Guía de matemática en covid-19 Quinto grado Prof. Jorge Márquez 01/01/2021

Guía de Matemática en covid-19

Quinto Grado

La guía de matemática en COVID-19, es un modelo en las enseñanzas de la matemática para niños y niñas, que rompe con el modelo tradicional, porque ahora los alumnos tienen que aprender matemática en su hogar, no pueden asistir regularmente a sus instituciones educativas por problemas de contagio con el COVID-19.

Espero, con *La guía de matemática en COVID-19*, entregar en las manos de nuestros *docentes, alumnos, padres o representantes*, un producto de calidad que apoye ampliamente el aprendizaje de la matemática en el hogar. Sobre todo a los padres y representantes, enseñar a un niño matemática no es tarea fácil.

El docente guía tu aprendizaje, la sabiduría pídesela a Dios.

Señor representante la información contenida en el *La guía de matemática en COVID-19* Puede ser copiada en un pendráis (**pen drive**) completamente gratis.

La guía de matemática en COVID-19 está dedicada a todos los niños y niñas de Venezuela por ser los más vulnerables al COVID-19.

Con cariño,

El autor

Índi	ce Pág.
BLOQ	QUE 1 NÚMEROS 1-38
•	Conjuntos y Números
•	Noción de fracción
•	Números decimales
BLOC	QUE 2 OPERACIONES39-98
•	Adición, Sustracción, Multiplicación y División con números decimales
•	Propiedades de la adición de números decimales
•	Multiplicación con números decimales
•	Propiedad de la multiplicación con números decimales
•	Potenciación.
•	Criterios de divisibilidad entre 2,3 y 5
•	Mínimo común múltiplo
•	Adición de fracciones con igual denominador
•	Adición de fracciones con distintos denominadores
•	Propiedades de la Adición de fracciones con distintos denominadores
•	Multiplicación de dos fracciones
•	División de fracciones
•	Proporciones
•	Regla de tres
•	Porcentajes
•	Anexos
BLOC	QUE 3 MEDIDAS99-113

• Medidas de longitud

• Medidas de capacidad

Medidas de masa

• Medidas de tiempo

Nociones de conjuntos

Conjunto definición:

En Matemática serie de elementos matemáticos definidos por una propiedad característica que permite conocer si un elemento determinado pertenece o no a la referida serie.

En forma simbólica:

- Símbolo o figura con que se representa un concepto
- Conjunto sistema de símbolos.

Ejemplos de conjuntos

1) Sea el conjunto B, formado por las vocales:

$$B=\{a, e, i, o, u\}$$

2) Sea el conjunto B, formado por mis nietas y nieto:

B={ Jeczeidy, Andrea, Camila, Nikol, Valeria, Cesar }

El conjunto B tiene (6) elementos Un elemento del conjunto B puede ser (Cesar)

3) Sea el conjunto C formado por tres polígonos (cuadrado, rectángulo y triángulo) una manera de representar el conjunto es la siguiente:

Un elemento del conjunto C es el Triángulo

4) Sea el conjunto D formado por cuatro símbolos de matemática $(+, \div, >, \le)$ una manera de representar el conjunto es la siguiente:

D:
$$\{+, \div, >, \leq\}$$

Un elementos del conjunto D es el símbolo más (+)

Conjunto de los Números Naturales

Conjunto de los números naturales se representa por la letra $\mathbb N$ y escribimos en llaves sus elementos, indicando con los puntos suspensivos que tiene infinitos elementos.

Representación de conjuntos y sus elementos

Ejemplo

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \dots\}$$

(Un elemento de $\,\mathbb{N}\,$ puede ser el 8)

Conjunto de los números enteros se denota por la letra $\mathbb Z$

Ejemplo

$$\mathbb{Z} = \{\dots, -5, -4, -3, -2, -1, 0, +1 + 2 + 3 + 4 + 5 \dots\}$$

Subconjuntos de $\mathbb Z$

 \triangleright El subconjunto de los enteros positivos, se denota por la letra \mathbb{Z}^+

$$\mathbb{Z}^+ = \{+1, +2, +3, +4, +5 \dots \}$$

 \triangleright El subconjunto de los enteros negativos, se denota por la letra \mathbb{Z}^-

$$\mathbb{Z}^- = \{... - 5, -4, -3, -2, -1\}$$

El subconjunto de los números enteros distintos de 0 se representa por la letra \mathbb{Z}^* Ejemplo.

$$\mathbb{Z}^* = \{ \dots - 5, -4, -3, -2, -1, +1, +2, +3, +4, +5 \dots \}$$

Números naturales

Número Naturales:

Los números naturales, como entes matemáticos utilizados no solo en el desarrollo de las matemáticas, si no como elementos de uso de la vida cotidiana, 1, 2, 3, 4, 5, ... (Aparecen como un recurso para contar, medir, etc.)

El primer número natural es él • y los siguientes se obtienen sumando • al anterior.

Ejemplos
$$0 + 0 = 2$$
; $2 + 0 = 3$; $3 + 0 = 4$

Aunque el (0) cero no es un número natural, pero forma parte de los 10 símbolos de nuestro sistema de numeración decimal.

Sistema de numeración decimal

El sistema decimal es de base 10 porque utiliza 10 símbolos:

0,1,2,3,4,5,6,7,8,9. Se trata de un sistema de numeración basado en la posición que ocupa cada cifra.

El valor de cada cifra del sistema de numeración decimal varía según el lugar que ocupa en el número.

Valor Relativo o posicional. Es el valor que adquiere el dígito por la posición (lugar) que ocupa en un número.

Ejemplo:

Determinar el valor relativo o posicional de cada dígito señalado en el siguiente número. 336

Observa:

- ➤ El valor relativo del 3 en el número 336 es diferente en cada una de las posiciones que ocupa.
- Una cifra escrita a la izquierda de otra representa un valor diez veces mayor.

2 Valor absoluto.

Es valor que tiene la cifra sea cual sea su posición que ocupe en el número . En el ejemplo anterior el 3 siempre será el 3 no importa su posición en el número 336

Notación desarrollada de un número.

Es la suma de los valores relativos de los dígitos que lo forman.

En el ejemplo el número 336 es la siguiente:

Actividades de evaluación

Determinar el **valor relativo y absoluto** de cada cifra señalada en cada número.

Número	Valor relativo	Valor absoluto
460	1	1
25 3 4	30	3
263234	200	2
5 0 932		
5 1245		
8 48979		
12 4 3656	40 000	4
13 2 534		

Escribe la notación desarrollada del siguiente número

Número	Notación desarrollada
336	300+30+6
7417	700+400+10+7
43215	
32467	
497894	

Lectura y escritura de la siguiente cifra.

4

a) 78 834 232 456 783

Solución

- Se separa de derecha a izquierda en grupos de tres cifras.
- 2 Elaboramos un cuadro y colocamos los números para facilitar su

lectura y escritura

Cuadro A

Periodo	Bi	Billones				Millo	Millones											
Clase																		
				Billones			Millardos		Millones		Miles			Unidades				
Orden				С	D	U	С	D	U	С	D	U	С	D	U	С	D	U
68834 232 456 785					7	8	8	3	4	2	3	2	4	5	6	7	8	3

Se lee de izquierda a derecha

 \Rightarrow

78 834 232 456 783

Setenta y ocho billones ochocientos treinta y cuatro millardos doscientos treinta y dos millones cuatrocientos cincuenta y seis mil setecientos ochenta y tres

Número	Se lee y escribe
100	cien
75	Setenta y cinco
1000	Mil
3 236	Tres mil doscientos treinta y seis
1 000 000	Un <mark>millón</mark>
7 652 450	Siete millones seiscientos cincuenta y dos mil cuatrocientos cincuenta
1 000 000 000	Un <mark>millardo</mark>
2 354 232 646	Dos millardos trescientos cincuenta y cuatro millones seiscientos cuarenta y seis
1 000 000 000 000	Un <mark>billón</mark>
3 123 492 365 422	Tres billones ciento veintitrés millardos cuatrocientos noventa y dos millones
	trecientos sesenta y cinco mil cuatrocientos veintidós

Lectura y escritura de las siguientes cifras.

- a) 8452235456792
- b) 2026115009024

Solución

1 Se separa de derecha a izquierda en grupos de tres cifras.

2 Se lee de izquierda a derecha.

Ocho billones cuatrocientos cincuenta y dos millardos doscientos treinta y cinco millones cuatrocientos cincuenta y seis mil setecientos noventa y dos

Actividades de evaluación

🔲. Lectura y escritura de la siguientes cifras.

Ejemplo

200800015009

200 800 015 009 (Doscientos millardos ochocientos millones quince mil nueve)

- a) 45003265978528
- b) 369745644648966
- c) 455464552540336
- d) 84598545680135
- e) 452264666945687
- f) 2540000003212
- g) 45897012301250

Redondeo de un número natural

Redondear: Hablando de cantidad prescindir de fracciones para completar unidades de cierto orden.

Para aproximar un número natural por redondeo hay que seguir ciertas reglas.

- 1) SI la cifra que elegimos le sigue un número a su derecha es menor que 5, la cifra elegida queda igual.
- 2) Si la cifra que elegimos le sigue un número mayor o igual que , aumentamos uno (1) a la cifra que elegimos.
 Ejemplos
- a) Para redondear el número 364 326 226 a la decena de un millón Observa:
 - ⑥ Es la decena de millón [®] cifra elegida
 - 4 Número a su derecha es menor que 5 (4<5)

Ubicación del número 364 326 226 en el (Cuadro A 🖗)

Periodo	Bill	ones					Millones											
Clase	Millares de																	
	Bill	ones																
				Billor	nes		Milla	ardos		M	illones	;	Mil	es		Unid	lades	
Orden	С	D	U	С	D	U	С	D	U	С	D	U	С	D	U	С	D	U
									@	3	6	4	3	2	6	2	2	6
									®	3	6	0	0	0	0	0	0	0
	Un billón				Un	milla	rdo	U	n mill	ón		Mil		•	•			

SI la última cifra que elegimos en este caso 6 le sigue un número menor que 5 la cifra elegida queda igual.

Las demás cifras que están a la derecha de la cifra elegida se igualan a cero.

Respuesta: 360 000 000

b) Para redondear el número 146 326 226 a la decena de un millón

Observa:

- 4 Es la decena de millón cifra elegida
- 6 Número a su derecha mayor que 5 (6>5)

Ubicación del número 146 326 226 en el Cuadro

Periodo	Billo	Billones					Millo	Millones										
Clase	Millares de			Millares de														
	Billo	ones																
				Billor	ies		Milla	ardos		Mi	illones		Mil	es		Unid	ades	
Orden	С	D	U	С	D	U	С	D	U	С	D	U	С	D	U	С	D	U
									4	1	4	6	3	2	6	2	2	6
)		_		_			
									F	1	5	0	0	0	0	0	0	0
				11.1.1.1					1 .		_			D 4:1				

Un billón Un millardo Un millón Mil

Si la cifra que elegimos le sigue un número mayor o igual que 5, aumentamos uno (1) a la cifra que elegimos (4+1=5)

Las demás cifras que están a la derecha de la cifra elegida se igualan a cero.

Respuesta: 150 000 000

Actividades de Evaluación 🛄

Redondear al orden indicado.

