Aufgabe	9.1	9.2	9.3	Z9.1	\sum
Punkte					

Höhere Analysis – Übungsblatt 9

Wintersemester 2020/2021, Universität Heidelberg

Prof. Dr. Hans Knüpfer Denis Brazke

denis.brazke@uni-heidelberg.de

5 Punkte

Aufgabe 9.1

- Sei $\mathscr{S}(\mathbb{R}^n)$ der Schwartzraum. a) Zeigen Sie, dass $\mathscr{S}(\mathbb{R}^n)$ ein \mathbb{C} -Vektorraum ist.
 - b) Sei $f \in \mathcal{S}(\mathbb{R}^n)$. Zeigen Sie, dass $f \in L^p(\mathbb{R}^n)$ für alle $p \in [1, \infty]$.
 - c) Seien $f, g \in \mathcal{S}(\mathbb{R}^n)$. Zeigen Sie, dass $fg \in \mathcal{S}(\mathbb{R}^n)$.

Aufgabe 9.2 5 Punkte

Zu $j \in \mathbb{N}$ sei $H_j : \mathbb{R} \longrightarrow \mathbb{R}$ das j-te Hermite Polynom, d.h. H_j ist gegeben durch

$$H_0(x) := 1,$$
 $H_j(x) := (-1)^j e^{x^2} \frac{\mathrm{d}^j}{\mathrm{d}x^j} e^{-x^2}$ für alle $x \in \mathbb{R}$. (2.1)

Sei $\psi_j \in \mathscr{S}(\mathbb{R})$ gegeben durch $\psi_j(x) \coloneqq H_j(x) \, e^{-\frac{x^2}{2}}$ für alle $x \in \mathbb{R}$. Zeigen Sie, dass für alle $j \in \mathbb{N}$ gilt

$$\psi_{j+1}(x) = x \,\psi_j(x) - \psi_j'(x), \qquad \widehat{\psi}_{j+1}(\xi) = -\mathbf{i}(\xi \widehat{\psi}_j(\xi) - (\widehat{\psi}_j)'(\xi)) \qquad \text{für alle } x \in \mathbb{R}, \tag{2.2}$$

und folgern Sie daraus, dass für alle $j \in \mathbb{N}$ ein $\lambda_j \in \{\pm 1, \pm \mathbf{i}\}$ existiert, so dass $\widehat{\psi}_j = \lambda_j \psi_j$.

Hinweis: Zeigen Sie, dass $H_{j+1}(x) = 2xH_j(x) - H'_j(x)$.

Aufgabe 9.3 5 Punkte

Sei $f \in \mathcal{S}(\mathbb{R}^n)$. Zu $\alpha > 0$ und $y \in \mathbb{R}^n$ definieren wir die Operatoren

$$\tau_y f(x) \coloneqq f(x - y), \qquad \delta_{\alpha} f(x) \coloneqq f(\alpha x) \qquad \text{für alle } x \in \mathbb{R}^n.$$
 (3.1)

Zeigen Sie:

a)
$$\widehat{\tau_y f}(\xi) = e^{-\mathbf{i}\xi \cdot y} \widehat{f}(\xi)$$
 für alle $y, \xi \in \mathbb{R}^n$.

b)
$$\widehat{\delta_{\alpha}f}(\xi) = \frac{1}{\alpha^n} \widehat{f}(\frac{\xi}{\alpha})$$
 für alle $\alpha > 0, \, \xi \in \mathbb{R}^n$.

c)
$$\widehat{f * g}(\xi) = (2\pi)^{\frac{n}{2}} \widehat{f} \widehat{g}$$
.

Zusatzaufgabe 9.1 3 Punkte

 $\mathrm{Zu} \in \mathbb{N}$ seien $f_1, \ldots, f_n \in \mathscr{S}(\mathbb{R})$. Wir definieren $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ durch

$$f(x) \coloneqq \prod_{i=1}^{n} f_i(x_i)$$
 für alle $x \in \mathbb{R}^n$. (4.1)

Zeigen Sie, dass $f \in \mathscr{S}(\mathbb{R}^n)$ und dass $\widehat{f}(\xi) = \prod_{i=1}^n \widehat{f}_i(\xi_i)$.

Abgabe bis spätestens 28.01.2021, 14:00 Uhr in Moodle.