Índi	ce	1	1.3.	Factorización	10
_				1.3.1. Factorización de un número	10
	oría de números	5		$1.3.2.$ Potencia de un primo que divide a un factorial $\ .$	10
1.1	Funciones básicas	5		1.3.3. Factorización de un factorial	10
	1.1.1. Función piso y techo	5		1.3.4. Factorización usando Pollard-Rho	10
	1.1.2. Exponenciación y multiplicación binaria	5	1.4.	Funciones aritméticas famosas	11
	1.1.3. Mínimo común múltiplo y máximo común divisor	5		1.4.1. Función σ	11
	1.1.4. Euclides extendido e inverso modular	5		1.4.2. Función Ω	
	1.1.5. Todos los inversos módulo p	6		1.4.3. Función ω	11
	1.1.6. Exponenciación binaria modular	6		1.4.4. Función φ de Euler	11
	1.1.7. Teorema chino del residuo	6		1.4.5. Función μ	
	1.1.8. Teorema chino del residuo generalizado \dots	6	1.5.	Orden multiplicativo, raíces primitivas y raíces de la uni-	
	1.1.9. Coeficiente binomial	7		- · · · · · · · · · · · · · · · · · · ·	12
	1.1.10. Fibonacci	7		1.5.1. Función λ de Carmichael $\ \ldots \ \ldots \ \ldots \ \ldots$	12
1.2	. Cribas	7		1.5.2. Orden multiplicativo módulo m	12
	1.2.1. Criba de divisores	7		$1.5.3. {\rm N\'umero} \; {\rm de} \; {\rm ra\'ices} \; {\rm primitivas} \; ({\rm generadores}) \; {\rm m\'odu}$	
	1.2.2. Criba de primos	7			12
	1.2.3. Criba de factor primo más pequeño	8		1.5.4. Test individual de raíz primitiva módulo m	12
	1.2.4. Criba de factor primo más grande	8		1.5.5. Test individual de raíz k -ésima de la unidad módula m	13
	1.2.5. Criba de factores primos	8			13
	1.2.6. Criba de la función φ de Euler	8		1.5.6. Encontrar la primera raíz primitiva módulo m . 1.5.7. Encontrar la primera raíz k -ésima de la unidad	10
	1.2.7. Criba de la función μ	8		módulo m	13
	1.2.8. Triángulo de Pascal	8		1.5.8. Logaritmo discreto	13
	1.2.9. Segmented sieve	9		1.5.9. Raíz k -ésima discreta	14
	1.2.10. Criba de primos lineal	9		1.5.10. Algoritmo de Tonelli-Shanks para raíces cuadra-	
	1.2.11. Criba lineal para funciones multiplicativas	9		•	14
		1	1.6.	Particiones	14

		1.6.1.	Función P (particiones de un entero positivo)	14		3.12	2. Simplex	25
		1.6.2.	Función Q (particiones de un entero positivo en distintos sumandos)	15	4.	FF	Γ	27
		1.6.3.	Número de factorizaciones ordenadas	15		4.1.	Declaraciones previas	27
		1.6.4.	Número de factorizaciones no ordenadas	16		4.2.	FFT con raíces de la unidad complejas	27
	1.7.	Otros		16		4.3.	FFT con raíces de la unidad en $\mathbb{Z}/p\mathbb{Z}$ (NTT)	27
		1.7.1.	Cambio de base	16			$4.3.1.\;$ Otros valores para escoger la raíz y el módulo	28
		1.7.2.	Fracciones continuas	17		4.4.	Multiplicación de polinomios (convolución lineal)	28
		1.7.3.	Ecuación de Pell	17		4.5.	Aplicaciones	28
		1.7.4.	Números de Bell	17			4.5.1. Multiplicación de números enteros grandes $$	28
		1.7.5.	Prime counting function in sublinear time	18			4.5.2. Inverso de un polinomio	29
							4.5.3. Raíz cuadrada de un polinomio	29
2.			racionales	19			4.5.4. Cociente y residuo de dos polinomios	29
			etura fraccion	19			4.5.5. DFT con tamaño de vector arbitrario (algoritmo de Bluestein)	30
3.	Álg	ebra li	neal	20		4.6.		
	3.1.	Estruc	etura matrix	20		4.7.		
	3.2.	Trans	puesta y traza	22				
	3.3.	Gauss	Jordan	22	5.	Geo	ometría	32
	3.4.	Matrix	z escalonada por filas y reducida por filas	22		5.1.	Estructura point	32
	3.5.	Matriz	z inversa	23		5.2.	Líneas y segmentos	33
	3.6.	Deteri	minante	23			5.2.1. Verificar si un punto pertenece a una línea o seg-	
	3.7.	Matrix	z de cofactores y adjunta	23			mento	33
	3.8.	Factor	rización $PA = LU$	24			5.2.2. Intersección de líneas	33
	3.9.	Polino	omio característico	24			5.2.3. Intersección línea-segmento	33
	3.10	. Gram-	-Schmidt	24			5.2.4. Intersección de segmentos	
	3.11	. Recur	rencias lineales	24			5.2.5. Distancia punto-recta	34

2

5.3.	Círcul	os	34	6.	Grafos	44
	5.3.1.	Distancia punto-círculo	34		6.1. Disjoint Set	44
	5.3.2.	Proyección punto exterior a círculo	34		6.2. Definiciones	44
	5.3.3.	Puntos de tangencia de punto exterior	34		6.3. DFS genérica	45
	5.3.4.	Intersección línea-círculo	34		6.4. Dijkstra	45
	5.3.5.	Centro y radio a través de tres puntos	35		6.5. Bellman Ford	45
	5.3.6.	Intersección de círculos	35		6.6. Floyd	46
	5.3.7.	Contención de círculos	35		6.7. Cerradura transitiva $O(V^3)$	46
	5.3.8.	Tangentes	35		6.8. Cerradura transitiva $O(V^2)$	46
	5.3.9.	Smallest enclosing circle	36		6.9. Verificar si el grafo es bipartito	46
5.4.	Polígo	nos	36		6.10. Orden topológico	47
	5.4.1.	Perímetro y área de un polígono	36		6.11. Detectar ciclos	47
	5.4.2.	Envolvente convexa (convex hull) de un polígono	37		6.12. Puentes y puntos de articulación	47
	5.4.3.	Verificar si un punto pertenece al perímetro de			6.13. Componentes fuertemente conexas	48
		un polígono	37		6.14. Árbol mínimo de expansión (Kruskal)	48
	5.4.4.	Verificar si un punto pertenece a un polígono	37		6.15. Máximo emparejamiento bipartito	49
	5.4.5.	Verificar si un punto pertenece a un polígono convexo $O(\log n)$	37		6.16. Circuito euleriano	49
	5.4.6.	Cortar un polígono con una recta	38	7.	Árboles	50
	5.4.7.	Centroide de un polígono	38		7.1. Estructura tree	50
	5.4.8.	Pares de puntos antipodales	39		7.2. <i>k</i> -ésimo ancestro	50
	5.4.9.	Diámetro y ancho	39		7.3. LCA	50
	5.4.10	. Smallest enclosing rectangle	39		7.4. Distancia entre dos nodos	51
5.5.	Par de	e puntos más cercanos	39		7.5. HLD	51
5.6.	Vanta	ge Point Tree (puntos más cercanos a cada punto)	40		7.6. Link Cut	51
5.7.	Suma	Minkowski	41			
5.8.	Triang	gulación de Delaunay	41	8.	Flujos	51

3

	8.1.	Estructura flowEdge	51	10.3. Aho-Corasick	68
	8.2.	Estructura flowGraph	51	10.4. Rabin-Karp	69
	8.3.	Algoritmo de Edmonds-Karp $O(VE^2)$	52	10.5. Suffix Array	69
	8.4.	Algoritmo de Dinic $O(V^2E)$	52	10.6. Función Z	69
	8.5.	Flujo máximo de costo mínimo	53 11	.Varios	70
9.	Estr	ructuras de datos	54	11.1. Lectura y escritura deint 128	70
	9.1.	Segment Tree	54	11.2. Longest Common Subsequence (LCS)	70
		9.1.1. Minimalistic: Point updates, range queries	54	11.3. Longest Increasing Subsequence (LIS) $\dots \dots$	70
		9.1.2. Dynamic: Range updates and range queries $\ . \ . \ .$	54	11.4. Levenshtein Distance	71
		9.1.3. Static: Range updates and range queries	55	11.5. Día de la semana	71
		9.1.4. Persistent: Point updates, range queries	56	11.6. 2SAT	71
	9.2.	Fenwick Tree	56	11.7. Código Gray	72
	9.3.	SQRT Decomposition	57	11.8. Contar número de unos en binario en un rango $\ \ldots \ \ldots$	72
	9.4.	AVL Tree	58		
	9.5.	Treap	61		
	9.6.	Sparse table	64		
		9.6.1. Normal	64		
	9.7.	Disjoint	64		
	9.8.	Wavelet Tree	65		
	9.9.	Ordered Set C++	66		
	9.10.	. Splay Tree	66		
	9.11.	. Red Black Tree	66		
10	.Cad	lenas	67		
	10.1.	. Trie	67		
	10.2.	. KMP	67		

4

5

1. Teoría de números

1.1. Funciones básicas

1.1.1. Función piso y techo

```
lli piso(lli a, lli b){
  if((a >= 0 \&\& b > 0) || (a < 0 \&\& b < 0)){}
    return a / b:
  }else{
    if(a \% b == 0) return a / b:
    else return a / b - 1;
 }
}
lli techo(lli a, lli b){
  if((a >= 0 \&\& b > 0) || (a < 0 \&\& b < 0)){}
    if(a \% b == 0) return a / b;
    else return a / b + 1;
  }else{
    return a / b;
  }
}
```

1.1.2. Exponenciación y multiplicación binaria

```
lli power(lli b, lli e){
    lli ans = 1;
    while(e){
        if(e & 1) ans *= b;
        e >>= 1;
        b *= b;
    }
    return ans;
}

lli multMod(lli a, lli b, lli n){
    lli ans = 0;
    a %= n, b %= n;
    if(abs(b) > abs(a)) swap(a, b);
```

```
if(b < 0){
    a *= -1, b *= -1;
}
while(b){
    if(b & 1) ans = (ans + a) % n;
    b >>= 1;
    a = (a + a) % n;
}
return ans;
}
```

1.1.3. Mínimo común múltiplo y máximo común divisor

```
lli gcd(lli a, lli b){
  lli r:
  while(b != 0) r = a \% b, a = b, b = r;
  return a:
lli lcm(lli a, lli b){
  return b * (a / gcd(a, b));
lli gcd(vector<lli>> & nums){
  lli ans = 0;
  for(lli & num : nums) ans = gcd(ans, num);
  return ans;
}
lli lcm(vector<lli> & nums){
  lli ans = 1:
  for(lli & num : nums) ans = lcm(ans, num);
  return ans:
}
```

1.1.4. Euclides extendido e inverso modular

```
while(r1){
    q = r0 / r1;
    ri = r0 \% r1, r0 = r1, r1 = ri;
    si = s0 - s1 * q, s0 = s1, s1 = si;
    ti = t0 - t1 * q, t0 = t1, t1 = ti;
  s = s0, t = t0;
  return r0;
}
lli modularInverse(lli a, lli m){
  lli r0 = a, r1 = m, ri, s0 = 1, s1 = 0, si;
  while(r1){
    si = s0 - s1 * (r0 / r1), s0 = s1, s1 = si;
   ri = r0 \% r1, r0 = r1, r1 = ri;
  }
  if(r0 < 0) s0 *= -1;
  if(s0 < 0) s0 += m;
  return s0;
}
```

1.1.5. Todos los inversos módulo p

```
//find all inverses (from 1 to p-1) modulo p
vector<lli> allInverses(lli p){
  vector<lli> ans(p);
  ans[1] = 1;
  for(lli i = 2; i < p; ++i)
    ans[i] = p - (p / i) * ans[p % i] % p;
  return ans;
}</pre>
```

1.1.6. Exponenciación binaria modular

```
lli powerMod(lli b, lli e, lli m){
  lli ans = 1;
  b %= m;
  if(e < 0){
    b = modularInverse(b, m);</pre>
```

```
e *= -1;
}
while(e){
  if(e & 1) ans = (ans * b) % m;
  e >>= 1;
  b = (b * b) % m;
}
return ans;
}
```

1.1.7. Teorema chino del residuo

1.1.8. Teorema chino del residuo generalizado

}

7

```
}
while(a0 >= m0) a0 -= m0; while(a0 < 0) a0 += m0;
return {a0, m0};
}</pre>
```

1.1.9. Coeficiente binomial

```
lli ncr(lli n, lli r){
  if(r < 0 || r > n) return 0;
  r = min(r, n - r);
  lli ans = 1;
  for(lli den = 1, num = n; den <= r; den++, num--)
    ans = ans * num / den;
  return ans;
}</pre>
```

1.1.10. Fibonacci

```
//very fast fibonacci
inline void modula(lli & n){
  while(n \ge mod) n -= mod;
}
lli fibo(lli n){
  array<lli, 2> F = {1, 0};
  lli p = 1;
  for(lli v = n; v >>= 1; p <<= 1);
  array<lli, 4> C;
  do{
   int d = (n \& p) != 0;
    C[0] = C[3] = 0;
    C[d] = F[0] * F[0] % mod;
    C[d+1] = (F[0] * F[1] << 1) \% mod;
    C[d+2] = F[1] * F[1] % mod;
    F[0] = C[0] + C[2] + C[3];
    F[1] = C[1] + C[2] + (C[3] << 1);
    modula(F[0]), modula(F[1]);
  }while(p >>= 1);
  return F[1];
```

```
1.2. Cribas
```

1.2.1. Criba de divisores

```
vector<lli> divisorsSum;
vector<vector<int>> divisors;
void divisorsSieve(int n){
   divisorsSum.resize(n + 1, 0);
   divisors.resize(n + 1);
   for(int i = 1; i <= n; ++i){
      for(int j = i; j <= n; j += i){
        divisorsSum[j] += i;
        divisors[j].push_back(i);
      }
   }
}</pre>
```

1.2.2. Criba de primos

```
vector<int> primes;
vector<bool> isPrime;
void primesSieve(int n){
  isPrime.resize(n + 1, true);
  isPrime[0] = isPrime[1] = false;
 primes.push_back(2);
 for(int i = 4; i <= n; i += 2) isPrime[i] = false;</pre>
  int limit = sqrt(n);
 for(int i = 3; i \le n; i += 2){
    if(isPrime[i]){
      primes.push_back(i);
      if(i <= limit)</pre>
        for(int j = i * i; j \le n; j += 2 * i)
          isPrime[j] = false;
   }
 }
}
```

8

1.2.3. Criba de factor primo más pequeño

```
vector<int> lowestPrime;
void lowestPrimeSieve(int n){
  lowestPrime.resize(n + 1, 1);
  lowestPrime[0] = lowestPrime[1] = 0;
  for(int i = 2; i <= n; ++i) lowestPrime[i] = (i & 1 ? i : 2);
  int limit = sqrt(n);
  for(int i = 3; i <= limit; i += 2)
    if(lowestPrime[i] == i)
      for(int j = i * i; j <= n; j += 2 * i)
        if(lowestPrime[j] == j) lowestPrime[j] = i;
}</pre>
```

1.2.4. Criba de factor primo más grande

```
vector<int> greatestPrime;
void greatestPrimeSieve(int n){
  greatestPrime.resize(n + 1, 1);
  greatestPrime[0] = greatestPrime[1] = 0;
  for(int i = 2; i <= n; ++i) greatestPrime[i] = i;
  for(int i = 2; i <= n; i++)
    if(greatestPrime[i] == i)
      for(int j = i; j <= n; j += i)
          greatestPrime[j] = i;
}</pre>
```

1.2.5. Criba de factores primos

```
vector<vector<int>>> primeFactors;
void primeFactorsSieve(lli n){
  primeFactors.resize(n + 1);
  for(int i = 0; i < primes.size(); ++i){
    int p = primes[i];
    for(int j = p; j <= n; j += p)
        primeFactors[j].push_back(p);
  }
}</pre>
```

1.2.6. Criba de la función φ de Euler

```
vector<int> Phi;
void phiSieve(int n){
   Phi.resize(n + 1);
   for(int i = 1; i <= n; ++i) Phi[i] = i;
   for(int i = 2; i <= n; ++i)
      if(Phi[i] == i)
      for(int j = i; j <= n; j += i)
            Phi[j] -= Phi[j] / i;
}</pre>
```

1.2.7. Criba de la función μ

```
vector<int> Mu;
void muSieve(int n){
   Mu.resize(n + 1, -1);
   Mu[0] = 0, Mu[1] = 1;
   for(int i = 2; i <= n; ++i)
      if(Mu[i])
      for(int j = 2*i; j <= n; j += i)
            Mu[j] -= Mu[i];
}</pre>
```

1.2.8. Triángulo de Pascal

9

1.2.9. Segmented sieve

```
vector<int> segmented_sieve(int limit){
  const int L1D_CACHE_SIZE = 32768;
  int raiz = sqrt(limit);
  int segment_size = max(raiz, L1D_CACHE_SIZE);
  int s = 3, n = 3;
  vector<int> primes(1, 2), tmp, next;
  vector<char> sieve(segment_size);
  vector<bool> is_prime(raiz + 1, 1);
  for(int i = 2; i * i <= raiz; i++)
    if(is_prime[i])
      for(int j = i * i; j <= raiz; j += i)
        is_prime[j] = 0;
  for(int low = 0; low <= limit; low += segment_size){</pre>
    fill(sieve.begin(), sieve.end(), 1);
    int high = min(low + segment_size - 1, limit);
    for(; s * s \le high; s += 2){
      if(is_prime[s]){
        tmp.push_back(s);
        next.push_back(s * s - low);
      }
    }
    for(size_t i = 0; i < tmp.size(); i++){</pre>
      int j = next[i];
      for(int k = tmp[i] * 2; j < segment_size; j += k)</pre>
        sieve[j] = 0;
      next[i] = j - segment_size;
    for(; n <= high; n += 2)
      if(sieve[n - low])
        primes.push_back(n);
  }
  return primes;
}
```

1.2.10. Criba de primos lineal

```
vector<int> linearPrimeSieve(int n){
  vector<int> primes;
```

```
vector<bool> isPrime(n+1, true);
for(int i = 2; i <= n; ++i){
   if(isPrime[i])
     primes.push_back(i);
   for(int p : primes){
     int d = i * p;
     if(d > n) break;
     isPrime[d] = false;
     if(i % p == 0) break;
   }
}
return primes;
}
```

1.2.11. Criba lineal para funciones multiplicativas

```
//suppose f(n) is a multiplicative function and
//we want to find f(1), f(2), ..., f(n)
//we have f(pq) = f(p)f(q) if qcd(p, q) = 1
//and\ f(p^a) = q(p, a), where p is prime and a>0
vector<int> generalSieve(int n, function<int(int, int)> g){
  vector<int> f(n+1, 1), cnt(n+1), acum(n+1), primes;
  vector<bool> isPrime(n+1, true);
 for(int i = 2; i \le n; ++i){
    if(isPrime[i]){ //case base: f(p)
     primes.push_back(i);
     f[i] = g(i, 1);
     cnt[i] = 1;
     acum[i] = i;
   for(int p : primes){
     int d = i * p;
     if(d > n) break;
     isPrime[d] = false;
     if(i % p == 0){ //gcd(i, p) != 1
       f[d] = f[i / acum[i]] * g(p, cnt[i] + 1);
        cnt[d] = cnt[i] + 1;
        acum[d] = acum[i] * p;
       break;
     else{ //qcd(i, p) = 1}
```

```
f[d] = f[i] * g(p, 1);
    cnt[d] = 1;
    acum[d] = p;
}
}
return f;
}
```

1.3. Factorización

1.3.1. Factorización de un número

```
vector<pair<lli, int>> factorize(lli n){
  vector<pair<lli, int>> f;
  for(lli p : primes){
    if(p * p > n) break;
    int pot = 0;
    while(n % p == 0){
      pot++;
      n /= p;
    }
    if(pot) f.emplace_back(p, pot);
}
if(n > 1) f.emplace_back(n, 1);
  return f;
}
```

1.3.2. Potencia de un primo que divide a un factorial

```
lli potInFactorial(lli n, lli p){
   lli ans = 0, div = n;
   while(div /= p) ans += div;
   return ans;
}
```

