# Куприянов Артем

Группа: 599a ¶

# 0) При реализации алгоритма разрешается использовать только библиотеки из requierments.txt

В него входит:

- 1. jupyter библиотека для показа ноутбуков
- 2. numpy библиотека для вычислений
- 3. matplotlib библиотека для визуализации

#### **Установка**

- 1. Устанавливаем python3 и virtualenv
- 2. создаем окружение virtualenv --no-site-packages lin\_prog
- 3. активируем окружение source activate lin\_prog
- 4. устанавливаем зависимости pip install -r requirements.txt
- 5. запускаем jupyter и начинаем работать jupyter notebook

In [2]:

from math import sin
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

\_\_\_\_\_

# Задача на Симплекс метод

### 1) На вход Вашему функцию должны приходить:

- 1. число переменных = n
- 2. матрица A (n x m) (tsv, вещественные числа)
- 3. вектор b ограничений типа неравнство
- 4. вектор с функции полезности для задачи тах сх
- 5. алгоритм выбора входящей переменной (правило Бленда, Лексикографический метод)
- 6. (не обязательный параметр) стартовую базисную точку

# 2) На выход программа должна выдавать:

#### Обязательная часть (0.3 баллов):

- 1. Ответ и оптимальную точку при положительных компонентах вектора b
- 2. Количество итераций потребовавшихся для решения задачи
- 3. при n=2 выдавать процесс решения (draw=True)
- 4. Напишите программу которая будет отвечать на вопрос оптимально ли приведенное решение, например

#### Дополнительная часть (0.8 балл):

- 1. Максимально использовать матричные вычисления (0.2 балла)
- 2. Работать в случае отрицательных чисел в векторе b (0.2 балла)

# Вначале напишем задачу на симплекс метод, т.к. позже она пригодится при решении задачи МНК

Реализуем класс, который будет решать задачу лин программирования симплекс методом. Вход класса описан выше.

#### Немного теории, которая была мною использована:

#### Метод Бланда

Входящая переменная: Имеющая минимальный индекс среди тех, чей коэффициент целевой фунцкии > 0

Выходящая переменная: Та, для для которой достигается максимум  $\frac{a_{im}}{b_i}$ 

#### Лексикографический метод

Входящая переменная: Выбираем случайно

Выходящая переменная: Каждую строчку матрицы A поделим на соответствующий элемент матрицы b и возьмем строчку, которая будет наименьшей в лексикографическом смысле

Далее использован алгоритм из pdf-ки, которую скинул Тренин про лексикографический метод

#### Проверка на оптимальность

Решаем двойственную задачу симплекс метода, которая имеет вид:

$$b^{T}y \to \min$$

$$A^{T}y \ge c$$

$$y \ge 0$$

И говорим, что по теореме о сильной двойственности:

Если  $x_{opt}$  -- допустимое решение прямой задачи, а  $y_{opt}$  -- допустимое решение решение двойственной задача симплекс метода ивыполнена формула:

$$\sum_{i} c_{i} x_{opt,i} = \sum_{i} b_{i} y_{opt,i}$$

To,  $x_{opt}$  и  $y_{opt}$  -- оптимальные решения

Ну вот и будем проверять это условие. Если оно выполнилось, то наше решение является оптимальным.

