Thank you for choosing our products. You therefore will be the company's comprehensive technical support and service support.

About this user manual

- When you use this product, please read this manual and retain it for future reference.
 - If you are in the process of using this product have questions or problems, please contact the company.

Catalogue

1.FUNCTION CHARACTERISTICS	3
2.THE MAIN TECHNICAL INDICATORS	3
2.1 Test Item	3
2.2 Main technical parameters	4
3.PANELS DESCRIPTION	4
4.OPERATING INSTRUCTIONS	5
4.1 Keyboard use	5
4.2 Introduce the main interface	5
4.3 PARAMETERS MANAGEMENT OPERATIONS	6
4.4 NO-LOAD TEST	7
4.5 LOAD TEST	<u>9</u>
4.6 HARMONIC TEST	
5.APPENDIX	12
5.1 Test wiring diagram	12
5.2 Instrument testing methods	
5.2 RESULTS AND THEORETICAL	20
5.4 COMMON TROUBLESHOOTING	22
6.QUALITY ASSURANCE	22
6.1 SERVICE COMMITMENT	22
6.2 MAINTENANCE RESPONSIBILITY	22

1. Function characteristics

- 1) Measure the transformer load current, load loss, short-circuit voltage, short circuit (load) losses.
- 2) Harmonic test can be analyzed to 31 harmonics.
- 3) Support Three Watt Meter, two table method, two experimental methods.
- 4) Do three-phase transformer no-load, load test, the instrument can automatically determine the wiring is correct, and shows three-phase voltage and current vector map.
- 5) Single machine can do the following 100KVA distribution transformer full load current experiment; in one third of the rated current, complete 250KVA distribution transformer load the following test (in one third of the rated current, the instrument can be converted to load loss under rated current parameters, the machine is mainly used in the test bed with integrated supporting the use of transformers, the load characteristics to achieve high-precision transformer no-load test).
- 6) All the related test results are automatically corrected. Instrument can automatically such as: the waveform correction, temperature correction, non-rated voltage correction, calibration, and other non-rated current correction, so that more accurate test results.
- 320x240 large screen, high brightness LCD display, full Chinese menu and operations to achieve prompt and friendly man-machine dialogue, touch buttons make the operation more convenient, wide LCD with brightness adjustment, can be adapted to the various summer and winter season.
- 8) The instrument 40 can be preset by the user group is the test product parameters, and these parameters can be removed according to need and increase in use is very convenient.
- 9) Comes with real-time clock, automatically recording test date, time, the preservation of favorable results, management.
- 10) Panel-type thermal printer, the scene quickly print test results.
- 11) Data (test sample set, the measurement results, the test of time, etc.) with power-down storage and browsing features, you can store 500 set of experimental results with computer on-line data transfer.
- 12) Allows an external voltage transformer and current transformer for extended range of measurement, any measurable parameter is the test product.

2. The main technical indicators

2.1 Test Item

RMS phase voltage:Uab,Ubc,Uca;

- Average value of three-phase AC voltage:/Uab,/Ubc,/Uca;
- Three-phase current RMS:Ia,Ib,Ic;
- Percentage of no-load loss and no-load current:Po,Io%;
- ◆ Load loss, impedance voltage, and the percentage of short-circuit impedance:Pt,ekt,Zt;
- Any given temperature, load loss, the percentage impedance voltage and short circuit impedance;
- ◆ Voltage waveform in the percentage of each harmonic component
- Current waveform in the percentage of each harmonic component;

2.2 Main technical parameters

- ◆ Current measurement range: 100mA ~ 5A, accuracy class 0.2;
- ◆ Voltage Range: 10V ~ 650V, accuracy class 0.2;
- External transformer can broaden the scope of measurement instruments;
- ◆ Frequency Range: 40 ~ 65Hz, accuracy class 0.2;
- ◆ Power Input: AC220V ± 10%;

3. Panels Description

Figure 1 Figure-load tester panel

Panel, from left to right are: printers, LCD screen, keyboard, power switch;

Figure 2 Figure-load tester backplane

Back from left to right are: working electrical outlet, three-phase test current input, three-phase test voltage input, communication port, ground column.

