SAN技术与应用

www.huawei.com

- 1. 传统存储的结构与缺点
- 2. SAN存储基本结构
- 3. FC-SAN存储
- 4. IP-SAN存储
- 5. FC-SAN与IP-SAN融合

传统存储的结构与缺点

• 存储网络几种常见类型

传统存储的结构与缺点 — DAS

传统存储的结构与缺点 — DAS

- DAS存储缺点
 - □ 扩展性差
 - □ 资源浪费
 - □ 管理分散
 - □ 异构化问题
 - □ 数据备份问题

存储阵列设备

- 1. 传统存储的结构与缺点
- 2. SAN存储基本结构
- 3. FC-SAN存储
- 4. IP-SAN存储
- 5. FC-SAN与IP-SAN融合

- 2. SAN存储基本结构
 - 2.1 SAN存储定义及组网
 - 2.2 SAN组件介绍
 - 2.3 SAN存储特点
 - 2.4 SAN与DAS区别

SAN存储定义及组网

 SAN:存储区域网络(Storage Area Networks)是通过专用高速 网将一个或多个网络存储设备和服务器连接起来的专用存储系统。

SAN存储定义及组网(续)

Page 9

2. SAN存储基本结构

- 2.1 SAN存储定义及组网
- 2.2 SAN组件介绍
- 2.3 SAN存储特点
- 2.4 SAN与DAS区别

SAN组件介绍

- 存储阵列设备
- 光纤交换机
- 主机总线设配卡
- 光纤线缆

2. SAN存储基本结构

- 2.1 SAN存储定义及组网
- 2.2 SAN组件介绍
- 2.3 SAN存储特点
- 2.4 SAN与DAS区别

SAN存储特点

2. SAN存储基本结构

- 2.1 SAN存储定义及组网
- 2.2 SAN组件介绍
- 2.3 SAN存储特点
- 2.4 SAN与DAS区别

SAN与DAS区别

项目	DAS	SAN
协议	SCSI协议	FC协议、ISCSI协议
应用	对存储容量要求不高、服务器数 量很少的中小型局域网	关键数据库、集中存储、海量存储、备份、容灾等中高端存储应用环境
优势	部署简单、投资少	高可用性、高性能、高扩展性、 兼容性、集中管理
劣势	可扩展性差、资源浪费、不易管 理、性能瓶颈	投资相对较高

- 1. 传统存储的结构与缺点
- 2. SAN存储基本结构
- 3. FC-SAN存储
- 4. IP-SAN存储
- 5. FC-SAN与IP-SAN融合

- 3. FC-SAN存储
 - 3.1 FC协议介绍
 - 3.2 FC-SAN系统组成

FC协议介绍

• FC (Fibre Channel) 协议简介:

FC是由美国标准化委员会(ANSI)的X3T11小组于1988年提出的高速串行传输总线,解决了并行总线SCSI遇到的技术瓶颈,并在同一大的协议平台框架下可以映射更多FC-4上层协议,最早是用来提高硬盘协议的传输带宽,侧重于数据的快速、高效、可靠传输。

FC协议其实并不能翻译成光纤协议,只是FC协议普遍采用光纤作为传输线缆而不是铜缆,因此很多人把FC称为光纤通道协议。在逻辑上,我们可以将FC看作是一种用于构造高性能信息传输的、双向的、点对点的串行数据通道。在物理上,FC是一到多对应的点对点的互连链路,每条链路终结于一个端口或转发器。FC的链路介质可以是光纤、双绞线或同轴电缆。

FC协议介绍 — FC拓扑结构

FC-PTP

点对点

FC-AL

Arbitrated Loop (仲裁环)

只能连接 **2**个设备 (直接连接) 最多支持**127**个设备 (光纤集线器) FC-SW 交换式 Fabric

最多支持**1**千**6**百万个设备 (光纤通道交换机)

FC协议介绍 — FC拓扑结构(续)

特性	点到点式	仲裁环方式	光纤交换式
最大节点数	2	127	≈1600万
地址位数	无	8位AL_PA	24位端口地址
单点故障影响	无	环失效	无
多速率传输支持	否	否	是
数据帧传输顺序	按发送顺序	按发送顺序	无保证
介质访问方式	独享	仲裁式	独享