1.3.3. Factorización de un factorial

```
vector<pair<lli, lli>> factorizeFactorial(lli n){
  vector<pair<lli, lli>> f;
  for(lli p : primes){
    if(p > n) break;
    f.emplace_back(p, potInFactorial(n, p));
  }
  return f;
}
```

1.3.4. Factorización usando Pollard-Rho

```
bool isPrimeMillerRabin(lli n){
  if(n < 2) return false;
  if(n == 2) return true:
 lli d = n - 1, s = 0;
 for(; !(d & 1); d >>= 1, ++s);
 for(int i = 0; i < 16; ++i){
    lli a = 1 + rand() % (n - 1);
    lli m = powerMod(a, d, n);
    if (m == 1 \mid \mid m == n - 1) goto exit;
    for(int k = 0; k < s; ++k){
      m = m * m \% n;
      if(m == n - 1) goto exit;
    return false;
    exit:;
  }
  return true;
}
lli getFactor(lli n){
 lli a = 1 + rand() \% (n - 1);
 lli b = 1 + rand() \% (n - 1);
 lli x = 2, y = 2, d = 1;
  while(d == 1){
    x = x * (x + b) \% n + a;
    y = y * (y + b) % n + a;
    y = y * (y + b) \% n + a;
```

```
d = gcd(abs(x - y), n);
  }
  return d;
}
map<lli, int> fact;
void factorizePollardRho(lli n, bool clean = true){
  if(clean) fact.clear();
  while(n > 1 && !isPrimeMillerRabin(n)){
   11i f = n;
   for(; f == n; f = getFactor(n));
   n /= f;
    factorizePollardRho(f, false);
    for(auto & it : fact){
      while(n % it.first == 0){
        n /= it.first;
        ++it.second;
      }
    }
  }
  if(n > 1) ++fact[n];
}
```

1.4. Funciones aritméticas famosas

1.4.1. Función σ

```
//divisor power sum of n
//if pot=0 we get the number of divisors
//if pot=1 we get the sum of divisors
lli sigma(lli n, lli pot){
    lli ans = 1;
    auto f = factorize(n);
    for(auto & factor : f){
        lli p = factor.first;
        int a = factor.second;
        if(pot){
            lli p_pot = power(p, pot);
            ans *= (power(p_pot, a + 1) - 1) / (p_pot - 1);
        }else{
```

```
ans *= a + 1;
}
return ans;
}
```

1.4.2. Función Ω

```
//number of total primes with multiplicity dividing n
int Omega(lli n){
  int ans = 0;
  auto f = factorize(n);
  for(auto & factor : f)
    ans += factor.second;
  return ans;
}
```

1.4.3. Función ω

```
//number of distinct primes dividing n
int omega(lli n){
  int ans = 0;
  auto f = factorize(n);
  for(auto & factor : f)
    ++ans;
  return ans;
}
```

1.4.4. Función φ de Euler

```
//number of coprimes with n less than n
lli phi(lli n){
    lli ans = n;
    auto f = factorize(n);
    for(auto & factor : f)
        ans -= ans / factor.first;
    return ans;
}
```

1.4.5. Función μ

```
//1 if n is square-free with an even number of prime factors
//-1 if n is square-free with an odd number of prime factors
//0 is n has a square prime factor
int mu(lli n){
  int ans = 1;
  auto f = factorize(n);
  for(auto & factor : f){
    if(factor.second > 1) return 0;
    ans *= -1;
  }
  return ans;
}
```

1.5. Orden multiplicativo, raíces primitivas y raíces de la unidad

1.5.1. Función λ de Carmichael

```
//the smallest positive integer k such that for
//every coprime x with n, x^k=1 mod n

lli carmichaelLambda(lli n){
    lli ans = 1;
    auto f = factorize(n);
    for(auto & factor : f){
        lli p = factor.first;
        int a = factor.second;
        lli tmp = power(p, a);
        tmp -= tmp / p;
        if(a <= 2 || p >= 3) ans = lcm(ans, tmp);
        else ans = lcm(ans, tmp >> 1);
    }
    return ans;
}
```

1.5.2. Orden multiplicativo módulo m

```
// the smallest positive integer k such that x^k = 1 mod m
lli multiplicativeOrder(lli x, lli m){
  if(gcd(x, m) != 1) return 0;
  lli order = phi(m);
  auto f = factorize(order);
  for(auto & factor : f){
    lli p = factor.first;
    int a = factor.second;
    order /= power(p, a);
    lli tmp = powerMod(x, order, m);
    while(tmp != 1){
        tmp = powerMod(tmp, p, m);
        order *= p;
    }
  }
  return order;
}
```

1.5.3. Número de raíces primitivas (generadores) módulo m

```
//number of generators modulo m

lli numberOfGenerators(lli m){
   lli phi_m = phi(m);
   lli lambda_m = carmichaelLambda(m);
   if(phi_m == lambda_m) return phi(phi_m);
   else return 0;
}
```

1.5.4. Test individual de raíz primitiva módulo m

```
//test if order(x, m) = phi(m), i.e., x is a generator for Z/mZ
bool testPrimitiveRoot(lli x, lli m){
  if(gcd(x, m) != 1) return false;
  lli order = phi(m);
  auto f = factorize(order);
  for(auto & factor : f){
    lli p = factor.first;
```

```
if(powerMod(x, order / p, m) == 1) return false;
}
return true;
}
```

1.5.5. Test individual de raíz k-ésima de la unidad módulo

m

1.5.6. Encontrar la primera raíz primitiva módulo m

```
lli findFirstGenerator(lli m){
  lli order = phi(m);
  if(order != carmichaelLambda(m)) return -1; //just an
  → optimization, not required
  auto f = factorize(order):
  for(lli x = 1; x < m; x++){
    if(gcd(x, m) != 1) continue;
    bool test = true:
    for(auto & factor : f){
      lli p = factor.first;
      if(powerMod(x, order / p, m) == 1){
       test = false;
        break;
      }
    }
    if(test) return x;
```

```
return -1; //not found }
```

1.5.7. Encontrar la primera raíz k-ésima de la unidad módulo m

```
lli findFirstPrimitiveKthRootUnity(lli k, lli m){
  if(carmichaelLambda(m) % k != 0) return -1; //just an
  → optimization, not required
  auto f = factorize(k);
  for(lli x = 1; x < m; x++){
    if(powerMod(x, k, m) != 1) continue;
    bool test = true:
    for(auto & factor : f){
     lli p = factor.first;
     if(powerMod(x, k / p, m) == 1){
       test = false:
       break;
     }
    }
    if(test) return x;
  return -1; //not found
```

1.5.8. Logaritmo discreto

```
// a^x = b mod m, a and m coprime
pair<lli, lli> discreteLogarithm(lli a, lli b, lli m){
  if(gcd(a, m) != 1) return make_pair(-1, 0); //not found
  lli order = multiplicativeOrder(a, m);
  lli n = sqrt(order) + 1;
  lli a_n = powerMod(a, n, m);
  lli ans = 0;
  unordered_map<lli, lli> firstHalf;
  lli current = a_n;
  for(lli p = 1; p <= n; p++){
    firstHalf[current] = p;
    current = (current * a_n) % m;</pre>
```

```
}
                                                                     if(a < 0) a += p;
  current = b % m;
                                                                     if(a == 0) return 0;
  for(lli q = 0; q \le n; q++){
                                                                     assert(powerMod(a, (p - 1) / 2, p) == 1);
    if(firstHalf.count(current)){
                                                                     if (p \% 4 == 3) return powerMod(a, (p + 1) / 4, p);
      lli p = firstHalf[current];
                                                                    lli s = p - 1;
      lli x = n * p - q;
                                                                     int r = 0;
      return make_pair(x % order, order);
                                                                     while((s & 1) == 0) ++r, s >>= 1;
    }
                                                                    11i n = 2;
    current = (current * a) % m;
                                                                     while(powerMod(n, (p - 1) / 2, p) != p - 1) ++n;
                                                                    lli x = powerMod(a, (s + 1) / 2, p);
  return make_pair(-1, 0); //not found
                                                                    lli b = powerMod(a, s, p);
}
                                                                    lli g = powerMod(n, s, p);
                                                                     while(true){
                                                                      lli t = b;
1.5.9. Raíz k-ésima discreta
                                                                      int m = 0;
                                                                      for(; m < r; ++m){
// x^k = b \mod m, m has at least one generator
                                                                        if(t == 1) break;
vector<lli> discreteRoot(lli k, lli b, lli m){
                                                                        t = t * t % p;
  if(b \% m == 0) return {0};
                                                                      }
  lli g = findFirstGenerator(m);
                                                                      if(m == 0) return x;
  lli power = powerMod(g, k, m);
                                                                      lli gs = powerMod(g, 1 \ll (r - m - 1), p);
  auto y0 = discreteLogarithm(power, b, m);
                                                                      g = gs * gs % p;
  if(y0.first == -1) return {};
                                                                      x = x * gs \% p;
  lli phi_m = phi(m);
                                                                      b = b * g \% p;
  lli d = gcd(k, phi_m);
                                                                      r = m;
  vector<lli> x(d);
                                                                    }
  x[0] = powerMod(g, y0.first, m);
                                                                   }
  lli inc = powerMod(g, phi_m / d, m);
  for(11i i = 1; i < d; i++)
                                                                   1.6. Particiones
    x[i] = x[i - 1] * inc % m;
  sort(x.begin(), x.end());
  return x;
                                                                   1.6.1. Función P (particiones de un entero positivo)
}
                                                                  11i \mod = 1e9 + 7;
1.5.10. Algoritmo de Tonelli-Shanks para raíces cuadradas
                                                                   vector<lli> P;
         módulo p
                                                                   //number of ways to write n as a sum of positive integers
//finds \ x \ such \ that \ x^2 = a \ mod \ p
                                                                   lli partitionsP(int n){
lli sqrtMod(lli a, lli p){
```

if(n < 0) return 0;

if(P[n]) return P[n];

ESCOM-IPN 14

a %= p;

```
int pos1 = 1, pos2 = 2, inc1 = 4, inc2 = 5;
                                                                        if(j \& 1) return -1;
  lli ans = 0;
                                                                        else return 1;
  for(int k = 1; k \le n; k++){
                                                                      }else{
    lli tmp = (n \ge pos1 ? P[n - pos1] : 0) + (n \ge pos2 ? P[n]
                                                                        return 0;
    \rightarrow - pos2] : 0);
                                                                      }
    if (k \& 1) ans += tmp;
                                                                    }
    else ans -= tmp;
    if(n < pos2) break;</pre>
                                                                    //number of ways to write n as a sum of distinct positive
    pos1 += inc1, pos2 += inc2;
                                                                    \hookrightarrow integers
    inc1 += 3, inc2 += 3;
                                                                    //number of ways to write n as a sum of odd positive integers
  }
                                                                    lli partitionsQ(int n){
  ans %= mod;
                                                                      if(n < 0) return 0;
  if (ans < 0) ans += mod;
                                                                      if(Q[n]) return Q[n];
  return ans;
                                                                      int pos = 1, inc = 3;
}
                                                                      lli ans = 0;
                                                                      int limit = sqrt(n);
void calculateFunctionP(int n){
                                                                      for(int k = 1; k <= limit; k++){</pre>
  P.resize(n + 1);
                                                                        if (k \& 1) ans += Q[n - pos];
  P[0] = 1;
                                                                        else ans -= Q[n - pos];
  for(int i = 1; i <= n; i++)
                                                                        pos += inc;
    P[i] = partitionsP(i);
                                                                        inc += 2;
}
                                                                      }
                                                                      ans <<= 1;
                                                                      ans += s(n);
1.6.2. Función Q (particiones de un entero positivo en dis-
                                                                      ans %= mod;
        tintos sumandos)
                                                                      if (ans < 0) ans += mod;
                                                                      return ans:
                                                                    }
vector<lli>Q;
bool isPerfectSquare(int n){
                                                                    void calculateFunctionQ(int n){
  int r = sqrt(n);
                                                                      Q.resize(n + 1);
                                                                      Q[0] = 1;
  return r * r == n;
                                                                      for(int i = 1; i <= n; i++)
}
                                                                        Q[i] = partitionsQ(i);
                                                                    }
int s(int n){
  int r = 1 + 24 * n;
  if(isPerfectSquare(r)){
                                                                    1.6.3. Número de factorizaciones ordenadas
    int j;
    r = sqrt(r);
                                                                    //number of ordered factorizations of n
    if((r + 1) \% 6 == 0) j = (r + 1) / 6;
                                                                    lli orderedFactorizations(lli n){
    else j = (r - 1) / 6;
```

```
//skip the factorization if you already know the powers
auto fact = factorize(n);
int k = 0, q = 0;
vector<int> powers(fact.size() + 1);
for(auto & f : fact){
  powers[k + 1] = f.second;
  q += f.second;
  ++k;
}
vector<lli> prod(q + 1, 1);
//we need Ncr until the max_power+Omega(n) row
//module if needed
for(int i = 0; i \le q; i++){
 for(int j = 1; j \le k; j++){
    prod[i] = prod[i] * Ncr[powers[j] + i][powers[j]];
  }
}
lli ans = 0;
for(int j = 1; j \le q; j++){
 int alt = 1;
  for(int i = 0; i < j; i++){
    ans = ans + alt * Ncr[j][i] * prod[j - i - 1];
    alt *= -1;
  }
}
return ans;
```

1.6.4. Número de factorizaciones no ordenadas

```
//Number of unordered factorizations of n with
//largest part at most m
//Call unorderedFactorizations(n, n) to get all of them
//Add this to the main to speed up the map:
//mem.reserve(1024); mem.max_load_factor(0.25);
struct HASH{
    size_t operator()(const pair<int,int>&x)const{
        return hash<long long>()(((long long)x.first)^(((long operator)x.second)<<32));
    }</pre>
```

```
};
unordered_map<pair<int, int>, lli, HASH> mem;
lli unorderedFactorizations(int m, int n){
  if(m == 1 && n == 1) return 1;
  if(m == 1) return 0;
  if(n == 1) return 1;
  if(mem.count({m, n})) return mem[{m, n}];
 lli ans = 0;
  int 1 = sqrt(n);
 for(int i = 1; i <= 1; ++i){
    if(n \% i == 0){
      int a = i, b = n / i;
      if(a <= m) ans += unorderedFactorizations(a, b);
      if (a != b && b <= m) ans += unorderedFactorizations(b,
      \rightarrow a);
    }
  }
  return mem[{m, n}] = ans;
}
```

1.7. Otros

1.7.1. Cambio de base

```
string decimalToBaseB(lli n, lli b){
   string ans = "";
   lli d;
   do{
      d = n % b;
      if(0 <= d && d <= 9) ans = (char)(48 + d) + ans;
      else if(10 <= d && d <= 35) ans = (char)(55 + d) + ans;
      n /= b;
   }while(n != 0);
   return ans;
}

lli baseBtoDecimal(const string & n, lli b){
   lli ans = 0;
   for(const char & d : n){
      if(48 <= d && d <= 57) ans = ans * b + (d - 48);</pre>
```

}

```
else if(65 <= d && d <= 90) ans = ans * b + (d - 55);
else if(97 <= d && d <= 122) ans = ans * b + (d - 87);
}
return ans;
}
```

1.7.2. Fracciones continuas

```
//continued fraction of (p+sqrt(n))/q, where p,n,q are positive
\hookrightarrow integers
//returns a vector of terms and the length of the period,
//the periodic part is taken from the right of the array
pair<vector<lli>, int> ContinuedFraction(lli p, lli n, lli q){
  vector<lli> coef;
  lli r = sqrt(n);
  //Skip this if you know that n is not a perfect square
  if(r * r == n){
    lli num = p + r;
    lli den = q;
    lli residue;
    while(den){
      residue = num % den;
      coef.push_back(num / den);
      num = den;
      den = residue;
    }
    return make_pair(coef, 0);
  }
  if((n - p * p) % q != 0){
    n *= q * q;
    p *= q;
    q *= q;
    r = sqrt(n);
  }
  lli a = (r + p) / q;
  coef.push_back(a);
  int period = 0;
  map<pair<lli, lli>, int> pairs;
  while(true){
    p = a * q - p;
```

```
q = (n - p * p) / q;
a = (r + p) / q;
//if p=0 and q=1, we can just ask if q==1 after inserting a
if(pairs.count(make_pair(p, q))){
   period -= pairs[make_pair(p, q)];
   break;
}
coef.push_back(a);
pairs[make_pair(p, q)] = period++;
}
return make_pair(coef, period);
```

1.7.3. Ecuación de Pell

```
//first solution (x, y) to the equation x^2-ny^2=1, n IS NOT a
    → perfect aquare
pair<lli, lli> PellEquation(lli n){
    vector<lli> cf = ContinuedFraction(0, n, 1).first;
    lli num = 0, den = 1;
    int k = cf.size() - 1;
    for(int i = ((k & 1) ? (2 * k - 1) : (k - 1)); i >= 0; i--){
        lli tmp = den;
        int pos = i % k;
        if(pos == 0 && i != 0) pos = k;
        den = num + cf[pos] * den;
        num = tmp;
    }
    return make_pair(den, num);
}
```

1.7.4. Números de Bell

```
//number of ways to partition a set of n elements
//the nth bell number is at Bell[n][0]
vector<vector<int>>> Bell;
void bellSieve(int n){
   Bell.resize(n + 1);
   Bell[0] = {1};
```

```
for(int i = 1; i <= n; ++i){
                                                                       q = p * p;
    Bell[i].resize(i + 1);
                                                                       hi[1] = (hi[p] - temp) * powMod(p, k, Mod) % Mod;
    Bell[i][0] = Bell[i - 1][i - 1];
                                                                       if(hi[1] < 0) hi[1] += Mod;
    for(int j = 1; j <= i; ++j)
                                                                       j = 1 + (p \& 1);
      Bell[i][j] = Bell[i][j-1] + Bell[i-1][j-1];
                                                                       end = (v \le n/q) ? v : n/q;
  }
                                                                       for(i = p + j; i \le 1 + end; i += j){
}
                                                                         if(used[i]) continue;
                                                                         d = i * p;
                                                                         if(d \ll v)
1.7.5. Prime counting function in sublinear time
                                                                           hi[i] = (hi[d] - temp) * powMod(p, k, Mod) % Mod;
                                                                         else
const lli inv_2 = modularInverse(2, Mod);
                                                                           hi[i] = (lo[n/d] - temp) * powMod(p, k, Mod) % Mod;
const lli inv_6 = modularInverse(6, Mod);
                                                                         if(hi[i] < 0) hi[i] += Mod;
const lli inv_30 = modularInverse(30, Mod);
                                                                       if(q \ll v)
lli sum(lli n, int k){
                                                                         for(i = q; i \le end; i += p*j)
  n \%= Mod;
                                                                           used[i] = true;
  if(k == 0) return n:
                                                                       for(i = v; i >= q; i--){
  if(k == 1) return n * (n + 1) % Mod * inv_2 % Mod;
                                                                         lo[i] = (lo[i/p] - temp) * powMod(p, k, Mod) % Mod;
  if(k == 2) return n * (n + 1) % Mod * (2*n + 1) % Mod * inv_6
                                                                         if(lo[i] < 0) lo[i] += Mod;

→ % Mod;

                                                                       }
  if (k == 3) return powMod(n * (n + 1) \% Mod * inv_2 \% Mod, 2,
                                                                     }
  \rightarrow Mod);
                                                                     return hi[1] % Mod;
  if(k == 4) return n * (n + 1) % Mod * (2*n + 1) % Mod *
                                                                   }
  \rightarrow (3*n*(n+1)%Mod -1) % Mod * inv_30 % Mod;
  return 1;
}
//finds the sum of the kth powers of the primes
//less than or equal to n (0 \le k \le 4, add more if you need)
lli SumPrimePi(lli n, int k){
  lli v = sqrt(n), p, temp, q, j, end, i, d;
  vector<lli> lo(v+2), hi(v+2);
  vector<bool> used(v+2);
  for(p = 1; p \le v; p++){
   lo[p] = sum(p, k) - 1;
   hi[p] = sum(n/p, k) - 1;
  }
  for(p = 2; p \leq v; p++){
    if(lo[p] == lo[p-1]) continue;
    temp = lo[p-1];
```

