Problems on Batch Reactor

Prof. J. K. Basu

• Liquid A decomposes by first-order kinetics, and in a batch reactor 50% of A is converted in a 5-min run. How much would it take to reach 75% Conversion?

Solution: We have
$$-\ln(1-X_A)=kt$$

 $-\ln(1-0.5)=k.5$, k=0.1386 min⁻¹
For 75% conversion, $-\ln(1-0.75)=0.1386$. t
t= 10 mins Ans.

The first-order reversible liquid reaction $A \leftrightarrows R$, $C_{A0} = 0.5 \text{mol/L}$, $C_{R0} = 0$, takes place in a batch reactor. After 8 mins, conversion of A is 33.3%, while equilibrium conversion is 66.7%. Find the rate equation.

Solution:
$$A \leftrightarrows R$$
, $C_{A0} = 0.5 \text{mol/L}$, $C_{R0} = 0$
 $-r_A = k_1 C_A - k_2 C_R = k_1 C_{A0} (1-X_A) - k_2 C_{R0} (1+X_A)$

As
$$C_{A0} X_A = C_{R0} X_R$$

 $-r_R = k_1 C_A - k_2 C_R = k_1 C_{A0} (1-X_A) - k_2 (C_{R0} + C_{A0} X_A)$

•
$$C_{A0} \frac{dX_A}{dt} = k_1 C_{A0} (1-X_A) - k_2 C_{A0} X_A$$

$$\bullet \int_0^{X_{Af}} \frac{dX_A}{k_1 - X_A(k_1 + k_2)} = \int_0^t dt$$

•
$$t = -\frac{1}{(k_1 + k_2)} ln \frac{k_1}{k_1 - X_A(k_1 + k_2)}$$

• =
$$-\frac{1}{k_1(1+k_2/k_1)} ln \frac{k_1}{1-X_A(1+k_2/k_1)}$$

•
$$K_e = \frac{k_1}{k_2} = \frac{C_{Re}}{C_{Ae}} = \frac{C_{R0} + C_{A0}X_{Ae}}{C_{A0}(1 - X_{Ae})} = \frac{X_{Ae}}{(1 - X_{Ae})}$$

•
$$\frac{k_2}{k_1} = \frac{1}{X_{Ae}} - 1 = \frac{1}{0.667} - 1 = 0.4993$$

•
$$t = -\frac{1}{k_1(1+0.4993)} ln \frac{k_1}{1-X_A(1+0.4993)}$$

- Given at $t = 8 \text{ min}, X_A = 0.333$
- $k_1 = 0.05767, k_2 = 0.0288$

•
$$-r_A = 0.05767C_A - 0.0288C_R$$
 Answer

\rightarrow

Problem-3

The irreversible reaction $2H_2 + 2NO \rightarrow N_2 + H_2O$ is carried out in a constant volume reactor reactor using equimolar amounts of hydrogen and nitric oxide. The reactor data is as follows.

P _t , mm Hg	200	240	280	320	326
t _{1/2} , sec	265	186	115	104	67

Find the overall order of the reaction

Solution:

$$aA + bB \to cC + dD$$
$$-r_A = -\frac{dC_A}{dt} = kC_A^a C_B^b$$

Reaction is performed with a stoichiometric ratios throughout the reaction period.

$$\frac{C_B}{C_A} = \frac{b}{a}$$
 and $-\frac{dC_A}{dt} = kC_A^a \left(\frac{b}{a}C_A\right)^b = k\left(\frac{b}{a}\right)^b C_A^{a+b} = k'C_A^n$

By integrating for n≠1 gives

$$(C_A^{1-n} - C_{A0}^{1-n}) = k'(n-1)t$$

For half-life period:
$$t=\frac{1}{2}$$
, $C_A=\frac{C_{A0}}{2}$ and $t_{\frac{1}{2}}=\frac{0.5^{1-n}-1}{k(n-1)}$ C_{A0}^{1-n} (44)
$$t_{\frac{1}{2}}=\frac{2^{n-1}-1}{k'(n-1)}$$
 C_{A0}^{1-n}

•
$$ln(t_{1/2}) = ln\left[\frac{2^{n-1}-1}{k'(n-1)(RT)^{1-n}}\right] + (1-n)\ln(p_{A0})$$

• As H $_2$ and NO are using in equimolar amounts p_{A0} _ p $_{\rm T}$ /2

$\ln(p_{A0})$	4.65	4.79	4.94	5.08	5.09
$ln(t_{1/2})$	5.58	5.23	4.74	4.64	4.20

So, $n = 3.714 \approx 4$

The aqueous reaction $A \rightarrow R + S$ is carried out in a batch reactor with $C_{Ao} = 0.183 \text{mol/l}$, $C_{Ro} = 0$ and $C_{So} = 55 \text{ mol/l}$. The reactor data is as follows:

t, min	0	36	65	100	160	∞
C _A ,mol/l	0.183	0.145	0.122	0.103	0.0795	0.0494

Find a rate equation for this reaction.

