Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 23 Apr 2021 1 of 4

Sample Information

Patient Name: 謝明枝 Gender: Male ID No.: T101588840 History No.: 46781399

Age: 71

Ordering Doctor: DOC3174E 廖映庭

Ordering REQ.: 0BERZBG Signing in Date: 2021/04/15

Path No.: S110-98597 **MP No.:** MY21004

Assay: Oncomine Myeloid Assay **Sample Type:** Bone Marrow

Bone Marrow Aspirating Date: 2021/04/09

Note:

Sample Cancer Type: Myelodysplastic/Myeloproliferative Neoplasm

Table of Contents Variants (Exclude variant in Taiwan BioBank with >1% allele frequency) Piomorkor Descriptions	Report Highlights 0 Relevant Biomarkers 0 Therapies Available
Biomarker Descriptions 2	0 Clinical Trials

Relevant Myelodysplastic/Myeloproliferative Neoplasm Variants

Gene	Finding
PDGFRA	Not detected
PDGFRB	Not detected

Relevant Biomarkers

No clinically significant biomarkers found in this sample.

Prevalent cancer biomarkers without relevant evidence based on included data sources

TET2 p.(N191Lfs*3) c.571_572delAA, TET2 p.(D1730Efs*15) c.5190delT, TET2 p.(R550*) c.1648C>T, SRSF2 p.(P95H) c.284C>A, TET2 p.(Q684Sfs*9) c.2049_2050insT

Date: 23 Apr 2021

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
TET2	p.(N191Lfs*3)	c.571_572delAA		chr4:106155669	24.67%	NM_001127208.2	frameshift Deletion	1998
TET2	p.(R550*)	c.1648C>T		chr4:106156747	43.19%	NM_001127208.2	nonsense	1998
TET2	p.(Q684Sfs*9)	c.2049_2050insT		chr4:106157144	8.69%	NM_001127208.2	frameshift Insertion	1991
TET2	p.(D1730Efs*15)	c.5190delT		chr4:106196856	8.22%	NM_001127208.2	frameshift Deletion	1995
SRSF2	p.(P95H)	c.284C>A	COSM211504	chr17:74732959	50.23%	NM_003016.4	missense	1957
NF1	p.(R765H)	c.2294G>A		chr17:29554278	51.40%	NM_001042492.2	missense	2000

Biomarker Descriptions

SRSF2 (serine and arginine rich splicing factor 2)

Background: The SRFS2 gene encodes the serine/arginine (SR)-rich splicing factor 2, a member of the SR-rich family of pre-mRNA splicing factors which make up part of the spliceosome. SRFS2 contains an RNA recognition motif (RRM) that recognizes and binds exonic splicing enhancers (ESE) in a sequence-specific manner¹. SR proteins are essential regulators of alternative RNA splicing due to their ability to bind RNA and interact with other splicing factors. These proteins can influence the exclusion of cassette exons, a form of alternative splicing also known as exon skipping, which allows for the production of different protein isoforms^{1,2}. SRSF2 is the target of somatic missense mutations and in-frame deletions in hematological malignancies, particularly myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML), and myeloproliferative neoplasms (MPN)^{3,4,5}. Such mutations in SRSF2 result in a differential gain of function which influences cassette exon exclusion, thereby supporting an oncogenic role in cancer⁶.

Alterations and prevalence: Mutations in SRSF2 are observed in approximately 10% of MDS cases and 30-40% of CMML^{4,7,8}. Missense mutations at P95 are most recurrent, which leads to an amino acid change from proline to histidine (H), leucine (L), or arginine (R)⁸. Specifically, the P95H substitution alters SRSF2 affinity for ESEs and drives preferential recognition of cassette exons containing C-versus G-rich ESEs^{5,6}. Although less prevalent, recurrent in-frame deletions (P95H_R102del) are observed in primary myelofibrosis (PMF)⁹. This mutation results in the deletion of 8 amino acids which has been shown to exhibit greater variation of splicing events relative to the P95 missense mutation alone¹⁰.

Potential relevance: In CMML, SRSF2 mutations are often enriched and can be used to support diagnosis^{11,12}. SRSF2 mutations confer poor prognosis in MDS and systemic mastocytosis (SM) and are associated with decreased overall survival (OS)^{12,13,14}. In MPN, SRSF2 mutations are considered high-risk mutations and are independently associated with inferior OS as well as leukemia-free survival^{15,16}. Additionally, SRSF2 mutations are predictive of leukemic transformation in patients with PMF¹⁵.