2. Números racionales

2.1. Estructura fraccion

```
struct fraccion{
   ll num, den;
   fraccion(){
       num = 0, den = 1;
   fraccion(ll x, ll y){
       if(y < 0)
           x *= -1, y *=-1;
       ll d = \_gcd(abs(x), abs(y));
       num = x/d, den = y/d;
   fraccion(ll v){
        num = v;
        den = 1;
   fraccion operator+(const fraccion& f) const{
       ll d = \_gcd(den, f.den);
        return fraccion(num*(f.den/d) + f.num*(den/d),
        \rightarrow den*(f.den/d));
   }
   fraccion operator-() const{
        return fraccion(-num, den);
   fraccion operator-(const fraccion& f) const{
       return *this + (-f);
   }
   fraccion operator*(const fraccion& f) const{
        return fraccion(num*f.num, den*f.den);
   }
   fraccion operator/(const fraccion& f) const{
        return fraccion(num*f.den, den*f.num);
   fraccion operator+=(const fraccion& f){
        *this = *this + f;
       return *this;
   fraccion operator = (const fraccion& f){
```

```
*this = *this - f;
    return *this;
fraccion operator++(int xd){
    *this = *this + 1;
    return *this;
fraccion operator--(int xd){
    *this = *this - 1;
    return *this;
fraccion operator*=(const fraccion& f){
    *this = *this * f;
    return *this;
}
fraccion operator/=(const fraccion& f){
    *this = *this / f;
    return *this;
}
bool operator == (const fraccion& f) const{
    11 d = \_gcd(den, f.den);
    return (num*(f.den/d) == (den/d)*f.num);
bool operator!=(const fraccion& f) const{
    11 d = \_gcd(den, f.den);
    return (num*(f.den/d) != (den/d)*f.num);
bool operator >(const fraccion& f) const{
    11 d = \_gcd(den, f.den);
    return (num*(f.den/d) > (den/d)*f.num);
bool operator <(const fraccion& f) const{</pre>
    11 d = \_gcd(den, f.den);
    return (num*(f.den/d) < (den/d)*f.num);
}
bool operator >=(const fraccion& f) const{
    11 d = \_gcd(den, f.den);
    return (num*(f.den/d) >= (den/d)*f.num);
}
bool operator <=(const fraccion& f) const{</pre>
    11 d = \_gcd(den, f.den);
```

```
return (num*(f.den/d) <= (den/d)*f.num);
    }
    fraccion inverso() const{
        return fraccion(den, num);
    }
    fraccion fabs() const{
        fraccion nueva:
        nueva.num = abs(num);
        nueva.den = den;
        return nueva;
    }
    double value() const{
      return (double)num / (double)den;
    string str() const{
        stringstream ss;
        ss << num;
        if(den != 1) ss << "/" << den;
        return ss.str();
    }
};
ostream &operator << (ostream &os, const fraccion & f) {
    return os << f.str();
}
istream &operator>>(istream &is, fraccion & f){
    11 \text{ num} = 0, \text{ den} = 1;
    string str;
    is >> str;
    size_t pos = str.find("/");
    if(pos == string::npos){
        istringstream(str) >> num;
    }else{
        istringstream(str.substr(0, pos)) >> num;
        istringstream(str.substr(pos + 1)) >> den;
    f = fraccion(num, den);
    return is;
}
```

3. Álgebra lineal

3.1. Estructura matrix

```
template <typename T>
struct matrix{
 vector<vector<T>> A;
 int m, n;
 matrix(int m, int n): m(m), n(n){
   A.resize(m, vector<T>(n, 0));
 vector<T> & operator[] (int i){
   return A[i];
  const vector<T> & operator[] (int i) const{
   return A[i];
  static matrix identity(int n){
   matrix<T> id(n, n);
   for(int i = 0; i < n; i++)
     id[i][i] = 1;
   return id;
 matrix operator+(const matrix & B) const{
   assert(m == B.m && n == B.n); //same dimensions
   matrix<T> C(m, n);
   for(int i = 0; i < m; i++)
     for(int j = 0; j < n; j++)
       C[i][j] = A[i][j] + B[i][j];
   return C;
 }
 matrix operator+=(const matrix & M){
    *this = *this + M;
   return *this;
```

```
}
                                                                   }
matrix operator-() const{
                                                                   matrix operator*=(const T & c){
  matrix<T> C(m, n);
                                                                     *this = *this * c;
  for(int i = 0; i < m; i++)
                                                                     return *this;
    for(int j = 0; j < n; j++)
                                                                   }
      C[i][j] = -A[i][j];
  return C;
                                                                   matrix operator^(lli b) const{
}
                                                                     matrix<T> ans = matrix<T>::identity(n);
                                                                     matrix<T> A = *this;
matrix operator-(const matrix & B) const{
                                                                     while(b){
  return *this + (-B);
                                                                       if (b & 1) ans *= A;
}
                                                                       b >>= 1;
                                                                       if(b) A *= A;
                                                                     }
matrix operator-=(const matrix & M){
  *this = *this + (-M);
                                                                     return ans;
                                                                   }
  return *this;
}
                                                                   matrix operator^=(lli n){
                                                                     *this = *this ^ n;
matrix operator*(const matrix & B) const{
  assert(n == B.m); //#columns of 1st matrix = #rows of 2nd
                                                                     return *this;
  \rightarrow matrix
  matrix<T> C(m, B.n);
  for(int i = 0; i < m; i++)
                                                                   bool operator==(const matrix & B) const{
   for(int j = 0; j < B.n; j++)
                                                                     if(m != B.m || n != B.n) return false;
      for(int k = 0; k < n; k++)
                                                                     for(int i = 0; i < m; i++)
        C[i][j] += A[i][k] * B[k][j];
                                                                       for(int j = 0; j < n; j++)
                                                                         if(A[i][j] != B[i][j]) return false;
  return C;
}
                                                                     return true;
                                                                   }
matrix operator*(const T & c) const{
  matrix<T> C(m, n);
                                                                   bool operator!=(const matrix & B) const{
  for(int i = 0; i < m; i++)
                                                                     return !(*this == B);
   for(int j = 0; j < n; j++)
                                                                   }
      C[i][j] = A[i][j] * c;
  return C;
                                                                   void scaleRow(int k, T c){
}
                                                                     for(int j = 0; j < n; j++)
                                                                       A[k][j] *= c;
matrix operator*=(const matrix & M){
                                                                   }
  *this = *this * M;
  return *this;
                                                                   void swapRows(int k, int 1){
```

21

```
swap(A[k], A[1]);
}

void addRow(int k, int 1, T c){
  for(int j = 0; j < n; j++)
     A[k][j] += c * A[1][j];
}</pre>
```

3.2. Transpuesta y traza

```
matrix<T> transpose(){
   matrix<T> tr(n, m);
   for(int i = 0; i < m; i++)
      for(int j = 0; j < n; j++)
        tr[j][i] = A[i][j];
   return tr;
}

T trace(){
   T sum = 0;
   for(int i = 0; i < min(m, n); i++)
      sum += A[i][i];
   return sum;
}</pre>
```

3.3. Gauss Jordan

```
//full: true: reduce above and below the diagonal, false:
    reduce only below
//makeOnes: true: make the elements in the diagonal ones,
    false: leave the diagonal unchanged
//For every elemental operation that we apply to the matrix,
//we will call to callback(operation, k, l, value).
//operation 1: multiply row "k" by "value"
//operation 2: swap rows "k" and "l"
//operation 3: add "value" times the row "l" to the row "k"
//It returns the rank of the matrix, and modifies it
int gauss_jordan(bool full = true, bool makeOnes = true,
    function

youngle
```

```
int i = 0, j = 0;
  while(i < m \&\& j < n){
   if(A[i][j] == 0){
      for(int f = i + 1; f < m; f++){
        if(A[f][i] != 0){
          swapRows(i, f);
          if(callback) callback(2, i, f, 0);
          break;
        }
     }
   }
   if(A[i][j] != 0){
     T inv_mult = A[i][j].inverso();
      if(makeOnes && A[i][j] != 1){
        scaleRow(i, inv_mult);
        if(callback) callback(1, i, 0, inv_mult);
      for(int f = (full ? 0 : (i + 1)); f < m; f++){
        if(f != i && A[f][j] != 0){
          T inv_adit = -A[f][j];
          if(!makeOnes) inv_adit *= inv_mult;
          addRow(f, i, inv_adit);
          if(callback) callback(3, f, i, inv_adit);
        }
     }
     i++;
   }
   j++;
 return i;
}
void gaussian_elimination(){
  gauss_jordan(false);
```

3.4. Matriz escalonada por filas y reducida por filas

```
matrix<T> reducedRowEchelonForm(){
  matrix<T> asoc = *this;
```

23

```
asoc.gauss_jordan();
return asoc;
}

matrix<T> rowEchelonForm(){
  matrix<T> asoc = *this;
  asoc.gaussian_elimination();
  return asoc;
}
```

3.5. Matriz inversa

```
bool invertible(){
  assert(m == n); //this is defined only for square matrices
 matrix<T> tmp = *this;
  return tmp.gauss_jordan(false) == n;
}
matrix<T> inverse(){
  assert(m == n); //this is defined only for square matrices
  matrix<T> tmp = *this;
  matrix<T> inv = matrix<T>::identity(n);
  auto callback = [&](int op, int a, int b, T e){
   if(op == 1){
     inv.scaleRow(a, e);
   else if(op == 2){
     inv.swapRows(a, b);
   else if(op == 3){
     inv.addRow(a, b, e);
   }
 };
  assert(tmp.gauss_jordan(true, true, callback) == n);
  return inv;
}
```

3.6. Determinante

```
T determinant(){
   assert(m == n); //only square matrices have determinant
   matrix<T> tmp = *this;
   T det = 1;
   auto callback = [&](int op, int a, int b, T e){
      if(op == 1) {
       det /= e;
    }else if(op == 2) {
       det *= -1;
    }
   };
   if(tmp.gauss_jordan(false, true, callback) != n) det = 0;
   return det;
}
```

3.7. Matriz de cofactores y adjunta

```
matrix<T> minor(int x, int y){
  matrix<T> M(m-1, n-1);
 for(int i = 0; i < m-1; ++i)
   for(int j = 0; j < n-1; ++j)
     M[i][j] = A[i < x ? i : i+1][j < y ? j : j+1];
  return M;
}
T cofactor(int x, int y){
  T ans = minor(x, y).determinant();
  if((x + y) \% 2 == 1) ans *= -1;
  return ans;
matrix<T> cofactorMatrix(){
  matrix<T> C(m, n);
 for(int i = 0; i < m; i++)
   for(int j = 0; j < n; j++)
     C[i][j] = cofactor(i, j);
 return C;
}
```

```
matrix<T> adjugate(){
   if(invertible()) return inverse() * determinant();
   return cofactorMatrix().transpose();
}
```

3.8. Factorización PA = LU

```
tuple<matrix<T>, matrix<T>, matrix<T>> PA_LU(){
  matrix<T> U = *this:
  matrix<T> L = matrix<T>::identity(n);
  matrix<T> P = matrix<T>::identity(n);
  auto callback = [&](int op, int a, int b, T e){
    if(op == 2){
     L.swapRows(a, b);
      P.swapRows(a, b);
      L[a][a] = L[b][b] = 1;
      L[a][a + 1] = L[b][b - 1] = 0;
    else if(op == 3){
      L[a][b] = -e;
    }
  };
  U.gauss_jordan(false, false, callback);
  return {P, L, U};
}
```

3.9. Polinomio característico

```
vector<T> characteristicPolynomial(){
   matrix<T> M(n, n);
   vector<T> coef(n + 1);
   matrix<T> I = matrix<T>::identity(n);
   coef[n] = 1;
   for(int i = 1; i <= n; i++){
      M = (*this) * M + I * coef[n - i + 1];
      coef[n - i] = -((*this) * M).trace() / i;
   }
   return coef;
}</pre>
```

3.10. Gram-Schmidt

```
matrix<T> gram_schmidt(){
  //vectors are rows of the matrix (also in the answer)
  //the answer doesn't have the vectors normalized
  matrix<T> B = (*this) * (*this).transpose();
  matrix<T> ans = *this;
  auto callback = [&](int op, int a, int b, T e){
   if(op == 1){
      ans.scaleRow(a, e);
   else if(op == 2){
      ans.swapRows(a, b);
   else if(op == 3){
      ans.addRow(a, b, e);
   }
  }:
  B.gauss_jordan(false, false, callback);
  return ans;
}
```

3.11. Recurrencias lineales

```
//Solves a linear homogeneous recurrence relation of degree
→ "deg" of the form
//F(n) = a(d-1)*F(n-1) + a(d-2)*F(n-2) + \dots + a(1)*F(n-(d-1))
\rightarrow + a(0)*F(n-d)
//with initial values F(0), F(1), ..., F(d-1)
//It finds the nth term of the recurrence, F(n)
//The values of a[0,...,d) are in the array P[]
lli solveRecurrence(lli *P, lli *init, int deg, lli n){
  lli *ans = new lli[deg]();
 lli *R = new lli[2*deg]();
  ans[0] = 1;
  lli p = 1;
  for(lli v = n; v >>= 1; p <<= 1);
    int d = (n \& p) != 0;
    fill(R, R + 2*deg, 0);
    //if deg(mod-1)^2 overflows, just do mod in the
    \rightarrow multiplications
```

```
for(int i = 0; i < deg; i++)
      for(int j = 0; j < deg; j++)
                                                                     for(int j = 0; j < m; ++j){
        R[i + j + d] += ans[i] * ans[j];
                                                                       for(int i = 0; i < n; ++i)
    for(int i = 0; i < 2*deg; ++i) R[i] %= mod;
                                                                         T[i][i] = A[i][i];
    for(int i = deg-1; i >= 0; i--){
                                                                       row[j] = n + j;
      R[i + deg] \% = mod;
                                                                       T[i][n + i] = 1;
      for(int j = 0; j < deg; j++)
                                                                       base[n + j] = 1;
        R[i + j] += R[i + deg] * P[j];
                                                                       T[j][n + m] = b[j];
                                                                     }
    for(int i = 0; i < deg; i++) R[i] \% = mod;
    copy(R, R + deg, ans);
                                                                     for(int i = 0; i < n; ++i)
  }while(p >>= 1);
                                                                       T[m][i] = c[i] * (mini ? 1 : -1);
  lli nValue = 0;
  for(int i = 0; i < deg; i++)
                                                                     while(true){
    nValue += ans[i] * init[i];
                                                                       int p = 0, q = 0;
  return nValue % mod;
                                                                       for(int i = 0; i < n + m; ++i)
}
                                                                         if(T[m][i] <= T[m][p])
                                                                           p = i;
3.12. Simplex
                                                                       for(int j = 0; j < m; ++j)
                                                                         if(T[j][n + m] \le T[q][n + m])
                                                                           q = j;
Parametric Self-Dual Simplex method
Solve a canonical LP:
                                                                       double t = min(T[m][p], T[q][n + m]);
  min or max. c x
  s.t. A x \le b
                                                                       if(t \ge -eps){
    x >= 0
                                                                         vec x(n);
                                                                         for(int i = 0; i < m; ++i)
#include <bits/stdc++.h>
                                                                           if(row[i] < n) x[row[i]] = T[i][n + m];
using namespace std;
                                                                         return {x, T[m][n + m] * (mini ? -1 : 1)}; // optimal
const double eps = 1e-9, oo =
                                                                       }
→ numeric_limits<double>::infinity();
                                                                       if(t < T[q][n + m]){
typedef vector<double> vec;
                                                                         // tight on c -> primal update
typedef vector<vec> mat;
                                                                         for(int j = 0; j < m; ++j)
                                                                           if(T[j][p] >= eps)
pair < vec, double > simplexMethodPD (mat &A, vec &b, vec &c, bool
                                                                             if(T[j][p] * (T[q][n + m] - t) >= T[q][p] * (T[j][n +

    mini = true){
                                                                              \rightarrow m] - t))
  int n = c.size(), m = b.size();
                                                                               q = j;
  mat T(m + 1, vec(n + m + 1));
```

 $if(T[q][p] \le eps)$

ESCOM-IPN 25

vector<int> base(n + m), row(m);

```
return {vec(n), oo * (mini ? 1 : -1)}; // primal
                                                                        cout << "Numero de restricciones: ";</pre>
         \hookrightarrow infeasible
                                                                        cin >> m;
    }else{
                                                                        cout << "Numero de incognitas: ";</pre>
      // tight on b -> dual update
                                                                        cin >> n;
      for(int i = 0; i < n + m + 1; ++i)
                                                                        mat A(m, \text{vec}(n));
        T[q][i] = -T[q][i];
                                                                        vec b(m), c(n);
                                                                        for(int i = 0; i < m; ++i){
      for(int i = 0; i < n + m; ++i)
                                                                          cout << "Restriccion #" << (i + 1) << ": ";</pre>
        if(T[q][i] >= eps)
                                                                          for(int j = 0; j < n; ++j){
          if(T[q][i] * (T[m][p] - t) >= T[q][p] * (T[m][i] -
                                                                            cin >> A[i][j];
                                                                          }
                                                                          cin >> b[i];
            p = i;
      if(T[q][p] \le eps)
                                                                        cout << "[0]Max o [1]Min?: ";</pre>
        return {vec(n), oo * (mini ? -1 : 1)}; // dual
                                                                        cin >> mini;
         \hookrightarrow infeasible
                                                                        cout << "Coeficientes de " << (mini ? "min" : "max") << " z:</pre>
    }
                                                                        for(int i = 0; i < n; ++i){
    for(int i = 0; i < m + n + 1; ++i)
                                                                          cin >> c[i];
      if(i != p) T[q][i] /= T[q][p];
                                                                        }
                                                                        cout.precision(6);
    T[q][p] = 1; // pivot(q, p)
                                                                        auto ans = simplexMethodPD(A, b, c, mini);
    base[p] = 1;
                                                                        cout << (mini ? "Min" : "Max") << " z = " << ans.second << ",
    base[row[q]] = 0;

→ cuando: \n";

    row[q] = p;
                                                                        for(int i = 0; i < ans.first.size(); ++i){</pre>
                                                                          cout << "x_" << (i + 1) << " = " << ans.first[i] << "\n";</pre>
    for(int j = 0; j < m + 1; ++j){
                                                                        }
      if(j != q){
                                                                        return 0;
        double alpha = T[j][p];
        for(int i = 0; i < n + m + 1; ++i)
          T[j][i] = T[q][i] * alpha;
      }
    }
  }
  return {vec(n), oo};
int main(){
  int m, n;
  bool mini = true;
```

26

ESCOM-IPN

}

4. FFT

4.1. Declaraciones previas

```
typedef complex<double> comp;
typedef long long int lli;
double PI = acos(-1.0);

int nearestPowerOfTwo(int n){
  int ans = 1;
  while(ans < n) ans <<= 1;
  return ans;
}</pre>
```

4.2. FFT con raíces de la unidad complejas

```
void fft(vector<comp> & X, int inv){
  int n = X.size();
  int len, len2, i, j, k;
  for(i = 1, j = 0; i < n - 1; ++i){
   for (k = n >> 1; (j = k) < k; k >>= 1);
    if(i < j) swap(X[i], X[j]);
  }
  double ang;
  comp t, u, v;
  vector<comp> wlen_pw(n >> 1);
  wlen_pw[0] = 1;
  for(len = 2; len <= n; len <<= 1){
    ang = inv == -1 ? -2 * PI / len : 2 * PI / len;
    len2 = len >> 1;
    comp wlen(cos(ang), sin(ang));
    for(i = 1; i < len2; ++i)
      wlen_pw[i] = wlen_pw[i - 1] * wlen;
    for(i = 0; i < n; i += len)
      for(j = 0; j < len2; ++j){}
        t = X[i + j + len2] * wlen_pw[j];
        X[i + j + len2] = X[i + j] - t;
        X[i + j] += t;
      }
  }
```

```
if(inv == -1)
  for(i = 0; i < n; ++i)
    X[i] /= n;
}</pre>
```