4.Operating Instructions

4.1 Keyboard use

"OK" button to select the current input, "Cancel" the error can be eliminated just enter, " \uparrow " \downarrow " " \leftarrow " " \rightarrow " can facilitate the realization of the cursor's movement. "Switch" button to spare key. The bottom of the keyboard data from 0 to 9 keys, the data input by the numeric keys can be easily input data.

4.2 Introduce the main interface

The main interface as shown below, consists of 8 modules.

Figure 3 Test boot-load the main interface

1) No-load test: the menu can be measured in the single-phase transformers, three-phase

transformer no-load loss.

- 2) Load Test: In this menu, you can determine single-phase transformers, three-phase transformer load losses.
- 3) Harmonic test: single or three phase voltage and current harmonic analysis test.
- 4) Test product parameters: the default transformer parameters on modify, add, delete and other operations.
- 5) Data view: on the stored data to view, delete and other management.
- 6) System Settings: Set the current system time.
- 7) Factory settings: This feature manufacturers for debugging.

4.3 Parameters management operations

On the main screen, the keyboard's arrow keys to move the cursor to the test product parameter menu, and then press the OK key to enter the parameters of the test product selection interface management operations are as follows:

Figure 4 parameters of the test product management interface

Select the interface in the above parameters increase, the increase occurred following parameters of the test product page:

Add par	rams	Type⋒ S <u>0900315</u>			
UN1	10. 0KV	IN1	18. 186A		
UN2	400V	IN2	454. 7A		
PT1	1. 000	CT1	1.000		
PT2	1. 000	CT2	1. 000		
T1	10℃	T2	75℃		
R1	2. 849 Ω	R2	4.178mΩ		
T0	10℃				
	OK	Exit			

Figure 5 parameters to increase the test product page

Figure above, the number column number for the transformer, the length of number 7, behind the representative of the transformer type, five representatives, after the transformer capacity (maximum capacity is running input 63,000), in units of KVA, such as transformer type for the S9, capacity 315KVA, then the number column should be entered: 0900315.

Data input method as follows (in Un1 example, the input value is 35.00): Use the arrow keys to move the cursor to Un1 column after the data input through the numeric keypad to directly enter 35.00, input finished, press OK button. Note that the cursor after the Un1 input field, the bottom of the screen prompts "high side rated voltage" (the bottom of the screen cursor is always prompted to enter the field of parameter meaning).

In Figure 4, choose to modify parameters, select the adapter number appeared the following pages:

Selet numbe	r		
S0900050	S1100100	S0900315	
S0700400			

Figure 6 Select transformer numbers page

Pre-modified by the arrow keys to select the number of its parameters, then press the OK button to enter the test sample parameters modify the page, change the page parameters the same as in Figure 5.

In Figure 4 Select Delete parameter, the choice of the transformer in Figure 6, page number, selected number, press the OK button to delete the number of transformer parameters configuration.

4.4 No-load test

According to the test method for dual-table method or three tables, reference back of the corresponding wiring diagram correctly, and then reconnect the power supply load tester.

On the main screen select the load test, load test setup interface is displayed as below:

Figure 7 No-load Test Settings page

Save the page when setting the last test, inspect, modify the settings page it consistent with the current testing transformer.

