Introduction

- Inference about the population usually means inference about θ .
- From the random sample X_1, \dots, X_n , want to extract all information about θ
- **D** Do we need all measurements of $X_1 = x_1, \dots, X_n = x_n$ or just a couple of (or even one) numbers to provide the information about θ that the sample has ?
- Do you want to have 20,000 cents or 2 one hundred dollar notes ?

Sufficiency

Principle: If $T(\mathbf{X})$ (Vector or Scalar) is a sufficient statistic for $\boldsymbol{\theta}$, then any information about $\boldsymbol{\theta}$ should depend on the sample $\mathbf{X} = (X_1, \cdots, X_n)$ only through the value of $T(\mathbf{X})$. That is, if \mathbf{x} and \mathbf{y} are two points such that $T(\mathbf{x}) = T(\mathbf{y})$, then the inference should be the same whatever $\mathbf{X} = \mathbf{x}$ or $\mathbf{Y} = \mathbf{y}$ is observed.

Definition

A statistic T(X) is a sufficient statistic for θ if the conditional distribution of sample X given T(X) does not depend on θ .

$$ho$$
 Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(\theta)$. $\mathcal{T}(\mathbf{X}) = \sum_{i=1}^n X_i$.

Proof: See Example 6.2.3.

Sufficiency

 Checking or defining a sufficient statistic using the definition is tricky especially for continuous distributions.

Theorem

If $f(\mathbf{x}|\theta)$ is the joint pdf or pmf of \mathbf{X} and $q(\mathbf{t}|\theta)$ is the pdf or pmf of $T(\mathbf{X})$, then T is sufficient for θ if and only if the ratio

$$\frac{f(\mathbf{x}|\boldsymbol{\theta})}{q(\mathbf{t}|\boldsymbol{\theta})}$$

is independent of θ .

ho Example 1: $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Exponential}(\theta)$. $T(\mathbf{X}) = \sum_{i=1}^n X_i$.

 \triangleright Example 2: $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Normal}(\mu, \sigma^2)$, where σ known.

$$T(X) = \sum_{i=1}^{n} X_i$$
. [Example 6.2.4.]

Sufficiency of order statistics

ightharpoonup Example 1: $X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Uniform}(0, \theta)$.

$$T(\mathbf{X}) = X_{(n)} = \max_{i} X_{i}$$

 $X_1,\cdots,X_n \stackrel{\it iid}{\sim} {\sf Cauchy\ distribution\ with\ } f(x| heta) = rac{1}{\pi(x- heta)^2}.$

$$T(\mathbf{X})=(X_{(1)},\ldots,X_{(n)})$$

(Solutions: Find the ratio of)

$$\frac{f(\mathbf{x}|\boldsymbol{\theta})}{q(\mathbf{t}|\boldsymbol{\theta})}$$

Ch 6. Principles of Data Reduction Sufficiency

Theorem (Factorization Theorem (Theorem 6.2.6))

Let $f(\mathbf{x}|\theta)$ denote the joint pdf or pmf of \mathbf{X} . $T(\mathbf{X})$ is sufficient for θ if and only if there exist functions $g[\mathbf{t}(\mathbf{x})|\theta]$ and $h(\mathbf{x})$ such that for all sample points \mathbf{x} and all θ

$$f(\mathbf{x}|\boldsymbol{\theta}) = g[\mathbf{t}(\mathbf{x})|\boldsymbol{\theta}]h(\mathbf{x}).$$

- 1. The choice of g and h is not unique.
- 2. A trivial sufficient statistic is T(X) = X.
- 3. If T is sufficient then any one to one mapping of T is also sufficient.

Ch 6. Principles of Data Reduction Sufficiency

$$ho$$
 Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(\theta)$. $T(\mathbf{X}) = \sum_{i=1}^n X_i$

 \triangleright Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. σ^2 is known. *Proof:* See Example 6.2.9.

Sufficiency

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim}$ Discrete Uniform on $(1, 2, \dots, \theta)$, where θ is a positive integer.

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Both μ and σ^2 are unknown.

Ch 6. Principles of Data Reduction Sufficiency

Number of parameters = Number of sufficient statistics ? \triangleright Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Uniform}(-\theta, \theta)$.

Sufficiency

Theorem

 $X_1, \cdots, X_n \stackrel{iid}{\sim} f(\mathbf{x}|\boldsymbol{\theta})$, where $f(\mathbf{x}|\boldsymbol{\theta})$ belongs to an exponential family. That is

$$f(\mathbf{x}|\boldsymbol{\theta}) = h(\mathbf{x})c(\boldsymbol{\theta}) \exp \left[\sum_{i=1}^k w_i(\boldsymbol{\theta})t_i(\mathbf{x})\right].$$

Then

$$\mathcal{T}(\mathbf{X}) = \left[\sum_{j=1}^n t_1(x_j), \cdots, \sum_{j=1}^n t_k(x_j)\right]$$

is sufficient for θ .