4.3. FFT con raíces de la unidad en $\mathbb{Z}/p\mathbb{Z}$ (NTT)

```
int inverse(int a, int n){
 int r0 = a, r1 = n, ri, s0 = 1, s1 = 0, si;
 while(r1){
   si = s0 - s1 * (r0 / r1), s0 = s1, s1 = si;
   ri = r0 \% r1, r0 = r1, r1 = ri;
 if(s0 < 0) s0 += n;
 return s0;
int p = 7340033;
int root = 5;
int root_1 = inverse(root, p);
int root_pw = 1 << 20;</pre>
void ntt(vector<int> & X, int inv){
 int n = X.size();
 int len, len2, wlen, i, j, k, u, v, w;
 for(i = 1, j = 0; i < n - 1; ++i){
   for (k = n >> 1; (j = k) < k; k >>= 1);
   if(i < j) swap(X[i], X[j]);
 for(len = 2; len <= n; len <<= 1){
   len2 = len >> 1;
   wlen = (inv == -1) ? root_1 : root;
   for(i = len; i < root_pw; i <<= 1)
     wlen = (lli)wlen * wlen % p;
   for(i = 0; i < n; i += len)
     for(j = 0, w = 1; j < len2; ++j){
       u = X[i + j], v = (11i)X[i + j + len2] * w % p;
       X[i + j] = u + v 
       X[i + j + len2] = u - v < 0 ? u - v + p : u - v;
       w = (lli)w * wlen % p;
```

28

```
}
if(inv == -1){
  int nrev = inverse(n, p);
  for(i = 0; i < n; ++i)
    X[i] = (lli)X[i] * nrev % p;
}</pre>
```

4.3.1. Otros valores para escoger la raíz y el módulo

Raíz n-ési-	ω^{-1}	Tamaño	Módulo p
	ω		Wodulo p
ma de la		máximo del	
unidad (ω)		arreglo(n)	
15	30584	2^{14}	$4 \times 2^{14} + 1 = 65537$
9	7282	2^{15}	$2 \times 2^{15} + 1 = 65537$
3	21846	2^{16}	$1 \times 2^{16} + 1 = 65537$
8	688129	2^{17}	$6 \times 2^{17} + 1 = 786433$
5	471860	2^{18}	$3 \times 2^{18} + 1 = 786433$
12	3364182	2^{19}	$11 \times 2^{19} + 1 = 5767169$
5	4404020	2^{20}	$7 \times 2^{20} + 1 = 7340033$
38	21247462	2^{21}	$11 \times 2^{21} + 1 = 23068673$
21	49932191	2^{22}	$25 \times 2^{22} + 1 = 104857601$
4	125829121	2^{23}	$20 \times 2^{23} + 1 = 167772161$
31	128805723	$3 \ 2^{23}$	$119 \times 2^{23} + 1 = 998244353$
2	83886081	2^{24}	$10 \times 2^{24} + 1 = 167772161$
17	29606852	2^{25}	$5 \times 2^{25} + 1 = 167772161$
30	15658735	2^{26}	$7 \times 2^{26} + 1 = 469762049$
137	749463956	2^{27}	$15 \times 2^{27} + 1 = 2013265921$

4.4. Multiplicación de polinomios (convolución lineal)

```
void convolution(vector<comp> & A, vector<comp> & B){
  int sz = A.size() + B.size() - 1;
  int size = nearestPowerOfTwo(sz);
  A.resize(size), B.resize(size);
```

```
fft(A, 1), fft(B, 1);
for(int i = 0; i < size; i++)
    A[i] *= B[i];
fft(A, -1);
    A.resize(sz);
}

void convolution(vector<int> & A, vector<int> & B){
    int sz = A.size() + B.size() - 1;
    int size = nearestPowerOfTwo(sz);
    A.resize(size), B.resize(size);
    ntt(A, 1), ntt(B, 1);
    for(int i = 0; i < size; i++)
        A[i] = (lli)A[i] * B[i] % p;
    ntt(A, -1);
    A.resize(sz);
}</pre>
```

4.5. Aplicaciones

4.5.1. Multiplicación de números enteros grandes

```
string multiplyNumbers(const string & a, const string & b){
 int sgn = 1;
 int pos1 = 0, pos2 = 0;
 while(pos1 < a.size() && (a[pos1] < '1' || a[pos1] > '9')){
   if(a[pos1] == '-') sgn *= -1;
   ++pos1;
 }
 while(pos2 < b.size() && (b[pos2] < '1' || b[pos2] > '9')){
   if(b[pos2] == '-') sgn *= -1;
   ++pos2;
 }
 vector<int> X(a.size() - pos1), Y(b.size() - pos2);
 if(X.empty() || Y.empty()) return "0";
 for(int i = pos1, j = X.size() - 1; i < a.size(); ++i)
   X[j--] = a[i] - '0';
 for(int i = pos2, j = Y.size() - 1; i < b.size(); ++i)</pre>
   Y[j--] = b[i] - '0';
 convolution(X, Y);
```

```
stringstream ss;
  if(sgn == -1) ss << "-";
  int carry = 0;
  for(int i = 0; i < X.size(); ++i){</pre>
    X[i] += carry;
    carry = X[i] / 10;
    X[i] \% = 10;
  }
  while(carry){
    X.push_back(carry % 10);
    carry /= 10;
  }
  for(int i = X.size() - 1; i >= 0; --i)
    ss << X[i];
  return ss.str();
}
```

4.5.2. Inverso de un polinomio

```
vector<int> inversePolynomial(const vector<int> & A){
  vector<int> R(1, inverse(A[0], p));
  //R(x) = 2R(x) - A(x)R(x)^2
  while(R.size() < A.size()){</pre>
    int c = 2 * R.size();
    R.resize(c);
    vector<int> TR = R;
    TR.resize(2 * c);
    vector<int> TF(TR.size());
    for(int i = 0; i < c && i < A.size(); ++i)
      TF[i] = A[i];
    ntt(TR, 1);
    ntt(TF, 1);
    for(int i = 0; i < TR.size(); ++i)
      TR[i] = (lli)TR[i] * TR[i] % p * TF[i] % p;
    ntt(TR, -1);
    for(int i = 0; i < c; ++i){
      R[i] = R[i] + R[i] - TR[i];
      while(R[i] < 0) R[i] += p;
      while(R[i] >= p) R[i] -= p;
    }
```

```
}
  R.resize(A.size());
  return R;
}
```

4.5.3. Raíz cuadrada de un polinomio

```
const int inv2 = inverse(2, p);
vector<int> sqrtPolynomial(const vector<int> & A){
  int r0 = 1; //verify that r0^2 = A[0] \mod p
 vector<int> R(1, r0);
 //R(x) = R(x)/2 + A(x)/(2R(x))
 while(R.size() < A.size()){</pre>
   int c = 2 * R.size();
   R.resize(c);
   vector<int> TF(c):
   for(int i = 0; i < c && i < A.size(); ++i)</pre>
     TF[i] = A[i];
    vector<int> IR = inversePolynomial(R);
    convolution(TF, IR);
   for(int i = 0; i < c; ++i){
     R[i] = R[i] + TF[i];
     if(R[i] >= p) R[i] -= p;
     R[i] = (11i)R[i] * inv2 % p;
   }
 R.resize(A.size());
 return R;
}
```

4.5.4. Cociente y residuo de dos polinomios

```
pair<vector<int>, vector<int>> divide(vector<int> & A,
    vector<int> & B){
    while(!A.empty() && A.back() == 0) A.pop_back();
    while(!B.empty() && B.back() == 0) B.pop_back();
    int n = A.size(), m = B.size();
    if(n < m) return {A, B};</pre>
```

```
if(m == 1)
                                                                    comp w = polar(1.0, PI / n), w1 = w, w2 = 1;
    int inv = inverse(B[0], p);
                                                                    vector<comp> p(m), q(m), b(n);
    for(int i = 0; i < n; ++i)
                                                                    for(int k = 0; k < n; ++k, w2 *= w1, w1 *= w*w){}
      A[i] = (lli)A[i] * inv % p;
                                                                      b[k] = w2;
    return \{A, \{0\}\};
                                                                      p[k] = a[k] * b[k];
                                                                      q[k] = (comp)1 / b[k];
  vector<int> Q = A, Binv = B;
                                                                      if(k) q[m-k] = q[k];
  reverse(Q.begin(), Q.end());
  reverse(Binv.begin(), Binv.end());
                                                                    fft(p, 1), fft(q, 1);
  Binv.resize(n-m+1);
                                                                    for(int i = 0; i < m; i++)
  Binv = inversePolynomial(Binv);
                                                                      p[i] *= q[i];
  Q.resize(n-m+1);
                                                                    fft(p, -1);
  convolution(Q, Binv);
                                                                    for(int k = 0; k < n; ++k)
  Q.resize(n-m+1);
                                                                      a[k] = b[k] * p[k];
                                                                  }
  reverse(Q.begin(), Q.end());
  vector<int> R = B;
  R.resize(m-1);
                                                                  4.6. Convolución de dos vectores reales con solo dos
  vector<int> q = Q;
                                                                         FFT's
  Q.resize(min(n-m+1, m-1));
  convolution(R, Q);
  R.resize(m-1);
                                                                  //A and B are real-valued vectors
  for(int i = 0; i < m-1; ++i){
                                                                  //just do 2 fft's instead of 3
   R[i] = A[i] - R[i];
                                                                  void convolutionTrick(vector<comp> & A, vector<comp> & B){
    while (R[i] < 0) R[i] += p;
                                                                    int sz = A.size() + B.size() - 1;
    while(R[i] >= p) R[i] -= p;
                                                                    int size = nearestPowerOfTwo(sz);
  }
                                                                    vector<comp> C(size);
  while(!R.empty() && R.back() == 0) R.pop_back();
                                                                    comp I(0, 1);
  if(R.empty()) R.push_back(0);
                                                                    for(int i = 0; i < A.size() || i < B.size(); ++i){</pre>
  return {q, R};
                                                                      if(i < A.size()) C[i] += A[i];
}
                                                                      if(i < B.size()) C[i] += I*B[i];
                                                                    fft(C, 1);
4.5.5. DFT con tamaño de vector arbitrario (algoritmo de
                                                                    A.resize(size);
        Bluestein)
                                                                    for(int i = 0, j = 0; i < size; ++i){
                                                                      j = (size-1) & (size-i);
//it evaluates 1, w^2, w^4, ..., w^2(2n-2) on the polynomial
                                                                      A[i] = (conj(C[i]*C[i]) - C[i]*C[i]) * 0.25 * I;
//in this example we do a DFT with arbitrary size
                                                                    fft(A, -1);
```

A.resize(sz);

}

30

ESCOM-IPN

void bluestein(vector<comp> & a){

int m = nearestPowerOfTwo(2*n-1);

int n = a.size():

4.7. Convolución con módulo arbitrario

```
//convolution with arbitrary modulo using only 4 fft's
void convolutionMod(vector<int> & A, vector<int> & B, int mod){
  int s = sqrt(mod);
  int sz = A.size() + B.size() - 1:
  int size = nearestPowerOfTwo(sz);
  vector<comp> a(size), b(size);
  for(int i = 0; i < A.size(); ++i)</pre>
    a[i] = comp(A[i] \% s, A[i] / s);
  for(int i = 0; i < B.size(); ++i)</pre>
    b[i] = comp(B[i] \% s, B[i] / s);
  fft(a, 1), fft(b, 1);
  comp I(0, 1);
  vector<comp> c(size), d(size);
  for(int i = 0, j = 0; i < size; ++i){}
    j = (size-1) & (size-i);
    comp e = (a[i] + conj(a[j])) * 0.5;
    comp f = (conj(a[j]) - a[i]) * 0.5 * I;
    comp g = (b[i] + conj(b[j])) * 0.5;
    comp h = (conj(b[j]) - b[i]) * 0.5 * I;
    c[i] = e * g + I * (e * h + f * g);
    d[i] = f * h;
  }
  fft(c, -1), fft(d, -1);
  A.resize(sz);
  for(int i = 0, j = 0; i < sz; ++i){
    j = (size-1) & (size-i);
    lli p0 = (lli)round(real(c[i])) % mod;
    lli p1 = (lli)round(imag(c[i])) % mod;
    lli p2 = (lli)round(real(d[i])) % mod;
    A[i] = p0 + s*(p1 + p2*s \% mod) \% mod;
    while(A[i] >= mod) A[i] -= mod;
    while(A[i] < 0) A[i] += mod;
  }
}
//convolution with arbitrary modulo using CRT
//slower but with no precision errors
void convolutionModCRT(vector<int> & P, vector<int> & Q, int
\rightarrow mod){
```

```
vector < int > A = P, B = P, C = P, D = Q, E = Q;
  int a = 998244353, b = 985661441, c = 754974721;
  p = a, root = 31, root_1 = 128805723, root_pw = 1 << 23;
  convolution(A, D);
  p = b, root = 210, root_1 = 934031556, root_pw = 1 << 22;
  convolution(B, E);
  p = c, root = 362, root_1 = 415027540, root_pw = 1 << 24;
  convolution(C, Q);
  P.resize(A.size());
 for(int i = 0; i < P.size(); ++i){
    int x1 = A[i] \% a;
    if(x1 < 0) x1 += a;
    int x2 = 65710754911 * (B[i] - x1) % b;
    if(x2 < 0) x2 += b;
    int x3 = (41653777411 * (C[i] - x1) % c - x2) * 41180439011

→ % c;

    if(x3 < 0) x3 += c;
   P[i] = x1 + a*(x2 + (11i)x3*b \% mod) \% mod;
    while(P[i] >= mod) P[i] -= mod;
    while(P[i] < 0) P[i] += mod;
 }
}
```

5. Geometría

5.1. Estructura point

```
ld eps = 1e-9, inf = numeric_limits<ld>::max();
bool geq(ld a, ld b){return a-b >= -eps;}
                                                //a >= b
bool leq(ld a, ld b){return b-a >= -eps;}
                                                //a \ll b
bool ge(ld a, ld b){return a-b > eps;}
                                                //a > b
bool le(ld a, ld b){return b-a > eps;}
                                                //a < b
bool eq(ld a, ld b){return abs(a-b) \leq eps;} //a == b
bool neq(ld a, ld b){return abs(a-b) > eps;} //a != b
struct point{
  ld x, y;
  point(): x(0), y(0){}
  point(ld x, ld y): x(x), y(y){}
  point operator+(const point & p) const{return point(x + p.x,
  \rightarrow y + p.y);}
  point operator-(const point & p) const{return point(x - p.x,
  \rightarrow y - p.y);}
  point operator*(const ld & k) const{return point(x * k, y *
  \rightarrow k);}
  point operator/(const ld & k) const{return point(x / k, y /
  \rightarrow k);}
  point operator+=(const point & p){*this = *this + p; return
  → *this;}
  point operator==(const point & p){*this = *this - p; return
  → *this;}
  point operator*=(const ld & p){*this = *this * p; return
  → *this;}
  point operator/=(const ld & p){*this = *this / p; return
  → *this;}
```

```
point rotate(const ld angle) const{
  return point(x * cos(angle) - y * sin(angle), x *

    sin(angle) + y * cos(angle));
point rotate(const ld angle, const point & p){
  return p + ((*this) - p).rotate(angle);
point perpendicular() const{
  return point(-y, x);
}
ld dot(const point & p) const{
  return x * p.x + y * p.y;
}
ld cross(const point & p) const{
  return x * p.y - y * p.x;
ld norm() const{
  return x * x + y * y;
long double length() const{
  return sqrtl(x * x + y * y);
}
point normalize() const{
  return (*this) / length();
}
point projection(const point & p) const{
  return (*this) * p.dot(*this) / dot(*this);
point normal(const point & p) const{
  return p - projection(p);
bool operator==(const point & p) const{
  return eq(x, p.x) && eq(y, p.y);
bool operator!=(const point & p) const{
  return !(*this == p);
```

}

```
}
  bool operator<(const point & p) const{</pre>
    if(eq(x, p.x)) return le(y, p.y);
    return le(x, p.x);
  }
  bool operator>(const point & p) const{
    if(eq(x, p.x)) return ge(y, p.y);
    return ge(x, p.x);
  }
};
istream & operator >> (istream & is, point & P){
  is >> P.x >> P.y;
  return is;
}
ostream & operator << (ostream & os, const point & p) {
  return os << "(" << p.x << ", " << p.y << ")";
}
int sgn(ld x){
  if(ge(x, 0)) return 1;
  if(le(x, 0)) return -1;
  return 0;
}
```

5.2. Líneas y segmentos

5.2.1. Verificar si un punto pertenece a una línea o segmento

5.2.2. Intersección de líneas

```
int intersectLinesInfo(const point & a1, const point & v1,
//line a1+tv1
 //line a2+tv2
 ld det = v1.cross(v2);
 if(eq(det, 0)){
   if(eq((a2 - a1).cross(v1), 0)){
     return -1; //infinity points
   }else{
     return 0; //no points
   }
 }else{
   return 1; //single point
 }
}
point intersectLines(const point & a1, const point & v1, const
→ point & a2, const point & v2){
 //lines a1+tv1, a2+tv2
 //assuming that they intersect
 ld det = v1.cross(v2);
 return a1 + v1 * ((a2 - a1).cross(v2) / det);
}
```

5.2.3. Intersección línea-segmento

5.2.4. Intersección de segmentos

```
int intersectSegmentsInfo(const point & a, const point & b,
\rightarrow const point & c, const point & d){
  //segment ab, segment cd
  point v1 = b - a, v2 = d - c;
  int t = sgn(v1.cross(c - a)), u = sgn(v1.cross(d - a));
  if(t == u){}
    if(t == 0){
      if(pointInSegment(a, b, c) || pointInSegment(a, b, d) ||
      → pointInSegment(c, d, a) || pointInSegment(c, d, b)){
        return -1; //infinity points
      }else{
        return 0; //no point
      }
    }else{
      return 0; //no point
    }
  }else{
    return sgn(v2.cross(a - c)) != sgn(v2.cross(b - c)); //1:

→ single point, 0: no point

  }
}
```

5.2.5. Distancia punto-recta

```
ld distancePointLine(const point & a, const point & v, const

or point & p){
   //line: a + tv, point p
   return abs(v.cross(p - a)) / v.length();
}
```

5.3. Círculos

5.3.1. Distancia punto-círculo

```
ld distancePointCircle(const point & p, const point & c, ld r){
   //point p, center c, radius r
   return max((ld)0, (p - c).length() - r);
}
```

5.3.2. Proyección punto exterior a círculo

5.3.3. Puntos de tangencia de punto exterior

```
pair<point, point> pointsOfTangency(const point & p, const

→ point & c, ld r){
    //point p (outside the circle), center c, radius r
    point v = (p - c).normalize() * r;
    ld theta = acos(r / (p - c).length());
    return {c + v.rotate(-theta), c + v.rotate(theta)};
}
```

5.3.4. Intersección línea-círculo

```
else if(D < 0) return {}; //no intersection
else{ //two points of intersection (chord)
    D = sqrt(D);
    ld t1 = (-B + D) / A;
    ld t2 = (-B - D) / A;
    return {a + v * t1, a + v * t2};
}</pre>
```

5.3.5. Centro y radio a través de tres puntos

5.3.6. Intersección de círculos

```
vector<point> intersectionCircles(const point & c1, ld r1,
\rightarrow const point & c2, ld r2){
  //circle 1 with center c1 and radius r1
  //circle 2 with center c2 and radius r2
  1d A = 2*r1*(c2.y - c1.y);
  1d B = 2*r1*(c2.x - c1.x);
  1d C = (c1 - c2).dot(c1 - c2) + r1*r1 - r2*r2;
  1d D = A*A + B*B - C*C;
  if(eq(D, 0)) return {c1 + point(B, A) * r1 / C};
  else if(le(D, 0)) return {};
  else{
    D = sqrt(D);
    1d cos1 = (B*C + A*D) / (A*A + B*B);
    1d \sin 1 = (A*C - B*D) / (A*A + B*B);
    1d cos2 = (B*C - A*D) / (A*A + B*B);
    1d \sin 2 = (A*C + B*D) / (A*A + B*B);
```

```
return {c1 + point(cos1, sin1) * r1, c1 + point(cos2, sin2)

→ * r1};
}
```

