

Aula 03 – Fundamentos da imagem digital II

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Roteiro

- Relacionamento básico entre pixels
 - Vizinhança entre pixels
 - Adjacência
 - Caminho (ou curva) digital
 - Regiões conectadas e componentes conectados
 - Fundo e objetos de uma imagem
 - Borda contorno, ou fronteira
- Operações lógicas e aritméticas entre imagens
 - Operações aritméticas
 - Operações lógicas
- Medidas de distância

RELACIONAMENTO BÁSICO ENTRE PIXELS

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

Vizinhança-4 de p, $N_4(p)$:

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

Vizinhança-diagonal de p, $N_D(p)$:

Vizinhança-4 de p, $N_4(p)$:

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

Vizinhança-diagonal de p, $N_D(p)$:

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

Vizinhança-4 de p, $N_4(p)$:

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

Adjacencia-4:

- Dois pixels *p* e *q* são adjacentes-4 se:
 - Os valores de p e q pertencem ao conjunto V e
 - O pixel q está no conjunto $N_4(p)$

Adjacencia-4:

- Dois pixels *p* e *q* são adjacentes-4 se:
 - Os valores de p e q pertencem ao conjunto V e
 - O pixel q está no conjunto $N_4(p)$

Adjacencia-4:

- Dois pixels *p* e *q* são adjacentes-4 se:
 - Os valores de p e q pertencem ao conjunto V e
 - O pixel q está no conjunto $N_4(p)$

Adjacencia-8:

- Dois pixels p e q são adjacentes-8 se:
 - Os valores de p e q pertencem ao conjunto V e
 - O pixel q está no conjunto $N_g(p)$.

Adjacencia-4:

- Dois pixels *p* e *q* são adjacentes-4 se:
 - Os valores de p e q pertencem ao conjunto V e
 - O pixel q está no conjunto $N_{\Delta}(p)$

Adjacencia-8:

- Dois pixels *p* e *q* são adjacentes-8 se:
 - Os valores de p e q pertencem ao conjunto V e
 - O pixel q está no conjunto $N_g(p)$.

Adjacencia-4:

- Dois pixels *p* e *q* são adjacentes-4 se:
 - Os valores de p e q pertencem ao conjunto V e
 - O pixel q está no conjunto $N_{\Delta}(p)$

Adjacencia-8:

- Dois pixels *p* e *q* são adjacentes-8 se:
 - Os valores de p e q pertencem ao conjunto V e
 - O pixel q está no conjunto $N_8(p)$.

Adjacência-m (adjacência mista):

- Dois pixels p e q são adjacentes-m se:
 - q está em $N_a(p)$ **OU**
 - q estiver em $N_D(p)$ **E**
 - A intersecção entre $N_4(p)$ e $N_4(q)$ não contém nenhum pixel cujos valores pertencem a V.

Adjacencia-4:

- Dois pixels *p* e *q* são adjacentes-4 se:
 - Os valores de p e q pertencem ao conjunto V e
 - O pixel q está no conjunto $N_a(p)$

Adjacencia-8:

- Dois pixels *p* e *q* são adjacentes-8 se:
 - Os valores de p e q pertencem ao conjunto V e
 - O pixel q está no conjunto $N_g(p)$.

Adjacência-m (adjacência mista):

- Dois pixels p e q são adjacentes-m se:
 - q está em $N_4(p)$ **OU**
 - q estiver em $N_D(p)$ **E**
 - A intersecção entre $N_4(p)$ e $N_4(q)$ não contém nenhum pixel cujos valores pertencem a V.

- Um caminho do pixel p com coordenadas (x, y) ao pixel q com coordenadas (s, t) é
 - uma sequencia de pixels distintos com coordenadas:
 - $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$
 - em que:
 - $(x_0, y_0) = (x, y),$
 - $(x_n, y_n) = (s, t) e$
 - os pixels (x_i, y_i) e (x_{i-1}, y_{i-1}) são adjacentes para $1 \le i \le n$
- Se $(x_0, y_0) = (x_n, y_n)$, o caminho é fechado
- Dependendo do tipo de adjacência escolhida, os caminhos podem ser:
 - caminho-4
 - caminho-8
 - caminho-m

Considerando vizinhança-4:

• Um dos caminhos entre p em (2,5) e q em (2,2):

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).

- Outro caminhos entre p em (2,5) e q em (2,2):
 - (2,5), (1,5), (1,4), (1,3), (2,3), (2,2).

