Text Book "Stewart's Calculus"

Refer to Chapter 11.10 and 11.11

798 CHAPTER 11 Sequences, Series, and Power Series

Let's investigate the more general question: under what circumstances is a function equal to the sum of its Taylor series? In other words, if f has derivatives of all orders, when is it true that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

As with any convergent series, this means that f(x) is the limit of the sequence of partial sums. In the case of the Taylor series, the partial sums are

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x - a)^i$$

= $f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$

Notice that T_n is a polynomial of degree n called the nth-degree Taylor polynomial of f at a. For instance, for the exponential function $f(x) = e^x$, the result of Example 2 shows that the Taylor polynomials at 0 (or Maclaurin polynomials) with n = 1, 2, and 3 are

$$T_1(x) = 1 + x$$
 $T_2(x) = 1 + x + \frac{x^2}{2!}$ $T_3(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$

FIGURE 1

As n increases, $T_n(x)$ appears to approach e^x in Figure 1. This suggests that e^x is equal to the sum of its Taylor series.

SECTION 11.10 Taylor and Maclaurin Series

801

EXAMPLE 5 Find the Maclaurin series for $\sin x$ and prove that it represents $\sin x$ for all x.

SOLUTION We arrange our computation in two columns:

SOLUTION We arrange our computation in two columns:

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as follows:

$$f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

FIGURE 2

Figure 2 shows the graph of $\sin x$ together with its Taylor (or Maclaurin) polynomials

$$T_1(x) = x$$

$$T_3(x) = x - \frac{x^3}{3!}$$

$$T_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

Notice that, as n increases, $T_n(x)$ becomes a better approximation to $\sin x$.

Similarly

EXAMPLE 6 Find the Maclaurin series for cos x.

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \qquad \text{for all } x$$

Table 1 Important Maclaurin Series and Their Radii of Convergence

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$R = 1$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$R = \infty$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$R = \infty$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$R = \infty$$

$$\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

$$R = 1$$

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

$$R = 1$$

$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots$$

$$R = 1$$

Radius of Convergence

A power series $\sum_{k=0}^{\infty} c_k x^k$ will converge only for certain values of x. For instance, $\sum_{k=0}^{\infty} x^k$ converges for -1 < x < 1. In general, there is always an interval (-R, R) in which a power series converges, and the number R is called the radius of convergence (while the interval itself is called the interval of convergence). The quantity R is called the radius of convergence because, in the case of a power series with complex coefficients, the values of x with |x| < R form an open disk with radius R.

A power series in a variable z is an infinite sum of the form

$$\sum_{i=0}^{\infty} a_i z^i,$$

where a_i are integers, real numbers, complex numbers, or any other quantities of a given type.

An n-dimensional open disk of radius r is the collection of points of distance less than r from a fixed point in Euclidean n-space.

Euclidean n-space, sometimes called Cartesian space or simply n-space, is the space of all n-tuples of real numbers, $(x_1, x_2, ..., x_n)$.

An n-tuple, sometimes simply called a "tuple" when the number n is known implicitly, is another word for a list, i.e., an ordered set of n elements. It can be interpreted as a vector, or more specifically, an n-vector.

Notice that the Maclaurin series

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$T_1(x) = x$$
 $T_3(x) = x - \frac{x^3}{3!}$

$$T_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $T_7(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$

to the sine curve. You can see that as n increases, $T_n(x)$ is a good approximation to $\sin x$ on a larger and larger interval.

EXAMPLE 3 In Einstein's theory of special relativity the mass m of an object moving with velocity v is

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

where m_0 is the mass of the object when at rest and c is the speed of light. The kinetic energy k of the object is the difference between its total energy and its energy at rest:

$$K = mc^2 - m_0c^2$$

(a) Show that when v is very small compared with c, this expression for K agrees with classical Newtonian physics: $K = \frac{1}{2}m_0v^2$.

SOLUTION

(a) Using the expressions given for K and m, we get

sing the expressions given for
$$K$$
 and m , we get
$$K = mc^2 - m_0 c^2 = \frac{m_0 c^2}{\sqrt{1 - v^2/c^2}} - m_0 c^2 = m_0 c^2 \left[\left(1 \left(-\frac{v^2}{c^2} \right)^{-1/2} - 1 \right) \right]$$

 $1 - \frac{v^2}{r^2} = 1 + \left(-\frac{v^2}{c^2} \right)$

With $x = -v^2/c^2$, the Maclaurin series for $(1 + x)^{-1/2}$ is most easily computed as a binomial series with $k = -\frac{1}{2}$. (Notice that |x| < 1 because v < c.) Therefore we have

$$(1+x)^{-1/2} = 1 - \frac{1}{2}x + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}x^2 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}x^3 + \cdots$$
$$= 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \cdots$$

and

$$K = m_0 c^2 \left[\left(1 + \frac{1}{2} \frac{v^2}{c^2} + \frac{3}{8} \frac{v^4}{c^4} + \frac{5}{16} \frac{v^6}{c^6} + \cdots \right) - 1 \right]$$
$$= m_0 c^2 \left(\frac{1}{2} \frac{v^2}{c^2} + \frac{3}{8} \frac{v^4}{c^4} + \frac{5}{16} \frac{v^6}{c^6} + \cdots \right)$$

If v is much smaller than c, then all terms after the first are very small when compared with the first term. If we omit them, we get

$$K \approx m_0 c^2 \left(\frac{1}{2} \frac{v^2}{c^2} \right) = \frac{1}{2} m_0 v^2$$