一九九八年全国高中数学联合竞赛

— ,	-、选择题(本题满分 36 分,每小题 6 分)				
	1、若 a>1, b>1,且 lg(a+b)=lga+lgb,则 lg(a-1)+lg(b-1) 的值()				
	(A) 等于.1g2 (B)	等于1			
	(C) 等于0 (D)不是与 a,b 无关的常数			
	2. 若非·空集合 <i>A</i> ={x 2a+1≤x≤3a - 5},	$B=\{x\mid 3\leq x\leq 22\}$, 则能使 $A\subseteq A\cap B$ 成	立的所有		
a的	的集合是()				
	$(A) \{a \mid 1 \leq a \leq 9\} $	$\{a \mid 6 \leqslant a \leqslant 9\}$			
	$(C) \{a \mid a \leqslant 9\} \tag{L}$)) Ø			
	3.各项均为实数的等比数列 {a}前 n项之	和记为 5. ,若 5.。= 10, 5.。= 70, 贝	刂፟፟₅等于		
()				
		7) – 200			
	(<i>C</i>) 150 或 – 200 (<i>j</i>	-	t to 🖂		
	4. 设命题 A. 关于 x的不等式 a.r. + b.r. +	$b_{\alpha}>0$ 与 $ax+bx+a>0$ 的解例	、相问;		
	命題 <i>Q</i> : $\frac{a}{a} = \frac{b}{b} = \frac{c}{c}$. 则命題 <i>Q</i> ()				
	(A) 是命题 P的充分必要条件				
	(B) 是命题 P的充分条件但不是必要	条件			
	(c) 是命题 P的必要条件但不是充分;				
	(1) 既不是是命题 19的充分条件也不是		44.1.1		
в,	5.设 E, F, G分别是正四面体 ABCD的棱.	AB, BC, CD 的中点,则二面角 C—FG—	E的大小		
是(_	5			
	(A) $\arcsin \frac{\sqrt{6}}{3}$ (B) $\frac{\pi}{2} + \arccos \frac{\sqrt{6}}{3}$	$\frac{3}{2}$ (c) $\frac{\pi}{2}$ - arctan $\sqrt{2}$ ((D) R —		
	√2 √2	2			
arc	ccot $\frac{\sqrt{2}}{2}$				
	6. 在正方体的 8 个顶点,12 条棱的中点,	6 个面的中心及正方体的中心共 27 /	个点中,共线		
	的三点组的个数是()				
	(A) 57 (B) 49	(C) 43 . (D) 37			
二、	、填空题(本题满分54分,每小题9分) 名	各小题只要求直接填写结果.			
	1. 若 f (x) (x∈R) 是以 2 为周期的偶函数	t 当 ye[0 1]时 f(y)=y1000. [i	$\frac{98}{11}$		
		, act o, 1]#,,1 (a) a1000, 7	19'		
$f(\frac{10}{1})$	101), f(104)由小到大排列是	·			
1			1 - 1 - 2 - 22		
<u> </u>	2. 设复数 z=cos θ+isin θ (0≤ θ≤180° 个点分别是 P, Q, R. 当 P, Q, R不共线时,				
	A A A A A A A A A A	以线技 FK,FK 为网边的干11 四边形	的条件工		
******	3. 从 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ₺	 5 10 个数中取出 3 个数,使其和为7	下小于 10		
的倡	偶数,不同的取法有种.				
	4. 各项为实数的等差数列的公差为 4, 身	其首项的平方与其余各项之和不超过	100, 这		
样的	的数列至多有项.				
	5. 若椭圆 x²+4(y-a)²=4 与抛物线 x²=2y 4		·		
ਜ਼ਵ⊹⊦	6. ΔABC中, ∠C = 90°, ∠B = 30°, AC = 2		亞, 伙 <i>H</i> , <i>B</i>		
州点	点间的距离为 $2\sqrt{2}$,此时三棱锥 A – BCM 的	件 你守丁			

三、(本题满分20分)

已知复数 $z=1-\sin\theta+i\cos\theta(\frac{\pi}{2}\langle\theta\langle\pi\rangle)$,求 z 的共轭复数 \overline{z} 的辐角主值.

