SIECI KOHONENA UCZENIE BEZ NAUCZYCIELA

JOANNA GRABSKA-CHRZĄSTOWSKA

Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA

SAMOUCZENIE SIECI metoda Hebba

W mózgu wzmocnieniu podlegają te drogi przekazywania sygnałów, które stanowią połączenia ośrodków ulegających równoczesnemu pobudzeniu lub hamowaniu.

Dla sygnału
$$X=< x_1^{(j)}, x_2^{(j)},, x_n^{(j)}>$$

dla neuronu o numerze - k
sygnał wyjściowy - y_k^(j)
wagi na i-tym wejściu:

$$w_{ki}^{(j+1)} = w_{ki}^{(j)} + \eta y_k^{(j)} x_i^{(j)}$$

REGUŁA WIDROW-HOFFA (DELTA)

$$\delta = \mathbf{V} + \eta \delta \mathbf{X}$$

$$\eta > = 0$$

$$\mathbf{Z} - \mathbf{y}$$

$$\mathbf{Z} > \mathbf{y}$$

czyli odpowiedź sieci jest ZA MAŁA

REGUŁA HEBBA

$$W' = W + \eta y X$$

$$\eta > = 0$$

Samouczenie sieci metodą Hebba (2)

Wady samouczenia metodą Hebba:

- Stosunkowo niska efektywność uczenia
- Przemnożony wpływ początkowych wartości wag
- Możliwość pomijania niektórych klas w nauczonej sieci
- Powstawanie reduntantnych nadprezentacji klas

POCZĄTKOWE POŁOŻENIE PUNKTÓW REPREZENTUJĄCYCH NEURONY

PROCES SAMOUCZENIA

PROCES SAMOUCZENIA

PROCES SAMOUCZENIA

Marsjanie, Marsjanki, Marsjaniątka i Marsjamory

ZASADA OWCZEGO PĘDU

ZASADA OWCZEGO PĘDU

ZASADA OWCZEGO PĘDU

BARDZO DUŻY WSPÓŁCZYNNIK UCZENIA

BARDZO DUŻY WSPÓŁCZYNNIK UCZENIA

MAŁY WSPÓŁCZYNNIK UCZENIA

MAŁY WSPÓŁCZYNNIK UCZENIA

stan po pewnym czasie nauki

DŁUGOTRWAŁY PROCES UCZENIA

utrata zdolności do akceptowania nowości

BARDZO DUŻA LICZBA NEURONÓW

BARDZO DUŻA LICZBA NEURONÓW

BARDZO DUŻA LICZBA NEURONÓW

FANTAZJE W SIECIACH NEURONOWYCH

GIGANTOMANIA

RABUNEK ... i klasa popada w zapomnienie

RABUNEK ... i klasa popada w zapomnienie

RABUNEK...

i klasa popada w zapomnienie

...i nie ma już prawdziwych Marsjan 🗆

WARIANTY METOD SAMOUCZENIA

METODA PRZYROSTOWEGO SAMOUCZENIA (differential hebbian learning)

$$w_{ki}^{(j+1)} = w_{ki}^{j} + \eta \left[\left(x_{i}^{j} - x_{i}^{j-1} \right) \left(y_{k}^{j} - y_{k}^{j-1} \right) \right]$$

WARIANTY METOD SAMOUCZENIA

METODA "GWIAZDY WEJŚĆ" (instar learning). Jest najczęściej wykorzystywaną formułą uczenia nienadzorowanego w analizie skupień.

$$w_{ki}^{(j+1)} = w_{ki}^j + \eta^j (x_i^{j} - w_{ki}^j)$$
 $\eta^{(0)} = 0.1 - \lambda$

METODA INSTAR LEARNING GWIAZDA WEJŚĆ

$$w_{ki}^{(j+1)} = w_{ki}^{(j)} + \eta [x_i^{(j)} - w_{ki}^{(j)}]$$

METODA INSTAR LEARNING

$$w_{ki}^{(j+1)} = w_{ki}^{(j)} + \eta [x_i^{(j)} - w_{ki}^{(j)}]$$

Miarą podobieństwa wektora wejściowego i wektora wag jest COSINUS KĄTA unormowanych wektorów.

METODA OUTSTAR LEARNING "GWIAZDY WYJŚĆ"

$$w_{ki}^{(j+1)} = w_{ki}^{(j)} + \eta^{(j)} [y_k^{(j)} - w_{ki}^{(j)}]$$

$$\eta^{(j)} = 0, 1 - \lambda * j$$

i – ustalone

k - zmienne

Teuvo Kohonen...

