

Rethinking Network Pruning under the Pre-train and Fine-tune Paradigm

Dongkuan Xu¹, Ian En-Hsu Yen², Jinxi Zhao², Zhibin Xiao²

¹The Pennsylvania State University

²Moffett AI

Background

- Neural networks become larger and larger [1]
- But resources (memory, computation, power) are constrained [2]

Evolution of deep learning models over time, in terms of model size

Embedded Systems e.g., Mobile Devices

Real-Time Tasks e.g., **Autonomous Car**

Background

- Compression Is Desirable
- Pruning is a popular compression approach

Illustration of model compression [1]

Illustration of network pruning [2]

Background: Structural Pruning vs. Sparse Pruning

- Structural pruning: a channel, a layer
- Sparse pruning: a neuron

Sparse pruning for fully connected networks [1]

Motivation: Sparse Pruning

Sparse pruning is more impressive than structural pruning in CNN community

Width	Sparsity	NNZ params	Top-1 acc.	Top-5 acc.
0.25	0%	0.46M	50.6%	75.0%
0.5	0%	1.32M	63.7%	85.4%
0.75	0%	2.57M	68.4%	88.2%
1.0	0%	4.21M	70.6%	89.5%
	50%	2.13M	69.5%	89.5%
	75%	1.09M	67.7%	88.5%
	90%	0.46M	61.8%	84.7%
	95%	0.25M	53.6%	78.9%

MobileNets sparse vs structural results [1]

• However, existing sparse pruning of BERT yields inferior results than its small-dense counterparts

Proposed: Knowledge-Aware Sparse Pruning

- Two gaps in pre-training & fine-tuning procedure
- Proposed: pruning at distilling

General pre-training & fine-tuning

Pruning at Distilling (Proposed)

Proposed: Knowledge-Aware Sparse Pruning

Student Network: pretrained BERT

Cyclic pruning

Teacher Network: finetuned BERT

Experimental Results

• GLUE

Method	Remain. Weights	QNLI (Acc)	MRPC (F1)	RTE (Acc)	CoLA (Mcc)	Avg.			
Without Pruning									
BERT-base	-	91.8	88.6	69.3	56.3	76.5			
ELMo	-	71.1	76.6	53.4	44.1	61.3			
Structural Pruning									
BERT ₆ -PKD	50%	89.0	85.0	65.5	45.5	71.3			
BERT-of-Theseus	50%	89.5	89.0	68.2	51.1	74.5			
DistilBERT	50%	89.2	87.5	59.9	51.3	72.0			
MiniLM ₆	50%	91.0	88.4	71.5	49.2	75.0			
TinyBERT ₆	50%	90.4	87.3	66.0	54.0	74.4			
$TinyBERT_4$	18%	88.7	86.8	66.5	49.7	72.9			
Sparse Pruning									
BERT-Tickets	30-50%	88.9	84.9	66.0	53.8	73.2			
CompressBERT	10%	76.8	-	_	-	_			
RPP	11.6%	88.0	81.9	67.5	-	-			
SparseBERT	5%	90.6	88.5	69.1	52.1	75.1			

Comparison on the dev sets: Compression ratio = x20, but only 1.4% performance drop

Hardware performance

Performance under different compression ratios on the MRPC dataset (sentences per second)

Discussion

- Why is sparse pruning an important topic?
 - Sparse pruning leads to significantly higher compression ratio than structural pruning
 - Commercial hardware platforms have been starting to support sparse tensor operation
- Sparse pruning is trending and with promising future

Google (March 9, 2021): comparison of the processing time for the dense (left) and sparse (right) models of the same quality [1]

Q & A

Web: www.personal.psu.edu/dux19/

Email: dux19@psu.edu

