Лекция 11

5 ноября 2024

Дифференцируемость функции

Определение 1

Приращение аргумента $\Delta x(h)$ — это величина (x+h)-x=h.

Приращение функции $\Delta f(x;h)$ — это величина f(x+h)-f(x).

Положим $\Delta x = \Delta x(h), \ \Delta y = \Delta f(x, \Delta x)$. Введем функцию

$$\alpha(\Delta x) = \frac{\Delta y}{\Delta x} - f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x} - f'(x) \tag{1}$$

 $\alpha(\Delta x)$ определена при всех $\Delta x \neq 0$ и бесконечно мала при $x \to 0$, поэтому будем полагать, что $\alpha(0) = 0$. Выразим из 1 Δy при $\Delta x \neq 0$:

$$\Delta y = f'(x)\Delta x + \alpha(\Delta x)\Delta x \tag{2}$$

Определение 2

 Φ ункция называется дифференцируемой в точке x, если её приращение можно представить в виде

$$\Delta y = A\Delta x + \alpha(\Delta x)\Delta x$$

To есть если слагаемое $f'(x)\Delta x$ в 2 линейно относительно Δx .

Утверждение 1

Функция дифференцируема в точке $x_0 \iff \exists f'(x_0).$

Замечание: данное обстоятельство справедливо только для функций одной переменной.

Теорема 1 – Необходимое условие дифференцируемости

Функция f(x) дифференцируема в точке $a \implies f(x)$ непрерывна в a.

Доказательство.

Пусть f(x) дифференцируема в точке a. Требуется доказать, что $\exists \lim_{x \to a} f(x) = f(a)$.

- 1. Пусть $x-a=\Delta x\iff x=a+\Delta x$, тогда $\Delta x\to 0$ при $x\to a$.
- 2. $\lim_{\Delta x \to 0} f(a + \Delta x) = f(a) \iff \lim_{\Delta x \to 0} (f(a + \Delta x) f(a)) = 0.$
- 3. Требуется доказать, что $\lim_{\Delta x \to 0} \Delta y = 0$.
- 4. По условию функция дифференцируема в точке $a \implies \Delta y = f'(x)\Delta x + o(\Delta x) \implies \lim_{\Delta x \to 0} \Delta y = 0.$
- 5. Последнее равенство из пункта 4 называется разностной формой условия непрерывности.

<u>Замечание:</u> существуют непрерывные и недифференцируемые в точке функции (например, функция Вейерштрасса).

Дифференциал функции

Определение 3

Дифференциалом (обозначается как dy) функции y = f(x) в точке x_0 называется выражение $f'(x_0)\Delta x$.

Замечание: если производная отлична от нуля, то и дифференциал отличен от нуля.

Определение 4

Дифференциалом (обозначается как dx) независимой переменной x называется приращение этой переменной.

Замечание: если x — независимая переменная, то производная функция в точке x равна $\frac{dy}{dx}$

Пример 1. $y = \sin(x) \implies dy = \cos(x) \cdot dx$, $d \sin(x) \Big|_{\frac{\pi}{3}} = \frac{dx}{2}$.

Геометрический смысл дифференциала

Дифференциал является наилучшим линейным приближением приращения функции.

Формула линеаризации функции: $f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x$.