... i jego historyczne dzieło

SAMOUCZENIE SIECI METODĄ KOHONENA

Po pojawieniu się w chwili j znormalizowanego sygnału

$$X = < x_1^{(j)}, x_2^{(j)},, x_n^{(j)} >$$

sygnały wyjściowe wszystkich neuronów sa porównywane i wybierany jest

zwycięzca tzn. neuron o numerze k, którego sygnał wyjściowy y_k (j) będzie mieć

największą wartość

to wówczas współczynnik wagi na 1-tym wejściu zwycięskiego neuronu zmienia sie:

$$w_{ki}^{(j+1)} = w_{ki}^{(j)} + \eta(x_i^{(j)} - w_{ki}^{(j)})$$

Uczenie może być rozciągnięte na inne neurony w ramach tzw. sąsiedztwa:

$$\mathbf{w_{mi}}^{(j+1)} = \mathbf{w_{mi}}^{(j)} + \eta h(\mathbf{m,k})(\mathbf{x_i}^{(j)} - \mathbf{w_{mi}}^{(j)})$$

gdzie funkcje sąsiedztwa h(m,k) określona jako malejąca funkcja odległość p
między neuronem m a zwycięzcą k

SAMOUCZENIE SIECI METODĄ KOHONENA

ZASADA RYWALIZACJI:

Zwycięzca bierze wszystko

WINNER TAKES ALL (WTA)

jesli wprowadzimy sąsiedztwo

to obowiązuje zasada:

Zwycięzca bierze większość

WINNER TAKES MOST (WTM)

Po nauczeniu sieć na wejściowy sygnał daje odpowiedź w postaci rozkładu pobudzeń neuronów warstwy topologicznej

Interpretacja tej odpowiedzi musi być jednak dopasowana do znanych przypadków

Neurony, które rozpoznają pojawianie się punktów z poszczególnych podobszarów przestrzeni sygnałów wejściowych

Podczas samouczenia położenie wektora wag neuronu może ulegać częstym zmianom, ale w ostatecznym efekcie tego "myszkowania" neuron lokuje się w samym środku grupy reprezentowanych danych wejściowych.

PRZYKŁAD ZASTOSOWANIA SIECI KOHONENA

Obrazy wejsciowe (tylko 2 cechy)

WAGI PO NAUCZENIU SIECI

PRZEBIEG UCZENIA W SIECI KOHONENA

SAMOUCZENIE SIECI METODĄ KOHONENA

Sposób oznaczania sąsiednich neuronów podczas prezentacji uczenia sieci Kohonena.

SĄSIEDZTWO JEDNOWYMIAROWE

RODZAJE SĄSIEDZTWA DWUWYMIAROWEGO

RODZAJE SĄSIEDZTWA DWUWYMIAROWEGO

SĄSIEDZTWO DWUWYMIAROWE

SĄSIEDZTWO JEDNOWYMIAROWE

Opisane zjawisko zostało wykryte przez samego Kohonena

Mapa topologiczna o podobnej strukturze, jak mapy tworzone przez sieci Kohonena, powstaje w korze mózgowej człowieka w obszarze czucia somatycznego oraz sterowania.

Obszary rejestrujące doznania czucia

Obszary sterujące ruchem

Podobnie jak w sieci Kohonena w obszarach otaczających bruzdę Rolanda na powierzchni kory mózgowej wytwarza się mapa topologiczna sygnałów z całego ciała. Obszary z których pochodzi więcej sygnałów zajmują więcej miejsca (angażują więcej neuronów), nawet jeśli anatomicznie są małe.

Takie proporcje ma ciało człowieka, jeśli brać pod uwagę wielkość struktur nerwowych związanych ze sterowaniem poszczególnymi częściami ciała

MAPY KOHONENA

Rys. 10.20. Przykład trudności w uzyskiwaniu skutecznej samoorganizacji występujących w przypadku zbyt dużego rozrzutu początkowych wartości współczynników wag neuronów.

Rys. 10.21. Przykład ignorowania części danych wejściowych, występujący niekiedy w przypadku zbyt dużego rozrzutu początkowych wartości współczynników wag neuronów.

ZJAWISKO "SKRĘCENIA" W SIECI KOHONENA

Część danych wejściowych została zignorowana!

