BÀI 2. PHƯƠNG TRÌNH MẶT CẦU

DẠNG 1. NHẬN DẠNG PHƯƠNG TRÌNH MẶT CẦU

Câu 1. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): $x^2 + (y+2)^2 + (z-2)^2 = 8$. Tính bán kính R của (S).

A.
$$R = 8$$
.

B.
$$R = 4$$

$$C_{2} R = 2\sqrt{2}$$

D.
$$R = 64$$

Câu 2. Trong không gian Oxyz, cho mặt cầu (S) có phương trình:

$$x^{2} + y^{2} + z^{2} - 2x - 2y - 4z + \frac{50}{9} = 0$$
.

Tìm toa đô tâm I và tính bán kính R của mặt cầu (S).

A. I(1;1;2) và
$$R = \frac{2}{3}$$

B.
$$I(-1;-1;-2)$$
 và $R = \frac{2}{3}$

C.
$$I(1;1;2)$$
 và $R = \frac{4}{9}$

D.
$$I(-1;-1;-2)$$
 và $R = \frac{4}{9}$

gian với hê đô **Câu 3.** Trong không toa Oxyzcho phương trình $x^{2} + y^{2} + z^{2} - 2(m+2)x + 4my - 2mz + 5m^{2} + 9 = 0$. Tîm m để phương trình đó là phương trình của một mặt cầu.

$$A = -5 < m < 5$$

B.
$$m < -5$$
 hoặc $m > 1$. **C.** $m < -5$.

n
$$m > 1$$

Câu 4. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình $x^2 + y^2 + z^2 - 2x + 4y - 4z - m = 0$ có bán kính R = 5. Tìm giá trị của m.

A.
$$m = 4$$
.

B.
$$m = -4$$
.

C.
$$m = 16$$
.

D.
$$m = -16$$
.

DANG 2. VIÉT PHƯƠNG TRÌNH MẶT CẦU

Câu 5. Phương trình mặt cầu tâm I(2;1;-2) bán kính R=2 là

A.
$$x^2 + y^2 + z^2 + 2x - 4y - 6z + 10 = 0$$

A.
$$x^2 + y^2 + z^2 + 2x - 4y - 6z + 10 = 0$$
 B. $x^2 + y^2 + z^2 - 2x - 4y + 6z + 10 = 0$

C.
$$(x-1)^2 + (y-2)^2 + (z+3)^2 = 3^2$$

C.
$$(x-1)^2 + (y-2)^2 + (z+3)^2 = 3^2$$
 D. $(x+1)^2 + (y+2)^2 + (z-3)^2 = 2^2$

Câu 6. Phương trình mặt cầu tâm I(2;1;-2) đi qua (3;2;-1) là

A.
$$x^2 + y^2 + z^2 - 4x - 2y + 4z - 6 = 0$$

A.
$$x^2 + y^2 + z^2 - 4x - 2y + 4z - 6 = 0$$
 B. $x^2 + y^2 + z^2 + 4x - 2y + 4z - 6 = 0$

C.
$$x^2 + y^2 + z^2 - 4x - 2y + 4z + 6 = 0$$

C.
$$x^2 + y^2 + z^2 - 4x - 2y + 4z + 6 = 0$$
 D. $x^2 + y^2 + z^2 - 4x - 2y - 4z + 6 = 0$

Câu 7. Phương trình mặt cầu đường kính AB biết A(2; -4; 6), B(4; 2; -2) là

A.
$$(x-3)^2 + (y+1)^2 + (z-2)^2 = 26$$

A.
$$(x-3)^2 + (y+1)^2 + (z-2)^2 = 26$$
. **B.** $(x+3)^2 + (y+1)^2 + (z-2)^2 = 26$.

C.
$$(x-3)^2 + (y-1)^2 + (z-2)^2 = 26$$

C.
$$(x-3)^2 + (y-1)^2 + (z-2)^2 = 26$$
. D. $(x-3)^2 + (y+1)^2 + (z+2)^2 = 26$.

Câu 8. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S) có tâm I(-1;4;2) và có thể tích bằng $\frac{256\pi}{3}$. Khi đó phương trình mặt cầu (S) là

$$\mathbf{A.}(x+1)^2 + (y-4)^2 + (z-2)^2 = 16.$$

B.
$$(x+1)^2 + (y-4)^2 + (z-2)^2 = 4$$
.

C.
$$(x-1)^2 + (y+4)^2 + (z+2)^2 = 4$$
.

$$\mathbf{D}_{\bullet}(x-1)^{2} + (y+4)^{2} + (z+2)^{2} = 4.$$

Câu 9. Trong không gian với hệ toạ độ Oxyz, cho I(0;2;3). Viết phương trình mặt cầu tâm Itiếp xúc với truc Ov.

