

Содержание

1	Исх	кодные данные	3
2	Таб 2.1	блица истиности Функция в аналитическом виде	4
3	Ми	нимизация булевой функции методом Квайна-Мак-Класки	5
4	Coc	ставление импликантной таблицы	6
	4.1	Полная импликантная таблица	6
	4.2	Упрощенная импликантная таблица	6
	4.3	Ядро покрытия	
	4.4	Определение минимального покрытия методом Петрика	
	4.5	Минимизация булевой функции с помощью карт Карно	
		4.5.1 Нахождение МДНФ	
		4.5.2 Нахождение МКНФ	9
	4.6	Преобразование минимальных форм булевой функции	9
		4.6.1 Факторное преобразование для МДНФ	
		4.6.2 Факторное преобразование для МКНФ	
5	Син	нтез схем в различных базисах	10
	5.1	Булевый базис с парафазными входами	10
	5.2	В универсальном базисе (И-НЕ)	
	5.3	В универсальном базисе (И-НЕ) с ограничением на 2 входа	
6	Δи	DIMO CYOMLI	13

Исходные данные

Вариант 132
$$f=1$$
 $5 \le (x_4x_5+x_1x_2x_3) \le 8$ $f=d$ $(x_1x_2x_3)=1$

2 Таблица истиности

N	$x_1x_2x_3x_4x_5$	x_4x_5	$(x_4x_5)_{10}$	$x_1x_2x_3$	$(x_1x_2x_3)_{10}$	(+)	f
0	00000	00	0	000	0	0	0
1	00001	01	1	000	0	1	0
2	00010	10	2	000	0	2	0
3	00011	11	3	000	0	3	0
4	00100	00	0	001	1	1	d
5	00101	01	1	001	1	2	d
6	00110	10	2	001	1	3	d
7	00111	11	3	001	1	4	d
8	01000	00	0	010	2	2	0
9	01001	01	1	010	2	3	0
10	01010	10	2	010	2	4	0
11	01011	11	3	010	2	5	1
12	01100	00	0	011	3	3	0
13	01101	01	1	011	3	4	0
14	01110	10	2	011	3	5	1
15	01111	11	3	011	3	6	1
16	10000	00	0	100	4	4	0
17	10001	01	1	100	4	5	1
18	10010	10	2	100	4	6	1
19	10011	11	3	100	4	7	1
20	10100	00	0	101	5	5	1
21	10101	01	1	101	5	6	1
22	10110	10	2	101	5	7	1
23	10111	11	3	101	5	8	1
24	11000	00	0	110	6	6	1
25	11001	01	1	110	6	7	1
26	11010	10	2	110	6	8	1
27	11011	11	3	110	6	9	0
28	11100	00	0	111	7	7	1
29	11101	01	1	111	7	8	1
30	11110	10	2	111	7	9	0
31	11111	11	3	111	7	10	0

2.1 Функция в аналитическом виде

КДНФ

 $f = \overline{x_1} x_2 \overline{x_3} x_4 x_5 \vee \overline{x_1} x_2 x_3 x_4 \overline{x_5} \vee \overline{x_1} x_2 x_3 x_4 x_5 \vee x_1 \overline{x_2} x_3 \overline{x_4} x_5 \vee x_1 \overline{x_2} \overline{x_3} x_4 \overline{x_5} \vee x_1 \overline{x_2} \overline{x_3} \overline{x_4} x_5 \vee x_1 \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5} \vee$

$KKH\Phi$

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5})(x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5)(x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})(x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)(x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$

