Trovare la resistenza equivalente del circuito sotto rappresentato.

 $R_{eq} = 6 \Omega$.

La corrente in un circuito a singola maglia è pari a 5 A. Quando una resistenza aggiuntiva di 2 Ω viene inserita in serie, la corrente scende a 4 A. Qual era la resistenza nel circuito originale?

 $R = 8 \Omega$.

Considerando il circuito sottostante, calcolare la differenza di potenziale V_a - V_c .

Considerando il circuito sottostante, calcolare le correnti e la differenza di potenziale $V_b\text{-}V_d$.

Considerando il circuito sottostante, calcolare le correnti. Supponendo V_c = 0 calcolare V_a , V_b , V_d , V_e , V_f .

 $i_1 = 2 A$, $i_2 = -1 A$, $i_3 = 3 A$, $V_a = 33 V$, $V_b = 9 V$, $V_d = 21 V$, $V_e = V_f = 15 V$.

Considerando il circuito sotto riportato, calcolare la potenza dissipata dalle tre resistenze. Calcolare inoltre la potenza erogata dai due generatori e discutere il bilancio energetico del circuito.

Un filo di rame ($\rho = 1.7 \times 10^{-8} \Omega m$) e uno di chromel ($\rho = 100 \times 10^{-8} \Omega m$) entrambi di sezione S=4 mm² sono posti in serie e in essi passa una corrente di 0.2 mA. Calcolare i campi elettrici al loro interno e la carica accumulata all'interfaccia fra i due fili. Calcolare la ΔV ai capi dei due fili se la loro lunghezza è di 5 cm.

 E_{Cu} = 8.5x10⁻⁷ V/m, E_{ChA} = 5x10⁻⁵ V/m, Δ V = 2.5 μ V, Q = 1.26 J, P_{e2} = -0.16 J.

Un condensatore a facce piane parallele di superficie S = 56.5 dm² distanti d = 1 cm e riempito con un dielettrico di costante dielettrica $\varepsilon_r = 80$, viene caricato con un generatore di forza elettromotrice $V_0 = 100$ V in un circuito di resistenza complessiva R = 100 M Ω . Determinare il valore della carica sulle armature dopo $t^* = 4$ s dalla chiusura del circuito.

 $Q = 2.53 \mu C.$

Esercizio 3. L'interruttore in figura viene tenuto per un tempo molto lungo nella posizione a. all'istante t = 0 viene spostato nella posizione b. Calcolare la carica Q sul condensatore e la corrente i che attraversa la resistenza all'istante $t^* = 5$ µs.

 $Q = 5.46 \mu C. I = 0.54 A$