# Reinforcement learning for long-term reward optimization in recommender systems

#### Anton DOROZHKO, Evgeniy PAVLOVSKIY



July 2, 2019



## Outline

- Introduction
- Motivation
- Model
- Experiments
- Results
- Conclusion

#### Recommendation task

#### Observations

$$(x, y, r(x, y)) \in \mathcal{X} \times \mathcal{Y} \times \mathbb{R}$$

#### Recommender System

takes as input a sequence of observations and outputs a mapping:

 $\mathsf{Deterministic}:\, \mathcal{X} \to \mathcal{Y}$ 

Probabilistic :  $\mathcal{X} \to \Delta(\mathcal{Y})$ 

## Recommendations





Siamese network

# Time information

#### Sequence

|   | user_id | item_id | rating | timestamp |
|---|---------|---------|--------|-----------|
| 0 | 1       | 1193    | 5      | 978300760 |
| 1 | 1       | 661     | 3      | 978302109 |
| 2 | 1       | 914     | 3      | 978301968 |
| 3 | 1       | 3408    | 4      | 978300275 |
| 4 | 1       | 2355    | 5      | 978824291 |

| Matrix<br>Item_id | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|-------------------|-----|-----|-----|-----|-----|-----|-----|
| user_id           |     |     |     |     |     |     |     |
| 1                 | 5.0 | NaN | NaN | NaN | NaN | NaN | NaN |
| 2                 | NaN |
| 3                 | NaN |
| 4                 | NaN |
| 5                 | NaN | NaN | NaN | NaN | NaN | 2.0 | NaN |
| 6                 | 4.0 | NaN | NaN | NaN | NaN | NaN | NaN |
| 7                 | NaN | NaN | NaN | NaN | NaN | 4.0 | NaN |
| 8                 | 4.0 | NaN | NaN | 3.0 | NaN | NaN | NaN |
| 9                 | 5.0 | NaN | NaN | NaN | NaN | NaN | NaN |
| 10                | 5.0 | 5.0 | NaN | NaN | NaN | NaN | 4.0 |

#### RL vs Contextual Bandits



#### Assumption

States (observations) in Contextual Bandits are i.i.d

Anton DOROZHKO

# Why Reinforcement Learning

- users' preferences are dynamic
- optimization of the long-term objective
- entering the cycle of recommendations



# Reinforcement Learning

Learn to make a good sequences of decisions

Anton DOROZHKO RL RecSys July 2, 2019 8 / 22

# Reinforcement learning

#### Markov Decision Process MDP

MDP is a tuple (S, A, P, R)

- $oldsymbol{0}$   $\mathcal{S}$  set of states
- 2  $\mathcal{A}$  set of actions
- 3  $\mathcal{P}: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$  transition function  $p(s_{t+1}|s_t, a_t)$
- $\bullet$   $\mathcal{R}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$  rewards



Markov property assumption

$$p(r_t, s_{t+1}|s_0, a_0, r_0, ..., s_t, a_t) = p(r_t, s_{t+1}|s_t, a_t)$$

# Reinforcement learning

#### Discounted rewards

$$G_t = R_t + \gamma R_{t+1}... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$
$$\max_{\pi_{\theta}} \mathbb{E}_{\pi_{\theta}}[G_0]$$

$$\pi_{ heta}: \mathcal{S} 
ightarrow \mathcal{A}$$
 - agent policy

#### Interaction



#### Modelization

#### $\mathsf{MDP}\ \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma$

- State space  $s_t = \{s_t^1, ..., s_t^N\} \in \mathcal{S}$  N last items
- Action space  $a_t = \{a_t^1, ..., a_t^K\} \in \mathcal{A}$  list of items
- Reward  $\mathcal{R}$   $r(s_t, a_t) \in \mathbb{R}$
- Transition function  $\mathcal{P}$

$$s_{t+1} = egin{cases} \mathsf{add} \ a_t^k 
ightarrow s_{t+1}, \mathsf{remove first } s_{t+1} & r_t > 0 \ s_t & \mathit{otherwise} \end{cases}$$

• Discount  $\gamma \in [0,1]$ 

## Q-learning

#### Action-value function

The action-value function  $Q_{\pi}(s,a)$  is expected return starting from state s, taking action a, and then following policy  $\pi$ 

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$



## Q-learning

Draw N transitions from Experience Replay

$$< s, a, r, s' > \sim D$$

Update Critic network:

$$\nabla_{\phi} \frac{1}{N} \sum_{i} (r + \gamma Q_{\phi}(s', a_{\theta}(s')) - Q_{\phi}(s, a))^2$$

