

Assignment 3

*Don't try googling, come to office hours. These are basic problems and similar problem will come in midsem

1. Sup Sup

Show that if A and B are bounded subsets of \mathcal{R} , then $A \cup B$ is a bounded set. Show also that $\sup(A \cup B) = \sup\{\sup(A), \sup(B)\}.$

2. Finite set contain sup

Show that a nonempty finite set $S \subset \mathcal{R}$ contains its supremum.

Hint - Use Mathematical Induction

3. Some properties of sup and inf

Let S be a non-empty bounded set in \mathcal{R} .

- a. Let a > 0, and let $aS := \{as : s \in S\}$. Prove that $\inf(aS) = a \inf(S)$ and $\sup(aS) = a \sup(S)$
- b. Let b < 0, and let $bS := \{bs : s \in S\}$. Prove that sup(bS) = b inf(S) and sup(bS) = b inf(S)

4. Inverse of element in a Group

Let G be a group, and show that $(xy)^{-1}=y^{-1}x^{-1}$ for any two element x and y in G. Show also that $(x^{-1})^{-1}=x$ for any element x in G.

5. Singular and non-singular elements

Let R be a Ring with identity (i.e contains an object denoted by 1 that when multiplied by any other element of ring returns the same object). Now if an element x in R has an inverse (that is $x \times x^{-1} = 1$), then x is said to be non-singular or invertible. And if inverse doesn't exist, it is called singular. With this defination in mind, show the following -

a. A ring with idenity whose all non-zero element are invertible and is commutative w.r.t to multiplication is a field. (Just follow the axiom, it is clear

Assignment 3 1

as sea water)

- b. The set of all $N \times N$ sized matrices, whose element are in $\mathcal R$ is not a field. Also check whether it has some singular matrices other than zero.
- c. Show that set of even intergers is a ring. Also tell whether 2 is singular or non-singular.

6. Modulo rings

Let m be a positive integer, and I_m the set of all non-negative intergers less than m: $I_m = \{0,1,\ldots,m-1\}$. Let a and b are two numbers in I_m , we define there sum and product as follows: $a+b=(a+b)\mathrm{mod}(m)$ and $ab=(ab)\mathrm{mod}(m)$. That is remainder after division by m of "ordinary" sum and product. Show that I_m with these operation is a ring.

a. (Not graded) Also show that I_m is a field \iff m is a prime number.

7. Limit of a sequence

Consider the ever green sequence $(a_n)_{n=0}^{\infty}$ where $a_n = \frac{1}{n}$.

- a. What is the limit of this sequence?
- b. We all know it is zero, prove it!

Note - While proving please use ideas of proof, especially how to write proof of double quantifiers (you have done quantifer in discrete structures \Leftrightarrow). No marks will be awarded otherwise!

Hint - Use epsilon defination of limit

8. Properties of Limits

This is just one, prove all other relevant property too. Say $(a_n)_{n=0}^{\infty}$ and $(b_n)_{n=0}^{\infty}$ are 2 sequences which converge, i.e limit exist. Show that limit of $(a_n + b_n)_{n=0}^{\infty}$ = limit of $(a_n)_{n=0}^{\infty}$ + limit of $(b_n)_{n=0}^{\infty}$. Use ideas of proof and quantifier, and again no marks otherwise.

Assignment 3 2