Introdução ao Octave

Curso de Computação Científica Prandiano

Régis S. Santos

Sumário

Sı	Sumário					
1	Intr	rodução ao Octave	3			
	1.1	Configurando o caminho do Octave	3			
	1.2	comandos	3			
	1.3	Funções matemáticas	5			
	1.4	O operador:	6			

Introdução ao Octave

Programas que serão usados durante o curso

```
dia, npp (notepad ++) e octave
```

1.1 Configurando o caminho do Octave

```
Abra um editor de texto e digite
addpath("c:\octave\ccc\lib)
EDITOR('c:notepad++.exe')
salve como .octaverc

Para executar o Octave pelo DOS edite 'PATH'
setx path "%PATH%;c:\octave\...\bin\"
```

1.2 comandos

```
clc,home - limpa a tela
clear - limpa as variáveis da memória
whos - lista as variáveis definidas pelo usuário
ver - versão
help
doc
pwd - exibe o diretório atual
ls
format - mostra os resultados em vários formatos diferentes
save
load
diary
exit/quit
```

Régis © 2012 3

1. INTRODUÇÃO AO OCTAVE

```
format bit - binário format short - default format rat - racional
```

Tipos de dados

Tipos primitivos

Os tipos primitivos de dados são as unidades elementares para a representação de informações pertinentes a uma linguagem de programação, que permitem a construção de programas computacionais.

caracter	CHAR
inteiro	INT
ponto-flutuante	FLOAT ou DOUBLE

variável

```
complecti - números complexos
vector - vetores
matrix - matrizes
string - cadeia de caracteres
```

 $A = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9]$

Exemplos

```
matriz
A = [1,2,3; 4,5,6; 7,8,9] #ou
A = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9]
lendo um endereço da matriz
A(2,2);
ans = 5
A(3,2);
ans = 8
A(1,:) #seleciona a 1ª linha da matriz A
A(:,1) #seleciona a 1ª coluna da matriz A
A(:,2:end) #seleciona da 2° coluna a última coluna de A
A(2:end,:) #seleciona da 2^a linha a última linha de A
B(2:end,2:end) #seleciona uma submatriz a partir do endereço 2,2
V = [0,1,2,3,4,5,6,7,8,9]
V(1) #seleciona o 1° elemento do vetor V
V(3:6) #seleciona do 3° ao 6° elemento do vetor V
V(5:end) #seleciona do 5^{\circ} ao último elemento de V
V(5:end-1) #seleciona do 5^{\circ} ao penúltimo elemento de V
Matriz transposta
V' #gera a matriz transposta de V
Operações entre matrizes
```

4 Régis © 2012

```
B = [2 3 4; 5 6 7; 8 9 10]
A + B
A - B
A * B
A .* B #multiplica os respectivos elementos da matriz
++A #soma 1 unidade a cada iteração da matriz
- A #troca o sinal dos elementos da matriz
string
s = 'cadeia de caracteres'
format short
format long
format bit (double)
format rat
```

1.3 Funções matemáticas

 $\begin{array}{ll} \operatorname{sen}(x) & \operatorname{sin}(\mathbf{x}) \\ \cos(x) & \cos(\mathbf{x}) \\ \ln(x) & \log(\mathbf{x}) \\ e^x & \exp(\mathbf{x}) \end{array}$

O octave possui um conjunto de funções matemáticas que podem ser usadas na construção de scripts ou via terminal permitindo usá-las como uma poderosa calculadora científica.

Régis \odot 2012 5

1.4 O operador:

O operador ':' permite criar vetores de maneira simples, dados os dois limites, inferior e superior, e um passo de incremento.

V = 1:20 # cria um vetor 1x20

passo de incremento

$$V = a:i:b$$

onde a é o limite inferior, i é o passo de incremento e b é o limite superior V = 0:2:20 #cria um vetor com os números pares de 0 a 20

Exercícios

Exemplo 1.1
$$y(x) = |x| \operatorname{sen} x^2$$
, para $x = \frac{\pi}{3}$ e $x = \frac{\pi}{6}$

$$x = pi/3$$

 $y = abs(x) * sin(x^2)$

Exemplo 1.2 $h(x) = \sin 2x + x \cos 4x$, para $1 \le x \le 2$ em intervalos de 0.1 em 0.1

$$x = 1:0.1:2$$

 $\sin(2 \cdot * x) + x \cdot * \cos(4 \cdot * x)$

Exemplo 1.3 $g(x) = \frac{1}{x} + x^3 \frac{1}{x^4 + 5x \operatorname{sen} x}$, para x = [1, 3], com passo 0.1

$$x = 1:0.1:3$$

1./x + x.^3*1./(x.^4 + 5.*x.*sin(x))

Exemplo 1.4 $f(x) = \frac{x}{x + \frac{1}{x^2}}$, para x = [0, 3], com passo 0.1

$$x = 0:.1:3$$

 $x ./ (x .+ 1 ./ (x .^ 2))$

6 Régis \odot 2012