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um caminho entre p em (2,3) e q em (6,2):

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um caminho entre p em (2,3) e q em (6,2):

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um caminho entre p em (2,3) e q em (6,2):

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um caminho entre p em (2,3) e q em (6,2):
 - Não existe um caminho!

Considerando vizinhança-4:

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um caminho entre p em (2,3) e q em (6,2):
 - Não existe um caminho!

Considerando vizinhança-8:

Um dos caminhos entre p em (2,5) e q em (2,2):

Considerando vizinhança-4:

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um caminho entre p em (2,3) e q em (6,2):
 - Não existe um caminho!

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,4), (1,3), (2,2).

Considerando vizinhança-4:

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um caminho entre *p* em (2,3) e *q* em (6,2):
 - Não existe um caminho!

- Outro caminho entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,4), (1,3), (1,2), (2,2).

Considerando vizinhança-4:

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um caminho entre p em (2,3) e q em (6,2):
 - Não existe um caminho!

- Outro caminho entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,4), (1,3), (2,2).
- Um dos caminhos entre p em (2,3) e q em (6,2):

Considerando vizinhança-4:

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um caminho entre p em (2,3) e q em (6,2):
 - Não existe um caminho!

- Outro caminho entre p em (2,5) e q em (2,2):
 - *(2,5), (1,4), (1,3), (2,2).*
- Um dos caminhos entre p em (2,3) e q em (6,2):
 - *-* (2,3), (2,2), (3,2), (4,3), (5,3), (6,3), (6,2).

Considerando vizinhança-4:

- Um dos caminhos entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um caminho entre p em (2,3) e q em (6,2):
 - Não existe um caminho!

- Outro caminho entre p em (2,5) e q em (2,2):
 - *-* (2,5), (1,4), (1,3), (2,2).
- Outro caminho entre p em (2,3) e q em (6,2):
 - *–* (2,3), (2,2), (3,2), (4,3), (5,3), (6,2).

Regiões conectadas e componentes conectados

Região conectada:

 Qualquer região R que existe pelo menos um caminho entre quaisquer pares de pixels (p, q)

Componente conectado:

- Região conectada máxima
- Não é um subconjunto próprio de nenhuma região conectada maior

Regiões conectadas e componentes conectados

Região conectada:

 Qualquer região R que existe pelo menos um caminho entre quaisquer pares de pixels (p, q)

Componente conectado:

- Região conectada máxima
- Não é um subconjunto próprio de nenhuma região conectada major

Região conectada máxima (Componente conectado)

Componentes conectados

Componentes conectados

Componentes conectados

X

Imagem de rótulos

Prof. João F. Mari – joaofmari.github.io – SIN392 (2023-1)

Fundo e objetos de uma imagem

- Frente (foreground) da imagem (objetos)
 - Conjunto de todos os componentes conectados na imagem
- Fundo (*background*) da imagem
 - O complemento do conjunto dos componentes conectados

Fundo e objetos de uma imagem

- Frente (foreground) da imagem (objetos)
 - Conjunto de todos os componentes conectados na imagem
- Fundo (background) da imagem
 - O complemento do conjunto dos componentes conectados

- Borda de um componente conectado C:
 - Conjunto de pontos em C que são adjacentes aos pontos do complemento de C.
 - Dependente da conectividade.
 - Borda interna.

- Borda de um componente conectado C:
 - Conjunto de pontos em C que são adjacentes aos pontos do complemento de C.
 - Dependente da conectividade.
 - Borda interna.

- Borda de um componente conectado C:
 - Conjunto de pontos em C que são adjacentes aos pontos do complemento de C.
 - Dependente da conectividade.
 - Borda interna.

- Borda externas de um componente conectado C:
 - Conjunto de pontos no complemento de C, C^c, que são adjacentes aos pontos em C.
 - Bordas sempre formam um conjunto fechado.
 - Algoritmos seguidores de contorno.

