

## Modern Control Theory (ICE 3153)

### Lyapunov Stability Analysis

Bipin Krishna
Assistant Professor (Sr.)
ICE Department
Manipal Institute of Technology
MAHE, Karnataka, India

### Lyapunov Stability-Basics

- The General Problem of Motion Stability, includes two methods for stability analysis (the so-called linearization method and direct method)
- The linearization method draws conclusions about a nonlinear system's local stability around an equilibrium point from the stability properties of its linear approximation.
- The direct method is not restricted to local motion, and determines the stability properties of a nonlinear system by constructing a scalar "energy-like" function for the system and examining the function's time variation.

### **Stability and Instability**

**Definition**: The equilibrium state  $\mathbf{x} = \mathbf{0}$  is said to be stable (or Lyapunov stable) if, for any  $\mathbf{R} > \mathbf{0}$ , there exists r > 0, such that if  $||\mathbf{x}(0)|| < r$ , then  $||\mathbf{x}(t)|| < \mathbf{R}$  for all  $t \ge 0$ . Otherwise, the equilibrium point is unstable.

### Figure: Concepts of stability



**Definition**: An equilibrium point 0 is asymptotically stable if it is stable, and if, in addition, there exists some r > 0 such that  $/|\mathbf{x}(0)|| < r$  implies that  $\mathbf{x}(t) \rightarrow \mathbf{0}$  as  $t \rightarrow \infty$ 

—Asymptotic stability means that the equilibrium is stable, and that in addition, started close to  $\mathbf{0}$  actually converge to  $\mathbf{0}$  as time t goes to  $\infty$ .

—marginally stable: An equilibrium point which is Lyapunov stable but not asymptotically stable.

—Domain of attraction of the equilibrium point: the **largest region** such that trajectories initiated at the points in the region eventually converge to the origin.

# Linearization and Local Stability

Consider the autonomous system  $\dot{x} = f(x)$  assuming  $\mathbf{f}(\mathbf{x}) \in C'$  is continuously differentiable and f(0)=0. Then the system dynamics can be written as

$$\dot{\mathbf{x}} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)_{\mathbf{x} = \mathbf{0}} \qquad \mathbf{x} + \mathbf{f}_{h. \ o. \ t.} \left(\mathbf{x}\right)$$

where  $\mathbf{f}_{h.\ o.\ t.}$  stands for higher-order terms in  $\mathbf{x}$ .

#### —Let A denote

$$\left(\frac{\partial f}{\partial x}\right)_{x=0}$$

Then, the system

$$\dot{x} = Ax$$

is called the *linearization* (or *linear* approximation) of the original nonlinear system at the equilibrium point **0**.

—For non-autonomous nonlinear system with a control input **u** 

$$\dot{x} = f(x, u)$$

such that f(0,0)=0, we can write

$$\dot{x} = \left(\frac{\partial f}{\partial x}\right)_{(x=0,u=0)} \quad x + \left(\frac{\partial f}{\partial u}\right)_{(x=0,u=0)} \quad u + f_{h.o.t(x,u)}$$

-Let  $A = \left(\frac{\partial f}{\partial x}\right)_{(x=0,u=0)} B = \left(\frac{\partial f}{\partial u}\right)_{(x=0,u=0)}$ 

 $\dot{x} = Ax + Bu$ 

: the linearization (or linear approximation) of the original nonlinear system at  $(\mathbf{x} = \mathbf{0}, \mathbf{u} = \mathbf{0})$ .

## **Alternative Linear Approximation**

—Considering the autonomous closed-loop system

$$\dot{x} = f(x, u(x)) = f_1(x)$$

and linearizing the function  $f_1$  with respect to x at its equilibrium point  $\mathbf{x} = \mathbf{0}$ .

