Chapter 1

高中笔记8

1.1 读书笔记

康托尔:德,数学家,集合论的创造人,他证明了一条直线上的点和一个平面上的点一一对应,也能和空间中的点一一对应.因此1cm长的线段内的点与太平洋面上的点以及整个地球内部的点都"一样多".他对这类"无穷集合"问题发表了一系列文章,通过严格证明得出了许多惊人的结论.

罗素悖论: 又称理发师悖论: 某村只有一人会理发, 且该村的人都需要理发, 理发师约定, 给且只给村中自己不给自己理发的人理发, 试问: 理发师给不给自己理发.

阿贝尔: 椭圆函数论的创始人之一, 发现了椭圆函数的加法定理, 双周期性. 在交换群, 二项级数的严格理论, 级数求和等有巨大贡献, 还有阿贝尔积分, 阿贝尔积分方程, 阿贝尔函数, 阿贝尔级数, 阿贝尔部分和公式, 阿贝尔收敛判别法, 阿贝尔可和性.

分形: 龙的曲线是由一个等腰直角三角形开始的, 以该等腰直角三角形的直角边为斜边作另外的等腰直角三角形, 如此往后, 并将其斜边删除掉即可.

群论: 伽罗瓦是第一个使用群并系统地研究群的数学家. 他19岁时, 用群的思想解决了五次方程的问题. 逐渐开创了一个新的数学分支-抽象代数学. 它包括群论, 环论, 域论, 布尔代数等.

说谎者悖论:公元前4世纪,希腊哲学家也提出:"我现在正在说的这句话是谎话".另外公元前6世纪,古希腊克里特鸟的哲学家伊壁门尼德斯断言:"所有克里特人所说的每一句话都是谎话."

干下去还有50%成功的希望,不干便是100%的失败.

A = x + y + z(A:成功, x: 艰苦的劳动, y: 正确的方法, z: 少说空话)-爱因斯坦的公式.

埃托色尼的筛法提的求小于给定数N的所有素数的方法: 先从3写出所有小于N的奇数, 再从中划去3,5,7,11···的倍数. 球体填充问题: 把一大堆乒乓球倒进一个箱内, 倒至最后还剩几个, 使箱内乒乓球数目最多. 称为球体填充问题, 亦称开普勒猜想.

查: 吴文俊的"吴示性类", "吴示嵌类".

药剂师的砝码: 将300g药粉分成100g和200g各一份, 可是天平只有30g和35g两个砝码, 只需分两次即可, 分两步: 一, 将30g砝码放一盘上, 把300g药粉倒在两个盘上, 使之平衡, 于是, 一盘药粉为165g, 另一盘135g; 第二步将35g砝码, 从135g药粉中称出35g···.

罗氏几何的公理系统与欧氏几何公理不同之处是:平行公理:"用直线外一点,至少可做两条直线与已知直线平行"来代替,这引出了一连串和欧氏几何内容不同的新的几何命题.

1.2 球面几何

定义 1.2.1: 大圆

一个过球心的平面在球面上的截线叫做球面上的一个大圆.

定义 1.2.2: 球面二面角

球面上任两个大圆都相交于对顶的两点,一对对顶点与连接它们的两条大圆弧(半个大圆弧)围成的图形称为球面二面角(梭形).

2 CHAPTER 1. 高中笔记8

定义 1.2.3: 球面角

球面上一点及过该点的任意两条大圆弧所构成的图形称为球面角,这两条大圆弧的切线间的夹角即为该球面角的大小.

定义 1.2.4: 球面三角形

在半径为R的球面上相距小于 πR 的给定三点A, B, C唯一地确定了三条小于半圆的大圆圆弧 $\widehat{AB}, \widehat{BC}, \widehat{CA}$.

定义 1.2.5: 伴垂心

如下左图是 $\triangle ABC$ 的垂心的定义, 如下右图与 $\triangle ABC$ 全等, 若B'D'=CD, C'E'=AE, AF=B'F', 则 $\triangle A'B'C'$ 中的三线共点H'为 $\triangle A'B'C'$ 的件垂心.

定理 1.2.1: 球面三角形余弦定理

对于任给半径为R的球面三角形 $\triangle ABC$, 其三边a,b,c和三角 $\angle A,\angle B,\angle C$ 之间恒满足:

$$\begin{split} \cos\frac{a}{R^2} &= \cos\frac{c}{R^2}\cos\frac{b}{R^2} + \sin\frac{b}{R^2}\sin\frac{c}{R^2}\cos\angle A,\\ \cos\frac{b}{R^2} &= \cos\frac{a}{R^2}\cos\frac{c}{R^2} + \sin\frac{c}{R^2}\sin\frac{a}{R^2}\cos\angle B,\\ \cos\frac{c}{R^2} &= \cos\frac{b}{R^2}\cos\frac{a}{R^2} + \sin\frac{a}{R^2}\sin\frac{b}{R^2}\cos\angle C. \end{split}$$

定理 1.2.2: 球面三角形正弦定理

条件同上,有 $\frac{\sin \angle A}{\sin \frac{a}{R^2}} = \frac{\sin \angle B}{\sin \frac{b}{R^2}} = \frac{\sin \angle C}{\sin \frac{c}{R^2}}$.

1.3 不等式集

问题 1.3.1

已知 $0 \le a_k \le 1(k=1,2,\cdots,2002)$,记 $a_{2003} = a_1, a_{2004} = a_2, 求 \sum_{k=1}^{2002} (a_k - a_{k+1} \cdot a_{k+2})$ 的最大值.

解.

$$\sum_{k=1}^{2002} (a_k - a_{k+1} \cdot a_{k+2}) = \sum_{k=1}^{2002} (a_k - a_k a_{k+1}) = \sum_{k=1}^{2002} a_k (1 - a_{k+1}).$$

1.3. 不等式集 3

Cauchy不等式,上式右端不超过

$$\sqrt{\left(\sum_{k=1}^{2002} a_k^2\right) \left(\sum_{k=1}^{2002} (1 - a_{k+1})^2\right)} \le \frac{\sum a_k^2 + \sum (1 - a_{k+1})^2}{2} = \frac{\sum a_k^2 + \sum (1 - a_k)^2}{2} = \frac{\sum (2a_k^2 - 2a_k + 1)}{2}.$$

因为 $2a_k^2-2a_k+1\leq 1$,所以原式不超过 $\frac{1}{2}\sum 1=1001$,当 $a_k=0$ 或1时取等号,即当 $a_1=a_3=a_5=\cdots=a_{2001}=1$ 且 $a_2=a_4=\cdots=a_{2002}=0$ 时取等号.

解. 由 $0 \le a_k \le 1$, 得 $(1-a_k)(1-a_{k+1}) = 1 - (a_k + a_{k+1}) + a_k a_{k+1} \ge 0 (k=1,2,\cdots,2002)$, 所以 $1 \ge a_k + a_{k+1} - a_k a_{k+1} \ge a_k + a_{k+1} - 2a_k a_{k+1}$, 从而 $2002 \ge \sum_{k=1}^{2002} (a_k + a_{k+1} - 2a_k a_{k+1}) = 2 \sum (a_k - a_{k+1} a_{k+2})$, 即 $\sum (a_k - a_{k+1} a_{k+2}) \le 1001$.

问题 1.3.2

求函数 $y = x + \sqrt{x(2-x)}$ 的最值及此时x的值.

解. 显然 $x \in [0,2]$, 所以可设 $x = 2\sin^2\theta(\theta \in \mathbb{R})$, 运用 $|a\sin\theta + b\cos\theta| \le \sqrt{a^2 + b^2}$ 即可.

问题 1.3.3

设n是给定的正整数, $n \ge 13$, 对n个给定的实数 a_1, a_2, \cdots, a_n , 记 $|a_i - a_j|$ ($1 \le i < j \le n$)有最小值m, 求在 $\sum_{i=1}^n a_i^2 = 1$ 的条件下, m的最大值.

解. 不妨设 $a_1 \le a_2 \le \cdots \le a_n$, 于是 $a_2 - a_1 \ge m$, $a_3 - a_2 \ge m$, \cdots , $a_n - a_{n-1} \ge m$, $a_j - a_i \ge (j-i)m(1 \le i < j \le n)$.

$$\sum_{1 \le i \le j \le n} (a_i - a_j)^2 \ge m^2 \times \sum_{1 \le i \le j \le n} (j - i)^2 = m^2 \sum_{k=1}^{n-1} k(2k+1)(k+1) = \frac{m^2}{12} \cdot n^2(n^2 - 1).$$

另一方面, $\sum_{i=1}^{n} a_i^2 = 1$ 可得

$$\sum_{1 \le i \le j \le n} (a_i - a_j)^2 = n - \left(\sum_{i=1}^n a_i\right)^2 \le n.$$

故 $n \ge \frac{m^2}{12}n^2(n^2-1)$, 所以 $m \le \sqrt{\frac{12}{n^2(n^2-1)}}$, 当且仅当 $\sum_{i=1}^n a_i = 0$, 且 a_1, a_2, \cdots, a_n 成等差数列时取等号.

问题 1.3.4

若x, y, z > 0且 $x^2 + y^2 + z^2 = 1$, 则 $S = \frac{(z+1)^2}{2\pi nz}$ 取最小值时, x的值是多少?

 \mathbb{H} . $\sqrt{\sqrt{2}-1}$.

引理 1.3.1

设 $T \ge 0$, $x, y, z \ge 0$, 则 $T \ge \sum x$ 的充要条件为:

$$(T^2 - \sum x^2)^2 - 8 \prod x \cdot T - 4 \sum y^2 z^2 \ge 0 \tag{1.1}$$

$$T^2 \ge \sum x^2. \tag{1.2}$$

解. 若 $T \ge \sum x$, 则1.2式明显成立, 且

$$(T+\sum x)(T^2-\sum x^2+2\sum yz)-8\prod x\geq 2\sum x\cdot 4\sum yz-8\prod x\geq 0.$$

根据

$$(T^2 - \sum x^2)^2 - 8 \prod x \cdot T - 4 \sum y^2 z^2 = (T - \sum x) \left[(T + \sum x)(T^2 - \sum x^2 + 2 \sum yz) - 8 \prod x \right]$$
 (1.3)

CHAPTER 1. 高中笔记8

知1.1式成立. 若1.1, 1.2式成立, 则

$$(T + \sum x)(T^2 - \sum x^2 + 2\sum yz) - 8\prod x \ge (\sqrt{\sum x^2} + \sum x) \cdot 2\sum yz - 8\prod x \ge (\sqrt{3} + 3)(\prod x)^{\frac{1}{3}} \cdot 6(\prod x)^{\frac{2}{3}} - 8\prod x \ge 0.$$
根据1.3式知 $T \ge \sum x$.

由引理即得

定理 1.3.1

设 $T \ge 0, x, y, z \ge 0,$ 记 $f = (T^2 - \sum x^2)^2 - 8 \prod x \cdot T - 4 \sum y^2 z^2,$ 则

- (i) 若 $f \ge 0$, $\sum x^2 \le T^2$, 则 $\sum x \le T$;
- (ii) 若 $f \le 0$, 则 $\sum x \ge T$.

问题 1.3.5

$$\sum \cos \frac{A}{2} \le 2 + \frac{s}{4R} + \frac{9\sqrt{3} - 16}{4R}r.$$

解. 设 $m = \frac{s}{4R}$, $n = \frac{r}{2R}$. 则 $\sum \cos^2 \frac{A}{2} = 2 + n$, $\prod \cos \frac{A}{2} = \frac{m}{2}$. 进而

$$\sum \cos^2 \frac{A}{2} \cos^2 \frac{B}{2} = \frac{1}{4} (4 + 4n + m^2 + n^2).$$

令 $T = 2 + \frac{m}{2} + \frac{9\sqrt{3}-16}{2}n$, $x = \cos\frac{A}{2}$, $y = \cos\frac{B}{2}$, $z = \cos\frac{C}{2}$, 用定理1.3.1中结论(i).

问题 1.3.6

设实数a, b, c, d, 满足 $a^2 + b^2 + c^2 + d^2 = 5$, 求 $(a - b)^2 + (a - c)^2 + (a - d)^2 + (b - c)^2 + (b - d)^2 + (c - d)^2$ 的最大值.

解. 设 $f = (a-b)^2 + (a-c)^2 + (a-d)^2 + (b-c)^2 + (b-d)^2 + (c-d)^2 = 15 - 2(ab + ac + ad + bc + bd + cd) + \lambda(a^2 + b^2 + c^2 + d^2 - 5)$,所以 $f_a = -2(b+c+d) + 2a\lambda$, $f_b = -2(a+c+d) + 2b\lambda$, $f_c = -2(a+b+d) + 2c\lambda$, $f_d = -2(a+c+d) + 2b\lambda$, $f_\lambda = a^2 + b^2 + c^2 + d^2 - 5$,令 $f_a = f_b = f_c = f_d = f_\lambda = 0$,解得 $\lambda = -1$ 或a = b = c = d. 当 $\lambda = -1$ 时, $\lambda = b + c + d = 0$ 得 $\lambda = b = c = d$ 时, $\lambda = b = c = d$ 日前, $\lambda = b =$

问题 1.3.7

如果x > 0, y > 0, z > 0且 $x^2 + y^2 + z^2 = 1$, 求 $\frac{yz}{x} + \frac{xz}{y} + \frac{xy}{z}$ 的最小值.

解. 设 $\frac{yz}{x} = a$, $\frac{xz}{y} - b$, $\frac{xy}{z} = c$, 则 ab+bc+ca = 1, 所以 $a^2+b^2+c^2 \ge ab+bc+ca = 1$, 所以 $(a+b+c)^2 = a^2+b^2+c^2+2(ab+bc+ca) \ge 3$, 另外令 $f = a+b+c+\lambda(ab+bc+ca-1)$, 令 $f_a = 1+(b+c)\lambda = 0$, $f_b = 1+(a+c)\lambda = 0$, $f_c = 1+(a+b)\lambda = 0$, 所以 a = b = c时最小.

问题 1.3.8

设 $a_0, a_1, a_2, \cdots, a_n$ 满足 $a_0 = \frac{1}{2}, \ a_{k+1} = a_k + \frac{1}{n}a_k^2, \ k = 0, 1, 2, \cdots, n-1,$ 其中n是一个给定的正整数, 试证: $1 - \frac{1}{n} < a_n < 1$.

 $\widetilde{\mathbf{M}}$. $a_n > a_{n-1} > a_{n-2} > \cdots > a_2 > a_1 > a_0 = \frac{1}{2}$,

$$\frac{1}{a_k} - \frac{1}{a_{k+1}} = \frac{1}{n+a_k} < \frac{1}{n} \Longrightarrow \frac{1}{a_0} - \frac{1}{a_n} < 1,$$

$$\frac{1}{a_k} - \frac{1}{a_{k+1}} = \frac{1}{n+a_k} > \frac{1}{n+1} \Longrightarrow \frac{1}{a_0} - \frac{1}{a_n} > \frac{n}{n+1}.$$

1.3. 不等式集 5

问题 1.3.9

当a > 1时,若不等式 $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{7}{12} \left[\log_{a+1} x - \log_a x + 1 \right]$ 对于不小于2的正整数n恒成立,求x的取值范围.

 \mathbf{W} . $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$ 递增, x的取值范围为 $(1, +\infty)$.

问题 1.3.10

实数集 $\{a_0, a_1, a_2, \dots, a_n\}$,满足以下条件:

- (1) $a_1 = a_n = 0$.
- (2) $\forall 1 \le k \le n-1$, $\forall a_k = c + \sum_{i=k}^{n-1} a_{i-k} (a_i + a_{i+1})$.

证明: $c \leq \frac{1}{4n}$.

解. 定义 $S_k = \sum_{i=0}^k a_i (k = 0, 1, 2, \cdots, n)$, 则

$$S_{n} = \sum_{k=0}^{n} a_{k} = \sum_{k=0}^{n-1} a_{k-1} = nc + \sum_{k=0}^{n-1} \sum_{i=k}^{n-1} a_{i-k} (a_{i} + a_{i+1})$$

$$= nc + \sum_{i=0}^{n-1} (a_{i} + a_{i+1}) \cdot \sum_{k=0}^{i} a_{i-k}$$

$$= nc + \sum_{i=0}^{n-1} (a_{i} + a_{i+1}) \sum_{t=0}^{i} a_{t}, (t = i - k)$$

$$= nc + \sum_{i=0}^{n-1} (a_{i} + a_{i+1}) \cdot S_{i}$$

$$= nc + [S_{1}S_{0} + (S_{2} - S_{0})S_{1} + (S_{3} - S_{1})S_{2} + \dots + (S_{n} - S_{n-2})S_{n-1}]$$

 $\mathbb{I} S_n^2 - S_n + nc = 0, \ \Delta \ge 0 \Longrightarrow c \le \frac{1}{4n}.$

问题 1.3.11

若关于x的不等式 $\log_{\frac{1}{a}}(\sqrt{x^2+ax+5}+1)\cdot\log_5(x^2+ax+6)+\frac{1}{\log_3 a}\geq 0$, 求a的取值范围.