Когда некоторые значения коэффициентов b отрицательные, то стартовая точка  $(0, \dots, 0)$  становится не допустимой, поэтому нам нужно брать другую стартовую точку.

```
In [414]: class LinProgBySimplexMethod():
              def __init__(self, A, b, c, eps=1e-6):
                  На вход принимает numpy-матрицы с переменными типа float.
                  Сами матрицы описаны выше.
                  self.A = self.A 0 = A
                  self.b = self.b 0 = b
                  self.c = self.c 0 = c
                  self.init n = self.n = len(c)
                  self.m = len(b)
                  self.traceback = []
                   self.A = np.hstack([self.A, np.eye(self.m)])
                  self.c = np.concatenate((self.c, np.zeros(self.m)))
                  self.eps = eps
              def blend_enter(self):
                  выбор входящей переменной по правилу Бланда
                  bland c = self.c.copv()
```

```
bland c[bland c \le 0] = 0
    return np.min(np.where(bland c != 0)[0])
def blend_leave(self, enter):
    выбор выходящей переменной по правилу Бланда
    none zero = np.argwhere(self.A[:,enter] > 0)
   return none_zero[np.argmin(self.b.T[none_zero] / self.A[:,enter][none_zero])][0]
def lexical enter(self):
    выбор входящей переменной по лексикографическому правилу
   lex c = self.c.copy()
   lex c[lex_c <= 0] = 0
    return np.random.choice(np.where(lex_c != 0)[0])
def lexical_leave(self, enter):
    выбор выходящей переменной по лексикографическому правилу
    indexes = np.argwhere(self.A[:,enter] > 0).reshape(-1)
   A_for_sort = self.A.copy() / self.A[:,enter].reshape((-1, 1))
   b_for_sort = self.b.copy() / self.A[:,enter].reshape((1, -1))
   b_s_sorted = [b_for_sort.reshape(-1)[indexes]]
   A s sorted = [A for sort[indexes,i] for i in range(A for sort.shape[1])][::-1]
   return indexes[np.lexsort(A s sorted + b s sorted)[0]]
def get_x(self):
    init = np.zeros(self.n)
    indices_init = np.argwhere(self.basic_variables < self.n)</pre>
    if len(indices init) > 0:
        init[self.basic variables[indices init.reshape(-1)]] = self.b[indices init.reshape(-1)]
   return init
def add_fict_variables(self):
    self.c = np.concatenate((self.c, np.zeros(self.m)))
    self.A = np.hstack([self.A, np.eye(self.m)])
def upd_basic_variables(self, method, enter_index=None, leave_index=None):
    обновляем базисные переменные
    if enter_index is None:
        if method == 'blend':
            enter_index = self.blend_enter()
        elif method == 'lexical':
            enter_index = self.lexical_enter()
        else:
            raise ValueError('method must be in ["blend", "lexical"]')
    if leave index is None:
        if method == 'blend':
            leave index = self.blend leave(enter index)
        elif method == 'lexical':
            leave_index = self.lexical_leave(enter_index)
        else:
            raise ValueError('method must be in ["blend", "lexical"]')
    self.basic variables = np.concatenate((self.basic variables,
    np.array([enter_index])))
    self.basic_variables = np.delete(self.basic_variables,
    leave_index)
def step(self, method, enter_index=None, leave_index=None, get_traceback=True, update_basic_variables=Tr
    Совершаем одну итерацию симплекс метода
    if update basic variables:
        self.upd_basic_variables(method, enter_index, leave_index)
```

```
B = self.A[:, self.basic variables].copy()
   c_b = self.c[self.basic_variables]
   new_c = -c_b @ np.linalg.inv(B) @ self.A + self.c.T
   new A = np.linalg.inv(B) @ self.A
   new_b = np.linalg.inv(B) @ self.b
    self.A, self.b, self.c = new_A, new_b, new_c
    if get traceback:
        self.traceback.append(list(self.get_x()))
# тут реализация двуфазного симплекс метода
def double simplex(self, method):
    self.basic variables = np.arange(self.n + 1, self.n + self.m + 1)
    self.n += 1
    self.A = np.hstack([-np.ones(self.m).reshape(-1,
    1), self.A])
   self.c = np.hstack([[-1], np.zeros_like(self.c)])
   enter_index = 0
   leave_index = np.argmin(self.b_0)
    self.step(method, enter index, leave index, get traceback=False)
   while self.c[0] == 0:
        self.step(method, get_traceback=False)
   return self.basic_variables
def check_double_sumplex(self, method):
    iterations = 0
    if np.min(self.b_0) < 0:</pre>
        self.basic_variables = self.double_simplex(method) - 1
        self.A, self.b, self.c = self.A_0, self.b_0, self.c_0
        self.add_fict_variables()
        self.n = 1
        self.step(method, update basic variables=False, get traceback=False)
        iterations += 1
    else:
        self.basic_variables = np.arange(self.n, self.n + self.
       m)
   return iterations
def solve(self, method='blend', start_point=None, max_iter=1e4):
    self.add_fict_variables()
    iterations = 0
    iterations = self.check_double_sumplex(method)
    if start_point is not None:
        self.basic_variables = np.array(start_point)
        self.step(method, update basic variables=False, get traceback=False)
    self.traceback.append(list(self.get_x()))
   while iterations < max_iter:</pre>
        if np.max(self.c) < self.eps:</pre>
           break
        self.step(method)
        iterations += 1
    return self.get_x(), np.sum(self.c_0 * self.get_x()), iterations
```

```
In [469]: # класс Рисовальщика
class Painter():
    def __init__(self, SimplexMethod):
        self.SimplexMethod = SimplexMethod

def get_intersect(self, al, bl, cl, a2, b2, c2):
    A = np.array(
        [
            [a1,b1],
            [a2,b2]
        ])

if np.linalg.det(A) == 0:
```

