Solved Problem - PnC

In this lesson, we'll discuss a solved PnC Problem.

Problem statement

There are N different types of balls. There are k_1 balls of type 1, k_2 balls of type 2, and so on to k_n . How many ways can you choose 2 balls that are of different types?

Input format

The first line contains one positive integer N $(1 \le N \le 10^5)$ – the number of types of balls.

The second line contains a sequence $k_1, k_2, ..., k_N$ where $(1 \le k_i \le 10^5)$ - the count of balls of each type.

Output format

Print a single integer to answer the problem.

Sample

Input 1

3 2 1 1

Input 2

4 1 2 2 2

Output 2

18

Solution

We will subtract the non-desirable number of ways from the totals,

Total number of ways - Pick 2 from ($k_1+k_2+...+k_n$) balls

$$A=inom{k_1+k_2+...+k_n}{2}$$

Non-desirable case - when both balls are of the same type. The number of ways to pick that is:

$$B = \binom{k_1}{2} + \binom{k_2}{2} + \dots + \binom{k_n}{2}$$

The answer is just A-B

Note: Use long long int since the result can overflow int.

Time Complexity

We are looping over the array twice, O(N).

In the next lesson, we'll discuss prime numbers and their properties.

Code Files Content !!!


```
main.cpp [1]
#include
#include
#include
#define lli long long int
using namespace std;
lli number_of_ways(int N, vector K){
 lli total = 0;
  for (auto it : K)
   total += it;
  lli A = (total * (total - 1)) / 2;
 lli B = 0;
 for (auto it : K)
    B += (it * (it - 1)) / 2;
  return A - B;
}
int main() {
  ifstream cin("input.txt");
  int N;
  cin >> N;
 vector K(N);
  for (int i = 0; i < N; i++)
    cin >> K[i];
  cout << number_of_ways(N, K);</pre>
  return 0;
}
| input.txt [1]
2 1 1
```