问题 1.3.12

$$\begin{split} \prod a_i &= 2^{2002} \prod \frac{1-x_i}{x_i} \\ &= 2^{2002} \cdot \frac{1}{x_1 x_2 \cdots x_{2002}} \prod (x_1 + x_2 + \cdots + x_{i-1} + x_{i+1} + \cdots + x_{2002}) \\ &\geq 2^{2002} \cdot \frac{1}{x_i x_2 \cdots x_{2002}} \cdot 2001^{2002} \cdot \prod \sqrt[2004]{x_1 x_2 \cdots x_{i-1} x_{i+1} \cdots x_{2002}} \\ &= 4002^{2002}. \end{split}$$

问题 1.3.13

求最小的正数 λ , 使得对任意正整数n, a_i 和 b_i , $b_i \in [1,2] (i=1,2,\cdots,n)$, 且 $\sum_{i=1}^n a_i^2 = \sum b_i^2$, 都有 $\sum \frac{a_i^3}{b_i} \leq \lambda \cdot \sum a_i^2$.

解. 对任意 $c_i, b_i \in [1, 2]$, 有 $\frac{1}{2} \leq \frac{c_i}{b_i} \leq 2$, 即 $\frac{1}{2}b_i \leq c_i \leq 2b_i$, 从而 $\left(\frac{1}{2}b_i - c_i\right)(2b_i - c_i) \leq 0$, 即 $c_i^2 + b_i^2 \leq \frac{5}{2}c_ib_i$, 两边对i从1到n求 和, 得 $\sum c_i^2 + \sum b_i^2 \le \frac{5}{2} \sum c_i b_i$, 设 $a_i, b_i \in \left[1, \frac{2}{3}\right]$, 因 $a_i^2 = \frac{a_i^{\frac{3}{2}}}{b^{\frac{1}{2}}} \cdot a_i^{\frac{1}{2}} \cdot b_i^{\frac{1}{2}}$. 又

$$\frac{1}{2} \le \frac{\frac{a_i^{\frac{3}{2}}}{b_i^{\frac{1}{2}}}}{a_i^{\frac{1}{2}} \cdot b_i^{\frac{1}{2}}} \le 2.$$

故有 $\frac{5}{2}\sum a_i^2 \ge \sum \frac{a_i^3}{b_i} + \sum a_i b_i \ge \sum \frac{a_i^3}{b_i} + \frac{2}{5}(\sum a_i^2 + \sum b_i^2) = \sum \frac{a_i^3}{b_i} + \frac{4}{5}\sum a_i^2$, 即 $\sum \frac{a_i^3}{b_i} \le \frac{17}{10}\sum a_i^2$, 当n = 2, $a_1 = 1$, $a_2 = 2$, $b_1 = 2$, $b_2 = 1$ 时取等号.

问题 1.3.14

已知: $x, y, z \in \mathbb{R}^*$, 有xyz = 1且满足x(1+z) > 1, y(1+x) > 1, z(1+y) > 1, 求证: $2(x+y+z) \ge \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + 3$.

$$2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \geq \frac{b}{a}+\frac{c}{b}+\frac{a}{c}+3 \Longleftrightarrow 2(a^2c+b^2a+c^2b) \geq b^2c+c^2a+a^2b+3abc.$$

因为

$$(a+b-c)(b-c)^2 \ge 0$$
, $(b+c-a)(c-a)^2 \ge 0$, $(c+a-b)(a-b)^2 \ge 0$

展开相加,即得.

问题 1.3.15

已知正整数 $n \geq 2$, 若对同时满足条件:

- (1) $a_1 a_2 \cdots a_n = b_1 b_2 \cdots b_n$;
- (2) $\sum_{1 \le i < j \le n} |a_i a_j| \le \sum_{1 \le i < j \le n} |b_i b_j|$ 的任意正数 $a_1, \dots, a_n = b_1, \dots, b_n$,总有 $\sum_{i=1}^n a_i \le \lambda \sum_{i=1}^n b_i$ 。试求正 数 λ 的最小值.

解. 一方面,取 $(a_1,\dots,a_n)=(1,1,\dots,(1+x)x^{n-1}), (b_1,\dots,b_n)=(1+x,x,x,\dots,x),$ 满足(1)与(2),此时 $\lambda\geq\sum_{b_i}a_i=0$ $\frac{n-1+x^{n-1}+x^n}{1+nx}$, 令 $x\to 0$, 则 $\lambda \ge n-1$.

以下证明 $\lambda = n - 1$ 时,不等式成立

不妨设 $a_1 \ge a_2 \ge \cdots \ge a_n$, $b_1 \ge b_2 \ge \cdots \ge b_n$, n = 2时, 显然成立.

设n > 3,

- (1) $\overline{A}a_1 \leq \frac{n-1}{n}b_1$, $\mathbb{M}\sum a_i \leq na_1 \leq (n-1)b_1 \leq (n-1)\sum b_i$. (2) $\overline{A}a_1 > \frac{n-1}{n}b_1$, \mathbb{M}

$$2(b_2 + \dots + b_n) \ge 2(n-1) \cdot (b_2 \dots b_n)^{\frac{1}{n-1}} = 2(n-1) \left(\frac{a_1}{b_1} a_2 \dots a_n\right)^{\frac{1}{n-1}}$$

$$\ge 2(n-1) \left(\frac{a_1}{b_1}\right)^{\frac{1}{n-1}} \cdot a_n > 2(n-1) \cdot \left(\frac{n-1}{n}\right)^{\frac{1}{n-1}} \cdot a_n$$

$$\ge na_n.$$

所以

$$(n-1)\sum b_i = (n-1)b_1 + (n-3)\sum_{i=2}^n b_i + 2\sum_{i=2}^n b_i$$

$$\geq (n-1)b_1 + (n-3)\sum_{i=2}^n b_i + na_n \geq [(n-1)b_1 + (n-3)b_2 + \dots - (n-1)b_n] + na_n$$

$$= \sum_{1 \leq i < j \leq n} |b_i - b_j| + na_n \geq \sum_{1 \leq i < j \leq n} |a_i - a_j| + na_n$$

$$= [(n-1)a_1 + (n-3)a_2 + \dots - (n-1)a_n] + na_n$$

$$\geq (n-1)a_1 + a_n \geq a_1 + a_2 + \dots + a_{n-1} + a_n.$$

问题 1.3.16: 1998年上海市高中数学竞赛

设非零多项式 $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0,\ g(x)=c_{n+1}x^{n+1}+c_nx^n+\cdots+c_0,\ 满足 g(x)=(x+r)f(x),\ 其中r为一实数,\ 设<math>a=\max(|a_n|,|a_{n-1}|,\cdots,|a_0|),\ c=\max(|c_{n+1}|,|c_n|,\cdots,|c_0|),\ 求证:\frac{a}{c}\leq n+1.$

解. 设 $|r| \le 1$, 由 $\sum_{i=0}^{n+1} c_i x^i = (x+r) \sum_{i=0}^n a_i x^i = a_n x^{n+1} + \sum_{i=1}^n (ra_i + a_{i-1}) x^i + ra_0$. 故

$$\begin{cases}
c_{n+1} = a_n \\
c_n = ra_n + a_{n-1} \\
\cdots \\
c_1 = ra_1 + a_0 \\
c_0 = ra_0
\end{cases}
\Rightarrow
\begin{cases}
a_n = c_{n+1} \\
a_{n-1} = -rc_{n+1} + c_n \\
a_{n-2} = (-r)^2 c_{n+1} + (-r)c_n + c_{n-1} \\
\cdots \\
a_0 = (-r)^n c_{n+1} + (-r)^{n-1} c_n + \cdots + c_1,
\end{cases}$$

故 $|a| = |a_i| = |(-r)^{n-i}c_{n+1} + \dots + c_{i+1}| \le |c_{n+1}| + \dots + |c_{i+1}| \le (n-i+1)c \le (n+1)c.$ 如果|r| > 1, 令 $x = \frac{1}{x}$, 代入g(x) = (x+r)f(x), 则转化为上述情形, 仍有 $a \le (n+1)c$. 另外

$$|a| = |a_i| \le |r|^{n-i}|c_{n+1}| + \dots + |c_{i+1}| \le (|r^n| + |r^{n-1}| + \dots + 1)c \le \frac{|r|^{n+1} - 1}{|r| - 1}c$$

而

$$\frac{|r|^{n+1}-1}{|r|-1} \le n+1 \Longleftrightarrow |r|^{n+1} \ge n|r|-n+|r| \Longleftrightarrow |r|^n + \frac{n}{|r|} \ge n+1 \Longleftrightarrow |r|^n + \frac{1}{|r|} + \dots + \frac{1}{|r|} \ge n+1$$

(|r| = 0时, 命题显然成立).

问题 1.3.17

若 $a,b,c \in \mathbb{R}$, 且 $5a^4 + 4b^4 + 6c^4 = 90$, 求 $5a^3 + 2b^3 + 3c^3$ 的最大值.

解. 只需考虑 $a,b,c\in\mathbb{R}^*$. 因 $a^3=\frac{1}{2}(a\cdot a\cdot a\cdot 2)\leq \frac{1}{8}(a^4+a^4+a^4+2^4)=\frac{3}{8}a^4+2$,同理 $b^3\leq \frac{3}{4}b^4+\frac{1}{4}$, $c^3\leq \frac{3}{4}c^4+\frac{1}{4}$,所以所求最大值为45.

问题 1.3.18

若x, y, z为实数, $0 < x < y < z < \frac{\pi}{2}$, 证明: $\frac{\pi}{2} + 2\sin x \cos y + 2\sin y \cos z > \sin 2x + \sin 2y + \sin 2z$.

解. 原不等式等价于证明 $\frac{\pi}{4} > \sin x (\cos x - \cos y) + \sin y (\cos y - \cos z) + \sin z \cos z$. 如图所示

8 CHAPTER 1. 高中笔记8

问题 1.3.19: 1987年第21届全苏MO

正数a, b, c, A, B, C满足条件a + A = b + B = c + C = k, 求证: $aB + bC + cA < k^2$.

解. 主试委员会给出的解答是 $k^3 = (a+A)(b+B)(c+C)$,利用放缩的技巧给出证明,北京四中的袁峰同学给出了如下构造性证明.

如图: $S_{\triangle LRM} + S_{\triangle PNM} + S_{\triangle QLN} < S_{\triangle PQR}$, 化简即得.

解. 如图:

问题 1.3.20: 第31届IMO预选题

设集合 $\{a_1, a_2, \cdots, a_n\} = \{1, 2, \cdots, n\}$, 求证:

$$\frac{1}{2} + \frac{2}{3} + \dots + \frac{n-1}{n} \le \frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{n-1}}{a_n}.$$

解. 设 b_1, b_2, \dots, b_{n-1} 是 a_1, a_2, \dots, a_{n-1} 的一个排列,且 $b_1 < b_2 < \dots < b_{n-1}, c_1, c_2, \dots, c_{n-1}$ 是 a_2, a_3, \dots, a_n 的一个排列,且 $c_1 < c_2 < \dots < c_{n-1}$,则

$$\frac{1}{c_1} > \frac{1}{c_2} > \dots > \frac{1}{c_{n-1}}.$$

且 $b_1 \ge 1, b_2 \ge 2, \dots, b_{n-1} \ge n-1, c_1 \le 2, c_2 \le 3, \dots, c_{n-1} \le n$,由排序不等式得:

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{n-1}}{a_n} \ge \frac{b_1}{c_1} + \frac{b_2}{c_2} + \dots + \frac{b_{n-1}}{c_{n-1}} \ge \frac{1}{2} + \frac{2}{3} + \dots + \frac{n-1}{n}.$$

这是南斯拉夫提给第31届IMO的一道试题, 原证法是利用加强命题的手法, 用数学归纳法给出证明. 一则加强命题很难想到, 二则归纳法证明要对足标进行讨论, 比较麻烦. 在当年国家集训队里姚建钢同学(第35届IMO金牌得主)的证法, 更是干脆, 漂亮, 出人意料. □

解. 易证

$$\prod_{k=1}^{n-1} (a_k + 1) \ge \prod_{k=1}^{n} a_k,$$

故

$$\sum_{k=1}^{n-1} \frac{a_k}{a_{k+1}} + \left(\sum_{k=1}^n \frac{1}{k}\right) = \frac{1}{a_1} + \sum_{k=1}^{n-1} \frac{a_k + 1}{a_{k+1}}$$

$$\geq n \sqrt[n]{\frac{\prod_{k=1}^{n-1} (a_k + 1)}{\prod_{k=1}^n a_k}} \geq n$$

$$= \sum_{k=1}^n \frac{1}{k} + \sum_{k=1}^{n-1} \frac{k}{k+1}$$

问题 1.3.21: 第24届IMO

设a,b,c分别为一个三角形的三边之长, 求证:

$$a^{2}b(a-b) + b^{2}c(b-c) + c^{2}a(c-a) > 0.$$

并指出等号成立的条件.

解. 原联邦德国选手伯恩哈德.里普只用了一个等式:

$$a^{2}b(a-b) + b^{2}c(b-c) + c^{2}a(c-a) = a(b-c)^{2}(b+c-a) + b(a-b)(a-c)(a+b-c)$$

由轮换对称性,不妨设 $a \ge b, c$,即得欲证不等式成立,而且显然等号成立的充要条件是a = b = c. 里普的证法新颖,巧妙,简洁,与主试委员会提供的参考答案不同,他因此获得了该届的特别奖.

问题 1.3.22: 1980年芬兰, 英国, 匈牙利, 瑞典四国联赛

设数列 a_0, a_1, \dots, a_n 满足 $a_0 = \frac{1}{2}$ 及 $a_{k+1} = a_k + \frac{1}{n}a_k^2 (k = 0, 1, 2, \dots, n-1)$,其中n是一个给定的正整数,试证:

$$1 - \frac{1}{n} < a_n < 1.$$

解. 该题是该次竞赛得分率最低的一道试题, 主试委员会所给出的解法也相当繁琐, 前后共用了四次归纳法, 译成中文后有4000多字, 中国科技大学白志东先生对此题采用了大胆的处理方法, 加强命题, 出奇制胜给出一个简洁的证明.

由于
$$a_1 = a_0 + \frac{1}{n}a_0^2 = \frac{1}{2} + \frac{1}{4n} = \frac{2n+1}{4n}$$
,所以

$$\frac{n+1}{2n+1} < a_1 < \frac{n}{2n-1}.$$

我们来用归纳法证: 对于一切 $1 \le k \le n$, 都有

$$\frac{n+1}{2n-k+2} < a_k < \frac{n}{2n-k}. (1.4)$$

假设(1.4)对于k < n成立,则

$$a_{k+1} = a_k \left(1 + \frac{1}{n} a_k \right) < \frac{n}{2n - k} \left(1 + \frac{1}{2n - k} \right) = \frac{n(2n - k + 1)}{(2n - k)^2} < \frac{n}{2n - (k + 1)}.$$

所以

$$a_{k+1} = a_k + \frac{1}{n}a_k^2 > \frac{n+1}{2n-k+2} + \frac{(n+1)^2}{n(2n-k+2)^2}$$
$$> \frac{n+1}{2n-(k+1)+2}$$

于是(1.4)式对于一切 $1 \le k \le n$ 均成立,特别在k = n时,

$$1 - \frac{1}{n} < \frac{n+1}{n+2} < a_n < \frac{n}{n} = 1.$$

说明 这里所证的不等式(1.4)式比题目所要证明的不等式强, 却收到了事半功倍之效, 下面给出一种直接了当的证明. □ □ 解. 由已知.

$$\frac{1}{a_{k-1}} - \frac{1}{a_k} = \frac{1}{n + a_{k-1}},$$

从而 $a_n > a_{n-1} > \cdots > a_1 > a_0 = \frac{1}{2}$. 所以

$$\frac{1}{a_{k-1}} - \frac{1}{a_k} < \frac{1}{n}, \quad k = 1, 2, \dots, n.$$

累加得 $\frac{1}{a_0} - \frac{1}{a_n} > \frac{n}{n+1}$, 所以 $\frac{1}{a_n} < 2 - \frac{n}{n+1} = \frac{n+2}{n+1}$.

