Problem 1

	2	3 (2)	0 m
	ARICO BENTERS	2	V O U I X Z
Po	Slep? X=(u), v, u), u, x)? 2	0	w 3 4 3
	tructing greedy tength = 2 A[V] + wt(V,W) = wb(V,W) = 3 A[V] + wt(V,X) = wt(V,X) = 2 A[V] + wt(V,W) = wt(V,W) = 1	0	ν {τ α (τν,α)} Χ ((υ, κ)) ω ((η,ω)) τ
	Aful + 1, B[u] = Bolu ((v,u)) = Add u+o x haral	\$ (W, W) ?	19 ((v,v),(u,v)?
Gladding graedy largh,	$x = \{u, u\}$ $pool = \{(u, w), (u, x), (u, x), (u, w), (u, y)\}$ $\{(u, w) = A [u] + wb(u, w) = 3$ $\{(u, x) = A [u] + wb\{(u, x) = 2 \longleftarrow M_{1x}\}$	2 3	1
	8(u,x)=A[u]+w+(u,x)=1+3=4 8(u,w)=A[u]+w+(u,w)=1+4=5 8(u,y)=A[u]+w+(u,y)=1+2=3 A[x] ~ 2, B[x]=B[v] u ((x))=	(V))}	
	Add x to X	18-3	

Problem 2

- a) Dijkstra's algorithm attempts to find the shortest distance from a source vertex to any other vertex and hence the shortest path in the Graph given 3 conditions are satisfied;
 - 1) The graph is connected
 - 2) The graph does not have negative weights
 - 3) The graph is not directed

In our case the graph has negative weights hence we cannot use Dijkstra's algorithm to calculate the distance.

b) BFS makes all the edge weights = 1 by creating new vertices. When the edge weights are big, many new vertices will be created, and this may lead to degraded performance of the BFS

Problem 3

We can use a hash map while building the heap-based priority queue that uses the heap key as the key and the node as the value in the map.

So the HashMap will have the following $\{A = node \ value, B = node \ value, C = node \ value, D = node \ value, E = node \ value, F = node \ value, G = node \ value\}.$ The HashMap will be updated every time the operations on the heap tree are performed such as removeMin or insert.

If a node must be deleted for example node E, it is in the HashMap in 0 (1) time and swapped with the last value in the heap. Then a down heap or upheap can be done if necessary and this takes 0 (log n). Thus, the whole algorithm takes 0 (log n) time.

For example using the Array implementation of a priority queue, if the indices of the array are stored in a HashMap we can find the element to be deleted in 0 (1) time and do down heap or upheap in 0 ($\log n$) time. Thus, the algorithm runs in 0 ($\log n$)

Problem 4