5.3.7. Contención de círculos

```
int circleInsideCircle(const point & c1, ld r1, const point &
\rightarrow c2, ld r2){
 //test if circle 2 is inside circle 1
 //returns "-1" if 2 touches internally 1, "1" if 2 is inside
  \rightarrow 1, "0" if they overlap
 1d 1 = r1 - r2 - (c1 - c2).length();
 return (ge(1, 0) ? 1 : (eq(1, 0) ? -1 : 0));
}
int circleOutsideCircle(const point & c1, ld r1, const point &
\rightarrow c2, ld r2){
 //test if circle 2 is outside circle 1
 //returns "-1" if they touch externally, "1" if 2 is outside
  \rightarrow 1, "0" if they overlap
 ld l = (c1 - c2).length() - (r1 + r2);
 return (ge(1, 0) ? 1 : (eq(1, 0) ? -1 : 0));
int pointInCircle(const point & c, ld r, const point & p){
 //test if point p is inside the circle with center c and
  \rightarrow radius r
 //returns "0" if it's outside, "-1" if it's in the perimeter,

→ "1" if it's inside

 ld l = (p - c).length() - r;
 return (le(1, 0) ? 1 : (eq(1, 0) ? -1 : 0));
5.3.8. Tangentes
```

vector<vector<point>> commonExteriorTangents(const point & c1,

//returns a vector of segments or a single point

 \rightarrow ld r1, const point & c2, ld r2){

35

```
for(int i = 0; i < n; ++i){
  if(r1 < r2) return commonExteriorTangents(c2, r2, c1, r1);</pre>
  if(c1 == c2 \&\& abs(r1-r2) < 0) return {};
                                                                        ld si = (b - a).cross(S[i] - a);
  int in = circleInsideCircle(c1, r1, c2, r2);
                                                                        if(eq(si, 0)) continue;
  if(in == 1) return {};
                                                                        point m = getCircle(a, b, S[i]).first;
  else if(in == -1) return {\{c1 + (c2 - c1).normalize() * r1\}\};
                                                                        1d cr = (b - a).cross(m - a);
                                                                        if(le(si, 0)) hi = min(hi, cr);
    pair<point, point> t;
                                                                        else lo = max(lo, cr);
                                                                      }
    if(eq(r1, r2))
      t = \{c1 - (c2 - c1).perpendicular(), c1 + (c2 - c2)\}
                                                                      ld v = (ge(lo, 0) ? lo : le(hi, 0) ? hi : 0);
                                                                      point c = (a + b) / 2 + (b - a).perpendicular() * v / (b - a)
      else
                                                                      \rightarrow a).norm();
      t = pointsOfTangency(c2, c1, r1 - r2);
                                                                      return {c, (a - c).norm()};
    t.first = (t.first - c1).normalize();
                                                                    }
    t.second = (t.second - c1).normalize();
    return {{c1 + t.first * r1, c2 + t.first * r2}, {c1 +
                                                                    pair<point, ld> mec(vector<point> & S, const point & a, int n){
    \rightarrow t.second * r1, c2 + t.second * r2}};
                                                                      random_shuffle(S.begin(), S.begin() + n);
  }
                                                                      point b = S[0], c = (a + b) / 2;
}
                                                                      ld r = (a - c).norm();
                                                                      for(int i = 1; i < n; ++i){
                                                                        if(ge((S[i] - c).norm(), r)){
vector<vector<point>> commonInteriorTangents(const point & c1,
\rightarrow ld r1, const point & c2, ld r2){
                                                                          tie(c, r) = (n == S.size() ? mec(S, S[i], i) : mec2(S, a, a)
  if (c1 == c2 \&\& abs(r1-r2) < 0) return {};
                                                                           \hookrightarrow S[i], i));
  int out = circleOutsideCircle(c1, r1, c2, r2);
                                                                        }
  if(out == 0) return {};
                                                                      }
  else if(out == -1) return {{c1 + (c2 - c1).normalize() *
                                                                      return {c, r};
                                                                    }
  \hookrightarrow r1}};
  else{
    auto t = pointsOfTangency(c2, c1, r1 + r2);
                                                                    pair<point, ld> smallestEnclosingCircle(vector<point> S){
    t.first = (t.first - c1).normalize();
                                                                      assert(!S.empty());
    t.second = (t.second - c1).normalize();
                                                                      auto r = mec(S, S[0], S.size());
    return {{c1 + t.first * r1, c2 - t.first * r2}, {c1 +
                                                                      return {r.first, sqrt(r.second)};
    \rightarrow t.second * r1, c2 - t.second * r2}};
                                                                    }
  }
}
                                                                    5.4. Polígonos
5.3.9. Smallest enclosing circle
                                                                    5.4.1. Perímetro y área de un polígono
pair<point, ld> mec2(vector<point> & S, const point & a, const
                                                                    ld perimeter(vector<point> & P){
→ point & b, int n){
                                                                      int n = P.size();
  ld hi = inf, lo = -hi;
                                                                      ld ans = 0;
```

```
for(int i = 0; i < n; i++){
    ans += (P[i] - P[(i + 1) % n]).length();
}
    return ans;
}

ld area(vector<point> & P){
    int n = P.size();
    ld ans = 0;
    for(int i = 0; i < n; i++){
        ans += P[i].cross(P[(i + 1) % n]);
    }
    return abs(ans / 2);
}</pre>
```

5.4.2. Envolvente convexa (convex hull) de un polígono

```
vector<point> convexHull(vector<point> P){
  sort(P.begin(), P.end());
  vector<point> L, U;
  for(int i = 0; i < P.size(); i++){</pre>
    while(L.size() \geq 2 && leq((L[L.size() - 2] -
    → P[i]).cross(L[L.size() - 1] - P[i]), 0)){
      L.pop_back();
    }
    L.push_back(P[i]);
  for(int i = P.size() - 1; i >= 0; i--){
    while(U.size() \geq 2 && leg((U[U.size() - 2] -
    \rightarrow P[i]).cross(U[U.size() - 1] - P[i]), 0)){
      U.pop_back();
    U.push_back(P[i]);
  }
  L.pop_back();
  U.pop_back();
  L.insert(L.end(), U.begin(), U.end());
  return L;
}
```

5.4.3. Verificar si un punto pertenece al perímetro de un polígono

```
bool pointInPerimeter(vector<point> & P, const point & p){
  int n = P.size();
  for(int i = 0; i < n; i++){
    if(pointInSegment(P[i], P[(i + 1) % n], p)){
      return true;
    }
  }
  return false;
}</pre>
```

5.4.4. Verificar si un punto pertenece a un polígono

5.4.5. Verificar si un punto pertenece a un polígono convexo $O(\log n)$

```
//point in convex polygon in log(n)
//first do preprocess: seg=process(P),
//then for each query call pointInConvexPolygon(seg, p - P[0])
vector<point> process(vector<point> & P){
  int n = P.size();
  rotate(P.begin(), min_element(P.begin(), P.end()), P.end());
```

```
vector<point> seg(n - 1);
                                                                      return false;
  for(int i = 0; i < n - 1; ++i)
    seg[i] = P[i + 1] - P[0];
  return seg;
                                                                    vector<vector<point>> cutPolygon(vector<point> & P, const point
}
                                                                    \rightarrow & a, const point & v){
                                                                      //line a+tv, polygon P
bool pointInConvexPolygon(vector<point> & seg, const point &
                                                                      int n = P.size();
                                                                      if(!lineCutsPolygon(P, a, v)) return {P};
→ p){
  int n = seg.size();
                                                                      int idx = 0:
  if(neq(seg[0].cross(p), 0) \&\& sgn(seg[0].cross(p)) !=
                                                                      vector<vector<point>> ans(2);
                                                                      for(int i = 0; i < n; ++i){
  \rightarrow sgn(seg[0].cross(seg[n - 1])))
    return false;
                                                                        if(intersectLineSegmentInfo(a, v, P[i], P[(i+1)%n])){
                                                                          point p = intersectLines(a, v, P[i], P[(i+1)%n] - P[i]);
  if(neq(seg[n-1].cross(p), 0) \&\& sgn(seg[n-1].cross(p)) !=
  \rightarrow sgn(seg[n - 1].cross(seg[0])))
                                                                          if(P[i] == p) continue;
    return false;
                                                                          ans[idx].push_back(P[i]);
  if(eq(seg[0].cross(p), 0))
                                                                          ans[1-idx].push_back(p);
    return geq(seg[0].length(), p.length());
                                                                          ans[idx].push_back(p);
  int 1 = 0, r = n - 1;
                                                                          idx = 1-idx;
  while (r - 1 > 1) {
                                                                        }else{
    int m = 1 + ((r - 1) >> 1);
                                                                          ans[idx].push_back(P[i]);
    if(geq(seg[m].cross(p), 0)) 1 = m;
                                                                        }
                                                                      }
    else r = m;
  }
                                                                      return ans;
  return eq(abs(seg[1].cross(seg[1 + 1])), abs((p -
                                                                    }
  \rightarrow seg[1]).cross(p - seg[1 + 1])) + abs(p.cross(seg[1])) +
     abs(p.cross(seg[1 + 1])));
                                                                    5.4.7. Centroide de un polígono
}
                                                                    point centroid(vector<point> & P){
5.4.6. Cortar un polígono con una recta
                                                                      point num;
                                                                      1d den = 0;
bool lineCutsPolygon(vector<point> & P, const point & a, const
                                                                      int n = P.size();
\rightarrow point & v){
                                                                      for(int i = 0; i < n; ++i){
                                                                        ld cross = P[i].cross(P[(i + 1) \% n]);
  //line a+tv, polygon P
  int n = P.size();
                                                                        num += (P[i] + P[(i + 1) \% n]) * cross;
  for(int i = 0, first = 0; i \le n; ++i){
                                                                        den += cross;
    int side = sgn(v.cross(P[i\%n]-a));
                                                                      }
    if(!side) continue;
                                                                      return num / (3 * den);
    if(!first) first = side;
                                                                    }
    else if(side != first) return true;
```

ESCOM-IPN 38

}

39

5.4.8. Pares de puntos antipodales

5.4.9. Diámetro y ancho

```
pair<ld, ld> diameterAndWidth(vector<point> & P){
  int n = P.size(), k = 0;
  auto dot = [&](int a, int b){return
  \rightarrow (P[(a+1)\%n]-P[a]).dot(P[(b+1)\%n]-P[b]);};
  auto cross = [&](int a, int b){return
  \rightarrow (P[(a+1)\%n]-P[a]).cross(P[(b+1)\%n]-P[b]);};
  ld diameter = 0:
  ld width = inf:
  while (ge(dot(0, k), 0)) k = (k+1) \% n;
  for(int i = 0; i < n; ++i){
    while (ge(cross(i, k), 0)) k = (k+1) \% n;
    //pair: (i, k)
    diameter = max(diameter, (P[k] - P[i]).length());
    width = min(width, distancePointLine(P[i], P[(i+1)%n] -
    \rightarrow P[i], P[k]));
  }
  return make_pair(diameter, width);
```

5.4.10. Smallest enclosing rectangle

```
pair<1d, 1d> smallestEnclosingRectangle(vector<point> & P){
  int n = P.size();
  auto dot = [&](int a, int b){return
  \rightarrow (P[(a+1)\%n]-P[a]).dot(P[(b+1)\%n]-P[b]);};
  auto cross = [&](int a, int b){return
  \rightarrow (P[(a+1)\%n]-P[a]).cross(P[(b+1)\%n]-P[b]);};
  ld perimeter = inf, area = inf;
 for(int i = 0, j = 0, k = 0, m = 0; i < n; ++i){
    while (ge(dot(i, j), 0)) j = (j+1) \% n;
    if(!i) k = j;
    while (ge(cross(i, k), 0)) k = (k+1) \% n;
    if(!i) m = k;
    while(le(dot(i, m), 0)) m = (m+1) \% n;
    //pairs: (i, k), (j, m)
    point v = P[(i+1)\%n] - P[i];
   ld h = distancePointLine(P[i], v, P[k]);
    ld w = distancePointLine(P[j], v.perpendicular(), P[m]);
    perimeter = min(perimeter, 2 * (h + w));
    area = min(area, h * w);
 return make_pair(area, perimeter);
```

5.5. Par de puntos más cercanos

```
bool comp1(const point & a, const point & b){
   return a.y < b.y;
}

pair<point, point> closestPairOfPoints(vector<point> P){
   sort(P.begin(), P.end(), comp1);
   set<point> S;
   ld ans = inf;
   point p, q;
   int pos = 0;
   for(int i = 0; i < P.size(); ++i){
      while(pos < i && abs(P[i].y - P[pos].y) >= ans){
        S.erase(P[pos++]);
    }
}
```

```
auto lower = S.lower_bound({P[i].x - ans - eps, -inf});
                                                                         return new node({ p });
    auto upper = S.upper_bound({P[i].x + ans + eps, -inf});
                                                                       for(int i = 1; i < r; ++i)
    for(auto it = lower; it != upper; ++it){
                                                                         aux[i].first = (p - aux[i].second).dot(p -
      1d d = (P[i] - *it).length();
                                                                         → aux[i].second);
      if(d < ans)
                                                                       int m = (1 + r) / 2;
                                                                       nth_element(aux.begin() + 1, aux.begin() + m, aux.begin() +
        ans = d;
        p = P[i];
        q = *it;
                                                                       return new node({ p, sqrt(aux[m].first), build(1, m),
      }
                                                                       \rightarrow build(m, r) });
                                                                     }
    S.insert(P[i]);
  }
                                                                     priority_queue<pair<ld, node*>> que;
  return {p, q};
}
                                                                     void k_nn(node *t, point p, int k){
                                                                       if(!t)
                                                                         return;
      Vantage Point Tree (puntos más cercanos a cada
                                                                       ld d = (p - t->p).length();
                                                                       if(que.size() < k)</pre>
      punto)
                                                                         que.push({ d, t });
                                                                       else if(ge(que.top().first, d)){
struct vantage_point_tree{
                                                                         que.pop();
  struct node
                                                                         que.push({ d, t });
    point p;
                                                                       if(!t->1 && !t->r)
   ld th;
                                                                         return;
    node *1, *r;
                                                                       if(le(d, t->th)){
  }*root;
                                                                         k_n(t->1, p, k);
                                                                         if(leq(t->th - d, que.top().first))
  vector<pair<ld, point>> aux;
                                                                           k_nn(t->r, p, k);
                                                                       }else{
  vantage_point_tree(vector<point> &ps){
                                                                         k_nn(t->r, p, k);
    for(int i = 0; i < ps.size(); ++i)</pre>
                                                                         if(leq(d - t->th, que.top().first))
      aux.push_back({ 0, ps[i] });
                                                                           k_nn(t->1, p, k);
    root = build(0, ps.size());
                                                                       }
  }
                                                                     }
  node *build(int 1, int r){
                                                                     vector<point> k_nn(point p, int k){
    if(1 == r)
                                                                       k_nn(root, p, k);
      return 0;
                                                                       vector<point> ans;
    swap(aux[1], aux[1 + rand() \% (r - 1)]);
    point p = aux[1++].second;
                                                                       for(; !que.empty(); que.pop())
```

ans.push_back(que.top().second->p);

ESCOM-IPN 40

if(1 == r)

```
reverse(ans.begin(), ans.end());
                                                                      QuadEdge* onext = nullptr;
                                                                      bool used = false;
    return ans;
  }
                                                                      QuadEdge* rev() const{return rot->rot;}
};
                                                                      QuadEdge* lnext() const{return rot->rev()->onext->rot;}
                                                                      QuadEdge* oprev() const{return rot->onext->rot;}
                                                                     point dest() const{return rev()->origin;}
      Suma Minkowski
                                                                    }:
vector<point> minkowskiSum(vector<point> A, vector<point> B){
                                                                    QuadEdge* make_edge(const point & from, const point & to){
  int na = (int)A.size(), nb = (int)B.size();
                                                                      QuadEdge* e1 = new QuadEdge;
  if(A.empty() || B.empty()) return {};
                                                                      QuadEdge* e2 = new QuadEdge;
                                                                      QuadEdge* e3 = new QuadEdge;
  rotate(A.begin(), min_element(A.begin(), A.end()), A.end());
                                                                      QuadEdge* e4 = new QuadEdge;
  rotate(B.begin(), min_element(B.begin(), B.end()), B.end());
                                                                      e1->origin = from;
                                                                      e2->origin = to;
  int pa = 0, pb = 0;
                                                                      e3->origin = e4->origin = inf_pt;
  vector<point> M;
                                                                      e1->rot = e3;
                                                                      e2->rot = e4;
  while(pa < na \&\& pb < nb){
                                                                      e3->rot = e2;
    M.push_back(A[pa] + B[pb]);
                                                                      e4->rot = e1;
    ld x = (A[(pa + 1) \% na] - A[pa]).cross(B[(pb + 1) \% nb] -
                                                                      e1->onext = e1;
    \rightarrow B[pb]);
                                                                      e2->onext = e2;
    if(leq(x, 0)) pb++;
                                                                      e3->onext = e4:
    if(geq(x, 0)) pa++;
                                                                      e4->onext = e3;
  }
                                                                     return e1;
                                                                    }
  while(pa < na) M.push_back(A[pa++] + B[0]);</pre>
  while(pb < nb) M.push_back(B[pb++] + A[0]);</pre>
                                                                    void splice(QuadEdge* a, QuadEdge* b){
                                                                      swap(a->onext->rot->onext, b->onext->rot->onext);
  return M;
                                                                      swap(a->onext, b->onext);
}
                                                                    void delete_edge(QuadEdge* e){
      Triangulación de Delaunay
                                                                      splice(e, e->oprev());
                                                                      splice(e->rev(), e->rev()->oprev());
//Delaunay triangulation in O(n \log n)
                                                                      delete e->rot;
const point inf_pt(inf, inf);
                                                                     delete e->rev()->rot;
                                                                     delete e;
struct QuadEdge{
                                                                     delete e->rev();
  point origin;
  QuadEdge* rot = nullptr;
```

```
QuadEdge* connect(QuadEdge* a, QuadEdge* b){
                                                                        QuadEdge *a = make_edge(P[1], P[1 + 1]), *b = make_edge(P[1])
  QuadEdge* e = make_edge(a->dest(), b->origin);
                                                                        \rightarrow + 1], P[r]);
  splice(e, a->lnext());
                                                                        splice(a->rev(), b);
  splice(e->rev(), b);
                                                                        int sg = sgn((P[1 + 1] - P[1]).cross(P[r] - P[1]));
  return e;
                                                                        if(sg == 0)
}
                                                                         return make_pair(a, b->rev());
                                                                        QuadEdge* c = connect(b, a);
                                                                        if(sg == 1)
bool left_of(const point & p, QuadEdge* e){
  return ge((e->origin - p).cross(e->dest() - p), 0);
                                                                          return make_pair(a, b->rev());
}
                                                                          return make_pair(c->rev(), c);
bool right_of(const point & p, QuadEdge* e){
  return le((e->origin - p).cross(e->dest() - p), 0);
                                                                      int mid = (1 + r) / 2;
}
                                                                      QuadEdge *ldo, *ldi, *rdo, *rdi;
                                                                      tie(ldo, ldi) = build_tr(l, mid, P);
ld det3(ld a1, ld a2, ld a3, ld b1, ld b2, ld b3, ld c1, ld c2,
                                                                      tie(rdi, rdo) = build_tr(mid + 1, r, P);
\rightarrow 1d c3) {
                                                                      while(true){
  return a1 * (b2 * c3 - c2 * b3) - a2 * (b1 * c3 - c1 * b3) +
                                                                        if(left_of(rdi->origin, ldi)){
  \rightarrow a3 * (b1 * c2 - c1 * b2);
                                                                         ldi = ldi->lnext();
}
                                                                          continue;
bool in_circle(const point & a, const point & b, const point &
                                                                        if(right_of(ldi->origin, rdi)){
rdi = rdi->rev()->onext;
  1d det = -det3(b.x, b.y, b.norm(), c.x, c.y, c.norm(), d.x,
                                                                          continue;
  \rightarrow d.y, d.norm());
  det += det3(a.x, a.y, a.norm(), c.x, c.y, c.norm(), d.x, d.y,
                                                                        break;
  \rightarrow d.norm()):
  det -= det3(a.x, a.y, a.norm(), b.x, b.y, b.norm(), d.x, d.y,
                                                                      QuadEdge* basel = connect(rdi->rev(), ldi);
                                                                      auto valid = [&basel](QuadEdge* e){return right_of(e->dest(),
  \rightarrow d.norm());
  det += det3(a.x, a.y, a.norm(), b.x, b.y, b.norm(), c.x, c.y,
                                                                      → basel);};
  \rightarrow c.norm());
                                                                      if(ldi->origin == ldo->origin)
  return ge(det, 0);
                                                                        ldo = basel->rev();
}
                                                                      if(rdi->origin == rdo->origin)
                                                                        rdo = basel;
pair<QuadEdge*, QuadEdge*> build_tr(int 1, int r, vector<point>
                                                                      while(true){
                                                                        QuadEdge* lcand = basel->rev()->onext;

→ & P) {

  if(r - 1 + 1 == 2){
                                                                        if(valid(lcand)){
    QuadEdge* res = make_edge(P[1], P[r]);
                                                                          while(in_circle(basel->dest(), basel->origin,
    return make_pair(res, res->rev());
                                                                          → lcand->dest(), lcand->onext->dest())){
                                                                            QuadEdge* t = lcand->onext;
  if(r - 1 + 1 == 3){
                                                                            delete_edge(lcand);
```

```
add();
        lcand = t;
      }
                                                                      P.clear();
    }
                                                                      int kek = 0;
    QuadEdge* rcand = basel->oprev();
                                                                      while(kek < (int)edges.size())</pre>
    if(valid(rcand)){
                                                                        if(!(e = edges[kek++])->used)
      while(in_circle(basel->dest(), basel->origin,
                                                                          add();

→ rcand->dest(), rcand->oprev()->dest())){
                                                                      vector<tuple<point, point, point>> ans;
        QuadEdge* t = rcand->oprev();
                                                                      for(int i = 0; i < (int)P.size(); i += 3){</pre>
        delete_edge(rcand);
                                                                        ans.push_back(make_tuple(P[i], P[i + 1], P[i + 2]));
        rcand = t;
      }
                                                                      return ans;
    }
    if(!valid(lcand) && !valid(rcand))
      break;
    if(!valid(lcand) || (valid(rcand) &&
    → in_circle(lcand->dest(), lcand->origin, rcand->origin,

→ rcand->dest())))
      basel = connect(rcand, basel->rev());
    else
      basel = connect(basel->rev(), lcand->rev());
  }
  return make_pair(ldo, rdo);
}
vector<tuple<point, point, point>> delaunay(vector<point> & P){
  sort(P.begin(), P.end());
  auto res = build_tr(0, (int)P.size() - 1, P);
  QuadEdge* e = res.first;
  vector<QuadEdge*> edges = {e};
  while(le((e->dest() - e->onext->dest()).cross(e->origin -

    e→ e->onext->dest()), 0))

    e = e->onext;
  auto add = [\&P, \&e, \&edges](){
    QuadEdge* curr = e;
    do{
      curr->used = true;
      P.push_back(curr->origin);
      edges.push_back(curr->rev());
      curr = curr->lnext();
    }while(curr != e);
  };
```