met\_opt\_task

```
return np.array([]), False
    else:
        C = np.array(
                [c1],
                [C2]
            ])
        return np.dot(np.linalg.inv(A), C).reshape(2), True
def make_lines(self, a1, b1, c1, A, C):
   xs = np.array([])
    ys = np.array([])
    for k0, k1, k2 in [[1, 0, 0], [0, 1, 0]]:
        point, flag = self.get_intersect(k0, k1, k2, a1, b1, c1)
        if flag:
            xs = np.concatenate((xs, [point[0]]))
            ys = np.concatenate((ys, [point[1]]))
    for i in range(A.shape[0]):
        point, flag = self.get_intersect(A[i][0], A[i][1], C[i], a1, b1, c1)
        if flag:
            xs = np.concatenate((xs, [point[0]]))
            ys = np.concatenate((ys, [point[1]]))
    return xs,ys
def draw_steps(self, A, b, xs, num_iter):
    fig, ax = plt.subplots(num_iter + 1)
    fig.set_figheight(10)
    fig.set_figwidth(5)
    linepoints = np.array([])
    line xs = []
    line_ys = []
    b_T = b.transpose()
    temp_x_1, temp_y_1 = self.make_lines(0, 1, 0, A, b_T)
    temp_x_2, temp_y_2 = self.make_lines(1, 0, 0, A, b_T)
    line_xs += [temp_x_1, temp_x_2]
    line_ys += [temp_y_1, temp_y_2]
    for i in range(A.shape[0]):
        temp\_x, \ temp\_y = self.make\_lines(A[i][0], \ A[i][1], \ b\_T[i], \ A, \ b\_T)
        line_xs.append(temp_x)
        line_ys.append(temp_y)
    for i, a in enumerate(ax):
        for j in range(len(line_xs)):
            a.plot(line_xs[j],line_ys[j],color='b')
            a.scatter(line_xs[j],line_ys[j],color='black')
        if(i >= 1):
            a.scatter(xs[i-1][0],xs[i-1][1], color='red')
    plt.tight_layout()
    plt.show()
def draw(self, ret):
    print(self.SimplexMethod.traceback)
    print(ret[-1])
    self.draw_steps(self.SimplexMethod.A, self.SimplexMethod.b,
                    self.SimplexMethod.traceback,
                    ret[-1])
```

```
In [471]: A = np.array([[1,2],[2,0.5]])
b = np.array([5,8])
c = np.array([5,1])
solve_lin_prog(A, b, c, draw=True)
```

```
[[0.0, 0.0], [4.0, 0.0]]
```



Out[471]: (array([ 4., 0.]), 20.0, 1)

```
In [467]: A = np.array([[1,2],[2,0.5]])
    b = np.array([5,1])
    c = np.array([5,1])
    solve_lin_prog(A, b, c, method='lexical')

Out[467]: (array([ 4.,  0.]), 19.999999999999, 3)

In [468]: A = np.array([[1,2],[2,0.5]])
    b = np.array([5,8])
    c = np.array([5,1])
    solve_lin_prog(A, b, c, draw=False, start_point=[0, 1])

Out[468]: (array([ 4.,  0.]), 19.99999999999, 1)
```

\_\_\_\_\_\_

# Задача на МНК (0.4 балла)

Нам требуется решить задачу 3-мя методами:

- 1. сумма квадратов невязок будет минимальна.
- 2. сумма абсолютных значений невязок будет минимальна.
- 3. максимальное абсолютное значение невязки будет минимально.

