Software para el Espectrofotómetro "MiniScan XE Plus" usado en el Diagnóstico de Patologías Dermatológicas en Pacientes

Gabriel Núñez*,§,¶, Harold Vazques*,§, Patricia Guerrero*,§, y Aarón Muñoz[†],‡,§

*Facultad Experimental de Ciencias y Tecnología, Departamento de Computación

†Facultad Experimental de Ciencias y Tecnología, Departamento de Física

‡Centro de Investigaciones Médicas y Biotecnológicas de la Universidad de Carabobo

§Universidad de Carabobo, Valencia, Venezuela

¶Email: gabriel.nzn@gmail.com

Resumen—El Espectrofotómetro de reflexión difusa "MiniScan XE Plus" es un instrumento de medición utilizado por el Centro de Investigaciones Médicas y Biotecnológicas de la Universidad de Carabobo (CIMBUC), el cual ayuda a los dermatólogos a establecer diagnósticos sobre patologías en la piel de pacientes de manera precisa y sin necesidad de realizar biopsias. No obstante, el software disponible para la utilización de dicho instrumento es poco amigable, dificil de utilizar e imposible de modificar y extender. La presente investigación tiene como objetivo desarrollar un nuevo software que se ajuste a las necesidades de los dermatólogos y que garantice un mejor aprovechamiento del instrumento en cuestión.

I. Introducción

La Espectroscopía de Reflectancia Difusa es una técnica óptica con la cual es posible estudiar las propiedades bioquímicas y las condiciones estructurales de un tejido biológico, analizando la interacción luz-tejido de una manera no invasiva [1]. Durante el diagnóstico no invasivo no se crea ninguna ruptura en la piel, y los pacientes no se someten al dolor ni a cicatrices durante el tratamiento [2].

En este sentido, el Centro de Investigaciones Médicas y Biotecnológicas de la Universidad de Carabobo (CIMBUC) dispone de un Espectrofotómetro de reflexión difusa denominado "MiniScan XE Plus" y creado por la empresa "Hunter-Lab" [3]. Para emplear el uso de este instrumento, el CIMBUC ha tenido que utilizar el software disponible para la utilización del mismo, denominado "Hunter-Lab Universal Software" [4].

El "HunterLab Universal Software" es un software comercial y propietario que sólo puede ejecutarse en Sistemas Operativos Windows que ya están obsoletos, y que fue descontinuado en el año 2008, por lo tanto no existe la posibilidad de modificarlo ni extenderlo; su interfaz gráfica de usuario está en idioma inglés, y contiene más opciones disponibles de las necesarias para manejar el instrumento en estudio, por lo tanto es poco amigable y difícil de entender por los dermatólogos. Sumado al hecho de que los resultados generados por dicho software no poseen el formato con el que trabajan los dermatólogos, haciendo necesario su traspaso manual.

Debido a lo explicado previamente, los dermatólogos experimentan dificultades al momento de utilizar el "Hunter-Lab Universal Software", ralentizando las consultas con los pacientes, y generando la necesidad de asistencia técnica disponible en todo momento para su debida utilización; por último disminuye el nivel de aprovechamiento potencial del instrumento de medición en estudio.

Ahora bien, con respecto a software de calidad, así como los servicios que proveen, los productos de software tienen cierto número de atributos asociados que reflejan la calidad de ese software, los cuales se resumen en Mantenibilidad, Confiabilidad, Eficiencia y Usabilidad [5].

Debido a que el "HunterLab Universal Software" es propietario, su código fuente no está disponible, de manera que este software no puede ser cambiado ni adaptarse a necesidades específicas, y por lo tanto no posee el primer atributo esencial para un buen software: la Mantenibilidad; Por la misma razón de que no se tiene el código fuente, no se puede evaluar completamente el nivel de protección y seguridad existentes en este software, y consecuentemente no se puede determinar con certidumbre el segundo atributo: la Confiabilidad. Por último la Usabilidad del software existente es baja, ya que la interfaz gráfica de usuario es poco amigable.