Número	Centena de millón	Decena de millón
8 473 583 916	8 500 000 000	8 470 000 000
1 782 383 616		
4 661 784 725		
3 656 333 333		

Series numéricas

Una serie numérica es un conjunto d números ordenados según un patrón.

- Una serie numérica ordenada de menor a mayor es ascendente.
- Una serie numérica ordenada de mayor a menor es descendente.
- El patrón es la relación que existe entre los números que forman la serie.
- Una serie numérica se puede formar usando las operaciones aritméticas adición, sustracción, multiplicación y división.

Serie numérica ascendente se forma con las operaciones de adición y multiplicación

Ejemplos:

a) Serie numérica de 5 términos que comienza en 2 y el patrón es multiplicar por 2

b) Serie numérica de 5 términos que comienza en 12 y el patrón es sumar 3

Serie numérica Descendente se forma con las operaciones de división y sustracción

Ejemplos:

a) Serie numérica de 5 términos que comienza en 3125 y el patrón es dividir por 5

b) Serie numérica de 5 términos comienza en 20 y el patrón es restar 4

Fracciones

Una fracción: es un número, que se obtiene de dividir un entero en partes iguales.

Término definición mat. Cada una de las cantidades que forman una razón, una proporción o un quebrado

Una fracción consta de **dos términos** el numerador y el denominador

Numerador: Indica el número de partes que se toma de la unidad

Denominador: Indica el número de partes iguales en que está dividida la unidad

La figura a: está dividida en cuatro partes iguales, cada parte representa

De la figura.

Una fracción: es un número, que se obtiene de dividir un entero en partes iguales

En este ejemplo figura (A) $\frac{1}{4}$ es la fracción

Ejemplos

Unidad sin dividir **

Explicación

- El 3 representa el número total de partes que hemos tomado se llama numerador.
- El 4 representa en cuantas partes se ha dividido la unidad se llama denominador
- En el gráfico se observa que de las cuatro partes iguales hemos coloreado tres que representa la fracción $\frac{3}{4}$ se lee tres cuartos.
 - b) Dada la fracción $\frac{3}{8}$ Representar gráficamente.

Respuesta:

l l			
l l			
l l			
l l			
l l			
l l			
l l			
l l			

Explicación

- El 3 representa el número total de partes que hemos tomado se llama numerador.
- El 3 representa en cuantas partes se ha dividido la unidad se llama denominador
- En el gráfico se observa que de las ocho partes iguales hemos coloreado tres que representa la fracción $\frac{3}{8}$ se lee tres octavos

Para leer una fracción en la que el denominador de la fracción es mayor que 10 y menor que 100. Se le agrega la palabra (avos).

Ejemplos

- 8/12 ocho doceavos
- 6/15 seis quinceavos
- 3/18 tres dieciochoavos

Actividades evaluación

Escribir en palabras las siguientes fracciones

- a) 1/4
- b) 3/6
- c) 3/15
- d) 10/5
- e) 2/16
- f) 5/18
- g) 9/13

Clases de fracciones

Fracciones	explicación	Ejemplos
Propias	Fracciones valen menos de una unidad, el <i>numerador</i> es menor que el <i>denominador</i>	$\frac{1}{4}$ =0,25< 1 (0,25 es menor que 1) $\frac{3}{4}$ =0,75< 1 (0,75 es menor que 1)
Impropias	Fracciones que valen más de una unidad, el <i>numerador</i> es mayor que el <i>denominador</i>	6/3 = 2 >1 (dos es mayor que 1) 7/2 = 3,5>1 (3,5 es mayor que 1)
Igual a la unidad	Fracciones valen igual a la unidad, el <i>numerador</i> es igual al <i>denominador</i>	4/4= 1 5/5= 1 8/8= 1
Positivas	Fracciones que están precedidas por el signo (+)	$+\frac{4}{3}$, $+\frac{2}{7}$
Negativas	Fracciones que están precedidas por el signo (–)	$-\frac{6}{1}$, $-\frac{3}{9}$
Nulas	Fracciones que tienen como numerador el cero (0)	$\frac{0}{3}$, $\frac{0}{8}$

Actividades de evaluación

En el siguiente cuadro marca con una (X) la casilla correspondiente a la clasificación de la fracción.

Fracción	Propias	Impropias	Igual a la unidad	Positivas	Negativas	Nulas
1/4	Χ					
7/8						
3/2						
5/5						
+ 1/3						
-3/2						
0/5						
7/7						
6/3						
255/6						
8/24						
0/15						
25/25						
$\frac{5}{3}$						
6 8						
$-\frac{1}{4}$						
+ 5/3						

Números mixtos y fracciones

Un número mixto está formado por un número entero y una fracción propia Ejemplo:

Número entero
$$\Rightarrow$$
 5 $\frac{1}{3}$ \Rightarrow fracción propia

Se lee cinco enteros y un tercio ⇒ 5 es el entero

Y
$$\Rightarrow \frac{1}{3}$$
 es la fracción propia.

Convertir un número mixto a una fracción impropia.

Ejemplo

Convertir 5
$$\frac{1}{4}$$
 a fracción impropia

Para convertir un número mixto a fracción impropia se procede de la siguiente manera:

• El número entero se multiplica por el denominador de la fracción y se suma el numerador de la fracción.

$$5 \ \frac{1}{4} \qquad 5.4 = 20 + 1 = 21$$

El resultado, se coloca como numerador de la nueva fracción y como denominador el mismo del número mixto $\frac{21}{4}$

Respuesta:
$$5 \frac{1}{4} = \frac{21}{4} \implies$$
 Fracción impropia

Comprobar los dos valores de las fracciones:

Observa:

- Solamente ha cambiado la forma de la fracción, ya que
 El valor es igual en ambas fracciones.
 - > Las fracciones son equivalentes.

Actividades de evaluación

Expresar los siguientes números mixtos en fracciones impropias

a)
$$7\frac{3}{4}$$
; b) $6\frac{2}{5}$; c) $3\frac{1}{3}$; d) $5\frac{1}{4}$; e) $3\frac{3}{5}$; f) $15\frac{3}{8}$

a)
$$7\frac{3}{4} \Rightarrow 7.4+3 = \frac{31}{4} \Rightarrow \text{Respuesta a}$$
 $7\frac{3}{4} = \frac{31}{4}$

Convertir una fracción impropia a un número mixto.

Ejemplo:

Convertir la fracción impropia $\frac{5}{3}$ en número mixto.

Dividir el numerador entre el denominador.

2 Respuesta: $1 \frac{2}{3}$

Explicación $\frac{5}{3} = 1 \frac{2}{3}$ (la fracción impropia $\frac{5}{3}$ se convierte en un número mixto $\frac{2}{3}$)

Actividades de evaluación

Convertir las siguientes fracciones impropias en número mixto.

a)
$$\frac{9}{4}$$
 ; b) $\frac{6}{4}$; c) $\frac{7}{4}$; d) $\frac{13}{4}$; e) $\frac{16}{5}$; f) $\frac{3}{2}$; g) $\frac{8}{5}$

Fracciones equivalentes

Dos fracciones son equivalentes, si sus productos cruzados son iguales.

Ejemplos 1

$$\frac{1}{4} = \frac{2}{8}$$

$$1 \times 8 = 4 \times 2$$

$$8 = 8$$
Productos iguales

- Realizamos la **multiplicación** cruzada y observamos que los dos productos cruzados son iguales.
 - 2 Podemos decir que las fracciones $\frac{1}{4} = \frac{2}{8}$ son equivalente.

Ejemplos 2

Otra forma **Se divide** el numerador entre el denominador en ambas fracciones y si los cocientes son iguales en las dos, **la fracciones son equivalente.**

$$\frac{1}{4} = \frac{2}{8}$$

Marcar con una (x) en la casilla correspondiente, cuáles de las siguientes fracciones son equivalentes.

Fracciones	Equivalente
1) $\frac{4}{7}$ y $\frac{8}{14}$	
2) $\frac{7}{5}$ y $\frac{8}{10}$	
3) $\frac{2}{3}$ y $\frac{3}{5}$	
4) $\frac{2}{5}$ y $\frac{4}{10}$	
5) $\frac{3}{4}$ y $\frac{6}{8}$	
6) $\frac{2}{3}$ y $\frac{4}{6}$	
7) $\frac{9}{2}$ y $\frac{18}{4}$	

Relaciones de orden en fracciones

Aplicar la relaciones de orden (>) Y (<) en las fracciones

Símbolos: (>) mayor que ; (<) menor que

Para determinar en pares de fracciones la relación (>) mayor que, (<) menor.

Se expresa la fracción como un número decimal y se ubica en la recta numérica para conocer su posición entre los números naturales y determinar cuál fracción es mayor > o menor <.

Ejemplo

Par de fracciones $\frac{1}{4}$ y $\frac{1}{2}$

- 1 Dividir (uso de la calculadora) 1÷4= 0,25
- **2** Dividir 1÷2=0,5
- 3 Los cocientes (0,25; 0,5) por aproximación se ubican en la recta numérica.

4 Observa: el número decimal 0,25 < 0,5; La fracción $\frac{1}{4} < \frac{1}{2}$

Actividades de evaluación

Copia en el cuaderno una recta numérica.

- 1) Determinar en las siguientes pares de fracciones la relación de orden (>) mayor que ; (<) menor que. Apóyate en la calculadora.
- a) $\frac{1}{3}$ $\frac{2}{3}$ b) $\frac{4}{1}$ $\frac{3}{6}$ c) $\frac{7}{8}$ $\frac{9}{6}$ d) $\frac{3}{8}$ $\frac{9}{1}$

- 2) En la recta numérica ubica las siguientes fracciones
- a) $-\frac{5}{3}$; b) $\frac{2}{1}$; c) $\frac{4}{3}$; d) $-\frac{1}{6}$; e) $\frac{7}{5}$; f) $\frac{9}{6}$; g) $\frac{3}{8}$
 - 3) Ordena de mayor a menor las siguientes fracciones
- a) $-\frac{2}{1}$; $\frac{4}{3}$; $\frac{7}{5}$; b) $\frac{8}{6}$; $\frac{3}{8}$; $-\frac{7}{4}$
 - 4) Ordena de menor a mayor las siguiente fracciones
- $(a)\frac{1}{3}$; $(a)\frac{2}{3}$; $(a)\frac{5}{1}$ b) $(a)\frac{3}{6}$; $(a)\frac{6}{8}$; $(a)\frac{9}{6}$

Números decimales

Partes de los números decimales

Los números decimales constan de una parte entera y una parte decimal Para leer un número decimal, se lee la parte entera, luego la parte decimal Ejemplo:

Lectura y escritura del siguiente número decimal 504,0025

Observa la ubicación del número decimal 504,0025 en el cuadro B

Cuadro B,

Parte entera		Parte decimal				
С	D	U	d	С	m	dm
5	0	4	0	0	2	5

(C) centena; (D); decena; (U) unidad; (d) decima; (c) centésima;

(m) milésima; (dm) diezmilésima

Explicación

La parte decimal =
$$\frac{25}{10\,000}$$
 = 0,0025 (veinticinco diezmilésima)

La parte entera =504

Suma parte entera + parte decimal.

El número decimal se escribe: 504,0025

Se lee: Quinientos cuatro enteros, veinticinco diezmilésimas.

Adición de un número entero más una expresión decimal

Ejemplo

Expresar en números.

Trescientos cuatro enteros, quince milésimas Solución.

