VOI-AWARE MCTS ECAI 2012

MULTI-ARMED BANDITS

- ullet A set of K arms.
- Each arm can be pulled multiple times.
- When the ith arm is pulled, a random reward X_i is encountered.

Regret minimization:

- Simple regret (SR): the reward of the last pull only is collected.
- Cumulative regret (CR): all rewards are accumulated.

UCB AND **UCT**

- **UCB**(c) pulls arm i that maximizes upper confidence bound b_i on the reward: $b_i = \overline{X}_i + \sqrt{\frac{c \log(n)}{n_i}}$
- UCB is nearly optimal in minimizing the *cumulative regret*.
- **UCT** extends UCB to MCTS by invoking UCB at every node of a rollout.

METAREASONING

- A problem-solving agent can perform base-level actions from a known set $\{A_i\}$.
- Before committing to an action, the agent may perform a sequence of meta-level deliberation actions from a set $\{S_i\}$.
- At any given time there is a base-level action A_{α} that maximizes the agent's *expected utility*.
- The value of information VOI_j is the expected difference between the expected utilities of the new and the old selected base-level action after meta-level action S_j is taken.
- The agent selects a meta-level action that maximizes the VOI, or A_{α} if no meta-level action has positive VOI.

ACKNOWLEDGMENTS

- Israel Science Foundation grant 305/09
- Lynne and William Frankel Center for Computer Sciences
- Paul Ivanier Center for Robotics Research and Production Management

Monte-Carlo Sampling in Trees

- MCTS performs multiple *rollouts* to partially explore the search space.
- At the current root node, the sampling is aimed at finding the first move to perform: minimizing the simple regret is more appropriate at the root node.
- Deeper in the tree, minimizing cumulative regret results in a better estimate of the value of the state.
- An improvement over UCT can be achieved by combining different sampling schemes on the first step and during the rest of a rollout.

MAIN RESULTS

Hybrid sampling scheme

- 1. At the root node: sample based on the VOI estimate.
- 2. At non-root nodes: sample using UCT.

Upper Bounds on VOI

Upper bounds on intrinsic VOI Λ_i^b of testing the *i*th arm N times:

$$\Lambda_{lpha}^b < rac{N \overline{X}_{eta}^{n_{eta}}}{n_{lpha} + 1} \cdot 2 \exp\Bigl(-1.37 (\overline{X}_{lpha}^{n_{lpha}} - \overline{X}_{eta}^{n_{eta}})^2 n_{lpha}\Bigr)$$

$$\Lambda^b_{i|i
eqlpha}<rac{N(1-\overline{X}^{n_lpha}_lpha)}{n_i+1}\cdot 2\exp\Bigl(-1.37(\overline{X}^{n_lpha}_lpha-\overline{X}^{n_i}_i)^2n_i\Bigr)$$

Sample Redistribution

MCTS may re-use rollouts generated at earlier search states.

- 1. Estimate VOI as though the information is discarded.
- 2. Stop early if the VOI is below a certain threshold.
- 3. Save the unused sample budget for search in future states.

The cost of a sample is the VOI of increasing a future budget by one sample.

EXPERIMENTS

- VOI-based sampling is better than UCB1 for simple regret in Bandits.
- The hybrid scheme outperforms UCT.

Multi-armed Bandits

25 arms, 10000 trials

Computer Go

Tuning the Sample Cost

Best results for sample cost $\approx 10^{-6}$: winning rate of 64% for 10000 samples per ply.

Winning rate vs. number of samples

Sample cost fixed at 10^{-6} :

Best results for intermediate $N_{samples}$:

- When $N_{samples}$ is too low, poor moves are selected.
- When $N_{samples}$ is too high, the VOI of further sampling is low.

CONTRIBUTIONS

- Hybrid MCTS sampling scheme.
- Upper bounds on VOI for *simple regret* in Multi-armed Bandits.
- VOI-based stopping and sample redistribution.

FUTURE WORK

- Better VOI estimates.
- VOI-based sampling for non-root nodes.
- Application to other domains.

