

Graph Attention Network

ICLR 2018

Petar Veli ckovic*

Department of Computer Science and Technology
University of Cambridge

Adriana Romero

Montr' eal Institute for Learning Algorithms

Guillem Cucurull*

Centre de Visi´ o per Computador, UAB

Pietro Lio

Department of Computer Science and Technology
University of Cambridge

2025.07.29 DMAIS Master Course 박세준

Arantxa Casanova*

Centre de Visi´ o per Computador, UAB

Yoshua Bengio

Montr' eal Institute for Learning Algorithms

INDEX

- Background
- Motivation
- GAT
- Comparisons
- Experiments
- Conclusions

TERM

• Transductive learning

Observed specific training cases to specific test cases

• Inductive learning

Observed training cases to general rules, which are then applied to the test cases.

BACKGROUND

Convolutional Neural Network

- o Successfully applied to data, which representation has a grid structure
 - Image, Sequence data...
- Not appropriate to data which can usually be represented in the form of graphs
 - 3D meshes, social networks, telecommunication networks, biological networks, brain connectomes

7	2	3	3	8							
4	5	3	8	4		1	0	-1		6	
3	3	2	8	4	*	1	0	-1	=		
2	8	7	2	7		1	0	-1			
5	4	4	5	4		2x0-	+5x0-	+3x1+ +3x0+ 1+2x-1	E		

Graph Neural Network-Spectral Approaches

- With sprectral representation of the graphs
- Successfully applied in the context of node classification
- o Learned filter is depend on Laplacia eigenbias, which depend on graph structure
- Inductive learning is impossible

Limitation of GCN

- Uniform weighting to neighbor nodes
- Same weight matrix W to every nodes
- Strict neighbor structure

Graph Neural Network-Non Spectral Approaches

- Define convolutions directly on the graph
- Operating groups of spatially close neighbors
- Independent of graph structure → inductive learning possible
- Define operator which works with different sized neighborhoods
- Maintain the weight sharing property of CNNs

Limitations of GraphSAGE

- Data sampling
- LSTM aggregator can't guarantee permutation invariant

MOTIVATION

Attention Mechanism

- Calculate the attention weight and assign different weights to each
- No sampling required
- Weights can be calculated regardless of order, permutation invariance is guaranteed

Graph Attention Network

- Apply attention to node classification of graph structured data
- Attention can solve both approaches problems

GAT

Graph Attention Layer

$$\circ$$
 Input: $\mathbf{h} = \{ \vec{h}_1, \vec{h}_2, \dots, \vec{h}_N \}, \vec{h}_i \in \mathbb{R}^F$

$$\circ$$
 Output: $\mathbf{h}' = \{ \vec{h}_1', \vec{h}_2', \dots, \vec{h}_N' \}, \vec{h}_i' \in \mathbb{R}^{F'}$

Calculate Attention Score

Attention score

$$\bullet \quad e_{ij} = a \big(W \vec{h}_i, W \vec{h}_j \big)$$

- Indicate the importance of node j's features to node i
- Inefficient
- Solve non spectral degree problem
- Masked attention to calculate just neighborhood of node i
- Softmax nomalize

GAT

• Calculate Attention Score

Attention mechanism

$$\qquad \quad \boldsymbol{\alpha}_{ij} = \frac{\exp\left(\mathrm{LeackyReLU}(\vec{a}^T[W\vec{h}_i||W\vec{h}_j])\right)}{\sum_{k \in N_i} \exp\left(\mathrm{LeackyReLU}(\vec{a}^T[W\vec{h}_i||W\vec{h}_k])\right)}$$

Attain Final Feature

o Basic

■ To serve as the final output features for every node

GAT

Attain Final Feature

- Multi head attention with concat
 - $\vec{h}_i' = \|_{k=1}^k \sigma \left(\sum_{j \in N_i} \alpha_{ij}^k W^k \vec{h}_j \right)$
 - Single attention head may be limited, multiple heads are used to capture a wider variety of patterns.
- Multi head attention with average (for prediction layer)

 - In prediction layer concatenation is no longer sensible
 - Use averaging to predict final output

COMPARISONS

Computationally Highly Efficient

- No eigendecompositions or similar costly matrix operations are required
- GAT is good at parallelism

Comparison With GCN

- Time complexity is similar but more parallelism
- Model allows for assigning different importances to nodes of a same neighborhood
- Flexible structure
- Good at inductive learning

COMPARISONS

• Comparison With GraphSAGE

- No data sampling required
- Permutation invariant is guaranted

Dataset

Table 1: Summary of the datasets used in our experiments.

	Cora	Citeseer	Pubmed	PPI
Task	Transductive	Transductive	Transductive	Inductive
# Nodes	2708 (1 graph)	3327 (1 graph)	19717 (1 graph)	56944 (24 graphs)
# Edges	5429	4732	44338	818716
# Features/Node	1433	3703	500	50
# Classes	7	6	3	121 (multilabel)
# Training Nodes	140	120	60	44906 (20 graphs)
# Validation Nodes	500	500	500	6514 (2 graphs)
# Test Nodes	1000	1000	1000	5524 (2 graphs)

• Transductive Learning

Transductive

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%
MoNet (Monti et al., 2016)	$81.7\pm0.5\%$	_	$78.8 \pm 0.3\%$
GCN-64*	$81.4 \pm 0.5\%$	$70.9\pm0.5\%$	79.0 \pm 0.3%
GAT (ours)	$83.0 \pm 0.7\%$	72.5 \pm 0.7%	79.0 \pm 0.3%

Inductive

Inductive

Method	PPI
Random	0.396
MLP	0.422
GraphSAGE-GCN (Hamilton et al., 2017)	0.500
GraphSAGE-mean (Hamilton et al., 2017)	0.598
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612
GraphSAGE-pool (Hamilton et al., 2017)	0.600
GraphSAGE*	0.768
Const-GAT (ours)	0.934 ± 0.006
GAT (ours)	0.973 ± 0.002

EXPERIMENTS

• Visualize Cora Data

CONCLUSION

• Contribution

Apply attention to graph

Performance

Demonstrates better performance than all Sota models

Restirct

o Still have restrictions, so it seems that further research is needed

FINISH