- 1 Dividir $\frac{15}{1000}$ = 0,015 (quince milésimas) expresión decimal
- 2 Sumar un entero + una expresión decimal

Forma rápida con el uso de la calculadora: 15÷1000 + 304 = 304,015

Respuesta: 304,015

Actividades de evaluación

Expresar en números.

- a) Treinta y dos, tres décimas R: 32,3
- b) Trecientos tres enteros, doce milésimas R:
- c) Trescientos enteros, veinticuatro diezmilésimas R:
- d) Quince enteros, treinta y cinco centésimas R:
- e) Veinte enteros, quince centésimas R:
 - a) Uso de la calculadora 3÷10 + 32 = Respuesta: 32,3

Actividades de evaluación

Copia en el cuaderno el siguiente cuadro y complétalo.

Número	Parte	Parte	se lee y escribe
decimal	entera	decimal	
a) 35, <mark>002</mark>	35	0,002	Treinta y cinco enteros, <mark>dos milésimas</mark>
b) 1,75			
c) 26,08			
d) 7,0206			Siete enteros, doscientas seis
			diezmilésimas
e) 3,014			
f) 36,45			
g) 45.3			

Explicación

a) La parte decimal =
$$\frac{2}{1000}$$
 = 0,002 parte decimal

La parte entera =35

Suma parte entera + parte decimal 35

Se lee y escribe: Treinta y cinco enteros, dos milésimas

- a) Uso de la calculadora 2÷1000+35= 35,002
- c) Uso de la calculadora 206÷10000+7= 7,0206

Fracciones que son números decimales

Las fracciones que son números decimales **Ejemplos**

a)
$$\frac{1}{2} = \frac{1x5}{2x5} = \frac{5}{10} = 0.5$$

a)
$$\frac{1}{2} = \frac{1x5}{2x5} = \frac{5}{10} = 0.5$$
 b) $\frac{1}{5} = \frac{1x2}{5x2} = \frac{2}{10} = 0.2$

$$c)\frac{3}{5} = \frac{3x^2}{5x^2} = \frac{6}{10} = 0.6$$
 d) $\frac{2}{5} = \frac{2x^2}{5x^2} = \frac{4}{10} = 0.4$

d)
$$\frac{2}{5} = \frac{2x^2}{5x^2} = \frac{4}{10} = 0.4$$

Fracciones cuyo Denominador es 10 o potencia de 10, las fracciones que tienen estas características se definen como fracciones decimales o números decimales Ejemplos

Las fracciones
$$\frac{2}{10}$$
 ; $\frac{5}{100}$; $\frac{3}{1000}$; $\frac{6}{10000}$ son fracciones decimales

Ejemplo uso de la calculadora 2÷10=0,2 dos décimas

Cuadro A

Fracciones decimales	Expresión decimal	Se lee y escribe
$\frac{2}{10}$	0,2	Dos décimas
5 100	0,05	Cinco centésimas
3 1000	0,003	Tres milésima
6 10 000	0,0006	Seis diezmilésima

Actividades de evaluación

Copia en el cuaderno el siguiente cuadro y complétalo, apóyate en el Cuadro A y en una calculadora.

(El uso de la calculadora no supone que los jóvenes deban dejar de ejercitarse en el cálculo mental y en la forma tradicional de resolver operaciones sencillas de sumas, restas, multiplicaciones y divisiones, pero se justifica en operaciones complejas).

Fracciones decimales	Expresión decimal	Se lee y escribe
4		
$\overline{10}$		
7		
7		
100		
5		
1000		
1000		
3		
10 000		

Expresiones decimales

Expresiones Finitas

Una expresión decimal es finita cuando el número decimal tiene un

Número limitado de cifras.

Ejemplos:

a)
$$\frac{1}{2} = 0.5$$
; b) $\frac{1}{5} = 0.2$ c) $\frac{3}{5} = 0.6$

d)
$$\frac{4}{5} = 0.8$$
 f) $\frac{6}{5} = 1.2$

Expresiones decimales infinita

Una expresión decimal es infinita cuando el número decimal tiene un Número ilimitado de cifras.

Ejemplos:

a)
$$\frac{1}{3} = 0.333..$$
 b) $\frac{1}{6} = 0.1666..$ c) $\frac{2}{3} = 0.666..$

d)
$$\frac{4}{3} = 1,333..$$
 e) $\frac{5}{8} = 0,8333..$

Expresión decimal periódica pura

El período comienza en la primera cifra decimal

Ejemplos

a)
$$\frac{1}{3} = 0$$
, $\frac{333...}{9}$ b) $\frac{2}{3} = 0$, 666...

Expresión decimal periódica mixta

Son expresiones decimales que tienen cifras que se repiten y cifras decimales que no se repiten.

Ejemplos

a)
$$\frac{1}{6} = 0$$
, 1 666...

Período (cifras que se repiten)

Ante período (cifras que no se repiten)

Parte entera

b)
$$\frac{5}{8} = 0,8333..$$
 c) $\frac{2}{15} = 0,1333..$ d) $\frac{68}{55} = 1,23636...$

Redondeo y Aproximación y de un número decimal

Redondear: hablando de cantidad es prescindir de fracciones para completar unidades de cierto orden.

Para aproximar un número decimal por redondeo hay que seguir ciertas reglas.

- 3) SI la última cifra que conservamos le sigue un número menor que
 5, la última cifra que conservamos queda igual, aplicamos la aproximación por defecto
- 4) Si la última cifra que conservamos le sigue un número mayor o igual que 5, aumentamos en una unidad la última cifra que conservamos, aplicamos *la aproximación por exceso*.

Ejemplos

Parte 1

Cuadro A

Cifra	Aproximación a la Décimas
2, 4 2 7	2,4

Observamos en el Cuadro A que el 2 es menor que 5 la última cifra que conservamos es el 4 queda igual no aumenta , la aproximación es por defecto.

Cuadro B

Cifra	Aproximación a la Centésimas
2, 4 2 🕖	2,43

Observamos en el Cuadro B que el número 7 es mayor que 5, sumamos una unidad la última cifra que conservamos que es el (2 +1) aumenta a 3, la aproximación es por exceso

Actividades de evaluación

Aproxima por defecto o por exceso las siguientes cifras.

Cifra	Aproximación a la decimas	Aproximación a la centésimas
45,364		
6,236		
847,346		

Aproximar 15,6357 al orden indicado

Solución:

Parte	Parte entera		Parte decimal			
С	D	U	d	С	m	dm
	1	5	6	3	5	7

Número	Aprox. Décimas	Aprox. Centésimas	Aprox. Milésimas
15,6357	15,6	15,64	15,636

Actividades de evaluación

Aproximar cada uno de los siguientes números al orden indicado.

Número	Aprox. Décimas	Aprox. Centésimas	Aprox. Milésimas
116,6265	116,6	116,63	116,627
245,3754			
10,2847			
125,1931			
114,4529			

Resolver los siguientes problemas.

Determinar el pago por, redondeo por aproximación

a) En un supermercado la oferta de azúcar es, 3 kilos por Bs. 1 261 000= ¿Cuánto debo pagar por un kilo de azúcar?

Procedimiento para saber cuánto cuesta un kilo de azúcar

Dividimos Bs. 1261 000 ÷ 3 = Bs. 420 333,33...

El costo de un kilo de azúcar es Bs. 420 333,33

Pero con nuestros billetes y monedas no podemos hacer tal pago en efectivo, es necesario hacer un *redondeo por aproximación*, los cuales pueden ser:

Redondeo por aproximación: Bs. 420 333,30 0 Bs. 420 333,35

Este pago si lo podemos hacer en efectivo con billetes y monedas de nuestro país.

b) En un supermercado la oferta de café es 3 kilos por Bs. 1 141 000= ¿Cuánto debo pagar en efectivo por un kilo de café?

Comparación de fracciones con números decimales y números naturales

Comparar una fracción con un número decimal y un número natural Ejemplos:

Comparar la Fracción $\frac{5}{4}$ con el número decimal 2,125

- 1 Hallamos la expresión decimal de la fracción.
 - > Se divide el numerador entre el denominador

(Uso de la calculadora) $5 \div 4 = 1,25$

- 2 Comparamos parte entera con entera y parte decimal con decimal.
 - 2,125 1<2

1,25

Respuesta: la Fracción $\frac{5}{4} < 2,125$

Determinar en los números naturales la posición entre los cuales se encuentra una fracción.

Ejemplo

Fracción
$$\frac{5}{4}$$
.

Se expresa la fracción como un número decimal y se ubica en la recta numérica para conocer su posición entre los números naturales.

Dividir numerador entre denominador

2 El cociente 1,25 por aproximación se ubica en la recta numérica.

Respuesta: La fracción $\frac{5}{4}$ está entre los números 1 y 2

Hallar la expresión decimal delas siguientes fracciones

a)
$$\frac{5}{2} = R : 2.5$$
 ; b) $\frac{3}{4} = ----$; c) $\frac{6}{10} = -----$; d) $\frac{19}{4} = -----$ e) $\frac{5}{10} = -----$ f) $\frac{1}{2} = -----$

Completar utilizando los símbolos <, >

a)
$$\frac{19}{4}$$
 = < 5,125 ; b) $\frac{6}{2}$ = ----4,140 ; c) $\frac{5}{4}$ = ----0,75 ; d) $\frac{1}{4}$ =----- 0,50

Determinar los números naturales entre los cuales se encuentran las siguientes fracciones

a)
$$\frac{5}{2}$$
; b) $\frac{25}{9}$; c) $\frac{7}{2}$; d) $\frac{15}{6}$; $\frac{18}{5}$ e) $\frac{20}{6}$; $\frac{10}{3}$

Solución: a) $\frac{5}{2}$

- **1** Dividir (uso de la calculadora) 5÷2= 2,5
- 2 El cociente 2,5 por aproximación se ubica en la recta numérica.

Respuesta: La fracción a) $\frac{5}{2}$ está entre los números 2 y 3

Operaciones de Adición, Sustracción, multiplicación y división con números decimales

Operación: Definición mat. Procedimiento que se aplica a varias entidades matemáticas (números funciones etc.) para obtener otras de igual o distinta naturaleza.

Adición de números decimales

Ejemplo

- > Para sumar varios números decimales se operara como si fuesen enteros.
- Se colocan los sumandos de tal manera que la coma se correspondan todas entre si
- Sumamos

En la suma total la coma se colocará en la misma columna en que se encuentran todas las comas de los sumandos.

Ejercicios

Sumar las siguientes cantidades

b)
$$0.75 + 0.25 + 0.12$$

Sustracción de números decimales

Caso 1

Ejemplo 456,25 - 253,05

- Para restar dos números decimales se escribe el Minuendo y se resta el Sustraendo
- > Las comas tienen que coincidir en dichos números

Caso 2

Ejemplo 48, 2 - 7, 635

- Para restar dos números decimales se escribe el Minuendo y se resta el Sustraendo.
- > Las comas tienen que coincidir en dichos números.

Se agregan a la derecha tantos ceros como hagan falta para que el Minuendo y el Sustraendo tengan iguales cifras.

Ejercicios Resta

Minuendo: Definición mat. Primer término de una sustracción del que se resta el sustraendo para obtener la diferencia.