A.
$$x^2 + (y+2)^2 + (z+3)^2 = 2$$
.

B.
$$x^2 + (y+2)^2 + (z+3)^2 = 3$$
.

C.
$$x^2 + (y-2)^2 + (z-3)^2 = 4$$
.

D.
$$x^2 + (y-2)^2 + (z-3)^2 = 9$$
.

Câu 10. Trong không gian với hệ tọa độ Oxyz, nếu mặt cầu (S) tâm I(a;b;c) bán kính bằng 1, tiếp xúc mặt phẳng (Oxz) thì

A.
$$|a| = 1$$
.

B.
$$|b| = 1$$
.

C.
$$|c| = 1$$
.

D.
$$a+b+c=1$$
.

Câu 11. Trong không gian với hệ trục tọa độ *Oxyz*, phương trình nào dưới đây là phương trình của mặt cầu tâm I(-3;2;-4) và tiếp xúc với mặt phẳng Oxz?

A.
$$(x-3)^2 + (y+2)^2 + (z-4)^2 = 2$$
.

B.
$$(x+3)^2 + (y-2)^2 + (z+4)^2 = 9$$
.

C.
$$(x+3)^2 + (y-2)^2 + (z+4)^2 = 4$$

C.
$$(x+3)^2 + (y-2)^2 + (z+4)^2 = 4$$
. **D.** $(x-3)^2 + (y+2)^2 + (z-4)^2 = 16$.

Câu 12. Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu đi qua hai điểm A(3;-1;2)B(1;1;-2) và có tâm thuộc truc Oz là

A.
$$x^2 + y^2 + z^2 - 2z - 10 = 0$$
.

B.
$$(x-1)^2 + y^2 + z^2 = 11$$
.

C.
$$x^2 + (y-1)^2 + z^2 = 11$$
.

D.
$$x^2 + y^2 + z^2 - 2y - 11 = 0$$
.

Câu 13. Bán kính mặt cầu đi qua bốn điểm O(0;0;0), A(4;0;0), B(0;4;0) và C(0;0;4) là

A.
$$\sqrt{2}$$

B.
$$2\sqrt{2}$$

C.
$$3\sqrt{2}$$

D.
$$2\sqrt{3}$$

Câu 14. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-4), B(1;-3;1), C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy).

A.
$$l = 2\sqrt{13}$$
.

B.
$$l = 2\sqrt{41}$$

C.
$$l = 2\sqrt{26}$$
.

D.
$$l = 2\sqrt{11}$$

Câu 15. Trong không gian với hệ toạ độ Oxyz, cho A(2;0;0), B(0;2;0), C(0;0;2), D(2;2;2). Mặt cầu ngoại tiếp tứ diện ABCD có bán kính là

B.
$$\sqrt{3}$$

C.
$$\frac{\sqrt{3}}{2}$$

D.
$$\frac{\sqrt{2}}{3}$$

Câu 16. Tọa độ tâm mặt cầu đi qua 4 điểm A(1;1;1); B(2;1;1); C(1;2;1); D(1;1;2) là

A.
$$\left(\frac{3}{2}; -\frac{3}{2}; \frac{3}{2}\right)$$

B.
$$(3;3;3)$$
 C. $(3;-3;3)$

D.
$$\left(\frac{3}{2}; \frac{3}{2}; \frac{3}{2}\right)$$

Câu 17. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(2;0;0), B(0;2;0), C(0;0;2). Gọi D là điểm đối xứng với gốc tọa độ ${\it O}$ qua trọng tâm ${\it G}$ của tam giác ${\it ABC}$. Gọi R là bán kính mặt cầu ngoại tiếp tứ diện ABCD. Tính R.

A.
$$R = \frac{\sqrt{3}}{2}$$
.

B.
$$R = \sqrt{3}$$

C.
$$R = \sqrt{2}$$

B.
$$R = \sqrt{3}$$
. **C.** $R = \sqrt{2}$. **D.** $R = \frac{\sqrt{5}}{2}$.

Câu 18. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có tọa độ đỉnh A(2; 0; 0), B(0; 4; 0), C(0; 0; 6), D(2; 4; 6). Gọi (S) là mặt cầu ngoại tiếp tứ diện $\stackrel{ABCD}{}$. Viết phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp 2 lần bán kính của mặt cầu (S).