Teniendo en cuenta todo lo mencionado previamente, y siguiendo los lineamientos de diseño y calidad del software que se consideran pertinentes, se está desarrollando un software amigable, modificable y extensible, el cual va a ofrecer las funciones que necesitan los dermatólogos para establecer diagnósticos, empleará el formato de historia médica con el que trabajan, y permitirá la exportación de los resultados a un formato de archivo portable. Por último, con esta investigación se está creando una base sobre la cual se prodrán trabajar proyectos futuros que utilicen los resultados de este nuevo software en desarrollo como insumo.

La presente investigación está organizada en cuatro secciones después de la introducción. En la Sección II se explican diversos conceptos fundamentales para la investigación, los cuales sustentan el desarrollo de las funcionalidades que debe ofrecer el software en desarrollo. En la Sección III se describe la metodología de investigación y la metodología de desarrollo del software que se está utilizando. En la Sección IV se detallan los recursos y las tecnologías utilizadas para el desarrollo del nuevo software. Finalmente, en la Sección V se exponen los resultados obtenidos hasta el momento y las conclusiones.

II. MARCO TEÓRICO

A. Antecedentes

- 1) Coordenadas de Cromaticidad CIE 1964: Son coordenadas que representan los valores triestímulo de un color, las cuales siguen el estándar del sistema tricromático CIE 1964 [6]. El procedimiento utilizado para calcular estas coordenadas [7] está siendo implementado en el software en desarrollo.
- 2) Espacio CIE 1976(L*a*b*): Es un espacio de transformación de coordenadas del color definido por la "Commission Internationale de l'Eclairage" [6], el cual emplea el uso de las coordenadas de Cromaticidad CIE 1964. Las fórmulas definidas para el cálculo de las coordenadas resultantes de este espacio [7] están siendo implementadas en el software en desarrollo, para determinar ciertas propiedades ópticas en la piel de los pacientes.
- 3) Coeficiente de Absorción: La melanina que se encuentra distribuida en la epidermis es el principal agente absorbente de la piel, y por lo tanto determina en gran parte el color de la piel [8]. La técnica empleada para recuperar el coeficiente de absorción en la epidermis de la piel humana [8] está siendo implementada en el software en desarrollo, para determinar el nivel de concentración de melanina en la piel de los pacientes.
- 4) Índice de Eritema: El objetivo de este índice es evaluar solamente la luz absorbida por la hemoglobina [2], tomando en cuenta el coeficiente de absorción de la melanina [8]. El método aplicado para calcular este índice [2] está siendo implementado en el software en desarrollo, para determinar el nivel de inflamación en la piel de los pacientes.

B. Observación Directa

1) HunterLab Universal Software: Es un software comercial y privativo de 16-bit diseñado para el Sistema Operativo Microsoft Windows Version 3.x, con la posibilidad de ejecutarse en Windows 95, Windows 2000 y Windows NT (hasta Windows XP), y creado para la utilización del "MiniScan XE Plus", además de otros instrumentos de la empresa "HunterLab" [4], el cual fue descontinuado en el año 2008. Este software dispone de algunas de las funcionalidades que están siendo desarrolladas en el nuevo software, razón por la cual es una referencia importante de observación.

III. MARCO METODOLÓGICO

A. Investigación-Acción

Es un método de investigación que a finales de la década de los años 90 empezó a crecer en popularidad, para el uso en investigaciones académicas de sistemas de información. Este método produce resultados de investigación altamente relevantes, debido a que se fundamenta en la acción práctica, dirigida a resolver una situación de problema inmediato mientras que se informa cuidadosamente la teoría [9].

Las actividades de la investigación se están realizando según la representación más habitual de la Investigación-Acción [9]. Dicha representación se compone de cuatro fases, las cuales son descritas en la Tabla 1.

TABLA 1. Actividades del proyecto según metodología Investigación-Acción

Fase	Actividades	
Diagnóstico	Identificar los problemas y limitaciones que presenta el "Hunter- Lab Universal Software".	
Planificación	Seleccionar la metodología de desarrollo, determinar los requisitos del software y realizar un plan de trabajo.	
Acción	Desarrollar el nuevo software, tomando en cuenta los requisitos identificados previamente, los lineamientos de diseño y calidad de software.	
Evaluación	Realizar las pruebas de funcionalidad e interfaz gráfica de usuario del nuevo software.	
Reflexión	Presentar los resultados y los análisis de las pruebas realizadas.	