Operaciones combinadas de números naturales y números decimales con paréntesis

Ejemplos

Resolver

$$745 + (40, 5 - 20, 3) + (55, 80 + 0, 75)$$

Solución

$$745 + (40, 5 - 20, 3) + (55, 80 + 0, 75)$$

 $745 + 20, 2 + 56, 55$

Se resuelve primero las operaciones que dentro de los paréntesis

Resolver

a)
$$55 + (36,75 - 10,25) + (6,05 - 3,50)$$

b)
$$65 - (31, 25 + 2, 50) + (3, 80 + 1, 12)$$

Propiedades de la adición de números decimales

Propiedad Conmutativa

Ejemplo

En la propiedad conmutativa el orden de los sumandos no altera la suma.

Propiedad Asociativa

Ejemplo

$$(25,25+50,25)+6,15 = 25,25+(50,25+6,15)$$
 $75,5 + 6,15 = 25,25+56,4$
 $81,65 = 81,65$

Elemento neutro

Ejemplo

El elemento neutro para la adición es el cero

Resolver aplicando la propiedad conmutativa

- a) 25,6 + 3,7 = 3,7 + 25,6
- b) 36,05 + 0,75 = 0,75 + 36,05

Resolver aplicando la propiedad asociativa

- a) (45,25 + 36,25)+ 0,25 = 45,25 + (36,25 + 0,25)
- b) (0.15 + 0.75) + 0.10 = 0.15 + (0.75 + 0.10)

Resolver aplicando el elemento neutro

- a) 0,75 +0 = 0+ 0,75
- b) 789 + 0 = 0 + 789

Multiplicación con números decimales

Multiplicación de un decimal por un decimal

Ejemplo

46,75 X 3,25 = 151,9375

- > Se multiplican como si fueran enteros
 - Se corre la coma de derecha a izquierda en el producto total tantas cifras decimales tengan los dos factores.
 - 46,75 primer factor (dos decimales)
 - X 3,25 segundo factor (dos decimales)

 - 9 3 5 0

 ⇒ producto parcial
- 1 4 0 2 5

 ⇒ producto parcial
- 151,9375 producto total (2+2= cuatro decimales)

Propiedades de la multiplicación de números decimales

Propiedad conmutativa

Ejemplo

$$645,25 \times 12,5 = 12,5 \times 645,25$$

 $8065,625 = 8065,625$

En la propiedad conmutativa el orden de los factores no altera el producto.

Propiedad asociativa

Ejemplo

$$(7,5 \times 2,5) \times 8,5 = 7,5 \times (2,5 \times 8,5)$$

$$18,75 \times 8,5 = 7,5 \times 21,25$$

$$159,375 = 159,375$$
 Producto final es igual

Observa en la propiedad asociativa se pueden agrupar los factores de cualquier forma el producto final es igual.

Elemento neutro

Ejemplo

$$56,25 \times 1 = 56,25$$

Observa cualquier número multiplicado por (1) es igual al mismo número.

Factor cero

Ejemplo

$$345,25 \times 0 = 0$$

Observa cualquier número multiplicado por cero (0) es igual a cero.

Propiedad distributiva de la multiplicación respecto a la adición.

Ejemplo

$$35,7 \times (5,5+1,5) = 35,7 \times 5,5 + 35,7 \times 1,5$$

$$= 196,35 + 53,55$$

$$= 249,9$$

• Multiplicamos el factor que está fuera del paréntesis por cada uno de los sumandos que está dentro del paréntesis.

2 Sumamos los productos parciales.

Resolver aplicando la propiedad conmutativa

- a) $386,75 \times 4,25 = 4,25 \times 386,75$
- b) $6,50 \times 1,35 = 1,35 \times 6,50$

Resolver aplicando la propiedad asociativa

- a) $(3,5 \times 8,6) \times 5,5 = 3,5 \times (8,6 \times 5,5)$
- b) $(7,5 \times 3,6) \times 4,1 = 7,5 \times (3,6 \times 4,1)$

Resolver aplicando el elemento neutro

- a) 46,75 x 1 =
- b) 337,05 x 1

Resolver aplicando el factor cero

- a) 1,25 x 0 =
- b) 0,75 x 0 =

Resolver aplicando la propiedad distributiva de la multiplicación respecto a la adición

- a) $64.5 \times (3.5 + 2.5) =$
- b) $3.7 \times (2.8 + 5.5) =$

División de números naturales y números decimales

Para dividir un número decimal entre otro decimal se presentan varios casos

Caso 1

División de un número decimal por un número natural

Ejemplo

Observa

Se dividen como si fuesen enteros.

Fin el cociente se corre la coma de izquierda a derecha tantas cifras decimales como tenga el dividendo.

Caso 2

División de un número natural entre un número decimal.

Ejemplo

Observa

- El Dividendo se le añaden tantos ceros como decimales tenga el Divisor.
- En el Divisor se suprime la coma.
- Se efectúa la división como si fueran enteros.

Caso 3

Dividir un número decimal entre otro número decimal

Ejemplo

Procedimiento

Observa

- Se multiplica el Dividendo por la (1) unidad seguida de tantos ceros como unidades decimales se suprimen en el divisor.

- Se suprime la coma en el Divisor. 2,5 © 25
- Se efectúa la división como en el caso 1

Resolver las siguientes operaciones de suma, resta, multiplicación y división con decimales , verifica con la calculadora los resultados.

Parte I

Suma

```
a) 5,304 +8,867; b) 789,36 + 37,8975; c) 2,587+12,5; d)35,24+16,458
```

Parte II

Resta

Parte III

Multiplicación

- a) 145,56 x 2,5
- b) 35,4 x 0,25

Parte IV

División

- a) 64,55 ÷ 5
- b) 977 ÷ 3,5
- c) 8,25 ÷ 1,5

Potenciación

Potenciación: Definición mat. Operación que representa el producto de un número (base) por el mismo tantas veces como indica otro (exponente).

Ejemplo

$$2.2.2 = 2^3 = 8$$

Partes de una potencia

Exponente

Base
$$\Rightarrow$$
 2³ = 8 \Rightarrow Potencia

$$2.2.2 = 2^3 = 8$$

Observa el ejemplo.

Base: (2) factor que se repite tantas veces como lo indica el exponente.

Exponente: (3) Indica el número de veces que se toma la base como factor.

Potencia: 📽 (8) Resultado de efectuar una potenciación.

- > Dos elevado a la tercera potencia.
- > Dos a la tercera.
- > Tercera potencia de dos

Casos	Explicación	Ejemplos
1	Cuando la base es positiva y el exponente es impar el resultado es positivo.	$(+3)^3 = 3.3.3. = 27$
2	Cuando la base es negativa y el exponente es impar el resultado es negativo.	$(-3)^3 = (-3).(-3).(-3) = -27$
3	Cuando la base es negativa y el exponente es par el resultado es positivo.	$(-3)^2 = (-3).(-3) = 9$

Leyes de los signos de la multiplicación

+.+=+	Más por más igual más	+=-	Menos por más igual menos
+=-	Más por menos igual más	=+	Menos por menos igual más

Actividades de evaluación

- 1) Calcular las siguientes potencias
- a) $(5)^3 =$
- **b)** $(-4)^2 =$
- c) $(-4)^3 =$
- 2) Escribe los siguientes números en forma de potencia.
- a) 9 Repuesta: 3²
- b) 64 R=
- c) -9 R=
- d) 125 R =
- e) 81 R=

Propiedades de las potencias

Op	peración	Regla	Ejemplo
1	Multiplicación de Potencia de igual base	Se copia la misma base y se suman los exponentes	$5^2 \cdot 5^4 = 5^{2+4} = 5^6$
2	División de Potencia de igual base	Se copia la misma base y se restan los exponentes	$\frac{3^6}{3^3} = 3^{6-3} = 3^3$
3	Potencia de un Producto	Se eleva la potencia indicada tanto el multiplicando como en el multiplicador	$(6.4)^2 = 6^2.4^2$
4	Potencia de una Potencia	Se copia la misma base y se multiplican los exponentes	$(5^2)^3 = 5^{2.3} = 5^6$
5	Potencia con exponente cero (0)	Toda base elevada a un exponente 0 es igual a la unidad.	4 ⁰ = 1
6	Potencia de un Cociente	Se eleva tanto el Numerador como el Denominador a la misma potencia	$(\frac{4}{2})^2 = \frac{4^2}{2^2} = \frac{16}{4}$

Efectuar las siguientes operaciones aplicando las propiedades de la potenciación.

Ejemplo: $4^2 \cdot 4^4 = 4^{2+4} = 4^6$

- $a) \qquad \frac{2^4}{2^3} =$
- b) $6^3 \cdot 6^4 =$
- c) $(3.7)^2 =$
- d) $(4^2)^3 =$
- e) $6^0 =$
- f) $(\frac{6}{3})^3 =$

Jerarquía de las operaciones combinadas

- Se resuelven las potencias de izquierda a derecha.
- . 2 Se resuelven las operaciones de multiplicación y división.
- 3 Se resuelven las operaciones de sumas y las restas.
- 4 Cuando se encuentran dos operaciones de la misma jerarquía multiplicación y división se resuelve primero la de la izquierda.
- **5** Se resuelve primero las operaciones que dentro de los paréntesis.

Ejemplos:

a) 3+4x6

b) 7+8÷2

Solución
$$7+8\div 2 = 7+4=11$$

- c) $12 + 3^2 \times 5$ Solución $12+3^2 \times 5 = 12 + 9 \times 5 = 12 + 45 = 57$
- d) $5^2 \times 2^3 \div 2 + 5$ Solución $5^2 \times 2^3 \div 2 + 5 =$

$$25 \times 8 \div 2 + 5 = 200 \div 2 + 5 = 100 + 5 = 105$$

e) $45 + 125 \div 5 - 3 \times 5$

Solución
$$45 + 125 \div 5 - 3 \times 5 = 45 + 25 - 15 = 70 - 15 = 55$$

f) $80 \times (70+50) + (100-20 \div 5)$ Solución $80 \times (70+50) + (100-4) = 80 \times 120 + 96 = 960 + 96 = 1056$

Criterios de divisibilidad entre 2, 3, y 5

Explicación	Ejemplos
Divisibilidad entre 2	a) $420 \div 2 = 210$
Una cifra es divisible entre dos	b) $526 \div 2 = 263$
cuando el último número es cero o	c) $560 \div 2 = 280$
par	d) $648 \div 2 = 324$
Divisibilidad entre 3	a) 624
Una cifra es divisible entre tres	624 suma de sus dígitos 6+2+4 = 12
cuando la suma de sus dígitos es	12 es múltiplo de 3, nos indica que
múltiplo de (3).	624 es divisible entre 3
	$624 \div 3 = 208$
Divisibilidad por 5	a) $650 \div 5 = 130$
Una cifra es divisible entre cinco	b) $755 \div 5 = 151$
cuando el último número es (0) o (5)	

Actividades de evaluación

Indicar entre qué número son divisibles las siguientes cantidades

- a) 410 -----
- *b)* 550-----
- c) 655-----
- d) 688-----
- e) 764-----
- f) 741-----
- g) 933-----
- h) 862-----

Números primos y compuestos

Números primos	Números compuestos
Número entero se divide entre 1 y el	Número entero se divide entre 1 el
mismo.	mimo y otras cifras.
Ejemplos	Ejemplos
$3 \div 1 = 3$	$4 \div 1 = 4$
$3 \div 3 = 1$	$4 \div 2 = 2$
	$4 \div 4 = 1$
$5 \div 1 = 5$	
$5 \div 5 = 1$	$6 \div 1 = 6$
	$6 \div 2 = 3$
	$6 \div 3 = 2$
	$6 \div 6 = 1$

Ejemplos de números primos.

