St.Lukes HRV Monitoring

Team Name: EWU St.Lukes BSCS Team

Team Members:

Tyler Woody- Developer Austin Harrison- Developer Brady Dullanty - Developer Will Reese - Developer

October 2024

Contents

1	Overview	1
2	Project Description	2
3	User Stories and Scenarios	3
4	Functional Requirements	6
5	Use Case Diagrams and Use Cases5.1 Use Case Diagram5.2 Use Cases	7 7 8
6	Non-functional Requirements	9
7	Traceability Matrix (10 Points)	10
8	Evaluation of Existing Solution (10 Points)	11
9	Individual Contributions Summary	12
10	System Architecture Design	13
11	UI Design	17
12	Data Design	18
13	Environment Setup	20

List of Figures

1	System Architecture Diagram
2	Activity Diagram for HRV Mobile App
3	Activity Diagram for HRV Watch App
4	Class Diagram for System Structure
5	UI Prototype for HRV Project
6	Data Entity Relationship Diagram
7	Database Schema
8	Sample User Data Table
9	Time Section Data Table Example
10	Medication Data Table Example
11	GAD7 Table Example
12	Heart Rate Data Table Example

1 Overview

We are aiming to leverage the capabilities that the Apple Watch offers in order to monitor patients that require their heart rate variability (HRV) addressed. In particular, patients that are suffering from PTSD and other related disorders such as panic attacks. By developing a dedicated watch app accompanied by a smartphone app, we are planning to provide real time monitoring of the HRV, which is vital in understanding the physiological impact of stress and emotional triggers. The watch app will continuously track HRV data and communicate with the companion app on their smartphone.

The data will not only inform the user of their own physiological responses, but will also support potential medical research by providing anonymous data on HRV patterns associated with PTSD related disorders. To ensure data integrity, the data will be securely stored on a backend server. The data from this project can also be useful to healthcare providers when users provide explicit consent.

With the combination of real-time monitoring, securing data, and having a user-focused functionality; we are aiming to make this solution a valuable tool for individuals who will want their HRV monitored.

2 Project Description

The Heart Rate Variability Monitoring App is a cutting-edge mobile application designed to detect early signs of panic attacks and provide immediate support to users. By leveraging advanced heart rate monitoring technology, the app identifies unusual heart rate patterns that may indicate an impending medical event, alerting users to take preventive action. The app also offers tools and resources to help users navigate through panic episodes, promoting mental well-being and resilience.

Panic attacks and other serious medical events can occur without warning, often leaving individuals feeling helpless and unprepared. Unusual fluctuations in heart rate variability (HRV) can serve as critical indicators of these episodes, but current solutions often lack timely data and insights. There is a pressing need for a reliable method to monitor HRV leading up to these events, enabling users to respond proactively and safely.

The app is specifically designed for individuals who experience panic attacks, post-traumatic stress disorder (PTSD), and other anxiety-related conditions. Additionally, it caters to anyone interested in monitoring their heart rate for health and wellness purposes, making it a versatile tool for various users.

Using our app, users can easily view their heart rate data, gaining insights into their physiological state throughout the day. The application also provides timely notifications when it detects abnormal heart rate patterns, empowering users to take action before a panic attack escalates. In moments of distress, the app acts as a supportive companion, offering calming techniques, breathing exercises, and cognitive strategies to help users manage their anxiety and regain control.

By combining heart rate monitoring with immediate support resources, the Heart Rate Variability Monitoring App aims to enhance the quality of life for individuals facing panic attacks and related challenges, fostering a sense of safety and well-being.

3 User Stories and Scenarios

User Story 1

U1. As someone with PTSD or a related condition, I want the Apple Watch app to monitor my heart rate variability (HRV) in real-time, so I can track potential triggers or episodes.

Feature: Monitor HRV

Scenario: Real-time Monitoring of HRV

- Given I have opened the app on my watch
- When the app starts monitoring my HRV in real-time
- Then I can see my HRV values displayed on my phone
- And I receive notifications if abnormal readings are detected

Scenario: Notification of HRV Event

- Given the app is already open and monitoring my HRV
- When my HRV data falls into a range associated with a medical "episode"
- Then the app should send a notification to my watch/phone
- And I should receive different recommendations based on the episode

User Story 2

U2. As a healthcare provider, I want to access an individual's HRV data on the user's device with their consent.