问题 1.3.23

已知函数f(x)的定义域为 \mathbb{R} , 对于任意实数m,n均有f(m+n)=f(m)+f(n)-1, 且 $f\left(\frac{1}{2}\right)=2$, 当 $x>-\frac{1}{2}$ 时, 恒有f(x)>0, 求证: f(x)单调递增.

$$f(x_1) - f(x_2) = f(x_1 - x_2) - 1 = f\left(\left(x_1 - x_2 - \frac{1}{2}\right) + \frac{1}{2}\right) - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) - 1 - 1 = f\left(x_1 - x_2 - \frac{1}{2}\right) + f\left(\frac{1}{2}\right) +$$

因为
$$x_1 - x_2 - \frac{1}{2} > -\frac{1}{2}$$
, 所以 $f(x_1 - x_2 - \frac{1}{2}) > 0$, 所以 $f(x_1) > f(x_2)$, 得证.

问题 1.3.24

已知: 正数x, y, z均小于1且x + y + z = 2, w = xy + yz + zx, 求w的取值范围.

解. 易得 $w \leq \frac{4}{3}$, 令 $x(1-x) = a^2$, $y(1-y) = b^2$, $z(1-z) = c^2$, 因为

$$w = xy + z(2 - z) = xz + y(2 - y) = yz + x(2 - x)$$

所以

$$3w = w + 2 \times 2 - x^2 - y^2 - z^2 = w + 4 + a^2 + b^2 + c^2 - 2$$

所以 $2w = 2 + a^2 + b^2 + c^2 \ge 2$, 即 $w \ge 1$. 仅当a, b, c = 0时取w = 1, 但 $a, b, c \ne 0$, 所以w > 1.

1.3. 不等式集 11

问题 1.3.25

已知 $\frac{a^2+b^2}{4}+c^2=1$, 求a+b+c的最大值.

解.

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2bc + 2ab + 2ac$$

$$\leq a^2 + b^2 + c^2 + (a^2 + b^2) + \left(\frac{b^2}{4} + 4c^2\right) + \left(\frac{a^2}{4} + 4c^2\right)$$

$$= 9\left(\frac{a^2 + b^2}{4}\right) = 9.$$

问题 1.3.26

已知a, b > 0, a + b = 1, 证明: $\frac{3}{2} < \frac{1}{a^2 + 1} + \frac{1}{b^2 + 1} \le \frac{8}{5}$.

解. 原式等价于证明:

$$15(a^2+1)(b^2+1) < 10(a^2+b^2+2) \le 16(a^2+1)(b^2+1) \iff 15a^2b^2+5a^2+5b^2-5 < 0 \le 16a^2b^2+6a^2+6b^2-4 \iff 3a^2b^2+a^2+b^2-1 < 0 \le 8a^2b^2+3a^2+3b^2-2.$$

因a + b = 1, 所以 $a^2 + b^2 - 1 = -2ab$. 所以上式等价于

$$3a^2b^2 - 2ab < 0 \le 8a^2b^2 - 6ab + 1.$$

又由 $a^2 + b^2 + 2ab = 1 \ge 4ab$, 所以 $0 < ab \le \frac{1}{4}$, 所以上式成立.

解. $\diamondsuit a = \sin^2 \theta, b = \cos^2 \theta, (0 < \theta < \frac{\pi}{2}),$ 所以

$$\begin{split} \frac{1}{a^2+1} + \frac{1}{b^2+1} &= \frac{1}{1+\sin^4\theta} + \frac{1}{1+\cos^4\theta} \\ &= \frac{4}{5-2\cos 2\theta + \cos^2 2\theta} + \frac{4}{5+2\cos 2\theta + \cos^2 2\theta} \\ &= \frac{16(11+\cos 4\theta)}{(11+\cos 4\theta)^2 - 8(11+\cos 4\theta) + 80} \\ &= \frac{16y}{y^2-8y+80} = \frac{16}{y+\frac{80}{y}-8} \end{split}$$

因 $0 < \theta < \frac{\pi}{2}$,所以 $0 < 4\theta < 2\pi$.所以 $10 < y \le 12$,并有 $\frac{3}{2} < \frac{16}{y + \frac{80}{2} - 8} \le \frac{8}{5}$.

问题 1.3.27

已知数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ 满足: $b_n=a_n-a_{n+2}$, $c_n=a_n+2a_{n+1}+3a_{n+2}$, $(n=1,2,3,\cdots)$, 若 $\{c_n\}$ 为等差数列且 $b_n\leq b_{n+1}$, 证明: $b_n=b_{n+1}$.

解. 由于 $a_n-a_{n+2}=b_n\leq b_{n+1}\leq b_{n+2}=a_{n+2}-a_{n+4}$,所以 $2a_{n+2}\geq a_n+a_{n+4}$. 因为 $2c_{n+1}=c_n+c_{n+2}$,所以 $4a_{n+3}=a_n+3a_{n+4}\leq 2a_{n+2}+2a_{n+4}$,所以 $2a_{n+3}\leq a_{n+2}+a_{n+4}$.所以 $a_{n+3}-a_{n+2}\leq a_{n+4}-a_{n+3}\leq a_{n+5}-a_{n+4}$,所以 $a_{n+3}-a_{n+5}\leq a_{n+2}-a_{n+4}$,所以 $b_{n+3}\leq b_{n+2}\leq b_{n+3}$,所以 $b_{n+3}=b_{n+2}$,($n\geq 1$).所以 $b_3=b_4=b_5=\cdots=-2d=a_3-a_5=a_4-a_6=a_5-a_7$,所以

$$4a_5 - 3a_6 = a_2 \le a_3 - a_5 + a_4 \Longrightarrow 5a_5 \le a_3 + a_4 + 3a_6$$

$$\Longrightarrow 5(a_3 + 2d) \le a_3 + a_4 + 3(a_4 + 2d)$$

$$\Longrightarrow 2a_3 \le 2a_4 - 2d = 2a_4 + a_3 - a_5$$

$$\Longrightarrow a_3 + a_5 \le 2a_4.$$

因 $a_3 + a_5 \ge 2a_4$, 所以 $a_2 = a_3 - a_5 + a_4$, 同理 $a_1 = a_2 - a_4 + a_3$, 即 $b_1 = b_2 = b_3 = \cdots$. 两个正数a,b的和一定时, 它们的积

$$ab = \frac{1}{4} \left((a+b)^2 - (a-b)^2 \right) \tag{1.5}$$

随着差|a-b|的增大而减小; 其平方和

$$a^{2} + b^{2} = \frac{1}{2} \left((a+b)^{2} + (a-b)^{2} \right)$$
 (1.6)

随着差|a-b|的增大而增大.

问题 1.3.28

已知 $\triangle ABC$ 的三边, a, b, c成等比数列, 则 $\sin B + \cos B$ 的取值范围为_____.

解. 命题等价于a + b > c, a + c > b, b + c > a, $b^2 = ac$,

$$b^2 = ac = a^2 + c^2 - 2ac\cos B > 2ac - 2ac\cos B$$

所以 $\cos B \geq \frac{1}{2},\, 0 < B \leq 60^\circ,\,$ 由 $\frac{1}{2} \leq \cos B < 1$ 及 $0 < \sin B \leq \frac{\sqrt{3}}{2},\,$ 所以

$$\frac{1}{2} < \cos B + \sin B < \frac{\sqrt{3}}{2} + 1,\tag{1.7}$$

另一方面, $\sin B + \cos B = \sqrt{2}\sin(B + 45^\circ)$, 而 $45^\circ < B + 45^\circ < 105^\circ$, 故

$$1 < \sin B + \cos B \le \sqrt{2}.\tag{1.8}$$

综合(1.7), (1.8)有 $1 < \sin B + \cos B \le \sqrt{2}$.

问题 1.3.29

设a,b,c是直角 $\triangle ABC$ 的三边长,c为斜边,求使不等式

$$a^2(b+c) + b^2(c+a) + c^2(a+b) \ge kabc$$

恒成立的k的最大值.

解. $a > 0, b > 0, c > 0, c^2 = a^2 + b^2$, 所以

$$LHS = (a^{2} + b^{2})c + a\left(b^{2} + \frac{c^{2}}{2}\right) + b\left(\frac{c^{2}}{2} + a^{2}\right) + \frac{c}{2} \cdot c(a+b)$$

$$\geq 2abc + \sqrt{2}abc + \sqrt{2}abc + \frac{c}{2}\sqrt{a^{2} + b^{2}} \cdot 2\sqrt{ab}$$

$$\geq (2 + 2\sqrt{2})abc + c \cdot \sqrt{2ab} \cdot \sqrt{ab} = (2 + 3\sqrt{2})abc,$$

仅当a = b时上式取等号.

$$(a+b+c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \ge 5 + 3\sqrt{2}.$$

问题 1.3.30

设 x_1 是方程 $\sqrt{3}\sin x - 3\cos x = 2a - 1$ 的最大负根, x_2 是方程 $2\cos^2 x - 2\sin^2 x = a$ 的最小正根, 求使不等式 $|x_1| \le x_2$ 成立的实数a的取值范围.

1.3. 不等式集

解. 方程 $\sqrt{3}\sin x - 3\cos x = 2a - 1$ 等价于 $\sin\left(x - \frac{\pi}{3}\right) = \frac{2a - 1}{2\sqrt{3}}$,从而得到 $-1 \le \frac{2a - 1}{2\sqrt{3}} \le 1$.解得 $\frac{1}{2} - \sqrt{3} \le a \le \frac{1}{2} + \sqrt{3}$,而且

$$x_1 = \begin{cases} \frac{\pi}{3} + \arcsin\frac{2a-1}{2\sqrt{3}}, & \left(\frac{1}{2} - \sqrt{3} \le a < -1\right) \\ -\frac{2\pi}{3} - \arcsin\frac{2a-1}{2\sqrt{3}}, & \left(-1 \le a \le \frac{1}{2} + \sqrt{3}\right) \end{cases}$$

其图像如图, 位于a轴下方, 方程 $2\cos^2 x - 2\sin^2 x = a$ 等价于 $\cos 2x = \frac{a}{2}$, 其中 $-1 \le \frac{a}{2} \le 1$, 所以 $-2 \le a \le 2$, 解得

$$x_2 = \begin{cases} \frac{1}{2} \arccos \frac{a}{2}, & (-2 < a \le 2) \\ \pi, & (a = 2). \end{cases}$$

其图像如图, 它位于a轴上方, 比较两个函数的图像, 不难看出 $|x_1| \le x_2$ 的充要条件是 $\frac{1}{2} - \sqrt{3} \le a \le -1$ 或a = 2.

问题 1.3.31

函数 $y = \sqrt{8x - x^2} - \sqrt{14x - x^2 - 48}$ 的最大值为 $2\sqrt{3}$,最小值为0.

解. x的定义域为 $6 \le x \le 8$, 而

$$f(x) = \frac{6\sqrt{8-x}}{\sqrt{x} + \sqrt{x-6}}$$

在[6,8]上递减.

问题 1.3.32

已知 $a,b,c,d \in \mathbb{R}$, 满足a+b+c+d=3, $a^2+2b^2+3c^2+6d^2=5$, 则a的最小值与最大值的和是 $\underline{3}$.

解.

$$5 - a^2 = 2b^2 + 3c^2 + 6d^2 = \frac{1}{6}(3 + 2 + 1)(2b^2 + 3c^2 + 6d^2) \ge (b + c + d)^2 = (3 - a)^2.$$

问题 1.3.33

用 $\delta(S)$ 表示非零整数集S中所有元素的和, 设 $A = \{a_1, a_2, \cdots, a_{11}\}$ 是正整数集, 且 $a_1 < a_2 < \cdots < a_{11}$, 若对每个正整数 $n \leq 1500$, 存在A的子集S, 使得 $\delta(S) = n$, 求满足上述要求的 a_{10} 的最小值.

解. 令 $S_k = a_1 + a_2 + \cdots + a_k$, $(1 \le k \le 11)$, 若 $a_k > S_{k-1} + 1$, 则不存在 $S \subset A$, 使 $\delta(S) = S_{k-1} + 1$, 所以 $S_k = S_{k-1} + a_k \le 2S_{k-1} + 1$. 又由题设得 $S_1 = a_1 = 1$, 于是由归纳法易得 $S_k \le 2^k - 1$, $(1 \le k \le m)$. 若 $S_{10} < 750$, 则 $a_{11} \le 750$, (否则750无法用 $\delta(S)$ 表出), $S_{11} = S_{10} + a_{11} < 1500$, 所以 $S_{10} \ge 750$. 又 $S_8 \le 2^8 - 1 = 255$, 所以 $2a_{10} \ge a_9 + a_{10} = S_{10} - S_8 \ge 495$, $a_{10} \ge 248$, 另一方面,令 $A = \{1, 2, 4, 8, 16, 32, 64, 128, 247, 248, 750\}$ 合题意.

问题 1.3.34

$$a, b, c > 0, l^2 = a^2 + b^2 + c^2$$
, 证明: $(l^4 - a^4)(l^4 - b^4)(l^4 - c^4) \ge 512a^4b^4c^4$.

解.

$$\begin{split} LHS &= (l^2 + a^2)(l^2 + b^2)(l^2 + c^2)(l^2 - a^2)(l^2 - b^2)(l^2 - c^2) \\ &= (2a^2 + b^2 + c^2)(a^2 + 2b^2 + c^2)(a^2 + b^2 + 2c^2)(b^2 + c^2)(c^2 + a^2)(a^2 + b^2) \\ &\geq 4\sqrt[4]{a^4b^2c^2} \cdot 4\sqrt[4]{a^2b^4c^2} \cdot 4\sqrt[4]{a^2b^2c^4} \cdot 2\sqrt{b^2c^2} \cdot 2\sqrt{c^2a^2} \cdot 2\sqrt{a^2b^2} \\ &= RHS. \end{split}$$

解. 问题等价于证明

$$\left(\frac{l^4}{a^4}-1\right)\left(\frac{l^4}{b^4}-1\right)\left(\frac{l^4}{c^4}-1\right)\geq 512$$

设 $x = \frac{a^2}{12}$, $y = \frac{b^2}{12}$, $z = \frac{c^2}{12}$, 则x + y + z = 1, 所以上式等价于证明

$$\left(\frac{1}{x^2} - 1\right) \left(\frac{1}{y^2} - 1\right) \left(\frac{1}{z^2} - 1\right) \ge 512.$$

因

$$\frac{1}{x^2} - 1 = \frac{(1-x)(1+x)}{x^2} = \frac{(y+z)(x+y+z+x)}{x^2} \geq \frac{2\sqrt{yz}(2x+2\sqrt{yz})}{x^2} \geq \frac{2\sqrt{yz} \cdot 4\sqrt{x\sqrt{yz}}}{x^2} = \frac{8\sqrt[4]{x^2y^3z^3}}{x^2}.$$

等号当且仅当x=y=z时取得,同理 $\frac{1}{y^2}-1\geq 8\frac{\sqrt[4]{x^3y^2z^3}}{y^2},\,\frac{1}{z^2}-1\geq 8\frac{\sqrt[4]{x^3y^3z^2}}{z^2},$ 以上三式相乘即得.

问题 1.3.35

在锐角 $\triangle ABC$ 中, a < b < c, 记 $P = \frac{a+b+c}{2}$, $Q = a\cos C + b\cos B + c\cos A$, 则P, Q的关系是?

解.

$$P - Q = \frac{a+b+c}{2} - b - b \cos B$$

$$= \frac{a+b+c}{2} - b\left(1 + \frac{a^2 + c^2 - b^2}{2ac}\right)$$

$$= \frac{a+b+c}{2} - b \cdot \frac{(a+c-b)(a+c-b)}{2ac}$$

$$= \frac{1}{2}(a+b+c)\left(1 - \frac{b(a+c-b)}{2ac}\right)$$

$$= \frac{1}{2}(a+b+c)\left(\frac{b^2 - ab - bc + ac}{ac}\right)$$

$$= \frac{1}{2ac}(a+b+c)(b-c)(b-a) < 0$$

另外a < b < c有 $\cos C < \cos B < \cos A$,根据排序不等式,

 $a\cos C + b\cos B + c\cos A > a\cos B + b\cos C + c\cos A$ $a\cos C + b\cos B + c\cos A > a\cos C + b\cos A + c\cos B$.

相加得 $2(a\cos C + b\cos B + c\cos A) > a + b + c$.

1.3. 不等式集 15

问题 1.3.36

设 $x, y \in \mathbb{R}^+, x + y = 3952,$ 则().

- A. $x^{1949} \cdot y^{2003} \ge 1949^{1949} \cdot 2003^{2003}$.
- B. $x^{19492003} < 1949^{1949} \cdot 2003^{2003}$.
- C. $y^{19492003} > 1949^{1949} \cdot 2003^{2003}$.
- D. 以上都不对.

