UFC - Departamento de Computação - Métodos Numéricos II - 2017.1

Avaliação Parcial I

Nome: Thiago de Sousa Garcia - 374204

Questão 1)

1.4) Solução: Considerando a função $f(x) = x/\tan(x)$, a ser integrada no intervalo (0,pi/2), para integrá-la devemos utilizar apenas as fórmulas de Newton Cotes aberta, pois a função não é calculável nas extremidades(0 e pi/2). Além de Newton Cotes também utilizaremos a quadratura de Gauss Legendre e os métodos de exponenciação.

Observações: *A precisão utilizada é de 0.0001.

- * O resultado exato é dado por (pi/2)*ln(2) = 1.088793045
- * Consideramos (pi/2) = 1.57079632679

Métodos	Resultado	Erro
Newton Cotes Aberta grau 0	1.0888	6.955 * (10 ^ -6)
Newton Cotes Aberta grau 1	1.08882	2.6955 * (10 ^ -5)
Newton Cotes Aberta grau 2	1.08879	3.045 * (10 ^ -6)
Newton Cotes Aberta grau 3	1.08879	3.045 * (10 ^ -6)
Newton Cotes Aberta grau 4	1.08879	3.045 * (10 ^ -6)

Gauss Legendre 1 ponto	1.0888	6.955 * (10 ^ -6)
Gauss Legendre 2 pontos	1.08879	3.045 * (10 ^ -6)
Gauss Legendre 3 pontos	1.0888	6.955 * (10 ^ -6)
Gauss Legendre 4 pontos	1.08873	6.3045 * (10 ^ -5)
Exponenciação Simples	1.08878	1.3045 * (10 ^ - 5)

Questão 2)

Solução:

Temos que:

$$f(x,y) = \sqrt{100 - ((x*x) + (y*y))}$$

Onde, a parametrização de x e y em relação é tal que:

$$x = 2N_2(\alpha, \beta) + 3 N_3(\alpha, \beta) + N_4(\alpha, \beta)$$

$$y = N_2(\alpha, \beta) + 3 N_3(\alpha, \beta) + 2N_4(\alpha, \beta)$$

sendo:

$$N_2(\alpha, \beta) = -\frac{1}{4}(\alpha + 1)(\beta - 1)$$

$$N_3(\alpha, \beta) = \frac{1}{4}(\alpha + 1)(\beta + 1)$$

$$N_4(\alpha, \beta) = -\frac{1}{4}(\alpha - 1)(\beta + 1)$$

Derivamos os termos N_2 , $N_3\,$ e $\,N_4\,$ para facilitar a derivação dos termos $\,x\,$ e $\,y\,$ que são compostos pelos termos anteriores :

Derivando N_2 em relação a α temos:

$$\frac{dN_2}{d\alpha} = -\frac{1}{4}(\beta - 1)$$

Derivando $N_3\,$ em relação a $\,\alpha\,$ temos:

$$\frac{dN_3}{d\alpha} = \frac{1}{4}(\beta + 1)$$

Derivando N_4 em relação a $\,\alpha\,$ temos:

$$\frac{dN_4}{d\alpha} = -\frac{1}{4}(\beta + 1)$$

Agora, iremos derivar todos os termos anteriores, mas agora em relação a β :

$$\frac{dN_2}{d\beta} = -\frac{1}{4}(\alpha + 1)$$

$$\frac{dN_3}{d\beta} = \frac{1}{4}(\alpha + 1)$$

$$\frac{dN_4}{d\beta} = -\frac{1}{4}(\alpha - 1)$$

Como o termo x é composto pela soma dos termos N2,N3 e N4, e a derivada da soma, é a soma das derivadas, temos que:

A derivada de x em relação a α é:

$$\frac{dx}{d\alpha} = -2\frac{1}{4}(\beta - 1) + 3\frac{1}{4}(\beta + 1) - \frac{1}{4}(\beta + 1) = -\frac{1}{2}(\beta - 1) + \frac{3}{4}(\beta + 1) - \frac{1}{4}(\beta + 1) = -\frac{1}{2}(\beta - 1) + \frac{1}{2}(\beta + 1) = 1$$

A derivada de x em relação a β é:

$$\frac{dx}{d\beta} = -\frac{1}{2}(\alpha+1) + \frac{3}{4}(\alpha+1) - \frac{1}{4}(\alpha-1) = \frac{1}{4}(\alpha+1) - \frac{1}{4}(\alpha-1) = \frac{1}{2}$$

A derivada de y em relação a α é:

$$\frac{dy}{da} = -\frac{1}{4}(\beta - 1) + \frac{3}{4}(\beta + 1) - \frac{1}{2}(\beta - 1) = \frac{1}{2}$$

A derivada de y em relação a β é:

$$\frac{dy}{d\beta} = -\frac{1}{4}(\alpha+1) + \frac{3}{4}(\alpha+1) - \frac{1}{2}(\alpha-1) = \frac{1}{2}(\alpha+1) - \frac{1}{2}(\alpha-1) = 1$$

Logo, a matriz jacobiana é:

E temos que o determinante de J é:

$$det(J) = 1 - (\frac{1}{4}) = \frac{3}{4}$$

Logo,:

$$V = \int_{-1}^{1} \int_{-1}^{1} f(x(\alpha, \beta), y(\alpha, \beta)) det[J(\alpha, \beta)] d\alpha d\beta$$

Substituindo $det[J(\alpha, \beta)]$ por $\frac{3}{4}$, temos:

$$V = \int_{-1}^{1} \int_{-1}^{1} f(x(\alpha, \beta), y(\alpha, \beta)) * (\frac{3}{4}) d\alpha d\beta$$

$$V = (\frac{3}{4}) * \int_{-1}^{1} \int_{-1}^{1} f(x(\alpha, \beta), y(\alpha, \beta)) d\alpha d\beta$$

Iremos utilizar 3 pontos de Legendre para cada integral, os pontos e as raízes estão determinadas abaixo:

Pontos e raízes para α :

$$\alpha_1 = -\sqrt{\frac{3}{5}}$$

$$\alpha_2 = 0$$

$$\alpha_3 = \sqrt{\frac{3}{5}}$$

$$w_1 = \frac{5}{9}$$

$$w_2 = \frac{8}{9}$$

$$w_3 = \frac{5}{9}$$

$$w_2 = \frac{8}{9}$$

$$w_3 = \frac{5}{9}$$

Pontos e raízes para β :

$$\beta_1 = -\sqrt{\frac{3}{5}}$$

$$\beta_2 = 0$$

$$\beta_3 = \sqrt{\frac{3}{5}}$$

$$w_1 = \frac{5}{2}$$

$$w_1 = \frac{5}{9}$$

$$w_2 = \frac{8}{9}$$

$$w_3 = \frac{5}{9}$$

$$V = \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{\beta}} w_{i}w_{j} f(x(\alpha_{i}, \beta_{j}), y(\alpha_{i}, \beta_{j})) det[J(\alpha_{i}, \beta_{j})]$$

$$V = (\frac{3}{4}) * \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{\beta}} w_{i}w_{j} \sqrt{100 - ((x(\alpha_{i}, \beta_{j})^{2} + y(\alpha_{i}, \beta_{j})^{2}))}$$

Daí, ao calcularmos as integrais temos que o volume é de aproximadamente:

$$V \approx 29.5062$$