ZJAWISKO "SKRĘCENIA" W SIECI KOHONENA

Rzadko występujący przypadek "skręcenia się" sieci Kohonena odtwarzającej obszar w przestrzeni sygnałów wejściowych w postaci krzyża

ZJAWISKO "SKRĘCENIA" W SIECI KOHONENA

Grupowaniu w sieci Kohonena mogą podlegać kraje świata

http://www.cis.hut.fi/research/som-research/worldmap.html

World Poverty Map

Samoorganizujące Mapa (SOM) mogą być wykorzystywane do przedstawiania skomplikowanych korelacji w danych statystycznych. Oto dane składające się z danych statystycznych Banku Światowego krajów w 1992 roku. W sumie zostało wykorzystanych 39 wskaźników opisujących różne wskaźniki jakości, takie jak stan zdrowia, odżywiania, usługi edukacyjne, itp. Kraje, które miały podobne wartości wskaźników znalazł się blisko siebie na mapie. Poszczególne gromady na mapie zostały automatycznie kodowane w różnych kolorach, tak, żeby kolory płynnie płynnie zmieniały się na ekranie mapy. W wyniku tego procesu, do każdego kraju był w rzeczywistości automatycznie przypisany kolor opisujący jego rodzaj ubóstwa w stosunku do innych krajów.

The Country Names

APG	Afghanistan	GTM	Guatemala	NZL	New Zeeland
AGO	Angola	ΠKG	Tiong Kong	OAN	Taiwan, China
ALD	Allenie	מאח	TT and to make	OMN	Oman
ARE	United Amb Emirates	TTT	Teiti	PAK	Pakistan
ARG	Argentina	ΠUN	Пторту	PAN	Рапата
AUS	Australia	TWO	Dorkina Paso	माजप	Pero
AUT	Austria	TDN	Indonesia	गाप	Philippines
זכדנד	Dormdi	כדאד	Tnd in	PNG	Papua New Guinea
DEL.	Delgium	TRL.	Trdend	POL	Palend
אמת	Denin	TUN	Tran, Mamie Rep.	TRT	Portogal
TAGE	Dangladesh	πq	Ттед	PRY	Paragray
गभसार	Dolgaria	प्रश	Terrect	ROM	Romania
TACIL	Dolivia	TTA	Italy	RWA	Remanda
TITLA	Плист	JAM	Jamaica	SAU	Saudi Ambia
TITN	13 ho ten	JOR	Jarden	SDN	Suden
π	Муаппат	JPN	Лереп	SEN	Senegal
DWA	Потачения	KIM	Кетун	SGP	Singapore
CAF	Central African Rep.	KITM	Cambodia	SLE	Sierra Leone
CAN	Canada	KOR	Котев, Вер.	SLV	El Salvador
CITE	Switzerland	KWT	Kummit	SOM	Somelie
CIII.	Chile	TAO	Lea PDR	SWIT	Sweden
CHN	Chine	LIIN	Lehenon	SYR	Syrian Amb Rep.

CIV	Cate d'Ivaire	התו	Liberia	TCD	Ched
CMR	Cameroon	LDY	Liles	TOO	Тодо
cca	Congo	LKA	Sri Lanka	ТПА	Theiland
COL	Colombia	tso	Lesatha	TTO	Trinidad and Tohago
CRI	Costa Rica	MAR	Мотоссо	TUN	Tminin
CSK	Ozeehoulovak in	MDG	Madagascar	\mathbf{T}	Turkey
וז אכז	Germany	MEX	Merico	T7A	Тапканів
DNK	Denmark	MLI	Mali	DEA	Liganda
DOM	Dominiem Rep.	MNG	Mangalin	T.TEV	Uragany
DZA	Algeria	MOZ	Massmhique	LEA	United States
ECU	Ecoedor	MRT	Mauritania	VEN	Venesnela
EGY	Egypt, Arab Rep.	MUS	Macritica	VXM	Viet Nam
ESP	Spain	MWT	Malawi	YEM	Yemen, Rep.
ए. ग गा	Ethiopia	MYS	Malaysia	YUG	Yogoslavia
MIN	Finland	NAM	Namibia	ZAF	South Africa
PRA	Рипос	MER	Niger	ZAR	Zame
av_D	Gahan	NGA	Nigeria	ZMD	Zambia
साप	United Kingdom	MC	Nisangua	ZWE	Zimbahwe
GITA	Ghana	מגדא	Netherlanda		
GIN	Grinea	MOR	Normay		
arc	Отессе	NPL	Nepel		