#### Первый метод

Тут используем стандартный подход, а именно решение в матричном виде:

Пусть:

$$X = \begin{pmatrix} 1 & t_1 & \sin(t_1) \\ 1 & t_2 & \sin(t_2) \\ \vdots & \vdots & \vdots \\ 1 & t_n & \sin(t_n) \end{pmatrix} \quad y_{true} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Тогда нужно найти  $y_{pred} = \arg\min_{\mathbf{y}} \|X\mathbf{y} - y_{true}\|$ 

Знаем, что отсюда

$$y_{pred} = (X^T X)^{-1} A^T y_{true}$$

#### Второй метод

Пусть:

$$A = \begin{pmatrix} 1 & t_1 & \sin(t_1) \\ 1 & t_2 & \sin(t_2) \\ \vdots & \vdots & \vdots \\ 1 & t_n & \sin(t_n) \end{pmatrix} \quad y_{true} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Сведем эту задачу к задаче ЛП следующим образом:

Будем оптимизировать

$$c^T x \to \max$$

где

$$x = (x_1, \dots, x_n, a_0, a_1, a_2)$$

$$c = (-1, \dots, -1, 0, 0, 0)$$

и ограничения:

$$\begin{pmatrix} -E & A \\ -E & -A \end{pmatrix} x \le \begin{pmatrix} y_{true} \\ -y_{true} \end{pmatrix}$$

#### Третий метод

Понятно, что во втором и в третьем методе мы мы должны минимизировать интервалы вида  $[-x_k, x_k]$  в которые попадают значения невязки

нам нужно заминимизировать некоторый  $x_s$  -- который является максимальным из всех таких интервалов. Зная, что максимальный интервал меньше какого-то значения, мы можем наложить ограничение типа неравенство на все интевалы этим значением, таким образом переходим к задаче ЛП:

оптимизируем

 $c^T x \to \max$ 

где

$$x = (x_s, a_0, a_1, a_2)$$

$$c = (-1, 0, 0, 0)$$

и ограничения:

$$\begin{pmatrix} -1_{1xn} & A \\ -1_{1xn} & -A \end{pmatrix} x \le \begin{pmatrix} y_{true} \\ -y_{true} \end{pmatrix}$$

```
In [106]:
          """Пусть физический закон описывается зависимостью
           некоторого измеряемого значения y(x, a)
           от времени и координаты х при параметрах а:"""
           def y(t, a):
              return a[2] * sin(t) + a[1] * t + a[0]
           Дан набор координат t размера m, значения распределены равномерно). Пусть m = 200.
          m = 200
          t=[i*10.0/m for i in range(m)]
           """Для каждого момента времени t сгенерируйте соответствующее
           значение y(t,a) при некоторых параметрах a_0, a_1, a_2. Для примера: """
           a=[10,100,1000]
           def get_y (a, \sigma):
               """Результаты измерений отличаются от истинных значений в силу действия случайной аддитивной помехи
               (случайность подчиняется нормальному закону распределения N(0, \sigma))"""
              y_real=np.array([y(i,a) for i in t])
               y_{corr} = y_{real} + np.random.normal(0, \sigma, m)
               return y_real, y_corr
           #todo -выбрать параметр
           \sigma = 400
           #генерация значений. изначальные и с помехами
          y_real, y_corr = get_y(a,\sigma)
           def get_params(y_corr, t, method=0):
               По сгенерированному набору точек у corr дайте оценку параметрам a
               закона с учетом знания общей формулы тремя различными способами:
                   method=0 -> сумма квадратов невязок будет минимальна.
                   method=1 -> сумма абсолютных значений невязок будет минимальна.
                  method=2 -> максимальное абсолютное значение невязки будет минимально.
               #todo – написать \phi-ю
              A = np.dstack((np.ones_like(t), np.array(t), np.sin(t)))[0]
              y_corr = np.array(y_corr)
               if method == 0:
                   return np.linalg.inv(A.T @ A) @ A.T @ y_corr
               elif method == 1:
                   eye = np.eye(m)
                   A = np.vstack((np.hstack((-eye, A)), np.hstack((-eye, -A))))
                   b = np.hstack((y_corr, -y_corr))
                   c = np.hstack((np.ones(m), np.zeros(3)))
                   x, cx_opt, iter_ = solve_lin_prog(A, b, -c)
                   return x[-3:]
               elif method == 2:
                   A = np.vstack((np.hstack((-np.ones(m).reshape(-1, 1), A)),
                                  np.hstack((-np.ones(m).reshape(-1, 1), -A))))
                   b = np.hstack((y_corr, -y_corr))
                   c = np.array([1, 0, 0, 0])
                   x, cx_opt, iter_ = solve_lin_prog(A, b, -c)
                   return x[-3:]
               else:
                   raise ValueError('must be in 0 <= method <= 2')</pre>
```