3 Минимизация булевой функции методом Квайна-Мак-Класки

	K^0	$(f) \vee N$	$\overline{(f)}$		K^1 (,	f)				$K^2(f)$			I	$K^3(f)$		
Ī	1	00100		1	0010X	1-2		1	001XX	1-6	2-4	 1	X01XX	1-10	2-6	3-4
Ī	2	00101		2	001X0	1-3		2	X010X	1-15	3-5					
	3	00110		3	X0100	1-6		3	X01X0	2-16	3-8					
	4	10001		4	001X1	2-8		4	X01X1	4-26	5-22					
	5	10010		5	X0101	2-12		5	0X11X	6 - 24	7 - 21					
	6	10100		6	0011X	3-8		6	X011X	6-28	8-22					
	7	11000	$\sqrt{}$	7	0X110	3-10		7	10XX1	9-26	10-25					
	8	00111	$\sqrt{}$	8	X0110	3-13		8	1XX01	10-29	11-27					
	9	01011	$\sqrt{}$	9	100X1	4-11	$\sqrt{}$	9	10X1X	12 - 28	13-25					
	10	01110	$\sqrt{}$	10	10X01	4-12	$\sqrt{}$	10	101XX	15-28	16-26					
	11	10011	$\sqrt{}$	11	1X001	4-14	$\sqrt{}$	11	1X10X	15-30	17-27					
	12	10101	$\sqrt{}$	12	1001X	5-11	$\sqrt{}$	12	11X0X	18-30	20-29					
	13	10110	$\sqrt{}$	13	10X10	5-13										
	14	11001	$\sqrt{}$	14	1X010	5-15	,									
	15	11010	$\sqrt{}$	15	1010X	6-12	$\sqrt{}$									
	16	11100	$\sqrt{}$	16	101X0	6-13	$\sqrt{}$									
	17	01111	$\sqrt{}$	17	1X100	6-16	$\sqrt{}$									
	18	10111	$\sqrt{}$	18	1100X	7-14										
	19	11101	$\sqrt{}$	19	110X0	7-15	,									
				20	11X00	7-16										
				21	0X111	8-17	$\sqrt{}$									
				22	X0111	8-18										
				23	01X11	9-17	,									
				24	0111X	10-17	$\sqrt{}$									
				25	10X11	11-18	$\sqrt{}$									
				26	101X1	12-18	$\sqrt{}$									
				27	1X101	12-19	$\sqrt{}$									
				28	1011X	13-18										
				29	11X01	14-19	$\sqrt{}$									
				30	1110X	16-19										
1	Пъи	atom K	4 _	Ø												

При этом $K^4 = \emptyset$

Тогда множество Z(f) будет состоять из:

, ,										
	Z(f)									
1	1X010									
2	110X0									
3	01X11									
4	0X11X									
5	10XX1									
6	1XX01									
7	10X1X									
8	1X10X									
9	11X0X									
10	X01XX									

4 Составление импликантной таблицы

4.1 Полная импликантная таблица

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
		1	1	1	0	0	0	0	0	0	0	1	1	1	1	1
		0	1	1	0	0	0	1	1	1	1	0	0	0	1	1
		1	1	1	0	1	1	0	0	1	1	0	0	1	$\mid 0 \mid$	0
		1	0	1	1	0	1	0	1	0	1	0	1	0	0	1
1	1X010					*								*		
2	110X0											*		*		
3	01X11	(*)		(*)												
4	0X11X		(*)	(*)												
5	10XX1				*		*		*		*					
6	1XX01				*				*				*			*
7	10X1X					*	*			*	*					
8	1X10X							*	*						*	*
9	11X0X											*	*		*	*
10	X01XX							*	*	*	*					

Существенные импликанты отмечены в таблице как (*). С учётом существенных испликант можно составить упрощенную испликантную таблицу. Существенные импликанты при этом образуют ядро покрытия как его обязательную часть.