Feature: Data For Doctors

Scenario: No portal for doctors exists

- Given the user has their HRV data on their phone
- When I request consent from the patient to view the data
- And the user opens the HRV app on their device
- Then the user displays the data for the doctor

User Story 3

U3. As a user, I want to make sure the data that is collected from me is properly made anonymous and stored securely on the back end.

Feature: Secure Data Storage

Scenario: Secure storage of HRV data

- Given I am a user of the HRV app, and it is collecting data from my watch
- When my HRV data is transferred to the back end
- Then the data should be encrypted and anonymized before being stored
- And I should receive a confirmation that my data is stored securely

Scenario: Data access is restricted to authorized users only

- Given my HRV data is stored securely on the back end
- When an unauthorized entity tries to access the data
- Then access should be denied
- And an alert should be triggered for the unauthorized access attempt

User Story 4

U4. As a person who suffers from panic attacks, I would like to see what happened to my heart rate and HRV after the event.

Feature: Toggle Live Notifications Until After Event

Scenario: User toggles event suppression

- Given the user has HRV issues
- When the user normalizes
- Then the user is prompted about the potential attack

Scenario: User does not toggle event suppression

- Given the user has HRV issues
- When a potential or current attack is detected
- Then the user is informed of the attack
- And the user is prompted for confirmation

User Story 5

U5. As someone inexperienced with panic attacks, like a child, I want the app to handle possible events without needing my confirmation.

Feature: Toggle Event Confirmation

Scenario: Event confirmation is turned off

- Given I might be having a panic attack
- When event confirmation is turned off
- Then the app records the event without asking if I am having a panic attack

Scenario: Event confirmation is turned on

- Given I might be having a panic attack
- When event confirmation is turned on
- Then the app asks if I am having a panic attack
- And I can choose to confirm or ignore the prompt

User Story 6

U6. As someone who values my privacy, I never want any of my data off my devices, anonymous or not.

Feature: Export Anonymized Data Only with Consent

Scenario: I toggle my data being sent

- Given I value my privacy
- When data transmission is toggled off
- Then my data never leaves my device

Scenario: I want my data sent anonymously to help others

- Given I agree to anonymous data sharing
- When data is sent at intervals
- Then my device sends new data to a back end storage system I cannot access

User Story 7

U7. As someone who is giving my watch as a gift, I want to remove my old data.

Feature: Delete All On-Device Data Permanently

Scenario: I hit the delete button

- Given I am preparing to gift my watch
- When I press the delete button
- Then I am warned about the ramifications and permanence
- And the data is permanently removed from this device

User Story 8

U8. As a patient who suffers from attacks, I want to receive soothing messages when I'm having an event so that I can calm down.

Feature: Soothing Assistance

Scenario: Receiving Soothing Messages During an Attack

- Given I have received a notification of an attack
- When I acknowledge the notification
- Then the app displays soothing messages and guidance on my watch

4 Functional Requirements

Watch App

Functional Requirement	Description/Specification				
[FR-1(U1-U8)]	Continuously collect heart rate data using the Apple				
Monitor Heart Rate	Watch's built-in sensors				
	Convert heart rate data into interbeat intervals				
	(IBI).				
Priority	Level 0 (Essential)				
[FR-2(U1,U2,U4,U5,U8)]	[U2,U4,U5,U8)] The system must detect and display events based on				
Real-Time Alerts HRV deviations from baseline					
Priority	Level 0 (Essential)				
[FR-3(U1,U2,U4,U5,U8)]	Compute standard HRV metrics (e.g., SDNN,				
HRV Metrics Calculation	RMSSD, PNN50) from IBI data.				
Priority Level 0 (Essential)					

Companion Mobile App

Functional Requirement	Description/Specification			
[FR-4(U1,U2,U4,U5,U8)] User	Customers must be able to view all metrics, events,			
Interface	and history on the phone.			
Priority	Level 0 (Essential)			
[FR-5 (U1-U6,U8)] Data Syn-	Sync data between the Apple Watch and the mobile			
chronization:	app securely.			
Priority	Level 0 (Essential)			
[FR-6 (U1-U6,U8)] Consent	Sync data between the Apple Watch and the mobile			
and Onboarding:	app securely.			
Priority	Level 0 (Essential)			

