머신러닝 회귀 모델을 통한

중고차 판매가격 예측 API 서비스

Contents 1. 서론

- - 주제 선정 이유 및 데이터 특성
 - 데이터 파이프라인
- 2. 탐색적 자료 분석 및 시각화
 - 변수 상관 분석
 - 대시 보드 (Metabase)
- 3. 중고차 판매가격 예측 ML 모델링
- 4. API 유저 서비스 사용 프로세스
- 5. 한계점 및 추후 발전방향

중고차 판매 가격 예측 API 서비스

주제 선정 이유

- 다양한 정보를 활용하여 각각 개인에게 **맞춤 서비스**를 제공하는 것이 중요한 시대
- **머신 러닝**을 활용하여 간단하면서도 필요한 정보를 제공 할 수 있도록 기획함
- 고관여 제품 (가격이 높고, 소비자들의 의사결정과정이나 정보처리과정이 복잡한 제품)을 선정하여 머신 러닝의 활용 가치를 높임

데이터 특성

- 중고차 데이터는 웹에서 수집하여 사용하므로 **허위매물, 잘못된 정보 등을** 검증하는 것이 중요
- 한국 데이터는 교차 검증 할 수 있는 자료가 유료인 경우가 많아 편의를 위해 미국사례로 선정
- 미국 정부자료 (자동차 이력 제공시스템, 미국 교통부 연방차량안전국 등)를 받아 제공하는 API로 교차 검증하여 사용

데이터 수집

DB 적재 자료 추출

데이터 분석

API 서비스

kaggle

Craigslist(중고 매물 커뮤니티) 미국 중고차 매물 **약 51만 건** 스크레이핑 자료 → VIN (자동차 등록번호) 추출

VIN 번호 교차 검증 API 자료 스크레이핑 → 실제 매물 **약 7만 건** 확인 자동차 정보 및 가격정보 수정

ElephantSQL 클라우드 DB 사용

ML 모델링 (LinearRegression) **회귀 분석**

片 HEROKU

Flask

API 서비스 구현 ((배포))

EDA 및 시각화 대시보드 구성 ((배포))

분석 Target : **가격**

- 회귀분석을 통해 변수들 사이에서 나타나는 경향성을 설명
 - 회귀 분석은 타겟 변수가 정규분포에서 좋은 성능을 보이며, 비대칭 형태인지 확인 필요

로그변환 사용 비대칭 분포형태를 **정규분포형태**로 변환

변수 분석

- 분석하고자 하는 가격에 영향을 줄 수 있는 독립변수가 다양함
- 독립변수 : 연식, 주행거리, 엔진 기통수, 연료타입, 구동방식, 차량 색상 등
- 수치형 변수인 운행거리(마일), 연식과의 상관관계를 우선 파악

운행거리가 증가하면 가격이 낮다 (음의 상관관계)

출시된 연도가 최근이면 가격이 높다 (양의 상관관계)

대시 보드 구성

- 다양한 변수들의 관계는 대시보드를 통해 쉽게 파악 가능
- Metabase를 사용하였고, 온라인 배포 하여 주소로 접속할 수 있음
- 지역 별 총 판매 수량, 판매 상위 모델 및 판매 현황 등을 한눈에 확인 할 수 있음

https://usedcardashboards.herokuapp.com/public/dashboard/34de8990-8db3-4116-9301-5503336a8b71

머신러닝(ML) 모델링

- 여러 개의 독립변수를 가지고 가격을 예측하기 위한 회귀 모형 (다중선형회귀 모델) 사용
- 다양한 평가지표를 검증 후 모델이 전체 현상을 얼마나 설명하는지 알려주는 R2 Score로 최종 비교

기준 모델

- 가장 간단하면서도 직관적
- 최소한의 성능을 나타내는 기준
- **회귀**: 타겟의 **평균** 사용

	Metric	Score
0	MSE	0.426039
1	MAE	0.538630
2	RMSE	0.652717
3	R2	0.000000

다중선형회귀

- 사용 특성 수에 따라 R2 score의 차이가 커서 전체 데이터 사용 (일부 특성 사용: 0.5, 전체사용: 0.7, 설명력의 차이가 크다)
- 이후 서비스 구현 시 유저 편의를 위해 필수데이터는 유저 입력, 다른 데이터는 기존 DB자료를 활용 예정
- 다른 평가 지표도 개선되었으며, R2 Score가 0.7로 모델의 설명력이 적당하다.

0	MSE	0.124160
1	MAE	0.265203
2	RMSE	0.352364
3	R2	0.708571

Metric

Score

API 서비스 [AIB] Section3 PJT

중고차 판매 가격 예측 API 서비스

https://pjtappusedcar.herokuapp.com/

자동차 모델명, 운행 거리 (마일), 연식 (연도) **필수 값 입력창**

예측 가격 안내

중고차 판매 가격 예측 API 서비스

느낀 점

- 다양한 tool들이 서로 어떻게 연관되어 있는지 생각하며 전체 데이터 파이프라인을 온전히 구축해 볼 수 있어서 보람 있었습니다.
- 또한 머신러닝 모델을 단순 분석이 아닌,
 간단하게라도 실제 고객에게 제공할 수 있는
 서비스로 직접 구현하여 시야가 넓어진
 느낌이 들었습니다.

이슈 사항

- ML 모델 예측결과를 ①운행거리에 따른 판매가격 변화, ②연식에 따른 판매가격 변화의 그래프 2가지로 구현하고 싶었는데, 웹 페이지 구현이 어려워 간략히 결과 값만 출력하게 되어 아쉬웠습니다.
- ML모델(LinearRegression)을 활용한 서비스를 기획 했는데, 딥러닝을 활용하면 모델의 성능을 개선 할 수 있을 것 같습니다. 반응속도를 감안하여 결과를 비교해보면 더욱 좋을 것 같습니다.

Thank you for your attention!