FC协议介绍 — 协议栈

- 3. FC-SAN存储
 - 3.1 FC协议介绍
 - 3.2 FC-SAN系统组成

FC-SAN系统组成

FC-SAN系统组成 — 存储设备

存储设备上的FC接口模块提供了应用服务器与存储系统的业务接口, 用于接收应用服务器发出的数据交换命令。

FC-SAN系统组成 — 光纤交换机

- 光纤通道交换机在逻辑上是SAN的核心,它连接着主机和存储设备。
- 光纤交换机的主要功能如下:

自配置端口、环路设备支持、交换机级联、自适应速度检测、可配置的缓冲、分区(基于物理端口和基于WWN的分区)、IP over Fiber Channel (IPFC) 广播、远程登录、Web管理、简单网络管理协议 (SNMP) 以及SCSI接口独立设备服务 (SES) 等

光纤交换机 — Zone概念

- Zone是可进行互通的端口或设备的名称构成的集合
- 在一个zone里的设备只能与同一个zone中的其他设备通信
- 一个设备可以同时在多个zone里

光纤交换机 — 端口

FC-SAN系统组成 — 光模块

- 光通道交换机光模块由**光电子器件、功能电路**和**光接口**等组成。光电子器件包括发射和接收两部分。
- 按照速率分:以太网应用的100Base(百兆)、1000Base(千兆)、 10GE SDH应用的155M、622M、2.5G、10G
- 按照封装分: 1×9、SFF、SFP、GBIC、XENPAK、XFP
- 按照光纤的类型分: 单模光纤连接器、多模光纤连接器
- 按照光纤连接器的连接头形式分: FC, SC, ST, LC, MU, MTRJ 等等目前常用的有FC, SC, ST, LC。

SFP封装 GBIC封装

SFP封装

FC-SAN系统组成 — 光模块(续)

介质类型	发射器	速率	距离
	1550pm / 対ソ油ソ中	1Gb/s	2m – 50Km
	1550nm长波光激光器 	2Gb/s	2m – 50Km
9µm单模光纤	4000	1Gb/s	2m – 10Km
	1300nm长波光激光器	2Gb/s	2m – 2Km
		4Gb/s	2m – 2Km
	850nm短波光激光器	1Gb/s	0.5m-500m
50µm多模光纤		2Gb/s	0.5m-300m
		4Gb/s	0.5m-170m
		1Gb/s	0.5m-300m
62.5µm多模光纤		2Gb/s	0.5m-150m
		4Gb/s	0.5m-70m

FC-SAN系统组成 — FC HBA卡

HBA (Host Bus Adapter) :

主机总线适配器,就是连接主机**I/O**总 线和计算机内存系统的**I/O**适配器。

• 分类:

FC HBA、SCSI HBA、SAS HBA、 iSCSI HBA等。

• 用途:

用于服务器、海量存储子网络、外设 间通过集线器、交换机和点对点连接 进行双向、串行数据通讯。

FC-SAN系统组成 — FC HBA卡(续)

- WWNN(World Wide Node Name)全球唯一节点名字
- WWPN(World Wide Port Name)全球惟一端口名字

- 1. 传统存储的结构与缺点
- 2. SAN存储基本结构
- 3. FC-SAN存储W
- 4. IP-SAN存储
- 5. FC-SNA与IP-SAN融合
- 6. 华为SAN存储应用

- 4. IP-SAN存储
 - 4.1 IP-SAN基础
 - 4.2 iSCSI协议

IP-SAN基础

• 什么是IP-SAN:

以**TCP/IP**协议为底层传输协议,采用以太网作为承载介质构建起来的存储区域网络架构。

实现IP-SAN的典型协议是iSCSI,它定义了SCSI指令集在IP中传输

IP-SAN基础(续)