四、(本题满分20分)

设函数 $f(x) = ax^2 + 8x + 3$ (a<0). 对于给定的负数 a ,有一个最大的正数 I(a) ,使得在整个 区间 [0, I(a)]上,不等式 $|f(x)| \le 5$ 都成立.

问: a 为何值时 1(a) 最大? 求出这个最大的 1(a). 证明你的结论.

五、(本题满分20分)

已知抛物线 $y^2 = 2px$ 及定点 A(a, b), B(-a, 0), $(ab \neq 0, b^2 \neq 2pa)$. M 是抛物线上的点,设直线 AM, BM 与抛物线的另一交点分别为 M, M.

求证: 当 M 点在抛物线上变动时(只要 M, M 存在且 $M \neq M$), 直线 M M 恒过一个定点. 并求出这个定点的坐标.

第二试

一、(清分 50 分) 如图, α I分别为 Δ ABC的外心和内心, Δ D是 BC边上的高,I在线段 Δ D 上。求证: Δ ABC的外接圆半径等于 BC边上的旁切圆半径。

注: AARC的 BC边上的旁切圆是与边 AB、AC的延长线以及边 BC都相切的圆。

二、(满分 50 分) 设 a_1 , a_2 , …, a_n , b_1 , b_2 , …, $b_n \in [1, 2]$ 且 $\sum_{i=1}^{n} a_i^2 = \sum_{i=1}^{n} b_i^2$,

求证: $\sum_{i=1}^{n} \frac{a_i^3}{b_i} \le \frac{17}{10} \sum_{i=1}^{n} a_i^2$. 并问: 等号成立的充要条件.

三、(满分 50 分) 对于正整数 a、n,定义 $F_n(a) = q + r$,其中 q、r 为非负整数,a = qn + r,且 $0 \le r \le n$. 求最大的正整数 A,使得存在正整数 n1,n2,n3,n4,n5,n6,对于任意的正整数 $a \le A$,都有

 $F_{n_6}(F_{n_5}(F_{n_4}(F_{n_3}(F_{n_2}(F_{n_1}(a))))))$ =1. 证明你的结论.

一九九八年全国高中数学联赛解答

第一试

一. 选择题(本题)	两分 36 分	,每小题(ΰ分)
------------	---------	-------	-----

1. $\exists a > 1$, b > 1, $\exists \lg (a + b) = \lg a + \lg b$, $\iint \lg (a - 1) + \lg (b - 1)$ fth 值()

(A) 等于1g2

(B) 等于1

(c) 等于 o

(D) 不是与 a b 无关的常数

【答案】C

【解析】a+b=ab, (a-1)(b-1)=1, 由 a-1>0, b-1>0, 故 1g(a-1)(b-1)=0, 选 C.

2. 若非空集合 $A=\{x|2a+1 \le x \le 3a-5\}$, $B=\{x|3 \le x \le 22\}$, 则能使 $A\subseteq A\cap B$ 成立的所有 a 的集合是()

(A) $\{a \mid 1 \le a \le 9\}$

(B) $\{a \mid 6 \le a \le 9\}$

(c) $\{a \mid a \leq 9\}$

(D) \emptyset

【答案】B

【解析】 $A\subseteq B$, $A\neq \emptyset$. \Rightarrow 3 \leqslant 2a+1 \leqslant 3a-5 \leqslant 22, \Rightarrow 6 \leqslant a \leqslant 9. 故选 B.

3. 各项均为实数的等比数列 {a_}}前 n 项之和记为 5_,若 s10 = 10, s30 = 70, 则 *5*40 等于()

(A) 150

(B) -200

(6) 150 或 -200

(D) -50 或 400

【答案】▲

【解析】首先 $q \neq 1$,于是, $\frac{a_1}{q-1}(q^{10}-1)=10$, $\frac{a_1}{q-1}(q^{20}-1)=70$,∴ $q^{10}+q^{10}+1=7$. $\Rightarrow q^{20}=2$. (— 3舍)

$\therefore S_{i0} = 10(q^{i0}-1) = 150$. 选A

4. 设命题 P: 关于 x 的不等式 $a_1x^2 + b_1x^2 + c_1 > 0$ 与 $a_2x^2 + b_2x + c_2 > 0$ 的解集相同;

命题 Q: $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$. 则命题 Q(

- (A) 是命题 P的充分必要条件
- (B) 是命题 P的充分条件但不是必要条件
- (C) 是命题 P的必要条件但不是充分条件
- (D) 既不是是命题 P的充分条件也不是命题 P的必要条件

【答案】D

【解析】若两个不等式的解集都是 R, 否定 A、 C, 若比值为-1, 否定 A、 B, 选 D.

