Instituto Superior de Engenharia de Coimbra

Engenharia Electrotécnica

Exame Normal de Álgebra Linear (1º ano/1º sem.)

15 de fevereiro de 2018 Duração: 2h30

- 1. Considere as matrizes $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & p & k \\ 1 & 1 & p \end{bmatrix}$, $B = \begin{bmatrix} p \\ k \\ pk \end{bmatrix}$ e $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, com $p, k \in \mathbb{R}$.
- [2.0] (a) Discuta o sistema AX = B em função dos parâmetros reais $p \in k$.
 - (b) Faça p = 2 e k = 1.
- [1.0] i. Resolva o sistema linear AX = B.
- [1.5] ii. Calcule A^{-1} usando o algoritmo de Gauss-Jordan e confirme o resultado obtido.
- [1.0] iii. Confirme a resposta dada em i. usando a matriz inversa calculada em ii..
 - 2. Seja A uma matriz quadrada de ordem 3 tal que $\det(A)=-50$ e com valor prórpio $\lambda=5$ de multiplicidade algébrica dois.
- [1.0] (a) Determine, justificando, o outro valor próprio de A.
- [1.0] (b) Indique, justificando, qual a caracterírtica da matriz A.
- [2.0] 3. Sabendo que A e B são matrizes quadradas de ordem 3 tais que $\det(2A^{-1}) = -4 = \det(A^3(B^{-1})^T)$ calcule $\det(A)$ e $\det(B)$.
 - 4. Consider os vectores u = (1, -1, 0), v = (1, 0, 1) e w = (1, -3, -2) de \mathbb{R}^3 .
- [2.0] (a) Determine o subespaço vectorial $S = \langle u, v, w \rangle$.
- [1.0] (b) Determine uma base de S e indique a respectiva dimensão.
- [1.0] (c) Determine as coordenadas do vector a = (1, 2, 3) relativamente à base que indicou na alínea anterior.
- [1.0] (d) Diga, justificando, se os vectores $u, v \in w$ são linearmente independentes.
 - 5. Considere a matriz real $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.
- [1.5] (a) Determine os valores próprios da matriz A.
- [2.0] (b) A matriz A é diagonalizável? Em caso afirmativo, indique uma matriz diagonal D e a correspondente matriz invertível P tais que $D = P^{-1}AP$.
- [1.0] (c) Determine o polinómio característico da matriz A.
- [1.0] (d) Use o teorema de Cayley-Hamilton para encontrar uma expressão que permita calcular a inversa da matriz A.