

FIG. 1

...

0.0 Mercaptosilane 0.8 --- Chlorooctane --- Chlorosilane Figure 4. Effect of Additive Concentration on Aged Fiber Strength with Bis Silane --- Tetrathiol 0.7 9.0 Concentration (pph) 0.5 0.4 0.3 0.2 0.7 **+** 005 550 Aged Fiber Strength (kpsi) 009 850 -800 006

١.

5

Figure 5. Plot of γ rung's Modulus at a Function of $M_{\gamma \gamma}$ topropyltramedoxyschme Concentration.

Error bars indicate a 7% coefficient of variance for the modulus measurements.

3 t₃ (

n' 1

Figure 8. Relative Cure Speed as a Function of Mercaptopropyltrimethoxysilane Concentration.

Figure 11. Plot of relative peak intensity of the four major Bis-silane isomers as a function of reaction time in THF, water and acid.

■ denote Bis-silane solution (control) and ★ denotes Bis-silane with Mercapto-silane solution (test), respectively. Solid curves represent first-order exponential decay fits to the experimental data.

Figure 12. Total Bis-silane concentrations for coating 122 (control coating), as determined by ²⁹Si NMR measurements at 25, 35 and 60 °C.

Solid curves represent exponential decay fits to the data.

Figure 13. Total Bis-silane levels in coating 124 (test coating) as determined by in-situ ²⁹Si MAS NMR measurements at 25, 35 and 60 °C.

The curve represents the first-order decay behavior of the data at 60 °C.