4.2 Упрощенная импликантная таблица

		1	1	1	1	1	1	1	1	1	1	1	1
		0	0	0	0	0	0	0	1	1	1	1	1
		0	0	0	1	1	1	1	0	0	0	1	1
		0	1	1	0	0	1	1	0	0	1	0	0
		1	0	1	0	1	0	1	0	1	0	0	1
		a	b	c	d	е	f	g	h	k	1	m	n
1X010	Α		*								*		
110X0	В								*		*		
10XX1	С	*		*		*		*					
1XX01	D	*				*				*			*
10X1X	Е		*	*			*	*					
1X10X	F				*	*						*	*
11X0X	G								*	*		*	*
X01XX	Н				*	*	*	*					

Также теперь представляется возможным определить ядро покрытия

4.3 Ядро покрытия

Получаем ядро покрытия из существенных импликант: $T = \begin{cases} 01X11 \\ 0X11X \end{cases}$

4.4 Определение минимального покрытия методом Петрика

Выпишем булево выражение Y, определяющее условие покрытия всех 0-кубов (существенных вершин), не покрываемых существенными импликантами в соответсвии с таблицей:

 $Y = (C \lor D)(A \lor E)(C \lor E)(F \lor H)(C \lor D \lor F \lor H)(E \lor H)(C \lor E \lor H)(B \lor G)(A \lor B)(F \lor G)(D \lor F \lor G)$ Применяя законы поглощения и логического умножения получаем:

 $Y = ACGH \lor DGEF \lor BDEGH \lor BCEFG \lor DCEGH \lor ADEFG \lor ACEFG \lor ADEGH \lor ABCDFH$ Одно из этих термов является минимальным, рассмотрим все и посчитаем S^a и S^b для каждого случая, а далее выберем минимальное:

Для
$$C_1 = \begin{cases} T\\A\\C\\G\\H \end{cases}$$
 $S_1^a = 19;$ $S_1^b = 25$
$$D_1 = 19;$$
 $S_2^b = 26;$
$$D_2 = 19;$$

$$D_3 = 19;$$

$$D_4 = 19;$$

$$D_4 = 19;$$

$$D_5 = 19;$$

$$D_6 = 19;$$

$$D_7 = 19;$$

$$D_8 = 19;$$

Для
$$C_7 = \begin{cases} T \\ A \\ C \\ E \\ F \\ G \end{cases}$$

$$S_7^a = 23; \qquad S_7^b = 30$$

$$J_{ЛЯ} C_8 = \begin{cases} T \\ A \\ D \\ F \\ G \\ H \end{cases}$$

$$S_8^a = 22; \qquad S_8^b = 29$$

$$J_{ЛЯ} C_9 = \begin{cases} T \\ A \\ B \\ C \\ D \\ F \\ H \end{cases}$$

$$S_9^a = 26; \qquad S_9^b = 34$$

Минимальное покрытие - C_1

Таким образом:
$$C_{min}(f) = \left\{ egin{array}{l} 01X11 \\ 0X11X \\ 1X010 \\ 10XX1 \\ 11X0X \\ X01XX \end{array} \right\}$$

Этому покрытию соотсветсвует МДНФ:

 $f = x_1 \overline{x_3} x_4 \overline{x_5} \vee x_1 \overline{x_2} x_5 \vee x_1 x_2 \overline{x_4} \vee \overline{x_2} x_3 \vee \overline{x_1} x_2 x_4 x_5 \vee \overline{x_1} x_3 x_4$

4.5 Минимизация булевой функции с помощью карт Карно

4.5.1 Нахождение МДНФ

Построим четырехмерные карты Карно, различающиеся по x_1 для единичных наборов:

		x_4x_5								
		00	01	11	10					
	00									
$\alpha \cdot \alpha$	01	d	d	d	d					
x_2x_3	11			1	1					
	10			1						
	,	\overline{a}	$c_1 = 0$	0						

Находим минимальное покрытие, получаем $C_{min}(f)=\left\{egin{array}{l} 01X11\\ 0X11X\\ 1X010\\ 10XX1\\ 11X0X\\ X01XX \end{array}\right\},\,S^a=19,S^b=25$

МДНФ: $f = x_1\overline{x_3}x_4\overline{x_5} \lor x_1\overline{x_2}x_5 \lor x_1x_2\overline{x_4} \lor \overline{x_2}x_3 \lor \overline{x_1}x_2x_4x_5 \lor \overline{x_1}x_3x_4$

Решения разными методами дали одинаковый результат.

