

CS60010: Deep Learning Spring 2023

Sudeshna Sarkar

Variational AutoEncoder

23 Mar 2023

Autoencoder

Autoencoders

Reconstructed data

Encoder: 4-layer conv

Decoder: 4-layer upconv

Bottleneck autoencoder

- This has some interesting properties:
 - If both encoder and decoder are linear, this exactly recovers PCA
 - Can be viewed as "non-linear dimensionality reduction" could be useful simply because dimensionality is lower and we can use various algorithms that are only tractable in low-dimensional spaces (e.g., discretization)

Sparse autoencoder

美

Idea: can we describe the input with a small set of "attributes"?

This might be a more compressed and structured representation

Pixel (0,0): #FE057D

Pixel (0,1): #FD0263

Pixel (0,2): #E1065F

"dense representation": most

values non-zero Not structured

Idea: "sparse" representations are going to be more structured!

has_ears: 1

has_wings: 0

has_wheels: 0

very structured!

"sparse": most values are zero

there are many possible "attributes," and most images don't have most of the attributes

Sparse autoencoder

Sparse Autoencoder

Regularize outputs of hidden layer to enforce sparsity:

$$\tilde{J}(x) = J(x, g(f(x))) + \alpha \Omega(h)$$

J: loss function, f: encoder, g: decoder, h=f(x), Ω penalizes non-sparsity of h

- E.g., can use $\Omega(h) = \sum_i |h_i|$ and ReLU activation to force many zero outputs in hidden layer
- Can also measure average activation of h_i across mini-batch and compare it to user-specified **target sparsity** value ρ (e.g., 0.1) via square error or **Kullback-Leibler divergence**:

$$p\log\frac{p}{q} + (1-p)\log\frac{1-p}{1-q}$$

q is average activation of h_i over mini-batch

Denoising autoencoder

Idea: a good model that has learned meaningful structure should "fill in the blanks"

Can train an autoencoder to learn to **denoise** input by giving input **corrupted** instance \tilde{x} and targeting **uncorrupted** instance x

There are **many variants** on this basic idea, and this is one of the most widely used simple autoencoder designs

Denoising Autoencoder

- How does it work?
- Even though, e.g., MNIST data are in a 784dimensional space, they lie on a low-dimensional manifold that captures their most important featur
- Corruption process moves instance x off of manifold
- Encoder f_{θ} and decoder g_{θ} , are trained to project j_{χ} back onto manifold

The types of autoencoders: Forcing Structure

- 1. Dimensionality: make the hidden state smaller than the input/output, so that the network must compress it
 - + very simple to implement
 - simply reducing dimensionality often does not provide the structure we want
- 2. Sparsity: force the hidden state to be sparse (most entries are 0), so that the network must compress input
 - + principled approach that can provide a "disentangled" representation
- harder in practice, requires choosing the regularizer and adjusting hyperparameters
- **3. Denoising:** corrupt the **input** with **noise**, forcing the autoencoder to learn to distinguish **noise from signal**
 - + very simple to implement
- not clear which layer to choose for the bottleneck, adhoc choicers (e.g., how much noise to add)
- 4. Probabilistic modeling: force the hidden state to agree with a prior distribution

Autoencoders

Not probabilistic: No way to sample new data from learned model

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Training the model

How does one train an AE to ensure that the hidden representation z has a specific distribution e.g., N(0,1)

- Minimize the error between x and \hat{x}
- Minimize the KL divergence between the distribution of z and N(0,1)
 - Minimize the negative log likelihood of z as computed from a standard Gaussian

Training the model

Instead of finding the unique z for any x, we will find the distribution P(z|x)

- The encoder computes the distribution P(z|x) for any x
- The decoder tries to convert a randomly sampled z from P(z|x) to x
- Constraint on z: Make P(z|x) as close to the standard Gaussian as possible

Encoder

$$q_{\phi}(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$

$$\mu_{z|x} \qquad \Sigma_{z|x}$$

Not probabilistic: No way to sample new data from learned model

Probabilistic spin on autoencoders:

- 1. Learn latent features z from raw data
- 2. Sample from the model to generate new data

What we want at test time:

Intuition: x is an image, **z** is latent factors used to generate **x**: attributes, orientation, etc.

- Assume simple prior p(z), e.g. Gaussian
- p(x|z): **decoder** as in autencoder

How to train this model?

Basic idea: maximize likelihood of data

If we could observe the z for each x, then could train a conditional generative model p(x|z)

$$p_{\theta*}(z)$$

How to train this model?

Basic idea: maximize likelihood of data

We don't observe z, so need to marginalize:

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz$$

$$= \int p_{\theta}(x|z) p_{\theta}(z) dz$$

Ok, can compute this with decoder network

How to train this model?