TET2 (tet methylcytosine dioxygenase 2)

Background: TET2 encodes the tet methylcytosine dioxygenase 2 protein and belongs to a family of ten-eleven translocation (TET) proteins that also includes TET1 and TET3¹⁷. TET2 is involved in DNA methylation, specifically in the conversion of 5-methylcytosine to 5-hydroxymethylcytosine^{18,19}. The TET proteins contain a C-terminal core catalytic domain that contains a cysteine-rich domain and a double stranded ß-helix domain (DSBH)²⁰. TET2 is a tumor suppressor gene. Loss of function mutations in TET2 are associated with loss of catalytic activity and transformation to hematological malignancies^{17,18,19}

Alterations and prevalence: Somatic TET2 mutations, including nonsense, frameshift, splice site, and missense, are observed in 20-25% of myelodysplastic syndrome (MDS) associated diseases, including 40%-60% chronic myelomonocytic leukemia (CMML)¹². TET2 mutations at H1881 and R1896 are frequently observed in myeloid malignancies^{18,21}. TET2 mutations are also observed in 9% of uterine, 8% of melanoma and acute myeloid leukemia (AML), as well as 6% of diffuse large B-cell lymphoma (DLBCL).

Potential relevance: The presence of TET2 mutations may be used as one of the major diagnostic criteria in pre-primary myelofibrosis (pre-PMF) and overt PMF in the absence of JAK2/CALR/MPL mutations 11,15. TET2 mutations are associated with poor prognosis in PMF and increased rate of transformation to leukemia 15,22

Date: 23 Apr 2021 3 of 4

Signatures		
Testing Personnel:		

Pathologist:

Laboratory Supervisor:

Date: 23 Apr 2021

References

- Liang et al. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia. 2018 Dec;32(12):2659-2671. PMID: 29858584
- Cui et al. Comparative Analysis and Classification of Cassette Exons and Constitutive Exons. Biomed Res Int. 2017;2017:7323508. doi: 10.1155/2017/7323508. Epub 2017 Dec 4. PMID: 29349080
- Meggendorfer et al. The mutational landscape of 18 investigated genes clearly separates four subtypes of myelodysplastic/ myeloproliferative neoplasms. Haematologica. 2018 May;103(5):e192-e195. PMID: 29700173
- 4. Arbab et al. Prognostic significance of SRSF2 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis. Hematology. 2018 Dec;23(10):778-784. PMID: 29757120
- 5. Kim et al. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell. 2015 May 11;27(5):617-30. PMID: 25965569
- Zhang et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc. Natl. Acad. Sci. U.S.A. 2015 Aug 25;112(34):E4726-34. PMID: 26261309
- 7. Ethan et al. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017 Aug;7(8):818-831. PMID: 28572459
- 8. Thol et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012 Apr 12;119(15):3578-84. PMID: 22389253
- 9. Lasho et al. SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. Blood. 2012 Nov 15;120(20):4168-71. PMID: 22968464
- 10. Komeno et al. SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing. Mol. Cell. Biol. 2015 Sep 1;35(17):3071-82. PMID: 26124281
- 11. Arber et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 May 19;127(20):2391-405. PMID: 27069254
- 12. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 3.2021]
- 13. NCCN Guidelines® NCCN-Systemic Mastocytosis [Version 1.2020]
- 14. Jawhar et al. Splenomegaly, elevated alkaline phosphatase and mutations in the SRSF2/ASXL1/RUNX1 gene panel are strong adverse prognostic markers in patients with systemic mastocytosis. Leukemia. 2016 Dec;30(12):2342-2350. PMID: 27416984
- 15. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2020]
- 16. Vannucchi et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013 Sep;27(9):1861-9. PMID: 23619563
- 17. Pan et al. The TET2 interactors and their links to hematological malignancies. IUBMB Life. 2015 Jun;67(6):438-45. PMID: 26099018
- 18. Ko et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010 Dec 9;468(7325):839-43. PMID: 21057493
- 19. Solary et al. The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia. 2014 Mar;28(3):485-96. PMID: 24220273
- 20. An et al. TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp. Mol. Med. 2017 Apr 28;49(4):e323. PMID: 28450733
- 21. Kosmider et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009 Oct 8;114(15):3285-91. PMID: 19666869
- 22. Lundberg et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014 Apr 3;123(14):2220-8. PMID: 24478400