### Theorem: (Lyapunov's linearization method)

- •If the linearized system is strictly stable (i.e, if all eigenvalues of **A** are strictly in the left-half complex plane), then the equilibrium point is asymptotically stable (for the actual nonlinear system).
- •If the linearized system is unstable (i.e., if at least one eigenvalue of  $\mathbf{A}$  is strictly in the right-half complex plane), then the equilibrium point is unstable (for the nonlinear system).

•If the linearized system is marginally stable (i. e, all eigenvalues of  $\mathbf{A}$  are in the left-half complex plane, but at least one of them is on the j $\omega$  axis), then one cannot conclude anything from the linear approximation (the equilibrium point may be stable, asymptotically stable, or unstable for the nonlinear system).

Example: Consider the following system and comment on the stability of the system using Lyapunov linearization method

$$\dot{x}_1 = x_2^2 + x_1 \cos x_2$$

$$\dot{x}_2 = x_2 + (x_1 + 1)x_1 + x_1 \sin x_2$$

$$\dot{\mathbf{x}} = \left[ \begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} \end{array} \right] \mathbf{x}$$

**Example 3.6**: Consider the first order system

$$\dot{x} = ax + bx^5$$

- —The origin 0 is an equilibrium point
- The linearization around 0:

$$\dot{x} = ax$$

—The stability properties of the nonlinear system:

a < 0: asymptotically stable;

a > 0: unstable;

a = 0: cannot tell from linearization.

—What shall we do when a=0?

## Lyapunov's Direct Method

## Basic idea from Physical Observation

If the total *energy* of a mechanical (or electrical) system is continuously dissipated, then the system, *where linear or nonlinear*, must eventually settle down to an equilibrium point.

—Example: Consider the nonlinear mass-damperspring system:

$$m\ddot{x} + b\dot{x}\dot{x} + k_0x + k_1x^3 = 0$$

 $b \dot{x} |\dot{x}|$ :nonlinear dissipation or damping  $(k_0x + k_1x^3)$ :nonlinear spring term

Assume the mass is pulled away from the natural length of the spring by a large distance, and then released ⇒(i) linearization method does not apply (ii) the linearized system is marginally stable only

Figure 3.6: A nonlinear mass-damperspring system



The total mechanical energy of the system:

$$V(x) = \frac{1}{2}m\dot{x}^2 + \int_0^x (k_0x + k_1x^3)dx$$
$$= \frac{1}{2}m\dot{x}^2 + \frac{1}{2}k_0x^2 + \frac{1}{4}k_1x^4$$

- Comparing the definitions of stability and mechanical energy:
- ·zero energy corresponds to the equilibrium point  $(x = 0, \dot{x} = 0)$
- •asymptotic stability ⇒ the convergence of mechanical energy to zero
- -- instability is related to the growth of mechanical energy

- -These relations indicate
- (i) the mechanical energy indirectly reflects the magnitude of the state vector
- (ii) the stability properties can be characterized by the variation of the mechanical energy
- -The rate of energy variation:

$$\dot{V}(x) = m \, \dot{x} \, \ddot{x} + (k_0 x + k_1 x^3) \, \dot{x}$$
$$= \dot{x}(-b \, \dot{x} \, \Big| \dot{x} \Big|) = -b \, \Big| \dot{x} \Big|^3$$

shows the energy of the system is continuously dissipated by the damper until  $\dot{x} = 0$ .

### **Sign Definiteness**

**Definition 3.7**: A scalar continuous function  $V(\mathbf{x})$  is said to be locally positive definite if V(0) = 0 and, in a ball  $\mathbf{B}_{R_0}$ 

$$\mathbf{x} \neq \mathbf{0} => V(\mathbf{x}) > 0$$

If V(0) and the above property holds over the whole state space, then V(x) is said to be globally positive definite.

- A function V(x) is negative definite if (-V(x)) is positive definite
- $-V(\mathbf{x})$  is positive semi-definite if  $V(\mathbf{x}) \ge 0$  and  $V(\mathbf{x})=0$  for some  $\mathbf{x} \ne 0$
- $V(\mathbf{x})$  is negative semi-definite if  $(-V(\mathbf{x}))$  is positive semi-definite.