A.
$$(x-1)^2 + (y-2)^2 + (z-3)^2 = 56$$
.

B.
$$x^2 + y^2 + z^2 - 2x - 4y - 6z = 0$$
.

C.
$$(x+1)^2 + (y+2)^2 + (z+3)^2 = 14$$
.

D.
$$x^2 + y^2 + z^2 - 2x + 4y + 6z - 12 = 0$$
.

Câu 19. Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;0;-3), B(-3;-2;-5). Biết rằng tập hợp các điểm M trong không gian thỏa mãn đẳng thức $AM^2 + BM^2 = 30$ là một mặt cầu(S). Tọa độ tâm I và bán kính R của mặt cầu (S) là

A.
$$I(-2;-2;-8); R=3$$
.

B.
$$I(-1;-1;-4)$$
; $R=\sqrt{6}$.

C.
$$I(-1;-1;-4); R=3$$
.

D.
$$I(-1;-1;-4)$$
; $R = \frac{\sqrt{30}}{2}$.

DẠNG 3. TƯƠNG GIAO GIỮA CÁC MẶT CẦU - ĐIỂM VÀ MẶT CẦU - MẶT CẦU VÀ MẶT PHẨNG

Câu 20. Cho $a,b,c \in \mathbb{R}$ sao cho hàm số $y = 2x^3 + ax^2 + bx + c$ đạt cực trị tại x = 1 đồng thời có y(0) = 2 và y(1) = -3. Hỏi trong không gian Oxyz, điểm M(a;b;c) nằm trong mặt cầu nào sau đây?

A.
$$(x-2)^2 + (y-3)^2 + (z+5)^2 = 90$$
.

B.
$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 25$$
.

C.
$$x^2 + y^2 + (z+5)^2 = 60$$
.

D.
$$(x+1)^2 + (y+2)^2 + (z-3)^2 = 49$$
.

Câu 21. Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;0;4), điểm M nằm trên mặt phẳng (Oyx) và $M \neq O$. Gọi D là hình chiếu vuông góc của O lên AM và E là trung điểm của OM. Biết đường thẳng DE luôn tiếp xúc với một mặt cầu cố định. Tính bán kính mặt cầu đó.

A.
$$R = 2$$
.

B.
$$R = 1$$
.

C.
$$R = 4$$
.

D.
$$R = \sqrt{2}$$
.

Câu 22. Mặt phẳng Oxy cắt mặt cầu $(S):(x-1)^2+(y-2)^2+(z-3)^2=14$ theo giao tuyến là đường tròn tâm H, bán kính R. Toa đô tâm H và bán kính R là

A.
$$H(1;2;0)$$
, $R=\sqrt{5}$.

B.
$$H(-1;-2;0)$$
, $R=\sqrt{5}$.

C.
$$H(1;2;0)$$
, $R=5$.

D.
$$H(1;0;2)$$
, $R = \sqrt{5}$.

Câu 23. Trong không gian với hệ tọa độ Ozyz cho các mặt cầu (S_1) , (S_2) , (S_3) có bán kính r=1và lần lượt có tâm là các điểm A(0;3;-1), B(-2;1;-1), C(4;-1;-1). Gọi (S) là mặt cầu tiếp xúc với cả ba mặt cầu trên. Mặt cầu (S) có bán kính nhỏ nhất là

A.
$$R = 2\sqrt{2} - 1$$
.

B.
$$R = \sqrt{10}$$
.

$$C_{1} R = 2\sqrt{2}$$

C.
$$R = 2\sqrt{2}$$
. **D.** $R = \sqrt{10} - 1$.

DANG 4. VÂN DỤNG CAO

Câu 24. Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;0;4), điểm M nằm trên mặt phẳng (Oxy) và $M \neq O$. Gọi D là hình chiếu vuông góc của O lên AM và E là trung điểm của OM. Biết đường thẳng DE luôn tiếp xúc với một mặt cầu cố định. Tính bán kính mặt cầu đó.

A.
$$R = 2$$
. **B.** $R = 1$. **C.** $R = 4$. **D.** $R = \sqrt{2}$.

Câu 25. Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;2;3) và đi qua điểm A(5;-2;-1). Xét các điểm B,C,D thuộc (S) sao cho AB,AC,AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng.