43

44

6. Grafos

6.1. Disjoint Set

```
struct disjointSet{
  int N;
  vector<short int> rank;
  vi parent, count;
  disjointSet(int N): N(N), parent(N), count(N), rank(N){}
  void makeSet(int v){
    count[v] = 1;
    parent[v] = v;
  }
  int findSet(int v){
    if(v == parent[v]) return v;
    return parent[v] = findSet(parent[v]);
  }
  void unionSet(int a, int b){
    a = findSet(a), b = findSet(b);
    if(a == b) return:
    if(rank[a] < rank[b]){</pre>
      parent[a] = b;
      count[b] += count[a];
    }else{
      parent[b] = a;
      count[a] += count[b];
      if(rank[a] == rank[b]) ++rank[a];
    }
  }
};
```

6.2. Definiciones

```
struct edge{
  int source, dest, cost;
```

```
edge(): source(0), dest(0), cost(0){}
  edge(int dest, int cost): dest(dest), cost(cost){}
  edge(int source, int dest, int cost): source(source),

→ dest(dest), cost(cost){}
  bool operator==(const edge & b) const{
    return source == b.source && dest == b.dest && cost ==
    → b.cost;
 }
  bool operator<(const edge & b) const{</pre>
    return cost < b.cost;
  bool operator>(const edge & b) const{
    return cost > b.cost;
 }
};
struct path{
  int cost = inf;
  deque<int> vertices;
 int size = 1;
 int prev = -1;
};
struct graph{
  vector<vector<edge>> adjList;
  vector<vb> adjMatrix;
  vector<vi> costMatrix;
  vector<edge> edges;
  int V = 0;
  bool dir = false;
  graph(int n, bool dir): V(n), dir(dir), adjList(n), edges(n),
  → adjMatrix(n, vb(n)), costMatrix(n, vi(n)){
   for(int i = 0; i < n; ++i)
      for(int j = 0; j < n; ++ j)
       costMatrix[i][j] = (i == j ? 0 : inf);
 }
```

```
void add(int source, int dest, int cost){
  adjList[source].emplace_back(source, dest, cost);
  edges.emplace_back(source, dest, cost);
  adjMatrix[source][dest] = true;
  costMatrix[source][dest] = cost;
  if(!dir){
    adjList[dest].emplace_back(dest, source, cost);
    adjMatrix[dest] [source] = true;
    costMatrix[dest] [source] = cost;
  }
}
void buildPaths(vector<path> & paths){
  for(int i = 0; i < V; i++){
    int u = i;
    for(int j = 0; j < paths[i].size; <math>j++){
      paths[i].vertices.push_front(u);
      u = paths[u].prev;
    }
  }
}
```

6.3. DFS genérica

```
void dfs(int u, vi & status, vi & parent){
  status[u] = 1;
  for(edge & current : adjList[u]){
    int v = current.dest;
    if(status[v] == 0){ //not visited
       parent[v] = u;
       dfs(v, status, parent);
  }else if(status[v] == 1){ //explored
    if(v == parent[u]){
       //bidirectional node u<-->v
    }else{
       //back edge u-v
    }
} else if(status[v] == 2){ //visited
       //forward edge u-v
}
```

```
}
status[u] = 2;
}
```

6.4. Dijkstra

```
vector<path> dijkstra(int start){
 priority_queue<edge, vector<edge>, greater<edge>> cola;
  vector<path> paths(V);
  cola.emplace(start, 0);
  paths[start].cost = 0;
  while(!cola.empty()){
    int u = cola.top().dest; cola.pop();
    for(edge & current : adjList[u]){
      int v = current.dest;
      int nuevo = paths[u].cost + current.cost;
      if(nuevo == paths[v].cost && paths[u].size + 1 <</pre>
      → paths[v].size){
        paths[v].prev = u;
        paths[v].size = paths[u].size + 1;
      }else if(nuevo < paths[v].cost){</pre>
        paths[v].prev = u;
        paths[v].size = paths[u].size + 1;
        cola.emplace(v, nuevo);
        paths[v].cost = nuevo;
     }
   }
 buildPaths(paths);
 return paths;
```

6.5. Bellman Ford

```
vector<path> bellmanFord(int start){
  vector<path> paths(V, path());
  vi processed(V);
  vb inQueue(V);
  queue<int> Q;
```

```
paths[start].cost = 0;
                                                                               tmp[i][j] = min(tmp[i][j], tmp[i][k] + tmp[k][j]);
    Q.push(start);
                                                                       return tmp;
    while(!Q.empty()){
      int u = Q.front(); Q.pop(); inQueue[u] = false;
      if(paths[u].cost == inf) continue;
                                                                   6.7. Cerradura transitiva O(V^3)
      ++processed[u];
      if(processed[u] == V){
        cout << "Negative cycle\n";</pre>
                                                                     vector<vb> transitiveClosure(){
                                                                       vector<vb> tmp = adjMatrix;
        return {};
                                                                       for(int k = 0; k < V; ++k)
                                                                         for(int i = 0; i < V; ++i)
      for(edge & current : adjList[u]){
        int v = current.dest;
                                                                           for(int j = 0; j < V; ++j)
                                                                             tmp[i][j] = tmp[i][j] || (tmp[i][k] && tmp[k][j]);
        int nuevo = paths[u].cost + current.cost;
        if(nuevo == paths[v].cost && paths[u].size + 1 <</pre>
                                                                       return tmp;
        → paths[v].size){
                                                                     }
          paths[v].prev = u;
          paths[v].size = paths[u].size + 1;
                                                                   6.8. Cerradura transitiva O(V^2)
        }else if(nuevo < paths[v].cost){</pre>
          if(!inQueue[v]){
                                                                     vector<vb> transitiveClosureDFS(){
            Q.push(v);
                                                                       vector<vb> tmp(V, vb(V));
            inQueue[v] = true;
                                                                       function<void(int, int)> dfs = [&](int start, int u){
                                                                         for(edge & current : adjList[u]){
          paths[v].prev = u;
                                                                           int v = current.dest;
          paths[v].size = paths[u].size + 1;
                                                                           if(!tmp[start][v]){
          paths[v].cost = nuevo;
        }
                                                                             tmp[start][v] = true;
                                                                             dfs(start, v);
      }
                                                                           }
                                                                         }
    buildPaths(paths);
    return paths;
                                                                       };
                                                                       for(int u = 0; u < V; u++)
                                                                         dfs(u, u);
                                                                       return tmp;
6.6. Floyd
  vector<vi> floyd(){
                                                                   6.9. Verificar si el grafo es bipartito
    vector<vi> tmp = costMatrix;
    for(int k = 0; k < V; ++k)
                                                                     bool isBipartite(){
      for(int i = 0; i < V; ++i)
                                                                       vi side(V, -1);
        for(int j = 0; j < V; ++j)
          if(tmp[i][k] != inf && tmp[k][j] != inf)
                                                                       queue<int> q;
```

```
for (int st = 0; st < V; ++st){
    if(side[st] != -1) continue;
    q.push(st);
    side[st] = 0;
    while(!q.empty()){
     int u = q.front();
      q.pop();
      for (edge & current : adjList[u]){
        int v = current.dest;
        if(side[v] == -1) {
          side[v] = side[u] ^ 1;
         q.push(v);
        }else{
          if(side[v] == side[u]) return false;
        }
      }
   }
  }
 return true;
}
```

6.10. Orden topológico

```
vi topologicalSort(){
  int visited = 0;
 vi order, indegree(V);
 for(auto & node : adjList){
   for(edge & current : node){
      int v = current.dest;
      ++indegree[v];
   }
 }
  queue<int> Q;
 for(int i = 0; i < V; ++i){
    if(indegree[i] == 0) Q.push(i);
 while(!Q.empty()){
   int source = Q.front();
   Q.pop();
    order.push_back(source);
```

```
++visited;
for(edge & current : adjList[source]){
   int v = current.dest;
   --indegree[v];
   if(indegree[v] == 0) Q.push(v);
  }
}
if(visited == V) return order;
else return {};
```

6.11. Detectar ciclos

```
bool hasCycle(){
  vi color(V);
  function <bool(int, int) > dfs = [&](int u, int parent){
    color[u] = 1;
   bool ans = false;
   int ret = 0;
   for(edge & current : adjList[u]){
      int v = current.dest;
      if(color[v] == 0)
        ans = dfs(v, u);
      else if(color[v] == 1 && (dir || v != parent || ret++))
        ans = true;
   }
    color[u] = 2;
    return ans;
 };
  for(int u = 0; u < V; ++u)
    if(color[u] == 0 \&\& dfs(u, -1))
      return true;
  return false;
}
```

6.12. Puentes y puntos de articulación

```
pair<vb, vector<edge>> articulationBridges(){
  vi low(V), label(V);
```

}

48

```
vb points(V);
  vector<edge> bridges;
  int time = 0;
  function<int(int, int)> dfs = [&](int u, int p){
    label[u] = low[u] = ++time;
    int hijos = 0, ret = 0;
    for(edge & current : adjList[u]){
      int v = current.dest;
      if(v == p && !ret++) continue;
      if(!label[v]){
        ++hijos;
        dfs(v, u);
        if(label[u] <= low[v])</pre>
          points[u] = true;
        if(label[u] < low[v])</pre>
          bridges.push_back(current);
        low[u] = min(low[u], low[v]);
      low[u] = min(low[u], label[v]);
    }
    return hijos;
  };
  for(int u = 0; u < V; ++u)
    if(!label[u])
      points[u] = dfs(u, -1) > 1;
  return make_pair(points, bridges);
}
```

6.13. Componentes fuertemente conexas

```
vector<vi> scc(){
  vi low(V), label(V);
  int time = 0;
  vector<vi> ans;
  stack<int> S;
  function<void(int)> dfs = [&](int u){
    label[u] = low[u] = ++time;
    S.push(u);
    for(edge & current : adjList[u]){
        int v = current.dest;
    }
}
```

```
if(!label[v]) dfs(v);
   low[u] = min(low[u], low[v]);
  if(label[u] == low[u]){
    vi comp;
    while(S.top() != u){
      comp.push_back(S.top());
      low[S.top()] = V + 1;
      S.pop();
    comp.push_back(S.top());
   S.pop();
    ans.push_back(comp);
   low[u] = V + 1;
 }
};
for(int u = 0; u < V; ++u)
  if(!label[u]) dfs(u);
return ans;
```

6.14. Árbol mínimo de expansión (Kruskal)

```
vector<edge> kruskal(){
  sort(edges.begin(), edges.end());
 vector<edge> MST;
 disjointSet DS(V);
 for(int u = 0; u < V; ++u)
   DS.makeSet(u);
 int i = 0:
  while(i < edges.size() && MST.size() < V - 1){</pre>
    edge current = edges[i++];
   int u = current.source, v = current.dest;
   if(DS.findSet(u) != DS.findSet(v)){
     MST.push_back(current);
     DS.unionSet(u, v);
   }
 }
 return MST;
```

49

6.15. Máximo emparejamiento bipartito

```
bool tryKuhn(int u, vb & used, vi & left, vi & right){
  if(used[u]) return false;
  used[u] = true;
  for(edge & current : adjList[u]){
    int v = current.dest;
    if(right[v] == -1 || tryKuhn(right[v], used, left,

    right)){
     right[v] = u;
     left[u] = v;
      return true;
    }
  }
  return false;
}
bool augmentingPath(int u, vb & used, vi & left, vi & right){
  used[u] = true;
  for(edge & current : adjList[u]){
    int v = current.dest;
    if(right[v] == -1){
     right[v] = u;
     left[u] = v;
      return true;
    }
  }
  for(edge & current : adjList[u]){
    int v = current.dest;
    if(!used[right[v]] && augmentingPath(right[v], used,
    → left, right)){
     right[v] = u;
     left[u] = v;
      return true;
    }
  }
  return false;
}
//vertices from the left side numbered from 0 to l-1
//vertices from the right side numbered from 0 to r-1
```

```
//graph[u] represents the left side
//qraph[u][v] represents the right side
//we can use tryKuhn() or augmentingPath()
vector<pair<int, int>> maxMatching(int 1, int r){
  vi left(1, -1), right(r, -1);
  vb used(1);
 for(int u = 0; u < 1; ++u){
    tryKuhn(u, used, left, right);
   fill(used.begin(), used.end(), false);
  vector<pair<int, int>> ans;
 for(int u = 0; u < r; ++u){
   if(right[u] != -1){
      ans.emplace_back(right[u], u);
   }
 }
  return ans;
```

6.16. Circuito euleriano

7. Árboles

7.1. Estructura tree

```
struct tree{
  vi parent, level, weight;
 vector<vi> dists, DP;
  int n, root;
  void dfs(int u, graph & G){
    for(edge & curr : G.adjList[u]){
      int v = curr.dest;
      int w = curr.cost;
      if(v != parent[u]){
        parent[v] = u;
        weight[v] = w;
        level[v] = level[u] + 1;
        dfs(v, G);
      }
   }
 }
  tree(int n, int root): n(n), root(root), parent(n), level(n),
  \rightarrow weight(n), dists(n, vi(20)), DP(n, vi(20)){
    parent[root] = root;
  tree(graph & G, int root): n(G.V), root(root), parent(G.V),
  \rightarrow level(G.V), weight(G.V), dists(G.V, vi(20)), DP(G.V,
  \rightarrow vi(20)){
    parent[root] = root;
    dfs(root, G);
 }
  void pre(){
    for(int u = 0; u < n; u++){
      DP[u][0] = parent[u];
      dists[u][0] = weight[u];
    for(int i = 1; (1 << i) <= n; ++i){
```

7.2. k-ésimo ancestro

```
int ancestor(int p, int k){
  int h = level[p] - k;
  if(h < 0) return -1;
  int lg;
  for(lg = 1; (1 << lg) <= level[p]; ++lg);
  lg--;
  for(int i = lg; i >= 0; --i){
    if(level[p] - (1 << i) >= h){
      p = DP[p][i];
    }
  }
  return p;
}
```

7.3. LCA

50

```
int lca(int p, int q){
  if(level[p] < level[q]) swap(p, q);
  int lg;
  for(lg = 1; (1 << lg) <= level[p]; ++lg);
  lg--;
  for(int i = lg; i >= 0; --i){
    if(level[p] - (1 << i) >= level[q]){
      p = DP[p][i];
    }
  }
  if(p == q) return p;
  for(int i = lg; i >= 0; --i){
```

```
if(DP[p][i] != -1 && DP[p][i] != DP[q][i]){
    p = DP[p][i];
    q = DP[q][i];
}
return parent[p];
}
```

7.4. Distancia entre dos nodos

```
int dist(int p, int q){
  if(level[p] < level[q]) swap(p, q);</pre>
 int lg;
 for(lg = 1; (1 << lg) <= level[p]; ++lg);
 lg--;
 int sum = 0;
 for(int i = lg; i >= 0; --i){
    if(level[p] - (1 \ll i) >= level[q]){
      sum += dists[p][i];
      p = DP[p][i];
    }
  if(p == q) return sum;
 for(int i = lg; i >= 0; --i){
    if(DP[p][i] != -1 \&\& DP[p][i] != DP[q][i]){
      sum += dists[p][i] + dists[q][i];
      p = DP[p][i];
      q = DP[q][i];
    }
  sum += dists[p][0] + dists[q][0];
  return sum;
}
```

7.5. HLD

7.6. Link Cut

8. Flujos

8.1. Estructura flowEdge

8.2. Estructura flowGraph

```
template<typename T>
struct flowGraph{
 T inf = numeric_limits<T>::max();
 vector<vector<flowEdge<T>*>> adjList;
 vector<int> dist, pos;
 int V;
 flowGraph(int V): V(V), adjList(V), dist(V), pos(V){}
  ~flowGraph(){
   for(int i = 0; i < V; ++i)
     for(int j = 0; j < adjList[i].size(); ++j)</pre>
        delete adjList[i][j];
 }
  void addEdge(int u, int v, T capacity, T cost = 0){
   flowEdge<T> *uv = new flowEdge<T>(v, 0, capacity, cost);
   flowEdge<T> *vu = new flowEdge<T>(u, capacity, capacity,
    \rightarrow -cost);
```

```
uv->res = vu;
vu->res = uv;
adjList[u].push_back(uv);
adjList[v].push_back(vu);
}
```

8.3. Algoritmo de Edmonds-Karp $O(VE^2)$

```
//Maximun Flow using Edmonds-Karp Algorithm O(VE^2)
T edmondsKarp(int s, int t){
 T \max Flow = 0;
  vector<flowEdge<T>*> parent(V);
  while(true){
   fill(parent.begin(), parent.end(), nullptr);
    queue<int> Q;
    Q.push(s);
    while(!Q.empty() && !parent[t]){
      int u = Q.front(); Q.pop();
      for(flowEdge<T> *v : adjList[u]){
        if(!parent[v->dest] && v->capacity > v->flow){
          parent[v->dest] = v;
          Q.push(v->dest);
       }
      }
   }
   if(!parent[t]) break;
   T f = inf;
   for(int u = t; u != s; u = parent[u]->res->dest)
      f = min(f, parent[u]->capacity - parent[u]->flow);
   for(int u = t; u != s; u = parent[u]->res->dest)
      parent[u]->addFlow(f);
    maxFlow += f;
 }
  return maxFlow;
}
```

8.4. Algoritmo de Dinic $O(V^2E)$

```
//Maximun Flow using Dinic Algorithm O(EV^2)
T blockingFlow(int u, int t, T flow){
  if(u == t) return flow;
  for(int &i = pos[u]; i < adjList[u].size(); ++i){</pre>
    flowEdge<T> *v = adjList[u][i];
    if (v\rightarrow capacity > v\rightarrow flow \&\& dist[u] + 1 ==

    dist[v->dest]){
      T fv = blockingFlow(v->dest, t, min(flow, v->capacity -
      \rightarrow v->flow));
      if(fv > 0){
        v->addFlow(fv);
        return fv;
      }
    }
  }
  return 0;
}
T dinic(int s, int t){
  T \max Flow = 0;
  dist[t] = 0;
  while (dist [t] != -1) {
    fill(dist.begin(), dist.end(), -1);
    queue<int> Q;
    Q.push(s);
    dist[s] = 0;
    while(!Q.empty()){
      int u = Q.front(); Q.pop();
      for(flowEdge<T> *v : adjList[u]){
        if(dist[v->dest] == -1 \&\& v->flow != v->capacity){
          dist[v->dest] = dist[u] + 1;
          Q.push(v->dest);
        }
      }
    if(dist[t] != -1){
      T f:
      fill(pos.begin(), pos.end(), 0);
      while(f = blockingFlow(s, t, inf))
        maxFlow += f;
```

```
parent[u]->addFlow(cap[t]);
}
return maxFlow;
return {maxFlow, minCost};
}
```

