CS 305 Computer Networks

Chapter 2 Application Layer (2)

Jin Zhang

Department of Computer Science and Engineering

Southern University of Science and Technology

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

Electronic mail

Three major components:

- user agents
- mail servers
- simple mail transfer protocol: SMTP
 Simple mail transfer

User Agent

- a.k.a. "mail reader"
- composing, editing, reading mail messages
- e.g., Outlook, Thunderbird, iPhone mail client
- outgoing, incoming messages stored on server

Electronic mail: mail servers

mail servers:

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages
- SMTP protocol between mail servers to send email messages
 - <u>client: sending mail</u>
 <u>server</u>
 - "server": receiving mail server

Scenario: Alice sends message to Bob

- I) Alice uses UA to compose
 message "to"
 bob@someschool.edu
- 2) Alice's UA sends message to her mail server; message placed in message queue
- 3) client side of SMTP opens TCP connection with Bob's mail server

- 4) SMTP client sends Alice's message over the TCP connection
- 5) Bob's mail server places the message in Bob's mailbox
- 6) Bob invokes his user agent to read message

Electronic Mail: SMTP [RFC 2821]

- uses TCP to reliably transfer email message from client to server, port 25
- direct transfer: sending server to receiving server
- three phases of transfer
 - handshaking (greeting)
 - transfer of messages
 - closure
- command/response interaction (like HTTP)
 - commands: ASCII text
 - response: status code and phrase
- messages must be in 7-bit ASCI

Sample SMTP interaction Ter TOP Connection

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr... Sender ok C: RCPT TO: <bob@hamburger.edu>

messols: 250 bob@hamburger.edu ... Recipient ok

C: DATA
S: 354 Enter mail, end with "." on a line by itself

C: How about pickles?

C: C: S: 250 Message accepted for delivery C: QUIT

221 hamburger.edu closing connection

SMTP: final words

- SMTP uses persistent connections
- SMTP requires message (header & body) to be in 7-bit ASCIL
- SMTP server uses
 CRLF.CRLF to
 determine end of message

comparison with HTTP:

- HTTP: pull ask for
- SMTP: push have 5th to Send
- both have ASCII command/response interaction, status codes
- HTTP: each object encapsulated in its own response message
- 太

SMTP: multiple objects sent in multipart message

Mail access protocols

- SMTP # push, user agent sMTP: delivery/storage to receiver's server is not always on. 为什么不能用的 mail access protocol: retrieval from server
 - POP: Post Office Protocol [RFC 1939]: authorization, download
 - IMAP: Internet Mail Access Protocol [RFC 1730]: more features, including manipulation of stored messages on server
 - HTTP: gmail, Hotmail, Yahoo! Mail, etc.

POP3 protocol

authorization phase

- client commands:
 - user: declare username
 - pass: password
- server responses
 - +OK
 - -ERR

transaction phase, client:

- list: list message numbers
- retr: retrieve message by number
- dele: delete
- quit

S: +OK POP3 server ready

C: user bob

S: +OK

C: pass hungry

S: +OK user successfully logged on

C: list

S: 1 498

S: 2 912

S: (·)

C: retr 1

S: <message 1 contents>

s:(.)

C: dele 1

C: retr 2

S: <message 1 contents>

s:(.)

C: dele 2

C: quit

S: +OK POP3 server signing off

POP3 (more) and IMAP

more about POP3

- POP3 "download and delete" mode 下刻分析
 - Bob cannot re-read e-mail if he changes client
- POP3 "download-andkeep": copies of messages on different clients
- ROP3 is stateless across sessions

IMAP

- keeps all messages in one place: at server
 - allows user to organize messages in folders
 - keeps user state across sessions:
 - names of folders and mappings between message IDs and folder name

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

Domain Name System

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

DNS: domain name system

people: many identifiers:

SSN, name, passport #

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g.,
 www.yahoo.com used by humans

Q: how to map between IP address and name, and vice versa?

