A Big Smart Energy Game and A Small Cyber Game

KU Cyber Smart Team

May 23, 2018

Table of Ccontents

The Big Energy Game and Attacks on it

The Small Cyber Game

Outcome - The Nested Game

Abstract

We devise security games in a smart energy game-theoretic setting. This yields a nested game which helps predicting attacks.

Notations

- $ightharpoonup G = (\mathcal{N}, A, u(t))$
 - $\triangleright \mathcal{N}$ players
 - ► A schedules
 - \triangleright u utility
 - ▶ t = (f, b) where f is aggregated forecast, and b is battery states (of all players?)

The Daily Energy Game

- Initialisation
 - ► Hardware Distribution (smartmeters)
 - ▶ Software Distribution (Schedules *A*)
- Game Preparation
 - ▶ 1. Forecasting (expected user demand f is sent to utility company)
 - ▶ 2. Price Fixing (utility company decides price and sends info to user – this is u)
- Game Play
 - No communication is required so this is secure provided we can trust users
- Consumption, yields actual demand

Security Assessment

- Critical assets:
 - smart meter hardware and software
 - game-related data (schedules, utility function)
 - communications channels (wireless, cable)
- Our focus:
 - Data, communications channels
 - An attacker modifies the flow of data in Step 1 & 2

Types of Attacks

Interception

- all players know each other's energy behaviours
- an external attacker can learn the energy behaviour of the users by hacking into the smartmeters, or by eavesdropping on the communication channel

Modification

- an internal attacker can modify smartmeters to falsify the real behaviour
- an external attacker can modify the energy behaviour and damage both users and utility company
- Fabrication
 - make up new data
- Interruption
 - any user can corrupt the game by not providing accurate information

Attackers and Attacks

- An attacker might target either the utility company or some users.
- ► Internal Attacker
 - If the attacker is another user, his goal might be to reduce his cost.
 - Types of attacks:
 - udetectable (structured, unstructured)
 - Detectable
- External Attacker
 - An external attacker is most likely to attack the utility company by perturbing the gameplay and hence destroying its use to the company.
 - ► Types of attacks?

Nash-Equilibrium Attack (Internal)

- Attacker is one of the players
- He has access to the gameplay equipment
- ▶ He can run a perturbed version $G(\epsilon)$ of the game G
- ▶ Goal: find ϵ such that the solved perturbed games satisfies:
 - His own consumption reduces
 - ▶ The consumption of some others increases
 - ► This model includes his own increased energy cost to launch this attack (to run the gameplay)
- Case Study (Game by Pilz et al): is vulnerable to this attack (or not?)

Motivation

- There a different possible types of attacks on big games in a smart energy system.
- ▶ We would like to use game theory to help deciding what is going on.

Notations

Utility Company

- be [detect/udetect] repudation, loss of business)
- $ightharpoonup I_{detect}^{\mathcal{U}}$ the resulting damage for a detectable attack (could be [detect/udetect] repudation, loss of business)

Attacker

- c_{detect}^{A} the cost for a detectable attack $c_{udetect}^{A}$ the cost for an udetectable attack
- $ightharpoonup I_{udetect}^{\mathcal{U}}$ the benefit for an udetectable attack
- $ightharpoonup I_{detect}^{\mathcal{U}}$ the benefit for a detectable attack

Strategies

- Actions for Utility Company
 - Monitor
 - Not monitor
 - ▶ $S_{\mathcal{U}} = \{monitor, not \ monitor\} = \{s_{monitor}^{\mathcal{U}}, s_{not \ monitor}^{\mathcal{U}}\}$
- Actions for the Attacker
 - Detectable attack
 - udetectable attack
 - Not attack
 - $S_{\mathcal{A}} = \{ \text{detectable attack}, \text{udetectable attack}, \text{not attack} \} = \{ s_{\text{detect}}^{\mathcal{A}}, s_{\text{udetect}}^{\mathcal{A}}, s_{\text{not attack}}^{\mathcal{A}} \}$

The Game

Utiliy matrix:

$\mathcal{U}\downarrow\mathcal{A}\rightarrow$	$s_{det}^{\mathcal{A}}$	$s_{udet}^{\mathcal{A}}$	$s_{-attack}^{\mathcal{A}}$
$egin{aligned} \mathcal{S}_{mon}^{\mathcal{U}} \ \mathcal{S}_{-mon}^{\mathcal{U}} \end{aligned}$	$-c_{mon}^{\mathcal{U}}-c_{def}^{\mathcal{U}}, -c_{det}^{\mathcal{A}} \ -l_{det}^{\mathcal{U}}, l_{det}^{\mathcal{U}}-c_{det}^{\mathcal{A}}$	$-c_{mon}^{\mathcal{U}} - l_{udet}^{\mathcal{U}}, l_{udet}^{\mathcal{U}} - c_{udet}^{\mathcal{A}} - l_{udet}^{\mathcal{U}}, l_{udet}^{\mathcal{U}} - c_{udet}^{\mathcal{A}}$	$-c_{mon}^{\mathcal{U}}, 0$ $0, 0$

- Assumptions:

 - $\begin{array}{l} \triangleright \ \, c_{detect}^{\mathcal{A}} < c_{udetect}^{\mathcal{A}} \\ \triangleright \ \, c_{monitor}^{\mathcal{U}} + c_{defend}^{\mathcal{U}} < max(l_{detect}^{\mathcal{U}}, l_{udetect}^{\mathcal{U}}) \end{array}$

Equilibrium Analysis

▶ This will be done when everyone is happy with the game!

Discussion

▶ Is the loss for a detectable and an udetectable attack the same ?

References

- 1 Recent Advances in Local Energy Trading in the Smart Grid Based on Game-Theoretic Approaches, M. Pilz L. Al-Fagih, IEEE Transactions on Smart Grid. DOI: 10.1109/TSG.2017.2764275, 2017
- 2 Energy Storage Scheduling with an Advanced Battery Model: A GameTheoretic Approach, M. Pilz, L. Al-Fagih E. Pfluegel, Best Paper award at the Int. Research Conf. on Sustainable Energy, Engineering Materials and their Environment, Newcastle, UK, July 2017