Solution:
$$-r_A = k_1 C_A - k_2 C_R C_S = k_1 C_{A0} (1-X_A) - k_2 (C_{A0} X_A) (C_{S0} + C_{A0} X_A)$$

As $C_R = C_{A0} X_A$ and $C_S = C_{S0} + C_{A0} X_A$
At equilibrium, $C_{Ae} = C_{A0} (1-X_{Ae})$, $C_{Re} = C_{A0} X_{Ae}$ and $C_{Se} = C_{S0} + C_{A0} X_{Ae}$

• $X_{ae} = (C_{A0} - C_{Ae})/C_{A0} = (0.1823 - 0.0494)/0.1823 = 0.73$

$$C_{Re} = C_{AO} X_{Ae} = 0.1823 \times 0.73 = 0.1331$$

and
$$C_{Se} = C_{SO} + C_{AO}X_{Ae} = 55 + 0.1823 \times 0.73 = 55.1331$$

At equilibrium, $-r_A = 0$

$$\frac{k_1}{k_2} = \frac{C_{Re}C_{Se}}{C_{Ae}} = \frac{0.1331 \times 55.1331}{0.0494} = 149.06$$

$$k_1 = 149.06 k_2$$

$$C_{A0} \frac{dX_A}{dt} = k_1 C_{A0} (1 - X_A) - k_2 (C_{A0} X_A) (C_{S0} + C_{A0} X_A)$$

Neglecting higher power of X_A

$$\begin{split} \frac{dX_A}{dt} &= k_1(1-X_A) - k_2 X_A (C_{S0} + C_{A0} X_A) \\ \frac{dX_A}{dt} &= 149.06 k_2 - 204.06 \ k_2 X_A \\ \int_0^{X_A} \frac{dX_A}{149.06 - 204.06 \ X_A} &= k_2 \int_0^t dt \\ ln\left[\frac{149-204 \ X_A}{149}\right] &= -204 k_2 t \quad \text{At t=36 min, } X_A = 0.203 \\ k_2 &= 4.45 \ \times 10^{-5} \text{lit/mol.min and } k_1 = 6.6 \times 10^{-3} / \text{min} \end{split}$$

$$-r_A = 6.6 \times 10^{-3} C_A - 4.45 \times 10^{-5} C_R C_S$$
 Ans.

A zero-order homogeneous gas reaction $A \rightarrow rR$ proceeds in a constant volume bomb, with 20% inerts, and the pressure rises from 1 to 1.3 atm in 2 min. If the same reaction takes place in a constant pressure batch reactor, what is the fractional volume change in 4-min if feed is at 3 atm and consists of 40% inerts?

Solution: $A \rightarrow rR$ is zero order reaction

0.8 moles A + 0.2 moles inerts = 0.8 r moles R and 0.2 moles inerts

For constant volume reactor, pressure rises, $\Delta n = r-1$, a=1

•
$$-r_A = \frac{dc_A}{dt} = k$$
, $-r_A = \frac{dp_A}{RTdt} = k$
 $-\frac{1}{RT} \int_{p_{A0}}^{p_A} dp_A = kt$, $-\frac{1}{RT} (p_A - p_{A0}) = kt$

$$-\frac{1}{RT}(p_A - p_{A0}) = kt$$
 We have $p_A - p_{A0} = -\frac{a}{\Delta n}(\pi - \pi_0)$
$$-\frac{a}{\Delta nRT}(\pi - \pi_0) = kt$$

$$-\frac{a}{(r-1)RT}(\pi - \pi_0) = kt \text{ or, } -\frac{1}{(r-1)RT}(1.3 - 1) = k.2$$

$$\frac{0.15}{(r-1)RT} = k$$

Constant pressure batch is variable volume reactor

Design equation is
$$t = C_{A0} \int_0^{X_A} \frac{dX_A}{(1+\varepsilon_A X_A)(-r_A)}$$

$$C_{A0} \int_0^{X_A} \frac{dX_A}{(1+\varepsilon_A X_A)} = \text{kt}$$
 As $(-r_A) = k$

$$\frac{C_{A0}}{\frac{\epsilon_A}{\epsilon_A}} \ln(1 + \epsilon_A X_A) = kt$$

$$\frac{C_{A0}}{\frac{\epsilon_A}{\epsilon_A}} \ln \frac{V}{V_0} = kt$$

Stoichiometry:

0.6A + 0.4 inerts $\rightarrow 0.6r$ R +0.4 inerts

$$\epsilon_A = \frac{0.6(r-1)}{1}$$

 $p_{A0} = 0.6 \times \pi = 0.6 \times 3 = 1.8 atm$ $C_{A0} = \frac{1.8}{RT}$

$$C_{A0} = \frac{1.6}{RT}$$

$$\frac{1.8}{RT0.6(r-1)} \ln \frac{V}{V_0} = kt = \frac{0.15}{(r-1)RT} \times 4$$

$$ln\frac{V}{V_0} = \frac{0.15}{3} \times 4 = 0.2$$

$$\frac{V}{V_0} = 1.221$$

Fractional volume change $=\frac{\Delta v}{v_0}=0.221\,Ans$