

CS120: Computer Networks

Lecture 15 – Interdomain routing

Haoxian Chen

Slide adopted from: Zhice Yang

Routing Protocols

- Routing Information Protocol (RIP)
 - Algorithm: Distance Vector
- Open Shortest Path First (OSPF)
 - Algorithm: Link State
- Border Gateway Protocol (BGP)

Intradomain Routing Protocol

Interdomain Routing Protocol

How do we scale to the global internet?

Today's lecture

- Routing refresher
- Global internet hierarchy
- BGP basics
- Integrating BGP with intradomain routing
- Routing policies

Network as a Graph

- The basic problem of routing is to find the lowest-cost path between any two nodes
 - Static approach has several shortcomings
 - Can not handle node or link failures
 - Can not handle addition of new nodes or links
 - Edge costs cannot change
 - Centralized solution does not scale
 - ➤ Distributed and dynamic protocol

Distance Vector Algorithm

- x maintains its distance vector estimate $\mathbf{D}_{x}(y) = \{D_{x}(y): y \in N\}$
- x knows:
 - cost to each neighbor v: c(x, v)
 - neighbors' distance vectors estimate: $\mathbf{D}_{v}(y) = \{D_{v}(y): y \in N\}$
- Algorithm idea:
 - From time-to-time, each node sends its own distance vector estimate to neighbors
 - When x receives new distance vector estimate from neighbor, it updates its own distance vector estimate using Bellman-Ford equation
 - Under minor, natural conditions, the estimate $D_x(y)$ will converge to the actual lowest cost $d_x(y)$

Link State Routing

- Network topology is known to all routers
 - Accomplished via broadcasting link state packets (LSP) to all routers
- Routing Algorithm: computes shortest paths from one node ('source') to all other nodes
 - Based on Dijkstra's Algorithm

Distance vector vs. link state

	Distance vector	Link state
Information maintained		
Information exchange		
Overhead		
Convergence Speed		
Examples		

Distance vector vs. link state

	Distance vector	Link - state
Information maintained	distance to each destination	complete network topology
Information exchange	router's own distance vector	router's neighbors and cost to each neighbor
Overhead	low	high
Convergence Speed	low	high
Examples	RIP	OSPF

Routing Protocols

- Routing Information Protocol (RIP)
 - Algorithm: Distance Vector
- Open Shortest Path First (OSPF)
 - Algorithm: Link State
- Border Gateway Protocol (BGP)

Intradomain Routing Protocol

Interdomain Routing Protocol

How do we scale to the global internet?

Today's lecture

- Routing refresher
- Global internet hierarchy
- BGP basics
- Integrating BGP with intradomain routing
- Routing policies

The Discussion on Routing So Far ...

- Routers in the network are managed by the same administrator
 - e.g. Residential building, Campus, Network of a same ISP, Network of a big company, etc.
- Routers running same routing protocol
 - OSPF, RIP, etc.
 - These routers have certain coverage, called the routing area (see next slides)

The Real Internet: Network of Network

- 1. Who is responsible for connecting them?
- 2. How to route among networks?

Internet Service Providers

- End systems connect to Internet via "Consumer" ISPs (Internet Service Providers)
 - Residential, company and university ISPs
- "Consumer" ISPs are connected "Backbone" ISPs
 - Three Major Commercial ISPs in China

- Other ISPs
 - e.g. cernet

Network of Networks

Interdomain Routing Problems

- Scalability: More than 600 million destinations
 - Storage
 - Routing Table
 - Calculation
 - Shortest Path
 - Communication
 - Exchanges Routing Information
- Routing Management: Complex Routing Polices

Interdomain Routing: New Hierarchy

- Aggregate Routers into Logical Areas: Autonomous System
- Autonomous System (AS)
 - Corresponds to an administrative domain
 - e.g. University, company, backbone network
- Routers in same AS run same intradomain routing protocol
 - RIP, OSPF, etc.
- Routers in different AS run interdomain routing protocol
 - BGP, EGP
- Interdomain routing element: AS

Autonomous System

Routing Hierarchy

Routing hierarchy

How does a packet travel from R9 to R5?