Data Storage and Management

Functional Requirement	Description/Specification			
[FR-7(U3)] Secure Database	Aggregate all collected data anonymously into a cen-			
	tralized database with HIPPA compliance.			
Priority	Level 0 (Essential)			
[FR-8(U3)] Data Processing	Preprocess and clean incoming data for future ma-			
	chine learning purposes.			
Priority	Level 0 (Essential)			
[FR-9(U7)] Data Deletion	Data on device should be able to be cleared easily.			
Priority	Level 0 (Essential)			

5 Use Case Diagrams and Use Cases

5.1 Use Case Diagram

5.2 Use Cases

Use Case 1: Monitor and Display HRV

- Actors: Patient
- Preconditions: User has the app open and running.
- Postconditions: HRV is being monitored and displayed.
- Main Flow:
 - Watch starts collecting HRV data from the patient.
 - Watch sends data to the companion app.
 - Companion app uses data to detect any possible events.
 - Companion app displays HRV data to the user.

• Alternative Flows:

- If the app detects abnormal HRV levels:

- * The app sends a notification to the user's watch and phone, alerting them to a potential medical event.
- * The app provides calming messages or breathing exercises to help manage symptoms.

- If the user has allowed for anomyzed data transfer:

* The app automatically sends all possible anonymized data.

- If the user has turned off event confirmation prompts:

* The app automatically records the event without asking if the user is experiencing a panic attack, suitable for inexperienced users such as children.

- If the user has turned off live event notifications :

* The app automatically records the event without informing the user, prompting for feedback after the event.

- If the patient's watch is out of connectivity range with the companion app:

- * HRV data is cached locally on the watch until connectivity is restored.
- $\ast\,$ Data synchronization resumes automatically when connectivity is reestablished.
- Related Requirements: Real-time alerts, notification handling, support resources display.

Use Case 2: Analyze Anonymous Data

- Actors: Researcher
- **Preconditions**: Authorized user is logged into the database.
- Postconditions: Authorized user can view and export data for research purposes.
- Main Flow:
 - Authorized user logs into the database.
 - User views anonymized HRV data collected from all consenting users.
 - User can export data for further research.

• Alternative Flows:

- N/A:
- Related Requirements: Secure data access, patient consent management.

6 Non-functional Requirements

Non-Functional Require-	Description		
ment			
[NFR-1] Security	The app should securely encrypt and send HRV data		
	to our secure back-end storage container.		
[NFR-2] Security	The app should securely send data from the watch		
	to the companion app.		
[NFR-3] Performance	The companion app on the phone should display the		
	data being collected from the watch with minimal		
	delay. (undetermined how long delay will actually		
	be)		
[NFR-4] Scalability	The users phone and watch are doing all of the col-		
	lecting and processing, so we only need to think		
	about data storage. The storage at first should be		
	able to hold a years worth of data for 500 users.		
[NFR-5] Usability	The app should be easy to navigate for all users,		
	regardless of technical skill level.		
[NFR-6] Availability	The system shall have an uptime of 99.95%.		

7 Traceability Matrix (10 Points)

The traceability matrix maps functional requirements to corresponding use cases and user stories, ensuring complete coverage. The table below maps functional requirements to their respective use cases and user stories.

Function Requirement	Use Case	User Story	Priority
FR-1: Monitor Heart	UC1: Monitor and Display	US1-US8	Priority 0
Rate	HRV		
FR-2: Real-Time Alerts	UC1: Monitor and Display	US1, US2, US4,	Priority 0
	HRV	US5, US8	
FR-3: HRV-Metrics Cal-	UC1: Monitor and Display	US1, US2, US4,	Priority 0
culation	HRV	US5, US8	
FR-4: User Interface	UC1: Monitor and Display	US1 ,US2, US4,	Priority 0
	HRV	US5, US8	
FR-5: Data Synchroniza-	UC1: Monitor and Display	US1-US6, US8	Priority 0
tion	HRV		
FR-6: Consent and On-	UC1: Monitor and Display	US1-US6, US8	Priority 0
boarding	HRV		
FR-7: Secure Database	UC2: Analyze Anonymous	US3	Priority 0
	Data		
FR-8: Data Processing	UC2: Analyze Anonymous	US3	Priority 0
	Data		
FR-10: Data Deletion	UC1: Monitor and Display	US7	Priority 0
	HRV		

8 Evaluation of Existing Solution (10 Points)

The existing solution for monitoring Heart Rate Variability (HRV) through an Apple Watch faced significant challenges, primarily in the consistent and accurate retrieval of heart rate data. The initial attempts may not have fully leveraged Apple's HealthKit API, which is crucial for accessing physiological data streams from user devices. This shortfall likely contributed to the project's inability to reliably monitor HRV, a key indicator for preemptively identifying panic attacks and other anxiety-related episodes.