**Figure:** Typical shape of a positive definite function  $V(x_1, x_2)$ 





- $-V(\mathbf{x})$  represents an implicit function of time t.
- Assuming that  $V(\mathbf{x})$  is differentiable:

$$\dot{V} = \frac{dV(x)}{dt} = \frac{\partial V}{\partial x} \dot{x} = \frac{\partial V}{\partial x} f(x)$$

### Laypunov function

**Definition 3.8** *If, in a ball*  $B_{R_0}$  , the function  $V(\mathbf{x})$  is positive definite and has continuous partial derivatives, and if its time derivative along any state trajectory of system  $\dot{x} = f(x)$  is negative semi-definite, i. e.,

$$\dot{V}(\mathbf{x}) \leq 0$$

then  $V(\mathbf{x})$  is said to be a Laypunov function for the system  $\dot{x} = f(x)$ .



Illustrating Definition 3.8 for n = 2



## Sylvester's Criterion

- V(x) is in a quadratic form in the  $x_i^s$  if V(x) is in the form,  $V(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} k_{ij} x_i x_j$
- Which can be written as,  $V(x) = x^T Qx$

• Where Q can be written as, 
$$Q = \begin{bmatrix} q_{21} & q_{21} \dots & q_{1n} \\ \vdots & \vdots & \vdots \\ q_{n1} & q_{n2} \dots & q_{nn} \end{bmatrix}$$

• Where Q can be written as, 
$$Q = \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1n} \\ q_{21} & q_{21} & \cdots & q_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ q_{n1} & q_{n2} & \cdots & q_{nn} \end{bmatrix}$$

$$V(x) = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1j} \\ q_{21} & q_{22} & \cdots & q_{2j} \\ \vdots & \vdots & \vdots & \vdots \\ q_{i1} & q_{i2} & \cdots & q_{ij} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$q_{ij} = k_{ij} \text{ where } i = j$$

$$q_{ij} - k_{ij} \text{ where } i - j$$

$$q_{ij} = \frac{1}{2}(k_{ij} + k_{ji}) = q_{ji} \text{ for } i \neq j$$

• Sylvester's criterion provides an approach to testing positive definiteness or positive semi definiteness of a matrix.

A symmetric matrix Q is positive definite if and only if  $\det(\Delta_1)$ ,  $\det(\Delta_2)$ , ...,  $\det(\Delta_n)$  are positive, where  $\Delta_1$ ,  $\Delta_2$ , ...,  $\Delta_n$  are submatrices defined as in the drawing below. These determinants are called the *leading* principal minors of the matrix Q.

There are always n leading principal minors.



- A quadratic function  $V(x) = x^T Qx$  is positive definite (pd) if and only if all the principle minors are positive.
- V(x) is negative definite if -V(x) is positive definite.

Example: Check the sign definiteness of the following quadratic functions.

$$V(x) = 6x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 2x_2x_3 - 4x_1x_3$$

$$V(x) = -x_1^2 - 3x_2^2 - 11x_3^2 + 2x_1x_2 - 4x_2x_3 - 2x_1x_3$$

#### **Theorem 3.2** (Lyapunov Theorem for Local Stability)

If, in a ball  $B_{R_0}$ , there exists a scalar function  $V(\mathbf{x})$  with continuous first partial derivatives such that V(x) is positive definite (locally in  $B_{R_0}$ ). V(x) is negative semi-definite (locally in  $B_{R_0}$ ). then the equilibrium point 0 is stable. If, actually, the derivative  $\dot{V}(x)$  is locally negative definite in  $B_{R_0}$ , then the stability is asymptotic.

