Multilingual Distributional Semantics

Benno Kruit Sara Veldhoen

January 13, 2015

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

William Buar Divi

Multilingual Dbow

Lvaldatio

Results

Graphics and concluding words

Introduction - related work

Multilingual DM

Multilingual Dbow

Evaluation

Results

Graphics and concluding words

Introduction - related work

Figure: word2vec Skipgram

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Multilingual DM

Multilingual Dbow

Evaluatio

Result

Graphics and concluding word

Introduction - related work

Figure: word2vec dbow

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Multilingual DM

Multilingual Dbov

Evaluation

Result

Graphics and concluding words

Multilingual DM

Figure: Bilingual distributed memory. The same architecture is trained with English context and word prediction replaced by the other language(s).

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Multilingual DM

Multilingual Dbow

Result

Graphics and concluding words

Multilingual Dbow

Figure: Bilingual dbow

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Multilingual Divi

Multilingual Dbow

Resul

Graphics and concluding words

Multilingual Dbow

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Multilingual DM

Multilingual Dbow

Result

Graphics and concluding words

- Training a single embedding for parallel sentences
- Word embeddings are not trained
- Can be extended to more than two languages
- Results in 'good' sentence embeddings (without a compositional model)

Multilingual DM

Multilingual Dbow

Result

Graphics and concluding words

Discussio F1 baselin

Use the sentence embeddings to obtain word vector:

$$emb(w) = \frac{1}{freq(w, D)} \sum_{s \in D} freq(w, s) emb(s)$$

Quite good performance (as we will see later)

Multilingual Dbow

▶ Recall the model by Hermann and Blunsom:

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Multilingual Divi

Multilingual Dbow

Result

Graphics and concluding words

Multilingual DM

Multilingual Dbow

Result

Graphics and concluding words

Discussio F1 baselin

- We could have a similar training procedure
- Only: we are not training the sentences, but assume fixed 'gold standard' sentence embeddings

▶ So, we could plug in any compositional model

Evaluation

- Training word embeddings: on Europarl data (50k or 500k sentences)
- ► Monolingual (English) evaluation: analogy task
- Crosslingual evaluation: document classification

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Multilingual DM

Multilingual Dbow

 ${\sf Evaluation}$

Result

Graphics and concluding words

Result

Graphics and concluding words

Discussion

Crosslingual Doccument classification:

 Given word embeddings, obtain document representation for train and test documents in all languages

$$emb(doc) = \sum_{w \in doc} idf(w) * emb(w)$$

- ► Train a classifier (averaged perceptron) on the training document representations for one language
- ► Test classifier performance on the test document representations for another language

Evaluation

RCV (Reuters) data:

- ► English-German
- Multiclass classification:
 each document is assigned a single class (topic)
- Performance measure: accuracy
- ► Baseline: majority class

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Multilingual DM

Multilingual Dbow

Evaluation

Result

Graphics and concluding words

Evaluation

Multilingual Distributional Semantics

Kruit, Veldhoen

related work

Multilingual DM

Evaluation

TED data:

- Many languages
- Binary classification: each class (topic) has positive and negative examples
- ▶ Performance measure: F1 score
- ▶ Baseline: ??

Results

Monolingual evaluation on English:

	vector	RCV (1000)	TED
Setting	length	accuracy	F1
Baseline		.468	.118
I-Matrix	40	.861	.154
Paragraph mono	256	-	.399
Paragraph bi	256	-	.438
Paraword mono	256	.866	.186
Paraword bi	256	.898	.216
Paraword multi	256	.903	.245
Google News	300	.951	.486

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Multilingual DM

Multilingual Dbow

Evaluation

Results

Graphics and concluding words

Multilingual Db

Lvaidatio

Results

Graphics and concluding words

Word vectors	as	average	of the	dbow-trained	sentences
they occur in.					

- Sentences trained on 50k Europarl data in specified languages.
- Mono- and bilingual evaluation on TED data (F1 scores):

Sentences	sentence	Classification [train]-[test]								
trained on:	quality	EN-EN	DE-DE	EN-DE	DE-EN					
EN	.399	.186	.134	.084	.153					
DE	.381	.132	.091	.076	.132					
DE-EN	.622	.216	.189	.201	.220					
multi		.404	.368	.387	.339					

Multilingual Dbc

.

Results

Graphics and concluding words

•	Word vectors	as	average	of	the	dbow-trained	sentences
	they occur in.						

- ► Sentences trained on 50k Europarl data in all languages.
- multilingual evaluation on TED data (F1 scores):

F1	Tested on									
Trained on	de	en	es	fr	it	nl	pb			
de	0,36753	0,33879	0,4028	0,368	0,28221	0,37315	0,31928			
en	0,38686	0,40439	0,38929	0,32149	0,35167	0,37379	0,35102			
es	0,39853	0,30125	0,42759	0,38709	0,3536	0,36173	0,35515			
fr	0,39842	0,41654	0,54487	0,40679	0,38499	0,33246	0,40565			
it	0,40612	0,40535	0,37698	0,43608	0,37289	0,40004	0,35872			
nl	0,4265	0,39681	0,41736	0,39255	0,41243	0,42775	0,32053			
pb	0,40317	0,33343	0,36931	0,35449	0,37403	0,40549	0,31451			

Graphics and concluding words

Words from *multilingual* dbow paragraphs (7 languages)

Multilingual
Distributional
Semantics

Kruit, Veldhoen

ntroduction elated work

Multilingual DM

Multilingual Dbow

Evaluation

Results

Graphics and concluding words

Graphics and concluding words

Words from multilingual dbow paragraphs (7 languages)

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Multilingual DM

Multilingual Dbow

Evaluation

Result

Graphics and concluding words

Discussior F1 baseline

- unaland

(0)

Graphics and concluding words

Words from *English transfer* dbow paragraphs (7 languages)

Kruit, Veldhoen

Introduction related work

Multilingual DM

Multilingual Dbow

Evaluation

Result

Graphics and concluding words

JISCUSSION F1 baseline

Multilingual DM

Multilingual Dbow

concluding words

F1 baseline

$$Prec = \frac{TP}{TP + FP},$$
 $Rec = \frac{TP}{TP + FN},$
 $Acc = \frac{TP + TN}{TP + FP + TN + FN}$

Majority class:

$$neg > pos \rightarrow \begin{cases} Acc = \frac{TP + TN}{TP + FP + TN + FN} = \frac{TN}{TN + FN} = \frac{neg}{total} \\ Prec = \frac{TP}{TP + FP} = 0 \rightarrow F1 = 0 \end{cases}$$

$$P = P(pos) = \frac{pos}{total}$$
, $P(neg) = 1 - P$
 $pos = P * |X|$, $neg = (1 - P) * |X|$

$$TP = P * pos = P^2 * |X|$$

$$FP = P * neg = P * (1 - P) * |X|$$

$$FN = (1 - P) * pos = (1 - P) * P * |X|$$

$$F1 = \frac{2*TP}{2*TP + FN + FP}$$

$$= \frac{2 * P2 * |X|}{2 * P * P * |X| + (1 - P) * P * |X| + (1 - P) * P * |X|}$$

$$= \frac{2 * P^2}{2 * P^2 + (1 - P) * P + (1 - P) * P}$$

$$= \frac{2 * P}{2 * P + (1 - P) + (1 - P)} = \frac{2P}{2} = P$$

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Multilingual DM

Multilingual Dbow

Evaluation

Result

Graphics and concluding words

F1 baseline