Update Actor network:

$$abla_{ heta} rac{1}{N} \sum_{i} Q_{\phi}(s, a_{ heta}(s))$$

## Proto action idea



# Environnement with OpenAl Gym <sup>1</sup>





```
import gym
env = gym.make("Taxi-v1")
observation = env.reset()
for _ in range(1000):
    env.render()
    action = env.action_space.sample() # your agent here (this takes random act
    observation, reward, done, info = env.step(action)
```

## Base Interface of recommendation env





# Parameters study



Figure: Parameter study of DDPG algorithm on MovieLens100k

## Offline evaluation

Table: Metrics for different session size for MovieLens 1M

|            | ml-1    | .m s20       | ml-1m s30 |              |  |
|------------|---------|--------------|-----------|--------------|--|
|            | NDCG@10 | Precision@10 | NDCG@10   | Precision@10 |  |
| Random     | 0.76    | 0.65         | 0.78      | 0.66         |  |
| Popularity | 0.85    | 0.78         | 0.88      | 0.81         |  |
| SVD        | 0.76    | 0.66         | 0.77      | 0.66         |  |
| LinUCB     | 0.85    | 0.78         | 0.87      | 0.8          |  |
| DDPG       | 0.87    | 0.81         | 0.83      | 0.74         |  |

#### MovieLens-1M



Figure: Distribution of impressions over items for MovieLens 1M: lower curve means that algorithm served more different items

#### Results

The main contributions of the project are 2 folds:

- Propose and build recommendation environments/benchmarks with OpenAI Gym interface
- Parameter study for DDPG agent

#### Conclusion

That research direction is very promising and vast. Main advantages of the application of RL to recommendation process are

- we consider recommendation process as dynamic and optimize for long-term rewards
- we model the influence of the recommendations on user state
- MDP formalism is flexible and different scenarios can be modeled easily in this framework

Proper evaluation is hard *Rendle S., Zhang L., Koren Y.* On the Difficulty of Evaluating Baselines: A Study on Recommender Systems. // CoRR. 2019. Vol. abs/1905.01395

# Reinforcement learning for long-term reward optimization in recommender systems

Anton DOROZHKO, Evgeniy PAVLOVSKIY

July 2, 2019

#### References I

- An Introduction to Deep Reinforcement Learning. /. V. Francois-Lavet [et al.]. — 2018. — arXiv: 1811.12560 [cs.LG].
- Bonner S., Vasile F. Causal Embeddings for Recommendation. -2017. - June. -DOI: 10.1145/3240323.3240360. — arXiv: 1706.07639. — URL: http://arxiv.org/abs/1706.07639.
- Deep Reinforcement Learning for Page-wise Recommendations. /. — X. Zhao [et al.]. — 2018. — May. arXiv: 1805.02343. — URL: http://arxiv.org/abs/1805.02343.

## References II

- E-commerce in Your Inbox. /. M. Grbovic [et al.] // Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '15. — 2015. — URL: http://dx.doi.org/10.1145/2783258.2788627.
- Liebman E., Saar-Tsechansky M., Stone P. DJ-MC: A Reinforcement-Learning Agent for Music Playlist Recommendation. — 2014. — Jan. — arXiv: 1401.1880. — URL: http://arxiv.org/abs/1401.1880.
- RecoGym: A Reinforcement Learning Environment for the problem of Product Recommendation in Online Advertising. /. — D. Rohde [et al.]. — 2018. — Aug. — URL: http://arxiv.org/abs/1808.00720.

#### References III

- Recommendations with Negative Feedback via Pairwise Deep Reinforcement. /. — X. Zhao [et al.] // KDD. — 2018. — Vol. 18. — arXiv: 1802.06501v3.
- Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning. /. — X. Zhao [et al.] // KDD. — 2018. — arXiv: 1802.06501v3.
- Rendle S., Zhang L., Koren Y. On the Difficulty of Evaluating Baselines: A Study on Recommender Systems. — //CoRR. — 2019. — Vol. abs/1905.01395. — arXiv: 1905.01395. — URL: http://arxiv.org/abs/1905.01395.

## References IV

- Returning is Believing. /. Q. Wu [et al.] // Proceedings of the 2017 ACM on Conference on Information and Knowledge Management - CIKM '17. — New York, New York, USA: ACM Press. 2017. — P. 1927–1936. — ISBN 9781450349185.
  - Stabilizing Reinforcement Learning in Dynamic Environment with Application to Online Recommendation. /. - S.-Y. Chen [et al.] // Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining - KDD '18. — New York, New York, USA: ACM Press, 2018. — P. 1187–1196. — ISBN 9781450355520. — DOI: 10.1145/3219819.3220122.