B. SCRUM

Es un marco de trabajo de procesos que ha sido usado para gestionar el desarrollo de productos complejos desde principios de los años 90. En este marco de trabajo se pueden emplear varias técnicas y procesos. SCRUM muestra la eficacia relativa de las prácticas de gestión de producto y las prácticas de desarrollo [10].

Adicionalmente a la utilización de la metodología SCRUM, se están incluyendo algunos artefactos de la metodología RUP [11], para así generar suficiente documentación durante el diseño y el desarrollo del nuevo software. La configuración de la metodología SCRUM utilizada en conjunto con los artefactos elegidos de la metodología RUP, es la ilustrada en la Tabla 2.

TABLA 2. Configuración de los artefactos a utilizar de SCRUM y RUP

Artefactos	SCRI	IM

Backlog de producto: Lista dinámica de las cosas que se deben hacer, sin especificar cómo se deben hacer.

Backlog de sprint: Recopilación sintética de los ítems del backlog del producto, en donde se quiebran los ítems en tareas pequeñas que no demanden una labor superior a una jornada de trabajo.

Incremento de funcionalidad: El producto final de cada sprint. El mismo debe asemejarse a un software funcionando, permitiendo implementarse operativamente sin restricciones en un ambiente productivo.

Artefactos RUP

Documento de Visión: Documento que define el alcance en alto nivel y propósito del producto.

Glosario: Documento que define la terminología empleada en los artefactos.

Documento de requerimientos no funcionales: Documento que describe los requerimientos que tienen un impacto significativo en la arquitectura y en la satisfacción del usuario.

Diagrama de Casos de Uso: Diagrama que muestra los procesos del negocio que son proporcionados para los actores del negocio.

IV. RECURSOS Y TECNOLOGÍAS

A. Recursos

1) MiniScan XE Plus: Es un instrumento de medición del color creado por la empresa "HunterLab", de diseño compacto y portable [12]. Este instrumento mide la cantidad de luz que refleja una muestra dentro del espectro de luz que va desde 400nm hasta 700nm, generando como resultado 31 puntos espectrales dentro de ese rango, los cuales son el insumo principal del software en desarrollo.

- 2) Adaptador RS232-USB: Es un cable adaptador que habilita la comunicación de dispositivos que emplean puerto Serial con computadoras con puertos USB, creando puertos COM virtuales dichas computadoras mientras se realiza la comunicación [13]. Este cable es utilizado como adaptador para el cable de comunicación RS232 DB-9 Hembra a RJ-45 del "MiniScan XE Plus" [4], habilitando su utilización en computadoras que no poseen puerto Serial.
- 3) MiniScan XE Plus OCX Kit: Es un archivo diseñado por la empresa "HunterLab" para controlar y/o realizar mediciones con el "MiniScan XE Plus". Su objetivo es proveer a los desarrolladores con un componente reutilizable de software que da acceso a las caracteristicas más comunmente utilizadas por el instrumento [12].

B. Tecnologías

- 1) Qt: Es un framework de desarrollo de aplicaciones multiplataforma para sistemas de escritorio, sistemas integrados y sistemas móviles [14]. Se está utilizando la versión Open Source de este framework para el desarrollo del nuevo software.
- 2) Visual Studio: Es un entorno integrado de desarrollo (IDE) para crear aplicaciones en varias plataformas como Windows, Android y iOS [15]. Se está utilizando la versión gratuita de este IDE para desarrollar una librería escrita en Visual Basic .NET, la cual actúa como intermediaria entre el OCX Kit y el framework Qt, para así utilizar las características del "MiniScan XE Plus" junto con el nuevo software en desarrollo.
- 3) QCustomPlot: Es un widget de Qt C++ para el trazado y visualización de datos [16]. Este widget está siendo empleado por el software en desarrollo para visualizar la Curva de Reflectancia Difusa y la Curva de Absorbancia Aparente asociadas a los 31 puntos espectrales.