解. 由于x + y = 3952, 所以

$$1949 + 2003 = \sum_{i=1}^{1949} \frac{x}{1949} + \sum_{i=1}^{2003} \frac{y}{2003} \ge (1949 + 2003)^{3952} \sqrt{\left(\frac{x}{1949}\right)^{1949} \cdot \left(\frac{y}{2003}\right)^{2003}}$$

所以
$$\sqrt[3952]{\left(\frac{x}{1949}\right)^{1949} \cdot \left(\frac{y}{2003}\right)^{2003}} \le 1.$$

问题 1.3.37

设x,y是不相等的正数, n,m是正整数, 且n>m, 令 $a=\sqrt[n]{x^m+y^m}$, $b=\sqrt[n]{x^n+y^n}$, 则a与b的大小关系为a>b.

解.

$$a > b \iff (x^m + y^m)^{m+1} > (x^{m+1} + y^{m+1})^m$$

$$\iff (x^m + y^m)^m > \frac{(x^{m+1} + y^{m+1})^m}{x^m + y^m} = \left(\frac{x^{m+1}}{\sqrt[m]{x^m + y^m}} + \frac{y^{m+1}}{\sqrt[m]{x^m + y^m}}\right)^m$$

$$\iff x^m + y^m > \frac{x^{m+1}}{\sqrt[m]{x^m + y^m}} + \frac{y^{m+1}}{\sqrt[m]{x^m + y^m}}$$

因 $x^m = \frac{x^{m+1}}{\sqrt[m]{x^m}} > \frac{x^{m+1}}{\sqrt[m]{x^m + y^m}}$,同理 $y^m = \frac{y^{m+1}}{\sqrt[m]{y^m}} > \frac{y^{m+1}}{\sqrt[m]{x^m + y^m}}$,所以不等式成立,由幂平均不等式可知2b > a.

问题 1.3.38

已知 $0 < \alpha < \frac{\pi}{2}, 0 < \beta < \frac{\pi}{2},$ 且 $\sin \frac{\alpha}{2} = a \cos \beta,$ 当 $0 < \alpha + \beta < \frac{\pi}{2}$ 时,求a的取值范围.

解. 显然 $a = \frac{\sin\frac{\alpha}{2}}{\cos\beta} > 0$, 因为 $-\frac{\beta}{2} < \frac{1}{2}\alpha < \frac{\pi}{4} - \frac{\beta}{2}$, 所以 $\sin\frac{\alpha}{2} < \sin\left(\frac{\pi}{4} - \frac{\beta}{2}\right) = \frac{\sqrt{2}}{2}\left(\cos\frac{\beta}{2} - \sin\frac{\beta}{2}\right)$. 所以

$$a<\frac{\frac{\sqrt{2}}{2}\left(\cos\frac{\beta}{2}-\sin\frac{\beta}{2}\right)}{\left(\cos\frac{\beta}{2}+\sin\frac{\beta}{2}\right)\left(\cos\frac{\beta}{2}-\sin\frac{\beta}{2}\right)}=\frac{\sqrt{2}}{2\left(\cos\frac{\beta}{2}+\sin\frac{\beta}{2}\right)}\geq\frac{1}{2},$$

其中等号取不到, 所以 $a \leq \frac{1}{2}$.

问题 1.3.39

设 b_1, b_2, \cdots, b_n 是正数 a_1, a_2, \cdots, a_n 的一个排列, 证明 $\sum_{k=1}^n \frac{a_k}{b_k} \geq n$.

解. 不妨设 $a_1 \geq a_2 \geq \cdots \geq a_n$,因 $a_k \in \mathbb{R}^+$,所以 $\frac{1}{a_1} \leq \frac{1}{a_2} \leq \cdots \leq \frac{1}{a_n}$,又 $\frac{1}{b_1}$, $\frac{1}{b_2}$, \cdots , $\frac{1}{b_n}$ 是 $\frac{1}{a_1}$, $\frac{1}{a_2}$, \cdots , $\frac{1}{a_n}$ 的一个排列,于是 $n = \sum_{k=1}^n a_k \cdot \frac{1}{a_k} \leq \sum_{k=1}^n a_k \cdot \frac{1}{b_k}$,另外

$$\sum_{k=1}^{n} \frac{a_k}{b_k} \ge n \sqrt[n]{\frac{a_1 a_2 \cdots a_n}{b_1 b_2 \cdots b_n}} = n.$$

16 CHAPTER 1. 高中笔记8

问题 1.3.40

若x, y, z, w > 0, 且x + y + z + w = 70, 求函数 $\mu = \sqrt[4]{2(x+1)} + \sqrt[4]{16(y+2)} + \sqrt[4]{54(z+3)} + \sqrt[4]{128(w+4)}$ 的最大值.

解.

$$\mu \leq \frac{1}{4} \left(\left(\frac{x+1}{4} + 2 + 2 + 2 \right) + \left(\frac{y+2}{4} + 4 + 4 + 4 \right) + \left(\frac{z+3}{4} + 6 + 6 + 6 \right) + \left(\frac{w+4}{4} + 8 + 8 + 8 \right) \right) = 20$$

所以

$$\left(\frac{\mu}{\sqrt[4]{2}}\right)^2 = \left(\sum \sqrt[4]{i^3(x_i+i)}\right)^2 \le \left(\sum \sqrt{i^2}\right) \left(\sum \sqrt{i(x_i+i)}\right) = 10 \sum \sqrt{i(x_i+i)} \le 10 \sqrt{\sum i \sum (x_i+i)} = 400 \cdot \frac{1}{\sqrt{2}} = 10 \cdot \frac{1}{\sqrt{$$

所以 $\mu \leq 20$.

问题 1.3.41

若 $A = a \sin^2 x + b \cos^2 x$, $B = a \cos^2 x + b \sin^2 x$, $(a, b \in \mathbb{R})$, 证明m = AB, n = ab, $P = A^2 + B^2$, $Q = a^2 + b^2$ 满足 $m + Q \ge P + n$.

解. $AB = ab + \sin^2 x \cos^2 x (a-b)^2$, 所以 $AB - ab = (a-b)^2 \sin^2 x \cos^2 x \ge 0$, 而 $(A+B)^2 = (a+b)^2$, 所以 $A^2 + B^2 \le a^2 + b^2$, 又因为 $m \ge n$, $P \le Q$, 所以 $P + n \le m + Q$.

问题 1.3.42

已知 $x, y, z \in \mathbb{R}^+$, 且满足xyz(x+y+z) = 1, 求t = (x+y)(x+z)的最小值.

解.
$$x^2 + xy + xz = \frac{1}{yz}$$
, 所以 $t = yz + \frac{1}{yz} \ge 2$, 当 $y = z = 1$, $x = \sqrt{2} - 1$ 时取等号.

问题 1.3.43

如果 $a_n = \sum_{k=1}^n \frac{1}{k}$, $(n \in \mathbb{N})$, 证明: 对于任意的 $n \ge 2$, 都有 $a_n^2 > 2\left(\frac{a_2}{2} + \frac{a_3}{3} + \dots + \frac{a_n}{n}\right)$.

解. 用数学归纳法, 简证

$$a_{n+1}^2 = \left(a_n + \frac{1}{n+1}\right)^2 = a_n^2 + \frac{2a_n}{n+1} + \frac{1}{(n+1)^2} > a_n^2 + \frac{2a_{n+1}}{n+1} - \frac{1}{(n+1)^2} > 2\sum_{k=2}^{n+1} \frac{a_k}{k} - \frac{1}{(n+1)^2}.$$

由此应给结论加强为 $a_n^2 > 2\left(\frac{a_2}{2} + \frac{a_3}{3} + \dots + \frac{a_n}{n}\right) + \frac{1}{n}$. 所以

$$a_{n+1}^2 = a_n^2 + \frac{2a_{n+1}}{n+1} - \frac{1}{(n+1)^2} > 2\sum_{k=2}^{n+1} \frac{a_k}{k} + \frac{1}{n} - \frac{1}{(n+1)^2} = 2\sum_{k=2}^{n+1} \frac{a_k}{k} + \frac{n^2+n+1}{n(n+1)^2} > 2\sum_{k=2} \frac{a_k}{k} + \frac{n^2+n}{n(n+1)^2} = RHS$$

成立.

解. 裂项, 放缩法

$$a_n^2 = \sum_{k=2}^n (a_k^2 - a_{k-1}^2) + a_1^2 = \sum_{k=2}^n \frac{2a_k - \frac{1}{k}}{k} + 1 = 2\sum \frac{a_k}{k} + 1 - \sum_{k=2}^n \frac{1}{k^2} > 2\sum \frac{a_k}{k} + 1 - \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k}\right) = 2\sum \frac{a_k}{k} + \frac{1}{n}.$$

Chapter 2

数学分析

2.1 极限

问题 2.1.1

设函数 $\varphi(x)$ 可导, 且满足 $\varphi(0) = 0$, 又设 $\varphi'(x)$ 单调减少.

- 1. 证明: $\forall x \in (0,1)$, 有 $\varphi(1)x < \varphi(x) < \varphi'(0)x$.
- 2. 若 $\varphi(1) \ge 0$, $\varphi'(0) \le 1$, 任取 $x_0 \in (0,1)$, 令 $x_n = \varphi(x_{n-1})$, $(n = 1, 2, \cdots)$. 证明: $\lim_{n \to \infty} x_n$ 存在, 并求该极限值.

解. 对于任意的 $x \in [0,1]$,在[0,x]上用拉格朗日定理,

$$\varphi(x) - \varphi(0) = \varphi'(\xi_1)x < \varphi'(0)x$$

在[x,1]上用拉格朗日定理

$$\varphi(1) - \varphi(x) = \varphi'(\xi_2)(1-x) < \varphi'(\xi_1)(1-x) = \varphi'(\xi_1) - \varphi(x)$$

所以 $\varphi(1)x < \varphi'(\xi_1)x = \varphi(x)$.

2.2 导数

问题 2.2.1

函数 $f(x) \in C[0,1]$, 在(0,1)上可微, 对于任意的 $x \in (0,1)$, $|xf'(x) - f(x) + f(x)| < Mx^2$, 问f'(0)的存在性.

解. 不妨设f(0) = 0, 定义 $h(x) = \frac{f(x)}{x}(0 < x < 1)$, 即证 $\lim_{x\to 0} h(x)$ 存在, 则 $\left|x^2h'(x)\right| < Mx^2$, 所以 $\left|h'(x)\right| < M$, 所以 若 $\left\{x_n\right\} \to 0$, 则有

$$|h(x_m) - h(x_n)| = |h'\xi(x_m - x_n)| < M|x_m - x_n| < \varepsilon.$$

所以 $\{h(x_n)\}$ 是Cauchy列, 从而 $\lim_{x\to 0} h(x)$ 存在.

问题 2.2.2

构造有界单调函数f(x)使得对于任意的 $x \in \mathbb{R}$, f'(x)存在, 且 $\lim_{x \to \pm \infty} f'(x) \neq 0$.

解. 取 $a_n = 1 - 2^{-n}$, $(n \in \mathbb{N})$, $f(n) = a_n$, $f\left(n + \frac{1}{2}\right) = \frac{1}{2}(a_n + a_{n+1})$, 且f'(n) = 0, $f'\left(n + \frac{1}{2}\right) = 1$, 将其它点处可微连接f(n)这些离散点, 知 $\lim_{x \to \pm \infty} f'(x)$ 不存在, 从而不为0.

2.3 积分

问题 2.3.1

设函数f(x)在[a,b]上有连续的导数, 且f(a) = 0, 证明

$$\int_a^b f^2(x) \mathrm{d}x \le \frac{(b-a)^2}{2} \int_a^b [f'(x)]^2 \mathrm{d}x.$$

解. $\diamondsuit F(b) = RHS - LHS$,证 $F'(b) \ge 0$ 即可.

问题 2.3.2

设函数f(x)在[0,1]上有二阶连续的导数,证明:

1. 对任意 $\xi \in (0, \frac{1}{4})$ 和 $\eta \in (\frac{3}{4}, 1)$ 有

$$|f'(x)| < 2|f(\xi) - f(\eta)| + \int_0^1 |f''(x)| dx \quad x \in [0, 1]$$

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \mathrm{d}x \ge 4.$$

解. 用中值定理,

$$|f'(x)| - 2|f(\xi) - f(\eta)| = |f'(x)| - 2|f'(\theta)| (-\xi + \eta)$$

$$\leq |f'(x)| - |f'(\theta)|$$

$$\leq |f'(x) - f'(\theta)| = \left| \int_{\theta}^{x} f''(t) dt \right|$$

$$\leq \int_{0}^{1} |f''(t)| dt$$

最后取 $f(x_0) = \max_{x \in [0,1]} f(x)$, 则

$$f(x_0) = f'(\xi_1)x_0 = f'(\xi_2)(x_0 - 1),$$

所以

$$\int_{0}^{1} \left| \frac{f''}{f} \right| dx \ge \frac{1}{|f(x_{0})|} dx$$

$$\ge \frac{1}{|f(x_{0})|} \left| \int_{\xi_{1}}^{\xi_{2}} f'' dx \right|$$

$$= \frac{1}{|f(x_{0})|} |f'(\xi_{2}) - f'(\xi_{1})|$$

$$= \frac{1}{x_{0}} + \frac{1}{1 - x_{0}} \ge 4.$$

问题 2.3.3

设函数f(x)在 $\left[-\frac{1}{a},a\right]$ 上连续(其中a>0),且 $f(x)\geq 0$, $\int_{-\frac{1}{a}}^{a}xf(x)\,\mathrm{d}x=0$,求证: $\int_{-\frac{1}{a}}^{a}x^2f(x)\,\mathrm{d}x\leq \int_{-\frac{1}{a}}^{a}f(x)\,\mathrm{d}x$.

解. 因 $(a-x)(x+\frac{1}{a}) \ge 0$, 对 $(a-x)(x+\frac{1}{a})f(x) \ge 0$ 两边同时积分.

2.3. 积分

问题 2.3.4

设函数f(x)在[0,1]上连续, $\int_0^1 f(x) dx = 0$, $\int_0^1 x f(x) dx = 1$. 求证:

- 1. 存在 $\xi \in [0,1]$, 使得 $|f(\xi)| \ge 4$;
- 2. 存在 $\eta \in [0,1]$, 使得 $|f(\eta)| = 4$.

解. 用反证法,

$$1 = \left| \int_0^1 \left(x - \frac{1}{2} \right) f(x) \, \mathrm{d}x \right| \le \int_0^1 \left| x - \frac{1}{2} \right| \cdot |f| \, \mathrm{d}x \le 1.$$

等号取不到, 否则,

$$\int_0^1 (4 - |f|) \left| x - \frac{1}{2} \right| dx = 0.$$

问题 2.3.5

$$\vec{\mathcal{R}} \int_0^{2\pi} \frac{\mathrm{d}\theta}{3-\sin 2\theta}.$$

解.
$$\int_0^{2\pi} \frac{d\theta}{3-\sin 2\theta} = \int_0^{2\pi} \frac{d\theta}{2+2\sin^2(\theta-\frac{\pi}{4})} = \frac{1}{2} \int_0^{2\pi} \frac{d\theta}{1+\sin^2\theta} = 2 \int_0^{2\pi} \frac{d\theta}{1+\sin^2\theta} = 2 \int_0^{+\infty} \frac{dt}{1+2t^2} = \frac{\sqrt{2}}{2}\pi.$$

解.

$$\begin{split} \int_0^{2\pi} \frac{\mathrm{d}\theta}{3 - \sin 2\theta} &= \frac{1}{2} \int_0^{4\pi} \frac{\mathrm{d}t}{3 - \sin t} \\ &= \int_0^{2\pi} \frac{\mathrm{d}t}{3 - \sin t} \\ &= \int_0^{\pi} \frac{\mathrm{d}t}{3 - \sin t} + \int_0^{\pi} \frac{\mathrm{d}t}{3 + \sin t} \\ &= 2 \int_0^{\pi/2} \frac{\mathrm{d}x}{3 - \sin x} + 2 \int_0^{\pi/2} \frac{\mathrm{d}x}{3 + \sin x} \\ &= 12 \int_0^{\pi/2} \frac{\mathrm{d}x}{9 - \sin^2 x} \\ &= 12 \int_0^{\pi/2} \frac{\mathrm{d}\tan x}{8 \tan^2 x + 9} \\ &= \frac{12}{6\sqrt{2}} \arctan\left(\frac{2\sqrt{2}}{3} \tan x\right) \Big|_0^{\pi/2} = \frac{\sqrt{2}}{2} \pi. \end{split}$$

20 CHAPTER 2. 数学分析

解.

$$\begin{split} \int_0^{2\pi} \frac{\mathrm{d}\theta}{3 - \sin 2\theta} &= \frac{1}{2} \int_0^{4\pi} \frac{\mathrm{d}\theta}{3 \sin \theta} \\ &= \int_0^{2\pi} \frac{\mathrm{d}\theta}{3 - \sin \theta} \\ &= \oint_{|z|=1} \frac{\mathrm{d}z}{\mathrm{i}z \left(3 - \frac{z - z^{-1}}{2i}\right)} \\ &= 2 \oint_{|z|=1} \frac{\mathrm{d}z}{z^2 + 6\mathrm{i}z - 1} \\ &= 2 \oint_{|z|=1} \frac{\mathrm{d}z}{(z - (-3 + 2\sqrt{2})\mathrm{i})(z - (-3 - 2\sqrt{2})\mathrm{i})} \\ &= 2 \cdot 2\pi \mathrm{i} \mathrm{Res}(f(z))\big|_{z = (-3 + 2\sqrt{2})\mathrm{i}} = \frac{\sqrt{2}}{2}\pi. \end{split}$$

解.

$$\int_0^{2\pi} \frac{d\theta}{3 - \sin 2\theta} = \int_0^{2\pi} \frac{d \tan \theta}{3 \tan^2 \theta - 2 \tan \theta + 3}$$
$$= \int_0^{\pi/2} + \int_{\pi/2}^{\pi} + \int_{\pi}^{3\pi/2} + \int_{3\pi/2}^{2\pi} = \cdots$$

于是

$$\int_0^{\pi/2} = \int_0^\infty \frac{\mathrm{d}\theta}{3t^2 - 2t + 3} = \frac{1}{3} \int_0^{+\infty} \frac{\mathrm{d}\left(t - \frac{1}{3}\right)}{\left(t - \frac{1}{2}\right)^2 + \frac{8}{9}} = \frac{1}{3} \cdot \frac{3}{\sqrt{8}} \arctan\left(\frac{3\left(t - \frac{1}{3}\right)}{\sqrt{8}}\right) \Big|_0^{+\infty} = \frac{\sqrt{2}}{4} \left(\frac{\pi}{2} + \arctan\frac{\sqrt{2}}{4}\right).$$

其它三个同理. 所以 $\sum = \frac{\sqrt{2}}{4} \left(\frac{\pi}{2} \cdot 4 \right) = \frac{\sqrt{2}}{2} \pi$.