In Figure 7, the cursor to select the "Start Test" and press OK key to enter the no-load test the following test data page:

κ^{AB}		AE	3	CB		CA
~\	U(V)	23	8.68	237	. 84	238.08
∑B	Um (V)	23	8.74	237	. 57	237.83
J D	I(A)	0.	6909	0.4	969	0.6706
Uo(V)	238. 2	20	Io(A)	0.6	5195
Pab (KW)	0. 054	14	Pbc (KW)	0. 1	581
Ps(KW)	0. 212	25	d		-0.	0007
Po(KW)	0.840)3	Io%		(8)	.803
COS Φ 0. 655		5	F(Hz)		49.987	

Figure 8 No-load Test test data page

This page shows the No-load test results of all tests: Uo (V) for the three-phase line voltage (dual-table method) or phase voltage (when the Tri-watt method) of the average, Pm (KW) for the current voltage the measured power, d is the voltage waveform distortion factor, Po (KW) for the corrected load loss, Io% for the no-load current percentage.

Left side of the test voltage and current vector, if the connection is wrong, the page says "connection error, check off"; by slowly increasing the test voltage booster, when Uo (V) is equal to the rated voltage no-load test (low-pressure side of the transformer for the 400V, no-load test, Two-watt method, the test voltage Uo was 400V, Tri-watt method load test, the test voltage Uo was 230V), to stop boost. Move the cursor to "lock" button, press OK button to lock the current test results, then "lock" button to "Repeat" button.

In the page's "Save" to save the results to the current random storage; "Print" to print through the printer, the current test results

Note: The step-up the process, we should always pay attention to Uo and Io, in addition to avoid over-voltage, but also to guard against abnormal test test sample over current damage to equipment or the test product

In Figure 8 by "Repeat" will be re-tested on the current transformer, press the "exit" is back to Figure 3, the main interface of system functions.

4.5 Load test

According to the test method for dual-table method or three tables, reference back of the corresponding wiring diagram correctly, and then reconnect the power supply load tester.

On the main screen select the load test, load test setup interface is displayed as below:

Series NO. <u>00</u> 0	00001 T	уре&Сар: <u>S0900315</u>
Style	OUni phase	●Triphase
Method	● Two-watt	oTri-watt
Rated LV	Voltage	400.0V
Rated LV	Current	454. 7A
Rated HV	voltage	<u>35. 00KV</u>
Rated HV	current	<u>6.600A</u>
PT ratio	1	00.00
CT ratio	<u>8</u>	. 000
В	egin	Exit

Figure 9 Load Test Settings Page

Save the page when setting the last test, inspect, modify the settings page it consistent with the current test transformers, with particular attention to check the number after the 5 values $\hat{a} \Box \langle \hat{a} \Box \rangle$ (represent the capacity of the high pressure side of the rated current, current transformer Variable ratio, to avoid setting is incorrect or test current overrange.

In Figure 9, select the "Start Test", enter the load test the test data interface:

N ^{AB}	D):	AB		CB		CA
\sim	$\Pi(\Lambda)$	27	9.50	279	. 08	279.3
В	$Um(\Lambda)$	27	9.57	278	. 79	279.09
	I(A)	0.	9028	0.6	585	0.841
Uav(V)	279.3	31	Io(A)	0.8	3008
Pab(KW)	1 TABLE STREET, 10	0.0605 0.2938		$Pbc(KW)$ $Zt(\Omega)$	10000	2333
Ps(KW)	0. 293				0.0	000
Pt(W)	151.52		2 UK%		63.	431
COSΦ	0.603	3	F (Hz	:)	50.	00

Figure 10 Load test data page

This page displays the current temperature load test all the test data: Io (A) the average for the three-phase current, Pm (KW) for the current measured under voltage power, Pt (KW) for the current temperature correction to the rated current reproduced when the loss, Zt (\hat{I} ©) for the current temperature of the short circuit impedance, Uk% for the current temperature, the percentage of short-circuit voltage.

Left side of the test voltage and current vector, if the connection is wrong, the page says "connection error, check off"; by slowly increasing the test voltage booster, when Io (A) test current equal to the load test, stop boost. Move the cursor to "lock" button, press OK button to lock the current test results, then "lock" button to "re-test" button.

Note: The step-up the process, we should always pay attention to Uo and Io, in addition to avoid over-voltage, but also to guard against abnormal test test sample over current damage to equipment or the test product.