Basic idea: maximize likelihood of data

We don't observe z, so need to marginalize:

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz$$

$$= \int p_{\theta}(x|z) p_{\theta}(z) dz$$

Ok, we assumed Gaussian prior for z

$$p_{ heta*}(x|z^{(i)})$$
 $egin{array}{c} oldsymbol{x} \\ oldsymbol{p} \\ oldsymbol{p}_{ heta*}(z) \end{array}$

How to train this model?

Basic idea: maximize likelihood of data

We don't observe z, so need to marginalize:

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz$$

$$= \int p_{\theta}(x|z) \ p_{\theta}(z) \ dz$$

Problem: Impossible to integrate over all z!

How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes' Rule:

$$p_{\theta}(x) = \frac{p_{\theta}(x|z) p_{\theta}(z)}{p_{\theta}(z|x)}$$

Ok, compute with decoder network

Ok, we assumed Gaussian prior

Problem: No way to compute this!

How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes' Rule:

$$p_{\theta}(x) = \frac{p_{\theta}(x|z) \ p_{\theta}(z)}{p_{\theta}(z|x)}$$

Solution: Train another network (encoder) that learns $q_{\phi}(z|x) \approx p_{\theta}(z|x)$

How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes' Rule:

$$p_{\theta}(x) = \frac{p_{\theta}(x|z) \ p_{\theta}(z)}{p_{\theta}(z|x)} \approx \frac{p_{\theta}(x|z) \ p_{\theta}(z)}{q_{\phi}(z|x)}$$

Use **encoder** to compute

$$q_{\phi}(z|x) \approx p_{\theta}(z|x)$$

Decoder network inputs latent code z, gives distribution over data x

Encoder network inputs data x, gives distribution over latent codes z

If we can ensure that $q_{\phi}(z|x) \approx p_{\theta}(z|x)$

then we can approximate

$$p_{\theta}(x) \approx \frac{p_{\theta}(x|z) p(z)}{q_{\phi}(z|x)}$$

Idea: Jointly train both encoder and decoder

Bayes' Rule

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x|z) p(z)}{p_{\theta}(z|x)} = \log \frac{p_{\theta}(x|z) p(z) q_{\phi}(z|x)}{p_{\theta}(z|x) q_{\phi}(z|x)}$$

Multiply top and bottom by $q_{\phi}(z|x)$

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x|z) p(z)}{p_{\theta}(z|x)} = \log \frac{p_{\theta}(x|z) p(z) q_{\phi}(z|x)}{p_{\theta}(z|x) q_{\phi}(z|x)}$$

$$= \log p_{\theta}(x|z) - \log \frac{q_{\phi}(z|x)}{p(z)} + \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}$$

Split up using rules for logarithms

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x|z) p(z)}{p_{\theta}(z|x)} = \log \frac{p_{\theta}(x|z) p(z) p(z)}{p_{\theta}(z|x)} q_{\phi}(z|x)$$

$$= \log p_{\theta}(x|z) - \log \frac{q_{\phi}(z|x)}{p(z)} + \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}$$

Split up using rules for logarithms

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x|z) p(z)}{p_{\theta}(z|x)} = \log \frac{p_{\theta}(x|z) p(z) q_{\phi}(z|x)}{p_{\theta}(z|x) q_{\phi}(z|x)}$$

$$= \log p_{\theta}(x|z) - \log \frac{q_{\phi}(z|x)}{p(z)} + \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}$$

Note: We can wrap
LHS in an expectation
without any loss of
generality since it
doesn't depend on z

$$\log p_{\theta}(x) = E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x)]$$

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x|z) p(z)}{p_{\theta}(z|x)} = \log \frac{p_{\theta}(x|z) p(z) q_{\phi}(z|x)}{p_{\theta}(z|x) q_{\phi}(z|x)}$$

$$= \log p_{\theta}(x|z) - \log \frac{q_{\phi}(z|x)}{p(z)} + \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}$$

$$= E_z[\log p_{\theta}(x|z)] - E_z\left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_z\left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

Note: We can wrap LHS in an expectation without any loss of generality since it doesn't depend on z

$$\log p_{\theta}(x) = E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x)]$$

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x|z) p(z)}{p_{\theta}(z|x)} = \log \frac{p_{\theta}(x|z) p(z) q_{\phi}(z|x)}{p_{\theta}(z|x) q_{\phi}(z|x)}$$

$$= E_z[\log p_{\theta}(x|z)] - E_z\left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_z\left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$=E_{z\sim \ q_{\phi}(z|x)}[\log p_{\theta}(x|z)]-D_{KL}\left(q_{\phi}(z|x),p(z)\right)+D_{KL}\left(q_{\phi}(z|x),p_{\theta}(z|x)\right)$$