Domain Name System:

- distributed database implemented in hierarchy of many name servers
- application-layer protocol: hosts, name servers communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as applicationlayer protocol
 - complexity at network's "edge"

DNS: services, structure

DNS services

- hostname to IP address translation
- host aliasing
- mail server aliasing find the name load distribution of mail server \(\Delta \).
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- - A: doesn't

name serve

Institutional

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; Ist approximation:

- client queries <u>root server</u> to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD, authoritative servers

top-level domain (TLD) servers:

- responsible for com org, ret edu tere, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called "default name server"
- when host makes DNS query, query is sent to its local DNS server also act as institutional name server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy

DNS name resolution example

 host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

root DNS server

DNS name resolution example

recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

root DNS server

DNS: caching, updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited
- cached entries may be out-of-date (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire
- update/notify mechanisms proposed IETF standard
 - RFC 2136

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, (ttl)

type=A

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of mailserver associated with name

DNS protocol, messages

• query and reply messages, both with same message

message header

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

	2 bytes 2 bytes 2 bytes		
	identification	flags	
	# questions	# answer RRs	
	# authority RRs	# additional RRs	
	questions (variable # of questions) answers (variable # of RRs) authority (variable # of RRs)		
	additional info (variable # of RRs)		

DNS protocol, messages

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server:
 (networkutopia.com, dns1.networkutopia.com, NS)
 (dns1.networkutopia.com, 212,212.1, A)
- create authoritative server type A record for www.networkuptopia.com; type (IX) record for networkutopia.com

Attacking DNS

DDoS attacks

- bombard root servers with traffic
 - not successful to date
 - traffic filtering
 - local DNS servers cache
 IPs of TLD servers,
 allowing root server
 bypass
- bombard TLD servers
 - potentially more dangerous

redirect attacks

- man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus relies to DNS server, which caches

exploit DNS for DDoS

- send queries with spoofed source address: target IP
- requires amplification

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

examples:

- file distribution (BitTorrent)
- Streaming (KanKan)
- VoIP (Skype)

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from one server to N peers?

peer upload/download capacity is limited resource

File distribution time: client-server

- server transmission: must sequentially send (upload) N file copies:
 - time to send one copy: F/u_s
 - time to send N copies: NF/u_s
- client: each client must download file copy
 - d_{min} = min client download rate
 - min client download time: F/d_{min}

time to distribute F to N clients using client-server approach

$$D_{c-s} \ge max\{NF/u_{s,},F/d_{min}\}$$

increases linearly in N

File distribution time: P2P

- server transmission: must upload at least one copy
 - time to send one copy: F/u_s
- client: each client must download file copy
 - min client download time: F/d_{min}

- clients: as aggregate must download NF bits
 - max upload rate (limiting max download rate) is $u_s + \sum u_i$

time to distribute F to N clients using P2P approach

$$D_{P2P} \ge max\{F/u_{s_i}, F/d_{min}(NF)(u_s + \Sigma u_i)\}$$

increases linearly in $N \dots$

... but so does this, as each peer brings service capacity

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, $u_s = 10u$, $d_{min} \ge u_s$

P2P file distribution: BitTorrent

- file divided into 256Kb chunks
- peers in corrent send/receive file chunks

P2P file distribution: BitTorrent

- peer joining torrent:
 - has no chunks, but will accumulate them over time from other peers
 - registers with tracker to get list of peers, connects to subset of peers ("neighbors")

- while downloading, peer uploads chunks to other peers
- peer may change peers with whom it exchanges chunks
- churn: peers may come and go
- once peer has entire file, it may (selfishly) leave or (altruistically) remain in torrent

BitTorrent: requesting, sending file chunks

requesting chunks:

- at any given time, different peers have different subsets of file chunks
- periodically, Alice asks each peer for list of chunks that they have
- Alice requests missing chunks from peers, rarest first

sending chunks: tit-for-tat

- Alice sends chunks to those four peers currently sending her chunks at highest rate
 - other peers are choked by Alice (do not receive chunks from her)
 - re-evaluate top 4 every 10 secs
- every 30 secs: randomly select another peer, starts sending chunks
 - "optimistically unchoke" this peer
 - newly chosen peer may join top 4

BitTorrent: tit-for-tat

- (I) Alice "optimistically unchokes" Bob
- (2) Alice becomes one of Bob's top-four providers; Bob reciprocates
- (3) Bob becomes one of Alice's top-four providers

