Análise de Correlação e Associação

Charles Guimarães Cavalcante – RM 334409 Luan Nonato Figueiredo – RM 334325 Rodrigo Rossi de Lima Cano – RM 333927

Insights a partir a geração de modelos preditivos em bases de dados

Base de dados 1 – Dados sobre valores de imóveis na cidade de Boston, MA, EUA

1.1) Considerando que a variável de interesse seja o preço ou valor do imóvel, quais são as variáveis que mais explicam o comportamento do preço dos imóveis? Comente e justifique seus insights.

```
# leitura dos dados
boston <- read.csv(file="../input/Boston_Housing_Data.csv")
# remoção dos campos id e data
boston <- boston[, c(-1,-2)]
# gráfico de correlação das variáveis
corrplot(round(cor(boston), 2), method = "color")</pre>
```


De acordo com o gráfico "price" tem boa correlação com: bedrooms, bathrooms, view, grade, sqft above, sqft basement, lat, sqft living, sqft living15.

1.2) Existem variáveis redundantes presentes na base de dados? Se sim, quais as análises que você realizou para chegar a essa conclusão? Em caso de existência de redundância, quais foram as variáveis e como você endereçou o problema?

Das variáveis selecionadas foram testadas agrupadas por semelhança.

Grupo 1: bedrooms, bathrooms

```
cor(boston$bedrooms, boston$bathrooms)
Resultado: 0.5158836 - correlação moderada
```

Grupo 2: view, grade

```
cor(boston$view, grade$bathrooms)
Resultado: 0.2513206 - correlação fraca
```

Grupo 3: sqft_living, sqft_above, sqft_basement, sqft_living15

```
cor(boston$sqft_living, boston$sqft_above)
Resultado: 0.8765966 - correlação muito forte
cor(boston$sqft_living, boston$sqft_basement)
Resultado: 0.435043 - correlação moderada
cor(boston$sqft_living, boston$sqft_living15)
Resultado: 0.7564203 - correlação forte
cor(boston$sqft_above, boston$sqft_basement)
Resultado: -0.05194331 - correlação muito fraca
cor(boston$sqft_above, boston$sqft_living15)
Resultado: 0.7318703 - correlação forte
cor(boston$sqft_basement, boston$sqft_living15)
Resultado: 0.200355 - correlação fraca
```

As variáveis sqft_living e sqft_above tem correlação muito forte. As variáveis

sqft_living e sqft_living15, e as variáveis sqft_living15 e sqft_above tem correlação forte.

1.3) Construa um modelo preditivo que explique o preço dos imóveis. Quais variáveis entraram no modelo final? Exiba a matriz de parâmetros e interprete os resultados. Qual o nível de acurácia do modelo? Justifique a métrica utilizada e interprete o resultado.

Primeiro selecionamos a matrix somente com as variáveis selecionadas: price, bedrooms, bathrooms, sqft_living, view, grade, sqft, basement.

```
data = boston[,c(1, 2, 3, 4, 8, 10, 12)]
```

A seguir, separamos os dados em dados de treino (80%) e teste (20%):

```
set.seed(41) # semente para reproduzir os mesmos dados
sample = sample.split(data, SplitRatio=0.8) # separação em 80%
train_data = subset(data, sample==TRUE) # dados de treino
test data = subset(data, sample==FALSE) # dados de teste
```

Criação do modelo de predição com os dados de treino:

```
modelo <- lm(price ~ ., data=train data)</pre>
```

Predição e teste de acurácia:

```
predicao <- predict(newdata=test_data, modelo)
teste <- data.frame(actual=test_data$price, predicted=predicao)
media <- mean(abs(teste$actual-teste$predicted) / teste$actual)
acuracia <- 1 - media</pre>
```

Resultado: com o modelo proposto chegamos a uma acurácia para predição do preço do imóvel de **68,1**%.

Base de dados 2 – Dados sobre rotatividade de funcionários de uma empresa

Considere a tabela HR_Analytics.xlsx, que traz dados de quase 15.000 empregados de uma empresa, incluindo dados sobre satisfação, desempenho, participação em projetos, registro de promoção, entre outros elementos. A ideia é buscar compreender os fatores que mais influenciam na saída do funcionário da empresa.

2.1) Considerando que a variável de interesse seja a variável "left", que indica se o funcionário saiu (left=1) ou não (left=0), qual metodologia ou técnica poderia ser mais adequada para entender o perfil de rotatividade dos funcionários?

Podemos notar que a variável "left" tem uma relação muito negativa com o índice de satisfação (satisfacion level).

2.2) Faça uma análise bivariada de cada uma das variáveis que potencialmente influenciam a saída do funcionário. Calcule o "IV" (Information Value) para cada uma das análises, interprete as análises de cada variável e ordene, por grau de importância, as variáveis que mais explicam a rotatividade dos empregados.