5. 设 E, F, G 分别是正四面体 ABCD 的棱 AB, BC, CD 的中点,则二面角 C—FG—E 的大小 是(

(A) $\arcsin \frac{\sqrt{6}}{3}$ (B) $\frac{\pi}{2} + \arccos \frac{\sqrt{3}}{3}$ (C) $\frac{\pi}{2} - \arctan \sqrt{2}$ (D) $\pi -$

 $\operatorname{arccot} \frac{\sqrt{2}}{2}$

【答案】D

【解析】取 AD、BD中点 B、M 则 EBU/ FG// BD、于是 EB 在平面 EFG上、设 CM FG=P、AM EB=Q、则 P、Q分别为 CM AB 中点, PQ// AC.

∵ AC上 $BD_n \Rightarrow PQ\bot FG_n$ CP $\bot FG_n \Rightarrow \angle$ CPQ 是二面角 C $\lnot FG \lnot I$ 的平面角.

二选 D.

6. 在正方体的8个顶点, 12条棱的中点, 6个面的中心及正方体的中心共27个点中, 共线的三点组的个数是()

【答案】B

【解析】8个顶点中无3点共线,故共线的三点组中至少有一个是棱中点或面中心或体中心.

- (1) 体中心为中点: 4 对顶点, 6 对棱中点, 3 对面中心: 共 13 组;
- (2) 面中心为中点: 4×6=24组;
- (3) 棱中点为中点: 12 个. 共 49 个, 选B.
- 二、填空题(本题满分54分,每小题9分) 各小题只要求直接填写结果.

【答案】
$$f(\frac{101}{17}) < f(\frac{98}{19}) < f(\frac{104}{15})$$

【解析】
$$f(\frac{98}{19})=f(6-\frac{16}{19})=f(\frac{16}{19})$$
. $f(\frac{101}{17})=f(6-\frac{1}{17})=f(\frac{1}{17})$, $f(\frac{104}{15})=f(6+\frac{14}{15})=f(\frac{14}{15})$.

现
$$f(x)$$
是[0, 1]上的增函数,而 $\frac{1}{17} < \frac{16}{19} < \frac{14}{15}$,故 $f(\frac{101}{17}) < f(\frac{98}{19}) < f(\frac{104}{15})$,

2. 设复数 $z=\cos\theta+i\sin\theta$ ($0\le\theta\le180^\circ$),复数 z,(1+i) z,2 \overline{z} 在复平面上对应的三个点分别是 P, Q, R. 当 P, Q, R 不共线时,以线段 PQ, PR 为两边的平行四边形的第四个顶点为 S, 点 S 到原点距离的最大值是

【答案】3

【解析】
$$\overrightarrow{OS} = \overrightarrow{OP} + \overrightarrow{PQ} + \overrightarrow{PR} = \overrightarrow{OP} + \overrightarrow{OQ} - \overrightarrow{OP} + \overrightarrow{OR} - \overrightarrow{OP}$$

$$= \overrightarrow{OQ} + \overrightarrow{OR} - \overrightarrow{OP}$$

 $=(1+i)z+2\overline{z}-z=iz+2\overline{z}$

$$=(2\cos\theta-\sin\theta)+i(\cos\theta-2\sin\theta)$$
.

∴ $|\partial S|^2$ =5-4sin2 $\theta \le 9$. $\mathbb{P}|\partial S| \le 3$, $\mathbb{E}|\partial S| = 1$, $\mathbb{E}|\partial S| = 3$.

3. 从 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 这 10 个数中取出 3 个数, 使其和为不小于 10 的偶数, 不同的取法有______种.