Border router:

- summarizes routes in one area
- make them available in other areas

Today's lecture

- Routing refresher
- Global internet hierarchy
- BGP basics
- Integrating BGP with intradomain routing
- Routing policies

Border Gateway Protocol (BGP)

- Widely-used Interdomain Routing Protocol
- Hardly be needed for small community or companies
- Routing Element: AS
- Routing Algorithm
 - Target on Reachability
 - Not the "best" route
 - Avoid Loop

Border Gateway Protocol (BGP)

- Broadcast route entries to neighbors
 - Similar to RIP
 - BGP route entry
 - AS path + network prefix+ next hop
 - eg. <AS a, AS b, AS c, ···> 128.96.0.0/16 12.5.6.1
 - Use AS number to detect cycles

Example

Registrar: apnic

Owner: ASN-TELSTRA-GLOBAL Telstra Global, HK

- AS route from telia Sofia to my computer
 - https://lg.telia.net/?type=bgp&router=sfia-b2&address=59.78.171.135

```
*BGP Preference: 170/-201 Src Router

Source: 2.255.253.187

Protocol next hop: 2.255.254.180

State: <Active Int Ext> Src AS

Local AS: 1299 Peer AS: 1299

Age: 4d 11:16:10 Metric: 100 Metric2: 2682

AS path: 4637 4637 4637 4637 4538 4538 24364 (Originator)
```

Country: EU
Registration Date: 1993-09-01
Registrar: ripencc
Owner: TELIANET Telia Carrier, EU

AS4637

Country: HK
Registration Date: 1995-10-30

Country: HK
Registration Date: 1995-10-30

AS4638

AS4538

Country: CN
Registration Date: 2005-03-03
Registrar: apnic
Owner: CNGI-SH-IX-AS-AP CERNET2 IX at Shanghai Jiaotong University, CN
Registrar: apnic

Owner: ERX-CERNET-BKB China Education and Research Network Center, CN

Today's lecture

- Routing refresher
- Global internet hierarchy
- BGP basics
- Integrating BGP with intradomain routing
- Routing policies

BGP: Border Router

• Border Routers: connecting more than one ASs

BGP: Border Router

- Border Routers: connecting more than one ASs
 - Selected and configured by AS administrators
 - Routing entries exchanged with other Boarder Routers through exterior BGP (eBGP)
 - Routing entries exchanged with routers within the same AS through interior BGP (iBGP)

BGP: Exchanging BGP entries

- Broadcast BGP entries in the AS through iBGP
- Roughly determine the best border router for certain prefix

BGP Table of B

Dest	Next
А	А
С	С
D	С
E	С

Routing Table of B

Prefix	Next
128.96.0.0/16	С
192.4.153.0/24	С
158.2.32.0/24	С
156.2.4.0/24	С

Part of Combined Table for B

- Broadcast BGP entries in the AS through iBGP
- Roughly determine the best border router for certain prefix

Prefix	Next
128.96.0.0/16	С
192.4.153.0/24	С
158.2.32.0/24	С
156.2.4.0/24	С

Part of Combined Table for B

- Broadcast BGP entries are broadcast in the AS through iBGP
- Roughly determine the best border router for certain prefix
 - Selection Priority
 - Local Preference
 - AS hops
 - Distance to the border router
 - BGP ID

- Other Methods: Default Gateway Router (Static Method)
 - Inject a default router entry into all routers in the AS through intradomain routing protocol

Today's lecture

- Routing refresher
- Global internet hierarchy
- BGP basics
- Integrating BGP with intradomain routing
- Routing policies

Interdomain Routing Problems

- Scalability: More than 600 million destinations
 - Storage
 - Routing Table
 - Calculation
 - Shortest Path
 - Communication
 - Exchanges Routing Information
- ➤ Routing Management: Complex Routing Polices

We have established connectivity of the global internet!

But connectivity is not the only objective.

Business drives complex policies.

ASes need to implement policies without the help of each other.

Provider to customer

advertise

- all the routes I know about to my customer
- routes learned from my customers to everyone

Customer wants to:

get traffic directed to him

and his customers

my own prefixes to my provider

advertise

routes learned from my customers to my provider

routes learned from my provider to my customers don't advertise

routes learned from one provider to another provider

Peers:

want to get access to each other's customers without paying other providers.

advertise:

- routes learned from my customers
- routes learned from my peer don't advertise:
- routes from my peer to any provider

Policy implementation: BGP attributes

BGP uses various attributes associated with each route to make routing decisions

- **AS_PATH**: Represents the path the route has taken through different autonomous systems.
- **NEXT_HOP**: Indicates the IP address of the next-hop router to reach the destination.
- LOCAL_PREF: Used in the BGP path selection process within an AS.
- **MED** (Multi-Exit Discriminator): Influences routing decisions between neighboring ASes.

AS path prepending

Lowers a path's preference with longer AS path.

- AS5 helps AS1 to forward traffic
 - ISP negotiation
 - Priority
 - eg. AS path prepending
- AS5 blocks AS1 traffic to AS2
 - Does not broadcast AS2 entry to AS1

Takeways

How to scale networks: introduce hierarchy

- Participants of BGP: Autonomous systems
 - much smaller than the number of networks in the world

- Hierarchy: tradeoff between scalability and optimality
 - BGP only finds policy-compliant, loop-free routes, not "optimal" route

Reference

- Textbook 4.1
- http://www.ciscopress.com/articles/article.asp?p=24090