OPERAÇÕES LÓGICAS E ARITMÉTICAS

- Operações aritméticas são realizadas entre pixels correspondentes
 - SOMA

•
$$g(x, y) = f_1(x,y) + f_2(x,y)$$

- SUBTRAÇÃO
 - $g(x, y) = f_1(x,y) f_2(x,y)$
- MULTIPLICAÇÃO
 - $g(x, y) = f_1(x,y) \times f_2(x,y)$
- DIVISÃO
 - $g(x, y) = f_1(x,y) / f_2(x,y)$

Tipos de dados no Python (scikit-image)

dtype	de	até	Descrição
uint8	0	255	Inteiro de 8 bits sem sinal
uint16	0	65,535	Inteiro de 16 bits sem sinal
uint32	0	4,294,967,295	Inteiro de 32 bits sem sinal
float	-1.0	+1.0	Ponto flutuante de 64 bits
int8	-128	127	Inteiro de 8 bits com sinal
int16	-32,768	+32,767	Inteiro de 16 bits com sinal
int32	-2 ³¹	2 ³¹ - 1	Inteiro de 32 bits com sinal

Função	Descrição			
img_as_float	Converte para float			
img_as_ubyte	Converte para uint8			
img_as_uint	Converte para uint16			
img_as_int	Converte para int16			

https://scikit-image.org/docs/dev/user_guide/data_types.html

SOMA

k = 3 (número de bits) $L = 2^k = 2^3 = 8$ Intervalo: [0, L-1] ou [0, 7]

Truncamento:

$$g'(x, y) = \min(g(x, y), L - 1)$$

Normalização:

$$g' = \frac{L-1}{g_{max} - g_{min}} \times (g - g_{min})$$

	0	1	2	3	4	У
0	0	0	0	0	0	
1	3	3	5	5	0	
2	3	3	5	5	0	
3	1	2	1	2	1	
4	2	1	2	1	2	

0.00 0.77 1.55 2.33 3.11 3.88 4.66 5.44 6.22

7.00

 $f_2(x, y)$

Wrap-around:

$$g(x,y) > L - 1 ? g(x,y) - L : g(x,y)$$

SUBTRAÇÃO

k = 3 (número de bits) $L = 2^k = 2^3 = 8$ Intervalo: [0, L-1] ou [0, 7]

Truncamento:

$$g'(x,y) = \max(g(x,y),0)$$

Normalização:

$$g' = \frac{L-1}{g_{max} - g_{min}} \times (g - g_{min})$$

$g(x,y) = f_1(x,y) - f_2(x,y)$

Valor absoluto:

$$g'(x,y) = |g(x,y)|$$

Wrap-around:

$$g(x,y)<0\,?L+g(x,y):\,g(x,y)$$

MULTIPLICAÇÃO

k = 3 (número de bits) $L = 2^k = 2^3 = 8$

Intervalo: [0, L-1] ou [0, 7]

MULTIPLICAÇÃO

Mascaramento

DIVISÃO

k = 3 (número de bits) $L = 2^k = 2^3 = 8$ Intervalo: [0, L-1] ou [0, 7]

DIVISÃO

k = 3 (número de bits) $L = 2^k = 2^3 = 8$ Intervalo: [0, L-1] ou [0, 7]

Divisão por zero

Converter para float Substituir o 0 (zero) pelo menor valor positivo. $\varepsilon = \text{np.spacing}(1)$

72(77 7									
	0	1	2	3	4	у			
0	ε	ω	ω	ε	ω				
1	ε	3.	3.	4.	4.				
2	ε	3.	3.	4.	4.				
3	2.	2.	1.	1.	1.				
4	2.	2.	2.	1.	1.				
Х						•			
1	7								

 $f_2(x,y)'$

Chityala, R; Pudipeddi, P. Image Processing and Acquisition using Python. CRC Press, 2014.

DIVISÃO

k = 3 (número de bits) $L = 2^k = 2^3 = 8$ Intervalo: [0, L-1] ou [0, 7]

Converter o resultado para inteiro (arredondar ou truncar). Tratar valores.

$g(x,y) = f_1(x,y)/f_2(x,y)$							
	0	1	2	3	4	у	
0	8	8	8	8	8		
1	8	1.	1.66	1,25	0		
2	8	1.	1.66	1.25	0		
3	0.5	1.	1.	1.	1.		
4	1.	0.5	1.	1.	2.		
Х							
•							
$g(x,y)' = f_1(x,y)/f_2(x,y)$							
	0	1	2	3	4	у	
0	0	0	0	0	0		

Chityala, R; Pudipeddi, P. Image Processing and Acquisition using Python. CRC Press, 2014.

Divisão por zero

Substituir o 0 (zero) por um

valor positivo muito pequeno.

