Seminarieuppgift 5 - Tangenter genom punkt

Emma Bastås

October 9, 2022

Uppgiften är att finna de tangenter till y = f(x) (om det finns några) som går genom punkten P där $f(x) = 2x^3 - 3x + 5$ och P = (0, 1).

Persson och Böiers definierar* tangenten till funktionskurvan y = f(x) i punkten $(x_0, f(x_0))$ som den linje vars ekvation är:

$$y = f'(x_0)(x - x_0) + f(x_0). \tag{*}$$

Att en linje y=g(x) går genom en punkt I är ett ekvivalent påstående med att $I_y=g(I_x)$. För oss som är intresserade av de fall då linjen (\star) går genom punkten P finnes dessa då fall likheten:

$$P_y = f'(x_0)(P_x - x_0) + f(x_0) \tag{**}$$

gäller. Här är x_0 den enda obekanta, vi expanderar P_y , P_x , $f'(x_0)$ och $f(x_0)$ och löser ekvationen:

$$(\star\star) \iff 1 = (6x_0^3)(0 - x_0) + 2x_0^3 - 3x_0 + 5$$
$$\iff x_0^3 = 1$$
$$\iff x_0 = 1.$$

Ekvationen $(\star\star)$ har alltså $x_0=1$ som enda lösning. Detta innebär att (\star) går genom P då $x_0=1$. Sätter vi in $x_0=1$ i (\star) och förenklar får vi linjen:

$$y = f'(1)(x-1) + f(1)$$

 $\iff y = (6-3)(x-1) + 2 - 3 + 5$
 $\iff y = 3x + 1$

 $^{^*}Analys\ i\ en\ variabel,$ Upplaga 3:2 s.189 Geometrisk tolkning av derivata.

Som alltså är den enda tangenten till f(x) som går igenom P. \Box