			1% CS					
Objects Dataset	Features	Clusters	PCCC-N2-S	PCCC-N2-S-RD	COPKM	LCC	CSC	DILS
Banana5,300	2	2	6.4	22.9	_	114.5	3,774.8	3,629.6
Letter 20,000	16	26	77.5	261.4	841.7	3,785.3	_	$4,\!568.9$
Shuttl 5 7,999	9	7	13.1	36.4	_	_	_	_
CIFAR60,000 10	3,072	10	921.0	1,800.7	_	_	_	_
CIFAR60,000 100	3,072	100	3,631.6	3,609.6	_	_	_	_
MNIS T 0,000	784	10	$\boldsymbol{959.3}$	2,916.8	_	_	_	_
Sum			5,608.9	8,647.7	18,841.7*	18,299.8*	21,774.8*	$\overline{22,598.5}^*$

^{*}Nan values (-) are replaced with 3,600 before computing the sum.

Table W110: Average running times (in seconds) of the PCCC and the PCCC-R algorithms and the four state-of-the-art algorithms (COPKM, CSC, DILS, LCC) for the constraint sets of size 1% CS. Higher values indicate better separated clusters. The lowest values are stated in bold. The column KMEANS reports the average running time of the unconstrained k-means algorithm. The hyphen indicates that the respective algorithm returned no solution within the time limit of 1,800 seconds.