COMPUTER SCIENCE TRIPOS Part IA - 2014 - Paper 2

9 Discrete Mathematics (AMP)

(a) The subset S of $\mathbb{N} = \{0, 1, 2, \ldots\}$ is inductively defined by the following axiom and rules, where n ranges over \mathbb{N} :

$$\frac{n}{1}$$
 $\frac{n}{2n}$ $\frac{n}{3n}$ $\frac{n+5}{n}$

- (i) State the principle of Rule Induction associated with this set of axioms and rules. [4 marks]
- (ii) Use Rule Induction to prove that no element of S is divisible by 5. [4 marks]
- (iii) Is 0 an element of S? Justify your answer. [1 mark]
- (b) State the principle of Mathematical Induction. [2 marks]
- (c) For sets X and Y of strings over an alphabet Σ , let XY denote the set $\{uv \mid u \in X \text{ and } v \in Y\}$ of all concatenations of a string in X followed by a string in Y. For $n \in \mathbb{N}$, let X^n be given by: $X^0 = \{\varepsilon\}$ (where ε denotes the null string) and $X^{n+1} = XX^n$. Let $X^* = \bigcup_{n \geq 0} X^n$.

Suppose $X,Y,Z\subseteq \Sigma^*$ satisfy $Z=XZ\cup Y.$

- (i) Prove by Mathematical Induction that $\forall n \in \mathbb{N}. X^n Y \subseteq Z$ and deduce that $X^*Y \subseteq Z$. [4 marks]
- (ii) Suppose further that $\varepsilon \notin X$. By considering the property of $n \in \mathbb{N}$ given by $\forall w \in Z. |w| \leq n \Rightarrow w \in X^*Y$, or otherwise, use Mathematical Induction to prove that $Z \subseteq X^*Y$. [5 marks]