8.5. Flujo máximo de costo mínimo

```
//Max Flow Min Cost
pair<T, T> maxFlowMinCost(int s, int t){
  vector<bool> inQueue(V);
  vector<T> distance(V), cap(V);
  vector<flowEdge<T>*> parent(V);
  T maxFlow = 0, minCost = 0;
  while(true){
    fill(distance.begin(), distance.end(), inf);
    fill(parent.begin(), parent.end(), nullptr);
    fill(cap.begin(), cap.end(), 0);
    distance[s] = 0;
    cap[s] = inf;
    queue<int> Q;
    Q.push(s);
    while(!Q.empty()){
      int u = Q.front(); Q.pop(); inQueue[u] = 0;
     for(flowEdge<T> *v : adjList[u]){
        if(v->capacity > v->flow && distance[v->dest] >

    distance[u] + v->cost){
          distance[v->dest] = distance[u] + v->cost;
          parent[v->dest] = v;
          cap[v->dest] = min(cap[u], v->capacity - v->flow);
          if(!inQueue[v->dest]){
            Q.push(v->dest);
            inQueue[v->dest] = true;
          }
        }
      }
    if(!parent[t]) break;
    maxFlow += cap[t];
    minCost += cap[t] * distance[t];
    for(int u = t; u != s; u = parent[u]->res->dest)
```

9. Estructuras de datos

9.1. Segment Tree

9.1.1. Minimalistic: Point updates, range queries

```
template<typename T>
struct SegmentTree{
  int N:
  vector<T> ST:
  //build from an array in O(n)
  SegmentTree(int N, vector<T> & arr): N(N){
   ST.resize(N << 1);
   for(int i = 0; i < N; ++i)
     ST[N + i] = arr[i];
   for(int i = N - 1; i > 0; --i)
      ST[i] = ST[i << 1] + ST[i << 1 | 1];
 }
  //single element update in i
  void update(int i, T value){
   ST[i += N] = value; //update the element accordingly
   while(i >>= 1)
     ST[i] = ST[i << 1] + ST[i << 1 | 1];
 }
  //single element update in [l, r]
  void update(int 1, int r, T value){
   1 += N, r += N;
   for(int i = 1; i <= r; ++i)
     ST[i] = value;
   1 >>= 1, r >>= 1;
   while(1 \ge 1){
     for(int i = r; i >= 1; --i)
        ST[i] = ST[i << 1] + ST[i << 1 | 1];
     1 >>= 1, r >>= 1;
   }
 }
```

```
//range query, [l, r]
T query(int l, int r){
  T res = 0;
  for(l += N, r += N; l <= r; l >>= 1, r >>= 1){
    if(l & 1) res += ST[1++];
    if(!(r & 1)) res += ST[r--];
  }
  return res;
}
};
```

9.1.2. Dynamic: Range updates and range queries

```
template<typename T>
struct SegmentTreeDin{
 SegmentTreeDin *left, *right;
 int 1, r;
 T sum, lazy;
 SegmentTreeDin(int start, int end, vector<T> & arr):
  → left(NULL), right(NULL), l(start), r(end), sum(0),
  \rightarrow lazy(0){
   if(1 == r) sum = arr[1];
   else{
     int half = 1 + ((r - 1) >> 1);
     left = new SegmentTreeDin(1, half, arr);
     right = new SegmentTreeDin(half+1, r, arr);
     sum = left->sum + right->sum;
   }
 }
 void propagate(T dif){
   sum += (r - 1 + 1) * dif;
   if(1 != r){
     left->lazy += dif;
     right->lazy += dif;
 }
 T sum_query(int start, int end){
```

```
if(lazy != 0){
      propagate(lazy);
      lazy = 0;
    }
    if(end < 1 | | r < start) return 0:
    if(start <= 1 && r <= end) return sum;
    else return left->sum_query(start, end) +

    right->sum_query(start, end);
  }
  void add_range(int start, int end, T dif){
    if(lazy != 0){
      propagate(lazy);
      lazv = 0;
    }
    if(end < 1 | | r < start) return;
    if(start <= 1 && r <= end) propagate(dif);</pre>
    else{
      left->add_range(start, end, dif);
      right->add_range(start, end, dif);
      sum = left->sum + right->sum;
    }
  }
  void add_pos(int i, T sum){
    add_range(i, i, sum);
  }
};
```

9.1.3. Static: Range updates and range queries

```
template<typename T>
struct SegmentTreeEst{
  int size;
  vector<T> sum, lazy;

void rec(int pos, int 1, int r, vector<T> & arr){
  if(1 == r) sum[pos] = arr[1];
  else{
    int half = 1 + ((r - 1) >> 1);
```

```
rec(2*pos+1, 1, half, arr);
    rec(2*pos+2, half+1, r, arr);
    sum[pos] = sum[2*pos+1] + sum[2*pos+2];
}
SegmentTreeEst(int n, vector<T> & arr): size(n){
  int h = ceil(log2(n));
  sum.resize((1 << (h + 1)) - 1);
 lazy.resize((1 << (h + 1)) - 1);
 rec(0, 0, n - 1, arr);
}
void propagate(int pos, int 1, int r, T dif){
  sum[pos] += (r - 1 + 1) * dif;
  if(1 != r){
   lazy[2*pos+1] += dif;
   lazy[2*pos+2] += dif;
 }
}
T sum_query_rec(int start, int end, int pos, int 1, int r){
  if(lazy[pos] != 0){
   propagate(pos, 1, r, lazy[pos]);
   lazy[pos] = 0;
  if(end < 1 | | r < start) return 0;
  if(start <= 1 && r <= end) return sum[pos];</pre>
  else{
    int half = 1 + ((r - 1) >> 1);
   return sum_query_rec(start, end, 2*pos+1, 1, half) +

    sum_query_rec(start, end, 2*pos+2, half+1, r);
}
T sum_query(int start, int end){
  return sum_query_rec(start, end, 0, 0, size - 1);
}
void add_range_rec(int start, int end, int pos, int 1, int r,
\rightarrow T dif){
```

```
if(lazy[pos] != 0){
                                                                   StPer(int start, int end, T val): left(NULL), right(NULL),
      propagate(pos, 1, r, lazy[pos]);
                                                                   lazy[pos] = 0;
                                                                   StPer(int start, int end, StPer* left, StPer* right):
   }
                                                                   → left(left), right(right), l(start), r(end){
    if(end < 1 | | r < start) return;
                                                                     sum = left->sum + right->sum;
    if(start <= 1 && r <= end) propagate(pos, 1, r, dif);
                                                                   }
    else{
      int half = 1 + ((r - 1) >> 1);
                                                                   T sum_query(int start, int end){
      add_range_rec(start, end, 2*pos+1, 1, half, dif);
                                                                     if(end < 1 | | r < start) return 0;
      add_range_rec(start, end, 2*pos+2, half+1, r, dif);
                                                                     if(start <= 1 && r <= end) return sum;</pre>
      sum[pos] = sum[2*pos+1] + sum[2*pos+2];
                                                                     else return left->sum_query(start, end) +
   }

    right->sum_query(start, end);
 }
                                                                   }
                                                                   StPer* update(int pos, T val){
  void add_range(int start, int end, T dif){
    add_range_rec(start, end, 0, 0, size - 1, dif);
                                                                     if(l == r) return new StPer(l, r, sum + val);
 }
                                                                     int half = 1 + ((r - 1) >> 1);
                                                                     if(pos <= half) return new StPer(1, r, left->update(pos,
  void add_pos(int i, T sum){
                                                                     → val), right);
    add_range(i, i, sum);
                                                                     return new StPer(1, r, left, right->update(pos, val));
  }
                                                                   }
};
                                                                 };
```

56

9.1.4. Persistent: Point updates, range queries

9.2. Fenwick Tree

```
template<typename T>
struct FenwickTree{
  int N;
  vector<T> bit;

//build from array in O(n), indexed in O
FenwickTree(int N, vector<T> & arr): N(N){
  bit.resize(N);
  for(int i = 0; i < N; ++i){
   bit[i] += arr[i];
   if((i | (i + 1)) < N)
    bit[i | (i + 1)] += bit[i];
  }
}</pre>
```

```
//single element increment
  void update(int pos, T value){
    while(pos < N){
      bit[pos] += value;
      pos \mid = pos + 1;
    }
  }
  //range\ query,\ [0,\ r]
  T query(int r){
    T res = 0;
    while(r >= 0){
      res += bit[r];
      r = (r \& (r + 1)) - 1;
    }
    return res;
  }
  //range query, [l, r]
  T query(int 1, int r){
    return query(r) - query(1 - 1);
  }
};
```

9.3. SQRT Decomposition

```
struct MOquery{
  int 1, r, index, S;
  bool operator<(const MOquery & q) const{
    int c_o = 1 / S, c_q = q.1 / S;
    if(c_o == c_q)
      return r < q.r;
    return c_o < c_q;
  }
};

template<typename T>
struct SQRT{
  int N, S;
  vector<T> A, B;
```

```
SQRT(int N): N(N){
  this->S = sqrt(N + .0) + 1;
 A.assign(N, 0);
 B.assign(S, 0);
}
void build(vector<T> & arr){
  A = vector<int>(arr.begin(), arr.end());
 for(int i = 0; i < N; ++i) B[i / S] += A[i];
}
//single element update
void update(int pos, T value){
  int k = pos / S;
  A[pos] = value;
 T res = 0;
 for(int i = k * S, end = min(N, (k + 1) * S) - 1; i \le end;
  \rightarrow ++i) res += A[i];
 B[k] = res;
}
//range query, [l, r]
T query(int 1, int r){
 T res = 0;
  int c_1 = 1 / S, c_r = r / S;
  if(c_1 == c_r){
    for(int i = 1; i <= r; ++i) res += A[i];
  }else{
    for(int i = 1, end = (c_1 + 1) * S - 1; i \le end; ++i)
    \rightarrow res += A[i];
    for(int i = c_1 + 1; i \le c_r - 1; ++i) res += B[i];
    for(int i = c_r * S; i <= r; ++i) res += A[i];
  }
  return res;
}
//range queries offline using MO's algorithm
vector<T> MO(vector<MOquery> & queries){
  vector<T> ans(queries.size());
  sort(queries.begin(), queries.end());
```

```
T current = 0;
                                                                        return (right ? right->height : 0) - (left ? left->height :
    int prevL = 0, prevR = -1;
                                                                        \rightarrow 0);
    int i, j;
                                                                     }
    for(const MOquery & q : queries){
      for(i = prevL, j = min(prevR, q.l - 1); i \le j; ++i){
                                                                     AVLNode *maxLeftChild(){
        //remove from the left
                                                                        AVLNode *ret = this;
        current -= A[i];
                                                                       while(ret->left) ret = ret->left;
      }
                                                                       return ret;
      for(i = prevL - 1; i >= q.l; --i){
                                                                     }
        //add to the left
                                                                   };
        current += A[i];
      }
                                                                    template<typename T>
      for(i = max(prevR + 1, q.1); i \le q.r; ++i){
                                                                    struct AVLTree{
        //add to the right
                                                                      AVLNode<T> *root;
        current += A[i];
      }
                                                                      AVLTree(): root(NULL){}
      for(i = prevR; i >= q.r + 1; --i){
        //remove from the right
                                                                      inline int nodeSize(AVLNode<T> *& pos){return pos ?
        current -= A[i];
                                                                      \rightarrow pos->size: 0;}
      }
      prevL = q.1, prevR = q.r;
                                                                      inline int nodeHeight(AVLNode<T> *& pos){return pos ?
      ans[q.index] = current;
                                                                      → pos->height: 0;}
    }
    return ans;
                                                                     inline void update(AVLNode<T> *& pos){
                                                                        if(!pos) return;
                                                                       pos->height = 1 + max(nodeHeight(pos->left),
};
                                                                        → nodeHeight(pos->right));
                                                                       pos->size = 1 + nodeSize(pos->left) + nodeSize(pos->right);
9.4. AVL Tree
template<typename T>
                                                                      int size(){return nodeSize(root);}
struct AVLNode{
  AVLNode<T> *left, *right;
                                                                      void leftRotate(AVLNode<T> *& x){
  short int height;
                                                                        AVLNode<T> *y = x->right, *t = y->left;
  int size;
                                                                       y->left = x, x->right = t;
  T value;
                                                                       update(x), update(y);
                                                                       x = y;
  AVLNode(T value = 0): left(NULL), right(NULL), value(value),
  \rightarrow height(1), size(1){}
                                                                     void rightRotate(AVLNode<T> *& y){
  inline short int balance(){
                                                                       AVLNode<T> *x = y->left, *t = x->right;
```

```
x->right = y, y->left = t;
                                                                       if(!pos->left) pos = pos->right;
  update(y), update(x);
                                                                       else if(!pos->right) pos = pos->left;
  y = x;
                                                                       else{
}
                                                                         pos->value = pos->right->maxLeftChild()->value;
                                                                         erase(pos->right, pos->value);
void updateBalance(AVLNode<T> *& pos){
                                                                       }
                                                                     }
  if(!pos) return;
  short int bal = pos->balance();
                                                                     update(pos), updateBalance(pos);
  if(bal > 1){
    if(pos->right->balance() < 0) rightRotate(pos->right);
    leftRotate(pos);
                                                                   void insert(T value){insert(root, value);}
  else if(bal < -1){
    if(pos->left->balance() > 0) leftRotate(pos->left);
                                                                   void erase(T value){erase(root, value);}
    rightRotate(pos);
  }
                                                                   void updateVal(T old, T New){
}
                                                                     if(search(old))
                                                                       erase(old), insert(New);
void insert(AVLNode<T> *&pos, T & value){
                                                                   }
  if(pos){
    value < pos->value ? insert(pos->left, value) :
                                                                   T kth(int i){

    insert(pos->right, value);

                                                                     assert(0 <= i && i < nodeSize(root));</pre>
    update(pos), updateBalance(pos);
                                                                     AVLNode<T> *pos = root;
  }else{
                                                                     while(i != nodeSize(pos->left)){
                                                                       if(i < nodeSize(pos->left)){
    pos = new AVLNode<T>(value);
  }
                                                                         pos = pos->left;
}
                                                                       }else{
                                                                         i -= nodeSize(pos->left) + 1;
                                                                         pos = pos->right;
AVLNode<T> *search(T & value){
  AVLNode<T> *pos = root;
  while(pos){
                                                                     }
    if(value == pos->value) break;
                                                                     return pos->value;
    pos = (value < pos->value ? pos->left : pos->right);
  }
                                                                   int lessThan(T & x){
  return pos;
}
                                                                     int ans = 0;
                                                                     AVLNode<T> *pos = root;
void erase(AVLNode<T> *&pos, T & value){
                                                                     while(pos){
                                                                       if(x > pos->value){
  if(!pos) return;
  if(value < pos->value) erase(pos->left, value);
                                                                         ans += nodeSize(pos->left) + 1;
  else if(value > pos->value) erase(pos->right, value);
                                                                         pos = pos->right;
  else{
                                                                       }else{
```

```
pos = pos->left;
    }
  }
  return ans;
}
int lessThanOrEqual(T & x){
  int ans = 0;
  AVLNode<T> *pos = root;
  while(pos){
   if(x < pos->value){
      pos = pos->left;
    }else{
      ans += nodeSize(pos->left) + 1;
      pos = pos->right;
    }
  }
  return ans;
}
int greaterThan(T & x){
  int ans = 0;
  AVLNode<T> *pos = root;
  while(pos){
   if(x < pos->value){
      ans += nodeSize(pos->right) + 1;
      pos = pos->left;
    }else{
      pos = pos->right;
    }
  }
  return ans;
}
int greaterThanOrEqual(T & x){
  int ans = 0;
  AVLNode<T> *pos = root;
  while(pos){
    if(x > pos->value){
      pos = pos->right;
    }else{
```

```
ans += nodeSize(pos->right) + 1;
       pos = pos->left;
   }
   return ans;
  }
  int equalTo(T & x){
    return lessThanOrEqual(x) - lessThan(x);
  }
  void build(AVLNode<T> *& pos, vector<T> & arr, int i, int j){
   if(i > j) return;
    int m = i + ((j - i) >> 1);
   pos = new AVLNode<T>(arr[m]);
   build(pos->left, arr, i, m - 1);
   build(pos->right, arr, m + 1, j);
   update(pos);
  }
  void build(vector<T> & arr){
    build(root, arr, 0, (int)arr.size() - 1);
  }
  void output(AVLNode<T> *pos, vector<T> & arr, int & i){
   if(pos){
      output(pos->left, arr, i);
      arr[++i] = pos->value;
      output(pos->right, arr, i);
   }
 }
  void output(vector<T> & arr){
   int i = -1;
    output(root, arr, i);
 }
};
```