In Figure 10 Select the "temperature correction" to show the temperature correction interface:

Figure 11 the results of temperature calibration load page

The page parameters is the last trial setting, inspection, modification to the test items are consistent with the current, the instrument provides two temperature correction algorithm: temperature coefficient method and the national standard formula, the formula see these two algorithms behind the appendix.

In the page's "Save" to save the results to the current random storage; "Print" to print through the printer, the current test results.

4.6 Harmonic test

No-load test, the transformer magnetic core of the Li curve is nonlinear curve, the load current through the transformer will have a certain harmonic component, the number of harmonics and test the power of volume. Harmonic test that is done no-load test or load test, the situation does not change the test connection, the measurement of time through the transformer voltage and current harmonic components of the situation.

Press the aforementioned process or load test load test, test is complete, do not change the wiring and the regulator output voltage in the system's main interface, select the harmonic test, the harmonic components will appear below the list of pages:

Harmonic component 09-02-09 11:23:33						
	AB%	CB%	CA%	Ia%	Ib%	Ic%
01	100.	100.	100.	100.	100.	100.
02	0.02	0.02	0.02	0. 31	0.31	0. 31
03	0.20	0. 20	0.20	5. 11	5.11	5.11
04	0.01	0. 01	0.01	0. 17	0.17	0. 17
05	0.64	0.64	0.64	7.20	7. 20	7.20
06	0.02	0.02	0.02	0.05	0.05	0.05
07	1.44	1. 44	1.44	1. 59	1.59	1.59
08	0.02	0.02	0.02	0.02	0.02	0. 02
09	0.09	0.09	0.09	0. 33	0.33	0. 33
Σ%	1.77	<u>1.77</u>	<u>1.77</u>	<u>9.02</u>	<u>9. 02</u>	<u>9. 02</u>

Figure 12 harmonic component list page

The list is the fundamental harmonic component relative to the percentage of the system to a total of 31 harmonics, the first page shows 1 to 9 harmonics relative value, press "â†" "â†" key to page up and down to show the value of other harmonic components.

Bottom of the page shows all the column relative to the fundamental harmonic and the percentage. In Figure 12, page press OK button, the page appears the following spectrum:

Figure 13 pages harmonic spectrum

5.Appendix

5.1 Test wiring diagram

Two-watt method No-load test wiring diagram

Two-watt method Load test wiring diagram

Tri-watt method No-load test wiring diagram

Tri-watt method load test wiring diagram

Single-phase transformer no-load test connection diagram

Single-phase transformer no-load test connection diagram

Two-watt method No-load test wiring diagram with CT

Two-watt method Load test wiring diagram with CT

Tri-watt method No-load test wiring diagram with CT

Tri-watt method load test wiring diagram with CT

Single-phase transformer no-load test connection diagram with CT

Single-phase transformer Load test wiring diagram with CT

Two-watt method No-load test wiring diagram with CT and PT.

Two-watt method Lload test wiring diagram with CT and PT.

Tri-watt method No-load test wiring diagram with CT and PT

Tri-watt method No-load test wiring diagram with CT and PT

Single-phase transformer no-load test connection diagram with CT and PT

Single-phase transformer Load test connection diagram with CT and PT

5.2 Instrument testing methods

Necessary equipment: error less than 0.1% of the standard source, the standard source can provide at least one voltage and one current;

Wiring diagram: load testing instrument air source with standard wiring diagram is as follows:

Reconnect the power supply load tester, load test data into the page in Figure 8, measured under the test of the page voltage, current, and the measured power Pm (KW) and the standard source of the error between the input value.

5.2 Results and theoretical

"Double-table method" means the two-Wattmeter Test Method for transformer losses by three-phase three-wire connection, "Three Watt Meter" means three wattmeter method for measuring transformer loss test, according to three-phase four-wire connection.

