Семинар 5

5.1. Матрица линейного отображения

Пусть $\mathbf{e} = \{e_1, ..., e_n\}$ – базис пространства V, а $\mathbf{f} = \{f_1, ..., f_m\}$ – базис пространства W. Рассмотрим, куда перейдёт базисный вектор e_j при его отображении φ из V в W:

$$\varphi e_j = \sum_{i=1}^m a_{ij} f_i$$

т.е. $\varphi e_j = (a_{1j}, ..., a_{mj})^T$ – разложение вектора φe_j по базису **f**. Матрица, *j*-й столбец которой есть столбец координат $[\varphi e_j]_{\mathbf{f}}$ называется *матрицей отображения* φ , построенной в базисах **e** и **f**. Получаем, что

$$[\varphi]_{\mathbf{f},\mathbf{e}} = (a_{ij}) \in F^{m \times n}$$

– линейное отображение однозначно восстанавливается по образам базисных векторов.

Утверждение 5.1. Для произвольного вектора $x \in V$ верно разложение:

$$[\varphi x]_{\mathbf{f}} = [\varphi]_{\mathbf{f},\mathbf{e}}[x]_{\mathbf{e}},$$

где $[\varphi x]_{\mathbf{f}}$ – разложение φx по базису \mathbf{f} , $[x]_{\mathbf{e}}$ – разложение x по базису \mathbf{e} , $[\varphi]_{\mathbf{f},\mathbf{e}}$ – матрица отображения φ , построенная в базисах \mathbf{e} и \mathbf{f} .

Доказательство. Пусть $[x]_{\mathbf{e}} = (\alpha_1, ..., \alpha_n)^T$. Далее для краткости записи опустим указание базисов. Перейдём к координатам x и посмотрим на φx :

$$\varphi x = \varphi \left(\sum_{j=1}^{n} \alpha_j e_j \right) = \sum_{j=1}^{n} \alpha_j \varphi e_j = \sum_{j=1}^{n} \alpha_j \sum_{i=1}^{m} a_{ij} f_i = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \alpha_j \right) f_i$$

Таким образом, мы действительно получили разложение вектора φx в базисе \mathbf{f} , которое соответствует умножение матрицы $[\varphi]$ на координатный столбец x.

5.2. Детерминант матрицы

На множестве квадратных матриц порядка n задана числовая функция, если каждой матрице из этого множества сопоставлено некоторое число. Примерами могут служить:

• Cned матрицы – функция, сопоставляющая каждой квадратной матрице сумму ее диагональных элементов $a_{11} + a_{22} + ... + a_{nn}$.

• *Евклидова норма* матрицы – функция, сопоставляющая каждой вещественной матрице квадратный корень из суммы квадратов всех ее элементов.

Полезно ввести такую функцию, при помощи которой можно определить, является ли данная матрица вырожденной или нет.

Определение 5.1. Числовая функция f на множестве квадратных матриц порядка n называется детерминантом, или определителем, порядка n, а ее значение на матрице A – детерминантом A (обозн. $\det A$), если она обладает следующими свойствами:

1. Какую бы строку матрицы A мы ни взяли, значение функции на матрице A является линейным однородным многочленом от элементов этой строки. Для i-й строки это значит, что

$$f(A) = h_1 a_{i1} + h_2 a_{i2} + \dots + h_n a_{in}$$

где $h_1,...,h_n$ – коэффициенты, не зависящие от элементов i-й строки $a_{i1},...,a_{in}$, но зависящие от остальных элементов матрицы.

- 2. Значение функции на любой вырожденной матрице равно нулю.
- 3. Значение функции на единичной матрице равно единице.

Утверждение 5.2. Данная функция существует и единственна.

Основные свойства определителя:

- $\det A^T = \det A$
- $\det AB = \det A \det B$
- A верхнетреугольная $\Rightarrow \det A = a_{11} \cdot a_{22} \cdot ... \cdot a_{nn}$

5.3. Характеристический многочлен

Зафиксируем базис и обозначим через A матрицу линейного преобразования \mathbf{A} в этом базисе. Тогда преобразование $\mathbf{A} - \lambda \mathbf{E}$ имеет матрицу $A - \lambda E$, и его ядро отлично от нуля тогда и только тогда, когда эта матрица вырождена.

Определение 5.2. Для матрицы A многочлен $\chi(\lambda) = \det(A - \lambda E)$ от λ называют xapax-mepucmuческим многочленом матрицы A, а уравнение $\chi(\lambda) = 0 - xapax$ -mepucmuческим.

Утверждение 5.3. Все корни характеристического многочлена матрицы являются её собственными значениями.

Утверждение 5.4. Характеристический многочлен не зависит от выбора базиса.

Доказательство. Пусть в пространстве V имеется два базиса \mathbf{e} и \mathbf{f} и T – матрица перехода от \mathbf{e} к \mathbf{f} . Матрицы оператора \mathbf{A} в разных базисах связаны соотношением $A_{\mathbf{f}} = T^{-1}A_{\mathbf{e}}T$.

Тогда:

$$\det(A_{\mathbf{f}} - \lambda E) = \det(T^{-1}A_{\mathbf{e}}T - \lambda E) = \det(T^{-1}A_{\mathbf{e}}T - \lambda T^{-1}ET) = \det\left[T^{-1}(A_{\mathbf{e}} - \lambda E)T\right] =$$

$$= \det T^{-1}\det(A_{\mathbf{e}} - \lambda E)\det T = \det(A_{\mathbf{e}} - \lambda E)\det T^{-1}\det T = \det(A_{\mathbf{e}} - \lambda E)$$

Из этого утверждения следует, что мы можем назвать характеристический многочлен матрицы A характеристическим многочленом линейного преобразования A.

5.4. Дальнейшая мотивация действий

На предыдущем занятии мы рассмотрели инвариантные подпространства. Представим, что нам удалось найти базис $\mathbf{e} = \{e_1, ..., e_n\}$, в котором *кажедый* базисный вектор порождает инвариантное относительно некоторого преобразования φ пространство. Как тогда будет выглядеть матрица этого преобразования в выбранном базисе? Давайте посмотрим, куда перейдёт базисный вектор e_i :

$$\varphi(e_i) = c_i \cdot e_i$$

поскольку пространство $\langle e_i \rangle$ инвариантно относительно φ . Мы помним (я надеюсь на это), что в матрице линейного отображения j-ый столбец соответствует разложению вектора φe_j по базису $\mathbf{f} = \{f_1, ..., f_m\}$. В нашем случае это значит, что матрица φ будет иметь диагональный вид и под действием этого преобразования каждый базисный вектор просто расстянется в c_i раз.

Таким образом, если мы найдём этот базис и перейдём к нему, то сможем разложить любой вектор и легко понять, как будет выглядеть его образ под действием φ .

С другой стороны мы знаем, что собственные векторы порождают собственные подпространства, инвариантные относительно преобразования. Тогда будет здорово в качестве базиса выбрать систему ЛНЗ собственных векторов, а матрица преобразования будет диагональной, состоящей из собственных значений.