【答案】51

【解析】从这 10 个数中取出 3 个偶数的方法有 c种,取出 1 个偶数, 2 个奇数的方法有 cc种,而取出 3 个数的和为小于 10 的偶数的方法有 (0, 2, 4), (0, 2, 6), (0, 1, 3), (0, 1, 5), (0, 1, 7), (0, 3, 5), (2, 1, 3), (2, 1, 5), (4, 1, 3), 共有 9 种,故 应答 10+50—9=51 种。

【答案】8

【解析】设其首项为 a, 项数为 n. 则得 $a^2+(n-1)$ $a+2n^2-2n-100\leq 0$.

 $\triangle = (n-1)^2 - 4(2n^2 - 2n - 100) = -7n^2 + 6n + 4.01 \ge 0.$ $\therefore n \le 8.$

取 n=8,则 $-4 \le a \le -3$.即至多 8 项.

(也可直接配方: $(a+\frac{n-1}{2})^2+2n^2-2n-100-(\frac{n-1}{2})^2 \le 0$. 解 $2n^2-2n-100-(\frac{n-1}{2})^2 \le 0$. 仍得 $n \le 8$.)

5. 若椭圆 x²+4(y-a)²=4 与抛物线 x²=2y 有公共点,则实数 a 的取值范围是_____. 【答案】—1≤ <u>a≤ 2 。</u>.

【解析】2y=4-4(y-a)², ⇒2y²-(4a-1)y+2a²-2=0. 此方程至少有一个非负根.

$$\therefore \ \triangle = (4 \, a - 1)^2 - 16 \, (a^2 - 1) = -8 \, a + 17 \ge 0, \ a \le \frac{17}{8}.$$

两根皆负时 $2s^2$ > 2。4s-1 < 0. $\Rightarrow -1$ < s < 1 且 s < 1 即 s < -1. $\therefore -1 \leqslant s \leqslant \frac{17}{8}$.

6. $\triangle ABC$ 中, $\angle C=90^\circ$, $\angle B=30^\circ$,AC=2,M是 AB的中点.将 $\triangle ACM$ 沿 CM折起,使 A,B 两点间的距离为 $2\sqrt{2}$,此时三棱锥 A-BCM的体积等于______.

【答案】
$$\frac{2\sqrt{2}}{3}$$

【解析】由已知,得 AB=4, AM=MB=MC=2, $BC=2\sqrt{3}$,由 $\triangle AMC$ 为等边三角形,取 CM中点,则 $AD\perp CM$, AD 交 BC 于 E,则 $AD=\sqrt{3}$, $DE=\frac{\sqrt{3}}{3}$, $CE=\frac{2\sqrt{3}}{3}$.

折起后,由 $BC^2 = AC^2 + AB^2$,知 $\angle BAC = 90^\circ$, $\cos \angle ECA = \frac{\sqrt{3}}{3}$.

- ∴ $A\vec{E} = C\vec{A} + C\vec{E} 2CA \cdot CE\cos \angle ECA = \frac{8}{3}$, 于是 $A\vec{C} = A\vec{E} + C\vec{E}$. $\Rightarrow \angle AEC = 90^{\circ}$.
- \therefore $AD^2 = AE^2 + ED^2$, $\Rightarrow AE \perp$ 平面 BCM,即 AE 是三棱锥 A BCM 的高, $AE = \frac{2\sqrt{6}}{3}$.

$$S_{\triangle BOM} = \sqrt{3}$$
, $V_{A-BOM} = \frac{2\sqrt{2}}{3}$.

三、(本题满分20分)

已知复数 $z=1-\sin\theta+i\cos\theta$ ($\frac{\pi}{2}$ < θ < π),求 z的共轭复数 \overline{z} 的辐角主值.

【解析】
$$z=1+\cos(\frac{\pi}{2}+\theta)+i\sin(\frac{\pi}{2}+\theta)=2\cos(\frac{\pi}{2}+\theta)+2\sin(\frac{\pi}{2}+\theta)$$

$$=2\cos(\frac{\pi}{2}+\theta)+i\sin(\frac{\pi}{2}+\theta)=2\cos(\frac{\pi}{2}+\theta)$$

$$=2\cos(\frac{\pi}{2}+\theta)+i\sin(\frac{\pi}{2}+\theta)$$

$$=2\cos(\frac{\pi}{2}+\theta)+i\sin(\frac{\pi}{2}+\theta)$$

$$=\frac{\pi}{2}+\theta$$

四、(本题满分20分)

设函数 $f(x) = ax^2 + 8x + 3$ (a<0). 对于给定的负数 a ,有一个最大的正数 I(a) ,使得在整个 区间 [0, I(a)]上,不等式 $|f(x)| \le 5$ 都成立.