3, 5, 7, 11, 13, 17, 19,23,29, 31,37 41, 43, 47...

Ejemplos de números compuestos.

4, 6, 8, 9, 10, 12, 14 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, ...

Descomponer un número en sus factores primos.

Ejemplo

30 | 2

15 3

5 | 5

1

Regla:

- Se divide el número por el menor de sus factores primos.
- **El** cociente obtenido se divide nuevamente entre el menor número primo.
- 3 PS Se continúa el proceso hasta que el cociente sea igual a 1.

Actividades de evaluación

Descomponer en sus factores primos los siguientes números.

- a) 144
- b) 60
- c) 50
- d) 500
- e) 750

Mínimo Común Múltiplo

Se le asignan las letras (m.c.m)

Múltiplos de un número

Se forman multiplicando el número por todos los números naturales

$$N={0, 1, 2, 3, 4, 5, 6, 7 ...}$$

El cero (0) es múltiplo de cualquier número.

Ejemplo.

Múltiplos del 3

3x0=0

3X1=3

3x2=6

3x4=12

3x5=15

3x6=18

3x7=21

Los múltiplos de 3 son: 0, 3, 6, 12, 15, 18,21...

Hallar el mínimo común múltiplo de dos números.

Ejemplo.

Hallar el m.c.m. de 36 y 50

Se descomponen en sus factores primos (36, 50)

$$36=2^2 \times 3^2$$

$$50=2 \times 5^2$$

2 Se multiplican los factores comunes y no comunes con su mayor exponente.

m.c.m. (36, 50)=
$$2^2 \times 3^2 \times 5^2 = 4 \times 9 \times 25 = 900$$

3 Respuesta: m.c.m (36, 50)=900

Observa:

Explicación en este caso:

- Común es el 2 aparece en el número 36 y en el 50
- $^{\odot}$ No comunes el 3^2 , 5^2
- © Comunes y no comunes con su mayor exponentes 2^2 , 3^2 , 5^2

Hallar el m.c.m 75; 45; 20

Se descomponen en sus factores primos (75,45,20)

$$75 = 3 \times 5^{2}$$

$$48 = 2^{4} \times 3$$

$$20 = 2^{2} \times 5$$

2 Se multiplican los factores comunes y no comunes con su mayor exponente.

$$m.c.m = 2^4 \times 3 \times 5^2 = 16 \times 3 \times 25 = 1200$$

Respuesta: m.c.m (75, 48,20) = 1200

Hallar el m.c.m

- a) 40; 25
- b) 18; 50
- c) 30; 20
- d) 24; 60; 15
- e) 30; 90; 55

Adición de fracciones con igual denominador

Se suman los numeradores de las fracciones y como denominador, se escribe el denominador común y si es posible se simplifica la fracción

Ejemplos

Resolver

$$\frac{3}{3} + \frac{1}{3} + \frac{2}{3} = \frac{3+1+2}{3} = \frac{6}{3} = 2$$

$$\frac{-2}{8} + \frac{6}{8} + \frac{3}{8} = \frac{-2+6+3}{8} = \frac{7}{8}$$

Actividades de evaluación

a)
$$\frac{3}{5} + \frac{2}{5} + \frac{-1}{5} =$$

b)
$$\frac{5}{4} + \frac{3}{4} + \frac{2}{4} =$$

c)
$$\frac{6}{2} + \frac{8}{2} =$$

Adición de fracciones con distintos denominador

Para sumar varias fracciones con distintos denominadores se procede de la siguiente forma: Ejemplo.

Hallar la suma de las siguientes fracciones.

$$\frac{2}{6} + \frac{3}{8} =$$

Solución por el método del m.c.m.

① Se descomponen los denominadores en sus factores primos (6,8)

2 Se determina m.c.m (denominador común de las fracciones)

3 Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción.

$$24 \div 6 = 4 \times 2 = 8$$
 $24 \div 8 = 3 \times 3 = 9$

4 Hallar la fracción
$$\frac{2}{6} + \frac{3}{8} = \frac{8+9}{24} = \frac{17}{24}$$

El numerador de la nueva fracción es el resultado de las operaciones y el denominador es el denominador común.

Hallar la suma de las siguientes fracciones (método m.c.m.)

a)
$$\frac{5}{4} + \frac{3}{6} + \frac{2}{8}$$

a)
$$\frac{5}{4} + \frac{3}{6} + \frac{2}{8}$$
 b) $\frac{4}{9} + \frac{3}{14} + \frac{2}{10}$ c) $\frac{7}{4} + \frac{5}{12} + \frac{2}{8}$

c)
$$\frac{7}{4} + \frac{5}{12} + \frac{2}{8}$$

a)
$$\frac{5}{4} + \frac{3}{6} + \frac{2}{8}$$

Solución por el método del m.c.m.

Se descomponen los denominadores en sus factores primos (4, 6,8)

- **2** Hallar el Denominador común m.c.m. $(4, 6, 8) = 2^3 \times 3 = 8 \times 3 = 24$
- 3 Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción.

$$24 \div 4 = 6 \times 5 = 30$$
 $24 \div 6 = 4 \times 3 = 12$ $24 \div 8 = 3 \times 2 = 6$

4 Hallar la fracción
$$\frac{5}{4} + \frac{3}{6} + \frac{2}{8} = \frac{30+12+6}{24} = \frac{48}{24}$$

Propiedades de la adicción de fracciones con distintos denominadores

Propiedad conmutativa.

El orden de los sumandos no altera el resultado final.

Ejemplo

$$\frac{3}{4} + \frac{1}{6} = \frac{1}{6} + \frac{3}{4}$$

Solución por el método del m.c.m.

Primeras fracciones

$$\frac{3}{4} + \frac{1}{6}$$

Se descomponen los denominadores en sus factores primos (4,6)

- 2 Hallar el Común denominador m.c.m. $(4,6)=2^2 \times 3=4 \times 3=12$
- 3 Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción.

$$12 \div 4 = 3 \times 3 = 9$$
 $12 \div 6 = 2 \times 1 = 2$

4 Hallar la fracción $\frac{3}{4} + \frac{1}{6} = \frac{9+2}{12} = \frac{11}{12}$

Segundas fracciones

$$\frac{1}{6} + \frac{3}{4}$$

1 Se descomponen los denominadores en sus factores primos(6,4)

- **2** m.c.m. $(4,6)=2^2 \times 3=4 \times 3=12$ Común denominador
- Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción.

$$12 \div 6 = 2 \times 1 = 2$$
 ; $12 \div 4 = 3 \times 3 = 9$

4 Hallar la fracción
$$\frac{1}{6} + \frac{3}{4} = \frac{2+9}{12} = \frac{11}{12}$$

Resultado final.

$$\frac{3}{4} + \frac{1}{6} = \frac{1}{6} + \frac{3}{4}$$

$$\frac{11}{12} = \frac{11}{12}$$

Resolver aplicando la propiedad conmutativa, por el método del m.c.m.

a)
$$\frac{6}{3} + \frac{4}{15} = \frac{4}{15} + \frac{6}{3}$$

Solución por el método del m.c.m.

Primeras fracciones

$$\frac{6}{3} + \frac{4}{15}$$

• Se descomponen los denominadores en sus factores primos (3,15)

- Pallar el Común denominador m.c.m. (3,15)= 3x5= 15
- **3** Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción.

$$15 \div 3 = 5 \times 6 = 30$$
; $15 \div 15 = 1 \times 4 = 4$

4 Hallar la fracción
$$\frac{6}{3} + \frac{4}{15} = \frac{30+4}{15} = \frac{34}{15}$$

Segundas fracciones

$$\frac{4}{15} + \frac{6}{3}$$

1 Se descomponen los denominadores en sus factores primos (6,4)

- **2** m.c.m. (15,3)= 3x5 = 15 Común denominador
- **Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción.**

$$15 \div 15 = 1 \times 4 = 4$$
 ; $15 \div 3 = 5 \times 6 = 30$

4 Hallar la fracción
$$\frac{4}{15} + \frac{6}{3} = \frac{4+30}{15} = \frac{34}{15}$$

Resultado final.

$$\frac{6}{3} + \frac{4}{15} = \frac{4}{15} + \frac{6}{3}$$

$$\frac{34}{15} = \frac{34}{15}$$

Resolver aplicando la propiedad conmutativa, por el método del m.c.m.

b)
$$\frac{4}{6} + \frac{5}{4} = \frac{5}{4} + \frac{4}{6}$$
 Respuesta: $\frac{4}{6} + \frac{5}{4} = \frac{5}{4} + \frac{4}{6}$ $\frac{23}{12} = \frac{23}{12}$

c)
$$\frac{6}{5} + \frac{4}{8} = \frac{4}{8} + \frac{6}{5}$$
 Respuesta: $\frac{6}{5} + \frac{4}{8} = \frac{4}{8} + \frac{6}{5}$ $\frac{68}{40} = \frac{68}{40}$

d)
$$\frac{8}{9} + \frac{7}{10} = \frac{7}{10} + \frac{8}{9}$$
 Respuesta: $\frac{8}{9} + \frac{7}{10} = \frac{7}{10} + \frac{8}{9}$

Propiedad Asociativa

Ejemplo

Resolver
$$\left(\frac{2}{6} + \frac{3}{4}\right) + \frac{1}{2} = \frac{2}{6} + \left(\frac{3}{4} + \frac{1}{2}\right)$$

Solución por el método del m.c.m.

Primeras fracciones $\left(\frac{2}{6} + \frac{3}{4}\right)$

1 Se descomponen los denominadores en sus factores primos (6,4).

2 Hallar el Común denominador.

$$m.c.m.$$
 (6,4)= $2^2 \times 3 = 4 \times 3 = 12$

Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción.

$$. \quad 12 \div 6 = 2 \times 2 = 4 \qquad ; \quad 12 \div 4 = 3 \times 3 = 9$$

4 Hallar la fracción
$$\left(\frac{2}{6} + \frac{3}{4}\right) = \frac{4+9}{12} = \frac{13}{12}$$

Segundas fracciones
$$\frac{13}{12} + \frac{1}{2}$$

Se descomponen los denominadores en sus factores primos (12,2)

- **2** Hallar el común denominador *m.c.m.* (12, 2) = $2^2 \times 3 = 12$
- 3 Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción.

$$12 \div 12 = 1 \times 13 = 13$$
 ; $12 \div 2 = 6 \times 1 = 6$

4 Hallar la fracción
$$\frac{13}{12} + \frac{1}{2} = \frac{13+6}{12} = \frac{19}{12}$$

Resultado primer miembro:

$$\left(\frac{2}{6} + \frac{3}{4}\right) + \frac{1}{2} = \frac{19}{12}$$

Terceras fracciones $\left(\frac{3}{4} + \frac{1}{2}\right)$

Se descomponen los denominadores en sus factores primos (4,2)

- **2** Hallar el Común denominador m.c.m (4, 2) = $2^2 = 4$
- Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción.

$$4 \div 4 = 1 \times 3 = 3$$
 ; $\div 2 = 2 \times 1 = 2$

4 Hallar la fracción $\left(\frac{3}{4} + \frac{1}{2}\right) = \frac{3+2}{4} = \frac{5}{4}$

Cuartas fracciones
$$\frac{2}{6} + \frac{5}{4}$$

• Se descomponen los denominadores en sus factores primos (6,4)

