計算機圖學與應用 6650

WM Tables Practice

授課教師: 王宗銘

2022/12/07

- 1. 請以 python 程式語言撰寫以 Weighted Modulus (WM)演算法嵌入訊息時,所需產生的像素變動表(Pixel Alternation Table, PA)及同質像素變動表(Homogeneous Alternation Table, HA)。
- 2. 輸入參數為(n, M, W[w1, w2, ..., wn]), 其中
- (1) n 代表 number of pixel cluster, n≥ 2, n≤ 6為正整數
- (2) M 代表秘密訊息為 M 進制,2≤M≤1024。
- (3) W[w1, w2, ..., wn]為 n-tuple 嵌入權重向量(embedding weight vector)。
- 2. 程式
- 1. 先設定執行迴圈之基本上限與下限 q, where $q = \sqrt[n]{M} 1$
- 2. 求出執行迴圈之最終上限與下限 \mathbf{v} , where $\mathbf{v} = \left[\sqrt[2]{q^2 \times n}\right]$

No.	n	M	q	$\sqrt[2]{q^2 \times n}$	v
1	2	2	0.414214	0.585786	1
2	2	3	0.732051	1.035276	2
3	2	4	1	1.414214	2
4	2	5	1.236068	1.748064	2
5	2	6	1.44949	2.049888	3
6	2	7	1.645751	2.327444	3
7	2	8	1.828427	2.585786	3
8	2	9	2	2.828427	3
9	2	10	2.162278	3.057922	4
10	2	11	2.316625	3.276202	4
11	2	12	2.464102	3.484766	4
12	2	13	2.605551	3.684806	4
13	2	14	2.741657	3.877289	4

No.	n	M	q	$\sqrt[2]{q^2 \times n}$	v
1	3	2	0.259921	0.450196	1
2	3	3	0.44225	0.765999	1
3	3	4	0.587401	1.017408	2
4	3	5	0.709976	1.229714	2

5	3	6	0.817121	1.415294	2
6	3	7	0.912931	1.581243	2
7	3	8	1	1.732051	2
8	3	9	1.080084	1.87076	2
9	3	10	1.154435	1.99954	2
10	3	11	1.22398	2.119996	3
11	3	12	1.289428	2.233356	3
12	3	13	1.351335	2.34058	3
13	3	14	1.410142	2.442438	3

3. 使用 n 個迴圈,每個迴圈上、下限均為 v ,計算餘值變動表(Residue Table) Assume WM(2, 5, W[1, 2]),經過算出來 v=2

For $i = -v$ to $+v$
For $j=-v$ to $+v$
{
$R(i, j) = (i, j) \cdot (1, 2) \mod 5$
$SE(i, j) = i^2 + j^2$
}

餘值變動表如下

ID	i	j	w1	w2	M	(i, j)*(w1, w2)	R	SE
1	-2	-2	1	2	5	-6	4	8
2	-2	-1	1	2	5	-4	1	
3	-2	0	1	2	5	-2	3	5 4 5 8 5 2 1 2 5 4
4	-2	1	1	2	5	0	0	5
5	-2	2	1	2 2 2 2	5	2	2	8
6	-1	-2	1	2	5	-5	0	5
7	-1	-1	1	2	5	-3	2	2
8	-1	0	1	2 2 2 2	5	-1	4	1
9	-1	1	1	2	5	1	1	2
10	-1	2	1	2	5	3	3	5
11	0	-2	1	2	5	-4	1	4
12	0	-1	1	2 2 2 2	5	-2	3	1
13	0	0	1	2	5	0	0	0
14	0	1	1	2	5	2	2	1
15	0	2	1	2	5	4	4	4
16	1	-2	1	2 2 2 2	5	-3	2	1 4 5 2
17	1	-1	1	2	5	-1	4	2
18	1	0	1	2	5	1	1	
19	1	1	1		5	3	3	2
20	1	2	1	2	5	5	0	5
21	2	-2	1	2	5	-2	3	8
22	2	-1	1	2 2 2 2	5	0	0	2 5 8 5 4
23	2	0	1		5	2	2	4
24	2	1	1	2	5	4	4	5
25	2	2	1	2	5	6	1	8