Converter para float

 $\varepsilon = np.spacing(1)$

Operações lógicas

- Operações logicas ocorrem entre imagens binárias
 - Pixels == $0 \rightarrow$ False
 - Pixel == $1 \rightarrow$ True

Α	В	NOT A	A AND B	A OR B	A NAND B	A NOR B	A XOR B
0	0	1	0	0	1	0	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	1	0

Operações lógicas

MEDIDAS DE DISTÂNCIA

- Considere três pixels e suas respectivas coordenadas
 - p em (x, y), q em (s, t) e z em (v, w)
- D é uma função ou medida de distância
 - $D(p, q) \ge 0$
 - D(p, q) = 0 se p = q
 - D(p, q) = D(q, p)
 - $D(p, z) \le D(p, q) + D(q, z)$
- Algumas medidas de distância:
 - Distância Euclidiana
 - Distância city block
 - Distância chessboard

• A distância Euclidiana entre os pixels p em (x, y) e q em (s, t)

-
$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

A distância Euclidiana entre os pixels p em (x, y) e q em (s, t)

-
$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

- Para p com coordenadas (2,2) e:
 - $-q_1$ com coordenadas (1,2):

•
$$D_e(p,q) = \sqrt{(2-1)^2 + (2-2)^2}$$

•
$$D_{\rho}(p,q) = \sqrt{1^2 + 0^2}$$

•
$$D_e(p,q) = \sqrt{1} = 1$$

 $-q_2$ com coordenadas (1,1):

•
$$D_e(p,q) = \sqrt{(2-1)^2 + (2-1)^2}$$

•
$$D_e(p,q) = \sqrt{1^2 + 1^2} = \sqrt{2}$$

 $-q_3$ com coordenadas (0,3):

•
$$D_e(p,q) = \sqrt{(2-0)^2 + (2-3)^2}$$

•
$$D_e(p,q) = \sqrt{2^2 + (-1)^2} = \sqrt{5}$$

• A distância Euclidiana entre os pixels p em (x, y) e q em (s, t)

-
$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

- Para p com coordenadas (2, 2) e:
 - $-q_1$ com coordenadas (1, 2):

•
$$D_e(p,q) = \sqrt{(2-1)^2 + (2-2)^2}$$

•
$$D_e(p,q) = \sqrt{1^2 + 0^2}$$

•
$$D_e(p,q) = \sqrt{1} = 1$$

 $-q_2$ com coordenadas (1, 1):

•
$$D_e(p,q) = \sqrt{(2-1)^2 + (2-1)^2}$$

•
$$D_e(p,q) = \sqrt{1^2 + 1^2} = \sqrt{2}$$

 $-q_3$ com coordenadas (0, 3):

•
$$D_e(p,q) = \sqrt{(2-0)^2 + (2-3)^2}$$

•
$$D_e(p,q) = \sqrt{2^2 + (-1)^2} = \sqrt{5}$$

• A distância Euclidiana entre os pixels p em (x, y) e q em (s, t)

-
$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

- Para *p* com coordenadas *(4, 3)* e:
 - $-q_1$ com coordenadas (2, 2):

•
$$D_e(p,q) = \sqrt{(4-2)^2 + (3-2)^2}$$

•
$$D_e(p,q) = \sqrt{2^2 + 1^2} = \sqrt{5}$$

 $-q_2$ com coordenadas (5, 6):

•
$$D_e(p,q) = \sqrt{(4-5)^2 + (3-6)^2}$$

•
$$D_e(p,q) = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1+9} = \sqrt{10}$$

- $-q_3$ com coordenadas (0, 3):
 - $D_e(p,q) = \sqrt{(4-0)^2 + (3-3)^2}$
 - $D_e(p,q) = \sqrt{4^2 + 0^2} = \sqrt{16} = 4$

• A distância Euclidiana entre os pixels p em (x, y) e q em (s, t)

$$- D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

- Para *p* com coordenadas *(4, 3)* e:
 - $-q_1$ com coordenadas (2, 2):

•
$$D_e(p,q) = \sqrt{(4-2)^2 + (3-2)^2}$$

•
$$D_e(p,q) = \sqrt{2^2 + 1^2} = \sqrt{5}$$

 $-q_2$ com coordenadas (5, 6):

•
$$D_e(p,q) = \sqrt{(4-5)^2 + (3-6)^2}$$

•
$$D_e(p,q) = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1+9} = \sqrt{10}$$

- $-q_3$ com coordenadas (0, 3):
 - $D_e(p,q) = \sqrt{(4-0)^2 + (3-3)^2}$
 - $D_e(p,q) = \sqrt{4^2 + 0^2} = \sqrt{16} = 4$

- Distância city block entre p em (x, y) e q em (s, t)
 - $D_4(p, q) = |x s| + |y t|$