接入标准化

不需要专用的HBA卡和光纤交换机,普通的以太网卡和以太网交换机就可以存储和服务器的连接。

传输距离远

理论上IP网络可达的地方就可以使用IP SAN,而IP网络是目前地球上应用最为广 泛的网络。

可维护性好

广大的具备IP网络技术的维护人员和强大的IP网络维护工具支撑。

带宽扩展方便

随着10Gb以太网的迅速发展, IP SAN单端口带宽扩展到10Gb已经是发展的必然。

Page 35

IP-SAN基础 — 面临的挑战

IP-SAN基础 — FC SAN与IP SAN比较

描述	FC SAN	IP SAN
网络速度	1Gb、2Gb、4Gb、8Gb	1Gb、10Gb
网络架构	单独建设光纤网络和HBA卡	使用现有IP网络
传输距离	受到光纤传输距离的限制	理论上没有距离限制
管理、维护	技术和管理较复杂	与IP设备一样操作简单
兼容性	兼容性差	与所有IP网络设备都兼容
性能	非常高的传输和读写性能	目前主流1Gb,占用主机CPU资源
成本	购买(光纤交换机、HBA卡、光纤磁盘阵列等)、维护(培训人员、系统设置与监测等)成本高	与FC – SAN相比,购买与维护成本都较低,有更高的投资收益比例
容灾	容灾的硬件、软件成本高	本身可以实现本地和异地容灾,且 成本低
安全性	较高	较低、容易丢包、截取

IP-SAN基础 — IP-SAN的组件

IP-SAN基础 — iSCSI连接方式

• IP-SAN根据主机与存储的连接方式不同,可以分为三种:

IP-SAN基础 — iSCSI连接方式(续)

• 以太网卡+Initiator软件实现方式

IP-SAN基础 — iSCSI连接方式(续)

● TOE网卡+Initiator软件实现方式

IP-SAN基础 — iSCSI连接方式(续)

• iSCSI HBA卡连接方式 完成iSCSI报文到 TCP/IP报文转换,完全 iSCSI HBA+ I iSCSI€BA 不占用主机资源 基于TCP/IP协 议的以太网连 IP SAN网络 接 内部总线连接 存储设备 以太网连接

- 4. IP-SAN存储
 - 4.1 IP-SAN基础
 - 4.2 iSCSI协议

iSCSI协议

• iSCSI (Internet SCSI) 把SCSI命令和块状数据封装在TCP中在IP网络中传输,基本出发点是利用成熟的IP网络技术来实现和延伸SAN。

iSCSI体系结构

iSCSI节点将SCSI指令和数据封装成iSCSI包,然后该数据封装被传送给TCP/IP层,再由TCP/IP协议将iSCSI包封装成IP协议数据以适合在网络中传输。

iSCSI的发起端与目标端

• 发起端 (Initiator)

- SCSI层负责生成CDB(命令描述符块),将CDB传给iSCSI
- □ iSCSI层负责生成iSCSI PDU(协议数据 单元),并通过IP网络将PDU发给 target
- 目标器(Target)
 - □ iSCSI层收到PDU,将CDB传给SCSI层
 - □ SCSI层负责解释CDB的意义,必要时发 送响应

iSCSI数据包封装模型

 所有的SCSI命令都被封装成iSCSI协议数据单元,iSCSI利用TCP/IP 协议栈中传输层的TCP协议为连接提供可靠的传输机制

- 1. 传统存储的结构与缺点
- 2. SAN存储基本结构
- 3. FC-SAN存储W
- 4. IP-SAN存储
- 5. FC-SAN与IP-SAN融合

FC协议与TCP协议融合

- 目前FC与TCP/IP协议的真正融合主要有两种趋势:
 - □ TCP/IP网络承载FC信道
 - FCIP
 - iFCP
 - FCOE
 - □ 以FC信道承载TCP/IP数据
 - IPFC

从现有的情况来看,以太网技术和FC技术都在飞速发展IP-SAN和FC-SAN 会在很长的一段时间内都将是并存且互为补充的。

FCoE协议

• FCoE (Fibre Channel over Ethernet)以太网光纤通道: FCoE允许在一根通信线缆上传输LAN和FC SAN通信,融合网络可以支持LAN和SAN数据类型,减少数据中心设备和线缆数量,同时降低供电和制冷负载,收敛成一个统一的网络后,需要支持的点也跟着减少了,有助于降低管理负担。

FCoE把FC帧封装在以太网帧中,允许LAN和SAN的业务流量在同一个以太

FCoE协议的封装

● FCoE是把FC-2层以上的内容封装到以太网报文中进行承载。

FCoE协议 — CEE

- FCoE采用增强型以太网作为物理网络传输架构,能够提供标准的光 纤通道有效内容载荷。
- **融合增强型以太网(CEE)**可以避免类似TCP/IP协议的开销和数据 包损失。

谢谢

www.huawei.com