Hangfeng He

Address: 3401 Walnut St, Philadelphia, PA, 19104, USA Tel: (267) 602-9517 Email: hangfeng@seas.upenn.edu

Research Interests

My research interests include machine learning and natural language processing, with a focus on moving beyond scale-driven learning. Specifically, I work on incidental supervision for natural language understanding, interpretability of deep neural networks, reasoning in natural language, and structured data modeling.

Education

University of Pennsylvania, Philadelphia, PA, USA	2017-present
Ph.D., Computer and Information Science	
Advisors: Dan Roth and Weijie Su	
Peking University, Beijing, China	2013-2017
B.S., Computer Science, Summa Cum Laude	

Publications

- 1. Shuxiao Chen, Koby Crammer, **Hangfeng He**, Dan Roth, and Weijie Su (alphabetical order). 2022. Weighted Training for Cross-Task Learning. In *International Conference on Learning Representations (ICLR)*. *Oral presentation*.
- 2. Cong Fang, **Hangfeng He**, Qi Long, and Weijie Su (**alphabetical order**). 2021. Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training. In *Proceedings of the National Academy of Sciences (PNAS)*. Direct submission.

- 3. **Hangfeng He**, Mingyuan Zhang, Qiang Ning, and Dan Roth. 2021. Foreseeing the Benefits of Incidental Supervision. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)*.
- 4. Zhun Deng, **Hangfeng He**, and Weijie Su. 2021. Toward Better Generalization Bounds With Locally Elastic Stability. In *International Conference on Machine Learning (ICML)*.
- 5. Ayal Klein, Jonathan Mamou, Valentina Pyatkin, Daniela Brook Weiss, **Hangfeng He**, Dan Roth, Luke Zettlemoyer, and Ido Dagan. 2020. QANom: Question-Answer driven SRL for Nominalizations. In *Proceedings of the 28th International Conference on Computational Linguistics (COLING)*.
- 6. Shuxiao Chen, **Hangfeng He**, and Weijie Su (**alphabetical order**). 2020. Label-Aware Neural Tangent Kernel: Toward Better Generalization and Local Elasticity. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- 7. Zhun Deng, **Hangfeng He**, Jiaoyang Huang, and Weijie Su. 2020. Towards Understanding the Dynamics of the First-Order Adversaries. In *International Conference on Machine Learning (ICML)*.
- 8. **Hangfeng He**, Qiang Ning, and Dan Roth. 2020. QuASE: Question-Answer Driven Sentence Encoding. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)*.
- 9. Soham Dan, **Hangfeng He**, and Dan Roth. 2020. Understanding Spatial Relations through Multiple Modalities. In *Proceedings of the 12th Language Resources and Evaluation Conference (LREC). Short papers*.
- 10. **Hangfeng He** and Weijie Su. 2020. The Local Elasticity of Neural Networks. In *International Conference on Learning Representations (ICLR)*.
- 11. Qiang Ning, **Hangfeng He**, Chuchu Fan, and Dan Roth. 2019. Partial or Complete, That's The Question. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)*.

- 12. Jingjing Xu, **Hangfeng He**, Xu Sun, Xuancheng Ren, and Sujian Li. 2018. Cross-domain and semisupervised named entity recognition in chinese social media: A unified model. In *IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP)*.
- 13. Federico Fancellu, Adam Lopez, Bonnie Webber, and **Hangfeng He**. 2017. Detecting negation scope is easy, except when it isn't. In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Short papers.*
- 14. **Hangfeng He** and Xu Sun. 2017. F-Score Driven Max Margin Neural Network for Named Entity Recognition in Chinese Social Media. In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Short papers*.
- 15. **Hangfeng He** and Xu Sun. 2017. A Unified Model for Cross-Domain and Semi-Supervised Named Entity Recognition in Chinese Social Media. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*.
- 16. **Hangfeng He**, Federico Fancellu, and Bonnie Webber. 2017. Neural Networks for Negation Cue Detection in Chinese. In *Proceedings of the Workshop Computational Semantics Beyond Events and Roles (SemBEaR)*.

Preprints

1. Matteo Sordello, **Hangfeng He**, and Weijie Su. 2019. Robust Learning Rate Selection for Stochastic Optimization via Splitting Diagnostic. In *arXiv preprint*.

Research Experience

Research Assistant. Peking University 2017

Mentor: Tingting Jiang Project: Image caption

Research Assistant. University of Edinburgh 2016

Mentor: Bonnie Webber

Project: Negation detection in Chinese

Research Assistant. Peking University 2015

Mentor: Xu Sun

Project: Named entity recognition in Chinese social media

Teaching Experience

University of Pennsylvania

CIS 419/519 Applied Machine Learning Fall 2019

Head Teaching Assistant; Instructor: Dan Roth

CIS 419/519 Applied Machine Learning Spring 2018

Teaching Assistant; Instructor: Dan Roth

Professional Service

Program Committee Member

ACL (2019-2021), EMNLP (2019), NAACL (2019)

Conference Reviewer

ACL Rolling Review (2021), ICML (2021), NeurIPS (2020)

Journal Reviewer

IEEE TNNLS (2018-2020)

Honors & Awards

Outstanding Undergraduate, Peking University	2017
Weiling Scholarship, Peking University	2016
Jianeng Scholarship, Peking University	2015

Invited Talks

Incidental Supervision for Natural Language Understanding

Invited Talk at USC/ISI AI Seminar, October, 2021

Local Elasticity: A Phenomenological Approach Toward Understanding Deep Learning

Invited Talk at uOttawa TML seminar, November, 2021

Skills

Programming: Python, Java, C, C++, C#

Tools & Frameworks: LATEX, Vim, PyTorch, Theano