

Fig. 1

Ë E	TTTGTGCCCAGTTCCGCCCTAGGGTTGGGGCTAGCCGCGATCGCG-GCCTATTGGGCCCT 236	ICTB : 178 SLR : 190 SLR : 249 ICTB : 294 ICTB : 354 SLR : 366 SLR : 366 SLR : 412 ICTB : 424
Ξ		 m
	GGTTTGGTCTGAGGCACTGGGTTCTTGCTTGCTGTCGTCTACGGTTCGGCTCCG 177	ICTB : 120 SLR : 132
	AGTTTCTTGCATCGGCTGTTTGGCCTGC-GAGCTTGGCGGGCCTCCAGCCAGCTGTT 119 	ICTB: 61 SLR: 73
60 (SEQ ID NO:2) 72 (SEQ ID NO:4)	ATGACTGTCTGGCAAACTCTGACTTTTGCCCATTACCAACCCCCAACAGGGGCCACAGC 60 (SEQ ID	ICTB : 1 SLR : 13

•								Continued)
	TGTCAGTGTCTACGGCCTCAACCAATGGATCTACGGCGTTGAAGAGCTGGCGACTTGGGT 530	GGATCGCAACTCGCGACTTCACCTCACGGGTTTACAGCTATCTGGGCAACCCCAA 590	cctgctgcttgttatctggtgccgacgactgcctttt-ctgcagcgcgatcggggtgt 649 	GGCGCGCGCTGCCTCCTGCCATCG-CTGCGACAGGTGCGAGCAGCTTATGT 708	CIGAICCICACCIACAGICGCGGGGGCTGGGTTTTGTCGCCATGATITTGTCTGG 768	GCGTTATTAGGGCTCTACTGGTTTCAACCCCGGTCTACCCGCACGCTGGCTG	Treccagregratingergacragregegrecrett-gergegegreetreset 884	-TG-AGCCGTTGCGCGTGTTGAGCATCTTTGTGGGGCGTGAAGACAGCAAC 942
	ICTB: 471 SLR: 483	ICTB: 531 SLR: 543	ICTB: 591 SLR: 603	ICTB: 650 SLR: 662	ICTB: 709 SLR: 721	ICTB: 769 SLR: 781	ICTB: 829 SLR: 841	ICTB: 885 SLR: 895

						Fig. 2	(Continued)
ICTB: 943 AACTTCCGGATCAATGTCTGGCGGGGGGCGCGAGATCGGCCTTGGCTG 1002	ICTB: 1003 GGCATCGGCCCCGGCATACCGCTTTAACCTGGTTTATCCCCTCTATCAACAGGCGCGC 1062 1018 1111 11	ICTB: 1063 TTTACGGCGTTGAGCGCCTACTCCGTCCCGCGGGCGCGGGCGG	ICTB: 1123 GGCTTGA-CGGCCTTCGCTTGCT-GCTGGTCACGGCGGTGACGGCGGTGCGGCAGG 1180	ICTB: 1181 TGAGCCGACTGCGGCGCGCATCCCCAAGCCTTTTGGTTGATGGCTAGCTTGG 1238	ICTB: 1239 CGGTTTGGCAGGAATGCTGGTCACGGTTTGATACCGTGCTCTATCGACCGGAAGC 1298	ICTB: 1299 CAGTACGCTCTGTGTATTGGÀGCGATCGCGAGTTTCTGGCAGC-CCCAA 1353	ICTB: 1354 CCTTCCAACTCCCTCCAGAAGCCGAGCATTCAGACGAA 1395

- I SIWRSLMFGGFSPQEWGRGSVLHRLVGWGQSWIQASVLKPHFEALGTALVAIIFIAAPF EALG 12 ST M++ S LHRL G PQ+WG 4 ++M++T F L) SILR
- 120 VPSSALGLGLAAIAAYWALLSLTDIDLRQATPIHWLVLLYWGVDALATGLSPVRAAALVG W W ICTB
 - 124 TSTTMLGIFMLLCGAFWALLTFADQPGKGLTPIHVLVFAYWCISAIAVGFSPVKMAAASG TPIH LV YW + A+A G SPV+ AA A+WALL+ +57 ++ S S SLR
- 180 LAKLTLYLLVFALAARVLRNPRLRSLLFSVVVITSLFVSVYGLNQWIYGVEELATWVDRN 121 ICTB
- 184 LAKLTANI.CLFILLAARILQNKQWINRIVTVVILVGLIVGSYGIRQQVDGVEQLATWNDPT L +F LAAR+L+N + + L +VV++ L V YGL Q + GVE+LATW LAKLT 125 * * SLR
- 240 SVADFTSRVYSYLGNPNLLAAYLVPTTAFSAAAIGVWRGWLPKLLAIAATGASSLCLILT
- +RVYS+LGNPNLLAAYLVP T S +A+ VWR W PKLL 1831 **L** 4 ICTE

300 FVWALLGLYWFQPRLFAPWRRWLFPVVLGGLVAVLLVAVLGLEPLRV

STLAQATRVYSFLGNPNLLAAYLVPMTGLSLSALVVWRRWWPKLLGATMVIVNLLCLFFT

8 H

SLR

- A++ +EP+R+ M+RN + I +W+ P+LP YSRGGWLGFVAMI + 13.+ SREGMI ~ 약 (시 . . ICTB
- 304 OSRGGWLAVLALGATFLALCYFWWLPQLPKFWQRWSLPLAIAVAVILGGGALIAVEPIRL 245 SLR
- 360 RVLSIFVGREDSSNNFRINWLAVLQMIQDRFWLGIGPGNTAFNLVYPLYQQARFTALSA V MI+ RP +GIGPGN AFN +YP Y + RFTALSA 301 ICTB
- RAMSI FAGREDSSNNFRINVWEGVKAMIRARPI IGIGPGNEAFNOIYPYYMRPRFTALSA GREDSSNNFRINW R +SIF 302 SLR
- 420 YSVPLEVAVEGGLLGLTAFAWLLLVTAVTAVRQVSRLRRDRNPQAFWLMASLAGLAGMLG P+ N+M +I'A + G+I' V V R R+ WLL VT G++G T 361 ICIB
 - 424 YSIYLBILVETGVVGFTCMLWLLAVTLGKGVELVKRCRQTLAPEGIWIMGALAAIIGLLV YS+ LE+ VE 365 SLR
- F 9 HGLFDTVLYRPEASTLNWLCIGAIASFWQPQPSKQLPPEAEHSDEKM + B+ D+ + STLWWL + +AS W 421 4 6 ICTB

+

Fig.

HGMVDTVFYRPPVSTLMWLLVAIVASQWASAQARLEASKEENEDKPL 425 SLR

HG+ DIV YRP

NO: 6) NO:8) NO:7) NO: 9] DI (SEQ (SEQ (SEQ (SEQ Wild type

IL-2 ApaI side GGGCT-AG--G-GATCGC-GCCTATTGGGCCC

IL-2 BamHI side GGGCTCA----GATCGC-GCCTATTGGGCCC

ICtB

G L A A I A A Y W A L GGGCT-AGCCGCGATCGCGGCCTATTGGGCCC

Fig. 5

Fig. 6