Tan Jieqi

Task 1 Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickenss to be 13 mm)

From the diagram we can know that

Gap thickness=13mm

When we are changing the gas,

Argon:U_value:2.8-2.65 Percentage:5.4%

Krypton:U_value:2.8-2.6 Percentage:7.1%

When we add an extra pane,

Air:U_value:2.8-1.8 Percentage:35.7%

Task 2 Consider the house that we analysed in the alst two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminium?

Lat:	44.92N	Long:	9.73E	Elev:	138	StdP	99.68		Time Zone	1.00 (EU	W)	Period	: 89-10	WBAN:	99999
Annual He	eating and H	umidificat	ion Design C	onditions											
Coldest	Heating	» DB		Hum	idification D	P/MCDB and	HR		1	Coldest mon	th WS/MCDI	В	MCWS	/PCWD	
	neaung	g DB		99.6%			99%		0.	4%	19	%	to 99.	6% DB	1
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250	
nnual Co	ooling, Dehu	midification	on, and Enth	alpy Desigr	Condition	s									
	Hottest			OII I	DB/MCWB					F	WB/MCDB			MCWS	DOWD
Hottest			40/			_	0/		40/		_		20/		
Month	Month		.4%		%	2			.4%		%		2%	to 0.4	
	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)
8	11 0	33 1	22 7	31 0	22 4	30 3	21 8	246	30.2	23 7	20 2	22 9	28 3	24	90

Table 10 Peak Irradiance, W/m²

		Latitude		ıe						
Exposure		20°	25°	30°	35°	40°	45°	50°	55°	60°
North	E_D	125	106	92	84	81	85	96	112	130
	E_d	128	115	103	93	84	76	69	62	55
	E_t	253	221	195	177	166	162	164	174	191
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	36
	E_d	177	169	162	156	151	147	143	140	13
	E_t	637	618	599	581	563	546	529	513	498
East/West	E_D	530	543	552	558	560	559	555	547	53
	E_d	200	196	193	190	189	188	187	187	18
	E_t	730	739	745	748	749	747	742	734	72
Southeast/Southwest	E_D	282	328	369	405	436	463	485	503	51
	E_d	204	203	203	204	205	207	210	212	21:
	E_t	485	531	572	609	641	670	695	715	733
South	E_D	0	60	139	214	283	348	408	464	51:
	E_d	166	193	196	200	204	209	214	219	225
	E_t	166	253	335	414	487	557	622	683	740
Horizontal	E_D	845	840	827	806	776	738	691	637	574
	E_d	170	170	170	170	170	170	170	170	170
	E.	1015	1010	997	976	946	908	861	807	74

Table 13	Fenestration Solar Load Factors FF_s							
Exposure	Single Family Detached	Multifamily						
North	0.44	0.27						
Northeast	0.21	0.43						
East	0.31	0.56						
Southeast	0.37	0.54						
South	0.47	0.53						
Southwest	0.58	0.61						
West	0.56	0.65						
Northwest	0.46	0.57						
Horizontal	0.58	0.73						

General:

We know that

$$\Delta T_{\rm cooling} = 7.9 K$$

$$\Delta T_{\text{heating}} = 24.8 \text{K}$$

$$DR = 11.9K$$

Fix Window on the west:

Cooling load-

qwindow_w = A * CFwindow_w; A = 14.4m²

CFwindow_w (HeatTransfer) = Uwindow_w ($\Delta T_{\text{cooling}} - 0.46DR$) = 6.89w/m²

PXIwindow_w = $E_D + E_d = 747$;

$$SHGC = 0.54; IAC = 1: Ff_s = 0.56$$

_____ CFwindow
$$_{w}$$
 (wirradiation) = PXI * SHGC * IAC * Ff_s = 225.9

qwindow $_{w} = A * CFwindow _{w} = A * (CFwindow _{w} (HeatTransfer) + CFwindow _{w} (wirradiation))$ = 3352.17W

q' window $_{w} = A * CF'$ window $_{w} = A * (CF'$ window $_{w} (HeatTransfer) + CF'$ window $_{w} (wirradiation))$ = 3499.49

Heating load-

```
qwindow_w = A * HFwindow_w = 1014.22W
Uwindow _{w} = 3.61; HSGC = 0.56
CFwindow (HeatTransfer) = Uwindow (\Delta T_{\text{heating}} - 0.46DR) = 8.76w/m<sup>2</sup>
q' window _{\rm w} = A * HF' window _{\rm w} = A * U' window _{\rm w} * \Delta T_{\rm heating} = 1289.2W
Fix Window on the south:
Cooling load-
qwindow<sub>s</sub> = A * CFwindow<sub>s</sub>; A = 3.6 \text{m}^2
CFwindow<sub>w</sub> (HeatTransfer) = Uwindow<sub>w</sub> (\Delta T_{\text{cooling}} - 0.46DR) = 6.89w/m^2
PXIwindow<sub>w</sub> = E_D + E_d = 557;
SHGC = 0.56; IAC = 1: Ff_s = 0.47
        CFwindow<sub>s</sub> (wirradiation) = PXI * SHGC * IAC * Ff_s = 146.6
qwindow_w = A * CFwindow_s = A * (CFwindow_s (HeatTransfer) + CFwindow_s (wirradiation))
= 552.56W
_____
q' window _s = A * CF' window _s = A * (CF' window _s (HeatTransfer) + CF' window _s (wirradiation))
= 559.2W
Heating load-
qwindow_s = A * HFwindow_s = 253.56W
Uwindow _s = 3.61; HSGC = 0.56
CFwindow<sub>s</sub> (HeatTransfer) = Uwindow<sub>s</sub> (\Delta T_{\text{heating}} - 0.46DR) = 8.76w/m<sup>2</sup>
-----
q' window<sub>s</sub> = A * HF' window<sub>s</sub> = A * U' window<sub>s</sub> * \Delta T_{\text{heating}} = 322.3W
```

Operable Window on the south:

Cooling load-