

یادگیری عمیق

مدرس: محمدرضا محمدی زمستان ۱۴۰۱

منظمسازى

Regularization

بیشبرازش

• در سال ۲۰۱۷ گروهی از پژوهشگران نشان دادند که شبکههای عمیق با ظرفیت یادگیری بسیار بالا، میتوانند حتی تصاویر با برچسبهای تصادفی را آموزش ببینند

• على رغم عدم وجود الگوى واقعى كه ورودىها را به خروجىها مرتبط كند، پارامترهاى شبكه عصبى مىتواند بهينه شود

> • برای حالت ۱۰ کلاسه تا ۹۰٪ فاصله بین آموزش و آزمون می تواند وجود داشته باشد

3	8	6	٩	6	4	5	3	8	4	5	2	3	8	4	8
1	5	Ø	5	9	7	4	1	0	3	0	ها	2	σ	9	4
1	3	6	18	0	7	1	6	8	9	0	3	8	3	>	7
8	4	4		à	٩	4			٥	E	Q	5	0	1	ļ
7	2	7	3	1	4	O	5	O	6	8	7	6	8	9	9
4	0	6	1	9	2	L	3	9	4	4	5	6	6)	7
2	8	6	9	7	0	9)	6	2	જ	3	6	4	9	5
8	6	8	7	B	8	6	9	1	7	6	0	9	6	7	0

جريمه اندازه پارامترها

- به منظور محدود کردن پیچیدگی مدل، میتوانیم محدودیتهایی بر روی پارامترهای مدل اعمال کنیم
- تابعی که خروجی آن یک عدد ثابت برای همه ورودیها باشد، سادهترین تابع است و میتوانیم میزان پیچیدگی یک تابع را در مقایسه با آن بسنجیم
 - فرض کنید $L(\mathbf{w},b)$ یکی از توابع ضرر باشد که خطای پیشبینی $\hat{y}^{(i)}$ ها را محاسبه می کند ϵ
- $\tilde{L}(\mathbf{w}, b) = L(\mathbf{w}, b) + \lambda \Omega(\mathbf{w})$

• تابع ضرر جدید با اعمال جریمه بر روی پارامترها:

- به ۸ ثابت منظمسازی گفته میشود
- با چه رابطهای فاصله تا صفر را اندازه بگیریم؟

منظمسازی پارامتر L2

$$\Omega(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

• اگر بجای L2 از فاصله اقلیدوسی استفاده کنیم محاسبه مشتق پیچیده میشود

$$\tilde{L}(\mathbf{w},b) = L(\mathbf{w},b) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

• این استراتژی وزنهای شبکه را به سمت مبدا نزدیک میکند

 $\nabla_{\mathbf{w}} \tilde{L}(\mathbf{w}, b) = \nabla_{\mathbf{w}} L(\mathbf{w}, b) + \lambda \mathbf{w}$

$$\mathbf{w} \leftarrow \mathbf{w} - \eta (\lambda \mathbf{w} + \nabla_{\mathbf{w}} L(\mathbf{w}, b))$$

$$\mathbf{w} \leftarrow (1 - \eta \lambda) \mathbf{w} - \eta \nabla_{\mathbf{w}} L(\mathbf{w}, b)$$

• گرادیان تابع ضرر منظمشده:

• به این روش، Weight Decay هم گفته میشود

منظمسازی پارامتر L2

$$\Omega(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2}$$
$$\mathbf{w} \leftarrow (1 - \eta \lambda)\mathbf{w} - \eta \nabla_{\mathbf{w}} L(\mathbf{w}, b)$$

- قبل از انجام بهروزرسانی معمولی مبتنی بر گرادیان، بردار وزن را در هر گام با یک ضریب ثابت کاهش میدهد
- وزنهایی که تغییر کمتری در تابع ضرر ایجاد میکنند، اهمیت کمتری دارند و بیشتر کاهش مییابند

منظمسازی پارامتر 11

• منظمسازی L1 بر روی پارامترهای شبکه w به صورت زیر تعریف می شود

$$\Omega(\mathbf{w}) = \|\mathbf{w}\|_1 = \sum_i |w_i|$$

$$\tilde{L}(\mathbf{w}, b) = L(\mathbf{w}, b) + \lambda \|\mathbf{w}\|_{1}$$

$$\nabla_{\mathbf{w}} \tilde{L}(\mathbf{w}, b) = \nabla_{\mathbf{w}} L(\mathbf{w}, b) + \lambda \operatorname{sign}(\mathbf{w})$$

دادهافزایی (Augmentation)