9.5. Treap

```
template<typename T>
struct TreapNode{
  TreapNode<T> *left, *right;
  T value;
  int key, size;
  //fields for queries
  bool rev;
  T sum, add;
  TreapNode(T value = 0): value(value), key(rand()), size(1),
  → left(NULL), right(NULL), sum(value), add(0), rev(false){}
};
template<typename T>
struct Treap{
  TreapNode<T> *root;
  Treap(): root(NULL) {}
  inline int nodeSize(TreapNode<T>* t){return t ? t->size: 0;}
  inline T nodeSum(TreapNode<T>* t){return t ? t->sum : 0;}
  inline void update(TreapNode<T>* &t){
    if(!t) return;
    t->size = 1 + nodeSize(t->left) + nodeSize(t->right);
    t->sum = t->value; //reset node fields
    push(t->left), push(t->right); //push changes to child
    \rightarrow nodes
    t->sum = t->value + nodeSum(t->left) + nodeSum(t->right);
    \rightarrow //combine(left,t,t), combine(t,right,t)
  }
  int size(){return nodeSize(root);}
  void merge(TreapNode<T>* &t, TreapNode<T>* t1, TreapNode<T>*
  if(!t1) t = t2;
```

```
else if(!t2) t = t1;
  else if(t1->key > t2->key)
    merge(t1->right, t1->right, t2), t = t1;
  else
    merge(t2\rightarrow left, t1, t2\rightarrow left), t = t2;
 update(t);
}
void split(TreapNode<T>* t, T & x, TreapNode<T>* &t1,
→ TreapNode<T>* &t2){
 if(!t)
    return void(t1 = t2 = NULL);
  if(x < t->value)
    split(t->left, x, t1, t->left), t2 = t;
  else
    split(t->right, x, t->right, t2), t1 = t;
 update(t);
}
void insert(TreapNode<T>* &t, TreapNode<T>* x){
  if(!t) t = x;
  else if(x->key > t->key)
    split(t, x->value, x->left, x->right), t = x;
  else
    insert(x->value < t->value ? t->left : t->right, x);
  update(t);
}
TreapNode<T>* search(T & x){
  TreapNode<T> *t = root;
  while(t){
   if(x == t->value) break;
    t = (x < t->value ? t->left : t->right);
  }
  return t;
}
void erase(TreapNode<T>* &t, T & x){
  if(!t) return;
  if(t->value == x)
    merge(t, t->left, t->right);
```

```
else
                                                                   //OPERATIONS FOR IMPLICIT TREAP
    erase(x < t->value ? t->left : t->right, x);
  update(t);
                                                                   inline void push(TreapNode<T>* t){
}
                                                                     if(!t) return;
                                                                     //add in range example
void insert(T & x){insert(root, new TreapNode<T>(x));}
                                                                     if(t->add){
                                                                       t->value += t->add;
void erase(T & x){erase(root, x);}
                                                                       t->sum += t->add * nodeSize(t);
                                                                       if(t->left) t->left->add += t->add;
void updateVal(T & old, T & New){
                                                                       if(t->right) t->right->add += t->add;
  if(search(old))
                                                                       t->add = 0;
    erase(old), insert(New);
}
                                                                     //reverse range example
                                                                     if(t->rev){
T kth(int i){
                                                                       swap(t->left, t->right);
  assert(0 <= i && i < nodeSize(root));</pre>
                                                                       if(t->left) t->left->rev ^= true;
  TreapNode<T> *t = root;
                                                                       if(t->right) t->right->rev ^= true;
  while(i != nodeSize(t->left)){
                                                                       t->rev = false;
    if(i < nodeSize(t->left)){
                                                                     }
                                                                   }
      t = t->left;
    }else{
      i -= nodeSize(t->left) + 1;
                                                                   void split2(TreapNode<T>* t, int i, TreapNode<T>* &t1,
      t = t->right;
                                                                   → TreapNode<T>* &t2){
    }
                                                                     if(!t)
                                                                       return void(t1 = t2 = NULL);
  return t->value;
                                                                     push(t);
}
                                                                     int curr = nodeSize(t->left);
                                                                     if(i <= curr)</pre>
int lessThan(T & x){
                                                                       split2(t->left, i, t1, t->left), t2 = t;
  int ans = 0;
                                                                     else
  TreapNode<T> *t = root;
                                                                       split2(t->right, i - curr - 1, t->right, t2), t1 = t;
  while(t){
                                                                     update(t);
                                                                   }
    if(x > t->value){
      ans += nodeSize(t->left) + 1;
      t = t->right;
                                                                   inline int aleatorio(){
    }else{
                                                                     return (rand() << 15) + rand();
      t = t->left;
                                                                   }
    }
  }
                                                                   void merge2(TreapNode<T>* &t, TreapNode<T>* t1, TreapNode<T>*
  return ans;
                                                                   }
                                                                     push(t1), push(t2);
```

```
if(!t1) t = t2;
                                                                    T nth(TreapNode<T>* t, int i){
  else if(!t2) t = t1;
                                                                      push(t);
  else if(aleatorio() % (nodeSize(t1) + nodeSize(t2)) <</pre>
                                                                      assert(0 <= i && i < nodeSize(t));</pre>
  \rightarrow nodeSize(t1))
                                                                      int curr = nodeSize(t->left);
    merge2(t1->right, t1->right, t2), t = t1;
                                                                      if(i == curr)
                                                                        return t->value;
    merge2(t2->left, t1, t2->left), t = t2;
                                                                      else if(i < curr)</pre>
  update(t);
                                                                        return nth(t->left, i);
}
                                                                      else
                                                                        return nth(t->right, i - curr - 1);
                                                                    }
//insert the element "x" at position "i"
void insert_at(T & x, int i){
  if(i > nodeSize(root)) return;
                                                                    //update value of element at position "i" with "x"
  TreapNode<T> *t1 = NULL, *t2 = NULL;
                                                                    void update_at(T & x, int i){update_at(root, x, i);}
  split2(root, i, t1, t2);
  merge2(root, t1, new TreapNode<T>(x));
                                                                    //ith element
                                                                    T nth(int i){return nth(root, i);}
  merge2(root, root, t2);
}
                                                                    //add "val" in [l, r]
//delete element at position "i"
                                                                    void add_update(T & val, int l, int r){
void erase at(int i){
                                                                      TreapNode<T> *t1 = NULL, *t2 = NULL, *t3 = NULL;
  if(i >= nodeSize(root)) return;
                                                                      split2(root, 1, t1, t2);
  TreapNode<T> *t1 = NULL, *t2 = NULL, *t3 = NULL;
                                                                      split2(t2, r - 1 + 1, t2, t3);
  split2(root, i, t1, t2);
                                                                      t2->add += val;
  split2(t2, 1, t2, t3);
                                                                      merge2(root, t1, t2);
  merge2(root, t1, t3);
                                                                      merge2(root, root, t3);
}
                                                                    }
                                                                    //reverse [l, r]
void update_at(TreapNode<T>* t, T & x, int i){
  push(t);
                                                                    void reverse_update(int 1, int r){
  assert(0 <= i && i < nodeSize(t));</pre>
                                                                      TreapNode<T> *t1 = NULL, *t2 = NULL, *t3 = NULL;
  int curr = nodeSize(t->left);
                                                                      split2(root, 1, t1, t2);
  if(i == curr)
                                                                      split2(t2, r - 1 + 1, t2, t3);
                                                                      t2->rev ^= true;
    t->value = x;
  else if(i < curr)</pre>
                                                                      merge2(root, t1, t2);
    update_at(t->left, x, i);
                                                                      merge2(root, root, t3);
    update_at(t->right, x, i - curr - 1);
  update(t);
                                                                    //rotate [l, r] k times to the right
}
                                                                    void rotate_update(int k, int l, int r){
```

63

```
TreapNode<T> *t1 = NULL, *t2 = NULL, *t3 = NULL, *t4 =
                                                                     vector<int> logs;
    → NULL;
                                                                    int K, N;
    split2(root, 1, t1, t2);
    split2(t2, r - 1 + 1, t2, t3);
                                                                     SparseTable(vector<T> & arr){
    k %= nodeSize(t2);
                                                                      N = arr.size():
    split2(t2, nodeSize(t2) - k, t2, t4);
                                                                      K = log2(N) + 2;
    merge2(root, t1, t4);
                                                                      ST.assign(K + 1, vector < T > (N));
    merge2(root, root, t2);
                                                                      logs.assign(N + 1, 0);
    merge2(root, root, t3);
                                                                      for(int i = 2; i \le N; ++i)
  }
                                                                        logs[i] = logs[i >> 1] + 1;
                                                                      for(int i = 0; i < N; ++i)
  //sum query in [l, r]
                                                                        ST[0][i] = arr[i];
  T sum_query(int 1, int r){
                                                                      for(int j = 1; j \le K; ++j)
    TreapNode<T> *t1 = NULL, *t2 = NULL, *t3 = NULL;
                                                                        for(int i = 0; i + (1 << j) <= N; ++i)
                                                                          ST[j][i] = min(ST[j-1][i], ST[j-1][i+(1 << (j-1)[i])
    split2(root, 1, t1, t2);
    split2(t2, r - 1 + 1, t2, t3);
                                                                           → 1))]); //put the function accordingly
                                                                    }
    T ans = nodeSum(t2);
    merge2(root, t1, t2);
    merge2(root, root, t3);
                                                                    T sum(int 1, int r){ //non-idempotent functions
                                                                      T ans = 0;
    return ans;
  }
                                                                      for(int j = K; j \ge 0; --j){
                                                                        if((1 << j) <= r - 1 + 1){
  void inorder(TreapNode<T>* t){
                                                                          ans += ST[j][1];
    if(!t) return;
                                                                          1 += 1 << j;
    push(t);
                                                                        }
                                                                      }
    inorder(t->left);
    cout << t->value << " ";
                                                                      return ans;
                                                                    }
    inorder(t->right);
  }
                                                                    T minimal(int 1, int r){ //idempotent functions
  void inorder(){inorder(root);}
                                                                       int j = logs[r - l + 1];
};
                                                                      return min(ST[j][1], ST[j][r - (1 << j) + 1]);
                                                                    }
                                                                  };
     Sparse table
                                                                  9.7. Disjoint
9.6.1. Normal
```

//build on $O(n \log n)$, queries in O(1) for any operation

template<typename T>

struct DisjointSparseTable{

ESCOM-IPN 64

template<typename T>

vector<vector<T>> ST;

struct SparseTable{

```
vector<vector<T>> left, right;
                                                                      vector<int> pref; //just use this if you want sums
  int K, N;
                                                                      //queries indexed in base 1, complexity for all queries:
  DisjointSparseTable(vector<T> & arr){
                                                                      \hookrightarrow O(log(max_element))
    N = arr.size():
                                                                      //build from [from, to) with non-negative values in range [x,
    K = log2(N) + 2;
    left.assign(K + 1, vector<T>(N));
                                                                      //you can use vector iterators or array pointers
                                                                      WaveletTree(vector<int>::iterator from, vector<int>::iterator
    right.assign(K + 1, vector<T>(N));
    for(int j = 0; (1 << j) <= N; ++j){
                                                                      \rightarrow to, int x, int y): lo(x), hi(y){
      int mask = (1 << j) - 1;</pre>
                                                                        if(from >= to) return;
      T acum = 0; //neutral element of your operation
                                                                        int m = (lo + hi) / 2;
      for(int i = 0; i < N; ++i){
                                                                        auto f = [m](int x){return x <= m;};
        acum += arr[i]; //your operation
                                                                        freq.reserve(to - from + 1);
        left[i][i] = acum;
                                                                        freq.push_back(0);
        if((i & mask) == mask) acum = 0; //neutral element of
                                                                        pref.reserve(to - from + 1);
                                                                        pref.push_back(0);

→ your operation

      }
                                                                        for(auto it = from; it != to; ++it){
      acum = 0; //neutral element of your operation
                                                                          freq.push_back(freq.back() + f(*it));
      for(int i = N-1; i >= 0; --i){
                                                                          pref.push_back(pref.back() + *it);
        acum += arr[i]; //your operation
        right[j][i] = acum;
                                                                        if(hi != lo){
        if((i & mask) == 0) acum = 0; //neutral element of your
                                                                          auto pivot = stable_partition(from, to, f);
        \hookrightarrow operation
                                                                          left = new WaveletTree(from, pivot, lo, m);
      }
                                                                          right = new WaveletTree(pivot, to, m + 1, hi);
    }
                                                                        }
  }
                                                                      }
  T query(int 1, int r){
                                                                      //kth element in [l, r]
    if(l == r) return left[0][1];
                                                                      int kth(int 1, int r, int k){
    int i = 31 - __builtin_clz(l^r);
                                                                        if(1 > r) return 0;
    return left[i][r] + right[i][l]; //your operation
                                                                        if(lo == hi) return lo;
  }
                                                                        int lb = freq[l - 1], rb = freq[r];
};
                                                                        int inLeft = rb - lb;
                                                                        if(k <= inLeft) return left->kth(lb + 1, rb, k);
                                                                        else return right->kth(l - lb, r - rb, k - inLeft);
      Wavelet Tree
9.8.
                                                                      }
struct WaveletTree{
                                                                      //number of elements less than or equal to k in [l, r]
  int lo, hi;
                                                                      int lessThanOrEqual(int 1, int r, int k){
  WaveletTree *left, *right;
                                                                        if(l > r \mid \mid k < lo) return 0;
  vector<int> freq;
                                                                        if(hi \leq k) return r - 1 + 1;
```

```
int lb = freq[l - 1], rb = freq[r];
    return left->lessThanOrEqual(lb + 1, rb, k) +
    → right->lessThanOrEqual(1 - lb, r - rb, k);
  }
  //number of elements equal to k in [l, r]
  int equalTo(int 1, int r, int k){
    if(1 > r \mid \mid k < lo \mid \mid k > hi) return 0;
    if(lo == hi) return r - l + 1;
    int lb = freq[1 - 1], rb = freq[r];
    int m = (lo + hi) / 2;
    if(k <= m) return left->equalTo(lb + 1, rb, k);
    else return right->equalTo(1 - lb, r - rb, k);
  }
  //sum of elements less than or equal to k in [l, r]
  int sum(int 1, int r, int k){
    if(1 > r \mid \mid k < lo) return 0;
    if(hi <= k) return pref[r] - pref[l - 1];</pre>
    int lb = freq[l - 1], rb = freq[r];
    return left->sum(lb + 1, rb, k) + right->sum(l - lb, r -
    \hookrightarrow rb, k);
  }
};
```

9.9. Ordered Set C++

```
if(t == 0){ //insert}
      conj.insert(n);
   }else if(t == 1){ //search
      if(conj.find(n) != conj.end()) cout << "Found\n";</pre>
      else cout << "Not found\n";
   }else if(t == 2){ //delete
      conj.erase(n);
   }else if(t == 3){ //update
      cin >> m;
      if(conj.find(n) != conj.end()){
        conj.erase(n);
        conj.insert(n);
     }
   }else if(t == 4){ //lower bound
      cout << conj.order_of_key(n) << "\n";</pre>
   }else if(t == 5){ //qet nth element
      auto pos = conj.find_by_order(n);
      if(pos != conj.end()) cout << *pos << "\n";</pre>
      else cout << "-1\n";
   }
 }
 return 0;
}
```

9.10. Splay Tree

66

9.11. Red Black Tree

10. Cadenas

10.1. Trie

```
struct Node{
    bool isWord = false;
  map<char, Node*> letters;
};
struct Trie{
  Node* root;
  Trie(){
    root = new Node();
  }
  inline bool exists(Node * actual, const char & c){
    return actual->letters.find(c) != actual->letters.end();
  }
  void InsertWord(const string& word){
    Node* current = root;
    for(auto & c : word){
      if(!exists(current, c))
        current->letters[c] = new Node();
      current = current->letters[c];
    current->isWord = true;
  }
  bool FindWord(const string& word){
    Node* current = root;
    for(auto & c : word){
      if(!exists(current, c))
        return false;
      current = current->letters[c];
    }
    return current->isWord;
  }
  void printRec(Node * actual, string acum){
```

```
if(actual->isWord){
      cout << acum << "\n";
    for(auto & next : actual->letters)
      printRec(next.second, acum + next.first);
  }
  void printWords(const string & prefix){
   Node * actual = root;
   for(auto & c : prefix){
      if(!exists(actual, c)) return;
      actual = actual->letters[c];
    printRec(actual, prefix);
 }
};
10.2. KMP
struct kmp{
  vector<int> aux;
  string pattern;
  kmp(string pattern){
    this->pattern = pattern;
    aux.resize(pattern.size());
    int i = 1, j = 0;
    while(i < pattern.size()){</pre>
      if(pattern[i] == pattern[j])
        aux[i++] = ++j;
      else{
        if(j == 0) aux[i++] = 0;
        else j = aux[j - 1];
      }
   }
  vector<int> search(string & text){
    vector<int> ans;
```

int i = 0, j = 0;

68

```
while(i < text.size() && j < pattern.size()){
    if(text[i] == pattern[j]){
        ++i, ++j;
        if(j == pattern.size()){
            ans.push_back(i - j);
            j = aux[j - 1];
        }
    }else{
        if(j == 0) ++i;
        else j = aux[j - 1];
    }
    return ans;
}</pre>
```

10.3. Aho-Corasick

```
const int M = 26;
struct node{
  vector<int> child;
  int p = -1;
  char c = 0;
  int suffixLink = -1, endLink = -1;
  int id = -1;
  node(int p = -1, char c = 0) : p(p), c(c){
    child.resize(M, −1);
 }
};
struct AhoCorasick{
  vector<node> t;
  vector<int> lenghts;
  int wordCount = 0;
  AhoCorasick(){
    t.emplace_back();
  }
```

```
void add(const string & s){
  int u = 0;
 for(char c : s){
    if(t[u].child[c-'a'] == -1){
      t[u].child[c-'a'] = t.size();
      t.emplace_back(u, c);
   u = t[u].child[c-'a'];
  t[u].id = wordCount++;
 lenghts.push_back(s.size());
void link(int u){
  if(u == 0){
    t[u].suffixLink = 0;
   t[u].endLink = 0;
   return;
  }
  if(t[u].p == 0){
   t[u].suffixLink = 0;
   if(t[u].id != -1) t[u].endLink = u;
    else t[u].endLink = t[t[u].suffixLink].endLink;
   return;
  int v = t[t[u].p].suffixLink;
  char c = t[u].c;
  while(true){
    if(t[v].child[c-'a'] != -1){
     t[u].suffixLink = t[v].child[c-'a'];
     break;
   }
    if(v == 0){
     t[u].suffixLink = 0;
     break;
    v = t[v].suffixLink;
  if(t[u].id != -1) t[u].endLink = u;
  else t[u].endLink = t[t[u].suffixLink].endLink;
}
```

69

```
void build(){
    queue<int> Q;
    Q.push(0);
    while(!Q.empty()){
     int u = Q.front(); Q.pop();
      link(u);
     for(int v = 0; v < M; ++v)
        if(t[u].child[v] != -1)
          Q.push(t[u].child[v]);
    }
  }
  int match(const string & text){
    int u = 0;
    int ans = 0;
    for(int j = 0; j < text.size(); ++j){</pre>
      int i = text[j] - 'a';
      while(true){
        if(t[u].child[i] != -1){
          u = t[u].child[i];
          break;
        }
        if(u == 0) break;
        u = t[u].suffixLink;
      }
      int v = u;
      while(true){
        v = t[v].endLink;
        if(v == 0) break;
        ++ans;
        int idx = j + 1 - lenghts[t[v].id];
        cout << "Found word #" << t[v].id << " at position " <<</pre>
        \rightarrow idx << "\n";
        v = t[v].suffixLink;
      }
    }
    return ans;
  }
};
```

10.4. Rabin-Karp

10.5. Suffix Array

10.6. Función Z

70

11. Varios

11.1. Lectura y escritura de __int128

```
//cout for __int128
ostream & operator << (ostream & os, const __int128 & value) {
  char buffer[64];
  char *pos = end(buffer) - 1;
  *pos = ' \setminus 0';
  __int128 tmp = value < 0 ? -value : value;
  do{
    --pos;
    *pos = tmp \% 10 + ^{'}0';
    tmp /= 10;
  }while(tmp != 0);
  if(value < 0){
    --pos;
    *pos = '-';
  return os << pos;
//cin for __int128
istream &operator>>(istream &is, __int128 & value){
  char buffer[64];
  is >> buffer;
  char *pos = begin(buffer);
  int sgn = 1;
  value = 0;
  if(*pos == '-'){
    sgn = -1;
    ++pos;
  }else if(*pos == '+'){
    ++pos;
  }
  while(*pos != '\0'){
    value = (value << 3) + (value << 1) + (*pos - '0');
    ++pos;
  }
  value *= sgn;
  return is;
```

}

11.2. Longest Common Subsequence (LCS)

```
int lcs(string & a, string & b){
  int m = a.size(), n = b.size();
  vector<vector<int>> aux(m + 1, vector<int>(n + 1));
  for(int i = 1; i <= m; ++i){
    for(int j = 1; j <= n; ++j){
      if(a[i - 1] == b[j - 1])
        aux[i][j] = 1 + aux[i - 1][j - 1];
      else
        aux[i][j] = max(aux[i - 1][j], aux[i][j - 1]);
    }
}
return aux[m][n];
}</pre>
```

11.3. Longest Increasing Subsequence (LIS)

71

11.4. Levenshtein Distance

11.5. Día de la semana

```
//0:saturday, 1:sunday, ..., 6:friday
int dayOfWeek(int d, int m, lli y){
  if(m == 1 || m == 2){
    m += 12;
    --y;
  }
  int k = y % 100;
  lli j = y / 100;
  return (d + 13*(m+1)/5 + k + k/4 + j/4 + 5*j) % 7;
}
```

11.6. 2SAT

```
struct satisfiability_twosat{
  int n;
  vector<vector<int>> imp;

satisfiability_twosat(int n) : n(n), imp(2 * n) {}

void add_edge(int u, int v){imp[u].push_back(v);}
```

```
int neg(int u){return (n << 1) - u - 1;}</pre>
  void implication(int u, int v){
    add_edge(u, v);
    add_edge(neg(v), neg(u));
  vector<bool> solve(){
    int size = 2 * n;
    vector<int> S, B, I(size);
    function < void(int) > dfs = [&](int u){
      B.push_back(I[u] = S.size());
      S.push_back(u);
      for(int v : imp[u])
        if(!I[v]) dfs(v);
        else while (I[v] < B.back()) B.pop_back();</pre>
      if(I[u] == B.back())
        for(B.pop_back(), ++size; I[u] < S.size();</pre>

    S.pop_back())

          I[S.back()] = size;
    };
    for(int u = 0; u < 2 * n; ++u)
      if(!I[u]) dfs(u);
    vector<bool> values(n);
    for(int u = 0; u < n; ++u)
      if(I[u] == I[neg(u)]) return {};
      else values[u] = I[u] < I[neg(u)];</pre>
    return values;
 }
};
```

11.7. Código Gray

```
//gray code
int gray(int n){
  return n ^ (n >> 1);
}

//inverse gray code
int inv_gray(int g){
  int n = 0;
  while(g){
    n ^= g;
    g >>= 1;
  }
  return n;
}
```

11.8. Contar número de unos en binario en un rango