Minimal Sufficiency

In the normal example, both $\mathbf{X}=(X_1,\cdots,X_n)$ and $(\bar{X},\sum X_i^2)$ are sufficient for $\theta=(\mu,\sigma^2)$. Which one do we use and why ?

Definition

A sufficient statistic T(X) is minimal sufficient if it can be written as a function of every other sufficient statistic.

- 1. A one to one transformation of a minimal sufficient statistic is also a minimal sufficient statistic. (Not unique.)
- 2. A minimal sufficient statistic reduces data to the greatest extent w/o losing useful information for making inference about θ .

Minimal Sufficiency

How to show the given statistic is minimal sufficient?

Theorem

Let $f(\mathbf{x}|\boldsymbol{\theta})$ denote the joint pdf or pmf of \mathbf{X} . Suppose there exist a function $T(\mathbf{x})$ such that for any two sample points \mathbf{x} and \mathbf{y} , the ratio

$$\frac{f(\mathbf{x}|\boldsymbol{\theta})}{f(\mathbf{y}|\boldsymbol{\theta})}$$

is a constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$. Then $T(\mathbf{X})$ is minimal sufficient for θ .

$$ightharpoons$$
 Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

 \triangleright Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Uniform}(\theta, \theta + 1)$

Ancillary Statistic

Definition

A statistic $S(\mathbf{X})$ whose **distribution** does not depend on the parameter θ is called *ancillary* statistic.

- 1. Ancillary statistic can be thought as having no information about θ itself.
- 2. But if it is used in conjunct with other statistics, sometimes it gives a valuable information.

Ancillary Statistic

⊳ Example 1: $X_1, \dots, X_n \stackrel{iid}{\sim} f(x|\theta) = h(x-\theta), h(\cdot)$ is known. $-\infty < \theta < \infty$. [Location family] Then

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} h(x_i - \theta).$$

Let $Z_i = X_i - \theta$. Then $f_Z(z) = h(z)$ which is independent from θ . [See Theorem 3.5.6]

ightharpoonup Example 2: $X_1, \cdots, X_n \stackrel{iid}{\sim} U(\theta, \theta+1), -\infty < \theta < \infty$. Are $R = X_{(n)} - X_{(1)}$ and $S_X^2 = \sum (X_i - \bar{X}_n)^2/(n-1)$ ancillary statistics?

Complete Statistic

Definition

Let $f(t|\theta)$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$. The family of probability distributions is called complete if $E_{\theta}[g(T)] = 0$ for all θ implies $P_{\theta}[g(T) = 0] = 1$ for all θ . Equivalently, $T(\mathbf{X})$ is called a complete statistic.

- 1. Completeness is a property of a family of probability distributions, not of a particular distribution.
- 2. The family of $N(\theta, 1), -\infty < \theta < \infty$ is complete.

$$ightharpoonup$$
 Example 6.2.22: $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Bernoulli}(p), \ 0 $T(\mathbf{X}) = \sum X_i.$$

$$ightharpoonup$$
Example 6.2.23: $X_1, \dots, X_n \stackrel{iid}{\sim} U(0, \theta), \ 0 < \theta < \infty$. $T(\mathbf{X}) = \max_i X_i$.

Complete Statistic

$$ightharpoonup$$
 Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$, $0 < \lambda$. $T(\mathbf{X}) = \sum X_i$.

So far, we have investigated *sufficient*, *ancillary* and *complete* statistics. We know that sufficient statistic has a whole information about the parameter θ but ancillary has none. Can we say they are independent each other?

Theorem (Basu's Theorem)

If T(X) is complete, minimal sufficient then T(X) is independent of every ancillary statistics.

$$ho$$
 Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Uniform}(\theta, \theta + 1)$. $T(\mathbf{X}) = (X_{(1)}, X_{(n)})$.

Completeness is a property that is often hard to prove. But, we have a nice theorem for an exponential family.

Theorem

 $X_1, \dots, X_n \stackrel{iid}{\sim} f(\mathbf{x}|\boldsymbol{\theta})$, where $f(\mathbf{x}|\boldsymbol{\theta})$ belongs to an exponential family. That is

$$f(\mathbf{x}|\boldsymbol{\theta}) = h(\mathbf{x})c(\boldsymbol{\theta}) \exp \left[\sum_{i=1}^k w_i(\boldsymbol{\theta})t_i(\mathbf{x})\right],$$

where $\theta = (\theta_1, \cdots \theta_k)$. Then

$$\mathcal{T}(\mathbf{X}) = \left[\sum_{j=1}^n t_1(x_j), \cdots, \sum_{j=1}^n t_k(x_j)\right]$$

is complete.

Theorem

Any complete statistic is also a minimal sufficient statistic if a minimal sufficient statistic exists.

[We cover Chapter 6.1 and 6.2 of Casella and Berger in STA513.]