Chemistry Lecture #96: pH and pOH

In addition to pH, there's also pOH. Mathematically,

$$pOH = -log[OH^{-}]$$

What is the pOH of a solution that contains $8.7 \times 10^{-3} \text{ M OH}$?

Answer

 $pOH = -log[OH^{-}]$

 $pOH = -log[8.7 \times 10^{-3}]$

pOH = -(-2.06)

pOH = 2.06.

The pOH is given with two places past the decimal since 8.7×10^{-3} has two significant figures.

If a solution is described as a strong base or a strong acid we can assume 100% ionization. The concentration of the acid is also the concentration of H^+ , and the concentration of the base is the concentration of OH^- .

Find the pH of 0.050 M HCl, a strong acid.

Answer

Since this is a strong acid, we assume 0.050~HCl means $0.050~\text{M}~\text{H}^{+}$.

 $pH = -log[H^+]$

pH = -log[0.050]

pH = 1.30

Find the pOH of 0.030 M NaOH, a strong base.

Answer

Since this is a strong base, we assume that 0.030 M NaOH means 0.030 M OH⁻.

$$pOH = -log[OH^{-}]$$

 $pOH = -log[0.030]$
 $pOH = 1.52$

Find the pOH of a 7.5 \times 10⁻⁴ M solution of Ca(OH)₂, a strong base.

Answer

Notice that $Ca(OH)_2$ contains two hydroxide groups. One formula unit of $Ca(OH)_2$ will ionize to produce two OH^- .

$$Ca(OH)_2 \longrightarrow Ca^{2+} + 2OH^{-}$$

Thus, to find the concentration of OH^- , multiply the concentration of $Ca(OH)_2$ by 2.

$$[OH^{-}] = 2 \times (7.5 \times 10^{-4})$$

 $[OH^{-}] = 0.0015 M$

If the pH and the pOH of a solution is added together, the sum will equal 14.00.

$$pH + pOH = 14.00$$

The hydroxide ion concentration of an ammonia solution is $4.0 \times 10^{-3} \text{ M}$. Find the pH.

$$pOH = -log[OH^{-}]$$

 $pOH = -log[4.0 \times 10^{-3}]$
 $pOH = 2.40$
 $pH + pOH = 14.00$
 $pH + 2.40 = 14.00$
 $pH = 11.60$

The pOH of a solution is 5.42. Find the concentration of H^{+} .