V. RESULTADOS Y CONCLUSIONES

A. Resultados

Por medio del cable adaptador RS232-USB, y empleando el uso de la librería escrita en Visual Basic .NET en desarrollo, se logró establecer la comunicación entre el software que está siendo desarrollado en Qt, y el "MiniScan XE Plus", por medio del archivo "MiniScan XE Plus OCX Kit". Hasta el momento, el software en desarrollo es capaz de establecer una conexión el "MiniScan XE Plus", desconectarlo, estandarizarlo, realizar la medición de una muestra, y por último representar los 31 puntos espectrales obtenidos de la medición en una de Curva de Reflectancia Difusa.

En la Figura 1 se puede visualizar la funcionalidad de visualización de la Curva de Reflectancia Difusa en el "HunterLab Unirversal Software", en donde se puede apreciar que el diseño de la interfaz gráfica de usuario está obsoleto, dicha interfaz está en idioma inglés, y la visualización de la curva no resalta los 31 puntos espectrales, ni muestra con exactitud cada uno de los valores de longitud de onda y porcentajes de reflectancia que representan.

Ahora bien, en la Figura 2 se puede observar la funcionalidad de visualización de la Curva de Reflectancia Difusa

del nuevo software en desarrollo, a partir de los 31 puntos espectrales. En contraste con las observaciones realizadas al "HunterLab Universal Software" en la Figura 1, la interfaz gráfica de usuario del nuevo software posee un diseño actual, está en idioma español, y por último resalta los 31 puntos espectrales, mostrando con exactitud los 31 valores de longitud de onda y los porcentajes de reflectancia que representan.

FIGURA 1. Curva de Reflectancia del HunterLab Universal Software

FIGURA 2. Curva de Reflectancia del software en desarrollo

B. Conclusiones

Si bien el nuevo software está en una fase temprana de desarrollo, se puede apreciar que provee de información más detallada sobre la Curva de Reflectancia Difusa que el "HunterLab Universal Software"; no solamente eso, sino que el empleo del Framework Qt para su desarrollo permite su ejecución en Sistemas Operativos Windows actuales, por lo que se concluye que este software será capaz de ajustarse a las necesidades de los dermatólogos, y garantizará un mejor aprovechamiento del "MiniScan XE Plus".

AGRADECIMIENTOS

•••

REFERENCIAS

- A. D. Pérez, Estudio de la Reflexión Óptica Difusa en Tejido Biológico. Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, 2012.
- [2] K. S. Bersha, Spectral Imaging And Analysis Of Human Skin. University of Eastern England, 2010.
- [3] Hunter Associates Laboratory, HunterLab, The World's true measure of color. http://www.hunterlab.com/about-us.html.
- [4] Universal Software Versions 4.10 and Above User's Manual. Reston, Virginia: Hunter Associates Laboratory, 2001.
- [5] I. Sommerville, *Ingeniería del Software*, 7ma ed. Madrid, España: Pearson Education, 2005.
- [6] CIE, Commission Internationale de l'Eclairage, International Commission on Illumination. http://www.cie.co.at/index.php.
- [7] J. Schanda, *Colorimetry: understanding the CIE system.* Hoboken, New Jersey: John Wiley & Sons, 2007.
- [8] F. Narea et al., Recuperación del coeficiente de absorción de la epidermis en la piel humana. Sociedad Española de Óptica, 2015.
- [9] R. L. Baskerville, Investigating Information Systems with Action Research, vol 2. Atlanta, GA: Association for Information Systems, 1999.
- [10] K. Schwaber y J. Sutherland, *The Definitive Guide to Scrum: The Rules of the Game.* http://www.scrumguides.org/.
- [11] P. Kroll y P. Kruchten, *The Rational Unified Process Made Easy: A Practitioner's Guide to the RUP*. Addison-Wesley, 2003.
- [12] MiniScan XE Plus User's Guide Version 2.4. Reston, Virginia: Hunter Associates Laboratory, 2006.
- [13] Magneto Tech Research, *USB to Serial adapters Wiki*. http://www.usb-serial-adapter.org/.
- [14] The Qt Company, Qt, a Cross-Platform Framework for Application Development. https://wiki.qt.io/About_Qt.
- [15] Microsoft, Visual Studio Community, a fully-featured, extensible IDE. https://www.visualstudio.com/products/visual-studio-community-vs
- [16] QCustomPlot, a Qt C++ widget for plotting and data visualization. http://www.qcustomplot.com/index.php/introduction.