- 2 Hallar el común denominador m.c.m. (6, 2) = $2^2 \times 3 = 12$
- Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción.

$$12 \div 6 = 2x2 = 4$$
 ; $12 \div 4 = 3x5 = 15$

4 Hallar la fracción
$$\frac{2}{6} + \frac{5}{4} = \frac{4+15}{12} = \frac{19}{12}$$

Resultado finales del ejercicio.

$$\left(\frac{2}{6} + \frac{3}{4}\right) + \frac{1}{2} = \frac{2}{6} + \left(\frac{3}{4} + \frac{1}{2}\right)$$

$$\frac{19}{12} = \frac{19}{12}$$

Actividades de evaluación

Resolver aplicando la propiedad conmutativa, por el método del m.c.m.

a)
$$\left(\frac{6}{3} + \frac{8}{15}\right) + \frac{1}{5} = \frac{6}{3} + \left(\frac{8}{15} + \frac{1}{5}\right)$$

Respuesta final: $\left(\frac{6}{3} + \frac{8}{15}\right) + \frac{1}{5} = \frac{6}{3} + \left(\frac{8}{15} + \frac{1}{5}\right)$ $= \frac{41}{15}$

b)
$$\left(\frac{5}{12} + \frac{2}{3}\right) + \frac{1}{2} = \frac{5}{12} + \left(\frac{2}{3} + \frac{1}{2}\right)$$

Respuesta final: $\left(\frac{5}{12} + \frac{2}{3}\right) + \frac{1}{2} = \frac{5}{12} + \left(\frac{2}{3} + \frac{1}{2}\right)$ $= \frac{19}{12} = \frac{19}{12}$

d)
$$\left(\frac{3}{15} + \frac{2}{6}\right) + \frac{2}{3} = \frac{3}{15} + \left(\frac{2}{6} + \frac{2}{3}\right) \implies \text{Respuesta final: } = \frac{36}{30}$$

e)
$$\left(\frac{4}{8} + \frac{3}{5}\right) + \frac{1}{4} = \frac{4}{8} + \left(\frac{3}{5} + \frac{1}{4}\right) \Rightarrow \text{Respuesta final:} = \frac{54}{40}$$

Elemento neutro de la adición de fracciones

Ejemplo

Resolver
$$\frac{1}{4} + 0 = 0 + \frac{1}{4}$$

Si a una fracción se le suma cero, el resultado será la misma fracción.

Resolver

a)
$$\frac{5}{15}$$
 + 0 =

b)
$$\frac{-3}{2}$$
 + 0 =

c)
$$0 + \frac{2}{6} =$$

Sustracción de fracciones con el mismo denominador

Para restar dos fracciones con el mismo denominador se procede de la siguiente manera:

Ejemplo.

Resolver $\frac{3}{4} - \frac{1}{4}$

• Se restan los numeradores entre sí.

$$\frac{3}{4} - \frac{1}{4} = \frac{3-1}{4} = \frac{2}{4}$$

- La diferencia se escribe como numerador dela nueva fracción.
- 3 Como denominador se escribe el denominador común.

Actividades de evaluación

a)
$$\frac{5}{3} - \frac{4}{3} = \frac{5-1}{3} = \implies$$
 Respuesta = $\frac{1}{3}$

Respuesta =
$$\frac{1}{3}$$

b)
$$\frac{7}{8} - \frac{6}{8} = \frac{}{} = \Rightarrow \qquad \text{Respuesta} = \frac{1}{8}$$

Respuesta =
$$\frac{1}{8}$$

c)
$$\frac{8}{4} - \frac{2}{4} - \frac{3}{4} = \frac{8 - 2 - 3}{4} = \frac{3}{4}$$
 Respuesta = $\frac{3}{4}$

Respuesta =
$$\frac{3}{4}$$

d)
$$\frac{15}{3} - \frac{3}{3} - \frac{5}{3} =$$

Respuesta =
$$\frac{7}{3}$$

Sustracción de fracciones con diferentes denominadores

Ejemplo

Resolver
$$\frac{3}{4} - \frac{2}{9}$$

Solución por el método del m.c.m.

• Se descomponen los denominadores en sus factores primos (4,9)

- 2 Hallar el común denominador *m.c.m.* (4,9) = $2^2 \times 3^2 = 36$
- Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción

$$36 \div 4 = 9x3 = 27$$
 ; $36 \div 9 = 4x2 = 8$

4 Hallar la fracción
$$\frac{3}{4} - \frac{2}{9} = \frac{27+8}{36} = \frac{19}{36}$$

Actividades de evaluación

Resolver por el método del m.c.m.

a)
$$\frac{2}{3} - \frac{4}{8}$$
; b) $\frac{5}{4} - \frac{3}{9}$; c) $\frac{1}{4} - \frac{5}{6} - \frac{4}{9}$

Multiplicación de dos fracciones

Para multiplicar dos o más fracciones se procede de la siguiente forma:

Ejemplo

Resolver
$$\frac{4}{6} \cdot \frac{5}{3}$$

• Se multiplican los numeradores y los denominadores de las fracciones entre sí.

$$\frac{4}{6} \cdot \frac{5}{3} = \frac{4 \cdot 5}{6 \cdot 3} = \frac{20}{18}$$

2 El producto de los numeradores es el, numerador de la nueva fracción.

3 El producto de los denominadores es el denominador de la nueva fracción. Respuesta: $=\frac{20}{18}$

Actividades de evaluación

Resolver los siguientes productos.

a)
$$\frac{5}{5} \cdot \frac{4}{3}$$
 ; b) $\frac{3}{5} \cdot \frac{6}{4}$; c) $\frac{8}{6} \cdot \frac{2}{3}$

Propiedades de la multiplicación de fracciones

Propiedad conmutativa de fracciones

El orden de los factores no altera el producto.

Ejemplo

Resolver
$$\frac{4}{6} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{4}{6}$$

Primeras fracciones.

$$\frac{4}{6} \cdot \frac{1}{3}$$

• Se multiplican los numeradores y los denominadores de las fracciones entre sí.

$$\frac{4}{6} \cdot \frac{1}{3} = \frac{4 \cdot 1}{6 \cdot 3} = \frac{4}{18}$$

- 2 El producto de los numeradores es, el numerador de la nueva fracción.
- 3 El producto de los denominadores es el denominador de la nueva fracción.

Respuesta primera fracciones: = $\frac{4}{18}$

Segundas fracciones

$$\frac{1}{3} \cdot \frac{4}{6}$$

• Se multiplican los numeradores y los denominadores de las fracciones entre sí.

$$\frac{1}{3} \cdot \frac{4}{6} = \frac{4 \cdot 1}{3 \cdot 6} = \frac{4}{18}$$

- 2 El producto de los numeradores es, el numerador de la nueva fracción.
- 3 El producto de los denominadores es el denominador de la nueva fracción.

Respuesta segundas fracciones: $=\frac{4}{18}$

Respuesta final:

$$\frac{\frac{4}{6} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{4}{6}}{\frac{4}{18}} = \frac{4}{18}$$

Propiedad asociativa de fracciones

La forma como se agrupan los factores no altera el producto.

Ejemplo

Resolver
$$\left(\frac{4}{5} \cdot \frac{3}{4}\right) \cdot \frac{1}{2} = \frac{4}{5} \cdot \left(\frac{3}{4} \cdot \frac{1}{2}\right)$$

Solución

Primera fracciones
$$\left(\frac{4}{5} \cdot \frac{3}{4}\right) \cdot \frac{1}{2}$$

• Se multiplican los numeradores y los denominadores de las fracciones entre sí.

$$\left(\frac{4\cdot 3}{5\cdot 4}\right)\cdot \frac{1}{2} = \frac{4\cdot 3\cdot 1}{5\cdot 4\cdot 2} = \frac{12}{40}$$

- 2 El producto de los numeradores es, el numerador de la nueva fracción.
- 3 El producto de los denominadores es el denominador de la nueva fracción.

Respuesta primera fracciones: =
$$\frac{12}{40}$$

Segundas fracciones
$$\frac{4}{5} \cdot \left(\frac{3}{4} \cdot \frac{1}{2}\right)$$

• Se multiplican los numeradores y los denominadores de las fracciones entre sí.

$$\frac{4}{5} \cdot \left(\frac{3}{4} \cdot \frac{1}{2}\right) = \frac{4 \cdot 3 \cdot 1}{5 \cdot 4 \cdot 2} = \frac{12}{40}$$

- 2 El producto de los numeradores es, el numerador de la nueva fracción.
- 3 El producto de los denominadores es el denominador de la nueva fracción.

Respuesta segundas fracciones: = $\frac{12}{40}$

Respuesta final

$$\left(\frac{4}{5} \cdot \frac{3}{4}\right) \cdot \frac{1}{2} = \frac{4}{5} \cdot \left(\frac{3}{4} \cdot \frac{1}{2}\right)$$

$$\frac{12}{40} = \frac{12}{40}$$

Factor cero

Todo número multiplicado por cero da como resultado cero.

Ejemplo

Resolver
$$0 \cdot \frac{1}{4} = \frac{1}{4} \cdot 0$$

Respuesta
$$0 \cdot \frac{1}{4} = \frac{1}{4} \cdot 0$$

 $0 = 0$

Propiedad distributiva de fracciones con respecto a la adición.

Ejemplo

Resolver
$$\frac{1}{2} \cdot \left(\frac{1}{2} + \frac{3}{3}\right)$$

Paso 1 Multiplicamos el factor que está fuera del paréntesis por cada uno de los sumandos que está dentro del paréntesis.

$$\frac{1}{2} \cdot \left(\frac{1}{2} + \frac{3}{3}\right) = \frac{1x1}{2x2} + \frac{1x3}{2x3}$$

Paso 2 multiplicamos los numeradores y denominadores entre sí.

Resultado =
$$\frac{1x1}{2x2} + \frac{1x3}{2x3} = \frac{1}{4} + \frac{3}{6}$$

Paso 3 Solución de la suma de fracciones por el método del m.c.m.

$$\frac{1}{4} + \frac{3}{6}$$

• Se descomponen los denominadores en sus factores primos (4,6)

2 Hallar el común denominador *m.c.m.*

$$(4; 9) = 2^2 \times 3 = 12$$

3 Se divide el denominar común entre el denominador de la fracción y el cociente obtenido se multiplica por el numerador de la fracción.

$$12 \div 4 = 3x1 = 3$$
 ; $12 \div 6 = 2x3 = 6$

4 Hallar la fracción :

$$\frac{1}{4} + \frac{3}{6} = \frac{3+6}{12} = \frac{9}{12}$$

Respuesta definitiva:

$$\frac{1}{2} \cdot \left(\frac{1}{2} + \frac{3}{3}\right) = \frac{9}{12}$$

División de fracciones

Ejemplo

Hallar el cociente $\frac{2}{5} \div \frac{3}{4}$

• Se multiplica la primera fracción por el inverso del divisor (segunda fracción).

$$\frac{2}{5} \div \frac{3}{4} = \frac{2}{5} \div \frac{4}{3} = \frac{2 \times 4}{5 \times 3} = \frac{8}{15}$$

2 Resultado: $\frac{2}{5} \div \frac{3}{4} = \frac{8}{15}$

Leyes de los signos de la División

Más entre menos igual menos Menos entre más igual menos

Proporciones

Una proporción es una igualdad entre dos fracciones

Términos de una proporción

$$\frac{extremo \Rightarrow 2}{medio \Rightarrow 4} = \frac{4 \Rightarrow medio}{8 \Rightarrow extremo}$$

En toda proporción el producto de los extremos debe ser igual al producto de los medios.

$$extremos 2x8 = 16$$
$$medios 4x4 = 16$$

Podemos escribir proporciones como fracciones equivalentes.