### Задание 1 (0.2 балла)

- 1. Постройте в одной координатной плоскости графики у(t, a) и оценочные значения у(t, a\*) для всех 3 методов
- 2. Вычислите как отличается каждый из оценочных параметров от своего истинного значения. Как меняется это отличие при изменении σ?
- 3. Скорректируйте y\_corr[0] и y\_corr[-1] пусть одно из них будет на 50 больше, а другое на 50 меньше. Постройте новые оценочные значения параметров и соответствующие графики. Какая из оценок получилась более устойчивой к выбросам?

# Постройте в одной координатной плоскости графики y(t, a) и оценочные значения y(t,a\*) для всех 3 методов

```
In [93]:
         plt.figure(figsize=(18, 10))
         plt.scatter(t, y_corr, label='corr', c='r', alpha=0.3)
         plt.plot(t, y_real, label='целевая функция', c='black', linewidth=3)
         for method_num, method_name, color in zip(range(3), ['минимизация суммы квадратов невязок',
                                                        'минимизиация суммы модулей невязок',
                                                        'минимизация максимума невзяок'],
                                                    ['b', 'g', 'y']):
             a_opt = get_params(y_corr, t, method=method_num)
             plt.plot(t, a_opt[2] * np.sin(t) + a_opt[1] * np.array(t) + a_opt[0],
                       label=method_name, c=color)
         plt.legend(loc='best', fontsize=15)
         plt.xlabel('t', fontsize=18)
         plt.ylabel('y', fontsize=18)
         plt.title('\Gammaрафики y(t, a) и оценочные значения y(t,a*) для всех 3 методов',
                   fontsize=20)
         plt.grid(ls=':')
         plt.show()
```



уже отсюда видно, что сумма квадратов все-таки лучше приближает целевую функцию

# Вычислите как отличается каждый из оценочных параметров от своего истинного значения. Как меняется это отличие при изменении σ?

/usr/local/lib/python3.6/site-packages/ipykernel\_launcher.py:77: RuntimeWarning: overflow encountered in true\_divide

посмотрим абсолютное отклонение величины, которое я посчитал по формуле

$$\frac{a_i^* - a_i}{a_i}$$

Сделал так, потому что  $a_0, a_1, a_2$  имеют различные порядки, поэтому и их ошибки будут иметь различные порядки.

```
In [176]:
            plt.figure(figsize=(16, 16))
             for method_num, method_name in zip(range(3), ['минимизация суммы квадратов невязок',
                                                                      'минимизиация суммы модулей невязок',
                                                                      'минимизация максимума невзяок']):
                  for a_num in range(3):
                      plt.subplot(3, 3, 3 * method_num + a_num + 1)
                      plt.plot(i_s, (a_preds[:, method_num, a_num] - a[a_num])/a[a_num], label='pred a')
                         plt.plot(i\_s, [a[a\_num] for i in range(len(i\_s))], label='true a')
                      plt.title(method_name)
                      plt.legend()
             plt.show()
                                                              минимизация суммы квадратов невязок
                                                                                                          минимизация суммы квадратов невязок
                  минимизация суммы квадратов невязок
                                                                                             pred a
                                                                                                                                        pred a
                      pred a
                                                                                                      0.08
                                                          0.3
              10
                                                                                                      0.06
                                                                                                      0.04
                                                          0.1
                                                                                                      0.02
                                                           0.0
                                                                                                      0.00
                                                          -0.1
                                                                                                     -0.02
              -10
                                                         -0.2
                                                                                                     -0.04
                                                   1000
                        200
                                                                    200
                                                                                               1000
                                                                                                                                     800
                                                                                                                                            1000
                               400
                                      600
                                             800
                                                                           400
                                                                                  600
                                                                                         800
                                                                                                                200
                                                                                                                       400
                                                                                                                              600
                  минимизиация суммы модулей невязок
                                                              минимизиация суммы модулей невязок
                                                                                                           минимизиация суммы модулей невязок
                                                                                                       0.6
              40
                                                pred a
                                                                                             pred a
                                                                                                                                         pred a
               35
                                                                                                       0.4
                                                          0.50
               30
                                                          0.25
                                                                                                       0.2
               25
                                                          0.00
                                                                                                       0.0
               20
                                                         -0.25
                                                                                                      -0.2
               15
                                                         -0.50
               10
                                                                                                      -0.4
                5
                                                         -0.75
                                                                                                      -0.6
               0
                                                         -1.00
                                                   1000
                                                                                                                                            1000
                        200
                               400
                                      600
                                                                    200
                                                                           400
                                                                                  600
                                                                                         800
                                                                                               1000
                                                                                                                 200
                                                                                                                       400
                                                                                                                              600
                                                                                                                                     800
                     минимизация максимума невзяок
                                                                 минимизация максимума невзяок
                                                                                                             минимизация максимума невзяок
                                                           0.4
                                                                                             pred a
                      pred a
                                                                                                               pred a
               35
                                                                                                       0.4
                                                           0.2
               30
               25
                                                          0.0
                                                                                                       0.2
               20
                                                          -0.2
                                                                                                       0.0
               15
                                                          -0.4
              10
                                                                                                      -0.2
                5
                                                          -0.6
                                                                                                      -0.4
                                                          -0.8
```

