Iris Flower Classification

Iris dataset description:

Iris Dataset Overview:

The Iris dataset is a classic dataset used in machine learning and analysis. It includes measurements of four features from three iris flower species: Iris setosa, Iris versicolor, and Iris virginica.

Features:

- 1. Sepal Length (cm)
- 2. Sepal Width (cm)
- 3. Petal Length (cm)
- 4. Petal Width (cm)

Species:

- 1. Iris setosa
- 2. Iris versicolor
- 3. Iris virginica

Dataset Summary:

- Samples: 150
- Features: 4
- Feature Types: Floating-point numbers (cm)
- Species: 3

Import necessary modules/libraries

Reading the data

Out[2]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

Data information

```
1 df.info()
In [3]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 6 columns):
            Column
                           Non-Null Count Dtype
            Ιd
                           150 non-null
                                          int64
         0
            SepalLengthCm 150 non-null
                                          float64
         2 SepalWidthCm 150 non-null
                                        float64
            PetalLengthCm 150 non-null
                                         float64
            PetalWidthCm 150 non-null
                                          float64
            Species
                           150 non-null
                                          object
        dtypes: float64(4), int64(1), object(1)
        memory usage: 7.2+ KB
```

Data Descriptive Stats

```
In [4]: 1 df.describe().T
```

Out[4]:

	count	mean	std	min	25%	50%	75%	max
ld	150.0	75.500000	43.445368	1.0	38.25	75.50	112.75	150.0
SepalLengthCm	150.0	5.843333	0.828066	4.3	5.10	5.80	6.40	7.9
SepalWidthCm	150.0	3.054000	0.433594	2.0	2.80	3.00	3.30	4.4
PetalLengthCm	150.0	3.758667	1.764420	1.0	1.60	4.35	5.10	6.9
PetalWidthCm	150.0	1.198667	0.763161	0.1	0.30	1.30	1.80	2.5

Finding the shape (rows,columns) of the dataframe

```
In [5]: 1 print("shape (rows,columns) of the dataframe :",df.shape)
shape (rows,columns) of the dataframe : (150, 6)
```

Correlation betweem the features

In [6]: 1 df.corr()

Out[6]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
Id	1.000000	0.716676	-0.397729	0.882747	0.899759
SepalLengthCm	0.716676	1.000000	-0.109369	0.871754	0.817954
SepalWidthCm	-0.397729	-0.109369	1.000000	-0.420516	-0.356544
PetalLengthCm	0.882747	0.871754	-0.420516	1.000000	0.962757
PetalWidthCm	0.899759	0.817954	-0.356544	0.962757	1.000000

Finding the missing values using heatmap

Outliers

Checking the outliers using the visualization (Boxplot).

Outliers Detection

Treatment of outliers

Count the types of Species

40 -

Out[13]: <AxesSubplot: xlabel='Species', ylabel='count'>


```
In [14]: 1 df['Species'].unique()
```

Out[14]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)

Using LabelEncoder we convert categorical data into numerical data

```
In [17]: 1 le=LabelEncoder()
```

In [18]: 1 df.drop('Id',axis=1,inplace=True)
2 df.head(100)

Out[18]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
95	5.7	3.0	4.2	1.2	Iris-versicolor
96	5.7	2.9	4.2	1.3	Iris-versicolor
97	6.2	2.9	4.3	1.3	Iris-versicolor
98	5.1	2.5	3.0	1.1	Iris-versicolor
99	5.7	2.8	4.1	1.3	Iris-versicolor

100 rows × 5 columns

In [19]:

1 dfle=df

dfle.Species=le.fit_transform(dfle.Species)

3 dfle.head(5)

Out[19]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

```
In [20]: 1 df['Species'].unique()
Out[20]: array([0, 1, 2])
```

EDA-Pairplot

```
In [21]: 1 plt.figure(figsize=(16,9))
2 sns.pairplot(df,hue='Species')
3 plt.show()
```

<Figure size 1600x900 with 0 Axes>

Decision Tree (Machine Learning Algorithm)

Splitting the data into train & test.

```
In [24]: 1 X_train,X_test,y_train,y_test=train_test_split(inputs,target,train_size=0.8,random_state=35)
In [25]: 1 model=tree.DecisionTreeClassifier()
```

Model Fitting.

Model Prediction

```
In [27]: 1 y_pred=model.predict(X_test)
In [28]: 1 Accuracy=model.score(X_test,y_test)*100
In [29]: 1 round(Accuracy,2)
Out[29]: 100.0
```

Accuracy of this model is equal 100.0 %

```
In [30]:
           1 print(classification report(y pred,y test))
                                    recall f1-score
                       precision
                                                       support
                                      1.00
                    0
                            1.00
                                                1.00
                                                            11
                            1.00
                                      1.00
                                                1.00
                                                            10
                    1
                    2
                            1.00
                                      1.00
                                                1.00
                                                              9
                                                1.00
                                                             30
             accuracy
                                                1.00
                                                             30
            macro avg
                            1.00
                                      1.00
         weighted avg
                            1.00
                                      1.00
                                                1.00
                                                             30
```