问: a 为何值时 I(a) 最大? 求出这个最大的 I(a). 证明你的结论.

【解析】
$$f(x) = a(x + \frac{4}{a})^2 + 3 - \frac{16}{a}$$
.

(1)当
$$3-\frac{16}{s}>5$$
,即 $-8< a<0$ 时,

$$I(s)$$
是方程 $sx^2+8x+3=5$ 的较小根,故 $I(s)=\frac{-8+\sqrt{64+8}s}{2s}$.

$$I(a)$$
是方程 $ax^2+8x+3=-5$ 的较大根,故 $I(a)=\frac{-8-\sqrt{64-32}a}{2a}$.

综合以上,
$$I(s) = \begin{cases} \frac{-8 - \sqrt{64 - 32s}}{2s}, & (s \le -8) \\ \frac{-8 + \sqrt{64 + 8s}}{2s}, & (-8 \le s \le -8) \end{cases}$$

当
$$s \le -8$$
时, $I(s) = \frac{-8 + \sqrt{64 - 32}s}{2s} = \frac{4}{\sqrt{4 - 2s - 2}} \le \frac{4}{\sqrt{20 - 2}} = \frac{1 + \sqrt{5}}{2}$

当-8<
$$s$$
<0时, $I(s)=\frac{-8+\sqrt{64+8s}}{2s}=\frac{2}{\sqrt{16+2s}+4}<\frac{2}{4}<\frac{1+\sqrt{5}}{2}$.

所以
$$a=-8$$
时, $I(a)$ 取得最大值 $\frac{1+\sqrt{5}}{2}$.

五、(本题满分20分)

已知抛物线 $y^2 = 2px$ 及定点 A(a, b), B(-a, 0), $(ab \neq 0, b^2 \neq 2pa)$. M 是抛物线上的点,设直线 AM, BM 与抛物线的另一交点分别为 M, M.

求证: 当 M点在抛物线上变动时(只要 M, M存在且 $M \neq M$.) 直线 MM恒过一个定点. 并求出这个定点的坐标.

【解析】设度(
$$\frac{1}{2p}$$
, $\frac{1}{2p}$

则
$$A$$
、 A 真共线,得 $\frac{b-a}{a-a} = \frac{a-\frac{a^2}{2p}}{2p}$,即 $b-a=\frac{2pa-a^2}{a+a}$.

二 馬馬所在直线方程为

2paby-baiy=2pbax-2paix+4pia-2paba. (1)

分别令
$$x=0$$
,1代入,得 $x=a$, $y=\frac{2ps}{b}$,以 $x=a$, $y=\frac{2ps}{b}$ 代入方程(1)知此式恒成立.

第二试

- 一、(满分 50 分) 如图,O、I分别为 $\triangle ABC$ 的外心和内心,AD是 BC边上的高,I在线段 OD上。求证: $\triangle ABC$ 的外接圆半径等于 BC边上的旁切圆半径。
- 注: $\triangle ABC$ 的 BC边上的旁切圆是与边 AB、AC的延长线以及边 BC都相切的圆。

【解析】 由旁切圆半径公式,有

$$r_a = \frac{2S}{b+c-a} = \frac{ah_a}{b+c-a}$$
, 故只须证明

 $\frac{R}{h_a} = \frac{a}{b+c-a}$ 即可。连 AI 并延长交 \odot 0 于 K,连 OK 交 BC 于 M,则 K、M 分别为弧 BC 及弦 BC 的中点。且 $OK \bot BC$ 。于是 OK//AD,又 OK=R,故

$$\frac{R}{h_a} = \frac{OK}{AD} = \frac{IK}{IA} = \frac{KB}{IA},$$

故只须证
$$\frac{\mathit{KB}}{\mathit{IA}} = \frac{\mathit{ah_a}}{\mathit{b}+\mathit{c}-\mathit{a}} = \frac{\mathit{BM}}{\frac{1}{2}(\mathit{b}+\mathit{c}-\mathit{a})}.$$