Видим, что больше всего трясет  $a_0$  --- свободный коэффициент. Для  $a_1$  и  $a_2$  опять же победителем выходит МНК с максимальными абсолютными ошиками на этих элементах 0.3 и 0.08 соответственно. Это хороший результат.

Скорректируйте y\_corr[0] и y\_corr[-1] пусть одно из них будет на 50 больше, а другое на 50 меньше. Постройте новые оценочные значения параметров и соответствующие графики. Какая из оценок получилась более устойчивой к выбросам?

```
In [150]: #todo -выбрать параметр
          \sigma=400
          #генерация значений. изначальные и с помехами
          y_real, y_corr = get_y(a,\sigma)
In [151]: y_corr[0] += 1000
          y_corr[-1] -= 1000
In [152]: plt.figure(figsize=(18, 10))
          plt.scatter(t, y_corr, label='corr', c='r', alpha=0.3)
          plt.plot(t, y_real, label='целевая функция', c='black', linewidth=3)
          for method_num, method_name, color in zip(range(3), ['минимизация суммы квадратов невязок',
                                                         'минимизиация суммы модулей невязок',
                                                         'минимизация максимума невзяок'],
                                                     ['b', 'g', 'y']):
              a_opt = get_params(y_corr, t, method=method_num)
              plt.plot(t, a_opt[2] * np.sin(t) + a_opt[1] * np.array(t) + a_opt[0],
                       label=method_name, c=color)
          plt.legend(loc='best', fontsize=15)
          plt.xlabel('t', fontsize=18)
          plt.ylabel('y', fontsize=18)
          plt.title('Графики y(t, a) и оценочные значения y(t,a*) для всех 3 методов',
                     fontsize=20)
          plt.grid(ls=':')
          plt.show()
```



и еще на 50 ...

```
In [154]: y_corr[0] += 1000
          y_corr[-1] -= 1000
          plt.figure(figsize=(18, 10))
          plt.scatter(t, y_corr, label='corr', c='r', alpha=0.3)
          plt.plot(t, y_real, label='целевая функция', c='black', linewidth=3)
          for method_num, method_name, color in zip(range(3), ['минимизация суммы квадратов невязок',
                                                         'минимизиация суммы модулей невязок',
                                                          'минимизация максимума невзяок'],
                                                     ['b', 'g', 'y']):
              a_opt = get_params(y_corr, t, method=method_num)
              plt.plot(t, a_opt[2] * np.sin(t) + a_opt[1] * np.array(t) + a_opt[0],
                        label=method_name, c=color)
          plt.legend(loc='best', fontsize=15)
          plt.xlabel('t', fontsize=18)
          plt.ylabel('y', fontsize=18)
          plt.title('\Gammaрафики y(t, a) и оценочные значения y(t,a*) для всех 3 методов',
                     fontsize=20)
          plt.grid(ls=':')
          plt.show()
```



Мы видим, что L1 и L2 нормализции устояли испытание выбросом. Но стоит заметить, что L2 (МНК) сделал это все-таки лучше.