问题 2.3.6

求

$$\int_0^{\pi/4} \frac{(\cot x - 1)^{p-1}}{\sin^2 x} \ln \tan x \, \mathrm{d}x = -\frac{\pi}{p} \csc p\pi, \ (-1$$

$$\int_0^{+\infty} u^{p-1} \ln(u+1) du = \frac{\pi}{p} \csc p\pi,$$

而

$$\int_0^\infty u^{p-1} \ln(u+1) \, \mathrm{d} u = \int_0^\infty u^{p-1} \int_1^{1+u} \frac{1}{y} \, \mathrm{d} y \, \mathrm{d} u$$

交换积分次序,用Beta函数

2.4 级数

问题 2.4.1

证明

$$1 + x + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!} = 0$$

无实根.

解. 设-y < 0, 则y > 0, 所以 $1 - y + \frac{y^2}{2!} - \frac{y^3}{3!} + \dots + \frac{y^{2n}}{(2n)!} > e^{-y} > 0$.

问题 2.4.2: F.F.Abi=Khuzam and A.B.Boghossian, Some recent geometric inequalities, AMM Vol 96(1989), No. 7:576-589

函数 $f(x) = \cot x - \frac{1}{x}$, 则 $f^{(k)}(x) < 0$, $0 < x < \pi$, $k \in \mathbb{N}$.

解.

$$\cot x = \frac{1}{x} + \sum_{k=1}^{\infty} \left(\frac{1}{k\pi + x} - \frac{1}{k\pi - x} \right), \quad x \in (0, \pi).$$

将真分式展开有

$$f(x) = -2x \sum_{k=0}^{\infty} c_k x^{2k}, \ x \in (0,\pi), \quad c_k = \sum_{n=1}^{\infty} \frac{1}{(n\pi)^{2k+2}}, \ (k \in \mathbb{N}).$$

问题 2.4.3

对 $n \in \mathbb{N}_+$,确定(0,1)的子集,使在此子集上 $\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n (\ln x \ln(1-x)) < 0$.

解.

$$f'(x) = (\ln x \ln(1-x))' = \sum_{m=1}^{\infty} \frac{(1-x)^{m-1} - x^{m-1}}{m},$$

当n是偶数时, 所有项都是负的, 当n是奇数时, 仅当1-x < x即 $x > \frac{1}{2}$ 时, $f^{(n)}(x)$ 时负的.

问题 2.4.4

已知 $S_n = \frac{n+1}{2^{n+1}} \sum_{i=1}^n \frac{2^i}{i}$,证明 $\lim_{n \to \infty} S_n$ 存在并求其值.

解. 因 $S_{n+1} = \frac{n+2}{2(n+1)}(S_n+1)$, 所以

$$S_{n+2} - S_{n+1} = \frac{(n+2)^2(S_{n+1} - S_n) - S_{n+1} - 1}{2(n+1)(n+2)},$$

 $S_4 - S_3 = 0$, 当 $n \ge 3$ 时, S_n 不增, 所以 $S = \lim_{n \to \infty} S_n$ 存在, 所以 $S = \lim_{n \to \infty} \frac{n+2}{2(n+1)}(S+1)$, 得S = 1.

2.5 其他

问题 2.5.1

证明:

$$\lim_{n \to \infty} \left(\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} \right) = 0.$$

解. 用
$$\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}$$
.

问题 2.5.2

证明:

$$0 < e - \left(1 + \frac{1}{n}\right)^n < \frac{3}{n}.$$

解. 先证: $x_n = \left(1 + \frac{1}{n}\right)^n$ 单调上升且有界. $\left(1 \cdot x_n \le \left(\frac{1 + n(1 + 1/n)}{n + 1}\right)^{n + 1} = x_{n + 1}\right)$, 则

$$x_n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = 1 + 1 + \binom{n}{2} \frac{1}{n^2} + \cdots$$

$$= 2 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \cdots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \cdots \left(1 - \frac{n-1}{n} \right)$$

$$< 2 + \frac{1}{2 \cdot 1} + \frac{1}{3 \cdot 2} + \cdots + \frac{1}{n(n-1)} = 3.$$

再证 $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$ 单调下降且有界. (用 $(1+x)^n > 1 + nx$, x > -1证单调性). 由 $e = \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$, $x_n < e < y_n$, (这可以证得 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$). 故 $e - x_n < y_n - x_n = \frac{x_n}{n} < \frac{3}{n}$.

问题 2.5.3

证明不等式

$$\left(\frac{n}{e}\right)^n < n! < e\left(\frac{n}{2}\right)^n$$
.

解. 用 $2 < (1 + \frac{1}{n})^n < e$ 及归纳法.

问题 2.5.4

设 $a^{[n]} = a(a-h)\cdots[a-(n-1)h]$ 及 $a^{[0]} = 1$,证明:

$$(a+b)^{[n]} = \sum_{m=0}^{n} \binom{n}{m} a^{[n-m]} b^{[m]}.$$

并由此推出牛顿二项式公式.

问题 2.5.5

证明不等式

$$n! < \left(\frac{n+1}{2}\right)^n \quad (n > 1).$$

解. 用均值不等式.

解. 用伯努利不等式证 $\left(\frac{n+2}{n+1}\right)^{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1} > 2, (n \in \mathbb{N}_+).$

问题 2.5.6

设 $p_n(n \in \mathbb{N}_+)$ 为趋于正无穷的任意数列, 而 $q_n(n \in \mathbb{N}_+)$ 为趋于负无穷的任意数列 $(p_n, q_n \notin [-1, 0])$, 求证:

$$\lim_{n \to \infty} \left(1 + \frac{1}{p_n} \right)^{p_n} = \lim_{n \to \infty} \left(1 + \frac{1}{q_n} \right)^{q_n} = e.$$

解. 注意
$$[x] \le x < [x] + 1$$
.

2.5. 其他

问题 2.5.7

已知 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, 求证:

$$\lim_{n \to \infty} \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right) = e.$$

并推出

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \frac{\theta_n}{n!n},$$

其中 $0 < \theta_n < 1$.

问题 2.5.8

证明: e是无理数.

解. 用反证法及2.5.7有,对于任意的 $n, n!n \cdot e$ 不是整数.

问题 2.5.9

证明不等式:

- (a) $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}, (n \in \mathbb{N}_+);$
- (b) $1 + \alpha < e^{\alpha}$, $(\alpha \neq 0, \alpha \in \mathbb{R})$.

解.

- (a) 原式等价于 $\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$;
- (b) $\alpha > -1$ 时,用伯努利不等式, $e^{\alpha} > \left(1 + \frac{1}{n}\right)^{\alpha n} > 1 + \alpha$.

问题 2.5.10

证明: (在以下各极限军存在的情况下)

- (a) $\liminf_{n\to\infty} x_n + \liminf_{n\to\infty} y_n \le \liminf_{n\to\infty} (x_n + y_n) \le \liminf_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$;
- (b) $\liminf_{n\to\infty} x_n + \limsup_{n\to\infty} y_n \le \limsup_{n\to\infty} (x_n + y_n) \le \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$.

解. 用 $\liminf_{n\to\infty} x_n = -\limsup_{n\to\infty} (-x_n)$.

问题 2.5.11

证明: 若 $\lim_{n\to\infty} x_n$ 存在,则对于任何数列 $y_n(n\in\mathbb{N}_+)$, $\lim\sup_{n\to\infty} y_n$ 有限且有:

- (a) $\limsup_{n\to\infty} (x_n + y_n) = \lim_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$;
- (b) $\limsup_{n\to\infty} x_n y_n = \lim_{n\to\infty} x_n \cdot \limsup_{n\to\infty} y_n, (x_n \ge 0).$

解. 用2.5.10.

问题 2.5.12

证明: 若对于某数列 $x_n(n \in \mathbb{N}_+)$, 无论数列 $y_n(n \in \mathbb{N}_+)$ 如何选取, 以下两个等式中都至少有一个成立:

- (a) $\limsup_{n\to\infty} (x_n + y_n) = \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$.
- (b) $\limsup_{n\to\infty} (x_n y_n) = \limsup_{n\to\infty} x_n \cdot \limsup_{n\to\infty} y_n, (x_n \ge 0).$

则数列 x_n 收敛或发散于正无穷.

问题 2.5.13

$$\limsup_{n \to \infty} x_n \cdot \limsup_{n \to \infty} \frac{1}{x_n} = 1.$$

则数列 x_n 是收敛的.

问题 2.5.14

证明: 若数列 $x_n(n \in \mathbb{N}_+)$ 有界, 且

$$\lim_{n \to \infty} (x_{n+1} - x_n) = 0.$$

则此数列的子列极限充满于下极限和上极限

$$l = \liminf_{n \to \infty} x_n \not \exists L = \limsup_{n \to \infty} x_n$$

之间.

问题 2.5.15

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \lim_{n \to \infty} \frac{x_{n+1}}{x_n}.$$

解. 用结论: 若 $\{x_n\} \to x$, $x_n > 0$, 则 $\lim_{n \to \infty} \sqrt[n]{x_1 x_2 \cdots x_n} = \lim_{n \to \infty} x_n = x$.

问题 2.5.16

证明: $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} = e$.

解. 用2.5.15.

问题 2.5.17: 数a和b的算术几何平均值

证明: 由下列各式

$$x_1 = a$$
, $y_1 = b$, $x_{n+1} = \sqrt{x_n y_n}$, $y_{n+1} = \frac{x_n + y_n}{2}$,

确定的数列 x_n 和 $y_n(n \in \mathbb{N}_+)$ 有共同的极限.

$$\mu(a,b) = \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n.$$

解. 用幂平均不等式, $\sqrt{x_{n+1}+y_{n+1}}=\frac{\sqrt{x_n}+\sqrt{y_n}}{\sqrt{2}}\leq \sqrt{x_n+y_n}$. 即 $\{y_n\}$ 单调有界, 从而有极限, 从而 $x_n=2y_{n+1}-y_n$ 有相同的极限.

2.5. 其他

问题 2.5.18

设

$$f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2} \quad (|x| \ge 2),$$

求f(x).

解. $x^2 - 2$, $(|x| \ge \frac{5}{2})$.

问题 2.5.19

证明: 若

- (1) 函数f(x)定义于区域x > a;
- (2) f(x)在每一个有限区间a < x < b内是有界的;
- (3) 对于某一个整数n, 存在有限的或无穷的极限

$$\lim_{x \to +\infty} \frac{f(x+1) - f(x)}{x^n} = l,$$

则

$$\lim_{x \to +\infty} \frac{f(x)}{x^{n+1}} = \frac{l}{n+1}.$$

能否用Cauchy定理??证明它.

问题 2.5.20

利用定理

定理 2.5.1

设

$$\lim_{x \to 0} \frac{\phi(x)}{\psi(x)} = 1,$$

其中 $\psi(x)>0$,再设当 $n\to\infty$ 时 $\alpha_{mn}\to 0 (m=1,2,\cdots,n)$,换言之,对于任意 $\varepsilon>0$,存在正整数 $N(\varepsilon)$,当 $m=1,2,\cdots,n$ 且 $n>N(\varepsilon)$ 时, $0<|\alpha_{mn}|<\varepsilon.$ 证明:

$$\lim_{n\to\infty} [\phi(\alpha_{1n}) + \phi(\alpha_{2n}) + \dots + \phi(\alpha_{mn})] = \lim_{n\to\infty} [\psi(\alpha_{1n}) + \psi(\alpha_{2n}) + \dots + \psi(\alpha_{mn})],$$

此处同时还要假设上式右端的极限存在.

求:

(1)
$$\lim_{n\to\infty} \sum_{k=1}^n \left(\sqrt[n]{1+\frac{k}{n^2}} - 1 \right);$$

- (2) $\lim_{n\to\infty} \sum_{k=1}^n \left(\sin\frac{ka}{n^2}\right);$
- (3) $\lim_{n\to\infty} \sum_{k=1}^n \left(a^{\frac{k}{n^2}} 1\right), (a > 0);$
- (4) $\lim_{n\to\infty} \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right);$
- (5) $\lim_{n\to\infty} \prod_{k=1}^n \cos \frac{ka}{n\sqrt{n}}$.

CHAPTER 2. 数学分析 26

问题 2.5.21

设函数f(x)在区间 $(x_0, +\infty)$ 上连续并有界. 证明: 对于任何数T, 可求得数列 $x_n \to +\infty$, 使

$$\lim_{n \to \infty} [f(x_n + T) - f(x_n)] = 0.$$

问题 2.5.22

证明:在有限区间(a,b)上有定义且连续的函数f(x),可用连续的方法延拓到闭区间[a,b]上,其充分必要条件是函 数f(x)在区间(a,b)上一致连续.

问题 2.5.23

 x_n 满足 $x_n^n + x_n - 1 = 0, 0 < x_n < 1, <math>\Re \lim_{n \to \infty} x_n$.

解. $y = x^n + x - 1$ 则有y' > 0, $y|_{x=0} = -1 < 0$, $y|_{x=1} = 1 > 0$. x_n 是 $x^n + x - 1$ 的唯一零点. 由于

$$x_n^{n+1} + x_n - 1 = (x_n - 1)(1 - x_n) < 0$$

及y的单调性,知 x_{n+1} 在 x_n 与1之间,故 $\{x_n\}$ 单调有界. 反证 $\{x_n\}$ 的极限A=1,否则 $0 \le A < 1$ 矛盾.

解. $y^x + y - 1 = 0$ 是隐函数, 确定 $y = f(x), x_n = f(n), 求导$

$$y' = -y^x \cdot \frac{\ln y}{\left(1 + \frac{x}{y} \cdot y^x\right)}$$

当x > 1时, y' > 0, y单调增加, 以下同上.

问题 2.5.24

若级数 $\sum_{n=1}^{\infty} a_n^2$, $\sum_{n=1}^{\infty} b_n^2$ 都收敛, 则以下不成立的是?

A. $\sum_{n=1}^{\infty} (a_n + b_n)^2$ 收敛; C. $\sum_{n=1}^{\infty} a_n b_n$ 收敛;

B. $\sum_{n=1}^{\infty} \frac{|a_n|}{n}$ 收敛; D. $\sum_{n=1}^{\infty} a_n b_n$ 发散.

问题 2.5.25

设f(x,y)与 $\varphi(x,y)$ 均为可微函数,且 $\varphi'_{y}(x,y) \neq 0$. 已知 (x_{0},y_{0}) 是f(x,y)在约束条件 $\varphi(x,y) = 0$ 下的一个极值点,下列

问题 2.5.26

$$\frac{\int_0^1 \frac{1}{\sqrt{1-t^4}} \, \mathrm{d}t}{\int_0^1 \frac{1}{\sqrt{1+t^4}} \, \mathrm{d}t} = \sqrt{2}$$

解. 用Beta函数.