Load test the temperature conversion formula

$$u_{kt}\% = \sqrt{u_k^2 + (\frac{P_k}{10S_n})^2 \times (k_t^2 - 1)} \times 100\%$$

Percentage impedance voltage

$$z_t = u_{kt} \times \frac{u_n^2}{S_n}$$

Short circuit impedance

$$P_{kt} = K_t P_k$$

Temperature coefficient conversion formula is

$$P_{kt} = \frac{P_k + \sum_{t} I_n^2 R_T (K_t^2 - 1)}{K_t}$$

GB formula conversion formula is Symbolic meaning of the formula:

t-correction of the target temperature, ie 75 or 120

T- Current temperature

 t_R - The temperature when measuring resistance

 K_t - The current ambient temperature conversion to t (75 or 120) degrees temperature coefficient,

$$\overline{K_t} = \frac{235 + t}{235 + T}$$

 K_R - The measuring resistance to temperature conversion when the temperature coefficient of the current ambient temperature, $K_R = \frac{235 + T}{235 + t_R}$

 U_o - The average of the measured rms phase voltage, $U_o = (U_{ab} + U_{bc} + U_{ca})/3$

 I_o - The average of the measured RMS phase current, $I_o = (I_a + I_b + I_c)/3$

 $P_k^{'}$ - The total loss measured power transformer, Two-watt method , Tri-watt method $P_k^{'}=P_a+P_b+P_c$

 u_k - The impedance voltage percentage of the current temperature, $u_k = (U_o/U_n)*(I_n/I_o)$

 P_k - The current temperature, the conversion to the rated current of the total loss power, $P_k = P_k^{'} * (I_n/I_o)$

 U_n - Rated voltage of the applied voltage test, if the voltage was applied from the high side is U_{n1} , if the voltage was applied from the low side is U_{n2} .

 $I_{\rm n}$ - Applied voltage side of the rated current, if the voltage was applied from the high side is $I_{\rm n1}$, if the voltage was applied from the low side is $I_{\rm n2}$.

S_n - Rated transformer capacity measured (in KVA).

 $\mathrm{U_{n1}}/U_{n2}$ - Respectively, the measured high side and low-voltage test transformer rated voltage.

 $I_{\rm nl}/I_{\rm n2}$ - Respectively, the measured high side and low-voltage test transformer rated current.

 $\Sigma I_n^2 R$ - The transformer being tested high and low pressure side of the three-phase winding resistance loss (unit: W); "Y" and "D" connection type of resistance loss = $1.5I_n^2 R_x$. "Yn" connection type of resistance loss = $3I_n^2 R_{xn}$, in which R_x - human type high / low pressure side of the line resistance, R_{xn} - manual type high / low voltage side of the phase resistance.

 $\Sigma I_n^2 R_T$ - Converted to the current temperature of the transformer winding resistance loss, $\Sigma I_n^2 R_T = K_R * \Sigma I_n^2 R$

5.4 Common Troubleshooting

- ◆ Boot no display: first off, open the socket on the back panel AC 220V fuse box, check the fuse box, you can replace insurance.
- ◆ The screen suddenly black screen: press the reset button, to start measurement.
- ◆ Measurement and computation results are not correct: Check the external wiring, whether by manual operation, whether bad or take the wrong line; relevant parameter is incorrect.
- ◆ Measuring voltage and current display to zero the normal, check whether the current file fuse blown.

6. Quality assurance

6.1 Service commitment

The company sold the product warranty for one year, five years, responsible for the maintenance (warranty period of the instrument users to the date of purchase), free maintenance during the warranty period, maintenance fees collected only during the period.

6.2 Maintenance Responsibility

- The failure or damage caused by user's drop during use or handling.
- ◆ The failure or damage caused by user's maintenance with other units.
- The failure or damage caused by the abnormal voltage.
- The failure or damage caused by the force majeure (such as fire, flood, natural disasters, etc.).
- ◆ The failure or damage caused by the do not follow the requirements of this manual, free to connect to other devices.
- No warranty card, and because the equipment could not confirm the defective product under warranty.