4 將餘值變動表依照 R 來排序, from 0 to M-1。若相同,則依照 SE 由小而大排序。排序時,另外加入 flag,來判別屬於 Pixel Alternation (PA) Table 或是 Homogeneous Alternation (HA) Table。 然後,輸出 PA table 與 HA table (請見範例)。

ID	i	j	w1	w2	M	(i, j)*(w1,w2)	R	SE	PA	НА
13	0	0	1	2	5	0	(0	0	
4	-2	1	1	2	5	0	0	5		0
6	-1	-2	1	2	5	-5	0	5		0
20	1	2	1	2	5	5	0	5		0
22	2	-1	1	2	5	0	0	5		0
18	1	0	1	2	5	1	1	1	1	
9	-1	1	1	2	5	1	1	2		1
11	0	-2	1	2	5	-4	1	4		1
2	-2	-1	1	2	5	-4	1	5		1
25	2	2	1	2	5	6	1	8		1
14	0	1	1	2	5	2	2	1	2	
7	-1	-1	1	2	5	-3	2	2		2
23	2	0	1	2	5	2	2	4		2
16	1	-2	1	2	5	-3	2	5		2
5	-2	2	1	2	5	2	2	8		2
12	0	-1	1	2	5	-2	3	1	3	
19	1	1	1	2	5	3	3	2		3
3	-2	0	1	2	5	-2	3	4		3
10	-1	2	1	2	5	3	3	5		3
21	2	-2	1	2	5	-2	3	8		3
8	-1	0	1	2	5	-1	4	1	4	
17	1	-1	1	2	5	-1	4	2		4
15	0	2	1	2	5	4	4	4		4
24	2	1	1	2	5	4	4	5		4
1	-2	-2	1	2	5	-6	4	8		4

程式名稱:學號-06-WM-Table.py。

輸入:

- 1. $2 \le n \le 6$, n: number of pixels in a cluster
- 2. $2 \le M \le 1024$, M is notational number system

輸出:

- 1. Pixel Alternation Table: 檔案名稱 PA_n_M_(w₁_w₂..._w_n).csv 請計算 TSE, EMSE 及 PSNR, 並列於表格最下三列。
- 2. Homogeneous Alternation Table: 檔案名稱 HA_n_M_(w₁_w₂..._w_n).csv

輸入範例 1:

Input number of pixels in a cluster (n): 2 Input notational system: 5 Input: embedding weight vector: 1 2

輸出範例 1

1. PA_2_5_(1_2).csv 2. HA_2_5_(1_2).csv

PA 2 5 (1 2).csv

	1			
PA	2	5	w1	w2
IX	d	SE	1	2
0	0	0	0	0
1	1	1	1	0
2	2	1	0	1
3	3	1	0	-1
4	4	1	-1	0
	TSE	4		
	MSE	0.4000		
	PSNR	51.11		

HA 2 5 (1 2).csv

IIA_2	$(1_2).csv$			
НА	2	5	w1	w2
IX	d	SE	1	2
0	0	5	-2	1
1	0	5	-1	-2
2	0	5	1	2
3	0	5	2	-1
4	1	2	-1	1
5	1	4	0	-2
6	1	5	-2	-1
7	1	8	2	2
8	2	2	-1	-1
9	2	4	2	0
10	2	5	1	-2
11	2	8	-2	2
15	3	2	1	1
13	3	4	-2	0
14	3	5	-1	2

15	3	8	2	-2
16	4	2	1	-1
17	4	4	0	2
18	4	5	2	1
19	4	8	-2	-2

2. 繳交檔案

- (1) python 程式,程式名稱:學號-06-WM-Table.py
- (2) PA_2_19_(1_4).csv 與 HA table, 也是 csv 檔案
- (3) PA_3_24_(1_3_8).csv 與 HA table,也是 csv 檔案
- (4) PA_3_65_(1_5_26).csv 與 HA table, 也是 csv 檔案
- (5) PA 4 47 (1 3 9 16).csv 與 HA table, 也是 csv 檔案
- (6) HA_4_79_(1_3_9_26).csv 與 HA table, 也是 csv 檔案