Merging Heaps

How can we make it fast?

- Array-based implementation:
- Pointer-based implementation:

Leftist Heaps

· Idea:

make it so that all the work you have to do in maintaining a heap is in one small part

- · Leftist heap:
 - almost all nodes are on the left
 - all the merging work is on the right

Not-so Random Definition: Null Path Length

the *null path length (npl)* of a node is the number of nodes between it and a null in the tree

- npl(null) = -1
- npl(leaf) = 0
- npl(single-child node) = 0

npl(n) = min(npl(left(n)), npl(right(n)))+ 1
another way of looking at it:
npl is the height of complete
subtree rooted at this node

Leftist Heap Properties

- Heap-order property
 - parent's priority value is ≤ to childrens' priority values
 - result: minimum element is at the root
- Leftist property
 - null path length of left subtree is ≥ npl of right subtree
 - result: tree is at least as "heavy" on the left as the right

Are leftist trees complete? Balanced?

Leftist tree examples

Right Path in a Leftist Tree is Short

If the right path has length at least
 r, the tree has at least 2^r-1 nodes

Proof by induction

Basis: r = 1. Tree has at least one node: $2^1 - 1 = 1$

Inductive step: assume true for r' < r. The right subtree has a right path of at least r - 1 nodes, so it has at least $2^{r-1} - 1$ nodes. The left subtree must also have a right path of at least r - 1 (otherwise, there is a null path of r - 3, less than the right subtree). Again, the left has $2^{r-1} - 1$ nodes. All told then, there are at least:

$$2^{r-1} - 1 + 2^{r-1} - 1 + 1 = 2^{r} - 1$$

 So, a leftist tree with at least n nodes has a right path of at most log n nodes

Merging Two Leftist Heaps

• merge(T_1 , T_2) returns one leftist heap containing all elements of the two (distinct) leftist heaps T_1 and T_2 merge

Operations on Leftist Heaps

- merge with two trees of total size n: O(log n)
- insert with heap size n: O(log n)
 - pretend node is a size 1 leftist heap
 - insert by merging original heap with one node heap
- deleteMin with heap size n: O(log n)
 - remove and return root
 - merge left and right subtrees

