Department of Mathematics

Indian Institute of Technology Delhi

MTL 411/MAL245 Functional Analysis: Major Test

Maximum Marks: 50

Time: 2 hours

- 1. State whether the statements [(a)-(j)] given below are true or false. Justify your answer.
 - (a) An open interval (a, b) in \mathbb{R} is of first category.
 - (b) If $X = \mathcal{R}[a, b]$, the space of all functions $f : [a, b] \to \mathbb{R}$ such that |f| is Riemann integrable, then the function $||f||_1 = \int_a^b |f(t)| dt$ is not a norm on X.
 - (c) The set $S=\left\{f\in\mathcal{C}[0,1]:f(\frac{1}{2})=0\right\}$ is open in $\left(\mathcal{C}[0,1],\|\cdot\|_{\infty}\right)$
 - (d) Let $\mathcal{C}[-1,1]$ be endowed with the norm $||f||_1 := \int_{-1}^1 |f(t)| dt$. Consider the sequence $(f_n)_{n=2}^{\infty}$ defined by

$$f_n(t) = \begin{cases} 0 & \text{if} \quad t \notin \left[\frac{-1}{n}, \frac{-1}{n}\right], \\ 1 + nt & \text{if} \quad \frac{-1}{n} \le t \le 0, \\ 1 - nt & \text{if} \quad 0 \le t \le \frac{1}{n}. \end{cases}$$

Then $f_n \to 0$ as $n \to \infty$.

- Let \mathcal{P} denote the space of all polynomials with coefficients in \mathbb{K} endowed with the sup-norm. Define $T: \mathcal{P} \to \mathcal{P}$ by Tp(x) = np(x), where n is the degree of the polynomial p. Then T is a linear unbounded operator.
- (f) A continuous linear functional f on a normed linear space X is called an extension of a given continuous linear functional g defined on a subspace M of X, if f(x) = g(x) for all $x \in M$. If f is an extension of g, then $||f|| \ge ||g||$.
- (g) Let $X = \left(\mathcal{C}[0,1], \|.\|_{\infty}\right)$ and $T: X \to \mathbb{R}$ be defined by $Tf = \int_0^1 f(t) \, dt$. Then T is a bounded linear map. Further, since T is an isometry it follows that $\|T\| = 1$.
- (h) Let T be an injective bounded linear operator from a Banach space X onto a Banach space Y.

 Then T is a homeomorphism.
- (i) If $\{v_1, v_2, \dots, v_n\}$ is a set of linearly independent vectors in a normed linear X, then for any set a_1, a_2, \dots, a_n of real numbers, there exists a continuous linear functional f on X such that $f(v_k) = a_k$ for $k = 1, 2, \dots, n$.

Definition 1 A function $f: \mathbb{R} \to \mathbb{R}$ is said to be 2π -periodic if $f(.+2\pi) = f(.)$. We define $\mathcal{C}_{2\pi} := \{f: \mathbb{R} \to \mathbb{R} | f \text{ is } 2\pi - \text{periodic and continuous on } \mathbb{R} \}$ and endow the space $\mathcal{C}_{2\pi}$ with the norm $\|f\|_{\infty,[-\pi,\pi]} := \sup\{|f(x)|: -\pi \le x \le \pi\} = \sup\{|f(x)|: x \in \mathbb{R}\}$. A trigonometric polynomial of degree N is a function of the form $p(t) := \frac{a_0}{2} + \sum_{k=1}^{N} [a_k \cos(kt) + b_k \sin(kt)]$. The collection of all such trigonometric polynomials of degree N is denoted by T_N .

(j) For every function f in $C_{2\pi}$ there is a $p^* \in T_N$ such that $||f - p^*||_{\infty, [-\pi, \pi]} = \inf\{||f - p||_{\infty, [-\pi, \pi]} : p \in T_N\}$.

 $[10 \times 3 = 30 \text{ Marks}]$

- 2. (a) Let X and Y be Banach spaces and $T: X \to Y$ be a bounded linear operator. Prove that T is injective and Rg(T) is closed in Y if and only if there exists a constant C>0 such that $\|x\| \le C \|Tx\| \quad \forall \quad x \in X$.
 - (b) Let $X = \mathcal{C}[0,1]$ be endowed with the supporm. Let $T: X \to X$ be a linear map defined by

$$f(t) \mapsto \int_0^t f(s) \, \mathrm{d}s \quad (t \in [0, 1]).$$

Is T bounded? Is T injective? Is Rg(T) closed? Justify.

[4+3=7 Marks]

3. (a) Let $T: X \to Y$ be a linear operator between the Banach spaces X and Y such that

$$x_n \to 0$$
 and $Tx_n \to y$ as $n \to \infty \Longrightarrow y = 0$.

Is T is bounded? Give reason to support your answer.

(b) Let $\mathcal{C}[a,b]$ be endowed with the norm $||f||_2 = [\int_a^b |f(t)|^2 dt]^{1/2}$. Consider a fixed $g \in \mathcal{C}[a,b]$ and define $T: \mathcal{C}[a,b] \to \mathbb{K}$ by

$$f \mapsto \int_a^b f(t) \overline{g(t)} \, dt.$$

Prove that T is a bounded linear functional and $||T|| = ||g||_2$.

[3+4=7 Marks]

- 4. Test whether the following linear transformations are compact or not.
 - (a) Let $\mathcal{C}[a,b]$ be endowed with the supnorm and let $A:\mathcal{C}[a,b] \to \mathcal{C}[a,b]$ be defined by

$$Ax(s) = \int_a^s x(t) dt \quad \forall s \in [a, b].$$

(b) Let $B: l^p \to l^p$ be the left-shift operator defined by

$$B(x_1, x_2, x_3 \dots) = (x_2, x_3, \dots).$$

[3+3=6 Marks]