Data reconstruction

KL divergence between prior, and samples from the encoder network

KL divergence between encoder and posterior of decoder

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x|z) p(z)}{p_{\theta}(z|x)} = \log \frac{p_{\theta}(x|z) p(z) q_{\phi}(z|x)}{p_{\theta}(z|x) q_{\phi}(z|x)}$$

$$= E_z[\log p_{\theta}(x|z)] - E_z \left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_z \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$= E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right) + D_{KL}\left(q_{\phi}(z|x), p_{\theta}(z|x)\right)$$

KL is >= 0, so dropping this term gives a **lower bound** on the data likelihood:

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x|z) p(z)}{p_{\theta}(z|x)} = \log \frac{p_{\theta}(x|z) p(z) q_{\phi}(z|x)}{p_{\theta}(z|x) q_{\phi}(z|x)}$$

$$= E_z[\log p_{\theta}(x|z)] - E_z \left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_z \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$=E_{z\sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)]-D_{KL}\left(q_{\phi}(z|x),p(z)\right)+D_{KL}\left(q_{\phi}(z|x),p_{\theta}(z|x)\right)$$

$$\log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Jointly train **encoder** q and **decoder** p to maximize the **variational lower bound** on the data likelihood

$$\log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Recall: Vanilla Autoencoders

Not probabilistic: No way to sample new data from learned model

Train by maximizing the variational lower bound

$$E_{z\sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Input x
Data

$$E_{z\sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

- 1. Run input data through encoder to get a distribution over latent codes
- Encoder output should match the prior p(z)!

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

- 1. Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!

$$E_{z\sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

- 1. Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!

$$-D_{KL}(q_{\phi}(z|x), p(z)) = \int_{z} q_{\phi}(z|x) \log \frac{p(z)}{q_{\phi}(z|x)}$$

$$= \int_{z} N(z; \mu_{z|x}, \Sigma_{z|x}) \log \frac{N(z; 0, 1)}{N(z; \mu_{z|x}, \Sigma_{z|x})} dz$$

$$= \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log \left(\left(\Sigma_{z|x}\right)_{j}^{2}\right) - \left(\mu_{z|x}\right)_{j}^{2} - \left(\Sigma_{z|x}\right)_{j}^{2}\right)$$

$$E_{z\sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

- 1. Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- 3. Sample code z from encoder output

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

- Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- 3. Sample code z from encoder output
- Run sampled code through decoder to get a distribution over data samples

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

- 1. Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- 3. Sample code z from encoder output
- Run sampled code through decoder to get a distribution over data samples
- 5. Original input data should be likely under the distribution output from (4)!

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

- Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- 3. Sample code z from encoder output
- 4. Run sampled code through decoder to get a distribution over data samples
- 5. Original input data should be likely under the distribution output from (4)!

Test Time

Variational Autoencoders: Generating Data

32x32 CIFAR-10

Labeled Faces in the Wild

The diagonal prior on p(z) causes dimensions of z to be independent

"Disentangling factors of variation"

Vary **z**₁

• Sample z from $N(\mu_{z|x}, \Sigma_{z|x})$

Problem: Cannot backpropagate gradients through sampling layers

Reparameterization

no problem for backpropagation

---- backpropagation is not possible due to sampling

sampling without reparametrisation trick

sampling with reparametrisation trick

VAE Takeaways

- An autoencoder with statistical constraints on the hidden representation
 - The encoder is a statistical model that computes the parameters of a Gaussian
 - The decoder converts samples from the Gaussian back to the input
- The decoder is a generative model that, when excited by standard Gaussian inputs, generates samples similar to the training data

VAE and latent spaces

- The latent space often captures underlying structure in the data x in a smooth manner
 - Varying z continuously in different directions can result in plausible variations in the drawn output
- Reproductions of an input x can be manipulated by wiggling z around its expected value $\mu(x)$

VAEs: Latent perturbation

Slowly increase or decrease a **single latent variable** Keep all other variables fixed

Rectaligation

Different dimensions of z encodes different interpretable latent features

23-Mar-23 55

VAEs: Latent perturbation

Ideally, we want latent variables that are uncorrelated with each other

Enforce diagonal prior on the latent variables to encourage independence

Disentanglement

23-Mar-23 56

- Independence of z dimensions makes it easy to generate instances wrt complex distributions via decoder g
- Latent variables can be thought of as values of attributes describing inputs
 - E.g., for MNIST, latent variables might represent "thickness", "slant", "loop closure"