ZMIANA CELÓW SAMOORGANIZACJI W TRAKCIE UCZENIA SIECI

WYMIAR SIECI A WYMIAR PRZESTRZENI SYGNAŁÓW WEJŚCIOWYCH

We wszystkich wyżej podawanych przykładach wymiar przestrzeni sygnałów i wymiar struktury sieci były zgodne

Można jednak pokazać przykład sieci, w której wymiar przestrzeni wejściowej jest inny niż wymiar topologii sieci

MAPY KOHONENA

Zjawisko "skręcenia się" sieci Kohonena (3)

Rzadko występujący przypadek "skręcania się" sieci Kohonena odtwarzającej obszar w przestrzeni sygnałów wejściowych w postaci krzyża

Niekiedy obszar pokrywany przez sieć Kohonena może być dosyć skomplikowany w kształcie

Wniosek

Sieć Kohonena może służyć do tego, żeby przy jej pomocy "rzutować" wielowymiarowe zbiory danych do przestrzeni o małej wymiarowości.

MECHANIZM SUMIENIA (lub zmęczenia neuronu)

Mechanizm sumienia - część neuronów może nie znaleźć się w strefie wpływu neuronów wygrywających i tym samym może nie zmienić swoich początkowych wag (nie uczestniczy w procesie uczenia).

Neurony często wygrywające pozwalają wygrywać innym

Np. wprowadzamy potencjał p_i

$$p_i \to \begin{cases} p_i + \frac{1}{N} \mod 1 & i \neq w \\ p_i - p_{min} & i = w \end{cases}$$

Zwyciezca wybierany jest tylko z neuronów dla których $p_i>p_{min}$

$$d(x, t_w) = \min\{d(x, t_i) : p_i > p_{min}\}\$$

47	47	55	55	55	37	57	57	57	12	12	24	24	24
47	47	49	55	36	36	36	57	12	11	11	24	24	17
48	48	49	49	36	36	25	25	11	11	11	14	17	17
48	48	49	53	10	25	25	25	3	11	14	14	14	17
62	62	46	10	10	33	25	3	3	3	16	14	2	2
62	62	46	35	33	33	33	59	18	16	16	18	9	9
62	62	35	35	35	33	43	29	13	6	22	22	18	18
60	60	60	61	59	61	15	15	29	54	54	22	34	18
63	63	60	44	61	61	61	15	28	54	9	27	27	7
42	60	66	66	32	58	58	61	20	20	20	27	8	8
42	42	66	32	32	32	65	65	52	20	4	4	26	26
42	56	40	40	32	38	38	65	52	41	19	19	1	4
30	45	50	31	31	56	56	39	52	41	28	1	1	1
30	45	50	31	31	31	56	56	39	41	28	28	5	5

Grupowanie banków – wynik działania sieci Kohonena

(w zależności od wskaźników finansowych)

Mapa cech przedsiębiorstw uzyskana z pomocą sieci Kohonena

PODSUMOWANIE

Struktura sieci Kohonena

Warstwa topologiczna

Cechy charakterystyczne:

- sieć uczy się bez nauczyciela
- sieć ma dwie warstwy o wyraźnie rozdzielonych funkcjach
- uporządkowane neurony wyjściowe
- uczony głównie neuron "zwycięski"
- ważną rolę odgrywa "sąsiedztwo"
- w wyniku uczenia powstaje mapa topologiczna
- aprioryczna interpretacja wartości wyjściowych jest niemożliwa,
- po uczeniu można ustalić, jakie znaczenie mają poszczególne rejony mapy topologicznej - ale wyłącznie na podstawie analizy konkretnych przykładów danych wejściowych

ZASTOSOWANIA SIECI KOHONENA

- » Rozpoznawanie obrazów
- Klasyfikacja
- » Zgłębianie danych
- > Tworzenie modeli np.:
 - model świata zewnętrznego w "mózgu" robota
 - model uczciwego przedsiębiorcy
 - model działania procesu

LITERATURA

Tadeusiewicz Ryszard, Sieci neuronowe. W-wa 1993

<u>Tadeusiewicz Ryszard</u>, Elementarne wprowadzenie do techniki sieci neuronowych z przykładowymi programami. W-wa 1998