A. 256. **B.** 128. **C.**
$$\frac{256}{3}$$
. **D.** $\frac{128}{3}$.

Câu 26. Gọi (S) là mặt cầu đi qua A(1;1;1), tiếp xúc với 3 mặt phẳng tọa độ Oxy, Oyz, Oxz và có bán kính lớn nhất. Viết phương trình mặt cầu (S).

A.
$$(S):(x-3)^2+(y+1)^2+(z+1)^2=9$$
.

B.
$$(S): \left(x + \frac{3+\sqrt{3}}{2}\right)^2 + \left(y + \frac{3+\sqrt{3}}{2}\right)^2 + \left(z + \frac{3+\sqrt{3}}{2}\right)^2 = \frac{6+3\sqrt{3}}{2}.$$

C.
$$(S): \left(x - \frac{3 - \sqrt{3}}{2}\right)^2 + \left(y - \frac{3 - \sqrt{3}}{2}\right)^2 + \left(z - \frac{3 - \sqrt{3}}{2}\right)^2 = \frac{6 - 3\sqrt{3}}{2}.$$

D.
$$(S): \left(x - \frac{3 + \sqrt{3}}{2}\right)^2 + \left(y - \frac{3 + \sqrt{3}}{2}\right)^2 + \left(z - \frac{3 + \sqrt{3}}{2}\right)^2 = \frac{6 + 3\sqrt{3}}{2}.$$

Câu 27. Trong mặt phẳng tọa độ Oxyz, cho bốn điểm A(0;-1;2), B(2;-3;0), C(-2;1;1), D(0;-1;3). Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức $\overrightarrow{MA}.\overrightarrow{MB} = \overrightarrow{MC}.\overrightarrow{MD} = 1$. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?

A.
$$r = \frac{\sqrt{11}}{2}$$
. **B.** $r = \frac{\sqrt{7}}{2}$. **C.** $r = \frac{\sqrt{3}}{2}$. **D.** $r = \frac{\sqrt{5}}{2}$.

Câu 28. Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu $S: x-3^2+y-3^2+z-2^2=9$ và ba điểm A 1;0;0, B 2;1;3; C 0;2;-3. Biết rằng quỹ tích các điểm M thỏa mãn $MA^2+2\overrightarrow{MB}.\overrightarrow{MC}=8$ là đường tròn cố định, tính bán kính r đường tròn này.

A.
$$r = \sqrt{3}$$
. **B.** $r = 6$ **C.** $r = 3$. **D.** $r = \sqrt{6}$.

Câu 29. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(5;0;0) và B(3;4;0). Với C là điểm nằm trên trục Oz, gọi H là trực tâm của tam giác ABC. Khi C di động trên trục Oz thì H luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng

A.
$$\frac{\sqrt{5}}{4}$$
.

B.
$$\frac{\sqrt{3}}{2}$$
. **C.** $\frac{\sqrt{5}}{2}$.

C.
$$\frac{\sqrt{5}}{2}$$

D.
$$\sqrt{3}$$
.

- **Câu 30.** Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt cầu $(S_1): x^2 + y^2 + z^2 = 1$, $(S_2): x^2 + (y-4)^2 + z^2 = 4$ và các điểm $A(4;0;0), B(\frac{1}{4};0;0), C(1;4;0), D(4;4;0)$. Gọi M là điểm thay đổi trên $\left(S_1\right)$, N là điểm thay đổi trên $\left(S_2\right)$. Giá trị nhỏ nhất của biểu thức Q = MA + 2ND + 4MN + 6BC là
 - **A.** $2\sqrt{265}$.
- **B.** $\frac{5\sqrt{265}}{2}$. **C.** $3\sqrt{265}$. **D.** $\frac{7\sqrt{265}}{2}$.
- **Câu 31.** Trong không gian tọa độ *Oxyz* cho A(1;2;0), B(5;4;4), $C(\frac{11}{3};\frac{22}{3};-\frac{16}{3})$. Gọi (S_1) , (S_2) , (S_3) là 3 mặt cầu tâm lần lượt là A, B, C và có cùng bán kính là $\frac{13}{5}$. Xác định số tiếp diện chung của ba mặt cầu trên.
 - **A.** 6.

- **B.** 7.
- C. 8.
- **D.** 9.