Dos magnitudes pueden ser:

Directamente proporcionales

Este tipo de magnitudes, cuando una aumenta o disminuye la otra lo hace en la misma proporción.

Ejemplo:

Para preparar 2 tazas de arroz se necesitan 4 tazas de agua, si se preparan más tazas de arroz se necesitan más tazas de agua.

Tazas de arroz	2	4	6	8	10
Tazas de agua	4	8	12	16	20

Observa:

En estas magnitudes el cociente entre dos valores es siempre el mismo.

$$\frac{2}{4}$$
 = 0,5 ; $\frac{4}{8}$ = 0,5 ; $\frac{6}{12}$ = 0,5; $\frac{8}{16}$ = 0,5 ; $\frac{10}{20}$ = 0,5

88

Inversamente proporcionales

En este tipo de magnitudes, cuando una aumenta la otra disminuye en la misma proporción.

Un ejemplo de magnitudes inversamente proporcional, es el tiempo que tardan varios albañiles para construir una vivienda, mientras más albañiles hay menos tiempo se tardan para construir la vivienda.

Albañiles	Tiempo
10	4 mes
20	2 meses
40	1 mes

Observa:

En estas magnitudes el producto entre dos valores es siempre el mismo.

$$10 \times 4 = 40$$
 ; $20 \times 2 = 40$; $40 \times 1 = 40$

Regla de tres

Proceso que permite hallar un cuarto término de la proporción cuando conocemos tres.

Regla de tres simple directa

En el problema los tres valores conocido de la proporción son los datos, y el cuarto valor lo desconocemos es la incógnita.

Ejemplo.

Si tres kilo de azúcar cuestan bolívares 1 500 000= ¿Cuánto cuestan dos kilos de azúcar?

.Datos:

- a) 3 kilos de azúcar
- b) 2 Kilos de azúcar
- c) Precio en Bs.
- d) Incógnita (x): costo de 2 Kilos de azúcar

Planteamiento:

1 Si **3** kg cuestan **1** 500 000 Bs.

2 kg costará X

Hallar el valor de X

$$X = \frac{2 kg \times 1500000 Bs}{3 kg} = 10000000 Bs.$$

X= 1 000 000 Bs.

Respuesta: costo de 2 kg de azúcar 1 000 000 Bs.

90

Regla de tres simple Inversa

Ejemplo:

Problema

Si 6 albañiles construyen una pared en 12 días ¿en cuántos días la construyen 8 albañiles?

Planteamiento:

- O Si 6 albañiles tardan 12 días
 - 8 albañiles tardarán X
- Solución

El problema es la relación entre el número de albañiles que trabajan y el tiempo que tardan en realizar el trabajo es inversamente proporcional, es decir a más albañiles trabajando, menos tiempo utilizado, menos albañiles trabajando más tiempo utilizado.

$$\frac{6 \text{ alba} \tilde{\text{niles}}}{8 \text{ alba} \tilde{\text{niles}}} = \frac{X \text{ días}}{12 \text{ días}}$$

3 Hallar el valor de X

$$X = \frac{6 \times 12}{8} = 9 \text{ dias}$$

X= 9 días

Respuesta: 8 albañiles realizarán el trabajo en 9 días.

Porcentaje

Se llama porcentaje a la proporción de una cantidad en relación a otra, que se calcula sobre la centena; es decir tanto por ciento es una fracción cuyo denominador es 100.

El símbolo de "por ciento" es (%.)

Ejemplo "25 por ciento" se escribe "25%"

Expresiones de porcentajes:

- $ightharpoonup Fracción <math>\Rightarrow \frac{25}{100}$
- ➤ Número decimal ⇒ 0,25
- ➤ Veinticinco por ciento ⇒ 25%
 Ejemplo:

Determinar el 25% de 500 Soluciones:

a)
$$500 \times \frac{25}{100} = \frac{25 \times 500}{100} = 125$$

c)
$$500 \times \frac{1}{4} = \frac{500 \times 1}{4} = 125$$

$$\frac{25}{100}$$
 = 0,25 \Rightarrow fracciones equivalentes $\frac{1}{4}$ = 0,25; $\frac{2}{8}$ = 0,25 ; $\frac{3}{12}$ = 0,25...

Actividades de evaluación

Completa el siguiente cuadro.

Por	centaje	Se lee	Fracción decimal	Número decimal
1	25%	Veinticinco por ciento	$\frac{25}{100}$	0,25
2	40%			
3	20%			
4	35%			
5	50%			
6	12%			

Calcular los siguientes porcentajes.

- a) El 12% de 200 ⇒ Respuesta: 24
- b) El 45% de 500
- c) El 50% de 400
- d) El 25% de 350
- e) El 75% de 750
- f) El 10% de 925
- a) 12% de 200 Solución

$$\frac{12}{100}$$
 X 200 = $\frac{12x200}{100}$ = 24

Respuesta: El 12% de 200 = 24

Números Romanos

Cifras Romanas	I	V	X	L	С	D	M
Valor decimal	uno	cinco	diez	cincuenta	cien	quinientos	mil

Cifras	Reglas	Ejemplos
1	Si a la derecha de una cifra se escribe otra igual	I uno
	o menor, el valor de la primera queda	II dos
	aumentado en el de la segunda.	
V		VI seis
		VII siete
X		XI once
		XX veinte
L		LX sesenta
		LXV sesenta y cinco
С		CL ciento cincuenta
D		DC seiscientos
M		MD mil quinientos
	Las cifras romanas I, X, C, y M se pueden repetir	III tres
	hasta un máximo de tres veces.	XXX treinta
		CCC trescientos
		MMM tres mil
	Si a la izquierda de una cifra se escribe otra de	IV cuatro
	menor valor, la primera cifra queda disminuida	IX nueve
	en el valor de la segunda.	XL cuarenta
		XC noventa
		CD cuatrocientos
		CM novecientos
	El valor de una cifra queda multiplicado por mil	_
	si se le coloca una raya horizontal encima de	X diez mil
	ella y por un millón si se colocan dos rayas.	=
		X diez millones

Sinónimos y antónimos

Palabras	Sinónimo	Antónimo
Antónimo	Contrario, opuesto,	
Anotar	Apuntar, escribir, registrar, relacionar, explicar	
Apuntar	Escribir, anotar, registrar, inscribir,	Borrar , tachar
Arte	Ciencia, disciplina, técnica procedimiento, método sistema, orden, maña, habilidad,	Incapacidad
	experiencia	
Axioma	Verdad, proverbio, principio, regla, evidencia	
Calcular	Contar, computar, tantear, determinar, operar	
Cálculo	Computo, cuenta, recuento, operación, enumeración	
Cantidad	Suma, total, cuantía importe, conjunto, aumento.	Falta, carencia.
Capacidad	Volumen, tonelaje, dimensión, inteligencia, talento, competencia, aptitud.	Ineptitud
Caso	Incidente, acontecimiento, materia, tema punto	
Causa	Motivo, razón, fundamento, fuente, principio, precedente.	Efecto, resultado
Cifra	Guarismo, número, signo, símbolo, cantidad, representación, notación, sigla, clave.	
Clasificar	Agrupar, ordenar, dividir, separar, organizar, coordinar, registrar.	Juntar, desordenar.
Concluir	Terminar, finalizar, acabar, completar, agotar, liquidar	Empezar, iniciar
Conclusión	Deducción, consecuencia, inferencia, resultado, término, desenlace, fin, cierre, abandono	Principio, apertura
Conjunto	Grupo, combinación totalidad, serie, mezcla	Unidad, parte
Convertir	Modificar, transformar, cambiar, alterar, rectificar, variar corregir	Conservar
Cuenta	Computo, cálculo, enumeración, importe, suma, nota	

Sinónimos y antónimos

Palabras	Sinónimo	Antónimo
Equivalente	Similar, parecido, semejante, paralelo, igual, gemelo,	Desigual
Leer	Estudiar, examinar, descifrar, contar, explicar, observar, comprender.	Ignorar, confundir
Numerar	Contar, ordenar, marcar, enumerar, inscribir, disponer, clasificar,	Confundir
Número	Guarismo, cifra, símbolo, signo, expresión, representación, cantidad, conjunto, cuantía, total, proporción, cuota.	Unidad, carencia, falta
Regla	Mandato, orden, guía, fórmula, reglamento, método.	
Substracción	Resta, disminución, cálculo, resultado,	Suma
Sustracción	operación, descuento.	
Significado	Sentido, acepción, alcance, valor fuerza, motivo.	
Significar	Simbolizar, representar, expresar, exponer, comunicar, enunciar.	Omitir
Signo	Trazo, marca, símbolo, letra, cifra,	Señal
Símbolo	Emblema, efigie, letra, sigla fórmula, figura, imagen.	Realidad
Suma	Adición, total, aumento, resultado, incremento, cuenta, operación	Resta
Ubicar	Colocar, poner, situar, estar, encontrarse.	Quitar
Unidad	Número, cifra, cantidad, uno, comparación.	
Valor	Precio, estimación, costo, importe, total, monto, gasto.	

Se escriben en una sola palabra las cifras del uno (1) al treinta (30), también las decenas, las centenas y mil

Se escriben en palabras separadas las cifras a partir del treinta y uno (31) en adelante.

Νº	Se lee y escribe	Nº	Se lee y escribe	Nº	Se lee y escribe	Nº	Se lee y escribe
1	uno	21	veintiuno	31	treinta y uno	145	ciento cuarenta y cinco
2	dos	22	veintidós	32	treinta y dos	325	trescientos veinticinco
3	tres	23	veintitrés	33	treinta y tres	520	quinientos veinte
4	cuatro	24	veinticuatro	34	treinta y cuatro	1204	mil doscientos cuatro
5	cinco	25	veinticinco	35	treinta y cinco	8003	Ocho mil tres
6	seis	26	veintiséis	36	treinta y seis	26000	Veintiséis mil
7	siete	27	veintisiete	37	treinta y siete	2503	Dos mil quinientos tres
8	ocho	28	veintiocho	38	treinta y ocho		un millón
9	nueve	29	veintinueve	39	treinta y nueve		un billón
10	diez	30	treinta	41	Cuarenta y uno		mil trillones
11	once			53	Cincuenta y tres		
12	doce			68	Sesenta y ocho		
13	trece			70	setenta		
14	catorce			80	ochenta		
15	quince			90	noventa		
16	dieciséis			100	Cien		
17	diecisiete			200	doscientos		
18	dieciocho			300	trescientos		
19	diecinueve			400	cuatrocientos		

20	veinte	500	quinientos	
		1000	mil	

97
Tabla de notaciones y Símbolos Matemáticos

Símbolo	Nombre	Ejemplo
{}	Notación de	Conjunto de números naturales se
	conjunto	denota por N y sus elementos son:
		N={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
+	más	5+6=11
-	menos	7-3=4
xo.	multiplicado	4x6=24
	por	
÷	dividido por	$\frac{6}{3}$ =3
=	igual	5=5 se lee cinco es igual a cinco
<	menor que	8<9 se lee ocho es menor que nueve
>	mayor que	10>7 se lee diez es mayor que siete
≤	menor o igual	5≤9 se lee cinco es menor o igual
	que	que nueve
≥	mayor o igual	8≥6 se lee ocho es mayor o igual
	que	que seis
N	Conjunto de	Elementos de N son:
	los números	N={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
	naturales	
Z	Conjunto de	Elementos de Z son:
	los números	$Z={3-2-1\ 0,+1,+2,+3\}$
	enteros	Los puntos suspensivos nos indican
		que Z se extiende indefinidamente
		hacia la izquierda y hacia la derecha.
Q	Conjunto de	Elementos de Q son:
	los números	$Q = \left\{ \dots - \frac{3}{2} - \frac{1}{4} - 0, + \frac{1}{5} + \frac{3}{1} \dots \right\}$
	racionales	(2 4 5 1)

98

Medidas de longitud

Para medir longitudes, se pueden utilizar instrumentos como, la cinta métrica y la regla, graduada, otras.