- Distância *city block* entre *p* em (*x*, *y*) e *q* em (*s*, *t*)
 - $D_4(p, q) = |x s| + |y t|$
- Para *p* com coordenadas *(4, 3)* e:
 - $-q_1$ com coordenadas (2, 2):

•
$$D_4(p,q) = |4-2| + |3-2|$$

•
$$D_4(p,q) = 2 + 1 = 3$$

 $-q_2$ com coordenadas (5, 6):

•
$$D_4(p,q) = |4-5| + |3-6|$$

•
$$D_4(p,q) = 1 + 3 = 4$$

 $-q_3$ com coordenadas (0, 3):

•
$$D_4(p,q) = |4-0| + |3-3|$$

•
$$D_4(p,q) = 4 + 0 = 4$$

- Distância city block entre p em (x, y) e q em (s, t)
 - $D_4(p, q) = |x s| + |y t|$
- Para *p* com coordenadas *(4, 3)* e:
 - $-q_1$ com coordenadas (2, 2):

•
$$D_4(p,q) = |4-2| + |3-2|$$

•
$$D_4(p,q) = 2 + 1 = 3$$

 $-q_2$ com coordenadas (5, 6):

•
$$D_4(p,q) = |4-5| + |3-6|$$

•
$$D_4(p,q) = 1 + 3 = 4$$

 $-q_3$ com coordenadas (0, 3):

•
$$D_4(p,q) = |4-0| + |3-3|$$

•
$$D_4(p,q) = 4 + 0 = 4$$

- Distância *chessboard* entre *p* em (*x*, *y*) e *q* em (*s*, *t*)
 - $D_8(p, q) = max(|x-s|, |y-t|)$

- Distância *chessboard* entre *p* em (*x*, *y*) e *q* em (*s*, *t*)
 - $D_8(p, q) = max(|x-s|, |y-t|)$
- Para p com coordenadas (4, 3) e:
 - $-q_1$ com coordenadas (2, 1):

•
$$D_8(p,q) = \max(|4-2|,|3-1|)$$

•
$$D_8(p,q) = \max(2,2) = 2$$

 $-q_2$ com coordenadas (5, 6):

•
$$D_8(p,q) = \max(|4-5|,|3-6|)$$

- $D_8(p,q) = \max(1,3) = 3$
- $-q_3$ com coordenadas (0, 3):
 - $D_8(p,q) = \max(|4-0|,|3-3|)$
 - $D_8(p,q) = \max(4,0) = 4$

- Distância *chessboard* entre *p* em (*x*, *y*) e *q* em (*s*, *t*)
 - $D_8(p, q) = max(|x-s|, |y-t|)$
- Para p com coordenadas (4, 3) e:
 - $-q_1$ com coordenadas (2, 1):

•
$$D_8(p,q) = \max(|4-2|,|3-1|)$$

•
$$D_8(p,q) = \max(2,2) = 2$$

 $-q_2$ com coordenadas (5, 6):

•
$$D_8(p,q) = \max(|4-5|,|3-6|)$$

- $D_8(p,q) = \max(1,3) = 3$
- $-q_3$ com coordenadas (0, 3):
 - $D_8(p,q) = \max(|4-0|,|3-3|)$
 - $D_8(p,q) = \max(4,0) = 4$

Bibliografia

- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - Disponível para download no site do autor (Exclusivo para uso pessoal)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
 - Seção 2.2 pág. 25
 - Seção 2.3 pág 28 (exceto Seção 2.3.3)
- GONZALEZ, R.C.; WOODS, R.E.; Processamento Digital de Imagens. 3ª edição. Editora Pearson, 2009.
 - Seção 2.5 pág. 44
 - Seção 2.6 pág. 46 (até 2.6.4, parar antes de Conjuntos fuzzy (pág. 54)).
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf
 - Seção 3

Bibliografia complementares

- scikit-image. Image data types and what they mean.
 - https://scikit-image.org/docs/dev/user_guide/data_types.html
- Chityala, R; Pudipeddi, P. Image Processing and Acquisition using Python. CRC Press, 2014.


```
@misc{mari_im_proc_2023,
    author = {João Fernando Mari},
    title = {Fundamentos da imagem digital II},
    year = {2023},
    publisher = {GitHub},
    journal = {Introdução ao Processamento Digital de Imagens - UFV},
    howpublished = {\url{https://github.com/joaofmari/SIN392_Introduction-to-digital-image-processing_2023}}
}
```

FIM