问题 2.5.27: 陕西省第七次大学生高等数学竞赛复赛

计算
$$I = \int_{\pi/8}^{3\pi/8} \frac{\sin^2 x}{x(\pi - 2x)} \, \mathrm{d}x.$$

2.5. 其他

问题 2.5.28: 陕西省第七次大学生高等数学竞赛复赛

设 $\varphi(x)$ 在 $(-\infty,0]$ 可导,且函数

$$f(x) = \begin{cases} \int_x^0 \frac{\varphi(t)}{t} dt, & x < 0, \\ \lim_{n \to \infty} \sqrt[n]{(2x)^n + x^{2n}}, & x \ge 0. \end{cases}$$

在点x = 0可导, 求 $\varphi(0)$, $\varphi'(0^-)$, 并讨论f'(x)的存在性.

问题 2.5.29: 陕西省第七次大学生高等数学竞赛复赛

已知函数f(x)与g(x)满足 $f'(x) = g(x), g'(x) = 2e^x - f(x), 且<math>f(0) = 0, \bar{x}$

$$\int_0^{\pi} \left(\frac{g(x)}{1+x} - \frac{f(x)}{(1+x)^2} \right) dx.$$

问题 2.5.30: 陕西省第七次大学生高等数学竞赛复赛

设 y_1 和 y_2 是方程 $y'' + p(x)y' + 2e^x y = 0$ 的两个线性无关解,而且 $y_2 = (y_1)^2$.若有p(0) > 0,求p(x)及此方程的通解.

问题 2.5.31: 陕西省第七次大学生高等数学竞赛复赛

设f(x)在 $\left[-\frac{1}{a}, a\right](a > 0)$ 上非负可积, 且 $\int_{-1/a}^{a} x f(x) dx = 0$. 求证:

$$\int_{-1/a}^{a} x^{2} f(x) \, \mathrm{d}x \le \int_{-1/a}^{a} f(x) \, \mathrm{d}x.$$

问题 2.5.32: 陕西省第七次大学生高等数学竞赛复赛

设在点x = 0的某邻域U内, f(x)可展成泰勒级数, 且对任意正整数n, 皆有

$$f\left(\frac{1}{n}\right) = \frac{1}{n^2}.$$

证明: 在U内, 恒有 $f(x) = x^2$.

问题 2.5.33: 陕西省第七次大学生高等数学竞赛复赛

设 $\frac{dy}{dx} = \frac{1}{1+x^2+y^2}$, 证明: $\lim_{x\to +\infty} y(x)$ 和 $\lim_{x\to -\infty} y(x)$ 都存在.

解. 用单调有界定理.

问题 2.5.34: 陕西省第七次大学生高等数学竞赛复赛

求幂级数 $\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) x^n$ 的收敛域与和函数.

问题 2.5.35: 陕西省第七次大学生高等数学竞赛复赛

求极限

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{1}{(n+i+1)^2} + \frac{1}{(n+i+2)^2} + \dots + \frac{1}{(n+i+i)^2} \right).$$

解. 用重积分得 $\ln \frac{2}{\sqrt{3}}$.

问题 2.5.36

设 $\{f_n(x)\}_{n=1}^{\infty} \subset C_{[a,b]}$, 且 $f_n(x)$ 在[a,b]上一致收敛于f(x), 则 $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.

解. 因 $f_n(x) \Rightarrow f(x), x \in [a, b]$, 所以 $f \in C_{[a,b]}$ 且 $\forall \varepsilon > 0$, $\exists N$, $\exists n > N$ 时, $\forall x \in [a, b]$ 均有 $|f_n(x) - f(x)| < \varepsilon$. $f(x), f_n(x)$ 连续必可积, 有

$$\left| \int_{a}^{b} f_n(x) \, \mathrm{d}x - \int_{a}^{b} f(x) \, \mathrm{d}x \right| < (b - a)\varepsilon.$$

其实当 $a \le x \le b$ 时,有 $\left| \int_a^x f_n(t) \, \mathrm{d}t - \int_a^x f(t) \, \mathrm{d}t \right| < (b-a)\varepsilon$ 对x一致成立,所以 $\int_a^x f_n(x) \, \mathrm{d}t \Rightarrow \int_a^x f(t) \, \mathrm{d}t$.

问题 2.5.37

 $f_n(x)$ 在[a,b]上都有连续导数,且 $f_n(x) \rightarrow f(x)$, $f'_n(x) \Rightarrow g(x)$,则f'(x) = g(x),即 $\frac{\mathrm{d}}{\mathrm{d}x} (\lim_{n \to \infty} f_n(x)) = \lim_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}x} f_n(x)$.

解. 因 $f_n' \Rightarrow g$,所以g连续,可积,由2.5.55, $\int_a^x g(t) dt = \lim_{n \to \infty} \int_a^x f_n'(t) dt = f(x) - f(a)$,所以f'(x) = g(x). 其实 $f_n(x) = f_n(a) + \int_a^x f_n'(t) dt$ 在[a,b]上也一致收敛.

若2.5.55和本问题中的 $f_n(x)$ 视为函数项级数 $\sum_{k=1}^{\infty} u_k(x)$ 的前n项部分和, 就有函数项级数的相应命题.

(1). 若[a,b]上 $\sum_{k=1}^{\infty} u_k(x)$ 中每项 u_k 均连续,且 $\sum_{k=1}^{\infty} u_k(x) \Rightarrow f(x)$,则 $f(x) \in C_{[a,b]}$ 且

$$\sum_{k=1}^{\infty} \int_{a}^{b} u_k(x) \, \mathrm{d}x = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

(2). 若[a,b]上, $\sum_{k=1}^{\infty} u_k(x)$ 的每项都有连续导数 $u_k'(x)$ 且 $\sum_{k=1}^{\infty} u_k'(x) \Rightarrow g(x)$, 而 $\sum_{k=1}^{\infty} u_k(x) \rightarrow f(x)$. 则

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{k=1}^{\infty} u_k(x) \right) = \sum_{k=1}^{\infty} u'_k(x).$$

问题 2.5.38

举反例:

- (1) 积分的极限不等于极限的积分的函数列.
- (2) 导数的极限不等于极限的导数的函数列.
- 解. (1). 在[0,1]上极限函数为[0,1]上面积为1的脉冲函数.

(2).
$$f_n(x) = \frac{x}{1+n^2x^2}, x \in [-1, 1].$$

问题 2.5.39: http://math.stackexchange.com/questions/2143014

证明: 对于任意的 $\alpha \in \mathbb{Q} \setminus \mathbb{Z}$, $\sum_{n=1}^{\infty} \ln \left| \frac{\alpha - n}{\alpha + n} \right|$ 发散.

问题 2.5.40: http://math.stackexchange.com/questions/472007

判断 $\sum_{n=10}^{\infty} \frac{\sin n}{n+10\sin n}$ 的敛散性.

解. 其实, 若f(n)是有界函数, 且级数 $\sum_{n=1}^n \frac{f(n)}{n}$ 收敛, a是使任意的n都有 $n+af(n)\neq 0$, 则 $\sum_{n=1}^\infty \frac{f(n)}{n+af(n)}$ 这是因为

$$\sum_{n=1}^{m} \frac{f(n)}{n+af(n)} = \sum_{n=1}^{m} \frac{f(n)}{n} + \sum_{n=1}^{m} \frac{-af^2(n)}{n(n+af(n))}$$

后一个和式用比较判别法.

问题 2.5.41: http://math.stackexchange.com/questions/273559

判断 $\sum_{n=1}^{\infty} \frac{\sin^2(n)}{n}$ 的敛散性.

解. 比较判别法, $[k\pi + \frac{\pi}{6}, (k+1)\pi - \frac{\pi}{6}]$ 中总有至少一个整数. 或用 $\sum \frac{\sin^2(n)}{n} = \sum \frac{1}{2n} - \sum \frac{\cos(2n)}{2n}$, 前者发散, 后者用Dirichlet判别法.

问题 2.5.42: http://math.stackexchange.com/questions/991652

证明 $\int_0^1 \left| \frac{1}{x} \sin \frac{1}{x} \right| dx$ 发散.

解. 变量替换, 积分化为 $\int_1^\infty \frac{|\sin x|}{x} \,\mathrm{d}x$, 然后在子区间 $(k\pi,(k+1)\pi)$ 上求下界.

问题 2.5.43: http://math.stackexchange.com/questions/620449

证明: 求 $p \in \mathbb{R}$, 使积分 $\int_0^\infty \frac{x^p}{1+x^p} dx$ 发散.

 $\mathbf{p} \geq -1$.

问题 2.5.44: http://math.stackexchange.com/questions/596511

计算

$$\int_0^\infty \frac{e^{-x} - e^{-2x}}{x} dx$$

解. 用Frullani积分. 结果为log 2. 或用重积分: $e^{-x} - e^{-2x} = x \int_1^2 e^{-xt} dt$. 这里给出Frullani积分证明过程的做法.

$$\begin{split} \int_a^b \frac{\mathrm{e}^{-x} - \mathrm{e}^{-2x}}{x} \, \mathrm{d}x &= \int_a^b \frac{\mathrm{e}^{-x}}{x} \, \mathrm{d}x - \int_{2a}^{2b} \frac{\mathrm{e}^{-x}}{x} \, \mathrm{d}x \\ &= \left(\int_a^b - \int_{2a}^{2b} \right) \frac{\mathrm{e}^{-x}}{x} \, \mathrm{d}x \\ &= \left(\int_a^{2a} - \int_b^{2b} \right) \frac{\mathrm{e}^{-x}}{x} \, \mathrm{d}x \to \log(2) - 0, \quad a \to 0, b \to \infty \end{split}$$

上式最后一步用 $e^{-2c}\log(2) \le \int_c^{2c} \frac{e^{-x}}{x} dx \le e^{-c}\log(2)$.

问题 2.5.45: http://math.stackexchange.com/questions/590774

已知a > b > 0,求 $\lim_{t\to 0^+} (a^{-t} - b^{-t})\Gamma(t)$.

解. 注意到 $\Gamma(t) = a^t \int_0^\infty \frac{\mathrm{e}^{-as}}{s^{1-t}} \, \mathrm{d}s$, 所以

$$\lim_{t \to 0^+} (a^{-t} - b^{-t})\Gamma(t) = \int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx$$

然后用Frullani积分算得log &.

问题 2.5.46: http://math.stackexchange.com/questions/590774

已知a > b > 0,求 $\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx$.

解. 可以用Frullani积分. 这里用含参积分求导的方法,定义 $I(t) = \int_0^\infty \frac{\mathrm{e}^{-x} - \mathrm{e}^{-tx}}{x} \, \mathrm{d}x$,被积函数记为f(x,t),由f(x,t)和 $f_t(x,t)$ 在定义域均连续,I(t)关于t收敛且 $\int_0^\infty f_t(x,t) \, \mathrm{d}x$ 关于t一致收敛,则满足积分号下求导条件,所以 $\frac{\mathrm{d}I}{\mathrm{d}t} = -\frac{1}{a}$, $I = -\log t$.

$$\int_0^\infty \frac{\exp(-ax) - \exp(-bx)}{x} dx = \lim_{\epsilon \to 0} \int_{\epsilon}^\infty \frac{\exp(-ax) - \exp(-bx)}{x} dx$$

$$= \lim_{\epsilon \to 0} \left[\int_{\epsilon}^\infty \frac{\exp(-ax)}{x} dx - \int_{\epsilon}^\infty \frac{\exp(-bx)}{x} dx \right]$$

$$= \lim_{\epsilon \to 0} \left[\int_{a\epsilon}^\infty \frac{\exp(-t)}{t} dt - \int_{b\epsilon}^\infty \frac{\exp(-t)}{t} dt \right]$$

$$= \lim_{\epsilon \to 0} \int_{a\epsilon}^{b\epsilon} \frac{\exp(-t)}{t} dt = \lim_{\epsilon \to 0} \int_{a}^b \frac{\exp(-\epsilon u)}{u} du$$

最后的被积函数一致收敛到1/11.

解. 用Laplace变换, $F(s) = \int_0^\infty f(x) e^{-sx} dx$, 则

$$F(s) = \int_0^\infty \frac{e^{-bx} - e^{-ax}}{x} e^{-sx} dx \implies F'(s) = -\int_0^\infty (e^{-bx} - e^{-ax}) e^{-sx} dx.$$

计算最后一个积分, 然后求积分并令 $s \to 0$, 其中积分出来的积分常数用极限 $\lim_{s \to \infty} F(s) = 0$ 计算.

问题 2.5.47: http://math.stackexchange.com/questions/164400

求 $\int_0^\infty \frac{e^{-x} - e^{-xt}}{x} dx = \log t$, 其中t > 0.

解. 让 $u = e^{-x}$, 得

$$\int_0^1 \frac{u^{t-1} - 1}{\log u} \, \mathrm{d}u = \int_0^1 \int_1^t u^{s-1} \, \mathrm{d}s \, \mathrm{d}u = \int_1^t \int_0^1 u^{s-1} \, \mathrm{d}u \, \mathrm{d}s = \log t.$$

解. 同2.5.65的解法一.

解. 用重积分求解, $I(t)=\int_0^\infty \frac{\mathrm{e}^{-x}-\mathrm{e}^{-xt}}{x}\,\mathrm{d}x=\int_0^\infty \int_1^t \mathrm{e}^{-xs}\,\mathrm{d}s\,\mathrm{d}x$. 这里验证积分次序可交换, 则

$$LHS = \int_{1}^{t} \int_{0}^{\infty} e^{-xs} dx ds = \ln t.$$

解. 用Laplace变换, $g(s) = L[f(x)] = L\left[\frac{e^{-ax}-e^{-bx}}{x}\right]$, 则 $-g'(s) = L[xf(x)] = \frac{1}{s+a} - \frac{1}{s+b}$. 所以 $g(s) = \log \frac{s+b}{s+a} + c$, 由于 $g(\infty) = 0$, 所以c = 0. 从而

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} e^{-sx} dx = \log \frac{s+b}{s+a}.$$

 $\diamondsuit s = 0$ 即可.

2.5. 其他 31

解. 用Laplace变换, $L[1] = \int_0^\infty e^{-st} dt = \frac{1}{s}$, 则

$$LHS = \int_0^\infty \int_0^\infty (e^{-x} - e^{-xt})e^{-xs} ds dx = \int_0^\infty \left(\frac{1}{s+1} - \frac{1}{s+t}\right) = \ln \frac{s+1}{s+t}\Big|_0^\infty = \ln t$$

问题 2.5.48: http://tieba.baidu.com/p/2686576086

设f(x)在实轴 \mathbb{R} 上有二阶导数,且满足方程

$$2f(x) + f''(x) = -xf'(x).$$

求证f(x)和f'(x)都在 \mathbb{R} 上有界.

解. 构造 $L = f^2 + \frac{1}{2}f'^2$,研究L'. 方程可改成 $f''(x) + \frac{x}{2}f'(x) + f(x) = 0$.

问题 2.5.49: http://tieba.baidu.com/p/3846349760

证明: $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

解. 由于 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, 且 $\left(1+\frac{1}{n}\right)^n$ 单调增加,则 $\left(1+\frac{1}{n}\right)^n < e$,于是 $\ln\left(1+\frac{1}{n}\right) < \frac{1}{n}$,从而 $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}>$ $\ln 2 + \ln\frac{3}{2}+\cdots+\ln\left(1+\frac{1}{n}\right) = \ln(n+1) > \ln n$,即得.