作 $IN \perp AB$,交 $AB \mp N$,则 $AN = \frac{1}{2}(b+c-a)$,

而由△AIN~△BKM,可证KB_BM TA=AN成立,故证。

二、(满分 50 分) 设
$$a_1$$
, a_2 , …, a_n , b_1 , b_2 , …, $b_n \in [1, 2]$ 且 $\sum_{i=1}^{n} a_i^2 = \sum_{i=1}^{n} b_i^2$,

求证: $\sum_{i=1}^{n} \frac{a_i^3}{b_i} \le \frac{17}{10} \sum_{i=1}^{n} a_i^2$. 并问: 等号成立的充要条件.

【解析】证明:由于 a, a, …, a, b, b, …, $b_i \in [1, 2]$,故 $\frac{1}{2} \le \frac{\sqrt{\frac{a_i}{b_i}}}{\sqrt{a_i b_i}} \le 2.$

于是
$$(\frac{1}{2}\sqrt{s_ib_i}-\sqrt{\frac{3}{s_i}})$$
 $(2\sqrt{s_ib_i}-\sqrt{\frac{3}{s_i}})$ $\leqslant 0$),即 $s_ib_i-\frac{5}{2}s_i^2+\frac{3}{b_i}$ $\leqslant 0$.

求和得
$$\sum_{i=1}^{n} \frac{3}{b_i} \le \frac{5}{2} \sum_{i=1}^{n} \frac{2}{a_i} - \sum_{i=1}^{n} a_i b_i$$

又由
$$(\frac{1}{2}b_i - a_i)$$
 $(2b_i - a_i) \le 0$ 得 $b_i^2 - \frac{5}{2}a_ib_i + a_i^2 \le 0$,故 $a_ib_i \geqslant \frac{2}{5}(a_i^2 + b_i^2)$.

$$\therefore \sum_{\substack{I=1\\I=1}}^{n} \frac{\overset{3}{s_{I}}}{\overset{1}{b_{I}}} \leqslant \underbrace{\overset{5}{2} \sum_{I=1}^{n} \overset{1}{s_{I}} - \sum_{I=1}^{n} s_{I} b_{I}} \leqslant \underbrace{\overset{5}{2} \sum_{I=1}^{n} \overset{1}{s_{I}} - \underbrace{\overset{4}{5} \sum_{I=1}^{n} \overset{1}{s_{I}} - \overset{1}{17} \sum_{I=1}^{n} \overset{1}{s_{I}}}_{10} \sum_{I=1}^{n} \overset{1}{s_{I}} = \underbrace{\overset{5}{17} \sum_{I=1}^{n} \overset{1}{s_{I}} - \overset{1}{17} \sum_{I=1}^{n} \overset{1}{s_{I}}}_{10} \sum_{I=1}^{n} \overset{1}{s_{I}} = \underbrace{\overset{5}{17} \sum_{I=1}^{n} \overset{1}{s_{I}} - \overset{1}{17} \sum_{I=1}^{n} \overset{1}{s_{I}}}_{10} \sum_{I=1}^{n} \overset{1}{s_{I}} = \underbrace{\overset{5}{17} \sum_{I=1}^{n} \overset{1}{s_{I}} - \overset{1}{17} \sum_{I=1}^{n} \overset{1}{s_{I}}}_{10} \sum_{I=1}^{n} \overset{1}{s_{I}} = \underbrace{\overset{5}{17} \sum_{I=1}^{n} \overset{1}{s_{I}}}_{10} = \underbrace{\overset{5}{17} \sum_{I=1}^{n} \overset{1}{s_{I}}}_{10} = \underbrace{\overset{5}{17} \sum_{I=1}^{n} \overset{1}{s_{I}}}_{10} = \underbrace{\overset{5}{17} \sum_{I=1}^{n}} \overset{1}{s_{I}}}_{10} = \underbrace{\overset{5}{17} \sum_{I=1}^{n} \overset{1}{s_{I}}}_{10}$$