Primeiro fizemos a categorização das variáveis contínuas: satisfaction level, last evaluation e average montly hours.

```
satisfaction_level_cl <- discretize(hr$satisfaction_level,
"frequency", breaks=4)
last_evaluation_cl <- discretize(hr$last_evaluation,
"frequency", breaks=4)
average_montly_hours_cl <- discretize(hr$average_montly_hours,
"frequency", breaks=4)
hr <- data.frame(hr, satisfaction_level_cl, last_evaluation_cl,
average_montly_hours_cl)</pre>
```

Cálculo de IV (excluindo os campos que foram categorizados):

```
IV <- create_infotables(data = hr[, c(-1,-2,-4)], y = "left) print(head(IV$Summary, 100), row.names = FALSE)
```

Resultado:

```
Variable IV
number_project 1.97240680
satisfaction_level_cl 1.07808144
time_spend_company 0.92658691
average_montly_hours_cl 0.57291526
last_evaluation_cl 0.44550034
Work_accident 0.18535538
salary 0.17904981
sales 0.03561297
promotion_last_5years 0.03385306
```

Vamos realizar a análise bivariada com as seguintes variáveis:

- number project
- satisfaction level cl
- time spend company
- average montly hours cl
- last_evaluation_cl

CrossTable(hr\$number_project, hr\$left, prop.r=FALSE,
prop.t=FALSE, prop.chisq=FALSE)

	=======	=======	======
hr\$number_project	hr\$left 0	t 1	Total
2	821 0.072	1567 0.439	2388
3	3983 0.349	72 0.020	4055
4	3956 0.346	409 0.115	4365
5	2149 0.188	612 0.171	2761
6	519 0.045	655 0.183	1174
7	0.000	256 0.072	256
Total	11428 0.762	3571 0.238	14999

A variável **number_project** demonstra que 43,9% das pessoas que deixaram a empresa trabalhavam em apenas dois projetos.

CrossTable(hr\$satisfaction_level_cl, hr\$left, prop.r=FALSE,
prop.t=FALSE, prop.chisq=FALSE)

Total
3674
3660
3883
3782
14999

A variável **satisfation_level** demonstra que 60% das pessoas que deixaram a empresa tinham índice baixo de satisfação.

CrossTable(hr\$time_spend_company, hr\$left, prop.r=FALSE,
prop.t=FALSE, prop.chisq=FALSE)

hr\$time_spend_company	hr\$lef	t 1	Total
2	3191 0.279	53 0.015	3244
3	4857 0.425	1586 0.444	6443
4	1667 0.146	890 0.249	2557
5	640 0.056	833 0.233	1473
6	509 0.045	209 0.059	718
7	188 0.016	0.000	188
8	162 0.014	0.000	162
10	214 0.019	0.000	214
Total	11428 0.762	3571 0.238	14999
			====

A variável **time_spend_company** demonstra que a maioria das pessoas que deixaram a empresa trabalhavam de 3 a 5 horas por dia.

CrossTable(hr\$average_montly_hours_cl, hr\$left, prop.r=FALSE,
prop.t=FALSE, prop.chisq=FALSE)

	 hr\$left	:=====: :	======
hr\$average_montly_hours_cl	0	1	Total
[96,156)	2354 0.206	1326 0.371	3680
[156,200)	3456 0.302	330 0.092	3786
[200,245)	3227 0.282	491 0.137	3718
[245,310]	2391 0.209	1424 0.399	3815
Total	11428 0.762	3571 0.238	14999

A variável average_monthly_hours demonstra que 37,1% das pessoas que deixam a empresa trabalhavam menos do que 156 horas por mês deixaram a empresa. Porém demonstra também que 39,9% com mais de 245 horas também deixaram a empresa.

CrossTable(hr\$last_evaluation_cl, hr\$left, prop.r=FALSE,
prop.t=FALSE, prop.chisq=FALSE)

hr\$left 0	t 1	Total
2259 0.198	1348 0.377	3607
3456 0.302	330 0.092	3786
3099 0.271	662 0.185	3761
2614 0.229	1231 0.345	3845
11428 0.762	3571 0.238	14999
	2259 0.198 3456 0.302 3099 0.271 2614 0.229	2259 1348 0.198 0.377 3456 330 0.302 0.092 3099 662 0.271 0.185 2614 1231 0.229 0.345

A variável **last_evaluation** demonstra que 37,7% das pessoas que deixam a empresa tiveram índice baixo na última avaliação. Porém demonstra também que 34,5% com índice muito elevado também deixaram a empresa.

2.3) Construa um modelo preditivo que explique a rotatividade dos empregados. Quais variáveis entraram no modelo final? Exiba a matriz de parâmetros e interprete os resultados. Qual o nível de acurácia do modelo? Justifique a métrica utilizada e interprete o resultado.

Separação dos dados que serão utilizados:

```
data = hr[, c(3, 5, 7, 10, 11, 12)]
```

A seguir, separamos os dados em dados de treino (80%) e teste (20%):

```
set.seed(41) # semente para reproduzir os mesmos dados
sample = sample.split(data, SplitRatio=0.8) # separação em 80%
train_data = subset(data, sample==TRUE) # dados de treino
test data = subset(data, sample==FALSE) # dados de teste
```

Criação do modelo de predição de regressão logística com os dados de treino:

Predição e teste de acurácia:

```
predicao <- predict(modelo, newdata=test_data, type="response")
ks.test(predicao[test_data$left==0],predicao[test_data$left==1])

Two-sample Kolmogorov-Smirnov test
data: predicao[test_data$left == 0] and predicao[test_data$left == 1]
D = 0.59795, p-value < 0.0000000000000022
alternative hypothesis: two-sided</pre>
```

Resultado: com o modelo proposto chegamos a uma acurácia para predição de saída do funcionário de **59,7%**.