### **Example 3.8: Asymptotic stability**

Consider the nonlinear system

$$\dot{x}_1 = x_1(x_1^2 + x_2^2 - 2) - 4x_1x_2^2$$

$$\dot{x}_2 = 4x_1^2x_2 + x_2(x_1^2 + x_2^2 - 2)$$

Define the positive definite function

$$V(x_1, x_2) = x_1^2 + x_2^2$$

$$-\dot{V} = 2(x_1^2 + x_2^2)(x_1^2 + x_2^2 - 2)$$

-Locally negative definite in

$$\mathbf{B}_{2} = \left\{ \left( x_{1}, x_{2} \right) \middle| x_{1}^{2} + x_{2}^{2} < 2 \right\}$$

 $\Rightarrow$  the origin is asymptotically stable.

Theorem 3.3 (Lyapunov Theorem for Global Stability) Assume that there exists a scalar function V of the state x, with continuous first order derivatives such that

- $V(\mathbf{x})$  is positive definite
- $\dot{V}(x)$  is negative definite
- $V(x) \to \infty$  as  $||x|| \to \infty$  (V(x) must be radially unbounded)

then the equilibrium at the origin is globally asymptotically stable.

## •Lyapunov Functions for Linear Time-Invariant Systems

Consider a linear system  $\dot{x} = Ax$ , let the Lyapunov function candidate be

$$V = \mathbf{x}^T \mathbf{P} \mathbf{x}$$

P: a symmetric positive definite matrix.

If 
$$\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = x^T (PA + A^T P) x = -x^T Q x$$

then  $\mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A} = -\mathbf{Q}$  is the Lyapunov equation.

## Lyapunov Equation

- -Symmetric matrix **Q** defined by  $\mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A} = -\mathbf{Q}$  is  $p. d. \Rightarrow$  the origin is globally asymptotically stable.
- -This "natural" approach may lead to inconclusive result, *i. e.*, **Q** may be not positive definite even for stable systems.

## Tutorial -9

Consider a second-order linear system whose A matrix is. Find a Lyapunov function.  $A = \begin{bmatrix} 0 & 4 \\ -8 & -12 \end{bmatrix}$ 

$$A = \begin{bmatrix} 0 & 4 \\ -8 & -12 \end{bmatrix}$$

If we take P = I, then  $-Q = \mathbf{P}\mathbf{A} + \mathbf{A}^T \mathbf{P} = \begin{bmatrix} 0 & -4 \\ -4 & -24 \end{bmatrix}$ 

**Q** is not positive definite 
$$\Rightarrow$$
 don't know whether the system is stable or not.

## Thinking in Opposite Direction

- -To derive a positive definite matrix **P** from a given positive definite matrix **Q**, *i. e.*,
- choose a positive definite matrix Q
- solve for **P** from the Lyapunov equation
- check whether **P** is p. d
- If **P** is *p*. *d*., global asymptotical stability is guaranteed.

**Theorem 3.6**: A necessary and sufficient condition for a LTI system  $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$  to be strictly stable is that, for any symmetric p. d. matrix  $\mathbf{Q}$ , the unique matrix  $\mathbf{P}$ , solution of the Lyapunov equation (3.19), be symmetric positive definite.

Example 4.13, Nonlinear Systems, H. K. Khalil

Consider a second-order linear system whose **A** matrix is. Find a Lyapunov function.

Take 
$$\mathbf{Q} = \mathbf{I}$$
, and  $P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix}$ 

$$P = \begin{bmatrix} 1.5 & -0.5 \\ -0.5 & 1 \end{bmatrix}$$

P is positive definite the system is strictly stable

For the given second-order nonlinear systems use a quadratic Lyapunov function to show that the origin is asymptotically stable

1. 
$$\dot{x_1} = -x_1 - x_2$$
  
 $\dot{x_2} = 2x_1 - x_2^3$   
2.  $\dot{x_1} = -x_2 - x_1(1 - x_1^2 - x_2^2)$   
 $\dot{x_2} = x_1 - x_2(1 - x_1^2 - x_2^2)$