当且仅当 $_{B}$ 为偶数且 $_{B}$, $_{B}$, $_{B}$, $_{B}$, $_{B}$, $_{B}$, $_{B}$ $_{B}$

三、(满分 50 分) 对于正整数 a、n, 定义 F_n (a) =q+r, 其中 q、r 为非负整数,a=qn+r,且 $0 \le r \le n$. 求最大的正整数 A,使得存在正整数 n1,n2,n3,n4,n5,n6,对于任意的正整数 $a \le A$,都有 $F_{D_n}($

【解析】将满足条件"存在正整数 n_1 , n_2 , n_3 , n_4 , n_5 , n_6 , 对于任意的正整数 $a \leq B$, 都有 F_{n_b}

 $(F_{n_{k-1}}(\cdots(F_{n_1}(a)\cdots)=1"$ 的最大正整数 B记为 x_k 显然,本题所求的最大正整数 A即为 x_6 。

(1)先证 x_1 =2. 事实上, F_2 (1)= F_2 (2)=1,所以 $x_1 \ge 2$,又当 $x_1 \ge 3$ 时, F_{n_1} (2)=2,而 F_2

(3) =₹(2)=2, 所以 xi<3, ∴xi=2.

(2)设 x_i 已求出,且 x_i 为偶数,显然 $x_i \ge x_i = 2$,易知 x_{i+1} 满足的必要条件是:存在 x_i ,使得只要 $a \le x_{i+1}$,就有 $F_{x_i}(a) \le x_i$.

令
$$\mathbf{r}_{H:}=\mathbf{q}\mathbf{r}_{t}+\mathbf{r}_{t}$$
 由 $F_{\mathbf{r}_{t}}(\mathbf{r}_{H:})=\mathbf{q}+\mathbf{r} \leqslant \mathbf{r}_{t}$ 可得

 $x_{k+1} = qx_k + x \le qx_k + x_k - q = x_k + q(x_k - 1)$.

若取 n=2,由 $\frac{x_1+2}{2} \le x_1$ 可知 $x_{1+1} \ge x_1+2$,由此可得 $q \ge 0$, $n \ge 1$,

于是 0<(g-1) n+n -1=gn -1<n+, 因此

 $F_{n}((q-1)n+n-1)=q+n-2 \leq x_{k}$

故有
$$q(x_1-1) \leq [(\frac{q+x_1-1}{2})^2] \leq [(\frac{x_1+1}{2})^2] = [\frac{x_1^2}{4+\frac{x_1}{2}+\frac{1}{4}}].$$

由于 x_i 为偶数,从而 $q(x_i-1) \leqslant \frac{x_i^2}{4+x_i}$.

$$x_{i+1} \leq x_i + \frac{x_i^2}{4} + x_i = \frac{x_i(x_i + 6)}{4}.$$

另一方面,若取 $n_1 = \frac{X_k}{2} + 2$,由于 $\frac{X_k(X_k + 6)}{4} = \frac{X_k}{2} \cdot n_1 + \frac{X_k}{2}$ 对于每个 $a \le \frac{X_k(X_k + 6)}{4}$,令 $a = qn_1 + r$,那么 或者 $q = \frac{X_k}{2}$, $r \le \frac{X_k}{2}$; 或者 $q \le \frac{X_k}{2} - 1$, $r \le n_1 - 1 = \frac{X_k}{2} + 1$ 。

两种情况下均有 $q+r \le x_k$, 因此 $x_{k+1} = \frac{x_k(x_k+6)}{4}$ 。此外,因为 x_k 为偶数,若 $4 \mid x_k$,由 $2 \mid x_k+6$ 可得 $8 \mid x_k(x_k+6)$,若 $x_k \equiv 2 \pmod{4}$,由 $x_k+6 \equiv 0 \pmod{4}$ 也可得 $8 \mid x_k(x_k+6)$.因此 x_{k+1} 也是偶数。于是完成了归纳证明 $x_{k+1} = \frac{x_k(x_k+6)}{4}$.

由 x₁-2 逐次递推出 x₂-4, x₃=10, x₄-40, x₅-460, x₆-53590. 即所求最大整数 *A*=53590.