

Learning Transferable Subspace for Human Motion Segmentation

Lichen Wang, Zhengming Ding, Yun Fu

SMILE Lab Northeastern University **Learning Transferable Subspace for Human Motion Segmentation**

Lichen Wang, Zhengming Ding, Yun Fu.

Goal:

Segmenting temporal data is a critical technique.

- **Action Recognition**
- **Motion Prediction**
- Temporal data analysis

Background:

- Existing subspace clustering methods have no prior information for guidance.
- Current self-representation strategy which may hinder the clustering performance in insufficient or corrupted data situation.
- In real-world conditions, a lot of external, welllabeled data are available.

Proposed Strategy:

Explore well-labeled source knowledge from other domains to facilitate the target temporal data clustering.

$$\min_{P,Z} ||PX - PX_S Z||_F^2 + \lambda_1 (||V||_F^2 + ||P||_F^2) + \lambda_2 tr(ZL_W Z^T)$$
s.t. $V = Z, Z > 0$. $PXHX^T P = I$

(a) Result of MAD Dataset			(b) Result of Keck Dataset			(c) Result of Weizmann Dataset		
Method	Acc	NMI	Method	Acc	NMI	Method	Acc	NMI
LRR	0.2397	0.2249	LRR	0.4297	0.4862	LRR	0.3638	0.4382
LSR	0.3979	0.3667	LSR	0.4894	0.4548	LSR	0.5091	0.5093
TSC	0.5556	0.7721	TSC	0.4781	0.7129	TSC	0.6111	0.8199
TSC (Weiz)	0.5418	0.7684	TSC (MAD)	0.4653	0.6935	TSC (MAD)	0.5961	0.8032
TSC (Keck)	0.5473	0.7691	TSC (Weiz)	0.4548	0.6862	TSC (Keck)	0.5931	0.7971
Ours (Weiz)	<u>0.5736</u>	0.8202	Ours (MAD)	<u>0.5395</u>	0.8049	Ours (MAD)	0.5585	0.8267
Ours (Keck)	0.5792	0.8286	Ours (Wei)	0.5485	<u>0.7928</u>	Ours (Keck)	0.5775	<u>0.8247</u>

Modified Model	Accuracy	NMI
Ours	0.5415	0.8111
$ X - X_S Z _F^2$	0.5224	0.8066
$ X - [X_S X_T]Z _F^2$	0.5268	0.7736
$ PX - PXZ _F^2$	0.4530	0.6866