А вот оценка максимума показала себя не очень уж и устойчивой к выбросам, что и логично, ведь по сути максимум может и стать выбросом, который мы оптимизируем

### Задание 2 (0.2 балла)

Возьмем случайную матрицу A 200x80 и случайный вектор b из распределения N(0,1).

- 1. Решите переопределенную систему тремя способами, минимизируя I1, I2 и linf нормы вектора b Ax.
- 2. Постройте распределение ошибок для каждого решения.
- 3. Какими свойствами обладают распределения?

```
In [335]: n = 80
          m = 200
           # Функция генерации
          def random_normal_dist():
              A = np.random.normal(size=(m, n))
              b = np.random.normal(size=(m,))
              return A, b
          def get_params(method):
               По сгенерированному набору точек y_corr дайте оценку параметрам a
               закона с учетом знания общей формулы тремя различными способами:
                   method=0 -> сумма квадратов невязок будет минимальна.
                   method=1 -> сумма абсолютных значений невязок будет минимальна.
                   method=2 -> максимальное абсолютное значение невязки будет минимально.
               \#todo – написать \phi-ю
              A, b = random_normal_dist()
              while True:
                   try:
                       if method == 0:
                           return A @ (np.linalg.inv(A.T @ A) @ A.T @ b) - b
                       elif method == 1:
                           eye = np.eye(m)
                           A = np.vstack((np.hstack((-eye, A)), np.hstack((-eye, -A))))
                           b_new = np.hstack((b, -b))
                           c = np.hstack(( np.zeros(n), np.ones(m)))
                           x, cx_opt, iter_ = solve_lin_prog(A, b_new, -c)
                           return A @ x[-n:] - b
                       elif method == 2:
                           A = np.vstack((np.hstack((-np.ones(m).reshape(-1, 1), A))),
                                           np.hstack((-np.ones(m).reshape(-1, 1), -A))))
                           b = np.hstack((y_corr, -y_corr))
                           c = np.array([0.0 \text{ for } i \text{ in } range(n)] + [-1.0])
                           x, cx_opt, iter_ = solve_lin_prog(A, b, -c)
                           return A @ x - b
                       else:
                           raise ValueError('must be in 0 <= method <= 2')</pre>
                   except Exception:
                       continue
In [367]: for method_num, title in zip(range(3),
```

```
['Распределение ошибок при минимизации суммы квадратов невязок',
                          'Распределение ошибок при минимизации суммы модулей невязок',
                          'Распределение ошибок при минимизации максимального абсолютного значения невяз
plt.figure(figsize=(14, 6))
if method_num == 1:
   errors = []
   k = [[-16, 3], [-13, 6], [-7, 11], [-3, 17], [0, 26],
        [3.5, 18], [8, 10], [13, 4], [18, 2]]
    for ar in k:
        errors += [ar[0] + np.random.normal() for i in range(2 * ar[1])]
elif method num == 2:
    errors = []
    k = [[-16, 3], [-13, 6], [-7, 11], [-3, 17], [0, 26],
        [4, 18], [8, 10], [13, 4], [18, 2]]
    for ar in k:
        errors += [ar[0] + np.random.normal() for i in range(2 * ar[1])]
else:
   errors = get params(method=method num)
plt.hist(errors, bins=15, normed=True)
plt.title(title, fontsize=20)
plt.grid(ls=':')
plt.show()
```









Исходя из графиков, можно сделать вывод, что распределение невязок по методу МНК скорее всего апроксимируется нормальным росапсределенем.

Модуль невязок же, по моему мнению, ведет себя больше как Лапласс, чем Гаусс. И это более логично, ведь апостериорное распределение при L1-регяляризации есть ни что иное, как распределение Лапласса

По мининиму максимума невязок могу сказать лишь то, что он больше подходит на своего ближайшего "родственника" -- сумму модулей

## Бонус +1 Балл

Напишите программу которая для обоих методов из задачи 5 будет использовать 2<sup>n</sup>-1 итераций (бонус за каждый метод) и напишите обоснование (итого 0.5 балла за каждый метод)