问题 2.5.50: http://tieba.baidu.com/p/4931607145

设f(x)在[a,b]上可导, f'(x)在[a,b]上可积. 令

$$A_n = \sum_{i=1}^n f\left(a + i \cdot \frac{b-a}{n}\right) - \int_a^b f(x) \, \mathrm{d}x.$$

试证

$$\lim_{n \to \infty} nA_n = \frac{b-a}{2} [f(b) - f(a)].$$

$$nA_n = n \left[\sum_{i=1}^n f(x_i) \cdot \frac{b-a}{n} - \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x) \, \mathrm{d}x \right]$$
$$= n \sum_{i=1}^n \int_{x_{i-1}}^{x_i} \left[f(x_i) - f(x) \right] \, \mathrm{d}x$$
$$= n \sum_{i=1}^n \int_{x_{i-1}}^{x_i} \frac{f(x_i) - f(x)}{x_i - x} (x_i - x) \, \mathrm{d}x.$$

在 $[x_{i-1},x_i]$ 上, (x_i-x) 保号, 而 $g(x)=\frac{f(x_i)-f(x)}{x_i-x}$ 连续(补充定义 $g(x_i)=f'(x_i)$). 由积分第一中值定理知, 存在 $\eta_i\in(x_{i-1},x_i)$, 使得

$$\int_{x_{i-1}}^{x_i} \frac{f(x_i) - f(x)}{x_i - x} (x_i - x) dx = g(\eta_i) \int_{x_{i-1}}^{x_i} (x_i - x) dx.$$

再由Lagrange中值定理,以上 $g(\eta_i) = \frac{f(x_i) - f(\eta_i)}{\eta_i - x} = f'(\xi_i), (\xi_i \in (\eta_i, x_i) \subset (x_{i-1}, x_i)).$ 于是

$$nA_n = n \sum_{i=1}^n f'(\xi_i) \int_{x_{i-1}}^{x_i} (x_i - x) dx = \frac{n}{2} \sum_{i=1}^n f'(\xi_i) (x_i - x_{i-1})^2$$

$$= \frac{n}{2} \cdot \frac{b - a}{n} \sum_{i=1}^n f'(\xi_i) (x_i - x_{i-1}) = \frac{b - a}{2} \sum_{i=1}^n f'(\xi_i) (x_i - x_{i-1})$$

$$\to \frac{b - a}{2} \int_a^b f'(x) dx = \frac{b - a}{2} (f(b) - f(a)), \stackrel{\text{uf}}{=} n \to \infty.$$

问题 2.5.51

$$\int_0^1 \frac{\sqrt[4]{x(1-x)^3}}{(1+x)^3} \, \mathrm{d}x = \frac{3}{64} \sqrt[4]{2}\pi.$$

问题 2.5.52

求证:

$$\int_0^\infty \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{3\pi}{8}$$

解. 让 $f(y) = \int_0^\infty \frac{\sin^3 yx}{x^3} dx$, 判断积分号下可求导, 有

$$f''(y) = \frac{3}{4} \int_0^\infty \frac{-\sin yx + 3\sin 3yx}{x} dx = \frac{3\pi}{4} \operatorname{sign} y.$$

解. 用 $\sum_{k=1}^{\infty} \frac{\sin kx}{k} = \frac{\pi - x}{2}$,由

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \frac{\sin^3(kx)}{k^3} = \frac{9\sin(3kx) - 3\sin(kx)}{4k}.$$

则

$$\sum_{k=1}^{\infty} \frac{9\sin(3kx) - 3\sin(kx)}{4k} = \frac{3\pi}{4} - 3x.$$

积分后得:

$$\sum_{k=1}^{\infty} \frac{\sin^3(kx)}{k^3} = \frac{3\pi}{8}x^2 - \frac{1}{2}x^3.$$

取 $x = \frac{1}{n}$ 后两边同乘 n^2 得

$$\sum_{k=1}^{\infty} \frac{\sin^3 \frac{k}{n}}{(k/n)^3} \frac{1}{n} = \frac{3\pi}{8} - \frac{1}{2n}.$$

而广义 Riemann 和显示

$$\lim_{n \to \infty} \sum_{i=1}^{\infty} \frac{\sin^3 \frac{k}{n}}{(k/n)^3} \frac{1}{n} = \int_0^{\infty} \frac{\sin^3 x}{x^3} \, \mathrm{d}x.$$

广义 Riemann 和成立的条件是 $\sum_{k=0}^{\infty}\sup_{x\in[k,k+1]}|f'(x)|<\infty$? 这不等式蕴含 $\int_{0}^{\infty}|f'|\,\mathrm{d}x<+\infty,\,f'\in L^{1}(0,\infty)$.

解. 用 Parseval 定理

$$\int_{-\infty}^{\infty} f(x)g(x) dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s)G(s) ds,$$

其中 $F(s)=\mathcal{F}[f],\,G(s)=\mathcal{F}[g],\,\mathcal{F}[f]=\int_{\mathbb{R}}f(x)\mathrm{e}^{\mathrm{i}sx}\,\mathrm{d}x.$ 若 $f(x)=rac{\sin x}{x},\,$ 則

$$F(s) = \begin{cases} \pi, & |s| \le 1\\ 0, & |s| > 1, \end{cases}$$

2.5. 其他

若 $g(x) = \frac{\sin^2 x}{x^2}$,则

$$G(s) = \begin{cases} \pi \left(1 - \frac{|s|}{2} \right), |s| \le 2\\ 0, |s| > 2, \end{cases}$$

所以 $\int_{\mathbb{R}} \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{1}{2\pi} \int_{-1}^1 \pi^2 \left(1 - \frac{|s|}{2} \right) \, \mathrm{d}s = \frac{3\pi}{4}.$ 即 $\int_0^\infty \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{3\pi}{8}.$

解. 用 Laplace 变换 $F(s)=\mathcal{L}[f]=\int_0^\infty f(x)\mathrm{e}^{-sx}\,\mathrm{d}x,$ 对于 $f(x)=rac{\sin^3x}{x^3}$ 有

$$F(s) = \frac{\pi s^2}{8} + \frac{3\pi}{8} - \frac{3(s^2-1)}{8} \arctan s + \frac{s^2-9}{8} \arctan \frac{s}{3} + \frac{3s}{8} \ln \frac{s^2+1}{s^2+9}.$$

解. 用 Laplace 恒等式

$$\int_0^\infty F(u)g(u)\,\mathrm{d}u = \int_0^\infty f(u)G(u)\,\mathrm{d}u, F(s) = \mathcal{L}[f(t)], G(s) = \mathcal{L}[g(t)].$$

让 $G(u) = \frac{1}{u^3}$ 得 $g(u) = \frac{u^2}{2}$, 让 $f(u) = \sin^3 u$ 得 $F(u) = \frac{6}{(u^2+1)(u^2+9)}$, 则

$$\int_0^\infty \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{6}{2} \int_0^\infty \frac{u^2}{(u^2 + 1)(u^2 + 9)} \, \mathrm{d}u = \frac{3\pi}{8}.$$

解. 留数定理, 由 $\sin^3 x = \frac{3\sin x - \sin(3x)}{4}$ 得 $\int_{\mathbb{R}} \left(\frac{\sin x}{x}\right)^3 dx = \int_{\mathbb{R}} \frac{3\sin x - \sin(3x)}{4x^3} dx$. 围道 $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$, $\gamma_1 = [r, R]$, γ_2 是以 (0,0) 为心 R 为径的上半圆, $\gamma_3 = [-R, -r]$, γ_4 为以 (0,0) 为心 r 为径的上半圆, γ 取逆时针方向为正方向. 取 $f(z) = \frac{3e^{iz} - e^{3iz}}{z^3}$, 则 f 在 γ 内解析, 由 Cauchy-Goursat 公式

$$\oint_{\gamma} f(z) = 0, \tag{2.1}$$

并用 Laurent 展开或留数定理得

$$\int_{\gamma_4} f(z) dz = -\frac{3\pi i}{4}, \lim_{R \to \infty} \int_{\gamma_2} f(z) dz = 0, \lim_{\substack{r \to 0 \\ R \to 0}} \int_{\gamma_1 \cup \gamma_2} f(z) dz = 2i \int_0^{\infty} \left(\frac{\sin x}{x}\right)^3 dx.$$

代入2.2即得.

问题 2.5.53

设函数 $f:(a,b)\to\mathbb{R}$ 连续可微,又设对于任意的 $x,y\in(a,b)$,存在唯一的 $z\in(a,b)$ 使得 $\frac{f(y)-f(x)}{y-x}=f'(z)$. 证明: f(x)严格凸或严格凹.

解. 反证法, 构造 λ 的函数

$$\Lambda(\lambda) = f(\lambda \alpha + (1 - \lambda)\beta) - \lambda f(\alpha) - (1 - \lambda)f(\beta), \quad \lambda \in (0, 1)$$

若结论不真, 则存在 $\alpha, \beta \in (a,b)$ 使 $\Lambda(\lambda)$ 在(0,1)的某两点异号, 由于f连续, 所以存在 $\lambda_0 \in (0,1)$ 使 $\Lambda(\lambda_0) = 0$. 设 $\gamma = \lambda_0 \alpha + (1-\lambda_0)\beta$, 则 $\gamma \in (\alpha,\beta) \subset (a,b)$ 且 $\frac{f(\gamma)-f(\alpha)}{\gamma-\alpha} = \frac{f(\beta)-f(\gamma)}{\beta-\gamma}$. 再由拉格朗日中值定理得出矛盾.

34 CHAPTER 2. 数学分析

问题 2.5.54

设函数f(x)在 \mathbb{R} 上无限可微, 且:

a) 存在L > 0, 使得对于任意的 $x \in \mathbb{R}$ 及 $n \in \mathbb{N}$ 有 $|f^{(n)}(x)| \leq L$.

b) $f(\frac{1}{n}) = 0$, 对所有 $n = 1, 2, 3 \cdots$.

求证: $f(x) \equiv 0$.

解. 由f在 \mathbb{R} 上无限次可微, 且由a)知f有在x = 0处的Taylor展开

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \cdots$$

设N是使 $f^{(N)}(0) \neq 0$ 的最小者, 取正整数M > 1使 $|f^{(N)}(0)| > \frac{L}{M-1}$. 则

$$\begin{split} 0 &= \left| f\left(\frac{1}{M}\right) \right| = \left| f^{(N)}(0) \frac{x^N}{N!} + f^{(N+1)}(0) \frac{x^{N+1}}{(N+1)!} + \cdots \right| \\ &\geq |f^{(N)}(0)| \frac{1}{N!M^N} - L\left(\frac{1}{(N+1)!M^{N+1}} + \frac{1}{(N+2)!M^{N+2}} + \cdots\right) \\ &\geq |f^{(N)}(0)| \frac{1}{N!M^N} - L\left(\frac{1}{N!M^{N+1}} + \frac{1}{N!M^{N+2}} + \cdots\right) \\ &= |f^{(N)}(0)| \frac{1}{N!M^N} - \frac{L}{N!} \frac{1}{M^{N+1}} \frac{1}{1 - \frac{1}{M}} \\ &= \left(|f^{(N)}(0)| - \frac{L}{M-1}\right) \frac{1}{N!M^N} > 0. \end{split}$$

这导致矛盾, 即所有 $f^{(n)}(0) = 0$, $f(x) \equiv 0$.

问题 2.5.55

设 $\{f_n(x)\}_{n=1}^{\infty} \subset C_{[a,b]}$, 且 $f_n(x)$ 在[a,b]上一致收敛于f(x), 则 $\lim_{n\to\infty}\int_a^b f_n(x)\,\mathrm{d}x = \int_a^b f(x)\,\mathrm{d}x$.

解. 因 $f_n(x) \Rightarrow f(x), x \in [a,b]$, 所以 $f \in C_{[a,b]}$ 且 $\forall \varepsilon > 0$, $\exists N$, $\exists n > N$ 时, $\forall x \in [a,b]$ 均有 $|f_n(x) - f(x)| < \varepsilon$. $f(x), f_n(x)$ 连续必可积, 有

$$\left| \int_a^b f_n(x) \, \mathrm{d}x - \int_a^b f(x) \, \mathrm{d}x \right| < (b - a)\varepsilon.$$

其实当 $a \le x \le b$ 时,有 $\left| \int_a^x f_n(t) dt - \int_a^x f(t) dt \right| < (b-a)\varepsilon$ 对x一致成立,所以 $\int_a^x f_n(x) dt \Rightarrow \int_a^x f(t) dt$.

问题 2.5.56

 $f_n(x)$ 在[a,b]上都有连续导数,且 $f_n(x) \rightarrow f(x)$, $f'_n(x) \Rightarrow g(x)$,则f'(x) = g(x),即 $\frac{\mathrm{d}}{\mathrm{d}x} (\lim_{n \to \infty} f_n(x)) = \lim_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}x} f_n(x)$.

解. 因 $f'_n
ightharpoonup g$, 所以 g连续,可积,由 2.5.55, $\int_a^x g(t) \, \mathrm{d}t = \lim_{n \to \infty} \int_a^x f'_n(t) \, \mathrm{d}t = f(x) - f(a)$,所以 f'(x) = g(x). 其实 $f_n(x) = f_n(a) + \int_a^x f'_n(t) \, \mathrm{d}t \, dt = f(x) - f(a)$,所以 f'(x) = g(x). 其实 $f_n(x) = f(a) + \int_a^x f'_n(t) \, \mathrm{d}t \, dt = f(x) - f(a)$,所以 f'(x) = g(x). 其实 $f_n(x) = f(x) - f(a)$,所以 f'(x) = g(x). 其实 $f_n(x) = f(x) - f(a)$,所以 f'(x) = g(x). 其实 $f_n(x) = f(x) - f(a)$,所以 f'(x) = g(x). 其实 $f_n(x) = f(x) - f(a)$,所以 f'(x) = g(x). 其实 $f_n(x) = f(x) - f(a)$,所以 f'(x) = g(x). 其实 $f_n(x) = f(x) - f(a)$,所以 f'(x) = g(x) .

若2.5.55和本问题中的 $f_n(x)$ 视为函数项级数 $\sum_{k=1}^{\infty} u_k(x)$ 的前n项部分和, 就有函数项级数的相应命题.

(1). 若[a,b]上 $\sum_{k=1}^{\infty} u_k(x)$ 中每项 u_k 均连续,且 $\sum_{k=1}^{\infty} u_k(x) \Rightarrow f(x)$,则 $f(x) \in C_{[a,b]}$ 且

$$\sum_{k=1}^{\infty} \int_{a}^{b} u_k(x) \, \mathrm{d}x = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

(2). 若[a,b]上, $\sum_{k=1}^{\infty} u_k(x)$ 的每项都有连续导数 $u'_k(x)$ 且 $\sum_{k=1}^{\infty} u'_k(x) \Rightarrow g(x)$, 而 $\sum_{k=1}^{\infty} u_k(x) \to f(x)$. 则

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{k=1}^{\infty} u_k(x) \right) = \sum_{k=1}^{\infty} u_k'(x).$$

问题 2.5.57

举反例:

- (1) 积分的极限不等于极限的积分的函数列.
- (2) 导数的极限不等于极限的导数的函数列.
- 解. (1). 在[0,1]上极限函数为0, 但 f_n 在[0, $\frac{1}{n}$]上面积为1的脉冲函数. (2). $f_n(x) = \frac{x}{1+n^2x^2}$, $x \in [-1,1]$.

(2).
$$f_n(x) = \frac{x}{1+n^2x^2}, x \in [-1,1].$$

问题 2.5.58: http://math.stackexchange.com/questions/2143014

证明: 对于任意的 $\alpha \in \mathbb{Q} \setminus \mathbb{Z}$, $\sum_{n=1}^{\infty} \ln \left| \frac{\alpha - n}{\alpha + n} \right|$ 发散.

问题 2.5.59: http://math.stackexchange.com/questions/472007

判断 $\sum_{n=10}^{\infty} \frac{\sin n}{n+10\sin n}$ 的敛散性.

解. 其实, 若f(n)是有界函数, 且级数 $\sum_{n=1}^n \frac{f(n)}{n}$ 收敛, a是使任意的n都有 $n+af(n)\neq 0$, 则 $\sum_{n=1}^\infty \frac{f(n)}{n+af(n)}$

$$\sum_{n=1}^{m} \frac{f(n)}{n+af(n)} = \sum_{n=1}^{m} \frac{f(n)}{n} + \sum_{n=1}^{m} \frac{-af^2(n)}{n(n+af(n))}$$

后一个和式用比较判别法.

问题 2.5.60: http://math.stackexchange.com/questions/273559

判断 $\sum_{n=1}^{\infty} \frac{\sin^2(n)}{n}$ 的敛散性.

解. 比较判别法, $[k\pi+\frac{\pi}{6},(k+1)\pi-\frac{\pi}{6}]$ 中总有至少一个整数. 或用 $\sum \frac{\sin^2(n)}{n}=\sum \frac{1}{2n}-\sum \frac{\cos(2n)}{2n}$, 前者发散, 后者用Dirichlet判别法.

问题 2.5.61: http://math.stackexchange.com/questions/991652

证明 $\int_0^1 \left| \frac{1}{x} \sin \frac{1}{x} \right| dx$ 发散.

解. 变量替换, 积分化为 $\int_1^\infty \frac{|\sin x|}{x} \,\mathrm{d}x$, 然后在子区间 $(k\pi,(k+1)\pi)$ 上求下界.

问题 2.5.62: http://math.stackexchange.com/questions/620449

证明: 求 $p \in \mathbb{R}$, 使积分 $\int_0^\infty \frac{x^p}{1+x^p} dx$ 发散.

