Machine Learning Basics: Building a Machine Learning Algorithm

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics

- 1. Learning Algorithms
- 2. Capacity, Overfitting and Underfitting
- 3. Hyperparameters and Validation Sets
- 4. Estimators, Bias and Variance
- 5. Maximum Likelihood Estimation
- 6. Bayesian Statistics
- 7. Supervised Learning Algorithms
- 8. Unsupervised Learning Algorithms
- 9. Stochastic Gradient Descent
- 10. Building a Machine Learning Algorithm
- 11. Challenges Motivating Deep Learning

Recipe for Machine Learning

- All Machine Learning is an instance of a recipe:
 - 1. Specification of a dataset
 - 2. A cost function
 - 3. An optimization procedure
 - 4. A model

 Example of building an ML model for linear regression is shown next

Ex: Linear Regression Dataset

x_1	x_2	t
1	2	2
2	5	1
2	3	1 2 2
2	2	2
3	4	1
3	5	3
4	6	2
5	5	3
5	6	4
5	7	3
6	8	4
7	6	2
8	4	4
8	9	3
9	8	4

Ex: Linear Regression Algorithm

- 1. Data set : X and y
- 2. Cost function:

$$\left|J(oldsymbol{w}, oldsymbol{b}) = -E_{x, y \sim \widehat{p}_{data}} \log p_{ ext{model}}(y \mid oldsymbol{x})
ight|$$

3. Model specification:

$$oxed{p_{ ext{model}}(y \mid oldsymbol{x}) = N(y; oldsymbol{x}^T oldsymbol{w} + oldsymbol{b}, 1)}$$

- 4. Optimization algorithm: solving for where the cost is minimal
- We can replace any of these components mostly independently from the others and obtain a variety of algorithms

Linear Regression Cost Function

- 1. Cost function typically has a term that causes learning to perform statistical estimation
 - Most common cost: negative log-likelihood
 - Minimizing the cost maximizes the likelihood
- 2. Cost function may include additional terms
 - E.g., we can add weight decay to get

$$\boxed{J(\boldsymbol{w}, \boldsymbol{b}) = \lambda \left\|\boldsymbol{w}\right\|_2^2 - E_{\boldsymbol{x}, \boldsymbol{y} \sim \hat{\boldsymbol{p}}_{data}} \log p_{\text{model}}(\boldsymbol{y} \mid \boldsymbol{x})}$$

which still allows closed-form optimization

Optimization Procedure

Cost function optimized in closed form for

$$\left|J(\boldsymbol{w}, \boldsymbol{b}) = \lambda \left| \left| \boldsymbol{w} \right| \right|_2^2 - E_{\boldsymbol{x}, \boldsymbol{y} \sim \widehat{\boldsymbol{p}}_{data}} \log \boldsymbol{p}_{\text{model}}(\boldsymbol{y} \mid \boldsymbol{x}) \right|$$

- If we change model to be nonlinear most cost functions cannot be optimized in closed-form
 - Requires numerical optimization: gradient descent

Recipe for unsupervised learning

- Same recipe for both supervised and unsupervised learning
- Data set contains only X
- Cost and model needed
 - Ex: we can obtain the first PCA vector by specifying loss

$$J(\boldsymbol{w}) = E_{\boldsymbol{x} \sim \hat{p}_{data}} || \boldsymbol{x} - r(\boldsymbol{x}; \boldsymbol{w}) ||_2^2$$

• While model is defined to have w with norm one and reconstructed function $\mathbf{r}(x) = w^{\mathrm{T}}xw$

Recipe explains all ML algorithms

- Most ML algorithms make use of this recipe
- Some models such as decision trees and kmeans require special case optimizers
 - Because their cost functions have flat regions, gradient-based optimization is inappropriate
- Recipe helps to see different algorithms as part of a taxonomy of methods for doing related tasks

Intractable Cost

- Sometimes the cost function cannot be evaluated due to computational reasons
- In these cases we can still minimize it using iterative numerical optimization
 - As long as we have some way of approximating the gradient