For enhancements, adopting a more robust approach to data integration with HealthKit is recommended to ensure a steady and reliable flow of HRV data. Improving the app's architecture to support efficient data handling and real-time processing will also be critical. Additionally, enhancing the user interface to make it more intuitive and engaging could significantly improve user satisfaction and retention. Implementing a comprehensive testing strategy, particularly focusing on automated tests, will help in maintaining high standards of quality and reliability. Finally, integrating advanced notification systems that can adapt based on user response and history will make the app not only a tool for monitoring but also a proactive component in managing user health. These improvements aim to transform the Heart Rate Variability Monitoring App into a dependable resource for individuals facing significant health challenges, thus enhancing their quality of life and well-being.

9 Individual Contributions Summary

For this task, please include a brief description of contributions made by each team member.

Example

- Austin Harrison: Created Non-functional Requirements, use cases, attended all meetings, wrote user stories, helped create and maintain documents.
- Tyler Woody: Created use case diagram, attended all meetings, wrote user stories, helped create and maintain documents.
- Brady Dullanty: Deep research and implementation of backend, attended all meetings, created, contributed, and maintained all project documents.
- William Reese: Designed slides for presentation, collaborated on details for back-end and system design, contributed to documents, and project planning.

10 System Architecture Design

• System Architecture Diagram:

Figure 1: You can get the app on the watch and phone from the app store. The watch uses healthkit at to record heart rate info, and detect events. Information is sent to the users phone, which then does more intense analysis and translation, as well as sending anonymized information to the API Gateway. The Backend filters and authorizes requests through a front facing AWS API gateway, with a lambda authorization function that checks several factors to authenticate. If authenticated, the api gateway translates the request in queries, which parse the expected json, storing data on the RDS database.

• UML Diagrams:

- Behavioral Diagrams:

HRV Mobile App Activity Diagram

Figure 2: Activity Diagram for HRV Mobile App

HRV Watch App Activity Diagram

Figure 3: Activity Diagram for HRV Watch App

- Structural Diagram:

Figure 4: Class Diagram for System Structure

11 UI Design

Figure 5: UI Prototype for HRV Project

12 Data Design

• Data Flow:

Database Entity Relationship

Figure 6: Users use the front end application on their mobile device to send storage requests, if they gave consent, through the API gateway and into our backend area, where a lambda and RDS database comunicate and store data.

• Database Schema:

Figure 7: The userdata table helps by using an anonymized ID and access key to ensure authentication and authorization. It also holds a dynamic MedicationsID, that changes when medications are changed, as well as being copied over when creating a TimeSectionDetails entry, as a snapshot of their medications at that time. The Time Section Details table is our main table, and has lots of references to foreign indexes and keys in the other tables. The other tables, (Medication, IBIData, and heart-rate data) all store an snapshot in time for the TimeSectionsDetails to refer to.

- Table Example Data:

HeartRateDataID	Time	ВРМ
04f87ded-5aed-47aa-a9eb-77325ab40cf5	1	800
04f87ded-5aed-47aa-a9eb-77325ab40cf5	2	810
04f87ded-5aed-47aa-a9eb-77325ab40cf5	3	805
04f87ded-5aed-47aa-a9eb-77325ab40cf5	4	820

Figure 8: Sample User Data Table

AnonymizedID	TimeSectionID	CreatedAt	HeartRateDataID	SDNN	RMSSD	PNN50	MedicationsID
0446489f-ece8-478b-b4aa-909f39c498f3	6524849f-bac9-4f32-8786-7fe29fcc5067	2025-03-10 19:41:49	f31b2be1-8704-4db9-94e2-41a283cebca7	50.5	40.7	85.3	NULL

Figure 9: Time Section Data Table Example

Figure 10: Medication Data Table Example

Figure 11: GAD7 Table Example

Figure 12: Heart Rate Data Table Example

13 Environment Setup

• Local Development Environment:

 Developing with a Mac is necessary, so We acquired an Apple Developers License, and we also secured an AWS account from our sponsor.

• Source Control:

- We used Github as our source Control.

• Testing and Debugging Tools:

- XCodeprovides simulation as well as programming capabilities.
- c# allowed us to use testing libraries
- AWS has built in testing for the lambda and aurora services.

• Documentation:

- Github has several readme's, and the code is commented.