4.5.2 Нахождение МКНФ

Построим четырехмерные карты Карно, различающиеся по x_1 для нулевых наборов:

		x_4x_5								
		00	01	11	10					
	00	0	0	0	0					
$\alpha \cdot \alpha$	01	d	d	d	d					
x_2x_3	11	0	0							
	10	0	0		0					
		\overline{a}	$c_1 = 0$	0						

Находим минимальное покрытие, получаем
$$C_{min}(\overline{f})=\left\{egin{align*} 0XX0X\\X0000\\1111X\\11X11\\00XXX\\0X0X0 \end{array}\right\},\,S^a=19,S^b=25$$

$$\mathbf{MKH\Phi} : f = (x_1 \lor x_4) \cdot (x_2 \lor x_3 \lor x_4 \lor x_5) \cdot (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4}) \cdot (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4} \lor \overline{x_5}) \cdot (x_1 \lor x_2) \cdot (x_1 \lor x_3 \lor x_5)$$

4.6 Преобразование минимальных форм булевой функции

4.6.1 Факторное преобразование для МДНФ

$$f = x_1 \overline{x_3} x_4 \overline{x_5} \vee x_1 \overline{x_2} x_5 \vee x_1 x_2 \overline{x_4} \vee \overline{x_2} x_3 \vee \overline{x_1} x_2 x_4 x_5 \vee \overline{x_1} x_3 x_4$$

$$S_Q = 25$$

$$f = \overline{x_1} x_4 (x_3 \vee x_2) \vee \overline{x_2} (x_1 x_5 \vee x_3) \vee x_2 (\overline{x_1} x_4 x_5 \vee x_1 \overline{x_4})$$

$$S_Q = 24$$

4.6.2 Факторное преобразование для МКНФ

$$f = (x_1 \lor x_4) \cdot (x_2 \lor x_3 \lor x_4 \lor x_5) \cdot (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4}) \cdot (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4} \lor \overline{x_5}) \cdot (x_1 \lor x_2) \cdot (x_1 \lor x_3 \lor x_5)$$

$$S_Q = 25$$

$$f = (x_1 \lor (x_4 \cdot x_2))(x_3 \lor x_5 \lor (x_1 \cdot (x_2 \lor x_4)))(\overline{x_1} \lor \overline{x_2} \lor \overline{x_4} \lor (\overline{x_5} \cdot \overline{x_3}))$$

$$S_Q = 20$$

5 Синтез схем в различных базисах

5.1 Булевый базис с парафазными входами

5.2 В универсальном базисе (И-НЕ)

Переведем функцию в универсальный базис И–НЕ, получим:

 $f = (x_1 \mid x_4 \mid (x_3 \mid x_2)) \mid (\overline{x_2} \mid ((x_1 \mid x_5) \mid x_3)) \mid (x_2 \mid ((\overline{x_1} \mid x_4 \mid x_5) \mid (x_1 \mid \overline{x_4})))$ $x_1 x_2 x_3 x_4 x_5 \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5}$ & لم & & & & & & & & $S_Q = 23$ $T=4\tau$

$5.3~~{ m B}$ универсальном базисе (И-НЕ) с ограничением на 2 входа

6 Анализ схемы

Для анализа буду использовать самую сложную схему - схему в универсальном базисе (И-НЕ) с ограничем на 2 входа. Использую следующие входные значения:

f = 0 при 00000

f = 1 при 11101

На рисунке представлено распространение сигналов, первая цифра - это значение сигнала для набора 00000, второе число - значение для набора 11101. Пройдя по всей схеме видно, что итоговый результат (0 1) соответсвует эталонному итоговому результату, значит схема составлена верно.

