

Supervised Seismic Section Classification with Convolutional Neural Networks (CNNs)

Zongpeng Chen

Supervisors: Olivier Dubrule, Lukas Mosser

Jeremy Fortun, Kurt Rattansingh

Introduction

- General Introduction
 - Seismic Section
 - Objective
 - Workflow
- 2. Training and Results
 - Dataset
 - Test Section
 - Feed-Forward DNN Model and Result
 - Convolutional Neural Network (CNN) Models and Results
 - Final Ensemble Model and Result
 - Summary
- 3. After Training
 - Discussion
 - Conclusion

Q&A

Seismic Section

Supervised Seismic Section Classification with Convolutional Neural Networks

Objective

Test field in Gabon.

7 different units.

Test set

Environment and Dependencies setup General data processing Pipelines decomposition Feed-forward DNN Mini-patch CNN Encoder-decoder Final statistical model model CNN model model Evaluate with Model specified data processing Train/Validation set accuracy, confusion matrix and predicted section Define neural networks and other parameters Train and validate Select the best neural networks and parameters the model from experiments Train models on full dataset with the choices Evaluate with accuracy and predicted section

Combine successful models

Workflow

Dataset

5 interpreted Seismic sections are manually chosen to train the Machine (0.1% of total seismic dataset). Split in 3: 1: 1 (3 Training sections, 1 Validation section and 1 Test section).

VS

'1-feature'

'6-feature'

Test Section

Class label map

Feed-Forward DNN Model

Network Architecture

Only on '6-feature' dataset.

Bad accuracy and geological continuity.

Reference only.

Feed-Forward DNN Model and Result

Mini-patch CNN Model

Convolutional Neural Network (CNN) Models and Results

Mini-patch CNN Model

Mini-patch CNN Model

Network Architectures

BasicNet

Convolutional Neural Network (CNN) Models and Results

OptimizedNet

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer				
conv1	112×112	7×7, 64, stride 2								
		3×3 max pool, stride 2								
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$				
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$				
conv4_x	14×14	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$				
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3 \]	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$				
	1×1	average pool, 1000-d fc, softmax								
FLOPs		1.8×10^{9}	3.6×10^9 3.8×10^9 7.6×10^9		11.3×10^{9}					

ResNet

Convolutional Neural Network (CNN) Models and Results

Mini-patch CNN Model

Training VS Validation

On '1-feature' dataset:

Learning rate

Neural Network

		2*10 ⁻²		1*10 ⁻²		5*10 ⁻³		1*10 ⁻³	
		Training	Validation	Training	Validation	Training	Validation	Training	Validation
	BasicNet	88.9%	88.6%	91.1%	88.3%	92.0%	89.8%	92.5%	89.9%
	OptimizedNet	97.6%	92.3%	98.4%	92.4%	98.8%	92.4%	99.0%	92.4%
k	ResNet 18	98.7%	91.6%	99.3%	91.1%	99.5%	91.0%	99.7%	91.3%
	ResNet 34	98.6%	91.8%	99.3%	91.9%	99.5%	91.6%	99.7%	91.7%
	ResNet 50	98.3%	90.8%	99,1%	90.4%	99.4%	90.5%	99.7%	90.8%

On '6-feature' dataset:

Learning rate

Neural Network

	2*10 ⁻²		1*10 ⁻²		5*10 ⁻³		1*10 ⁻³	
	Training	Validation	Training	Validation	Training	Validation	Training	Validation
BasicNet	88.5%	90.5%	90.9%	90.9%	92.0%	91.2%	92.5%	91.1%
OptimizedNet	97.1%	92.4%	98.2%	92.8%	98.6%	93.1%	98.8%	93.0%
ResNet 18	98.4%	92.2%	99.2%	92.0%	99.5%	92.2%	99.7%	92.5%
ResNet 34	98.2%	92.2%	99.1%	92.1%	99.5%	92.1%	99.7%	92.3%
ResNet 50	98.1%	91.8%	99.1%	91.8%	99.5%	92.0%	99.7%	92.0%

Mini-patch CNN Model

Full dataset training on '1-feature' dataset

Good accuracy but low geological continuity.

Convolutional Neural Network (CNN) Models and Results

Test Acc. ~95.2%

1200 1400

1600

500

1000

Mini-patch CNN Model

Better accuracy and better geological continuity.

Convolutional Neural Network (CNN) Models and Results

Encoder-decoder CNN Model

Convolutional Neural Network (CNN) Models and Results

Encoder-decoder CNN Model

Whole image as a training object

Use 'encoder' to extract features and classify different facies

Use 'decoder' to accurately localize the different facies

Encoder-decoder CNN Model

1 training squares in each seismic section

Convolutional Neural Network (CNN) Models and Results

Network Architecture

ResNetUNet

Encoder-decoder CNN Model

Good Geological continuity but low accuracy.

Hard to converge with a small number of datasets.

'6-feature' still wins on accuracy.

Convolutional Neural Network (CNN) Models and Results

Final Ensemble Model

Final Ensemble Model

Combine the CNN models.

Combine strengths partly but not good enough.

Final Ensemble Model and Result

Summary

On '1-feature' dataset

	Training	Test
Feed-forward DNN model	N/A	N/A
Mini-patch CNN model (OptimizedNet)	99.4%	96.9%
Mini-patch CNN model (ResNet 34)	99.7%	95.2%
Encoder-decoder model	N/A	88.9%
Final ensemble model	N/A	96.3%

On '6-feature' dataset

	Training	Test
Feed-forward DNN model	35.2%	9.0%
Mini-patch CNN model (OptimizedNet)	99.3%	97.7%
Mini-patch CNN model (ResNet 34)	99.6%	96.7%
Encoder-decoder model	N/A	89.0%
Final ensemble model	N/A	97.3%

After Training

Discussion

Misclassified pixels:

Data Quality
Geological Complexity
Neural Network Design

Final Ensemble Model has lower accuracy than some of its member models:

Number of member models Quality of member models

After Training

Conclusion

- High accuracy and geological continuity achieved.
- '6-feature' > '1-feature'.
- Better score could certainly be achieved

Thanks!