Cuadro A

El Metro es la unidad

Transformación de unidades

Ejemplos

a) Transformar 125 Km a m

Procedimiento

Observa el Cuadro A, la transformación en las unidades de longitud, varían de 10 en 10. Debemos bajar tres escalones, como va de mayor a menor (Km a m) nos indica que debemos multiplicar por 1000.

125 Km X 1000 = 125 000 m Respuesta: 125 000

99

b) Transformar 625 cm a m

Procedimiento

Observa el Cuadro A, la transformación en las unidades de longitud, varían de 10 en 10. Debemos subir dos escalones, como va de menor a mayor (cm a m) nos indica que debemos dividir por 100.

625 cm ÷100 = 6,25 m Respuesta: 6,25 m

Conclusión

Las transformaciones en las unidades de (longitud, masa, capacidad) de una sola dimensión las realizamos multiplicando Cuadro B, o Dividiendo Cuadro C Observa los cuadros B y C

Bajo	1	Escalón	X	10
Bajo	2	Escalones	X	100
Bajo	3	Escalones	X	1000
Bajo	4	Escalones	Х	10 000
Bajo	5	Escalones	Х	100 000
Bajo	6	Escalones	X	1 000 000

Cuadro C División

Subo	1	Escalón	÷	10
Subo	2	Escalones	÷	100
Subo	3	Escalones	÷	1000
Subo	4	Escalones	÷	10 000

Subo	5	Escalones	÷	100 000
Subo	6	Escalones	÷	1 000 000

100

Ejercicios

Transformar:

a) 135 m a mm Respuesta: 135X1000= 135 000 mm

b) 2150 Km a mm Respuesta: 2 150X1000 000 = 2 150 000 000 mm

c) 455 m a cm Respuesta: 455x100= 45500 cm d) 890m a dm Respuesta: 890x10= 8900 dm

e) 175 mm a m Respuesta: 175÷1000= 0,175 m

f) 87 mm a Km Respuesta: 87÷1000 000 = 0,000087 Km

g) 75 m a Km Respuesta: 75 ÷1000=0,075 Km

h) 25 mm a dm Respuesta: 25÷10=2,5 dm

Actividades de evaluación

Transformar. (Apóyate en los cuadro A, B o C según sea el caso)

- a) 36 Hm a dam
- b) 125,3 m a mm
- c) 114,26 Km a m
- d) 3 Km a mm

Resolver

a) ¿Cuántos mm hay en 1 metro y 30 centímetros?
 Solución

Paso 1 Se convierten las medidas a mm

1 m a mm $1 \times 1000 = 1000 \text{ mm}$

30 cm a mm 30 x 10 = 300 mm

Paso 2 Se suman los mm 1 000 mm + 300 mm = 1 300 mm

Respuesta: 1 300 mm

101

Medidas de masa

Kilogramo: Mat. Fis. Unidad de masa del sistema Giorgi. También se le da el nombre de Kilo y se simboliza (Kg)

Cuadro A

El Gramo es la unidad

Transformación de unidades

Ejemplos

a) Transformar 2,6 Kg a g

Procedimiento

Observa el Cuadro A, la transformación en las unidades de masa, varían de 10 en 10. Debemos bajar tres escalones, como va de mayor a menor (Kg a g) nos indica que debemos multiplicar por 1000.

102

b) Transformar 350 cg a g

Procedimiento

Observa el Cuadro A, la transformación en las unidades de masa, varían de 10 en 10. Debemos subir dos escalones, como va de menor a mayor (cg a g) nos indica que debemos dividir por 100.

Conclusión

Las transformaciones en las unidades de (longitud, masa, capacidad) de una sola dimensión las realizamos multiplicando Cuadro B, o Dividiendo Cuadro C

Cuadro B Multiplicación

Bajo	1	Escalón	X	10
Bajo	2	Escalones	X	100
Bajo	3	Escalones	X	1000
Bajo	4	Escalones	Х	10 000
Bajo	5	Escalones	Х	100 000
Bajo	6	Escalones	X	1 000 000

Subo	2	Escalones	÷	100
Subo	3	Escalones	÷	1000
Subo	4	Escalones	÷	10 000
Subo	5	Escalones	÷	100 000
Subo	6	Escalones	÷	1 000 000

103

Actividades de evaluación

Transformar Observe los cuadros A B o C según sea el caso.

⑤ Tiempo

Parte I	Operaciones	
a) 35 Kg a g	35 x 1000	Respuesta a) 35 000 g
b) 15,8 mg a g	15,8÷1000	Respuesta b) 0,0158 g
c) 3,5 dg a g	3,5÷10	Respuesta c) 0,35 g
d) 589 cg a mg		
e) 3,5 dg a g		
f) 275 g a mg		

Parte II

Problema

En una bolsa hay los siguientes productos:

1 paquete de harina 1 kg

1 paquete de azúcar 1 Kg

1 paquete de café 500 g

1 mantequilla 250 g

¿Cuántos kilogramos pesan los productos de la bolsa?.

Para resolver problemas con medidas expresadas en unidades distintas, convertimos las cantidades a una misma unidad y luego operamos.

1 Convertimos Los gramos kilogramos

500 g a Kg \Rightarrow 500 ÷ 1000 = 0,5 Kg

250 g a Kg

⇒ 250÷ 1000 = 0,25 Kg

2 Para responder hay que sumar el peso de cada artículo en kilogramos

Harina 1 Kg

Arroz 1 Kg

Café 0,5 Kg

Mantequilla 0,25 Kg

Total 2,75 Kg

Respuesta: Los productos pesan 2,75 Kg.

Otra respuesta: 2 Kg con 750 g.

105

Medida de capacidad

Capacidad: Estas medidas se utilizan para medir cantidad de líquido que puede ocupar un volumen dado.

Cuadro A

El litro es la unidad

<mark>Submúltiplos</mark>

Transformación de unidades

Ejemplos

c) Transformar 2,6 & a m&

Procedimiento

Observa el Cuadro A, la transformación en las unidades de capacidad, varían de 10 en 10. Debemos bajar tres escalones, como va de mayor a menor (ℓ a mℓ) nos indica que debemos multiplicar por 1 000.

2,6 & X 1 000 = 2 600 m&

106

d) Transformar 35 ce a e

Procedimiento

Observa el Cuadro A, la transformación en las unidades de capacidad, varían de 10 en 10. Debemos subir dos escalones, como va de menor a mayor (clal) nos indica que debemos dividir por 100.

35 cℓ ÷100 = 0,35 €

Conclusión

Las transformaciones en las unidades de (longitud, masa, capacidad) de una sola dimensión las realizamos multiplicando Cuadro B, o Dividiendo Cuadro C

Cuadro B Multiplicación

Bajo	1	Escalón	X	10
Bajo	2	Escalones	X	100
Bajo	3	Escalones	X	1000
Bajo	4	Escalones	X	10 000
Bajo	5	Escalones	Х	100 000
Bajo	6	Escalones	Х	1 000 000

Cuadro C División

Subo I Escaloli 7 IO	Subo 1 Escalón ÷ 10	
----------------------	---------------------	--

Subo	2	Escalones	÷	100
Subo	3	Escalones	÷	1000
Subo	4	Escalones	÷	10 000
Subo	5	Escalones	÷	100 000
Subo	6	Escalones	÷	1 000 000

107

Actividades de evaluación

Transformar Observe los cuadros A B o C según sea el caso. S Tiempo

Operaciones

- a) 150 e a me 150 X 1 000
- b) 125 e a he 125÷ 100
- c) 145,36 Ke a e
- d) 125,467 mℓaℓ
- e) 2 Hℓ aℓ

Respuesta: a)150 000 m€

Respuesta: b)1,25 he

El calendario

Calendario: Matemática. Sistema de división del tiempo en intervalos (días, semanas, meses, año)

Cuadro A

Días de la	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo				
semana											
Meses	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Sept	Oct	Novie.	Diciembre
del año											
Días del											
mes	31	28,29	31	30	31	30	31	30	31	30	31

Febrero tiene 28 días al año, y cada 4 años tiene 29 días.

Cuadro B

Actividades de evaluación: apóyate en los Cuadros A y B 🕓 Tiempo

- 1) ¿Cuántos meses son cinco años?
- 2) ¿Cuántas semanas tiene un año?
- 3) ¿Cuántos días tiene una semana?
- 4) ¿Cuántas semanas tienen dos años y medios?
- 5) ¿Cuántos días tienen tres años?

109

Convertir (apóyate en los Cuadros Ay B)

Ejemplos:

1) 10 semanas a días

Procedimiento

1 semana son 7 días

Multiplico 10 semanas X 7 dias = 70 días

Respuesta: 70 días

- 2) 7 semanas a días
- 3) 4 años a semanas
- 4) 3 años a días
- 5) 6 años a meses

El reloj

Reloj: Mat. Máquina dotada de movimiento uniforme, que sirve para medir el tiempo o dividir el día en hora, minutos y segundos

MULTIPLOS DEL SEGUNDO

NOMBRE	SIMBOLO	RELACION CON EL SEGUNDO
día	d	86 400
hora	h	3 600
minuto	min	60
SEGUNDO	S	1

Un minuto 60 segundos

Una hora = 60X60=3 600 segundos

Un día = 3 600X24 horas=86 400 segundos

Cuadro A

1 día = 24 horas

1	hora	=	60 minutos
1/2	hora	=	30 minutos
1/4	hora	=	15 minutos
3/4	hora	=	45 minutos

60 segundos minuto =

Actividades de evaluación

Convertir (apóyate en el cuadro A)

Ejemplo

1) 3 horas y media a minutos

Procedimiento:

1 hora= ⇒ 60 minutos

Media hora son 30 minutos

Sumamos= ⇒180 minutos +30 minutos =210 minutos

112

- 2) 8 horas a minutos
- 3) 10 horas y media a minutos
- 4) 3 hora y cuarto a minutos
- 5) 1 día en minutos

Resolver los siguientes problemas.

a) ¿Cuántos días hay en 9 años?

- b) ¿Cuántos días hay en 12 semanas?
- c) ¿Cuántos minutos hay en 6 horas?
- d) ¿Cuántas semanas hay 13 años?
- e) ¿Cuántos minutos hay en 10 horas?

