa às bases \mathcal{B} e \mathcal{C}_3 , isto é, a matriz $M(\phi, \mathcal{B}, \mathcal{C}_3)$.
 - b) Determine uma base e a dimensão da imagem de ϕ . ϕ é sobrejetiva? Justifique.
 - c) Calcule $\phi(1,2,1)$.