Ray Casting

```
Image RayCast(Scene scene, int width, int height)
{
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(scene, ray, hit);
        }
    }
    return image;</pre>
```

Wireframe

Ray Casting

```
Image RayCast(Scene scene, int width, int height)
{
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(scene, ray, hit);
        }
    }
    return image;</pre>
```


Sem Iluminação

Ray Casting

return image;

```
Image RayCast(Scene scene, int width, int height)
{
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(scene, ray, hit);
        }
    }
}</pre>
```


Com Iluminação

lluminação

• Como calcular a radiância para um raio ?

Angel Figure 6.2

Objetivos

- Deve-se construir modelos computacionais para ...
 - Emissão nas fontes luminosas
 - Dispersão nas superfícies
 - Recepção na câmera

- Concisão
- Eficiência nos cálculos
- "Precisão"

Overview

- Iluminação Direta
 - Emissão nas fontes luminosas
 - Dispersão nas superfícies
- Iluminação Global
 - Sombras
 - Refrações
 - Reflexão entre objetos

Iluminação Direta

Emissão nas Fontes Luminosas

• $I_1(x,y,z,\theta,\phi,\lambda)$... descreve a intensidade da energia, saindo da fonte luminosa, ... chegando na posição (x,y,z), ... da direção (θ,φ), ... \circ com comprimento de onda λ (x,y,z)

Light

Modelos Empíricos

- Idealmente, mensurar energia em "todas" as situações
 - Ocupa muito espaço de armazenamento
 - Difícil de colocar em prática

Modelos de Fontes Luminosas - OpenGL

- Modelos matematicamente simples:
 - Luz Pontual (Point light)
 - Luz Spot (Spot light)
 - Luz Direcional (Directional light)

Luz Pontual

- Modela fontes pontuais omni-direcionais
 - ∘ intensidade (I₀),
 - posição (px, py, pz),
 - coeficientes (ca, la, qa) para atenuação com distância (d)

Luz Spot

- Modela fontes pontuais com direção
 - intensidade (I₀),
 - o posição (px, py, pz),
 - direção (dx, dy, dz)
 - atenuação com distância

Light

$$I_{L} = \frac{I_{0}(D \bullet L)^{sd}}{ca + 1a \cdot d + qa \cdot d^{2}}$$

if
$$(\Theta > sc) I_L = 0$$

Luz Direcional

- Modela luz pontual no infinito
 - ∘ intensidade (I₀),
 - direção (dx,dy,dz)

$$I_L = I_0$$

Dispersão nas Superfícies

- $R_s(\theta,\phi,\gamma,\psi,\lambda)$...
 - descreve a quantidade de energia incidente,
 - chegando de uma direção (θ,φ), ...
 - partindo na direção (γ,ψ), ...

- Modelo analítico simples:
 - reflexão difusa +
 - reflexão especular +
 - emissão +
 - "ambiente"

Baseado na proposta de Phong

 Suposição: a superfície reflete igualmente em todas as direções

- Qual a quantidade de luz que é refletida ?
 - Depende do ângulo de incidência

- Qual a quantidade de luz que é refletida ?
 - Depende do ângulo de incidência

$$dL = dA \cos \Theta$$

- Modelo Lambertiano
 - Lei do coseno (produto interno)

$$I_D = K_D(N \bullet L)I_L$$

Reflexão Especular

- Reflexão é mais intensa próxima do ângulo "espelho"
 - Exemplos: espelhos, metais

Reflexão Especular

Qual a quantidade de luz que é refletida ?

Depende do:

Reflexão Especular

Modelo de Phong

 \circ cos(α)ⁿ

Este é um "artifício" em bases físicas

Emissão

• Representa a luz eminada diretamente de um polígono

Emissão ≠ 0

Ambiente

Representa reflexão de toda iluminação indireta

Este é um "macete" (evita a complexidade da iluminação global)!

- Modelo analítico simples:
 - reflexão difusa +
 - reflexão especular +
 - emissão +
 - "ambiente"

- Modelo analítico simples:
 - reflexão difusa +
 - reflexão especular +
 - emissão +
 - "ambiente"

• Soma reflexão difusa, especular, emissão e ambiente

Leonard McMillan, MIT

Cálculo da Iluminação Direta

• Fonte de luz única:

Cálculo da Iluminação Direta

Múltiplas fontes luminosas:

$$I = I_E + K_A I_{AL} + \sum_{i} (K_D (N \bullet L_i) I_i + K_S (V \bullet R_i)^n I_i)$$