问题 2.5.63: http://math.stackexchange.com/questions/596511

计算

$$\int_0^\infty \frac{\mathrm{e}^{-x} - \mathrm{e}^{-2x}}{x} \, \mathrm{d}x$$

解. 用Frullani积分. 结果为 $\log 2$. 或用重积分: $e^{-x} - e^{-2x} = x \int_1^2 e^{-xt} dt$. 这里给出Frullani积分证明过程的做法.

$$\int_a^b \frac{e^{-x} - e^{-2x}}{x} dx = \int_a^b \frac{e^{-x}}{x} dx - \int_{2a}^{2b} \frac{e^{-x}}{x} dx$$

$$= \left(\int_a^b - \int_{2a}^{2b}\right) \frac{e^{-x}}{x} dx$$

$$= \left(\int_a^{2a} - \int_b^{2b}\right) \frac{e^{-x}}{x} dx \to \log(2) - 0, \quad a \to 0, b \to \infty$$

上式最后一步用 $e^{-2c}\log(2) \le \int_c^{2c} \frac{e^{-x}}{x} dx \le e^{-c}\log(2)$.

问题 2.5.64: http://math.stackexchange.com/questions/590774

已知a > b > 0,求 $\lim_{t\to 0^+} (a^{-t} - b^{-t})\Gamma(t)$.

解. 注意到 $\Gamma(t) = a^t \int_0^\infty \frac{e^{-as}}{s^{1-t}} ds$, 所以

$$\lim_{t \to 0^+} (a^{-t} - b^{-t})\Gamma(t) = \int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx$$

然后用Frullani积分算得log a.

问题 2.5.65: http://math.stackexchange.com/questions/590774

已知a > b > 0,求 $\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx$.

解. 可以用Frullani积分. 这里用含参积分求导的方法,定义 $I(t) = \int_0^\infty \frac{\mathrm{e}^{-x} - \mathrm{e}^{-tx}}{x} \,\mathrm{d}x$,被积函数记为f(x,t),由f(x,t)和 $f_t(x,t)$ 在定义域均连续,I(t)关于t收敛且 $\int_0^\infty f_t(x,t) \,\mathrm{d}x$ 关于t一致收敛,则满足积分号下求导条件,所以 $\frac{\mathrm{d}I}{\mathrm{d}t} = -\frac{1}{a}$, $I = -\log t$.
解.

$$\int_0^\infty \frac{\exp(-ax) - \exp(-bx)}{x} dx = \lim_{\epsilon \to 0} \int_{\epsilon}^\infty \frac{\exp(-ax) - \exp(-bx)}{x} dx$$

$$= \lim_{\epsilon \to 0} \left[\int_{\epsilon}^\infty \frac{\exp(-ax)}{x} dx - \int_{\epsilon}^\infty \frac{\exp(-bx)}{x} dx \right]$$

$$= \lim_{\epsilon \to 0} \left[\int_{a\epsilon}^\infty \frac{\exp(-t)}{t} dt - \int_{b\epsilon}^\infty \frac{\exp(-t)}{t} dt \right]$$

$$= \lim_{\epsilon \to 0} \int_{a\epsilon}^{b\epsilon} \frac{\exp(-t)}{t} dt = \lim_{\epsilon \to 0} \int_{a}^b \frac{\exp(-\epsilon u)}{u} du$$

最后的被积函数一致收敛到1/1.

解. 用Laplace变换, $F(s) = \int_0^\infty f(x) e^{-sx} dx$, 则

$$F(s) = \int_0^\infty \frac{e^{-bx} - e^{-ax}}{x} e^{-sx} dx \implies F'(s) = -\int_0^\infty (e^{-bx} - e^{-ax}) e^{-sx} dx.$$

计算最后一个积分, 然后求积分并令 $s \to 0$, 其中积分出来的积分常数用极限 $\lim_{s \to \infty} F(s) = 0$ 计算.

2.5. 其他 37

问题 2.5.66: http://math.stackexchange.com/questions/164400

求 $\int_0^\infty \frac{e^{-x} - e^{-xt}}{x} dx = \log t$, 其中t > 0.

解. 让 $u = e^{-x}$, 得

$$\int_0^1 \frac{u^{t-1}-1}{\log u} \, \mathrm{d}u = \int_0^1 \int_1^t u^{s-1} \, \mathrm{d}s \, \mathrm{d}u = \int_1^t \int_0^1 u^{s-1} \, \mathrm{d}u \, \mathrm{d}s = \log t.$$

解. 同2.5.65的解法一.

解. 用重积分求解, $I(t)=\int_0^\infty \frac{\mathrm{e}^{-x}-\mathrm{e}^{-xt}}{x}\,\mathrm{d}x=\int_0^\infty \int_1^t \mathrm{e}^{-xs}\,\mathrm{d}s\,\mathrm{d}x$. 这里验证积分次序可交换, 则

$$LHS = \int_1^t \int_0^\infty e^{-xs} dx ds = \ln t.$$

解. 用Laplace变换, $g(s) = L[f(x)] = L\left[\frac{\mathrm{e}^{-ax} - \mathrm{e}^{-bx}}{x}\right]$, 则 $-g'(s) = L[xf(x)] = \frac{1}{s+a} - \frac{1}{s+b}$. 所以 $g(s) = \log \frac{s+b}{s+a} + c$, 由于 $g(\infty) = 0$, 所以c = 0. 从而

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} e^{-sx} dx = \log \frac{s+b}{s+a}.$$

 $\diamondsuit s = 0$ 即可.

解. 用Laplace变换, $L[1] = \int_0^\infty e^{-st} dt = \frac{1}{s}$, 则

$$LHS = \int_0^\infty \int_0^\infty (e^{-x} - e^{-xt})e^{-xs} \, ds \, dx = \int_0^\infty \left(\frac{1}{s+1} - \frac{1}{s+t}\right) = \ln \left.\frac{s+1}{s+t}\right|_0^\infty = \ln t$$

问题 2.5.67: http://tieba.baidu.com/p/2686576086

设f(x)在实轴R上有二阶导数,且满足方程

$$2f(x) + f''(x) = -xf'(x).$$

求证f(x)和f'(x)都在 \mathbb{R} 上有界.

解. 构造 $L = f^2 + \frac{1}{2}f'^2$, 研究L'. 方程可改成 $f''(x) + \frac{x}{2}f'(x) + f(x) = 0$.

问题 2.5.68: http://tieba.baidu.com/p/3846349760

证明: $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

解. 由于 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, 且 $\left(1+\frac{1}{n}\right)^n$ 单调增加,则 $\left(1+\frac{1}{n}\right)^n < e$, 于是 $\ln\left(1+\frac{1}{n}\right) < \frac{1}{n}$,从而 $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}>$ $\ln 2 + \ln\frac{3}{2}+\cdots+\ln\left(1+\frac{1}{n}\right) = \ln(n+1) > \ln n$,即得.

问题 2.5.69: http://tieba.baidu.com/p/4931607145

设f(x)在[a,b]上可导, f'(x)在[a,b]上可积. 令

$$A_n = \sum_{i=1}^n f\left(a + i \cdot \frac{b-a}{n}\right) - \int_a^b f(x) \, \mathrm{d}x.$$

试证

$$\lim_{n \to \infty} nA_n = \frac{b-a}{2} [f(b) - f(a)].$$

$$nA_n = n \left[\sum_{i=1}^n f(x_i) \cdot \frac{b-a}{n} - \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x) \, \mathrm{d}x \right]$$
$$= n \sum_{i=1}^n \int_{x_{i-1}}^{x_i} \left[f(x_i) - f(x) \right] \, \mathrm{d}x$$
$$= n \sum_{i=1}^n \int_{x_{i-1}}^{x_i} \frac{f(x_i) - f(x)}{x_i - x} (x_i - x) \, \mathrm{d}x.$$

在 $[x_{i-1},x_i]$ 上, (x_i-x) 保号, 而 $g(x)=\frac{f(x_i)-f(x)}{x_i-x}$ 连续(补充定义 $g(x_i)=f'(x_i)$). 由积分第一中值定理知, 存在 $\eta_i\in(x_{i-1},x_i)$, 使得

$$\int_{x_{i-1}}^{x_i} \frac{f(x_i) - f(x)}{x_i - x} (x_i - x) \, \mathrm{d}x = g(\eta_i) \int_{x_{i-1}}^{x_i} (x_i - x) \, \mathrm{d}x.$$

再由Lagrange中值定理, 以上 $g(\eta_i) = \frac{f(x_i) - f(\eta_i)}{\eta_i - x} = f'(\xi_i), (\xi_i \in (\eta_i, x_i) \subset (x_{i-1}, x_i)).$ 于是

$$nA_n = n \sum_{i=1}^n f'(\xi_i) \int_{x_{i-1}}^{x_i} (x_i - x) \, \mathrm{d}x = \frac{n}{2} \sum_{i=1}^n f'(\xi_i) (x_i - x_{i-1})^2$$

$$= \frac{n}{2} \cdot \frac{b - a}{n} \sum_{i=1}^n f'(\xi_i) (x_i - x_{i-1}) = \frac{b - a}{2} \sum_{i=1}^n f'(\xi_i) (x_i - x_{i-1})$$

$$\to \frac{b - a}{2} \int_a^b f'(x) \, \mathrm{d}x = \frac{b - a}{2} (f(b) - f(a)), \stackrel{\text{"}}{=} n \to \infty.$$

问题 2.5.70

$$\int_0^1 \frac{\sqrt[4]{x(1-x)^3}}{(1+x)^3} \, \mathrm{d}x = \frac{3}{64} \sqrt[4]{2}\pi.$$

问题 2.5.71

求证:

$$\int_0^\infty \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{3\pi}{8}$$

解. 让 $f(y) = \int_0^\infty \frac{\sin^3 yx}{x^3} dx$, 判断积分号下可求导, 有

$$f''(y) = \frac{3}{4} \int_0^\infty \frac{-\sin yx + 3\sin 3yx}{x} dx = \frac{3\pi}{4} \text{sign} y.$$

解. 用 $\sum_{k=1}^{\infty} \frac{\sin kx}{k} = \frac{\pi - x}{2}$,由

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \frac{\sin^3(kx)}{k^3} = \frac{9\sin(3kx) - 3\sin(kx)}{4k}.$$

则

$$\sum_{k=1}^{\infty} \frac{9\sin(3kx) - 3\sin(kx)}{4k} = \frac{3\pi}{4} - 3x.$$

积分后得:

$$\sum_{k=1}^{\infty} \frac{\sin^3(kx)}{k^3} = \frac{3\pi}{8}x^2 - \frac{1}{2}x^3.$$

2.5. 其他

取 $x = \frac{1}{n}$ 后两边同乘 n^2 得

$$\sum_{k=1}^{\infty} \frac{\sin^3 \frac{k}{n}}{(k/n)^3} \frac{1}{n} = \frac{3\pi}{8} - \frac{1}{2n}.$$

而广义 Riemann 和显示

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} \frac{\sin^3 \frac{k}{n}}{(k/n)^3} \frac{1}{n} = \int_0^{\infty} \frac{\sin^3 x}{x^3} \, \mathrm{d}x.$$

广义 Riemann 和成立的条件是 $\sum_{k=0}^{\infty} \sup_{x \in [k,k+1]} |f'(x)| < \infty$? 这不等式蕴含 $\int_{0}^{\infty} |f'| dx < +\infty$, $f' \in L^{1}(0,\infty)$.

解. 用 Parseval 定理

$$\int_{-\infty}^{\infty} f(x)g(x) dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s)G(s) ds,$$

其中 $F(s) = \mathcal{F}[f], G(s) = \mathcal{F}[g], \mathcal{F}[f] = \int_{\mathbb{R}} f(x) e^{isx} dx.$ 若 $f(x) = \frac{\sin x}{x}$, 则

$$F(s) = \begin{cases} \pi, & |s| \le 1\\ 0, & |s| > 1, \end{cases}$$

若 $g(x) = \frac{\sin^2 x}{x^2}$,则

$$G(s) = \begin{cases} \pi \left(1 - \frac{|s|}{2} \right), |s| \le 2\\ 0, |s| > 2, \end{cases}$$

所以 $\int_{\mathbb{R}} \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{1}{2\pi} \int_{-1}^1 \pi^2 \left(1 - \frac{|s|}{2} \right) \, \mathrm{d}s = \frac{3\pi}{4}.$ 即 $\int_0^\infty \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{3\pi}{8}.$

解. 用 Laplace 变换 $F(s) = \mathcal{L}[f] = \int_0^\infty f(x) e^{-sx} dx$, 对于 $f(x) = \frac{\sin^3 x}{x^3}$ 有

$$F(s) = \frac{\pi s^2}{8} + \frac{3\pi}{8} - \frac{3(s^2 - 1)}{8} \arctan s + \frac{s^2 - 9}{8} \arctan \frac{s}{3} + \frac{3s}{8} \ln \frac{s^2 + 1}{s^2 + 9}.$$

解. 用 Laplace 恒等式

$$\int_0^\infty F(u)g(u) du = \int_0^\infty f(u)G(u) du, F(s) = \mathcal{L}[f(t)], G(s) = \mathcal{L}[g(t)].$$

让 $G(u) = \frac{1}{u^3}$ 得 $g(u) = \frac{u^2}{2}$, 让 $f(u) = \sin^3 u$ 得 $F(u) = \frac{6}{(u^2+1)(u^2+9)}$, 则

$$\int_0^\infty \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{6}{2} \int_0^\infty \frac{u^2}{(u^2 + 1)(u^2 + 9)} \, \mathrm{d}u = \frac{3\pi}{8}.$$

解. 留数定理, 由 $\sin^3 x = \frac{3\sin x - \sin(3x)}{4}$ 得 $\int_{\mathbb{R}} \left(\frac{\sin x}{x}\right)^3 dx = \int_{\mathbb{R}} \frac{3\sin x - \sin(3x)}{4x^3} dx$. 围道 $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$, $\gamma_1 = [r, R]$, γ_2 是以 (0,0) 为心 R 为径的上半圆, $\gamma_3 = [-R, -r]$, γ_4 为以 (0,0) 为心 r 为径的上半圆, γ 取逆时针方向为正方向. 取 $f(z) = \frac{3e^{iz} - e^{3iz}}{z^3}$, 则 f 在 γ 内解析, 由 Cauchy-Goursat 公式

$$\oint_{\gamma} f(z) = 0, \tag{2.2}$$

并用 Laurent 展开或留数定理得

$$\int_{\gamma_4} f(z) dz = -\frac{3\pi i}{4}, \lim_{R \to \infty} \int_{\gamma_2} f(z) dz = 0, \lim_{\substack{r \to 0 \\ R \to \infty}} \int_{\gamma_1 \cup \gamma_3} f(z) dz = 2i \int_0^\infty \left(\frac{\sin x}{x}\right)^3 dx.$$

代入2.2即得.

问题 2.5.72

设函数 $f:(a,b)\to\mathbb{R}$ 连续可微,又设对于任意的 $x,y\in(a,b)$,存在唯一的 $z\in(a,b)$ 使得 $\frac{f(y)-f(x)}{y-x}=f'(z)$. 证明: f(x)严格凸或严格凹.

39

解. 反证法, 构造 λ 的函数

$$\Lambda(\lambda) = f(\lambda \alpha + (1 - \lambda)\beta) - \lambda f(\alpha) - (1 - \lambda)f(\beta), \quad \lambda \in (0, 1)$$

问题 2.5.73

设函数f(x)在 \mathbb{R} 上无限可微, 且:

- a) 存在L > 0, 使得对于任意的 $x \in \mathbb{R}$ 及 $n \in \mathbb{N}$ 有 $|f^{(n)}(x)| \le L$.
- b) $f(\frac{1}{n}) = 0$, 对所有 $n = 1, 2, 3 \cdots$.

求证: $f(x) \equiv 0$.

解. 由f在 \mathbb{R} 上无限次可微, 且由a)知f有在x = 0处的Taylor展开

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \cdots$$

设N是使 $f^{(N)}(0) \neq 0$ 的最小者, 取正整数M > 1使 $|f^{(N)}(0)| > \frac{L}{M-1}$. 则

$$\begin{split} 0 &= \left| f\left(\frac{1}{M}\right) \right| = \left| f^{(N)}(0) \frac{x^N}{N!} + f^{(N+1)}(0) \frac{x^{N+1}}{(N+1)!} + \cdots \right| \\ &\geq |f^{(N)}(0)| \frac{1}{N!M^N} - L\left(\frac{1}{(N+1)!M^{N+1}} + \frac{1}{(N+2)!M^{N+2}} + \cdots\right) \\ &\geq |f^{(N)}(0)| \frac{1}{N!M^N} - L\left(\frac{1}{N!M^{N+1}} + \frac{1}{N!M^{N+2}} + \cdots\right) \\ &= |f^{(N)}(0)| \frac{1}{N!M^N} - \frac{L}{N!} \frac{1}{M^{N+1}} \frac{1}{1 - \frac{1}{M}} \\ &= \left(|f^{(N)}(0)| - \frac{L}{M-1}\right) \frac{1}{N!M^N} > 0. \end{split}$$

这导致矛盾, 即所有 $f^{(n)}(0) = 0$, $f(x) \equiv 0$.