| Name: |  |
|-------|--|
|       |  |

## MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_4 = -1$$

Solution:

$$\begin{bmatrix} 1 & 0 & 4 & 0 & 1 \\ 0 & 1 & -1 & 0 & 7 \\ 1 & -1 & 0 & 3 & -1 \end{bmatrix}$$

**E2.** Find RREF A, where

$$A = \begin{bmatrix} 2 & 2 & 1 & 2 & | & -1 \\ 1 & 1 & 2 & 4 & | & 5 \\ 3 & 3 & -1 & -2 & | & 1 \end{bmatrix}$$

Solution:

$$\text{RREF}\,A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

**E3.** Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Solution:

RREF 
$$\left( \begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix} 1+a\\3-21a\\-7a\\12a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

E4. Find a basis for the solution set to the homogeneous system of equations given by

$$3x + 2y + z = 0$$
$$x + y + z = 0$$

**Solution:** Let  $A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ , so RREF  $A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$ . It follows that the basis for the solution set is given by  $\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$ .

**V1.** Let V be the set of all pairs of real numbers with the operations, for any  $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$ ,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
  
 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$ 

- (a) Show that scalar multiplication **distributes scalars** over vector addition:  $c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1, y_1) \oplus c \odot (x_2, y_2).$
- (b) Determine if V is a vector space or not. Justify your answer.

**Solution:** Let  $(x_1, y_1), (x_2, y_2) \in V$  and let  $c \in \mathbb{R}$ .

$$c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1 + x_2, y_1 + y_2)$$

$$= (c^2(x_1 + x_2), c^3(y_1 + y_2))$$

$$= (c^2x_1, c^3y_1) \oplus (c^2x_2, c^3y_2)$$

$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

However, V is not a vector space, as the other distributive law fails:

$$(c+d)\odot(x_1,y_1)=((c+d)^2x_1,(c+d)^3y_1)\neq((c^2+d^2)x_1,(c^3+d^3)y_1)=c\odot(x_1,y_1)\oplus d\odot(x_1,y_1).$$

**V2.** Determine if  $\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix}$  can be written as a linear combination of the vectors  $\begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix}$  and  $\begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}$ .

Solution:

$$RREF \left( \begin{bmatrix} 3 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since this system has a solution,  $\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix}$  can be written as a linear combination of the vectors  $\begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix}$  and

$$\begin{bmatrix} -1\\0\\1\\2 \end{bmatrix}, \text{ namely }$$

$$\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}.$$

**V3.** Determine if the vectors  $\begin{bmatrix} -3\\1\\1 \end{bmatrix}$ ,  $\begin{bmatrix} 5\\-1\\-2 \end{bmatrix}$ ,  $\begin{bmatrix} 2\\0\\-1 \end{bmatrix}$ , and  $\begin{bmatrix} 0\\2\\-1 \end{bmatrix}$  span  $\mathbb{R}^3$ 

Solution:

$$RREF \left( \begin{bmatrix} -3 & 5 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & -1 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix has only two pivot columns, the vectors do not span  $\mathbb{R}^3$ .

**V4.** Let W be the set of all complex numbers that are purely real (i.e of the form a + 0i) or purely imaginary (i.e. of the form 0 + bi). Determine if W is a subspace of  $\mathbb{C}$ .

**Solution:** No, because 1 is purely real and i is purely imaginary, but the linear combination 1+i is neither.

**S1.** Determine if the set of vectors  $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\3\\-2 \end{bmatrix} \right\}$  is linearly dependent or linearly independent

Solution:

RREF 
$$\left( \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a nonpivot column, the set is linearly dependent.

**S2.** Determine if the set 
$$\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$$
 is a basis of  $\mathbb{R}^4$ .

Solution:

$$RREF \begin{pmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 \\ 1 & 2 & 0 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

**S3.** Let W be the subspace of  $\mathcal{P}_2$  given by  $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$ . Find a basis for W.

Solution: Let  $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$ , and compute  $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$ . Since the first two columns are pivot columns,  $\{-3x^2 - 8x, x^2 + 2x + 2\}$  is a basis for W.

**S4.** Let  $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$ . Compute the dimension of W.

Solution:

$$RREF \left( \begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so dim(W) = 3.