- بهترین راه برای افزایش قدرت تعمیمدهی یک الگوریتم یادگیری ماشین با ظرفیت یادگیری بالا، آموزش آن بر روی دادههای بیشتر است
 - جمع آوری داده معمولا فرآیند دشوار و خسته کنندهای است
 - می توانیم دادههای ساختگی بسازیم و به دادههای آموزشی اضافه کنیم
 - این کار برای مسئله دستهبندی راحت ترین است
 - میتوانیم جفتهای (x, y) جدید را به سادگی و
 تنها با تبدیل x بسازیم

دادهافزایی

دادهافزایی: flip

دادهافزایی: افزودن نویز

• افزودن نویز در ورودی به یک شبکه عصبی میتواند به عنوان نوعی دادهافزایی در نظر گرفته شود

• برای بسیاری از مسائل دستهبندی و حتی برخی از مسائل رگرسیون، با افزودن مقدار محدودی نویز به ورودی همچنان میتوان همان خروجی را توقع داشت

• افزودن نویز می تواند در لایههای میانی شبکه نیز انجام شود

- در هر تکرار، به صورت تصادفی مقدار تعدادی نورون را صفر می کند
 - مشابه با نویز ضربشونده با مقادیر باینری است
 - احتمال حذف هر واحد یک ابرپارامتر است
 - مقدار 0.5 متداول است


```
p = 0.5 \# probability of keeping a unit active. higher = less dropout
def train step(X):
  """ X contains the data """
  # forward pass for example 3-layer neural network
  H1 = np.maximum(0, np.dot(W1, X) + b1)
  U1 = np.random.rand(*H1.shape) < p # first dropout mask
  H1 *= U1 # drop!
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
  U2 = np.random.rand(*H2.shape) < p # second dropout mask
  H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
  # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
```


• با استفاده از Dropout، یک مجموعه (ensemble) بزرگ از مدلها آموزش میبینند که دارای پارامترهای مشترک هستند

- هر ماسک باینری یک مدل است
- یک لایه FC با ۴۰۹۶ واحد دارای ۲^{۴۰۹۶} × ۱۰۱۲۳۳ ماسک متفاوت است!
 - در زمان تست از کدام ماسک استفاده کنیم؟
 - اگر در زمان تست هم ماسک تصادفی انتخاب شود، خروجی تصادفی میشود

- می توانیم در زمان تست امید ریاضی خروجی را محاسبه کنیم
 - میانگین وزن دار خروجی به ازای تمام ماسکهای ممکن

$$y = f(x) = E_z[f(x,z)] = \sum_{z} p(z)f(x,z)$$

• این محاسبات بسیار سنگین است

$$y = f(x) = E_z[f(x,z)] = \sum_{z} p(z)f(x,z)$$

• یک نورون ساده با دو ورودی را در نظر بگیرید:

$$E[a] = p^{2}(w_{1}x_{1} + w_{2}x_{2}) + p(1-p)(w_{1}x_{1} + w_{2}0)$$

$$+ (1-p)p(w_{1}0 + w_{2}x_{2}) + (1-p)^{2}(w_{1}0 + w_{2}0)$$

$$= p(w_{1}x_{1} + w_{2}x_{2})$$

p در زمان تست، تمام نورونها فعال هستند اما خروجی هر نورون را در ضریب فرب ضرب می کنیم

$$y = f(x) = E_z[f(x,z)] = \sum_{z} p(z)f(x,z)$$

• یک نورون ساده با دو ورودی را در نظر بگیرید:

$$E[a] = p^{2}(w_{1}x_{1} + w_{2}x_{2}) + p(1-p)(w_{1}x_{1} + w_{2}0)$$

$$+ (1-p)p(w_{1}0 + w_{2}x_{2}) + (1-p)^{2}(w_{1}0 + w_{2}0)$$

$$= p(w_{1}x_{1} + w_{2}x_{2})$$

```
\begin{bmatrix} \mathbf{a} \\ \mathbf{w}_1 \\ \mathbf{w}_2 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}
```

```
def predict(X):
```

ensembled forward pass H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activationsout = np.dot(W3, H2) + b3

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  # forward pass for example 3-layer neural network
  H1 = np.maximum(0, np.dot(W1, X) + b1)
  U1 = (np.random.rand(*H1.shape) < p) # first dropout mask.
 H1 *= U1 # drop!
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
  U2 = (np.random.rand(*H2.shape) < p) # second dropout mask.
 H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
                             drop in forward pas
  # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
def predict (X):
                                           scale at test time
  # ensembled forward pass
  H1 = np.maximum(0, np.dot(W1, X) + b1) * p # scale the activations
  H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # scale the activations
 out = np.dot(W3, H2) + b3
```


Inverted Dropout

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  # forward pass for example 3-layer neural network
  H1 = np.maximum(0, np.dot(W1, X) + b1)
  U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
  H1 *= U1 # drop!
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
  U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
  H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
                                            drop in forward pass
  # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
def predict(X):
                                      test time is unchanged
  # ensembled forward pass
  H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
  out = np.dot(W3, H2) + b3
```

